

2023-2024

Classe: **Bac Maths**

Série 29: Exemple 1: DC2

Nom du Prof : Lahbib Ghaleb

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

Q 45 min

6 pts

Dans la figure ci-contre:

• ABC est un triangle rectangle et isocèle en C tel que $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{2} [2\pi].$

• E le point du segment [BC] tel que $EB = \sqrt{2}EC$.

Soit f la similitude directe tels que : f(D) = C et f(C) = B.

- Montrer que f est de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$.
- \bigcirc Montrer que A est le centre de f.

- Soit $g = f \circ S_{\Delta}$.
 - \bigcirc Montrer que g admet un centre noté Ω .
 - \triangle Montrer que $g \circ g(C)$ puis que C est le milieu de $[A\Omega]$.
 - \bigcirc On note H le projeté orthogonal du point E sur (ΩB) . Montrer que EC = EH puis déduire que (ΩE) est l'axe de g.
- Δ La droite (ΩE) coupe la droite Δ en Net on note N' = f(N).
 - Montrer que g(N) = N' et déduire que $\overrightarrow{\Omega N'} = \sqrt{2}\overrightarrow{\Omega N}$.
 - \bigcirc Montrer que NA = NN' puis construit le point N'.

Exercice 2

45 min

6 pts

On considère la suite (I_n) définie par : $I_0 = \int_0^{\frac{\pi}{4}} dt$ et pour tout $n \in IN^*$, $I_n = \int_0^{\frac{\pi}{4}} \tan^n(t) dt$.

On pose pour tout réel x et pour tout $n \in IN^*$, $f_n(x) = \int_0^x \frac{t^n}{1+t^2} dt$.

Montrer que pour tout $n \in \mathbb{N}^*$ on $a: 0 \le f_n(1) \le \frac{1}{n+1}$.

Montrer que pour tout $n ∈ \mathbb{N}^*$ et pour tout $x ∈ \left|0, \frac{\pi}{2}\right|$ on a :

$$\int_0^x \tan^n(t)dt = f_n(\tan x)$$

 \subset En déduire la limite de la suite (I_n).

On pose pour tout
$$n \in \mathbb{N}$$
, $J_n = \sum_{k=0}^n (-1)^k I_{2k}$.

 \bigcirc Montrer que pour tout entier naturel n,

$$J_n = \int_0^{\frac{\pi}{4}} \frac{1}{1 + \tan^2(t)} dt + (-1)^n \int_0^{\frac{\pi}{4}} \frac{\tan^{2n+2}(t)}{1 + \tan^2(t)} dt$$

- Montrer que pour tout entier naturel $n, 0 \le \int_0^{\frac{n}{4}} \frac{\tan^{2n+2}(t)}{1 + \tan^2(t)} dt \le I_{2n++2}$.
- \bigcirc Déterminer la limite de la suite (J_n) .
- Dans cette question, on étudiera la fonction f_n pour $n \ge 2$.
 - △ Montrer que pour tout entier naturel $n \ge 2$, f_{2n} est impaire et f_{2n+1} est paire.
 - \bigcirc Calculer $f_1(x)$ en fonction de x.
 - \bigcirc Montrer que pour tout réel $x \ge 0$ et pour tout entier naturel $n \ge 2$,

$$f_n(x) \ge \frac{x^{n+1}}{(n+1)(1+x^2)}$$

 \bigcirc Dresser le tableau de variations de f_n .

Exercice 3

Q 30 min

4 pts

On considère la suite (a_n) définie sur IN par $a_n = 2 \times 5^n + 7$.

- \uparrow Justifier que pour tout entier naturel n, a_n est impair.
 - \bigcirc Déterminer suivant les valeurs de n, le reste modulo 8 de 5^n .
 - $\underline{\quad}$ En déduire que pour tout $n \in \mathbb{N}$, $a_n = 1 \pmod{8}$.

Montrer que si $\begin{cases} x \equiv 1 \pmod{8} \\ x \equiv 7 \pmod{125} \end{cases}$ alors $x \equiv 257 \pmod{1000}$

Montrer que pour tout $n \ge 3$, $a_n = 257 \pmod{1000}$

Quels sont les trois derniers chiffres de $(2 \times 5^{2023} + 7)(2 \times 5^{2024} + 7)$?

- - \triangle Soit d le PGCD de a_{2n} et a_{2n+1} . Montrer que d est différent de 7.
 - Trouver alors d.

Exercice 4

4 pts

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$. On considère les points A(1, 1, 1), B(0, 4, 0), C(0, 0, 2) et I(-1, 1, -1).

- - lacktriangle Calculer le volume $oldsymbol{\mathcal{V}}$ du tétraèdre ABCI.
- 2 On désigne par P le plan (ABC).

Montrer qu'une équation cartésienne de P est x + y + 2z - 4 = 0.

3 Soit S l'ensemble des points M(x, y, z) de l'espace tels que :

$$x^2 + y^2 + z^2 + 2x - 2y + 2z - 8 = 0.$$

- Montrer que S est la sphère de centre I et de rayon $\sqrt{11}$.
- **■** Montrer que $P \cap S$ est un cercle \mathscr{C} de rayon $\sqrt{5}$.
- \mathcal{C} Vérifier que le segment [BC] est un diamètre du cercle \mathscr{C} . En déduire les coordonnés du point H, centre de \mathscr{C} .

- $\stackrel{\bullet}{a}$ Soit a un réel et M le point définie par $\overrightarrow{AM} = a\overrightarrow{AB}$.
 - Déterminer à l'aide de a les coordonnés du point M.
 - \triangle Montrer que $\overrightarrow{BM} \cdot \overrightarrow{CM} = (a-1)(11a+3)$.
 - \mathcal{C} En déduire que la droite (AB) recoupe le cercle \mathscr{C} au point E défini par : $\overrightarrow{AE} = -\frac{3}{11}\overrightarrow{AB}$.
 - Montrer que le volume \mathcal{V}' du tétraèdre AECI est égale à $\frac{3}{11}\mathcal{V}$.

