

KOZ SY BOESTA

TECHNICAL REPORT ARBRI-TR-02178

ELECTRON SPIN RESONANCE STUDIES OF HYDROGEN AND DEUTERIUM BOMBARDMENT OF UNSATURATED HYDROCARBONS AT 77K

Cornelius U. Morgan Kevin J. White

July 1979

US AUDY ADMANDENT DESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY
AMERICEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited

79 09 - 17 054

broker (A.D.) Toward Char It is he longer needed.

The recens it to the estimator.

distribution of this rights by originating

Additional coules of this report my be obtained from the Berrier Johnson! Information Service, U.S. Superment of Compres, Springfield, Virginia 2014;

The findings is this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

the two of break trans or manifesturers , some to the report that the months to the comments product.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Shiered)

1. REPORT NUMBER /4/	BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
TECHNICAL REPORT ARBRL-TR-92178	(9)
4. TITLE (and Subtitle)	S. THE OF REPORT & PERIOD COVE
ELECTRON SPIN RESONANCE STUDIES OF HYDROGEN AND	Technical Report
DEUTERIUM BOMBARDMENT OF UNSATURATED HYDROCARBONS	S. PERSONNING ORG. REPORT HUMB
AT 77K -	
7. AUTHORE	S. CONTRACT OR GRANT NUMBER(s)
Cornelius U./Morgan Kevin J./White	(12/30p.)
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Laboratory	
ATTN: DRDAR-BLP Aberdeen Proving Ground, MD 21005 (16	1L1611Ø2AH6Ø
II. CONTROLLING OFFICE NAME AND ADDRESS	II. AREA CONTRACTOR
U.S. Army Armament Research and Development Comman	JUL 79
U.S. Army Armament Research and Development Comman. U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	DE NUMBER OF PROES
Aberdeen Proving Ground, MD 21005 18. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II WINSHIN NEW CONTOLLING OTHER)	Is. SECURITY CEASE. (ST INS INDITY)
1	Unclassified
	184. DECLASSIFICATION/DOWNGRADI
17. DISTRIBUTION STATEMENT (6) the shatrant entered in Block 20, If directions a	an Aspert)
17. DISTRIBUTION STATEMENT TO the shatract satural in Block 20, If division a	
	7)

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

393 47L . LW

SECURITY CLASSIFICATION OF THE PARTITION Date Between

20. ABSTRACT: (Continued)

I,1-dimethyl-2-propynyl, 1,2,2-trimethyl propyl, t-butyl, ethyl, and isopropyl radicals, respectively. The addition reaction of H atoms to transl,3-pentadiene occurs at the terminal earbon atom of the terminal double bond to produce the 1-methyl-2-butenyl radical. Confirmation of an addition reaction was made by bombarding the unsaturate first with hydrogen and then with deuterium. The two radicals can be distinguished by their esr spectra. On bombardment of allene with H atoms the allenyl radical was observed. This radical was produced by an abstraction of a hydrogen atom from allene.

UNCLASSIFIED

TABLE OF CONTENTS

									80				Page
1.	INTRODUCTION												5
II.	EXPERIMENTAL												8
ııı.	RESULTS AND DISCU	ISSION .											9
	A. Trans-2-buter	<u> </u>					•						9
	B. 2,-3-dimethy	-1,3-but	adi	ene	9.								9
	C. Trans-1,3-Per	tadiene											11
	D. 2-methyl-1-b	itene-3-y	me.										14
	E. Allene												14
	F. 3,3-Dimethyl	-1-butene											14
	G. Isobutylene.												16
	H. Ethylene												16
	I. Propylene												18
IV.	CONCLUSIONS												18
	REFERENCES												20
	DISTRIBUTION LIST	r											23

NTIS	GRA&I
DDC TA	Trans.
Unenno	
Justif	ication
Ву	
Distri	bution/
Avai	ability Codes
Dist.	Avail and/or special
Λ	

I. INTRODUCTION

The goal of a number of research programs has been the development of a more energetic propellant. Examples of some of this work are given in references 1 and 2. The stabilization of very reactive species such as radicals in conventional propellants was one of the methods used.

In the development of an energetic propellant the inability to attain a substantial concentration of radicals in the propellant is one of the primary obstacles to making a significant contribution to the total energy of the system. Calculations have been made on particular systems3,4 but the actual parameters required for producing high concentrations of radicals are not well understood. Some methods that have been used to produce free radicals in solids are high energy radiation, photolysis, and generation of free radicals in the gas phase with a microwave discharge followed by condensation and trapping of produced radicals at low temperature. All of these techniques have some deficiencies. With bond scission by radiation the fragments produced must migrate far enough from each other in the solid to prevent recombination. With the discharge and condensation method considerable reaction takes place when the radicals collide with the substrate. The mechanisms of trapping radicals within matrices is a field that is not well understood. Pimentel (see reference 1, chapter 4) has established a general rule on the macroscopic level which states that radical species cannot be preserved if the temperature of the matrix substance is higher than approximately Tm/2, where Tm is the melting point of the matrix.

The mechanisms of radical trapping of hydrogen atoms in various matrices have been published by Ultee and Kepford⁵. A study by one of the present authors⁶ on the trapping of methyl radicals has also been completed. Both of these papers are directed at a better understanding

- 1. A. M. Bass and H. P. Broida, Formation and Trapping of Free Radicals, Academic Press, New York, NY, 1960.
- 2. G. C. Szego, "Free Radical Fuels", Chem. Eng. Progr., 56, 60-63 (1960).
- 3. J. L. Jackson and E. W. Montroll, "Free Radical Statistics", J. Chem. Phys., 28, 1101-9 (1958).
- 4. J. L. Jackson, "Dynamic Stability of Frozen Radicals. I. Description and Application of the Model", J. Chem. Phys., 31, 154-7 (1959).
- 5. C. J. Ultee, and C. Kepford, "Study of Stabilization of Hydrogen Atoms at 77 K and Higher Temperatures", AFRPL-TR-68-73, (1968).
- 6. C. U. Morgan, "Decay Kinetics of the Methyl Radical Produced by Ultra-Violet Irradiation of Methanol-Water Matrices at 77 K", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL Report No. 1422, October 1968 (AD #678563).

