Engenharia de Software

Natália Schots

Agenda

- Qualidade de Software
 - História
 - Abordagens e ferramentas da qualidade
 - Garantia da Qualidade
 - Qualidade do processo
 - Qualidade do produto
 - Verificação x Validação
 - Inspeção de Software
 - Em requisitos

Nas aulas passadas...

Trabalhos em sala

- Engenharia de Requisitos
 - Elicitação de Requisitos
 - Diagrama de Casos de Uso
 - Diagrama de Classes

- Gerência de Projetos
 - Planejamento do Projeto
 - Monitoração do Projeto

Histórico

O que é qualidade? (1/4)

- Segundo o Aurélio:
 - Maneira de ser, boa ou má, de uma coisa
 - Superioridade, excelência em qualquer coisa

- É um conceito muito subjetivo
 - Varia de pessoa para pessoa
 - Ex.: carro

O que é qualidade? (2/4)

- Em software:
 - É o grau no qual um sistema, componente ou processo satisfaz os requisitos especificados e as necessidades e expectativas do cliente ou usuário [IEEE, 1990]
 - Dificuldade em capturar os requisitos
 - Dificuldade em conhecer as necessidades e expectativas
 - Dificuldade em conhecer quem são os clientes ou usuários

O que é qualidade? (3/4)

- Fatores que influenciam o julgamento dos usuários sobre qualidade de software:
 - Tamanho e complexidade do software
 - Quantidade de pessoas envolvidas no projeto
 - Métodos, técnicas e ferramentas utilizadas
 - Custo x benefício do sistema
 - Custos associados à existência de erros
 - Custos associados à detecção e remoção de erros
 - etc.

O que é qualidade? (4/4)

- Pode ser decomposta em:
 - Qualidade do Processo
 - Qualidade do Produto
 - Depende fortemente da qualidade do processo

Produção artesanal:

Inspeção de cada produto

Controle do processo produtivo

Após revolução industrial: inspeção por amostragem

Produção artesanal:

Inspeção de cada produto

Controle do processo produtivo

1ª era 2ª era

3ª era

- -Alta demanda de tempo
- Produto com defeito é descartado

Após revolução industrial: inspeção por amostragem

Produção artesanal:

Inspeção de cada produto

 Uso de técnicas estatísticas para identificar defeitos

Controle do processo produtivo

1^a era

2ª era

3ª era

Após revolução industrial: inspeção por amostragem

Produção artesanal:

Inspeção de cada produto

Controle do processo produtivo

1^a era

2ª era

3^a era

Após revolução industrial: inspeção por amostragem

 Uso de técnicas estatísticas para identificar defeitos

Abordagens da Qualidade

Abordagem Deming

 Defende que a qualidade inicia com o alto nível gerencial e é uma atividade estratégica

- 14 pontos fundamentais (ou 14 pontos de Deming)
 - Recomendações para o sucesso de um programa de qualidade

Abordagem Feigenbaum

- Introduziu o conceito de controle da qualidade total (*Total Qualily Control* - TQC)
 - Sistema efetivo que integra:
 - Qualidade do desenvolvimento
 - Qualidade de manutenção
 - Esforços de melhoria da qualidade
- Conceitos-chave
 - Manutenção constante para a qualidade
 - Todos na organização são responsáveis
 - Compromisso organizacional

Abordagem Crosby

 Qualidade como busca contínua do defeito zero

- Quatro "certezas":
 - Qualidade significa atendimento aos requisitos
 - Qualidade vem por meio da prevenção
 - Padrão para desempenho da qualidade e "defeitos zero"
 - A medida da qualidade é o preço da nãoconformidade

Ciclo PDCA

- Uma das formas para implementação do controle de processos
 - Plan Do Check Action

7 Ferramentas da Qualidade (1/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersão
 - Folha de verificação
 - Gráfico de controle

7 Ferramentas da Qualidade (2/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersão
 - Folha de verificação
 - Gráfico de controle

7 Ferramentas da Qualidade (3/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersão
 - Folha de verificação
 - Gráfico de controle

7 Ferramentas da Qualidade (4/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersão
 - Folha de verificação
 - Gráfico de controle

