Поиск ближайших соседей: некоторые проблемы и способы их решения

September 2020

1 Требовательность к масштабу признаков

Пусть объекты описываются двумя признаками. Евклидово расстояние между двумя объектами x и y считается как:

$$\rho(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Если первый признак увеличить в k раз, то и вклад в подсчет раастояния он будет давать больше в k раз:

$$\rho(x,y) = \sqrt{k(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Пример. Рассмотрим простой пример чувствительности метода ближайшего соседа к масштабу признаков. Допустим, решается задача определения пола человека по двум признакам: росту (в сантиметрах, принимает значения примерно от 150 до 200) и уровню экспрессии гена SRY (безразмерная величина от нуля до единицы; у мужчин ближе к единице, у женщин ближе к нулю). Обучающая выборка состоит из двух объектов: $x_1=(180,0.2)$, девочка и $x_2=(173,0.9)$, мальчик. Требуется классифицировать новый объект u=(178,0.85). Воспользуемся классификатором одного ближайшего соседа. Расстояния от u до объектов обучения равны $\rho(u,x_1)\approx 2.1$ и $\rho(u,x_2)\approx 5$. Мы признаем новый объект девочкой, хотя это не так — высокий уровень экспрессии гена SRY позволяет с уверенностью сказать, что это мальчик. Из-за сильных различий в масштабе признаков уровень экспрессии практически не учитывается при классификации, что совершенно неправильно.

Чтобы избегать проблем с разным масштабом признаком, их можно нормировать.

• Масштабирование на отрезок [0, 1]:

$$\widetilde{x}^j = \frac{x^j - \min(x^j)}{\max(x^j) - \min(x^j)},$$

• Нормировка на дисперсию:

$$\widetilde{x}^j = \frac{x^j - \overline{x}^j}{\sigma(x^j)}.$$

Операции взятия среднего, дисперсии, min, max берутся по значениям признака j на объектах выборки.

2 Шумовые признаки

Вопрос В каких еще случаях knn может находить «неправильных» соседей?

В ситуации, когда случайный шум, который есть в признаках, настолько сильно влияет на расстояние между объектами, что определение ближайшего соседа становится невозможным, knn превращается в метод случайного соседа.

Шумовые признаки могут оказать сильное влияние на метрику. Обнаружить шумовые признаки можно, удаляя поочередно все признаки и смотря на ошибку на тестовой выборке или ошибку кросс-валидации.

3 «Curse of dimensionality»

Задача Пусть есть n-мерный куб единичного объема, в котором равномерно распределено N точек (N очень большое). Внутри этого куба строится еще один, который должен покрыть долю p этих точек. Какой должна быть длина ребра l этого куба?

Введем плотность точек в единице объема:

$$\rho = \frac{N}{V} = N.$$

Тогда число точек внутри меньшего куба:

$$N_2 = p \cdot N = \rho \cdot V_2 = N \cdot l^n$$

Т.е. длина ребра куба:

$$e = p^{\frac{1}{n}}$$

Допустим, мы хотим покрыть 10% точек – посмотрим, как меняется l с увеличением размерности:

n	1
10	0,79
50	0,95
100	0,98

Т.е. при больших размерностях мы должны взять почти весь куб, чтобы покрыть 10% точек.

3.1 «Blessing of dimensionality»

Однако с повышением размерности возникает еще один феномен, т.н. «благословение размерности». Если кратко, то с увеличением размерности, улучшается линейная разделимость классов. Связано это с тем, что в многомерном пространстве случайный вектор будет с высокой вероятностью ортогонален векторам, полученным из одного распределения (т.е. из одного класса объектов). Другими словами, становится сложнее «попасть» вектором признаков не в свой класс. Однако данный факт доказан для конкретных семейств распределений и может работать не всегда.

4 Эффективный поиск соседей

Искать ближайших соседей – вычислительно сложная задача (как при большой размерности признаков, так и при большом количестве объектов). Один из способов решения – искать соседей приближенно.

Подход LSH (local sensitive hashing) заключается в подборе такой хэш фукнции, которая близким объектами присваивает одинаковые значения, а удаленным – разные (с некоторой степенью вероятности). Выбор хэш функции обусловлен используемой функцией расстояния.

