Kompakte Teilmengen von \mathbb{R}^n

Jendrik Stelzner

23. Dezember 2014

Inhaltsverzeichnis

1	Stetige Funktionen auf abgeschlossenen Intervallen	1
2	Folgenkompaktheit	2
3	Überdeckungskompaktheit	9

1 Stetige Funktionen auf abgeschlossenen Intervallen

Zur Motivation des Kompaktheitbegriffes wollen wir zunächst die folgende wichtige Aussage beweisen:

Lemma 1. Es seien $a,b \in \mathbb{R}$ mit a < b und $f : [a,b] \to \mathbb{R}$ stetig. Dann ist die Abbildung f beschränkt und nimmt auf [a,b] ihr Maximum und Minimum an, d.h. es gibt $x_{max}, x_{min} \in [a,b]$ mit

$$f(x_{max}) = \sup_{y \in [a,b]} f(y) \quad und \quad f(x_{min}) = \inf_{y \in [a,b]} f(y).$$

Für offene Intervalle oder halboffene Intervalle gilt diese Aussage nicht. Man betrachte etwa die Abbildung $(0,1] \to \mathbb{R}, x \mapsto 1/x$, oder gar $(0,1] \to \mathbb{R}, x \mapsto \sin(1/x)/x$.

Herzstück des Beweises ist die Beobachtung, dass auf [a,b] jede Folge eine konvergente Teilfolge besitzt.

Lemma 2. Es seien $a,b \in \mathbb{R}$ mit a < b und $(x_n)_{n \in \mathbb{N}}$ eine Folge auf [a,b]. Dann besitzt (x_n) eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$, und für den Grenzwert $x := \lim_{j \to \infty} x_{n_j}$ gilt $x \in [a,b]$.

Beweis. Da $a \leq x_n \leq b$ für alle $n \in \mathbb{N}$ ist die Folge (x_n) beschränkt und besitzt daher nach Bolzano-Weierstraß eine konvergente Teilfolge $(x_{n_j})_{j \in \mathbb{N}}$. Es sei $x \coloneqq \lim_{j \to \infty} x_{n_j}$. Da $a \leq x_{n_j} \leq b$ für alle $j \in \mathbb{N}$ ist auch $a \leq x \leq b$, also $x \in [a,b]$.

Beweis von Lemma 1. Wir zeigen zunächst, dass f beschränkt ist: Angenommen, f wäre nach oben unbeschränkt. Dann gibt es für alle $n \in \mathbb{N}$ ein $x_n \in [a,b]$ mit $f(x_n) \geq n$. Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Folge $(x_{n_j})_{j \in \mathbb{N}}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))_{j \in \mathbb{N}}$. Für alle $j \in \mathbb{N}$

ist aber $f(x_{n_j}) \geq n_j$, die Folge $f(x_{n_j})$ konvergiert also nicht. Dieser Widerspruch zeigt dass f nach oben unbeschränkt seien muss. Analog ergibt sich, dass f auch nach unten beschränkt ist. Also ist f beschränkt.

Es sei

$$M \coloneqq \sup_{y \in [a,b]} f(y).$$

Da f nach oben beschränkt ist, ist $M < \infty$. Nach der ε -Charakterisierung des Supremums gibt es für alle $n \ge 1$ ein $x_n \in [a,b]$ mit

$$M \ge f(x_n) \ge M - \frac{1}{n}$$
.

