Markov Decision Processes

Machine Learning

Daniele Loiacono

Outline and References

- Outline
 - Agent-Environment Interface
 - Markov Decision Process
 - Policy
 - Value Functions
 - Optimality

- References
 - ► Reinforcement Learning: An Introduction [RL Chapter 3]
 - ► <u>Fundamentals of Reinforcement Learning</u> (Coursera)

Reinforcement Learning vs Supervised Learning

☐ In supervised learning we train a model by providing it with the correct output

☐ In reinforcement learning we train a model by providing it with an evaluation of its output

- ☐ In sequential decision making...
 - we take a sequence of decisions (or actions) to reach the goal
 - ▶ ... the optimal actions are context-dependent
 - we generally do not have examples of correct actions
 - ... actions may have long-term consequences
 - ▶ ... short-term consequences of optimal actions might seem negative

Agent and environment interact at discrete time steps: t = 0, 1, 2, K

Agent observes state at step t: $S_t \in S$

produces action at step t: $A_t \in \mathcal{A}(S_t)$

gets resulting reward: $R_{t+1} \in \mathcal{R}$

and resulting next state: $S_{t+1} \in S$

Markov Decision Process: One-Step Dynamics

- Markov Property: future state (s') and reward (r) only depend on current state (s) and action (a)
 - ▶ It is not a limiting assumption, it can be seen as a property of state
- ☐ In a Markov Decision Process (MDP), the one-step dynamic can be described as:

- ▶ $p: S \times \mathcal{R} \times S \times \mathcal{A} \rightarrow [0,1]$

Finite Markov Decision Processes

- When holds the Markov Property and the state and action sets are finite, the problem is a finite Markov Decision Process
- ☐ To define a finite MDP, you need to define:
 - state and action sets
 - one-step dynamics:

$$p(s', r|s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

we can also derive the next state distribution and expected reward as:

$$p(s'|s, a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r|s, a)$$
$$r(s, a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r|s, a)$$

An Example Finite MDP: Recycling Robot

- At each step, robot has to decide whether it should (1) actively search for a can, (2) wait for someone to bring it a can, or (3) go to home base and recharge.
- □ Searching is better but runs down the battery; if runs out of power while searching, has to be rescued (which is bad).
- □ Decisions made on basis of current energy level: high, low.
- Reward = number of cans collected

An Example Finite MDP: Recycling Robot

$$\begin{split} \mathcal{S} &= \left\{ \text{high,low} \right\} \\ \mathcal{A}(\text{high}) &= \left\{ \text{search,wait} \right\} \\ \mathcal{A}(\text{low}) &= \left\{ \text{search,wait,recharge} \right\} \end{split}$$

 $r_{\rm search}$ = expected no. of cans while searching $r_{\rm wait}$ = expected no. of cans while waiting $r_{\rm search} > r_{\rm wait}$

Return

- ☐ Agent should not choose actions on the basis of immediate reward
- ☐ In fact, long-term consequences are more important than short-term reward
- □ So, we need to take into account the **sequence of future rewards**
 - \blacktriangleright We define **return**, G_t , as a function of the sequence of future rewards

$$G_t \doteq f(R_{t+1} + R_{t+2} + R_{t+3} + \dots)$$

- ▶ To succeed, the agent will have to maximize the expected return $\mathbb{E}[G_t]$
- □ Different definition of return are possible:
 - ▶ Total reward
 - Discounted reward
 - Average reward
 - **>** ...

Episodic Task

☐ In episodic task the agent-environment interaction naturally breaks into chunks called episodes

Episodic Task

☐ In episodic task the agent-environment interaction naturally breaks into chunks called episodes

☐ It is possible to maximize the expected **total reward**:

$$\mathbb{E}[G_t] = \mathbb{E}[R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T]$$

Final time step

Continuing Tasks

- ☐ In **continuing task** the agent-environment interaction goes on **continually** and there are no terminal state
- ☐ The total reward is a sum over an **infinite sequence** and might not be finite:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_{t+k} + \dots \stackrel{?}{=} \infty$$

 \Box To solve this issue we can **discount** the future rewards by a factor γ (0 < γ < 1):

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{k-1} R_{t+k} + \dots < \infty$$

☐ Thus, the expected reward to maximize will be defined as:

$$\mathbb{E}[G_t] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}\right] \leq R_{max} \frac{1}{1-\gamma}$$

Unify Notation for Returns

- ☐ In episodic tasks, we number from zero the time steps for each episode
- We can design terminal state as absorbing states that always produce zero reward:

■ We can use the same definition of expected reward for episodic and continuing tasks:

$$\mathbb{E}[G_t] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}\right]$$

- ightharpoonup where $\gamma = 1$ can be used if an absorbing state is always reached
- ightharpoonup if $\gamma = 0$, agent would only care about immediate reward
- ▶ As $\gamma \rightarrow 1$, agent would take future rewards into account more strongly

Goal and Reward

- ☐ A goal should specify what we want to achieve, not how we want to achieve it
- □ The Reward Hypotesis: That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward).
- Examples of reward design
 - goal-reward representation: 1 for goal, 0 otherwise
 - action-penalty representation: -1 for not goal, 0 once goal reached
- ☐ Challenges to reward hypothesis
 - How to represent risk-sensitive behavior?
 - ► How to capture diversity in behavior?

