Evergreening

Miguel Faria-e-Castro¹ Pascal Paul² Juan Sánchez¹

¹Federal Reserve Bank of St. Louis

²Federal Reserve Bank of San Francisco

Pennsylvania State University

March 2022

The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Banks of San Francisco and St. Louis, the Board of Governors of the Federal Reserve, or the Federal Reserve System. These slides have been screened to ensure that no confidential bank or firm-level data have been revealed.

Motivation

Evergreening:

- ▶ Idea that banks revive a loan close to default by granting further credit to the same firm
- Potentially contributes to keeping less-productive firms alive & depressing aggregate TFP
- "Zombie"-lending is typically associated with low-capitalized banks during depressions

Research Questions

- 1. Is evergreening a general feature of financial intermediation?
- 2. Can we find empirical evidence even for the U.S. over the last years?
- 3. What are the macroeconomic consequences for aggregate productivity and output?

Motivation

Evergreening:

- ▶ Idea that banks revive a loan close to default by granting further credit to the same firm
- Potentially contributes to keeping less-productive firms alive & depressing aggregate TFP
- "Zombie"-lending is typically associated with low-capitalized banks during depressions

Research Questions:

- 1. Is evergreening a general feature of financial intermediation?
- 2. Can we find empirical evidence even for the U.S. over the last years?
- 3. What are the macroeconomic consequences for aggregate productivity and output?

This Paper Litera

1. Static Model

- Small deviation from benchmark model: "relationship banking"
- ▶ Better terms to firms with + legacy debt, productivity \Rightarrow misallocation
- Intuition: banks take into account legacy debt and steer firm default

2. Empirics

- Importance of legacy debt varies with bank capital & risk reporting
- Low-capitalized banks lend relatively more to underreported borrowers
- Explained by + debt share & productivity firms, consistent with theory

Dynamic Model

- ► Embed static model mechanism into dynamic heterogeneous-firm model
- ▶ Economy features relatively larger firms, more debt, lower rates, lower agg. TFP

This Paper Litera

1. Static Model

- Small deviation from benchmark model: "relationship banking"
- ▶ Better terms to firms with + legacy debt, productivity ⇒ misallocation
- ▶ Intuition: banks take into account legacy debt and steer firm default

2. Empirics

- Importance of legacy debt varies with bank capital & risk reporting
- Low-capitalized banks lend relatively more to underreported borrowers
- ► Explained by + debt share & − productivity firms, consistent with theory

Dynamic Model

- ▶ Embed static model mechanism into dynamic heterogeneous-firm model
- ► Economy features relatively larger firms, more debt, lower rates, lower agg. TFP

This Paper • Literature

1. Static Model

- Small deviation from benchmark model: "relationship banking"
- ▶ Better terms to firms with + legacy debt, productivity ⇒ misallocation
- ▶ Intuition: banks take into account legacy debt and steer firm default

2. Empirics

- Importance of legacy debt varies with bank capital & risk reporting
- Low-capitalized banks lend relatively more to underreported borrowers
- ► Explained by + debt share & − productivity firms, consistent with theory

Dynamic Model

- ▶ Embed static model mechanism into dynamic heterogeneous-firm model
- ► Economy features relatively larger firms, more debt, lower rates, lower agg. TFP

Literature

Empirical Evidence on Zombie Lending & Evergreening

- ▶ Japan: Peek & Rosengren (2005); Caballero, Hoshi & Kashyap (2008)
- ► Eurozone: Schivardi, Sette & Tabellini (2020); Blattner, Farinha & Rebelo (2020); Acharya, Eisert, Eufinger & Hirsch (2019); Acharya, Crosignani, Eisert & Eufinger (2020).
- Cross-country: McGowan, Andrews & Millot (2018), Banerjee & Hofmann (2018)

Here: Exploit regulatory environment to document lending distortions among U.S. banks.

Models of Zombie Lending & Evergreening

- Static: Rajan (1994); Puri (1999); Bruche & Llobet (2014); Acharya, Lenzu, Wang (2021)
- Dynamic: Hu & Varas (2021); Tracey (2021)

Here: Evergreening to avoid firm default; dynamic model to study aggregate implications.

Static Model

Firm Problem

2 periods

- Firm has pre-existing liability b and productivity z
- Borrows new debt Qb' to invest k' today, produces tomorrow (+NPV)
- **Defaults** on b at the start iff V(z, b; Q) < 0; Q offered before default decision
- ▶ No default in the 2nd period, new lending risk-free

$$V(z,b;Q) = \max_{b',k'} Qb' - b - k' + \beta^f [z(k')^{\alpha} - b']$$

s.t. $b' \leq \theta k'$

- **Result:** there exists a $Q^{\min}(z,b)$ such that firm defaults if $Q < Q^{\min}$
- ▶ **Result**: investment k' satisfies: $MPK = \frac{1+\theta \beta^f}{\beta^f} \frac{\theta}{\beta^f}Q$

Firm Problem

2 periods

- Firm has pre-existing liability b and productivity z
- Borrows new debt Qb' to invest k' today, produces tomorrow (+NPV)
- **Defaults** on b at the start iff V(z, b; Q) < 0; Q offered before default decision
- ▶ No default in the 2nd period, new lending risk-free

$$V(z,b;Q) = \max_{b',k'} Qb' - b - k' + \beta^f [z(k')^\alpha - b']$$

s.t. $b' < \theta k'$

- **Result**: there exists a $Q^{\min}(z,b)$ such that firm defaults if $Q < Q^{\min}$
- **Result**: investment k' satisfies: $MPK = \frac{1+\theta\beta^f}{\beta^f} \frac{\theta}{\beta^f}Q$

Economy I: Competitive Lenders

- ▶ Continuum of deep-pocketed, risk-neutral, competitive lenders with $\beta^k > \beta^f$
- ► Equilibrium contract of competitive lenders satisfies

$$Q = egin{cases} eta^k & ext{if } eta^k \geq Q^{\min}(z,b) \ ext{o} & ext{otherwise} \end{cases}$$

▶ Equilibrium allocation (b^c, k^c, V^c) satisfies

$$extstyle MPK = rac{1+ hetaeta^f}{eta^f} - rac{ heta}{eta^f}eta^k, orall z, b$$

▶ MPK equalized across all non-defaulting firms ⇒ no misallocation

Economy I: Competitive Lenders

- ▶ Continuum of deep-pocketed, risk-neutral, competitive lenders with $\beta^k > \beta^f$
- Equilibrium contract of competitive lenders satisfies

$$Q = egin{cases} eta^k & ext{if } eta^k \geq Q^{\min}(z,b) \ ext{o} & ext{otherwise} \end{cases}$$

▶ Equilibrium allocation (b^c, k^c, V^c) satisfies

$$extit{MPK} = rac{1 + heta eta^f}{eta^f} - rac{ heta}{eta^f} eta^k, orall z, b$$

▶ MPK equalized across all non-defaulting firms ⇒ no misallocation

Economy I: Competitive Lenders

- ▶ Continuum of deep-pocketed, risk-neutral, competitive lenders with $\beta^k > \beta^f$
- ▶ Equilibrium contract of competitive lenders satisfies

$$Q = egin{cases} eta^k & ext{if } eta^k \geq Q^{\min}(z,b) \ ext{o} & ext{otherwise} \end{cases}$$

▶ Equilibrium allocation (b^c, k^c, V^c) satisfies

$$extit{MPK} = rac{1 + heta eta^f}{eta^f} - rac{ heta}{eta^f} eta^k, orall z, b$$

► MPK equalized across all non-defaulting firms ⇒ no misallocation

Economy II: Relationship Banking

- ► Two key differences:
 - 1. Stackelberg timing: lender internalizes effect of Q on (b', k', V)
 - 2. **Relationship lending**: lender owns pre-existing liability b, lost in default
- Bank problem

$$W = \max_{Q \ge \beta^k} \mathbb{I}[V(z, b, Q) \ge 0] \times \left[b - Qb'(z, Q) + \beta^k b'(z, Q)\right]$$

