Vergleich der Integrationsmethoden und der Methoden des maschinellen Lernens für gewöhnliche Differentialgleichungen

Alexandro Jedaidi

Inhaltsverzeichnis

1	Einleitung	2
2	Problemstellung 2.1 Gewöhnliche Differentialgleichungen und Anfangswertprobleme 2.2 Existenz und Eindeutigkeit 2.2.1 Existenz von Lösungen 2.2.2 Eindeutigkeit von Lösungen 2.3 Abhängigkeit der Lösungen von den Daten	2 3 3 4
3	Numerischer Lösungsansatz 3.1 Methodenbeschreibung	5 5 5 5
4	neuronale Netze 4.1 Methodenbeschreibung	5 5 5 5
5	Anwendungsbeispiele	5
A۱	bildungsverzeichnis	6

1 EINLEITUNG 2

Zusammenfassung

Bachelorabeit WiSe 2021/2022

1 Einleitung

Citing template[Google]

2 Problemstellung

In diesem Abschnitt wird die Theorie zu den gewöhnlichen Differentialgleichungen erläutert. Diese ist Grundlage für das Verständnis der Schlussfolgerungen und Ergebnisse dieser Arbeit.

2.1 Gewöhnliche Differentialgleichungen und Anfangswertprobleme

Definition 1 Ein System gewöhnlicher Differentialgleichungen m-ter Ordnung hat die Form

$$x^{(m)} = f(t, x, x', x'', ..., x^{(m-1)})$$
(I)

mit der gegebenen Funktion $f: D \times \mathbb{R}^n \times \mathbb{R}^n \times \dots \times \mathbb{R}^n \to \mathbb{R}^n$, wobei $D \subseteq \mathbb{R}$ ein Zeitintervall ist. Eine dazugehörige Lösung (falls existent) $\hat{x}: D \to \mathbb{R}$ ist eine m-mal differenzierbare Funktion und erfüllt die Bedingung

$$\hat{x}^{(m)} = f(t, \hat{x}, \hat{x}', \hat{x}'', \dots, \hat{x}^{(m-1)}).$$

Definition 2 Ein Anfangswertproblem für eine Differentialgleichung (I) mit gegebenen Anfangswerten $x_{0,1},...,x_{0,m} \in \mathbb{R}^n$ hat die Form

$$x^{(m)} = f(t, x, x', x'', ..., x^{(m-1)}), \quad x(t_0) = x_{0,1}, \quad x'(t_0) = x_{0,2}, ..., \quad x^{(m-1)}(t_0) = x_{0,m}.$$
 (II)

Eine Lösung des Problems $\hat{x}: D \to \mathbb{R}$ muss also zusätzlich zu (I) auch die Anfangswertbedingungen (vgl. (II)) erfüllen.

Es ist möglich jede gewöhnliche Differentialgleichung m-ter Ordnung zu einem System gewöhnlicher Differential gleichungen erster Ordnung umzuwandeln. Dies erleichtert uns in späteren Abschnitten Aussagen über die Existenz und Eindeutigkeit der Lösung(en) \hat{x} zu treffen. Betrachte hierzu eine gewöhnliche Differentialgleichung m-ter Ordnung (vgl. (I)). Diese ist mit Hilfe der Funktionen $x_j:D\to\mathbb{R}$ für $j\in\{1,\ldots,k\}$ äquivalent zu einem System erster Ordnung mit m Gleichungen:

$$\begin{cases} x'_{1} = x_{2} \\ x'_{2} = x_{3} \\ \vdots \\ \vdots \\ x'_{m-1} = x_{m} \\ x'_{m} = f(t, x_{1}, x_{2}, x_{3}, \dots, x_{m}). \end{cases}$$
(III)

Für ein AWP (II) gilt zusätzlich:

$$\begin{cases} x_1(t_0) = x_{0,1} \\ x_2(t_0) = x_{0,2} \\ \vdots \\ x_{m-1}(t_0) = x_{0,m-1} \\ x_m(t_0) = x_{0,m}. \end{cases}$$
(IV)

2.2 Existenz und Eindeutigkeit

In diesem Abschnitt betrachten wir ein Anfangswertproblem erster Ordnung

$$x' = f(t, x)$$

$$x(t_0) = x_0$$
(V)

und zeigen, unter welchen Bedingungen der rechten Seite f(t, x(t)) eine Lösung existiert und ggf. eindeutig ist.