What is a policy?

- ☐ A policy, at any given point in time, **decides** which action the agent selects
- ☐ A policy fully defines the **behavior** of an agent
- Policies can be:
 - Markovian / Non Markovian
 - ▶ Deterministic / Stochastic
 - Stationary / Non Stationary

Deterministic Policy

□ In the simplest case the policy can be modeled as a function $(\pi: S \to A)$:

$$\pi(s) = a$$

- □ Accordingly, the policy maps each state into an action
- ☐ This type of policy can be conveniently represented using a table
- ☐ This is an example of deterministic policy in a gridworld environment

State	Action	
s_0	a_1	
s_1	a_0	
s_2	a_0	

Stochastic Policy

□ A more general approach is to model policy as function that maps each state to a probability distribution over the actions:

$$\pi(a|s)$$

- $\pi(a|s) \ge 0$
- □ A stochastic policy can be used to represent also a deterministic policy
- ☐ This is an example of stochastic policy in a gridworld environment

Markovian/Non Markovian Policy

 π_1 : choose 50% R and 50% L

 π_2 : alternate R and L

- \square Are π_1 and π_2 both markovian?
- \square No! π_2 does not depend only from current state, so it is not a valid policy for us!
- □ However, we can overcome this limitation by extending the state definition (e.g., in this case including previous action)

Value Functions

 \square Given a policy π we can compute the **state-value function** as:

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right]$$

- \blacktriangleright it represents the expected return from a given state s, following policy π
- ☐ We can also compute the **action-value function** as:

$$Q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

▶ it represents the expected return from a given state s, when a given action a is selected and then policy π is followed

Why do we compute value functions?

- ☐ Let assume the reward is +1 at if white wins and 0 elsewhere
- \square In this setting, $V_{\pi}(s)$ represents the probability of winning for white in s

State-Value Function: an example

- ☐ Let consider the following gridworld evironment:
 - ► Actions: north, south, east, west (deterministic dynamics)
 - ▶ Reward: -1 for bumping into the wall, positive from state A and B, 0 otherwise
 - ▶ Policy: random movement (25% north, 25% south, 25% east, 25% west)

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Bellman Expecation Equation

☐ The state-value function can again be **decomposed** into immediate reward plus discounted value of successor state:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_t = s]$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V_{\pi}(s') \right)$$

☐ The action-value function can be similarly decomposed:

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t} = s, A_{t} = a]$$

$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{\pi}(s')$$

$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \sum_{a' \in \mathcal{A}} \pi(a'|s') Q_{\pi}(s', a')$$

Why Bellman Equations?

☐ Let see how Bellman equations can be used in practice with an example

$$\pi(a|s) \stackrel{25\%}{\longleftarrow} 25\%$$

$$\gamma = 0.7$$

$$V_{\pi}(A) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = A]$$

$$V_{\pi}(B) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = B]$$

$$V_{\pi}(C) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = C]$$

$$V_{\pi}(D) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = D]$$

Why Bellman Equations?

☐ Let see how Bellman equations can be used in practice with an example

$$\pi(a|s) \stackrel{25\%}{\longleftarrow} 25\%$$

$$25\% \stackrel{25\%}{\longleftarrow} 25\%$$

$$\gamma = 0.7$$

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t} = s]$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V_{\pi}(s') \right)$$

$$V_{\pi}(A) = \frac{1}{4} (5 + 0.7 V_{\pi}(B)) + \frac{1}{4} 0.7 V_{\pi}(C) + \frac{1}{2} 0.7 V_{\pi}(A) \qquad V_{\pi}(A) = 4.2$$

$$V_{\pi}(B) = \frac{1}{2} (5 + 0.7 V_{\pi}(B)) + \frac{1}{4} 0.7 V_{\pi}(A) + \frac{1}{4} 0.7 V_{\pi}(D)$$

$$V_{\pi}(C) = \frac{1}{4} 0.7 V_{\pi}(A) \qquad + \frac{1}{4} 0.7 V_{\pi}(D) + \frac{1}{2} 0.7 V_{\pi}(C) \qquad V_{\pi}(C) = 2.2$$

$$V_{\pi}(D) = \frac{1}{4} (5 + 0.7 V_{\pi}(B)) + \frac{1}{4} 0.7 V_{\pi}(C) + \frac{1}{2} 0.7 V_{\pi}(D) \qquad V_{\pi}(D) = 4.2$$

