Applicable to Serial No. 2.5.4.4.4

MODEL bwd 539 A 5" DUAL TRACE OSCILLOSCOPE

SECTION	PAGE	CONTENTS
1	1	GENERAL
2	1	SPECIFICATION
3	3	FUNCTION OF CONTROLS
4	6	FIRST TIME OPERATION AND APPLICATION NOTES.
5	10	CIRCUIT DESCRIPTION
6	16	ALIGNMENT PROCEDURE
7	21	REPLACEMENT PARTS
8	21	WARRANTY
9		PARTS LIST AND CIRCUIT

B.W.D. ELECTRONICS PTY. LTD. 331 - 333 BURKE ROAD, GARDINER, VICTORIA, 3146, AUSTRALIA.

Telephone: 25-4425

B.W.D. ELECTRONICS PTY. LTD., 127 BLUES POINT ROAD, NTH SYDNEY NEW SOUTH WALES, 2060, AUSTRALIA

Telephone: 929-7452

A GUIDE TO THE CHARACTERISTICS & METHODS OF SPECIFYING BWD OSCILLOSCOPES

1. VERTICAL AMPLIFIER(s)

la. Bandwidth, Typical Spec.

DC or 2Hz to 10MHz -3db referred to 4 cm deflection at 50kHz.

Method of Measurement

Attenuator set to maximum sensitivity. (Below 5mV where noise may be present, the attenuator is set a decade back, i.e. 50mV in lieu of 5mV). Vernier, if incorporated set to CAL. Time base at 100µSec and switched to AUTO.

A low distortion sine wave oscillator with an accurately monitored output (at the point of termination) or one with <u>less than 1%</u> change in level is coupled to the input-socket and correctly terminated. Frequency is set to 50kHz and input level adjusted for 4 cm peak to peak deflection.

The oscillator frequency is now increased and the level noted until it drops to 2.84 cms =-3db or 0.707 of the original level. This will be at 10MHz or higher.

If reference level is 5 or 6 cm etc. then input should be set to this level and -3db point is reached when deflection falls by 30%, i.e. 3.5 cm for 5 cm and 4.2 cm for 6 cm.

NOTE: It does not mean a 3db increase in the signal input will return the display back to 4 cm. This is due to inherent limitations in output amplifier deflection capabilities which largely determine the oscilloscope bandwidth.

Oscilloscope amplifier characteristics to note are: -

- (i) The response starts to fall around 30% of the bandwidth, i.e. a -3db 10MHz amplifier starts to roll off around 3MHz and,
- (ii) Full screen deflection is not normally available at the maximum bandwidth.

In low cost instruments it is available to approx. 50% of the bandwidth, i.e. up to 5MHz in a 10MHz oscilloscope, but in high performance and relatively high cost models it is available to over 80% of the bandwidth. Overdrive will produce a triangulated sine wave when deflection limit is reached.

1b. Low Frequency Response

With the input switched to DC, the amplifier response is constant (flat) down to zero frequency, enabling the oscilloscope to be used as a DC voltmeter. If the input is changed to AC, a capacitor (usual 0.1uF) is placed in series with the input removing the DC component and attenuating the low frequency AC signal. At 2Hz is slightly less than -3db down from the reference level. Square waves display sloping faces below about 200Hz. A 10-1 divider probe will extend this frequency response down by a factor of 10, i.e. -3db at 0.2Hz.

1c. Rise Time, Typical Spec.

35nSec over 4 cm.

Method of Measurement

This is most accurately obtained by interpolation. The formula, based on a step response

with less than 2% overshoot or ringing and applicable to all BWD oscilloscopes is rise time = $\frac{350}{\text{bandwidth (-3db)}}$ nano Sec. e.g. $\frac{350}{10}$ = 35nSec.

A measured rise time on an oscilloscope must also accommodate the input pulse rise time. The formula for this is t display $=\sqrt{t^2}$ pulse + t^2 oscilloscope. The accompanying chart on page 4C provides direct read-out of the values.

NOTE: When measuring near the upper limit of oscilloscope pulse, amplitude should be contained within the limit of the bandwidth reference level, (e.g. 4cm from above example) for greatest accuracy of rise time.

1d. Input Impedance

This invariably consists of a $1M\Omega$ resistance in parallel with a capacitive component. As the capacitance consists of strays and valve or F.E.T. input capacitance it is measured with the instrument working by a direct reading capacitance meter. In high sensitivity instruments an overvoltage applied by the meter can operate the protection circuits and change the input capacitance reading, so measurements are made at $100\,\text{mV/cm}$.

NOTE: As input capacitance is added to lead capacitance when making direct measurements, it is always recommended a : 10 high impedance probe be used to reduce this capacitive component down to 10-12pf where signal levels permit.

2. HORIZONTAL AMPLIFIER

General Specifications and measurement techniques are similar to vertical amplifiers and will be referred to where applicable.

2a. Bandwidth, Typical Spec.

DC to 750kHz -3db referred to 6 cm at 50kHz at max. gain.

Method of Measurement

Horizontal gain vernier turned fully clockwise or switched as applicable to max. gain, spot centered. 50kHz sine wave is coupled in and set to 6 cm deflection. Increase input frequency until trace width drops to 4.2cm; this is the -3db point. All notes relative to vertical amplifier section should also be applied to this section, i.e. max. deflection, roll off, rise time etc.

2b. Input Impedance

Many horizontal input amplifiers are transistors with a relative low input impedance, therefore input specifications vary widely from $56 \mathrm{K}\Omega$ to $1 \mathrm{M}\Omega$, and capacitance varies from 10pf to 50pf. Input capacitance and resistance is measured at max. gain.

3. TIME BASE

This section is divided into the following sections: -

(i) Time Base; (ii) Magnification; (iii) Triggering;

3a. Time Base, Typical Spec.

200nSec to 2 Sec in 22 steps, calibration < 3%.

Method of Measurement

Set time base to 1mSec and vernier fully clockwise to CAL. Feed in a 1kHz square wave or pulse with better than 0.1% frequency accuracy. When the first pulse is lined

up with the first graticule line, then the 10th pulse should be within ±3 mm of the 10th graticule line, Checks made at all other time base steps with corresponding calibration pulses should be within the same limits.

NOTE: Calibration accuracy is not the accuracy of each individual division (unless specifically stated) but the overall accuracy, where any variation in trace linearity is averaged over the 10 div. (cm) deflection.

Where linearity is specified, it is usually measured between the 1st and 9th graticule lines to eliminate compression effects around the perimeter of the CRT.

3b. Magnification, Typical Spec.

3% accuracy at X1 and 5% at X5 up to 1μ Sec/cm.

Method of Measurement

After calibration check as above at 1mSec/cm trace is expanded to X5. 1kHz calibration pulses should be 5 cm apart \pm 2.5 mm. With trace at X5, time base is increased to $5\mu Sec/cm$ producing a $1\mu Sec/cm$ magnified sweep. This is the limit of specified calibration although it is normally within spec. at X10 this sweep speed over most the trace length.

3c. Triggering, Typical Spec.

INT AUTO 1 cm defl. 5Hz to 10MHz.

This implies when the time base is adjusted for convenient viewing of input, i.e. 5-10 sine waves visible across screen 1 cm high irrespective of attenuator setting, the time base will present a stable display. Above a few MHz it may be necessary to select + or - slope to obtain greatest clarity of display.

NOTE: All bwd oscilloscopes incorporate an AUTO circuit which varies its rate as the time base range switch is changed, they also have a unique feature which increases the sensitivity of the time base if the trigger level drops at high frequencies – a feature which accounts for their superior triggering characteristics. At low frequencies the AUTO rate may exhibit an intermittant repetition rate. This is quite normal and in no way effects its excellent locking ability when a signal is present.

Typical Spec. Level Select \pm 3 cm range 3Hz to 10MHz.

If the Select Control is turned clockwise from AUTO, the triggering point can be selected over a 6 cm range. At the upper and lower frequencies of the trigger range the level range reduces and becomes more critical to adjust.

NOTE: On oscilloscopes with DC coupled trigger (bwd 521, 522 and 525) time base trigger can be initiated by a change in the DC level of the displayed signal or any frequency down to zero with full selection of the trigger level.

Spec. EXT AUTO 1V P-P 5Hz to 10MHz. EXT LEVEL SELECT ± 5V P-P 3Hz to 10MHz.

Characteristics are as specified for internal trigger, but refer to an external trigger signal applied to the EXT trigger socket.

NOTE: Input levels to EXT trigger socket are often limited to \pm 60V or 100V RMS. Do not exceed these limits or failure of input transistor may result.

Z MODULATION Typical Spec. -20V to modulate at normal intensity.

Set T.B to 1mSec/cm, feed in a 1kHz sine wave 20V P-P from low Z source. Trace should clearly change brightness level each cm.

INSTRUMENT HANDBOOK

MODEL bwd 539A OSCILLOSCOPE

1. GENERAL

An oscilloscope that thoroughly commends itself for use in Research, Education or Servicing must be stable, have a high performance and be virtually self operating.

These are the characteristics you will find after a short time at the controls of this versatile Model bwd 539A Dual Trace Oscilloscope.

The 100% silicon solid state design is extremely stable in operation, amplifier and time base are compensated against input line voltage changes both for sensitivity and positional movement. Input FET amplifiers are protected against both + and - input over-voltage conditions up to 400V peak.

An active T.V. sync circuit provides line or frame lock which permits viewing of individual frame pulses, colour burst or equilising pulses.

For additional versatility the sync separator also provides an HF reject trigger selection and a demodulated trigger waveform for stable viewing of A.M. or single sideband R.F. displays.

Application notes are contained in Section 4 of this handbook.

Model bwd 539 has been designed for reliable long-term use - it has been subjected to environmental tests and each instrument is heat soaked and vibrated as part of its alignment procedure.

For maximum reliability it is advisable to replace the power supply protection fuse every 2000 hours of operation to guard against thermal stress failure. Additionally, if the instrument is to be left non-operating for long periods and is stored in a dusty atmosphere, it is wise to drop a plastic protection cover over it to minimise dust ingress into switch wafers, etc. A storage cover and a carrying case are available from the supplier, together with a full range of accessories.

2. SPECIFICATION

31 2 611 10	7111011	
2.1 <u>C.R.T.</u>	Туре	5" Diameter Type D13 - 27GH incorporating a spiral PDA & DC coupled Beam blanking.
,	Phosphor	P31 normally supplied. P7 available as Option 04.
	EHT	3.0kV.
	Graticule	8×10 cm. graticule with .2mm subdivisions on major axis on green light filter.
	Deflection	8 cm. vertically x 10 cm. horizontally.