- \triangleright $Q \uparrow$ implies trade-off:
 - + Reduce firm's likelihood of default, increase chance of recovering b
 - Less surplus extracted from new contract $b'(\beta^k Q)$
- ▶ Firm has outside option of competitive bond market, $Q \ge \beta^k$

Economy II: Relationship Banking

- ► Two key differences:
 - 1. **Stackelberg timing:** lender internalizes effect of Q on (b', k', V)
 - 2. **Relationship lending**: lender owns pre-existing liability b, lost in default
- Bank problem:

$$W = \max_{Q \geq \beta^k} \mathbb{I}[V(\mathsf{z}, b, Q) \geq \mathsf{o}] \times \left[b - Qb'(\mathsf{z}, Q) + \beta^k b'(\mathsf{z}, Q)\right]$$

- ▶ $Q \uparrow$ implies trade-off:
 - + Reduce firm's likelihood of default, increase chance of recovering b
 - Less surplus extracted from new contract $b'(\beta^k Q)$
- Firm has outside option of competitive bond market, $Q \ge \beta^k$

Bank Problem

Bank Problem

Misallocation

- ► In "evergreening region":
 - 1. Q increasing in b
 - 2. Q decreasing in z

"Worse" fundamentals (low z, high b) \Rightarrow higher Q

Firm's capital choice implies:

$$MPK = rac{1 + heta eta^f}{eta^f} - rac{ heta}{eta^f} Q(z,b)$$

Dispersion in $Q \Rightarrow$ dispersion in MPKs, misallocation

Misallocation

- ► In "evergreening region":
 - 1. Q increasing in b
 - 2. Q decreasing in z

"Worse" fundamentals (low z, high b) \Rightarrow higher Q

Firm's capital choice implies:

$$extit{MPK} = rac{1 + heta eta^f}{eta^f} - rac{ heta}{eta^f} Q(\mathsf{z}, b)$$

Dispersion in $Q \Rightarrow$ dispersion in MPKs, misallocation

Summary

► The static model illustrates:

- Incentives to save firms with worse fundamentals
- Prevent inefficient liquidation & recover legacy debt
- Dispersion in lending rates & misallocation

Empirical Evidence?

- What's missing:
 - Endogenous distribution of firm borrowing and capital
 - Firm entry & exit + aggregation across firms
 - Repeated dynamic decision & moral hazard

Macroeconomic consequences ambiguous: Dynamic macro-model needed

Summary

The static model illustrates:

- Incentives to save firms with worse fundamentals
- Prevent inefficient liquidation & recover legacy debt
- Dispersion in lending rates & misallocation

Empirical Evidence?

What's missing?

- Endogenous distribution of firm borrowing and capital
- Firm entry & exit + aggregation across firms
- Repeated dynamic decision & moral hazard

Macroeconomic consequences ambiguous: Dynamic macro-model needed

Empirical Strategy

Extension: Bank Capital

Evergreening region expands when bank capital is low.

Identification & Data

Identification Approach

- ▶ Theory: banks (i) take into account legacy debt and (ii) steer firm default
- ▶ To identify credit supply effects, consider multiple banks lending to the same firm
- Differentiate importance of legacy debt by bank capital and risk reporting
- Focus on loans that banks may prefer to evergreen (w/. underreported risk)
- ► **Result**: Low-cap. banks lend <u>more</u> to underreported borrowers (+debt, -product.)

Data

- ► Corporate loans of Y-14Q data, covers large BHCs, sample: 2014:Q4 2020:Q4
- ▶ Loan-level panel with quarterly updates on universe of loan facilities >\$1 million
- Detailed information about features of credit arrangement, including risk assessments

Identification & Data

Identification Approach

- ▶ Theory: banks (i) take into account legacy debt and (ii) steer firm default
- ▶ To identify credit supply effects, consider multiple banks lending to the same firm
- Differentiate importance of legacy debt by bank capital and risk reporting
- ► Focus on loans that banks may prefer to evergreen (w/. underreported risk)
- ► **Result**: Low-cap. banks lend <u>more</u> to underreported borrowers (+debt, -product.)

Data

- Corporate loans of Y-14Q data, covers large BHCs, sample: 2014:Q4 2020:Q4
- ▶ Loan-level panel with quarterly updates on universe of loan facilities >\$1 million
- ▶ Detailed information about features of credit arrangement, including risk assessments

Observed Risk Measures:

- ► One-year probability of default (PD), loss given default, ... Definition
- ► Risk Reporting & Bank Capital:
 - ▶ For firm i and bank j, define PD-Gap_{i,i,t} = $PD_{i,i,t} PD_{i,k,t}$ where $k \neq j$
 - Do certain banks systematically report lower risk measures?
 - ▶ Similar to Plosser & Santos (2018), estimate for bank j and firm i

$$PD\text{-}Gap_{i,j,t} = \beta Capital_{j,t-1} + \gamma X_{j,t-1} + \alpha_{i,t} + \kappa_j + u_{i,j,t}$$

- ightharpoonup Result: $eta^{***}>$ 0 ightarrow Low-capitalized banks systematically underreport
 - internal ratings-based approach, stress testing, balance sheet accounting

Observed Risk Measures:

- ► One-year probability of default (PD), loss given default, ... Definition
- ightharpoonup Use PD since it is borrower-specific ightharpoonup comparable across banks ightharpoonup Evidence

Risk Reporting & Bank Capital:

- ► For firm *i* and bank *j*, define PD-Gap_{i,j,t} = $PD_{i,j,t} \overline{PD}_{i,k,t}$ where $k \neq j$
- Do certain banks systematically report lower risk measures?
- ightharpoonup Similar to Plosser & Santos (2018), estimate for bank j and firm i

$$PD-Gap_{i,j,t} = \beta Capital_{j,t-1} + \gamma X_{j,t-1} + \alpha_{i,t} + \kappa_j + u_{i,j,t}$$

- ▶ Result: β^{***} > O → Low-capitalized banks systematically underreport
 - internal ratings-based approach, stress testing, balance sheet accounting

Observed Risk Measures:

- ► One-year probability of default (PD), loss given default, ... Definition

► Risk Reporting & Bank Capital:

- ► For firm *i* and bank *j*, define PD-Gap_{i,j,t} = $PD_{i,j,t} \overline{PD}_{i,k,t}$ where $k \neq j$
- Do certain banks systematically report lower risk measures?
- ► Similar to Plosser & Santos (2018), estimate for bank j and firm i

$$PD-Gap_{i,j,t} = \beta Capital_{j,t-1} + \gamma X_{j,t-1} + \alpha_{i,t} + \kappa_j + u_{i,j,t}$$

- ▶ Result: β^{***} > O → Low-capitalized banks systematically underreport
 - internal ratings-based approach, stress testing, balance sheet accounting

Observed Risk Measures:

- ► One-year probability of default (PD), loss given default, ... Definition

► Risk Reporting & Bank Capital:

- ► For firm *i* and bank *j*, define PD-Gap_{i,j,t} = $PD_{i,j,t} \overline{PD}_{i,k,t}$ where $k \neq j$
- Do certain banks systematically report lower risk measures?
- ► Similar to Plosser & Santos (2018), estimate for bank j and firm i

PD-Gap_{i,j,t} =
$$\beta$$
Capital_{j,t-1} + $\gamma X_{j,t-1}$ + $\alpha_{i,t}$ + κ_j + $u_{i,j,t}$

- ightharpoonup Result: $eta^{***}> ext{o} o ext{Low-capitalized banks systematically underreport}$
 - internal ratings-based approach, stress testing, balance sheet accounting

