6) There exists a non-negative continuous function $f: \mathbb{R} \to \mathbb{R}$ that is integrable, but where $\limsup_{x\to\infty} f(x) = \infty$. However, if f is uniformly continuous and integrable, then $\lim_{|x|\to\infty} f(x) = 0$.

Proof: Let $g(x) = \sum_{k \in \mathbb{N}} k \chi_{I_k}(x)$ where $I_k = [k, k+1/k^3)$. By Corollary 10, we have that

$$\int g(x)\,dx = \int \sum_{k\in\mathbb{N}} k\chi_{I_k}(x)\,dx = \sum_{k\in\mathbb{N}} \int k\chi_{I_k}(x)\,dx = \sum_{k\in\mathbb{N}} k\cdot m(I_k) = \sum_{k\in\mathbb{N}} \frac{1}{k^2} < \infty,$$

thus g is integrable. For each k, define the function $g_k(x) = \min \{h_k(x), h'_k(x)\} \chi_{I_k}(x)$, where

$$h_k(x) = 2k^4(x-k)$$
 and $h'_k(x) = -2k^4(x-k-1/k^3)$.

 h_k and h'_k are both lines, and thus continuous. Additionally, the minimum of two continuous functions is continuous, thus g_k is continuous on I_k . We also have that $g_k(k) = g_k(k+1/k^3) = 0$, and since g_k is clearly zero outside of I_k , we have that g_k is continuous everywhere.

We will now show that $g_k(x) \leq g(x)$ for all x and k. If $k \leq x < k + 1/2k^3$, then

$$h_k(x) < 2k^4(k+1/2k^3-k) = 2k^4/2k^3 = k = g(x) < h'_k(x),$$

and if $k + 1/2k^3 \le x < k + 1/k^3$, we have

$$h'_k(x) \le -2k^4(k+1/2k^3-k-1/k^3) = -2k^4/(-2k^3) = k = g(x) \le h_k(x),$$

and since $g(x) = g_k(x) = 0$ for x not contained in any I_k , we have that $g_k(x) \leq g(x)$ everywhere.

Now, define the function f as

$$f(x) = \sum_{k \in \mathbb{N}} g_k(x)$$

The I_k are disjoint, and so if $x \in [k, k+1/k^3)$ for some k, then $f(x) = g_k(x)$ and $f(x) = g_m(x) = 0$ for all $m \neq k$. This combined with the fact that $g_k(x)$ is continuous everwhere for all k shows that f is continuous. We also have for all x that $f(x) \leq g_k(x) \leq g(x)$ for some k, and thus by monotonicity f is integrable. Finally, since $f(k+1/2k^3) = k$ for arbitrary $k \in \mathbb{N}$, we have that $\limsup_{x \to \infty} f(x) = \infty$, thus completing the first part of the proof.

Next, restrict f to being uniformly continuous and integrable, and for $k \in \mathbb{N}_0$, define the intervals $I_k = [k, k+1]$. The uniform continuity of f guarantees a minimum value over all compact sets, thus we can define $x_k = \min_{x \in I_k} f(x)$. Additionally, since the

inervals I_k are almost disjoint, we have that

$$\sum_{k \in \mathbb{N}_0} x_k = \sum_{k \in \mathbb{N}_0} x_k m(I_k) = \sum_{k \in \mathbb{N}_0} \int_{I_k} x_k \, dx \le \sum_{k \in \mathbb{N}_0} \int_{I_k} f(x) \, dx \le \int f(x) \, dx < \infty,$$

thus the sum $\sum_{k \in \mathbb{N}_0} x_n$ must be finite. Suppose, for the sake of contradiction, that $\lim_{x \to \infty} f(x) = L > 0$, then for any $0 < \varepsilon < L$, we can choose $N \in \mathbb{N}$ where $x > N \Longrightarrow |f(x) - L| < \varepsilon$, thus if x > N, we have that $f(x) > L - \varepsilon$. But we have that

$$\infty = \sum_{k>N} L - \varepsilon \le \sum_{k>N} x_k \le \sum_{k\in\mathbb{N}_0} x_k \le \int f(x) \, dx,$$

which is a contradiction. This forces L=0 since f is non-negative, showing that $\lim_{x\to\infty} f(x)=0$. Defining g(x)=f(-x) and using the immediate result, we can see that $0=\lim_{x\to\infty} g(x)=\lim_{x\to-\infty} g(-x)=\lim_{x\to-\infty} f(x)$, thus $\lim_{|x|\to\infty} f(x)=0$ and the proof is complete.

10) Fix a non-negative measurable function f on \mathbb{R}^d , and for $k \in \mathbb{Z}$ define the sets E_k and F_k as follows:

$$E_k = \{x \in \mathbb{R}^d : 2^k < f(x)\}$$
 and $F_k = \{x \in \mathbb{R}^d : 2^k < f(x) \le 2^{k+1}\}$,

then the following are equivalent:

- (a) f is integrable
- (b) $\sum_{k \in \mathbb{Z}} 2^k m(E_k) < \infty$
- (c) $\sum_{k\in\mathbb{Z}} 2^k m(F_k) < \infty$

Proof: We will show that (a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (a).

