IN THE CLAIMS

The claims and their status is set forth below:

1. (currently amended) A method for acquiring a projection data set, comprising: rotating a gantry comprising a distributed X-ray source slowly about a volume of interest, wherein a rotational period of the gantry is greater than eight seconds the path of the gantry comprises a plurality of arcs;

emitting X-rays from a portion of the distributed X-ray source overlying an active are;

designating a next sequential arc in the direction of rotation the active arc when a trailing edge of the distributed X-ray source coincides with the boundary between the active arc and a preceding arc until each arc has been the active arc at least once; and

acquiring a projection data set comprising a plurality of projections generated from the emitted X-rays.

2. (original) The method as recited in claim 1, further comprising:

generating a set of interpolated projections by interpolating the projection data set using a set of concurrently acquired phase data and frequency content of the projection data set, wherein each interpolated projection characterizes the projection data set at a view location of the gantry and at a particular time; and

reconstructing the set of interpolated projections to generate one or more images.

- 3. (original) The method as recited in claim 2, further comprising: associating two or more images to generate a volume rendering.
- 4. (original) The method as recited in claim 2, wherein the volume of interest comprises a heart having a cardiac period.

- 5. (currently amended) The method as recited in claim 4, wherein a rotational period of the distributed X-ray source and the gantry about the heart approximately equals is approximately a multiple of the cardiac period multiplied by the number of arcs.
- 6. (original) The method as recited in claim 2, wherein interpolating the projection data set comprises reducing statistical noise in the projection data set.
- 7. (original) The method as recited in claim 6 further comprising reducing an X-ray dose applied to the volume of interest in response to the reduction in statistical noise.

8. (canceled)

- 9. (currently amended) A computer program, provided on one or more computer readable media, for acquiring a projection data set, comprising:
- a routine for rotating a gantry comprising a distributed X-ray source slowly about a volume of interest, wherein the path of the gantry comprises a plurality of arcs;
- a routine for emitting X-rays from a portion of the distributed X-ray source overlying an active arc;
- a routine for designating a next sequential arc in the direction of rotation the active arc when a trailing edge of the distributed X-ray source coincides with the boundary between the active arc and a preceding arc until the distributed X-ray source has completed at least one rotation of the gantry; and
- <u>a routine for</u> acquiring a projection data set comprising a plurality of projections generated from the emitted X-rays.
 - 10. (original) The computer program as recited in claim 9, further comprising:
- a routine for generating a set of interpolated projections by interpolating the projection data set using a set of concurrently acquired phase data and the frequency content

of the projection data set, wherein each interpolated projection characterizes the projection data set at a view location of the gantry and at a particular time; and

a routine for reconstructing the set of interpolated projections to generate one or more images.

- 11. (original) The computer program as recited in claim 10, a further comprising: a routine for associating two or more images to generate a volume rendering.
- 12. (original) The computer program as recited in claim 10, wherein the volume of interest comprises a heart having a cardiac period.
- 13. (currently amended) The computer program as recited in claim 12, wherein the routine for rotating the distributed X-ray source rotates the distributed X-ray source in a rotational period approximately equal to <u>a multiple of the</u> cardiac period multiplied by the number of arcs.
- 14. (original) The computer program as recited in claim 10, wherein the routine for generating a set of interpolated projections reduces statistical noise in the projection data set.
- 15. (original) The computer program as recited in claim 14, further comprising a routine for reducing an X-ray dose applied to the volume of interest in response to the reduction in statistical noise.
- 16. (original) The computer program as recited in claim 12, wherein the routine for rotating the gantry rotates the gantry in a rotational period greater than eight seconds.
 - 17. (currently amended) A CT image analysis system, comprising:

a gantry comprising a distributed X-ray source configured to slowly rotate about a volume of interest in eight or more seconds, wherein the path of the gantry comprises a plurality of arcs, wherein the distributed X-ray source is configured to emit a stream of radiation from the portion of the X-ray source overlying an active arc;

a detector configured to detect the stream of radiation and to generate one or more signals responsive to the stream of radiation, wherein the detector comprises a plurality of detector elements;

a system controller configured to control the X-ray source and to acquire a set of projection data during one or more slow rotations of the X-ray source about a dynamic object from one or more of the detector elements via a data acquisition system; and

a computer system configured to receive the set of projection data and to designate a next sequential arc in the direction of rotation the active arc when a trailing edge of the distributed X-ray source coincides with the boundary between the active arc and a preceding arc until the distributed X-ray source has completed at least one rotation of the gantry.

- 18. (original) The CT image analysis system as recited in claim 17, wherein the computer system is further configured to generate a set of interpolated projections by interpolating the set of projection data using a set of concurrently acquired phase data and the frequency content of the set of projection data, wherein each interpolated projection characterizes the projection data set at a view location of the gantry and at a particular time and to reconstruct the set of interpolated projections to generate one or more images.
- 19. (original) The CT image analysis system as recited in claim 18, wherein the computer system is further configured to associate two or more images to generate a volume rendering.
- 20. (original) The CT image analysis system as recited in claim 18, wherein the dynamic object comprises a heart having a cardiac period.

- 21. (currently amended) The CT image analysis system as recited in claim 20, wherein a rotational period of the distributed X-ray source is approximately a multiple of equals the cardiac period-multiplied by the number of arcs.
- 22. (original) The CT image analysis system as recited in claim 18, wherein generating a set of interpolated projections reduces statistical noise in the set of projection data.
- 23. (currently amended) The CT image analysis system as recited in claim 22, wherein the computer <u>system</u> is further configured to reduce an X-ray dose applied to the volume of interest in response to the reduction in statistical noise.
 - 24. (canceled)
 - 25. (currently amended) A CT image analysis system, comprising:

means for <u>rotating a gantry comprising a distributed X-ray source about a volume of interest in eight or more seconds</u> generating a projection data set comprising projections acquired at different instants in time with respect to a cardiac cycle at each view position of a CT gantry;

means for emitting X-rays from a portion of the distributed X-ray source; and means for acquiring a projection data set comprising a plurality of projections generated from the emitted X-rays generating a set of interpolated projections using the projection data set.

26. (original) The CT image analysis system as recited in claim 25, further comprising:

means for generating a set of interpolated projections using a set of concurrently acquired phase data and frequency content of the projection data set;

means for reconstructing the set of interpolated projections to generate one or more images; and

means for associating two or more images to generate a volume rendering.