期末考试模拟题 (五) 2022.6.16

一、单选题(每小题3分,共15分)

- 1.曲线 $C: \begin{cases} x^2 + y^2 z^2 = 1, \\ z = xy \end{cases}$ 在点 (2,1,2) 处的切线方程为().
 - (A) $\begin{cases} 2x y + 2z = 2 \\ x 2y + z = 1 \end{cases}$ (B) $\begin{cases} 2x + y 2z = 2 \\ x + 2y z = 1 \end{cases}$
 - (C) $\begin{cases} 2x y + 2z = 1 \\ x 2y + z = 2 \end{cases}$; (D) $\begin{cases} 2x + y 2z = 1 \\ x + 2y z = 2 \end{cases}$.
- 2. 函数 $f(x, y) = xy^3$ 在椭圆 $2x^2 + 3y^2 \le 4$ 上的最大值为 ().
 - (A) 1; (B) $\frac{\sqrt{2}}{2}$; (C) $\frac{1}{2}$; (D) 2.
- 3. 极限 $\lim_{r\to 0^+} \frac{1}{r^2} \iint\limits_{x^2+y^2 \le r^2} e^{x^2+y^2} dx dy 等于().$
 - (A) 0; (B) 1; (C) π ; (D) 2π
- 4. 设有向曲面 $\Sigma: x^2 + y^2 + (z-1)^2 = 1$, $(z \ge 1)$,定向为上侧,则第二类曲面积分 $\iint_{\Sigma} 2xy dy \wedge dz y^2 dz \wedge dx z dx \wedge dy$ 等于 () .
 - (A) $-\frac{5\pi}{3}$; (B) $-\frac{2\pi}{3}$; (C) $-\frac{\pi}{3}$; (D) $\frac{\pi}{3}$.
- 5. 已知幂级数 $\sum_{n=0}^{+\infty} a_n x^n$ 的收敛半径为 2 ,则数项级数 $\sum_{n=0}^{+\infty} a_n$ 是().
- (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 无法确定是否收敛. 二、填空题(每小题 3 分, 共 15 分)
- 1. 设函数 $u(x, y, z) = x^{\frac{y}{z}}$,则在点 (e, 1, 1) 处沿方向 l = (1, -2, 2) 的方向导数 $\frac{\partial u}{\partial l}\Big|_{(e, 1, 1)} = \underline{\hspace{1cm}}$.
- 2. 设 $D = \{(x, y) | |x| + |y| \le 1\}$,则二重积分 $\iint_{D} (x+|y|) dxdy = ______.$
- 3. 设 L 为圆 $x^2 + y^2 = 4$, 则 $\oint_L (2x^2 3y^2) ds = _____$
- 4. 级数 $\sum_{n=1}^{+\infty} (-1)^n \frac{(x+1)^n}{n}$ 的收敛域为______.
- 5. 若级数 $\sum_{n=1}^{+\infty} \frac{a^n}{n^b}$ (a > 0, b > 0) 收敛,则 $a \, \pi \, b$ 满足的条件是______.

三、计算(每小题 8 分, 共 56 分)

- 1. 求函数 $f(x, y) = x^2(2+y^2) + y \ln y$ 的极值.
- 2. 计算三次积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^1 x e^{z^2} dz$.
- 3. 设曲线 $C: 2x^2 + y^2 = 1$,取逆时针方向,求曲线积分 $\oint_C \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$.
- 4. 计算曲面积分 $\iint_{\Sigma} y^2 dS$, 其中 $\Sigma = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\}$.
- 5. 将 $f(x) = \arctan \frac{1+x}{1-x}$ 展开为 x 的幂级数.
- 6. 设 f(x) 是周期为 3 的周期函数,它在一个周期内的表达式为: $f(x) = \begin{cases} |x|, & |x| \le 1 \\ 1, & 1 \le |x| \le \frac{3}{2} \end{cases}$

试写出 f(x) 在一个周期内的 Fourier 级数及和函数 S(x) 的表达式,并求 S(-2), S(3), $S(\frac{9}{2})$ 的值.

7. 设数列 $\{a_n\}$ 满足条件: $a_0 = 3$, $a_1 = 1$, $a_{n-2} - n(n-1)a_n = 0$ ($n \ge 2$), S(x) 是幂级数 $\sum_{n=0}^{+\infty} a_n x^n$ 的和函数. 求S(x) 的表达式.

四、(8分) 设连续函数 f(x) 恒正, $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le t^2 \}$,

的单调性.

五、(6分)设函数 f(x,y,z) 具有二阶连续偏导数,且 $\lim_{r\to +\infty} r\left(x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} - 3\right) = 1$,

其中
$$r = \sqrt{x^2 + y^2 + z^2}$$
. 记 $A_n = \iiint_{B(n)} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) dxdydz$,

 $B(n) = \{(x, y, z) | x^2 + y^2 + z^2 \le n^2 \}$. 试讨论级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{A_n}$ 的敛散性, 若收敛请指明收敛类型, 说明理由.