Vollständige Störungsrechnung in kartesischen Koordinaten Mit konsistenter Notation und Doppelindizes

Wichtigste Neuerungen in dieser Version:

- Konsequente Verwendung von Doppelindizes (i,j) für alle Störterme
- Erster Index (i) = Störkörper, zweiter Index (j) = betroffener Körper
- Vollständige Definition aller verwendeten Größen
- Explizite Summation über alle relevanten Störkörper

1 Systemdefinition und Variablen

Symbol	Bedeutung	Einheit
M_{\odot}	Masse der Sonne	kg
M_i	Masse des i-ten Störkörpers $(i = 1N)$	kg
r_{j}	Position des betrachteten Körpers j (z.B. Merkur)	km
r_i	Position des i-ten Störkörpers	km
v_{j}	Geschwindigkeit des Körpers j	$\mathrm{km/s}$
h_j	Spezifischer Drehimpuls des Körpers j $(h_j = \vec{r}_j \times \vec{v}_j)$	km^2/s
a_i	Große Halbachse des i-ten Störkörpers	km
\hat{z}	Einheitsvektor in z-Richtung $(0,0,1)$	-

Tabelle 1: Definition der verwendeten Variablen

2 Grundlegende Störterme

Positionsstörung Δr_{ij}

Änderung der Position von Körper j durch Körper i:

$$\Delta \mathbf{r}_{ij} = \frac{M_i}{M_{\odot}} \cdot \frac{a_i^2}{|\mathbf{r}_j - \mathbf{r}_i|^2} (\mathbf{r}_j - \mathbf{r}_i)$$

wobei $|r_{\rm j}-r_{\rm i}|$ der Abstand zwischen Körper j
 und Störkörper i ist.

Geschwindigkeitsstörung Δv_{ij}

Änderung der Geschwindigkeit von Körper j durch Körper i:

$$\Delta \mathbf{v}_{ij} = \frac{GM_i}{h_j} \cdot \frac{(\mathbf{r}_j - \mathbf{r}_i) \times \hat{\mathbf{z}}}{|\mathbf{r}_j - \mathbf{r}_i|^3}$$

Das Kreuzprodukt (rj - ri) \times
 \hat{z} ergibt einen tangentialen Vektor.

Winkelgeschwindigkeitsstörung $\Delta\omega_{ij}$

Änderung der Winkelgeschwindigkeit von Körper j durch Körper i:

$$\Delta\omega_{ij} = \frac{(\mathbf{r}_j \times \Delta \mathbf{v}_{ij})_z + (\Delta \mathbf{r}_{ij} \times \mathbf{v}_j)_z}{|\mathbf{r}_j|^2}$$

wobei $(\cdot)_z$ die z-Komponente des Vektors ist.

3 Gesamtstörungen auf Körper j

Gesamtpositionsstörung

Summe über alle Störkörper ($i \neq j$):

$$\Delta \mathbf{r}_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta \mathbf{r}_{ij}$$

Gesamtgeschwindigkeitsstörung

$$\Delta \mathbf{v}_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta \mathbf{v}_{ij}$$

Gesamtwinkelgeschwindigkeitsstörung

$$\Delta\omega_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta\omega_{ij}$$

4 Konkretes Beispiel: Merkur (j) gestört durch Jupiter (i=1)

Beitrag von Jupiter zur Positionsstörung

$$\Delta \mathbf{r}_{\mathrm{Jupiter} \rightarrow \mathrm{Merkur}} = \frac{M_{\mathrm{Jupiter}}}{M_{\odot}} \cdot \frac{a_{\mathrm{Jupiter}}^2}{|\mathbf{r}_{\mathrm{Merkur}} - \mathbf{r}_{\mathrm{Jupiter}}|^2} (\mathbf{r}_{\mathrm{Merkur}} - \mathbf{r}_{\mathrm{Jupiter}})$$

Beitrag von Jupiter zur Geschwindigkeitsstörung

$$\Delta \mathbf{v}_{\mathrm{Jupiter} \rightarrow \mathrm{Merkur}} = \frac{GM_{\mathrm{Jupiter}}}{h_{\mathrm{Merkur}}} \cdot \frac{(\mathbf{r}_{\mathrm{Merkur}} - \mathbf{r}_{\mathrm{Jupiter}}) \times \hat{\mathbf{z}}}{|\mathbf{r}_{\mathrm{Merkur}} - \mathbf{r}_{\mathrm{Jupiter}}|^3}$$

2

Beitrag von Jupiter zur Winkelgeschwindigkeitsstörung

$$\Delta \omega_{\text{Jupiter} \rightarrow \text{Merkur}} = \frac{(\mathbf{r}_{\text{Merkur}} \times \Delta \mathbf{v}_{\text{Jupiter} \rightarrow \text{Merkur}})_z + (\Delta \mathbf{r}_{\text{Jupiter} \rightarrow \text{Merkur}} \times \mathbf{v}_{\text{Merkur}})_z}{|\mathbf{r}_{\text{Merkur}}|^2}$$

5 Vollständige Zusammenfassung

Zusammenfassung der Störungsgleichungen

$$\Delta \mathbf{r}_{ij} = \frac{M_i}{M_{\odot}} \cdot \frac{a_i^2}{|\mathbf{r}_j - \mathbf{r}_i|^2} (\mathbf{r}_j - \mathbf{r}_i)$$

$$\Delta \mathbf{v}_{ij} = \frac{GM_i}{h_j} \cdot \frac{(\mathbf{r}_j - \mathbf{r}_i) \times \hat{\mathbf{z}}}{|\mathbf{r}_j - \mathbf{r}_i|^3}$$

$$\Delta \omega_{ij} = \frac{(\mathbf{r}_j \times \Delta \mathbf{v}_{ij})_z + (\Delta \mathbf{r}_{ij} \times \mathbf{v}_j)_z}{|\mathbf{r}_j|^2}$$

$$\Delta \mathbf{r}_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta \mathbf{r}_{ij}$$

$$\Delta \mathbf{v}_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta \mathbf{v}_{ij}$$

$$\Delta \omega_j = \sum_{\substack{i=1\\i\neq j}}^N \Delta \omega_{ij}$$

Zusammenfassung der wichtigsten Punkte

- 1. Alle Störterme verwenden konsistente Doppelindizes (Störkörper→betroffener Körper)
- 2. Die Gesamtstörung ist jeweils die Summe über alle Störkörper
- 3. Für konkrete Berechnungen müssen alle relevanten Störkörper berücksichtigt werden
- 4. Die Notation ist jetzt eindeutig und vollständig