List of materials to be tested in final Exam. Fell. 2016, Statt 17. Midtern covered. First 11 sections. @ Lebegue measure in RK Theorem 12.5 F: RK→R SAF ≥0. 3 unique measure m on RK (it. M (A) = AF YA bounded rectangles. when $F = \alpha_1 \cdots \alpha_K$ M i the Lebesque measure ofk

particularly nice.

* Theon 13.1 Tom of/of', T. on of'/or"

→ T.·T @ 4/4"

Relies heavily on set merse
frut en
* Reorem 13.2
Continuous fontiens une measurable
* Fleoren 13.3.
murginally weasmable >
Jointly measurable.
Problemidea. Show this beyond
Sulideau SPAU.
(1) Limit and measurability
Theorem 13.4. In m F/A
Sup, fn, unf, fn. wsupf, mint fn
linsfor, @ F/R.

Approximating (m) fru t'en by
simple funtieur.
Fleorem 13.5
f: Son R Q P/Q. = Ifu) cimple
st. $0 \le f_n(\omega) \uparrow f(\omega) \Rightarrow 0$
0>fu(m) p fim) t(m) co
@ Measure included by transformation
$\mu \circ T^{-1}(A') : A' \in \mathscr{P}'$
Feris is a measure.
(relay on inverse set fontier
(rely on inverse set fontier prosenties).
Section 14. Distibution
@ Rankom van : able X. (1, F) = (R, B)
Random variable X. (Ω, F)-X(R, R) Random vech . X. (Ω, F)->(RK, QK)

STAT 517 NOTES 390 / 401 12/8/16

Randomeleut. X: (NoF) > (N', F). Odictoibuten. X: N-N. 9/9'. P.X' is too distoit to on ofx. Odistieden sontien. En ranlow variable X. $F(x) = PX^{-1}(-\infty, x] = P(X \in (-\infty, x])$ Kight continuous, left limit is P(XXX). Jump: P(X=x). At most countables many juns. (1) Reorem (4.1) distoibution function F Retermines a probability measure. Section 15 Antegration (1.9,M). f:SITR @ 9/0

Go : tu collection of all finite of-partitions.

€ + > 0 ·

 $= \sup_{A:360} \sum_{i=1}^{K} \left[\inf_{A_i} f(w) \right] \mu(A_i).$

0.00 = 0 0.0 = 0

00.2 = 00

 $\chi \cdot \infty = \infty$

00.00 =00

IfdMZ00. J@M f+, f-, Suppose one of. Stop Stop is finith, trees Sfdm=Sfda-Sfch. < =00 } fp/h. <00 $= \infty$ 205 inite integral. = 00 f 2005 n + < 00 have definite entesicel.

STAT 517 NOTES 393 / 401 12/8/16

Dogerties integral nonnen come.
(1.7), f.9: N = R m F/R -
Fleom 15.1
- f = ExiJA. >0. simple.
Sfalm = Exim(Ai)
- OEFEG => Stopue Sam.
- OES-1+ => Sfndm >Sfndm.
- f30,9>,0, d=0,B>0.
SCOCF+B91dn=dSton+BS80m
@ Almost everywhere M.
$(\Lambda, \mathcal{P}), (\Lambda', \mathcal{P}')$.
$f: \Lambda \rightarrow \Lambda', \omega \varphi/\varphi'$

STAT 517 NOTES 394 / 401 12/8/16

 $B' \in \mathcal{F}'$. $f \in B'$ a.e. μ if $\mu(f \notin B')$ $= \mu f^{-1}(B')^{c} = 0$.

Tereorem 15.2. +20,920

- f=0 aie. M = Sfdm=0.
- Stdn +0 => f +0 a.e. M.
- (f d m c 00) f c 00 a.e. M.
- f = q a.e. = StdM = SqdM.
- f=9 are.m=) sfdm=s9dm.

Section 16. Properties 18 integral.
(mtegrable cone).
Theorem 16.1
- f, 9@ µ. f≤q a.e. ⇒ stdµ∈sq6
- f.g@M. d.BtR
Saf+Badm= astom+Bsach
Theorem 16.2. (MCT) 0 \left f are. M.
⇒ Sfnolm → Sfdm
Fenorem 6.3 (Faton)
fn 20 @ F/R
) (limint fu du Elimint Studu.

STAT 517 NOTES 396 / 401 12/9/16

Floorem 16.4 PCT. fu)f a.e.M 15n 69. 90 M. => S 5m dm >> (5dm Reven 16.5 BCT. µ(N)2∞, |f4|∈M. fy > f a.e. M => Sfndm -> Stdy Fleorem 16.6 (Serges MCT). fn>,0] \(\int f, d\(\mu = \sum \) \(\sum \) \(\sum \) \(\sum \) \(\mu Rusem 16.7 Series DCT 15 fr/69. Ef. converges a.e.M. 9@M. > S & frdn = & Sfrdn

Theorem 16.8. Apply DCT to continuity l'differentiability of t H) Sf(wf)du(u). Unternal over set > SAfdm=SfIng.

- Fleenen 16.91 An disjount.

J fdm = E SAnfdm

(monneg. untegrable une).

- Ferenu 16.9 SASIM= Sydn YAEF =) f = 9 o.e.M.

STAT 517 NOTES 398 / 401 12/9/16

(won neg, untegrable) f-9 @ M. J + dm = J q dm A E TT system ganalig F Ω is countable unous of P sets f=9 a.11M. @ Density Floorem 16.11) (dearity through dr = Edm = Itom = Itom (nonneg. integrable. Faerem 16.12 (ScheHe).

 $dVn = \delta n dM$ $dV = \delta dM.$ $Vn(N) = V(N) = \infty.$

→ sup | VnA)-V(A)| ≤ ∫ |δn-δ|δμ→0.

@ Change of variable:

Ference 16,13.

 $\int_{A'} f d\mu T' = \int_{T'(A')} (f \cdot T) d\mu$

(WONNEG. (D. conses)

@ Uniform Integrali lity fn@M 15,1/2 Feren 16.14. pr (S) co. (i) fn-)fa.e. M fn@M =>) fuda >) fdm. (ii) f20, 5,20 f@m. 5n@m Sfudy + Sfdy => fu@p.

STAT 517 NOTES 401 / 401 12/9/16