Лекция 19. Схемы из функциональных элементов (СФЭ). Сложность схем для сложения и для вычитания *п*-разрядных двоичных чисел.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

Факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Рассмотрим схемы из функциональных элементов.

Они определяются над некоторым **базисом** (*функциональных элементов*).

В качестве базиса можно выбрать любое множество функций алгебры логики.

Мы рассмотрим базис $B_0 = \{x \& y, x \lor y, \bar{x}\}.$

Схемой из функциональных элементов (СФЭ)

$$S(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

в базисе $B_0 = \{x \& y, x \lor y, \bar{x}\}$ называется

- 1) ориентированный граф G = (V, E) без ориентированных циклов, причем в графе G полустепень захода любой его вершины не превосходит двух;
- 2) любая вершина графа G с полустепенью захода, равной нулю, называется входной (или входом) и ей приписывается какая-то входная переменная x_i ;
- 3) любая вершина графа G с полустепенью захода, не равной нулю, называется внутренней;

СФЭ с задержками

- 4) любой вершине графа G с полустепенью захода, равной единице, приписывается отрицание $\ddot{}$;
- 5) любой вершине графа G с полустепью захода, равной двум, приписывается либо конъюнкция &, либо дизъюнкция \lor ;
- 6) некоторые (входные или внутренние) вершины графа G называются выходными (или выходами) и им приписываются (различные) выходные переменные y_1, \ldots, y_m .

Сложность СФЭ

Сложностью L(S) СФЭ S называется число ее внутренних вершин.

Например, сложность СФЭ S из предыдущего примера равна 3, т. е. L(S) = 3.

Рассмотрим СФЭ

$$S(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

в базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}.$

Пусть она построена по орграфу G = (V, E).

Тогда в любой ее вершине $v \in V$ вычисляется некоторая функция $f_v(x_1, \ldots, x_n) \in P_2$, по индукции однозначно определяемая по СФЭ.

Базис индукции. Если v — входная вершина СФЭ и ей приписана входная переменная x_i , то

$$f_{v} = x_{i}$$

т. е. в вершине v вычисляется функция, тождественно равная переменной x_i .

Индуктивный переход. 1. Если v — внутренняя вершина СФЭ и ей приписано отрицание $\bar{}$, причем $(w,v) \in E$, то

$$f_{v}=\bar{f}_{w},$$

т. е. в вершине v вычисляется функция, равная отрицанию той функции, которая вычисляется в вершине w, из которой ведет дуга в вершину v.

Индуктивный переход. 2. Если v — внутренняя вершина СФЭ и ей приписана конъюнкция & (соответственно, дизъюнкция \vee), причем $(w_1,v)\in E$, $(w_2,v)\in E$, где $w_1\neq w_2$, то

$$f_{v} = f_{w_{1}} \cdot f_{w_{2}} \ (f_{v} = f_{w_{1}} \vee f_{w_{2}}),$$

т. е. в вершине v вычисляется функция, равная конъюнкции (соответственно, дизъюнкции) тех функций, которые вычисляются в вершинах w_1 и w_2 , из которых ведут дуги в вершину v.

Итак, в любой вершине СФЭ

$$S(x_1,\ldots,x_n;y_1,\ldots,y_m)$$

вычисляется некоторая функция алгебры логики.

Обычно считают, что СФЭ $S(x_1,\ldots,x_n;y_1,\ldots,y_m)$ вычисляет систему функций $F(S)=\{f_1,\ldots,f_m\}$, которые вычисляются в выходных вершинах y_1,\ldots,y_m .

