AI in Mathematics Lecture 9 NLP and LLMs

Bar-Ilan University
Nebius Academy | Stevens Institute of
Technology
May 20, 2025

About This Course

1 week: Intro

2 weeks: Classic ML

2 weeks: Deep Learning in Mathematics

4 weeks: Math as an NLP problem (LLMs etc.)

3 weeks: Reinforcement Learning (RL) in Math

1 week: Advanced AI topics or Project

Presentations

Transformer

Encoder-only vs Decoder-only Models

Encoder only

Decoder only

Example:

BERT(Bidirectional Encoder Representations from **Transformers**)

- Sentiment analysis
- Named entity recognition
- Question answering (extractive)
- Sentence similarity

Example:

GPT (Generative Pretrained **Transformer**)

- Text generation
- Code completion
- Chatbots
- Story writing

BERT

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

Pre-trained models

LLMs like **GPT-4o**, **LLaMA**, Claude, Gemini, etc. have broad knowledge, but to solve **specific tasks**, we need to guide them appropriately:

- Prompting e.g., "Write code to solve..."
- ★ Fine-tuning train the model on task-specific examples

Temperature

$$Softmax((x_1, x_2, ..., x_n), t) = \left(\frac{e^{\frac{x_1}{t}}}{\sum_{i=1}^n e^{\frac{x_i}{t}}}, ..., \frac{e^{\frac{x_n}{t}}}{\sum_{i=1}^n e^{\frac{x_i}{t}}}\right)$$

In theory, softmax with temperature \rightarrow 0 approaches a one-hot distribution over the argmax. However, temperature = 0 is **not used in practice**, as it causes numerical instability. Instead, argmax is implemented explicitly as a special case.

Temperature

Temperature = 2 in real life model:

Even temperature = 1 can cause such problems.

Temperature

Temperature 0.6 for real life model:

Top-k and top-p

Models often use a **hyperparameters** to control the possible pool of tokens in sampling.

Evolutionary algorithm

"Survival of the Fittest"

Evolutionary algorithm

For example:

Finding a minimum of a function via following algorithm:

Select a population of points. Try to move them a little and select new state for the smallest value of function.

FunSearch

FunSearch is a **functional search algorithm** that has shown success on certain **mathematical problems**.

For example: the capset problem, which we introduced in the first lecture.

We will now explore it in more detail.

Reminder: The SET Game

Reminder: The SET Game

What mathematical structure do the cards correspond to?

Each card represents a point in \mathbb{Z}_3^4 (a four-dimensional vector space over \mathbb{Z}_3). A "set" is a triplet of cards whose sum in \mathbb{Z}_3^4 is the zero vector

(diamond, 2, red, open)

Al improved the results!

Find the largest possible subset of \mathbb{Z}_3^n , such that sum of any triplet doesn't equal to zero.

n	3	4	5	6	7	8
Best known	9	20	45	112	236	496
FunSearch	9	20	45	112	236	512

FunSearch paradigm

FunSearch

Goal:

Generate functions that construct large capsets.

Ensure the generated functions exhibit a generalizable structure, so the model learns underlying patterns rather than merely memorizing solutions.

Important Idea

Instead of generating a full selection function for cap sets, the LLM learns a **scoring function**

$$f: \mathbb{Z}_3^n \to \mathbb{R}$$

The **set selection** is done via **greedy search** using this scoring function.

Motivation:

The goal is to "evolve only the part governing the critical program logic."

FunSearch paradigm

Prompt

In the upcoming practice session, we'll explore how to prompt LLMs effectively.

Example from the FunSearch paper:

```
"""Finds large cap sets."""
import numpy as np
import utils_capset
def priority_v0(element, n):
  """Returns the priority with which we want to add `element` to the cap set."""
  #######
 # Code from lowest-scoring sampled program.
 return ...
  #######
def priority_v1(element, n):
  """Improved version of `priority_v0`."""
  #######
 # Code from highest-scoring sampled program.
 return ...
  #######
def priority_v2(element, n):
  """Improved version of `priority_v1`."""
```

Overfitting

FunSearch

Avoiding Overfitting During Search

To reduce overfitting, authors used the following strategy:

- Split the database into k parts every 4 hours
- Each part evolves independently for 4 hours
- At the start of a new epoch, **programs are** reshuffled
- Evolutionary steps (mutations/selection) are applied after each 4-hour cycle

FunSearch paradigm

Specification

Inputs to the Search:

Reference function: Solve

Provides a starting solution — a function of n that returns a candidate capset.

