Métodos Numéricos II 2022

Lista 03

29.septiembre.2022

- 1. Implementar los siguientes métodos de descenso gradiente (naïve = tamaño de paso α constante):
 - descenso gradiente naïve con dirección fija (ángulo fijo),
 - descenso gradiente naïve con dirección de descenso aleatoria,
 - descenso máximo naïve (steepest descent).
 - descenso gradiente con búsqueda en línea Backtracking (α no constante).

En cada uno de los métodos, su función debe recibir los siguientes argumentos: la función objetivo f, el gradiente de la función objetivo df, un punto inicial $\mathbf{x}_0 \in \mathbb{R}^n$, el tamaño de paso $\alpha > 0$, el número máximo de iteraciones maxIter, la tolerancia ε , así como un criterio de paro. En el primer caso, también debe recibir el ángulo ϕ que la dirección de descenso \mathbf{d}_k hace con el gradiente $-\nabla f(\mathbf{x}_k)$.

En el caso del Backtracking, usted decide si usar las condiciones de Wolfe o de Goldstein.

Como resultado, sus algoritmos deben devolver: la mejor solución encontrada $best \mathbf{x}$ (la última de las aproximaciones calculadas); la secuencia de iteraciones \mathbf{x}_k ; la secuencia de valores $f(\mathbf{x}_k)$; la secuencia de errores en cada paso (según el error de su criterio de paro).

Además, es deseable indicar el número de iteraciones efectuadas por el algoritmo, y si se obtuvo o no convergencia del método.

- 2. Testar los algoritmos del Ejercicio 1 con las siguientes funciones:
 - a) La función $f: \mathbb{R}^2 \to \mathbb{R}$, dada por

$$f(x,y) = x^4 + y^4 - 4xy + \frac{1}{2}y + 1.$$

Punto inicial: $\mathbf{x}_0 = (0,0)^T$. Óptimo: $\mathbf{x}^* = (1,1)^T$.

b) La función de Rosembrock 2-dimensional $f:\mathbb{R}^2 \to \mathbb{R}$, dada por

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

Punto inicial: $\mathbf{x}_0 = (-1.2, 1)^T$. Óptimo: $\mathbf{x}^* = (1, 1)^T$.

b) La función de Rosembrock 10-dimensional $f:\mathbb{R}^{10} \to \mathbb{R}$, dada por

$$f(\mathbf{x}) = \sum_{i=1}^{9} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right].$$

Punto inicial: $\mathbf{x}_0 = (-1.2, 0, 0, \dots, 0, 1)^T$. Óptimo: $\mathbf{x}^* = (1, 1, 1, \dots, 1)^T$.

En cada uno de los casos, hallar un tamaño de paso α que garantice la convergencia de los métodos, y elabore una tabla con las primeras 4 y las últimas 4 aproximaciones \mathbf{x}_k obtenidas.

Para este tamaño de paso, comparar:

- la solución aproximada obtenida
- el error de aproximación

- la norma del gradiente en la solución

Elabore gráficas que muestren el error de aproximación, en función del número de iteración, y muestre la comparación de la evolución de la convergencia en sus tres métodos. A partir de estas gráficas, discuta cuál de los métodos es más efectivo, en cada caso.

3. Construya una función "suma de gaussianas" 2-dimensional, en la forma

$$f(\mathbf{x}) = -\sum_{i=1}^{k} \exp\left(-\frac{1}{2\sigma}||\mathbf{x} - \mathbf{x}_k||_2^2\right),$$

donde $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ son puntos en el rectángulo $[0, 8] \times [0, 8]$ elegidos de forma aleatoria (distribución uniforme). Use k = 8, Aquí, $\sigma > 0$ es un parámetro de escala definido por el usuario (que indica qué tan suave se desea la función).

Aplique varias veces el método de descenso gradiente a la función f, con inicializaciones \mathbf{x}_0 distintas, de forma que se puedan obtener los diferentes mínimos locales de la función.

Muestre visualizaciones de diferentes secuencias de aproximaciones $\{x_k\}$ convergiendo a cada uno de los mínimos locales de su función.

