Homework9

Qi'ao Chen 21210160025

May 4, 2022

Exercise 1. Show that $A \downarrow_C B \Leftrightarrow A \downarrow_{\operatorname{acl}(C)} \operatorname{acl}(BC)$ for any A, B, C

Proof. For any A, B, C:

Suppose $A \downarrow_C B$, then by Problem 2, $A \downarrow_{BC} \operatorname{acl}(BC)$, therefore by transitivity, $A \downarrow_C B \operatorname{acl}(BC)$, $A \downarrow_C \operatorname{acl}(BC)$. As $C \subseteq \operatorname{acl}(C) \subseteq \operatorname{acl}(BC)$, we have $A \downarrow_{\operatorname{acl}(C)} \operatorname{acl}(BC)$.

Suppose $A \downarrow_{\operatorname{acl}(C)} \operatorname{acl}(BC)$, by Problem 2, $A \downarrow_C \operatorname{acl}(C)$, then by transitivity, $A \downarrow_C \operatorname{acl}(BC)$, then by monotonicity, $A \downarrow_C B$ as $B \subseteq \operatorname{acl}(BC)$

Exercise 2. Show there is a model $M_1\supseteq B_1$ s.t. $M_1\bigcup_{B_1}AB_2$ and a model $M_2\supseteq M_1\cup B_2$ s.t. $M_2\bigcup_{M_1B_2}A$

Proof. For any model $M_1'\supseteq B_1$, by Extension, there is $\sigma\in \operatorname{Aut}(\mathbb{M}/B_1)$ such that $\sigma(M_1')\bigcup_{B_1}AB_2$, but $\sigma(M_1')$ is still a model containing B_1 , thus we can take $M_1=\sigma(M_1')$ and $M_1\bigcup_{B_1}AB_2$

Then by the first part of the problem, there is a model $M_2\supseteq M_1\cup B_2$ s.t. $M_2\bigcup_{M_1B_2}AM_1B_2$. By Base monotonicity, $M_2\bigcup_{M_1B_2}A$

Exercise 3. Show that $A \bigcup_{B_1} M_1$ and $A \bigcup_{B_2} M_2$

Proof. As $M_1 \downarrow_{B_1} AB_2$, by Monotonicity, $M_1 \downarrow_{B_1} AB_1$, then by Base monotonicity, $M_1 \downarrow_{B_1} A$, and by Symmetry, $A \downarrow_{B_1} M_1$

As $M_1 \downarrow_{B_1} AB_2$, base monotonicity gives $M_1 \downarrow_{B_2} A$, and symmetry gives $A \downarrow_{B_2} M_1$, as $A \downarrow_{B_2 M_1} M_2$, we have $A \downarrow_{B_2} M_1 M_2$ by transitivity, and this is equivalent to $A \downarrow_{B_2} M_2$

Exercise 4. Show that $A \bigcup_{B_1} B_2 \Leftrightarrow A \bigcup_{M_1} M_2$

Proof. \Rightarrow : Use transitivity on $A \downarrow_{B_1} B_2$ and $A \downarrow_{B_2} M_2$ we get $A \downarrow_{B_1} M_2$,

then by base monotonicity, $A \downarrow_{M_1} M_2$ \Leftarrow : Use transitivity on $A \downarrow_{B_1} M_1$ and $A \downarrow_{M_1} M_2$, we get $A \downarrow_{B_1} M_2$, then by monotonicity, $A \downarrow_{B_1} B_2$