MASILO Chapo
- (seq.limits) lima for = [=> if any seq (Nn) where Nn + a + n, and limit(Nn) = form L
- (div. enterion) ling for) does not exist if . (gren hufa, Yufa) 1. Nn>a butlif(un) diverges. (2. Xn>a, Yn-a, butlif(un) & f(yn)
3. Xn > a but limf(un) + L. - differentiable 1. a point: lim fow-fow exists on an open into cont. a.
2. openinty: on every pt. 3. closeninty: — + + left (right at endpts. — limit exists = continuous.
- controlly diffaul : f's out diff => cts. (atapt, therefore open etc) - carntheodory: f(c) exists (=> =) (1:I->P, Q cts at c and f(n)-f(c)=Q(n)(n-c) (1-2)P (CE)
- knownal: 9, f, range of f cdom of 5, f diff. atc, gd. ff. at fice) = 9f diff. at f(c), & (9f) (a) = 9(f(a)) : f(a).
- [InvInthum]: f is strictly manifere acts on I . $g=f^{-1}$. f defende at c , $f'(c) \neq 0 \Rightarrow g$ defende on $f(c)$, $g'(f(c)) = f'(c)$.
- Lemma: Let $f:(a,b) \rightarrow \mathbb{R}$, $f'(c)$ exists for some $c\in(a,b)$. Then if $f(c) > 0 \Rightarrow \exists d$. st. $\forall x \in (c-d,c)$, $f(x) < f(c)$. $\forall x \in (c,(c+d),f(c) < f(x)$.
if $f(c) < 0 \Rightarrow \exists 8. f(-4n) \in (C-f, c), f(n) > f(c)$ $\forall n \in (C, C+8), f(c) > f(en)$. if $f(c) > 0, \exists a nephbourhood, CHS < f(c), RHS > f(c).$
compare him f(x)>0, then anenhandered f(x)>0. - Interest ext: c interest of I, fi I->>> diff. afe if rel. ext at c, then f(c)=0. Converse is false, and if non-diff, undetermined.
- Let $f:C_1,G_1\to R$ cont, and differ (a,G) . Then Results: $f(a)=f(G) \Rightarrow \exists c \in C_1,G$ $f(c)=0$.
Cauchymut: 9: [9,5] > 1R, 9 differ (9,5), them I c E(G, 5) \f(c) = \f(c) - f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f(c) - f(c) - f(c) = \f(c) - f(c) - f

m Aziro Midtem Chartsheet
Divergent criteria: infin) > Lif xn > 9 furth xn > 9. or f(Nu) diverges.
Diffable: f differentiable at 9 if if futured on except (a-f, atf). if diffat x the (a, 5) at an into (a, 5) if diffat x the (a, 5)
(aratheodoryThun(=>diff) f:I->112, late EI. fres exists.
(2) The transpose $SII - I : 9 - I : 9 = (c)$ f(n) - f(c) = (g(c)(n - c)
Chain Rule $f:J\rightarrow IR$, $f:J\rightarrow R$, $f:J)\subseteq I$. $(J)\xrightarrow{f}(\overline{J})\xrightarrow{g}(\overline{R})$. Let $A\in J$. If $f:dff$ at a , $g:diff$ at $f(a)$, then $f:g\circ f:dff$ at a , and $(g\circ f)'(a)=g'(f(a)) f:go$.
Continuous Inverse: Suppose f: [-> IR is monstone a cts, then f=1: J=fC[)-> IR 13 also cts and wentere. (fcts => ficts provided exists)
Townse for Thim: Galler (fdiff > f- diff promodexists). fdiff at c, and f(c) \$0, then f-1 (f(c)) = f(c). (simply by chain rate) (it diff at f(c)). Address (extra thouse CR).
Absmax(m.n: fight I:R. NoEI is also max fam if f(n) > (50) f(n) + N EI. Rel max/min: exists an its around No sit.
Continuous locality: if fets at a, f(a) \$0 => If, (a+, a++) > 11, f(a) \$0. an intrubere it is nonzero. 7/<0 =>
Dematriclocality: if f(a) >0, then I into CHS (f(a) CRHS 1211. at a pt Circultriclest for 7/c) <0 Challe. RHS < f(a) < LHS = 1211. False. Recall Fernat's Thun: If Abs-ext is diffethen down =0. contral pto G(a) = 0 or undefined) Recall Fernat's Thun: If Abs-ext is diffethen down =0. contral pto G(a) = 0 or undefined) Recall Fernat's Thun: If Abs-ext is diffethen down =0. contral pto G(a) = 0 or undefined) Recall Fernat's Thun: If Abs-ext is diffethen down =0. contral pto G(a) = 0 or undefined)
Recall Permat's Thun: If Absect, 3 diffethen dow =0. (entreal pts of con=0 or undefined)
RENU'S: \$1000+1:(9,5)-)1R, ACT, f(a)=f(b) (a)=)] ce(a,5), f(c)=0.
andy MVT: 1-(a,5)->1R, Ice(a,>), f(c)=f(b)-f(a) 3: (a,5)->11R, Ice(a,>), f(c)=f(b)-f(a)