Пример. Найдем систему функций F(S), которые вычисляются СФЭ $S(x_1,x_2,x_3;y_1,y_2)$ из предыдущего примера:

Пример. Найдем систему функций F(S), которые вычисляются СФЭ $S(x_1, x_2, x_3; y_1, y_2)$ из предыдущего примера:

Получаем $F(S) = \{f_1, f_2\}$, где:

$$f_1 = x_1, \quad f_2 = x_1 \cdot x_2 \vee \bar{x}_3.$$

СФЭ для произвольной функции

Любую ли функцию $f \in P_2$ можно вычислить некоторой СФЭ в базисе $B_0 = \{x \cdot y, x \lor y, \bar{x}\}$?

СФЭ для произвольной функции

Любую ли функцию $f \in P_2$ можно вычислить некоторой СФЭ в базисе $B_0 = \{x \cdot y, x \lor y, \bar{x}\}$?

Да, т. к. множество

$$B_0 = \{x \cdot y, x \vee y, \bar{x}\} \subseteq P_2$$

является полной системой.

Значит, функцию f можно записать некоторой формулой над множеством B_0 .

А затем по этой формуле построить соответствующую СФЭ, вычисляющую функцию f.

Арифметические операции

Мы рассмотрим, с какой сложностью можно построить схемы для *сложения*, *вычитания* и *умножения* п-разрядных чисел.

Числа в двоичной системе счисления

Пусть $n \in \mathbb{N}$.

Если $(x_1,\ldots,x_n)\in E_2^n$, где $E_2=\{0,1\}$, то положим

$$(x_1,\ldots,x_n)_2=\sum_{i=1}^n x_i\cdot 2^{n-i}.$$

Т. е. $(x_1, \ldots, x_n)_2$ обозначает число, которое в двоичной системе счисления записывается как $x_1x_2\ldots x_n$.

Отметим, что

$$0 \leqslant (x_1, \ldots, x_n)_2 \leqslant 2^n - 1.$$

Сумматор

Сумматором S_n порядка $n,\ n\geqslant 1$, называется такая СФЭ с 2n входами $x_1,\dots,x_n,y_1,\dots,y_n$ и n+1 выходами z_0,z_1,\dots,z_n , что

$$(z_0, z_1, \ldots, z_n)_2 = (x_1, \ldots, x_n)_2 + (y_1, \ldots, y_n)_2.$$

T. е. сумматор S_n на своих выходах вычисляет сумму двух n-разрядных чисел, которые подаются на его входы.

Сумматор S_n также называется n-разрядным сумматором.

Пример. Построим одноразрядный сумматор $S_1(x, y; z_0, z_1)$.

Пример. Построим одноразрядный сумматор $S_1(x, y; z_0, z_1)$.

Найдем функции $z_0(x, y)$ и $z_1(x, y)$:

У	<i>z</i> ₀	z_1
0	0	0
1	0	1
0	0	1
1	1	0
	1	0 0 1 0 0 0

Пример. Построим одноразрядный сумматор $S_1(x, y; z_0, z_1)$.

Найдем функции $z_0(x, y)$ и $z_1(x, y)$:

X	У	<i>z</i> ₀	z_1
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Поэтому

$$z_0 = x \cdot y, \quad z_1 = (x \vee y) \cdot (\overline{x} \vee \overline{y}) = (x \vee y) \cdot (\overline{x \cdot y}).$$

Пример. Построим одноразрядный сумматор $S_1(x, y; z_0, z_1)$.

Найдем функции $z_0(x, y)$ и $z_1(x, y)$:

X	У	<i>z</i> ₀	<i>z</i> ₁
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Поэтому

$$z_0 = x \cdot y, \quad z_1 = (x \vee y) \cdot (\overline{x} \vee \overline{y}) = (x \vee y) \cdot (\overline{x \cdot y}).$$

Значит, в базисе B_0 можно построить сумматор S_1 со сложностью 4.

Одноразрядный сумматор $S_1(x, y; z_0, z_1)$:

$$z_0 = x \cdot y, \quad z_1 = (x \vee y) \cdot (\overline{x \cdot y}).$$

Сложность сумматора

С какой сложностью можно построить сумматор S_n , $n \geqslant 1$?