7 Ferramentas da Qualidade (5/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma

- Folha de verificação
- Gráfico de controle

7 Ferramentas da Qualidade (6/7)

- Sete ferramentas básic
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersão
 - Folha de verificação
 - Gráfico de controle

1	DEFEITOGSO
	Produto: Lente .
	Estágio de fabricação: Inspeção final .
	Tipo de defeito: Arranhão, Trinca, Revestimento Inadequado, Muito
	Grossa ou Muito Fina, Não Acabada .
	Total Inspecionado: <u>1200 .</u>
	Data: 03/01/09
	Seção: <u>INSPROD</u>
	Inspetor: Augusto Bicalho .
	Observações:

Defeito	Contagem	Sub-total
Arranhão Trinca Revestimento Inadequado Muito Grossa ou Muito Fina Não-Acabada Outros		12 41 55 11 5
Total Rejeitado	Total D	90

7 Ferramentas da Qualidade (7/7)

- Sete ferramentas básicas da qualidade
 - Fluxograma
 - Diagrama de Ishikawa
 - Gráfico de Pareto
 - Histograma
 - Diagrama de dispersã
 - Folha de verificação
 - Gráfico de controle

Diagrama de Ishikawa

 Diagrama de causa-efeito ou Diagrama de Espinha de Peixe

Gráfico de Pareto

 Princípio 80/20: somente poucos elementos (20%) são responsáveis pela maioria dos problemas (80%)

Defeito	Frequência relativa	Frequência acumulativa.
A	0,35	0,35
В	0,25	0,6
C	0,15	0,75
D	0,1	0,85
E	0,1	0,95
D	0,05	1
Total	1	

Gráfico de controle (1/2)

 Determina se um processo é ou não estável (tem desempenho previsível)

Control Chart Template

Stable process

Unstable process

Gráfico de controle (2/2)

Processo não estável Sofre ação de causas especiais

Processo estável Sofre ação de causas comuns

Garantia da Qualidade

Objetivos

 Técnicas de Garantia da Qualidade permitem avaliar se os produtos de um processo estão seguindo um conjunto mínimo de requisitos

 Assegura tanto a qualidade do processo como do produto de software

Auditor de qualidade (1/2)

- Diversas denominações
 - Qualidade
 - Auditor de qualidade
 - GQPP: Garantia da Qualidade do Processo e do Produto)
 - PPQA: Process and Product Quality Assurance
 - GQA: Garantia da Qualidade
 - QA: Quality Assurance

Auditor de qualidade (2/2)

Responsabilidades:

- Avaliar a aderência dos produtos de trabalho
- Avaliar a aderência ao seguimento dos processos e procedimentos
- Definir e gerenciar planos de ação para assegurar a resolução dos problemas identificados
- Escalonar os problemas que não forem solucionados no prazo, quando pertinente
- Relatar, periodicamente, a situação dos processos avaliados para o nível superior da organização [SOFTEX, 2009]

Terminologia relevante

- Avaliar objetivamente
 - Pessoa independente e critérios objetivos

- Não-conformidades
 - Problemas detectados pelo auditor

- Escalonar
 - Comunicar aos níveis superiores pertinentes sobre problemas não solucionados

Qualidade do Processo (1/3)

 Possui o objetivo de definir, medir e melhorar o processo de desenvolvimento de software

Processo

Qualidade do Processo (2/3)

 "Precisamos atacar a doença e não os sintomas: o processo e não os defeitos do software" [ROCHA, 2008]

- Normas e modelos de maturidade
 - ISO/IEC 12.207
 - ISO/IEC 15.504
 - CMMI-DEV
 - MR-MPS

Qualidade do Processo (3/3)

Exemplo de checklist para avaliação de aderência ao processo

		Artefato Produzido		
Atividades do Processo	Artefato	Sim	Não	Não se aplica
Planejamento de Gerência de Configuração				
Identificar responsáveis pelas atividades do Processo de Gerência de Configuração	Plano de Gerência de Configuração			
Identificar itens de configuração	Plano de Gerência de Configuração			
Identificar responsáveis por cada item de configuração	Plano de Gerência de Configuração			
Visualizar Plano	Plano de Gerência de Configuração			
Criar baseline	Baseline			
Char trasentie	Relatório de Versões			
Entregar <u>baseline</u>	Relatório de Versões			
Solicitar alteração	Solicitação de alteração			
	Análise de Impacto			
Analisar pedido de alteração	Documento a ser alterado			
Implementar alteração	Documento a ser alterado			
Verificar item alterado	Documento a ser alterado			
Estabelecer registros	Relatório de Versões			
Realizar Auditoria da Configuração	Relatório de Auditoria de Gerência de Configuração			
Coletar Métricas				
Coletar Métricas	Métricas coletadas			