To use the above chart read the rise time of the displayed waveform on the CRT between its 10% and 90% points. Find the point corresponding to this value on Scale 2. Join this with a straight edge to the value corresponding to the oscilloscope bandwidth on Scale 1B, the projection on Scale 3 is the true rise time of the input pulse.

For other rise time ranges Scales 1A, 2 & 3 can be multiplied by a convertion factor, e.g. 2, 5 or 10. Scale 1B must be divided by the same factor.

SPECIFICATION (Cont'd) 2.

2.2 VERTICAL AMPLIFIER (Channel A & B Identical)

10mV to 50V per cm. in 12 direct reading steps in a 1,2,5, Sensitivity 10 Sequence.

Bandwidth DC or 2Hz (AC coupled) to 10MHz-3db., referred to 4cm. deflection at 50kHz.

23nSec. for 4 cm. deflection. Rise Time

Input Impedance $1m\Omega$ and 40pf constant.

Calibration <5% including 10% line change. Trace drift <±1cm.

Deflection 2 Screen diameters up to 1MHz.

Input Voltage Protection ± 400V DC or 280V AC RMS.

Display Mode Single beam Channel B Only chopped (100KHz) and alternate. Dual trace A & B chopped at 100kHz approx.

A & B Alternate.

Trace Divergance 2mm at centre screen on low time base speeds.

2.3 TIME BASE

1uS to .5Sec/cm. in 18 switched ranges with 5-1 vernier Range extending range down to 2 Sec/cm. Calibration <5%.

X1 to X5 continuously variable, calibration < 5% at X1 and at Magnification X5 up to max. sweep speed of luSec/cm.

2.4 TRIGGERING - Channel A or B by switch selection.

Selection	Coupling	Slope	Source	Mode
	Norm.	+	Int.	AUTO
	T.V.	-	Ext	Select Level
Sensitivity	Int. AUTO	1cm. defl.	5Hz to 5MHz	
 		2cm. defl.	2.5Hz to >10MHz	(+ve slope)
	Int. Select	±3cm. max.	5Hz to>2MHz	
	Ext. AUTO	1V RMS	2.5Hz to >10MHz	
	Ext. Select	>1V RMS	2.5Hz to >5MHz	
	Max. Ext Input 100V p-p Max. or 30V RMS.			

T.V. Sync. Triggers on Line in AUTO position. Triggers on Frame with Trig Level fully clockwise.

2 cm. to over 8 cm. composite video waveform. Displays Sensitivity frame pulses, equalising pulses, colour burst, etc.

Demodulation or HF Reject. T.V. Selection also provides stable locking of modulated R.F. Waveforms and eliminates HF noise from trigger signals below 2kHz approx.

3. FUNCTION OF CONTROLS (Cont'd)

3.1 Cont'd.

± Switch

Selects the positive (+) or negative (-) slope of the displayed signal or external trigger waveform to initiate the time base.

INT-EXT Switch

 Selects the trigger source from the displayed waveform on Channel A or B or an external waveform.

Vertical Position Channel A & B (Red Knobs)

Moves the traces up and down the C.R.T. Channel A position control also switches off Channel A when rotated fully anticlockwise until it operates the switch detent when single beam operation is required.

Volts/cm (Attenuator) Channel A & B

Switches adjust the sensitivity of the Vertical Amplifiers from 10mV per cm to 50V per cm in a 1,2,5,10 series of steps. Attenuator accuracy is 2% and the overall oscilloscope accuracy is within 5% on any step.

DC-AC Switches (Channel A & B)

In the DC position of this switch the amplifiers are directly coupled from input to output. In the AC position a capacitor is placed in series with the inputs to eliminate any DC component and attenuate all frequencies below 2Hz.

3.2 TERMINALS AND SOCKETS FRONT PANEL

Vertical Input

Co-ax. Socket. A positive input will cause the trace to move upwards; a negative input will cause the trace to move downwards.

Out Chop) Push Pull Switch

For time base speeds above 2mSec/cm, switch should be pushed to ALT position. Below 2mSec/cm use in chopped position to eliminate trace flicker between displays.

When Channel A is switched off for single beam operation, push switch into ALT position. For X-Y operation with external Time Base push to ALT for single beam operation and pull to CHOP for dual beam display.

<u>Trig</u> Select

Push Push Switch

Select A or B Trigger

539 127

(Cont'd) 2. SPECIFICATION

2.5 HORIZONTAL AMPLIFIER

Approx. .70V to approx. 10V/cm. continuously variable. Sensitivity

DC to 1 MHZ -3db. Bandwidth

 $56K\Omega$ and 10pf approx. Input Impedance

 $\pm 160 \text{V}$ or 60 V rms. Max. Input

2.6 Z MODULATION

Input to CRT grid. 0.01 uF + 22KQ.+30V required blank CRT at normal intensity

Line Frequency IV p-p square wave 2% accuracy. Calibrator

Time Base Output 0 to 25V positive going sawtooth max. Load $22K\Omega$ min.

30 Watts approx. 85 V - 135 V in 3 ranges 50 - 60 HzPower Requirements

9.1/4" high x 7.1/2" wide x 16.1/2" deep overall feet, handle, **Dimensions**

knobs, etc.

Probes X1

16 lb. (7kg.) Domestic / Air Freight Pack: 17.3/4 lb. (8 kg.) Weight

Export Pack: 22 lb. (10 kg.).

Optional Accessories

X1 & X10 Kit					
X1, X10 and Demod.	P29				
Demodulator	P35A				
Carrying Case					
Vinyl Dust Cover	C12				
Light Shield	H44				
19" x 8.3/4" Rack Mount Adaptor	R77				

NOTE:

Characteristics expressed in numerical values with tolerances stated are guaranteed by the factory. Numerical values without tolerances represent the values of an average instrument. All data applies in case of nominal mains voltage unless otherwise stated.

P30

3. **FUNCTION OF CONTROLS**

Front Panel controls are grouped for ease of use and are clearly designated. The 3.1 functions of these controls are as detailed below -

Intensity Control Fully anti-clockwise, this control switches the instrument OFF. When rotated clockwise the instrument is switched ON and further rotation controls the trace intensity (brightness) from zero to max.

3. FUNCTION OF CONTROLS (Cont'd)

3.2 TERMINALS AND SOCKETS FRONT PANEL (Cont'd)

When the Time Base Vernier is turned anti-clockwise to "T.B. OFF" signals may be fed into socket to produce a horizontal display, input is DC coupled. For AC coupled inputs an external capacitor must be placed in series with the lead. Max. Input is ±100V or 60V AC.

CAL. 1V p-p

A 1V peak to peak square waveform is available to check the amplifier calibration, T.B. calibration, probe alignment or for use as an external signal.

When the Trigger Selection switch is in the EXT position, signals from 1 to 20V will trigger the Time Base. Full selection of amplitude over a range of ±10V or AUTO operation with positive or negative and T.V. selection is available.

3.3 REAR PANEL

Z Modulation

A 30V p-p square wave or a sine wave of 10V RMS or greater will blank the trace at normal intensity. Ne gative going signals blank the trace. Positive signals brighten the trace.

Time Base Output A 25V p-p sawtooth swinging approx. 0 to +25V to common is available at low impedance. Min. external loading 22KΩ.

4. FIRST TIME OPERATION

Check tapping on Power Transformer for correct connection for local supply mains. Instrument is fitted with universal primary for 100 to 240V operation, connect as shown below to suit local power line voltage.

3. FUNCTION OF CONTROLS (Cont'd)

3.1 Cont'd

Focus

Controls the sharpness of the trace. May require a slight re-adjustment over the full intensity control range.

Astigmatism

Preset rear panel control, adjusts beam for optimum shape over entire screen area.

Horiz., Position

(Red Knob) moves the trace horizontally on the C.R.T.

Horiz. Mag

(Grey Knob) when the Time Base is in use, this control varies the length of the trace from 10 cm. to 50 cm., providing X5 expansion. When an external Horizontal Input is used, the Horizontal Gain varies the sensitivity from .7V to approx. 10V per cm. approx.

Auto, Trigger Level Control

Fully anti-clockwise, and switched to the AUTO position, any signal greater than 0.5 cm. in amplitude will trigger the time base, however with no signal present, an Automatic trigger pulse is generated to produce a base line, the trigger rate increases as the Time Base Speed range increases, producing a bright reference line at all sweep speeds. When the knob is switched out of the AUTO position, it selects the Level on a displayed waveform of ± 4 cm. to trigger the Time Base.

T.B. Vernier (co-ax with Time/cm. Switch). Varies the Time Base speed over a range greater than X5 to provide a continuously variable range in conjunction with the TIME/CM. switch of 2 Sec/cm. to luSec/cm. When the VERNIER control is turned and switched fully anticlockwise it switches off the internal Time Base permitting an external signal to be fed into the X INPUT socket.

Time/cm. (Time Base) Switch

When the Time Base Vernier control is fully clockwise in the CAL position, the 18 time base speeds on this control will be accurate to within 5%. The switch speeds represent the fastest speed on each range; rotation of the Time Base Vernier Control anti-clockwise will reduce the selected speed over a range greater than X5, e.g. on the lmSec. range the Vernier will vary the time base from lmSec. down to 5mSec/cm.

Norm - T.V. Switch

In Norm. position, triggering is controlled by + and - switch and trig. level control. In the T.V. position a sync separator is brought into circuit and the Trig Level control assumes dual function. In the AUTO position stable LINE lock is provided and when the control is turned fully clockwise very stable FRAME lock is obtained even from noisy video signals. See Section 4 for further details.

4. FIRST TIME OPERATION (Cont'd).

4.5 Cont'd

Increase the Vertical sensitivity by the VOLTS/CM switch until a display between 3 and say 8 cm. exists. Now adjust the Time Base Switch and Vernier to enable the waveform to be readily seen. To measure the amplitude of a displayed waveform, measure its overall height in cms. by the calibrated graticule, then multiply this by the attenuator setting and the result is in Volts p-p, e.g. if the display is 6 cm. high and the attenuator is set to 0.5V then the amplitude is $6 \times 0.5 = 3V$ peak to peak, to convert to RMS voltage for sine waves, divide the 3V by 2.84, e.g.

$$\frac{3.00}{2.84}$$
 = 1.06V RMS

The frequency of a waveform can be found by turning the Time Base Vernier to CAL (clockwise) then switch the TIME/CM switch to a range where the signal can be clearly seen, e.g. if a waveform is 5cm long and the switch is on 100uSec., then the duration of the waveform is 5 x 100uSec. The frequency can be determined by dividing 1 Sec., i.e. 1,000,000uSec. by the duration of the

$$\frac{1,000,000}{500}$$
 = 2,000Hz = 2kHz

4.6 CURRENT MEASUREMENTS AC OR DC.

Where it is possible to place a low value resistor in the earthy end of a circuit the current through this resistor can be found by viewing the voltage across it and converting it by ohms Law to current. By using a 1Ω resistor the attenuator calibrations read directly in mA or A in lieu of mV or W. hen the oscilloscope is connected across it.

