Bosonic and fermionic coherent states

A progress report

Michal Horanský

University of Leeds

June 20, 2025

Bosonic SU(M) CSs

Progress on simulation of dynamics

- Numerical issues solved; the data for M = 2,3 is now sensible
- Comparison with fully variational approach shows that the decoupled basis method reproduces the dynamics of a low-mode system sufficiently well—and saves a lot of time
- ➤ So far, the initial wavefunction was a "pure" coherent state, which will be pefectly reproduced by a basis of size 1 in the coherent timespan
- What to do next:
 - For arbitrary intitial wavefunctions, a sane sampling method must be implemented
 - ightharpoonup Stability must be shown for large (20 30) number of modes
 - Minimal required basis size for these cases is to be found

Fermionic SU(M) CSs

Construction

- ▶ I found a construction of fermionic coherent states which
 - 1. is wholly contained in the particle-preserving Hilbert space
 - 2. doesn't use Grassmann algebra
- ► In this construction:
 - **Each** CS is parametrised by S(M S) complex parameters
 - ▶ The overlap $\langle Z_a | Z_b \rangle$ is calculable as a determinant in $O(M^3)$
 - ▶ The Hamiltonian matrix element $\langle Z_a|\hat{H}|Z_b\rangle$ is calculable as an M^4 -term sum of determinant-like reduced overlaps, yielding a time complexity of $O(M^7)$.

Fermionic SU(M) CSs Utility

- ► Can be used to calculate the dynamics of a molecular electronic Hamiltonian with complexity polynomial in *M*
- ▶ This can be used to find the molecular ground state
- Example methods:
 - Krylov-Lanczos method
 - Imaginary time propagation

Outlook

- ▶ I am currently implementing a python framework to perform krylov-lanczos calculations on arbitrary molecules using the fermionic CS construction
- Other things which would be useful:
 - Can the Hamiltonain matrix element be calculated with smaller time complexity if optimised well?
 - ► Can a simple expression for the inverse of the Kähler potential of the fermionic SU(M) CSs be found? (This would be equivalent to lowering the time complexity on single-CS dynamics calculations)
 - Formalism comparison with Dima

Thank you for your attention