Las fuentes de datos

Big Data Aplicado

Dr. Francisco E. Cabrera

Fuentes de datos

- Las fuentes de datos son aquellos lugares de los cuales obtenemos información potencialmente relevante para nuestros objetivos de análisis.
 - Los datos pueden provenir de orígenes muy variados según los análisis que pretendamos realizar.
 - Dependiendo de las fuentes escogidas, los datos pueden venir en distintos formatos.

Fuente de datos

Almacenamiento

Conjunto de datos

Identificación y extracción de los datos

Aspectos a tener en cuenta

- ▶ Tipo de fuente.
- Tipo de contenido.
- Origen.
- Tiempo.
- **Estructura.**
- Derechos sobre los datos.

Problema: Detección de fraude en transacciones financieras.

- Identificar transacciones sospechosas en tiempo real para prevenir fraudes en una plataforma de pago.
- Fuentes de datos a contemplar:

Problema: Detección de fraude en transacciones financieras.

- Identificar transacciones sospechosas en tiempo real para prevenir fraudes en una plataforma de pago.
- Fuentes de datos a contemplar:
 - Historial de transacciones de los clientes.
 - Datos de geolocalización (ubicación de la transacción).
 - Dispositivos y direcciones IP utilizadas.
 - ► Cantidad, frecuencia y patrón de gasto de cada usuario.
 - Registro de intentos de inicio de sesión fallidos.
 - Datos externos sobre actividades fraudulentas previas.

Problema: Mantenimiento predictivo en la industria.

- Predecir fallos en máquinas y equipos para reducir tiempos de inactividad en una fábrica.
- Fuentes de datos a contemplar:

Problema: Mantenimiento predictivo en la industria.

- Predecir fallos en máquinas y equipos para reducir tiempos de inactividad en una fábrica.
- Fuentes de datos a contemplar:
 - Datos de sensores IoT en las máquinas (temperatura, vibración, presión, etc.).
 - ▶ Historial de mantenimiento y reparaciones previas.
 - ► Condiciones ambientales (humedad, temperatura externa).
 - Uso y carga de trabajo de la máquina.
 - Registro de errores o fallos pasados.
 - Información técnica del fabricante.

Problema: Análisis de sentimiento en redes sociales para empresas.

- Conocer la percepción pública sobre una marca o producto en redes sociales.
- Fuentes de datos a contemplar:

Problema: Análisis de sentimiento en redes sociales para empresas.

- Conocer la percepción pública sobre una marca o producto en redes sociales.
- Fuentes de datos a contemplar:
 - ▶ Publicaciones en redes sociales (Reddit, X, Facebook, Instagram, etc.).
 - Comentarios y reseñas de clientes en plataformas como Amazon, Google Reviews o Trustpilot.
 - Sentimiento expresado en el lenguaje (positivo, negativo, neutro).
 - ▶ Volumen y frecuencia de menciones de la marca.
 - Datos de la competencia para comparar tendencias.

Problema: Análisis de percepción política en elecciones.

- Evaluar el sentimiento y las opiniones de la población sobre candidatos, partidos políticos o propuestas antes y durante una campaña electoral.
- Fuentes de datos a contemplar:

Problema: Análisis de percepción política en elecciones.

- Evaluar el sentimiento y las opiniones de la población sobre candidatos, partidos políticos o propuestas antes y durante una campaña electoral.
- Fuentes de datos a contemplar:
 - ► Redes sociales: Tweets, publicaciones en Facebook, Instagram y TikTok sobre los candidatos o temas políticos.
 - Análisis de sentimiento: Clasificación de comentarios en positivos, negativos o neutros.
 - ► Tendencias y hashtags: Qué temas políticos son más mencionados y en qué contexto.
 - ► Foros y blogs: Opiniones en Reddit, Quora y otras plataformas de discusión política

- Encuestas y datos históricos: Comparación con elecciones anteriores.
- Cobertura mediática: Noticias y artículos de prensa sobre los candidatos y su impacto en la opinión pública.
- Geolocalización: Identificar zonas donde un candidato tiene más apoyo o rechazo.

La importancia de cada fuente

La importancia de las fuentes de datos puede depender del **enfoque concreto** en el que nos queramos centrar.

Medir el Impacto de un debate en tiempo real

Identificar los temas que más preocupan a la población

La importancia de cada fuente

La importancia de las fuentes de datos puede depender del enfoque concreto en el que nos queramos centrar.

