Formulari di Fisica

Raccolta dei più importanti formulari di fisica trovati su internet

FORMULARIO DI FISICA

Unità di misura e statistica 1

Lunghezza x: metri (m).

Tempo t: secondi (s).

Massa M: chilogrammi (kg).

Temperatura T: gradi Kelvin (o K).

Corrente elettrica I: Ampere (A).

Valor medio: $\langle x \rangle = \sum_{1=1}^{N} x_i$. Scarto quadratico medio: $\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (\langle x \rangle - x_i)^2$.

2 Cinematica

Moto rettilineo uniforme: $x = x_0 + v_0 t$, $v = v_0$, a = 0.

Moto uniformemente accelerato: $x = x_0 + v_0 t + \frac{1}{2} a_0 t^2$, $v = v_0 + a_0 t$, $a = a_0$.

Moto circolare uniforme: $\theta = \theta_0 + \omega_0 t$, $\omega = \omega_0$, $v = R\omega$, $a = \frac{v^2}{R}$; periodo $T = \frac{1}{f} = \frac{2\pi}{\omega}$, con f frequenza lineare.

Moto armonico: $x = x_M \sin(\omega t + \theta_0)$, con θ_0 fase (angolo) iniziale.

3 **Dinamica**

Legge di Newton: $\vec{F} = M \vec{a}$.

Forza peso: $\vec{F} = M \vec{g}$.

Forza elastica: $\vec{F} = -k \vec{x}$.

Forza di attrito in piano orizzontale: $F = -\mu M g$.

Forza di attrito viscoso $\vec{F} = -c \vec{v}$; per sfera: $c = 6\pi R \eta$.

Quantità di moto: $\vec{p} = M \vec{v}$.

Frequenza di oscillazione di un corpo soggetto a forza elastica: $\omega = \sqrt{\frac{k}{M}}$

Energetica 4

Lavoro per forza costante: $L = \vec{F} \cdot \Delta \vec{x} = F \Delta x \cos(\theta)$.

Energia cinetica: $T = \frac{1}{2} M v^2$.

Energia potenziale della forza peso: U = M g z.

Energia potenziale della forza elastica: $U = \frac{1}{2} k x^2$.

Potenza: $P = \frac{L}{\Delta t}$.

Fluidodinamica 5

Densità di un materiale omogeneo: $\rho = \frac{M}{V}$.

Legge di Leonardo: $v_1 S_1 = v_2 S_2$.

Pressione: $P = \frac{F}{S}$.

Legge di Stevino: $P_B = P_A + \rho g (z_A - z_B)$. Legge di Poiseuille: $v = \frac{R^2}{8\eta L} \Delta P$, con η viscosità.

6 Termodinamica

Calore assorbito: $Q = c_s M \Delta T$, con c_s calore specifico.

Legge di Fourier: $Q = K \frac{S}{L} \Delta T \Delta t$. Legge dei gas perfetti: $P \tilde{V} = n R T$. Lavoro a pressione costante: $L = P \Delta V$.

1mo principio della termodinamica: $\Delta E = Q - L$, con E energia interna.

7 Elettrologia

Forza di Coulomb: $F = k_e \frac{Qq}{r^2} = q E$, con E campo elettrico. Potenziale elettrico: $V = \frac{U}{q}$, con U energia potenziale eletrica. Corrente elettrica: $I = \frac{\Delta q}{\Delta t}$.

1ma legge di Ohm: V = RI.

2nda legge di Ohm: $R = \rho \frac{L}{S}$.

Formulario di Fisica Generale I

Cinematica

Velocità: $\vec{v} = \frac{d\vec{r}}{dt}$

Accelerazione: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

Moto uniformemente accelerato

 $v - v_0 = a \cdot t$

$$x - x_0 = v_0 \cdot t + \frac{1}{2}at^2$$

$$x - x_0 = \frac{1}{2}(v_0 + v_x)t$$

$$x - x_0 = \frac{1}{2}(v_0 + v_x)t$$

$$v_x^2 - v_0^2 = 2a(x - x_0)$$

Corpo in caduta da fermo:

 $v = \sqrt{2gh}$

 $t = \sqrt{2h/g}$

Moto del Proiettile

 $y = x \cdot \tan \theta - \frac{g}{2v_0^2 \cos^2 \theta} x^2$

 $h_{max} = \frac{v_0^2 \sin^2 \theta}{2g}$ $x_{max} = \frac{v_0^2 \sin(2\theta)}{2g}$

 ${\bf Moto~Circolare}^g$

Velocità angolare: $\omega = \frac{d\theta}{dt}$

Accel. angolare: $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$ Moto Circolare Uniforme

 $\omega = 2\pi/T$

 $v_{\mathrm{tangenziale}} = \omega r$

 $a_{\text{centripeta}} = v^2/r = \omega^2 r$

Moto Circolare Unif. Accel.

 $\omega - \omega_0 = \alpha \cdot t$

 $\theta - \theta_0 = \omega_0 \cdot t + \frac{1}{2}\alpha t^2$

Moto curvilined

 $\vec{a} = a_T \hat{\theta} + a_R \hat{r} = \frac{d |\vec{v}|}{dt} \hat{\theta} - \frac{v^2}{r} \hat{r}$

Sistemi a più corpi

Massa totale: $m_T = \sum m_i = \int dm$

Centro di massa:

 $\vec{r}_{CM} = (\sum m_i \vec{r}_i)/m_T = (\int \vec{r}_i dm)/m_T$ $\vec{v}_{CM} = d\vec{r}_{CM}/dt = \sum m_i \vec{v}_i/m_T$

 $\vec{a}_{CM} = d\vec{v}_{CM}/dt = \overline{d^2}\vec{r}_{CM}/dt^2$

Momento di inerzia:

 $I_{\rm asse} = \sum m_i r_i^2 = \int r^2 dm$

Teorema assi paralleli:

 $I_{\text{asse}} = I_{\text{CM}} + mD^2$

Forze, Lavoro ed Energia

Legge di Newton: $\vec{F} = m\vec{a}$

Momento della forza: $\vec{\tau} = \vec{r} \times \vec{F}$

Forze Fondamentali

Forza peso: $F_g = mg$

Forza elastica: $F_{el} = -k(x - l_0)$

Gravità: $\vec{F}_g = -G \frac{Mm}{r^2} \hat{r}$

Elettrostatica: $\vec{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{r}$

Forze di Attrito

Statico: $|\vec{F}_S| \leq \mu_S |\vec{N}|$

Dinamico: $\vec{F}_D = -\mu_D |\vec{N}|\hat{v}$

Viscoso: $\vec{F}_V = -\beta \vec{v}$

Lavoro

 $L = \int_{x_i}^{x_f} \vec{F} \cdot d\vec{l} = \int_{\theta_i}^{\theta_f} \tau d\omega$

Forza costante: $L = \vec{F} \cdot \vec{l}$

Forza elastica:

Forza peso: $L = -\frac{1}{2}k(x_f - l_0)^2 + \frac{1}{2}k(x_i - l_0)^2$ Forza peso: L = -mgh

Gravità: $L = Gm_1m_2 \cdot \left(\frac{1}{r_f} - \frac{1}{r_i}\right)$

Elettrostatica: $L = \frac{q_1 q_2}{4\pi \varepsilon_0} \cdot \left(\frac{1}{r_i} - \frac{1}{r_f}\right)$

Potenza: $P = \frac{dL}{dt} = \vec{F} \cdot \vec{v} = \tau \omega$

Energia

Cinetica: $K = \frac{1}{2}mv^2$

Rotazione: $K = \begin{cases} \frac{1}{2}m_T v_{\text{CM}}^2 + \frac{1}{2}I_{\text{CM}}\omega^2 \\ \frac{1}{2}I_{\text{AsseFisso}}\omega^2 \end{cases}$ Forze vive: $K_f - K_i = L_{\text{TOT}}$

Potenziale: $U = -L = -\int_{x_i}^{x_f} \vec{F} \cdot d\vec{l}$

Meccanica: $E = K + U = \frac{1}{2}mv^2 + U$ Conservazione: $E_f - E_i = L_{\text{NON CONS}}$

En. potenziale forze fondamentali:

Forza peso: U(h) = mgh

Forza elastica: $U(x) = \frac{1}{2}k(x - l_0)^2$

Gravità: $U(r) = -G \frac{m_1^2 m_2}{r}$

Elettrostatica: $U(r) = \frac{r}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r}$

Impulso e Momento Angolare

Quantità di moto: $\vec{p} = m\vec{v}$

Impulso: $\vec{I} = \vec{p_f} - \vec{p_i} = \int_{t_1}^{t_2} \vec{F} dt$

Momento angolare: $\vec{L} = \vec{r} \times \vec{p}$

Intorno ad un asse fisso: $|\vec{L}| = I_{\text{asse}} \cdot \omega$

Equazioni cardinali

 $\vec{p}_T = \sum \vec{p}_i = m_T \cdot \vec{v}_{CM}$ $\vec{L}_T = \sum \vec{L}_i = I_{\text{asse}} \cdot \vec{\omega}$

I card: $\sum \vec{F}_{\text{ext}} = d\vec{p}_T/dt = m_T \cdot a_{\text{CM}}$

II card: $\sum \vec{\tau}_{\text{ext}} = d\vec{L}_T/dt$

Asse fisso: $|\sum \vec{\tau}_{\text{ext}}| = I_{\text{asse}} \cdot \alpha_{\text{asse}}$

Leggi di conservazione

 $\vec{p}_T = \text{costante} \Leftrightarrow \sum \vec{F}_{\text{ext}} = 0$

 $\vec{L}_T = \text{costante} \Leftrightarrow \sum \vec{\tau}_{\text{ext}} = 0$

 $E = \text{costante} \Leftrightarrow L_{\text{NONCONS}} = 0$

Urti

Per due masse isolate $\vec{p}_T = \text{costante}$:

Anelastico: $v_f = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Elastico (conservazione energia):

 $\int m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ $\begin{cases} m_1(v_{1i}^2 - v_{1f}^2) &= m_2(v_{2f}^2 - v_{2i}^2) \\ m_1(v_{1f}^2 - w_{1f}^2) &= m_2(v_{2f}^2 - v_{2i}^2) \end{cases}$ $\begin{cases} v_{1f} &= \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i} \\ v_{2f} &= \frac{m_2 - m_1}{m_1 + m_2} v_{2i} + \frac{2m_1}{m_1 + m_2} v_{1i} \end{cases}$

Moto Armonico

 $x(t) = A\cos(\omega t + \phi_0)$

 $v(t) = -\omega A \sin(\omega t + \phi_0)$

 $a(t) = -\omega^2 A \cos(\omega t + \phi_0) = -\omega^2 x(t)$

 $A = \sqrt{x_0^2 + \left(\frac{v_0}{-}\right)^2}$

 $\phi_0 = \arctan\left(-\frac{v_0}{\omega x_0}\right)$ $f = \omega/2\pi, T = 2\pi/\omega$

Molla: $\omega = \sqrt{k/m}$ Pendolo: $\omega = \sqrt{g/L}$

Momenti di inerzia notevoli

Anello intorno asse: $I = mr^2$

Cilindro pieno intorno asse: $I = \frac{1}{2}mr^2$ Sbarretta sottile, asse CM: $I = \frac{1}{12}mL^2$ Sfera piena, asse CM: $I = \frac{2}{5}mr^2$

Lastra quadrata, asse \perp : $I = \frac{1}{6}mL^2$

Gravitazione

 3^a legge di Keplero: $T^2 = \left(\frac{4\pi^2}{GM_S}\right)R^3$

Vel. di fuga: $v = \sqrt{\frac{2GM_T}{R_T}}$

Elasticità

Modulo di Young: $F/A = Y \cdot \Delta L/L$

Compressibilità: $\Delta p = -B \cdot \Delta V/V$

Modulo a taglio: $F/A = M_t \cdot \Delta x/h$

Fluidi

Spinta di Archimede $B_A = \rho_L V g$

Continuità: $A \cdot v = \text{costante}$

Bernoulli: $p + \frac{1}{2}\rho v^2 + \rho gy = \text{costante}$

Onde

Velocità v, pulsazione ω , lunghezza d'onda λ , periodo T, frequenza f, numero d'onda k.

 $v = \omega/k = \lambda/T = \lambda f$ $\omega = 2\pi/T, \quad k = 2\pi/\lambda$

Onde su una corda

Velocità: $v = \sqrt{T/\mu}$

Spostamento: $y = y_{\text{max}} \sin(kx - \omega t)$

Potenza: $P = \frac{1}{2}\mu v(\omega y_{\text{max}})^2$

Onde sonore

Velocità: $v = \sqrt{B/\rho} = \sqrt{\gamma p/\rho}$

 $v(T) = v(T_0)\sqrt{T/T_0}$

Spostamento: $s = s_{\text{max}} \cos(kx - \omega t)$

Pressione: $\Delta P = \Delta P_{\text{max}} \sin(kx - \omega t)$

 $\Delta P_{\rm max} = \rho v \omega s_{\rm max}$

Intensità: $I = \frac{1}{2} \rho v (\omega s_{\text{max}})^2 = \frac{\Delta P_{\text{max}}^2}{2 o v}$

Intensità(dB): $\beta = 10 \log_{10} \frac{I}{I_0}$

Soglia udibile $I_0 = 1.0 \times 10^{-12} \, \text{W/m}^2$

Effetto Doppler
$$f' = \left(\frac{v + v_O \cos \theta_O}{v - v_S \cos \theta_S}\right) f$$

TermodinamicaPrimo principio

Calore e cap. termica: $Q = C \cdot \Delta T$ Calore latente di trasf.: $L_t = Q/m$ Lavoro <u>sul</u> sistema: dW = -pdVEn. interna: $\Delta U = \begin{cases} Q + W_{\text{sulsistema}} \\ Q - W_{\text{delsistema}} \end{cases}$ Entropia: $\Delta S_{AB} = \int_{.}^{B} \frac{dQ_{REV}}{T}$

Calore specifico

Per mole: $c_m = C/n$ Per i solidi: $c_m \approx 3R$ Gas perfetto: $c_p - c_V = R$

Per unità di massa: c=C/m

Gas perfetti

Eq. stato: $pV = nRT = Nk_bT$ Energia interna: $\Delta U = nc_V \Delta T$ Entropia: $\Delta S = nc_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}$ <u>Isocora</u> ($\Delta V = 0$): $W = 0 \; ; \; Q = nc_v \Delta T$ <u>Isobara</u> ($\Delta p = 0$): $W = -p\Delta V$; $Q = nc_p\Delta T$ <u>Isoterma</u> ($\Delta T = 0$): $W = -Q = -nRT \ln \frac{V_f}{V_i}$ Adiabatica (Q = 0): $pV^{\gamma} = \text{cost.}$ $TV^{\gamma-1} = \text{cost.}$; $p^{1-\gamma}T^{\gamma} = \text{cost.}$ $W = \Delta U = \frac{1}{\gamma-1}(P_fV_f - P_iV_i)$

Macchine termiche Efficienza: $\eta = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$ C.O.P. frigorifero = $\frac{Q_C}{W}$ C.O.P. pompa di calore= $\frac{Q_H}{W}$ Eff. di Carnot: $\eta_{REV} = 1 - \frac{T_C}{T_{IJ}}$ Teorema di Carnot: $\eta \leq \eta_{REV}$

Espansione termica dei solidi

Esp. lineare: $\Delta L/L_i = \alpha \Delta T$ Esp. volumica: $\Delta V/V_i = \beta \Delta T$ Coefficienti: $\beta = 3\alpha$ β gas perfetto, p costante: $\beta = 1/T$

Conduzione e irraggiamento

Corrente termica: $\mathcal{P} = \frac{\Delta Q}{\Delta t} = \frac{\Delta T}{R} = \frac{kA}{\Delta x} \Delta T$

Resistenza termica: $R = \frac{\Delta x}{kA}$ Resistenza serie: $R_{eq} = R_1^{KA} + R_2$ Resistenza parallelo: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$ Legge Stefan-Boltzmann: $\mathcal{P} = e\sigma AT^4$ L. onda emissione: $\lambda_{max} = \frac{2.898 \text{ mmK}}{T}$

Gas reali

Eq. Van Der Waals: $(p + a(\frac{n}{V})^2)(V - nb) = nRT$

$Calcolo\ vettoriale$

Prodotto scalare: $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$ $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$ $|\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}} = \sqrt{\vec{A}_x^2 + A_y^2 + A_z^2}$ versore: $\hat{A} = \vec{A}/|\vec{A}|$ Prodotto vettoriale: $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$

