Predictive Text Embedding through Large-scale Heterogeneous Text Networks

Jian Tang¹ Meng Qu² Qiaozhu Mei³

¹Microsoft Research Asia jiatang@microsoft.com

²Peking University mnqu@pku.edu.cn

³University of Michigan qmei@umich.edu

Made by Zejun Lin, 2017

Plan

- Motivation
 - Introduction
 - Existing Method
- 2 Model
 - Predictive Text Embedding
 - Bipartite Text Network
 - Heterogeneous Text Network Embedding
 - Text Embedding
- Experiment
 - Data Sets
 - Compared Algorithms
 - Classification
 - Quantitative Result
- Conclusion
 - Conclusion
 - Future Work

Introduction

To learn a meaningful and effective **representation of text**, there are two kinds of methods:

- Unsupervised method :
 - Skip-gram
 - Paragraph vector
- Supervised method :
 - CNN

Unsupervised Method

Advantages:

- Simple
- Scalable
- Effective
- Easy to tune and accommodate unlabeled data

Unsupervised method

PROBLEM

It yield inferior results (Compared to sophisticated deep learning architectures like CNN)

Reasons:

- Learn in a unsupervised way
- Not leverage the labeled information
- Embeddings learned are not particularly tuned for any task

Supervised Method

- Deep neural networks like CNN & RNN
- Disadvantages :
 - Computational
 - Need large amount of labeled examples
 - Exhaustive tuning of many parameters

Predictive Text Embedding

Characteristics:

- Semi-supervised
- Utilize both labeled & unlabeled data

Predictive text embedding

Process:

- Represent the text as a heterogeneous text network
- Embed the network into a low dimensional space using an algorithm

Characteristics of the network:

- Preserve the semantic closeness of words & documents
- Have a strong predictive power for the particular task

Bipartite Text Network

Three types of bipartite networks

- Word-Word Network
- Word-Document Network
- Word-Label Network

Heterogeneous text network is the combination of the above networks

Word-Word Network

(a) word-word network

Vertex : A word

Edge: The two words co-occur in a context window

Value of Edge: Number of times of co-occurrence

Word-Document Network

(b) word-document network

- Vertex : A word or a document
- Edge: The word occur in the document
- Value of Edge : Number of times of occurrence

Word-Label Network

(c) word-label network

Vertex : A word or a label

• Edge: The word occur in the label

• Value of Edge: Number of times of occurrence

Bipartite Network Embedding

- Given a bipartite network $G = (V_A \bigcup V_B, E)$,
- The **probability** of $v_i(v_i \in \mathcal{V}_A)$ **generated** by $v_j(v_j \in \mathcal{V}_B)$ is the softmax result of their cos similarity :

$$p(v_i|v_j) = \frac{e^{\vec{u_i}^T \cdot \vec{u_j}}}{\sum_{i' \in A} e^{\vec{u_i'}^T \cdot \vec{u_j}}}$$

Concepts in Network Embedding

First-order proximity

- Captured by the observed links in the networks
- Most existing algorithms like IsoMap, preserve it
- Many legitimate links are actually not observed in a real-world network.

Second-order proximity

- Determined through the shared neighborhood structures of the vertices
- That is, nodes sharing similar neighbors should be similar

Concepts in Network Embedding

Figure 1: A toy example of information network. Edges can be undirected, directed, and/or weighted. Vertex 6 and 7 should be placed closely in the low-dimensional space as they are connected through a strong tie. Vertex 5 and 6 should also be placed closely as they share similar neighbors.

Bipartite Network Embedding

Coming back here...

- So, here we get a vertex's conditional distribution $p(\cdot|v_j)$
- To preserve second-order proximity, make it close to its empirical distribution :

$$O = \sum_{j \in B} \lambda_j d(\hat{p}(\cdot|v_j), p(\cdot|v_j))$$

- Where,
 - λ_j importance of the vertex estimated by the **degree**
 - $\hat{p}(v_i|v_j)$ estimated by $\frac{w_{ij}}{deg_i}$
- Finally, omitting constants, we get :

$$O = -\sum_{(i,j)\in E} w_{ij} \log p(v_j|v_i)$$

Approach

- Optimized with SGD, using edge sampling & negative sampling
- Steps:
 - Sample a edge according to its proportion of weight
 - Sample K negative edges from a noise distribution $p_n(j)$
 - Optimize it