This will display AC or DC current and, unlike an ammeter, will show the actual current waveform. Practical applications are the charging currents in a filter capacitor of a power supply or the current through a rectifier via the centre tap of a transformer etc.

4.7 MEASUREMENTS WITH AN EXTERNAL HORIZONTAL INPUT.

As the HORIZ. INPUT is directly coupled, the C.R.T. display can be used for X - Y plotting over an 8×10 cm. area.

Switch to "T.B. OFF" and calibrate the Horizontal Amplifier by feeding in the CAL waveform and adjusting the HORIZ. MAG. until the display equals 1 cm. Set the Vertical Attenuator to 1V/cm. The oscilloscope has now identical X and Y sensitivities, of 1V p-p/cm. (Other sensitivities can be used with equal or unequal sensitivies as required).

Remove the CAL. waveform and centre the spot. Positive or negative voltages may be now applied to X and Y inputs and the result plotted on tracing paper placed over the C.R.T. or transferred to a ruled graph paper. AC signals will show phase displays or Lissajous figures. With the vertical input switched to DC less than 2° phase shift exists up to 10kHz and 5° at 20kHz between X and Y inputs. Dual trace displays can be obtained by pulling out the CHOP mode switch knob.

4. FIRST TIME OPERATION. (Cont'd)

4.1 Set controls as follows:-

Intensity	-			OFF (anticlockwise)
Focus	-	•		mid-position

Amplifiers A & B

Attenuator	-	.2V/cm.
Vert. Position	-	mid-position
Input Selectors	-	AC
Alt-Chop Switch	-	Chop (pulled out).

Time Base.

Time Base Range	-	10mSec/cm.
Vernier	_	Clockwise (Cal).
Trigger Level	_	AUTO (anticlockwise)
± Select	-	+
NORM - T.V.	_	NORM
INT-EXT.	_	INT
HOR. MAG		Anti-Clockwise X1
HOR, POSITION	•	Mid-position

4.2 Connect instrument to power mains, (check transformer tapping as in 4.1) then switch instrument on. After about 10 seconds when traces appear, adjust beam for suitable intensity and sharp focus. Now position traces centrally across screen. Connect a lead from the CAL socket to the 'B Channel' input socket. A 50Hz square wave will be displayed with the top and bottom faces of the waveform sloping. Switch the input selector to DC. The square wave will be displayed positive going to the base line. Recentre with position control. Adjust Time Base range switch and vernier to check characteristics with two waveforms displayed, change over ± trigger selector switch. Turn the Level Selector control clockwise. This switches off AUTO, the trace will disappear then re-appear as control is rotated and the point at which the trace is initiated will move up or down the edge of the waveform as selected by the ± selector. It will disappear when almost fully clockwise.

Return the control to AUTO and adjust the TIME/CM switch to give five waveforms across the CRT, then turn the HORIZ. MAG control clockwise until one waveform is 10 cm. long; this illustrates the trace expansion facility. If the horizontal position is turned the trace can be tracked along to view any part of it from one end to the other.

To check the X INPUT, turn the T.B. Vernier to T.B. OFF. Connect a lead from the CAL socket to the X INPUT socket, a horizontal line will appear whose length can be varied by the HORIZ. MAG control from 1 cm. down to less than .2 cm. The Horizontal position of the trace can be set by the HORIZ. POSITION control.

Instead of the CAL waveform connect an audio oscillator (e.g. Models 140A, 112B or 602) to Channel 'B' input. Set input frequency to 1kHz – increase Time Base speed and note how in the Chopped mode, the individual chopped segments of the waveform appear. Push the switch in to the Alternate position. The chopping

4.8 TELEVISION WAVEFORM DISPLAYS.

Very stable displays of frame or line signals may be obtained by switching trigger coupling to T.V. With a positive video waveform displayed select T.V. and +, if video is negative going - video signal not sync, then select - ve.

To lock the signal to line frequency set the TRIG. LEVEL to AUTO (Line) then turn TIME/CM. switch to view line waveform. To lock signal to frame frequency rotate the TRIG. LEVEL fully clockwise and adjust T.B. speed to view one or two frames as required. Detailed examination of the frame pulse and following equalising pulses etc. can be made by increasing time base speed and/or using the X5 expansion. As the repetition rate is only 50Hz or 60Hz, the trace intensity falls with increasing time base speed however, detailed observation can be readily made and by backing off the TRIG. LEVEL control more of the frame pulse can be viewed than is visible in the preset position.

When observing colour burst or chrominance signals, pulse and T bar displays, measurement will be accurate as the vertical bandwidth is flat within approx. 5% up to 5MHz for a 4 cm. display.

CIRCUIT DESCRIPTION. (Drg. No. 1014 and 1019)

The circuit is divided into three (3) sections -

5.

- (a) Vertical Amplifiers. (Drg. No. 1014)
- (b) Trigger Circuits and T.B. (Drg. No. 1019)
- (c) CRT EHT and Power Supplies. (Drg. No. 1019)

5.1 VERTICAL AMPLIFIER. (Channel 'B'). (Drg. No. 1014)

Signals at the input socket are connected by S3 either directly or via C30 capacitor which removes the DC component to the attenuator switch S4A-D. This switch is in two sections, S4A and B attenuates the input in a stepped 1, 10, 100 and 1,000 sequence whilst S4C and D attenuate the signal in a repetative 1, 2, 5 sequence. The effect of cascading these two sections is to attenuate signals in a 1, 2, 5, 10 sequence in twelve steps. Correct step response is maintained by making the series or shunt capacitors adjustable, whilst constant input capacitance is maintained by C32, 36, 39 and 41.

To protect the input FET stage Q11 from large overloads the input is taken through a high impedance in series with the input to the FET gate. Back to back diodes D7 and D8 taken to -3.5 and + 3V rails prevent the input from exceeding these limits.

The amplifier is a balanced design from input to output with Q11 and Q12 FET input stage, Q13, Q14 amplifier stage and Q7 - Q10 cascode CRT driver stage.

Q11 and Q12 are FET's operated as a balance amplifier with a common source load, R57 and R58. Positioning voltage is applied to the drains via R59 and R60 from RV3 position control. A zener diode is also in the source load and serves to keep the gain of the stage constant when line voltage changes occur. The drain load for Q11 and Q12 consists of R61 and 62 shunted by the input impedance of the Q13 and 14.

4. FIRST TIME OPERATION (Cont'd)

4.2 Cont'd.

waveform disappears and two flicker free traces appear. In general, the Alternate position is used when viewing frequencies above 100Hz and the Chopped made below this. For single beam displays with Channel A off always push the switch in to the ALT position to eliminate chopping pulses on the trace.

4.3 Z MODULATION.

Feed an oscillator into the red rear panel socket marked 'Z'. With an input of 10V RMS or 30V p-p approx., the trace at normal brightness level will be intensity modulated. Z Modulation is not available in the chopped amplifier mode.

The following sections explain the operation of this Model when used to make specific measurements.

4.4 MEASUREMENT OF DC (DIRECT) VOLTAGES.

Set T.B. LEVEL CONTROL to AUTO. Switch the Vertical Amplifier AC-DC Switch to DC. For an initial test take a $1\frac{1}{2}V$ dry cell and set the attenuator to 0.5V. Connect the negative end to the BLACK COMMON terminal, set the trace to the centre of the graticule, touch a lead from positive end of the battery to the input socket; the trace will move up to 3 cm., i.e. $3 \times 0.5V \pm 1.5V$. Now reverse the connections to the battery and note how the trace moves down 3 cm. This illustrates how an oscilloscope can display positive or negative voltages or both simultaneously, e.g. when viewing a sine input or square wave.

The DC input facility may be used to measure AC waveforms swinging about a DC Voltage, as at the collector of a transistor or the anode of a valve, to check for bias settings or anode bottoming, etc. Maximum DC input should not exceed X10 input attenuator setting if it is required to re-centre the trace to view a signal superimposed on it.

NOTE: .

The $1\,M\Omega$ input impedance of the oscilloscope must be taken into account when measuring high impedance points such as anode, grid or screen voltages of valves or the gate of FET's working with high value loads. To obtain a higher input use a P22 high impedance probe which increases the input to $10\,M\Omega$ shunted by $<14\,pf$.

4.5 MEASUREMENT OF AN AC ALTERNATING VOLTAGE.

Set the Amplifier AC - DC switch to AC and the Attenuator to 20V (if the input voltage is unknown). Connect a lead from the BLACK input terminal to the ground (earth) side of the signal to be measured, then connect a lead from the input socket to the signal source. (Models 112B, 140A or 602 Oscillators are suitable for initial experiments in this test).

FIRST TIME OPERATION (Cont'd).

4.5 Cont'd

Increase the Vertical sensitivity by the VOLTS/CM switch until a display between 3 and say 8 cm. exists. Now adjust the Time Base Switch and Vernier to enable the waveform to be readily seen. To measure the amplitude of a displayed waveform, measure its overall height in cms. by the calibrated graticule, then multiply this by the attenuator setting and the result is in Volts p-p, e.g. if the display is 6 cm. high and the attenuator is set to 0.5V then the amplitude is $6 \times 0.5 = 3V$ peak to peak, to convert to RMS voltage for sine waves, divide the 3V by 2.84, e.g.

$$\frac{3.00}{2.84}$$
 = 1.06V RMS

The frequency of a waveform can be found by turning the Time Base Vernier to CAL (clockwise) then switch the TIME/CM switch to a range where the signal can be clearly seen, e.g. if a waveform is 5cm long and the switch is on 100uSec., then the duration of the waveform is 5 x 100uSec. The frequency can be determined by dividing 1 Sec., i.e. 1,000,000uSec. by the duration of the

$$\frac{1,000,000}{500}$$
 = 2,000Hz = 2kHz

4.6 CURRENT MEASUREMENTS AC OR DC.

Where it is possible to place a low value resistor in the earthy end of a circuit the current through this resistor can be found by viewing the voltage across it and converting it by ohms Law to current. By using a 1Ω resistor the attenuator calibrations read directly in mA or A in lieu of mV or W. hen the oscilloscope is connected across it.

This will display AC or DC current and, unlike an ammeter, will show the actual current waveform. Practical applications are the charging currents in a filter capacitor of a power supply or the current through a rectifier via the cent re tap of a transformer etc.

