1 States and actions

The states for this problem are all possible combinations of tilled $n \times n$ squares. For example, let s be a 7×7 square, tilled with two rectangles. The representations of s are shown. Figure 1a shows how the agent views s and Figure 1b shows how we can visualise s. Both of these and similar graphics used throughout the report were generated in visualiseActions.py which is explained further in Section 4.3.

Figure 1: Representations of state s

There are several actions we want our agent to be able to perform to transition between states. Each of the actions should be taken with the goal of minimising the Mondrian score (explained in Section 3). The implementations of the actions are in the actions.py file. There are two possible actions;

1. Split - One way to improve the Mondrian score is to decrease the area of the largest rectangle in the square. We do this by splitting the largest rectangle in the square into two smaller rectangles. To visualise this action, let state s be a 5×5 square with two tilled rectangles as shown in 2a. We perform a split, resulting in the red rectangle being split in two. This transitions leaves us in a new state s' as shown in 2b. We can see the state s' has a lower Mondrian score than state s.

Figure 2: States before and after split action

2. Merge - Another way to improve the Mondrian score is to increase the area of the smallest rectangle in the state. We do this by merging the smallest rectangle with one of its neighbours. To visualise this action, let state s be a 5×5 square with four tilled rectangles as shown in 3a. We perform a merge with the blue and green rectangles resulting in a new state s' as shown in 3b. Again, we see that state s' has a lower Mondrian score than state s'. In my implementation, the merge function returns a list of candidate merge options so we can evaluate our options before performing the action. This is also to allow for simulated annealing (explained further in Section 4).

Figure 3: States before and after merge action

2 Invalid States

2.1 Check for state validity

Algorithm 1 shows how we check if performing a given action to a given state will result in a valid state. In my implementation, this is spread over several functions in the validateActions.py file.

Algorithm 1: Check if performing action a on state s results in a valid state

```
Data: State s, Action A
   Result: l, state validity of s'
 1 s' \leftarrow A(s);
 2 L_u, dimensions \leftarrow [],[];
 3 unique \leftarrow unique numbers in s';
 4 for row in s' do
       for u in unique do
          L_u.append(s[row[u]]);
 7 foreach L_u do
       if L_u not in order || elements in L_u not the same then
           l \leftarrow false;
 9
10
          return l;
       dimensions.append([len(L_u[0]), len(L_u)]);
11
12 if all element of dimensions are different then
       l \leftarrow true;
14 else
    l \leftarrow false;
15
16 return l;
```

2.2 Allow invalid states

We want to allow the merge and split operations to go to invalid states. By doing this we allow new states to be reached much faster and can apply operations to any invalid states in the future to hopefully reach valid and lower scoring states. There are disadvantages to this decision, namely; we need to search the space for a lot longer as there are now vastly more states that we can traverse through. Additionally, there is no guarantee that performing another action on the invalid state will lead to a valid one. To reinforce this design choice, we give a concrete example. Let s be a tilled 5×5 grid (Figure 4). Say we perform a merge on s resulting in the new state s' (Figure 5). s' is clearly not a valid state however, if we split s' we land on a new, valid and lower scoring state s'' (Figure 6).

Figure 4: State s

Figure 5: State s'

Figure 6: State s''

3 Mondrian Score

The Mondrian score of a given state is defined as the area of the largest tile minus the area of the smallest tile. Algorithm 2 shows how to compute the Mondrian score of a given state.

```
Algorithm 2: Find Mondrian Score

Data: State s

Result: The Mondrian score of s

1 counts \leftarrow \{\};

2 for row in s do

3 | for element in row do

4 | if element in counts.values() then

5 | | counts[element] = counts[element] + 1;

6 | else

7 | | counts[element] = 1;

8 sorted\_counts = \{sorted(counts.values())\};

9 return sorted\_counts.values[0] - counts.values[-1]
```

It is worth mentioning that in my implementation I use numpy's unique function to find and count all the unique values in one go. Moreover, I return a score of 100 if the given state s is tiled with just one rectangle to discourage this state.

4 State search

My implementation is a stochastic best-first search which uses two arrays to keep track of states to visit and states which we have already visited respectively. We use best-first search to avoid taking a bad path as this could be detrimental to our search. We initialise an $n \times n$ grid (using my *initialiseGrid* function) with either one tile (for even n) or two tiles (for odd n). At each iteration, we add one new state from the merge options and one new state from split. We use simulated annealing to occasionally (10% of the time) take a bad option in an effort not to get stuck in a local minima. The code for the search is in the solve.py file.

4.1 Parameters

The SolveMondrian function takes two parameters; a, the dimension of the grid, and M, the maximum depth of the tree. During the search, we keep track of where we are in the tree, specifically our depth. We stop the search either when we reach a depth >= M or when the list of states to search is empty (ie we have reached a leaf node). M can be seen as the number of iterations we run our solve method for.

4.2 Search performance

We now solve the Mondrian tile problem for $a = \{8, 12, 16, 20\}$ with our implementation of *SolveMondrian*. We plot the values of M (iteration number) versus the Mondrian score to show how our best score varies as we search. We can also read how quickly our method converges. The best score found for each state with M = 25 is:

a	Mondrian score
8	10
12	20
16	32
20	40

Figure 7: Performance for varying a's

From the plots above, we can see that our implementation converges quickly for every value of a.