First, suppose f is integrable. Using Corollary 10 we can see that

$$\sum_{k \in \mathbb{Z}} 2^k m(E_k) = \sum_{k \in \mathbb{Z}} \int_{E_k} 2^k \, dx = \sum_{k \in \mathbb{Z}} \int 2^k \chi_{E_k}(x) \, dx = \int \sum_{k \in \mathbb{Z}} 2^k \chi_{E_k}(x) \, dx.$$

We also have that $\sum_{k \in \mathbb{Z}} 2^k \chi_{E_k}(x) < 2f(x)$, since if $2^n < f(x) \le 2^{n+1}$, then

$$\sum_{k \in \mathbb{Z}} 2^k \chi_{E_k}(x) = \sum_{k \le n} 2^k = \sum_{k \in \mathbb{N}} 2^{-k} + \sum_{0 \le k \le n} 2^k = 1 + 2^{n+1} - 1 = 2^{n+1} < 2f(x),$$

which shows that

$$\int \sum_{k \in \mathbb{Z}} 2^k \chi_{E_k}(x) \, dx < \int 2f(x) \, dx = 2 \int f(x) \, dx < \infty,$$

thus proving (a) \Longrightarrow (b). Next, assume (b). Because $F_k \subset E_k$, we have that

$$\sum_{k\in\mathbb{Z}} 2^k m(F_k) < \sum_{k\in\mathbb{Z}} 2^k m(E_k) < \infty,$$

showing that (b) \Longrightarrow (c). Finally, assume (c). Since f is non-negative, we have that $\{f \neq 0\} = \bigcup_{k \in \mathbb{Z}} F_k$, and since the F_k are disjoint, we have

$$\int f(x) \, dx = \sum_{k \in \mathbb{N}} \int_{F_k} f(x) \, dx \le \sum_{k \in \mathbb{N}} \int_{F_k} 2^{k+1} \, dx = 2 \sum_{k \in \mathbb{N}} 2^k m(F_k) < \infty,$$

thus (c) \Longrightarrow (a), completing the proof.

Corollary) Fix $a \in \mathbb{R}$ and define the functions f_a and g_a on \mathbb{R}^d as

$$f_a(x) = \begin{cases} |x|^{-a} & \text{if } |x| \le 1 \\ 0 & \text{otherwise} \end{cases}$$
 and $g_a(x) = \begin{cases} |x|^{-a} & \text{if } |x| > 1 \\ 0 & \text{otherwise} \end{cases}$,

then f_a is integrable if and only if 0 < a < d, and g_a is integrable if and only if a > d. Proof: Define the sets F_k with $f(x) = |x|^{-a}$ as before. Solving for |x|, we find that

$$F_k = \left\{ x \in \mathbb{R}^d : 2^{-(k+1)/a} \le |x| < 2^{-k/a} \right\}.$$

Additionally, $F_k = 2^{-k/a}F$, where $F = \{x \in \mathbb{R}^d : 2^{-1/a} \le |x| < 1\}$, and thus $m(F_k) = (2^{-k/a})^d m(F)$. This combined with the fact that, for f_a , k < 0 implies $F_k = \emptyset$, shows that

$$\sum_{k \in \mathbb{Z}} 2^k m(F_k) = \sum_{k \in \mathbb{N}_0} 2^k m(F_k) = m(F) \sum_{k \in \mathbb{N}_0} 2^{k(1 - d/a)},$$

but this series converges if and only if 1 - d/a is negative, i.e. when 0 < a < d, thus by the previous theorem we have established that f_a is integrable if and only if 0 < a < d. We also have that, for $g_a(x)$, $k \ge 0$ implies $F_k = \emptyset$, thus

$$\sum_{k \in \mathbb{Z}} 2^k m(F_k) = \sum_{k \in \mathbb{N}} \frac{m(F_{-k})}{2^k} = m(F) \sum_{k \in \mathbb{N}} 2^{k(d/a - 1)},$$

which converges if and only if d/a - 1 is negative, i.e. when a > d, and again by the previous theorem we have proven the case of g_a .

11) If f is a real-valued function integrable on \mathbb{R}^d , and if $\int_E f \geq 0$ for all measurable sets $E \subseteq \mathbb{R}^d$, then $f \geq 0$ a.e.

Proof: Suppose the proposition is false, then there exists some r > 0 where the set $E = \{f < -r\}$ has non-zero measure. Since f is integrable and thus measurable, we have that E is also measurable. From this, we see that

$$\int_{E} f(x) dx < \int_{E} -r dx = -r \cdot m(E) < 0,$$

which is a contradiction since E is measurable. Thus, we must have that m(E) = 0 for all r > 0, showing that $f \ge 0$ a.e.

Corollary) If $\int_E f = 0$ for all measurable sets $E \subseteq \mathbb{R}^d$, then f = 0 a.e.

Proof: By the previous theorem, we have that $f \ge 0$ a.e. We also have that $\int_E -f = -\int_E f = 0$ for all E, showing that $-f \ge 0$ a.e., and thus $f \le 0$ a.e. This proves that $0 \le f \le 0$ a.e., showing f = 0 a.e.