4.7 MEASUREMENTS WITH AN EXTERNAL HORIZONTAL INPUT.

As the HORIZ. INPUT is directly coupled, the C.R.T. display can be used for X - Y plotting over an 8×10 cm. area.

Switch to "T.B. OFF" and calibrate the Horizontal Amplifier by feeding in the CAL waveform and adjusting the HORIZ. MAG. until the display equals 1 cm. Set the Vertical Attenuator to 1V/cm. The oscilloscope has now identical X and Y sensitivities, of 1V p-p/cm. (Other sensitivities can be used with equal or unequal sensitivies as required).

Remove the CAL. waveform and centre the spot. Positive or negative voltages may be now applied to X and Y inputs and the result plotted on tracing paper placed over the C.R.T. or transferred to a ruled graph paper. AC signals will show phase displays or Lissajous figures. With the vertical input switched to DC less than 2° phase shift exists up to 10kHz and 5° at 20kHz between X and Y inputs. Dual trace displays can be obtained by pulling out the CHOP mode switch knob.

4. FIRST TIME OPERATION. (Cont'd)

4.1 Set controls as follows:-

Intensity – OFF (anticlockwise)
Focus – mid-position

Amplifiers A & B

Attenuator - .2V/cm.
Vert. Position - mid-position
Input Selectors - AC

Alt-Chop Switch - Chop (pulled out).

Time Base.

Time Base Range - 10mSec/cm.

Vernier - Clockwise (Cal).

Trigger Level - AUTO (anticlockwise)

± Select - +

NORM - T.V. - NORM

INT-EXT. - INT

HOR. MAG - Anti-Clockwise X1

HOR. POSITION - Mid-position

4.2 Connect instrument to power mains, (check transformer tapping as in 4.1) then switch instrument on. After about 10 seconds when traces appear, adjust beam for suitable intensity and sharp focus. Now position traces centrally across screen. Connect a lead from the CAL socket to the 'B Channel' input socket. A 50Hz square wave will be displayed with the top and bottom faces of the waveform sloping. Switch the input selector to DC. The square wave will be displayed positive going to the base line. Recentre with position control. Adjust Time Base range switch and vernier to check characteristics with two waveforms displayed, change over ± trigger selector switch. Turn the Level Selector control clockwise. This switches off AUTO, the trace will disappear then re-appear as control is rotated and the point at which the trace is initiated will move up or down the edge of the waveform as selected by the ± selector. It will disappear when almost fully clockwise.

Return the control to AUTO and adjust the TIME/CM switch to give five waveforms across the CRT, then turn the HORIZ. MAG control clockwise until one waveform is 10 cm. long; this illustrates the trace expansion facility. If the horizontal position is turned the trace can be tracked along to view any part of it from one end to the other.

To check the X INPUT, turn the T.B. Vernier to T.B. OFF. Connect a lead from the CAL socket to the X INPUT socket, a horizontal line will appear whose length can be varied by the HORIZ. MAG control from 1 cm. down to less than .2 cm. The Horizontal position of the trace can be set by the HORIZ. POSITION control.

Instead of the CAL waveform connect an audio oscillator (e.g. Models 140A, 112B or 602) to Channel 'B' input. Set input frequency to 1kHz – increase Time Base speed and note how in the Chopped mode, the individual chopped segments of the waveform appear. Push the switch in to the Alternate position. The chopping

5.1 VERTICAL AMPLIFIER (Channel 'B') (Cont'd).

Q13 and 14 is a series compensated stage, RV26and C48 compensate for H.F. response and RV4 preset gain control adjusts calibration. Negligible change in response occurs with adjustment of RV4.

The trigger amplifier is a high gain wideband integrated circuit driven from the common source connection of,Q11 and 12 when S14 is switched to 'B' & Q1 & 2 when switched to 'A'. Signals to the in-phase input pass through R15, signals to the anti-phase input are filtered out by R18 and C22. This applies a balanced DC input to the I.C. Feedback to control the I.C. gain is taken from the output via R14 to the -ve input. The AC gain is approx. 470 - the ratio of R14 to R15 but the DC gain which controls the stability of the amplifier when line or temperature changes occur is only 55 - the ratio of R14 to R16 and R18 in series. H.F. Stability is maintained by C21. The H.F. response is attenuated by C18 and R13 when the chopped mode is employed to prevent switching spikes from feeding through to the trigger circuit.

Positive (+ve) supply to the I.C. is part of output amplifier stage emitter current bypassed by C25. The negative supply is via R17 from the -54V rail and filtered by C20.

Channel A is identical to Channel B, the position control having a switch incorporated (S6) which disables the beam switching circuit when only single beam operation is required.

To enable both inputs to be displayed on a single beam CRT the A & B amplifiers are alternatively connected to the common amplifier stage on a 50-50 time sharing basis.

At low time base speeds the time sharing is operated in CHOPPED Mode when the beam switch free-runs at 150kHz. At higher time base speeds when persistance of vision eliminates the visible effect of time sharing the beams switch changes over during the return period of the time base sweep providing on ALTERNATE display.

The methods of coupling the amplifiers to Q5 and 6 is via diodes. Assuming Channel A is being displayed and B is cut off. The voltage at the junction of D3 and D4 is pulled down to +11 by the bi-stable switch Q15 and 16, well below the + 15 at the base of Q5 and 6 so D3 and 4 are cut off. Q3 and Q4 are always biased in a conducting condition so the only source of collector current is via the shunt feed back resistors R28 and 29 across Q5 and 6. This puts the coupling diodes D5 and 6 into conduction and completes the amplifier chain. To cut off Channel B, D9 and D10 are pulled into conduction by the action of the bi-stable switch Q15 and 16 which raises the voltage at the junction of D9 and D10 to approximately +18. This turns off the coupling diodes D11 and 12 preventing any signal transfer to Q5 and Q6. Collector current for Q13 and 14 is now obtained from the bi-stable collector load R66 via D9 and 10. The conduction of D9 and 10 also shunts the collectors Q13 and 14 so minimising feed through of Channel B signals.

CIRCUIT DESCRIPTION. (Cont'd.)

5.3 TRIGGER CIRCUIT. (Cont'd).

In the AUTO position \$10A is open allowing R105 and 107 to set trigger level. When \$10A closes in Trigger Level condition additional positive or negative voltage from RV9 via R106 overrides the preset condition and provides a selection level of the trigger waveform.

The schmitt trigger stage Q21 and 22 produces a sharp rectangular output waveform from any shape input.

The action is as follows, with Q21 conducting, its collector will bottom and Q22 will be cut off by the voltage divider action across R110, R111 and RV10. A negative going input signal from the phase splitter will cut off Q21, its collector will rise pulling Q22 base positive, so turning Q22 on, producing a negative pulse at its collector. As the emitters are coupled together, the current through Q22 will now hold Q21 off until its base is driven positive above the common emitter potential and the switching action is reversed. The sharp negative fall across R113 is differentiated by C76 then applied to Q24 base in the time base circuit. Trigger sensitivity is set by RV10.

5.4 TIME BASE CIRCUIT. (Drg. No. 1019)

The Time Base sawtooth generator consists of Q24 and 25 bi-stable trigger, Q27 source follower Q28 Miller sawtooth generator and Q29 emitter follower with associated clamping diodes D15, 16, 17, 18 and 19. The function is as follows:

Assuming Q24 is conducting, Q25 will be cut off, its collector will rise and D18 will conduct, pulling the gate of Q27 and hence the base of Q28 positive. The collector of Q28 will fall to approximately +5V together with Q29 base. At this point diode D19 connected into the emitter load of Q29 passes below zero and starts to conduct pulling D18 to a lower conduction level producing a static stable condition.

In this direct coupled quiescent state, the trace will be ready for a trigger input pulse. A negative pulse on Q24 base will cause the collector to rise taking Q25 base positive. This causes current to flow through Q25 into the emitter resistor R127, biasing Q24 off further and a rapid cumulative action occurs in which Q24 cuts off and Q25 saturates. D18 becomes reverse biased, Q27 is left with its gate at -1.5V approximately and connected through the timing resistor R99 to R104 to a negative potential on RV11 which will pull Q27 and thereby Q28 towards cut-off.

Q27 FET source follower presents a high impedance to the charging circuit enabling high value charging resistors to be utilised with small high stability timing capacitors. Q29 emitter follower provides a low output impedance to charge the capacitors and drive the output and gating circuits. As Q27 gate and Q28 base fall, Q28 collector rises and via Q29, R135 and C83, a charge is applied to the selected timing capacitor on S11D. The result of this negative feedback is to linearise the charging rate to the timing capacitor by keeping the voltage across the charging resistor constant and thereby the charging current. A positive going sawtooth waveform is generated at the collector of Q28 and base of Q29 where it appears at low impedance at its emitter.

CIRCUIT DESCRIPTION. (Cont'd)

5.1 VERTICAL AMPLIFIER. (Channel 'B' (cont'd).

When the bi-stable switches changes over the above action is reversed Channel A is cut off and Channel B conducts through D11 and 12.

Q5 and Q6 shunt feed back stage has a low input and output impedance. As a result of the low input impedance, capacitive loading of the two amplifiers and diode gates etc., has little effect on high frequency fall off. Similarly the low output impedance enables the stage to drive Q7 and Q8 cascode drivers directly. The C.R.T. deflection plate drivers are emitter coupled to Q7 and Q8 to minimise capacitive feedback and so maintain a wide bandwidth. H.F. compensation for the stage is provided by RV5 C27 and C26.

5.2 BEAM SWITCH CIRCUIT. (Drg. No. 1014)

Q15 and Q16 are a bi-stable switch, combining both collector and emitter coupling. In the CHOP Mode separate emitter resistors R68 and R75 are connected to ground via S5B and Q17 which is always conducting by the forward bias through R72. C52 between the emitters together with R67, R73 and C51 on one side and R69, C50 and R77 on the other cause the stage to oscillate at a frequency <100kHz. The resulting push-pull square waves at the collectors gate Channel A & B off and on. To eliminate the display when switching occurs a positive pulse is taken from C53 and C54 junction to Q18. The pulses turn on Q18, pull the collector down producing a sharp negative going pulse which is applied to the C.R.T. blanking electrode.

When S5B is switched to ALT Q15 and Q16 emitters are coupled together by D13 and D14 and then taken by R70 to the collector of Q17. This sets the circuit as a bi-stable switch. When a negative going pulse is received from the time base, Q17 cuts off, the emitters of Q15 and Q16 rise. If we assume Q15 was conducting it will cut off, its collector rises and via C50 pulls Q16 base more positive than Q15 base. Therefore, when the pulse to Q17 base is removed, Q17 conducts pulling Q16 into conduction before Q15, thereby changing the state of the bi-stable.

