Exercices bases formelles du TAL

Pierre-Léo Bégay

pbegay@ens-cachan.fr

1 Théorie des ensembles

Produit cartésien Soit $A = \{a, b, c, d\}$. Calculer A^2 (vous devriez trouver un ensemble à $4^2 = 16$ éléments)

Correction

$$A^2 = A \times A = \{ \begin{array}{cccc} <\mathbf{a}, \mathbf{a}>, & <\mathbf{a}, \mathbf{b}>, & <\mathbf{a}, \mathbf{c}>, & <\mathbf{a}, \mathbf{d}>, \\ <\mathbf{b}, \mathbf{a}>, & <\mathbf{b}, \mathbf{b}>, & <\mathbf{b}, \mathbf{c}>, & <\mathbf{b}, \mathbf{d}>, \\ <\mathbf{c}, \mathbf{a}>, & <\mathbf{c}, \mathbf{b}>, & <\mathbf{c}, \mathbf{c}>, & <\mathbf{c}, \mathbf{d}>, \\ <\mathbf{d}, \mathbf{a}>, & <\mathbf{d}, \mathbf{b}>, & <\mathbf{d}, \mathbf{c}>, & <\mathbf{d}, \mathbf{d}> \end{array} \}$$

Ensemble des parties Calculer P(A) (vous devriez trouver un ensemble à $2^4 = 16$ éléments)

Correction

$$P(A) = \{\{\}, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}, \{a, b, c, d\}\}\}$$

2 Mots et langages

2.1 Facteurs et sous-mots

Soit u = abbababaa. Les mots suivants sont-ils des sous-mots et/ou des facteurs de u?

Correction

	sous-mot	justification	facteur	m justif
aaaaa	Yes	${f abbababaa}$	No	
aaaaaa	No	Trop de a	No	
aba	Yes	abbababaa (entre autres)	Yes	abbababaa (ou abbababaa)
bab	Yes	abbababaa (idem)	Yes	abbababa (ou abbababa)
babaa	Yes	abbababaa (idem)	Yes	abbababa
bbaab	Yes	abbababaa	No	
bbaabb	No	Les b sont <i>imposés</i> , les a <i>matchent</i> pas	No	

2.2 Pré/suffixes

Calculer Pre(u) et Suf(u).

Correction

 $Pre(u) = \{\epsilon, a, ab, abb, abba, abbaba, abbaba, abbababa, abbababa, abbababaa\}$

 $Suf(u) = \{\epsilon, a, aa, baa, abaa, babaa, babaaa, bababaa, bababaa, abbababaa\}$

2.3 Distributivité

Soient L_1, L_2 et L_3 trois languages rationnels quelconques. Est-ce qu'on a

$$L_1.(L_2 \cup L_3) = L_1.L_2 \cup L_1.L_3$$
?
 $L_1 \cup (L_2.L_3) = (L_1 \cup L_2).(L_1 \cup L_3)$?

Correction

```
\begin{array}{lll} L_1.(L_2 \cup L_3) \\ = & \{uv \mid u \in L_1 \text{ et } v \in (L_2 \cup L_3)\} \\ = & \{uv \mid u \in L_1 \text{ et } (v \in L_2 \text{ ou } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2) \text{ ou } (u \in L_1 \text{et} v \in L_3)\} \\ = & \{uv \mid uv \in (L_1.L_2) \text{ ou } uv \in (L_1.L_3)\} \\ = & \{w \mid w \in (L_1.L_2) \text{ ou } w \in (L_1.L_3)\} \\ = & \{w \mid w \in (L_1.L_2)\} \cup \{w \mid w \in (L_1.L_3)\} \\ = & \{uv \mid (L_1.L_2)\} \cup \{uv \mid (L_1.L_3)\} \\ = & \{uv \mid (L_1.L_2)\} \cup \{uv \mid (L_1.L_3)\} \\ = & \{uv \mid (L_1.L_2)\} \cup \{uv \mid (L_1.L_3)\} \\ = & \{uv \mid (L_1.L_2)\} \cup \{uv \mid (L_1.L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_2)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \cup \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_3 \text{ et } u \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_3 \text{ et } u \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_3)\} \\ = & \{uv \mid (u \in L_1 \text{ et } v \in L_3 \text{ et } u \in L_3)\}
```

Quant à $L_1 \cup (L_2.L_3) = (L_1 \cup L_2).(L_1 \cup L_3)$, c'est faux. On peut le vérifier avec le contre-exemple $L_1 = \{a\}, L_2 = \{b\}, L_3 = \{c\}$:

- $L_1 \cup (L_2.L_3) = \{a\} \cup \{bc\} = \{a, bc\}$
- $(L_1 \cup L_2).(L_1 \cup L_3) = \{a, b\}.\{a, c\} = \{aa, ac, ba, bc\}$

3 Expressions rationnelles

3.1 Distributivité

Soient e_1, e_2 et e_3 trois ERs quelconques. Est-ce qu'on a

$$e_1(e_2 + e_3) = {}^{1}e_1e_2 + e_1e_3$$
?
 $e_1 + (e_2e_3) = (e_1 + e_2)(e_1 + e_3)$?

Correction

Pour la deuxième question, même contre-exemple que dans l'exercice précédent.

