

(43) International Publication Date 8 November 2001 (08.11.2001)

(19) World Intellectual Property Organization

International Bureau

PCT

(10) International Publication Number WO 01/83459 A2

C07D 239/00 (51) International Patent Classification7:

(21) International Application Number: PCT/EP01/04850

(22) International Filing Date: 30 April 2001 (30.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/201,824 4 May 2000 (04.05.2000)

(71) Applicant: BASF **AKTIENGESELLSCHAFT** [DE/DE]; 67056 Ludwigshafen (DE).

(72) Inventors: CARLSEN, Marianne; 222 Arborlea Avenue, Yardley, PA 19067 (US). GUACIARO, Michael, Anthony; 21 Inverness Lane, East Windsor, NJ 08520 (US). TAKASUGI, James, Jan; 11 Pembroke Court, Lawrenceville, NJ 08648 (US).

(74) Common Representative: BASE AKTIENGE-SELLSCHAFT; 67056 Ludwigshafen (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/83459 A2

(54) Title: URACIL SUBSTITUTED PHENYL SULFAMOYL CARBOXAMIDES

(57) Abstract: Novel uracil substituted phenyl sulfamoyl carboxamides (I) and salts thereof, where A = oxygen or sulfur; $X^1 = H$, halogen, C_1 - C_4 -alkyl; $X^2 = H$, CN, CS- NH_2 , halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl; $X^3 = H$, CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxyalkyl, C₃-C₇-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, optionally substituted benzyl; R1, R2 = H, halogen, optionally substituted hydroxy, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_3 - C_{10} -alkynyl, C_3 - C_7 -cycloalkyl, phenyl, benzyl or C_5 - C_7 -cycloalkenyl, or $R^1 + R^2$ together with the atom to which they are attached form a 3- to 7-membered heterocyclic

ring; Q is selected from Q1 to Q40 as defined in the description. Use: as herbicides; for the desiccation/defoliation of plants.

URACIL SUBSTITUTED PHENYL SULFAMOYL CARBOXAMIDES

Description

5

Weeds cause tremendous global economic losses by reducing crop yields and lowering crop quality. Worldwide, agronomic crops must compete with hundreds of weed species.

In spite of the commercial herbicides available today, damage to 10 crops caused by weeds still occurs. Accordingly, there is ongoing research to create more effective and/or more selective herbicidal agents.

In WO 98/06706 are disclosed the use of certain p-trifluoro15 methylphenyl uracils, their method of production and their use as herbicides. In addition, WO 96/08151 discloses herbicidal aryl uracils and arylthiouracils in which the aryl ring is an optionally substituted phenyl group. In neither disclosure, however is there mentioned a sulfamoyl carboxamide group
20 substituent.

Therefore, it was an object of the present invention to provide novel 3-phenyluracils which are highly effective for the control of undesirable plant species. The object also extends to providing novel compounds which act as desiccants/defoliants.

It was also an object of the present invention to provide a method for the control of undesirable plant species and compositions useful therefor.

30

It is an advantage of the present invention that the method for the control of undesirable plant species may be employed in the presence of a crop.

35 It was a further object of the present invention to provide a process for the preparation of herbicidal phenylsulfamoyl carboxamides and an intermediate compound useful therefor.

These and other objects and advantages of the present invention 40 will become more apparent from the detailed description thereof set forth below.

We have found that this object is achieved in accordance with the invention by the novel uracil substituted phenylsulfamoyl carb-45 oxamides of the formula I

wherein the variables have the following meanings:

- A oxygen or sulfur;
- 10 X¹ hydrogen, halogen or C₁-C₄-alkyl;
 - X^2 hydrogen, cyano, CS-NH₂, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl;
- 15 X^3 hydrogen, cyano, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy-alkyl, C_3 - C_7 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or optionally substituted benzyl;

R1 and R2 independently of one another

hydrogen, halogen, OR⁴⁸, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₃-C₁₀-alkynyl, C₃-C₇-cycloalkyl, phenyl, benzyl or C₅-C₇-cycloalkenyl, whereas each of the last-mentioned 7 groups can be substituted with any combination of one to six halogen atoms, one to three C₁-C₆-alkoxy groups, one or two C₁-C₈-haloalkoxy groups, one or two cyano groups, one or two C₃-C₇-cycloalkyl groups, one or two C(0)R⁴⁹ groups, one or two CO-OR⁵⁰ groups, one or two CO-SR⁵¹ groups, one or two CO-NR⁵²R⁵³ groups, one to three OR⁵⁴ groups, one to three SR⁵⁴ groups, one optionally substituted four to 10-membered monocyclic or fused bicyclic heterocyclic ring, one or two optionally substituted phenyl groups or one or two optionally substituted benzyl groups,

or R^1 and R^2 together with the atom to which they are attached form a 3- to 7-membered heterocyclic ring;

35

Q is selceted from

Q⁵

5

 δ_8

 Q^7

10
$$R^{12}$$
 N A^{5} R^{16} N^{-N} N^{-

 Q^6

25
$$\mathbb{R}^{25}$$
 \mathbb{R}^{24} \mathbb{R}^{25} \mathbb{R}^{24} \mathbb{R}^{25} \mathbb{R}^{25} \mathbb{R}^{20} \mathbb{R}^{20}

35
$$R^{30}$$
 R^{29} R^{32} R^{32} R^{4} R^{5} R^{4} R^{5} R^{6} R^{6}

40

$$R^{5}$$
 R^{17}
 R^{6}
 R^{17}
 R^{6}
 R^{17}
 R^{22}
 R^{36}
 R^{36}
 R^{34}
 R^{6}
 R^{6}
 R^{17}
 R^{17}
 R^{22}
 R^{23}
 R^{23

wherein

A¹ to A¹⁷ are each independently oxygen or sulfur;
R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴,

R⁴⁵, R⁴⁶ and R⁴⁷ are each independently
hydrogen, cyano, amino, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, benzyl, OR⁵⁵, C₁-C₃-cyanoalkyl, or
R³ and R⁴, R⁷ and R⁸, R¹¹ and R¹², R¹⁸ and R¹⁹ or R⁴⁶ and R⁴⁷ may be
taken together with the atoms to which they are attached to represent a four- to seven-membered ring, optionally interrupted by oxygen, sulfur or nitrogen and optionally substituted with one or more halogen or C₁-C₄-alkyl groups;

40 R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² and R⁴³ are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, OR^{56} , $S(0)_n R^{57}$, $O-SO_2$ - R^{57} , $NR^{58}R^{59}$ or

 R^5 and R^6 , R^9 and R^{10} , R^{15} and R^{16} , R^{20} and R^{21} or R^{30} and R^{31} may be taken together with the atoms to which they are attached to represent a four- to seven membered ring optionally substituted with one or more halogen or C_1 - C_4 -alkyl groups;

5

 R^{13} , R^{14} , R^{22} , R^{23} , R^{25} and R^{26} are each independently hydrogen, halogen or C_1 - C_6 -alkyl;

- R^{17} , R^{28} , R^{34} , R^{37} or R^{40} are each independently hydrogen, halogen, 10 $C_1-C_6-alkyl$, $C_1-C_6-haloalkyl$, $C_3-C_7-cycloalkyl$, $C_2-C_6-alkenyl$, $C_2-C_6-haloalkenyl$, $C_3-C_6-alkynyl$, C_8^{60} or SR^{61} ;
 - R^{24} is hydrogen, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_2-C_4 -alkenyl, C_3-C_4 -alkynyl, C_1-C_4 -haloalkoxy or amino;

15

R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰ and R⁶¹ are independently of one another hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₂-C₆-alkenyl, C₃-C₆-alkynyl, optionally substituted phenyl or optionally substituted benzyl;

n is zero, 1 or 2;

and the agriculturally useful salts of the compounds I.

Furthermore, the invention relates to

- the use of the compounds I as herbicides and/or for the desiccation/defoliation of plants,
- herbicidal compositions and compositions for the

 desiccation/defoliation of plants which comprise compounds I
 as active substances,
 - processes for preparing the compounds I and herbicidal compositions and compositions for the desiccation/defoliation of plants using the compounds I,
- methods for controlling undesirable vegetation and for the
 desiccation/defoliation of plants using the compounds I, and
 novel intermediates of the formula II.

40

$$Q \longrightarrow Q \longrightarrow Q$$
 (II)

wherein Q, X^1 and X^2 are as defined hereinabove, with the proviso that Q must be other than Q^{21} .

Preferred compounds of the formulae I and II can be seen from the sub-claims and from the description which follows.

Depending on the substitution pattern, the compounds of the 5 formula I can contain one or more chiral centers, in which case they exist in the form of enantiomer or diastereomer mixtures. This invention provides both the pure enantiomers or diasteromers and mixtures thereof.

- 10 Agriculturally useful salts are in particular the salts of those cations and the acid addition salts of those acids whose cations and anions, respectively, do not adversely affect the herbicidal activity of the compounds I. Suitable cations are therefore in particular the ions of the alkali metals, preferably sodium and
- 15 potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and the ammonium ion, which may carry one to four C_1 - C_4 -alkyl substituents, and/or one phenyl or benzyl substituent, preferably diisopropylammonium,
- 20 tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, and furthermore phosphonium ions, sulfonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfonium and sulfoxonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfoxonium.
- 25 Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, hydrogencarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C₁-C₄-alkanoic acids, preferably formate, acetate, 30 propionate and butyrate.

The organic moieties mentioned for the substituents X³ and R¹ to R⁶¹ or as radicals on phenyl or heterocyclic rings are collective terms for individual enumerations of each of the group members, 35 as is the meaning halogen. All carbon chains, ie. all alkyl, haloalkyl, alkenyl, alkynyl and phenylalkyl moieties can be straight-chain or branched.

The terms haloalkyl, haloalkoxy and haloalkenyl as used in the 40 specification and claims designate an alkyl group, an alkoxy group or an alkenyl group substituted with one or more halogen atoms, respectively. The halogen atoms may be the same or different.

Halogenated substituents preferably have attached to them one to 45 five identical or different halogen atoms.

In formula I above, 4- to 10-membered monocyclic or fused bicyclic, heterocyclic rings include, but are not limited to, benzimidazole, imidazole, imidazoline-2-thione, indole, isatoic anhydride, morpholine, piperazine, piperidine, purine, pyrazole, 5 pyrrole, pyrrolidine and 1,2,4-triazole rings, wherein each ring is optionally substituted with one or more groups independently selected from halogen, cyano, nitro, amino, hydroxyl, C1-C4-alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy or C_1-C_4 -haloalkylsulfonyl groups.

10

When the terms phenyl or benzyl are designated as being optionally substituted, the substituents which are optionally present may be any one or more of those customarily employed in the development of pesticidal compounds and/or the modification 15 of such compounds to influence their structure/activity, persistence, penetration or other property. Specific examples of such substituents include, for example, halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxy-20 carbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulfonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, especially furyl, and cycloalkyl, expecially cyclopropyl, groups. Typically, zero to three substituents may be present. When any of the foregoing substituents represents or 25 contains an alkyl substituent group, this may be linear or branched and may contain up to 12, preferably up to 6, and especially up to 4 carbon atoms.

In formula I above, 3- to 7-membered heterocyclic rings include, 30 but are not limited to, imidazole and phthalimide rings wherein each ring is optionally substituted with any combination of one to three halogen atoms, one to three C_1-C_4 -alkyl groups, one to three C₁-C₄-haloalkyl groups, one to three C₁-C₄-alkoxy groups, or one to three C1-C4-haloalkoxy groups.

35

The uracil substituted phenyl sulfamoyl carboxamides I possess an unexpected level of herbicidal activity and surprising crop selectivity.

- 40 Examples of individual meanings are:
 - halogen: fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine;
- 45 _ $C_1-C_4-alkyl;$ $CH_3,$ $C_2H_5,$ $CH_2-C_2H_5,$ $CH(CH_3)_2,$ $n-C_4H_9,$ $CH(CH_3)-C_2H_5$, $CH_2-CH(CH_3)_2$ or $C(CH_3)_3$;

```
C_1-C_6-alkyl and the alkyl moiety of C_1-C_6-alkoxy-C_1-C_6-alkyl:
        methyl, ethyl, n-propyl, 1-methylethyl, n-butyl,
        1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, n-pentyl,
        1-methylbutyl, 2-methylbutyl, 3-methylbutyl,
 5
        2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl,
        1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl,
        2-methylpentyl, 3-methylpentyl, 4-methylpentyl,
        1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl,
        2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl,
10
        1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl,
        1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl or
        1-ethyl-2-methylpropyl, preferably C_1-C_4-alkyl, in particular
        methyl or ethyl;
15 _
        C<sub>1</sub>-C<sub>3</sub>-cyanoalkyl: CH<sub>2</sub>CN, 1-cyanoethyl, 2-cyanoethyl,
        1-cyanoprop-1-yl, 2-cyanoprop-1-yl, 3-cyanoprop-1-yl or
        1-(CH<sub>2</sub>CN)eth-1-yl;
        C_1-C_6-haloalkyl: C_1-C_6-alkyl as mentioned above which is
20
        partially or fully substituted by fluorine, chlorine, bromine
        and/or iodine, eg. CH<sub>2</sub>F, CHF<sub>2</sub>, CF<sub>3</sub>, CH<sub>2</sub>Cl, CH(Cl)<sub>2</sub>, C(Cl)<sub>3</sub>,
        chlorofluoromethyl, dichlorofluoromethyl,
        chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl,
        2,2-difluoroethyl, 2,2,2-trifluoroethyl,
25
        2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl,
        2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, C<sub>2</sub>F<sub>5</sub>,
        3-fluoropropyl, 3-chloropropyl o
                                             fluoromethyl or
        1,2-dichloroethyl;
        C2-C6-alkenyl: ethenyl, prop-1-en-1-yl, prop-2-en-1-yl,
        1-methylethenyl, n-buten-1-yl, n-buten-2-yl, n-buten-3-yl,
        1-methylprop-1-en-1-yl, 2-methylprop-1-en-1-yl,
        1-methylprop-2-en-1-yl, 2-methylprop-2-en-1-yl,
35
        n-penten-1-yl, n-penten-2-yl, n-penten-3-yl, n-penten-4-yl,
        1-methylbut-1-en-1-yl, 2-methylbut-1-en-1-yl,
        3-methylbut-1-en-1-yl, 1-methybut-2-en-1-yl,
        2-methylbut-2-en-1-yl, 3-methylbut-2-en-1-yl,
        1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl,
40
        3-methylbut-3-en-1-yl, 1,1-dimethylprop-2-en-1-yl,
        1,2-dimethylprop-1-en-1-yl, 1,2-dimethylprop-2-en-1-yl,
        1-ethylprop-1-en-2-yl, 1-ethylprop-2-en-1-yl,
       n-hex-1-en-1-yl, n-hex-2-en-1-yl, n-hex-3-en-1-yl,
       n-hex-4-en-1-yl, n-hex-5-en-1-yl, 1-methylpent-1-en-1-yl,
45
       2-methylpent-1-en-1-yl, 3-methylpent-1-en-1-yl,
```

4-methylpent-1-en-1-yl, 1-methylpent-2-en-1-yl,

WO 01/83459 PCT/EP01/04850

```
2-methylpent-2-en-1-yl, 3-methylpent-2-en-1-yl,
        4-methylpent-2-en-1-yl, 1-methylpent-3-en-1-yl,
        2-methylpent-3-en-1-yl, 3-methylpent-3-en-1-yl,
        4-methylpent-3-en-1-yl, 1-methylpent-4-en-1-yl,
 5
        2-methylpent-4-en-1-yl, 3-methylpent-4-en-1-yl,
        4-methylpent-4-en-1-yl, 1,1-dimethylbut-2-en-1-yl,
        1,1-dimethylbut-3-en-1-yl, 1,2-dimethylbut-1-en-1-yl,
        1,2-dimethylbut-2-en-1-yl, 1,2-dimethylbut-3-en-1-yl,
        1,3-dimethylbut-1-en-1-yl, 1,3-dimethylbut-2-en-1-yl,
10
        1,3-dimethylbut-3-en-1-yl, 2,2-dimethylbut-3-en-1-yl,
        2,3-dimethylbut-1-en-1-yl, 2,3-dimethylbut-2-en-1-yl,
        2,3-dimethylbut-3-en-1-yl, 3,3-dimethylbut-1-en-1-yl,
        3,3-dimethylbut-2-en-1-yl, 1-ethylbut-1-en-1-yl,
        1-ethylbut-2-en-1-yl, 1-ethylbut-3-en-1-yl,
15
        2-ethylbut-1-en-1-yl, 2-ethylbut-2-en-1-yl,
        2-ethylbut-3-en-1-yl, 1,1,2-trimethylprop-2-en-1-yl,
        1-ethyl-1-methylprop-2-en-1-yl,
        1-ethyl-2-methylprop-1-en-1-yl or
        1-ethyl-2-methylprop-2-en-1-yl, preferably C3- or C4-alkenyl;
20
        C_2-C_6-haloalkenyl: C_2-C_6-alkenyl as mentioned above which is
        partially or fully substituted by fluorine, chlorine, bromine
        and/or iodine, ie. for example 2-chloroally1, 3-chloroally1,
        2,3-dichloroally1, 3,3-dichloroally1, 2,3,4-trichloroally1,
25
        2,3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl,
        2,3-dibromoally1, 3,3-dibromoally1, 2,3,3-tribromoally1 or
        2,3-dibromobut-2-enyl;
       C<sub>3</sub>-C<sub>6</sub>-alkynyl: prop-1-yn-1-yl, prop-2-yn-3-yl,
30
       n-but-1-yn-1-yl, n-but-1-yn-4-yl, n-but-2-yn-1-yl,
       n-pent-1-yn-1-yl, n-pent-1-yn-3-yl, n-pent-1-yn-4-yl,
       n-pent-1-yn-5-yl, n-pent-2-yn-1-yl, n-pent-2-yn-4-yl,
       n-pent-2-yn-5-yl, 3-methylbut-1-yn-1-yl,
        3-methylbut-1-yn-3-yl, 3-methylbut-1-yn-4-yl,
35
       n-hex-1-yn-1-yl, n-hex-1-yn-3-yl, n-hex-1-yn-4-yl,
       n-hex-1-yn-5-y1, n-hex-1-yn-6-y1, n-hex-2-yn-1-y1,
       n-hex-2-yn-4-y1, n-hex-2-yn-5-y1, n-hex-2-yn-6-y1,
       n-hex-3-yn-1-yl, n-hex-3-yn-2-yl, 3-methylpent-1-yn-1-yl,
       3-methylpent-1-yn-3-yl, 3-methylpent-1-yn-4-yl,
40
       3-methylpent-1-yn-5-yl, 4-methylpent-1-yn-1-yl,
       4-methylpent-2-yn-4-yl or 4-methylpent-2-yn-5-yl, preferably
       C<sub>3</sub>- or C<sub>4</sub>-alkynyl, in particular prop-2-yn-3-yl;
       phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl: for example benzyl, 1-phenyleth-1-yl,
45 -
       2-phenyleth-1-yl, 1-phenylprop-1-yl, 2-phenylprop-1-yl,
       3-phenylprop-1-yl, 1-phenylprop-2-yl, 2-phenylprop-2-yl,
```

10

1-phenylbut-1-yl, 2-phenylbut-1-yl, 3-phenylbut-1-yl, 4-phenylbut-1-yl, 1-phenylbut-2-yl, 2-phenylbut-2-yl, 1-phenylbut-3-yl, 2-phenylbut-3-yl, 1-phenyl-2-methylprop-3-yl, 2-phenyl-2-methylprop-3-yl, 3-phenyl-2-methylprop-3-yl or 2-benzylprop-2-yl, preferably phenyl-C₁-C₄-alkyl, in particular 2-phenyleth-1-yl;

- C₁-C₆-alkoxy and the alkoxy moiety of C₁-C₆-Alkoxy-C₁-C₆-alkyl: methoxy, ethoxy, n-propoxy, 10 1-methylethoxy, n-butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 15 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1-ethyl-2-methylpropoxy, 20 preferably C1-C4-alkoxy, in particular OCH3, OC2H5 or OCH(CH₃)₂;
- C₃-C₇-cycloalkyl: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl;
- C₅-C₇-Cycloalkenyl: cyclopent-1-enyl, cyclopent-2-enyl, cyclopent-3-enyl, cyclohex-1-enyl, cyclohex-2-enyl, cyclohex-3-enyl, cyclohept-1-enyl, cyclohept-2-enyl, cyclohept-3-enyl, cyclohept-4-enyl, cyclooct-1-enyl, cyclooct-2-enyl, cyclooct-3-enyl and cyclooct-4-enyl.

