MATH 355 HOMEWORK 10

NICHOLAS ROUSE

Problem 1

I picked the third row and column because they both have two zeros, so the Laplace expansions will only involve computing two 3×3 determinants each. Let

$$A = \begin{pmatrix} 1 & -2 & 0 & 4 \\ 0 & 3 & 1 & 1 \\ -1 & 0 & 0 & 2 \\ 1 & -1 & 3 & 1 \end{pmatrix}.$$

Then

$$\det A = (-1) \begin{vmatrix} 1 & -2 & 4 \\ -1 & 0 & 2 \\ 1 & -1 & 1 \end{vmatrix} + (-3) \begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{vmatrix}.$$

The first determinant on the right-hand side of the above equation is zero because (for example) the third column is -2 times time the first column minus 3 times the second column. We compute the other determinant by expanding along the first column.

$$\begin{vmatrix} 1 & -2 & 4 \\ 0 & 3 & 1 \\ -1 & 0 & 2 \end{vmatrix} = 1 \begin{vmatrix} 3 & 1 \\ 0 & 2 \end{vmatrix} - \begin{vmatrix} -2 & 4 \\ 3 & 1 \end{vmatrix}$$
$$= 6 - (-2 - 12)$$
$$= 20$$

We conclude that det A = -60. Now we expand along the third column in one heroic calculation

$$\det A = (-1) \begin{vmatrix} -2 & 0 & 4 \\ 3 & 1 & 1 \\ -1 & 3 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & -2 & 0 \\ 0 & 3 & 1 \\ 1 & -1 & 3 \end{vmatrix}$$

$$= (-1) \left((-2) \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} + 4 \begin{vmatrix} 3 & 1 \\ -1 & 3 \end{vmatrix} \right) + (-2) \left((1) \begin{vmatrix} 3 & 1 \\ -1 & 3 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 1 & 3 \end{vmatrix} \right)$$

$$= (-1)(-2(1-3) + 4(9+1)) + (-2)(9+1+2(-1))$$

$$= (-1)(44) + (-2)(8)$$

$$= -44 - 16$$

$$= -60.$$

Problem 2

Part a. This map is R-linear. To see that γ is additive let z=a+bi and w=c+di for $a,b,c,d\in\mathbf{R}$. Then $\gamma(z+w)=\gamma(a+bi+c+di)=\gamma((a+c)+(b+d)i)=a+c-(b+d)i=a-bi+c-di=\gamma(z)+\gamma(w)$. Now let $\alpha\in\mathbf{R}$ and consider

$$\gamma(\alpha z) = \gamma(\alpha(a+bi)) = \gamma(\alpha a + \alpha bi) = \alpha a - \alpha bi = \alpha(a-bi) = \alpha \gamma(z).$$

We conclude that the map is \mathbf{R} -linear.

Date: November 13, 2017.

1

Part b. The map is not C-linear. For a counterexample, observe that

$$\gamma(i \cdot i) = \gamma(-1) = -1 \neq 1 = i \cdot (-i) = i\gamma(i).$$

PROBLEM 3

Part a. $\mathbf{B} = \{1, i\}$ forms an \mathbf{R} -basis for \mathbf{C} . Indeed we know that any complex number (i.e. an element of \mathbf{C}) can be written as a+bi for $a,b\in\mathbf{R}$. This shows that \mathbf{B} is spanning. To see that \mathbf{B} is linearly independent over \mathbf{R} is suffices to observe that there is no real number α such that $\alpha \cdot 1 = \alpha = i$. That is, it suffices to show that i is not a real number, and we know that it is not.

Remark. To actually show that i is not a real number rather than merely saying it requires some argument that there is no square root of -1 in the real numbers. Such an argument is not hard to give but it's not enlightening in this context, so we omit this detail.

Part b. Two vector spaces over \mathbf{R} are isomorphic if and only if they have they have the same dimension. The previous part shows that \mathbf{C} has dimension two as a real vector space, and we know that \mathbf{R}^2 has dimension two as a real vector space, so $\mathbf{C} \cong \mathbf{R}^2$ as real vector spaces.

Problem 4

Part a. $\mathbf{B} = \{1\}$ forms a basis for \mathbf{C} over \mathbf{C} . This set is spanning since for any $z \in \mathbf{C}$, we can write $z = z \cdot 1$. Moreover the set is linearly independent. Suppose that $z \cdot 1 = 0$ for some $z \in \mathbf{C}$, then we immediately see that z = 0, so the set is linearly independent.

Part b. The set $\{1, i\}$ forms an **R**-basis for **C** as we showed in Part a of Problem 3.

Remark. The terms "extract" may have been a bit confusing. The question is just asking how to find an **R**-basis given that you have a **C**-basis in hand.

Problem 5

Part a. This is a special case $(V = \mathbb{C}^2)$ of Part a of Problem 6. We give a fuller argument there.

