Упражнение 3

Цель упражнения:

Знакомство:

- с базовыми возможностями редактора конечного автомата
- с процедурой назначения контактов СБИС

Алгоритм работы проекта:

Схема проекта

Алгоритм работы:

- входная частота clk_25Mhz (25 МГц) делится на 23-разрядном счетчике делителе (cnt_23bits), который формирует сигнал разрешения работы для конечного автомата lab3_fsm
- конечный автомат lab3_fsm, на основании значения входных сигналов sw[1..0], задает последовательность включения светодиодов:
 - sw[1..0]="00" включен только светодиод led0
 - \circ sw[1..0]="01" циклически: led0, led1, led0...включается один светодиод
 - o sw[1..0]="10" циклически: led0, led1, led2, led0, ... включается один светодиод
 - o sw[1..0]="11" циклически led0, led1, led2, led3, led0,... включается один светодиод
- нажатие на кнопки рba сбрасывает конечный автомат в начальное состояние.

Задачи:

Часть 1 — Создание проекта

Часть 2 − Создание 23 разрядного экземпляра счетчика

<u>Часть 3</u> — Создание конечного автомата

Часть 4 — Создание схемы

Часть 5 — Назначение контактов СБИС

<u>Часть 6</u> − Задание режима для всех не использованных контактов СБИС

Часть 7 — Компиляция проекта

<u>Часть 8</u> – Конфигурация СБИС и проверка работы проекта на плате.

Часть 1 - Создание проекта

- 1. Запустите пакет QuarusII
- 2. В окне Task менеджера пакета, выберите Open New Project Wizard.
- 3. На экране появится окно введения **Introduction** (если оно небыло отключено). Нажмите кнопку **next**.
- 4. В появившемся окне введите следующие данные:

Раздел	Что ввести
What is the working directory for this project?	\ lab3
Рабочая папка (с помощью браузера найдите рабочую папку	
проекта)	
What is the name of this project?	lab3
Имя проекта	
What is the name of the top-level design entity for this project?	lab3
Имя модуля верхнего уровня в иерархии проекта.	

- 5. Нажмите кнопку **Next**.
- 6. В окне Add Files [page 2 of 5] нажмите кнопку кнопку Next.
- 7. В окне Family & Device Setting[page3 of 5]:
 - в разделе Family выберите CycloneIVE.
 - в разделе Available devices выберите СБИС EP4C6E22C8.
- 8. Нажмите кнопку **Next.**
- 9. В окне **EDA Tool Setting [page 4 of 5]** оставьте все без изменения и нажмите кнопку **Next.**
- 10. Появится окно Summary [page 5 of 5], в котором указаны установки, заданные Вами для создаваемого проекта. Проверьте их. Если все правильно, то нажмите кнопку Finish. В противном случае, вернитесь назад, нажав (возможно несколько раз) кнопку Back.

Проект создан.

Часть 2 - создание 23 разрядного экземпляра счетчика

1. В окне IP Catalog выберите мегафункцию LPM_COUNTER и нажмите кнопку ADD.

2. В появившемся окне задайте имя создаваемого экземпляра мегафункции (cnt_23bits) и укажите язык для описания настроек экземпляра мегафункции (VHDL).

- 3. Нажмите кнопку OK, запустится помощник MegaWizard Plug-in Manager.
- 4. Установите разрядность счетчика 23 бит. Нажмите кнопку Next.

5. В следующем окне установите режим: Plain Binary – двоичный счетчик и выберите: Carry-Out – выходной перенос. Нажмите кнопку **Next.**

- 6. В следующем окне. Нажмите кнопку **Next.**
- 7. Появится окно **Simulation Libraries.** Нажмите кнопку **Next**.
- 8. В появившемся окне укажите файлы, которые **MegaWizard** должен создать:

Нажмите кнопку **Finish**.

Экземпляр счетчика создан.

Часть 3 - создание конечного автомата

1. Выполните команду Create New Design File в окне задач (Tasks) и укажите тип создаваемого файла State Machine File. Откроется окно редактора конечного автомата.

2. В списке входов выберите сигнал reset. В окне таблиц откройте закладку General и задайте параметры сброса как указано на рисунке ниже.

- 3. Используя инструмент редактора, создайте новый вход. Выберите его, нажмите правую кнопку мыши и укажите команду Rename.
- 4. Задайте имя входа: sw0.

- 5. Создайте еще два входа: sw1 и ena.
- 6. Используя инструмент редактора, создайте новый выход. Выберите его, нажмите правую кнопку мыши и укажите команду Rename.

- 7. Задайте имя выходу: dig1
- 8. Создайте еще три выхода и назовите их dig2, dig3, dig4.
- 9. Включите инструмент создания состояний автомата.
- 10. Разместите на рабочем поле редактора 4 состояния
- 11. Выключите инструмент создания состояний автомата.

12. Включите инструмент создания переходов автомата и нарисуйте переходы как показано на рисунке (графически ребра графа могут выглядеть иначе). Выключите инструмент создания переходов.

- 13. В разделе « Таблицы» окна редактора выберите закладку transitions.
- 14. В таблице переходов введите условия переходов так, как показано на рисунке Используемые символы:
 - ~ символ NOT
 - | символ OR
 - & символ AND
 - ^ символ XOR

15. Выберите состояние автомата state1, нажмите правую кнопку мыши и укажите команду properties.

- 16. Откроется окно свойств состояния. Выберите закладку Action.
- 17. Задайте для каждого выходного сигнала значение, которое он будет иметь в данном состоянии. Нажмите кнопку ОК.

