Femtosecond-laser induced dynamics of CO on Ru(0001):

NEW INSIGHTS FROM A HOT-ELECTRON, ELECTRONIC FRICTION MODEL INCLUDING SURFACE MOTION

Robert Scholz^{1,2}, Gereon Floß¹, Peter Saalfrank¹, Gernot Füchsel³, Ivor Lončarić⁴, and J. I. Juaristi^{4,5,6}

¹Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany ²Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany ³Universiteit Leiden, Gorlaeus Laboratories, Einsteinweg 55, 2333 Leiden, The Netherlands ⁴Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain ⁵Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain ⁶Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain

Introduction

Motivation

- research on small molecules adsorbed to metals is important for:
- -catalytic applications
- -fundamental understanding of bonding
- femtosecond(fs)-lasers \Rightarrow very valuable tool -allow for investigations on small timescales - open up new processes compared to heating or "normal" lasers \Rightarrow femtochemistry, e.g. [1]: - may enable specific control over
- catalytic reactions \Rightarrow photocatalysis • specific motivation for system CO/Ru(0001)
- -experimentally well studied regarding fs-laser irradiation, e.g. [2, 3] -fulldimensional ab-initio potential recently developed in our group [4] -details of this indicate interpretation of experiment [3] may be wrong

How does fs-laser-irradiation affect metal surfaces?

Diffusion (and possibly Reactions)

- (1) Electron-phonon coupling (2) Electronic friction
- 3 Phonon-adsorbate interaction

Thermal

excitation

0.8 eV

1.8 eV

t/ps

from [1]

- metals: ion lattice plus quasi-free electron gas
- visible light is absorbed only by the electrons
- produced electron-hole pairs thermalize quickly \Rightarrow "hot" Fermi-Dirac-distribution (after $\sim 10 \text{ fs}$)
- electrons transfer part of energy to ion lattice, via (1) electron-phonon coupling (phonons = lattice vibrations; quasi-particles) -electrons couple to phonons as their fast movement causes "shockwaves" in ion lattice -equilibration process completes after $\sim 1 \text{ ps}$
- \Rightarrow Thus, with fs-lasers, two different temperatures: $-T_{\rm el}$ - electron temperature
- $-T_{\rm ph}$ phonon temperature
- can be simulated using a Two-Temperature Model (2TM)[5] (see right)

Models and Methods

Six-dimensional Potential Energy Surface (6D PES)[4]

- Basis for dynamics: precomputed PES from DFT (rPBE + D2)
 - all 6 dimensions of the adsorbate
 - \bullet analytical PES and gradients \Rightarrow very fast
 - ⇒ number and length of trajectories can be large
 - downsides: surface atoms frozen \Rightarrow no phonons

Two-Temperature Model (2TM)[5]

• describes interaction of metal with laser, using two differential equations:

$$C_{\rm el} \frac{\partial T_{\rm el}}{\partial t} = \frac{\partial}{\partial z} \kappa \frac{\partial}{\partial z} T_{\rm el} - g(T_{\rm el} - T_{\rm ph}) + S(z, t),$$
$$C_{\rm ph} \frac{\partial T_{\rm ph}}{\partial t} = g(T_{\rm el} - T_{\rm ph}).$$

depth z -electron and phonon heat capacities $C_{\rm el}$ and $C_{\rm ph}$

fs-Laser

- \Rightarrow get $T_{\rm el}$ and $T_{\rm ph}$ as f(z,t) from laser parameters and material properties: -laser wavelength λ (affects penetretion depth into material) - (effective) absorbed fluence F (energy/area)
 - electron heat conductivity κ -pulse duration τ (all three appear in the "source term" S(z,t)) - electron-phonon coupling constant g

Electronic Friction: Langevin Dynamics[6] and Local Density Friction Approximation (LDFA)[7]

• Langevin equation of motion, a stochastical differential equation: $m_k \frac{d^2 \underline{r}_k}{dt^2} = -\underline{\nabla}_k V(\underline{r}_1, \underline{r}_2) - \eta_{\text{el},k}(\underline{r}_k) \frac{d\underline{r}_k}{dt} + \underline{R}_{\text{el},k}(t).$ Force on Random force Friction force Force due to PES slows movement from e-h pairs Atom *k*

- describes movement of CO on the PES and interaction with electron-hole pairs (friction and excitation)
- Local Density Friction Approx. (LDFA): most simple model to calculate friction coefficients $\eta_{el,k}$ -Atom k embedded in free electron gas with density of bare surface at current position \underline{r}_k
- Random forces $\underline{R}_{el,k}$: gaussian white noise, dependent on both $\eta_{el,k}$ (from LDFA) and T_{el} (from 2TM) -justified by the 2. fluctuation dissipation theorem [11], which relates friction and thermal movement

Inclusion of Phonons: Generalized Langevin Oscillator(GLO)-model[8, 9, 10]

- influence of phonons modeled in an effective way (augments frozen surface)
- entire surface understood as 3D oscillator (coordinates \underline{r}_s , mass $m_s = m_{\rm Ru}$)
- coupling to molecule via shifting: $V_{\text{GLO}}(\underline{r}_{\text{C}},\underline{r}_{\text{O}};\underline{r}_{s}) = V(\underline{r}_{\text{C}} \underline{r}_{s},\underline{r}_{\text{O}} \underline{r}_{s})$
- additionally coupled to ghost oscillator \underline{r}_q to model influence of the bulk
- -ghost oscillator is subject to friction $\eta_{\rm ph}$ and random forces $\underline{R}_{\rm ph}(T_{\rm ph})$

Results

Desorption (Å)Nt(ps)exp., n=4.81▲ MDEF, n=6.99 ■ MDEF-GLO, n=5.17 probability 01 - T=0 K ─ T=300 K — T=500 K — T=1000 k T=1500 KT=2000 K— T=4000 K 300 fluence F / J/m² molecule-surface distance Z / Å

Diffusion • typical trajectory: hops between top sites and vibration • increase in θ -angle when CO moves away from top _• overall, very large diffusion • also: dynamical trapping effect at hcp site \Rightarrow possible alternative explanation to "precursor state" [3]

References

- [1] M. Bonn, S. Funk, Ch. Hess, D.N. Denzler et al., Science 285, 1042 (1999).
- [2] S. Funk, M. Bonn, D.N. Denzler, C. Hess et al., *J. Chem. Phys.* **112**, 9888 (2000).
- [3] M. Dell'Angela, T. Anniyev, M. Beye, R. Coffee et al., *Science* **339**, 1302 (2013).
- [4] G. Füchsel, J.C. Tremblay, and P. Saalfrank, *J. Chem. Phys.* **141**, 094704 (2014).
- [5] S.I. Anisimov, B.L. Kapeliovich and T.L. Perelman, Sov. Phys. JETP 39, 375 (1974). [9] J.C. Tully, J. Chem. Phys. 73, 1975 (1980).
- [6] M. Head-Gordon and J.C. Tully, *J. Chem. Phys.* **103**, 10137 (1995).
- [10] H.F. Busnengo, M.A. Di Césare, W. Dong et al., *Phys.Rev.B* **72**, 125411 (2005).

[8] S.A. Adelman and J.D. Doll, *J. Chem. Phys.* **64**, 2375 (1976).

[7] J.I. Juaristi, M. Alducin, R. Díez Muiño, et al., *Phys. Rev. Lett.* **100**, 116102 (2008). [11] R. Kubo, *Rep. Prog. Phys.* **29**, 255 (1966).