2979F

DRINKING WATER SURVEILLANCE PROGRAM
WALLACEBURG WATER TREATMENT
PLANT
REPORT FOR 1991 AND 1992

® Ontario

WALLACEBURG WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

WALLACEBURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Wallaceburg water treatment plant is a conventional treatment plant which treats water from the St. Clair River via the Chenal Ecarte. The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Chlorine dioxide is generated as part of the disinfection process and powder activated carbon is added on a continuous basis. This plant has a rated capacity of 11.8 x 1000 m³/day. The Wallaceburg water treatment plant serves a population of approximately 11,300.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Wallaceburg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE
A '.' INDICATES THAT NO SAMPLE WAS TAKEN

		TREAT RAW	TREATMENT PLANT RAW TESTS POSITIVE	. ALTIVE	TREATMEN TREATED	TREATMENT PLANT TREATED TESTS POSITIVE	. TITIVE	BOBERT ST ROBERT ST	DIST. SYSTEM ROBERT ST TESTS DOSITIVE MONSTILVE		DIST. SYSTEM THOMAS AVE	DIST. SYSTEM THOMAS AVE TESTS POSITIVE MONSITIVE	SITIVE	
	SCAN	2 .									2			
	BACTERIOLOGICAL	30	53	%	12	ĺM	52	Ξ	-	٥	7	M	75	
	CHEMISTRY (FIELD)	36	. 39	100	22 .	72	100	130	128	88	, 78	84	100	
	CHEMISTRY (LABORATORY)	281	239	85	277	506	7,2	877	907	8	. 284	252	88	
	METALS	288	06	31	288	25	, %	206	216	75	322	114	35	
	CHLOROAROMATICS	140	0	0	140	0	0	112	0	0	22	0 .	0	
	CHLOROPHENOLS	54	0	0	54	0	0	•			•			
	PESTICIDES AND PCB	360	0	0	375	0	0	177	0	0	110		0	
	PHENOLICS	12	2	16	Ξ	0,	0	٠		•	٠			
	POLYAROMATIC HYDROCARBONS	51	0	0	. 51	0		51	0	0	51.	0	0	
	SPECIFIC PESTICIDES	76	0	0	76	Q.	0	-	0		2	0	0	
	VOLATILES	360	0	0	360	25	13	298	39	13	205	. 82	13	
	RADIONUCLIDES	28	9	21	28	7	52		•	•	٠	•		
TOTAL	• .	1,704	705		1,732	410		1,734	. 790		1,135	187		

DRINKING WATER SURVEILLANCE PROGRAM

WALLACEBURG WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Wallaceburg water treatment plant in summer of 1985 as part of a survey of the St. Clair/Detroit River area. Previous DWSP annual reports have been published for 1986, 1987, 1988, 1989 and 1990.

PLANT DESCRIPTION

The Wallaceburg water treatment plant is a conventional treatment plant which treats water from the St. Clair River via the Chenal Ecarte. The process consists of coagulation, flocculation, sedimentation, filtration, taste and odour control and disinfection. Chlorine is added at the mouth of the intake structure for zebra mussel control when the raw water temperature is above 12°C. Chlorine dioxide is generated as part of the disinfection process and powder activated carbon is added on a continuous basis. This plant has a rated capacity of 11.8 x 1000 m³/day. The Wallaceburg water treatment plant serves a population of approximately 11,300.

The sample day flows were reported as 9.6 x 1000 m³/day.

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line. Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

The guidelines are evaluated on the results from the free flowing samples. Standing samples in the distribution system can show elevated concentrations in certain metals if the water is corrosive or if the standing time is excessive. Flushing the tap until the water achieves the coolest temperature will ensure that the water used for consumption will contain minimum concentrations of metals.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER;
-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE
GUIDELINE VALUES; AND
-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 9 of 29 treated and distributed water samples with a maximum reported value of 23.0°C.

CHEMISTRY (LABORATORY)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions. Colour is measured in Hazen units (HZU).

Colour exceeded the ODWO Aesthetic Objective of 5 HZU in 3 of 30 treated and distributed water samples with a maximum reported value of 8.5 HZU.

Elevated conductivity is often associated with high hardness levels.

Conductivity exceeded the European Economic Community Aesthetic Guideline Level of 400 umho/cm in 2 of 30 treated and distributed water samples with a maximum reported value of 418 umho/cm.

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 27 of 30 treated and distributed water samples with a maximum reported value of 170.0 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as

aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 3 of 30 treated and distributed water samples with a maximum reported value of 190 ug/L.

Iron exceeded the ODWO Aesthetic Objective of 300 ug/L in 1 of 30 treated and distributed water samples with a maximum reported value of 490 ug/L.

Manganese, in high concentrations, can contribute to laundry staining and undesirable tastes.

Manganese exceeded the ODWO Aesthetic Objective of 50.0~ug/L in 1 of 30 treated and distributed water samples with a maximum reported value of 71.0~ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

The results of the phenolics test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 29 treated and distributed water samples analyzed with a maximum level of 39.5 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Wallaceburg water treatment plant, for the sample years 1991 and 1992, produced good quality water and this was maintained in the distribution system.

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME: WORKS #:

WALLACEBURG WTP 220003341

UTM #:

173833904713920

DISTRICT: REGION:

SARNIA SOUTHWEST O. WIGLE

DISTRICT OFFICER:

O. WIGLE

SUPERINTENDENT:

LEO DENYS

ADDRESS:

LIBBY RD.

WALLACEBURG, ONTARIO

519-627-4191

MUNICIPALITY: AUTHORITY: WALLACEBURG

MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

5.817 (X 1000 M3)

DESIGN CAPACITY:

13.500 (X 1000 M3/DAY)

RATED CAPACITY: 11:820 (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

WALLACEBURG 11,295

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER .	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	TREATED	HOURLY
FLUORIDE	TREATED	2 TIMES/DAY
PH	TREATED	2 TIMES/DAY
TEMPERATURE	TREATED	HOURLY
TURBIDITY	RAW TREATED	HOURLY HOURLY

Page 10

TABLE 3 DRINKING WATER SURVEILLANCE PROGRAM WALLACEBURG WTP SAMPLE DAY CONDITIONS AND TREATMENT CHEMICAL DOSAGES FOR 1991. AND 1992

COAGULATION AID POLYELECTROLYTE		; ; ; ; ; ; ; ; ;						.25	! ·.			-	
POST CHLORINATION ORINE SODIUM CHLORITE	,	1	. 38	35	.35	1.10	1.02	1.00					
POST CHLORINE		.38										•	
TASTE AND ODOUR ACTIVATED CARBON POWDER	-	5.00	5.00	5.00	5.00	•	2.00	5.00	5.00	5.00	2.00	2.00	
COAGULATION ALUM LIQUID		15.00	15.00	15.00	15.00	15.00	15.00	8.50	15.00	15.00	15.00	. 15.00	
PRE CHLORINATION CHLORINE		1.00	1.00	1.03	.92	.40	.40	07.	1.01	1.01	1.01	1.04	
¥.5	FLOW) (1000M3)	9.682	9.685	9.685	9.682	9.682	9.682	9.682	9.682	9.682	9.685	9.682	
	DELAY * DATE TIME(HRS)	91 JAN 16 13.00	91 MAR 13 13.00	91 MAY 15 13.00	91 JUL 10 13.00	91 SEP 11 13.00	91 NOV 14 13.00	92 FEB 12 13.00	92 JUN 10 13.00	92 AUG 19 13.00	92 OCT 15 13.00	92 DEC 16 13.00	

* THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
> .	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
!AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
!EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
! LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
! RO	No Data: No Numeric Results
!sm	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
!U .	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN·	No Data: Result Unreliable

:UK NO Data: Unpreserved sampre required Α Approximate Value A3C Approximate, Total Count Exceeded 300 Colonies A> Approximate Value, Exceeded Normal Range APS Additional Peak, Less Than, Not Priority Pollutant ARO Additional Information In Laboratory Report CRO Calculated Result Only NAF Not All Required Tests Found RID Ioncal Calculated on Incomplete Data Set RMP P and M-Xylene Not Separated RRR Result Obtained by Repeat Analysis Rerun Verification RRV SFA Sample Filtered: Filtrate Analyzed SIL Sample Incorrectly Labelled SPS Several Peaks, Small, Not Priority Pollutant U48 Unreliable: Sample Age Exceeded 48 Hours Unreliable: Sample Age Exceeded Limit UAL Unreliable: Sample Age Unknown UAU UCS Unreliable: Contamination Suspected WSD Wrong Sample Description On Bottle

DIST. SYSTEM THOMAS AVE STANDING				٠.	,											•												,				•			•			
DIST. SYSTEM DIST. SYSTEM THOMAS AN FREE FLOW STANDING	GUIDELINE = 0 (A1)												UIDELINE = 200 (A3)	() (7 7	0L	330	19	<=> 0		<=> 0			•		GUIDELINE = 5/100ML (A1)			• •		•	•	•		•		
DIST. SYSTEM ROBERT ST STANDING		•	.•			•	•	•			•	•								•				•					•		-	•	•	•	•			
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0	•	•										DEI.N LIMII = 0			<u> </u>	<=> 7	<=> 7 ·	1	-	÷		<=> 0 .	<=> /	47		DET'N LIMIT = 0			•				•				
TREATMENT PLANT TREATED		•		*.		٠,	•			•				,)))		(=)	1 (1)	^=> O	(=> 0	^=> O	(=> 0	20	290	5 <=>												
TREATMENT PLANT TREATM RAW TREATE	BACTERIOLOGICAL MF (CT/100ML)	89	92	07	22	27.	001	. ∞	æ	56	10	14	NI MF (CI/ML)		•												MF (CT/100ML)	610 A3C	<=> 007		2200 A3C	44000 A3C	250	754 054	250 030 500 A3C	200 A3C	400 A3C	2000
	BACTERIOLOGI FECAL COLIFORM MF (CT/100ML)		1991 JUL	1991 SEP			1992 PEB		1992 JUN	1992 AUG	1992 OCT	. 1992 DEC	SIANDRU PLAIE UNI MF (CI/ML	1001	1991 JAN					1991 NOV	1992 FEB	1992 APR	1992 JUN		1992 OCT	1992 DEC	TOTAL COLIFORM MF (CT/100ML)	1991 JAN		1991 SEP			1007 APP	1902 HIM	1002 ALIC	1992 AUG	1992 001	2000

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

:											
DIST. SYSTEM THOMAS AVE STANDING											٠
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A						٠				
DIST. SYSTEM ROBERT ST STANDING	פחו							٠			
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0			. •	٠.						
REATMENT PLANT	,						•			٠	٠
TREATMENT PLANT TREATMENT PLANT RAW TREATED	BACTERIOLOGICAL	. 0027	48000 A3C	26000 A3C	33000 A3C	20000 A3C	950	3800 A3C	9000 A3C	13400 A3C	18000
	COLIFORM BCKGRE	1991 JAN	1991 JUL		1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

:		٠.								1											:									
THOMAS AVE STANDING	-	100	050	050	050.	200		•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.100	.100	.100	3.5	.050		.050	·	•	• •		200	.150	150	.150	.100	250	٥,٠		
THOMAS AVE FREE FLOW	GUIDELINE = N/A	.050	.050	050	050.	.01				GUIDELINE = N/A	.300	.150	.300	061.	.250	•	.150	•	•	•	GUIDELINE = N/A	.350	.200	2002	.200	.300	250			
ROBERT ST STANDING	าย	.100	.050	050	001	.100	.050	.050	.050	no	.050	. 100	.100	050.	00.	.100		36	050	.050		.150	.150	100	.150	500	002.	.150	.150	.100
ROBERT ST FREE FLOW	DET'N LIMIT = 0	.050	.050	050	000	.050	.050	.050	.100	DET'N LIMIT = 0	.250	.200	02.	0.51	300.	.200		051	020	.100	DET'N LIMIT =_ 0	.300	. 250	. 007	.200	.350	063.	.200	. 200	.200
TREATED	(F1EĹD)	100	. 150	0.00	7,00	100	100	100	100	1	1.000	1.000	1.030	. 5	006.	006*	1.000	000	1.000	1.100	^	1.100	1.100	1.050	1.200	1.300	0.1	1.100	1.100	1.200
RAW	<u>~</u>			•				•		FREE (MG/L)			•••								FLD CHLORINE (TOTAL) (MG/L					•			•	
-	CHEMIST CHLORINE (COMB) (MG/L	1991 JAN 1991 MAR		1991 JUL 1991 SFP		1992 FEB	1992 JUN	1992 AUG	1992 DEC	FLD CHLORINE FREE (MG/L					1991 NOV			1992 JUN 1992 AHG			FLD CHLORINE	1991 JAN	1991 MAR							. 1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

																											•												
DIST. SYSTEM THOMAS AVE STANDING	(A4)	7.200	7.000	7.200	7.400	7.300	7,200		7,200					6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	12.000	15.000	16.000	21.000	20.000	13.000		13,000					0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.880	006	. 160	.420	.460	1,000	٠	.540		٠	٠	
OIST. SYSTEM THOMAS AVE FREE FLOW	GUIOELINE = 6.5-8.5 (A4)	7.100	006.9	7.200	7.200	7.500	7.300		7.000			٠	•	GUIDELINE = 15 (A3)	8.000	2.000	14.000	22.000	20.000	14.000		8,000				٠	GUIDELINE = 1.0 (A1)	.540	.870	.150	.850	.560	007		.280				
OIST. SYSTEM ROBERT ST STANDING	ng G	7,000	6.800	7.200	7.200	7.200	7.200	6.800		7.500	7,600	7.200	7.400	N9	7.000	2.000	11,000		18.000	12.000	000°6		15.000	20,000	17.000	12.000	00	1.600	1.700	.850	.190	.630	007.	3.000		.500	060*	1.500	1.900
O1ST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = N/A	7.200	7.000	7.000	7,000	7.400	7.400	9.800	٠	7,200	7.400	7.200	7.400	DET'N LIMIT = N/A	000°9	9.000	8,000		23.000	13.000	000.9		16.000	22.000	17,000	8.000	DET'N LIMIT = N/A	.980	1,100	009.	.720	099.	009.	2,000	٠	.550	060°	.630	1,000
TREATMENT PLANT TREATED	(FIELD)	7.000	7.000	7.000	7.000	7.300	7.200	6.800	7.600	7.200	7.300	7.300	7.200	4 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.000	2.000	10.000	20.000	22.000	8.000	3.000	3.000	13.000	18.500	14.000	7.000		.190	. 190	.140	.120	.150	.130	009.	. 130	.080	.120	060.	.110
TREATMENT PLANT	CHEMISTRY	7.400	7.400	7.300	7.300	7.500	7.800	7.400	8.200	7.500	7,700	7.500	7.400	E (0EG.C)	2.000	2.000	12.000	20.000	22.000	8,000	2.000	2.000	13.000	18.500	14.000	9.000	(FTU)	007.	3.700	4.700	5.000	4.700	1.500	000.26	5.500	000.4	3.500	3.000	2,000
	FLD PH (DMNSLESS			1991 MAY				1992 FEB	1992 APR	1992 JUN		1992 OCT		FLD TEMPERATURE					1991 SEP		1992 FEB				1992 OCT		FLD TURBIDITY								1992 APR			1992 OCT	1992 DEC

TABLE 4
ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

																							,												
THOMAS AVE		74.100	77,000	75.500	. 76.700	74.100		72.200					29.800.	33.300	30.400	27.400	30.200		27.800					•		0.400	11.500	13.800	11.400	10.700	000.	11.800			
THOMAS AVE THE FREE FLOW ST	GUIDELINE = 30-500 (A4)	74.200	76.000	75.700	009*92	73.900		/3.000	•		·.	GUIDELINE = 100 (F2)	30.000	32.000	29.600	29.500	29.800		27.750		•	• •	SUIDELINE = 0.2 (A1)		GUIDELINE = 250 (A3)	11.300	10.500	14.100	11.300	10.300	006.4	11,900		•	
ROBERT ST STANDING	. BOIL	74.000	75.200	75.400	26.800	73.400	90.00	. 007 62	76.700	70.300	74.700	Ing	30.400	32,700	28.900	004.62	29.800	50.200		29.600	002.00	28.350	Uno		GU1	10.700	12,000	12.500	11.800	10.600	22.300		11.500	11.800	11.300
ROBERT ST RC FREE FLOW ST	DET'N LIMIT = 0.2	73.400	75.700	75,000	76.400	72.900	001.16	28 200	007 22	76.200	72.800	DET'N LIMIT = 0.20	29.000	31.800	29.800	004.42	29.800	006.67		29.600	051.62	28.250	DET'N LIMIT = 0.001	•	DET'N LIMIT = 0.20	12.700	11.500	12.600	11.500	10.500	20.300		11.400	11.700	10.900
TREATED .	·	73.600	25.000	74.300	75.500	72.000	49.500	72,700	26.200	72.700	73.300		29.300	31.100	29.500	29.200	27.300	52.600	27.700	29.200	000.00	28.500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOL	1	0.600	11.700	12.300	11.500	10.500	21.300	11,400	11.800	11.700	1.10
SAW	CHEMISTRY (LABORATORY)	84.900	87.200	86.600	86.600	84.500	95.300	82.100	82.600	83.800	84.100	^	29.300	30.700	29.000	26.900	26.800	52.800	27.200	29.000	000, 90	27.250	^	108	^	8.100	000.6	10.300	11.200	8.200	21.400	10.300	10.200	8.900	9.300
RAW	ALKALINITY (MG/L	NAU 1991				1991 NOV			1002 4116		1992 DEC	CALCIUM (MG/L	1991 JAN	_	_		1991 NOV		-	1992 JUN	-	1992 DEC	CYANIDE (MG/L	16 SAMPLES	CHLORIDE (MG/L	1991 JAN					1992 FEB				1992 DEC

