

Mathematical Modelling and Geometry

Том 8, No 3, стр. 1 – 14 (2020)

doi:10.26456/mmg/2020-831

Формализм базиса Паули в квантовых вычислениях

В. В. Никонов a and А. Н. Цирулёв b

Факультет математики, Тверской государственный университет, Садовый пер. 35, Тверь, Россия

e-mail: ^a nikonov.vv@tversu.ru ^b tsirulev.an@tversu.ru

Получено 1 декабря 2020, в окончательной форме 28 декабря. Опубликовано 30 декабря 2020.

Abstract. Эта статья посвящена квантовым вычислениям в базисе Паули, элементы которого обычно отождествляются со строками Паули. Этот подход позволяет представлять квантовые состояния, наблюдаемые величины и унитарные операторы в единой форме линейной комбинации строк Паули, так что все операции могут быть сведены к композициям строк. Тем не менее, формальное обоснование использования базиса Паули для квантовых вычислений должно основываться на сильных результатах комплексной линейной алгебры и теории гильбертовых пространств. Мы кратко рассматриваем основные особенности строк Паули для квантовых состояний и унитарных операторов, а также ключевые операции с ними, включая алгоритм для композиций строк и алгоритм преобразования из стандартного базиса в базис Паули.

Keywords: квантовые вычисления, базис Паули

MSC numbers: 81P16, 81P68

[©] Автор(ы) 2020. Опубликовано Тверским государственным университетом, Тверь, Россия

1. Введение

Теория квантовых вычислений остается в центре внимания на протяжении последних двух десятилетий. Различные типы и подтипы квантовых вычислений адаптированы для различных технологий и архитектур аппаратного обеспечения, но их математические структуры построены с использованием одних и тех же основных понятий гильбертова пространства, квантовой наблюдаемой величины, унитарного оператора и квантового состояния. В этой статье мы рассматриваем взаимодействующую составную квантовую систему, состоящую из n идентичных двухуровневых подсистем (кубитов), так что размерность соответствующего гильбертова пространства равна 2^n . Квантовое вычисление в чистом состоянии с числом вентилей, которое полиномиально зависит от числа кубитов, может быть эффективно смоделировано классически. Поскольку универсальный квантовый компьютер, демонстрирующий квантовое превосходство, должен иметь большое количество кубитов, скажем, n > 1000, число базисных состояний составляет $2^n > 10^{300}$. Квантовые компьютеры с малым числом кубитов $(n \sim 100)$, которые будут доступны в ближайшее время, должны использоваться вместе с классическим компьютером. В обоих случаях многокубитные квантовые вычисления очень чувствительны к выбору вычислительного базиса [1, 2, 3].

Существует два общих варианта выбора базиса, и какой из них более эффективен, зависит как от данного алгоритма, так и от конкретного типа квантового компьютера. Во-первых, мы можем использовать стандартный ортонормированный базис в гильбертовом пространстве и затем построить подходящий базис в алгебре линейных операторов. Однако этот подход оказывается неудобным и неестественным при рассмотрении задач, связанных со смешанными состояниями, графовыми состояниями [4], коррекцией ошибок [3, 5, 6], тензорными сетями [7, 8, 9] и более общими вопросами, где измерения не являются проективными [10, 11, 12]. Второй вариант напрямую работает с базисом в алгебре операторов, и в этом случае элементы базиса обычно не могут быть разложены в тензорное произведение некоторых кет и бра векторов; базис Паули считается наилучшим выбором, поскольку он эрмитов, ортонормирован (по отношению к внутреннему произведению Гильберта-Шмидта) и составляет ортонормированный базис в алгебре Ли соответствующей унитарной группы. Группа Клиффорда, имеющая многочисленные применения в квантовых вычислениях, наиболее просто описывается в терминах базиса Паули [10, 14].

Основная цель этой статьи — дать систематический алгебраический обзор многокубитных систем в базисе Паули. Статья организована следующим образом. Раздел 2 содержит некоторые необходимые математические предварительные сведения. В разделе 3 мы даем краткое описание квантовых состояний для n-кубитовой квантовой системы в базисе Паули. Раздел 4 посвящен изучению некоторых вычислительных свойств строк Паули. В разделе 5 мы рассматриваем алгоритмы вычислений, предназначенные для перехода от стандартного

базиса к базису Паули.

На протяжении всей статьи мы используем естественные единицы с $\hbar = c = 1$. Для удобочитаемости некоторые обозначения сделаны контекстно-зависимыми: строчные латинские буквы в двоичных строках (например, в символах бра и кет) принимают значения 0 и 1, тогда как в строках Паули и индексах они принимают значения от 0 до 3.

2. Основные особенности базиса Паули

Мы будем рассматривать квантовую систему из n различимых кубитов, где кубит ассоциируется с двумерным гильбертовым пространством \mathcal{H} и его двойственным (эрмитово сопряженным) пространством \mathcal{H}^{\dagger} . Пусть $\mathcal{H}_n = \mathcal{H}^{\otimes n}$ и $\mathcal{H}_n^{\dagger} = (\mathcal{H}^{\dagger})^{\otimes n}$ — гильбертово пространство системы и его двойственное пространство соответственно, и пусть $L(\mathcal{H}_n) = \mathcal{H}_n \otimes \mathcal{H}_n^{\dagger}$ — пространство линейных операторов, действующих на \mathcal{H} и \mathcal{H}^{\dagger} слева и справа соответственно. Тогда

$$\dim_{\mathbb{C}} \mathcal{H}_n = \dim_{\mathbb{C}} \mathcal{H}_n^{\dagger} = 2^n, \quad \dim_{\mathbb{C}} L(\mathcal{H}_n) = 2^{2n}.$$

Мы также будем предполагать, что пространство $L(\mathcal{H}_n)$ оснащено внутренним произведением Гильберта-Шмидта,

$$\langle \hat{A}, \hat{B} \rangle = \operatorname{tr}(\hat{A}^{\dagger} \hat{B}), \quad \hat{A}, \hat{B} \in L(\mathcal{H}_n),$$
 (1)

которое является естественным расширением внутреннего произведения в \mathcal{H}_n . Реальное линейное пространство эрмитовых операторов обозначается далее как $H(\mathcal{H}_n)$.

