

K NEAREST NEIGHBORS

- 1. TS. Nguyễn Tấn Trần Minh Khang
- 2. ThS. Võ Duy Nguyên
- 3. Cao học. Nguyễn Hoàn Mỹ
- 4. Tình nguyện viên. Lê Ngọc Huy
- 5. Tình nguyện viên. Cao Bá Kiệt

NEAREST NEIGHBOR CLASSIFIER

Nearest Neighbor Classifier

Assign label of nearest training data point to each test data point.

Voronoi partitioning of feature space for two-category 2D and 3D data

Nearest Neighbor Classifier

Nearest Neighbor Classifier

f(x) = label of the training example nearest to x

- —All we need is a distance function for our inputs.
- —No training required!

CÁC CÂU HỎI

— Câu 01: Hồ Thái Ngọc Nếu số lượng nhãn bằng nhau thì chọn nhãn như thế nào?

- Câu 02: Nguyễn Trần Hoàng Thanh Thuật toán kNN để làm gì?
- Câu 03: Phan Vĩnh Long Chọn k như thế nào tốt nhất?
- Câu 04: Nguyễn Cường Phát Với một bộ dữ liệu cụ thể thì làm sao tìm được k tốt nhất?
- Câu 05: Võ Thị Một, Võ Tuấn Dĩ Làm sao tính được khoảng cách giữa hai điểm Data Point.

DATASET

- Tên tập dữ liệu: Social Network Ads.
- Nguồn: https://www.superdatascience.com/pages/machine-learning.

Dataset

 Tập dữ liệu cho biết các thông tin của khách hàng và họ có mua hàng hay không.

Dataset

- Tập dữ liệu chứa 400 điểm dữ liệu, mỗi điểm dữ liệu có 5 thuộc tính gồm:
 - + UserID: Mã số định danh của người dùng.
 - + Gender: Giới tính của người dùng.
 - + Age: Độ tuổi người dùng.
 - + Estimated Salary: Mức lương ước đoán của người dùng.
 - + Purchased: Là một trong hai số 0 và 1. Số 0 cho biết khách hàng không mua hàng và số 1 cho biết khách hàng có mua hàng.

Dưới đây là 5 điểm dữ liệu ngẫu nhiên trong tập dữ liệu.

UserID	Gender	Age	Estimated Salary	Purchased
15624510	Male	19	19,000	0
15810944	Male	35	20,000	1
15668575	Female	26	43,000	0
15603246	Female	27	57,000	0
15804002	Male	19	76,000	1

- Yêu cầu với 2 thuộc tính:
 - + Độ tuổi (Age)
 - + Mức lương ước đoán (Estimated Salary)

Dự đoán khách hàng sẽ mua hàng hay không?

TIỀN XỬ LÝ DỮ LIỆU

Tiền xử lý dữ liệu

 Ö bài này, ta chỉ quan tâm đến hai thuộc tính tuổi và mức lương ước đoán.

- 1. import pandas as pd
- 2. import numpy as np
- 3. dataset = pd.read_csv("Social_Network_Ads.csv")
- 4. X = dataset.iloc[:, [2, 3]].values
- 5. Y = dataset.iloc[:, 4].values

— Để thuận tiện cho trực quan hóa kết quả sau khi huấn luyện, ta chuẩn hóa dữ liệu về dạng:

- + Kỳ vọng bằng 0.
- + Phương sai bằng 1.
- Lớp StandardScaler trong module sklearn.preprocessing đã được xây dựng sẵn để chuẩn hóa dữ liệu.
- 7. from sklearn.preprocessing import StandardScaler
- 8. SC = StandardScaler()
- 9. X = SC.fit_transform(X)

Tiền xử lý dữ liệu

- Chia dữ liệu thành hai tập training set và test set.
- Ta dùng hàm train_test_split được cung cấp trong module sklearn.model_selection.

TRỰC QUAN HÓA DỮ LIỆU

Xây dựng hàm trực quan hóa các điểm dữ liệu.

Gọi hàm trực quan hóa dữ liệu.

```
18.VisualizingDataset(X, Y)
19.plt.show()
```


- Theo hình vẽ, ta thấy các điểm có sự phân bố thành 2 mảng.
 - + Mảng dưới trái phần lớn có màu đỏ, tức khách hàng không mua hàng.
 - + Mảng bên phải và mảng bên trên phần lớn có màu xanh, tức khách hàng có mua hàng.

- —Điều này là phù hợp vì các khách hàng trẻ và có mức lương thấp sẽ thường không mua hàng.
- Ngược lại, khách hàng cao tuổi hoặc có lương cao sẽ thường mua hàng nhiều hơn.

K NEAREST NEIGHBORS

K Nearest Neighbors

- —K Nearest Neighbors là một trong các thuật toán phân loại đơn giản nhất.
- —Thuật toán này sẽ tìm k điểm có khoảng cách gần với điểm cần dự đoán nhất. Nhãn đầu ra của điểm cần dự đoán là nhãn có số lần xuất hiện nhiều nhất trong k điểm được chọn.

K Nearest Neighbors

-Nói cách khác, K Nearest Neighbors dự đoán đầu ra của điểm dữ liệu mới bằng cách dựa trên đầu ra các điểm dữ liệu hàng xóm của nó.

