Fixed points of a scalar ODE

Fixed points of a differential equation make the time derivative zero.

ex:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y \left(5 - y \right)$$

Two Fixed Points y^* :

$$y^* = 0$$

and

$$y^* = 5$$

Fixed points are horizontal lines in the slope field

Fixed Points and Stability

Solutions flow towards or away from fixed points:

- Stable fixed points attract nearby solutions.
- Unstable fixed points repel nearby solutions.

ex:

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y \left(5 - y \right)$$

Two Fixed Points y^* :

$$y^* = 0$$
 (unstable)

and

$$y^* = 5$$
 (stable)

Slope Field: $\frac{3y}{dt}$ vs. t

2D Vector Fields

The ODE

$$\frac{\mathsf{d}}{\mathsf{d}t}\vec{x} = \mathbf{A}(t)\vec{x}$$

gives us a derivative for each point $\vec{x} \in \mathbb{R}^n$

Restricting ourselves to \mathbb{R}^2 with constant **A**, we can draw an arrow parallel to the derivative at many points in the (x, y)-plane (phase-plan).

Then we can visualize approximate solution flows in the plane.

Note: This system a unique fixed point $\vec{x}^* = \vec{0}$ at the origin.

Qualitative behaviour of solutions: Stability

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

Q: Do solutions approach or move away from this fixed point? A: It depends on the eigenvalues, λ , of **A**.

- If all λ 's have $\operatorname{Re}(\lambda) < 0$, solutions approach $\vec{0}$ as $t \to \infty$.
 - Stable fixed point
- If any λ 's have $\operatorname{Re}(\lambda) > 0$, solutions move away from $\vec{0}$ as $t \to \infty$.
 - Unstable fixed point
- If a complex conjugate λ pairs exists, solutions exhibit oscillations around $\vec{0}$.
 - Spiral fixed point

Classifying Fixed Points (Nodes and Saddles)

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

If all eigevalues are real and ...

- they have the same sign, the fixed point is called a node
 - All λ 's < 0 \Rightarrow stable node (sink)
 - All λ 's > 0 \Rightarrow unstable node (source)

 \bullet some λ 's have opposite signs, the fixed point is called a **saddle**

Classifying Fixed Points (Spirals and Centers)

The origin $\vec{0}$ is always a fixed point for the system $\frac{d}{dt}\vec{x} = \mathbf{A}(t)\vec{x}$.

If a pair of eigenvalues are complex conjugates, $\lambda_{1,2} = r \pm i\omega$, then the fixed point is called a **spiral** (or focus).

- For a 2×2 matrix, with
 - r < 0 \Rightarrow stable spiral (spiral sink)
 - r > 0 \Rightarrow unstable spiral (spiral source)
 - r = 0 \Rightarrow **neutral spiral** (spiral center)

$$\lambda_{1,2} \in \mathbb{R}$$
 with $|\lambda_2| > |\lambda_1|$

Each eigenvalue/eigenvector is associated with an eigendirection

• Solutions flow as straight lines along the eigendirection

Unstable Node: $0 < \frac{\lambda_1}{\lambda_1} < \lambda_2$

Stable Node: $\lambda_2 < \lambda_1 < 0$

Special Case: Zero Eigenvalue

Line of fixed-points (non-isolated fixed points).

Special Case: Repeated Eigenvalue (Degenerate Node)

 $\lambda_1 = \lambda_2 \in \mathbb{R}$

ex: $\lambda > 0$

Far from the origin, solutions align with the unique eigendirection. Near the origin, they can rotate.

Phase Plane Behaviour of Saddles

 $\underline{\lambda_{1,2} \in \mathbb{R}}$ with $|\underline{\lambda_1}| < |\underline{\lambda_2}|$

Saddle: $\lambda_1 < 0 < \lambda_2$

- Eigendirections with $Re(\lambda) > 0$ are repelling
- Eigendirections with $Re(\lambda) < 0$ are attracting

Spiral Fixed-Points $(\lambda_{1,2} = r \pm i\omega)$

r > 0

1111111111 1111111111 1111/// 1111/1-----+++xxxxxxxx ***+++*///////////

Unstable spiral

Stable spiral

r < 0

We will see how the eigenvectors dictate the direction of rotation shortly.

Center Fixed-Point $(\lambda_{1,2} = \pm i\omega)$

The origin has neutral stability. Solutions travel around the origin indefinitely.

Sketching Solutions near Node/Saddle Fixed Points in the Phase-Plane

For a 2 × 2 system
$$\frac{d}{dt}\vec{x} = \mathbf{A}\vec{x}$$
 with real distinct eigenvalues

- 1. Find the eigenvalues/vectors of the matrix **A**.
- 2. Draw the eigendirections (eigenvectors) of the system.
 - Eigendirections with $\lambda > 0$ are repelling
 - Eigendirections with $\lambda > 0$ are attracting
- 3. Draw a few sample solution flows.
 - As solutions get closer to an eigendirection, they align themselves with that direction.

to
$$\frac{dt}{dy} = -2x - 6y$$
 in the phase-plane $c_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{-7t}$

Sketch the solution behaviours for

or
$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = rx + -2y$$

$$\vec{x}_1 = e^{rt} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cos(2t) - \begin{bmatrix} 0 \\ -1 \end{bmatrix} \sin(2t) \right) \qquad \vec{x}_2 = e^{rt} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \sin(2t) + \begin{bmatrix} 0 \\ -1 \end{bmatrix} \cos(2t) \right)$$

$$\vec{x}_1(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\vec{x}_1(\pi/4) = e^{rt} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$r > 0$$

Quickly determining clockwise/counterclowise rotations

Given $\frac{d}{dt}\vec{x} = \mathbf{A}\vec{x}$ with complex-conjugate eigenvalues/eigenvectors.

To determine rotation direction:

- 1. pick a point (e.g., $\vec{x}_0 = [1, 0]^T$)
- 2. evaluate the derivative $\mathbf{A}\vec{x}_0$

$$\underbrace{\frac{d}{dt}\vec{x}} = \begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix} \vec{x} \text{ has eigenvalues } \lambda_{1,2} = -1 \pm 2\sqrt{2}i$$

$$2 + \text{With initial value } \vec{x}_0 = \begin{bmatrix} 1,0 \end{bmatrix}^T,$$

$$\text{then } \frac{d\vec{x}}{dt}\Big|_{\vec{x}_0} = \begin{bmatrix} -1 & 4 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$(\text{Clockwise})$$

$$-5 -4 -3 -2 -1$$

$$\text{Initial Velocity} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$$

Sketch solutions to

is to
$$\frac{dt}{dy} = x + 3y$$
 in the phase-plane
$$\frac{dy}{dt} = x + 3y$$

