Thin Shell Stuff

Ingo Nitschke

March 24, 2017

Contents

1	Metric Quantities		
	1.1	Coordinates	1
	1.2	Arrangements	2
	1.3	The Metric Tensor and Shape Operator	2
		1.3.1 The Volume Element	4
		1.3.2 The Levi-Civita Tensor and Hodge-Dualism	5
	1.4	Christoffel Symbols	5
2	Boundary Conditions		6
	2.1	No-Penetration Condition (NPC) for vector quantities	7
	2.2	Neumann Condition (NC) for vector quantities	7

1 Metric Quantities

In the following, we consider a **thin shell** of constant thickness $h \in \mathbb{R}$ around an oriented, boundarieless, compact Riemannian 2-manifold (surface) S defined by

$$S_h := S \times \left[-\frac{h}{2}, \frac{h}{2} \right] \subset \mathbb{R}^3.$$
 (1)

Constant thickness means, that the orthogonal measurement of the two disjoint boundaries $\Upsilon_h^+ \sqcup \Upsilon_h^- = \Upsilon_h := \partial \mathcal{S}_h$ is h at all boundary points. Thereby, be h small enough, so that $\mathcal{S}_h \subset \mathbb{R}^3$ contains no overlaps, i. e., it exists a surjection $\mathcal{S}_h \twoheadrightarrow \mathcal{S}$.

1.1 Coordinates

We define the coordinate in normal direction ν of the surface \mathcal{S} by $\xi \in \left[-\frac{h}{2}, \frac{h}{2}\right]$. If we use any choice of local coordinates $(u, v) \in U$ of the surface, so that the immersion $\mathbf{x} : U \mapsto \mathbb{R}^3$ parameterize $\mathcal{S} = \operatorname{Im}(\mathbf{x})$, then we can define the immersion $\tilde{\mathbf{x}} : U \times \left[-\frac{h}{2}, \frac{h}{2}\right] \mapsto \mathbb{R}^3$ with $\mathcal{S}_h = \operatorname{Im}(\tilde{\mathbf{x}})$ by

$$\tilde{\mathbf{x}} = \tilde{\mathbf{x}}(u, v, \xi) := \mathbf{x}(u, v) + \xi \boldsymbol{\nu}(u, v) = \mathbf{x} + \xi \boldsymbol{\nu}.$$
(2)

1.2 Arrangements

Lowercase letters i, j, k, ... are used as index for u and v, e.g., $\alpha_i dx^i$ is an 1-form in T^*S .

Uppercase letters I, J, K, ... are used for u, v and ξ , e.g., $\tilde{\alpha}^I \partial_I \tilde{\mathbf{x}} = \tilde{\alpha}^i \partial_i \tilde{\mathbf{x}} + \tilde{\alpha}^{\xi} \partial_{\xi} \tilde{\mathbf{x}}$ is a (contravariant) vector in TS_h .

The Tilde are used for quantities and relations in context of S_h , e.g., $\tilde{\alpha} \in TS_h$ but $\alpha \in TS$ and we can construct a relation $\tilde{\alpha} = \alpha + \alpha^{\xi} \nu$.

Full covariant descriptions (lower indices) are always used, unless otherwise is defined, e.g., $\mathbf{B} = \{B_{ij}\}$ is the full covariant shape operator, i.e., the second fundamental form in this representation.

Indexing and collector brackets, [] and $\{\}$, are used to switch between components and object representations, e.g., $[\mathbf{t}]_{ij} = t_{ij}$ and $\{t_{ij}\} = \mathbf{t}$.

Sharp and flat operator on tensors are generalisations of the usual flat and sharp operator on vector valued quantities and can be realized by matrix multiplications with the metric tensor \mathbf{g} and its inverse \mathbf{g}^{-1} , e.g., ${}^{\flat} \left\{ t^i_{\ j} \right\}^{\sharp} = \mathbf{g} \left\{ t^i_{\ j} \right\} \mathbf{g}^{-1} = \left\{ t^{\ j}_{\ i} \right\} = \mathbf{t}^{\sharp}$.

Tensor product means always the contraction of the last component of a tensor with the first of another tensor, e.g., $[s\mathbf{t}]_{ij} = s_i^{\ k} t_{kj}$, e.g., with an usual matrix product \cdot , this implies $s\mathbf{t} = s \cdot \mathbf{g}^{-1} \cdot \mathbf{t}$.

