Bùi Tiến Lên

2023

Contents

- 1. Probability And Statistics
- 2. Statistical Learning
- 3. Fitting Models
- 4. Linear Regression Revisited
- 5. Naive Bayes
- 6. Statistical Language Model
- 7. Bayesian Networks

Two categoric

variable

Joint Probabil

. .

Pograce

Revisited

Naive Bave

Statistical Language

Model

Bayesia

Introduction

Representation Learning

Parameter Learning
Structure Learning

Examples

More Representation

Compact distribution

Notation

symbol	meaning
$a, b, c, N \dots$	scalar number
$\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{x}, \boldsymbol{y} \dots$	column vector
$\boldsymbol{X},\boldsymbol{Y}\dots$	matrix
\mathbb{R}	set of real numbers
\mathbb{Z}	set of integer numbers
\mathbb{N}	set of natural numbers
\mathbb{R}^D	set of vectors
$\mathcal{D},\mathcal{X},\mathcal{Y},\dots$	set
\mathcal{A}	algorithm
	set

symbol	meaning
<i>X</i> , <i>Y</i>	random variable
$\boldsymbol{X},\boldsymbol{Y}\dots$	multivariate random variable
$x, y \dots$	value
x , y	vector
p, pr, P, Pr	probability

Probability And Statistics

Probability And **Statistics**

Continuous variable

Bayes Theorem

$$P(h \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid h)P(h)}{P(\mathcal{D})} \tag{1}$$

- P(h) = prior probability of hypothesis h
- $P(\mathcal{D})$ = prior probability of observed data \mathcal{D}
- $P(h \mid \mathcal{D}) = \text{probability of } h \text{ given } \mathcal{D} \text{ (called)}$ posterior probability)
- $P(\mathcal{D} \mid h) = \text{probability of } \mathcal{D} \text{ given } h \text{ (called)}$ likelihood)

Compact distribution Continuous variable

Given two random variables X and Y, we say that

- The quantity p(X, Y) is a joint probability
- The quantity $p(Y \mid X)$ is a conditional probability
- The quantity p(X) is a marginal probability
- Sum rule

$$p(X) = \sum_{V} p(X, Y) \tag{2}$$

or

$$p(X) = \int p(X, Y) dy \tag{3}$$

Product rule:

$$p(X,Y) = p(Y \mid X)p(X) \tag{4}$$

Probability And Statistics

Statistica Learning

Fitting Mode

One categorica

Two categori

variables

variable

Joint Probabi

Regressi

revisited

Naive Baye

Statistical Language

Bayesia

14000000

Representat

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution

Example 1

 We have the joint distribution of three random variables P(Headache, Hurt, Cold)

Structure Learning

More Representation

Compact distribution

Continuous variable

Example 1 (cont.)

Headache	Hurt	Cold	probability
headache	hurt	cold	.108
headache	hurt	$\neg cold$.012
headache	$\neg hurt$	cold	.016
headache	$\neg hurt$	$\neg cold$.064
\neg headache	hurt	cold	.072
\neg headache	hurt	$\neg cold$.008
\neg headache	$\neg hurt$	cold	.144
\neg headache	$\neg hurt$	$\neg cold$.576

$$P(\textit{headache}) = 0.108 + 0.012 + 0.016 + 0.064$$

= 0.2

080

Statistical Learning

Fitting Model

One categorie variable

Two categor

variables

One co variable

Joint Probab

Distribution:

Line

Regressio

Naive Baye

radive Buye

Language

Model

Bayesia

Introductio

Representa

Learning

Structure Learning

Examples

More Representation

Compact distribution

Hurt	Cold	probability
hurt	cold	.108
hurt	$\neg cold$.012
$\neg hurt$	cold	.016
$\neg hurt$	$\neg cold$.064
hurt	cold	.072
hurt	$\neg cold$.008
\neg hurt	cold	.144
\neg hurt	$\neg cold$.576
	hurt hurt ¬hurt ¬hurt hurt hurt hurt	hurt cold hurt ¬cold ¬hurt cold ¬hurt ¬cold hurt cold hurt ¬cold ¬hurt ¬cold

$$P(\textit{hurt} \lor \textit{headache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 \\ = 0.28$$

Probability And **Statistics**

Example 1 (cont.)

Headache	Hurt	Cold	probabi l ity
headache	hurt	cold	.108
headache	hurt	$\neg cold$.012
headache	\neg hurt	cold	
headache	¬hurt	$\neg cold$.064
egheadache	hurt	cold	.072
egheadache	hurt	$\neg cold$.008
egheadache	$\neg hurt$	cold	.144
\neg headache	$\neg hurt$	$\neg cold$.576

$$P(\neg hurt \mid headache) = \frac{P(\neg hurt \land headache)}{P(headache)}$$
 $= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064}$
 $= 0.4$

Structure Learning Examples

More Representation

Continuous variable

One continu

Joint Probabi

Joint Probabi Distributions

Linear

Maiue Pauc

Statistica Language

Bavesian

Network

Representati

Learning

Parameter Learni
Structure Learnin

Examples

More Representation

Compact distribution

Example 1 (cont.)

Problem

Let **X** be all the variables. We want the posterior joint distribution of the **query** variables **Y** given specific values **e** for the **evidence variables E**

Summing solution

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables
- Let the **hidden variables** be H = X Y E and denominator can be viewed as a **normalization constant** α

$$P(\mathbf{Y} \mid \mathbf{E} = \mathbf{e}) = \alpha P(\mathbf{Y}, \mathbf{E} = \mathbf{e}) = \alpha \sum_{\mathbf{h}} P(\mathbf{Y}, \mathbf{E} = \mathbf{e}, \mathbf{H} = \mathbf{h})$$
 (5)

11

Probability And Statistics

Example 1 (cont.)

Headache	Hurt	Cold	probability
headache	hurt	cold	.108
headache	hurt	$\neg cold$.012
headache	$\neg hurt$	cold	.016
headache	$\neg hurt$	$\neg cold$.064
\neg headache	hurt	cold	.072
\neg headache	hurt	$\neg cold$.008
\neg headache	$\neg hurt$	cold	.144
¬headache	$\neg hurt$	$\neg cold$.576

One categorical

variable
Two categoric

One continuo variable

Joint Probability Distributions

Linear

Revisited

laive Bav

Vaive Bay

Language

Model

Bayesia

Introducti

Represer

Learning

Parameter Learnin

Examples

More Representation

Compact distribution
Continuous variable

P(*Hurt* | *headache*)

 $= \alpha P(Hurt, headache)$

ar (riurt, neadache)

 $= \alpha \left[P(Hurt, headache, cold) + P(Hurt, headache, \neg cold) \right]$

 $= \alpha [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle]$

= $\alpha \langle 0.12, 0.08 \rangle$

 $= \langle 0.6, 0.4 \rangle$

robability And

Statistical Learning

Fitting Model

One categorical variable

Two categoric

One con

Joint Probabil

Distributions

Linear Regression

Naive Baye

Statistical Language

Bayesian

Introduction

Representati

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution

Statistical Model

The world ──── The image → Model

• All models are wrong, but some are useful (statistical model) - George Box

Continuous variable

Probabilistic Approach

Concept 1

Learning is an estimation of *joint probability density* function p(x, y) given observed data \mathcal{D} . Inductive bias is expressed as prior assumptions about these joint distributions.

