Lecture 2: Statistics for 1 Variable

Intro Stats with Nathan Favero

American University (Washington, DC)

August 2, 2024

Except where indicated, this material is licensed under CC-BY 4.0

Measures of central tendency

- Q: What is the typical value for this variable? (Can only answer with one number; can't give me a range)
- A: We want a measure of central tendency

Measures of central tendency

 Mean: average; add up all values and then divide by total number of observations

$$\mu = \frac{\sum x_i}{N}$$

- Median: 50th percentile; line all values up from least to greatest and then pick the value in the very middle.
 If two values are tied, take the average of the two.
- Mode: most frequently occurring value

Measures of central tendency

- Mean: sensitive to outliers (unusually large or small values)
- Median: not sensitive to outliers
- Mode
 - Usually not ideal for continuous variables (especially when measured to many digits), although can use bins instead with continuous variables
 - There may be more than one mode

- Q: How tightly is the data clustered around the center of the distribution? Are most data points pretty close to the mean/median?
- A: We want a measure of spread

- Range: maximum value minus minimum value
 - Doesn't necessarily tell us anything about whether most observations are close to the mean/median
- Interquartile range (IQR): 75th percentile minus 25th percentile
 - 25th and 75th percentile calculated like median, except they mark the 25% point and 75% point (as opposed to the middle, or 50% point) when data is arranged from least to greatest
 - IQR is depicted in a bloxplot

- Most common measures of spread: variance and standard deviation
- Variance

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

 This is equal to the average squared deviation (or squared error)—in other words, the average squared difference between each data point and the mean

Standard deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

- This is just the square root of the variance
- You can think of it as the typical distance between a data point and the mean (not quite right but a good approximation)

Standardization

- Sometimes it's useful to convert a variable in a dataset into a different scale so that it has a mean of 0 and a standard deviation of 1 (just like the standard normal distribution)
- Standardization: converting a variable so that its values indicate how many standard deviation-units each data point is from the mean of the distribution (creating a distribution with a mean of 0 and a standard deviation of 1)
- Z-score: how we refer to a variable (or data point) that has been standardized

Standardization: Texas school districts

Standardization: Texas school districts

Standardization

$$\mathbf{z} = \frac{\mathbf{x} - \boldsymbol{\mu}}{\sigma}$$

- Standardizing doesn't change the shape of the distribution (similar to re-labeling the x axis on a histogram)
- Subtracting the mean moves the distribution horizontally so that it's centered at zero
- Dividing by the standard deviation stretches or squishes the distribution so that the standard deviation is equal to one

Standardization

- Z scores allow us to make comparisons among distributions with similar shapes but different means/standard deviations
- Example: comparing two students if one took the ACT and the other took the SAT (could also use percentiles)

- Using a logarithmic transformation can help to make outliers less pronounced if most of the outliers are on the right side of the distribution (are extremely large values); log transformation won't help with outliers that are on the left side of the distribution
- While logging a variable may help with outliers, logged variables are typically harder to interpret
- Example: salary data often has outliers on the right side of the distribution

Average teacher salaries (before log transformation)

Logged average teacher salaries

Average teacher salaries (before log transformation) – compare mean to median

. sum tsal, detail

tsal						
	Percentiles	Smallest				
1%	37300	34376				
5%	40144	36091				
10%	41748	36391	Obs	1,196		
25%	44057.5	36760	Sum of Wgt.	1,196		
50%	46801		Mean	47653.11		
30%	40001	Inmont	Std. Dev.	5251.786		
O/	50004	Largest	sta. Dev.	5251.766		
75%	50924	66004				
90%	55099	66176	Variance	2.76e+07		
95%	57102	68072	Skewness	.8008082		
99%	60203	87448	Kurtosis	5.517889		

Logged teacher salaries – note that the mean and median are now closer

. sum logtsal, detail

logtsal

1% 5%	Percentiles 10.52675 10.60023	Smallest 10.44511 10.4938		
10%	10.63941	10.50208	Obs	1,196
25%	10.69325	10.51217	Sum of Wgt.	1,196
50%	10.75366	Largest	Mean Std. Dev.	10.76584 .1076784
75%	10.83809	11.09747		
90%	10.91689	11.10007	Variance	.0115946
95%	10.95259	11.12832	Skewness	.3394967
99%	11.00548	11.3788	Kurtosis	3.538327

- Log transformations can also sometimes be useful if we want to examine things in percentage terms (e.g., the Black-White wage gap example in Wheelan)
- To convert from a log-change to a percentage-change (approximated), calculate the change in the log values, and then move the decimal place over two places to the right to get the percentage (just as when converting a proportion to a percentage)
 - Suppose a teacher used to have a log salary of 10.5 but now it is 10.6. That is a .1 (or a .10) increase.
 Moving over the decimal point two places and adding a percentage sign gives us 10%.
 - Similarly, a teacher making a log-salary of 10.9 makes about 10% more than someone making 10.8
- Feel free to try out the math for this on your own with a couple examples