1. You have N DNA sequences of length 10000. A motif (identical across the DNA sequences) of length L is hidden in all N sequences. You need to find the locations of the motif in the sequences that yields the best score. How many combinations of L-mers will you need to try to find the motif? Explain.

[8 points]

2.

$$R_{seq} \ = \ S_{ ext{max}} \ - \ S_{obs} \ = \ \log_2 N \ - \ \left(- \sum_{n=1}^N p_n \log_2 n
ight)$$

Here, $\,p_n\,$ is the observed frequency of symbol $\,n\,$ at a particular sequence position and $\,N\,$ is the number of distinct symbols for the given sequence type, either 4 for DNA/RNA or 20 for protein. Schneider and Stephens (1990) define the sequence conservation at a particular position in the alignment as $\,R_{seq}\,$.

Note carefully that S_{obs} is calculated using Shannon's entropy. Now assume that you have a gene G roughly conserved between yeast, monkey, and human. Between yeast-human and monkeyhuman, which species pair is likely to offer higher expected entropy per nucleotide?

Provide details explanation.

[8 points]

- **3.** Arrange the following steps in order to construct a meaningful probabilistic algorithm for motif discovery.
 - L. Sample a new site proportional to likelihood and update motif instances
 - W. Build a weight matrix
 - U. Update weight matrix
 - C. Iterate until convergence
 - P. Select a random position in each sequence
 - S. Score possible sites in the sequence using weight matrix
 - R. Select a sequence at random
- 4. Answer briefly
 - a. What are some of the known functions of non-coding region of the DNA?
 - b. What is sequencing by synthesis?
 - c. What are the roles of promoters and enhancers?
 - d. State the preference for long/short reads for the below usecases

i.	I am studying transcriptomic changes in cancer as compared to no	rmal
	tissue.	
ii.	I am performing de novo genome assembly.	
		[8 n

	_		
	performing		

[8 points]

5. Below is the pseudocode for Patter-Branching algorithm. Comment on its time complexity.

```
Let M be an arbitrary l-mer;
for each l-mer u in S do
    for j := 0 to d do
       if d(u_j, S) < d(M, S) then M := u_j;
       u_{j+1} := \mathsf{BestNeighbor}(u_j);
output M;
```

[8 points]