

# W80 Hardware Design

**WIFI Module** 

#### **SIMCom Wireless Solutions Limited**

Building B, SIM Technology Building, No.633, Jinzhong Road
Changning District, Shanghai P.R. China
Tel: 86-21-31575100
support@simcom.com
www.simcom.com



| Document Title: | W80 Hardware Design |  |  |  |  |
|-----------------|---------------------|--|--|--|--|
| Version:        | 1.00                |  |  |  |  |
| Date:           | 2020-05-22          |  |  |  |  |
| Status:         | Released            |  |  |  |  |

#### **GENERAL NOTES**

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE.

#### **COPYRIGHT**

THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT, ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY TECHNICAL INFORMATION , INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A PATENT , A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.

#### **SIMCom Wireless Solutions Limited**

Building B, SIM Technology Building, No.633 Jinzhong Road, Changning District, Shanghai P.R.China

Tel: +86 21 31575100

Email: simcom@simcom.com

#### For more information, please visit:

https://www.simcom.com/download/list-863-en.html

#### For technical support, or to report documentation errors, please visit:

https://www.simcom.com/ask/ or email to: support@simcom.com

Copyright © 2020 SIMCom Wireless Solutions Limited All Rights Reserved.

www.simcom.com 2 / 35



## **Version History**

| Date      | Version | Description of change | Author                     |
|-----------|---------|-----------------------|----------------------------|
| 2020-5-22 | V1.00   | Initial release       | Zhiqiang Liu<br>Xiaobo Bai |



www.simcom.com 3 / 35



## **Contents**

| Contents                                                                                                                                                                                                                                                                                                                                                 | 4                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Table Index                                                                                                                                                                                                                                                                                                                                              | 6                    |
| Figure Index                                                                                                                                                                                                                                                                                                                                             | 7                    |
| 1. Introduction  1.1 Product Outline  1.2 Hardware Interface Overview  1.3 Hardware Block Diagram  1.4 Feature Overview  1.5 W80 and SIM8200G Connect Diagram                                                                                                                                                                                            | 8<br>8<br>8          |
| 2. Package Information  2.1 Pin Assignment Overview  2.2 Pin Description  2.3 Mechanical Dimensions                                                                                                                                                                                                                                                      | 12<br>13<br>15       |
| 3. Interface Application 3.1 Power Supply 3.2 I2S Interface* 3.3 Clock Interface 3.4 LAA and Module Control Interface. 3.4.1 LAA Control 3.4.2 Module Control 3.5 UART Interface. 3.5.1 COEX UART 3.5.2 BT UART*. 3.6 PCle Interface 3.7 Antenna Interface 3.7.1 Frequency band 3.7.2 Reference design for RF 3.7.3 Requirement for antenna installation |                      |
| 4. Electrical Specifications  4.1 Absolute Maximum Ratings  4.2 Operating Conditions  4.3 RF Characteristics  4.4 ESD                                                                                                                                                                                                                                    | 21<br>21<br>22<br>23 |
| 5. Manufacturing                                                                                                                                                                                                                                                                                                                                         | 25                   |



| 5.3 Recommended PCB Footprint        | 26 |
|--------------------------------------|----|
| 5.4 Recommended SMT Stencil          | 27 |
| 5.5 Recommended SMT Reflow Profile   | 29 |
| 5.6 Moisture Sensitivity Level (MSL) | 29 |
| 5.7 Baking Requirements              | 30 |
|                                      |    |
| 6. Packaging                         | 31 |
| 6. Packaging<br>7. Appendix          |    |
|                                      | 34 |
| 7. Appendix                          |    |





## **Table Index**

| Table 1: k | Key features                                                             | 9    |
|------------|--------------------------------------------------------------------------|------|
| Table 2: F | Pin description                                                          | . 13 |
| Table 3: [ | Definition of Power and GND pins                                         | . 17 |
| Table 4: 3 | Sleep clock                                                              | . 18 |
| Table 5: l | LAA control                                                              | . 18 |
| Table 6: I | Module control                                                           | . 18 |
| Table 7: F | Frequency band                                                           | . 20 |
|            | Requirement for antenna installation                                     |      |
| Table 9: / | Absolute maximum ratings                                                 | . 21 |
| Table 10:  | Power recommended operating ratings                                      | . 21 |
|            | 1.8V digital I/O characteristics                                         |      |
| Table 12:  | Transmit power per chain                                                 | . 22 |
|            | Receive Sensitivity at 2.4G for 1X1 configuration                        |      |
| Table 14:  | Receive Sensitivity at 5G for 1X1 configuration                          | . 23 |
| Table 15:  | The ESD performance measurement table (Temperature: 25°C, humidity: 45%) | . 23 |
| Table 16:  | Label description of module information                                  | . 26 |
| Table 17:  | MSL ratings summary                                                      | . 29 |
| Table 18:  | Baking requirements                                                      | . 30 |
|            | Tray size                                                                |      |
|            | Small carton size                                                        |      |
|            | Big carton size                                                          |      |
| Table 22:  | Related documents                                                        | . 34 |
| Table 23:  | Terms and abbreviations                                                  | . 34 |
| Table 24:  | Safety caution                                                           | . 35 |