Сложность сумматора

С какой сложностью можно построить сумматор S_n , $n \geqslant 1$?

Вспомним алгоритм сложения n-разрядных чисел «в столбик».

При сложении каждого разряда i (кроме младшего) складывают x_i , y_i и разряд переноса p_i .

При этом получается двухразрядное число $q_i z_i$, где q_i — старший, а z_i — младший разряды.

Теперь z_i является разрядом i суммы этих n-разрядных чисел, а q_i — разрядом переноса в следующем, более старшем разряде.

Ячейка сумматора

Назовем **ячейкой сумматора** S СФЭ с тремя входами x, y, p и двумя выходами q, z, которая вычисляет описанное выше преобразование входов в выходы, а именно,

$$q = x \cdot y \lor x \cdot p \lor y \cdot p, \quad z = x \oplus y \oplus p.$$

Отметим, что

$$q = x \cdot y \lor x \cdot p \lor y \cdot p = x \cdot y \lor p(x \oplus y), \quad z = (x \oplus y) \oplus p.$$

Ячейка сумматора

Назовем **ячейкой сумматора** S СФЭ с тремя входами x, y, p и двумя выходами q, z, которая вычисляет описанное выше преобразование входов в выходы, а именно,

$$q = x \cdot y \lor x \cdot p \lor y \cdot p, \quad z = x \oplus y \oplus p.$$

Отметим, что

$$q = x \cdot y \lor x \cdot p \lor y \cdot p = x \cdot y \lor p(x \oplus y), \quad z = (x \oplus y) \oplus p.$$

Значит, что в базисе B_0 можно построить ячейку сумматора S со сложностью 9.

Ячейка сумматора

Ячейка сумматора S(x, y, p; q, z):

$$q = x \cdot y \lor p(x \oplus y), \quad z = (x \oplus y) \oplus p.$$

Теорема 19.1. В базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ можно построить сумматор S_n со сложностью 9n - 5.

Доказательство. Применим алгоритм сложения *n*-разрядных чисел $(x_1, \ldots, x_n)_2$ и $(y_1, \ldots, y_n)_2$ «в столбик».

Сложность сумматора S_n

Доказательство. Сначала возьмем одноразрядный сумматор S_1 и припишем его входам x_n и y_n .

Младший разряд выхода этого одноразрядного сумматора S_1 назовем выходом z_n , а старший разряд его выхода обозначим p_{n-1} .

Сложность сумматора S_n

Доказательство. Далее для каждого $i=n-1,\ldots,1$ повторим следующие рассуждения.

Возьмем новую ячейку сумматора S, придадим ей номер i и двум ее входам припишем x_i, y_i , а на третий вход направим p_i .

Младший разряд выхода этой ячейки сумматора S с номером i назовем выходом z_i , а старший разряд ее выхода обозначим p_{i-1} при $i\geqslant 2$ и назовем выходом z_0 при i=1.

Сложность сумматора S_n

Сумматор $S_n(x_1,...,x_n,y_1,...,y_n;z_0,z_1,...,z_n)$:

Сложность сумматора S_n

Доказательство. Полученная в итоге СФЭ является n-разрядным сумматором S_n .

Оценим его сложность:

$$L(S_n) \leq (n-1)L(S) + L(S_1) \leq 9(n-1) + 4 = 9n - 5.$$

Вычитатель

Вычитателем W_n порядка $n, n \geqslant 1$, называется такая СФЭ с 2n входами $x_1, \ldots, x_n, y_1, \ldots, y_n$ и n выходами u_1, \ldots, u_n , что

$$(u_1,\ldots,u_n)_2=(x_1,\ldots,x_n)_2-(y_1,\ldots,y_n)_2,$$

если

$$(x_1,\ldots,x_n)_2\geqslant (y_1,\ldots,y_n)_2.$$

Т. е. вычитатель W_n на своих выходах вычисляет разность двух n-разрядных чисел, которые подаются на его входы, при условии, что первое из этих чисел не меньше второго.

