

Design **Analysis** of **Algorithms**

Lecture 12

Brute Force-Knapsack Problem

- Given n items of known weights $w_1, w_2, ..., w_n$ and values $v_1, v_2, ..., v_n$ and a **knapsack** of capacity W, find the most valuable subset of the items that fit into the knapsack.
 - A thief who wants to steal the most valuable loot that fits into his knapsack
 - A transport plane that has to deliver the most valuable set of items to a remote location without exceeding the plane's capacity.

Knapsack Problem- Types

0/1 Knapsack Problem

• Given a set of n items numbered from 1 up to n, each with a weight w_i and a value v_i , along with a maximum weight capacity W,

maximize
$$\displaystyle \sum_{i=1}^n v_i x_i$$
subject to $\displaystyle \sum_{i=1}^n w_i x_i \leq W$ and $x_i \in \{0,1\}.$

where x_i represents the number of instances of item i to include in the knapsack.

Knapsack Problem- Types

Fractional Knapsack Problem

• Given a set of n items numbered from 1 up to n, each with a weight w_i and a value v_i , along with a maximum weight capacity W,

maximize
$$\displaystyle \sum_{i=1}^n v_i x_i$$
 subject to $\displaystyle \sum_{i=1}^n w_i x_i \leq W$ and $x_i \geq 0$

where $x_i \in \mathbb{R}$ represents the whole/fraction of instances of item i to include in the knapsack.

Brute-Force/Exhaustive Solution

- Generating all the subsets of the set of n items given,
- Computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with the total weight not exceeding the knapsack capacity), and
- Finding a subset of the largest value among them.

Brute-Force/Exhaustive Solution

 Since the number of subsets of an n-element set is 2ⁿ, the exhaustive search leads to an algorithm of order

$$\Omega(2^n)$$

no matter how efficiently individual subsets are generated.

Example:

 $w_3 = 4$ $v_3 = 40 $v_4 = 2

item 3 item 4

Example:

Subset	Total weight	Total value
Ø	0	\$ O
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1, 2}	10	\$54
{1, 3}	11	not feasible
{1, 4}	12	not feasible
{2, 3}	7	\$52
{2, 4}	8	\$37
{3, 4}	9	\$65
{1, 2, 3}	14	not feasible
$\{1, 2, 4\}$	15	not feasible
$\{1, 3, 4\}$	16	not feasible
$\{2, 3, 4\}$	12	not feasible
$\{1, 2, 3, 4\}$	19	not feasible

NP-Hard Problems

- Thus, for both the traveling salesman and knapsack problems considered above, exhaustive search leads to algorithms that are extremely inefficient on every input.
- In fact, these two problems are the best-known examples of so called NP-hard problems.
 [Non-deterministic Polynomial-time Hard]
- No polynomial-time algorithm is known for any NP-hard problem.

References

Chapter 3: Anany Levitin, "Introduction to the Design and Analysis of Algorithms", Pearson Education, Third Edition, 2017.

Homework

- More Cryptarithmetic Problems
 - LETS + WAVE = LATER
 - BASE + BALL = GAMES
 - WRONG + WRONG = RIGHT
 - SEVEN NINE = EIGHT
- Closest pair of points in a plane(2D)/space(3D).
- Water-Jug Problem
 [Out of 5,3,2 liters jug, required water of 4 liters]