<u>Instituto de Matemática e Estatística - UERJ</u>

Prova 2 de Teoria dos Grafos Professor: Luerbio Faria Data: **09/05/2022**

(a)
$$[0.5]$$
 $G - \{u, v\}$ é Euleriano.

(b) [0.5] Se
$$uv \in E$$
, então $G - \{uv\}$ é Euleriano

2. Partição

- (a) [0.5] Enuncie a Programação Dinâmica do Problema
- (b) [1.0] Rode para a instância $S = \{1, 3, 2, 4, 6\}$ e construa a tabela.
- (c) Resolva as instâncias, dizendo se é uma instância Sim ou Não, explicando como obteve a resposta e mostrando o certificado se a resposta for Sim, usando a tabela, para as instâncias do problema de decisão da PARTIÇÃO:

i.
$$[0.5]$$
 $S = \{1, 3, 2, 4, 6\}$
ii. $[0.5]$ $S = \{1, 3, 2, 4\}$.

3. [2.4] Verifique no grafo

- (a) Se é planar.
- (b) Se é Hamiltoniano.
- (c) Se é Euleriano.
- (d) Seu número cromático.
- (e) Sua clique máxima e seu número de independência.
- (f) Um conjunto dominante mínimo e uma cobertura de arestas mínima por vértices.

e dê o certificado correspondente.

4. Considere o grafo G=(V,E) e seu complemento $\overline{G}=(V,\overline{E}).$

CONJUNTO INDEPENDENTE MÁXIMO (CI)

instância: Grafo G=(V,E) e inteiro positivo k. **pergunta**: Existe um conjunto independente $S\subset V$) tal que $|S|\geq k$?

- [0.4] Determine se a instância (G,4)e (G,5)são instâncias Sim de CI.
- [0.5] No(s)caso(s) positivo(s) do item anterior determine o(s) certificado(s) apropriado(s).

Considere o problema CLIQUE MÁXIMA (CM)

instância: Grafo G = (V, E) e inteiro positivo k. pergunta: Existe uma clique $S \subset V$ com $|S| \ge k$?

- [0.4] Determine se a instância $(\overline{G},4)$ e $(\overline{G},5)$ são instâncias Sim de cm.
- [0.5] No(s)caso(s) positivo(s) do item anterior determine o(s) certificado(s) apropriado(s).
- $\bullet~[0.5]$ Prove que o problema CLIQUE MÁXIMA está em NP.
- [0.5] Prove que <u>CLIQUE MÁXIMA</u> \propto <u>CONJUNTO INDEPENDENTE MÁXIMO</u>.
- 5. [2.0] Um grafo planar conexo 3-regular G = (V, E) tem 24 vértices. Existe um desenho D(G) de G somente com faces quadrangulares e hexagonais. Determine os números q, h de faces quadrangulares e hexagonais de D(G).
 - [0.5] EXTRA: O desenho do grafo.