Uma proposta de corrrecção da frequência de 28/5/2010

- 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = 2 (x-1)^2 (y-1)^2$.
 - (a) Determine, caso existam, os máximos e mínimos locais e os pontos sela de f.

Resolução:

Os pontos críticos de f verificam

$$\nabla f(x,y) = (0,0) \Leftrightarrow (-2(x-1), -2(y-1)) = (0,0)$$

$$\Leftrightarrow (x-1, y-1) = (0,0)$$

$$\Leftrightarrow (x,y) = (1,1).$$

Logo, f tem um único ponto crítico: (1,1).

Como

$$D(1,1) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(1,1) & \frac{\partial^2 f}{\partial x \partial y}(1,1) \\ \frac{\partial^2 f}{\partial y \partial x}(1,1) & \frac{\partial^2 f}{\partial y^2}(1,1) \end{vmatrix} = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4 > 0$$

e

$$\frac{\partial^2 f}{\partial x^2}(1,1) = -2 < 0,$$

a função f atinge um máximo local f(1,1) = 2.

(b) Seja $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Utilizando o método dos multiplicadores de Lagrange, determine os extremos absolutos de $f_{|D|}$ (onde $f_{|D|}$ denota a restrição de f ao conjunto D).

Resolução:

Seja $g(x,y)=x^2+y^2, (x,y)\in\mathbb{R}^2$. Os pontos onde $f_{|_D}$ poderá ter extremos absolutos são as soluções do sistema

$$\begin{cases} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 1 \end{cases}$$

i.e.

$$\begin{cases} -2(x-1) = 2\lambda x \\ -2(y-1) = 2\lambda y \\ x^2 + y^2 = 1 \end{cases} \Leftrightarrow \begin{cases} -x(1+\lambda) = 1 \\ -y(1+\lambda) = 1 \\ x^2 + y^2 = 1 \end{cases} \Leftrightarrow \begin{cases} x = y \\ -y(1+\lambda) = 1 \\ x^2 + y^2 = 1 \end{cases} \Leftrightarrow \begin{cases} x = y \\ -y(1+\lambda) = 1 \\ 2x^2 = 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = y \\ -y(1+\lambda) = 1 \\ 2x^2 = 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = y \\ -y(1+\lambda) = 1 \\ x = \pm \frac{\sqrt{2}}{2} \end{cases}$$

Portanto, a função $f_{|_D}$ poderá ter extremos nos pontos $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ e $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Temos $f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)=2\sqrt{2}-1$ e $f=\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)=-2\sqrt{2}-1$. Como $f_{|_D}$ é contínua e D é um conjunto fechado e limitado, concluimos, pelo teorema de Weierstrass, que $f_{|_D}$ atinge o máximo absoluto em $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ e o mínimo absoluto em $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.

2. Averigúe a natureza das séries numéricas $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} (a_n - a_{n+1})$, onde $a_n = \frac{1}{2} - \frac{n^2}{e^n}$.

Resolução:

Visto o limite $\lim_{n} \frac{n^2}{e^n}$ ser igual a 0 (basta notar que $\lim_{x \to +\infty} \frac{x^2}{e^x} = 0$, pela Regra de L'Hôpital), tem-se $\lim_{n} a_n = \frac{1}{2}$.

Pelo teste de divergência, a série $\sum_{n=1}^{\infty} a_n$ é divergente.

Seja $\{S_n\}$ a sucessão das somas parciais da série $\sum_{n=1}^{\infty} (a_n - a_{n+1})$. Então $S_n = a_1 - a_{n+1}$ e $\lim_n S_n = a_1 - \frac{1}{2} = -\frac{1}{e}$. Portanto a série $\sum_{n=1}^{\infty} (a_n - a_{n+1})$ converge (e a sua soma é $-\frac{1}{e}$).

3. Determine a natureza da série numérica $\sum_{n=2}^{\infty} \frac{n^3}{2n^5 - 3}.$

Resolução:

Consideremos a série $\sum_{n=2}^{+\infty} \frac{1}{n^2}$. Esta série é convergente porque é do tipo $\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}}$ (série de Dirichlet) com $\alpha = 2 > 1$. Por outro lado,

$$\lambda = \lim_{n} \frac{\frac{n^3}{2n^5 - 3}}{\frac{1}{n^2}} = \lim_{n} \frac{n^5}{2n^5 - 3} = \frac{1}{2}.$$

Como $\lambda \in \mathbb{R}^+$, o segundo critério de comparação permite concluir que as séries $\sum_{n=2}^{+\infty} \frac{1}{n^2} e \sum_{n=2}^{+\infty} \frac{n^3}{2n^5 - 3}$ têm a mesma natureza. Portanto, $\sum_{n=2}^{+\infty} \frac{n^3}{2n^5 - 3}$ é uma série convergente.

- 4. Considere a função $f: \mathbb{R}^+ \to \mathbb{R}$ definida por $f(x) = \sqrt{x}$
 - (a) Estabeleça a fórmula de Taylor de ordem 1 de f no ponto a=16.

Resolução:

A fórmula de Taylor de ordem 1 de fno ponto a=16é dada por

$$f(x) = \underbrace{f(16) + \frac{f'(16)}{1!}(x - 16)}_{P_1(f;x)} + \underbrace{\frac{f''(c)}{2!}(x - 16)^2}_{R_1(f;x)},$$

para algum centre xe 16. Calculamos as derivadas de f

$$f(x) = \sqrt{x} f(16) = 1$$

$$f'(x) = \frac{1}{2\sqrt{x}} f'(16) = \frac{1}{8}$$

$$f''(x) = -\frac{1}{4x^{\frac{3}{2}}}.$$

e substituimos na fórmula de Taylor, obtendo

$$f(x) = 4 + \frac{1}{8}(x - 16) - \frac{1}{8c^{\frac{3}{2}}}(x - 16)^2,$$

para algum c entre x e 16.

