MATS132 Lineaariset Lien ryhmät demo 1 (17.01.2018)

- **1.** Osoita, että $GL^+(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) : \det A > 0\}$ on matriisiryhmä.
- 2. Osoita, että kuvaus

$$(\mathbb{K},+) \to \mathrm{GL}(2,\mathbb{K}): \quad a \mapsto \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

on injektiivinen jatkuva homomorfismi.

3. (a) Osoita, että matriiseille $A, B \in \mathcal{M}_n(\mathbb{K})$,

$$AB = I \iff BA = I.$$

(b) Olkoon $m \geq n$. Osoita, että kaikille $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ ja $B \in \mathcal{M}_{n \times m}(\mathbb{K})$

$$AB = I \implies BA = I.$$

- (c) Osoita, että (b)-kohdan käänteinen väite " ← " ei aina päde.
- **4.** Todista Lemma 2.17: Olkoon $\Psi: \mathrm{GL}(n,\mathbb{C}) \hookrightarrow \mathrm{GL}(2n,\mathbb{R})$ luennoilla käytetty kompleksisen matriisin reaaliupotus, jossa jokainen matriisin alkio $a+bi \in \mathbb{C}$ korvataan 2×2 matriisilla $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ ja olkoon

$$\Phi: \mathbb{C}^n \to \mathbb{R}^{2n}, \Phi(c_1 + d_1 i, \dots, c_n + d_n i) = \Phi(c_1, d_1, c_2, d_2, \dots, c_n, d_n).$$

Osoita, että lineaarikuvauksille $A:\mathbb{C}^n\to\mathbb{C}^n$ ja $\Psi(A):\mathbb{R}^{2n}\to\mathbb{R}^{2n}$

$$\Psi(A) \circ \Phi = \Phi \circ A \qquad \begin{matrix} \mathbb{C}^n & \xrightarrow{\Phi} & \mathbb{R}^{2n} \\ \downarrow_A & & \downarrow_{\Psi(A)} \\ \mathbb{C}^n & \xrightarrow{\Phi} & \mathbb{R}^{2n} \end{matrix}$$

Tarkistellaan matriisiryhmän luonnollista toimintaa vektoriavaruuteen. Olkoon

$$\varphi: \mathrm{GL}(n,\mathbb{K}) \times \mathbb{K}^n \to \mathbb{K}^n, \quad \varphi(A,x) = Ax.$$

- **5.** Osoita, että φ on matriisiryhmän $\mathrm{GL}(n,\mathbb{K})$ jatkuva toiminto vektoriavaruuteen \mathbb{K}^n . Toisin sanoen osoita, että
 - (i) φ on jatkuva kuvaus,
- (ii) $\varphi(I, x) = x$ ja
- (iii) $\varphi(AB, x) = \varphi(A, \varphi(B, x)).$
- **6.** Määritä kaikkien vektorien $x \in \mathbb{K}^n$ radat

$$\operatorname{Orb}(x) = \varphi(\operatorname{GL}(n,\mathbb{K}),x) = \{Ax:\ A \in \operatorname{GL}(n,\mathbb{K})\} \subset \mathbb{K}^n.$$

Montako eri rataa on?

Kiinnitetään vektori $x \in \mathbb{K}^n$. Seuraavissa tehtävissä tarkastellaan vakauttajaa

$$\operatorname{Stab}(x) = \{ A \in \operatorname{GL}(n, \mathbb{K}) : Ax = x \}.$$

- 7. Osoita, että $\operatorname{Stab}(x) \subset \operatorname{GL}(n, \mathbb{K})$ on matriisiryhmä.
- **8.** Anna esimerkki matriisialiryhmästä $H < \operatorname{Stab}(x)$, jolle $H \simeq \operatorname{GL}(n-1,\mathbb{K})$.