

Nonparametric methods

Parametric methods

- Assume some functional form (Gaussian, Bernoulli, Multinomial, logistic, Linear) for
 - $P(X_i|Y)$ and P(Y) as in Naïve Bayes
 - P(Y|X) as in Logistic regression
- Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP and plug in
- Pro need few data points to learn parameters
- Con Strong distributional assumptions, not satisfied in practice

Example

Hand-written digit images projected as points on a two-dimensional (nonlinear) feature spaces

Non-Parametric methods

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Today, we will see some nonparametric methods for
 - Density estimation
 - Classification

Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\widehat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Effect of histogram bin width

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

bins =
$$1/\Delta$$

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Bias of histogram density estimate:

$$\mathbb{E}[\widehat{p}(x)] = \frac{1}{\Delta} P(X \in \operatorname{Bin}_x) = \frac{1}{\Delta} \int_{z \in \operatorname{Bin}_x} p(z) dz \approx \frac{p(x)\Delta}{\Delta} = p(x)$$

Assuming density it roughly constant in each bin (holds true if Δ is small)

Bias-Variance tradeoff

Choice of #bins

bins =
$$1/\Delta$$

```
\mathbb{E}[\widehat{p}(x)] pprox p(x) 	ext{ if } \Delta 	ext{ is small} \qquad 	ext{(p(x) approx constant per bin)} \mathbb{E}[\widehat{p}(x)] pprox \widehat{p}(x) 	ext{ if } \Delta 	ext{ is large} \qquad 	ext{(more data per bin, stable estimate)}
```

- Bias how close is the mean of estimate to the truth
- Variance how much does the estimate vary around mean

Small
$$\Delta$$
, large #bins \iff "Small bias, Large variance" Large Δ , small #bins \iff "Large bias, Small variance"

Bias-Variance tradeoff

Choice of #bins

Histogram: Conclusion

- Pro-once computed, the data set itself can be discarded, advantageous if the data set is large; easily applied if the data points are arriving sequentially; a quick visualization of data in one or two dims
- Con-discontinuities on bin edge; (#bins)^D
- Two hints: local; delta

Kernel density estimate

Histogram – blocky estimate

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Kernel density estimate aka "Parzen/moving window method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

Kernel density estimate

•
$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n K\left(\frac{X_j - x}{\Delta}\right)}{n}$$
 more generally

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Kernel density estimate

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".

Gaussian bumps (red) around six data points and their sum (blue)

 Note that where the points are denser the density estimate will have higher values.

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Any kernel function that satisfies

$$K(x) \ge 0$$

$$\int K(x)dx = 1$$

Kernels

boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$

Finite support

 only need local points to compute estimate

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Infinite support

- need all points to compute estimate
- -But quite popular since smoother

Choice of kernel bandwidth

Histograms vs. Kernel density ¹⁶ estimation

K-NN(Nearest Neighbor) density estimation

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

Kernel density est

$$\widehat{p}(x) = \frac{n_x}{n\Delta}$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

Fix n_x = k, estimate Δ from data (volume of ball around x that contains k training pts)

k-NN density est

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

k acts as a smoother.

Not very popular for density estimation - expensive to compute, bad estimates

But a related version for classification quite popular

From Density estimation to Classification

K-NN classifier

K-NN classifier

K-NN classifier (K=5)

Test document

- Sports
- Science
- Arts

What should we predict? ... Average? Majority? Why?

K-NN classifier

- Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$ = $\arg \max_y p(x|y)P(y)$
- k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_{y} \ \widehat{p}_{kNN}(x|y)\widehat{P}(y)$ = $\arg\max_{y} \ k_y$ (Majority vote)

$$\widehat{p}_{kNN}(x|y) = \frac{k_y \longrightarrow}{n_y \Delta_{k,x}} \text{ that lie within } \Delta_{\mathbf{k}} \text{ ball } \sum_y k_y = k$$

$$\xrightarrow{\widehat{P}(y)} - \frac{n_y}{n_y}$$
 # total training pts of class y

K even not used in practice

- Sports
- Science
- Arts

What is the best K?

Bias-variance tradeoff

Larger K => predicted label is more stable Smaller K => predicted label is more accurate

Similar to density estimation

Choice of K - in next class ...

1-NN classifier — decision boundary

• Guarantee: For $n \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error.

k-NN classifier — decision boundary

K acts as a smoother (Bias-variance tradeoff)

Case Study: kNN for Web Classification

- Dataset
 - 20 News Groups (20 classes)
 - Download:(http://people.csail.mit.edu/jrennie/20Newsgroups/)
 - 61,118 words, 18,774 documents
 - Class labels descriptions

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

sci.crypt sci electronics sci.med sci.space

misc forsale

talk.politics.misc talk.politics.guns talk.politics.mideast soc.religion.christian

talk.religion.misc alt.atheism

Experimental Setup

- Training/Test Sets:
 - 50%-50% randomly split.
 - 10 runs
 - report average results
- Evaluation Criteria:

$$Accuracy = \frac{\sum_{i \in \textit{test set}} I(\textit{predict}_i = \textit{true label}_i)}{\textit{\# of test samples}}$$

Results: Binary Classes

Summary

- Instance based/non-parametric approaches
 - Four things make a memory based learner:
 - A distance metric, dist(x,X_i)
 Euclidean (and many more)
 - How many nearby neighbors/radius to look at?
 k, Δ/h
 - A weighting function (optional)
 W based on kernel K
 - 4. How to fit with the local points?
 Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 - Parametric models, once fitted, are much more efficient in terms of storage and computation.

- Histograms, Kernel density estimation
 - Effect of bin width/ kernel bandwidth
 - Bias-variance tradeoff
- K-NN classifier
 - Nonlinear decision boundaries