EDAP30

Advanced Applied Machine Learning

Lecture 2: Language Models and Embeddings

Pierre Nugues

Pierre.Nugues@cs.lth.se

March 22, 2023

Natural Language Processing

Applications:

- Spelling and grammatical checkers: MS Word
- Text indexing and information retrieval on the Internet: *Google, Microsoft Bing, Yahoo*
- Telephone information that understands some spoken questions
- Speech dictation of letters or reports: Windows, macOS

Higher-level applications:

- Spoken interaction: Apple Siri, Google Assistant, Amazon Echo
- Translation: Google Translate, Bing Translator
- Question answering: IBM Watson and Jeopardy!
- Dialogue: GPT and the likes

Techniques

The inner engines of these applications tend to be powered by neural networks.

Big changes from the

- 1980's: rules,
- 1990's: Bayes,
- 2000's: SVM and logistic regression (logistic regression is an essential part of neural networks. It is still usable alone for many tasks).
- 2010's: (Deep) neural networks

Each generation tends to replace the previous one.

Neural nets expansion started in 2010 with images, in 2018-2019 with transformers. What in 2030?

Scope of the NLP Lectures

Three lectures

Techniques we will consider:

- Language models and embeddings
- Sequential networks
- Transformers

Applications we will consider:

- Information retrieval
- 2 Text categorization
- Word or segment categorization
- Translation: Google Translate, DeepL, Bing translator, etc.

Corpora

A corpus is a collection of texts (written or spoken) or speech Corpora are balanced from different sources: news, novels, etc.

	English	French	German
Most frequent words in a collection	the	de	der
of contemporary running texts	of	<i>le</i> (article)	die
	to	<i>la</i> (article)	und
	in	et	in
	and	les	des
Most frequent words in Genesis	and	et	und
	the	de	die
	of	la	der
	his	à	da
	he	il	er

Characteristics of Current Corpora

Big: starting with the Bank of English (Collins and U Birmingham) had more than 500 million words

Multilingual: Wikipedia

Easy to collect: The web is the largest corpus ever built and within the

reach of a mouse click

Exhaustive: Common crawl: https://commoncrawl.org/

Parallel: same text in two languages: English/French (Canadian

Hansards), European parliament (23 languages)

Annotated: Part-of-speech or manually parsed (treebanks):

Characteristics/NOUN of/PREP Current/ADJ Corpora/NOUN

Corpora as Knowledge Sources

- Traditional use:
 - Describe usage more accurately
- Machine learning
 - Learn statistical/machine-learning models for speech and text processing
 - Assess models and tools
 - Derive automatically knowledge from annotated or unannotated corpora
- Applications:
 - Text categorization
 - Information extraction
 - Question answering from textual sources
 - Translation

The Reuters Corpus

The Reuters corpus contains 800,00 economic newswires

```
<title>USA: Tvlan stock jumps: weighs sale of company.</title>
<headline>Tylan stock jumps; weighs sale of company.</headline>
<dateline>SAN DTEGO</dateline>
<t.ext.>
 <The stock of Tylan General Inc. jumped Tuesday after the maker of process-management equipment said it</p>
 is exploring the sale of the company and added that it has already received some inquiries from potential
 buyers.
 Tylan was up $2.50 to $12.75 in early trading on the Nasdag market.
 The company said it has set up a committee of directors to oversee the sale and that Goldman, Sachs
 & Co. has been retained as its financial adviser.
</text>
<metadata>
 <codes class="bip:topics:1.0">
   <code code="C15"/>
   <code code="C152"/>
   <code code="C18"/>
   <code code="C181"/>
   <code code="CCAT"/>
 </codes>
```

Newswires are manually annotated with pre-defined topics:

```
C15 Performance C152 Comment/Forecasts
C18 Ownership changes C181 Mergers/Acquisitions
CCAT Corporate/Industrial ...
```

url: http://trec.nist.gov/data/reuters/reuters.html

4 D > 4 D > 4 E > 4 E > E 9 9 9

Information Retrieval

Astronomic number of available documents

Search engines – Google, Yahoo – are examples of tools to retrieve information on the web

Usually, we have:

- A document collection
- A query
- A result consisting of a set of documents

The simplest technique is to use a Boolean formula of conjunctions and disjunctions that will return the documents satisfying it.

