Differentiation

Matthew Seguin

5.2.2

c is impossible because this would imply (f+g)-g=f is differentiable at 0 by the algebraic differentiability theorem.

a. Let f(x) = 0 and g(x) = 1 if $x \in (-\infty, 0)$ and let f(x) = 1 and g(x) = 0 if $x \in [0, \infty)$.

Let $\epsilon < 1$ then $|f(x) - f(0)| = |0 - 1| = 1 > \epsilon$ for all x < 0 so there does not exist a $\delta > 0$ such that $|x - 0| < \delta$ implies $|f(x) - f(0)| < 1 = \epsilon$ so f is not continuous at 0 and without loss of generality the same can be said about g.

Since f and g are both discontinuous at x = 0 they can not be differentiable at x = 0.

Furthermore (fg)(x) = f(x)g(x) = 0 for all $x \in \mathbb{R}$. Which is differentiable on \mathbb{R} by the following.

Let
$$c \in \mathbb{R}$$
 then consider $\lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c} = \lim_{x \to c} \frac{0 - 0}{x - c} = \lim_{x \to c} 0 = 0$.

So (fg)'(c) = 0 for arbitrary $c \in \mathbb{R}$ so (fg)' = 0 and hence fg is differentiable on all of \mathbb{R} .

So this is an example of functions f and g that both aren't differentiable at 0 but fg is differentiable at 0.

b. Let
$$f(x) = 0$$
 if $x \in (-\infty, 0)$ and $f(x) = 1$ if $x \in [0, \infty)$. Let $g(x) = 0$.

From the results of part a we know that f is not continuous at 0 and therefore can not be differentiable at 0. Furthermore g is differentiable on \mathbb{R} and (fg)(x) = f(x)g(x) = 0 = g(x) for all $x \in \mathbb{R}$. So fg is differentiable on \mathbb{R} . So this is an example of functions f and g where f isn't differentiable at 0 but g is and where fg is differentiable at 0.

- **C.** I showed at the very start that this request is impossible.
- **d.** Let \mathbb{I} denote the irrationals. Then let f(x) = 0 if $x \in \mathbb{Q}$ and let f(x) = x if $x \in \mathbb{I}$.

Let $c \neq 0$, then since \mathbb{I} is dense in \mathbb{R} there exists some $(x_n) \subset \mathbb{I}$ such that $(x_n) \to c$.

Since \mathbb{Q} is also dense in \mathbb{R} there exists some $(y_n) \subset \mathbb{Q}$ such that $(y_n) \to c$.

But
$$(f(x_n)) = (x_n) \to c \neq 0$$
 while $(f(y_n)) = (0) \to 0$. So $\lim_{x \to c} f(x)$ does not exist for $c \neq 0$.

Now at c = 0: Let $\epsilon > 0$ then let $\delta = \epsilon$.

Then if
$$|x - 0| = |x| < \delta$$
 we have $|f(x) - f(0)| = |f(x) - 0| = |f(x)| \le |x| < \delta = \epsilon$ since $f(x) = 0$ or $f(x) = x$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$. So f is continuous at 0 and $\lim_{x\to 0} f(x) = 0$.

Now define the function q(x) = x f(x).

We have
$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{xf(x)}{x} = \lim_{x \to 0} f(x) = 0.$$

However at $c \neq 0$ it must be that g'(c) does not exist because otherwise $\lim_{x \to c} \frac{g(x) - g(c)}{x - c}$ exists.

But this would imply $\lim_{x\to c} \frac{g(x)-g(c)}{x-c}(x-c) = \lim_{x\to c} g(x)-g(c)$ exists by the algebraic limit theorem.

Which implies $\lim_{x\to c} g(x)$ exists and hence $\lim_{x\to c} \frac{g(x)}{x} = \lim_{x\to c} \frac{xf(x)}{x} = \lim_{x\to c} f(x)$ exists which it doesn't since $c\neq 0$.

So this is such a function g where g is differentiable only at 0.

a. This is true. Let f be differentiable on an interval A such that f' is non-constant. Let \mathbb{I} denote the irrationals.

Then there exists some closed interval $[a,b] \subseteq A$ where f is differentiable and where $f'(a) \neq f'(b)$.

