Метод и алгоритм определения параметров равновесного состояния многокомпонентных гетерогенных систем на основе принципа максимума энтропии

Принцип максимума энтропии

Установление фазового и химического равновесия в изолированной системе — реальный, необратимый процесс, для которого характерно возрастание энтропии в соответствии во вторым началом термодинамики:

$$dS \ge \frac{dQ}{T}$$

После достижения равновесия данное неравенство превращается в уравнение dS = 0. Таким образом, расчёт равновесия изолированных термодинамических систем может быть сведён к задаче определения состояния, характеризуемого максимумом энтропии.

Связь между величиной энтропии системы и определяющими термодинамическими параметрами

Энтропия термодинамической системы, состоящей из \boldsymbol{k} компонентов газовой фазы и \boldsymbol{L} конденсированных фаз:

$$S = \sum_{i=1}^{k} S_i^{(p_i)} \cdot n_i + \sum_{l=1}^{L} S_l \cdot n_l = \sum_{i=1}^{k} \left(S_i^0 - R_0 \ln \frac{R_0 T n_i}{V} \right) \cdot n_i + \sum_{l=1}^{L} S_l^0 \cdot n_l$$

где

 n_i , n_1 — концентрации компонентов газовой фазы и конденсированных фаз (моль/кг), $i=1,2,...,k;\ l=1,2,...,L;$

 $S_i^0 = S_i^0(T)$ — стандартная энтропия *i*-го компонента газовой фазы при температуре *T* и давлении 1 физ. атм.;

 $S_l^0 = S_l^0(T)$ — энтропия конденсированной фазы l, зависящая только от температуры.

1. Условие материальной изолированности системы (уравнения баланса массы химических элементов, входящих в систему):

$$\sum_{i=1}^{k+L} a_{ji} \cdot n_i = b_j, \quad j = 1, 2, \dots m$$

где

 $m{b}_{
m j}$ — число молей $m{j}$ -го химического элемента в единице массы;

 $a_{\rm ji}$ — количество атомов j-го химического элемента в i-м веществе, т. е. стехиометрические коэффициенты.

Пример:

Система: H2 + N54.63O14.67, соотношение 1 к 34.5 ($\alpha = 1$).

Рассматриваемые компоненты: O, O2, H, H2, OH, H2O, N2, NO.

2. Условие энергетической изолированности системы (величина полной внутренней энергии должна оставаться неизменной):

$$\sum_{i=1}^{k+L} U_i \cdot n_i = U$$
 или $\sum_{i=1}^{k+L} U_i \cdot n_i - U = 0$

где

$$U_i = \int_{298.15}^{T} C_{vi}(T)dT + \Delta_f H_i^0(298.15)$$

3. Условие электронейтральности системы (при наличии заряженных частиц среди рассматриваемых компонентов):

$$\sum_{i=1}^{k+L} a_{ei} \cdot n_i = 0$$

4. Уравнение состояния идеального газа:

$$pV = R_0 T \sum_{i=1}^k n_i$$

Функция Лагранжа

Отыскание максимума величины энтропии системы *S* сводится к решению задачи на условный экстремум. С этой целью составляется функция Лагранжа, имеющая следующий вид:

$$\begin{split} & & \Lambda \Big(\, p, T, n_i, n_l, \lambda_u, \lambda_j, \lambda_e, \lambda_p \, \Big) = \sum_{i=1}^k \bigg(S_i^0 - R_0 \ln \frac{R_0 T n_i}{V} \bigg) \cdot n_i + \sum_{l=1}^L S_l^0 \cdot n_l + \\ & + \sum_{j=1}^m \bigg(\sum_{i=1}^{k+L} a_{ji} \cdot n_i - b_j \, \bigg) \cdot \lambda_j + \bigg(\sum_{i=1}^{k+L} a_{ei} \cdot n_i \, \bigg) \cdot \lambda_e + \bigg(\sum_{i=1}^{k+L} U_i \cdot n_i - U \, \bigg) \cdot \lambda_u + \\ & + \bigg(\, pV - R_0 T \sum_{i=1}^k n_i \, \bigg) \cdot \lambda_p \end{split}$$