Fuentes a contemplar:

Medir el impacto de un debate en tiempo real

- Redes sociales.
- Análisis de sentimiento en comentarios y publicaciones.
- Cobertura mediática (noticias, sitios de opinión, etc.).
- Foros y blogs políticos.

Identificar los temas que más preocupan a la población

- Encuestas y datos históricos.
- Redes sociales.
- Análisis de noticias.
- Foros y otros sitios especializados.

Morfología de los datos

Morfología de los datos

No todos los datos son iguales

- Según su origen.
- Según su periodicidad.
- Datos según su estructura.
- Según su nivel de agregación

Según su origen

Información Interna

- Es información generada por la propia organización.
 - Transacciones comerciales, inventarios, datos de consumo, etc.
- La información suele estar estructurada.

Información Externa

- Información proporcionada por otras organizaciones a través de internet.
 - Información acerca de la apreciación del público, la competencia, los proveedores, etc.
- La información no suele estar estructurada

Según su periodicidad

Datos en Tiempo Real

Datos en Lotes

Según su estructura

- Datos estructurados.
- Datos semiestructurados.
- Datos no estructurados.

Datos estructurados

- Son datos organizados en un formato fijo y predefinido
- Se pueden buscar y analizar fácilmente con consultas estructuradas.
- Características:
 - Organizados en filas y columnas.
 - Fáciles de almacenar y procesar.
 - Uso de esquemas predefinidos (tablas con tipos de datos específicos).

► Ejemplos:

 Bases de datos de clientes, registros de transacciones bancarias inventario de productos, etc.

Datos estructurados

	А	В	С	D	Е
1	Last Name	Sales	Country	Quarter	
2	Smith	\$16,753.00	UK	Qtr 3	
3	Johnson	\$14,808.00	USA	Qtr 4	
4	Williams	\$10,644.00	UK	Qtr 2	
5	Jones	\$1,390.00	USA	Qtr 3	
6	Brown	\$4,865.00	USA	Qtr 4	
7	Williams	\$12,438.00	UK	Qtr 1	
8	Johnson	\$9,339.00	UK	Qtr 2	
9	Smith	\$18,919.00	USA	Qtr 3	
10	Jones	\$9,213.00	USA	Qtr 4	
11	Jones	\$7,433.00	UK	Qtr 1	
12	Brown	\$3,255.00	USA	Qtr 2	
13	Williams	\$14,867.00	USA	Qtr 3	
14	Williams	\$19,302.00	UK	Qtr 4	
15	Smith	\$9,698.00	USA	Qtr 1	
16					

Datos semiestructurados

- No tienen una estructura rígida, pero contienen etiquetas o marcadores que los organizan parcialmente.
- No se almacenan fácilmente en bases de datos relacionales tradicionales.

Características:

- No siguen un esquema fijo, pero tienen cierta organización.
- > Pueden contener metadatos o etiquetas para estructurar la información.
- Más flexibles que los datos estructurados, pero requieren procesamiento adicional.

Ejemplos:

- ▶ JSON, XML, YAML, Logs de servidores.
- Correos electrónicos (Asunto, fecha, remitente y cuerpo del mensaje).

Datos semiestructurados

```
1 {
       "count": 7,
       "items": ["socks", "pants", "shirts", "hats"],
       "manufacturer": {
           "name": "Molly's Seamstress Shop",
           "id": 39233,
           "location": {
               "address": "123 Pickleton Dr.",
               "city": "Tucson",
               "state": "AZ",
               "zip": 85705
13
       },
       "total_price": "$393.23",
15
       "purchase date": "2022-05-30",
16
       "country": "USA"
17 }
```

```
1002
      Traceback (most recent call last):
        File "C:\Python312\Lib\site-packages\django\template\base.py", line 906, in
        resolve lookup
          raise VariableDoesNotExist(
1005
      django.template.base.VariableDoesNotExist: Failed lookup for key [name] in
      <URLResolver <URLPattern list> (admin:admin) 'admin/'>
      Not Found: /
      "GET / HTTP/1.1" 404 3458
1009 File C:\Python312\Lib\site-packages\django\contrib\messages\storage\cookie.py
      first seen with mtime 1725448709.5825415
1010 File C:\Python312\Lib\site-packages\django\contrib\messages\storage\session.py
      first seen with mtime 1725448709.5825415
1011 File C:\Python312\Lib\site-packages\django\contrib\messages\storage\fallback.py
      first seen with mtime 1725448709.5825415
1012 File C:\Python312\Lib\site-packages\django\contrib\sessions\serializers.py first
      seen with mtime 1725448709.8349962
1013 "GET /debug/ HTTP/1.1" 200 27
      "GET /warning/ HTTP/1.1" 200 29
      "GET /debug/ HTTP/1.1" 200 27
      "GET /critical/ HTTP/1.1" 200 30
      "GET /info/ HTTP/1.1" 200 26
1018
```