Another is to vectorize the documents and define a similarity measure

Preprocessing Text

Before we can apply machine learning algorithm, we need to preprocess the texts: Format it so that it can use it as input to our programs It includes (but it is not limited to):

- Format parsing (HTML, XML, etc.) and text extraction
- 2 Tokenization
- Sentence segmentation
- Encoding
- Cleaning.

Encoding Words

Machine-learning models prefer numbers
We need then to encode the words or the characters with numbers.
Using ordinal numbers {a:1, b:2, c:3, d:4, etc.} is impossible.

Is a closer to b, than c?

One-hot encoding: We encode the words of a corpus with unit vectors

Example

A very small corpus of two documents:

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

One-hot encoding:

- Collect all the unique words, possibly in lower case, and sort them: (america, chrysler, in, investments, latin, major, mexico, new, plans)
- Assign them a unique index:

```
{america: 1, chrysler: 2, in: 3, investments: 4, latin: 5, ...}
```

Associate a word with a unit vector:

```
america: (1, 0, 0, 0, 0, 0, 0, 0, 0)
```

Vectorizing Documents

Following this idea, we represent documents by the words they contain:

word \in document \rightarrow True (1) or False (0)

With the corpus:

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

We have:

D#∖ Words	america	chrysler	in	investments	latin	major	mexico	new	plans
1	1	1	1	1	1	0	0	1	1
2	0	1	1	1	0	1	1	0	1

And the vectorization:

D1: (1, 1, 1, 1, 1, 0, 0, 1, 1)

D2: (0, 1, 1, 1, 0, 1, 1, 0, 1)

This technique is often called *bag-of-word* (also multihot encoding) as the word order plays no role.

The Vector Space Model

We represented a document as a vector in a space of words, where the coordinates are the indices of the unit vectors

More generally, the vector space model represents a document in word space:

Documents \Words	w_1	W ₂	W ₃	 W _m
D_1 D_2	,	$C(w_2, D_1)$ $C(w_2, D_2)$		$C(w_m, D_1)$ $C(w_m, D_2)$
 D _n	$C(w_1, D_n)$	$C(w_2, D_n)$	$C(w_3, D_n)$	 $C(w_m, D_n)$

The most simple coordinates are Boolean values

Giving a Weight

Word clouds give visual weights to words

Image: Courtesy of Jonas Wisbrant

$TF \times IDF$

The presence of a word in a document does not give much information on its importance

The term frequency $tf_{i,j}$: frequency of term j in document i tells more on the document topic

Very frequent terms across the corpus are not informative. The inverted document frequency downplays their importance.

The inverted document frequency is defined as: $idf_j = \log(\frac{N}{n_j})$, where n_j is the number of documents in the corpus containing term j and N, the number of documents.

TFIDF is a baseline vectorization technique, where the document coordinates (D_i, w_j) are the products:

$$d_{i,j} = tf_{i,j} \times idf_j,$$

term frequency by inverted document frequency

Document Similarity

With vectorized documents, we can:

- Measure the similarity between two documents $(\mathbf{d}_1, \mathbf{d}_2)$
- **2** Rank documents $(\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_N)$ depending on a query \mathbf{q} .

The vector coordinates could be the the tfidf values or the count of each word: $\mathbf{d} = (C(w_1), C(w_2), C(w_3), ..., C(w_n))$

Queries q are represented similarly

The cosine of two documents **d** and **q**:

$$\cos(\mathbf{q}, \mathbf{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}.$$

defines their similarity.