## **Figure Index**

| Figure 1:  | W80 hardware block diagram                   | 9  |
|------------|----------------------------------------------|----|
| Figure 2:  | W80 and SIM8200G connect diagram             | 11 |
| Figure 3:  | Pin assignment                               | 12 |
| Figure 4:  | Dimensions of W80 (Unit: mm)                 | 15 |
| Figure 5:  | Timing of power on/off                       | 16 |
| Figure 6:  | Timing of 32KHz                              | 17 |
|            | PCIe interface reference circuit             |    |
| Figure 8:  | Reference design of RF                       | 20 |
| Figure 9:  | Top and bottom view of W80                   | 25 |
| Figure 10: | Label description of module                  | 26 |
|            | Recommended PCB footprint                    |    |
| Figure 12: | Recommended SMT stencil                      | 28 |
| Figure 13: | The ramp-soak-spike reflow profile of module | 29 |
| Figure 14: | Packaging diagram                            | 31 |
| Figure 15: | Tray drawing                                 | 31 |
| Figure 16: | Small carton drawing                         | 32 |
|            | Big carton drawing                           |    |



## 1. Introduction

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of the W80 module. With the help of this document, in combination with our application manual and user guide, customers can quickly apply W80 module into wireless applications.

#### 1.1 Product Outline

The W80 is a small, low-power, low-cost Wi-Fi 6 and Bluetooth v5.1 module based on Qualcomm QCA-6391 chipset. The module can be used in car networking, wireless routing, and other wireless terminals. The module is designed to be used together with SIMCom SIM8200-LGA series modules to establish WLAN and Bluetooth connections. W80 supports 2X2+2X2 MU-MIMO and provides a maximum data rate up to 1774.5Mbps.

#### 1.2 Hardware Interface Overview

W80 support the following interfaces:

- Power supply
- One I2S interface
- One PCle \*1 lane interface
- One COEX\_UART interface
- One 32KHz clock input interface
- One BT\_UART interface
- Two WLAN antenna interfaces
- LAA control interfaces
- GPIOs

### 1.3 Hardware Block Diagram

The following figure shows the hardware block diagram of W80:

www.simcom.com 8 / 35





Figure 1: W80 hardware block diagram

#### 1.4 Feature Overview

Table 1: Key features

| Feature            | Implementation                              |
|--------------------|---------------------------------------------|
|                    | VPH: 3.3~4.4 V                              |
|                    | S2E_1P224: 1.22~1.3 V                       |
| Power Supply       | S3E_0P824: 0.82~0.95 V                      |
|                    | S4E_1P904: 1.8~2.0 V                        |
|                    | VDD_IO: 1.8~2.0 V                           |
|                    | 802.11b: 1, 2, 5.5, 11Mbps                  |
|                    | 802.11g\a: 6, 9, 12, 18, 24, 36, 48, 54Mbps |
|                    | 802.11n_HT20: MCS0~MCS7                     |
|                    | 802.11n_HT40: MCS0~MCS7                     |
|                    | 802.11n_HT80: MCS0~MCS7                     |
| Date Rate          | 802.11ac_HT20: MCS0~MCS9                    |
|                    | 802.11ac_HT40: MCS0~MCS9                    |
|                    | 802.11ac_HT80: MCS0~MCS9                    |
|                    | 802.11ax_HT20: MCS0~MCS11                   |
|                    | 802.11ax_HT40: MCS0~MCS11                   |
|                    | 802.11ax_HT80: MCS0~MCS11                   |
|                    | 802.11b/11Mbps: 20dBm                       |
|                    | 802.11a/g/54Mbps: 15dBm                     |
| Transmitting power | 802.11n_HT20/MCS7: 15dBm                    |
| Transmitting power | 802.11n_HT40/MCS7: 15dBm                    |
|                    | 802.11n_HT80/MCS7: 15dBm                    |

