

Coin Flip Research

GAME PLAN

	Do degree-analysis on Pascal's Triangle.
	Create a bound for P,A,C,J each representing paths: passed, all that arrives there, first time arriving, not arrived yet.
	Why do different degrees add up to exponential?
	IMPORTANT!! Each number in row x in the Pascal's Triangle is between 1 to $\frac{2^x}{x}$. How does this relate to ours?
	How to prove that u/v is an exponential? First, by percentage (heuristics). Second, by Pascal's Triangle bounds.
	Model the diagonals using polynomials, and use algorithm to model the vertical by some adding algorithm. Do this for Pascal, then do this for Seth's triangle.
	Optimal triangle setups and such.
	Read up on rigorous processes of modeling.
	Make generalization of Pascal's Triangle $rac{1}{n!}\prod_{i=0}^n(x-i)$, dependent on diagonal n , layer x .
	Catalan numbers and parenthesis expressions' relations to this?
	$Lucas' theorem: \underline{https://www.quora.com/How-should-I-prove-that-if-n-2-k-1-k-in-mathbb-N-then-every-entry-in-row-n-of-Pascals-triangle-is-odd-for-example-if-k-2-then-n-3-and-row-3-is-1-3-3-1-Both-1-and-3-are-odd-so-the-statement-is-true-for-k-2.}$
	Figure out how to get polynomials for Pascal's Triangle's diagonals, and why they sum up horizontally to be 2^n .
	Relate that to the Seth Triangle.
П	Understand this.

Publication

Waterloo Journal of Integer Sequences: https://cs.uwaterloo.ca/journals/JIS/.

Colgate INTEGERS: http://math.colgate.edu/~integers/. Too difficult.

American Journal of Undergraduate Research: http://www.ajuronline.org/submissions/.

• There could be some water-ish stuff in the one above, especially in mathematics.

The Mathematical Intelligencer.

•
$$P(x,y) = P(x-1,y+1) + P(x-1,y-1)$$
.

- $P(x,0) = 2^x$.
- P(x,x) = 1.
- P(x, x 1) = 2.
- ✓ Find a local file storing way to create storage for R function results.
- Figure out time complexity.
- Find a way to conquer the 60 barrier.
 - \checkmark Find relationship between P(x,y) and P(x+1,y).

▼ Problem Description

• Standing at 0 on the number line. When a coin is flipped, heads mean right and tails mean left. Make a function P(x,y) returning the number of result combinations of x coin flips that arrives at position y at any instance. Note that evidently, the ordering within these x coin flip matters.

▼ Intuition 1 —

- Split the condition-satisfying permutations into groups. For instance, y (minimum number) heads total, y+1 heads total, etc. They do not overlap.
- Recursion. Have another function R(x,y,z), with z denoting the number of heads achieved.
- If z are all in the first z+(z-y)=2z-y coin slots, the permutation counts.

▼ Formula Design

- Have P(x,y) as the big function, and R(x,y,z) as the recursive function.
- Definitions.

```
 \begin{array}{l} \circ \ \ P(x,y) = \sum_{i=0}^{x-y} R[x,y,y+i]. \\ \circ \ \ R(x,y,z) = \sum_{i=0}^{\max(0,\min(z-y,x-(2z-y)))} R[(\min(x,2z-y),y,z-i) \times \binom{\max(1,x-\min(x,2z-y))}{i})]. \\ \circ \ \ \text{For } R(x,y,z), \text{ if } y=z, \text{ then } R=1. \\ \circ \ \ \text{For } R(x,y,z), \text{ if } 2z-y \geq x, \text{ then } R=\binom{x}{s}. \end{array}
```

