

Nomenclatura

R	\mathbf{O}	Resisten	cia
ĸ	177	Resisten	cia

C [F] Capacitancia

Inductancia L[H]

i [A] Corriente

 ν [V] Tensión o voltaje

Energía almacenada w[J]

Unidad imaginaria

t [s] Tiempo

Ley de Kirchhoff para la tensión LTK

Ley de Kirchhoff para la corriente LCK

P[W]Potencia

 $\boldsymbol{Z}[\Omega]$ Impedancia

 $X_C[\Omega]$ Reactancia capacitiva

 $X_L[\Omega]$ Reactancia inductiva

Constante de tiempo τ [s]

 α [°/s] Factor de amortiguamiento

 ω_0 [°/s] Frecuencia natural no amortiguada

 ω_d [°/s] Frecuencia natural amortiguada

UNIDAD 1

Teoría Elemental de los Circuitos

Ley de Ohm $I = \frac{V}{R}$

Corriente en el capacitor $i_C = C \frac{dv}{dt}$

Voltaje en el inductor $v_L = L \frac{di}{dt}$

Potencia P = VI

Circuito en serie

 $R_{eq} = \sum R_i$ $L_{eq} = \sum L_i$ $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$

$$\frac{1}{R_{eq}} = \sum \frac{1}{R_i} \quad \frac{1}{L_{eq}} = \sum \frac{1}{L_i} \quad C_{eq} = \sum C_i$$

Transformación de fuente $V_s = I_s R$

Transformación Estrella-Delta

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}{R_{1}}$$

Supernodo: Fuente de tensión conectada entre dos nodos de no referencia.

Superlazo: Dos lazos tienen una fuente de corriente en común.

Nomenclatura

f [1/s] Frecuencia

 ω [°/s] Frecuencia angular

V[V]Fasor de tensión

I[A]Fasor de corriente

 V_m [V] Valor de tensión pico

 I_m [A] Valor de corriente pico

 V_{rms} [V] Valor de tensión eficaz

Valor de corriente eficaz I_{rms} [A]

p(t) [W] Potencia instantánea

S[VA]Potencia aparente

Ángulo de impedancia ϕ_z [°]

> \Re Reluctancia

UNIDAD 1

FASORES

Nota: En general para fasores se aplican los métodos ya conocidos, a diferencia de que ahora se trabajan con números complejos.

Relación reactancias-fasores

Reactancia Dominio de frecuencia

$$R = R$$
 $V = RI$

$$X_L = j\omega L$$
 $V = X_L I$

$$X_L = j\omega L$$
 $V = X_L I$
 $X_C = \frac{-j}{\omega C}$ $V = -X_C I$
Impedancia $Z = R + jX$

Impedancia
$$Z = R + jX$$

Admitancia
$$Y = \frac{1}{G} = G + jB$$

Admitancia
$$Y = \frac{1}{Z} = G + jB$$

 $G = \frac{R}{R^2 + X^2}$ $B = \frac{-X}{R^2 + X^2}$ $X = X_L - X_C$

Leves en dominio frecuencial (fasorial)

Kirchhoff LTK $\sum V = 0$

Kirchhoff LCK $\sum I = 0$

Ley de **Ohm** V = IZ

Circuitos en **serie** $Z_{eq} = \sum Z$

Circuitos en **paralelo** $Y_{eq} = \frac{1}{Z_{ea}} = \sum \frac{1}{Z}$

Divisores de tensión y corriente

UNIDAD 2 RESPUESTA NATURAL

ANÁLISIS CON CORRIENTE DIRECTA

Circuitos de primer orden

LTK en RL
$$i_n(t) = Ae^{\frac{-t}{\tau}}$$
 donde $\tau = \frac{L}{R}$
LCK en RC $v_n(t) = Ae^{\frac{-t}{\tau}}$ donde $\tau = RC$

Circuitos de segundo orden

Raíces
$$s_{1-2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

Frecuencia angular $\omega = 2\pi f = 2\pi \frac{1}{\tau}$

Circuito RLC en serie (LTK

$$iR + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i dt = 0$$

$$\frac{di}{dt} R + L\frac{d^{2}i}{dt^{2}} + \frac{i}{C} = 0$$

$$\forall t = 0 \to i(0)R + L\frac{di(0)}{dt} + V_{0} = 0$$

$$\alpha = \frac{R}{2L} \qquad \omega_{0} = \frac{1}{\sqrt{LC}} \qquad \omega_{d} = \sqrt{\omega^{2} - \alpha^{2}}$$

Circuito RLC en paralelo (LCK)

$$\frac{v}{R} + \frac{1}{L} \int_{-\infty}^{t} v dt + C \frac{dv}{dt} = 0$$

$$\frac{1}{R} \frac{dv}{dt} + \frac{1}{L} v + C \frac{d^2 v}{dt^2} = 0$$

$$\forall t = 0 \to \frac{v(0)}{R} + C \frac{dv(0)}{dt} + I_0 = 0$$

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}} \qquad \omega_d = \sqrt{\omega^2 - \alpha^2}$$

Funciones para la ED

sobre.
$$\alpha > \omega_0$$
 $f(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
crit. $\alpha = \omega_0$ $f(t) = (A_1 + A_2 t) e^{-\alpha t}$
sub. $\alpha < \omega_0$ $f(t) = A e^{-\alpha t} \sin(\omega_d t + \theta)$
 $s_{1-2} = -\alpha + \omega_d j$

Nota: En las ecuaciones se puede utilizar $f(t) \equiv i(t)$ ó v(t) sin importar si el circuito paralelo o en serie.