www.simcom.com 9 / 35



|                                  | 802.11ac_HT20/MCS9: 14dBm                                       |  |  |
|----------------------------------|-----------------------------------------------------------------|--|--|
|                                  | 802.11ac_HT40/MCS9: 14dBm                                       |  |  |
|                                  | 802.11ac_HT80/MCS9: 14dBm                                       |  |  |
|                                  | 802.11ax_HT20/MCS11: 12dBm                                      |  |  |
|                                  | 802.11ax_HT40/MCS11: 12dBm                                      |  |  |
|                                  | 802.11ax_HT80/MCS11: 12dBm                                      |  |  |
| WLAN Standard                    | IEEE 802.11a/b/g/n/ac/ax                                        |  |  |
|                                  | DSSS (1/2Mbps), CCK(1/2/5.5/11Mbps), OFDM                       |  |  |
| BA - ded - 45 - in BA - 45 - and | (6/9/12/18/24/36/48/54Mbps),OFDM technology combined with BPSK, |  |  |
| Modulation Method                | QPSK, 16-qam, 64-qam, 256-qam, 1024-qam; 820.11b adopts CCK     |  |  |
|                                  | and DSSS modulation technology                                  |  |  |
| PCIe Interface                   | One lane PCIe interface, support PCIe Gen 2.0                   |  |  |
| UART Interface                   | One UART interface                                              |  |  |
| OART III.ellace                  | Data rate up to 3.2 Mbps                                        |  |  |
| I2S Interface                    | One I2S interface, the I2S also can be configured as PCM        |  |  |
| Antenna Interface                | 2X2+2X2                                                         |  |  |
| Dhysical sharestoristics         | Size: 24.0mm*17.0mm*2.6mm                                       |  |  |
| Physical characteristics         | Weight: TBD                                                     |  |  |
| Tomporoturo rongo                | Normal operation: -30°C ~ +70°C                                 |  |  |
| Temperature range                | Storage temperature: -40°C ~ +90°C                              |  |  |

## 1.5 W80 and SIM8200G Connect Diagram

The following figure shows the connect diagram of W80 and SIM8200G, the details please refer the SIM8200G reference design.



Figure 2: W80 and SIM8200G connect diagram



## 2. Package Information

#### 2.1 Pin Assignment Overview

All functions of the W80 will be provided through 90 pins that will be connected to the customers' platform. The following figure is a high-level view of the pin assignment of the W80.



Figure 3: Pin assignment



## 2.2 Pin Description

Table 2: Pin description

| Pin name       | Pin number                                                                                                                   | I/O | Description                            | Comment       |
|----------------|------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------|---------------|
| Power supply   |                                                                                                                              |     | · · · ·                                |               |
| VPH            | 21,22                                                                                                                        | PI  | Power for PA                           |               |
| S2E_1P224      | 34                                                                                                                           | PI  | Power for PCIe and RFA                 |               |
| S3E_0P824      | 35                                                                                                                           | PI  | Power for RFA and others               |               |
| S4E_1P904      | 32                                                                                                                           | PI  | Power for PCIe and RFA                 |               |
| VDD_IO         | 36                                                                                                                           | PI  | Power for IO                           |               |
| GND            | 5,6,8,9,10,11,13,<br>14,15,20,23,31,3<br>3,37,40,43,46,50,<br>52,57,64,70,74,<br>75,76,77,78,79,<br>80,82,83,84,85,<br>86,87 |     | Ground                                 |               |
| LAA control    |                                                                                                                              |     |                                        |               |
| WL_LAA_TX_EN   | 24                                                                                                                           | DI  | WLAN XFEM control LAA enable           |               |
| WL_LAA_RX      | 25                                                                                                                           | DO  | WLAN XFEM control for LAA receiver     |               |
| WL_LAA_AS_EN   | 28                                                                                                                           | DI  | WLAN LAA AS enable                     |               |
| Moudle control |                                                                                                                              |     |                                        |               |
| WL_TX_EN       | 26                                                                                                                           | DI  | WLAN XFEM control for WLAN TX enable   |               |
| WL_PA_MUTE     | 27                                                                                                                           | DI  | WLAN XFEM control for PA mute          |               |
| BT_EN          | 29                                                                                                                           | DI  | BT enable                              |               |
| WL_EN          | 30                                                                                                                           | DI  | EN for WLAN                            |               |
| WL_SW_CTRL     | 65                                                                                                                           | DI  | Switch control                         |               |
| SDX_TO_WL_CTI  | 66                                                                                                                           | DI  | GPIO                                   |               |
| WL_TO_SDX_CTI  | 19                                                                                                                           | DO  | GPIO                                   |               |
| PCIe interface |                                                                                                                              |     |                                        |               |
| PCIe_RXM       | 38                                                                                                                           | Al  | PCIe receive minus                     |               |
| PCIe_RXP       | 39                                                                                                                           | Al  | PCIe receive plus                      | Required 90 Ω |
| PCIe_CLKM      | 41                                                                                                                           | Al  | PCIe reference clock minus             | differential  |
| PCIe_CLKP      | 42                                                                                                                           | Al  | Al PCIe reference clock plus impedance |               |
| PCIe_TXM       | 44                                                                                                                           | AO  | PCIe transmit minus                    |               |
| PCIe_TXP       | 45                                                                                                                           | AO  | PCIe transmit plus                     |               |



