(Simple) Linear Regression

Harald (harald@ebi.ac.uk)

An Example

- Imagine you work in a pharmaceutical company which sells medical supplies to hospitals and doctors. You are interested in evaluating the effectiveness of a new advertisement program.
 - 1. Start your virtual machine
 - 2. Open the terminal and type
 - \$ conda install matplotlib
 - 3. Clone this repository
 - \$ git clone https://github.com/sagar87/BTM_2017.git
 - 4. Change into the directory BTM_2017 and start jupyter notebook
 - \$ jupyter notebook

Problem 1

Load and plot the some data using numpy and matplotlib!

The model

- Response Variable: This is a random variable, it varies with changes in the predictor.
- Predicting Variable: This is a fixed variable, it does not change with the response and is fixed before the response is measured.

$$\underbrace{\hat{y}_i}_{\text{Response Variable}} = \hat{\beta}_0 + \hat{\beta}_1 \underbrace{x_i}_{\text{Predicting Variable}}$$

Why Regression?

- Prediction of the response variable.
- Modelling the relationship between the response variable and the explanatory variable.
- Testing hypothesis of association relationships.

The Big Picture

- Simple Linear Regression $y = \beta_0 + \beta_1 x + \varepsilon$,
- Logistic Regression (classification) $F(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$
- Multivariate Linear Regression $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip} + \epsilon_i$.
 - Ridge Regression $\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{N} \|y X\beta\|_2^2 + \lambda \|\beta\|_2^2 \right\}$
 - Lasso $\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{N} \|y X\beta\|_2^2 + \lambda \|\beta\|_1 \right\}$
- Polynomial regression $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$.

Simple Linear Regression

$$y_i = \underbrace{\hat{\beta}_0}_{\text{Intercept}} + \underbrace{\hat{\beta}_1}_{\text{Slope}} x_i + \underbrace{\epsilon_i}_{\text{Error}}$$

 Our goal is to find the best line describing the linear relationship between our variables of interest. In other words, we want to find the coefficients β₀ and β₁.

... but how to find the best fitting line?

... but how to find the best

We can evaluate the quality of each possible regression line by choosing the one which gives us the smallest prediction error.

... but how to find the best

... actually it makes more sense to look at the squared residuals rather then only at errors.

... but how to find the best

In order to come up with the optimal regression coefficients we need to consider the total error.

... but how to find the best fitting line?

$$\operatorname{argmin}_{(\hat{\beta}_0, \hat{\beta}_1)} \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x))^2$$

From calculus we remember that we can solve such a problem by finding the first derivative of the function and setting it to zero.

but how to find the best fitting line?

$$\operatorname{argmin}_{(\hat{\beta}_0, \hat{\beta}_1)} \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x))^2$$

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^n (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2 = 0$$

$$-2 \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\sum_{i=1}^n y_i - \sum_{i=1}^n \hat{\beta}_0 - \sum_{i=1}^n \hat{\beta}_1 x_i = 0$$

$$n\hat{\beta}_0 = \sum_{i=1}^n y_i - \sum_{i=1}^n \hat{\beta}_1 x_i$$

$$\hat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \hat{\beta}_1 \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\begin{aligned} \hat{\beta}_{1}x_{i})^{2} &= 0 \\ \hat{\beta}_{1}x_{i}) &= 0 \\ \hat{\beta}_{1}x_{i} &= 0 \\ 2\sum_{i=1}^{n}(y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}))^{2} &= 0 \\ 2\sum_{i=1}^{n}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})(-x_{i}) &= 0 \\ -\sum_{i=1}^{n}y_{i}x_{i} + \hat{\beta}_{0}\sum_{i=1}^{n}x_{i} + \hat{\beta}_{1}\sum_{i=1}^{n}x_{i}^{2} &= 0 \\ n\hat{\beta}_{0} &= \sum_{i=1}^{n}y_{i} - \sum_{i=1}^{n}\hat{\beta}_{1}x_{i} \\ \hat{\beta}_{0} &= \frac{1}{n}\sum_{i=1}^{n}y_{i} - \hat{\beta}_{1}\frac{1}{n}\sum_{i=1}^{n}x_{i} \\ \hat{\beta}_{0} &= \frac{1}{n}\sum_{i=1}^{n}y_{i} - \hat{\beta}_{1}\frac{1}{n}\sum_{i=1}^{n}x_{i} \\ \hat{\beta}_{1} &= \frac{\sum_{i=1}^{n}y_{i}x_{i} - \bar{y}\sum_{i=1}^{n}x_{i}}{\sum_{i=1}^{n}x_{i}(x_{i} - \bar{x})^{2}} \end{aligned}$$

Problem 2

Fit a linear regression model. What are the estimated coefficients?

