Tema VI: Евклидовы и унитарные пространства

1. Пространства со скалярным произведением

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2024/2025 учебный год

Скалярное произведение

В этой теме мы работаем с векторными пространствами над полем $\mathbb R$ действительных чисел или над полем $\mathbb C$ комплексных чисел. Для $\alpha\in\mathbb C$ через $\overline{\alpha}$ обозначается число, комплексно сопряженное к α .

Определения

Пусть F – одно из полей $\mathbb R$ и $\mathbb C$, а V – векторное пространство над F. Отображение $V \times V \to F$, результат применения которого к паре векторов $\mathbf x, \mathbf y \in V$ обозначается $\mathbf x \mathbf y$ (или $(\mathbf x, \mathbf y)$, или $\langle \mathbf x \, | \, \mathbf y \rangle$) называется *скалярным произведением* в V, если выполнены следующие аксиомы:

- 1) $\forall \mathbf{x}, \mathbf{y} \in V \quad \mathbf{x}\mathbf{y} = \overline{\mathbf{y}}\overline{\mathbf{x}};$
- 2) $\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \ (\alpha \mathbf{x}) \mathbf{y} = \alpha(\mathbf{x} \mathbf{y});$
- 3) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$ (скалярное произведение дистрибутивно относительно сложения векторов);
- 4) $\forall \mathbf{x} \in V \quad \mathbf{x}\mathbf{x} \geqslant 0$, причем $\mathbf{x}\mathbf{x} = 0$ тогда и только тогда, когда $\mathbf{x} = \mathbf{0}$.

Пространство со скалярным произведением над $\mathbb R$ называется *евклидовым*; пространство со скалярным произведением над $\mathbb C$ называется *унитарным*.

Комментарии к определению скалярного произведения

- Мы обычно используем обозначение $\mathbf{x}\mathbf{y}$. Обозначение (\mathbf{x},\mathbf{y}) уместно тогда, когда в рассматриваемом пространстве (как, например, в $\mathbb{R}[x]$) есть «свое» умножение. Обозначение Дирака $\langle \mathbf{x} \, | \, \mathbf{y} \rangle$ используется в квантовой механике.
- Как и рассматривавшееся в теме I скалярное произведение векторов трехмерного пространства, скалярное произведение в абстрактном векторном пространстве не является алгебраической операцией (в смысле определения операции из курса «Введение в математику»), поскольку его результатом является число, а не вектор.
- ullet Если $F = \mathbb{R}$, то аксиома 1) означает, что $\mathbf{x}\mathbf{y} = \mathbf{y}\mathbf{x}$. Иными словами, скалярное произведение в евклидовом пространстве коммутативно.
- Хотя для комплексного числа α соотношение $\alpha\geqslant 0$, вообще говоря, не имеет смысла (поскольку на множестве всех комплексных чисел нет совместимого с умножением и сложением отношения порядка), аксиома 4) осмысленна не только в евклидовом, но и в унитарном пространстве. В самом деле, из аксиомы 1) вытекает, что $\mathbf{x}\mathbf{x}=\overline{\mathbf{x}\mathbf{x}}$, а потому $\mathbf{x}\mathbf{x}\in\mathbb{R}$ для любого $\mathbf{x}\in V$ и в случае, когда рассматриваются вектора над \mathbb{C} .

Примеры пространств со скалярным произведением

Пример 1. Трехмерное пространство аналитической геометрии с обычным скалярным произведением векторов $\vec{a}\vec{b}:=|\vec{a}|\cdot|\vec{b}|\cdot\cos(\widehat{a},\overrightarrow{b})$ евклидово, ибо аксиомы 1)–4) – это известные нам свойства такого произведения.

Пример 2. Зафиксируем базис плоскости \mathbb{R}^2 и рассмотрим следующее отображение ullet: $\mathbb{R}^2 imes \mathbb{R}^2 o \mathbb{R}$: для векторов $\vec{x} = (x_1, x_2)$ и $\vec{y} = (y_1, y_2)$ положим

$$\vec{x} \bullet \vec{y} := x_1 y_1 - x_1 y_2 - x_2 y_1 + 2x_2 y_2.$$

Можно проверить, что аксиомы 1)-4) выполнены, и потому множество векторов плоскости с произведением • является евклидовым пространством.

