

Rafbók

Rafeindafræði 16. hefti FET, MOSFET CG magnarar Sigurður Örn Kristjánsson Bergsteinn Baldursson

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Fræðsluskrifstofu rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Fræðsluskrifstofu rafiðnaðarins.

Höfundar eru Sigurður Örn Kristjánsson og Bergsteinn Baldursson. Umbrot í rafbók Bára Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar sigurdurorn@gmail.com eða Báru Halldórsdóttur á netfangið bara@rafmennt.is

Efnisyfirlit

1.]	FET- magnarar	3
	1.1 Gáttartengdur (COMMON - GATE) magnari	
-	1.2 Spennumögnun í Gate-tengdum (CG) magnara	4
-	1.3. Inngangsmótstaða í Gate-tengdum (CG) magnara (Input Resistance)	4
2.	Verkefni	5
3.]	Dæmi	8
4	Jöfnur	9

1. FET- magnarar

1.1 Gáttartengdur (COMMON - GATE) magnari

Gate-tengdur (gáttartengdur CG) JFET magnari er sýndur á *mynd 1*. Hann hefur lága inngangsmótstöðu og er það breyting miðað við *Source*- eða *Drain* (lindar-eða svelgar) tengda magnara. Eftir að hafa farið í gegn um þennan kafla átt þú að vera fær um að:

- skýra út *Gate*-tengdan (CG) FET magnara (*common gate FET amplifiers*)
- reikna úr spennumögnun í *Gate*-tengdum FET magnara (*CG amplifier*)
- finna inngangsmótstöðu *Gate*-tengdan FET magnara (*CG amplifier*)

Gate-tengdur magnari er sýndur á *mynd 1*. Forspennun magnarans er með sjálfstilli aðferðinni (*Self-biasing*). Ac - merkið fer inn á magnarann í gegnum þéttinn C_1 og útgangsmerkið fer út í gegnum þéttinn C_2 og er fellt yfir álagsmótstöðuna R_L .

a) Gate-tengdur magnari.

b) ac - jafngildismynd CG magnara.

Mynd 1. JFET Gate-tengdur magnari (CG – magnari).

09.07.2019 www.rafbok.is

1.2 Spennumögnun í Gate-tengdum (CG) magnara

Eins og í öðrum mögnurum er spennumögnun skilgreind sem

$$A_u = \frac{U_{\text{\'u}t}}{U_{inn}}$$

Fyrir *Gate*-tengdan magnara eins og á *mynd 1* er spennumögnunin:

$$U_{inn} = U_{gs}$$

$$U_{\acute{u}t} = I_d \cdot R_D / / R_L$$

$$I_d = g_m \cdot U_{gs}$$

$$A_u = \frac{U_{\acute{u}t}}{U_{inn}} = \frac{I_d \cdot (R_D / / R_L)}{U_{gs}} = \frac{g_m \cdot U_{gs} \cdot (R_D / / R_L)}{U_{gs}} = g_m \cdot (R_D / / R_L)$$

1.3. Inngangsmótstaða í Gate-tengdum (CG) magnara (Input Resistance)

Par sem *Source* (lindin) er inngangur í CG magnara er inngangsmótstaðan mjög lág, eða

$$R_{inn} = \frac{U_{inn}}{I_{inn}} = \frac{U_{gs}}{I_d} / /R_S = \frac{U_{gs}}{g_m \cdot U_{gs}} / /R_S = \frac{1}{g_m} / /R_S$$

Sem dæmi. Ef $g_m = 4000 \mu S$ og RS >> en $1/g_m$ verður inngangsmótstaðan

$$R_{inn} = \frac{1}{g_m} = \frac{1}{4000 \mu S} = 250 \Omega$$

Sýnidæmi:

Reiknið spennumögnun og inngangsmótstöðu magnarans á mynd~2 ef $g_m = 2000 \mu S$?

09.07.2019 www.rafbok.is

Lausn:

$$A_{u} = \frac{U_{\text{ú}t}}{U_{inn}} = g_{m} \cdot (R_{D}//R_{L}) = 2000\mu \cdot (10k\Omega//10k\Omega) = 10$$

$$R_{inn} = \frac{U_{inn}}{I_{inn}} = \frac{1}{g_{m}} / /R_{S} = \frac{1}{2000\mu S} / /4.7k\Omega = 452\Omega$$

2. Verkefni

Tilgangur:

Að skoða magnarastig SG/CG tengingu með tilliti til að bera saman reiknaðar og mældar lykilstærðir kerfisins. (Spennufæðing *Self bias*)

Efni:

Sveifluvaki, sveiflusjá, spennugjafi, spennumælir og íhlutir samkvæmt *mynd 3*.

