PHYF214 PHYSICS LAB REPORT SEM1 2018-2019 Lab 9 Group 7: Magnetic field of Helmholtz Coils [HC]

Ashwin Kumar K - 2017A8PS1034G

18 th October, 2018

1 Experimental Tasks

- 1. To study the variation of the magnetic field along the axis of a current carrying circular loop.
- 2. To study the variation of the radial (B_r) and axial (B_z) components of magnetic field due to a single current carrying coil. The field measurement are to be done in a plane at a distance $\mathbb{R}/2$ from the plane of the coil.
- 3. To study the axial and radial components of a pair of coils in Helmholtz configuration, both along the axis of the coils (r = 0) and in the plane midway between the planes of the coils (z = 0).
- 4. To determine the magnetic field of the Earth inside the lab using the coils and the compass.

2 Apparatus

Pair of Helmholtz coils Power supply, Digital multimeter, Teslameter, Hall probe, Meter scale, Barrel base, Right angle clamp, Connecting wire.

3 Theory

4 Observations

Least count of the Hall probe is 0.01 mT. Inner diameter of the coil is 37cm. inner radius of the Helmholtz coil is 18.5cm.

4.1 Trial 1: B_z as a function of z for a=R and I=1.25A

position(cm)	Table 1: Data for trial 1 relative position (in cm)	B(in mT)
30	-9	0.73
	-9 -8	0.76
29		
28	-7	0.8
27	-6	0.82
26	-5	0.84
25	-4	0.86
24	-3	0.86
23	-2	0.87
22	-1	0.87
21	0	0.87
20	1	0.87
19	2	0.88
18	3	0.88
17	4	0.86
16	5	0.86
15	6	0.86
14	7	0.86
13	8	0.84
12	9	0.84
11	10	0.83
10	11	0.81

Figure 1: Graph of B vs Position for trial 1 $\,$

4.2 Trial 2: B_z as a function of z for a=R/2 and I=1.3A

Table 2: Data for trial 2			
position	relative position	B(in mT)	
29	-11	0.87	
28	-10	0.89	
27	-9	0.93	
26	-8	0.94	
25	-7	0.96	
24	-6	1	
23	-5	1.03	
22	-4	1.05	
21	-3	1.07	
20	-2	1.09	
19	-1	1.11	
18	0	1.11	
17	1	1.12	
16	2	1.09	
15	3	1.07	
14	4	1.06	
13	5	1.03	
12	6	1.02	
11	7	0.99	
10	8	0.95	
9	9	0.93	
8	10	0.9	
7	11	0.84	
6	12	0.79	

- 4.3 Trial 3: B_z as a function of z for a=2R and I=2.10A, (Table and graph appended at the end)
- 4.4 Trial 4: B_z as a function of z for Right Coil Short Circuit (Table and graph appended at the end)
- 4.5 Trial 5: B_z as a function of z for Left Coil Short Circuit (Table and graph appended at the end)

Figure 2: Graph of B vs Position for trial 2

Figure 3: Graph of B vs Position for trial 3

Figure 4: Graph of B vs Position for trial 4

Ta	able 3: Data for trial 3	
position(cm)	relative positioin(cm)	B(in mT)
55	-18.5	0.22
54	-17.5	0.25
53	-16.5	0.28
52	-15.5	0.29
51	-14.5	0.27
50	-13.5	0.25
49	-12.5	0.26
48	-11.5	0.25
47	-10.5	0.23
46	-9.5	0.2
45	-8.5	0.2
44	-7.5	0.18
43	-6.5	0.18
42	-5.5	0.17
41	-4.5	0.18
40	-3.5	0.18
39	-2.5	0.18
38	-1.5	0.18
37	-0.5	0.18
36	0.5	0.18
35	1.5	0.18
34	2.5	0.18
33	3.5	0.2
32	4.5	0.2
31	5.5	0.2
30	6.5	0.2
29	7.5	0.22
28	8.5	0.22
27	9.5	0.23
26	10.5	0.26
25	11.5	0.26
24	12.5	0.25
23	13.5	0.23
22	14.5	0.23
21	15.5	0.22
20	16.5	0.21
19	17.5	0.19

5 Precautions

• 1. Always push the barrel base bearing the Hall probe along the rule in the same direction. 5

Table 4: Data for trial 4 relative position B (mT) -0.1 02 -0.08 4 -0.046 0 8 0.0710 0.11 0.212 14 0.2616 0.3218 0.38 20 0.4222 0.4324 0.420.3326 28 0.2430 0.232 0.150.1234 0.1 36 0.07 38 40 0.05

Figure 5: Graph of B vs Position for trial 5

- 3. Connect the probe correctly.
- 2. Check if the connections are correct and if the current in both coils is in the same direction.

Table 5: Data for trial 4 Left Coil Short Circuit		
relative position	B (mT)	
•	, ,	
0	-0.13	
2	-0.18	
4	-0.23	
6	-0.3	
8	-0.35	
10	-0.42	
12	-0.49	
14	-0.57	
16	-0.65	
18	-0.69	
20	-0.72	
22	-0.7	
24	-0.56	
26	-0.44	
28	-0.34	
30	-0.27	
36	-0.1	
38	-0.08	
40	-0.07	

6 Analysis:

Magnetic field at a distance z from the center of the coil, along its axis, $dH = (1/4)(Idlxr)/|R^2 + z^2|^3$ Thus when z = 0, flux density has a maximum value when $\alpha < R$ and a minimum value when $\alpha > R$. The curves plotted from our measurements also show this ; when $\alpha = R$, the field is virtually uniform in the range (-R/2,R/2).