Санкт-Петербургский Политехнический Унивеситет Петра Великого.

Физико-Механический институт Высшая школа прикладной математики и вычислительной физики.

Отчет по лабораторной работе №3 по дисциплине "Интервальный анализ"

Выполнил студент:

Романчук Е.В

группа:

5030102/10201

Проверил:

доцент

Баженов Александр Николаевич

Дата: январь 2025 г. Санкт-Петербург

Содержание

1 Постановка задачи					
2	Необходимая теория				
	2.1 Интервальная мода	3			
	2.2 Интервальная медиана Крейновича	3			
	2.3 Интервальная медиана Пролубникова	3			
	2.4 Коэффициент Жаккара	4			
3	Описание работы				
	3.1 Определение диапазона исследования	4			
4	Результаты	6			
5	Выводы				

1 Постановка задачи

Даны 2 интервальных выборки

$$\mathbf{X} = \{\mathbf{x}_i\},\tag{1}$$

$$\mathbf{Y} = \{\mathbf{y}_i\}. \tag{2}$$

Взять \mathbf{X}, \mathbf{Y} из файлов данных, задав $\mathrm{rad}\mathbf{x} = \mathrm{rad}\mathbf{y} = \frac{1}{2^N} \mathrm{B}, \ N=14.$ Файлы данных:

- $\bullet \ \ \textit{-0.205_lvl_side_a_fast_data.bin}$
- $\bullet \ \ 0.225_lvl_side_a_fast_data.bin$

Связь кодов данных и В:

$$V = N/16384 - 0.5$$

Сделать оценки констант a, t в уравнениях:

$$a + \mathbf{X} = \mathbf{Y},\tag{3}$$

$$t\mathbf{X} = \mathbf{Y},\tag{4}$$

Метод решения:

$$\hat{a} = \operatorname{argmax} F(a, \mathbf{X}, \mathbf{Y}), \tag{5}$$

где F — функционал.

В качестве функционала взять варианты:

$$\operatorname{Ji}(a, \mathbf{X}, \mathbf{Y}),$$
 (6)

$$Ji(a, mode \mathbf{X}, mode \mathbf{Y}),$$
 (7)

$$\operatorname{Ji}(a, \operatorname{med}_K \mathbf{X}, \operatorname{med}_K \mathbf{Y}),$$
 (8)

$$\operatorname{Ji}(a, \operatorname{med}_{P}\mathbf{X}, \operatorname{med}_{P}\mathbf{Y}),$$
 (9)

где ${
m Ji- }$ коэффициент Жаккара, mode — интервальная мода, ${
m med}_K,$ ${
m med}_P$ — интервальные медианы Крейновича и Пролубникова.

Сделать точечные и интервальные оценки, задавшись уровнем α .

2 Необходимая теория

2.1 Интервальная мода

Пусть имеется интервальная выборка

$$\mathbf{X} = \{\mathbf{x}_i\}.$$

Сформируем массив интервалов ${\bf z}$ из концов интервалов ${\bf X}$.

Для каждого интервала \mathbf{z}_i подсчитываем число μ_i интервалов из выборки \mathbf{X}_i , включающих \mathbf{z}_i . Максимальные $\mu_i = \max \mu$ достигаются для индексного множества K. Тогда можно найти интервальную моду как мультиинтервал

$$\operatorname{mode} \mathbf{X} = \bigcup_{k \in K} \mathbf{z}_k. \tag{10}$$

2.2 Интервальная медиана Крейновича

Пусть дана выборка $\mathbf{X} = \{\mathbf{x}_i\}$. Пусть $\underline{c} = \{\underline{\mathbf{x}_i}\}$, $\overline{c} = \{\overline{\mathbf{x}_i}\}$ — конфигурация точек, составленные, соответственно, из левых и правых концов интервалов из \mathbf{X} .

