Exercise 3.3.4

Suppose $A \subseteq \mathscr{P}(A)$. Prove that $\mathscr{P}(A) \subseteq \mathscr{P}(\mathscr{P}(A))$.

So we want to prove that $\forall x (x \in \mathscr{P}(A) \to x \in \mathscr{P}(\mathscr{P}(A))).$

First we assume x is arbitrary and make the antecedent a given and the consequent our goal to prove.

Givens	Goals
$A \subseteq \mathscr{P}(A)$	$x \in \mathscr{P}(\mathscr{P}(A))$
$x \in \mathscr{P}(A)$	

```
Assume x is an arbitrary element of \mathscr{P}(A)
Suppose x \in \mathscr{P}(A)
[ proof of x \in \mathscr{P}(\mathscr{P}(A)) ]
Therefore if x \in \mathscr{P}(A) \to x \in \mathscr{P}(\mathscr{P}(A))
```

Since x was arbitrary we can conclude $\forall x (x \in \mathcal{P}(A) \to x \in \mathcal{P}(\mathcal{P}(A)))$

We can rewrite our goal as $x \subseteq \mathcal{P}(A)$ or $\forall y (y \in x \to y \in \mathcal{P}(A))$. So we assume y is arbitrary and make the antecedent a given and the consequent our goal to prove.

```
Assume x is an arbitrary element of \mathscr{P}(A)

Suppose x \in \mathscr{P}(A)

Suppose y is an arbitrary element of x.

Suppose y \in x.

[ proof of y \in \mathscr{P}(A)]

Therefore if y \in x \to y \in \mathscr{P}(A).

Since y was arbitrary we can conclude that x \subseteq \mathscr{P}(A).

Therefore if x \in \mathscr{P}(A) \to x \in \mathscr{P}(\mathscr{P}(A))

Since x was arbitrary we can conclude \forall x (x \in \mathscr{P}(A) \to x \in \mathscr{P}(\mathscr{P}(A)))
```

Now looking at our givens $x \in \mathscr{P}(A)$ means that $x \subseteq A$ or $\forall z (z \in x \to z \in A)$. Using universal instantiation we will plug in y for z and using modus ponens we can conclude that $y \in A$.

Now looking at our other given $A \subseteq \mathscr{P}(A) \to \forall m (m \in A \to m \in \mathscr{P}(A))$. Using universal instantiation we will plug in y for m and using modus ponens we can conclude that $y \in \mathscr{P}(A)$, which was our goal to prove.

Theorem. Suppose $A \subseteq \mathcal{P}(A)$. Then $\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(A))$.

Proof. Suppose x is an arbitrary element of $\mathscr{P}(A)$ and y is an arbitrary element of x. It follows that $y \in A$. But since $A \subseteq \mathscr{P}(A)$ then it also follows that $y \in \mathscr{P}(A)$. So $y \in x \to y \in \mathscr{P}(A)$ and since y was arbitrary we can conclude that $x \subseteq \mathscr{P}(A)$. Therefore, if $x \in \mathscr{P}(A) \to x \in \mathscr{P}(\mathscr{P}(A))$. Since x was arbitrary we can also conclude that $\mathscr{P}(A) \subseteq \mathscr{P}(\mathscr{P}(A))$.

Alternate proof (not sure if this is correct)

Proof. Suppose x is an arbitrary element of $\mathscr{P}(A)$. Then $x \in A$. Since $A \subseteq \mathscr{P}(A)$ and $x \in A$ then $x \subseteq \mathscr{P}(A)$. Therefore, $x \in \mathscr{P}(\mathscr{P}(A))$.

Exercise 3.3.5

The hypothesis of the theorem proven in exercise 3.3.4 is $A \subseteq \mathcal{P}(A)$.

\mathbf{A}

Can you think of a set A for which this hypothesis is true?

The empty set \emptyset is a set for which the hypothesis is true.

 $A \subseteq \mathscr{P}(A)$ means $x \in A \to x \in \mathscr{P}(A)$. For \varnothing this would mean that $x \in \varnothing \to x \in \mathscr{P}(\varnothing)$, but by definition there are no elements in \varnothing . Therefore $x \in \varnothing$ will always be false and the conditional statement $x \in \varnothing \to x \in \mathscr{P}(\varnothing)$ is always true. Therefore if $\varnothing = A$ then $A \subseteq \mathscr{P}(A)$.

В

Can you think of another?

In exercise 3.3.4 we proved that if $A \subseteq \mathcal{P}(A)$ then $\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(A))$. Therefore, the set $\{\emptyset, \{\emptyset\}\}$, which is the $\mathcal{P}(A)$ if $A = \emptyset$, is another set for which the hypothesis is true. If we let $B = \mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}$ and replace A in the hypothesis $A \subseteq \mathcal{P}(A)$ with B, then we can conclude that $B \subseteq \mathcal{P}(B)$.

Exercise 3.3.6

Suppose x is a real number.

\mathbf{A}

Prove that if $x \neq 1$ then there is a real number y such that $\frac{y+1}{y-2} = x$.

So we want to prove that $(x \neq 1) \to \exists y \left(\frac{y+1}{y+2} = x\right)$

We assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$x \neq 1$	$\exists y \left(\frac{y+1}{y+2} = x \right)$

To prove our goal we need to find a y that makes the equation $\frac{y+1}{y+2} = x$ true. So let's try solving the equation for y.

$$\begin{aligned} \frac{y+1}{y+2} &= x \\ y+1 &= x(y-2) \\ y+1 &= xy-2x \\ 2x+1 &= xy-y \\ 2x+1 &= y(x-1) \\ y &= \frac{2x+1}{x-1} \end{aligned}$$

We see that this y works because we have $x \neq 1$ as a given.

Theorem. Suppose $x \neq 1$. Then there is a real number y such that $\frac{y+1}{y-2} = x$.

