[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

825

B.Tech 4th Semester Examination Discrete Structures

CS-4002

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one from each of the Sections A, B, C & D. Section E is compulsory.

SECTION - A

- 1. (a) If A and B are two sets, prove that $A-B=A-(A\cap B)$ (10)
 - (b) Prove that the following are true for sets A and B.

$$(A \cup B) \cap (\overline{A \cap B}) = (A \cap \overline{B}) \cup (B \cap \overline{A})$$
 (10)

- 2. (a) Let U = {I, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 4, 5}, B = {4, 5, 6, 7}, C = {1 4, 6}. Compute: (i) $A \cap B$, (ii) A B, (iii) $A \cap (B \cup C)$, (iv) $A \cap C$. (10)
 - (b) Define equivalence relation. If R and S are equivalence relations on a set A, then show that $R \cap S$ is an equivalence relation.

(10)

825/1400 [P.T.O.]

		2	825
SECTION - B			
3.	(a)	Given the prepositional statement:	
		$(\neg p \land \neg (p \Rightarrow q))$. Construct a truth table	
		for the statement and state whether it is a tautology or not.	(10)
	(b)	Let A= {1, 2, 3, 4, 5, 6, 7} and B = {1, 3,	
		5}. Give $(A \cap B) \times B$.	(10)
4.	(a)	Prove that for any three propositions p, q, r	
		$[(p\vee q)\to r]\leftrightarrow [(p\to r)\wedge (q\to r)] \text{is} \text{a}$ tautology.	(10)
	(b)	Explain CNF and DNF in detail with the help of suitable examples.	(10)
SECTION - C			
5.	(a)	Write note on:	
		i. Isomorphic graphs	
		ii. Semi groups	(10)
	(b)	Let T be a tree. Suppose we add two edges to T forming a graph T. How many cycles can T have? Explain in detail.	(10)
6.	(a)	What is bipartite graph? Argue that every cycle in a bipartite graph contains an even number of edges.	(10)
	(b)	Prove that for every connected graph, G. if G has no cycles, then for every pair of vertices a and b in G, there is only one path from a to b in G.	(10)
		אם וו וויטווו מ נט ט ווו G.	(10)

825 3 **SECTION - D** 7. (a) Define a binary tree. Show that a tree with n vertices has n -1 edges. (10)Prove that a finite connected graph G is Eulerian if and only if each vertex has (10)even degree. Show that the maximum number of 8. (a) vertices in a binary tree of height h is (10) $2^{h+1}-1$. Define spanning tree. Write the Kruskal's (b) algorithm to find a minimal spanning tree (10)of a weighted graph. **SECTION - E** 9. (a) Prove that for any 3 sets A, B and C, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. List all partitions of the set {1, 2}. (b) (c) Define asymmetric relation with an example. (d) Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$. Define complete graph and give an (e) example. Let $A = \{1, 2, 3\}$, find $A \times A$. (f)

[P.T.O.]

4 825

(g) If P and Q stand for the statement

P: It is hot

Q: It is humid

Then what does the statement $(P \land \neg Q)$ mean?

- (h) Explain postorder traversal of a binary tree.
- (i) List applications of weighted graphs in computer science.
- (j) Write short note on prepositional calculus.

 (2×10)