Заметим, что для векторов плоскости определено и обычное скалярное произведение из примера 1. Поэтому в одном и том же векторном пространстве скалярное произведение можно вводить разными способами.

Пример 3. Рассмотрим векторное пространство $\mathbb{R}[x]$ всех многочленов над полем \mathbb{R} . Для произвольных многочленов $f,g\in\mathbb{R}[x]$ положим $(f,g):=\int\limits_0^1 f(t)g(t)dt$. Нетрудно убедиться, что эта операция удовлетворяет аксиомам 1)–4). Это означает, что $\mathbb{R}[x]$ – евклидово пространство.

Примеры пространств со скалярным произведением (2)

Следующий пример показывает, как ввести скалярное произведение в *любом* конечномерном векторном пространстве над $\mathbb R$ или $\mathbb C.$

Пример 4. Пусть V — произвольное ненулевое конечномерное векторное пространство над $\mathbb R$ или $\mathbb C$, а $\mathbf b_1, \, \mathbf b_2, \, \dots, \, \mathbf b_n$ — его базис. Пусть $\mathbf x, \mathbf y \in V$. Обозначим координаты векторов $\mathbf x$ и $\mathbf y$ в базисе $\mathbf b_1, \, \mathbf b_2, \, \dots, \, \mathbf b_n$ через $(\alpha_1, \alpha_2 \dots, \alpha_n)$ и $(\beta_1, \beta_2, \dots, \beta_n)$ соответственно. Положим

$$\mathbf{x}\mathbf{y} := \alpha_1 \overline{\beta_1} + \alpha_2 \overline{\beta_2} + \dots + \alpha_n \overline{\beta_n}.$$
 (*)

Простая проверка показывает, что аксиомы 1)–4) в этом случае также выполняются. Следовательно, пространство V с введенной операцией является пространством со скалярным произведением. Если V – пространство над \mathbb{R} , определение (*) упрощается до:

$$\mathbf{x}\mathbf{v} := \alpha_1\beta_1 + \alpha_2\beta_2 + \cdots + \alpha_n\beta_n$$
.

Если обозначить через [x] координатный *столбец* вектора x, то формулу (*) можно компактно записать как

$$\mathbf{x}\mathbf{y} := [\mathbf{x}]^T \overline{[\mathbf{y}]}.$$

Простейшие свойства пространств со скалярным произведением

Аксиома 2) утверждает, что скаляр можно выносить за скобки от первого сомножителя. В действительности, скаляр можно выносить и от второго сомножителя, но при этом его надо сопрягать. А именно,

$$\forall \mathbf{x}, \mathbf{y} \in V \ \forall \alpha \in F \quad \mathbf{x}(\alpha \mathbf{y}) = \overline{\alpha}(\mathbf{x}\mathbf{y}). \tag{*}$$

В самом деле, аксиомы 1) и 2) и свойства комплексного сопряжения дают

$$\mathbf{x}(\alpha \mathbf{y}) \stackrel{1)}{=} \overline{(\alpha \mathbf{y})} \mathbf{x} \stackrel{2)}{=} \overline{\alpha} (\mathbf{y} \mathbf{x}) = \overline{\alpha} \cdot \overline{\mathbf{y}} \mathbf{x} \stackrel{1)}{=} \overline{\alpha} (\mathbf{x} \mathbf{y}).$$

Над \mathbb{R} формула (*) упрощается до $\mathbf{x}(\alpha \mathbf{y}) = \alpha(\mathbf{x}\mathbf{y})$.

Аналогичное замечание можно сделать об аксиоме 3): скалярное произведение дистрибутивно относительно сложения не только по первому, но и по второму аргументу. В самом деле, аксиомы 1) и 3) дают

$$\mathbf{x}(\mathbf{y}+\mathbf{z}) \stackrel{1)}{=} \overline{(\mathbf{y}+\mathbf{z})\mathbf{x}} \stackrel{3)}{=} \overline{\mathbf{y}\mathbf{x}+\mathbf{z}\mathbf{x}} = \overline{\mathbf{y}\mathbf{x}} + \overline{\mathbf{z}\mathbf{x}} \stackrel{1)}{=} \mathbf{x}\mathbf{y} + \mathbf{x}\mathbf{z}.$$

Далее, для любого вектора $\mathbf{x} \in V$ выполнены равенства

$$\mathbf{0} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{0} = 0$$
.

