Contrôle n°2

Barème approximatif: 1 point par question et 2 points de présentation supplémentaires. Les résultats annoncés sans justification n'apporteront pas de points.

Exercice I:

- 1) Déterminer l'expression de l'affixe $z' \in \mathbb{C}$ du point d'affixe $z \in \mathbb{C}$ par :
 - a) la translation de vecteur $\vec{u} = (0,3)$.
 - **b)** la rotation de centre A = (-1, 2) et d'angle $\frac{\pi}{5}$.
 - c) l'homothétie de centre B = (3,4) et de rapport -2.
- 2) Identifier la transformation suivante : $z \mapsto 2z + 1$.

Exercice II:

- 1) Les vecteurs suivants sont ils libres ou liés? Justifier en utilisant la définition de base.
 - a) $\vec{u} = (1, 2)$ et $\vec{v} = (2, 3)$.
 - **b)** $\vec{u} = (1, 2, 3), \vec{v} = (-1, 1, 2) \text{ et } \vec{w} = (3, 3, 5).$
- 2) a) Calculer le déterminant de la matrice $A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$.

 b) Calculer le déterminant de la matrice $B = \begin{pmatrix} 3 & 4 & 4 \\ 1 & 2 & 1 \\ 0 & -2 & 4 \end{pmatrix}$.

 c) Calculer le déterminant de la matrice $C = \begin{pmatrix} 1 & 5 & 2 \\ -1 & 1 & -2 \\ -1 & 2 & 1 \end{pmatrix}$.

Les vecteurs
$$\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$ sont-ils liés?

Exercice III:

- 1) Soit \mathcal{D} la droite d'équations paramétriques $\begin{cases} x=2+t \\ y=3+2t \\ z=1-t \end{cases}$
 - a) Donner sans calcul un vecteur directeur de \mathcal{D} et un point A par lequel elle passe.
 - b) Déterminer un système d'équations cartésiennes de cette droite.

- 2) Soit \mathcal{D}' la droite passant par A = (1, 2, 3) et B = (2, 3, 5).
 - a) Donner un vecteur directeur de cette droite.
 - b) Donner un système d'équations paramétriques de \mathcal{D}' .
 - c) En déduire un système d'équations cartésiennes de \mathcal{D}' .
- 3) Soit \mathcal{P} le plan d'équation ax + by + cz = d. Donner un vecteur normal à \mathcal{P} .
- 4) Soit \mathcal{P} le plan passant par A = (2, 3, 4), B = (3, 4, 5) et C = (1, m, 1).
 - a) Donner deux vecteurs engendrant \mathcal{P} ?
 - b) Donner un système d'équations paramétriques de \mathcal{P} .
 - c) On fixe ici m=4, déduire de la question précédente une équation cartésienne de \mathcal{P} .
- 5) Soient \mathcal{P}' et \mathcal{P}'' les plans d'équations respectives : x y + z = 1 et 2x + 3y z = 2.
 - a) Ces deux plans s'intersectent-ils? Justifier.
 - b) Si oui, calculer leur intersection.