FIG.1A

FIG.1B

FIG.2

3/8

FIG.4

1**G**.6

Table.1

						5/	′8												
Pt-nitrate (8.5wt% solution)	ľ	3	ı	1	-	1	ı		1	ı	t	r	ı	1	•	1	1835	*	: : : g
Pd-nitrate (8.5wt% solution)	1	î	1	5	3	1	ı	3	1	ı	1	•	1	ı	1	1127	1	ŧ	3
Rh-nitrate (8.5wt% solution)	ı	ı	ı	240	240	240	605	896	1	1	ı	1	1	1	240	1	ı	-	1
Ru-nitrate (3.6wt% solution)	140.4	140.4	140.4	1		1	1	1	561.7	561.7	561.7	1404	2247	561.7	•	ı	t	140.4	1
Fe-nitrate (g)	-	ı	ı	323.2	323.2	323.2	202	80.8	323.2	323.2	323.2	202	80.8	1	ı	80.8	80.8	1	1
Sm-nitrate Fe-nitrate (g)	44.4	8.88	44.4	-	-	1	1	1	-	Ē	ı	ı	1	88.9	88.9	1	3	44.4	44.4
Gd-nitrate Ce-nitrate (g) (g)	ı	-	390.6	1	1	1	•	1	ı	1	3	1	•	347.2	347.2	,	1	1	1
Gd-nitrate (g)	428.5	428.5	428.5	2	-	ı		-				ı	Ī	360.8	360.8	1	1	428.5	428.5
Pr-nitrate (g)	1		1	43.5	87.0	130.5	87.0	87.0	43.5	87.0	130.5	87.0	87.0		ı	87.0	87.0	1	1
La-nitrate (g)	389.7	346.4		389.7	346.4	303.1	346.4	346.4	389.7	346.4	303.1	346.4	346.4	1	1	346.4	346.4	389.7	389.7
Example No.	example 1	example 2	example 3	example 4	example 5	example 6	example 7	example 8	example 9	example 10	example 11	example 12	example 13	example 14	example 15	example 16	example 17	Comparative example 1	Comparative example 2

<u></u>	
- -	•
\subseteq	/
ĹΙ	

		7	Amount	of each	Amount of each element per		a catalyst unit	t unit		
	La	Pr	Cd	ည	Sm	Fe	Ru	Rh	Pd	Pt
	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
<u> </u>	4.25	1	5.19	ı	0.52	ŀ	0.15	1	1	-
ļ	3.74	1	5.19	,	1.03	ı	0.15	,	-	-
<u> </u>		1	5.19	4.08	1.03	ı	0.15	'	-	1
	6.16	69.0	ı		3	1.81	-	96.0	1	1
<u> </u>	5.47	1.38	-	-	1	1.81	-	96.0	1	1
	4.79	2.07	-	-	1	1.81	1	96.0	1	1
<u> </u>	5.47	1.38	1	,	i	1.07	-	2.29	,	1
	5.47	1.38	-	ι	ı	0.39	1	3.39	1	1
	6.16	69'0	1	l	ı	1.81	0.90		1	1
4,1	5.47	1.38	1	1	1	1.81	0.90	1	-	'
4	4.79	2.07	1	1	1	1.81	0.00	1	1	1
	5.47	1.38	-	1	1	1.07	2.11	'	-	1
	5.47	1.38	-	1	ı	0.39	3.14	-		ı
_	ı	t	4.49	3.72	1.06	ı	0.62	1	_	-
	,	1	4.49	3.72	1.06	ı	1	0.70	_	1
	5.47	1.38	ı	ı	t	0.39	•		2.88	ı
	5.47	1.38	ı	1	1	0.39	ı	_	ı	4.68
	4.25	ı	5.19	5	0.52	3	0.15	ı	-	1
	4.25	ı	5.19	1	0.52	1	ı	-	,	ı

7/8

FIG. 8

Table.3

Catalyst composition
La _{0.9} Sm _{0.1}
La _{0.8} Sm _{0.2}
Ce _{0.9} Sm _{0.1}
La _{0.9} Pr _{0.1}
La _{0.8} Pr _{0.2}
La _{0.7} Pr _{0.3}
La _{0.8} Pr _{0.2}
La _{0.8} Pr _{0.2}
La _{0.9} Pr _{0.1}
La _{0.8} Pr _{0.2}
La _{0.7} Pr _{0.3}
La _{0.8} Pr _{0.2}
La _{0.8} Pr _{0.2}
Ce _{0.8} Sm _{0.2}
Ce _{0.8} Sm _{0.2}
La _{0.8} Pr _{0.2}
La _{0.8} Pr _{0.2}
La _{0.9} Sm _{0.1} Gd _{0.95} O ₃ /
La _{0.9} Sm _{0.1} Gd _{0.95} O ₃

* The Ru is impregnated into the perovskite composite oxide.

8/8

FIG.9

Table.4

Example No.	Composition of electrode-catalyst	Electrode- catalyst	Temperature of starting operation Tne (°C)
example 18	La _{0.8} Pr _{0.2} Fe _{0.8} Rh _{0.2} O ₃	а	420
example 19	La _{0.8} Pr _{0.2} Fe _{0.5} Rh _{0.5} O ₃	b	405
example 20	La _{0.8} Pr _{0.2} Fe _{0.2} Rh _{0.8} O ₃	С	387
Comparative example 3	La _{0.8} Pr _{0.2} Fe _{0.8} O ₃	z	650