Пусть $\{|0\rangle, |1\rangle\}$ — ортонормированный базис в некотором одномерном кубитовом пространстве \mathcal{H} . Единичная матрица и матрицы Паули,

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

определяют четыре оператора Паули

$$\hat{\sigma}_0 = |0\rangle\langle 0| + |1\rangle\langle 1|, \qquad \hat{\sigma}_1 = |0\rangle\langle 1| + |1\rangle\langle 0|,$$

$$\hat{\sigma}_2 = -i|0\rangle\langle 1| + i|1\rangle\langle 0|, \quad \hat{\sigma}_3 = |0\rangle\langle 0| - |1\rangle\langle 1|,$$

которые являются эрмитовыми и унитарными одновременно и которые образуют базис в $L(\mathcal{H})$. Обратное преобразование задается

$$|0\rangle\langle 0| = \frac{\hat{\sigma}_0 + \hat{\sigma}_3}{2}, \quad |0\rangle\langle 1| = \frac{\hat{\sigma}_1 + i\hat{\sigma}_2}{2}, \quad |1\rangle\langle 0| = \frac{\hat{\sigma}_1 - i\hat{\sigma}_2}{2}, \quad |1\rangle\langle 1| = \frac{\hat{\sigma}_0 - \hat{\sigma}_3}{2}.$$

Напомним, что для $k,l,m\in\{1,2,3\}$ имеем $\operatorname{tr}\hat{\sigma}_k=0,~\hat{\sigma}_k^2=\hat{\sigma}_0,$ и

$$\hat{\sigma}_k \hat{\sigma}_l = -\hat{\sigma}_l \hat{\sigma}_k, \quad \hat{\sigma}_k \hat{\sigma}_l = i \operatorname{sign}(\pi) \hat{\sigma}_m, \quad (klm) = \pi(123),$$
 (2)

где $\pi(123)$ — это перестановка множества $\{1,2,3\}$.

Существует $cmandapmnый^1$ двоичный базис в \mathcal{H}_n , который генерируется ортонормированными базисами $\{|0\rangle, |1\rangle\}$ в соответствующих одномерных кубитовых пространствах. Математически позиция в тензорном произведении различает кубиты друг от друга. Поэтому для фиксированного n удобно записывать элемент этого базиса и соответствующий элемент двойственного базиса в виде

$$|k\rangle = |k_1 \dots k_n\rangle = |k_1\rangle \otimes \dots \otimes |k_n\rangle, \quad \langle k| = \langle k_1 \dots k_n| = \langle k_1| \otimes \dots \otimes \langle k_n|,$$

рассматривая строки $k_1 \dots k_n$ $(k_1, \dots, k_n \in \{0, 1\})$ как двоичное число и обозначая его десятичным представлением k. Например, $|101\rangle = |5\rangle$ и $|00110\rangle = |6\rangle$

В стандартном базисе,

$$|u\rangle = \sum_{k=0}^{2^n-1} u_k |k\rangle, \quad \hat{A} = \sum_{k,l=0}^{2^n-1} a_{kl} |k\rangle\langle l|,$$

где $|u\rangle \in \mathcal{H}_n$ и $\hat{A} \in L(\mathcal{H}_n)$.

Базис Паули $P(\mathcal{H}_n)$ в $L(\mathcal{H}_n)$ определяется как

$$\left\{\hat{\sigma}_{k_1\dots k_n}\right\}_{k_1,\dots,k_n\in\{0,1,2,3\}}, \qquad \hat{\sigma}_{k_1\dots k_n} = \hat{\sigma}_{k_1}\otimes\dots\otimes\hat{\sigma}_{k_n}, \tag{3}$$

где $\hat{\sigma}_{0...0}$ — единичный оператор. Очевидно, что $P(\mathcal{H}_n)$ состоит из 4^n элементов. Мы будем использовать компактные обозначения, такие как

$$\hat{\sigma}_K = \hat{\sigma}_{k_1...k_n}$$

обозначая строку Паули $k_1 \dots k_n$, где $k_1, \dots, k_n \in \{0, 1, 2, 3\}$, соответствующей заглавной буквой K. При этом мы будем часто рассматривать K как число, то есть как десятичное представление строки; очевидно, что $0 \le K \le 4^n - 1$. Заметим, что строка Паули K и элемент $\hat{\sigma}_K$ базиса Паули полностью определяют друг друга и, следовательно, могут быть отождествлены. Например, элементы стандартного базиса выражаются через элементы базиса Паули в Приложении A1 на странице A1.

Полезно сравнить $P(\mathcal{H}_n)$ со стандартным базисом. Мы имеем

$$\hat{\sigma}_{k_1...k_n}\hat{\sigma}_{k_1...k_n} = \hat{\sigma}_{0...0}, \quad \operatorname{tr} \hat{\sigma}_{0...0} = 2^n, \quad \operatorname{tr} \hat{\sigma}_{k_1...k_n} \Big|_{k_1...k_n \neq 0...0} = 0.$$
 (4)

Базис Паули является эрмитовым, унитарным и ортогональным по отношению к внутреннему произведению (1). Заметим, что оператор $|k\rangle\langle l|$ стандартного базиса не является унитарным и не является эрмитовым, если $k \neq l$. Стандартный

¹Мы не используем обычный термин "вычислительный так как он может привести к путанице. Базис Паули и стандартный базис вычислительны в одном и том же смысле.

