Outline

Complexity Theory VU 181.142, SS 2017

5. NP-Completeness

Reinhard Pichler

Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien

25 April, 2017

Reinhard Pichler

25 April, 2017

Page 1

Complexity Theory

5. NP-Completeness

5.1. Some Variants of Satisfiability

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

■ intractable: SAT, 3-SAT

■ tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

- restricted (but still intractable) versions of SAT
- CIRCUIT SAT
- Not-all-equal SAT (NAESAT)
- (MONOTONE) 1-IN-3-SAT
- strongly related problem: HITTING SET

5. NP-Completeness

- 5.1 Some Variants of Satisfiability
- 5.2 CIRCUIT SAT
- 5.3 NOT-ALL-EQUAL-SAT
- 5.4 1-IN-3-SAT
- 5.5 Some Graph Problems
- 5.6 3-COLORABILITY
- 5.7 HAMILTON-PATH, etc.
- 5.8 Summary

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by transformations which eliminate certain features of the language but still preserve NP-completeness.

Restricting **SAT** to formulae in CNF and a further restriction to **3-SAT** are typical examples. Generally, **k-SAT** (i.e., formulae are restricted to CNF with exactly k literals in each clause) is NP-complete for any k > 3.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions φ in 3-CNF are restricted such that

- lacktriangle each variable appears at most three times in arphi and
- lacksquare each literal appears at most twice in φ .

omplexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability Complexity Theory 5. NP-Completeness

Proof

The reduction consists in rewriting an arbitrary instance φ of **3-SAT** in such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in φ .

- (i) Replace the first occurrence of x in φ by x_1 , the second by x_2 , and so on where x_1, \ldots, x_k are new variables.
- (ii) Add clauses $(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), \dots, (\neg x_k \lor x_1)$ to φ .

Let φ' be the result of systematically modifying φ in this way. Clearly, φ' has the desired syntactic properties.

Now φ is satisfiable iff φ' is satisfiable:

For each x appearing k > 3 times in φ , the truth values of x_1, \ldots, x_k are the same in each truth assignment satisfying φ' .

Boolean Circuits

Reinhard Pichler

Complexity Theory

Semantics

Let C be a Boolean circuit and let X(C) denote the set of variables appearing in the circuit C. A truth assignment for C is a function $T:X(C)\to \{\text{true},\text{false}\}.$

The truth value T(i) for each gate i is defined inductively:

- If s(i) =true, T(i) =true and if s(i) =false, T(i) =false.
- If $s(i) = x_j \in X(C)$, then $T(i) = T(x_j)$.
- If $s(i) = \neg$, then T(i) = true if T(j) = false, else T(i) = false where (j, i) is the unique edge entering i.
- If $s(i) = \land$, then T(i) = true if T(j) = T(j') = true else T(i) = false where (j, i) and (j', i) are the two edges entering i.
- If $s(i) = \vee$, then T(i) = true if T(j) = true or T(j') = true else T(i) = false where (j, i) and (j', i) are the two edges entering i.
- T(C) = T(n), i.e. the value of the circuit C.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Boolean Circuits

Syntax of Boolean circuits

- A Boolean circuit is a directed graph C = (V, E) where $V = \{1, 2, ..., n\}$ is the set of gates and C is acyclic (with i < j for all edges $(i, j) \in E$).
- All gates *i* have a sort $s(i) \in \{\text{true}, \text{false}, \land, \lor, \neg\} \cup \{x_1, x_2, \ldots\}.$
 - If $s(i) \in \{\text{true}, \text{false}\} \cup \{x_1, x_2, \ldots\}$, the indegree of i is 0 (inputs).
 - If s(i) = ¬ then the indegree of i is 1.
- If s(i) ∈ { \vee , \wedge } then the indegree of i is 2.
- Gate *n* is the output of the circuit.

Remark. $\{x_1, x_2, ...\}$ are variables whose value can be **true** or **false**.

CIRCUIT SAT

CIRCUIT SAT

INSTANCE: Boolean circuit C with variables X(C) QUESTION: Does there exist a truth assignment $T: X(C) \to \{ \text{true}, \text{false} \}$ such that T(C) = true?