Text Categorization

The objective is to determine the type of a text with a set of predefined categories, for instance: {spam, no spam}
Reuters uses 103 topic categories:

C11	STRATEGY/PLANS	C15	PERFORMANCE
C12	LEGAL/JUDICIAL	C151	ACCOUNTS/EARNINGS
C13	REGULATION/POLICY	C1511	ANNUAL RESULTS
C14	SHARE LISTINGS	C152	COMMENT/FORECASTS
C15	PERFORMANCE	C16	INSOLVENCY/LIQUIDITY
C151	ACCOUNTS/EARNINGS	C17	FUNDING/CAPITAL
C1511	ANNUAL RÉSULTS	C171	SHARE CAPITAL
C152	COMMENT/FORECASTS	C172	BONDS/DEBT ISSUES
C16	INSOLVENCY/LIQUIDITY	C173	LOANS/CREDITS
C17	FUNDING/CAPITAL	C174	CREDIT RATINGS
C171	SHARE CAPITAL	C18	OWNERSHIP CHANGES
C172	BONDS/DEBT ISSUES	C181	MERGERS/ACQUISITIONS
C173	LOANS/CREDITS	C182	ASSET TRANSFERS
C174	CREDIT RATINGS	C183	PRIVATISATIONS
C11	STRATEGY/PLANS	C21	PRODUCTION/SERVICES
C12	LEGAL/JUDICIAL	C22	NEW PRODUCTS/SERVICES
C13	REGULATION/POLICY	C23	RESEARCH/DEVÉLOPMENT
C14	SHARE LISTINGS		•

A baseline technique is to represent the documents with in tfidf vector space and use logistic regression as classifier

Algorithms for Text Categorization

The performance depends on the number of samples

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li, RCV1: A New Benchmark Collection for Text Categorization Research, *Journal of Machine Learning Research* 5 (2004) 361-397.

Word Contexts

Words and characters have specific contexts of use.

Pairs of words like *strong* and *tea* or *powerful* and *computer* are not random associations.

Psychological linguistics tells us that it is difficult to make a difference between *writer* and *rider* without context

A listener will discard the improbable *rider of books* and prefer *writer of books*

A language model is the statistical estimate of a word sequence:

- Originally developed for speech recognition
- The language model component predicts the next most likely words given a sequence of previous words

Language Models

$$P(S) = P(w_1, ..., w_n),$$

= $P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)...P(w_n|w_1, ..., w_{n-1}),$
= $\prod_{i=1}^{n} P(w_i|w_1, ..., w_{i-1}).$

For the sentence (from *Nineteen Eighty-Four*): *It was a bright cold day in April*

We have:

$$P(S) = P(It was a bright cold day in April)$$

= $P(It) \times P(was|It) \times P(a|It, was) \times P(bright|It, was, a) \times ...$
 $\times P(April|It, was, a, bright, ..., in).$

N-grams

In natural language processing, sequences of n words are called n-grams:

- Unigrams are single words;
- Bigrams are sequences of two words;
- Trigrams are sequences of three words;
- etc.

In the sentence:

Chrysler plans new investments in Latin America

We have:

```
The bigrams: (Chrysler, plans), (plans, new), (new, investments), (investments, in), (in, Latin), (Latin, America)
```

```
The trigrams: (Chrysler, plans, new), (plans, new, investments), (new, investments, in), (investments, in, Latin), (in, Latin, America)
```

Approximations

Bigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-1}),$$

Trigrams:

$$P(w_i|w_1, w_2, ..., w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1}).$$

Using a trigram language model:

$$P(S) = P(It was a bright cold day in April)$$

= $P(It) \times P(was|It) \times P(a|It, was) \times P(bright|It, was, a) \times ...$
 $\times P(April|It, was, a, bright, ..., in).$

is approximated as:

$$P(S) \approx P(It) \times P(was|It) \times P(a|It, was) \times P(bright|was, a) \times ... \times P(April|day, in).$$

Predicting with Trigrams

Word	Rank	More likely alternatives
We	9	The This One Two A Three Please In
need	7	are will the would also do
to	1	
resolve	85	have know do
all	9	the this these problems
of	2	the
the	1	
important	657	document question first
issues	14	thing point to
within	74	to of and in that
the	1	
next	2	company
two	5	page exhibit meeting day
days	5	weeks years pages months

Language Models and Generation

Using a n-gram language model, we can generate a sequence of words. Starting from a first word, w_1 , we extract the conditional probabilities: $P(w_2|w_1)$.