UNIDAD 3 RESPUESTA FORZADA

La respuesta forzada o en estado estable es producida por una 'fuerza' externa, no se extingue con el tiempo.

En un capacitor $v_f = v(\infty)$ En un inductor $i_f = i(\infty)$

UNIDAD 3 RESPUESTA FORZADA

Análisis con corriente alterna

Circuitos de primer orden

Dominio temporal Dominio fasorial

$$v(t) = V_m cos(\omega t + \phi_v)$$
 $V = V_{rms}/\phi_v$

$$V = V_{rms}/\phi_v$$

$$i(t) = I_m cos(\omega t + \phi_i)$$
 $I = I_{rms}/\phi_i$

$$I = I_{rms} / \phi_i$$

Circuito inductivo
$$I = I_{rms}/\phi_v - \theta$$

$$I = I_{rms}/\phi_v - \theta_v$$

Circuito capacitivo
$$I = I_{rms}/\phi_v + \theta$$

$$V_{rms} = \frac{V_m}{\sqrt{2}} \quad I_{rms} = \frac{I_m}{\sqrt{2}}$$

Unidad 4 RESPUESTA COMPLETA

Circuitos de primer orden

$$i(t) = i_f + i_n = i(\infty) + [i(\infty) - i(0)]e^{\frac{-t}{\tau}}$$

$$v(t) = v_f + v_n = v(\infty) + [v(\infty) - v(0)]e^{\frac{-t}{\tau}}$$

Circuitos de segundo orden

Serie
$$i(t) = i_f + i_n = i(\infty) + i_n(t)$$

Paralelo $v(t) = v_f + v_n = v(\infty) + v_n(t)$

Importante: Las constantes se determinan con los valores iniciales y se utiliza la función de respuesta completa.

$$i(0)$$
 $v(0)$ $\frac{di(0)}{dt}$ $\frac{dv(0)}{dt}$

UNIDAD 5

POTENCIA Y ENERGÍA EN CIRCUITOS Monofásicos

Potencia instantánea p(t) = v(t)i(t) v

 $P = \int_0^T p(t)dt$ Potencia promedio

 $fp = cos(\phi_z)$ Factor de potencia

$$Z = \frac{V_m}{I_m} / \phi_z$$

 $S = V_{rms}I_{rms}$ Potencia aparente

 $S = V \times I$ Potencia compleja

Potencia real P = Re(S)

Potencia reactiva $Q = \operatorname{Im}(S)$

Unidad 6 REDES ELÉCTRICAS

Método de mallas

Se asigna un sentido a la corriente y se escriben las ecuaciones

Método de nodos

Teorema de Thevenin

"Cualquier red de corriente directa lineal bilateral de dos terminales puede ser reemplazada por un circuito equivalente que conste de una fuente de voltaje y un resistor en serie"

Teorema de Norton

"Cualquier red de cd lineal bilateral de dos terminales puede ser reemplazada por un circuito equivalente que consista de una fuente de corriente y un resistor en paralelo" Teorema

de **superposición**

"La corriente o el voltaje de un elemento en una red lineal bilateral es igual a la suma algebraica de las corrientes o voltajes producidos independientemente por cada fuente."

Teorema de **máxima transferencia de potencia**

Unidad 7 POTENCIA POLIFÁSICA

Diferencia de potencial entregada por el generador

Sistema ABC

$$V_{AB} = V_L / 120^{\circ}$$
 $V_{AN} = V_F / 90^{\circ}$
 $V_{BC} = V_L / 0$ $V_{BN} = V_F / -30^{\circ}$
 $V_{CA} = V_L / -120^{\circ}$ $V_{CN} = V_F / -150^{\circ}$

Sistema CBA

$$V_{AB} = V_L / -120^{\circ}$$
 $V_{AN} = V_F / -90^{\circ}$
 $V_{BC} = V_L / 0$ $V_{BN} = V_F / 30^{\circ}$
 $V_{CA} = V_L / 120^{\circ}$ $V_{CN} = V_F / 150^{\circ}$

Relación de impedancias. CARGAS EQUILIBRA-DAS

$$Z_{\wedge} = 3 \cdot Z_{\text{Y}}$$

Relación conexión estrella-triángulo. CARGAS EQUILIBRADAS

Conexión **estrella** Conexión **triángulo**

$$V_L = \sqrt{3}V_F \qquad I_L = I_F \parallel V_L = V_F \qquad I_L = \sqrt{3}I_F$$
$$P_T = 3P_F = \sqrt{3} \cdot V_L \cdot I_L \cdot \cos \phi$$