Classification and **Regression**: conditional density estimation

$$p(y \mid \mathbf{x}) \tag{6}$$

• Unsupervised Learning: density estimation

$$p(\mathbf{x}) \tag{7}$$

Structure Learning

More Representation Compact distribution

Continuous variable

Type of Supervised Model

	Discriminative model	Generative model
Goal	• Directly estimate $P(y \mid x)$	• Estimate $P(\mathbf{x} \mid \mathbf{y})$ to then deduce $P(\mathbf{y} \mid \mathbf{x})$
What's learned	Decision boundary	 Probability distributions of the data

Structure Learning

Continuous variable

Bayesian Learning

Concept 2

Bayesian learning is a process that updates of a probability distribution (belief) over the **hypothesis space** $\mathcal{H} = \{h_1, h_2, ...\}$ given samples \mathcal{D} .

Prior probability of each hypothesis h_i

$$P(h_i) \tag{8}$$

• Given the data \mathcal{D}_i each hypothesis has a posterior probability (update)

$$P(h_i \mid \mathcal{D}) = \alpha P(\mathcal{D} \mid h_i) P(h_i)$$
(9)

• Predictions use an average over the hypotheses

$$P(d) = \sum_{i} P(d \mid h_i) P(h_i)$$
 (10)

17

Structure Learning

More Representation

Compact distribution Continuous variable

Components of Learning

Fitting Model

One categoric

Two categor

variables

variable

Joint Probabi

Distributions

Linear

Revisited

Naive Baye

Statistical

Languag

Bayesiar

Introduction

Representation

Learning

Parameter Learning

Examples

More Representation

Compact distribution

Evolution of Posterior Probabilities

• Changes of a probability distribution P(h) after observing the data D_1 and D_2

Fitting Mode

variable

Two categoric

One cor variable

Joint Probabi

Linear

Regression Revisited

Naive Bayes

Statistica Language Model

Bavesian

Networks Introduction

Representatio

Learning
Parameter Learni

Examples

More Representation Compact distribution Continuous variable

Example 1

Does patient have COVID or not?

"A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this COVID."

Solution

variable

Two categori

One conti

Joint Probabili

Distributions

Linear

Revisited

Naive Baye

Language

Bayesia

Introduction

Loarning

Parameter Learnin

Examples

More Representatio

Compact distribution

Example 2

- Suppose there are five kinds of bags of candies:
 - 10% are h_1 : 100% cherry candies
 - 20% are h_2 : 75% cherry candies + 25% lime candies
 - 40% are h_3 : 50% cherry candies + 50% lime candies
 - 20% are h_4 : 25% cherry candies + 75% lime candies
 - 10% are h_5 : 100% lime candies

Experiment

- Select one bag
- Candies drawn from the bag: $\mathcal{D} = \{ \bullet \}$

Question

- 1. What kind of bag is it?
- 2. What flavour will the next candy be?

Examples

More Representation

Continuous variable

Example 2 (cont.)

1. What kind of bag is it? Posterior probability of hypotheses

Structure Learning

More Representation

Continuous variable

Example 2 (cont.)

1. What flavour will the next candy be? Prediction probability

23

obability And

Statistical Learning

Fitting Mode

One categorica

Two categoric

One contin

Joint Probabil

Distributions

Line

Regression

Naive Bave

Statistical Language

Model

Bayesia

Introduction

t constant

Parameter Learn

Structure Learning Examples

More Representation Compact distribution Continuous variable

Exercise

 Suppose we have a box of dice that contains a 4-sided die, a 6-sided die, an 8-sided die, a 12-sided die, and a 20-sided die

Experiment

- We select one die
- We roll the die a few more times and get $\mathcal{D} = \{6, 8, 7, 7, 5, 4\}$

Question

1. What die is selected?

Fitting Models

- One categorical variable
- Two categorical variables
- One continuous variable
- Joint Probability Distributions

Fitting Models

One categorica variable

Two categoric variables

variable

Joint Probabil

Distributions

Linear

Revisited

Naive Bayes

Statistical Language Model

Bayesian

Introduction

Representati

Learning

Parameter Learnin

Examples

More Representation Compact distributio

Learning Strategy

Concept 3

Fitting probability models to data $\mathcal{D} = \{\mathbf{x}_1, ... \mathbf{x}_n\}$ is referred to as *learning* because we learn about the parameters θ of the model

- **Updating** or **summing** over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)
- Alternative strategies:
 - Maximum a posteriori (MAP) learning
 - Maximum likelihood (ML) learning

Fitting Models

One categoric variable

Two categorie

One continu

Joint Probabi

Distributions

Distributions

Linear

Regressio Revisited

Naive Baye

Statistical Language

Bayesia

Networi

Learning

Parameter Learning

Examples

More Representation

Compact distribution

Maximum a posteriori

Given data \mathcal{D}

- choose hypothesis h (called h_{MAP}) maximizing $P(h \mid \mathcal{D})$
- i.e., maximize $P(\mathcal{D} \mid h)P(h)$ or $\log P(\mathcal{D} \mid h) + \log P(h)$

Fitting Models

One categorica variable

Two categoric

One conti variable

Joint Probabil

Distributions

Linear

Regression

Naive Bayes

Statistical Language

Bayesian

Introduction

Representa

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution

Maximum likelihood

 For large data sets, prior becomes weak or irrelevant, maximum likelihood learning

Given data \mathcal{D} , choose hypothesis h (called h_{ML}) maximizing $P(\mathcal{D} \mid h)$ or $\log P(\mathcal{D} \mid h)$

One con variable

Joint Probabi

Linear

Regressio

Naive Baye

Statistical

Model

Bayesia

Introduction

t -----'---

Parameter Learning
Structure Learning

Examples

More Representation

Compact distribution

Example 1

• A bag containing two kinds of candies, lime and cherry, has a fraction θ of cherry candies?

Experiment

• Candies drawn from the bag: $\mathcal{D} = \{ \bullet \}$

Question

1. What the value of θ is?

variable

Joint Probabil Distributions

Linear Regression

...

Statistical

Language Model

Bayesian

Introduction

Learning

Parameter Learning

Examples

More Representation

Compact distribution

Continuous variable

Example 1 (cont.)

ML learning solution

• The model (Bayes net) has one variable flavor with one parameter θ

- Any $\theta \in [0,1]$ is possible: continuum of hypotheses h_{θ}
- θ is a **parameter** for this simple (**binomial**) family of models
- Suppose we unwrap N candies, c cherries and $\ell = N c$ limes. These are i.i.d. (independent, identically distributed) observations, so

$$p(\mathcal{D} \mid h_{\theta}) = \prod_{j=1}^{N} p(d_j \mid h_{\theta}) = \frac{\theta^{c}}{\theta^{c}} \cdot (1 - \frac{\theta}{\theta})^{\ell}$$

Continuous variable

Example 1 (cont.)

• Maximize this w.r.t. θ —which is easier for the **log-likelihood**:

$$L(\mathcal{D} \mid h_{\theta}) = \log p(\mathcal{D} \mid h_{\theta})$$

$$= \sum_{j=1}^{N} \log p(d_{j} \mid h_{\theta})$$

$$= c \log \theta + \ell \log(1 - \theta)$$

$$\frac{dL(\mathcal{D} \mid h_{\theta})}{d\theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0$$

$$\implies \theta_{ML} = \frac{c}{c + \ell} = \frac{c}{N}$$
(11)

ML seems sensible, but causes problems with **0** counts!

