北京邮电大学 2024-2025 学年第一学期

《通信原理I》期中考试试题

一. (26分) 单项选择 (每空1分, 共26分)

将最佳答案写在下面的答题表中,写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
答案									
空格号	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
答案									
空格号	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	
答案									

1. 信号 $m(t) = 2\cos(400\pi t)$ 的功率是 $\underline{(1)}$ W; 复信号 $y(t) = m(t) + j \cdot \sqrt{3}m(t)$ 的功率是 $\underline{(2)}$ W; 复信号 $z(t) = y(t) \operatorname{rect}\left(\frac{t}{500}\right)$ 的能量是 $\underline{(3)}$ kJ。

(1)(2)(3) (A) 1 (B) 2 (C) 4 (D) 8

2. X(t)是平稳随机过程,其功率谱密度 $P_X(f)$ 是其自相关函数 $R_X(\tau)$ 的(4)变换。

(4) (A) 平方 (B) 拉普拉斯 (C) 希尔伯特 (D) 傅立叶

3. 某基带信号m(t)的单边功率谱密度如下图所示,此信号的绝对带宽是(5)Hz, $m^2(t)$ 的绝对带宽是(6)Hz。

(5)(6) (A) 150 (B) 200 (C) 300 (D) 400

4. 设零均值实平稳随机过程X(t)的功率谱密度是 $P_X(f)$,自相关函数是 $R_X(\tau)$ 。将X(t)通过传递函数为 $H(f) = -j \cdot \mathrm{sgn}(f)$ 的滤波器得到输出Y(t),则Y(t)的功率谱密度是 $\underline{(7)}$,自相关函数是 $\underline{(8)}$ 。Y(t)和X(t)的互相关函数是 $\underline{(9)}$ 。

(7)	(A) $\begin{cases} 2P_X(f) \\ 0 \end{cases}$	$ \begin{array}{c c} f > 0 \\ f < 0 \end{array} $ (B) $P_X(f)$	(C) $\begin{cases} 0 & f > 0 \\ 2P_X(f) & f < 0 \end{cases}$	(D) $\begin{cases} 4P_X(f) & f > 0 \\ 0 & f < 0 \end{cases}$
(8)(9)	(A) $\hat{R}_X(\tau)$	(B) $R_X(\tau) + \mathbf{j} \cdot \hat{R}_X(\tau)$	(C) $R_X(\tau)$	(D) 0

5. FM 信号通过 AWGN 信道传输,令 $P_n(f)$ 表示接收端 FM 鉴频器输出噪声的功率谱密度,则 $P_n(f)$ 与 $\underline{(10)}$ 成正比。

(10) (A) f^{-1} (B) f (C) f^2 (D) f^3

6. 考虑 PAM 信号 $X(t) = \sum_{n=-\infty}^{\infty} a_n \operatorname{rect}(10t - n)$,其中序列 a_n 取值于 $\{\pm 1\}$,且 $P(a_n = 1) = p$ 。该 PAM 信号的符号间隔是<u>(11)</u>s,X(t)在任意时刻的方差是<u>(12)</u>。如果p = 0.5,X(t)在任意时刻的方差是<u>(13)</u>。

(11)	(A) 0.1	(B) 0.01	(C) 10	(D) 1
(12)(13)	(A) p	(B) $4p(1-p)$	(C) $rect(10t - n)$	(D) 1

7. 某数字基带系统输入信息的比特速率是 1kbps, 其中 "0"出现的概率是 0.25, "1"出现的概率是 0.75。若采用幅度为 1V 的双极性不归零码传输,则平均比特能量是(14)mJ,发送信号的主瓣带宽是(15)kHz。若采用占空比为 50%的单极性归零码传输,假设发送 "0"时的幅度为 2V,发送 "1"时的幅度为 0V,则平均比特能量是(16)mJ,发送信号的主瓣带宽是(17)kHz。若采用占空比为 50%的 AMI 码传输,发送信号的主瓣带宽是(18)kHz。

(14)(15)(16)(17)(18) (A) 0.5 (B) 1 (C) 2 (D) 4

8. 考虑功率为 1 的零均值窄带平稳高斯过程n(t), $n_c(t)$ 和 $n_s(t)$ 是其同相分量和正交分量, $x(t) = A\cos(2\pi f_c t) + n_c(t)\cos(2\pi f_c t) - n_s(t)\sin(2\pi f_c t)$ 。x(t)的同相分量 $x_c(t)$ 是(19),x(t)的包络是(20); $n_c(t)$ 的功率是(21), $x_c(t)$ 的功率是(22); $x_c(t)$ 服从(23)分布。

