CHAPTER 4

THE THREEDIMENSIONAL
STRUCTURE OF
PROTEINS

Four Levels of Protein Structure

- Primary structure amino acid linear sequence
- Secondary structure regions of regularly repeating conformations of the peptide chain, such as α-helices and β-sheets
- Tertiary structure describes the overall threedimensional arrangement of all atoms in a protein and the shape of the fully folded polypeptide chain
- Quaternary structure arrangement of two or more polypeptide chains, which may be identical or different, into multisubunit molecule

Fibrous proteins

- with polypeptide chains arranged in long strands or sheets
- provide support, shape, strength, flexibility, and external protection
- insoluble in water
- usually consist largely of a single type of secondary structure

Globular proteins

- with polypeptide chains folded into a spherical or globular shape
- often contain several types of secondary structure
- with hydrophilic surface for interacting with water or other molecules
- most enzymes and regulatory proteins are globular proteins

Structure of hair

角蛋白

頭髮、羊毛、 豪豬的棘刺、 指甲、 作 片 路 門、 皮膚 最 外層等 **Keratin** α **helix** — Right-handed

Two-chain ______ Left-handed

Reported by Crick and Pauling in 1950s

Rich in the hydrophobic residues Ala, Val, Leu, Ile, Met, and Phe

Protofibril

THE STATE OF THE PROPERTY OF T

The cross-links stabilizing quaternary structure are

disulfide bonds

Perm is biochemical engineering

Collagen, a triple-helix fibrous protein

- Collagen is a major protein in connective tissue of vertebrates (25-35% of total protein in mammals)
- Collagen consists of <u>three left-handed helical chains</u> coiled around each other <u>in a right-handed supercoil</u>
- Three amino acids per turn, rise 0.31 nm per residue (collagen is more extended than an α helix)
- Multiple repeats of -Gly-X-Y- where X is often proline and Y is often 4-hydroxyproline
- Glycine residues are located along central axis of a triple helix (other residues cannot fit)
- For each -Gly-X-Y- triplet, one interchain H-bond forms between amide H of Gly in one chain and -C=O of residue X in an adjacent chain
- No intrachain H-bonds exist in the collagen helix

FIGURE 8-28 The amino acid sequence at the C-terminal end of the triple helical region of the bovine $\alpha 1(I)$ collagen chain.

Hyp*: 3-Hydroxyprolyl

Biochemistry, by Voet & Voet, 3rd edition

Formation of collagen

Klug &Cummings (1997) Genes and proteins. 5th ed

Interchain H-bonding in collagen

Amide H of Gly in one chain is H-bonded to

Collagen fibers are stabilized and strengthened by Lys-Lys cross-links

The hydroxylated residues typically found in collagen

4-Hydroxyproline

3-Hydroxyproline

$$\begin{array}{c} & \text{O} \\ \parallel & \text{C} - \\ \text{N-CH} \\ & \text{1-2} \\ \text{H}_2\text{C}^5 & ^3\text{CH}_2 \\ \text{HO} & \text{H} \end{array}$$

4-Hydroxyprolyl residue (Hyp)

$$\begin{array}{c} & & \text{O} \\ & & \text{C} \\ & \text{C} \\ & \text{N-CH} \\ & \text{N-CH} \\ & \text{H}_2\text{C} \\ & \text{S} \\ & \text{C} \\ & \text{OH} \\ & \text{H}_2 \end{array}$$

3-Hydroxyprolyl residue

5-Hydroxylysine

3-Hydroxyprolyl and 5-hydroxylysyl (Hyl) residues also occur in collagen but in smaller amounts.

5-Hydroxylysyl residue (Hyl)

5-Hydroxylysine

Glucose

FIGURE 6.20 • A disaccharide of galactose and glucose is covalently linked to the 5hydroxyl group of hydroxylysines in collagen by the combined action of the enzymes galactosyl transferase and glucosyl transferase.

Biochemistry 2nd edition (1999), Garrett and Grisham

4-HyP is generated by Prolyl 4-hydroxylase

The collagen helix structure requires the Pro residue in the Y positions to be in the C γ -exo conformation, which is enforce by the hydroxyl substitution at $C\gamma$ in 4-HyP

Reactions catalyzed by Vitamin C-dependent Prolyl 4-hydroxylase

127

Restore enzyme activity by reducing the oxidased iron

Collagen defects are responsible for a variety of human diseases

Scurvy 壞血病

 Vitamin C (ascorbic acid) deficiency leads to lack of proper hydroxylation and defective collagen triple helix, and the connective tissue problems (skin lesions, fragile blood vessels, bleeding gums)

• 致病原因為形成第一型膠原蛋白 (collagen type I) 相關的基因 COL1A1 和 COL1A2 產生突變而引起。若基因突變提早形成終止密碼 (premature stop codon) 會影響膠原蛋白的產量;或因突變造成原為 Gly 之位置被具有較大 R group 之附基酸置換所導致;由於 Gly 為膠原蛋白之結構穩定所必須,所以任何一個 Gly 被置換後,皆會使膠原蛋白的結構產生異常。

Ehlers-Danlos syndrome 鬆皮症 Marfan's syndrome 馬凡氏症候群 (指趾

·為一先天膠原結締組織異常之遺傳疾病,此症由於體內合成膠原蛋白出現障礙,以致產量不足或品質不好;或因突變造成原為Gly之位置被具有較大R group之胺基酸置換所導致。患者皮膚與關節具高度延展性,皮膚和血管較為脆弱,傷口癒合比較慢,,所以也被稱為橡皮人症候群(rubber man syndrome)。

Structure of silk

Fibroin consists of layers of <u>anti-parallel</u> <u>B sheets</u> rich in <u>Ala</u> and <u>Gly</u> residues

絲蛋白

蠶絲、蜘蛛絲

Fibroin in spider web

128