We could take the highest value, but it would always generate the same sequence.

Instead, we will draw our words from a multinomial distribution using np.random.multinomial().

Given a probability distribution, this function draws a sample that complies the distribution.

Having P(want|I) = 0.5, P(wish|I) = 0.3, P(will|I) = 0.2, the function will draw wish 30% of the time.

Code Example

Generating sequences with Bayesian probabilities

Jupyter Notebooks: https://github.com/pnugues/ilppp/blob/
master/programs/ch05/python/lm_generation.ipynb

Generating Word Sequences with a Temperature

In addition, we can use a "temperature" function to reweight the probability distribution: sharpen or damp it, as for instance in Chollet (2021): $\exp(\frac{\log(x)}{temp}) = x^{\frac{1}{temp}}$

```
def sample(preds, temperature=1.0):
    preds = np.asarray(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)
```

with the input [0.2, 0.5, 0.3], we obtain:

- Temperature = 2, [0.26275107 0.41544591 0.32180302]
- Temperature = 1, [0.2 0.5 0.3]
- Temperature = 0.5 [0.10526316 0.65789474 0.23684211]
- Temperature = 0.2 [0.00941176 0.91911765 0.07147059]

Code Example

Jupyter Notebooks: https://github.com/pnugues/ilppp/blob/
master/programs/ch05/python/lm_generation.ipynb

Dimension Reduction and Embeddings

One-hot or TFIDF encoding can produce very long sparse vectors. Imagine a vocabulary of one million words per language with 100 languages.

A solution is to use **dense vectors** in a vector space of small dimension. The new vectors are called **embeddings** with dimensions ranging from 10 to 1000

Input embeddings can be trained from scratch or initialized with pretrained vectors

Pretrained Embeddings

Many ways to create such embeddings:

- word2vec and CBOW
- GloVe

Comparable to techniques such as:

- Factor analysis
- Singular value decomposition or a principal component analysis

Note that these techniques are not used in practice in deep learning

GloVe Vectors

An excerpt of GloVe 50: 400,000 words represented by vectors of 50 dimensions.

```
. . .
```

```
then 0.19565 -0.32773 0.061642 -0.61557 0.55709 0.1319 -0.6402
company 0.62583 -0.57703 0.41163 0.86812 -0.083097 0.26555 -1
group 0.74048 -0.1201 0.039916 0.77326 0.80822 0.32251 -0.7723
any 0.51292 0.09032 0.023552 0.21438 0.70226 0.5623 0.11839 0
through 0.64925 0.068384 0.031703 -0.51479 -0.52809 -0.068008
china -0.22427 0.27427 0.054742 1.4692 0.061821 -0.51894 0.450
four 0.33375 0.44809 0.54759 0.21497 0.32637 0.70326 -0.95872
being 0.59049 -0.66076 -0.02551 -0.66217 0.3834 0.31517 -0.826
down -0.1981 -0.70847 0.85857 -0.48108 0.51562 -0.28924 -0.643
war 0.36544 -0.15746 -0.23966 -1.0307 -0.070691 0.21397 -0.04
```

Source: https://nlp.stanford.edu/projects/glove/

Cooccurrence Matrix

GloVe needs a cooccurrence matrix of the counts $C(w_i, w_j)$ for all the pairs of words.

For this, we use contexts of 2K words centered on the focus word w_i :

$$W_{i-K}$$
, W_{i-K+1} , ..., W_{i-1} , **W**_i, W_{i+1} , ..., W_{i+K-1} , W_{i+K} ,

K is set to 10 and the contribution of a word in the context to the count is 1/d, d being the distance to the focus word.

