Fiabilité des projections des modèles d'aire de répartition des arbres forestiers d'Europe

2021-2024

Quelle est l'origine de leur robustesse ?

- ▶ les hypothèses du modèle (relations mécanistes vs. statistiques) ?
- ▶ la façon dont les paramètres sont estimés ?

Quelle est l'origine de leur robustesse ?

- ▶ les hypothèses du modèle (relations mécanistes vs. statistiques) ?
- ▶ la façon dont les paramètres sont estimés ?

Modèles : PHENOFIT, CASTANEA, FORCEPS ? + plusieurs modèles corrélatifs

Versions plus ou moins complètes, et paramétrées différemment

Quelle est l'origine de leur robustesse ?

- ▶ les hypothèses du modèle (relations mécanistes vs. statistiques) ?
- ▶ la façon dont les paramètres sont estimés ?

Modèles : PHENOFIT, CASTANEA, FORCEPS ? + plusieurs modèles corrélatifs

Versions plus ou moins complètes, et paramétrées différemment

- **Périodes :** passé lointain (Holocène)
 - passé proche (1850-2015)
 - présent (calibration)
 - futur proche (2025-2100)

Efficiency/accuracy: ability of the model to provide accurate <u>predictions</u> in conditions that have been used to calibrate the model

Robustness: ability of the model to provide accurate <u>projections</u> in external conditions, i.e. other conditions than those used to calibrate the model

⇒ determines its **transferability in time** and space

(Janssen and Heuberger, 1995; Asse et al., 2020)

Correlative vs process-based : non-exhaustive state of the art

▶ Présent

- Shabani et al. (2016): Climex vs. 5 CSDMs (calibration : outside Australia, evaluation : Australia)
- Higgins et al. (2020): TTR-SDM vs. Maxent (calibration: Australia, evaluation: outside Australia)
- *Gritti et al. (2013)* : STASH, LPJ, et PHENOFIT
- *Magarey et al. (2018) :* TTR-SDM vs. Maxent (calibration : outside US, evaluation : US)

► Futur

- Cheaib et al. (2012): PHENOFIT, CASTANEA et 2 CSDMs...
- *Morin and Thuiller (2009) :* PHENOFIT vs. Biomod
- *Kearney et al. (2010) :* NicheMapper vs. Maxent
- Keenan et al. (2011) : GOTILWA+ vs. Biomod
- Schneiderman et al. (2015): LINKAGES 2.2 vs. TreeAtlas model
- Kramer et al. (2010) : LPJ-GUESS vs. Biomod

And so on...

Modèle phénologique corrélatif vs. modèles basés sur les processus paramétrisés différemment:

- ▶ entièrement à partir des données (backward)
- ► en fixant certains paramètres grâce à des données expérimentales (partly **forward**)

Modèle phénologique corrélatif vs. modèles basés sur les processus paramétrisés différemment:

- ▶ entièrement à partir des données (backward)
- ► en fixant certains paramètres grâce à des données expérimentales (partly **forward**)

« Our results show that robustness of process-based models can come additionally from forward parameter estimation, but also that forward parameter estimation is not necessarily the Holy Grail that we should seek. »

Modèle phénologique corrélatif vs. modèles basés sur les processus paramétrisés différemment:

- ▶ entièrement à partir des données (backward)
- ► en fixant certains paramètres grâce à des données expérimentales (partly **forward**)

« Our results show that robustness of process-based models can come additionally from forward parameter estimation, but also that forward parameter estimation is not necessarily the Holy Grail that we should seek. »

⇒ Et pour les modèles d'aire de répartition ?

Data Recent past - Present Occurence data Environmental data Pure forest stands with tree positions

Data Paleo Recent past - Present Occurence data Occurence data Reconstructed Environmental data environmental data Refugia Pure forest stands with tree positions

Data Paleo Recent past - Present *Future* Projected Occurence data Occurence data environmental data Reconstructed Environmental data environmental data Pure forest stands with Refugia tree positions Which resolution? Which extent?

Paleo	Recent past - Present	Future
Occurence data	Occurence data	
European Pollen Database (see Giesecke et al. 2017)	ICP Forest National forest inventories	
Refugia	Pure forest stands with tree positions	
Reconstructed environmental data:	Environmental data:	Projected environmental data:
- climatic	- climatic	- climatic
TraCE-21ka (Paleoview + BioSIM)	SAFRAN (France) CRU, ATEAM	EURO-CORDEX
- edaphic	- edaphic	- edaphic
EU-SoilHydroGrids	EU-SoilHydroGrids	EU-SoilHydroGrids
- land use	- land use	- land use
HYDE 3.1	HYDE 3.1, CLC	GRAS

l.	S		
	Correlative		
	Common framework		
	Point-process model Maxent		
	GAM GLM Random forest		
	Boosted regression tree etc.		
	Ensemble model		

Correlative Common framework		
		Point-pro
GAM	GLM Rar	ndom forest
Boosted r	Boosted regression tree etc.	
Ensemble model		
Calibration		
V	Which predictors	?
Which model validation technique?		

