

Tutorials overview and wrap-up

Adaptation Genomics Course

Mafalda Ferreria, PhD & Angela Fuentes Pardo, PhD

June 24 - 28, 2024

(adapted from Claire Mérot & Anna Tigano's slides)

Capelin dataset

DOI: 10.1111/mec.15499

ORIGINAL ARTICLE

Shared ancestral polymorphisms and chromosomal rearrangements as potential drivers of local adaptation in a marine fish

- Mallotus villotus
- Small fish
- Spawn on beaches
- Cold waters of the North Atlantic Ocean

Capelin dataset

Capelin dataset

N fastQ files

@70ZFD:01332:11598/1

TGCATCAACTTTAAGATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCCAGACTTGCCCTCCAATGGATCCTC

+

7<<=<;<4676*115345::=;<=6;5<;<;;7<1918<199<6<<::9:5:556+38469166=3;<6<655-477-4/@70ZFD:01334:11636/1

+

5;?;;;5855;4:4<A<;<<;;<<<B9B=<<<>>;;;=<<:69:58-55)533)/893<:;:9:496888<:1;599;;B @70ZFD:01335:11615/1

TGCATGGCAGAGTGGAGAGGGCCCCTCTACTGGAACTTCCTGGAACAGGTCCTCCGAATGTCCAAGGTACAACGGTTC

Dummy genome

Smaller genome : 5 chromosomes

We aligned fastq files = the raw reads on that dummy reference genome

 \Rightarrow BAM files that you will play with in STACKS.

→ Greenland lineage

North American lineage

2 populations

N= 40

12 populations

N= 240 (20/pop)

	Dataset 1	Dataset 2	Dataset 3
	« 2_lin »	« all »	« canada »
	4 populations (2 greenland /2 canadian) => 80 samples	14 populations (2 greenland /12 canadian) => 280 samples	12 populations (12 canadian) => 240 samples
	F _{st} (vcftools) PCA	Faststructure DAPC	PCA DAPC
	Optional (F _{st} with Stacks)		Optional (Pairwise F _{st})
			-> ALL analyses of day 3-day4-day5

Day1 SNP calling with STACKS

Day2 Population structure

2 populations N= 40

12 populations N= 240 (20/pop)

• Why do you think is necessary to <u>impute</u> missing values when performing a PCA? Would you follow the same approach for reduced representation sequence (RRS) and whole genome sequence (WGS) data?

0.08 -

0.04 -

PC3

SNPs

Q: What does it mean?

Chr3 Chr4 Chr5

-10

PC4

LEA – Clustering methods

2 lineages

→ Greenland lineages

North American lineages

2 populations N= 40

12 populations N= 240 (20/pop)

→ North American lineage

12 populations N= 240 (20/pop)

Do we observe genetic structure?

Medium values ($F_{ST} = 0.025$)? Lots of heterogeneity...

- \Rightarrow pop A: 0 females, 20 males
- \Rightarrow pop J: 18 females and 2 males
- ⇒ Sex-linked markers + unbalance sample size influence differentiation
- ⇒ Solutions:
- better sampling?
- exclude sex-linked markers (chr 5)!!

Do we observe genetic structure?

F_{ST} between all populations

Excluding chromosome 4 (inversion) & chromosome 5 (sex)

Note the highest values: they are now at about 0.005 instead of 0.025

⇒ Almost no geographic structure...

Do we observe genetic structure?

DAPC -> when we avoided over-fitting, no genetic structure related to geography (12 populations)

Day3 – Outlier detection and Environmental associations

Disentangle population structure & putative signature of adaptation

- 3-1 F_{ST} statistics (we did this yesterday, today we generated a LD-pruned VCF file)
- 3-2 Outliers of differentiation
- 3-3 Genotype-environment associations

North American lineage

12 populations N= 240 (20/pop)

Sea temperature (from MARSPEC)

Climatic variables

How to extract them from databases?

https://www.worldclim.org/

http://www.marspec.org/
(with useful tutorials)

https://www.bio-oracle.org/
(with prediction under GIEC scenarios)

3-1 Create a subset of LD-pruned SNPs (with plink)

- Useful to have a genetic structure less biased by LD
- Will be used to correct for population structure in Outflank, Baypass, etc

3-2 Outlier detection (with OutFlank)

Based on F_{st} outliers across all pairs of populations

3-2 Outlier detection (with Baypass)

3-3 Environmental associations (Baypass)

Chr2 Chr3 Chr4 Chr5 Chr1 Get a covariance matrix on LD-pruned SNPs Use it to correct the run on all SNPs \Rightarrow XtX is a measure of differentiation Run Baypass on simulated SNPs to get chromosome thresholds of significance Chr1 BF.dB Chr2 Chr3 Chr5 Simply add a co-variable matrix describing environmental variations between pop

position

3-3 Environmental associations (with RDA)