1.3 The Metric Tensor and Shape Operator

With an arbitrary choice of surface coordinates $(u, v) \in U$, we can calculate the canonical basic vectors $\partial_I \tilde{\mathbf{x}} \in T \mathcal{S}_h$ by

$$\partial_i \tilde{\mathbf{x}} = \partial_i \mathbf{x} + \xi \partial_i \boldsymbol{\nu} \tag{3}$$

$$\partial_{\varepsilon}\tilde{\mathbf{x}} = \boldsymbol{\nu}$$
. (4)

The metric tensor (first fundamental form) of thin shell is given by its components $\tilde{g}_{IJ} = \langle \partial_I \tilde{\mathbf{x}}, \partial_J \tilde{\mathbf{x}} \rangle_{\mathcal{S}_h}$. Therefore, for the mixed tangential-normal components holds $\tilde{g}_{i\xi} = \tilde{g}_{\xi i} = 0$, because

$$\langle \partial_i \boldsymbol{\nu}, \boldsymbol{\nu} \rangle_{\mathcal{S}_h} = \frac{1}{2} \partial_i \| \boldsymbol{\nu} \|_{\mathcal{S}_h}^2 = 0.$$
 (5)

For the pure normal component, we obtain $\tilde{g}_{\xi\xi} = \|\boldsymbol{\nu}\|_{\mathcal{S}_h}^2 = 1$, i. e., the co- and contravariant normal components of a tensor quantity are equivalently, e. g., (detailed)

$$\tilde{t}^{I}{}_{\xi J} = \tilde{g}_{\xi K} \tilde{t}^{IK}{}_{J} = \tilde{g}_{\xi k} \tilde{t}^{Ik}{}_{J} + \tilde{g}_{\xi \xi} \tilde{t}^{I\xi}{}_{J} = \tilde{t}^{I\xi}{}_{J}. \tag{6}$$

For the pure tangential components, we get a second degree tensor polynomial in ξ

$$\tilde{g}_{ij} = g_{ij} - 2\xi B_{ij} + \xi^2 \left[\mathbf{B}^2 \right]_{ij} = \left[\left(g - \xi \mathbf{B} \right)^2 \right]_{ij} \tag{7}$$

$$= g_{ij} - 2\xi B_{ij} + \xi^2 \left(\mathcal{H} B_{ij} - \mathcal{K} g_{ij} \right). \tag{8}$$

where the covariant shape operator (second fundamental form) is given by

$$B_{ij} = -\langle \partial_i \mathbf{x}, \partial_j \boldsymbol{\nu} \rangle_{\mathcal{S}_h} \tag{9}$$

and the *third fundamental form* by

$$\left[\mathbf{B}^{2}\right]_{ij} = \left\langle \partial_{i} \boldsymbol{\nu}, \partial_{j} \boldsymbol{\nu} \right\rangle_{\mathcal{S}_{h}}, \tag{10}$$

see [HW53]. $\mathcal{K} = |\mathbf{B}^{\sharp}|$ is the **Gaussian curvature** and $\mathcal{H} := \text{Tr}\mathbf{B} = B^{i}_{i}$ the **mean curvature**. (In a more differential geometrical context on surfaces, this is minus twice the mean curvature.) A more classical representation of the third fundamental form \mathbf{B}^{2} is

$$\mathbf{B}^2 = \mathcal{H}\mathbf{B} - \mathcal{K}\mathbf{g}. \tag{11}$$

Theorem 1. For the inverse thin shell metric $\tilde{\mathbf{g}}^{-1}$ holds

$$\tilde{g}^{ij} = \left(g^{ik} + \sum_{l=1}^{\infty} \xi^{l} \left[\mathbf{B}^{l}\right]^{ik}\right) \left(\delta_{k}^{j} + \sum_{\ell=1}^{\infty} \xi^{\ell} \left[\mathbf{B}^{\ell}\right]_{k}^{j}\right)$$
(12)

$$= \left[\left(\mathbf{g} + \sum_{\ell=1}^{\infty} \xi^{\ell} \mathbf{B}^{\ell} \right)^{2} \right]^{ij} , \tag{13}$$

$$\tilde{g}^{\xi\xi} = 1, \tag{14}$$

$$\tilde{g}^{i\xi} = \tilde{g}^{\xi i} = 0. \tag{15}$$

Proof. First we define the pure tangential components of the thin shell metric tensor as $\tilde{\mathbf{g}}_t := \{\tilde{g}_{ij}\}$. With $\boldsymbol{\delta} = \left\{\delta_j^i\right\}$ the Kronecker delta, we can write down in usual matrix notation

$$\tilde{\mathbf{g}} \cdot \tilde{\mathbf{g}}^{-1} = \begin{bmatrix} \tilde{\mathbf{g}}_t & O \\ O & 1 \end{bmatrix} \cdot \begin{bmatrix} \left\{ \tilde{g}^{ij} \right\} & \left\{ \tilde{g}^{i\xi} \right\} \\ \left\{ \tilde{g}^{\xi i} \right\} & \tilde{g}^{\xi \xi} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\delta} & O \\ O & 1 \end{bmatrix}. \tag{16}$$

