第五章 对抗搜索

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极小极大原理
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

博弈

- 博弈和人类智慧如影随行
- 博弈游戏易于形式化,可以形式化表述为搜索问题
- 博弈也是对真实环境中竞争行为很好的表示模型(军事对抗,谈判,竞买等)

A brief history

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook defeats Tinsley
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement under "standard model"
- 1997: Deep Blue defeats human champion Garry Kasparov
- 2022: Stockfish rating 3541 (vs 2882 for Magnus Carlsen 2015).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>300!)
- 1968-2005: various ad hoc approaches tried, novice level
- 2005-2014: Monte Carlo tree search -> strong amateur
- 2016-2017: AlphaGo defeats human world champions

博弈论(Game Theory)

■ 博弈论(Game Theory),是现代数学的一个分支, 也是运筹学的一个重要学科。总是以参与者绝对理性为前提,它可能看起来很贴近生活,有很多细节和可能性,但问题却是封闭的,是一门十分严谨的科学。

博弈论中经典问题:囚徒窘境

警察抓了两个嫌疑犯,<u>在他们没有事先串口供的情况下,分开审问</u>。如果两个罪犯都沉默,各判1年;互相揭发,各判8年;如果一个揭发一个沉默, 那么揭发的那个释放,沉默的那个判10年。AB怎么选择才对自己最有利?

	A沉默	A揭发B
B沉默	A、B各1年	A释放,B判10年
B揭发A	A判10年,B释放	A、B各8年

囚徒窘境

	A沉默	A揭发B
B沉默	A、B各1年	A释放,B判10年
B揭发A	A判10年,B释放	A、B各8年

由于A,B事先没有沟通预谋,在不知道对方怎么选择的情况下,结果会如何

呢?

显然最优方案是互相揭发,于是警方判了两个犯人8年。

囚徒窘境

	A沉默	A揭发B
B沉默	A、B各1年	A释放,B判10年
B揭发A	A判10年,B释放	A、B各8年

如果审问并不是分开进行,而是二人一起,结果又会如何呢?

稍作思考, A 选择了沉默, B 当然也做出同样的分析。最后两人只被各判 1

年,整体的纳什均衡达成。

纳什均衡

纳什均衡(Nash equilibrium) 由美 国数学家纳什提出,在多人博弈的时 候,如果其他人不改变策略,不论我怎 么改变也不能增加收益,所有人都是这 样,也就达到了纳什均衡。

"使双方都不后悔的理性解"

纳什均衡可以认为是博弈论实现人工智能的一个基本基 石。

约翰纳什(John Nash),著名经济学家,博弈论创始人。

第五章 对抗搜索

Multi-Agent Pacman

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极小极大搜索算法
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

Types of Games

Game = task environment with > 1 agent

- 任务环境类型:
 - Deterministic or stochastic?
 - Perfect information (fully observable)?
 - Two, three, or more players?
 - Individuals or teams?
 - Turn-taking or simultaneous?
 - Zero sum?

零和博弈

- Agent 具有相反的效用
- 一个收益:一个最大,另一个最小
- 对抗性的,纯粹的竞争

■ 一般博弈

- Agent 具有独立的效用
- 合作、冷漠、竞争等等都是可能的

Deterministic Games

■ 问题形式化描述:

- States: S (start at s₀)
- Players: P={1...N} (usually take turns)
- Actions: A (may depend on player / state)
- Transition Model: RESULT(S,A) → S'
- **Terminal Test**: S → $\{t, f\}$
- Utility Function: Utility(S,P) → R

Solution for <u>a player</u> is a policy: S → A(为每个可能的状态指定一个动作)

Tic-Tac-Toe Game Tree

Adversarial Games

极小极大原理

冯·诺依曼, 20世纪最重要的数学家之一,在现代 计算机、博弈论、核武器和生化武器等领域内的科 学全才之一,被后人称为"计算机之父"和"博弈论 之父"。

1944年,与奥斯卡·摩根斯特恩合著《博弈论与经济行为理论》被认为是博弈论领域的第一本重要著作。

1926年,冯·诺依曼理论上证明了所有零和博弈都有一个极小极大值解。

博弈论中经典问题:分蛋糕

■ 一块蛋糕,该怎么分才能让两个孩子都满意?