The second second

of the mechanisms involved in radical trapping in matrices. One objective of this task is to investigate the technique of trapping radicals produced by the interaction of active species such as hydrogen atoms with unsaturated compounds at 77K. Radicals that are formed by this method are not fragmented species and do not require the migration of species to prevent recombination as in the case of the photolytic or radiolytic techniques. This method also avoids the unwanted reactions that take place when radicals are condensed from the gas phase. The problem of how the reactivity of the radicals affects the stability of the matrix should also be considered.

Klein and others $^{7-13}$ for a number of years investigated the reaction of H atoms with unsaturated hydrocarbons primarily by the analysis of the products when they had warmed to room temperature. An objective of this work was to investigate directly the radicals produced in these reactions by using electron spin resonance (esr).

Several authors 14,15 have postulated the importance of surface reactions in relation to unstable ignition and combustion phenomena but detailed knowledge concerning information on the reaction of gas phase products with condensed reactants is inadequate. A second objective of

7. R. Klein, M. D. Scheer, and R. Kelley, "Disproportionation-Combination Reactions of Alkyl Radicals and Hydrogen Atoms at Low Temperature", J. Phys. Chem., 68, 598-605 (1964).

The state of the s

- 8. R. Klein, and M. D. Scheer, "Matrix Effects in the Gaseous H Atom-Condensed Olefin System; Surface Reaction--Olefin Diffusion Model", J. Phys. Chem., 66, 2677-81 (1962).
- 9. R. Klein and M. D. Scheer, "The Activation Energy for Hydrogen Addition to Propylene", J. Phys. Chem., 65, 375-77 (1961).
- 10. R. Klein, M. D. Scheer, and J. G. Waller, "The Reaction of Hydrogen Atoms with Solid Propene at Low Temperatures", J. Phys. Chem., 64, 1247-50 (1960).
- 11. R. Klein and M. D. Scheer, "The Addition of Hydrogen Atoms to Solid Olefins at -195°", J. Am. Chem. Soc., 80, 1007 (1958).
- 12. R. Klein and M. D. Scheer, "Cross Dimerization in the Hydrogen Atom Addition to Mixtures of Solid Olefins at 77 K", Preprint Papers, International Symp. Free Radicals, 5th, Upsala 34-2-5 (1961).
- 13. R. Klein and M. D. Scheer, "The Reaction of Hydrogen Atoms with Solid Olefins at -195°", J. Phys. Chem., 62, 1011-1014 (1958).
- 14. F. E. C. Culick, "Some Problems in the Unsteady Burning of Solid Propellants", NWC Tech. Pub. 4668, (1969).
- 15. R. S. Brown and R. J. Muzzy, "Research on Combustion of Solid Propellants", UTC Report No. 2136-TSR2, (1967).

this investigation is to illuminate some of the basic reactions of hydrogen atoms with unsaturated compounds. These experiments compliment those of Klein and others. Other authors who have contributed to this field are Bazhin, Kuznetsov, Bubnov, and Voevodzkiil6 with their work on the addition of H atoms to ethylene and acetylene in low temperature acid matrices to produce the ethyl and vinyl radicals. Hill, Reid, and Strandberg17, in studying the bombardment of a propylene film with hydrogen atoms, calculated the kinetic rate constant for the reaction H + $H_2C=CH-CH_3 \rightarrow CH_3CHCH_3$. When Cochran, Adrian, and Bowers 18 photolyzed HI in acetylene at 4.2 K, the hydrogen atoms produced added to the triple bonds of acetylene to form vinyl radicals. Similarly, Aditya and Willard Photolyzed matrices of HI, 3-methyl pentane, and various alkanes or alkenes at 77 K to produce radicals. Forchioni and Chachaty²⁰ bombarded various organic compounds at 77 K with active nitrogen to produce radicals. Chachaty and Schmidt21 bombarded methyl methacrylate, vinyl acetate, acrylonitrile, methyl acrylonitrile, and styrene with H atoms to produce radicals. These radicals were formed by addition to the double bond at the terminal position. Abstractive radicals were obtained when allyl alcohol, ethanol, isopropanol, and 2-chloroethanol were bombarded with H atoms. Others 22-24 have produced radicals in polymers or solids by

- 16. N. M. Bazhin, E. V. Kuznetsov, N. N. Bubnov, and V. V. Voevodzkii, "Hydrogen Atom Reactions in a System H₂0 + H₂SO₄ + FeSO₄. II. Reactions with Unsaturated Compounds", Kinekika i kataliz, 7, 161-5 (1966).
- 17. C. C. Hill, Jr., R. C. Reid, and M. W. D. Strandberg, "Reactions of Atomic Hydrogen with Propylene at 77 K as Studied by Electron Spin Resonance", J. Chem. Phys., 42, 4170-74 (1965).
- 18. E. L. Cochran, F. J. Adrian, and V. A. Bowers, "E.S.R. Study of Ethynyl and Vinyl Free Radicals", J. Chem. Phys., 40, 213-20 (1964).
- 19. S. Aditya and J. Willard, "Radical Formation by the Photolysis of Hydrogen Iodide at 77 K in Alkane-Alkene, and Alkene Matrices", J. Am. Chem. Soc., 88, 229-32 (1966).
- 20. A. Forchioni and C. Chachaty, "Free Radicals Formed by the Reaction of Active Nitrogen on Organic Compounds at 77 K", Comptes Rendus, 264, 637-40 (1967).
- 21. C. Chachaty and M. C. Schmidt, "Free Radicals Formed by the Reaction of Gas Phase Hydrogen Atoms on Various Organic Compounds at 77 K", J. Chim. Phys., 62, 527-35 (1965).
- 22. L. A. Wall and R. B. Ingalls, "Reactions of Deuterated Polystyrenes with Hydrogen and Deuterium Atoms", J. Chem. Phys., 41, 1112-20 (1964).
- 23. T. Cole and H. C. Heller, "Production of Free Radicals in Organic Solids by Hydrogen-Atom Bombardment", J. Chem. Phys., 42, 1668 (1965).
- 24. J. N. Herak and W. Gordy, "Interaction of Hydrogen Atoms and Hydroxyl Radicals with 5-Halogen Uracils", Proceedings of the National Academy of Sciences, 56, 1354-60 (1966).

