Problem Statement - To predict drivers that have good probability of leaving based on the driver's details. Churned Driver can lead to Churned Customers as if no of drivers are less in area, finding cabs can be difficult. Also, finding new drivers (by Ola) is more costly than retaining old ones.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
{\tt from \ sklearn.preprocessing \ import \ StandardScaler, \ MinMaxScaler}
{\tt from \ sklearn.ensemble \ import \ RandomForestClassifier}
from sklearn.metrics import classification_report, precision_score, recall_score, fl_score, confusion_matrix, ConfusionMatrixD
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_colwidth', None)
!gdown 1qQGMqO8uN217NfpMZkpOpYLP6hgbvxjA
     Downloading...
     From: <a href="https://drive.google.com/uc?id=1qQGMqO8uN217NfpMZkpOpYLP6hgbvxjA">https://drive.google.com/uc?id=1qQGMqO8uN217NfpMZkpOpYLP6hgbvxjA</a>
     To: /content/ola.csv
     100% 1.13M/1.13M [00:00<00:00, 123MB/s]
df = pd.read_csv('ola.csv')
df
```

	Unnamed:	МММ-ҰҰ	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation
0	0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1
1	1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1
2	2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1
3	3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2
4	4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2
19099	19099	08/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2
19100	19100	09/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2
19101	19101	10/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2
19102	19102	11/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2
19103	19103	12/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2

19104 rows × 14 columns

Column Profiling:

- MMMM-YY: Reporting Date (Monthly)
- Driver_ID : Unique id for drivers
- · Age: Age of the driver
- Gender: Gender of the driver Male: 0, Female: 1
- · City: City Code of the driver
- Education_Level: Education level 0 for 10+,1 for 12+,2 for graduate
- Income: Monthly average Income of the driver
- Date Of Joining : Joining date for the driver
- LastWorkingDate: Last date of working for the driver
- Joining Designation : Designation of the driver at the time of joining
- Grade: Grade of the driver at the time of reporting
- Total Business Value: The total business value acquired by the driver in a month (negative business indicates cancellation/refund or car EMI adjustments)
- Quarterly Rating: Quarterly rating of the driver: 1,2,3,4,5 (higher is better)

 $df_2 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_2['Churn'] = df_2['LastWorkingDate'].apply(lambda x: 0 if pd.isna(x) else 1) # when we aggregate, we will max this value \\ df_2 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_2['Churn'] = df_2['LastWorkingDate'].apply(lambda x: 0 if pd.isna(x) else 1) # when we aggregate, we will max this value \\ df_2 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_2['Churn'] = df_2['LastWorkingDate'].apply(lambda x: 0 if pd.isna(x) else 1) # when we aggregate, we will max this value \\ df_2 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_2 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_3 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_4 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_4 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_5 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_6 = df.drop(['Unnamed: 0'], axis=1, inplace=False) \\ df_7 = df.drop(['Unnamed: 0'], axis=1, in$

	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Ві
0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	
1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	
2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	
3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	
4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	
19099	08/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	
19100	09/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	
19101	10/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	
19102	11/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	
19103	12/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	

df=df_2.copy()

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19104 entries, 0 to 19103
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	MMM-YY	19104 non-null	object
1	Driver_ID	19104 non-null	int64
2	Age	19043 non-null	float64
3	Gender	19052 non-null	float64
4	City	19104 non-null	object
5	Education_Level	19104 non-null	int64
6	Income	19104 non-null	int64
7	Dateofjoining	19104 non-null	object
8	LastWorkingDate	1616 non-null	object
9	Joining Designation	19104 non-null	int64
10	Grade	19104 non-null	int64
11	Total Business Value	19104 non-null	int64
12	Quarterly Rating	19104 non-null	int64
13	Churn	19104 non-null	int64
	es: float64(2), int64(ry usage: 2.0+ MB	8), object(4)	
	1 3		

df.describe(include=['object','int64','float64'])

	MMM-YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate
count	19104	19104.000000	19043.000000	19052.000000	19104	19104.000000	19104.000000	19104	1616
unique	24	NaN	NaN	NaN	29	NaN	NaN	869	493
top	01/01/19	NaN	NaN	NaN	C20	NaN	NaN	23/07/15	29/07/20
freq	1022	NaN	NaN	NaN	1008	NaN	NaN	192	70
mean	NaN	1415.591133	34.668435	0.418749	NaN	1.021671	65652.025126	NaN	NaN
std	NaN	810.705321	6.257912	0.493367	NaN	0.800167	30914.515344	NaN	NaN
min	NaN	1.000000	21.000000	0.000000	NaN	0.000000	10747.000000	NaN	NaN
25%	NaN	710.000000	30.000000	0.000000	NaN	0.000000	42383.000000	NaN	NaN
50%	NaN	1417.000000	34.000000	0.000000	NaN	1.000000	60087.000000	NaN	NaN
75%	NaN	2137.000000	39.000000	1.000000	NaN	2.000000	83969.000000	NaN	NaN
max	NaN	2788.000000	58.000000	1.000000	NaN	2.000000	188418.000000	NaN	NaN

```
df['Driver_ID'].nunique()
        2381

df['City'].nunique()
        29

# we see for each driver_id multiple rows of data is present for different months

df[df['Driver_ID'] == 1]
```

	ммм-чч	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	To Busin Va
0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381
1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665

df.corr()

	Driver_ID	Age	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating	Churn
Driver_ID	1.000000	0.005457	0.030349	-0.016132	-0.035767	-0.035166	-0.025712	0.003896	0.017917	-0.000675
Age	0.005457	1.000000	0.040261	-0.010245	0.191112	-0.006641	0.210702	0.108835	0.171818	-0.063562
Gender	0.030349	0.040261	1.000000	-0.010123	0.013229	-0.050878	0.002076	0.008909	0.008099	-0.002908
Education_Level	-0.016132	-0.010245	-0.010123	1.000000	0.115008	0.002041	-0.039552	-0.007504	0.026064	-0.007058
Income	-0.035767	0.191112	0.013229	0.115008	1.000000	0.380878	0.778383	0.234044	0.116897	-0.100896
Joining Designation	-0.035166	-0.006641	-0.050878	0.002041	0.380878	1.000000	0.559854	-0.044446	-0.237791	0.020249
Grade	-0.025712	0.210702	0.002076	-0.039552	0.778383	0.559854	1.000000	0.220955	0.014445	-0.089486
Total Business	0 000000	0.400005	0.000000	0.007504	0.004044	0.044440	0.000055	1 000000	0.474004	0.140001

Feature Engineering