(1	9)(20)	(A) $n_{\rm c}(t)$	(B) $A + n_{c}(t)$	(C) $A + n_c(t) + j \cdot n_s(t)$	(D) $ A + n_{c}(t) + j \cdot n_{s}(t) $
(2	1)(22)	(A) 1	(B) A	(C) $A + 1$	(D) $A^2 + 1$
	(23)	(A) 高斯	(B) 均匀	(C) 瑞利	(D) 莱斯

9. 考虑下图所示的带通传输系统H(f),参考载波频率是 f_c 。其等效低通系统的传递函数是 $H_e(f) = \underline{(24)}$ 。考虑带通信号 $s(t) = m(t)\cos 2\pi f_c t$,其中m(t)是带宽为W的基带信号。将s(t)通过该系统,输出表示为y(t)。则 $y(t) = \underline{(25)}$,y(t)的复包络 $y_L(t) = \underline{(26)}$ 。

(24)	$(A) \begin{cases} 2, & 0 \le f \le W \\ 0, & 其他 \end{cases}$	(B) $\begin{cases} 4, & 0 \le f \le W \\ 0, & \text{其他} \end{cases}$				
	$(C) \begin{cases} 2, & f \le W \\ 0, & 其他 \end{cases}$	$(D) \begin{cases} 4, & f \le W/2 \\ 0, & \text{其他} \end{cases}$				
(25)	(A) $m(t)\cos(2\pi f_{\rm c}t)$	(B) $m(t)\cos(2\pi f_c t) - \widehat{m}(t)\sin(2\pi f_c t)$				
(25)	(C) $\widehat{m}(t)\sin(2\pi f_{\rm c}t)$	(D) $m(t)\cos(2\pi f_c t) + \widehat{m}(t)\sin(2\pi f_c t)$				
(26)	(A) $m(t)$ (B) $\widehat{m}(t)$	(C) $m(t) + j \cdot \widehat{m}(t)$ (D) $m(t) - j \cdot \widehat{m}(t)$				

二. (15 分) 设有 AM 信号 $s_{AM}(t) = [A_c + m(t)]\cos(200\pi t)$,其中模拟基带信号m(t)的均值为 0。已知 $s_{AM}(t)$ 的包络A(t)如下图所示。

- (1) 写出m(t)的表达式;
- (2) 求该 AM 信号的调幅系数、调制效率,已调信号功率;
- (3) 若将m(t)通过 FM 调制器,频率偏移常数 $K_f = 10$ Hz/V,载波幅度 $A_c = 10$ V,求 FM 调制的调制指数、最大频偏,已调信号功率及近似带宽。

三. (15 分) 设 $X(t) = Am(t)\cos(2\pi f_c t) - B\hat{m}(t)\sin(2\pi f_c t)$, 其中m(t)是零均值平稳基带随机过程,功率为 P_m ,带宽为W, $W \ll f_c$ 。

- (1) 写出一组能使X(t)平稳的系数A、B的取值(除全零外),并证明之;
- (2) 将X(t)经过下图所示的系统后成为Y(t),假设低通滤波器的带宽等于m(t)的带宽W,写出Y(t)的表达式;

- (3) 若 θ 是常数,求Y(t)的平均功率;
- (4) 若 θ 是在[0,2 π]上均匀分布的随机变量,求Y(t)的平均功率。

四. $(14 \, \text{分})$ 考虑下图所示的模拟通信系统接收机,假设高斯白噪声 $n_{\rm w}(t)$ 的单边功率谱密度是 $N_0=10^{-5} {\rm W/Hz}$ 。假设基带信号m(t)的功率是 $4 {\rm W}$ 、带宽是 $400 {\rm Hz}$ 。

- (1) 若输入 SSB 信号 $s(t) = m(t)\cos(4000\pi t) + \hat{m}(t)\sin(4000\pi t)$,写出 BPF 的通频带范围,求 BPF 及 LPF 输出端的信噪比:
- (2) 若输入信号 AM 信号 $s(t) = [A + m(t)] \cos(4000\pi t)$,已知s(t)的功率是 18W、调制效率是 1/9, $A > |m(t)|_{max}$,写出 BPF 的通频带范围,求 BPF 及 LPF 输出端的信噪比。

