```
import math
In [63]:
          import pandas as pd
          import numpy as np
          import pandas datareader as web
          from sklearn.preprocessing import MinMaxScaler
          from keras.models import Sequential
          from keras.layers import Dense,LSTM
          import matplotlib.pyplot as plt
          from statsmodels.tsa.statespace.sarimax import SARIMAX
          from statsmodels.tsa.arima model import ARMA,ARMAResults,ARIMA,ARIMAResults
          from statsmodels.stats.diagnostic import acorr_ljungbox
          from statsmodels.tsa.stattools import adfuller
          from statsmodels.graphics.tsaplots import plot acf,plot pacf,plot predict
          from pmdarima import auto arima
          from statsmodels.tsa.arima model import ARIMA
          from statsmodels.tsa.seasonal import seasonal_decompose
          from statsmodels.tsa.holtwinters import SimpleExpSmoothing
          from statsmodels.tsa.holtwinters import ExponentialSmoothing
          plt.style.use('fivethirtyeight')
          from datetime import datetime , date
          import warnings
          warnings.filterwarnings("ignore")
          from sklearn.metrics import mean squared error
          import pylab
          import scipy.stats as stats
          from scipy.stats import norm
          from math import log
          from pmdarima.utils import diff_inv
In [199...
          def create dataset(df):
              x = []
              y = []
              for i in range(30, df.shape[0]):
                  x.append(df[i-30:i, 0])
                  y.append(df[i, 0])
              x = np.array(x)
              y = np.array(y)
              return x,y
In [65]:
          # reading data from csv file
          NFLX=pd.read csv('D:\\R-documantary\\NFLX.csv',index col='date',parse dates=True)
          dataset=NFLX[NFLX.index>='2018-01-01']
          dataset=dataset.dropna()
          # take a Look at the dataset
In [67]:
          dataset
Out[67]:
                         close
               date
          2018-01-02 201.070007
          2018-01-03 205.050003
          2018-01-04 205.630005
```

2018-01-05 209.990005

```
      date

      2018-01-08
      212.050003

      ...
      ...

      2021-04-23
      505.549988

      2021-04-26
      510.299988

      2021-04-27
      505.549988

      2021-04-28
      506.519989

      2021-04-29
      509.000000
```

837 rows × 1 columns

```
In [71]: #plotting our data to see the patterns and see if it needs transformation for stationar
   plt.figure(figsize=(16,8))
    plt.plot(dataset,color='darkcyan')
   plt.xlabel('Date')
   plt.ylabel('price of stock')
   plt.title('netflix closed stock price ')
   plt.show()
```



```
In [72]: dataset.describe()
```

```
        count
        837.000000

        mean
        381.247312

        std
        88.776410

        min
        201.070007

        25%
        315.339996
```

```
75% 466.929993
           max 586.340027
           round(0.9 * len(dataset))
In [74]:
Out[74]: 753
In [73]:
           #defining train and test datasets
           train_size=round(0.9 * len(dataset))
           train=dataset[:train_size]
           test=dataset[train_size:]
           test.head()
Out[73]:
                          close
                date
          2020-12-29 530.869995
          2020-12-30 524.590027
          2020-12-31 540.729980
          2021-01-04 522.859985
          2021-01-05 520.799988
In [75]:
           #differenced datasets
           differenced_train=dataset.diff().dropna()[:train_size]
           differenced_test=dataset.diff().dropna()[train_size:]
           differenced_test.head()
Out[75]:
                          close
                date
          2020-12-30
                      -6.279968
          2020-12-31
                      16.139953
          2021-01-04 -17.869995
          2021-01-05
                      -2.059997
          2021-01-06 -20.309998
In [78]:
           plt.figure(figsize=(16,8))
           plt.plot(dataset.diff().dropna(),color='darkcyan')
           plt.xlabel('Date')
           plt.ylabel('amount of increase in price of stock')
           plt.title('differnced dataset ')
           plt.show()
```

close

50% 359.970001


```
# stationarity test
In [83]:
          result=adfuller(differenced_train['close'])
          print('ADF Statistic: %f' % result[0])
          print('p-value: %f' % result[1])
          print('Critical Values:')
          for key, value in result[4].items():
                  print('\t%s: %.3f' % (key, value))
         ADF Statistic: -11.273619
         p-value: 0.000000
         Critical Values:
                  1%: -3.439
                 5%: -2.865
                 10%: -2.569
In [80]:
          returns=dataset.pct_change().dropna()
          returns.head()
          train_returns=returns[:train_size]
          test_returns=returns[train_size:]
In [79]:
          plt.figure(figsize=(16,8))
          plt.plot(returns,color='darkcyan')
          plt.xlabel('Date')
          plt.ylabel('return')
          plt.title('returns')
          plt.show()
```


ARIMA MODEL

In [82]:

plot_acf(differenced_train)
plot_pacf(differenced_train)
plt.show()


```
auto_arima(train['close'],trace=True,stepwise=False,max_p=10,max_q=10)
In [84]:
          ARIMA(0,1,0)(0,0,0)[1] intercept
                                             : AIC=5585.505, Time=0.75 sec
          ARIMA(0,1,1)(0,0,0)[1] intercept
                                              : AIC=5578.246, Time=0.21 sec
          ARIMA(0,1,2)(0,0,0)[1] intercept
                                             : AIC=5578.312, Time=0.20 sec
                                             : AIC=5580.307, Time=0.22 sec
          ARIMA(0,1,3)(0,0,0)[1] intercept
                                             : AIC=5576.322, Time=0.37 sec
          ARIMA(0,1,4)(0,0,0)[1] intercept
          ARIMA(0,1,5)(0,0,0)[1] intercept
                                             : AIC=5571.827, Time=0.51 sec
                                             : AIC=5577.354, Time=0.09 sec
          ARIMA(1,1,0)(0,0,0)[1] intercept
                                             : AIC=5576.300, Time=0.27 sec
          ARIMA(1,1,1)(0,0,0)[1] intercept
                                             : AIC=5578.114, Time=0.24 sec
          ARIMA(1,1,2)(0,0,0)[1] intercept
          ARIMA(1,1,3)(0,0,0)[1] intercept
                                             : AIC=5579.956, Time=0.36 sec
                                             : AIC=5575.240, Time=0.64 sec
          ARIMA(1,1,4)(0,0,0)[1] intercept
          ARIMA(2,1,0)(0,0,0)[1] intercept
                                             : AIC=5577.983, Time=0.29 sec
                                             : AIC=5578.125, Time=0.38 sec
          ARIMA(2,1,1)(0,0,0)[1] intercept
                                            : AIC=5580.100, Time=0.56 sec
          ARIMA(2,1,2)(0,0,0)[1] intercept
                                             : AIC=5582.013, Time=0.74 sec
          ARIMA(2,1,3)(0,0,0)[1] intercept
                                            : AIC=5579.862, Time=0.23 sec
          ARIMA(3,1,0)(0,0,0)[1] intercept
                                            : AIC=5579.921, Time=0.50 sec
          ARIMA(3,1,1)(0,0,0)[1] intercept
          ARIMA(3,1,2)(0,0,0)[1] intercept : AIC=5573.182, Time=0.86 sec
          ARIMA(4,1,0)(0,0,0)[1] intercept
                                             : AIC=5576.153, Time=0.29 sec
          ARIMA(4,1,1)(0,0,0)[1] intercept
                                             : AIC=5577.227, Time=0.55 sec
          ARIMA(5,1,0)(0,0,0)[1] intercept
                                             : AIC=5575.651, Time=0.24 sec
         Best model: ARIMA(0,1,5)(0,0,0)[1] intercept
         Total fit time: 8.863 seconds
         ARIMA(order=(0, 1, 5), scoring args=\{\}, seasonal order=(0, 0, 0, 1),
Out[84]:
               suppress warnings=True)
          arima model=ARIMA(train['close'],order=(0,1,5))
In [85]:
          arima model=arima model.fit()
          print(arima model.summary())
                                      ARIMA Model Results
```

```
______
                        No. Observations:
Dep. Variable:
                  D.close
                                              752
Model:
              ARIMA(0, 1, 5)
                        Log Likelihood
                                           -2778.913
Method:
                        S.D. of innovations
                                             9.741
                  css-mle
Date:
             Fri, 09 Jul 2021
                        AIC
                                           5571.827
                  17:12:04
                        BIC
Time:
                                           5604.186
                        HOIC
Sample:
                      1
                                           5584.294
```

