DEVOIR SURVEILLÉ 1

Exercice 1 -

1.
$$A = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = \frac{12}{12} - \frac{6}{12} + \frac{4}{12} - \frac{3}{12} = \frac{7}{12}$$

2.
$$B = \frac{\left(\frac{2}{3} - \frac{4}{5}\right) \times 6}{\frac{2}{15} - \frac{4}{9}} = \frac{\left(\frac{10}{15} - \frac{12}{15}\right) \times 6}{\frac{6}{45} - \frac{20}{45}} = \frac{-\frac{2}{15} \times 6}{-\frac{14}{45}} = \frac{-\frac{12}{15}}{-\frac{14}{45}} = \frac{12}{15} \times \frac{45}{14} = \frac{2 \times 6 \times 3 \times 15}{15 \times 2 \times 7} = \frac{18}{7}$$

3.
$$C = \left(1 - \left(\frac{1}{2} - \frac{1}{3}\right) \times 3\right) \div \frac{2}{5} = \left(1 - \left(\frac{3}{6} - \frac{2}{6}\right) \times 3\right) \div \frac{2}{5} = \left(1 - \frac{1}{6} \times 3\right) \div \frac{2}{5} = \frac{1}{2} \times \frac{5}{2} = \frac{5}{4}$$

4.
$$D = \left(1 - \frac{1}{8}\right) \times \left(\frac{2}{7} + 1\right)^{2} \div \left(\frac{1}{3} + \frac{3}{4}\right) = \frac{7}{8} \times \left(\frac{9}{7}\right)^{2} \div \frac{13}{12} = \frac{7}{8} \times \frac{81}{49} \times \frac{12}{13} = \frac{7 \times 9 \times 9 \times 4 \times 3}{4 \times 2 \times 7 \times 7 \times 13} = \frac{9 \times 9 \times 3}{2 \times 7 \times 13} = \frac{243}{182}$$

Exercice 2 -

1.
$$A = \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2}$$

2.
$$B = \sqrt{\frac{81}{25}} - \frac{3}{5} \times \frac{\sqrt{9}}{\sqrt{25}} = \frac{\sqrt{81}}{\sqrt{25}} - \frac{3}{5} \times \frac{3}{5} = \frac{9}{5} - \frac{9}{25} = \frac{45}{25} - \frac{9}{25} = \frac{36}{25}$$

3.
$$C = \sqrt{16 + 9} = \sqrt{25} = 5$$

4.
$$D = (2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1$$

Exercice 3 -

1.
$$A = 2x(x+1) - (12x-11)^2 = 2x^2 + 2x - (144x^2 - 264x + 121)$$

= $2x^2 + 2x - 144x^2 + 264x - 121 = -142x^2 + 266x - 121$

2.
$$B = (3-x)(4-2x) + (-5x)^2 = 12 - 6x - 4x + 2x^2 + 25x^2 = 27x^2 - 10x + 12$$

3.
$$C = (1-3x)(x+2)(2x+5) = (x+2-3x^2-6x)(2x+5) = (-3x^2-5x+2)(2x+5)$$

= $-6x^3 - 15x^2 - 10x^2 - 25x + 4x + 10 = -6x^3 - 25x^2 - 21x + 10$

4.
$$D = 2(x-2)(x-3) = 2(x^2 - 3x - 2x + 6) = 2(x^2 - 5x + 6) = 2x^2 - 10x + 12$$

Exercice 4 -

1.
$$A = (5x+1)(3x-2) - (3x-2) = (3x-2)(5x+1-1) = 5x(3x-2)$$

2.
$$B = (2x+5)^2 + (2x+5)(x-4) = (2x+5)(2x+5+x-4) = (2x+5)(3x+1)$$

3.
$$C = 9x^2 - 100 = (3x)^2 - 10^2 = (3x - 10)(3x + 10)$$

4.
$$D = (x+1)^2(x-1) - 16(x-1) = (x-1)((x+1)^2 - 16) = (x-1)((x+1)^2 - 4^2)$$

= $(x-1)(x+1-4)(x+1+4) = (x-1)(x-3)(x+5)$

Exercice 5 -

1.
$$2x-3=0 \iff 2x=3 \iff x=\frac{3}{2} \quad \text{donc } S = \left\{\frac{3}{2}\right\}.$$