Theorem

Reinhard Pichler

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

- **1** Guess a truth assignment $T: X(C) \rightarrow \{ true, false \}$.
- **2** Check that T(C) =true holds.

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Proof of NP-Hardness

Reinhard Pichler

Complexity Theory

We prove the NP-hardness by a reduction from **SAT**: Let an arbitrary instance of **SAT** be given by a Boolean formula φ over the variables $X = \{x_1, \ldots, x_k\}$. We construct the following Boolean circuit $C(\varphi)$:

- The variables X(C) in $C(\varphi)$ are precisely the variables X.
- For every subexpression ψ of φ , $C(\varphi)$ contains a gate $g(\psi)$. The output gate of $C(\varphi)$ is the gate $g(\varphi)$.
- The sort and the incoming arcs of each gate $g(\psi)$ in $C(\varphi)$ are defined inductively:
 - If ψ is a variable x_i then $g(\psi)$ is an input gate of sort $s(g(\psi)) = x_i$
 - If $\psi = \neg \psi'$ then $s(g(\psi)) = \neg$ with an incoming arc from $g(\psi')$.
 - If $\psi = \psi_1 \wedge \psi_2$ (resp. $\psi = \psi_1 \vee \psi_2$), then $s(g(\psi)) = \wedge$ (resp. $s(g(\psi)) = \vee$) with incoming arcs from $g(\psi_1)$ and $g(\psi_2)$.

	4 □	•	4 🗗 1	4	=	•	(E)	₹.	200
25 April, 2017									

Reduction from **CIRCUIT SAT** to **3-SAT**

Let an arbitrary instance of **CIRCUIT SAT** be given by a Boolean circuit C. We construct the following instance $\varphi(C)$ of **SAT** (φ is in CNF with some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula $\varphi(C)$ uses all variables of C. Moreover, for each gate g of C, $\varphi(C)$ has a new variable g and the following clauses.

- If g is a variable gate x: $(g \lor \neg x), (\neg g \lor x)$. $[g \leftrightarrow x]$
- 2 If g is a **true** (resp. **false**) gate: g (resp. $\neg g$).
- If g is a NOT gate with a predecessor h: $(\neg g \lor \neg h), (g \lor h)$. $[g \leftrightarrow \neg h]$
- If g is an AND gate with predecessors h, h': $(\neg g \lor h), (\neg g \lor h'), (g \lor \neg h \lor \neg h').$ $[g \leftrightarrow (h \land h')]$
- If g is an OR gate with predecessors h, h': $(\neg g \lor h \lor h'), (g \lor \neg h'), (g \lor \neg h).$ $[g \leftrightarrow (h \lor h')]$
- $\mathbf{6}$ If g is also the output gate: g.

Reduction from **SAT** to **3-SAT**

Motivation

- lacktriangle We have already seen how an arbitrary propositional formula φ can be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.
- This transformation (first into CNF and then into 3-CNF) is intuitive and clearly works in polynomial time. However, the log-space complexity of this transformation is not immediate.
- We now give an alternative transformation by reducing CIRCUIT SAT to 3-SAT. In total, we thus have:

 $\textbf{SAT} {\leq_{\mathrm{L}}} \ \textbf{CIRCUIT} \ \textbf{SAT} {\leq_{\mathrm{L}}} \ \textbf{3-SAT}$

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ , such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly **NAESAT** \subset **3-SAT**.

Theorem

NAESAT is NP-complete.

Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT Complexity Theory 5

NAESAT

Proof of NP-Hardness

Recall the Boolean formula $\varphi(C)$ resulting from the reduction of **CIRCUIT SAT** to **3-SAT**. For all one- and two-literal clauses in the resulting CNF-formula $\varphi(C)$, we add the same literal z (possibly twice) to make them 3-literal clauses.

The resulting formula $\varphi_z(C)$ fulfills the following equivalence:

$$\varphi_z(C) \in \mathsf{NAESAT} \Leftrightarrow C \in \mathsf{CIRCUIT} \ \mathsf{SAT}.$$

" \Rightarrow " If a truth assignment T satisfies $\varphi_z(C)$ in the sense of **NAESAT**, so does the complementary truth assignment \overline{T} .