	w_1	<i>w</i> ₂	<i>w</i> ₃	 Wn
w_1	$C(w_1, w_1)$	$C(w_1, w_2)$	$C(w_1, w_3)$	 $C(w_1, w_n)$
<i>W</i> 2	$C(w_2, w_1)$	$C(w_2, w_2)$	$C(w_2, w_3)$	 $C(w_2, w_n)$
<i>W</i> 3	$C(w_1, w_1)$ $C(w_2, w_1)$ $C(w_3, w_1)$	$C(w_3, w_2)$	$C(w_3, w_3)$	 $C(w_3, w_n)$
Wn	$C(w_n, w_1)$	$C(w_n, w_2)$	$C(w_n, w_3)$	 $C(w_m, w_n)$

Each matrix element measures the association strength between two words

GloVe

We saw that the cosine of two vectors is a measure of their similarity GloVe defines the embedding vectors of two words, $\mathbf{emb}(w_i)$ and $\mathbf{emb}(w_j)$, so that their dot product is equal to the logarithm of their cooccurrence count:

$$\mathbf{emb}(w_i) \cdot \mathbf{emb}(w_j) = \log C(w_i, w_j)$$

The corresponds to an optimization problem
As loss function, GloVe uses the sum of the squared errors:

$$(\mathbf{emb}(w_i) \cdot \mathbf{emb}(w_j) - \log C(w_i, w_j))^2$$

and fits the embeddings with a gradient descent.

Code Example

Word2vec Embeddings

word2vec have two forms: CBOW and skipgrams.

CBOW's aim is to predict a word given its surrounding context:

I went to —— a friend

The setup is similar to fill-the-missing-word questionnaires.

The missing word is called the focus word, here visit

CBOW's architecture is simply a multinomial logistic regression

The word inputs are trainable dense vectors, where each word is associated with a vector

The word vectors, the embeddings, are trained on a corpus

Word2vec Example

Using contexts of five words and training sentences such as: Sing, O goddess, the anger of Achilles son of Peleus,

we generate a training set of contexts deprived of their focus word (X) and the focus word to predict (y):

$$X = \begin{bmatrix} sing & o & the & anger \\ o & goddess & anger & of \\ goddess & the & of & achilles \\ the & anger & achilles & son \\ anger & of & son & of \\ of & achilles & of & peleus \end{bmatrix}; \mathbf{y} = \begin{bmatrix} goddess \\ the \\ anger \\ of \\ achilles \\ son \end{bmatrix}$$

CBOW Architecture

We train a neural network to get the CBOW embeddings: N dimension of the embeddings, V size of the vocabulary. First matrix (V, N), second (N, V).

Code Example

```
https://github.com/pnugues/ilppp/blob/master/programs/ch05/python/cbow_book_fit.ipynb
https://github.com/pnugues/ilppp/blob/master/programs/ch05/python/skipgram_book_gen.ipynb
```

Principal Component Analysis

We will use a small dataset to explain principal component analysis: The characters in *Salammbô*