Evaluation function: *Evaluate*

Takes a candidate capset as an input. Returns the **size** of the solution if it is a valid capset; otherwise, returns zero.

Specification

```
def evaluate (candidate set, n):
  """Returns size of candidate set if it is a cap

    set, None otherwise.""

  if utils capset.is capset(candidate set, n):
   return len(candidate set)
  else:
   return None
def solve(n):
  """Builds a cap set of dimension `n` using
 → `priority` function."""
  # Precompute all priority scores.
 elements = utils capset.get all elements(n)
 scores = [priority(el, n) for el in elements]
 # Sort elements according to the scores.
 elements = elements[np.argsort(scores,

          kind='stable')[::-1]]
  # Build `capset` greedily, using scores for
 → prioritization.
 capset = []
 for element in elements:
   if utils capset.can be added(element, capset):
     capset.append(element)
 return capset
```

FunSearch paradigm

Understanding a growth rate of a Capset

The central question in capset research:

What is $\gamma = \sup_n c_n^{\frac{1}{n}}$, where c_n is the size of a largest capset in \mathbb{Z}_3^n ?

It is easy to see that $2^n \le c_n < 3^n$, right?

Analyzing a cap set constructed by **FunSearch**, one of the authors improved the best-known **lower bound**:

 $2.2202 < \gamma$ (previousy $2.2180 < \gamma$).

Upper bound remains γ < 2.756.

Some discussion

What Makes a Task Suitable for FunSearch?

According to the authors, success requires:

- An efficient evaluation function
- A rich scoring signal, not just binary feedback
- Only a small part of the algorithm is evolved

Critique Highlights an Additional Requirement:

There must be a rich space of candidate functions, with meaningful variation in performance — some solutions better, some worse.

Other problems tackled by FunSearch

📄 Online Bin Packing

Combinatorial optimization under online constraints.

Shannon Capacity of a Graph

At the intersection of combinatorics and information theory.

Corners Problem

A classic in combinatorics, involving geometric patterns in grids.

Online bin packing

Elements arrive **one by one**, and for each incoming element you must **immediately decide** where to place it.

Decisions are irreversible — no changes allowed after placement.

Heuristics

Classical:

first-fit – number the bins and put the object in the first bin where it fits.

best-fit – put the object into the fullest bin where it fits.

FunSearch:

```
def heuristic(item: float, bins: np.ndarray) -> np.ndarray:
    """Online bin packing heuristic discovered with FunSearch."""
    score = 1000 * np.ones(bins.shape)
    # Penalize bins with large capacities.
    score -= bins * (bins-item)
    # Extract index of bin with best fit.
    index = np.argmin(bins)
    # Scale score of best fit bin by item size.
    score[index] *= item
    # Penalize best fit bin if fit is not tight.
    score[index] -= (bins[index] - item)**4
    return score
```

Results

	OR1	OR2	OR3	OR4	Weibull 5k	Weibull 10k	Weibull 100k
First fit	6.42%	6.45%	5.74%	5.23%	4.23%	4.20%	4.00%
Best fit	5.81%	6.06%	5.37%	4.94%	3.98%	3.90%	3.79%
FunSearch	5.30%	4.19%	3.11%	2.47%	0.68%	0.32%	0.03%

Fraction of excess bins (lower is better) for various bin packing heuristics on the OR and Weibull datasets. FunSearch outperforms first fit and best fit across problems and instance sizes.

Comment:

FunSearch was trained on a dataset generated from OR1

Resource usage

- Reproducing the results:
- - Compute:
- 15× StarCoder-15B on A100 40GB GPUs
- 5× CPU servers (32 evaluators each)
- Runtime: 2 days

Estimated Cost:

\$800 - \$1400 on Google Cloud

Energy Usage:

 $250 - 500 \, \text{kWh}$