Tutorial #4: Isomorphism

Exercise 1:

1.
$$f: (\mathbb{R}^*, .) \to (\mathbb{R}^{2 \times 2}, .); f(x) = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$$

Let $a, b \in \mathbb{R}^*$,

$$f(a) = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}, f(b) = \begin{bmatrix} b & 0 \\ 0 & 1 \end{bmatrix}, f(a)f(b) = \begin{bmatrix} ab & 0 \\ 0 & 1 \end{bmatrix}$$

Since $a, b \in (\mathbb{R}^*, .)$, $ab \in (\mathbb{R}^*, .)$ as the closure property of a group,

$$f(ab) = \begin{bmatrix} ab & 0 \\ 0 & 1 \end{bmatrix}$$

Since f(ab) = f(a)f(b), f is homomorphism.

Kernel of $f = \{x : f(x) = e_H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \}$. Thus, $ker(f) = \{1\}$.

2.
$$f:(R,+) \to (R^{2\times 2},.); f(x) = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$$

Let $a,b \in \mathbb{R}$,

$$f(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}, f(b) = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}, f(a)f(b) = \begin{bmatrix} 1 & b+a \\ 0 & 1 \end{bmatrix}$$

Since $a, b \in (\mathbb{R}, +)$, $(a + b) \in (\mathbb{R}, +)$ as the closure property of the group,

$$f(a+b) = \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix}$$

Since f(a + b) = f(a)f(b), f is homomorphism.

Kernel of
$$f = \{x : f(x) = e_H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \}$$
. Thus, $ker(f) = \{0\}$.

Exercise 2:

Prove that: $G = (\mathbb{R} \setminus \{-1\}, *)$ is an abelian group with a*b = a+b+ab.

i) Let a, b, c be arbitrary in $\mathbb{R} \setminus \{-1\}$, we have:

$$(a*b)*c = (a+b+ab)*c = (a+b+ab)+c+(a+b+ab)c$$

= a+b+c+ab+bc+ac+abc (1)

$$a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc)$$
$$= a + b + c + ab + bc + ac + abc$$
(2)

With (1) = (2), we conclude that G is associative.

- ii) There exists e = 0 such that a * e = (a + 0 + a * 0) = a. Thus, G has identity element.
- iii) With arbitrary element $a \in \mathbb{R} \setminus \{-1\}$, there exists a^{-1} is an inverse element of a. Indeed:

$$a * a^{-1} = e \iff a + a^{-1} + aa^{-1} = 0$$
$$\iff a^{-1} = \frac{-a}{a+1}$$

iv) Since a * b = a + b + ab = b + a + ba = b * a, G is commutative.

Hence, G is an abelian group.

Prove that: $f: (G, *) \to (\mathbb{R} \setminus \{0\}, .); f(x) = x + 1$ is homomorphism. Since f(a) = a + 1, f(b) = b + 1, f(a) f(b) = (a + 1)(b + 1) = ab + a + b + 1. On the other hand, f(a * b) = f(a + b + ab) = a + b + ab + 1.

Conclusion: f is homomorphism.

Exercise 3:

Prove that: $\phi(g^n) = (\phi(g))^n$. Given that $g \in G$, $f: (G, *) \to (H, \circ)$. **Base case:** When n = 2, $\phi(g * g) = \phi(g) \circ \phi(g) \iff \phi(g^2) = (\phi(g))^2$.

Thus, $\phi(g^n) = (\phi(g))^n$ holds for n = 2.

Induction step: Let $k \in \mathbb{N}$ be given and suppose that $\phi(g^n) = (\phi(g))^n$ for n = k,

$$\phi(g^{k+1}) = \phi(g^k * g) = (\phi(g))^k \circ \phi(g) = (\phi(g))^{k+1}$$

Hence, $\phi(g^n) = (\phi(g))^n$ and the proof of induction step is complete. **Conclusion:** By the principle of induction, $\phi(g^n) = (\phi(g))^n, \forall n \in \mathbb{N}$

Exercise 4:

skip