Since \mathbb{I} is dense in \mathbb{R} there exists some $x \in \mathbb{I}$ such that f'(a) < x < f'(b) or f'(b) < x < f'(a).

Therefore by Darboux's theorem there exists a $c \in [a, b] \subseteq A$ such that $f'(c) = x \in \mathbb{I}$.

So if f' exists on an interval and if f' is non-constant then f' takes on some irrational values in that interval \square

b. This is false. To find a counter example consider $sin(\frac{1}{x})$ which takes negative values in every $V_{\delta}(0)$.

First I am going to prove a result about $g(x) = x \cos(\frac{1}{x})$, namely $\lim_{x\to 0} g(x) = 0$:

Let
$$\epsilon > 0$$
 and let $\delta = \epsilon$.

Then if $|x-0|=|x|<\delta=\epsilon$ we have $|g(x)-0|=|x\cos(\frac{1}{x})|=|x||\cos(\frac{1}{x})|\leq |x|<\delta=\epsilon$ since $|\cos(z)|\leq 1$ for all $z\in\mathbb{R}$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$ so $\lim_{x\to 0} x\cos(\frac{1}{x}) = 0$.

Now let
$$f(0) = 0$$
 and $f(x) = cx + x^2 cos(\frac{1}{x})$ if $x \in (-1, 1) \setminus \{0\}$ and $c \in (0, 1)$.

Then when $x \neq 0$ we have $f'(x) = c + 2x \cos(\frac{1}{x}) - \sin(\frac{1}{x})$ by using properties from the algebraic differentiability theorem.

As $x \to 0$ we know by the algebraic limit theorem that $2x \cos(\frac{1}{x}) \to 0$.

So as we get arbitrarily close to 0, $sin(\frac{1}{x})$ oscillates between -1 and 1 in every $V_{\delta}(0)$ and since c < 1 and $2x \cos(\frac{1}{x})$ grows arbitrarily close to 0 we get that f' takes negative values in every $V_{\delta}(0)$.

Now let's see what happens at 0:

 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{cx + x^2 \cos(\frac{1}{x})}{x} = \lim_{x \to 0} c + x \cos(\frac{1}{x}) = c > 0$ by the algebraic limit theorem.

So this is a function on an open interval A where f'(a) > 0 for some $a \in A$ but f' takes negative values in every $V_{\delta}(a)$.

C. This is true. Let f be differentiable on an interval containing 0 and let $\lim_{x\to 0} f'(x) = L$.

Then $f'(0) = \lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0} \frac{f(x) - f(0)}{x}$ gives the 0/0 case for L'hospital's rule.

So $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{f'(x)-0}{1} = \lim_{x\to 0} f'(x) = L$ from taking the derivative of the top and bottom and using the algebraic differentiability theorem.

So if f is differentiable on an interval containing 0 and $\lim_{x\to 0} f'(x) = L$ then f'(0) = L

5.3.1

a. Let $f:[a,b]\to\mathbb{R}$ be differentiable on [a,b] such that f' is continuous on [a,b].

Since [a,b] is closed and bounded it is compact. So since f' is continuous on [a,b] we know f'([a,b]) is compact.

So f' is bounded and there exists some M > 0 such that $|f'(z)| \leq M$ for all $z \in [a, b]$.

Now let $x, y \in [a, b]$ where $x \neq y$ then x < y or y < x.

If
$$x < y$$
:

Since $[x, y] \subseteq [a, b]$ we know f is differentiable on [x, y].

So by the mean value theorem there exists some $w \in [x,y]$ such that $f'(w) = \frac{f(y) - f(x)}{y - x} = \frac{f(x) - f(y)}{x - y}$.

Therefore
$$\left|\frac{f(x)-f(y)}{x-y}\right| = |f'(w)| \le M$$
.

If y < x: The same process with x and y swapped leads to the same conclusion without loss of generality.

This was for arbitrary distinct $x, y \in [a, b]$ and is therefore true for all distinct $x, y \in [a, b]$.

So there exists some M>0 such that $|\frac{f(x)-f(y)}{x-y}|\leq M$ for all distinct $x,y\in[a,b]$. So f is Lipschitz \square

b. Yes this means that f is contractive. Add the assumption that |f'(z)| < 1 to part a.