Observed Risk Measures:

- ► One-year probability of default (PD), loss given default, ... Definition

Risk Reporting & Bank Capital:

- ► For firm *i* and bank *j*, define PD-Gap_{i,j,t} = $PD_{i,j,t} \overline{PD}_{i,k,t}$ where $k \neq j$
- Do certain banks systematically report lower risk measures?
- ► Similar to Plosser & Santos (2018), estimate for bank j and firm i

PD-Gap_{i,j,t} =
$$\beta$$
Capital_{j,t-1} + $\gamma X_{j,t-1}$ + $\alpha_{i,t}$ + κ_j + $u_{i,j,t}$

- ightharpoonup Result: $eta^{***} > o o Low$ -capitalized banks systematically underreport
- ▶ Details
- internal ratings-based approach, stress testing, balance sheet accounting

PDs, Bank Capital, and Credit Supply

- ▶ Do low-capital buffer banks lend relatively more to underreported firms?
 - Need to account for potential links between bank-firm selection and firm demand
- ▶ Following Khwaja and Mian (2008), estimate regression for firm i & bank j:

$$\frac{L^k_{i,j,t+2}-L^k_{i,j,t}}{\text{O.5}\cdot(L^k_{i,j,t+2}+L^k_{i,j,t})} = \alpha^k_{i,t} + \beta_1 \text{Capital}_{j,t} + \beta_2 \text{Low-PD}^k_{i,j,t} + \beta_3 \text{Low-PD}^k_{i,j,t} \times \text{Capital}_{j,t} + \gamma X_{j,t} + u^k_{i,j,t}$$

- ► Low-PD_{i,j,t} = 1 if PD-Gap_{i,j,t} < 0; k distinguishes rate-types
- ▶ Further restrict sample to firms with non-guaranteed term loans only
- Samples: low- vs. high capital episodes

PDs, Bank Capital, and Credit Supply

- Do low-capital buffer banks lend relatively more to underreported firms?
 - Need to account for potential links between bank-firm selection and firm demand
- ► Following Khwaja and Mian (2008), estimate regression for firm *i* & bank *j*:

$$\frac{L_{i,j,t+2}^k - L_{i,j,t}^k}{\text{O.5} \cdot (L_{i,j,t+2}^k + L_{i,j,t}^k)} = \alpha_{i,t}^k + \beta_1 \text{Capital}_{j,t} + \beta_2 \text{Low-PD}_{i,j,t}^k + \beta_3 \text{Low-PD}_{i,j,t}^k \times \text{Capital}_{j,t} + \gamma X_{j,t} + u_{i,j,t}^k$$

- ▶ Low-PD_{i,j,t} = 1 if PD-Gap_{i,i,t} < 0; k distinguishes rate-types
- Further restrict sample to firms with non-guaranteed term loans only
- ► Samples: low- vs. high capital episodes

PDs, Bank Capital, and Credit Supply

- Do low-capital buffer banks lend relatively more to underreported firms?
 - Need to account for potential links between bank-firm selection and firm demand
- ► Following Khwaja and Mian (2008), estimate regression for firm *i* & bank *j*:

$$\frac{L_{i,j,t+2}^k - L_{i,j,t}^k}{\text{O.5} \cdot (L_{i,j,t+2}^k + L_{i,j,t}^k)} = \alpha_{i,t}^k + \beta_1 \text{Capital}_{j,t} + \beta_2 \text{Low-PD}_{i,j,t}^k + \beta_3 \text{Low-PD}_{i,j,t}^k \times \text{Capital}_{j,t} + \gamma X_{j,t} + u_{i,j,t}^k$$

- ▶ Low-PD_{i,j,t} = 1 if PD-Gap_{i,i,t} < 0; k distinguishes rate-types
- Further restrict sample to firms with non-guaranteed term loans only
- Samples: low- vs. high capital episodes

Credit Supply - Low Capital Buffer Period

► Coefficients ► Interest Rates

Lowering capital leads to a relative increase in credit from low- vs. high-PD banks

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.18	0.17	0.95**	1.13***	1.68**	
	(0.30)	(0.34)	(0.40)	(0.40)	(0.64)	
Low-PD		0.63	5.46***	5.92***	6.82**	5.24**
		(1.30)	(1.89)	(1.86)	(2.58)	(2.25)
Capital × Low-PD			-1.29***	-1.64***	-1.63**	-1.14**
.,			(0.36)	(0.35)	(0.63)	(0.41)
Fixed Effects						
Firm \times Rate \times Time	✓	✓	✓			✓
Firm \times Rate \times Syn. \times Time				✓		
$Firm \times Rate \times Pur. \times Time$					✓	
Bank $ imes$ Time						✓
Bank Controls	✓	✓	✓	✓	✓	
R-squared	0.51	0.54	0.54	0.54	0.54	0.57
Observations	6,977	4,674	4,674	4,188	3,617	4,649
Number of Firms	683	495	495	455	396	491
Number of Banks	29	27	27	26	27	24

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Credit Supply - Low Capital Buffer Period

▶ Coefficients ► Interest Rates

Results strengthen with additional fixed effects

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.18 (0.30)	O.17 (0.34)	0.95** (0.40)	1.13*** (0.40)	1.68** (0.64)	
Low-PD		0.63 (1.30)	5.46*** (1.89)	5.92*** (1.86)	6.82** (2.58)	5.24** (2.25)
Capital × Low-PD			-1.29*** (0.36)	-1.64*** (o.35)	-1.63** (o.63)	-1.14** (0.41)
Fixed Effects						
Firm \times Rate \times Time	✓	✓	✓			✓
Firm \times Rate \times Syn. \times Time				✓		
$Firm \times Rate \times Pur. \times Time$					✓	
Bank $ imes$ Time						✓
Bank Controls	✓	✓	✓	✓	✓	
R-squared	0.51	0.54	0.54	0.54	0.54	0.57
Observations	6,977	4,674	4,674	4,188	3,617	4,649
Number of Firms	683	495	495	455	396	491
Number of Banks	29	27	27	26	27	24

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Credit Supply - Sample Splits

► Extended Sample

▶ Theory: banks try to steer firms close to default \rightarrow -prod., +debt, -payout firms

	(i) Low Prod.	(ii) High Prod.	(iii) Large Loans	(iv) Small Loans	(v) Low Payout	(vi) High Payout
Capital	3.39*** (1.06)	O.54 (0.73)	1.77 (1.08)	1.22 (0.96)	2.91*** (0.71)	0.85 (1.14)
Low-PD	15.23** (6.57)	8.83* (4.46)	13.61*** (4.30)	8.49 (8.31)	15.22*** (4.00)	6.92 (4.82)
Capital × Low-PD	-3.20*** (1.02)	-0.81 (1.06)	-2.77*** (o.85)	-1.02 (1.22)	-2.26*** (o.68)	-1.29 (o.8o)
Fixed Effects Firm × Rate × Time						
Bank Controls	V	√ √	√	√	√	√
R-squared	v 0.56	0.64	√ 0.51	v 0.69	0.67	√ 0.52
Observations	632	618	549	547	520	500
Number of Firms	116	103	104	88	103	106
Number of Banks	24	20	22	20	24	23

Prod.: net income/assets. Loan size: loan/firm debt. Splits above/below median of pooled sample. Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Further Evidence & Robustness

COVID-19 & High Capital Buffers

- Effects similar for COVID crisis, but not present with high capital buffers Details

► Effects at the Firm Level

Effects translate into total debt & investment changes at the firm level

► Transmission Channel

- Results not explained by low-capital banks favoring safer borrowers Details
- ... or the transmission working through other bank characteristics Details

Fixed Effects & Credit Lines

- Results robust to omitting or replacing firm fixed effect
- ... and including credit lines into loan sample Details

