Nombre de surjections entre ensembles finis

Pour tout n de \mathbb{N}^* , on note $E_n = \{1, 2, \dots, n\}$.

On note $S_{n,p}$ le nombre de surjections de E_n sur E_p .

- 1. Calculer $S_{n,p}$ si p > n. [S]
- 2. Calculer $S_{n,n}$, $S_{n,1}$, et $S_{n,2}$. [S]
- 3. Calculer $S_{p+1,p}$. [S]

On suppose désormais que 0 .

- 4. Montrer que $\sum_{k=0}^{p} (-1)^k C_p^k = 0$ [S]
- 5. Montrer que $0 \le k \le q \le p \Rightarrow C_p^q C_q^k = C_p^k C_{p-k}^{q-k}$. [S]
- 6. En déduire que, si $0 \le k < p$, alors $\sum_{q=k}^{p} (-1)^q C_p^q C_q^k = 0$ (et si k=p?). [S]
- 7. Montrer que pour tout entier q de $\{1, 2, ..., p\}$ le nombre d'applications de E_n dans E_p ayant un ensemble image à q éléments est égal à $C_p^q S_{n,q}$. [S]
- 8. En déduire que $p^n = \sum_{q=1}^p \mathbb{C}_p^q S_{n,q}$. [S]
- 9. En utilisant ce qui précède, montrer que : $S_{n,p} = (-1)^p \sum_{k=1}^p (-1)^k \mathcal{C}_p^k k^n$.

Indication:

- Transformer le second membre à l'aide de la question précédente.
- Justifier l'égalité $\sum\limits_{k=1}^p\sum\limits_{q=1}^k\cdots=\sum\limits_{q=1}^p\sum\limits_{k=q}^p\cdots$

[S]

10. Montrer que si $0 , alors <math>S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$.

Indication:

- Étant donné une surjection φ de E_n sur E_p , considér sa restriction φ_1 à E_{n-1} .
- Distinguer deux cas suivant que φ_1 est ou n'est pas surjective [S]
- 11. Retrouver la valeur de $S_{p+1,p}$, puis montrer que $S_{p+2,p} = \frac{p(3p+1)}{24}(p+2)!$. [S]
- 12. En s'inspirant du triangle de Pascal, montrer qu'on peut construire une table des $S_{n,p}$. Construire cette table pour 0 . [S]

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigé du problème

- 1. On sait que si p > n il n'y a pas de surjection de E_n sur E_p , donc $S_{n,p} = 0$. [Q]
- 2. Toute application de E_n dans E_n est surjective si et seulement si elle est bijective. Or il y a n! bijections de E_n sur lui-même. On a donc $S_{n,n} = n!$
 - Il n'y a qu'une application de E_n dans E_1 , et elle est surjective. Donc $S_{n,1}=1$.
 - Il y a 2^n applications de E_n dans E_2 . Parmi elles, deux seulement sont non surjectives (les applications constantes). Autrement dit $S_{n,2} = 2^n 2$.
- 3. L'application $f: E_{p+1} \to E_p$ est surjective \Leftrightarrow tous les éléments de E_p ont exactement un antécédent, à l'exception d'un élément y de E_p qui doit en posséder deux.

Il y a p choix pour y, puis $C_{p+1}^2 = \frac{p(p+1)}{2}$ choix pour les antécédents x_1, x_2 de y.

Il reste ensuite à établir une bijection entre $E_{p+1} \setminus \{x_1, x_2\}$ et $E_p \setminus \{y\}$, c'est-à-dire entre deux ensembles à p-1 éléments, ce qui peut se faire de (p-1)! manières différentes.

Ainsi
$$\forall p \in \mathbb{N}^*$$
, $S_{p+1,p} = p C_{p+1}^2 (p-1)! = p \frac{(p+1)p}{2} (p-1)! = \frac{p}{2} (p+1)! [Q]$

- 4. Dans $(1+x)^p = \sum_{k=0}^p C_p^k x^k$, on pose $x = -1 : \forall p \in \mathbb{N}^*, \sum_{k=0}^p C_p^k (-1)^k = (1-1)^p = 0$. [Q]
- 5. Pour $0 \le k \le q \le p$, on a :

$$C_p^q C_q^k = \frac{p!}{q! (p-q)!} \frac{q!}{k! (q-k)!} = \frac{p!}{k! (p-k)!} \frac{(p-k)!}{(q-k)! ((p-k)-(q-k))!} = C_p^k C_{p-k}^{q-k}$$
[Q]

6. Si
$$0 \le k < p$$
, on a: $\sum_{q=k}^{p} (-1)^q C_p^q C_q^k = \sum_{q=k}^{p} (-1)^q C_p^k C_{p-k}^{q-k} = C_p^k \sum_{q=k}^{p} (-1)^q C_{p-k}^{q-k}$.

