Training PCFGs

Computational Linguistics

Alexander Koller

28 November 2023

Probabilistic CFGs

$S \rightarrow NP VP$	[1.0]	$VP \rightarrow V NP$	[0.5]
$NP \rightarrow Det N$	[8.0]	$VP \rightarrow VP PP$	[0.5]
$NP \rightarrow i$	[0.2]	$V \rightarrow shot$	[1.0]
$N \rightarrow N PP$	[0.4]	$PP \rightarrow P NP$	[1.0]
$N \rightarrow elephant$	[0.3]	$P \rightarrow in$	[1.0]
N → pyjamas	[0.3]	$Det \rightarrow an$	[0.5]
		$Det \rightarrow my$	[0.5]

Evaluation

• Step 1: Decide on training and test corpus. For WSJ corpus, there is a conventional split by sections:

Evaluation

- Step 2: How should we measure the accuracy of the parser?
- Straightforward idea: Measure "exact match", i.e. proportion of gold standard trees that parser got right.
- This is too strict:
 - parser makes many decisions in parsing a sentence
 - a single incorrect parsing decision makes tree "wrong"
 - want more fine-grained measure

Comparing parse trees

- Idea 2 (PARSEVAL): Compare *structure* of parse tree and gold standard tree.
 - ▶ Labeled: Which *constituents* (span + syntactic category) of one tree also occur in the other?
 - Unlabeled: How do the trees bracket the substrings of the sentence (ignoring syntactic categories)?

Precision

What proportion of constituents in *parse tree* is also present in *gold tree*?

Labeled Precision = 7 / 11 = 63.6%Unlabeled Precision = 10 / 11 = 90.9%

Recall

What proportion of constituents in *gold tree* is also present in *parse tree*?

Labeled Recall = 7 / 9 = 77.8% Unlabeled Recall = 8 / 9 = 88.9%

F-Score

- Precision and recall measure opposing qualities of a parser ("soundness" and "completeness")
- Summarize both together in the *f-score*:

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

• In the example, we have labeled f-score 70.0 and unlabeled f-score 89.9.

Outline

- 1. Maximum likelihood estimation for PCFGs.
- 2. Unsupervised training: Hard and soft EM.
- 3. More accurate models for PCFG parsing.

ML Estimation

- Assume we have a treebank.
 - that is, every sentence annotated by hand with its "correct" parse tree
- Then we can use MLE to obtain rule probabilities:

$$P(A \to w) = \frac{C(A \to w)}{C(A \to \bullet)} = \frac{C(A \to w)}{\sum_{w'} C(A \to w')}$$

Standard way of parameter estimation in practice.
 Works well, smoothing only needed for unknown words (or replace by POS tags).

Example

$N \rightarrow N PP$	[0]	$VP \rightarrow TV NP$	[1/4]
N → elephant	[1/3]	$VP \rightarrow IV$	[1/4]
N → pyjamas	[2/3]	$VP \rightarrow VP PP$	[1/2]

"Hard" aka Viterbi EM

 In the absence of syntactic annotations, learner must invent its own parse trees.

• Viterbi EM:

- start with some parameter estimate
- produce "syntactic annotations" by computing best tree for each sentence using Viterbi
- apply MLE to re-estimate parameters
- repeat as long as needed
- This is *not* real EM!

Example

1

 $N \rightarrow N PP$ [0.6] $VP \rightarrow TV NP$ [1/3]

 $N \rightarrow \text{elephant}$ [0.2] $VP \rightarrow IV$ [1/3]

 $N \rightarrow pyjamas$ [0.2] $VP \rightarrow VP PP$ [1/3]

MLE on Viterbi parses

2

```
N \rightarrow N PP [1/4] VP \rightarrow TV NP [1/3]
```

$$N \rightarrow \text{elephant}$$
 [1/4] $VP \rightarrow IV$ [1/3]

 $N \rightarrow pyjamas$ [1/2] $VP \rightarrow VP PP$ [1/3]