MAZIO author douther (2)
so positive down at an into \$ increasing on that into. Degunalent. So regative the dicreasing the sall Personal dam. at a pt => LHS (>/<) RHS for an open neighbord.
propries dem. at a pt -> CAS (>12) KATS PAT ON Openagement.
Exet gent est: (1, Ca, 6] -> IK 13 Cts , giff at (9,6) (bassiph / Los)
Frot dow test: fica, 5] -> IR is its, diff at (9,5) (passibly 1803) then LHS f (0, RHS f >0 => c is a rel max. 1
30 (0) mm. 1
Second drivtest f: I > IR, dolf on I, f(c) exists.
f'(c)=0 /f"(c) /(0 => velmm/relmax.
TaylorsThu: f: [a,5]->1R, fe C"((a,5]), form exists on (a,5).
Then \$ 40.0[9,6], +XCO[9,6], BOOK = (CK, No),
fow = for 0 + for 0/1 (N-NO) + + forting/ (N-NO) NEICO)
Form = form)+form)/1 (N-NO) + + forticn)/(N+1)! (N-NO) N+1 (= RN) Relle's > MVT > (aylor ingenerality).
== end of differ lect Straddle lemma: f.I->IR diffat CEI. Then 4870, J8205.f. (-\$4 C C C+8) == 2 cf(v)-f(v)-(v)-f(v)-(c)-f(v)-f(v)-f(v)-(c)-f(v)-f(v)-(c)-f(v)-f(v)-f(v)-f(v)-f(v)-f(v)-f(v)-f(v
$(1 \times 1 \times$
IVI of mendines: faith on 19,57 fear < febr. fis ust vocamenty cto but
4 E, fEa>< E<660) = C+(a,5) st. f(c) = k.
Lipschitz condition (>) androm te) (from-fry) (> (1x-y)
Bdd dervatures are unfirmly continuous. A
(avathedony's ty recall f(c) exists (=) I(: I-)1R. st. f(n)-f(c) = p(c) (N-c).
There com 2= 1 f(w) - fall x + a
L'Hopitals Rule in the house limbers = Im g(n) = 00 no then I'm f' = Imf of the former exists. Originally the transfer of the former exists.
Company the format of the fore
3) - mgadler
Qu'unait de diff at a point until it is not 0? can use deduce unether it is the atther a relative unax/min?
Ans: if faicho)=f(2)(Ni)==f(n-1)(No)=0, f(n)(Ni) =0, then only if n is (ever
fca)(x0) >0 => relmin <0 => max.
$\langle o = \rangle$ max.

