Show and Tell:

A Neural Caption Generator

김경환

NLP boot camp

Contents

- Introduction
- Model
- Experiments
- Results

Introduction

- 이미지를 설명하는 문장을 자동으로 만들어 내는것은 굉장히 어려운 문제다. (challenging task)
- image classification과 object dection보다 훨씬 어렵다.
 - → 이미지 인식 + 자연어 표현까지 학습해야 되기 때문

Introduction

Idea

- encoder RNN decoder RNN
- ullet Source language S Target language T

maximizing p(T|S) 하도록 학습

Introduction

Idea

- encoder RNN ightarrow encoder CNN
- ullet image I
- ullet target sequence of words $S=\{S_1,S_2,...\}$
- Neural Image Caption model (NIC)

maximizing p(S|I) 하도록 학습

- Machine translation 모델과 같이
- input Image가 주어졌을 때 정답 output Sequence의 확률을 maximizing
- ullet correct transcription S, input image I, parameter heta

$$heta^* = rg \max_{ heta} \sum_{(I,S)} logp(S|I; heta)$$

$$logp(S|I) = \sum_{t=0}^{N} logp(S_{t}|I, S_{0},, S_{t-1})$$

Training

- Encoder로 Deep CNN 사용.
- Decoder로 LSTM 사용.

$$x_{t-1} = CNN(I)$$
 $x_t = W_eS_t, t \in \{0,....,N-1\}$ $p_{t+1} = LSTM(x_t), t \in \{0,....,N-1\}$

Training Details

- Over fiiting을 막기 위한 techniques
 - i. Pre-Train 된 Deep CNN 사용. (e.g. ImageNet)
 - ii. Pre-Train 된 Word embedding vetor 사용. (효과 적음)
 - iii. Dropout & Ensembling

Inference

- Sampling : 가장 확률이 높은 값(단어)을 고른다.
- BeamSearch : k 개의 후보(단어)를 뽑아서 다음 t+1 에서의 단어 와의 조합의 확률을 보고 높은 값을 고른다.

Experiments

Evaluation Metrics

- Amazon Mechanical Turk experiment
- BLEU
- METHOR
- CIDER

Experiments

Datasets

- 이미지마다 5개의 문장 (SBU 제외)
- Pascal VOC 2008은 test로만 사용 (실험에서는 학습은 MSCOCO 로 함)
- Flickr는 사진과 사진에 대한 글을 올리는 사이트
- SBU는 Flicker에 올라온 사진과 글을 그대로 데이터로 사용

Dataset name	size			
Dataset name	train	valid.	test	
Pascal VOC 2008 6	-	-	1000	
Flickr8k [26]	6000	1000	1000	
Flickr30k [33]	28000	1000	1000	
MSCOCO [20]	82783	40504	40775	
SBU [24]	1M	-	-	

13

- How dataset size affects generalization
- What kinds of transfer learning it would be able to achieve
- How it would deal with weakly labeled examples

Generalization

- 좋은 데이터가 10만개 정도
- 데이터가 많아지면 더 좋은 결과가 나올 것이라 예상
- 데이터가 부족하기 때문에 generalization(overfitting 방지)을 하기 위해 노력함.

Generation Results

- 여러 metric으로 평가해봄.
- 사람보다 점수가 높은 경우가 있지만 실제 결과는 그렇지 않음.
- metric에 대한 연구도 더 필요할 것으로 보임.

Generation Results

Metric	BLEU-4	METEOR	CIDER
NIC	27.7	23.7	85.5
Random	4.6	9.0	5.1
Nearest Neighbor	9.9	15.7	36.5
Human	21.7	25.2	85.4

Table 1. Scores on the MSCOCO development set.

Approach	PASCAL	Flickr	Flickr	SBU
	(xfer)	30k	8k	
Im2Text [24]				11
TreeTalk [18]				19
BabyTalk [16]	25			
Tri5Sem [11]			48	
m-RNN [21]		55	58	
MNLM [14] ⁵		56	51	
SOTA	25	56	58	19
NIC	59	66	63	28
Human	69	68	70	

Table 2. BLEU-1 scores. We only report previous work results when available. SOTA stands for the current state-of-the-art.

Transfer Learning

- 다른 dataset 간의 transfer가 가능한지 실험.
- Flickr30k -> Flickr8k (유사 데이터, 데이터 차이 4배)
 - BLEU 4 증가
- MSCOCO -> Flickr8k (다른 데이터, 데이터 차이 20배)
 - BLEU 10 감소, but 만든 문장은 괜찮음.
- MSCOCO -> SBU
 - BLEU 16 감소

Generation Diversity Discussion

• generating model 모델이 새롭고 다양하고 높은 퀄리티의 문장을 만들어내는지 확인.

A man throwing a frisbee in a park.

A man holding a frisbee in his hand.

A man standing in the grass with a frisbee.

A close up of a sandwich on a plate.

A close up of a plate of food with french fries.

A white plate topped with a cut in half sandwich.

A display case filled with lots of donuts.

A display case filled with lots of cakes.

A bakery display case filled with lots of donuts.

Approach	Image Annotation			Image Search		
Approach	R@1	R@10	$\operatorname{Med} r$	R@1	R@10	$\operatorname{Med} r$
DeFrag [13]	13	44	14	10	43	15
m-RNN [21]	15	49	11	12	42	15
MNLM [14]	18	55	8	13	52	10
NIC	20	61	6	19	64	5

Table 4. Recall@k and median rank on Flickr8k.

Human Evaluation

- 사람이 직접 평가한 지표를 보여줌.
- BLEU Score는 human보다 높았는데, 여기서는 낮다.
- BLEU 지표가 완벽한 지표는 아님을 보여줌.

21

Human Evaluation

Figure 5. A selection of evaluation results, grouped by human rating.

MODUFLIP NLP bootcamp 22

Analysis of Embedding

• Word embedding vector도 유사한 단어들끼리 뭉쳐있도록 잘 학습됨을 확인.

Word	Neighbors
car	van, cab, suv, vehicule, jeep
boy	toddler, gentleman, daughter, son
street	road, streets, highway, freeway
horse	pony, donkey, pig, goat, mule
computer	computers, pc, crt, chip, compute

Table 6. Nearest neighbors of a few example words

감사합니다.