### SDSC 3006: Fundamentals of Machine Learning I

# Topic 5. Linear Model Selection and Regularization

### Review: Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$

 $\beta_0$  ---- intercept (i.e., the average value of Y if all inputs are zero)  $\beta_j$  ---- slope for the jth predictor (the average increase in Y when  $X_j$  is increased by 1 and all other predictors are held constant)

### Review: Estimating Coefficients

> Given a training data set

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

$$x_i = (x_1, x_2, \dots, x_p)$$

Use Least Squares (LS) method to find coefficient estimates

minimize 
$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \dots - \hat{\beta}_p x_p)^2$$



# Improving the Least Squares Estimates

- We want to improve the linear regression model, by replacing the ordinary least square (OLS) fitting with some alternative fitting procedure.
- > Two reasons for improving the OLS model
  - Prediction Accuracy
  - Model Interpretability

### 1. Prediction Accuracy

- The least squares estimates have relatively low bias and low variability especially when
  - the relationship between Y and X is linear and
  - # observations is way bigger than # predictors  $(n \gg p)$
- > When  $n \approx p$ , OLS fit may have high variance, and result in overfitting and poor estimates on unseen observations.
- $\triangleright$  When n < p, OLS fit does not work, the variance of these estimates is infinite so this method cannot be used at all.

### 2. Model Interpretability

- ➤ When we have a large number of X variables in the model there will generally be many that have little or no effect on Y.
- > Leaving these variables (terms) in the model makes it harder to see the "big picture", i.e., the effect of the "important variables".
- > The model would be easier to interpret by removing the unimportant variables (i.e., setting the coefficients of those variables to zero).

### Solution

#### Subset Selection

- Identifying a subset of the p predictors that we believe to be related to the response, and then fitting the model using this subset.
- E.g., best subset selection and stepwise selection

### Shrinkage

- Involves shrinking the estimates of coefficients toward zero
- The shrinkage reduces the variance.
- Some of the coefficients may shrink to exactly zero, and hence shrinkage methods can also perform variable selection.
- E.g. Ridge regression and the Lasso

#### Dimension Reduction

- Involves projecting the p predictors into an M-dimensional space, where M < p, and then fitting regression model of Y on the projections.
- E.g. Principle Components Regression

### **Subset Selection**

### Subset Selection

- From the *p* predictor variables, choose a subset of them such that the linear model with this subset as predictors has best **prediction accuracy**.
- > Popular methods
  - Best subset selection
  - Stepwise selection

### 1. Best Subset Selection

- ➤ In this approach, we run a linear regression for each possible combination of the predictors.
- > The set of possible models include: models that contain exactly one predictor, models that contain exactly two predictors, ..., and the model with all the *p* predictors.
- > There are  $\binom{p}{k}$ , k = 1, ..., p models that contain exactly k predictors. For example,
  - > There are  $\binom{p}{1} = p$  models that contain exactly one predictor.
  - > There are  $\binom{p}{2} = p(p-1)/2$  models that contain exactly two predictors.

### Procedure

Step 1: find the best model among the models with the same number of predictors

```
(Model<sub>0</sub>) the model with no predictors
(Model<sub>1</sub>) the best model among the models with 1 predictor
(Model<sub>2</sub>) the best model among the models with 2 predictors
```

(Modelp-1) the best model among the models with p-1 preditors (Modelp) the model with all the p predictors

Step 2: find the overall best model among the models obtained in Step 1

## The Algorithm of Best Subset Selection

#### Algorithm 6.1 Best subset selection

- 1. Let  $\mathcal{M}_0$  denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For  $k = 1, 2, \dots p$ :
  - (a) Fit all  $\binom{p}{k}$  models that contain exactly k predictors.
  - (b) Pick the best among these  $\binom{p}{k}$  models, and call it  $\mathcal{M}_k$ . Here best is defined as having the smallest RSS, or equivalently largest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

### **Model Selection Criteria**

- $\triangleright$  Algorithm-2(b): use RSS or  $R^2$  as criteria
- $\triangleright$  Be cautious: when the number of predictors in the model increases, RSS decreases monotonically, and  $R^2$  increases monotonically.
- > Therefore, if we use them to select *the single best model*, we will always end up with a model involving all the predictors.
- The problem is that a low *RSS* or a high *R*<sup>2</sup> indicates a model with low *training* error, not test error.
  - (in other words, more predictors always fit data better in training.)
- > Algorithm-3: will be discussed later.