Пример. Рассмотрим меру Жаккара для множеств:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$

Данная мера равна 0, когда множества состоят из разных элементов, 1, когда множества совпадают и принимает значение [0,1] в промежуточных случаях.

Пусть у нас есть некоторая хэш функция h, определенная на элементах множества. Определим следующую функцию:

$$h_{min}(A) = \{\min(h(x)) \mid x \in A\}.$$

Какова вероятность, что $h_{min}(A) = h_{min}(B)$? Она стремится к нулю, когда множества различны и увеличивается с увеличением числа с элементов в пересечении множеств, что очень похоже на меру Жаккара.

Однако, в случае двух конкретных множеств:

$$\begin{cases} 0, \ h_{min}(A) \neq h_{min}(B) \\ 1, \ h_{min}(A) = h_{min}(B) \end{cases},$$

промежуточных значений нет. Для того, чтобы получить более точную картину, введем k разных хэш функций, где k выбирается исходя из наибольшей величины ошибки ε :

$$k = \frac{1}{\varepsilon^2}$$
.

Описанный подход называется MinHash и используется, например, для эффективного поиска дубликатов среди большой коллекции текстов (с некоторой погрешностью).

Задача. Сконструируйте хэш функцию для поиска соседей по косинусному расстоянию (проще исходить из геометрического смысла).

Для косинусного расстояния используется следующее семейство функций:

$$F = \{ f_{\omega}(x) = sign(\langle \omega, x \rangle) \}$$

С геометрической точки зрения, отдельный вектор ω – нормальный вектор плоскости, проходящей через начало координат. Тогда f_{ω} определяет, в какой полупоскости лежит рассматриваемый вектор.

Плюсы использования LSH:

- Скорость поиска
- Выигрыш в памяти (можно хранить только сигнатуры значения хэш-функций, а не сами объекты)

4.1 Композиции хэш-функций

Определение Семейство функций F называется (d_1, d_2, p_1, p_2) -чувствительным, если для всех $x, y \in X$ выполнено:

- Если $\rho(x,y) \le d_1$, то $\mathbb{P}[f(x) = f(y)] \ge p_1$,
- Если $\rho(x,y) \ge d_2$, то $\mathbb{P}[f(x) = f(y)] \le p_2$.

Здесь под вероятностью \mathbb{P} понимается равномерное распределение на всех функциях семейства F.

Чтобы увеличить разницу между вероятностями p_1 и p_2 , можно объединять несколько простых хэш-функций из семейства в одну сложную. Выберем для этого m функций f_1, \ldots, f_m из F и построим новую функцию:

$$g_1(x) = (f_1(x), \dots, f_m(x)).$$

Повторим процедуру L раз и получим L таких функций $g_1(x), \ldots, g_L(x)$.

Данный алгоритм имеет два параметра: число базовых функций в одной композиции m, и число таких композиций L. Увеличение параметра m приводит к уменьшению вероятности того, что два непохожих объекта будут признаны схожими. Действительно, для того, чтобы значения композиции совпали на двух объектах, необходимо, чтобы совпали значения m базовых хэш-функций. Если расстояние между этими объектами велико, т.е. $\rho(x,y) > d_2$, то вероятность совпадения значений m базовых функций не будет превышать p_2^m .

Увеличение же параметра L приводит к увеличению вероятности того, что два схожих объекта будут действительно признаны схожими. Действительно, объект x будет рассмотрен нашим алгоритмом как кандидат в k ближайших соседей для u, если хотя бы один из хэшей $g_1(x),\ldots,g_L(x)$ совпадет с хэшем $g_1(u),\ldots,g_L(u)$ соответственно. Если объекты x и u действительно схожи, то есть $\rho(x,u) \leq d_1$, то вероятность того, что они будут признаны схожими, больше или равна $1-(1-p_1)^L$ (в случае m=1). В то же время чрезмерное увеличение параметра L приведет к тому, что для нового объекта будет рассматриваться слишком много кандидатов в k ближайших соседей, что приведет к снижению эффективности алгоритма.