5.3 TRIGGER CIRCUIT. (Drg. No. 1019)

S7 selects the internal or external source of trigger which is then fed via C61 to Q19 phase splitter. S8A selects + or - slope before applying the signal via S9A to Q20 or direct to the Schmitt trigger. In the T.V. position Q20 which is permanently conducting, D.C. restores the signal by base current conduction. As the signal applied to Q20 is negative going only the positive going sync pulses will be amplified, the video signal driving the stage into cut off. Frame pulses are integrated by R98 and C65 producing a composite sync signal of low level line pulses and a 15V frame pulse.

In this way AUTO trigger operates on the low level line signal but only the high amplitude frame pulse operates in trigger level position.

S9B selects the normal or T.V. sync signal which passes via C74 to Q21.

5. CIRCUIT DESCRIPTION. (Cont'd).

5.4 TIME BASE. (Cont'd).

The sawtooth continues to rise until the potential at the junction on RV13 reaches approx. -4V. D17 conducts and charges C78 and C68 and C69 as selected by S11B. It also takes the base of Q24 positive to its emitter potential and continues positively until Q24 conducts causing its collector to fall cutting off Q25 and at the same time transferring the emitter current from Q25 to Q24. D18 conducts pulling the gate of Q27 positively, Q28 collector falls, the timing capacitor is rapidly discharged until Q29 emitter falls sufficiently to cause D19 to conduct to pull D18 back to a quiescent condition and stabilise the circuit ready for the next trigger pulse. This will initiate the next trace once the hold-off capacitors C79 and 66 - 67 as selected by S11A have discharged sufficiently through R117 and the base current of Q24 to allow a trigger pulse to cut Q24 off.

AUTO Time base operation is obtained by allowing the clamping network for Q24 base to run down at a controlled rate until the time base automatically turns itself on if no trigger pulse arrives during the run down. Q26 clamp discharges C79 and 66 - 67 as selected by S11A and holds the top of R117 at -0.2V during the normal sweep period as its base is held negative to its emitter by current through K129 and Q25. During the return trace when Q25 rises it cuts off Q26 thus permitting Q79 and 66 - 67 as selected, to charge negatively through R117, 118 and 119. When the junction of R117 and 8 falls below the emitter potential of Q24 it ceases to conduct, its collector rises and the cumulative switching action previously described occurs, with the resultant sawtooth sweep generation. During this period Q26 is pulled into conduction to discharge the AUTO. capacitors in readiness for the next run down.

The progressive reduction in capacitor value as the sweep speed rises results in a bright reference base line at all time base speeds and provides more reliable triggering at very high frequencies.

C.R.T. Blanking by the Time Base Circuit is accomplished by directly coupling the C.R.T. Blanking Electrode to Q23 collector which is driven between the clamping limits of +OV and +54V. Q23 is driven by Q24 via R116 base resistor and conducts during the forward trace, but is biased off during the return trace.

The square wave at Q24 collector is differentiated and limited by C80 and R123 before it is applied to Q17 base to switch the bi-stable beam switch during the return trace period.

5.5 HORIZONTAL AMPLIFIER. (Drg. No. 1019)

Three transistors Q30, 31 and 32 amplify the Time Base and Horizontal Input to provide the high voltage horizontal deflection voltages.

5. CIRCUIT DESCRIPTION. (Cont'd).

5.5 HORIZONTAL AMPLIFIER. (Cont'd).

Q30 is a shunt feedback stage, RV14B (HORIZ. MAG.) varies the feedback and hence the stage gain. RV15 presets the minimum gain (x1 Mag.).

The time base sawtooth, the horizontal X Input and the Horizontal position are all applied to Q30 base via mixing resistors R138, R139 and R140.

The low impedance output from Q30 feeds Q31 and Q32 long tail pair which in turn drive the C.R.T. deflection plates directly. Horizontal centreing is preset by RV16.

5.6 <u>C.R.T. AND SUPPLIES</u>. (Drg. No. 1019)

Type D13/27 C.R.T. requires approximately equal + and - E.H.T. supplies for correct operation. The negative supply is a voltage doubler consisting of D201 and 202 with C201 to 204 capacitors. A second stage of filtering R205 and C205 reduces ripple to a low level. C.R.T. potentials are taken from a divider across the -1400 supply consisting of R160, RV19 Focus Control, R161, RV24 Intensity Control and RV206 Intensity range preset.

The C.R.T. grid is returned to the -1400V rail via R208 grid resistor. RV24 INTENSITY control varies the impedance of the divider between grid and cathode and so varies the potential between them thus changing the beam current and trace brightness.

Z Modulation is coupled through C207 to the C.R.T. grid. All other electrode voltages are preset RV18 Astigmatism control and RV17 Geometry controls are located between low voltage rails.

The PDA supply, like the negative E.H.T. supply, is a voltage doubler rectified by D203 and D204 with C210 and C209 coupling capacitor and filter. D204 is returned to the +53 rail to add this potential to the PDA voltage.

5.7 LOW VOLTAGE POWER SUPPLIES. (Drg. No. 1019)

Two secondary windings provide the main DC supplies. + and -64V is obtained from the 51V winding by half wave rectifying by D22 and 23 followed by three stages of filtering for the various circuits. +200V

is obtained by doubling the 82V winding by D20 and D21. Separate filters are used for the vertical and horizontal amplifiers, R152 and 153 and C89 for the vertical and R155, C88 for horizontal.

5.8 CALIBRATOR. (Drg. No. 1014)

The 51V AC supply is fed to Q201 emitter. Q201 clamps the signal going positively by its zener diode action and negatively by its forward diode action. The resultant square wave is divided down by R210 and RV201 to supply 1V p-p output at the front panel socket.

539

- 17 -

ADJUSTMENTS AND MAINTENANCE.

A number of preset controls are contained in this instrument which may require periodical adjustments to maintain it in full calibration.

Before removing the top cover, disconnect the instrument from the mains. Remove the two screws holding the handle and withdraw the cover. The bottom cover may be removed by unscrewing the four feet.

The aid fault finding the voltages present at various points are shown on the circuit.

6.1 ALIGNMENT PROCEDURE.

Before attempting re-alignment of any section of this Oscilloscope, check the instruments general operating characteristics and correct any apparent faults. Also check DC rails as variation in supply voltages caused by a fault may result in miscalibration.

6.2 General check of controls -

(a)	Intensity	Linear control over intensity range.
(b)	Focus	Approx. centre with adjustment either side.
(c)	Horiz. Mag.	Trace should expand equally either side of centre.
<u>(</u> d)	Vert. Positions	Traces should move completely off screen above and below centre.
(e)	Trigger Level	With Atten. at 0.2V and CAL signal fed into AC Input check AUTO and Level Select operation.
(f)	+ - Switch	Set up as for (e) Trigger point should change over as indicated by switch.
(g)	X Input & Mag.	Feed CAL signal into Horiz. Input socket with T.B. VERNIER turned to T.B. OFF HORIZ. MAG should vary display from 2mm to over 1cm.

6.3 C.R.T. TRACE ALIGNMENT.

Feed a 1,000Hz square wave signal into the Channel B and adjust wave form to fill the screen. T.B. to 1mSec. VERNIER CAL.

RV18 Rear Panel astigmatism control is adjusted in conjunction with the FOCUS control to obtain the best resolution over the entire screen area.

RV17 at rear of main board adjusts the pattern geometry. It should be set to display vertical and horizontal lines with minimum of pin cushion or barrel distortion. RV18 may need slight re-adjustment after RV17 has been set as some interaction occurs.

- 16 -

7. REPLACEMENT PARTS

Spares are normally available from the manufacturer. When ordering, it is necessary to indicate the serial number of the instrument. If exact replacements are not to hand, locally available alternatives may be used, provided they posses a specification not less than, or physical size not greater than, the original components.

As the policy of the supplier is one of continuing research and development, the Company reserves the right to supply the latest equipment and make amendments to circuits and parts without notice.

8. WARRANTY

The equipment is guaranteed for a period of twelve (12) months from the date of purchase against faulty materials and workmanship.

Please refer to Guarantee Registration Card No. 16327 which accompanied instrument for full details of conditions of warranty.

6. ALIGNMENT PROCEDURE (Cont'd.)

6.3 C.R.T. TRACE ALIGNMENT (Cont'd.)

EQUIPMENT REQUIRED FOR COMPLETE CALIBRATION -

20,000 Ω /V meter or DVM. Pulse generator <10nS tr.

Voltage calibrator 0.5% accuracy 20mV to 100V p-p.

Sine wave generator 1Hz to 1MHz.

Constant amplitude generator 50KHz to 50MHz.

6.4 VERTICAL ALIGNMENT

- (a) Set all presets to mid position and adjust RV8 for 5.8V between pins 3 & 4 for IC1.
- (b) Set both attenuators to 0.01V, feed a 50mV p-p square wave to both inputs and adjust RV2 and RV4 for a 5 cm. display on Channels A & B respectively. Check other positions.
- (c) Set time base to 0.1 sec/cm, and with no input signal adjust RV21 for <±1cm trace shift for a ±10% mains voltage charge and <2mm trace deviation
 at centre screen. Repeat for Channel B (RV23).</pre>
- (d) Set vertical shift to mid rotation and adjust RV7 for trace centering. Check that shift control moves trace equally up and down if not reset RV7. Repeat for Channel B (RV6).
- (e) Adjust RV22 for zero volts between A and B on S14.
- (f) Adjust RV26 & C48 for best square wave response on Channel B. Input 500KHz and 3 cm. display.
- (g) Adjust RV25 & C58 on Channel A for similar square wave response to Channel B.

6.5 ATTENUATOR ALIGNMENT

Initially set attenuators to .02V and set C42 and C12 to mid positions and adjust C45 (16) for best square wave response. Figures in brackets are Channel A.

Attenuator Setting	Input Voltage	Adjust for Square Wave	Adjust for Input Capacitance
0.5V	200mV	C40 (15)	-
0.1	500mV	C33 (4)	C32 (3)
0.2	1∨	C41 (11)	· •
0.5	2V	C39 (10)	-
1 *	5 V	C35 (6)	C36 (7)

Attenuators will be automatically aligned at all other positions.

B.W.D. ELECTRONICS PTY.LTD.

REPLACEABLE PARTS

- 1. This section contains information for ordering replacement parts, it provides the following details: -
 - (a) Description of part (see list of abbreviations).
 - (b) Typical manufacturer or supplier of the part (see list of abbreviations).
 - (c) Manufacturer's Part Number, and
 - (d) Defence Stock Number, where applicable.
- 2. Ordering Please quote Model Type No., e.g. bwd 511, Serial No. Circuit Reference No. and component details as listed in parts list.