(b) Usando a alínea (a), calcule um valor aproximado A para $\sqrt{17}$ e estime o erro $|\sqrt{17} - A|$.

Resolução:

Um valor aproximado A para $\sqrt{17}$ é dado por $P_1(f, 17)$, o polinómio de Taylor de ordem 1 calculado em x = 17. Assim,

$$A = 4 + \frac{1}{8}(17 - 16) = \frac{33}{8}.$$

O erro desta aproximação é dado por $R_1(f, 17)$, o resto de Lagrange de ordem 1 calculado em x=17. Assim,

$$|\sqrt{17} - A| = \left| -\frac{1}{8c^{\frac{3}{2}}} (17 - 16)^2 \right| = \frac{1}{8c^{\frac{3}{2}}}$$

para algum $c \in]16, 17[$. Reparamos que o erro é uma função decrescente na variável c e por isso, dado que $c \in]16, 17[$, temos

$$|\sqrt{17} - A| \le \frac{1}{8(\sqrt{16})^3} = \frac{1}{512}.$$

- 5. Seja $f: I \to \mathbb{R}$ a função soma da série de potências $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)5^n}$.
 - (a) Determine o intervalo de convergência da série.

Resolução:

Se x=0, a série converge e a sua soma é 0. Se $x\neq 0$, apliquemos o Critério da razão à série de potências:

$$\lim_{n} \frac{\left| \frac{(-1)^{n+1} x^{2(n+1)+1}}{(2(n+1)+1)5^{n+1}} \right|}{\left| \frac{(-1)^{n} x^{2n+1}}{(2n+1)5^{n}} \right|} = \lim_{n} \frac{(2n+1)5^{n} |x|^{2n+3}}{(2n+3)5^{n+1} |x|^{2n+1}} = \lim_{n} \frac{(2n+1)x^{2}}{5(2n+3)} = \frac{x^{2}}{5}.$$

Portanto a série converge se $x^2 < 5$ e diverge se $x^2 > 5$.

Ora, $x^2 < 5 \Leftrightarrow |x| < \sqrt{5} \Leftrightarrow -\sqrt{5} < x < \sqrt{5}$, logo o intervalo de convergência da série é] $-\sqrt{5}$, $\sqrt{5}$ [.

(b) Indique o domínio da função derivada f' e ache uma expressão analítica para f'(x).

Resolução:

Para todo o $x \in]-\sqrt{5}, \sqrt{5}[$, tem-se que

$$f'(x) = \sum_{n=0}^{\infty} \left(\frac{(-1)^n}{(2n+1)5^n} x^{2n+1} \right)' = \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{(2n+1)5^n} x^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{5^n} x^{2n}.$$

Visto $\sum_{n=0}^{\infty} \frac{(-1)^n}{5^n} x^{2n} = \sum_{n=0}^{\infty} \left(-\frac{x^2}{5}\right)^n$ ser uma série geométrica de razão $\frac{-x^2}{5}$, tem-se

$$f'(x) = \frac{1}{1 - (-\frac{x^2}{5})} = \frac{5}{5 + x^2}.$$

O domínio da função f' é] $-\sqrt{5}, \sqrt{5}$ [.

(c) Calcule f(1) com um erro inferior a 0,01.

Resolução:

Como 1 pertence ao intervalo de convergência da série $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)5^n}$, tem-se

$$f(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)5^n}.$$

Então f(1) é a soma de uma série numérica alternada que verifica as hipóteses do Critério de Leibnitz. Seja $\{S_n\}_n$ a sucessão das somas parciais da série alternada. Cada S_k é uma aproximação para f(1) e o erro dessa aproximação, dado por $|f(1) - S_k|$, verifica

$$|f(1) - S_k| \le \frac{1}{5^{k+1}(2(k+1)+1)} = \frac{1}{5^{k+1}(2k+3)}.$$

Assim, para obtermos um erro inferior a 0.01, basta determinar k tal que

$$\frac{1}{5^{k+1}(2k+3)} \le 0,01 = \frac{1}{100},$$

isto é, tal que $5^{k+1}(2k+3) \ge 100$. Constata-se facilmente que esta última condição é verificada a partir de k=1. Portanto

$$f(1) \approx S_1 = 1 - \frac{1}{15} = \frac{14}{15}$$

com erro inferior a 0,01.

- 6. Seja $f: \mathbb{R} \to \mathbb{R}$ a função periódica de período π definida no intervalo $[0, \pi[$ por $f(x) = \cos x$.
 - (a) Verifique se a série de Fourier de f é uma série de senos. (Sugestão: Esboce o gráfico de f). Resolução:

Esboçamos o gráfico da função f.

Como f é uma função impar, os coeficientes $a_n, n \in \mathbb{N}_0$, são nulos e a série de Fourier de f reduz-se a uma série de senos.

(b) Determine a soma da série de Fourier de
$$f$$
 nos pontos $x=0$ e $x=\frac{\pi}{2}$.

Resolução:

Como f é seccionalmente derivável, sabemos pelo teorema de Fourier que a soma da série de Fourier de f é, em todo $x \in \mathbb{R}$, igual a

$$g(x) = \frac{f(x^+) + f(x^-)}{2},$$

onde $f(x^+)$ e $f(x^-)$ são, respectivamente, os limites à direita e à esquerda de f em x. Portanto, nos pontos 0 e $\frac{\pi}{2}$, temos

$$g(0) = \frac{1-1}{2} = 0$$
 e $g\left(\frac{\pi}{2}\right) = \frac{0+0}{2} = 0.$