CP065. Caractéristiques d'un moteur à courant continu (**)

Le rotor a un moment d'inertie $J_{\Delta}=1,0\times 10^{-5}~{\rm kg\cdot m^2}$. On place des capteurs au niveau du rotor qui mesurent la tension appliquée U, l'intensité I, et la vitesse angulaire Ω . Les frottements sont modélisés par un couple de moment $-\lambda\Omega$.

On effectue quatre essais différents, dont on donne les résultats :

— premier essai : rotor bloqué, régime stationnaire.

U(V)	1,00	3,00	6,00
I(A)	0,167	0,50	1,01

— <u>deuxième essai</u> : rotor libre (moteur à vide), régime stationnaire.

U(V)	2,00	4,00	6,00
$\Omega \; (ext{tours/min})$	584	1169	1753

- <u>troisième essai</u> : on coupe l'alimentation. Ω décroît de 1700 à 850 tours/min en 6,9 s.
- <u>quatrième essai</u> : on applique à t=0 un échelon de tension U=3,0 V. On constate que Ω suit alors la loi $\Omega(t)=\Omega_{\infty}\left[1-\exp\left(-t/\tau\right)\right]$ et on évalue d'après la courbe $\Omega_{\infty}=860$ tours/min et $\tau=6,0\times10^{-2}$ s.

En déduire la résistance d'induit R, le coefficient de frottement λ , et la constante de couplage Φ_0 .

CP020. MCC en régime transitoire (**)

On considère un moteur à courant continu à aimants permanents dont les caractéristiques sont les suivantes : tension d'induit : $U_n = 110$ V, résistance d'induit : R = 0, 5 Ω , inductance d'induit : L = 75 mH, moment d'inertie de l'ensemble mécanique en rotation : J = 1, 0 kg·m², couple de pertes mécaniques : $C_p = 1, 23$ N·m.

- 1. La machine tournant à vide on mesure le courant absorbé par la machine : $I_0=1,8$ A. En déduire le coefficient K vérifiant la relation $C=KI_0$, avec C le couple électromagnétique.
- 2. En déduire également la vitesse de rotation à vide de la machine.
- 3. La machine tournant à vide depuis longtemps, on accouple brutalement (au temps conventionnel t=0) la charge mécanique représentant un couple résistant : $C_r=13~\mathrm{N}\cdot\mathrm{m}$.
 - (a) Montrer que la vitesse angulaire vérifie l'équation différentielle :

$$J\frac{d\Omega}{dt} = Ki - (C_p + C_r)$$

(b) Montrer que l'équation électrique s'écrit :

$$U_n = K\Omega + Ri + L\frac{di}{dt}$$

(c) Une résolution numérique conduit aux courbes suivantes donnant l'intensité et la vitesse angulaire au cours du temps :

Discuter l'allure des courbes et retrouver les valeurs initiale et finale de l'intensité et de la vitesse angulaire.

- 4. On reprend le jeu d'équations précédent dans lequel on néglige l'inductance L de l'induit. On note alors i_0 et Ω_0 l'intensité et la vitesse angulaire dans ce cas simplifié.
 - (a) Montrer que Ω_0 a pour expression : $\Omega_0(t) = 14,06 \exp(-t/\tau) + 146,38$ avec $\tau = RJ/K^2$.
 - (b) La figure ci-dessous compare les résultats de la résolution numérique (L non nulle) et de la résolution analytique avec L nulle.

Pourquoi les valeurs finales ne sont pas affectées? Expliquer les principales différences entre les courbes.