coef std err z P>|z| [0.025 0.975]

const	0.4232	0.327	1.292	0.196	-0.219	1.065
ma.L1.D.close	-0.1099	0.037	-3.006	0.003	-0.181	-0.038
ma.L2.D.close	0.0533	0.036	1.475	0.140	-0.018	0.124
ma.L3.D.close	-0.0256	0.038	-0.674	0.500	-0.100	0.049
ma.L4.D.close	0.1059	0.040	2.678	0.007	0.028	0.183
ma.L5.D.close	-0.1019	0.040	-2.574	0.010	-0.180	-0.024
		Ro	oots			

=======	==========	=======================================		=========
	Real	Imaginary	Modulus	Frequency
MA.1	-1.0847	-0.9931j	1.4706	-0.3820
MA.2	-1.0847	+0.9931j	1.4706	0.3820
MA.3	0.7022	-1.4220j	1.5859	-0.1770
MA.4	0.7022	+1.4220j	1.5859	0.1770
MA.5	1.8034	-0.0000j	1.8034	-0.0000

```
In [87]: train.head()
```

Out[87]: close

date

2018-01-02 201.070007 **2018-01-03** 205.050003

2018-01-04 205.630005

2018-01-05 209.990005

2018-01-08 212.050003

```
In [89]: plt.figure(figsize=(10,6))
   plt.hist(arima_model.resid,density=True)
   plt.title('histogram of residuals')
   mu, std = norm.fit(arima_model.resid)
   xmin, xmax = plt.xlim()
   x = np.linspace(xmin, xmax, 100)
   p = norm.pdf(x, mu, std)
   plt.plot(x, p, 'k', linewidth=2)
   plt.show()
```


In [91]: plt.figure(figsize=(12,8))
 stats.probplot(arima_model.resid, dist="norm", plot=pylab)
 plt.show()


```
In [95]: plot_acf(arima_model.resid,lags=40)
    plot_pacf(arima_model.resid,lags=40)
    plt.show()
```


In [97]: acorr_ljungbox(arima_model.resid,return_df=True,lags=20,boxpierce=True)

Out[97]:

	lb_stat	lb_pvalue	bp_stat	bp_pvalue
1	0.007739	0.929899	0.007708	0.930038
2	0.008730	0.995645	0.008694	0.995663
3	0.048189	0.997227	0.047891	0.997252
4	0.094221	0.998925	0.093557	0.998939
5	0.139683	0.999631	0.138597	0.999638
6	1.275105	0.973013	1.261972	0.973713
7	1.521556	0.981554	1.505482	0.982119
8	7.398120	0.494349	7.304107	0.504205
9	7.445984	0.590790	7.351273	0.600597
10	9.158638	0.517117	9.036670	0.528627
11	10.029214	0.527761	9.892236	0.540106

	lb_stat	lb_pvalue	bp_stat	bp_pvalue
12	11.333266	0.500594	11.172074	0.514232
13	13.035429	0.445079	12.840375	0.460216
14	13.263981	0.505851	13.064077	0.521484
15	18.726336	0.226404	18.403275	0.242058
16	22.436012	0.129663	22.024391	0.142406
17	22.589018	0.163114	22.173541	0.178137
18	27.293636	0.073650	26.753369	0.083739
19	30.960230	0.040780	30.317843	0.047890
20	32.791281	0.035563	32.095468	0.042292

```
In [98]: plt.figure(figsize=(16,8))
    plt.xlabel('Date')
    plt.ylabel('residual')
    plt.plot(arima_model.resid)
    plt.title('plot of residuals ARIMA(0,1,5)')
    plt.show()
```



```
In [99]: arima_pred=[]
    for i in range(len(test)):
        model=ARIMA(dataset[:train_size+i],order=(0,1,5))
        model=model.fit()
        start=len(train)+i
        arima_pred.append(model.predict(start,start,typ='levels'))
```

```
In [103... test['arima(1 step ahead)']=arima_pred
```

```
In [113... arima_pred2=arima_model.forecast(steps=84,alpha=0.05)
    test['upper_interval']=arima_pred2[2][:,1]
    test['lower_interval']=arima_pred2[2][:,0]
    test['prediction(without updating model)']=arima_pred2[0]
```

In [114...

test

Out[114...

	close	arima(1 step ahead)	upper_interval	lower_interval	prediction(without updating model)
date					
2020-12- 29	530.869995	752 519.402626 dtype: float64	538.494883	500.310368	519.402626
2020-12- 30	524.590027	753 529.157691 dtype: float64	544.477397	493.356263	518.916830
2020-12- 31	540.729980	754 527.239778 dtype: float64	551.726140	489.186979	520.456559
2021-01- 04	522.859985	755 539.908122 dtype: float64	557.493992	485.804806	521.649399
2021-01- 05	520.799988	756 526.684286 dtype: float64	562.315842	480.662902	521.489372
•••					
2021-04- 23	505.549988	831 509.263792 dtype: float64	711.004728	395.455594	553.230161
2021-04- 26	510.299988	832 506.715746 dtype: float64	712.406306	394.900437	553.653372
2021-04- 27	505.549988	833 506.785502 dtype: float64	713.801891	394.351273	554.076582
2021-04- 28	506.519989	834 512.049115 dtype: float64	715.191593	393.807992	554.499793
2021-04- 29	509.000000	835 507.523816 dtype: float64	716.575516	393.270491	554.923003

84 rows × 5 columns

```
In [148... plt.figure(figsize=(16,8))
    plt.plot(test['close'],label='actual stock price',color='lightskyblue')
    plt.plot(test['arima(1 step ahead)'],label='one step ahead prediction',color='red')
    plt.plot(test['prediction(without updating model)'],label='prediction (without updating plt.title('prediction result using arima(0,1,5)')
    plt.xlabel('Date')
    plt.ylabel('price($)')
    plt.legend()
    plt.show()
```



```
In [153... plt.figure(figsize=(16,8))
    plt.plot(test['close'],label='actual stock price',color='lightskyblue')
    plt.plot(test['arima(1 step ahead)'],label='one step ahead prediction',color='red')
    plt.plot(test['prediction(without updating model)'],label='prediction (without updating
    plt.plot(test['upper_interval'],label='95 percent conf interval',color='yellowgreen')
    plt.plot(test['lower_interval'],color='yellowgreen')
    plt.title('prediction result using arima(0,1,5)')
    plt.xlabel('Date')
    plt.ylabel('price($)')
    plt.legend()
    plt.show()
```


calculate MSE of one step ahead prediction

```
In [119... mean_squared_error(test['close'],test['arima(1 step ahead)'])
```

