GAME Handbook

GAME Development Team

0.1 Running the model

All physical quantities in this document are to be multiplied with their respective SI units.

Listing 1: Example input file.

```
#!/bin/bash
operator=MHB
overwrite_run_id=1
run_id=jw_perturbed_moist
run_span=43200
write\_out\_interval=900
grid_props_file=grids/B6L26T30000_O2_OL17_SCVT.nc
init_state_filename=test_5_B6L26T30000_O2_OL17_SCVT.nc
init_state_file=input/$init_state_filename
output_dir_base=output
cfl_margin = 0.0
scalar diffusion on=1
momentum_diffusion_on=1
tracers_on=1
rad_on=0
radiation_delta_t=3600
write_out_mass_dry_integral=1
write_out_entropy_gas_integral=1
write_out_energy_integral=1
# relevant only for OMP
export OMP_NUM_THREADS=5
# relevant only for MPI
number_of_cpus=1
year=2000
month=1
day=1
hour=0
nwp_mode=0
# necessary only for data assimilation
ndvar_directory =/home/max/compiled/ndvar
source core/run.sh
```

Listing 0.1 is an example of an input file. Table 1 explains the meanings of the variables.

0.2 Generating required files

0.2.1 Grid generation procedure

A grid is determined by the following five properties:

- the resolution, specified via the parameter RES_ID
- the orography, specified via the parameter ORO_ID
- the height of the top of the atmosphere, specified via the parameter TOA
- the number of layers, specified via the parameter NUMBER_OF_LAYERS
- the number of layers following the orography, specified via the parameter NUMBER_OF_ORO_LAYERS

The grid generator needs to be recompiled for every specific resolution, top height, number of layers as well as number of orography following layers. Therefore change the respective constants in the file grid_generator.c and execute the bash script compile.sh. Then run the grid generator using the bash script run.sh with the desired oro_id. Table 2 explains all the parameters to be set in run.sh. Otimized grids have the postfix _SCVT.

0.2.2 Generating a new orography file

Orography files are generated with the code residing in the directory orography_generator/src. Firstly, change the parameter RES_ID in the file orography_generator.c to the desired value and compile. Then source the bash scribt run.sh with the desired oro_id. Tab. 3 shows the definition of the orography IDs. Real orography can be downloaded from

name	domain	meaning
operator	string	Operator of the model, for example Company XYZ, Inc.
overwrite_run_id	0, 1	if 0: use auto-generated run_id, if 1: use manually set run_id (see next line)
run_id	string (optional)	run_id to be used if overwrite_run_id is set to 1
run_span	integer	How long the model shall run into the future.
write_out_interval	integer ≥ 900	Every how many seconds autput shall be generated.
grid_props_file	string	File name of the grid properties file.
init_state_filename	string	File name of the initialization state file.
init_state_file	string	Full path of the initialization state file.
output_dir_base	string	The directory to which output shall be written.
cfl_margin	double	Manual reduction of the time step below the CFL criterion: $\Delta t = (1 - \text{cfl_margin}) \Delta t^{\text{(CFL)}}$.
diffusion_on	0, 1	diffusion switch
dissipation_on	10, 1	dissipation switch
tracers_on	0, 1	tracers switch
rad_on	0, 1	radiation switch
radiation_delta_t	$\mathrm{double} \geq \Delta t$	Every how many seconds the radiation flux densities shall be updated.
write_out_mass_dry_integral	0, 1	Switch to decide wether a global integral of dry mass shall be written out at every time step.
write_out_entropy_gas_integral	0, 1	Switch to decide wether a global integral of the entropy shall be written out at every time step.
write_out_energy_integral	0, 1	Switch to decide wether a global integral of the energy shall be written out at every time step.

Table 1: Input file explanation.

name	domain	meaning
oro_id	all value for which an orography is defined	orography ID
optimize	0, 1	optimization switch (fails if oro_id is not 0)
n_iterations	$integer \ge 1$	number of iterations (ignored if optimize = 0), 2000 seems to be a safe value
use_scalar_h_coords_file	0, 1	switch to determine wether horizontal coordinates of triangle vertices (generators of the grid) shall be used from another file
scalar_h_coords_file	string	<pre>input file for dual triangle vertices (only relevant if use_scalar_h_coords_file = 1)</pre>

Table 2: Grid generator run script explanation.

ORO_ID	description
0	no orography
1	orography of JW test
2	Gaussian mountain of 8 km height and 224 m standard deviation located ad 0 N / 0 E
3	real orography

Table 3: Definition of orography IDs.

TEST_ID	description
0	standard atmosphere
1	standard atmosphere with Gaussian mountain $(ORO_ID=2)$
2	JW dry unperturbed
3	JW dry perturbed
4	JW moist unperturbed
5	JW moist perturbed

Table 4: Definition of test IDs.

• https://psl.noaa.gov/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis &Variable=Geopotential+height&group=O&submit=Search

These files are stored in the directory orography_generator/real. An information file explains them. A 1/r-interpolation with four values is used to interpolate data to the scalar data points.

0.2.3 Generating a new test state file

A new test state can be generated with the code in the directory test_generator/src. Therefore, firstly change the parameters RES_ID, NUMBER_OF_LAYERS and NUMBER_OF_ORO_LAYERS in the file test_generator.c. Then compile by sourcing the file compile.sh before executing the file run.sh with the specific test_id. Tab. 4 shows the definition of the test IDs.