### МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

# Компьютерный практикум по курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ» Задание №2 (1)

### ОТЧЁТ

#### о выполненном задании

студента 203 учебной группы факультета ВМК МГУ Мартынова Олега Павловича

# Оглавление

| 1 | Пос                | Постановка задачи и её целей         |    |  |  |  |  |  |
|---|--------------------|--------------------------------------|----|--|--|--|--|--|
|   | 1.1                | Цель работы                          | 3  |  |  |  |  |  |
|   | 1.2                | Постановка задачи                    | 3  |  |  |  |  |  |
|   | 1.3                | Цели и задачи практической работы    | 4  |  |  |  |  |  |
| 2 | Алі                | горитм решения                       | 5  |  |  |  |  |  |
|   | 2.1                | Семейство прямых методов Рунге—Кутты | 5  |  |  |  |  |  |
|   | 2.2                | Метод Рунге—Кутты второго порядка    | 6  |  |  |  |  |  |
|   | 2.3                | Метод Рунге—Кутты четвертого порядка | 6  |  |  |  |  |  |
| 3 | Описание программы |                                      |    |  |  |  |  |  |
|   | 3.1                | Использование                        | 8  |  |  |  |  |  |
|   | 3.2                | Детали реализации                    | 8  |  |  |  |  |  |
| 4 | Tec                | тирование                            | 9  |  |  |  |  |  |
|   | 4.1                | Примеры из одного уравнения          | 9  |  |  |  |  |  |
|   | 4.2                | Примеры систем из двух уравнений     | 12 |  |  |  |  |  |
| 5 | Вы                 | вод                                  | 13 |  |  |  |  |  |
| 6 | Гра                | офики                                | 14 |  |  |  |  |  |
| 7 | Ису                | колный кол                           | 19 |  |  |  |  |  |

### Постановка задачи и её целей

#### 1.1 Цель работы

В данной работе требуется освоить методы Рунге—Кутты второго и четвертого порядка точности и применить их для численного решения задачи Коши для ОДУ первого порядка и системы ОДУ первого порядка, разрешенных относительно производных.

#### 1.2 Постановка задачи

Рассматривается ОДУ первого порядка, разрешенное относительно производной и имеющее вид:

$$\frac{dy}{dx} = f(x, y), \ x_0 < x,\tag{1.1}$$

с дополнительным начальным условием, заданным в точке  $x=x_0$ :

$$f(x_0) = y_0. (1.2)$$

Предполагается, что правая часть уравнения (1.1) функция такова, что гарантирует существование и единственность решения задачи Коши (1.1)-(1.2).

В том случае, если рассматривается не одно дифференциальное уравнение вида (1.1), а система обыкновенных дифференциальных уравнений первого порядка, разрешенных относительно производных неизвестных функций, то соответствующая задача Коши имеет вид (на примере двух дифференциальных уравнений):

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2), \\ x > x_0. \end{cases}$$
 (1.3)

Дополнительные начальные условия задаются в точке  $x = x_0$ :

$$y_1(x_0) = y_1^{(0)}, \ y_2(x_0) = y_2^{(0)}.$$
 (1.4)

Также предполагается, что правые части уравнений из (1.3) заданы так, что это гарантирует существование и единственность решения задачи Коши (1.3)-(1.4), но уже для системы обыкновенных дифференциальных уравнений первого порядка в форме, разрешенной относительно производных неизвестных функций. Заметим, что к подобным задачам сводятся многие важные задачи, возникающие в механике (уравнения движения материальной точки), небесной механике, химической кинетике, гидродинамике и т. п.

#### 1.3 Цели и задачи практической работы

- 1. Решить задачу Коши (1.1)-(1.2) (или (1.3)-(1.4)) наиболее известными и широко используемыми на практике методами Рунге—Кутты второго и четвертого порядка точности, аппроксимировав дифференциальную задачу соответствующей разностной схемой (на равномерной сетке); полученное конечно-разностное уравнение (или уравнения в случае системы), представляющее фактически некоторую рекуррентную формулу, просчитать численно;
- 2. Найти численное решение задачи и построить его график;
- 3. Найденное численное решение сравнить с точным решением дифференциального уравнения (подобрать специальные тесты, где аналитические решения находятся в классе элементарных функций, при проверке можно использовать ресурсы on-line системы http://www.wolframalpha.com или пакета Maple и т.п.).

