

A System for measuring Temperature dependent Surface Photovoltage by Timo Bretten

Radboud Universiteit Nijmegen

M.Sc. Final Presentation December 10th 2015

Outline

Introduction

Theory

The Systems

Experimental

Discussion & Conclusion

Some Background

About my M.Sc. project...

- Research carried out in 13/14 at The Weizmann Institute of Science
- Project had two parts: P(VDF) & SPV(T)
- Only part two will be presented

Motivation

The goal of this project is to...

- verify results from a 'new' experimental set up against established systems
- expand the capabilities of the 'new' set up
- ultimately measure temperature dependent SPV

Physical Causes of CPD & SPV

The Kelvin Probe

$$\begin{array}{ll} \mathsf{CPD} & \equiv \phi_{\mathsf{Probe}} - \phi_{\mathsf{Sample}} \\ \mathcal{C}(t) & = \frac{\epsilon \epsilon_0 A}{d(t)} \\ \mathcal{I}(t) & = \frac{dQ}{dt} = \left(\mathsf{CPD} + V_b\right) \frac{dC}{dV} \\ \mathcal{I}(\Delta V) & = -\epsilon \epsilon_0 A (\mathsf{CPD} + V_b) f(\omega t) \end{array}$$

Physical Causes of CPD & SPV

Physical Causes of CPD & SPV

Choosing a Model System

Metal Insulator Transition in VO₂

- metal at $T > T_{MI}$
- semiconductor at T < T_{MI}
- insulator at $T \ll T_{MI}$
- Influences of W-doping:
 - $T_{MI} \approx 270 \, \text{K}$ [2]
 - $\varphi \approx 5.15 \, \text{eV}$ [3]

Established KP Systems

Ambient & Glovebox KPs

- Besocke KP head & controller
- Humidity controlled ambient
- Glovebox ($< 5ppm O_2 \& H_2O$)
- Xenon lamp & VariAC (\sim 80 W)
- Illumination is source of heat!

[5]

Cryogenic System with a KP

Checking against Established Systems

Behaviour at Room Temperature

'Jumps' probably due to movement of probe head Excellent agreement between systems

Checking against Established Systems

Behaviour at lower temperatures and SPV

- ϕ_{Alumina} at 300 K: $(4.00 \pm 0.12) \, \text{eV}$
- $\phi_{Alumina}$ at 250 K: $(4.17 \pm 0.15) \text{ eV}$

Probably no ice, even on very hydrophilic surface SPV \sim 12 % too low. Shadows on the sample?

Temperature Dependent CPD in W:VO₂

Curious behaviour in the range 120 K to 160 K, far below T_{MI} Effect of substrate?

Temperature Dependent SPV in W:VO2

$\rho(\mathsf{T})$ and $\mathsf{SPV}(\mathsf{T})$

Measurement by Nir Kedem

SPV identifies $W:VO_2$ as n-type material Appearance of SPV and change in WF in accordance with resistivity and literature [2,3]

Discussion & Conclusion

We showed that...

- CPD is in excellent agreement with established systems
- SPV \sim 12 % too low. Shadowing?
- CPD(T) reproducible and interesting
- SPV(T) shows expected behaviour for model system
- \rightarrow Lakeshore + Mc Allister + LED is a viable system for SPV(T)

List of References

Literature and links

- [1] SPV Technique, Helmholtz Institute Berlin
- [2] Changhyun Ko et al. ACS Appl. Mater. Interfaces, 3(9):3396-3401, 2011
- [3] Keisuke Shibuya et al.. Phys Rev. B, 82(20), 2010
- [4] M. Nakano et al.. Nature, 487(7408):459-462, 2012
- [5] Besocke Website
- [6] Lakeshore Website
- [7] LEDengine Website

Acknowledgements

Thanks! to...

Prof. Dr. David Cahen for his supervision

Dr. Hugo Meekes for his spontaneous support

Igal Levin for keeping me (somewhat) on track

Nir Kedem for always having an answer