Costanti fisiche

Costanti fondamentali

Grav.: $G = 6.67 \times 10^{-11} \,\mathrm{m}^3/(\mathrm{s}^2 \cdot \mathrm{kg})$ Vel. luce nel vuoto: $c = 3.00 \times 10^8 \,\mathrm{m/s}$ Carica elementare: $e = 1.60 \times 10^{-19} \,\mathrm{C}$ Massa elettrone: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$ Massa protone: $m_p = 1.67 \times 10^{-27} \,\mathrm{kg}$ Cost. dielettrica: $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$ Perm. magnetica: $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$ Cost. Boltzmann: $k_b = 1.38 \times 10^{-23} \,\mathrm{J/K}$ N. Avogadro: $N_A = 6.022 \times 10^{23} \,\mathrm{mol}^{-1}$ C. dei gas: $R = \begin{cases} 8.314 \,\mathrm{J/(mol \cdot K)} \\ 0.082 \,\mathrm{L \cdot atm/(mol \cdot K)} \end{cases}$ C. Stefan-Boltzmann: $\sigma = 5.6 \times 10^{-8} \,\mathrm{W/(m^2 \cdot K^4)}$

Altre costanti

Accel gravità sulla terra: $g = 9.81 \,\mathrm{m/s^2}$ Raggio terra: $R_T = 6.37 \times 10^6 \,\mathrm{m}$ Massa terra: $M_T = 5.98 \times 10^{24} \, \text{kg}$ Massa sole: $M_S = 1.99 \times 10^{30} \,\text{kg}$ Massa luna: $M_L = 7.36 \times 10^{22} \,\mathrm{kg}$ Vol. 1 mole di gas STP: $V_{STP} = 22.4 \,\mathrm{L}$ Temp 0 assoluto $\theta_0 = -273.15$ °C

Trigonometria

 $\sin^2(\alpha) + \cos^2(\alpha) = 1, \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$ $\sin(-\alpha) = -\sin(\alpha), \cos(-\alpha) = \cos(\alpha)$ $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$ $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$ $\sin(\alpha) = \pm \cos(\pi/2 \mp \alpha) = \pm \sin(\pi \mp \alpha)$ $\begin{array}{l} \cos(\alpha) = \sin(\pi/2 \pm \alpha) = -\cos(\pi \pm \alpha) \\ \sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2}, \ \cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \end{array}$ $\sin(\alpha) + \sin(\beta) = 2\cos\frac{\alpha - \beta}{2}\sin\frac{\alpha + \beta^2}{2}$ $\cos(\alpha) + \cos(\beta) = 2\cos\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}$

Derivate

 $\frac{d}{dx}f(x) = f'(x)$ $\frac{d}{dx}(a \cdot x) = af'(a \cdot x)$ $\frac{d}{dx}(a \cdot x) = df(a \cdot x)$ $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$ $\frac{d}{dx}x^n = nx^{n-1}$ $\frac{d}{dx}\frac{1}{x^n} = -n\frac{1}{x^{n+1}}$ $\frac{d}{dx}e^x = e^x$ $\frac{d}{dx}\ln x = \frac{1}{x}$ $\frac{d}{dx}\cos(x) = \cos(x)$ $\frac{d}{dx}\cos(x) = -\sin(x)$

Integrali

 $\int f(x)dx = I(x)$ $\int f(x-a)dx = I(x-a)$ $\int f(a \cdot x) dx = \frac{I(a \cdot x)}{a}$ $\int x^n dx = \frac{x^{n+1}}{n+1}, \ n \neq -1$ $\int \frac{1}{x^n} = -\frac{1}{(n-1)} \cdot \frac{1}{x^{n-1}}, \ n \neq 1$ $\int \frac{1}{x} dx = \ln x$ $\int e^x dx = e^x$ $\int \sin(x)dx = \cos(x)$ $\int \cos(x)dx = -\sin(x)$ $\int_{x_0}^{x_1} f(x)dx = I(x_1) - I(x_0)$

Approssimazioni $(x_0 = 0)$

 $\sin x = x + O(x^2)$ $(1+x)^{\alpha} = 1 + \alpha x + O(x^2)$ $\ln(1+x) = x + O(x^2)$

FISICA GENERALE II FORMULARIO di ELETTROMAGNETISMO

1) Elettrostatica

 $\epsilon = \epsilon_o \epsilon_r = \text{costante dielettrica assoluta}$; $\epsilon_r = \text{costante dielettrica relativa}$ Nel vuoto (e nella maggior parte dei gas, condizioni STP) $\epsilon_r \simeq 1$

Legge di Coulomb nel vuoto : $\overrightarrow{F} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2} \hat{r}$

Campo elettrostatico : $\overrightarrow{E} = \frac{\overrightarrow{F}}{a} \circ \overrightarrow{E} = \frac{d\overrightarrow{F}}{da}$

Potenziale : forma integrale : $V(P_1) - V(P_2) = \int_{P_1}^{P_2} \overrightarrow{E} \cdot \overrightarrow{dl}$ forma differenziale : $\overrightarrow{E} = -\overrightarrow{grad} \ V = -\overrightarrow{\nabla} V$

Conservativitá del campo elettrostatico

Forma integrale : $\oint \vec{E} \cdot \vec{dl} = 0$ Forma differenziale : $\overrightarrow{\nabla} \times \overrightarrow{E} = 0$

Campo elettrostatico e potenziale generati da :

-carica isolata puntiforme : $\overrightarrow{E} = \frac{1}{4\pi\epsilon} \frac{q}{r^2} \hat{r}$ $V = \frac{1}{4\pi\epsilon} \frac{q}{r}$ -distribuzione discreta di carica : $\overrightarrow{E} = \frac{1}{4\pi\epsilon} \sum_i \frac{q_i}{r_i^2} \hat{r_i}$ $V = \frac{1}{4\pi\epsilon} \sum_i \frac{q_i}{r_i}$

-distribuzione continua di carica : $\overrightarrow{E} = \frac{1}{4\pi\epsilon} \int_{\Omega} \frac{\rho d\tau}{r^2} \hat{r} \qquad V = \frac{1}{4\pi\epsilon} \int_{\Omega} \frac{\rho d\tau}{r}$

Dipolo elettrico

 $\begin{array}{ll} \text{Potenziale}: \ V = \frac{1}{4\pi\epsilon} \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{r^3} = -\frac{1}{4\pi\epsilon} \overrightarrow{p} \cdot \overrightarrow{\nabla} (\frac{1}{r}) \\ \text{Campo} & : \ \overrightarrow{E} = \frac{1}{4\pi\epsilon} [\frac{3(\overrightarrow{p} \cdot \overrightarrow{r})}{r^5} \overrightarrow{r} - \frac{\overrightarrow{p}}{r^3}] \end{array}$

Energia del dipolo in un campo esterno : $U = -\overrightarrow{p} \cdot \overrightarrow{E}$

Forza agente su un dipolo costante: $\overrightarrow{F} = -\overrightarrow{\nabla}U = \overrightarrow{\nabla}(\overrightarrow{p} \cdot \overrightarrow{E})$ Momento meccanico agente : $\overrightarrow{\tau} = \overrightarrow{p} \times \overrightarrow{E}$

Multipoli

Il potenziale generato da una distribuzione di carica, a grande distanza dalle cariche, puó venir espresso tramite uno sviluppo in serie i cui primi termini sono : $V = \frac{1}{4\pi\epsilon} \frac{Q}{r} + \frac{1}{4\pi\epsilon} \frac{\overrightarrow{p} \cdot \overrightarrow{r}}{r^3} +$ (Q carica totale e \overrightarrow{p} momento di dipolo della distribuzione)

distribuzione discreta : $\overrightarrow{p} = (\sum_i q_i x_i , \sum_i q_i y_i , \sum_i q_i z_i)$

distribuzione continua : $\overrightarrow{p} = (\int \rho \ x \ d\tau \ , \ \int \rho \ y \ d\tau \ , \ \int \rho \ z \ d\tau)$

Legge di Gauss

Forma integrale : $\int_{\Sigma} \overrightarrow{E} \cdot \hat{n} \ dS = \frac{Q_{int}}{\epsilon_{\hat{n}}} \quad (\Sigma \text{ superficie chiusa})$

Forma differenziale : $\overrightarrow{\nabla} \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_o}$

Conduttori

 $\bullet \overrightarrow{E}_{int} = 0$

•conduttore è sempre equipotenziale

•campo in vicinanza di un conduttore(Teorema di Coulomb): $\overrightarrow{E} = \frac{\sigma}{\epsilon} \hat{n}$

• forza per unitá di superficie su un conduttore : $\frac{dF}{dS} = \frac{\sigma^2}{2\epsilon}$

Equazione del potenziale elettrostatico

Equazione di Poisson : $\nabla^2 V = -\frac{\rho}{\epsilon_o}$ Equazione di Laplace : $\nabla^2 V = 0$ (dove $\rho = 0$)

Condensatori

Definizione di capacitá : $C = \frac{Q}{\Delta V}$ Capacitá cond. piano : $C = \epsilon \frac{S}{d}$

Capacitá cond. cilindrico : $C = 2\pi\epsilon \frac{L}{\log(r_{est}/r_{int})}$ Capacitá cond. sferico : $C = 4\pi\epsilon \frac{r_{int}r_{est}}{r_{est}-r_{int}}$ Condensatori in parallelo : $C = C_1 + C_2 + ... + C_N$ Condensatori in serie : $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + ... + \frac{1}{C_N}$

Energia del condensatore : $U = \frac{1}{2}Q \Delta V = \frac{1}{2}C \Delta V^2 = \frac{1}{2}\frac{Q^2}{C}$

Forza tra armature: $F = \frac{Q^2}{2\epsilon^{Q}}$

(cond.piano)

Dielettrici

 $\overrightarrow{P} = \lim_{\Delta \tau \to 0} \frac{\Delta \overrightarrow{p}}{\Delta \tau}$ Vettore polarizzazione:

(momento dip. per unitá volume)

 $\overrightarrow{P} = \epsilon_{\alpha} \gamma \overrightarrow{E}$ mezzo isotropo e lineare:

Suscettivitá dielettrica : $\chi_e = N[\alpha_{def} + \alpha_{orien}] \simeq N[4\pi R_{at}^3 + \frac{1}{3\epsilon} \frac{p_o^2}{kT}]$

(N = no. molecole per unitá di volume)

Costante dielettrica relativa: $\epsilon_r = \chi + 1$

Vettore spostamento elettrico : $\overrightarrow{D} = \epsilon_o \overrightarrow{E} + \overrightarrow{P} = \epsilon_o \epsilon_r \overrightarrow{E}$ Cariche di polarizzazione : $\sigma_{pol} = \overrightarrow{P} \cdot \hat{n}$

 $: \stackrel{\cdot}{\rho_{pol}} = -\overrightarrow{\nabla} \stackrel{\cdot}{\cdot} \overrightarrow{P}$

Equazioni dell'elettrostatica in presenza di dielettrici

$$\begin{array}{ll} \overrightarrow{\nabla} \times \overrightarrow{E} = 0 & ; \quad \oint \overrightarrow{E} \cdot \overrightarrow{dl} = 0 \\ \overrightarrow{\nabla} \cdot \overrightarrow{D} = \rho & ; \quad \int_{\Sigma} \overrightarrow{D} \cdot \hat{n} dS = Q_{lib} \end{array}$$

Condizioni di continuitá all'interfaccia fra due mezzi

$$E_{t1} = E_{t2}$$
 ; $D_{n1} = D_{n2}$

Dielettrici densi

Campo di Lorentz :
$$\overrightarrow{E}_m = \overrightarrow{E} + \frac{\overrightarrow{P}}{3\epsilon_o}$$
Formula Clausius-Mossotti : $\frac{\epsilon_r - 1}{\epsilon_r + 2} = \frac{N\alpha}{3\epsilon_o}$

Energia elettrostatica

Energia distribuzione discreta :
$$U = \frac{1}{2} \frac{1}{4\pi\epsilon} \sum_{i,ji\neq j} \frac{q_i q_j}{r_{ij}} = \frac{1}{2} \sum_i q_i V_i$$
 (V_i potenziale di tutte le cariche $\neq i$)

Energia distribuzione continua :
$$U = \frac{1}{2} \int \rho V \, d\tau$$

Energia sistema conduttori : $U = \frac{1}{2} \sum_{i} Q_i V_i$

$$(V_i \text{ potenziale conduttore } i \text{ con carica } Q_i)$$

Densitá energia del campo :
$$u = \frac{1}{2} \overrightarrow{E} \cdot \overrightarrow{D} = \frac{1}{2} \epsilon_o \epsilon_r E^2$$

Densitá energia interazione di un dielettrico in un campo esterno:

$$u = \frac{1}{2}\overrightarrow{E} \cdot \overrightarrow{D} = \frac{1}{2}\epsilon_o \epsilon_r E^2$$

2) Correnti stazionarie

Densitá di corrente :
$$\overrightarrow{j} = nq \overrightarrow{v} = \rho \overrightarrow{v}$$

Equazione di continuitá :
$$\overrightarrow{\nabla} \cdot \overrightarrow{j} = -\frac{\partial \rho}{\partial t}(\rho = \text{densitá di carica})$$

Intensitá di corrente :
$$i = \frac{dq}{dt} = \int_{\Sigma}^{Ot} \overrightarrow{j} \cdot \hat{n} \ dS$$

Legge di Ohm (forma locale) :
$$\overrightarrow{j} = \sigma \overrightarrow{E} (\sigma = \text{conducibilitá})$$
 per elemento finito : $V = R i$

Resistenza conduttore di sezione costante :
$$R = \frac{1}{\sigma} \frac{l}{S} = \rho_s \frac{l}{S}$$

N resistenze in serie :
$$R = R_1 + R_2 + \dots + R_N$$

N resistenze in parallelo : $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

N resistenze in paraneio :
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Leggi di Kirchhoff - legge dei nodi : $\sum_{i,j} i_i = 0$

legge delle maglie :
$$\sum_{k}^{n} i_k R_k = \sum_{k} V$$

Leggi di Kirchhoff - legge dei nodi :
$$\sum_{k}^{R_2} i_k = 0$$

legge delle maglie : $\sum_{k}^{R_2} i_k R_k = \sum_{k}^{R_N} V_k$
Effetto Joule(potenza $P = dW/dt, W = \text{energia}$):

in forma locale :
$$dP = \overrightarrow{j} \cdot \overrightarrow{E} d\tau$$
 conductore finito : $P = V i = i^2 R$

3) Magnetismo

Magnetostatica nel vuoto

Campo generato da una carica in moto : $\overrightarrow{B} = \frac{\mu_o}{4\pi} q \frac{\overrightarrow{v} \times \overrightarrow{r}}{r^3}$

Campo generato da una corrente : $\overrightarrow{B} = \frac{\mu_o}{4\pi} i \int \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$

-filo rettilineo indefinito : $\overrightarrow{B} = \frac{\mu_o}{2\pi} \frac{i}{r} \hat{\tau}$

-spira circolare (sull'asse !) : $\overrightarrow{B} = \frac{\mu_o}{2} i \frac{R^2}{\sqrt{(R^2 + z^2)^3}} \hat{k}$

-interno solenoide indefinito : $B = \mu_o i n \quad [n = \frac{N_{spire}}{L}]$

Forza agente su una corrente : $\overrightarrow{F} = \int i \, \overrightarrow{dl} \times \overrightarrow{B}$ Forza su carica in moto(Forza Lorentz) : $\overrightarrow{F} = q \overrightarrow{v} \times \overrightarrow{B}$

Equazioni della magnetostatica nel vuoto:

Dipolo magnetico

Momento dipolo distrib. correnti: $\overrightarrow{m} = \frac{1}{2} \int \overrightarrow{r} \times \overrightarrow{j} d\tau$

Per una spira piana: $\overrightarrow{m} = i S \hat{n}$

Potenziale Vettore : $\overrightarrow{A} = \frac{\mu_o}{4\pi} \frac{\overrightarrow{m} \times \overrightarrow{r}}{r^3}$

Campo : $\overrightarrow{B} = \frac{\mu_o}{4\pi} \left[\frac{3(\overrightarrow{m} \cdot \overrightarrow{r})}{r^5} \overrightarrow{r} - \frac{\overrightarrow{m}}{r^3} \right]$

Energia dipolo in campo esterno : $U = -\overrightarrow{m} \cdot \overrightarrow{B}$

Momento agente su dipolo in campo esterno : $\overrightarrow{M} = \overrightarrow{m} \times \overrightarrow{B}$

Momento magnetico e momento angolare di una carica q, massa m, in moto circolare uniforme: $\overrightarrow{m} = \frac{q}{2m}\overrightarrow{L}$

Precessione (di Larmor) in campo esterno: $m = \frac{1}{2m}$

$$\omega_L = \frac{qB}{m}$$

Potenziale vettore

Definizione : $\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$

Equazione del potenziale : $\nabla^2 \overrightarrow{A} = -\mu_o \overrightarrow{j}$

Potenziale generato da un dipolo : $\overrightarrow{A} = \frac{\mu_o}{4\pi} \frac{\overrightarrow{m} \times \overrightarrow{r}}{r^3}$