exponential smoothing models (simple model)

```
In [120...
          alpha=(0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
                 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.00)
          sum_of_squared_error=[]
In [124...
          for i in alpha:
              model=SimpleExpSmoothing(train['close']).fit(smoothing_level=i,initial_level=train[
              sum of squared error.append(model.sse)
In [130...
          plt.figure(figsize=(12,8))
          plt.plot(alpha, sum_of_squared_error)
          plt.title('alpha vs sum of squared error')
          plt.ylabel('sum of squared error')
          plt.xlabel('alpha')
          plt.show()
                                        alpha vs sum of squared error
           500000
           400000
         sum of squared error
           300000
           200000
           100000
                               0.2
                                             0.4
                                                            0.6
                                                                           0.8
                                                                                          1.0
                                                     alpha
          simple model=SimpleExpSmoothing(train['close']).fit()
In [132...
          print(simple model.summary())
                               SimpleExpSmoothing Model Results
         ______
         Dep. Variable:
                                                No. Observations:
                                        close
                                                                                  753
         Model:
                           SimpleExpSmoothing
                                                SSE
                                                                            72914.115
         Optimized:
                                         True
                                                AIC
                                                                             3447.448
```

```
Trend:
                        None
                              BIC
                                                    3456.696
Seasonal:
                             AICC
                                                    3447.502
                        None
                                              Fri, 09 Jul 2021
Seasonal Periods:
                        None
                             Date:
Box-Cox:
                              Time:
                                                    17:31:23
                        False
Box-Cox Coeff.:
                        None
______
                 coeff
                                 code
                                               optimized
```

smoothing_level 0.8963960 alpha True initial_level 201.49371 1.0 True

```
In [136... train['SES fitted values']=simple_model.fittedvalues
```

```
In [145... plt.figure(figsize=(16,8))
    plt.plot(train['close'],label='actual price',color='navy')
    plt.plot(train['SES fitted values'],label='smoothed prices',color='tomato')
    plt.xlabel('Date')
    plt.ylabel('Price')
    plt.title('simple exponential smoothing')
    plt.legend()
    plt.show()
```



```
In [147... plt.figure(figsize=(16,8))
    plt.plot(simple_model.resid,color='darkcyan')
    plt.xlabel('Date')
    plt.ylabel('residuals')
    plt.title('residuals plot')
    plt.show()
```


In [154...

acorr_ljungbox(simple_model.resid,lags=20,return_df=True,boxpierce=True)

Out[154...

	lb_stat	lb_pvalue	bp_stat	bp_pvalue
1	0.049345	0.824207	0.049149	0.824551
2	2.244913	0.325479	2.233085	0.327410
3	2.315222	0.509611	2.302928	0.511960
4	7.619350	0.106560	7.564904	0.108881
5	11.890964	0.036313	11.796914	0.037679
6	14.272591	0.026735	14.153305	0.027970
7	14.647647	0.040791	14.523890	0.042610
8	21.321387	0.006341	21.109237	0.006863
9	21.329868	0.011264	21.117593	0.012138
10	22.971521	0.010852	22.733154	0.011776
11	24.382267	0.011214	24.119609	0.012238
12	25.586356	0.012276	25.301370	0.013458
13	26.873072	0.012948	26.562523	0.014273
14	27.848150	0.014903	27.516937	0.016479
15	33.756972	0.003683	33.292713	0.004275
16	38.283402	0.001379	37.711228	0.001664
17	38.441499	0.002136	37.865346	0.002565
18	42.294589	0.001006	41.616368	0.001251
19	46.112667	0.000478	45.328248	0.000616
20	47.505523	0.000499	46.680517	0.000650

In [283...

```
plt.figure(figsize=(10,6))
stats.probplot(simple_model.resid, dist="norm", plot=pylab)
plt.show()
```



```
In [156...
    plt.figure(figsize=(10,6))
    plt.hist(simple_model.resid,density=True)
    plt.title('histogram of residuals')
    mu, std = norm.fit(simple_model.resid)
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = norm.pdf(x, mu, std)
    plt.plot(x, p, 'k', linewidth=2)
    plt.show()
```


In [157... plot_acf(simple_model.resid)
 plot_pacf(simple_model.resid)
 plt.show()

In [158... acorr_ljungbox(simple_model.resid,return_df=True,lags=10)

Out[158		lb_stat	lb_pvalue
	1	0.049345	0.824207
	2	2.244913	0.325479
	3	2.315222	0.509611
	4	7.619350	0.106560
	5	11.890964	0.036313
	6	14.272591	0.026735
	7	14.647647	0.040791
	8	21.321387	0.006341
	9	21.329868	0.011264
	10	22.971521	0.010852

```
In [159... pred=simple_model.forecast(84)
    pred.index=test.index

In [162... pred_simple_model=simple_model.forecast()
    for i in range(83):
        simple_model=SimpleExpSmoothing(dataset[:train_size+i+1]['close']).fit()
        pred_simple_model=pred_simple_model.append(simple_model.forecast())

In [163... pred_simple_model.index=test.index

In [164... test['simple exp smoothing prediction']=pred_simple_model
    test
```

date	close	arima(1 step ahead)	upper_interval	lower_interval	prediction(without updating model)	simple exp smoothing prediction
date						
2020- 12-29	530.869995	752 519.402626 dtype: float64	538.494883	500.310368	519.402626	518.606441
2020- 12-30	524.590027	753 529.157691 dtype: float64	544.477397	493.356263	518.916830	529.608261
2020- 12-31	540.729980	754 527.239778 dtype: float64	551.726140	489.186979	520.456559	525.109345
2021- 01-04	522.859985	755 539.908122 dtype: float64	557.493992	485.804806	521.649399	539.099610
2021- 01-05	520.799988	756 526.684286 dtype: float64	562.315842	480.662902	521.489372	524.598856
•••						
2021- 04-23	505.549988	831 509.263792 dtype: float64	711.004728	395.455594	553.230161	509.262370
2021- 04-26	510.299988	832 506.715746 dtype: float64	712.406306	394.900437	553.653372	505.945167
2021- 04-27	505.549988	833 506.785502 dtype: float64	713.801891	394.351273	554.076582	509.835224
2021- 04-28	506.519989	834 512.049115 dtype: float64	715.191593	393.807992	554.499793	506.008094
2021- 04-29	509.000000	835 507.523816 dtype: float64	716.575516	393.270491	554.923003	506.465255
84 rows	× 6 columns					

```
In [165... mean_squared_error(test['close'],pred_simple_model)
Out[165... 210.4021667310662
In [166... plt.figure(figsize=(16,8))
    plt.plot(test['close'],label='actual')
    plt.plot(pred_simple_model,label='prediction using simple exp smoothing')
    plt.plot(pred,label='normal prediction(not updating the model at each period)',color='d
    plt.title('actual vs prediction')
    plt.xlabel('Date')
    plt.ylabel('price')
    plt.legend()
    plt.show()
```



```
In [168...
          mse=[]
          for i in alpha:
              smodel=SimpleExpSmoothing(train['close']).fit(smoothing_level=i,optimized=True)
              pred simple model=smodel.forecast()
              for j in range(83):
                  smodel=SimpleExpSmoothing(dataset[:train size+j+1]['close']).fit(smoothing leve
                  pred simple model=pred simple model.append(smodel.forecast())
              mse.append(mean squared error(pred simple model,test['close']))
              print('simple exponential model with landa =',i,' MSE will be ',mean_squared_error
                                                      MSE will be 515.5250111950622
         simple exponential model with landa = 0.05
         simple exponential model with landa = 0.1
                                                     MSE will be 420.0820990263477
         simple exponential model with landa = 0.15
                                                      MSE will be 371.3731597541392
         simple exponential model with landa = 0.2
                                                     MSE will be 336.6228319316936
         simple exponential model with landa = 0.25
                                                      MSE will be 309.86983271605186
         simple exponential model with landa = 0.3
                                                     MSE will be 288.7618963838183
         simple exponential model with landa = 0.35
                                                      MSE will be 271.82909878496383
         simple exponential model with landa = 0.4
                                                     MSE will be 258.07734949829694
         simple exponential model with landa = 0.45
                                                      MSE will be 246.8274782332964
         simple exponential model with landa = 0.5
                                                     MSE will be 237.6078249115878
         simple exponential model with landa = 0.55
                                                      MSE will be 230.08269168454007
         simple exponential model with landa = 0.6
                                                     MSE will be 224.00680391500347
         simple exponential model with landa = 0.65
                                                      MSE will be 219.1968671662775
         simple exponential model with landa = 0.7
                                                     MSE will be 215.51385272273794
         simple exponential model with landa = 0.75
                                                      MSE will be 212.85204934239167
         simple exponential model with landa = 0.8
                                                     MSE will be 211.13255905207743
         simple exponential model with landa = 0.85
                                                      MSE will be 210.2998900819452
         simple exponential model with landa = 0.9
                                                     MSE will be 210.3208560228981
         simple exponential model with landa = 0.95
                                                      MSE will be 211.18532288706658
         simple exponential model with landa = 1.0
                                                     MSE will be 212.9085792450042
          plt.figure(figsize=(10,6))
In [171...
          plt.plot(alpha, mse)
          plt.title('SSE vs alpha for forecast')
          plt.ylabel('MSE')
```