Polygenic multivariate model

-> Can be much more complexified (test several variables, control for geography, etc)
See the optional tutorial

Baypass about making independant runs

What we did

- Run baypass once
- Use 1 CPU!
- Take the value of XtX (or BF) from this run
- Keep as outliers SNPs with XtX (or BF) above the 99% of XtX from simulated values

- Look at outliers SNPs that were shared with RDA (but remember that RDA and Baypass works differently)

Recommended Practices for your dataset

- Run baypass 3 to 5 times with a different seed
- Use 5 to 10 CPU (n threads) if available
- Take median value of XtX (or BF) for each SNP
- Keep as outliers SNPs with XtX (or BF) above the 99,99...% of XtX (or BF) from simulated values – Avoid considering BF below 3 (look at Jeffrey's rule)
- Look at outliers SNPs that were shared with any other method of genotype-environment association

3-3 Environmental associations - examine overlap

Day 4: Detecting structural variants

Detection of haplotype blocks (putative inversions, young sex chromosomes, etc.)

- 1. Detection with local PCA
- 2. Exploration of the haploblocks (genotype, LD, F_{st} , H obs)

Why?

On day 2, we observed a strong structure pattern on the PCA of the 12 Canadian populations

4-1 Detection of SVs with local PCA

Correlation between local PCA and global PCA

MDS looking at similar windows accross the genome

4-1 Exploration of the haploblocks

• Genotype

4-1 Exploration of the haploblocks

1.00

0.75 0.50 0.25

Heterozygote for inversion

$$D = p_{A_1B_1} - p_{A_1}p_{B_1} \qquad (1)$$

$$r^2 = rac{D^2}{p_{A_1}(1-p_{A_1})p_{B_1}(1-p_{B_1})}$$
 (2)

 pA_R Frequency of allele R in locus A pB_R Frequency of allele R in locus B pA_RB_R Frequency of haplotype A_RB_R

	Locus 🔼	Locus B
Freq of allele R	0.625	0.5
Freq Haplotype		
A_RB_R	0.375	
D	0.0625	
R2	0.06666667	

	Locus 🔒	Locus 🥲
Freq of allele R	0.5	0.5
Freq Haplotype		
B_RC_R	0.5	
D	0.25	
R2	1	

	Locus 🔼	Locus B
Freq of allele R	0.625	0.5
Freq Haplotype		
A_RB_R	0.375	
D	0.0625	
R2	0.06666667	

	Locus	Locus C 🧲
Freq of allele R	0.625	0.625
Freq Haplotype		
B_RC_R	0.25	
D	-0.14	
R2	0.36	

Genotype

Linkage disequilibrium

You don't observe the same in the BB group.

It seems that the BB group has higher linkage overall (possibly due to low sample size).

1.00

0.75

0.50

0.25

0.00

- Genotype
- Linkage disequilibrium
- FST between haplogroups

- Genotype
- Linkage disequilibrium
- FST between haplogroups

- Genotype
- Linkage disequilibrium
- FST between haplogroups

Higher variation in Fst since BB is small

- Genotype
- Linkage disequilibrium
- FST between haplogroups
- Observed fraction of heterozygotes

Day 4: Detecting structural variants

- 1: Detection of haplotypic blocks (putative inversions, young sex chromosomes, etc)
- 1 Detection with local PCA

Analysis of those CNVs in pop G

- 2 Exploration of the haploblocks (genotype, LD, Fst, Hobs)
 - 2: Whole-genome sequencing for SNPs and small/medium SVs

3: How to explore duplicated loci in RAD-seq data

Demonstration by Yann

Detection and filtering of duplicated loci

For Day4: whole-genome sequencing

12 samples from different canadian populations

BUT useful for SV detection or for a higher density of SNPs

Here we pick a very reduced dataset to make things run fast!!

Tutorial day 5

Most methods that we saw during the week will provide

- ⇒ General knowledge about:
 - ⇒ isolation-by-adaptation
 - ⇒ genetic architecture of adaptation
 - ⇒ genomic variance related to possible ecological variation, etc ...

- ⇒ Putatively-adapted SNPs, SVs or genomic regions
 - Can we point towards causal candidate genes or pathways?

Local adaptation / population genomics

Gene annotation, gene ontology, gene enrichment

Genome + transcriptome + protein databases + transposable elements databases

- ⇒ By aligning the transcriptome on the genome we can know gene positions (and exon, intron, etc...)
- ⇒ The transcriptome can be annotated thanks to protein databases (protein sequences usually more conserved than DNA sequences)
- ⇒ Genes/Proteins are gathered into functional categories called « gene ontology » http://geneontology.org/docs/ontology-documentation/
- ⇒ Thanks to TE databases and repeat detection, the genome can be annotated for interspersed reapeats.

Tutorial day 5

We:

- Annotate the SNPs to know whether they belong to exon, intron, regulatory regions
- Look for genes at the proximity of our outlier SNPs
- Test for enrichment in the outliers for particular GO categories

5-1 Annotate SNPs (with snpEff)

It uses genome annotation (gff) to say whether SNPs belong to genes, intergenic region, introns, etc...