Для формирования системы уравнений, описывающей связи между параметрами состояния и составом системы, приравниваются нулю частные производные функции Λ по всем независимым переменным:

$$\frac{\partial \Lambda}{\partial p} = 0; \qquad \frac{\partial \Lambda}{\partial n_i} = 0; \qquad \frac{\partial \Lambda}{\partial \lambda_j} = 0; \qquad \frac{\partial \Lambda}{\partial \lambda_u} = 0;
\frac{\partial \Lambda}{\partial T} = 0; \qquad \frac{\partial \Lambda}{\partial n_l} = 0; \qquad \frac{\partial \Lambda}{\partial \lambda_e} = 0; \qquad \frac{\partial \Lambda}{\partial \lambda_p} = 0.$$

Параметры состояния U и V считаются зависимыми, т. к. их постоянство предопределено условиями равновесия системы (отсутствие обмена теплом и работой с окр. средой), дифференцирование по этим параметрам не проводится.

$$\frac{\partial \Lambda}{\partial p} = V \lambda_p = 0$$
, откуда $\lambda_p = 0$

$$\frac{\partial \mathbf{\Lambda}}{\partial \mathbf{T}} = \frac{\partial}{\partial T} \left(\sum_{i=1}^{k} \left(S_{i}^{0} - R_{0} \ln \left(T \right) \right) \cdot n_{i} + \sum_{l=1}^{L} S_{l}^{0} \cdot n_{l} + \left(\sum_{i=1}^{k+L} U_{i} \cdot n_{i} \right) \cdot \lambda_{u} \right) =$$

$$= \frac{\partial}{\partial T} \left(\sum_{i=1}^{k} \left(S_i^0 - R_0 \ln \left(T \right) + U_i \lambda_u \right) \cdot n_i + \sum_{l=1}^{L} \left(S_l^0 + U_l \lambda_u \right) \cdot n_l \right) = 0$$

С учётом того, что
$$\frac{\partial S_i^0}{\partial T} - \frac{R_0}{T} = \frac{C_{vi}}{T}; \quad \frac{\partial S_l^0}{\partial T} = \frac{C_{vl}}{T}; \quad \frac{\partial U_i}{\partial T} = C_{vi};$$

$$\frac{\partial \Lambda}{\partial T} = \sum_{i=1}^{k+L} \left(\frac{C_{vi}}{T} + C_{vi} \lambda_u \right) \cdot n_i = 0$$
, откуда $\lambda_u = -\frac{1}{T}$

Для автоматического обеспечения неотрицательности концентраций компонентов выполняется замена переменных:

$$n_i = e^{x_i}, \quad n_l = e^{x_l}$$

С учётом этого, а также $\lambda_p = 0$, $\lambda_u = -\frac{1}{T}$:

$$\frac{\partial \Lambda}{\partial x_i} = \left(S_i^0 - \frac{U_i}{T} - R_0\right) - R_0 x_i - R_0 \ln \frac{R_0 T}{V} + \sum_{j=1}^m a_{ji} \lambda_j + a_{ei} \lambda_e = 0$$
 (1)

$$\frac{\partial \Lambda}{\partial x_l} = \left(S_l^0 - \frac{U_l}{T} + \sum_{j=1}^m a_{jl} \lambda_j \right) e^{x_l} = 0$$
 (2)

$$\frac{\partial \Lambda}{\partial \lambda_j} = \sum_{i=1}^{k+L} a_{ji} \cdot e^{x_i} - b_j = 0; \tag{3}$$

$$\frac{\partial \Lambda}{\partial \lambda_e} = \sum_{i=1}^k a_{ei} \cdot e^{x_i} = 0; \tag{4}$$

$$\frac{\partial \Lambda}{\partial \lambda_p} = pV - R_0 T \sum_{i=1}^k e^{x_i} = 0; \tag{5}$$

$$\frac{\partial \Lambda}{\partial \lambda_u} = \sum_{i=1}^{k+L} U_i \cdot n_i - U = 0; \tag{6}$$

Замыкание системы уравнений (1)-(6)

Количество уравнений в системе (1)-(6): k+L+m+3 Количество неизвестных $(x_i, x_l, \lambda_j, p, T, V, U, \lambda_e)$: k+L+m+5 Т. е. для определения равновесного состояния должны быть заданы два любых параметра состояния (p, T, V, U, I, S).