### **Example: Credit Data**

> Example: Credit data set

Response

balance: average credit card debt

**Predictors** 

age

cards: number of credit cards

education: years of education

income: in thousands of dollars

limit: credit limit

rating: credit rating

gender: male/female (1 dummy variable)

student: student status (1 dummy variable)

status: marital status (1 dummy variable)

Ethnicity: Caucasian/African American/Asian (2 dummy variables)

# Example: RSS and $R^2$

- $\triangleright$  The red line tracks the best model for a given number of predictors, according to RSS and  $R^2$ .
- $\triangleright$  As expected, the  $RSS/R^2$  will always decline/increase as the number of variables increases.
- From the three-predictor model on, adding predictors lead to little improvement.





### Drawback of Best Subset Selection

- Best subset selection is a conceptually simple approach. But it is computationally intensive especially when we have a large number of predictors (large p).
- The number of possible models  $=2^p$ . If p=10, that means we will consider 1024 possible models. If p=20, there are over one million possibilities!
- $\triangleright$  This method becomes computationally infeasible for values of p greater than around 40, even with extremely fast modern computers.

### 2. Stepwise Selection

- Best subset selection searches the enormous space of possible models, whereas stepwise selection explores a far more restricted set of models, which are more computationally efficient.
- > Two methods:
  - Forward stepwise selection: Begins with the model containing no predictor, and then adds one predictor at a time that improves the model the most until no further improvement is possible
  - <u>Backward stepwise selection</u>: Begins with the model containing all predictors, and then deleting one predictor at a time that improves the model the most until no further improvement is possible

## Forward Stepwise Selection

#### Algorithm 6.2 Forward stepwise selection

- 1. Let  $\mathcal{M}_0$  denote the *null* model, which contains no predictors.
- 2. For  $k = 0, \ldots, p 1$ :
  - (a) Consider all p-k models that augment the predictors in  $\mathcal{M}_k$  with one additional predictor.
  - (b) Choose the *best* among these p k models, and call it  $\mathcal{M}_{k+1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

### A Simple Example of Forward Stepwise Selection

- $\triangleright$  Assume predictors  $X_1, X_2, X_3, p = 3$
- > Algorithm-1 The null model  $\rightarrow M_0 = Y \sim intercept$
- > Algorithm-2
  - 1. Consider adding one predictor ( $X_1$  or  $X_2$  or  $X_3$ ) 3 models with one predictor:  $Y \sim X_1$ ,  $Y \sim X_2$ ,  $Y \sim X_3$
  - 2. Choose the best among them  $\rightarrow M_1 = Y \sim X_2$
  - 3. Then consider adding one more predictor  $(X_1 \text{ or } X_3)$  2 models with two predictors:  $Y \sim X_2 + X_1$ ,  $Y \sim X_2 + X_3$
  - 4. Choose the best among them  $\rightarrow M_2 = Y \sim X_2 + X_1$
  - 5. Consider adding one more predictor  $(X_3) \rightarrow M_3 = Y \sim X_2 + X_1 + X_3$
- ➤ Algorithm-3 Choose the best model among  $M_0, M_1, M_2, M_3$

### Computational Advantage

- $\triangleright$  Best subset selection involves  $2^p$  models. Forward stepwise selection involves 1+p(p+1)/2 models.
- > When p = 20, best subset selection requires fitting 1,048,576 models.
- > Forward stepwise selection requires fitting only 211 models.

