Sistemas de ficheros

Administración de Sistemas

Unai Lopez Novoa unai.lopez@ehu.eus

Contenido

- 1. Introducción
- 2. Comandos de administración
- 3. LVM
- 4. RAID
- 5. Copias de seguridad

El sistema de ficheros

- Parte del Sistema Operativo que administra la memoria de los dispositivos y unidades
- Características principales:
 - Ficheros identificados por un nombre
 - Meta-información para cada fichero
 - Fecha de creación, permisos ...
 - Organización como una jerarquía tipo árbol
- Implementación:
 - Internamente los ficheros se almacenan en bloques secuenciales
 - La jerarquía no se tiene en cuenta a nivel interno

El sistema de ficheros

- Componentes de un fichero:
 - Datos
 - · Uno o más bloques del disco con información binaria
 - Meta-información
 - Nombre, tamaño, permisos, correspondencia con los bloques de disco
- Un fichero se guarda en al menos 1 bloque del disco

Sistema FAT

- Creado en 1977 y utilizado por MS-DOS
- File Allocation Table Tabla de reserva de ficheros
 - Se basa en una lista enlazada que contiene la información de los bloques ocupados por cada archivo y los que están libres.
 - Actualmente en desuso en sistemas de escritorio
- Variantes en uso a día de hoy:
 - exFAT:
 - Orientado a tarjetas flash (p.e. SDXC) y memorias USB
 - FATX:
 - Utilizado en las videoconsolas Xbox

Sistema NTFS

- Creado en 1993 y utilizado en Microsoft Windows
- New Technology File System
 - Introduce journaling: sistema de diario.
- Versión actual: v3.1¹
 - No es tan compatible como FAT
- En proceso de ser sustituido por ReFS²
 - Disponible en Windows Server desde 2012
 - Windows 11 puede leer discos ReFS pero no crearlos

Sistema EXT

- Su nombre viene de Extended File System
 - Creado en 1992, el primer sistema de ficheros para Linux
 - Versión actual: Ext4 (en uso estable desde 2008)
 - Compatibilidad hacia delante y hacia atrás
 - Un sistema ext3 puede ser montado como ext4 sin cambios
- Organiza los datos en base a i-nodos
 - Ejemplo:

BtrFS

- Creado en 2009, parte de Linux desde 2013
- Características relevantes
 - Gestor de volúmenes integrado
 - Capacidad de snapshots
- Recomendado para grandes tamaños de datos¹
 - El mismo BtrFS puede expandirse a varios discos
- Posible sucesor de Ext4
 - No parece que vaya a haber Ext5²

ZFS

- Creado en 2001 por Sun Microsystems, ahora Oracle
- Es un sistema de ficheros y gestor de volúmenes
- Muy estable
- Licencia privativa
 - Linus Torvalds ha creado polémica al respecto¹
- Variante libre: OpenZFS
 - Creado en 2013
 - Utilizado en entornos Linux

Sistema de ficheros virtual

- Es una interfaz de Linux que:
 - Expone una API POSIX a los procesos
 - Envía las peticiones concretas al Driver que corresponda
- Aunque el SSOO monte particiones de diferentes tipos, su uso es transparente a los procesos

- Respecto a los sistemas de ficheros, el sysadmin debe:
 - Garantizar que los procesos de los usuarios pueden acceder a los sistemas de ficheros locales y remotos
 - Supervisión y gestión de la capacidad de almacenamiento
 - Gestionar copias de seguridad para evitar:
 - Corrupción de los datos
 - Errores hardware
 - Errores de usuario
 - Garantizar la confidencialidad de los datos
 - Conectar y configurar nuevos discos

Fichero del dispositivo

 Fichero del SSOO que posibilita que las aplicaciones accedan a un dispositivo (a través del kernel), p.e.:

```
cat /dev/dsp Acceso a un DSP cat /dev/input/mouse Acceso al ratón
```

• Todos los dispositivos se encuentran en /dev:

```
Dispositivos SATA: /sdXX
Dispositivos RAID: /mdX
```

Especiales, p.e. /null (nulo) /urandom (números aleatorios)

Driver del dispositivo

 Rutinas del kernel que definen cómo se comunica el SSOO con el dispositivo: Interrupciones, DMA, ...

Partición:

- Unidad de almacenamiento lógico que permite tratar un único dispositivo físico como varios.
 - Permite tener un sistema de ficheros diferente en cada uno.

