12.2

Équation réduite de droite

Maths 2nde 7 - JB Duthoit

Dans cette partie, on considère la droite d dont une équation cartésienne est ax + by + c = 0, où $(a; b) \neq (0; 0)$.

12.2.1 Équation réduite du type x=k

Supposons ici que b = 0. On a donc :

$$ax + by + c = 0 \iff ax + b \times 0 + c = 0$$

$$\iff ax + c = 0$$

$$\iff x = \frac{-c}{a}$$

$$\iff x = k \quad avec \ k \in \mathbb{R}.$$

Il est donc évident que la droite d est une droite parallèle à l'axe des ordonnées :

FIGURE 12.1 - Cas où k = 1.5

Propriété 12. 63

Soit d une droite d'équation cartésienne ax + by + c = 0 avec $(a; b) \neq (0, 0)$. Si b = 0 alors la droite d est une droite parallèle à l'axe des ordonnées.

Définition 12.55

Si d est une droite parallèle à l'axe des ordonnées, l'équation x=k, où $k\in\mathbb{R}$ est appelée équation réduite de la droite d.

12.2.2 Équation réduite de la forme y=mx+p

Définition

Supposons ici que $b \neq 0$. On a donc :

$$ax + by + c = 0 \iff by = -ax - c$$

$$\iff y = \frac{-ax - c}{b} \quad car \quad b \neq 0$$

$$\iff y = \frac{-a}{b} \times x + \frac{-c}{b}$$

$$\iff y = mx + p \quad avec \quad m \in \mathbb{R} \quad et \quad p \in \mathbb{R}.$$

FIGURE 12.2 – Cas où m=2 et p=-1

Propriété 12. 64

Soit d une droite d'équation cartésienne ax + by + c = 0 avec $(a; b) \neq (0, 0)$. Si $b \neq 0$ alors la droite d est une droite non parallèle à l'axe des ordonnées.

Définition 12.56

Si d est une droite non parallèle à l'axe des ordonnées, l'équation y = mx + p, où $m \in \mathbb{R}$ et $p \in \mathbb{R}$ est appelée **équation réduite** de la droite d.

Remarque

l Pour une même droite d, il existe une et une seule équation réduite.

Définition 12.57

- Le nombre m est appelé coefficient directeur de la droite d.
- Le nombre est appelé ordonnée à l'origine de la droite d.

Interprétation graphique du coefficient directeur

Propriété 12.65 (admise)

Si d est une droite d'équation réduite y = mx + p, alors <u>un</u> vecteur directeur de d est $\vec{u}(1;m)$.

FIGURE 12.3 – Cas où m=2 et p=-1: visualisation du coefficient directeur

Remarque

 \blacksquare Si la droite d est parallèle à l'axe des ordonnées, elle n'admet pas de coefficient directeur.

Savoir-Faire 12.56

Savoir lire un coefficient directeur (ou pente) sur une droite

Savoir-Faire 12.57

Savoir passer d'une équation cartésienne à une équation réduite, et inversement

Savoir-Faire 12.58

Savoir déterminer une équation cartésienne de droite connaissant un point de la droite et son coefficient directeur

Propriété

Propriété 12.66 (admise)

Le coefficient directeur de la droite (AB) non parallèle à l'axe des ordonnées est $m = \frac{y_B - y_A}{x_B - x_A}$.

Savoir-Faire 12.59

Savoir déterminer directement une équation réduite de droite, connaissant deux points distincts de cette droite

Algorithme 12.6

On considère deux points distincts A(absA; ordA) et B(absB; ordB). programmer sur Python une fonction nommée droite, de paramètres absA, ordA, absB et ordB, et qui retourne une équation cartésienne de la droite (AB). En voici un exemple :

```
>>> droite(-2, -2, 8, 3)
   l'équation réduite de (AB) est y=0.5x+-1.0
>>> droite(1,3,1,-5)
   l'équation réduite de (AB) est x=1
>>> droite(1,-2,4,-11)
   l'équation réduite de (AB) est y=-3.0x+1.0
```