

Xarxes sense fils

C5: Instal.lació i manteniment de serveis d'Internet

Autor: Sergi Tur Badenas

Sistemes sense fils

Sistemes radioterrestres

- Ones electromagnètics que es propaguen a velocitats properes a les de la llum
 - Ona curta (velocitats de Mhz): Radio i Televisió
 - Microones (velocitats de Ghz): Telefonia mòbil
 - Transmissions via satèl·lit: velocitats de fins a 100Ghz
 - Molt car posar un satèl·lit en orbita
 - · Hi ha un retard notable
 - GPS (Global Positioning System)
- Sistemes per a xarxes informàtiques
 - Bluetooth i infraroigs: utilitzats en les modernes xarxes personals (PAN)
 - WI-FI: aquest sistema és el que veurem en aquesta unitat didàctica
 - WiMAX (Worldwide Interoperability for Microwave Access):
 - · Sistema orientat a proporcionar accés Internet

WiMAX

- Interoperabilitat Mundial per a l'accés per microones
 - IEEE 802.16 MAN (Metropolitan Area NetWork)
 - Similar a WI-FI
 - Norma de transmissió per ones electromagnètiques
 - Cobertura de fins a 48Km
 - Velocitat de fins a 70Mbps
 - WiMax és un concepte paregut a Wi_FI però dissenyat específicament per a donar més cobertura i ample de banda.
 - Orientat a oferir accés a Internet allà on no arriba el cable
 - · **Iberbanda** és un operador espanyol que ofereix accés a Internet mitjançant aquesta tecnologia.

WIFI vs WiMAX

	802.11	802.16	Technical Explanation
Range	Optimized for users within a 100 meter radius Add access points or high gain antenna for greater coverage	Optimized for typical cell size of 7-10 km Up to 50 km range No "hidden node" problem	802.16 PHY tolerates 10 more multi-path delay spread than 802.11
Coverage	Optimized for indoor environments	Optimized for outdoor environments (trees, buildings, users spread out over distance) Standard support for advanced antenna techniques & mesh	* 802.16: 256 OFDM (vs. 64 OFDM) * Adaptive modulation
Scalability	Channel bandwidthfor 20 MHz is fixed	Channel b/wis flexible from 1.5 MHz to 20 MHz for both licensed and license exempt bands Frequency re-use Enables cell planning for commercial service providers	Only 3 non-overlapping 802.11b channels; 5 for 802.11a 802.16: limited only by available spectrum
Bitrate	2.7 bps/Hz peak data rate; Up to 54 Mbps in 20 MHz channel	 3.8 bps/Hz peak data rate; Up to 75 Mbps in a 20 MHz 5 bps/Hz bit rate; 100 Mbps in 20 MHz channel 	* 802.16: 256 OFDM (vs. 64 OFDM)
Q 0 5	No QoS support today -> 802.11e working to standardize	 QoS designed in for voice/video, differentiated services 	802.11: contention-based NAC (CSNA) 802.16: grant request MAC

C5: Instal.lació i manteniment de serveis d'Internet

Autor: Sergi Tur Badenas

Ethernet

- Nivell 1 TCP/IP (Nivells físics i d'enllaç (1 i 2) OSI).
- Família d'estàndards IEEE 802:
 - 802.2: Capa LLC (Logical Link Control). Interfície comuna entre el nivell de xarxa i la família de protocols.
 - La resta de protocols defineixen el nivell físic i el subnivell MAC.
 - 802.3 Ethernet
 - · 802.4 Token Ring
 -
 - · 802.11 Wi-FI
 - · 802.15 Bluetooth
 - · 802.16 WiMAX

NIVELL 3. XARXA

SUB NIVELL **LLC**

SUB NIVELL MAC

NIVELL 1. FÍSIC

Ethernet

Nivell físic

- Hi han cables específics per a radiofrequència (diferents dels cables UTP)
- S'utilitzen per connectar antenes amb targetes de xarxa
- També hi han connectors específics
 - Connectar cables de radiofreqüència a antenes, targetes de xarxa, etc.

NIVELL 3. XARXA

SUB NIVELL LLC

SUB NIVELL MAC

NIVELL 1. FÍSIC

El nivell físic en xarxes sense fils té propietats específiques, que el fa diferent del nivell físic dels sistemes amb fils

Ethernet

- Nivell LLC (Logical Link control). Compartit per tots els protocols de la família.
 - Lògica de reenviaments
 - Control de flux
 - Comprovació d'errors
- Nivell MAC (Medium Acces Control).
 - Control d'accés a medi compartits (cables en bus, ràdio, etc.)
 - No utilitzat en protocols punt a punt (no hi ha medi compartit)
 - Adreça MAC: Sistema adreçament de nivell 2 equivalent a les adreces IP al nivell 3

Estació de treball (clients)

- Màquines (ordinadors) de treball
- Aprofiten els recursos/serveis de la xarxa. Són clients dels servidors i dels recursos/serveis de la xarxa

Servidor

- Nodes de la xarxa que comparteixen els seus recursos de maquinari o programari amb la resta de nodes a través del que s'anomenen serveis de xarxa
- Sovint són màquines potents però no necessàriament

Perifèrics de xarxa

Impressores, discs durs de xarxa, etc. Com els considerem, estacions de treball o servidors?

