

Esami di Stato per l'abilitazione alla professione di Ingegnere Specialistico Sessione II- 2004 - Prova di settore Ingegneria Informatica- Tema n. 3

CONTROLLO DIGITALE DI POSIZIONE DI UN BRACCIO MECCANICO

Si consideri lo schema di Figura 1, che descrive un braccio meccanico (comprensivo di utensile) di momento d'inerzia J_2 e posizione angolare θ , mosso da un motore elettrico a corrente continua tramite un riduttore ad ingranaggi di rapporto di riduzione τ , la cui rigidità torsionale media sia indicata con K_r . Il momento d'inerzia del gruppo motore-riduttore sia j_1 . I coefficienti di attrito viscoso siano indicati con β_p , i=1,2. Il motore sia alimentato da un alimentatore in grado di fornire al motore una corrente I(t) proporzionale alla tensione di comando V(t). Il guadagno dell'alimentatore sia indicato con A. Sul braccio agisca una coppia resistente C_2 e sull'albero motore una coppia di attrito redente A_1 . Il rapporto di riduzione τ sia definito come $\tau = \omega_m/\omega_r$, Φ indichi il flusso motore o costante di coppia del motore a corrente continua e θ_m la posizione angolare dell'albero motore. Il braccio ruoti in un piano verticale i cui riferimenti siano definiti come in Figura 2. Si assuma che in assenza di utensile (M=0), l'asse di rotazione Z (ortogonale a X e Y) sia baricentrico. Si assuma un campo di rotazione di θ pari a $\pm \pi$.

Figura 1 - Schema elettromeccanico

Figura 2 - Schema geometrico

Esami di stato 2004 - II Spec

TEMI DA SVOLGERE

Parte I:

Analisi dinamica temporale (4 punti)

Si scrivano, a partire dagli schemi di Figura 1 e Figura 2 e dai dati di Tabella 1, le equazioni di stato a tempo continuo in forma letterale e numerica, scegliendo con cura ingressi (comando e disturbi) e variabili di stato. Le variabili vengono riportate in una tabella apposita. Le equazioni di stato vengano scritte nel modo più chiaro e ordinato possibile.

Si calcolino, trascurando attrito radente e coppia di gravità, gli autovalori dell'equazione di stato in forma approssimata, assumendo che gli autovalori siano separabili in due autovalori di bassa frequenza e in due autovalori di alta frequenza. Ad esempio, per calcolare gli autovalori di alta frequenza, si approssimi l'equazione degli autovalori nell'ipotesi che due radici siano di modulo elevato (lontane dall'origine). Si riporti per ciascun autovalore la formula approssimata ed il valore numerico in un'apposita tabella. Si calcolino anche frequenza naturale, smorzamento e costanti di tempo se del caso.

Tabella 1 - Dati numerici dei parametri.

Nome	Simbolo	Unità di misura	Valore
Rigidità torsionale riduttore	K_r	Nm	100000
Rapporto di riduzione	τ		160
Massa utensile	M	kg	≤2
Lunghezza braccio	l	m	1
Momento di inerzia complessivo braccio e contrappeso	J_2	Kgm ²	10
Flusso motore	φ	Vs	0.2
Attrito viscoso albero primario	β_{l}	Nms	0.001
Attrito viscoso albero secondario	β_2	Nms	0
Guadagno dell'alimentatore	A	A/V	1
Momento d'inerzia complessivo motore e riduttore	J_1	Kgm ²	0.0004

Parte II: Dimensionamento di massima di Unità Digitale di Controllo (UDC)

Requisiti dell'UDC

- 1. Il braccio ruoti nel piano verticale; dati geometri in Tabella 2.
- 2. Il movimento sia del tipo punto-punto e soddisfi i vincoli cinematici di Tabella 2 che limitano le traiettorie di riferimento.
- 3. Tolleranza sull'errore di posizione rispetto al riferimento come da Tabella 2.
- 4. Requisiti dinamici: tempo di assestamento dell'errore da movimento e presa punto come da Tabella 2.
- 5. Misura: trasduttore digitale di posizione angolare (encoder incrementale) montato sull'albero secondario (solidale al braccio).
- 6. Motore elettrico e motoriduttore si assumano prescelti. I loro parametri sono in Tabella 3.

New 3

Tabella 2 - Requisiti.

