

Clínica de Tecnologia da Informação e Comunicação

Redes de Computadores - Wireless

Prof. MSc. Jhonatan Geremias *jhonatan.geremias@pucpr.br*

- Padrão 802.11a: consegue atingir uma <u>velocidade de transferência de 54 M</u>bps, e trabalha com uma <u>frequência de 5 GHz</u>.
- Padrão 802.11b: consegue atingir <u>velocidade de transferência de 11 Mbps</u>, trabalha com faixa de <u>frequência de 2,4 GHz</u>;
 - Trabalha na mesma frequência de outros aparelhos domésticos;
 - Telefones sem fio e micro-ondas, o que causa interferências no sina;
 - Consome menos energia que o anterior (economia de bateria para dispositivos móveis);
 - Incompatível com outros padrões;
- Padrão 802.11g: trabalha na faixa de frequência de 2,4 GHz;
 - Gera economia de bateria em relação ao Padrão 802.11ª;
 - Consegue atingir a velocidade de transferência de 54 Mbps.

- Padrão 802.11n: consegue atingir uma velocidade de transferência de 300 Mbps;
 - Comparado as tecnologias anteriores (a,b,g);
 - Possui melhor alcance de sinal;
 - Seu sinal é mais estável;
 - Compatível com padrões anteriores;
 - Possui a tecnologia MIMO: permite ter múltiplas entradas e saídas para dados;
 - Com ela aumentamos a velocidade do WIFI, alcance e estabilidade.

- Alguns roteadores têm a opção de escolher em qual padrão trabalhar;
- Outros possibilitam trabalhar em mais de um modo ao mesmo tempo.

- Padrão 802.11ac: consegue atingir uma <u>velocidade de transferência de</u>
 1300Mbps;
 - Trabalha com faixa de <u>frequência de 5GHz;</u>
 - Trabalhando com menos interferências;
 - Oferece uma largura de canal maior, até 160 MHz contra 40 MHz;
 - Possui a tecnologia Beamforming:
 - Transmissão inteligente: foca o sinal do wifi em uma direção específica;
 - Onde um ou mais dispositivos estão conectados;
 - A transmissão entre smartphone e o roteador;
 - Tem uma qualidade melhor;
 - Menos suscetível a interferências;
 - Alcance ampliado.

- Utilizar as tecnologias mais recentes;
 - Muitos roteadores atuais já <u>não ficam mais restritos</u> aos padrões A, B, G e N;
 - Mesmo os modelos mais básicos já trabalham com o padrão AC;
 - Ainda que com velocidades diferentes;
- Modelos mais modernos trabalham com velocidades superiores a 3Gbps;
- Pode parecer teoricamente <u>inatingível</u>, mas não é...Imagine manter a qualidade de gráfica de um jogo online?!.

- Evite interferências de sinal;
 - Uma dica importante para ampliar o sinal é posicionar o roteador longe de geradores de interferência;
 - Principalmente os modelos mais antigos que trabalham apenas na frequência de 2,4 GHz.

- Configure o roteador para reiniciar de forma programada;
 - Um recurso que está ficando cada vez mais comum é a reinicialização programada;
 - Basta programar o roteador para reiniciar automaticamente de tempos em tempos;
 - Geralmente uma vez por dia em um horário específico.

- Configure o roteador para reiniciar de forma programada
 - Professor meu roteador é antigo nem tem esta opção?
- Quais são os benefícios?
 - Os mesmos de reiniciar um PC, eliminando possíveis erros e começando tudo do zero.
 - Além de permitir que o roteador "descanse um pouco", evitando aquecimento excessivo.

- Encontre a posição ideal para o roteador
- Em alguns casos, a falta de sinal em partes da casa não é culpa inteiramente do roteador, mas sim do seu posicionamento.
- A solução é simples: basta encontrar a melhor posição para ele, já que costumeiramente o posicionamos próximo do modem por conveniência.

- Encontre a posição ideal para o roteador
- Temos que levar em consideração a posição das paredes da residência,
- A distância do sinal;
- A quantidade de possíveis interferências.

- Mas como descobrir qual é melhor posição?
- Há alguns programas disponíveis que ajudam a determinar isso.
 - Heatmapper;
 - inSSIDer;
 - NETGEAR WiFi Analytics
 - Wi-Fi analyzer

- Mas como descobrir qual é melhor posição?
 - Verificar a potência das redes

- Mas como descobrir qual é melhor posição?
 - Potência das redes e quais canais elas estão.

- Mas como descobrir qual é melhor posição?
 - Podemos verificar a potência do sinal em determinada posição.

- Mude a frequência;
 - Melhorar o sinal eliminando possíveis interferências;
 - mudança de frequência nos roteadores 2,4 GHz e 5,0 GHz.

O 5GHz não sofre tanto com interferências como 2,4GHz

- Use um canal diferente
- Outra forma simples de melhorar a qualidade de sinal é mudar o canal.
- Mesmo roteadores mais antigos possuem essa capacidade, permitindo que o sinal gerado não tenha que "competir" com outros.
- Mostra os canais utilizados pelos equipamentos:

netsh wlan show all

- Use o QoS para controlar o tráfego de rede
 - O Quality of Service (QoS, Controle de Qualidade em português) é um recurso e tanto. Sem configurá-lo, o roteador costuma dar prioridade para tudo. E quando tudo é prioridade, nada é prioridade.

Bandwith with no Quality of Service rules applied

Bandwidth with Quality of Service rules applied

- Fortaleça a segurança
 - Rede acaba prejudicada não pelo plano de operadora, ou por uma falha do roteador;
 - Um vizinho que se acha "esperto" pode estar usando a sua internet sem você saber;
 - Definição de uma senha forte aliada a um protocolo forte, como o WPA2;
 - Existe a opção de esconder o SSID.

Obrigado!

Jhonatan Geremias

Jhonatan.geremias@pucpr.br

