

## 1. Certificate Pricing

Identify the criteria to set Montecarlo number of simulations (weights = 1/8).

IC+

Participation coefficient in percentage, elapsed time in seconds

IICI elapsed [sec]

|      |            | 10      | 101     | احاا   | ciapsea [see] |
|------|------------|---------|---------|--------|---------------|
| NSim | MC Type    |         |         |        |               |
| 1E+4 | plain      | 327.722 | 338.074 | 20.705 | 0.033         |
|      | antithetic | 331.971 | 335.057 | 6.173  | 0.048         |
| 1E+5 | plain      | 333.493 | 336.780 | 6.573  | 0.070         |
|      | antithetic | 334.242 | 335.220 | 1.954  | 0.101         |
| 1E+6 | plain      | 334.256 | 335.292 | 2.071  | 0.406         |
|      | antithetic | 334.610 | 334.917 | 0.614  | 0.629         |
| 1E+7 | plain      | 334.686 | 335.013 | 0.655  | 4.499         |
|      | antithetic | 334.790 | 334.887 | 0.194  | 7.252         |
|      |            |         |         |        |               |

IC-

Financial Engineering

R. Baviera 1



## 2. Pricing Digital Option

# 1. Plot the volatility smirk



- 2. Choose the strike interpolation function:
  - x Linear?
  - ✓ Cubic Spline?







### 2. Pricing Digital Option

3. What is the relation between vega Black closed formula  $\nu$  and the price difference between call spread limit and digital Black closed formula?

$$\Delta C \approx -v^{Black} \cdot \frac{\partial \sigma^{mkt}}{\partial k}$$

Where  $\sigma^{mkt}$  stands for volatility market skew and k denotes the strikes.

Positive if negative skew!







#### 3. FFT Parameters

Identify the criteria to set the two degrees of freedom M, dz or  $x_1$ .



How to control tails in out-of-the money values?  $L^1$ ,  $L^2$  or  $L^\infty$  error criteria...



# 3. Tempered Alpha Stable Process







R. Baviera 5 Financial Engineering

Call Prices



### 4. Case study: volatility surface calibration

```
function [c, ceq]=constraint(p,alpha)
% function that represents the constraint in the Least Squares Calibration
%p1=sigma
%p2 k, p3 eta
c= [-(1-alpha)./(p(2).*p(1).*p(1))-p(3)];
ceq=[];
end
```

Financial Engineering



### 4. Case study: volatility surface calibration

Consider different level of  $\alpha$  parameter in normal mean-variance mixture and run a grid search in order to select the best mean squared error vs elapsed execution time:

| α      | MSE    | Elapsed [sec] |  |
|--------|--------|---------------|--|
| 0.2500 | 0.1598 | 50.2          |  |
| 0.3333 | 0.3692 | 66.4          |  |
| 0.5000 | 1.1154 | 61.9          |  |
| 0.6667 | 1.9993 | 109.0         |  |
| 0.7500 | 2.6824 | 121.4         |  |

Normal Mean-Variance Mixture Implied Volatilities



R. Baviera 7 Financial Engineering

