

Quantum Computing Introduction

Fundamentals: A Multi-Qubit World

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

- ullet 2-qubits system o 4 distinguishable states
- Normalized vector in a 4–D vector space
- Standard basis: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$
 - Another notation: $|0\rangle$, $|1\rangle$, $|2\rangle$, $|3\rangle$
- Example:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

When measuring the system:

$$\mathbf{Pr} \{|00\rangle\} = 0.5$$

 $\mathbf{Pr} \{|01\rangle\} = 0.5$
 $\mathbf{Pr} \{|10\rangle\} = 0.0$
 $\mathbf{Pr} \{|11\rangle\} = 0.0$

- n—qubits system $\rightarrow 2^n$ distinguishable states
- Normalized vector in a 2^n -D vector space
- Standard basis consists of 2ⁿ vectors
- $|0\rangle$, $|1\rangle$, $|2\rangle$, ..., $|2^n 1\rangle$
 - $|0\rangle \rightarrow$ all qubits are in the 0 state
 - $|2^n-1\rangle \rightarrow$ all qubits are in the 1 state
- As expected, basis vectors are orthonormal:
 - $\langle x|y\rangle=0$, when $|x\rangle\neq|y\rangle$
 - \bullet $\langle x|x\rangle = 1$
- Uniform superposition:

$$|+\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle$$

$$|\psi\rangle = \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle$$

$$= \alpha_0 \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} + \alpha_1 \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha_0\\\alpha_1\\\alpha_2\\\alpha_3 \end{bmatrix}, \alpha_i \in \mathbb{C} \land \sum_{i=0}^{2^n-1} \overline{\alpha_i} \alpha_i = 1$$

 WARNING: Bloch sphere does NOT hold anymore in a multi–qubit world!

Also represented using Kronecker product:

$$|\psi\rangle = |00\rangle$$

$$= |0\rangle \otimes |0\rangle$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Quantum state evolution

$$|Q_0\rangle$$
 $|0\rangle$ H $|Q_1\rangle$ $|0\rangle$ $|0\rangle$

$$H_{0} |00\rangle = (I_{1} \otimes H_{0}) |00\rangle$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix} |00\rangle$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & 0 \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ 0 \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} |00\rangle$$

$$= \frac{1}{\sqrt{2}} (|00\rangle + |01\rangle)$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= |0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$= |0\rangle \otimes |+\rangle$$

Question #3

Question 3 What is the resulting transformation matrix T_1 when applied the following operation $T_1 = Y \otimes S$

Write down your solution here:

$$T_1 =$$

Partial measurement

Assume:

$$|\psi\rangle = \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle$$

- When measuring only the first qubit (q_1) :
 - What is $Pr \{0\}$? or $Pr \{1\}$?

$$\mathbf{Pr} \{0\} = \mathbf{Pr} \{00\} + \mathbf{Pr} \{01\} \qquad \mathbf{Pr} \{1\} = \mathbf{Pr} \{10\} + \mathbf{Pr} \{11\}$$
$$= \overline{\alpha_0} \alpha_0 + \overline{\alpha_1} \alpha_1 \qquad = \overline{\alpha_2} \alpha_2 + \overline{\alpha_3} \alpha_3$$

What is the resulting vector state?

$$q_{1} \rightarrow |0\rangle \qquad q_{1} \rightarrow |1\rangle$$

$$q_{0} \rightarrow \frac{\alpha_{0} |0\rangle + \alpha_{1} |1\rangle}{\sqrt{\overline{\alpha_{0}}\alpha_{0} + \overline{\alpha_{1}}\alpha_{1}}} \qquad q_{0} \rightarrow \frac{\alpha_{2} |0\rangle + \alpha_{3} |1\rangle}{\sqrt{\overline{\alpha_{2}}\alpha_{2} + \overline{\alpha_{3}}\alpha_{3}}}$$

Example

$$|Q_0\rangle$$
 $|0\rangle$ H $|Q_1\rangle$ $|0\rangle$ H

Applying a Hadamard gate to each qubit

$$H_1 H_0 |00\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

When measuring:

$$M(q_1) = 0 \rightarrow \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$
 $M(q_1) = 1 \rightarrow \frac{1}{\sqrt{2}}(|10\rangle + |11\rangle)$

Note the renormalization!

Swap gate

Swaps the values of the two qubits:

- $|00\rangle \rightarrow |00\rangle$
- $\begin{array}{c|c} \bullet & |01\rangle \rightarrow |10\rangle \\ \bullet & |10\rangle \rightarrow |01\rangle \end{array}$
- $|11\rangle \rightarrow |11\rangle$
- Represented by the matrix $SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- Circuit notation:

$$|q_0\rangle$$
 $|q_1\rangle$

Controlled NOT gate

- Performs the NOT operation on the target qubit only when the control qubit is $|1\rangle$:
 - $|00\rangle \rightarrow |00\rangle$
 - $|01\rangle \rightarrow |01\rangle$
 - $|10\rangle \rightarrow |11\rangle$
 - $|11\rangle \rightarrow |10\rangle$
- Represented by the matrix $\textit{CNOT}_{1,0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
- Circuit notation:

$$|q_0\rangle$$
 $|q_1\rangle$

Controlled NOT gate

Similar to XOR operation, but reversible!