Параметры системы, принимаемые неизменными	Моделируемые состояния/процессы			
p, T	состав рабочего тела при заданных p, T			
V, T	состав рабочего тела при заданных V, T			
p, S	изоэнтропическое равновесное расширение до заданного давления			
V, S	изоэнтропическое равновесное расширение до заданного объёма			
p, I	нагрев рабочего тела (горение топлива) при заданном давлении			
<i>V, U</i>	нагрев рабочего тела (горение топлива) при заданном объёме			

Линеаризация системы уравнений (1)-(6)

Система уравнений (1)-(6) — нелинейная, поэтому для определения искомых неизвестных целесообразно применять какой-либо приближенный метод вычислений. Предлагается использовать метод Ньютона, предполагающий линеаризацию исходных уравнений относительно выбранного начального приближения.

Для этого выполняется разложение в ряд Тейлора без учёта членов второго порядка и выше:

$$f(x_1, x_2, ..., x_n) = f(x_1^0, x_2^0, ..., x_n^0) + \sum_{i=1}^n (x_i - x_i^0) \frac{\partial f}{\partial x_i}\Big|_{0}$$

где x_i^0 — начальное приближения неизвестных.

Линеаризация уравнений (1) для газообразных индивидуальных веществ

Исходное уравнение:

$$\frac{\partial \Lambda}{\partial x_i} = \left(S_i^0 - \frac{U_i}{T} - R_0\right) - R_0 x_i - R_0 \ln \frac{R_0 T}{V} + \sum_{j=1}^m a_{ji} \lambda_j + a_{ei} \lambda_e = 0$$

Замена переменной: $y = \ln \frac{R_0 T}{V}$

Преобразованное уравнение:

$$\boldsymbol{x_i} = \frac{1}{R_0} \left(S_i^0(\boldsymbol{T}) - \frac{I_i(\boldsymbol{T})}{\boldsymbol{T}} \right) - \boldsymbol{y} + \frac{1}{R_0} \sum_{j=1}^m a_{ji} \boldsymbol{\lambda_j} + \frac{1}{R_0} a_{ei} \boldsymbol{\lambda_e}$$

Нелинейный член: $S_i^0(T) - \frac{I_i(T)}{T}$

Линеаризация уравнений (1)) для газообразных индивидуальных веществ

Линеаризация:

$$S_{i}^{0}(T) - \frac{I_{i}(T)}{T} \approx \left[S_{i}^{0} \left(T^{0} \right) - \frac{I_{i} \left(T^{0} \right)}{T^{0}} \right] + \left(\mathbf{T} - T^{0} \right) \frac{I_{i} \left(T^{0} \right)}{\left(T^{0} \right)^{2}} =$$

$$\left[2I_{i} \left(T^{0} \right) \right] \quad I_{i} \left(T^{0} \right)$$

$$= \left[S_i^0 \left(T^0 \right) - \frac{2I_i \left(T^0 \right)}{T^0} \right] + \frac{I_i \left(T^0 \right)}{\left(T^0 \right)^2} T$$

$$\mathbf{x_{i}} = \frac{I_{i}(T^{0})}{R_{0}(T^{0})^{2}}\mathbf{T} - \mathbf{y} + \frac{1}{R_{0}}\sum_{j=1}^{m}a_{ji}\lambda_{j} + \frac{1}{R_{0}}a_{ei}\lambda_{e} + \left[S_{i}^{0}(T^{0}) - \frac{2I_{i}(T^{0})}{T^{0}}\right]$$

Линеаризация уравнений (1)) для газообразных индивидуальных веществ

Кроме того, для последующих подстановок используется:

$$\boldsymbol{e}^{\boldsymbol{x_i}} \approx \boldsymbol{e}^{x_i^0} + (\boldsymbol{x_i} - x_i^0) \boldsymbol{e}^{x_i^0}$$

$$e^{x_{i}} \approx \frac{I_{i}(T^{0})}{R_{0}(T^{0})^{2}} e^{x_{i}^{0}} T - e^{x_{i}^{0}} y + \frac{e^{x_{i}^{0}}}{R_{0}} \sum_{j=1}^{m} a_{ji} \lambda_{j} + \frac{e^{x_{i}^{0}}}{R_{0}} a_{ei} \lambda_{e} +$$

$$+ \left[1 + S_i^0 \left(T^0\right) - \frac{2I_i \left(T^0\right)}{T^0} - x_i^0\right] e^{x_i^0}$$

Линеаризация уравнений (2) для конденсированных фаз

Исходное уравнение:

$$\left(S_l^0 - \frac{U_l}{T} + \sum_{j=1}^m a_{jl} \lambda_j\right) e^{x_l} = 0$$