Тогда медианой Крейновича $\operatorname{med}_K \mathbf{X}$ интервальной выборки \mathbf{X} — это интервал

$$\operatorname{med}_{K} = [\operatorname{med}\underline{c}, \operatorname{med}\overline{c}]. \tag{11}$$

2.3 Интервальная медиана Пролубникова

Зададим отношение порядка на алгебре \mathbb{IR} . Говорят, что неравенство $\mathbf{a} \leqslant \mathbf{b}$ выполняется

- 1. в сильном смысле, если $\forall \mathbf{a} \in \mathbb{IR} \ \forall \mathbf{b} \in \mathbb{IR} : \overline{\mathbf{a}} \leqslant \underline{\mathbf{b}},$
- 2. в слабом смысле, если $\exists \mathbf{a} \in \mathbb{IR} \ \exists \mathbf{b} \in \mathbb{IR} : \mathbf{a} \leqslant \overline{\mathbf{b}}$,
- 3. в $\forall \exists$ -смысле, если $\forall \mathbf{a} \in \mathbb{IR} \ \exists \mathbf{b} \in \mathbb{IR} : \overline{\mathbf{a}} \leqslant \overline{\mathbf{b}},$
- 4. в $\exists \forall$ -смысле, если $\exists \mathbf{a} \in \mathbb{IR} \ \forall \mathbf{b} \in \mathbb{IR} : \mathbf{\underline{a}} \leqslant \mathbf{\underline{b}}$,
- 5. в центральном смысле, если $(\overline{\mathbf{a}} + \underline{\mathbf{a}})/2 \leqslant (\overline{\mathbf{b}} + \underline{\mathbf{b}})/2$

Для элементов выборки **X** можно определить линейный порядок, используя любое из пяти вышеуказанных отношений порядка на \mathbb{IR} . То есть, если $i \neq j$, то либо $x_i \leqslant x_j$, либо $x_i \geqslant x_j$ для любого из этих отношений порядка.

Медиана Пролубникова $\text{med}_P \mathbf{X}$ выборки \mathbf{X} — это интервал \mathbf{x}_m , для которого половина интервалов из \mathbf{X} лежит слева, а половина — справа.

В ситуации, когда имеются два элемента подинтервала \mathbf{x}_m и \mathbf{x}_{m+1} , расположенных посередине вариационного ряда, $\mathbf{x}_m \neq \mathbf{x}_{m+1}$ медиана может быть определена естественным обобщением взятия полусуммы точечных значений, расположенных посередине ряда из точечных значений, в случае интервальной выборки взятие полусуммы интервалов \mathbf{x}_m и \mathbf{x}_{m+1} :

$$\operatorname{med}_{P} \mathbf{X} = (\mathbf{x}_{m} + \mathbf{x}_{m+1})/2. \tag{12}$$

2.4 Коэффициент Жаккара

Коэффициент Жаккара для двух интервалов $\mathbf{x} \in \mathbb{IR}$ и $\mathbf{y} \in \mathbb{IR}$:

$$\operatorname{Ji}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{wid}(x \wedge y)}{\operatorname{wid}(x \vee y)} = \frac{\min\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \max\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}{\max\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \min\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}.$$
 (13)

Коэффициент Жаккара для множества интервалов $\mathbf{X} \in \mathbb{IR}^n$:

$$Ji(\mathbf{X}) = \frac{\min \overline{\mathbf{x}_i} - \max \underline{\mathbf{x}_i}}{\max \overline{\mathbf{x}_i} - \min \mathbf{x}_i}.$$
 (14)

Коэффициент Жаккара для двух равномощных множеств интервалов $\mathbf{X} \in \mathbb{IR}^n$ и $\mathbf{Y} \in \mathbb{IR}^n$:

$$\operatorname{Ji}_{k}(\mathbf{X}, \mathbf{Y}) = \frac{\min\{\overline{\mathbf{x}_{k}}, \overline{\mathbf{y}_{k}}\} - \max\{\underline{\mathbf{x}_{k}}, \underline{\mathbf{y}_{k}}\}}{\max\{\overline{\mathbf{x}_{k}}, \overline{\mathbf{y}_{k}}\} - \min\{\underline{\mathbf{x}_{k}}, \underline{\mathbf{y}_{k}}\}}, \ k \in 1, 2, \dots, |\mathbf{X}|.$$
(15)

3 Описание работы

Лабораторная работа выполнена на языке программирования Python в среде разработки PyCharm. В ходе работы были использованы следующие библиотеки numpy, scipy, intervalpy и matplotlib.

GitHub репозиторий: https://github.com/UUyy-Geniy/Interval_analysis

3.1 Определение диапазона исследования

Для проведения исследования зададим диапазон, на котором будут вычисляться значения функционалов.