Proprietá magnetiche della materia

Vettore magnetizzazione : $\overrightarrow{M} = \lim_{\Delta \tau \to 0} \frac{\Delta \overrightarrow{m}}{\Delta \tau}$

(momento dipolo per unitá di volume)

mezzo isotropo e lineare : $\overrightarrow{M} = \frac{1}{\mu_o} \frac{\chi}{1+\chi} \overrightarrow{B} = \chi \overrightarrow{H}$

4

Suscettivitá magnetica:
$$\chi_m = \chi_{dia} + \chi_{par} \simeq -\mu_o \frac{NZe^2 < r^2 >}{6m_e} + \mu_o \frac{N}{3} \frac{m_o^2}{kT}$$

Vettore campo magnetico
$$\overrightarrow{H}$$
: $\overrightarrow{H} = \frac{1}{\gamma} \overline{M}$

Vettore campo magnetico
$$\overrightarrow{H}: \overrightarrow{H} = \frac{1}{\chi} \overrightarrow{M}$$

Relazione fra \overrightarrow{B} e $\overrightarrow{H}: \overrightarrow{B} = \mu_o \overrightarrow{H} + \mu_o \overrightarrow{M} = \mu_o \mu_r \overrightarrow{H}$

$$: \mu_r = \chi + 1$$

:
$$\mu_r = \chi + 1$$

Correnti di magnetizzazione : $j_{sup} = \overrightarrow{M} \times \hat{n}$
: $j_{vol} = \overrightarrow{\nabla} \times \overrightarrow{M}$

Equazioni della magnetostatica nei mezzi materiali

$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{j}_{libere} \quad ; \quad \oint \overrightarrow{H} \cdot \overrightarrow{dl} = \sum i_{conc}$$

$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0 \quad ; \quad \int_{\Sigma chiusa} \overrightarrow{B} \cdot \hat{n} dS = 0$$

Condizioni di continuitá all'interfaccia fra due mezzi

$$H_{t1} = H_{t2}$$
 ; $B_{n1} = B_{n2}$

Circuiti magnetici

Legge di Hopkinson :
$$F = R\Phi$$

$$F = Ni$$
 (forza magnetomotrice)

$$R = \frac{1}{\mu} \frac{l}{S}$$
 (Riluttanza)

Riluttanze in serie :
$$R = R_1 + R_2 + ... + R_N$$

Riluttanze in serie :
$$R = R_1 + R_2 + \dots + R_N$$

Riluttanze in parallelo : $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

4) Campi variabili

Campi quasi-statici

Forma integrale :
$$\oint \overrightarrow{E} \cdot \overrightarrow{dl} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{\Sigma} \overrightarrow{B} \cdot \hat{n} dS$$

Forma locale:
$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

Coefficiente di mutua induzione fra due circuiti:

$$\Phi_2 = M_{12}i_1 \; ; \; \Phi_1 = M_{21}i_2 \; ; \; M_{12} = M_{21}$$

Coefficiente di autoinduzione :
$$\Phi = Li$$

Induttanza solenoide :
$$L = \mu_o n^2 l S$$

Energia magnetica

Energia sistema circuiti :
$$U = \frac{1}{2} \sum_{k} \Phi_{k} i_{k}$$

Densitá energia del campo :
$$u = \frac{1}{2} \overrightarrow{H} \cdot \overrightarrow{B} = \frac{1}{2} \mu_o \mu_r H^2 = \frac{1}{2} \frac{B^2}{\mu_o \mu_r}$$

Energia induttore :
$$U = \frac{1}{2}L i^2$$

5) Circuiti elettrici

Grandezze variabili sinusoidalmente e fasori :

$$i = i_o \cos(\omega t + \phi) \equiv \Re[i_o \exp(i\phi) \exp(i\omega t)] = \Re[I]$$
$$I = \tilde{I}_o e^{(i\omega t)} \; ; \; \tilde{I}_o = i_o e^{i\phi}$$

Circuito RC

:
$$R \frac{dq}{dt} + \frac{q}{C} = V$$

Carica C : $q = CV(1 - \exp(-t/\tau) \; ; \; \tau = RC$
Scarica C : $q = q_0 \exp(-t/\tau)$

Circuito RL

to RL
$$: L\frac{di}{dt} + R \ i = V$$
 Extracorrente chiusura
$$: i = \frac{V}{R}(1 - \exp{(-t/\tau)} \ ; \ \tau = L/R$$
 Extracorrente apertura
$$: i = \frac{V}{R}\exp{(-t/\tau)}$$

Circuito RLC serie

$$: L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{1}{C}i = V$$

Frequenza di risonanza : $\omega_r = 2\pi\nu_r = \frac{1}{\sqrt{LC}}$

 ${\bf Impedenze\ complesse}:$

resistenza : Z = Rcapacitá : $Z = \frac{1}{i\omega C}$ induttanza : $Z = i\omega L$

6) Onde elettromagnetiche

Equazioni di Maxwell

Forma differenziale Forma integrale

$$\overrightarrow{\nabla} \cdot \overrightarrow{D} = \rho
\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0
\int_{\Sigma} \overrightarrow{D} \cdot \hat{n} dS = Q_{i} nt
\int_{\Sigma} \overrightarrow{B} \cdot \hat{n} dS = 0
\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}
\oint_{\Gamma} \overrightarrow{E} \cdot \hat{d} l = -\frac{\partial}{\partial t} \int_{\Sigma} \overrightarrow{B} \cdot \hat{n} dS
\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{j} + \frac{\partial \overrightarrow{D}}{\partial t}
\oint_{\Gamma} \overrightarrow{H} \cdot \hat{d} l = \int_{\Sigma} \overrightarrow{j} \cdot \hat{n} dS + \frac{\partial}{\partial t} \int_{\Sigma} \overrightarrow{D} \cdot \hat{n} dS$$

Densitá corrente di spostamento : $\overrightarrow{j} = \frac{\partial \overrightarrow{D}}{\partial t}$ Legge di Ohm(per conduttori) : $\overrightarrow{j} = \sigma \overrightarrow{E}$

Caratteristiche generali propagazione per onde

Equazione delle onde (3D) :
$$\nabla^2 \phi - \frac{1}{v^2} \frac{\partial^2 \phi}{\partial t^2} = 0$$

Equazione delle onde (1D) : $\frac{\partial^2 \phi}{\partial z^2} - \frac{1}{v^2} \frac{\partial^2 \phi}{\partial t^2} = 0$

parametri dell'onda sinusoidale:

numero d'onda :
$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v}$$

vettore d'onda : $\overrightarrow{k} = k$ (versore propag.)
lunghezza d'onda : $\lambda = \frac{v}{v}$

vettore d'onda :
$$\overrightarrow{k} = \overrightarrow{k}$$
 (versore propag.)

lunghezza d'onda :
$$\lambda = \frac{v}{\nu}$$

pulsazione :
$$\omega = 2\pi\nu$$

onda piana sinusoidale progressiva(1D):

$$\phi = \phi_0 \sin(kz - \omega t) \equiv \phi_0 e^{i(kz - \omega t)}$$

onda sferica sinusoidale progressiva(1D):

$$\phi = \frac{\phi_0}{r} \sin(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t) = \phi_0 e^{i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)}$$

Caratteristiche delle onde elettromagnetiche

Velocitá di propagazione(fase) :
$$v = \frac{c}{\sqrt{\epsilon_r \mu_r}}$$
 ; $c = \frac{1}{\sqrt{\epsilon_o \mu_o}}$

Trasversalitá onde e.m. : $\overrightarrow{E} = \overrightarrow{v} \times \overrightarrow{B}$

Onda piana (polarizzata | asse-x):

$$E = E_x = E_o \sin(kz - \omega t)$$

$$B = B_y = B_o \sin(kz - \omega t)$$

$$B = B_y = B_o \sin(kz - \omega t)$$

$$E_o = vB_o = Z_oH_o$$
 ; $Z_o = \sqrt{\frac{\mu_o}{\epsilon_o}} \simeq 377\Omega$

Velocitá di gruppo :
$$v_g = \frac{d\omega}{dk} = \frac{c}{n(\omega) + \omega \frac{dn}{d\omega}}$$

Effetto Doppler (c=velocitá onda e.m.):
$$\nu' = \nu \frac{1 - (v_{oss}/c)\cos\theta}{\sqrt{1 - v_{sor}^2/c^2}}$$

Effetto Doppler nel moto collineare(non relativistico, v=velocitá onda):

$$\nu' = \frac{v - v_{oss}}{v - v_{sor}} \nu$$

Energia e impulso dell'onda

Densitá di energia :
$$u=\frac{1}{2}\epsilon E^2+\frac{1}{2}\mu H^2=\epsilon E^2=\frac{B^2}{\mu}$$
 (energia per unitá di volume)

Vettore di Poynting :
$$\overrightarrow{\mathcal{P}} = \overrightarrow{E} \times \overrightarrow{H}$$

Intensitá (istantanea) dell'onda :
$$\mathcal{I} = \left| \overrightarrow{\mathcal{P}} \right| = v \epsilon E^2 = v u$$
 (potenza per unitá di superficie)

Intensitá (media) dell'onda(sinusoidale) :
$$<\mathcal{I}>=v\epsilon\frac{E^2}{2}$$

Quantitá di moto dell'onda :
$$\overrightarrow{p} = u_{on}\hat{k} = \frac{\overrightarrow{\mathcal{P}}}{v}$$
 (per unitá di superficie e unitá di tempo)

Dipolo elettrico oscillante

$$p(t) = p_o \sin \omega t$$
 Campo a grandi distanze(vuoto) :
$$E_\theta = \frac{1}{4\pi\epsilon_o} \frac{p_o}{r} \sin \theta \left(\frac{\omega}{c}\right)^2 \sin(kr - \omega t) \; ; \; B_\phi = \frac{1}{4\pi\epsilon_o} \frac{p_o}{cr} \sin \theta \left(\frac{\omega}{c}\right)^2 \sin(kr - \omega t)$$
 Intensitá(media) irraggiata dal dipolo : $<\mathcal{I}> = \frac{p_o^2 \omega^4}{32\pi^2 \epsilon_o c^3 r^2} \sin^2 \theta$ (energia per unitá superficie e unitá di tempo) Potenza(media) totale irraggiata dal dipolo : $P = <\frac{dE}{dt}> = \frac{p_o^2 \omega^4}{12\pi\epsilon_o c^3}$

Carica accelerata

Potenza(media) totale irraggiata (carica q oscillante sinusoid. $z = z_o \sin \omega t$

$$P = <\frac{dE}{dt}> = \frac{q^2 z_o^2 \omega^4}{12\pi \epsilon_o c^3}$$

Intensitá irraggiata da carica accelerata nella direzione θ (rispetto all'accelerazione): $I(\theta) = \frac{dP}{d\theta} = \frac{q^2 a^2}{16\pi^2 \epsilon_c c^3} \sin^2 \theta$

$$I(\theta) = \frac{dP}{d\theta} = \frac{q^2 a^2}{16\pi^2 \epsilon_o c^3} \sin^2 \theta$$

Potenza istantanea irraggiata da una carica accelerata : $P = \frac{dE}{dt} = \frac{q^2 a^2}{6\pi\epsilon c^3}$

7) Ottica

Ottica geometrica

Indice di rifrazione : $n=\sqrt{\epsilon_r}$; $\epsilon_r=\epsilon_r(\omega)$ cost. dielettrica velocitá della luce in un mezzo : $v=\frac{c}{n}$ cammino ottico : $d = \sum_{i} n_i l_i$ Leggi di Snell : $\theta_{inc} = \theta_{rifl}$; $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$ angolo limite : $\sin \theta_{lim} = \frac{n_2}{n_1}$; se $n_2 < n_1$ angolo di Brewster : $\tan \theta_{Bre} = \frac{n_2}{n_1}$ Formule di Fresnel ($\mu_1 = \mu_2 \simeq \mu_o$) $(\frac{E_{rifl}}{E_{inc}})_{\parallel} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2} = \frac{\tan(\theta_1 - \theta_2)}{\tan(\theta_1 + \theta_2)}$ $(\frac{E_{rifl}}{E_{inc}})_{\perp} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = -\frac{\sin(\theta_1 - \theta_2)}{\sin(\theta_1 + \theta_2)}$ $(\frac{E_{tra}}{E_{inc}})_{\parallel} = \frac{2n_1 \cos \theta_1}{n_2 \cos \theta_1 + n_1 \cos \theta_2} = \frac{2 \cos \theta_1 \sin \theta_2}{\sin(\theta_1 + \theta_2) \cos(\theta_1 - \theta_2)}$ $(\frac{E_{tra}}{E_{inc}})_{\perp} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2} = \frac{2 \cos \theta_1 \sin \theta_2}{\sin(\theta_1 + \theta_2)}$ trasmittivitá : $t = (\frac{E_{tra}}{E_{c}})^{2}$ riflettivitá : $r = (\frac{E_{rifl}}{F_{\cdot \cdot}})^2$

Caso di incidenza normale di onda non polarizzata:

$$t = \left(\frac{2\sqrt{n_1 n_2}}{n_1 + n_2}\right)^2$$
$$r = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

Formula lenti sottili:
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$
 ; $\frac{1}{f} = (n-1)(\frac{1}{r_2} - \frac{1}{r_1})$

Interferenza

Interferenza fra onde piane, sinusoidali, lin. polarizzate:

$$E_1 = A_1 \sin[(kz - \omega t) + \phi_1]$$

$$E_2 = A_2 \sin[(kz - \omega t) + \phi_2]$$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\phi_1 - \phi_2)$$

Due sorgenti coerenti
(alla Young) : $I=I_o\cos^2\beta$ $\beta=\frac{\pi d}{\lambda}\sin\theta \ \ (d={\rm distanza\ fra\ sorgenti})$

N sorgenti coerenti :
$$I = I_o \left[\frac{\sin^2(N\delta/2)}{\sin^2(\delta/2)} \right]$$
$$\delta = \frac{2\pi}{\lambda} d \sin \theta \quad (b = \text{larghezza fenditura})$$

Diffrazione

Diffrazione(di Fraunhofer) da fenditura rettangolare :

$$I = I_o(\frac{\sin^2 \alpha}{\alpha^2})$$

$$\alpha = \frac{\pi b}{\lambda} \sin \theta \quad (b = \text{larghezza fenditura})$$
condizione per i minimi ; $\sin \theta = n \frac{\lambda}{b} [n \neq 0]$

Diffrazione(di Fraunhofer) da foro circolare :

$$I = I_o \left[\frac{2J_1(2\pi R \sin \theta/\lambda)}{2\pi R \sin \theta/\lambda} \right]^2$$

condizione per il 1º minimo ; $\sin \theta = 1.22 \frac{\lambda}{2R}$

Diffrazione(di Fraunhofer) da reticolo di N fenditure :

$$I = I_o(\frac{\sin^2 \alpha}{\alpha^2})(\frac{\sin^2 N\beta}{\sin^2 \beta})$$

$$\alpha = \frac{\pi b}{\lambda} \sin \theta \quad (b = \text{larghezza fenditura})$$

$$\beta = \frac{\pi p}{\lambda} \sin \theta \quad (p = \text{distanza fra fenditure})$$
massimi di intensitá ; $p \sin \theta = n\lambda$ [p= passo]

Potere dispersivo del reticolo ; $\frac{d\theta}{d\lambda} = \frac{n}{p\cos\theta}$ Potere risolutivo del reticolo ; $\frac{\lambda}{\Delta\lambda} = nN$

8) Operatori vettoriali e trasformazioni di coordinate

Coordinate cartesiane

Elemento di volume :
$$d\tau = dx \ dy \ dz$$

$$grad \ f \equiv \overrightarrow{\nabla} \ f = \frac{\partial f}{\partial x} \hat{i}_x + \frac{\partial f}{\partial y} \hat{i}_y + \frac{\partial f}{\partial z} \hat{i}_z$$

$$div \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \cdot \overrightarrow{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

$$rot \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \times \overrightarrow{v} = [\frac{\partial v_y}{\partial z} - \frac{\partial v_z}{\partial y}] \hat{i}_x + [\frac{\partial v_z}{\partial x} - \frac{\partial v_x}{\partial z}] \hat{i}_y + [\frac{\partial v_x}{\partial y} - \frac{\partial v_y}{\partial x}] \hat{i}_z$$
Laplaciano : $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$