MAZIO Mixtern Cheafsheet (3)
upper Sum (wit fut, part P) = \(\Sup \opensor \substruction \text{substruction} \times \text{2} \times_i = \(\text{ZM}_i \text{SM}_i.
[oversum (w+f,p) = Inf = Imiani.
(over supper integral: supplind of consupper sum over all partitions.
integrable if lover, int = upper mt. (=> Of All (& 4 & (Réeman Integrabellity
why must integrable for be bold? Becomes defined as inf trop, and
m(a-b) < L(f,p) < M(f,p) < M(a-b)
m(a-b) < L(f,p) < M(f,p) < M(a-b) intacross (a,b) Sh = 5th supacross inf. Poliny partitions improve estimates:
Roburg partitions improve estimates:
WL(f,p) ≤ L(f, PUQ) ≤ U(f,p) (ts v menters)
Properties of Shef the Ringral: assume interoblishy, integrable 1. f > 0, then 15 f > 0. 2. (continuit, sums of decimal are equal to the construit and sums of integrals. (Livearity), 3 a livear trains.
1. f >0, then J's f >0. 2. (continuit, sums of desire) are bodd.
equal to the construct and cours of integrals.
Civearity 1, -s a rivear traves.
3. $f \in g \Rightarrow f \in J_a^b g$. 4. $f \in g \Rightarrow f \in g$, converse $f \in g \in g$.
5. fg is itshif both its.
Lemma: L(ffP)+L(9,P) & L(ffg)P) & U(ffg,P) & U(f,P), &U(g,P). You can combine and oplif. intro and preserve its lity
fighon (a, b), to, de) (=> fifsh on (a, c).
₩6-(9,6),
Lengthofoune: If Pis cts, then length of come L(f) = I Sit (fin) 2 dol.
R-integral is u-cts; let f: [a, 5] > IR be also its b on [a, 5]. Then Suf = Fons is uniformly its (infact, lipschitz cts!
1) HOW-FCY) KM [X-Y] + N,Y E [8,5].
FTCI: Of,375bon[9,6]. @ Mf3cts at CET9,6].
$F(x) = \int_{-\infty}^{\infty} f$ then $F(c) = \frac{\partial}{\partial x} \int_{0}^{\infty} $
Remark (), if is its at [0,6] than F(m=10n) +x+[0,6]. (2) g diffable on [0,6], then G(m)=1900)f => G(m)=F(g(m))g'(m)=fg(m)g(

MAZIIO Finals Cheatsheet (1).
FTCII Og is diffare on (a, 67. Og is integrable on [a, 5). Then
(audy) $\int_{a}^{x} g' = \int_{a}^{x} \frac{d}{dt} (gt) dt = g(x) - g(a)$.
Integration by parts: functions U,V: [9, 5] -> IR diffable, u,V'integrable on [9,6], then
$\int_{a}^{b} u v' = u(b) v(b) - u(a) v(a) - \int_{a}^{b} v(a)'$
Substitution vile: (a, b) > iR, \$ (x, s) > iR, \$ (x, s) (a, b) = x (x, s) CI+) IR.
$\int_{\infty}^{\infty} f(p(x)) p(x) dx = \int_{\infty}^{\infty} f(x) dx.$
Taylor's Thun with integral Rn. Let f be (n+1)-times diffable (f,, fontu exist) on [a, x]
additionally fatis, 7 tob on [9, N]. Then $f(x) = \sum_{k=3}^{n} \frac{f(x)a}{(x-a)^k} + \frac{f(x+1)}{(x+1)!} (x-a)^{n+1}$
$f(n) = \sum_{k=3}^{n} \frac{f(k)(a)}{k!} (n-a)^{k} + \frac{f(n+1)(c)}{(n+1)!} (n-a)^{n+1} = R_{N}(n).$ $= \sum_{k=3}^{n} \frac{f(k)(a)}{k!} (n-a)^{k} + \frac{f(n+1)(c)}{(n+1)!} (n-a)^{n+1} + \frac{f(n+1)(c)}{(n+1)!} (n-a)^{n} + \frac{f(n+1)(c)}{(n+1)!} (n-a)^$
Small 11911 forces Upper lover sum f=[9,5] -> 12 5 ad. (s.t. U Gf, P), L(f, P) exist). teapproach upper lover integral. 4570, 3870 s.t. 11911 (8=> L(f, P) > 12ft & L(f, P) > 12ft &.
Réemann-sum f: (9,5]->1R bod. P=(10=9,, Xn=b) a partiture of [9,6] 3: [[]] = [] [] [] [] [] [] [] [
Integrability: f:[a,5] > 1R rdd. fis integrate on [a,5] & Sof = A
Sequence of sum: Given a sequence of partitions $P_q = \{1, 1, \dots, 1, 1, \dots, 1, \dots$
and 11PH->0. Then the sequence of R-sums yn:= St, Pn)(300).
must tend to the integral lat.
Imporper Integral when @ for is unbounded or @ the niterial is unbounded.
then $\int_{a}^{b}f=L_{1}f$ 1. $\lim_{N\to b^{-}}\int_{a}^{\infty}f$ exists. $\int_{a}^{\infty}f=L_{1}f$ $\lim_{N\to b^{-}}\int_{a}^{\infty}f$ exists.
attende descrit the debut ontain or (a,b). Por conserve the above variety.
otherwood dress [fix defindenta, is or (a, b)] [sof converter if both above converter.]

