

Solar Electric Propulsion Technology Development for NASA Exploration

Space Power Workshop

Huntington Beach, CA

April 24, 2013

Carolyn R. Mercer
Margaret L. Nazario
Timothy D. Smith
Steven R. Oleson

NASA Glenn Research Center
Cleveland, Ohio
United States
cmercer@nasa.gov

Solar Electric Propulsion Technology Development Overview

NASA Human Exploration – capability driven architecture

Concept studies using Solar Electric Propulsion (SEP)

- Mars
- Near Earth Asteroids

Technology needs derived from those studies

- Parameterized assessments on “reasonable vehicle” configurations
- System-level impacts of power and propulsion technologies

Technologies under development

- Solar arrays
- High voltage electronic parts
- Electric thrusters and power processing

Demonstration mission concepts

- Reduce risk for future missions
- Provide near-term capability

Summary

Capability Driven Framework for Exploration

Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability.

Concept Vehicles for Mars Landing

Solar Electric Propulsion can be used to bring crew and cargo to Mars

Cargo Missions				
Crew Mission				
2037 Conjunction Class "long stay" mission	Chemical Propulsion	Nuclear Thermal	Nuclear Electric	Solar /Chem
Electric Propulsion Power level	n/a	n/a	2.5MW crew/ 1MW cargo	800kW Solar
Total Mass (t)	~1,200	~600	~550	~490
# Heavy Lift (SLS) Launches	~12	~9	~7	~7
SLS Delivery to LEO (t)	105 & 130	105	105 & 130	105 & 130**
SLS Shroud Dia. /Barrel Length	10 / 22	10/25	10/25	10/10
Time on Mars (days)	500	500	400	300

**Depending upon SLS performance 1-2 ATV launches using a Ariane 5 class vehicle are required to provide consumables

SEP Options for Mars

800kW EOL/1 AU

500V power systems

2400 Direct Drive Nested Hall Thrusters

Option 1

All Chemical

4 SLS Launchers

~500 day Mars stay

Chemical Capture and Depart

SEP Tug stays at L2,
does not fly to Mars

Option 2

SEP/Chem

2 SLS + 3 ATV (15t)

Partial Chem Capture and Depart

Earth/Moon Departure
Flyby with Chem/SEP

Option 3

SEP/Chem

2 SLS + 2+ ATV (18t)

300 day Mars stay

Partial Chem Capture and Depart

ATV tankers bring
biprops and crew
consumables – adds
90 days to stay time

Combination of Solar Electric and Chemical Propulsion provides best mix of stay time, required IMLEO, and simplicity

Option 4

All SEP

45 day Mars stay

SEP spiral down to
24 hour circular orbit

SEP trajectories in BLUE
Chemical trajectories in RED

www.nasa.gov

Concept Vehicles for Piloted Near Earth Asteroid Missions

Solar Electric Propulsion can be used to bring crew and cargo to NEAs

Design Constraints

- Un-piloted low Earth orbit spiral to E-M L1, crew rendezvous and transfer to 2008-EV5 NEO
- 2023 Launch date; Nominal mission duration of 800 days (piloted portion NTE 400 days)
- Single fault tolerant
- 100 metric ton launch vehicle : 8.5 m diameter dynamic envelope, no more than 44.5 mt mass at liftoff
- Target 300 kW power to propulsion system, 15kW power to payload except during eclipse, 5kW power for housekeeping loads
- Withstand cryogenic kick stage propulsive maneuvers up to 0.1 g steady state acceleration

NEP and SEP vehicles shown to scale with the International Space Station

Parametric Assessments for SEP

300kW-Class

Power

- 300V and 120V Spacecraft Bus Voltage
- Planar and 2X Concentrator Solar Array
- 29%, 33%, 35%, and 37% solar cells

Propulsion

- Direct Drive and Conventional Power Processor Unit 30 kW and 50 kW Hall Thrusters
- Single Xe tank and smaller tanks;
- passive and active cooling

Configuration

- SEP and NEP

MW-Class

Power

- 500V and 300V Spacecraft Bus Voltage
- MegaFlex and MegaROSA
- 33% IMM cells

Propulsion

- Direct Drive and Conventional Power Processor Unit
- 50 kW Hall, 75 kW Hall and 200kW Nested Hall Thrusters
- 2000 s, 2400 s and 3000/2140 s Isp
- Xe and Kr propellant

Configuration

- SEP, SEP/Chem and Chemical
- SEP, NEP, NTP and Chemical

Parametric Assessments for SEP: Conclusions

300kW-Class

Large mass benefits from:

- High voltage (~300V) spacecraft bus
- Direct Drive architecture
- Single, large Xenon tank

MW-Class

Large mass benefits from:

- High voltage (300V – 500V) spacecraft bus
- Direct Drive architecture with Nested Hall thrusters
- Single, large Xenon tank

Solar Arrays:

- Reliably deployable arrays with flexible blankets and highly compact stowed volume are required. Credible ideas exist that could meet mission needs.
- Missions close for 29% efficient cells with planar arrays. Higher efficiency and concentration will reduce the number of cells and size of the array; cost is the overriding consideration.

Notes:

These results are mission dependent, and do not account for abort scenarios.

