Devoir à la maison n° 8

À rendre le 2 décembre

On considère la fonction complexe

$$f: z \mapsto \frac{z+1}{\bar{z}+2}.$$

- 1) Déterminer le domaine de définition de f, que l'on notera Δ_f .
- 2) a) Soit $z \in \Delta_f$. Montrer que |f(z)| = 1 si et seulement si |z+1| = |z+2|.
 - b) En déduire une expression explicite de $f^{\leftarrow}(\mathbb{U})$.
- **3)** Montrer que $f^{\leftarrow}(\mathbb{R}) = \Delta_f \cap \left(\mathbb{R} \cup \left\{ z \in \mathbb{C} \mid \operatorname{Re}(z) = -\frac{3}{2} \right\} \right)$.
- 4) a) Pour chaque $z \in f^{\leftarrow}(\mathbb{R})$, que vaut f(z)? Déterminer alors $f(f^{\leftarrow}(\mathbb{R}))$.
 - b) L'application $f: \Delta_f \to \mathbb{C}$ est-elle injective? Bijective?
- 5) Résoudre l'équation f(z) = 1. Que peut-on en déduire?

Dans la suite du problème, on considèrera la fonction $g = f_{|\mathbb{U}}$, c'est-à-dire

- **6)** Soit u un nombre complexe de module 1, justifier que $g(u) = \frac{u^2 + u}{2u + 1}$.
- 7) a) Résoudre pour $u \in \mathbb{U}$ l'équation $g(u) = \frac{1+3i}{5}$.
 - b) Résoudre pour $u \in \mathbb{U}$ l'équation g(u) = i.
- 8) L'application g est-elle surjective?
- 9) a) Soit $u \in \mathbb{U}$, soit $t \in]-\pi,\pi]$ vérifiant $u=\mathrm{e}^{it}$. On pose

$$v = \frac{u+1}{2u+1}.$$

Exprimer $|v|^2$ en fonction de $\cos(t)$ (uniquement!).

- **b)** Étudier sur $]-\pi,\pi]$ la fonction $\varphi:t\mapsto \frac{1+\cos(t)}{5+4\cos(t)}$.
- c) Conclure quant à l'injectivité de g.

— FIN —