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,000 <1 4,000 1,000 <1 1,000 <1 500 <1 3,000 1,500		232 234 238 239 237 237 237 237 230 1.100 1.300 1.100 1.100
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 5 (A3)	1,000 <1 3,500 <1 2,000 <1 5,000 <1 2,000 <1 1,500	GUIDELINE = 400 (F2)	
DIST. SYSTEM ROBERT ST STANDING	ĕ	6.500 5.000 2.500 1.500 2.500 8.500	3.000 3.000 1.000 10.000	23.4 23.6 23.8 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7
DIST. SYSTEM DI ROBERT ST RC FREE FLOW ST	DET'N LIMIT = 0.50	2.500 5.500 2.5000 <1 3.500 1.500 8.500	3.500 3.000 4.000 6.000 DET'N LIMIT = 1.0	237 238 238 238 236 236 230 240 240 240 240 240 240 240 240 240 24
TREATMENT PLANT TREATED	30RATORY)	801 801 500 <7 500 <7 500 <7 500 <4 600 4000	3.000 5.000 5.000 <1	232 235 237 237 237 238 238 240 240 240 240 240 240 1.000 1.000 1.000 1.100 1.100 1.100 1.100 1.100
TREATMENT PLANT	CHEMISTRY (LABORATORY)	801 1,000 <7 1,000 <7 500 <7 500 <7 15,500 <7 15,500 <7 6,000	2.000 .500 <t .500 <t< td=""><td>225 238 238 238 228 222 322 328 222 222 223 223</td></t<></t 	225 238 238 238 228 222 322 328 222 222 223 223
	COLOUR (HZU		1992 AUG 1992 AUG 1992 DEC 1992 DEC CONDUCTIVITY (UMHO/CM	1991 JAN 1991 HAR 1991 HAR 1991 HAR 1991 SEP 1992 SEB 1992 AUG 1992 AUG 1992 OCC 1992 OCC 1991 JAN 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1992 SEB 1992 SEB 1992 AUG 1992 OCC 1992 OCC 1992 OCC

DIST. SYSTEM	THOMAS AVE
DIST. SYSTEM	THOMAS AVE
DIST. SYSTEM	ROBERT ST
DIST. SYSTEM	ROBERT ST
TREATMENT PLANT	
TREATMENT PLANT	RAW

THOMAS AVE STANDING		096.	.820	.880	1.000	.980	1.060		.00	20.					(4)	104.000	117.400	107.100	105,100	101.300	106.800		100.200						1.258	1.581	558	102	135.	1,56.7	4.154		.968 NAF		•	•	
THOMAS AVE FREE FLOW	GUIDELINE = 1.5 (A1)	096.	.820	.840	1.060	1.040	1,120	1	920	. 750	•				GUIDELINE = 80-100 (A4)	104.000	113.300	105.800	105.200	101,700	.106,000		100.200				•	 GUIDELINE = N/A	966	1.095	1.355	808	2 888	200.7	5.181		.105 NAF	•			
ROBERT ST STANDING		076.	.820	.920	1.040	096.	1,120	026	:	. 076	000	1.040	1.080	1.020	 	107.000	115.100	103.900	104.200	101,900	105,000	165.000		106 000	104 110	000	101.890	3	2.625	2.641	005	033	2.25	2,52	3.697	5.175	• !	209.	2.070	.356	.584
ROBERT ST FREE FLOW	DET'N LIMIT = 0.01	096*	.820	.920	1.160	1,020.	1.160	1.040		• 000		1.080	1.200	1,000	DET'N LIMIT = 0.5	102.000	111.700	105.700	105,100	98.400	106.000	163.000		10,6 000	104 280	105 000	101.930	DET'N LIMIT = N/A	1.291	1.743	1.092	846	750.7	104.4	4.554	1.5/6	•!	.167	1.789	2.161	1.295
TREATED	(BORATORY)	.980	. 800	980	1.100	1,140	1.240	1, 120	090		0.040	1.100	1.320	1.080		103.900	110.500	105.900	103,400	100.800	98.200	170.000	100,000	105 000	100 520	10, 000	102.430		3.423	.105	1.481	272	1 882	3,2,1	27.	1,183	749.	1.056	.712	3.244	127
KAW	CHEMISTRY (LABORATORY)	.080	.080	. 080	.080	090.	080	180	080		071.	090	.080	.080	^	103.900	108.600	105.000	102,400	97.700	97.500	174,000	98.100	105 000	00 030	102 000	98.780	S)	1.782	916	150	712 7	4 168	2 2	-	.134 RID	1.154	2.937	.890	.224	2.946
	FLUORIDE CMG/L	1991 JAN	_	-	-	1991 SEP				•	-	_	_	_	HARDNESS CMG/L	1991 JAN	_	_									1992 DEC	IONCAL (DMNSLESS	1991 JAN		1991 MAY					1992 FEB					

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

THOMAS AVE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 950 . 1.100	1.050	.920	.890	.800	,00	034.	•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 048	.084	.005	109	.027	-,102		000				. 1		. 7.200	8.350	7.550	7,700	8.010	7.600		7.490			٠	٠
THOMAS AVE THE FREE FLOW ST	GUIDELINE = 10 (F2)	.950	1.020	.950	.510	.650	• 000	. 750	•			GUIDELINE = N/A	067	*00*	012	125	002	0.00		//0					GUIDELINE = 30.0 (F2)	7.200	8.150	7.750	7.650	8.050	7.600		7.510		٠		
NOBERT ST STANDING	GUID	1.200	1.060	1,120	.950	.950	2.730	1 070	090	. 920	576	GUID	011	.031	.023	019	.022	062	253	- 1	.213	.114	195		GUIO	7.500	8.150	7.750	7.500	7.990	7.500	099.6		7.850	7.530	7.560	7.550
ROBERT ST FREE FLOW	DET'N LIMIT = 0.01	.950	1.030	.890	.880	006.	7.690	000	270	096	.931	DET'N LIMIT = N/A	126	710.	090*-	181	013	-, 185	635	• !	.158	.178	011		DET'N LIMIT = 0,1	7.100	7.850	7.600	7.700	8,000	7.600	9.300	•	7.850	7.640	7.490	7.620
TREATED	0 0 0 1 0	.930	1.040	096.	.950	.930	026.2	030	276	. 890	.933	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	129	158	139	-,188	041	058	307	751.	.125	098	722°-	**********		7.450	7.950	7.850	7.400	7.950	7.300	0.420	7.380	7.840	7.490	7.570	7.590
RAW	CHEMISTRY (LABORATORY)	088.	1.030	1.090	056	096.	050	080	282	006	276.	(OMNSLESS)	.216	.308	.202	.267	.246	980.	.472 R10	202	.393	.312	118	07.	^	7.500	7.750	7.900	7.350	7.850	7.400	10.300	7.330	7.940	7.510	7.540	7.480
à	POTASSIUM (MG/L	1991 JAN 1991 MAR			1991 SEP		1992 FEB					LANGELIERS INDEX (OMNSLESS		1991 MAR		1991 JUL	1991 SEP						1992 DCT		MAGNESIUM (MG/L	1991 JAN	1991 MAR		1991 JUL			1992 FEB			1992 AUG	1992 OCT	1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

		•	F 10 - 1	
DIST. SYSTEM THOMAS AVE STANDING	1	4.600 6.400 6.600 5.800	5.000	BDL 0108 0100 0
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 200 (A4)	6.500	5.200	CUIDELINE = 0.05 (F2) COUNTY
DIST. SYSTEM ROBERT ST STANDING		6.500 6.700 5.900 6.100	5.900 8.820 6.400 5.800 5.800 5.590	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LÍMIT = 0.20	5.200 6.200 5.900 6.000	5.200 7.660 6.170 6.560 5.700 5.580	PET'N LIMIT = 0.002 BDL
TREATMENT PLANT TREATED		5.600 6.000 6.600 5.900 6.100	5.300 7.760 6.330 6.570 6.150 5.650	0.002 47 0.002 47 0.003 47 0.004 47 0.005 47 0.005 47 0.006 47 0.006 47 0.007 47 0.0
TREATMENT PLANT	CHEMISTRY (LABORATORY)	5.400 5.800 5.800 5.100	4.900 7.660 6.690 6.350 5.590 5.470	(MG/L) (MG/L
	SODIUM (MG/L	1991 JAN 1991 MAR 1991 JUL 1991 SEP	1991 NOV 1992 FEB 1992 APR 1992 JUN 1992 OCT 1992 OCT	AMMONIUM TOTAL (MG/L 1991 JAN 1991 JAN 1991 JUL 1991 JUL 1992 ARR 1992 ARR 1992 DCC 1992 DCC 1992 DCC 1991 JAN 1991 JAN 1991 JAN 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 JUL 1991 ARR 1991 MAY 1991 ARR 1991 ARR 1992 ARR 1992 ARR 1992 OCT

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING	0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	.335	.395	.335	.265	.300	.380					;	011.	01.	021.	110	100	•	.120	. •				A4)	8.020	8.080	8.050	7.960	8.120	7.960		8.050				•
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 10.0 (A1)	.340	.390	.320	. 260	.300	.380	•			GUIDELINE = N/A		1> 090.	011.	0.01	8 = =	110	•	. 120					GUIDELINE = 6.5-8.5 (A4)	8.000	8.070	8.050	7.940	8.090	8.000		8.030				
DIST. SYSTEM ROBERT ST STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.350	.395	.330	.260	. 500	,	.425	.340	.320	מחוט	6	300	067.	180	300	.230	.580		.240	.120	.200	.140)IN9	8.050	8.040	8.100	8.050	8.110	8.010	7.720		8.260	8.180	7.900	8.010
DIST. SYSTEM ROBERT ST FREE FLOW	0ET'N LIMIT = 0.005	.340	.380	.330	.255	2.695		.430	.345	.330	DET'N LIMIT = 0.02		011.	12 021	120	100	.100	.360		.130	.100	T> 090.	.100	DET'N LIMIT = N/A	7.960	8.040	8.000	7.890	8.100	7.890	7.410		8.210	8.240	8.050	7.940
TREATMENT PLANT TREATED		.350	.395	.345	592.	050.0	007.	.455	.375	.320	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,000	1,080		1> 060.		077°	.120	.120	. 100	.070 <t< td=""><td>.080 ×T</td><td>0</td><td>7.950</td><td>7.880</td><td>7.930</td><td>7.890</td><td>8.060</td><td>8.060</td><td>7.730</td><td>8.240</td><td>8.190</td><td>7.990</td><td>8.060</td><td>7.760</td></t<>	.080 ×T	0	7.950	7.880	7.930	7.890	8.060	8.060	7.730	8.240	8.190	7.990	8.060	7.760
TREATMENT PLANT	CHEMISTRY (LABORATORY) (MG/L)	.355	.380	.325	. 260	0.55.0	.395	577	.375	.315	ELD (MG/L)	000	140	180	.220	. 200	. 180	1.180	.180	.240	190	.170	. 160		8.230	8.280	8.210	8.280	8.300	8.140	8.220	8.330	8.390	8.570	8.150	8.170
	CHE NITRATE (TOTAL) (MG/L	1991 JAN 1991 MAR			1991 SEP	1007 FFR				1992 DEC	NITROGEN TOT KJELD (MG/L	1001				1991 SEP							1992 DEC	PH (OMNSLESS)				1991 JUL				1992 APR		1992 AUG	1992 001	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

				•
DIST, SYSTEM THOMAS AVE STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			151.000 CR0 178.000 CR0 155.000 CR0 155.000 CR0 150.000 CR0 151.000 CR0
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	· · · · · · · · · · · · · · · · · · ·	GUIDELINE = 0.40 (F2)	CRO (43) CRO 153.000 CRO CRO 168.000 CRO CRO 154.000 CRO CRO 154.000 CRO CRO 151.000 CRO CRO 151.000 CRO CRO 202.000 CRO CRO 202.000 CRO CRO CRO
DIST. SYSTEM ROBERT ST STANDING				6011 152.000 CR0 173.000 CR0 153.000 CR0 154.000 CR0 150.000 CR0 150.000 CR0 160.000 CR0 154.000 CR0 154.000 CR0
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.0005		DET'N LIMIT = 0.002	154.00 CR0 154.00 CR0 153.000 CR0 153.000 CR0 154.000 CR0 155.000 CR0 150.000 CR0 156.000 CR0 156.000 CR0 156.000 CR0 156.000 CR0 156.000 CR0
TREATED TREATED		000 000 000 000 000 000 000 000 000 00	000 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	151.000 CR0 166.000 CR0 154.000 CR0 152.000 CR0 152.000 CR0 149.000 CR0 272.000 CR0 155.000 CR0 155.000 CR0 155.000 CR0 155.000 CR0
TREATMENT PLANT	CHEMISTRY (LABORATORY) REACT (MG/L)	000 000 000 000 000 000 000 000 000 00	AL (MG/L)	146,000 CR0 150,000 CR0 150,000 CR0 148,000 CR0 146,000 CR0 146,000 CR0 253,000 CR0 155,000 CR0 155,000 CR0 148,000 CR0 148,000 CR0 148,000 CR0 148,000 CR0
	CHEMISTR PHOSPHORUS FIL REACT (MG/L		1992 DEC 1991 JAN 1991 JAN 1991 JAN 1991 JUL 1991 JUL 1991 JUL 1992 FEB 1992 APR 1992 ADU 1992 ADU 1992 OCT	RESIDUE FILTRATE (MG/L 1991 JAN 146 1991 MAY 148 1991 JUL 148 1991 SEP 146 1992 FEB 253 1992 APR 148 1992 AUG 148 1992 OCT 144

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

DIST. SYSTEM THOMAS AVE STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.230	28.780	24,780	24,700	24.820	24.110		23,330						560	. 710	760	390	.380	.720		.430	!			
JIST. SYSTEM · D THOMAS AVE T FREE FLOW S	GUIDELINE = 500 (A3)	23.130	31.640	24.760	24.240	25.650	24.220		23.350					GUIDELINE = 1.0 (A1)	.520	.610	.420	.450	.290	.620		.320				
DIST. SYSTEM D ROBERT ST T STANDING F	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.390	27.110	24.590	24.240	25.130	23,860	70.150	,	24.060	21.930 ·	30,370	23.130	GUIDEL	1.700 RRV	096.	.840	.850	.520	.880	1,160 RRV		.830	.720	1.670 RRV	3.400 RRV
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.20	23.420	29.830	24.180	24.640	24.920	24.140	75.050	•	24,140	21.520	22.570	23.150	DET'N LIMIT = 0.05	.560	006.	097.	0.470	.500	.420	.550		097.	.710	.950	1.120 RRV
TREATMENT PLANT TREATED		23.900	27.290	25.070	24.940	24.980	25.320	77.880	23.540	24.580	21.850	23,910	24.070	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.300	.130	.590	.240	.330	.330	.340	.310	.370	. 980	.250	. 260
TREATMENT PLANT	CHEMISTRY (LABORATORY)	16.540	16.640	16.850	17.170	16.970	17.550	34.570	16.390	16.680	16.240	16.830	16.480	^	3.100	3.800	3.300	7.000	4.200	1.980	200.000	7.500	6.200	5.400	5.100	2.900
	SULPHATE (MG/L		1991 MAR	1991 MAY							1992 AUG	1992 OCT	1992 DEC	TURBIOITY (FTU	1991 JAN	1991 MAR		1991 JUL				1992 APR				_

DIST. SYSTEM THOMAS AVE STANDING	9 1 1 1 1 1 1 1 1 0 0 0 0 0	80 80 64 90 90 90 90 90 90 90 90 90 90 90 90 90	14, 000 23, 000 26, 000 54, 000 68, 000 17, 000	.300 <1 .801 .410 <1 .540 <1 .410 <1
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	108	GUIDELINE = 100 (A4) 15.000 17.000 58.000 77.000 63.000 17.000	CUIDELINE = 25 (A1) ST .240 <1 BDL BDL T .520 <1 T .520 <1 T .530 <1 T .530 <1 T .530 <1 T .530 <1 T .540 <1 T .540 <1
DIST. SYSTEM ROBERT ST STANDING		108 108 108 108 108 108 108 108 108 108	22.000 30.000 80.000 86.000 35.000 75.000 110.000 65.000	7.23 7.23 7.23 7.23 7.23 7.23 7.23 7.23
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	108 108 108 108 108 108 108 108 108 108	18.000 19.000 19.000 79.000 79.000 84.000 95.000 110.000 64.000	
TREATMENT PLANT TREATED		801 801 140 <1 801 801 801 801 801 801 801	22.000 22.000 22.000 38.000 38.000 72.000 72.000 79.000 70.000	3.00 cf. 10.00 c
TREATMENT PLANT RAW	METALS	108 108 108 108 108 108 108 108 108	28.000 53.000 72.000 72.000 72.000 72.000 57.000 57.000 53.000	.650 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <† .850 <
	SILVER (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 APR 1992 APR 1992 AUG 1992 OCT 1992 OCT	ALUMINUM (UG/L 1991 JAN 1991 JAN 1991 JUL 1991 SEP 1992 FEB 1992 APR 1992 AU 1992 AU 1992 OCT	ARSENIC (UG/L 1991 JAN 1991 MAY 1991 MAY 1991 MAY 1991 SEP 1992 APR 1992 APR 1992 APR 1992 APR 1992 OCT

