The SQUARE Attack on 4-round AES

Christophe Clavier

University of Limoges

Master 2 Cryptis

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

1 / 12

The SQUARE Attack on 4-Round AES

0000000000

The notion of $\lambda\text{-set}$

Definition (state)

A state $(s)_{i,j}$ is a 4 x 4 matrix of bytes representing any intermediate state in an AES computation process.

Definition (cell)

For $i, j \in \{0, 1, 2, 3\}$, the <u>cell</u> (i, j) is simply the element at raw i, column j of a given state.

Example

0 32 88 31 e0 1 43 5a 31 37 2 f6 30 98 07 3 a8 8d a2 34

The content of the cell (3,1) of this state is 8d.

The notion of λ -set

Definition (λ -set)

A set of 256 states $(s^{(t)})_{t=0...255}$ is called a λ -set if each cell (i,j) is either active or inactive through this set of states.

Definition (active cell)

A cell (i,j) is said to be active through a set $(s^{(t)})_t$ of 256 states if:

$$\{s_{i,j}^{(t)}: t=0\dots 255\} = \{0\dots 255\}$$

Definition (inactive cell)

A cell (i,j) is said to be inactive along a set $(s^{(t)})_t$ of 256 states if there exists a constant c such that:

$$\{s_{i,j}^{(t)}: t=0\ldots 255\} = \{c\}$$

ité ges

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

3 / 12

The SQUARE Attack on 4-Round AES

000000000

The notion of λ -set

Example

Is it a λ -set ?

No!

And now ? It may be ...

Properties of λ -sets

AddRoundKey

The image of an active (resp. inactive) cell by the AddRoundKey transformation is an active (resp. inactive) cell at the same position.

SubBytes

The image of an active (resp. inactive) cell by the SubBytes transformation is an active (resp. inactive) cell at the same position.

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

5 / 12

The SQUARE Attack on 4-Round AES

○○○

Properties of \(\) sets

Properties of λ -sets

ShiftRows

The image of an active (resp. inactive) cell by the ShiftRows transformation is an active (resp. inactive) cell whose location has been shifted.

MixColumns

- The image of a column containing 4 inactive cells by the MixColumns transformation is a column containing 4 inactive cells.
- The image of a column containing 3 inactive and 1 active cells by the MixColumns transformation is a column containing 4 active cells.
- No similar conclusion hold in other cases.

The attack

- SQUARE is a chosen message attack.
- The attacker obtains the 256 ciphertexts corresponding to a particular λ -set of his choice.
- This λ -set is arbitrary except that it must contain one and only one active cell (and so 15 inactive ones).

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

7 / 12

The SQUARE Attack on 4-Round AES ○○○○○◆○○○○

The attack

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

0 / 12

The SQUARE Attack on 4-Round AES

○○○○○○○○○○○

The extends

Definition (balanced cell)

A cell (i,j) is said to be balanced along a set $(s^{(t)})_t$ of 256 states if:

$$\bigoplus_{t=0}^{255} s_{i,j}^{(t)} = 0$$

MixColumns

- The image of a column containing 4 inactive cells by the MixColumns transformation is a column containing 4 inactive cells.
- The image of a column containing 3 inactive and 1 active cells by the MixColumns transformation is a column containing 4 active cells.
- The image of a column containing 4 balanced cells by the MixColumns transformation is a column containing 4 balanced cells.

Christophe Clavier (Unilim)

The SQUARE Attack on 4-round AES

Master 2 Cryptis

11 / 12

The SQUARE Attack on 4-Round AES ○○○○○○○○○○

he attack

- When the input of a 4-round AES is a λ -set with only one active cell, the input of the last round is made of 16 balanced cells.
- This property is exploited in order to give information about each byte of the last round key K_4 .
- Knowing the output state d of the algorithm, the knowledge of only one byte $k_{l,m}$ of K_4 is enough to predict the value of one byte $a_{i,j}$ of the state a at the beginning of the last round:

- Each guess on $k_{1,2}$ is suggested if it implies the balance of the set $(a_{1,2}^{(t)})_t$.
- Beside the correct key byte value, only one false candidate remains on average.
- The whole key may be found either by exhaustive search or by intersecting product sets corresponding to different input λ -set $\frac{U_{\text{niversit\'e}}}{de \ Limoges}$