Thus, z is **false** in either T or \overline{T} which implies that $\varphi(C)$ is satisfied by either T or \overline{T} . Thus C is satisfiable.

	- □	•	4 🗇 🕨	4 ≡ ▶	- ₹	· .	=	4) d (4
25 April, 2017								

1-IN-3-SAT

Reinhard Pichler

1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to φ , such that in each clause, exactly one literal is **true** in T?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula φ in 3-CNF, s.t. the clauses in φ contain only unnegated atoms.

QUESTION: Does there exist a truth assignment T appropriate to φ , such that in each clause, exactly one literal is **true** in T?

Theorem

Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.

omplexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-S

NAESAT

Proof of NP-Hardness (continued)

" \Leftarrow " If C is satisfiable, then there is a truth assignment T satisfying $\varphi(C)$. Let us then extend T for $\varphi_z(C)$ by assigning T(z) = **false**. By assumption, T is a satisfying truth assignment of $\varphi(C)$ and, therefore, also of $\varphi_z(C)$. Hence, in no clause of $\varphi_z(C)$ all literals are **false**. It remains to show that in no clause of $\varphi_z(C)$ all literals are **true**:

- (i) Clauses for **true**/**false**/NOT/variable gates contain z that is **false**.
- (ii) For AND gates the clauses are: $(\neg g \lor h \lor z)$, $(\neg g \lor h' \lor z)$, $(g \lor \neg h \lor \neg h')$ where in the first two z is **false**, and in the third all three cannot be **true** as then the first two clauses would be **false**.
- (iii) For OR gates the clauses are: $(\neg g \lor h \lor h'), (g \lor \neg h' \lor z),$ $(g \lor \neg h \lor z)$ where in the last two z is **false**, and in the first all three cannot be **true** as then the last two clauses would be **false**.

Reinhard Pichler	25 April, 2017	Page 14
Complexity Theory	5. NP-Completeness	5.4. 1-IN-3-SAT

1-IN-3-SAT

Remarks

- Clearly 1-IN-3-SAT ⊂ NAESAT ⊂ 3-SAT. The instances of these 3 problems are the same, namely 3-CNF formulae. However, the positive instances of 1-IN-3-SAT are a proper subset of NAESAT, which in turn are a proper subset of the positive instances of 3-SAT.
- Note that the NP-completeness of any of these 3 problems does not immediatetely imply the NP-completeness of any of the other problems, since it is a priori not clear if further constraining the positive instances makes things easier or harder.
- MONOTONE 1-IN-3-SAT is a special case of 1-IN-3-SAT, i.e., the instances of the former are a proper subset of the latter while the question remains the same. The NP-hardness of the special case immediately implies the NP-hardness of the general case.

omplexity Theory 5 NE

ompleteness 5.4. 1-IN-3-SAT

Proof of the NP-hardness of 1-IN-3-SAT

We prove the NP-hardnes by a reduction from 4-SAT:

Let φ be an arbitrary instance of **4-SAT**, i.e., φ is in 4-CNF.

We construct an instance ψ of **1-IN-3-SAT** as follows:

For every clause $l_1 \lor l_2 \lor l_3 \lor l_4$ in φ , let $a_1, a_2, a_3, a_4, b_1, b_2, c_1, c_2, d$ be 9 fresh propositional variables. Then ψ contains the following 7 clauses:

- (1) $l_1 \vee a_1 \vee b_1$
- (4) $I_3 \vee a_3 \vee b_2$
- (2) $l_2 \vee a_2 \vee b_1$
- (5) $I_4 \vee a_4 \vee b_2$
- (7) $b_1 \vee b_2 \vee d$

- (3) $a_1 \vee a_2 \vee c_1$
- (6) $a_3 \vee a_4 \vee c_2$

Idea. These seven clauses guarantee that in a legal 1-in-3 assignment of ψ , the clause $l_1 \vee \cdots \vee l_4$ must be **true**:

By (1) - (3): If l_1 and l_2 are **false**, then b_1 must be **true**.

By (4) - (6): If l_3 and l_4 are **false**, then b_2 must be **true**.