Proof. Suppose $x \neq 1$ and $y = \frac{2x+1}{x-1}$. Then

$$\frac{\frac{2x+1}{x-1}+1}{\frac{2x+1}{x-1}-2} = \frac{\frac{3x}{x-1}}{\frac{3}{x-1}} = \frac{3x}{x-1} \cdot \frac{x-1}{3} = x$$

 \mathbf{B}

Prove that if there is a real number y such that $\frac{y+1}{y-2} = x$ then $x \neq 1$.

So we want to prove that $\exists y \left(\frac{y+1}{y-1} = x\right) \to (x \neq 1)$

We assume the antecedent and make the consequent our goal to prove.

Using existential instantiation we assume there is a value y_0 such that $\frac{y+1}{y-1} = x$ is true. From part A above, we know that $\left(\frac{y+1}{y-1} = x\right) \to \left(y = \frac{2x+1}{x-1}\right)$ and so $y_0 = \frac{2x+1}{x-1}$. Since y is a real number, then clearly $x \neq 1$.

Givens	Goals
$\exists y \left(\frac{y+1}{y-1} = x \right)$	$x \neq 1$

Theorem. If y is a real number and $\frac{y+1}{y-2} = x$ then $x \neq 1$.

Proof. Suppose y is a real number and $\frac{y+1}{y-2} = x$. It follows that $y = \frac{2x+1}{x-1}$ and since y is real number then $x \neq 1$.

Exercise 3.3.7

Prove for every real number x, if x > 2 then there is a real number y such that $y + \frac{1}{y} = x$.

So we want to prove $\forall x \in \mathbb{R}(x > 2 \to \exists y \in \mathbb{R}(y + \frac{1}{y} = x))$

So we let x be an arbitrary real number, then we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
x is arbitrary real number	$\exists y(y + \frac{1}{y} = x)$
x > 2	J

Our goal is of the form $\exists y P(y)$ where P(y) is $y + \frac{1}{y} = x$ and our strategy suggests we try to find a y for which P(y) is true. We can do this by solving the equation $y + \frac{1}{y} = x$ for y. We can rewrite this equation as $y^2 - \frac{x}{y} + 1 = 0$ and we see this is a quadratic equation and therefore we can use the quadratic formula to solve for y,

$$y = \frac{-(-x) \pm \sqrt{(-x)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{x \pm \sqrt{x^2 - 4}}{2}.$$

We note that $\sqrt{x^2-4}$ is defined because x>2. We have found two solutions that satisfy our original equation, but we only need one to complete the proof. We will use $\frac{x+\sqrt{x^2-4}}{2}$.

Theorem. For every real number x, if x > 2 then there is a real number y such that $y + \frac{1}{y} = x$.

Proof. Suppose x and y are real numbers, x > 2, and $y = \frac{x + \sqrt{x^2 - 4}}{2}$. Then

$$\frac{x+\sqrt{x^2-4}}{2} + \frac{1}{\frac{x+\sqrt{(x^2-4})}{2}} = \frac{x+\sqrt{x^2-4}}{2} + \frac{2}{x+\sqrt{x^2-4}}$$
$$= \frac{2x^2+2(x\sqrt{x^2-4})}{2x+2\sqrt{x^2-4}}$$
$$= x$$

Exercise 3.3.8

Prove that if \mathcal{F} is a family of sets and $A \in \mathcal{F}$, then $A \subseteq \cup \mathcal{F}$.

So we want to prove that $A \in \mathcal{F} \to A \subseteq \cup \mathcal{F}$.

We assume the antecedent and make the consequent our goal to prove.

Assume $A \in \mathcal{F}$ [proof of $A \subseteq \cup \mathcal{F}$]

Therefore if $A \in \mathcal{F}$ then $A \subseteq \cup \mathcal{F}$

Our goal $A \subseteq \cup \mathcal{F}$ can be rewritten as $\forall x (x \in A \to x \in \cup \mathcal{F})$. We assume x is arbitrary and then assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$A \in \mathcal{F}$	$x \in \cup \mathcal{F}$
$x \in A$	

Assume $A \in \mathcal{F}$

Assume x is arbitrary

Assume $x \in A$ [proof of $x \in \cup \mathcal{F}$]

Therefore if $x \in A$ then $x \cup \mathcal{F}$

Since x was arbitrary we can conclude that $A \subseteq \cup \mathcal{F}$.

Therefore if $A \in \mathcal{F}$ then $A \subseteq \cup \mathcal{F}$

Our new goal can be rewritten as $\exists B \in \mathcal{F}(x \in B)$. From our givens we see that $A \in \mathcal{F}$ and $x \in A$, so we have found a set such that $A \in \mathcal{F}(x \in A)$.

Theorem. If \mathcal{F} is a family of sets and $A \in \mathcal{F}$, then $A \subseteq \cup \mathcal{F}$.

Proof. Assume $A \in \mathcal{F}$ and x is an arbitrary member of A. Then since $x \in A$ and $A \in \mathcal{F}$, it follows that $x \in \cup \mathcal{F}$. Since x was arbitrary we can conclude that $A \subseteq \cup \mathcal{F}$ and therefore if $A \in \mathcal{F}$ then $A \subseteq \cup \mathcal{F}$.

Exercise 3.3.9

Prove that if \mathcal{F} is a family of sets and $A \in \mathcal{F}$, then $\cap \mathcal{F} \subseteq A$.

We want to prove that $A \in \mathcal{F} \to \cap \mathcal{F} \subseteq A$.

We assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$A \in \mathcal{F}$	$\cap \mathcal{F} \subseteq A$

Assume $A \in \mathcal{F}$ [proof of $\cap \mathcal{F} \subseteq A$] Therefore, if $A \in \mathcal{F}$ then $\cap \mathcal{F} \subseteq A$.

We can rewrite our goal as $\forall x (x \in \cap \mathcal{F} \to x \in A)$. We assume x is arbitrary and then assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$A \in \mathcal{F}$	$x \in A$
$x \in \cap \mathcal{F}$	

Assume $A \in \mathcal{F}$

Assume x is arbitrary Assume $x \in \cap \mathcal{F}$ [proof of $x \in A$] Therefore, if $x \in \cap \mathcal{F}$ then $x \in A$.

