NATIONAL UNIVERSITY OF SINGAPORE SCHOOL OF COMPUTING

EXAMINATION FOR Semester 1, AY2013/2014

CS3230 - DESIGN AND ANALYSIS OF ALGORITHMS

Nov/Dec 2013

Time Allowed: 2 hours

Instructions to Candidates:

- 1. This examination paper consists of **FOUR** questions and comprises **FIFTEEN (15)** printed pages, including this page.
- 2. Answer ALL questions.
- 3. Write ALL your answers in this examination book.
- 4. You can bring your TEXT BOOK and/or LECTURE NOTES in the examination.

\sim	latric.	Num	her:	
T _ T .	IULII.	IIUII	ν_{CL}	

QUESTION	POSSIBLE	SCORE
Q1	20	
Q2	20	
Q3	20	
Q4	20	
TOTAL	80	

6.1

IMPORTANT NOTE:

• You can freely quote standard algorithms and data structures covered in the lectures and homeworks. Explain any modifications you make to them.

Q1. (20 points) Short questions

Please answer parts (a)-(d).

(a) (4 points)

What is the worst case and average case running time for (1) sorting n integers using quick sort and (2) inserting n integers into a binary search tree?

Your answer:

	(1) sorting	(2) BST
Worst case running time:		
Average case running time:	•	

(b) (6 points)

Suppose that you are given an algorithm S that can find the rank-n integer of an integer array A[1..2n] in O(n) time. By utilizing the algorithm S, give a linear time algorithm to compute the rank-n integer in B[1..4n].

CS3230

Q1. (continued...)

(c) (4 points)

Rank the following functions in ascending order of growth? $f_1(n) = n^{1.5}$, $f_2(n) = \frac{1}{n} \sum_{i=1}^n i^2$ and $f_3(n) = \sum_{i=1}^n i^{1.5}$.

Your answer:

(d) (6 points)

Suppose we perform a sequence of n operations in which the ith operation costs 4i if i is an exact power of 2, and 1 otherwise. Determine the amortized cost per operation. You can use any method you like. You need to justify your answer.

Q2. (20 points) Red-black tree and Graph

Please answer parts (a)-(b).

(a) (5 points)

Give a sequence of insertion so that we can obtain the following red-black tree. (Note 1: white color node represents red color. Note 2: you need to use the method stated in the lecture node or the method in the [CLRS] book.)

Q2. (continued...)

(b) (15 points)

Consider the following directed graph G and its transpose G^T. Find all strongly connected components of G by executing the strongly connected component algorithm. Please answer the following questions.

(i) (6 points) For each vertex in G and G^T, please mark the discovery time and the finishing time when we execute the strongly connected component algorithm. Please also draw the edges of the DFS tree in both G and G^T. (When you perform DFS in G, please assume you will visit the vertices in alphabetical order.)

O2.	continue	d	١
OZ. 1	continue	:u	,

(ii) (4 points) From the result in (i), write down the strongly connected components.

Your answer:

(iii) (5 points) In G, write down the edge types of (g, h), (a, b), (c, b), (d, i) and (b, h). (Note that there are 4 edge types: tree edge, back edge, forward edge and cross edge.)

(g, h): _	
(a, b): _	
(c, b): _	
(d, i): _	
(h h).	

Q3. (20 points) Greedy and Dynamic Programming

Subset Sum Problem. Let A[1..n] be a set of positive integers (sorted in increasing order), and s is a positive integer. Is there any subset *B* of *A* such that the sum of the elements in *B* equals to s?

For example, A = (1, 2, 5, 9, 20), s=22. Then, B = (2, 20).

- (a) **(15 points)** A super-increasing sequence A is a sequence such that the next term of the sequence is greater than the sum of all preceding terms. In other words, $A_{k+1} > \sum_{j=1}^k A_j$, where A_j is the jth term of A. For example, A = (1, 2, 5, 9, 20) is a super-increasing sequence, because 2>1; 5>1+2; 9>1+2+5; and 20>1+2+5+9.
 - i. (3 points) For A=(1, 2, 5, 9, 20), find the corresponding set B for the integer s=32, s=25, s=23.

s=32: _	
s=25: _	

Q3.	(con	tinue	ed	.)
\mathbf{v}	/COX		~~	• •

ii. (4 points) Please propose a greedy algorithm which solves the subset sum problem when A is super-increasing.

Your answer:

iii. (2 points) What is the running time of your algorithm?

Q3. (continued...)

iv. (6 points) Prove that your proposed algorithm is correct.

Q3. (continued...)

(b) (5 points) Professor Perfect thinks that dynamic programming can be used to solve the problem when A is not super-increasing. Please provide a recursive relation for the dynamic programming algorithm which solves the subset sum for any A. Justify the correctness of the recursive relation proposed.

CS3230

Q4. (20 points) NP-hardness and approximation

Knapsack problem: Consider a set of n items where the ith item is of weight w_i and of value v_i. Suppose the maximum load of your car is W and w_i \leq W for all i. We aim to find a subset of items S \subseteq {1, ..., n} such that the value $\sum_{i \in S} v_i$ is maximized while $\sum_{i \in S} w_i \leq$ W.

The decision version of the problem asks if its total value $\sum_{i \in S} v_i \geq K$.

Please answer parts (a)-(c).

(a) (5 points) Show that Knapsack problem is in NP.

Q4. (continued...)

(b) (7 points) Prove that there exists a polynomial-time reduction from the subset-sum problem to the Knapsack problem. Describe your reduction clearly.

Subset-sum problem: Given a set A of positive integers and an integer s, the subset-sum problem decides if there exists a subset B of A whose sum is s.)

Suppose the subset-sum instance is A={1, 2, 5, 9, 20} and s=22. Give the Knapsack problem instance of your reduction.

(This page is blank. Use it for your answer.)

Q4. (continued...)

- (c) (8 points) Consider the following algorithm for the Knapsack problem.
- 1. Sort the items such that $v_i/w_i \ge v_{i+1}/w_{i+1}$ for i=1, ..., n-1.
- 2. Find the maximum k such that $w_1+...+w_k \le W$.
- 3. If $(v_1+...+v_k) \ge v_{k+1}$, then reports $\{1, ..., k\}$; otherwise, reports $\{k+1\}$.
 - (i) (4 points) Let OPT be the optimal solution to the Knapsack problem. Let k be the value we found in step 2 of the above algorithm. Show that OPT $v_1+...+v_k+v_{k+1}$.

Q4. (continued...)

Ą,

(ii) (4 points) Show that the approximation ratio of the above algorithm is 2.

⁻⁻ End of Paper ---