поскольку
$$\mathbf{0} \cdot \mathbf{x} = (0 \cdot \mathbf{x})\mathbf{x} = 0 \cdot (\mathbf{x}\mathbf{x}) = 0$$
 и $\mathbf{x} \cdot \mathbf{0} = \overline{\mathbf{0} \cdot \mathbf{x}} = \overline{\mathbf{0}} = 0$.

Ослабленный закон сокращения

Следующее утверждение как по формулировке, так и по доказательству, вполне аналогично ослабленному закону сокращения для скалярного произведения в обычном трехмерном пространстве.

Ослабленный закон сокращения

Если V — пространство со скалярным произведением, а вектора $\mathbf{a}, \mathbf{b} \in V$ таковы, что для любого вектора $\mathbf{x} \in V$ выполняется равенство $\mathbf{a}\mathbf{x} = \mathbf{b}\mathbf{x}$, то $\mathbf{a} = \mathbf{b}$. То же заключение верно, если для любого вектора $\mathbf{x} \in V$ выполняется равенство $\mathbf{x}\mathbf{a} = \mathbf{x}\mathbf{b}$.

Доказательство. Докажем первое утверждение. Из условия вытекает, что $(\mathbf{a}-\mathbf{b})\mathbf{x}=0$ для любого $\mathbf{x}\in V$. В частности, $(\mathbf{a}-\mathbf{b})(\mathbf{a}-\mathbf{b})=0$. В силу аксиомы 4) отсюда вытекает, что $\mathbf{a}-\mathbf{b}=\mathbf{0}$, т.е. $\mathbf{a}=\mathbf{b}$. Второе утверждение доказывается аналогично.

Длина вектора

Определение

Скалярное произведение вектора ${\bf x}$ на себя называется *скалярным квадратом* вектора ${\bf x}$ и обозначается через ${\bf x}^2.$

Аксиома 4) позволяет дать следующее

Определение

Длина вектора \mathbf{x} – это неотрицательное действительное число $|\mathbf{x}| := \sqrt{\mathbf{x}\mathbf{x}}$.

Это определение согласуется с понятием длины вектора в обычном трехмерном пространстве. На пространства со скалярным произведением переносятся многие свойства длин векторов трехмерного пространства. В частности, для любого $\alpha \in F$

$$|\alpha \mathbf{x}| = |\alpha| \cdot |\mathbf{x}|.$$

В самом деле, $\alpha \overline{\alpha} = |\alpha|^2$, и потому

$$|\alpha \mathbf{x}| = \sqrt{(\alpha \mathbf{x})(\alpha \mathbf{x})} = \sqrt{\alpha \overline{\alpha}(\mathbf{x}\mathbf{x})} = \sqrt{|\alpha|^2(\mathbf{x}\mathbf{x})} = \sqrt{|\alpha|^2} \cdot \sqrt{\mathbf{x}\mathbf{x}} = |\alpha| \cdot |\mathbf{x}|.$$

Орт вектора

Как и в обычном трехмерном пространстве, справедливо

Замечание об орте вектора

Если $\mathbf{x} \neq \mathbf{0}$, то длина вектора $\frac{\mathbf{x}}{|\mathbf{x}|}$ равна 1.

 $oldsymbol{\mathcal{L}}$ оказательство. Используя свойство $|lpha \mathbf{x}| = |lpha| \cdot |\mathbf{x}|$, имеем

$$\left| \frac{\mathbf{x}}{|\mathbf{x}|} \right| = \left| \frac{1}{|\mathbf{x}|} \cdot \mathbf{x} \right| = \left| \frac{1}{|\mathbf{x}|} \right| \cdot |\mathbf{x}| = \frac{1}{|\mathbf{x}|} \cdot |\mathbf{x}| = 1,$$

что и требовалось доказать.