bombarding with H or D atoms at room temperature. In an earlier report 25 ethylene, propyne, 1,3-butadiene, 1-butyne, 1,2-butadiene, 1,4-cyclohexadiene, and benzene were bombarded with H atoms to produce, respectively, the ethyl, allenyl, 2-butenyl, methylallenyl, methylallenyl, cyclohexadienyl, and cyclohexadienyl radicals. In more recent work by Bennett and Mile26 radicals were produced by H atom bombardment of unsaturated compounds in an inert matrix. This was accomplished by bombarding a steel drum rotating cryostat cooled to 77K alternately with streams of argon, unsaturated hydrocarbon, and then H atoms.

II. EXPERIMENTAL

The gases used in the work included Matheson trans-2-butene (99.0%), isobutylene (99.0%), hydrogen (99.9%), deuterium (98.0%), allene (97%), ethylene (99.5%), and butane (99.0%). The liquid samples used were furnished by the Chemical Samples Company. They were trans-1,3-pentadiene (99%), 2,3-dimethyl-1,3-butadiene (99%), 3,3-dimethyl-1-butene (99.9%), and 2-methyl-1-butene-3-yne (99%). These were not purified further. The experimental apparatus and conditions were the same as those described in a previous publication²⁵ with the exception that a Varian V-4535 Large Sample Access cavity was used in the esr system.

The state of the s

Essentially, the system consisted of a glass flow tube in which hydrogen or deuterium gas was passed through a microwave discharge or a hot tungsten filament²⁷ to produce the free atoms. The atoms then bombarded the sample held on a cold finger at 77 K located in an esr cavity.

Computer simulation of the experimentally obtained spectra was carried out for most of the cases examined.

^{25.} C. U. Morgan and K. J. White, "The Electron Spin Resonance Spectra of Radicals Produced by the Hydrogen and Deuterium Bombardment of Unsaturated Organic Compounds at 77 K", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL Report No. 1453, October 1969, AD #697728.

^{26.} J. E. Bennett and B. Mile, "Studies of Radical-Molecule Reactions Using a Rotating Cryostat", J.C.S. Faraday, I, 69, 1398 (1973).

^{27.} K. J. White, C. U. Morgan, and E. Freedman, "A Simple Technique for Generating Nitrogen Atoms", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL Memorandum Report No. 2158, March 1972, AD #739520.

III. RESULTS AND DISCUSSION

A. Trans-2-butene

Trans-2-butene was bombarded with hydrogen atoms and the spectrum of the radical produced is shown in Figure 1A.

The addition of a H atom to the double bond of trans-2-butene can produce only the sec-butyl radical. Asycough and Thomson 28 showed that the two beta protons of the methylene group in radicals like the secbutyl are not equivalent. They concluded that these protons were about 15° away from the symmetrical arrangement of the two protons above and below the plane perpendicular to the the unpaired electron. Such a configuration would yield roughly five equivalent protons (1a and 48). The other β proton gives a coupling constant approximately twice as large as the equivalent protons. The observed spectrum can be explained by assuming the following hyperfine splitting constants:

$$a_{\alpha H} = a_{\beta_1 H} = a_{MeH} = 2.3 \pm 0.1 \text{ mT}$$

 $a_{\beta_2 H} = 4.4 \pm 0.1 \text{ mT}$

and an intensity distribution of 1:5:1:10:5:10:10:5:10:1:5:1. For the deuterium bombardment of trans-2-butene the question remains as to the β position of the deuterium. If it adds to the β_1 position then the deuterium splitting would be about 0.35 mT, but if at the β_2 position the splitting would be about 0.68 mT. Addition of a D atom at the β_2 position would also eliminate the large 4.4 mT proton splitting. The stick diagrams of both these configurations are given in Figure 1B under the spectrum for the deuterated sec-butyl radical. Clearly the deuterium in β_1 or small splitting configuration fits the observed spectrum. The small splitting position means that the deuterium carbon bond makes an angle of approximately 135° with the z axis of the P_2 electron.

B. 2,-3-dimethyl-1,3-butadiene

Bombardment of 2,3-dimethyl-1,3-butadiene with hydrogen atoms yields the spectrum shown in Figure IC. The spectrum consists of seven equally spaced lines with an isotropic splitting constant of 1.46 mT. When the spectrum was scanned at a higher gain, two wing lines appeared revealing

^{28.} P. B. Ayscough and C. Thomson, "Electron Spin Resonance Spectra of Alkyl Radicals in Gamma-Irradiated Alkyl Halides", Trans. Faraday Soc., 58, 1477 (1962).

Spectrum and intensity stick diagram of sec-butyl radical.

Spectrum of the singly deuterated sec-butyl radical (CH₃CHDCHCH₃) and intensity diagrams of two possible configurations.

Spectrum of the 2,3-dimethyl-2-butenyl radical.

Spectrum of the single deuterated 2,3-dimethyl-2-butenyl radical. All spectra recorded at 77K. Figure 1A. B.

a nine line spectrum instead of seven. The displacement of the spectrum about the base line indicates that a broad single line resonance is superimposed on top of the nine line spectrum.

To assist in the analysis, the 2,3-dimethyl-1,3-butadiene was bombarded with D atoms and a spectrum of 8 lines was produced as shown in Figure 1D.