COMPONENT DESIGNATORS

A B C D DL E	Assembly Lamp Capacitor Diode Delay Line Misc. Elect. Part	H J L M P Q	Heater Jack (socket) Inductor Meter Plug Transistor	RV S T TH V	Resistor Variable Switch Transformer Thermistor Valve
	Misc. Elect. Part Fuse	Q R	Transistor Resistor	V DR	Valve Voltage Dependent Resistor

ABBREVIATIONS

Amp C cc cd comp CDS cer Com DPST	Ampere Capacitor Cracked Carbon Carbon Deposited Carbon Composition Ceramic Disc Capacitor ceramic Common Double Pole Single Throw	L lin Log m MHz MF ma MQ mfr MO	Inductor Linear Logarithmic Taper Milli = 10 ⁻³ Mega Hertz = 10 ⁶ Hz Metal Film Milli Ampere Meg Ohm = 10 ⁶ Ω Manufacturer Metal Oxide
		-	
			Metal Oxide
DPDT	Double Pole Double Throw	THM	Polyester/Paper Capacitor
elec	Electrolytic	MPC	Metalised Polyester Capacitor
F	Farad	Ne	Neon
f	Fuse	NPO	Zero temperature co-efficient
FET	Field Effect Transistor	nsr	Not separately replaceable
Ge	Germanium	NC	Normally Closed
Н	Henry(ies)	NO	Normally Open
H.S.	High Stability	ns	Nano second
HTC	High Temp Coating	obd	Order by Description
ins	Insulated	OD	Outside Diameter
kHz	Kilo Hertz = 10^3 Hz	p:	Peak
ΚΩ	Kilo Ohm = $10^3\Omega$	pf	pico farad = 10 ⁻¹² F

6. ALIGNMENT PROCEDURE. (Cont'd)

6.6 CALIBRATOR ADJUSTMENT.

When amplifier is correctly calibrated against an external standard set its attenuator to .2V, Vernier to CAL and feed in the 1V calibrate waveform (input switched to DC). Adjust RV201 on the bottom of vertical board for 5 cm. deflection.

6.7 TIME BASE ALIGNMENT.

- (a) Set T.B. Range to 1mSec. Vernier to CAL. Check trace length is 10.5 cm. approx. Set with RV13 if necessary.
- (b) Feed into amplifier 1mSec. pulses. Adjust No. 1. pulse to correspond to 1st graticule line. Adjust RV11 (rear main board) for 1 pulse/cm. Expand trace to X5. Adjust RV15 (for 1 pulse/5 cm.) Return to X1 and reset RV11 if necessary for 1 pulse/cm.
- (c) Now check lower time base speeds down to .5 seconds/cm. and at higher speeds up to 50uSec/cm. If it is noticed that most ranges appear slightly slower or faster than the nominal, RV11 may be reset to obtain the best overall calibration accuracy.
- (d) Turn the range switch to 10uSec/cm. Feed in a 10uSec pulse. Calibration may now be adjusted by C71 on lower side of T.B. Switch. Check calibration from 20uSec to 1uSec and if necessary reset C71 for best calibration over range.

6.8 TRIGGERING.

- (a) Set Time Base to 10uSec/cm. AUTO Trig, + and NORM. selection. Couple a 50kHz input to a vertical amplifier. Progressively reduce input level to below 1 cm. When trace fails to lock adjust RV10 for lock and continue reducing input until RV10 fails to lock trace.
- (b) Change from + to slope. Reset RV10 if necessary to optimise setting.
- (c) Increase input to 1cm., increase frequency up to 10MHz maintaining. 1cm. signal level trace should remain locked on +ve at highest time base speeds, and up to approx. 8 MHz on -ve selection.
- (d) At low frequencies trace will lock at 5Hz with 1 cm. deflection. Increase signal to fill screen at 1kHz, check operation of TRIG LEVEL control over full range both + and - slope.
- (e) Adjustment of RV22. Feed two different frequencies into channels A and B, adjust RV22 so that the time base locks instantly when changing trigger source from channel A to channel B.

6.9 HORIZONTAL AMPLIFIER

- (a) Turn T.B. Vernier to T.B. OFF, increase MAG to x5, centre spot. Feed in 50kHz signal. Adjust input for 6 cm. horizontal display. Increase frequency to 500kHz. Amplitude should not drop below 4.2 cm.
- (b) Instrument is now calibrated.

PARTS LIST - MODEL bwd 539A

			(10 2101	,		
ITEM NO.	5	DESCRIPTIC	N	Mfr.or Supply	PART NO.	
R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 R66 R67 R70 R71 R72 R73 R74 R75 R76 R77 R78 R79 R80	9.1KΩ 1KΩ 33Ω 800KΩ 500KΩ 1MΩ 250KΩ 1MΩ 1KΩ 2.2K 100KΩ 100KΩ 560Ω 560Ω 390Ω 12KΩ 12KΩ 12KΩ 12KΩ 12KΩ 12KΩ 12KΩ 15KΩ 2.7KΩ 18KΩ 1.2K 2.7KΩ 18KΩ 1.2K 2.7KΩ 18KΩ 1.2K 2.3KΩ 33Ω 33Ω	1%		Electro Electro Electro Electro Electro Pl Electro Pl	TR5 TR5 TR5 TR5 TR5 TR5 TR5	
R90 R91 R92 R93 R94 R95 R96 R97 R98	220ΚΩ 330ΚΩ 180ΚΩ 10ΚΩ 4.7ΚΩ 10ΚΩ 8.2ΜΩ 100ΚΩ 6.8ΚΩ	5% ½W C 5% ½W C		P1 P1 P1 P1 P1 P1 P1 P1		

PARTS LIST - MODEL bwd 539A

ITEM NO.		DESCRIPT	ION		Mfr.or Supply	PART NO.	. *
R1	.900ΚΩ	1%	МО	- H.S	Electro	TR5	
R2	111ΚΩ	1%	MO	H.S	Electro	TR5	
R3	990ΚΩ	1%	MO	H.S	Electro	TR5	
R4	9.1ΚΩ	1%	MO	H.S	Electro	TR5	
R5	1ΚΩ	1%	MO	H.S	Electro	TR5	
R6	33Ω	5% ½W	CC		P1	1	
R7	800KΩ	1%	MO	H.S	Electro	TR5	
R8	500ΚΩ	1%	MO	H.S	Electro	TR5]
R9	1ΜΩ	1%	MO	H.S	Electro	TR5	
R10	250ΚΩ	1%	MO	H.S	Electro	TR5	
R11	270ΚΩ	5% ½W	CC		P1		
R12	1ΜΩ	1%	MO	H.S	Electro	TR5	
R13	33Ω	10% 1 ₩	C		MOR		
R14	470K	5% ½W	СC		P1		
R15	220Ω	5% ½W	CC	•	P1	{	
R16	1ΚΩ	5% ½W	CC		P1		
R17	8.2K	5% ½W	CC		P1		
R18	10ΚΩ	$5\% \frac{1}{2}W$	CC		P1		
R19	470Ω	5% ½W	CC	• •	P1		=
R20	100ΚΩ	5% ½W	CC		P1	·	
R21 -	100ΚΩ	5% ½W	CC		P1		
R22	560Ω	5% 12√	CC		P1		
R23	560Ω	5% ½W	CC		P1		
R24	390Ω	5% <u>1</u> √	CC		P1		
R25	12ΚΩ	5% ½W	CC	:	P1	·	
R26	12ΚΩ	5% ½₩	CC	٠.	Pl		
R27	2.7ΚΩ	5% ½W	CC		P1		
R28	5.6KΩ	<i>5</i> % ½W	CC		P1	,	
R29	5.6ΚΩ	5% ½W	CC		P1	·	
R30	1.5ΚΩ	5% ½W	CC	**	P1 .	·	
R31	1.5ΚΩ	5% <u>₹</u> W	CC		P1		
R32	220Ω	5% ½W	CC .		P1		1
R33	680Ω	5% ½W	CC		P1		
R34	100Ω	5% ½W	CC		.P1	,	
R35	100Ω	5% ½W	CC		P1		1
R36	330Ω	5% ½W	CC		P1		1
R37	680Ω	5% ½W	CC.	•	P1		
-R38	1ΚΩ	5% ½W	CC		P1		
R39	680Ω	5% ½W	CC		P1		1
R40	680Ω	5% ½W	CC		P1		,
R41	330Ω	5% ½W	CC		P1 .		
R42	5.6ΚΩ	5% 1W	CC	7	P1 .		
R43	5.6ΚΩ	5% 1W	CC	• 101	P1 :		1
R44	900ΚΩ	1%	MO	H.S	Electro	TR5	
R45	111ΚΩ	1%	MO	H.S	Electro	TR5	
R46	990ΚΩ	1%	MO	H.S	Electro	TR5	i
L				•			

ITEM NO.	1	DESCRIPTION		Mfr or Supply	PART NO.	
R99	100K	Ω ·1%	· MO	·Electro	· TR5	
R100	100 K	Ω 1%	MO	Electro	TR5	
R101	500K	Ω 1%	MO	Electro	TR5	
R102	1ΜΩ	1%	MO	Electro	TR5	
R103	- 1ΜΩ	1%	MO	Electro	TR5	
R104	5ΜΩ	1%	MO	Electro	TR5	
R105	22ΚΩ	$5\% \frac{1}{2}$	W CC	P1		
R106	100K	Ω 5% $\frac{1}{2}$	w cc	P] ·		
R107	180K		w cc	Pl	. 1	
R108	33ΚΩ		w cc	P1		
R109	1ΚΩ		w cc	P1		
R110	10ΚΩ		w cc	P] ·		
R111	27ΚΩ	_	W CC	P1		
R112	6.8K	_	w cc	P1.		
R113	2.2K	-	W CC	P1		
R114	47ΚΩ		W CC	PI		
R115	47ΚΩ	_	W CC	Pl		
R116	3.3K	_	w cc	P1		
R117	39ΚΩ	_	W CC	P1		
R118	2.2K	_	W CC	Pi		
R119	180K	_	M CC.	P1		
R120	6.8K	_	W CC	P1		
R121	47ΚΩ		W CC	P1		
R122	33ΚΩ		w cc	P1		
R123	3.3K	_	w cc	P1	- 1	
R124	150Ω		W CC	P1		
R125	15ΚΩ		W CC	P1		
R126	120K	-	W CC	P1		
R127	22ΚΩ		W CC	P1		
R128	39ΚΩ		w ·cc	P1		
R129	2.2K	_	w cc	P1		
R130	2.2K	_	W CC	P1		
R131	22ΚΩ	_	w CC	Pl		
R132	17K		W CC	P1		
R133	150Ω	•	W CC	Pl		
R134	100K		W CC	P1		
R135	2.2K	_	W CC	PI		
R136	8.2K		W CC	P1	1	
R137	15ΚΩ	_	W CC	PI		
R138	18K	_	W CC	P1		
R139	56ΚΩ	_	W CC	P1		
R1,40	' 68ΚΩ	-	W CC	P1		
R141	68ΚΩ	_	W CC	P1		
R142	15ΚΩ	_	W CC	P1		
R143	1.2K	_	W CC	P1		
R144	47ΚΩ	_	W CC	P1		

COMPONENT ABBREVIATIONS (cont.)