Dynamic Model

Dynamic Model

- ▶ Based on Hopenhayn (1992), Hennessy & Whited (2005), Gomes & Schmid (2010)
- ▶ Time discrete and infinite $t = 0, 1, ..., \infty$
- Endogenous entry and exit of firms
- Constant labor supply, wage determined by firms' free entry
- Elastic supply of capital, depreciates at rate δ
- Firm problem: static version + equity issuance cost & default shocks
- Firm productivity follows AR(1) in logs

Competitive and Relationship Lending

- \triangleright $\mathcal{P}(s; Q)$ is probability of repayment and s = (z, b, k)
- Competitive Lending: Free-entry for lenders ⇒ zero-profit condition, implying

$$Q^{comp}(s) = \beta^k \mathbb{E}_{z'}[\mathcal{P}(z', b'(s; Q^{comp}(s)), k'(s; Q^{comp}(s))]$$

▶ **Relationship Lending**: Lender can choose *Q*, subject to participation constraint

$$\max_{Q} W(s; Q) = \mathcal{P}(s; Q) \left[b - Qb'(s; Q) + \beta^{k} \mathbb{E}_{z'}[W(z', b'(s; Q), k'(s; Q))|z] \right]$$
s.t. $V(s; Q) \ge V(s; Q^{new})$

Competitive and Relationship Lending

- \triangleright $\mathcal{P}(s; Q)$ is probability of repayment and s = (z, b, k)
- **Competitive Lending**: Free-entry for lenders ⇒ zero-profit condition, implying

$$Q^{comp}(s) = \beta^{k} \mathbb{E}_{z'}[\mathcal{P}(z', b'(s; Q^{comp}(s)), k'(s; Q^{comp}(s))]$$

Relationship Lending: Lender can choose Q, subject to participation constraint

$$\max_{Q} W(s; Q) = \mathcal{P}(s; Q) \left[b - Qb'(s; Q) + \beta^{k} \mathbb{E}_{z'}[W(z', b'(s; Q), k'(s; Q))|z] \right]$$
s.t. $V(s; Q) \ge V(s; Q^{new})$

Competitive and Relationship Lending

- \triangleright $\mathcal{P}(s; Q)$ is probability of repayment and s = (z, b, k)
- **Competitive Lending**: Free-entry for lenders ⇒ zero-profit condition, implying

$$Q^{comp}(s) = \beta^{k} \mathbb{E}_{z'}[\mathcal{P}(z', b'(s; Q^{comp}(s)), k'(s; Q^{comp}(s))]$$

▶ **Relationship Lending**: Lender can choose *Q*, subject to participation constraint

$$\max_{Q} W(s;Q) = \mathcal{P}(s;Q) \left[b - Qb'(s;Q) + \beta^{k} \mathbb{E}_{z'}[W(z',b'(s;Q),k'(s;Q))|z] \right]$$
 s.t.
$$V(s;Q) \geq V(s;Q^{new})$$

Dynamic Model: Policy Functions

Comparison of Stationary Equilibria: Aggregates

Table: Competitive → Relationship economy

	Competitive	Relationship	Δ %
(mean) Market Leverage	0.208	0.210	0.84%
(mean) Interest rate	13.112	13.054	-0.44%
(mean) Capital	0.631	0.656	4.01%
Exit rate	0.0879	0.0877	-0.02%
% of zombies	0.0000	0.0139	1.39%
Aggregate debt	195.534	200.736	2.66%
Aggregate capital	201.977	207.200	2.59%
Aggregate labor	100.000	100.000	0.00%
Aggregate output	207.370	208.333	0.46%
Aggregate TFP	1.621	1.614	-0.43%

Relationship economy features: (i) less exit, (ii) more debt, (iii) lower interest rates, (iv) lower TFP

How are zombies different?

What are the characteristics of zombie firms?

Table: Zombies vs. Non-Zombies

	Non-Zombies	Zombies	% Diff
Capital	0.128	1.000	680.0%
Debt	0.123	1.000	715.0%
Profits/sales	0.440	0.288	-34.6%
Productivity	1.000	0.803	-19.7%
Interest rate	13.818	15.381	11.3%
MPK	0.358	0.124	-65.4%

- Larger & more indebted
- Less profitable & productive
- Actually pay higher interest rates, on average!
 - ► ⇒ across-firm interest rate

Conclusion

- Small modifications to standard model generate incentives to evergreen
 - ▶ Offer better terms to firms with + pre-existing borrowings and − productivity
 - Induces firms to borrow and invest more, generates misallocation
- Document evergreening behavior by large U.S. banks
 - Low capitalized banks distort PDs & lend relatively more to underreported firms
 - ▶ Effect driven by larger loans and less productive firms, consistent with theory
- ► Embed mechanism into dynamic model of industry equilibrium
 - Equilibrium: less productivity, larger firms, more debt, lower rates
 - lacktriangle Δ aggregate output pprox o as aggregate TFP \downarrow but aggregate capital \uparrow

Conclusion

- Small modifications to standard model generate incentives to evergreen
 - ▶ Offer better terms to firms with + pre-existing borrowings and − productivity
 - Induces firms to borrow and invest more, generates misallocation
- Document evergreening behavior by large U.S. banks
 - Low capitalized banks distort PDs & lend relatively more to underreported firms
 - Effect driven by larger loans and less productive firms, consistent with theory
- Embed mechanism into dynamic model of industry equilibrium
 - ► Equilibrium: less productivity, larger firms, more debt, lower rates
 - $ightharpoonup \Delta$ aggregate output pprox o as aggregate TFP \downarrow but aggregate capital \uparrow

Conclusion

Small modifications to standard model generate incentives to evergreen

- ▶ Offer better terms to firms with + pre-existing borrowings and − productivity
- Induces firms to borrow and invest more, generates misallocation

Document evergreening behavior by large U.S. banks

- Low capitalized banks distort PDs & lend relatively more to underreported firms
- Effect driven by larger loans and less productive firms, consistent with theory

► Embed mechanism into dynamic model of industry equilibrium

- Equilibrium: less productivity, larger firms, more debt, lower rates
- Δ aggregate output \approx o as aggregate TFP \downarrow but aggregate capital \uparrow

Appendix

Static Model: Solution to the Firm Problem Place

► Optimal borrowing b':

$$b' = \begin{cases} 0 & \text{if } Q < \beta^f \\ [0, \theta k'] & \text{if } Q = \beta^f \\ \theta k' & \text{if } Q > \beta^f \end{cases}$$

Optimal investment k:

$$\alpha z(R')^{\alpha-1} = \frac{1 - \theta(Q - \beta^f)}{\beta^f} (= MPK)$$

▶ Given interest rate Q, solution to the firm's problem characterized by set of functions

- \triangleright b', k', V increasing in z, Q
- ▶ *V* decreasing in *b*

Static Model: Solution to the Firm Problem Pack

► Optimal borrowing b':

$$b' = \begin{cases} O & \text{if } Q < \beta^f \\ [O, \theta k'] & \text{if } Q = \beta^f \\ \theta k' & \text{if } Q > \beta^f \end{cases}$$

Optimal investment k:

$$\alpha z(R')^{\alpha-1} = \frac{1 - \theta(Q - \beta^f)}{\beta^f} (= MPK)$$

Given interest rate Q, solution to the firm's problem characterized by set of functions

- b', k', V increasing in z, Q
- V decreasing in b

Bank Problem: Solution Pack

- Let $Q^{\max}(z,b)$ denote maximum Q for which bank lends; $W(z,b;Q^{\max})=0$
- ▶ Bank's optimal policy is then given by

$$Q = egin{cases} eta^k & ext{if } Q^{\min}(z,b) < eta^k < Q^{\max}(z,b) \ Q^{\min}(z,b) & ext{if } eta^k < Q^{\min}(z,b) < Q^{\max}(z,b) \ Q^{\max}(z,b) & ext{otherwise} \end{cases}$$

▶ Properties: (i) $Q^{\max} > \beta^k$ iff b > 0; (ii) $\frac{\partial Q^{\max}}{\partial b} > 0$; (iii) $\frac{\partial Q^{\max}}{\partial z} < 0$

PD Definition

Over the course of the **next year**, probability that loan is in default. A loan has defaulted if either one or both of the following events have taken place: (1) the bank considers that the obligor is **unlikely to pay its credit obligations to the banking group in full**, without recourse by the bank to actions such as realizing security (if held); and (2) the obligor is past **due more than 90 days on any material credit obligation** to the banking group.

