Evaluasi dan Generalisasi

Ali Akbar Septiandri

November 17, 2017

untuk Astra Graphia IT

Daftar Isi

- 1. Generalisasi
- 2. Optimasi Model dari Dataset
- 3. Metrik Evaluasi

Bahan Bacaan

- VanderPlas, J. (2016). Python Data Science Handbook.
 O'Reilly Media. https: //jakevdp.github.io/PythonDataScienceHandbook/05.
 03-hyperparameters-and-model-validation.html
- 2. Tan, P. N. (2006). Introduction to data mining. Pearson Education India. (Chapter 4. Classification)

Generalisasi

Generalisasi Error

- Tujuan kita adalah menghasilkan model yang dapat bekerja baik pada semua data
- Tidak mungkin mendapatkan semua data
- Solusi: Gunakan data latih dan data uji

Generalisasi Error

- Training data: $\{x_i, y_i\}$
- Future data: $\{x_i,?\}$
- Target: Model bekerja baik pada future data

Mengapa?

Overfitting

- Model terlalu kompleks, terlalu fleksibel
- Mengenali dan memasukkan noise dari dalam data latih ke dalam model
- Mengenali pola yang tidak akan muncul lagi

Overfitting: Definisi

Model F dikatakan overfitting jika:

- 1. kita dapat menemukan model lain F'
- 2. dengan error lebih besar pada data latih: $E_{train}(F') > E_{train}(F)$
- 3. tetapi error lebih kecil pada data uji: $E_{gen}(F') < E_{gen}(F)$

Underfitting

- Model terlalu kaku, terlalu simpel
- Tidak berhasil menemukan pola yang penting
- ullet Masih ada model yang bisa menghasilkan E_{train} dan E_{gen} lebih rendah

Gambar 1: Bagaimana kira-kira hasil regresi pada data seperti ini?

Gambar 2: Regresi polinomial dengan p=1 (linear)

Gambar 3: Regresi polinomial dengan p=15

Gambar 4: Regresi polinomial dengan p = 7

Fleksibilitas Prediktor

 Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia

Fleksibilitas Prediktor

- Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia
- Diperlukan kenop untuk mengubah fleksibilitasnya, e.g.
 - regresi: orde polinomial
 - NB: jumlah atribut, ϵ
 - decision tree: jumlah simpul dalam pohon

Fleksibilitas Prediktor

- Setiap dataset perlu prediktor dengan fleksibilitas yang berbeda, tergantung kesulitannya dan data yang tersedia
- Diperlukan kenop untuk mengubah fleksibilitasnya, e.g.
 - regresi: orde polinomial
 - NB: jumlah atribut, ϵ
 - decision tree: jumlah simpul dalam pohon
- Idenya, memutar kenop tersebut untuk menghasilkan error yang rendah secara umum

Error Latihan vs General

• Error latihan:

$$E_{train} = \frac{1}{n} \sum_{i=1}^{n} error(f_D(\mathbf{x}_i), y_i)$$

• Error general:

$$E_{gen} = \int error(f_D(\mathbf{x}), y)p(y, \mathbf{x})d\mathbf{x}$$

• Kita hanya tahu jangkauan dari $\{x, y\}$

Estimasi nilainya dengan

$$E_{test} = \frac{1}{n} \sum_{i=1}^{n} error(f_D(\mathbf{x}_i), y_i)$$

Validasi Model

Gambar 5: Perubahan nilai metric sesuai dengan kompleksitas model

Optimasi Model dari Dataset

Training, Validation, Testing sets

- Data latih: konstruksi classifier
- Data validasi: memilih algoritma dan parameter tuning
- Data uji: mengestimasi error rate secara umum
- Catatan: Bagi datanya secara acak!

Cross-validation

- Datanya kadang tidak cukup banyak untuk dibagi!
- Ide: latih dan uji secara bergantian
- Umumnya: 10-fold cross-validation

Cross-validation

Gambar 6: 5-fold cross-validation

Leave-one-out

n-fold cross-validation

Pros

Menghasilkan *classifier* terbaik

Cons

- Ongkos komputasi tinggi
- ullet Kelas tidak seimbang o stratification

Metrik Evaluasi

Unbalanced Dataset

• e.g. Prediksi apakah akan terjadi gempa atau tidak!

Unbalanced Dataset

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.

Unbalanced Dataset

- e.g. Prediksi apakah akan terjadi gempa atau tidak!
- Jika selalu diklasifikan sebagai "tidak", akurasi akan maksimal, error akan minimal.
- Solusi: Gunakan metrik lain

Misses & False Alarms

- False Alarm rate = False Positive rate = FP/(FP + TN)
- Miss rate = False Negative rate = FN/(TP + FN)
- Recall = True Positive rate = Sensitivity = TP/(TP + FN)
- Precision = TP/(TP + FP)
- Specificity = 1 FPR = TN/(TN + FP)
- Harus dilaporkan berpasangan!

Utility & Cost

- Terkadang perlu satu angka untuk pembanding antarmodel
- **Detection cost**: $cost = c_{FP} \times FP + c_{FN} \times FN$
- **F-measure**: $F_1 = 2 \times \frac{precision \times recall}{precision + recall}$

ROC Curves

Receiver Operating Characteristic: TPR vs FPR dengan perubahan threshold

Menghitung Area Under the Curve (AUC) sebagai pengganti akurasi

Terima kasih