Thus, we obtain

$$\tilde{g}^{\xi\xi} = 1, \tag{17}$$

$$\tilde{g}^{i\xi} = \tilde{g}^{\xi i} = 0, \qquad (18)$$

$$\left\{\tilde{g}^{ij}\right\} = \tilde{\mathbf{g}}_t^{-1} = (\mathbf{g} - \xi \mathbf{B})^{-2} = (\mathbf{g} - \xi \mathbf{B})^{-1} \cdot \left(\boldsymbol{\delta} - \xi \mathbf{B}^{\sharp}\right)^{-1}. \tag{19}$$

For h small enough, so that $\xi \|\mathbf{B}\| \le h \|\mathbf{B}\| < 1$ and exponent with a dot indicate matrix (endomorphism) power, we can use the Neumann serie

$$\left(\boldsymbol{\delta} - \xi \mathbf{B}^{\sharp}\right)^{-1} = \boldsymbol{\delta} + \sum_{\ell=1}^{\infty} \xi^{\ell} \left(\mathbf{B}^{\sharp}\right)^{\cdot \ell}, \qquad (20)$$

and therefore the assertion, because with $\mathbf{B}^{\mathfrak{k}} = (\mathbf{B} \cdot \mathbf{g}^{-1})^{\cdot \mathfrak{k}} \cdot \mathbf{g}$ we get

$$\left(\mathbf{B}^{\sharp}\right)^{\cdot \mathfrak{k}} = \left(\mathbf{B} \cdot \mathbf{g}^{-1}\right)^{\cdot \mathfrak{k}} = \mathbf{B}^{\mathfrak{k}} \cdot \mathbf{g}^{-1} = \left(\mathbf{B}^{\mathfrak{k}}\right)^{\sharp} \tag{21}$$

and

$$(\mathbf{g} - \xi \mathbf{B})^{-1} = \left(\left(\boldsymbol{\delta} - \xi \mathbf{B}^{\sharp} \right) \cdot \mathbf{g} \right)^{-1} = \mathbf{g}^{-1} \cdot \left(\boldsymbol{\delta} - \xi \mathbf{B}^{\sharp} \right)^{-1} = {}^{\sharp} \left(\boldsymbol{\delta} - \xi \mathbf{B}^{\sharp} \right)^{-1}. \tag{22}$$

Therefore, we get for $\tilde{\mathbf{g}}_t^{-1}$ a polynomial in $\xi \mathbf{B}$ and with successively applying (11),i.e., $\mathbf{B}^{\mathfrak{k}} = \mathcal{H}\mathbf{B}^{\mathfrak{k}-1} - \mathcal{K}\mathbf{B}^{\mathfrak{k}-2}$, we can always find polynomials p and q in \mathcal{K} , \mathcal{H} and ξ , so that holds $\tilde{\mathbf{g}}_t^{-1} = p(\mathcal{K}, \mathcal{H}, \xi)\mathbf{g}^{-1} + q(\mathcal{K}, \mathcal{H}, \xi)^{\sharp}\mathbf{B}^{\sharp}$. We will not carry this out in full generality, but let us mention some developments in ξ .

Conclusion 1. The developments of $\tilde{\mathbf{g}}_t^{-1}$ up to second degree in ξ are

$$\tilde{\mathbf{g}}_t^{-1} = \mathbf{g}^{-1} + \mathcal{O}(\xi) \,, \tag{23}$$

$$\tilde{\mathbf{g}}_t^{-1} = \mathbf{g}^{-1} + 2\xi^{\dagger} \mathbf{B}^{\dagger} + \mathcal{O}(\xi^2), \qquad (24)$$

$$\tilde{\mathbf{g}}_{t}^{-1} = \mathbf{g}^{-1} + 2\xi^{\sharp} \mathbf{B}^{\sharp} + 3\xi^{2}^{\sharp} (\mathbf{B}^{2})^{\sharp} + \mathcal{O}(\xi^{3})$$
(25)

$$= (1 - 3\xi^{2}\mathcal{K}) \mathbf{g}^{-1} + \xi (2 + 3\xi\mathcal{H})^{\sharp} \mathbf{B}^{\sharp} + \mathcal{O}(\xi^{3}).$$
 (26)

1.3.1 The Volume Element

To develop the thin shell volume element $\tilde{\mu}$ in normal direction at the surface volume element μ , we need a development of the determinant of the metric tensor $\tilde{\mathbf{g}}$.

