多重螺纹切削循环 G76

指令功能

通过多次螺纹粗车、螺纹精车完成规定牙高(总切深)的螺纹加工,如果定义的螺纹角度不为0°,螺纹粗车的切入点由螺纹牙顶逐步移至螺纹牙底,使得相邻两牙螺纹的夹角为规定的螺纹角度。G76代码可加工带螺纹退尾的直螺纹和锥螺纹,可实现单侧刀刃螺纹切削,吃刀量逐渐减少,有利于保护刀具、提高螺纹精度。G76代码不能加工端面螺纹。

指令格式

指令说明

指令字说明

起点(终点)	程序段运行前和运行结束时的位置,表示为 A 点。
螺纹终点	由X(U)Z(W) 定义的螺纹切削终点,表示为D点。如果有螺纹退尾,切
	削终点长轴方向为螺纹切削终点,短轴方向退尾后的位置。
螺纹起点	Z轴绝对坐标与A点相同、X轴绝对坐标与D点X轴绝对坐标的差值为i(螺纹
	锥度、半径值),表示为 C 点。如果定义的螺纹角度不为 0° ,切削时并不能到
	达 C 点。
螺纹切深参 考点	Z 轴绝对坐标与 A 点相同、 X 轴绝对坐标与 C 点 X 轴绝对坐标的差值为 k (螺纹
	的总切削深度、半径值),表示为 B 点。B 点的螺纹切深为 0,是系统计算每一次
	螺纹切削深度的参考点。
螺纹切深	每一次螺纹切削循环的切削深度。每一次螺纹切削轨迹的反向延伸线与直线 BC
	的交点,该点与 B 点 X 轴绝对坐标的差值(无符号、半径值)为螺纹切深。每
	一次粗车的螺纹切深为 $\sqrt{n} \times \triangle d$, n 为当前的粗车循环次数, $\triangle d$ 为第一次粗车的
	螺纹切深。
螺纹切削量	本次螺纹切深与上一次螺纹切深的差值: $(\sqrt{n}-\sqrt{n-1}) \times \triangle d$ 。

退刀终点	每一次螺纹粗车循环、精车循环中螺纹切削结束后,径向(X轴)退刀的终点位			
	置,表示为E点。			
	每一次螺纹粗车循环、精车循环中实际开始螺纹切削的点,表示为 Bn 点(n 为			
	切削循环次数), B1 为第一次螺纹粗车切入点, Bf 为最后一次螺纹粗车切入点,			
螺纹切入点	Be 为螺纹精车切入点。Bn 点相对于 B 点 X 轴和 Z 轴的位移符合公式:			
	a Z轴位移			
	a: 螺纹角度 $tg\frac{a}{2} = Z$ 轴位移 X 轴位移			
X	螺纹终点X轴绝对坐标。			
U	螺纹终点与起点X轴绝对坐标的差值。			
Z	螺纹终点Z轴的绝对坐标值。			
W	螺纹终点与起点Z轴绝对坐标的差值。			
	螺纹精车次数 01~99 (单位: 次)。			
	未输入m时,以系统数据参数NO.5142的值作为精车次数。			
P (m)	在螺纹精车时,沿编程轨迹切削,第一次精车切削量为 d,其后的精车切削量为			
	0,用于消除切削时机械应力造成的欠切,提高螺纹精度和表面质量。			
	螺纹退尾长度 00~99(单位: 0.1×L,L 为螺纹螺距)。			
	未输入r时,以系统数据参数 NO.5130 的值作为螺纹退尾宽度。			
P (r)	螺纹退尾功能可实现无退刀槽的螺纹加工,系统参数 NO.5130 定义的螺纹退尾宽			
	度对 G92、G76 代码有效。			
_	相邻两牙螺纹的夹角,取值范围为 0~99,单位: 度(°)。未输入 a 时,以系统			
P (a)	数据参数 NO.5143 的值作为螺纹牙的角度。实际螺纹的角度由刀具角度决定,因			
	此 a 应与刀具角度相同。			
Q (\(\triangle dmin \)	螺纹粗车时的最小切削量(无符号,半径值)。当(\sqrt{n} - $\sqrt{n-1}$)× \triangle d< \triangle dmin			
	时,以 \triangle dmin 作为本次粗车的切削量,即:本次螺纹切深为($\sqrt{n-1} \times \triangle d + \triangle$			
	dmin)。设置△dmin 是为了避免由于螺纹粗车切削量递减造成粗车切削量过小、			
	粗车次数过多。			
	未输入 Q(△dmin)时,以系统数据参数 NO.5140 的值作为最小切削量。			
R (d)	螺纹精车的切削量,取值范围为见下表,(无符号,半径值),半径值等于螺纹精			
	车切入点 Be 与最后一次螺纹粗车切入点 Bf 的 X 轴绝对坐标的差值。			
	未输入 R(d) 时,以系统数据参数 NO.5141 的值作为螺纹精车切削量。			
R (i)	螺纹锥度、螺纹起点与螺纹终点X轴绝对坐标的差值(半径值)。			
\	未输入R(i)时,系统按R(i)=0(直螺纹)处理。			
P (k)	螺纹牙高,螺纹总切削深度(半径值、无符号)。未输入P(k)时,系统报警。			