Limitations of Bellman Equations

Comparing two policies

lacksquare We say that $\pi \geq \pi'$ if and only if $V_{\pi}(s) \geq V_{\pi'}(s)$, $\forall s \in \mathcal{S}$

Optimal Policy

- For any Markov Decision Process, there exists always at least one **optimal deterministic policy** π^* that is better or equal to all the others $(\pi^* \ge \pi, \ \forall \pi)$
- Sketch of proof

Optimal Policy

- For any Markov Decision Process, there exists always at least one **optimal deterministic policy** π^* that is better or equal to all the others $(\pi^* \ge \pi, \ \forall \pi)$
- Sketch of proof

Optimal Policy

- For any Markov Decision Process, there exists always at least one **optimal deterministic policy** π^* that is better or equal to all the others $(\pi^* \ge \pi, \ \forall \pi)$
- Sketch of proof

$$\gamma = 0$$

$$v_{\pi_1}(X) = 1$$

$$v_{\pi_2}(X) = 0$$

$$\gamma = 0$$

$$v_{\pi_1}(X) = 1$$

$$v_{\pi_2}(X) = 0$$

$$\gamma = 0.9$$

$$v_{\pi_1}(X) = \sum_{k=0}^{\infty} (0.9)^{2k} = \frac{1}{1 - 0.9^2} \approx 5.3$$

$$v_{\pi_2}(X) = \sum_{k=0}^{\infty} (0.9)^{2k+1} * 2 = \frac{0.9}{1 - 0.9^2} * 2 \approx 9.5$$

Limitations of solving MDP to find optimal policy

Optimal Value Function

- We said that that $\pi \ge \pi'$ if and only if $V_{\pi}(s) \ge V_{\pi'}(s)$, $\forall s \in S$
- □ As a consequence we can compute optimal state-value function and optimal action-value function as:

$$V^*(s) \doteq \max_{\pi} V_{\pi}(s) \quad \forall s \in \mathcal{S}$$

$$Q^*(s, a) \doteq \max_{\pi} Q_{\pi}(s, a) \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

Bellman Optimality Equations

■ Bellman Optimality Equation for V*

$$V^*(s) = \sum_{a \in \mathcal{A}} \pi^*(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^*(s') \right)$$
$$= \max_{a} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^*(s') \right\}$$

■ Bellman Optimality Equation for Q*

$$Q^{*}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \sum_{a' \in \mathcal{A}} \pi^{*}(a'|s') Q^{*}(s', a')$$
$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \max_{a'} Q^{*}(s', a')$$

■ Why do we care?

Why do we care?

lacktriangle From V^* and Q^* we can easily compute the optimal policy π^*

$$\pi^*(s) = \operatorname*{arg\,max}_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\} = \operatorname*{arg\,max}_{a} Q^*(s, a)$$

☐ Example:

$$\gamma = 1$$

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b)
$$\nu_*$$

c) π_*

$$V^*(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}$$

$$r, p, \gamma \longrightarrow \begin{bmatrix} \text{Linear System} \\ \text{Solver} \end{bmatrix} \longrightarrow V$$

$$V^*(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}$$

$$r, p, \gamma \longrightarrow \text{Line a. System} \longrightarrow V^*$$

$$V^*(s) = \max_{a} \left\{ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^*(s') \right\}$$

$$r, p, \gamma \longrightarrow \text{Line in System} \longrightarrow V^*$$

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V^{\pi}(s') \right)$$

$$\pi^*, r, p, \gamma \longrightarrow \text{Linear System} \longrightarrow V^*$$
Solver

$$V^*(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}$$

$$r, p, \gamma \longrightarrow \text{Line a. Sy tem} \longrightarrow V^*$$

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s') \right)$$

$$r, p, \gamma \longrightarrow \text{Linear System} \longrightarrow V^*$$

$$Solver \longrightarrow V^*$$

$$V^*(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^*(s') \right\}$$

$$r, p, \gamma \longrightarrow \text{Line a. System} \longrightarrow V^*$$

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V^{\pi}(s') \right)$$

$$?$$

$$\uparrow^* r, p, \gamma \longrightarrow \text{Linear System} \longrightarrow V^*$$

$$\text{Solver} \longrightarrow V^*$$

Dynamic Programming and Reinforcement Learning Algorithms