CSP-S2022 模拟赛

gyh20

题目名称	机器人游戏	机器人和城市 2	机器人的积木	机器人操作
题目类型	传统型	传统型	传统型	传统型
输入文件名	game.in	city.in	block.in	operation.in
输出文件名	game.out	city.out	block.out	operation.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点数目	10	10	25	20
测试点是否等分	是	是	是	是

提交源程序文件名

对于 C++ 语言 game	cpp city.cpp	number.cpp	operation.cpp
----------------	--------------	------------	---------------

编译选项

对于 C++ 语言	-lm -02 -std=c++14
-----------	--------------------

注意事项

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 原则上,每个测试点时限应为标准程序在该测试点上的运行时间的 2 倍及以上。
- 6. 每道题的时间限制、编译命令、是否开启文件输入输出等信息,在赛时均有可能变动,请各位选手以赛时通知为准。
- 7. AK 了不要声张,闷声发大财。

CSP-S 模拟 机器人游戏(game)

机器人游戏(game)

【题目描述】

dottle 正在玩经典的猜数游戏。

给定 n, m,初始有两个变量 l=1, r=n,同时有一个神秘数字 x,dottle 每次可以猜一个 [l,r] 之间的整数 y。

若 y = x,则游戏立刻结束。

若 y < x, 则令 r = y - 1, 游戏继续。

若 y > x, 则令 l = y + 1, 游戏继续。

每次猜测会花费 1 的代价。

dottle 会玩很多局游戏,每一次神秘数字会从 [1,n] 中的整数中随机选取,每一次 dottle 会记录游戏的总次数和总代价,特别的是,若一局游戏的代价 > m,他会假装他没有玩这局游戏,也就是说,当前游戏不会使总次数或者总代价发生变化。

你需要帮助 dottle 找到一个策略,使得最终的期望的平均次数(总代价/总次数)最小,并输出这个值,相对误差或绝对误差不超过 10^{-6} 视为正确。

【输入格式】

从文件 game.in 中读入数据。

一行两个正整数 n, m。

【输出格式】

输出到文件 game.out 中。

输出一行一个数 ans, 表示最终的答案。

【样例输入1】

3 2

【样例输出 1】

1.5

CSP-S 模拟 机器人游戏 (game)

【样例解释 1】

考虑一下两种策略:

1. 第一次猜 2,若猜中则次数为 1,结束,否则下一次一定猜中,这样的期望是 $\frac{1+2\times2}{3}=\frac{5}{3}$ 。 2. 第一次猜 1,若猜中则次数为 1,结束,否则第二次猜 2,若猜中则次数为 2,如果没有猜中由于次数 > 2 则不会被记录,所以不会影响,这样的期望是 $\frac{1+2}{2}=\frac{3}{2}$ 。

后一种策略显然更优。

【样例输入 2】

114514 1

【样例输出 2】

【样例解释 2】

无论使用什么策略。只要次数不是1都不会被统计入答案。最终的次数一定为1。

【数据范围与提示】

每个测试点的具体限制见下表:

测试点编号	n	m
$1 \sim 2$	≤ 10	
$3 \sim 4$	≤ 50	
5	≤ 500	$\leq n$
6	$\leq 5 \times 10^3$	
7	$\leq 10^{6}$	
8~9	$\leq 10^9$	= n
10	<u></u>	$\leq n$

机器人和城市 2 (city)

【题目描述】

dottle 也生活在城市里。

城市可以看做一个 n 个点 m 条边的无向连通图。

每条边连接了两个端点,并有两个属性, w_i, h_i ,表示路径的长度为 1000000000^{w_i} ,以及 dottle 对这条路径的喜爱度为 h_i ,保证 w_i, h_i 是非负整数,且保证所有 w_i 互不相同。

定义 dottle 对两个点 x,y 的喜爱度 f(x,y) 为: 在所有 x 到 y 的长度和最小的路径中,喜爱度 之和最大的一条。

dottle 想找到一个排列 p, 使得 $\sum_{i=1}^{n-1} f(p_i, p_{i+1}) + f(p_1, p_n)$ 最大。

【输入格式】

从文件 city.in 中读入数据。

第一行两个整数 n, m。

之后 m 行,每行四个整数 u,v,w,h,表示该边连接 u,v,属性为 (w,h)。

【输出格式】

输出到文件 city.out 中。

输出一行一个整数,表示答案。

【样例输入1】

4 6

1 2 4 9

1 3 6 12

4 1 2 3

4 2 3 4

2 3 5 1

4 3 1 4

【样例输出 1】

22

【样例 2】

见下发文件中的 city2.in/out。 该样例满足测试点 2~3 的限制。

【样例 3】

见下发文件中的 city3.in/out。 该样例满足测试点 $4 \sim 5$ 的限制。

【样例 4】

见下发文件中的 city4.in/out。 该样例满足测试点 $9 \sim 10$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n \le 10^5, 1 \le m \le 2 \times 10^5, 0 \le w_i, h_i \le 10^9$ 且所有 w_i 互不相同。每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质
1	≤ 4	≤ 6	
$2 \sim 3$	≤ 10	≤ 20	无
$4 \sim 5$	≤ 50		
$6 \sim 7$		= n - 1	第 i 条边连接 i 与 $i+1$
8	$\leq 10^{5}$		第 <i>i</i> 条边连接 1 与 <i>i</i> + 1
$9 \sim 10$		$\leq 2 \times 10^5$	无