## Алгоритм решения

#### 2.1 Семейство прямых методов Рунге—Кутты

Семейство прямых методов Рунге—Кутты задаётся формулами:

$$\vec{y}_{n+1} = \vec{y}_n + h \sum_{i=1}^s b_i \vec{k}_i, \tag{2.1}$$

где h — величина шага сетки по x и вычисление нового значения проходит в s этапов:

$$\vec{k}_1 = \vec{f}(x_n, \vec{y}_n),$$

$$\vec{k}_2 = \vec{f}(x_n + c_2 h, \vec{y}_n + a_{21} \vec{k}_1),$$

$$\dots$$

$$\vec{k}_s = \vec{f}(x_n + c_s h, \vec{y}_n + a_{s1} \vec{k}_1 + a_{s2} \vec{k}_2 + \dots + a_{s,s-1} \vec{k}_s - 1).$$

Конкретный метод определяется числом s и коэффициентами  $b_i$ ,  $a_{ij}$  и  $c_i$ . Эти коэффициенты часто упорядочивают в таблицу (называемую таблицей Бутчера):

Для коэффициентов метода Рунге—Кутты должны быть выполнены условия  $\sum_{j=1}^{i-1} a_{ij} = c_i i = 2, \dots, s$ . Если требуется, чтобы метод имел порядок p, то следует также обеспечить условие:

$$\vec{\mathbf{y}}(h+x_0) - \vec{y}(h+x_0) = O(h^{p+1}),$$

где  $\vec{\mathbf{y}}(h+x_0)$  — приближение, полученное по методу Рунге—Кутты. После многократного дифференцирования это условие преобразуется в систему полиномиальных уравнений относительно коэффициентов метода.

#### 2.2 Метод Рунге—Кутты второго порядка

Методу Рунге—Кутты второго порядка соотвествует следующая таблица Бутчера:

$$\begin{array}{c|cc}
0 & & \\
1/2 & 1/2 & \\
\hline
& 0 & 1 & \\
\end{array}$$

что соотвествует следующему уравнению итерации:

$$\vec{y}_{n+1} = \vec{y}_n + h\vec{k}_2. (2.2)$$

где коэффициенты  $\vec{k}_1, \vec{k}_2$  находятся следующим образом:

$$\vec{k}_1 = \vec{f}(x_n, \vec{y}_n),$$
  
 $\vec{k}_2 = \vec{f}(x_n + \frac{h}{2}, \vec{y}_n + \frac{h}{2}\vec{k}_1).$ 

### 2.3 Метод Рунге—Кутты четвертого порядка

Методу Рунге—Кутты четвертого порядка соотвествует следующая таблица Бутчера:

что соотвествует следующему уравнению итерации:

$$\vec{y}_{n+1} = \vec{y}_n + \frac{h}{6}(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4), \tag{2.3}$$

где коэффициенты  $\vec{k}_1, \vec{k}_2, \vec{k}_3, \vec{k}_4$  находятся следующим образом:

$$\vec{k}_1 = \vec{f}(x_n, \vec{y}_n),$$

$$\vec{k}_2 = \vec{f}(x_n + \frac{h}{2}, \vec{y}_n + \frac{h}{2}\vec{k}_1),$$

$$\vec{k}_3 = \vec{f}(x_n + \frac{h}{2}, \vec{y}_n + \frac{h}{2}\vec{k}_2),$$

$$\vec{k}_4 = \vec{f}(x_n + h, \vec{y}_n + h\vec{k}_3).$$

# Описание программы

#### 3.1 Использование

Программа написана на языке программирования Python и состоит из нескольких модулей, из которых для пользователя представляет интерес только один — модуль data.py. Этот модуль содержит в себе единственную переменную — data, — представляющую из себя список записей, где каждая запись соответсвует уравнению или системе уравнений, предназначенных для тестирования. После заполнения этой переменной, необходимо запустить модуль test.py, который выведет на экран список таблиц, в которых будет отражена информация о сравнении методов решения ОДУ между собой, а также значения погрешностей каждого из методов. Помимо этого, этот модуль генерирует графики для каждой из функций, которые после его запуска могут быть найденны в текущей директории в виде изображений в привычном формате.

