Coursera Page 1 of 13

Feedback — SQL Social-Network Query Exercises (core set)

You submitted this quiz on **Thu 19 Mar 2015 12:49 PM PDT**. You got a score of **9.00** out of **9.00**.

Students at your hometown high school have decided to organize their social network using databases. So far, they have collected information about sixteen students in four grades, 9-12. Here's the schema:

Highschooler (ID, name, grade)

English: There is a high school student with unique *ID* and a given *first name* in a certain *grade*.

Friend (ID1, ID2)

English: The student with *ID1* is friends with the student with *ID2*. Friendship is mutual, so if (123, 456) is in the Friend table, so is (456, 123).

Likes (ID1, ID2)

English: The student with *ID1* likes the student with *ID2*. Liking someone is not necessarily mutual, so if (123, 456) is in the Likes table, there is no guarantee that (456, 123) is also present.

Your queries will run over a small data set conforming to the schema. View the database. (You can also download the schema and data.)

For your convenience, here is a graph showing the various connections between the students in our database. 9th graders are blue, 10th graders are green, 11th graders are yellow, and 12th graders are purple. Undirected black edges indicate friendships, and directed red edges indicate that one student likes another student.

Coursera Page 2 of 13

Instructions: You are to write each of the following queries using SQL. The "Run Query" command will help you develop and debug your queries by running them using SQLite over the sample database.

Important Notes:

- Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.
- Unless a specific result ordering is asked for, you can return the result rows in any order.
- You are to translate the English into a SQL query that computes the desired result over all possible databases. All we actually check is that your query gets the right answer on the small sample database. Thus, even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. (For example, if we ask for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Star Wars, then the query "select title from Movie where title = 'Star Wars'" will be marked correct even though it doesn't reflect the actual question.) Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

You may perform these exercises as many times as you like, so we strongly encourage you to keep working with them until you complete the exercises with full credit.

NOTE: REMEMBER TO CLICK "Submit" WHEN YOU ARE DONE!

Coursera Page 3 of 13

Please be patient as it does take time to check all of the exercises.

Question 1

Find the names of all students who are friends with someone named Gabriel.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

```
select H1.name

from Highschooler as H1, Highschooler as H2, Friend as F

where H1.ID = F.ID1

and H2.ID = F.ID2

and H2.name = 'Gabriel';
```

Run Query

Total

Your Answer		Score	Explanation
select H1.name from Highschooler as H1, Highschooler as H2, Fr iend as F	~	1.00	Correct
where H1.ID = F.ID1 and H2.ID = F.ID2 and H2.name = 'Gabriel';			Your Query Result: Alexis Andrew Cassandra Jessica Jordan
			Expected Query Result: Alexis Andrew Cassandra Jessica Jordan

Coursera Page 4 of 13

1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 2

For every student who likes someone 2 or more grades younger than themselves, return that student's name and grade, and the name and grade of the student they like.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

```
select H1.name, H1.grade, H2.name, H2.grade
from Highschooler as H1, Highschooler as H2, Likes as L
where H1.ID = L.ID1
and H2.ID = L.ID2
and (H1.grade - H2.grade) >= 2;
```

Run Query

Your Answer		Score	Explanation
select H1.name, H1.grade, H2.name, H2.grade from Highschooler as H1, Highschooler as H2, Likes as L	~	1.00	Correct
where H1.ID = L.ID1 and H2.ID = L.ID2 and (H1.grade - H2.grade) >= 2;			Your Query Result: John 12 Haley 10
			Expected Query Result: John 12 Haley 10

Coursera Page 5 of 13

Total 1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 3

For every pair of students who both like each other, return the name and grade of both students. Include each pair only once, with the two names in alphabetical order.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

from

(select H1.name as name1, H1.grade as grade1,
H2.name as name2, H2.grade as grade2

from Highschooler as H1, Highschooler as H2,

Run Query

Your Answer Score **Explanation** select Sub1.name1, Sub1.grade1, Sub1.name2, S ✓ 1.00 ub1.grade2 Correct from (select H1.name as name1, H1.grade a Your Query Result: s grade1, Gabriel 9 Cassandra 9 H2.name as name2, H2.grad Kyle Jessica e as grade2 from Highschooler as H1, Highsch **Expected Query Result:** ooler as H2, Likes as L

Coursera Page 6 of 13

where H1.ID = L.ID1 and H2.ID = L.ID2) as Sub1, (select H1.name as name1, H1.grade a Cassandra 9 Gabriel 9

Jessica 11 Kyle 12

s grade1,

H2.name as name2, H2.grad

e as grade2

from Highschooler as H1, Highsch

ooler as H2, Likes as L

where H1.ID = L.ID1 and H2.ID = L.ID2) as Sub2

where Sub1.name1 = Sub2.name2 and Sub1.name2 = Sub2.name1 and Sub1.name1 < Sub1.name2 and Sub1.grade1 = Sub2.grade2 and Sub1.grade2 = Sub2.grade1;

Total 1.00 /

1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 4

Find all students who do not appear in the Likes table (as a student who likes or is liked) and return their names and grades. Sort by grade, then by name within each grade.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