However, by (7), it is not allowed that both b_1 and b_2 are **true**.

Reinhard Pichler

b April, 2017

Page 17

Complexity Theory

NP-Completeness

5.4. 1-IN-3-SA

HITTING SET

HITTING SET

INSTANCE: Set $T = \{t_1, \dots, t_p\}$, family $(V_i)_{1 \le i \le n}$ of subsets of T, i.e.: for all $i \in \{1, \dots, n\}$, $V_i \subseteq T$.

QUESTION: Does there exist a set $W \subseteq T$, s.t. $|W \cap V_i| = 1$ for all $i \in \{1, ..., n\}$? (A set W with this property is called a "hitting set").

Corollary

HITTING SET is NP-complete.

Proof of the NP-hardness

By reduction from **MONOTONE 1-IN-3-SAT**: Let an instance of **MONOTONE 1-IN-3-SAT** be given by the 3-CNF formula φ over the variables X. We define the following instance of **HITTING SET**:

T = X. Moreover, suppose that φ contains n clauses. Then there are n sets $(V_i)_{1 \le i \le n}$. If the i-th clause in φ is $I_1 \lor I_2 \lor I_3$, then $V_i = \{I_1, I_2, I_3\}$.

Complexity Theory

NP-Completene

.4. 1-IN-3-SAT

Proof of the NP-hardness of MONOTONE 1-IN-3-SAT

We show how an arbitrary instance φ of **1-IN-3-SAT** can be transformed into an equivalent instance ψ of **MONOTONE 1-IN-3-SAT**:

Let $X = \{x_1, \dots, x_n\}$ be the variables in φ . Then the variables in ψ are $X \cup \{x_i' \mid 1 \le i \le n\} \cup \{a, b, c\}$. In φ , we replace every negative literal of the form $\neg x_i$ (for some i) by the unnegated atom x_i' .

Moreover, for every $i \in \{1, ..., n\}$, we add the following 3 clauses:

- (1) $x_i \vee x_i' \vee a$
- (2) $x_i \vee x_i' \vee b$
- (3) $a \lor b \lor c$

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of ψ , the variables x_i and x_i' have complementary truth values. Hence, x_i' indeed encodes $\neg x_i$.

	∢ □		990
Reinhard Pichler	25 April, 2017		Page 18
Complexity Theory	5. NP-Completeness	5.5. Some Graph Problems	

Some Graph Problems

We have already proved the NP-completeness of the following graph problems:

- INDEPENDENT SET
- CLIQUE
- VERTEX COVER

We shall now show the following results:

- **3-COLORABILITY** is NP-complete.
- $\blacksquare \ \ \mathsf{HAMILTON\text{-}PATH} \leq_{\mathrm{L}} \ \mathsf{HAMILTON\text{-}CYCLE} \leq_{\mathrm{L}} \ \mathsf{TSP}(\mathsf{D})$

Implexity Theory 5. NP-Completeness 5.5. Some Graph Problems

INDEPENDENT SET

INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist an independent set I of size $\geq K$?

i.e., $I \subseteq V$, s.t. for all $i, j \in I$ with $i \neq j$, $[i, j] \notin E$.

CLIQUE

INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist a *clique* C of size $\geq K$?

i.e., $C \subseteq V$, s.t. for all $i, j \in C$ with $i \neq j$, $[i, j] \in E$.

VERTEX COVER

INSTANCE: Undirected graph G = (V, E) and integer K.

QUESTION: Does there exist a *vertex cover N* of size $\leq K$?

i.e., $N \subseteq V$, s.t. for all $[i,j] \in E$, either $i \in N$ or $j \in N$.

Reinhard Pichler 25 April, 2017 Page 21

Complexity Theory 5. NP-Completeness 5.6. 3-COLORAL

Complexity

Theorem

The **k-COLORABILITY**-problem is NP-complete for any fixed $k \ge 3$. The **2-COLORABILITY**-problem is in P.