The splitting due to deuterium is approximately 1/6 that due to hydrogen and consequently contributes mainly a broadening effect to the remaining hyperfine lines of the spectrum. Thus, the spectrum produced by deuterium addition always contained one less line than that produced by hydrogen addition. The deuterium spectrum in the above case confirms the addition mechanism since an abstraction by H or D would yield the same spectrum.

The addition of H atoms to 2,3-dimethyl-1,3-butadiene at the terminal position would give radical (1), 1,1,2-trimethylall,1 whose resonance hydrid is 2,3-dimethyl-2-butenyl.

If the proton adds to the second position we get radical (2), 2,3-dimethyl-3-butenyl.

$$\begin{array}{c|c}
CH_3 \\
CH_2-C-C=CH_2 \\
CH_3
\end{array} (2)$$

Radical (1) has eight equivalent protons $(2\alpha \text{ and } 6\beta)$ interacting with the unpaired electron and should produce a nine line spectrum with intensity distribution 1:8:28:56:70:56:28:8:1. Radical (2) on the other hand has only three interacting protons and could not yield the observed spectrum. The spectrum is accounted for by radical (1) plus a broad underlying unknown resonance.

C. Trans-1,3-Pentadiene

Trans-1,3-pentadiene was bombarded with hydrogen atoms and the radical produced gave the esr spectrum shown in Figure 2A. Seven equally spaced lines are observed with an isotropic splitting constant of 1.55 mT. In the case of an addition reaction the hydrogen atom could add at the 1,2,3, or 4 position in trans-1,3-pentadiene. Radicals (3), (4), (5), or (6) could be produced.

A. TRANS-1, 3-PENTADIENE

CH3CHCH=CHCH3 == CH3CH=CHCHCH3

C.

D.

CH2 DCHCH=CHCH3 ==CH2DCH=CHCHCH3

- Figure 2A. Spectrum of the 1-methyl-2-butenyl radical.
 - B. Computer simulated spectrum of the 1-methyl-2-butenyl radical.

 - C. Spectrum of the singly deuterated 1-methyl-2-butenyl radical.D. Spectrum of the single deuterated 1-methyl-2-butenyl radical at high gain. All spectra recorded at 77K.

$$CH_3$$
- $\dot{C}H$ - CH = CH - CH_3 \leftarrow CH_3 - CH = CH - $\dot{C}H$ - CH_3 (3)

$$.CH_2-CH_2-CH = CH-CH_3$$
 (4)

$$CH_2 = CH - CH_2 - \dot{C}H - CH_3 \tag{5}$$

$$CH_2 = CH - \dot{C}H - CH_2 - CH_3 - \dot{C}H_2 - CH = CH - CH_2 - CH_3$$
 (6)

Radical (3), 1-methy1-2-buteny1, has eight equivalent protons (2α and 6β) interacting with the free electron. This radical would produce a nine line spectrum with an intensity distribution of 1:8:28:56: 70:56:28:8:1. Computer simulation of the observed spectrum clearly shows that the seven lines have an intensity distribution of the middle seven lines of the spectrum for radical (3). Computer simulation also indicates that the two wing lines would be buried in the noise (Figure 2B). Radical (4), 3-pentenyl, has 3 equivalent (2α and 1β) and one inequivalent β protons interacting with the free electron. This would produce a six line spectrum with an intensity distribution of 1:3:4:4:3:1. The methylene group protons in this type of unsaturated radical²⁹ exhibit the same steric characteristics as in the saturated radicals. Radical (5), 1-methyl-3-butenyl, has five equivalent (1α and 4β) and one inequivalent \$\beta\$ protons interacting with the free electron and would produce an eight line spectrum with an intensity distribution of 1:5:11:15:15:11: 5:1. Radical (6), 2-pentenyl, has four equivalent (3α and 1β) and one inequivalent B protons interacting with the free electron. This would yield a seven line spectrum with intensity distribution of 1:4:7:8:7:4:1. Clearly radicals (4) and (5) can be eliminated from consideration as the species that produces the spectrum but radicals (3) and (6) are still possibilities.

To assist in the analysis the trans-1,3-pentadiene was bombarded with D atoms and the resulting spectrum is shown in Figure 2C. If the deuterium adds to the double bond as H does in radical (6) in such a way that the proton remaining in the methylene group is inequivalent to the other protons, then a spectrum of six lines with intensity distribution of 1:3:4:4:3:1 would be generated. If it adds so as to make all remaining protons equivalent then a spectrum of five lines would result with an intensity distribution of 1:4:6:4:1. If radical (3) is the observed radical, then the intensity distribution for the spectrum of the deuterated radical would be 1:7:21:35:35:21:7:1. Since

^{29.} P. B. Ayscough and H. E. Evans, "Electron Spin Resonance Studies of Gamma-Irradiated Olefins and u.v.-Irradiated methyl Iodide + Olefin Glasses," Trans. Faraday Soc., 60, 801 (1964).

the deuterated radical spectral intensities do not fit either case of the deuterated radical (6), but agree well with the six central lines of the deuterated radical (3), this must be the observed species. Scanning of the deuterated spectrum at a higher gain confirmed that the spectrum had eight lines instead of six as two weak wing lines were observed (Figure 2D). Only the extreme low field and high field lines are shown in Figure 2D.

D. 2-methyl-1-butene-3-yne

The bombardment of 2-methyl-1-butene-3-yne with H atoms yields the spectrum in Figure 3A. It consists of eight equally spaced lines with intensity distribution of 1.1:7.2:18.4:26.5:24.6:17.3:7.3:1.2 derived from the integration of the area under the absorption curves. The isotropic splitting constant for this radical is 1.77 ± 0.05 mT. This spectrum is produced by radical (7), 1,1-dimethyl-2-propynyl, by a terminal addition to the double bond.

$$(CH_3)_2 - \dot{C} - C \equiv CH - (CH_3)_2 C = C = \dot{C}H$$
 (7)

The second second

The theoretical intensity distribution for this radical is 1:7:21:35:35: 21:7:1. The spectrum is produced by the interaction of seven equivalent (1α and 6β) protons with the unpaired electron.

