

Projeto de um IP Soft Core para Detecção de Ataques DDoS

Aluno: Pedro Lucas Falcão Lima Orientador: Ricardo Jardel Nunes da Silveira

Motivação

Objetivos

- Realizar detecção em tempo real.
- Módulo em hardware com maior desempenho em relação a softwares e trabalhos similares.
- Desenvolvimento utilizando métodos otimizados, agregando agilidade e confiabilidade.

Técnicas Utilizadas nas operações aritméticas

- -Operações comuns
- Média Aritmética
- Utilização de IP cores
- Aritmética de ponto fixo

FPGAs

FPGAs oferecem adaptabilidade dinâmica, que é importante para aplicações que requerem

mudanças frequentes em suas configurações, como a detecção de ataques DDoS que evoluem com freqüência.

Em poucas palavras, é necessário a construção de um módulo em hardware que realize os métodos estatísticos, especificamente a correlação.

Cálculos de correlação

(X[3], Y[3]) = Vectors to be measured

TH = Threshold

1.
$$M_X = \frac{X_1 + X_2 + X_3}{3}$$
, $M_Y = \frac{Y_1 + Y_2 + Y_3}{3}$

2.
$$(M_X)^2 = M_X \times M_X$$
, $(M_Y)^2 = M_Y \times M_Y$

$$3. \quad M_{X^2} = \frac{X_1^2 + X_2^2 + X_3^2}{3} \,, \quad M_{Y^2} = \frac{Y_1^2 + Y_2^2 + Y_3^2}{3}$$

4.
$$SD_X = \sqrt{|M_{X^2} - (M_X)^2|}$$
, $SD_Y = \sqrt{|M_{Y^2} - (M_Y)^2|}$

5.
$$N_1 = |X_1 - Y_1|$$
, $N_2 = |X_2 - Y_2|$, $N_3 = |X_3 - Y_3|$

6.
$$D_1 = ||M_X - SD_X| - X_1| + ||M_Y - SD_Y| - Y_1|,$$

 $D_2 = ||M_X - SD_X| - X_2| + ||M_Y - SD_Y| - Y_2|,$
 $D_3 = ||M_X - SD_X| - X_3| + ||M_Y - SD_Y| - Y_3|$

7.
$$NaHiD_{VERC}(X,Y) = |1 - \frac{\frac{N_1}{D_1} + \frac{N_2}{D_2} + \frac{N_3}{D_3}}{3}|$$

8.
$$A \Leftrightarrow TH > NaHiD_{VERC}(X, Y)$$

$$\begin{aligned} ax_1 &= X_1 + X_2 \,, \quad ay_1 &= Y_1 + Y_2 \,, \quad M_X &= \frac{ax_1 + X_3}{4} \\ M_Y &= \frac{ay_1 + Y_3}{4} \,, \quad mx_1 = X_1^2 \,, \quad mx_2 = X_2^2 \\ mx_3 &= X_3^3 \,, \quad my_1 = Y_1^2 \,, \quad my_2 = Y_2^2 \,, \quad my_3 = Y_3^2 \\ (M_X)^2 &= M_X \times M_X \,, \quad (M_Y)^2 &= M_Y \times M_Y \\ amx_1 &= mx_1 + mx_2 \,, \quad amy_1 &= my_1 + my_2 \\ M_{X^2} &= \frac{amx_1 + mx_3}{4} \,, \quad M_{Y^2} &= \frac{amy_1 + my_3}{4} \\ V_X &= |M_{X^2} - (M_X)^2| \,, \quad V_Y &= |M_{Y^2} - (M_Y)^2| \\ SD_X &= \sqrt{V_X} \,, \quad SD_Y &= \sqrt{V_Y} \\ MSD_X &= |M_X - SD_X| \,, \quad MSD_Y &= |M_Y - SD_Y| \\ DX_1 &= |MSD_X - X_1| \,, \quad DY_1 &= |MSD_Y - Y_1| \\ DX_2 &= |MSD_X - X_2| \,, \quad DY_2 &= |MSD_Y - Y_2| \\ DX_3 &= |MSD_X - X_3| \,, \quad DY_3 &= |MSD_Y - Y_3| \\ D_1 &= DX_1 + DY_1 \,, \quad D_2 &= DX_2 + DY_2 \,, \quad D_3 &= DX_3 + DY_3 \\ N_1 &= |X_1 - Y_1| \,, \quad N_2 &= |X_2 - Y_2| \,, \quad N_3 &= |X_3 - Y_3| \\ Q_1 &= \frac{N_1}{D_1} \,, \quad Q_2 &= \frac{N_2}{D_2} \,, \quad Q_3 &= \frac{N_3}{D_3} \\ aQ_1 &= Q_1 + Q_2 \,, \quad aQ_2 &= \frac{aQ_1 + Q_3}{4} \\ NaHiD_{VERC} &= |1 - aQ_2| \,, \quad aT = NaHiD_{VERC} - TH \end{aligned}$$