#### 3.2 Детали реализации

В модуле runge\_kutta.py реализованы функции runge\_kutta\_2 и runge\_kutta\_4, соответствующие методам Рунге—Кутты решения ОДУ с вторым и четвертым порядками точности. Эти функции принимают в качестве входных данных систему из любого числа уравнений, начальное условие, правую границу отрезка, на котором будет происходить вычисление, и величину шага.

# Тестирование

#### 4.1 Примеры из одного уравнения

**Пример 1.** Тестовый пример 1-2 из оригинального задания.

$$f(x,y) = \sin x - y,$$

$$y(x) = -0.5\cos x + 0.5\sin x + \frac{21}{2}e^{-x},$$

$$(x_o, y_0) = (0, 10),$$

$$[x_0, x_n] = [0, 10],$$

$$h = 1.$$

| Mean Squa                                                                                                                            | Number of segments:<br>  Mean Squared Error (rk2): 0.49<br>  Mean Squared Error (rk4): 0.20 |                                                                                                                                     |                                                                                                                                    |                                                                                                                                |                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| x                                                                                                                                    | rk2                                                                                         | rk4                                                                                                                                 | exact                                                                                                                              | err_rk2                                                                                                                        | err_rk4                                                                                          |  |  |
| 0.0000  <br>  1.0000  <br>  2.0000  <br>  3.0000  <br>  4.0000  <br>  5.0000  <br>  6.0000  <br>  7.0000  <br>  8.0000  <br>  9.0000 | -0.2645                                                                                     | 10.0000  <br>4.3522  <br>1.9429  <br>0.4622  <br>-0.4253  <br>-0.5400  <br>-0.0150  <br>0.5775  <br>0.6592  <br>0.1424  <br>-0.5025 | 10.0000  <br>4.0133  <br>2.0837  <br>1.0883  <br>0.1407  <br>-0.5505  <br>-0.5938  <br>-0.0389  <br>0.5710  <br>0.6629  <br>0.1480 | 0.0000  <br>1.5634  <br>0.8485  <br>0.0436  <br>0.2175  <br>0.2861  <br>0.8164  <br>0.7597  <br>0.0933  <br>0.6120  <br>0.7302 | 0.0000   0.3389   0.1409   0.6262   0.5661   0.0105   0.5788   0.6164   0.0882   0.5205   0.6505 |  |  |

Пример 2. Упражение №391 из задачника А.Ф. Филиппова.

$$f(x,y) = \frac{y^2 - x}{2y(x+1)},$$

$$y(x) = \sqrt{x - (x+1)\ln(e^{-1}(x+1))},$$

$$(x_o, y_0) = (0, 1),$$

$$[x_0, x_n] = [0, 5],$$

$$h = 0.5.$$

| Mean Squa                                                                                                                            | Number of segments: 10<br>  Mean Squared Error (rk2): 5.4084<br>  Mean Squared Error (rk4): 0.4015                                 |                                                                                                                                 |                                                                                                                                |                                                                                                  |                                                                                                  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| x                                                                                                                                    | rk2                                                                                                                                | rk4                                                                                                                             | exact                                                                                                                          | err_rk2                                                                                          | err_rk4                                                                                          |  |  |  |
| 0.0000  <br>  0.5000  <br>  1.0000  <br>  1.5000  <br>  2.0000  <br>  2.5000  <br>  3.0000  <br>  3.5000  <br>  4.5000  <br>  5.0000 | 1.0000  <br>1.0460  <br>1.0307  <br>0.9649  <br>0.8472  <br>0.6612  <br>0.3389  <br>-2.8656  <br>-2.9340  <br>-2.9933  <br>-3.0447 | 1.0000  <br>1.0447  <br>1.0278  <br>0.9596  <br>0.8375  <br>0.6405  <br>0.2363  <br>-0.4625  <br>0.7478  <br>0.4224  <br>0.4496 | 1.0000  <br>1.1797  <br>1.2703  <br>1.3074  <br>1.3054  <br>1.2710  <br>1.2062  <br>1.1098  <br>0.9761  <br>0.7899  <br>0.4994 | 0.0000   0.1338   0.2396   0.3425   0.4583   0.6098   0.8672   3.9754   3.9102   3.7832   3.5441 | 0.0000   0.1350   0.2425   0.3478   0.4680   0.6305   0.9699   1.5723   0.2284   0.3674   0.0498 |  |  |  |