One categorical

variable

More Representation

Continuous variable

MAP learning solution

• Prior for ha

$$p(h_{\theta}) = Beta(a, b)$$
 where $a, b > 0$,

• Posteriori for h_{θ} given \mathcal{D}

$$p(h_{\theta} \mid \mathcal{D}) \propto p(\mathcal{D} \mid h_{\theta})p(h_{\theta})$$
$$= Beta(a + c, b + \ell)$$

MAP estimate

$$\theta_{MAP} = \frac{c+a-1}{c+\ell+a+b-2}$$

(12)

Fitting Mode

One categorical variable

Two categori

One continu

Joint Probabi

Distributions

Linea

Regression

Naive Bay

Statistical

Model

Bayesian Network

Introduction

Learning

Parameter Lea

Structure Learning

Examples

More Representation

Continuous variable

Example 1 (cont.)

Probability distribution $P(h_{\theta} \mid D)$ with a = 2, b = 2

Two categorical

One continu variable

Joint Probabi

Linear

Regression Revisited

Naive Baye

Statistical Language

Bayesiar

Introduction

Representat

Learning

Parameter Learnin

Examples

More Representation

Compact distribution

Example 2

• A bag has a fraction θ of cherry candies, red/green wrapper depends probabilistically θ_1, θ_2 on flavor?

Experiment

ullet Candies drawn from some bag ${\mathcal D}$

Question

1. What the values of θ , θ_1 , θ_2 are?

obability And

Statistica Learning

Fitting Mode

One categorical

Two categorical variables

One continue

variable

Joint Probabi

Distribution

Linea

Regression

Naive Baye

Statistical Language

Bayesiar

Network

Representati

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution

Example 2 (cont.)

ML learning solution

• The model (Bayes net) has two variables *flavor* and *wrapper* with three parameters θ , θ_1 , θ_2

Two categorical variables

Example 2 (cont.)

• Likelihood for, e.g., cherry candy in green wrapper:

$$\begin{array}{l} p(F = \textit{cherry}, W = \textit{green} \mid h_{\theta,\theta_1,\theta_2}) \\ = p(F = \textit{cherry} \mid h_{\theta,\theta_1,\theta_2}) p(W = \textit{green} \mid F = \textit{cherry}; h_{\theta,\theta_1,\theta_2}) \\ = \theta \cdot (1 - \theta_1) \end{array}$$

• N candies, r_c red-wrapped cherry candies, etc.:

$$p(\mathcal{D} \mid h_{\theta,\theta_1,\theta_2}) = \theta^{c} (1-\theta)^{\ell} \cdot \theta_1^{r_c} (1-\theta_1)^{g_c} \cdot \theta_2^{r_\ell} (1-\theta_2)^{g_\ell}$$

$$L = [c \log \theta + \ell \log(1 - \theta)]$$
$$+ [r_c \log \theta_1 + g_c \log(1 - \theta_1)]$$
$$+ [r_\ell \log \theta_2 + g_\ell \log(1 - \theta_2)]$$

Two categorical variables

Structure Learning Examples

Continuous variable

Example 2 (cont.)

• Derivatives of *L* contain only the relevant parameter:

$$\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \implies \theta = \frac{c}{c + \ell}$$

$$\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 \implies \theta_1 = \frac{r_c}{r_c + g_c}$$

$$\frac{\partial L}{\partial \theta_2} = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 \implies \theta_2 = \frac{r_\ell}{r_\ell + g_\ell}$$

• With **complete data**, parameters can be learned separately

Two categoric

One continuous variable

Joint Probabili

Distribution

Linear

Regressi

Naive Bay

Language

Model

Bayesia

Introduction

Lanning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution
Continuous variable

Example 3

• Suppose that the distribution of male height is a normal distribution $\mathcal{N}(\mu, \sigma^2)$. Given the following data \mathcal{D}

#	height (m)	#	height (m)
1	1.72	6	1.63
2	1.65	7	1.74
3	1.60	8	1.82
4	1.73	9	1.75
5	1.80	10	1.64

Question: what are the values of μ , σ ?

One continuous variable

Structure Learning

Continuous variable

Example 3 (cont.)

ML learning solution

• The model has one variable \times (height) with two parameters μ, σ^2

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right]$$
(13)

• The likelihood of model with the parameters $\{\mu, \sigma^2\}$ for observed i.d.d. data $\mathcal{D} = \{x_1, ..., x_n\}$ is

$$p(\mathcal{D} \mid \boldsymbol{\mu}, \boldsymbol{\sigma}^2) = \prod_{i=1}^n \mathcal{N}(x_i \mid \boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

$$= \frac{1}{(2\pi\boldsymbol{\sigma}^2)^{n/2}} \exp\left[-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \boldsymbol{\mu})^2}{\boldsymbol{\sigma}^2}\right]$$
(14)

One continuous variable

Structure Learning

Examples

More Representation

Continuous variable

Example 3 (cont.)

• The maximum likelihood solution μ_{ML} , σ_{MI}^2

$$\mu_{ML}, \sigma_{ML}^2 = \operatorname{argmax}_{\mu, \sigma^2}[p(\mathcal{D} \mid \mu, \sigma^2)]$$
 (15)

Two categoric

One continuous variable

Joint Probab

Distribution

Linear

Regression

Naive Bave

Language

Bayesian

Representation

Learning

Parameter Learning Structure Learning

Evamples

Examples

Compact distribution

Example 3 (cont.)

- Since the logarithm is a monotonic function, the position of the maximum in the transformed function $L = \log p(\mathcal{D} \mid \mu, \sigma^2)$ remains the same as $p(\mathcal{D} \mid \mu, \sigma^2)$
- The maximum log-likelihood solution

$$\mu_{ML}, \sigma_{ML}^{2} = \operatorname{argmax}_{\mu, \sigma^{2}} [\log p(\mathcal{D} \mid \mu, \sigma^{2})]$$

$$= \operatorname{argmax}_{\mu, \sigma^{2}} \left[-\frac{1}{2} n \log[2\pi] - \frac{1}{2} \log \sigma^{2} - \frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}} \right] (16)$$

One continuous variable

Structure Learning

More Representation

Continuous variable

Example 3 (cont.)

• To maximize, we differentiate this log-likelihood L with respect to μ and equate the result to zero

$$\frac{\partial L}{\partial \mu} = \sum_{i=1}^{n} \frac{(x_i - \mu)}{\sigma^2}$$

$$= \frac{\sum_{i=1}^{n} x_i}{\sigma^2} - \frac{n\mu}{\sigma^2} = 0$$

$$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad (1)$$

variables One continuous

variable

Joint Probabili

Distributions

Linea

Regression

Naive Baves

Statistical

Language

Bayesiar

IVELWOIK

Introduction

Represent

Learning

Parameter Learning
Structure Learning

Examples

More Representation

Compact distribution

Example 3 (cont.)

• By a similar process, the expression for the variance can be shown to be

$$\sigma_{ML}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{ML})^2.$$
 (18)

Joint Probability

Distributions

Continuous variable

Joint Probability Distributions

• The joint probability distribution is central to probabilistic inference, because once we know the joint distribution we can answer every possible probabilistic question that can be asked about these variables.

Gender	HoursWorked	Wealth	probability
female	< 40.5	poor	0.2531
female	< 40.5	rich	0.0246
female	≥ 40.5	poor	0.0422
female	≥ 40.5	rich	0.0116
male	< 40.5	poor	0.3313
male	< 40.5	rich	0.0972
male	≥ 40.5	poor	0.1341
male	≥ 40.5	rich	0.1059

Joint Probability

Distributions

Structure Learning

More Representation

Compact distribution Continuous variable

Discussion

• How can we learn joint distributions from observed training data \mathcal{D} ?