3- to 7-membered heterocycle is a saturated, partially or fully unsaturated or aromatic heterocycle having one to three hetero atoms selected from a group consisting of

- one to three nitrogens,
- one or two oxygens and
- one or two sulfur atoms.
- 40 With a view to the use of the compounds I as herbicides and/or compounds which have a desiccant/defoliant action, the variables preferably have the following meanings, to be precise in each case alone or in combination:
- 45 X1 is hydrogen or halogen, in particular hydrogen or chlorine;

- X² is cyano or halogen, in particular cyano or chlorine;
- x3 is hydrogen;
- 5 Q is Q^{5} , Q^{7} , Q^{21} , Q^{22} , Q^{27} , Q^{32} , Q^{38} , Q^{39} or Q^{40} ;
 - A1 is oxygen;
- 10 A³, A⁴ are, independently of one another, oxygen;
 - A⁸, A⁹ are, independently of one another, oxygen;
- $^{\rm A^{10}}$, $^{\rm A^{11}}$ are, independently of one another, oxygen;
 - A¹² is sulfur;
- A¹³ is oxygen;

- A¹⁵ is sulfur;
- R^1 is C_1-C_4 -alkyl;

25

- R^2 is C_1-C_6 -alkyl, C_2-C_6 -alkenyl or C_2-C_6 -alkynyl;
- R^7 is amino, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C_1 - C_6 -haloalkoxy;

- R⁸ is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl or C_1 - C_6 -haloalkoxy;
- 35 R⁷ and R⁸ may be taken together with the atoms to which they are attached to represent a four to seven membered ring, optionally interrupted by oxygen, sulfur or nitrogen;
- R⁹, R¹⁰ are, independently of one another, hydrogen, C₁-C₆-alkyl,

 40 C₁-C₆-alkoxy or together with the atoms to which they are
 attached to represent a 5- or 6-membered ring;
 - R²⁹ is hydrogen, amino or C₁-C₆-alkyl;
- 45 R^{30} is C_1-C_6 -haloalkyl, C_1-C_6 -haloalkoxy or C_1-C_6 -alkylsulfonyl and

- R^{31} is hydrogen, amino, C_1-C_6 -alkyl, C_3-C_7 -cycloalkyl or C_2-C_6 -alkenyl or
- R³⁰ and R³¹ together with the atoms to which they are attached to represent a 5- or 6-membered ring;
 5
 - R^{32} is hydrogen, amino, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl or C_2-C_6 -alkenyl;
- 10 \mathbb{R}^{33} is hydrogen, amino, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or C_2 - C_6 -alkenyl;
 - R³⁴ is hydrogen oder C₁-C₆-alkyl;
- 15 R³⁵ is C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy or C₁-C₆-alkylsulfonyl;
 - R^{36} is hydrogen, amino, C_1-C_6 -alkyl, C_3-C_7 -cycloalkyl or C_2-C_6 -alkenyl;
- 20 R^{37} is hydrogen, cyano, halogen, C_1-C_6 -alkyl or C_1-C_6 -alkoxy;
- R^{38} is cyano, $C_1-C_6-alkyl$, $C_1-C_6-haloalkyl$, $C_1-C_6-haloalkoxy$ or $C_1-C_6-alkylsulfonyl$;
 - R^{39} is cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -haloalkoxy or C_1-C_6 -alkylsulfonyl;
- 30 R40 is halogen;
 - R41 is hydrogen, amino or C1-C6-alkyl;
- R^{42} is C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -alkylsulfonyloxy;
 - R43 is hydrogen, amino or C1-C6-alkyl;
- AO R44 is hydrogen, amino or C1-C6-alkyl;
 - R^{45} is hydrogen, amino or C_1 - C_6 -alkyl;

 R^{46} , R^{47} are, independently of one another, C_1 - C_6 -haloalkyl or together with the nitrogen atoms to which they are attached to represent a 5- or 6-membered ring, optionally interrupted by one oxygen or sulfur ring member.

5

Very especially preferred are the compounds of the formula Ia (\square I where X^1 = fluorine; X^2 = chlorine; $Q = Q^{21}$; X^3 = hydrogen; A, A^8 , A^9 = oxygen; R^{29} = methyl; R^{30} = trifluoromethyl; R^{31} = hydrogen)

10

$$F_{3}C \xrightarrow{CH_{3}} O \xrightarrow{O} O \xrightarrow{N} SO_{2} -NR^{1}R^{2} Ia,$$

15

in particular the compounds of Table 1:

Table 1

20			
	No.	R ¹	R ²
•	Ia.1	H	CH ₃
	Ia.2	н	C ₂ H ₅
	Ia.3	· H	CH ₂ CH ₂ -Cl
25	Ia.4	Н	CH ₂ CH ₂ -CN
	Ia.5	. н	CH ₂ -CO-OCH ₃
	Ia.6	н	CH ₂ -CO-OC ₂ H ₅
	Ia.7	H	CH(CH ₃)-CO-OCH ₃
30	Ia.8	H	CH ₂ CH ₂ -OCH ₃
	Ia.9	H	CH ₂ -C ₂ H ₅
	Ia.10	H	CH ₂ CH ₂ -C ₂ H ₅
	Ia.11	H	CH(CH ₃) ₂
35	Ia.12	H	CH(CH ₃)-C ₂ H ₅
	Ia.13	Н	CH2-CH(CH3)2
	Ia.14	H	C(CH ₃) ₃
	Ia.15	H	CH(CH ₃)-CH ₂ -C ₂ H ₅
40	Ia.16	H	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.17	H	CH ₂ CH ₂ -CH(CH ₃) ₂
	Ia.18	H	CH ₂ -CH=CH ₂
	Ia.19	H	CH(CH ₃)=CH ₂
	Ia.20	H	CH ₂ =CH-CH ₃
45	Ia.21	H	CH ₂ -C∏ CH
	Ia.22	H	CH(CH ₃)-C□ CH

	No.	R ¹	R ²
	Ia.23	H	Cyclopropyl
	Ia.24	Н	CH ₂ -Cyclopropyl
5	Ia.25	H	Cyclopentyl
	Ia.26	Н	CH ₂ -Cyclopentyl
	Ia.27	Н	CH ₂ -(1,3-Dioxolanyl)
	Ia.28	H	CH ₂ -(2-Furyl)
10	Ia.29	H .	CH ₂ -(3-Furyl)
10	Ia.30	H	CH ₂ -(2-Thienyl)
	Ia.31	H	CH ₂ -(3-Thienyl)
	Ia.32	H	Phenyl
	Ia.33	H	2-Chlorophenyl
15	Ia.34	H	3-Chlorophenyl
	Ia.35	H	4-Chlorophenyl
	Ia.36	H	2-Fluorophenyl
	Ia.37	. н	3-Fluorophenyl
20	Ia.38	Н	4-Fluorophenyl
	Ia.39	H	2-Methylphenyl
	Ia.40	H	3-Methylphenyl
	Ia.41	H	4-Methylphenyl
25	Ia.42	H	2-Methoxyphenyl
_	Ia.43	H	3-Methoxyphenyl
	Ia.44	Н	4-Methoxyphenyl
	Ia.45	H	2-(Methoxycarbonyl)phenyl
30	Ia.46	H .	3-(Methoxycarbonyl)phenyl
30	Ia.47	H	4-(Methoxycarbonyl)phenyl
	Ia.48	Н	2-Nitrophenyl
į	Ia.49	H	3-Nitrophenyl
	Ia.50	H	4-Nitrophenyl
35	Ia.51	H	2-(Dimethylamino)phenyl
	Ia.52	H	3-(Dimethylamino)phenyl
. [Ia.53	Н .	4-(Dimethylamino)phenyl
	Ia.54	H	2-(Trifluoromethyl)phenyl
40	Ia.55	H	3-(Trifluoromethyl)phenyl
	Ia.56	H	4-(Trifluoromethyl)phenyl
	Ia.57	H	3-(Phenoxy)phenyl
	Ia.58	Н .	4-(Phenoxy)phenyl
45	Ia.59	H	2,4-Difluorophenyl
	Ia.60	H	2,4-Dichlorophenyl
	Ia.61	Н .	3,4-Difluorophenyl
-	,		

1. .

	No.	R ¹	R ²
	Ia.62	Н	3,4-Dichlorophenyl
5	Ia.63	н	3,5-Difluorophenyl
	Ia.64	Н	3,5-Dichlorophenyl
	Ia.65	H	2-Pyridyl
	Ia.66	Н	3-Pyridyl
	Ia.67	Н	4-Pyridyl
10	Ia.68	Н	α-Naphthyl
10	Ia.69	Н	Benzyl
	Ia.70	H	2-Chlorobenzyl
	Ia.71	H	3-Chlorobenzyl
	Ia.72	H	4-Chlorobenzyl
15	Ia.73	Н	2-Methoxybenzyl
	Ia.74	Н	3-Methoxybenzyl
	Ia.75	H	4-Methoxybenzyl
	Ia.76	CH ₃	CH ₃
20	Ia.77	CH ₃	C₂H ₅
	Ia.78	CH ₃	. CH ₂ CH ₂ -Cl
	Ia.79	CH ₃	CH ₂ CH ₂ -CN
	Ia.80	CH ₃	CH ₂ -CO-OCH ₃
25	Ia.81	CH ₃	CH ₂ -CO-OC ₂ H ₅
	Ia.82	CH ₃	CH(CH ₃)-CO-OCH ₃
	Ia.83	CH ₃	CH ₂ CH ₂ -OCH ₃
	Ia.84	CH ₃	CH ₂ -C ₂ H ₅
70	Ia.85	CH ₃	CH ₂ CH ₂ -C ₂ H ₅
30	Ia.86	CH ₃	CH(CH ₃) ₂
	Ia.87	CH ₃	CH(CH ₃)-C ₂ H ₅
	Ia.88	CH ₃	CH ₂ -CH(CH ₃) ₂
	Ia.89	CH3	C(CH ₃) ₃
35	Ia.90	CH ₃	CH(CH ₃)-CH ₂ -C ₂ H ₅
	Ia.91	CH ₃	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.92	CH ₃	CH ₂ CH ₂ -CH(CH ₃) ₂
	Ia.93	CH ₃	CH ₂ -CH=CH ₂
40	Ia.94	CH ₃	CH(CH ₃)=CH ₂
	Ia.95	CH ₃	CH ₂ =CH-CH ₃
	Ia.96	CH ₃	СН2-С∏ СН
	Ia.97	CH ₃	CH(CH ₃)-C∏ CH
45	Ia.98	CH ₃	Cyclopropyl
	Ia.99	CH ₃	CH ₂ -Cyclopropyl
	Ia.100	. CH ₃	Cyclopentyl
•			

	No.	R ¹	R ²
	Ia.101	CH ₃	CH2-Cyclopentyl
5	Ia.102	CH ₃	CH ₂ -(1,3-Dioxolanyl)
	Ia.103	CH ₃	CH ₂ -(2-Furyl)
	Ia.104	CH ₃	CH ₂ -(3-Furyl)
	Ia.105	CH ₃	CH ₂ -(2-Thienyl)
	Ia.106	CH ₃	CH ₂ -(3-Thienyl)
10	Ia.107	CH ₃	Phenyl
10	Ia.108	CH ₃	2-Chlorophenyl
	Ia.109	CH ₃	3-Chlorophenyl
	Ia.110	CH ₃	4-Chlorophenyl
	Ia.111	CH ₃	2-Fluorophenyl
15	Ia.112	CH ₃	3-Fluorophenyl
	Ia.113	CH3	4-Fluorophenyl
	Ia.114	CH ₃	2-Methylphenyl
	Ia.115	CH ₃	3-Methylphenyl
20	Ia.116	CH ₃	4-Methylphenyl
	Ia.117	CH ₃	2-Methoxyphenyl
	Ia.118	CH ₃	3-Methoxyphenyl
	Ia.119	CH ₃	4-Methoxyphenyl
25	Ia.120	CH ₃	2-(Methoxycarbonyl)phenyl
	Ia.121	CH ₃	3-(Methoxycarbonyl)phenyl
	Ia.122	CH ₃	4-(Methoxycarbonyl)phenyl
	Ia.123	CH ₃	2-Nitrophenyl
30	Ia.124	CH ₃	3-Nitrophenyl
	Ia.125	CH ₃	4-Nitrophenyl
[Ia.126	CH ₃	2-(Dimethylamino)phenyl
	Ia.127	CH ₃	3-(Dimethylamino)phenyl
	Ia.128	CH ₃	4-(Dimethylamino)phenyl
35	Ia.129	CH ₃	2-(Trifluoromethyl)phenyl
J	Ia.130	CH ₃	3-(Trifluoromethyl)phenyl
-	Ia.131	CH ₃	4-(Trifluoromethyl)phenyl
]	Ia.132	CH ₃	3-(Phenoxy)phenyl
40	Ia.133	CH ₃	4-(Phenoxy)phenyl
	Ia.134	CH ₃	2,4-Difluorophenyl
	Ia.135	CH ₃	2,4-Dichlorophenyl
	Ia.136	CH ₃	3,4-Difluorophenyl
45	Ia.137	CH ₃	3,4-Dichlorophenyl
	Ia.138	CH ₃	3,5-Difluorophenyl
Ĺ	Ia.139	. CH ₃	3,5-Dichlorophenyl

			 .
	No.	R ¹	R ²
	Ia.140	CH ₃	2-Pyridyl
5	Ia.141	CH ₃	3-Pyridyl
	Ia.142	CH ₃	4-Pyridyl
	Ia.143	CH ₃	α-Naphthyl
	Ia.144	CH ₃	Benzyl
	Ia.145	CH ₃	2-Chlorobenzyl
10	Ia.146	CH ₃	3-Chlorobenzyl
10	Ia.147	CH ₃	4-Chlorobenzyl
	Ia.148	CH ₃	2-Methoxybenzyl
	Ia.149	CH ₃	3-Methoxybenzyl
	Ia.150	CH ₃	4-Methoxybenzyl
15	Ia.151	C ₂ H ₅	C ₂ H ₅
	Ia.152	C ₂ H ₅	CH ₂ CH ₂ -Cl
	Ia.153	C ₂ H ₅	CH ₂ CH ₂ -CN
	Ia.154	C ₂ H ₅	CH ₂ -CO-OCH ₃
20	Ia.155	C ₂ H ₅	CH ₂ -CO-OC ₂ H ₅
	Ia.156	C ₂ H ₅	CH(CH ₃)-CO-OCH ₃
	Ia.157	C ₂ H ₅	CH ₂ CH ₂ -OCH ₃
	Ia.158	C ₂ H ₅	CH ₂ -C ₂ H ₅
25	Ia.159	C ₂ H ₅	CH ₂ CH ₂ -C ₂ H ₅
.	Ia.160	C ₂ H ₅	CH(CH ₃) ₂
	Ia.161	C ₂ H ₅	CH(CH ₃)-C ₂ H ₅
	Ia.162	C ₂ H ₅	CH ₂ -CH(CH ₃) ₂
30	Ia.163	C ₂ H ₅	C(CH ₃) ₃
30	Ia.164	C ₂ H ₅	CH(CH ₃)-CH ₂ -C ₂ H ₅
1	Ia.165	С ₂ Н ₅	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.166	C ₂ H ₅	CH ₂ CH ₂ -CH(CH ₃) ₂
	Ia.167	C ₂ H ₅	CH ₂ -CH=CH ₂
35	Ia.168	C ₂ H ₅	CH(CH ₃)=CH ₂
1	Ia.169	C₂H ₅	CH ₂ =CH-CH ₃
- 1	Ia.170	C ₂ H ₅	CH ₂ -C∏ CH
	Ia.171	C ₂ H ₅	CH(CH ₃)-C□ CH
40	Ia.172	C ₂ H ₅	Cyclopropyl
	Ia.173	C ₂ H ₅	CH ₂ -Cyclopropyl
	Ia.174	С ₂ Н ₅	Cyclopentyl
	Ia.175	C ₂ H ₅	CH ₂ -Cyclopentyl
45	Ia.176	C ₂ H ₅	CH ₂ -(1,3-Dioxolanyl)
٠, [Ia.177	C ₂ H ₅	CH ₂ -(2-Furyl)
·	Ia.178	. C ₂ H ₅	CH ₂ -(3-Furyl)

	No.	R ¹	R ²
5	Ia.179	C₂H ₅	CH ₂ -(2-Thienyl)
	Ia.180	C ₂ H ₅	CH ₂ -(3-Thienyl)
	Ia.181	C₂H ₅	Phenyl
	Ia.182	C ₂ H ₅	2-Chlorophenyl
	Ia.183	C ₂ H ₅	3-Chlorophenyl
	Ia.184	C ₂ H ₅	4-Chlorophenyl
10	Ia.185	C ₂ H ₅	2-Fluorophenyl
10	Ia.186	C ₂ H ₅	3-Fluorophenyl
	Ia.187	C ₂ H ₅	4-Fluorophenyl
	Ia.188	C ₂ H ₅	2-Methylphenyl
	Ia.189	C ₂ H ₅	3-Methylphenyl
15	Ia.190	C ₂ H ₅	4-Methylphenyl
	Ia.191	C ₂ H ₅	2-Methoxyphenyl
	Ia.192	C ₂ H ₅	3-Methoxyphenyl
	Ia.193	C ₂ H ₅	4-Methoxyphenyl
20	Ia.194	C ₂ H ₅	2-(Methoxycarbonyl)phenyl
	Ia.195	C ₂ H ₅	3-(Methoxycarbonyl)phenyl
	Ia.196	C ₂ H ₅	4-(Methoxycarbonyl)phenyl
	Ia.197	C ₂ H ₅	2-Nitrophenyl
25	Ia.198	C ₂ H ₅	3-Nitrophenyl
{	Ia.199	C ₂ H ₅	4-Nitrophenyl
	Ia.200	C ₂ H ₅	2-(Dimethylamino)phenyl
l	Ia.201	C ₂ H ₅	3-(Dimethylamino)phenyl
30	Ia.202	C₂H ₅	4-(Dimethylamino)phenyl
30	Ia.203	C ₂ H ₅	2-(Trifluoromethyl)phenyl
l	Ia.204	C ₂ H ₅	3-(Trifluoromethyl)phenyl
į	Ia.205	C ₂ H ₅	4-(Trifluoromethyl)phenyl
	Ia.206	C₂H ₅	3-(Phenoxy)phenyl
35	Ia.207	C ₂ H ₅	4-(Phenoxy)phenyl
Į	Ia.208	C ₂ H ₅	2,4-Difluorophenyl
	Ia.209	C ₂ H ₅	2,4-Dichlorophenyl
1	Ia.210	C ₂ H ₅	3,4-Difluorophenyl
40	Ia.211	C ₂ H ₅	3,4-Dichlorophenyl
	Ia.212	C ₂ H ₅	3,5-Difluorophenyl
	Ia.213	C ₂ H ₅	3,5-Dichlorophenyl
	Ia.214	C ₂ H ₅	2-Pyridyl
45	Ia.215	C ₂ H ₅	3-Pyridyl
ן בֿיַ	Ia.216	C ₂ H ₅	4-Pyridyl
	Ia.217	C ₂ H ₅	α-Naphthyl
_			