Qualidade do Produto (1/3)

 Capacidade de o produto de software satisfazer necessidades estabelecidas quando usado sob as condições estabelecidas (ISO/IEC 25000)

- Normas específicas
 - ISO/IEC 25.000 ou SQuaRE (Software Product Quality Requirements and Evaluation)
 - ISO 9126

Qualidade do Produto (2/3)

- Verificação e Validação são atividades que compõem a Garantia da Qualidade
- Verificação
 - requisitos especificados são atendidos
 - o produto está sendo construído corretamente?
- Validação
 - necessidades dos clientes são satisfeitas
 - o produto correto está sendo construído?

Qualidade do Produto (3/3)

Exemplo de checklist para avaliação do produto

Relatório de Monitoração do Projet avallação do produ		
Critério	Questão	Resposta ▼
Aderência co	om o Modelo de Documento	
AMD.01	Todas as seções do modelo do documento foram preenchidas?	
AMD.02	A forma do modelo do documento foi seguida?	
AMD.03	O documento utilizou a última versão do roteiro disponibilizada?	
AMD.04	Os comentários do modelo para auxiliar no preenchimento do documento foram excluídos?	
Clareza		
CLA.01	O texto atende aos padrões gramaticais e ortográficos esperados?	
CLA.02	CLA.02 As tabelas do documento possuem seu conteúdo explicitado (como por exemplo, legenda ou título da seção)?	
Completeza		·
COM.01	Todos os campos de ocorrência de desvio em relação ao planejado fora preenchidos?	m
COM.02	COM.02 Os impactos relacionados às ocorrências de desvio em relação ao planejado foram definidos, quando necessário?	
COM.03	Foi elaborado um Plano de Ação para corrigir os desvios identificados?	
COM.04	A alteração de requisitos aprovados foi identificada?	
COM.05	COM.05 Quando não houve alteração de requisitos aprovados, isto está explicitado no relatório?	
COM.06	Os riscos ocorridos foram monitorados?	
COM.07	As causas de ocorrência dos riscos ocorridos foram identificadas?	
COM.08	COM.08 As consequências de ocorrência dos riscos ocorridos foram identificadas?	
COM.09	O cronograma do projeto foi monitorado?	

Técnicas para Verificação

- Auditoria de qualidade
- Inspeção de software
- Revisão por pares
- Walkthrough

Auditoria de qualidade

Exemplo de checklist para avaliação do produto

	Relatorio de Monitoração do Proje avallaç	ção do produto
Critério	Questão	resposta ▼
Aderência c	om o Modelo de Documento	
AMD.01	Todas as seções do modelo do documento foram preenchidas?	
AMD.02	A forma do modelo do documento foi seguida?	
AMD.03	O documento utilizou a última versão do roteiro disponibilizada?	
AMD.04	Os comentários do modelo para auxiliar no preenchimento do documento foram excluídos?	
Clareza		
CLA.01	O texto atende aos padrões gramaticais e ortográficos esperados?	
CLA.02	As tabelas do documento possuem seu conteúdo explicitado (como por exemplo, legenda ou título da seção)?	
Completeza		
COM.01	Todos os campos de ocorrência de desvio em relação ao planejado foram preenchidos?	
COM.02	COM.02 Os impactos relacionados às ocorrências de desvio em relação ao planejado foram definidos, quando necessário?	
COM.03		
COM.04	A alteração de requisitos aprovados foi identificada?	
COM.05	Quando não houve alteração de requisitos aprovados, isto está explicitado no relatório?	D
COM.06	Os riscos ocorridos foram monitorados?	
COM.07	As causas de ocorrência dos riscos ocorridos foram identificadas?	
COM.08	As consequências de ocorrência dos riscos ocorridos foram identificadas?	42
COM.09	O cronograma do projeto foi monitorado?	

