reasoning about choreographic programs

luís cruz-filipe

with eva graversen, fabrizio montesi & marco peressotti

department of mathematics and computer science university of southern denmark

concurrency and logic seminar june 27th, 2023

choreographic programming, conceptually

what are choreographies?

high-level global specifications of concurrent and distributed systems

a programming paradigm with good properties

implementations for the local endpoints are automatically generated

- guaranteed to be deadlock-free
- guaranted to satisfy the specification

an example

authentication choreography

```
X = c.credentials --> ip.x;
   If ip.(check x)
   Then ip --> c[left]; ip.go --> s.b; s.token --> c.t
   Else ip --> c[right]; X
```

an example

$\overline{authen} tication \ choreography$

```
X = c.credentials --> ip.x;
   If ip.(check x)
   Then ip --> c[left]; ip.go --> s.b; s.token --> c.t
   Else ip --> c[right]; X
```

the problem

how can we reason formally about what this choreography does?

- currently: ad-hoc properties can be proved by simulating execution
- better: have a more general framework for reasoning about choreographies

our contribution

we propose a sound and complete hoare calculus for a simple choreography language

our contribution

we propose a sound and complete hoare calculus for a simple choreography language

design choices

avoid ad-hoc solutions

- use a pre-existing choreography language
 - → for the good and for the bad
- design a "standard" hoare calculus
- separation of concerns
- emphasis on parameterisation

a simple choreography language

syntax

choreography bodies are defined by the following grammar

$$C ::= I; C \mid \text{if p.} b \text{ then } C_1 \text{ else } C_2 \mid X \mid \lceil \vec{q}, X \rfloor C \mid \mathbf{0}$$

$$I ::= p.x := e \mid p.e \rightarrow q.x \mid p \rightarrow q[L]$$

- p.x := e: local computation
- p. $e \rightarrow q.x$: value communication
- $p \rightarrow q[L]$: label selection
- X: procedure call
- $\lceil \vec{q}, X \mid C$: runtime term for partially entered procedures

$a\ simple\ choreography\ language$

syntax

choreography bodies are defined by the following grammar

$$C ::= I$$
; $C \mid \text{if p.} b \text{ then } C_1 \text{ else } C_2 \mid X \mid \lceil \vec{q}, X \rfloor C \mid \mathbf{0}$
 $I ::= p.x := e \mid p.e \rightarrow q.x \mid p \rightarrow q[L]$

choreographic programs

 $\langle \mathscr{C}, \mathsf{C} \rangle$ where \mathscr{C} maps procedure names to their definitions

$ltl\ semantics$

configurations are pairs $\langle C, \Sigma \rangle$ where Σ is a memory state

- $\Sigma(p)(x)$ returns the value stored at p's variable x
- $e\downarrow_{\Sigma(p)} v$ returns the result of locally evaluating e at p using Σ

ltl semantics

configurations are pairs $\langle C, \Sigma \rangle$ where Σ is a memory state

the rules

three groups of rules

• formalisation of the intuition behind the constructs, e.g. if $e \downarrow_{\Sigma(p)} v$, then

$$\langle p.x := e; C, \Sigma \rangle \xrightarrow{\tau \otimes p}_{\mathscr{C}} \langle C, \Sigma[\langle p, x \rangle \mapsto v] \rangle$$

ltl semantics

configurations are pairs $\langle C, \Sigma \rangle$ where Σ is a memory state

the rules

three groups of rules

- formalisation of the intuition behind the constructs
- formalisation of out-of-order execution, e.g. if $\langle C, \Sigma \rangle \xrightarrow{\mu}_{\mathscr{C}} \langle C', \Sigma' \rangle$ and I does not involve processes appearing in μ , then

$$\langle I; C, \Sigma \rangle \xrightarrow{\mu}_{\mathscr{C}} \langle I; C', \Sigma' \rangle$$

ltl semantics

configurations are pairs $\langle C, \Sigma \rangle$ where Σ is a memory state

the rules

three groups of rules

- formalisation of the intuition behind the constructs
- formalisation of out-of-order execution
- rules allowing processes to enter procedure calls independently
 use runtime terms

general idea

- judgements are triples $\{\varphi\}C\{\psi\}$ if C is executed from a state where φ holds and execution terminates, then ψ holds in the final state
- main inference rules match the rules of semantics

general idea

- judgements are triples $\{\varphi\}C\{\psi\}$ if C is executed from a state where φ holds and execution terminates, then ψ holds in the final state
- main inference rules match the rules of semantics

three challenges

• what formulas can we write about states?

