SDN-NFV - 2

ESIR Djob Mvondo

Optimiser le démarrage des VNFs

Trois composants forment les NFVs: VNF, NFVI, et MONA.

Surveillance interopérable et

Management and Orchestration

Optimiser le démarrage des VNFs

Commencons par détailler la partie MONA

Surveillance interopérable et performante

NFV MONA – Management and Orchestration

Que signifie orchestrer?

Orchestrer est dur. Pourquoi? Le schéma du cas d'utilisation "Déploiement"

1

Orchestrer est dur. Pourquoi ? Le schéma du cas d'utilisation "Surveillance"

Déployer

Orchestrer est dur. Pourquoi ?

Le schéma du cas d'utilisation "Passage à l'échelle"

Déployer

Orches

tration

Surveiller

Running

7

Déployer

Orchestrer est dur. Pourquoi ? Le schéma du cas d'utilisation "Surveillance"

Déployer

Orchestrer est dur.

Mieux vaut utiliser un outil tout fait.

Déployer

Nous allons utiliser **KUBERNETES** comme illustration. Mais l'architecture de base reste semblable aux autres.

Nous allons utiliser **KUBERNETES** comme illustration. Pourquoi ?

Worker Node

Worker Node

Master node

Input config (yaml format)

Visualisation de plusieurs métriques grâce à une interface web natif ou Prometheus/Grafana

Kubernetes repose sur une architecture master/workers.

Les nœuds workers possède l'environnement pour l'exécution des containers.

Le nœud master communique avec les workers pour surveiller l'état des containers grâce au service **kubelet** et persiste les données sur **etcd**.

Les nœuds workers créent des containers dans une abstraction appelé **pods** qui symbolise un groupe de containers qui réalisent un objectif précis.

L'isolation réseau est assuré par le composant kube-proxy

On Ubuntu

sudo apt-get update

sudo apt-get install -y apt-transport-https ca-certificates curl

sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg
https://packages.cloud.google.com/apt/doc/apt-key.gpg

echo "deb [signed-by=/usr/share/keyrings/kubernetesarchive-keyring.gpg] https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update sudo apt-get install -y kubelet kubeadm kubectl sudo apt-mark hold kubelet kubeadm kubectl

On Windows (kubectl, kubelet)

Installer docker-desktop puis aller dans les paramètres de Docker et assurer vous que Kubernetes est activé (diode verte)

Kubeadm ne supporte pas les hôtes Windows mais les worker peuvent tourner sous Windows

Tester votre installation avec :

kubectl –version kubectl get all

Format du fichier de configuration

Télécharger le fichier deployment.yaml à l'adresse suivante :

https://github.com/djobiii2078/cloud_course_reso urces/blob/main/deployment.yaml

Pouvez-vous expliquer ce qu'il décrit?

Déploiement continu

```
minReadySeconds: 10
strategy:
   rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
   type: RollingUpdate
```

Définit la stratégie de mise à jour pour notre déploiement.

MaxSurge conditionne le nombre de containers à instancier lors du passage à l'échelle.

Mettez à jour le déploiement :

kubectl apply -f deployment.yaml

Déploiement continu

spec: containers: - name: bb-site:v2 image: getting-started

Le fichier peut être mis à jour pour faire évoluer l'architecture.

Kubernetes redeploie les composants modifiés pour s'ajuster aux nouvelles directives.

Mettez à jour le déploiement :

kubectl apply –f deployment.yaml

Commencons par détailler la partie MONA

Optimiser le démarrage des VNFs

Surveillance interopérable et performante

NFV MONA – Management and Orchestration

Virtual Compute

Virtual Storage

Virtual Network

Virtual Network

Storage

La partie matériel – NFVI – NFV Infrastructure

Optimiser le démarrage des VNFs

Rappel sur le démarrage d'une unité d'isolation: Plusieurs composants doivent charger avant le lancement de la fonction applicative.

Optimiser le démarrage des VNFs

Rappel sur le démarrage d'une unité d'isolation: Plusieurs composants doivent charger avant le lancement de la fonction applicative.

Optimiser le démarrage des VNFs

Ce temps est encore plus couteux lorsque les taches qui s'executent sont très courtes, de l'ordre de la milliseconde ex: routage d'un paquet

Optimiser le démarrage des VNFs

Plusieurs approches dans l'état existent pour réduire la phase d'initialisation

A) Checkpointing/restore

Potkemin-SOSP'05, SnowFlock-EUROSYS'09. ShadowReboot-VEE'13/DSN'11, Halite-ATC'13, Agamotto-USENIX SECURITY'20, Catalyzer-ASPLOS'20, FaasM-ATC'20, REAP-ASPLOS'21, FaaSnap-EUROSYS'22 AWS SnapStart

Space constraints and potentially infinite states

Optimiser le démarrage des VNFs

Plusieurs approches dans l'état existent pour réduire la phase d'initialisation

A) Specialization

General purpose OS

Specialized, lighter OS

ClickOS-NSDI'14,
OsV-ATC'14, LightVMSOSP'17,
Yolo-EUROPAR'19,
Firecracker-EUROSYS'20,
Unikraft-EUROSYS'21,
FlexOS-HotOS'21/ASPLOS'22

Optimiser le démarrage des VNFs

Optimiser le démarrage des VNFs

Technologie assez récente mais plusieurs projets par domaine

Mini-OS

IncludeOS

Unikraft (Toolchain)

Rumprun

ClickOS

Optimiser le démarrage des VNFs

Cas pratique: ClickOS

Se base sur miniOS (5MB de taille)

Propose une optimisation des couches "bridge" et l'interface d'administration pour retirer les fonctionnalités inutiles

Près de 30x le temps de démarrage comparé à un OS classique.

Martins, J. et al. Enabling Fast, Dynamic Network Processing with ClickOS. HotSDN 2013.

Optimiser le démarrage des VNFs

Cas pratique: ClickOS

Plusieurs alternatives ont emergé au fil des années, mais la logique reste la même est insiste sur la spécialisation.

D'autres approches plus complexe insistent sur la généricité et peuvent aussi être exploité pour generer des images spécialisés mais facilement reconfigurable en fonction des besoins.

Unikraft: fast, specialized unikernels the easy way. Simon Kuenzer et al. EUROSYS'21 FlexOS: towards flexible OS isolation. Hugo Lefeuvre et al. ASPLOS'22