Interpretation of model parameters

- B₀: Estimated expected value of the response when the predicting variable is 0
- B₁: Estimated expected change of the response variable when the predicting variable increases by one unit

Interpretation of model parameters

- $\beta_1 \ge 0$ positive relationship
- B₁ ≤ 0 negative relationship
- $\beta_1 = 0$ no relationship

Functional vs Statistical Relationships


```
from scipy.stats import uniform, norm
f = lambda x: model.intercept_[0] + model.coef_[0]*x
x = uniform.rvs(loc = 374, scale= 300, size=25)
y = f(x)
```

```
Y_i \sim \mathcal{N}(\underbrace{\beta_0 + \beta_1 x_i}, \sigma^2)
True relationship
```



```
from scipy.stats import uniform, norm
f = lambda x: model.intercept_[0] + model.coef_[0]*x
x = uniform.rvs(loc = 374, scale= 300, size=25)
y = norm.rvs(loc = f(x), scale=101)
...
```

By performing linear regression we try to estimate the **mean** of Y_i which is a **linear** function of x_i !

$$\mathbb{E}(Y_i) = \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Probabilistic Assumptions

- Zero Mean Assumption
- Constant Variance Assumption
- IID Assumption
- Normal Assumption

$$\mathbb{E}(\epsilon) = 0$$

$$\mathbb{V}(\epsilon) = \sigma^2$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

Let's make the picture complete ...

We have seen

$$Y_i \sim \mathcal{N}(\underbrace{\beta_0 + \beta_1 x_i}_{\text{True relationship}}, \sigma^2)$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

we can estimate the mean of Yi

$$\mathbb{E}(Y_i) = \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

but can we also find an estimate $\hat{\sigma}^2$ for σ^2 ?

Let's make the picture complete ...

We have seen

$$Y_i \sim \mathcal{N}(\underbrace{\beta_0 + \beta_1 x_i}_{\text{True relationship}}, \sigma^2)$$
 and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

we can estimate the mean of Yi

$$\mathbb{E}(Y_i) = \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

but can we also find an estimate $\hat{\sigma}^2$ for σ^2 ?

It turns out we can :)
$$\hat{\sigma}^2 = \mathrm{MSE} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Problem 3

Think hard about the MSE!

Inference on B₁

- One can show: $\mathbb{E}(\hat{\beta}_1) = \beta_1$
- Also realise that $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i \bar{x})}{\sum_{i=1}^n (x_i \bar{x})^2} y_i = \sum_{i=1}^n \frac{(x_i \bar{x})}{\underbrace{S_{xx}}} y_i = \sum_{i=1}^n c_i y_i$

implying that $\hat{\beta}_1$ is a linear combination of Y. If we also assume that $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ then

$$\hat{\beta}_1 \sim \mathcal{N}(\beta_1, \frac{\sigma^2}{S_{xx}})$$

However, we don't know σ^2 but we can replace it with the MSE, then the sampling distribution becomes a t-dist. with n-2 df

$$\frac{\beta_1 - \beta_1}{\sqrt{\frac{\text{MSE}}{S_{xx}}}} \sim t_{n-2}$$

Challenge! An alpha-level hypothesis test for B₁

1. We specify

- 1. Null hypothesis: $H_0: \beta_1 = 0$
- 2. Alternative hypothesis: $H_A: \beta_1 \neq 0$
- 2. We calculate the test statistic $t^* = \frac{\hat{\beta}_1 \beta_1}{\sqrt{\frac{MSE}{\sum_i^n (x_i \bar{x})^2}}}$
- 3. We use t* to compute the P-value
- 4. We decide
 - 1. if P-value < alpha we reject the null hypothesis
 - 2. if P-value > alpha we fail to reject the null hypothesis

How likely is it that we'd get a statistic t* as extreme as we did if the null hypothesis were true.

Hint: This distribution is symmetric.

Problem 4

Calculate the t-statistic for beta1 and report its p-value! Should we reject the null hypothesis (alpha=0.01)?