Определение

Если $\mathbf{x} \neq \mathbf{0}$, то вектор $\frac{\mathbf{x}}{|\mathbf{x}|}$ называется *ортом* вектора \mathbf{x} .

Неравенство Коши-Буняковского

Теорема (неравенство Коши-Буняковского)

Пусть V – пространство со скалярным произведением и $\mathbf{x},\mathbf{y}\in V$. Тогда

$$|\mathbf{x}\mathbf{y}| \leqslant |\mathbf{x}| \cdot |\mathbf{y}|,\tag{\dagger}$$

причем равенство достигается тогда и только тогда, когда вектора ${f x}$ и ${f y}$ линейно зависимы.

Доказательство. Если ${\bf y}={\bf 0}$, то $|{\bf x}{\bf y}|=|{\bf x}|\cdot|{\bf y}|=0$ и доказывать нечего. Поэтому можно считать, что ${\bf y}\neq{\bf 0}$, и в силу аксиомы 4) ${\bf y}{\bf y}>0$. Рассмотрим вектор ${\bf x}-\alpha{\bf y}$, где α – скаляр. По аксиоме 4) $({\bf x}-\alpha{\bf y})({\bf x}-\alpha{\bf y})\geqslant 0$. Раскрывая скобки и вынося скаляры вперед, получаем неравенство

$$\mathbf{x}\mathbf{x} - \alpha\mathbf{y}\mathbf{x} - \overline{\alpha}\mathbf{x}\mathbf{y} + \alpha\overline{\alpha}\mathbf{y}\mathbf{y} \geqslant 0.$$

Подставим в него вместо α число $\frac{\mathbf{x}\mathbf{y}}{\mathbf{y}\mathbf{y}}.$ Получим

$$0 \leqslant \mathbf{x}\mathbf{x} - \frac{\mathbf{x}\mathbf{y}}{\mathbf{y}\mathbf{y}} \cdot \mathbf{y}\mathbf{x} - \frac{\overline{\mathbf{x}\mathbf{y}}}{\mathbf{y}\mathbf{y}} \cdot \mathbf{x}\mathbf{y} + \frac{\mathbf{x}\mathbf{y}}{\mathbf{y}\mathbf{y}} \cdot \frac{\overline{\mathbf{x}\mathbf{y}}}{\mathbf{y}\mathbf{y}} \cdot \mathbf{y}\mathbf{y} =$$

$$= \mathbf{x}\mathbf{x} - \frac{\mathbf{x}\mathbf{y} \cdot \overline{\mathbf{x}\mathbf{y}}}{\mathbf{y}\mathbf{y}} = \mathbf{x}\mathbf{x} - \frac{|\mathbf{x}\mathbf{y}|^2}{\mathbf{y}\mathbf{y}}.$$

Неравенство Коши-Буняковского (2)

Итак, $\frac{|\mathbf{x}\mathbf{y}|^2}{\mathbf{y}\mathbf{y}} \leqslant \mathbf{x}\mathbf{x}$. Домножая обе части на положительное число $\mathbf{y}\mathbf{y}$, имеем $|\mathbf{x}\mathbf{y}|^2 \leqslant \mathbf{x}\mathbf{x} \cdot \mathbf{y}\mathbf{y}$. Заменяя в последнем неравенстве $\mathbf{x}\mathbf{x}$ на $|\mathbf{x}|^2$ и $\mathbf{y}\mathbf{y}$ на $|\mathbf{y}|^2$ и извлекая квадратный корень из обеих частей, получаем (\dagger) .

Теперь займемся вторым утверждением теоремы (что равенство в (\dagger) достигается тогда и только тогда, когда вектора $\mathbf x$ и $\mathbf y$ линейно зависимы).

Если вектора ${\bf x}$ и ${\bf y}$ линейно независимы, то ${\bf x}-\alpha{\bf y}\neq{\bf 0}$ для всякого α и верно строгое неравенство $({\bf x}-\alpha{\bf y})({\bf x}-\alpha{\bf y})>0$. Тогда во всех выкладках выше можно заменить нестрогое неравенство на строгое и вместо (\dagger) получить неравенство $|{\bf xy}|<|{\bf x}|\cdot|{\bf y}|$. Таким образом, если в (\dagger) имеет место равенство, то ${\bf x}$ и ${\bf y}$ линейно зависимы.