Proof

NP-Membership of k-COLORABILITY:

- 1. Guess an assignment $f: V \rightarrow \{1, \ldots, k\}$
- 2. Check for every edge $[i,j] \in E$ that $f(i) \neq f(j)$.
- P-Membership of **2-COLORABILITY**: (w.l.o.g., *G* is connected)
- 1. Start by assigning an arbitrary color to an arbitrary vertex $v \in V$.
- 2. Suppose that the vertices in $S \subset V$ have already been assigned a color. Choose $x \in S$ and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABII

Decision Problems

3-COLORABILITY

INSTANCE: Undirected graph G = (V, E)

QUESTION: Does G have a 3-coloring? i.e., an assignment of one of 3 colors to each of the vertices in V such that any two vertices i,j connected by an edge $[i,j] \in E$ do not have the same color?

k-COLORABILITY (for fixed value *k*)

INSTANCE: Undirected graph G = (V, E)

QUESTION: Does G have a k-coloring? i.e., an assignment of one of k colors to each of the vertices in V such that any two vertices i, j connected by an edge $[i, j] \in E$ do not have the same color?

Reinhard Pichler 25 April, 2017 Page 22

kity Theory 5. NP-Completeness 5.6. 3-COLORABILIT

NP-Hardness Proof of 3-COLORABILITY

By reduction from **NAESAT**: Let an arbitrary instance of **NAESAT** be given by a Boolean formula $\varphi = c_1 \wedge \ldots \wedge c_m$ in 3-CNF with variables x_1, \ldots, x_n . We construct the following graph $G(\varphi)$:

Let $V = \{a\} \cup \{x_i, \neg x_i \mid 1 \le i \le n\} \cup \{l_{i1}, l_{i2}, l_{i3} \mid 1 \le i \le m\}$, i.e. |V| = 1 + 2n + 3m.

For each variable x_i in φ , we introduce a triangle $[a, x_i, \neg x_i]$, i.e. all these triangles share the node a.

For each clause c_i in φ , we introduce a triangle $[l_{i1}, l_{i2}, l_{i3}]$. Moreover, each of these vertices l_{ij} is further connected to the node corresponding to this literal, i.e.: if the j-th literal in c_i is of the form x_{α} (resp. $\neg x_{\alpha}$) then we introduce an edge between l_{ij} and x_{α} (resp. $\neg x_{\alpha}$)

Reinhard Pichler 25 April, 2017 Page 23 Reinhard Pichler

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY Complexity Theory

Example

The 3-CNF formula $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee x_3 \vee \neg x_4)$ is reduced to the following graph:

 4 □ ▷ ⟨ □

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILI

Correctness of the Problem Reduction

Proof (continued)

" \Leftarrow " Suppose that G has a 3-coloring with colors $\{0,1,2\}$. W.l.o.g., the node a has the color 2. This induces a truth assignment T via the colors of the nodes x_i : if the color is 1, then $T(x_i) = \mathbf{true}$ else $T(x_i) = \mathbf{false}$. We claim that T is a legal **NAESAT**-assignment. Indeed, if in some clause, all literals had the value **false** (resp. \mathbf{true}), then we could not use the color 0 (resp. 1) for coloring the triangle $[I_{i1}, I_{i2}, I_{i3}]$, a contradiction.

" \Rightarrow " Suppose that there exists an **NAESAT**-assignment T of φ . Then we can extract a 3-coloring for G from T as follows:

- (i) Node a is colored with color 2.
- (ii) If $T(x_i) = \mathbf{true}$, then color x_i with 1 and $\neg x_i$ with 0 else vice versa.
- (iii) From each $[l_{i1}, l_{i2}, l_{i3}]$, color two literals having opposite truth values with 0 (**true**) and 1 (**false**). Color the third with 2.

nplexity Theory 5. NP-Completeness 5.6. 3-COLORABILI

Example

The 3-CNF formula $\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee x_3 \vee \neg x_4)$ is reduced to the following graph:

Let red = **false** and green = **true**. The above 3-coloring corresponds to $T(x_1) = T(\neg x_2) = T(\neg x_3) = T(\neg x_4) =$ **true**.

Reinhard Pichler

5 April, 2017

HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does *G* have a *Hamilton path*? i.e., a path visiting all vertices of *G* exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V, E)

QUESTION: Does *G* have a *Hamilton cycle*? i.e., a cycle visiting all vertices of *G* exactly once.