```
def increase_fn(x):
    if len(x) >= 2:
        for i in range(len(x)):
        if x[-1] > x[-2]:
            return 1
        else:
            return 0

else:
        return 0

df_4 = df.sort_values(by=['Driver_ID', 'MMM-YY'])
df_4 = df_4.reset_index(drop=True)
df_4
```

```
Joining Grade B
            MMM-YY Driver_ID Age Gender City Education_Level Income Dateofjoining LastWorkingDate Designation
                      1 28 0 0 0 0 023
                                                             2 57387
                                                                            24/12/18
      n 01/01/19
                                                                                                 NaN
df_2 = pd.merge(left = df_4.groupby("Driver_ID")["Quarterly Rating"].unique().apply(increase_fn).rename("Quarterly_Rating_Incr
              right = df_4,
              on = "Driver_ID",
              how="outer")
df_3 = pd.merge(left = df_2.groupby("Driver_ID")["Income"].unique().apply(increase_fn).rename("Income_Increased"),
              right = df_2,
              on = "Driver_ID",
              how="outer")
df_3
           Driver_ID Income_Increased Quarterly_Rating_Increased MMM-YY Age Gender City Education_Level Income Dateofj
       0
                   1
                                     0
                                                                0 01/01/19 28.0
                                                                                   0.0
                                                                                        C23
                                                                                                           2
                                                                                                              57387
       1
                   1
                                     0
                                                                0 02/01/19 28.0
                                                                                   0.0
                                                                                        C23
                                                                                                           2
                                                                                                              57387
       2
                                                                0 03/01/19 28.0
                                                                                        C23
                   1
                                     0
                                                                                   0.0
                                                                                                           2
                                                                                                              57387
       3
                                                                0 11/01/20 31.0
                                                                                   0.0
                                                                                         C7
                                                                                                               67016
       4
                   2
                                     0
                                                                0 12/01/20 31.0
                                                                                   0.0
                                                                                        C7
                                                                                                           2
                                                                                                               67016
       ...
                                                                                    ...
                                                                0 08/01/20 30.0
                                                                                       C27
     19099
                2788
                                    0
                                                                                   0.0
                                                                                                           2
                                                                                                              70254
     19100
                                                                0 09/01/20 30.0
                2788
                                     0
                                                                                        C27
                                                                                                           2
                                                                                                              70254
                                                                                   0.0
     19101
                2788
                                     0
                                                                0 10/01/20 30.0
                                                                                   0.0
                                                                                        C27
                                                                                                           2
                                                                                                               70254
```

0 11/01/20 30.0

0 12/01/20 30.0

0.0

0.0

C27

C27

70254

70254

2

df=df 3.copy() df['Quarterly_Rating_Increased'].value_counts()

19104 rows × 16 columns

2788

2788

0 12442 1 6662

19102

19103

Name: Quarterly_Rating_Increased, dtype: int64

0

df['Income_Increased'].value_counts()

memory usage: 2.5+ MB

0 18114

990

Name: Income_Increased, dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 19104 entries, 0 to 19103

Data	columns (total 16 columns):		
#	Column	Non-Null Count	Dtype
0	Driver_ID	19104 non-null	int64
1	Income_Increased	19104 non-null	int64
2	Quarterly_Rating_Increased	19104 non-null	int64
3	MMM-YY	19104 non-null	object
4	Age	19043 non-null	float64
5	Gender	19052 non-null	float64
6	City	19104 non-null	object
7	Education_Level	19104 non-null	int64
8	Income	19104 non-null	int64
9	Dateofjoining	19104 non-null	object
10	LastWorkingDate	1616 non-null	object
11	Joining Designation	19104 non-null	int64
12	Grade	19104 non-null	int64
13	Total Business Value	19104 non-null	int64
14	Quarterly Rating	19104 non-null	int64
15	Churn	19104 non-null	int64
dtype	es: float64(2), int64(10), ol	bject(4)	

```
df['dt'] = pd.to_datetime(df['MMM-YY'])
df['last_dt'] = pd.to_datetime(df['LastWorkingDate'])
df['joining_dt'] = pd.to_datetime(df['Dateofjoining'])
df.head(1)
```

Driver_ID Income_Increased Quarterly_Rating_Increased MMM-YY Age Gender City Education_Level Income Dateofjoin:

0	1	0	0 01/01/19	28.0	0.0	C23	2	57387	24/12

```
df.drop(['MMM-YY', 'LastWorkingDate', 'Dateofjoining'], axis=1, inplace=True)
```

df.head(5)

	Driver_ID	Income_Increased	Quarterly_Rating_Increased	Age	Gender	City	Education_Level	Income	Joining Designation	Grade
0	1	0	0	28.0	0.0	C23	2	57387	1	1
1	1	0	0	28.0	0.0	C23	2	57387	1	1
2	1	0	0	28.0	0.0	C23	2	57387	1	1
3	2	0	0	31.0	0.0	C7	2	67016	2	2
4	2	0	0	31.0	0.0	C7	2	67016	2	2

▼ Feature Engineering

