Growth of Functions

Dr. David Zmiaikou

Why to Study Growth of Functions?

* Ordinarily, there are several algorithms that give a solution to a particular problem.

Why to Study Growth of Functions?

- * Ordinarily, there are several algorithms that give a solution to a particular problem.
- * Given two algorithms that provide a solution to the same problem, it is natural to ask whether one of these algorithms might be preferred over the other.

Why to Study Growth of Functions?

- * Ordinarily, there are several algorithms that give a solution to a particular problem.
- * Given two algorithms that provide a solution to the same problem, it is natural to ask whether one of these algorithms might be preferred over the other.
- * In order to study this question, we describe a common method of comparing the growth of two functions f and g defined on the set \mathbb{N} of positive integers and whose values are positive real numbers.

Big-O of a Function

def What is Big-O?

* A function $f: \mathbb{N} \to \mathbb{R}^+$ is **big-O** (or **big-oh**) of a function $g: \mathbb{N} \to \mathbb{R}^+$,

written f = O(g) or f(n) = O(g(n)),

if there exist a positive constant C and a positive integer k such that

 $f(n) \leq C \cdot g(n)$ for every integer $n \geq k$.

What is Big-O?

* If f(n) = O(g(n)), then for *large values* of n, the function f(n) grows no faster than a constant times the function g(n).

Edmund Georg Hermann
Landau (14 February 1877
– 19 February 1938) was a
German mathematician.

Big O is a notation invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for *Ordnung*, meaning the order of approximation.

Paul Gustav Heinrich
 Bachmann (22 June 1837
 – 31 March 1920) was a
 German mathematician.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by

 $f(n) = 2n^2$ and $g(n) = n^3$ for all $n \in \mathbb{N}$.

Show that f = O(g).

```
Let f: \mathbb{N} \to \mathbb{R}^+ and g: \mathbb{N} \to \mathbb{R}^+ be two functions defined by f(n) = 2n^2 and g(n) = n^3 for all n \in \mathbb{N}.
Show that f = O(g).
```

Solution. For $n \ge 1$, we have $n^2 \le n^3$ and so $2n^2 \le 2n^3$. Therefore, $2n^2 \le 2(n^3)$ for all $n \ge 1$. Hence f = O(g), where C = 2 and k = 1 in the definition.

$$2n^2 \le 1 \cdot n^3$$
 for all $n \ge 2$

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by

 $f(n) = 3n^2 + 6$ and $g(n) = n^3 + n$ for all $n \in \mathbb{N}$.

Show that f = O(g).

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by $f(n) = 3n^2 + 6$ and $g(n) = n^3 + n$ for all $n \in \mathbb{N}$. Show that f = O(g).

Solution. For $n \ge 1$, we have $n^2 \le n^3$ and so $3n^2 \le 3n^3$.

Also, for $n \ge 2$, we have $6 \le 3n$.

Therefore,

$$3n^2 + 6 \le 3(n^3 + n)$$
 for all $n \ge 2$.

Hence

$$f = O(g)$$
, where $C = 3$ and $k = 2$

in the definition.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by

f(n) = n and $g(n) = n^2$ for all $n \in \mathbb{N}$.

Show that f = O(g) but $g \neq O(f)$.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by f(n) = n and $g(n) = n^2$ for all $n \in \mathbb{N}$. Show that f = O(g) but $g \neq O(f)$.

Solution. For $n \ge 1$, we have $n \le 1 \cdot n^2$ and so f = O(g) by definition with C = 1 and k = 1.

On the other hand $g \neq O(f)$. Indeed, suppose, to the contrary, that g = O(f). Then there exist a positive constant C and a positive integer k such that

$$n^2 \le C \cdot n$$
 for all $n \ge k$.

Dividing this inequality by n, we have that $n \le C$ for all $n \ge k$. However, $n \le C$ is not satisfied if we choose n to be an integer that is both greater than C and greater than k. Hence, $g \ne O(f)$.

Properties of Big-O

Theorem 1. If $f_1 = O(g_1)$ and $f_2 = O(g_2)$, then

$$f_1 \cdot f_2 = O(g_1 \cdot g_2),$$

$$f_1 + f_2 = O(\max(g_1, g_2)).$$

If k > 0 is a constant, then $O(k \cdot g) = O(g)$.

Big-O and Time Complexity

Graphs of Classical Functions

^{def} What is Complexity of an Algorithm?

* The complexity of an algorithm is the amount of *space* and *time* needed to execute the algorithm.

^{def} What is Complexity of an Algorithm?

- * The complexity of an algorithm is the amount of space and time needed to execute the algorithm.
- * The space complexity of an algorithm concerns a study of computer memory and the data structures employed.

^{def} What is Complexity of an Algorithm?

- * The complexity of an algorithm is the amount of space and time needed to execute the algorithm.
- * The space complexity of an algorithm concerns a study of computer memory and the data structures employed.
- * The time complexity of an algorithm concerns a study of the time required to solve the problem using the algorithm as a function of the size of the input.

