

Plan de test

Ostle Alexander - 12111487

Charreyron Victor - 12106374

Begotti Thomas - 12210147

Moulin Flora -

Plan de test

Robot

Les informations d'identification du document

Référence du document :	D7
Version du document :	1.0
Date du document :	14 décembre 2024
Auteur(s):	Alexander OSTLE, Thomas BEGOTTI, Victor CHARREYRON

Les éléments de vérification du document

Validé par :	Alexander OSTLE, Thomas BEGOTTI, Victor CHARREYRON
Validé le :	14/12/2024
Soumis le :	14/12/2024
Type de diffusion :	Document électronique (.pdf)
Confidentialité :	Standard / Étudiants de l'Université Grenoble-Alpes

SOMMAIRE

Sommaire	3
Introduction	4
Objectifs des méthodes	4
Documents de référence	4
Guide de lecture	4
Maîtrise d'œuvre	4
Maîtrise d'ouvrages	4
Concepts de base	4
Tests fonctionnels	4
Scénario 1 : Contrôle des moteurs de déplacement	4
Scénario 2 : Contrôle du moteur des pinces	5
Scénario 3 : Fonctionnement du capteur tactile	5
Scénario 4 : Mesure de distance par le capteur ultrasonique	6
Scénario 5 : Fonctionnement du capteur couleur	6
Tests d'intégration	6
Test d'intégration 1 : Intégration entre les Actionneurs et les Sensors	6
Tests unitaires	7
Test unitaire 1 : Vérification de la méthode avancer dans la classe Actionneurs	7
Vérification de la documentation	7
Glossaire	7
Référence	7
Index	8

INTRODUCTION

Ce plan de tests a pour objectif de vérifier le bon fonctionnement du robot LEGO EV3 développé à l'aide de la bibliothèque LeJOS à travers différents tests.

Objectifs des méthodes

Les tests porteront sur les modules principaux, à savoir les capteurs, les moteurs, et le contrôle du robot en interaction avec ces éléments.

Documents de référence

- Cahier des charges du projet
- La documentation interne du code
- Documentation LeJOS

GUIDE DE LECTURE

Maîtrise d'œuvre

Les développeurs et les testeurs devront suivre ce document pour s'assurer de la conformité des implémentations avec les spécifications et d'effectuer les vérifications nécessaires.

Maîtrise d'ouvrages

L'utilisateur final pourra consulter ce plan pour comprendre les tests effectués sur les différentes fonctionnalités du robot et vérifier leur conformité avec les exigences du cahier des charges.

CONCEPTS DE BASE

Ce document se base sur l'architecture du robot LEGO EV3, comprenant des capteurs (ultrasonique, tactile, couleur) et des moteurs pour le mouvement et la manipulation d'objets.

TESTS FONCTIONNELS

Scénario 1 : Contrôle des moteurs de déplacement

- Identification: testDeplacement
- **Description**: Vérifier si les moteurs de déplacement (moteur gauche et droit) du robot fonctionnent correctement pour avancer, reculer, et tourner.

- **Contraintes** : L'environnement de test doit être dégagé pour garantir un mouvement sans obstacle.
- **Dépendances** : Les actionneurs doivent être initialisés correctement dans la classe Actionneurs.

• Procédure de test :

- 1. Faire avancer le robot sur 500 mm.
- 2. Faire reculer le robot sur 500 mm.
- 3. Faire tourner le robot de 90°.
- 4. Vérifier que les actions sont exécutées comme prévu.

Scénario 2 : Contrôle du moteur des pinces

- Identification : testPinces
- **Description**: Vérifier si le moteur des pinces du robot fonctionne correctement pour ouvrir et fermer les pinces.
- **Contraintes** : L'environnement de test doit être dégagé pour garantir un mouvement sans obstacle.
- **Dépendances** : Les actionneurs doivent être initialisés correctement dans la classe Actionneurs.

