Tutorial 2.2.1.

- 1. Prove Theorem 2.9.
- 2. Use suitable rules or first principles to find

(a)
$$\lim_{n \to \infty} (n^2 + 2n - 10)$$

(a)
$$\lim_{n \to \infty} (n^2 + 2n - 10)$$
 (b) $\lim_{n \to \infty} \left(n - \frac{1}{n} \right)$ (c) $\lim_{n \to \infty} \frac{n^3 - 3n^2}{n+1}$

(c)
$$\lim_{n \to \infty} \frac{n^3 - 3n^2}{n+1}$$

- 3. Prove that if $\lim_{n\to\infty} |a_n| = \infty$, then (a_n) diverges.
- 4. Prove that if $p \in \mathbb{N}$, p > 0, then $n^p \to \infty$ as $n \to \infty$.
- 5. Define a sequence as follows:

$$a_0 = 0$$
, $a_1 = \frac{1}{2}$, $a_{n+1} = \frac{1}{3} (1 + a_n + a_{n-1}^3)$ for $n \ge 2$.

- (a) Use induction to show that $0 \le a_n \le \frac{2}{3}$ for all $n \in \mathbb{N}$.
- (b) Use induction to show that $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.
- (c) Explain why we may conclude that (a_n) converges.
- (d) Using the fact that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n-1} = \lim_{n\to\infty} a_{n+1}$, find $\lim_{n\to\infty} a_n$.
- 6. Let $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=\infty$, $\lim_{n\to\infty}c_n=0$. Show, by giving examples, that no general conclusion can be made about the behaviour of the following sequences:

 (a) a_n-b_n , (b) a_nc_n , (c) $\frac{a_n}{b_n}$, (d) $\frac{a_n}{c_n}$.

(a)
$$a_n - b_n$$
,

(b)
$$a_n c_n$$

(c)
$$\frac{a_n}{b}$$
,

7. Let (a_n) and (b_n) be sequences such that $a_n \leq b_n$ for all $n \in \mathbb{N}$. Show that

$$\lim_{n\to\infty}\inf\ a_n\leq \lim_{n\to\infty}\inf\ b_n\ \text{and}\ \lim_{n\to\infty}\sup\ a_n\leq \lim_{n\to\infty}\sup\ b_n\ .$$

8. (a) Show that $\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ exists for all $x \in \mathbb{R}$ and that $\exp(1) = e$. **Hint.** Adapt the proof of Example 2.2.3.

(b) Use Bernoulli's inequality to prove that

$$\lim_{n\to\infty} \left(\frac{1+\frac{x+y}{n}}{1+\frac{x+y}{n}+\frac{xy}{n^2}}\right)^n = 1$$

for all $x, y \in \mathbb{R}$.

- (c) Use (b) to show that $\exp(x+y) = \exp(x) \exp(y)$ for all $x, y \in \mathbb{R}$.
- (d) Show that $\exp(x) \ge 1 + x$ for all x > 0.
- (e) Show that $\exp(x) > 0$ for all $x \in \mathbb{R}$.
- (f) Show that exp is strictly increasing.
- (g) Show that $\exp(n) = e^n$ for all $n \in \mathbb{Z}$