Ch. 18' 15' 12' 16' 12' 19' 18' 17' 19' 18' 17' 18' 18' 18' 18' 18' 18' 18' 18' 18' 18	"u" V" 1792 414 2069 499 707 147 1734 422 1396 315 1895 453 3518 844 1788 437
02 fr 2982 391 1006 1388 4993 319 360 350 2345 81 6 2128 823 2308 1560 977 281 2376 3454 2411 03 fr 1042 152 326 489 1785 136 122 126 784 41 7 816 397 778 612 315 102 792 1174 866 417 104 fr 2487 303 864 1137 4158 314 331 287 2028 57 3 1796 722 11988 1318 773 274 2000 2792 2031 05 fr 2014 268 645 949 3394 223 215 242 1617 67 3 1513 651 1547 1033 672 166 1601 2192 1736 06 fr 2085 368 910 1266 4353 332 384 378 2219 97 3 1900 841 2179 1569 868 285 2205 3065 2239	2069 499 707 147 1734 422 1396 315 1895 453 3518 844
03 fr 1042 152 326 489 1785 136 122 126 784 41 7 816 397 778 612 315 102 792 1174 856 04 fr 2487 303 864 1137 4158 314 331 287 2028 57 3 1795 722 1958 1318 773 274 2000 2792 2031 05 fr 2014 268 645 949 3394 223 215 242 1617 67 3 1513 651 1547 1053 672 166 1601 2192 1736 06 fr 2805 368 910 1266 4353 332 384 378 2219 97 3 1900 841 219 1599 868 285 2205 3065 2293	707 147 1734 422 1396 315 1895 453 3518 844
04 fr 2487 203 864 1137 4158 314 331 287 2028 57 3 1796 722 1958 1318 773 274 2000 2792 2031 05 fr 2014 268 645 949 3394 223 215 242 1617 67 3 1513 651 1547 1053 672 166 1601 2192 1736 06 fr 2805 368 910 1266 4535 332 384 378 219 97 3 1900 841 2179 1569 868 265 205 3065 2293	1734 422 1396 315 1895 453 3518 844
05 fr 2014 268 645 949 3394 223 215 242 1617 67 3 1513 651 1547 1053 672 166 1601 2192 1736 06 fr 2805 368 910 1266 4535 332 384 378 2219 97 3 1900 841 2179 1569 868 285 2205 3065 2293	1396 315 1895 453 3518 844
06 fr 2805 368 910 1266 4535 332 384 378 2219 97 3 1900 841 2179 1569 868 285 2205 3065 2293	1895 453 3518 844
	3518 844
07 fr 5062 706 1770 2308 8512 623 622 620 4018 126 10 3726 1506 3851 2823 1532 468 4015 5634 4116	
	1700 427
08 fr 2643 325 869 1085 4229 307 317 359 2102 85 4 1857 811 2041 1367 833 239 2132 2814 2134	
09 fr 2126 289 771 920 3599 278 289 279 1805 52 6 1499 619 1711 1130 651 187 1719 2404 1763	1448 348
10 fr 1784 249 546 805 3002 179 202 215 1319 60 5 1462 598 1246 922 557 172 1242 1769 1423	1191 270
11 fr 2641 381 817 1078 4306 263 277 330 1985 114 0 1886 900 1966 1356 763 230 1912 2564 2218	1737 425
12 fr 2766 373 935 1237 4618 329 350 349 2273 65 2 1955 812 2285 1419 865 272 2276 3131 2274	1923 455
13 fr 5047 725 1730 2273 8678 648 566 642 3940 140 22 3746 1597 3984 2736 1550 425 4081 5599 4387	3480 767
14 fr 5312 689 1754 2149 8870 628 630 673 4278 143 2 3780 1610 4255 2713 1599 512 4271 5770 4467	3697 914
15 fr 1215 173 402 582 2195 150 134 148 969 27 6 950 387 906 697 417 103 985 1395 1037	893 206
01 en 2217 451 729 1316 3967 596 662 2060 1823 22 200 1204 656 1851 1897 525 19 1764 1942 2547	704 258 6
02 en 2761 551 777 1548 4543 685 769 2530 2163 13 284 1319 829 2218 2237 606 21 2019 2411 3083	861 295 7
03 en 990 183 271 557 1570 279 253 875 783 4 82 520 333 816 828 194 13 711 864 1048	298 94 2
04 en 2274 454 736 1315 3814 595 559 1978 1835 22 198 1073 690 1771 1865 514 33 1726 1918 2704	745 245 6
05 en 1865 400 553 1135 3210 515 525 1693 1482 7 153 949 571 1468 1586 517 17 1357 1646 2178	663 194 5
06 en 2606 518 797 1509 4237 687 669 2254 2097 26 216 1239 763 2174 2231 613 25 1931 2192 2955	899 277 7
07 en 4805 913 1521 2681 7834 1366 1163 4379 3838 42 416 2434 1461 3816 4091 1040 39 3674 4060 5369	1552 465 13
08 en 2396 431 702 1416 4014 621 624 2171 2011 24 216 1152 748 2085 1947 527 33 1915 1966 2765	789 266 6
09 en 1993 408 653 1096 3373 575 517 1766 1648 16 146 861 629 1728 1698 442 20 1561 1626 2442	683 208 5
10 en 1627 359 451 933 2690 477 409 1475 1196 7 131 789 506 1266 1369 325 23 1211 1344 1759	502 181 4
11 en 2375 437 643 1364 3790 610 644 2217 1830 16 217 1122 799 1833 1948 486 23 1720 1945 2424	767 246 6
12 en 2560 489 757 1566 4331 677 650 2348 2033 28 234 1102 746 2125 2105 581 32 1939 2152 3046	750 278 7
13 en 4597 987 1462 2689 7963 1254 1201 4278 3634 39 432 2281 1493 3774 3911 1099 49 3577 3894 5540	1379 437 13
14 en 4871 948 1439 2799 8179 1335 1140 4534 3829 36 427 2218 1534 4053 3989 1019 36 3689 3946 5858	1490 539 13
15 en 1119 229 335 683 1994 323 281 1108 912 9 112 579 351 924 1004 305 9 863 997 1330	310 108 3

