On the Denoising of Cross-Spectral Matrices for (Aero)Acoustic Applications

A. Dinsenmeyer^{1,2}, J. Antoni¹, Q. Leclère¹ and A. Pereira²

 $\begin{array}{c} {}^{1} \text{ Laboratoire Vibrations Acoustique} \\ {}^{2} \text{ Laboratoire de Mécanique des Fluides et d'Acoustique} \\ \text{ Lyon, France} \end{array}$

March 5, 2018 - 7th BeBeC

Context

- ▶ Unwanted random noise:
 - electronic, ambient, flow-induced,...
 - short correlation lengths

- Existing denoising methods:
 - Physical removal : mic recession, porous treatment, vibrating structure filtering. . .
 - Use a background noise measurement, \rightarrow not always available or representative
 - Wavenumber filtering
 - Diagonal removal \rightarrow underestimation of of source level
- ightharpoonup Multichannel system ightarrow use spatial properties to separate signal from noise

Context – CSM properties

$$p$$
 = a + n Gaussian noise

Averaging over N_s snapshots \to Cross-spectral matrix (covariance of Fourier component):

$$oldsymbol{S}_{pp} = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i^H$$

- ► Hermitian (conjugate symmetric)
- ► Positive semidefinite (nonnegative eigenvalues)

$$S_{pp} = S_{aa} + S_{nn} + S_{an} + S_{an} + S_{na}$$
measured CSM signal of interest unwanted noise cross-terms

 Signal CSM: Rank given by the number of incoherent sources (ie number of uncorrelated sources)

For $N_s \to \inf$

- ▶ Short correlation length : off-diagonal elements of $S_{nn} \rightarrow 0$
- ▶ Independent signal/noise : cross-terms $\rightarrow 0$ $S_{pp} \approx S_{aa} + \mathrm{diag}\left(\sigma^2\right)$

Diagonal Reconstruction

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $S_{pp} - \mathrm{diag}\left(\boldsymbol{\sigma}_n^2\right) \geq 0$

Problem solved with CVX Matlab toolbox.

Diagonal Reconstruction

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\| {m \sigma}_n^2 \|_1$$
 subject to ${m S}_{pp} - {
m diag}\left({m \sigma}_n^2
ight) \geq 0$

Problem solved with CVX Matlab toolbox.

Linear optimization (Dougherty, 2016)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $V_{(k-1)}^H\left(\boldsymbol{S}_{pp}-\operatorname{diag}\left(\boldsymbol{\sigma}_n^2\right)_{(k)}\right)V_{(k-1)}\geq 0$

$$oldsymbol{V}_{(k-1)}$$
: eigenvectors of $oldsymbol{S}_{pp}-\mathrm{diag}\left(oldsymbol{\sigma}_{n}^{2}
ight)_{(1,...,k-1)}$

Solved with *linprog* Matlab function .

Diagonal Reconstruction

"Remove as much noise as possible as long as denoised CSM remains positive"

Convex optimization (Hald, 2017)

maximize
$$\| {m \sigma}_n^2 \|_1$$
 subject to ${m S}_{pp} - {
m diag}\left({m \sigma}_n^2
ight) \geq 0$

Problem solved with CVX Matlab toolbox.

Linear optimization (Dougherty, 2016)

maximize
$$\|\boldsymbol{\sigma}_n^2\|_1$$
 subject to $V_{(k-1)}^H\left(\boldsymbol{S}_{pp}-\operatorname{diag}\left(\boldsymbol{\sigma}_n^2\right)_{(k)}\right)\boldsymbol{V}_{(k-1)}\geq 0$

 $V_{(k-1)}$: eigenvectors of $S_{pp}-\mathrm{diag}\left(\sigma_n^2
ight)_{(1,\dots,k-1)}$ Solved with $\mathit{linprog}$ Matlab function .

Alternating Projections (Leclère et al., 2015)

$$m{S}_{pp_{(k+1)}} := ar{m{S}}_{pp_{(0)}} + m{V}_{(k)}^H m{s}_{(k)}^{m{+}} m{V}_{(k)}$$

 $oldsymbol{V}_{(k)}^H$ and $oldsymbol{s}_{(k)}$: eigenvectors/values of $oldsymbol{S}_{pp_{(k)}}$.