K Nearest Neighbors

- Khoảng cách để xác định hai điểm có phải là hàng xóm hay không có thể là:
 - + Khoảng cách Minkowski (bao gồm khoảng cách Euclid, khoảng cách Manhattan, ...).
 - + Độ đo tương tự Cosine.
 - + Khoảng cách Chebyshev (hay còn gọi là khoảng cách chessboard).

+ ...

HUÁN LUYỆN MÔ HÌNH

- Ta sử dụng lớp KNeighborsClassifier trong module sklearn.neighbors để huấn luyện mô hình.
- Số lượng điểm cần tìm k được đặt là 5.
- 20.from sklearn.neighbors import KNeighborsClassifier
- 21.classifier = KNeighborsClassifier(n_neighbors= 5)
- 22.classifier.fit(X_train, Y_train)

TRỰC QUAN HÓA KẾT QUẢ MÔ HÌNH

Trực quan hóa kết quả mô hình

- Ta tạo một *confusion matrix*. Đây là một ma trận có kích thước là $p \times p$ với p là số phân lớp trong bài toán đang xét, ở đây là 2.
- Phần tử ở dòng thứ i, cột thứ j của confusion matrix biểu thị số lượng phần tử có loại là i và được phân vào loại j.
- Hàm confusion_matrix trong module sklearn.metrics sẽ hỗ trợ ta xây dựng confusion matrix.
- 23.from sklearn.metrics import confusion_matrix
 24.cm = confusion_matrix(Y_train, classifier.predict(X_train))
 25.print(cm)

Confusion Matrix được in ra là:

	0	1
0	182	17
1	9	112

- Theo ma trận trên, số lượng dữ liệu được phân loại đúng là 182 +
 112 = 294 điểm dữ liệu.
- Số lượng dữ liệu phân loại sai là 9 + 17 = 26 điểm dữ liệu.
- Tỉ lệ điểm dữ liệu phân loại sai là 26/320 = 0.08.

Ta trực quan hóa kết quả mô hình trên mặt phẳng tọa độ bằng cách vẽ 2 vùng phân chia mà mô hình thu được sau quá trình huấn luyện.

 Xây dựng hàm trực quan hóa kết quả bằng cách tạo 2 vùng phân chia mà mô hình đạt được.

```
26.def VisualizingResult(model, X_):
27.     X1 = X_[:, 0]
28.     X2 = X_[:, 1]
29.     X1_range = np.arange(start= X1.min()-1, stop= X1.max()+1, step = 0.01)
30.     X2_range = np.arange(start= X2.min()-1, stop= X2.max()+1, step = 0.01)
31.     X1_matrix, X2_matrix = np.meshgrid(X1_range, X2_range)
```


 Xây dựng hàm trực quan hóa kết quả bằng cách tạo 2 vùng phân chia mà mô hình đạt được.

```
26.def VisualizingResult(model, X_):
31. ...
32. X_grid= np.array([X1_matrix.ravel(), X2_matrix.ravel()]).T
33. Y_grid= model.predict(X_grid).reshape(X1_matrix.shape)
34. plt.contourf(X1_matrix, X2_matrix, Y_grid, alpha = 0.5, cmap = ListedColormap(("red", "green")))
```


Trực quan hóa kết quả mô hình.

```
35. Visualizing Result(classifier, X_train) 36.plt.show()
```


 Hoàn thiện quá trình trực quan bằng cách vẽ thêm các điểm dữ liệu huấn luyện lên mặt phẳng tọa độ.

```
37.VisualizingResult(classifier, X_train)
38.VisualizingDataset(X_train, Y_train)
39.plt.show()
```


Social Network Ads

– Nhận xét:

- + Mô hình phân chia khá tốt.
- + Đường phân chia có vẻ không có hình dáng ổn định.

KIỂM TRA KẾT QUẢ TRÊN TẬP TEST

Tạo confusion matrix trên tập test.

```
40.cm = confusion_matrix(Y_test, classifier.predict(X_test))
41.print(cm)
```


— Confusion Matrix được in ra là:

	0	1
0	55	3
1	1	21

- Theo ma trận trên, số lượng dữ liệu được phân loại đúng là 55 + 21 = 76 điểm dữ liệu.
- Số lượng dữ liệu phân loại sai là 1 + 3 = 4 điểm dữ liệu.
- − Tỉ lệ điểm dữ liệu phân loại sai là $4/80 \approx 0.05$.

 Thực hiện tương tự trực quan hóa kết quả mô hình trên tập traning.

```
42.VisualizingResult(classifier, X_test)
43.VisualizingDataset(X_test, Y_test)
44.plt.show()
```


	0	1
0	55	3
1	1	21

 Xây dựng hàm so sánh kết quả trên một điểm dữ liệu trong tập test.

Gọi thực hiện hàm so sánh trên 5 điểm dữ liệu, có chỉ mục từ thứ
 7 đến 11 trong tập kiểm thử.

```
51.for i in range(7, 12):
52. compare(i)
```

Age	Estimated Salary	Purchased	Predicted Purchased
36	144,000	1	1
18	68,000	0	0
47	43,000	0	1
30	49,000	0	0
28	53,000	0	0

Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN - SÁNG TẠO - PHỤNG SỰ