### Example: Credit Data

- However, since forward stepwise selection only searches part of the space of possible models, there is no guarantee that it will find the best possible model as best subset selection does.
- Results on Credit data set: the first four selected models from best subset selection and forward stepwise selection

| # Variables | Best subset             | Forward stepwise        |
|-------------|-------------------------|-------------------------|
| One         | rating                  | rating                  |
| Two         | rating, income          | rating, income          |
| Three       | rating, income, student | rating, income, student |
| Four        | cards, income           | rating, income,         |
|             | student, limit          | student, limit          |

### **Backward Stepwise Selection**

#### Algorithm 6.3 Backward stepwise selection

- 1. Let  $\mathcal{M}_p$  denote the full model, which contains all p predictors.
- 2. For  $k = p, p 1, \dots, 1$ :
  - (a) Consider all k models that contain all but one of the predictors in  $\mathcal{M}_k$ , for a total of k-1 predictors.
  - (b) Choose the *best* among these k models, and call it  $\mathcal{M}_{k-1}$ . Here *best* is defined as having smallest RSS or highest  $R^2$ .
- 3. Select a single best model from among  $\mathcal{M}_0, \ldots, \mathcal{M}_p$  using cross-validated prediction error,  $C_p$  (AIC), BIC, or adjusted  $R^2$ .

### A Simple Example of Backward Stepwise Selection

- $\triangleright$  Assume predictors  $X_1, X_2, X_3, p = 3$
- > Algorithm-1 The full model  $\rightarrow M_3 = Y \sim X_1 + X_2 + X_3$
- > Algorithm-2
  - 1. Consider removing one predictor 3 models with two predictors:  $Y \sim X_2 + X_3$ ,  $Y \sim X_1 + X_3$ ,  $Y \sim X_1 + X_2$
  - 2. Choose the best among them  $\rightarrow M_2 = Y \sim X_2 + X_3$
  - 3. Then consider removing one more predictor ( $X_2$  or  $X_3$ ) 2 models with one predictor:  $Y \sim X_2$ ,  $Y \sim X_3$
  - 4. Choose the best among them  $\rightarrow M_1 = Y \sim X_2$
  - 5. Consider removing one more predictor  $(X_2) \rightarrow M_0 = Y \sim intercept$
- > Algorithm-3 Choose the best model among  $M_0, M_1, M_2, M_3$

### Properties about Backward Stepwise Selection

- $\triangleright$  Like forward stepwise selection, backward selection searches through only 1 + p(p+1)/2 models, and so can be applied in settings where p is too large to apply best subset selection.
- > Also, there is no guarantee to yield the best possible model.
- $\triangleright$  Backward vs. Forward: backward selection requires n > p, so that the full model can be fit. Forward selection can be used even when n < p. So forward selection is the only viable subset method when the number of predictors is very large.

# Selecting the Single Best Model

- > Subset selection results in a set of "good" models, each of which contains a subset of the *p* predictors. How do we determine which model is the "best" among them in terms of prediction accuracy?
- One simple approach is to take the model with the smallest RSS or the largest R<sup>2</sup>.
- ➤ As we discussed, unfortunately, the model that includes all the variables will always have the largest R² (and smallest RSS). This means that RSS and R² are not suitable for selecting the best model among a collection of models with different numbers of predictors.

### Approaches

Keep in mind: we want to find the model that has the best prediction accuracy (or lowest test error).