Comparison on a test case

▶ Default parameters:

- 20 uncorrelated free field monopoles: ◆
- 93 receivers: o
- SNR: 10 dB
- 10^4 snapshots
- frequency: 15 kHz

Varying parameters:

- number of \bullet (rank of S_{aa}) : from 1 to 93
- SNR from -10 to 10 dB
- Number of snapshots (level of extra-diagonal terms): from 10 to 5.10^4

► Error on the signal CSM:

$$\delta = \frac{\|\operatorname{diag}\left(\boldsymbol{S}_{aa}\right) - \operatorname{diag}\left(\boldsymbol{\hat{S}}_{aa}\right)\|_{2}}{\|\operatorname{diag}\left(\boldsymbol{S}_{aa}\right)\|_{2}}$$

Comparison on a test case

Select Convex Optimization (DRec) for further comparison

✓ Fast, simple code

X Local optimization

✓ Better performance

X Modifies only auto-spectra

RPCA

"Search $oldsymbol{S}_{aa}$ as a low rank matrix and $oldsymbol{S}_{nn}$ as a sparse matrix"

minimize
$$\|m{S}_{aa}\|_* + \lambda \|m{S}_{nn}\|_1$$
 subject to $m{S}_{aa} + m{S}_{nn} = m{S}_{pp}$

- $\|\cdot\|_*$: nuclear norm (related to rank)
- $\|\cdot\|_1$: ℓ_1 -norm (related to sparsity)

Solved with a proximal gradient algorithm.

RPCA (Wright et al., 2009)

✓ Modifies the whole CSM

- X Local optimization
- **X** Choose regularization parameter:
 - L-curve criterion,
 - Generalized cross validation method,
 - Bayesian criterion, ...
- \hookrightarrow For comparison : optimal λ (unknown on real case) "universal" constant parameter $\lambda=M^{-\frac{1}{2}}=0.1$

Probabilistic Factor Analysis

► Gibbs sampling in the Bayesian hierarchical model :

► Hyperparameters:

$$\gamma^2 \sim \mathcal{IG}(a_{\gamma}, b_{\gamma})$$
 $\alpha^2 \sim \mathcal{IG}(a_{\alpha}, b_{\alpha})$ $\sigma^2 \sim \mathcal{IG}(a_{\sigma}, b_{\sigma})$

► Signal CSM :

$$\hat{oldsymbol{S}}_{aa} = rac{1}{N_s} oldsymbol{L} \left(\sum_{i=1}^{N_s} oldsymbol{c}_i oldsymbol{c}_i^H
ight) oldsymbol{L}^H$$

PFA

✓ Global optimization

X Computationally expensive

X Here, model for uncorrelated noise \rightarrow \checkmark but flexible

Comparison

Comparison

► Homogeneous noise

- \hookrightarrow Error linearly decreases with logarithmically increasing N_s
- \hookrightarrow For $N_{src} \geq 0.75 M\colon$ denoising problem becomes poorly conditioned

Comparison

► Homogeneous noise

▶ Heterogeneous noise: SNR 10 dB lower on 10 random receivers

Conclusion

- ► Common to all the methods :
 - Error linearly decreases with increasing SNR
 - Error linearly decreases with logarithmically increasing N_{s}
 - Error steady with rank below 0.75M
 - For $N_{src} \geq 0.75 M$: denoising problem becomes poorly conditioned
- ▶ DRec: fast and simple but error at least 5 dB higher in all configurations
- ▶ PFA performance similar to RPCA using λ_{opt}
- ▶ PFA and RPCA more robust to heterogeneous noise
- ▶ PFA: flexible model → to be adapted for correlated noise

References

- R. Dougherty. Cross spectral matrix diagonal optimization. In 6th Berlin Beamforming Conference, 02 2016.
- J. Hald. Removal of incoherent noise from an averaged cross-spectral matrix. The Journal of the Acoustical Society of America, 142(2):846–854, 2017.
- Q. Leclère, N. Totaro, C. Pézerat, F. Chevillotte, and P. Souchotte. Extraction of the acoustic part of a turbulent boundary layer from wall pressure and vibration measurements. In Novem 2015 - Noise and vibration -Emerging technologies, Proceedings of Novem 2015, page 49046, Dubrovnik, Croatia, Apr. 2015.
- J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems, pages 2080–2088, 2009.