

Белорусская республиканская олимпиада по физике (Витебск, 1996 г.)

9 класс

9-1. На льду лежит баллон массой $m = 20 \kappa z$, заполненный газом под давлением $P = 2 \cdot 10^6 \, \Pi a$. В стенке баллона открывается отверстие площадью $s = 1.0 \, \text{cm}^2$, из которого начинает бить горизонтальная струя газа.

Найдите, с каким ускорением начнет скользить по льду баллон, если коэффициент трения о лед равен $\mu = 0.12$.

9-2. Веселый стеклодув изготовил несколько необычный сосуд: цилиндр R = 20cM. радиусом ДНО которого представляет собой наклонную плоскость, образующую угол $\alpha = 30^{\circ}$ с горизонтом. Но оказалось мало: в центре дна появилась "вмятина" радиусом r = 5.0 c M. Нальем в сосуд воду до высоты h = 30 cm

над "вмятиной". Найдите силу давления воды на "вмятину". Плотность воды $\rho = 1.0 \cdot 10^3 \, \kappa z \, / \, m^3$.

9-3. Грузы массами $m_1 = 500\varepsilon$ и $m_2 = 100\varepsilon$ скреплены легкой нерастяжимой нитью с помощью системы легких и гладких блоков. Определите ускорения грузов после их отпускания.

9-4. Резистор в виде спирали с сопротивлением 160~Om используют в качестве кипятильника, работающего от сети с напряжением 220B. Будучи опущенным в трехлитровую банку с водой, он через достаточно большое время нагрел воду до температуры $45^{\circ}C$. Как необходимо изменить длину спирали, чтобы при тех же условиях вода в банке закипела? Температура воздуха в комнате $20~^{\circ}C$.

9-5. Материальная точка движется в положительном направлении оси X с переменным ускорением, график зависимости которого от пройденного пути представлен на рисунке. Определите скорость точки при движении вблизи отметки 5~m, если в начальный момент скорость точки была 1,0~m/c.

10 класс

10-1. Однородная балка массой M и длиной L движется по наклонному прокатному стану, представляющему собой шероховатые тонкостенные

несоприкасающиеся цилиндры, оси которых параллельны и находятся на расстоянии l друг от друга (l << L). Масса каждого цилиндра m. Определите установившуюся скорость движения балки по стану. Угол наклона стана к горизонту α .

10-2. На горизонтальной плоскости покоится тонкостенная коробка в форме куба с ребром a = 1,0 м, изготовленная из упругого материала. В нее с

высоты h = 50см аккуратно без начальной скорости высыпают N = 1000 маленьких одинаковых упругих шариков массой m = 5,0г каждый. Определите среднее давление хаотически прыгающих шариков на дно коробки.

10-3. Под вакуумным колпаком находится трубка с теплоемкостью 600 Дж/K. В трубку загоняют пробку, теплоемкость которой 300 Дж/K. Через некоторое время температура трубки повысилась на 2,0 K. На сколько градусов повысится температура трубки,

если в нее загнать с этого же конца еще одну такую же пробку?

10-4. Обкладками плоского конденсатора служат две параллельные квадратные металлические пластины со стороной a, расположенными на

расстоянии d (d << a). Между обкладками находится слюдяная пластинка толщиной d / 2d/2, размеры которой совпадают с размерами обкладок. Конденсатор подключен через резистор R к источнику постоянного напряжения U. Слюдяную пластинку медленно с постоянной скоростью V вытягивают из конденсатора. Какое количество теплоты выделится при этом на резисторе?

10-5. Определите сопротивление проволочного каркаса, изготовленного из медной проволоки с площадью поперечного сечения $s = 1.0 \, \text{мm}^2$. Удельное сопротивление материала проволоки $\rho = 5.0 \cdot 10^6 \, \text{Ом} \cdot \text{м}$. Диаметр кольца $D = 1.0 \, \text{м}$.

11 класс

- **11-1.** Тонкая стеклянная собирающая линза вделана в стенку аквариума с водой. Действительное перевернутое изображение предмета, находящегося в воздухе на расстоянии a от линзы, получается в аквариуме на расстоянии b. Где будет сформировано изображение предмета, расположенного в аквариуме на расстоянии $a_1 > b$ от линзы? Показатель преломления воздуха равен l, воды -n.
- 11-2. Массивный диск подвешен на вертикальных нитях горизонтально. Если диск повернуть вокруг его оси и отпустить, то он начнет совершать крутильные колебания. Как изменится период этих малых колебаний, если в центре диска положить небольшой по размерам груз, масса которого равна массе диска?

11-3. Длинная невесомая нерастяжимая нить переброшена через два маленьких невесомых блока, оси которых жестко закреплены. К концам нити привязаны одинаковые грузы. К середине нити прикрепили еще один

такой же груз и без толчка отпустили. Определите ускорение этого груза в тот момент, когда нить в точке подвеса изогнулась под прямым углом. Сопротивлением воздуха и трением пренебречь.

- **11-4.** Однослойная катушка радиусом R намотана медным проводом диаметром d вплотную. При какой силе тока через катушку обмотка разорвется? Предел прочности меди на разрыв σ .
- **11-5.** Два металлических стержня равного поперечного сечения изготовлены из материалов одинаковой теплопроводности, но разных коэффициентов теплового расширения. Длины стержней в тающем льде и кипящей воде соответственно l_1 и l_2 , L_1 и L_2 . Соединим стержни торцами и поместим конец первого в таящий лед, а конец второго в кипящую воду. Определите длину системы в этом состоянии. Температура плавления льда T_1 , температура кипения воды T_2 .