Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 4 oraz laboratorium nr 4

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

Spis treści

1.	Labo	oratorium: Zadanie 7: Rozmyty regulator DMC	2
	1.1.	Teoria	2
		1.1.1. Odpowiedzi skokowe	2
	1.2.	Dobór regulatorów lokalnych	2
		1.2.1. Poczatkowe nastawy	2

1. Laboratorium: Zadanie 7: Rozmyty regulator DMC

1.1. Teoria

Sposób wyznaczania sterowania nie różni się od tego opisanego w poprzednim podpunkcie; wciąż w każdej iteracji rozmytego regulatora obliczane jest sterowanie dla każdego regulatora z przyjętych przedziałów i obliczane jest końcowe sterowanie biorąc pod uwagę stopień przynależności aktualnego Y(k) do funkcji opisujących każdy z tych przedziałów.

Wciąż jest to ten sam obiekt, którego charakterystyka składa się z dwóch liniowych regulatorów, nie ma więc potrzeby implementowania większej ilości regulatorów lokalnych ani zmiany postaci funkcji przynależności.

1.1.1. Odpowiedzi skokowe

Obydwa regulatory lokalne powinny korzystać z odpowiadających im odpowiedzi skokowych. Aby odpowiedzi te popranie reprezentowały charakter przedziału, w którym pracuje dany regulator lokalny, ich punkty początkowe i końcowe muszą się zawierać w tych przedziałach. Do algorytmu regulatora dolnego została wykorzystana znormalizowana odpowiedź skokowa z U=36 o dU=5, natomiast dla górnego przedziału znormalizowana odpowiedź dla takiego samego skoku ale z U=55.

1.2. Dobór regulatorów lokalnych

1.2.1. Początkowe nastawy

Rys. 1.1. Działanie rozmytego regulatora z dwoma lokalnymi regulatorami PID o nastawach $K_p^1=5, T_i^1=75, T_d^1=1.25, \, K_p^2=7, T_i^2=45, T_d^2=1$

Rys. 1.2. Działanie rozmytego regulatora z dwoma lokalnymi regulatorami PID o nastawach $K_p^1=5, T_i^1=75, T_d^1=1.25, \ K_p^2=7, T_i^2=45, T_d^2=1$

Rys. 1.3. Działanie rozmytego regulatora z dwoma lokalnymi regulatorami PID o nastawach $K_p^1=5, T_i^1=75, T_d^1=1.25, \ K_p^2=7, T_i^2=45, T_d^2=1$

Rys. 1.4. Działanie rozmytego regulatora z dwoma lokalnymi regulatorami PID o nastawach $K_p^1=5, T_i^1=75, T_d^1=1.25, \, K_p^2=7, T_i^2=45, T_d^2=1$