Разработка приложения для мониторинга и управления балансировкой нагрузки и трафика на веб-сервисы

Автор: Aleksejs Čudovs

Группа: 2016DEF

Руководитель: Boriss Mišnevs

Рига 2016

Предметные области

- Компьютерные науки
 - Программная инженерия
 - Базы данных
 - Системное программирование в среде Linux
 - Веб-программирование
 - Системное администрирование
- Технологии балансировки нагрузки и трафика

Цель

Цель данной работы — разработка открытого ПО для глобальной серверной балансировки нагрузки посредством системы доменных имен

(Domain Name System based Global Server Load Balancing, DNS GSLB)

Задания на работу

- Рассмотреть и сравнить основные технологии балансировки нагрузки и трафика используемые на различных уровнях сетевой модели OSI
- Разработать приложение для глобальной серверной балансировки посредством системы доменных имен (DNS GSLB) и описать этапы процесса разработки

Анализ предметной области

- 1. Сетевая модель OSI
- 2. Балансировка на физическом уровне OSI
- 3. Балансировка на канальном уровне OSI
- 4. Балансировка на сетевом уровне OSI
- 5. Серверная балансировка нагрузки (SLB)
- 6. Глобальная SLB (GSLB)

Краткое сравнение технологий

Технология	Уровень OSI	Область применения	Масштабируемость	Примеры открытого ПО
LAG	2	LAN	низкая	Linux Kemel, Open vSwitch
ECMP	3	LAN / WAN	низкая	Linux Kemel, Bird, Quagga
SLB NAT	4	LAN / WAN	средняя	Keepalived, LVS, HAProxy, nginx
SLB DR	4	LAN / WAN	высокая	Keepalived, LVS
SLB IPIP	4	WAN	высокая	Keepalived, LVS
GSLB HTTP	7	LAN / WAN	высокая	Apache httpd, nginx
GSLB DNS	7	LAN / WAN	очень высокая	polaris-gslb
GSLB BGP	7	WAN	очень высокая	Linux Kemel, Bird, Quagga

Этапы разработки

- 1. Формирование требований
- 2. Анализ и разработка требований
- 3. Проектирование архитектуры
- 4. Проектирование базы данных
- 5. Реализация
- 6. Тестирование и исправление ошибок
- 7. Развертывание
- 8. Оценка качества

Основные средства реализации

- IBM Rational Software Architect 9.5
- Языки программирования:
 - Python 2.7
 - JavaScript 1.7
- Среда разработки PyCharm IDE 2016.1
- Среда моделирования MySQL Workbench 6.3
- Система контроля версий Git 1.8
- Операционная система Linux CentOS 7.2

Функциональные требования

- Приложение должно отвечать клиенту на DNS запросы по соответствующему протоколу
- Приложение должно проверять доступность выдаваемых DNS сервером записей конечных серверов
- Приложение должно отвечать клиенту на HTTP запросы по соответствующему протоколу
- Приложение должно предоставлять администратору возможность управления конфигурацией
- Приложение должно предоставлять операционной системе возможность запускать приложение, как системный сервис

Нефункциональные требования

- Приложение должно функционировать в операционной системе Linux x86-64
- Приложение должно поддерживать многопоточность или многозадачность для одновременной работы с многими клиентами
- Приложение должно обеспечивать защиту от несанкционированного доступа к конфигурации
- Приложение должно поддерживать репликацию данных в кластере из нескольких серверов

Системные требования

Сервер:

- Минимум 1 процессор Intel x86-64 совместимый
- Минимум 1 GB оперативной памяти
- Минимум 4 GB жесткий диск
- Сетевая карта
- Операционная система Linux x86-64

Клиент:

• Веб-браузер Chrome 30, Firefox 27 или IE 11 с поддержкой JavaScript

Диаграмма Use Case

Начальная диаграмма классов

Начальная оценка модели

V=	Метрики								
Классы	WMC	DIT	NOC	СВО	RFC	LCOM4			
ArgumentParser	2	0	0	0	2	1			
ConfigParser	1	0	0	0	1	1			
PowerGSLB	1	0	0	5	8	1			
SystemService	1	0	0	2	5	1			
MonitorThread	9	0	0	2	15	1			
CheckThread	6	0	0	0	6	1			
ServerThread	2	0	0	1	5	1			
HTTPServer	2	0	0	1	3	1			
RequestHandler	5	0	0	3	9	1			
DNSHandler	2	0	0	1	3	1			
WUIHandler	3	0	0	1	6	1			
Database	7	0	0	0	7	1			
Среднее значение	3.42	0.00	0.00	1.33	5.83	1.00			

Модель базы данных

Диаграммы пакетов

Конечная диаграмма классов

Конечная оценка модели

Классы	Метрики								
Массы	WMC	DIT	NOC	СВО	RFC	LCOM4			
PowerGSLB	1	0	0	5	8	1			
SmartConfigParser	3	1	0	0	3	1			
SystemService	5	0	0	2	9	1			
AbstractThread	3	1	3	0	3	1			
MonitorThread	9	2	0	2	15	1			
CheckThread	8	2	0	0	8	1			
HTTPServerThread	2 2		0	1	5	1			
ThreadingHTTPServer	0	1	0	1	1	1			
HTTPRequestHandler	12	1	0	2	15	1			
AbstractContentHandler	2	1	2	0	2	1			
PowerDNSContentHandler	7	2	0	1	9	1			
W2UIContentHandler	11	2	0	1	15	1			
MySQLDatabase	4	2	0	0	4	1			
PowerDNSDatabaseMixIn	3	1	1	0	3	1			
W2UIDatabaseMixIn	28	1	1	0	28	1			
ThreadSafeSet	2	1	0	0	2	1			
Среднее значение	6.25	1.25	0.44	0.94	8.13	1.00			