Datos no estructurados

- No tienen una estructura predefinida.
- Necesitan procesamiento previo para almacenarse en bases de datos relacionales.
- Representan la mayor parte de los datos en el mundo.
- Características:
 - Sin estructura definida ni formato estandarizado.
 - ▶ Difíciles de analizar directamente sin herramientas especializadas.
 - Generalmente requieren técnicas de procesamiento de datos computacionalmente costosas como NLP (procesamiento de lenguaje natural) o visión por computadora.

Ejemplos:

- Imágenes, vídeos, audios, textos largos, publicaciones en redes sociales, documentos destinados a su lectura...
- ► Formatos como MP4, MP3, JPG, PNG, TXT, PDF.

Datos no estructurados

Estructura de los datos

Cantidad de información disponible

Dificultad de comprensión humana

Fuentes estructuradas

Fuentes semiestructuradas

Fuentes no estructuradas

EL MUNDO © @elmundoes · 20 jul.

Este sábado Aldrin y Collins han sido recibidos por Donald Trump en la Casa Blanca

Buzz Aldrin bromea con ayudar a la tripulación de un avión a desp...

Pese a su avanzada edad, Buzz Aldrin no parece dispuesto a dejar de volar, aunque ahora tenga que conformarse con viajes dentro de la Tierr... elmundo.es

Nivel de agregación

Granularidad de los datos

- Datos agregados.
 - Promedio de ventas del día.
- Datos detallados (grano fino).
 - ▶ Registro de temperaturas por minuto de un sensor.
- Datos resumidos.
 - Informe mensual en comparación con los registros en tiempo real.

Consideraciones previas

- Antes de extraer los datos debería hacerme estas preguntas:
 - ► ¿Tengo derecho legal para acceder a estos datos?
 - ¿Cumplo con regulaciones como GDPR o CCPA?
 - ¿Los datos están bien estructurados y listos para procesar?
 - ¿Mi sistema puede manejar la carga de extracción y almacenamiento?
 - ¿Estoy protegiendo la privacidad y seguridad de los datos?
 - > ¿El uso que daré a los datos es ético y responsable?

Si alguna de estas respuestas es "No" debería descartar la fuente o volver al primer paso y plantearme la definición del problema.

¿Dónde conseguir los datos?

- Datos internos.
- Fuentes de datos abiertos.
- ► APIs de diferentes servicios.
- Datos de investigaciones científicas.
- Web Scraping.
- Compra de datos.

Algunas fuentes de datos abiertos

- Instituto Nacional de Estadíastica
 - https://ine.es
- CIS
 - https://www.cis.es/catalogo-estudios/resultados-definidos/buscador-estudios
- Portal de datos del gobierno
 - https://datos.gob.es/es/
- Portal de datos abiertos Junta de Andalucía
 - https://www.juntadeandalucia.es/datosabiertos/
- NASA
 - https://data.nasa.gov
- WorldBank
 - https://data.worldbank.org

Algunas fuentes de datos abiertos

- Kaggle
 - https://www.kaggle.com
- DataHub
 - https://datahub.io
- Google Dataset Search
 - https://datasetsearch.research.google.com
- GitHub
 - https://github.com/datasets

Ejercicio: Buscar fuentes de datos

Encontrar 4 fuentes de datos y para cada una:

- Identifique el dominio de la información provista por la fuente de datos.
- Identifique el proveedor de los datos.
- Identifique la frecuencia de actualización de los datos de la fuente.
- Identifique la morfología de la fuente de datos.
 - ▶ En que formato se obtienen los datos.
 - Que tipo de estructura tienen los datos.

¿En que casos podría ser útil la fuente de datos?