plt.xlabel('lambda')

plt.show()

double exponential model

In [175...

double_model=ExponentialSmoothing(train['close'], trend='additive', damped=False, seasonal
double_model.summary()

Out[175...

ExponentialSmoothing Model Results

Dep. Variable:	close	No. Observations:	753
Model:	ExponentialSmoothing	SSE	72747.238
Optimized:	True	AIC	3449.723
Trend:	Additive	ВІС	3468.219
Seasonal:	None	AICC	3449.835
Seasonal Periods:	None	Date:	Fri, 09 Jul 2021
Box-Cox:	False	Time:	17:47:22
Box-Cox Coeff.:	None		

	code	
coeff		

smoothing_level	0.8941686	alpha	True
$smoothing_trend$	1.1208e-13	beta	True
initial_level	201.03135	1.0	True
initial_trend	0.4217996	b.0	True

In [178...

train['double_exp_fitted']=double_model.fittedvalues

```
In [179... plt.figure(figsize=(16,8))
    plt.plot(train['close'],label='actual prices',color='blue')
    plt.plot(train['double_exp_fitted'],label='smoothed prices',color='tomato')
    plt.xlabel('date')
    plt.ylabel('price')
    plt.title('double exponential smoothing')
    plt.legend()
    plt.show()
```



```
In [180... plt.figure(figsize=(16,8))
    plt.plot(double_model.resid,color='darkcyan')
    plt.xlabel('Date')
    plt.ylabel('residuals')
    plt.title('double exponential residuals plot')
    plt.show()
```



```
In [52]: acorr_ljungbox(double_model.resid,lags=20,return_df=True,boxpierce=True)
```

	lb_stat	lb_pvalue	bp_stat	bp_pvalue
1	0.024628	0.875297	0.024530	0.875543
2	2.238320	0.326554	2.226494	0.328491
3	2.303738	0.511805	2.291478	0.514155
4	7.585912	0.107980	7.531676	0.110321
5	11.853595	0.036850	11.759790	0.038232
6	14.252202	0.026942	14.132981	0.028185
7	14.638050	0.040929	14.514230	0.042756
8	21.319948	0.006344	21.107626	0.006867
9	21.330181	0.011262	21.117710	0.012138
10	22.982315	0.010812	22.743585	0.011734
11	24.392689	0.011175	24.129674	0.012197
12	25.596613	0.012235	25.311274	0.013415
13	26.896311	0.012854	26.585150	0.014172
14	27.876656	0.014774	27.544720	0.016341
15	33.736775	0.003707	33.272889	0.004302
16	38.255321	0.001391	37.683708	0.001679
17	38.420975	0.002150	37.845194	0.002581
18	42.268713	0.001014	41.591004	0.001261
19	46.083411	0.000482	45.299599	0.000622
20	47.484874	0.000502	46.660224	0.000654

```
In [181... plt.figure(figsize=(10,6))
    stats.probplot(double_model.resid, dist="norm", plot=pylab)
    plt.show()
```



```
In [184... plt.figure(figsize=(10,6))
  plt.hist(double_model.resid,density=True)
  plt.title('histogram of residuals')
  mu, std = norm.fit(double_model.resid)
  xmin, xmax = plt.xlim()
  x = np.linspace(xmin, xmax, 100)
  p = norm.pdf(x, mu, std)
  plt.plot(x, p, 'k', linewidth=2)
  plt.show()
```



```
plot_pacf(double_model.resid)
plt.show()
```


In [186... mean_squared_error(train['close'],train['double_exp'])

Out[186... 96.60987757125862

```
double exponential model with landa = 0.05 and beta= 0.044227655221363626 MSE will be 607.5110559926981 double exponential model with landa = 0.1 and beta= 0.019702540107021323 MSE will be 445.23460066873287 double exponential model with landa = 0.15 and beta= 8.426995741527164e-05 MSE will b
```

```
double exponential model with landa = 0.2 and beta= 0.0 MSE will be 341.655450246395
         double exponential model with landa = 0.25 and beta= 7.056550550992811e-17
            313.7264248140947
         double exponential model with landa = 0.3 and beta= 0.0
                                                                    MSE will be 291.562057164767
         double exponential model with landa = 0.35 and beta= 0.0
                                                                     MSE will be 274.16084222219
         double exponential model with landa = 0.4 and beta= 0.0
                                                                    MSE will be 259.948413382837
         double exponential model with landa = 0.45 and beta= 0.0
                                                                     MSE will be 248.37371542158
         double exponential model with landa = 0.5 and beta= 0.0
                                                                    MSE will be 238.891288559455
         double exponential model with landa = 0.55 and beta= 0.0
                                                                     MSE will be 231.20353263650
         594
         double exponential model with landa = 0.6 and beta= 0.003045025604773771
                                                                                     MSE will be
         225.04698499381686
         double exponential model with landa = 0.65 and beta= 0.0
                                                                     MSE will be 220.21407341825
         800
         double exponential model with landa = 0.7 and beta= 0.0
                                                                    MSE will be 216.285348015001
         12
         double exponential model with landa = 0.75 and beta= 0.00021911680003832722
                                                                                        MSE will
         be 213.52664031251055
         double exponential model with landa = 0.8 and beta= 1.1245406485645362e-05
                                                                                       MSE will b
         e 211.7811896325025
         double exponential model with landa = 0.85 and beta= 0.005558985266252279
                                                                                      MSE will be
         211.1165786352363
         double exponential model with landa = 0.9 and beta= 0.0
                                                                    MSE will be 211.734885434066
         double exponential model with landa = 0.95 and beta= 1.9880349739069687e-14
                                                                                        MSE will
         be 213.37739240842504
         double exponential model with landa = 1.0 and beta= 0.0
                                                                    MSE will be 214.280000352774
In [189...
          pred double=double model.forecast(84)
          pred double.index=test.index
          pred double 1step=double model.forecast()
In [193...
          for i in range(83):
              double_model=ExponentialSmoothing(dataset[:train_size+i+1]['close'],trend='additive'
              pred double 1step=pred double 1step.append(double model.forecast())
In [195...
          pred double 1step.index=test.index
In [196...
          plt.figure(figsize=(16,8))
          plt.plot(test['close'],label='actual')
          plt.xlabel('Date')
          plt.ylabel('price')
          plt.plot(pred double 1step,label='prediction using double exp smoothing')
          plt.plot(pred double,label='normal prediction(without updating the model at each period
          plt.title('double exponential model prediction results')
          plt.legend()
          plt.show()
```

e 377.6576636489258

mean squared error of one step ahead prediction

```
In [265... mean_squared_error(pred_double_1step,test['close'])
Out[265... 215.68763384098105
```

