ASSIGNMENT DAY 07 (STATISTICAL LEARNING PROJECT)

Step1 - Launching

import pandas as pd

dataset = pd.read_csv('general_data.csv')

dataset

o/p:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

	•			
0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5
4	32	No	0	4
440	5 42	No	0	2
440	6 29	No	0	2
440	7 25	No	1	2

dataset.head()

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

9

0 51	No	0	0
1 31	Yes	1	4
2 32	No	0	3

4408 42 No ... 7

4409 40 No ... 3

```
3 38 No ... 7 5
4 32 No ... 0 4
```

dataset.columns

Step 2 - Data Treatment

dataset.isnull()

	Age At	trition YearsSin	ceLastPromotio	on YearsWithCurrManager
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
•				
440	05 False	False	False	False
4406 False False False False				
440	07 False	False	False	False
4408 False False False False				

4409 False False ... False

False

dataset.dropna()

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

- 0 51 No ... 0 0
- 31 1 Yes ... 1 4
- 2 32 No ... 0 3
- 7 3 38 No ... 5
- 32 No ... 0 4

...

- 5 4404 29 1 No ...
- 0 2 4405 42 No ...
- 4406 29 No ... 0 2
- 1 4407 25 No ... 2
- 7 8 4408 42 No ...

dataset.duplicated()

- 0 False
- 1 False
- 2 False
- 3 False
- 4 False
- 4405 False
- 4406 False
- 4407 False

4409 False

dataset.drop_duplicates()

Age Attrition YearsSinceLastPromotion YearsWithCurrManage

0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5
4	32	No	0	4
•••				
440	15 42	No	0	2
	75 72	110	·	
440		No	0	2
	06 29			2
440)6 29)7 25	No	0	
440 440	06 29 07 25 08 42	No	0	2

Step 3 – Univariate Analysis

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()

dataset1

Age ... YearsWithCurrManager

count 4410.000000 ... 4410.000000

mean 36.923810 ... 4.123129

std 9.133301 ... 3.567327

 min
 18.000000
 ...
 0.000000

 25%
 30.000000
 ...
 2.000000

 50%
 36.000000
 ...
 3.000000

 75%
 43.000000
 ...
 7.000000

 max
 60.000000
 ...
 17.000000

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].median()

dataset1

Age 36.0

DistanceFromHome 7.0

Education 3.0

MonthlyIncome 49190.0

NumCompaniesWorked 2.0

PercentSalaryHike 14.0

TotalWorkingYears 10.0

TrainingTimesLastYear 3.0

YearsAtCompany 5.0

YearsSinceLastPromotion 1.0

YearsWithCurrManager 3.0

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()

print(dataset1)

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].var()

dataset1

Age 8.341719e+01

DistanceFromHome 6.569144e+01

Education 1.048438e+00

MonthlyIncome 2.215480e+09

NumCompaniesWorked 6.244436e+00

PercentSalaryHike 1.338907e+01

TotalWorkingYears 6.056298e+01

TrainingTimesLastYear 1.661465e+00

YearsAtCompany 3.751728e+01

YearsSinceLastPromotion 1.037935e+01

YearsWithCurrManager 1.272582e+01

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()

dataset1

Age 0.413005

DistanceFromHome 0.957466

Education -0.289484

MonthlyIncome 1.368884

NumCompaniesWorked 1.026767

PercentSalaryHike 0.820569

TotalWorkingYears 1.116832

TrainingTimesLastYear 0.552748

YearsAtCompany 1.763328

YearsSinceLastPromotion 1.982939

YearsWithCurrManager 0.832884

dataset1 = dataset[['Age','DistanceFromHome','Education','MonthlyIncome',
'NumCompaniesWorked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear',
'YearsAtCompany','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()

dataset1

Age -0.405951

DistanceFromHome -0.227045

Education -0.560569

MonthlyIncome 1.000232

NumCompaniesWorked 0.007287

PercentSalaryHike -0.302638

TotalWorkingYears 0.912936

TrainingTimesLastYear 0.491149

YearsAtCompany 3.923864

YearsSinceLastPromotion 3.601761

YearsWithCurrManager 0.167949

Inference from the analysis:

- All the above variables show positive skewness; while Age & Mean_distance_from_home are leptokurtic and all other variables are platykurtic.
- The Mean_Monthly_Income's IQR is at 54K suggesting company wide attrition across all income bands
- Mean age forms a near normal distribution with 13 years of IQR

Outliers:

1. Scatter plot between Attrition and Age

import matplotlib.pyplot as plt plt.scatter(dataset.Attrition,dataset.Age)

2. Scatter plot between Attrition and Monthlyincome

plt.scatter(dataset.Attrition,dataset.MonthlyIncome)

3. Scatter plot between Attrition and Education

plt.scatter(dataset.Attrition,dataset.Education)

4. Scatter plot between Attrition and DistanceFromHome

plt.scatter(dataset.Attrition, dataset.DistanceFromHome)

5. <u>Scatter plot between Attrition and NumCompanies</u>

plt.scatter(dataset.Attrition,dataset.NumCompaniesWorked)