Пример 3. Упражение №315 из задачника А.Ф. Филиппова (немного модифицированное).

$$f(x,y) = y - x^{2},$$

$$y(x) = e^{x} + x^{2} + 2x + 2,$$

$$(x_{o}, y_{0}) = (0, 3),$$

$$[x_{0}, x_{n}] = [0, 5],$$

$$h = 0.5.$$

#### Вывод программы:

| Number of segments: 10  <br>  Mean Squared Error (rk2): 4580.6792  <br>  Mean Squared Error (rk4): 4500.8064                         |                                                                                                                  |                                                                                                                                      |                                                   |                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|--|--|
| x                                                                                                                                    | rk2                                                                                                              | rk4                                                                                                                                  | exact   err_                                      | rk2   err_rk4                                                              |  |  |
| 0.0000  <br>  0.5000  <br>  1.0000  <br>  1.5000  <br>  2.0000  <br>  2.5000  <br>  3.0000  <br>  3.5000  <br>  4.0000  <br>  4.5000 | 3.0000<br>4.5625<br>6.5078<br>8.7627<br>11.2081<br>13.6507<br>15.7762<br>17.0738<br>16.7136<br>13.3471<br>4.7828 | 3.0000<br>  4.5872<br>  6.5689<br>  8.8767<br>  11.3976<br>  13.9458<br>  16.2147<br>  17.6989<br>  17.5655<br>  14.4413<br>  6.0628 | 4.8987   0.3<br>  7.7183   1.2<br>  11.7317   2.9 | 3094   20.8709  <br>2917   36.6666  <br>3846   63.0326  <br>2000  106.8258 |  |  |

Пример 4. Упражение №322 из задачника А.Ф. Филиппова.

$$f(x,y) = e^{y}/(x-2),$$

$$y(x) = -\ln(-\ln(e^{-1}(x-2))),$$

$$(x_{o}, y_{0}) = (3, 0),$$

$$[x_{0}, x_{n}] = [3, 4],$$

$$h = 0.1.$$

| Mean Squar                                                                                                                           | Number of segments: 10<br>  Mean Squared Error (rk2): 0.0054<br>  Mean Squared Error (rk4): 0.0053                             |                                                                                                                                |                                                                                                   |                                                                                                                                |                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| x                                                                                                                                    | rk2                                                                                                                            | rk4                                                                                                                            | exact                                                                                             | err_rk2                                                                                                                        | err_rk4                                                                                                                        |  |  |
| 3.0000  <br>  3.1000  <br>  3.2000  <br>  3.3000  <br>  3.4000  <br>  3.5000  <br>  3.6000  <br>  3.7000  <br>  3.8000  <br>  3.9000 | 0.0000  <br>0.0910  <br>0.1827  <br>0.2758  <br>0.3711  <br>0.4692  <br>0.5711  <br>0.6776  <br>0.7901  <br>0.9098  <br>1.0387 | 0.0000  <br>0.0910  <br>0.1828  <br>0.2760  <br>0.3713  <br>0.4695  <br>0.5715  <br>0.6782  <br>0.7909  <br>0.9109  <br>1.0402 | -0.0000   0.1002   0.2013   0.3043   0.4102   0.5200   0.6349   0.7564   0.8862   1.0268   1.1814 | 0.0000  <br>0.0092  <br>0.0186  <br>0.0285  <br>0.0391  <br>0.0508  <br>0.0638  <br>0.0787  <br>0.0961  <br>0.1170  <br>0.1426 | 0.0000  <br>0.0091  <br>0.0185  <br>0.0283  <br>0.0389  <br>0.0505  <br>0.0634  <br>0.0781  <br>0.0954  <br>0.1159  <br>0.1412 |  |  |

### 4.2 Примеры систем из двух уравнений

Пример 5. Тестовый пример 2-8 из оригинального задания.