GARCH MODEL (PREDICTING VOLATILITY)

```
In [197... from arch import arch_model

In [198... plt.figure(figsize=(16,8))
    plt.plot(returns,color='darkcyan')
    plt.title('netflix stock returns over time')
    plt.xlabel('Date')
    plt.ylabel('return')
    plt.show()
```


In [21]: plot_acf(train_returns**2)
 plot_pacf(train_returns**2)
 plt.show()


```
In [271...
            gmodel=arch_model(train_returns,p=1,q=1,mean='constant')
            gmodel=gmodel.fit(disp='off')
            gmodel.summary()
                        Constant Mean - GARCH Model Results
Out[271...
                                                                  0.000
           Dep. Variable:
                                       close
                                                    R-squared:
                                               Adj. R-squared:
            Mean Model:
                              Constant Mean
                                                                  0.000
              Vol Model:
                                     GARCH
                                               Log-Likelihood:
                                                                1676.72
            Distribution:
                                     Normal
                                                          AIC: -3345.45
```

BIC: -3326.95

753

752

1

19:35:28 **Df Model:**

No. Observations:

Df Residuals:

 coef
 std err
 t
 P>|t|
 95.0% Conf. Int.

 mu
 1.8623e-03
 8.775e-04
 2.122
 3.380e-02
 [1.426e-04,3.582e-03]

Mean Model

Fri, Jul 09 2021

Method: Maximum Likelihood

Date:

Time:

Volatility Model

	coef	std err	t	P> t	95.0% Conf. Int.
omega	6.8092e-05	1.426e-05	4.776	1.792e-06	[4.015e-05,9.604e-05]
alpha[1]	0.0904	3.056e-02	2.958	3.101e-03	[3.049e-02, 0.150]
beta[1]	0.8196	3.292e-02	24.898	7.877e-137	[0.755, 0.884]

Covariance estimator: robust

```
In [272... plt.figure(figsize=(16,8))
    plt.title('garch model residuals')
    plt.xlabel('Date')
    plt.ylabel('error')
    plt.plot(gmodel.std_resid)
```

Out[272... [<matplotlib.lines.Line2D at 0x25b9070e940>]

In [273... plot_acf(gmodel.std_resid**2)
 plot_pacf(gmodel.std_resid**2)
 plt.show()

In [274...

acorr_ljungbox(gmodel.std_resid**2,lags=30,return_df=True)

Out[274...

	lb_stat	lb_pvalue
1	0.089164	0.765242
2	0.338895	0.844131
3	0.894277	0.826809
4	0.958525	0.916018
5	1.030785	0.960045
6	1.682806	0.946441
7	1.694705	0.974794
8	2.589744	0.957415
9	3.698184	0.930132
10	3.978198	0.948325
11	4.081291	0.967478
12	4.081304	0.981924
13	5.026737	0.974600
14	5.027133	0.985431
15	5.412351	0.988022
16	5.422944	0.993217
17	5.429618	0.996271
18	6.360562	0.994502
19	6.362259	0.996915
20	6.457166	0.998122
21	6.854146	0.998411
22	6.855217	0.999136

lb_stat lb_pvalue **23** 7.076043 0.999400 **24** 7.080089 0.999680 **25** 7.080090 0.999834 0.999889 **26** 7.278277 **27** 7.311909 0.999941 28 8.800810 0.999799 9.149508 0.999837 **30** 9.698585 0.999836

```
In [275... plt.figure(figsize=(10,6))
    stats.probplot(gmodel.std_resid, dist="norm", plot=pylab)
    plt.show()
```



```
In [276... plt.figure(figsize=(10,6))
    plt.hist(gmodel.std_resid,density=True)
    plt.title('histogram of residuals')
    mu, std = norm.fit(gmodel.std_resid)
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    p = norm.pdf(x, mu, std)
    plt.plot(x, p, 'k', linewidth=2)
    plt.show()
```


predict future volatility

```
garch_prediction=[]
In [277...
          test_size=len(test_returns)
          for i in range(test_size):
              gtrain=returns[:-(test_size-i)]
              gmodel=arch model(gtrain,p=1,q=1)
              gmodel_fit=gmodel.fit(disp='off')
              pred=gmodel fit.forecast(horizon=1)
              garch_prediction.append(np.sqrt(pred.variance.values[-1,:][0]))
          garch_prediction = pd.Series(garch_prediction, index=returns.index[-test_size:])
In [278...
In [279...
          plt.figure(figsize=(16,8))
          true, = plt.plot(returns[-test_size:])
          preds, = plt.plot(garch_prediction)
          plt.title('Volatility Prediction', fontsize=20)
          plt.legend(['True Returns', 'Predicted Volatility'], fontsize=16)
Out[279... <matplotlib.legend.Legend at 0x25b8fbe7dc0>
```