If
$$|f'(z)| \le 0$$
 then $|f'(z)| = 0$ so $f'(z) = 0$ for all $z \in [a, b]$.

This means that f(z) = k for some $k \in \mathbb{R}$.

So $|f(x) - f(y)| = |k - k| = 0 \le c|x - y|$ for all $c \in (0, 1)$ and all $x, y \in [a, b]$, hence f is contractive.

Otherwise we can say that $|f'(z)| \le c$ for some $c \in (0,1)$.

So for all distinct $x, y \in [a, b]$ we have there exists some $w \in [x, y]$ such that $f'(w) = \frac{f(x) - f(y)}{x - y}$ by the mean value theorem.

Therefore for all distinct $x, y \in [a, b]$ there exists a $w \in [x, y]$ such that $\frac{|f(x) - f(y)|}{|x - y|} = |\frac{f(x) - f(y)}{x - y}| = f'(w) \le c$.

This gives us $|f(x) - f(y)| \le c|x - y|$ for all distinct $x, y \in [a, b]$.

Now consider
$$x = y$$
, then $|f(x) - f(y)| = |f(x) - f(x)| = 0 = c|x - x| = c|x - y|$.

Therefore there exists a $c \in (0,1)$ such that for all $x,y \in [a,b]$ we have $|f(x)-f(y)| \le c|x-y|$, hence f is contractive.

So if we add the assumption that |f'(z)| < 1 then f is contractive \square

5.3.5

a. Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b).

Let
$$h(x) = [g(b) - g(a)]f(x) - [f(b) - f(a)]g(x)$$
.

Then h is continuous on [a, b] by the algebraic continuity theorem and differentiable on (a, b) by the algebraic differentiability theorem.

Furthermore h'(x) = [g(b) - g(a)]f'(x) - [f(b) - f(a)]g'(x) by the algebraic differentiability theorem.

We can see
$$h(a) = [g(b) - g(a)]f(a) - [f(b) - f(a)]g(a) = g(b)f(a) - g(a)f(a) - f(b)g(a) + g(a)f(a) = g(b)f(a) - f(b)g(a)$$
.

Also
$$h(b) = [g(b) - g(a)]f(b) - [f(b) - f(a)]g(b) = g(b)f(b) - g(a)f(b) - g(b)f(b) + f(a)g(b) = g(b)f(a) - f(b)g(a)$$
.

So
$$h(a) = g(b)f(a) - f(b)g(a) = h(b)$$
.

Then by Rolle's theorem there exists some point $c \in (a, b)$ where h'(c) = 0.

Therefore there exist some point $c \in (a, b)$ where h'(c) = [g(b) - g(a)]f'(c) - [f(b) - f(a)]g'(c) = 0.

So there exists some point $c \in (a,b)$ where [g(b)-g(a)]f'(c)=[f(b)-f(a)]g'(c)

5.3.8

Let f be continuous on an interval containing 0 and let f be differentiable for all $x \neq 0$. Assume $\lim_{x\to 0} f'(x) = L$.

I believe I proved this in a previous problem but here it is again.

Let g(x) = f(x) - f(0) then by the algebraic differentiability theorem g is differentiable for all $x \neq 0$.

We also know g(x) is continuous on the domain of f by the algebraic differentiability theorem.

Let h(x) = x - 0 we have seen before that h is differentiable for all $x \in \mathbb{R}$ and is therefore also continuous for all $x \in \mathbb{R}$.

Furthermore
$$g(0) = f(0) - f(0) = 0 = 0 - 0 = h(0)$$
.

Then $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{g(x)}{h(x)}$ satisfies the 0/0 case for L'hospital's rule.

So
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{(f(x) - f(0))'}{(x - 0)'} = \lim_{x \to 0} \frac{f'(x)}{1} = \lim_{x \to 0} f'(x) = L.$$

From using the algebraic differentiability theorem.

So if f is continuous on an interval containing 0, differentiable for all $x \neq 0$, and $\lim_{x\to 0} f'(x) = L$ then f'(0) = L

Let
$$g_a(x) = 0$$
 if $x = 0$ and $g_a(x) = x^a sin(\frac{1}{x})$.

First I want to prove that $\lim_{x\to 0} x^c \sin(\frac{1}{x}) = \lim_{x\to 0} x^c \cos(\frac{1}{x}) = 0$ for c>0 as long as x^c is defined for all $x\in\mathbb{R}$.