$$f_1(x, u, v) = \cos(x + 1.1v) + u,$$

$$f_2(x, u, v) = -v^2 + 2.1u + 1.1,$$

$$(x_o, y_1^{(0)}, y_2^{(0)}) = (0, 0.25, 1),$$

$$[x_0, x_n] = [0, 1],$$

$$h = 0.01.$$

| Number of segments:<br>  Mean Squared Error (rk2):<br>  Mean Squared Error (rk4):                                                    |                                                                                                  |                                                                                                                                |                                                                                                  |                                                                                                                                |                               |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| x                                                                                                                                    | rk2_y1                                                                                           | rk2_y2                                                                                                                         | rk4_y1                                                                                           | rk4_y2                                                                                                                         |                               |
| 0.0000  <br>  0.1000  <br>  0.2000  <br>  0.3000  <br>  0.4000  <br>  0.5000  <br>  0.6000  <br>  0.7000  <br>  0.8000  <br>  0.9000 | 0.2500   0.3063   0.3513   0.3837   0.4032   0.4096   0.4034   0.3849   0.3548   0.3135   0.2615 | 1.0000  <br>1.0626  <br>1.1227  <br>1.1779  <br>1.2263  <br>1.2665  <br>1.2976  <br>1.3192  <br>1.3312  <br>1.3337  <br>1.3271 | 0.2500   0.3061   0.3509   0.3833   0.4028   0.4092   0.4030   0.3845   0.3544   0.3131   0.2610 | 1.0000  <br>1.0622  <br>1.1220  <br>1.1771  <br>1.2254  <br>1.2656  <br>1.2967  <br>1.3184  <br>1.3306  <br>1.3332  <br>1.3266 | <br> <br> <br> <br> <br> <br> |

# Вывод

В ходе практической работы были реализованы метод Рунге—Кутты второго и четвёртого порядков точности, применительно как к одиночным ОДУ первого порядка, разрешённым относительно производной, так и к соответствующим системам. Тестирование показало, что метод Рунге—Кутты четвёртого порядка точности действительно является более точным, по сравнению с методом второго порядка точности. Эта разница, тем не менее, оказалось слабо заметной на приведённой выборке тестовых примеров, что можно объяснить сравнительной простотой этих примеров.

# Графики



Рис. 6.1: Пример 1.



Рис. 6.2: Пример 2.



Рис. 6.3: Пример 3.



Рис. 6.4: Пример 4.



Рис. 6.5: Пример 5.

### Исходный код

```
from data import data
from plot import plot_data
from runge_kutta import runge_kutta_2, runge_kutta_4, apply_data
# Plot table for single ODEs
for d in data:
    if len(d["f"]) != 1:
        continue
    rk2 = apply_data(d, runge_kutta_2)[0]
    rk4 = apply_data(d, runge_kutta_4)[0]
    x0, xn = d["p0"][0], d["xn"]
    h_{raw} = d["h"]
    # normalized step size
    n = round((xn - x0) / h_raw)

h = (xn - x0) / n
    x = [x0 + h * i for i in range(n + 1)]
    exact = list(map(d["sol"][0], x))
    mse_rk2 = sum(map(lambda a: (a[0] - a[1]) ** 2,
                      zip(rk2, exact))) / (n + 1)
    mse_rk4 = sum(map(lambda a: (a[0] - a[1]) ** 2,
                      zip(rk4, exact))) / (n + 1)
    print("-" * 61)
    print("| Number of segments:
                                       {:31} |".format(n))
    print("| Mean Squared Error (rk2): {:31.4f} |".format(mse_rk2))
    print("| Mean Squared Error (rk4): {:31.4f} |".format(mse_rk4))
    print("-" * 61)
    print("|{:>8} |{:>8} |{:>8} |{:>8} |{:>8} |"\
          .format("x", "rk2", "rk4", "exact", "err_rk2", "err_rk4"))
    print("-" * 61)
    for j in range(n + 1):
        print("|\{:8.4f\} |\{:8.4f\} |\{:8.4f\} |\{:8.4f\} |\{:8.4f\} |\{:8.4f\} |".format(x[j], rk2[j], rk4]\}
    print("-" * 61)
# Plot table for systems of 2 ODEs
for d in data:
    if len(d["f"]) != 2:
        continue
    rk2 = apply_data(d, runge_kutta_2)
```