	No.	R ¹	R ²
	Ia.218	C ₂ H ₅	Benzyl
5	Ia.219	C ₂ H ₅	2-Chlorobenzyl
	Ia.220	C ₂ H ₅	3-Chlorobenzyl
_	Ia.221	C ₂ H ₅	4-Chlorobenzyl
	Ia.222	C₂H ₅	2-Methoxybenzyl
	Ia.223	C ₂ H ₅	3-Methoxybenzyl
10	Ia.224	C ₂ H ₅	4-Methoxybenzyl
10	Ia.225	CH ₂ -C ₂ H ₅	C₂H ₅
	Ia.226	CH2-C2H5	CH ₂ CH ₂ -Cl
	Ia.227	СH ₂ -С ₂ H ₅	CH ₂ CH ₂ -CN
	Ia.228	СH ₂ -С ₂ H ₅	CH ₂ -CO-OCH ₃
15	Ia.229	CH ₂ -C ₂ H ₅	CH ₂ -CO-OC ₂ H ₅
	Ia.230	CH2-C2H5	CH(CH ₃)-CO-OCH ₃
	Ia.231	СH ₂ -С ₂ H ₅	CH ₂ CH ₂ -OCH ₃
	Ia.232	CH ₂ -C ₂ H ₅	CH ₂ -C ₂ H ₅
20	Ia.233	CH ₂ -C ₂ H ₅	CH ₂ CH ₂ -C ₂ H ₅
	Ia.234	СH ₂ -С ₂ H ₅	CH(CH ₃) ₂
	Ia.235	CH ₂ -C ₂ H ₅	CH(CH ₃)-C ₂ H ₅
	Ia.236	СH ₂ -С ₂ H ₅	CH ₂ -CH(CH ₃) ₂
25	Ia.237	CH ₂ -C ₂ H ₅	C(CH ₃) ₃
	Ia.238	CH2-C2H5	CH(CH ₃)-CH ₂ -C ₂ H ₅
	Ia.239	CH ₂ -C ₂ H ₅	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.240	CH ₂ -C ₂ H ₅	CH ₂ CH ₂ -CH(CH ₃) ₂
30	Ia.241	CH ₂ -C ₂ H ₅	CH ₂ CH=CH ₂
30	Ia.242	CH ₂ -C ₂ H ₅	CH(CH ₃)=CH ₂
	Ia.243	CH ₂ -C ₂ H ₅	CH ₂ =CH−CH ₃
	Ia.244	CH ₂ -C ₂ H ₅	СН2-С∏ СН
	Ia.245	СH ₂ -С ₂ H ₅	CH(CH3)-C□ CH
35	Ia.246	CH ₂ -C ₂ H ₅	Cyclopropyl
	Ia.247	CH ₂ -C ₂ H ₅	CH ₂ -Cyclopropyl
	Ia.248	CH ₂ -C ₂ H ₅	Cyclopentyl
	Ia.249	CH2-C2H5	CH ₂ -Cyclopentyl
40	Ia.250	CH ₂ -C ₂ H ₅	CH ₂ -(1,3-Dioxolanyl)
	Ia.251	CH ₂ -C ₂ H ₅	CH ₂ -(2-Furyl)
	Ia.252	CH2-C2H5	CH ₂ -(3-Furyl)
	Ia.253	CH ₂ -C ₂ H ₅	CH ₂ -(2-Thienyl)
45	Ia.254	CH ₂ -C ₂ H ₅	CH ₂ -(3-Thienyl)
	Ia.255	CH ₂ -C ₂ H ₅	Phenyl
	Ia.256	. CH ₂ -C ₂ H ₅	2-Chlorophenyl

	No.	R ¹	R ²
	Ia.257	CH ₂ -C ₂ H ₅	3-Chlorophenyl
	Ia.258	CH ₂ -C ₂ H ₅	4-Chlorophenyl
5	Ia.259	CH ₂ -C ₂ H ₅	2-Fluorophenyl
	Ia.260	СH ₂ -С ₂ H ₅	3-Fluorophenyl
	Ia.261	CH ₂ -C ₂ H ₅	4-Fluorophenyl
	Ia.262	CH ₂ -C ₂ H ₅	2-Methylphenyl
10	Ia.263	CH ₂ -C ₂ H ₅	3-Methylphenyl
10	Ia.264	CH ₂ -C ₂ H ₅	4-Methylphenyl
	Ia.265	СH ₂ -С ₂ H ₅	2-Methoxyphenyl
	Ia.266	CH ₂ -C ₂ H ₅	3-Methoxyphenyl
	Ia.267	СH ₂ -С ₂ H ₅	4-Methoxyphenyl
15	Ia.268	CH2-C2H5	2-(Methoxycarbonyl)phenyl
	Ia.269	СH ₂ -С ₂ H ₅	3-(Methoxycarbonyl)phenyl
	Ia.270	СH ₂ -С ₂ H ₅	4-(Methoxycarbonyl)phenyl
	Ia.271	CH ₂ -C ₂ H ₅	2-Nitrophenyl
20	Ia.272	CH ₂ -C ₂ H ₅	3-Nitrophenyl
	Ia.273	CH ₂ -C ₂ H ₅	4-Nitrophenyl
	Ia.274	CH2-C2H5	2-(Dimethylamino)phenyl
	Ia.275	CH ₂ -C ₂ H ₅	3-(Dimethylamino)phenyl
25	Ia.276	CH ₂ -C ₂ H ₅	4-(Dimethylamino)phenyl
	Ia.277	CH ₂ -C ₂ H ₅	2-(Trifluoromethyl)phenyl
	Ia.278	CH ₂ -C ₂ H ₅	3-(Trifluoromethyl)phenyl
	Ia.279	CH ₂ -C ₂ H ₅	4-(Trifluoromethyl)phenyl
30	Ia.280	CH ₂ -C ₂ H ₅	3-(Phenoxy)phenyl
30	Ia.281	CH ₂ -C ₂ H ₅	4-(Phenoxy)phenyl
	Ia.282	CH ₂ -C ₂ H ₅	2,4-Difluorophenyl
	Ia.283	CH ₂ -C ₂ H ₅	2,4-Dichlorophenyl
	Ia.284	CH ₂ -C ₂ H ₅	3,4-Difluorophenyl
35	Ia.285	CH ₂ -C ₂ H ₅	3,4-Dichlorophenyl
	Ia.286	CH2-C2H5	3,5-Difluorophenyl
	Ia.287	CH ₂ -C ₂ H ₅	3,5-Dichlorophenyl
· [Ia.288	CH ₂ -C ₂ H ₅	2-Pyridyl
40	Ia.289	CH ₂ -C ₂ H ₅	3-Pyridyl
	Ia.290	CH ₂ -C ₂ H ₅	4-Pyridyl
Į	Ia.291	СH ₂ -С ₂ H ₅	α-Naphthyl
	Ia.292	CH ₂ -C ₂ H ₅	Benzyl
45	Ia.293	CH ₂ -C ₂ H ₅	2-Chlorobenzyl
	Ia.294	CH2-C2H5	3-Chlorobenzyl
[Ia.295	CH ₂ -C ₂ H ₅	4-Chlorobenzyl
	_		

			21
	No.	R ¹	R ²
	Ia.296	CH2-C2H5	2-Methoxybenzyl
5	Ia.297	CH ₂ -C ₂ H ₅	3-Methoxybenzyl
	Ia.298	CH2-C2H5	4-Methoxybenzyl
	Ia.299	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ CH ₂ -Cl
	Ia.300	CH2-CH2-C2H5	CH ₂ CH ₂ -CN
l	Ia.301	CH2-CH2-C2H5	CH ₂ -CO-OCH ₃
	Ia.302	CH2-CH2-C2H5	CH ₂ -CO-OC ₂ H ₅
10	Ia.303	CH2-CH2-C2H5	CH(CH ₃)-CO-OCH ₃
	Ia.304	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ CH ₂ -OCH ₃
l	Ia.305	CH2-CH2-C2H5	CH ₂ CH ₂ -C ₂ H ₅
	Ia.306	CH2-CH2-C2H5	CH(CH ₃) ₂
15	Ia.307	CH ₂ -CH ₂ -C ₂ H ₅	CH(CH ₃)-C ₂ H ₅
ĺ	Ia.308	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ -CH(CH ₃) ₂
	Ia.309	CH ₂ -CH ₂ -C ₂ H ₅	C(CH ₃) ₃
	Ia.310	СH ₂ -СH ₂ -С ₂ H ₅	СH(СH ₃)-СH ₂ -С ₂ H ₅
20	Ia.311	CH2-CH2-C2H5	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.312	CH2-CH2-C2H5	CH ₂ CH ₂ -CH(CH ₃) ₂
	Ia.313	СH ₂ -СH ₂ -С ₂ H ₅	CH ₂ -CH=CH ₂
	Ia.314	CH ₂ -CH ₂ -C ₂ H ₅	CH(CH ₃)=CH ₂
25	Ia.315	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ =CH-CH ₃
	Ia.316	CH ₂ -CH ₂ -C ₂ H ₅	CH2-C∏ CH
	Ia.317	CH ₂ -CH ₂ -C ₂ H ₅	CH(CH ₃)-C[] CH
	Ia.318	CH2-CH2-C2H5	Cyclopropyl
30	Ia.319	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ -Cyclopropyl
	Ia.320	CH ₂ -CH ₂ -C ₂ H ₅	Cyclopentyl
	Ia.321	СH ₂ -СH ₂ -С ₂ H ₅	CH ₂ -Cyclopentyl
	Ia.322	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ -(1,3-Dioxolanyl)
	Ia.323	СH ₂ -СH ₂ -С ₂ H ₅	CH ₂ -(2-Furyl)
35	Ia.324	СH ₂ -СH ₂ -С ₂ H ₅	CH ₂ -(3-Furyl)
	Ia.325	CH ₂ -CH ₂ -C ₂ H ₅	CH ₂ -(2-Thienyl)
	Ia.326	CH2-CH2-C2H5	CH ₂ -(3-Thienyl)
	Ia.327	CH ₂ -CH ₂ -C ₂ H ₅	Phenyl
40	Ia.328	CH ₂ -CH ₂ -C ₂ H ₅	2-Chlorophenyl
	Ia.329	CH2-CH2-C2H5	3-Chlorophenyl
	Ia.330	CH ₂ -CH ₂ -C ₂ H ₅	4-Chlorophenyl
	Ia.331	СH ₂ -СH ₂ -С ₂ H ₅	2-Fluorophenyl
45	Ia.332	CH2-CH2-C2H5	3-Fluorophenyl
	Ia.333	CH ₂ -CH ₂ -C ₂ H ₅	4-Fluorophenyl
	Ia.334	CH2-CH2-C2H5	2-Methylphenyl

	No.	R ¹	R ²
	Ia.335	CH2-CH2-C2H5	3-Methylphenyl
5	Ia.336	CH2-CH2-C2H5	4-Methylphenyl
	Ia.337	CH ₂ -CH ₂ -C ₂ H ₅	2-Methoxyphenyl
	Ia.338	CH2-CH2-C2H5	3-Methoxyphenyl
	Ia.339	CH2-CH2-C2H5	4-Methoxyphenyl
	Ia.340	CH ₂ -CH ₂ -C ₂ H ₅	2~(Methoxycarbonyl)phenyl
10	Ia.341	СH ₂ -СH ₂ -С ₂ H ₅	3-(Methoxycarbonyl)phenyl
10	Ia.342	CH2-CH2-C2H5	4-(Methoxycarbonyl)phenyl
	Ia.343	СH ₂ -СH ₂ -С ₂ H ₅	2-Nitrophenyl
	Ia.344	CH2-CH2-C2H5	3-Nitrophenyl
	Ia.345	СH ₂ -СH ₂ -С ₂ H ₅	4-Nitrophenyl
15	Ia.346	CH2-CH2-C2H5	2-(Dimethylamino)phenyl
	Ia.347	CH ₂ -CH ₂ -C ₂ H ₅	3-(Dimethylamino)phenyl
	Ia:348	CH ₂ -CH ₂ -C ₂ H ₅	4-(Dimethylamino)phenyl
	Ia.349	CH ₂ -CH ₂ -C ₂ H ₅	2-(Trifluoromethyl)phenyl
20	Ia.350	CH2-CH2-C2H5	3-(Trifluoromethyl)phenyl
	Ia.351	СH ₂ -СH ₂ -С ₂ H ₅	4-(Trifluoromethyl)phenyl
	Ia.352	СH ₂ -СH ₂ -С ₂ H ₅	3-(Phenoxy)phenyl
	Ia.353	СH ₂ -СH ₂ -С ₂ H ₅	4-(Phenoxy)phenyl
25	Ia.354	СH ₂ -СH ₂ -С ₂ H ₅	2,4-Difluorophenyl
	Ia.355	CH ₂ -CH ₂ -C ₂ H ₅	2,4-Dichlorophenyl
l	Ia.356	. СH ₂ -СH ₂ -С ₂ H ₅	3,4-Difluorophenyl
	Ia.357	CH ₂ -CH ₂ -C ₂ H ₅	3,4-Dichlorophenyl
30	Ia.358	CH ₂ -CH ₂ -C ₂ H ₅	3,5-Difluorophenyl
30	Ia.359	CH ₂ -CH ₂ -C ₂ H ₅	3,5-Dichlorophenyl
ĺ	Ia.360	CH ₂ -CH ₂ -C ₂ H ₅	2-Pyridyl
	Ia.361	CH ₂ -CH ₂ -C ₂ H ₅	3-Pyridyl
Ì	Ia.362	СH ₂ -СH ₂ -С ₂ H ₅	4-Pyridyl
35	Ia.363	CH ₂ -CH ₂ -C ₂ H ₅	α-Naphthyl
1	Ia.364	CH ₂ -CH ₂ -C ₂ H ₅	Benzyl
	Ia.365	CH ₂ -CH ₂ -C ₂ H ₅	2-Chlorobenzyl
	Ia.366	CH ₂ -CH ₂ -C ₂ H ₅	3-Chlorobenzyl
40	Ia.367	CH2-CH2-C2H5	4-Chlorobenzyl
	Ia.368	CH ₂ -CH ₂ -C ₂ H ₅	2-Methoxybenzyl
	Ia.369	CH ₂ -CH ₂ -C ₂ H ₅	3-Methoxybenzyl
1	Ia.370	CH ₂ -CH ₂ -C ₂ H ₅	4-Methoxybenzyl
45	Ia.371	CH(CH ₃) ₂	CH ₂ CH ₂ -Cl
	Ia.372	CH(CH ₃) ₂	CH ₂ CH ₂ -CN
[Ia.373	CH(CH ₃) ₂	CH ₂ -CO-OCH ₃
			•

	No.	R ¹	R ²
	Ia.374	CH(CH ₃) ₂	CH ₂ -CO-OC ₂ H ₅
	Ia.375	CH(CH ₃) ₂	CH(CH ₃)-CO-OCH ₃
5	Ia.376	CH(CH ₃) ₂	CH ₂ CH ₂ -OCH ₃
	Ia.377	CH(CH ₃) ₂	CH(CH ₃) ₂
	Ia.378	CH(CH ₃) ₂	CH(CH ₃)-C ₂ H ₅
	Ia.379	CH(CH ₃) ₂	CH2-CH(CH3)2
	Ia.380	CH(CH ₃) ₂	C(CH ₃) ₃
10	Ia.381	CH(CH ₃) ₂	$CH(CH_3)-CH_2-C_2H_5$
	Ia.382	CH(CH ₃) ₂	CH ₂ -CH(CH ₃)-C ₂ H ₅
	Ia.383	CH(CH ₃) ₂	CH ₂ CH ₂ -CH(CH ₃) ₂
	Ia.384	CH(CH ₃) ₂	CH ₂ -CH=CH ₂
15	Ia.385	CH(CH ₃) ₂	CH(CH ₃)=CH ₂
	Ia.386	CH(CH ₃) ₂	CH ₂ =CH-CH ₃
•	Ia.387	CH(CH ₃) ₂	CH ₂ -C∏ CH
	Ia.388	CH(CH ₃) ₂	СН(СН3)-С[]СН
20	Ia.389	CH (CH ₃) ₂	Cyclopropyl
	Ia.390	CH(CH ₃) ₂	CH ₂ -Cyclopropyl
	Ia.391	CH(CH ₃) ₂	Cyclopentyl
	Ia.392	CH(CH ₃) ₂	CH ₂ -Cyclopentyl
25	Ia.393	CH(CH ₃) ₂	CH ₂ -(1,3-Dioxolanyl)
	Ia.394	CH(CH ₃) ₂	CH ₂ -(2-Furyl)
	Ia.395	CH(CH ₃) ₂	CH ₂ -(3-Furyl)
	Ia.396	CH(CH ₃) ₂	CH ₂ -(2-Thienyl)
30	Ia.397	CH(CH ₃) ₂	CH ₂ -(3-Thienyl)
30	Ia.398	CH(CH ₃) ₂	Phenyl
	Ia.399	CH(CH ₃) ₂	2-Chlorophenyl
	Ia.400	CH(CH ₃) ₂	3-Chlorophenyl
	Ia.401	CH(CH ₃) ₂	4-Chlorophenyl
35	Ia.402	CH(CH ₃) ₂	2-Fluorophenyl
	Ia.403	CH(CH ₃) ₂	3-Fluorophenyl
40	Ia.404	CH(CH ₃) ₂	4-Fluorophenyl
	Ia.405	CH(CH ₃) ₂	2-Methylphenyl
	Ia.406	CH(CH ₃) ₂	3-Methylphenyl
	Ia.407	CH(CH ₃) ₂	4-Methylphenyl
	Ia.408	CH(CH ₃) ₂	2-Methoxyphenyl
	Ia.409	CH(CH ₃) ₂	3-Methoxyphenyl
45	Ia.410	CH(CH ₃) ₂	4-Methoxyphenyl
	Ia.411	CH(CH ₃) ₂	2-(Methoxycarbonyl)phenyl
	Ia.412	. CH(CH ₃) ₂	3-(Methoxycarbonyl)phenyl

	No.	R ¹	R ²
	Ia.413	CH(CH ₃) ₂	4-(Methoxycarbonyl)phenyl
5	Ia.414	CH(CH ₃) ₂	2-Nitrophenyl
	Ia.415	CH(CH ₃) ₂	3-Nitrophenyl
	Ia.416	CH(CH ₃) ₂	4-Nitrophenyl
	Ia.417	CH(CH ₃) ₂	2-(Dimethylamino)phenyl
	Ia.418	CH(CH ₃) ₂	3-(Dimethylamino)phenyl
10	Ia.419	CH(CH ₃) ₂	4-(Dimethylamino)phenyl
10	Ia.420	CH(CH ₃) ₂	2-(Trifluoromethyl)phenyl
	Ia.421	CH(CH ₃) ₂	3-(Trifluoromethyl)phenyl
	Ia.422	CH(CH ₃) ₂	4-(Trifluoromethyl)phenyl
	Ia.423	CH(CH ₃) ₂	3-(Phenoxy)phenyl
15	Ia.424	CH(CH ₃) ₂	4-(Phenoxy)phenyl
	Ia.425	CH(CH ₃) ₂	2,4-Difluorophenyl
!	Ia.426	CH(CH ₃) ₂	2,4-Dichlorophenyl
	Ia.427	CH(CH ₃) ₂	3,4-Difluorophenyl
20	Ia.428	CH(CH ₃) ₂	3,4-Dichlorophenyl
	Ia.429	CH(CH ₃) ₂	3,5-Difluorophenyl
:	Ia.430	CH(CH ₃) ₂	3,5-Dichlorophenyl
	Ia.431	CH(CH ₃) ₂	2-Pyridyl
25	Ia.432	CH(CH ₃) ₂	3-Pyridyl
.,	Ia.433	CH(CH ₃) ₂	4-Pyridyl
	Ia.434	CH(CH ₃) ₂	α-Naphthyl
	Ia.435	CH(CH ₃) ₂	Benzyl
	Ia.436	CH(CH ₃) ₂	2-Chlorobenzyl
30	Ia.437	CH(CH ₃) ₂	3-Chlorobenzyl
	Ia.438	CH(CH ₃) ₂	4-Chlorobenzyl
	Ia.439	CH(CH ₃) ₂	2-Methoxybenzyl
	Ia.440	CH(CH ₃) ₂	3-Methoxybenzyl
35	Ia.441	CH(CH ₃) ₂	4-Methoxybenzyl
	Ia.442		-(CH ₂) ₄ -
	Ia.443		-CH ₂ -CH=CH-CH ₂ -

- 40 Other very especially preferred compounds I are those of the formulae Ib to Iz, I ϕ , I λ , I π , I ψ and I ζ , in particular
- the compounds Ib.1 to Ib.443, which differ from the corresponding compounds Ia.1 to Ia.443 only in that R²⁹ is amino:

PCT/EP01/04850

the compounds Ic.1 to Ic.443, which differ from the
 corresponding compounds Ia.1 to Ia.443 only in that X¹ is hydrogen:

20 - the compounds Id.1 to Id.443, which differ from the corresponding compounds Ia.1 to Ia.443 only in that X^1 is hydrogen and R^{29} = amino:

- the compounds Ie.1 to Ie.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q^5 , A^1 is oxygen, R^7 is diffuoromethyl and R^8 is methyl:

$$H_3C$$
 N
 N
 SO_2
 NR^1R^2
 $Ie;$

- the compounds If.1 to If.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that X^1 is chlorine, Q is Q^5 , A^1 is oxygen, R^7 is diffuoromethyl and R^8 is methyl:

30

35

15

25

35

- the compounds Ig.1 to Ig.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q⁵, A¹ is oxygen and R⁷ + R⁸ is tetramethylene:

- the compounds Ih.1 to Ih.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that X^1 is chlorine, Q is Q^5 , A^1 is oxygen and R^7 + R^8 is tetramethylene:

- the compounds Ij.1 to Ij.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q²², A¹⁰ and A¹¹ are oxygen, A¹² is sulfur and R³², R³³ are methyl:

the compounds Ik.1 to Ik.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q^{22} , A^{10} , A^{11} & A^{12} are oxygen and R^{32} & R^{33} are methyl:

- the compounds Im.1 to Im.443, which differ from the

corresponding compounds Ia.1 to Ia.443 in that Q is Q²⁷, A¹³ is oxygen, R³⁴ & R³⁶ are hydrogen and R³⁵ is trifluoromethyl:

15
$$F_3C$$
 N
 O
 N
 $SO_2-NR^1R^2$
 $Im;$

the compounds In.1 to In.443, which differ from the
 corresponding compounds Ia.1 to Ia.443 in that Q is Q²⁷, A¹³ is oxygen, R³⁴ is hydrogen, R³⁵ is trifluoromethyl and R³⁶ is methyl:

25
$$H_{3}C$$

$$N$$

$$N$$

$$N$$

$$SO_{2}-NR^{1}R^{2}$$

$$In;$$

30 - the compounds Io.1 to Io.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q^{27} , A^{13} is oxygen, R^{34} is hydrogen, R^{35} is SO_2-CH_3 and R^{36} is amino:

35
$$H_{2}N$$

$$0$$

$$N$$

$$SO_{2}-NR^{1}R^{2}$$

$$Io;$$

40 - the compounds Ip.1 to Ip.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q^{32} , R^{37} is chlorine, R^{38} is difluoromethoxy and R^{39} is methyl:

15

25

35

$$F_2HC-O$$
 $C1$ O $SO_2-NR^1R^2$ $Ip;$

the compounds Iq.1 to Iq.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³², R³⁷ is bromine, R³⁸ is difluoromethoxy and R³⁹ is methyl:

$$F_2HC-O$$
 H_3C-N
 F
 $SO_2-NR^1R^2$
 Iq

the compounds Ir.1 to Ir.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that X¹ is chlorine,
 Q is Q³², R³⁷ is bromine, R³⁸ is diffluoromethoxy and R³⁹ is methyl:

$$F_2HC-O$$
 Br
 O
 N
 $SO_2-NR^1R^2$
 $Ir;$

- the compounds Is.1 to Is.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³², R³⁷ is chlorine, R³⁸ is trifluoromethyl and R³⁹ is methyl:

$$F_3C$$
 R_3C
 R_3C

- the compounds It.1 to It.443, which differ from the

40 corresponding compounds Ia.1 to Ia.443 in that Q is Q³², R³⁷ is

bromine, R³⁸ is trifluoromethyl and R³⁹ is methyl:

$$F_3C$$
 Br
 O
 SO_2
 NR^1R^2
 $It;$

the compounds Iu.1 to Iu.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that X¹ is chlorine,
 Q is Q³2, R³7 is bromine, R³8 is trifluoromethyl and R³9 is methyl:

- the compounds Iv.1 to Iv.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³², R³⁷ is chlorine, R³⁸ is SO₂-CH₃ and R³⁹ is methyl:

- the compounds Iw.1 to Iw.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³², R³⁷ is bromine, R³⁸ is SO₂-CH₃ and R³⁹ is methyl:

- the compounds Ix.1 to Ix.443, which differ from the

40 corresponding compounds Ia.1 to Ia.443 in that X¹ is chlorine,

Q is Q³², R³⁷ is bromine, R³⁸ is SO₂-CH₃ and R³⁹ is methyl:

15

25

35

45

$$H_3C-SO_2$$
 H_3C-N
 N
 $SO_2-NR^1R^2$
 $Ix;$

the compounds Iy.1 to Iy.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³⁸, R⁴⁰ is chlorine, R⁴¹, R⁴³ are hydrogen and R⁴² is trifluoromethyl:

$$F_3C$$
 $C1$
 O
 SO_2
 NR^1R^2
 $Iy;$

the compounds Iz.1 to Iz.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q³⁹, A¹ is oxygen, A¹⁵ is sulfur, R⁴⁴ and R⁴⁵ are methyl:

the compounds Iø.1 to Iø.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q⁴⁰, A¹⁶ & A¹⁷ are oxygen and R⁴⁶ + R⁴⁷ form a chain -CH₂CH₂-O-CH₂-:

the compounds Iλ.1 to Iλ.443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q⁴⁰, A¹⁶ is sulfur, A¹⁷ is oxygen and R⁴⁶ + R⁴⁷ form a chain -CH₂CH₂-0-CH₂-:

- the compounds $I\pi.1$ to $I\pi.443$, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q^{40} , A^{16} & A^{17} are sulfur and R^{46} + R^{47} form a chain -CH₂CH₂-O-CH₂-:

5

10

- the compounds I ψ .1 to I ψ .443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q⁴⁰, A¹⁶ is oxygen, A¹⁷ is sulfur and R⁴⁶ + R⁴⁷ form a chain -CH₂CH₂-O-CH₂-:

15

$$\begin{array}{c|c}
O & N & S \\
N & N & SO_2 - NR^1R^2 \\
O & I\psi;
\end{array}$$

20

- the compounds I ζ .1 to I ζ .443, which differ from the corresponding compounds Ia.1 to Ia.443 in that Q is Q⁷, A³ & A⁴ are oxygen and R⁹ + R¹⁰ form a tetramethylene chain:

25

30

The uracil substituted phenyl sulfamoyl carboxamides I according to the invention are obtainable by various routes available and known to those skilled to the art, preferably by one of the processes described hereinbelow.

35

A) Reaction of a benzoic acid derivative II with a sulfamide III, optionally in the presence of a coupling agent such as N,N-carbonyldiimidazole (CDI) or after converting II into the corresponding acid chloride:

40

45

Q
OH CDI or halogenation
$$X^2$$
OH SO₂—NR¹R²
 X^3
III
I (A = 0)

BNSDOCID: <WO___0183459A2_I_>

N,N'-carbonyldiimidazole (CDI) is added to a solution of the carboxylic acid derivative of formula II in an inert solvent such as tetrahydrofuran. The resulting mixture is stirred under reflux for a sufficient period of time to allow the reaction to come to completion, and is then cooled to room temperature. An optionally substituted sulfamide III is added followed by diazabicycloundecane (DBU) and the mixture is stirred until the reaction is complete. Standard workup and isolation methods give the product in purified form.

10

5

The benzoic acid derivatives II - and the corresponding carboxylates, which can be saponified in a simply manner to give the free acids II - are known from the literature or can be prepared analogously to methods known from the literature.

15

20

30

35

40

45

The methods for saponifying the esters to the benzoic acid derivatives II are sufficiently well known to the skilled artisan; consequently, details are not necessary. By way of example, reference is made to Kocienski, "Protecting Groups", Thieme Verlag 1994, and Greene, Wuts, Protecting groups in organic synthesis, Wiley 1999, and Houben-Weyl, Methoden der organischen Chemie, Vol. E5, Part I (1985), pp. 223 et seq.

In addition to activation to the imidazolones other methods are also suitable.

Various methods are suitable for activating the acids. They can, for example, be converted to the acid chloride by treating them with SOCl₂, POCl₃, PCl₅, COCl₂ or (COCl)₂. Alternatively, the imidazolide can be prepared by reaction with N,N-carbonyldiimidazole. The methods used are sufficiently well known to the skilled artisan, e.g., from Houben Weyl, Methoden der Organischen Chemie, Vol. E5 (1985), Part 1, pp. 587 et seq. and Vol. E5 (1985), Part II, pp. 934 et seq.

Methods of preparing benzoic acid derivatives II where Q is other than Q^{21} include those methods described in US 5,872,253, US 5,484,763 and in co-pending patent application Serial Number 09/368,340 filed August 4, 1999 and incorporated herein by reference thereto.

The precursors required for the synthesis of compounds I in which $Q = Q^{21}$, such as 2-chloro-5[3,6-dihydro-3-methyl-2,6-di-oxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-4-fluorobenzoic acid (CAS No. 120890-57-5), are described for example in EP-A

195 346, WO 89/02891, WO 98/08151 and the literature cited therein, or may be produced in the manner disclosed therein.

With regard to the esters of II where $Q = Q^5$, $A^1 = oxygen$, R^7 = difluoromethyl, $R^8 = methyl$, $X^1 = fluorine$ or chlorine and $X^2 = chlorine$, reference is made to US 5,035,740 and GB-A 22 53 625; with regard to II where $Q = Q^5$ and where R^7 and R^8 together with the atoms to which they are attached form a 6-membered ring, such as

- 2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1,2,4-triazolo[4,3-a]pyridin-2(3H)-yl)benzoic acid methyl ester (CAS No. 104799-37-3), reference is made to JP-A 61/069,776. Such compounds are also mentioned in WO 94/22860.
- Benzoic acid derivatives II where Q is Q²², A¹⁰ & A¹¹ = oxygen, A¹² = oxygen or sulfur, R³² & R³³ = amino or alkyl, X¹ = fluorine and X² = chlorine are known from EP-A 584,655 and WO 00/50409, e.g. 2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thi-oxo-1,3,5-triazinan-1-yl)-4-fluorobenzoic acid (CAS No. 289882-59-3) and 2-chloro-5-(3,5-dimethyl-2,4,6-trioxo-1,3,5-triazinan-1-yl)-4-fluorobenzoic acid methyl ester (CAS No. 154883-47-3).
- Benzoic acid derivatives II and their esters where Q is Q²⁷
 are known from WO 97/07104, WO 96/39392, WO 99/14201 and WO
 99/52878, e.g. 2-chloro-4-fluoro-5-(5-trifluormethyl3-pyridazinon-2-yl) benzoic acid (R³⁴ = hydrogen, R³⁵ = trifluoromethyl, R³⁶ = hydrogen, X¹ = fluorine and X² = chlorine)
 and 2-chloro-4-fluoro-5-(4-trifluoromethyl-5-trifluoromethyl3-pyridazinon-2-yl) benzoic acid (CAS No. 259141-58-7; R³⁴ =
 hydrogen, R³⁵ = trifluoromethyl, R³⁶ = methyl, X¹ = fluorine,
 X² = chlorine).

Benzoic acid derivatives II where Q is Q³² are known from EP-A 361,114, WO 92/06962, WO 96/02515, US 6,096,689 and WO 98/38169, e.g. 4-Chloro-3-[4-chloro-2-fluoro-5-carboxy-phenyl]-5-difluorormethoxy-1-methyl-1H-pyrazole (CAS No. 129631-53-4; Q = Q³², R³⁷ = chlorine, R³⁸ = difluoromethoxy, R³⁹ = methyl, X¹ = fluorine, X² = chlorine), 4-Chloro-3-[4-chloro-2-fluoro-5-carboxyphenyl]-5-trifluoromethyl-1-methyl-1H-pyrazole (CAS-No. 142622-56-8; Q = Q³², R³⁷ = chlorine, R³⁸ = difluoromethoxy, R³⁹ = methyl, X¹ = fluorine, X² = chlorine), or can be prepared in a manner similar to that described there.

Benzoic acid derivatives II where Q is Q³⁸ are known from WO 95/02580, US 5,783,522 and WO 98/07700, e.g. 2-chloro-5-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-4-fluorobenzoic acid (CAS No. 188782-31-2), or can be prepared in a manner similar to that described there.

Benzoic acid derivatives II where Q is Q³⁹ are known from WO 99/59983 and DE-A 19 835 943, or can be prepared in a manner similar to that described there.

10

5

Benzoic acid derivatives II where Q is Q^{40} are known from WO 94/10173 and WO 00/01700, or can be prepared in a manner similar to that described there.

Benzoic acid derivatives II where Q is Q⁵ can be prepared according to US 5,035,740 as follows:

20

25

30

35

40

The hydrazines IV are known, e.g, from WO 97/07104 ($X^1 = 100$ fluorine), or may be prepared in known manner.

The sulfamides of the formula III are obtainable according to methods known per se, for example analogously to the method described in Hamprecht et al., Angew. Chemie 93, 151 (1981) and Houben-Weyl, Methoden der Organischen Chemie, Vol. Ell (1985), pp. 1019 et seq.

As an example, formula III sulfamides where X³ is hydrogen may be prepared by reaction of S-chlorosulfonamide with an amine HNR¹R²:

25

30

40

$$H_2N-SO_2-C1 + HNR^1R^2 \rightarrow H_2N-SO_2-NR^1R^2$$

III (X⁵ = H)

36

Formula III sulfamides where X³ is not hydrogen may be prepared by reaction of sulfuryl chloride with an amine HNR¹R² to give the sulfamoyl chloride compound Cl-SO₂-NR¹R², and reacting said sulfamoyl chloride compound with an amine X³-NH₂:

10
$$C1-SO_2-C1 + HNR^1R^2 \longrightarrow C1-SO_2-NR^1R^2 \xrightarrow{+ X^5-NH_2} III$$

B) Displacement of a halide by Q:

15 Hal
$$X^{1}$$
 X^{2} X^{2} X^{3} X^{2} X^{3} X^{2} X^{3} X^{2} X^{3} X^{2} X^{3} X^{2} X^{3} X^{4} X^{2} X^{3}

Hal = halogen, preferably fluorine, chlorine or bromine.

By this route, an aniline of formula IV is converted to a diazonium salt, then treated with iodine and potassium iodide to give the iodo compound of the formula V. Reaction of formula V compounds with an unsubstituted QH moiety, for example, a uracil of formula Q²¹H in the presence of a copper(I) catalyst gives a final product of formula Ia. In this way, compounds I according to the invention where Q = Q²¹ can be obtained, by analogy to the method disclosed by T. Maruyama, K. Fujiwara and M. Fukuhara in J. Chem. Soc., Perkin Trans. 1995 (7), pp. 733-734, where Hal = iodine, and the reaction is carried out with the addition of a Cu(I) source.

However, transition-metal-free methods are also suitable if the substituents Hal, X^1 and X^2 are properly selected. In this respect, reference is made by way of example to WO 96/39392, which describes methods which are suitable for the manufacture of compounds I where $Q = Q^{27}$.

The haloaryl precursors V can be obtained by a Sandmeyer reaction from the corresponding anilines (see also formula scheme V).

These methods are sufficiently well known to the skilled artisan, so reference is only made here to Houben-Weyl, Methoden der Org.

45 Chemie, Vol. 5/4, 4th edition 1960, pp. 438 et seq.

C) Reaction of an aniline intermediate VI with an oxazinone compound of the formula VII to give a compound I where A is oxygen, X³ is hydrogen, Q is Q²¹, A⁸ & A⁹ are oxygen and R²⁹ is hydrogen, optionally followed by alkylation and hydrolysis:

5

$$\begin{array}{c|c}
 & O \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

VI

10

15

20

25

I (A = 0;
$$X^3$$
 = H; Q = Q^{21} ; A^8 , A^9 = 0; R^{29} | H; R^{30} = CF_3 ; R^{31} = H)

30

 $R^{29}\text{-Hal}$ represents a $C_1\text{-}C_6\text{-alkyl}$, $C_1\text{-}C_6\text{-haloalkyl}$, $C_3\text{-}C_7\text{-}$ cycloalkyl, $C_2\text{-}C_6\text{-alkenyl}$, $C_2\text{-}C_6\text{-haloalkenyl}$ or $C_3\text{-}C_6\text{-alkynyl}$ halide.

35

Among the methods known for the preparation of oxazinone compounds VII are those described in WO 99/14216.

40

Formula VI aniline derivatives may be prepared by conventional procedures such as the conversion of the appropriately substituted benzoic acid IX to the corresponding sulfamoyl carboxamide X (see method A_j above), which in turn is then nitrated and reduced:

45

25

Suitable nitration reagents are for example nitric acid in various concentrations, including concentrated and fuming nitric acid, mixtures of sulfuric and nitric acid, and acetyl nitrates and alkyl nitrates.

The reaction can be carried out either without a solvent in an excess of the nitration reagent or in an inert solvent or diluent, suitable agents being, for example, water, mineral acids, organic acids, halohydrocarbons such as methylene chloride, anhydrides such as acetic anhydride, and mixtures thereof.

230 The sulfamoyl carboxamide X and the nitration reagent are expediently employed in approximately equimolar amounts; with regard to the yield of X, it may be advantageous to use the nitration reagent in an excess of up to about 10 times the molar amount, based on the amount of X. When the reaction is carried out without a solvent in the nitration reagent, the latter is present in an even greater excess.

The reaction temperature is generally from $(-100)^{\circ}$ C to 200°C, preferably from (-30) to 50°C.

The nitrated compounds XI can then be reduced to the aniline derivatives VI.

The reduction is generally carried out by reaction of the nitro compound with a transition metal such as iron, zinc or tin under acidic conditions or with a complex hydride such as

lithium aluminium hydride and sodium borohydride, the reduction being carried out in bulk or in a solvent or diluent.

Examples of suitable solvents are - depending on the reducing agent selected - water, alcohols such as methanol, ethanol and isopropanol, or ethers such as diethyl ether, methyl tert-butyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether.

- 10 If a metal is used for reduction purposes, it is preferable to work without a solvent in an inorganic acid, especially in concentrated or dilute hydrochloric acid, or in a liquid organic acid such as acetic acid and propionic acid. However, the acid can also be diluted with an inert solvent, e.g., one of those mentioned above. The reduction with complex hydrides is carried out preferably in a solvent, for example an ether or an alcohol.
- The nitrated compound XI and the reducing agent are
 frequently used in approximately equimolar amounts; to
 optimize the reaction it may however be advantageous to use
 either component in an excess of up to about the 10-fold
 molar amount.
- The amount of acid is not critical. So as to reduce the starting compound as completely as possible, it is expedient to use at least an equivalent amount of acid. Frequently, the acid is used in excess, based on the nitrated compound XI.
- The reaction temperature is generally from (-30) to 200°C, preferably from 0 to 80°C.

For working up, the reaction mixture is as a rule diluted with water and the product is isolated by filtration,

crystallization or extraction with a solvent which is substantially immiscible with water, e.g., ethyl acetate, diethyl ether or methylene chloride. If desired, the product VI can then be purified in conventional manner.

The nitro group of compounds XI can also be hydrogenated catalytically with hydrogen. Examples of suitable catalysts to this end are Raney nickel, palladium on charcoal, palladium oxide, platinum and platinum oxide. An amount of from 0.05 to 50 mol%, based on the compound XI to be reduced, is generally sufficient.

WO 01/83459

5

PCT/EP01/04850

It is possible to dispense with a solvent, or to use an inert solvent or diluent, e.g., acetic acid, a mixture of acetic acid and water, ethyl acetate, ethanol or toluene. When the catalyst has been separated off, the reaction solution can be worked up as usual to give the product VI. Hydrogenation can be effected at atmospheric or superatmospheric hydrogen pressure.

Further methods and reaction conditions are given in the literature (see, for example, Houben-Weyl, Methoden der Organischen Chemie, nitrogen compounds I, Part 1 (1971), Vol. X/1, pp. 463 et seq.).

Not only the compounds I according to the invention where $Q=Q^{21}$, but also compounds I where $Q=Q^7$, Q^{22} or Q^{40} can be produced from the aniline derivatives VI. To prepare compounds I where $Q=Q^{22}$, reference is made to the methods described in WO 00/50409 and EP-A 584 655, and to prepare compounds I where $Q=Q^{40}$, reference is made to the methods taught in WO 94/10173 and WO 00/01700.

The aniline derivatives VI can, however, also be converted in conventional manner (see, for example, WO 97/07104 and Houben-Weyl, Methoden der Organischen Chemie, Vol. E1, nitrogen compounds) to the corresponding hydrazines, from which compounds I where $Q = Q^5$ oder Q^{27} can be prepared.

Further methods for preparing compounds I according to the invention are given in Böger, Wakabayashi Peroxidizing herbicides, Springer Verlag 1999.

D) Reacting a benzoic acid derivative VIII with an electrophilic amination reagent in the presence of a base to give the corresponding N-amino uracil benzoic ester, hydrolyzing said ester to give the benzoic acid II (with Q = Q²¹; A⁸ & A⁹ = O; R²⁹ = NH₂) and converting the latter to the compounds I (A = O; Q = Q²¹; A⁸ & A⁹ = O; R²⁹ = NH₂) by the route described above:

40

25

30

45

WO 01/83459

Examples of electrophilic amination reagents are in particular 2,4-dinitrophenylhydroxylamine and O-mesitylene-sulfonyl hydroxylamine.