- > Two common approaches
  - 1. Indirectly estimate the test error by making an adjustment to the training error to account for the bias due to overfitting



2. Directly estimate the test error, using a validation set approach or cross validation

### Approach 1

- These methods add penalty to RSS for the number of predictors (i.e. complexity) in the model (linear regression).
- > AIC (Akaike information criterion)

$$AIC = \frac{1}{n\hat{\sigma}^2} \left( RSS + 2d\hat{\sigma}^2 \right)$$

> BIC (Bayesian information criterion)

BIC = 
$$\frac{1}{n} \left( \text{RSS} + \log(n) d\hat{\sigma}^2 \right)$$

 $\succ C_p$  (equivalent to AIC for linear regression)

$$C_p = \frac{1}{n} \left( \text{RSS} + 2d\hat{\sigma}^2 \right)$$

Adjusted R<sup>2</sup>

Adjusted 
$$R^2 = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}$$

### Approach 1

- $\triangleright$  For AIC, BIC and C<sub>p</sub>, a smaller value indicates lower test error, and thus a better model.
- > For adjusted R<sup>2</sup>, a larger value indicates a better model.
- > AIC vs. BIC: BIC places a heavier penalty on models with many predictors, hence results in the selection of smaller models.
- Adjusted R<sup>2</sup> is not as well motivated in statistical theory as other three.
- > All of these measures are simple to use and compute.

# Results of Credit Data: $C_p$ , BIC and Adjusted R<sup>2</sup>

- $\succ$  C<sub>p</sub> (AIC) selects the 6-variable model containing income, limit, rating, cards, age and student.
- BIC selects the 4-variable model containing only income, limit, cards and student.
- Adjusted R<sup>2</sup> selects the 7-variable model containing those selected by  $C_p$  (AIC) and gender.



### Approach 2

- Compute the validation set error or the cross-validation error for each model, and then select the model that results in smallest test error.
- Advantage over Approach 1: it provides a direct estimate of the test error, and makes fewer assumptions about the true underlying model (Approach 1 mainly applies to linear regression).
- In the past, performing cross validation was computationally prohibitive for problems with large p and/or n, so those simple measures, AIC, BIC,  $C_p$  and adjusted  $R^2$ , were often used. Nowadays, with fast computers, cross validation becomes more attractive.

### Results of Credit Data: Cross Validation

- Validation set and cross validation methods both select the 6predictor model.
- > The two methods suggest that the 4-, 5- and 6-predictor models are roughly equivalent in terms of test error.



# **Shrinkage Methods**

### Shrinkage Methods

- Subset selection methods fit a linear model that contains a subset of the predictors through least squares.
- Shrinkage methods fit a model containing all p predictors using a technique that shrinks the coefficient estimates towards zero.
- > Two popular shrinkage methods: Ridge regression and LASSO.

### 1. Ridge Regression

 $\triangleright$  Ordinary Least Squares (OLS) estimates  $\beta s$  by minimizing

RSS = 
$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Ridge Regression uses a slightly different equation

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

 $\lambda \geq 0$  is a tuning parameter

# Ridge Regression Adds a Penalty on $\beta s$ !

> The effect of this equation is to add a penalty of the form

$$\lambda \sum_{j=1}^{p} \beta_j^2$$

where the tuning parameter  $\lambda$  is a positive value.

- $\succ$  This has the effect of "shrinking" large  $\beta s$  towards zero.
- $\triangleright$  Notice that when  $\lambda = 0$ , we get the OLS!

# **Credit Data: Ridge Regression**

 $\triangleright$  As  $\lambda$  increases, the coefficients shrink towards zero.



#### What Makes the Method Work?

> The OLS estimates to minimize RSS



# Another Formulation for Ridge Regression

> The two formulations are equivalent

minimize 
$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$



minimize 
$$\left\{ \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s$$

### Ridge Regression Estimates

- Ellipses that are centered around  $\hat{\beta}$  represent regions of constant RSS (i.e., all the points on a given ellipse share a common value of the RSS).
- The solid blue area is the constraint region of ridge regression, which is  $\beta_1^2 + \beta_2^2 \le s$  in the two-dimension case.
- ➤ The ridge regression coefficient estimates are given by the first point at which an ellipse contacts the constraint region.



