Задачи по Теории вероятностей и математической статистике

Артамонов Н.В.

16 декабря 2024 г.

Содержание

1	Дискретные случайные величины							
	1.1	Одномерные распред	еления		. 1			
	1.2	Двумерные распреде	ления		. 2			
2	Непрерывные распределения							
	2.1	Плотность, функция	распределения,	натематическое ожи-				
		дание, дисперсия			. 2			
	2.2	Стандартные распре,	деления		. 5			
	2.3	Критические значени			. 6			
1	Т	Ц искретные сл	งบอดียยอ ฮ	э піліілині				
1	7	цискретные сл	у чаиные в	БЛИЧИПЫ				
1.	1	Одномерные рас	пределения					
		урне содержится 3 бе.						
		аются 2 шара. Пусть с.	лучайная величи	на X – число белых ш	apor			
cp	еди в	выбранных.						
1. Найдите таблицу распределения X								
	2. B	вычислите $E(X)$, $\mathrm{Var}(X)$	$(X),\sigma(X)$ и моду р	аспределения				
	3. B	вычислите вероятности						
		P(X < 2)	$P(X \geq 1)$	P(0 < X < 3)				

4. Нарисуйте график функции распределения *F*.

Замечание: $X \sim Hypergeom(6,3,2)$

- №2. В урне содержится 4 белых и 2 черных шара. Случайным образом извлекаются 3 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X)$, $\mathrm{Var}(X)$, $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$P(X < 3)$$
 $P(X > 1)$ $P(1 < X < 3)$

4. Нарисуйте график функции распределения F.

Замечание: $X \sim Hypergeom(6,4,2)$

- **№**3. В урне содержится 3 белых и 4 черных шара. Случайным образом извлекаются 4 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X)$, $\mathrm{Var}(X)$, $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$\mathsf{P}(X < 3) \qquad \qquad \mathsf{P}(X > 0) \qquad \qquad \mathsf{P}(0 < X < 3)$$

4. Нарисуйте график функции распределения F.

 $Замечание: X \sim Hypergeom(7, 2, 4)$

1.2 Двумерные распределения

2 Непрерывные распределения

- 2.1 Плотность, функция распределения, математическое ожидание, дисперсия
- №1. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F(x) и нарисуйте её график
- №2. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^{\lambda - 1}, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

 $(\lambda > 0 -$ параметр распределения)

- 1. Найдите нормировочный множитель c и нарисуйте график плотности f
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F и нарисуйте её график

3амечание: графики f и F нарисуйте при $0<\lambda<1$ и при $\lambda\geq 1$

№3. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx(1-x), & x \in [0,1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$\mathsf{P}(X < 0.5) \qquad \mathsf{P}(0.25 < X < 0.75) \qquad \mathsf{P}(-5 < X < 0.25)$$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№4. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^2(2-x), & x \in [0,2] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 1.5)$$
 $P(X > 1)$ $P(0.5 < X < 1.5)$ $P(-1 < X < 1)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№5. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} c(x+1)(2-x)^2, & x \in [-1,2] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 1)$$
 $P(X > 1)$ $P(-0.5 < X < 1)$ $P(0 < X < 3)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

2.2 Стандартные распределения

№1. Для распределения $\mathcal{N}(0,1)$ вычислите

$$\phi(1)$$
 $\phi(2)$ $\phi(-0.5)$ $\phi(-1.5)$ $\Phi(1)$ $\Phi(2)$ $\Phi(-1)$ $\Phi(-2)$

№2. Для распределения $\mathcal{N}(1,0.5^2)$ вычислите значение функции распределения и плотности в точках

$$x \in \{-3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3\}$$

№3. Пусть $X \sim \mathcal{N}(0,1)$. Вычислите следующие вероятности

$$P(X \le 1)$$
 $P(X > -0.5)$ $P(-1 \le X \le 0.5)$ $P(0 < X < 2)$

№4. Пусть $X \sim \mathcal{N}(1, 1.5^2)$. Вычислите следующие вероятности

$$P(X \le 2)$$
 $P(X > 0.5)$ $P(-0.5 \le X \le 1.5)$ $P(0 < X < 3)$

№5. Пусть $X \sim \mathcal{N}(0,1)$. Найдите a, b, c т.ч.

$$P(X \le a) = 0.6$$
 $P(X \le b) = 0.8$ $P(X \le c) = 0.9$

№6. Пусть $X \sim \mathcal{N}(1, 0.5^2)$. Найдите a, b, c т.ч.

$$\mathsf{P}(X \le a) = 0.7 \qquad \qquad \mathsf{P}(X \le b) = 0.85 \qquad \qquad \mathsf{P}(X \le c) = 0.95$$

№7. Для распределения U[1,4] вычислите значение функции распределения и плотности в точках

$$x \in \{0, 1.5, 2, 2.5, 3, 3.5, 4, 5\}$$

№8. Пусть $X \sim U[-1, 5]$. Вычислите следующие вероятности

$$\mathsf{P}(X \leq 0) \qquad \mathsf{P}(X > 2) \qquad \mathsf{P}(-0.5 \leq X \leq 3.5) \qquad \mathsf{P}(0 < X < 4)$$

№9. Для распределения Exp(2) вычислите значение функции распределения и плотности в точках

$$x \in \{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4\}$$

№10. Пусть $X \sim Exp(0.5)$. Вычислите следующие вероятности

$$\mathsf{P}(X \le 3) \qquad \mathsf{P}(X > 1) \qquad \mathsf{P}(0.5 \le X \le 2.5) \qquad \mathsf{P}(1 < X < 3)$$

2.3 Критические значения

	P	01100 101111					
Замеч	ание: все вы	числения необх	одимо сделать в	MS Excel/Pytho	on		
	v -	начимости: 1%, ия распределен		слите (двусторог	ние)		
	~ -	начимости: 1%, ия следующих ј		слите (двусторог	ние)		
	t_{10}	t_{100}	t_{250}	t_{500}			
№3. Для уровней значимости: 1%, 5%, 10% вычислите критические значим следующих распределений							
	χ^2_2	χ^2_5	χ^2_{10}	χ^2_{20}			
	~ -	начимости: 1%, аспределений	5%,10% вычисл	ите критические	зна-		
	$F_{2,100}$	$F_{5,300}$	$F_{10,1000}$	$F_{20,1500}$			