Linear Regression Revisited

Linear Regression Revisited

Structure Learning

More Representation

Compact distribution Continuous variable

Linear Regression

• Linear regression without prior belief

Linear Regression

Revisited

Structure Learning

More Representation

Compact distribution Continuous variable

Linear Regression (cont.)

• Linear regression with prior belief

Linear Regression Revisited

Structure Learning

More Representation

Compact distribution

Continuous variable

Linear Regression Revisited

Linear Regression Revisited

Continuous variable

Linear Regression Revisited (cont.)

• Unknown function f is modeled by the hypothesis $h_{\mathbf{w}}$

$$y = h_{\mathbf{w}}(x) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \epsilon \tag{19}$$

where y is noisy target value, ϵ is random variable (**noise**) drawn independently according to a Gaussian distribution with mean equal to 0 and variance equal to σ ($\mathcal{N}(0, \sigma^2)$)

Probability language

$$p(y \mid \mathbf{x}, \mathbf{w}) = \mathcal{N}(y \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}, \sigma^{2})$$
 (20)

• Given data $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$, the likelihood of \mathcal{D} given h_w and noise

$$p(\mathcal{D} \mid h_{\mathbf{w}}, \epsilon) = \prod_{i=1}^{N} p(y_i \mid \mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}, \sigma^2)$$
(21)

ML Learning

Linear Regression

Revisited

Choose hypothesis h maximizing the likelihood

$$\operatorname{arg\,max}_{\mathbf{w},\sigma} p(\mathcal{D} \mid h_{\mathbf{w}}, e)$$

$$\Leftrightarrow \arg \max_{\mathbf{w}, \sigma} \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2)$$

$$= \arg \max_{\mathbf{w}, \sigma} \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_i \mid \mathbf{w}, \mathbf{x}_i, \mathbf{v})$$

$$\Leftrightarrow \operatorname{arg\,max}_{\mathbf{w},\sigma} \prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2)$$

$$\Leftrightarrow \operatorname{arg\,max}_{\mathbf{w},\sigma} \log \left(\prod_{i=1}^{N} \mathcal{N}(y_i \mid \mathbf{w}^{\mathsf{T}} \mathbf{x}_i, \sigma^2) \right)$$

$$\Leftrightarrow \operatorname{arg\,min}_{\mathbf{w},\sigma} \frac{1}{2\sigma^2} MSE + \frac{N}{2} \log(\sigma^2) + \frac{N}{2} \log(2\pi)$$

$$\Leftrightarrow \operatorname{arg\,min}_{\mathbf{w},\sigma} \frac{1}{2\sigma^2} MSE + \frac{N}{2} \log(\sigma^2) + \frac{N}{2} \log(2\pi)$$

Solving (20), we have

$$\mathbf{w}_{ML} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}_{ML}^{\mathsf{T}} \mathbf{x}_i - y_i)^2$$

Linear

Regression Revisited

Structure Learning

More Representation

Continuous variable

Example

Figure 1: The red curve denotes the regression curve and the red region corresponds to $+\sigma$ standard deviation

robability And

Statistica

Fitting Mode

One categorica variable

Two categoric

variable

Joint Probabi

Linear Regression Revisited

Naivo Bay

Statistica

Language Model

Bayesia

Networ

Representat

Learnin

Parameter Learni

Examples

More Representation

Compact distribution

Bayesian Learning

 The figure shows the update process of Bayesian learning where w are introduced as hypothesis parameters

Naive Bayes

Two categorie variables

variable

Joint Probabili Distributions

Linear Regressio

Regressio Revisited

Naive Bayes

Statistical Language

Model

Network

Representati

Learning

Parameter Learning
Structure Learning

Examples

More Personnation

Compact distribution

When to use

Along with decision trees, neural networks, nearest neighbour, one of the most practical learning methods.

- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

Successful applications

- Diagnosis
- Classifying text documents

Naive Baves

Continuous variable

Naive Bayes assumption

$$f: \mathcal{X} \to \mathcal{Y}$$

where each instance **x** described by attributes $(x_1, x_2 ... x_D)$ and y is a corresponding class.

Naive Bayes assumption

$$P(x_1, x_2 ... x_D \mid y) = \prod_{i=1}^{D} P(x_i \mid y)$$
 (23)

One cor variable

Joint Probabil

Linear

Revisited

Naive Bayes

Statistical Language

Bayesian

Introduction

Learning

Parameter Learning

Examples

More Representation

Continuous variable

Naive Bayes classifiers

Naive Bayes classifier

$$y_{NB} = \arg\max_{y} \hat{P}(y) \prod_{i=1}^{D} \hat{P}(x_i \mid y)$$
 (24)

The form of the class-conditional density depends on the type of each feature.

1. In the case of real-valued features, we can use the **Gaussian distribution**:

$$p(\mathbf{x} \mid y = c) \sim \prod_{i=1}^{D} \mathcal{N}(x_j \mid \mu_{jc}, \sigma_{jc}^2)$$

where μ_{jc} is the mean of feature j in objects of class c, and σ_{jc}^2 is its variance.

Naive Baves

Continuous variable

Naive Bayes classifiers (cont.)

2. In the case of binary features, $x_i \in \{0,1\}$, we can use the **Bernoulli** distribution:

$$p(\mathbf{x} \mid y = c) \sim \prod_{j=1}^{D} \mathsf{Ber}(x_j \mid \mu_{jc})$$

where μ_{ic} is the probability that feature j occurs in class c.

3. In the case of categorical features, $x_i \in \{v_{i_1}, v_{i_2}, \cdots, v_{i_K}\}$, we can use the multinoulli distribution:

$$p(\mathbf{x} \mid y = c) \sim \prod_{j=1}^{D} \mathsf{Cat}(x_j \mid \boldsymbol{\mu_{jc}})$$

where μ_{ic} is a histogram over the K possible values for x_i in class c.

variables

variable

Joint Probabil

Linea

Regression Revisited

Naive Bayes

Statistical Language

Bayesiar

Introduction

Representation

Learning

Parameter Learnin

More Penresentat

Compact distribution

Naive Bayes Algorithm

$$\begin{split} \operatorname{LearnNaiveBayes}(\mathcal{D}) \\ & \textbf{for} \ \operatorname{each} \ \operatorname{target} \ \operatorname{value} \ (\operatorname{class}) \ y_j \\ & \hat{P}(y_j) \leftarrow \operatorname{estimate} \ P(y_j) \ \operatorname{given} \ \operatorname{data} \ \mathcal{D} \\ & \textbf{for} \ \operatorname{each} \ \operatorname{attribute} \ x_i \\ & \hat{P}(x_i \mid y_j) \leftarrow \operatorname{estimate} \ P(x_i \mid y_j) \ \operatorname{given} \ \operatorname{data} \ \mathcal{D} \end{split}$$

```
CLASSIFYNEWINSTANCE(x)

y = \arg \max_{y} \hat{P}(y) \prod_{i=1}^{D} \hat{P}(x_i \mid y)

return y
```

Naive Baves

Continuous variable

Maximum likelihood learning for $\hat{P}(y=c)$ and $\hat{P}(x_i=a\mid y=c)$

$$\hat{P}(y=c) \leftarrow \frac{n_c}{n} \tag{25}$$

$$\hat{P}(x_i = a \mid y = c) \leftarrow \frac{n_a}{n_c} \tag{26}$$

where

- n is number of training examples
- n_c is number of training examples for which y = c
- n_a is number of examples for which y = c and $x_i = a$