базис не содержит единичного оператора, который имеет вид

$$\sum_{k=0}^{2^{n}-1} |k\rangle\langle k|$$

в этом базисе. В базисе Паули любой оператор \hat{U} из унитарной группы $U(\mathcal{H}_n)$ (то есть $\hat{U}^{\dagger}\hat{U}=\hat{\sigma}_{0...0}$) имеет разложение в виде

$$\hat{U} = \sum_{i_1, \dots, i_n \in \{0, 1, 2, 3\}} U_{i_1 \dots i_n} \hat{\sigma}_{i_1 \dots i_n}, \quad \hat{U}^{\dagger} = \sum_{i_1, \dots, i_n \in \{0, 1, 2, 3\}} \overline{U}_{i_1 \dots i_n} \hat{\sigma}_{i_1 \dots i_n},$$

где

$$\sum_{i_1,\dots,i_n\in\{0,1,2,3\}} \overline{U}_{i_1\dots i_n} U_{i_1\dots i_n} = 1, \qquad \sum_{\substack{i_1,\dots,i_n,j_1,\dots,j_n\in\{0,1,2,3\}\\(i_1,\dots,i_n)\neq(j_1,\dots,j_n)}} \overline{U}_{i_1\dots i_n} U_{j_1\dots j_n} = 0.$$

Заметим, что последнее условие может быть очевидно разложено на $2^{2n-1}(2^n-1)$ независимых условий.

3. Квантовые состояния в базисе Паули

Квантовое состояние (оператор плотности) — это эрмитов, положительно полуопределённый (или просто положительный) оператор вида

$$\hat{\rho} = \frac{1}{2^n} \sum_{k_1, \dots, k_n \in \{0, 1, 2, 3\}} a_{k_1 \dots k_n} \hat{\sigma}_{k_1 \dots k_n} \equiv \frac{1}{2^n} \sum_{K=0}^{4^n - 1} a_K \hat{\sigma}_K, \tag{5}$$

где $a_{k_1...k_n} \in \mathbb{R}$ и

$$a_{0...0} = 1$$
, $|a_{k_1...k_n}| \le 1$, $\sum_{k_1,...,k_n \in \{0,1,2,3\}} (a_{k_1...k_n})^2 \le 2^n$. (6)

Условия (6) гарантируют, что $\hat{\rho}^{\dagger} = \hat{\rho}$, $\operatorname{tr} \hat{\rho} = 1$, и $\operatorname{tr} \hat{\rho}^2 \leqslant 1$. Для квантовых вычислений важно, что все коэффициенты в состоянии (5) являются действительными, и каждый из них, кроме $a_{0...0}$, точно является результатом местного измерения с одним из базисных операторов (3), $a_K \equiv a_{k_1...k_n} = \operatorname{tr} (\hat{\rho} \hat{\sigma}_{k_1...k_n})$. Все квантовые (чистые и смешанные) состояния образуют выпуклое множество (замкнутый многообразие, поскольку оно является прообразом 1 при отображении $\operatorname{tr} : H(\mathcal{H}_n) \to \mathbb{R}$) реальной размерности $4^n - 1$ в реальном линейном многообразии $\mathcal{S}_n \subset \operatorname{Span}\{P(\mathcal{H}_n)\} = H(\mathcal{H}_n)$, в то время как чистые состояния располагаются на границе \mathcal{S}_n и составляют реальное подмногообразие размерности $2^{n+1} - 2$.

Каждый элемент $P(\mathcal{H}_n)$ является идемпотентом $(\hat{\sigma}_K \hat{\sigma}_K = \hat{\sigma}_{0...0})$, так что операторы

 $\hat{P}_K^{\pm} = \frac{\hat{\sigma}_{0\dots 0} \pm \hat{\sigma}_K}{2}$

являются проекторами. Таким образом, наблюдаемая величина $\hat{\sigma}_K = \hat{P}^+ - \hat{P}^ \hat{\sigma}_K$ естественно сводится к проективным измерениям. Используя операторы \hat{P}_K^\pm , мы теперь можем доказать следующее практически важное утверждение, которое, по-видимому, не было рассмотрено в, по крайней мере, текущей литературе.

Proposition 1. Условие $|a_{k_1...k_n}| \leq 1$ в (6) следует из положительности оператора плотности (5) и первого условия в (6).

Заметим, что эрмитовы проекторы $\hat{P}_K^{\pm} = \hat{P}_K^{\pm} \hat{P}_K^{\pm} = \left(\hat{P}_K^{\pm}\right)^{\dagger} \hat{P}_K^{\pm}$ являются положительными операторами, так как очевидны неравенства

$$\langle u|\hat{P}_K^{\pm}|u\rangle = \langle u|(\hat{P}_K^{\pm})^{\dagger}\hat{P}_K^{\pm}|u\rangle \geqslant 0.$$

В общем случае эрмитов оператор $\hat{A} \in L(\mathcal{H}_n)$ является положительным тогда и только тогда, когда существует некоторый оператор $\hat{B} \in L(\mathcal{H}_n)$ такой, что $\hat{A} = \hat{B}\hat{B}^{\dagger}$; более того, \hat{B} может быть выбрано эрмитовым [15]. Это, в свою очередь, подразумевает, что $(\hat{A} \text{ и } \hat{\rho} \text{ положительны})$

$$\operatorname{tr}(\hat{A}\hat{\rho}) = \operatorname{tr}(\hat{B}\hat{B}^{\dagger}\hat{\rho}) = \operatorname{tr}(\hat{B}^{\dagger}\hat{\rho}\hat{B}) \geqslant 0,$$

так как $\hat{B}^{\dagger}\hat{\rho}\hat{B}$, очевидно, положителен. Таким образом,

$$\operatorname{tr}(\hat{P}_K^{\pm}\hat{\rho}) = \frac{1 \pm a_K}{2} \geqslant 0,\tag{7}$$