• Для уравнения 3 диапазон задается следующим образом:

$$bound_a = [\min \operatorname{med}(Y) - \max \operatorname{med}(X), \max \operatorname{med}(Y) - \min \operatorname{med}(X)].$$
 (16)

• Для уравнения 4 диапазон определяется как:

$$bound_t = \left\lceil \frac{\min \operatorname{med}(Y)}{\max \operatorname{med}(X)}, \frac{\max \operatorname{med}(Y)}{\min \operatorname{med}(X)} \right\rceil. \tag{17}$$

Зададим количество разбиений выбранного диапазона: number = 100.

Сетка значений с постоянным шагом строится по заданному диапазону, и на этой сетке вычисляются значения функционалов. Итоговое решение определяется как агд тах для сеточной интерполяции. Таким образом, точность найденного результата определяется разбиением сетки. Погрешность, связанная с использованием сеточной интерполяции, рассчитывается как половина шага сетки:

$$\epsilon = \frac{\text{rad(bound)}}{\text{number}},\tag{18}$$

где rad(bound) — длина диапазона.

- Для уравнения 3:
 - Погрешность решения: $\epsilon = 0.008$.
 - Исследуемый диапазон: [0.3233, 0.3701].
- Для уравнения 4:
 - Погрешность решения: $\epsilon = 0.003$.
 - Исследуемый диапазон: [-1.047, -1.0015].

4 Результаты

Для функционала 6:

Рис. 1: Зависимость функционала 6 от параметра a.

Рис. 2: Зависимость функционала 6 от параметра t.

Таблица 1: Результаты для функционала 6.

Параметр	Значение
\hat{a}	[0.3322, 0.3482]
$F_1(\hat{a})$	-0.874
\hat{t}	[-1.056, -1.051]
$F_1(\hat{t})$	-0.917

Для функционала 7:

Рис. 3: Зависимость функционала 7 от параметра a.

Рис. 4: Зависимость функционала 7 от параметра t.

Для функционала 7:

Таблица 2: Результаты для функционала 7.

Параметр	Значение
\hat{a}	[0.338, 0.355]
$F_2(\hat{a})$	-0.869
\hat{t}	[-1.043, -1.037]
$F_2(\hat{t})$	-0.862

Для функционала 8:

Рис. 5: Зависимость функционала 8 от параметра a.

Рис. 6: Зависимость функционала 8 от параметра t.

Таблица 3: Результаты для функционала 8.

Параметр	Значение
\hat{a}	[0.337, 0.353]
$F_3(\hat{a})$	-0.733
\hat{t}	[-1.031, -1.025]
$F_3(\hat{t})$	0.431

Для функционала 9:

Рис. 7: Зависимость функционала 9 от параметра a.

Рис. 8: Зависимость функционала 9 от параметра t.

Таблица 4: Результаты для функционала 9.

Параметр	Значение
\hat{a}	[0.337, 0.352]
$F_4(\hat{a})$	-0.733
\hat{t}	[-1.031, -1.025]
$F_4(\hat{t})$	0.431

5 Выводы

В ходе выполнения лабораторной работы были исследованы методы оценки параметров в уравнениях с интервальными данными. Были использованы различные функционалы, включая коэффициент Жаккара, что позволило определить оптимальные значения параметров \hat{a} и \hat{t} для уравнений вида $a+\mathbf{X}=\mathbf{Y}$ и $t\mathbf{X}=\mathbf{Y}$.

На основании анализа полученных результатов можно сделать следующие выводы:

- 1. Значения параметров \hat{a} и \hat{t} существенно зависят от выбранного функционала. Это подчеркивает важность корректного выбора критерия оптимальности в задачах интервального анализа, так как разные функционалы обладают различной геометрией и устойчивостью.
- 2. Наиболее устойчивые результаты были достигнуты при использовании функционалов 8 и 9. Высокие значения коэффициента Жаккара для параметра \hat{t} свидетельствуют о значительном уровне согласованности интервалов, что подчеркивает их надежность.
- 3. Применение интервальных медиан (Крейновича и Пролубникова) в качестве статистических характеристик продемонстрировало преимущества по сравнению с анализом полной выборки или моды. Эти подходы позволили получить более точные и устойчивые оценки параметров, снижая влияние выбросов и неустойчивости данных.

Таким образом, выполненная работа показала эффективность использования интервального анализа для оценки параметров. Полученные результаты подчеркивают значимость выбора подходящих методов и критериев для успешного анализа данных в условиях неопределенности.