Búnaður:

Sveifluvaki, sveiflusjá, spennugjafi, spennumælir og íhlutir samkvæmt mynd 3.

Tengimynd: $g_m = |y_{fs}| = 1,7mS$, I_d í rásinni er um 1mA.

Mynd 3.

Framkvæmd 1:

Tengið rásina og mælið jafnspennurnar U _G , U _S og U _I	Tengið	rásina o	g mælið	jafnspennurnar	U_{G}	U_S og	$U_{\rm D}$
---	--------	----------	---------	----------------	---------	----------	-------------

 $U_G =$

 $U_S =$

 $U_D =$

Reiknið til samanburðar jafnspennurnar $U_G,\,U_S$ og U_D . (Sýnið útreikninga).

 $U_G =$

 $U_S =$

 $U_D =$

Framkvæmd 2:

Mælið jafnspennurnar U_{DS} , U_{GS} og U_{DG}

 $U_{DS} =$

 $U_{GS} =$

 $U_{DG} =$

Reiknið til samanburðar jafnspennurnar U_{DS}, U_{GS} og U_{DG}. (Sýnið útreikninga).

 $U_{DS} =$

 $U_{GS} =$

 $U_{DG} =$

Framkvæmd 3:

Mælið spennumögnunina A_U við 1 kHz.

 $A_U =$

 $A_U(DB) =$

Reiknið til samanburðar spennumögnunina A_U. (Sýnið útreikninga).

 $A_U =$

 $A_U(dB) =$

Framkvæmd 4:

Finnið efri marktíðni f_e magnarastigsins með mælingum. (Marktíðnin finnst þegar spennumögnunin hefur fallið um 3dB miðað við gildið sem fannst við 1 kHz).

fe með $R_L =$ fe án $R_L =$

Framkvæmd 5:

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 1kHz? $\theta =$

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 100Hz? $\theta =$

Framkvæmd 6:

Mælið inngangsriðstraumsmótstöðu (inngangsimpedans) $Z_{inn} = R_{inn}$ magnarans. $Z_{INN} =$

Reiknið til samanburðar inngangsriðstraumsmótstöðu (inngangsimpedans) $Z_{inn} = R_{inn} \ magnarans.$ $Z_{INN} =$

Framkvæmd 7:

Mælið útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}} = R_{\text{út}}$ magnarans.

 $Z_{\acute{U}T} =$

Reiknið til samanburðar útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}} = R_{\text{út}}$ magnarans.

 $Z_{\text{UT}} =$

3. Dæmi

1. Hver er spennumögnun og inngangsmótstaða magnarans á $\it mynd 4$ ef hann er með $g_m = 4000 \mu S$ og $R_D = 1,5$ kohm?

2. Hver er spennumögnun og inngangsmótstaða magnarans á mynd 5 ef $R_S = 2,5$ kohm, $g_m = 3500 \mu S$, $R_D = 10$ kohm og $R_L = 10$ kohm?

09.07.2019 www.rafbok.is

4. Jöfnur

Jöfnur sem gilda fyrir SG/CG tengdan magnara tengdur í self bias.

DC jöfnur

$$U_G = 0 \Rightarrow U_S = I_D \cdot R_S = -U_{GS}$$

$$U_D = U_{DD} - I_D \cdot R_D$$

$$U_{DS} = U_D - U_S$$

$$U_{GS} = U_G - U_S$$

$$U_{DG} = U_D - U_G$$

$$R_{IN} = \left| \frac{U_{GS}}{I_{DSS}} \right|$$

ac jöfnur

$$A_u = \frac{U_{\text{ú}t}}{U_{in}} \cong g_m \cdot (R_S //R_L)$$

$$A_u(dB) = 20log(A_u)$$

$$R_{in} = Z_{in} \cong R_S / / \frac{1}{g_m}$$

$$R_{\acute{\mathrm{u}}t} = Z_{\acute{\mathrm{u}}t} \cong R_D$$