首先,我们要把分蛋糕问题需要转化为两个孩子博弈问题

博弈的规则是:两个孩子分蛋糕,一个切蛋糕A,另一个先选蛋糕B。

博弈论的目标就是寻找问题的理性解——从理性角度分析所得的答案。

	B选蛋糕	A拿到的蛋糕
A 切成两块一样大	一半	一半
A 切成两块不一样大	大块	小块
	小块	大块

博弈论中经典问题:分蛋糕

■ 一块蛋糕,该怎么分才能让两个孩子都满意?

	B选蛋糕	A拿到的蛋糕
A 切成两块一样大	一半	一半
A 切成两块不一样大	大块	小块
	小块	大块

A 切蛋糕,运用"极小极大原理":

- "极小"指的是 B 一定会挑选大块,所以留给自己的肯定是小块;
- "极大"指的是 A 要使自己的蛋糕尽量大;
- "极小极大"组合起来的意思是, A 已知 B 会选大块,所以会把较小的一块切得大一些。对 A 来说,最好的结果就是"一半、一半",即两人各分得半块蛋糕,这就是这个问题的理性解。

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极小极大搜索算法
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

单 Agent 的搜索树

单 Agent 的搜索树

搜索目标:找到初始状态到终止状态的最优解路径

终止状态:

$$V(s) = \text{known}$$

对抗博弈树

双方都是理性的 Agent

Minimax Values

搜索目标:从初始状态出发,找到到达终止状态的最优解路径

对抗搜索: 对抗理性(最优)对手可实现最佳效用

对抗搜索 (Minimax)

- 确定性的零和博弈:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- Minimax 搜索:
 - 状态空间搜索树
 - Players 交替轮流
 - 计算每个结点的 minimax value: 对抗理性(最优)对手可实现的最佳效用

Minimax values:

computed recursively

Terminal values: part of the game

Minimax Implementation

def max-value(state):

initialize $v = -\infty$

for each successor of

state:

v = max(v, min-value(successor))

return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

正方的状态值:

def min-value(state):

initialize $v = +\infty$

for each successor of

state:

v = min(v, max-value(successor))

return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

反方的状态值:

Minimax Implementation (Dispatch)

```
def value(state):
                      if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
def max-value(state):
                                                             def min-value(state):
    initialize v = -\infty
                                                                  initialize v = +\infty
for each successor of
                                                             for each successor of
    state:
                                                                  state:
       v = max(v, value(successor))
                                                                     v = min(v, value(successor))
    return v
                                                                  return v
```

Minimax Example

思考题:

Minimax 搜索过程,类似于树的?搜索策

略

Minimax 课堂练习

按从左到右的顺序搜索,使用极小极大算法,标明各状态的 Utility 值

Minimax Properties

Optimal against a perfect player. Otherwise?

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Terminals have utility tuples

Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and competition dynamically...

极小极大算法性能

- <u>完备性</u>? Yes (if tree is finite)
- <u>最优性</u> ? Yes (against an optimal opponent)
- <u>时间复杂度</u> ? O(b^m) (b: 分支因子; m: 最大树的深度)
- <u>空间复杂度</u> ? O(bm) (depth-first exploration)

- Example: 象棋 b ≈ 35, m ≈ 100
 - 不可能精确求解
 - 问题:是否有必要探索整棵树?

博弈树剪枝 Pruning

第六周作业: 5.9abcd 井字棋

- **5.9** 本题以井字棋(圈与十字游戏)为例练习博弈中的基本概念。定义 X_n 为恰好有 $n \land X$ 而没有 O 的行、列或者对角线的数目。同样 O_n 为正好有 $n \land O$ 的行、列或者对角线的数目。效用函数给 $X_3 = 1$ 的棋局+1,给 $O_3 = 1$ 的棋局-1。所有其他终止状态效用值为 0。对于非终止状态,使用线性的评估函数定义为 $Eval(s) = 3X_2(s) + X_1(s) (3O_2(s) + O_1(s))$ 。
 - a. 估算可能的井字棋局数。
 - b. 考虑对称性,给出从空棋盘开始的深度为 2 的完整博弈树(即,在棋盘上一个 X 一个 O 的棋局)。
 - c. 标出深度为 2 的棋局的评估函数值。
 - d. 使用极小极大算法标出深度为1和0的棋局的倒推值,并根据这些值选出最佳的起始行棋。