Nach Lemma 2 besitzt die Folge (x_n) eine konvergente Teilfolge $(x_{n_j})_{j\in\mathbb{N}}$. Es sei $x := \lim_{j\to\infty} x_{n_j}$. Da f stetig ist, konvergiert auch die Folge $(f(x_{n_j}))$ und es gilt

$$\lim_{i \to \infty} f(x_{n_j}) = f(x).$$

Andererseits gilt für alle $j \in \mathbb{N}$

$$M \ge f(x_{n_j}) \ge M - \frac{1}{n_j}.$$

Also muss nach dem Sandwich-Lemma auch

$$\lim_{j \to \infty} f(x_{n_j}) = M.$$

Also ist f(x) = M. Das zeigt, dass f auf [a, b] sein Maximum annimmt. Analog ergibt sich, dass f auf [a, b] auch sein Minimum annimmt. \square

2 Folgenkompaktheit

Zum Beweis von Lemma 1 haben wir Folgenstetigkeit und Lemma 2 benötigt. Diese Beobachtung legt nahe, dass sich Lemma 1 auf beliebige Teilmengen $K \subseteq \mathbb{R}^n$ verallgemeinern lässt, für die eine zu Lemma 2 analoge Aussage gilt.

Definition 3. Es sei $X \subseteq \mathbb{R}^n$ und (x_n) ein Folge auf X. Wir sagen (x_n) konvergiert auf X, falls die Folge (x_n) konvergiert und $\lim_{n\to\infty} x_n \in X$.

Beispiel(e). Die Folge $(1/n)_{n\geq 1}$ konvergiert auf [0,1], nicht aber auch (0,1).

Definition 4. Eine Teilmenge $K \subseteq \mathbb{R}^n$ heißt kompakt, falls jede Folge (x_n) auf K eine auf K konvergente Teilfolge besitzt.

Beispiel(e). Lemma 2 zeigt, dass ein Intervall [a,b] mit a < b kompakt ist. Offene Intervalle hingegen sind niemals kompakt: Sind $a,b \in \mathbb{R}$ mit a < b, so ist $(a+(b-a)/(n+2))_{n\in\mathbb{N}}$ eine Folge auf (a,b), die keine auf (a,b) konvergente Teilfolge besitzt.

Proposition 5. Es sei $K \subseteq \mathbb{R}^n$ kompakt und $f: K \to \mathbb{R}$ stetig. Dann ist die Abbildung f auf K beschränkt und nimmt auf K ihr Maximum und ihr Minimum an, d.h. es gibt $x_{min}, x_{max} \in K$ mit

$$f(x_{max}) = \sup_{y \in K} f(y)$$
 und $f(x_{min}) = \inf_{y \in K} f(y)$.

Beweis. Nehme den Beweis von Lemma 1 und ersetze [a,b] durch K und die Verweise auf Lemma 2 durch Kompaktheit.

Da sich stetige Funktionen auf kompakten Mengen gutartig verhalten, sind kompakte Mengen von großer Bedeutung für die Analysis.

3 Überdeckungskompaktheit

Ein weiterer Kompaktheitsbegriff ist der der Überdeckungskompaktheit. Wie sich herausstellt, sind Überdeckungskompaktheit und Folgenkompaktheit für Teilmengen von \mathbb{R}^n äquivalent.

Definition 6. Es sei $\{U_i\}_{i\in I}$ eine Kollektion von Teilmengen $U_i\subseteq\mathbb{R}^n$ und $X\subseteq\mathbb{R}^n$.

Die Kollektion $\{U_i\}_{i\in I}$ heißt Überdeckung von X, falls $X\subseteq \bigcup_{i\in I}U_i$. Sie heißt endlich, bzw. abzählbar, falls I endlich, bzw. abzählbar ist.

Eine Teilüberdeckung ist dann eine Teilkollektion $\{U_j\}_{j\in J}$, also $J\subseteq I$, so dass bereits $\{U_j\}_{j\in J}$ eine Überdeckung von X ist.

Außerdem heißt die Überdeckung $\{U_i\}_{i\in I}$ von X offen, falls die $U_i\subseteq\mathbb{R}^n$ alle offen sind.

Bemerkung 7. Offenbar ist eine Teilüberdeckung einer offenen Überdeckung ebenfalls offen.

Beispiel(e). • Die Kollektion $\{B_n(0) \mid n \in \mathbb{N}, n \geq 1\}$ bildet eine abzählbare, offene Überdeckung von \mathbb{R}^n .

