Problem 3.2

 ϕ is an isomorphism since it is one-to-one and onto and $\phi(n+m) = -(n+m) = (-n) + (-m) = \phi(n) + \phi(m)$ for all $m, n \in \mathbb{Z}$.

Problem 3.8

 ϕ is not an isomorphism because it is not one-to-one. Consider the following two matrices

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}.$$

It is clear that $A \neq B$. However $\det(A) = \det(B) = 6$, hence ϕ is not one-to-one and therefore not an isomorphism.

Problem 3.11

 ϕ is not an isomorphism because it is not one-to-one. Consider $f(x) = x^2 + 3$ and $g(x) = x^2 + 4$. Note that f'(x) = g'(x) = 2x. However since $f(x) \neq g(x)$, ϕ is not one-ton-one and hence not an isomorphism.

Problem 3.19

Part A

Define the binary operation * by

$$a * b = \frac{(a+1) \cdot (b+1)}{3} - 1.$$

Note that this satisifes the homorphism property since

$$\phi(x \cdot y) = 3xy - 1.$$

and

$$\phi(x) * \phi(y) = (3x - 1) * (3y - 1)$$

$$= \frac{(3x - 1 + 1) \cdot (3y - 1 + 1)}{3} - 1$$

$$= \frac{3x \cdot 3y}{3} - 1$$

$$= \frac{9xy}{3} - 1$$

$$= 3xy - 1.$$

Therefore since $\phi(x \cdot y) = \phi(x) * \phi(y)$, ϕ is homomorphic and since it is a bijection it is an isomorphism between (\mathbb{Q}, \cdot) and $(\mathbb{Q}, *)$. The identity element for * is 2 since for all $a \in \mathbb{Q}$,

$$2 * a = \frac{(2+1)(a+1)}{3} - 1$$
$$= a + 1 - 1 = a.$$

and

$$a * 2 = \frac{(a+1)(2+1)}{3} - 1$$
$$= a + 1 - 1 = a.$$

.

Part B

Since ϕ is one-to-one and onto, it is invertible. Therefore

$$\phi^{-1}(x) = \frac{x+1}{3}.$$

Since ϕ^{-1} must also be an isomorphism

$$a * b = \phi^{-1}(3a - 1) \cdot \phi^{-1}(3b - 1)$$

$$= \phi^{-1}((3a - 1) \cdot (3b - 1))$$

$$= \phi^{-1}(9ab - 3a - 3b + 1)$$

$$= \frac{9ab - 3a - 3b + 1 + 1}{3}$$

$$= 3ab - a - b + \frac{2}{3}.$$

The identity element of $\langle \mathbb{Q}, \cdot \rangle$ is preserved under ϕ , therefore the identity element of $\langle \mathbb{Q}, * \rangle$ is

$$\phi^{-1}(1) = \frac{2}{3}.$$

3.26

Proof. Let $\langle S, * \rangle$ and $\langle S', *' \rangle$ be binary algebraic structures and assume there exists an isomorphism $\phi : S \to S'$. Consider the inverse map $\phi^{-1} : S' \to S$. Since ϕ is an isomorphism, it is one-to-one and onto and therefore its inverse is also one-to-one and onto. Let $a', b' \in S'$. By the properties of inverses

$$\phi(\phi^{-1}(a'*'b')) = a'*'b'.$$

Since ϕ is an isomorphism

$$\phi(\phi(a') * \phi(b')) = \phi(\phi^{-1}(a')) *' \phi(\phi^{-1}(b'))$$

= $a' *' b'$.

Therefore since both equations are equal to a' *' b', it follows that

$$\phi(\phi^{-1}(a'*'b')) = \phi(\phi^{-1}(a')*\phi^{-1}(b'))$$
$$\phi^{-1}(a'*'b') = \phi^{-1}(a')*\phi^{-1}(b'),$$

meaning ϕ^{-1} is a homorphism. Therefore since ϕ^{-1} is one-to-one, onto, and homomorphic, it is an isomorphism from $\langle S', *' \rangle$ to $\langle S, * \rangle$.

3.28

Proof. Let A be a set of binary algebraic structures and define a relation \simeq over A such that

$$\langle S, * \rangle \simeq \langle S', *' \rangle \iff \langle S, * \rangle$$
 is isomorphic to $\langle S', *' \rangle$.

Proceed to show that \simeq is an equivalence relation.

(Reflexivity) Let $\langle S, * \rangle \in A$. Define a mapping $\phi : S \to S : a \mapsto a$. Let $a,b \in S$ and assume $\phi(a) = \phi(b)$. Then a = b, hence ϕ is one-to-one. Let $b \in S$. Then $\phi(b) = b$, meaning ϕ is onto. Additionally, $\phi(a*b) = a*b = \phi(a)*\phi(b)$ meaning ϕ is homomorphic. Therefore ϕ is an isomorphism, meaning $\langle S, * \rangle \simeq \langle S, * \rangle$.