Examples of suitable reaction conditions are given in DE-A 19 652 431.

30 All the processes described above are expediently carried out under atmospheric pressure or under the inherent pressure of the reaction mixture in question.

As a rule, the reaction mixtures are worked up by methods known per se, for example by removing the solvent, partitioning the residue between a mixture of water and a suitable organic solvent and working up the organic phase to obtain the product.

The uracil substituted phenyl sulfamoyl carboxamides I according to the invention can be obtained from the preparation as isomer mixtures which, if desired, can be separated into the pure isomers by the methods conventionally used for this purpose, eg. by means of crystallization or chromatography on an optically active adsorbate. Pure optically active isomers can, for example, also be prepared from suitable optically active starting materials.

Compounds I with C-H acidic substituents can be converted into their alkali metal salts in a manner known per se by reaction with a base of the corresponding cation.

5 Salts of I whose metal ion is not an alkali metal ion can normally be prepared by double decomposition of the corresponding alkali metal salt in aqueous solution.

Other metal salts, such as manganese, copper, zinc, iron,

10 calcium, magnesium and barium salts, can be prepared from the
sodium salts in the customary manner, and also ammonium and
phosphonium salts by means of ammonia, phosphonium, sulfonium or
sulfoxonium hydroxides.

- 15 The compounds I and their agriculturally useful salts are suitable as herbicides, both in the form of isomer mixtures and in the form of the pure isomers. The herbicidal compositions comprising I effect very good control of vegetation on non-crop areas, especially at high rates of application. In crops such as
- 20 wheat, rice, maize, soybeans and cotton they act against broad-leaved weeds and grass weeds without damaging the crop plants substantially. This effect is observed especially at low rates of application.
- 25 Depending on the application method in question, the compounds I, or compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

 Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus
- 30 officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica),
- 35 Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum
- 40 usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre,
- 45 Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia

faba, Vitis vinifera and Zea mays.

Moreover, the compounds I may also be used in crops which have been made fully or partially tolerant to the action of herbicides 5 due to breeding including genetic engineering methods.

Furthermore, the substituted hydroximic acid derivatives I are also suitable for the desiccation and/or defoliation of plants.

- 10 As desiccants, they are especially suitable for desiccating the aerial parts of crop plants such as potatoes, oilseed rape, sunflowers and soybeans. This allows completely mechanical harvesting of these important crop plants.
- 15 Also of economic interest is facilitated harvesting, which is made possible by concentrating, over a period of time, dehiscence, or reduced adhesion to the tree, in the case of citrus fruit, olives or other species and varieties of pomaceous fruit, stone fruit and nuts. The same mechanism, ie. promotion of the formation of abscission tissue between fruit or leaf and shoot of the plants, is also essential for readily controllable defoliation of useful plants, in particular cotton.

Moreover, a shortened period of time within which the individual 25 cotton plants ripen results in an increased fiber quality after harvesting.

The compounds I, or the compositions comprising them, can be employed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for spreading or granules, by means of spraying, atomizing, dusting, spreading or pouring. The use forms depend on the intended purposes; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention.

Suitable inert additives are essentially: mineral oil fractions of medium to high boiling point such as kerosene and diesel oil,

40 furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, eg. paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol,

45 ketones such as cyclohexanone or strongly polar solvents, eg. amines such as N-methylpyrrolidone or water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the substituted hydroximic acid derivatives as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agent, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetting agent, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and these concentrates are suitable for dilution with water.

44

Suitable surfactants are the alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, eg. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of 15 fatty acids, of alkyl- and alkylaryl sulfonates, of alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and of fatty alcohol glycol ether, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene, or 20 of the naphthalenesulfonic acids, with phenol and formaldehyde, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octylor nonylphenol, alkylphenyl and tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, 25 polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for spreading and dusts can be prepared by 30 mixing or concommitantly grinding the active substances with a solid carrier.

Granules, eg. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and products of vegetable origin such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders or other solid carriers.

The concentrations of the active ingredients I in the 45 ready-to-use products can be varied within wide ranges. In general, the formulations comprise approximately from 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one

WO 01/83459

active ingredient. The active ingredients are normally employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).

- 5 The formulation examples below illustrate the preparation of such formulations:
- amoyl carboxamide I are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide and 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium dodecylbenzenesulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil.

 Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.
- 20 II. 20 parts by weight of an uracil substituted phenyl sulfamoyl carboxamide I are dissolved in a mixture composed of
 40 parts by weight of cyclohexanone, 30 parts by weight of
 isobutanol, 20 parts by weight of the adduct of 7 mol of
 ethylene oxide and 1 mol of isooctylphenol and 10 parts by
 weight of the adduct of 40 mol of ethylene oxide and 1 mol
 of castor oil. Pouring the solution into 100,000 parts by
 weight of water and finely distributing it therein gives an
 aqueous dispersion which comprises 0.02% by weight of the
 active ingredient.
- III. 20 parts by weight of an uracil substituted phenyl sulfamoyl carboxamide I are dissolved in a mixture composed of
 25 parts by weight of cyclohexanone, 65 parts by weight of
 a mineral oil fraction of boiling point 210 to 280°C and
 10 parts by weight of the adduct of 40 mol of ethylene
 oxide and 1 mol of castor oil. Pouring the solution into
 100,000 parts by weight of water and finely distributing it
 therein gives an aqueous dispersion which comprises 0.02%
 by weight of the active ingredient.
- IV. 20 parts by weight of an uracil substituted phenyl sulfamoyl carboxamide I are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalene-α-sulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel and the mixture is ground in a

hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprises 0.1% by weight of the active ingredient.

- ⁵ V. 3 parts by weight of an uracil substituted phenyl sulfamoyl carboxamide I are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active ingredient.
- VI. 20 parts by weight of an uracil substituted phenyl sulfamoyl carboxamide I are mixed intimately with 2 parts by weight of calcium dodecylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.
- VII. 1 part by weight of an uracil substituted phenyl sulfamoyl carboxamide I is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.

VIII. 1 part by weight of an uracil substituted phenyl sulfamoyl carboxamide I is dissolved in a mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol® EM 31 (non-ionic emulsifier based on ethoxylated castor oil; BASF AG). This gives a stable emulsion concentrate.

The active ingredients I, or the herbicidal compositions comprising them, can be applied pre- or post-emergence. If the 35 active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spray apparatus, in such a way that they come into as little contact as possible, if any, with the leaves of the sensitive crop plants 40 while reaching the leaves of undesirable plants which grow underneath, or the bare soil (post-directed, lay-by).

Depending on the intended aim of the control measures, the season, the target plants and the growth stage, the application 45 rates of active ingredient are from 0.001 to 3.0, preferably 0.01 to 1 kg/ha active substance (a.s.).

To widen the spectrum of action and to achieve synergistic effects, the substituted hydroximic acid derivatives I can be mixed and applied jointly with a large number of representatives of other groups of herbicidally or growth-regulatory active ingredients. Suitable components in mixtures are, for example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles, anilides, (het)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones,

- 10 2-aroyl-1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenylderivatives, carbamates, quinolinecarboxylic acid and its derivatives, chloroacetanilides, cyclohexane-1,3-dione derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans,
- 15 dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- or hetaryloxyphenoxypropionic esters,
- 20 phenylacetic acid and its derivatives, phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.

25

Moreover, it may be advantageous to apply the compounds I, alone or in combination with other herbicides, in the form of a mixture with additional other crop protection agents, for example with pesticides or agents for controlling phytopathogenic fungi or 30 bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates can also be added.

35 PREPARATION EXAMPLES

In order to facilitate a further understanding of the invention, the following examples are presented to illustrate more specific datails thereof. The term NMR designates nuclear magnetic resonance; HPLC designates high performance liquid

40 chromatography; TLC designates thin layer chromatography; GLC designates gas-liquid chromatography and IR designates infrared spectroscopy.

Example 1: Preparation of 2-Chloro-4-fluoro-5-nitrobenzoic Acid

A solution of 2-chloro-4-fluorobenzoic acid (24.4 g, 0.142 mol) in 150 ml of concentrated sulfuric acid at 0°C was treated dropwise with 90% nitric acid (13.2 ml, 20 mol%, 0.284 mol) over a 10 min. period at 10°C, stirred for 2.5 hours at 0 to 10°C,

- 10 poured onto one liter of ice. The white solid was filtered. The filtercake was air-dried and recrystallized from ethyl acetate/heptane to afford the title compound as off-white needles. Yield: 18.0 g (58.1%); identified by NMR spectral analysis.
- 15 EXAMPLE 2: Preparation of 2-Chloro-4-fluoro-5-aminobenzoic acid

- 20 A solution of 2-chloro-4-fluoro-5-nitrobenzoic acid (18.0 g, 0.0824 mol) in 75 ml of acetic acid was heated at reflux temperature. Iron powder (18.4 g, 0.328 mol) was added in several portions and the resulting suspension was cooled to room temperature and diluted with water and ethyl acetate. The mixture 25 was filtered and the filtrate was saved. The organic layer was
- washed with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to afford the title compound as a tan solid. Yield: 9.00 g (58.1%); mp.: 153-155°C; identified by NMR and mass spectral analysis.

EXAMPLE 3: Preparation of 3-(5-Carboxy-4-choro-2-fluorophenyl)-1,2,3,4-dihydro-6-trifluoromethylpyrimidin-2,4-dione

- 40 A mixture of 2-chloro-4-fluoro-5-aminobenzoic acid (8.30 g, 0.04308 mol), 2-dimethylamino-4-(trifluoromethyl)-6H-1,3-oxazin-6-one (9.57 g, 0.0460 mol) and acetic acid was stirred three hours at reflux temperature, diluted with ice water and extracted twice with ethyl acetate. The combined organic layers were washed
- 45 with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to afford the title compound as a tan solid. Yield: 14.0 g (92.1%); identified by NMR and mass

spectral analysis.

Example 4: Preparation of 3-(5-Carboxymethoxy-4-choro-2-fluoro-phenyl)-1,2,3,4-dihydro-1-methyl-6-trifluoromethyl-pyrimidin-2,4-dione

A mixture of 3-(5-carboxy-4-choro-2-fluorophenyl)-1,2,3,4-di-hydro-6-trifluoromethylpyrimidin-2,4-dione (13.3 g, 0.0377 mol), potassium carbonate (13.0 g, 0.0943 mol), methyl iodide (5.87 ml, 0.0943 mol) and dimethyl formamide (150 ml) was stirred overnight at room temperature and diluted with water (500 ml). The resulting mixture was extracted three times with ethyl acetate. The combined organic layers were washed three times with water, aqueous sodium hydroxide (0.1 N) and brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give a beige solid. Recrystallization of the residue from ethanol-water (250 ml) afforded the title compound as white needles. Yield: 11.5 g (80.4%); mp.: 172-173°C; identified by NMR and mass spectral analysis.

Example 5: Preparation of 3-(5-Carbomethoxy-4-chloro-2-fluoro-phenyl)-1,2,3,4-dihydro-6-trifluoromethylpyrimidin-2,4-dione

35

$$F_3C$$
 F_3C
 F_3C

Carbonyl diimidazole (2.97 g, 18.4 mmol) was added to a solution of 3-(5-carboxy-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-6-tri-fluoromethylpyrimidin-2,4-dione (4.61 g, 13.1 mmol) in 40 tetrahydrofuran and the resulting mixture was heated to reflux temperature, stirred two minutes and cooled to room temperature. Methanol (2.70 ml, 66.6 mmol) was added and the mixture was stirred overnight at room temperature. Subsequently, the mixture was concentrated under reduced pressure and the resultant residue 45 was taken up in methylene chloride. The organic mixture was washed twice with hydrochloric acid (10% aqueous and 5% aqueous) and water. The organic layer was concentrated under reduced

pressure to give a brown solid, which was suspended in methylene chloride, followed by filtration. The filtercake was washed three times with methylene chloride, filtered and dried to afford the title compound as a white solid, which was identified by NMR 5 spectral analysis. Yield: 4.27 g (89.0%).

EXAMPLE 6: Preparation of 3-(5-Carbomethoxy-4-chloro-2-fluoro-phenyl)-1,2,3,4-dihydro-1-amino-6-trifluoromethyl-pyrimidin-2,4-dione

25 To a suspension of 3-(5-carbomethoxy-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-6-trifluoromethylpyrimidin-2,4-dione (4.24 g, 11.6 mmol) in anhydrous tetrahydrofuran was added potassium carbonate (1.60 g, 11.6 mmol) followed by 0-mesitylenesulfonyl hydroxylamine (3.04 g, 14.1 mmol; J.G. Krause, Synthesis, 1972, 30 140). The resulting mixture was stirred overnight at room temperature and diluted with water. The mixture was extracted four times with ethyl acetate. The combined extracts were dried over anhydrous magnesium sulfate and concentrated under reduced pressure to afford the title compound as a foam, which was

35 identified by NMR spectral analysis. Yield: 4.63 g (>100%).

EXAMPLE 7: Preparation of 3-(5-Carboxy-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-1-amino-6-trifluoromethylpyrimidin-2,4-dione

40

$$NH_2$$
 F_3C
 NH_2
 NH_2

To a solution of 3-(5-carbomethoxy-4-chloro-2-fluorophenyl)1,2,3,4-dihydro-1-amino-6-trifluoromethylpyrimidin-2,4-dione
(1.53 g, 4.01 mmol) in anhydrous methylene chloride was added
boron tribromide (1M in methylene chloride, 16.0 ml, 16.0 mmol).

5 The resultant mixture was stirred overnight at room temperature and then diluted with water. The aqueous layer was separated and allowed to stand at room temperature overnight; filtration and drying afforded the title compound as a white solid, which was identified by NMR and mass spectral analysis. Yield: 0.61 g 10 (41.5%).

The original organic layer was concentrated under reduced pressure to a glassy solid, which was triturated with water to afford an additional amount of the title compound as a tan solid, which was identified by NMR and mass spectral analysis. Yield: 15 0.310 g (21.1%); mp.: 150°C (decomposition).

EXAMPLE 8: Preparation of 3-(5-carboxy-4-chloro-2-fluorophenyl)1,2,3,4-dihydro-1-methyl-6-trifluoromethylpyrimidin2,4-dione

$$F_{3}C$$

$$F_{3}C$$

$$CO-OCH_{3}$$

$$BBr_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

$$CO-OCH_{3}$$

Boron tribromide (84.0 ml, 0.0840 mol, 1M in methylene chloride) was added dropwise to a mixture of 3-(5-carbomethoxy-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-1-methyl-6-trifluoromethylpyrimidin-2,4-dione (10.7 g, 0.0281 mol) and methylene chloride (150 ml). The resulting mixture was stirred overnight at room temperature and diluted with ice water. The organic layer is saved and the aqueous layer was extracted twice with ethyl acetate. The extracts were combined with the organic layer, washed with brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to afford the title compound as a white solid, which was identified by NMR and mass spectral analysis. Yield: 10.2 g (100%); mp.: 240-241°C.

EXAMPLE 9: Preparation of S-Chlorosulfonamide

45 Formic acid (10.8 ml, 0.287 mol) was added dropwise over a two hour period to chlorosulfonyl isocyanate (25.0 ml, 0.287 mol), maintaining the temperature below 20°C. The resulting suspension

was stirred two hours at 20°C and diluted with anhydrous toluene (100 ml). The resulting mixture was stirred overnight at ambient temperature and filtered. The filtrate was concentrated under reduced pressure to afford the title compound as an off-white solid, which was identified by IR spectral analysis. Yield: 32.1 g (97.3%).

EXAMPLE 10: Preparation of N-Methylsulfamide

10
$$\frac{0}{12N-S} = 0 + \frac{0}{12N-CH_3} = \frac{0}{12N-S} = 0$$

A solution of S-chlorosulfonamide (3.00 g, 0.0260 mol) in tetrahydrofuran (10 ml) was added dropwise to methylamine (40 ml, 15 2M in tetrahydrofuran) at 10°C. The resulting mixture was stirred one hour at 0°C and three days at room temperature. The suspension was filtered and the filtrate concentrated under reduced pressure to give a yellow solid. Chromatography on silica gel (9:1 methylene chloride - methanol) afforded the title compound as an off-white solid, which was identified by NMR and mass spectral analysis. Yield: 1.36 g (47.4%).

EXAMPLES 11-15: Preparation of N-substituted sulfamides

25 Using essentially the same procedure as described in Example 10 hereinabove and substituting the appropriate amine starting material, the following compounds are prepared:

	Example	R ¹	R ²	mp. [°C]
	11	H	CH ₂ -C(CH ₃) ₃	_
	12	CH ₃	CH2-CH=CH2	36-38
35	13	CH ₃	benzyl	91-94
	14	CH(CH ₃) ₂	CH(CH ₃) ₂	-
	15	H	· H	-

40 Example 16: Preparation of O-2,4,5-trichlorophenyl sulfamate

45
$$C1$$
 OH
 $+ C1-SO_2-NCO$
 $C1$
 $C1$
 $O-SO_2-NH_2$

BNSDOCID: <WO___0183459A2_I_>

WO 01/83459

A solution of 2,4,5-trichlorophenol (96.0 g, 0.486 mol) in toluene (95 ml) was treated dropwise with chlorosulfonyl isocyanate (67.4 g, 0.476 mol) at 40-55°C. The resulting mixture was stirred three hours at reflux temperature, cooled to 40°C and quenched with water until gas evolution ceases. The suspension was filtered and the filtercake was air-dried to afford the title compound as a white solid, which is identified by NMR and IR spectral analysis. Yield: 118.5 g (90.0%).

10 Example 17: Preparation of N-methyl-N-isopropyl sulfamide

15 C1
$$O-SO_2-NH_2$$
 $+ HN-CH_2-C[] CH \longrightarrow H_2N-SO_2-N-CH_2-C[] CH$ CH_3 CH_3

Triethylamine (2.50 ml, 0.0181 mol) was added to a solution of methyl propargylamine (1.55 ml, 0.0181 mol) in acetonitrile. To the resulting mixture was added 0-2,4,5-trichlorophenyl sulfamate (5.00 g, 0.0181 mol). The resulting mixture was stirred for one hour at room temperature and filtered through silica gel with methylene chloride. The filtrate was concentrated under reduced pressure to afford a white solid. Chromatography of the residue on silica gel (0.5% methanol-methylene chloride) afforded the title compound, which was identified by NMR spectral analysis. Yield: 1.84 g (68.7%).