Since x was arbitrary we can conclude that $\cap \mathcal{F} \subseteq A$.

Therefore, if $A \in \mathcal{F}$ then $\cap \mathcal{F} \subseteq A$.

Our given $x \in \cap \mathcal{F}$ can be rewritten as $\forall B \in \mathcal{F}(x \in B)$, therefore if $A \in \mathcal{F}$ then $x \in A$, which was our goal to prove.

Theorem. If \mathcal{F} is a family of sets and $A \in \mathcal{F}$, then $\cup \mathcal{F} \in A$.

Proof. Assume $A \in \mathcal{F}$ and x is an arbitrary member of $\cap \mathcal{F}$. Since $A \in \mathcal{F}$ and $x \in \cap \mathcal{F}$ it follows that $x \in A$ and therefore, if $x \in \cap \mathcal{F}$ then $x \in A$. Since x was arbitrary we can conclude that $\cap \mathcal{F} \subseteq A$. Therefore, if $A \in \mathcal{F}$ then $\cap \mathcal{F} \subseteq A$. \square

Exercise 3.3.10

Suppose that \mathcal{F} is a nonempty family of sets B is a set, and $\forall A \in \mathcal{F}(B \subseteq A)$. Prove that $B \subseteq \cap \mathcal{F}$.

We want to prove $\forall A \in \mathcal{F}(B \subseteq A) \to B \subseteq \cap \mathcal{F}$.

We assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\forall A \in \mathcal{F}(B \subseteq A)$	$B \subseteq \cap \mathcal{F}$

Suppose $\forall A \in \mathcal{F}(B \subseteq A)$ [proof of $B \subseteq \cap \mathcal{F}$]

Therefore if $\forall A \in \mathcal{F}(B \subseteq A)$ then $B \subseteq \cap \mathcal{F}$.

Our goal can be rewritten as $\forall x (x \in B \to x \in \cap \mathcal{F})$. So we assume x is arbitrary and then assume the antecedent and make the consequent our goal to prove.

Suppose $\forall A \in \mathcal{F}(B \subseteq A)$ Suppose x is arbitrary.

Suppose $x \in B$.

[proof of $x \in \cap \mathcal{F}$]

Therefore $x \in B \to x \in \cap \mathcal{F}$

Since x was arbitrary we can conclude $B \subseteq \cap \mathcal{F}$

Therefore if $\forall A \in \mathcal{F}(B \subseteq A)$ then $B \subseteq \cap \mathcal{F}$.

Our goal can be rewritten as $\forall M \in F(x \in M)$ and so we can assume M is an arbitrary set in \mathcal{F} and make our goal $x \in M$.

Givens	Goals
$\forall A \in \mathcal{F}(B \subseteq A)$	$x \in M$
$x \in B$	
$M \in \mathcal{F}$	

Suppose $\forall A \in \mathcal{F}(B \subseteq A)$

Suppose x is arbitrary.

Suppose $x \in B$.

Suppose M is an arbitrary set in \mathcal{F} .

 $[\text{proof of } x \in M]$ Therefore $x \in \cap \mathcal{F}$ Therefore $x \in B \to x \in \cap \mathcal{F}$ Since x was arbitrary we can conclude $B \subseteq \cap \mathcal{F}$ Therefore if $\forall A \in \mathcal{F}(B \subseteq A)$ then $B \subseteq \cap \mathcal{F}$.

Using universal instantiation we will plug in M for A in our given $\forall A \in \mathcal{F}(B \subseteq A)$ and conclude that $B \subseteq M$. We can rewrite $B \subseteq M$ as $\forall y (y \in B \to y \in M)$ and using universal instantiation plug in x for y and then use moden ponens to conclude $x \in M$, which was our goal to prove.

Theorem. If \mathcal{F} is a nonempty family of sets, B is a set, and $\forall A \in \mathcal{F}(B \subseteq A)$, then $B \subseteq \cap \mathcal{F}$.

Proof. Suppose $\forall A \in \mathcal{F}(B \subseteq A)$. Suppose x is an arbitrary member of B and M is an arbitrary set in \mathcal{F} . Then it follows that $x \in M$ and since M was arbitrary we can conclude that x is in all sets that are in \mathcal{F} or $x \in \cap \mathcal{F}$. Therefore, if $x \in B$ then $x \in \cap \mathcal{F}$, and since x was arbitrary, we can conclude that $B \subseteq \cap \mathcal{F}$.

Exercise 3.3.11

Suppose that \mathcal{F} is a family of sets. Prove that if $\emptyset \in \mathcal{F}$ then $\cap \mathcal{F} = \emptyset$. We want to prove that $\emptyset \in \mathcal{F} \to \cap \mathcal{F} = \emptyset$

We assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\varnothing\in\mathcal{F}$	$\cap \mathcal{F} = \varnothing$

Suppose $\varnothing \in \mathcal{F}$ [proof of $\cap \mathcal{F} = \varnothing$] Therefore if $\varnothing \in \mathcal{F}$ then $\cap \mathcal{F} = \varnothing$.

We will try a proof by contradiction. So we assume that $\cap \mathcal{F} \neq \emptyset$ and try to find a contradiction.

Givens	Goals
$\varnothing\in\mathcal{F}$	contradiction
$\cap \mathcal{F} \neq \varnothing$	

Our given $\cap \mathcal{F} \neq \emptyset$ means that there is an element that is in all sets in \mathcal{F} . However, this contradicts $\emptyset \in \mathcal{F}$ because \emptyset is the set that contains nothing.

Theorem. If \mathcal{F} is a family of sets and $\varnothing \in \mathcal{F}$, then $\cap \mathcal{F} = \varnothing$.