E. Allene

The bombardment of allene with hydrogen atoms produced the spectrum shown in Figure 3B. The peak to peak separation of the four lines are 1.80, 1.44, and 1.80 \pm 0.05 mT. This species is identical to that found for the hydrogen atom bombardment of propyne²⁵ and ultraviolet irradiation of allene by Volman, Maas, and Wolstenholme³⁰. The radical producing this spectrum was identified as the allenyl radical. Hydrogen hyperfine coupling constants of 1.8 mT for the methylene group and 1.4 mT for the CH group were observed for this radical. These mechanisms are described in detail in the previous report²⁵.

F. 3,3-Dimethyl-1-butene

Bombardment of 3,3-dimethyl-1-butene with hydrogen atoms yields the five line spectrum shown in Figure 3C. This spectrum has an isotropic splitting constant of 2.23 mT and an intensity distribution of 1:4:8:4:1. Two possible radicals that could be produced by an addition reaction are radicals (8) and (9).

30. D. H. Volman, K. A. Maas, and J. Wolstenholme, "Photochemical Formation of Free Radicals from Olefinic and Acetylenic Compounds in the Frozen State as Studied by Electron Spin Resonance," J. Am. Chem. Soc. 87, 3041 (1965).

A. 2-METHYL-1-BUTENE-3-YNE

(CH3)2-C-C-CH=(CH3)2C=C=CH

B. ALLENE

HC=C=CH2 ≠HC=C-CH2

C. 3,3-DIMETHYL-1-BUTENE

D. 3,3-DIMETHYL-1-BUTENE

- Figure 3A. Spectrum of the 1,1-dimethy1-2-propynyl radical.
 - B. Spectrum of the allenyl radical.
 - C. Spectrum of the 1,2,2-trimethyl propyl radical.
 - D. Computer simulated spectrum of the 1,2,2-trimethyl propyl radical. All spectra recorded at 77K.

$$CH_3$$
- CH_C - $(CH_3)_3$ (8)

$$H_2$$
Č- CH_2 -C- $(CH_3)_3$ (9)

Radical (8), 1,2,2-trimethyl propyl, is produced by a terminal addition and has four equivalent (la and 38) protons interacting with the free electron. This gives a five line spectrum with an intensity distribution of 1:4:6:4:1. Radical (9), 3,3-dimethyl butyl, has three equivalent protons (2a and 18) and a fourth 8 proton with a coupling twice as large as the others. Such a radical would yield a six line spectrum with an intensity distribution of 1:3:4:4:3:1. Computer simulation of the observed spectra indicates the superposition of two spectra, the one with intensity distribution of 1:4:6:4:1 and the other a single line of intensity two (Figure 3D). The radical observed in Figure 3C then is Radical (8) plus an unknown radical producing the single line.

G. Isobutylene

Bombardment of isobutylene with H atoms produced the spectrum shown in Figure 4A. Computer simulation of a 10 line spectrum with an isotropic splitting constant of 2.26 mT, a 0.3 mT line width, and an intensity distribution of 1:9:36:84:126:126:84:36:9:1 gave an excellent fit to the spectrum (Figure 4B). The two most extreme wing lines in the spectrum of Figure 4A were not observed. Possible radicals formed by the addition are radicals (10) and (11).

$$(CH_{\chi})_{\chi}$$
C (10)

$$(CH_3)_2CH-CH_2$$
 (11)

Radical (10), the t-butyl radical 28 , has nine equivalent β protons interacting with the free electron and would produce a 10 line spectrum with the same intensity distribution as the simulated spectrum. Radical (11), the isobutyl radical, has only three protons interacting with the free electron and could not produce the observed spectrum. Consequently, the spectrum in Figure 4A is produced by the t-butyl radical.

H. Ethylene

In the previous report²⁵ ethylene was bombarded with H atoms to produce the ethyl radical. In this present work neat ethylene was bombarded with D atoms and the ethyl radical was again observed. When a matrix of one third ethylene plus two thirds butane was bombarded with D atoms the spectrum produced is shown in Figure 4C. The spectrum was

A. ISOBUTYLENE

B. ISOBUTYLENE

C. ETHYLENE

- Spectrum of the t-butyl radical.

 Computer simulated spectrum of the t-butyl radical.

 Spectrum and intensity stick diagram of the singly deuterated ethyl radical. All spectra recorded at 77K.

generated by the CH_CH_D radical and the intensity stick diagram was prepared from the hyperfine splitting constants shown below.

$$a_{H_{G}} = 2.1 \pm 0.1 \text{ mT}$$
 $a_{H_{\beta}} = 2.7 \pm 0.1 \text{ mT}$
 $a_{D_{\beta}} = 0.4 \pm 0.1 \text{ mT}$

The failure to observe the singly deuterated ethyl radical in the case of the bombardment of neat ethylene with D atoms was probably due to an exchange reaction between ethylene and the deuterated radical:

$$H_2DC-\dot{C}H_2 + H_2C=CH_2 + CH_3\dot{C}H_2+HDC=CH_2$$
.

The addition of butane to the ethylene matrix in ratio of two to one isolates the deuterated radical enough so that the exchange is decreased and the deuterated radical is observed as shown in Figure 4C. In the case of the H atom bombardment of ethylene the exchange reaction would not be noticed since only protons could be exchanged. Itoh³¹ observed similar exchange reactions in an esr study of irradiated crystals of L-alanine.

I. Propylene

When neat propylene was bombarded with H atoms no resonance was observed. Propylene melts close to 77 K and thus it may be impossible to trap radicals in pure propylene at this temperature. For this reason a one to two mixture of propylene and butane was condensed on the cold finger and bombarded with H atoms. A very weak and poor quality spectrum of the isopropyl radical was observed. Only the six central lines of the eight line spectrum were observed. The observation of this spectrum agrees with the findings of Bennett and Mile²⁶ for propylene and shows that it is primarily a terminal addition.