EXAMPLES 18-52: Preparation of N-substituted sulfamides

Using essentially the same procedure as described in Example 17 hereinabove and substituting the appropriate amine starting material, the following sulfamides were prepared:

 $H_2N-SO_2-NR^1R^2$

35

30

ĺ	Example	R ¹	R ²	mp. [°C] / ¹ H-NMR [ppm]				
	18	CH ₃	CH ₃					
	19	CH ₃	3-chlorobenzyl	-				
40	20	CH ₃	CH ₂ -C ₂ H ₅	_				
	21	C ₂ H ₅	C₂H ₅	39-41				
	22	H	CH(CH ₃)-C ₂ H ₅	_				
	23	CH ₃	C₂H ₅	32-34				
45	24	H	C(CH ₃) ₃	49-53				
	25	H	CH ₂ -C ₂ H ₅	32-35				
	26	. CH ₃	3-methoxybenzyl					

	Example	R ¹	R ²	mp. [°C] / ¹ H-NMR [ppm]
	27	CH ₃	CH ₂ -CH(CH ₃) ₂	103-104
	28	H	CH(CH ₃) ₂	_
5	29	CH ₃	CH(CH ₃) ₂	63-65
	30	H	C ₂ H ₅	_
	31	C ₂ H ₅	СH ₂ -С ₂ H ₅	_
	32	H	CH ₂ -CH ₂ -CH(CH ₃) ₂	_
10	33	CH ₃	CH ₂ -CH ₂ -phenyl	
10	34	CH ₃	phenyl	84-86
	35	H	Сн2-С□ Сн	_
	36	H	CH ₂ -(2-furyl)	62-64
	37	CH ₃	CH(CH ₃)-C ₂ H ₅	
15	38	H	CH ₂ -(2-thienyl)	93-96
	39	H	cyclopentyl	55
	40	Н	4-methoxybenzyl	_
ŀ	41	CH ₃	CH2-CH2-C2H5	_
20	42	CH ₃	CH ₂ -CH ₂ -CN	
	43	CH ₃	CH ₂ -(1,3-dioxalanyl)	_
	44	Н	4-chlorobenzyl	_
	45	CH ₃	C(CH ₃) ₃	54-57
25	46	-C	H ₂ -CH=CH-CH ₂ -	-
	47	H	cyclopropyl	58-60
	48	-СВ	2-CH ₂ -CH ₂ -CH ₂ -	84-86
	49	CH ₃	cyclopropyl	
	50	C ₂ H ₅	CH(CH ₃) ₂	-
30	51	Ħ	CH ₂ -CH(CH ₃) ₂	_
ĺ	52	H	СH ₂ -СH ₂ -С ₂ H ₅	
	53	CH ₃	CH ₂ -CO-OC ₂ H ₅	5.1(br.,s,2H), 4.25(q,2H), 4.1(s,2H),
35 l				3.0(s,3H), 1.3(t,3H)

EXAMPLE 54: Preparation of 3-(5-(N,N-dimethyl)sulfamoylcarbox-amido-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-6-tri-fluoromethylpyrimidin-2,4-dione

WO 01/83459

5

$$F_3C$$
 N
 $COOH$
 $+$
 $H_2N-SO_2-N(CH_3)_2$
 CH_3
 CH_3

55

15

To a solution of 3-(5-carboxy-4-chloro-2-fluorophenyl)-1,2,3,4-dihydro-1-methyl-6-(trifluoromethyl)pyrimidin-2,4-dione (1.50 g, 4.09 mmol) in tetrahydrofuran was added N,N'-carbonyldiimidazole (1.00 g, 6.14 mmol). The resulting mixture was stirred one hour 20 at reflux temperature and cooled to room temperature. Dimethyl sulfamide (0.760 g, 6.14 mmol) was added, followed by diazabicycloundecane (0.930 ml, 6.14 mmol) after 10 min. The resulting mixture was stirred overnight at room temperature and then concentrated under reduced pressure. The resultant residue was partitioned between ethyl acetate and hydrochloric acid (2N). The organic layer was saved and the aqueous phase was extracted three times with ethyl acetate. The extracts were combined with the saved organic layer, washed with 10% sodium bicarbonate, dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give a first residue.

The aqueous phase was acidified and extracted with ethyl acetate.

The organic layers were dried and concentrated under reduced pressure to give a second residue.

The residues were combined and washed with ethyl acetate to 35 afford the title compound as a white solid, which was identified by NMR and mass spectral analysis. Yield: 0.81 g (42.0%); mp. 213-214°C.

EXAMPLES 55-93: Preparation of 3-[5-(N-substituted)sulfamoylcarb-oxamido-4-chlorophenyl)-1,2,3,4-dihydro-6-(tri-fluoromethyl)pyrimidin-2,4-diones

Using essentially the above same procedure as described in Example 54 and substituting the appropriate sulfamide starting 45 material, the following compounds were obtained:

	Example	x ¹	R ¹	R ²	R ²⁹	mp. [°C]
10	No.				ł	
	55	F	CH ₃	3-chlorobenzyl	CH ₃	78-79
	56	F	H	CH ₃	CH ₃	232-233
	57	F	CH ₃	CH ₂ -C∏ CH		195-196
15	58	F	H	н	CH ₃	141-142
	59	F	CH ₃	allyl	CH ₃	189
	60	F	CH(CH ₃) ₂	CH(CH ₃) ₂	CH ₃	81-82
!	61	F	CH ₃	benzyl	CH ₃	90-91
20	62	F	C ₂ H ₅	CH ₂ -C ₂ H ₅	CH ₃	74-76
	63	F	H	CH ₂ -C ₂ H ₅	CH ₃	206-207
	64	F	H	CH(CH ₃)-C ₂ H ₅	CH ₃	221
	65	F	H	C(CH ₃) ₃	CH ₃	115
	66	F	CH ₃	C₂H₅	CH ₃	215-216
25	67	F	CH ₃	CH ₂ -C ₂ H ₅	CH ₃	72
	68	F	C ₂ H ₅	C ₂ H ₅	CH ₃	210-211
	69	F	CH ₃	CH(CH ₃)-C ₂ H ₅	CH ₃	
	70	F	CH ₃	3-methoxybenzyl	CH ₃	79
30	71	F	H	CH ₂ -C∏ CH	CH3	195-196
:	72	F	· H	CH2-CH2-CH(CH3)2	CH ₃	222-223
	73	F	CH ₃	phenyl	CH ₃	104-105
	74	F	CH ₃	CH ₂ -CH ₂ -phenyl	CH ₃	90-91
35	75	F	CH ₃	phenyl	NH ₂	120-142
	76	F_	CH ₃	CH(CH ₃) ₂	NH ₂	117-120
	77	F	Ħ	CH ₂ -(2-thienyl)	CH ₃	127-128
	78	F	Н	cyclopentyl	CH ₃	232-233
40	79	F	H	CH(CH ₃) ₂	CH ₃	221
40	80	F	H	C ₂ H ₅	CH ₃	211
	81	F	Ħ	CH ₂ -(2-furyl)	CH ₃	178-180
3	82	F	H	4-methoxybenzyl	CH ₃	186-188
l	83	F	CH ₃	CH2-CH2-C2H5	CH ₃	156-157
45	84	F	CH3	CH ₂ -CH ₂ -CN	CH ₃	99-103
	85	F	CH ₃	CH ₂ -(1,3-dioxolanyl)	CH ₃	93-96

	Example No.	x1	R ¹	R ²	R ²⁹	mp. [°C]
	86	F	Н	4-chlorobenzyl	CH ₃	95-99
_	87	F	CH ₃	C(CH ₃) ₃	CH ₃	126
5	88	F		-CH ₂ -CH=CH-CH ₂ -	CH ₃	231
	89	F	Н	cyclopropyl	CH ₃	208
	90	F		-CH ₂ -CH ₂ -CH ₂ -CH ₂ -	CH ₃	230
	91	F	CH ₃	cyclopropyl	CH ₃	156
10	92	F	C ₂ H ₅	CH(CH ₃) ₂	CH ₃	146
	93	F	H	CH ₂ -CH(CH ₃) ₂	CH ₃	202
	94	F	H	CH ₂ -CH ₂ -C ₂ H ₅	CH ₃	227
	95	H	CH ₃	Phenyl	CH ₃	108-110
15	96	F	CH ₃	4-(methoxycarbonyl)phenyl	CH ₃	102
	97	F	C ₂ H ₅	Phenyl	CH ₃	214-215
- (98	F	CH ₃	3-Pyridyl	CH ₃	208
	99	F	CH ₃	3,4-dichlorophenyl	CH ₃	118
20	100	F	CH ₃	3-chlorophenyl	CH ₃	183-184
	101	F	CH ₃	CH(CH ₃) ₂	CH ₃	93-95
	102	F	CH ₃	CH ₃	NH ₂	252
ſ	103	H	CH ₃	CH2-C∏ CH		228.2-229.0
	104	F	CH ₃	4-(methoxy)phenyl	CH ₃	136-138
25	105	F	CH ₃	4-chlorophenyl	CH ₃	110-111
	106	F	CH ₃	4-nitrophenyl	CH ₃	111-112
	107	F	CH ₃	4-methylphenyl	CH ₃	102
- {	108	H	H	H	CH ₃	143.5-145.8
30	109	H	CH ₃	СH ₂ -С ₂ H ₅	CH ₃	187.0-189.5
[110	H	CH ₃	C ₂ H ₅	CH ₃	245.5-246.0
[110 H CH ₃ 111 H CH ₃		CH ₃	CH ₂ -CH(CH ₃) ₂	CH ₃	164.1-164.7
[112	H	C ₂ H ₅	C₂H ₅	CH ₃	244.4-245.4
35	113	H	CH ₃	CH ₂ -CH ₂ -C ₂ H ₅	CH ₃	167.9-172.0
	114	H	CH ₃	CH ₃	CH ₃	228.8-231.5
	115	F	CH ₃	2-methylphenyl	CH ₃	125-127
[116	F	CH ₃	3-methylphenyl	CH ₃	187-189
40	117	F	CH ₃	α-naphthyl		131-133
10	118	F	CH ₃	2,4-difluorophenyl	CH ₃	118-119
[119	F	CH ₃	2-chlorophenyl	CH ₃	133
	120	F	CH ₃	2-(trifluoromethyl)phenyl	CH ₃	98-106
	121	H	CH ₃	4-(phenoxy)phenyl	CH ₃	95
45	122	F	CH ₃	4-(trifluoromethyl)phenyl	CH ₃	133
[123	F	CH ₃	4-(dimethylamino)phenyl	CH ₃	87

			, 			
Example x ¹			R ¹	R ²	R ²⁹	mp. [°C]
	124	F	CH ₃	4-diphenyl	CH ₃	125-133
5	125 F CH ₃ CH(CH ₃)-C ₂ H ₅		CH(CH ₃)-C ₂ H ₅	NH ₂	yellow glass	
	126	F	CH ₃	C(CH ₃) ₃	NH ₂	yellow glass
10	127	F	CH ₃	CH ₂ -CH(CH ₃) ₂	NH ₂	yellow glass
	128	28 F CH(CH ₃) ₂ CH(CH ₃) ₂		NH ₂	yellow glass	
	129	F	CH ₃	3-(methoxy)phenyl	CH ₃	86
	130	H	CH ₃	4-fluorophenyl	CH ₃	120
15	131	F	CH3	3-(dimethylamino)phenyl	CH ₃	85
	132	F	CH ₃	3,5-(dichloro)phenyl	СН3	104
	133	F	CH ₃	CH ₂ -CO-OC ₂ H ₅	CH ₃	118-119
20	134		112			

Example 135: Preparation of N'-{2-chloro-4-fluoro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4triazol-1-yl]-benzoyl}-N-isopropyl-N-methylsulfamide

Step 1:

2-(2-Fluoro-4-chloro-5-carbomethoxyphenylhdrazonyl)propionic acid

A solution of pyruvic acid (3.92 g, 44.5 mmol) in water (4 ml) was added to a mixture of hydrazine x1 (8.00 g, 36.6 mmol), ethanol (240 ml) and hydrochloric acid (10% strength, 37 ml). The mixture was stirred for 35 minutes at 45-60°C, cooled to 30°C and 35 filtered. The filtrate was concentrated under reduced pressure to ~50% of the original volume and added slowly to water (700 ml). The resultant suspension was stirred for 20 minutes and filtered. The title compound was obtained as a yellow solid. Yield: 9.60 g (90.9%).

40

30

Step 2:

2-Chloro-4-fluoro-5-[4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-benzoic acid methyl ester

45 A mixture of the hydrazone from step 1 (9.00 g, 31.0 mmol) and triethylamine (4.35 ml, 31.0 mmol) was heated to 50°C and treated with a mixture of azide 12 (7.98 g, 29.0 mmol) and toluene (10

ml). The resultant mixture was stirred for 100 minutes at 50°C, cooled to room temperature and concentrated under reduced pressure. The residue was partitioned between water and ethyl acetate. The organic layer was dried and concentrated under 5 reduced pressure to give the title compound as an off-white solid, which was used in the next step without further purification. Yield: 6.35 g (71.8%).

59

Step 3:

10 2-Chloro-4-fluoro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-ox o-1H-1,2,4-triazol-1-yl]-benzoic acid methylester

An excess of chlorodifluoromethane (97 g) was bubbled into a mixture of triazolinone from step 2 (7.04 g, 24.6 mmol), tetra15 butylammonium bromide (9.67 g, 30.0 mmol), potassium carbonate (16.6 g, 122 mmol) and dimethylformamide (200 ml) in such a way that T < 36°C over a period of 30 minutes. The mixture was cooled and filtered. The filtrate was concentrated under reduced presssure and the residue partitioned between water and methylene chloride. The organic layer was washed with water, dried and concentrated under reduced pressure to give a dark oil (9.00 g), which was chromatographed on silica gel (eluent: ethyl acetate/hexane) to give the title compound. Yield: 1.48 g (17.9%).

25 Step 4:

2-Chloro-4-fluoro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-benzoic acid (IIba)

A mixture of ester II with Q = Q⁵; R⁷ = CHF₂, A⁴ = O, R⁸ = CH₃,

30 X¹ = F and X² = Cl (0.950 g, 2.83 mmol), acetic acid (10 ml) and hydrochloric acid (6N, 5.0 ml) was stirred for 24 hours at 64-100°C, cooled to room temperature and concentrated under reduced pressure. The residue was partitioned between methylene chloride and water. The organic layer was washed twice with

35 water, dried and concentrated under reduced pressure to yield the title compound as a pale yellow solid. Yield: 0.42 g (46%); mp.: 132-135°C.

Step 5:

40 N'-[[2-chloro-4-fluoro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-benzoyl]]-N-isopropyl-N-methylsulfamide

A mixture of acid II (0.370 g, 1.15 mmol), the sulfamide (0.210 45 g, 1.38 mmol), carbonyl diimidazole (0.244 g, 1.50 mmol), DBU (0.228 g, 1.50 mmol) and tetrahydrofuran was stirred for four days at ambient temperature. The resultant mixture was treated

with additional sulfamide (0.150 g, 0.986 mmol) and DBU (0.150 g, 0.986 mmol). The mixture was refluxed for two hours, cooled and concentrated under reduced pressure. The residue was taken up in water and acidified with hydrochloric acid (1 N). The mixture was extracted four times with methylene chloride. The combined extracts were washed with water, dried and concentrated under reduced pressure to give a yellow oil, which was chromatographed on silica gel (eluent: ethyl acetate/hexane), yielding the title compound as an off-white solid. Yield: 0.160 g (30.5%); mp. = 10 118-122°C.

Example 136: Preparation of N'-{2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1,2,4-triazolo[4,3-a]pyridin-2(3H)-yl)-benzoyl}-N,N-dialkylsulfamide

- Step 1: 2-Chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1,2,4-triazolo[4,3-a]pyridin-2(3H)-yl)-benzoic acid
- 20 Boron tribromide (19.4 ml, 19.4 mmol, 1N in methylene chloride) was added dropwise to a mixture of I with A = 0, X¹ = F, X² = Cl, Q = Q⁵, A⁴ = 0 and R³+R³ = -(CH₂)⁴- (1.90 g, 5.54 mmol) and methylene chloride (20 ml). The resultant mixture was stirred overnight at room temperature. Water (40 ml) was added dropwise and the mixture stirred for three hours at room temperature. The organic layer was separated and concentrated under reduced pressure to give the title compound as a pale yellow solid. Yield: 1.34 g (77.4%); mp.: 91-94°C.
- 30 Step 2:

 N'-{2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1,2,4-tri-azolo[4,3-a]pyridin-2(3H)-yl)-benzoyl}-N-isopropyl-N-methyl-sulfenamide
- 35 Carbonyl diimidazole (0.500 g, 3.08 mmol) was added to a solution of the compound of step 1 (0.640 g, 2.05 mmol) in anhydrous methylene chloride (15 ml). The resultant mixture was stirred for 30 minutes at room temperature, brought to reflux temperature and immediately cooled to room temperature. The sulfamide (0.370 g, 40 2.46 mmol) and the DBU (0.470 g, 3.08 mmol) were added and the
- 40 2.46 mmol) and the DBU (0.470 g, 3.08 mmol) were added and the resultant mixture was stirred overnight at room temperature. The mixture was diluted with ethyl acetate (10 ml) and 3% strength hydrochloric acid (15 ml) and stirred for 10 minutes. Removal of the methylene chloride under reduced pressure gives an aqueous
- 45 residue which was extracted with ethyl acetate. The combined organic layers were washed with water and brine, and dried over anhydrous magnesium sulfate. Concentration under reduced pressure

WO 01/83459

15

and recrystallization from methylene chloride yielded a solid, which was taken up in methylene chloride and filtered through a column of basic alumina with methanol/methylene chloride, giving the title compound as a white solid. Yield: 0.360 g (39.4%); mp.: 5 250-251°C.

Example 137

Using an identical procedure as described in Example 136 hereinabove and the sulfamide H₂N-SO₂-N(CH₃)-phenyl, the following 10 compound was isolated as a white solid of m.p. 200-201°C:

Example 138: Preparation of N'-[2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thioxo-1,3,5-triazinan-1-yl)-4-fluorobenzoyl]-N-isopropyl-N-methylsulfamide

A solution of 0.502 g (1.45 mmol) of the acid III with X¹ = F, X² = Cl, Q = Q²², R³² & R³³ = CH₃, A¹⁵ & A¹⁶ = O and A¹⁷ = S in 5 ml of tetrahydrofuran was treated with 0.283 g (1.74 mmol) of N,N-carbonyl-diimidazole at 60°C. After this solution had been cooled to ambient temperature, a solution of 0.287 g (1.89 mmol) N,N-methyldiisopropylsulfamide and 0.276 g (1.82 mmol) of DBU in 10 ml of tetrahydrofuran was added and the mixture was stirred overnight. After removal of the volatiles under reduced pressure, the crude product was chromatographed on silica gel with ethyl acetate and cyclohexane. Yield: 0.180 mg of the desired product.

1H-NMR (270 MHz; in CDCl₃): δ [ppm] = 1.25 (d, 6H), 2.95 (s, 3H, SO₂-NCH₃), 3.8 (s, 6H, NCH₃), 4.3 (m, 1H), 7.4 (d, 1H, Ar-H), 7.8
35 (d, 1H, Ar-H), 8.9 (bs, 1H, NH).

Example 139: Preparation of N'-[2-chloro-4-fluoro-5-(5-tri-fluoromethylpyridazon-3-on-2-yl)-benzoyl]-N-iso-propyl-N-methylsulfenamides

Step 1:

40

45

2-Fluoro-4-chloro-5-(5-trifluoromethyl-pyridazin-3-on-2-yl)-benzoic acid

Pyridazinone ester II with $X^1 = F$, $X^2 = C1$, $Q = Q^{27}$, $R^{34} = H$, $R^{35} = CF_3$ and $R^{36} = H$ (3 g, 8.56 mmol) was dissolved in anhydrous CH_2Cl_2

(100 ml). A solution of BBr₃ (30 ml, 1 M in CH₂Cl₂, 30 mmol) was added to the solution and the mixture was stirred at room temperature for 17 hours. Water (50 ml) was added and the mixture stirred vigorously for 3 hours. A rotary evaporator was used to 5 remove the CH₂Cl₂ and the suspended solid was filtered, washed with water and dried to give 2.76 g of the product as a pale yellow solid. Yield: 95%.

Using an identical procedure, the ester II with $X^1 = F$, $X^2 = C1$, Q $10 = Q^{27}$, $R^{34} = H$, $R^{35} = CF_3$ and $R^{36} = CH_3$, shown above, was converted to the corresponding acid III in 97% yield.

Step 2:

N'-{ 2-chloro-4-fluoro-5-(5-trifluoromethyl-pyridazon-3-on-2-yl)-15 benzoyl}-N-isopropyl-N-methylsulfenamides

The carboxylic acid III with $X^1 = F$, $X^2 = C1$, $Q = Q^{27}$, $R^{34} = H$, R^{35} = CF_3 and R^{36} = CH_3 (0.71 g, 2.10 mmol) was dissolved in anhydrous tetrahydrofuran (15 ml) and CDI (0.51 g, 3.15 mmol) was added as 20 a single portion. The mixture was stirred at room temperature for 30 minutes. The mixture was refluxed for 5 minutes, then cooled to room temperature. The sulfamide (0.32 g, 2.10 mmol) was added, followed by DBU (0.48 q, 3.15 mmol). The reaction was stirred at room temperature for 17 hours. 5% strength HCl (15 25 ml) and ethyl acetate (10 ml) were added to the reaction, and the mixture was stirred vigorously for 10 minutes. The mixture was extracted with ethyl acetate (3 x 15 ml) and the combined extracts were washed with water, dried over MgSO4 and concentrated in a rotary evaporator to give a brown semi-solid. The crude 30 product was purified by chromatography on a basic alumina column (eluted with CH2Cl2, 1%, 2% H3C-OH/CH2Cl2 then 1% acetic acid/ CH₂Cl₂) to give the final product Ida.xxx (0.45g) as an off-white solid. Yield: 45%; mp.: 82°C.