```
# lets do aggregation now
df_agg = df.groupby(["Driver_ID"]).agg({"dt": [len,'max'],
                                          "Age": 'max',
                                          "Gender": 'last',
                                          "City": 'last',
                                          "Education_Level": 'max',
                                          "Income": ['mean','max'],
                                          "Income_Increased": ['sum','max'],
                                          "joining_dt": 'min',
                                          "last_dt": 'max',
                                          "Joining Designation": ['min', 'max'],
                                          "Grade": ['mean', 'max', 'min'],
                                          "Total Business Value": ['max', 'mean','std'],
                                          "Quarterly Rating": ['mean','max', 'min'],
                                          "Quarterly_Rating_Increased": ['sum','max'],
                                          "Churn": 'max'
                                    }).reset_index()
# Rename columns for clarity
df_agg.columns = [' '.join(col).strip() for col in df_agg.columns.values]
df_agg
```

	Driver_ID	dt len	dt max	Age max	Gender last		Education_Level max	Income mean	Income max	Income_Increased sum	Income_Increased max	joining_ r
0	1	3	2019- 03-01	28.0	0.0	C23	2	57387.0	57387	0	0	2018-12
1	2	2	2020- 12-01	31.0	0.0	C7	2	67016.0	67016	0	0	2020-11
2	4	5	2020- 04-01	43.0	0.0	C13	2	65603.0	65603	0	0	2019-12
3	5	3	2019- 03-01	29.0	0.0	C9	0	46368.0	46368	0	0	2019-01
			2020-			-						

add more features like time_before_leaving days & time_in_job for those who didn't leave
df_agg['time_before_leaving'] = df_agg['last_dt max'] - df_agg['joining_dt min']
df_agg['time_in_job'] = df_agg['dt max'] - df_agg['joining_dt min']
df_agg

	Driver_ID	dt len	dt max	Age max	Gender last	_	Education_Level max	Income mean	Income max	Income_Increased sum	Income_Increased max	joining_
0	1	3	2019- 03-01	28.0	0.0	C23	2	57387.0	57387	0	0	2018-12
1	2	2	2020- 12-01	31.0	0.0	C7	2	67016.0	67016	0	0	2020-11
2	4	5	2020- 04-01	43.0	0.0	C13	2	65603.0	65603	0	0	2019-12
3	5	3	2019- 03-01	29.0	0.0	C9	0	46368.0	46368	0	0	2019-01
4	6	5	2020- 12-01	31.0	1.0	C11	1	78728.0	78728	0	0	2020-07
2376	2784	24	2020- 12-01	34.0	0.0	C24	0	82815.0	82815	0	0	2015-10
2377	2785	3	2020- 10-01	34.0	1.0	C9	0	12105.0	12105	0	0	2020-08
2378	2786	9	2019- 09-01	45.0	0.0	C19	0	35370.0	35370	0	0	2018-07
2379	2787	6	2019- 06-01	28.0	1.0	C20	2	69498.0	69498	0	0	2018-07
2380	2788	7	2020- 12-01	30.0	0.0	C27	2	70254.0	70254	0	0	2020-06
2381 rc	ows × 29 colum	nns										

extracted info from dates, drop dates now

df_agg['job_time'] = np.where(df_agg['time_before_leaving'].isna(), df_agg['time_in_job'], df_agg['time_before_leaving'])
df_agg_2 = df_agg.drop(['time_before_leaving', 'time_in_job', 'joining_dt min', 'last_dt max', 'dt max'], axis=1, inplace=Fals
df_agg_2

	Driver_ID	dt len	Age max	Gender last	City last	Education_Level max	Income mean	Income max	Income_Increased sum	Income_Increased max	Joining Designation min	E
0	1	3	28.0	0.0	C23	2	57387.0	57387	0	0	1	

df_agg_2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2381 entries, 0 to 2380
Data columns (total 25 columns):

#	Column	Non-N	Mull Count	Dtype
0	Driver_ID		non-null	int64
1	dt len		non-null	
2	Age max		non-null	
3	Gender last		non-null	
4	City last		non-null	-
5	Education_Level max			int64
6	Income mean	2381	non-null	float64
7			non-null	
8	Income_Increased sum	2381	non-null	int64
9	Income_Increased max			
10	Joining Designation min	2381	non-null	int64
11	Joining Designation max	2381	non-null	int64
12	Grade mean	2381	non-null	
13	Grade max	2381	non-null	int64
14	Grade min	2381	non-null	int64
15	Total Business Value max			int64
16	Total Business Value mean	2381	non-null	float64
17	Total Business Value std			
18	Quarterly Rating mean			float64
19	Quarterly Rating max	2381	non-null	int64
20	Quarterly Rating min			
21	Quarterly_Rating_Increased sum	2381	non-null	int64
22	Quarterly_Rating_Increased max			
23	Churn max		non-null	
24	job_time	2381	non-null	timedelta64[ns]
dtype	es: float64(7), int64(16), object	t(1),	timedelta64	1[ns](1)
memoi	ry usage: 465.2+ KB			

df_agg_2['job_days'] = df_agg_2['job_time']/pd.Timedelta(days=1)
df_agg_3 = df_agg_2.drop(['job_time'], axis=1, inplace=False)
df_agg_3

	Driver_ID	dt len	Age max		City last	Education_Level max	Income mean	Income max	Income_Increased sum	Income_Increased max	Joining Designation min	E
0	1	3	28.0	0.0	C23	2	57387.0	57387	0	0	1	
1	2	2	31.0	0.0	C7	2	67016.0	67016	0	0	2	
2	4	5	43.0	0.0	C13	2	65603.0	65603	0	0	2	
3	5	3	29.0	0.0	C9	0	46368.0	46368	0	0	1	
4	6	5	31.0	1.0	C11	1	78728.0	78728	0	0	3	
2376	2784	24	34.0	0.0	C24	0	82815.0	82815	0	0	2	
2377	2785	3	34.0	1.0	C9	0	12105.0	12105	0	0	1	
2378	2786	9	45.0	0.0	C19	0	35370.0	35370	0	0	2	
2379	2787	6	28.0	1.0	C20	2	69498.0	69498	0	0	1	
2380	2788	7	30.0	0.0	C27	2	70254.0	70254	0	0	2	
2381 ro	ws × 25 colum	ıns										

df_final=df_agg_3.copy()

df_final.describe()

	Driver_ID	dt len	Age max	Gender last	Education_Level max	Income mean	Income max	Income_Increased sum	Income_I
cou	nt 2381.000000	2381.00000	2381.000000	2381.000000	2381.00000	2381.000000	2381.000000	2381.000000	23
mea	an 1397.559009	8.02352	33.663167	0.410332	1.00756	59232.460484	59336.159597	0.415792	
ste	806.161628	6.78359	5.983375	0.491997	0.81629	28298.214012	28383.012146	3.062127	
mi	n 1.000000	1.00000	21.000000	0.000000	0.00000	10747.000000	10747.000000	0.000000	

df_final.describe(include='object')

	City last	\blacksquare
count	2381	ılı
unique	29	
top	C20	
freq	152	

df_final.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2381 entries, 0 to 2380
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype			
0	Driver ID	2381 non-null	int64			
1	-	2381 non-null	int64			
2	Age max	2381 non-null	float64			
3	Gender last	2381 non-null	float64			
4	City last	2381 non-null	object			
5	Education_Level max	2381 non-null	int64			
6	Income mean	2381 non-null	float64			
7	Income max	2381 non-null	int64			
8	Income_Increased sum	2381 non-null	int64			
9	Income_Increased max	2381 non-null	int64			
10	Joining Designation min	2381 non-null	int64			
11	Joining Designation max	2381 non-null	int64			
12	Grade mean	2381 non-null	float64			
13	Grade max	2381 non-null	int64			
14	Grade min	2381 non-null	int64			
15	Total Business Value max	2381 non-null	int64			
16	Total Business Value mean	2381 non-null	float64			
17	Total Business Value std	2200 non-null	float64			
18	Quarterly Rating mean	2381 non-null	float64			
19	Quarterly Rating max	2381 non-null	int64			
20	Quarterly Rating min	2381 non-null	int64			
21	Quarterly_Rating_Increased sum	2381 non-null	int64			
22	Quarterly_Rating_Increased max	2381 non-null	int64			
23	Churn max	2381 non-null	int64			
24	job_days	2381 non-null	float64			
dtype	<pre>dtypes: float64(8), int64(16), object(1)</pre>					
memo	ry usage: 465.2+ KB					

null value treatment

df_final['Total Business Value std'].fillna(0, inplace=True)

from sklearn.impute import SimpleImputer, KNNImputer imputer = KNNImputer(n_neighbors = 5)

missing_data_columns = ['Total Business Value std']

for i in missing_data_columns:

df_final[i] = imputer.fit_transform(df_final[i].values.reshape(-1, 1))

df_final.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2381 entries, 0 to 2380
Data columns (total 25 columns):

Data	columns (cocal 25 columns).		
#	Column	Non-Null Count	Dtype
0	Driver_ID	2381 non-null	int64
1	dt len	2381 non-null	int64
2	Age max	2381 non-null	float64
3	Gender last	2381 non-null	float64
4	City last	2381 non-null	object
5	Education_Level max	2381 non-null	int64
6	Income mean	2381 non-null	float64
7	Income max	2381 non-null	int64
8	Income_Increased sum	2381 non-null	int64