TABLE 4 ORINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING	3 ? ? ?	13.000 16.000 16.000 18.000 13.000 14.000	16.000 <1 19.000 <1 16.000 <1 18.000 <1 14.000 <1 13.000 <1	80L 80L 80L 80L 130 < T
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 1000 (A2)	13.000 15.000 15.000 15.000 14.000 13.000	GUIDELINE = 5000 (A1) 16.000 <t 13.000="" 15.000="" 16.000="" 18.000="" <t="" <t<="" td=""><td>GUIDELINE = 6800 (04) 801 801 801 801 801 801 801 80</td></t>	GUIDELINE = 6800 (04) 801 801 801 801 801 801 801 80
DIST. SYSTEM ROBERT ST STANDING	9 6 7 6 1 8 9 9	13.000 16.000 15.000 13.000 17.000 17.000 16.000 16.000	35,000 23,000 34,000 37,000 13,000 15,000 27,000 28,000 28,000 29,000	0.087. 0.087. 10.08 10.08 10.08 10.08 10.08 10.08
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	13.000 15.000 15.000 13.000 16.000 27.000 17.000 15.000	16.000 <1 18.000 <1 18.000 <1 19.000 <1 14.000 <1 25.000 <1 25.000 <1 28.000 <1 16.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1 17.000 <1	0.05 = 11M11 N 1130 80L 80L 80L 80L 80L 80L 80L 80
TREATMENT PLANT TREATED		14,000 15,000 15,000 16,000 18,000 13,000 17,000 17,000 16,000	17.000 <1 18.000 <1 13.000 <1 13.000 <1 15.000 <1 12.000 <1 12.000 <1 13.000 <1 15.000	108 108 108 108 108 108 108 108
TREATMENT PLANT	METALS)	14.000 15.000 14.000 14.000 17.000 17.000 16.000 15.000 15.000	15.000 <1 14.000 <1 13.000 <1 13.000 <1 15.000 <1 10.000 <1 11.000 <1 17.000	, , , , , , , , , , , , , , , , , , ,
	BARIUM (UG/L	1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 SEP 1992 APR 1992 APR 1992 AUG 1992 OCT	1991 JAN 1991 MAR 1991 MAR 1991 MAR 1991 SEP 1991 SEP 1992 FEB 1992 APR 1992 APR 1992 OCT	BERYLLIUM (UG/L 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 SEP 1992 EB 1992 APR 1992 ADR 1992 ADR 1992 OCT

TABLE 4
DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 WALLACEBURG WIP

														,																					
DIST. SYSTEM THOMAS AVE STANDING		80r	80F	NOL BDI	80		80L		• .			2,000	801	T> 090.	.140 <t< th=""><th>.080.</th><th>1> 060.</th><th>.040 <t< th=""><th></th><th></th><th></th><th>•</th><th></th><th>2.900 <1</th><th>T> 069°</th><th>T> 095.</th><th>1.500 < T</th><th>T> 049.</th><th>. 570 <1</th><th>- ;</th><th>BDL</th><th></th><th></th><th></th><th></th></t<></th></t<>	.080.	1> 060.	.040 <t< th=""><th></th><th></th><th></th><th>•</th><th></th><th>2.900 <1</th><th>T> 069°</th><th>T> 095.</th><th>1.500 < T</th><th>T> 049.</th><th>. 570 <1</th><th>- ;</th><th>BDL</th><th></th><th></th><th></th><th></th></t<>				•		2.900 <1	T> 069°	T> 095.	1.500 < T	T> 049.	. 570 <1	- ;	BDL				
DIST. SYSTEM DITHOMAS AVE TREE FLOW	GUIDELINE = 5.0 (A1)	BDL 80L	BDL	BDC 100			801		•		GUIDELINE = N/A	2.000	B0L	T> 070.	.080 ×T	.090 	וז חכוי	. 080 <t< td=""><td></td><td></td><td></td><td>•</td><td>GUIDELINE = 50.0 (A1)</td><td>3,100 <t< td=""><td>1.000 <t< td=""><td>T> 047.</td><td>1.600 <t< td=""><td>1.800 <⊤</td><td>T> 049.</td><td>- 1</td><td>80F</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<></td></t<>				•	GUIDELINE = 50.0 (A1)	3,100 <t< td=""><td>1.000 <t< td=""><td>T> 047.</td><td>1.600 <t< td=""><td>1.800 <⊤</td><td>T> 049.</td><td>- 1</td><td>80F</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	1.000 <t< td=""><td>T> 047.</td><td>1.600 <t< td=""><td>1.800 <⊤</td><td>T> 049.</td><td>- 1</td><td>80F</td><td></td><td></td><td></td><td></td></t<></td></t<>	T> 047.	1.600 <t< td=""><td>1.800 <⊤</td><td>T> 049.</td><td>- 1</td><td>80F</td><td></td><td></td><td></td><td></td></t<>	1.800 <⊤	T> 049.	- 1	80F				
DIST. SYSTEM ROBERT ST STANDING	GUID	. 210 <t< td=""><td>BOL</td><td>200.</td><td>.080 <t< td=""><td>.320 <t< td=""><td>• 4</td><td>200</td><td>300</td><td>.250 <t< td=""><td>0109</td><td>1.900</td><td>108</td><td>T> 080.</td><td>. 110 <t< td=""><td>T> 080</td><td>1 060</td><td>1> 0/c*</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BOL	200.	.080 <t< td=""><td>.320 <t< td=""><td>• 4</td><td>200</td><td>300</td><td>.250 <t< td=""><td>0109</td><td>1.900</td><td>108</td><td>T> 080.</td><td>. 110 <t< td=""><td>T> 080</td><td>1 060</td><td>1> 0/c*</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.320 <t< td=""><td>• 4</td><td>200</td><td>300</td><td>.250 <t< td=""><td>0109</td><td>1.900</td><td>108</td><td>T> 080.</td><td>. 110 <t< td=""><td>T> 080</td><td>1 060</td><td>1> 0/c*</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	• 4	200	300	.250 <t< td=""><td>0109</td><td>1.900</td><td>108</td><td>T> 080.</td><td>. 110 <t< td=""><td>T> 080</td><td>1 060</td><td>1> 0/c*</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	0109	1.900	108	T> 080.	. 110 <t< td=""><td>T> 080</td><td>1 060</td><td>1> 0/c*</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 080	1 060	1> 0/c*	. 150 <t< td=""><td>. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td>.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.220 <t< td=""><td>. 2.700</td><td>GUID</td><td>3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 2.700	GUID	3.000 <t< td=""><td>1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	1.600 <t< td=""><td>. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<></td></t<>	. 890 <t< td=""><td>1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<></td></t<>	1.700 <t< td=""><td>108</td><td>.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<></td></t<>	108	.540 <t< td=""><td>80L</td><td>• 002</td><td>7 008.</td><td>7 007 6</td><td>5 095.</td><td></td></t<>	80L	• 002	7 008.	7 007 6	5 095.	
DIST, SYSTEM . D ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	80L	100	108	80F	BDL		108	80L 070 <1	108	DET'N LIMIT = 0.02	1.900	BDL		T> 090.	T> 080°	13 080.	1> 0AC*	.100 <t< td=""><td>. 120 <t< td=""><td>1> 001.</td><td>2.800</td><td>DET'N LIMIT = 0.50</td><td>3.200 <t< td=""><td>1,600 <t< td=""><td>T> 086.</td><td>1,700 <1</td><td>80F</td><td>.540 <t< td=""><td>90</td><td>1, 017</td><td>1, 002</td><td>700.</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	. 120 <t< td=""><td>1> 001.</td><td>2.800</td><td>DET'N LIMIT = 0.50</td><td>3.200 <t< td=""><td>1,600 <t< td=""><td>T> 086.</td><td>1,700 <1</td><td>80F</td><td>.540 <t< td=""><td>90</td><td>1, 017</td><td>1, 002</td><td>700.</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	1> 001.	2.800	DET'N LIMIT = 0.50	3.200 <t< td=""><td>1,600 <t< td=""><td>T> 086.</td><td>1,700 <1</td><td>80F</td><td>.540 <t< td=""><td>90</td><td>1, 017</td><td>1, 002</td><td>700.</td><td></td><td></td></t<></td></t<></td></t<>	1,600 <t< td=""><td>T> 086.</td><td>1,700 <1</td><td>80F</td><td>.540 <t< td=""><td>90</td><td>1, 017</td><td>1, 002</td><td>700.</td><td></td><td></td></t<></td></t<>	T> 086.	1,700 <1	80F	.540 <t< td=""><td>90</td><td>1, 017</td><td>1, 002</td><td>700.</td><td></td><td></td></t<>	90	1, 017	1, 002	700.		
TREATMENT PLANT TREATED		80L 80L	108 100 1	100 E	108	BDL	801	- BO	10 G	T> 060.	; () () () () () () () ()	2.200	BDL			170 <1	1> 080.	1> 064.		200 ×		1> 071.		3.400 <t< td=""><td>1> 077.</td><td>B0L</td><td>1,600 <t< td=""><td>.540 <t< td=""><td>.550 <t< td=""><td>108</td><td>BDL</td><td>1, 000, 0</td><td>1 2001 2</td><td>7.002.</td><td></td></t<></td></t<></td></t<></td></t<>	1> 077.	B0L	1,600 <t< td=""><td>.540 <t< td=""><td>.550 <t< td=""><td>108</td><td>BDL</td><td>1, 000, 0</td><td>1 2001 2</td><td>7.002.</td><td></td></t<></td></t<></td></t<>	.540 <t< td=""><td>.550 <t< td=""><td>108</td><td>BDL</td><td>1, 000, 0</td><td>1 2001 2</td><td>7.002.</td><td></td></t<></td></t<>	.550 <t< td=""><td>108</td><td>BDL</td><td>1, 000, 0</td><td>1 2001 2</td><td>7.002.</td><td></td></t<>	108	BDL	1, 000, 0	1 2001 2	7.002.	
TREATMENT PLANT RAW	METALS '	108	BDL	108	80L	T> 090.	8DT	108	1 1 1 1 1 1 1	.080 <t< td=""><td>^</td><td>2,000</td><td>.030 <t< td=""><td>.210 <t< td=""><td></td><td>190 <1</td><td>)> 051.</td><td>1.800</td><td></td><td></td><td></td><td>.280 <t< td=""><td>(</td><td>3,500 <t< td=""><td>1,600 <7</td><td>80F</td><td>1> 045.</td><td>.540 <1</td><td>.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	^	2,000	.030 <t< td=""><td>.210 <t< td=""><td></td><td>190 <1</td><td>)> 051.</td><td>1.800</td><td></td><td></td><td></td><td>.280 <t< td=""><td>(</td><td>3,500 <t< td=""><td>1,600 <7</td><td>80F</td><td>1> 045.</td><td>.540 <1</td><td>.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td></td><td>190 <1</td><td>)> 051.</td><td>1.800</td><td></td><td></td><td></td><td>.280 <t< td=""><td>(</td><td>3,500 <t< td=""><td>1,600 <7</td><td>80F</td><td>1> 045.</td><td>.540 <1</td><td>.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>		190 <1)> 051.	1.800				.280 <t< td=""><td>(</td><td>3,500 <t< td=""><td>1,600 <7</td><td>80F</td><td>1> 045.</td><td>.540 <1</td><td>.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<></td></t<></td></t<>	(3,500 <t< td=""><td>1,600 <7</td><td>80F</td><td>1> 045.</td><td>.540 <1</td><td>.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<></td></t<>	1,600 <7	80F	1> 045.	.540 <1	.510 <t< td=""><td>2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<></td></t<>	2.800 <t< td=""><td>. 108 108</td><td>1,000.</td><td>1 007.2 T</td><td>1.500 <1</td><td></td></t<>	. 108 108	1,000.	1 007.2 T	1.500 <1	
	CADMIUM (UG/L	1991 JAN 1991 MAR		1991 JUL	1991 NOV	1992 FEB			1992 AUG	1992 DEC	COBALT (UG/L	1991 JAN			1991 JUL			1992 FEB				1992 DEC	CHROMIUM (UG/L	1991 JAN					1991 NOV	1992 FEB			1992 AUG	1992 DEC	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

				·
DIST. SYSTEM THOMAS AVE STANDING	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14,000 45,000 9,200 17,000 20,000 8,300 27,000	3	\$50.000 <1 \$51.000 <1 \$51.000 <1 \$16.000 <1 \$16.000 <1 \$120.000 <1 \$22.000 <1 \$3.500 \$3.500 \$3.600 \$5.200 \$5.200 \$5.200 \$6.000 \$6.000
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 1000 (A3)	4,800 <1 38,000 <1 38,000 8,000 8,300 5,300 <7 6,800 <7	GUIDELINE = 300 (A3)	54,000 <1 180,000 <1 180,000 <1 16,000 <7 16,000 <7 50,000 <7 50,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,000 <7 60,0
DIST. SYSTEM ROBERT ST STANDING	. <u>.</u>	94,000 250.000 98.000 45.000 45.000 49.000 170.000 170.000	9	220 000 310.000 160.000 98.000 91.000 170.000 170.000 20.000 23.000 220.000 23.000 210.000 23.000 210.000 23.000 210.000 23.000 23.000
DIST. SYSTEM D ROBERT ST RI FREE FLOW S	DET'N LIMIT = 0.50	4,300 <1 3,700 <1 3,200 <1 3,300 <1 7,000 4,300 <1 7,700 7,700 <1 7,700 <1 7,700 <1	DET'N LIMIT = 6.00	120,000 75,000 150,000 100,000 75,000 75,000 180,000 160,000 210,000 210,000 210,000 7,600 7,600 12,000 7,600 12,000 7,600 12,000 17,00
TREATMENT PLANT TREATED		1,900 ct 1,600 ct 1,700 ct 1,700 ct 1,700 ct 1,600 ct 2,000 ct 1,600 ct 1,600 ct 1,600 ct		12,000 <1 10,000 <1 10,000 <1 45,000 <1 45,000 <1 12,000 <1 12,000 <1 11,000 <1 11,000 <1 12,000 <1 12,000 <1 12,000 <1 13,00 <1 12,000 <1 13,00 <1 14,000 <1 15,000 <1 16,000 <1 17,000 <1 18,000 <1 18
TREATMENT PLANT	METALS)	1.800 <1 1.900 <1 2.500 <1 2.400 <1 2.200 <1 6.200 <1 1.600 <1 1.500 <1 2.200 <1 3.200 <1 3.200 <1	-	37.000 <t (1="" 87.000="" 87.000<="" td=""></t>
	COPPER (UG/L	1991 JAN 1991 MAR 1991 JUL 1991 JUL 1991 SEP 1992 FEB 1992 APR 1992 OCT 1992 OCT	IRON (UG/L	1991 JAN 1991 HAR 1991 JUL 1991 SEP 1991 SEP 1992 FEB 1992 APR 1992 OCT 1992 OCT 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JUL 1991 SEP 1992 APR 1992 JUN 1992 APR 1992 JUN 1992 JUN 199