MAZIO Finals Cheatenest (2). Continuity of derivatives let f: (9,5] -> IR we diff able on (9,4]. Then lims for exists, we autematically have f(0) = lims f(w). [impossible lims f(w) = L \ne f(c)]. Differby finite #of pts: of for= 9(h) on an into except for a finite # of pts, then
its life for = lag of f, g are into. paiprocal is integrable if the is covered if it b f: [9,5] ->1R, and h(u) > c + fre [6,5] they is itsb m [9,6] Leight of a curve: Cose L: fe C'[a, b]. Hus Sa Iteffens del = l(f). Case): Take any portition Pofta, 5] They

((f,p) = 211Vi-Vi-11 order Vi=(Ni, fors) and N-EP. = 1= 2 squt ((x-1/2) ~ (f(M)) - f(M2)) 2.) they 11911-20, 1(f,p)=(f) = sup{1(f,p) | P} Convadence of Embaster interval? : 1: (a'00) -> 15 D safandr conv. €> 4520, JM705+. 1 Saf / < € (D) if few 20, Saf conv (=> Saf < M + xetg, as) Code integral is Lad? 3 foo Stan (5(m), 12 cm, = 25 < M => 12 1 5 < M => foot 13 conv... (1,2,3) cause extended to f: (-0,6)->1R, (1) Ist conv => lim If exists, = If Lut known is false. Integral Test: an is the decreasy, for = an then Zan conv=L (=) John John = L => p-srs conveyes if \$ to, p>1. Thip & 1, downs. MVT for integrals f: C9,67→R,5ts, then JCE(9,5), Sof = fco(a-6). Sovethin Helyelle fisatson [a,b] Then I CE(a,b), scoll f=fcc) 5, 9&c. Jupeque Megral conv. ET ES (M), fenses (n) 4n,
Now, omegas.

MAZIO Finals Chartements)	
Seg. of fuz: (fy) defred on	E them => (fn) is a segot fus on E.
Pfuse com: In pfuse for E	if theE, from -> form as a segume in IR. (ie teso, = Kelly, n>k=> (from-for) < E)
	JAKA 32 (COJ-CO), HENK, WINE, OSZY J
Pfuise conv. Yn-2f	1 = supolificon-fin) (xEE)
fn are its ×	firsts on E Non-unf-ponv. test for seg. 1 1 fn-fil +0. fns
fu are itshout. X	figitishen E, (D) Here), (ME), (fig. (ME)-fore)
fu(ns)=>f(ns), x	Massey Automotis + frust 3 frust ctelity's but and g=f'.
Irs. offus of the lim concu), Sn= Efe Sn > Sptnix > Efn conv. pfunza), Sn= Efe Sn ys > Efn conv. und.
Conv. criteria 1. Su (n) fulfills	
	=>11fm++fn11<€.
2. Weierstrass M	test II full ESM n YUEN, EMU vanveyes
=> 2 fu c	anniter en F
183. offers are sel. offers It	Ih conveyes unof them Officts > Eh = + 13 cts
2 fu itgb => fizifs &0/18	1 Santa = I San = Inf.
3 ALOUS HU & Fulled conv	eges, 12.fr'479, => If conv.u.tof, f'=9.
Weierstass for ! I I ! IR # the	it is the Everywhere but diffable nowhere
Und com orserve bold (firsts)	un treE > fis Edd on E, and
and impresional sold of the	of 13 cts & everywhere but diffable nambur. Mn + NEE => f 13 ⅆ on E, and >f
And + and colored	can the use distributed they gu=49n
1) Known that of 19 now Kn	1 - VNEE, then it is Lipshitz antinuous. I
Any (gu) unifices on Tail	of that converge phusetos, must gnusg on [9,5].
Cruel-ets + pture conv.=	> und-las).