RECURRENT NEURAL NETWORK

```
from sklearn.preprocessing import MinMaxScaler
In [206...
          from statsmodels.tsa.seasonal import seasonal_decompose
          from keras.preprocessing.sequence import TimeseriesGenerator
          dataset_test = np.array(dataset[int(dataset.shape[0]*0.9):])
In [209...
          scaler=MinMaxScaler(feature_range=(0,1))
In [210...
          scaled_dataset=scaler.fit_transform(dataset)
          dataset_test=scaler.transform(dataset_test)
In [211...
          x_test, y_test = create_dataset(dataset_test)
          x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
In [212...
          scaled_dataset.shape
Out[212... (837, 1)
In [213...
          test_size=84
          train_rnn=dataset[:-test_size]
          test_rnn=dataset[len(train_rnn):]
           scaled_train=scaled_dataset[:-test_size]
          scaled_test=scaled_dataset[len(scaled_train):]
          scaled_test[:10]
In [214...
Out[214... array([[0.85602297],
                 [0.8397228],
                 [0.88161537],
                 [0.83523233],
                 [0.82988544],
                 [0.77716917],
                 [0.79897213],
                 [0.8028914],
                 [0.77356136],
                 [0.76097277])
```

```
In [216...
          plt.figure(figsize=(16,8))
          plt.plot(RNN dataset.index,scaled dataset,color='darkcyan')
          plt.title('plot of scaled dataset')
          plt.xlabel('Date')
           plt.ylabel('scaled prices')
           plt.show()
                                                plot of scaled dataset
                                                                      MANAMA
            1.0
            0.8
         scaled prices
           0.6
           0.4
            0.2
            0.0
               2018-01
                       2018-05
                               2018-09
                                       2019-01
                                               2019-05
                                                        2019-09
                                                                2020-01
                                                                        2020-05
                                                                                2020-09
                                                                                        2021-01
                                                                                                2021-05
                                                        Date
          #define generator
In [217...
           generator=TimeseriesGenerator(scaled_train,scaled_train,length=30,batch_size=1)
In [218...
          x,y=generator[0]
          print(f'given the array : \n{x.flatten()}')
          print(f'predict this y : \n{y}')
          given the array :
                      0.01033041 \ 0.01183585 \ 0.02315259 \ 0.02849948 \ 0.02138757
          [0.
           0.02971941 0.04197056 0.05232691 0.05310559 0.0426454 0.0499909
           0.05032834 0.06880887 0.12775452 0.15633187 0.17813482 0.19085316
                     0.20175455 0.17969211 0.16611726 0.1722428 0.13805899
           0.216783
           0.16780437 0.16479349 0.12726139 0.12562616 0.14763673 0.14846725]
          predict this y:
          [[0.16853113]]
          del model
In [219...
          from keras.models import Sequential
In [220...
          from keras.layers import Dense
          from keras.layers import LSTM
           from keras.layers import Dropout
In [221...
          model=Sequential()
          model.add(LSTM(units=50,return_sequences=True,activation='relu',input_shape=(30,1)))
          model.add(LSTM(units=50, return_sequences=False))
          model.add(Dense(25))
          model.add(Dense(1))
In [222...
          model.compile(optimizer='adam',loss='mean_squared_error',metrics='accuracy')
```

```
LSTM_model=model.fit(generator,epochs=20,validation_data=(x_test,y_test))
In [253...
        0.0000e+00 - val loss: 7.6871e-04 - val accuracy: 0.0000e+00
In [224...
         model.summary()
        Model: "sequential"
        Layer (type)
                                  Output Shape
                                                          Param #
        ______
        1stm (LSTM)
                                  (None, 30, 50)
                                                          10400
        1stm 1 (LSTM)
                                   (None, 50)
                                                          20200
        dense (Dense)
                                   (None, 25)
                                                          1275
        dense 1 (Dense)
                                  (None, 1)
                                                          26
        ______
        Total params: 31,901
        Trainable params: 31,901
        Non-trainable params: 0
In [227...
         plt.figure(figsize=(16,8))
         plt.plot(LSTM_model.history['loss'],label='training mean squared error')
         plt.plot(LSTM_model.history['val_loss'],label='validation mean squared error',color='da
         plt.title('model validation')
         plt.legend()
         plt.show()
                                           model validation
                                                                      training mean squared error
        0.010
                                                                      validation mean squared error
        0.008
        0.006
        0.004
        0.002
                                5.0
                                         7.5
                                                  10.0
                                                           12.5
                                                                    15.0
                                                                             17.5
In [226...
         fitted=[]
         for i in range(len(generator)):
             fitted.append(model.predict(generator[i][0])[0])
         scaler.inverse_transform(fitted)
In [228...
Out[228... array([[264.03021046],
               [269.57678038],
               [281.63975388],
               [282.00633782],
               [280.8337216],
```

```
[281.65294663],
[279.13733366],
[284.40191858],
[291.94148944],
[290.36509927],
[289.95163456],
[288.8115926],
[296.48667333],
[309.32470083],
[319.95440656],
[317.75343323],
[313.20625148],
[324.09147633],
[317.92972695],
[312.29830549],
[315.80585485],
[316.62146308],
[314.84188847],
[310.7185511],
[313.02190891],
[312.97092909],
[305.55888816],
[299.56750783],
[313.79561953],
[301.87251904],
[288.22662214],
[292.03526245],
[282.79429753],
[282.79990072],
[287.41717972],
[292.40324719],
[289.1449478],
[288.74240242],
[294.68046062],
[300.05673039],
[305.12541043],
[307.62485683],
[304.81310162],
[327.42105561],
[330.12780846],
[328.29330425],
[323.36817143],
[315.16781486],
[304.945431
[302.31626162],
[308.91629966],
[309.14628295],
[309.62940859],
[310.23140678],
[310.24782595],
[308.82594827],
[315.10317153],
[321.48699313],
[322.89347353],
[325.59212014],
[325.241875
[322.40638662],
[323.55412147],
[321.99020069],
[323.50474913],
[321.50497385],
[320.30695957],
[326.59328801],
[327.68446282],
```

[338.90304288],

```
[344.58664977],
[346.76837937],
[345.31725718],
[348.04483827],
[346.86477027],
[353.84225417],
[356.7800122],
[360.60109894],
[362.52570195],
[357.50083699],
[355.81722845],
[356.50067953],
[358.94620673],
[373.42662261],
[386.62289817],
[387.82651564],
[386.00533047],
[397.52094835],
[409.22646605],
[410.15468916],
[406.46641403],
[382.95183447],
[391.82375832],
[386.44576626],
[390.41402853],
[387.8952695],
[393.39828842],
[387.66133643],
[393.40034369],
[402.53357355],
[412.85512694],
[411.66079837],
[413.55070295],
[409.36147072],
[393.36991654],
[394.87165113],
[377.76303036],
[371.5122615],
[361.94540463],
[358.23152478],
[359.63259719],
[355.59484621],
[359.66654929],
[360.46883846],
[353.53028982],
[335.28584097],
[333.56482426],
[334.8840534],
[340.83498285],
[340.6522822],
[346.98494027],
[348.51630975],
[344.67325805],
[345.13146789],
[342.18925486],
[337.80781494],
[333.9138638],
[324.52181949],
[319.75065951],
[314.89309793],
[323.07613974],
[333.71126494],
[340.74241544],
[336.71092212],
```

[352.1496323],

```
[359.44796757],
[363.44698996],
[363.16544127],
[365.27941594],
[362.74672932],
[358.84514269],
[339.60979081],
[340.64927393],
[343.93665707],
[344.8487136],
[351.58436485],
[364.70992313],
[364.90569023],
[361.15784679],
[348.0038133],
[360.45324598],
[362.54842471],
[361.46849072],
[357.5180025],
[364.07453546],
[365.17594068],
[372.5442469],
[376.05954658],
[370.70184311],
[375.81848322],
[373.03675329],
[372.47224365],
[361.01403548],
[348.66860622],
[345.04537629],
[350.99042699],
[328.25855989],
[319.65235113],
[333.99058613],
[331.75159609],
[342.32216982],
[359.53503513],
[346.32834545],
[331.2952004],
[325.58245234],
[328.14743766],
[306.3028261],
[308.88806557],
[300.64356093],
[288.55106735],
[286.00697916],
[298.45597553],
[313.71066464],
[309.15722524],
[311.96931342],
[308.51868003],
[321.06161017],
[315.45838835],
[302.99918453],
[293.27511692],
[291.84067799],
[286.44097358],
[288.27345697],
[286.13169601],
[275.59416731],
[270.29768555],
[266.61404913],
[264.37411757],
[265.19954859],
```

