PAM

Oscar Elí Bonilla Morales

2022-06-06

PARTITION AROUND MEDOIDS (PAM)

library(cluster)

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformacion de datos

#Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo PAM

```
\#1.\text{-} Separacion de filas y columnas.
```

```
dim(X)
```

```
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Aplicacion del algoritmo

```
pam.3<-pam(X.s,3)
```

4.- Clusters

```
cl.pam<-pam.3$clustering
cl.pam</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	0	0	0	0	2
	2	2	2	2	3
##	New Mexico	New York	North Carolina	North Dakota	Ohio
	_	New York 3	North Carolina	North Dakota 2	Ohio 3
##	_	New York 3 Oregon	1	2	Ohio 3 South Carolina
## ##	New Mexico	3	1	2	3
## ## ##	New Mexico	3	1	2	3 South Carolina 1
## ## ##	New Mexico 1 Oklahoma 3	3 Oregon 2	1 Pennsylvania 3	2 Rhode Island 2	3 South Carolina 1
## ## ## ##	New Mexico 1 Oklahoma 3	3 Oregon 2 Tennessee 1	1 Pennsylvania 3	2 Rhode Island 2 Utah 2	3 South Carolina 1 Vermont 2

#5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualizacion con Componentes Principales

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

Silhouette for PAM

Average silhouette width: 0.22

2

Nota:

Sugerir un nuevo numero de clusters

3.- Aplicacion del algoritmo

pam.3<-pam(X.s,7)

4.- Clusters

<pre>cl.pam<-pam.3\$clustering cl.pam</pre>									
##	Alabama	Alaska	Arizona	Arkansas	California				
##	1	2	3	1	3				
##	Colorado	Connecticut	Delaware	Florida	Georgia				
##	4	5	6	3	1				
##	Hawaii	Idaho	Illinois	Indiana	Iowa				
##	5	4	7	7	4				
##	Kansas	Kentucky	Louisiana	Maine	Maryland				
##	4	1	1	6	7				
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri				
##	5	7	4	1	7				

```
Montana
                          Nebraska
                                            Nevada
                                                     New Hampshire
##
                                                                        New Jersey
##
                                                 2
                                                                                  5
       New Mexico
                          New York North Carolina
                                                      North Dakota
                                                                               Ohio
##
##
                                 3
                                                                                  7
##
         Oklahoma
                            Oregon
                                      Pennsylvania
                                                      Rhode Island South Carolina
##
                                                                  6
##
     South Dakota
                         Tennessee
                                             Texas
                                                              Utah
                                                                            Vermont
                                                                                  6
##
                                                 3
                                                                  4
                                                         Wisconsin
                                                                            Wyoming
##
         Virginia
                        Washington
                                    West Virginia
##
                 1
                                                 1
#5.- Scatter plot de la matriz con los grupos
```

```
col.cluster<-c("blue", "red", "green", "yellow", "black")[cl.pam]</pre>
pairs(X.s, col=col.cluster, main="PAM", pch=19)
```

PAM

Visualizacion con Componentes Principales

```
clusplot(X.s,cl.pam)
text(princomp(X.s)$scores[,1:2],
     labels=rownames(X.s),pos=1, col="orange")
```

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

Silhouette for PAM

Average silhouette width: 0.27

En este gráfico es posible apreciar que al realizar los cálculos con 7 clustes obtenemos valores un poco mas altos, aunque no son tan cercanos a 1