так что $-1 \leqslant a_K \leqslant 1$. Доказательство завершено. \square

В качестве примера запишем одно из практически полезных состояний в стандартном базисе и в базисе Паули, а именно трехкубитное состояние Гринбергера-Хорна-Зейлингера. Используя оператор CNOT и оператор Адамара \hat{U}_2^+ , которые определены соотношениями (13) и (14) в Приложении А2, мы можем записать унитарное преобразование начального состояния $|000\rangle$ в состояние GHZ_3 в виде

$$\hat{U}_{\mathrm{GHZ}_3} = (\hat{\sigma}_0 \otimes CNOT) \circ (CNOT \otimes \hat{\sigma}_0) \circ (\hat{U}_2^+ \otimes \hat{\sigma}_{00}),$$

из которого легко найти

$$\begin{split} \hat{\rho}_{GHZ_3} &= = \frac{1}{2} \big(|000\rangle\langle 000| + |000\rangle\langle 111| + |111\rangle\langle 000| + |111\rangle\langle 111| \big) \\ &= \frac{1}{8} \big(\hat{\sigma}_{000} + \hat{\sigma}_{111} - \hat{\sigma}_{122} - \hat{\sigma}_{212} - \hat{\sigma}_{221} + \hat{\sigma}_{033} + \hat{\sigma}_{303} + \hat{\sigma}_{330} \big). \end{split}$$

4. Операции со строками Паули

Нам понадобится несколько фактов и определений, связанных с базисом Паули и множеством строк Паули длины n,

$$Str_n = \{K = k_1 \dots k_n\}_{k_1,\dots,k_n \in \{0,1,2,3\}}.$$

Во-первых, рассмотрим множество $\mathbb{F}_4 = \{0,1,2,3\}$ как группу Клейна с правилами умножения

$$0*k = k, \quad k*k = 0, \quad k*l = m,$$

где $k, l, m \in \{1, 2, 3\}$ и klm — любая перестановка 123. Во-вторых, пусть функция $s: \mathbb{F}_4 \times \mathbb{F}_4 \to \{1, i, -i\}$ определяется своими значениями

$$s(0,0) = s(0,k) = s(k,0) = s(k,k) = 1, \quad k = 1,2,3,$$

 $s(1,2) = s(2,3) = s(3,1) = i, \quad s(2,1) = s(3,2) = s(1,3) = -i.$

Далее, пусть функция $S: \mathrm{Str}_n \times \mathrm{Str}_n \to \{1,-1,i,-i\}, \ (K,L) \mapsto S_{K\!L},$ определяется как произведение

$$S_{KL} = s(k_1, l_1)s(k_2, l_2) \dots s(k_n, l_n), \quad K = k_1 k_2 \dots k_n, \quad L = l_1 l_2 \dots l_n.$$

Функция S симметрична или антисимметрична в зависимости от количества пар (k_r, l_r) (r — позиция в строках K и L) таких, что $k_r, l_r \in \{1, 2, 3\}$ и $k_r \neq l_r$, а также в зависимости от их взаимного порядка. Пусть w_{KL}^+ и w_{KL}^- обозначают количество пар видов (1, 2), (2, 3), (3, 1) и видов (2, 1), (3, 2), (1, 3) соответственно, а $w_{KL} = w_{KL}^+ + w_{KL}^-$. Тогда

$$S_{KL} = (i)^{w_{KL}} (-1)^{w_{KL}^{-}}, \quad S_{(KL)} = \frac{S_{KL}}{2} (1 + (-1)^{w_{KL}}), \quad S_{[KL]} = \frac{S_{KL}}{2} (1 - (-1)^{w_{KL}}), \quad (8)$$

где круглые и квадратные скобки обозначают симметризацию и антисимметризацию, соответственно. Значения S_{KL} , $S_{(KL)}$, и $S_{[KL]}$ приведены в Таблице 2.

$w_{KL} \mod 4$	0	2	0	2	1	3	1	3
$w_{K\!L}^- \mod 2$	0	1	1	0	0	1	1	0
S_{KL}	1	1	-1	-1	i	i	-i	-i
$S_{(KL)}$	1	1	-1	-1	0	0	0	0
$S_{[KL]}$	0	0	0	0	i	i	-i	-i

Таблица 1: Коэффициенты перед $\hat{\sigma}_M$ в (9) для $\hat{\sigma}_K\hat{\sigma}_L$, $\{\hat{\sigma}_K,\hat{\sigma}_L\}$ и $[i\hat{\sigma}_K,i\hat{\sigma}_L]$.

Теперь композицию двух элементов базиса Паули и их антикоммутатор и коммутатор можно записать в виде компактных выражений, удобных для программирования на классическом компьютере:

$$\hat{\sigma}_K \hat{\sigma}_L = S_{KL} \hat{\sigma}_M, \quad \{\hat{\sigma}_K, \hat{\sigma}_L\} = S_{(KL)} \hat{\sigma}_M, \quad [i\hat{\sigma}_K, i\hat{\sigma}_L] = -S_{[KL]} \hat{\sigma}_M, \tag{9}$$

где

$$\hat{\sigma}_M = \hat{\sigma}_{m_1...m_n}, \quad m_1 = k_1 * l_1, \dots, m_n = k_n * l_n.$$
 (10)

Заметим, что две строки Паули длины n могут коммутировать, даже если у них есть различные ненулевые элементы в некоторых одинаковых позициях. Например, три оператора $\hat{\sigma}_{11}$, $\hat{\sigma}_{22}$ и $\hat{\sigma}_{33}$ взаимно коммутируют. Также легко заметить, что унитарная матрица перехода, преобразующая стандартный базис $\{|i_1 \dots i_n\rangle\langle j_1 \dots j_n|\}$ в базис Паули, состоит только из элементов $0, \pm 1$ и $\pm i$. В частности,

$$|00\dots0\rangle\langle00\dots0| \to \frac{1}{2^n} \sum_{i_1,\dots,i_n\in\{0,3\}} \hat{\sigma}_{i_1\dots i_n}.$$

Более общо, стандартные ортогональные проекторы могут быть выражены как

$$|i_1...i_n\rangle\langle i_1...i_n|_{i_1,...,i_n\in\{0,1\}} = \frac{1}{2^n} \sum_{k_1,...,k_n\in\{0,3\}} \chi_{k_1}^{i_1} \cdots \chi_{k_n}^{i_n} \hat{\sigma}_{k_1...k_n},$$

где

$$\chi_0^0=\chi_3^0=\chi_0^1=1,\quad \chi_3^1=-1.$$

Некоторые важные операторы в базисе Паули приведены в Приложении A2 на странице 15.

