Max Wisniewski, Alexander Steen

Tutor: Ansgar Schneider

Aufgabe 1

a) Gesucht: Funktion $f:A\to B$, mit A,B cpos, f nicht stetig. Sei $|A|\geq 2, |B|\geq 2$, sei $\alpha\neq \bot_A\in A$ und $\beta\neq \bot_B\in B$.

Sei
$$f: A \to B$$
, mit $a \mapsto \begin{cases} \bot_B & \text{, falls } a \neq \bot_A \\ \beta & \text{, sonst} \end{cases}$

f ist nicht stetig, da für die Kette $\{\bot_A, \alpha\}$ gilt:

$$\sup f(\{\bot_A, \alpha\}) = \sup \{\beta, \bot_B\}$$

$$= \beta$$

$$\neq \bot_B$$

$$= f(\alpha)$$

$$= f(\sup \{\bot_A, \alpha\})$$

b) Z.z. $f: B \to C, g: A \to B$ stetig $\Rightarrow f \circ g: A \to C$ stetig, mit A, B, C cpo.

Beweis

Sei $f: B \to C, g: A \to B$ stetig, A, B, C cpos und $K \subseteq A$ eine Kette. Dann ist $(f \circ g)(K) = f(g(K))$.

(1)
$$g$$
 stetig $\Rightarrow G := g(K) \subseteq B$ Kette. Da f stetig $\Rightarrow f(G) = f(g(K)) = (f \circ g)(K) \subseteq C$ Kette.

(2) f stetig $\Rightarrow \forall K' \subseteq B$ Kette : $f(\sup K') = \sup f(K')$ und g stetig $\Rightarrow \forall K' \subseteq A$ Kette : $g(\sup K') = \sup g(K')$. Sei $G := g(K) \subseteq B$ Kette (nach (1)). $\Rightarrow (f \circ g)(\sup K) = f(g(\sup K)) = f(\sup g(K)) = \sup f(G) = \sup f(g(K)) = \sup f(g(K)) = \sup f(g(K))$.

Aufgabe 2

Aufgabe 3

Aufgabe 4

Seien D_1, D_2 cpos und $f: D_1 \to D_2, g: D_2 \to D_1$ stetig. Z.z. $fix_{f \circ g} = f(fix_{g \circ f})$ und $fix_{g \circ f} = g(fix_{f \circ g})$.

Beweis:

Nach Aufgabe 1 gilt $f \circ g: D_2 \to D_2$ stetig und $g \circ f: D_1 \to D_1$ stetig. Dann gilt nach dem Fixpunktsatz: $fix_{f \circ g}$ und $fix_{g \circ f}$ existieren und

$$fix_{f \circ g} = \sup_{n \in \mathbb{N}} \{ (f \circ g)^n (\bot_{D_1}) \}, \quad fix_{g \circ f} = \sup_{n \in \mathbb{N}} \{ (g \circ f)^n (\bot_{D_2}) \}$$

Da sowohl $\{(f \circ g)^n(\perp_{D_1}) | n \in \mathbb{N}\}$ als auch $\{(g \circ f)^n(\perp_{D_2}) | n \in \mathbb{N}\}$ Ketten sind (siehe Beweis zu Satz 3.7), gilt:

$$f(fix_{g \circ f}) = f(\sup_{n \in \mathbb{N}} \{(g \circ f)^n(\bot_{D_2})\})$$

$$f \text{ stetig} = \sup_{n \in \mathbb{N}} \{f((g \circ f)^n(\bot_{D_2}))\}$$

$$= \sup_{n \in \mathbb{N}} \{(f \circ g)^n(f(\bot_{D_2}))\}$$

$$\stackrel{(*)}{=} \sup_{n \in \mathbb{N}} \{(f \circ g)^n(\bot_{D_1})\}$$

$$= fix_{f \circ g}$$

$$g(fix_{f \circ g}) = g(\sup_{n \in \mathbb{N}} \{(f \circ g)^n(\bot_{D_1})\})$$

$$= g \text{ stetig} = \sup_{n \in \mathbb{N}} \{g((f \circ g)^n(\bot_{D_1}))\}$$

$$\stackrel{g \text{ stetig}}{=} \sup_{n \in \mathbb{N}} \{g((f \circ g)^n(\bot_{D_1}))\}$$

$$\stackrel{umordnung}{=} \sup_{n \in \mathbb{N}} \{(g \circ f)^n(g(\bot_{D_1}))\}$$

$$\stackrel{(*)}{=} \sup_{n \in \mathbb{N}} \{(g \circ f)^n(\bot_{D_2})\}$$

$$= fix_{g \circ f}$$

(*) gilt, weil f,g strikt sind....blabla