IV. CONCLUSIONS

In reviewing the eight cases examined in which H atoms add to double bonds, addition always took place at the terminal position. In the case of preferential addition to either a double or triple bond, addition occurred at the double bond for the one case observed, the bombardment

^{31.} K. Itoh, I. Miyagawa, and C. S. Chen, "ESR Study of an Irradiated Crystal of L-Alanine: Two New Proton-Deuteron Exchange Reactions," J. Chem. Phys. 52, 1822 (1970).

of 2-methyl-1-butene-3-yne. Pimentel's general rule concerning the temperature of the matrix necessary to trap radical species did not hold in the case of ethylene. Ethylene trapped ethyl radicals at 77 K, only 26 degrees below its melting point. Although the radicals were trapped at 77 K in ethylene, an atom exchange reaction between the radical and matrix did take place.

In the case of allene, a very reactive intermediate addition radical is first formed but has a short lifetime at 77K. This result is important in connection with the mechanism of stabilizing radicals in matrices. It clearly demonstrates the fact that the stabilization of energetic species depends strongly on its reactivity and not exclusively on the melting point of the matrix.

REFERENCES

- A. M. Bass and H. P. Broida, <u>Formation and Trapping of Free Radicals</u>. Academic Press, New York, NY, 1960.
- 2. G. C. Szego, "Free Radical Fuels," Chem. Eng. Progr. 56, 60-63 (1960).
- J. L. Jackson and E. W. Montroll, "Free Radical Statistics," J. Chem. Phys. 28, 1101-9 (1958).
- J. L. Jackson, "Dynamic Stability of Frozen Radicals. I. Description and Application of the Model", J. Chem. Phys., 31, 154-7 (1959).
- C. J. Ultee, and C. Kepford, "Study of Stabilization of Hydrogen Atoms at 77 K and Higher Temperatures", AFRPL-TR-68-73, (1968).
- C. U. Morgan, "Decay Kinetics of the Methyl Radical Produced by Ultra-Violet Irradiation of Methanol-Water Matrices at 77 K", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL Report No. 1422, October 1968 (AD #678563).
- R. Klein, M. D. Scheer, and R. Kelley, "Disproportionation-Combination Reactions of Alkyl Radicals and Hydrogen Atoms at Low Temperature", J. Phys. Chem., 68, 598-605 (1964).

- R. Klein, and M. D. Scheer, "Matrix Effects in the Gaseous H Atom-Condensed Olefin System; Surface Reaction--Olefin Diffusion Model", J. Phys. Chem., 66, 2677-81 (1962).
- R. Klein and M. D. Scheer, "The Activation Energy for Hydrogen Addition to Propylene", J. Phys. Chem., 65, 375-77 (1961).
- R. Klein, M. D. Scheer, and J. G. Waller, "The Reaction of Hydrogen Atoms with Solid Propene at Low Temperature", J. Phys. Chem., 64, 1247-50 (1960).
- R. Klein and M. D. Scheer, "The Addition of Hydrogen Atoms to Solid Olefins at -195°", J. Am. Chem. Soc., 80, 1007 (1958).
- 12. R. Klein and M. D. Scheer, "Cross Dimerization in the Hydrogen Atom Addition to Mixtures of Solid Olefins at 77 K", Preprint Papers, <u>International Symp. Free Radicals</u>, 5th, Upsala 34-2-5 (1961).
- 13. R. Klein and M. D. Scheer, "The Reaction of Hydrogen Atoms with Solid Olefins at -195°", J. Phys. Chem., 62, 1011-1014 (1958).
- F. E. C. Culick, "Some Problems in the Unsteady Burning of Solid Propellants", NWC Tech. Pub. 4668, (1969).

- R. S. Brown and R. J. Muzzy, "Research on Combustion of Solid Propellants", UTC Report No. 2136-TSR2, (1967).
- 16. N. M. Bazhin, E. V. Kuznetsov, N. N. Bubnov, and V. V. Voevodzkii, "Hydrogen Atom Reactions in a System H₂O + H₂SO₄ + FeSO₄. II. Reactions with Unsaturated Compounds", Kinekika i kataliz, 7, 161-5 (1966).
- C. C. Hill, Jr., R. C. Reid, and M. W. D. Strandberg, "Reactions of Atomic Hydrogen with Propylene at 77 K as Studied by Electron Spin Resonance", J. Chem. Phys., 42, 4170-74 (1965).
- 18. E. L. Cochran, F. J. Adrian, and V. A. Bowers, "E.S.R. Study of Ethynyl and Vinyl Free Radicals", J. Chem. Phys., 40, 213-20 (1964).
- S. Aditya and J. Willard, "Radical Formation by the Photolysis of Hydrogen Iodide at 77 K in Alkane-Alkene, and Alkene Matrices", J. Am. Chem. Soc., 88, 229-32 (1966).
- A. Forchioni and C. Chachaty, "Free Radicals Formed by the Reaction of Active Nitrogen on Organic Compounds at 77 K", Comptes Rendus, 264, 637-40 (1967).
- 21. C. Chachaty and M. C. Schmidt, "Free Radicals Formed by the Reaction of Gas Phase Hydrogen Atoms on Various Organic Compounds at 77 K", J. Chim. Phys., 62, 527-35 (1965).
- 22. L. A. Wall and R. B. Ingalls, "Reactions of Deuterated Polystyrenes with Hydrogen and Deuterium Atoms", J. Chem. Phys., 41, 1112-20 (1964).
- 23. T. Cole and H. C. Heller, "Production of Free Radicals in Organic Solids by Hydrogen-Atom Bombardment", J. Chem. Phys., 42, 1668 (1965).
- 24. J. N. Herak and W. Gordy, "Interaction of Hydrogen Atoms and Hydroxyl Radicals with 5-Halogen Uracils", Proceedings of the National Academy of Sciences, 56, 1354-60 (1966).
- 25. C. U. Morgan and K. J. White, "The Electron Spin Resonance Spectra of Radicals Produced by the Hydrogen and Deuterium Bombardment of Unsaturated Organic Compounds at 77 K", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BR1 Report No. 1453, October 1969, AD #697728.
- J. E. Bennett and B. Mile, "Studies of Radical-Molecule Reactions Using a Rotating Cryostat", J.C.S. Faraday, I, 69, 1398 (1973).
- K. J. White, C. U. Morgan, and E. Freedman, "A Simple Technique for Generating Nitrogen Atoms", Ballistic Research Laboratory, Aberdeen Proving Ground, MD, BRL Memorandum Report No. 2158, March 1972, AD #739520.