Let
$$\epsilon > 0$$
 and $\delta = \epsilon^{\frac{1}{c}}$ then if $|x - 0| = |x| < \delta$.

We have $|x^c sin(\frac{1}{x}) - 0| = |x^c sin(\frac{1}{x})| \le |x^c| = |x|^c < \delta^c = \epsilon$ and $|x^c cos(\frac{1}{x}) - 0| = |x^c cos(\frac{1}{x})| \le |x^c| = |x|^c < \delta^c = \epsilon$.

Such a δ exists since c > 0, $|x^c| = |x|^c$ since x^c is defined for all $x \in \mathbb{R}$, and $|x|^c < \delta^c$ since c > 0 and $|x| < \delta$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So if c>0 such that x^c is defined for all $x\in\mathbb{R}$ then $\lim_{x\to 0}x^c\sin(\frac{1}{x})=\lim_{x\to 0}x^c\cos(\frac{1}{x})=0$

Note: I require that x^c is defined for all $x \in \mathbb{R}$ because while clearly it is for $x \ge 0$ it is not always the case for x < 0.

Also if $c \leq 0$ this limit clearly does not converge as for c = 0 we have seen previously that $\lim_{x\to 0} \sin(\frac{1}{x})$ and $\lim_{x\to 0} \cos(\frac{1}{x})$ do not exist. And for c < 0 x^c would be unbounded when x is close to 0 and therefore can not counteract the oscillatory nature of $\sin(\frac{1}{x})$ and $\cos(\frac{1}{x})$.

a.

For x=0 we need $\lim_{x\to 0}g_a(x)=\lim_{x\to 0}x^a\sin(\frac{1}{x})=g(0)=0$ in order for g_a to be continuous at 0.

Otherwise g_a wouldn't be differentiable at 0 and therefore not differentiable on \mathbb{R} .

From the proof at the beginning this means we need a>0 such that x^a is defined for all $x\in\mathbb{R}$.

We have $g'_a(0) = \lim_{x\to 0} \frac{g_a(x) - g_a(0)}{x - 0} = \lim_{x\to 0} \frac{x^a \sin(\frac{1}{x})}{x} = \lim_{x\to 0} x^{a-1} \sin(\frac{1}{x})$ and we need this limit to exist so from the proof at the beginning we need a - 1 > 0 and therefore a > 1 giving $g'_a(0) = 0$.

For $x \neq 0$ we have $g'_a(x) = (x^a sin(\frac{1}{x}))' = (x^a)' sin(\frac{1}{x}) + x^a (sin(\frac{1}{x}))' = ax^{a-1} sin(\frac{1}{x}) - x^{a-2} cos(\frac{1}{x})$ by the algebraic differentiability theorem. We already know a-1>0 so the first term in the derivative is bounded on [0,1] so to get unboundedness on [0,1] we need x^{a-2} to be unbounded and hence a<2.

So far we have that 1 < a < 2. Let a = 1.2, then x^a is defined for all $x \in \mathbb{R}$ and therefore so is g_a .

Since x^a is differentiable on \mathbb{R} and $sin(\frac{1}{x})$ is differentiable when $x \neq 0$ we have that g_a is differentiable when $x \neq 0$ and from above we have g_a is differentiable at 0. So for a = 1.2 we have g_a is differentiable on \mathbb{R} .

Furthermore for $x \in (0,1]$ we have $g'_a(x) = ax^{a-1}sin(\frac{1}{x}) - x^{a-2}cos(\frac{1}{x})$ which has a bounded first term and unbounded second term since a = 1.2 < 2 therefore g'_a is unbounded on [0,1].

So a = 1.2 is a satisfactory value for the desired qualities of g_a .

b. Again we want g_a to be differentiable on \mathbb{R} so we need the condition a > 1 so that it is differentiable at 0.

We also want g'_a to be continuous at 0 so we want $\lim_{x\to 0} g'_a(x) = g'_a(0)$ which is actually guaranteed by the previous problem as long as g_a is differentiable for $x \neq 0$ and $\lim_{x\to 0} g'_a(x)$ exists.

