Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	nt sur	la con	vocatio	n.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE : Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
□ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des affirmations proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

Question 1

On choisit au hasard un individu parmi les passagers en transit dans un aéroport. On a représenté ci-dessous un arbre de probabilités lié à certains évènements dont certains éléments ont été effacés.

On considère les événements suivants :

A : « le passager parle anglais »

B : « le passager ne parle pas anglais »

E : « le passager est un membre de l'Union Européenne »

a)
$$P_B(E) = 0.12$$
. b) $P(E) = 0.42$. c) La probabilité que le passager choisi soit européen et ne parle pas anglais est 0.3 .

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	n :			
Liberté Égalité Fraternité PÉRILEULU E BRANCAISE NÉ(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)]									1.1

Question 2

Le plan est muni d'un repère orthonormé. Soit D la droite d'équation 3x + y - 2 = 0.

a) Le point d	de	b) D est	c) Le vecteur de	d) Le vecteur de
coordonnée	s	perpendiculaire à la	coordonnées	coordonnées
(6; -15)		droite d'équation	(1;3) est un	(3; 1) est un
appartient à	D.	12x + 4y = 0.	vecteur directeur	vecteur directeur
			de D.	des droites
				perpendiculaires à
				D.
				• •

Question 3

On considère dans l'ensemble des réels l'équation trigonométrique $\sin x = 1$.

a) Cette équation admet une unique solution dans l'ensemble des réels.	b) Cette équation admet une infinité de solutions dans l'ensemble des réels.	c) 2π est une solution de cette équation.	d) $-\frac{57\pi}{2}$ est une solution de cette équation.
--	--	---	---

Question 4

Soit f la fonction définie sur l'ensemble des nombres réels par $f(x) = \frac{2x}{x^2+1}$ et C sa courbe représentative dans un repère du plan.

a) La courbe C	b) La tangente à C	c) La tangente à C	d) La tangente à C
n'admet pas de	au point d'abscisse	au point d'abscisse	au point d'abscisse
tangente au point	0 a pour équation	0 a pour coefficient	0 est parallèle à
d'abscisse 0.	y = 2x.	directeur 1.	l'axe des
			abscisses.

Question 5

Soit la fonction f définie sur l'intervalle $]-2; +\infty[$ par :

$$f(x) = \frac{x-3}{x+2}$$

f est dérivable sur l'intervalle $]-2;+\infty[$ et pour tout réel x de $]-2;+\infty[$, on a :

a) $f'(x) = 1$	b) $f'(x) = \frac{2x-1}{(x+2)^2}$	c) $f'(x) = \frac{5}{(x+2)^2}$	d) $f'(x) = 2x - 1$
----------------	-----------------------------------	--------------------------------	---------------------

Exercice 2 (5 points)

À la naissance de Lisa, sa grand-mère a placé la somme de 5 000 euros sur un compte et cet argent est resté bloqué pendant 18 ans.

Lisa retrouve dans les papiers de sa grand-mère l'offre de la banque :

Offre

Intérêts composés au taux annuel constant de 3 %.

À la fin de chaque année le capital produit 3 % d'intérêts qui sont intégrés au capital.

On considère que l'évolution du capital acquis, en euro, peut être modélisée par une suite (u_n) dans laquelle, pour tout entier naturel n, u_n est le capital acquis, en euro, n années après la naissance de Lisa.

On a ainsi $u_0 = 5\,000$.

1. Montrer que $u_1 = 5\,150$ et $u_2 = 5\,304,5$.

2.

- **a.** Pour tout entier naturel n, exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) en précisant sa raison et son premier terme.
- **b.** Pour tout entier naturel n, exprimer u_n en fonction de n.
- 3. Calculer le capital acquis par Lisa à l'âge de 18 ans. Arrondir au centième.
- **4.** Si Lisa n'utilise pas le capital dès ses 18 ans, quel âge aura-t-elle quand celuici dépassera 10 000 euros ?.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	n:			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

Exercice 3 (5 points)

Le rectangle OABC ci-dessous représente une place touristique vue de dessus. Le plan est muni d'un repère orthonormé $(0; \vec{\imath}, \vec{\jmath})$ tel que $\overrightarrow{OC} = 24 \vec{\imath}$ et $\overrightarrow{OA} = 35 \vec{\jmath}$. Afin d'éclairer le plus grand nombre de monuments, on place au point 0, un projecteur lumineux qui permet d'éclairer la partie du plan délimitée par les segments de droite [0K] et [0L] tels que K est le milieu de [AB] et $\overrightarrow{CL} = \frac{1}{5}\overrightarrow{CB}$.

- 1. Déterminer par lecture graphique les coordonnées des points A, B, C, K et
- 2. Un visiteur affirme : « Moins de 70 % de la surface de la place est éclairée ».

Cette affirmation est-elle exacte?

- **3.** a. Donner les coordonnées des vecteurs \overrightarrow{OK} et \overrightarrow{OL} .
 - **b.** Montrer que le produit scalaire $\overrightarrow{OK} \cdot \overrightarrow{OL}$ est égal à 533.
 - c. En déduire la mesure, arrondie au degré, de l'angle ROL.

Exercice 4 (5 points)

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$f(x) = x^3 - x^2 - x - 1.$$

- **1.** On note f' la fonction dérivée de f.
 - **a.** Montrer que, pour tout réel x, $f'(x) = 3\left(x + \frac{1}{3}\right)(x 1)$.
 - **b.** En déduire le tableau de variation de f sur $[0; +\infty[$.
 - **c.** Déterminer l'abscisse du point de la courbe représentative de *f* pour lequel le coefficient directeur de la tangente vaut 7.
- **2.** On note x_0 l'unique solution de l'équation f(x) = 0. On admet que $x_0 \in [1; 2]$. On considère la fonction suivante définie en langage Python.

a. On applique cette fonction pour n=3. Reproduire sur la copie et compléter le tableau suivant, jusqu'à l'arrêt de l'algorithme.

Itération	$x=\frac{a+b}{2}$	f(x) < 0 ?	а	b	Amplitude de [a;b]
k = 0	1,5	OUI	1,5	2	0,5
k = 1					
k = 2					

b. En déduire un encadrement de x_0 , d'amplitude 0,125, par deux nombres décimaux.