Proof. We will prove by contradiction. Suppose $\varnothing \in \mathcal{F}$ and $\cap \mathcal{F} \neq \varnothing$. Since $\cap \mathcal{F} \neq \emptyset$ it follows that there is an element that is within all of the sets that are in \mathcal{F} . However, this contradicts $\emptyset \in \mathcal{F}$ because \emptyset is the set that contains nothing. Therefore, if $\emptyset \in \mathcal{F}$ then $\cap \mathcal{F} = \emptyset$.

Exercise 3.3.12

Suppose \mathcal{F} and \mathcal{G} are families of sets. Prove that if $\mathcal{F} \subseteq \mathcal{G}$ then $\cup \mathcal{F} \subseteq \cup \mathcal{G}$.

So we want to prove that $\mathcal{F} \subseteq \mathcal{G} \to \cup \mathcal{F} \subseteq \cup \mathcal{G}$

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$\cup \mathcal{F} \subseteq \cup \mathcal{G}$

Suppose $\mathcal{F} \subseteq \mathcal{G}$ [proof of $\cup \mathcal{F} \subseteq \cup \mathcal{G}$] So if $\mathcal{F} \subseteq \mathcal{G} \to \cup \mathcal{F} \subseteq \cup \mathcal{G}$

 $\cup \mathcal{F} \subseteq \cup \mathcal{G} \to \forall b (b \in \cup \mathcal{F} \to b \in \cup \mathcal{G})$ so we assume b is an arbitrary element of $\cup \mathcal{F}$ and assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$b\in \cup \mathcal{G}$
$b \in \cup \mathcal{F}$	

Suppose $\mathcal{F} \subseteq \mathcal{G}$

Let b be an arbitrary element of $\cup \mathcal{F}$ [proof of $b \in \cup \mathcal{G}$] Therefore if $b \in \cup \mathcal{F} \to b \in \cup \mathcal{G}$

Since b was arbitrary we can conclude $\forall b(b \in \cup \mathcal{F} \to b \in \cup \mathcal{G})$. So if $\mathcal{F} \subseteq \mathcal{G} \to \mathcal{F}$ $\cup \mathcal{F} \subseteq \cup \mathcal{G}$

 $b \in \cup \mathcal{F} \to \exists M (M \in \mathcal{F} \land b \in M)$, so let $M = A_0$ (Existential Instantiation)

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$b \in \cup \mathcal{G}$
$A_0 \in \mathcal{F} \wedge b \in A_0$	

Suppose $\mathcal{F} \subseteq \mathcal{G}$

Let b be an arbitrary element and suppose $b \in \cup \mathcal{F}$, which implies there is a set in \mathcal{F} and b is in that set. Let that set $=A_0$

[proof of $b \in \cup \mathcal{G}$] Therefore if $b \in \cup \mathcal{F} \to b \in \cup \mathcal{G}$ Since b was arbitrary we can conclude $\forall b (b \in \cup \mathcal{F} \to b \in \cup \mathcal{G})$. So if $\mathcal{F} \subseteq \mathcal{G} \to \mathcal{G}$

 $\mathcal{F} \subseteq \mathcal{G} \to \forall A (A \in \mathcal{F} \to A \in \mathcal{G})$. Using universal instantiation we will plug in A_0 for A since then we can use modens ponens to conclude that $A_0 \in \mathcal{G}$.

Givens	Goals
$A_0 \in \mathcal{F} \to A_0 \in \mathcal{G}$	$b \in \cup \mathcal{G}$
$A_0 \in \mathcal{F} \land b \in A_0$	

 $\cup \mathcal{F} \subseteq \cup \mathcal{G}$

Our goal $b \in \cup \mathcal{G} \to \exists N(N \in \mathcal{G} \land b \in N)$, which we can now prove. Since $A_0 \in \mathcal{F}$ and \mathcal{F} is a subset of \mathcal{G} , it follows that $A_0 \in \mathcal{G}$. By the definition of $\cup \mathcal{G}$ it follows that $b \in \cup \mathcal{G}$ because $A_0 \in \mathcal{G} \land b \in A_0$, the latter statement being one of our givens.

Theorem. Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\mathcal{F} \subseteq \mathcal{G}$ then $\cup \mathcal{F} \subseteq \cup \mathcal{G}$. Proof. Suppose $\mathcal{F} \subseteq \mathcal{G}$. Let b be an arbitrary element of $\cup \mathcal{F}$, which implies there is a set in \mathcal{F} that contains b. Call this set A_0 . Since $A_0 \in \mathcal{F}$ and \mathcal{F} is a subset of \mathcal{G} it follows that $A_0 \in \mathcal{G}$, which implies that $b \in \cup \mathcal{G}$. Therefore if $b \in \cup \mathcal{F}$ then $b \in \cup \mathcal{G}$. Since b was arbitrary we can conclude that if $\mathcal{F} \subseteq \mathcal{G}$ then $\cup \mathcal{F} \subseteq \cup \mathcal{G}$. This completes the proof.

Exercise 3.3.13

Suppose \mathcal{F} and \mathcal{G} are families of sets. Prove that if $\mathcal{F} \subseteq \mathcal{G}$ then $\cap \mathcal{G} \subseteq \cap \mathcal{F}$.

So we want to prove that $\mathcal{F} \subseteq \mathcal{G} \to \cap \mathcal{G} \subseteq \cap \mathcal{F}$

First we assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$\cap \mathcal{G} \subseteq \cap \mathcal{F}$

Suppose $\mathcal{F} \subseteq \mathcal{G}$ [proof of $\cap \mathcal{G} \subseteq \cap \mathcal{F}$] So if $\mathcal{F} \subseteq \mathcal{G} \to \cap \mathcal{G} \subseteq \cap \mathcal{F}$

 $\cap \mathcal{G} \subseteq \cap \mathcal{F} \to \forall b (b \in \cap \mathcal{G} \to b \in \cap \mathcal{F})$, so we assume b is an arbitrary element of $\cap \mathcal{G}$ and assume the antecedent and make the consequent our goal to prove.

