

Week 5: Evaluating niche-based distribution models

Peter Galante

Outline:

- 1. Maxent model tuning
- 2. Model validation
- 3. Model evaluation
- 4. Evaluation statistics
- 5. Model complexity and advanced considerations (thanks to Richard Pearson, Rob Anderson, and Mary Blair for content)

1

Flow diagram detailing the main steps required for building and validating a correlative species distribution model

Model Complexity vs. Generality

Environmental variable 2

Model Selection

5

Model Tuning

Two settings in Maxent (in ENMeval):

Regularization multiplier:

Increasing regularization increases penalties on model complexity

 $0 \rightarrow ?$

Feature classes

Allows flexibility of model response

Linear Charlesia Li

Outline:

- 1. Maxent model tuning
- 2. Model validation
- 3. Model evaluation
- 4. Evaluation statistics
- 5. Model complexity and advanced considerations

7

Model calibration and evaluation strategies: independent validation

Model calibration and evaluation strategies: resubstitution

(after Araújo et al. 2005 Gl. Ch. Biol.)

9

Random subsets

random split-sample approach: easy test, cannot detect overfitting to bias

White: calibrate the model

Black: evaluate the model

Model calibration and evaluation strategies: data splitting

(after Araújo et al. 2005 Gl. Ch. Biol.)

11

Model calibration and evaluation strategies: cross validation/ k-fold partitioning

- 1. Split data randomly into k roughly equal-sized parts. Take turns using each part as a test set and the other k-1 parts for model training.
- Compute test statistic each time. Cross-validation estimate of predictive performance is the average of the k tests.

Radosavljevic & Anderson 2014

Model calibration and evaluation strategies: cross validation/ k-fold partitioning

- 1. Split data randomly into k roughly equal-sized parts. Take turns using each part as a test set and the other k-1 parts for model training.
- Compute test statistic each time. Cross-validation estimate of predictive performance is the average of the k tests.

19

Outline:

- 1. Maxent model tuning
- 2. Model validation
- 3. Model evaluation
- 4. Evaluation statistics
- 5. Model complexity and advanced considerations

The four types of results that are possible when testing a distribution model

21

'Continuous' model output

Maxent model for the marbled salamander

Selecting a threshold with presence-only data

23

Selecting a threshold with presence/absence data

Thresholded model output

Maxent model for the marbled salamander with threshold applied

25

Outline:

- 1. Maxent model tuning
- 2. Model validation
- 3. Model evaluation
- 4. Evaluation statistics
- 5. Model complexity and advanced considerations

The four types of results that are possible when testing a distribution model

Geographical space

27

Presence-absence confusion matrix

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Presence-only test statistics

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Proportion of observed presences correctly predicted (or 'sensitivity', or 'true positive fraction'):

$$a/(a+c)$$

29

Presence-only test statistics: testing for statistical significance

Success rate: 4 from 7 Proportion predicted present: 0.231 Binomial p = 0.0546

Success rate: 6 from 7 Proportion predicted present: 0.339 Binomial p = 0.008

Presence-absence test statistics

	Recorded present	Recorded (or assumed) absent
Predicted present	a (true positive)	b (false positive)
Predicted absent	c (false negative)	d (true negative)

Proportion of observed presences correctly predicted (or 'sensitivity'): $a/(a+c) \label{eq:correctly}$

Proportion of observed absences correctly predicted (or 'specificity'): $d/(b+d) \label{eq:correctly}$

31

The Receiver Operating Characteristic (ROC) Curve

(check out: http://www.anaesthetist.com/mnm/stats/roc/Findex.htm)

So, what is a 'good' result?

Some subjective guidelines (after Swets 1988 Science):

- 0.5 0.7: poor discrimination
- 0.7 0.9: reasonable discrimination
- 0.9 1.0: very good discrimination

However, note that the Maxent software generates AUC statistics using 'background' rather than absence data, so the maximum achievable AUC score is <1 (see Phillips et al. 2006).

33

Outline:

- 1. Maxent model tuning
- 2. Model validation
- 3. Model evaluation
- 4. Evaluation statistics
- 5. Model complexity and advanced considerations

Advanced considerations

- Model complexity:
 - Occurrence data suffer from (among other things):
 - · Biased sampling across geography
 - Which may also be biased in environmental space
- Overly complex models may overfit to this bias (or to noise)
 - What is overly complex?
 - Number of variables, feature classes considered, level of regularization

35

Overfitting

Advanced considerations

• Background selection

37

Advanced considerations

- ENMEval R package
 - Try different regularization values, design spatially independent training and test datasets, feature classes, number of variables (Muscarella et al. 2014)
 - SDMToolbox for ArcGIS also does some of this (Brown et al. 2014)
- spThin R package
 - thin occurrence records re: spatial autocorrelation bias (Aiello-Lammens et al. 2015)
- Bias layer for Maxent
 - for known sampling bias masking (Phillips et al. 2009)