Докажем обратное утверждение. Пусть ${f x}$ и ${f y}$ линейно зависимы. Раз ${f y} \neq {f 0}$, имеем ${f x} = \gamma {f y}$ для некоторого скаляра γ . Отсюда

$$|\mathbf{x}\mathbf{y}| = \big|(\gamma\mathbf{y})\mathbf{y}\big| = \big|\gamma(\mathbf{y}\mathbf{y})\big| = |\gamma| \cdot |\mathbf{y}\mathbf{y}| = |\gamma| \cdot |\mathbf{y}| \cdot |\mathbf{y}| = |\gamma\mathbf{y}| \cdot |\mathbf{y}| = |\mathbf{x}| \cdot |\mathbf{y}|.$$

Теорема доказана.

Неравенство Коши-Буняковского – обсуждение

Неравенство Коши–Буняковского выглядит просто и доказывается несложно. Однако при внешней простоте – это глубокий и важный факт.

Его специализация для n-мерного пространства над $\mathbb R$ со скалярным произведением, введенным формулой $\mathbf x \mathbf y := [\mathbf x]^T[\mathbf y]$, дает неочевидное неравенство

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2},$$

которое, собственно, и доказал Коши (в 1821 г.).

Специализация для пространства непрерывных функций из отрезка [0,1] в $\mathbb R$ дает интегральное неравенство

$$\left| \int_0^1 f(x)g(x) \, dx \right| \leq \sqrt{\left(\int_0^1 f(x)^2 \, dx \right)} \cdot \sqrt{\left(\int_0^1 g(x)^2 \, dx \right)},$$

которое, собственно, и доказал Буняковский (в 1859 г.).

В квантовой механике неравенство Коши-Буняковского приводит к *принципу неопределенности Гейзенберга*.

Угол между векторами

Если пространство V евклидово и $\mathbf{x},\mathbf{y} \neq \mathbf{0}$, то из неравенства Коши–Буняковского следует, что

$$-1 \leqslant \frac{\mathbf{x}\mathbf{y}}{|\mathbf{x}| \cdot |\mathbf{y}|} \leqslant 1.$$

Это делает корректным следующее определение.

Определение

Углом между ненулевыми векторами ${\bf x}$ и ${\bf y}$ евклидова пространства называется наименьший угол φ такой, что

$$\cos \varphi = \frac{\mathbf{x}\mathbf{y}}{|\mathbf{x}| \cdot |\mathbf{y}|}.$$

Угол между нулевым вектором и любым другим вектором не определен.

Отметим, что формула для вычисления косинуса угла между векторами в евклидовом пространстве полностью аналогична соответствующей формуле для векторов в обычном трехмерном пространстве.

• В унитарном пространстве угол между векторами не определен.

Неравенство для длины суммы векторов

Из неравенства Коши-Буняковского вытекает

Следствие о длине суммы векторов

Для произвольных векторов ${\bf x}$ и ${\bf y}$ из пространства со скалярным произведением выполнено неравенство

$$|\mathbf{x} + \mathbf{y}| \leqslant |\mathbf{x}| + |\mathbf{y}|. \tag{\triangle}$$

Если вектора \mathbf{x} и \mathbf{y} линейно независимы, то $|\mathbf{x}+\mathbf{y}|<|\mathbf{x}|+|\mathbf{y}|$.

