'From Statistics to Data Mining' Standard Questions for the Exam

Linear Algebra

Let
$$A = \begin{pmatrix} -2 & -1 & 2 \\ 1 & 0.5 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 be a 3×3 matrix.

- 1. Compute the determinant of A. What do you conclude?
- 2. Compute the eigenvalues of A. What do you conclude? Using the answer of this question, check the result of the first question.
- 3. Compute the eigenvectors of A.
- 4. Compute $A^T A$.

Let
$$B = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 be a 3×3 matrix. Compute the inverse matrix B^{-1} .

Let us consider the following matrix
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 2 & 3 & 2 \end{pmatrix}$$
.

- 1. Compute the inverse matrix A^{-1} using the method based on the **augmented matrix** [A|I].
- 2. Compute the determinant of A.

Principal Component Analysis

Let $X = \{A, B, C\}$ be a set of 3 examples lying in a 3-dimensional feature space where A = (1, 2, 4), B = (0, 1, 2) and C = (2, 3, 6).

- 1. Compute the 3×3 covariance matrix Σ from the **zero mean values** of A, B and C.
- 2. Find the eigenvalues of Σ . What do you conclude?
- 3. Compute the unit-eigenvector \vec{u} corresponding to the largest eigenvalue.
- 4. Plot the 3 points in \mathbb{R} according to \vec{u} .
- 5. Compute the matrix of Euclidean distances between those 3 points A, B, C both in \mathbb{R}^3 and \mathbb{R} . What do you conclude?

Clustering

Agglomerative algorithms

Consider the following proximity matrix:

$$P(X) = \begin{pmatrix} 0 & 16 & 8 & 32 & 64 \\ 16 & 0 & 10 & 22 & 100 \\ 8 & 10 & 0 & 2 & 4 \\ 32 & 22 & 2 & 0 & 22 \\ 64 & 100 & 4 & 22 & 0 \end{pmatrix}.$$

- 1. How many examples are we considering?
- 2. Apply the Single Link agglomerative clustering.
- 3. Apply the Complete Link agglomerative clustering.

Indications:

- Describe each iteration of the algorithms, and explain your choice.
- Show the dendograms obtained along with the similarity level.

K-means algorithm

Consider the following dataset X: A = (1,1), B = (-1,-1), C = (-1,-2), D = (2,-3), E = (4,-3).

The objective is to apply the k-means algorithm with the Manhattan distance to cluster X into 3 clusters.

- 1. Compute P(X) the proximity matrix of X.
- 2. Suppose that the initial seeds (centers of each cluster) are $C_1 = (0,0)$, $C_2 = (0,-3)$ and $C_3 = (3,-3)$. Run the k-means algorithm for the first iteration only. You have to:
 - (a) describe the construction of the clusters (and compute them),
 - (b) compute the centers of the new clusters.