▼ Implementation

▼ Brute force code.

```
// Brute force calculate the permutations of P(x, y).
// Time complexity: O(2^n). Exponential.
class BruteP {
    public static int bruteP(int x, int y) {
        Brute force, 0(2^x) time.
        Function:
         - Simulates all the possible permutations of \boldsymbol{x} coins through an \boldsymbol{x}-sized boolean array.
        - Uses reached() to examine each array; count the total number of arrays that reach the target.
        Note: x = 20 is pushing the limits.
       int howManyReach = 0;
       BigInteger bi = BigInteger.ZERO;
       BigDecimal rows = BigDecimal.valueOf(Math.pow(2, x));
       while (bi.compareTo(rows.toBigInteger()) < 0) {</pre>
           StringBuilder bin = new StringBuilder(bi.toString(2));//Integer.toBinaryString(i);
           while (bin.length() < x)
              bin.insert(0, "0");
            char[] chars = bin.toString().toCharArray();
           boolean[] boolArray = new boolean[x];
           for (int j = 0; j < chars.length; j++) {
   boolArray[j] = chars[j] == '0';</pre>
            howManyReach += reached(boolArray, y);
            bi = bi.add(BigInteger.ONE);
```

```
}
    return howManyReach;
}

// Input an array and see if it reaches the target.
public static int reached(boolean[] list, int y) {

    int k = 0;
    for (boolean b : list) {
        if (b) {
            k++;
        } else {
            k--;
        }
        if (k == y) {
            return 1;
        }
    }
    return 0;
}
```

▼ P1 code.

```
// Recursively defined P, splitting it according to the number of heads.
// Time complexity: honestly I don't know. Need to figure this out.
    // Smartly calculates the number of permutations of \boldsymbol{x} coins reaching \boldsymbol{y} distance.
    public static long P(int x, int y) {
        long totalP = 0;
        for (int i=0; i<=x-y; i++) {
            totalP += R(x, y, y+i);
        return totalP;
    // Recursively calculates the number of permutations of x coins reaching y distance, with z coins facing up.
    public static long R(int x, int y, int z) \{
        if (y == z) {return 1;}
        if (2*z - y \ge x) {return choose(x, z);}
        long totalR = 0;
        int k1;
        int k2;
        int k3;
        int k4 = 2*z-y;
        k1 = Math.max(0, Math.min(z-y, x-k4));
        k2 = Math.min(x, k4);
        k3 = Math.max(1, x-k2);
        for (int i=0; i<=k1; i++) {
            totalR += R(k2, y, z - i) * choose(k3, i);
        }
        return totalR;
    }
    // The "choose()" function is essential to combinatorics.
    static final Map<Long, Map<Long, Long>> map = new HashMap<>();
    public static long choose(long total, long choose) {
        if(total < choose)
            return 0;
        if(choose == 0 || choose == total)
            return 1;
        \quad \text{if (!(map.containsKey(total) \&\& map.get(total).containsKey(choose)))} \\ \{
            map.put(total, new HashMap<>());
            \verb|map.get(total).put(choose, choose(total-1, choose-1) + choose(total-1, choose));|\\
        return map.get(total).get(choose);
    }
}
```

▼ P2 code.

```
{\it // Much improved dynamic programming approach. Still using a recursively defined sequence C, but much faster.}
// Time complexity: 0(n^2 * 0(choose)). Since we use HashMap, 0(choose) is likely 0(1), but I'm unsure. Need to ponder.
class P2 {
    // Smartly calculates the number of permutations of \boldsymbol{x} coins reaching \boldsymbol{y} distance.
    public static BigInteger P(int x, int y) {
        BigInteger[] C = new BigInteger[((x-y)/2)+1];
        BigInteger p = new BigInteger("0");
        BigInteger two = new BigInteger("2");
        for (int i=0; i<C.length; i++) {
             BigInteger overlap = new BigInteger("0");
             for (int j=0; j<i; j++) \{
                 overlap = overlap.add(C[i-j-1].multiply(choose((long)\ 2^*(j+1),\ (long)\ j+1)));\\
             C[i] = choose(y+((long) 2*i), (y+(long) i)).subtract(overlap);
             p = p.add(C[i].multiply(two.pow(x-y-(2*i))));
        return p;
    }
    // The "choose()" function is essential to combinatorics.
    static final Map<Long, Map<Long, BigInteger>> map = new HashMap<>();
    \verb"public static BigInteger choose(long total, long choose) \{
        if(total < choose)
        return new BigInteger("0");
if(choose == 0 || choose == total)
            return new BigInteger("1");
         \  \, \text{if (!(map.containsKey(total) \&\& map.get(total).containsKey(choose)))} \{ \\
             map.put(total, new HashMap<>());
             \verb|map.get(total).put(choose, choose(total-1, choose-1).add(choose(total-1, choose)));\\
        return map.get(total).get(choose);
   }
}
```