# Why Shrinking towards Zero Is A Good Thing?

- > OLS estimates
  - Generally have low bias but can have high variance
  - When n and p are of similar size or n < p, the OLS estimates will be extremely variable
- > The penalty term in the ridge regression estimates
  - Increases bias
  - But can substantially reduce variance

### Simulation Study

- > Black: Bias
- > Green: Variance
- Purple: Test MSE
- $\triangleright$  Increase in  $\lambda$  increases bias but decreases variance



### Computational Advantages

- ➢ If p is large, the best subset selection approach requires searching through enormous numbers of possible models.
- $\succ$  With Ridge Regression, for any given  $\lambda$ , we only need to fit one model and the computation turns out to be very simple.
- $\triangleright$  Ridge Regression can even be used when n < p, a situation where OLS fails completely!

#### 2. LASSO

- > Ridge Regression isn't perfect.
- > One significant problem: the penalty term will never force any of the coefficients to be exactly zero. That means the final model will include all variables, which makes it hard to interpret.
- > A more modern alternative is the LASSO.
- > The LASSO works in a similar way to Ridge Regression, except that it uses a different penalty term.

### LASSO's Penalty Term

Ridge Regression minimizes

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

> The LASSO minimizes

$$\sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

### What's the Big Deal?

- > This seems like a very similar idea but there is a big difference.
- Using this penalty, it could be proven mathematically that some coefficients end up being set to exactly zero.
- With LASSO, we can produce a model that has high predictive power and it is simple to interpret.

#### **Another Formulation for LASSO**

> The two formulations are equivalent

$$\underset{\beta}{\text{minimize}} \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|.$$



minimize 
$$\left\{ \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

# Reason for the Magic of LASSO





# An Orthogonal Case

- > Consider a simple case with n=p and  $\mathbf{X}=\mathbf{I}_p$ , then  $\hat{\beta}_j^{ols}=y_j$ ,
  - > Ridge regression multiplies  $\hat{\beta}_j^{ridge}$  by a constant,  $\hat{\beta}_j^{ridge} = y_j/(1+\lambda)$ .
  - Lasso truncates  $\hat{\beta}_{j}^{ridge}$  towards zero by a constant,  $\hat{\beta}_{j}^{lasso} = sign(y_{j})(|y_{j}| \lambda/2)_{+}$ .





### **Credit Data: LASSO**



### Ridge Regression vs. LASSO

- Neither ridge regression nor the lasso will universally dominate the other in terms of prediction accuracy.
- > Ridge regression performs better when the response depends on many predictors, all with coefficients of roughly equal size.
- > LASSO performs better when a relatively small number of predictors have substantial coefficients, and the remaining predictors have very small or zero coefficients.

# Selecting the Tuning Parameter

- In subset selection methods, we need to determine which model is the best.
- $\succ$  Similarly, in shrinkage methods, we need to select the optimal value for the tuning parameter  $\lambda$  .
- Different values of the tuning parameter will lead to a model with different levels of prediction accuracy.
- ightharpoonup Question: Which value of  $\lambda$  will produce the model with lowest test error?

### Approach — Cross Validation

- $\triangleright$  Select a grid of potential values for  $\lambda$
- $\succ$  For each value of  $\lambda$ , use cross validation to estimate the test error rate
- > Select the value that gives the lowest error rate

# Credit Data: Selecting Tuning Parameter

Leave-one-out cross validation (LOOCV) on Ridge regression



#### Other Extensions of LASSO

Group lasso: if the p variables are partitioned into J groups, and then it is desirable to include or exclude the whole group

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \sum_{j=1}^{p} \|\vec{\beta}_j\|_2$$

where  $\vec{\beta}_i$  is a coefficient vector for the *j*th group.

> Elastic net:

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$$

> Fused lasso:

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \sum_{j=2}^{p} \|\beta_j - \beta_{j-1}\|_{1}$$