Recommendation Engines Explained

Rui Vieira Sophie Watson rui@redhat.com sophie@redhat.com

Jupyter notebook

https://github.com/ruivieira/workshop-recommendation-engines

Overview

- Collaborative Filtering
 - Alternating least squares
 - Parameter tuning
 - Metrics
- Implicit recommendations
- Post Processing
- Streaming Data

Python + Apache Spark

Fast

General

Easy

Text Processing

Notebooks

Data

- MovieLens [1]
- Widely used in recommendation engine research
- Variants
 - Small 100,000 ratings / 9,000 movies / 700 users
 - Full 26 million ratings / 45,000 movies / 270,000 users
- CSV data
 - Ratings
 - (userId, movieId, rating, timestamp)
 - **(100, 200, 3.5, 2010-12-10 12:00:00)**

Loading in the Data

Collaborative Filtering

Collaborative Filtering

Collaborative Filtering

- (user, product) → rating
- users with similar "tastes" → good bet
- user and product agnostic

Alternating Least Squares?

	user 1	user 2	user 3		user N	
	г 1	4.5	?	• • •	3 7	product 1
R =	?	3	3	• • •	4	product 2
	5	3	?	• • •	?	product 3
	•	•	•	•••	•	•
	_ 2	4	1	• • •	?	product M

Alternating Least Squares?

	user 1	user 2	user 3		user N	
	г 1	4.5	3.8	• • •	3 7	product 1
R =	3.2	3	3	• • •	4	product 2
	5	3	3.4	• • •	3.1	product 3
	•	•	•	٠.		•
	2	4	1		2.7	product M

ALS in Spark

```
#import the class
from pyspark.ml.recommendation import ALS

#initialise the model
simple_als = ALS(maxIter=5, regParam=0.01, rank=3, coldStartStrategy='drop')

#train the model
model = simple_als.fit(sets['training'])

#make predictions
prediction = model.transform(sets['test'])
```

Mean Squared Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

Computing MSE

Tuning Parameters

Train the model

Rank

Dimension of the feature vectors

```
simple_als = ALS(maxIter=5, regParam=0.01, rank=3, coldStartStrategy='drop')
```


maxIter

Number of optimisation steps implemented

```
simple_als = ALS(maxIter=5, regParam=0.01, rank=3, coldStartStrategy='drop')
```


regParam

Prevents overfitting the model

```
simple_als = ALS(maxIter=5, regParam=0.01, rank=3, coldStartStrategy='drop')
```


regParam

Prevents overfitting the model

```
simple_als = ALS(maxIter=5, regParam=0.01, rank=3, coldStartStrategy='drop')
```


Parameter Estimation

Making Predictions

Post Processing

Moving to a Production Environment

RadAnalytics.io

rad**∼**∼analytics

Project Jiminy

Lightning Talk 🖸

Back to tutorials

Contents

Introduction Architecture Installation Usage Expansion Videos

Recommendation engine service with Apache Spark

Introduction

Project Jiminy is a service based application that implements a simple recommendation syster alternating least squares methodology. That may sound complicated but through the source that creating a recommendation engine is more straightforward than expected.

With these instructions you will learn how to deploy Jiminy with the MovieLens dataset by the represents a set of movies, users and their ratings of the movies. Although Jiminy uses this dathe services can be modified to utilize your own datasets.

Post Processing

Implicit data

Song A

1 play

Implicit Data

Song A

1 play

Song B

0 plays

Implicit Data

Song A 1 play

Song B 0 plays

Song C 100 plays

Preference and Confidence

Pui
$$\in (0,1)$$
 preference

Tui $\in \mathbb{R}$ recording

Pui $= \{ 1 \text{ if } r_{ui} > 0 \}$

O if $r_{ui} = 0$

Preference and Confidence

Pui
$$\in (O, I)$$
 preference

Pui $\in \mathbb{R}$ recording

Pui $\in \{0, I\}$ rui $\neq 0$

Preference and Confidence

Minimisation:

Item vector

ALS with Implicit Data

Streaming Data

average rating user bias product bias
$$b_{x,y} = \mu + b_x + b_y$$

$$\hat{r}_{x,y}^{\star} = b_{x,y} + \hat{r}_{x,y}$$

Streaming Data

bias

$$b_x \leftarrow b_x + \gamma \left(\epsilon_{x,y} - \lambda_x b_x \right)$$

$$b_y \leftarrow b_y + \gamma \left(\epsilon_{x,y} - \lambda_y b_y \right)$$

factors

$$\mathsf{U}_x \leftarrow \mathsf{U}_x + \gamma \left(\epsilon_{x,y} \mathsf{P}_y - \lambda_x' \mathsf{U}_x \right)$$

$$\mathsf{P}_y \leftarrow \mathsf{P}_y + \gamma \left(\epsilon_{x,y} \mathsf{U}_x - \lambda_y' \mathsf{P}_y \right)$$

Streaming Data

Resources