Оценка системы

Начальная оценка системы

DIT	0
NC	12
NOM	41
LOCΣ	0

Конечная оценка системы

DIT	2
NC	16
NOM	100
LOCΣ	1771

Дизайн веб-интерфейса 1

Status	#	Status A	Domain A	Name	Туре	Content	TTL	Disabled	Fallback	Persistence	Weight	Monitor
	1	Off	example.com	example.com	A	192.0.2.104	300	1	0	0	0	No check
SLB		Off	·			192.0.2.101	300	0	0	0	0	ICMP ping
Domains	3		example.com	example.com	A	192.0.2.101	300	0	0	0	0	Command executio
Monitors	4	Off	example.com	example.com		192.0.2.102	300	0	0	0	0	HTTP request /state
	5				A NS		3600	0	0	0	0	No check
Records	6	On On	example.com	example.com	NS	ns1.example.com ns2.example.com	3600	0	0	0	0	No check
Types	7		·		NS	ns3.example.com	3600	0	0	0	0	No check
SERS	8	On On	example.com	example.com	NS	ns4.example.com	3600	0	0	0	0	No check
- Hann	9	On	example.com	example.com	SOA	ns1.example.com. hostm	86400	0	0	0	0	No check
Users	10	On	·	-	MX	10 mail1.example.com	3600	0	0	0	0	No check
	11		example.com	example.com	MX	20 mail2.example.com	3600	0	0	0	0	No check
		On	example.com	example.com		·	3600		0	0	0	No check
	13	On	example.com	example.com	MX TXT	30 mail3.example.com	3600	0	0	0	0	No check
		On	example.com	example.com		v=spf1 ip4:192.0.2.0/24 2001:db8::101		0	0	0	0	No check
	14	On	example.com	example.com	AAAA		300					No check
	15	On	example.com	example.com	AAAA	2001:db8::102	300	0	0	0	0	
	16	On	example.com	example.com	AAAA	2001:db8::103	300	0		0	0	No check
	17	On	example.com	example.com	AAAA	2001:db8::104	300	0	0	0	0	No check
		On	example.com	m.example.com	A	192.0.2.201	300	0	0	0	0	No check
	19	On	example.com	m.example.com	A	192.0.2.202	300	0	0	0	0	No check
	20	On	example.com	m.example.com	A	192.0.2.203	300	0	0	0	0	No check
	21	On	example.com	m.example.com	Α	192.0.2.204	300	0	0	0	0	No check
	22	On	example.com	m.example.com	AAAA	2001:db8::201	300	0	0	0	0	No check
	23	On	example.com	m.example.com	AAAA	2001:db8::202	300	0	0	0	0	No check

Дизайн веб-интерфейса 2

Дизайн веб-интерфейса 3

Тестирование

- Тестирование выполнено вручную по принципу «черного ящика» способом разбиения по эквивалентности
- Разработаны тестовые варианты, которые проверяют наибольшее количество классов эквивалентности
- Выполнено тестирование всех функциональных и нефункциональных требований к программе
- В результате проведенного тестирования отлажена работа приложения и не обнаружено серьезных ошибок, требующих проектных изменений

Примеры тестовых вариантов

Входные данные	Ожидаемый результат	Результат теста
Выполняется команда запуска приложения	1) Корректный старт приложения 2) Нет сообщений об ошибке в системном логе	пройден
1) Конф. файл недоступен для чтения 2) Выполняется команда запуска приложения	1) Некорректный старт приложения 2) Есть сообщения об ошибке в системном логе	пройден
1) Конф. файл содержит ошибку 2) Выполняется команда запуска приложения	1) Некорректный старт приложения 2) Есть сообщения об ошибке в системном логе	пройден
1) База данных недоступна 2) Выполняется команда запуска приложения	1) Некорректный старт приложения 2) Есть сообщения об ошибке в системном логе	пройден
1) IP адрес не принадлежит серверу 2) Выполняется команда запуска приложения	1) Некорректный старт приложения 2) Есть сообщения об ошибке в системном логе	пройден
1) ТСР порт занят на сервере 2) Выполняется команда запуска приложения	1) Некорректный старт приложения 2) Есть сообщения об ошибке в системном логе	пройден
Выполняется запуск веб-интерфейса	Корректный старт веб-интерфейса	пройден
1) Выполняется запуск веб-интерфейса 2) Вводится неправильное имя пользователя	Сообщения об ошибке авторизации	пройден
1) Выполняется запуск веб-интерфейса 2) Вводится неправильный пароль	Сообщения об ошибке авторизации	пройден

Преимущества 1

- Простое в использовании решение для обеспечения глобальной серверной балансировки нагрузки посредством DNS
- Низкая стоимость конечного продукта за счет использования открытых технологий
- Открытая модель разработки делает программу общедоступной

Преимущества 2

Основная литература

- Олифер В. Г. and Олифер Н. А. 2010, *Компьютерные сети. Принципы, технологии, протоколы*. Учебник для вузов. 4-е издание. Питер, Спб.
- Орлов С. А. 2016, *Программная инженерия. Технологии разработки программного обеспечения*. Учебник для вузов. 5-е издание. Питер, СПб.
- Орлов С. А. and Комашилова О. Я. 2006, *Технологии разработки программного обеспечения*. Методические указания по выполнению курсового проекта. TSI, Rīga.
- Bourke T. 2001, Server Load Balancing. O'Reilly Media.
- Kopparapu C. 2002, Load Balancing Servers, Firewalls, and Caches. Wiley Computer Publishing.

Спасибо за внимание!

Дополнительные материалы

LAG, MC-LAG

ECMP

SLB NAT

SLB DR

SLB Tunnel

GSLB HTTP

GSLB DNS

GSLB BGP