```
9 Income_Increased max
                                         2381 non-null
                                                          int64
     10 Joining Designation min
                                         2381 non-null
                                                          int64
     11 Joining Designation max
                                         2381 non-null
                                                          int64
     12 Grade mean
                                         2381 non-null
                                                          float64
     13 Grade max
                                          2381 non-null
                                                          int64
     14 Grade min
                                         2381 non-null
     15 Total Business Value max
                                         2381 non-null
                                                          int64
     16 Total Business Value mean
                                        2381 non-null
                                                          float64
     17 Total Business Value std
                                        2381 non-null
2381 non-null
                                                          float64
     18 Quarterly Rating mean
                                                         float64
     19 Quarterly Rating max
20 Quarterly Rating min
                                         2381 non-null
                                                          int64
                                         2381 non-null
                                                          int64
     21 Quarterly_Rating_Increased sum 2381 non-null
                                                          int64
     22 Quarterly_Rating_Increased max 2381 non-null
                                                          int64
                                          2381 non-null int64
2381 non-null float64
     23 Churn max
     24 job_days
    dtypes: float64(8), int64(16), object(1)
    memory usage: 465.2+ KB
df_final['Churn max'].value_counts()
         1616
    0
         765
    Name: Churn max, dtype: int64
Univariate & BiVariate Analysis
# Univariate Analysis (Continuous Variables)
continuous_vars = ['Age max', 'Income mean', 'Grade mean', 'job_days']
for col in continuous_vars:
   plt.figure(figsize=(8, 4))
    sns.histplot(data=df_final, x=col, kde=True, hue='Churn max')
   plt.title(f'Distribution of {col} by Churn')
    plt.xlabel(col)
```

plt.legend(title='Churn', labels=['Not Churned', 'Churned'])

plt.ylabel('Frequency')


```
# Univariate Analysis (Categorical Variables)
categorical_vars = ['City last', 'Education_Level max']
for col in categorical_vars:
   plt.figure(figsize=(8, 4))
   sns.countplot(data=df_final, x=col, hue='Churn max')
   plt.title(f'Countplot of {col}')
   plt.xlabel(col)
   plt.ylabel('Count')
   plt.xticks(rotation=45)
   plt.show()
```

```
# Bivariate Analysis (Relationships between important variables)
# Relationship between 'Income mean' and 'Total Business Value mean'
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df_final, x='Income mean', y='Total Business Value mean', hue='Churn max')
plt.title('Relationship between Income mean and Total Business Value mean')
plt.xlabel('Income mean')
plt.ylabel('Total Business Value mean')
plt.legend(title='Churn max', loc='upper right', labels=['Not Churned', 'Churned'])
plt.show()
```



```
# Bivariate Analysis (Relationships between important variables)
# Relationship between 'Income sum' and 'Total Business Value sum'
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df_final, x='Income max', y='Total Business Value max', hue='Churn max')
plt.title('Relationship between Income max and Total Business Value max')
plt.xlabel('Income max')
plt.ylabel('Total Business Value max')
plt.legend(title='Churn max', loc='upper right', labels=['Not Churned', 'Churned'])
plt.show()
```

```
Relationship between Income max and Total Business Value max

Churn max
Not Churned

Churned

Churned

1.5 -
```

features = ['Income_Increased max', 'Gender last', 'Education_Level max', 'Joining Designation mean', 'Quarterly_Rating_Increa

```
fig, axs = plt.subplots(3, 2, figsize = (20, 20))
for i, ax in zip(features, axs.ravel()):
    sns.countplot(data = df_final, x = i, hue = 'Churn max', ax = ax)
```


Data Insights from above graphs

- · Churn customers are more in dataset, nearly twice the non churned customers.
- Ages are majorly from 25 to 40. Age 35+ years are more likely to Churn.
- mostly drivers have income 25000 to 100000. From incomes > 75000, churn customers are seen in more percentage
- we see much more churned customers after 2 years (700 days)
- ratio of male to female drivers is 60:40
- more income & less business value also increases chances of Churn
- quarterly ratings & income is increased recently for Churn customers
- joining designation 1 is more prone to Churn while joining designation 3 retains the drivers more.
- Cities like C20 & C17 have concerning churn rates. Ola should try to retain drivers here.
- · High business value drivers have mostly churned which is concerning. Income should be increased proportionately for them.