Heterogeneous Text Network Embedding

- Combine the three bipartite networks, we get a heterogeneous text network
- It encodes word co-occurrences at different levels :
 - Local Context Level
 - Document Level
 - Label Level

Objective Function

 An intuitive objective function is combining the three objective function :

$$O_{pte} = O_{ww} + O_{wd} + O_{wl}$$

Two Ways for Training

- Joint Training
 - Use labeled & Unlabeled data simultaneously
- Pre-training + Fine-tuning
 - Learn the embeddings with unlabeled data first
 - Fine-tune the embeddings with word-label network

Attention

Due to the **incomparability** of edges from different types of network, we **alternatively** sample from three sets of edges

Text Embedding

• Represent a piece of text $d = w_1, w_2, ..., w_n$ by averaging the word vectors :

$$\vec{d} = \frac{1}{n} \sum_{i=1}^{n} \vec{u}_i$$

 Which is actually the solution to minimize the Euclidean distance between words and texts

Data Sets

Table 1: Statistics of the Data Sets

	Long Documents								Short Documents		
Name	20ng	Wiki	IMDB	Corporate	ECONOMICS	GOVERNMENT	MARKET	DBLP	Mr	TWITTER	
Train	11,314	1,911,617*	25,000	245,650	77,242	138,990	132,040	61,479	7,108	800,000	
Test	7,532	21,000	25,000	122,827	38,623	69,496	66,020	20,000	3,554	400,000	
V	89,039	913,881	71,381	141,740	65,254	139,960	64,049	22,270	17,376	405,994	
Doc. length	305.77	672.56	231.65	102.23	145.10	169.07	119.83	9.51	22.02	14.36	
#classes	20	7	2	18	10	23	4	6	2	2	

^{*}In the Wiki data set, only 42,000 documents are labeled.

Data Sets

- Long Document Corpora :
 - 20NG 20newsgroup
 - WIKI a snapshot of Wikipedia corpus in April 2010
 - IMDB a data set for sentiment classification
 - RCV1 a large benchmark corpus for text classification
- Short Document Corpora :
 - DBLP titles of papers from the computer science bibliography
 - MR a movie review data set
 - TWITTER a corpus of tweets for sentiment classification

Compared Algorithms

- BOW
- Skip-gram
- PVDBOW
- PVDM
- LINE
- CNN
- PTE
 - PTE(G_{wl}) -> word-label network only
 - PTE(pretrain)
 - PTE(joint)

Classification

Procedure:

- Representation of documents
- Classification process
 - use the one-vs-rest logistic regression model in the LibLinear package

Results on Long Documents

Table 2: Results of text classification on ${\bf long}$ documents.

		20NG		Wikipedia		IMDB	
Type	Algorithm	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
Word	BOW	80.88	79.30	79.95	80.03	86.54	86.54
	Skip-gram	70.62	68.99	75.80	75.77	85.34	85.34
	PVDBOW	75.13	73.48	76.68	76.75	86.76	86.76
Unsupervised	PVDM	61.03	56.46	72.96	72.76	82.33	82.33
Embedding	$LINE(G_{ww})$	72.78	70.95	77.72	77.72	86.16	86.16
	$LINE(G_{wd})$	79.73	78.40	80.14	80.13	89.14	89.14
	$LINE(G_{ww} + G_{wd})$	78.74	77.39	79.91	79.94	89.07	89.07
	CNN	78.85	78.29	79.72	79.77	86.15	86.15
	CNN(pretrain)	80.15	79.43	79.25	79.32	89.00	89.00
D 11	$PTE(G_{wl})$	82.70	81.97	79.00	79.02	85.98	85.98
Predictive Embedding	$PTE(G_{ww} + G_{wl})$	83.90	83.11	81.65	81.62	89.14	89.14
Embedding	$PTE(G_{wd} + G_{wl})$	84.39	83.64	82.29	82.27	89.76	89.76
	PTE(pretrain)	82.86	82.12	79.18	79.21	86.28	86.28
	PTE(joint)	84.20	83.39	82.51	82.49	89.80	89.80