Firm PD Dispersion Pack

- ▶ Back
- Do low-capital buffer banks systematically report lower risk measures?
- ▶ Similar to Plosser & Santos (2018), estimate for bank j and firm i

$$PD_{i,j,t}/PD$$
- $Gap_{i,j,t} = \beta Capital_{j,t-1} + \gamma X_{j,t-1} + \alpha_{i,t} + \kappa_j + u_{i,j,t}$

- ▶ *PD_{i,i,t}* is weighted by used credit at the bank-firm level
- ► Capital_{i,t-1} is buffer over common Tier 1 requirement Details
- Coefficient of interest
 - ho β = 0: private info \rightarrow risk measures more accurate, not linked to capital
 - lacktriangledown eta< O: downward-biased PDs ightarrow lower RWA ightarrow raise capital ratio
 - ightharpoonup eta > 0: overall risk perception low o low PDs & low capital ratio o controls: κ_j , $X_{j,t-1}$
 - ightharpoonup eta > o: systematic underreporting of credit risk exposure by low-capitalized banks

- → Back
- Do low-capital buffer banks systematically report lower risk measures?
- ► Similar to Plosser & Santos (2018), estimate for bank j and firm i

$$PD_{i,j,t}/PD$$
- $Gap_{i,j,t} = \beta Capital_{j,t-1} + \gamma X_{j,t-1} + \alpha_{i,t} + \kappa_j + u_{i,j,t}$

- ▶ *PD_{i,i,t}* is weighted by used credit at the bank-firm level
- ightharpoonup Capital_{i,t-1} is buffer over common Tier 1 requirement ightharpoonup Capital_{i,t-1}

Coefficient of interest

- $\beta = 0$: private info \rightarrow risk measures more accurate, not linked to capital
- lacktriangledown eta< 0: downward-biased PDs ightarrow lower RWA ightarrow raise capital ratio
- $\beta >$ 0: overall risk perception low \rightarrow low PDs & low capital ratio \rightarrow controls: κ_j , $X_{j,t-1}$
- \triangleright $\beta >$ o: systematic underreporting of credit risk exposure by low-capitalized banks

► Capital Changes ► Int

► Interaction Effects

▶ Back

▶ Low-capital buffer banks systematically underreport their credit risk exposure

	(i) PD	(ii) PD	(iii) PD	(iv) PD-Gap	(v) PD-Gap	(vi) PD-Gap
Capital	0.10*** (0.04)	o.o6** (o.o3)	0.10*** (0.03)	0.10** (0.04)	0.08*** (0.02)	O.11*** (o.o3)
Fixed Effects Firm × Time Synd. × Time	✓	✓	✓			
Time				\checkmark	✓	√
Bank Bank Controls	✓	√ √	√ √	/	√ √	√
Portfolio Risk Controls	•	√	√	•	√	√
R-squared	0.8	0.8	0.7	0	0.01	0.01
Observations	412,537	401,790	57,186	419,060	407,362	58,447
Number of Firms	12,189	12,065	2,844	12,489	12,347	2,914
Number of Banks	32	32	31	32	32	31

Bank controls: ROA, dep/assets, income gap, In(assets). Portfolio risk controls: RWA/assets, weighted portolio PD. Standard errors clustered by bank. Sample: 2014:Q4-2020:Q4.

▶ Low-capital buffer banks are more likely to underreport PDs relative to other banks

	(i) PD	(ii) PD	(iii) PD	(iv) PD-Gap	(v) PD-Gap	(vi) PD-Gap
Capital	0.10*** (0.04)	0.06** (0.03)	0.10*** (o.o3)	0.10** (0.04)	0.08*** (0.02)	O.11*** (o.o3)
Fixed Effects						
Firm imes Time	✓	✓				
Synd. $ imes$ Time			✓			
Time				✓	✓	✓
Bank		✓	✓		✓	✓
Bank Controls	✓	✓	✓	✓	✓	✓
Portfolio Risk Controls		✓	✓		✓	✓
R-squared	0.8	0.8	0.7	0	0.01	0.01
Observations	412,537	401,790	57,186	419,060	407,362	58,447
Number of Firms	12,189	12,065	2,844	12,489	12,347	2,914
Number of Banks	32	32	31	32	32	31

Bank controls: ROA, dep/assets, income gap, In(assets). Portfolio risk controls: RWA/assets, weighted portolio PD. Standard errors clustered by bank. Sample: 2014:Q4-2020:Q4.

Capital Definitions • Back

- ► Total Capital = CET1 + Add. Tier 1 + Tier 2
- **CET1** → most "costly" for banks
 - Common stock
 - Stock surplus
 - Retained earnings
 - Minority interest
 - Accumulated other comprehensive income

Add. Tier 1

Preferred stock (perpetual, callable after min. 5Y)

Tier 2

- Loan loss provisions
- Subordinated debt (maturity >= 5Y)

Capital Requirements and Violations

Requirements

- Capital Buffer = Capital Type Required Capital
- Capital Types: CET1, Tier 1, or Total Capital
- Required Capital = Minimum (CET1, Tier 1, or Total) + CCB
- CCB = Capital Conservation Buffer = GSIB + SCB + CCyB
- GSIB = Surcharge for GSIBs (from 2017:Q1, bank-specific)
- SCB = Stress Capital Buffer (since 2016:Q1, bank-specific from 2020:Q4)
- CCyB = Counter-cyclical capital buffer (not used so far)

Penalties for Violations

- CCB requirement:
 - limitations on dividend payouts, share buybacks, executive bonuses
- Minimum requirement ("Prompt Corrective Action"):
 - stricter supervision, forcing the bank to issue capital, restrictions on asset growth, pulling the bankffs license

Standardized vs. Internal Ratings-Based Approach

Capital Ratio = Capital Type/Risk-Weighted Assets

Standardized Approach

- ▶ 100% risk-weight for corporate loans
- Banks' own risk-assessments do not enter

Advanced Internal Ratings-Based Approach

- Banks own risk-measures determine risk-weights (PD, EAD, LGD, ECL, Maturity factors)
- Banks can choose to apply the advanced internal ratings-based-approach
- Pre-2020: required for >\$250b assets or >\$10b in foreign exposure
- Post-2020: required for GSIBs & >\$700b assets or >\$75b cross.-jur.-activity
- Compare to standardized approach and apply the one with higher risk-weighted assets

▶ Back

$$y_{i,j,t+2} - y_{i,j,t} = βΔCapital_{j,t-1} + γX_{j,t-1} + α_{i,t-1} + κ_j + u_{i,j,t+2}$$

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
	PD	PD	PD	PD-Gap	PD-Gap	PD-Ga _l
Capital	0.09*** (0.03)	0.08*** (0.03)	O.12** (o.o5)	0.10*** (o.o3)	0.09*** (0.03)	0.12** ³ (0.04)
Fixed Effects						
Firm imes Time	\checkmark	\checkmark				
Synd. $ imes$ Time			\checkmark			
Time				\checkmark	\checkmark	\checkmark
Bank		\checkmark	\checkmark		\checkmark	\checkmark
Bank Controls	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Portfolio Risk Controls		\checkmark	\checkmark		\checkmark	\checkmark
R-squared	0.59	0.59	0.51	0.00	0.00	0.00
Observations	313,556	304,914	29,894	320,869	311,300	31,509
Number of Firms	10,018	9,912	1,855	10,309	10,150	1,949
Number of Banks	32	32	30	32	32	30

Standard errors clustered by bank. Sample: 2014:Q4-2020:Q4.