2.2.1 Existenz von Lösungen

Hier betrachten wir einen Satz, welcher zeigt, dass die Stetigkeit der rechten Seite f für die Existenz einer Lösung ausreicht.

Satz 3 (Existenzsatz von Peano, quantitative und qualitative Version) Seien

$$\mathcal{G} = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : |t - t_0| \le \alpha, \quad \|x - x_0\|_2 \le \beta, \quad \alpha, \beta \ge 0\}$$

und $f: \mathcal{G} \to \mathbb{R}^n$ stetig. Dann besitzt das Anfangswertproblem (V) mindestens eine Lösung \hat{x} auf dem Intervall $D = \{t_0 - a, t_0 + a\}$, wobei

$$a = \min\{\alpha, \frac{\beta}{M}\}, \qquad M = \max_{(t,y) \in \mathcal{G}} \{\|f(t,x)\|_2\}.$$

(Quantitative Version)

Seien $\mathcal{G} \in \mathbb{R} \times \mathbb{R}^n$ offen und $f: \mathcal{G} \to \mathbb{R}^n$ stetig. Dann besitzt das Anfangswertproblem (V) für jedes Paar $(t_0, x_0) \in \mathcal{G}$ mindestens eine lokale Lösung, d.h., es existiert ein $a = a(t_0, x_0) \geq 0$, sodass das Anfangswertproblem (V) auf dem Intervall $[t_0 - a, t_0 + a]$ mindestens eine Lösung \hat{x} hat. (Qualitative Version)

Beweis [1, S. 52–55]

2.2.2 Eindeutigkeit von Lösungen

Ähnlich wie im vorherigen Kapitel existiert ein Satz, welcher zeigt, dass eine lipschitz-stetige [2] rechte Seite f reicht, damit eine eindeutige Lösung für eine gewöhnliche Differentialgleichung erster Ordnung existiert.

Satz 4 (Existenzsatz- und Eindeutigkeitssatz von Picard-Lindelöf, lokale quantitative und qualitative Version)

Seien

$$\mathcal{G} = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : |t - t_0| \le \alpha, \quad ||x - x_0||_2 \le \beta, \quad \alpha, \beta \ge 0\},$$

 $(t_o, x_0) \in \mathcal{G} \text{ und } f : \mathcal{G} \to \mathbb{R}^n \text{ stetig und Lipschitz-stetig bzgl } x. \text{ Dann besitzt das Anfangswertproblem}$ (V) genau eine Lösung \hat{x} auf dem Intervall $D = \{t_0 - a, t_0 + a\}$, wobei

$$a = \min\{\alpha, \frac{\beta}{M}\}, \qquad M = \max_{(t,y) \in \mathcal{G}} \{\|f(t,x)\|_2\}.$$

(Quantitative Version)

Seien $\mathcal{G} \in \mathbb{R} \times \mathbb{R}^n$ offen und $f: \mathcal{G} \to \mathbb{R}^n$ stetig und lokal Lipschitz-stetig bzgl. x auf \mathcal{G} . Dann besitzt das Anfangswertproblem (V) für jedes Paar $(t_0, x_0) \in \mathcal{G}$ genau eine lokale Lösung, d.h., es existiert ein $a = a(t_0, x_0) \geq 0$, sodass das Anfangswertproblem (V) auf dem Intervall $[t_0 - a, t_0 + a]$ genau eine Lösung \hat{x} hat. (Qualitative Version)

Beweis [1, S. 56–58] [3]

2.3 Abhängigkeit der Lösungen von den Daten

TODO: Motivation für den Abschnitt Um eine Aussage über die stetige Abhängigkeit der Anfangsdaten teffen zu können, beweisen wir zuerst einen wichtigen Hilfssatz.