Correlative Common framework		Process-based	
Tomit process model	Waxen	PHENOFIT 4	CASTANEA
GAM GLM Ra	andom forest	PHENOFIT 5 ?	FORCEEPS ?
Boosted regression tree	etc.		
Ensemble mod	el		
alibration			
	2		
Which predictor	'S ?		

Correlative		Process-based	
Common framewo	ork	,	
Point-process model	Maxent	Versions of vary	ying complexity
		PHENOFIT 4	CASTANEA
GAM GLM Rai	ndom forest	PHENOFIT 5 ?	FORCEEPS ?
Boosted regression tree	etc.	Calibration	
Ensemble mode	1	Forward	Backward
Calibration		Current settings ? New parameterisation ?	Which optimisation method ?
Which predictors	?		
Which model validation t	echnique?		

Challenges							
	Non-identifiability	Estimation of parameter uncertainties	Computational cost				

Non-identifi	ability 	bility Estimation of parameter uncertainties (Computational cost	
			– – – – – Framewo	 ork	
Programming	language			Strategy	
JAVA		R ; Java code ? rJAVA	etc.	Free data-drive	n Prior knowledge
Algorithm	Para	llel implementat	cion	Objective(s) function	ı(s)

	- — — —
comparison of predictions	
	ļ

Comparison of predictions

Comparison of predictions

Absolute differences

Explicit comparisons

Spatially: map comparisons, positions of range front/centre/rear edge, etc.

Ecologically: % newly suitable cells, used habitat calibration plots, shapes of response curves, etc.

Climatically: performance under novelty

Comparison of predictions

Metrics **AUC-ROC AUC-POC** Point-bisserial cor. Remaining deviance **RMSE** 1-Brier score Sensitivity Specificity Prevalence Coefficient of residual mass F-measures Boyce ind. **AUC-PR** MAE **TSS** etc.

Quantify similaraties between the reference and projection domains: define a forecast horizon?

Approaches

Absolute differences

Explicit comparisons

Spatially: map comparisons, positions of range front/centre/rear edge, etc.

Ecologically: % newly suitable cells, used habitat calibration plots, shapes of response curves, etc.

Climatically: performance under novelty

Absolute differences

Higgins et al. (2020)

Spatially explicit comparisons

Kearney et al. (2010)

Congruence between model predictions

Spatially explicit comparisons

Scale-dependent comparisons (CMP method)

Spatially explicit comparisons

Deviance between models

Spatially explicit comparisons

Higgins et al. (2020)

MaxEnt versus TTR-SDM-Standard

Spatial disagreement

Ecologically explicit comparisons

Morrin et Thuiller (2009)

Extinction, colonization

Ecologically explicit comparisons

Morrin et Thuiller (2009)

Percentage of extinction

Ecologically explicit comparisons

Cheaib et al. (2012)

Suitable, unsuitable

Climatically explicit comparisons

Maguire et al. (2016)

Fitzpatrick et al. (2018)

Performance under climatic novelty

Define a "forecast horizon", beyond which sufficiently useful predictions can no longer be made (Petchey et al, 2015)

Others climatic mechanisms?

Climate novelty...

Burke et al. (2019), adapted from Ordonnez et al. (2016)

Others climatic mechanisms?

Climate variable 1 climate novelty

Climate displacement

Climate divergence

Burke et al. (2019), adapted from Ordonnez et al. (2016)

Points à aborder

- ▶ Données
- ▶ Période de terrain
- ► Stratégie pour l'inverse modelling
- ► Interactions avec l'équipe en fonction du calendrier (fréquence, déplacements, outils de travail)
- **▶** Publications

Paleo	Recent past - Present	Future
Occurence data	Occurence data	
European Pollen Database (see Giesecke et al. 2017)	ICP Forest National forest inventories	
Refugia	Pure forest stands with tree positions	
Reconstructed environmental data:	Environmental data:	Projected environmental data:
- climatic	- climatic	- climatic
TraCE-21ka (Paleoview + BioSIM)	SAFRAN (France) CRU, ATEAM	EURO-CORDEX
- edaphic	- edaphic	- edaphic
EU-SoilHydroGrids	EU-SoilHydroGrids	EU-SoilHydroGrids
- land use	- land use	- land use
HYDE 3.1	HYDE 3.1, CLC	GRAS

Publications potentielles

- ► (Article 1 : méthode pour la calibration *backward*)
- ► Article 2 : Paléo, passé lointain
- ► Article 3 : Passé récent
- ► Article 4 : Futur
- ► (Article 5 : incertitudes des modèles, ensemble des périodes)