1

2011-MA-1-13

EE24BTECH11003 - Akshara Sarma Chennubhatla

1) The distinct eigenvalues of the matrix
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 are $\begin{pmatrix} 2011 \end{pmatrix}$ as 0 and 1 b) 1 and -1 c) 1 and 2 d) 0 and 2 d) 0 and 2 2.) The minimal polynomial of the matrix $\begin{pmatrix} 3 & 3 & 0 \\ 3 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ is $\begin{pmatrix} 2011 \end{pmatrix}$ a) $x(x-1)(x-6)$ b) $x(x-3)$ c) $(x-3)(x-6)$ d) $x(x-6)$ 3) Which of the following is the imaginary part of a possible value of $\ln (\sqrt{i})$? (2011) a) π b) $\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{8}$ 4) Let $f: \mathbb{C} \to \mathbb{C}$ be analytic except for a simple pole at $z=0$ and let $g: \mathbb{C} \to \mathbb{C}$ be analytic. Then, the value of $\frac{Res_{x=0}[f(x)](x)}{Res_{x=0}[f(x)]}$ is (2011) a) $g(0)$ b) $g'(0)$ c) $\lim_{x\to 0} z_f(z)$ g) (z) 5) Let $I=\oint_{\mathbb{C}} (2x^2+y^2) dx+e^y dy$, where C is the boundary (oriented anticlockwise) of the region in the first quadrant bounded by $y=0, x^2+y^2=1$ and $x=0$. The value of I is (2011) a) -1 b) $-\frac{2}{3}$ c) $\frac{2}{3}$ d) 1 6) The series $\sum_{1}^{\infty} x^{In(m)}$, $x>0$, is convergent on the interval a) $(0, \frac{1}{e})$ b) $(\frac{1}{e}, e)$ c) $(0, e)$

- 7) While solving the equation $x^2 3x + 1 = 0$ using the Newton-Raphson method with the initial guess of a root as 1, the value of the root after one iteration is (2011)
 - a) 1.5

d) (1, e)

- b) 1
- c) 0.5
- d) 0

8) Consider the system of equations $\begin{pmatrix} 5 & 2 & 1 \\ -2 & 5 & 2 \\ -1 & 2 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 13 \\ -22 \\ 14 \end{pmatrix}$. With the initial guess of the solution

 $\left[x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right]^{T} = [1, 1, 1]^{T}$, the approximate value of the solution $\left[x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right]^{T}$ after one iteration by the Gauss-Seidel method is

- a) $[2, -4.4, 1.625]^T$
- b) $[2, -4, -3]^T$
- c) $[2, 4.4, 1.625]^T$
- d) $[2, -4, 3]^T$
- 9) Let y be the solution of the initial value problem

$$\frac{dy}{dx} = \left(y^2 + x\right); y(0) = 1$$

Using Taylor series method of order 2 with the step size h = 0.1, the approximate value of y(0.1) is (2011)

- a) 1.315
- b) 1.415
- c) 1.115
- d) 1.215
- 10) The partial differential equation

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - \left(y^{2} - 1\right) x \frac{\partial^{2} z}{\partial x \partial y} + y \left(y - 1\right)^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$$

is hyperbolic in a region in the XY- plane if

(2011)

- a) $x \neq 0$ and y = 1
- b) x = 0 and $y \ne 1$
- c) $x \neq 0$ and $y \neq 1$
- d) x = 0 and y = 1
- 11) Which of the following functions is a probability density function of a random variable X? (2011)

a)
$$f(x) = \begin{cases} x(2-x) & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$$

b) $f(x) = \begin{cases} x(1-x) & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$
c) $f(x) = \begin{cases} 2xe^{-x^2} & -1 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$
d) $f(x) = \begin{cases} 2xe^{-x^2} & x > 0 \\ 0 & \text{elsewhere} \end{cases}$

b)
$$f(x) = \begin{cases} x(1-x) & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

c)
$$f(x) = \begin{cases} 2xe^{-x^2} & -1 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

d)
$$f(x) = \begin{cases} 2xe^{-x^2} & x > 0\\ 0 & \text{elsewhere} \end{cases}$$

12) Let X_1, X_2, X_3 and X_4 be independent standard normal random variables. The distribution of

$$W = \frac{1}{2} \left\{ (X_1 - X_2)^2 + (X_3 - X_4)^2 \right\}$$

is (2011)

- a) N(0,1)
- b) N(0,2)
- c) χ_2^2 d) χ_4^2

13) For $n \ge 1$, let $\{X_n\}$ be a sequence of independent random variables with

$$P(X_n = n) = P(X_n = -n) = \frac{1}{2n^2}, P(X_n = 0) = 1 - \frac{1}{n^2}.$$

Then, which of the following statements is **TRUE** for the sequence $\{X_n\}$?

(2011)

- a) Weak Law of Large Numbers holds but Strong Law of Large Numbers does not hold
- b) Weak Law of Large Numbers does not hold but Strong Law of Large Numbers holds
- c) Both Weak Law of Large Numbers and Strong Law of Large Numbers hold
- d) Both Weak Law of Large Numbers and Strong Law of Large Numbers do not hold