Statistica Learning

Fitting Model

One categorical

variable

Two categoric

One contin

Joint Probabi

Distributions

Linear

Regression

1100101000

Naive Bayes

Language

Model

Network

Introduction

Learning

Learning

Structure Learning

Examples

More Representation

Compact distribution

• Consider *PlayTennis* again

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis?
	D1	sunny	hot	high	weak	no
	D2	sunny	hot	high	strong	no
	D3	overcast	hot	high	weak	yes
	D4	rain	mild	high	weak	yes
	D5	rain	cool	normal	weak	yes
	D6	rain	cool	normal	strong	no
$\mathcal{D} =$	D7	overcast	cool	normal	strong	yes
	D8	sunny	mild	high	weak	no
	D9	sunny	cool	normal	weak	yes
	D10	rain	mild	normal	weak	yes
	D11	sunny	mild	normal	strong	yes
	D12	overcast	mild	high	strong	yes
	D13	overcast	hot	normal	weak	yes
	D14	rain	mild	high	strong	no

Naive Bayes

Structure Learning

More Representation

Continuous variable

Example 1 (cont.)

Naive Bayes model

P(PlavTennis)

()	, , , , ,
yes	9/14
no	5/14

$\hat{P}(Outlook \mid PlayTennis)$

		Outlook			
		overcast	rain	sunny	
PlayTennis	yes	4/9	3/9	2/9	
I lay I cillis	no	0/5	2/5	3/5	

$\hat{P}(Temperature \mid PlayTennis)$

		Te	mperat	ure
		cool	hot	mild
PlayTennis	yes	3/9	2/9	4/9
T lay Tellilis	no	1/5	2/5	2/5

$\hat{P}(Humidity \mid PlayTennis)$

		Humidity	
		high	normal
PlayTennis	yes	3/9	6/9
1 lay I cillis	no	4/5	1/5

P(Wind | PlayTennis)

		Wind	
		strong	weak
PlayTennis	yes	3/9	6/9
I lay I ellilis	no	3/5	2/5

Fitting Mode

One categorica

Two categoric

variables

variable

Joint Probabi

Distributions

1.5....

Regressio

Revisited

Naive Bayes

Statistical

Languag Model

Bayesian

Introduction

Representation

Learning

Parameter Learnin

Examples

More Representation

Continuous variable

Example 1 (cont.)

- Get new instance
 x = (Outlk = sun, Temp = cool, Humid = high, Wind = strong)
- Compute $\begin{cases} \hat{P}(\textit{yes}) \times \hat{P}(\textit{sun} \mid \textit{yes}) \times \hat{P}(\textit{cool} \mid \textit{yes}) \times \hat{P}(\textit{high} \mid \textit{yes}) \times \hat{P}(\textit{strong} \mid \textit{yes}) &= .005 \\ \hat{P}(\textit{no}) \times \hat{P}(\textit{sun} \mid \textit{no}) \times \hat{P}(\textit{cool} \mid \textit{no}) \times \hat{P}(\textit{high} \mid \textit{no}) \times \hat{P}(\textit{strong} \mid \textit{no}) &= .021 \end{cases}$
- Make decison y = no

Two categorie

variables

variable

Joint Probabil

Linear

Regression

Naive Bayes

Statistical

Languag Model

Bayesia

Introduction

Representa

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution

Example 2

	_		_	_
#	Vį	Màu	Vỏ	Độc tính
1	ngọt	đỏ	nhẵn	không
2	cay	đỏ	nhẵn	có
3	chua	vàng	có gai	không
4	cay	vàng	có gai	có
5	ngọt	tím	có gai	không
6	chua	vàng	nhẵn	không
7	ngọt	tím	nhẵn	không
8	cay	tím	có gai	có
9	cay	tím	có gai	không
10	cay	tím	có gai	có
11	cay	vàng	có gai	có

Naive Baves

Continuous variable

Avoiding the zero-probability problem

- 1. Conditional independence assumption is often violated but it works surprisingly well anyway
- 2. Suppose that none of the training instances with target value y have attribute value $x_i = v$? then $\hat{P}(x_i = v \mid y) = 0$, and $\hat{P}(v) \dots \hat{P}(x_i = v \mid v) \dots = 0$ (not good in probability language)

More Representation

Compact distribution

Typical solution is **Bayesian estimate** for $\hat{P}(y=c)$ and $\hat{P}(x_i=a\mid y=c)$

$$\hat{P}(y=c) \leftarrow \frac{n_c + 1}{n + C} \tag{27}$$

$$\hat{P}(x_i = a \mid y = c) \leftarrow \frac{n_a + 1}{n_c + r} \tag{28}$$

where

- *n* is number of training examples
- n_c is number of training examples for which y = c
- C is the number of classes
- n_a is number of examples for which y = c and $x_i = a$
- r is the number of values of attribute x_i

Fitting Mode

variable

Two categorie

One continu

variable

Joint Probabi

. .

Linea

Regressio

Naive Bayes

•

Language

Model

Bayesia

Representa

Learning

Parameter Learning Structure Learning

Structure L

Examples

More Representation

Compact distribution

Example 3

Find Naive Bayes classifier given the following training dataset

#	Height (m)	Hair	Gender
1	1.72	brown	male
2	1.65	black	female
3	1.60	black	female
4	1.73	black	female
5	1.80	brown	male
6	1.63	black	male
7	1.74	black	female
8	1.82	brown	male
9	1.75	black	male
10	1.64	brown	female

Statistical Language Model

obability And

Statistica Learning

Fitting Mode

variable

Two categoric variables

variable

Joint Probabi

Distributions

Linear Regression

Maiyo Bayo

Statistical Language Model

Bayesian

Network

Lanning

Parameter Learning
Structure Learning

Examples

More Representation

Compact distribution

Language Models

Concept 4

A **language model** is a function p_{LM} that takes an English (or any language) sentence and returns the probability that it was produced by an English speaker

Statistical Language Model

Continuous variable

Language Models (cont.)

Language models

- Answer the question: How likely is a string of English (or any language) words good English?
- Help with reordering

 $p_{\rm LM}$ (the house is small) $> p_{\rm LM}$ (small the is house)

Help with word choice

 $p_{\text{LM}}(\text{I am going home}) > p_{\text{LM}}(\text{I am going house})$

Two categori variables

variable

Joint Probabil

Linear

Regressio

Naive Bayes

Statistical Language Model

Bayesiaı

Representation

Learning
Parameter Learning

Structure Learning

More Representation

Compact distribution

Language Models (cont.)

- **Given** a string of English words $W = w_1, w_2, w_3, ..., w_n$. **Question**: what is p(W)?
- Decomposing p(W) using the chain rule:

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_1, w_2) ... p(w_n|w_1, w_2, ... w_{n-1})$$
(29)

• The language model probability $p(w_1, w_2, w_3, ..., w_n)$ is a product of word history probabilities given a **history** of preceding words.

Statistica Learning

Fitting Mode

Titting Wood

Two categoric

variables

variable

Joint Probabi

Linear

Regressi

Naive Bayes

Statistical Language

Model

Introduction

Representa

Learning

Parameter Learning

Examples

More Representation

Continuous variable

Markov Assumption

Markov assumption states that only a limited number of previous words affect the probability of the next word.