Доказательство. Имеем

$$\begin{split} |\mathbf{x}+\mathbf{y}|^2 &= (\mathbf{x}+\mathbf{y})(\mathbf{x}+\mathbf{y}) = |(\mathbf{x}+\mathbf{y})(\mathbf{x}+\mathbf{y})| = \\ &= |\mathbf{x}\mathbf{x}+\mathbf{x}\mathbf{y}+\mathbf{y}\mathbf{x}+\mathbf{y}\mathbf{y}| \leqslant \quad (\mathsf{Использовано неравенство} \\ &\leqslant |\mathbf{x}\mathbf{x}|+|\mathbf{x}\mathbf{y}|+|\mathbf{y}\mathbf{x}|+|\mathbf{y}\mathbf{y}| \quad \mathsf{для модуля суммы комплексных чисел}) = \\ &= |\mathbf{x}|^2 + 2|\mathbf{x}\mathbf{y}|+|\mathbf{y}|^2 \quad (\mathsf{Использовано равенство }|\mathbf{y}\mathbf{x}|=|\mathbf{x}\mathbf{y}|) \leqslant \\ &\leqslant |\mathbf{x}|^2 + 2|\mathbf{x}|\cdot|\mathbf{y}|+|\mathbf{y}|^2 \quad (\mathsf{неравенство Коши-Буняковского}) = \\ &= \left(|\mathbf{x}|+|\mathbf{y}|\right)^2. \end{split}$$

Итак, $|\mathbf{x}+\mathbf{y}|^2 \leqslant \left(|\mathbf{x}|+|\mathbf{y}|\right)^2$. Извлекая из обеих частей этого неравенства квадратный корень, получаем неравенство (\triangle).

Неравенство для длины суммы векторов (2)

Если вектора ${\bf x}$ и ${\bf y}$ линейно независимы, то $|{\bf xy}|<|{\bf x}|\cdot|{\bf y}|$. Заменяя использованное в нашей выкладке неравенство $|{\bf xy}|\leqslant|{\bf x}|\cdot|{\bf y}|$ на это строгое неравенство, получаем, что в этом случае $|{\bf x}+{\bf y}|<|{\bf x}|+|{\bf y}|$.

Неравенство (\triangle) обобщает известный факт элементарной геометрии: сумма длин двух сторон треугольника больше длины третьей стороны. Поэтому неравенство (\triangle) называют *неравенством треугольника*.

Определение

Расстоянием между векторами ${\bf x}$ и ${\bf y}$ в пространстве со скалярным произведением называется длина вектора ${\bf x}-{\bf y}.$

Свойства расстояния между векторами

Обозначим расстояние между векторами ${\bf x}$ и ${\bf y}$ через $d({\bf x},{\bf y}).$

Замечание о расстоянии между векторами

Если x, y и z – произвольные вектора из пространства со скалярным произведением, то:

- 1) $d(\mathbf{x}, \mathbf{x}) = 0$;
- 2) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x});$
- 3) выполнено неравенство

$$d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \geqslant d(\mathbf{x}, \mathbf{z}).$$

Доказательство. Свойства 1) и 2) очевидны. Докажем свойство 3). Имеем

$$d(\mathbf{x}, \mathbf{z}) = |\mathbf{x} - \mathbf{z}| = |(\mathbf{x} - \mathbf{y}) + (\mathbf{y} - \mathbf{z})| \leq |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{z}| = d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}).$$

Замечание доказано.

Расстояние и системы линейных уравнений

Системы линейных уравнений, взятые из реальных задач, обычно *переопределены* (число уравнений много больше числа неизвестных). Инженеры (геологи, физики, ...) полагают, что чем больше сделано измерений, тем достоверней будет результат.

Расстояние и системы линейных уравнений (2)

Однако из-за погрешностей измерения и ошибок округления получающиеся системы линейных уравнений *несовместны*. Понятно, что ответ «Ваша система не имеет решений» не удовлетворит инженера (геолога, физика, ...) – уравнения описывают некоторый реально существующий объект, т.е. решение *есть*! Как же найти решение несовместной системы?

Изменим постановку задачи: будем искать не такой вектор ${\bf x}$, что $A{\bf x}={\bf b}$, а такой вектор ${\bf x}$, что p естояние между векторами $A{\bf x}$ и ${\bf b}$ наименьшее. Заметим, что если система $A{\bf x}={\bf b}$ совместна, то такие псевдорешения будут в точности решениями в обычном смысле. Но псевдорешения существуют и для несовместных систем!

Возникает новый вопрос: как искать псевдорешения несовместных систем? Мы вскоре ответим на него.