

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Математическая статистика"

Тема	Гистограмма и эмпирическая функция распределения
Студе	ент Зайцева А. А.
Групп	иа <u>ИУ7-62Б</u>
Препо	одаватель Власов П А

Оглавление

1	Зад	дание	2
2	Teo	ретические сведения	3
	2.1	Формулы для вычисления величин	3
	2.2	Определение эмпирической плотности и гистограммы	3
	2.3	Определение эмпирической функции распределения	4
3	ультат работы	5	
	3.1	Текст программы	5
	3.2	Результаты расчетов	7

1 Задание

Цель работы: построение гистограммы и эмпирической функции распределения.

Для выборки объёма n из генеральной совокупности X реализовать в виде программы на $\operatorname{ЭВМ}$

- (a) вычисление максимального значения M_{\max} и минимального значения M_{\min} ;
- (b) размаха R выборки;
- (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
- (d) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
- (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
- (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .

Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретические сведения

2.1 Формулы для вычисления величин

Минимальное и максимальное значения выборки, соответственно:

$$M_{\text{max}} = X_{(n)}$$

$$M_{\text{min}} = X_{(1)}$$

$$(2.1)$$

Размах выборки:

$$R = M_{\text{max}} - M_{\text{min}}. (2.2)$$

Оценки математического ожидания и дисперсии, соответственно:

$$\hat{\mu}(\vec{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

$$S^2(\vec{X}_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
(2.3)

2.2 Определение эмпирической плотности и гистограммы

Пусть $\vec{x} = (x_1, ..., x_n)$ – выборка из генеральной совокупности X, вектор $(x_{(1)}, ..., x_{(n)})$ – вариационный ряд, построенный по этой выборке. Если объем n выборки велик, то значения x_i группируют в так называемый интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}; x_{(n)}]$ разбивают на m равновеликих промежутков:

$$J_{i} = [x_{(1)} + (i - 1) \cdot \Delta; x_{(1)} + i \cdot \Delta), i = \overline{1; m - 1}$$

$$J_{m} = [x_{(1)} + (m - 1) \cdot \Delta; x_{(n)}]$$

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m}$$

Определение

Интервальным статистическим рядом, отвечающим выборке \vec{x} называют таблицу вида

где n_i – количество элементов выборки \vec{x} , которые $\in J_i$.

Для выбора m используют формулу $m = [\log_2 n] + 2$ или $m = [\log_2 n] + 1$.

Пусть для данной выборки \vec{x} построен интервальный статистический ряд $(J_i, n_i), i = \overline{1; m}$

Определение

Эмпирической функцией плотности распределения, соответсвующей выборке \vec{x} , называют функцию

$$\hat{f}_n(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m} \\ 0, \text{ иначе.} \end{cases}$$
 (2.4)

Определение График эмпирической функции плотности называют гистограммой.

2.3 Определение эмпирической функции распределения

Пусть $\vec{x}=(x_1,...,x_n)$ – выборка из генеральной совокупности X. Обозначим $n(t,\vec{x})$ – число компонент вектора \vec{x} , которые меньше, чем t.

Определение

Эмпирической функцией распределения, построенной по выборке \vec{x} , называют функцию $F_n: R \to R$, определенную правилом