- 28. P. B. Ayscough and C. Thomson, "Electron Spin Resonance Spectra of Alkyl Radicals in Gamma-Irradiated Alkyl Halides", Trans. Faraday Soc., 58, 1477 (1962).
- 29. P. B. Ayscough and H. E. Evans, "Electron Spin Resonance Studies of Gamma-Irradiated Olefins and u.v.-Irradiated methyl Iodide + Olefin Glasses," <u>Trans. Faraday Soc.</u>, 60, 801 (1964).
- 30. D. H. Volman, K. A. Maas, and J. Wolstenholme, "Photochemical Formation of Free Radicals from Olefinic and Acetylenic Compounds in the Frozen State as Studied by Electron Spin Resonance," J. Am. Chem. Soc. 87, 3041 (1965).
- K. Itoh, I. Miyagawa, and C. S. Chen, "ESR Study of an Irradiated Crystal of L-Alanine: Two New Proton-Deuteron Exchange Reactions," J. Chem. Phys. 52, 1822 (1970).

No. of		No. o Copie		Organization
12	Commander		2 235.1	
i dente	Defense Documentation Center ATTN: DCC-DDA Cameron Station Alexandria, VA 22314	1 eosae	and D	Communications Rsch Development Command DRDCO-PPA-SA Limouth, NJ 07703
1	Director	2	Command	
	Defense Advanced Research Projects Agency		Devel	Missile Research and opment Command
	ATTN: C.R. Lehner 1400 Wilson Boulevard Arlington, VA 22209			DRDMI-R DRDMI-YDL
	Arrington, VA 22209		Kedston	e Arsenal, AL 35809
2	Director Institute for Defense Analyses ATTN: H. Wolfhard R.T. Oliver 400 Army-Navy Drive Arlington, VA 22202	, 1	and D	er Tank Automotive Rsch evelopment Command DRDTA-UL MI 48090
	anales and a few search	2	Command	er
730.	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	5	Develor ATTN: Dover, Command	
	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 63166		Develo	Armament Research and opment Command DRDAR-LCA, J. Lannon DRDAR-LC, J.P. Picard DRDAR-LCA, C. Lenchitz DRDAR-LCE, R.F. Walker DRDAR-SCA, L. Stiefel NJ 07801
	Director US Army Air Mobility Research and Development Laboratory Ames Research Center	1	Commande US Army	
	Moffett Field, CA 94035		ATTN: I	DRSAR-LEP-L, Tech Lib
	Commander US Army Electronics Research & Development Command Technical Support Activity ATTN: DELSD-L		Commande	White Sands Missile
	Ft. Monmouth, NJ 07703		WSMR, NN	

No. (Copi		0	No.		
		Organization	Copi	es	Organization
1	US ATTN:	nder my Watervliet Arsenal Code SARWV-RD, R. 1 vliet, NY 12189	2 I Thierry	US Nava	er 1 Surface Weapons Center S.J. Jacobs/Code 240 Code 730
1	Coma	nder		Silver	Spring, MD 20910
bera	Rese	my Materials & Mechan earch Center DRXMR-ATL town, MA 02172	nics 1	ATTN:	er 1 Surface Weapons Center Library Br, DX-21 n, VA 22448
1	Comman	nder	1	Commande	Profess Literature
	Deve	ny Natick Research an elopment Command	ıd Î		l Underwater Systems
	ATTN: Natic	DRXRE, D. Sieling c, MA 01762		ATTN: I	Conversion Department R.S. Lazar/Code 5B331
1	Direct			Newport,	, RI 02840
	Anal ATTN: White	y TRADOC Systems ysis Activity ATAA-SL, Tech Lib Sands Missile Range,	2	US Naval	Weapons Center
	NM 8	8002		China La	ike, CA 93555
1	ATTN: P.O. B	der y Research Office Tech Lib ox 12211 ch Triangle Park, NC	1	ATTN: C	Research Laboratory code 6180 con, DC 20375
	27706		3	Superint	endent
ness dadu dala	ATTN: 800 N.	of Naval Research Code 473 Quincy Street ton, VA 22217		ATTN: T	Postgraduate School ech Lib . Netzer . Fuhs , CA 93940
1	Comman	der 190 Live swoot	•		
	US Nava ATTN: . National Bldg.	al Sea Systems Comman J.W. Murrin (NAVSEA-0 al Center 2, Room 6E08 gton, DC 20360	2 id)331)	ATTN: A	Ordnance Station . Roberts ech Lib
	40.10	2000	2	AFOSR	
				ATTN: J.	.F. Masi
				В.	T. Wolfson AFB, DC 20332