We have
$$\lim_{x\to 0} g'_a(x) = \lim_{x\to 0} ax^{a-1} \sin(\frac{1}{x}) - x^{a-2} \cos(\frac{1}{x}).$$

By letting a > 2 we get from the proof at the beginning and by the algebraic limit theorem $\lim_{x\to 0} g'_a(x) = 0$ for a > 2 and hence $g'_a(0) = 0$ so g'_a is continuous at 0 for a > 2.

We also want g'_a to not be differentiable at 0 so we want $\lim_{x\to 0} \frac{g'_a(x) - g'_a(0)}{x - 0} = \lim_{x\to 0} \frac{g'_a(x)}{x}$ to not exist.

We have
$$\lim_{x\to 0} \frac{g_a'(x)}{x} = \lim_{x\to 0} \frac{ax^{a-1}sin(\frac{1}{x}) - x^{a-2}cos(\frac{1}{x})}{x} = \lim_{x\to 0} ax^{a-2}sin(\frac{1}{x}) - x^{a-3}cos(\frac{1}{x}).$$

Since a > 2 we have seen that the first term will converge to 0.

By letting a < 3 this limit does not exist since x^{a-3} is unbounded and won't counteract the oscillatory nature of $cos(\frac{1}{x})$. So let a = 2.2 then x^{a-2} and g_a are defined for all $x \in \mathbb{R}$. Also g_a is differentiable on all of \mathbb{R} and g'_a is continuous but not differentiable at 0.

So a = 2.2 is a satisfactory value for the desired qualities of g_a .

C. Again we want g_a to be differentiable on \mathbb{R} so we need the condition a > 1 so that it is differentiable at 0.

Since we want g'_a to be continuous at 0 we get from the previous part that a > 2 and $g'_a(0) = 0$.

We have
$$g'_a(x) = ax^{a-1}sin(\frac{1}{x}) - x^{a-2}cos(\frac{1}{x})$$
 for $x \neq 0$ which is differentiable since $a > 2$ and $x \neq 0$.

So
$$g_a''(x) = a(a-1)x^{a-2}sin(\frac{1}{x}) - ax^{a-3}cos(\frac{1}{x}) - (a-2)x^{a-3}cos(\frac{1}{x}) - x^{a-4}sin(\frac{1}{x}) =$$

 $a(a-1)x^{a-2}sin(\tfrac{1}{x})-2(a-1)x^{a-3}cos(\tfrac{1}{x})-x^{a-4}sin(\tfrac{1}{x}) \text{ for } x\neq 0 \text{ by using the algebraic differentiability theorem.}$

We want
$$g_a''(0) = \lim_{x \to 0} \frac{g_a'(x) - g_a'(0)}{x - 0} = \lim_{x \to 0} \frac{g_a'(x)}{x} = \lim_{x \to 0} \frac{ax^{a - 1}sin(\frac{1}{x}) - x^{a - 2}cos(\frac{1}{x})}{x} = \lim_{x \to 0} ax^{a - 2}sin(\frac{1}{x}) - x^{a - 3}cos(\frac{1}{x})$$

to exist. By letting a > 3 we know from the proof at the beginning and the algebraic limit theorem that $g_a''(0) = 0$.

So provided a>3 and x^{a-3} is defined on $\mathbb R$ we get that g_a' is differentiable on $\mathbb R.$

We also want g_a'' to be discontinuous at 0.

So we want
$$\lim_{x\to 0} g_a''(x) \neq g_a''(0) = 0$$
.

We have
$$\lim_{x\to 0} g_a''(x) = \lim_{x\to 0} a(a-1)x^{a-2}\sin(\frac{1}{x}) - 2(a-1)x^{a-3}\cos(\frac{1}{x}) - x^{a-4}\sin(\frac{1}{x})$$
.

We have a > 3 so the first two terms converge to 0 by the proof at the beginning and the algebraic limit theorem.

So to have this limit not be 0 we need $a \le 4$ and then $a - 4 \le 0$ which causes the limit of the last term to not exist.

Then we would have g_a'' is discontinuous at 0 since its limit at 0 doesn't exist.

So let a=3.2 then x^{a-2} and g_a are defined for all $x \in \mathbb{R}$. Also g_a and g'_a are differentiable on all of \mathbb{R} but g''_a is not continuous at 0.

So a = 3.2 is a satisfactory value for the desired qualities of g_a .