Table: Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Each chapter is modeled by a vector of characters.

Character Counts

	French																			English							
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	01	02	03	04	05	06	07	08	09	10		12
a	2503	2992	1042	2487	2014	2805	5062	2643	2126	1784	2641	2766	5047	5312	1215	2217	2761	990	2274	1865	2606	4805	2396	1993	1627	2375	2560
ь	365	391	152	303	268	368	706	325	289	249	381	373	725	689	173	451	551	183	454	400	518	913	431	408	359	437	489
c	857	1006	326	864	645	910	1770	869	771	546	817	935	1730	1754	402	729	777	271	736	553	797	1521	702	653	451	643	757
d	1151	1388	489	1137	949	1266	2398	1085	920	805	1078	1237	2273	2149	582	1316	1548	557	1315	1135	1509	2681	1416	1096	933	1364	1566
e	4312	4993	1785	4158	3394	4535	8512	4229	3599	3002	4306	4618	8678	8870	2195	3967	4543	1570	3814	3210	4237	7834	4014	3373	2690	3790	4331
- 1	264	319	136	314	223	332	623	307	278	179	263	329	648	628	150	596	685	279	595	515	687	1366	621	575	477	610	677
9	349	360	122	331	215	384	622	317	289	202	277	350	566	630	134	662	769	253	559	525	669	1163	624	517	409	644	650
h l	295	350	126	287	242	378	620	359	279	215	330	349	642	673	148	2060	2530	875	1978	1693	2254	4379	2171	1766	1475	2217	2348
1.1	1945	2345	784	2028	1617	2219	4018	2102	1805	1319	1985	2273	3940	4278	969	1823	2163	783	1835	1482	2097	3838	2011	1648	1196	1830	2033
- 1	65	81	41	57	67	97	126	85	52	60	114	65	140	143	27	22	13	4	22	7	26	42	24	16	7	16	28
К	4	6	7	3	3	3	19	4	6	5	0	2	22	2	6	200	284	82	198	153	216	416	216	146	131 789	217	234
1.1	1946 726	2128 823	816 397	1796 722	1513 651	1900 841	3726 1596	1857 811	1499 619	1462 598	1886 900	1955 812	3746 1597	3780 1610	950 387	1204 656	1319 829	520 333	1073 690	949 571	1239 763	2434 1461	1152 748	861 629	789 506	1122 799	1102 746
m																											
n	1896 1372	2308 1560	778 612	1958 1318	1547 1053	2179 1569	3851 2823	2041 1367	1711 1130	1246 922	1966 1356	2285 1419	3984 2736	4255 2713	906 697	1851 1897	2218 2237	816 828	1771 1865	1468 1586	2174 2231	3816 4091	2085 1947	1728 1698	1266 1369	1833 1948	2125 2105
° l	789	977	315	773	672	868	1532	833	651	557	763	865	1550	1599	417	525	606	194	514	517	613	1040	527	442	325	486	581
8	248	281	102	274	166	285	468	239	187	172	230	272	425	512	103	19	21	13	33	17	25	39	33	20	23	23	32
- 2	1948	2376	792	2000	1601	2205	4015	2132	1719	1242	1912	2276	4081	4271	985	1764	2019	711	1726	1357	1931	3674	1915	1561	1211	1720	1939
- 4	2996	3454	1174	2792	2192	3065	5634	2814	2404	1769	2564	3131	5599	5770	1395	1942	2411	864	1918	1646	2192	4060	1966	1626	1344	1945	2152
- 6	1938	2411	856	2031	1736	2293	4116	2134	1763	1423	2218	2274	4387	4467	1037	2547	3083	1048	2704	2178	2955	5369	2765	2442	1759	2424	3046
- 6	1792	2069	707	1734	1396	1895	3518	1788	1448	1191	1737	1923	3480	3697	893	704	861	298	745	663	899	1552	789	683	502	767	750