Suppose $\mathcal{F} \subseteq \mathcal{G}$ Let b be an arbitrary element of $\cap \mathcal{G}$ [proof of $b \in \cap \mathcal{F}$]

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$b \in \cap \mathcal{F}$
$b\in\cap\mathcal{G}$	

Therefore if $b \in \cap \mathcal{G} \to b \in \cap \mathcal{F}$ Since b was arbitrary we can conclude $\forall b(b \in \cap \mathcal{G} \to b \in \cap \mathcal{F})$. So $\mathcal{F} \subseteq \mathcal{G} \to \cap \mathcal{G} \subseteq \cap \mathcal{F}$

 $b \in \cap \mathcal{F} \to \forall A (A \in \mathcal{F} \to b \in A)$, so we assume A is an arbitrary element of \mathcal{F} and assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F}\subseteq\mathcal{G}$	$b \in A$
$b\in\cap\mathcal{G}$	
$A \in \mathcal{F}$	

Suppose $\mathcal{F} \subseteq \mathcal{G}$

Let b be an arbitrary element of $\cap \mathcal{G}$ Suppose A is an arbitrary set in \mathcal{F} [proof of $b \in A$] Therefore if $A \in \mathcal{F} \to b \in A$ Since A was arbitrary we can conclude $b \in \cap \mathcal{F}$

Therefore if $b \in \cap \mathcal{G} \to b \in \cap \mathcal{F}$

Since b was arbitrary we can conclude $\forall b(b \in \cap \mathcal{G} \to b \in \cap \mathcal{F})$. So $\mathcal{F} \subseteq \mathcal{G} \to \cap \mathcal{G} \subseteq \cap \mathcal{F}$

Now looking at our givens, $\mathcal{F} \subseteq \mathcal{G} \to \forall Z(Z \in \mathcal{F} \to Z \in \mathcal{G})$. Using universal instantiation we will plug in A for Z and using modus ponens we can conclude that $A \in \mathcal{G}$.

Our other given, $b \in \cap \mathcal{G} \to \forall Y (Y \in \mathcal{G} \to b \in Y)$. Using universal instantiation we will plug in A for Y and using modus ponens we can conclude that $b \in A$, which was our goal, and we can now write our proof.

Theorem. Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\mathcal{F} \subseteq \mathcal{G}$ then $\cap \mathcal{G} \subseteq \cap \mathcal{F}$. Proof. Suppose $\mathcal{F} \subseteq \mathcal{G}$. Let b be an arbitrary element of $\cap \mathcal{G}$. Suppose A is an arbitrary element of \mathcal{F} , then because $\mathcal{F} \subseteq \mathcal{G}$ then it follows that $A \in \mathcal{G}$. By the definition of $\cap \mathcal{G}$ it follows that $b \in A$ and since A was arbitrary then $b \in \cap \mathcal{F}$. Since b was arbitrary we can conclude $\cap \mathcal{G} \subseteq \cap \mathcal{F}$ and therefore that if $\mathcal{F} \subseteq \mathcal{G}$ then $\cap \mathcal{G} \subseteq \cap \mathcal{F}$. This completes the proof.

Exercise 3.3.14

Suppose $\{A_i|i\in I\}$ is an indexed family of sets. Prove that $\bigcup_{i\in I} \mathscr{P}(A_i)\subseteq \mathscr{P}(\bigcup_{i\in I} A_i)$.

So we want to prove that $\forall a (a \in \bigcup_{i \in I} \mathscr{P}(A_i) \to a \in \mathscr{P}(\bigcup_{i \in I} A_i))$

First we assume a is arbitrary and make the antecedent a given and the consequent our goal to prove.

Givens Goals
$$a \in \bigcup_{i \in I} \mathscr{P}(A_i)$$
 $a \in \mathscr{P}(\bigcup_{i \in I} A_i)$

Assume a is an arbitrary element of $\bigcup_{i \in I} \mathscr{P}(A_i)$ Suppose $a \in \bigcup_{i \in I} \mathscr{P}(A_i)$ [proof of $a \in \mathscr{P}(\bigcup_{i \in I} A_i)$] Therefore if $a \in \bigcup_{i \in I} \mathscr{P}(A_i) \to a \in \mathscr{P}(\bigcup_{i \in I} A_i)$ Since a was arbitrary we can conclude $\bigcup_{i \in I} \mathscr{P}(A_i) \subseteq \mathscr{P}(\bigcup_{i \in I} A_i)$

Looking at our goal we see that $a \in \mathscr{P}(\bigcup_{i \in I} A_i) \to a \subseteq \bigcup_{i \in I} A_i \to \forall z (z \in a \to z \in \bigcup_{i \in I} A_i)$. Therefore we assume z is arbitrary, assume the antecedent, and make the consequent our goal to prove.

```
Assume a is an arbitrary element of \bigcup_{i \in I} \mathscr{P}(A_i)

Suppose a \in \bigcup_{i \in I} \mathscr{P}(A_i)

Assume z is arbitrary

Assume z \in a

[ proof of z \in \bigcup_{i \in I} A_i]

Therefore z \in a \to z \in \bigcup_{i \in I} A_i

Since z was arbitrary we can conclude a \in \mathscr{P}(\bigcup_{i \in I} A_i)

Therefore if a \in \bigcup_{i \in I} \mathscr{P}(A_i) \to a \in \mathscr{P}(\bigcup_{i \in I} A_i)

Since a was arbitrary we can conclude \bigcup_{i \in I} \mathscr{P}(A_i) \subseteq \mathscr{P}(\bigcup_{i \in I} A_i)
```

Looking at our given we see that $a \in \bigcup_{i \in I} \mathscr{P}(A_i) \to a \in \{a | \exists i \in I (a \in \mathscr{P}(A_i))\}$. Using existential instantiation we will select an i such that $a \in \mathscr{P}(A_i)$ which implies $a \subseteq A_i$. Since $a \subseteq A_i \to \forall m (m \in a \to m \in A_i)$ and using universal instantiation we will plug in z for m and we get $\forall z (z \in a \to z \in A_i)$ and using modus ponens we can conclude that $z \in A_i$, which implies that $z \in \bigcup_{i \in I} A_i$, which was our goal. We can now right our proof.