general idea

- judgements are triples $\{\varphi\}C\{\psi\}$ if C is executed from a state where φ holds and execution terminates, then ψ holds in the final state
- main inference rules match the rules of semantics

three challenges

- what formulas can we write about states?
- the usual rule for assignment

$$\overline{\{\varphi'\}\mathsf{p}.\mathsf{x}\coloneqq\mathsf{e};\mathbf{0}\{\varphi\}}$$

where φ' is obtained from φ by replacing $\mathbf{p}.\mathbf{x}$ with e does not work

general idea

- judgements are triples $\{\varphi\}C\{\psi\}$ if C is executed from a state where φ holds and execution terminates, then ψ holds in the final state
- main inference rules match the rules of semantics

three challenges

- what formulas can we write about states?
- the usual rule for assignment does not work
- how do we deal with procedure calls?

the state logic

$an\ equational\ logic$

- parameterised on the language of expressions in the choreography language
- variables are localised, e.g. p.x
- \bullet parameterised on a decidable theory ${\mathfrak D}$ whose terms include logical variables ${\mathcal X}$

the state logic

an equational logic

- parameterised on the language of expressions in the choreography language
- variables are localised, e.g. p.x
- \bullet parameterised on a decidable theory ${\mathfrak D}$ whose terms include logical variables ${\mathcal X}$

syntax

$$\varphi ::= (\mathcal{E} = \mathcal{X}) \mid \delta \mid \varphi \wedge \varphi \mid \neg \varphi$$

the state logic

syntax

$$\varphi ::= (\mathcal{E} = \mathcal{X}) \mid \delta \mid \varphi \land \varphi \mid \neg \varphi$$

semantics

given an assignment ρ assigning values to logical variables:

$$\frac{\mathcal{E}\downarrow_{\Sigma}\rho(\mathcal{X})}{\Sigma\Vdash_{\rho}\mathcal{E}=\mathcal{X}}$$

$$\frac{\mathcal{E}\downarrow_{\Sigma}\rho(\mathcal{X})}{\Sigma\Vdash_{\rho}\mathcal{E}=\mathcal{X}}\qquad \frac{\delta\in\mathfrak{D}\quad\delta\rho\text{ is true}}{\Sigma\Vdash_{\rho}\delta}$$

localisation

definition

- L(p, e) is the logical expression obtained from e by replacing every choreography variable x with p.x
- $\mathcal{E}[q.x := p.e]$ is the expression obtained from \mathcal{E} by replacing every occurrence of q.x with L(p,e)
- localised substitution extends to formulas in the natural way

localisation

definition

- L(p, e) is the logical expression obtained from e by replacing every choreography variable x with p.x
- $\mathcal{E}[q.x := p.e]$ is the expression obtained from \mathcal{E} by replacing every occurrence of q.x with L(p,e)
- localised substitution extends to formulas in the natural way

an example

let φ be p. $x = \mathcal{X}$ and e be y - z, then:

- L(p, y z) = p.y p.z
- $\varphi[p.x := p.(y-z)]$ is $p.y p.z = \mathcal{X}$

localisation

definition

- L(p, e) is the logical expression obtained from e by replacing every choreography variable x with p.x
- $\mathcal{E}[q.x := p.e]$ is the expression obtained from \mathcal{E} by replacing every occurrence of q.x with L(p,e)
- localised substitution extends to formulas in the natural way

properties

- if $\rho(\mathcal{X}) = v$: then $e \downarrow_{\Sigma(p)} v$ iff $\Sigma \Vdash_{\rho} L(p, e) = \mathcal{X}$
- if $e \downarrow_{\Sigma(p)} v$: then $\Sigma[\langle p, x \rangle \mapsto v] \Vdash_{\rho} \varphi$ iff $\Sigma \Vdash_{\rho} \varphi[q.x := p.e]$ for all ρ

dealing with procedure calls

procedure specification maps

to reason about a program we need a description of the behaviour of the procedures

$$\mathfrak{C}(X) = \langle \varphi_X, \psi_X \rangle$$

• intended meaning: if φ_X holds when X is called and execution terminates, then ψ_X holds in the final state

the rules, part i

about instructions...