| PCIe_RST          | 49                                                     | DO  | PCIe reset.                               |                                   |  |
|-------------------|--------------------------------------------------------|-----|-------------------------------------------|-----------------------------------|--|
| PCIe_CLKREQ       | 47                                                     | DIO | PCIe clock request.                       | These pins have                   |  |
| PCIe_WAKE         | 48                                                     | DI  | PCIe wake-up                              | been pulled up to 1.8V internally |  |
| I2S interface     |                                                        |     |                                           |                                   |  |
| I2S_DIN           | 56                                                     | DI  | BT I2S serial data Input 0 for audio      |                                   |  |
| I2S_CLK           | 55                                                     | DI  | BT I2S continuous serial clock 0 foraudio |                                   |  |
| I2S_WS            | 54                                                     | DIO | BT I2S word select 0 for audio            |                                   |  |
| I2S_DOUT          | 53                                                     | DO  | BT I2S serial data output 0 for audio     |                                   |  |
| UART interface    |                                                        |     |                                           |                                   |  |
| COEX_UART_TXD     | 63                                                     | DO  | LTE coexistence UART TXD                  |                                   |  |
| COEX_UART_RXD     | 62                                                     | DI  | LTE coexistence UART RXD                  |                                   |  |
| UART_TXD          | 61                                                     | DO  | BT UART transmit data for HCI messaging   |                                   |  |
| UART_RXD          | 60                                                     | DI  | BT UART receive data for HCI messaging    |                                   |  |
| UART_CTS          | 59                                                     | DO  | BT UART clear to send for HCI messaging   |                                   |  |
| UART_RTS          | 58                                                     | DI  | BT UART request to send for HCI messaging |                                   |  |
| Clock interface   |                                                        |     |                                           |                                   |  |
| CLK_IN_32K        | 51                                                     | DI  | Sleep clock input                         |                                   |  |
| Antenna interface |                                                        |     |                                           |                                   |  |
| ANT0              | 7                                                      | AIO | WLAN/BT antenna0 interface                |                                   |  |
| ANT1              | 12                                                     | AIO | WLAN antenna1 interface                   |                                   |  |
| RFU interface     |                                                        |     |                                           |                                   |  |
| RFU               | 1,2,3,4,16,17,18,<br>67,68,69,71,72,<br>73,81,88,89,90 |     | Reserved for future use                   | Keep open                         |  |

## NOTE

- 1. Unused and RFU pins should keep open.
- 2. All Power and GND pins should be connected to the customer's main PCB.



### 2.3 Mechanical Dimensions

The following figure shows the mechanical dimensions of W80.



Figure 4: Dimensions of W80 (Unit: mm)



## 3. Interface Application

#### 3.1 Power Supply

Ensure the module works properly, all power and GND pins should be connected; when all powers are supplied W80 will work well together with SIM8200-LGA series modules.

Timing of power on/off:



Figure 5: Timing of power on/off

#### NOTE

- 1. The trace of VPH needs to meet the width of 1000mA current at least.
- 2. The trace of S4E 1P904 needs to meet the width of 500mA current at least.
- 3. The trace of S2E\_1P224 needs to meet the width of 500mA current at least.
- 4. The trace of S3E\_0P824 needs to meet the width of 1500mA current at least.
- 5. The trace of VDD\_IO needs to meet the width of 100mA current at least.



Table 3: Definition of Power and GND pins

| Pin name  | Pin number I/O                                                                              |                    | Description              | Comment |
|-----------|---------------------------------------------------------------------------------------------|--------------------|--------------------------|---------|
| VPH       | 21,22                                                                                       | PI Power for PA    |                          |         |
| S2E_1P224 | 34                                                                                          | PI                 | Power for PCIe and RFA   |         |
| S3E_0P824 | 35                                                                                          | PI                 | Power for RFA and others |         |
| S4E_1P904 | 32 PI                                                                                       |                    | Power for PCIe and RFA   |         |
| VDD_IO    | 36                                                                                          | PI                 | Power for IO             |         |
| GND       | 5,6,8,9,10,11,13,14<br>23,31,33,37,40,43,<br>52,57,64,70,74,75,<br>78,79,80,82,83,84,<br>87 | ,46,50,<br>,76,77, | Ground                   |         |

S4E\_1P904, S2E\_1P224, S3E\_0P824 and VDD\_IO should be connected to SIM8200-LGA series modules.

