1	Fill in the following	tabla of numbero	in docimal hinary	rootal and havadaaimal
- I.	FIII III THE TOHOWING	riable of numbers	ın decimal binarv	, octal, and hexadecimal.

base example									
decimal	10	256	512	32	512				
binary	b1010	b10000000	b1000000000	b100000	b1000000000				
octal	o12	0400	01000	o40	01000				
hexadecimal	0xA	0x100	0x200	0x20	0x200				

note: why are there duplicate columns?

base	example				
decimal	10	31582	153	196	65535
binary	b1010	b1111011010111110	b10011001	b11000100	b11 (2 ¹⁶)
octal	o12	075536	o231	o304	o177777
hexadecimal	0xA	0x7B5E	0x99	0xC4	0xFFFF

note: I used expansion steps in a calculator, e.g., o75536:

$$7 \cdot 8^4 + 5 \cdot 8^3 + 5 \cdot 8^2 + 3 \cdot 8^1 + 6 = 31582$$

but then it got tedious rather than insightful, so then I used python.

2. Complete the following: (A:10,B:11,C:12,D:13,E:14,F:15)

- 3. Compute the following sets. The universe for all of these sets is Z, P is the set of prime numbers, E is the set of even numbers, and O is the set of odd numbers.
 - (a) $\{1, 2, 3, 5, 8, 13, 21, 35\} \cup \{2, 3, 5, 7, 11, 13, 17, 19\} =$
 - (b) $\{1, 2, 3, 5, 8, 13, 21, 35\} \cap \{2, 3, 5, 7, 11, 13, 17, 19\} =$
 - (c) $E \cap O =$
 - (d) $\boldsymbol{P} \cap \boldsymbol{E} =$
 - (e) N' =
 - (f) $\boldsymbol{E}' \cap \boldsymbol{O}' =$
 - (g) $\{x: y \in \mathbf{N}, x = y^2\} \cap \{x: y \in \mathbf{N}, x = y^3\} = \mathbf{N}$
 - (h) $P(\{1,2,3\}) \cap P(\{2,3,4\}) =$
- 4. Give the truth tables for the following. Which are tautologies, and which are satisfiable?
 - (a) $a \wedge (b \vee a)$
 - (b) $(a \wedge b) \vee (a \wedge b)$
 - (c) $a \lor \neg a$
 - (d) $\neg (a \lor b)$
 - (e) $\neg a \land (\neg b)$
 - (f) $\neg a \land (\neg b \lor c)$