Нейронные сети. Многоагентные системы.

₩Гужва А.Г.

Нейрон

ЖМОЗГ: 10¹⁰ нейронов, 6*10¹³ связей

ЖВремя реакции 10⁻³ с

ЖРазмеры 100 микрон

Модель нейрона

#N входов

ж1 выход

 $\mathbb{H}N+1$ Bec $(w_0...w_N)$

$$net = \sum_{i=1}^{N} \mathbf{X}_i w_i + w_0$$

$$Y = F(net)$$

Модель нейрона. Передаточная функция.

Модель нейрона. Передаточная функция.

$$F(+\infty)=1$$
, $F(-\infty)=-1$, $F'(x)=1-(F(x))^2$

Модель нейрона. Передаточная функция.

Блоки / слои нейронов

- **ж** Состоит из нейронов
- Нейроны объединяются в блоки / слои
- **Ж** Входной сигнал одинаков

$$\mathbf{X_1}$$
 $\mathbf{Y_1} = F (w_{11} * X_1 + w_{12} * X_2 + w_{13} * X_3 + w_{10} * 1)$
 $\mathbf{X_2}$ $\mathbf{Y_2} = F (w_{21} * X_1 + w_{22} * X_2 + w_{21} * X_3 + w_{20} * 1)$
 $\mathbf{X_3} = F (w_{31} * X_1 + w_{32} * X_2 + w_{33} * X_3 + w_{30} * 1)$
 $\mathbf{Y_4} = F (w_{41} * X_1 + w_{42} * X_2 + w_{43} * X_3 + w_{40} * 1)$

 $\mathbf{Y} = \mathbb{F}(\mathbf{W} * \mathbf{X})$. Сколько компонент в \mathbf{W} ?

Многослойный персептрон

$$\mathbf{X} = \mathbb{F} \left(\mathbf{W_o} * \mathbb{F} \left(\mathbf{W_h} * \mathbf{X} \right) \right)$$

Ж W₀ - матрица весов выходного слоя

Ж_h - матрица весов скрытого слоя

 $\mathbf{\mathfrak{K}} \mathbf{W} = (\mathbf{W}_{h}, \mathbf{W}_{O}) -$ «матрица» весов сети

Скрытый слой Выходной слой

Входной слой

Обучение персептрона

- **Ж** Пары сигнал желаемый отклик {(**X**,**Y**)}
- \mathbf{X}_{k} Подаем на вход сигнал \mathbf{X}_{k} , получаем ответ сети $\mathbf{Z}_{k} = \mathbf{Z}_{k} (\mathbf{W}, \mathbf{X}_{k})$

- **ж** Требуем: ответ сети = желаемый отклик
- \mathbf{lpha} Подстраиваем \mathbf{W}

Области использования нейросетей

- **Ж**Классификация
- **Ж**Кластеризация
- **ЖРегрессия и прогнозирование**

Классификация

ЖОтнесение неизвестного объекта к одному из известных классов

- **ЖРаспознавание лиц (пример про БОМЖей)**
- **Ж**Медицина (диагноз)
- **ж**Финансовые приложения (кредит)
- **#Сетевые** атаки

Классификация

ЖОбъект может к каждому классу в разной степени

Многослойный персептрон

ЖПример (XOR)

- Сигнал (-1,-1), желаемый ответ (1,0)
- Сигнал (+1,-1), желаемый ответ (0,1)
- Сигнал (+1,+1), желаемый ответ (1,0)
- Сигнал (-1,+1), желаемый ответ (0,1)

Кластеризация

Ж Разбиение объектов на кластеры

ЖЧто изображено на рисунке для человека?

ЖЧто изображено на рисунке для машины?

Кластеризация

Обратная задача геофизики. Постановка задачи

Ж Восстановление распределения электропроводности

Пример распределения

Математика

- **Ж** Построить регрессионную модель
 - Размерность вектора входных данных 6552
 - Размерность вектора выходных данных 336
 - Число точек 30000

- 4 комплекта по 1680 многослойных персептронов
 - № МСП как регрессионная модель
 - Размерность вектора входных данных 1648
 - Число нейронов в скрытом слое 8
 - Размерность вектора выходных данных 1
 - 🔼 Число точек 30000
 - Входные данные одинаковы, выходные различаются

Объемы

- **ж** 4 * 1680 многослойных персептронов
 - Размерность вектора входных данных 1648
 - № Число нейронов в скрытом слое 8
 - Размерность вектора выходных данных 1
 - № Число примеров 30000

Матрица весов нейронов скрытого слоя $\mathbf{W_h}$ – (1648 + 1) * 8 Матрица весов нейронов выходного слоя $\mathbf{W_o}$ – (8 + 1) * 1

Обучение персептрона

- **Ж** Пары сигнал желаемый отклик {(**X**,**Y**)}
- \mathbf{X}_{k} Подаем на вход сигнал \mathbf{X}_{k} , получаем ответ сети $\mathbf{Z}_{k} = \mathbf{Z}_{k} (\mathbf{W}, \mathbf{X}_{k})$

ж Требуем: ответ сети = желаемый отклик

Обучение персептрона Что бы такого распараллелить...