Inspeção

• É um processo estruturado de verificação visual de um produto de software para detectar e identificar anomalias, erros e desvios de padrões e especificações [IEEE 2008]

Revisão por pares

 Método estático no qual um artefato é examinado por qualquer integrante da equipe do projeto, com propósito de detectar defeitos

 Conduzida de acordo com processos bem definidos que se constituem de vários papéis e responsabilidades de revisores

Walkthrough

- Menos formal
- Não exige papéis, responsabilidades e procedimentos bem definidos
- Discute soluções alternativas
- Não exige registro dos participantes
- Não exige critérios de avaliação, nem métricas

Técnicas de Validação

- Prototipação
- Testes de validação
- Revisão formal com os usuários
- Execução de Piloto
- Simulação

Prototipação (1/2)

 Um protótipo é um produto parcialmente desenvolvido, que possibilita aos clientes e desenvolvedores examinarem certos aspectos do sistema proposto e decidir se eles são ou não apropriados ou adequados para o produto acabado

Muito utilizado para validação dos requisitos

Prototipação (2/2)

- Dois tipos principais:
 - Protótipo descartável: um software desenvolvido para se aprender mais sobre um problema ou explorar a viabilidade das possíveis soluções, não sendo utilizado como parte do produto final
 - Protótipo evolutivo: um software desenvolvido para se aprender mais sobre um problema e se ter a base de uma parte ou de todo o software a ser fornecido.

Testes de Validação (1/3)

- Um dos mais importantes métodos de validação e frequentemente o mais usado.
 - Testes de desempenho: para avaliar o comportamento do produto em seu ambiente de uso tais como testes de estresse, testes de volume, testes de tempo e testes de usabilidade.
 - Teste de aceitação: realizado em conjunto com os clientes em seu ambiente real de funcionamento avaliando o atendimento às necessidades e expectativas do cliente.

Testes de Validação (2/3)

 Aplicar um conjunto de testes caixa preta para demonstrar a conformidade com os requisitos do usuário (cliente)

 Deve ser elaborado um Plano de Testes verificando requisitos funcionais e de qualidade

Testes de Validação (3/3)

- Normalmente é realizado pelo usuário final sendo chamado Teste de Aceitação
 - Teste alfa: em ambiente controlado semelhante ao ambiente do cliente
 - Teste beta: no ambiente do cliente

Verificação x Validação

- Verificação
 - Usa os requisitos tais como foram obtidos dos fornecedores de requisitos
 - Desenvolvemos corretamente os requisitos?
- Validação
 - Usa um versão preliminar do documento de requisitos, i.e., usa os requisitos que já foram acordados entre os stakeholders após a fase de negociação
 - Desenvolvemos os requisitos corretos?

Inspeção de Software

Benefícios

- Evidencia os defeitos de maior ocorrência
- Prevenção dos defeitos em projetos posteriores
- A classificação e análise dos defeitos ajudam a melhorar as estratégias de detecção de defeitos posteriores
- Relatórios da IBM mostraram que 80%-90% dos defeitos podem ser encontrados, economizando cerca de 25% dos recursos

[Sauer 2009]

- Papéis envolvidos
 - Moderador
 - Define escopo da inspeção e inspetores envolvidos
 - Inspetor
 - Inspeciona artefatos selecionados
 - Autor
 - Cria e mantém seus artefatos. Não deve ser permitido que inspecione seus próprios artefatos

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Planejamento

• O moderador da inspeção define o escopo da inspeção e os inspetores

Detecção

• Inspetores inspecionam os artefatos

Coleção

• O moderador remove as redundâncias

Discriminação

 As discrepâncias são discutidas e classificadas como defeito ou falso positivos. A decisão final sobre a discrepância é do moderador

Retrabalho

• O autor corrige os defeitos encontrados

Continuação

Diretrizes gerais

- Revisar o produto e não o produtor
- Estabelecer uma agenda
- Moderar possíveis debates
- Enunciar os problemas, mas não se preocupar em resolver todos naquele momento