[269.19977084],

```
[282.63420482],
[290.11153207],
[288.26524739],
[289.8220953],
[278.40963118],
[280.67075841],
[270.33902054],
[269.71367383],
[267.57824515],
[274.44738545],
[277.23545341],
[270.87429716],
[266.64127281],
[271.36868659],
[269.72603988],
[265.51822413],
[258.78725751],
[252.64600914],
[259.16406038],
[262.35085024],
[263.22478672],
[271.40201867],
[272.57414117],
[274.65147696],
[295.92607902],
[313.39657614],
[318.65389299],
[317.49566364],
[319.9775886],
[330.92370219],
[328.65169008],
[346.46593356],
[346.68669684],
[347.75498815],
[335.77649877],
[322.26994671],
[317.59088338],
[321.43162721],
[332.69498683],
[332.76457888],
[326.69502949],
[335.17794517],
[335.73297073],
[335.8178682],
[345.51013083],
[350.92576069],
[348.37160284],
[341.17211561],
[342.21747748],
[341.2055625],
[353.57490865],
[348.78761654],
[353.88625297],
[352.81086582],
[356.82179498],
[355.74570744],
[352.91877311],
[357.65213453],
[359.3854484],
[360.54613489],
[358.84130772],
[354.37131906],
[352.98206157],
[347.63017944],
```

[349.69874303],

```
[354.97943712],
[349.9119512],
[346.24977453],
[353.63624518],
[352.82237073],
[356.73581821],
[355.20219826],
[357.00111994],
[358.94993836],
[355.20148638],
[368.66602602],
[373.24245227],
[359.29448846],
[360.85773181],
[356.08178386],
[349.89329305],
[350.1810305],
[352.37565432],
[361.94677098],
[364.11977431],
[365.80373879],
[364.09159763],
[361.4896749],
[357.4876098],
[359.78519219],
[359.76544325],
[363.06761513],
[349.59796603],
[345.08705574],
[353.90995169],
[351.77519471],
[356.1056663],
[371.37412226],
[377.52441266],
[371.32849302],
[364.57676706],
[368.94601316],
[367.42247436],
[366.19070318],
[373.26533578],
[374.77697929],
[380.03689106],
[375.24905931],
[367.15873417],
[360.5894907],
[358.450738
[357.15519611],
[343.90340537],
[341.96570147],
[350.35449967],
[355.80330086],
[352.23077518],
[345.72058333],
[349.64011624],
[355.17969366],
[349.57663259],
[350.17662143],
[350.89247455],
[346.01852823],
[347.41506527],
[340.55816472],
[333.74359809],
[347.22457987],
[351.92564259],
```

[353.56183071],

```
[356.57377357],
[349.17158414],
[346.92714018],
[341.87243366],
[339.40869609],
[336.2073701],
[345.3185776],
[352.72437236],
[359.18247064],
[361.2035564],
[364.44790523],
[366.21962619],
[357.10519226],
[356.99318592],
[364.10569745],
[363.26885912],
[369.3428635],
[371.02101812],
[376.53198254],
[376.25641595],
[372.20983536],
[374.68694939],
[376.17876358],
[375.21284526],
[369.67357786],
[363.07943005],
[361.68669353],
[358.82516411],
[329.372756],
[314.89298311],
[309.49831927],
[307.02381165],
[315.34204183],
[324.14378805],
[333.00396587],
[330.96985959],
[324.02842899],
[319.81239791],
[316.2692086],
[315.24855587],
[306.79006228],
[306.91550249],
[302.97233975],
[311.13022463],
[307.62962183],
[307.96298852],
[309.03575778],
[299.28540801],
[294.40838454],
[298.92040858],
[305.33562181],
[298.83096426],
[296.09887076],
[294.89436918],
[290.62400556],
[292.44884198],
[290.06359497],
[290.07898077],
[293.95681126],
[292.53762035],
[288.52367144],
[289.28852948],
[290.96491588],
[288.9614549],
```

[291.65042222],

```
[287.3862933],
[286.53161203],
[286.97703098],
[291.29248419],
[292.33202471],
[295.52232804],
[290.79566058],
[285.63199044],
[274.59510063],
[268.84818805],
[263.19047868],
[266.31540383],
[266.81501181],
[266.93901103],
[270.20871199],
[272.3328941],
[271.32341904],
[270.83357072],
[274.11080382],
[276.01388967],
[273.23709698],
[269.99688165],
[279.21334411],
[283.29348641],
[285.73599387],
[284.58043981],
[285.4386001],
[290.81675291],
[278.59770538],
[276.82691446],
[269.78970724],
[270.8569135],
[272.01678477],
[276.73211955],
[281.74812044],
[282.00758936],
[289.80076185],
[287.76161499],
[286.11145335],
[290.15173035],
[287.19948211],
[286.7447513],
[287.46898624],
[289.24659743],
[291.63637981],
[290.40718058],
[283.18278902],
[286.53873083],
[291.87027844],
[298.64652983],
[299.86275447],
[301.59444938],
[306.73005766],
[306.71951724],
[310.43195037],
[308.76961786],
[310.94448126],
[310.52954687],
[306.89857811],
[303.3095414],
[301.36419053],
[300.14527912],
[303.4961574],
[300.74936702],
[293.05040385],
```

```
[295.63607963],
[296.22767518],
[296.40634567],
[300.6445943],
[310.39860681],
[316.43518006],
[326.58288537],
[331.84163747],
[328.89275344],
[327.94924787],
[327.31046155],
[324.47507651],
[319.51867837],
[319.02577011],
[324.59173303],
[322.65021712],
[330.54094019],
[327.66008666],
[334.01544453],
[331.98581621],
[325.87884717],
[333.01818052],
[334.39910212],
[334.86079098],
[334.43239975],
[335.19823376],
[334.02107068],
[323.95983587],
[342.04368681],
[348.69348759],
[340.63505928],
[343.40694919],
[339.36025378],
[342.56157978],
[341.05013146],
[351.94639046],
[363.34024235],
[365.44578927],
[362.88097618],
[361.88321844],
[365.3946487],
[368.39708451],
[374.39526215],
[376.54137477],
[375.86759149],
[381.98482537],
[381.61452128],
[381.29004162],
[376.09532431],
[365.56470774],
[356.65095518],
[372.32963794],
[369.01655821],
[365.96476154],
[375.68617681],
[366.6817284],
[377.83382801],
[370.20349241],
[365.38080148],
[345.68082137],
[357.38802692],
[348.20483913],
[320.55509581],
[330.20371557],
```

[306.28124005],

```
[315.34290298],
[314.83139397],
[328.17009153],
[330.84470643],
[353.96120708],
[354.52577414],
[340.84161941],
[355.14330739],
[352.8176861],
[364.13846691],
[369.91705242],
[360.83558315],
[364.09632819],
[357.73726165],
[372.56400732],
[368.72327498],
[366.87426907],
[366.15219275],
[388.1611683],
[405.97280537],
[419.55242851],
[431.63025964],
[419.98261092],
[429.30415611],
[427.89431149],
[417.44425222],
[420.14069429],
[419.62464992],
[416.90448616],
[401.57382104],
[406.25094392],
[414.12721122],
[411.94621646],
[422.07069381],
[420.84189645],
[428.34658516],
[431.33827387],
[430.90878037],
[434.75539147],
[428.16845433],
[432.29235431],
[436.15621128],
[447.11795179],
[447.61739327],
[446.30211393],
[443.06397683],
[432.99805738],
[425.52944493],
[412.0212165],
[414.6918242],
[410.30981018],
[415.12956174],
[421.17618169],
[423.3014431],
[419.01280023],
[411.46916476],
[414.50046617],
[415.08498884],
[427.35220312],
[429.84867569],
[422.75081512],
[414.79986927],
[419.5807889],
[429.53779065],
```

