	BIT MANIPULATION							
No.	Problem Statement	Solution	Time complexity	Space complexity				
1	Single Number							
	Given a an array of integers 'nums', every element appears twice except for one. Find that single one.	- Idea: XOR Properties - n ^ 0 = n - n ^ n = 0 for (auto x: nums) ans = ans^x	O(N)	O(1)				
2	Number of 1 Bits							
	Given an unsigned int return number of 'I' bits	Note: 1 = 00000000 00000000 000000000 00000001 n = 00000000 00000000 00000000 00001011 while (n>0) if (n&l==1) cnt++ n=n>>1> right shift	O(1)	O(1)				
	G 70							
3	Counting Bits	Approach_1:						
		- Loop through 1 to n, converting each to binary notation and counting the no. of 1s	O(N*logN)	O(1)				
	Given an integer n , return an array ans of length $n+1$ such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i .	Approach_2: - x is even -> number of 1's in x == number of 1's in x/2 - x is odd -> number of 1's in x == number of 1's in x/2+1	O(N)	O(1)				
4	Reverse Bits							
	Reverse bits of a given 32 bits unsigned integer. Ex. n = 10011100 -> 00111001 = 57	<pre>Idea: Push bits out of 'n' (right shift) - Initialize uint32_t ans=0 for (int i=0; i<32; i++)</pre>	O(1)	O(1)				
5	Missing Number							
	Given an array nums containing n distinct numbers in the range $[0, n]$, return the only number in the range that is missing from the array. Ex. nums= $[1,2]$ > output = 0	Idea: Bitwise XOR to find the missing number: (a^a = 0) (a^0=a) 1) Initialize ans = 0 2) Iterate over 'nums' to cancel out elements already present in 'nums!: ans = ans ^ i ^ nums[i] 3) Check for 'n' as the loop will iterate through 0> n-1: ans = ans ^n	O(N)	O(1)				
6	Sum of Two Integers							
	Given two integers a and b, return the sum of the two integers without using the operators + and	Idea: Bitwise XOR for addition, Bitwise AND for carry while (b!=0) carry = a & b; > Sets 'carry' with bits that are set in both a and b Indicating the positions producing a carry a = a ^ b; b = carry << 1; > 'carry' is shifted one position to the left to calculate the carry for the 'next iteration'	O(N)	O(1)				
7	Reverse Integer							

BIT MANIPULATION							
No.	Problem Statement	Solution	Time complexity	Space complexity			
	Given a signed 32-bit integer x, return x with its digits reversed. If reversing x causes the value to go outside the signed 32-bit integer range [-231, 231 - 1], then return 0. Ex. $x = 123 \rightarrow 321$, $x = -123 \rightarrow -321$, $x = 120 \rightarrow 21$	-INT_MAX: (2,147,483,647) 2^31 -INT_MIN: (-2,147,483,648) -2^31 while (x!=0) b = x%10; if (ans>INT_MAX/10 ans==INT_MAX/10 && b>7) return 0; if (ans <int_min &&="" +="" 0;="" 10="" ans="ans*10" b;="" b<-8)="" imp:b<-8="" return="" x="x/10;</td" =""><td>log10(X)</td><td>O(1)</td></int_min>	log10(X)	O(1)			
		Extra knowledge: In c++: 'int' is 'signed int' For Signed int					