INPUT		OUTPUT	
X	У	X	xor
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

INPUT		OUTPUT	
$ q_1\rangle$	$ q_0\rangle$	$ q_1\rangle$	$ q_1 angle\oplus q_0 angle$
$ 0\rangle$	$ 0\rangle$	$ 0\rangle$	$ 0\rangle$
$ 0\rangle$	$ 1\rangle$	$ 0\rangle$	$ 1\rangle$
$ 1\rangle$	$ 0\rangle$	$ 1\rangle$	$ 1\rangle$
$ 1\rangle$	$ 1\rangle$	$ 1\rangle$	$ 0\rangle$

Controlled gates

- If U is a gate with matrix $U = \begin{bmatrix} u_{1,1} & u_{1,2} \\ u_{2,1} & u_{2,2} \end{bmatrix}$
- Controlled—U operates on two qubits such that the first qubit serves as a control
 - $|00\rangle \rightarrow |00\rangle$
 - $|01\rangle \rightarrow |01\rangle$
 - $|10\rangle \rightarrow |1\rangle \otimes U |0\rangle$
 - $|11\rangle \rightarrow |1\rangle \otimes U |1\rangle$

• Represented by the matrix $extit{CU} = egin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & u_{1,1} & u_{1,2} \\ 0 & 0 & u_{2,1} & u_{2,2} \end{bmatrix}$

Controlled Z gate

- Performs the Z rotation on the target qubit only when the control qubit is |1>:
 - $|00\rangle \rightarrow |00\rangle$
 - $|01\rangle \rightarrow |01\rangle$
 - $|10\rangle \rightarrow |10\rangle$
 - $|11\rangle \rightarrow -|11\rangle$
- Represented by the matrix $CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
- Circuit notation:

$$|\mathsf{q}_0\rangle$$
 $|\mathsf{q}_1\rangle$

Toffoli gate (CCNOT)

- Operates on 3 qubits
- Performs the NOT operation on the target qubit only when the two control qubit are $|1\rangle$:

Fredkin gate (CSWAP)

- Operates on 3 qubits:
 - First qubit: control qubit
 - Other two: target qubits
- Performs the SWAP operation between the target qubits only when the control qubit is $|1\rangle$:

$$|q_0\rangle$$
 $|q_1\rangle$
 $|q_2\rangle$

Example

$$|q_0\rangle$$
 $|0\rangle$ $|0\rangle$ $|0\rangle$

$$\begin{split} \textit{CNOT}_{1,\,0}(X_1\,|00\rangle) &= \textit{CNOT}_{1,\,0}((X_1\,\otimes\,I_0)\,|00\rangle) \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \left(\begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) |00\rangle \right) \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right) \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \\ &= |11\rangle \end{split}$$

Question #6

Figure 2: An arbitrary quantum circuit.

Question 6 Consider the quantum circuit presented in Figure 2 and assume $|q_0\rangle = |0\rangle$, $|q_1\rangle = |0\rangle$, $|q_2\rangle = |0\rangle$ and $|q_3\rangle = |0\rangle$; hence, $|\psi_{in}\rangle = |0000\rangle$. Determine, by using the Dirac notation, what is the state vector of the quantum circuit just before the partial measurement?

Write down your solution here:

 $\rightarrow |0000\rangle$

Entanglement

- Two qubits are entangled iff the measurement of one qubit is correlated with the state of the other:
 - The state of those two qubits can not be expressed as two individual states (non-separable)
 - Are these qubits entangled?

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

Entanglement

- Two qubits are entangled iff the measurement of one qubit is correlated with the state of the other:
 - The state of those two qubits can not be expressed as two individual states (non-separable)
 - Are these qubits entangled?

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$= \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

• What about these?

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Concurrence

Two qubits are entangled iff they have nonzero concurrence

$$C(|\psi\rangle) = 2|\alpha_{00}\alpha_{11} - \alpha_{01}\alpha_{10}|$$

Examples:

$$|\psi_1\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

$$C(|\psi_1\rangle) = 2\left|\frac{1}{2}\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)\frac{1}{2}\right|$$

$$= 2\left|\frac{1}{4} - \frac{1}{4}\right|$$

$$= 2|0|$$

$$= 0$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$C(|\psi_2\rangle) = 2\left|\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right) - 0\right|$$

$$= 2\left|\frac{1}{2}\right|$$

$$= 1$$

Bell states

Maximal entangled states

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$
$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$
$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Bell states

Requires superposition and a two—qubit gate

Bell states

$$\begin{split} \textit{CNOT}_{1,\,0}(H_1\,|00\rangle) &= \textit{CNOT}_{1,\,0}((H_1\,\otimes I_0)\,|00\rangle) \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \left(\left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) |00\rangle \right) \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right) \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \end{split}$$

Measurement correlations

$$|q_0\rangle$$
 $|0\rangle$ H

$$M(q_1) = 0 \rightarrow |00\rangle \rightarrow M(q_0) = 0$$

 $M(q_1) = 1 \rightarrow |11\rangle \rightarrow M(q_0) = 1$

Measurement result of two qubits always the same!

"Spooky action at a distance"

Albert Einstein

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\mathbf{Pr} \{|00\rangle\} = \overline{\alpha_0} \alpha_0$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}\right)$$

$$= 0.5$$

$$\mathbf{Pr} \{|11\rangle\} = \overline{\alpha_3}\alpha_3$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}\right)$$

$$= 0.5$$

Question # 10

Question 10 Considering the state vector obtained in Question 6. Assume that the measuring process returned the following values: $M(|q_2\rangle) = 1$ and $M(|q_1\rangle) = 1$. What is the final state vector of the quantum circuit after applying the corrections? (Note: Remember to renormalize the vector).

Write down your solution here:

What is next?

- Assignment is already available (check DLO)
- ESK Wiskunde lectures and workshops
- Q & A, Discussion
 - Questions about the assignment or the material
 - Feel free to propose any discussion
 - You can always write me an email

