

Рисунок 4.9. Этапы формирования ИКМ – сигнала.

Недостатки ИКМ.

- 1) Ширина спектра ИКМ сигнала F_{MKM} больше ширины спектра F_e исходного аналогового сигнала. За время $\Delta t = \frac{1}{2F_e}$ нужно передать комбинацию из K бит. Тогда длительность одного бита $T_{\delta} = \frac{\Delta t}{K} = \frac{1}{K2F_e}$. Ширина спектра ИКМ $F_{MKM} \approx \frac{1}{T_{\delta}} = 2KF_e$. Обычно $K = 6\cdots 9$, тогда F_{MKM} в 12-18 раз больше ширины спектра исходного сигнала.
- 2) При процедуре квантования в представление сигнала вносится ошибка:

$$x_{\nu} = \widetilde{x}_{\nu} + \xi_{\nu}$$
.

Дифференциальная ИКМ (ДИКМ).

В ИКМ каждый отсчет кодируется независимо от других. Но у многих источников сигнала при дискретизации через $\Delta t = \frac{1}{2F_s}$ или чаще проявляется значительная корреляция между отсчетами. В ДИКМ кодируется разность между отсчетами сигнала, а не сами отсчеты. Т.к. разность между отсчетами сигнала меньше, чем значения отсчетов, то нужно меньшее число бит для представления разностного сигнала. Суть подхода состоит в следующем.

Предсказывается текущее значение отсчет на основе предыдущих p отсчетов:

$$\hat{x}_k = \sum_{i=1}^p a_k x_{k-i} \tag{4.28}$$