五. (15 分) 设有 PAM 信号 $s_1(t) = \sum_{n=-\infty}^{\infty} a_n g_1(t-n) \operatorname{All} s_2(t) = \sum_{n=-\infty}^{\infty} a_n g_2(t-n)$,其中 $g_1(t) = \operatorname{rect}(2t-0.5)$, $g_2(t) = g_1(t) - g_1(t-0.5)$,序列 $\{a_n\}$ 的元素独立等概取值于 $\{\pm 1\}$ 。

- (1) 画出 $s_1(t)$ 和 $s_2(t)$ 的波形示意图,并说明它们是什么信号;
- (2) 分别求 $s_1(t)$ 和 $s_2(t)$ 的功率谱密度;
- (3) 若假设 $P(a_n = 1) = p$,画出 $s_1(t)$ 的功率谱密度。

六. (15 分) 二进制数字基带系统在 $[0, T_b]$ 内等概发送 $s_1(t) = g(t) = \begin{cases} 1 & 0 \le t \le T_b \\ 0 & \text{其他} \end{cases}$ 或 $s_2(t) = -s_1(t)$ 。接收框图如下图所示,其中加性白高斯噪声的单边功率谱密度为 N_0 。

- (1) 分别求出发 $s_1(t)$ 条件下,样值y的均值、方差、概率密度函数;
- (2) 写出判决门限V_T, 并求平均判决错误概率。

24 秋《通信原理 I》期中考试 A 卷答案

一.(26分)单项选择(每空1分,共26分)

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
答案	В	D	С	D	В	D	В	С	A
空格号	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
答案	С	A	В	D	В	В	A	С	В
空格号	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	
答案	В	D	A	D	A	A	В	С	

二. (15分)

$$(1) \begin{array}{c} s_{\text{AM}}(t) = (20 + 15\cos 20\pi t)\cos (200\pi t) \\ m(t) = 15\cos 20\pi t \\ \\ s_{\text{AM}}(t) = 20(1 + 0.75\cos 20\pi t)\cos (200\pi t) \\ a = 0.75, \ \eta = \frac{0.75^2/2}{1 + 0.75^2/2} = \frac{9}{41} \\ (2) \\ 1 + 0.75\cos 20\pi t \text{ 的功率是} 1 + \frac{0.75^2}{2} = \frac{41}{32} \\ \text{AM 已调信号的功率为} \frac{1}{2} \times 20^2 \times \frac{41}{32} = \frac{1025}{4} \\ \\ s_{FM}(t) = A_c \cos \left[2\pi f_c t + 2\pi K_f \int_{-\infty}^t m(\tau) d\tau \right] \\ a_{FM}(t) = \frac{A_f \cos t}{W} = 150 \text{Hz} \\ W = 10 \text{Hz}, \ \beta = \frac{A_f \cos t}{W} = 15 \\ P_{FM} = 0.5 \times A_c^2 = 50 \text{W} \\ B = 2 \times (15 + 1) \times 10 = 320 \text{Hz} \\ \end{array}$$

三. (15分)

```
A = B 或 A = -B 或 A^2 = B^2
     证明一(按平稳的定义):
     E[X(t)] = 0
     不妨取A=B=1,则
    egin{aligned} R_X(t+	au,t) = \mathrm{E}egin{bmatrix} \{m(t+	au)\cos(2\pi f_\mathrm{c}t + 2\pi f_\mathrm{c}	au) - \hat{m}(t+	au)\sin(2\pi f_\mathrm{c}t + 2\pi f_\mathrm{c}	au)\}^T \ \cdot \{m(t)\cos(2\pi f_\mathrm{c}t) - \hat{m}(t)\sin(2\pi f_\mathrm{c}t)\} \end{aligned}
                         =R_m(	au)\cos(2\pi f_{
m c}t+2\pi f_{
m c}	au)\cos(2\pi f_{
m c}t)
(1)
                         +R_m(	au)\sin(2\pi f_{
m c}t+2\pi f_{
m c}	au)\sin(2\pi f_{
m c}t)
                          -R_{m\hat{m}}(	au)\cos(2\pi f_{\mathrm{c}}t+2\pi f_{\mathrm{c}}	au)\sin(2\pi f_{\mathrm{c}}t)
                          -R_{\hat{m}m}(	au)\sin(2\pi f_{\mathrm{c}}t+2\pi f_{\mathrm{c}}	au)\cos(2\pi f_{\mathrm{c}}t)
                          =R_m(	au)\cos(2\pi f_{
m c}	au)-\hat{R}_m(	au)\sin(2\pi f_{
m c}	au)
     证明二 (按窄带平稳的性质): I 路和 Q 路①是零均值平稳过程, ②相同的功率谱密度或
     自相关函数,③同一时刻不相关。根据希尔伯特变换的性质,这些都满足。
     做题时,可以A=B,也可以不等
|X(t)| = \operatorname{Re}\left\{\left[Am(t) + \mathbf{j} \cdot B\hat{m}(t)\right] e^{\mathbf{j} \cdot 2\pi f_{\mathrm{c}} t}\right\} = \operatorname{Re}\left\{\left[Am(t) + \mathbf{j} \cdot B\hat{m}(t)\right] e^{-\mathbf{j}\theta} e^{\mathbf{j} \cdot (2\pi f_{\mathrm{c}} t + \theta)}\right\}
```