• limited memory: only last k words are included in history (older words less relevant) $\rightarrow k$ th order Markov model

Statistical Language Model

Continuous variable

• Unigram (1-gram) model

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) \ p(w_2) \ p(w_3) ... p(w_n)$$
 (30)

Bigram (2-gram) model

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) \ p(w_2|w_1) \ p(w_3|w_2)...p(w_n|w_{n-1})$$
(31)

Trigram (3-gram) model

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) p(w_2|w_1) p(w_3|w_1, w_2)...p(w_n|w_{n-2}, w_{n-1})$$
(32)

Estimating *N*-**Gram Probabilities**

Statistical Language Model

Continuous variable

Maximum likelihood estimation for 1-gram

$$p_{ ext{ iny LM}}(w_1) = rac{\mathsf{count}(w_1)}{\mathsf{the total number of words}}$$

Maximum likelihood estimation for 2-gram

$$p_{\scriptscriptstyle ext{LM}}(w_2|w_1) = rac{\mathsf{count}(w_1,w_2)}{\mathsf{count}(w_1)}$$

Maximum likelihood estimation for 3-gram

$$p_{\text{LM}}(w_3|w_1, w_2) = \frac{\text{count}(w_1, w_2, w_3)}{\text{count}(w_1, w_2)}$$

(34)

(33)

(35)

74

Examples

More Representation

Continuous variable

Example 1

Given a corpus

<s> I am Sam </s>

 $\langle s \rangle$ Sam I am $\langle s \rangle$

<s> I do not like ham </s>

Some of the bigram probabilities from this corpus

$$p_{\text{LM}}(w_2|w_1) = \frac{\mathsf{count}(w_1, w_2)}{\mathsf{count}(w_1)}$$

$$\begin{array}{l} \rho_{\rm LM}({\rm I}|{<}{\rm s}{>}) = & \frac{2}{3} = 0.67 \\ \rho_{\rm LM}({\rm Sam}|{<}{\rm s}{>}) = & \frac{1}{3} = 0.33 \\ \rho_{\rm LM}({\rm am}|{\rm I}) = & \frac{2}{3} = 0.67 \\ \rho_{\rm LM}({\rm do}|{\rm I}) = & \frac{1}{3} = 0.33 \\ \rho_{\rm LM}({\rm Sam}|{\rm am}) = & \frac{1}{2} = 0.5 \\ \rho_{\rm LM}({<}/{\rm s}{>}|{\rm Sam}) = & \frac{1}{2} = 0.5 \end{array}$$

Statistica Learning

Fitting Mode

ritting wou

Two categorie

variables

variable

Joint Probability

Distributions

Linear

Regressio

Naive Bave

Statistical Language Model

Bayesia

Introduction

Representatio

Learning

Parameter Learning Structure Learning

Examples

More Representation

Continuous variable

Exercise 1

Given a corpus

<s> Tôi là nam </s>

<s> Bạn tôi là nữ </s>

<s> Tôi thích trà </s>

Compute all the bigram probabilities from this corpus

variable

Joint Probabilit Distributions

Linear

Regressio

Naive Bave

Statistical Language Model

Bayesia Network

Introduction

Learning
Parameter Learn

Examples

More Representation
Compact distribution
Continuous variable

Example 2

• Bigram probabilities for eight words (out of V=1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

And a few other useful probabilities

$$\begin{array}{ll} \textit{p}_{\text{LM}}(\texttt{i}|\texttt{~~}) = 0.25 & \textit{p}_{\text{LM}}(\texttt{english}|\texttt{want}) = 0.0011 \\ \textit{p}_{\text{LM}}(\texttt{food}|\texttt{english}) = 0.5 & \textit{p}_{\text{LM}}(\texttt{~~}|\texttt{food}) = 0.68 \end{array}$$

Compute the probability of sentences like I want English food or I want Chinese food

One categorical

Two categoric

variables

variable

Joint Probabi

Distributions

Doowees!

Povicitod

Naive Baye

Statistical Language Model

Bayesia

Introductio

Representat

Learning
Parameter Lea

Structure Learning

More Representation

Compact distribution

Example 2

The probability of sentence I want English food

 \rightarrow <s> i want english food </s>

#	$p(w_2 w_1)$	value
1	$p_{\scriptscriptstyle ext{LM}}(exttt{i} exttt{})$	0.25
2	$oldsymbol{ ho}_{ ext{ iny LM}}(ext{ want} ext{ iny i})$	0.33
3	$p_{\scriptscriptstyle ext{LM}}(ext{english} ext{want})$	0.0011
4	$p_{\scriptscriptstyle ext{LM}}(ext{food} ext{english})$	0.5
5	$p_{\scriptscriptstyle ext{LM}}(ext{ food})$	0.68
	total	0.000031

Two categoric

variables

variable

Joint Probabil Distributions

Linear

Regressio

Naivo Bayo

Statistical Language Model

Bayesia

Introduction

, ,

Learning

Parameter Learning Structure Learning

Examples

More Representation

Compact distribution Continuous variable

Practical Issues

We do everything in log space

- Avoid underflow
- Adding is faster than multiplying

$$\log(p_1 \times p_2 \times ... \times p_n) = \log(p_1) + \log(p_2) + ... + \log(p_n)$$
 (36)

#	$(w_2 w_1)$	$oldsymbol{ ho}_{ ext{ iny LM}}(oldsymbol{w}_2 oldsymbol{w}_1)$	$\log_2 p_{\scriptscriptstyle ext{LM}}(w_2 w_1)$
1	(i <s>)</s>	0.25	-2.0
2	$(\mathtt{want} \mathtt{i})$	0.33	-1.6
3	$(\mathtt{english} \mathtt{want})$	0.0011	-9.8
4	(food english)	0.5	-1.0
5	(food)	0.68	-0.6
	total	0.000031	-15.0

Statistical Language Model

Structure Learning

Continuous variable

Evaluation and Perplexity

- A good model assigns a string of words $W = w_1, w_2, w_3, ..., w_n$ a high probability
- There are various ways to measure this

$$L = p(w_1, w_2, w_3, ..., w_n)$$
 (likelihood)

$$H = -\frac{1}{n}\log_2 L$$

(per-word cross-entropy)

$$PP = 2^H$$

(perplexity)

Lower perplexity = better model

(37)

Fitting Mode

One categorical

Two categoric

Two categori variables

variable

Joint Probabili

Linear

Regressio Revisited

Naive Bave

Statistical Language Model

Bayesian

Introduction

Representation

Parameter Learni

Structure Learn

More Representation

Compact distribution
Continuous variable

Text Generation

• Three sentences randomly generated from three *n*-gram models computed from 40 million words of the Wall Street Journal, lower-casing all characters and treating punctuation as words.

Unigram

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Bigram

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U. S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

Trigram

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Fitting iviode

Two satogorie

variables

variable

Distributions

Lines

Regression

AL . D

Naive Бауе

Statistical Language Model

Bayesia

IIILI OUUCLIOII

Learning

Parameter Lea

Structure Learning

More Representation

Compact distribution

Text Generation (cont.)

• The Shannon Game: How well can we predict the next word?

probability

mushrooms 0.10.1pepperoni 0.01anchovies 0.0001 fried rice ... 1^{-100} and

I always order pizza with cheese and ____?

variable

variables

One continuo variable

Joint Probabilit

Distributions

Linear

Regression

Revisited

Maire Par

Statistical

Language Model

Bayesia

Introduction

Learning

Parameter Learning
Structure Learning

Examples

More Representation

Continuous variable

Text Generation (cont.)