[441.09140227],

```
[444.69021011],
[448.20405158],
[460.35231294],
[460.70294847],
[453.68493332],
[458.95585627],
[441.2599342],
[441.48252312],
[448.3367369],
[473.52131889],
[472.03711723],
[485.54261295],
[486.91146703],
[495.00504155],
[500.06609759],
[530.3115519],
[519.17099164],
[517.75395933],
[515.66732317],
[518.92807969],
[491.01116308],
[494.76566604],
[485.28165138],
[484.20882471],
[474.080765
[475.12918107],
[488.00277963],
[484.22526685],
[480.2751805],
[480.44194422],
[482.94466297],
[491.45319486],
[501.43603097],
[496.95795903],
[501.94759739],
[490.49824179],
[479.31308567],
[463.82158152],
[468.75447612],
[474.94958054],
[477.40324844],
[477.50493251],
[485.26617373],
[480.17299122],
[490.40080604],
[487.08688813],
[483.68710826],
[484.44932546],
[526.15903893],
[519.59501974],
[517.71340512],
[521.42719312],
[541.172458
[542.81281407],
[521.66167732],
[510.42345167],
[501.16184221],
[494.5781889],
[477.80045472],
[476.74101599],
[472.15664424],
[487.84249173],
[480.57768373],
[468.14131749],
```

[465.56084303],

```
[479.69717957],
[485.1685313],
[468.99580357],
[468.08204771],
[475.95443412],
[483.84452568],
[487.44668624],
[493.29005287],
[514.1812155],
[499.11886039],
[511.2485899],
[500.695928
[521.22607543],
[523.44955337],
[530.06501166],
[531.61137656],
[542.08377969],
[534.2837984],
[533.87269898],
[524.35933648],
[523.1540082],
[518.66133123],
[488.17739699],
[480.33192425],
[482.11670018],
[483.04563516],
[484.08934363],
[482.00277636],
[495.89762471],
[474.75914106],
[478.31209002],
[481.21888126],
[489.98738726],
[504.03462394],
[507.89806756],
[472.01332664],
[473.66417721],
[482.86176335],
[481.54402687],
[478.2803769],
[474.55320096],
[475.20369886],
[476.30791716],
[478.9292903],
[482.28385428],
[473.09049349],
[476.72863846],
[478.99921532],
[484.76241503],
[485.05860319],
[496.35722386],
[497.0956964],
[492.32933587],
[492.0370975],
[505.6821677],
[505.87568434],
[490.28653776],
[493.93446534],
[496.24832913],
[511.53834817],
[512.80535743],
[517.34972611],
[523.92823551],
[526.44668452],
[522.15427557],
```

```
[520.13850595],
                  [509.10282174],
                 [507.19649798]])
           train2=train_rnn[30:]
In [232...
           train2
Out[232...
                          close
                date
          2018-02-14 266.000000
          2018-02-15 280.269989
          2018-02-16 278.519989
          2018-02-20 278.549988
          2018-02-21 281.040009
          2020-12-21 528.909973
          2020-12-22 527.330017
          2020-12-23 514.479980
          2020-12-24 513.969971
          2020-12-28 519.119995
         723 rows × 1 columns
In [233...
           train2['fitted']=scaler.inverse transform(fitted)
           resid=train2['close']-train2['fitted']
In [234...
           plt.figure(figsize=(16,8))
           plt.plot(train2['close'],label='actual')
           plt.plot(train2['fitted'],label='fitted value using LSTM')
           plt.xlabel('Date')
           plt.ylabel('price')
           plt.title('fitted vs actual')
           plt.legend()
           plt.show()
```



```
In [235... mean_squared_error(train2['fitted'],train2['close'])
```

Out[235... 115.5039161489512

```
In [236... train2.head()
```

Out[236... close fitted

date

```
      2018-02-14
      266.000000
      264.030210

      2018-02-15
      280.269989
      269.576780

      2018-02-16
      278.519989
      281.639754

      2018-02-20
      278.549988
      282.006338

      2018-02-21
      281.040009
      280.833722
```

```
In [238... plt.figure(figsize=(16,8))
    plt.plot(resid,color='darkcyan')
    plt.title('residuals of LSTM model')
    plt.xlabel('Date')
    plt.ylabel('residual')
    plt.show()
```


In [356...

plot_acf(resid,lags=40)
plot_pacf(resid,lags=40)
plt.show()

Out[357...

	lb_stat	lb_pvalue	bp_stat	bp_pvalue
1	0.377331	0.539035	0.375769	0.539876
2	0.478677	0.787148	0.476557	0.787983
3	1.741805	0.627680	1.730973	0.630070
4	7.707041	0.102919	7.646841	0.105406
5	9.132438	0.103897	9.058476	0.106754
6	9.382151	0.153199	9.305434	0.157115
7	9.399951	0.225202	9.323013	0.230289
8	11.732072	0.163564	11.622966	0.168835
9	11.872079	0.220617	11.760850	0.227130
10	12.496205	0.253218	12.374645	0.260765
11	13.249130	0.277355	13.114070	0.285935
12	14.827904	0.250983	14.662356	0.260422
13	15.820572	0.258955	15.634487	0.269432
14	16.276995	0.296753	16.080837	0.308463
15	22.534048	0.094546	22.191173	0.102888
16	27.087014	0.040526	26.631100	0.045770
17	27.599663	0.049839	27.130314	0.056184
18	31.651792	0.024168	31.070660	0.028250
19	34.823451	0.014666	34.150450	0.017641
20	35.927967	0.015684	35.221450	0.018956

In [358...

```
plt.figure(figsize=(10,6))
stats.probplot(resid, dist="norm", plot=pylab)
plt.show()
```



```
In [239... plt.figure(figsize=(10,6))
   plt.hist(resid,density=True)
   plt.title('histogram of residuals')
   mu, std = norm.fit(resid)
   xmin, xmax = plt.xlim()
   x = np.linspace(xmin, xmax, 100)
   p = norm.pdf(x, mu, std)
   plt.plot(x, p, 'k', linewidth=2)
   plt.show()
```



```
last_train_batch=last_train_batch.reshape((1,30,1))
          model.predict(last_train_batch)
In [255...
Out[255... array([[0.82432914]], dtype=float32)
          scaled test[0]
In [256...
Out[256... array([0.85602297])
          test_prediction=[]
In [257...
           current_batch=last_train_batch
          for i in range(len(test_rnn)):
               current_pred=model.predict(current_batch)[0]
               test prediction.append(current pred)
               #update current batch
               current batch=np.append(current batch[:,1:],scaled test[i].reshape((1,1,1)),axis=1)
In [258...
          test_prediction[:5]
Out[258... [array([0.82432914], dtype=float32),
           array([0.85044825], dtype=float32),
           array([0.84130585], dtype=float32),
           array([0.87288827], dtype=float32),
           array([0.83907336], dtype=float32)]
In [259...
          test_prediction=scaler.inverse_transform(test_prediction)
          test_rnn['prediction']=test_prediction
In [260...
          test_rnn.head()
In [261...
Out[261...
                          close prediction
                date
          2020-12-29 530.869995 518.659310
          2020-12-30 524.590027 528.722222
          2020-12-31 540.729980 525.199929
          2021-01-04 522.859985 537.367687
          2021-01-05 520.799988 524.339817
          plt.figure(figsize=(16,8))
In [263...
          plt.plot(test_rnn['close'],label='actual price',color='lightskyblue')
          plt.plot(test_rnn['prediction'],label='prediction using RNN',color='red')
          plt.title('prediction vs actual prices')
          plt.xlabel('date')
           plt.ylabel('price($)')
          plt.legend()
           plt.show()
```


mean squared error of one step ahead prediction

In [264... mean_squared_error(test_rnn['close'],test_rnn['prediction'])

Out[264... 202.67323890317698