Basic RL.3

Judy Tutorial

So far, we know

$$\pi(\mathbf{a}|s), \pi^*(a|s)$$

$$V_{\pi}(s), Q_{\pi}(s,a), V^*(s), Q^*(s,a)$$

But, how do we learn?

Recall Discounted Return

$$R_{t} \triangleq r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} \dots$$

$$= r_{t} + \gamma (r_{t+1} + \gamma^{1} r_{t+2} + \gamma^{2} r_{t+3} \dots)$$

$$= r_{t} + \gamma R_{t+1}$$

Recall $V_{\pi}(s)$

$$V_{\pi}(\mathbf{s}) \triangleq \mathbb{E}_{\pi}[R_{t}|s_{t} = s]$$

$$= \mathbb{E}_{\pi}[r_{t} + \gamma R_{t+1}|s_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) \left[r_{t} + \gamma \mathbb{E}_{\pi}[R_{t+1}|s_{t+1} = s']\right]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) \left[r_{t} + \gamma V_{\pi}(s')\right]$$

$$= \mathbb{E}_{\pi}[r_{t} + \gamma V_{\pi}(s')|s_{t} = s] \quad \forall s \in \mathcal{S}$$

Bellman Equation

Recall $Q_{\pi}(s, a)$

```
\begin{array}{l}
Q_{\pi}(\mathbf{s}, \mathbf{a}) \\
\triangleq \mathbb{E}_{\pi}[R_{t}|s_{t} = s, a_{t} = a] \\
= \mathbb{E}_{\pi}[r_{t} + \gamma V_{\pi}(s')|s_{t} = s, a_{t} = a] \\
= \sum_{s'} p(s'|s, a) \left[r_{t} + \gamma \mathbb{E}_{a' \sim \pi}[Q_{\pi}(s', a')|s_{t+1} = s', a_{t+1} = a']\right] \\
= \sum_{s'} p(s'|s, a) \\
\left[r_{t} + \gamma \sum_{a'} \pi(a'|s') Q_{\pi}(s', a')|s_{t+1} = s', a_{t+1} = a'\right]
\end{array}
```

 $\forall s \in \mathcal{S}, a \in \mathcal{A}$

Bellman Equation

Given one transition: (s, a, r, s')

$$V_{\pi}(s) = \mathbb{E}_{\pi}[r_t + \gamma V_{\pi}(s') | s_t = s]$$

= $\sum_a \pi(a|s) \sum_{s'} p(s'|s,a) [r + \gamma V_{\pi}(s')]$

Given one transition: (s, a, r, s')

$$V_{\pi}(s) = \mathbb{E}_{\pi}[Q_{\pi}(s, a)]$$
$$= \sum_{a} \pi(a|s)Q_{\pi}(s, a)$$

Given one transition: (s, a, r, s', a')

$$Q_{\pi}(s, a) = \sum_{s'} p(s'|s, a) \cdot \left[r_t + \gamma \sum_{a'} \pi(a'|s') Q_{\pi}(s', a') | s_{t+1} = s', a_{t+1} = a' \right]$$

Given one transition: (s, a, r, s', a')

$$Q_{\pi}(s, a) = \mathbb{E}[r_t + \gamma V_{\pi}(s_{t+1}) | s_t = s, a_t = a]$$

= $\sum_{s'} p(s'|s, a) [r + \gamma V_{\pi}(s')]$

 $V^*(s) \triangleq \max_{\pi} V_{\pi}(s)$, for all $s \in \mathcal{S}$ $Q^*(s, a) \triangleq \max_{\pi} Q_{\pi}(s, a)$, for all $s \in \mathcal{S}$, $a \in \mathcal{A}$

Recall $V^*(s)$ $Q^*(s,a)$

$$Q^*(s, a) = \mathbb{E}[r_t + \gamma V^*(s_{t+1}) | s_t = s, a_t = a]$$

= $\sum_{s'} p(s'|s, a) [r + \gamma V^*(s')]$

Diagram

$$V^*(s) = \max_{a \in \mathcal{A}} Q_{\pi^*}(s, a)$$
$$= \max_{a} \mathbb{E}[r + \gamma V^*(s')]$$

Bellman Optimality Equation

Diagram

$$Q^*(s, a) = \mathbb{E}\left[r_t + \gamma \max_{a'} Q^*(s_{t+1}, a') | s_t = s, a_t = a\right]$$
$$= \mathbb{E}\left[r + \gamma \max_{a'} Q^*(s', a')\right]$$

Bellman Optimality Equation

Generalized Policy Iteration

Policy Evaluation

Calculate V(s) or Q(s,a) functions for certain π

•
$$V_{k+1}(s) = \mathbb{E}_{\pi}[r + \gamma V_k(s')], k \to \infty$$

Or

•
$$V_{k+1}(s) = \max_{a} \mathbb{E}_{\pi}[r + \gamma V_k(s')], k \longrightarrow \infty$$

Policy Improvement

Improve π with respect to V(s) or Q(s,a) by making it greedy

•
$$\pi'(s) \triangleq \operatorname{argmax}_a Q_{\pi}(s, a)$$

$$= \operatorname{argmax}_a \mathbb{E}[r + V_{\pi}(s')]$$

Now we can talk about Q-learning!

Recall Bellman Optimality Equation $Q^*(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q^*(s',a')\right]$

Q-learning [Watkins, 1989]

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Step size or Learning rate Temporal Difference error $oldsymbol{\delta}$

Target

Initialization can severely change the learning performance

Hyperparameters (need to tune a bit)

• Initialize Q with size $|S| \times |A|$, specify α, γ, ϵ

For each episode:

- s = env.reset() Initialization of the env
- For each step: a probability $\epsilon \in [0, 1]$ With ϵ , random action 0.
- $a \sim \epsilon$ -greedy (s, ϵ) With 1ϵ , $\operatorname{argmax}_a Q(s, a)$
- s', r, done = env.step(a) Agent takes an action Env gives feedbacks

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

•
$$S = S'$$

• until done

Update
$$Q$$
 based on s, a, s', r

#ep

Learning Flow

Cliff Walking

- What's the state space?
- What's the action space?
- What's the size of Q?
- How to represent initial state and terminal state?

- S:4×12
- $\mathcal{A}:\uparrow,\downarrow,\leftarrow,\rightarrow$
- *s*₀: (3,0)
- S_f : (3,11)

Cliff Walking in python

```
Q=np.zeros((n_rows,n_cols,n_a))
stpCnt=0
for ep in range(n_eps):
    r_sum, done=0, False
    s=START
    for stp in range(n_stps):
        a=e_greedy(eps,Q[s[0],s[1]])
        s_,r,done=step(s,a)
        delta=r+gm*np.max(Q[s_{0},s_{1}])-Q[s[0],s[1],a]
        Q[s[0],s[1],a]+=lr*delta
        S=S_
        r_sum+=r
        stpCnt+=1
        if done:
            break
```

Learning curve

$$\alpha = 0.5$$

$$\gamma = 1$$

$$\epsilon = 0.1$$

Q-learning result

Q-learning result

Heatmap of learned V

Optimal Policy

What are the policy evaluation and the policy improvement procedures in Qlearning?

Questions

 Which factor makes the Q-learning agent always choose the 'dangerous'/'optimal' path?

• What will happen if we anneal ϵ ?

Reference & Code

- Sutton and Barto 2nd Edition, Example 6.6
- https://ha5ha6.github.io/judy_blog/td/#cliff-walking