35 The following compounds were prepared using the same procedure and with the appropriate acid and sulfamide.

	Example No.	R ¹	R ²	R36	mp. [°C]	
45	140	CH ₃	phenyl	H	182	
	141	CH ₃	phenyl	CH ₃	74-75	
	142	CH ₃	CH(CH ₃) ₂	CH ₃	181-182	

Example No.	R ¹	R ²	R ³⁶	mp. [°C]
143	CH ₃	CH ₃	CH ₃	205-206
144	CH ₃	CH ₃	Ħ	184-186

Example 145: Preparation of 4-chloro-3-[4-chloro-2-fluoro-5-(N-methyl-N-isopropyl)-sulfamoylcarboxamidophenyl]-5-difluorormethoxy-1-methyl-1H-pyrazole

- 10 A solution of 3-[5-carboxy-4-chloro-2-fluorophenyl]-4-chloro-5-difluoromethoxy-1-methyl-1H-pyrazole (2.00 g, 5.63 mmol) in tetrahydrofuran was treated with N,N'-carbonyldiimidazole (1.13 g, 6.98 mmol), stirred for 1 hour under reflux, cooled to room temperature, treated with N-methyl-N-isopropylsulfamide (1.10 g,
- 15 7.23 mmol), stirred for 10 minutes, treated with diazabicycloundecene (1.06 g, 6.97 mmol), stirred overnight at room temperature and concentrated under reduced pressure. Chromatography on silica gel (cyclohexane/ethylacetate = 4:1) gave 0.90 g of the raw product. Further crystallization from
- 20 cyclohexane/ethylacetate (4:1) yielded 0.45 g (16.4%) of the title compound (analyzed by NMR). $^{1}\text{H-NMR} \text{ (in CDCl}_{3}\text{): } \delta \text{ [ppm] = 8.8 (s, 1H, NH), 8.0 (d, 1H), 7.3}$

(d, 1H), 6.7 (t, 1H), 4.3 (hpt, 1H), 3.8 (s, 3H), 3.0 (s, 3H), 1.2 (d, 6H).

25

Step 1:

2-Chloro-5-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-4-fluoro-benzoic acid

- 30 5.3 g (13.4 mmol) of isopropyl ester II with A=0, $X^1=F$, $X^2=Cl$, $X^3=H$, $Q=Q^{38}$, $R^{40}=Cl$, R^{41} & $R^{43}=H$ and $R^{42}=CF_3$, dissolved in 25 ml of glacial acid and 125 ml of concentrated HCl were stirred at 70°C for 6 hours and at ambient temperature overnight. Then, the reaction mixture was dripped into ice water
- 35 and the precipiate was filtered off and washed with water. There was obtained 4.1 g as a white solid. $^{1}H-NMR$ [in (CD₃)₂SO]: δ [ppm] = 9.1 (s, 1 H), 8.7 (s, 1 H), 8.1

(d, 1 H), 7.8 (d, 1 H). {Remark: the exchange of the OH proton for those of water resulted in a broad singulett at 3.3 ppm}.

40

Step 2:

N'-[[2-Chloro-5-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-4-fluorobenzoyl]]-N-isopropyl-N-methylsulfamide

45 1.0 g (2.8 mmol) free acid from step 1 was dissolved in 10 ml of tetrahydrofuran, 0.57 g (3.5 mmol) of carbonyldiimidazole was added and the mixture was heated to 60°C for 1 hour and cooled to

WO 01/83459 PCT/EP01/04850

ambient temperature. Then a mixture of 0.55 g (3.6 mmol) of the sulfamide and 0.54 g (3.5 mmol) of 1,8-diazabicyclo[5,4,0]-undecen-7-ene in 10 ml of tetrahydrofuran was added and stirring was continued at room temperature overnight. The solvent was removed and the crude product was subjected to column chromatography with methyl-tert.-butylether and ethyl acetate. The product-containing fraction was dissolved in methyl-tert.-butylether, washed three times with 10 % strength HCl and twice with water and dried over Na₂SO₄. Removal of the solvent gave 0.48 10 g of the title compound as an oil.

¹H-NMR [in $(CD_3)_2SO$]: δ [ppm] = 9.1 (s, 1 H), 8.7 (s, 1 H), 7.8-7.7 (m, 2 H), 4.1 (m, 1 H), 2.7 (s, 3 H), 1.1 (m 6 H). {Remark: the exchange of the N-H protons for those of water resulted in a broad singulett at 3.3 ppm}.

15

- Example 146: Preparation of 8-(5'-N-Isopropyl-N-methylsulfamoyl-carboxamido-4'-chloro-2'-fluorophenyl)-4-oxo-7,9-di-oxo-1,2,8-triaza(4.3.0.)nonane
- 20 5.4 g (45.5 mmol) of thionyl chloride was added to a mixture of 12.0 g (36.4 mmol) acid III with $X^1 = F$, $X^2 = Cl$, $Q = Q^{40}$, A^{20} & $A^{21} = O$, $R^{46} + R^{47} = -(CH_2)_3 O$, and 2 drops of pyridine in 200 ml of 1,2-dichloroethane. After 4 hours at 83°C, the volatiles were removed under reduced pressure and the crude acid chloride (12.6)
- 25 g) was used without further purification: 0.44 g (2.87 mmol) of N-isopropyl-N-methylaminosulfamide in 50 ml of tetrahydrofuran was added to a suspension of 0.07 g of NaH (97 % purity) in 50 ml of tetrahydrofuran. After 30 minutes at room temperature, 1.0 g (2.87 mmol) of the crude acid chloride was
- 30 added and the reaction mixture was stirred overnight at ambient temperature and additionally for 2 hours at 50°C. The solvent was removed under reduced pressure, 1 N HCl and methylene chloride were added and the organic layer was separated. Chromatography on silica-gel gave 0.35 g of the title compound; mp.: 115-120°C.

35

USE EXAMPLES FOR THE HERBICIDAL ACTIVITY

EXAMPLE 147: Postemergence herbicidal evaluation of test compounds

The herbicidal activity of the compounds of the present invention was evaluated by the following tests.

45 Seedling plants were grown in jiffy flats for about two weeks. The test compounds were dispersed in 80/20 acetone/water mixtures containing 1.0% SUN-IT®II, a methylated seed oil, in sufficient

PC

quantities to provide the equivalent of about 0.016 to 0.032 kg per hectare of active compound when applied to the plants through a spray nozzle operating at 40 psi for a predetermined time. After spraying, the plants were placed on greenhouse benches and 5 were cared for in accordance with conventional greenhouse procedures. Approximately two to three weeks after treatment, the seedling plants were examined and rated according to the rating scale (0-9) set forth below. Where more than one test is involved for a given compound, the data are averaged.

10 Results obtained are reported in Table I below. Where more than one test is involved for a given compound, the data are averaged.

li .	HERBICIDE RATING SCALE										
15	Rating	% Control as compared to the untreated check									
	9 100										
	8	91–99									
	7	80-90									
	6	65-79									
20	5	45-64									
	4	30-44									
	3	16-29									
	2	6-15									
25	1	1-5									
	0	0									

The scale is based upon a visual observation of plant stand, vigor, malformation, size, chlorosis and overall plant appearance 30 as compared with a control.

Plant species employed in these evaluations are reported by header abbreviation, common name and scientific name.

35		PLANT SPECIES EMPLOY	ED
	Header abbreviation	Common name	Scientific name
	ABUTH	Velvetleaf	Abutilon theophrasti, Medic.
40	AMBEL	Ragweed, Common	Ambrosia artemiisifo- lia, L.
	CHEAL	Lambsquarters	Chenopodium album, L. Common
	ІРОНЕ	Morningglory, Ivyleaf	Ipomoea hederacea, (L)Jacq.
45	XANST	Cocklebur	Xanthium strumariam
	ALOMY	Blackgrass	Alopecurus myosuroides

	DIGSA	Crabgrass, (Hairy) L	Digitaria sanguinalis, (L)Scop
	ECHCG	Barnyardgrass	Echinochloa crus- galli, (L.)Beau
5	SETVI	Green foxtail	Setaria viridis, (L.)Beau
	GLXMA	Soybean	Glycine max, (L.) Merr.
10	TRZAW	Winter wheat	Tritium Aestivum, L. (Winter)
	ZEAMX	Field corn	Zea mays L.

Table A Postemergence Herbicidal Evaluation

						67								
ZEAMX	9°1	7.2	7.5	6.5	0.8	8.0	8.0	7.5	5.0	2.0	8.0	8.0	8.0	8.0
TRZAW	6.2	5.6	0.9	5.5	0.9	0.9	5.0	4.0	2.5	2.0	5.0	4.5	4.5	4.0
GLXMA	8.4	8.1	8.5	8.0	8.0	8.0	8.5	8.5	6.5	0.9	8.5	8.5	8.5	8.0
SETVI	7.5	6.4	7.0	7.0	8.0	7.0	7.0	0.9	3.0	1.0	8.0	8.0	8.0	7.0
ЕСНСС	8.8	8.1	8.0	0.9	7.0	7.0	7.0	7.0	2.0	1.0	7.0	0.9	7.0	0.9
DIGSA	9•9	5.3	0.9	5.0	0.9	5.0	5.0	3.0	2.0	1.0	0.9	5.0	5.0	4.0
ALMOY	3.0	2.3	2.0	2.0	2.0	2.0	2.0	2.0	1.0	0.0	3.0	3.0	4.0	3.0
XANST	0.6	9.0	9.0	9.0	8.0	9.0	0.6	9.0	3.0	2.0	0.6	0.6	0.6	0.6
IPOHE	0.6	8.8	0.6	9.0	0.6	8.0	9.0	9.0	4.0	0.9	0.6	9.0	9.0	0.6
CHEAL	8.4	8.1	9.0	0.6	7.0	7.0	7.0	7.0	2.0	1.0	9.0	8.0	8.0	7.0
AMBEL	0.6	8.9	9.0	9.0	0.6	8.0	9.0	8.0	2.0	1.0	0.6	0.6	9.0	7.0
ABUTH	0.6	9.0	9.0	9.0	0.6	9.0	9.0	9.0	5.0	2.0	9.0	0.6	0.6	0.6
Rate [kg/ha]	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016
Ex.	53		54		55		56		. 57		58		59	

Table A, continued

_			_	, 	,		,			8 —							
	ZEAMX	8.0	8.0	7.5	7.5	6.5	6.5	8.0	7.0	8.0	7.5	8.0	7.5	7.5	7.0	7.5	7.5
	TRZAW	0.9	0.9	6.5	6.0	6.5	5.5	7.0	0.9	7.0	0.9	6.5	5.5	6.5	5.0	7.0	6.5
	GLXMA	8.5	8.5	8.5	8.5	8.0	8.0	8.0	8.0	8.0	7.5	8.5	8.0	9.0	8.0	8.5	8.0
	SETVI	9.0	8.0	9.0	7.0	0.9	6.0	0.6	7.0	0.6	8.0	8.0	8.0	0.6	8.0	8.0	8.0
	ECHCG	7.0	8.0	8.0	7.0	7.0	0.9	0.9	4.0	9.0	0.6	0.6	8.0	8.0	8.0	8.0	8.0
	DIGSA	7.0	0.9	6.0	7.0	5.0	5.0	4.0	4.0	5.0	5.0	8.0	0.9	6.0	5.0	0.9	6.0
	ALMOY	3.0	3.0	1.0	1.0	2.0	2.0	2.0	2.0	5.0	3.0	3.0	2.0	2.0	1.0	3.0	2.0
	XANST	0.6	0.6	0.6	9.0	9.0	0.6	0.6	0.6	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6
	IPOHE	0.6	0.6	0.6	8.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	CHEAL	0.6	8.0	0.8	0.6	8.0	7.0	0.6	7.0	0.6	0.6	0.6	8.0	0.6	8.0	0.6	0.6
	AMBEL	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	9.0	0.6	0.6
	ABUTH	9.0	9.0	9.0	9.0	9.0	0.6	0.6	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Rate	[kg/ha]	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016
Ex.	No.	09		61		62		63		64		65		99		29	

Table A, continued

				,		,										
ZEAMX	7.5	7.0	7.5	7.0	7.0	7.0	6.5	6.5	7.0	7.0	7.5	7.0	6.5	5.5	6.5	0.9
TRZAW	5.5	5.0	6.5	5.0	5.0	4.5	4.5	4.5	6.5	5.5	6.5	5.5	0.9	5.0	5.0	4.5
GLXMA	8.5	8.5	8.0	8.0	7.5	6.5	8.0	8.0	8.5	8.5	8.5	8.5	7.5	7.5	7.5	7.5
SETVI	0.6	7.0	6.0	5.0	5.0	4.0	5.0	4.0	0.9	5.0	5.0	4.0	0.9	5.0	6.0	5.0
ECHCG	8.0	8.0	7.0	5.0	8.0	4.0	3.0	2.0	8.0	0.9	7.0	4.0	0.9	5.0	0.9	4.0
DIGSA	6.0	0.9	0.9	4.0	3.0	2.0	3.0	2.0	4.0	4.0	0.9	4.0	4.0	3.0	4.0	4.0
ALMOY	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	3.0	2.0	1.0	1.0	1.0	1.0
XANST	9.0	0.6	0.6	0.6	١	-	ŀ	1	ŀ	1	1	1	9.0	9.0	0.6	0.6
IPOHE	9.0	9.0	0.6	0.6	0.6	0.6	0.6	8.0	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6
CHEAL	8.0	8.0	8.0	8.0	7.0	0.9	5.0	2.0	8.0	8.0	0.6	8.0	0.9	0.9	7.0	0.9
AMBEL	0.6	0.6	0.6	0.6	0.7	2.0	0.6	0.9	0.6	0.6	0.6	0.6	8.0	0.8	8.0	8.0
ABUTH	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Rate [kg/ha]	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016
EX.	89		69		70		7.1		72		73		92		7.7	

Table A, continued

	-,						<u>, </u>	70			
7.0	6.5	4.0	1.5	6.5	6.5	6.0	5.5	8.0	7.0		
6.5	5.5	4.0	3.0	6.0	5.5	5.5	4.5	5.5	5.0		
8.0	7.0	8.0	8.0	8.5	8.0	7.5	7.0	8.5	7.0		
9.0	8.0	0.9	5.0	7.0	0.9	8.0	7.0	8.0	7.0		
9.0	8.0	0.9	4.0	8.0	7.0	8.0	8.0	9.0	8.0		
0.9	5.0	4.0	3.0	3.0	3.0	4.0	3.0	6.0	5.0		
2.0	2.0	1.0	0.0	2.0	1.0	1.0	0.0	2.0	1.0		
9.0	9.0	0.6	8.0	0.6	0.6	9.0	9.0	0.6	0.6		
0.6	0.6	0.6	0.6	0.6	0.6	0.6	8.0	0.6	0.6		
0.6	7.0	4.0	3.0	0.6	0.6	5.0	5.0	0.6	7.0		
9.0	9.0	0.8	0.7	0.6	0.6	8.0	0.9	0.6	8.0		
0.6	0.6	0.6	7.0	0.6	0.6	0.6	0.6	0.6	0.6		
0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016	0.032	0.016		
78		80		82		83		84			
	0.032 9.0 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.5	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 8.0 8.5	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 </td <td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0<!--</td--><td>0.032 9.0 9.0 9.0 9.0 9.0 6.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 7.0 5.5 0.032 9.0 8.0 4.0 9.0 9.0 1.0 4.0 6.0 8.0 4.0 5.5 0.016 7.0 7.0 3.0 9.0 8.0 0.0 3.0 4.0 5.0 8.0 4.0 0.032 9.0 9.0 9.0 9.0 9.0 2.0 3.0 8.0 7.0 8.5 6.0</td><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--></td></td></td></td></td>	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 </td <td>0.032 9.0 9.0 9.0 9.0 9.0 6.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 7.0 5.5 0.032 9.0 8.0 4.0 9.0 9.0 1.0 4.0 6.0 8.0 4.0 5.5 0.016 7.0 7.0 3.0 9.0 8.0 0.0 3.0 4.0 5.0 8.0 4.0 0.032 9.0 9.0 9.0 9.0 9.0 2.0 3.0 8.0 7.0 8.5 6.0</td> <td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--></td></td></td></td>	0.032 9.0 9.0 9.0 9.0 9.0 6.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 8.0 8.0 8.0 8.0 7.0 5.5 0.032 9.0 8.0 4.0 9.0 9.0 1.0 4.0 6.0 8.0 4.0 5.5 0.016 7.0 7.0 3.0 9.0 8.0 0.0 3.0 4.0 5.0 8.0 4.0 0.032 9.0 9.0 9.0 9.0 9.0 2.0 3.0 8.0 7.0 8.5 6.0	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 </td <td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--></td></td></td>	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 9.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 </td <td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--><td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--></td></td>	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 </td <td>0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<!--</td--></td>	0.032 9.0 9.0 9.0 2.0 6.0 9.0 9.0 8.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 </td		

EXAMPLE 148: Preemergence herbicidal evaluation Of test compounds

The herbicidal activity of the compounds of the present invention was evaluated by the following tests wherein the seeds of a variety of monocotyledonous and dicotyledonous plants were separately mixed with potting soil and planted on top of approximately one inch of soil in separate pint cups. After planting, the cups were sprayed with the selected aqueous acetone solution containing test compound in sufficient quantity to provide the equivalent of about 0.125 to 0.250 kg per hectare of test compound per cup. The treated cups were then placed on greenhouse benches, watered and cared for in accordance with conventional greenhouse procedures. From two to four weeks after treatment, the tests were terminated and each cup was examined and rated according to the rating system provided in Example 94. When more than one test was performed for a given compound, the data were averaged. The results obtained are shown in Table B.

Table B Preemergence Herbicidal Evaluation

	T	, 	,	, -	т-	τ -	T	_	,	т				,
ZEAMX	4.3	2.3	0.0	0.0	1.0	0.0	2.0	0.0	0.0	0.0	1.0	0.0	2.0	0.0
TRZAW	2.0	1.3	0.0	0.0	2.0	1.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0
GLXMA	8.8	8.1	0.0	0.0	8.0	8.0	0.6	2.0	1.0	0.0	0.6	0.6	8.0	2.0
SETVI	7.3	5.7	3.0	2.0	8.0	0.9	8.0	4.0	1.0	0.0	0.9	2.0	0.6	4.0
ECHCG	8.4	7.5	3.0	3.0	0.6	5.0	7.0	3.0	2.0	1.0	0.9	4.0	3.0	0.0
DIGSA	8.8	8.1	0.9	4.0	8.0	8.0	7.0	7.0	3.0	1.0	3.0	0.0	7.0	3.0
ALMOX	2.7	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0
XANST	0.6	0.6	3.0	1.0	7.0	0.9	0.6	8.0	0.0	0.0	8.0	5.0	9.0	0.0
IPOHE	0.6	9.0	1.0	0.0	0.6	8.0	0.6	8.0	3.0	0.0	0.6	0.6	0.6	0.6
CHEAL	0.6	0.6	0.6	0.6	0.6	8.0	0.6	0.6	8.0	0.9	0.6	0.6	0.6	0.6
AMBEL	0.6	8.9	8.0	7.0	0.6	8.0	0.6	0.6	2.0	2.0	0.6	0.6	0.6	0.6
АВИТН	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	2.0	2.0	0.6	0.6	0.6	0.6
Rate [kg/ha]	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125
Ex. No.	53		54		55		99		57		58		59	

Table B, continued

			,				,	,	7	ے ہــــ							
	ZEAMX	0.0	0.0	2.0	2.0	1.0	1.0	0.0	0.0	2.0	0.0	1.0	0.0	2.0	1.0	1.0	0.0
	TRZAW	0.0	0.0	3.0	2.0	5.0	3.0	0.0	0.0	3.0	0.0	1.0	1.0	1.0	1.0	1.0	0.0
	GLXMA	0.9	0.0	9.0	9.0	9.0	5.0	5.0	1.0	•	1	ı	ı	1	0.0		
1	SETVI	0.6	5.0	0.9	3.0	7.0	3.0	8.0	4.0	9.0	8.0	0.9	3.0	6.0	4.0	8.0	8.0
1	ЕСНСС	4.0	0.0	7.0	4.0	0.9	3.0	9.6	4.0	7.0	3.0	0.6	8.0	8.0	4.0	0.6	8.0
0014	DIGSA	6.0	0.9	0.6	0.9	7.0	5.0	8.0	3.0	9.0	8.0	0.6	7.0	8.0	4.0	8.0	7.0
30114	ALMOY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0
mom wa	AANST	4.0	0.0	0.6	0.6	0.6	0*6	ı	1	-	ı	ı	ı	1	ı	ı	ı
BEOGT	TFORE	6.0	7.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	9.0
TREBO	CHEAL	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6.	0.6	0.6	0.6	0.6
AWBET	АМБЕЛ	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	9.0	9.0	0.6	9.0	0.7	0.6
משוזפע	ADULE	9.0	0.6	9.0	0.6	0.6	9.0	0.6	0.6	0.6	0.6	0.6	9.0	0.6	0.6	0.6	0.6
Rate	Lxg/ na J	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125
EX.		09		61		62		63		64		. 65		99		67	