Equivalente monofásico. CARGAS EQUILIBRADAS en estrella.

$$I_L = \frac{V_F / \underline{0}^{\circ}}{Z_Y / \underline{\phi}} = I_L / -\underline{\phi}$$

$$V_{fase} = V_F / \theta_F \quad I_{linea} = I_L / \theta_F - \underline{\phi}$$

Desplazamiento del punto neutro. CARGAS DESEQUILIBRADAS.

$$V_{\rm ON} = \frac{V_{\rm AN} Y_{\rm A} + V_{\rm BN} Y_{\rm B} + V_{\rm CN} Y_{\rm C}}{Y_{\rm A} + Y_{\rm B} + Y_{\rm C}}$$

Unidad 8 CIRCUITO MAGNÉTICO

Fuerza Magnetomotriz $F_m = N \cdot I$

 $F_m = H_i \cdot l_i$

Flujo magnético $\phi = B \cdot S$

Ley de Hopkinson $F_m = \phi \cdot \Re$

Densidad de flujo magnético $B = \mu H$

 $\mu = \mu_0 \cdot \mu_r$

$$\Phi = \frac{N \cdot I}{\frac{l_m}{\mu_0 \cdot \mu_r \cdot S}} = \frac{F_m}{\Re}$$

En CA:

$$\Phi(t) = \Phi_{max} \cos(\omega t - 90)$$

$$\Phi_{max} = \frac{\sqrt{2}V_{ef}}{N\omega}$$

De aca podemos obtener la tension eficaz.

Circuito equivalente de una bobina con nucleo de hierro

Nucleo sin perdidas

$$\Phi = \frac{F_m}{\Re} = \frac{N \cdot I_{ex}}{\frac{l_m}{u \cdot S}} = \mu \frac{N I_{ex}}{l_m} S$$

$$v = N \frac{d\Phi}{dt} = \frac{N^2 S \mu}{l_m} \frac{dI_{ex}}{dt} = L \frac{dI_{ex}}{dt}$$

Nucleo con perdidas

Mutua inductancia
$$M=k\sqrt{L_1L_2}$$
 $k=rac{\phi_{12}}{\phi_1}=rac{\phi_{21}}{\phi_2}$ $L_1=rac{\phi_1}{i_1}$ $L_2=rac{\phi_2}{i_2}$

Regla de los puntos para M:

"Si las dos corrientes entran o salen de las bobinas por los terminales con punto, los signos de los términos en M son los mismos que los de los términos en L. Si una entra por un terminal con punto y la otra sale por el otro terminal con punto, los signos de los términos en M son opuestos a los de L".

Análogamente: "Si la corriente en la bobina inductora entra por el extremo punteado la tensión inducida será positiva en el extremo punteado de la bobina inducida"

UNIDAD NRO COMPONENTES SIMÉTRICOS

$$\begin{aligned} V_a &= V_a^0 + V_a^1 + V_a^2 & I_a &= I_a^0 + I_a^1 + I_a^2 \\ V_b &= V_a^0 + \alpha^2 V_a^1 + \alpha V_a^2 & I_b &= I_a^0 + \alpha^2 I_a^1 + \alpha I_a^2 \\ V_c &= V_a^0 + \alpha V_a^1 + \alpha^2 V_a^2 & I_c &= I_a^0 + \alpha I_a^1 + \alpha^2 I_a^2 \end{aligned}$$

$$I_a = I_a^0 + I_a^1 + I_a^2$$

$$I_b = I_a^0 + \alpha^2 I_a^1 + \alpha I_a^2$$

$$I_c = I_a^0 + \alpha I_a^1 + \alpha^2 I_a^2$$

Expreso en forma matricial:

$$\begin{bmatrix} X_a \\ X_b \\ X_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix} \begin{bmatrix} X_a^{(0)} \\ X_a^{(1)} \\ X_a^{(2)} \end{bmatrix}$$
$$\begin{bmatrix} X_a^{(0)} \\ X_a^{(0)} \\ X_a^{(0)} \\ X_a^{(0)} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix} \begin{bmatrix} X_a \\ X_b \\ X_c \end{bmatrix}$$

Redes de secuencia

$$V_a^{(1)} = E_{an} - I_a^1 . Z_1$$

$$V_a^{(2)} = 0 - I_a^2 \cdot Z_a^2$$

$$V_a^{(0)} = 0 - I_a^0 Z_0$$

Fallo de 1 línea a tierra

Condiciones : $I_b = I_c = 0$, $V_a = 0$

Fallo de linea a linea punto

Condiciones : $I_a = 0$, $I_b = -I_c$, $V_b = V_c = 0$?

Fallo de linea a linea punto

Condiciones : $I_a = 0$, $I_b = -I_c$, $V_{kb} - V_{kc} =$ $I_{fb}Z_f$

$$I_a^1 = -I_a^2 = \frac{Ea}{Z_1 + Z_2 + Z_f}$$

Fallo de doble linea a tierra punto

Condiciones : $I_a = 0$, $V_b = V_c = 0$

