EJERCICIOS 6

(1) Considere \mathbb{R}^3 con el producto interno canónico. Encontrar el complemento ortogonal $M^{\perp} \subset \mathbb{R}^3$ del subespacio $M = \langle x_1, x_2 \rangle$ de \mathbb{R}^3 generado por

$$x_1 := \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \qquad x_2 := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

(2) Considere \mathbb{R}^5 con el producto interno canónico. Encontrar una base ortonormal para el subespacio $W = \langle x_1, x_2, x_3, x_4 \rangle$ de \mathbb{R}^5 , donde

$$x_1 := \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \qquad x_2 := \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \qquad x_3 := \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \qquad x_4 := \begin{bmatrix} 2 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.$$

(3) Considere \mathbb{R}^4 con el producto interno canónico. Sea $W := \langle x_1, x_2, x_3 \rangle$ el subespacio de \mathbb{R}^4 generado por los vectores

$$x := \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \quad y := \begin{bmatrix} 2 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad z := \begin{bmatrix} 4 \\ 2 \\ 3 \\ 1 \end{bmatrix}.$$

Encontrar un vector $w \in W$ tal que $\langle w, x \rangle = \langle w, y \rangle = 0$.

(4) Sea V el subespacio de polinomios $\mathbb{R}[x]$ con grado a lo más 3. Dótese V con el producto interno

$$\langle f(t), g(t) \rangle := \int_{-1}^{1} f(x)g(x) dx.$$

- (1) Hallar el complemento ortogonal del subespacio de polinomios escalares;
- (2) Aplicar el proceso de Gram-Schmidt a la base $\{1, x, x^2, x^3\}$.
- (5) Sea V un espacio producto interno de dimensión finita y sea $\{v_1, \dots, v_n\}$ una base ortonormal de V. Demostrar que para vectores v, w cualesquiera de V

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{k=1}^{n} \langle \mathbf{v}, \mathbf{v}_k \rangle \overline{\langle \mathbf{w}, \mathbf{v}_k \rangle}.$$

2 EJERCICIOS 6

(6) Sea W el subespacio de \mathbb{R}^2 generado por el vector (3,4). Usando el producto interno canónico, sea E la proyección ortogonal de \mathbb{R}^2 sobre W. Hallar

- (1) la matriz de *E* en la base ordenada canónica;
- (2) W^{\perp} ;
- (3) una base ortonormal en que E está representada por la matriz

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

(7) Sea W el subespacio de \mathbb{R}^2 generado por el vector (3,4) y sea E la proyección ortogonal de \mathbb{R}^2 sobre W. Use el producto interno cuya forma cuadrática está definida por

$$||(x_1, x_2)||^2 = (x_1 - x_2)^2 + 3x_2^2.$$

Hallar

- (1) la matriz de *E* en la base ordenada canónica;
- (2) W^{\perp} ;
- (3) una base ortonormal en que E está representada por la matriz

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

(8) Considere la matriz siguiente:

$$A := \begin{bmatrix} 5 & 1+i \\ 1-i & 2 \end{bmatrix}.$$

(1) Probar que A tiene valores propios positivos.

Sea $\sigma : \mathbb{C} \to \mathbb{C}$ el automorfismo de conjuaction compleja. Sea f la forma σ -sesquilineal tal que A es la matriz asociado a f con respecto al base ordenada canónica.

- (2) Probar que f es un producto interno.
- (3) Encuentre una base \mathcal{B} tal que $[f]_{\mathcal{B}} = I$, la identidad.
- (9) Sea $V = M(2, \mathbb{C})$ con producto interno

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}, (A, B) \mapsto \operatorname{tr}(A^*B).$$

Sean

$$\mathbf{v} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \mathbf{y} \quad W = \left(\begin{bmatrix} 3 & 0 \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2i & 3 \\ 1+i & 0 \end{bmatrix} \right).$$

Encontrar la mejor aproximación de v por vectores de W.

(10) Este es un conjectura: Sea V un espacio vectorial finitodimensional y sea \mathcal{B} una base de V. Probar que hay un producto interno $V \times V \to \mathbb{F}$ tal que \mathcal{B} es ortogonal. Probar que hay un producto interno $V \times V \to \mathbb{F}$ tal que \mathcal{B} es ortonormal.

Si el conjectura es verdadero, ¡demuéstrelo! Si no, ¡Deme un contraejemplo!