12) There exists an integrable function f on \mathbb{R}^d and a sequence of integrable functions $\{f_n\}_{n\in\mathbb{N}}$ on \mathbb{R}^d where, as $n\to\infty$, $\|f-f_n\|\to0$ but $f_n\to f$ nowhere.

Proof: For $k, m \in \mathbb{N}$, define the sets $I_{k,m}$ as

$$I_{k,m} = \left\{ x \in \mathbb{R}^d : (m-1)/2^k \le |x| < m/2^k \right\}.$$

We will consider the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ defined as $f_n=\chi_{I_{k,m}}$, where $f_1=\chi_{I_{1,1}}$, and for k to increase, m must traverse from 1 to $k2^k$. For example, the sequence starts like this:

\overline{n}	1	2	3	4	5	6	7
f_n	$\chi_{I_{1,1}}$	$\chi_{I_{1,2}}$	$\chi_{I_{2,1}}$	$\chi_{I_{2,2}}$	$\chi_{I_{2,3}}$	$\chi_{I_{2,4}}$	$\chi_{I_{2,5}}$
\overline{n}	8	9	10	11	12	13	14
f_n	$\chi_{I_{2,6}}$	$\chi_{I_{2,7}}$	$\chi_{I_{2,8}}$	$\chi_{I_{3,1}}$	$\chi_{I_{3,2}}$	$\chi_{I_{3,3}}$	$\chi_{I_{3,4}}$

Now, define the set $I_r = \{x \in \mathbb{R}^d : |x| < r\}$ if r > 0 and $I_r = \emptyset$ if r = 0. Fixing k, we can see that

$$I_{k,m} = I_{m/2^k} \setminus I_{(m-1)/2^k},$$

and since $I_{r_1} \subseteq I_{r_2}$ if $r_1 \le r_2$, we have that

$$m(I_{k,m}) = m(I_{m/2^k}) - m(I_{(m-1)/2^k}) = m(I_1) \left(\frac{m^d}{2^{kd}} - \frac{(m-1)^d}{2^{kd}}\right)$$

$$= m(I_1) \left(\frac{m^d - (m-1)^d}{2^{kd}} \right).$$

Note that the derivative of $x^d - (x-1)^d$ w.r.t. x is $d(x^{d-1} - (x-1)^{d-1})$, which is positive for all x > 0, thus $m^d - (m-1)^d$ is increasing over the positive integers. Using this we see that $m_1 \le m_2$ implies that $m(I_{k,m_1}) \le m(I_{k,m_2})$, and thus

$$\int \chi_{I_{k,m_1}}(x) \, dx = m(I_{k,m_1}) \le m(I_{k,m_2}) = \int \chi_{I_{k,m_2}}(x) \, dx.$$

Additionally, we have that

$$m(I_{k,k2^k}) = m(I_1) \left(\frac{k^d 2^{kd} - (k2^k - 1)^d}{2^{kd}} \right),$$
 (1)

as well as

$$k^d 2^{kd} - (k2^k - 1)^d = -(d - 1)k^{d - 1} 2^{k(d - 1)} + \dots + (-1)^{d - 1} (d - 1)k 2^k + (-1)^d \le M 2^{k(d - 1)},$$

where M is any constant larger than the sum of the binomial coefficients in the expansion of $(k2^k-1)^d$. Note that M is defined independently of k, thus we can see that (1) is bounded by $M2^{k(d-1)}/2^{kd} = M/2^k$, but this tends to 0 as $k \to \infty$, and thus (1) tends to 0 as well. Consequently, we have that

$$\lim_{n \to \infty} \int f_n(x) \, dx = \lim_{n \to \infty} \int \chi_{I_{\eta_k, \eta_m}}(x) \, dx \le \lim_{n \to \infty} \int \chi_{I_{\eta_k, \eta_k 2^{\eta_k}}}(x) \, dx$$
$$= \lim_{k \to \infty} m(I_{k, k2^k}) = 0,$$

where η_k and η_m are the corresponding values of k and m for each n taken in the limit. Thus, setting f(x) = 0, we have shown that $||f_n - f|| \to 0$ as $n \to \infty$ for some function f.

We will now show that $\lim_{n\to\infty} f_n(x)$ exists nowhere. Fix $x\in\mathbb{R}^d$. Note that for fixed k, the sets $I_{k,m}$ are disjoint over $1\leq m\leq k2^k$, and that

$$\bigcup_{1 \le m \le k2^k} I_{k,m} = \{ x \in \mathbb{R}^d : |x| < k \}.$$

Thus, if |x| = r, then for each integer k > r, there exists m_k where $x \in I_{k,m_k}$. This means that x is contained in infinitely many of the $I_{k,m}$, hence $f_n(x) = 1$ for infinitely many $n \in \mathbb{N}$. For fixed k > r, we have that x is contained in one of $k2^k$ disjoint sets, and thus for each k we have m'_k where $x \notin I_{k,m'_k}$, thus showing that $f_n(x) = 0$ for infinitely many n. This is only possible when $\lim_{n\to\infty} f_n(x)$ does not exist at x, thus completing the proof.