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

DIST. SYSTEM THOMAS AVE STANDING			.430 <t< th=""><th>.620</th><th>1> 067</th><th>205</th><th>1, 00%</th><th>1 065</th><th>13 007.</th><th></th><th>> 067.</th><th>•.</th><th></th><th></th><th></th><th>1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>2 000</th><th>17 017</th><th>014.</th><th>. 690 <t< th=""><th>2 100</th><th> </th><th><u>.</u></th><th>2 000</th><th></th><th></th><th></th><th>• •</th><th></th><th>001</th><th>. 200</th><th>3.900</th><th>> USI.</th><th>> 0/c.</th><th>> 074.</th><th>T> 052.</th><th></th><th>1> 087</th><th>•</th><th></th><th></th><th></th></t<></th></t<>	.620	1> 067	205	1, 00%	1 065	13 007.		> 067.	•.				1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 000	17 017	014.	. 690 <t< th=""><th>2 100</th><th> </th><th><u>.</u></th><th>2 000</th><th></th><th></th><th></th><th>• •</th><th></th><th>001</th><th>. 200</th><th>3.900</th><th>> USI.</th><th>> 0/c.</th><th>> 074.</th><th>T> 052.</th><th></th><th>1> 087</th><th>•</th><th></th><th></th><th></th></t<>	2 100	 	<u>.</u>	2 000				• •		001	. 200	3.900	> USI.	> 0/c.	> 074.	T> 052.		1> 087	•			
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A		.520	.680	029	520	T> 047	7 004.	1× 0.4*		096.	•				GUIDELINE = 350 (D3)	A 800	So.	500 <1	320 <1	870 <1	; S. E.		1.300 <t< td=""><td></td><td>•</td><td></td><td></td><td>GUIDELINE = 10 (A1)</td><td></td><td>7 00:</td><td>2000</td><td>7,000</td><td>7 00.</td><td>1> 020</td><td>l> 0€7.</td><td></td><td>. non.</td><td></td><td></td><td></td><td></td></t<>		•			GUIDELINE = 10 (A1)		7 00:	2000	7,000	7 00.	1> 020	l> 0€7.		. non.				
DIST. SYSTEM ROBERT ST STANDING	מונס		1> 044°	009	.520	.550	1> 027			000.1	. 000	> 022.	280	1,100		פטונ	8.800	1.200 <1		1.500 <t< td=""><td>1.300 <t< td=""><td>2.600</td><td>6.300</td><td></td><td>1.300 <t< td=""><td>1> 096.</td><td>3.800</td><td>8.600</td><td>arno</td><td>200</td><td>000.7</td><td>2 200</td><td>2,000</td><td>2004.4</td><td>3.300</td><td>7.700</td><td>3.300</td><td>٠,</td><td>1,200</td><td>000.1</td><td>7,700</td><td>000.61</td></t<></td></t<></td></t<>	1.300 <t< td=""><td>2.600</td><td>6.300</td><td></td><td>1.300 <t< td=""><td>1> 096.</td><td>3.800</td><td>8.600</td><td>arno</td><td>200</td><td>000.7</td><td>2 200</td><td>2,000</td><td>2004.4</td><td>3.300</td><td>7.700</td><td>3.300</td><td>٠,</td><td>1,200</td><td>000.1</td><td>7,700</td><td>000.61</td></t<></td></t<>	2.600	6.300		1.300 <t< td=""><td>1> 096.</td><td>3.800</td><td>8.600</td><td>arno</td><td>200</td><td>000.7</td><td>2 200</td><td>2,000</td><td>2004.4</td><td>3.300</td><td>7.700</td><td>3.300</td><td>٠,</td><td>1,200</td><td>000.1</td><td>7,700</td><td>000.61</td></t<>	1> 096.	3.800	8.600	arno	200	000.7	2 200	2,000	2004.4	3.300	7.700	3.300	٠,	1,200	000.1	7,700	000.61
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	•	.580	.570	1> 049.	.530	T> 027	7, 005	007	000.1	• 000	> 007.	046.	0.00.		DET'N LIMIT = 0.20	007-9	SD I	1 dg	720 <1	.920 <₹	BDL	2,400	•	108	7> 099.	BOL	8.200	DET'N LIMIT = 0.05	. 77.07.C			7 60		1,041	1000	1. 060.	120 .7	15051		- NO.	1.5 001 •
TREATMENT PLANT. TREATED			014.	.590	.540	.540	T> 067	277		7. 08.7	1, 025	2000	000) 4C.	000	0	7.600	GB T	<u> </u>	. B0L	1,000 <7	BOL	2.100	1,500 <t< td=""><td>BDL</td><td>T> 017.</td><td>B0L</td><td>BOL</td><td></td><td>750 77</td><td>180 <1</td><td>210 <t< td=""><td></td><td>190. <1</td><td>2002</td><td>17 002</td><td></td><td>710 /7</td><td>.5 05t</td><td></td><td>160 /1</td><td></td></t<></td></t<>	BDL	T> 017.	B0L	BOL		750 77	180 <1	210 <t< td=""><td></td><td>190. <1</td><td>2002</td><td>17 002</td><td></td><td>710 /7</td><td>.5 05t</td><td></td><td>160 /1</td><td></td></t<>		190. <1	2002	17 002		710 /7	.5 05t		160 /1	
TREATMENT PLANT	METALS 3/L)			.450 <t< td=""><td>.430 <t< td=""><td>7> 084.</td><td>.430 <1</td><td>1> 067</td><td>1,00%</td><td>12 027</td><td>1, 00t.</td><td>1> 007.</td><td></td><td>1> 007</td><td></td><td>•</td><td>9.900</td><td>BDL</td><td><u>8</u></td><td>T> 054.</td><td>1,200 <7</td><td>BOL</td><td>. 008.9</td><td>1,600 <t< td=""><td>.270 <1</td><td>T> 098.</td><td>, 80L</td><td>BOL</td><td>(</td><td>T> 0CF</td><td>300 <7</td><td>570</td><td>1> 087</td><td>510</td><td>12,007</td><td>7 004.</td><td>75.095</td><td>1> 077</td><td>1> 0%</td><td>010</td><td>750 <1</td><td></td></t<></td></t<></td></t<>	.430 <t< td=""><td>7> 084.</td><td>.430 <1</td><td>1> 067</td><td>1,00%</td><td>12 027</td><td>1, 00t.</td><td>1> 007.</td><td></td><td>1> 007</td><td></td><td>•</td><td>9.900</td><td>BDL</td><td><u>8</u></td><td>T> 054.</td><td>1,200 <7</td><td>BOL</td><td>. 008.9</td><td>1,600 <t< td=""><td>.270 <1</td><td>T> 098.</td><td>, 80L</td><td>BOL</td><td>(</td><td>T> 0CF</td><td>300 <7</td><td>570</td><td>1> 087</td><td>510</td><td>12,007</td><td>7 004.</td><td>75.095</td><td>1> 077</td><td>1> 0%</td><td>010</td><td>750 <1</td><td></td></t<></td></t<>	7> 084.	.430 <1	1> 067	1,00%	12 027	1, 00t.	1> 007.		1> 007		•	9.900	BDL	<u>8</u>	T> 054.	1,200 <7	BOL	. 008.9	1,600 <t< td=""><td>.270 <1</td><td>T> 098.</td><td>, 80L</td><td>BOL</td><td>(</td><td>T> 0CF</td><td>300 <7</td><td>570</td><td>1> 087</td><td>510</td><td>12,007</td><td>7 004.</td><td>75.095</td><td>1> 077</td><td>1> 0%</td><td>010</td><td>750 <1</td><td></td></t<>	.270 <1	T> 098.	, 80L	BOL	(T> 0CF	300 <7	570	1> 087	510	12,007	7 004.	75.095	1> 077	1> 0%	010	750 <1	
,	MOLYBDENUM (UG/L			1991 MAR	_									1992 DEL		NICKEL (UG/L	1991 JAN				1991 SEP	1991 NOV					1992 OCT		LEAD (UG/L	1001							1007 APR			1992 OCT	1992 DEC	

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.620	.580	I> 064.	520	.910		.720					4.500 <t< th=""><th>1.300 <t< th=""><th>BDL</th><th>1.200 <1</th><th>901</th><th>BUL</th><th>· lua</th><th></th><th></th><th></th><th></th><th></th><th>96.000</th><th>110.000</th><th>100,000</th><th>100.000</th><th>93.000</th><th>110,000</th><th>000 20</th><th></th><th></th><th></th><th></th></t<></th></t<>	1.300 <t< th=""><th>BDL</th><th>1.200 <1</th><th>901</th><th>BUL</th><th>· lua</th><th></th><th></th><th></th><th></th><th></th><th>96.000</th><th>110.000</th><th>100,000</th><th>100.000</th><th>93.000</th><th>110,000</th><th>000 20</th><th></th><th></th><th></th><th></th></t<>	BDL	1.200 <1	901	BUL	· lua						96.000	110.000	100,000	100.000	93.000	110,000	000 20				
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 146 (04)	1> 024.	5.027	1> 0/4.	089	009		.650				GUIDELINE = 10 (A1)	4,300 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>108</td><td>BUL</td><td>· IN</td><td></td><td></td><td></td><td></td><td>GUIDELINE = N/A</td><td>96.000</td><td>110.000</td><td>110.000</td><td>97.000</td><td>100.000</td><td>110.000</td><td>08 000</td><td></td><td></td><td></td><td>٠</td></t<>	BDL	BOL	BDL	108	BUL	· IN					GUIDELINE = N/A	96.000	110.000	110.000	97.000	100.000	110.000	08 000				٠
DIST. SYSTEM ROBERT ST STANDING	GUID	.630	. 620	000	079	.650	.880	•	.550	,350 <t< td=""><td>059.</td><td></td><td>4.800 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80L</td><td>1 100 /1</td><td>001 -</td><td>. IUB</td><td>1.600 <t< td=""><td>1.800 <7</td><td>BDL</td><td>GUID</td><td>94.000</td><td>110.000</td><td>100.000</td><td>000.66</td><td>94.000</td><td>170.000</td><td>000 *0*1</td><td>130,000</td><td>110,000</td><td>100.000</td><td>100.000</td></t<></td></t<></td></t<>	059.		4.800 <t< td=""><td>BDL</td><td>BOL</td><td>BDL</td><td>80L</td><td>1 100 /1</td><td>001 -</td><td>. IUB</td><td>1.600 <t< td=""><td>1.800 <7</td><td>BDL</td><td>GUID</td><td>94.000</td><td>110.000</td><td>100.000</td><td>000.66</td><td>94.000</td><td>170.000</td><td>000 *0*1</td><td>130,000</td><td>110,000</td><td>100.000</td><td>100.000</td></t<></td></t<>	BDL	BOL	BDL	80L	1 100 /1	001 -	. IUB	1.600 <t< td=""><td>1.800 <7</td><td>BDL</td><td>GUID</td><td>94.000</td><td>110.000</td><td>100.000</td><td>000.66</td><td>94.000</td><td>170.000</td><td>000 *0*1</td><td>130,000</td><td>110,000</td><td>100.000</td><td>100.000</td></t<>	1.800 <7	BDL	GUID	94.000	110.000	100.000	000.66	94.000	170.000	000 *0*1	130,000	110,000	100.000	100.000
DIST. SYSTEM DISTRIBUTED BETTER TO THE FLOW STA	DET'N LIMIT = 0.05	079	1> 067.	029	.510	.560	.820		.510	.530	.580 -570 <1	DET'N LIMIT = 1.00	4.500 <t< td=""><td>1.100 <1</td><td>BOL</td><td>BUL</td><td>801</td><td>1 200 /1</td><td>0000</td><td>BDL</td><td>1.600 <t< td=""><td>BD1.</td><td>BDL</td><td>DET'N LIMIT = 0.10</td><td>000.96</td><td>110,000</td><td>100.000</td><td>96.000</td><td>94.000</td><td>100.000</td><td>000.03</td><td>120,000</td><td>110.000</td><td>100.000</td><td>110,000</td></t<></td></t<>	1.100 <1	BOL	BUL	801	1 200 /1	0000	BDL	1.600 <t< td=""><td>BD1.</td><td>BDL</td><td>DET'N LIMIT = 0.10</td><td>000.96</td><td>110,000</td><td>100.000</td><td>96.000</td><td>94.000</td><td>100.000</td><td>000.03</td><td>120,000</td><td>110.000</td><td>100.000</td><td>110,000</td></t<>	BD1.	BDL	DET'N LIMIT = 0.10	000.96	110,000	100.000	96.000	94.000	100.000	000.03	120,000	110.000	100.000	110,000
IREATED		.590	025.				.580	1> 074.	.360 <t< td=""><td></td><td>1> 044.</td><td></td><td>3.300 <t< td=""><td>BOL</td><td>B0L</td><td>. BD.</td><td>108</td><td>1 500 /1</td><td>1. 700 <t< td=""><td></td><td>2.400 <t< td=""><td>108</td><td>BOL</td><td></td><td>000.66</td><td>100.000</td><td>100.000</td><td>99.000</td><td>96.000</td><td>1,000</td><td>95,000</td><td>130,000</td><td>110.000</td><td>110,000</td><td>98.000</td></t<></td></t<></td></t<></td></t<>		1> 044.		3.300 <t< td=""><td>BOL</td><td>B0L</td><td>. BD.</td><td>108</td><td>1 500 /1</td><td>1. 700 <t< td=""><td></td><td>2.400 <t< td=""><td>108</td><td>BOL</td><td></td><td>000.66</td><td>100.000</td><td>100.000</td><td>99.000</td><td>96.000</td><td>1,000</td><td>95,000</td><td>130,000</td><td>110.000</td><td>110,000</td><td>98.000</td></t<></td></t<></td></t<>	BOL	B0L	. BD.	108	1 500 /1	1. 700 <t< td=""><td></td><td>2.400 <t< td=""><td>108</td><td>BOL</td><td></td><td>000.66</td><td>100.000</td><td>100.000</td><td>99.000</td><td>96.000</td><td>1,000</td><td>95,000</td><td>130,000</td><td>110.000</td><td>110,000</td><td>98.000</td></t<></td></t<>		2.400 <t< td=""><td>108</td><td>BOL</td><td></td><td>000.66</td><td>100.000</td><td>100.000</td><td>99.000</td><td>96.000</td><td>1,000</td><td>95,000</td><td>130,000</td><td>110.000</td><td>110,000</td><td>98.000</td></t<>	108	BOL		000.66	100.000	100.000	99.000	96.000	1,000	95,000	130,000	110.000	110,000	98.000
RAW	METALS)	.520	055.	12 027	.380 <t< td=""><td>.610</td><td>.250 <t< td=""><td>T> 044.</td><td>.390 <t< td=""><td>.340 <t< td=""><td>980</td><td>•</td><td>1.400 <t< td=""><td>BOL</td><td>108</td><td>BD1</td><td>108 B)I</td><td>1 500 cT</td><td>BDL .</td><td>BDL</td><td>1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.610	.250 <t< td=""><td>T> 044.</td><td>.390 <t< td=""><td>.340 <t< td=""><td>980</td><td>•</td><td>1.400 <t< td=""><td>BOL</td><td>108</td><td>BD1</td><td>108 B)I</td><td>1 500 cT</td><td>BDL .</td><td>BDL</td><td>1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<></td></t<></td></t<></td></t<></td></t<>	T> 044.	.390 <t< td=""><td>.340 <t< td=""><td>980</td><td>•</td><td>1.400 <t< td=""><td>BOL</td><td>108</td><td>BD1</td><td>108 B)I</td><td>1 500 cT</td><td>BDL .</td><td>BDL</td><td>1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<></td></t<></td></t<></td></t<>	.340 <t< td=""><td>980</td><td>•</td><td>1.400 <t< td=""><td>BOL</td><td>108</td><td>BD1</td><td>108 B)I</td><td>1 500 cT</td><td>BDL .</td><td>BDL</td><td>1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<></td></t<></td></t<>	980	•	1.400 <t< td=""><td>BOL</td><td>108</td><td>BD1</td><td>108 B)I</td><td>1 500 cT</td><td>BDL .</td><td>BDL</td><td>1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<></td></t<>	BOL	108	BD1	108 B)I	1 500 cT	BDL .	BDL	1,600 <t< td=""><td>BDL</td><td>BUL</td><td>^</td><td>000.96</td><td>100.000</td><td>100.000</td><td>98.000</td><td>000.44</td><td>150 000</td><td>000.96</td><td>120.000</td><td>110.000</td><td>110.000</td><td>95.000</td></t<>	BDL	BUL	^	000.96	100.000	100.000	98.000	000.44	150 000	000.96	120.000	110.000	110.000	95.000
- Œ	ANTIMONY (UG/L		1991 MAR						1992 JUN	1992 AUG	1992 DEC	SELENIUM (UG/L	1991 JAN		1991 MAY		1991 SEP				1992 AUG	1992 OCT		STRONTIUM (UG/L				1991 JUL		1007 FEB		1992 JUN	1992 AUG		1992 DEC