v	414	499	147	422	315	453	844	437	348	270	425	455	767	914	206	258	295	94	245	194	277	465	266	208	181	246	278
w	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	653	769	254	663	568	733	1332	695	560	410	632	721
×	129	175	42	138	83	151	272	135	119	65	114	149	288	283	63	29	37	8	60	26	49	74	65	25	31	20	35
v	94	89	31	81	67	80	148	64	58	61	61	98	119	145	36	401	475	145	467	330	464	843	379	328	255	457	418
ž	20	23	7	27	18	39	71	30	20	11	25	37	41	41	3	18	31	15	19	33	37	52	24	18	20	39	40
à	128	136	39	110	90	131	246	130	90	73	101	129	209	224	48	0	0	0	0	0	0	0	0	0	0	0	0
- 3	36	50	9	43	67	42	50	43	24	18	40	33	55	75	20	0	0	0	0	0	0	0	0	0	0	0	0
æ	0	1	0	0	0	0	1	0	2	0	0	0	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0
ç	35	28	10	22	24	30	46	34	16	16	34	23	61	56	17	0	0	0	0	0	0	0	0	0	0	0	0
è	102	147	49	138	112	122	232	119	99	68	108	151	237	260	58	0	0	0	0	0	0	0	0	0	0	0	0
é	423	513	194	424	367	548	966	502	370	304	438	480	940	1019	221	0	0	0	0	0	0	0	0	0	0	0	0
ê	43	68	24	36	44	57	96	54	43	53	68	60	126	94	32	0	0	0	0	0	0	0	0	0	0	0	0
ë	1	0	0	0	1	0	2	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 1	17	20	12	15	11	15	42	11	8	15	26	13	32	28	12	0	0	0	0	0	0	0	0	0	0	0	0
- 1	2	0	0	2	8	12	9	1	2	5	15	3	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0
ô	20	20	27	15	23	15	41	14	13	38	50	15	37	45	24	0	0	0	0	0	0	0	0	0	0	0	0
0	14	9	4	6	18	14	30	6	5	3	7	11	24	21	7	0	0	0	0	0	0	0	0	0	0	0	0
0	7	9	7	4	15	15	38	8	15	10	9	14	30	21	11	0	0	0	0	0	0	0	0	0	0	0	0
œ	5	5	2	8	7	9	9	5	3	5	7	0	13	12	6	0	0	0	0	0	0	0	0	0	0	0	0

Table: Character counts per chapter in French, left part, and English, right part

Each characters is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m = 30 and n = 40.

We can rewrite X as:

$$X = U\Sigma V^{\mathsf{T}}$$
,

where U is a matrix of dimensions $m \times m$, Σ , a diagonal matrix of dimensions $m \times n$, and V, a matrix of dimensions $n \times n$.

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

We keep the highest values and set the rest to zero.

Code Example

Jupyter Notebook: https://github.com/pnugues/ilppp/blob/
master/programs/ch05/python/ch05-3.ipynb

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

```
word2vec: https://github.com/tmikolov/word2vec
```

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

ELMo: https://allennlp.org/elmo

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just download them

gensim is a Python library to create word embeddings from a corpus.

https://radimrehurek.com/gensim/index.html

Semantic Similarity

Word embeddings mitigate the dimension problem relatively to one-hot encoding

In addition, similar words will have similar vectors

Demo: http://bionlp-www.utu.fi/wv_demo/

This enables to cope with words unseen in a training set