#### 3.2 I2S Interface\*

I2S is for audio feature with BT function, under developing now.

#### **NOTE**

"\*" means under development.

#### 3.3 Clock Interface

The 32KHz clock is for sleep mode of Bluetooth, the routing line of it should be as short as possible and also need GND protection.



Figure 6: Timing of 32KHz



Table 4: Sleep clock

| Symbol | Parameter              | Min. | Тур.    | Max.  | Unit |
|--------|------------------------|------|---------|-------|------|
| T(xoh) | Sleep clock logic high | 4.58 | -       | 25.94 | us   |
| T(xol) | Sleep clock logic low  | 4.58 | -       | 25.94 | us   |
| Т      | Sleep clock period     | -    | 30.5208 | -     | us   |
| F      | Sleep clock frequency  | -    | 32.7645 | -     | KHz  |
| Vpp    | Peak-to-peak voltage   | -    | 1.8     | -     | V    |

#### 3.4 LAA and Module Control Interface

#### 3.4.1 LAA Control

Table 5: LAA control

| Pin name      | Pin number | I/O | Description           | Comment |
|---------------|------------|-----|-----------------------|---------|
| MI IAA TV ENI | 24         | DI  | WLAN XFEM control     |         |
| WL_LAA_TX_EN  | 24         | DI  | LAA enable            |         |
| MI IAA DV     | 0.5        | DO  | WLAN XFEM control for |         |
| WL_LAA_RX     | 25         | DO  | LAA receiver          |         |
| WL_LAA_AS_EN  | 28         | DI  | WLAN LAA AS enable    |         |

#### 3.4.2 Module Control

Table 6: Module control

| Pin name      | Pin number | I/O | Description           | Comment |
|---------------|------------|-----|-----------------------|---------|
| WL TX EN      | 26         | DI  | WLAN XFEM control for |         |
| VVL_1/\_LIV   | 20         | Di  | WLAN TX enable        |         |
| MI DA MITE    | 27         | DI  | WLAN XFEM control for |         |
| WL_PA_MUTE    | 21         | DI  | PA mute               |         |
| BT_EN         | 29         | DI  | BT enable             |         |
| WL_EN         | 30         | DI  | EN for WLAN           |         |
| WL_SW_CTRL    | 65         | DI  | Switch control        |         |
| SDX_TO_WL_CTI | 66         | DI  | GPIO                  |         |
| WL_TO_SDX_CTI | 19         | DO  | GPIO                  |         |

#### 3.5 UART Interface

#### **3.5.1 COEX UART**



To reduce the mutual interference between LTE and WIFI, please connect COEX\_UART to SIM8200-LGA series modules.

#### 3.5.2 BT UART\*

BT\_UART is for communication with SIM8200-LGA series modules, under developing now.

#### **NOTE**

"\*" means under development.

#### 3.6 PCIe Interface

PCIe is for communication with SIM8200 series modules, which required differential trace impedance is  $90\pm10\%\Omega$ , and the following figure is the PCIe reference circuit:



Figure 7: PCIe interface reference circuit

#### 3.7 Antenna Interface

Pin7 and pin12 are for antenna, the characteristic impedance is  $50\Omega$ .

#### 3.7.1 Frequency band



Table 7: Frequency band

| Parameter       | Value     | Unit |
|-----------------|-----------|------|
| Fraguera, ranga | 2412~2484 | MHz  |
| Frequency range | 5180~5825 | MHz  |

#### 3.7.2 Reference design for RF



Figure 8: Reference design of RF

W80 provides two RF welding disc interfaces for connecting external antennas. The RF wiring connected to the module RF antenna welding disc is made with a micro-strip line or other type impedance line. The impedance must be controlled at about 50 ohms, and the routing line is as short as possible. In order to obtain better RF performance, two GND pads on each side of the RF interface are needed.