```
# we notice c20 & c17 city ids have high churn rate %
# lets encode city to target variable churn

city_churn_means = df_final.groupby('City last')['Churn max'].mean().reset_index()
df = df_final.merge(city_churn_means, on='City last', how='left')
df.rename(columns={'Churn max_x': 'Churn', 'Churn max_y': 'city_encoded'}, inplace=True)
df.drop(['City last','Driver_ID'], axis=1, inplace=True)
df
```

	dt len	Age max	Gender last	Education_Level max	Income mean	Income max	Income_Increased sum	Income_Increased max	Joining Designation min	Joining Designation max	Grad: meai
0	3	28.0	0.0	2	57387.0	57387	0	0	1	1	1.(
1	2	31.0	0.0	2	67016.0	67016	0	0	2	2	2.0
2	5	43.0	0.0	2	65603.0	65603	0	0	2	2	2.0
3	3	29.0	0.0	0	46368.0	46368	0	0	1	1	1.(
4	5	31.0	1.0	1	78728.0	78728	0	0	3	3	3.0

plt.figure(figsize=(30, 30))
sns.heatmap(df_final.corr(), annot = True, cmap = "YlOrRd", annot_kws = {"size": 10})

all are numerical features now
df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2381 entries, 0 to 2380
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	dt len	2381 non-null	int64
1	Age max	2381 non-null	float64
2	Gender last	2381 non-null	float64
3	Education_Level max	2381 non-null	int64
4	Income mean	2381 non-null	float64
5	Income max	2381 non-null	int64
6	Income_Increased sum	2381 non-null	int64
7	Income_Increased max	2381 non-null	int64
8	Joining Designation min	2381 non-null	int64
9	Joining Designation max	2381 non-null	int64
10	Grade mean	2381 non-null	float64
11	Grade max	2381 non-null	int64
12	Grade min	2381 non-null	int64
13	Total Business Value sum	2381 non-null	int64
14	Total Business Value mean	2381 non-null	float64
15	Total Business Value std	2381 non-null	float64
16	Quarterly Rating mean	2381 non-null	float64
17	Quarterly Rating max	2381 non-null	int64
18	Quarterly Rating min	2381 non-null	int64
19	Quarterly_Rating_Increased sum	2381 non-null	int64
20	Quarterly_Rating_Increased max	2381 non-null	int64
21	Churn	2381 non-null	int64
22	job_days	2381 non-null	float64
23	city_encoded	2381 non-null	float64
dtype	es: float64(9), int64(15)		
memoi	ry usage: 465.0 KB		

Data Preprocessing

- KNN Imputation done on Total Business Value std later in notebook
- Feature Engineering derived many features from aggregated driver data
- Class Imbalance treatment used SMOT & algorith level hyperparameter (scale_pos_weight)
- Standardization done as preprocessing to get X & y features
- · Encoding Target encoding done on city

[] → 22 cells hidden

Model building using:

- · Logistic Regression
- Decision Tree (DT)
- Random Forest (RF)
- Random Forest with gridsearch CV for hyperparameter tuning
- Gradient Boosting DT (GBDT)
- GBDT with randomisedsearch CV for hyperparameter tuning
- · LightGBM with randomisedsearch CV for hyperparameter tuning
- Result evaluation done after each Model

Logistic Regression

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

```
logistic_regression_model = LogisticRegression()
logistic regression model.fit(X train, y train)
# Make predictions on the test data
y_pred = logistic_regression_model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification rep = classification report(y test, y pred)
print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(classification_rep)
    Accuracy: 0.79
    Confusion Matrix:
    [[ 81 72]
     [ 29 295]]
    Classification Report:
                  precision
                              recall f1-score
                                                 support
                                         0.62
                      0.74
                                0.53
               0
                                                     153
               1
                       0.80
                                0.91
                                          0.85
                                                     324
        accuracy
                                          0.79
                                                     477
                       0.77
                             0.72
                                          0.73
                                                     477
       macro avg
    weighted avg
                      0.78
                                 0.79
                                           0.78
                                                     477
```

Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
# Create and train the Decision Tree classifier
decision_tree_model = DecisionTreeClassifier(random_state=42)
decision_tree_model.fit(X_train, y_train)
# Make predictions on the test data
y_pred = decision_tree_model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(classification_rep)
    Accuracy: 0.82
    Confusion Matrix:
    [[104 49]
     [ 35 289]]
    Classification Report:
                             recall f1-score support
                  precision
                       0.75
               0
                                0.68
                                           0.71
                                                      153
                       0.86
                                 0.89
                                           0.87
                                                      324
                                           0.82
                                                      477
        accuracy
                       0.80
                                 0.79
                                           0.79
                                                       477
       macro avg
    weighted avg
                       0.82
                                 0.82
                                           0.82
                                                      477
```

Random Forest (DT gave recall of 90%, lets try RF)

```
RF = RandomForestClassifier(n_estimators = 100,
    criterion = 'entropy',
    max_depth = 20,
    min_samples_split = 3,
    min_samples_leaf = 4,
    min_weight_fraction_leaf = 0.0,
    max_features = 'sqrt',
    max_leaf_nodes = None,
    min_impurity_decrease = 0.0,
    bootstrap = True,
    oob_score = False,
    n_jobs = None,
```

```
random_state = None,
verbose = 0,
warm_start = False,
class_weight = 'balanced',
max_samples = None)
```

RF.fit(X_train, y_train)

```
y_pred = RF.predict(X_test)
y_pred_train = RF.predict(X_train)

cm = confusion_matrix(y_test, y_pred)
ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7b44b0451270>

print(classification_report(y_train, y_pred_train))

	precision	recall	f1-score	support
0	0.87	0.90	0.88	612
1	0.95	0.94	0.94	1292
accuracy			0.92	1904
macro avg	0.91	0.92	0.91	1904
weighted avg	0.92	0.92	0.92	1904

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.79	0.75	0.77	153
1	0.89	0.91	0.90	324
accuracy			0.86	477
macro avg	0.84	0.83	0.83	477
weighted avg	0.86	0.86	0.86	477

```
train_accuracy = RF.score(X_train, y_train)
test_accuracy = RF.score(X_test, y_test)
precision_train = precision_score(y_train, y_pred_train)
precision_test = precision_score(y_test, y_pred)
recall_train = recall_score(y_train, y_pred_train)
recall_test = recall_score(y_test, y_pred)
training_fl_score = fl_score(y_train, y_pred_train)
test_fl_score = fl_score(y_test, y_pred)
```

training_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [train_accuracy, precision training_data_metrics.rename(columns = {'index': 'Training Data Metrics'}, inplace = True)
test_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [test_accuracy, precision_test_data_metrics.rename(columns = {'index': 'Test Data Metrics'}, inplace = True)

${\tt training_data_metrics}$

	Training	Data	Metrics	Values	
0			Accuracy	0.923845	11.
1			Precision	0.950511	
2			Recall	0.936533	
3			F1-Score	0 943470	

test_data_metrics

	Test Data Metrics	Values	
0	Accuracy	0.857442	ılı
1	Precision	0.885542	
2	Recall	0.907407	
3	F1-Score	0.896341	

feature importance

