

The Reproduction of Specular Highlights on High Dynamic Range Displays

14th Color Imaging Conference Final Program and Proceedings
Laurence Meylan, Scott Daly and Sabine Susstrunk

Presented by Chang-Hwan Son

School of Electrical Engineering and Computer Science, Kyungpook National Univ.,

Abstract

- New issue in HDR display
 - Re-rendering of images that have been mapped to standard dynamic range (SDR) displays
- ◆ The proposal of tone scale function
 - Utilize the increase in dynamic range of HDR monitor to recreate the brightness of the clipped or compressed specular highlights
 - Achieve more natural looking images in HDR displays

Introduction

◆ The HDR monitor

- Displaying simultaneously bright highlights and dark shadows
- Facing with new problem of re-rendering the large amount of legacy images that are already mapped to SDR images
 - In SDR displays, specular highlights are badly reproduced due to strong luminance compression or clipping
 - As the highlights offer important visual cue about shape or realism, it is important to use part of dynamic range of HDR display

◆ The proposal of tone scale function to expand the luminance range, especially specular highlights

The Tone Scale Function

The shape of tone scaling function

Composed of two slopes to adjust the tone of diffuse image

and specular image

- ◆ An example of an image segmentation into its specular and diffuse componets
 - The specular image : contains specular highlights
 - The diffuse image : the rest of image

◆ The definition of tone scaling function

- Varying the ρ - parameter to test the visual experiment

$$f(\Lambda(p)) = \begin{cases} s_1 \cdot \Lambda(p) & \text{if } \Lambda(p) \le \omega \\ s_1 \cdot \omega + s_2(\Lambda(p) - \omega) & \text{if } \Lambda(p) > \omega \end{cases}$$

where

$$s_1 = \rho/\omega$$

$$s_2 = (1-\rho)/(\Lambda_{\text{max}} - \omega)$$

 Λ :normalized luminance

p:a pixel in the image

 Λ_{\max} : maximum digital value of the input image

Stimuli preparation

◆ The set of images containing specular highlights

◆ The tone scales used in the experiment

- Four different ρ
- Linear scaling
- Clipped version

Table 1: Tone scales used in the experiment.

	1	2	3	4	5	6
ρ	0.2	0.3	0.47	0.67	lin.	0.47
						clipped

For the non-clipped tone scales

- The more luminance range is allocated to the diffuse image,
 the brighter the image appears
- The smaller luminance range allocated to the diffuse image causes the image to look dimmer

- A smoothing technique to remove unnatural contours
 - Adding a smoothing step to our algorithm to reduce the discontinuity in the tone scale function
- The generation of pairs of tone-scaled images
 - Presenting the image in pairs computed by different tone scale to observers, where its left/right position is chosen randomly
 - If the number of tone scale is 6, then the number of pairs is 15

The psychovisual experiment

Procedure

- Observers : naïve observers (14), experts (6)
- Display: Brightside's 37" HDR monitor
- Viewing angle : 33 degree
- For each image of the test set, 15 pairs were presented, then the 15 pairs of next image are shown
- Asking the observers which image looks more natural

Measurements performed on the HDR display

- Displaying and measuring a large white patch to obtain the maximum displayed luminance of HDR monitor
 - For very small bright areas, this measured value cannot be reached due to the cross-talk that the luminance measured at one LED position is not only due to one LED but also to remaining light emitted by neighboring LEDs
- The measured luminance at screen differ from what is intended by the tone scale function applied to the image

Measuring white patches of varying sizes and backgrounds

 Based on our measurements, the diameter of a specular highlights must be more than 16 pixels

Result

- Statistical analysis
 - Applying the Thurstones's law of comparative judgment Case V to convert the paired comparison observer data into an interval scale of preference
 - Calculating the z-scores and 95%-confidence intervals from such data
 - Calculating the percentage of specular pixels in each image

$$r = \frac{N_{specular}}{N}$$

Conclusion

- ◆ Focusing on the conversion of SDR images into images that can be displayed on an HDR monitor
 - Proposing the tone scale function to improve the realism of specular highlights
 - It is preferable not to use the entire dynamic range for the diffuse component of the input image despite of the reduction in mean brightness