Key power technologies are highlighted in red.

Solar Power Technology Development

Goals

- Develop reliably deployable high power solar arrays (30kW-class)
 - Extensible to 300kW vehicles
 - Operable at high voltage (160-300V) with high strength/stiffness
 - Stowed volume commensurate with mission.
- Characterize electronic parts needed for high voltage (300V) PMAD and power processing in the deep space environment

FY13/FY14 Activities

- Designing and building 30kW-class Solar Array Engineering Demonstration Units
 - MegaFlex and Mega-ROSA designs
 - Coupon plasma testing for electric thruster environment
 - Thermal-Vacuum testing planned for Spring 2014
- Developing analysis models and tools to evaluate very large solar array designs
- Destructive single-event upset testing planned for June 2013
 - SiC transistors, diodes, bridge drivers, and gate drivers

Array Development

System Testing

Array Analysis

Parts Characterization

Electric Propulsion Technology Development

Goals

- Develop high power Hall thruster 15kW-class (~1 N Thrust) and system components for 30kW class vehicle
 - Life commensurate with mission
- Develop high voltage (i.e. 300V input) Power Processing Unit/Direct Drive Unit compatible with Hall Thruster and advanced solar arrays.

Thruster Development

Thruster Analysis

Power Processing

System Testing

30kW-Class Mission as a Stepping Stone to Future Exploration

A natural progression that retires key risks and provides near-term capability

Deep Space 1 1998	Dawn 2007	30kw-class SEP ~ 2017	Mid-term Exploration Missions circa 2020's	Far-term Exploration Missions circa 2030's
Technology Demonstrator	Deep-Space Science Mission	Operational mission with advanced technology	Crewed mission to cis-lunar space	Crewed mission beyond Earth space
490kg	1220kg	~2000kg	30,000 kg	70,000 kg
2.5 kW power system 2kW EP system	10 kW power system 2.5kW EP system	30kW-class power 20kW-class EP	30kW-class power system 20kW-class EP	350kW-class power system 300kW-class EP
DV = 2.7km/s	DV = 10km/s	DV > 10 km/s	DV ≈ 3 km/s	DV ≈ 8 km/s

SEP Demonstration Trades

Technology

Demonstrate enabling SEP technologies in all relevant space environments (from LEO to beyond GEO)

- Next gen electric propulsion
- Solar arrays
- High voltage
- Tech infusion

Extensibility

Provide an evolutionary step to the high power SEP Systems needed for future human exploration

- Prove low thrust systems can deliver heavy payloads
- Build upon the recent success of AEHF
- Inform future exploration architecture studies
- Retire risks associated with Van Allen radiation belts

Integrated System

Solve the system technology and operational issues related to implementation of a high performance SEP vehicle

- Power system dynamic behavior
- Thermal control
- Attitude control

Capability

Provide a valuable new beyond-LEO payload delivery capability

- Wide range of potential missions (HEOMD, SMD, comm)
- Enables cost savings via launch vehicle step down
- Operational capability enables partnership opportunities

SEP Demo Mission Concepts

Mission	Power	
LEO to E-M L2 payload delivery	40kW	
LEO to heliocentric space (asteroid rendezvous)	38kW	
LEO to GEO to LEO	22kW	
GTO to LEO	30kW	
LEO to low lunar orbit (LLO)	25kW	
LEO to GEO	40kW	
LEO to GEO	12kW	
Asteroid Retrieval Mission	50kW	
E-M L2 Maintenance	40kW	
GTO to MEO	30kW	

Stand-alone missions designed to address all four demonstration objectives are being used for planning purposes

Partner-based or secondary payload-based mission concepts that de-scope some of the technical content may offer better value

Partner	Mission Concept
NASA	Asteroid precursor mission
NASA	Cargo delivery for deep space hab
NASA	Various science missions
Commercial	Satellite servicing
Commercial	High-power commercial GEO comsat
Commercial	Large hosted payload system demo
DoD	Technology demonstrator
International	Contributed LV and/or subsystems

Solar Electric Propulsion Technology Development Summary

- Solar electric vehicles have been identified by NASA as critically important to reduce the cost of future human exploration missions. Electric propulsion has been classified as a “core” technology for the agency, and solar power has been classified as an “adjacent” technology that supports SEP.
- Representative vehicle concepts were developed for NEA and Mars missions and used to parametrically assess key power and propulsion technologies
- Reliably deployable, compactly stowable solar arrays and high voltage electronics are the key power technologies needed to enable very high power solar electric propulsion
- Propulsion and power technology development is focused on enabling high power solar electric propulsion
- 30kW-class solar electric vehicles will serve as a stepping-stone to the high power systems needed for beyond-LEO human crewed exploration missions and provide valuable commercial, and exploration, and science capability
- Development of a range of mission concepts is anticipated to continue through 2015 unless a high-value, cost-effective approach permitting an earlier start is identified

Acknowledgements

- Glenn Research Center COMPASS Team
- Game Changing Technology Development Program Office
- Solar Electric Propulsion Project
 - Mission Formulation
 - GRC
 - Propulsion
 - GRC, JPL
 - Power
 - GRC, LaRC, GSFC, ATK, DSS