TSP(D)

einhard Pichler

INSTANCE: n cities $1, \ldots, n$ and a nonnegative integer distance d_{ij} between any two cities i and j (such that $d_{ij} = d_{ji}$), and an integer B.

QUESTION: Is there a tour through all cities of length at most B? i.e., a permutation π s.t. $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

einhard Pichler 25 April, 2017 Page

◆ロト ◆個 ト ◆ 重 ト ◆ 重 ・ 夕 Q ()

Complexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH, etc.

Complexity

Theorem

HAMILTON-PATH, **HAMILTON-CYCLE**, and **TSP(D)** are NP-complete.

Proof

We shall show the following chain of reductions:

$\mathsf{HAMILTON} ext{-}\mathsf{PATH} \leq_{\mathrm{L}} \mathsf{HAMILTON} ext{-}\mathsf{CYCLE} \leq_{\mathrm{L}} \mathsf{TSP}(\mathsf{D})$

It suffices to show NP-membership for the *hardest* problem:

- 1. Guess a tour π through the n cities.
- 2. Check that $\sum_{i=1}^{n} d_{\pi(i)\pi(i+1)} \leq B$ with $\pi(n+1) = \pi(1)$.

Likewise, it suffices to prove the NP-hardness of the *easiest* problem. The NP-hardness of **HAMILTON-PATH** (by a reduction from **3-SAT**) is quite involved and is therefore omitted here (see Papadimitriou's book).

Complexity Theory

Reinhard Pichler

5. NP-Completeness

5.7. HAMILTON-PATH, etc

HAMILTON-CYCLE vs. **TSP(D)**

HAMILTON-CYCLE \leq_{L} **TSP(D)**

Let an arbitrary instance of **HAMILTON-CYCLE** be given by the graph G = (V, E). We construct an equivalent instance of **TSP(D)** as follows:

Let $V = \{1, ..., n\}$. Then our instance of **TSP(D)** has n cities. Moreover, for any two cities $i \neq j$, the distance is defined as

$$d_{ij} = \left\{ egin{array}{ll} 1 & ext{if } [i,j] \in E \ 2 & ext{otherwise} \end{array}
ight.$$

Finally, we set B = n.

Clearly, there is no tour through all cities of length < B = n. Moreover, the Hamilton cycles in G are precisely the tours of length B. Hence, G has a Hamilton cycle \Leftrightarrow there exists a tour of length $\leq B$.

◆□ ト ◆酉 ト ◆ 喜 ト ◆ 喜 ・ 夕 ◇ ◇

nplexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH

HAMILTON-PATH VS. HAMILTON-CYCLE

$HAMILTON-PATH \leq_{L} HAMILTON-CYCLE$

(We only consider undirected graphs). Let an arbitrary instance of **HAMILTON-PATH** be given by the graph G = (V, E). We construct an equivalent instance G' = (V', E') of **HAMILTON-CYCLE** as follows:

Let $V' := V \cup \{z\}$ for some new vertex z and $E' := E \cup \{[v, z] \mid v \in V\}$. G has a Hamilton path $\Leftrightarrow G'$ has a Hamilton cycle

" \Rightarrow " Suppose that G has a Hamilton path π starting at vertex a and ending at b. Then $\pi \cup \{z\}$ is clearly a Hamilton cycle in G'.

" \Leftarrow " Let C be a Hamilton cycle in G'. In particular, C goes through z. Let a and b be the two neighboring nodes of z in this cycle. Then $C \setminus \{z\}$ is a Hamilton path (starting at vertex a and ending at b) in G.

Summary of Reductions

Complexity Theory

5. NP-Completeness

5.8. Summary

Learning Objectives

- The concept of NP-completeness and its characterizations in terms of succinct certificates.
- You should now be familiar with the intuition of NP-completeness (and recognize NP-complete problems)
- Basic techniques to prove problems NP-complete
- A basic repertoire of NP-complete problems (in particular, versions of **SAT** and some graph problems) to be used in further NP-completeness proofs.
- Reductions, reductions, reductions, . . .

Reinhard Pichler 25 April, 2017

Page 32