Theorem. Suppose $\{A_i|i \in I\}$ is an indexed family of sets, then $\bigcup_{i \in I} \mathscr{P}(A_i) \subseteq \mathscr{P}(\bigcup_{i \in I} A_i)$.

Proof. Suppose that a is an arbitrary element of $\bigcup_{i\in I} \mathscr{P}(A_i)$. We choose an $i\in I$ such that $a\in \mathscr{P}(A_i)$, which implies that $a\subseteq A_i$. Suppose z is an arbitrary element of a, then it follows that $z\in A_i$ and therefore $z\in \bigcup_{i\in I}A_i$. Since z was an arbitrary element of a then $a\subseteq \bigcup_{i\in I}A_i$, and it follows that $a\in \mathscr{P}(\bigcup_{i\in I}A_i)$. Thus we can conclude $\bigcup_{i\in I}\mathscr{P}(A_i)\subseteq\mathscr{P}(\bigcup_{i\in I}A_i)$. This completes the proof.

Exercise 3.3.15

Suppose $\{A_i|i\in I\}$ is an indexed family of sets and $I\neq\varnothing$. Prove that $\bigcap_{i\in I}A_i\in\bigcap_{i\in I}\mathscr{P}(A_i)$

So we want to prove that $\forall y (y \in \bigcap_{i \in I} A_i \to y \in \bigcap_{i \in I} \mathscr{P}(A_i)).$

First we assume y is arbitrary and make the antecedent a given and the consequent our goal to prove.

Givens	Goals
$y \in \bigcap_{i \in I} A_i$	$y \in \bigcap_{i \in I} \mathscr{P}(A_i)$

Suppose y is arbitrary element of $\bigcap_{i \in I} A_i$.

[proof of $y \in \bigcap_{i \in I} \mathscr{P}(A_i)$]

Since y was arbitrary we can conclude $\forall y (y \in \bigcap_{i \in I} A_i \to y \in \bigcap_{i \in I} \mathscr{P}(A_i))$.

Our goal $y \in \bigcap_{i \in I} \mathscr{P}(A_i)$ so we make m an arbitrary element of I and therefore $y \in \mathscr{P}(A_m) \to y \subseteq A_m \to \forall z (z \in y \to z \in A_m)$. So we make z arbitrary and make the antecedent a given and the consequent our goal to prove.

Givens	Goals
$y \in \bigcap_{i \in I} A_i$	$z \in A_m$
$z \in y$	

Suppose y is arbitrary element of $\bigcap_{i \in I} A_i$.

Suppose m is an arbitrary element of I and therefore $y \in \mathscr{P}(A_m) \to y \subseteq A_m \to \forall z (z \in y \to z \in A_m)$.

Suppose z is an arbitrary element of y

[proof of $z \in A_m$]

Therefore $z \in y \to z \in A_m$ and since z was arbitrary $y \subseteq A_m \to y \in \mathscr{P}(A_m)$ and since m was arbitrary $y \in \bigcap_{i \in I} \mathscr{P}(A_i)$

Since y was arbitrary we can conclude $\forall y (y \in \bigcap_{i \in I} A_i \to y \in \bigcap_{i \in I} \mathscr{P}(A_i))$.

Now looking at our given $y \in \bigcap_{i \in I} A_i \to \forall i \in I (y \in A_i)$. Using universal instantiation we plug in m for i and therefore $y \in A_m$ and since $z \in y$ we can conclude $z \in A_m$, which was our goal. Now we can write our proof.

Theorem. Suppose $\{A_i|i \in I\}$ is an indexed family of sets and $I \neq \emptyset$, then $\bigcap_{i \in I} A_i \in \bigcap_{i \in I} \mathscr{P}(A_i)$.

Proof. Suppose y is an arbitrary element of $\bigcap_{i\in I}A_i$. Suppose m is an arbitrary member of I and therefore $y\subseteq A_m$ which implies $y\subseteq A_m$. Now suppose z is an arbitrary element of y. Since $y\in\bigcap_{i\in I}A_i$ if we choose an i such that $y\in\bigcap_{m\in I}A_m$ then $y\in A_m$ which implies $z\in A_m$. Therefore if $z\in y$ then $z\in A_m$ and since z was arbitrary then $y\subseteq A_m$ or $y\in \mathscr{P}(A_m)$ and since m was arbitrary then $y\in\bigcap_{i\in I}\mathscr{P}(A_i)$. Since y was arbitrary then $\bigcap_{i\in I}A_i\in\bigcap_{i\in I}\mathscr{P}(A_i)$. This completes the proof.

Exercise 3.3.16

Prove the converse of the statement proven in Example 3.3.5. In other words, prove that if $\mathcal{F} \subseteq \mathscr{P}(B)$ then $\cup \mathcal{F} \subseteq B$.

We want to prove $\mathcal{F} \subseteq \mathscr{P}(B) \to \cup \mathcal{F} \subseteq B$.

We assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F} \subseteq \mathscr{P}(B)$	$\cup \mathcal{F} \subseteq B$

Suppose $\mathcal{F} \subseteq \mathscr{P}(B)$ [proof of $\cup \mathcal{F} \subseteq B$ Therefore if $\mathcal{F} \subseteq \mathscr{P}(B)$ then $\cup \mathcal{F} \subseteq B$.

 $\cup F \subseteq B \to \forall x (x \in \cup \mathcal{F} \to x \in B)$. So we assume x is arbitrary and then assume the antecedent and make the consequent our goal to prove.

Givens	Goals
$\mathcal{F}\subseteq\mathscr{P}(B)$	$x \in B$
$x \in \cup \mathcal{F}$	

Suppose $\mathcal{F} \subseteq \mathscr{P}(B)$ Suppose x is arbitrary Suppose $x \in \cup \mathcal{F}$ [proof of $x \in B$]

Therefore if $x \in \cup \mathcal{F}$ then $x \in B$

Since x was arbitrary we can conclude that $\cup \mathcal{F} \subseteq B$.