Theorem 2. For the determinant of the thin shell metric tensor $|\tilde{\mathbf{g}}|$ holds

$$|\tilde{\mathbf{g}}| = (1 - \xi \mathcal{H} + \xi^2 \mathcal{K})^2 |\mathbf{g}|, \qquad (27)$$

Proof. The mixed components are zero, so we get

$$|\tilde{\mathbf{g}}| = \tilde{g}_{\xi\xi} |\tilde{\mathbf{g}}_t| = |\tilde{\mathbf{g}}_t|. \tag{28}$$

Now, we define $\sqrt{\tilde{\mathbf{g}}_t^{\sharp}} := (\mathbf{g} - \xi \mathbf{B})^{\sharp}$ as a square root of $\tilde{\mathbf{g}}_t^{\sharp}$, because

$$\tilde{\mathbf{g}}_{t}^{\sharp} = \left((\mathbf{g} - \xi \mathbf{B})^{2} \right)^{\sharp} = \left((\mathbf{g} - \xi \mathbf{B})^{\sharp} (\mathbf{g} - \xi \mathbf{B}) \right)^{\sharp} = (\mathbf{g} - \xi \mathbf{B})^{\sharp} (\mathbf{g} - \xi \mathbf{B})^{\sharp} = \left(\sqrt{\tilde{\mathbf{g}}_{t}^{\sharp}} \right)^{2}. \quad (29)$$

Hence, we can calculate

$$|\tilde{\mathbf{g}}| = |\tilde{\mathbf{g}}_t| = \left|\tilde{\mathbf{g}}_t^{\dagger}\mathbf{g}\right| = \left|\tilde{\mathbf{g}}_t^{\dagger}\right| |\mathbf{g}| = \left|\sqrt{\tilde{\mathbf{g}}_t^{\dagger}}\right|^2 |\mathbf{g}|.$$
 (30)

For the determinant of $\sqrt{\tilde{\mathbf{g}}_t^{\sharp}}$, we regard that \mathbf{g}^{\sharp} is the Kronecker delta, so we obtain

$$\left|\sqrt{\tilde{\mathbf{g}}_{t}^{\sharp}}\right| = \left|\mathbf{g}^{\sharp} - \xi \mathbf{B}^{\sharp}\right| = \left(1 - \xi B_{u}^{u}\right) \left(1 - \xi B_{v}^{v}\right) - \xi^{2} B_{u}^{v} B_{v}^{u} \tag{31}$$

$$=1-\xi (B_u^{\ u}+B_v^{\ v})+\xi^2 (B_u^{\ u}B_v^{\ v}-B_u^{\ v}B_v^{\ u})=(1-\xi\mathcal{H}+\xi^2\mathcal{K}). \tag{32}$$

Therefore a representation of the **thin shell volume element** $\tilde{\mu}$, depending on the surface volume element μ , is

$$\tilde{\mu} = \sqrt{|\tilde{\mathbf{g}}|} du \wedge dv \wedge d\xi = (1 - \xi \mathcal{H} + \xi^2 \mathcal{K}) \,\mu \wedge d\xi \tag{33}$$

$$= (1 - \xi \mathcal{H} + \xi^2 \mathcal{K}) d\xi \wedge \mu. \tag{34}$$

1.3.2 The Levi-Civita Tensor and Hodge-Dualism

1.4 Christoffel Symbols

The *Christoffel symbols* are needed to define an unique metric compatible derivation (Levi-Civita connection). With a choice of coordinates, the christoffel symbols (of second kind) on the thin shell are

$$\widetilde{\Gamma}_{IJ}^{K} = \frac{1}{2} \widetilde{g}^{KL} \left(\partial_{I} \widetilde{g}_{JL} + \partial_{J} \widetilde{g}_{IL} - \partial_{L} \widetilde{g}_{IJ} \right) . \tag{35}$$

On the surface S, they are equal defined, just omit the tilde and use lowercase letters for indexing.