Выражения (9) показывают, во-первых, что множество $\{i\hat{\sigma}_K\}_{K=0}^{4^n-1}$ образует ортонормированный базис в $\mathfrak{su}(n)$. И, во-вторых, множество

$$\widetilde{P}(\mathcal{H}_n) = \{\epsilon \hat{\sigma}_K \mid K \in \operatorname{Str}_n, \ \epsilon \in \{\pm 1, \ \pm i\}\},\$$

состоящее из 4^{n+1} элементов, является группой; она называется Паули-группой (n-кубитовой). Нормализатор Паули-группы,

$$C(\mathcal{H}_n) = \{ \hat{U} \in U(\mathcal{H}_n) \mid \hat{U}\hat{\sigma}_K \hat{U}^{\dagger} \in \widetilde{P}(\mathcal{H}_n), \, \hat{\sigma}_K \in \widetilde{P}(\mathcal{H}_n) \},$$

называется группой Клиффорда. Из 2, 4, и 10 имеем следующее утверждение:

Proposition 2. Взаимные унитарные преобразования операторов базиса Паули подчиняются соотношениям $\hat{\sigma}_{i_1...i_n}\hat{\sigma}_{k_1...k_n}\hat{\sigma}_{i_1...i_n} = \pm \hat{\sigma}_{i_1...i_n}$, где плюс берется только в том случае, если число троек $(i_m k_m i_m)_{m \in \{1,...,n\}}$, удовлетворяющих условиям $i_m \neq k_m$, $i_m \neq 0$, и $k_m \neq 0$, четно.

5. Алгоритмы перехода к базису Паули

В стандартном базисе и в базисе Паули оператор $\hat{A} \in L(\mathcal{H}_n)$ (например, унитарное преобразование, наблюдаемая величина или оператор плотности) можно

выразить как

$$\hat{A} = \sum_{i_0, \dots, i_{n-1}, j_0, \dots, j_{n-1} \in \{0, 1\}} a_{i_{n-1} \dots i_0 j_{n-1} \dots j_0} |i_{n-1} \dots i_0\rangle \langle j_{n-1} \dots j_0|$$

$$= \frac{1}{2^n} \sum_{i_0, \dots, i_{n-1} \in \{0, 1, 2, 3\}} s_{i_{n-1} \dots i_0} \hat{\sigma}_{i_{n-1} \dots i_0},$$

или, коротко,

$$\hat{A} = \sum_{i=0}^{2^{n}-1} \sum_{j=0}^{2^{n}-1} a_{ij} |i\rangle\langle j| = \frac{1}{2^{n}} \sum_{I=0}^{4^{n}-1} S_{I} \hat{\sigma}_{I}.$$
(11)

Таким образом, мы имеем дело с задачей вычисления коэффициентов S_I , когда заданы коэффициенты a_i ; такой алгоритм недавно был предложен [13]. Наш подход основан на следующем наблюдении: все коэффициенты a_{ij} с дво-ичными строками $i=i_{n-1}\dots i_0$ и $j=j_{n-1}\dots j_0$, которые имеют одну и ту же сумму

$$k = (k_{n-1} \dots k_0)_2 = (i_{n-1} \dots i_0)_2 \oplus (j_{n-1} \dots j_0)_2,$$

дают ненулевые вклады только в термины вида $S_l^{(i\oplus j)}\hat{\sigma}_l$, где l — двоичная строка $l_{n-1}\dots i_0,\ 0\leqslant l\leqslant 2^n-1$, и операторы $\hat{\sigma}_l$ должны быть пересчитаны в форме (11). Прямолинейно (но громоздко) доказать, что строки $I=I(k,l)=\left[I_0^{(k)},\dots,I_{2^n-1}^{(k)}\right]_4,\ k=i\oplus j,\$ в $\hat{\sigma}_I$ определяются

$$I = \bar{l} \wedge k + 2(l \wedge k) + 3(l \wedge \bar{k}), \tag{12}$$

где черта над буквой обозначает инверсию $0 \leftrightarrow 1$ для каждого символа соответствующей двоичной строки, а \land обозначает логическую операцию И. На правой стороне в (12) мы рассматриваем результирующие двоичные строки как числа в четверичной системе. Для заданных двоичных строк i и j псевдокод этой процедуры приведен в Алгоритме 1.

Например, слагаемые

$$a_{010,001}|010\rangle\langle001| = \frac{a_{21}}{2^3} (\hat{\sigma}_{011} + i\hat{\sigma}_{012} - i\hat{\sigma}_{021} + \hat{\sigma}_{022} + \hat{\sigma}_{311} + i\hat{\sigma}_{312} - i\hat{\sigma}_{321} + \hat{\sigma}_{322}),$$

$$a_{001,010}|001\rangle\langle010| = \frac{a_{12}}{2^3} (\hat{\sigma}_{011} - i\hat{\sigma}_{012} + i\hat{\sigma}_{021} + \hat{\sigma}_{022} + \hat{\sigma}_{311} - i\hat{\sigma}_{312} + i\hat{\sigma}_{321} + \hat{\sigma}_{322}),$$

$$a_{101,110}|101\rangle\langle110| = \frac{a_{56}}{2^3} (\hat{\sigma}_{011} - i\hat{\sigma}_{012} + i\hat{\sigma}_{021} + \hat{\sigma}_{022} - \hat{\sigma}_{311} + i\hat{\sigma}_{312} - i\hat{\sigma}_{321} - \hat{\sigma}_{322}),$$

$$a_{111,100}|111\rangle\langle100| = \frac{a_{74}}{2^3} (\hat{\sigma}_{011} - i\hat{\sigma}_{012} - i\hat{\sigma}_{021} - \hat{\sigma}_{022} - \hat{\sigma}_{311} + i\hat{\sigma}_{312} + i\hat{\sigma}_{321} + \hat{\sigma}_{322})$$