MA3110 thats cheathert (4)
Unifconv. or A and B= unifconvon AUB.
fu, gn and conv. > Patgn unf conv. to ftg.
fu, 9n and. conv. > fatgu unf. conv. to ftg. => (fu)n conv. unof) if (fu), 9 m are seq. of stdd fus. that) to fg. (fu)n, 9n > f.
Critorenfor 2th +> + . (1) thata Ilfu II +> 0. O if Foren, check its lites of Found for.
Distributes Test O partial sum of for is bold: 1 = f=(x) < M them, there.
They I fully (comprisition) is unof convig.
Poversis always converse withouterno It & 94 pm - 26) " Brown them.
Conv. at $v=u$, \Rightarrow conv at $ x-x_0 < x_1-x_0 + x $. $conv-at v=v_2 \Rightarrow diw$ at $ x-x_0 > x_2-x_0 + x $. Defn: Radius of convergence R of $\forall x \in (x_0-R, x_0+R)$, $\sum_{n=0}^{\infty} q_n (n-n)^n$ conv.
conv-atn-N2 => diw at M-No/ >M2-No/ Hn.
Defn: Radus of convergence R of. YNC(No-R, NotR), Z 94 (M-M) conv.
R== €, R=
+ NE(NO-R, NOTR) => => Blu(M-ND) CONV-aLS.
Also convake uniformly on the let E = (No-R, Note).
alex Formlarger lethtom: 9= f(0) + (0) + (0), => f(0) G(0) + (0) (1).
Then 2 horce = Bymcn - 2 Br,m (Cft,-Cf) Alels Thum If I quen-No) conv. on Note, = wif. clson [No. Moter] (=) und. cts on [No-R, Note?]
Mark the state of
THEISTAM If 290 (M-No)" CAV. ON NOTE, = WINT. COSON [NO MOTE]
No-R =)
ELITATE COLOCIDENTE POURTOCCIDANTE
when 2 100012 to Educa 1.20 = 1000 = (100) = (
Tapler's Multis to equal for (Justin Ca) = (ins faith) (Ca) & (N-NO) N+1 = 0. Detn'. Analytis for if (inf. differentiable on (0,5], () Teylor or somerges on a region
morten's Thin Zan env. als, Zbn conv. (als. verp), then canchy pat conv. (ass.
791Cn= (290)(bn), On= 29 9=5n-k.
\ \ -\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

constant, rund pot of powers ref for)= = an(n-No), |N-No) < R.,

gov = = 6n cn-No, |N-No) < R. (1) Lyonus! Afen) + Bga) = 2 (dan+Bbn) (d-No) 1 - + 100 [x-No) < mung R, Re] @ Pat: forger = 2 cn (x-n) of m-no/countr, R.I, where Cy = 29x5me. Dirishlet's Test ! for In: E->IR. If 1 [Efects | EM + NEW, three uniformly bold, 2) Sn >0 unformly on E, (3) THEE, (9non)), 3 devening.

=) I form (composition) ormages unif on E. Durant of four size (et to for) = "Zqun", q=1, R1>0. Then fount for = sen) = 5 bn xn, where bo=1, bn = -2, akbn-k. Huz1.

Prinomelors + XEIR, (H20) x = (X) xn treft, 1) where $(x) = \sqrt{\frac{1}{\alpha(\alpha-1)...(\alpha-n-1)}}$ Some sums Sonn-1-(1-N) - Chap 9 pg. N=2 N(N-1) XN-2 = (1-N)3.