Text generation model

Statistica Learning

Fitting Mode

One categorical

Two categoric

variables

variable

Joint Probabil Distributions

Linoar

Linear

Regressio

Naive Baye

Statistical Language

Model

Network

Introduction

Learning

Parameter Learni

Examples

More Representatio

Compact distribution

Discussion

- But there are many more unseen n-grams than seen n-grams
- Example, Europarl 2-grams:
 - 86,700 distinct words
 - $86,700^2 = 7,516,890,000$ possible 2-grams
 - \bullet but only about 30,000,000 words (and 2-grams) in corpus
- Example, Vietnamese 3-grams:
 - 6,814 distinct syllables
 - $6,814^3 = 316,378,081,144$ possible 3-grams
 - but only about 1,500,000 3-grams in corpus

Bayesian Networks

- Introduction
- Representation
- Learning
- Examples
- More Representation

Introduction

Continuous variable

Bayesian networks

Concept 6

A Bayesian network, or causal probabilistic network, is a directed acyclic graph (DAG) for conditional independence assertions and hence for compact specification of full joint distributions

More Representation

Compact distribution

Bayesian networks (cont.)

Syntax

- Nodes represent variables
- Links represent dependency relations between variables and quantified by conditional distributions
- A **conditional distribution** for each node given its parents:

$$P(X_i \mid parents(X_i))$$

• In the simplest case, conditional distribution represented as a **conditional probability table** (CPT) giving the distribution over X_i for each combination of parent values

obability And

Statistica Learning

Fitting Mode

One categorica variable

Two categoric

One continuo

Joint Probabili

Distributions

Linear Regressio

Revisited

Naive Baye

Statistical Language Model

Bayesian Network

Introduction

Representa

Learning

Parameter Learning

Examples

More Representation
Compact distribution
Continuous variable

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

- Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Fitting Mode

One categorical

Two categorie variables

One continu

Joint Probabi

Distributions

Regression Regression

Revisited

Naive Baye

Statistica Language Model

Bayesiar Network

Introduction

Representa

Parameter Lea

Structure Learn Examples

More Representatio

Compact distribution Continuous variable

Queries

 $P(Query \mid Evidence) = ?$

- Diagnostic (from effects to causes)
 P(B | J) → "If John calls, how likely is the house burglarized?"
- Causal (from causes to effects): $P(J \mid E) \rightarrow$ "If earthquake happens, how likely will John make a call?"
- Intercausal (between causes of a common effect):
 P(B | A, E) → "If earthquake happens and alarm is on, how likely is the house burglarized??"
- Mixed:

$$P(A \mid J, E) \rightarrow$$
 "..."
 $P(B \mid J, E) \rightarrow$ "..."

Representation

Structure Learning

More Representation

Continuous variable

Graphical Model

robability And tatistics

Statistical Learning

Fitting Mode

One categorica variable

Two categori

One con

Joint Probabi

Linear

Regression

Naive Baye

Statistical Language Model

Bayesia

Networi

Representation

Parameter Learni

Structure Learning
Examples

More Representation

Compact distribution

Type of Variables

- random or deterministic
- observed or hidden
- continuous or discrete (boolean, category)

Continuous variable

CPT Representation

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)
- If each variable has no more than k parents, the complete network requires $O(n \times 2^k)$ numbers
 - I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For **burglary net**, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5 - 1 = 31$

obability And

Statistica Learning

Fitting Mode

One categorica variable

Two categorica variables

variable

Joint Probabil

Linoar

Regression

Naive Baye

Statistica Language Model

Bayesian Networks

Representation

Learning

Parameter Learning Structure Learning

Examples

Compact distribution

Conditional Independence

 Each node is conditionally independent of its nondescendants given its parents

 Each node is conditionally independent of all others given its
 Markov blanket (parents + children + children's parents)

Compact distribution

Global semantics and Inference

Concept 7

The **full joint distribution** is defined as the product of the local conditional distributions:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i\mid parents(X_i))$$

For example,

$$P(j \land m \land a \land \neg b \land \neg e) = P(j \mid a)P(m \mid a)P(a \mid \neg b, \neg e)P(\neg b)P(\neg e)$$
$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$
$$\approx 0.00063$$

bability And

Statistica Learning

Fitting Mode

One categorical

Two categoric

One con

Joint Probabil

Distributions

Linea

Regressio

Naive Baye

Statistica Language Model

Bayesian Networks

Introduction

Learning

Structure Learning

Examples

More Representation

Compact distribution

Continuous variable

The Learning Problem

	Known Structure	Unknown Structure
Complete Data	Statistical parametric estimation (closed-form)	Discrete optimization over structures (discrete search)
Incomplete Data	Parametric optimization (EM, gradient descent)	Combined (Structural EM, mixture models)

Learning problem includes

- Parameter learning
- Structure learning

Known Structure and Complete Data

Learning

Fitting Mode

variable

Two categorics variables

One contir variable

Joint Proba

Linear

Regressio

Naive Baves

Statistical

Language Model

Bayesian

Introduction

Parameter Learning

Parameter Learning
Structure Learning

More Representation

More Representation

Compact distribution

Continuous variable

• Given a training data \mathcal{D} , find the best parameter θ s for multinomial variables

$$P_{\theta}(X_i \mid pa_i) \tag{38}$$

where $pa_i = parents(X_i)$ (pa_i can be \emptyset)

Estimate parameter
 Maximum likelihood

$$\hat{\theta}_{ML} = \frac{count(x_i, pa_i)}{count(pa_i)} \tag{39}$$

Maximum a posteriori

$$\hat{\theta}_{MAP} = \frac{\alpha(x_i, pa_i) + count(x_i, pa_i)}{\alpha(pa_i) + count(pa_i)} \tag{40}$$

where count(.) is the number of instances and $\alpha(.)$ is the prior parameters.

7 Ittilig Wou

variable

Two categoric variables

One conti

Joint Probabilit

Distributions

Linea

Regressio

Naive Bave

Language

Model

Bayesia

Introduction

Representat

Learning

Parameter Learning

Structure Learning

More Representation

Continuous variable

Example 4

• Find the best parameter θ s given the following training data \mathcal{D}

#	Rain	Sprinkler	Grass Wet
1	Т	Т	Т
2	Т	Т	F
3	Т	F	Т
4	Т	F	F
1 2 3 4 5	F	F F T T	T F
6	F	Т	
7	T F F F	F	T F
8 9	F	F	F
9	T F	Т	Т
10	F	Т	Т
11	Т	F F T F F	т
12	T F F	F	T
13	F	Т	Т
14	Т	Т	Т

variable

Joint Probabil

Linear

Regression

Naive Baye

Statistical Language Model

Bayesian

Network

Representation

Learning

Parameter Learning
Structure Learning

Examples

More Representation

Compact distribution
Continuous variable

Unknown Structure and Complete Data

- Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics
- **1.** Choose an ordering of variables X_1, \ldots, X_n
- 2. For i=1 to n add X_i to the network select parents from X_1, \ldots, X_{i-1} such that

$$P(X_i \mid parents(X_i)) = P(X_i \mid X_1, \dots, X_{i-1})$$

This choice of parents guarantees the global semantics:

$$\begin{array}{lcl} P(X_1,\ldots,X_n) & = & \prod_{i=1}^n P(X_i \mid X_1,\ldots,X_{i-1}) & (\text{chain rule}) \\ & = & \prod_{i=1}^n P(X_i \mid \textit{parents}(X_i)) & (\text{by construction}) \end{array}$$

More Representation

Continuous variable

Example: Burglary alarm

• Suppose we choose the ordering M, J, A, B, E $P(J \mid M) = P(J)$?