2.
$$-x+7=0 \iff x=7 \mod \mathcal{S} = \{7\}.$$

- 3. $x+3=2x-1 \iff x-2x=-1-3 \iff -x=-4 \iff x=4 \mod \mathcal{S}=\{4\}.$
- 4. $\frac{1}{3}x + \frac{2}{3} = \frac{3}{4} \iff \frac{1}{3}x = \frac{3}{4} \frac{2}{3} \iff \frac{1}{3}x = \frac{1}{12} \iff x = \frac{1}{12} \times 3 = \frac{1}{4} \quad \text{donc } S = \left\{\frac{1}{4}\right\}.$
- 5. Je calcule le discriminant : $\Delta = (-10)^2 4 \times 1 \times 21 = 100 84 = 16 = 4^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{10-4}{2} = 3$$
 et $x_2 = \frac{10+4}{2} = 7$.

Donc $S = \{3, 7\}.$

6. Je calcule le discriminant : $\Delta = \left(\frac{6}{7}\right)^2 - 4 \times 3 \times \frac{3}{49} = \frac{36}{49} - \frac{36}{49} = 0$. Il y a donc une seule racine

$$x_0 = -\frac{\frac{6}{7}}{2 \times 3} = -\frac{1}{7}.$$

Donc $S = \left\{-\frac{1}{7}\right\}$.

7. $(x-1)(x+1) = 5x-7 \iff x^2-1=5x-7 \iff x^2-5x+6=0$ Je calcule le discriminant de cette équation : $\Delta = 25-24=1=1^2>0$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

Donc $S = \{2, 3\}.$

8. Je calcule le discriminant $\Delta = (-3)^2 - 4 \times \sqrt{2} \times \sqrt{2} = 9 - 8 = 1$. Il y a donc deux racines

$$x_1 = \frac{3-1}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$
 et $x_2 = \frac{3+1}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$.

Donc
$$S = \left\{ \frac{1}{\sqrt{2}}, \sqrt{2} \right\}.$$

Exercice 6 -

- 1. $-2x+3>0 \iff -2x>-3 \iff x<\frac{-3}{-2}=\frac{3}{2} \quad \text{donc } \mathcal{S}=\left]-\infty, \frac{3}{2}\right[.$
- 2. $5x 6 \le 0 \iff 5x \le 6 \iff x \le \frac{6}{5} \quad \text{donc } S = \left[-\infty, \frac{6}{5} \right].$
- 3. $2x-1 < \frac{1}{2} \iff 2x < 1 + \frac{1}{2} = \frac{3}{2} \iff x < \frac{3}{4} \quad \operatorname{donc} S = \left[-\infty, \frac{3}{4} \right].$
- 4. $\frac{1}{3}x + 1 \ge \frac{2}{3}x \frac{1}{3} \iff -\frac{1}{3}x \ge -\frac{4}{3} \iff x \le \frac{-\frac{4}{3}}{-\frac{1}{3}} = 4 \quad \text{donc } S =] \infty, 4].$
- 5. Je commence par étudier le signe de $x^2 + 2x + 1$. Le discriminant vaut $\Delta = 4 4 = 0$. Il y a donc une racine : $x_0 = -1$. J'en déduis le tableau de signe suivant :

X	$-\infty$		-1		+∞
$x^2 + 2x + 1$		+	0	+	

Donc $S =]-\infty, -1[\cup]-1, +\infty[$.

6. Je commence par étudier le signe de $x^2 + x + 1$. Le discriminant vaut $\Delta = 1 - 4 = -3$. Il n'y a donc pas de racine. J'en déduis le tableau de signe suivant :

x	$-\infty$	+∞
$x^2 + x + 1$	+	

Donc $S = \emptyset$.