внесут вклад в линейную комбинацию $\hat{\sigma}_{011}$, $\hat{\sigma}_{012}$, $\hat{\sigma}_{021}$, $\hat{\sigma}_{022}$, $\hat{\sigma}_{311}$, $\hat{\sigma}_{312}$, $\hat{\sigma}_{321}$, и $\hat{\sigma}_{322}$ с

$$k = 010 \oplus 001 = 001 \oplus 010 = 101 \oplus 110 = 111 \oplus 100 = \mathbf{011}.$$

Элементы базиса Паули, возникающие в (12) из этих слагаемых, показаны в Таблице 2. Например, если $l = 5 = (101)_2$, то, в соответствии с (12),

$$I^{(3)}[5] = [(010)_2 \wedge (011)_2]_4 + 2[(101)_2 \wedge (011)_2]_4 + 3[(101)_2 \wedge (100)_2]_4$$
$$= [010]_4 + 2[001]_4 + 3[100]_4 = 312.$$

Далее, в качестве примера, слагаемое $a_{101,110}|101\rangle\langle110|=a_{56}|5\rangle\langle6|$ вносит $ia_{56}/2^3$ в $S^{(3)}[5]$, так как существуют тройки $(l_0i_0j_0)=(110)_2,\;(l_1i_1j_1)=(001)_2,\;$ и $(l_2i_2j_2)=(111)_2$ в Алгоритме 1 (строки 17-26); поэтому $sign=1,\;c=1$.

l	0	1	2	3	4	5	6	7
$l_{2}l_{1}l_{0}$	000	001	010	011	100	101	110	111
$k_2k_1k_0$	011	011	011	011	011	011	011	011
$\bar{l} \wedge k$	011	010	001	000	011	010	001	000
$l \wedge k$	000	001	010	011	000	001	010	011
$l \wedge \bar{k}$	000	000	000	000	100	100	100	100
$\hat{\sigma}_I$	$\hat{\sigma}_{011}$	$\hat{\sigma}_{012}$	$\hat{\sigma}_{021}$	$\hat{\sigma}_{022}$	$\hat{\sigma}_{311}$	$\hat{\sigma}_{312}$	$\hat{\sigma}_{321}$	$\hat{\sigma}_{322}$

Таблица 2: Элементы базиса Паули, возникающие для k=011.

Algorithm 1 Преобразование в базис Паули.

```
1: Ввод количество кубитов n
 2: Ввод строки i=i_{n-1}\dots i_0 и j=j_{n-1}\dots j_0,\ i_s,j_s\in\{0,1\}
 3: Ввод комплексное число a_{ij} — коэффициент в a_{ij}|i\rangle\langle j|
 4: //Составить номер строки k = i \oplus j
 5: Инициализация строки k = \text{null}
 6: for i_s = i_0, \dots, i_{n-1} do
        for j_s = j_0, ..., j_{n-1} do
            k_s = i_s \oplus j_s
        end for
 8:
 9: end for
10: Преобразовать (k_{n-1} \dots k_0)_2 в int (k)_{10}
11: //Для числа k заполнить два ряда
12: Инициализация S^{(k)} нулевым вектором длины 2^n с комплексным типом
    данных
13: Инициализация I^{(k)} нулевой строковой матрицей длиной 2^n
14: Инициализация int cntr и sign \in \{1, -1, i, -i\} произвольными значени-
15: for l = 0 до 2^n - 1 do
        Преобразовать (l)_{10} в (l_{n-1} \dots l_0)_2
        cntr = 0 и sign = 1
17:
        for l_s = l_0, ..., l_{n-1} do
18:
           if l_s == 1 then
19:
               если (i_s, j_s) == (1, 1) тогда sign = -sign
20:
               если (i_s, j_s) == (0, 1) тогда cntr = cntr + 1
21:
               если (i_s, j_s) == (1, 0) тогда sign = -sign, cntr = cntr + 1
22:
23:
           end if
        end for
24:
        I^{(k)}[l] = \bar{l} \wedge k + 2(l \wedge k) + 3(l \wedge \bar{k})
25:
        int c = cntr(mod4), S^{(k)}[l] += i^c \cdot sign \cdot a_{ij}
26:
27: end for
28: Возврат строки S^{(k)} и I^{(k)}.
```

6. Заключение

В этой статье мы описали основную технику работы с базисом Паули. Показано, что эта техника может сделать более удобными и алгоритмичными некоторые манипуляции с математическими выражениями, связанными с квантовыми схемами с большим числом кубитов. Мы представили новый эффективный

алгоритм с полиномиальной сложностью для перехода от стандартного базиса к базису Паули.

