## Week4 Project Part1

### Melody Zhang

2022-06-27

#### Part 1: Simulation Exercise Instructions

```
Preparation for analysis.
library(stats)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
Use set.seed() to reproduce results. Set lambda = 0.2, exponentials = 40 and simulations = 1000.
set.seed(624)
lambda = 0.2
n = 40
nosim = 1000
```

1. Show the sample mean and compare it to the theoretical mean of the distribution.

```
data1 <- replicate(nosim,rexp(n, lambda))
exp_mean <- apply(data1,2,mean)

samp_mean <- mean(exp_mean)
samp_mean

## [1] 5.024981

theo_mean <- 1/lambda
theo_mean

## [1] 5

data2 <- data.frame(Mean_of_exp='exp_mean',value=exp_mean)
ggplot(data2,aes(x=value)) +
   geom_histogram(binwidth = 0.5,colour = "black",fill = "white") +
   geom_vline(aes(xintercept=samp_mean), color="red", linetype="dashed", size=0.5)+</pre>
```

```
geom_vline(aes(xintercept=theo_mean), color="blue", size=0.5)+
ggtitle("Comparison of theoretical mean and sample mean")
```

## Comparison of theoretical mean and sample mean



According to our results, the sample mean is about 5.02(red dashed line) and the theoretical mean is 5(blue line).

# 2. Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

```
samp_sd <- sd(exp_mean)
samp_sd

## [1] 0.8007116

samp_var <- samp_sd^2
samp_var

## [1] 0.6411391

theo_sd <- 1/(lambda*sqrt(n))
theo_sd

## [1] 0.7905694

theo_var <- theo_sd^2
theo_var

## [1] 0.625</pre>
```

The standard deviation of exponential is (1/lambda)/sqrt(n), and variation is calculated by  $((1/\text{lambda})/\text{sqrt}(n))^2$ . The sample variance is about 0.64 which is really approximate to the theoretical variance is around 0.625.

#### 3. Show that the distribution is approximately normal.



Due to the Central Limit Theorem, we roughly get a normal distribution. The curve would even be more approximate to normal distribution as the sample number increase.