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLAGEBURG WTP

DIST. SYSTEM

DIST. SYSTEM

TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM DIST. SYSTEM

٠.				•										<u>.</u>																									
STANDING		8.400	∴ 4,800 <t< td=""><td>1.800 <7</td><td>T> 068.</td><td>1.500 <t< td=""><td>1,900 <⊤</td><td></td><td> 3,300 <t< td=""><td></td><td></td><td></td><td>•</td><td>, , , , , , , , , , , , , , , , , , ,</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td></td><td>B0L</td><td></td><td></td><td></td><td></td><td></td><td>T> 070.</td><td>.100 <t< td=""><td>T> 090.</td><td>T> 011.</td><td>. 801</td><td>1> 070.</td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<></td></t<>	1.800 <7	T> 068.	1.500 <t< td=""><td>1,900 <⊤</td><td></td><td> 3,300 <t< td=""><td></td><td></td><td></td><td>•</td><td>, , , , , , , , , , , , , , , , , , ,</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td></td><td>B0L</td><td></td><td></td><td></td><td></td><td></td><td>T> 070.</td><td>.100 <t< td=""><td>T> 090.</td><td>T> 011.</td><td>. 801</td><td>1> 070.</td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>٠</td></t<></td></t<></td></t<>	1,900 <⊤		3,300 <t< td=""><td></td><td></td><td></td><td>•</td><td>, , , , , , , , , , , , , , , , , , ,</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td></td><td>B0L</td><td></td><td></td><td></td><td></td><td></td><td>T> 070.</td><td>.100 <t< td=""><td>T> 090.</td><td>T> 011.</td><td>. 801</td><td>1> 070.</td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>٠</td></t<></td></t<>				•	, , , , , , , , , , , , , , , , , , ,	BDL	BOL	BDL	BDL	BDL	108		B0L						T> 070.	.100 <t< td=""><td>T> 090.</td><td>T> 011.</td><td>. 801</td><td>1> 070.</td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>٠</td></t<>	T> 090.	T> 011.	. 801	1> 070.		T> 090.				٠
FREE FLOW	.INE = N/A	7.600	4.500 <t< td=""><td>1.900 <⊤</td><td>1.100 <1</td><td>1,200 <1</td><td>1,700 <t< td=""><td></td><td>3.500 <t< td=""><td></td><td></td><td></td><td>٠.</td><td>INE = 13 (D4)</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>108</td><td></td><td></td><td>•</td><td></td><td>GUIDELINE = 100 (A1)</td><td></td><td></td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>T> 090°</td><td></td><td></td><td></td><td></td></t<></td></t<></td></t<>	1.900 <⊤	1.100 <1	1,200 <1	1,700 <t< td=""><td></td><td>3.500 <t< td=""><td></td><td></td><td></td><td>٠.</td><td>INE = 13 (D4)</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>108</td><td></td><td></td><td>•</td><td></td><td>GUIDELINE = 100 (A1)</td><td></td><td></td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>T> 090°</td><td></td><td></td><td></td><td></td></t<></td></t<>		3.500 <t< td=""><td></td><td></td><td></td><td>٠.</td><td>INE = 13 (D4)</td><td>BOL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>108</td><td></td><td></td><td>•</td><td></td><td>GUIDELINE = 100 (A1)</td><td></td><td></td><td></td><td>T> 090.</td><td></td><td></td><td></td><td>T> 090°</td><td></td><td></td><td></td><td></td></t<>				٠.	INE = 13 (D4)	BOL	BDL	BOL	BOL	BOL	BDL		108			•		GUIDELINE = 100 (A1)				T> 090.				T> 090°				
SIANUING	GUIDELINE	8,100	5,000 <t< td=""><td>2.000 <t< td=""><td>1.800 <t< td=""><td>1.700 <t< td=""><td>2,100 <t< td=""><td>4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>1.800 <t< td=""><td>1.700 <t< td=""><td>2,100 <t< td=""><td>4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.800 <t< td=""><td>1.700 <t< td=""><td>2,100 <t< td=""><td>4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.700 <t< td=""><td>2,100 <t< td=""><td>4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2,100 <t< td=""><td>4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	4.100 <t< td=""><td>-</td><td>1,700 <1</td><td>4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	-	1,700 <1	4.400 <t< td=""><td>4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	4.400 <t< td=""><td>10.000</td><td>GUIDELINE</td><td>BDL</td><td>BD</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td></td><td>BDL</td><td>BOL</td><td>. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<></td></t<>	10.000	GUIDELINE	BDL	BD	BOL	BOL	BDL	BDL	BOL		BDL	BOL	. 150 <t< td=""><td>BOL</td><td>GUIDEL</td><td>BDL</td><td></td><td></td><td>. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<></td></t<>	BOL	GUIDEL	BDL			. 100 <t< td=""><td>80L</td><td>T> 090.</td><td></td><td></td><td>.070 ×T</td><td>.140 <⊺</td><td>.290 ≺⊺</td><td>. 100 <t< td=""></t<></td></t<>	80L	T> 090.			.070 ×T	.140 <⊺	.290 ≺⊺	. 100 <t< td=""></t<>
באבב יונטש	DET'N LIMIT = 0.50	7.800	4.500 <t< td=""><td>2.300 <t< td=""><td>1.000 <t< td=""><td>1.400 <t< td=""><td>2.000 <t< td=""><td>. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.300 <t< td=""><td>1.000 <t< td=""><td>1.400 <t< td=""><td>2.000 <t< td=""><td>. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.000 <t< td=""><td>1.400 <t< td=""><td>2.000 <t< td=""><td>. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.400 <t< td=""><td>2.000 <t< td=""><td>. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 4.200 <t< td=""><td></td><td>1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		1.400 <t< td=""><td>4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	4.900 <t< td=""><td>1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,500 <t< td=""><td>11.000</td><td>DET'N LIMIT = 0.05</td><td>BOL</td><td>BDL</td><td>80F</td><td>108</td><td>BDL</td><td>B0L</td><td>BOL</td><td></td><td>BDL</td><td>BDL</td><td>108</td><td>80F</td><td>DET'N LIMIT = 0.05</td><td>. 108</td><td></td><td></td><td>.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<></td></t<>	11.000	DET'N LIMIT = 0.05	BOL	BDL	80F	108	BDL	B0L	BOL		BDL	BDL	108	80F	DET'N LIMIT = 0.05	. 108			.120 <t< td=""><td>T> 080.</td><td>T> 090.</td><td>BDL</td><td></td><td>.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	T> 080.	T> 090.	BDL		.090 <t< td=""><td>. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<></td></t<>	. 120 <t< td=""><td>. 130 <t< td=""><td></td></t<></td></t<>	. 130 <t< td=""><td></td></t<>	
		8,000	4.500 <t< td=""><td>2.000 <t< td=""><td>1,200 <1</td><td>1,700 <7</td><td>2,100 <7</td><td>4.900 <t< td=""><td>3.900 <t< td=""><td>1.600 <t< td=""><td>4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>1,200 <1</td><td>1,700 <7</td><td>2,100 <7</td><td>4.900 <t< td=""><td>3.900 <t< td=""><td>1.600 <t< td=""><td>4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1,200 <1	1,700 <7	2,100 <7	4.900 <t< td=""><td>3.900 <t< td=""><td>1.600 <t< td=""><td>4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	3.900 <t< td=""><td>1.600 <t< td=""><td>4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.600 <t< td=""><td>4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	4.800 <t< td=""><td></td><td>3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		3.100 <t< td=""><td></td><td>BDL</td><td>BDL</td><td>BDL</td><td>108</td><td>BDL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td></td><td></td><td></td><td></td><td>.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		BDL	BDL	BDL	108	BDL	BOL	BDL	BDL	BDL	BDL	BDL	BDL					.100 <t< td=""><td></td><td>T> 070.</td><td></td><td></td><td>.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>		T> 070.			.100 <t< td=""><td>. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<></td></t<>	. 150 <t< td=""><td>.110 <t< td=""><td>.120 <t< td=""></t<></td></t<></td></t<>	.110 <t< td=""><td>.120 <t< td=""></t<></td></t<>	.120 <t< td=""></t<>
	METALS	9.900	4.500 <t< td=""><td>2.600 <t< td=""><td>2.500 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>10.000</td><td>1> 007.7</td><td>2.800 <7</td><td>5.800</td><td>2.400 <7</td><td>3.300 <t< td=""><td>^</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>^</td><td></td><td>.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.600 <t< td=""><td>2.500 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>10.000</td><td>1> 007.7</td><td>2.800 <7</td><td>5.800</td><td>2.400 <7</td><td>3.300 <t< td=""><td>^</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>^</td><td></td><td>.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.500 <t< td=""><td>2.900 <1</td><td>1.800 <t< td=""><td>10.000</td><td>1> 007.7</td><td>2.800 <7</td><td>5.800</td><td>2.400 <7</td><td>3.300 <t< td=""><td>^</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>^</td><td></td><td>.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	2.900 <1	1.800 <t< td=""><td>10.000</td><td>1> 007.7</td><td>2.800 <7</td><td>5.800</td><td>2.400 <7</td><td>3.300 <t< td=""><td>^</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>^</td><td></td><td>.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	10.000	1> 007.7	2.800 <7	5.800	2.400 <7	3.300 <t< td=""><td>^</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td>B0L</td><td>BDL</td><td>^</td><td></td><td>.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	^	BDL	BOL	BOL	BOL	BOL	BDL	BDL	BOL	BOL	BDL	B0L	BDL	^		.240 <t< td=""><td>.240 <1</td><td>.250 <1</td><td>.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<></td></t<>	.240 <1	.250 <1	.200 <t< td=""><td>T> 091.</td><td>1.300</td><td>.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<></td></t<>	T> 091.	1.300	.210 <t< td=""><td>.250 <</td><td>.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<></td></t<>	.250 <	.240 <t< td=""><td>.230 <t< td=""><td>T> 01.5.</td></t<></td></t<>	.230 <t< td=""><td>T> 01.5.</td></t<>	T> 01.5.
	TITANIUM (UG/L			1991 MAY						1992 JUN				HALLIUM (UG/L						1991 NOV							RANIUM (UG/L						1991 NOV						

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

			FREE FLOW	STANDING	FREE FLOW	STANDING	
VANADIUM (UG/L	METALS)		OET'N LIMIT = 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GUIDELINE = N/A	0 1 1 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	1> 021.	.320 <t< td=""><td>.450 <t< td=""><td>.540</td><td></td><td>.300 <1</td><td></td></t<></td></t<>	.450 <t< td=""><td>.540</td><td></td><td>.300 <1</td><td></td></t<>	.540		.300 <1	
	.280 <t< td=""><td>.520</td><td></td><td>.450 <t< td=""><td></td><td></td><td></td></t<></td></t<>	.520		.450 <t< td=""><td></td><td></td><td></td></t<>			
	801	T> 080.	801	BOL			
	.110 <t< td=""><td>.420 <7</td><td></td><td></td><td></td><td></td><td></td></t<>	.420 <7					
	.290 <t< td=""><td>.610</td><td></td><td></td><td></td><td></td><td></td></t<>	.610					
	.080 <t< td=""><td></td><td>.200 <1</td><td>.210 <t< td=""><td>.350 <t< td=""><td>370 <1</td><td></td></t<></td></t<></td></t<>		.200 <1	.210 <t< td=""><td>.350 <t< td=""><td>370 <1</td><td></td></t<></td></t<>	.350 <t< td=""><td>370 <1</td><td></td></t<>	370 <1	
	3.200	.500 <t< td=""><td>1> 067°</td><td>. 590</td><td></td><td></td><td></td></t<>	1> 067°	. 590			
	130 <1				801	BDI	
	B0L	BOL	BOL	BOL			
1992 AUG	.370 <7	.630	.510	.520			
	.300 <t< td=""><td>.580</td><td>.530</td><td>1.800</td><td></td><td></td><td></td></t<>	.580	.530	1.800			
	.160 <t< td=""><td>. 290 <t< td=""><td>.560</td><td>1.100</td><td></td><td></td><td></td></t<></td></t<>	. 290 <t< td=""><td>.560</td><td>1.100</td><td></td><td></td><td></td></t<>	.560	1.100			
Z1NC (UG/L	^	" " " " " " " " " " " " " " " " " " "	DET'N LIMIT = 0.20	109	GUIDELINE = 5000 (A3)	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	2.800	3.700	3.300	58,000	2.900	7,000	
	3.100	3.900	3.100	86,000	2.700	20,000	
1991 MAY	3.700	3.800	2.900	36.000	11,000	2.500	
	3.800	2.300	3,100	27,000	3,000	5.800	
	3.000	2.800	2,200	33.000	1,700 <1	6.800	
	2,700	2.600	1.800 <1	18,000	2.200	2.600	
	19.000	6,800	7:600	95.000			
	2.700	1.500 <t< td=""><td></td><td></td><td>2,400</td><td>15.000</td><td></td></t<>			2,400	15.000	
	2.100	2.900	1,700 <1	33.000			
	3.200	2.100	1.600 <1	12.000		• •	
	4.100	2,100	7.800	85.000			
	5.300	7.600	5.700	94.000			

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP

DIST. SYSTEM THOMAS AVE STANDING								•	•		•		•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			٠) 1 1 1 1 1 1 1 1 1 1 1 1 1		
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 450 (D4)	BDL	108	DDF .	i AW	i Au	108		BDL		•			GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BOL	GUIDELINE = 10000 (I)	BDL	GUIDELINE = 38000 (D4)	BDL .	GUIDELINE = N/A	. BDL	
DIST. SYSTEM DIST. SYSTEM ROBERT ST ROBERT ST FREE FLOW STANDING	DET'N LIMIT = 1.000	i.LA	108	BDL .	i Au	i Au	BDL .	. BDL		. BDL	BDL .	BDL .	. PDF	DET'N LIMIT ≠ 5.000	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	BDL .	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	. 108	DET'N LIMIT = 5.000	BDL	
TREATMENT PLANT DISTRESTED FREE		BDL	108	BDL	i Au	i AW	BDL	BDL	108	BDL	BDL	BDL -	BDL .	DET	BDL	DET	BDL	DET	BDL	DET	BDL	DET	BOL	, DET !!	BDL	
. TREATMENT PLANT	CHLOROARDMATICS HEXACHLOROBUTADIENE (NG/L)	BDL		2.000 <t< td=""><td></td><td></td><td></td><td></td><td>108</td><td></td><td></td><td></td><td></td><td>123-TRICHLOROBENZENE (NG/L)</td><td>ES BDL</td><td>1234-TETCLOROBENZENE (NG/L)</td><td>ES BDL</td><td>1235-TETCLOROBENZENE (NG/L)</td><td>ES BDL</td><td>124-TRICHLOROBENZENE (NG/L)</td><td>ES BDL</td><td>1245-TETCLOROBENZENE (NG/L)</td><td>ES BDL</td><td>135-TRICHLOROBENZENE (NG/L)</td><td>ES BDL</td><td></td></t<>					108					123-TRICHLOROBENZENE (NG/L)	ES BDL	1234-TETCLOROBENZENE (NG/L)	ES BDL	1235-TETCLOROBENZENE (NG/L)	ES BDL	124-TRICHLOROBENZENE (NG/L)	ES BDL	1245-TETCLOROBENZENE (NG/L)	ES BDL	135-TRICHLOROBENZENE (NG/L)	ES BDL	
	HEXACHLOROB	1991 JAN		1991 MAY		1991 SEP	1991 NOV	1992 FEB	1992 APR	1992 JUN	1992 AUG	1992 OCT	1992 DEC	123-TRICHLC	33 SAMPLES	1234-TETCLC	33 SAMPLES	1235-TETCLC	33 SAMPLES	124-TRICHLC	33 SAMPLES	1245-TETCLC	33 SAMPLES	135-TRICHLO	33 SAMPLES	

TABLE 4
DRIHKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

														1 2													-			1		:				
DIST. SYSTEM THOMAS AVE STANDING		٠																	•				•									0 0 0 0 0 0 0 0 0 0 0 0 0	•			٠
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 10 (C1)	BDL	BDL	BOL	- AN	IAU	BDL		B01.					GUIDELINE = 1900 (D4)	BDI	108	RDI	140	741	T> 000 7		, IM	2	•				GUIDELINE = N/A	BOL	GUIDELINE = 74000 (D4)	BDL	GUIDELINE = N/A	. 801		GUIDELINE = N/A	BDL
DIST. SYSTEM ROBERT ST STANDING		٠	٠			٠.							•		,				•	•		•		•						6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		9 6 8 9 0 0 0 0 0	•			٠
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 1.000	iLA	BDL	BOL	i AN	i AN	BDL	BDL	٠	108	BDL	BDL	BDL	DET'N LIMIT = 1.000	A I I	BOL	2 000 <1	181	nv.	T> 000 7		BOL	• -	BOL BOL	100	B0L		DET'N LIMIT = 1.000	BDL	DET *N LIMIT = 1,000	80r	DET'N LIMIT = 5.000	BOL		DET'N LIMIT = 5.000	BDL
TREATMENT PLANT TREATED TREATED	S	BOL	BDL	BOL	IAW	IAU	BOL	BOL	BOL	BOL	BOL	BOL	BOL	7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BDf	BOL	ROI	182	TV	, DD0 4	200	108 108	1 000 /1	7 7000	2 000 7	108 100 100 100 100 100 100 100 100 100			BOL		BDL	(BOL			BDL
TREATMENT PLANT	CHLOROAROMATICS E (NG/L)	BDL	BDL	108	i AW	IAW	BOL	2.000 <1	BOL	108	108	108	BDL	(NG/L)	BDI	BDL	RDI	140	TVI	E J	700	80 I	300	7 IO	100	801		E (NG/L)	BDL	NE (NG/L)	BOL	UENE (NG/L	BOL		UENE (NG/L	BDL
- ~	CHLOR HEXACHLOROBENZENE (NG/L	1991 JAN	1991 MAR							1992 JUN		1992 OCT	1992 DEC	HEXACHLOROETHANE (NG/L	1991 JAN										1002 001	1992 DEC		OCTACHLOROSTYRENE (NG/L	33 SAMPLES	PENTACHLOROBENZENE (NG/L	33 SAMPLES	236-TRICHLOROTOLUENE (NG/L	33 SAMPLES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	245-TRICHLOROTOLUENE (NG/L	33 SAMPLES

DIST. SYSTEM THOMAS AVE STANDING		
DIST. SYSTEM DIST. SYSTEM ROBERT ST THOMAS AVE STANDING FREE FLOW	CHLOROAROMATICS 26A-TRICHLOROTOLUENE (NG/L) DET*N LIMIT = 5.000 GUIDELINE = N/A	33 SAMPLES BDL BDL BDL
M DIȘT, SYSTEM ROBERT ST STANDING	= 5.000	
ROBERT ST FREE FLOW	DET'N LIMIT = 5.000	BD1
TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW RAW FREE FLOW	SO (BDL
REATMENT PLANT AW	CHLÖROAROMATICS UENE (NG/L)	BDL
∓ æ'	CHLOROARD CHLOROARD 26A-TRICHLOROTOLUENE (NG/L	33 SAMPLES

	9						,		1		ı	,
DIST. SYSTEM THOMAS AVE STANDING	1 9 9 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	٠	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	٠	6 # # # # # # # # # # # # # # # # # # #		(04)			•	.1)	* 1
DIST. SYSTEM THOMAS AVE FREE FLOW	N/A		N/A		N/A		2600000		5000 (A1		60000 (A	
DIST. SYSTE THOMAS AVE FREE FLOW	GUIDELINE ∓ N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (D4)		GUIDELINE = 5000 (A1)		GUIDELINE = 60000 (A1)	
DIST. SYSTEM ROBERT ST STANDING			ਰ		ಶ	٠	0 0 0 6 6 6 0 5 1 0		ਰ	٠		٠
	= 100.0		= 20.0		= 10.0		= 100.0		= 20.0		= 10.00	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.0	٠	DET'N LIMIT = 100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.00	
TREATMENT PLANT TREATMENT PLANT RAW TREATED		80L		BDL		BDL		BDL		108		BDL
PLANT	HENOLS	_	,		^	_	^	_	^	_	^	١
ATMENT	CHLOROPHENOLS L (NG/L)	BDL	OL (NG/	BDL	OL (NG/	BDL	L (NG/L	BDL	L (NG/L	BDL	L/9N)	801
TRE	CHLOROPI 234-TRICHLOROPHENOL (NG/L	8 SAMPLES	2345-TETCHLOROPHENOL (NG/L	8 SAMPLES	2356-TETCHLOROPHENOL (NG/L	8 SAMPLES	245-TRICHLOROPHENOL (NG/L	8 SAMPLES	246-TRICHLOROPHENOL (NG/L	8 SAMPLES	PENTACHLOROPHENOL (NG/L	8 SAMPLES
	- 722	8	2345	80	2356	80	245-	80	246-	80	PENT	80

DIST. SYSTEM THOMAS AVE STANDING) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						•				1	•		•		· •				;	40	••			
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 700 (A1)	BDL	GUIDELINE = 700 (G)	1.000 <7	B0L	108	I AN	BDL	. 801		•		GUIDELINE = 300 (G)	108	GUIDELINE = 4000 (A1)	. BDL	GUIDELINE = 7000 (A1)	801	GUIDELINE = 7000 (A1)	BDL	GUIDELINE = 700 (A1)	BDL	GUIDELINE = 900000 (A1)	BDL	GUIDELINE = 74000 (04)	BDL	
DIST. SYSTEM DIST. SYSTEM ROBERT ST ROBERT ST FREE FLOW STANDING	DET'N LIMIT = 1,000	. 80L	DET'N LIMIT = 1,000	iLA .	BDL			. 80		. 108	108	108	DET'N LIMIT = 1.00	. 108	DET'N LIMIT = 1.000	BDL .	DET'N LIMIT = 2.000	BDL	DET'N LIMIT = 2.00		DET'N LIMIT = 2.00	· BDL	DET'N LIMIT = 5.0	. BDL	DET'N LIMIT = 2.00	. BDL	
TREATMENT PLANT DI TREATED FR		BDL	DET	1.000 <t< td=""><td>BOL</td><td>BOL</td><td>. IAW</td><td>80F</td><td>90</td><td>B0L</td><td>2 B</td><td>. 108</td><td>DET</td><td>BOL</td><td>DET</td><td>BOL</td><td>DET</td><td>, T08</td><td>DET</td><td>BDL</td><td>. DET</td><td>BDL</td><td>DET</td><td>BOL</td><td>DET</td><td>BDL .</td><td></td></t<>	BOL	BOL	. IAW	80F	90	B0L	2 B	. 108	DET	BOL	DET	BOL	DET	, T08	DET	BDL	. DET	BDL	DET	BOL	DET	BDL .	
TREATMENT PLANT RAW	PESTICIDES AND PCB	BDL	ر ،	2.000 <t< td=""><td>BDL</td><td>2.000 <1</td><td>IAW</td><td>108</td><td>1.000 <1</td><td>BDL</td><td>30F</td><td>1.000 <t< td=""><td>^</td><td>BDL</td><td>N BHC) (NG/L)</td><td>BDL</td><td>IE (NG/L)</td><td>BDL</td><td>IE (NG/L)</td><td>BDL</td><td>^</td><td>BDL</td><td>NG/L)</td><td>BOL</td><td>NG/L)</td><td>BDL</td><td></td></t<></td></t<>	BDL	2.000 <1	IAW	108	1.000 <1	BDL	30F	1.000 <t< td=""><td>^</td><td>BDL</td><td>N BHC) (NG/L)</td><td>BDL</td><td>IE (NG/L)</td><td>BDL</td><td>IE (NG/L)</td><td>BDL</td><td>^</td><td>BDL</td><td>NG/L)</td><td>BOL</td><td>NG/L)</td><td>BDL</td><td></td></t<>	^	BDL	N BHC) (NG/L)	BDL	IE (NG/L)	BDL	IE (NG/L)	BDL	^	BDL	NG/L)	BOL	NG/L)	BDL	
	ALDRIN (NG/L	33 SAMPLES	ALPHA BHC (NG/L		1991 MAR	1991 JUL		1991 NOV 1002 FFB			1992 OCT		BETA BHC (NG/L	33 SAMPLES	LINDANE (GAMMA BHC) (NG/L	33 SAMPLES	ALPHA CHLORDANE (NG/L	33 SAMPLES	GAMMA CHLORDANE (NG/L	33 SAMPLES	DIELDRIN (NG/L	33 SAMPLES	METHOXYCHLOR (NG/L	33 SAMPLES	ENDOSULFAN 1 (NG/L	33 SAMPLES	

