Average time of finding ideal solutions and their percentage in all results for GA (100 iterations):

Graph nodes	Generations	Sol_per_pop	Average time	Accuracy	Total time
8	1000	400	9.81 s	94%	16m 19s
14	1500	500	24.79 s	83%	41m 21s
20	1500	700	36.06 s	63%	60m 23s

Average time of finding ideal solutions and their percentage in all results for PSO (100 iterations):

Graph nodes	n_particles	n_iterations	Average time	Accuracy	Total time
8	800	900	4.81 s	92%	8m 1s
14	1000	1100	11.68 s	71%	19m 31s
20	1200	1500	20.34 s	38%	33m 49s

Summary

In summary, for small inputs, in my opinion, the PSO algorithm was better suited. It achieved the same accuracy results in a much shorter time, and sometimes even better. As for medium and large inputs, the genetic algorithm performed better. Despite adjusting the parameters of the PSO, its accuracy was always lower than that of the GA. From the entire project, I concluded that these algorithms work in an incredibly interesting way, but at least in my case, not necessarily efficient.