STAT 547T Homework 1

Instructions: Typeset your solutions and submit them as a PDF via Canvas.

Grading: Problems are equally weighted. One problem will be fully graded, and the others will be graded on a binary scale (full points or no points) based on effort.

Problem 1

Suppose that we test $H_0: T(F_X) \in \Theta_0$ using a random variable $X \sim F_X$. Let

$$\mathcal{F}_0 = \{ F : T(F) \in \Theta_0 \}$$

and

$$p(x) = \sup_{F_X \in \mathcal{F}_0} \mathbb{P}_{F_X}(S(X) \ge S(x))$$

for some scalar-valued test statistic function $S(\cdot)$.

Show that p(X) is a valid p-value, i.e. that

$$\sup_{F_X \in \mathcal{F}_0} \mathbb{P}_{F_X}(p(X) \le \alpha) \le \alpha, \quad \forall \ 0 \le \alpha \le 1.$$

Problem 2

Suppose that we test $H_{0j}: T_j(F_X) \in \Theta_0$ for all $j=1,2,\ldots,M$ using a random variable $X \sim F_X$. Define the following notation:

	H_{0j} retained	H_{0j} rejected	Total
$\overline{H_{0j}}$ true	TN(X)	FD(X)	M_0
H_{0j} false	FN(X)	TD(X)	M_1
Total	N(X)	R(X)	M

1. Show that if

 $\mathbb{P}_{F_X}(\text{Reject } H_{0j} \text{ using } X) = \alpha, \quad \text{ for all } F_X \in \mathcal{F}_{0j} \text{ and } 0 \leq \alpha \leq 1 \text{ and } j = 1, 2, \dots, M,$

then

$$\mathbb{E}_{F_X}\left[\frac{\mathrm{FD}(X)}{M_0}\right] = \alpha, \quad \text{ for all } 0 \le \alpha \le 1.$$

2. Let $\Lambda_1 = \{j : H_{0j} \text{ false}\}$, and define

Power_j = \mathbb{P}_{F_X} (Reject H_{0j} using X), for all $j \in \Lambda_1$.

Show that

$$\mathbb{E}_{F_X}\left[\frac{\mathrm{TD}(X)}{M_1}\right] = \frac{\sum\limits_{j \in \Lambda_1} \mathrm{Power}_j}{|\Lambda_1|}.$$

Problem 3

In the same setting as Problem 2, let

$$FWER = \mathbb{P}_{F_X}(FD(X) \ge 1)$$

and

$$FDP(X) = \begin{cases} \frac{FD(X)}{R(X)}, & \text{if } R(X) > 0, \\ 0, & \text{otherwise.} \end{cases}, \quad FDR = \mathbb{E}_{F_X}[FDP(X)].$$

Show that

$$FWER \ge FDR$$
,

for any choice of F_X .