Therefore if $\mathcal{F} \subseteq \mathscr{P}(B)$ then $\cup F \subseteq B$.

 $x \in \cup \mathcal{F} \to \exists M \in \mathcal{F}(x \in M)$. We use existential instantiation and assume there is a set M in \mathcal{F} and x is in that set.

```
Suppose \mathcal{F} \subseteq \mathscr{P}(B)

Suppose x is arbitrary

Suppose M is arbitrary set in \mathcal{F}

x \in M

[proof of x \in B]

Since x \in M and M is a set in \mathcal{F} then x \in \cup \mathcal{F}

Therefore if x \in \cup \mathcal{F} then x \in B

Since x was arbitrary we can conclude that \cup \mathcal{F} \subseteq B.

Therefore if \mathcal{F} \subseteq \mathscr{P}(B) then \cup \mathcal{F} \subseteq B.
```

Our given $\mathcal{F} \subseteq \mathscr{P}(B)$ means that $\forall N(N \in \mathcal{F} \to \forall z(z \in N \to z \in B))$. We will use universal instantiation and plug in M for N and x for z and we can conclude that $x \in B$, which was our goal to prove.

Theorem. Suppose B is a set and \mathcal{F} is a family of sets. If $\mathcal{F} \subseteq \mathscr{P}(B)$ then $\cup \mathcal{F} \subseteq B$.

Proof. Suppose x is an arbitrary member of $\cup \mathcal{F}$, which means that x is a member of a set that is in \mathcal{F} . Suppose $\mathcal{F} \subseteq \mathscr{P}(B)$, which means that any element that is in a set that is a member of \mathcal{F} is also in the set B. It follows that since x is a member of a set in \mathcal{F} then $x \in B$. Therefore, if $x \in \cup \mathcal{F}$ then $x \in B$ and since x was arbitrary we can conclude $\cup \mathcal{F} \subseteq B$. Therefore, if $\mathcal{F} \subseteq \mathscr{P}(B)$ then $\cup \mathcal{F} \subseteq B$.

Exercise 3.3.17

Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets, and every element of \mathcal{F} is a subset of every element of \mathcal{G} . Prove that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

We want to prove that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

We can rewrite this goal as $\forall x (x \in \cup \mathcal{F} \to x \in \cap \mathcal{G})$. We assume x is arbitrary and then assume the antecedent and make the consequent our goal.

Givens	Goals
$x \in \cup \mathcal{F}$	$x \in \cap \mathcal{G}$
$\forall A \in \mathcal{F} \forall B \in \mathcal{G}(y \in A \to y \in B)$	

Suppose x is arbitrary. Suppose $x \in \cup \mathcal{F}$. [proof of $x \in \cap \mathcal{G}$] Therefore if $x \in \cup \mathcal{F}$ then $x \in \cap \mathcal{G}$

Since x was arbitrary we can conclude that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

We can rewrite our goal as $\forall M \in \mathcal{G}(x \in M)$. We assume M is an arbitrary set in \mathcal{G} and then our goal becomes $x \in M$.

Givens	Goals
$x \in \cup \mathcal{F}$	$x \in M$
$M \in \mathcal{G}$	
$\forall A \in \mathcal{F} \forall B \in \mathcal{G}(y \in A \to y \in B)$	

Suppose x is arbitrary.

Suppose $x \in \cup \mathcal{F}$.

Suppose M is an arbitrary set in \mathcal{G}

[proof of $x \in M$]

Since M was arbitrary we can conclude that $x \in \cap \mathcal{G}$

Therefore if $x \in \cup \mathcal{F}$ then $x \in \cap \mathcal{G}$

Since x was arbitrary we can conclude that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

We can rewrite our given $x \in \cup \mathcal{F}$ as $\exists N \in \mathcal{F}(x \in N)$. We use existential instantiation and assume there is a set $N \in \mathcal{F}$ and $x \in N$.

Givens	Goals
$N\in\mathcal{F}$	$x \in M$
$x \in N$	
$M\in \mathcal{G}$	
$\forall A \in \mathcal{F} \forall B \in \mathcal{G}(y \in A \to y \in B)$	

Now we can use universal instantiation to plug in N for A and M for B. Then since $x \in N$ we can use modus ponens to conclude that $x \in M$, which was our goal.

Theorem. If \mathcal{F} and \mathcal{G} are nonempty families of sets, and every element of \mathcal{F} is a subset of every element of \mathcal{G} , then $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

Proof. Suppose x is an arbitrary member of $\cup \mathcal{F}$, which means there is a set in \mathcal{F} that contains x. Suppose M is an arbitrary set in \mathcal{G} . Then since every set in \mathcal{F} is a subset of every set in \mathcal{G} it follows that $x \in M$. Since M was arbitrary we can conclude that $x \in \cap \mathcal{G}$ and therefore if $x \in \cup \mathcal{F}$ then $x \in \cap \mathcal{G}$. Since x was arbitrary we can conclude that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

Exercise 3.3.18

In this problem all variables range over \mathbb{Z} , the set of all integers.

\mathbf{A}

Prove that if a|b and a|c, then a|(b+c).

We want to prove $(a|b) \wedge (a|c) \rightarrow a|(b+c)$

We assume the antecedent and make the consequent our goal.

Givens	Goals
a b	a (b+c)
a c	

Suppose a|b and a|c[proof of a|(b+c)Therefore if a|b and a|c then a|(b+c).

Our goal means that $\exists x \in \mathbb{Z}(ax = (b+c))$. So we need to find an x that makes this statement true. Our goals can be rewritten as $\exists y \in \mathbb{Z}(ay = b)$ and $\exists w \in \mathbb{Z}(aw = c)$. Using existential instantiation we will assume there is a y and and w that makes both of the previous statement true.

Givens	Goals
ay = b	a (b+c)
aw = c	

Suppose ay = b and aw = c[proof of a|(b+c)Therefore if a|b and a|c then a|(b+c).