Уравнение (2) распадается на два решения:

$$S_l^0 - \frac{U_l}{T} + \sum_{j=1}^m a_{jl} \lambda_j = 0$$
 — соответствует наличию конденс. фазы

$$e^{x_l} = 0$$
 — соответствует отсутствию конденс. фазы

Линеаризация уравнений (2) для конденсированных фаз

Аппроксимирующая зависимость:

$$e^{x_l} - e^{A\left(S_l^0 - \frac{U_l}{T} + \sum_{j=1}^m a_{jl}\lambda_j\right)} = 0$$
, где $A \approx 10^3$

$$\mathbf{x_{l}} = A \frac{U_{l} \left(T^{0}\right)}{\left(T^{0}\right)^{2}} \mathbf{T} + A \sum_{j=1}^{m} a_{jl} \lambda_{j} + A \left[S_{l}^{0} \left(T^{0}\right) - \frac{2U_{l} \left(T^{0}\right)}{T^{0}}\right]$$

Линеаризация уравнений баланса массы элементов (3)

Исходное уравнение:

$$\frac{\partial \Lambda}{\partial \lambda_{i}} = \sum_{i=1}^{k+L} a_{ji} \cdot e^{x_{i}} - b_{j} = 0$$

$$\sum_{i=1}^{k+L} a_{ji} \cdot e^{x_i} = \sum_{i=1}^{k} a_{ji} \cdot e^{x_i} + \sum_{l=1}^{L} a_{jl} \cdot e^{x_l}$$

$$e^{x_l} \approx e^{x_l^0} + (x_l - x_l^0) e^{x_l^0}$$

$$\sum_{i=1}^{k} a_{ji} \cdot e^{x_i} + \sum_{l=1}^{L} a_{jl} e^{x_l^0} \cdot x_l = b_j + \sum_{l=1}^{L} a_{jl} e^{x_l^0} \left(x_l^0 - 1 \right)$$

Линеаризация уравнения электронейтральности (4)

Исходное уравнение:

$$\frac{\partial \Lambda}{\partial \lambda_e} = \sum_{i=1}^k a_{ei} \cdot e^{x_i} = 0$$

$$\frac{I_{i}(T^{0})}{(T^{0})^{2}} \sum_{i=1}^{k} \frac{a_{ei}}{R_{0}} e^{x_{i}^{0}} \cdot T - \sum_{i=1}^{k} a_{ei} e^{x_{i}^{0}} \cdot y + \sum_{i=1}^{k} \left(\frac{a_{ei}}{R_{0}} e^{x_{i}^{0}} \sum_{j=1}^{m} a_{ji} \cdot \lambda_{j} \right) +$$

$$+\sum_{i=1}^{k} \frac{a_{ei}^{2}}{R_{0}} e^{x_{i}^{0}} \cdot \lambda_{e} = -\sum_{i=1}^{k} \left[a_{ei} e^{x_{i}^{0}} \left[1 + S_{i}^{0} \left(T^{0} \right) - \frac{2I_{i} \left(T^{0} \right)}{T^{0}} - x_{i}^{0} \right] \right]$$

Линеаризация уравнения состояния (5)

Исходное уравнение:

$$\frac{\partial \Lambda}{\partial \lambda_p} = pV - R_0 T \sum_{i=1}^k e^{x_i} = 0;$$
 или $\frac{\partial \Lambda}{\partial \lambda_p} = p \cdot e^{-y} - \sum_{i=1}^k e^{x_i} = 0;$

Линеаризованное уравнение:

$$-e^{-y^0} \cdot \mathbf{p} + p^0 e^{-y^0} \cdot \mathbf{y} + \sum_{i=1}^k e^{x_i} = p^0 y^0 e^{-y^0}$$

Для обеспечения лучшей сходимости может использоваться следующее уравнение:

$$-e^{-y^{0}} \cdot \mathbf{p} + 2 \cdot \sum_{i=1}^{k} e^{x_{i}^{0}} \cdot \mathbf{y} + \sum_{i=1}^{k} e^{x_{i}} = 2y^{0} \cdot \sum_{i=1}^{k} e^{x_{i}^{0}}$$

Линеаризация условий равновесия (давление, температура, удельный объём)

