SPH3U 6.4 States of Matter and Changes of State

1. Changes of state

2. Heating and cooling graphs Thermal Energy = PE+KE.

3. Latent heat

Latent heat:	10181 1461. 41 6100 1011 10 6141.11 11 12
specific	energy to change I kg of a substance from
latent heat	one state to another.

Substance	Specific latent heat of fusion, L _f (I/kg)	Melting point (°C)	Specific latent heat of vaporization, L _v (J/kg)	Boiling point (°C)
aluminum	6.6 x 10 ⁵	2519	4.0×10^{5}	10900
ethyl alcohol	1.1 x 10 ⁵	-114	8.6 x 10 ⁵	78.3
carbon dioxide	1.8 x 10 ⁵	-78	5.7×10^{5}	-57
gold	1.1 x 10 ⁶	1064	6.4 x 10 ⁴	2856
lead	2.5 x 10 ⁴	327.5	8.7×10^{5}	1750
water	3.4 x 10 ⁵		2.3 x 10 ⁶	100

How much thermal energy is released by 652 g of molten lead when it changes into a solid?

Ethyl alcohol is a liquid at room temperature. How much thermal energy is absorbed when 135 g of ethyl alcohol at $21.5\,^{\circ}\text{C}$ is heated until all of it boils and turns into vapour?

4. Water: A special liquid

Most solids:	Water is more dense then most liquids (Sinks)
solid water	(ice) less dense than liquid water. (Floats)
water molecule shape	(h°t 98r28)

Homework: page 295: #1-2, 5, 7