Adding the two inequalities ay = b and aw = c we have ay + aw = b + c or a(y + w) = b + c. Since y and w are integers we can conclude that a|(b + c), which was our goal to prove.

Theorem. If a, b, and c are integers, a|b, and a|c, then a|(b+c).

Proof. Suppose a, b, and c are integers, a|b, and a|c. Since a|b there must be an integer y such that ay = b. Also, since a|c there must be an integer w such that aw = c. Adding together the previous two equalities we have ay + aw = b + c or a(y + w) = b + c. Since y and w are integers we can conclude that a|(b + c). \square

\mathbf{B}

Prove that if ac|bc and $c \neq 0$, then a|b.

We want to prove $(ac|bc) \land (c \neq 0) \rightarrow a|b$.

We assume the antecedent and make the consequent our goal.

Givens	Goals
ac bc	a b
$c \neq 0$	

Suppose ac|bc and $c \neq 0$ [proof of a|b]

Therefore ac|bc and $c \neq 0$, then a|b.

Our goal means that $\exists x(ax=b)$ and we want to find an x that makes this statement true. Looking at our goals we can rewrite ac|bc as $\exists y(acy=bc)$. Using existential instantiation we will assume there is a y that makes acy=bc true and we can add acy=bc to our givens. Since $c\neq 0$ we can divide both sides of acy=bc by c and we have ay=b. Since y is an integer we can conclude that a|b, which was our goal to prove.

Theorem. If a, b, and c are integers, ac|bc, and $c \neq 0$, then a|b.

Proof. Suppose a, b, and c are integers, ac|bc, and $c \neq 0$. Since ac|bc there must be an integer x such that acx = bc. Since $c \neq 0$ we can simplify the previous equation by dividing both sides by c so that ax = b. Since x is an integer we can conclude that a|b.

Exercise 3.3.19

\mathbf{A}

Prove that for all real numbers x and y there is a real number z such that x+z=y-z.

We want to prove that $\forall x \in \mathbb{R} \forall y \in \mathbb{R} \exists z \in \mathbb{R} (x+z=y-z)$.

We let x and y stand for arbitrary real numbers and make $\exists z \in \mathbb{R}(x+z=y-z)$ our goal to prove.

Givens	Goals
x arbitrary	$\exists z \in \mathbb{R}(x+z=y-z)$
y arbitrary	

Suppose x and y are arbitrary real numbers

[proof of $\exists z \in \mathbb{R}(x+z=y-z)$]

Since x and y are arbitrary we can conclude $\forall x \in \mathbb{R} \forall y \in \mathbb{R} \exists z \in \mathbb{R} (x+z=y-z)$

We want to find a z such that x + z = y - z, which suggests we try solving this equation for z

$$x + z = y - z$$
$$x + 2z = y$$
$$z = \frac{y - x}{2}.$$

Now we are ready to complete our proof.

Theorem. For all real numbers x and y there is a real number z such that x + z = y - z.

Proof. Suppose x and y are arbitrary real numbers and $z = \frac{y-x}{2}$. Then

$$x + \frac{y - x}{2} = y - \frac{y - x}{2}$$
$$\frac{2x + y - x}{2} = \frac{2y - (y - x)}{2}$$
$$2x + y - x = 2y - y + x$$
$$x(2 - 1) + y = y(2 - 1) + x$$
$$x + y = x + y$$

 \mathbf{B}

Would the statement in part (A) be correct if "real number" were changed to "integer"? Justify your answer.

No, because there are instances where $z = \frac{x-y}{2}$ would not result in an integer. For example, if x = 5 and y = 2 then $z = \frac{3}{2}$, which is not an integer. Therefore the statement in part (A) would not be correct.

Exercise 3.3.20

Consider the following theorem:

Theorem. For every real number $x, x^2 \ge 0$.

What's wrong with the following proof?

Proof. Suppose not. Then for every real number $x, x^2 < 0$. In particular, plugging in x = 3 we would get 9 < 0, which is clearly false. This contradiction shows that for every number $x, x^2 \ge 0$.

The sentence "Then for every real number x, $x^2 < 0$ " is not correct because if we let x = 0 then 0 < 0 is not true.

3.3.21

Consider the following incorrect theorem:

Incorrect Theorem. *If* $\forall x \in A(x \neq 0)$ *and* $A \subseteq B$ *then* $\forall x \in B(x \neq 0)$.

\mathbf{A}

What's wrong with the following proof?

Proof. Let x be an arbitrary element of A. Since $\forall x \in A(x \neq 0)$, we can conclude that $x \neq 0$. Also, since $A \subseteq B$, $x \in B$. Since $x \in B$, $x \neq 0$, and x was arbitrary, we can conclude that $\forall x \in B(x \neq 0)$.

The last sentence is not correct. $A \subseteq B$ means that all elements in A are in B and since $x \neq 0$ then $0 \notin A$, but this doesn't mean that $0 \notin B$, because there can be elements in B that are not in A.

\mathbf{B}

Find a counterexample to the theorem. In other words, find an example of sets A and B for which the hypotheses of the theorem are true but the conclusion is false.

Let $A = \{1, 2, 3\}$ and $B = \{0, 1, 2, 3\}$. Then the hypotheses of the theorem are true, specifically $\forall x \in A(x \neq 0)$ and $A \subseteq B$, but the conclusion $\forall x \in B(x \neq 0)$ is false.

3.3.22

Consider the following incorrect theorem:

Incorrect Theorem. $\exists x \in \mathbb{R} \forall y \in \mathbb{R} (xy^2 = y - x).$

What's wrong with the following proof of the theorem?

Proof. Let $x = \frac{y}{y^2+1}$. Then

$$y - x = y - \frac{y}{y^2} = \frac{y^3}{y^2 + 1} = \frac{y}{y^2 + 1} \cdot y^2 = xy^2.$$

In the proof, x is defined in terms of y but y has not been introduced into the proof yet. The theorem should start with "Let $x = \dots$ and let y be an arbitrary real number...".