Cablejat i línies de comunicació

- Format pel conjunt de elements de comunicació de la xarxa, com els cables o medis de comunicació (xarxes sense fils) que enllacen els nodes de la xarxa
 - **Exemples:** Cables de parell trenat, coaxials, connexions sense fils, antenes, fibra òptica, connectors.

Targeta de xarxa

- També anomenades NICs (Network Interface Card)
- Maquinari que fa d'intermediari entre els dispositius i la xarxa de comunicacions
 - **Exemples:** targetes de xarxa Pci, integrades en la placa mare, targetes sense fils, integrades en els dispositius (encaminadors, commutadors, impressores, etc)

Passarel·les (gateway) o encaminadors (routers)

- Són dispositius de comunicacions (ECD) formats per un maquinari i un programari que permeten la connexió de la xarxa LAN a xarxes externes (típicament xarxes WAN com Internet)
 - · **Exemples:** Encaminadors, encaminadors ADSL, Mòdems ADSL, ordinadors amb programari especific (p. ex. IPCOP)

Bridges o ponts

- Són dispositius de comunicacions (ECD) formats per un maquinari i un programari que permeten a dues xarxes locals connectar-se entre si.
- Les dues xarxes unides per un bridge equivalen a una sola xarxa
 - Exemples: Encaminador en mode bridge, bridges acobladors de xarxes diferents (p. ex. coaxial a parell trenat)

Concentrador

- Dispositiu utilitzat en topologies de xarxa en estrella per a realitzar la connexió entre nodes de la xarxa.
- Hi ha xarxes que no utilitzen concentradors (Ethernet coaxial en bus)
- Amb aquest sistema si falla un node la xarxa continua funcionant però a canvi si falla el concentrador tota la xarxa falla.
 - · Concentradors passius: Només concentren les senyals
 - Concentradores actius: Concentren les senyals i les amplifiquen i/o regeneren funcionant com a elements amplificadors i/o repetidors.

Interfícies de xarxa

Quantes interfícies de xarxa té un router WIFI com el del dibuix?

C5: Instal lació i manteniment de serveis d'Internet

Autor: Sergi Tur Badenas

WI-FI

Què és WI-FI

- Wi-Fi és una marca registrada utilitzada per denominar la popular tecnologia sense cables utilitzada en xarxes informàtiques.
- Actualment l'ús de Wi-Fi està molt expandit i el trobem en xarxes SoHo, dispositius mòbils, consoles, impressores i altres perifèrics de xarxa.

IMPORTANT: No podem anomenar WIFI a tot les tecnologies sense fils. Com veurem, WIFI fa referència a una tecnologia molt concreta

 Concretament, WI-FI és refereix a les diverses tecnologies de l'estàndard IEEE 802.11 (802.11n, 802.11b, 802.11g, 802.11a...).

WIFI Alliance

WI-FI Alliance

- És una associació sense ànim de lucre, amb més de 300 membres (empreses del sector de les telecomunicacions)
- Té com a objectiu promocionar l'ús de les xarxes sense fils (WLAN)
- Propietaris del logo WIFI
 - Certifiquen productes WIFI
- http://wi-fi.org/our_members.php
- http://wi-fi.org/

Avantatges i inconvenients

Avantatges

- Comoditat. Facilita la instal·lació de xarxes
- Estàndard mundial (telefonia mòbil no)
 - Accés a Hotspots de tot el món.

Inconvenients

- Menor velocitat que les xarxes amb cable
 - 100Mbps (LAN) vs 54Mbps (WAN màxim teòric)
 - La pèrdua de velocitat es deguda al fet d'utilitzar un medi compartit (aire). No és tant adequat (compartir, interferències, etc.)
- Menys seguretat. El medi és compartit i és més fàcil que tercers obtinguin informació de la WLAN. Les clau WEP no són segures.
- No és pot controlar fàcilment l'àrea de cobertura
- No és compatibles amb altres tecnologies sense fils: Bluetooth, GPRS, UMTS, etc.

Estàndards WIFI. IEEE 802.11

IEEE 802.11 és un conjunt d'estàndards per a les xarxes sense fils (WLAN)

- Desenvolupat per l'IEEE 802. Són els mateixos que desenvolupen els estàndards de xarxes LAN/MAN
- 2 freqüències de treball
 - · 2.4 Ghz i 5 Ghz (bandes públiques a tot el món)

Versions

- · IEEE 802.11 (1997). Primer sistema WI-FI (1-2 Mbps) per infrarojos. Obsolet
- · IEEE 802.11a. Del 1999. En la banda dels 2.4Ghz
- · IEEE 802.11b (1999). Velocitats de 11 Mbps. És la tecnologia més utilitzada juntament amb g.
- · IEEE 802.11g (2003). Velocitat màxima de 24.7 Mbps
- · IEEE 802.11n. És la nova tecnologia

Estàndards WIFI. IEEE 802.11

IEEE 802.11 (legacy)

