Trig Final (Practice v30)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3.6 radians. The radius is 2.7 meters. How long is the arc in meters?

Question 2

Consider angles $\frac{-9\pi}{4}$ and $\frac{7\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-9\pi}{4}\right)$ and $\cos\left(\frac{7\pi}{3}\right)$ by using a unit circle (provided separately).

Find $sin(-9\pi/4)$

Find $cos(7\pi/3)$

Question 3

If $\tan(\theta) = \frac{-40}{9}$, and θ is in quadrant IV, determine an exact value for $\sin(\theta)$.

Question 4

A mass-spring system oscillates vertically with an amplitude of 6.28 meters, a midline at y = 2.77 meters, and a frequency of 7.41 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).