Inspeção x Testes

 Versões incompletas de um sistema podem ser inspecionadas sem custos adicionais

- Possibilita a verificação de:
 - -Conformidade com padrões
 - -Portabilidade
 - -Facilidade de manutenção

Classificação dos defeitos

- Classificação dos defeitos
 - Normalmente, são adotadas taxonomias para classificar discrepâncias
 - Facilita a identificação
 - Possibilita análise de taxa de ocorrência
 - Exemplos
 - Taxonomia de defeitos de código [Jones 2009]
 - Taxonomia de defeitos de requisito [Shull 1998]

Tipos de Defeito de Código

Tipos de Defeito	Descrição	
Comissão	Ocorre quando existe algum segmento de código que foi implementado incorretamente, i.e., cuja implementação é diferente do que foi especificado.	
Inicialização	Ocorre quando se tenta acessar uma variável que não foi inicializada.	
Computação	Similar ao defeito de comissão; ocorre quando um valor é definido erroneamente para uma variável.	
Desempenho	enho Algumas rotinas executam comandos ou laços (<i>loops</i>) desnecessários.	
Controle	Controle Ocorre quando um comando de desvio condicional é usado de forma incorreta.	
Excesso	Excesso Existem trechos de código irrelevantes e desnecessários.	
Dados	Ocorre quando uma estrutura de dados é manipulada de forma incorreta (por exemplo, quando se tenta acessar um índice inexistente de um vetor/matriz).	

Tipos de Defeito de Requisitos

Tipos de Defeito	Descrição	
Omissão	ão Deve-se à omissão ou negligência de alguma informação necessária ao desenvolvimento do software.	
Ambiguidade	Ocorre quando uma determinada informação não é bem definida, permitindo assim uma interpretação subjetiva, que pode levar a múltiplas interpretações.	
Fato incorreto	Informações dos artefatos do sistema que são contraditórias com o conhecimento que se tem do domínio da aplicação.	
Inconsistência	Ocorre quando duas ou mais informações são contraditórias entre si.	
Informação estranha	Informação desnecessária incluída nos requisitos do software que esta sendo desenvolvido.	

Inspeção em Requisitos

Qualidade dos Requisitos

 O sucesso de um projeto é diretamente afetado pela qualidade do Documento de Requisitos

 Os requisitos de um projeto devem estar claramente definidos, possibilitando assim, após a fase de testes, a validação do software pelos clientes e a conclusão que os mesmos foram corretamente atendidos

Critérios de qualidade (1/7)

- São critérios que apoiam a revisão dos requisitos
 - Verificam a qualidade do requisito

Critérios definidos pela IEEE Std 830-1998:
 IEEE Recommended Practice for Software
 Requirements Specifications

Critérios de qualidade (2/7)

- Univocamente identificável
 - Requisitos que referenciam tabelas ou figuras ou que são na verdade compostos por outros devem ser individualizados
- Ser necessário
 - Deve refletir uma funcionalidade ou característica essencial, que não possa ser preenchida por outra existente no produto ou processo
 - Sua ausência implicará numa deficiência no sistema;

Critérios de qualidade (3/7)

- Ser conciso
 - A definição do requisito deve ser clara e objetiva, sendo facilmente compreensível
- Independente de implementação
 - Indica que a definição do requisito deve apontar para o que deve ser feito, e não para como fazê-lo (exceção para alguns requisitos não-funcionais)
- Viável
 - A implementação do requisito deve ser possível de ser feita, nas condições e no estado-da-arte atuais, e a um custo razoável

Critérios de qualidade (4/7)

Bem definido

 A definição deve procurar ser objetiva e o mais completa possível, não necessitando de informações adicionais para ser entendida

Não ambíguo

 Muitos documentos de requisitos são escritos em linguagem natural, que é inerentemente ambígua; nesses casos deve-se utilizar também um glossário, possibilitando a todos os envolvidos o mesmo entendimento

Critérios de qualidade (5/7)

Consistente

 Não deve estar em conflito ou contradição com outros requisitos. Cada requisito deve ser consistente com todos os demais requisitos na especificação

Unicidade

 Não deve haver duplicidade de requisitos, ou seja, não devem existir vários requisitos correspondendo a uma mesma característica ou funcionalidade

Critérios de qualidade (6/7)