CSP-S 模拟 机器人的积木(block)

机器人的积木(block)

【题目描述】

dottle 在搭积木。

有 n 堆积木,第 i 堆积木的高度为 h_i ,dottle 想让积木堆尽量平均,所以他定义一个状态的不优美度为 $\sum_{i=1}^{n-1}|h_i-h_{i+1}|+h_1+h_n$ 。

dottle 只能执行一种操作: 将一堆积木的其中一块拿走, 也就是选定某个 $h_x>0$ 的 x, 令 $h_x=h_x-1$ 。

q次询问,每次给出一个 X,求使用不超过 X 次操作后不优美度的最小值。

【输入格式】

从文件 block.in 中读入数据。

第一行两个正整数 n,q。

接下来一行 n 个非负整数,表示初始的 h 序列。

之后 q 行,每行一个非负整数,表示询问的 X。

【输出格式】

输出到文件 block.out 中。

对于每组询问,输出一行一个数表示最终答案。

【样例输入 1】

6 10

3 5 4 3 5 2

1

2

3

4

5

6

7

8

9

10

【样例输出 1】

12

10

8

8

6

6

6

6

6

4

【样例 2】

见下发文件中的 block2.in/out 该样例满足测试点 $4 \sim 9$ 的限制。

【样例 3】

见下发文件中的 block3.in/out 该样例满足测试点 $10 \sim 13$ 的限制。

【样例 4】

见下发文件中的 block4.in/out 该样例满足测试点 $19 \sim 21$ 的限制。

【数据范围与提示】

对于所有测试点: $2 \le n, q \le 5 \times 10^5, 0 \le a_i \le 10^{12}, 0 \le X \le 10^{18}$ 。 每个测试点的具体限制见下表:

测试点编号	n	q	a_i	X
$1 \sim 3$	≤ 5	≤ 5	≤ 5	≤ 5
$4 \sim 9$	≤ 500	≤ 10	≤ 50	$\leq 5 \times 10^3$
$10 \sim 13$	$\leq 10^{3}$	∠ 5 ∨ 10 ⁵	$\leq 10^{12}$	$\leq 10^{15}$
$14 \sim 15$		$\leq 5 \times 10^5$	≤ 1	
$16 \sim 18$	$\leq 10^5$	≤ 1	< 100	$\leq 10^{6}$
$19 \sim 21$		∠ 5 ∨ 10 ⁵	≤ 100	
$22 \sim 25$	$\leq 5 \times 10^5$	$\leq 5 \times 10^5$	$\leq 10^{12}$	$\leq 10^{18}$

CSP-S 模拟 操作 (operation)

操作(operation)

【题目描述】

给定一个长度为 n 的序列 a。

您有 m+n 种可执行的操作。

前 m 种的第 i 种形如 X_i, L_i, R_i, W_i 表示您可以把 a_{X_i} 减 1,再把 $a_{L_i} \sim a_{R_i}$ 加 1,这个操作会有 W_i 的代价。

后 n 种的第 i 种仅含一个数 b_i ,表示直接令 a_i-1 ,花费 b_i 的代价,特别的,若 $b_i==-1$,代表这个操作是不可执行的。

求最小的代价,让所有的 a_i 变为 0,保证若存在合法的操作方案,代价最小的操作方案花费不超过 2×10^{18} 。

【输入格式】

从文件 operation.in 中读入数据。

第一行两个整数 n, m。

之后一行 n 个整数, 第 i 个数为 a_i 。

之后 m 行每行四个整数 X_i, L_i, R_i, W_i 。

之后一行 n 个整数, 第 i 个数为 b_i 。

【输出格式】

输出到文件 operation.out 中。

若可以让所有 a_i 变为 0,输出最小的代价。

否则输出 -1。

【样例输入 1】

4 2

0 1 0 0

2 3 4 5

2 1 1 0

10 -1 2 2

【样例输出 1】

9

【样例 2】

见下发文件中的 operation 2. in/out。 该样例满足测试点 $1 \sim 2$ 的限制。

CSP-S 模拟 操作(operation)

【样例 3】

见下发文件中的 operation3.in/out。 该样例满足测试点 $3 \sim 7$ 的限制。

【样例 4】

见下发文件中的 operation 4. in/out。 该样例满足测试点 $8 \sim 11$ 的限制。

【数据范围与提示】

对于所有数据,满足 $1 \le n, m \le 4 \times 10^5$, $0 \le W_i \le 10^9$, $0 \le a_i \le 10^3$, $-1 \le b_i \le 10^9$, $L_i \le R_i$ 。

每个测试点的具体限制见下表:

测试点编号	n	m	特殊性质
$1 \sim 2$	≤ 2	≤ 514	无
$3 \sim 7$	$\leq 10^{3}$	$\leq 10^{3}$	
8 ~ 11			$L_i = R_i$
$12 \sim 14$	$\leq 10^{5}$	$\leq 10^{5}$	$W_i = 0, b_i \le 0$
$15 \sim 18$			无
$19 \sim 20$	$\leq 4 \times 10^5$	$\leq 4 \times 10^5$	儿