6. Scatter plot between Attrition and PercentSalaryHike

plt.scatter(dataset.Attrition,dataset.PercentSalaryHike)

7. <u>Scatter plot between Attrition and TotalWorkingYears</u>

plt.scatter(dataset.Attrition,dataset.TotalWorkingYears)

8. Scatter plot between Attrition and TrainingTimesLastYear

plt.scatter(dataset.Attrition,dataset.TrainingTimesLastYear)

9. <u>Scatter plot between Attrition and YearsAtCompany</u>

plt.scatter(dataset.Attrition,dataset.YearsAtCompany)

10. <u>Scatter plot between Attrition and YearsSinceLastPromotion</u>

plt.scatter(dataset.Attrition,dataset.YearsSinceLastPromotion)

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

Age

Age is normally distributed without any outliers

DistanceFromHome

box_plot = dataset.DistanceFromHome
plt.boxplot(box_plot)

DistanceFromHome is Right skewed

Education

Education is normally distributed without any outliers

• MonthlyIncome

Monthly Income is Right skewed with several outliers

• PercentSalaryHike

box_plot = dataset.PercentSalaryHike plt.boxplot(box_plot)

PercentSalaryHike is Right skewed

TrainingTimesLastYear

box_plot = dataset.TrainingTimesLastYear
plt.boxplot(box_plot)

TrainingTimesLastYear is Left skewed with several outlier

YearsAtCompany

Years at company is also Right Skewed with several outliers observed.

YearsSinceLastPromotion

box_plot = dataset.YearsSinceLastPromotion
plt.boxplot(box_plot)

YearsSinceLastPromotion is also Right Skewed with several outliers observed.

Step 5 – Statistical Tests (Mann-Whitney)

```
from sklearn import preprocessing

Label_encode = preprocessing.LabelBinarizer()

dataset['Attrition'] = Label_encode.fit_transform(dataset['Attrition'])
```

Attrition Vs Distance from Home

```
from scipy.stats import mannwhitneyu
a1=dataset.Attrition
a2=dataset.DistanceFromHome
stat, p=mannwhitneyu(a1,a2)
print(stat, p)
print('p-value',p)
221832.0 0.0
```

As the P value of 0.0 is < 0.05, the H0 is rejected and Ha is accepted.

H0: There is no significant differences in the Distance From Home between attrition

Ha: There is significant differences in the Distance From Home between attrition

Attrition Vs Income

```
b1=dataset.Attrition

b2=dataset.MonthlyIncome

stat, p=mannwhitneyu(b1,b2)

print(stat, p)

print('p-value',p)
```

0.0 0.0

p-value 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted.

H0: There is no significant differences in the income between attrition

Ha: There is significant differences in the income between attrition

Attrition Vs Total Working Years

```
b1=dataset.Attrition

b2=dataset.TotalWorkingYears

stat, p=mannwhitneyu(b1,b2)

print(stat, p)

print('p-value',p)
```

170527.5 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Total Working Years between attrition Ha: There is significant differences in the Total Working Years between attrition

Attrition Vs Years at company

```
a1=dataset.Attrition
a2=dataset.YearsAtCompany
stat, p=mannwhitneyu(a1,a2)
print(stat, p)
print('p-value',p)
```

520357.5 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Years At Company between attrition Ha: There is significant differences in the Years At Company between attrition

Attrition Vs YearsWithCurrentManager

```
a1=dataset.Attrition

a2=dataset.YearsWithCurrManager

stat, p=mannwhitneyu(a1,a2)

print(stat, p)

print('p-value',p)
```

2101288.5 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Years With Current Manager between attrition Ha: There is significant differences in the Years With Current Manager between attrition

Step 6 – Statistical Tests (Separate T Test)

Attrition Vs Distance From Home

```
from scipy.stats import ttest_ind

z1=dataset.Attrition

z2=dataset.DistanceFromHome

stat, p=ttest_ind(z2,z1)

print(stat, p)

print('p-value',p)
```

73.92105563691779 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Distance From Home between attrition Ha: There is significant differences in the Distance From Home between attrition

Attrition Vs Yeats At Company

```
z1=dataset.Attrition

z2=dataset.YearsAtCompany

stat, p=ttest_ind(z2,z1)

print(stat, p)

print('p-value',p)
```

74.10006092710509 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Years At Company between attrition Ha: There is significant differences in the Years At Company between attrition

Attrition Vs Income

```
z1=dataset.Attrition

z2=dataset.MonthlyIncome

stat, p=ttest_ind(z2,z1)

print(stat, p)

print('p-value',p)
```

91.74733118564392 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Monthly Income between attrition

Ha: There is significant differences in the Monthly Income between attrition

Attrition Vs Years With Current Manager

```
z1=dataset.Attrition

z2=dataset.YearsWithCurrManager

stat, p=ttest_ind(z2,z1)

print(stat, p)

print('p-value',p)
```

73.36426551326637 0.0

p-value 0.0

As the P value is again 0.0, which is < than 0.05, the H0 is rejected and ha is accepted. H0: There is no significant differences in the Years With Current Manager between attrition Ha: There is significant differences in the Years With Current Manager between attrition

Step 8 – Unsupervised Learning - Correlation Analysis

In order to find the interdependency of the variables DistanceFromHome, MonthlyIncome, TotalWorkingYears, YearsAtCompany, YearsWithCurrManager from that of Attrition, we executed the Correlation Analysis as follows.

Correlation between Attrition and DistanceFromHome

```
from scipy.stats import pearsonr

stats,p = pearsonr(dataset.Attrition,dataset.DistanceFromHome)

print(stats,p)

print('\nCorrelation :',stats,'\np-value :',p)

if stats == 0 :

print('No correlation \n')

elif stats < 0 :

print('\nNegative correlation \n')
```

```
else:
    print('Positive corrlation \n')

if p >= 0.5:
    print("Accept null hypothesis \n")

elif p < 0.5:
    print("Reject null hypothesis \n")

-0.009730141010179674  0.5182860428050771

Correlation : -0.009730141010179674
p-value : 0.5182860428050771

Negative correlation</pre>
```

As r = -0.009, there's low negative correlation between Attrition and DistanceFromHome As the P value of 0.518 is > 0.05,

we are accepting H0 and hence there's no significant correlation between Attrition & DistanceFromHome

Correlation between Attrition and MonthlyIncome

Accept null hypothesis

```
stats,p = pearsonr(dataset.Attrition,dataset.MonthlyIncome)
print(stats,p)
print('\nCorrelation :',stats,'\np-value :',p)

if stats == 0 :
    print('No correlation \n')
elif stats < 0 :
    print('\nNegative correlation \n')
else :</pre>
```

```
print('Positive corrlation \n')

if p >= 0.5 :
    print("Accept null hypothesis \n")

elif p < 0.5 :
    print("Reject null hypothesis \n")

-0.031176281698115007 0.03842748490600132</pre>
```

Correlation : -0.031176281698115007

p-value : 0.03842748490600132

Negative correlation

Reject null hypothesis

As r = -0.031, there's low negative correlation between Attrition and MonthlyIncome As the P value of 0.038 is < 0.05,

we are accepting Ha and hence there's significant correlation between Attrition & MonthlyIncome

➤ Correlation between Attrition and TotalWorkingYears

```
stats,p = pearsonr(dataset.Attrition,dataset.TotalWorkingYears)

print(stats,p)

print('\nCorrelation :',stats,'\np-value :',p)

if stats == 0 :
    print('\nNo correlation \n')

elif stats < 0 :
    print('\nNegative correlation \n')

else :
    print('\nPositive correlation \n')
```

```
if p >= 0.5 :
    print("Accept null hypothesis \n")
elif p < 0.5 :
    print("Reject null hypothesis \n")</pre>
```

```
-0.17011136355964646 5.4731597518148054e-30
```

Correlation: -0.17011136355964646 p-value: 5.4731597518148054e-30

Negative correlation

Reject null hypothesis

As r = -0.17, there's low negative correlation between Attrition and TotalWorkingYears As the P value is < 0.05,

we are accepting Ha and hence there's significant correlation between Attrition & TotalWorkingYears

> Attrition & YearsAtCompany

```
stats,p = pearsonr(dataset.Attrition,dataset.YearsAtCompany)

print(stats,p)

print('\nCorrelation :',stats,'\np-value :',p)

if stats == 0 :

print('\nNo correlation \n')

elif stats < 0 :

print('\nNegative correlation \n')

else :

print('\nPositive correlation \n')
```

```
if p >= 0.5 :
    print("Accept null hypothesis \n")
elif p < 0.5 :
    print("Reject null hypothesis \n")</pre>
```

-0.1343922139899772 3.1638831224877484e-19

Correlation: -0.1343922139899772 p-value: 3.1638831224877484e-19 Negative correlation

Reject null hypothesis

As r = -0.1343, there's low negative correlation between Attrition and YearsAtCompany As the P value is < 0.05,

we are accepting Ha and hence there's significant correlation between Attrition & YearsAtCompany

> Attrition & YearsWithCurrManager

```
stats,p = pearsonr(dataset.Attrition,dataset.YearsWithCurrManager)

print(stats,p)

print('\nCorrelation :',stats,'\np-value :',p)

if stats == 0 :
    print('\nNo correlation \n')

elif stats < 0 :
    print('\nNegative correlation \n')

else :
    print('\nPositive correlation \n')

if p >= 0.5 :
```

print("Accept null hypothesis \n")

elif p < 0.5:

print("Reject null hypothesis \n")

-0.15619931590162847 1.7339322652896276e-25

Correlation : -0.15619931590162847

p-value : 1.7339322652896276e-25

Negative correlation

Reject null hypothesis

As r = -0.1561, there's low negative correlation between Attrition and YearsWithCurrManager As the P value is < 0.05,

we are accepting Ha and hence there's significant correlation between Attrition & YearsWithCurrManager