Условия равновесия, используемые для замыкания системы уравнений:

$$p = p^*;$$

$$T = T^*$$
;

$$V = V *$$
 или $y = \ln\left(\frac{R_0T}{V *}\right)$

Линеаризация:

$$\mathbf{y} = \ln \left(\frac{R_0 T^0}{V^*} \right) + \left(\mathbf{T} - T^0 \right) \frac{1}{T^0}$$

$$-\frac{1}{T^0} \cdot T + y = \ln \left(\frac{R_0 T^0}{V^*} \right) - 1$$

Линеаризация условий равновесия (внутренняя энергия, энтальпия)

Условие равновесия (энтальпия):

$$\sum_{i=1}^{k} (U_i + R_0 T) e^{x_i} + \sum_{l=1}^{L} U_l e^{x_l} = I^*;$$

$$\left[\sum_{i=1}^{k+L} C_{pi} \left(T^{0} \right) e^{x_{i}^{0}} \right] \cdot T + \sum_{i=1}^{k} I_{i} \left(T^{0} \right) \cdot e^{x_{i}} + \left[\sum_{l=1}^{L} I_{l} \left(T^{0} \right) e^{x_{l}^{0}} \right] \cdot x_{l} =$$

$$= I * + \left[\sum_{i=1}^{k+L} C_{pi} \left(T^{0} \right) T^{0} e^{x_{i}^{0}} \right] + \left[\sum_{l=1}^{L} I_{l} \left(T^{0} \right) \left(x_{l}^{0} - 1 \right) e^{x_{l}^{0}} \right]$$

Линеаризация условий равновесия (внутренняя энергия, энтальпия)

Условие равновесия (внутренняя энергия):

$$\sum_{i=1}^{k+L} U_i e^{x_i} = U^*;$$

$$\begin{split} & \left[\sum_{i=1}^{k+L} C_{pi} \left(T^{0} \right) e^{x_{i}^{0}} \right] \cdot \boldsymbol{T} + \sum_{i=1}^{k} U_{i} \left(T^{0} \right) \cdot \boldsymbol{e}^{x_{i}} + \left[\sum_{l=1}^{L} U_{l} \left(T^{0} \right) e^{x_{l}^{0}} \right] \cdot \boldsymbol{x}_{l} = \\ & = U * + \left[\sum_{i=1}^{k+L} C_{pi} \left(T^{0} \right) T^{0} e^{x_{i}^{0}} \right] + \left[\sum_{l=1}^{L} U_{l} \left(T^{0} \right) \left(x_{l}^{0} - 1 \right) e^{x_{l}^{0}} \right] \end{split}$$

Линеаризация условий равновесия (энтропия)

Условие равновесия (энтропия):

$$\sum_{i=1}^{k} \left(S_i^0 - R_0 \ln \left(\frac{R_0 T n_i}{V} \right) \right) e^{x_i} + \sum_{l=1}^{L} S_l^0 e^{x_l} = S^*;$$

$$\begin{bmatrix}
\sum_{i=1}^{k+L} \frac{C_{pi}(T^{0})}{T^{0}} e^{x_{i}^{0}} \\
\end{bmatrix} \cdot \mathbf{T} + \sum_{i=1}^{k} \left[S_{i}^{0} - R_{0} \left(1 + x_{i}^{0} + y^{0} \right) \right] \cdot \mathbf{e}^{x_{i}} - \left[\sum_{i=1}^{k} R_{0} e^{x_{i}^{0}} \right] \cdot \mathbf{y} + \left[\sum_{l=1}^{L} S_{l}^{0} e^{x_{l}^{0}} \right] \cdot \mathbf{x}_{l} = S * + \sum_{i=1}^{k} \left[C_{pi}(T^{0}) - R_{0}(1 + y^{0}) \right] e^{x_{i}^{0}} +
\end{bmatrix}$$

$$+\sum_{l=1}^{L} \left[C_{pl} \left(T^{0} \right) + S_{l}^{0} \left(x_{l}^{0} - 1 \right) \right] e^{x_{l}^{0}}$$

Система уравнений для расчёта равновесного состава (окончательный вид)