Coordinate cilindriche

Trasformazione da
$$(x, y, z) \Leftrightarrow (\rho, \theta, z)$$
:
$$x = \rho \cos \theta \quad ; \quad y = \rho \sin \theta$$
Elemento di volume : $d\tau = \rho \ d\rho \ d\theta \ dz$

$$grad \ f \equiv \overrightarrow{\nabla} \ f = \frac{\partial f}{\partial \rho} \hat{i}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \theta} \hat{i}_{\theta} + \frac{\partial f}{\partial z} \hat{i}_{z}$$

$$div \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \cdot \overrightarrow{v} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho v_{\rho}) + \frac{1}{\rho} \frac{\partial}{\partial \theta} v_{\theta} + \frac{\partial}{\partial z} v_{z}$$

$$rot \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \times \overrightarrow{v} = [\frac{1}{\rho} \frac{\partial v_{z}}{\partial \theta} - \frac{\partial v_{\theta}}{\partial z}] \hat{i}_{\rho} + [\frac{\partial v_{\rho}}{\partial z} - \frac{\partial v_{z}}{\partial \rho}] \hat{i}_{\theta} + \frac{1}{\rho} [\frac{\partial (\rho v_{\theta})}{\partial \rho} - \frac{\partial v_{\rho}}{\partial \theta}] \hat{i}_{z}$$
Laplaciano : $\nabla^{2} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial}{\partial \rho}) + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}$

Coordinate sferiche

Trasformazione da
$$(x, y, z) \Leftrightarrow (\rho, \theta, \phi)$$
:
 $x = \rho \sin \theta \cos \phi$; $y = \rho \sin \theta \sin \phi$; $z = \rho \cos \theta$
Elemento di volume : $d\tau = \rho^2 \sin \theta d\rho d\theta d\phi$
 $grad \ f \equiv \overrightarrow{\nabla} \ f = \frac{\partial f}{\partial \rho} \hat{i}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \theta} \hat{i}_{\theta} + \frac{1}{\rho \sin \theta} \frac{\partial f}{\partial \phi} \hat{i}_{\phi}$
 $div \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \cdot \overrightarrow{v} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 v_{\rho}) + \frac{1}{\rho \sin \theta} \frac{\partial}{\partial \theta} (v_{\theta} \sin \theta) + \frac{1}{\rho \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
 $rot \ \overrightarrow{v} \equiv \overrightarrow{\nabla} \times \overrightarrow{v} = \frac{1}{\rho \sin \theta} [\frac{\partial (v_{\phi} \sin \theta)}{\partial \theta} - \frac{\partial v_{\theta}}{\partial \phi}] \hat{i}_{\rho} + \frac{1}{\rho} [\frac{1}{\sin \theta} \frac{\partial v_{\rho}}{\partial \phi} - \frac{\partial (\rho v_{\phi})}{\partial \rho}] \hat{i}_{\theta} + \frac{1}{\rho} [\frac{\partial (\rho v_{\theta})}{\partial \rho} - \frac{\partial v_{\rho}}{\partial \theta}] \hat{i}_{\phi}$
Laplaciano : $\nabla^2 = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 \frac{\partial}{\partial \rho}) + \frac{1}{\rho^2 \sin \theta} [\frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta})] + \frac{1}{\sin \theta} \frac{\partial^2}{\partial \phi^2}$

Relazioni vettoriali utili

vettoriali utili
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b}(\overrightarrow{a} \cdot \overrightarrow{c}) - \overrightarrow{c}(\overrightarrow{a} \cdot \overrightarrow{b})$$
 rot grad $f \equiv \overrightarrow{\nabla} \times \overrightarrow{\nabla} f = 0$ div rot $\overrightarrow{v} \equiv \overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \times \overrightarrow{v} = 0$ rot rot $\overrightarrow{v} \equiv \overrightarrow{\nabla} \times \overrightarrow{\nabla} \times \overrightarrow{v} = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{v}) - \overrightarrow{\nabla}^2 \overrightarrow{v}$ rot $(f\overrightarrow{v}) \equiv \overrightarrow{\nabla} \times (f\overrightarrow{v}) = f(\overrightarrow{\nabla} \times \overrightarrow{v}) - \overrightarrow{\nabla} f \times \overrightarrow{v}$ div $(f\overrightarrow{v}) \equiv \overrightarrow{\nabla} \cdot (f\overrightarrow{v}) = f(\overrightarrow{\nabla} \cdot \overrightarrow{v}) + \overrightarrow{\nabla} f \cdot \overrightarrow{v}$

9) Costanti di uso frequente

Costante dielettrica del vuoto : $\epsilon_o = 8.85~10^{-12}~F/m$

Permeabilitá magnetica del vuoto : $\mu_o = 4\pi~10^{-7}~H/m$

Carica dell'elettrone : $e = 1.60 \ 10^{-19} \ C$ Massa dell'elettrone : $m_e = 9.1 \ 10^{-31} \ kg$

Rapporto e/m dell'elettrone : $e/m = 1.76 \ 10^{11} \ C/kg$

Massa del protone : $m_p = 1.67 \ 10^{-27} \ kg$

Velocitá delle onde e.m. nel vuoto : $c = 3.0 \ 10^8 \ m/s$

Impedenza del vuoto : $Z_o = 376.7 \Omega$

Costante di Planck : $h = 6.626 \ 10^{-34} \ J \cdot s$

Magnetone di Bohr : $\mu_B = 9.42~10^{-24}~A~m^2$

Costante gravitazionale : $G=6.672\ 10^{-11}m^3\ kg-1\ s^{-2}$

Numero di Avogadro : $N_A = 6.02252 \ 10^{23} \ mol^{-1}$ Costante di Boltzmann : $k = 1.38054 \ 10^{-23} \ J \ K^{-1}$

Costante di Boltzmann : $k = 1.38054 \text{ 10}^{-23}$. Costante dei gas : R = 8.314 J/(mol K)

 $= 1.986 \ cal/(mol \ K)$

Volume di una mole(STP gas ideale) : $k=22.414\ 10^{-3}\ m^3 mol^{-1}$

Unitá astronomica : $AU = 1.49598 \ 10^{11} \ m$

Raggio(equatoriale) della terra : $R_{\bigoplus} = 6.378~10^6~m$

Massa della terra : $M_{\bigoplus} = 5.973 \ 10^{24} \ kg$ Massa del sole : $M_{\bigodot} = 1.989 \ 10^{30} \ kg$ Nome Grandezza, Simbolo, Unità equivalenti¹
radiante al secondo Velocità angolare, rad/s
radiante al secondo² Accelerazione angolare, rad/s²
newton Forza, N, Kg·m/s²
pascal Pressione, Pa, N/m²

joule Energia, lavoro, calore, J, N·m

watt Potenza, flusso radiante, W, J/s

coulomb Quantità di elettricità, carica elettrica, potenziale elettrico, differenza di potenziale, C, A·s

volt Forza elettromotrice, V, N·m/C

 ${f volt}$ al metro Campo elettrico, V/m, N/C

farad Capacità elettrica, F, A·s/V

ohm Resistenza elettrica, Ω , V/A

weber Flusso magnetico, Wb, V·s

tesla Induzione magnetica, T, Wb/m², N/A·m

henry Induttanza, H, V·s/A

joule al kelvin Entropia, J/K

joule al Kg per kelvin Calore specifico, $\rm J/Kg \cdot K$

watt al metro per kelvin Conducibilità termica, $W/m \cdot K$

watt allo steradiante Intensità radiante, W/sr

α	α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
0°	0	0	1	0
30°	$\pi/6$	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$
45°	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
90°	$\pi/2$	1	0	∞

- 1. $y = A \sin \Theta, \ x = A \cos \Theta, \ A = \sqrt{x^2 + y^2}$
- 2. $\Theta = \tan^{-1}(x/y)$, $\sin \Theta = y/A$, $\cos \Theta = x/A$, $\tan \Theta = y/x$
- 3. $c^2 = a^2 + b^2 2ab\cos C$
- 4. Area= $\frac{1}{2}hc = \frac{1}{2}ab\sin C = \frac{c^2\sin A\sin B}{2\sin C}$

Prodotto scalare $\overrightarrow{A} \cdot \overrightarrow{B} = |A||B|\cos \alpha = A_x B_x + A_y B_y + A_z B_z; A \perp B \text{ nullo}, A \parallel B \text{ max}$

Prodotto vettoriale $\overrightarrow{A} \times \overrightarrow{B} = |A||B|\sin \alpha = \overrightarrow{\imath}(A_yB_z - A_zB_y) + \overrightarrow{\jmath}(A_zB_x - A_xB_z) + \overrightarrow{k}(A_xB_y - A_yB_x); A \perp B \max, A \parallel B \text{ nullo}$

Conversione da m/s a km/h si moltiplica per 3,6; da km/h a m/s si divide per 3,6

Conversione $rad \longleftrightarrow gradi$

$$180^{\circ}/\pi = x^{\circ}/y \text{ rad}$$

- 1. $\overline{v} = \Delta x/\Delta t \equiv \text{ pendenza della retta}$
- 2. $\lim_{\Delta t \to 0} \Delta x/\Delta t \equiv$ pendenza della tg \equiv derivata di x = x(t) rispetto a t
- 3. $\overline{a} = \Delta v / \Delta t \equiv \text{der. della vel. rispetto a t}$

Moto uniformemente accelerato:

- 1. $v = v_0 + at$
- 2. $x = x_0 + v_0 t + (1/2)at^2$
- 3. $\overline{v} = (v_0 + v)/2$
- 4. $a = (v v_0)/t$

Caduta libera:

- 1. $v_y = gt$
- 2. $h = (1/2)gt^2$

Lancio verso l'alto:

- 1. $h = v_{0y}t (1/2)gt^2$
- 2. $h_{\text{max}} = (v_0^2)/(2g)$

Lancio dall'alto:

- 1. $t = \sqrt{(2h)/g}$
- 2. $h = (1/2)gt^2$
- 3. $R = v_0 \sqrt{(2h)/g}$
- 4. $v_0 = R\sqrt{g/(2h)}$
- 5. $v_y = \sqrt{2gh}$
- 6. $a_x = 0$
- 7. $a_y = -g$

Formule utili:

- 1. $x x_0 = ((v + v_0)/2)t$ spostamento in funzione del tempo
- 2. $x x_0 = vt (1/2)at^2$ spostamento eliminando v_0
- 3. $v^2 = v_0^2 + 2a(x x_0)$
- 4. $x x_0 = (v^2 v_0^2)/(2a)$ spostamento in funzione di v_0 , v, a

Lancio 2d:

- 1. $x(t) = v_{0x}t$
- 2. $y(t) = v_{0y}t (1/2)gt^2$
- 3. $v = \sqrt{v_x^2 + v_y^2}$
- 4. $v_x = v \cos \Theta$
- 5. $v_y = v \sin \Theta$
- 6. $\Theta = \tan^{-1}(v_{0x}/v_{0y})$
- 7. $t_{\rm P} = v_{0y}/g$
- 8. $t_R = 2t_h$
- 9. $h_{\text{max}} = v_{0y}^2/2g$

¹ Questo formulario non ha la pretesa di essere completo. Può contenere errori e imprecisioni, se ne trovate scrivetemi: Vincenzo Corcione vincenzo.c79@inwind.it

- 10. $2\Theta = \sin^{-1}(gR/v_0^2)$ angolo di lancio
- 11. $\sin 2\Theta = (Rg/v_0^2)$ max gittata per $\pi/2$
- 12. $R = (v_0^2 \sin 2\Theta)/g = (2v_{0x}v_{0y})/g$ gittata

Moto circolare:

- 1. f = 1/T
- 2. $v = (2\pi R)/T = 2\pi R f = \omega R$
- 3. $\omega = \Theta/T = 2\pi/T = 2\pi f = v/R$
- 4. $a_c = (2\pi v)/T = v^2/R = \omega^2 R = (4\pi^2 R)/T^2$
- 5. $T = (2\pi)/\omega$
- 6. $F_{\rm c} = m\omega^2 R = m(v^2/R)$
- 7. $x(t) = R \cos \omega t$
- 8. $y(t) = R \sin \omega t$
- 9. $v_x = -\omega R \sin \omega t$
- 10. $a_x = -\omega^2 R \cos \omega t = -\omega^2 x$

Urti:

- 1. $\overrightarrow{p} = m\overrightarrow{v}$ quantità di moto
- 2. $p = \sqrt{p_x^2 + p_y^2 + p_z^2}$
- 3. $I = \overrightarrow{F}t$
- 4. centro di massa = $(m_1x_1 + m_2x_2)/(m_1 + m_2)$ (2 corpi)
- 5. $v_{\text{cdm}} = (m_1 v_1 + m_2 v_2)/(m_1 m_2)$
- 6. $V_1=v_1(m_1-m_2)/(m_1+m_2)$ $V_2=v_1(2m_1)/(m_1+m_2)$ velocità dopo urto elastico 1 dimensione
- 7. $v_1^2=V_1^2+V_2^2+2V_1V_2\cos\alpha$ urto elastico 2 dimensioni; se $m_1=m_2\Rightarrow\alpha=90^\circ$
- 8. $V_1 = (v_1(m_1 m_2)/(m_1 + m_2)) + v_2(2m_2)/(m_1 + m_2)$ $V_2 = (v_1(2m_1)/(m_1 + m_2)) + v_1(m_2 - m_1)/(m_1 + m_2)$ velocità dopo urto elastico 1 dimensione con bersaglio in moto
- 9. $v = (m_1v_1 + m_2v_2)/(m_1 + m_2)$ velocità dopo urto anelastico
- 10. $\mu = (m_1 m_2)/(m_1 + m_2)$ massa ridotta

${\bf Attrito} \ :$

- 1. $\mu_s = (F_a)_s/F_N$ coeff. attr. statico
- 2. $\mu_d = (F_a)_d/F_N$ coeff. attr. dinamico
- 3. $F_N = mg \cos \Theta$ forza normale
- 4. $\mu_n = mg\mu = F$

Piano inclinato:

1.
$$F = Ph/l = P\sin\Theta$$

- 2. P = mg
- 3. a = gh/l
- 4. $t = l\sqrt{2/(gh)}$
- 5. $v = \sqrt{2qh}$

Molla:

- 1. $\omega = \sqrt{k/m} = 2\pi/T$
- 2. $T = 2\pi/\omega = 2\pi\sqrt{m/k}$
- 3. $v_{\text{max}} = \omega x_0 = x_0 \sqrt{k/m}$
- 4. $x = x_0 \cos \omega t$, $\Delta x = v(m/k)^2$
- 5. F = -kx forza elastica
- 6. $(1/2)kx_0^2$ energia potenziale elastica; $v = \omega \sqrt{x_0^2 x^2}$
- 7. $W = (1/2)kx_0^2$ lavoro necessario per allungare la molla di x_0

Pendolo:

- 1. $\omega = 2\pi/T = \sqrt{g/l} = v/l$
- 2. $T = 2\pi/\omega = 2\pi\sqrt{l/g}$
- 3. $v = \sqrt{2gh}$
- 4. $h = l(1 \cos \Theta)$
- 5. $v_p = ((m_p + M)/m_p)\sqrt{2gh}$ vel. del proiettile (pendolo balistico)
- 6. $\omega = \sqrt{mgd/I}$ pendolo composto
- 7. $T = 2\pi \sqrt{I/mgd}$ pendolo composto

Moto armonico:

- 1. $x = x_0 \cos \omega t = A \cos(\omega t + \phi) \text{ con } A = \text{ampiezza, } \phi = \text{fase}$
- 2. $a(t) = -\omega^2 x(t)$ caratteristica del moto armonico
- 3. velocità = $-\omega A \sin(\omega t + \phi)$
- 4. accelerazione = $-\omega^2 A \cos(\omega t + \phi)$

Relazione del moto armonico con il moto circolare uniforme

- 1. $x = R\cos(\omega t + \phi)$
- 2. $T = 2\pi/\omega$
- 3. $y \to \phi' = y \pi/2$

Moto rotazionale (corpi estesi) :

- 1. $\omega \equiv d\Theta/dt$ velocità angolare; $v=R\omega$ con Θ in rad
- 2. $\alpha = d^2\Theta/dt^2$ accelerazione angolare; $a = R\alpha$
- 3. $\Theta = \Theta_0 + \omega_0 t + (1/2)\alpha t^2$
- 4. Se è un moto circolare uniforme: f= numero di giri al secondo; $v=2\pi Rf;$ $\omega=2\pi f$ con ω in rad/s

5. $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}$ momento angolare con $\overrightarrow{p} =$ quantità di moto e $\overrightarrow{r} =$ vettore dall'origine a \overrightarrow{p}

Centro di massa:

- 1. $v_{\rm cm} = (\Sigma m_i v_i)/\Sigma m_i$
- 2. $\overrightarrow{R}_{\rm cm} = \sum m_i \overrightarrow{r}_i / \sum m_i$ baricentro
- 3. $\overrightarrow{T} = d\overrightarrow{L}/dt$
- 4. $k = (1/2)mv_{\text{cm}}^2 + k'$, k' = energia cinetica misurata nel sistema del c.d.m.