• Utilidad:

• Impide que ciertos directorios crezcan indefinidamente, p.e.:

/var/spool Para aplicaciones de colas (correo, impresión, ...)

/tmp Para archivos temporales

• Permite dividir el espacio para software y para archivos de usuarios

Partición:

- En sistemas Unix/Linux:
 - Se encuentran en /dev, con un número adjunto al nombre del disco.
 - Ejemplo: El 2º disco SATA de un sistema Linux con 2 particiones sería:

```
/dev/sdb Disco
/dev/sdb1 Partición 1 del disco
/dev/sdb2 Partición 2 del disco
```

- Con Kernels recientes, el sistema crea un alias para cada partición:
 - Se puede usar cada vez que sea necesario.
 - Evita tener que comprobar nombres después de cada reinicio.
 - P.e.: /dev/disk/by-uuid/{UUID}
 enlaza al /dev/sdXX correspondiente
 - Listar UUID de cada partición: comando blkid

- Tabla de particiones
 - Esquema que indica cómo se organizan las particiones del disco
 - Generalmente es MBR o GPT
 - Master Boot Record (MBR)
 - A veces mostrado como DOS (por MS-DOS)
 - Introducido en 1983
 - Permite dividir 1 disco en 4 particiones primarias
 - Para crear más particiones:
 - Convertir 1 partición primaria en lógica
 - · Crear particiones extendidas dentro la lógica
 - Límite: 23 particiones extendidas
 - Almacena la meta información al comienzo del disco
 - Límite: 2 TB por disco

- Tabla de particiones
 - Esquema que indica cómo se organizan las particiones del disco
 - Generalmente es MBR o GPT
 - GUID Partition Table (GPT)
 - Introducido entre 1990~2000
 - Permite realizar hasta 128 particiones en 1 disco.
 - Almacena la meta-información distribuida por el disco.
 - Límite: 9.7 zetabytes por disco
 - No es tan compatible como MBR
 - Para poder usar un disco GPT para arranque, el sistema debe ser BIOS UEFI.

- Manipular la tabla de particiones:
 - Comando fdisk
 - Sintaxis: fdisk (fichero-de-dispositivo)
 - P.e. fdisk/dev/sda
 - Algunas opciones: p Ver tabla de particiones de disco
 - n Nueva partición
 - w Escribir nueva tabla de particiones
 - q Salir
 - Comando cfdisk
 - Variante visual de fdisk
 - Más fácil de utilizar
 - No tiene todas las funciones de fdisk.

- Formatear una partición:
 - Tras crear una partición, crear un sistema de ficheros en ella
 - Tipos de sistema soportados en /proc/filesystems
 - Comando mkfs: crea un sistema de ficheros en una partición
 - Sintaxis: mkfs.
 tipo-de-sistema
 partición
 - P.e. mkfs.ext4/dev/sda3
 - Una forma alternativa es: mkfs [-V -t tipo-de-sistema] <partición>
 - P.e. mkfs –t ext4 /dev/sda3
 - Se desaconseja el uso de esta forma.

- Montar una partición
 - Habilitar el acceso al dispositivo desde el sistema de ficheros (usando el fichero de dispositivo)
 - · Por defecto, comando mount
 - Sintaxis: mount (opciones) [fichero-disp] [punto-montaje]
 - Algunas opciones: -t Tipo de sistema -r Montar en sólo lectura
 - Ejemplo: mount -t ext3 /dev/sdc1 /home/unai/miDisco
- Desmontar una partición
 - · Por defecto, comando umount
 - Sintaxis: umount [punto-montaje]
 - Requiere que ningún proceso esté usando la partición
 - Se puede usar el comando **Isof** para mostrar qué procesos la están usando

- Montaje automático
 - El fichero /etc/fstab define los dispositivos a montar automáticamente en el arranque del sistema
 - Columnas:

• Ejemplo:

Explorar las particiones del sistema

- Comando Isblk
 - Lista el hardware de almacenamiento y particiones
 - Parámetro "-e7" para ocultar particiones Snap en Ubuntu

Comando df

- Lista particiones y puntos de montajes
- Parámetro "-h" para mostrar tamaños en formato "humano"
- Parámetro "-t" para mostrar los tipos de sistemas de ficheros

Comando mount

- Muestra las particiones montadas
- Parámetro "-l" para listar
- Parámetro "-t" para indicar tipo de sistema, p.e. "-t ext4"

