第十一章 无穷级数

- 1. 以下四个关于级数的结论中,正确的结论是(
 - (A) 若 $\sum_{n=1}^{\infty} u_n^2$ 和 $\sum_{n=1}^{\infty} v_n^2$ 都收敛,则 $\sum_{n=1}^{\infty} (u_n + v_n)^2$ 收敛.
 - (B) 若 $\sum_{n=1}^{\infty} |u_n v_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n^2$ 与 $\sum_{n=1}^{\infty} v_n^2$ 都收敛.
 - (C) 若正项级数 $\sum_{n=1}^{\infty} u_n$ 发散,则 $u_n \ge \frac{1}{n}$.
 - (D) 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,且 $u_n \ge v_n$ $(n=1,2,\cdots)$,则级数 $\sum_{n=1}^{\infty} v_n$ 也收敛.
- 2. 设 a 为常数,则级数 $\sum_{n=0}^{\infty} \left(\frac{\sin a}{n^2} \frac{1}{\sqrt{n}}\right)$ ().
 - (A) 绝对收敛

(B) 发散

(C)条件收敛

- (D) 收敛性取决于 a 的值
- **3**. 若正项级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 满足关系 $a_n \leq b_n$, 则 ().

 - (A) 当 $\sum_{n=0}^{\infty} a_n$ 收敛时, $\sum_{n=0}^{\infty} b_n$ 也收敛 (B) 当 $\sum_{n=0}^{\infty} b_n$ 收敛时, $\sum_{n=0}^{\infty} a_n$ 也收敛

 - (C) 当 $\sum_{n=0}^{\infty} b_n$ 发散时, $\sum_{n=0}^{\infty} a_n$ 收敛 (D) 当 $\sum_{n=0}^{\infty} b_n$ 发散时, $\sum_{n=0}^{\infty} a_n$ 也发散
- **4.** 设 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 是正项级数,且 $u_n > v_n (n = 1, 2, \cdots, 99), u_n \leq v_n (n = 100, 101, \cdots)$, 则下列命题正确的是(
 - (A) 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛 (B) 若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

 - (C) 若 $\sum_{n=0}^{\infty} v_n$ 发散,则 $\sum_{n=0}^{\infty} u_n$ 发散 (D) 若 $\sum_{n=0}^{\infty} v_n$ 收敛,则 $\sum_{n=0}^{\infty} u_n$ 发散
- **5.** 设 $0 < u_n < \frac{1}{n} (n = 1, 2, \dots)$,则下列级数中一定收敛的是().

- (A) $\sum_{n=0}^{\infty} u_n$ (B) $\sum_{n=0}^{\infty} (-1)^n u_n$ (C) $\sum_{n=0}^{\infty} \sqrt{u_n}$ (D) $\sum_{n=0}^{\infty} (-1)^n u_n^2$

6. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数中必定发散是().

(A)
$$\sum_{n=1}^{\infty} (-1)^n u_n$$
 (B) $\sum_{n=1}^{\infty} u_n^2$ (C) $\sum_{n=1}^{\infty} |u_n|$ (D) $\sum_{n=1}^{\infty} \frac{1}{u_n}$

(B)
$$\sum_{n=1}^{\infty} u_n^2$$

(C)
$$\sum_{n=1}^{\infty} |u_n|$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{u_n}$$

- 7. 设 $\lim_{n\to\infty}u_n=0$,则级数 $\sum_{n=0}^{\infty}u_n$ ().
 - (A) 一定收敛, 其和为零
- (B) 一定收敛, 但和不一定为零

(C) 一定发散

- (D) 可能收敛, 也可能发散
- 8. 设幂级数 $\sum_{n=0}^{\infty} a_n(x+1)^n$ 的收敛域是 (-4,2], 则幂级数 $\sum_{n=1}^{\infty} na_n(x-2)^n$ 的收敛区间
- 9. 设 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{4}$, 则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ 的收敛半径 R =______.
- **10**. 实数 q 满足什么条件,几何级数 $\sum_{n=1}^{\infty} q^{n-1}$ 收敛,即 q 满足 ______.
- 11. 幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2^n}$, |x| < 2 的和函数是______.
- **12.** 幂级数 $\sum_{n=1}^{\infty} \frac{1}{2^n n} x^n$ 的收敛半径为______.
- **13.** 幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n \cdot n} (x-1)^n$ 的收敛域为 ______.
- **14.** 级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ 的和 S =_____.
- **15.** 设幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} x^n$ 的收敛域为______.
- **16.** 判定级数 $\sum_{i=1}^{\infty} \frac{(-1)^{n-1}}{\ln(1+n)}$ 敛散性,若收敛,指出其是绝对收敛还是条件收敛.
- 17. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n}}{2^n \cdot n}$ 的收敛域及和函数.

- **18.** 求幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+2}$ 的和函数及收敛域.
- **19.** 将函数 $f(x) = \frac{1}{5-x}$ 展开为 (x-1) 的幂级数,并求其收敛域.
- **20.** (A 班) 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开为 (x-1) 的幂级数,并求其收敛域.
- 21. 级数 $\sum_{n=2}^{\infty} \sin\left(n\pi + \frac{1}{\ln n}\right)$ 是绝对收敛,条件收敛,还是发散?
- **22.** 求幂级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n} (x-1)^n$ 的收敛域.
- 23. 判断级数 $\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$ 的敛散性.
- **24.** 将函数 $f(x) = \ln x$ 展开成 (x-2) 的幂级数.
- **25.** 判断级数 $\sum_{n=1}^{\infty} (\frac{b}{a_n})^n$ 的敛散性,其中 $\lim_{n\to\infty} a_n = a$, (a > 0, b > 0).
- **26.** 将函数 $f(x) = \frac{1}{x^2 + 4x + 3}$ 展开成 (x-1) 的幂级数.
- **27**. 讨论级数 $\sum_{n=1}^{\infty} (-1)^n \frac{n}{a^n} (a > 0)$ 是绝对收敛,条件收敛,还是发散.
- **28.** 试求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 的收敛域 I 与和函数 S(x), 并求级数 $\sum_{n=1}^{\infty} \frac{n+1}{2^n}$ 的和.
- **29.** [另附] 试求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的收敛域 I 与和函数 S(x), 并求级数 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的和.
- **30.** 判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+1}}$ 绝对收敛和条件收敛性.
- 31. 将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x + 4) 的幂级数.

- **32.** (A 班) 证明: $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- 33. 设级数 $\sum_{n=1}^{\infty} u_n^2$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 绝对收敛.
- **34**. [另附] 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{u_n}{n^2}$ 绝对收敛.