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极大极小原理
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

极小极大搜索是深度优先的,所以任何时候只需要考虑树中某条单一路径上的结点

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极大极小原理
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

Minimax Values

搜索目标:从初始状态出发,找到到达终止状态的最优解路径

对抗搜索: 对抗理性(最优)对手可实现最佳效用

极小极大搜索是深度优先的,所以任何时候只需要考虑树中某条单一路径上的结点

Alpha-Beta Implementation

α: MAX's best option on path to root

β: MIN's best option on path to root

```
def max-value(state, α, β):
    initialize v = -∞
for each successor of
    state:
    v = max(v, value(successor, α, β)) if v
    ≥ β return v
    α = max(α, v)
    return v
```

```
def min-value(state, α, β):
    initialize v = +∞

for each successor of
    state:
    v = min(v, value(successor, α, β)) if v
    ≤ α return v
    β = min(β, v)
    return v
```

Alpha-Beta Pruning Properties

■ 剪枝对为根结点 minimax 值的计算没有影响!

Alpha-Beta Quiz

 α 值是 MAX 节点的最佳(极大值)选择

β 值是 MIN 节点的最佳(极小值)选择

按从左到右的顺序进行 α - β 剪枝搜索,标出树上状态的 utility 值,标明何处发生剪枝,属于 α 剪枝还是 β 剪枝。

Alpha-Beta Quiz 2

α值是 MAX 节点的最佳(极大值)选择

随是 MIN 节点的最佳(极小值)选择

按从左到右的顺序进行 α - β 剪枝搜索,标出树上状态的 utility 值,标明何处发生剪枝,属于 α 剪枝还是

β剪枝。

Alpha-Beta Pruning Properties

- Good children order 对剪枝的影响 Max h μα 剪枝 Min

100

d

6

10

β剪枝

8

Max

m

20

4

2

Alpha-Beta Pruning Properties

■ Good children order 对剪枝的影响

With "perfect ordering":

■ 时间复杂度可以降低至 O(b^{m/2})

■ 但是仍然不能用于象棋等

主要内容

- 5.1 Games theory (博弈论)
- 5.2 极大极小原理
- 5.3 α-β 剪枝
- 5.4 不完美的实时决策

资源受限

- Problem: 在真实游戏中, 难以搜索到叶子结点!
- Solution: 深度受限搜索
 - 将搜索限制在给定深度内
 - 终止结点用效用值
 - 非终止结点用评估函数估计效用
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about <u>depth 8 decent chess program</u>
- 无法保证最优决策
- 时间受限,可以结合迭代加深搜索算法

算法在棋类比赛中的应用

深蓝:下棋核心"算",成功要素有三个:

- 1)经验,分析70万盘人类大师下过的棋局及全部的5-6只残局,总结成下棋的规则(考虑子力、棋子位置、王的安全性、布局节奏等)
- 2)算法,深蓝使用阿尔法-贝塔剪枝算法,速度很快。如果不剪枝依靠暴力计算,每步棋需要搜索17年
- 3) 算力, RS/6000SP2 机器, 每秒能够分析 2 亿

评估函数

评估函数

■ 在深度受限搜索中,评估函数给非终止结点打分

- 理想的函数:返回状态的真实的极小极大值
- 实践中:加权线性函数:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• e.g. 对于国际象棋 , $f_1(s)$ = (num white queens - num black queens), etc.

井字棋的评估函数

- MAX 标记 X MIN 标记 O
- MAX 先移动.

- -对状态 s 的评估函数 e(s)
 - If s is not a winning for either player, e(s) = (no. of complete rows, columns, or diagonals that are still open for MAX) (no. of complete rows, columns, or diagonals that are still open for MIN)
 - If s is a win of MAX, $e(s) = \infty$
 - If s is a win of MIN, $e(s) = -\infty$

井字棋的评估函数

- -对状态 s 的评估函数 e(s)
 - If *s* is not a winning for either player,
 e(s) = (no. of complete rows, columns, or diagonals that are still open for *MAX*) (no. of complete rows, columns, or diagonals that are still open for
 - MIN)

$$e(s)=5-4=1$$

$$e(s)=6-4=2$$

谢谢!