Comprobar el sistema de ficheros

- Comando fsck
 - Detección y corrección (no siempre) de problemas de corrupción en el sistema de ficheros
 - Compara la lista de bloques libres con las direcciones en los i-nodos
 - Verifica la lista de i-nodos libres con los i-nodos de los directorios
 - No es muy efectivo para detectar ficheros corruptos
- Comando badblocks
 - Detecta y excluye sectores inválidos del disco
- Funciones SMART de un disco duro
 - Self Monitoring Analysis and Reporting Technology
 - Herramientas para acceder a la información de estado del disco
 - Software y funcionalidades dependen del fabricante

- Redimensionar el sistema de ficheros
 - Comando resize2fs
 - Requiere una versión del kernel >= 2.6
 - Tiene que haber espacio suficiente para poder redimensionar

- Es conveniente hacer una copia de seguridad de la tabla de particiones:
 - Utilizando dd: dd if=/dev/sdc of=part.bkp count=1 bs=1.
- Comando parted
 - Sintaxis: parted /dev/sdX
 - Permite copiar, mover, cambiar sistemas de ficheros

Discos en GCP

- Añadir un disco a una instancia
 - Editar la configuración de la MV
 - Buscar la sección "Additional disks"
 - Seleccionar "Add new disk"
 - Configurar el nuevo disco, entre otras:
 - Nombre y tamaño en GB
 - Origen: "blank disk" para un disco en blanco
 - Tipo: ver siguiente diapositiva
 - Crear disco y guardar cambios en la instancia
- Administrar discos
 - Apartado "Discos" en la sección "Almacenamiento" de Compute Engine.

Discos en GCP

- Tipos de discos¹:
 - El coste mensual depende de la región²
 - Precios para la región europe-north1 a fecha 18/09/2023

Tipo	Descripción	Coste (\$/mes)
pd-standard	Discos duros tradicionales (los más lentos)	0.044 / GB
pd-balanced	Discos sólidos (SSD) configurados para ser competitivos en coste	0.110 / GB
pd-ssd	Discos sólidos (SSD)	0.187 / GB
pd-extreme	Discos sólidos (SSD) configurados para máximo rendimiento	0.137 / GB

• Ejemplo: un disco pd-balanced de 100GB en europe-north1 cuesta 11\$/mes

Ejercicio 1

- Añadir un disco duro pd-balanced de 12 GB a la máquina virtual.
- Crear 2 particiones de 6 GB
- Formatear una como ext4 y la otra como btrfs.
- Montar la partición btrfs en /miBtrfs
- Copiar el contenido de /var/log/apt.
 - Verificar que el contenido se ha copiado correctamente.
- Desmontar la partición btrfs.

 ¿Qué pasa si mi sistema de ficheros ocupa 800 GB pero sólo tengo discos de 200 GB ?

- Logical Volume Manager (LVM) crea una capa de abstracción sobre el almacenamiento físico
- Permite crear volúmenes lógicos que "escondan" el hardware real

- Jerarquía de LVM:
 - Volúmenes físicos
 - · Partición completa
 - Contiene el VGDA
 - Volume Group Descriptor Area
 - Contiene los datos físicos
 - Grupos de volúmenes
 - Equivalente a "super-discos"
 - Volúmenes lógicos
 - Equivalente a "super-particiones"
 - Albergan los sistemas de ficheros

- Ventajas de LVM
 - Gestión flexible del almacenamiento en disco
 - Elimina los límites del espacio físico
 - Almacenamiento redimensionable
 - Los volúmenes se pueden agrandar/reducir de forma simple
 - Algunas operaciones no requieren desmontar el sistema de ficheros
 - Traslado de datos en caliente
 - Los datos se pueden mover entre discos aunque estén en uso
 - Se puede reemplazar un disco sin interrumpir el servicio
 - Captura de instantáneas
 - Simplifica las copias de seguridad

Administración de LVM

- Comando pvcreate
 - Crear un volumen físico
 - Sintaxis: pvcreate [partición]
 - Es necesario crear antes la partición (p.e. con cfdisk)

Comando vgcreate

- Crear un grupo de volúmenes con varios volúmenes físicos
- Sintaxis: vgcreate [nombre-grupo] [vols-físicos]
 - Ejemplo: vgcreate grupovol /dev/sdb1 /dev/sdc1