Le changement d'indice r = q - k donne : $\sum_{q=k}^{p} (-1)^q \mathcal{C}_p^q \mathcal{C}_q^k = (-1)^k \mathcal{C}_p^k \sum_{r=0}^{p-k} (-1)^r \mathcal{C}_{p-k}^r$

Mais cette dernière somme est nulle car p-k>0 (voir question 4.)

Si
$$k = p$$
, on a: $\sum_{q=k}^{p} (-1)^q C_p^q C_q^k = (-1)^p C_p^p C_p^p = (-1)^p$. [Q]

- 7. Pour construire $f: E_n \to E_p$ dont l'ensemble image contienne exactement q éléments, il faut choisir ces q éléments dans E_p , ce qui offre C_p^q possibilités différentes.
 - Il faut ensuite construire une surjection de E_n sur Im(f) (donc d'un ensemble de cardinal n vers un ensemble de cardinal q): il y a $S_{n,q}$ possibilités différentes.
 - Il y a donc $C_p^q S_{n,q}$ applications $f: E_n \to E_p$ dont l'ensemble image a q éléments. [Q]
- 8. Il y a p^n applications de E_n dans E_p , qu'on peut grouper suivant le cardinal q de leur ensemble image, l'entier q pouvant varier de q = 1 à q = p.

Pour chaque valeur de q, on sait qu'il y a $C_p^q S_{n,q}$ applications possibles.

Ce dénombrement permet donc d'écrire : $p^n = \sum_{q=1}^p C_p^q S_{n,q}$. [Q]

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

9. En utilisant l'égalité précédente, on trouve :

$$(-1)^{p} \sum_{k=1}^{p} (-1)^{k} C_{p}^{k} k^{n} = (-1)^{p} \sum_{k=1}^{p} (-1)^{k} C_{p}^{k} \left(\sum_{q=1}^{k} C_{k}^{q} S_{n,q} \right) = (-1)^{p} \sum_{k=1}^{p} \sum_{q=1}^{k} (-1)^{k} C_{p}^{k} C_{k}^{q} S_{n,q}$$

La double sommation ci-dessus s'effectue sur les couples (k,q) tels que $\begin{cases} 1 \le k \le p \\ 1 \le q \le k \end{cases}$

L'ensemble des points de coordonnées (k, q) définit une zone triangulaire qui pour l'instant est "parcourue" ligne par ligne.

Dans un parcours colonne par colonne, les couples (k,q) sont caractérisés par $\begin{cases} 1 \le q \le p \\ q \le k \le p \end{cases}$

L'interversion des deux sommes s'écrit donc : $\sum_{k=1}^p \sum_{q=1}^k \cdots = \sum_{q=1}^p \sum_{k=q}^p \cdots$ On trouve alors :

$$(-1)^p \sum_{k=1}^p (-1)^k \mathcal{C}_p^k k^n = (-1)^p \sum_{q=1}^p \sum_{k=q}^p (-1)^k \mathcal{C}_p^k \mathcal{C}_k^q S_{n,q} = (-1)^p \sum_{q=1}^p \left[\sum_{k=q}^p (-1)^k \mathcal{C}_p^k \mathcal{C}_k^q \right] S_{n,q}$$

Le terme entre crochets vaut 0 si q < p et $(-1)^p$ si q = p.

L'expression complète se réduit donc à $S_{n,p}$.

Conclusion: si
$$1 \le p \le n$$
, alors $S_{n,p} = (-1)^p \sum_{k=1}^p (-1)^k C_p^k k^n$. [Q]

10. Considérons une surjection quelconque φ de E_n dans E_p .

Il y a $S_{n,p}$ manières de choisir φ . Notons φ_1 la restriction de φ à E_{n-1} .

Il v a deux cas possibles, qui s'excluent mutuellement.

– Premier cas : φ_1 est surjective de E_{n-1} sur E_p .

Il y a bien sûr $S_{n-1,p}$ possibilités différentes de construire φ_1 .

– Deuxième cas : φ_1 n'est pas surjective.

Puisque φ_1 est la restriction de φ à E_{n-1} , on a $\operatorname{Im}(\varphi) = \operatorname{Im}(\varphi_1) \cup \{\varphi(n)\}.$

L'ensemble image $\operatorname{Im}(\varphi)$ est exactement de cardinal p, car φ est surjective.