Порядок системы: (m + L + 4)

$$\begin{bmatrix} \boldsymbol{x_l} = A \frac{U_l \left(T^0 \right)}{\left(T^0 \right)^2} \boldsymbol{T} + A \sum_{j=1}^m a_{jl} \boldsymbol{\lambda_j} + A \begin{bmatrix} S_l^0 \left(T^0 \right) - \frac{2U_l \left(T^0 \right)}{T^0} \end{bmatrix}; (L \text{ уравнений}) \\ \sum_{i=1}^k a_{ji} \cdot \boldsymbol{e}^{\boldsymbol{x_i}} + \sum_{l=1}^L a_{jl} e^{x_l^0} \cdot \boldsymbol{x_l} = b_j + \sum_{l=1}^L a_{jl} e^{x_l^0} \left(x_l^0 - 1 \right); \qquad (m \text{ уравнений}) \\ \sum_{i=1}^k a_{ei} \cdot \boldsymbol{e}^{\boldsymbol{x_i}} = 0; \\ -\boldsymbol{e}^{-y^0} \cdot \boldsymbol{p} + 2 \cdot \sum_{i=1}^k e^{x_i^0} \cdot \boldsymbol{y} + \sum_{i=1}^k \boldsymbol{e}^{\boldsymbol{x_i}} = 2 y^0 \cdot \sum_{i=1}^k e^{x_i^0}; \end{aligned}$$

+ 2 условия равновесия

Система уравнений для расчёта равновесного состава (окончательный вид)

После подстановки

$$\begin{split} & e^{\mathbf{x}_{i}} \approx \frac{I_{i}\left(T^{0}\right)}{R_{0}\left(T^{0}\right)^{2}} e^{x_{i}^{0}} \mathbf{T} - e^{x_{i}^{0}} \mathbf{y} + \frac{e^{x_{i}^{0}}}{R_{0}} \sum_{j=1}^{m} a_{ji} \lambda_{j} + \frac{e^{x_{i}^{0}}}{R_{0}} a_{ei} \lambda_{e} + \\ & + \left[1 + S_{i}^{0}\left(T^{0}\right) - \frac{2I_{i}\left(T^{0}\right)}{T^{0}} - x_{i}^{0}\right] e^{x_{i}^{0}} \end{split}$$

система уравнений становится линейной относительно

$$\lambda_i, x_l, \lambda_e, p, T, y$$

Алгоритм определения равновесного состава

- 1) формирование начальных приближений $x_i^0, x_l^0, p^0, T^0, y^0$
- 2) решение системы линейных уравнений (сл. 27) каким-либо из методов линейной алгебры;
- 3) определение значений x_i из явных выражений

$$\mathbf{x_{i}} = \frac{I_{i}(T^{0})}{R_{0}(T^{0})^{2}}\mathbf{T} - \mathbf{y} + \frac{1}{R_{0}}\sum_{j=1}^{m}a_{ji}\lambda_{j} + \frac{1}{R_{0}}a_{ei}\lambda_{e} + \left[S_{i}^{0}(T^{0}) - \frac{2I_{i}(T^{0})}{T^{0}}\right]$$

4) задание x_i и найденных значений x_l , p, T, y в качестве начальных приближений на следующем шаге вычислений (после корректировки во избежание возможных выбросов за допустимые пределы);

Алгоритм определения равновесного состава

- 5) вычисления по пунктам 2)—4) повторяются до тех пор, пока значения x_i , x_l , p, T, y, вычисленные на предыдущем и текущем шагах, не станут отличаться на заданную малую величину;
- б) определяются искомые концентрации компонентов газовой фазы и конденсированных фаз из соотношений

$$n_i = e^{x_i}, \quad n_l = e^{x_l}$$

Располагая данными о равновесном составе системы, можно определить любые термодинамические параметры системы (внутренняя энергия, энтальпия, энтропия, газовая постоянная, удельная теплоёмкость, показатель адиабаты и т. д.)

Выбор начальных приближений

Перед началом итерационного процесса всем переменным присваивается один и тот же набор значений вне зависимости от состава рабочего тела и задаваемых термодинамических параметров:

```
x_i = \ln(n_i) = 1.5;

x_l = \ln(n_l) = -15.0;

p = 1 \text{ M}\Pi\text{a};

T = 1000 \text{ K};

y = \ln(p).
```

Примечание. Давление при расчётах вводится в физических атмосферах (101325 Па).