Comando lvcreate

- · Creación de un volumen lógico
- Sintaxis: lvcreate [nombre-grupo] I [tamaño] n [nombre-volum-log]
 - Ejemplo: lvcreate grupovol -l 100%FREE -n miVolumen

Crea el volumen en /dev/grupovol/miVolumen

- Administración de LVM
 - Comando vgextend
 - Añadir un nuevo volumen físico al grupo de volúmenes
 - Comando Ivextend
 - Extender un volumen lógico a un grupo de volúmenes mas grande
 - Se puede redimensionar el sistema de ficheros
 - Utilizar resize2fs
 - Para reducir el tamaño de los volúmenes
 - Comandos vgreduce (grupo de volúmenes) y lvreduce (volumen lógico)
 - Se mostrar el estado del volumen con Ivdisplay

- Redundant Array of Independent Disks
 - Técnica de almacenamiento: los datos se distribuyen o replican entre varios discos
 - Es transparente para el usuario y para el SSOO
- Diferentes opciones de configuración (niveles)
 - Según necesidades de fiabilidad, rendimiento y capacidad
- Se puede implementar a nivel HW o SW
 - Hardware: más eficiente pero más caro
 - Imagen: controladora PCI para RAID 0, 1, 5 y 10
 - Software: apropiado para RAID 0 y 1

- RAID 0: Striping (Volumen dividido)
 - Los datos se dividen en segmentos y se distribuyen entre los discos
 - Rendimiento: Bueno, acceso paralelo a los discos
 - · Cuantos más discos, más velocidad
 - Fiabilidad: No hay tolerancia a fallos
 - Capacidad: 100% de uso (0 redundancia)

- RAID 1: Espejo
 - Utilizar un disco secundario para copiar todos los datos
 - Rendimiento: Bajo, debido al exceso de escrituras
 - Fiabilidad: Alta por la alta redundancia
 - Capacidad: 50% de la disponible

- RAID 4: Striping + paridad
 - Un disco almacena información de paridad sobre el resto
 - Rendimiento: Bueno en lectura, malo en escritura
 - Fiabilidad: Tolerancia al fallo de 1 disco
 - Capacidad: 1 disco dedicado exclusivamente a redundancia

Nuevos datos:

PA = A0 xor A1 xor A2

Fallo del disco 2:

A2 = A0 xor A1 xor PA

- RAID 4: Striping + paridad
 - El mayor problema en RAID 4 son las escrituras serializadas en el mismo disco
 - Ejemplo: actualizar las posiciones 0, 5 y 7
 - Leer bloques 0, 5 y 7 y PA, PB y PC
 - Calcular el nuevo valor de PA, PB y PC
 - 3) Escribir los nuevos bloques de datos
 - 4) Escribir los nuevos bloques de paridad
 - Este último paso implica escrituras serializadas
 - · Bajo rendimiento

- RAID 5: Striping + paridad distribuida
 - La información de paridad se distribuye por todos los discos
 - Rendimiento: Mejor que RAID 4, elimina la escritura serializada
 - Fiabilidad: Tolerancia al fallo de 1 disco
 - Capacidad: Se dedica a redundancia el equivalente a 1 disco

Otros niveles RAID:

- RAID 2, RAID 3
 - Paridad a nivel de bit (RAID2) o byte (RAID3), en lugar de bloque.
 - No es muy utilizado
- RAID 6: Striping + Doble paridad
 - RAID 4 pero usando el doble de espacio para paridad
 - Tolerante al fallo de 2 discos
- RAID anidados: jerarquías en árbol
 - P.e, RAID 0+1, RAID 1+0 (10), ...

- Administración RAID, se utiliza el comando mdadm:
 - Creación de un dispositivo RAID
 - Para crear el dispositivo /dev/md0:
 - mdadm --create /dev/md0 --verbose --level=0 --raid-devices=2 /dev/sdb /dev/sdc2
 - Los discos tienen que haber sido previamente particionados (p.e. con cfdisk)
 - El proceso de creación se puede monitorizar:
 - cat/proc/mdstat
 - Monitorizar el sistema RAID
 - mdadm --monitor [opciones] /dev/md0
 - Eliminar (desactivar) RAID:
 - Parar el dispositivo: mdadm --stop /dev/md0
 - Limpiar información: mdadm --zero-superblock /dev/sdX
 - Limpia la información existente de un dispositivo RAID parado