Momento di inerzia (m.i.):

- 1. $T=I\alpha$ momento delle forze, con α accelerazione angolare
- 2. $I = \Sigma r_i^2 \Delta m_i$ momento di inerzia; $I\omega$ momento angolare
- 3. $k = (1/2)I\omega^2$ energia cinetica
- 4. $I = I_{\rm cm} + Mh^2$ teorema di Huygens-Steiner
- 5. mR^2 m.i. anello
- 6. $(1/2)R^2$ m.i. cilindro
- 7. $(ml^2)/12$ m.i. sbarra
- 8. $(2/5)mR^2$ m.i. sfera piena
- 9. $(2/3)mR^2$ m.i. sfera vuota
- 10. $(3/2)mR^2$ m.i. disco (rispetto ad un asse periferico)

Oscillazioni smorzate:

- 1. $\overrightarrow{R} = -b\overrightarrow{v}$
- 2. $F_{\text{Tot}} = ma = -kx bv$
- 3. $x(t) = Ae^{(-b/2m)t}\cos(\omega t + \phi)$
- 4. $\omega = \sqrt{(k/m) (b/2m)^2} = \sqrt{\omega_0^2 (b/2m)^2}$, con ω_0^2 pulsazione in assenza di smorzamento

Varie:

- 1. $P = F\Delta x$
- 2. $W = (1/2)mv_B^2 (1/2)mv_A^2$, $W = \overrightarrow{F_S}\overrightarrow{S}$ layoro
- 3. $\overrightarrow{F_S} = F \cos \alpha$ componente del lavoro nella direzione dello spostamento

Elettricità:

- 1. $\varepsilon_0 = 8.85 \cdot 10^{-12} C^2 / Nm^2$ costante dielettrica nel vuoto
- 2. $k_0 = 1/(4\pi\varepsilon_0) = 8.99 \cdot 10^9 Nm^2/C^2$
- 3. $\mu_0 = 4\pi \times 10^7 (T \cdot m)/A = 12.56 \cdot 10^7$ henry/m, permeabilità magnetica nel vuoto

- 4. $F = k_0(q_1q_2)/r^2$ Legge di Coulomb nel vuoto
- 5. $p \equiv Q \cdot L$ momento del dipolo
- 6. $F = qk_0p/r^3$ forza del dipolo sulla carica q
- 7. $\overrightarrow{E} = \overrightarrow{F}/q$ campo elettrico
- 8. $\overrightarrow{E} = (k_0 Q/r^2) \overrightarrow{r}$ campo elettrico generato da una carica puntiforme
- 9. $\oint \overrightarrow{E} d\overrightarrow{A} = 4\pi k_0 Q_{\text{int}} = (1/\varepsilon_0) Q_{\text{int}}$ Teorema di Gauss, se $Q_{\text{int}} = 0$ allora # linee entranti = # linee uscenti
- 10. $\Delta \overrightarrow{\phi} = \overrightarrow{E} \Delta \overrightarrow{A}$ flusso
- 11. $\phi = \int_S \overrightarrow{E} d\overrightarrow{A}$ per una superficie S
- 12. $\oint \overrightarrow{E} d\overrightarrow{A} = 4\pi k_0 Q$ per una carica puntiforme e una superficie chiusa qualunque
- 13. $U_B U_A = (qQ/r)k_0$ potenziale elettrico per il campo elettrico, Q puntiforme
- 14. $V \equiv U/q$, $V = (k_0 Q)/r$ Potenziale elettrostatico = energia potenziale per unità di carica, conduttore sferico con carica superficiale Q
- 15. $\Delta V = -Ex_0 = ED$ differenza di potenziale, D = distanza
- 16. $E=-4\pi k_0\sigma$ condensatore 2 strati. $\sigma=Q/A$ densità superficiale
- 17. $E = \sigma/(2\varepsilon_0) = 2\pi k_0 \sigma$ lamina carica, cond. 1 strato
- 18. $E = k_0(Q/r^2)$ carica a simmetria sferica a distanza r > R, se r < R E = 0
- 19. $E = k_0(Q/R^3)r$ sfera uniformemente
- 20. $U = (1/2)Q_0^2/C$ energia condensatore
- 21. $U = (k_0 Qq)/r = (-k_0 e^2)/R$ energia potenziale elettrone accelerato
- 22. $C = A/(4\pi k_0 x_0), \quad \Delta V = Q/C$ capacità condensatore
- 23. $C'/C = k = 1/(1 (q'/q_0))$ costante dielettrica, q' carica indotta
- 24. $C' = q_0/V = q_0/(Ex_0)$ dielettrici

Elettrodinamica:

1. I=Q/t intensità di corrente, carica per unità di tempo in A=C/S

- 2. $\overrightarrow{j} = \rho \cdot \overrightarrow{v}$ densità di corrente, $\rho =$ densità di carica
- 3. $I = \overrightarrow{\jmath} \cdot \overrightarrow{A}$ corrente per unità di superficie. Se $\overrightarrow{\jmath}$ è variabile allora $I = \int \overrightarrow{\jmath} \cdot \overrightarrow{A}$
- 4. $I = \mathcal{N}e\overline{v_d}A$, $\overline{v_d}$ vel. media di deriva
- 5. R = V/I resistenza
- 6. I = qnAlv
- 7. $R = (mvx_0)/(\mathcal{N}e^2LA) = \rho x_0/A$ con m =massa elettrone, v =velocità elettrone, \mathcal{N} =num. medio di elettroni per unità di volume, L =cammino libero medio, ρ =resistività
- 8. $\Delta q \xi$ energia ricevuta dalla carica, ξ forza elettromotrice
- 9. $\overrightarrow{F_E} = q\overrightarrow{E}$ campo \overrightarrow{E} esercita forza su carica q
- 10. $F_{\text{mag}} = q \overrightarrow{v} = q \overrightarrow{v} \times \overrightarrow{B}$ forza magnetica esercitata da un campo B su una carica q che si muove con velocità \overrightarrow{v} , \overrightarrow{B} campo magnetico
- 11. $P = VI = I^2R$ potenza dissipata
- 12. $R=(mv)/(qB),\ T=(2\pi m)/(qB)$ carica in movimento in un campo magnetico uniforme che percorre una circonferenza
- 13. $B = |(\mu_0/2)(I_1/R_1) (I_2/R_2)|$ campo magnetico al centro di 2 spire circolari
- 14. $\overrightarrow{F} = q\overrightarrow{E} + q\overrightarrow{v} \times \overrightarrow{B}$ forza totale
- 15. E/B = -v rapporto E/B affinchè forza totale=0
- 16. forza totale su una corrente = Σ forze nulle sulle cariche
- 17. $F = I \int d\overrightarrow{s} \times \overrightarrow{B}$ forza esercitata dal campo magnetico su un elemento $d\overrightarrow{s}$ del filo
- 18. $d\overrightarrow{B} = (\mu_0/4\pi)(Id\overrightarrow{s} \times \overrightarrow{r})/r^2$ Legge di Biot e Savart, $d\overrightarrow{s}$ =elemento di corrente, $d\overrightarrow{B}$ = contributo al campo magnetico di $d\overrightarrow{s}$, μ_0 =permeabilità magnetica nel vuoto
- 19. $B = (\mu_0 I)/(2\pi r)$ Biot e Savart per un filo ∞ rettilineo
- 20. $\oint \overrightarrow{B} d\overrightarrow{s} = \mu_0 I$ Legge di Ampère: è l'analogo del teorema di Gauss per calcolare il campo magnetico prodotto da correnti

- 21. $\phi_0 = \int_S \overrightarrow{E} d\overrightarrow{A}$ flusso del campo magnetico; su una superficie chiusa $\oint \overrightarrow{B} d\overrightarrow{A} = 0$ flusso in = flusso out
- 22. $f_{\rm em} = (-d\phi)/(dt)$ Legge di Faraday
- 23. $\int_C \overrightarrow{E} \, d\overrightarrow{s} = -\int_S ((d\overrightarrow{B})/(dt)) d\overrightarrow{A} \text{ Legge di Lenz. S=superficie, C=contorno}$
- 24. $(v_1/v_2) = -(n_1/n_2)$ trasformatore
- 25. $\int \overrightarrow{E} d\overrightarrow{A} = 4\pi k_0 Q_{\text{int}}$ Legge di Gauss²

${\bf Termodinamica} \ :$

- 1. PV = nRT equazione dei gas perfetti, PV = costante a T costante
- 2. n = m/M = num. moli
- 3. R = 8.31 J/(mole k) costante universale
- 4. $F = (-2mv_x)/(\Delta t) = (-mv_x^2)/d$, $\Delta t = (2d)/v_x$ Forza della parete sulla molecola
- 5. $F\Delta t = -2mv_x$ Teorema dell'impulso
- 6. $F = (N/3)((m/d)\overline{v_x^2})$ forza totale
- 7. $P = (2/3)(N/V)(1/2)m\overline{v^2}$ pressione
- 8. $C = Q/(m\Delta t)$ calore specifico
- 9. $Q = Cm\Delta t$ quantità di calore trasferita
- 10. $v_q = \sqrt{(3RT)/M}$, $T = 2/(3k_B)(1/2)m\overline{v^2}$ velocità quadratica media; M =peso molecolare medio gr/mole; R =costante dei gas
- 11. $k_B = 1.38 \cdot 10^{-23} J/K$ costante di Boltzman
- 12. $C_x = (m_a c_a (T T_a))/(m_x (T_x T))$ calore specifico
- 13. $Q_{\text{netto}} = Q_C Q_F$
- 14. $e = 1 (Q_F/Q_C)$ rendimento
- 15. $e_c = 1 (T_f/T_c)$ macchina di Carnot
- 16. ds = d(Qr/T) variazione di entropia
- 17. $T_{\text{eq}} = (c_1 m T_1 + c_2 m T_2)/(c_1 m + c_2 m)$ temperatura di equilibrio

Trasformazioni:

- 1. Adiabatica: $Q=0,~\Delta U=-W,$ il sistema si raffredda (o si riscalda). L'espansione libera Q=0,~W=0 nessun lavoro, $\Delta U=0~T={\rm costante}$
- 2. Isobara (pressione costante): $P(v_f v_i) = \text{lavoro}$
- 3. Isocora (volume costante): $W=0,\,\Delta U=Q,\,$ tutto il calore assorbito va in aumento dell'energia interna
- 4. Isoterma (temperatura costante): energia interna solo funzione di T per un gas perfetto, $\Delta U=0,\; PV$ =costante

²l'integrale è quello col doppio cerchio

Studente: Ferro Alberto Mat. 449103/IL Anno Accademico 2000/2001

Pag.1

ELETTROSTATICA:

Legge di Coulomb:	$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \vec{u}_{12} = k_e \frac{q_1 q_2}{r^2} \vec{u}_{12}$	pg.9
Campo elettrostatico/elettromotore:	$\vec{E} = \frac{\vec{F}}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r^2} \vec{u}_{12}$	pg.12
Densità di carica:	$\rho = \frac{dq}{d\tau} \qquad \sigma = \frac{dq}{d\Sigma} \qquad \lambda = \frac{dq}{dl}$	pg.15
Campo elettrost. di un filo indefinito unif. carico:	$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 y} \vec{u}_y$	pg.17
Campo elettrost. sull'asse di un anello sottile unif. carico di raggio R:	$\vec{E} = \frac{q}{4\pi\varepsilon_0} \frac{x}{(R^2 + x^2)^{3/2}} \vec{u}_x \text{per x>>R} \vec{E} = \frac{q}{4\pi\varepsilon_0 x^2} \vec{u}_x$	pg.18
Lavoro del campo elettrost./elettromot.	$dW = \vec{F} \cdot d\vec{s} = q_0 \vec{E} \cdot d\vec{s} W = q_0 \int_{C_1} \vec{E} \cdot d\vec{s}$	pg.29
Tensione elettrica, f.e.m., in generale:	$T_1 = \int_{C_1} \vec{E} \cdot d\vec{s} \qquad \mathscr{E} = \oint_C \vec{E} \cdot d\vec{s}$	pg.29
Differenza di potenziale elettrostatico:	$T_{1} = \int_{C_{1}} \vec{E} \cdot d\vec{s} \qquad \mathscr{E} = \oint_{C} \vec{E} \cdot d\vec{s}$ $V_{A} - V_{B} = \int_{A}^{B} \vec{E} \cdot d\vec{s} \qquad \mathscr{E} = \oint_{C} \vec{E} \cdot d\vec{s} = 0$	pg.31
Lavoro, U_e in campo elettrostatico:	$U_e = q_0 V \qquad W = -\Delta U_e = -q_0 \Delta V$	pg.31
Potenziale elettrostatico:	$V(P) = \int_{P}^{\infty} \vec{E} \cdot d\vec{s} = \sum_{i} \frac{q_{i}}{4\pi\varepsilon_{0}r_{i}}$	pg.33
Operatore ∇ :	$\nabla = \frac{\partial}{\partial x}\vec{u}_x + \frac{\partial}{\partial y}\vec{u}_y + \frac{\partial}{\partial z}\vec{u}_z$	pg.46
Campo elettrostatico in funzione di <i>V</i> :	$\vec{E} = -gradV = -\nabla V$	pg.46
Campo elettrost. in funzione di $V(r, \theta, \varphi)$:	$E_r = -\frac{\partial V}{\partial r} \qquad E_\theta = -\frac{1}{r}\frac{\partial V}{\partial \theta} \qquad E_\varphi = -\frac{1}{rsen\theta}\frac{\partial V}{\partial \varphi}$	pg.47
Momento di dipolo elettrico:	$\vec{p} = q\vec{a}$	pg.57
Potenziale, U_e e mom. su dipolo elettrico:	$V(P) = \frac{\vec{p} \cdot \vec{u}_r}{4\pi\varepsilon_0 r^2} U_e = -\vec{p} \cdot \vec{E} \qquad \vec{M} = \vec{p} \times \vec{E}$	pg.63
	$\vec{F} = p_x \frac{\partial \vec{E}}{\partial x} + p_y \frac{\partial \vec{E}}{\partial y} + p_z \frac{\partial \vec{E}}{\partial z}$ se conservativo:	
Forza su dipolo elettrico in campo E non costante:	$F_{x} = p_{x} \frac{\partial E_{x}}{\partial x} + p_{y} \frac{\partial E_{y}}{\partial x} + p_{z} \frac{\partial E_{z}}{\partial x}$	ng 64
	$F_{y} = p_{x} \frac{\partial E_{x}}{\partial y} + p_{y} \frac{\partial E_{y}}{\partial y} + p_{z} \frac{\partial E_{z}}{\partial y}$	pg.64
	$F_z = p_x \frac{\partial E_x}{\partial z} + p_y \frac{\partial E_y}{\partial z} + p_z \frac{\partial E_z}{\partial z}$	
Angolo solido:	$d\Omega = \frac{d\Sigma \cos \alpha}{r^2} = \frac{d\Sigma_0}{r^2} \qquad \Omega = \int sen \theta d \theta d \phi$	pg.72
Legge di Gauss, nel vuoto:	$\Phi(\vec{E}) = \int_{\Sigma} \vec{E} \cdot \vec{u}_n d\Sigma = \frac{1}{\varepsilon_0} \left(\sum_{i} q_i \right)_{int} \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	pg.70, 80

Campo elettrost. di una sup. sferica:	dentro: $E = 0$ fuori: $\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{u}_r$	pg.73
Campo elettrost. di un volume sferico:	dentro: $\vec{E} = \frac{qr}{4\pi\varepsilon_0 R^3} \vec{u}_r$ fuori: $\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{u}_r$	pg.74
Campo elettrost. di un cilindro:	dentro: $\vec{E} = \frac{\lambda r}{2\pi\varepsilon_0 R^2} \vec{u}_r$ fuori: $\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{u}_r$	pg.75
Campo elettrost. di un piano indefinito:	$\vec{E} = \pm \frac{\sigma}{2\varepsilon_0} \vec{u}_x$	pg.76
Capacità di un condutt. e di un condens.:	$C = \frac{q}{V} \qquad C = \frac{q}{V_1 - V_2}$	pg.91, 101
Capacità di un conduttore sferico isolato:	$C = 4\pi\varepsilon_0 R$	pg.92
Capacità di un condensatore sferico nel vuoto:	$C = 4\pi\varepsilon_0 \frac{R_1 R_2}{R_2 - R_1} \cong \varepsilon_0 \frac{\Sigma}{h}$	pg.102
Capacità di un condensatore cilindrico nel vuoto:	$C = 2\pi\varepsilon_0 \frac{d}{\ln\frac{R_2}{R_1}} \cong \varepsilon_0 \frac{\Sigma}{h}$	pg.103
Capacità di un condensatore piano nel vuoto:	$C = \varepsilon_0 \frac{\Sigma}{h}$	pg.103
Condensatori in parallelo:	$C_{eq} = C_1 + C_2 + + C_n$	pg.105
Condensatori in serie (stessa carica):	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$	pg.105
Energia elettrost. di un condensatore:	$U_e = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q^2}{C} = \frac{1}{2}qV$	pg.108
Densità di energia elettrostatica generica:	$u_e = \frac{dU_e}{d\tau} = \frac{1}{2} \varepsilon E^2$	pg.109, 148
Energia elettrost. tra due sfere distanti, nel vuoto:	$u_e = \frac{dU_e}{d\tau} = \frac{1}{2} \varepsilon E^2$ $U_e = \frac{1}{2} \frac{q_1^2}{4\pi\varepsilon_0 R_1} + \frac{1}{2} \frac{q_2^2}{4\pi\varepsilon_0 R_2} + \frac{q_1 q_2}{4\pi\varepsilon_0 d}$	pg.112
Pressione elettrostatica tra le armature, nel vuoto:	$p = \frac{1}{2} \varepsilon_0 E^2$	pg.117
Forza tra le armature di un condensatore (> 0 se repulsiva, <i>x</i> =dist. tra le armature):	q=cost $F = -\frac{\partial U_e}{\partial x}$ V=cost $F = \frac{\partial U_e}{\partial x}$	pg.118
Costante dielettr. relativa k_e e assoluta ε (q cost.):	$k_e = \frac{V_0}{V_k} = \frac{E_0}{E_k} > 1 \qquad \qquad \varepsilon = k_e \varepsilon_0$	pg.128
Suscettività elettrica:	$\chi_e = k_e - 1 > 0$	pg.128
Polarizzazione del dielettrico:	$\vec{P} = \frac{\Delta \vec{p}}{\Delta \tau} = n < \vec{p} > \text{ dove n} = \text{n}^{\circ} \text{ atomi/m}^{3}$	pg.131
Polarizzazione di un dielettrico lineare:	$\vec{P} = \varepsilon_0 (k_e - 1) \vec{E} = \varepsilon_0 \chi_e \vec{E}$	pg.131
Densità di carica nel dielettrico in funzione della polarizzazione:	$\sigma_p = \vec{P} \cdot \vec{u}_n$	pg.132
Induzione dielettrica:	$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$	pg.136
Legge di Gauss per il campo D:	$\Phi(\vec{D}) = \left(\sum_{i} q_{i}\right)_{\text{int}, libere} \qquad \nabla \cdot \vec{D} = \rho$	pg.136