Nahid

"Módulo de mais alto nível"

Relação entre componentes e módulo

Controller

Controller

Relatório de Utilização

\\ //							
	Tipo	Usado	Disponível	Utilização(%)			
	CLB LUTs*	1905/1302	28800/216960	0.6/ ⁻ 0.6			
LUT as Logic		1891/1301	28800/216960	0.6/ ⁻ 0.6			
LUT as Memory		14/1	7860/99840	0.01/<0.01			
Lut as Shifter Register		14/1					
CL	.B Registers	1131/1180	28800/433920	0.3/0.27			
Register as Flip Flop		1255/1122	2386/433920	52/0.26			
Frequency(MHZ)		118/120					

Análise de detecção

Detecção	Matlab	Módulo	Erro(%)
1-(P1=365,P2=252,P3=953,D1=140,D2=200,D3=970)	0,82493	0,95585	1
2-(P1=128,P2=515,P3=852,D1=130,D2=470,D3=970)	0,96874	0,96625	1.02
3-(P1=150,P2=300,P3=853,D1=123,D2=340,D3=876)	14/1	0,95468	0.9

Detector	Artigo de Comparação	Trabalho Proposto	Software(Matlab)
Tempo de Detecção	354 ns	350 ns	296 µs

Simulação

1	15 clk	0							
2	> 🧠 cycle[5:0]	19	19	X 39 X	40	41	42		
9	a execution	1							
10	15 attack	0						-	
11	15 finish	0							
12	> 3 R11resul[19:0]	2048.0	2048.0	0.54296875	0.6875	0.171875	0.828125		
33	> 🧠 threshold[19:0]	0.851562					0.8515625		
54	> 🥱 Rx1[10:0]	365					365		
66	> = Rx2[10:0]	252					252		
78	> 🧠 Rx3[10:0]	953					953		
90	> 🧠 Ry1[10:0]	140					140		
102	> 🧠 Ry2[10:0]	200					200		
114	> = Ry3[10:0]	970					970		

Ganhos em tempo de execução e de utilização de recursos.

Precisão considerável nos resultados de correlação

Utilização de uma FPGA mais recente e de baixo custo

Resultados melhores ou similares

Utilização de componentes, da IDE Vivado da Xilinx

Agilidade no desenvolvimento e confiabilidade

Trabalhos Futuros

A implementação de um sistema completo de verificação funcional do módulo implementado, bem como a realização de testes do mesmo em uma FPGA inserida em um ambiente de real, submetido um ataque DDoS intencional.

Bibliografia

- ♦ HOQUE, N. et al. Real-time DDoS Attack Detection Using FPGA. Computer Communications, v. 110, n. Supplement C, p. 48 58, 2017. ISSN 0140-3664. Disponível em: http://www.sciencedirect.com/science/article/pii/S0140366416306442.
- ♦ YU, S. et al. Discriminating ddos attacks from flash crowds using flow correlation coefficient. IEEE Transactions on Parallel and Distributed Systems, IEEE, v. 23, n. 6, p. 1073–1080, 2012.
 - ♦ HEATH, S. Embedded systems design. [S.I.]: Newnes, 2002.
- ♦ ALECRIM, E. Ataques DoS (Denial of Service) e DDoS (Distributed DoS).

[S.I.]: Disponível na Internet em< http://www. infowester. com/col120904. php> em, 2008.

Alguma pergunta?

Você pode me achar em:

- pedrolfalc@gmail.com
- 999084309

