Stat 565

Trend And Decompositions

Jan 12 2016

Your turn

Brainstorm: How could we get a feel for the long term trend in this series?

Exploratory Data Analysis

Exploring the trend

It's often hard to see a trend in the presence of noise or seasonality, some options:

Aggregate

use annual data instead

Smooth

moving average or add a line or curve

Subtract

remove noise/seasonality

Aggregate

To examine the long term trend we could average out the seasonality by averaging over the length of the seasonal cycle.

E.g. with temperature, average over a year.

We saw how to do this with dplyr, last week.

We could also achieve this same goal using a model.

Aggregate

We could fit a regression model with a fixed effect for each year, and examine those fixed effects,

 $temp_t = \mu_{year(t)} + noise$

different mean for each year

I want to treat year like a category not a number

Missing values are given NA in fitted and residuals

Aggregate

corv\$annual_avg <- fitted(year_fit)</pre>

```
qplot(year, annual_avg, data = corv,
  geom = "line")
```



```
qplot(date, temp, data = corv,
        geom = "line") +
    geom_line(aes(y = annual_avg),
        colour = "blue")
```


Smooth

Moving average filter
Linear regression 1m
Local regression loess
many more ... (gam)

A moving average takes the average of n consecutive values.

If it is centered, take the average of 2q+1 consecutive values giving a half weight to numbers on each end.

For daily data, I might do a moving average over 7 days with equal weights (this is not a centered moving average).

Or, q = 15, approximately a monthly moving average q =?, approximately a yearly moving average

filter works on ts objects, so let's get our temperatures in to ts properly.

There were dates missing from our series:

```
n <- 7 # we have daily data so this is a week
corv$weekly_ma <- filter(corv_ts, filter = rep(1, n)/n)</pre>
n <- 30 # approximately a month
corv$monthly_ma <- filter(corv_ts, filter = c(1/2, rep(1, n-1), 1/2)/n)
n <- 365 # approximately a year
corv$annual_ma <- filter(corv_ts, filter = rep(1, n)/n)</pre>
qplot(date, temp, data = corv, geom = "line", alpha = I(0.5)) +
  geom_line(aes(y = weekly_ma, colour = "weekly_ma"), size = 1) +
  geom_line(aes(y = monthly_ma, colour = "monthly_ma"), size = 1) +
  geom_line(aes(y = annual_ma, colour = "annual_ma"), size = 1) +
  scale_colour_brewer("Moving average", pal = "Set1") +
  big_font
```


Smooth: Linear regression 1m

qplot(date, temp, data = corv, geom = "line") +
 geom_smooth(method = "lm", se = FALSE)

Smooth: Local regression loess

qplot(date, temp, data = corv, geom = "line") +
 geom_smooth(method = "loess")

Smooth: Local regression loess

qplot(date, temp, data = corv, geom = "line") +
 geom_smooth(method = "loess", span = 0.2)

Subtract

month_fit <- lm(temp ~ factor(month), data = corv, na.action = na.exclude)
corv\$month_avg <- predict(month_fit)
corv\$res <- residuals(month_fit)</pre>

qplot(date, month_avg, data = corv, geom = "line", group = year)
qplot(date, res, data = corv, geom = "line") +
 geom_smooth(method = "loess", span = 0.2)

A common decomposition

$$X_t = M_t + S_t + Z_t$$

Variable measured at time t Trend Seasonality

Noise

$$X_t = m_t S_t Z_t$$

 $X_t = m_t S_t + Z_t$

some multiplicative analogs

Suggests a general approach

Describe and model the most obvious part

Subtract it from the series and repeat When there is just "noise" left, examine it's variance and correlation

Hints for subtracting

Find a model for the part you want to subtract using: 1m, loess, ...

Fit the model (with na.action = na.exclude)
Use predict to get the model prediction
and residuals to do the subtraction

If you want to use a moving average, the output from filter is the prediction, do the subtraction "by hand"

An example

Corvallis data, the largest variation is from the seasonal pattern.

Might be nice to use a smooth.


```
qplot(yday, temp, data = corv, geom = "line", group = year, alpha = I(.3)) +
  geom_smooth(method = "loess", aes(group = 1), size = 1)
```

qplot(yday, seas_fit, data = corv, geom = "line")

qplot(date, deseas, data = corv, geom = "line") +
 geom_smooth(method = "loess", span = 0.2)

Your turn

Where would you start with this series?

Two automatic approaches

stl iteration of local regression smooths

decompose iteration of moving averages neither like missing values

plot(stl(corv_ts2, 365.25))

plot(decompose(corv_ts2))

Decomposition of additive time series

Next time...

Examining variance and correlation