$$f'(x) = ax$$
. Anctg(x) + (1+x²). $\frac{1}{1+x^2}$
 $f''(x) = ax$. Anctg(x) + $\frac{2x}{1+x^2}$

673 -- Teremos:

$$Y'' = -2 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{1-x^2}} (-2x) \cdot \frac{1}{(1-x^2)} \cdot Ancoen(x) + \frac{2}{(1-x^2)}$$

$$y'' = \frac{2x}{\sqrt{(1-x^2)^{37}}}$$
 Ancoun(x) + $\frac{2}{(1-x^2)}$

674-- Teremos;

$$Y'=a$$
, senh $\left(\frac{x}{a}\right)$, $\frac{1}{a}=\operatorname{senh}\left(\frac{x}{a}\right)$

$$Y^{11} = \frac{1}{a}$$
 . Cosh $\left(\frac{x}{a}\right)$

Rusdoull Antony de Assaujo Freise/