Если первое из этих чисел меньше второго, то входы неправильные, и не важно, что вычисляется на выходах.

Вычитатель W_n также называется n-разрядным вычитателем.

Пример. Построим одноразрядный вычитатель $W_1(x, y; u)$.

Вычитатель W_1

Пример. Построим одноразрядный вычитатель $W_1(x, y; u)$.

Найдем функцию u(x, y):

X	у	и
0	0	0
0	1	_
1	0	1
1	1	0

Вычита $\overline{}$ тель W_1

Пример. Построим одноразрядный вычитатель $W_1(x, y; u)$.

Найдем функцию u(x, y):

X	у	и
0	0	0
0	1	_
1	0	1
1	1	0

Поэтому, например,

$$u = x \cdot \bar{y}$$
.

Вычитатель W_1

Пример. Построим одноразрядный вычитатель $W_1(x, y; u)$.

Найдем функцию u(x, y):

Χ	У	и
0	0	0
0	1	_
1	0	1
1	1	0

Поэтому, например,

$$u = x \cdot \bar{y}$$
.

Значит, в базисе B_0 можно построить вычитатель W_1 со сложностью 2.

Вычитатель W_1

Одноразрядный вычитатель $W_1(x, y; u)$:

$$u = x \cdot \bar{y}$$
.

С какой сложностью можно построить вычитатель W_n , $n \geqslant 1$?

С какой сложностью можно построить вычитатель W_n , $n \geqslant 1$?

Сначала рассмотрим вспомогательную лемму.

А затем сведем вычитание чисел к сложению некоторых других чисел.

Вспомогательная лемма

Лемма 19.1. Если $x_1, \dots, x_n \in E_2$, то

$$(x_1,\ldots,x_n)_2+(\bar{x}_1,\ldots,\bar{x}_n)_2=2^n-1.$$

Вспомогательная лемма

Лемма 19.1. Если $x_1, \ldots, x_n \in E_2$, то

$$(x_1,\ldots,x_n)_2+(\bar{x}_1,\ldots,\bar{x}_n)_2=2^n-1.$$

Доказательство. Рассмотрим сумму:

$$+ \frac{\bar{x}_{1} \dots \bar{x}_{n-1} x_{n}}{1 \dots 1}$$

Далее заметим, что

$$(1,\ldots,1)_2=2^n-1.$$

Теорема 19.2. В базисе $B_0 = \{x \cdot y, x \lor y, \bar{x}\}$ можно построить вычитатель W_n со сложностью 11n - 5.

Доказательство. Построим вычитатель W_n в соответствии с тождеством:

$$(u_1,\ldots,u_n)_2=2^n-1-((y_1,\ldots,y_n)_2+(2^n-1-(x_1,\ldots,x_n)_2)).$$

При построении применим вспомогательную лемму.

Вычитатель $W_n(x_1,...,x_n,y_1,...,y_n;u_1,...,u_n)$:

Доказательство. Оценим сложность полученного вычитателя W_n :

$$L(W_n) \leq 2n + L(S_n) \leq 2n + 9n - 5 = 11n - 5.$$

Задачи для самостоятельного решения

- 1^* . Покажите, что в базисе $B_0 = \{x \cdot y, x \lor y, \bar{x}\}$ сложность любого одноразрядного сумматора S_1 не меньше 4.
- 2^* . Покажите, что в базисе $B_0 = \{x \cdot y, x \lor y, \bar{x}\}$ сложность любого одноразрядного вычитателя W_1 не меньше 2.
- 3. Покажите, что в базисе $B_0 = \{x \cdot y, x \vee y, \bar{x}\}$ можно построить вычитатель W_n со сложностью 10n-5.

- 1. Алексеев В. Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 61–66.
- 2. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. Х 1.1.