

1 Project-III	1
2 Modules Index	3
2.1 Modules List	3
3 Module Documentation	5
3.1 integrators Module Reference	5
3.1.1 Detailed Description	5
3.1.2 Function/Subroutine Documentation	5
3.1.2.1 bm()	5
3.1.2.2 time_step_euler_pbc()	6
3.1.2.3 time_step_verlet()	6
3.1.2.4 time_step_vverlet()	7
Index	9

Chapter 1

Project-III

Manel Serrano Visualització i estadística

Albert Plazas Forces

Anna Monclús Cond. inicials i de contorn (Coordinació e integració de tot el codi)

Aina Gaya Integració

2 Project-III

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all documented modules with brief descripti	Here	is	a list	of all	documented	modules	with	brief	description
---	------	----	--------	--------	------------	---------	------	-------	-------------

ш	nt	Δ	a	ra	tΛ	re
ш		·	ч	ıu	ιv	10

4 Modules Index

Chapter 3

Module Documentation

3.1 integrators Module Reference

Module containing various integrators for molecular dynamics simulations.

Functions/Subroutines

- subroutine time_step_vverlet (r, vel, pot, n, l, cutoff, dt)
 - Perform a time step using the velocity Verlet integration method. Calculates new positions and velocities for particles based on forces and previous positions/velocities.
- subroutine time_step_euler_pbc (r_in, r_out, vel, n, l, cutoff, dt, pot)
 - Perform a time step using the Euler method with periodic boundary conditions. Calculates new positions and velocities for particles based on forces and previous positions/velocities.
- subroutine bm (ndat, xnums, sigma)
 - Generate random numbers following a Box-Muller transformation. Generates normally distributed random numbers using the Box-Muller transformation.
- subroutine time_step_verlet (r, rold, vel, n, l, cutoff, dt, pot)

Perform a time step using the Verlet integration method. Calculates new positions and velocities for particles based on forces and previous positions/velocities.

3.1.1 Detailed Description

Module containing various integrators for molecular dynamics simulations.

3.1.2 Function/Subroutine Documentation

3.1.2.1 bm()

```
subroutine integrators::bm (
          integer, intent(in) ndat,
          real(8), dimension(ndat), intent(out) xnums,
          real(8), intent(in) sigma )
```

Generate random numbers following a Box-Muller transformation. Generates normally distributed random numbers using the Box-Muller transformation.

6 Module Documentation

Parameters

	ndat	Number of data points (must be even).
	xnums	Output array containing the generated random numbers.
	sigma	Standard deviation of the normal distribution.
in	ndat	Number of data points (must be even)
out	xnums	Output array containing generated random numbers
in	sigma	Standard deviation of the normal distribution

3.1.2.2 time_step_euler_pbc()

```
subroutine integrators::time_step_euler_pbc (
    real(8), dimension(n, 3), intent(in) r_in,
    real(8), dimension(n, 3), intent(out) r_out,
    real(8), dimension(n, 3) vel,
    integer, intent(in) n,
    real(8), intent(in) l,
    real(8), intent(in) cutoff,
    real(8), intent(in) dt,
    real(8) pot )
```

Perform a time step using the Euler method with periodic boundary conditions. Calculates new positions and velocities for particles based on forces and previous positions/velocities.

Parameters

	r_in	Input array containing initial particle positions.
	r_out	Output array containing updated particle positions.
	vel	Input/Output array containing particle velocities.
	N	Number of particles.
	L	Box size.
	cutoff	Cutoff distance for LJ potential.
	dt	Time step size.
	pot	Output potential energy.
in	n	Number of particles
in	r_in	Initial particle positions
out	r_out	Updated particle positions
	vel	Particle velocities
in	cutoff	Box size, time step size, cutoff distance
	pot	Potential energy

3.1.2.3 time_step_verlet()

```
real(8), intent(in) l,
real(8), intent(in) cutoff,
real(8), intent(in) dt,
real(8) pot )
```

Perform a time step using the Verlet integration method. Calculates new positions and velocities for particles based on forces and previous positions/velocities.

Parameters

	r	Input/Output array containing current particle positions.
	rold	Input/Output array containing previous particle positions.
	vel	Input/Output array containing particle velocities.
	N	Number of particles.
	L	Box size.
	cutoff	Cutoff distance for LJ potential.
	dt	Time step size.
	pot	Output potential energy.
in	n	Number of particles
in,out	r	Current particle positions
in,out	rold	Previous particle positions
in,out	vel	Particle velocities
in	1	Time step size, cutoff distance, box size
	pot	Potential energy

3.1.2.4 time_step_vverlet()

Perform a time step using the velocity Verlet integration method. Calculates new positions and velocities for particles based on forces and previous positions/velocities.

Parameters

	r	Input/Output array containing particle positions.
	vel	Input/Output array containing particle velocities.
	pot	Output potential energy.
	N	Number of particles.
	L	Box size.
	cutoff	Cutoff distance for LJ potential.
	dt	Time step size.
in	n	Number of particles
in,out	r	Particle positions
in,out	vel	Particle velocities
out	pot	Potential energy
Generated by Doxyg@UtOff		Time step size, box size, cutoff distance

8 Module Documentation

Index

```
bm integrators, 5

integrators, 5

bm, 5

time_step_euler_pbc, 6

time_step_verlet, 6

time_step_vverlet, 7

Project-III, 1

time_step_euler_pbc
integrators, 6

time_step_verlet
integrators, 6

time_step_vverlet
integrators, 7
```