#### 3.7.3 Requirement for antenna installation

Table 8: Requirement for antenna installation

| Parameter                    | Requirement  |
|------------------------------|--------------|
| Fragueray range              | 2412~2484MHz |
| Frequency range              | 5180~5825MHz |
| SWR                          | ≤2:1         |
| Line loss                    | <1dB         |
| Gain (dBi)                   | >1           |
| Input impedance ( $\Omega$ ) | 50           |
| Direction                    | Vertical     |

www.simcom.com 20 / 35



## 4. Electrical Specifications

### **4.1 Absolute Maximum Ratings**

**Table 9: Absolute maximum ratings** 

| Parameter | Description              | Min | Type | Max | Unit |
|-----------|--------------------------|-----|------|-----|------|
| VPH       | Power for PA             | -   | -    | 4.8 | V    |
| S2E_1P224 | Power for PCIe and RFA   | -   | -    | 1.4 | V    |
| S3E_0P824 | Power for RFA and others | -   | -    | 1.0 | V    |
| S4E_1P904 | Power for PCIe and RFA   | -   | -    | 2.0 | V    |
| VDD_IO    | Power for IO             | -   | -    | 2.0 | V    |

## **4.2 Operating Conditions**

Table 10: Power recommended operating ratings

| Parameter | Description              | Min  | Type | Max  | Unit |
|-----------|--------------------------|------|------|------|------|
| VPH       | Power for PA             | 3.3  | 3.8  | 4.4  | V    |
| S2E_1P224 | Power for PCIe and RFA   | 1.22 | 1.28 | 1.3  | V    |
| S3E_0P824 | Power for RFA and others | 0.82 | 0.88 | 0.95 | V    |
| S4E_1P904 | Power for PCIe and RFA   | 1.8  | 1.88 | 2.0  | V    |
| VDD_IO    | Power for IO             | 1.8  | 1.8  | 2.0  | V    |

Table 11: 1.8V digital I/O characteristics

| Parameter | Description       | Min  | Type | Max  | Unit |
|-----------|-------------------|------|------|------|------|
| VIH       | Input high level  | 1.26 | -    | 2.1  | V    |
| VIL       | Input low level   | 0    | -    | 0.54 | V    |
| VOH       | Output high level | 1.35 | -    | 1.8  | V    |
| VOL       | Output low level  | 0    | -    | 0.45 | V    |

www.simcom.com 21 / 35



### 4.3 RF Characteristics

Table 12: Transmit power per chain

| Data                       | Туре | Unit |
|----------------------------|------|------|
| 2.4G 802.11b @11Mbps       | 20.0 | dBm  |
| 2.4G 802.11g @6Mbps        | 18.0 | dBm  |
| 2.4G 802.11g @54Mbps       | 15.0 | dBm  |
| 2.4G 802.11n, HT20 @MCS0   | 18.0 | dBm  |
| 2.4G 802.11n, HT40 @MCS0   | 18.0 | dBm  |
| 2.4G 802.11n, HT20 @MCS7   | 15.0 | dBm  |
| 2.4G 802.11n, HT40 @MCS7   | 15.0 | dBm  |
| 2.4G 802.11ac, VHT20 @MCS9 | 14.0 | dBm  |
| 2.4G 802.11ac, VHT40 @MCS9 | 14.0 | dBm  |
| 2.4G 802.11ax, HE20 @MCS11 | 12.0 | dBm  |
| 2.4G 802.11ax, HE40 @MCS11 | 12.0 | dBm  |
| 5G 802.11a @6Mbps          | 18.0 | dBm  |
| 5G 802.11a @54Mbps         | 15.0 | dBm  |
| 5G 802.11n, HT20 @MCS0     | 18.0 | dBm  |
| 5G 802.11n, HT40 @MCS0     | 18.0 | dBm  |
| 5G 802.11n, HT80 @MCS0     | 18.0 | dBm  |
| 5G 802.11n, HT20 @MCS7     | 15.0 | dBm  |
| 5G 802.11n, HT40 @MCS7     | 15.0 | dBm  |
| 5G 802.11n, HT80 @MCS7     | 15.0 | dBm  |
| 5G 802.11ac, VHT20 @MCS9   | 14.0 | dBm  |
| 5G 802.11ac, VHT40 @MCS9   | 14.0 | dBm  |
| 5G 802.11ac, VHT80 @MCS9   | 14.0 | dBm  |
| 5G 802.11ax, HE20 @MCS11   | 12.0 | dBm  |
| 5G 802.11ax, HE40 @MCS11   | 12.0 | dBm  |
| 5G 802.11ax, HE80 @MCS11   | 12.0 | dBm  |