- Estàndard original del 1997. Aplicacions metges
- Va ser substituït ràpidament per b. Obsolet=legacy
- IEEE 802.11b
 - És un dels més utilitzats. Velocitats inferiors que g
- IEEE 802.11a
 - Variant de b que treballa a 5Ghz. Incompatible amb b
 - Pocs productes en el mercat per problemes tècnics
- IEEE 802.11g
 - A 2008 el més popular. Banda molt ocupada
- IEEE 80.11n
 - Utilitza les dos bandes (2,4 i 5)
 - Estàndard no aprovat però ja hi han productes al mercat

Estàndards WIFI. IEEE 802.11

Característiques:

	Any	Frequen- cia	Velocitat Teòrica Màxima (<u>Mbps</u>)	Velocitat Típica (Mbps)	Primers produc- tes	Abast teòric (indoor)	Abast teòric (outdoor)	Modulació	Altres
IEEE 802.11 / IEEE 802.111egacy	1997	2,4Ghz	1-2	0,9		~20 m	~100m	IR/FH/DS SS	Tecnologia IR (infrarojos). Obsoleta
IEEE 802.11a	1999	5 <u>GHz</u>	54	23	2001	~35m	~120m	OFDM	
IEEE 802.11b	1999	2,4Ghz	11	4.5	2001	~38 m	~140m	DSSS	Més utilitzada
IEEE 802.11g	2003	2,4Ghz	54	19	2002	~38 m	~140m	OFDM	Més utilitzada
IEEE 802.11n	2009	2,4Ghz- 5Ghz	300/600	74	2007/2 008	~70m	~250m	OFDM	Nous dispositius
IEEE 802.11y	2008	3,7Ghz	54	23		~50 m	~5000	OFDM	

 Exercici: Realitzeu aquest quadre a la web en format wiki

C5: Instal lació i manteniment de serveis d'Internet

Autor: Sergi Tur Badenas

Components d'una WLAN

Estacions

- Dispositius amb interfície sense fils
- Medis de comunicació (canals)
 - Radiofreqüència i infrarojos. Multiplexació en freqüència
- Punts d'accés sense fils (PA)
 - També coneguts com a WAP (Wireless Acces Point)
 - Fa la funció de pont entre dos xarxes amb nivells d'enllaç similars però diferents. Pont LAN-WAN
 - Converteix les trames d'una xarxa a l'altre.
- Conjunt de serveis Bàsic. BSS (Basic Service Set)
 - Grup d'estacions que es comuniquen entre elles (WLAN)

BSSID: És l'identificador (nom) d'una xarxa. Per exemple WLAN_CASA

Components d'una WLAN

- ESS (Extended Service Set)
 - Conjunt de serveis estès: es la unió de diferents BSS
- BSA (Basic Service Area)
 - És la zona on es comuniquen les estacions d'una BSS
- SSID (Service Set Identifier) (Nom de la xarxa)
 - Inclòs a tots els paquets d'una xarxa Wi_Fl per identificar-los. 32 caràcters alfanumèrics
 - Tots els dispositius sense fils que es volen comunicar entre si han de tenir el mateix SID
 - BSSID (Basic Service Set Identifier): xarxes ad-hoc
 - · ESSID (Basic Service Set Identifier): xarxes infraestructura

En la majoria de casos BSSID i ESSID seran sinònims

Exercici

Objectiu:

 Creeu una gràfic d'una xarxa sense fils on s'identifiquin tots els components que hem vist en l'apartat anterior.

Topologia. Xarxa Ad-hoc

Wireless Ad-hoc network

- Es caracteritzen per no necessitar d'infraestructura per a establir una comunicació entre estacions
- Topologia mallada (també anomenada mesh)

Similituds amb LAN

 Similars a les LAN per coaxial. No necessiten de dispositius específics per connectar màquines.

Topologia. Xarxa amb infraestructura

Wireless infraestructure network

- Necessiten d'un PA
- Topologia en estrella
- Similituds amb LAN
 - Les LAN commutades també necessiten infraestructura (switch)

Maquinari Linux

Suport WIFI

- Més important que el fabricant de la targeta WIFI és el chipset que incorpora
- Moltes companyies no fan els seus propis xips.
 Llicencien altres xips
 - http://www.linux-wlan.org/docs/wlan_adapters.html.gz
- Hi han controladors que només estan fets per a Windows
 - Controladors restringits d'Ubuntu
 - · NDISWRAPPER
- Abans de comprar maquinari sempre cal informar-se

Comandes Ispci | Isusb | Ispcmcia

Identificació de dispositius pci

\$ Ispci | grep Ethernet

02:06.0 Ethernet controller: Atheros Communications Inc. AR5212/AR5213 Multiprotocol MAC/baseband processor (rev 01)

02:08.0 Ethernet controller: Marvell Technology Group Ltd. 88E8001 Gigabit Ethernet Controller (rev 13)

Identificador del dispositiu:

\$ Ispci -n

168c:0013 (rev 80) 11ab:4320

- Per a USB i pemeia teniu les comandes
 - Isusb
 - Ispcmcia
 - Wiki del professor

Gnome-device-manager

Eina gràfica:

\$ gksu gnome-device-manager

C5: Instal.lació i manteniment de serveis d'Internet

Autor: Sergi Tur Badenas

Ishal

Mostra tota la informació del maquinari

\$ sudo Ishal > out.txt \$ gedit out.txt &

Comandes WIFI

- Comandes i paquets que veurem
 - Ispci
 - Ishal
 - wireless-tools
 - iwconfig
 - iwlist
 - Wiki del professor

