

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

CIRCUITOS ELECTRICOS I

TEMA 1

MSc. Ing. Juan José Edgar MONTERO GUEVARA

OBJETNOS DE LA UNIDAD

- Introducir en el estudio de los Circuitos Eléctricos
- Aplicar el Sistema Internacional de Unidades SI.
- Establecer los componentes básicos de los circuitos eléctricos
- Definir los principales parámetros eléctricos: Voltaje, Intensidad de corriente eléctrica, potencia y energía.

Introducción a la Ingeniería Eléctrica y Electrónica

La Ingeniería Eléctrica es la profesión que se ocupa de los sistemas que producen, transmiten y miden señales eléctricas y está centrada en las aplicaciones de los modelos de los fenómenos naturales.

Los sistemas eléctricos están presentes en todas las actividades de la vida cotidiana y de acuerdo a ello se tiene la siguiente clasificación de los sistemas en: Comunicación, Computación, Control, Potencia y Procesamiento de señales

Introducción a la Ingeniería Eléctrica y Electrónica

- Sistemas de Comunicación: Sistemas eléctricos que generan, transmiten y distribuyen información
- Sistemas de Computación: Sistemas que utilizan señales eléctricas para procesar información.
- Sistemas de Control: utilizan las Señales eléctricas para regular procesos (temperatura, presión, caudales, motores, etc.)
- Sistemas de Potencia: generan y distribuyen la energía eléctrica
- Sistemas de Procesamiento de señales: amplia gama de sistemas (ej. Tomografía)

Introducción a la Ingeniería Eléctrica y Electrónica

- Un Ingeniero (Eléctrico, Electrónico, Electromecánico) se especializa un una de las áreas, pero debe poseer conocimiento acerca de todas las otras áreas.
- El aspecto común entre todas las ramas lo constituyen los CIRCUITOS ELÉCTRICOS y su conocimiento será base para el análisis y diseño de circuitos a través de modelos, técnicas matemáticas, familiarización con el lenguaje de los circuitos como marco intelectual de trabajo del futuro ingeniero permitiendole operar los sistemas antes descritos.

UNIDAD 1: VARIABLES Y PARÂMETROS DE CIRCUITOS ELÉCTRICOS Introducción a la Ingeniería Eléctrica y Electrónica

- La Teoría de Circuitos es un caso especial de la teoría de los Campos Electromagnéticos, es decir el estudio de las Cargas Eléctricas Estáticas y dinámicas, basada en tres suposiciones:
- Las cargas en movimiento originan señales eléctricas, que se propagan a través de un sistema con una velocidad finita.
- La carga neta de cada componente del sistema siempre es cero.
- No hay acoplamiento magnético entre los componentes en un sistema.

Sistema Internacional de Unidades

- Una característica distintiva de las Ingenierías es su preocupación por las medidas cuantitativas, a fin de comparar la teoría con el experimento y los diseños de ingeniería que sean competitivos.
- La ingeniería moderna siendo profesiones multidisciplinarias ven que la única forma de comunicarse es a través de resultados
 - **⇒ Utilizar las mismas Unidades**
 - ⇒Sistema de Unidades
 - ⇒ SISTEMA INTERNACIONAL

- El Sistema Internacional representa para los circuitos y sus elementos el sistema de medida para las cantidades que participan en el mismo, a partir de:
- Las Magnitudes Fundamentales y sus respectivas Unidades Fundamentales
- Las Magnitudes Derivadas con sus Unidades Derivadas

Magnitud	Nombre	Símbolo	
Longitud	metro	m	
Masa	kilogramo	kg	
Tiempo	segundo	S	
Intensidad de corriente eléctrica	ampere	A	
Temperatura termodinámica	kelvin	K	
Cantidad de sustancia	mol	mol	
Intensidad luminosa	candela	cd	

