

Tratamiento de Señales

Version 2022-2

Introducción

[Capítulo 1]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Definiciones

Uso de algoritmos computacionales que toman una imagen como entrada y entregan una imagen como salida.

[INPUT] [OUTPUT]

[INPUT]

[INPUT]

[INPUT]

[INPUT]

Análisis de Imágenes:

Uso de algoritmos computacionales que toman una imagen como entrada y entregan una medición, una interpretación o una decisión.

What is an image?

Que es una Imagen?

Source: A. Efros

Definición. Una **imagen** es una representación visual, de un objeto o un lugar, que no cambia con el tiempo.

Una imagen es adquirida sensando la cantidad de radiación.

FIGURE 3 Recording the various types of interaction of radiation with matter.

Fuentes de radiación: ondas electromagnéticas (EM's), ondas de ultra sonido (sonido de alta frecuencia), rayos X, etc.

Ejemplo. El ojo humano es un sensor de ondas EM's con un **ancho de banda reducido**

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Que es una Imagen?

•Una grilla (matrix) de valores de intensidad

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

Que es una Imagen?

• Podemos pensar de una imagen (grayscale) como una **function**, f, from R^2 to R:

-f(x,y) dada la **intensidad** en la posición (x,y)

snoop

3D vie

 Una Imagen digital es una version discreta (sampled, quantized) de esta función

Transformación de una Imagen

 Como con una función, Podemos aplicar operadores a una imagen

 Hoy hablamos sobre una clase especial de operadores, convolution (filtros lineales)

Reconocimiento de Patrones:

Métodos que hacen inferencia a partir de datos. Usualmente, se mide un objeto para asignarlo a una clase

Computación Gráfica:

Uso de algoritmos computacionales para generar imágenes a partir de modelos (objetos 3D, textura, color, iluminación, etc.)

Computación Gráfica:

Uso de algoritmos computacionales para generar imágenes a partir de modelos (objetos 3D, textura, color, iluminación, etc.)

Visión por Computador:

La visión por computador es la ciencia que le proporciona a los computadores la capacidad de "ver". [Faugeras]

Visión por Computador:

La visión por computador es la ciencia que le proporciona a los computadores la capacidad de "ver". [Faugeras]

La visión por computador es un campo que incluye métodos para adquirir, procesar, analizar y comprender imágenes y, en general, datos de alta dimensión del mundo real para producir información numérica o simbólica, por ejemplo, en forma de decisiones.

[Wikipedia]

Visión por Computador:

Objeto Procesamiento Análisis Adquisición de De Imágenes Imágenes Fotografía · Extracción de Filtros Rayos X Segmentación características Restauración Selección de Termografía características etc, · Aprendizaje de máquina Clasificación Detección Medición Interpretación

Visión por Computador:

Ejemplo Simple

Ejemplo: A partir de una imagen de un arroz:

- 1) segmentar el grano de arroz
- 2) calcular su área en pixeles
- 3) calcular su tono de gris promedio

Escoger pixeles > 170

Área: contar cuántos pixeles hay mayores que 170 (pixeles blancos en la segmentación). Área = 8720 pixeles.

Tono gris promedio: promediar en el input los pixeles mayores que 170.

Tono de gris promedio = 230.2049, o bien 230.20/255 x 100 = 90.28%

Adquisición de Imágenes

Sistema de adquisición de imágenes

CCD: Charged-Coupled Device Sensor de la imagen en una cámara

© Wikipedia

Sistema de adquisición de imágenes

CCD: Charged-Coupled Device Sensor de la imagen en una cámara

© Wikipedia

16 x 16

16 x 16

32 x 32

64 x 64

256 tonos de gris

256 tonos de gris	
128	
64	
32	
16	
8	
4	
2	

256 tonos de gris

128 tonos de gris

64 tonos de gris

32 tonos de gris

16 tonos de gris

8 tonos de gris

4 tonos de gris

2 tonos de gris

Conceptos Básicos

Conceptos Básicos

Conceptos Básicos

Sea f(x,y) una función de imagen continua de dos variables (x,y) por muestreo y cuantización se convierte en una imagen digital (arreglo) de M x N.

Imagen graficada como una superficie

Imagen graficada como un arreglo visual de intensidad

Imagen graficada como un arreglo visual de intensidad

)ri	gir	n													
0	0	0	0	0	0	٠			0	0	0	0	0	0	0
0	0	0	0	0						0	0	0	0	0	0
0	0	0	0								0	0	0	0	0
0	0	0		:								0	0	0	0
0	0	,		.5	.5	.5	5						0	0	0
0	0			.5	.5								0	0	0
				.5											
								1	1	1					
				50				1	1						
0	0							1		٠.			0	0	0
0	0														
		0						1				0			
			0								0				
150	4.73	200	0.774	0						0	030				
150	1	17	130	100	5					-35	1188				0
	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 · · · 0 0 0 0	0 0 0 0 0 0 0 · · · · · · 0 0 0 0 0 · · · · · 0	0 0 0 0 0 0 0 · · · 0 · · · 5 · 5 · 5 · · 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0 0 0

Imagen mostrada como un arreglo 2-D numérico

$$f(x,y) = \left[egin{array}{cccc} f(0,0) & f(0,1) & \cdots & f(0,N-1) \ f(1,0) & f(1,1) & \cdots & f(1,N-1) \ dots & dots & dots \ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \ \end{array}
ight]$$

$$\mathbf{A} = \left[egin{array}{cccc} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \ dots & dots & dots \ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \ \end{array}
ight]$$

Los sensores de mosaico recogen 25% R y B, y 50% G

Después de una combinación e interpolación

Descomposición RGB

Descomposición RGB

- > Color → blanco & negro
- > Mejoramiento de contraste