```
pd.DataFrame(data = RF.feature_importances_,
    index = X.columns).plot(kind = "bar", figsize = (20, 6))
```


Oversample Churn data & use RF

we have decent recall of ~92% using RF, lets try using smote

```
y_train_pred_bal = RF.predict(X_smote)
y_pred_bal = RF.predict(X_test)

cm = confusion_matrix(y_test, y_pred_bal)
```

ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()

Predicted label

```
train_accuracy = RF.score(X_smote, y_smote)
test_accuracy = RF.score(X_test, y_test)
precision_train = precision_score(y_smote, y_train_pred_bal)
precision_test = precision_score(y_test, y_pred_bal)
recall_train = recall_score(y_smote, y_train_pred_bal)
recall_test = recall_score(y_test, y_pred_bal)
training_f1_score = f1_score(y_smote, y_train_pred_bal)
test_f1_score = f1_score(y_test, y_pred_bal)
```

training_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [train_accuracy, precisio
training_data_metrics.rename(columns = {'index': 'Training Data Metrics'}, inplace = True)
test_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [test_accuracy, precision_tes
test_data_metrics.rename(columns = {'index': 'Test Data Metrics'}, inplace = True)

training_data_metrics

	Training Data	Metrics	Values	
0		Accuracy	0.946981	ılı
1		Precision	0.937169	
2		Recall	0.958204	
3		F1-Score	0.947570	

 ${\tt test_data_metrics}$

	Test	Data	Metrics	Values	-
0			Accuracy	0.865828	ıl.
1			Precision	0.898773	
2			Recall	0.904321	
3			F1-Score	0.901538	

Apply Grid search & use RF on smote data

```
RFC = RandomForestClassifier()
grid_search = GridSearchCV(
   estimator = RFC,
   param_grid = parameters,
   scoring = "accuracy",
   n jobs = -1,
   refit=True,
                                 # need not to train again after grid search
   cv=3,
   pre_dispatch='2*n_jobs',
   return_train_score=False)
grid_search.fit(X_smote,y_smote.values.ravel())
                GridSearchCV
      ▶ estimator: RandomForestClassifier
          ▶ RandomForestClassifier
      _____
grid search.best estimator
                             RandomForestClassifier
    RandomForestClassifier(ccp alpha=0.0005, max depth=15, max features=7,
                           n_estimators=200)
grid_search.best_score_
    0.8773373646895236
grid search.best params
    {'ccp_alpha': 0.0005, 'max_depth': 15, 'max_features': 7, 'n_estimators': 200}
RF_best_params = RandomForestClassifier(n_estimators = 300,
   criterion = 'entropy',
   max_depth = 15,
   min_samples_split = 2,
   min samples leaf = 1,
   max_features = 10,
   class_weight = "balanced",
   ccp_alpha = 0.001,
   max_samples = None)
RF_best_params.fit(X_train, y_train)
                               RandomForestClassifier
    RandomForestClassifier(ccp_alpha=0.001, class_weight='balanced',
                           criterion='entropy', max_depth=15, max_features=10,
                           n_estimators=300)
def roc_curve_plot(y_test, pred_prob, model_name):
 logit roc auc = roc auc score(y test, pred prob)
 fpr, tpr, thresholds = roc_curve(y_test, pred_prob)
 plt.figure()
 plt.plot(fpr, tpr, label= model_name + ' (Area under ROC = %0.2f)' % logit_roc_auc)
 plt.plot([0, 1], [0, 1], 'r--')
 plt.ylim([0.0, 1.05])
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('Receiver Operating Characteristic (ROC) Curve')
 plt.legend(loc="lower right")
 plt.savefig('ROC_for_' + model_name)
 plt.show()
def precision_recall_curve_plot(y_test, pred_prob):
   precisions, recalls, thresholds = precision_recall_curve(y_test, pred_prob)
   prec_rec_auc = np.round(auc(recalls, precisions), 2)
   threshold_boundary = thresholds.shape[0]
   #Precision Plot
   plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', label = 'Precisions')
   #Recall Plot
```

"ccp_alpha":[0.0005, 0.00075, 0.001]}

```
plt.plot(thresholds, recalls[0:threshold_boundary], label='Recalls')

start, end = plt.xlim()
plt.xticks(np.round(np.arange(start, end, 0.1), 2))

plt.xlabel('Threshold Value')
plt.ylabel('Precision and Recall Value')
plt.title(f'Precision recall curve with AUC : {prec_rec_auc}')
plt.legend()
plt.grid()
plt.show()

y_pred = RF_best_params.predict(X_test)
y_pred_train = RF_best_params.predict(X_train)

cm = confusion_matrix(y_test, y_pred)

ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7a46e10837c0>

 $\verb|roc_curve_p| | \texttt{plot}(y_test, RF_best_params.predict_proba(X_test)[:, 1], 'Random Forest Classifier')| \\$

print(classification_report(y_train, y_pred_train))

	precision	recall	f1-score	support
0 1	1.00	1.00	1.00 1.00	612 1292
accuracy macro avg	1.00	1.00	1.00 1.00	1904 1904

weighted avg 1.00 1.00 1.00 1904

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.84	0.74	0.79	153
1	0.88	0.94	0.91	324
accuracy			0.87	477
macro avg	0.86	0.84	0.85	477
weighted avg	0.87	0.87	0.87	477

precision_recall_curve_plot(y_test, RF_best_params.predict_proba(X_test)[:, 1])

Gradient Boosting

```
from sklearn.ensemble import GradientBoostingClassifier gbt = GradientBoostingClassifier() gbt.fit(X_{train}, y_{train})
```

```
▼ GradientBoostingClassifier
GradientBoostingClassifier()
```

```
y_pred = gbt.predict(X_test)
y_pred_train = gbt.predict(X_train)
prob = gbt.predict_proba(X_test)
cm = confusion_matrix(y_test, y_pred)
```

ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()

```
- 300
- 250
```

```
train_accuracy = gbt.score(X_train, y_train)
test_accuracy = gbt.score(X_test, y_test)
precision_train = precision_score(y_train, y_pred_train)
precision_test = precision_score(y_test, y_pred)
recall_train = recall_score(y_train, y_pred_train)
recall_test = recall_score(y_test, y_pred)
training_fl_score = fl_score(y_train, y_pred_train)
test_fl_score = fl_score(y_test, y_pred)
```

training_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [train_accuracy, precisio
training_data_metrics.rename(columns = {'index': 'Training Data Metrics'}, inplace = True)
test_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [test_accuracy, precision_test_data_metrics.rename(columns = {'index': 'Test Data Metrics'}, inplace = True)

training_data_metrics

Training Data Metrics Values 0 Accuracy 0.904937 1 Precision 0.904588 2 Recall 0.961300 3 F1-Score 0.932083

test_data_metrics

	Test	Data	Metrics	Values	П
0			Accuracy	0.886792	ılı
1			Precision	0.894737	
2			Recall	0.944444	
3			F1-Score	0.918919	

gbdt grid search

 ${\tt grid_search.fit(X_train,y_train.values.ravel())}$

```
► GridSearchCV

► estimator: GradientBoostingClassifier

► GradientBoostingClassifier
```

grid_search.best_estimator_

```
GradientBoostingClassifier
GradientBoostingClassifier(ccp_alpha=0.0005, max_depth=7, max_features=7, n_estimators=200)
```

```
y_pred = gbt.predict(X_test)
y_pred_train = gbt.predict(X_train)
prob = gbt.predict_proba(X_test)

cm = confusion_matrix(y_test, y_pred)

ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7a46dd4ebf10>


```
train_accuracy = gbt.score(X_train, y_train)
test_accuracy = gbt.score(X_test, y_test)
precision_train = precision_score(y_train, y_pred_train)
precision_test = precision_score(y_test, y_pred)
recall_train = recall_score(y_train, y_pred_train)
recall_test = recall_score(y_test, y_pred)
training_fl_score = fl_score(y_train, y_pred_train)
test_fl_score = fl_score(y_test, y_pred)
```

training_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [train_accuracy, precision training_data_metrics.rename(columns = {'index': 'Training Data Metrics'}, inplace = True)
test_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [test_accuracy, precision_test_data_metrics.rename(columns = {'index': 'Test Data Metrics'}, inplace = True)

training data metrics

	Training	Data	Metrics	Values	
0			Accuracy	0.904937	ılı
1			Precision	0.897638	
2			Recall	0.970588	
3			F1-Score	0.932689	

```
        Test Data Metrics
        Values

        0
        Accuracy
        0.888889

        1
        Precision
        0.890490

        2
        Recall
        0.953704

        3
        F1-Score
        0.921013
```

AUC ROC plot
prob = gbt.predict_proba(X_test)
roc_curve_plot(y_test, prob[:, 1], 'Gradient Boosting Classifier')

precision recall plot
precision_recall_curve_plot(y_test, prob[:, 1])

xgboost classifier

```
XGBClassifier
XGBClassifier
XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None,
```

```
y_pred = xgb.predict(X_test)
y_train_pred = xgb.predict(X_train)
```

cm = confusion_matrix(y_test, y_pred)

ConfusionMatrixDisplay(cm, display labels = ['No Churn', 'Churn']).plot()

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7b44c40c75b0>

print(classification_report(y_train, y_pred_train))

	precision	recall	f1-score	support
0	0.93	0.77	0.84	612
1	0.90	0.97	0.93	1292
accuracy			0.90	1904
macro avg	0.91	0.87	0.89	1904
weighted avg	0.91	0.90	0.90	1904

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.87	0.83	0.85	153
1	0.92	0.94	0.93	324
accuracy			0.91	477
macro avg	0.90	0.89	0.89	477
weighted avg	0.90	0.91	0.91	477

```
train_accuracy = xgb.score(X_train, y_train)
test_accuracy = xgb.score(X_test, y_test)
precision_train = precision_score(y_train, y_train_pred)
precision_test = precision_score(y_test, y_pred)
recall_train = recall_score(y_train, y_train_pred)
recall_test = recall_score(y_test, y_pred)
training_fl_score = fl_score(y_train, y_train_pred)
test_fl_score = fl_score(y_test, y_pred)
```

training_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [train_accuracy, precisio
training_data_metrics.rename(columns = {'index': 'Training Data Metrics'}, inplace = True)
test_data_metrics = pd.DataFrame(index = ['Accuracy', 'Precision', 'Recall', 'F1-Score'], data = [test_accuracy, precision_test_data_metrics.rename(columns = {'index': 'Test Data Metrics'}, inplace = True)

```
n
                      Accuracy 0.996849
     1
                      Precision 0.995378
     2
                         Recall 1.000000
                       E4 0---- 0.007000
{\tt test\_data\_metrics}
        Test Data Metrics Values
                                     \blacksquare
                  Accuracy 0.905660
     1
                  Precision 0.921450
     2
                     Recall 0.941358
                  F1-Score 0.931298
     3
xgb randomised search
from sklearn.model_selection import RandomizedSearchCV
# Define hyperparameter grid for random search
parameters = {"max_depth":[2, 4, 5],
             "n_estimators":[100, 200, 300, 400]}
# Create and train t with random search
xgb = XGBClassifier()
random_search = RandomizedSearchCV(
   estimator=xgb,
    param_distributions=parameters,
    scoring="recall",
    n_iter=10, # Number of parameter settings to sample
    n_{jobs=-1},
    cv=3.
    refit=True,
    random_state=42  # Set a random seed for reproducibility
random_search.fit(X_train, y_train)
# Make predictions on the test data using the best model from the random search
best_model = random_search.best_estimator_
y_pred = best_model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f'Best Model Parameters: {random_search.best_params_}')
print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(classification_rep)
     Best Model Parameters: {'n_estimators': 100, 'max_depth': 2}
    Accuracy: 0.89
     Confusion Matrix:
     [[120 33]
      [ 19 305]]
     Classification Report:
                   precision
                                recall f1-score
                                                   support
                0
                        0.86
                                  0.78
                                             0.82
                                                        153
                        0.90
                                  0.94
                                             0.92
                                                        324
                1
                                                        477
                                             0.89
        accuracy
                        0.88
                                  0.86
       macro avg
                                             0.87
                                                        477
     weighted avg
                        0.89
                                  0.89
                                             0.89
                                                        477
```

Training Data Metrics Values

```
1 1292
0 612
Name: Churn, dtype: int64
```

BalancedRandomForest (since there is class imbalance)

```
from imblearn.ensemble import BalancedRandomForestClassifier
model = BalancedRandomForestClassifier()
model.fit(X train, y train)
y_pred = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f'Best Model Parameters: {random_search.best_params_}')
print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(classification_rep)
    Best Model Parameters: {'n estimators': 50, 'max depth': 4, 'learning rate': 0.1}
    Accuracy: 0.86
    Confusion Matrix:
    [[127 26]
     [ 42 282]]
    Classification Report:
                 precision
                            recall f1-score support
                       0.75
                                          0.79
               0
                               0.83
                                                     153
                      0.92
                                0.87
                                          0.89
                                                     324
                                          0.86
                                                     477
        accuracy
                                        0.84
                    0.83 0.85
                                                     477
       macro avg
                                         0.86
                                                     477
    weighted avg
                     0.86
                               0.86
```

LightGBM