PL	Plug	SPDT .	Single Pole Double Throw			
PS	Socket	SPST	Single Pole Single Throw			
Preset	Internal Preset	S.Shaft	Slotted Shaft			
PYE	Polyester	Si	Silicon			
pot	Potentiometer	Ta	Tantalum			
prec	Precision	tol	Tolerance			
PC	Printed circuit	trim	trimmer			
PIV	Peak Inverse Voltage	٧	Volt(s)			
PYS	Polystyrene	var	variable			
р-р	Peak to Peak	vdcw	Volts Direct Current Working			
P.Shaft	Plain Shaft	w	Watt(s)			
Q	Transistor	ww	Wire Wound			
R	Resistor	Z	Zener			
rot	rotary	*	Factory Selected value, nominal value			
R log	Reverse Logarithmic Taper		may be shown			
rms	Root Mean Squared	* *	Special component, no part no. assigned			
AAANILIEACTI IDEDC ADDDEVAATIONIC						

MANUFACTURERS ABBREVIATIONS

AB	A.B. Electronics	j	 Jabel
AEE	AEE Capacitors	McH	McKenzie & Holland (Westinghouse)
AN	Anodeon	MAS	Master Instrument Co. Pty. Ltd.
AST	Astronic Imports	MOR	Morganite (Aust.) Pty.Ltd.
AWA	Amalgamated Wireless of Aust.	MSP	Manufacturers Special Products (AWA)
ÁCM	Acme Engineering Pty.Ltd.	McM	McMurdo (Aust.) Pty. Ltd.
AMP	Aircraft Marine Products(Aust.) P/L	MOT	Motorola
AR	A. & R. Transformers	NU	Nu Vu Pty.Ltd.
AUS	Australux Fuses	NAU	A.G. Naunton Pty.Ltd.
AWV	Amalgamated Wireless Valve Co.	NS	National Semiconductor
ACA	Amplifier Co. of Aust.	PA	Painton
ARR	Arrow	PAL	Paton Elect. Pty.Ltd.
BWD	B.W.D. Electronics Pty.Ltd.	Pi	Piher Resistors (Sonar Electronics)
BL	Belling & Lee Pty.Ltd.	PH	Philips Electrical Industries Pty.Ltd.
BR	Brentware (Vic.) Pty.Ltd.	PL	Plessey Pacific
BU	Bulgin	PRO	Procel
CF	Carr Fastener	PV	Peaston Vic.
CAN	Cannon Electrics Pty.Ltd.	RC	Radio Corporation (Electronic Inds.)
CIN	Cinch	RCA	Radio Corporation of America
DAR	Darstan	RHC	R.H. Cunningham
DIS	Distributors Corporation Pty.Ltd.	STC	Standard Telephone & Cables
ELN	Elna Capacitors (Sonar Elec.P/L)	SI .	Siemens Electrical Industries
ETD	Electron Tube Dist.	SIM	Simonson Pty.Ltd.
F	Fairchild Australia Pty.Ltd.	SE	Selectronic Components
GRA	General Radio Agencies	SON	Sonar Electronics
GE	General Electric (USA)	TR	Trimax Erricson Transformers
GEC	General Electric Co. (UK)	TI	Texas Instruments Pty.Ltd.
GES	General Electronic Services	TH	Thorn Atlas
HW	Hurtle Webster	UC	Union Carbide
HOL	R.G. Holloway	W	Wellyn Resistors (Cannon Elec. P/L)
Н	Haco Distributors (National)	WH	Westinghouse
H\$	Hawker Sidney	Z	Zephyr Prod. Pty.Ltd.

PARTS LIST - MODEL bwd 539A

. ITEM	DESCRIPTION	Mfr or	PART NO.
R145 R145A R146 R147 R148 R149 R150 R151 R152 R153	33KΩ 5% 1W CO 270KΩ 5% ½W CO 390Ω 5% ½W CO 33KΩ 5% 1W CO 39KΩ 5% ½W CO 8.2KΩ 5% ½W CO 47KΩ 5% ½W CO 4.7KΩ 5% ½W CO 1KΩ 5% 1W CO 1KΩ 5% 1W CO	C P1 C P1 C P1 C P1 C P1 C P1 C P1	
R154 R155 R156 R157 R158 R159 R160 R161	4.7KΩ 5% $1W$ C 470Ω 5% $\frac{1}{2}W$ C 330Ω 5% $\frac{1}{2}W$ C 330Ω 5% $\frac{1}{2}W$ C 330Ω 5% $\frac{1}{2}W$ C 2.2MΩ 5% $\frac{1}{2}W$ C 820K 5% $\frac{1}{2}W$ C 100KΩ 5 or 10% $\frac{1}{2}W$ C	C P1 C P1 C P1 C P1 C P1	
R201 R202 R203 R204 R105	$1M\Omega$ 5% $\frac{1}{2}$ W C 68 KΩ 5% $\frac{1}{2}$ W C	C P1 C P1 C P1	
R207 R208 R209 R210 R211	10KΩ 5% $\frac{1}{2}$ W C 100KΩ 5% $\frac{1}{2}$ W C 1.8MΩ 5% $\frac{1}{2}$ W C 27KΩ 5% $\frac{1}{2}$ W C 27KΩ 5% $\frac{1}{2}$ W C	C PI C PI C PI	
RV1 RV2 RV3 RV4 RV5	POTENTIOMETERS 220KΩ LIN. POT WITH DPST C 1KΩ TRIM POT C 250K LIN. POT C 1KΩ TRIM POT C 100Ω TRIM POT C	PH SOR PH	2322-357727-12 2322-411-02204 VCU 2322-411-02204 2322-411-02201

PARTS LIST - MODEL bwd 539A

ITEM NO.	DE:	SCRIPTI	ON	*	Mfr or Supply	PART NO.
C21 C22	47pF 33 uF	500∨ 40∨	5%	NPO ELECTR.	H.S PH	CDS 2222-015-17339
C23 C24 C25 C26	0.1uF 150uF 270pF	100V 16V 630V	10% 5%	GREEN-C ELECTR. PYS	ELNA PH H.S	TYPE N 2222-016-15151 TCS605
C27 C28 C29 C30	20-220pF 0.001uF 0.001uF 0.1uF	TRIM 500V 500V 400V	5% 5% 10%	NPO NPO PYE	DUC H.S H.S PH	CWO CDS CDS 2202-315-51104
C31 C32 C32A	5.6pF 1-12pF 15pF	500V TRIM 500V	10%	NPO.	H.S PH H.S	CDS C004CA/12E CDS
C33 C34 C35	1-12pF 15pF 0.8-3pF	TRIM 500V TRIM	5%	NPO	PH H.S PH	C004CA/12E CDS C004AA/3E
C36 C36A C37	1-12pF 15pF 470pF	TRIM 500V 500V	10% 5%	SM	PH H.S DUC	C004CA/12E CDS MSA
C38 C39 C39A C40	0.0047uF 1-12pF 3.3pF	400∨ TRIM 500∨	10%	PYE	PH PH H.S	2202-315-51472 C004CA/12E CDS
C40 C41 C42 C43	1-12pF 1-12pF 1-12pF 33PF	TRIM TRIM TRIM 500V	5%	NPO	PH PH PH HS	C004CA/12E C004CA/12E C004CA/12E CDS
C44 C45 C46	8.2pF 4.5/20pF 0.0022uF	500∨ TRIM 500∨	5% 5%	NPO NPO	HS RHC HS	CDS 7S/02 CDS
C47 C48 C49	220uF 10-40 _p F 0.1uF	16V TRIM 100V	10%	ELECTR. GREENCAF	PH STET	2222-016-15221 10S-06/10-40 TYPE N
C50 C51 C52	100 pF 100pF 0.0033uF	500V 500V 400V	5% 5% 10%	NPO NPO PYE	HS HS PH	CDS CDS
C53 C54 C55	100pF 100pF 560pF	500V 500V 630V	5% 5% 5%	NPO NPO PYS	HS HS HS	CDS CDS TCS609
C56 C57 C58 C59	100uF 10-40 pF	40∨ TRIMA	MER	ELECTR.	STET	2222-016-17101 10S-06/10-40
C60 C61 C62	10pF 0.22uF 0.001uF	500∨ 100∨ 500∨	5% 10% 10%	NPO GREEN C	HS ELNA HS	CDS TYPE N CDS
C63 C64	33pF 0.luF	500∨ 100∨	5% 10%	NPO GREEN C	HS SON	CDS

	FARTS LIST - W	TOPLE DWG 337	*
ITEM NO.	.DESCRIPTION	-Mfr or Supply	- PART NO.
RV6 RV7 RV8 RV9 RV10 RV11 RV12 RV13 RV14A RV14B RV15 RV16 RV17 RV18 RV19 RV20 RV21 RV22	220Ω TRIM POT. 4.7K TRIM POT. 220K LIN.POT WITH DPST 22KΩ TRIM POT. 220K LIN.POT.WITH SPST 100KΩ TRIM POT. 4.7KΩ TRIM POT. 100KΩ LIN.POTS. 10KΩ 22KΩ TRIM POT. 1KΩ TRIM POT. 1KΩ TRIM POT. 100KΩ TRIM POT. 1KΩ TRIM POT. 100KΩ TRIM POT. 100KΩ TRIM POT. 100KΩ TRIM POT.	PH P	2322-411-02202 2322-411-02206 2322-357727-12 2322-411-02208 2322-357727-12 2322-411-02211 2322-411-02206 2322-411-02206 2322-411-02204 2322-411-02211 VCU 2322-411-02204 2322-411-02204 2322-411-02204 2322-411-02204
RV23 RV24 RV25 RV201 RV206	220K Ω LIN. POT. WITH DPST Ω 1K Ω TRIM POT. 4.7K Ω TRIM POT.	C PH SW PH C PH C PH C PH	2322-411-02201 2322-357727-12 2322-411-02205 2322-411-02206 2322-411-02211
C1 C2 C3 C3A	0.1uF 400V 10% 5.6pF 500V 10% 1-12pF TRIM 15pF 500V 10%	PYE PH NPO H.S PH	2202-315-51104 CDS C004CA-12E
C4 C5 C6 C7 C7A	0.8-3pF TRIM 1-12pF TRIM 15pF 500∨ 10%	PH NPO H.S PH PH	C004CA-12E CDS C004AA/3E C004CA-12E
C8 C9 C10 C10A C11	0.0047∪F 400V 10% 1-12pF TRIM 3.3pF 500V 10% 1-12pF TRIM	SM DUC PYE PH	MSA C004CA/12
C12 C13 C14 C15 C16	8.2pF 500V 10% 1-12pF TRIM 4.5/20pF TRIM	N750 PH PH STET	C004CA/12E CDS C004CA/12E 7S-02
C17 C18 C19 C20	0.0022uF 500V 10% 0.01uF 100V 10% GREE	NPO EN CAP ELNA EN CAP ELNA CT. PH	CDS TYPE N TYPE N 2222-016-15151

