Eric Rouse

Individual Assignments #58

Assignment: 4.1: 6 (see definition of n! pg. 145), 8, 14, 18, 28, 38, 40

Q6

Prove that: $\sum_{k=1}^{n} n * n! = (n+1)! - 1$ using induction.

Base Case

Check at k=1.

$$P(1): 1 * 1! = (1 + 1)! - 1 = 2 - 1 = 2 \Longrightarrow OK$$

Inductive Case

Assume that $\sum_{k=1}^{m} m * m! = (m+1)! - 1$ is true and that it implies $\sum_{k=1}^{m+1} (m+1) * (m+1)! = ((m+1)+1)! - 1$.

So,
$$\sum_{k=1}^{m+1} = \sum_{k=1}^{m} m * m! + (m+1) * (m+1)! = (m+1)! - 1 + (m+1) * (m+1)!$$

$$= (m+1)! [(m+1)+1] - 1$$

$$= (m+1)! (m+2) - 1$$

$$= (m+2)! - 1$$

Thus, as assumed $P(m) \rightarrow P(m+1)$.

08

Prove that $P(n) \equiv \sum_{k=0}^{n} 2 * (-7)^k = \frac{1 - (-7)^{n+1}}{4}$ using induction.

Base Case

Where n=0:
$$P(0)$$
: $2 * (-7)^0 = \frac{1 - (-7)^{0+1}}{4} \implies 2 = \frac{1+7}{4} = 2 \implies OK$

Inductive Case

Assume
$$P(m) \equiv \sum_{k=0}^{m} 2 * (-7)^k = \frac{1 - (-7)^{m+1}}{4} \to P(m+1) \equiv \sum_{k=0}^{m+1} 2 * (-7)^k = \frac{1 - (-7)^{m+1+1}}{4}$$

So, $\sum_{k=0}^{m+1} = \sum_{k=0}^{m} 2 * (-7)^m + 2 * (-7)^{m+1} = \frac{1 - (-7)^{m+1}}{4} + 2 * (-7)^{m+1}$

$$= \frac{1 - (-7)^{m+1}}{4} + \frac{8 * (-7)^{m+1}}{4}$$

$$= \frac{1+7*(-7)^{m+1}}{4} = \frac{1-(-7)*(-7)^{m+1}}{4}$$
$$= \frac{1-(-7)^{m+2}}{4}$$

Thus, as assumed $P(m) \rightarrow P(m+1)$.

014

Prove that $P(n) \equiv \sum_{k=1}^{n} k * 2^k = (n-1) * 2^{n+1} + 2$ using induction.

Base Case

Where n=1: P(1): $1 * 2 = 0 + 2 \implies 2 = 2 \implies OK$

Inductive Case

Assume
$$P(m) \equiv \sum_{k=1}^{m} k * 2^k = (m-1) * 2^{m+1} + 2 \rightarrow P(m+1) \equiv \sum_{k=0}^{m+1} k * 2^k = (m) * 2^{m+2} + 2$$

So, $\sum_{k=0}^{m+1} k * 2^k = \sum_{k=1}^{m} k * 2^k + (m+1) * 2^{m+1} = (m-1) * 2^{m+1} + 2 + (m+1) * 2^{m+1}$

$$= (m-1) * 2^{m+1} + 2 + (m+1) * 2^{m+1}$$

$$= (m-1+m+1) * 2^{m+1} + 2 = 2 * m * 2^{m+1} + 2$$

$$= (m) * 2^{m+2} + 2$$

Thus, as assumed $P(m) \rightarrow P(m+1)$.

Q18

- a) $P(2) = 2! < 2^2$.
- b) $P(2) = 2! < 2^2$ is true because 2 < 4.
- c) $P(m) \equiv m! < m^m$
- d) We must assume the inductive hypothesis is correct. For each $m \ge 2$ that P(m) implies P(m+1).
- e) $m! < m^m \to (m+1)! < (m+1)^{m+1}$ (m+1)! = m! (m+1) $(m+1)! < m^m (m+1)$ by inductive hypothesis $(m+1)! < (m+1)^m (m+1)$ $(m+1)! < (m+1)^{m+1}$
- f) Both the basis and inductive step are completed so by principle of mathematical induction the statement is true for every integer greater than 1.

028

Prove that $P(n) \equiv n^2 - 7n + 12 \ge 0$ when $n \ge 3$ using induction.

Base Case

Where n=3: P(3): $3^2 - 7 * 3 + 12 \ge 0 \implies 9 - 21 + 12 \ge 0 \implies 0 \ge 0 \implies 0$ K

Inductive Case

Assume $P(m) \equiv m^2 - 7m + 12 \ge 0 \rightarrow P(m+1) \equiv (m+1)^2 - 7(m+1) + 12 \ge 0$

Note: $m^2 - 7m + 12 = (m - 3)(m - 4) \ge 0$.

Note: $(m+1)^2 - 7(m+1) + 12 = (m-2)(m-3) \ge 0$.

Since (m-2) > (m-4) the equality holds for $n \ge 3$.

Thus, as assumed $P(m) \rightarrow P(m+1)$.

Q38

Base Case

 $\bigcup_{j=1}^{n} A_1 \subseteq \bigcup_{j=1}^{n} B_1$ is always true by definition.

Inductive Case

Assume

$$\bigcup_{j=1}^{k} A_j \subseteq \bigcup_{j=1}^{k} B_j \to \bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j$$

Let x be an arbitrary element of $\bigcup_{j=1}^{k+1} A_j = (\bigcup_{j=1}^k A_j) \cup A_{k+1}$.

Because $x \in \bigcup_{j=1}^k A_j$ then by the inductive hypothesis $x \in \bigcup_{j=1}^k B_j$. We also know that $x \in A_{k+1}$ so by the given fact that $A_{k+1} \subseteq B_{k+1}$ thus $x \in B_{k+1}$. Therefore $x \in \bigcup_{j=1}^{k+1} B_j$.

Q40

Base Case

$$P(1) A_1 \cup B = A_1 \cup B$$

Inductive Case

$P(k) \rightarrow P(k+1)$

 $(A_1 \cap A_2 \cap \ldots \cap A_k \cap A_{k+1}) \cup B =$

 $((A_1\cap A_2\cap\ldots\cap A_k)\cap A_{k+1})\cup B=$

 $[(A_1\cap A_2\cap\ldots\cap A_k)\cup B)\cap (A_{k+1}\cup B)=$

 $[(A_1 \cup B) \cap (A_2 \cup B) \cap ... \cap (A_k \cup B)] \cap (A_{k+1} \cup B) =$

 $(A_1 \cup B) \cap (A_2 \cup B) \cap \dots \cap (A_k \cup B) \cap (A_{k+1} \cup B) \ \Box$