$$\frac{\vdash_{\mathfrak{C}} \{\varphi\}C\{\psi\}}{\vdash_{\mathfrak{C}} \{\varphi[p.x := p.e]\}p.x := e; C\{\psi\}} \text{ H|Assign}$$

$$\frac{\vdash_{\mathfrak{C}} \{\varphi\}C\{\psi\}}{\vdash_{\mathfrak{C}} \{\varphi[q.x := p.e]\}p.e \to q.x; C\{\psi\}} \text{ H|Com}$$

$$\frac{\vdash_{\mathfrak{C}} \{\varphi\}C\{\psi\}}{\vdash_{\mathfrak{C}} \{\varphi\}p \to q[L]; C\{\psi\}} \text{ H|Sel}$$

the rules, part ii

... about compound choreographies...

the rules, part iii

$\overline{\ldots and} \ structural \ rules$

$$\frac{\mathfrak{D} \models \varphi \to \varphi' \quad \vdash_{\mathfrak{C}} \{\varphi'\} C\{\psi'\} \quad \mathfrak{D} \models \psi' \to \psi}{\vdash_{\mathfrak{C}} \{\varphi\} C\{\psi\}} \text{ }_{\mathsf{H} \mid \mathsf{WEAK}}$$

auxiliary results

head reductions

 $\langle C, \Sigma \rangle \overset{\mu}{\Longrightarrow}_{\mathscr{C}} \langle C', \Sigma' \rangle \text{ denotes that } C \text{ reduces to } C' \text{ without using out-of-order execution}$

auxiliary results

head reductions

 $\langle C, \Sigma \rangle \overset{\mu}{\Longrightarrow}_{\mathscr{C}} \langle C', \Sigma' \rangle \text{ denotes that } C \text{ reduces to } C' \text{ without using out-of-order execution}$

confluence

choreography execution is confluent

- in particular, if $\langle C, \Sigma \rangle \to_{\mathscr{C}}^* \langle \mathbf{0}, \Sigma' \rangle$ then also $\langle C, \Sigma \rangle \Rightarrow_{\mathscr{C}}^* \langle \mathbf{0}, \Sigma' \rangle$
- together with determinism, this allows us to focus only on head reductions

soundness

consistency

 $\mathfrak C$ is *consistent* with $\mathscr C$ if $\vdash_{\mathfrak C} \{\varphi_X\}\mathscr C(X)\{\psi_X\}$ for every X

soundness

consistency

 \mathfrak{C} is *consistent* with \mathscr{C} if $\vdash_{\mathfrak{C}} \{\varphi_X\}\mathscr{C}(X)\{\psi_X\}$ for every X

theorem

- ullet ${\mathfrak C}$ is consistent with ${\mathscr C}$
- $\vdash_{\mathfrak{C}} \{\varphi\} C \{\psi\}$
- $\Sigma \Vdash_{\rho} \varphi$
- $\bullet \ \langle \textit{C}, \Sigma \rangle \to_{\mathscr{C}}^* \langle \textbf{0}, \Sigma' \rangle$

implies $\Sigma' \Vdash_{\rho} \psi$

weakest liberal preconditions

definition $\mathsf{wlp}_{\sigma}((\mathsf{p}.\mathsf{x} \coloneqq \mathsf{e}; \mathsf{C}), \psi) = \mathsf{wlp}_{\sigma}(\mathsf{C}, \psi)[\mathsf{p}.\mathsf{x} := \mathsf{p}.\mathsf{e}]$ $\mathsf{wlp}_{\sigma}((\mathsf{p}.e \to \mathsf{q}.x; C), \psi) = \mathsf{wlp}_{\sigma}(C, \psi)[\mathsf{q}.x := \mathsf{p}.e]$ $\mathsf{wlp}_{\sigma}((\mathsf{p} \to \mathsf{q[L]}; C), \psi) = \mathsf{wlp}_{\sigma}(C, \psi)$ $\mathsf{wlp}_{\mathfrak{C}}(\mathsf{if}\,\mathsf{p}.b\,\mathsf{then}\,C_1\,\mathsf{else}\,C_2,\psi)=(L(\mathsf{p},b)\overset{\mathcal{X}}{=}\mathsf{true}\to\mathsf{wlp}_{\sigma}(C_1,\psi))$ $\wedge (L(p, b) \stackrel{\mathcal{X}}{=} false \rightarrow wlp_{\sigma}(C_2, \psi))$ $\mathsf{wlp}_{\sigma}(X,\psi) = \varphi_X$ $\mathsf{wlp}_{\sigma}(\lceil \vec{\mathsf{q}}, X \mid C, \psi) = \mathsf{wlp}_{\sigma}(C, \psi)$ $\mathsf{wlp}_{\sigma}(\mathbf{0},\psi) = \psi$

