Álgebra lineal I, Grado en Matemáticas

Septiembre 2015

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Sistema de generadores y base.
- (b) Suma y suma directa de subespacios.
- (c) Núcleo e imagen de una aplicación lineal.
- (d) Espacio dual.

Ejercicio 1: (2 puntos) Justifique la veracidad o falsedad de las siguientes afirmaciones

- a) No existe ninguna aplicación lineal $f: E \to E$ tal que $f^2 = \operatorname{Id} y \operatorname{Ker}(f) \neq 0$.
- b) No existe ninguna aplicación lineal $f: \mathbb{R}^5 \to \mathbb{R}^5$ tal que tal que $\operatorname{Ker}(f) = \operatorname{Im}(f)$.

Ejercicio 2: (2.5 puntos) Estudie la dimensión del subespacio vectorial $V_{a,b}$ de \mathbb{R}^3 que generan los vectores

$$\{(a,0,b), (b,a,0), (0,b,a)\}$$

para los distintos valores de $a, b \in \mathbb{R}$. En cada caso, obtenga unas ecuaciones implícitas de $V_{a,b}$.

Ejercicio 3: (3.5 puntos) Sean $f_a: \mathbb{R}^4 \to \mathbb{R}^4$ una aplicación lineal y $a \in \mathbb{R}$ tales que cumplen las siguiente propiedades:

- f(1,0,0,0) = (1,0,2,2), f(0,1,0,0) = (a,3,-1,1),
- el núcleo de f contiene al subespacio de ecuaciones $x_1 = x_2 = x_3$.

Se pide:

- (a) Calcular la dimensión y una base del núcleo de f_a .
- (b) Demostrar que $f_a(0,0,1,0) = (-1-a,-3,-1,-3)$.
- (c) Determinar la matriz de f_a en la base canónica.