Paquet wireless-tools

Ofereix suport per a xarxes WIFI

Comandes

```
$ dpkg -L wireless-tools | grep bin /sbin /sbin/iwconfig /sbin/iwevent /sbin/iwgetid /sbin/iwlist /sbin/iwpriv /sbin/iwspy
```

Fitxers de configuració

```
$ dpkg -L wireless-tools | grep etc /etc /etc/network /etc/network/if-pre-up.d /etc/network/if-pre-up.d/wireless-tools /etc/network/if-post-down.d /etc/network/if-post-down.d/wireless-tools
```


iwconfig

- Configuració de xarxes WIFI
 - Equivalent a ifconfig per a targetes WIFI

```
$ iwconfig
      no wireless extensions.
lo
eth0
        no wireless extensions.
wifi0
       no wireless extensions.
        IEEE 802.11g ESSID:"" Nickname:""
ath0
      Mode:Managed Channel:0 Access Point: Not-Associated
      Bit Rate: 0 kb/s Tx-Power: 18 dBm Sensitivity=1/1
      Retry:off RTS thr:off Fragment thr:off
      Power Management:off
      Link Quality=0/70 Signal level=-96 dBm Noise level=-96 dBm
      Rx invalid nwid:623 | Ax invalid crypt:0 | Rx invalid frag:0
      Tx excessive retries:0 Invalid misc:0 Missed beacon:0
```

Wiki del professor

iwlist

Permet fer un scanner de xarxes wifi per línia de comandes

\$ sudo watch iwlist eth1 scanning ath0 Scan completed: Cell 01 - Address: 00:1F:C6:DE:82:E5 ESSID: "WebSTAR" Mode:Master Frequency: 2.412 GHz (Channel 1) Quality=7/70 Signal level=-88 dBm Noise level=-95 dBm Encryption key:off Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s 12 Mb/s; 48 Mb/s Extra:bcn int=100 Cell 02 - Address: 00:1D:73:3A:CB:AC ESSID:"dd-wrtHotSpot" Mode:Master Frequency: 2.437 GHz (Channel 6) Quality=47/70 Signal level=-48 dBm Noise level=-95 dBm Encryption key:off Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s 12 Mb/s; 48 Mb/s Extra:bcn int=100

Wiki del professor

SOME RIGHTS RESERVED

iwlist

Altres exemples

- Canals (xarxes n):
- \$ sudo iwlist channel o \$ sudo iwlist frequency
- Consultar la clau:
- \$ sudo iwlist encryption o \$ sudo iwlist keys

Característiques WIFI

Característiques WIFI

La Ricolau Copèrnic

Multiplexació de senyals

La multiplexació és la tècnica que permet compartir en un mateix canal senyals provinents de diferents emissors que tenen com a destinació diferents receptors.

Canal físic

 Medi físic (cable, fibra òptica, aire, etc.) pel qual es transmeten una o més senyals.

Canal lògic

 És el concepte utilitzat per parlar d'un canal que no existeix físicament.

S'utilitzen dos mètodes

- Multiplexació en freqüència
- Multiplexació en temps

La multiplexació és compartir un mateix canal físic entre diferents senyals lògics.

Multiplexació en temps (TDM)

- Els canals lògics s'assignen repartint el temps d'ús del canal físic entre els diferents emissors.
- El temps en que pot transmetre un emissor concret s'anomena slot o ranura temporal.
- La velocitat de transmissió es reparteix però cada emissor utilitza en el seu temps tot l'ample de banda disponible.
- Exemples: Bus de comunicacions, temps de CPU.

Multiplexació en freqüència (FDM)

- A cada canal lògic se li assigna una banda de freqüència centrada en un senyal portador sobre el qual es modula el missatge de cada canal lògic.
- Entre dues bandes consecutives s'estableix un marge de seguretat per evitar interferències.
- Totes les senyals s'emeten al mateix temps però l'ample de banda es comparteix.
- Exemples: Emissores de ràdio.
- Exemple: WIFI

Multiplexació en freqüència

- WIFI utilitza 2 freqüències
 - Banda dels 2,4Ghz
 - Banda dels 5Ghz
- A cada banda hi han múltiples canals per tal de ser compartits per múltiples xarxes WIFI:
 - 14 canals als 2.4 Ghz

Fins i tot dins d'una mateixa banda i canal poden haver-hi més d'una xarxa WIFI. Se separen pel seu identificador i es reparteixen la banda en el temps (multiplexació en temps)

Domini Públic Radioelèctric

L'aire és un bé públic

 Hi ha una regulació per a l'ús de l'aire com a canal de transmissió. L'ens regulador és la CNMT (Comisión Nacional del Mercado de las Telecomunicaciones).

Domini Públic Radioelèctric

 És el conjunt de radiacions electromagnètiques fixades entre els 9KHz i els 3000GHz, destinats a un ús públic (TV i ràdio digital i analògica).