 $^{^1}$ Où l'égalité entre ERs désigne l'égalité sémantique, c'est à dire que e=e' si et seulement si $[\![e]\!]=[\![e']\!]$ (où le second e désigne donc l'égalité entre ensembles). A distinguer de l'égalité syntaxique, qui indique que les deux ERs données sont formées de l'exacte même façon. On a $(e=_{syntaxe}e')\Rightarrow (e=_{s\acute{e}mantique}e')$, mais pas l'inverse. En effet, $(a^*)^*=_{s\acute{e}mantique}a^*$, mais pas $(a^*)^*=_{syntaxe}a^*$

3.2 Version

Soit un alphabet fini A qui contient au moins les lettres a et b. Exprimer en français, de façon la plus naturelle possible, les langages dénotés par les expressions régulières suivantes :

1. aA^*

a puis n'importe quoi

 \Rightarrow Les mots qui commencent par un a

2. A^*a

n'importe quoi puis a

 \Rightarrow Les mots qui finissent par un a

$3. A^*abbaA^*$

n'importe quoi puis abba puis n'importe quoi

 \Rightarrow Les mots qui contiennent (au moins) un facteur abba

4. $A^*aA^*aA^*$

n'importe quoi puis a puis n'importe quoi puis a puis n'importe quoi

 \Rightarrow Les mots qui contiennent au moins deux a

5. A^*aaA^*

n'importe quoi puis aa puis n'importe quoi

 \Rightarrow Les mots qui contiennent (au moins) un facteur aa

6. $(a^*b)^*$

Autant de fois qu'on veut, un b précédé d'autant de a qu'on veut

On peut donc former tout mot de la forme $a^{n_1}ba^{n_2}b\dots a^{n_k}b$, avec $\forall i.n_i \in \mathbb{N}$ (ça comprend 0)

 \Rightarrow L'ensemble des mots qui terminent par b (ainsi que ϵ)

7. $(a^*b)^*a^*$

(L'ensemble des mots qui terminent par b (ainsi que ϵ)) suivis par autant de a qu'on veut

 \Rightarrow Tous les mots

8. a^*b^*

 \Rightarrow Les mots composés de a suivis de b (ou uniquement de a, ou uniquement de b, ou ϵ)

3.3 ERs et mot vide

Préciser, pour chacune des ERs ci-dessus, si le langage dénoté contient le mot vide ϵ .

Correction

- 1. aA^*
 - \Rightarrow Non, car tout mot du langage doit au moins contenir un a
- 2. A^*a
 - \Rightarrow Idem
- 3. A^*abbaA^*
 - \Rightarrow Idem avec abba
- 4. $A^*aA^*aA^*$
 - \Rightarrow Idem avec deux a
- 5. A^*aaA^*
 - \Rightarrow Idem avec aa
- 6. $(a^*b)^*$
 - ⇒ Oui, il suffit d'instancier * par 0
- 7. $(a^*b)^*a^*$
 - ⇒ Oui, il suffit d'instancier les deux * par 0
- 8. a^*b^*
 - \Rightarrow Idem

Donner une ER équivalente à $(a + \epsilon)(bc + ab)(c + \epsilon)$ qui n'utilise pas ϵ

Correction Par distributivité, on obtient

$$abcc + abc + aabc + aab + bcc + bc + abc + ab$$

$$= abcc + abc + aabc + aab + bcc + bc + ab$$

3.4 Inclusions et équivalences entre ERs

Pour chaque paire d'ERs e_1 et e_2 , dire si le langage dénoté par la première est inclu dans celui dénoté par la seconde, et inversement. Dit autrement, si on pose $L_1 = \llbracket e_1 \rrbracket$ et $L_2 = \llbracket e_2 \rrbracket$, est-ce qu'on a $L_1 \subseteq L_2$ et/ou $L_2 \subseteq L_1$?

- 1. $e_1 = a(ba)^*$ et $e_2 = (ab)^*a$
 - $L_1 = \{a(ba)^n | n \in \mathbb{N}\}$ = $\{(ab)^n a | n \in \mathbb{N}\}$ = L_2
 - Donc $L_1 \subseteq L_2$ et $L_2 \subseteq L_1$
- 2. $e_1 = a^*(ba)^*$ et $e_2 = (ab)^*a^*$
 - $ba \in L_1$ et $\notin L_2$

- On a donc $L_1 \not\subseteq L_2$
- $ab \in L_2$ et $\not\in L_1$
- On a donc $L_2 \not\subseteq L_1$
- 3. $e_1 = a^*(ba^*)^*$ et $e_2 = (a^*b)^*a^*$
 - $L_1 = \llbracket (a+b)^* \rrbracket = L_2$ (cf l'exercice précédent)
 - On a donc $L_1 \subseteq L_2$ et $L_2 \subseteq L_1$
- 4. $e_1 = (a^*b^*)^*$ et $e_2 = (a^*b^*)$
 - $L_2 = [(a^*b^*)] = [(a^*b^*)^1] \subseteq \bigcup_{n \in \mathbb{N}} [(a^*b^*)^n] = [(a^*b^*)^*] = L_1$
 - On a donc $L_2 \subseteq L_1$
 - Par contre, on a $abab \in L_1$ et $\not\in L_2$
 - On a donc $L_1 \not\subseteq L_2$
- 5. $e_1 = A^*(a+b)A^*$ et $e_2 = A^*(a+b)A^* + A^*(a+b)A^*$
 - On a $e_2 = e_1 + e_1$, donc $L_2 = \llbracket e_2 \rrbracket = \llbracket e_1 + e_1 \rrbracket = \llbracket e_1 \rrbracket \cup \llbracket e_1 \rrbracket = \llbracket e_1 \rrbracket = L_1$