DIST. SYSTEM THOMAS AVE STANDING	ç		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				, a a a a a a a a a a a a a a a a a a a	,					(0 0 0 0 0 0 0 0 0 0 0 0 0 0
STEM	7000 CD7	BDL	= 1600 (03)	BDL	4	BDL	.000 (A1)	BDL	000 (A1)	BDL	/ A	BDL	A	801	0000 (A)	BDL	000 (A2	BDL	0000 CA	BDL	0000 (A	BOL	0000 (A)	BDL
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 74000 (04)		GUIDELINE = 1		GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIDELINE = 3000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)	
DIST. SYSTEM ROBERT ST STANDING	ō		9		9	٠	Ö	٠	Ð	٠	9	٠	9	٠	9	٠	9		9	•	9	٠	Ð	
DIST. SYST ROBERT ST STANDING	5.000		2.000		5.00		1.000		1.000		2.000		2.000		2.000		20.00		2.000		1.000		2.000	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 5.000	108	0ET'N LIMIT = 5.000	BDL	DET'N LIMIT =	BDL	DET'N LIMIT = 1.000	BDL	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 2.000	BOL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 20.00	BOL	DET'N LIMIT = 5.000	BDL	DET'N LIMIT = 1.000	108	DET'N LIMIT = 5.000	BDL
	٥	BDL	0	108	٥.	BOL		BDL	۵	. 108	۵	BDL	٥	BDL	0	BOL		BDL	0	BDL		BDL	۵	BOL
TREATMENT PLANT TREATED) PCB	8		80		80		8		8		œ		8	0 0 0 0 0 0 0	8	0 7 0 5 6 6 6	8		8		œ		8
T PLANT	PESTICIDES AND PCB	BDL		BDL	(۲	BDL	^	BDL		BDL		BDL	_	108	6 6 6 6	B0L	0 7 0 0 0 0	BDL	1 1 6 1 5 5	BDL		BDL		BÓL
TREATMENT PLANT	PESTI 4G/L		^		HATE (NG.		IDE (NG/		^		^				^				^		^		^	
- Œ	ENDOSULFAN II (NG/L	33 SAMPLES	ENDRIN (NG/L	33 SAMPLES	ENDOSULFAN SULPHATE (NG/L	33 SAMPLES	HEPTACHLOR EPOXIDE (NG/L	27 SAMPLES	HEPTACHLOR (NG/L	33 SAMPLES	MIREX (NG/L	33 SAMPLES	OXYCHLORDANE (NG/L	33 SAMPLES	0,P-DDT (NG/L	33 SAMPLES	NG/L)	27 SAMPLES	P,P-000 (NG/L	33 SAMPLES	P,P-DDE (NG/L	33 SAMPLES	P,P-DDT (NG/L	33 SAMPLES
	ENDOS	33	ENDRI	33	ENDOS	33	HEPTA	27	HEPTA	33	MIREX	33	ОХУСНІ	33	0,P-0	33	PCB (NG/L	27	P,P-0	33	10-d'd	33	10-d'd	33

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING	(1)		(03)		A2)			•, • •					•	.A2)	·.	, YS)	٠	(A2)	٠	(03)	٠	(03)	•	
DISJ. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 5000 (A1)	• BDL	GUIDELINE = 300000 (03)		GUIDELINE = 60000 (A2)							GUIDELINE = N/A	٠	GUIDELINE = 10000 (A2)	٠	GUIDELINE = 60000 (A2)	٠	GUIDELINE = 10000 (A2)	٠	GUIDELINE = 52500 (D3)	•	GUIDELINE = 700000 (D3)	٠	
DIST. SYSTEM ROBERT ST STANDING		•		٠						•			٠		٠		.•		·				٠	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 500.0	. 801	DET'N LIMIT = 50.0	٠	DET'N LIMIT = 50.0				•		•	DET'N LIMIT = 50.0	-	DET'N LIMIT = 100.0	٠	DET'N LIMIT = 200.0	-	DET'N LIMIT = 200.0	•	DET'N LIMIT = 50.000		DET'N LIMIT = 50.000	•	
TREATMENT PLANT TREATED	D PCB	BOL		BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80L 80L	80 E	BDL 240,000 <t< td=""><td>80L 801</td><td>108 ·</td><td>BOL</td><td></td><td>BDL</td><td></td><td>BDL</td><td></td><td>BOL</td><td>=</td><td>BDL</td><td></td><td>BOL</td><td>i.</td><td>BDL</td><td></td></t<>	80L 801	108 ·	BOL		BDL		BDL		BOL	=	BDL		BOL	i.	BDL	
TREATMENT PLANT	PESTICIDES AND PCB	B0L	^	BOL	•	110.000 <t< td=""><td>108 108</td><td>. 300,000 <t< td=""><td>80L 50.000 <t< td=""><td>801</td><td>50.000 <t< td=""><td></td><td>BDL</td><td>EX) (NG/L)</td><td>BĎĹ</td><td>VE (NG/L)</td><td>BDL</td><td>VE (NG/L)</td><td>B0L</td><td>^</td><td>BDL</td><td>•</td><td>BOL</td><td></td></t<></td></t<></td></t<></td></t<>	108 108	. 300,000 <t< td=""><td>80L 50.000 <t< td=""><td>801</td><td>50.000 <t< td=""><td></td><td>BDL</td><td>EX) (NG/L)</td><td>BĎĹ</td><td>VE (NG/L)</td><td>BDL</td><td>VE (NG/L)</td><td>B0L</td><td>^</td><td>BDL</td><td>•</td><td>BOL</td><td></td></t<></td></t<></td></t<>	80L 50.000 <t< td=""><td>801</td><td>50.000 <t< td=""><td></td><td>BDL</td><td>EX) (NG/L)</td><td>BĎĹ</td><td>VE (NG/L)</td><td>BDL</td><td>VE (NG/L)</td><td>B0L</td><td>^</td><td>BDL</td><td>•</td><td>BOL</td><td></td></t<></td></t<>	801	50.000 <t< td=""><td></td><td>BDL</td><td>EX) (NG/L)</td><td>BĎĹ</td><td>VE (NG/L)</td><td>BDL</td><td>VE (NG/L)</td><td>B0L</td><td>^</td><td>BDL</td><td>•</td><td>BOL</td><td></td></t<>		BDL	EX) (NG/L)	BĎĹ	VE (NG/L)	BDL	VE (NG/L)	B0L	^	BDL	•	BOL	
	TOXAPHENE (NG/L	26 SAMPLES	AMETRINE (NG/L	23 SAMPLES	ATRAZINE (NG/L		1991 JUL 1991 JUL					ATRATONE (NG/L	21 SAMPLES	CYANAZINE (BLADEX) (NG/L	23 SAMPLES	DESETHYL ATRAZINE (NG/L	. 23 SAMPLES	DESETHYL SIMAZINE (NG/L	23 SAMPLES	PROMETONE (NG/L	23 SAMPLES	PROPAZINE (NG/L	23 SAMPLES	

	:		-		-															:		:		
DIST. SYSTEM THOMAS AVE STANDING	0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0																	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				7)	٠	
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)	٠	GUIDELINE = 10000 (A2)													GUIDELINE = 5000 (A2)	٠.	GUIDELINE = 50000 (A2)	. •	GUIDELINE = 206000 (D4)	BDL	6 6 9 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
DIST. SYSTEM ROBERT ST STANDING	0 0 0 0 0 0 0 0 0	:			; ; ; ; ;	٠										•		0 6 1 7 6 6 1 1 1	٠	9 4 9 9 9 9 9	٠	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 50.000		DET'N LIMIT = 100.0		DET'N LIMIT = 50.00 .				٠	٠	٠	•				•		DET*N LIMIT = 500.0	٠	DET'N LIMIT = 500.0	٠	DET'N LIMIT = 5.00	BDL	* * * * * * * * * * * * * * * * * * *
REATMENT PLANT TREATMENT PLANT RAW TREATED	PCB	BDL	6 8 8 8 8 9 9 9 9 9 9 9	BDL	0 0 0 0 1 1 1 1 1 1 2 3 4 3 6 9 9 9 9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	108	108	BDL		BOL		BDL	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	108	4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ANT	S AND		^		, , , ,							<u>_</u>						_						6 6 6
TREATMENT PL.	PESTICIDES AND PCB	BDL	OR) (NG/L	BDL	•	BDL	BDL	BDL	BDL	I AU	BDL	60.000 <t< td=""><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>BDL</td><td>(NG/L</td><td>BDL</td><td>, ,</td><td>BDL</td><td>DIEN (NG/L</td><td>. BDL</td><td>d d d o p g g d d</td></t<>	BDL	BDL	BDL	BDL	BDL	(NG/L	BDL	, ,	BDL	DIEN (NG/L	. BDL	d d d o p g g d d
ī œ	PROMETRYNE (NG/L	23 SAMPLES	METRIBUZIN (SENCOR) (NG/L	23 SAMPLES	SIMAZINE (NG/L	1991 JAN											1992 DEC	ALACHLOR (LASSO) (NG/L	. 23 SAMPLES	METOLACHLOR (NG/L	23 SAMPLES	HEXACLCYCLOPENTADIEN (NG/L	18 SAMPLES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

;					,								
DIST. SYSTEM THOMAS AVE STANDING			•										
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A												
DIST. SYSTEM ROBERT ST STANDING	0.2 GUI	•											
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT =		•										
TREATMENT PLANT TREATED		BDL	B0L	1.000 <t< td=""><td>BOL</td><td>.800 <t< td=""><td>80L</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>T> 009.</td></t<></td></t<>	BOL	.800 <t< td=""><td>80L</td><td>BDL</td><td>BOL</td><td>BOL</td><td>BDL</td><td></td><td>T> 009.</td></t<>	80L	BDL	BOL	BOL	BDL		T> 009.
TREATMENT PLANT TREATMENT PLANT I RAW	· PHENOLICS	T> 000.	80L	1.200	1.000	108	BDL	1> 007.	108	BDL	80F	108	T> 004.
- 12	PHENOLICS (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL								1992 DEC

	,																							1
DIST. SYSTEM THOMAS AVE STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	P P P P P P P P P P P P P P P P P P P		04)	•	0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 1 1 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SYSTEM AVE LOW	= N/A	BOL	= N/A	BDL	= 42000 (04)	BDL	= N/A	BDL	N/A	BOL	= N/A	BOL	N/A	BOL	N/A	BDL	N/A	BDL	N/A	BDL	N/A	BDL	10 (A1)	BDL
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =		GUIDELINE =	
DIST. SYSTEM ROBERT ST STANDING	ō		Ō		5		9	٠	9		9	•	9	•	5	•	5			•	5	٠	9	
DIST. SYST ROBERT ST STANDING	0.		0		0		o.		0.		0.		0		0.		0.		0.				0	
YSTEM ST DW	41T = 10	BDL	41T = 1.	BDL	41T = 20.0	BDL	41T = 20	BDL	41T = 20	BDL	41T = 50	BDL	11T = 5.0	BDL	4IT = 50	BDL	IIT = 10	BDL	11T = 10	BDL	11T = 1.0	BDL	41T = 5.0	BDL
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 10.0		DET'N LIMIT = 1.0		DET 'N LIMIT		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 50.0		DET'N LIMIT =		DET'N LIMIT = 50.0		DET'N LIMIT = 10.0		DET'N LIMIT = 10.0		DET'N LIMIT =		DET'N LIMIT =	
TREATMENT PLANT TREATED	SNO	BDL		BDL		BDL		BDL	0 0 0 0 0	BDL		BDL		BDL		BDL))) (BDL		BDL		BDL		BDL
TREATMEN	POLYAROMATIC HYDROCARBONS																							
PLANT	MATIC H	. 108		70		٦,		BDL	^	٦		_		_	^	ب	,	ب		_	,	_	^	,
TREATMENT PLANT		98	^	BOL	^	BOL	^	38	L (NG/L	BDL	^	BDL	DIMETH. BENZ(A)ANTHR (NG/L	BDL	16/L	BDL	BENZO(B) FLUORANTHEN (NG/L	BOL	^	BDL	BENZO(K) FLUORANTHEN (NG/L	BDL	1/91	BDL
TRE	IE (NG/I	ES	(NG/L	ES	JE (NG/I	ES		ES	HRACEN	ES	1/91	ES	IZ(A)ANI	ES	RENE ()	ES	UORANTH	ES	16/1	ES	UORANT	ES	RENE (ES
	PHENANTHRENE (NG/L	12 SAMPLES	ANTHRACENE (NG/L	12 SAMPLES	FLUORANTHENE (NG/L	12 SAMPLES	PYRENE (NG/L	12 SAMPLES	BENZO(A)ANTHRACENE (NG/L	12 SAMPLES	CHRYSENE (NG/L	12 SAMPLES	TH. BEN	12 SAMPLES	BENZO(E) PYRENE (NG/L	12 SAMPLES	0(B) FL	12 SAMPLES	PERYLENE (NG/L	12 SAMPLES	O(K) FL	12 SAMPLES	BENZO(A) PYRENE (NG/L	12 SAMPLES
	PHEN		ANTHRA	-	FLUO		PYRE	-	BENZ	-	CHRY	-	DIME	-	BENZ	-	BENZ	-	PERY	4	BENZ	1	BENZ	1

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

M DIST. SYSTEM THOMAS AVE STANDING		• 1							÷	- 1
M DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL	GUIDELINE = N/A	BDL
DIST. SYSTEM ROBERT ST STANDING	20.0	٠	10.0	٠	20.02	٠	2.0	٠	10.0	٠
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 20.0	801	DET'N LIMIT = 10.0	108	DET'N LIMIT = 20.0	BOL	DET*N LIMIT = 2.0	BOL	DET'N LIMIT = 10.0	BOL
REATMENT PLANT TREATMENT PLANT DIST. SYSTEM RAW FREE FLOW	HYDROCARBONS	BDL		108		BDL		108 .		. BDL
TREATMENT PLANT	POLYAROMATIC HYDROCARBONS RYLEN (NG/L)	108	THRAC (NG/L	BDL	D) PY (NG/L	108	NE (NG/L)	BDL.	(108
⊢ α	BENZOCG, H, I) PERYLEN (NG/L	12 SAMPLES	DIBENZO(A, H) ANTHRAC (NG/L	12 SAMPLES	INDENO(1,2,3-C,D) PY (NG/L	12 SAMPLES	BENZO(B) CHRYSENE (NG/L	12 SAMPLES	CORONENE (NG/L	12 SAMPLES

	1				ı						,													
DIST. SYSTEM DIST. SYSTEM THOMAS AVE THOMAS AVE FREE FLOW STANDING	GUIDELINE = 5000 (A1)		GUIDELINE = 280000 (A1)	•	GUIDELINE = 100000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 120000 (A1)		GUIDELINE = 10000 (A1)		GUIDELINE = 20000 (A1)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 35000 (G)		GUIDELINE = 190000 (A1)	
DIST. SYSTEM DIST. SYSTEM ROBERT ST ROBERT ST FREE FLOW STANDING	DET'N LIMIT = 500.0	. BOL .	DET'N LIMIT = 50.0	•	DET'N LIMIT = 100.0		DET'N LIMIT = 200.0		DET'N LIMIT = 100,0		DET'N LIMIT = 50.0		DET'N LIMIT = 20.00		OET'N LIMIT = 20.0		OET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0	
TREATMENT PLANT	ICIDES	BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL		B01		108		BOL		108		B0L	; ; ; ; ; ; ; ; ; ; ;	BOL		, BDL		BOL		BOL	0 9 9 9 9 9 9 9 9 9 9	BOL
TREATMENT PLANT RAW	SPECIFIC PESTICIDES TOXAPHENE (NG/L)	7 SAMPLES BDL	2,4,5-T (NG/L)	8 SAMPLES BOL	2,4.0 (NG/L)	8 SAMPLES BOL	2,4-08 (NG/L)	8 SAMPLES BOL	2,4 D PROPIONIC ACID (NG/L)	8 SAMPLES BDL	DICAMBA (NG/L)	8 SAMPLES BOL	2,4,5-TP (SILVEX) (NG/L)	8 SAMPLES BDL.	DIAZINON (NG/L)	6 SAMPLES BDL	DICHLOROVOS (NG/L)	6 SAMPLES BDL	CHLORPYRIFOS (NG/L)	6 SAMPLES BDL	ETHION (NG/L)	6 SAMPLES BDL	MALATHION (NG/L)	6 SAMPLES BDL

