[Labordokumentaiton] [EAT] [Gleichrichter]

Hochschule Luzern Technik & Architektur

Hochschule:	Hochschule Luzern – Technik & Architektur
Autoren:	Labor-Gruppe 2
	Andreas Lindegger
	andreas.lindegger@stud.hslu.ch
	Giordano Altomare
	giordano.altomare@stud.hslu.ch
Dozierender:	Adrian Omlin
Ort:	Horw
Abgabetermin:	19. November 2017

Inhaltsverzeichnis

Einlei	itung	4
1	Messgeräte	4
2	Bestimmung der Glättungsinduktivität	4
3	Einphasige Brückenschaltung	6
3.1	Ungesteuerter Betrieb	6
3.2	Gesteuerter Betrieb	7
3.3	Kommutierung	9
4	Dreiphasen-Brückenschaltung	11
4.1	Ungesteuerter Betrieb	11
4.2	Gesteuerter Betrieb	12
4.3	Kommutierung	13
4.4	Strombegrenzung	15
5	Spannungsbelastung der Halbleiter	15
5.1	Messaufbau	15
5.2	Messergebnisse	15
5.3	Interpretation	16
6	Wechselrichterbetrieb	16
6.1	Messaufbau	16
6.2	Messergebnisse	16
6.3	Interpretation	16
7	Netzrückwirkungen	16
8	Schlussfolgerungen	17

Einleitung

Sämtliche Berechnungen wurden in MATLAB R2017a getätigt. Wenn nicht anders angegeben handelt es sich bei den angegebenen Messwerten um Mittelwerte.

1 Messgeräte

Die folgenden Messgeräte wurden für sämtliche Messungen verwendet.

Tabelle 1: Messgeräte

Gerät	Hersteller	Тур	HSLU Inventar-Nr.
Oszilloskop	Tektronix	TPS2014	526
Differenzialverstärker 1	Kolbinger Electronic	DA1000VN	185
Differenzialverstärker 2	Kolbinger Electronic	DA1000VN	11 005
Strommesszange 1	Fluke	LEM PR30	540
Strommesszange 2	Fluke	LEM PR30	542
Power Analyszer	Voltech	PM 3000	099
Multimeter	MetraHit	16S	468
Strommessgerät	Brown Boveri	AFVL a 164	076
Power Supply	Rode & Schwarz	NGSM32/10	427

2 Bestimmung der Glättungsinduktivität

Der Leitungswiderstand R konnte mit Anlegen einer Spannung und Messung des resultierenden Stromes ermittelt werden.

$$R = \frac{U}{I} = \frac{0.37 \, V}{2.95 \, A} = 0.1254 \, \Omega$$

Das Z_L konnte auf dieselbe Art mit der Netzspannung f= 50Hz ermittelt werden.

Abbildung 1: Vermessung Spule

$$Z_L = \frac{U_{eff}}{I_{eff}} = \frac{70.5 \, V}{8.24 \, A} = 8,55 \, \Omega$$

$$X_L = \sqrt{Z_L^2 - R^2} = 8.55 \,\Omega$$

$$L = \frac{X_L}{\omega} = 27.23 \ mH$$

3 Einphasige Brückenschaltung

3.1 Ungesteuerter Betrieb

3.1.1 Messaufbau

Abbildung 2: ungesteuerter Betrieb Messaufbau

3.1.2 Messergebnisse

Abbildung 3: Messung über ohmscher Last (grün: Strom, violett: Spannung)

Abbildung 4: Messung über induktiver Last (grün: Strom, violett: Spannung)

Abbildung 5: Messung über Induktivität (blau: Netzstrom, grün: Ausgangsstrom)

3.1.3 Interpretation

Bei der Messung mit ohmscher Last ist der Strom in Phase mit der Spannung. Bei induktiver Last wirkt eine Phasenverschiebung. Zudem ist auf dem Messbild sichtbar, dass der Umschaltvorgang der Halbleiter verzögert wird und in einem Spannungspeak resultiert.

3.2 Gesteuerter Betrieb

3.2.1 Messaufbau

Der Aufbau entspricht 3.1.1, jedoch sind die Dioden durch Thyristoren ersetzt.

3.2.2 Messergebnisse

Abbildung 6: Messung mit ohmscher Last

Abbildung 7: Ud(alpha) mit konstantem I aus 11 Datenpunkte

3.2.3 Interpretation

Gut erkennbar ist, dass bei zunehmendem Zündwinkel die Ausgangsspannung sinkt.

Bei zusätzlicher Induktivität (L) zur ohmschen Last (R) wird die Spannung reduziert. Auf Grund der Glättungseigenschaft der Spule und der Erhöhung des Z_{Last} wurde hingegen erwartet, dass die Spannung U_{RL} höher ausfällt, als mit rein ohmscher Last. Allenfalls könnte eine Begründung sein, dass die Induktivität mit 54mH zu klein ist, um eine ausreichende Glättung zu bewirken.