Table 13: Receive Sensitivity at 2.4G for 1X1 configuration

| Band                  | Туре | Unit |
|-----------------------|------|------|
| 2.4G11b@1Mbps         | TBD  | dBm  |
| 2.4G 11b@11 Mbps      | TBD  | dBm  |
| 2.4G 11g@6Mbps        | TBD  | dBm  |
| 2.4G 11g@54Mbps       | TBD  | dBm  |
| 2.4G 11n/ac@HT20-MCS0 | TBD  | dBm  |
| 2.4G 11n/ac@HT20-MCS7 | TBD  | dBm  |
| 2.4G 11n/ac@HT40-MCS0 | TBD  | dBm  |
| 2.4G 11n/ac@HT40-MCS7 | TBD  | dBm  |
| 2.4G 11ac@VHT20-MCS9  | TBD  | dBm  |
| 2.4G 11ac@VHT40-MCS9  | TBD  | dBm  |

www.simcom.com 22 / 35



| 2.4G 11ax@HE20-MCS0  | TBD | dBm |
|----------------------|-----|-----|
| 2.4G 11ax@HE20-MCS11 | -63 | dBm |
| 2.4G 11ax@HE40-MCS0  | TBD | dBm |
| 2.4G 11ax@HE40-MCS11 | TBD | dBm |

Table 14: Receive Sensitivity at 5G for 1X1 configuration

| Band                | Туре | Unit |
|---------------------|------|------|
| 5G 11a@6Mbps        | TBD  | dBm  |
| 5G 11a@54Mbps       | TBD  | dBm  |
| 5G 11n/ac@HT20-MCS0 | TBD  | dBm  |
| 5G 11n/ac@HT20-MCS7 | TBD  | dBm  |
| 5G 11n/ac@HT40-MCS0 | TBD  | dBm  |
| 5G 11n/ac@HT40-MCS7 | TBD  | dBm  |
| 5G 11n/ac@HT80-MCS0 | TBD  | dBm  |
| 5G 11n/ac@HT80-MCS7 | TBD  | dBm  |
| 5G 11ac@VHT20-MCS9  | TBD  | dBm  |
| 5G 11ac@VHT40-MCS9  | TBD  | dBm  |
| 5G 11ac@VHT80-MCS9  | TBD  | dBm  |
| 5G 11ax@HE20-MCS0   | TBD  | dBm  |
| 5G 11ax@HE20-MCS11  | -62  | dBm  |
| 5G 11ax@HE40-MCS0   | TBD  | dBm  |
| 5G 11ax@HE40-MCS11  | TBD  | dBm  |
| 5G 11ax@HE80-MCS0   | TBD  | dBm  |
| 5G 11ax@HE80-MCS11  | TBD  | dBm  |

#### 4.4 **ESD**

Module is sensitive to ESD in the process of storage, transporting, and assembling. When Module is mounted on the users' mother board, the ESD components should be placed beside the connectors which human body may touch, such as switches, USB interface, etc. The following table shows the Module ESD measurement performance.

Table 15: The ESD performance measurement table (Temperature: 25℃, humidity: 45%)

| Parameter  | Connect (±kv) | Air (±kv) |
|------------|---------------|-----------|
| GND        | TBD           | TBD       |
| Power      | TBD           | TBD       |
| Antenna    | TBD           | TBD       |
| PCIe       | TBD           | TBD       |
| I2S        | TBD           | TBD       |
| UART       | TBD           | TBD       |
| Other PADs | TBD           | TBD       |

www.simcom.com 23 / 35



## NOTE

Test conditions: the external of the module has surge protection diodes and ESD protection diodes



www.simcom.com 24 / 35



## 5. Manufacturing

### 5.1 TOP and Bottom View of W80





Figure 9: Top and bottom view of W80

## **5.2 Label Description Information**

www.simcom.com 25 / 35





Figure 10: Label description of module

Table 16: Label description of module information

| No. | Description   |
|-----|---------------|
| A   | LOGO          |
| В   | Project name  |
| С   | Product code  |
| D   | Serial number |
| E   | QR code       |

## **5.3 Recommended PCB Footprint**

The following figure shows the PCB footprint of W80.

www.simcom.com 26 / 35





Figure 11: Recommended PCB footprint

#### 5.4 Recommended SMT Stencil

The following figure shows the SMT stencil of W80.

www.simcom.com 27 / 35





Figure 12: Recommended SMT stencil

www.simcom.com 28 / 35



#### 5.5 Recommended SMT Reflow Profile

SIMCom provides a typical soldering profile. Therefore, the soldering profile shown below is only a generic recommendation and should be adjusted to the specific application and manufacturing constraints.



