MASD Final Exam

MASD 2018

Department of Computer Science University of Copenhagen

Eksamensnummer: 35

Version 1 **Due:** November 4th, 2018, 16:00

Contents

1.	Exercis	se																				3
2.	Exercis	se																				3
3.	Exercis (a) (b)					•	•	•														3 3
4.	Exercise (a) (b) (c)		 	 	 	 			 											 	 	3 4 4

- 1. Exercise
- 2. Exercise
- 3. Exercise
- (a)

The expression pmf stands for the "probability mass function". The pmf of $X \sim Poiss(\lambda)$ can be written as follows, as per table 1.1 in the "MASD_essentials_ch1-updated.pdf" on Absalon:

$$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

This expression is used to calculate the probability of x events happening, when there is an average of λ events happening.

(b)

The expectation of Y, $\mathbb{E}Y$ can be written as follows, as per definition 1.8 in the "MASD_essentials_ch1-updated.pdf" on Absalon:

$$\mathbb{E} Y = \sum_y y p(y)$$

The variance of Y, var(Y), can be written as follows, as per definition 1.10 in the "MASD_essentials_ch1-updated.pdf" on Absalon:

$$var(Y) = \mathbb{E}(Y - \mathbb{E}Y)^2 = \sum_y y^2 p(y) - (\sum_y y p(y))^2$$

To find $\mathbb{P}(a < V \le b)$ we first have to make the observation that the cdf $F_V(x)$ is defined as being the probability that the variable V will be *less than or equal to x*, thus we can say that:

$$F_V(x) = \mathbb{P}(V \le x)$$

This means that to calculate the probability of it being inside the interval $a < V \le b$, we calculate $\mathbb{P}(V \le b)$, and subtract $\mathbb{P}(V \le a)$.

$$\mathbb{P}(a < V \le b) = F_V(a) - F_V(b)$$

4. Exercise

(a)

For this, I assume that the given values for x and y are all the values possible. If that assumption is true, then the final joint pmf will look as follows:

The reason for this is because the joint pmf must be equal to 1. So we simply calculate:

DIKU

$$1 - (0.1 + 0.1 + 0.3 + 2(0.05)) = 0.4$$

(b)

To compute $\mathbb{E}(X + Y)$ we have to make the following observation:

$$\mathbb{E}(X+Y) = \mathbb{E}X + \mathbb{E}Y$$

This means that we simply have to compute:

$$\mathbb{E} X + \mathbb{E} Y = \sum_{x} x p_X(x) + \sum_{y} y p_Y(y)$$

To find the marginal pmfs $p_X(x)$ and $p_Y(y)$ we use the following calculations:

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

First we will find $\mathbb{E}X$, then $\mathbb{E}Y$:

$$\mathbb{E}X = -1(0.1 + 0.1 + 0.4) + 1(0.3 + 0.05 + 0.05) = -0.2$$

$$\mathbb{E}Y = -1(0.1 + 0.3) + 1(0.1 + 0.05) + 3(0.4 + 0.05) = 1.1$$

Then we simply write:

$$\mathbb{E}(X + Y) = -0.2 + 1.1 = 0.9$$

This should be interpreted as expecting to make back 90% of the money put in.

(c)

First we will compute the pmf p_Z of Z = X * Y. To do this, first we will define what p_Z looks like:

$$p_Z(z) = \mathbb{P}(Z=z)$$

We can see from the table from Exercise 4a that there are six possible values for *Z*, since there are 2 values for *X* and 3 for *Y*. These values are the following:

X * Y	y = -1	y=1	y=3				
x = -1	1	-1	-3				
x = 1	-1	1	3				

Now we simply compute $\mathbb{P}(X * Y)$ for each value of x and y, and get the following table:

$p_Z(z)$	P(X * Y = z)
z = -3	0.4
z = -1	0.4
z = 1	0.15
z=3	0.05

To figure out if *X* and *Y* are independent, we have to look at their covariance, which is defined as thus:

$$cov(X,Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y$$

We start off by finding $\mathbb{E}XY$:

$$\mathbb{E}XY = \sum_{x,y} xyp(x,y)$$

I have done this calculation in the attached Jupyter Notebook named: "Calculations" since it would be tedious to do by hand. It has given me the following:

$$\mathbb{E}XY = -1.3$$

We have already calculated $\mathbb{E}X$ and $\mathbb{E}Y$ further up, in exercise 4b. So we can write the following:

$$cov(X,Y) = (-1.3) - (-0.2) * 1.1 = -1.08$$

Since we now know that the covariance $cov(X, Y) \neq 0$, we also know that X and Y are dependant on each other.