3.3 Kommutierung

Abbildung 8: Kurzschluss verketteter Spannung (gelb) durch Kommutierung

Abbildung 9: ungesteuerter Betrieb mit RL Last (grün: Laststrom DC, blau: Netzstrom Einphasig AC)

Die Kommutierung ist in Abbildung 8 gut durch den Kurzschluss der verketteten Spannung erkennbar. Für kurze Zeit sind zwei Halbleiter der gleichen Seite leitend, da die Spule den Strom aufrechterhält. In Abbildung 9 ist die Kommutierung durch den verzögerten Anstieg (in Form einer "Rampe" im Anstieg der Halbwelle) im Last- und Netzstrom erkennbar.

4 Dreiphasen-Brückenschaltung

4.1 Ungesteuerter Betrieb

4.1.1 Messaufbau

4.1.2 Messergebnisse

Abbildung 10: Uout(I) mit R-Last und RL-Last

4.1.3 Interpretation

Anders als bei der einphasigen Messung ist in Abbildung 10 nun zu erkennen, dass bei der L-Glättung die Spannung weniger steil abfällt.

4.2 Gesteuerter Betrieb

4.2.1 Messaufbau

Der Aufbau entspricht 4.1.1, jedoch sind die Dioden durch Thyristoren ersetzt.

4.2.2 Messergebnisse

Abbildung 11: U_{dc}(alpha)

Abbildung 12: Lambda(alpha)

4.2.3 Interpretation

Wie erwartet nimmt bei zunehmendem Zündwinkel die Spannung ab (Abbildung 11).

Gemäss Abbildung 12 wird mit zunehmendem Zündwinkel der Leistungsfaktor Lambda schlechter. Dies kommt zu Stande, weil die Schaltung zu mehr Oberwellen und zu einer Phasenverschiebung zur Grundschwingung führt.

Bei Stagnierung des Zündwinkels um $\sim 35^\circ$ in Abbildung 11 und Abbildung 12 wird ein Messfehler vermutet, denn trotz der Erhöhung des Zündwinkels konnte dieser Messtechnisch nicht mehr nachgewiesen werden. Spannung und Strom verhielten sich hingegen plausibel.

4.3 Kommutierung

4.3.1 Messaufbau

4.3.2 Messergebnisse

Abbildung 13: Eingangsphase Strom (blau) und Spannung (gelb)

Abbildung 14: Eingangsphase Strom (blau) Nahaufnahme

4.3.3 Interpretation

Der gleiche Effekt in der Spannung durch die Kommutierung wie in Kapitel 3.3 (einphasige Brückenschaltung) ist zu erkennen (Abbildung 13). Im Unterschied zum einphasigen Gleichrichter sind im Strom die Buckel der einzelnen Phasen die dazu geschalten werden zu erkennen.

4.4 Strombegrenzung

Auf Grund der Messunsicherheit mit dem Zündwinkel aus den vorhergehenden Messungen wurde auf diese Aufgabe verzichtet.

5 Spannungsbelastung der Halbleiter

5.1 Messaufbau

5.2 Messergebnisse

Abbildung 15: Verlauf Strom (blau) und Spannung (gelb) über Halbleiter

5.3 Interpretation

Gut in Abbildung 15 zu sehen ist, dass die Spannung eine kurze negative Spannungsspitze aufweist. Dies kommt zu Stande, weil der Halbleiter durch den Strom der Spule leitend bleibt.

Die kleine Rückwärtsstromspitze, welche durch die Schwingungen leicht sichtbar ist, ist durch die physikalischen Eigenschaften des Halbleiters gegeben (Ausräumung PN-Übergang).

6 Wechselrichterbetrieb

6.1 Messaufbau

6.2 Messergebnisse

Die Schaltung wurde erfolgreich betrieben. Die Messergebnisse wurden mit dem KO nicht gespeichert.

6.3 Interpretation

Den Gleichrichter sowie den Wechselrichter als Stromsenke, kann man sich als zwei DC Spannungsquellen denken. Der Spannungsunterschied über der Last bestimmt den Stromfluss. Durch die unterschiedlichen Zündwinkel kann in einem Wechselrichter die Spannung für den Zwischenkreis und damit die Stromrichtung bestimmt werden.

7 Netzrückwirkungen

Diese Aufgabe wurde aus Zeitgründen nicht mehr durchgeführt.

8 Schlussfolgerungen

Die abgearbeitete so wie die vorangehenden Laborarbeiten sind sehr interessant. Durch die praktische Sichtbarkeit der theoretischen Inputs werden viele «aha» Erlebnisse ermöglicht. Insbesondere die Analysen die Messergebnisse sind lehrreich. Es zeigt sich auch, dass in der Theorie viele reale Effekte vernachlässigt wurden, die dann während den Messungen zu vielen Fragen führten. Trotz gründlicher Laborvorarbeit musste dann der Beistand der anwesenden Fachlehrpersonen öfters hinzugezogen werden. Der Anteil an selbständiger und effizienter Durchführung der Messaufgaben war aus unserer Sicht erschwert. Zusätzlich ist die fehlende Erfahrung mit den vorhandenen Messgeräten und Messaufbauten problematisch. Oft wurden wir dann erst auf Anfrage auf Umstände hingewiesen die wir selbst nicht herausfinden konnten.

Trotz der kritischen Worte empfanden wir dieses Labor als eines der besseren und lehrreichen in unserer bisherigen Studienzeit. Wir konnten uns viel Zeit nehmen einige wesentliche Details zu analysieren die schlussendlich den eigentlichen Lerneffekt erbrachten.