More Representation Continuous variable

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$?

Continuous variable

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No

$$P(J \mid M) = P(J)$$
? No

$$P(A \mid I, M) = P(A \mid I)$$

$$P(A \mid J, M) = P(A \mid J)$$
? $P(A \mid J, M) = P(A)$? No $P(B \mid A, J, M) = P(B \mid A)$?

$$P(B \mid A, J, M) = P(B)$$
?

Continuous variable

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No $P(A \mid J, M) = P(A)$? No $P(B \mid A, J, M) = P(B \mid A)$? Yes $P(B \mid A, J, M) = P(B)$? No $P(E \mid B, A, J, M) = P(E \mid A)$? $P(E \mid B, A, J, M) = P(E \mid A, B)$?

Continuous variable

Example: Burglary alarm (cont.)

$$P(J \mid M) = P(J)$$
? No
 $P(A \mid J, M) = P(A \mid J)$? $P(A \mid J, M) = P(A)$? No
 $P(B \mid A, J, M) = P(B \mid A)$? Yes
 $P(B \mid A, J, M) = P(B)$? No
 $P(E \mid B, A, J, M) = P(E \mid A)$? No
 $P(E \mid B, A, J, M) = P(E \mid A, B)$? Yes

Compact distribution Continuous variable

Example: Burglary alarm (cont.)

- Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!)
- Assessing conditional probabilities is hard in noncausal directions
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

bability And

Statistica Learning

Fitting Mode

One categorical

Two categorica

variables

variable

Joint Probabil

Linear

Revisited

Naive Baye

Statistical Language Model

Bayesian

Introduction

Learning

Parameter Learni

Examples

More Representati

Compact distribution
Continuous variable

Example: Car diagnosis

- Initial evidence (red): car won't start
- Testable variables (green), "broken, so fix it" variables (orange)
- Hidden variables (gray) ensure sparse structure, reduce parameters

Examples

More Representation

Continuous variable

Example: Car insurance

Examples More Representation

Continuous variable

Example: "ICU Alarm" network

Domain: Monitoring Intensive-Care Patients

- 37 variables
- 509 parameters

Parameter Learning
Structure Learning
Examples

More Representation

Compact distribution

Compact conditional distributions

Problem

- CPT grows exponentially with number of parents
- CPT does not work with continuous-valued parent or child
- Deterministic nodes X:

$$X = f(parents(X))$$
 for some function f (41)

Boolean functions

$$NorthAmerican = Canadian \lor US \lor Mexican$$

Numerical relationships among continuous variables

$$\frac{\partial Level}{\partial t} = \text{inflow} + \text{precipitation} - \text{outflow} - \text{evaporation}$$

Compact distribution Continuous variable

Compact conditional distributions (cont.)

- Noisy-OR distributions model multiple noninteracting causes
 - Parents $U_1 \dots U_k$ include all causes (can add **leak node**)
 - Independent failure probability q; for each cause alone

$$P(X \mid U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^{J} q_i$$
 (42)

Number of parameters *linear* in number of parents

Statistica

Learning

Fitting Model

variable

Two categoric

One contin

Joint Probabili

Distributions

Linear

Regressio Revisited

Maiyo Bayo

Statistical Language

Model

Bayesiar

Introduction

Representat

Learning

Parameter Learni

Examples

More Representation

Compact distribution

Compact conditional distributions (cont.)

$$q_{cold} = P(\neg fever \mid cold, \neg flu, \neg malaria) = 0.6$$
 $q_{flu} = P(\neg fever \mid \neg cold, flu, \neg malaria) = 0.2$
 $q_{malaria} = P(\neg fever \mid \neg cold, \neg flu, malaria) = 0.1$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
T	Τ	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Continuous variable

Bayesian nets with continuous variables

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

- Option 1: discretization \rightarrow possibly large errors, large CPTs
- Option 2: finitely parameterized canonical families
 - 1. Continuous variable, discrete+continuous parents (e.g., Cost)
 - 2. Discrete variable, continuous parents (e.g., Buys?)

Continuous variable

Continuous child variables

- Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents
- Most common is the linear Gaussian (LG) model, e.g.,:

$$\begin{split} &P(\textit{Cost} = \textit{c} \mid \textit{Harvest} = \textit{h}, \textit{Subsidy}? = \textit{true}) \\ &= \textit{N}(\textit{a}_t\textit{h} + \textit{b}_t, \sigma_t)(\textit{c}) = \frac{1}{\sigma_t\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\textit{c} - (\textit{a}_t\textit{h} + \textit{b}_t)}{\sigma_t}\right)^2\right) \end{split}$$

- Mean Cost varies linearly with Harvest, variance is fixed
- Linear variation is unreasonable over the full range but works OK if the likely range of *Harvest* is narrow

pability And

Statistical Learning

Fitting Mode

One categorical variable

Two categorica

One con

Joint Probabi

Distributions

Linear

Regressio

laive Bave

Statistical

Language Model

Bayesiar

Networl

Representa

Learnin

Parameter Learning

Examples

More Representation

More Representation
Compact distribution
Continuous variable

Continuous child variables (cont.)

- ullet All-continuous network with LG distributions \Longrightarrow full joint distribution is a multivariate Gaussian
- Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Figure 2: The graphs in (1) and (2) show the probability distribution over *Cost* as a function of *Harvest* size, with *Subsidy* true and false, respectively. Graph (3) shows the distribution $P(Cost \mid Harvest)$, obtained by summing over the two subsidy cases.

Statistica Learning

Fitting Models

One categorica

variable
Two categoric

One cont

Joint Probabi

Distributions

Regres

latina Bana

ivalve baye

Language

Bayesia

Network

Introduction

Learning

Parameter Learning

Examples

More Representation

Compact distribution

• Probability of *Buys*? given *Cost* should be a "soft" threshold:

• Probit distribution uses integral of Gaussian:

$$\Phi(x) = \int_{-\infty}^{x} \mathcal{N}(0,1)(x) dx$$

$$P(extit{Buys}? = extit{true} \mid extit{Cost} = extit{c}) = \Phi\left(rac{-c + \mu}{\sigma}
ight)$$

Statistica Learning

Fitting Model

One categoric variable

Two categorie

variables

variable

Joint Probabi

Linea

Regression

Naive Bave

Ivalve Dayes

Language

Madal

Bayesia

Networ

Introductio

Learning

Parameter Learni

Structure

LAUTIPICS

iviore representatio

Continuous variable

Discrete variable given continuous parents (cont.)

• **Sigmoid** (or **logit**) distribution also used in neural networks:

$$P(Buys? = true \mid Cost = c) = \frac{1}{1 + \exp(-2\frac{-c + \mu}{\sigma})}$$

Sigmoid has similar shape to probit but much longer tails:

Fitting Mode

variable

Two categoric variables

variable

Joint Probabili

Linear

Regressio

Naive Bave

Statistical Language

Language Model

Bayesiar

Introduction

Representa

Learning

Parameter Learning Structure Learning

Examples

More Representation

Continuous variable

Why the probit/logit?

•

- 1. It's sort of the right shape
- 2. Can view as hard threshold whose location is subject to noise

References

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Lê, B. and Tô, V. (2014).
Cở sở trí tuệ nhân tạo.
Nhà xuất bản Khoa học và Kỹ thuật.

Russell, S. and Norvig, P. (2021).

Artificial intelligence: a modern approach.

Pearson Education Limited.