(Symmetry) Let $\langle S, * \rangle$, $\langle S', *' \rangle \in A$. Assume that $\langle S, * \rangle \simeq \langle S', *' \rangle$. By the result in (3.26), it follows there is an isomorphic map from $\langle S', *' \rangle$ to $\langle S, * \rangle$, meaning $\langle S', *' \rangle \simeq \langle S, * \rangle$.

(Transitivty) Let $\langle S, * \rangle, \langle S', *' \rangle, \langle S'', *'' \rangle \in A$. For simplicity, denote each structure by its set. Assume $S \simeq S'$ and $S' \simeq S''$. Therefore S is isomorphic to S' and S' is isomorphic to S''. By the result in (3.27), S is isomorphic to S''. Hence $S \simeq S''$

Since \simeq is reflexive, symmetric, and transitive, it is an equivalent relation.

3.33

Part A

Proof. Let $H \subseteq M_2(\mathbb{R})$ such that an element of H is of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ with $a, b \in \mathbb{R}$. Define a map $\phi : \mathbb{C} \to H$ such that for a complex number z in its cartesian form a + bi

$$\phi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

Examine the conditions for ϕ to be an isomorphism.

(One-to-One) Let $z_1, z_2 \in \mathbb{C}$. Then there exists $a, b, c, d \in \mathbb{R}$ such that $z_1 = a + bi$ and $z_2 = c + di$. Assume $\phi(z_1) = \phi(z_2)$. Then

$$\phi(z_1) = \phi(z_2)$$

$$\phi(a+bi) = \phi(c+di)$$

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}.$$

For the two matrices to be equal, a = c and b = d. Therefore $z_1 = z_2$, hence ϕ is one-to-one.

(Onto) Let $M \in H$. Then there exists $a, b \in \mathbb{R}$ such that $M = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ Let $z = a + bi \in \mathbb{C}$. Then

$$\phi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = M.$$

Therefore ϕ is onto.

(Homomorphic) Let $z_1, z_2 \in \mathbb{C}$. Then there exists $a, b, c, d \in \mathbb{R}$ such that $z_1 = a + bi$ and $z_2 = c + di$. It follows that

$$\begin{split} \phi((a+bi)+(c+di)) &= \phi((a+c)+(b+d)i) \\ &= \begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix}. \end{split}$$

Additionally,

$$\begin{split} \phi(a+bi) + \phi(c+di) &= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \\ &= \begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix}. \end{split}$$

Therefore $\phi(z_1 + z_2) = \phi(z_1) + \phi(z_2)$ meaning ϕ is homomorphic.

Since ϕ is one-to-one, onto, and homomorphic, it is an isomorphism between $(\mathbb{C}, +)$ and (H, +).

Part B

Proof. Let $H \subseteq M_2(\mathbb{R})$ such that an element of H is of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ with $a, b \in \mathbb{R}$. Define a map $\phi : \mathbb{C} \to H$ such that for a complex number z in its cartesian form a + bi

$$\phi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

From Part A, ϕ is one-to-one and onto. Examine ϕ for the homomorphism property.

(Homomorphic) Let $z_1, z_2 \in \mathbb{C}$. Then there exists $a, b, c, d \in \mathbb{R}$ such that $z_1 = a + bi$ and $z_2 = c + di$. It follows that

$$\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i)$$
$$= \begin{bmatrix} ac-bd & -ad-bc \\ ad+bc & ac-bd \end{bmatrix}.$$

Additionally,

$$\phi(a+bi) + \phi(c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$
$$= \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix}.$$

Therefore $\phi(z_1+z_2)=\phi(z_1)\phi(z_2)$ meaning ϕ is homomorphic.

Since ϕ is one-to-one, onto, and homomorphic, it is an isomorphism between (\mathbb{C},\cdot) and (H,\cdot) .

4.6

 $\langle \mathbb{C}, * \rangle$ is not a group since there is no inverse element for 0.

4.9

Consider the following equation for each respective group with x being an element of a given group, e being the associated identity, and * being the associated operation. Then the equation

$$x * x * x = e$$

will have 1 solution in \mathbb{R} , 1 solution in \mathbb{R}^* , but 3 solutions in U. Therefore $\langle U, \cdot \rangle$ cannot be isomorphic to either $\langle \mathbb{R}, + \rangle$ or $\langle \mathbb{R}^*, \cdot \rangle$.

4.11

The set of all $n \times n$ diagonal matrices under matrix addition is a group.

Proof. Let D_n denote the set of all $n \times n$ diagonal matrices define the binary structure $\langle D_n, + \rangle$ where + is normal matrix addition. Examine the three axioms of a group.

(Associativity) Let $A, B, C \in D_n$. Then it quickly follows that

$$A + (B + C) = (A + B) + C$$

since matrix addition is associative.

(Identity Element) Let e be the $n \times n$ matrix with all zero entries. Clearly $e \in D_n$ and given a matrix $A \in D_n$,

$$A + e = e + A = A$$
.

hence e is the indentity element.

(Inverse) Let $A \in D_n$. Let A' be the diagonal matrix where the diagonal is the negation of A. Therefore

$$A + A' = A' + A = A - A = e$$
.