Coursera Page 7 of 13

Run Query

Your Answer		Score	Explanation
select name, grade from Highschooler where ID not in (select ID1 from Likes union select ID2 from Likes) order by grade, name	•	1.00	Correct Your Query Result: Jordan 9 Tiffany 9 Logan 12
			Expected Query Result: Jordan 9 Tiffany 9 Logan 12 (Order matters)

Question Explanation

Note

Total

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

1.00 / 1.00

Question 5

Coursera Page 8 of 13

For every situation where student A likes student B, but we have no information about whom B likes (that is, B does not appear as an ID1 in the Likes table), return A and B's names and grades.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

```
select H1.name, H1.grade, H2.name, H2.grade
from Highschooler as H1,
Highschooler as H2,
Likes as L
where L.ID2 not in (select ID1 from Likes)
```

Run Query

Your Answer		Score	Explana	tio	n	
select H1.name, H1.grade, H2.name, H2.grade from Highschooler as H1, Highschooler as H2,	~	1.00	Correct			
Likes as L			Your Qu	ery	Result:	
where L.ID2 not in (select ID1 from Likes)			Alexis	11	Kris	10
and H1.ID = L.ID1 and H2.ID = L.ID2;			Austin	11	Jordan	12
,			Brittany	10	Kris	10
			John	12	Haley	10

Expected Query Result:

Alexis	11	Kris	10
Austin	11	Jordan	12
Brittany	10	Kris	10
John	12	Haley	10

Total 1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt

Coursera Page 9 of 13

at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 6

Find names and grades of students who only have friends in the same grade. Return the result sorted by grade, then by name within each grade.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

```
select H.name, H.grade
from Highschooler as H,
Friend as F
where H.ID not in
(select H1.ID
```

Run Query

our Answer		Score	Explanation
elect H.name, H.grade	•	1.00	
from Highschooler as H,			Correct
Friend as F			
where H.ID not in			Your Query Result:
(select H1.ID			Jordan 9
from Highschooler as H1, Highschooler			
s H2, Friend as F			Brittany 10
where H1.ID = F.ID1			Haley 10
and H2.ID = F.ID2			Kris 10
and H1.grade <> H2.grade			
group by H1.ID)			Gabriel 11
group by H.name			John 12
order by H.grade, H.name;			Logon 12
			Logan 12

9

10

10

Jordan

Haley

Kris

Brittany 10

Coursera Page 10 of 13

Gabriel	11
John	12
Logan	12

(Order matters)

Total 1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 7

For each student A who likes a student B where the two are not friends, find if they have a friend C in common (who can introduce them!). For all such trios, return the name and grade of A, B, and C.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

select H1.name, H1.grade, H2.name, H2.grade, H3.name,
H3.grade
from Highschooler as H1,
Highschooler as H2,

Run Query

Your Answer		Score	Explanation
select H1.name, H1.grade, H2.name, H2.grade, H3.name, H3.grade	~	1.00	Correct
from Highschooler as H1,			

Highschooler as H3,

Coursera Page 11 of 13

Highschooler as H2,

Highschooler as H3,

Likes as L,

Friend as F1,

Friend as F2

where H1.ID = L.ID1

and H2.ID = L.ID2

and H2.ID not in (select ID2

fro

m Highschooler, Friend

wh

ere ID = ID1 and ID = H1.ID)

and H1.ID = F1.ID1

and H2.ID = F2.ID1

and H3.ID = F1.ID2

and H3.ID = F2.ID2

Your Query Result:

Andrew	10	Cassandra	9	Gabriel	9
Austin	11	Jordan	12	Andrew	10
Austin	11	Jordan	12	Kyle	12

Expected Query Result:

Andrew	10	Cassandra	9	Gabriel	9
Austin	11	Jordan	12	Andrew	10
Austin	11	Jordan	12	Kyle	12

Total

1.00 /

1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 8

Find the difference between the number of students in the school and the number of different first names.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

Coursera Page 12 of 13

select count(distinct ID)-count(distinct name)
from Highschooler

Run Query

Your Answer		Score	Explanation
select count(distinct ID)-count(distinct name) from Highschooler	~	1.00	Correct
			Your Query Result:
			Expected Query Result:

Total 1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.

Question 9

Find the name and grade of all students who are liked by more than one other student.

Note: Your queries are executed using SQLite, so you must conform to the SQL constructs supported by SQLite.

You entered:

Coursera Page 13 of 13

Run Query

Your Answer		Score	Explanation
select name, grade	~	1.00	
from Highschooler,			Correct
(select ID2, count(*) as likedNum			
from Likes			Your Query Result:
group by ID2) as Sub			Cassandra 9
where ID = Sub.ID2			
and Sub.likedNum > 1;			Kris 10
			Expected Query Result:
			Cassandra 9
			I/ria 40
			Kris 10

Total 1.00 / 1.00

Question Explanation

Note

Even if your solution is marked as correct, it is possible that your query does not correctly reflect the problem at hand. All we check is that your query gets the right answer on the small sample database. For example, if we asked for a complex condition that requires accessing all of the tables, but over our small data set in the end the condition is satisfied only by Kris, then the query "select name from Highschooler where name = 'Kris'" will be marked correct even though it doesn't reflect the actual question. Circumventing the system in this fashion will get you a high score on the exercises, but it won't help you learn SQL. On the other hand, an incorrect attempt at a general solution is unlikely to produce the right answer, so you shouldn't be led astray by our checking system.