Table B, continued

		7	т	T	_			_	_	τ							
	ZEAMX	2.0	1.0	3.0	2.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0
	TRZAW	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
	GLXMA	8.0	7.0	3.0	0.0	3.0	1.0	2.0	0.0	0.6	8.0	0.0	0.0	3.0	1.0	,	1.0
	SETVI	8.0	4.0	1.0	0.0	5.0	3.0	2.0	0.0	8.0	4.0	5.0	2.0	2.0	1.0	2.0	2.0
	ECHCG	4.0	3.0	3.0	2.0	7.0	2.0	3.0	0.0	0.9	7.0	3.0	0.0	2.0	1.0	3.0	2.0
	DIGSA	4.0	3.0	3.0	3.0	5.0	2.0	3.0	0.0	7.0	2.0	3.0	3.0	3.0	2.0	4.0	2.0
	ALMOY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	0.0	0.0	2.0	0.0	0.0	0.0
	XANST	0.6	0.6	4.0	3.0	. 0.6	8.0	7.0	0.0	0.6	7.0	0.6	3.0	5.0	3.0	8.0	3.0
	IPOHE	0.6	0.6	0.6	.0°6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	5.0	0.6	7.0
	CHEAL	8.0	8.0	0.6	0.6	0.6	8.0	7.0	0.6	0.6	0.6	0.6	0.6	0.6	8.0	0.6	0.6
	AMBEL	0.6	0.6	0.6	8.0	0.6	0.6	8.0	8.0	0.6	0.6	0.6	0.6	0.6	8.0	0.6	0.6
	ABUTH	0.6	9.0	0.6	0.6	9.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Rate	[kg/ha]	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125
Ex.	No.	89		69		70		7.1		72		73		92		77	

Table B, continued

			,						7	5	
	ZEAMX	1.0	0.0	0.0	0.0	2.0	0.0	2.0	0.0	1.0	0.0
	TRZAW	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	2.0	0.0
	GLXMA	5.0	3.0	0.0	0.0	9.0	9.0	4.0	1.0	7.0	2.0
	SETVI	7.0	5.0	0.0	0.0	7.0	3.0	0.9	3.0	7.0	7.0
	ECHCG	7.0	4.0	3.0	0.0	4.0	3.0	5.0	4.0	0.9	5.0
	DIGSA	0.8	4.0	1.0	0.0	4.0	4.0	0.6	1.0	8.0	7.0
	ALMOY	2.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
	XANST	0.6	0.6	1.0	0.0	9.0	9.0	5.0	4.0	0.6	9.0
	IPOHE	0.6	0°6	0.0	0.0	0.6	0.6	8.0	7.0	9.0	9.0
	CHEAL	0.6	0.6	0.8	2.0	0.6	0.6	0.6	0.6	0.6	0.6
	AMBEL	0.6	0.6	3.0	1.0	0.6	0.6	0.8	0.8	0.6	0.6
	ABUTH	9.0	0.6	5.0	1.0	0.6	0.6	0.6	0.8	0.6	0.6
Rate	[kg/na]	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125	0.25	0.125
EX.	NO.	78		80		82		83		84	

EXAMPLE 149

The herbicidal action of the uracil substituted phenyl sulfamoyl carboxamides no. Ij.86, Ip.86 and Iy.86 was demonstrated by the following greenhouse experiments:

The culture containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as substrate. The seeds of the test plants were sown separately for each species.

For the post-emergence treatment, the test plants were grown to a plant height of from 3 to 15 cm, depending on the plant habit, and only then treated with the active ingredients which had been suspended or emulsified in water. To this end, the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days prior to treatment. The rate of application for the post-emergence treatment was 15.6 or 7.8 g/ha active ingredient.

Depending on the species, the plants were kept at from $10 - 25^{\circ}\text{C}$ and $20 - 35^{\circ}\text{C}$, respectively. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

Evaluation was carried out using a scale of from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts, and 0 means no damage or normal course of growth.

The plants used in the greenhouse experiments belonged to the following species:

Scientific Name	Common Name
Amaranthus retroflexus (AMARE)	Redroot pigweed
Pharbitis purpurea (PHBPU)	common or tall morningglory
Polygonum persicaria (POLPE)	redshank; ladysthumb

At a rate of application of 15.6 or 7.8 g/ha of a.i., compound nos. Ij.86, Ip.86 and Iy.86 showed a very good herbicial action against the abovementioned undesired plants.

DESICCANT/DEFOLIANT ACTIVITY OF THE COMPOUNDS I EXAMPLE 150: greenhouse-trials

The test plants used were young cotton plants with 4 leaves (without cotyledons) which had been grown under greenhouse conditions (relative atmospheric humidity 50 to 70%; day/night temperature 27/20°C).

The young cotton plants were subjected to foliar treatment to run-off point with aqueous preparations of the active ingredients (with an addition of 0.15% by weight of the fatty alcohol alkoxylate Plurafac® LF 7001), based on the spray mixture). The amount of water applied was 1000 l/ha (converted). After 13 days, the number of leaves shed and the degree of defoliation in % were determined.

No leaves were shed in the untreated control plants.

1) a low-foam, nonionic surfactant from BASF AG

EXAMPLE 151: field trials

Field evaluations of preharvest desiccant activity were performed at several different locations using compound Ia.86.

In each experiment treatments was replicated three times in a randomized complete block experimental design. Potatoes were grown using good agronomic practices of each area. Treatments were applied a few weeks before planned potato harvest.

The test compound was formulated as an emulsifiable concentrate (EC) formulation with 120 grams a.i./liter. The formulation was diluted with water, spray adjuvants were added, and the treatment solution was applied to the foliage of potatoes in from 187 to 600 l/ha of total spray volume. Unless indicated otherwise, the treatments also contained 15 v/v of methylated seed oil adjuvant (Hasten or SUN-IT II. In the case of split applications, the second application was made about 1 week after the initial application.

At various intervals after treatment, desiccation of stems and leaves was evaluated separately, on a visual % desiccation scale. In each test the test compound was compared to appropriate commercial standards at the normal rate for each standard for the area.

The results showed that the abovementioned compound is very effective to desiccate the leaves and stems of potato plants.

Claims:

Uracil substituted phenyl sulfamoyl carboxamides of the
 formula I

wherein the variables have the following meanings:

- A oxygen or sulfur;
- 15 X^1 hydrogen, halogen or C_1-C_4 -alkyl;
 - X^2 hydrogen, cyano, CS-NH₂, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -halogen, cyano, CS-NH₂, halogen, C_1 - C_4 -alkyl;
- 20 X³ hydrogen, cyano, C₁-C₆-alkyl, C₁-C₆-alkoxy-alkyl, C₃-C₇-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or optionally substituted benzyl;

 ${\bf R}^1$ and ${\bf R}^2$ independently of one another

hydrogen, halogen, OR^{48} , C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl, 25 C3-C10-alkynyl, C3-C7-cycloalkyl, phenyl, benzyl or C5-C7-cycloalkenyl, whereas each of the lastmentioned 7 groups can be substituted with any combination of one to six halogen atoms, one to three 30 C₁-C₆-alkoxy groups, one or two C₁-C₈-haloalkoxy groups, one or two cyano groups, one or two C_3-C_7 -cycloalkyl groups, one or two $C(0)R^{49}$ groups, one or two CO-OR⁵⁰ groups, one or two CO-SR⁵¹ groups, one or two CO-NR⁵²R⁵³ groups, one to three OR⁵⁴ 35 groups, one to three SR54 groups, one optionally substituted four to 10-membered monocyclic or fused bicyclic heterocyclic ring, one or two optionally substituted phenyl groups or one or two optionally substituted benzyl groups,

or R^1 and R^2 together with the atom to which they are attached form a 3- to 7-membered heterocyclic ring;

O is selected from

45

wherein

A¹ to A¹⁷ are each independently oxygen or sulfur;

10

35

40

- R³, R⁴, R⁷, R⁸, R¹¹, R¹², R¹⁸, R¹⁹, R²⁷, R²⁹, R³², R³³, R³⁸, R³⁹, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ are each independently hydrogen, cyano, amino, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, benzyl, OR^{55} , C_1 - C_3 -cyanoalkyl, or
- R³ and R⁴, R⁷ and R⁸, R¹¹ and R¹², R¹⁸ and R¹⁹ or R⁴⁶ and R⁴⁷ may be taken together with the atoms to which they are attached to represent a four- to seven-membered ring, optionally interrupted by oxygen, sulfur or nitrogen and optionally substituted with one or more halogen or C₁-C₄-alkyl groups;
- R⁵, R⁶, R⁹, R¹⁰, R¹⁵, R¹⁶, R²⁰, R²¹, R³⁰, R³¹, R³⁵, R³⁶, R⁴¹, R⁴² and R⁴³ are each independently hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_8 - C_6 - C_6
- R⁵ and R⁶, R⁹ and R¹⁰, R¹⁵ and R¹⁶, R²⁰ and R²¹ or R³⁰ and R³¹

 20 may be taken together with the atoms to which they are attached to represent a four- to seven membered ring optionally substituted with one or more halogen or C₁-C₄-alkyl groups;
- 25 R^{13} , R^{14} , R^{22} , R^{23} , R^{25} and R^{26} are each independently hydrogen, halogen or C_1 - C_6 -alkyl;
- R¹⁷, R²⁸, R³⁴, R³⁷ or R⁴⁰ are each independently hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₃-C₇-cyclo-alkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₃-C₆-alkynyl, OR⁶⁰ or SR⁶¹;
 - R^{24} is hydrogen, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_2-C_4 -alkenyl, C_3-C_4 -alkynyl, C_1-C_4 -haloalkoxy or amino;
 - R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} and R^{61} are independently of one another hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cyclo-alkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -alkynyl, optionally sub-

stituted phenyl or optionally substituted benzyl;

- n is zero, 1 or 2;
- 45 and the agriculturally useful salts of the compounds I.

benzamide,

- 2. The compound defined in claim 1, wherein Q is selected from Q^5 , Q^7 , Q^{21} , Q^{22} , Q^{27} , Q^{32} , Q^{38} , Q^{39} and Q^{40} .
- 3. 2-Chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-(dimethylsulfamoyl)-4-fluorobenzamide,
 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-[(ethyl)propylsulfamoyl)]4-fluorobenzamide,
- 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-(sec.-butylsulfamoyl)-4-fluorobenzamide,
 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoro-

z-cnloro-5-[3,6-dlnydro-3-methyl-2,6-dloxo-4-(trifluoro-methyl)-1(2H)-pyrimidinyl]-N-(tert.-butylsulfamoyl)-4-fluoro-benzamide,

- benzamide,
 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-[(ethyl)methylsulfamoyl)]4-fluorobenzamide,
- 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-[(methyl)propylsulfamoyl)]4-fluorobenzamide,
 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoro-methyl)-1(2H)-pyrimidinyl]-N-(diethyl)sulfamoyl)-4-fluoro-
- 2-chloro-5-[3,6-dihydro-3-amino-2,6-dioxo-4-(trifluoro-methyl)-1(2H)-pyrimidinyl]-N-[(methyl)isopropylsulfamoyl)]-4-fluorobenzamide,
 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoro-

methyl)-1(2H)-pyrimidinyl]-N-[(sec.-butyl)methylsulfamoyl)]-

- 4-fluorobenzamide, 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoro-methyl)-1(2H)-pyrimidinyl]-N-[(methyl)phenylsulfamoyl)]-4-fluorobenzamide,
- 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-N-[(methyl)isopropylsulfamoyl)]4-fluorobenzamide,
 - 2-chloro-5-[3,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoro-methyl)-1(2H)-pyrimidinyl]-N-[(n-butyl)methylsulfamoyl)]-4-fluorobenzamide.
- N'-[[2-chloro-4-fluoro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]-benzoyl]]-N-isopropyl-N-methylsulfamide,
- N'-{2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1,2,4-tri-azolo[4,3-a]pyridin-2(3H)-yl)-benzoyl}-N-isopropyl-N-methyl-sulfenamide,
- N'-[2-chloro-5-(3,5-dimethyl-2,6-dioxo-4-thioxo-1,3,5-triazinan-1-yl)-4-fluorobenzoyl]-N-isopropyl-N-methylsulfamide,

N'-[2-chloro-4-fluoro-5-(5-trifluoromethylpyridazon-3-on-2-yl)-benzoyl]-N-isopropyl-N-methylsulfenamide,
4-chloro-3-[4-chloro-2-fluoro-5-(N-methyl-N-isopropyl)-sulfamoylcarboxamidophenyl]-5-difluorormethoxy-1-methyl-1H-pyrazole,
N'-[[2-chloro-5-[3-chloro-5-(trifluoromethyl)-2-pyridinyl]-4-fluorobenzoyl]]-N-isopropyl-N-methylsulfamide and

10

15

5

4. A herbicidal composition, comprising a herbicidally effective amount of at least one compound of the formula I or of an agriculturally useful salt of I as defined in claim 1, and at least one inert liquid and/or solid carrier and, if desired, at least one surfactant.

8-(5'-N-isopropyl-N-methylsulfamoylcarboxamido-4'-chloro-2'-fluorophenyl)-4-oxo-7,9-dioxo-1,2,8-triaza(4.3.0.)nonane.

- A composition for the desiccation and/or defoliation of plants, comprising such an amount of at least one compound of the formula I or of an agriculturally useful salt of I, as defined in claim I, that it acts as a desiccant and/or defoliant, and at least one inert liquid and/or solid carrier and, if desired, at least one surfactant.
- 6. A method of controlling undesirable vegetation, which comprises ses allowing a herbicidally active amount of at least one compound of the formula I or of an agriculturally useful salt of I, as defined in claim 1, to act on plants, their environment or on seed.
- 30 7. A method for desiccation/defoliation of plants, which comprises allowing such an amount of at least one compound of the formula I or an agriculturally useful salt of I, as defined in claim 1, to act on plants that it acts as a defoliant and/or desiccant.

35

- 8. A method as claimed in claim 8, wherein cotton is treated.
- 9. A process for the preparation of a compound of formula I as defined in claim 1, which process comprises reacting a
 40 benzoic acid derivative of the formula II

45

wherein Q, X^1 and X^2 are as defined in claim 1,

optionally in the presence of a coupling agent, or the corresponding acid chloride of II, with a sulfamide of the formula III

H SO₂-NR¹R² III,

wherein X^3 , R^1 and R^2 are as defined in claim 1.

10 10. A process for the preparation of a compound of formula I as defined in claim 1, where A is oxygen, X3 is hydrogen, Q is Q²¹, A⁸ & A⁹ are oxygen and R²⁹ is hydrogen, which process comprises reacting an aniline intermediate VI

15

20 wherein X^1 , X^2 , R^1 and R^2 are as defined in claim 1, with an oxazinone compound of the formula VII

25

optionally followed by alkylation and hydrolysis.

30 11. A process for the preparation of a compound of formula VI

35

wherein X^1 , X^2 , X^3 , R^1 and R^2 are as defined in claim 1, which process comprises treating a sulfamoyl carboxamide X

40
$$\begin{array}{c} O \\ N \\ SO_2 - NR^1R^2 \\ X^2 \\ \end{array}$$
 X

40

45

with a nitration reagent to give the corresponding nitrated compound XI

15

$$\begin{array}{c}
O_2N \\
\downarrow \\
X^2
\end{array}$$

$$\begin{array}{c}
O_2N \\
\downarrow \\
X^3
\end{array}$$

$$XI,$$

and subsequently reducing the nitro group with a transition metal under acidic conditions or with a complex hydride.

10 12. A process for the preparation of a sulfamoyl carboxamide X

$$\begin{array}{c}
0 \\
N \\
SO_2-NR^1R^2 \\
x_2 \\
x_3
\end{array}$$

wherein X^1 , X^2 , X^3 , R^1 and R^2 are as defined in claim 1, which process comprises reacting a benzoic acid IX

optionally in the presence of a coupling agent, or the corresponding acid chloride of IX, with a sulfamide of the formula III

35

40

T TO BE A THE BELLEVING THE STATE OF THE STATE

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83459 A3

- (51) International Patent Classification?: C07D 239/54, 249/12, 471/04, 237/14, 231/20, 213/61, A01N 43/54
- (21) International Application Number: PCT/EP01/04850
- (22) International Filing Date: 30 April 2001 (30.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 60/201.824 4 May 2000 (04.05.2000) US
- (71) Applicant: BASF AKTIENGESELLSCHAFT [DE/DE]: 67056 Ludwigshafen (DE).
- (72) Inventors: CARLSEN, Marianne: 222 Arborlea Avenue, Yardley. PA 19067 (US). GUACIARO, Michael, Anthony: 21 Inverness Lane, East Windsor. NJ 08520 (US). TAKASUGI, James, Jan: 11 Pembroke Court, Lawrenceville, NJ 08648 (US).
- (74) Common Representative: BASF AKTIENGE-SELLSCHAFT: 67056 Ludwigshafen (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 16 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: URACIL SUBSTITUTED PHENYL SULFAMOYL CARBOXAMIDES

(57) **Abstract:** Novel uracil substituted phenyl sulfamoyl carboxamides (I) and salts thereof, where A = oxygen or sulfur; X^1 = H, halogen, C_1 - C_4 -alkyl; X^2 = H, CN, CS-NH₂, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl; X^3 = H, CN, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxyalkyl, C_3 - C_7 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, optionally substituted benzyl; R^1 , R^2 = H, halogen, optionally substituted hydroxy, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_3 - C_1 -cycloalkyl, phenyl, benzyl or C_3 - C_7 -cycloalkenyl, or R^1 + R^2 together with the atom to which they are

attached form a 3- to 7-membered heterocyclic ring; Q is selected from Q^1 to Q^{40} as defined in the description. Use: as herbicides; for the desiccation/defoliation of plants.

0 01/83459

pplication No PCT/EP 01/04850

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D239/54 C07D249/12 CO7D231/20 C07D237/14 C07D471/04 A01N43/54 C07D213/61 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D A01N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication. where appropriate, of the relevant passages Category ° 1.4 - 9DE 197 31 784 A (BAYER) Α 4 February 1999 (1999-02-04) claims 1.4 - 9DE 196 10 786 A (BAYER) Α 18 September 1997 (1997-09-18) claims 1,4-9DE 196 27 901 A (BAYER) Α 15 January 1998 (1998-01-15) 1,4-9DE 196 32 005 A (BAYER) Α 12 February 1998 (1998-02-12) cited in the application claims Patent family members are listed in annex. Further documents are listed in the continuation of box C. lχ Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but *&* document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 06/02/2002 25 January 2002 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NI. – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Francois, J

Information on patent family members

Inten Anar Application No
PCT/EP 01/04850

				1 1 1 1 1	
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 19731784	Α	04-02-1999	DE	19731784 A1	04-02-1999
DE 19731764	^	04 02 1333	AU	8860898 A	16-02-1999
			WO	9905125 A1	04-02-1999
DE 19610786	Α	18-09-1997	DE	19610786 A1	18-09-1997
DE 13010700	,,	20 00 000	AU	2094997 A	01-10-1997
			BR	9708186 A	27-07-1999
			CZ	9802930 A3	13-01-1999
			WO	9733876 A1	18-09-1997
			EP	0888314 A1	07-01-1999
			HU	9902109 A2	29-11-1999
			JP	2000506177 T	23-05-2000
DE 19627901		15-01-1998	DE	19627901 A1	15-01-1998
00 11011101			AU	3441297 A	09-02-1998
			BR	9710238 A	10-08-1999
			CA	2260201 A1	22-01-1998
			WO	9802422 A1	22-01-1998
			ΕP	0912527 A1	06-05-1999
			JP	2000514805 T	07-11-2000
DE 19632005	Α	12-02-1998	DE	19632005 A1	12-02-1998
			AU	718868 B2	20-04-2000
			AU	3771497 A	06-03-1998
			BR	9711033 A	17-08-1999
			CN	1227548 A	01-09-1999
			WO	9806706 A1	19-02-1998
			EP	0923562 A1	23-06-1999
			JP	2001503021 T	06-03-2001
			US	6130225 A	10-10-2000

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)