MATH2040C Homework 6

ZHENG Weijia (William, 1155124322)

April 9, 2021

1 Section 6.1, **Q8**

Provide reasons why each of the following is not an inner product on the given vector spaces.

- (a) $\langle (a,b),(c,d)\rangle = ac bd$ on \mathbb{R}^2 .
- **(b)** $\langle A, B \rangle = \operatorname{tr}(A + B)$ on $M_{2 \times 2}(R)$.
- (c) $\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t) dt$ on P(R), where ' denotes differentiation.

1.1 (a)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in \mathbb{R}^2$. Let x = (1, 10). Then $\langle x, x \rangle = \langle (1, 10), (1, 10) \rangle = 1^2 - 10^2 = -99 < 0$. Therefore, this is not an inner product.

1.2 (b)

Suppose this is an inner product. Then $\langle x, x \rangle \geq 0$ should hold $\forall x \in M_{2 \times 2}(R)$.

Let
$$x = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
. Then

$$\langle x, x \rangle = tr(x+x) = -2 - 2 = -4 < 0.$$

Therefore, this is not an inner product.

1.3 (c)

Suppose this is an inner product. Then $\forall f,g\in P(\mathbb{R}), \overline{\langle\,g,f\rangle}=\langle\,f,g\rangle$ should hold. Let $f(x)=x,g(x)=x^2+x$.

Then

$$\langle f, g \rangle = \int_0^1 1(x^2 + x) \, dx = \frac{5}{6}.$$

$$\overline{\langle g, f \rangle} = \overline{\int_0^1 (2x+1)x \, dx} = \frac{7}{6}.$$

Therefore $\overline{\langle g,f\rangle} \neq \langle f,g\rangle$ for some $f,g\in P(\mathbb{R})$. Hence, this is not an inner product. Done.

2 Section 6.1, Q17

Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.

Note that because we have ||T(x)|| = ||x||. Then $\forall x \in V$, with $x \neq 0$ we have

$$||T(x)|| = ||x|| > 0.$$

Therefore $x \neq 0$.

Note that ||T(0)|| = ||0|| = 0, which implies

$$T(0) = 0.$$

Hence $N(T) = \{0\}.$

Hence, T is one-to-one.

Done.

3 Section 6.1, Q18

Let V be a vector space over F, where F = R or F = C, and let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle$. If T: V \rightarrow W is linear, prove that $\langle x, y \rangle' = \langle \mathsf{T}(x), \mathsf{T}(y) \rangle$ defines an inner product on V if and only if T is one-to-one.

3.1 If part

In the if part, we assume T is one-to-one and try to prove $\langle \cdot, \cdot \rangle'$ is an inner product. One-to-one implies $N(T) = \{0\}$. Then $\forall x (\neq 0) \in V, T(x) \neq 0$. Therefore

$$\langle x, x \rangle' = \langle T(x), T(x) \rangle > 0.$$

Because $\langle \cdot, \cdot \rangle$ is an inner product.

Also note that $\forall x, y, z \in V, \forall c \in F$,

$$\langle\, x+z,y\rangle^{'} = \langle\, T(x+z),T(y)\rangle = \langle\, T(x)+T(z),T(y)\rangle = \langle\, T(x),T(y)\rangle + \langle\, T(z),T(y)\rangle$$

$$=\langle x, y \rangle' + \langle z, y \rangle'.$$

Besides,

$$\langle cx, y \rangle' = \langle T(cx), T(y) \rangle = \langle cT(x), T(y) \rangle = c \langle T(x), T(y) \rangle = c \langle x, y \rangle'.$$

And finally,

$$\overline{\langle \, x,y\rangle'} = \overline{\langle \, T(x),T(y)\rangle} = \langle \, T(y),T(x)\rangle = \langle \, y,x\rangle'.$$

Based on all above, $\left\langle \, \cdot, \cdot \right\rangle'$ is an inner product.

3.2 Only if part

In the only if part, we have $\langle \cdot, \cdot \rangle'$ is already an inner product and try to prove T is injective. Note that T is linear, then T(0) = 0 must hold.

Becasue $\forall x (\neq 0) \in V, \langle x, x \rangle' = \langle T(x), T(x) \rangle > 0$. Therefore $\forall x \neq 0, T(x) \neq 0$.

Therefore $N(T) = \{0\}$, follows that T is injective.

Done.

4 Section 6.1, Q19

Let V be an inner product space. Prove that

- (a) $||x \pm y||^2 = ||x||^2 \pm 2\Re \langle x, y \rangle + ||y||^2$ for all $x, y \in V$, where $\Re \langle x, y \rangle$ denotes the real part of the complex number $\langle x, y \rangle$.
- (b) $||x|| ||y|| | \le ||x y||$ for all $x, y \in V$.

4.1 (a)

Our goal is to prove $2\mathcal{R}\langle\,x,y\rangle=||x+y||^2-||x||^2-||y||^2$ and $-2\mathcal{R}\langle\,x,y\rangle=||x-y||^2-||x||^2-||y||^2$.

For the plus sign, note that the

$$R.H.S. = \mathcal{R}\langle x + y, x + y \rangle - \mathcal{R}\langle x, x \rangle - \mathcal{R}\langle y, y \rangle$$

$$= \mathcal{R}\langle x, y \rangle + \mathcal{R}\langle y, x \rangle.$$

Note that $\mathcal{R}\langle x, y \rangle = \mathcal{R}\langle y, x \rangle$ because $\overline{\langle x, y \rangle} = \langle y, x \rangle$.

Therefore L.H.S. = R.H.S..

For the minus sign, note that the

$$R.H.S. = \mathcal{R}\langle x - y, x - y \rangle - \mathcal{R}\langle x, x \rangle - \mathcal{R}\langle y, y \rangle$$

$$= \mathcal{R}\langle x, -y \rangle + \mathcal{R}\langle -y, x \rangle.$$

Which is equal to $2\mathcal{R}\langle x, -y \rangle = -2\mathcal{R}\langle x, y \rangle = L.H.S.$.

Therefore, (a) is proved. Done.

4.2 (b)

To prove (b), it is suffice to prove $|\ ||x||-||y||\ |^2\leq ||x-y||^2.$ Iff,

$$||x||^2 + ||y||^2 - 2||x|| \cdot ||y|| \le ||x||^2 + 2\mathcal{R}\langle x, y\rangle + ||y||^2.$$

iff,

$$||x|| \cdot ||y|| \ge \mathcal{R}\langle x, y \rangle.$$

Which is bound to be true because

$$||x|| \cdot ||y|| \ge |\langle x, y \rangle| \ge \mathcal{R} \langle x, y \rangle.$$

Done.