Nome	Simbolo	Unità di misura	Valore
Geometria		14-1-15-15	
Massa utensile	M	kg	_ ≤2
Lunghezza braccio	1	m	1
Momento di inerzia complessivo braccio e contrappeso	J_2	Kgm ²	10
Cinematica			
Velocità angolare max	w _{max}	rad/s	1.5
Accelerazione angolare max	amax	rad/s ²	2
Campo di movimento	$\theta_{min}\theta_{max}$	rad	-π, π
Tolleranze			
In presa punto (riferimento fermo)	3	mrad	≤1
In movimento	ε _m	mrad	≤5
Dinamica			
Tempo di assestamento	σ	S	≤0.5

Tabella 3 - Parametri di motore e riduttore

Nome	Simbolo	Unità di misura	Valore
Rigidità torsionale riduttore (sul secondario)	K _r	Nm	81870 (±10%)
Rapporto di riduzione	τ		157
Coefficiente di attrito viscoso (sul primario)	β_r	Nms	0.00067 ÷ 0.0017
Attrito radente (sul primario)	A_r	Nm	0.02÷0.09
Momento d'inerzia (sul primario)	J_r	Kgm ²	0.000194
Flusso motore	φ	Vs	0.172
Attrito viscoso motore	β_m	Nms	0.00033
Attrito radente motore	A_m	Nm	0.03
Guadagno dell'alimentatore	A	A/V	1
Momento d'inerzia motore	J_m	Kgm ²	0.00016

Dimensionamento dell'UDC (6 punti)

Si dimensioni un'unità digitale di controllo che soddisfi i requisiti del punto precedente. Ogni scelta deve essere chiaramente giustificata con una diseguaglianza o formula.

1. Campionamento, trasduttore di posizione e quantizzazione comando.

- Si scelga la frequenza di campionamento f dell'Unità Digitale di Controllo; nella scelta di f si tenga presente che la vibrazione fondamentale del gruppo motore-riduttore-braccio è incerta al 10% e accompagnata da armoniche (fino alla quarta).
- Si scelga il livello di quantizzazione ρ [rad] del trasduttore di posizione angolare ed il suo numero *m* di cifre binarie. Si scelga di conseguenza l'encoder ottico incrementale dalla Tabella 4.

Spec H4

• Si calcoli la corrente max del motore al termine della fase di accelerazione, si stabilisca il livello di quantizzazione ρ_u [A] del comando ed il suo numero n di cifre binarie.

Modello di progetto e dinamica errore relativa

- Si impostino le equazioni di stato tempo-discrete con cui progettare il controllo, nell'ipotesi di motoriduttore ideale (privo di deformazione torsionale) tra motore e braccio. Si ponga cura nella descrizione dei disturbi (incogniti, noti e a modello noto). Se ne tracci con cura lo schema a blocchi con i valori numerici dei guadagni. Le variabili di stato devono avere tutte la stessa unità di misura: posizione angolare [rad].
- Si valuti la dinamica errore relativa imposta dalla vibrazione fondamentale del gruppo motore-riduttore-braccio calcolandone la FdT, la sua sovraelongazione e la frequenza corrispondente. Se ne tracci il modulo della risposta armonica su foglio di carta millimetrata (un punto per ottava a partire da una frequenza minima a scelta) entro la f_{tras} del controllo.

Predittore degli stati

- Si progetti il *predittore a un passo degli stati*; si descrivano le equazioni di stato relative e se ne tracci lo schema a blocchi, indicandone chiaramente ingressi e uscite.
- Si operi una scelta numerica degli autovalori, tenendo presente la dinamica errore relativa.
- Sulla base della scelta precedente si calcolino i guadagni del predittore e si verifichi se il tempo di assestamento sia rispettato (transitorio dall'errore max in movimento all'errore max in presa-punto).

4. Compensazione automatica (asservimento) e dei disturbi

- Si assuma di disporre ad ogni passo del controllo delle traiettorie desiderate di posizione e velocità e del comando nominale calcolati da un generatore di traiettorie in tempo reale che soddisfi i requisiti di Tabella 2.
- Si progetti la legge di comando (asservimento e compensazione dei disturbi) e se ne tracci lo schema a blocchi, ponendo in evidenza i suoi ingressi e le sue uscite.
- Si operi una scelta numerica dei suoi guadagni e si spieghino gli effetti di una loro diminuzione o aumento.

Tabella 4 -Encoder ottici incrementali (numero di righe elettriche = 4 volte il numero delle righe ottiche)

Тіро	Numero di righe ottiche
125	2000
125	2048
125	2500
425	3000
125	3600
125	4096
425	4500
125	5000
255	6000
255	7854
255	8192