Список литературы

- [1] B. Dirkse, M. Pompili, R. Hanson, M. Walter, S. Wehner Witnessing Entanglement in Experiments with Arbitrary Noise Quantum Science and Technology 5, 035007, 2020 (arXiv:1909.09119)
- [2] I. Hamamura and T. Imamichi Efficient evaluation of quantum observables using entangled measurements npj Quantum Information 6, 56, 2020 (arXiv:1909.09119)
- [3] O. Crawford, B. van Straaten, D. Wang, T. Parks, E. Campbell, S. Brierley Efficient quantum measurement of Pauli operators in the presence of finite sampling error Quantum 5, 385–404, 2021 (arXiv:1908.06942)
- [4] W. Klobus et al. *Higher dimensional entanglement without correlations*. Eur. Phys. J. D **73**, 29, 2019 (arXiv:1808.10201)
- [5] T.J. O'Connor, Y. Yu, B. Helou, R. Laflamme *The robustness of magic state distillation against errors in Clifford gates* Quantum Information & Computation 13, 361–378, 2013 (arXiv:1205.6715)
- [6] C.A. Riofrio, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, J. Eisert Experimental quantum compressed sensing for a seven-qubit system Nature Comm. 8, 15305, 2017 (arXiv:1608.02263)
- [7] S.S. Jahromi, R. Orus A universal tensor network algorithm for any infinite lattice Phys. Rev. D 99, 195105, 2019 (arXiv:1808.00680)
- [8] A.N. Tsirulev A geometric view on quantum tensor networks Europ. Phys. J. Web of Conferences **226**, No 4, 2020 (https://doi.org/10.1051/epjconf/202022602022)
- I.M. Potashov, A.N. Tsirulev Computational Algorithm for Covariant Series Expansions in General Relativity Europ. Phys. J. Web of Conferences 173, 03021, 2018 (https://doi.org/10.1051/epjconf/201817303021)
- [10] S. Bravyi and A. Kitaev Universal quantum computation with ideal Clifford gates and noisy ancillas Phys. Rev. A 71, 022316, 2005 (arXiv:quant-ph/0403025)
- [11] V. Danos and E. Kashefi Determinism in the one-way model Phys. Rev. A. **74**, 052310, 2006 (arXiv:quant-ph/0506062)

- [12] V. Danos and E. Kashefi Pauli measurements are universal Electronic Notes in Theoretical Computer Science 170, 95–100, 2007 (https://doi.org/10.1016/j.entcs.2006.12.013)
- [13] D. Gunlycke, M.C. Palenik, and S.A. Fischer Efficient algorithm for generating Pauli coordinates for an arbitrary linear operator 2020 (arXiv:2011.08942)
- [14] S. Bravyi and D. Maslov *Hadamard-free circuits expose the structure of the Clifford group.* 2020 (arXiv: 2003.09412)
- [15] I. Bengtsson, K. Zyczkowski Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge, 2006
- [16] V.V. Shende, I.L. Markov, and S.S. Bullock Minimal universal twoqubit controlled-NOT-based circuits Phys. Rev. A, 69, 062321, 2004 (arXiv:quant-ph/0308033)

Приложение

A1. Базис Паули для n = 2

Для справки мы приведем здесь выражения элементов стандартного базиса в \mathcal{H}_2 в терминах элементов базиса Паули. Напомним, что такие выражения в \mathcal{H}_1 имеют вид

$$|0\rangle\langle 0| = \frac{\hat{\sigma}_0 + \hat{\sigma}_3}{2}\,, \quad |0\rangle\langle 1| = \frac{\hat{\sigma}_1 + i\hat{\sigma}_2}{2}\,, \quad |1\rangle\langle 0| = \frac{\hat{\sigma}_1 - i\hat{\sigma}_2}{2}\,, \quad |1\rangle\langle 1| = \frac{\hat{\sigma}_0 - \hat{\sigma}_3}{2}\,.$$

$$|00\rangle\langle 00| = \frac{\hat{\sigma}_{00} + \hat{\sigma}_{03} + \hat{\sigma}_{30} + \hat{\sigma}_{33}}{4}, \qquad |01\rangle\langle 00| = \frac{\hat{\sigma}_{01} - i\hat{\sigma}_{02} + \hat{\sigma}_{31} - i\hat{\sigma}_{32}}{4},$$
$$|10\rangle\langle 00| = \frac{\hat{\sigma}_{10} + \hat{\sigma}_{13} - i\hat{\sigma}_{20} - i\hat{\sigma}_{23}}{4}, \qquad |11\rangle\langle 00| = \frac{\hat{\sigma}_{11} - i\hat{\sigma}_{12} - i\hat{\sigma}_{21} - \hat{\sigma}_{22}}{4},$$

$$|00\rangle\langle 01| = \frac{\hat{\sigma}_{01} + i\hat{\sigma}_{02} + \hat{\sigma}_{31} + i\hat{\sigma}_{32}}{4}, \qquad |01\rangle\langle 01| = \frac{\hat{\sigma}_{00} - \hat{\sigma}_{03} + \hat{\sigma}_{30} - \hat{\sigma}_{33}}{4},$$

$$|10\rangle\langle 01| = \frac{\hat{\sigma}_{11} + i\hat{\sigma}_{12} - i\hat{\sigma}_{21} + \hat{\sigma}_{22}}{4}, \qquad |11\rangle\langle 01| = \frac{\hat{\sigma}_{10} - \hat{\sigma}_{13} - i\hat{\sigma}_{20} + i\hat{\sigma}_{23}}{4},$$

$$|00\rangle\langle 10| = \frac{\hat{\sigma}_{10} + \hat{\sigma}_{13} + i\hat{\sigma}_{20} + i\hat{\sigma}_{23}}{4}, \qquad |01\rangle\langle 10| = \frac{\hat{\sigma}_{11} - i\hat{\sigma}_{12} + i\hat{\sigma}_{21} + \hat{\sigma}_{22}}{4},$$

$$|10\rangle\langle 10| = \frac{\hat{\sigma}_{00} + \hat{\sigma}_{03} - \hat{\sigma}_{30} - \hat{\sigma}_{33}}{4}, \qquad |11\rangle\langle 10| = \frac{\hat{\sigma}_{01} - i\hat{\sigma}_{02} - \hat{\sigma}_{31} + i\hat{\sigma}_{32}}{4},$$

$$|00\rangle\langle 11| = \frac{\hat{\sigma}_{11} + i\hat{\sigma}_{12} + i\hat{\sigma}_{21} - \hat{\sigma}_{22}}{4}, \qquad |01\rangle\langle 11| = \frac{\hat{\sigma}_{10} - \hat{\sigma}_{13} + i\hat{\sigma}_{20} - i\hat{\sigma}_{23}}{4},$$

$$|10\rangle\langle 11| = \frac{\hat{\sigma}_{01} + i\hat{\sigma}_{02} - \hat{\sigma}_{31} - i\hat{\sigma}_{32}}{4}, \qquad |11\rangle\langle 11| = \frac{\hat{\sigma}_{00} - \hat{\sigma}_{03} - \hat{\sigma}_{30} + \hat{\sigma}_{33}}{4}.$$