Satz 5 (Gronwallsche Ungleichung) Seien $D = [t_0, t_f]$ ein Intervall und die stetige, nichtnegative Funktion $u: D \to \mathbb{R}$ sowie $a \ge 0, b > 0$ gegeben. Des Weiteren gilt folgende Ungleichung:

$$u(t) \le \alpha \int_{t_0}^t u(s)ds + \beta$$

für alle $t \in D$. Dann gilt:

$$u(t) \le e^{\alpha(t-t_0)}\beta$$

für alle $t \in D$.

Beweis. Definiere zuerst eine Hilfsfunktion

$$v(t) := \alpha \int_{t_0}^t u(s)ds + \beta.$$

Für diese gilt

$$v'(t) = \alpha u(t) \le \alpha v(t)$$

für alle $t \in D$. Daraus folgt

$$(e^{-\alpha t}v(t))' = e^{-\alpha t}(v(t)' - \alpha v(t)) \le 0, \qquad t \in D.$$

Die Funktion $e^{-\alpha t}v(t)$ ist also monoton fallend, das bedeutet

$$e^{-\alpha t}u(t) \le e^{-\alpha t}v(t) \stackrel{t \ge t_0}{\le} e^{-\alpha t_0}v(t_0) = e^{-\alpha t_0}\beta.$$

Daraus folgt die Behauptung.

Außerdem benötigen wir noch folgendes Lemma.

Lemma 6 Sei $T \subset \mathbb{R}^{1+n}$ offen und $f: T \to \mathbb{R}$ eine stetige Funktion, die zusätzlich Lipschitz-stetig bezüglich der x-Variable ist mit

$$|f(t,x) - f(t,y)|_2 \le L|x-y|_2$$

für alle $(t,x),(t,y) \in T$ mit L > 0. Ist \hat{x} eine stetig-differenzierbare Funktion auf dem Intervall $D \subset \mathbb{R}$ und eine Lösung des Anfangswertproblems (V) und ist \hat{x}_a eine stetig-differenzierbare Funktion und eine Näherungslösung mit $(t,\hat{x}_a(t)) \in T$ für alle $t \in D$ und es gilt

$$\|\hat{x}_a'(t) - f(t, \hat{x}_a(t))\|_2 \le d_e$$
 $t \in D$,
 $|t_0 - \tilde{t}_0| \le d_t$,
 $\|x_0 - \hat{x}_a(\tilde{t}_0)\|_2 \le d_a$,

 $(d_g \ representiert \ die \ Störung \ der \ rechten \ Seite, \ d_t \ die \ Störung \ der \ Anfangszeit \ und \ d_a \ die \ Störung \ des \ Anfangswerts).$ Dann gilt die Abschätzung

$$\|\hat{x}(t) - \hat{x}_a(t)\|_2 \le e^{L|t - t_0|} (d_a + d_t(d_g + \sup_{s \in D} \|f(s, \hat{x}_a(s))\|_2) + \frac{d_g}{L}) - \frac{d_g}{L}.$$

Beweis. Betrachte zuerst die Differenz der Lösung \hat{x} und \hat{x}_a bei $t=t_0$.

$$\|\hat{x}(t_0) - \hat{x}_a(t_0)\|_2 = \left\|\hat{x}_0 - \int_{\tilde{t}_0}^{t_0} \hat{x}_a'(s)ds - \hat{x}_a(\tilde{t}_0)\right\|_2$$

$$\leq \left\|2\hat{x}_0 - \hat{x}_a(\tilde{t}_0)\right\| \left\|\int_{\tilde{t}_0}^{t_0} [\hat{x}_a'(s) - f(s, \hat{x}_a(s))]ds\right\|_2 \left\|\int_{\tilde{t}_0}^{t_0} f(s, \hat{x}_a(s))ds\right\|_2$$

$$\leq d_a + d_t(d_g + \sup_{s \in D} \|f(s, \hat{x}_a(s))\|).$$

Nun können wir mit Hilfe der Lipschitz-Eigenschaft der rechten Seite f die Differenz für allgemeines $t \in D, t > t_0$ abschätzen:

$$\|\hat{x}(t) - \hat{x}_{a}(t)\|_{2} = \|\hat{x}_{0} + \int_{t_{0}}^{t} f(s, \hat{x})ds - \hat{x}_{a}(t_{0}) - \int_{t_{0}}^{t} \hat{x}'_{a}(s)ds\|_{2}$$

$$\leq \|\hat{x}_{0} - \hat{x}_{a}(t_{0})\|_{2} + \int_{t_{0}}^{t} [\|f(s, \hat{x}(s)) - f(s, \hat{x}_{a}(s))\|_{2} + \|\hat{x}'_{a}(s) - f(s, \hat{x}_{a}(s))\|_{2}]ds$$

$$\leq d_{a} + d_{t}(d_{g} + \sup_{s \in D} \|f(s, \hat{x}_{a}(s))\|_{2}) + \int_{t_{0}}^{t} [L \|\hat{x}(s) - \hat{x}_{a}(s)\|_{2} + d_{g}]ds.$$

Um das gronwallsche Lemma verwenden zu können, setzen wir $u(t) := \|\hat{x}(t) - \hat{x}_a(t)\|_2 + \frac{d_g}{L}$

$$\beta := d_a + d_t(d_g + \sup_{s \in D} \|f(s, \hat{x}_a(s))\|_2 + \frac{d_g}{L})$$

und $\alpha := L$. Offensichtlich gilt

$$\begin{split} &u(t) \leq \alpha \int_{t_0}^t u(s) ds + \beta \\ \Leftrightarrow & \| \hat{x}(t) - \hat{x}_a(t) \|_2 + \frac{d_g}{L} \leq L \int_{t_0}^t \left[\| \hat{x}(s) - \hat{x}_a(s) \|_2 + \frac{d_g}{L} \right] ds + \beta \\ \Leftrightarrow & \| \hat{x}(t) - \hat{x}_a(t) \|_2 \leq d_a + d_t (d_g + \sup_{s \in D} \| f(s, \hat{x}_a(s)) \|_2) + \int_{t_0}^t [L \| \hat{x}(s) - \hat{x}_a(s) \|_2 + d_g] ds - \frac{d_g}{L} \end{split}$$

Also können wir das gronwallsche Lemma anwenden und somit folgt

$$\|\hat{x}(t) - \hat{x}_a(t)\|_2 + \frac{d_g}{L} \le e^{L(t-t_0)} \left[d_a + d_t (d_g + \sup_{s \in D} \|f(s, \hat{x}_a(s))\|_2 + \frac{d_g}{L}) \right].$$

Der Beweis für $t \in D$ mit $t < t_0$ funktioniert analog.

Nun können wir eine Abschätzung für eine Lösung eines Anfangswertproblems u und eine Lösung mit gestörten Anfangswerten

3 Numerischer Lösungsansatz

- 3.1 Methodenbeschreibung
- 3.2 Fehlerdisskusion
- 3.2.1 Konsistenz und Konvergenz
- 3.2.2 Stabilität
- 4 neuronale Netze
- 4.1 Methodenbeschreibung
- 4.2 Gewichtsinitialisierung
- 4.3 Fehlerdisskussion (weighting function)
- 4.4 curriculum learning
- 5 Anwendungsbeispiele

LITERATUR 6

Literatur

- [1] Lisa Beck: Gewöhnliche Differentialgleichungen. 12. Feb. 2018.
- [2] Lipschitz-Stetigkeit Serlo "Mathe für Nicht-Freaks" Wikibooks, Sammlung freier Lehr-, Sach- und Fachbücher. URL: https://de.wikibooks.org/wiki/Mathe_f%C3%BCr_Nicht-Freaks:_Lipschitz-Stetigkeit [13. Jan. 2022].

[3] Tatjana Stykel: Skript zur Vorlesung Numerik Gewöhnlicher Differentialgleichungen. Sommersemester 2020.

Abbildungsverzeichnis