PARTS LIST - MODEL bwd 539A

ITEM NO.	DE	SCRIPTIO	NC		Mfr or Supply	PART NO.	
C65 C66 C67 C68 C69	0.01uF 4.7uF 10uF 0.022uF 2.2uF	100V 63V 25V 160V 63V	10%	GREEN C ELECTR. ELECTR. PYE PH	SON PH PH PH PH	2222-015-18478 2222-015-15109 2222-015-18228	

ITEM NO.		DESCRIPTION		Mfr or Supply	PART NO.	
C70 C71 C72 C73A) C74 C75 C76 C77 C78 C79 C80 C81 C82 C82A C83 C84 C85 C86 C87 C88 C89 C90 C91 C92 C92 C94 C95 C96 C96A	10-40PF 82PF 0.01uF 1 uF 1 uF 1 uF 1 uF 1 uF 1 uF 1 220pF 0.01 220pF 220pF 220pF 220pF 50uF 40uF 40uF 40uF 100uF 220uF 100uF 100uF 100uF 100uF 100uF	TRIM 500V 5% 100V 200V SE 200V 10% 500V 5% 100V 10% 630V 5% 100V 10% 500V 5% 500V 5% 500V 5% 100V 10% TRIM 630V 5% 150V 150V 200V 200V 200V 63V 63V 63V 63V 63V 63V 63V 63V 63V 63	SELECT 2% GREEN CAP LECT FOR 2% GREEN NPO GREEN CAP PYS GREEN CAP N750 N750 N750 N750 GREEN C PYS ELECTR.	STETNER H.S ELNA SO H.S SO H.S	10S-06, 10-40 CDS TYPE N TYPE N TYPE N CDS TYPE N TCS604 TYPE N CDS CDS CDS CDS CDS CDS TYPE N 75-02 TCS 604 2222-040-11509 2222-040-11509 2222-040-12409 2222-040-12409 2222-040-12409 2222-017-18101 2222-017-18221 2222-017-18101 2222-017-18101 CDS CDS CDS	
C97 C83A	33pF	500V 5%	CER	H.S	CDS	
C201 C202 C203 C204 C205	8uF 8uF 8uF 8uF 0.1uF	450V 450V 450V 450V 1600V 20%	ELECTR. ELECTR. ELECTR. ELECTR. MHT	DUC DUC DUC DUC DUC	DUOSEAL	·
C206 C207 C208 C209 C210 C211 C212	0.01uF 0.1uF 0.1uF 0.01uF 220pF 0.001	3000V 160V 10% 1600V 20% 3000V 2000V 10% 500V 10%	C DISK PYE MHT C DISK C DISK H1K	DUC PH DUC DUC DUC H.S	CDH 2202-315-31104 DUOSEAL CDH CDH CDS	

539A 250

PARTS LIST - MODEL bwd 539A

	PARIS LIST - MODEL BWG			
ITEM NO	DESCRIPTION	Mfr or Supply	PART NO.	
D1-D2) D7-D8)	DIODES AN210	F		
D9-D19) D3-D6)	75V PIV 30MA SI	F	AN206	
D20-D23 D201 D202 D203 D204 D205 D14A	400V PIV 500MA S1 SELENIUM RECT. SELENIUM RECT. SELENIUM RECT. SELENIUM RECT. 75V PIV 30MA 33V ZENER	STC STC STC STC F F	EM404 K8/25 K8/25 K8/25 K8/25 AN206 AN973B	
S1 S2A-D S3 S4A-D S5A&B S6 S7 S8A&B S10A&B S11A-D S12A&B S13A&B	SWITCHES 2 POLE 2 POS. 4 POLE 12 POS. 2 POLE 2 POS. 4 POLE 12 POS. 2 POLE 2 POS. 3 POLE 2 POS. 4 POLE 18 POS. 5 POLE 2 POS. (REAR OF RV9) 6 POLE 18 POS. 7 POLE 2 POS. (REAR OF RV11) 7 POLE 2 POS. (REAR OF RV11) 7 POLE 2 POS. (REAR OF RV19) 7 POLE 2 POS. (SEAR OF RV19) 7 POLE 2 POS. (SEAR OF RV19)	SATO BWD SATO BWD SATO McM McM	SATO3570 SR73 SATO3570 SR73 SATO3570 1299-02-01 1299-02-01 SR72	
V1 B1 F1 T1	SUNDRY CRT5" NEON LAMP 500MA CARTRIDGE FUSE Q/B POWER TRANSFORMER. CRT MAGN.SHIELD. ALL OTHER ITEMS ORDER	PH SATO Y BWD BWD	D13-27GH TP5698 DRG632	
	BY DESCRIPTION			

539A 250

ITEM NO.	DESCRIPTION			1 (75.7)			Mfr or Supply	PART NO.
	ŜEMI-COI	NUCTOR						
Q1,2	25V DS	N CHANI	VEL FET	SI	NS	2N3819 or MPF106		
Q11,12 Q3	MATCHED 25 Vce	Hfe 100	NPN	S1	PH	BF194		
Q4	25 Vce	Hfe 100	NPN	S1	1	BF194		
Q5	25 Vce	Hfe 100	NPN	S1	PH	BF194		
Q6	25 Vce	Hfe 100	NPN	S1	PH	BF194		
Q7	25 Vce	Hfe 100	NPN	S1	PH	BF194		
Q8	25 Vce	Hfe 100	NPN	S1	PH	BF194		
Q9	150Vce	Hfe 40	NPN	S1	PH	BF336		
Q10	150Vce	Hfe 40	NPN	S1	PH	BF336		
Q13	25Vce	Hfe 100	NPN	S 1	PH	BF194		
Q14	25Vce	Hfe 100	NPN	S1	PH	BF194		
Q15	25Vce	Hfe 100	NPN	S 1	PH	BF194		
Q16	25Vce	Hfe 100	NPN	S1	PH	BF194		
Q17	45Vce	Hfe 100	NPN	S1	PH	BF147		
Q18	45Vce	Hfe 100	NPN	\$1	PH	BC147		
Q19	45Vce	Hfe 100	NPN	\$1	PH	BC147		
Q20	45Vce	Hfe 100	NPN	S1	PH ·	BC147		
Q21	45Vce	Hfe 100	NPN	S1	PH	BC147		
Q22	45Vce	Hfe 100	NPN	S1 S1	PH PH	BC147 BC147		
Q23 Q24	45Vce 45Vce	Hfe 100 Hfe 100	. NPN NPN	\$1 \$1	PH	BC147 BC147		
Q24 Q25	45Vce	Hfe 100		S1	PH	BC147 BC147		
Q25 Q26	-45Vce	Hfe 75	PNP	S1	PH	BC157		
Q27	25VDS	N CHANI		\$1	Ti	2N3819 or MPF106		
Q28	45Vce	100		\$1	PH	BC147		
Q29	45Vce	Hfe 100		\$1	PH	BC147		
Q30	45Vce	Hfe 100		S1	PH	BC147		
Q31	250 Vce	Hfe 40	NPN	S1	PH	BF337		
Q32	250 Vce	Hfe 40	NPN	S1	PH	BF337		
Q33	−45 Vce	Hfe 50	PNP	S 1	PH	BC1 <i>57</i>		
Q201	-25Vce	Hfe 100	PNP	S1	F	AY1114		
IC1	UA702C	AMPLIFIE	R'		F	UA702C		

R	MODIFICATIONS	
84	155UE 2 - 6/72	SWITCHES
C	RIGA, STA ADDED TO FET. GATES.	SI AC-OC INPUT CHANNEL 'A'
58	ISSUE 3 28-6-72]
	Q15/16 BF194 TO BC2098	SZA-D ATTENUATOR CHANNEL 'A'
Q	C23 39pf TO 68pf	S3 AC-DC INPUT CHANNEL 'B'
18 201	R24/63 4700 TO 3900	SAA-D ATTENUATOR CHANNEL 'B'
0	C48 68pf TO 95AF	S5 A&B ALTERNATE - CHOPPED.
14	ISSUE 4 - 17-7-72	SG CHANNEL A ON-OFF (REAR RYT)
	C23 68pf TO 33pf	SI4 TRIGGER SELECT
	C48 95pf TO 68pf	, , , , , , , , , , , , , , , , , , ,
	ISSUE 5 6-12-72	
	0/5/16 BC209B TO BF/94	CONTROLS
	C48 G8RF TO 10-40PF VAR	EVI VERTICAL POSITION CHANNEL 'A'
	C25 & C26 ADDED IN	RV2 CALIBRATE " 'A'
	SERIES WITH C48 ANDC58	EV3 VERTICAL POSITION ,, 'B'
	156UE 6 12-72	RV4 CALIBRATE "II" 'B'
	C20 125/16 to 150/16 C22 32/64 to 33/40	EVE AMPLIFIER RESPONSE
	C25 125/16 to 150/16	RVG DC BALANCE B' RV7 DC BALANCE A'
	C47 250/16 to 220/16	EVB SET I.C. VOLTAGE
		EVEOI SET CALIBRATE SIGNAL.
		RV21 MAINS BALANCE.
		RVEE TEIGGER BALANCE CONTROL. RVE3 MAINS BALANCE.
		RV25 AMPLIFIER RESPONSE CHANNEL 'A'
		EVEG AMPLIFIER RESPONSE CHANNEL B'
,		
	ATTEN . 2V/cm ON	CHANNEL A&B.
		e CAL, TRIG'B', NORM, + INT, ALT.
		<u>B</u> <u>C</u> <u>D</u>
		8mS X
		IVP-P
		21/2-0
	·	OV SWEEP SWEEP
	60	THEY X-DUE TO SHIFT TO SETTING.
	-	
	·	