Theorem 3. With $\beta_{ij}^{\ k} := B_{i\ |j}^{\ k} + B_{j\ |i}^{\ k} - B_{ij}^{\ |k}$ the second order expansions in normal direction of Christoffel symbols are

$$\widetilde{\Gamma}_{ij}^{k} = \Gamma_{ij}^{k} - \xi \beta_{ij}^{k} + \mathcal{O}(\xi^{2})$$
(36)

$$\widetilde{\Gamma}_{ij}^{\xi} = B_{ij} - \xi \left[\mathbf{B}^2 \right]_{ij} = (1 - \xi \mathcal{H}) B_{ij} + \xi \mathcal{K} g_{ij}$$
 (37)

$$\widetilde{\Gamma}_{i\xi}^{k} = \widetilde{\Gamma}_{\xi i}^{k} = -B_{i}^{k} - \xi \left[\mathbf{B}^{2} \right]_{i}^{k} + \mathcal{O}(\xi^{2}) \qquad = -\left(1 + \xi \mathcal{H} \right) B_{i}^{k} + \xi \mathcal{K} \delta_{i}^{k} + \mathcal{O}(\xi^{2}) \tag{38}$$

$$\widetilde{\Gamma}_{\xi\xi}^K = 0 \tag{39}$$

$$\widetilde{\Gamma}_{I\xi}^{\xi} = \widetilde{\Gamma}_{\xi I}^{\xi} = 0. \tag{40}$$

Proof. Properties of the thin shell metric $\tilde{\mathbf{g}}$ are the mixed tangential-normal components are zero (the same holds for the inverse metric) and the pure normal component is

constant. Hence, we get

$$\widetilde{\Gamma}_{\xi\xi}^{K} = \frac{1}{2} \widetilde{g}^{KL} \left(\partial_{\xi} \widetilde{g}_{\xi L} + \partial_{\xi} \widetilde{g}_{\xi L} - \partial_{L} \widetilde{g}_{\xi \xi} \right) = 0, \tag{41}$$

$$\widetilde{\Gamma}_{I\xi}^{\xi} = \frac{1}{2} \widetilde{g}^{\xi\xi} \left(\partial_I \widetilde{g}_{\xi\xi} + \partial_{\xi} \widetilde{g}_{\xi L} - \partial_{\xi} \widetilde{g}_{I\xi} \right) . \tag{42}$$

The partial derivative in normal direction of the tangential part of thin shell metric is

$$\partial_{\xi} \tilde{g}_{ij} = 2 \left(-B_{ij} + \xi \left[\mathbf{B}^2 \right]_{ij} \right). \tag{43}$$

Therefore, we obtain

$$\widetilde{\Gamma}_{ij}^{\xi} = \frac{1}{2} \widetilde{g}^{\xi\xi} \left(\partial_i \widetilde{g}_{j\xi} + \partial_j \widetilde{g}_{i\xi} - \partial_\xi \widetilde{g}_{ij} \right) = B_{ij} - \xi \left[\mathbf{B}^2 \right]_{ij} , \tag{44}$$

$$\widetilde{\Gamma}_{i\xi}^{k} = \frac{1}{2}\widetilde{g}^{kl}\left(\partial_{i}\widetilde{g}_{\xi l} + \partial_{\xi}\widetilde{g}_{il} - \partial_{l}\widetilde{g}_{i\xi}\right) = \left(g^{kl} + 2\xi B^{kl} + \mathcal{O}(\xi^{2})\right)\left(-B_{il} + \xi\left[\mathbf{B}^{2}\right]_{il}\right) \tag{45}$$

$$= -B_i^{\ k} - \xi \left[\mathbf{B}^2 \right]_i^{\ k} + \mathcal{O}(\xi^2) \tag{46}$$

and with the substitution (11) the remaining statements of these two terms. For the pure tangential thin shell Christoffel symbols, we first determine $\beta_{ij}^{\ k}$ at the surface in terms of partial derivatives and take advantage of the symmetry of the shape operator,i.e.,

$$\beta_{ij}^{\ k} = g^{kl} \left(B_{il|i} + B_{il|i} - B_{ij|l} \right) \tag{47}$$

$$=g^{kl}\left(\partial_{j}B_{il}-\Gamma_{ij}^{m}B_{ml}-\Gamma_{jl}^{m}B_{im}+\partial_{i}B_{jl}-\Gamma_{ij}^{m}B_{ml}-\Gamma_{il}^{m}B_{jm}-\partial_{l}B_{ij}+\Gamma_{il}^{m}B_{mj}+\Gamma_{jl}^{m}B_{im}\right)$$

$$(48)$$

$$= g^{kl} \left(\partial_j B_{il} + \partial_i B_{jl} - \partial_l B_{ij} - 2\Gamma_{ij}^m B_{ml} \right) \tag{49}$$

$$= g^{kl} \left(\partial_j B_{il} + \partial_i B_{jl} - \partial_l B_{ij} \right) - 2\Gamma_{ijl} B^{kl}$$

$$\tag{50}$$

$$= g^{kl} \left(\partial_j B_{il} + \partial_i B_{jl} - \partial_l B_{ij} \right) - B^{kl} \left(\partial_j g_{il} + \partial_i g_{jl} - \partial_l g_{ij} \right) . \tag{51}$$