- Алгоритм обучения: поиск в пространстве весов НС Мнициализировать **W** числами из [-0.1 .. 0.1] (*) Выбрать группу из **К** примеров из $\{(X,Y)\}$ Рассчитать ответы сети: \boxtimes Z₁(W,X₁) = F(W₀*F(W_h*X₁)) Параллельно $\boxtimes \mathbf{Z}_{\mathbf{K}}(\mathbf{W},\mathbf{X}_{\mathbf{K}}) = \mathbf{F}(\mathbf{W}_{\mathbf{O}}^*\mathbf{F}(\mathbf{W}_{\mathbf{h}}^*\mathbf{X}_{\mathbf{K}}))$ Параллельно \triangle Рассчитать $E(\mathbf{W}) = \Sigma(|\mathbf{Y_k} - \mathbf{Z_k}(\mathbf{W}, \mathbf{X_k})|^2)$ \triangle W -= r* $\Sigma(\partial E/\partial W(W,X_k,Y_k,Z_k))$ Параллельно Проверка на останов, если нет, то goto (*)
- ∺ Чем К меньше, тем лучшая сеть получится

Обучение персептрона Что бы такого распараллелить...

```
\# K = 10

∺ Число сетей п = 256

Ж Рассчитать ответы сети 1:
     \triangle Z_1(W_1,X_1) = F(W_{10}*F(W_{1h}*X_1))
     \wedge
     \mathbb{Z}_{\kappa}(W_{1}X_{\kappa}) = F(W_{10}*F(W_{1h}*X_{\kappa}))
# ...
                                                                      \mathbf{W_{all}}^*\mathbf{X_{all}}, где
                                                                      W_{all} - 2048 * 1648
Ж Рассчитать ответы сети р:
                                                                      X_{all} - 1648 * 10
     \triangle Z<sub>1</sub>(W<sub>n</sub>,X<sub>1</sub>) = F(W<sub>n</sub>**F(W<sub>n</sub>**X<sub>1</sub>)
     \triangle Z_{K}(W_{n},X_{K}) = F(W_{no}*F(W_{nh}*X_{K}))
```

Обучение персептрона Вычисление градиента

 $\mathcal{Z}_{k} = \partial E/\partial W(W_{k'}X_{k'}Y_{k'}Z_{k}) = \partial E/\partial W_{k}(W_{k'}X_{k'}Y_{k'}Z_{k})$

$$\frac{\partial E}{\partial W_{h} [net, a, b]} = \sum_{p=0}^{9} \alpha_{p, net} \cdot u_{a, net} \cdot f_{a, p, net} \cdot \begin{bmatrix} X_{b-1, p}, b \neq 0 \\ 1, b = 0 \end{bmatrix}$$

- # a=0..7, b=0..1648, net=0..255
- # Число потоков net * b = 420К
- \mathbb{H} Kernel<<<net * x, b / x>>>

Результаты

N	CPU / GPU	Программа, система	Число сетей	Эпох обучения 1 сети за минуту
1	GPU	CUDA, (C)	256	2580
2	GPU	CUDA, (B)	256	1818
3	GPU	CUDA, (A)	64	144
4	CPU	MLP библиотека (D)	1	35
5	CPU	Neuroshell 2 (D)	1	21
6	CPU	Matlab 2008a (D)	1	7

- A. GeForce 8600M GT
- **B**. GeForce GTX 260
- C. GeForce GTX 285
- **D.** AMD Athlon 64 x2 Dual 6000+ 3.0 GHz

Итог

#CUDA:

- 2580 эпох обучения (на 1 сеть за 1 минуту)
- № 13 часов на все вычисления на GTX 285

#CPU:

Задачи оптимизации

- **ж** Общая постановка задачи:
 - ightharpoonup Найти min F(**X**), **X** ∈ R^N, **X** ∈ U, где U множество допустимых значений

ж Сложности:

- Большая размерность X
- «Нехорошая» F(X)
- Комбинаторные задачи

Задачи оптимизации

- **Ж** Локально-оценочные методы
 - Метод золотого сечения
- **Ж** Локально-градиентные методы
 - Градиентный спуск
- **Ж** Переборные методы
 - Полный перебор
- **Ж** Многоагентные системы
 - Генетические алгоритмы

Многоагентные системы

- **ж** Генетические алгоритмы
 - Эволюция
 - Генетическое программирование
- **# Ant Colony Optimization**
 - Колония муравьев
- **#** Particle Swarm Optimization
 - Стаи птиц, косяки рыб

Particle Swarm Optimization

 \Re F(**X**), **X** \in R^N, найти минимум F

ж Рой частиц

- Состоит из большого числа частиц

- \triangle Координата $x_k[s]$, s=1..N
- \triangle Скорость $v_k[s]$

Particle Swarm Optimization

```
👭 Для всех k:
                       \square Инициализировать x_k, v_k; p_k = x_k
\mathcal{H} Пусть g = p_m: F(p_m) = \min среди всех p_k

∺ (*) Для всех k
                       \triangle Выбрать векторы r_p, r_q как U^N(0,1)
                       △ Для всех s:
                                              [x] vm[s] = a_p * r_p[s] * (p_k[s] - x_k[s]) - индивидуальное пов-е
                                              x = x_g + x_g = x_g + x_g = x_g =
                                              \nabla v_k[s] = \mathbf{w} * v_k[s] + vm[s] + vs[s]
                                              \times x_k[s] = v_k[s]

₩ Для всех k:
```

Остановиться или goto (*)

 \triangle Если $F(x_k) < F(p_k)$, то $p_k = x_k$

 \triangle Если $F(x_k) < F(g)$, то $g=x_k$

CUDA

- Ж Многократное вычисление значения целевой функции F
- **ж** Большое число роев и частиц

Генетическое
программирование

- Эволюция программ
- **Ж** Каждая программа оценивается
- Программы обмениваются кусками кода
- **Ж** Выделение «хороших» кусков кода

Генетическое программирование

₩Пример:

□Построение аналитической формулы

₩Пример:


```
# (IF_FOOD_AHEAD (MOVE) (P3
```

- # (P2 (IF-FOOD-AHEAD (MOVE) (RIGHT)) (P2 (RIGHT) (P2 (LEFT) (RIGHT))))
- **#** (P2 (IF-FOOD-AHEAD (MOVE) (LEFT)) (MOVE))))

Вопросы