L'ensemble $\operatorname{Im}(\varphi_1)$ est donc à priori de cardinal p ou p-1.

Mais dire que φ_1 n'est pas surjective, c'est écrire $\operatorname{Card}(\operatorname{Im}(\varphi_1)) < p$.

Cela équivaut à $Card(Im(\varphi_1)) = p - 1$.

Il revient au même de dire que φ_1 est surjective de E_{n-1} sur $E_p \setminus \{\varphi(n)\}$.

Il y a donc autant de façons de construire φ_1 qu'il y a de surjections d'un ensemble à n-1 éléments sur un ensemble à p-1 éléments, c'est-à-dire $S_{n-1,p-1}$.

Le nombre de choix possibles pour φ_1 est donc $S_{n-1,p} + S_{n-1,p-1}$.

Une fois fixée φ_1 , il y a p manières de choisir $\varphi(n)$ dans E_p .

Ainsi le nombre de surjections $\varphi: E_n \to E_p$ est $p(S_{n-1,p} + S_{n-1,p-1})$.

Conclusion: si $1 , alors <math>S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$. [Q]

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

11. – Sachant $S_{p,p} = p!$, la formule précédente donne : $S_{p+1,p} = p(p! + S_{p,p-1})$.

Montrons par récurrence que pour tout $p \ge 1$, on a : $S_{p+1,p} = \frac{p}{2}(p+1)!$

La propriété est vraie au rang 1 puisque $S_{2,1}=1$ (on rappelle que $\forall n \geq 1, S_{n,1}=1$.)

Supposons que cette propriété soit vraie au rang p-1, avec $p \ge 2$.

On a alors
$$S_{p+1,p} = p(p! + S_{p,p-1}) = p\left(p! + \frac{p-1}{2}p!\right) = p \cdot p! \frac{p+1}{2} = \frac{p}{2}(p+1)!$$

Cela prouve la propriété au rang p et achève la récurrence.

On a ainsi retrouvé le fait que, pour tout entier $p \ge 1$, $S_{p+1,p} = \frac{p}{2}(p+1)!$

- Pour tout entier $p \ge 1$: $S_{p+2,p} = p(S_{p+1,p} + S_{p+1,p-1}) = p\left(\frac{p}{2}(p+1)! + S_{p+1,p-1}\right)$.

Montrons par récurrence que pour tout entier $p \ge 1$, on a : $S_{p+2,p} = \frac{p(3p+1)}{24}(p+2)!$

Quand p=1 on a $\frac{p(3p+1)}{24}(p+2)!=1$, ce qui est bien la valeur de $S_{3,1}$.

Supposons le résultat établi au rang p-1, avec $p \ge 2$. Alors :

$$S_{p+2,p} = p\left(\frac{p}{2}(p+1)! + S_{p+1,p-1}\right) = p\left(\frac{p}{2}(p+1)! + \frac{(p-1)(3p-2)}{24}(p+1)!\right)$$
$$= \frac{(p+1)!}{24}p\left(12p + 3p^2 - 5p + 2\right) = \frac{(p+1)!}{24}p\left(3p + 1\right)(p+2) = \frac{p\left(3p+1\right)}{24}(p+2)!$$

ce qui démontre la propriété au rang p et achève la récurrence.

[Q]

12. La formule $S_{n,p} = p(S_{n-1,p} + S_{n-1,p-1})$ est analogue à la formule $C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$, qui permet de construire le triangle de Pascal. On construit là aussi un tableau triangulaire, où $S_{n,p}$ figure à l'intersection de la ligne n et de la colonne p.

On sait d'autre part que $S_{n,1} = 1$ (ce qui permet d'initialiser la première colonne du tableau) et que $S_{n,n} = n!$ (ce qui permet d'initialiser la diagonale.)

On obtient ainsi:

	p = 1	p=2	p = 3	p=4	p = 5	p = 6	p = 7
n = 1	1						
n = 2	1	2					
n = 3	1	6	6				
n = 4	1	14	36	24			
n = 5	1	30	150	240	120		
n = 6	1	62	540	1560	1800	720	
n = 7	1	126	1806	8400	16800	15120	5040

Par exemple, en ligne 6, colonne 4, on lit $S_{6,4} = 1560$: il y a donc 1560 surjections d'un ensemble à 6 éléments sur un ensemble à 4 éléments. [Q]

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.