А2. Некоторые унитарные операторы в базисе Паули

Оператор CNOT:

$$CNOT = \frac{\hat{\sigma}_{00} + \hat{\sigma}_{01} + \hat{\sigma}_{30} - \hat{\sigma}_{31}}{2} = |00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle11| + |11\rangle\langle10|, \quad (13)$$

Контролируемый фазовый оператор:

$$CZ = \frac{\hat{\sigma}_{00} + \hat{\sigma}_{03} + \hat{\sigma}_{30} - \hat{\sigma}_{33}}{2} = |00\rangle\langle 00| + |01\rangle\langle 01| + |10\rangle\langle 10| - |11\rangle\langle 11|.$$

Известно, что CNOT и CZ принадлежат группе Клиффорда $\mathcal{C}(\mathcal{H}_2)$. Также известны некоторые множества генераторов и канонические формы для операторов группы $\mathcal{C}(\mathcal{H}_n)$ (см., например, [14]), но количество элементов в этих группах растет экспоненциально (фактически немного быстрее) с ростом n: например, $\mathcal{C}(\mathcal{H}_1)$ порядка 24, а $\mathcal{C}(\mathcal{H}_2)$ порядка 11520. Поэтому возникает проблема нахождения практически подходящего [16] набора унитарных операторов для построения групп Клиффорда и соответствующего формализма стабилизаторов. Здесь мы вводим однокубитовый оператор Адамара \hat{U}_2^+ и псевдо-Адамаровы операторы \hat{U}_2^- , \hat{U}_1^\pm и \hat{U}_3^\pm , подчиняющиеся соотношениям $(\hat{U}_1^\pm)^2 = (\hat{U}_2^\pm)^2 = (\hat{U}_3^\pm)^2 = \hat{\sigma}_0$. Они унитарны и эрмитовы и определяются

$$\hat{U}_{1}^{\pm} = \frac{\hat{\sigma}_{2} \pm \hat{\sigma}_{3}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\pm |0\rangle\langle 0| - i|0\rangle\langle 1| + i|1\rangle\langle 0| \mp |1\rangle\langle 1| \right),$$

$$\hat{U}_{2}^{\pm} = \frac{\hat{\sigma}_{1} \pm \hat{\sigma}_{3}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\pm |0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| \mp |1\rangle\langle 1| \right),$$

$$\hat{U}_{3}^{\pm} = \frac{\hat{\sigma}_{1} \pm \hat{\sigma}_{2}}{\sqrt{2}} = e^{\mp i\pi/4} |0\rangle\langle 1| \pm e^{\pm i\pi/4} |1\rangle\langle 0|.$$
(14)

Они могут быть использованы для построения унитарных преобразований $\hat{\sigma}_i \leftrightarrow \pm \hat{\sigma}_i \ (i \neq j)$ и $\hat{\sigma}_i \to -\hat{\sigma}_i \ (i = 1, 2, 3)$:

$$\hat{U}_{k}^{\pm}\hat{\sigma}_{i}\hat{U}_{k}^{\pm} = \pm\hat{\sigma}_{j}, \quad \hat{U}_{k}^{\pm}\hat{\sigma}_{k}\hat{U}_{k}^{\pm} = -\hat{\sigma}_{k}, \quad i \neq j \neq k, \ i, j, k \in \{1, 2, 3\},$$

или, более подробно,

$$\hat{U}_{1}^{\pm}\hat{\sigma}_{2}\hat{U}_{1}^{\pm} = \pm\hat{\sigma}_{3}, \quad \hat{U}_{1}^{\pm}\hat{\sigma}_{3}\hat{U}_{1}^{\pm} = \pm\hat{\sigma}_{2}, \quad \hat{U}_{1}^{\pm}\hat{\sigma}_{1}\hat{U}_{1}^{\pm} = -\hat{\sigma}_{1},$$

$$\hat{U}_{2}^{\pm}\hat{\sigma}_{1}\hat{U}_{2}^{\pm} = \pm\hat{\sigma}_{3}, \quad \hat{U}_{2}^{\pm}\hat{\sigma}_{3}\hat{U}_{2}^{\pm} = \pm\hat{\sigma}_{1}, \quad \hat{U}_{2}^{\pm}\hat{\sigma}_{2}\hat{U}_{2}^{\pm} = -\hat{\sigma}_{2},$$

$$\hat{U}_{3}^{\pm}\hat{\sigma}_{1}\hat{U}_{3}^{\pm} = \pm\hat{\sigma}_{2}, \quad \hat{U}_{3}^{\pm}\hat{\sigma}_{2}\hat{U}_{3}^{\pm} = \pm\hat{\sigma}_{1}, \quad \hat{U}_{3}^{\pm}\hat{\sigma}_{3}\hat{U}_{3}^{\pm} = -\hat{\sigma}_{3}.$$

Далее, для однородности, обозначим $\hat{\sigma}_0$ как \hat{U}_0 . Таким образом, например, мы можем выбрать полный набор генераторов для $\mathcal{C}(\mathcal{H}_1)$ в виде $(\hat{U}_i \equiv \hat{U}_i^+, i = 1, 2, 3)$

$$\{\hat{U}_0, \, \hat{U}_1, \, \hat{U}_2, \, \hat{U}_3\}.$$

В общем случае $\widetilde{P}(\mathcal{H}_n)$, полный набор генераторов для группы $\mathcal{C}(\mathcal{H}_n)$ составляют операторы вида

$$\{\hat{U}_{i_1...i_n} = \hat{U}_{i_1} \otimes \cdots \otimes \hat{U}_{i_n}\}_{i_1,...,i_n \in \{0,1,2,3\}}.$$