Encaminamiento en Internet 1. Introducción

Redes-I

Departamento de Sistemas Telemáticos y Computación (GSyC)

Octubre 2010

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

1

©2010 Grupo de Sistemas y Comunicaciones.
Algunos derechos reservados.
Este trabajo se distribuye bajo la licencia
Creative Commons Attribution Share-Alike
disponible en http://creativecommons.org/licenses/by-sa/2.1/es

Contenidos

- Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

3

Introducción

Contenidos

- Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

Terminología

Algoritmo de encaminamiento

Procedimiento por el cual los encaminadores (routers) alcanzan las decisiones de las mejores rutas para cada destino.

- Como parte del algoritmo de encaminamiento, normalmente los encaminadores tienen que enviarse entre sí mensajes de control para conseguir toda la información necesaria:
 Protocolo de encaminamiento.
- Muchas veces se utiliza el término Protocolo de Encaminamiento como sinónimo de Algoritmo de Encaminamiento.
- El resultado de los algoritmos de encaminamiento es generar en cada encaminador una Tabla de encaminamiento.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

5

Introducción

Terminología

Tabla de encaminamiento

Tabla que consulta el encaminador cada vez que recibe un paquete y tiene que encaminarlo.

Destino	Encaminador vecino	Máscara	Interfaz
D1	V1	255.255.255.0	eth0
D2	V2	255.255.255.0	eth1

GSvC - 2010

Objetivos de un algoritmo de encaminamiento

- Minimizar el espacio de la tabla de encaminamiento para poder buscar rápidamente
- Minimizar la información adicional de encaminamiento a almacenar a fin de ejecutar el algoritmo
- Minimizar el número y frecuencia de mensajes que se envían a otros encaminadores a fin de ejecutar el algoritmo
- Robustez: evitar agujeros negros, evitar bucles, evitar oscilaciones en las rutas
- Generar caminos óptimos, es decir, de mínimo coste,
 definiendo el coste en base a uno o más de estos parámetros:
 - número de encaminadores intermedios
 - retardo
 - coste económico
 - aprovechamiento de la capacidad de la red

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

7

Algoritmos básicos

Contenidos

- Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

Algoritmo de inundación

- Es un algoritmo simple que a veces se utiliza cuando no hay ninguna información de encaminamiento disponible (por ejemplo, al arrancar algún otro algoritmo):
 - Cada paquete recibido por un nodo es reenviado a todos los vecinos excepto al que se lo envió a él.
 - 2 Los paquetes van etiquetados y numerados.
 - 3 Si un nodo recibe un paquete que ya ha reenviado, lo descarta.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

q

Algoritmos básicos

Algoritmo de aprendizaje

- Es un algoritmo simple, que mejora el de inundación. Es el utilizado por los *bridges*.
 - Cada nodo mantiene una tabla con parejas (Destino, enlace por el que encamino) que va actualizando según los paquetes que va recibiendo.
 - 2 Al recibir un paquete, se fija en el nodo origen y en el enlace por el que le ha llegado, apuntando en la tabla que cuando ese nodo sea destino de un paquete lo encaminará por ese enlace
 - Ouando para un destino no hay entrada en la tabla, se envía por inundación.

Algoritmo de Dijkstra

- Algoritmo que encuentra caminos de distancia mínima de un nodo al resto. Cada nodo ejecuta el algoritmo para encontrar caminos desde él al resto.
- Requiere conocer todas las distancias entre nodos adyacentes.
- Algoritmo:
 - Se trabaja con dos conjuntos de nodos:
 - P: Nodos con su encaminamiento ya resuelto (permanentes)
 - T: Nodos aún no resueltos (tentativos)
 - 2 Inicialmente P sólo contiene el nodo inicial
 - 3 Para cada nodo de T se recalcula su distancia al nodo inicial:
 - si no está directamente conectado a ningún nodo de P, su distancia al nodo inicial es infinita
 - en caso contrario, se elige la menor entre la distancia calculada en un paso anterior y la suma entre la distancia calculada para el último nodo añadido a P y la distancia directa de ese nodo a éste
 - El nodo de T que presente una menor distancia se pasa a P. Si aún quedan nodos en T, se repite el paso anterior.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

11

Algoritmos básicos

Algoritmo de Dijkstra: Ejemplo

La figura muestra los 5 primeros pasos utilizados en calcular el camino más corto desde A a D. La flecha indica el nodo sobre el que se está actuando:

Contenidos

- 1 Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

13

Familias de Protocolos de Encaminamiento

Familias de Protocolos de Encaminamiento

- Los protocolos de encaminamiento más usados en redes TCP/IP pueden clasificarse en dos grupos:
 - Protocolos de Vector de Distancia (Distance Vector Protocols)
 - Protocolos de Estado de Enlace (Link State Protocols)

Contenidos

- 1 Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

15

Protocolos basados en Vector de Distancia

Funcionamiento básico

- Cada nodo conoce o estima el coste para llegar a sus nodos vecinos.
- 2 Cada nodo mantiene su tabla de encaminamiento con triplas de la forma:

(Destino, Coste, Vecino por el que encamino) para todos los destinos de la red

Cada nodo envía periódicamente a sus vecinos su Vector de Distancia a todos los destinos, formado por los pares:

(Destino, Coste)

- Cada nodo estudia los vectores de distancia que recibe de sus vecinos para seleccionar para cada destino el vecino por el que tendrá menor coste, y actualiza su tablas de encaminamiento consecuentemente.
- El protocolo RIP pertenece a esta familia de protocolos.

INICIALMENTE

Inicialmente cada nodo sólo se conoce a sí mismo.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

17

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO 1

Cada nodo intercambia su vector distancia con sus vecinos.

Vectores distancia iniciales que envía cada una de las máquinas

INTERCAMBIO 1

Cada nodo intercambia su vector distancia con sus vecinos: Vectores distancia - A actualiza su tabla con los vectores recibidos.

Des-Cos-Línea tino te В 0

Tabla de B

Tabla de D Cos-Línea Destino te 0 D

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO 1

Cada nodo intercambia su vector distancia con sus vecinos:

Tabla de A

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos

Vectores distancia que recibe B Tabla de B Des-Cos-Línea tino te

A

D

2

C

0

6

В

D

В

A

D

INTERCAMBIO 1

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos.
- C actualiza su tabla con los vectores recibidos

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

21

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO 1

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos.
- C actualiza su tabla con los vectores recibidos.
- D actualiza su tabla con los vectores recibidos

INTERCAMBIO 2

Cada nodo intercambia su vector distancia con sus vecinos.

Vectores distancia que envía cada una de las máquinas

D

C

Des- Cos- Línea tino te

C 0 -A 2 A D 1 D tino te

D 0
B 2 B

C 1 C

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

23

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO 2

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.

INTERCAMBIO 2

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos

GSyC - 2010 Encaminamiento en Internet: 1. Introducción 2

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO 2

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos.
- C actualiza su tabla con los vectores recibidos

INTERCAMBIO 2

Cada nodo intercambia su vector distancia con sus vecinos:

- A actualiza su tabla con los vectores recibidos.
- B actualiza su tabla con los vectores recibidos.
- C actualiza su tabla con los vectores recibidos.
- D actualiza su tabla con los vectores recibidos

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

27

Protocolos basados en Vector de Distancia

Ejemplo

INTERCAMBIO :

Cada nodo intercambia su vector distancia con sus vecinos.

Vectores distancia que envía cada una de las máquinas

Protocolos basados en Vector de Distancia

Ejercicio

En la siguiente figura, J recibe los vectores distancia de sus nodos vecinos A, I, H y K. Según los datos que aparecen en la figura, actualizar los costes para llegar a todos los destinos en el nodo J:

Problema: Cuenta al infinito

- La información acerca de mejores rutas se propaga poco a poco, consiguiéndose al cabo de un rato que todos los encaminadores tengan tablas óptimas.
 - En la figura (a); B, C, D y E van aprendiendo secuencialmente el coste hacia A.
- Pero las malas noticias (se cae un enlace o un encaminador) tardan en llegar.
 - En la figura (b): B pierde el contacto con A, sin embargo B aprende con el vector de distancia de C que puede alcanzar a A a través de C (cuyo coste será el recibido en el vector de distancia más el coste entre B y C). A continuación C recibe el vector de distancia de B cuyo coste para llegar a A ha aumentado y C actualiza el coste para llegar a A a través de B, etc,

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

31

Protocolos basados en el Estado de Enlace

Contenidos

- Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

Funcionamiento básico

- Cada encaminador conoce o estima el coste para llegar a sus nodos vecinos y construye un paquete de Estado de Enlace (LSP, Link State Packet) con esta información.
- ② Cada encaminador envía periódicamente a todos los encaminadores de la red el paquete de Estado de Enlace con el coste para llegar a sus vecinos. Estos mensajes se difunden por inundación.
- Ocada encaminador, con la información recibida, conoce la topología completa de la red y calcula el mejor camino a todos sus destinos (aplicando, por ejemplo, el algoritmo de Dijkstra)
- El protocolo OSPF pertenece a esta familia de protocolos.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