Hence, we get

$$\widetilde{\Gamma}_{ij}^{k} = \frac{1}{2} \widetilde{g}^{kl} \left(\partial_{i} \widetilde{g}_{jl} + \partial_{j} \widetilde{g}_{il} - \partial_{l} \widetilde{g}_{ij} \right)$$
(52)

$$= \frac{1}{2} \left(g^{kl} + 2\xi B^{kl} + \mathcal{O}(\xi^2) \right) \left(\partial_j g_{il} + \partial_i g_{jl} - \partial_l g_{ij} - 2\xi \left(\partial_j B_{il} + \partial_i B_{jl} - \partial_l B_{ij} \right) \right)$$
(53)

$$=\Gamma_{ij}^{k} + \xi \left(B^{kl} \left(\partial_{j} g_{il} + \partial_{i} g_{jl} - \partial_{l} g_{ij} \right) - g^{kl} \left(\partial_{j} B_{il} + \partial_{i} B_{jl} - \partial_{l} B_{ij} \right) \right) + \mathcal{O}(\xi^{2})$$
 (54)

$$=\Gamma_{ij}^k - \xi \beta_{ij}^k + \mathcal{O}(\xi^2). \tag{55}$$

2 Boundary Conditions

If we consider the limit case $h \to 0$ for an differential expression or especially an operator L_h , then we may get remaining partial normal derivation ∂_{ξ}^p with arbitrary order $p \geq 0$.

Those expressions may be undetermined on the surface S. One way out is to set an additional condition on the whole thin shell, e.g. parallel transportation of quantities, e. g.for a tensor $\hat{\mathbf{t}}$, we set $\nabla_{\xi}\hat{\mathbf{t}} \equiv 0$. Another possibility is to take boundary conditions of the thin shell into account by expanding in normal directions.

2.1 No-Penetration Condition (NPC) for vector quantities

We consider the **No-Penetration Condition**

$$\mathbf{\nu} \cdot \tilde{\mathbf{\alpha}} = \tilde{\alpha}_{\xi} = 0 \text{ on } \Upsilon_h.$$
 (NPC)

Taylor expansion at the surface S results in

$$0 = \tilde{\alpha}_{\xi}|_{\Upsilon_{h}^{\pm}} = \tilde{\alpha}_{\xi}|_{\mathcal{S}} \pm \frac{h}{2}\partial_{\xi}\tilde{\alpha}_{\xi}|_{\mathcal{S}} + \frac{h^{2}}{8}\partial_{\xi}^{2}\tilde{\alpha}_{\xi}|_{\mathcal{S}} + \mathcal{O}(h^{3})$$

$$(56)$$

$$0 = \tilde{\alpha}_{\xi}|_{\Upsilon_{h}^{+}} + \tilde{\alpha}_{\xi}|_{\Upsilon_{h}^{-}} = 2\tilde{\alpha}_{\xi}|_{\mathcal{S}} + \mathcal{O}(h^{2}) \qquad \Rightarrow \left[\tilde{\alpha}_{\xi}|_{\mathcal{S}} = \mathcal{O}(h^{2})\right] \qquad (57)$$

$$0 = \tilde{\alpha}_{\xi}|_{\Upsilon_{h}^{+}} - \tilde{\alpha}_{\xi}|_{\Upsilon_{h}^{-}} = h\partial_{\xi}\tilde{\alpha}_{\xi}|_{\mathcal{S}} + \mathcal{O}(h^{3}) \qquad \Rightarrow \left[\partial_{\xi}\tilde{\alpha}_{\xi}|_{\mathcal{S}} = \mathcal{O}(h^{2})\right]. \qquad (58)$$

$$0 = \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{+}} - \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{-}} = h \partial_{\xi} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} + \mathcal{O}(h^{3}) \qquad \Rightarrow \boxed{\partial_{\xi} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} = \mathcal{O}(h^{2})}. \tag{58}$$

2.2 Neumann Condition (NC) for vector quantities

We consider the **Neumann Condition**

$$\tilde{\nabla}_{\boldsymbol{\nu}}\tilde{\boldsymbol{\alpha}} = \left\{\tilde{\nabla}_{\boldsymbol{\xi}}\tilde{\alpha}_{I}\right\} = \left\{\tilde{\nabla}_{\boldsymbol{\xi}}\tilde{\alpha}^{I}\right\} = 0 \text{ on } \boldsymbol{\Upsilon}_{h}. \tag{NPC}$$

