LECTURER: Nghia Duong-Trung

NEURAL NETS AND DEEP LEARNING

INTRODUCTION TO DEEP LEARNING DLMDSDL01

- Course book: DLBDSNNDL01_Neural Nets and Deep Learning, provided by IU, myStudies
- Reading list DLBDSNNDL01, provided by IU, myStudies
- This slide is a summarization of important contents in the course book.
- Additional teaching materials:

https://github.com/duongtrung/IU-DLBDSNNDL01 Neural Nets and Deep Learning

Introduction to Neural Networks	1
Feed-forward Networks	2
Overtraining Avoidance	3
Convolutional Neural Networks	4
Recurrent Neural Networks	5

Feed-forward Networks

STUDY GOALS

After completing this unit you will be able to ...

- understand what a feed-forward neural network is.
- distinguish between different network topologies and cost functions.
- explain how the backpropagation and gradient descent algorithm help a neural network to train a model.
- build a simple feed-forward neural network used for classifying image data.
- describe how batch normalization can improve the performance of a network

CHART OF NEURAL NETWORKS

HOW TO REPRESENT IMAGES

- We need 3 dimensions: height, width, color
- Color dimension always has size 3, corresponding to the RGB channels
- A(I,j,k) stores the value of the i'th, j'th column, k'th color
 - k = red, green, blue
- Physically, color is light, measured by light intensity
- It's a continuous value
- More precision -> Image takes up more space
- We've figured out that 8 bits (1 byte) is good enough
- $2^8 = 256$ possible values (0,1,2,...255)
 - This gives us $2^8 2^8 2^8 = 16.8$ million possible colors
- How much space does a 500x500 image take up?
 - 500 x 500 x 3 x 8 = 6 million bits -> 750,000 bytes -> 732KB JPEG

GRAYSCALE IMAGES

- Images that do not have color can be simplified.
- We call them grayscale because each pixel value can only be black, white, or some shade of gray
- Black = 0, White = 255
- Only requires a 2-D array (height, width)

THE RECEPTIVE FIELD

- The receptive field (of a biological neuron) is "the portion of the sensory space that can elicit neuronal responses, when stimulated"
- Based on the image, the entire area (the grid in the figure) an eye can see is called the field of view
- In a deep learning context, the Receptive Field is defined as the size of the region in the input that produces the feature

REPEATING THE SINGLE NEURON

- Each of these neurons may calculate something different
 - Via different weights
- E.g. input is a face
 - One neuron looks for the presence of an eye
 - One neuron looks for the presence of a nose
- They are looking for different features

PERCEPTRON

- Perceptron consists of binary input values, connection weights, a bias, and an activation function.
- $z = \sigma(w^T x + b) = \sigma(\sum_{i=1}^n w_i x_i + b)$ where x_i denotes an instance of the input data, w_i the respective weights for $i \in \{1, n\}$, b the bias and σ the activation function.

$$w_{i,\ j}^{\text{next step}} = w_{i,\ j}\ + \eta \left(y_j - \hat{y_j}\right) \cdot x_i$$

where

- $w_{i,j}$ represents the weight of the connection between neuron i and neuron j.
- x_i is the ith input value of the training data.
- $\hat{y_i}$ is the output of the jth output neuron of the training data.
- y_i is the target output of the jth output neuron of the training data.
- η is the learning rate.

FORWARD PROPAGATION

- A model is for making predictions.
- How do we make predictions with a neural network?
- We refer to this as "going in the forward direction"

REPEATING THE SINGLE NEURON

- Key insight: we can stack more layers of neurons: a chain of neurons
- We can model the brain as uniform structure
- 2 important ways to extend the single neuron
 - The same inputs can be fed to multiple different neurons, each calculating something different (more neurons per layer)
 - Neurons in one layer can act as inputs to another layer

LINES TO NEURONS

- A line: ax + b
- A neuron: $\sigma(w^Tx + b)$
- Multiple neurons per layer

- Vectorize the neuron: $z = \sigma(W^T x + b)$
- Shapes:
 - z is a vector of size M
 - x is a vector of size D
 - W is a matrix of size D x M
 - b is a vector of size M
 - σ () is an element-wise operation

INPUT TO OUTPUT FOR AN L-LAYER NEURAL NETWORK

$$z^{(1)} = \sigma(W^{(1)T}x + b^{(1)})$$

$$z^{(2)} = \sigma(W^{(2)T}z^{(1)} + b^{(2)})$$

$$z^{(3)} = \sigma(W^{(3)T}z^{(2)} + b^{(3)})$$

•••

$$p(y = 1 \mid x) = \sigma(W^{(L)T}z^{(L-1)} + b^{(L)})$$

Regression:

Classification:

ACTIVATION FUNCTIONS

- It's just a thing function that you use to get the output of node. It is also known as Transfer Function.
- It is used to determine the output of neural network like yes or no. It maps the resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the function).
- The Activation Functions can be basically divided into 2 types:
 - Linear activation function
 - Non-linear activation function
 - The Nonlinear Activation Functions are mainly divided on the basis of their range or curves
 - Sigmoid or Logistic Activation Function
 - Tanh or hyperbolic tangent Activation Function
 - ReLU (Rectified Linear Unit) Activation Function
 - Leaky ReLU

ACTIVATION FUNCTIONS

- Most people use ReLU as a reasonable default.
- Sometimes, you'll find ReLU and ELU benefit.
- ML is experimentation, not philosophy.
- Never use your mind to guess the output of a computer program.

MULTICLASS CLASSIFICATION

- For binary classification, we use a sigmoid at the output.
- We replaced sigmoids with ReLUs in the hidden layers.
- For output, sigmoid is still the right choice for binary classification.

MULTICLASS CLASSIFICATION

- Suppose we calculate the value right before applying the final activation function.
- $a^{(L)}$ is a vector of size K (for a K-class classifier)
- How do we turn this vector into a set of probabilities for each of the K classes?
 - $a^{(L)} = W^{(L)T} z^{(L-1)} + b^{(L)}$
- We need a probability distribution over K distinct values
 - Requirement 1: $p(y = k \mid x) \ge 0$
 - Requirement 2: $\sum_{k=1}^{K} p(y = k \mid x) = 1$

THE SOFTMAX FUNCTION

- Drop the superscript (L) for convenience.
- This function meets both of previous mentioned requirements.
 - Exp(any number) is positive
 - The denominator is the sum of all possible values of the numerator

•
$$p(y = k \mid x) = \frac{\exp(a_k)}{\sum_{j=1}^K \exp(a_j)}$$

•
$$\sum_{k=1}^{K} p(y = k \mid x) = \sum_{k=1}^{K} \frac{\exp(a_k)}{\sum_{i=1}^{K} \exp(a_i)} = 1$$

- The softmax is technically an activation function
- CrossEntropyLoss already combines softmax + cross entropy

Task	Activation Function
Regression	None / Identity
Binary classification	Sigmoid
Multiclass classification	Softmax

```
model = nn.Linear(D, K)
criterion = nn.CrossEntropyLoss()
```

```
nn.Sequential(
   nn.Linear(D, M),
   nn.ReLU(),
   nn.Linear(M, K),
   nn.Softmax()
)
```

NETWORK DESIGN PATTERNS

 Same pattern applies to CNNs, RNNs – the type of task corresponds only to the final activation function

Linear Regression Binary Logistic Regression Multiclass Logistic Regression Dense Dense Sigmoid Dense Softmax ANN Regression **ANN Binary Classification ANN Multiclass Classification** Sigmoid Dense Dense Dense Dense Dense Softmax Dense

COST FUNCTIONS

Once a feed-forward neural network is trained, we are interested in investigating how
well our model behaves when encountering input data that it have not been seen
before. A cost function is a measure of "how well" the neural network does during the
training phase.

$$C(W, B, S^i, E^i)$$

where

- W denotes the set of connection weights of the network.
- B denotes the set of biases of the network.
- S^i denotes the input of a single training sample.
- E^i denotes the expected output of a sample i.

COST FUNCTIONS FOR REGRESSION AND CLASSIFICATION PROBLEMS

 Mean absolute error (MAE), Mean squared error (MSE), Root mean squared error (RMSE), Categorical cross-entropy, Binary cross-entropy

Source: https://www.shiksha.com/online-courses/articles/cost-function-in-machine-learning/

ANN CODE PREPARATION

- Recap of the steps
 - #1 Load in the data
 - #2 Build the model
 - #3 Train the model
 - #4 Evaluate the model
 - #5 Make predictions

OPTIMAL LEARNING RATE

- Learning rate α, which connects the derivatives calculated in the backward pass of the backpropagation algorithm to the actual change in the weights as the neural network is trained.
- Gradient descent pitfalls.

VARIANTS OF GRADIENT DESCENT ALGORITHM

- Batch gradient descent: computes the gradient of the cost function over the complete training set of input data, at every single step.
- Stochastic gradient descent: Instead of choosing the entire input dataset, only one instance is selected at random. Repeating this process long enough will allow the gradient to eventually get close to the minimum.
- Mini-batch gradient descent: A set of random instances known as mini-batch are used to compute the gradient.

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

BACKPROPAGATION AND GRADIENT DESCENT

- The main idea of the backpropagation algorithm is to iteratively adjust the weights of the neural networks connecting the neurons in the various layers. The algorithm contains two main phases: a forward pass and a backward pass.
- 1. The algorithm starts by using one mini-batch at a time from the full set of training data. Weights are randomly initialized.
- 2. Computes outputs through layers.
- 3. The output error of the network is calculated using a loss function. Weights are then updated by an amount that is proportional to the calculated gradients.
- 4. This process is repeated until the cost function is minimized or a termination criterion is met.

BATCH NORMALIZATION

- The key objective of the training phase is to produce a model that generalizes well to new data. Training, however, can become highly sensitive to the initial distribution of connection weights.
- To address such issues, normalization is used as a vast category of techniques that aims to make samples that are fed to a machine learning model more similar to one another.
- Batch normalization is a normalization technique that continuously normalizes the input data during the training phase, even as the mean and variance of data changes during the training phase.

TRANSFER TASK

• Try the notebook 01.MLP_Regression.ipynb, 02. MLP_CIFAR10.ipynb

REVIEW STUDY GOALS

- After completing this unit you will be able to ...
 - understand what a feed-forward neural network is.
 - distinguish between different network topologies and cost functions.
 - explain how the backpropagation and gradient descent algorithm help a neural network to train a model.
 - build a simple feed-forward neural network used for classifying image data.
 - describe how batch normalization can improve the performance of a network

Feed-forward Networks

DISCLAIMER

- This is the modified version of the IU slides.
- I used it for my lectures at IU only.