- En caso de fallo de 1 disco
 - Asumiendo un sistema RAID 5
 - El disco roto se puede recuperar automáticamente:
 - Eliminar el disco roto del RAID:
 - mdadm /dev/md0 -r /dev/sdc1
 - Reemplazar el disco físico por otro (debe ser idéntico)
 - Crear particiones como en el original:
 - fdisk /dev/sdc.
 - Añadir al dispositivo RAID:
 - mdadm /dev/md0 -a /dev/sdc1
 - Monitorizar el proceso de reconstrucción:
 - cat/proc/mdstat
 - Se puede simular el fallo de un disco:
 - Utilizar: mdadm/dev/md0 -f/dev/sdc1
 - Toda la información en: /var/log/syslog

Combinando RAID y LVM

• LVM se debe implementar sobre RAID

Ejercicio 2

- Utilizar el disco virtual creado en el ejercicio 1.
- Borrar las particiones existentes y crear 3 particiones de 2 GB.
- Juntar las 3 particiones cómo un único volumen LVM llamado volumenEj2.
- Formatear volumenEj2 como ext4 y montarlo en /mivol
 - Verificar el tamaño del volumen resultante

- RAID + Journaling no es suficiente para tener una disponibilidad del 100%
- Tener copias de seguridad es <u>esencial</u>
 - Solución para eventos inesperados, tanto HW como SW
 - Evita potenciales problemas de los usuarios
- Implica dedicar recursos exclusivos
 - Recursos físicos
 - Discos dedicados exclusivamente a copias, Servidores SAN, ...
 - Cintas: LTO (LinearTape-Open), SAIT, AIT
 - Almacenamiento en la nube

- La política de copias debe ir acorde a nuestros requisitos
 - ¿Qué es necesario guardar?
 - Datos de usuarios / aplicaciones / sistema
 - Las partes críticas del sistema
 - ¿Cuándo queremos hacer las copias?
 - No recargar el sistema en momentos críticos
 - Dependerá del nivel de uso y la parte del sistema de ficheros
 - Automatizar las copias (usando p.e. cron)
 - ¿Dónde queremos hacer las copias?
 - Balance entre copias locales y en ubicaciones remotas

- Estrategias para el almacenamiento de Backups
 - Ejemplos:

Estrategia 4-3-2

- Los discos pueden fallar/romperse/...
 - · BackBlaze: Consultora dedicada al almacenamiento en la nube
 - A 30 de junio 2023 gestionaba 245.757 discos duros en 4 datacenters
 - Cada trimestre publica un informe detallando:
 - Ratio de fallos en sus discos duros
 - Comparativas de rendimiento
 - Datos históricos
 - Último informe: Abril Junio 2023
 - https://www.backblaze.com/blog/backblaze-drive-stats-for-q2-2023/

- Informe trimestral de BackBlaze
 - Abril Junio 2023, Ratio de fallos en discos HDD y SSD:
 - La columna AFR
 (Annualized Failure
 Rate) mide el nº de
 fallos por año en un
 grupo de discos.