No. of				No. of				
Copies	100	Organizat	ion	Copies		rganizat	tion	
2	AFRPL ATTN:	(DYSC) D. George J.N. Levine		-	General E Armament ATTN: M.	lectric Departme	Compar	ny
	Edward	s AFB, CA			Lakeside Burlingto	Avenue		
	ATTN:	ed Palo Alto Tech Info (anover Stree	Ctr		General E Flight Pr			
	Palo A	lto, CA 94	1304		ATTN: Te Cincinnat	ch Lib		1011
	ATTN:	t Solid Prop P. Micheli ento, CA			Hercules Alleghany ATTN: R.	Ballist		
	ATTN:	orporated N. Doughert AFS, TN 3			Cumberlan	in Cappa		
	ATTN: 5390 C	ic Research M.K. King herokee Aver dria, VA	nue	n	Hercules Bacchus W ATTN: M. Magna, UT	orks Beckste		
	AVCO E ATTN: 2385 R	orporation verett Resea D. Stickler evere Beach t, MA 0214	Parkway	7	IITRI ATTN: M. 10 West 3 Chicago,	5th Stre	et	
2	Calspar ATTN:	Corporation E.B. Fisher A.P. Trippe	on		Olin Corpo Badger Arr ATTN: J. Baraboo, N	my Ammun Ramnara	ce	Plant
	P.O. Bo Buffalo	o, NY 1422	1		Olin Corpo			
	ATTN: 9015 Ft	orporation M.I. Madiso ulbright Ave orth, CA 9	enue		ATTN: R.1 D.1 275 Winche New Haven	W. Riefl ester Av	enue	
1	Foster ATTN: 135 Sec	Miller Asso A.J. Ericks cond Avenue n, MA 0215	ociates, Inc	. 1	Paul Gough ATTN: P.S P.O. Box S	h Associ S. Gough 1614	ates,	Inc.

No. of Copies		No, of Copies	
	Physics International Company 2700 Merced Street Leandro, CA 94577		Thiokol Corporation Wasatch Division ATTN: J. Peterson Tech Lib
	Pulsepower Systems, Inc. ATTN: L.C. Elmore 815 American Street		P.O. Box 524 Brigham City, UT 84302
	San Carlos, CA 94070		TRW Systems Group ATTN: H. Korman
	Science Applications, Inc. ATTN: R.B. Edelman 23146 Cumorah Crest		One Space Park Redondo Beach, CA 90278
	Woodland Hills, CA 91364		United Technology Center ATTN: R. Brown
2	Rockwell International Corp. Rocketdyne Division ATTN: C. Obert J.E. Flanagan		Tech Lib P.O. Box 358 Sunnyvale, CA 94088
	6633 Canoga Avenue Canoga Park, CA 91304		Universal Propulsion Co. ATTN: H.J. McSpadden P.O. Box 546
	Rockwell Internation Corp. Rocketdyne Division		Riverside, CA 92502
	ATTN: W. Haymes Tech Lib McGregor, TX 76657		Battelle Memorial Institute ATTN: Tech Lib 505 King Avenue Columbus, OH 43201
1	Shock Hydrodynamics, Inc. ATTN: W.H. Anderson 4710-16 Vineland Avenue North Hollywood, CA 91602	1	Brigham Young University Dept of Chemical Engineering ATTN: R. Coates Provo, UT 84601
1	Thiokol Corporation Elkton Division ATTN: E. Sutton Elkton, MD 21921	1	California Institute of Tech 204 Karmar Lab Mail Stop 301-46 ATTN: F.E.C. Culick
	Thiokol Corporation Huntsville Division ATTN: D. Flanigan R. Glick		1201 E. California Street Pasadena, CA 91125 Case Western Reserve Univ.
	Tech Lib Huntsville, AL 35807		Division of Aerospace Sciences ATTN: J. Tien Cleveland, OH 44135

No. of	f	No. of	
Copies	Organization	Copies	Organization
3	Georgia Institute of Tech School of Aerospace Engineeri ATTN: B.T. Zinn E. Price W.C. Strahle Atlanta, GA 30332	ng 2	Princeton University Forrestal Campus Library ATTN: L. Caveny Tech Lib P.O. Box 710 Princeton, NJ 08540
1	Institute of Gas Technology	2	Purdue University
	ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616		School of Mechanical Engineering ATTN: J. Osborn S.N.B. Murthy TSPC Chaffee Hall
1	Johns Hopkins University/APL Chemical Propulsion Informa-		West Lafayette, IN 47906
	tion Agency ATTN: T. Christian	1	Rutgers State University Dept of Mechanical and
	Johns Hopkins Road Laurel, MD 20810		Aerospace Engineering ATTN: S. Temkin University Heights Campus
1	Massachusetts Institute of Technology		New Brunswick, NJ 08903
	Dept of Mechanical Engineering ATTN: T. Toong Cambridge, MA 02139	g l	Southwest Research Institute Fire Research Section ATTN: W.H. McLain P.O. Drawer 28510
1	Director Graduate Center of Applied Science	1	San Antonio, TX 78228 SRI International
	New York University ATTN: M. Summerfield 26-36 Stuyvesant New York, NY 10003		ATTN: Tech Lib 333 Ravenswood Avenue Menlo Park, CA 94025
	Pennsylvania State University Applied Research Lab ATTN: G.M. Faeth P.O. Box 30		Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Hoboken, NJ 07030
	State College, PA 16801		University of California, San Diego
	Pennsylvania State University Dept of Mechanical Engineering ATTN: K. Kuo/R.A. Bernheim University Park, PA 16801	•	AMES Department ATTN: F. Williams P.O. Box 109 La Jolla, CA 92037

No. of Copies

Organization

- 1 Florida State University Department of Chemistry ATTN: A.K.E. Hagopian Tallahassee, FL 32304
- University of Illinois Dept of Aeronautical Engineering ATTN: H. Krier Transportation Bldg, Rm 105 Urbana, IL 61801
- University of Minnesota Dept of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455
- 2 University of Utah Dept of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112

Aberdeen Proving Ground

Dir, USAMSAA ATTN: J. Sperrazza DRXSY-MP, H. Cohen

Cdr, USATECOM ATTN: DRSTE-TO-F

Dir, Wpns Sys Concepts Team Bldg. E3516, EA ATTN: DRDAR-ACW

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research

Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground. Maryland 21005. Your comments will provide us with information for improving future reports. BRL Report Number 2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.) 3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.) 4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate. 5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.) 6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic. please fill in the following information. Name: Telephone Number: Organization Address: