APPUNTI DI SISTEMI DINAMICI

Manuel Deodato

Indice

1	Equ	azioni differenziali ordinarie	3
	1.1	Introduzione	3

1 | Equazioni differenziali ordinarie

§1.1 Introduzione

Definizione 1.1 (Equazione differenziale). Un'equazione differenziale ordinaria di ordine k è un'equazione della forma

$$F(x,y(x),\ldots,y^{(k)}(x))=0$$

con $F:I\times(\mathbb{R}^n)^k\to\mathbb{R}$ continua e $I\subseteq\mathbb{R}$. La funzione $y:I\to\mathbb{R}^n$ è detta funzione incognita.

In alcuni casi, è possibile riscrivere l'equazione differenziale esplicitando in un membro il termine il cui ordine di derivazione è massimo, ossia si può scrivere

$$y^{(k)}(x) = \widetilde{F}(x, y(x), \dots, y^{(k-1)}(x))$$

In questo caso, si dice che l'equazione è in forma esplicita.

Osservazione 1.1. Tramite il cambio di variabili

$$Y(x) = \begin{pmatrix} y(x) \\ \vdots \\ y^{(k-1)}(x) \end{pmatrix} \in \mathbb{R}^{nk}$$

è possibile riscrivere un'equazione differenziale di ordine k nella forma Y'=f(x,Y), con

$$f(x,Y) = \begin{pmatrix} y'(x) \\ y''(x) \\ \vdots \\ F(x,y,\dots,y^{(k-1)}) \end{pmatrix} \in \mathbb{R}^{nk}$$

Questo significa che, indipendentemente dall'ordine dell'equazione di partenza, fin tanto che questa è esprimibile in forma esplicita, è sempre possibile ricondursi a un sistema di equazioni del primo ordine. Nel caso in cui l'equazione non fosse esprimibile in forma esplicita, è necessario ricorrere al teorema della funzione implicita; se questo non fosse applicabile, allora il ragionamento non sarebbe valido.

Quest'ultima osservazione permette di sviluppare la teoria delle equazioni differenziali per equazioni del primo ordine.

Definizione 1.2 (Problema di Cauchy). Sia data un'equazione differenziale y' = f(x, y), con $f: I \times A \to \mathbb{R}^n$ e $A \subseteq \mathbb{R}^n$ aperto; un sistema del tipo

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

con $(x_0, y_0) \in I \times A$ è detto *problema di Cauchy*, mentre il valore y_0 è detto *dato iniziale*.

La soluzione di un problema di Cauchy della forma

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

è esprimibile in forma integrale come

$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$
 (1.1.1)

Infatti, una funzione y(x) risolve il problema di Cauchy se e solo se risolve l'equazione integrale. Ne segue, inoltre, che ogni funzione y che soddisfa il problema di Cauchy, vista la forma integrale appena trovata, deve essere di classe C^1 .

Per il resto della trattazione, si assumerà che l'equazione differenziale in esame sia della forma

$$y' = f(x, y)$$

e che i problemi di Cauchy trattati siano della forma

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Inoltre, si assumerà sempre che $A=B_{\rm r}(y_0)$ e si userà la notazione

$$I_a = (x_0 - a, x_0 + a)$$

Definizione 1.3 (Funzione uniformemente lipschitziana). Una funzione f(x,y): $I_{\alpha} \times B_{r}(y_{0}) \rightarrow \mathbb{R}^{n}$ è detta *uniformemente L-lipschitziana* in y se $\exists L > 0$ tale che $\forall (x,y_{1}), (x,y_{2}) \in I_{\alpha} \times B_{r}(y_{0})$ è soddisfatta la relazione

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

Teorema 1.1 (Teorema di Cauchy-Lipschitz). Sia $f: I_{\alpha} \times B_{r}(y_{0}) \to \mathbb{R}^{n}$ una funzione continua, limitata e uniformemente L-lipschitziana nelle y; allora $\exists \delta \in (0, \alpha]$ e $\exists ! y \in C^{1}(I_{\delta}, \mathbb{R}^{n})$ soluzione del problema di Cauchy con dato iniziale (x_{0}, y_{0}) .

Dimostrazione. Sia $\delta>0$ e sia $X=\left(C(I_{\delta},\mathbb{R}^{n}),\left\|\cdot\right\|_{\infty}\right)$, con $I_{\delta}=[x_{0}-\delta,x_{0}+\delta].$ Sia, inoltre

$$X_{\delta,r} = \big\{ y \in C(I_{\delta},\mathbb{R}^n) \mid y(x) \in \overline{B_r}(y_0), \ \forall x \in I_{\delta} \big\}$$

che è chiuso in $C(I_{\delta},\mathbb{R}^n)$; in particolare, $X_{\delta,r}$ è uno spazio metrico completo. \qed