Économétrie — TD 6

Endogénéité et Méthode des Variables Instrumentales

Pierre Beaucoral

Introduction

Objectif du TD

- Rappeler les hypothèses des MCO et la notion d'exogénéité.
- Identifier trois sources d'endogénéité (omission, causalité inverse, erreur de mesure).
- Introduire la **méthode des variables instrumentales** (2SLS/DMC) : pertinence, exogénéité des instruments, et tests associés. :contentReferenceoaicite:0

Rappel MCO (BLUE)

Hypothèses clés (linéaire, MCO)

- $\mathbb{E}[u_i] = 0$
- $Var(u_i) = \sigma^2$ (homoscédasticité)
- $Cov(u_i, u_i) = 0$ (pas d'autocorrélation)
- $Cov(X, \varepsilon) = 0$ (exogénéité)

Note

Si $\text{Cov}(X, \varepsilon) \neq 0$, l'estimateur MCO est biaisé et non convergent : il ne mesure pas l'effet causal de X sur Y.

Origines de l'endogénéité

(1) Omission d'une variable pertinente

Vrai modèle : $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i$. Mais on estime : $Y_i = \beta_0 + \beta_1 X_{1i} + \varepsilon_i$ avec X_1 corrélé à X_2 .

Sens du biais sur $\hat{\beta}_1$:

	$\operatorname{corr}(X_1,X_2)>0$	$\operatorname{corr}(X_1,X_2)<0$	
$\beta_2 > 0$	+ (vers le haut)	- (vers le bas)	
$\beta_2 < 0$	_	+	

L'omission « pousse » $\hat{\beta}_1$ dans le sens de la corrélation entre X_1 et la variable manquante

(2) Causalité inverse

On estime $Y_i=\beta_0+\beta_1X_i+\varepsilon_i$ alors qu'en réalité $X_i=\gamma_0+\gamma_1Y_i+\gamma_2Z_i+\nu_i$ (boucle de rétroaction).

Exemple : croissance du PIB \leftrightarrow dette publique.

Sens du biais (sur $\hat{\beta}_1$):

2

L'effet estimé « récupère » une partie du retour $Y \to X$.

(3) Erreur de mesure sur X

On souhaite $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, mais on observe $\tilde{X}_i = X_i + \nu_i$.

Alors : $Y_i=\beta_0+\beta_1 \tilde{X}_i+(\varepsilon_i-\beta_1 \nu_i)$, d'où \tilde{X} corrélée à l'erreur composite.

Conséquence : biais d'atténuation (vers 0) sur $\hat{\beta}_1$.

Variables instrumentales (VI)

Principe (2SLS / DMC)

But : isoler la variation exogène de X avec un instrument Z.

- 1. 1 étape : régresser X sur Z (et autres contrôles), obtenir \hat{X} .
- 2. **2** étape : remplacer X par \hat{X} dans l'équation de Y.
- 3. Recalculer des écarts-types adaptés (2SLS).

Conditions pour Z:

- **Pertinence** : $Cov(Z, X) \neq 0$ (pouvoir explicatif).
- Exogénéité exclue : Z n'affecte Y que via X ($Cov(Z, \varepsilon) = 0$).

Pertinence: instruments faibles

- Vérifier la 1 étape : test F des instruments.
- Règle pratique : $F > 10 \Rightarrow$ pertinence acceptable.
- Plusieurs instruments faibles aggravent le biais.
- (EViews) View → IV Diagnostics and Tests → Weak Instrument Diagnostics.

Exogénéité de l'instrument

- L'instrument ne doit pas être corrélé à Y autrement que via X.
- Tests de sur-identification (si q > p) : Sargan (homoscédasticité) / Hansen-J (robuste).
- Statistique $\chi^2(k)$ avec k = nb de restrictions (sur-id).
- (EViews) View → IV Diagnostics and Tests → Instrument Orthogonality Test.

En pratique, on dispose rarement de sur-identification « confortable »; la **justification** théorique de Z reste centrale.

Faut-il instrumenter ? (DWH)

- Perte de précision avec VI : vérifier si l'instrumentation est nécessaire.
- Durbin-Wu-Hausman (a.k.a. Nakamura-Nakamura) :
 - H_0 : MCO non biaisé $(\beta^{\rm MCO} \approx \beta^{\rm DMC})$ H_A : MCO biaisé $(\beta^{\rm MCO} \neq \beta^{\rm DMC})$
- Statistique $\chi^2(k)$ avec k = nb de variables endogènes.
- (EViews) View → IV Diagnostics and Tests → Regressor Endogeneity Test.

