MA50259: Statistical Design of Investigations

Dr. Sandipan Roy

Lecture 8: Case-Control Studies

Controlled Cohort studies

Controlled Cohort study: Two (or more) groups of individuals are followed over time and occurrences of the disease are counted within each group.

		Not	
Exposure	Disease	Disease	Total
Exposed	a	b	$n_1 = a + b$
Non-	С	d	$n_0 = c + d$
Exposed			

For each individual, the exposure category is fixed and the disease outcome is as random

- ➤ A sample of cases (individuals who have the disease) is selected. Then a second group of individuals who are not cases (individuals who do not have the disease) is selected. These are the controls
- ▶ In both groups, the disease outcome is known but the exposure category is treated as random.
- After cases and the controls have been selected, their previous exposures are ascertained

Exposure	D (cases)	Not D (controls)
Exposed Non- Exposed	a C	b d
Total	$m_1 = a + c$	$m_0 = b + d$

- ightharpoonup Controlled cohort study: n_0 and n_1 fixed in advance
- ightharpoonup Case-control study: m_0 and m_1 fixed in advance
- In a cohort study, the disease outcome is determined by following the exposed and not-exposed groups forward in time
- In a Case-control study the exposure categories are determined by looking back in time at the histories of cases and controls
- Proportions of cases and controls with the exposure E are compared
- ▶ If there is no association between E and D, the the proportions exposed in cases and controls should be similar.

Ex 1. Doll & Hill Case-control study

	Lung cancer	Control	Total
Smoked	647	622	1269
Never smoked	2	27	29
Total	649	649	1298

$$\widehat{RR} = \frac{647/1269}{2/29} = 7.39, \qquad \widehat{OR} = \frac{647(27)}{622(2)} = 14.04$$

Odds ratio for smoking is 14.04 with 95% CI (3.33, 59.31)

Ex 1. Doll & Hill Case-control study

- ► The 649 cases were male patients admitted to hospital with lung cancer
- ► For each case a control was selected of same sex and age admitted to hospital for other disease
- ▶ If more than one eligible control, the first on the list was chosen

Ex 1. Doll & Hill study (Hypothetical 1)

	Lung cancer	$Controls{\times}10$	Total
Smoked Never smoked	647 2	6220 270	6867 272
Total	649	6490	7139

$$\widehat{RR} = \frac{647/6867}{2/272} = 12.81, \qquad \widehat{OR} = \frac{647(270)}{6220(2)} = 14.04$$

Ex 1. Doll & Hill study (Hypothetical 2)

Lung cancer $ imes 10$	Control	Total
6470	622	7092
20	27	47
6490	649	7139
	6470 20	6470 622 20 27

$$\widehat{RR} = \frac{6470/7092}{20/47} = 2.14, \qquad \widehat{OR} = \frac{6470(27)}{622(20)} = 14.04$$

Ex 3. Doll & Hill study (extras)

- ► The 649 cases were male patients addmitted to hospital with llung cancer
- ► For each case a control ws selected of same sex and age admitted to hospital for other disease
- ▶ If more than one eligible control, the first on the list was chosen
- Odds ratio for smoking is 14.04 with 95% CI (3.33, 59.31)
- ▶ How different are the cases and controls?
- Does any difference matter for the association?
- Which alternative explanations are for the association

Case-control studies: estimation

- The relative risk (risk ratio) cannot be estimated in a case-control study as it depends on the number of cases and controls selected
- The odds ratio does not depend on the number of cases and controls selected
- The odds ratio only depends on the proportion of cases and controls with the exposure

Case-control studies: estimation

Exposure	D (cases)	Not D (controls)
Exposed Non- Exposed	a C	b d
Total	$m_1 = a + c$	$m_0 = b + d$

$$\widehat{OR} = \frac{\widehat{odds}(E|D)}{\widehat{odds}(E|D^c)} = \frac{a/c}{b/d} = \frac{a/b}{c/d} = \frac{\widehat{odds}(D|E)}{\widehat{odds}(D|E^c)} = \frac{ad}{cb}$$

 Confidence intervals for the odds ratio are calculated in the same way as in a cohort study (see Lecture 3)

- Main issue with case-control studies: How to select the controls?
 - + Selected from the population that gave rise to the cases
 - + Controls should have the same opportunity as the cases to become exposed

Example 2: Physical exertion and heart attacks

Planning of a case-control study of the impact of physical exertion on triggering heart attacks

- ▶ How to select the cases and the controls?
- ► Need to take into account potential confounder variables? If so, which ones?
- Is stratification of confounders a problem?
- How to account for confounding from the outset?

Example 3: Autism and MMR

- In 1998 a hypothesis was formulated that measles, mumps and rubella (MMR) vaccine may be associated with the development of autism
- Controversy led to a drop of MMR vaccination rates in some parts of the UK
- Many studies, none of which could confirm the original hypothesis
- One study: 1294 cases of pervasive developmental disorder
- ▶ 4469 controls selected from GP records
- ▶ Up to five controls were matched to each case (same sex, birth date within one year)
- Could this procedure be considered as stratification? If so how many strata?
- Can we use Mantel-Haenszel to obtain a summary effect?

Example: Cirrhosis and heavy drinking

- Case-control study to explore the association between Cirrhosis and heavy drinking
- What is the time sequence in case-control study?
- How good a case-control study would be to establish causality here?
- Other problems?

Example: Sudden infact death syndrome

- Cases are deaths from SIDS
- Mothers are asked to report medical events
- Any problems here?

Advantages

- + Quicker and cheaper than cohort studies
- + Typically require much smaller sample sizes
- + Particularly suited to study rare diseases
- + Many risk factors can be studies simultaneously

Disadvantages

- + No time sequence: forbids causality
- + Only one disease outcome
- + No estimates of the relative risk
- + Likely to suffer from bias error from the way the controls are sampled