Some things to note

- In this example, the likelihood increased.
 - ▶ this need not always be the case for Viterbi EM
- Viterbi EM commits to a single parse tree per sentence. This has advantages and disadvantages:
 - parse tree easy to compute, and can simply apply MLE
 - ignores all uncertainty we had about correct parse (winning parse tree takes all)

"Real" (aka "soft") EM

idea: weighted counting of rules in all parse trees

Inside-Outside Algorithm

- EM needs to sum over exponentially many parse trees → naive algorithm is infeasible.
- Similar rebracketing trick as in forward-backward permits doing EM loop in cubic time per sentence:
 - inside-outside algorithm
 - ▶ inside algorithm = Viterbi-CKY with sum instead of max

Inside-Outside Algorithm

Initialization: start with some estimate of parameters.

Continue computation until parameters don't change much.

Some remarks

Charniak

- Inside-outside increases likelihood in each step.
- But huge problems with local maxima.
 - Carroll & Charniak 92 find 300 different local maxima for 300 different initial parameter estimates.
- Therefore, EM doesn't really work for totally unsupervised PCFG training.

Fundamental problem of PCFGs

- Context-free grammar: One rule can only "see" parent and its children, not anything above or below.
- PCFG: Assumes statistical independence of all rewrite events.

 $NP \rightarrow PRP$?

 $NP \rightarrow Det N$?

Independence assumptions

Independence assumptions

- Accurate disambiguation of PP attachment requires lexical information.
 - ▶ I shot the elephant with a long trunk.
 - ▶ I shot the elephant with a long rifle.
- PP attachment influenced by choice of P.
 - ▶ Collins note: "workers dumped sacks *into* a bin"
 - into-PPs in PTB 9x more likely to attach to VP than to N
- PCFGs rely on nonterminals alone, cannot "see" lexical information.

Parent annotations

- Discusses PTB preprocessing and impact of PTB representation changes.
- One key idea: *parent annotations* (Johnson 1998).
 - If parent of NP makes such a difference in how it should be expanded, why don't we encode the parent of the NP?
 - ▶ Replace nonterminal NP by NP^S (NP as child of S), NP^VP (NP as child of VP), and so on in PTB trees.
 - Train grammar on modified treebank. After parsing, remove annotations and compare to gold standard tree.

Example

Result: Labeled f-score on Section 22 jumps from 71.5 to 79.6. Number of production rules grows from 15,000 to 22,000.

Rule-based state splitting

Results

Baseline grammar:

- smart parent annotations
- smart binarizations

Compares favorably to *lexicalized* parsers, in which nonterminals are labeled with head words (Collins, f-score ~89).

Accuracy can be improved further by automatically splitting nonterminals, using EM (Petrov & Klein).

	Cumulative		Indiv.	
Annotation	Size	F_1	ΔF_1	ΔF_1
Baseline $(v \le 2, h \le 2)$	7619	77.77	_	_
UNARY-INTERNAL	8065	78.32	0.55	0.55
UNARY-DT	8066	78.48	0.71	0.17
UNARY-RB	8069	78.86	1.09	0.43
TAG-PA	8520	80.62	2.85	2.52
SPLIT-IN	8541	81.19	3.42	2.12
SPLIT-AUX	9034	81.66	3.89	0.57
SPLIT-CC	9190	81.69	3.92	0.12
SPLIT-%	9255	81.81	4.04	0.15
TMP-NP	9594	82.25	4.48	1.07
GAPPED-S	9741	82.28	4.51	0.17
POSS-NP	9820	83.06	5.29	0.28
SPLIT-VP	10499	85.72	7.95	1.36
BASE-NP	11660	86.04	8.27	0.73
DOMINATES-V	14097	86.91	9.14	1.42
RIGHT-REC-NP	15276	87.04	9.27	1.94

Summary

- PCFGs that we read off of treebank suffer from overly strong independence assumptions.
- Improve parser accuracy by encoding context in nonterminal vocabulary.
 - parent annotations
 - lexicalization
 - rule-based and automatically computed state splitting
- PCFG-based Berkeley parser: f-score ~90
 Neural Berkeley parser: f-score ~96.
 - ▶ The future may be neurosymbolic.