En pratique (guidelines)

- Identification d'abord : quelles sources d'endogénéité ? Quel sens du biais attendu ?
- Choix de l'instrument :
 - Pourquoi est-il **corrélé** à X (pertinence) ?
 - Pourquoi est-il **exogène** (validité) ?
- Les **tests** (faiblesse, Hansen/Sargan, DWH) aident, mais **ne remplacent pas** l'argument **économique**.

Annexes

Schéma 2SLS (rappel)

1.
$$X = \pi_0 + \pi_1 Z + W' \pi + v \ (1 \ étape)$$

2. $Y = \beta_0 + \beta_1 \hat{X} + W' \gamma + u \ (2 \ étape)$

2.
$$Y = \beta_0 + \beta_1 \hat{X} + W' \gamma + u \ (2 \ \text{\'etape})$$

- Z: instruments; W: contrôles exogènes.
- Conditions : rank([Z, W]) suffisant ; Cov(Z, u) = 0.

Tables « sens du biais » (récapitulatif)

Omission d'une variable

	$\operatorname{corr}(X_1,X_2)>0$	$\operatorname{corr}(X_1,X_2)<0$	
$\overline{\beta_2 > 0}$	+	_	
$\beta_2 > 0$ $\beta_2 < 0$	_	+	

Causalité inverse

Références « dans EViews »

- View → IV Diagnostics and Tests → Weak Instrument • Weak instruments : Diagnostics
- Orthogonality (Sargan/Hansen) : View → IV Diagnostics and Tests → Instrument Orthogonality Test
- Endogeneity (DWH) : View → IV Diagnostics and Tests → Regressor Endogeneity Test

Questions TD

Q1 — Charger le workfile

Énoncé

1) Chargez le workfile Marshall (contient offre1-offre4, p1-p4, Y, W).

Afficher la réponse

- File \rightarrow Open \rightarrow Workfile puis sélectionner Marshall.wf*.
- Vérifier les séries dans l'arborescence (double-clic pour aperçu).
- (Option) View → Descriptive Statistics → Histogram and stats pour un coup d'œil rapide.

Q2 — Estimations MCO

Énoncé

2) Estimez les fonctions d'offre par MCO : pour i = 1 à 3: offrei = + Pi + et offre4 = + P4 + W + , avec W exogène.

Afficher la réponse

- Quick \rightarrow Estimate Equation, puis entrer la spécification :
 - offre1 c p1
 - offre2 c p2
 - offre3 c p3
 - offre4 c p4 W
- Noter : $\hat{\beta}$ (signe, magnitude), R^2 , **p-values**, et résidus.

Caution

Rappel : si $Cov(P, \varepsilon) \neq 0$ (ex. offre_i p_i), MCO est biaisé. On vérifiera ensuite avec des tests d'exogénéité.

Q3 — Test d'exogénéité (Nakamura & Nakamura / DWH)

Énoncé

3) Indiquez, à l'aide du test de **Nakamura & Nakamura**, le caractère exogène des variables de **prix**, en prenant comme **instrument** le **revenu Y**.

Afficher la réponse

Intuition

- H_0 : exogénéité du prix dans l'équation d'offre (MCO non biaisé).
- H_A : endogénéité \rightarrow préférer VI (2SLS).

Mise en œuvre (EViews)

- Estime l'équation en IV/2SLS (voir Q4) pour récupérer les résidus nécessaires, ou utilise directement :
 - Quick → Estimate Equation \rightarrow Method: $\mathbf{TSLS/IV}$,
 - onglet View → IV Diagnostics and Tests → Regressor Endogeneity Test (Durbin-Wu-Hausman / Nakamura-Nakamura).
- Décision : si la stat. χ^2 (ou F) est significative, rejeter $H_0 \to \text{le prix est endogène}$.

Q4 — Estimations en Variables Instrumentales (2SLS)

Énoncé

4) Estimez, si nécessaire, les fonctions d'offre à l'aide de la méthode des variables instrumentales, en utilisant Y comme instrument.

Afficher la réponse

Rappel 2SLS (schéma)

- $\begin{array}{ll} 1. \ 1 \ \ \text{ \'etape}: \ P_i = \pi_0 + \pi_1 Y + v \ \ \text{obtenir } \widehat{P}_i. \\ 2. \ 2 \ \ \text{\'etape}: \ \text{offre}_i = \alpha + \beta \widehat{P}_i + u. \end{array}$
- 3. Écarts-types **robustes** si hétéroscédasticité (option *White*).

Guide (EViews)

- Quick \rightarrow Estimate Equation \rightarrow Method: TSLS Two Stage Least Squares.
- List of endogenous: p1 (ou p2/p3/p4).
- Instrument list: Y (ajouter W pour offre4).
- View \rightarrow IV Diagnostics and Tests :
 - Weak Instrument Diagnostics (F 1 étape > 10 souhaitable),
 - Instrument Orthogonality Test (Hansen-J/Sargan), si sur-id.