First we investigate the tangential parts

$$\tilde{\nabla}_{\xi}\tilde{\alpha}_{i} = \partial_{\xi}\tilde{\alpha}_{i} - \tilde{\Gamma}_{\xi i}^{J}\tilde{\alpha}_{J} = \partial_{\xi}\tilde{\alpha}_{i} - \tilde{\Gamma}_{\xi i}^{j}\tilde{\alpha}_{j}$$

$$\tag{59}$$

$$= \partial_{\xi} \tilde{\alpha}_{i} + B_{i}^{\ j} \tilde{\alpha}_{j} + \xi \left[\mathbf{B}^{2} \right]_{i}^{\ j} \tilde{\alpha}_{j} + \mathcal{O}(\xi^{2}) \tag{60}$$

$$\tilde{\nabla}_{\xi}\tilde{\alpha}_{i}\big|_{\Upsilon_{h}^{\pm}} = \partial_{\xi}\tilde{\alpha}_{i}\big|_{\Upsilon_{h}^{\pm}} + B_{i}^{j}\tilde{\alpha}_{j}\big|_{\Upsilon_{h}^{\pm}} \pm \frac{h}{2} \left[\mathbf{B}^{2}\right]_{i}^{j}\tilde{\alpha}_{j}\big|_{\Upsilon_{h}^{\pm}} + \mathcal{O}(h^{2}). \tag{61}$$

Taylor expansion at the surface S for $p \geq 0$ results in

$$\partial_{\xi}^{p} \tilde{\boldsymbol{\alpha}} \big|_{\Upsilon_{L}^{+}} + \partial_{\xi}^{p} \tilde{\boldsymbol{\alpha}} \big|_{\Upsilon_{L}^{-}} = 2 \partial_{\xi}^{p} \tilde{\boldsymbol{\alpha}} \big|_{\mathcal{S}} + \mathcal{O}(h^{2})$$
 (62)

$$\partial_{\xi}^{p} \tilde{\alpha} \big|_{\Upsilon_{h}^{+}} - \partial_{\xi}^{p} \tilde{\alpha} \big|_{\Upsilon_{h}^{-}} = h \partial_{\xi}^{p+1} \tilde{\alpha} \big|_{\mathcal{S}} + \mathcal{O}(h^{3}). \tag{63}$$

Therefor by making up the sum and the difference of (61) one obtain

$$0 = \tilde{\nabla}_{\xi} \tilde{\alpha}_{i} \big|_{\Upsilon_{h}^{+}} + \tilde{\nabla}_{\xi} \tilde{\alpha}_{i} \big|_{\Upsilon_{h}^{-}} = 2 \partial_{\xi} \tilde{\alpha}_{i} \big|_{\mathcal{S}} + 2 B_{i}^{j} \alpha_{j} + \mathcal{O}(h^{2})$$

$$(64)$$

$$\Longrightarrow \left[\partial_{\xi} \tilde{\alpha}_{i} \big|_{\mathcal{S}} = -B_{i}^{j} \alpha_{j} + \mathcal{O}(h^{2}) \right], \tag{65}$$

$$0 = \tilde{\nabla}_{\xi} \tilde{\alpha}_{i} \big|_{\Upsilon_{h}^{+}} - \tilde{\nabla}_{\xi} \tilde{\alpha}_{i} \big|_{\Upsilon_{h}^{-}} = h \partial_{\xi}^{2} \tilde{\alpha}_{i} \big|_{\mathcal{S}} + h B_{i}^{j} \partial_{\xi} \tilde{\alpha}_{j} \big|_{\mathcal{S}} + h \left[\mathbf{B}^{2} \right]_{i}^{j} \alpha_{j} + \mathcal{O}(h^{3})$$
 (66)

$$= h\partial_{\xi}^{2} \tilde{\alpha}_{i} \Big|_{\mathcal{S}} + \mathcal{O}(h^{3}) \tag{67}$$

$$\Longrightarrow \left[\left. \partial_{\xi}^{2} \tilde{\alpha}_{i} \right|_{\mathcal{S}} = \mathcal{O}(h^{3}) \right]. \tag{68}$$