Figure 13: The ramp-soak-spike reflow profile of module

## 5.6 Moisture Sensitivity Level (MSL)

Module is qualified to Moisture Sensitivity Level (MSL) 3 in accordance with JEDEC J-STD-033. If the prescribed time limit is exceeded, users should bake module for 192 hours in drying equipment (<5% RH) at 40+5/-0°C, or 72 hours at 85+5/-5°C. Note that plastic tray is not heat-resistant, and only can be baked at 45° C.

Table 17: MSL ratings summary

| MSL | Out-of-bag floor life                                                                                    | Comments      |
|-----|----------------------------------------------------------------------------------------------------------|---------------|
| 1   | Unlimited                                                                                                | ≤+30°C/85% RH |
| 2   | 1 year                                                                                                   | ≤+30°C/60% RH |
| 2a  | 4 weeks                                                                                                  | ≤+30°C/60% RH |
| 3   | 168 hours                                                                                                | ≤+30°C/60% RH |
| 4   | 72 hours                                                                                                 | ≤+30℃/60% RH  |
| 5   | 48 hours                                                                                                 | ≤+30°C/60% RH |
| 5a  | 24 hours                                                                                                 | ≤+30°C/60% RH |
| 6   | Mandatory bake before use. After bake, it must be reflowed within the time limit specified on the label. | ≤+30°C/60% RH |

www.simcom.com 29 / 35



NOTE

IPC / JEDEC J-STD-033 standard must be followed for production and storage.

## **5.7 Baking Requirements**

It is necessary to bake modules if the prescribed time limit has been exceeded. The baking conditions are specified in Table 18. Note that if baking is required, the devices must be transferred into trays that can be baked to at least 125°C.

**Table 18: Baking requirements** 

| Baking conditions options | Duration  |
|---------------------------|-----------|
| 40°C±5°C, <5% RH          | 192 hours |
| 120°C±5°C, <5% RH         | 4 hours   |

www.simcom.com 30 / 35



## 6. Packaging

Module support tray packaging.



Figure 14: Packaging diagram

Module tray drawing:



Figure 15: Tray drawing

www.simcom.com 31 / 35



Table 19: Tray size

| Length (±3mm) | Width (±3mm) | Number |
|---------------|--------------|--------|
| 242.0         | 161.0        | 25     |

#### Small carton drawing:



Figure 16: Small carton drawing

Table 20: Small carton size

| Length (±10mm) | Width (±10mm) | Height (±10mm) | Number    |
|----------------|---------------|----------------|-----------|
| 270            | 180           | 120            | 25*20=500 |

#### Big carton drawing:



Figure 17: Big carton drawing

www.simcom.com 32 / 35



Table 21: Big carton size

| Length (±10mm) | Width (±10mm) | Height (±10mm) | Number     |
|----------------|---------------|----------------|------------|
| 380            | 280           | 280            | 500*4=2000 |



www.simcom.com 33 / 35



## 7. Appendix

#### 7.1 Related Documents

Table 22: Related documents

| NO  | Title            | Description                       |
|-----|------------------|-----------------------------------|
| [1] | SIM8200G-LGA_KDL | W80 and SIM8200G reference design |

## 7.2 Terms and Abbreviations

Table 23: Terms and abbreviations

| Abbreviation | Description                                 |
|--------------|---------------------------------------------|
| BPSK         | Binary Phase Shift Keying                   |
| В            | Bidirectional digital input                 |
| CCK          | Complementary Code Keying                   |
| DSSS         | Direct Sequence Spread Spectrum             |
| NC           | Not connect                                 |
| ESD          | Electrostatic Discharge                     |
| I/O          | Input/Output                                |
| LTE          | Long Term Evolution                         |
| Mbps         | Million Bits Per Second                     |
| MCS          | Modulation and Coding Scheme                |
| OFDM         | Orthogonal Frequency Division Multiplexing  |
| QAM          | Quadrature Amplitude Modulation             |
| QPSK         | Quadrature Phase Shift Keying               |
| RF           | Radio Frequency                             |
| RX           | Receive Direction                           |
| TX           | Transmitting Direction                      |
| VSWR         | Voltage Standing Wave Ratio                 |
| WLAN         | Wireless Local Area Networks                |
| LAA          | Limited Access Authorization                |
| MIMO         | Multiple Input Multiple Output              |
| I2S          | Inter-IC Sound                              |
| LTE          | Long Term Evolution                         |
| PCle         | Peripheral Component Interface Express      |
| UART         | Universal Asynchronous Receiver Transmitter |

www.simcom.com 34 / 35



## 7.3 Safety Caution

Table 24: Safety caution

| Marks | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •     | When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy interference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X     | Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local legal action, or both.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sos   | GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.  Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.  Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile. |

www.simcom.com 35 / 35