Correlation stronger for riskier credit

	PD	PD	PD	PD	PD	PD
Capital × log(Loan)	-0.00 (0.01)					-0.00 (0.01)
Capital \times log(Assets)		-0.03*** (0.01)				-0.01 (0.01)
Capital × mean(PD)			0.08*** (0.02)			0.06** (0.03)
$\textbf{Capital} \times \textbf{Syndicated}$				O.12*** (0.02)		0.06** (0.03)
Capital × Public					-0.06*** (0.02)	-0.05* (0.03)
Fixed Effects						
Bank imes Time	✓	✓	✓	✓	✓	✓
Firm imes Time	✓	✓	✓	✓	✓	✓
R-squared	0.8	0.74	0.8	0.8	0.8	0.74
Observations	412,537	253,417	412,537	373,996	412,537	224,954
Number of Firms	12,189	8,599	12,189	11,889	12,189	8,318
Number of Banks	32	32	32	32	32	32

 $PD_{i,j,t} = \beta Capital_{j,t-1} \times X_{i,j,t} + \alpha_{i,t} + \kappa_{j,t} + u_{i,j,t}$. mean(PD) denotes average PD of a firm across banks. Standard errors clustered at the bank-firm level. Sample: 2014:Q4-2020:Q4.

Supply - Interest Rates

▶ Back

lacksquare Similar results for changes in interest rates: $i_{i,j,t+2}^k - i_{i,j,t}^k$

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	-0.00 (0.00)	-0.00 (0.00)	-0.01* (0.00)	-0.01** (0.00)	-0.01** (0.00)	
Low-PD		0.01** (0.00)	-0.02** (0.01)	-0.02** (0.01)	-0.03** (0.01)	-0.03*** (0.01)
Capital × Low-PD			0.01*** (0.00)	0.01*** (0.00)	0.01*** (0.00)	O.01*** (0.00)
Fixed Effects						
Firm imes Rate imes Time	✓	✓	✓			✓
Firm \times Rate \times Syn. \times Time				✓		
$Firm \times Rate \times Pur. \times Time$					✓	
Bank × Time						✓
Bank Controls	✓	✓	✓	✓	✓	
R-squared	0.88	0.89	0.89	0.88	0.87	0.91
Observations	6,538	4,399	4,399	3,944	3,416	4,368
Number of Firms	652	474	474	433	379	470
Number of Banks	29	27	27	26	27	24

Bank controls: ROA, dep/assets, income gap, In(assets), unused credit/assets. Interest rates are weighted by used credit and changes are winsorized at the 1% tails. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Interpretation Regression Coefficients

Raising capital, a firm that borrows from two banks (one high-PD and one low-PD) receives relatively less credit from the low-PD bank (β_3 = difference in slopes)

Based on estimates $\beta_1 = 2.27$, $\beta_2 = 9.86$, $\beta_3 = -2.16$, constant=0. Range bank capital buffers in 2019:Q4: 1.66 to 10.19.

Interpretation Regression Coefficients

▶ At low capital, switching a firm to low-PD leads to a relative increase in credit (vice versa)

Based on estimates $\beta_1=2.27$, $\beta_2=9.86$, $\beta_3=-2.16$, constant=0. Range bank capital buffers in 2019:Q4: 1.66 to 10.19.

Credit Supply during COVID-19

▶ Effects similar for COVID-19 crisis

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.78 (0.59)	0.96 (0.70)	1.77* (o.86)	2.27** (0.92)	3.80*** (1.04)	
Low-PD		2.63* (1.51)	6.51** (2.74)	9.86*** (2.93)	11.56*** (2.70)	8.29** (3.44)
Capital × Low-PD			-1.23* (0.63)	-2.16*** (o.68)	-2.19** (0.78)	-1.43** (o.68)
Fixed Effects						
Firm \times Rate \times Time	✓	✓	✓			✓
Firm \times Rate \times Syn. \times Time				✓		
$Firm \times Rate \times Pur. \times Time$					✓	
Bank $ imes$ Time						✓
Bank Controls	✓	✓	✓	✓	✓	
R-squared	0.53	0.53	0.53	0.53	0.55	0.55
Observations	892	667	667	612	510	663
Number of Firms	412	309	309	286	240	307
Number of Banks	24	23	23	21	23	21

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2019:Q4-2020:Q2.

Median across Y-14 banks at each date.

Credit Supply - High Capital Buffers

▶ Back

► Effects not present during period of high capital buffers

(i)	(ii)	(iii)	(iv)	(v)	(vi)
-0.17	0.09	0.10	-0.19	0.40	
(0.29)	(0.25)	(0.32)	(0.36)	(0.52)	
	0.88	0.92	-1.22	-1.16	5.22**
	(0.80)	(1.87)	(2.37)	(4.12)	(2.18)
		-0.01	0.26	0.27	-0.62
		(0.38)	(0.44)	(0.71)	(0.39)
✓	✓	✓			✓
			✓		
				✓	
					✓
✓	✓	✓	✓	✓	
0.54	0.55	0.55	0.56	0.55	0.58
10,309	6,606	6,606	6,135	3,160	6,535
835	581	581	551	307	574
32	26	26	26	25	23
	-0.17 (0.29)	-0.17 0.09 (0.29) (0.25) 0.88 (0.80)	-0.17	-0.17	-0.17

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2014:Q4-2017:Q4.

Credit Supply - Low Capital Buffers excluding COVID

▶ Back

► Similar results during period of low capital buffers excluding COVID

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	-0.20 (0.34)	-0.18 (0.42)	0.58 (0.48)	0.85* (0.47)	1.09 (0.76)	
Low-PD		0.04 (1.38)	4.98** (2.39)	4.95* (2.53)	5.96* (3.23)	3.71 (2.89)
Capital \times Low-PD			-1.27*** (o.43)	-1.54*** (o.46)	-1.55** (0.69)	-0.93 (0.54)
Fixed Effects Firm \times Rate \times Time Firm \times Rate \times Syn. \times Time	√	√	√	✓		√
$\begin{array}{l} \text{Firm} \times \text{Rate} \times \text{Pur.} \times \text{Time} \\ \text{Bank} \times \text{Time} \end{array}$					✓	✓
Bank Controls R-squared	√ 0.F	√ 0.F3	√ 0.F3	√ 0.F3	√ 0.F2	0.56
Observations Number of Firms	0.5 5,292 606	0.53 3,477 422	0.53 3,477 422	0.53 3,097 386	0.52 2,663 335	3,456 420
Number of Banks	28	25	25	25	24	23

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2019:Q4.

Bank Capital Ratios

Median across Y-14 banks at each date.

Bank Capital Requirements

Median across Y-14 banks at each date.

