ALGEBRA LINEAL - Práctica Nº 7 - Segundo cuatrimestre de 2020

Forma de Jordan

Ejercicio 1. Dadas las matrices A y A' en $K^{n\times n}$

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \qquad y \qquad A' = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

- i) Probar que ambas son nilpotentes y que A es semejante a A'.
- ii) Dar bases B y B' de $\mathbb{R}_{n-1}[X]$ tal que la matriz de la derivación en la base B sea A y en la base B' sea A'.
- iii) Sea B una base de K^n y sea $f:K^n\to K^n$ tal que $|f|_B=A$. Probar que no existen subespacios propios f-invariantes S y T de K^n tales que $K^n=S\oplus T$.

Ejercicio 2. Hallar la forma y una base de Jordan para cada una de las siguientes matrices:

Ejercicio 3. Sean A_i $(1 \le i \le 6)$ matrices en $\mathbb{C}^{8\times8}$ nilpotentes tales que $m_{A_i} = X^3$ $(1 \le i \le 6)$. ¿Es cierto que necesariamente dos de estas matrices son semejantes?

Ejercicio 4. Sean $A, B \in \mathbb{C}^{6\times 6}$ nilpotentes tales que $m_A = m_B$ y $\operatorname{rg}(A) = \operatorname{rg}(B)$. Probar que A y B son semejantes. ¿Es cierto esto en $\mathbb{C}^{7\times 7}$?

Ejercicio 5. Hallar la forma y una base de Jordan de la matriz $A=(a_{ij})\in\mathbb{C}^{n\times n}$ donde

$$a_{ij} = \begin{cases} 0 & \text{si } i \le j, \\ 1 & \text{si } i > j. \end{cases}$$

Ejercicio 6.

- i) Decidir si existe $A \in \mathbb{C}^{8\times 8}$ nilpotente tal que $\operatorname{rg}(A) = 6$, $\operatorname{rg}(A^2) = 4$, $\operatorname{rg}(A^3) = 3$, $\operatorname{rg}(A^4) = 1$ y $\operatorname{rg}(A^5) = 0$ simultáneamente. En caso afirmativo, exhibir una.
- ii) Decidir si existe $A \in \mathbb{C}^{16 \times 16}$ tal que $m_A(X) = X^5$, $\operatorname{rg}(A) = 9$, $\operatorname{rg}(A^2) = 5$, $\operatorname{rg}(A^3) = 3$, $\operatorname{rg}(A^4) = 1$ y $\operatorname{rg}(A^5) = 0$ simultáneamente. En caso afirmativo, exhibir una.

Ejercicio 7. Sea $f: \mathbb{C}^7 \to \mathbb{C}^7$ una transformación lineal y sea B una base de \mathbb{C}^7 tal que

$$|f|_B = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{pmatrix}.$$

- i) Hallar \mathcal{X}_f y m_f .
- ii) Sea λ un autovalor de f y sea $m = \operatorname{mult}(\lambda, \mathcal{X}_f)$. Se definen $E_{\lambda} = \{v \in \mathbb{C}^7 / f(v) = \lambda . v\}$ y $V_{\lambda} = \{v \in \mathbb{C}^7 / (\lambda \operatorname{Id} f)^m(v) = 0\} = \operatorname{Nu}((\lambda \operatorname{Id} f)^m)$. ¿Para qué autovalores λ de f se tiene que $E_{\lambda} = V_{\lambda}$?
- iii) Para cada autovalor λ de f, ¿cuál es la menor potencia k tal que $V_{\lambda} = \text{Nu}((\lambda Id f)^k)$?
- iv) Si λ es un autovalor de f, sea f_{λ} la restricción de $\lambda Id f$ a V_{λ} . Calcular dim $(\text{Im}(f_{\lambda}))$ y dim $(\text{Im}(f_{\lambda}^2))$ para cada λ .

Ejercicio 8. Hallar la forma y una base de Jordan de cada una de las siguientes matrices:

$$\begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix} ; \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix} ; \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix} ; \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{pmatrix} ; \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} ; \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ -1 & -1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ -1 & -1 & 0 & 0 & 2 \end{pmatrix}$$

Eiercicio 9. Sea $A \in \mathbb{R}^{4 \times 4}$ la matriz

$$A = \begin{pmatrix} 3 & 0 & 8 & a \\ 3 & -1 & 6 & 0 \\ -2 & 0 & -5 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

- i) Para cada $a \in \mathbb{R}$, calcular \mathcal{X}_A , m_A y hallar la forma de Jordan de A.
- ii) Para a=2, hallar una base de Jordan para A.

Ejercicio 10. Sea $V \subseteq C^{\infty}(\mathbb{R})$ el subespacio $V = \langle e^x, x e^x, x^2 e^x, e^{2x} \rangle$. Sea $\delta : V \to V$ la transformación lineal definida por $\delta(f) = f'$. Hallar la forma y una base de Jordan para δ .

Ejercicio 11. Sean A, $B \in \mathbb{C}^{4\times 4}$ las matrices

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix} \quad , \quad B = \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Decidir si A y B son semejantes.

Ejercicio 12. Sea $A \in \mathbb{C}^{n \times n}$. Probar que A y A^t son semejantes.

Ejercicio 13. Sean $A, B \in \mathbb{C}^{5\times 5}$ tales que $\mathcal{X}_A = \mathcal{X}_B = (X-1)^3(X-3)^2$ y $m_A = m_B$. Decidir si, necesariamente, A es semejante a B.