$Q (\triangle d)$	第一次螺纹切削深度(半径值、无符号)。未输入△d时,系统报警。	
F (I)	F: 螺纹螺距,为主轴转一圈长轴的移动量(半径值),模态指令;	
	I: 指定每英寸螺纹的牙数,模态指令。	
J	螺纹退尾时在短轴方向的移动量(半径值,不带方向),模态指令;	
	根据程序起点位置自动确定退尾方向	
K	螺纹退尾时在长轴方向的长度(半径值,不带方向),模态指令。	
D	切入方式 (取值范围为: 0~2)	
	0: 刀刃沿螺纹牙型右边切入(原 G76 切入方式);	
	1: 刀刃沿螺纹牙型右中轮流切入;	
	2: 刀刃沿螺纹牙型左右轮流切入;	
	未输入时,以右边切入方式(原 G76 切入方式)。	
L	螺纹头数,取值的范围是: 1~999(省略L时默认为单头螺纹)。	

地址	增量系统	公制输入(mm)	英制输入(inch)
Q (△	ISB 系统	0~999999.999	0~99999.9999
dmin)	ISC 系统	0~99999.9999	0~9999.99999
R (d)	ISB 系统	0.001~999999.999	0.0001~99999.9999
	ISC 系统	0.0001~99999.9999	0.00001~9999.99999
R (i)	ISB 系统	-999999.999~999999.999	-99999.9999~99999.9999
	ISC 系统	-99999.9999~99999.9999	-9999.99999~9999.99999
P (k)	ISB 系统	0.001~999999.999	0.0001~99999.9999
	ISC 系统	0.0001~99999.9999	0.00001~9999.99999
Q (\(\triangle d\))	ISB 系统	0.001~999999.999	0.0001~99999.9999
	ISC 系统	0.0001~99999.9999	0.00001~9999.99999
F	ISB 系统	0.001~9999	0.0001~9.99
	ISC 系统	0.0001~9999	0.00001~9.99
I	ISB、ISC	0.0001 < I < 2540	0.01< I < 1000

参数说明

5129	螺纹切削循环 G92,G76 的模式
3129	0: 普通模式; 1: 高速模式

5130	螺纹切削循环(G76, G78, G92)的倒角量(THD)
5131	螺纹切削循环(G76, G78, G92)的倒角角度(THA)
5140	复合固定循环 G76/G78 的最小切入量(G76MID)
5141	复合固定循环 G76/G78 的精加工余量(G76FA)
5142	复合固定循环 G76/G78 精加工循环次数(G76FC)
5143	复合固定循环 G76/G78 刀尖角度(G76TNA)