```
import lightgbm as lgb
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Define hyperparameter grid for random search
parameters = {
    "n_estimators": [50, 100, 150, 200, 300, 400, 500, 600],
    "max depth": [2, 3, 4, 5, 7],
    "learning_rate": [0.1, 0.2, 0.4, 0.5]
}
num_positive_samples = sum(y_train == 1) # Count of positive samples
num_negative_samples = sum(y_train == 0) # Count of negative samples
imbalance_ratio = num_positive_samples / num_negative_samples # majority/minority
# Create and train with random search
lgb_model = lgb.LGBMClassifier(scale_pos_weight=imbalance_ratio) # Specify scale_pos_weight here
random search = RandomizedSearchCV(
   estimator=lgb_model,
   param_distributions=parameters,
   scoring="recall".
   n_iter=20, # Number of parameter settings to sample
   n jobs=-1,
   cv=3,
   refit=True,
   random_state=42 # Set a random seed for reproducibility
random_search.fit(X_train, y_train)
res = random search.cv results
for i in range(len(res["params"])):
   print(f"Parameters:{res['params'][i]} Mean_score: {res['mean_test_score'][i]} Rank: {res['rank_test_score'][i]}")
# Make predictions on the test data using the best model from the random search
```

```
best_model = random_search.best_estimator_
y pred = best model.predict(X test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
print(f'Best Model Parameters: {random_search.best_params_}')
print(f'Accuracy: {accuracy:.2f}')
print('Confusion Matrix:')
print(conf_matrix)
print('Classification Report:')
print(classification_rep)
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     Parameters:{'n_estimators': 100, 'max_depth': 5, 'learning_rate': 0.4} Mean_score: 0.9295706757315779 Rank: 11 Parameters:{'n_estimators': 300, 'max_depth': 5, 'learning_rate': 0.4} Mean_score: 0.916413964279933 Rank: 17
     Parameters:{'n_estimators': 400, 'max_depth': 4, 'learning_rate': 0.5} Mean_score: 0.9125397938811849 Rank: 18
     Parameters:{'n_estimators': 600, 'max_depth': 3, 'learning_rate': 0.2} Mean_score: 0.9287936833396283 Rank: 12
     Parameters:{'n_estimators': 500, 'max_depth': 3, 'learning_rate': 0.4} Mean_score: 0.927/3505339203 Rank: 12
Parameters:{'n_estimators': 500, 'max_depth': 5, 'learning_rate': 0.4} Mean_score: 0.9171855608913829 Rank: 16
Parameters:{'n_estimators': 400, 'max_depth': 5, 'learning_rate': 0.1} Mean_score: 0.934214644148276 Rank: 9
Parameters:{'n_estimators': 400, 'max_depth': 4, 'learning_rate': 0.4} Mean_score: 0.9109948020647853 Rank: 19
Parameters:{'n_estimators': 200, 'max_depth': 3, 'learning_rate': 0.2} Mean_score: 0.9481411536178709 Rank: 5
     Parameters:{'n_estimators': 300, 'max_depth': 4, 'learning_rate': 0.4} Mean_score: 0.919507545099732 Rank: 15
     Parameters:{'n_estimators': 500, 'max_depth': 4, 'learning_rate': 0.5} Mean_score: 0.9078976240579867 Rank: 20
     Parameters:{'n_estimators': 200, 'max_depth': 4, 'learning_rate': 0.1} Mean_score: 0.9543301138509687 Rank: 3
     Parameters:{'n_estimators': 300, 'max_depth': 2, 'learning_rate': 0.4} Mean_score: 0.9442687818126224 Rank: 6
     Parameters:{'n_estimators': 600, 'max_depth': 3, 'learning_rate': 0.1} Mean_score: 0.9434989837946727 Rank: 7
     Parameters:{'n_estimators': 150, 'max_depth': 5, 'learning_rate': 0.2} Mean_score: 0.9357614345581755 Rank: 8
Parameters:{'n_estimators': 50, 'max_depth': 5, 'learning_rate': 0.1} Mean_score: 0.968262019101063 Rank: 2
     Parameters:{'n_estimators': 500, 'max_depth': 5, 'learning_rate': 0.1} Mean_score: 0.9326660551448768 Rank: 10
Parameters:{'n_estimators': 50, 'max_depth': 3, 'learning_rate': 0.5} Mean_score: 0.9535603158330185 Rank: 4
     Parameters:{'n_estimators': 200, 'max_depth': 5, 'learning_rate': 0.5} Mean_score: 0.921831327901581 Rank: 14
Parameters:{'n_estimators': 150, 'max_depth': 4, 'learning_rate': 0.4} Mean_score: 0.9249195129408802 Rank: 13
Parameters:{'n_estimators': 50, 'max_depth': 4, 'learning_rate': 0.1} Mean_score: 0.9775553517149588 Rank: 1
     Best Model Parameters: {'n_estimators': 50, 'max_depth': 4, 'learning_rate': 0.1}
     Accuracy: 0.85
     Confusion Matrix:
     [[ 92 61]
       [ 10 314]]
     Classification Report:
                                       recall f1-score
                       precision
                                                               support
                   0
                             0.90
                                          0.60
                                                       0.72
                                                                     153
                             0.84
                                          0.97
                                                       0.90
                                                                     324
                   1
                                                       0.85
                                                                     477
          accuracy
                                          0.79
         macro avg
                             0.87
                                                       0.81
                                                                     477
     weighted avg
                             0.86
                                                                     477
```

recall = 0.97 for (Churn=1) which means we would be able to reduce False negatives, with 97% accuracy we will be able to predict if driver is about to Churn. We have good enough 0.84 precision as well.

```
y_pred = best_model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
ConfusionMatrixDisplay(cm, display_labels = ['No Churn', 'Churn']).plot()
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7b44a013f100>

Only 10 customers out of 477 test customers, we were not able to predict that they will Churn.

```
prob = best_model.predict_proba(X_test)
roc_curve_plot(y_test, prob[:, 1], 'LightGBM Classifier')
```


precision_recall_curve_plot(y_test, prob[:, 1])