Results on Long Documents

- PTE jointly trained with G_{wl} > unsupervised of PTE (e.g. G_{ww})
 - Power of supervision
- $PTE_{joint} > PTE_{G_{wl}}$
 - Power of unlabeled information
- PTE_{joint} > PTE_{pretrain}
- PTE_{joint} > CNN

Results on Long Documents

- CNN_{pretrain} ≥ CNN
 - Useful to pretrain CNN with LINE's embedding
- CNN_{pretrain} < PTE_{joint}
 - CNN can only utilize the data separately
- $Time_{CNN} > 10 \cdot Time_{PTE_{joint}}$
- $Time_{CNN_{pretrain}} > 5 \cdot Time_{PTE_{joint}}$

Results on Long Documents – RCV1 data sets

Table 3: Results of text classification on long documents (RCV1 data sets).

	Corporate		Economics		Government		Market	
Algorithm	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
BOW	78.45	63.80	86.18	81.67	77.43	62.38	95.55	94.09
PVDBOW	65.87	45.78	79.63	74.82	70.74	54.08	91.81	88.88
$LINE(G_{wd})$	76.76	60.30	85.55	81.46	77.82	63.34	95.66	93.90
$PTE(G_{wl})$	76.69	60.48	84.88	80.02	78.26	63.69	95.58	93.84
PTE(pretrain)	77.03	61.03	84.95	80.63	78.48	64.50	95.54	93.79
PTE(joint)	79.20	64.29	87.05	83.01	79.63	66.15	96.19	94.58

Results on Short Documents

Table 4: Results of text classification on short documents.

		DBLP		MR		Twitter	
Type	Algorithm	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
Word	BOW	75.28	71.59	71.90	71.90	75.27	75.27
	Skip-gram	73.08	68.92	67.05	67.05	73.02	73.00
	PVDBOW	67.19	62.46	67.78	67.78	71.29	71.18
Unsupervised	PVDM	37.11	34.38	58.22	58.17	70.75	70.73
Embedding	$LINE(G_{ww})$	73.98	69.92	71.07	71.06	73.19	73.18
	$LINE(G_{wd})$	71.50	67.23	69.25	69.24	73.19	73.19
	$LINE(G_{ww} + G_{wd})$	74.22	70.12	71.13	71.12	73.84	73.84
	CNN	76.16	73.08	72.71	72.69	75.97	75.96
	CNN(pretrain)	75.39	72.28	68.96	68.87	75.92	75.92
	$PTE(G_{wl})$	76.45	72.74	73.44	73.42	73.92	73.91
Predictive	$PTE(G_{ww} + G_{wl})$	76.80	73.28	72.93	72.92	74.93	74.92
Embedding	$PTE(G_{wd} + G_{wl})$	77.46	74.03	73.13	73.11	75.61	75.61
	PTE(pretrain)	76.53	72.94	73.27	73.24	73.79	73.79
	PTE(joint)	77.15	73.61	73.58	73.57	75.21	75.21

Results on Short Documents

PET_{joint} not consistently outperform CNN:

- Word sense ambiguity (more serious on the short documents)
- CNN reduces it using word orders in local context

Effects of Labeled Data

Figure 2: Performance w.r.t. # labeled data.

Effects of Unlabeled Data

Figure 3: Performance w.r.t. # unlabeled data.

Conclusion

Unsupervised embeddings:

- For Long Document :
 - Document-Level word co-occurrence more useful than that of Local-Context-Level
 - Their combination not further improve the result
- For Short Document :
 - Local-Context-Level word co-occurrence more useful than that of Document-Level
 - Their combination further improve the result

Conclusion

Supervised embeddings:

- CNN handled labeled information more efficiently :
 - Especially on short document (Labeled data is sparse)
 - Because it has a more complicated structure to
 - Utilize word orders
 - Address word sense ambiguity
- PTE :
 - When labeled data is abundant, PTE is comparable or superior to CNN
 - Able to be jointly trained while CNN should be trained in an indirect way
 - Faster and easier to configure

Future Work

There is considerable room to improve PTE like:

- Considering the orders of words
- More reasonable way to represent document embeddings

Thank you!