	1								,	•			e e				,		,		Is.	•		
DIST. SYSTEM THOMAS AVE STANDING			3 9 9 9 9 9 9 9 9 9 9 9 9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	•		•	0 0 0 2 2 2 2 3 4 4 5 6 7 7 7 7	•	9 r r r r r r r r r r r r r r r r r r r		0		3)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
DIST. SYSTEM THOMAS AVE FREE FLOW.	GUIDELINE = N/A	•	GUIDELINE. = 9000 (03)	•	GUIDELINE = N/A		GUIDELINE = 50000 (A1)	٠	GUIDELINE = 2000 (A2)	٠	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 90000 (A1)	•	GUIDELINE = 350000 (G)	٠	GUIDELINE = N/A	•	GUIDELINE = N/A		GUIDELINE = N/A	
DIST. SYSTEM DIST. SYSTEM ROBERT ST ROBERT ST FREE FLOW STANDING	DET'N LIMIT = 20.0		DET'N LIMIT = 50.0	:	DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0	•	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000,0	:	DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0	
TREATMENT PLANT TREATED		108		:108		BDL		BDL		BDL		BOL		BDL		BOL		BDL	۵	BOL		BOL	۵ ۱.	BDL'
TREATMENT PLANT TREA	SPECIFIC PESTICIDES	108	ON (NG/L)	BDL	(NG/L)	BDL	(BDL	. ^	BDL	•	. 108	(108 · '	Γ)	BDL	(NG/L)	BDL	Ĉ	108		B0L		BDL
	MEVINPHOS (NG/L	6 SAMPLES	METHYL PARATHION (NG/L	6 SAMPLES	METHYLTRITHION (NG/L	6 SAMPLES	PARATHION (NG/L	6 SAMPLES	PHORATE (NG/L	6 SAMPLES	RELDAN (NG/L	6 SAMPLES	RONNEL (NG/L	6 SAMPLES	CARBOFURAN (NG/L	8 SAMPLES	CHLORPROPHAM (CIPC) (NG/L	8 SAMPLES	DIALLATE (NG/L	8 SAMPLES	EPTAM (NG/L	8 SAMPLES	IPC (NG/L)	8 SAMPLES

	DIST. SYSTEM THOMAS AVE STANDING	03)	٠.	1)		03)		0 0 0 0 0 0 0 0 0 0 0
1992 WALLAUEBURG WIP	DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 140000 (03)		GUIDELINE = 90000 (A1)		GUIDELINE = 245000 (D3)	٠	
DAINAING WAICH SORVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WIP	ST ROBERT ST ST ROBERT ST OW STANDING	DET'N LIMIT = 2000.0		DET'N LIMIT = 200.0		DET'N LIMIT = 2000.0	•	
WIEN SURVEILL	LANT DIST. SYST ROBERT ST FREE FLOW	ספדיא נו		DET 'N LI		DET 'N LI		
מאושא	TREATMENT PLANT TREATMENT PLANT DIST. SYSTEM TRAM TREATED FREE FLOW	STICIDES	108		108.	1	108	
	TREATMENT PLAN RAU	SPECIFIC PESTICIDES)	BOL	^	BOL	^	BDL	
		PROPOXUR (NG/L	8 SAMPLES	CARBARYL (NG/L	8 SAMPLES	BUTYLATE (NG/L	8 SAMPLES	

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST. SYSTEM THOMAS AVE STANDING		٨						•					•	•							• ,							•		•		•						
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 5 (A1)	BDL	BDL	BDL	BDL 950	-> 050.	100	. 12		•		•	GUIDELINE = 24 (A3)	, 80ľ	B0L	BOL	108	.150 <1	1> 00L.	· iū	\$			٠	GUIDELINE = 2.4 (A3)		JØ8	BOL		. 050 <t< td=""><td>1> 001.</td><td></td><td>I> 060.</td><td></td><td></td><td>•</td><td></td><td></td></t<>	1> 001.		I> 060.			•		
DIST. SYSTEM ROBERT ST STANDING		•		•	•	•		•						•	•	٠.			٠.	•	•			٠			•	•		•	•	•	•			•		
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	BDL	BDL	BOL	10 80 1	108	g 8	3	· IEE	801	BOL	BDL	DET'N LIMIT = 0.05	T> 050.	801	. 108	901	100.)> 050°	BOL	. <u>u</u>	T> 050.	901	BOL	DET'N LIMIT = 0.05	BOL	B0L	.100 <t< td=""><td>1> 001.</td><td>80 L</td><td>100.</td><td>1> 001.</td><td></td><td>13.0</td><td>) 000°</td><td>150 /1</td><td>- ncl •</td><td></td></t<>	1> 001.	80 L	100.	1> 001.		13.0) 000°	150 /1	- ncl •	
TREATMENT PLANT TREATED .		BDL	BOL	108	80L	- 101.	J. I	, E	BDL	BDL	B0L	T08		BDL	BDL	BOL	T> 050.	.250 <1	, 801.	80L 80L	- CB	.050 <t< td=""><td>BDL</td><td>BDL</td><td></td><td>BDL</td><td>BDL</td><td>T> 050.</td><td>T> 001.</td><td>.200 <</td><td>100 ·</td><td>. 050 7 070</td><td>. oct.</td><td>1000</td><td>2000</td><td>100</td><td>- 001 •</td><td></td></t<>	BDL	BDL		BDL	BDL	T> 050.	T> 001.	.200 <	100 ·	. 050 7 070	. oct.	1000	2000	100	- 001 •	
TREATMENT PLANT RAW	VOLATILES)	T> 001.	.050 <t< td=""><td>BDL</td><td>80 F</td><td>80L 050 <1</td><td>IV IVE</td><td>i 2</td><td>.050 <1</td><td>801</td><td>BDL</td><td>BDL</td><td>^</td><td>· 100 <t< td=""><td>.050 <t< td=""><td>80F</td><td>80F</td><td>108</td><td>)> 00L.</td><td>80 F</td><td>100 <t< td=""><td>100 <1</td><td>801</td><td>BDL</td><td>JG/L)</td><td>T> 050.</td><td>BDL</td><td>301</td><td>BOL</td><td>BDL</td><td>.150 <t< td=""><td>80F</td><td>BUL.</td><td>> 001.</td><td>, nco.</td><td>100</td><td>1,001.</td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	80 F	80L 050 <1	IV IVE	i 2	.050 <1	801	BDL	BDL	^	· 100 <t< td=""><td>.050 <t< td=""><td>80F</td><td>80F</td><td>108</td><td>)> 00L.</td><td>80 F</td><td>100 <t< td=""><td>100 <1</td><td>801</td><td>BDL</td><td>JG/L)</td><td>T> 050.</td><td>BDL</td><td>301</td><td>BOL</td><td>BDL</td><td>.150 <t< td=""><td>80F</td><td>BUL.</td><td>> 001.</td><td>, nco.</td><td>100</td><td>1,001.</td><td></td></t<></td></t<></td></t<></td></t<>	.050 <t< td=""><td>80F</td><td>80F</td><td>108</td><td>)> 00L.</td><td>80 F</td><td>100 <t< td=""><td>100 <1</td><td>801</td><td>BDL</td><td>JG/L)</td><td>T> 050.</td><td>BDL</td><td>301</td><td>BOL</td><td>BDL</td><td>.150 <t< td=""><td>80F</td><td>BUL.</td><td>> 001.</td><td>, nco.</td><td>100</td><td>1,001.</td><td></td></t<></td></t<></td></t<>	80F	80F	108)> 00L.	80 F	100 <t< td=""><td>100 <1</td><td>801</td><td>BDL</td><td>JG/L)</td><td>T> 050.</td><td>BDL</td><td>301</td><td>BOL</td><td>BDL</td><td>.150 <t< td=""><td>80F</td><td>BUL.</td><td>> 001.</td><td>, nco.</td><td>100</td><td>1,001.</td><td></td></t<></td></t<>	100 <1	801	BDL	JG/L)	T> 050.	BDL	301	BOL	BDL	.150 <t< td=""><td>80F</td><td>BUL.</td><td>> 001.</td><td>, nco.</td><td>100</td><td>1,001.</td><td></td></t<>	80F	BUL.	> 001.	, nco.	100	1,001.	
	BENZENE (UG/L				1991 JUL		1007 FEB		1992 JUN				TOLUENE (UG/L	1991 JAN	1991 MAR	. 1991 MAY		1991 SEP	AON LASI	1992 FEB 1992 APR		1992 AUG	1992 OCT		ETHYLBENZENE (UG/L	1991 JAN			1991 JUL	1991 SEP	1991 NOV	1992 FEB	1992 APK	1992 JUN	1002 ACT	1002 1101		

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG UTP

			,	
DIST. SYSTEM THOMAS AVE STANDING				
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 300 (A3*)	. 108 108 108 108 108	GUIDELINE = 300 (A3*)	GUIDELINE = 300 (A3*) BDL BDL BDL BDL BDL BDL BDL BDL BDL COSO <7
DIST: SYSTEM ROBERT ST STANDING			•	
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.10	108 108 108 108 108 108 108 108 108 108	DET'N LIMIT = 0.10 BDL	90.0 80.0
TREATMENT PLANT		801 801 100 100 100 100 100 100 100 100	108	108 108 108 108 108 108 108 108 108 108
TREATMENT PLANT	VOLATILES	108 108 108 108 108 108 108 108) BDL	108 108 108 108 108 108 108 108 108 108
	P-XYLENE (UG/L	1991 JAN 1991 MAR 1991 MAT 1991 SEP 1991 NDV 1992 APR 1992 AUR 1992 AUG 1992 OEC	M-XYLENE (UG/L 41 SAMPLES	0-xylene (ug/l 1991 Jan 1991 Mar 1991 Mar 1991 Mar 1991 Jul 1992 Aug 1992 Aug 1992 Aug 1992 Aug 1992 Aug 1993 Aug 1991 Jan 1991 Jan 1991 Jul 1991 Jul 1991 Jul 1991 Jul 1991 Jul 1991 Jul 1991 Aug 1991 Aug 1991 Aug 1991 Aug 1991 Aug 1992 Aug 1992 Aug 1992 Aug 1993 Aug 1993 Aug 1993 Aug 1993 Aug 1993 Aug 1994 Aug 1999 Aug 1990 A

TABLE 4-DRINKING WATER SURVEILLANCE PROGRAM 1991 AND, 1992 WALLACEBURG WTP

							,												,									,			,
DIST. SYSTEM THOMAS AVE STANDING		•	0 1 1 1 2 3 3 5 5 5 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•	1 1 1 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0		2 3 3 3 7 2 3 5 5 5 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7								•									•							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 7 (D1)	. BDL	GUIDELINE = 50 (A1)	108	GUIDELINE = 70 (D1)	BDL	GUIDELINE = N/A	BDL	108 ·	BDL	B01	80F	801		BUL				GUIDELINE = 350 (A1+)	2.600	2.400	4.800	8.700	14.000	7.400		3.600	•		•	5 5 7 6 8 8 8 8 8 1 1
DIST. SYSTEM ROBERT ST STANDING	J	. •	J	٠		•			•	•	•	•			•				J	•		•	•								=
	. + 0.100		. = 0.50	_	= 0.10	<u></u>	= 0.100	_	BDL	. پ	<u>.</u>	. ب	<u>.</u> -	ب	EF	_	ي ،	.ت.	= 0.10	0	0	0	0	0	0	0	• •	ي بد	.		=
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.100	BDL	DET'N LIMIT = 0.50	· BDL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.100	108	88	BOL	80F	BDL BDL	208		-	BDL	8 8	108	DET'N LIMIT = 0.10	2.30	4.500	4.400	6.800	12.60	3.900	17.60		i EF	200.4	4.500	
REATMENT PLANT TREATMENT PLANT RAW : TREATED		108		108		108	· · · · · · · · · · · · · · · · · · ·	BOL	80F	108	80F	80F	1 m	g e	BOL	BDL	801	BOL	-	4.200	2.600	6.500	9.100	16.100	9.700	31.200	7.700	005.11	10.000	8.700	
F PLANT	ILES)	BDL	^	BDL	3/1	BDL	^	BDL	.100 <t< td=""><td>301</td><td>80 L</td><td>BDL PDL</td><td>BDL BDL</td><td>ani ani</td><td>80L</td><td>BDL</td><td>20.</td><td>BDL</td><td></td><td>. 108</td><td>BDL</td><td>3DL</td><td>30</td><td>301</td><td>80F</td><td>BDL</td><td>2 2</td><td><u> </u></td><td><u> </u></td><td>80 F</td><td></td></t<>	301	80 L	BDL PDL	BDL BDL	ani ani	80L	BDL	20.	BDL		. 108	BDL	3DL	30	301	80F	BDL	2 2	<u> </u>	<u> </u>	80 F	
TREATMENT RAW :	VOLATILES 1,1-DICHLOROETHYLENE (UG/L	Ī	METHYLENE CHLORIDE (UG/L	_	T12-DICHLOROETHYLENE (UG/L	_	1,1-DICHLOROETHANE (UG/L	_		-	_ `		_						/r -)	u	-	_	_	_		_	٠ س		5 0		
	I CHL OROET	41 SAMPLES	LENE CHLO	41 SAMPLES	1CHLOROET	41 SAMPLES	ICHLOROET	1991 JAN	1991 MAR	1991 MAY	1991 JUL	or ser	1991 NOV	000 APP	92 JUN	1992 AUG	92 OCT	1992 DEC	CHLOROFORM (UG/L				1991 JUL	91 SEP	1991 NOV	1992 FEB	92 APR	1992 JUN	22 AUG	1992 DEC	
	1,1-D	41	METHY	41	T12-D	41	1,1-0	19	6	<u></u>	6 6	2 5	2 2	. 0	9	10	19	19	CHLOR	190	₹.	ě	9	5	19	<u>\$</u>	9.5	. Š	10,	5	

				,																															
DIST. SYSTEM THOMAS AVE STANDING	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠								•							1		=						•				, ,				٠		
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 200 (01)	BDL	T> 040	- IUR	3 6	905	BUL	BUL		108				•	GUIDELINE = 5 (A1)	108	GUIDELINE = 5 (A1)	108	GUIDELINE = 5 (01)	901	GUIDELINE = 50 (A1)	BOL .	GUIDELINE = 350 (A1+)	3 800	7.600	2.600	7.000	9.300	4.300		5.100				
DIST. SYSTEM ROBERT ST STANDING	1 , 1 ; 5 ; 5 ; 5 ; 5 ; 5 ; 5 ; 5 ; 5 ; 5 ;	•																				,	0.05	,	. 1			•	٠	•				•	
IT DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.02	BDL	T> 040.	140 <t< td=""><td>RDI</td><td>100</td><td>- POP</td><td>BUL</td><td>BDL</td><td>٠</td><td>166</td><td>BDL</td><td>IUB</td><td>BDI</td><td>DET'N LIMIT = 0.05</td><td>BDL.</td><td>DET'N LIMIT = 0.20</td><td>BOL</td><td>DET'N LIMIT = 0.05</td><td>108</td><td>DET'N LIMIT = 0.10</td><td>B0L</td><td>DET'N LIMIT =</td><td>3.600</td><td>4.250</td><td>5.150</td><td>9.400</td><td>9.250</td><td>4.150</td><td>3.650</td><td>. •</td><td>iEF</td><td>8.700</td><td>5.750</td><td>4.750</td></t<>	RDI	100	- POP	BUL	BDL	٠	166	BDL	IUB	BDI	DET'N LIMIT = 0.05	BDL.	DET'N LIMIT = 0.20	BOL	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.10	B0L	DET'N LIMIT =	3.600	4.250	5.150	9.400	9.250	4.150	3.650	. •	iEF	8.700	5.750	4.750
T TREATMENT PLANT TREATED	^	BDL	108	BOL	RDI	T I U	100	905	ROL	108	BDL	BOL	RDI	801		BDL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BDL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	108	8 2 2 8 8 8 9 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0	108		7.800	7.200	8.650	2.900	11.000	6.750	7.550	10.300	8,100	0.700	6.500	9.900
TREATMENT PLANT RAW	VOLATILES THANE (UG/L	BOL	BDL	108	BOL	S I G	100	. L	BUL	BOL	801	T> 080.	BDI	108	HANE (UG/L)	BOL	ORIDE (UG/L	BDL	DPANE (UG/L	BDL	NE (UG/L)	BOL	THANE (UG/L	BDL	BOL	108	801	. 108	BDL	BDL	BDL	BDL	80F	BDL	BOL
	VOLATIC 111, TRICHLORDETHANE (UG/L		1991 MAR	1991 MAY		1001 SFP		1000	1992 PEB			1992 AUG	1992 OCT		1,2 DICHLOROETHANE (UG/L	41 SAMPLES	CARBON TETRACHLORIDE (UG/L	41 SAMPLES	1,2-DICHLOROPROPANE (UG/L	41 SAMPLES	TRICHLORDETHYLENE (UG/L	41 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1991 JAN										130 266	1992 DEC

IABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

							,																								
DIST. SYSTEM THOMAS AVE STANDING		٠		٠		•								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						.•			•		٠	•					
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 0.6 (04)	BOL	GUIDELINE = 350 (A1+)	4.300	2:800	2.900	7.000	5.400	000.3	5.300				GUIDELINE = 65 (A5)	BDL	GUIDELINE = 350 (A1+)	T> 009.	T> 004.	1.200 <1	- 108 - 108	1> 0008.	BUL	· G	:			:	GUIDELINE = 0.17 (04)	108	GUIDELINE = 2 (D1)	BDL
DIST. SYSTEM ROBERT ST STANDING		. •			•		•	•	• •		•			05	٠				•	•	•	•	•		•		•	05	٠	100	•
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.05	BOL	DET'N LIMIT = 0.10	4.200	2.900	5.800	3.900	5.400	.500 <t< td=""><td>•</td><td>IEF</td><td>7.600</td><td>3.400</td><td>DET'N LIMIT = 0.05</td><td>80L</td><td>DET'N LIMIT = 0.20</td><td>T> 000.</td><td>T> 009.</td><td>1.200 <t< td=""><td>100 100 100 100 100 100 100 100 100 100</td><td>. 800 cl</td><td>1 2</td><td>700</td><td>Ē</td><td>1.800 <t< td=""><td>108</td><td>T> 009.</td><td>DET'N LIMIT = 0.05</td><td>80L</td><td>DET'N LIMIT = 0.100</td><td>108</td></t<></td></t<></td></t<>	•	IEF	7.600	3.400	DET'N LIMIT = 0.05	80L	DET'N LIMIT = 0.20	T> 000.	T> 009.	1.200 <t< td=""><td>100 100 100 100 100 100 100 100 100 100</td><td>. 800 cl</td><td>1 2</td><td>700</td><td>Ē</td><td>1.800 <t< td=""><td>108</td><td>T> 009.</td><td>DET'N LIMIT = 0.05</td><td>80L</td><td>DET'N LIMIT = 0.100</td><td>108</td></t<></td></t<>	100 100 100 100 100 100 100 100 100 100	. 800 cl	1 2	700	Ē	1.800 <t< td=""><td>108</td><td>T> 009.</td><td>DET'N LIMIT = 0.05</td><td>80L</td><td>DET'N LIMIT = 0.100</td><td>108</td></t<>	108	T> 009.	DET'N LIMIT = 0.05	80L	DET'N LIMIT = 0.100	108
TREATMENT PLANT TREATED		BOL	ů.	006.9	4.300	7.400	4.300	6.100	3.400 T> 008.	8.300	7.900	7.600	3.500		B0L	-	T> 008.	T> 009.	1,400 <t< td=""><td>108</td><td>. 5000 <⊤</td><td>307</td><td>1 E</td><td>BOL</td><td>1.600 <t< td=""><td>80L</td><td>T> 007.</td><td></td><td>801</td><td>J</td><td>BOL</td></t<></td></t<>	108	. 5000 <⊤	307	1 E	BOL	1.600 <t< td=""><td>80L</td><td>T> 007.</td><td></td><td>801</td><td>J</td><td>BOL</td></t<>	80L	T> 007.		801	J	BOL
	ES ,	ر پ	٠ -	ن	_				یے یے		_	┙:		^	_		7	_			-				_	_	۳.	,	پ	^	7
TREATMENT PLANT RAW	VOLATILES 112-TRICHLOROETHANE (UG/L	41 SAMPLES BOL	CHLORODIBROMOMETHANE (UG/L	1991 JAN BD	MAR.	MAY	יחר	SEP	1997 FFB BOL	APR	JUN	AUG	1992 OEC BOL	TETRACHLOROETHYLENE (UG/L	41 SAMPLES BOL	BROMOFORM (UG/L)		MAR	MAY	חמר	SEP	1991 NOV BDL	ADP.	JUN	AUG	1992 OCT BDL	DEC	1122-TETCHLOROETHANE (UG/L	41 SAMPLES BDL	VINYL CHLORIDE (UG/L	17 SAMPLES BOL

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALLACEBURG WTP

DIST, SYSTEM THOMAS AVE STANDING		٠		٠		٠		٠		٠												• •		٠
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = 70 (01)	BOL	GUIDELINE = 1510 (03)	108	GUIDELINE = 5 (A1)	BOL	GUIDELINE = 3750 (03)	108	GUIDELINE = 200 (A1)	108	GUIDELINE = 50. (01)	BOL	GUIDELINE = 350 (A1)	11.200	13.200	17.550	19.700	29.500	11.200	17, 000	200-1	• •		
DIST. SYSTEM ROBERT ST STANDING		٠	0 0 1 0 9 0 0 0 4 0 0	٠		•		•				٠	3 3 4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•	٠			•	•					٠
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.100	108	DET'N LIMIT = 0.10	BOL	DET'N LIMIT = 0.10	BDL	DET'N LIMIT = 0.10	108	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.05	108	DET'N LIMIT = 0.50	10.600	12,200	16.500	17.100	28.050	10.550	067.12	. 11	27, 100	16.950	13.250
TREATMENT PLANT TREATED	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. B0L	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	108	6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8	. 801	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	108	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	108	0 0 0 0 0 0 0 0 0 0	BOL	1	19.550	17.800	24.050	21.300	33.800	16.850	39.330	24.500	29.700	20,000	19.500
TREATMENT PLANT	VOLATILES NE (UG/L)	, 108		BDL	(06/L)	BOL	(UG/L)	BOL	(1/9()	108	(UG/L)	BOL	S (UG/L)	BDL	80F	108	. B0L	BOL	80L	801	BPI	80 E	801	BDL
TREA	VOLATILE C12-DICHLOROETHYLENE (UG/L	17 SAMPLES	CHLOROBENZENE (UG/L	41 SAMPLES	1,4-DICHLOROBENZENE (UG/L	41 SAMPLES	1,3-DICHLOROBENZENE (UG/L	41 SAMPLES	1,2-DICHLOROBENZENE (UG/L	41 SAMPLES	ETHYLENE DIBROMIDE (UG/L	41 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JAN	1991 MAR					1992 FEB				

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WAŁLACEBURG WTP

	:		 		-		• •			*	, ,			,
DIST. SYSTEM THOMAS AVE STANDING	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			•					^			
DIST. SYSTEM THOMAS AVE FREE FLOW	GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 50 (A1)	.•	GUIDELINE = 0.55 (D1)	,	GUIDELINE = N/A	· · · · ·	GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
DIST. SYSTEM ROBERT ST STANDING		•	1) () () () () () ()		1 1 1 1 1 1 1 1 1	••••			5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
DIST. SYSTEM ROBERT ST FREE FLOW	DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.70	٠	DET'N LIMIT = 0.04		DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	
TREATMENT PLANT TREATED		BDL	, , , , , , , , , , , , , , , , , , ,	. 108	1	BDL		050. 108 108				801 800 8.000 8.000		BOL
TREATMENT PLANT RAW	RAD TONUCL IDES	BDL	•	BDL		109	1 (80/L)	108 108 108	(BQ/L)	080.	^	8DL 8DL 7.000 11.000	^	108
7 A A	COBALT 60 (BQ/L.	8 SAMPLES	CESIUM 134 (BQ/L	8 SAMPLES	CESIUM 137 (BQ/L	8 SAMPLES	GROSS ALPHA COUNT (BQ/L	1991 MAY 1991 SEP 1992 JUN 1992 AUG	GROSS BETA COUNT (BQ/L	1991 MAY 1991 SEP 1992 JUN 1992 AUG	TRITIUM (BQ/L	1991 MAY 1991 SEP 1992 JUN 1992 AUG	1001NE 131 (BQ/L	8 SAMPLES

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
BACTERIOLOGICAL			
FECAL COLIFORM MEMBRANE FILTRATION STANDARD PLATE COUNT MEMBRANE FILT. TOTAL COLIFORM BACKGROUND MF TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML CT/ML CT/100ML CT/10DML	0 0 0	0 (A1) 500/ML (A3) N/A 5/100ML (A1)
CHEMISTRY (FLD)			
FIELD COMBINED CHLORINE RESIDUAL FIELD TOTAL CHLORINE RESIDUAL FIELD FREE CHLORINE RESIDUAL FIELD PH FIELD TEMPERATURE FIELD TURBIDITY	MG/L MG/L MG/L DMNSLESS DEG.C FTU	0 - 0 0 n/a n/a	N/A N/A N/A 6.5-8.5 (A4) 15.0 (A3) 1.0 (A1)
CHEMISTRY (LAB)			
ALKALINITY AMMONIUM TOTAL CALCIUM CHLORIDE COLOUR CONDUCTIVITY CYANIDE DISSOLVED ORGANIC CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM NITRATES (TOTAL) NITRITE PH PHOSPHORUS FIL REACT	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	0.20 0.002 0.20 0.50 1.00 0.001 0.10 0.01 0.50 N/A N/A 0.10 0.005 0.001	30-500 (A4) · 0.05 (F2) 100.0 (F2) 250.0 (A3) 5.0 (A3) 400.0 (F2) 0.2 (A1) 5.0 (A3) 1.5* (A1) 80-100 (A4) N/A 30.0 (F2) 10.0 (A1) 1.0 (A1) N/A 6.5-8.5 (A4) N/A
PHOSPHORUS TOTAL POTASSIUM . RESIDUE FILTRATE (CALCULATED TDS) SOOIUM SULPHATE TURBIDITY	MG/L MG/L MG/L MG/L MG/L FTU	0.002 0.010 N/A 0.20 0.20 0.05	0.4 (F2) 10.0 (F2) 500.0 (A3) 200.0 (A4) 500.0 (A4) 1.0 (A1)

^{*} The Maximum Acceptable Concentration (MAC) for naturally occurring fluoride in drinking water is 2.4 mg/L.

1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A	
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A	
1,2,4-TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1,2,4,5-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
1,3,5-TRICHLOROBENZENE	NG/L	5.0	N/A	
2,3,6-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,4,5-TRICHLOROTOLUENE	NG/L	5.0	N/A	
2,6A-TRICHLOROTOLUENE	NG/L	. 5.0	N/A	
HEXACHLOROBENZENE (HCB)	NG/L	1.0	10	(C1)
HEXACHLOROBUTADIENE	NG/L	1.0	450	(04)
HEXACHLOROETHANE	NG/L	1.0	1900	(04)
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
2.3.4-TRICHLOROPHENOL	NG/L	100.0	N/A	
2,3,4,5-TETRACHLOROPHENOL	NG/L	20.0	N/A	
2,3,5,6-TETRACHLOROPHENOL	NG/L	10.0	N/A	

CHLOROAROMATICS

•				
SCAN/PARAMETER .	TINU	DETECTION	GUIDELINE	
			2600000	(0/)
2,4,5-TRICHLOROPHENOL	NG/L	100.0	5000	(A1)
2,4,6-TRICHLOROPHENOL	NG/L	20.0		
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
	*		100	
ALUMINUM	UG/L.	0.10		(A4)
ANT I MONY	UG/L	0.05	146	(D4)
ARSENIC	UG/L	0.10	25	(A1)
BARIUM	UG/L	0.05	1000	(A2)
BERYLLIUM	UG/L	0.05	6800	(D4)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50	50	(A1)
COBALT	UG/L	0.02	N/A	
COPPER	UG/L	0.50	1000	(A3)
IRON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY	, UG/L	0.02	1	(A1)
MOLYBDENUM	UG/L	0.05	N/A	_
NICKEL	UG/L	0.20	350	(D3)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM	UG/L	. 0.10	N/A	
THALLIUM	UG/L	0.05	13	(D4)
TITANIUM	UG/L	0.50	N/A	
. URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS		•		
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE '	NG/L	20.0	N/A	
BENZO(A) PYRENE	NG/L	5.0	10	(A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A	
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A	
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A	
CHRYSENE	NG/L	50.0	N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L	20.0	42000	(D4)
INDENO(1,2,3-C,D) PYRENE	.NG/L	20.0	N/A	
PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE '	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN	NG/L	1.0	700	(A1)
. ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700	(G)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	
ATRAZINE	NG/L	50.0	60000	(A2)
DESETHYL ATRAZINE	NG/L	200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000	(D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)		5.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION	GUIDELINE	
ENDRIN	NG/L	5.0	1600	(D3)
GAMMA CHLORDANE	NG/L	2.0	7000	(A1)
HEPTACHLOR	NG/L	1.0	3000	(A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000	(A1)
HEXACHLOROCYCLOPENTAD1ENE	NG/L	5.0	206000	(D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000	(A1)
METHOXYCHLOR	NG/L	5.0	900000	(A1)
	NG/L	500.0	50000	(A2)
METOLACHLOR	NG/L	100.0	80000	(A1)
METRIBUZIN (SENCOR)	NG/L	5.0	N/A	(///
MIREX	NG/L	5.0	30000	(A1)
P,P-DDD O,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDT	NG/L	5.0	30000	(A1)
P,P-DDE	NG/L	1.0	30000	(A1)
		2.0	N/A	(117
OXYCHLORDANE PCR	NG/L NG/L	20.0	3000	(A2)
, 32		50.0	52500	(D3)
PROMETONE	NG/L	50.0	1000	(A2)
PROMETRYNE	NG/L		700000	(D3)
PROPAZINE	NG/L	50.0		
SIMAZINE .	NG/L	50.0	10000	(A2)
DESETHYL SIMAZINE	NG/L	200.0	10000	(A2)
TOXAPHENE	NG/L	500.0	5000	(A1)
PHENOLICS .				
PRENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A	
SPECIFIC PESTICIDES				
2,4 D PROPIONIC ACID	NG/L	100.0	N/A	
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000	(A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000	(A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB)	NG/L	200.0	N/A	
2,4,5-TP (SILVEX)	NG/L	20.0	10000	(A1)
BUTYLATE (SUTAN)	NG/L	2000.0	245000	(D3)
CARBARYL (SEVIN)	NG/L	200.0	90000	(A1)
CARBOFURAN	NG/L	2000.0	90000	(A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000	(G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A	
DIALLATE	NG/L	2000.0	N/A	
DIAZINON	NG/L	20.0	20000	(A1)
DICAMBA	NG/L	50.0	120000	(A1)
DICHLOROVOS	NG/L	20.0	N/A	
EPTAM	NG/L	2000.0	N/A	
ETHION	NG/L	20.0	35000	(G)
IPC	NG/L	2000.0	N/A	
MALATHION	NG/L	20.0	190000	(A1)
METHYL PARATHION	NG/L	50.0	9000	(D3)
METHYLTRITHION	NG/L	20.0	N/A	
MEVINPHOS	NG/L	20.0	N/A	
PARATHION	NG/L	20.0	50000	(A1)
PHORATE (THIMET)	NG/L	20.0	2000	(A2)
PICHLORAM	NG/L	100.0	190000	(A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000	(D3)
RELDAN	NG/L	20.0	N/A	
RONNEL	NG/L	20.0	N/A	
VOLATILES				
1,1-DICHLOROETHANE	UG/L	0.10	N/A	(04)
1,1-DICHLOROETHYLENE	UG/L	0.10	7	(D1)
1,2-DICHLOROBENZENE	UG/L	0.05 0.05	200	(A1) (A1)
1,2-DICHLOROETHANE	UG/L	0.05	5	(D1)
1,2-DICHLOROPROPANE	UG/L	0.05	3750	(01)
1,3-DICHLOROBENZENE	UG/L		5.50	
1,4-DICHLOROBENZENE	UG/L	0.10	200	
1,1,1-TRICHLOROETHANE	UG/L	0.02		6 (D4)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.	17 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	υ.	17 (04)

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

**	DETECT-ION	
SCAN/PARAMETER UNI		NE
		••
BENZENE UG/I		5 (A1)
BROMOFORM UG/I		50 (A1+)
CARBON TETRACHLORIDE - UG/1		5 (A1)
CHLOROBENZENE UG/I		10 (D3)
CHLOROD I BROMOMETHANE UG/I		50 (A1+)
CHLOROFORM UG/I		50 (A1+)
CIS 1,2-DICHLOROETHYLENE UG/		70 (D1)
DICHLOROBROMOMETHANE UG/I		50 (A1+)
ETHYLENE DIBROMIDE UG/I		50 (D1)
ETHYLBENZENE UG/I		2.4 (A3)
M-XYLENE UG/I		00 (A3*)
METHYLENE CHLORIDE UG/		50 (A1)
O-XYLENE UG/I		00 (A3*.)
P-XYLENE UG/I		00 (A3*)
STYRENE UG/I		00 (D1)
TETRACHLOROETHYLENE UG/I		65 (A5)
TRANS 1,2-DICHLOROETHYLENE UG/I		70 (D1)
TOLUENE · UG/I		24 (A3)
TOTAL TRIHALOMETHANES UG/I		50 (A1)
TRICHLOROETHYLENE UG/I		50 (A1)
VINYL CHLORIDE UG/I	L, 0.10	2 (01)
RADIONUCLIDES	•	
TRITIUM BQ/I	7.0 400	00 (A1)
GROSS ALPHA COUNT . BQ/I	0.04	0.55# (01)
GROSS BETA COUNT BQ/I		/A
COBALT 60 BQ/I		/A
CESIUM 134 BQ/I		/A
CESIUM 137 BQ/I		50 (A1)
IODINE 131 BQ/I	L 0.70	10 (A1)

Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG. 1

PARAMETER REFERENCE INFORMATION

NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 μg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF

HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS
AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT
A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES,
SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR

DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES: DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER

COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING

BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES: MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20°C (27) VAPOUR PRESSURE: 100 MM AT 26.1°C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

-fill to 2 cm from top

-220 mL plastic bottle with white seal on cap Bacteriological

-do not rinse bottle, preservative has been added -avoid touching bottle neck or inside of cap

-fill to top of red label as marked

-500 mL plastic bottle (PET 500) Metals

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO3) (Caution: HNO, is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics

(OWOC), (OWTRI)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

Specific Pesticides

(OWCP), (PEOP), (PECAR)

-as per Organics

-three extra bottles must be filled

Polyaromatic hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Cyanide (Treated only)

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO3) and potassium dichromate (K2Cr2O7) (Caution: HNO3&K2Cr2O7 are corrosive) Phenols -250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization (GC/MS - once per year)

rization -1 L amber glass bottle; instructions r year) as per organic

(GC/MS - once per year)
(PBVOL),(PBEXT)

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

1. Let sampling water tap run for an adequate time to clear the sample line.

2. Record time of day on submission sheet.

3. Record temperature on submission sheet.

4. Fill up all bottles as per instructions.

Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- 6. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

-500 mL plastic bottle (PET 500) General Chemistry

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO2 (Caution: HNO, is corrosive)

Volatiles (duplicate)

-45 mL glass vial with septum

(teflon side must be in contact with sample) (OPOPUP)

-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles ·

Organics (OWOC)

-1 L amber glass bottle per scan

-do not rinse bottle -fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