- Die offenen Intervalle $\{(a,b) \mid a,b \in \mathbb{R}, a < b\}$ bilden eine offene Überdeckung von \mathbb{R} .
- Allgemein bilden die ε -Bälle $\{B_{\varepsilon}(x) \mid x \in \mathbb{R}^n, \varepsilon > 0\}$ eine offene Überdeckung von \mathbb{R}^n .
- Die Würfel $\{[-K,K]^n \mid K \in \mathbb{N}, K \geq 1\}$ bilden eine abzählbar Überdeckung von \mathbb{R}^n , die nicht offen ist.
- Die ε -Bälle mit rationalen Radius um Mittelpunkte mit rationalen Koeffizienten $\{B_q(x) \mid x \in \mathbb{Q}^n, q \in \mathbb{Q}, q > 0\}$ bilden eine offene Überdeckung von \mathbb{R}^n .
- Die Intervalle $\{(n, n+1) \mid n \in \mathbb{Z}\}$ bilden eine offene Überdeckung von $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{N}} (n, n+1)$, aber nicht von \mathbb{R} .
- Die offenen Intervalle $\{(-1/n, 1+1/n) \mid n \in \mathbb{N}, n \geq 1\}$ bilden eine offene Überdeckung des abgeschlossenen Einheitsintervalls [0,1]; diese Überdeckung besitzt eine endliche (sogar einelementige) Teilüberdeckung.

Definition 8. Eine Teilmenge $K \subseteq \mathbb{R}^n$ heißt *überdeckungskompakt*, falls jede offene Überdeckung von K eine endliche Teilüberdeckung besitzt.

Proposition 9. Es sei $K \subseteq \mathbb{R}^n$. Dann sind äquivalent:

1. K ist folgenkompakt.

2. K ist überdeckungskompakt.

Beweis. Angenommen K ist überdeckungskompakt, aber nicht folgenkompakt. Dann gibt es eine Folge (x_n) auf K, die keine auf K konvergente Teilfolge besitzt.

Behauptung. Für jedes $x \in K$ gibt es ein $\varepsilon_x > 0$, so dass $||x - x_n|| \ge \varepsilon$ für fast alle $n \in \mathbb{N}$.

Beweis der Behauptung. Ansonsten gebe es ein $x \in K$, so dass es für jedes $\varepsilon > 0$ unendlich viele $n \in N$ mit $||x - x_n|| < \varepsilon$ gibt. Insbesondere gibt es dann ein $n_1 \in \mathbb{N}$ mit $||x - x_{n_1}|| < 1$. Dann gibt es auch ein $n_2 \in \mathbb{N}$ mit $n_2 > n_1$ und $||x - x_n|| < 1/2$. Rekursiv ergibt sich, dass es für alle $j \ge 1$ ein $n_j \in \mathbb{N}$ gibt, so dass $n_j > n_{j-1}$ und $||x - x_{n_j}|| < 1/j$. Es ist dann n_j eine Teilfolge mit $x_{n_j} \to x$. Dies steht im Widerspruch zur Annahme, dass (x_n) keine auf K konvergente Teilfolge besitzt.

Die ε -Bälle $\{B_{\varepsilon_x}(x) \mid x \in K\}$ bilden offenbar eine offene Überdeckung von K. Da K kompakt ist, besitzt diese offene Überdeckung eine endliche Teilüberdeckung. Es gibt also $x_1, \ldots, x_s \in K$, so dass

$$K \subseteq B_{\varepsilon_{x_1}}(x_1) \cup \dots \cup B_{\varepsilon_{x_s}}(x_s).$$
 (1)

Da jeder der ε -Bälle $B_{\varepsilon_x}(x)$ nur endlich viele Folgeglieder enthält, enthält auch K wegen (1) nur endlich viele Folgeglieder, was offenbar nicht seien kann. Das zeigt, dass aus Überdeckungskompaktheit auch Folgenkompaktheit folgt.