MARGIN OF ERROR

Amit Bhola

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

	1	2	3	4	5	6
Trial 1						
Trial 2						
Trial 3						
Trial 4						
Trial 5						
Trial 6						
Trial 7						
Trial 8						
Trial 9						
Trial 10						
Trial 11						
Trial 12						
	3	3	2	1	1	2

$$p1 + p2 + p3 + p4 + p5 + p6 = 1$$

Lucky No?

Pollution Level?

Height?

The response / outcome possible is **NOT** fixed / restricted.

Theoretically **EVERY** real no. has a Non Zero Probability

Person	1	2	3	4	5	6	7	8	9	10	11	12	
Response	5	73	46	20	4	97	5	38	13	51			

HISTOGRAMS

TELL

WHAT NEXT ?

BINOMIAL	MULTINOMIAL	CONTINUOUS
р	p1	p (R1) = f(R1)
q=1-p	p2	p (R2) = f(R2)
p+q=1	p1+p2+p3++p n = 1	∑p (all R) = 1

RARE AND COMPLEX

BINOMIAL

Formulae 1

OUT OF SCOPE

CONTINUOUS

Formulae 2

HISTOGRAMS

PROBABILITY (DENSITY) FUNCTION

PROBABILITY FUNCTION

CUMULATIVE DENSITY FUNCTION

P.D.F. AS PROBABILITY INDICATOR

NORMAL DISTRIBUTION

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

It means:-

Knowing <u>u</u> and <u>o</u> of a <u>normally</u> distributed variable, one can determine how much <u>probable</u> is it to <u>lie between a range</u>.

MEAN AND STANDARD DEVIATION

MEAN AND STANDARD DEVIATION

SAMPLING THEORY

SAMPLING INFERENCE - MEAN

Sample mean = Population mean With some error

SAMPLING INFERENCE - MEAN

I sampled the ABC tax payments. I conclude that Avg. tax as 1.2 MRs

How much sure are you about your inference

NORMAL DISTRIBUTION

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

It means:-

Knowing <u>u</u> and <u>o</u> of a <u>normally</u> distributed variable, one can determine how much <u>probable</u> is it to <u>lie between a range</u>.

SAMPLING INFERENCE - MEAN'S DISTRIBU.

μ*

 $\mu^* = \underline{\text{sample mean is normally distributed N}}(\mu^*, \sigma^*)$

NORMAL DISTRIBUTION

MARGIN OF ERROR

This value is Margin of error at 95% confidence

σ* has special calculation

MARGIN OF ERROR - CALCULATION

MARGIN OF ERROR - CALCULATION

POPULATION STD DEV

Sample $\sigma_s \approx \text{Population } \sigma$ If $n \geq 100$

I sampled 240 firms so n=240.

Also 240>100, so ' σ ' can be taken = σ_s

In my sample σ_s came out to be 0.8 MRs

 $\sigma_s \approx \sigma \approx 0.8$

So I can
say that
Margin of
Error = ± E

 $= \pm 1.96*(0.8) / (240^0.5)$

≈ 0.1

Thus tax Avg.

=1.2±E

 $=1.2\pm0.1$

It lies b/w 1.1 to 1.3 MRs

No, Not always, but (almost) 95% times you sample n=240, it would lie b/w 1.1 to 1.3 MRs

So, tax would lie b/w 1.1 ~ 1.3 95% of times..

Strictly speaking -No, Not the tax. We are talking about a particular sample statistic here...

We are discussing the statistic "AVG." So there's 95% chance that sample AVG. is 1.1~1.3

If you ask me 99% confidence level, my range would be

 $E=\pm 2.58*(0.8)$ / (240^0.5)

Avg. $=1.2 \pm 0.133$

b/w 1.067 to 1.333

How to further reduce the margin of Error E ?

SAMPLE SIZE - CALCULATION

SAMPLE SIZE - CALCULATION

MARGIN OF ERROR - BINOMIAL

No Replacement

$$\sigma^* = \frac{\sqrt{pq (N-n)}}{\sqrt{n (N-1)}}$$

| Replacement

MARGIN OF ERROR - BINOMIAL

Calculate n using the desired E

E=
$$\frac{1.96 \sqrt{pq} (N-n)}{\sqrt{n (N-1)}}$$

p & q are expected ideal population proportions here

When not known beforehand, assumed p = q = 0.5

Note that in case of proportions, the E is also in terms of proportions, e.g. 5%

So, in the formula it is entered in %age e.g. 0.05 for ±5% error

CAUTION! APPLICABILITY

The Formulas of Margin of Error E studied are valid only for the sampling statistic = $AVERAGE \mu^*$ And not for other sampling

statistics like STD DEV. etc.

					_
Sampling	Sampling 1	Sampling 2	Sampling 3		9
Sample size	n (say 100)	n	n		
Sample mean	μ_1	μ_2	μ_3	Ļ	Γ
[] ^T					

 $\begin{array}{c|cccc} \textbf{Sampling 4} & & \dots & \\ & n & & \dots & \\ & & \mu_4 & & \dots & \\ \end{array}$

 $\mu^* = \underline{\text{sample mean}}$ is $\underline{\text{normally}}$ distributed $N(\mu^*, \sigma^*)$

REPORTING STATISTICS

PARAMETER MENTIONED IN SAMPLING REPORT	CHECK
Basic Assumptions about Population	
Sampling Technique used	
Sample Size	
Sampling Inference (outcome, eg. μ)	
Margin of Error (± E)	
Confidence Level (eg. 95%)	

Thanks