Track 7
Inteligencia Artificial Aplicada

8a. Preventing Overfitting

Prof. Marcelo José Rovai rovai@unifei.edu.br

1

- +Data
- +Data
- +Data
- +Data

- +Data
- +Data
- +Data
- +Data

What can we do if we don't have enough data?

- Data Augmentation (artificial)
- Transfer Learning
- Early Stopping
- Dropout Regularization

More Data, Data Augmentation (artificial)

Overfitting generally occurs when there are a small number of training examples. <u>Data augmentation</u> takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.

Using Keras preprocessing layers

```
1 data_augmentation = tf.keras.Sequential([
2    layers.RandomFlip("horizontal_and_vertical"),
3    layers.RandomRotation(0.2),
4 ])
```

```
1 plt.figure(figsize=(10, 10))
2 for i in range(9):
3   augmented_image = data_augmentation(image)
4   ax = plt.subplot(3, 3, i + 1)
5   plt.imshow(augmented_image[0])
6   plt.axis("off")
```

There are a variety of preprocessing layers you can use for data augmentation including:

- tf.keras.layers.RandomContrast,
- tf.keras.layers.RandomCrop,
- tf.keras.layers.RandomZoom,
- · and others.

Using tf.image

```
1 flipped = tf.image.flip_left_right(image)
2 visualize(image, flipped)
```


1 rotated = tf.image.rot90(image)
2 visualize(image, rotated)

Using tf.image

```
1 saturated = tf.image.adjust_saturation(image, 3)
2 visualize(image, saturated)
```


1 bright = tf.image.adjust_brightness(image, 0.4)
2 visualize(image, bright)


```
1 for i in range(3):
2   seed = (i, 0) # tuple of size (2,)
3   stateless_random_crop = tf.image.stateless_random_crop(
4         image, size=[210, 300, 3], seed=seed)
5   visualize(image, stateless_random_crop)
```

Original image

Original image

Original image

Transfer Learning

The end result of the training is to learn the weights of the neural network model.

Learns *general features*irrespective of task

Transfer Learning

Reuse (freeze general feature extraction)

Learns *general features*irrespective of task

Transfer Learning

Train **only** last few layers

covidXray Detecting Covid-19 in Chest X-Ray images

VGG-16 Convolutional Neural Network Model

Training the model (Transfer Learning)

Inference

Local Files input
i.e. User_A.png

https://github.com/Mjrovai/covid19Xr

Early Stopping & Dropout Regularization

Early Stopping

Dropout Regularization

Fashion MNIST Dataset

- 20 Epochs
- 94.0% Accuracy on Train Data
- 88.5% Accuracy on Validation Data

Dropout Regularization

Fashion MNIST Dataset

- 20 Epochs
- 89.5% Accuracy on Train Data
 - 88.3% Accuracy on Validation Data

Removing a random number of neurons and connections (in this example, 20%), reduces the chances of the neurons becoming overspecialized and the model will generalize better, reducing the overfit.

Wisconsin Diagnostic Breast Cancer (WDBC) Code Time!

Breast Cancer Classification.ipynb

UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Thanks