CNAF (Quadre Nacional d'Assignació de Freqüències)

 Reserva diferents freqüències per a diferents sistemes de comunicacions (navegació marítima, emergències, radioaficionats, ràdio, televisió, mòbils, aeromodelisme...)

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Espectre electromagnètic

- És el conjunt de possibles radiacions electromagnètiques
- Ordenat de menor longitud d'ona (més freqüència) a major longitud d'ona (menys freqüència)
- Només podem visualitzar un rang molt petit!
- Diferents colors --> Diferents freqüències (l'arc de Sant Martí)

Ample de banda

Ample de banda

- És el conjunt de freqüències que ocupa un senyal.
- Sovint quan més ampla de banda tenim més capacitat de transmissió (més senyals caben).
- És com una "canonada".

Potència de la senyal

Les potències s'expressen en Watts

dBm

- Mesura utilitzada per mesurar potència en telecomunicacions
- És una mesura que compara una senyal amb la senyal de referència 1mW $dBm = 10 \times \log \frac{P}{1mW}$

- \cdot -20dBm = 10 µW = 0,01mW
- $\cdot -10 dBm = 100 \mu W = 0.1 mW$
- · 0 dBm = 1mW
- $\cdot 10 \text{ dBm} = 10 \text{ mW}$
- · 20 dBm = 100 mW
- \cdot 30 dBm =1 W = 1000 mW

Potències i qualitat de la senyal

- La potència d'emissió ve donada per l'antena (guany)
 - Una antena millor no fa que vagi més ràpida la xarxa
 - Sí que augmenta la cobertura
 - · La velocitat (transfer rate) s'ajusta amb la distància
- Les potències són de l'ordre dels mW- W
 - Potències baixes que varien segons el tipus d'antena
- Llindar mínim de recepció
 - Hi ha una potència mínima rebuda necessària per tal de poder comunicar-se
 - Aquesta potència ha de ser superior al soroll de l'aire i per tant és el soroll el que determina aquest llindar

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Potència i qualitat de la senyal

- Llindar típic de recepció (nivell de soroll)
 - -60 dBm (1nW) i -80dBm (100 pW) Noise Level
 - La senyal ha d'estar 10dBm per sobre del soroll com a mínim
 - El 100% de qualitat és quan la senyal rebuda és igual a l'emesa per l'antena

```
$ sudo iwconfig eth1
eth1 IEEE 802.11g ESSID:"BUFFALO-BSF" Nickname:""
Mode:Managed Frequency:2.437 GHz Access Point: 00:16:01:A1:A9:B6
Bit Rate=54 Mb/s Tx-Power=27 dBm
Retry min limit:7 RTS thr:off Fragment thr=2346 B
Encryption key:******[2]
Power Management:off
Link Quality=92/100 Signal level=-39 dBm Noise level=-74 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0
```

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Potències

- Hi ha una potència adequada i una antena per a cada banda segons la distància i el tipus antena
 - Direccional
 - · 2,4 GHz
 - Fins a 1 km, antena de 8dB.
 - De 1 a 3 km, antena de 14dB.
 - De 3 a 8 km, antena de 19dB.
 - Distàncies més grans --> antena de 24dB o més.
 - · 5GHz. És més recomanable per enllaços de més de 4 Km
 - · Fins a 1 km, antena de 12dB.
 - De 1 a 6 km, antena de 19 o 21dB.
 - De 6 a 12 km, antena de 24dB.
 - Distàncies més grans --> antena de 26dB o més (parabòliques).
 - Sectorials i omnidireccionals
 - · Màxim de 17-19db amb equips emissors de menys de 100mW

SOMERIGHTS RESERVED

Autor: Sergi Tur Badenas

Qualitat de la senyal

SNR (Signal Noise Ratio)

- El SNR és la relació senyal soroll i és un indicador de la qualitat de la senyal
- Si la senyal és molt més potent que el soroll aleshores el SNR és alt i la qualitat és bona
- Si la senyal té una potència similar al soroll, aleshores el SNR és baix
- SNR =0 --> Soroll i senyal tenen la mateixa potència
 - SNR=10 --> La senyal és 10 vegades més potent
 - · SNR=20 --> La senyal és 100 vegades més potent
 - SNR=30 --> La senyal és 1000 vegades més potent

SNR= Potència de la senya (dBm) – Potència del soroll (dBm)

Qualitat de la senyal

- Espectre electromagnètic saturat:
 - Més d'una xarxa en el mateix espai de frequència

Exercicis a la wiki

- Anoteu en un apartat de la vostra wiki la següent informació
 - Potència de la senyal amb l'antena posada
 - Potència de la senyal sense l'antena posada
 - Potència del soroll amb l'antena posada
 - Potència del soroll sense l'antena posada
 - Qualitat de l'enllaç amb i sense antena posada
 - Calculeu el SNR amb i sense antena posada
 - Indiqueu en cada cas quin és el bitrate, i la potència de transmissió.
 - Quin canal esteu utilitzant? Quina és la seva freqüència?

