

Let's call the current value of \triangle $\triangle^{(L)}$ or $\triangle^{(2)}$. Now: $\nabla E^{(0)} = \begin{bmatrix} \partial_{W}(A) E^{(0)} \\ \partial_{b}(A) E^{(0)} \end{bmatrix}$ $\Delta^{(2)} \cdot \alpha^{(A)}$ Layer 1 $a^{(1)} = o^{-\left(\frac{1}{2}(1)\right)}$ $z^{(1)} = w^{(1)} a^{(0)} + b^{(1)}$ How fast should $a^{(1)}$ change? We can calculate using $\Delta^{(2)}$ and $z^{(2)}$: $\Delta^{(2)}$. $\Theta_{\alpha(1)} = \Delta^{(2)} = \Delta^{(2)}$. $W^{(2)}$ let's call this $\Delta^{(1)}$, So $\Lambda^{(1)} := \Lambda^{(2)} \cdot W^{(2)}$ We know that $a^{(1)}$ should change with speed $\Delta^{(1)}$, so how fast should $\pm^{(1)}$ drange? $\Delta^{(1)}$. $\partial_{2(1)} a^{(1)} = \Delta^{(1)} \partial_{1} (2^{(1)})$ let's update $\Delta^{(1)}$. $\triangle^{(1)} = \triangle^{(1)} \cdot \bigcirc^{-1} \left(2^{(1)} \right)$ Now $\chi^{(1)}$ should change with speed $\chi^{(1)}$, how fast should $w^{(1)}$ and $h^{(1)}$ change? $\partial_{w^{(1)}} \xi^{(0)} = \chi^{(1)} \partial_{w^{(1)}} \chi^{(1)} = \chi^{($ Now: $\nabla E^{(0)} = \begin{bmatrix} \Delta^{(1)}, \alpha^{(0)} \\ \Delta^{(1)} \\ \Delta^{(2)}, \alpha^{(1)} \end{bmatrix}$