Part b. We can view \mathbb{C}^2 as the set of ordered pairs of complex numbers. That is $\mathbb{C}^2 = \{(z, w) \mid z, w \in \mathbb{C}\}$. We claim that $\mathbf{B} = \{(1, 0), (0, 1)\}$ is a \mathbb{C} -basis for \mathbb{C}^2 . This is proved mutatis mutandis as proving \mathbb{R}^2 is a two-dimensional vector space over the real numbers. In particular suppose that there are complex numbers $\alpha, \beta \in \mathbb{C}$ such that $\alpha(1, 0) + \beta(9, 1) = (0, 0)$. Then we have $(\alpha, \beta) = (0, 0)$, so $\alpha = 0$ and $\beta = 0$. We then find that \mathbb{B} is linearly independent. Moreover it is clearly spanning as for any element $(\alpha, \beta) \in \mathbb{C}^2$, we have $\alpha(1, 0) + \beta(0, 1) = (\alpha, \beta)$.

Part c. We claim that $\mathbf{B} = \{(1,0), (i,0), (0,1), (0,i)\}$ is an \mathbf{R} -basis for \mathbf{C}^2 . To see linear independence, suppose that $a,b,c,d\in\mathbf{R}$ and a(1,0)+b(0,i)+c(1,0)+d(0,i)=(0,0). Then (a+bi,c+di)=(0,0). Then a+bi=0 and c+di=0. A complex number is zero if and only if its real and imaginary parts are equal to zero, so we conclude that a,b,c,d=0 and that \mathbf{B} is linearly independent. To see spanning we observe that any pair of complex numbers (z,w) can be represented by (a+bi,c+di) for $a,b,c,d\in\mathbf{R}$. Thus (z,w)=a(1,0)+b(0,i)+c(1,0)+d(0,i), and \mathbf{B} is spanning.

Part d. This is the same as Part b of Problem 3: Both \mathbb{C}^2 and \mathbb{R}^4 have a basis consisting of four elements, so both of them are dimension four and hence isomorphic.

Problem 6

Part a. Recall the axioms for a vector space. All of the axioms that don't make reference to the underlying scalars (in our case either **R** or **C**) are immediate. For example if one can add two vectors in a **C**-vector space then one can add them in exactly the same way in the space viewed as an **R**-vector space. For the axioms involving the scalars, we satisfy the axioms by restricting the multiplication. For example one of the axioms specifies that for any $\alpha \in \mathbf{C}$ and $\vec{v} \in V$, we have $\alpha \vec{v} \in V$. Since **R** is a subset of **C** we in particular know that for any $\alpha \in \mathbf{R}$ and $\vec{v} \in V$, we have $\alpha \vec{v} \in V$, so the analogous axiom for real vector spaces is satisfied. The other axioms are demonstrated in the same way.

Part b. Suppose that $\mathbf{B} = \{\vec{v_1}, \dots, \vec{v_n}\}$ is a \mathbf{C} -basis for V. We claim that $\mathbf{D} = \{\vec{v_1}, i\vec{v_1}, \dots, \vec{v_n}, i\vec{v_n}\}$ is an \mathbf{R} -basis for V. To see linear independence, suppose that there exist real numbers $a_1, a'_1, \dots a_n, a'_n$ such that $a_1\vec{v_1} + a'_1 \cdot i\vec{v_1} + \dots + a_n\vec{v_n} + a'_n \cdot i\vec{v_n} = 0$. Then we have that $(a_1 + ia'_1)\vec{v_1} + \dots + (a_n + ia'_n)\vec{v_n} = 0$. This is a \mathbf{C} -linear combination of vectors from \mathbf{B} , which is linearly independent. Then we find that $a_j + ia'_j = 0$ for all $1 \le j \le n$. Hence $a_j = a'_j = 0$ for all $1 \le j \le n$, so \mathbf{D} is linearly independent. To see that \mathbf{D} is spanning, write an arbitrary element $\vec{v} \in V$ as a \mathbf{C} -linear combination of elements of \mathbf{B} : $\vec{v} = b_1\vec{v_1} + \dots + b_n\vec{v_n}$. We can now write each b_j as $b_j = a_j + a'_j$ for $a_j, a'_j \in \mathbf{R}$. Then we have $\vec{v} = (a_1 + ia'_1)\vec{v_1} + \dots + (a_n + ia'_n)\vec{v_n} = a_1\vec{v_1} + a'_1 \cdot i\vec{v_1} + \dots + a_n\vec{v_n} + a'_n \cdot i\vec{v_n}$, which is an \mathbf{R} -linear combination of elements of \mathbf{D} , so we see that \mathbf{D} is spanning. We conclude that \mathbf{D} is a basis.

Remark. Part b of Problem 4 and Part c of Problem 5 are special cases of the above exercise.

Part c. Let $n = \dim_{\mathbf{C}} V$, so we can write down an **C**-basis consisting of n elements: $\mathbf{B} = \{\vec{v_1}, \dots, \vec{v_n}\}$. By the previous part, we know that $\mathbf{D} = \{\vec{v_1}, i\vec{v_1}, \dots, \vec{v_n}, i\vec{v_n}\}$ is an **R**-basis for V. Observe that **D** has twice as many elements as **B**, so $\dim_{\mathbf{R}} V = 2n = 2\dim_{\mathbf{C}} V$.