Procédure de test :

- 1. Ouvrir les pinces avec une vitesse de 700 mm/s.
- 2. Fermer les pinces avec une vitesse de 700 mm/s.
- 3. Vérifier que les actions sont exécutées comme prévu.

Scénario 3 : Fonctionnement du capteur tactile

- Identification: testCapteurTactile
- **Description**: Vérifier que le capteur tactile réagit correctement au contact.
- **Contraintes**: Aucun obstacle n'est autorisé autour du capteur tactile pour éviter des fausses lectures.
- **Dépendances** : Les capteurs doivent être initialisés correctement dans la classe Sensors.

• Procédure de test :

- 1. Appuyer sur le capteur tactile.
- 2. Vérifier que le robot détecte le contact (retour "true").

3. Retirer le doigt et vérifier que le robot détecte l'absence de contact (retour "false").

Scénario 4 : Mesure de distance par le capteur ultrasonique

- Identification: testCapteurUltrasonique
- **Description**: Vérifier que le capteur ultrasonique fournit des mesures de distance correctes.
- Contraintes: L'environnement de test doit permettre de positionner un objet à différentes distances (par exemple, 50 cm, 1 mètre).
- Dépendances : Le capteur ultrasonique doit être initialisé dans Sensors.
- Procédure de test :
 - 1. Positionner un objet à 50 cm.
 - 2. Vérifier que la mesure renvoyée par le capteur est proche de 0.5 mètre.
 - 3. Répéter l'opération à différentes distances (1 mètre, 2 mètres).

Scénario 5 : Fonctionnement du capteur couleur

- Identification: testCapteurCouleur
- **Description**: Vérifier que le capteur couleur fournit des couleurs correctes.
- **Contraintes**: L'environnement de test doit permettre de positionner des lignes de couleurs différente (par exemple rouge, vert, bleu).
- **Dépendances** : Le capteur couleur doit être initialisé dans Sensors.
- Procédure de test :
 - 1. Positionner les lignes de couleurs.
 - 2. Vérifier que l'entier renvoyée par le capteur correspond à la bonne couleur (à savoir 2 pour bleu, 3 pour vert, 5 pour rouge, les autres couleurs peuvent être retrouvées sur la documentation LeJOS).
 - 3. Répéter l'opération pour plusieurs couleurs

TESTS D'INTEGRATION

Test d'intégration 1 : Intégration entre les Actionneurs et les Sensors

- Identification: TestInteg1
- **Description**: Tester si le robot réagit correctement lorsqu'il détecte un obstacle à l'aide du capteur ultrasonique et s'arrête avec la commande d'arrêt des moteurs.

- Contraintes : L'obstacle doit être placé à une distance de 50 cm du capteur ultrasonique.
- Dépendances : Les classes Actionneurs et Sensors doivent être correctement initialisées.

• Procédure de test :

- 1. Placer un obstacle à 50 cm du capteur ultrasonique.
- 2. Lancer le robot en mouvement.
- 3. Vérifier que le robot s'arrête correctement lorsque l'obstacle est détecté à la distance spécifiée.

TESTS UNITAIRES

Test unitaire 1 : Vérification de la méthode avancer dans la classe Actionneurs

- Identification: UnitTest1
- **Description**: Tester la méthode avancer pour s'assurer que le robot avance bien sur la distance spécifiée.
- Contraintes : L'environnement de test doit permettre un espace de 1 mètre pour le déplacement.
- **Dépendances** : Aucun test préalable nécessaire, la méthode avancer peut être testée de manière isolée.

Procédure de test :

- 1. Appeler avancer (1000, false) sur l'objet Actionneurs.
- 2. Vérifier que le robot a bien avancé de 1000 mm.

VERIFICATION DE LA DOCUMENTATION

Ce plan de test a été vérifié pour s'assurer qu'il correspond aux exigences du cahier des charges et que tous les tests nécessaires ont été pris en compte.

GLOSSAIRE

REFERENCE

- Cahier des charges du projet
- La documentation interne du code
- Documentation LeJOS

INDEX