33

Protocolos basados en el Estado de Enlace

Ejemplo

- (a) Ejemplo de subred
- (b) Paquetes de estado de enlace para esa subred

GS_VC - 2010

- Cada nodo recibe el LSP de cada uno de los demás nodos.
- Cada nodo aplica Dijkstra con la información recibida y construye su tabla de encaminamiento

labla de A					
Destino	Coste	Gateway			
A	0	_			
В	4	В			
С	6	В			
D	9	Е			
E	5	E			
F	10	В			

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

35

Protocolos basados en el Estado de Enlace

Ventajas

- Convergen más rápido y sin bucles.
- Permiten usar varias métricas para calcular el mejor camino.
- Permiten obtener varias rutas alternativas para un mismo destino: balanceo de tráfico...
- Representan mejor las "rutas hacia el exterior" en redes con muchos nodos.

Problemas

- Son mucho más complejos que los de Vector de Distancia.
- Es imprescindible asegurar la consistencia de las tablas de encaminamiento. Si distintos nodos llegaran a construir tablas distintas, la situación sería desastrosa.
- La información que se recibe de cada router hay que guardarla en una base de datos y ésta puede ser grande. Sobre esa base de datos se tiene que aplicar Dijkstra.
- Pueden necesitarse muchos mensajes para propagar la información de esa base de datos.
- Necesitan abordar problemas de seguridad.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

37

Encaminamiento jerárquico

Contenidos

- 1 Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

GSvC - 2010

Idea

- Si la red es muy grande, las tablas de encaminamiento se hacen inmanejables:
 - se tarda mucho en calcular los caminos óptimos
 - se genera mucho tráfico de control para conseguir difundir la información necesaria para los algoritmos de encaminamiento
- Solución: Encaminamiento Jerárquico:
 - Se divide la red en dominios
 - Dentro de cada dominio se encamina según un algoritmo de los vistos anteriormente
 - Los dominios están interconectados mediante pasarelas (gateways)
 - Las máquinas dentro de un dominio no conocen a las de otro.
 - Los gateways sólo conocen a otros gateways.
 - Las rutas entre gateways se calculan con otro algoritmo de encaminamiento.

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

30

Encaminamiento jerárquico

Ejemplo

Full table for 1A

Dest.	Line	Hops
1A	_	_
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗА	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5

Hierarchical table for 1A

Dest.	Line	Hops
1A	_	-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4 5	1C	3
5	1C	4

Protocolos de encaminamiento en Internet: Protocolos Interiores y Exteriores

- A principios de los 80 Internet era una sola red desde el punto de vista administrativo. Las tablas mantenían entradas para todas las subredes. Problemas:
 - Escalabilidad
 - Autonomía administrativa
- En 1982 se decide agrupar subredes en Sistemas Autónomos (AS) y eliminar la centralización administrativa:
 - Uno de los AS es el backbone y a él se conecta al menos un router de cada uno de los otros AS (representante).
 - Cada AS ejecuta Protocolos Interiores de Encaminamiento (IGPs, Interior Gateway Protocol) para sus subredes:
 - RIP (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - Los routers representantes de cada AS ejecutan un Protocolo Exterior de Encaminamiento (EGPs, Exterior Gateway Protocol) para la conexión de los mismos:
 - BGP (Border Gateway Protocol).

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

41

Encaminamiento jerárquico

AS, IGP y EGP

 Relación entre sistemas autónomos y protocolos interiores y exteriores de encaminamiento:

GSvC - 2010

Contenidos

- 1 Introducción
- 2 Algoritmos básicos
- 3 Familias de Protocolos de Encaminamiento
- 4 Protocolos basados en Vector de Distancia
- 5 Protocolos basados en el Estado de Enlace
- 6 Encaminamiento jerárquico
- Referencias

GSyC - 2010

Encaminamiento en Internet: 1. Introducción

43

Referencias

Referencias

- Andrew S. Tanenbaum, Redes de Computadores, Prentice Hall, 4^a edición: apartado 5.2.
- J.J. Kurose y K.W. Ross, Redes de Computadores: un enfoque descendente basado en Internet, Pearson Educación, 2ª edición: apartados 4.2, 4.3.