Magnitud	Nombre	Símbolo	Expresi ó n en otras unidades SI	Expresi ó n en unidades SI b á sicas
Frecuencia	hertz	Hz		s-1
Fuerza	newto n	N		m·kg·s·²
Presión	pascal	Pa	N•m-2	m ⁻¹ •kg•s ⁻²
Energía, trabajo, cantidad de calor	joule	J	N·m	m ² ·kg·s ⁻²
Potencia	watt	W	J·s·1	m ² ·kg·s ⁻³
Cantidad de electricidad carga eléctrica	coulo mb	C		s•A
Potencial eléctrico fuerza electromotriz	volt	V	W•A-1	m ² •kg•s ⁻³ •A ⁻¹
Resistencia eléctrica	ohm	Ω	V•A-1	m ² •kg•s ⁻³ •A ⁻²
Capacidad eléctrica	farad	F	C•V-1	m-2-kg-1-s4-A2
Flujo magnético	weber	Wb	V-s	m ² •kg•s ⁻² •A ⁻¹
Inducción magnética	tesla	T	Wb•m-2	kg·s-2-A-1
Inductancia	henry	Н	Wb·A-1	m ² •kg s ⁻² •A ⁻²

Factor	Prefijo	Símbolo	Factor	Prefijo	Símbolo
	Make				
10 ²⁴	yotta	Y	10-1	deci	d
10 ²¹	zeta	Z	10-2	centi	c
1018	exa	E	10-3	mili	m
1015	peta	P	10-6	micro	μ
1012	tera	T	10-9	nano	n
109	giga	G	10-12	pico	р
106	mega	M	10-15	femto	f
103	kilo	k	10-18	atto	a
102	hecto	h	10-21	zepto	Z
101	deca	da	10-24	yocto	y

UNIDAD 1: VARIABLES Y PARÁMETROS DE CIRCUITOS ELÉCTRICOS Tensión, Comiente, Potencia y Energía Eléctrica

TENSIÓN Ó VOLTAJE

 Es la variación de energía que experimentaría una unidad de carga al moverse entre dos puntos de un circuito

$$\mathbf{v} = \frac{\mathbf{dw}}{\mathbf{dq}} [\mathbf{v}] = \left[\frac{\mathbf{J}}{\mathbf{C}}\right]$$

INTENSIDAD DE CORRIENTE ELÉCTRICA

 Es la cantidad de carga que pasa por un punto dado en un instante de tiempo

$$i = \frac{dq}{dt}$$
 [A]; $\left[\frac{C}{s}\right]$

UNIDAD 1: VARIABLES Y PARÁMETROS DE CIRCUITOS ELÉCTRICOS Tensión, Comiente, Potencia y Energía Eléctrica

ELEMENTO BÁSICO IDEAL DE CIRCUITO

 Es un componente de dos terminales que no puede dividirse y que puede describirse matemáticamente en función de su voltaje y su corriente terminales

UNIDAD 1: VARIABLES Y PARÁMETROS DE CIRCUITOS ELÉCTRICOS Tensión, Comiente, Potencia y Energía Eléctrica

POTENCIA ELÉCTRICA

 Potencia es la energía por unidad de tiempo, es decir la rapidez con la que se efectúa un trabajo.

$$\mathbf{p} = \frac{\mathbf{d}\mathbf{w}}{\mathbf{d}\mathbf{t}}[\mathbf{w}] = \left[\frac{\mathbf{J}}{\mathbf{s}}\right] \quad \mathbf{p} = \mathbf{v} \quad \mathbf{i} \quad [\mathbf{w}] = [\mathbf{v} \quad \mathbf{A}]$$

Donde:

Donde:

UNIDAD 1: VARIABLES Y PARÂMETROS DE CIRCUITOS ELÉCTRICOS Tensión, Corriente, Potencia y Energía Eléctrica

POTENCIA MEDIA

$$P_{m} = \frac{1}{T} \int_{0}^{T} p(t) dt$$

• Donde:

• T = Período

• p = Potencia instantánea

- Donde:

- t = Variable de integración

ENERGÍA ELÉCTRICA

 Es la energía absorvida o entregada por el elemento de circuito.

$$\mathbf{p} = \frac{\mathbf{d}\mathbf{w}}{\mathbf{d}\mathbf{t}}$$
 de donde $\mathbf{W} = \int_{t_1}^{t_2} \mathbf{p} \, d\mathbf{t}$

PRÁCTICA 1

 Obtenga la corriente de un elemento de circuito cuando la carga que ha entrado al elemento es: q(t) = 12 t [C]
 R.: 12[A]

La carga total acumulada por cierto dispositivo esta dada como una función del tiempo por: q(t) = 8 t²
 2 t⁴ [C] en unidades del Sistema Internacional (SI)

a) Cuál es la carga total que se acumula en t = 2[s]?.