Ejercicio 14. Encontrar todas las formas de Jordan posibles de la matriz $A \in \mathbb{C}^{n \times n}$ en cada uno de los siguientes casos:

i)
$$\mathcal{X}_A(X) = (X-2)^4(X-3)^2$$
; $m_A(X) = (X-2)^2(X-3)^2$

ii)
$$\mathcal{X}_A(X) = (X-7)^5$$
; $m_A(X) = (X-7)^2$

iii)
$$\mathcal{X}_A(X) = (X-2)^7$$
; $m_A(X) = (X-2)^3$

iv)
$$\mathcal{X}_A(X) = (X-3)^4(X-5)^4$$
; $m_A(X) = (X-3)^2(X-5)^2$

Ejercicio 15. Sea $A \in \mathbb{C}^{15 \times 15}$ una matriz con autovalores λ_1 , λ_2 y λ_3 y que cumple, simultáneamente:

$$\operatorname{rg}(A - \lambda_1 I) = 13$$
, $\operatorname{rg}(A - \lambda_1 I)^2 = 11$, $\operatorname{rg}(A - \lambda_1 I)^3 = 10$, $\operatorname{rg}(A - \lambda_1 I)^4 = 10$, $\operatorname{rg}(A - \lambda_2 I) = 13$, $\operatorname{rg}(A - \lambda_2 I)^2 = 11$, $\operatorname{rg}(A - \lambda_2 I)^3 = 10$, $\operatorname{rg}(A - \lambda_2 I)^4 = 9$, $\operatorname{rg}(A - \lambda_3 I) = 13$, $\operatorname{rg}(A - \lambda_3 I)^2 = 12$, $\operatorname{rg}(A - \lambda_3 I)^3 = 11$.

Hallar su forma de Jordan.

Ejercicio 16. Dar la forma de Jordan de una matriz $A \in \mathbb{C}^{14 \times 14}$ que verifica, simultáneamente:

$$m_A = (X - \lambda_1)^2 (X - \lambda_2) (X - \lambda_3)^2 (X - \lambda_4)^3$$
 (con $\lambda_i \neq \lambda_j$ si $i \neq j$),
 $\operatorname{rg}(A - \lambda_1 I) = 11$, $\operatorname{rg}(A - \lambda_1 I)^2 = 10$, $\operatorname{rg}(A - \lambda_3 I) = 12$, $\operatorname{rg}(A - \lambda_3 I)^2 = 10$ y
 $\operatorname{rg}(A - \lambda_4 I) = 13$.

Ejercicio 17. Calcular las posibles formas de Jordan de una matriz $A \in \mathbb{C}^{5 \times 5}$ sabiendo que cumple simultáneamente:

- $X^2 6X + 9 \mid m_A(X)$,
- rg(A+I) = 3 y
- $(A-3I)^3(A+I)^3(A-I)=0$.

Ejercicio 18. Sean $x, y \in \mathbb{C}^n$ y $A \in \mathbb{C}^{n \times n}$, $A = (a_{ij})$ con $a_{ij} = x_i.y_j.$

- i) Calcular todos los autovalores y autovectores de A.
- ii) Calcular las posibles formas de Jordan de A.

Ejercicio 19. Sea $f: \mathbb{C}^7 \to \mathbb{C}^7$ la transformación lineal cuya matriz en la base canónica es la matriz del Ejercicio 2. ii). Hallar subespacios f-invariantes S_1, S_2, \ldots, S_6 de \mathbb{C}^7 tales que, para todo $1 \le i \le 6$, dim $(S_i) = i$ y $S_i \oplus S_{7-i} = \mathbb{C}^7$.

Ejercicio 20. Sea $A \in \mathbb{C}^{6 \times 6}$ una matriz tal que $m_A = X^6$ y sea $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ una base de Jordan para A. Calcular la forma y una base de Jordan para las matrices A^2 , A^3 , A^4 y A^5 .

Ejercicio 21. Dada la matriz
$$A = \begin{pmatrix} 5 & 1 & 4 \\ -1 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, encontrar $B \in \mathbb{Q}^{3 \times 3}$ tal que $B^2 = A$.

Ejercicio 22. Para cada una de las siguientes matrices A, calcular A^n para todo $n \in \mathbb{N}$:

i)
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 ii) $A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 1 \\ -1 & -1 & 2 & 0 & 1 \\ -1 & 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$

Ejercicio 23. Sea $A \in \mathbb{C}^{n \times n}$ una matriz tal que su polinomio característico es $(X-1)^n$. Probar que A^k es semejante a A para todo $k \in \mathbb{N}$.

Ejercicio 24. Sean $\alpha, \beta \in \mathbb{R}$. Se define la sucesión $\{a_n\}_{n \in \mathbb{N}_0}$ de la siguiente manera:

$$\begin{cases} a_0 = \alpha \,, \, a_1 = \beta \\ a_{n+2} = 4a_{n+1} - 4a_n \quad \forall \, n \in \mathbb{N}_0. \end{cases}$$

Hallar una fórmula general para el término $a_n, \forall n \in \mathbb{N}_0$.

Ejercicio 25. Resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'_1(t) &= 3x_1(t) - x_2(t) \\ x'_2(t) &= x_1(t) + x_2(t) \\ x'_3(t) &= -x_2(t) + 2x_3(t) \end{cases}$$

con condiciones iniciales $x_1(0) = 1$, $x_2(0) = 2$, $x_3(0) = 1$.