Credit Supply - Probability of Default

▶ Back

► Results not explained by low-capital banks favoring safer borrowers

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.07 (0.37)	0.11 (0.35)	0.07 (0.35)	0.13 (0.30)	0.36 (0.40)	
PD		-0.11 (0.10)	-0.27* (0.14)	-0.27** (0.12)	-0.21 (0.13)	-0.28 (0.17)
Capital × PD			0.05 (0.04)	0.04 (0.04)	-0.01 (0.03)	0.05 (0.05)
Fixed Effects Firm × Rate × Time Firm × Rate × Syn. × Time	✓	✓	√	✓		√
Firm × Rate × Pur. × Time Bank × Time Bank Controls	√	√	√	√	√ √	✓
R-squared Observations Number of Firms Number of Banks	0.5 9,930 969 29	0.51 7,263 754 27	0.51 7,263 754 27	0.52 6,348 674 27	0.51 5,701 606 27	0.54 7,251 752 26

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Credit Supply - Low-PD Interactions

▶ Back

▶ Results remain when controlling for interactions of all bank controls & Low-PD

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.28	0.30	1.18*	1.29**	2.04**	
	(0.33)	(0.30)	(o.65)	(0.60)	(0.80)	
Low-PD		-23.52	29.03	20.58	68.99	44.40
		(58.28)	(71.36)	(87.25)	(72.53)	(63.60)
Capital × Low-PD			-1.62*	-1.93**	-2.23**	-1.69*
•			(0.83)	(o.86)	(0.98)	(0.89)
Fixed Effects						
$Firm \times Rate \times Time$	✓	✓	✓			✓
Firm \times Rate \times Syn. \times Time				\checkmark		
Firm \times Rate \times Pur. \times Time					✓	
Bank × Time						✓
Bank Controls & Interactions	\checkmark	\checkmark	\checkmark	✓	✓	
R-squared	0.54	0.54	0.54	0.54	0.54	0.57
Observations	4,674	4,674	4,674	4,188	3,617	4,649
Number of Firms	495	495	495	455	396	491
Number of Banks	27	27	27	26	27	24

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets, and each of these interacted with Low-PD. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Credit Supply - Omitting Firm Fixed Effects

Results robust to omitting firm fixed effect

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	0.13 (0.17)	0.54** (0.24)	0.92*** (0.29)	1.05*** (0.31)	1.14*** (0.29)	
Low-PD		-0.07 (0.97)	2.37* (1.22)	2.97** (1.22)	2.85** (1.29)	2.93** (1.07)
Capital × Low-PD			-0.66** (0.24)	-0.81*** (0.18)	-0.73*** (0.26)	-0.65** (0.25)
Fixed Effects Rate × Time Rate × Syn. × Time	√	√	✓	✓		✓
Rate × Pur. × Time Bank × Time Bank Controls	√	√	√	√	√ √	✓
R-squared Observations Number of Firms Number of Banks	0.01 84,274 15,258 31	0.02 8,033 1,135 27	0.02 8,033 1,135 27	0.02 7,529 1,093 27	0.03 7,996 1,133 27	0.05 8,022 1,135 27

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors two-way clustered by bank and firm. Sample: 2018:Q1-2020:Q2.

Credit Supply - Credit Lines (committed)

▶ Back

Results robust to including (committed) credit lines

	(i)	(ii)	(iii)	(iv)	(v)	(vi)
Capital	O.15 (O.13)	O.13 (O.14)	0.36** (0.17)	O.45** (0.19)	O.61** (0.26)	
Low-PD		0.34 (0.50)	2.20** (o.82)	2.61*** (o.81)	3.07*** (1.08)	1.81* (0.96)
Capital × Low-PD			-0.50*** (0.18)	-0.68*** (0.21)	-0.66** (0.27)	-0.44** (0.19)
Fixed Effects Firm × Rate × Time Firm × Rate × Syn. × Time	√	√	√	✓		√
$\begin{array}{l} \text{Firm} \times \text{Rate} \times \text{Pur.} \times \text{Time} \\ \text{Bank} \times \text{Time} \end{array}$					√	✓
Bank Controls R-squared Observations	√ 0.6 21,712	√ 0.63 15,152	√ 0.64 15,152	√ 0.63 11,193	√ 0.63 10,233	0.64 15,146
Number of Firms Number of Banks	1,881 30	1,315 28	1,315 28	1,075 27	918 28	1,314 27

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors two-way clustered by bank and firm. Sample: 2018:Q1-2020:Q2.

Credit Supply - Alternative Fixed Effects

Results robust to replacing firm fixed effect

	(i)	(ii)	(iii)	(iv)
Capital	1.02*** (0.25)	0.86*** (0.29)	0.73** (0.34)	O.77** (o.36)
Low-PD	2.78* (1.35)	2.60* (1.44)	2.38 (1.45)	1.27 (1.33)
${\sf Capital} \times {\sf Low-PD}$	-0.77*** (o.25)	-0.78** (0.29)	-0.75** (0.31)	-0.75** (0.30)
Fixed Effects				
Time	\checkmark			
Location $ imes$ Time		✓		
Location $ imes$ Industry $ imes$ Time			\checkmark	
Location \times Industry \times Size \times Time				✓
Bank Controls	✓	✓	✓	✓
R-squared	0.01	0.09	0.29	0.42
Observations	8,033	5,822	5,388	3,536
Number of Firms	1,135	833	736	570
Number of Banks	27	27	27	26

Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Location-FE: State of headquarters. Standard errors two-way clustered by bank and firm. Sample: 2018:Q1-2020:Q2.

Effects at the Firm-Level

- ▶ Do these effects persist at the firm-level, affecting total debt and investment?
 - When firms experience a credit reduction, they may switch to other banks or nonbanks
 - Lending cuts may not affect firm investment if other resources, like cash-holdings, used instead
- Estimate regression for firm i:

$$\frac{y_{i,t+1} - y_{i,t-1}}{\text{o.5} \cdot (y_{i,t+1} + y_{i,t-1})} = \alpha_i + \tau_{k,t-1} + \beta_1 \widetilde{\text{Capital}}_{i,t-1} + \beta_2 \widetilde{\text{Low-PD}}_{i,t-1} + \beta_3 \widetilde{\text{Low-PD}}_{i,t-1} + \beta_3 \widetilde{\text{Low-PD}}_{i,t-1} + \gamma X_{i,t-1} + u_{i,t-1}$$

- Firm outcomes: y is either total debt or fixed assets ("investment")
- ▶ Weighted regressors: $\widetilde{\mathsf{Capital}}_{i,t-1} = \sum_{j=1}^{J} \mathsf{Capital}_{j,t-1} \times \mathsf{Term} \ \mathsf{Loan}_{i,j,t-1} / \mathsf{Debt}_{i,t-1}$
- Fixed effects: firm-FE α_i and industry-time-FE $\tau_{k,t-1}$

Effects at the Firm-Level

ightharpoonup Firms are unable to substitute credit supply changes ightarrow total debt affected

		al Debt		ment
	(i)	(ii)	(iii)	(iv)
Capital	0.14*** (0.04)	2.62** (1.03)	-0.17*** (0.01)	2.08*** (0.75)
Low-PD		6.11 (4.37)		9.25*** (3.33)
Capital × Low-PD		-3.55*** (o.86)		-1.50** (0.62)
Fixed Effects				
Firm	✓	✓	✓	✓
Time imes Industry	✓	✓	✓	✓
Firm Controls	✓	✓	✓	✓
R-squared	0.4	0.4	0.39	0.39
Observations	82,204	82,204	74,926	74,926
Number of Firms	13,861	13,861	12,081	12,081
Number of Banks	37	37	37	37

Firm controls: cash, net income, tangible assets, liabilities (all relative to assets), ln(assets), public-firm-indicator, term loans/debt, unused credit/debt. Standard errors clustered by main-bank and firm. Sample: 2016:Q3-2020:Q4.

Effects at the Firm-Level

In turn, credit supply changes translate into firm investment adjustments

	_Δ Tota	al Debt	Inves	tment
	(i)	(ii)	(iii)	(iv)
Capital	0.14*** (0.04)	2.62** (1.03)	-0.17*** (0.01)	2.08*** (0.75)
Low-PD		6.11 (4.37)		9.25*** (3.33)
Capital × Low-PD		-3.55*** (o.86)		-1.50** (0.62)
Fixed Effects				
Firm	✓	✓	✓	✓
Time \times Industry	✓	✓	✓	✓
Firm Controls	✓	✓	✓	✓
R-squared	0.4	0.4	0.39	0.39
Observations	82,204	82,204	74,926	74,926
Number of Firms	13,861	13,861	12,081	12,081
Number of Banks	37	37	37	37

Firm controls: cash, net income, tangible assets, liabilities (all relative to assets), ln(assets), public-firm-indicator, term loans/debt, unused credit/debt. Standard errors clustered by main-bank and firm. Sample: 2016:Q3-2020:Q4.