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Canals WIFI

14 canals als 2.4 Ghz

- Multiplexació en freqüència
- Totes les màquines d'una mateixa WLAN treballen al mateix canal
- Quantes més
 màquines i xarxes hi ha
 en un mateix canal
 pitjor.

channel	frequency (MHz)	North America	Japan ^[2]	Most of world [2][3][4][5][6]
1	2412	Yes	Yes	Yes
2	2417	Yes	Yes	Yes
3	2422	Yes	Yes	Yes
4	2427	Yes	Yes	Yes
5	2432	Yes	Yes	Yes
6	2437	Yes	Yes	Yes
7	2442	Yes	Yes	Yes
8	2447	Yes	Yes	Yes
9	2452	Yes	Yes	Yes
10	2457	Yes	Yes	Yes
11	2462	Yes	Yes	Yes
12	2467	No	Yes	Yes
13	2472	No	Yes	Yes
14	2484	No	.11b only ^[7]	No

C5: Instal.lació i manteniment de serveis d'Internet

Canals WIFI

- Hi ha molts més canals a la banda de 5 Ghz
 - Busqueu la informació a
 - http://en.wikipedia.org/wiki/List_of_WLAN_channels
- Exercici
 - A la wiki, heu d'indicar la informació de la vostra xarxa wifi de casa. Anoteu:
 - Quin canal utilitzeu?
 - · Quina freqüència?
 - Quin estàndard IEEE.802?
 - · Responeu a les preguntes de dos transparències abans
 - Expliqueu com i quines comandes heu utilitzat per obtenir aquesta informació.

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Canals WIFI. iwlist

Iwlist amb la opció channel o frequency

```
$ sudo iwlist ath0 frequency|channel
       27 channels in total; available frequencies :
ath0
     Channel 01: 2.412 GHz
      Channel 02: 2.417 GHz
      Channel 03: 2.422 GHz
      Channel 04: 2.427 GHz
     Channel 05: 2.432 GHz
     Channel 06: 2.437 GHz
      Channel 07: 2.442 GHz
     Channel 08: 2.447 GHz
      Channel 09: 2.452 GHz
      Channel 10: 2.457 GHz
      Channel 11: 2.462 GHz
      Channel 12: 2.467 GHz
      Channel 13: 2.472 GHz
     Current Frequency=2.437 GHz (Channel 6)
```


Planificació

- Les xarxes WIFi s'han de planificar abans de ser desplegades
 - Cal evitar interferències entre xarxes WIFI i altres xarxes sense fils (Blue-tooth, ràdios, telèfons sense cables...)
 - Potències
 - · Cal evitar emetre més potència de la necessària per mantenir així net l'espectre de freqüències
 - Canals
 - · 3 canals de diferència en xarxes adjacents...
 - http://www.guifi.net/ca/BonesPractiques

Mapa de cobertura

Que cal planificar

- Cobertura màxima (sense espais cecs)
- Evitar el encavalcament de xarxes WIFI
- Evitar canals adjacents

C5: Instal.lació i manteniment de serveis d'Internet

Nivell Físic WIFI

C5: Instal.lació i manteniment de serveis d'Internet

Connectors de xarxa

- En el cas de les xarxes sense fils no podem parlar de connectors sinó que parlem d'ANTENES de **RADIACIÓ**
 - Els cables que connecten la targeta de xarxa amb l'antena s'anomenen pigtails (cua de porc)

C5: Instal.lació i manteniment de serveis d'Internet

Transductors

 Són dispositius encarregats de transformar la naturalesa de les senyals

- Sistema de membranes que vibren segons el senyal elèctric que reben emetent sons.
- Video explicatiu sobre el so

Són uns transductors específics

 Transformen senyals elèctriques en ones electromagnètiques.

Direccionals

- Utilitzades per fer un enllaç punt a punt (connectar dos nodes wifi remots)
- Les més típiques són les antenes de rajola
 - Força assequibles (30€ aprox.)
 - N'hi han de la banda de 2.4Ghz i de la banda de 5Ghz i de diferents guanys. No es poden combinar antenes de diferents bandes

- · Més cares (150-300€). Útils per a distàncies més grans
- Complicades d'encarar (molt sensibles)
- Antenes de reixeta
 - · 80-200€. Distàncies mitjanes

OmniDireccionals

- Dipols
 - · Són les més utilitzades en SoHo (Small Office Home Office)
 - · Preus assequibles (4€ a 20€).
 - · Rangs de cobertura limitats. Pensades per a interiors
 - · Alguns dipols són duals (2.4 i 5Ghz)
- De pared
 - Normalment de millors característiques que els dipols. Interiors.
- Externes
 - · Preus entre 60€ i 200€
 - · Millors rangs de cobertura
 - · Baixa cobertura vertical (cobreixen una àrea a similar alçada)

Sectorials

- Similars a les antenes de telefonia mòbil
- Cobreixen 120º. Es necessiten 3 antenes per cobrir els 360º
- Més cares (300€ en amunt)
- Millor cobertura en distància i en alçada
- També n'hi han de la banda de 2.4Ghz i de la de 5Ghz

N - Navy (marina)

- Connector més habitual en antenes de 2.4 Ghz
- Connector tipus rosca
- N-mascle
 - · Extrems cables RF
- N-femella
 - Connectors de les antenes
- Estrany de trobar en targetes WIFI o punts d'accés

SMA (Sub-Miniature Connect)

