FIZIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint, jól követhetően kell javítani és értékelni. A javítást piros tollal, a megszokott jelöléseket alkalmazva kell végezni.

ELSŐ RÉSZ

A feleletválasztós kérdésekben csak az útmutatóban közölt helyes válaszra lehet megadni a pontot. Az adott pontot (0 vagy 2) a feladat mellett található, illetve a teljes feladatsor végén található összesítő táblázatba is be kell írni.

MÁSODIK RÉSZ

A kérdésekre adott választ a vizsgázónak folyamatos szövegben, egész mondatokban kell kifejtenie, ezért a vázlatszerű megoldások nem értékelhetők. Ez alól kivételt csak a rajzokhoz tartozó magyarázó szövegek, feliratok jelentenek. Az értékelési útmutatóban megjelölt tényekre, adatokra csak akkor adható pontszám, ha azokat a vizsgázó a megfelelő összefüggésben fejti ki. A megadott részpontszámokat a margón fel kell tüntetni annak megjelölésével, hogy az útmutató melyik pontja alapján adható, a szövegben pedig kipipálással kell jelezni az értékelt megállapítást. A pontszámokat a második rész feladatai után következő táblázatba is be kell írni.

HARMADIK RÉSZ

Az útmutató dőlt betűs sorai a megoldáshoz szükséges tevékenységeket határozzák meg. Az itt közölt pontszámot akkor lehet megadni, ha a dőlt betűs sorban leírt tevékenység, művelet lényegét tekintve helyesen és a vizsgázó által leírtak alapján egyértelműen megtörtént. Ha a leírt tevékenység több lépésre bontható, akkor a várható megoldás egyes sorai mellett szerepelnek az egyes részpontszámok. A "várható megoldás" leírása nem feltétlenül teljes, célja annak megadása, hogy a vizsgázótól milyen mélységű, terjedelmű, részletezettségű, jellegű stb. megoldást várunk. Az ez után következő, zárójelben szereplő megjegyzések adnak további eligazítást az esetleges hibák, hiányok, eltérések figyelembevételéhez.

A megadott gondolatmenet(ek)től eltérő helyes megoldások is értékelhetők. Az ehhez szükséges arányok megállapításához a dőlt betűs sorok adnak eligazítást, pl. a teljes pontszám hányadrésze adható értelmezésre, összefüggések felírására, számításra stb.

Ha a vizsgázó összevon lépéseket, paraméteresen számol, és ezért "kihagyja" az útmutató által közölt, de a feladatban nem kérdezett részeredményeket, az ezekért járó pontszám – ha egyébként a gondolatmenet helyes – megadható. A részeredményekre adható pontszámok közlése azt a célt szolgálja, hogy a nem teljes megoldásokat könnyebben lehessen értékelni.

A gondolatmenet helyességét nem érintő hibákért (pl. számolási hiba, elírás, átváltási hiba) csak egyszer kell pontot levonni.

Ha a vizsgázó több megoldással vagy többször próbálkozik, és nem teszi egyértelművé, hogy melyiket tekinti véglegesnek, akkor az utolsót (más jelzés hiányában a lap alján lévőt) kell értékelni. Ha a megoldásban két különböző gondolatmenet elemei keverednek, akkor csak az egyikhez tartozó elemeket lehet figyelembe venni, azt, amelyik a vizsgázó számára előnyösebb.

A számítások közben a mértékegységek hiányát – ha egyébként nem okoz hibát – nem kell hibának tekinteni, de a kérdezett eredmények csak mértékegységgel együtt fogadhatók el.

írásbeli vizsga 1312 2 / 13 2013. május 16.

ELSŐ RÉSZ

- 1. C
- 2. A
- **3.** C
- 4. B
- 5. B
- 6. D
- 7. A
- 8. A
- 9. B
- 10. C
- 11. D
- 12. C
- 13. D
- 14. B
- 15. A

Helyes válaszonként 2 pont.

Összesen 30 pont.

MÁSODIK RÉSZ

Mindhárom témában minden pontszám bontható.

1. Eötvös Loránd munkássága

A gravitációs gyorsulás értelmezése az általános tömegvonzás törvénye alapján:	
	2 pont
Kiszámításának módja a Föld adataival:	
	2 pont
Vektorábra elkészítése az egyenlítői helyzetre:	
	3 pont
(A 3 pont akkor adható meg, ha az ábrából kiderül, hogy az Egyenlítőn elhelyezkedő t ható erők eredője nem nulla, a Föld közepe felé mutat.)	estre
A nehézségi erő fogalmának értelmezése az ábra alapján:	
	2 pont
Az Eötvös-effektus magyarázata az Egyenlítő mentén (kelet+nyugat):	
3	3+3 pont
Eötvös Loránd életének elhelyezése térben és időben:	
	1 pont
Az Eötvös-inga jelentőségének bemutatása:	
Nyersanyagkutatásra használható, mert a gravitációs tér kicsiny változásait mérve a földfelszín alatti kőzetrétegek elhelyezkedésére következtethetünk.	2 pont
(Az Eötvös-inga elméleti vonatkozásainak leírásáért is megadandó a 2 pont.)	
••	

Összesen 18 pont

2. A fény törése, a szeműveg

A szem képalkotását szemléltető ábra elkészítése:

1 pont

A leképezés szempontjából legfontosabb alkotóelemek megnevezése:

1+1 pont

Szemlencse, ideghártya, szaruhártya.

(A felsoroltak közül bármely kettő megnevezéséért jár az 1+1 pont.)

A változó tárgytávolsághoz alkalmazkodás módjának ismertetése:

3 pont

A változó tárgytávolság miatt az állandó képtávolságot csak a lencse fókusztávolságának módosításával tudjuk biztosítani (2 pont). Az izmok a lencse alakját változtatják (1 pont).

Közel- és távollátás leírása:

2+2 pont

A "pluszos" és "mínuszos" kifejezések magyarázata:

1+1 *pont*

A látáskorrekció leírása a két esetben:

2 +2 pont

A bifokális lencse használatának előnyei:

2 pont

Összesen 18 pont

3. Halmazállapot-változások

A különböző halmazállapotok részecskemodelljének ismertetése:	1+1+1 pont
Az olvadás folyamatának leírása:	•
Az olvadáspont és olvadáshő fogalmának ismertetése:	1 pont
(Az 1 pont csak akkor adható meg, ha a vizsgázó mindkét fogalmat ismerteti.)	1 pont
Az olvadáspont anyagi minőségtől és a nyomástól való függésének felismerése:	•
(Az 1 pont csak akkor adható meg, ha a vizsgázó mindkét tényezőt megemlíti.)	1 pont
Az olvadás energetikai viszonyainak értelmezése a részecskemodellel:	2
A párolgás jelenségének ismertetése:	2 pont
A párolgást befolyásoló tényezők bemutatása:	1 pont
A hőmérséklet, a felület és a páratartalom, anyagi minőség.	2 pont
(2 pont csak akkor jár, ha mind a négy tényezőt említi a vizsgázó, három felsorol 1 pont jár, kettő felsorolása esetén nem jár pont.)	ása esetén
A párolgás jelenségének bemutatása a részecskemodell segítségével:	
A forrás jelenségének ismertetése:	2 pont
A forráspont és forráshő fogalmának megadása:	1 pont
(Az 1 pont csak akkor adható meg, ha a vizsgázó mindkét fogalmat ismerteti.)	1 pont
A forráspont nyomásfüggésének bemutatása:	
Gyakorlati példa bemutatása a forráspont eltolódására:	2 pont
y _I 2	1 pont
Összesen	18 pont

A kifejtés módjának értékelése mindhárom témára vonatkozólag a vizsgaleírás alapján: Nyelvhelyesség: 0–1–2 pont

- A kifejtés szabatos, érthető, jól szerkesztett mondatokat tartalmaz;
- a szakkifejezésekben, nevekben, jelölésekben nincsenek helyesírási hibák.

A szöveg egésze: 0–1–2–3 pont

- Az egész ismertetés szerves, egységes egészet alkot;
- az egyes szövegrészek, résztémák összefüggenek egymással egy világos, követhető gondolatmenet alapján.

Amennyiben a válasz a 100 szó terjedelmet nem haladja meg, a kifejtés módjára nem adható pont.

Ha a vizsgázó témaválasztása nem egyértelmű, akkor az utoljára leírt téma kifejtését kell értékelni.

HARMADIK RÉSZ

1. feladat

Adatok: $m = 10 \text{ kg}, \mu = 0.5, M = 50 \text{ kg}, \alpha = 60^{\circ}, g = 10 \frac{\text{m}}{\text{s}^2}$

a) A létrára ható erőket ábrázoló rajz elkészítése:

A létrára ható függőleges erőpár (F_1, G_1) , illetve vízszintes erőpár (F_2, F_s) feltüntetése a rajzon 1-1 pontot ér.

A statikai egyensúly feltételeinek felírása az első esetben:

4 pont (bontható)

2 pont

$$F_1 = G_1 = m \cdot g \quad (1 \text{ pont}), \ F_2 = F_s \quad (1 \text{ pont}),$$

$$G_1 \cdot \frac{l}{2} \cdot \cos \alpha - F_2 \cdot l \cdot \sin \alpha = 0 \quad (2 \text{ pont}).$$

(A legpraktikusabb a létra talajon támaszkodó végpontjára vonatkozó forgatónyomatékokat felírni, de természetesen bármely más pontra is elfogadható, amennyiben a felírás helyes. A fenti, már az erőkarok konkrét hosszát is tartalmazó felírás ér 2 pontot, egy általános felírás, pl. $M_{G1}-M_{F2}=0$, vagy $G_1\cdot k_1-F_2\cdot k_2=0$ az erőkarok hosszának megadása nélkül önmagában csak 1 pontot ér.)

A keresett szög kiszámítása:

2 pont (bontható)

A határszögnél
$$F_2 = F_s \le \mu \cdot F_1 = \mu \cdot G_1$$
 (1 pont), amiből $\operatorname{tg} \alpha \ge \frac{1}{2 \cdot \mu} \Rightarrow \alpha_{\min} = 45^{\circ}$ (1 pont).

b) A statikai egyensúly feltételeinek felírása a második esetben:

3 pont (bontható)

A létrára ható függőleges erők: $F_1' = G_1 + G_2 = m \cdot g + M \cdot g$ (1 pont).

A forgatónyomatékok egyensúlya:

$$G_1 \cdot \frac{l}{2} \cdot \cos \alpha + G_2 \cdot l' \cdot \cos \alpha = F_2 \cdot l \cdot \sin \alpha$$
 (1 pont),

$$F_2' = F_S' \le \mu \cdot (G_1 + G_2)$$
 (1 pont)

ahol l' az a hossz, ameddig az ember a létrán fölmászhat.

A keresett arány kiszámítása:

3 pont (bontható)

$$\frac{l'}{l} \le \frac{\mu \cdot (G_1 + G_2) \cdot \sin \alpha - \frac{G_1}{2} \cdot \cos \alpha}{G_2 \cdot \cos \alpha} = \frac{300 \text{ N} \cdot \sqrt{3} - 50 \text{ N}}{500 \text{ N}} = 0,94$$

(rendezés + behelyettesítés + számítás, 1 + 1 + 1 pont).

(Ha a vizsgázó csak a határhelyzetet vizsgálta, s ez a megoldásból kiderül, a teljes pontszám megadandó.)

Összesen 14 pont

2. feladat

Adatok:
$$I = 5.10^{-13} \text{ W/m}^2$$
, $D = 8.5 \text{ mm}$, $\lambda = 510 \text{ nm}$, $c = 3.10^8 \frac{\text{m}}{\text{s}}$, $h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$

Az adott intenzitás mellett a bagoly pupilláján bejutó fényteljesítmény felírása és kiszámítása:

2+1 pont (bontható)

$$P_{\textit{feny}} = I \cdot A = I \cdot \pi \cdot \left(\frac{D}{2}\right)^2 = 2,84 \cdot 10^{-17} \text{ W (képlet + számítás, 2 + 1 pont)}.$$

Egy foton energiájának felírása és kiszámítása:

2+1 pont (bontható)

$$E_f = h \cdot v = h \cdot \frac{c}{\lambda} = 3.9 \cdot 10^{-19} \text{ J (képlet + számítás, 2 + 1 pont)}.$$

Az érzékeléshez szükséges másodpercenkénti fotonszám felírása és kiszámítása:

1+1+1 pont (bontható)

$$N = \frac{P_{fény}}{E_{foton}} \approx 73 \text{ db/s (képlet + számítás + helyes válasz 1+1+ 1 pont)}.$$

Összesen 9 pont

3. feladat

Adatok: $R = 1 \Omega$, $R_A = 0.01 \Omega$, U = 4 V

a) A méréshatár-kiterjesztés értelmezése:

1 pont

Ha a söntellenállást bekötjük az áramkörbe, a körben folyó áram egy része azon folyik át, nem pedig a műszeren. A műszeren átfolyó áram így tovább a műszer méréshatárán belül maradhat.

Ha a vizsgázó ezt nem írja le, de láthatóan ezzel az elméleti meggondolással számol, a pont megadható.

A söntellenállás nagyságának meghatározása:

4 pont (bontható)

A söntellenállás bekötése a méréshatárt ötszörösére növeli, azaz maximum 5 A áram folyhat az áramkörben (1 pont). Mivel a műszeren legfeljebb 1 A áram folyhat ahhoz, hogy mérni tudjon (1 pont), a söntellenálláson 4 A áram kell, hogy átfolyjon (1 pont). A párhuzamos kapcsolás miatt tehát $R_s = R_A/4 = 0,0025 \Omega$ (1 pont).

(A kapcsolási rajzon jelölt helyes értékek is elfogadhatók.)

b) A műszer beiktatása miatti áramerősség-változás meghatározása és a mérési pontosság elemzése:

5 pont (bontható)

A műszer beiktatása nélkül az 1 Ω-os ellenálláson átfolyó áram $I_0 = \frac{U}{R} = 4$ A (1 pont).

A műszer és a sönt együttes ellenállása:

$$\frac{1}{R'} = \frac{1}{R_A} + \frac{1}{R_s} \Rightarrow R' = 0,002 \,\Omega \quad (1 \text{ pont}).$$

A műszerrel és sönttel sorba kapcsolt R_k ellenálláson folyó áram

$$I_1 = \frac{U}{R + R'} = 3,992 \text{ A (1 pont)},$$

tehát a műszer beiktatása az áramkörbe 0,008 amperrel csökkenti az ellenálláson folyó áramot (1 pont), ami az eredeti 4 amperes értékhez képest 2 ezrelék hibát jelent (1 pont).

Összesen 10 pont

4. feladat

Adatok:
$$V_1 = V_3 = 25 \text{ dm}^3$$
, $p_1 = p_2 = 4.10^5 \text{ Pa}$, $T_1 = 300 \text{ K}$, $p_3 = 2.10^5 \text{ Pa}$, $V_2 = 50 \text{ dm}^3$

a) A keresett hőmérsékletértékek meghatározása:

1 + 1 pont

A Gay–Lussac első törvényét alkalmazva az 1→2 folyamatra:

$$T_2 = \frac{V_2}{V_1} \cdot T_1 = 600 \,\text{K} \, (1 \,\text{pont}).$$

A Gay–Lussac második törvényét alkalmazva a 2→3 folyamatra:

$$T_3 = \frac{p_3}{p_1} \cdot T_1 = 150 \text{ K} \text{ (1 pont)}.$$

b) A gázon végzett munka és a gázzal közölt hő meghatározása az egyes folyamatokban:

9 pont

(bontható)

A gázon végzett munkát a görbe alatti területtel számolhatjuk (1 pont), a hélium belső energiája

$$E = \frac{3}{2} p \cdot V$$
 (1 pont), valamint a hőtan első főtétele $\Delta E = Q + W$ (1 pont)

összefüggéseinek segítségével lehet meghatározni. Ezen egyenletek felírására egyszer kell pontot adni, ott, ahol a vizsgázó először paraméteresen felírja őket. Ennek hiányában ott jár a pont érte, ahol a vizsgázó először alkalmazza őket konkrét mennyiségek felhasználásával.

Az $1\rightarrow 2$ folyamatban:

$$W_{1\to 2} = -4 \cdot 10^5 \text{ Pa} \cdot 25 \text{ dm}^3 = -10^4 \text{ J} \text{ (1 pont)},$$

$$E_2 = 2 \cdot E_1 \Rightarrow \Delta E_{1\to 2} = \frac{3}{2} p_1 \cdot V_1 = 1,5 \cdot 10^4 \text{ J}, \text{ amiből}$$

$$Q_{1\to 2} = \Delta E_{1\to 2} - W_{1\to 2} = 2,5 \cdot 10^4 \text{ J (1 pont)}.$$

A $2\rightarrow 3$ folyamatban:

$$W_{2\to 3} = -\frac{2 \cdot 10^5 \text{ Pa} + 4 \cdot 10^5 \text{ Pa}}{2} \cdot (-25 \text{ dm}^3) = 7,5 \cdot 10^3 \text{ J} \quad (1 \text{ pont})$$

$$E_3 = \frac{E_1}{2} \Rightarrow \Delta E_{2\to 3} = -2.25 \cdot 10^4 \text{ J}, \text{ amib\"{o}l } Q_{2\to 3} = \Delta E_{2\to 3} - W_{2\to 3} = -3 \cdot 10^4 \text{ J (1 pont)}.$$

A 3→1 folyamatban:

$$W_{3\to 1} = 0$$
 (1 pont),

$$\Delta E_{3\to 1} = \frac{E_1}{2} = \frac{3}{4} \cdot 10^4 \text{ J}, \text{ amiből } Q_{3\to 1} = \frac{3}{4} \cdot 10^4 \text{ J (1 pont)}.$$

c) A körfolyamat hatásfokának felírása és kiszámítása:

$$1 + 1 + 1 pont$$

A hatásfok a gáz által végzett összes munka, illetve a felvett összes hő hányadosa, azaz $\eta = \frac{W_{2\to 3} - W_{1\to 2}}{Q_{1\to 2} + Q_{3\to 1}} \ (1+1 \ \text{pont}), \text{amiből} \ \ \eta = 7,7\% \ (1 \ \text{pont}).$

(Amennyiben a vizsgázó a feladatot a hélium állandó térfogaton és állandó nyomáson vett fajhője segítségével oldja meg, a teljes pontszám megadandó.)

Összesen 14 pont