But we are carefully about the meaning of the results relating to rising the indices, i. e., $\partial_{\xi}\tilde{\alpha}^{i}|_{\mathcal{S}} \neq g^{ij}\partial_{\xi}\tilde{\alpha}_{j}|_{\mathcal{S}}$ generally, because $\partial_{\xi}\tilde{\mathbf{g}} \neq 0$ neither at \mathcal{S} nor in whole \mathcal{S}_{h} . But with

$$\partial_{\xi}\tilde{g}^{ij} = 2B^{ij} + \mathcal{O}(\xi), \qquad (69)$$

$$\partial_{\xi}^{2} \tilde{g}^{ij} = 6 \left[\mathbf{B}^{2} \right]^{ij} + \mathcal{O}(\xi) , \qquad (70)$$

$$\partial_{\xi}\tilde{\alpha}^{i} = \partial_{\xi} \left(\tilde{g}^{ij}\tilde{\alpha}_{j} \right) = \tilde{g}^{ij}\partial_{\xi}\tilde{\alpha}_{j} + \tilde{\alpha}_{i}\partial_{\xi}\tilde{g}^{ij} \tag{71}$$

$$= \tilde{g}^{ij}\partial_{\xi}\tilde{\alpha}_{j} + 2B^{ij}\tilde{\alpha}_{j} + \mathcal{O}(\xi), \qquad (72)$$

$$\partial_{\xi}^{2} \tilde{\alpha}^{i} = \partial_{\xi}^{2} \left(\tilde{g}^{ij} \tilde{\alpha}_{j} \right) = \tilde{g}^{ij} \partial_{\xi}^{2} \tilde{\alpha}_{j} + \tilde{\alpha}_{j} \partial_{\xi}^{2} \tilde{g}^{ij} + 2 \left(\partial_{\xi} \tilde{g}^{ij} \right) \left(\partial_{\xi} \tilde{\alpha}_{j} \right) \tag{73}$$

$$= \tilde{g}^{ij} \partial_{\xi}^{2} \tilde{\alpha}_{j} + 4B^{ij} \partial_{\xi} \tilde{\alpha}_{j} + 6 \left[\mathbf{B}^{2} \right]^{ij} \tilde{\alpha}_{j} + \mathcal{O}(\xi), \qquad (74)$$

(65), and (68), we get for the restriction to the surface

$$\left| \partial_{\xi} \tilde{\alpha}^{i} \right|_{\mathcal{S}} = B^{i}_{j} \alpha^{j} + \mathcal{O}(h^{2}) \, , \tag{75}$$

$$\left[\frac{\partial_{\xi} \tilde{\alpha}^{i}|_{\mathcal{S}} = B^{i}{}_{j} \alpha^{j} + \mathcal{O}(h^{2})}{\partial_{\xi}^{2} \tilde{\alpha}^{i}|_{\mathcal{S}} = 2 \left[\mathbf{B}^{2} \right]^{i}{}_{j} \alpha^{j} + \mathcal{O}(h^{2})} \right].$$
(75)

The former is also consistent to the covariant normal derivation formulation

$$\left[\tilde{\nabla}_{\xi}\tilde{\alpha}^{i}\big|_{\mathcal{S}} = g^{ij}\tilde{\nabla}_{\xi}\tilde{\alpha}_{i}\big|_{\mathcal{S}} = \mathcal{O}(h^{2})\right]. \tag{77}$$

For the boundary condition in normal direction, namely

$$\tilde{\nabla}_{\xi}\tilde{\alpha}_{\xi}\big|_{\Upsilon_{h}^{\pm}} = \partial_{\xi}\tilde{\alpha}_{\xi}\big|_{\Upsilon_{h}^{\pm}} = 0, \qquad (78)$$

we have

$$0 = \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{+}} + \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{-}} = 2 \partial_{\xi} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} + \mathcal{O}(h^{2}) \quad \Rightarrow \boxed{\partial_{\xi} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} = \partial_{\xi} \tilde{\alpha}^{\xi} \big|_{\mathcal{S}} = \mathcal{O}(h^{2})}, \quad (79)$$

$$0 = \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{+}} - \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{-}} = h \partial_{\xi}^{2} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} + \mathcal{O}(h^{3}) \quad \Rightarrow \boxed{\partial_{\xi}^{2} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} = \partial_{\xi}^{2} \tilde{\alpha}^{\xi} \big|_{\mathcal{S}} = \mathcal{O}(h^{2})}. \quad (80)$$

$$0 = \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{+}} - \tilde{\nabla}_{\xi} \tilde{\alpha}_{\xi} \big|_{\Upsilon_{h}^{-}} = h \partial_{\xi}^{2} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} + \mathcal{O}(h^{3}) \quad \Rightarrow \left| \partial_{\xi}^{2} \tilde{\alpha}_{\xi} \big|_{\mathcal{S}} = \partial_{\xi}^{2} \tilde{\alpha}^{\xi} \big|_{\mathcal{S}} = \mathcal{O}(h^{2}) \right|. \tag{80}$$

References

[HW53] Philip Hartman and Aurel Wintner. On the third fundamental form of a surface. American Journal of Mathematics, 75(2):298–334, 1953.