R.: 0[C]

b) Cuál es la carga máxima acumulada en el intervalo 0 < t < 3 [s] y cuando ocurre?.

R.: 8[C]

c) Determinar la velocidad con que se acumula la carga en t = 0.8[s].

R.: 8.70[A]

$$\frac{P-2}{9(1)=8t^{2}-2t^{4}} \quad \text{[c]} \quad \frac{9=?}{9=?} \quad t=267$$

$$\frac{9=?}{9=?} \quad 0 \leq t \leq 367$$

3. Si q(t) = 0[C] para t < 0, se pide determinar la carga que ha entrado a la terminal de un elemento desde t = 0[s] hasta 3[s] cuando la corriente es como se muestra en la figura:

R.: 5[C]

3. Si q(t) = 0[C] para t < 0, se pide determinar la carga que ha entrado a la terminal de un elemento desde t = 0[s] hasta 3[s] cuando la corriente es como se muestra en la figura:

R.: 5[C]

$$y = y_0 + w(x-x_0)$$

 $i = i_0 + w(t-t_0)$
 $i_2 = 1 + (t-1)$
 $i_2 = 1 + (t-1)$

3. Si q(t) = 0[C] para t < 0, se pide determinar la carga que ha entrado a la terminal de un elemento desde t = 0[s] hasta 3[s] cuando la corriente es como se muestra en la figura:

R.: 5[C]

$$q(t) = \int_{1}^{t} dt + q(t_{0})$$

$$q_{1} = \int_{0}^{1} dt + 0 \implies q_{1} = \int_{0}^{1} (c) = 0$$

$$q_{2} = \int_{0}^{1} ddt + q_{1} \implies q_{2} = \frac{t^{2}}{2} \Big|_{1}^{3} + 1$$

$$q_{2} = \int_{0}^{1} ddt + q_{1} \implies q_{2} = \int_{0}^{1} (c) = 0$$

$$q_{2} = \int_{0}^{1} ddt + q_{1} \implies q_{2} = \int_{0}^{1} (c) = 0$$

$$q_{2} = \int_{0}^{1} (d) + q_{1} \implies q_{2} = \int_{0}^{1} (c) = 0$$

$$q_{2} = \int_{0}^{1} (d) + q_{1} \implies q_{2} = \int_{0}^{1} (c) = 0$$

$$q_{2} = \int_{0}^{1} (d) + q_{1} \implies q_{2} = \int_{0}^{1} (c) = 0$$

11. Si v(t) = 0[V] para t < 0, se pide efectuar las gráficas de corriente, potencia y calcular la potencia media entre 0 y 10[ms] de un elemento de circuito, donde la tensión es directamente proporcional a la corriente en 5 unidades, cuando la tensión es como se muestra en la figura:</p>

R.: 22.28[W]

Problemas

13. Las curvas de corriente y voltaje en los terminales de un elemento de circuito son como se muestran a continuación en la siguiente figura.

A partir de dicha información se pide:

a) Determinar la potencia instantánea.

1000 t [W]

- b) Graficar potencia en función del tiempo entre 0 y 0.01 segundos.
- c) Calcular la potencia media entre 0 y 0.01 [s]

5[W]

d) Calcular la energía entre 0 y 0.01 [s]

0.05[J]

- 21. La tensión en un elemento de circuito es v = 150 sen ωt [V]. Si la tensión en este elemento es directamente proporcional a la corriente en un valor de 25 se pide:
 - a) Hallar la corriente en [A].
 - b) Determinar la potencia instantánea.
 - c) Graficar: corriente, tensión y la potencia instantánea.
 - d) Hallar el valor de la potencia media.
 - e) Representar gráficamente la potencia media.

Problemas

CIRCUITOS ELÉCTRICOS I

III FIN DE LA PRESENTACIÓN III

III GRACIAS III

MSc. Ing. Juan José Edgar MONTERO GUEVARA