- 18. Задайте значения выходных сигналов для состояния state2: dig1=1; dig2=0, dig3=1, dig4=1
- 19. Задайте значения выходных сигналов для состояния state3: dig1=1; dig2=1, dig3=0, dig4=1
- 20. Задайте значения выходных сигналов для состояния state4: dig1=1; dig2=1, dig3=1, dig4=0
- 21. Сохраните файл (команда File=>Save as) под именем lab3_fsm.smf
- 22. С помощью инструмента создайте на языке VHDL файл с описанием вашего конечного автомата.
- 23. Для созданного файла: lab3_fsm.vhd создайте символ (откройте файл и выполните команду File=>Create/Update=>Create Symbol File for Current File).

Конечный автомат создан.

Часть 4 - Создание схемы

1. Запустите задачу Create New Design File в окне задач

2. Укажите тип создаваемого файла **Block Diagram/Schematic File.** Нажмите ОК.

- 3. Выполните команду: меню **File->Save As** и сохраните файл как **lab3.bdf**
- 4. Схема, которая должна быть создана, изображена ниже.

Схема создана.

5. Выполните команду: меню Processing=>Start=>Start Analysis and Synthesis.

Часть 5 – Назначение контактов СБИС

1. Запустите редактор назначений контактов СБИС: команда Edit Pin Assignments (Open Pin Planer) в папке назначений (Assign Constrains) окна задач (Task)

2. Назначьте контакты СБИС выводам проекта и используемый стандарт сигналов в соответствии с приведенной ниже таблицей

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	:
in_ clk	Input	PIN_23	1	B1_N0	3.3-V LVCMOS	2
out led0	Output	PIN_72	4	B4_N0	2.5 V	8
^{out} led1	Output	PIN_71	4	B4_N0	2.5 V	8
º dt led2	Output	PIN_70	4	B4_N0	2.5 V	8
º dt led3	Output	PIN_69	4	B4_N0	2.5 V	8
i≒_ pba	Input	PIN_64	4	B4_N0	2.5 V	8
in_ sw[1]	Input	PIN_25	2	B2_N0	3.3-V LVCMOS	2
<u>i</u> sw[0]	Input	PIN_23	1	B1_N0	3.3-V LVCMOS	2

Назначение можно выполнить путем выбора стандарта из списка в ячейке столбца I/O Standard для каждого вывода отдельно; или задания стандарта группе выводов.

3. Закройте редактор назначения контактов.

Часть 6 – Задание режима для всех не использованных контактов СБИС

1. Выполните команду Assignments=> Devices

- 2. В окне Device нажмите кнопку Device and Pin Options
- 3. В окне Device and Pin Options перейдите к категории Unused Pins и выберите режим **As input tri-stated with weak pull-up** для всех не использованных контактов СБИС

4. Нажмите кнопку ОК. В окне Device нажмите кнопку ОК еще раз.

Часть 7 – Компиляция проекта

1. В окне задач (Tasks) выберите процедуру Full Design и двойным щелчком левой клавиши мыши по команде Compile Design запустите полную компиляцию проекта.

2. Окно задач (Tasks) будет отображать ход выполнения процедуры компиляции.

В процессе полной компиляции проекта осуществляется:

- ✓ проверка синтаксиса,
- ✓ синтез с оптимизацией занимаемой площади и быстродействия проекта,
- ✓ трассировка и СБИС с оптимизацией занимаемой площади и быстродействия проекта,
- ✓ получение файла для конфигурирования СБИС pof(sof) файл,
- ✓ получение модели с временными параметрами реализованной СБИС,
- ✓ временной анализ,
- ✓ Формирования файла с детальным отчетом о всех этапах компиляции проекта.

Часть 8 – Конфигурирование СБИС и проверка проекта на плате

- 1. На плате miniDiLaB-CIV установите джамперы следующим образом:
 - а. Соедините выводы разъема "ТҮРЕ"
 - b. Соедините выводы 1-2 разъема "MODE"

- 2. Подсоедините входящий в комплект поставки USB кабель A-miniB к USB 2.0 порту компьютера (должен обеспечивать ток до 500мA), а затем к плате miniDiLaB-CIV.
- 3. Включите плату miniDiLaB-CIV : переключатель Power
- 4. В окне задач (Tasks) выберите процедуру Full Design и двойным щелчком левой клавиши мыши по команде Program Device запустите приложение, управляющее конфигурированием СБИС.

- 5. Откроется окно управления конфигурированием СБИС.
- 6. Для установки интегрированного на плату miniDiLaB-CIV средства конфигурирования СБИС нажмите кнопку **Hardware Setup**, откроется окно настроек.

7. В разделе **Available hardware items** выберите (двойным щелчком левой клавиши мыши) USB-Blaster. Нажмите кнопку **Close**.

8. Включите опцию **Program/Configure** и нажмите кнопку **Start.** В окне Progress будет отображаться статус процедуры конфирурирования СБИС.

9. Когда СБИС будет запрограммирована на плате miniDiLaB-CIV загорится зеленый светодиод – "Done".

- 10. Проверьте работу проекта:
 - а. Установите переключатели sw[1..0]="00" проверьте, что включен только светодиод led0
 - b. Установите переключатели sw[1..0]="01" проверьте, что циклически: led0, led1, led0...включается один светодиод
 - с. Установите переключатели sw[1..0]="10" проверьте, что циклически: led0, led1, led2, led0, ... включается один светодиод
 - d. Установите переключатели sw[1..0]="11" проверьте, что циклически led0, led1, led2, led3, led0,... включается один светодиод
 - e. Нажмите на любую из кнопку pba => проверьте, что автомат сброшен (включен только светодиод led0).

Лабораторная работа завершена.