$$F_n(t) = \frac{n(t, \vec{x})}{n} \tag{2.5}$$

3 Результат работы

3.1 Текст программы

```
1 X =
                    [7.76, 6.34, 5.11, 7.62, 8.84, 4.68, 8.65, 6.90, 8.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 5.57, \$.20, 7.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 8.20, 7.79, 7.79, 8.20, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.79, 7.7
  2 n = length(X);
  5 fprintf('\na)\n');
  6 \mid M_{max} = \max(X);
  _{7}|_{\text{M_min}} = \min_{\text{min}}(X);
  8 fprintf('M_max_=\%f\n', M_max);
      fprintf('M_min_=_%f\n', M_min);
12 fprintf('\n)\n');
13 R = M_{max} - M_{min};
15
17 fprintf('\n)\n');
_{18} mu = mean(X);
19 s_sqr = var(X); % var(X, 0) ( N-1), =std(X)^2
20 fprintf('mu_=_\%f\n', mu);
21 fprintf('s_sqr_=\\f\n', s_sqr);
22
24 fprintf('\n)\n');
25 m = floor(log2(length(X))) + 2;
_{26} delta = R / m;
27 fprintf('mu=u%i,udeltau=u%f\n', m, delta);
28
29 ni_array = zeros([1 m]);
30 ai_array = zeros([1 m]);
31 bi_array = zeros([1 m]);
_{32} for i = 1:m-1
                  ai_array(i) = M_min + (i - 1) * delta;
                  bi_array(i) = M_min + i * delta;
34
                  ni_array(i) = count_ni(i, ai_array(i), bi_array(i), X);
35
36 end
37 ai_array(m) = M_min + (m - 1) * delta;
38 bi_array(m) = M_max;
39 ni_array(m) = count_ni(m, ai_array(m), bi_array(i) + 1, X); % -
40
41 fprintf('\n');
```

```
_{42} for i = 1:m-1
      fprintf('J%i_=_[%f;_\%f)_\_\', i, ai_array(i), bi_array(i));
44 end
45 fprintf('J%iu=u[%f;u%f]\n', m, ai_array(m), bi_array(m));
_{46} for i = 1:m-1
      48 end
49 fprintf('n%i=%i\n', m, ni_array(m));
51
52
53 fprintf('\n)\n');
54 figure;
55 hold on;
56 %
57 h_array = ni_array * (1 / (n * delta));
58 ai_array(end+1) = M_max;
hist = histogram('BinEdges', ai_array,'BinCounts', h_array); %histogram(X, m);
60 %
61 %
62 sigma = sqrt(s_sqr);
63 x_array = (M_min - 1):(sigma / 100):(M_max + 1);
64 f = normpdf(x_array, mu, sigma);
plot(x_array, f, 'r', 'LineWidth', 2);
66
67
68 fprintf('\ne)\n');
69 figure;
70 hold on;
71 %
72 % ecdf_values = ecdf(X); -
73 z_array = unique(X); %
z_{array}(end + 1) = z_{array}(end) + 1;
75 nt_array = zeros([1 length(z_array)]);
76 for z_index = 1:length(z_array)
     nt_array(z_index) = count_nt(z_array(z_index), X) / n;
77
78 end
79 stairs(z_array, nt_array, 'g', 'LineWidth', 1);
80 %
82 F = normcdf(x_array, mu, sigma);
83 plot(x_array, F, 'r');
84
85
86 function [ni] = count_ni(i, a, b, X)
     ni = 0;
     fprintf('J%i-____{', i);
88
      for x_index = 1:length(X)
89
```

```
if (X(x_index) >= a) && (X(x_index) < b)
90
                fprintf('%f, ', X(x_index));
91
                ni = ni + 1;
            end
93
94
       fprintf('}\n');
   end
96
97
   function [nt] = count_nt(t, X)
99
       for x_index = 1:length(X)
100
            if (X(x_index) < t)</pre>
101
                nt = nt + 1;
102
            \quad \text{end} \quad
103
       end
105
   end
```

3.2 Результаты расчетов

$$M_{\rm min} = 4.39; M_{\rm max} = 9.89$$

$$R = 5.5$$

$$\hat{\mu}(\vec{x}_n) = 6.9445; S^2(\vec{x}_n) = 1.171956$$

$$m = 8, \Delta = 0.6875$$

Таблица 3.1: Интервальный статистический ряд

J1 =	J2 =	J3 =	J4 =	J5 =	J6 =	J7 =	J8 =
[4.39;	[5.0775;	[5.765;	[6.4525;	[7.14;	[7.8275;	[8.515;	[9.2025;
5.0775)	5.765)	6.4525)	7.14)	7.8275)	8.515)	9.2025)	9.89]
5	12	19	38	24	10	10	2

Рис. 3.1: Гистограмма (синим) и график функции плотности распределения вероятностей нормальной случайной величины с выборочными математическим ожиданием $\hat{\mu}$ и дисперсией S^2 (красным)

Рис. 3.2: График эмпирической функции распределения (зеленым) и функции распределения нормальной случайной величины с выборочными математическим ожиданием $\hat{\mu}$ и дисперсией S^2 (красным)