Since $\langle D_n, + \rangle$ follows the three axioms of a group, it is a group.

4.29

Proof. Let G be a finite group with an even number of elements. Consider the following set

$$S = \{a \in G : a \neq a'\}.$$

Note that |S| must be even since entries are paired by a, a'. Since |G| is even and |S| is even, |G - S| must also be even. $|G - S| \neq 0$ since the identity element $e \in G$ is in G but not in S, so it is in G - S. However, since |G - S| is even, there must be at least one other element in G - S, meaning there is another element $a \in G$ that isnt the identity such that aa = a

4.31

Proof. Let $\langle G, * \rangle$ be a group. Let $e \in G$ denote the identity element of G. It is trivial that e is idempotent for * since e * e = e. Therefore there is at least one idempotent for *. Assume towards contradiction there exists an element $x \in G \neq e$ that is also an idempotent for *. Since x is an idempotent,

$$x * x = x$$
.

Since x is an element of a group, x has an inverse x'. Therefore

$$x * x = x$$

$$x * x * x' = x * x'$$

$$x * e = e$$

$$x = e.$$

However, this contradicts the assumption that $a \neq e$. Therefore there cannot be any other idempotents for * besides an identity element e. By the uniqueness of the identity element, there is only one identity for G, hence e is the only idempotent for *.

4.32

Proof. Let G be a group with identity * and assume that for all $x \in G$ that x * x = e. Therefore for all $x \in G$

$$x * x = e$$

$$x * x * x' = e * x'$$

$$x * e = x'$$

$$x = x'.$$

Let $a, b \in G$. Consider (a * b) * (a * b). Then

$$(a * b) * (a * b) = e$$

 $a * b = (a * b)'$
 $a * b = b' * a'$
 $a * b = b * a$.

Therefore G is abelian.

4.33

Proof. Proceed with induction. Let G be an abelian group with $a, b \in G$. Consider the base case where n = 1. Then

$$(a*b)^1 = a*b = a^1*b^1.$$

Therefore the base case holds. Assume for some fixed $n \in \mathbb{Z}^+$ that $(a*b)^n = a^n*b^n$. Then

$$(a * b)^{n+1} = (a * b) * (a * b)^{n}$$

$$= a * b * a^{n} * b^{n}$$

$$= a * a^{n} * b * b^{n}$$

$$= a^{n+1} * b^{n+1}.$$

Therefore the n+1 case holds, meaning for $n \in \mathbb{Z}^+$ that for all $a,b \in G$ that $(a*b)^n = a^n*b^n$.

4.34

Proof. Let G be a finite group and let $\alpha \in G$. Consider the set $S = \{a, a^2, a^3, \ldots, a^m, a^{m+1}\}$ where m = |G|. Since there are m+1 elements in S, there has to be a repeat otherwise S would contain m+1 unique elements which is larger than |G|. Therefore there exists $\alpha, \beta \in \mathbb{Z}^+$ such that $\alpha \neq \beta$ and $\alpha^{\alpha} = \alpha^{\beta}$. Without loss of generality let $\alpha < \beta$. Then

$$a^{\beta} = a^{\alpha}$$
$$a^{\beta - \alpha} = e.$$

Since $\alpha < \beta$, $\beta - \alpha > 0$ meaning $\beta - \alpha \in \mathbb{Z}^+$. Therefore for any $\alpha \in G$ there exists a $n \in \mathbb{Z}^+$ such that $a^n = e$.

4.37

Proof. Let G be a group and $a, b, c \in G$. Assume that a * b * c = e. Then

$$a * b * c = e$$
 $a' * a * b * c = e * a'$
 $b * c = a'$
 $b * c * c' = a' * c'$
 $b = a' * c'$
 $b * c = a' * c' * c$
 $b * c = a'$
 $b * c * a = a' * a$
 $b * c * a = e$

Therefore for all $a, b, c \in G$, if a * b * c = e then b * c * a = e.

4.41

Proof. Let G be a group and $g \in G$. Define the map $i_g : G \to G$ such that $i_g(x) = gxg'$ for $x \in G$. Check the conditions that i_g is an isomorphism of G with itself.

(One-to-One) Let $a, b \in G$ and assume that $i_g(a) = i_g(b)$. Then

$$i_g(a) = i_g(b)$$
 $gag' = gbg'$
 $gag'g = gbg'g$
 $ga = gb$
 $g'ga = g'gb$
 $a = b$.

Therefore i_g is one-to-one.

(Onto) Let $b \in G$ and let a = g'bg. Then

$$i_g(a) = gag'$$

= $gg'bgg'$
= b .

Therefore i_g is onto.

(Homomorphic) Let $a, b \in G$. Then

$$i_g(ab) = gabg'.$$

and

$$i_g(a)i_g(b) = gag'gbg'$$

= $gabg'$.

Therefore $i_g(ab) = i_g(a)i_g(b)$, meaning i_g is homomorphic.

Therefore since i_g is one-to-one, onto, and homomorphic, it is an isomorphism of G with itself.