- Connectors petits de rosca
- El més conegut és (RP-SMA) que és connector més utilitzat en targetes sense fils PCI
 - **RP-SMA** femella
 - Connectors targetes PCI
 - **RP-SMA** mascle

C5: Instal.lació i manteniment de serveis d'Internet

Connector MC-card

- Els connectors més petits
- No són de rosca. Inserció per pressio. Delicats
- MC-mascle
 - · Extrem del cable
- MC-femella
 - Alguns tipus de targetes sense fils com alguns PCMCIA

- Connectors UFL (hirose) (miniPCI)
 - Multitud de noms (hirose, MHF, I.PEX (IPAX) i AMC)
 - El nom més conegut és UFL o miniPCI
 - S'utilitza en targetes sense fils miniPCI

Ranura d'expansió mini PCI

C5: Instal.lació i manteniment de serveis d'Internet

C5: Instal.lació i manteniment de serveis d'Internet

C5: Instal.lació i manteniment de serveis d'Internet

LMS

- Fabricats per Times Microwave Systems
- Diferents diàmetres
- Altes pèrdues ---> cables curts. +1dB per metre (cal tenir en compte que els guanys de les antenes són d'entre 15-30dB)
- http://hwagm.elhacker.net/htm/conexiones.htm

C5: Instal.lació i manteniment de serveis d'Internet

Pigtails (cua de porc)

- Són cables molt curts que connecten el xip de la targeta sense fils amb:
 - Antena: normalment de tipus dipol. Xip i antena estan molt a prop (targetes de xarxa wifi SoHo). Aproximadament < 0.5m
 - Connector + cable de radiofreqüència: si l'antena està més lluny cal utilitzar cable especials per evitar pèrdues. El pigtail és connecta a un cable de radiofreqüència d'aproximadament < 3-6m

Pigtails

 Connector RP-SMA Hembra (esquerre) i connector MC-Card mascle (dreta)

Pigtail

- Connectors N-mascle i RP-SMA mascle
 - Permet connectar una antena de rajola a una targeta PCI

Pigtail

- Connector UFL (Mini-PCI) (esquerre) y Conector N-Hembra (dreta)
- Utilitzat per connectar targetes miniPCI a cables de RF

Cables

C5: Instal.lació i manteniment de serveis d'Internet

Power Over Ethernet

- Permet aportar energia elèctrica mitjançant cables UTP
 - Necessari en instal·lacions exteriors on no hi ha una font d'electricitat a prop
 - Cal tenir en compte que també és necessita un alimentador (transformador)

C5: Instal.lació i manteniment de serveis d'Internet

Sistemes sense fils exteriors

Sistema exterior

C5: Instal.lació i manteniment de serveis d'Internet

Sistemes sense fils exteriors

Muntatge d'un punt d'accés exterior

- http://landashop.com
- Busqueu tots els components necessaris per a muntar un punt d'accés exterior per fer un enllaç punt a punt
 - · Punt d'accés guifi.net
 - · Creeu un enllaç similar a l'anterior però utilitzant nanostation
 - · Creeu un enllaç similar a l'anterior però utilitzant microtik
 - · Heu de comprar tot el material necessari per muntar el node
- Cal que feu un pressupost
- Documenteu-ho tot en una pàgina de la wiki

Seguretat

- Hi han 3 tipus de WLAN segons la seva seguretat
 - Obertes: les dades no van xifrades
 - WEP (Wired Equivalent Privacy)
 - · Protocol feble. Les claus són fàcils d'obtenir.
 - WPA (Wifi Protected Access): Protocol segur (de moment)
- La connexió pot ser per
 - Clau compartida: Hi ha una mateixa clau per a tots els clients de la WLAN
 - Autenticació:
 - · Múltiples usuaris/paraules de pas
 - · Utilitzant claus públiques (similar al que es feia en SSH)

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

WEP

2 mètodes d'autenticació

 Sistema obert (open): No hi autenticació prèvia. Les dades es xifren però no hi ha fase d'autenticació

Clau Compartida:

- · S'utilitza WEP per a l'autenticació. Hi ha un intercanvi d'informació (repte) per autenticar el client
- · Similar al SSH i l'ús de claus públiques
- Menys segur! Aquest intercanvi d'informació es pot interceptar per tal d'aconseguir la clau WEP!!!

Longitud de les claus

64 bytes i 128 bytes

Defectes

- WEP és insegur per un defecte en la implementació
 - · Una clau de més bytes només fa que es necessiti més temps (i dades) per tal d'obtenir la clau

C5: Instal.lació i manteniment de serveis d'Internet

WEP

Generació de claus

- Les claus WEP no són fàcils de memoritzar. Per aquesta raó s'utilitzen frases de pas (en comptes de paraules de pas). A partir d'una frase de pas (més fàcil de recordar), es genera l'equivalent clau WEP.
- Podeu trobar diverses pàgines web que us permeten generar claus WEP
 - Generació de claus WEP

NetworkManager

Applet de gestió de xarxes sense fils i amb fil

- Wiki del professor
 - NetWorkManager

SOME RIGHTS RESERVED

On es guarden les claus? Anell de claus

- Menú Sistema/Preferències/Xifratge i anell de claus
 - Centralitza l'emmagatzematge de claus
 - El magatzem s'anomena anell de claus (keyring)
 - Es pot accedir a l'anell de claus amb la paraula de pas de l'usuari de sistema que esteu utilitzant
 - Comandes:

\$ nm-editor

\$ gconf-editor

Wiki del professor

WPA

Wi-Fi Protected Access (WPA i WPA2)

- Creat per la Wi-Fi Alliance
- Substitueix a WEP. De moment és segur
- Molts punt d'accés antics o targetes de xarxa no ho suporten. A vegades hi han actualitzacions del firmware

Tipus

- WPA Personal (WPA 1 i 2)
 - · Similar a WEP però amb una paraula de pas segura
- WPA Enterprise (WPA 1 i 2)
 - · Paraula de pas+ Autenticació (usuari)+ ús de claus públiques.
 - Necessita d'un servidor RADIUS
- LEAP: Mètode propietari d'autenticació creat per Cisco Systems.

SOME HIGHIS RESERVED

Autor: Sergi Tur Badenas

DD-WRT

Firmware Iliure per a routers SoHo

- Suporta Linksys WRT54G i altres routers
- Basat en el sistema operatiu Linux i en el firmware openWrt.
- Suport per a:
 - · Radius
 - · WDS
 - · IPV6
 - Control de la potència d'emissió
 - Controls avançats de qualitat de servei
 - · Xarxes Mesh
 - · Hotspots
 - · VPN
 - · Accés per Telnet i SSH ...
- Wiki del professor

ROUTER BUFFALO WHR-HP-G54

Suporta DD-WRT

- Bones característiques per aprox. 60€
- CPU: Broadcom 5352 CPU a 200 MHz
- Memòria Flash: 4 MB
- Memòria RAM: 16 MB
- 2 antenes omnidireccionals:
 - · 1 interna
 - · 1 externa
- Wiki del professor

RADIUS

C5: Instal.lació i manteniment de serveis d'Internet

Seguretat

Mètodes passius

- No beaconing (no s'envien les trames de beacon)
- Cloaked SSID (amagar el SSID)
- MAC filtering
- No es poden amagar de sniffers passius
- Nota: no són una solució

Mètodes actius

- IDS (Intrusion Detection Systems). El més conegut és Snort
- Kismet Distribuit: executar kismet amb la intenció de detectar atacs.

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

MAC Filter

És pot controlar l'accés a un punt d'accés WIFI per

MAC

 No és segur. Amb kismet es poden obtenir les MAC amb permís Després es pot modificar la MAC amb:

\$ sudo apt-get install macchanger macchanger-gtk

SOME RIGHTS RESERVED

Autor: Sergi Tur Badenas

Aircrack-ng

- Eina per a obtenir claus WEP
 - Instal·lació

\$ sudo apt-get install aircrack-ng

Comandes

```
$ sudo dpkg -L aircrack-ng | grep bin /usr/bin/aircrack-ng ... /usr/sbin/aireplay-ng /usr/sbin/airodump-ng ... /usr/sbin/airmon-ng ... /usr/sbin/airmon-ng ...
```

- Pràctica
 - Seguint les instruccions de la wiki del professor, heu d'obtenir la clau WEP d'un punt d'accés que us proporcionem
- Consulteu la wiki del professor
 - Aircrack

WDS

C5: Instal.lació i manteniment de serveis d'Internet

Hotspots (Portals captius)

Portal captiu

 Programari que controla l'accés a la xarxa a través d'un punt d'accés.

Molt utilitzat en llocs públics/privats per controlar l'accés

 Check your usage: - Troubleshootting Cl M2K Hotspot - Wirele

a WIFI:

- Biblioteques
- Aeroports
- Cibercafes
- Hotels
- Universitats

WELCOME TO M2K HOTSPOT

	Login:		
P	ssword:		
		Remember Login?	
		Login	
time		- Where to buy	coupon
ick h	ere		
ss Internet brought to you by M2K Wireless Co., Ltd. For mor contact Tel. 076-245891 English Speaking: 087-0000613, 08			

C5: Instal.lació i manteniment de serveis d'Internet

Altres sistemes inalàmbrics

- Bluetooth
- Infrarojos
- WIMAX
- *****
- UMTS

Reconeixement 3.0 Unported

Sou lliure de:

copiar, distribuir i comunicar públicament l'obra

fer-ne obres derivades

Amb les condicions següents:

Reconeixement. Heu de reconèixer els crèdits de l'obra de la manera especificada per l'autor o el llicenciador (però no d'una manera que suggereixi que us donen suport o rebeu suport per l'ús que feu l'obra).

- Quan reutilitzeu o distribuïu l'obra, heu de deixar ben clar els termes de la llicència de l'obra.
- Alguna d'aquestes condicions pot no aplicar-se si obteniu el permís del titular dels drets d'autor.
- No hi ha res en aquesta llicència que menyscabi o restringeixi els drets morals de l'autor.

Advertiment 🗖

Els drets derivats d'usos legítims o altres limitacions reconegudes per llei no queden afectats per l'anterior Això és un resum fàcilment llegible del text legal (la llicència completa).

http://creativecommons.org/licenses/by/3.0/deed.ca

C5: Instal.lació i manteniment de serveis d'Internet IES Nicolau Copèrnic