Корректировка начальных приближений на промежуточных итерациях

При отработке алгоритма было установлено следующее максимальное изменение переменных за один шаг:

$$(\Delta p)_{\text{max}} = 0.2 p_{n-1};$$

$$(\Delta T)_{\text{max}} = 200 \text{ K};$$

$$(\Delta y)_{\text{max}} = \begin{cases} 0.5 & \text{при } |y_{n-1}| \le 1.0 \\ 0.5 \cdot |y_{n-1}| & \text{при } |y_{n-1}| > 1.0 \end{cases}$$

$$(\Delta x)_{\text{max}} = \begin{cases} 1 & \text{при } (x_i)_n \ge (x_i)_{n-1} \text{ и } (x_i)_{n-1} \ge -7 \\ 5 & \text{при } (x_i)_n \ge (x_i)_{n-1} \text{ и } (x_i)_{n-1} < -7 \end{cases}$$

$$(\Delta x)_{\text{max}} = \begin{cases} 1 & \text{при } (x_i)_n \ge (x_i)_{n-1} \text{ и } (x_i)_{n-1} \ge -7 \\ 5 & \text{при } (x_i)_n < (x_i)_{n-1} \text{ u } (x_i)_{n-1} < -7 \end{cases}$$

Пример расчёта: исходные данные

Система: H2 + N54.63O14.67, соотношение 1 к 34.5 ($\alpha = 1$). Рассматриваемые компоненты: O, O2, H, H2, OH, H2O, N2, NO.

$$a = egin{bmatrix} 1 & 2 & 0 & 0 & 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 2 & 1 & 2 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$
 о $b = egin{bmatrix} 14.258 \ 27.948 \ H \ моль/кг. \ 53.097 \end{bmatrix}$ N

Условия равновесия:

$$p = 0.1 \; \mathrm{M\Pi a} \approx 0.9869 \; физ. \; \mathrm{атм.};$$

$$T = 2500 \text{ K}.$$

Пример расчёта: система уравнений

Система уравнений: уравнения баланса массы для O, H, N + уравнение состояния (всего 4 уравнения).

$$\sum_{i=1}^{k} \frac{a_{ji} a_{1i}}{R_{0}} \exp x_{i}^{0} \lambda_{1} + \sum_{i=1}^{k} \frac{a_{ji} a_{2i}}{R_{0}} \exp x_{i}^{0} \lambda_{2} + \sum_{i=1}^{k} \frac{a_{ji} a_{3i}}{R_{0}} \exp x_{i}^{0} \lambda_{3} - \sum_{i=1}^{k} a_{ji} \exp x_{i}^{0} \mathbf{y} =$$

$$= b_{j} - \sum_{i=1}^{k} a_{ji} \left[1 + \frac{S_{i}^{0}}{R_{0}} - \frac{2I_{i}}{R_{0}T_{0}} - x_{i}^{0} \right] \exp x_{i}^{0} - \sum_{i=1}^{k} a_{ji} \frac{I_{i}}{R_{0}T_{0}^{2}} \exp x_{i}^{0} \mathbf{T}$$

$$\sum_{i=1}^{k} \left[\frac{a_{1i}}{R_{0}} \exp x_{i}^{0} \right] \cdot \lambda_{1} + \sum_{i=1}^{k} \left[\frac{a_{2i}}{R_{0}} \exp x_{i}^{0} \right] \cdot \lambda_{2} + \sum_{i=1}^{k} \left[\frac{a_{3i}}{R_{0}} \exp x_{i}^{0} \right] \cdot \lambda_{3} + \sum_{i=1}^{k} \exp x_{i}^{0} \cdot \mathbf{y} =$$

$$= 2 y^{0} \cdot \sum_{i=1}^{k} \exp x_{i}^{0} - \sum_{i=1}^{k} \left[1 + \frac{S_{i}^{0}}{R_{0}} - \frac{2I_{i}}{R_{0}T_{0}} - x_{i}^{0} \right] \exp x_{i}^{0} - \sum_{i=1}^{k} \left[\frac{I_{i}}{R_{0}T_{0}^{2}} \exp x_{i}^{0} \right] \cdot \mathbf{T} + \exp(-y^{0}) \cdot \mathbf{p}$$

Пример расчёта: матрица коэффициентов

$$A = \begin{bmatrix} \sum_{i=1}^{k} \frac{a_{1i}a_{1i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{1i}a_{2i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{1i}a_{3i}}{R_{0}} e^{x_{i}^{0}} & -\sum_{i=1}^{k} a_{1i} e^{x_{i}^{0}} \\ \sum_{i=1}^{k} \frac{a_{2i}a_{1i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{2i}a_{2i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{2i}a_{3i}}{R_{0}} e^{x_{i}^{0}} & -\sum_{i=1}^{k} a_{2i} e^{x_{i}^{0}} \\ \sum_{i=1}^{k} \frac{a_{3i}a_{1i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{3i}a_{2i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{3i}a_{3i}}{R_{0}} e^{x_{i}^{0}} & -\sum_{i=1}^{k} a_{3i} e^{x_{i}^{0}} \\ \sum_{i=1}^{k} \frac{a_{1i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{2i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} \frac{a_{3i}}{R_{0}} e^{x_{i}^{0}} & \sum_{i=1}^{k} e^{x_{i}^{0}} \end{bmatrix}$$