Time Complexity

Name	Notation	Examples
constant	O(1)	Determining if a binary number is even or odd.
double logarithmic	O(log log n)	Average number of comparisons spent finding an item using interpolation search in a sorted array of uniformly distributed values.
logarithmic	$O(\log n)$	Finding an item in a sorted array with a binary search. Balanced search tree.
polylogarithmic	$O((\log n)^c), c > 1$	Matrix chain ordering can be solved in polylogarithmic time on a parallel random-access machine.
linear	O(n)	Finding an item in an unsorted list or in an unsorted array.
loglinear, or "n log n"	$O(n \log n)$	Performing a fast Fourier transform. Fastest possible comparison sort. Heapsort and merge sort.
quadratic	$O(n^2)$	Multiplying two <i>n</i> -digit numbers by schoolbook multiplication. Bubble sort, selection sort and insertion sort. Tree sort.
polynomial or algebraic	$O(n^c)$	Maximum matching for bipartite graphs. Finding the determinant of a matrix with LU-decomposition.
exponential	$O(c^n), c > 1$	Finding the solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force.
factorial	O(n!)	Solving the travelling salesman problem via brute-force search. Finding the determinant with Laplace expansion. Enumerating all partitions of a set.

Big-O of a Function

def What is Big-O?

* A function $f: \mathbb{N} \to \mathbb{R}^+$ is **big-theta** of a function $g: \mathbb{N} \to \mathbb{R}^+$,

written
$$f = \Theta(g)$$
 or $f(n) = \Theta(g(n))$,

if there exist *positive* constants C_1 and C_2 and a positive integer k such that

$$C_1 \cdot g(n) \leq f(n) \leq C_2 \cdot g(n)$$

for every integer $n \ge k$.

What is Big-O?

* When $f = \Theta(g)$, we say that f and g grow at the same rate.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by

$$f(n) = 2n^2 + 6$$
 and $g(n) = 3n^2 + 3n$ for all $n \in \mathbb{N}$.

Show that $f = \Theta(g)$.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by $f(n) = 2n^2 + 6$ and $g(n) = 3n^2 + 3n$ for all $n \in \mathbb{N}$. Show that $f = \Theta(g)$.

Solution. For $n \ge 3$, we have

$$2n^2 + 6 \le n^2 + 2n = \frac{2}{3}(3n^2 + 3n).$$

Also, for $n \ge 1$, we have

$$2n^2 + 6 = n^2 + n^2 + 6 \ge n^2 + n = \frac{1}{3}(3n^2 + 3n).$$

Therefore,
$$\frac{1}{3}(3n^2 + 3n) \le 2n^2 + 6 \le \frac{2}{3}(3n^2 + 3n)$$
 for all $n \ge 3$.

Hence,
$$f = \Theta(g)$$
, where $C_1 = \frac{1}{3}$ and $C_2 = \frac{2}{3}$ and $k = 3$ in the definition.

Theorems for Big-O

* **Theorem 2**. If f and g are two polynomial functions of the same degree, then $f = \Theta(g)$.

Theorems for Big-O

* Theorem 2. If f and g are two polynomial functions of the same degree, then $f = \Theta(g)$.

* Theorem 3. Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions. Then $f = \Theta(g)$ if and only if f = O(g) and g = O(f).

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by

$$f(n) = n^2 + 3n + 2$$
 and $g(n) = 5n^2$ for all $n \in \mathbb{N}$.

Show that $f = \Theta(g)$.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by $f(n) = n^2 + 3n + 2$ and $g(n) = 5n^2$ for all $n \in \mathbb{N}$. Show that $f = \Theta(g)$.

First solution. Follows directly from Theorem 2.

Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions defined by $f(n) = n^2 + 3n + 2$ and $g(n) = 5n^2$ for all $n \in \mathbb{N}$. Show that $f = \Theta(g)$.

Second solution. For $n \ge 1$, we have

$$n^2 + 3n + 2 \le n^2 + 3n^2 + 2n^2 = 6n^2 = \frac{6}{5}(5n^2).$$

Thus f = O(g). Also for $n \ge 1$, we have $5n^2 < 5 \cdot (n^2 + 3n + 2)$.

and so g = O(f). Hence, $f = \Theta(g)$ according to Theorem 3.

Theorems for Big-O

* Theorem 4. Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions. If $f = \Theta(g)$, then $g = \Theta(f)$.

Theorems for Big-O

* Theorem 4. Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions. If $f = \Theta(g)$, then $g = \Theta(f)$.

* **Theorem 5**. Let $f: \mathbb{N} \to \mathbb{R}^+$ and $g: \mathbb{N} \to \mathbb{R}^+$ be two functions. If $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = c$ for some positive real number c, then $f = \Theta(g)$.

Converse for Theorem 5?

The converse of Theorem 5 is not true. Could you construct an example?

Converse for Theorem 5?

The converse of Theorem 5 is not true. Could you construct an example?

Let f(n) = 1 for all natural n and g(n) = 1 if n is odd and 2 if n is even.

Then $f = \Theta(g)$ by definition,

but
$$\lim_{n \to +\infty} \frac{f(n)}{g(n)}$$
 (= 1, 1/2, 1, 1/2, ...) doesn't exist.

Thank you!