rk4 = apply\_data(d, runge\_kutta\_4)

```
x0, xn = d["p0"][0], d["xn"]
          h_raw = d["h"]
          # normalized step size
         n = round((xn - x0) / h_raw)

h = (xn - x0) / n
          x = [x0 + h * i for i in range(n + 1)]
          print("-" * 61)
          print("| Number of segments:
                                                                                                 \{:31\} |".format(n))
          print("| Mean Squared Error (rk2): {:>31} |".format("N/A"))
          print("| Mean Squared Error (rk4): {:>31} |".format("N/A"))
          print("-" * 61)
          print("|{:>8} |{:>8} |{:>8} |{:>8} |{:>8} |"\
                          .format("x", "rk2_y1", "rk2_y2", "rk4_y1", "rk4_y2", ""))
          print("-" * 61)
          for j in range(n + 1):
                    print("|\{:8.4f\} |\{:8.4f\} |\{:
          print("-" * 61)
# Plot graphs for ODEs
for d in data:
          plot_data(d, [(runge_kutta_2, "rk2"), (runge_kutta_4, "rk4")])
import matplotlib.pylab as pylab
from random import randint
def plot(f_num, f_ex, x0, xn, h_raw):
          f_num: list of y(x) values, representing the numeric solution;
          f_{\text{ex}}: function y(x), representing the exact solution;
          # normalized step value
          n = round((xn - x0) / h_raw)
          h = (xn - x0) / n
          x = [x0 + h * i for i in range(n + 1)]
          fig = plt.figure()
          graph = fig.add_subplot(111)
          for fi_num, l in f_num:
          graph.plot(x, fi_num, label=1)
for fi_ex, l in f_ex:
                    graph.plot(x, list(map(fi_ex, x)), label=1)
          graph.legend()
          return fig
def plot_data(data, method):
          sol_num = []
for m, l in method:
                    sol = m(data["f"]
                                        data["p0"],
                                        data["xn"],
data["h"])
                    sol_num += list(zip(sol, [1] * len(sol)))
          fig = plot(sol_num,
                                      list(zip(data["sol"],
                                                             ["exact"] * len(data["sol"]))),
                                      data["p0"][0],
                                      data["xn"],
                                      data["h"])
          fig.savefig("plot_{:02}.png".format(data["idx"] + 1))
```

```
def runge_kutta(f, p0, xn, h_raw, order):
    f: list of functions;
    [x0, xn]: segment where to find the solution;
    (x0, y0): initial condition;
    h_raw: step value, to be normalized to fit the segment;
    order: possible values are 2 and 4;
    x0, y0 = p0[0], p0[1:]
   # number of functions
m = len(f)
    # normalized step value
   n = round((xn - x0) / h_raw)
h = (xn - x0) / n
# list of y(x) functions
    y = [[y0[t]] + [0] * n for t in range(m)]
    # main loop
    for i in range(1, n + 1):
            x0 + h * i
[f[t](xi, *[y[s][i - 1]
                        for s in range(m)])
             for t in range(m)]
        k2 = [f[t](xi + h / 2, *[y[s][i - 1] + h / 2 * k1[s]
                                for s in range(m)])
             for t in range(m)]
        if order == 4:
           k3 = [f[t](xi + h / 2, *[y[s][i - 1] + h / 2 * k2[s]
                                    for s in range(m)])
                 for t in range(m)]
           k4 = [f[t](xi + h, *[y[s][i - 1] + h * k3[s]
                                for s in range(m)])
                 for t in range(m)]
        for t in range(m):
           if order == 2:
    y[t][i] = y[t][i - 1] + h * k2[t]
elif order == 4:
    y[t][i] = (y[t][i - 1] + h / 6 *
                           (k1[t] + 2 * k2[t] + 2 * k3[t] + k4[t]))
    return y
def runge_kutta_2(f, p0, xn, h_raw):
    return runge_kutta(f, p0, xn, h_raw, order=2)
def runge_kutta_4(f, p0, xn, h_raw):
    return runge_kutta(f, p0, xn, h_raw, order=4)
def apply_data(data, method):
   return method(data["f"],
data["p0"],
data["xn"],
                 data["h"])
from math import *
data = [
   "idx": 0,
"desc": "Original task, ex. 1-2",
   "p0": (0., 10.),
"xn": 10.,
"h": 1.0,
```