切入方式选择

D=2: 左右等量轮流切入

执行过程

- (1) 从起点快速移动到 B1,螺纹切深为△d。如果 a=0,仅移动 X 轴;如果 $a\neq 0$,X 轴和 Z 轴同时移动,移动方向与 $A\rightarrow D$ 的方向相同;
- (2) 沿平行于 C→D 的方向螺纹切削到与 D→E 相交处 $(r\neq 0)$ 时有退尾过程);
- (3) X 轴快速移动到 E 点;
- (4) Z轴快速移动到 A点,单次粗车循环完成;
- (5) 再次快速移动进刀到 Bn (n 为粗车次数),切深取 ($\sqrt{n} \times \triangle d$)、($\sqrt{n-1} \times \triangle d + \triangle d$ min) 中的较大值,如果切深小于 (k-d),转②执行;如果切深大于或等于 (k-d),按切深 (k-d) 进刀到 Bf 点,转⑥执行最后一次螺纹粗车;
- (6) 沿平行于 C→D 的方向螺纹切削到与 D→E 相交处 $(r \neq 0)$ 时有退尾过程);
- (7) X 轴快速移动到 E 点;
- (8) Z轴快速移动到 A点,螺纹粗车循环完成,开始螺纹精车;
- (9) 快速移动到 Be 点(螺纹切深为 k、切削量为 d)后,进行螺纹精车,最后返回 A 点,完成一次螺纹精车循环;
- (10) 如果精车循环次数小于 m,转⑨进行下一次精车循环,螺纹切深仍为 k,切削量为 0;如果精车循环次数等于 m,G76复合螺纹加工循环结束。
- U、W 的符号决定了 $A \rightarrow C \rightarrow D \rightarrow E$ 的方向,R(i)的符号决定了 $C \rightarrow D$ 的方向。U、W 的符号有四种组合方式,对应四种加工轨迹。

轨迹示意图

编程示例

如图,螺纹为 M68×6。

程序: O0013:

G50 X100 Z50 M3 S300; (设置工件坐标系启动主轴,指定转速)

G00 X80 Z10; (快速移动到加工起点)

G76 P020560 Q0.150 R0.1; (精加工重复次数 2, 倒角宽度 3mm, 刀具角度

60°, 最小切入深度 0.15, 精车余量 0.1)

G76 X60.64 Z-62 P3.680 Q1.800 F6; (螺纹牙高 3.68,第一螺纹切削深度 1.8)

G00 X100 Z50; (返回程序起点)

M30; (程序结束)

注意事项

注 1: 在 G76 指令运行的过程中,按【进给保持】键后,系统执行完当次螺纹切削循环后,进入暂停状态,系统状态栏显示"停止"。

注 2: 螺纹切削过程中执行单程序段操作,在返回起点后(一次螺纹切削循环动作完成)运行停止。

注 3: 系统复位、急停或驱动报警时, 螺纹切削减速停止。

注 4: $m \times r \times a$ 用同一个代码地址 P 统一指定,先取 P 值的最后两位作为 a 值,再取倒数的三、四位作为 r 的值,余下的数值作为 m 值。P(m)(r)(a)只能整体省略,不能缺省其中的某一位。

- 注 5: 当设定第一次螺纹切削深度大于螺纹总切削深度时,只进行一次粗车,其切削深度等于粗车总切削深度。
 - 注 6: 螺纹粗车时的最小切削量或者精切余量大于螺纹牙高时,系统产生报警。
 - 注 7: 当螺纹长轴方向退尾长度大于长轴的螺纹加工长度时,系统产生报警。
- 注 8: 螺纹加工前系统自动检查主轴速度,如果没有指令主轴速度,产生报警。加工过程中不检查主轴速度。
 - 注 9: 存在 J、K 时退尾格式及相关注意事项同 G92。