Completude

 Todos os requisitos significativos relacionados a funcionalidades, desempenho, restrições e interfaces externas devem estar incluídos

Modificabilidade

 O estilo e a estrutura dos requisitos é tal que as alterações podem ser realizadas de forma simples e consistente com os demais requisitos

Critérios de qualidade (7/7)

Verificabilidade

- Deve ser possível checar/testar cada requisito

 (i.e., deve existir uma forma efetiva, em termos de
 tempo e custo, para que pessoas ou ferramentas
 indiquem se um sistema cumpre o requisito)
 - Em quase todas as situações, é difícil provar de forma conclusiva que um requisito é cumprido por um software
 - Escrever bem o requisito pode ajudar a aumentar a confiança na avaliação

Objetivos da Revisão (1/2)

- Certificar que o documento de requisitos é uma descrição aceitável do sistema a implementar
 - Verificar se o documento de requisitos é:
 - Completo e consistente
 - Está em conformidade com os padrões da organização
 - Não existem conflitos entre requisitos
 - Não existem erros técnicos
 - Não existem requisitos ambíguos

Objetivos da Revisão (2/2)

Defeitos de Requisitos

 Taxonomia para defeitos de requisitos de software desenvolvido por Forrest Shull [Shull, 1998]

 A inspeção de artefatos de requisitos evita que defeitos se propaguem nas próximas etapas de desenvolvimento

Tipos de Defeito de Requisitos (1/5)

Omissão

- Deve-se à omissão ou negligência de alguma informação necessária ao desenvolvimento do software
 - Ex.: Omissão de Desempenho: "O sistema deve fornecer os resultados tão rápido quanto possível"
 - Ex.: Omissão de Funcionalidade: "O sistema deve dar uma mensagem quando o usuário tentar inserir um item incompleto"

Tipos de Defeito de Requisitos (2/5)

Ambiguidade

- Ocorre quando uma determinada informação não é bem definida, podendo levar a múltiplas interpretações
 - Ex.: (Sistema de empréstimo numa
 - Biblioteca) Se o número de dias que o usuário está em atraso é menor que uma semana, ele deve pagar uma taxa de R\$1,00; se o número é maior que uma semana, a taxa é de R\$0,50 por dia.
 - Qual a taxa se o período for de apenas uma semana?

Tipos de Defeito de Requisitos (3/5)

- Fato incorreto
 - Informações dos artefatos do sistema são contraditórias com o conhecimento que se tem do domínio da aplicação
 - Ex.:(Sistema Biblioteca) O sistema não deve aceitar devolução de livros se o usuário não tiver a carteirinha da biblioteca no momento
 - Todos os dados estão no sistema

Tipos de Defeito de Requisitos (4/5)

- Inconsistência
 - Ocorre quando duas ou mais informações são contraditórias entre si
 - Ex: 1) O sistema não deve permitir períodos de empréstimo maiores que 15 dias
 - 2) Professores podem emprestar livros por um período de 3 semanas

Tipos de Defeito de Requisitos (5/5)

- Informação estranha
 - Informação desnecessária incluída nos requisitos do software
 - Ex.: (Sistema de empréstimo numa Biblioteca) Quando um novo livro é adicionado ao acervo, ele permanece em prateleira especial por um período de um mês.
 - Essa informação é necessária para o sistema?

Referências

- Slides do Prof. Ricardo Ajax, "Engenharia de Requisitos"
- Pressman, R.S.; "Engenharia de Software"; 6ª edição, Ed.
 McGraw-Hill, 2006
- [IEEE, 1990] Institute of Electrical and Electronics Engineers,
 Std 610.12 IEEE Standard Glossary of Software Engineering
 Terminology, 1990
- [SOFTEX, 2013] "MPS.BR Melhoria de Processo do Software Brasileiro – Guia de Implementação – Parte 2: Fundamentação para Implementação do Nível F do MRMPS". Disponível em: http:www.softex.br/mpsbr.
- Slides professora Ana Regina Rocha "Qualidade de Software"
- Slides Anne Elise Katsurayama "Garantia da Qualidade do Processo e do Produto"
- Slides professora Fernanda Campos "Qualidade de Software" 86

Obrigada!