Credit Supply - Sample Splits with Credit Lines

▶ Back

ightharpoonup Effects driven by -prod., +debt, $-\text{payout firms} \to \text{consistent with theory}$

	(i) Low Prod.	(ii) High Prod.	(iii) Large Loans	(iv) Small Loans	(v) Low Payout	(vi) High Payout
Capital	0.55	-0.12	0.67	2.22	0.45*	0.26
	(0.36)	(0.18)	(0.50)	(1.45)	(0.24)	(0.27)
Low-PD	3.29**	0.82	7.01**	6.12	2.23**	1.37
	(1.23)	(1.24)	(2.63)	(4.34)	(1.04)	(1.18)
Capital × Low-PD	-0.70**	-0.03	-1.44***	-2.24	-0.48*	-0.20
•	(0.30)	(0.32)	(0.41)	(1.36)	(0.28)	(0.30)
Fixed Effects						
$Firm \times CL \times Rate \times Time$	✓	✓	✓	✓	✓	✓
Bank Controls	✓	✓	✓	✓	✓	✓
R-squared	0.65	0.66	0.63	0.5	0.63	0.64
Observations	4,307	4,281	1,672	1,642	3,462	3,442
Number of Firms	560	487	197	225	470	455
Number of Banks	27	27	27	19	27	27

Prod.: net income/assets. Loan size: loan amount. Payout: payout/assets. Splits above/below median of pooled sample. Bank controls: ROA, dep/assets, income gap, ln(assets), unused credit/assets. Standard errors clustered by bank. Sample: 2018:Q1-2020:Q2.

Dynamic Model: Timing

Within each period *t*:

- 1. Firm productivity z realized
- 2. Firm draws preference shocks $\varepsilon^P, \varepsilon^D \sim$ extreme value, chooses to default or not
- 3. Non-defaulting firms invest, produce, repay debt, and borrow
- 4. Entrants pay cost of entry
- Competitive Lenders: contract Q determined at step 3
- Bank Lenders: contract Q determined at step 1

Dynamic Model: Firm Problem •Back

▶ Value given Q and realization for the extreme-value shocks

$$V_{o}(z, b, k, \varepsilon^{P}, \varepsilon^{D}; Q) = \max \{V^{P}(z, b, k; Q) + \varepsilon^{P}, O + \varepsilon^{D}\}$$

ho $\varepsilon^P - \varepsilon^D \equiv \varepsilon$ distributed logistic with scale parameter κ , thus

Prob of Repayment :
$$\mathcal{P}(z,b,k;Q) = \frac{\exp\left[V^{P}(z,b,k;Q)/\kappa\right]}{1+\exp\left[V^{P}(z,b,k;Q)/\kappa\right]}$$

Expected Value : $\mathcal{V}(z,b,k;Q) = \mathbb{E}_{\varepsilon^{P},\varepsilon^{D}}V_{O}(z,b,k,\varepsilon^{P},\varepsilon^{D};Q) = \kappa\log\left\{1+\exp\left[V^{P}(z,b,k;Q)/\kappa\right]\right\}$

Firm value of repayment:

$$\begin{aligned} V^P(z,b,k;Q) &= \max_{b',k',n} div - \mathbb{I}[div < o][e_{con} + e_{slo} \times div^2] + \beta^f \mathbb{E}_{z'}[\mathcal{V}(z',b',k')|z] \\ \text{s.t. } div &= z(k^\alpha n^{1-\alpha})^\eta - wn - k' + (1-\delta)k + Qb' - b - \phi k \\ b' &< \theta k' \end{aligned}$$

Dynamic Model: Solution to the Firm Problem

► FOC for capital:

$$\mathbb{E}_{\mathbf{z}'}\left\{\mathcal{P}(\mathbf{z}',b',k')\left(\beta^f\frac{1+\mu(\operatorname{div}')}{1+\mu(\operatorname{div})}\right)\left[\pi_k(\mathbf{z}',k')-\theta\right]\right\}=1-\theta Q.$$

- \blacktriangleright $\pi_k(z',k')$ is the MPK next period
- Relationship between offered Q and the MPK when borrowing constraint binds
- ↑ Q associated with MPK ↓
- Constraint binds when

$$Q[1 + \mu(\operatorname{div})] - \beta^f \mathbb{E}_{\mathsf{z}'} \left\{ \mathcal{P}(\mathsf{z}', \mathsf{b}', \mathsf{k}') [1 + \mu(\operatorname{div}')] \right\} > \mathsf{o}$$

Dynamic Model: Entrants & Industry Equilibrium • Back

- \triangleright Large pool of entrants may pay cost κ to enter and start producing next period.
- \blacktriangleright We assume that each entrant is endowed with κ units of physical capital
- The value that they obtain is given by

$$V^{\mathsf{E}}(w) = \int_{\underline{z}}^{\overline{z}} \frac{V(z, 0, \kappa; w)}{\overline{z} - \underline{z}} \mathrm{d}z.$$

Stationary Industry Equilibrium • Back

Given an arbitrary interest rate function Q, a SIE consists of

- 1. Policy functions (k, b')(z, b, k) and value functions V(z, b, k)
- 2. Equilibrium wage w
- 3. Mass of entrants m
- 4. Stationary distribution $\lambda(z, b, k)$

such that:

- 1. Policies and values solve the firm's problem given (Q, w)
- 2. Wage is such that the free-entry condition is satisfied
- 3. Mass of entrants is such that the market for labor clears
- 4. λ satisfies its law of motion

$$\lambda(z',b',k') = \sum_{z,b,k} \Pr(z'|z) \mathbb{I}[b^p(z,b,k) = b'] \mathbb{I}[k^p(z,b,k) = k'] \mathcal{P}[V(b,z,k)] \lambda(z,b,k)$$
$$+ m \times \Pi_z^p(z') \mathbb{I}[b' = 0] \mathbb{I}[k' = 0]$$

Parameter values Pack

Parameter	Value	Basis
β^f	0.870	Firm Leverage
heta	1.000	Firm Leverage
κ	0.350	Firm Exit Rates
ϕ	0.150	Firm Exit Rates
$egin{array}{c} \phi \ ilde{oldsymbol{z}} \end{array}$	1.389	Firm Exit Rates
$e_{constant}$	0.000	Equity Issuance
$oldsymbol{e}_{slope}$	80.00	Equity Issuance
$ ho_{Z}$	0.767	Miao & Gourio (2009)
$\sigma_{\sf u}$	0.211	Miao & Gourio (2009)
η	0.800	Clementi & Palazzo (2016)
$eta^{m{k}}$	0.97	Standard
α	0.40	Standard
δ	0.09	Standard

Calibration targets and fit •Back

Moment	Data	Model	Source
Book leverage	0.67	0.96	Gomes & Schmid (2010)
Market leverage	0.29	0.15	Gomes & Schmid (2010)
Investment/Assets	0.16	0.09	Compustat
Exit rate	0.09	0.09	Hopenhayn et al. (2018)
Exit rate, new firms	0.25	0.12	Hopenhayn et al. (2018)
Freq. issue equity	0.09	0.03	Gomes & Schmid (2010)
Size issue equity	0.09	0.09	Hennessy & Whited (2007)
Size of exiting firms relative to average	0.50	0.24	

Firm Distribution