El proceso ETL

El proceso ETL

Extracción, transformación y carga

¿Qué hace el proceso ETL?

El proceso ETL (Extract, Transform, Load) es esencial en Data Engineering y Data Science.

Objetivo:

Pasar de tener datos de diversas fuentes a tener datos cargados en un almacenamiento final, habiendo transformado esos datos según los requerimientos del negocio.

El proceso ETL

Extracción

Es la fase donde se recopilan los datos desde diversas fuentes.

- Aspectos a tener en cuenta:
 - ▶ Formato de los datos: Cada fuente puede tener un formato distinto.
 - ▶ **Velocidad y volumen:** Algunas fuentes generan datos en tiempo real (ej. sensores IoT).
 - ► Calidad de los datos: Puede haber información incompleta, duplicada o incorrecta.
 - ▶ Relevancia con respecto al problema: Hay que considerar qué datos pueden aportar las fuentes para resolver nuestro problema.

Transformación

Es la fase donde los datos extraídos se limpian, estructuran y convierten en información útil.

Tareas comunes en esta fase:

- Limpieza de datos: Eliminar registros duplicados, corregir valores nulos o inconsistentes.
- Conversión de formatos: Convertir fechas, cambiar unidades de medida, normalizar texto.
- Integración de datos: Unificar información de diferentes fuentes en un solo formato.
- ▶ Cálculos y agregaciones: Calcular promedios, sumar ventas, identificar tendencias.
- **Enriquecimiento:** Añadir datos externos (ej. agregar información meteorológica a ventas).

Carga

En esta fase, los datos transformados se almacenan en un destino final para ser analizados y usados en reportes o modelos de machine learning.

- Aspectos a tener en cuenta:
 - ► Tipos de carga: Completa, Incremental o en Tiempo Real (ETL Streaming)
 - Rendimiento y escalabilidad.
 - Integridad de los datos.
 - Seguridad y cumplimiento normativo.
 - Monitorización y manejo de errores.
 - Formato y estructura de los datos en destino.

¿Cuándo debería aplicar el ETL?

Plantear un ETL cuando hay que:

- Integrar datos desde múltiples fuentes
 - ▶ APIs, bases de datos, archivos, etc.
- Tengo datos desestructurados o en formatos diferentes
 - ▶ Los datos necesitan ser limpiados y normalizados.
- El análisis o modelado requiere estructuras limpias y consistentes.
- Hacer actualizaciónes de datos en un Data Warehouse.
- Hace falta mejorar el rendimiento de consultas,
 - > Se pueden optimizar bastante los datos antes de cargarlos en sistemas de BI.
- Necesito asegurar consistencia y calidad antes de almacenarlos.
- La cantidad de datos me obliga a mejorar la eficiencia en los pipelines de datos.

Otra opción es el ELT

Extracción, Carga y Transformación.

Cargar los datos sin procesar y transformarlos luego.

Utilidades del ELT

¿Cuándo me puede convenir plantera un ELT?

- Al trabajar con muchos datos no estructurados.
- Necesito flexibilidad según el caso de uso.
- Tengo un Data Lake con tecnología que me lo permite.
 - ► Google BigQuery, AmazonS3, Azure DataLake
- No dispongo de suficiente procesamiento durante la etapa de captura.
 - ▶ Pero luego voy a disponer de más potencia en el Data Warehouse.
- Datos en streaming.
 - La capa de transformación de ETL puede ser un cuello de botella.
- Costos en la nube.

Data Warehouse y Data Lake

Data Warehouse

- Almacén de datos estructurados para análisis y Business Intelligence
- Datos estructurados o semiestructurados.
- Proceso ETL.
- Procesamiento SQL muy rápido en las consultas.
- Difícil escalabilidad horizontal.

Data Lake

- Repositorio de datos sin procesar
- Todos los formatos.
- Proceso ELT.
- Batch y tiempo real.
- Suele requerir más procesamiento en las consultas.
- ► Fácil escalabilidad.

¿Y por qué no los dos?

El enfoque híbrido.

- Cargar rápidamente los datos en un Data Lake sin transformarlos (ELT).
- Transformar solo los datos estructurados y de alta prioridad para almacenarlos en un Data Warehouse.
- Mantener el Data Lake como un respaldo de datos crudos, permitiendo transformaciones adicionales en análisis futuros.