	37 (77.5)			ĺ			
MFG	Model	Drive Size	Drive Count	Avg. Age	Drive Days	Drive Failures	AFR
(1000)	Control of the Control	200000000		(months)			Marko etc
HGST	HMS5C4040ALE640	4TB	3,621	83.2	326,504	4	0.45%
HGST	HMS5C4040BLE640	4TB	11,934	80.1	1,083,231	22	0.74%
HGST	HUH728080ALE600	8TB	1,115	62	99,279	9	3.31%
HGST	HUH728080ALE604	8TB	90	71.1	8,094	3	13.53%
HGST	HUH721212ALE600	12TB	2,606	44.8	232,974	-	0.00%
HGST	HUH721212ALE604	12TB	13,203	27	1,181,748	42	1.30%
HGST	HUH721212ALN604	12TB	10,537	50.7	941,603	164	6.36%
Seagate	ST4000DM000	4TB	17,899	91.9	1,607,828	167	3.79%
Seagate	ST6000DX000	6TB	883	98.3	80,411	3	1.36%
Seagate	ST8000DM002	8TB	9,354	80.6	842,239	114	4.94%
Seagate	ST8000NM000A	8TB	153	11.6	12,088	_	0.00%
Seagate	ST8000NM0055	8TB	14,118	68.8	1,270,271	215	6.18%
Seagate	ST10000NM0086	10TB	1,124	66.4	100,772	34	12.31%
Seagate	ST12000NM0007	12TB	1,214	43.6	109,092	25	8.36%
Seagate	ST12000NM0008	12TB	19,677	38.8	1,763,868	157	3.25%
Seagate	ST12000NM001G	12TB	13,029	29.8	1,157,666	44	1.39%
Seagate	ST14000NM0018	14TB	60	14.1	5,111	2	14.28%
Seagate	ST14000NM001G	14TB	10,790	28.5	968,724	52	1.96%
Seagate	ST14000NM0138	14TB	1,458	30.8	131,819	37	10.25%
Seagate	ST16000NM001G	16TB	27,255	15.3	2,242,685	54	0.88%
Seagate	ST16000NM002J	16TB	309	12.5	27,513	_	0.00%
Toshiba	MD04ABA400V	4TB	94	97.3	8,366	-	0.00%
Toshiba	HDWF180	8TB	61	19.2	5,577	3	19.63%
Toshiba	MG07ACA14TA	14TB	38,101	31.8	3,426,456	133	1.42%
Toshiba	MG07ACA14TEY	14TB	616	24.1	52,749	1	0.69%
Toshiba	MG08ACA16TA	16TB	5,199	13.6	467,288	4	0.31%
Toshiba	MG08ACA16TE	16TB	5,923	20.6	527,557	21	1.45%
Toshiba	MG08ACA16TEY	16TB	5,289	18.8	470,668	-	0.00%
WDC	WUH721414ALE6L4	14TB	8,432	30.6	759,062	16	0.77%
WDC	WUH721816ALE6L0	16TB	2,697	20.8	239,957	-	0.00%
WDC	WUH721816ALE6L4	16TB	14,099	9.3	1,256,975	13	0.38%
	·	Totals	240,940		21,408,175	1,339	2.28%

Informe trimestral de BackBlaze

Backblaze Quarterly Annualized Failure Rates by Drive Size

Each quarter is calculated from the drive stats data for drive days and drive failures from that quarter

- Comando rsync
 - Herramienta GNU para backups
 - Web oficial: https://rsync.samba.org/
 - Documentación, FAQ, Novedades
 - Forma de uso más simple:
 - rsync [opciones] (origen) (destino)
 - Opciones: -v Modo verboso
 - -a Mantiene usuarios,
 - -z Comprime antes de copiar
 - -h Mostrar tasas de transferencia y tamaños en formato legible (MB/s en vez de bytes/s)
 - Ejemplo: rsync -vazh /home /dev/sdc
 - Se suele utilizar para copias remotas por red

- Comando rsnapshot
 - Herramienta basada en rsync para realizar copias incrementales, gestionando un histórico de las mismas con rotación
 - Web: https://rsnapshot.org/
 - Documentación: https://wiki.archlinux.org/title/Rsnapshot
 - No viene instalada en Ubuntu Server por defecto
 - Instalar con "apt install rsnapshot"
 - Configuración: /etc/rsnapshot.conf
 - Uso:
 - rsnapshot configtest Verifica que la configuración es correcta
 - rsnapshot (TAG)
 Realiza una copia del tipo (TAG), p.e. "daily"
 - rsnapshot-diff Compara 2 copias hechas en instantes diferentes

- Alternativas más rudimentarias:
 - Comando tar
 - Combinándolo con herramientas de compresión (bzip, zip)
 - · Comando dd
 - dd if=/dev/sda2 of=/dev/tape
 - Comando cp -a
 - Para replicar contenido de disco a nivel de fichero
- Alternativas comerciales:
 - HP Data Protector
 - IBM Spectrum Protect (Tivoli Storage Manager)
 - ...

Bibliografía

- Pablo Abad Fidalgo, José Ángel Herrero Velasco. "Advanced Linux System Administration", OCW UNICAN, 2018¹:
 - Topic 6: File systems fundamentals
 - Topic 7: File systems, advanced management
 - Publicado bajo licencia Creative Commons BY-NC-SA 4.0
 - https://ocw.unican.es/course/view.php?id=241
- Alberto González, "¿Que es Logical Volume Manager o LVM?", Octubre 20151:
 - https://nebul4ck.wordpress.com/2015/10/06/que-es-logical-volume-manager-o-lvm/
- GitLab Docs, "File system performance benchmarking"²:
 - https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html
- Consultados en julio 2020¹ y septiembre 2021²