7. Je commence par étudier le signe de $x^2 - 5x + 6$. Le discriminant vaut $\Delta = 25 - 24 = 1$. Il y a donc deux racines $x_1 = 2$ et $x_2 = 3$. J'en déduis le tableau de signe suivant :

x	$-\infty$		2		3		+∞
$x^2 - 5x + 6$		+	0	_	0	+	

Donc S = [2,3].

8. $(x-1)(x-2) \le 2x-4 \iff x^2-3x+2 \le 2x-4 \iff x^2-5x+6 \le 0$. J'ai déjà résolu cette inéquation à la question précédente. J'en déduis que $\mathcal{S} = [2,3]$.

Exercice 7 -

1. Comme x est non nul, je peux multiplier chaque membre de l'égalité par x^2 . J'obtiens alors

$$x^{2} + \frac{16}{x^{2}} = 8 \iff x^{4} + 16 = 8x^{2} \iff x^{4} - 8x^{2} + 16 = 0.$$

Je pose $X=x^2$. Alors mon équation devient une équation de degré 2 en X: $X^2-8X+16=0$. Je calcule le discrimant : $\Delta=(-8)^2-4\times1\times16=0$. Il y a donc une unique solution : $X_0=\frac{8}{2}=4$. J'en déduis donc que les solutions de mon équation de départ vérifient $x^2=4$, *i.e.* x=2 ou x=-2. Ainsi $\mathcal{S}=\{-2,2\}$.

2. Grâce à la résolution précédente, je peux obtenir une factorisation du trinôme de degré 2 :

$$X^{2} - 8X + 16 = (X - 4)^{2} = (x^{2} - 4)^{2}.$$

Et comme un carré est toujours positif, $(x^2 - 4)^2 \ge 0$. Alors, comme x^2 aussi est positif,

$$\frac{(x^2-4)^2}{x^2} \geqslant 0 \quad \Longleftrightarrow \quad \frac{x^4-8x^2+16}{x^2} \geqslant 0 \quad \Longleftrightarrow \quad x^2-8+\frac{16}{x^2} \geqslant 0 \quad \Longleftrightarrow \quad x^2+\frac{16}{x^2} \geqslant 8.$$

Donc pour tout $x \in]0, +\infty[$, j'ai bien montré que $x^2 + \frac{16}{x^2} \ge 8$.

Exercice 8 -

1. Lorsque m=4, $x^2+4x+2(m-1)=x^2+4x+2\times 3=x^2+4x+6$. L'équation que je cherche à résoudre est donc $x^2+4x+6=0$. Je calcule le discriminant : $\Delta=4^2-4\times 1\times 6=16-24=-8<0$. Comme le discriminant est négatif, l'équation n'admet pas de solution réelle lorsque m=4.

2. (a) Je calcule le discriminant associé à l'équation $x^2 + 4x + 2(m-1) = 0$ en fonction de m:

$$\Delta = 4^2 - 4 \times 1 \times 2(m-1) = 16 - 8(m-1) = 16 - 8m + 8 = 24 - 8m.$$

(b) Je sais que cette équation admet une unique solution si et seulement si son discriminant est nul. Et

$$\Delta = 0 \iff 24 - 8m = 0 \iff 24 = 8m \iff m = \frac{24}{8} = 3.$$

(c) Lorsque m=3, l'équation devient $x^2+4x+4=0$. Son discriminant est nul et l'unique solution est donnée par

$$x_0 = \frac{-4}{2 \times 1} = -2.$$

3. L'équation admet 2 solutions distinctes si et seulement si

$$\Delta > 0 \iff 24 - 8m > 0 \iff 8m < 24 \iff m < 3.$$

De la même façon, l'équation n'admet aucune solution réelle lorsque

$$\Delta < 0 \iff m > 3$$
.