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	
Chr1	53559	49:9:-	С	G	•	PASS	ANN=G	upstrea	m_gene_variant
Chr1	94208	95:21:+	· A	G	•	PASS	ANN=G	interge	nic_region
Chr1	308478	248:57:	+	T	G	•	PASS	ANN=G	downstream_gene_variant
Chr1	510235	370:36:	+	G	A	•	PASS	ANN=A	intergenic_region
Chr1	586674	438:51:	_	T	A	•	PASS	ANN=A	splice_region_variant&intron_variant

We will do a small analysis to look whether outliers are enriched in one category.

5-2 Overlap SNPs / Genes (with bedtools

It takes bedfiles with position of the SNPs, position of the outliers, and position of the genes

```
Chr1 1518343 1528343 1262:33:-
Chr1 1785873 1795873 1582:14:+
Chr1 3100385 3110385 2846:22:+
Chr1 9138069 9148069 6032:68:+
```

BED format is CHR START STOP and then 1 to 9 columns with informations.

bedtools function "intersect" is used to look for the overlap.

5-3 Gene ontology enrichment (with goseq library in R)

Warning: lots of the tutorial is about getting the good format!

Warning: GO enrichment are more appropriate for RNAseq analysis & whole-genome analysis.

Warning: The genes overlapping with outliers should be contrasted against the pool of genes overlapping with SNPs (not with all the genes in the genome as some of them may simply not be covered).

	А В	С	D	E	F	G	н	1	J
1	category	over_represented_pvalue	under_represented_pva numDEInCat numInCat		t numInCat	term	ontology	over_represented_padjust	
2 312	GO:0002084	0.000156082315798037	1	3	3	protein depalmitoylation	BP	0.285337979103912	
3 1464	GO:0008474	0.000156082315798037	1	3	3	palmitoyl-(protein) hydrolase activity	MF	0.285337979103912	
4 321	GO:0002116	0.000294654865200251	0.999994454136017	4	5	semaphorin receptor complex	CC	0.285337979103912	
5 2083	GO:0017154	0.000294654865200251	0.999994454136017	4	5	semaphorin receptor activity	MF	0.285337979103912	
6 5962	GO:1902287	0.000294654865200251	0.999994454136017	4	5	semaphorin-plexin signaling pathway involved in axon guidance	BP	0.285337979103912	
7 1216	GO:0007162	0.000296809418783432	0.999983768129723	5	9	negative regulation of cell adhesion	BP	0.285337979103912	
8 4373	GO:0050772	0.000310874062836947	0.999974869452678	6	12	positive regulation of axonogenesis	BP	0.285337979103912	
9 2441	GO:0030334	0.000486425168909856	0.999953366171224	6	14	regulation of cell migration	BP	0.352095652505383	
10 4744	GO:0060173	0.000493207917906374	0.999967242689428	5	10	limb development	BP	0.352095652505383	
11 2271	GO:0021915	0.000874038794384151	0.999926922864949	5	12	neural tube development	BP	0.561569925391817	
12 415	GO:0003184	0.000978441764940278	0.999961433037353	4	6	pulmonary valve morphogenesis	BP	0.571498939976481	
13 4251	GO:0048663	0.00172080373358469	0.99996543727975	3	4	neuron fate commitment	BP	0.914071591313777	
14 477	GO:0003677	0.00184948337542087	0.999358433585154	16	101	DNA binding	MF	0.914071591313777	
15 3795	GO:0044853	0.00209456701107637	0.999852868671463	4	9	plasma membrane raft	CC	0.961256646154693	
16 2417	GO:0030279	0.00342223535358641	0.999871336014125	3	5	negative regulation of ossification	BP	1	
17 1788	GO:0014807	0.00364924867417417	1	2	2	regulation of somitogenesis	BP	1	
18 4372	GO:0050771	0.00432286945672922	0.999790741338814	3	6	negative regulation of axonogenesis	BP	1	
19 4466	GO:0051124	0.0043715948142503	1	2	2	synaptic assembly at neuromuscular junction	BP	1	
20 5209	GO:0071340	0.0043715948142503	1	2	2	skeletal muscle acetylcholine-gated channel clustering	BP	1	
21 5535	GO:0097105	0.0043715948142503	1	2	2	presynaptic membrane assembly	BP	1	

How to extract environmental data

- Check out the new tutorial available in the GitHub repo <u>https://github.com/MafaldaSFerreira/physalia_adaptation_course-2024/blob/main/03_day3/tutorial_bioOracle_optional.R</u>
- We use the R package sdmpredictors to connect to the environmental database (bio-Oracle in this case). To learn which databases can be accessed with this package, see https://cran.r-project.org/web/packages/sdmpredictors/vignettes/quickstart.html