Induzione dielettrica nei dielettr. lineari:	$\vec{D} = \varepsilon \vec{E}$	pg.138
Discontinuità dei campi sulla sup. di separazione tra due dielettrici:	$E_{1t} = E_{2t} \qquad D_{1n} = D_{2n}$ $E_{2n} - E_{1n} = \frac{\sigma_{1p} - \sigma_{2p}}{\varepsilon_0} = \frac{\sigma_p}{\varepsilon_0} \qquad \frac{tg\theta_2}{tg\theta_1} = \frac{k_2}{k_1}$	pg.141
N° di molecole/m³ di un materiale (pari al n° di portatori di carica/m³ se sono uno per molecola):	$n = \frac{N_A \rho}{A}$ $N_A = 6.023 E^{26}$ se A è in Kg	pg.161
Corrente elettrica, densità di corrente:	$i = \frac{dq}{dt}$ $\vec{j} = nq\vec{v}$ $i = \int_{\Sigma} \vec{j} \cdot \vec{u}_n d\Sigma$	pg.164
Principio di conservazione della carica:	$i = \oint \vec{j} \cdot \vec{u}_n d\Sigma = -\frac{\partial q_{\text{int}}}{\partial t}$	pg.167
Condizione di stazionarietà:	$\oint \vec{j} \cdot \vec{u}_n d\Sigma = 0 \qquad \nabla \cdot \vec{j} = -\frac{\partial \rho}{\partial t} \qquad i_1 = i_2$	pg.168
Legge di Ohm:	$\vec{j} = \sigma \vec{E}$ $\vec{E} = \rho \vec{j}$	pg.170
Potenza spesa per unità di volume:	$P_{\tau} = \sigma E^2 = \rho j^2$	pg.170
Legge di Ohm per conduttori metallici:	V = Ri	pg.172
Resistenza di un conduttore:	$R = \int_{A}^{B} \rho \frac{dh}{\Sigma}$ a sezione costante: $R = \rho \frac{h}{\Sigma}$	pg.172
Resistività di un condutt. per piccoli intervalli di temperatura:	$\rho = \rho_{20}(1 + \alpha \Delta t)$	pg.173
Potenza spesa in un conduttore:	$P = Ri^2$	pg.176
Resistenze in serie (stessa corrente):	$R_{eq} = R_1 + R_2 + \ldots + R_n$	pg.179
Resistenze in parallelo:	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$	pg.180
f.e.m. di un generatore di tensione, resistenza interna <i>r</i> :	$\mathscr{E} = \int_{A}^{B} \vec{E}^{*} \cdot d\vec{s} \qquad \int_{A}^{B} \left(\vec{E}^{*} + \vec{E}_{el} \right) \cdot d\vec{s} = ri = \mathscr{E} - Ri$	pg.182
Legge di Ohm generalizzata:	$V_A - V_B + \sum_k \mathscr{E}_k = Ri$	pg.185
Carica di un condensatore in un circuito RC:	$V_C = \mathcal{E}\left(1 - e^{-\frac{t}{RC}}\right) i = \frac{\mathcal{E}}{R} e^{-\frac{t}{RC}} \qquad q = C\mathcal{E}\left(1 - e^{-\frac{t}{RC}}\right)$ $W_{gen} = C\mathcal{E}^2 = 2W_C = W_C + W_R$	pg.188
Scarica di un condensatore in un circuito RC:	$V_C = V_0 e^{-\frac{t}{RC}} \qquad i = \frac{V_0}{R} e^{-\frac{t}{RC}} \qquad q = q_0 e^{-\frac{t}{RC}}$	pg.190

MAGNETOSTATICA:

Legge di Gauss per il campo magnetico:	$\oint \vec{B} \cdot \vec{u}_n d\Sigma = 0 \qquad \nabla \cdot \vec{B} = 0$	pg.213
Forza di Lorentz:	$\vec{F} = q\vec{v} \times \vec{B}$	pg.214
Campo elettromotore magnetico:	$\vec{E} = \vec{v} \times \vec{B}$	pg.230
Raggio di curvatura e ω in campo B uniforme e ortogonale alla traiettoria:	$r = \frac{mv}{qB}$ $\vec{\omega} = -\frac{q}{m}\vec{B}$ (m relativistica)	pg.215

Massa in funzione della velocità:	$m = m_0 \gamma = m_0 \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$	pg.215
Raggio di curvatura e passo <i>p</i> in campo <i>B</i> uniforme:	$r = \frac{mv_n}{qB} = \frac{mvsen\theta}{qB} \qquad p = v_p T = \frac{2\pi mv\cos\theta}{qB}$ $d\vec{B} = \frac{\mu_0 i}{4\pi} \frac{d\vec{s} \times \vec{u}_r}{r^2} \text{ (campo B gen. da tratto infin. di filo)}$ $d\vec{F} = id\vec{s} \times \vec{B} \qquad \text{(forza su tratto infinitesimo di filo)}$	pg.217
1^ legge elementare di Laplace nel vuoto:	$d\vec{B} = \frac{\mu_0 i}{4\pi} \frac{d\vec{s} \times \vec{u}_r}{r^2}$ (campo B gen. da tratto infin. di filo)	pg.241
2^ legge elementare di Laplace:	$d\vec{F} = id\vec{s} \times \vec{B}$ (forza su tratto infinitesimo di filo)	pg.218
Forza magnetica su un filo conduttore disposto su un piano in campo uniforme:	$\vec{F} = iPQ \times \vec{B}$ se rettilineo: $\vec{F} = i\vec{l} \times \vec{B}$	pg.219
Momento di dipolo magnetico:	$\vec{m} = i\Sigma \vec{u}_n$ (valida \forall forma del circuito)	pg.221
U_p e momento su dipolo magnetico:	$U_p = -\vec{m} \cdot \vec{B} \qquad \vec{M} = \vec{m} \times \vec{B}$	pg.221/3
Campo elettromotore di Hall:	\vec{r} \vec{j} \vec{p}	pg.230
1^ legge elem. di Laplace nel vuoto per conduttori non filiformi:	$E_{H} = v_{d} \times B = \frac{1}{ne} \times B$ $d\vec{B} = \frac{\mu_{0}}{4\pi} \frac{\vec{j} \times \vec{u}_{r}}{r^{2}} d\tau$ $\vec{B} = \frac{\mu}{4\pi} \oint \frac{\vec{j} \times \vec{u}_{r}}{r^{2}} d\tau \text{ se filif.: } \vec{B} = \frac{\mu i}{4\pi} \oint \frac{d\vec{s} \times \vec{u}_{r}}{r^{2}}$	pg.241
Legge di Ampere-Laplace, ovvero campo <i>B</i> generato da un circuito chiuso:	$\vec{B} = \frac{\mu}{4\pi} \oint \frac{\vec{j} \times \vec{u}_r}{r^2} d\tau \text{ se filif.: } \vec{B} = \frac{\mu i}{4\pi} \oint \frac{d\vec{s} \times \vec{u}_r}{r^2}$	pg.241, 271
Legge di Biot-Savart, ovvero campo <i>B</i> generato da un filo indefinito di raggio <i>R</i> :	$\vec{B} = \frac{\mu_0 i}{2\pi r} \vec{u}_{\varphi} \qquad \text{(nel vuoto)}$	pg.244, 255
Campo <i>B</i> sull'asse di una spira circolare, nel vuoto:	$\vec{B} = \frac{\mu_0 i R^2}{2(x^2 + R^2)^{\frac{3}{2}}} \vec{u}_n \text{per x>>R} B = \frac{\mu_0 i R^2}{2x^3} \vec{u}_n$ $B = \mu_0 n i \frac{d}{\sqrt{d^2 + 4R^2}} \text{per d} \to \infty B = \mu_0 n i$	pg.246
Campo <i>B</i> al centro di un solenoide rett. e in un solenoide rett. indefinito, nel vuoto:	$B = \mu_0 ni \frac{d}{\sqrt{d^2 + 4R^2}} \frac{\text{per d} \to \infty B = \mu_0 ni}{\text{dove n = n°spire/m}}$	pg.248, vedi 279
Forza tra 2 fili parall. e indefiniti per unità di lunghezza, nel vuoto:	$F = \frac{\mu_0 i_1 i_2}{2\pi r}$	pg.251
Legge di Ampere, nel vuoto:	$\oint \vec{B} \cdot d\vec{s} = \mu_0 \sum_{conc.} i_{conc.} = \mu_0 \int_{\Sigma} \vec{j} \cdot \vec{u}_n d\Sigma \nabla \times \vec{B} = \mu_0 \vec{j}$	pg.253
Campo <i>B</i> in un solenoide toroidale, in generale:	$ec{B} = rac{\mu Ni}{2\pi r} ec{u}_{arphi} \qquad \qquad ec{H} = rac{Ni}{2\pi r} ec{u}_{arphi}$	pg.257, 279
Campo <i>B</i> generato da una corrente piana indefinita, nel vuoto:	$\vec{B} = \frac{\mu_0 j}{2} \vec{u}_t$	pg.257
Coefficiente di mutua induzione:	$\Phi_{1,2} = Mi_1 \qquad \Phi_{2,1} = Mi_2$	pg.259
Autoflusso e coeff. di autoinduzione <i>L</i> :	$\Phi = Li$	pg.260
Coeff. di autoinduzione nei solenoidi tor., e rett. per unità di lunghezza, nel vuoto:	toroid., $r \gg a$ $L = \frac{\mu_0 N^2 \Sigma}{2\pi R}$ rett.indef,: $L_l = \mu_0 n^2 \Sigma$	pg.260
Permeabilità magnetica relativa k_m e assoluta μ (i cost.):	$k_m = \frac{B_k}{B_0} \qquad \qquad \mu = k_m \mu_0$	pg.271
Suscettività magnetica:	$\chi_m = k_m - 1$	pg.272
1^ legge di Curie (per sostanze diamagnetiche):	$\chi_m = \frac{C\rho}{T}$	pg.273

2^{\land} legge di Curie, valida per sostanze ferromagnetiche per $T > T_C$:	$\frac{\chi_m(T-T_c)}{\rho} = C$	pg.291
Magnetizzazione:	$ \frac{\rho}{\vec{M}} = \frac{\Delta \vec{m}}{\Delta \tau} = n < \vec{m} > \text{ dove n} = \text{n}^{\circ} \text{ atomi/m}^{3} $	pg.274
Magnetizzazione di un mezzo lineare (non valida nei ferromagnetici):	$\vec{M} = \chi_m \vec{H} = \frac{1}{\mu_0} \frac{k_m - 1}{k_m} \vec{B}$	pg.277
Densità lineare di corrente amperiana in funzione della magnetizzazione:	$\vec{j}_{s,m} = \vec{M} \times \vec{u}_n \oint \vec{M} \cdot d\vec{s} = i_m \nabla \times \vec{M} = \vec{j}_m$	pg.275
Campo <i>H</i> :	$ec{H} = rac{ec{B}}{\mu_0} - ec{M}$	pg.277
Legge di Ampere per il campo <i>H</i> :	$\oint \vec{H} \cdot d\vec{s} = \left(\sum_{conc.,conduz.} i\right)_{conc.,conduz.} \nabla \times \vec{H} = \vec{j}$	pg.277
Campo <i>H</i> nei mezzi lineari (non valida nei ferromagnetici):	$\vec{H} = \frac{\vec{B}}{\mu} \qquad \qquad \vec{B} = \mu \vec{H}$	pg.278
Discontinuità dei campi sulla sup. di separazione tra due mezzi:	$H_{1t} = H_{2t} \qquad B_{1n} = B_{2n} \qquad \frac{B_{1,t}}{k_{1,m}} = \frac{B_{2,t}}{k_{2,m}}$ $k_{1,m}H_{1n} = k_{2,m}H_{2n} \qquad \frac{tg\theta_1}{tg\theta_2} = \frac{k_{1,m}}{k_{2,m}}$	pg.283
Campo <i>B</i> in anello toroidale con traferro:	s-h Ni	pg.296
Modello classico della magnetizzazione nei diamagnetici:	$\begin{split} L &= m_e v r = (l+1)\hbar \vec{m} = -\frac{e}{2m_e} \vec{L} = (l+1)\mu_B \\ \text{mom. di spin:} \mu_e = \pm \mu_B \text{con} \mu_B = \frac{e\hbar}{2m_e} \\ \vec{M} &= \vec{m} \times \vec{B}_{loc} = -\frac{e}{2m_e} \vec{L} \times \vec{B} = \vec{\omega}_L \times \vec{L} \rightarrow \\ \vec{\omega}_L &= \frac{e}{2m_e} \vec{B}_{loc} \rightarrow \Delta m = \Delta i \pi r^2 = -\frac{e^2 r^2}{4m_e} B_{loc} \\ \text{con} r^2 &= \vec{x}^2 + \vec{y}^2 = \frac{2}{3} r_i^2 \text{e} \vec{r}^2 = \frac{1}{Z} \sum_{i=1}^Z r_i^2 \rightarrow \\ \vec{M} &= n \sum_{i=1}^Z \Delta \vec{m}_i = -\frac{e^2 n Z \vec{r}^2}{6m_e} \vec{B}_{loc} \rightarrow \\ \chi_m &= -n \mu_0 \frac{e^2 Z \vec{r}^2}{6m_e} \end{split}$	pg.302, 303, 308, 309, 310

ELETTROMAGNETISMO:

Legge di Faraday:	$\mathcal{E} = -\frac{d\Phi(\vec{B})}{dt} \qquad \oint \vec{E} \cdot d\vec{s} = -\frac{\partial}{\partial t} \int_{\Sigma} \vec{B} \cdot \vec{u}_n d\Sigma$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	pg.320
f.e.m. generata dalla forza di Lorentz:	$\mathscr{E} = \oint \vec{v} \times \vec{B} \cdot d\vec{s} \text{(dove } v \text{ è la velocità della spira)}$	pg.323
f.e.m. e forza su circuito rettangolare con sbarra mobile:	$\mathscr{E} = -vBb \qquad i = -\frac{vBb}{r+R} \qquad \vec{F} = -\frac{B^2b^2}{r+R}\vec{v}$	pg.324, 328

f.e.m. e momento su disco di Barlow:	$\mathscr{E} = \frac{1}{2}\omega B a^2 \qquad \qquad \vec{M} = -\frac{B^2 a^4}{4R} \vec{\omega}$	pg.329
f.e.m. su spira rettangolare rotante:	$\mathscr{E} = \omega B \Sigma sen \omega t$ $\vec{M} = \vec{m} \times \vec{B}$	pg.330
Betatrone, variazione di campo <i>B</i> nel tempo rispetto a variazione geometrica:	$\Delta p = \frac{eR}{2} \Delta B_m = ER\Delta B_{orb} \rightarrow \Delta B_m = 2\Delta B_{orb}$	pg.333
Legge di Felici, ovvero spostamento di carica per variazione di flusso magnetico:	$q = \frac{\Phi_1(\vec{B}) - \Phi_2(\vec{B})}{R}$	pg.335
f.e.m. per autoinduzione:	$\mathscr{E} = -\frac{d}{dt}(Li)$ se L è costante: $\mathscr{E} = -L\frac{di}{dt}$	pg.337
Carica di un'induttanza (chiusura del circuito) in un circuito RL:	$\mathcal{E}_{L} = -\mathcal{E}e^{-\frac{t}{\tau}} i = \frac{\mathcal{E}}{R} \left(1 - e^{-\frac{t}{\tau}} \right) \qquad \tau = \frac{L}{R}$	pg.338
Scarica di un'induttanza (apertura del circuito) in un circuito RL:	$\mathscr{E}_L = \frac{R^1}{R} \mathscr{E} e^{-\frac{t}{\tau^1}} i = \frac{\mathscr{E}}{R} e^{-\frac{t}{\tau^1}} \tau^1 = \frac{L}{R^1} (R^1 \text{ è la res.di ap.})$	pg.339
Energia magnetica di un'induttanza:	$U_L = \frac{1}{2}Li^2$	pg.340
Densità di energia magnetica in generale, per materiali non ferromagnetici:	$u_{m} = \frac{dU_{L}}{d\tau} = \frac{1}{2\mu}B^{2} U_{m} = \int \frac{B^{2}}{2\mu}d\tau \text{Nei ferrom.} $ $U_{m} \stackrel{\text{el 'area}}{\text{del ciclo di isteresi}}$	pg.341, 344,345
Induttanza per unità di lunghezza di un cavo coassiale con intercapedine vuota:	$L_{/a} = \frac{\mu_0}{2\pi} \left(\frac{1}{4} + \ln \frac{R_2}{R_1} \right)$ (somma di cavo int. e intercap.)	pg.343
Pressione magnetica verso l'esterno sulle spire di un solenoide rettilineo, nel vuoto:	$p = \frac{B^2}{2\mu_0}$ $dU_m = \frac{i^2}{2}dL \qquad F = \frac{\partial U_m}{\partial x}$	pg.347
Forza in un circuito percorso da corrente costante durante una deformazione:	$dU_m = \frac{i^2}{2} dL \qquad F = \frac{\partial U_m}{\partial x}$	pg.346
Forza su un materiale magn. parz. inserito in un solenoide rett. lungo <i>d</i> di pari sez.:	$F = \frac{\partial U_m}{\partial x} = \frac{1}{2} \mu_0 \chi_m \Sigma n^2 i^2$ (i cost.) F è attratt. se $\chi_m > 0$, repulsiva se $\chi_m < 0$	pg.347
f.e.m. su un circuito dovuta alla variazione di corrente nell'altro:	$\mathcal{E}_{1}^{1}(t) = -M \frac{di_{2}}{dt}$ $\mathcal{E}_{2}^{1}(t) = -M \frac{di_{1}}{dt}$ se Mè cost. $U_{m} = \frac{1}{2} L_{1} i_{1}^{2} + \frac{1}{2} L_{2} i_{2}^{2} + M i_{1} i_{2}$	pg.350
Energia magnetica tra due circuiti accoppiati con <i>M</i> cost.:		pg.352
Lavoro e forze di spostamento di due circuiti accoppiati, a correnti costanti:	$dW_{mecc} = dU_m = i_1 i_2 dM F_x = \frac{dU_m}{dx} M_\theta = \frac{dU_m}{d\theta}$	pg.353
Corrente di spostamento nel vuoto:	$i_{s} = \int \vec{j}_{s} \cdot \vec{u}_{n} d\Sigma = \varepsilon_{0} \int \frac{\partial \vec{E}}{\partial t} \cdot \vec{u}_{n} d\Sigma = \varepsilon_{0} \frac{\partial \Phi(\vec{E})}{\partial t}$	pg.359
Legge di Ampere-Maxwell nel vuoto:	$ \oint \vec{B} \cdot d\vec{s} = \mu_0 \sum (i + i_s) = \mu_0 \int \left(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \cdot \vec{u}_n d\Sigma $ $ \nabla \times \vec{P} = \mu_0 \left(\vec{i} + \vec{j} \right) = \mu_0 \left(\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) $	pg.359
	$\nabla \times \vec{B} = \mu_0 (\vec{j} + \vec{j}_s) = \mu_0 (\vec{j} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t})$ $\oint \vec{B} \cdot d\vec{s} = \mu_0 \sum (i + i_s) = \mu_0 \int (\vec{j} + \frac{\partial \vec{D}}{\partial t}) \cdot \vec{u}_n d\Sigma$	
Legge di Ampere-Maxwell con dielettrici lineari:	$\nabla \times \vec{B} = \mu_0 \left(\vec{j} + \vec{j}_s \right) = \mu_0 \left(\vec{j} + \frac{\partial \vec{D}}{\partial t} \right)$	pg.361
	$\nabla \times \vec{H} = \vec{j} + \vec{j}_s = \vec{j} + \frac{\partial \vec{D}}{\partial t}$	

Equazioni di Maxwell nel vuoto in	$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	pg.361
presenza di sorgenti:	$\nabla \cdot \vec{B} = 0$	$\nabla \times \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$	P8.0 01
Equazioni di Maxwell nel vuoto in assenza di sorgenti:	$\nabla \cdot \vec{E} = 0$	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	pg.363
	$\nabla \cdot \vec{B} = 0$	$ abla imes \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$	12.300

ONDE:

Equazione delle onde piane o di D'Alembert:	$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$	pg.444
Soluzione generale dell'equazione di D'Alembert:	$\xi(x,t) = \xi_1(x - vt) + \xi_2(x + vt)$	pg.445
Onde longitudinali in una sbarra solida:	$\frac{\partial \xi}{\partial x} = \frac{1}{E} \frac{F}{S} \qquad v = \sqrt{\frac{E}{\rho}} \qquad \begin{array}{c} \xi \text{ è lo spostamento} \\ \text{longitudinale dalla} \\ \text{posizione di equilibrio} \end{array}$	pg.446, 450
Onde trasversali in una corda tesa:	$v = \sqrt{\frac{T}{\rho_l}}$ ξ è lo spostamento verticale dalla posizione di equilibrio	pg.452
Onde longitudinali in un gas ideale:	$\frac{dV}{V} = -\frac{dp}{\beta} \qquad \beta = \rho \frac{dp}{d\rho} \qquad \beta_T = p \text{a T=cost.}$ $\beta_S = \gamma p \text{in cond. adiab.} \qquad v = \sqrt{\frac{\beta}{\rho_0}} = \sqrt{\frac{\gamma RT}{A}} \text{adiab.}$	pg.452,
	per le onde sonore: $\Delta p_{\text{max}} = 2\pi v \rho_0 v A$ $I = \frac{(\Delta p)^2_{\text{max}}}{2\rho_0 v}$	455,469
Onda piana armonica:	$\xi(x,t) = \xi_0 sen(kx - \omega t) k = \frac{2\pi}{\lambda} \omega = \frac{2\pi}{T}$ $v = \frac{\omega}{k} = \frac{\lambda}{T} \text{se trasversale si può scrivere:}$ $\xi_y = \xi_{0y} sen(kx - \omega t) \xi_z = \xi_{0z} sen(kx - \omega t + \delta)$	pg.457, 461
Teorema di Fourier per funzioni periodiche:	$f(t) = a_0 + \sum_{m=1}^{\infty} (a_m senm\omega t + b_m \cos m\omega t)$ $a_m = \frac{2}{T} \int_0^T f(t) senm\omega t dt b_m = \frac{2}{T} \int_0^T f(t) \cos m\omega t dt$ $a_0 = \frac{1}{T} \int_0^T f(t) dt \text{Analog. nello spazio, con } \lambda \in \mathbb{R}$	pg.459
Teorema di Fourier per funzioni non periodiche:	$f(t) = \int_{0}^{\infty} (a(\omega)sen\omega t + b(\omega)\cos\omega t)d\omega$ $a(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t)sen\omega t dt b(\omega) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(t)\cos\omega t dt$ Analog. nello spazio, con λ e k	pg.459, 460

Onda piana armonica trasversale con polarizzazione rettilinea ($\delta = m\pi$):	$tg\theta = \frac{\xi_z}{\xi_y} = \frac{\xi_{0z}}{\xi_{0y}} \xi_{0y} = \xi_0 \cos\theta \xi_{0z} = \xi_0 sen\theta$ $\xi_y = \xi_0 \cos\theta sen(kx - \omega t) \xi_0 = \sqrt{\xi_{0x}^2 + \xi_{0y}^2}$ $\xi_z = \pm \xi_0 sen\theta sen(kx - \omega t)$	pg.461
Onda piana armonica trasversale con polarizzazione ellittica ad assi coincidenti con gli assi coordinati ($\delta = (m+1)\frac{\pi}{2}$):	a armonica trasversale con ione ellittica ad assi coincidenti $\frac{\xi_y^2}{\xi_{0y}^2} + \frac{\xi_z^2}{\xi_{0z}^2} = 1 \text{ se } \xi_{0y} = \xi_{0z} = \xi_0 \Rightarrow \xi_y^2 + \xi_z^2 = \xi_0^2$	
Intensità di un'onda:	caso tridim: $I = \frac{P_m}{\Sigma} = w_r v$ caso bidim.: $I = \frac{P_m}{l} = w_{\Sigma} v$ caso unidim.: $I = P_m = w_l v$ dove w_i è la dens. di energia che risulta, per l'onda in un gas: $w_{\Sigma} = \frac{1}{2} \rho \omega^2 A^2$	pg.467
Livello sonoro:	$B = 10 \log \frac{I}{I_0}$ dove I_0 si assume pari a 10^{-12} W/m ²	pg.471
Battimento tra due onde:	$\begin{aligned} s_1 &= Asen \omega_1 t s_2 &= Asen \omega_2 t \\ s &= s_1 + s_2 = 2A \cos \left(\Omega t\right) sen \left(\omega t\right) \text{ dove} \\ \Omega &= \frac{\omega_1 - \omega_2}{2} \qquad \omega = \frac{\omega_1 + \omega_2}{2} \\ \text{per l'intensità si ha: } v_b &= v_1 - v_2 \end{aligned}$	pg.472, 473
Onda piana armonica nello spazio:	per l'intensità si ha: $v_b = v_1 - v_2$ $\xi = \xi_0 sen(\vec{k} \cdot \vec{r} - \omega t) \vec{k} \cdot \vec{r} = kx$	pg.474
Equazione delle onde piane, sferiche e cilindriche nello spazio:	$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \xi}{\partial t^2}$	pg.475
Onda sferica armonica:	$\xi(x,t) = \frac{\xi_0}{r} sen(kr - \omega t) \qquad I = \frac{I_0}{r^2}$	pg.476
Onda cilindrica armonica:	$\xi(x,t) = \frac{\xi_0}{r} sen(kr - \omega t) \qquad I = \frac{I_0}{r^2}$ $\xi(x,t) = \frac{\xi_0}{\sqrt{r}} sen(kr - \omega t) \qquad I = \frac{I_0}{r}$	pg.478
Assorbimento:	$dI = -\alpha I(x)dx$ $I(x) = I_0 e^{-\alpha x} \xi_0^{-1} = \xi_0 e^{-\alpha x/2}$	pg.479
Pacchetti d'onde:	$\Delta k = \frac{2\pi}{\Delta x}$ $\Delta \omega = \frac{2\pi}{\Delta t}$ $\Delta v = \frac{1}{\Delta t}$	pg.480
Effetto Doppler:	$v_R = \frac{v - v_R}{v - v_s} v_0$	pg.488
Onda d'urto (con θ ' angolo formato tra il fronte d'onda d'inviluppo e la direzione di moto):	$sen\theta' = \frac{v}{v_S}$	pg.489

ONDE ELETTROMAGNETICHE:

Velocità:	$v = \frac{1}{\sqrt{\mu \varepsilon}} c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	pg.492
Relazione tra <i>B</i> ed <i>E</i> in un'onda elettromagnetica:	$\vec{E} = E_y(x - vt)\vec{u}_y + E_z(x - vt)\vec{u}_z$ $v\vec{B} = -E_z(x - vt)\vec{u}_y + E_y(x - vt)\vec{u}_z$	pg.493

	$E = vB$ $\vec{E} \cdot \vec{B} = 0$ $\vec{E} \times \vec{B} = EB\vec{u}_x$	
Indice di rifrazione assoluto:	$n = \frac{c}{v} = \sqrt{k_e}$	pg.494
Impedenza caratteristica del mezzo:	$Z = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}} = \frac{Z_0}{n}$ $Z_0 = 377\Omega$ (se $B = \mu H$)	pg.494
Densità istant. di energia elettromagn.	$u = \varepsilon E^2$	pg.498
Vettore di Poynting:	$\vec{S} = u\vec{v} = \varepsilon E^2 \vec{v} = \frac{1}{\mu} \vec{E} \times \vec{B}$	pg.498
Potenza ist. mediante vettore di Poynting:	$P = \int_{\Sigma} \vec{S} \cdot \vec{u}_n d\Sigma$	pg.499
Intensità di un'onda armonica piana pol. rettilineamente:	$I = S_m = \frac{1}{2} \varepsilon v E_0^2 = \frac{n}{Z_0} \frac{E_0^2}{2} = \frac{E_{eff}^2}{Z}$ $I_y = I \cos^2 \theta \qquad I_z = I \sin^2 \theta$	pg.599
Intensità di un'onda armonica piana comunque polarizzata:	$I = I_{y} + I_{z} = \frac{1}{2} \varepsilon v E_{0y}^{2} + \frac{1}{2} \varepsilon v E_{0z}^{2}$	pg.599
Intensità di un'onda e.m. piana qualsiasi:	$I = I_y + I_z = \varepsilon v \left(E_y^2\right)_m + \varepsilon v \left(E_z^2\right)_m = \varepsilon v \left(E^2\right)_m$ $I_y = I_z = \frac{I}{2} \qquad \left(E_y^2\right)_m = \left(E_y^2\right)_m = \frac{\left(E^2\right)_m}{2}$	pg.500, 501
Pressione di radiazione:	sup. tot. ass: $P_{rad} = \frac{I}{c} \cos^2 \theta$ sup. tot rifl: $P_{rad} = \frac{2I}{c} \cos^2 \theta$	pg.503
Intensità di un'onda e.m. sferica e cilindrica:	$I = \frac{1}{2} \varepsilon v \frac{E_0^2}{r^2} \qquad I = \frac{1}{2} \varepsilon v \frac{E_0^2}{r}$	pg.505, 506
Intensità e potenza di un'onda e.m. emessa da un dipolo elettrico oscillante nel vuoto:	$I(r,\theta) = \frac{p_0^2 \omega^4}{32\pi^2 \varepsilon_0 c^3} \frac{sen^2 \theta}{r^2} = \frac{I_0}{r^2} sen^2 \theta$ $con I_0 = \frac{p_0^2 \omega^4}{32\pi^2 \varepsilon_0 c^3} P = \frac{8\pi}{3} I_0 = \frac{1}{2} R_{ant} i_0^2$ $con R_{ant} = \frac{a^2 \omega^2}{6\pi \varepsilon_0 c^3} = 789.5 \frac{a^2}{\lambda^2}$	pg.509, 510
Formula di Larmor, ovvero potenza irradiata da particella carica accelerata:	$P_{Larm} = \frac{q^2 a^2}{6\pi\varepsilon_0 c^3}$	pg.511
Energia e quantità di moto di un fotone, n° di fotoni/m² e su secondo:	$U = h v p = \frac{h}{\lambda} N = \frac{I}{h v}$	pg.532

RIFLESSIONE E RIFRAZIONE DI ONDE:

Teorema di Kirchhoff per superficie d'onda sferica di raggio <i>q</i> :	$\xi_{P} = \oint \frac{\xi_{0}}{\lambda q} \frac{1}{s} f(\theta) \cos \left[k(q+s) - \omega t - \frac{\pi}{2} \right] d\Sigma$ $\cot f(\theta) = \frac{1 + \cos \theta}{2} \text{dove } s \text{ è la dist. tra } d\Sigma e P$	pg.540
Leggi della riflessione e rifrazione:	$\frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2} = \frac{k_2}{k_1} = \frac{n_2}{n_1} \qquad \theta_i = \theta_r$	pg.542, 545

	sonA sonA n	
	$\frac{sen\theta_i}{sen\theta_t} = \frac{sen\theta_1}{sen\theta_2} = \frac{n_2}{n_1}$ (Legge di Snell)	
Angolo limite (riflessione totale):	$sen \theta_0 = \frac{n_2}{n_1}$	pg.546
Distanza tra i raggi di un fascio monocr. in ingresso e uscita da una lastra trasp.:	$\theta_3 = \theta_1$ $d = h \cdot sen \theta_1 \left(1 - \frac{\cos \theta_1}{\sqrt{n^2 - sen^2 \theta_1}} \right)$ dove $h \in lo$ spess.	pg.547
Campo elettrico, intensità e potenza riflessi e rifratti per onde polarizzate rettilineamente nel piano di incidenza π :	$r_{\pi} = rac{E^{r}_{0,\pi}}{E^{i}_{0,\pi}} = rac{tg(heta_{i} - heta_{t})}{tg(heta_{i} + heta_{t})}$	
	$t_{\pi} = \frac{E^{t}_{0,\pi}}{E^{t}_{0,\pi}} = \frac{2sen\theta_{t}\cos\theta_{i}}{sen(\theta_{i} + \theta_{t})\cos(\theta_{i} - \theta_{t})}$	
	$\frac{I_{\pi}^{r}}{I_{\pi}^{i}} = \left(\frac{E_{0,\pi}^{r}}{E_{0,\pi}^{i}}\right)^{2} = r_{\pi}^{2} \frac{I_{\pi}^{i}}{I_{\pi}^{i}} = \frac{n_{2}}{n_{1}} \left(\frac{E_{0,\pi}^{r}}{E_{0,\pi}^{i}}\right)^{2} = \frac{n_{2}}{n_{1}} t_{\pi}^{2}$	pg.549, 550
	$R_{\pi} = \frac{W^{r}_{\pi}}{W^{i}_{\pi}} = r_{\pi}^{2}$ $R_{\pi} + T_{\pi} = 1$	
	$T_{\pi} = \frac{W^{t_{\pi}}}{W^{i_{\pi}}} = \frac{n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}} t_{\pi}^{2} = \frac{sen2\theta_{i} sen2\theta_{t}}{sen^{2}(\theta_{i} + \theta_{t}) \cos^{2}(\theta_{i} - \theta_{t})}$	
	$r_{\sigma} = \frac{E^{r}_{0,\sigma}}{E^{i}_{0,\sigma}} = -\frac{sen(\theta_{i} - \theta_{t})}{sen(\theta_{i} + \theta_{t})}$	
Campo elettrico, intensità e potenza	$t_{\sigma} = \frac{E_{0,\sigma}^{t}}{E_{0,\sigma}^{t}} = \frac{2sen\theta_{t}\cos\theta_{i}}{sen(\theta_{i} + \theta_{t})}$	
riflessi e rifratti per onde polarizzate rettilineamente nel piano σ ortogonale al piano di incidenza:	$\frac{I^{r}_{\sigma}}{I^{i}_{\sigma}} = \left(\frac{E^{r}_{0,\sigma}}{E^{i}_{0,\sigma}}\right)^{2} = r_{\sigma}^{2} \frac{I^{t}_{\sigma}}{I^{i}_{\sigma}} = \frac{n_{2}}{n_{1}} \left(\frac{E^{t}_{0,\sigma}}{E^{i}_{0,\sigma}}\right)^{2} = \frac{n_{2}}{n_{1}} t_{\sigma}^{2}$	pg.551
	$R_{\sigma} = \frac{W^{r}_{\sigma}}{W^{i}_{\sigma}} = r_{\sigma}^{2} \qquad R_{\sigma} + T_{\sigma} = 1$	
	$T_{\sigma} = \frac{W_{\sigma}^{t}}{W_{\sigma}^{i}} = \frac{n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}} t_{\sigma}^{2} = \frac{sen2\theta_{i} sen2\theta_{t}}{sen^{2}(\theta_{i} + \theta_{t})}$	
Relazioni di Stokes, ovvero coeff. di Fresnel in σ e π per invers. del cammino:	$r_2 = -r_1$ $t_1 t_2 = 1 - r_1^2$ $R_1 = R_2$ $T_1 = T_2$	pg.551
Campo elettrico, intensità e potenza	$r = \frac{E_r}{E_i} = \frac{n_1 - n_2}{n_1 + n_2}$ $t = \frac{E_t}{E_i} = \frac{2n_1}{n_1 + n_2}$	
riflessi e rifratti per incidenza normale alla superficie di separazione:	$R = \frac{W_r}{W_i} = \frac{I_r}{I_i} = r^2$ $T = \frac{W_t}{W_i} = \frac{I_t}{I_i} = \frac{n_2}{n_1} t^2$	pg.553
Campo elettrico, intensità e potenza riflessi e rifratti in generale (mediante scomposizione):	$\begin{aligned} R+T&=1\\ \vec{E}_i&=\vec{E}_^i+\vec{E}_^i & I_i=I_\pi+I_\sigma & R+T=1 \end{aligned}$	
	$R = \frac{W_r}{W_i} = \frac{I_r}{I_i} = R_\pi \frac{I_\pi^{\ i}}{I_i} + R_\sigma \frac{I_\sigma^{\ i}}{I_i}$	pg.554, 555
	$T = \frac{W_t}{W_i} = \frac{I_t \cos \theta_t}{I_i \cos \theta_i} = T_\pi \frac{I_\pi^i}{I_i} + T_\sigma \frac{I_\sigma^i}{I_i}$	
Grado di polarizzazione:	$P = \frac{W_{\sigma} - W_{\pi}}{W_{\sigma} + W_{\pi}}$	pg.556

Campo elettrico, intensità e potenza riflessi e rifratti per onda non polarizzata:	$R = \frac{W_r}{W_i} = \frac{I_r}{I_i} = \frac{1}{2} (R_{\pi} + R_{\sigma})$ $T = \frac{W_t}{W_i} = \frac{I_t \cos \theta_t}{I_i \cos \theta_i} = \frac{1}{2} (T_{\pi} + T_{\sigma})$ $P_R = \frac{W_{\sigma}^{\ r} - W_{\pi}^{\ r}}{W_{\sigma}^{\ r} + W_{\pi}^{\ r}} = \frac{r^2_{\sigma} - r^2_{\pi}}{r^2_{\sigma} + r^2_{\pi}}$ $P_T = \frac{W_{\pi}^{\ t} - W_{\sigma}^{\ t}}{W_{\pi}^{\ t} + W_{\sigma}^{\ t}} = \frac{t^2_{\pi} - t^2_{\sigma}}{t^2_{\pi} + t^2_{\sigma}}$	pg.556
Angolo di Brewster, ovvero angolo di annull. dell'onda riflessa per onda pol. rettilineamente nel piano di incidenza π :	$tg\theta_{B} = \frac{n_{2}}{n_{1}} \qquad r_{\pi} = 0 \qquad t_{\pi} = \frac{1}{tg\theta_{B}}$ $r_{\sigma} = \cos 2\theta_{B} \qquad t_{\sigma} = 2\cos^{2}\theta_{B}$ $R_{\pi} = 0 \qquad R_{\sigma} = r_{\sigma}^{2} = \left(\frac{n_{1}^{2} - n_{2}^{2}}{n_{1}^{2} + n_{2}^{2}}\right)^{2}$ $T_{\pi} = 1 \qquad T_{\sigma} = \left(\frac{2n_{1}n_{2}}{n_{1}^{2} + n_{2}^{2}}\right)^{2}$	pg.557
Legge di Snell per lamina di cristallo con asse ottico parallelo alla sup. e piano di incidenza ortogonale alla sez. principale:	$\frac{sen\theta_i}{sen\theta_o} = n_o \qquad \frac{sen\theta_i}{sen\theta_s} = n_s$	pg.566
Legge di Malus, ovvero intensità di un'onda pol. rettilin. dopo un polarizz.:	$I_P = I_0 \cos^2 \theta$	pg.568
Intensità di un'onda dopo un polarizzatore inclinato di α gradi rispetto all'asse y :	ellittica: $I = I_y + I_z$ $I_P = I_y \cos^2 \alpha + I_z sen^2 \alpha$ circolare: $I = I_y = I_z$ $I_P = \frac{I}{2}$ indip. da α rett.: $I_y = I \cos^2 \theta$ $I_z = I sen^2 \theta$ $I_P = I \cos^2 (\theta - \alpha)$ non pol. (luce ordinaria): $I_y = I_z = \frac{I}{2}$ $I_P = \frac{I}{2}$	pg.569
Sfasamento introdotto dalle lamine di ritardo in generale, lamina quarto d'onda e lamina mezz'onda:	in generale: $\Delta\Phi = \Phi_S - \Phi_O = k(n_S - n_o)d$ quarto d'onda: $\Delta\Phi = (2m+1)\frac{\pi}{2}$ $d = \frac{\lambda(2m+1)}{4(n_s - n_o)}$ mezz'onda: $\Delta\Phi = (2m+1)\pi$ $d = \frac{\lambda(2m+1)}{2(n_s - n_o)}$ con m=0,1,2,	pg.573

INTERFERENZA:

Somma di due onde armoniche isofrequenziali (metodo dei fasori):	$\xi = \xi_1 + \xi_2 = A\cos(\omega t + \alpha)$	con	
	$A = \sqrt{{A_1}^2 + {A_2}^2 + {A_1}{A_2}\cos\delta}$	$\delta = \alpha_1 - \alpha_2$	
	$tg\alpha = \frac{A_1 sen\alpha_1 + A_2 sen\alpha_2}{A_1 \cos\alpha_1 + A_2 \cos\alpha_2}$		pg.579
	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$		
	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$		

9		
Interferenza tra 2 sorgenti isofreq. coerenti e sincrone (diff. di fase nulla):	int. costr: $\Delta r = m\lambda$ int. distr: $\Delta r = (2m^1 + 1)\frac{\lambda}{2}$ con m e m ¹ n° interi quals. Per r>>d si ha: $\Delta r = dsen\theta \qquad I = 4I_1\cos^2\frac{\pi dsen\theta}{\lambda}$ int. costr: $sen\theta = m\frac{\lambda}{d} \qquad I_{max} = 4I_1$ int. distr: $sen\theta = (2m^1 + 1)\frac{\lambda}{2d} \qquad I_{min} = 0$ con m e m ¹ limitati dalla presenza del seno.	pg.582, 583
Esp. di Young, ovvero interferenza tra 2 sorgenti luminose distanti L>>d da uno schermo, in un mezzo con indice di rifraz. <i>n</i> :	$I = 4I_1 \cos^2 \frac{\pi dnx}{\lambda_0 L}$ int. costr: $x = m \frac{\lambda_0 L}{nd}$ x è la dist. del pt. di oss. dall'asse centrale int. distr: $x = (2m^1 + 1) \frac{\lambda_0 L}{2nd}$	pg.589
Differenza di fase con cammino ottico:	$\delta = k_2 r_2 - k_1 r_1 = k_0 (n_2 r_2 - n_1 r_1)$ nr= camm. ottico	pg.593
Posizione del pt. di convergenza dei raggi di una lente sottile convergente:	$f \cdot tg\theta = x$ dove f è la dist. focale, θ è l'angolo del raggio incid. rispetto al piano focale, x è la dist. del pt. di converg. dal fuoco	pg.593, 594
Interferenza tra N sorgenti isofreq. coerenti e sincrone (diff. di fase nulla):	$I(\theta) = I_1 \left(\frac{sen \frac{N\pi dsen \theta}{\lambda}}{sen \frac{\pi dsen \theta}{\lambda}} \right)^2 \text{dove } I_1 \text{ è l'int. di una sorgente}$ max principali: $sen \theta = m \frac{\lambda}{d}$ $I_{\text{max}} = N^2 I_1$ minimi: $sen \theta = m^1 \frac{\lambda}{Nd}$ $I_{\text{min}} = 0$ $\text{con m'} \neq 0, \text{N, 2N.}$. max secondari: $sen \theta = (2m'' + 1) \frac{\lambda}{2Nd}$ $\text{con m'} \neq 0, \text{N-1, N, 2N-1, 2N.}$. $I_m = \frac{I_1}{\left[sen \frac{(2m'' + 1)\pi}{2N}\right]^2}$ largh. ang. di un max principale: $\Delta(sen \theta) = \frac{2\lambda}{Nd}$	pg.597, 598, 599
Interferenza dei raggi riflessi da lamine sottili:	con n_1 e n_2 : $\delta = \frac{4\pi n_2 d}{\lambda_0} + \pi$. Interf. costruttiva se: $d = (2m+1)\frac{\lambda_0}{4n_2}$ Interf. distruttiva se: $d = 2m'\frac{\lambda_0}{2n_2}$ con $n_1 < n_3 < n_2$ (strato antiriflettente): $\delta = \frac{4\pi n_3 d}{\lambda_0}$ Interf. costruttiva se: $d = m\frac{\lambda_0}{2n_3}$ Interf. distruttiva se: $d = (2m'+1)\frac{\lambda_0}{4n_3}$ si ottiene un minimo di intensità quando: $n_3 = \sqrt{n_1 n_2}$	pg.602, 605

onda diretta + riflessa:	s(x,t) =	(2 <i>asenkx</i>)	$\cos \omega t$
--------------------------	----------	--------------------	-----------------

pos. nodi:
$$x = (2m+1)\frac{\lambda}{4}$$
 pos. ventri: $x = m!\frac{\lambda}{2}$

estremi fissi:
$$L = m\frac{\lambda}{2}$$
 $v = \frac{v}{2L}m = v_1 m$

estr. libero:
$$L = (2m+1)\frac{\lambda}{4}$$

$$v = \frac{v}{4L}(2m+1) = v_1(2m+1)$$

DIFFRAZIONE:

int. costr:
$$\Delta r = m\lambda$$
 int. distr: $\Delta r = (2m^1 + 1)\frac{\lambda}{2}$

con m e m¹ n° interi quals. Tra 2 fend.: $\Delta r = \Delta y sen \theta$

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta y sen \theta$$
 In totale: $\alpha = \frac{2\pi}{\lambda} a sen \theta$

Diffrazione ad una fenditura rettilinea:

Onde stazionarie in una corda tesa:

$$I = I_{\text{max}} f^{2}(\theta) \begin{bmatrix} \frac{sen \frac{\pi a sen \theta}{\lambda}}{\frac{\pi a sen \theta}{\lambda}} \end{bmatrix}^{2} \text{ dove } I_{\text{max}} \text{ è l'int. nel } \text{ pg.632,}$$

$$\text{centro} \text{ 633, 634}$$

$$\text{minimi: } sen \theta = m \frac{\lambda}{a} \qquad I_{\min} = 0$$

massimi secondari:
$$sen \theta = (2m^1 + 1)\frac{\lambda}{2a}$$

largh. ang. del max principale:
$$\Delta(sen\theta) = \frac{2\lambda}{a}$$

Diffrazione ad un foro circolare:

primo minimo:
$$sen \theta = 1.22 \frac{\lambda}{D}$$

pg.613,

Potere risolutivo di una lente:

angolo min. tra 2 pt.:
$$\alpha_R = 1.22 \frac{\lambda}{D}$$
 pot. ris: $\rho = \frac{1}{\alpha_R}$ pg.638

Intensità ad un reticolo di diffrazione:

$$I = I_0 \left[\frac{sen \frac{\pi asen \theta}{\lambda}}{\frac{\pi asen \theta}{\lambda}} \right]^2 \left[\frac{sen \frac{\pi N dsen \theta}{\lambda}}{\frac{sen \frac{\pi dsen \theta}{\lambda}}{\lambda}} \right]^2 \begin{array}{c} \text{dove I}_0 \ \text{è} \\ \text{l'intensità} \\ \text{di una} \\ \text{sorgente a} \\ \theta = 0 \end{array}$$

cond. max di interf. = min di diffr. $\frac{m\lambda}{d} = \frac{m'\lambda}{a}$ $D = \frac{d\theta}{d\lambda} = \frac{m}{d\cos\theta_m} \qquad R = \frac{\lambda}{\Delta\lambda} = mN$

Potere risolutivo e potere dispersivo di un reticolo:

$$D = \frac{d\theta}{d\lambda} = \frac{m}{d\cos\theta} \qquad R = \frac{m}{d\cos\theta}$$

$$R = \frac{\lambda}{\Delta \lambda} = mN$$

pg.641

PROPRIETA' CORPUSCOLARI DELLA RADIAZIONE ELETTROMAGNETICA:

Radiazione del corpo nero:	$rac{arepsilon_{\lambda}}{a_{\lambda}} = F(\lambda, T) = arepsilon_{\lambda, cn}$ $arepsilon_{cn} = \int_{0}^{\infty} arepsilon_{\lambda, cn} d\lambda$ Legge di Stefan-Boltzmann: $arepsilon_{cn} = \sigma T^4$	pg.693, 694
	Prima legge di Wien: $\lambda_{\max} T = k$	0,74
	Seconda legge di Wien: $\varepsilon_{\lambda,cn,\max} = aT^5$	
Effetto fotoelettrico:	$\begin{split} E_{k,\text{max}} &= eV_0 \\ E_{k,\text{max}} &= h v - W_e \rightarrow V_0 = \frac{h}{e} v - \frac{W_e}{e} \qquad V_0 = \frac{W_e}{h} \end{split}$	pg.699, 700
Energia nella relatività ristretta:	$U = \sqrt{p^2c^2 + m^2c^4}$	pg.702
Effetto Compton:	$\lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta)$	pg.704