→ essentially read the rules "backwards"

partial completeness

adequacy

 ${\mathfrak C}$ is adequate for ψ given ${\mathscr C}$ if, for all X:

- ullet φ_X is equivalent to $\mathrm{wlp}_{\mathfrak{C}}(\mathscr{C}(X),\psi)$
- $\psi_X = \psi$

partial completeness

adequacy

 $\mathfrak C$ is adequate for ψ given $\mathscr C$ if, for all X:

- φ_X is equivalent to $\mathsf{wlp}_\mathfrak{C}(\mathscr{C}(X), \psi)$
- $\psi_X = \psi$

lemma

if $\mathfrak C$ is adequate for ψ given $\mathscr C$, then $\mathfrak C$ is consistent with $\mathscr C$

→ can be combined with soundness

partial completeness

adequacy

 $\mathfrak C$ is adequate for ψ given $\mathscr C$ if, for all X:

- ullet φ_X is equivalent to $\operatorname{wlp}_{\mathfrak{C}}(\mathscr{C}(X),\psi)$
- $\psi_X = \psi$

theorem

- ullet ${\mathfrak C}$ is adequate for ψ given ${\mathscr C}$
- whenever $\Sigma \Vdash_{\rho} \varphi$ and $\langle C, \Sigma \rangle \to_{\mathscr{C}}^* \langle \mathbf{0}, \Sigma' \rangle$, then $\Sigma' \Vdash_{\rho} \psi$

$$\text{implies} \vdash_{\mathfrak{C}} \{\varphi\} C \{\psi\}$$

(un) decidability

the best...

the judgement $\vdash_{\mathfrak{C}} \{\varphi\}C\{\psi\}$ is decidable

(un) decidability

the best...

the judgement $\vdash_{\mathfrak{C}} \{\varphi\} C \{\psi\}$ is decidable

$\dots the good \dots$

if the set of procedure names is finite:

- ullet consistency between ${\mathfrak C}$ and ${\mathscr C}$ is decidable
- adequacy of $\mathfrak C$ for ψ and $\mathscr C$ is decidable

(un) decidability

the best...

the judgement $\vdash_{\mathfrak{C}} \{\varphi\}C\{\psi\}$ is decidable

\dots the good \dots

if the set of procedure names is finite:

- ullet consistency between ${\mathfrak C}$ and ${\mathscr C}$ is decidable
- ullet adequacy of ${\mathfrak C}$ for ψ and ${\mathscr C}$ is decidable

... and the not-so-good

there is no algorithm that, given $\mathscr C$ and ψ , always returns $\mathfrak C$ that is adequate for ψ given $\mathscr C$

 \longrightarrow proof idea: wlp $_{\mathfrak{C}}(X,\bot) = \top$ iff execution of X always diverges

the big minus

- our calculus only proves properties of terminating executions
- since we do not have sequential composition, the target formula in all judgements holds in the (same) final state

the big minus

- our calculus only proves properties of terminating executions
- since we do not have sequential composition, the target formula in all judgements holds in the (same) final state

→ but hey, you gotta start somewhere!

the big minus

- our calculus only proves properties of terminating executions
- since we do not have sequential composition, the target formula in all judgements holds in the (same) final state

a closer look at consistency

- whenever X is called, φ_X must hold
- because of out-of-order execution, there is no guarantee that the choreography ever passes those points...

the big minus

- our calculus only proves properties of terminating executions
- since we do not have sequential composition, the target formula in all judgements holds in the (same) final state

a closer look at consistency

- whenever X is called, φ_X must hold
- because of out-of-order execution, there is no guarantee that the choreography ever passes those points...

future work - explore this idea

- formally prove the informal statement above
- capitalise on confluence to get stronger results

in a nutshell

• a hoare calculus for a simple choreography language

• agnostic, modular, generalisable

• soundness, partial completeness and (some) decidability

• potentially extendable to reasoning about non-terminating systems: liveness, reactiveness, . . .

thank you!