Пример расчёта: промежуточные итерации

Итерация	x1 (O)	x2 (O2)	x3 (H)	x4 (H2)	x5 (OH)	x6 (H2O)	x7 (N2)	x8 (NO)	y=ln(RoT/V)	S, кДж/кг·К
0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	-0.0132	8.0997
1	-1.5	1.2104	-1.5	0.2176	0.5813	2.5	2.5	0.8545	-0.2479	8.4107
2	-3.6653	0.3405	-4.3152	-2.0658	-0.9954	2.8370	3.5	-0.8310	-0.8129	12.9670
3	-3.9489	-0.5941	-3.9063	-1.6154	-1.2374	2.6364	3.2997	-1.5212	-1.1804	10.6252
4	-4.0821	-1.3056	-3.4106	-1.0690	-1.3200	2.6046	3.2766	-1.8884	-1.6254	10.4463
5	-3.9475	-1.4742	-3.0459	-0.7775	-1.2585	2.5928	3.2764	-1.9729	-2.0632	10.5688
6	-3.6901	-1.3652	-2.7728	-0.6371	-1.1339	2.5848	3.2762	-1.9185	-2.4690	10.7174
7	-3.4658	-1.2753	-2.5300	-0.5102	-1.0255	2.5773	3.2761	-1.8736	-2.8277	10.8522
8	-3.2782	-1.1978	-2.3296	-0.4072	-0.9351	2.5702	3.2760	-1.8348	-3.1255	10.9654
9	-3.1342	-1.1375	-2.1769	-0.3294	-0.8661	2.5643	3.2759	-1.8048	-3.3532	11.0529
10	-3.0339	-1.0952	-2.0710	-0.2759	-0.8182	2.5598	3.2758	-1.7836	-3.5115	11.1142
11	-2.9706	-1.0683	-2.0044	-0.2424	-0.7880	2.5569	3.2758	-1.7702	-3.6112	11.1531
12	-2.9338	-1.0527	-1.9657	-0.2230	-0.7705	2.5551	3.2757	-1.7624	-3.6692	11.1758
13	-2.9137	-1.0441	-1.9446	-0.2124	-0.7610	2.5542	3.2757	-1.7581	-3.7008	11.1882
14	-2.9031	-1.0396	-1.9335	-0.2069	-0.7559	2.5536	3.2757	-1.7559	-3.7174	11.1948
15	-2.8977	-1.0373	-1.9278	-0.2040	-0.7533	2.5534	3.2757	-1.7547	-3.7260	11.1982
16	-2.8949	-1.0361	-1.9249	-0.2025	-0.7520	2.5533	3.2757	-1.7542	-3.7303	11.1999
17	-2.8935	-1.0355	-1.9235	-0.2018	-0.7514	2.5532	3.2757	-1.7539	-3.7325	11.2008
18	-2.8928	-1.0352	-1.9227	-0.2014	-0.7510	2.5532	3.2757	-1.7537	-3.7336	11.2012
19	-2.8925	-1.0351	-1.9224	-0.2013	-0.7509	2.5531	3.2757	-1.7536	-3.7342	11.2014
20	-2.8923	-1.0350	-1.9222	-0.2012	-0.7508	2.5531	3.2757	-1.7536	-3.7344	11.2015
	•••	•••		•••	•••		•••			
37	-2.8921	-1.0349	-1.9220	-0.2011	-0.7507	2.5531	3.2757	-1.7536	-3.7347	11.2017

Пример расчёта: результаты (концентрации компонентов)

Компонент	Вычисленные концентрации (мольные доли)	Расчёт в программе FORPT
О	0.0012079	0.0012086
O2	0.0069651	0.0069597
Н	0.0037482	0.0037505
H2	0.0221819	0.0221822
ОН	0.0108852	0.0108970
Н2О	0.3136545	0.3136455
N2	0.6375936	0.6375881
NO	0.0037636	0.0037676
NH3	-	0.0
NO2	-	0.0000006
N	-	0.0000002