$$X_{\rm L}(t) = [Am(t) + \mathbf{j} \cdot B\widehat{m}(t)]e^{-\mathbf{j}\theta}$$

 $Y(t) = \text{Re}\{X_{L}(t)\} = Am(t)\cos\theta + B\hat{m}(t)\sin\theta$ (3) Y(t) 的两部分正交,故 $P_{Y} = A^{2}P_{m}\cos^{2}\theta + B^{2}P_{m}\sin^{2}\theta$

(4)
$$\mathrm{E}[\cos^2 \theta] = \mathrm{E}[\sin^2 \theta] = \frac{1}{2}$$
, $P_Y = \frac{A^2 + B^2}{2} P_m$

四. (14分)

1600Hz-2000Hz

(1) BPF 输出功率是 4W,输出端噪声功率是 $10^{-5} \times 400 = 0.004$ W,信噪比为 1000 输出信噪比等于输入信噪比,为1000

1600Hz-2400Hz

BPF 输出端:已调信号功率 18,噪声功率 0.008,信噪比 $\frac{18}{0.008} = 2250$

LPF 输出端信号: $\frac{A+m(t)+n_{
m c}(t)}{2}$,信噪比为 $\frac{4}{0.008}=500$ 。

五. (15分)

双极性 RZ,曼彻斯特码
$$T_{\rm b}\!=\!1,\;\;|G_1(f)|\!=\!0.5{\rm sinc}(0.5f),\;\;|G_2(f)|\!=\!|G_1(f)|\!\cdot\!|1-{\rm e}^{-{\rm j}\pi f}|$$

$$\left| (2) \right| P_1(f) = |G_1(f)|^2 = \frac{1}{4} \operatorname{sinc}^2 \left(\frac{f}{2} \right)$$

$$|P_2(f)| = |G_2(f)|^2 = \operatorname{sinc}^2\left(\frac{f}{2}\right) \sin^2\left(\frac{\pi f}{2}\right)$$

此时, $s_1(t)$ 的均值不为零, $\mathrm{E}[s_1(t)]\!=\!(2p-1)\sum_{n=-\infty}^\infty g_1(t-n)$ 是周期方波,在频域呈现为 冲激。

六. $(15\, \%)$ 发送 $s_1(t)$ 条件下, $y = \int_0^{T_b} [s_1(t) + n_{\rm w}(t)] s_1(t) {\rm d}t = T_{\rm b} + Z$,其中 $Z \sim \mathcal{N}(0, \sigma^2)$, $\sigma^2 = \frac{N_0 T_{\rm b}}{2} \, {\rm s}$ 条件均值为 $T_{\rm b}$ 、条件方差为 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$,条件概率密度为 $\frac{1}{\sqrt{2\pi\sigma^2}} {\rm e}^{-\frac{(y-T_{\rm b})^2}{2\sigma^2}}$ 由对称性可确定判决门限为 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 计记录 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 计算量的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 计算量的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 计算量的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$,条件概率密度为 $\sigma^2 = \frac{(y-T_{\rm b})^2}{2\sigma^2}$ 的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$,条件概率密度为 $\sigma^2 = \frac{(y-T_{\rm b})^2}{2\sigma^2}$ 的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$,条件概率密度为 $\sigma^2 = \frac{(y-T_{\rm b})^2}{2\sigma^2}$ 的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$,条件概率密度为 $\sigma^2 = \frac{(y-T_{\rm b})^2}{2\sigma^2}$ 的 $\sigma^2 = \frac{N_0 T_{\rm b}}{2}$ 的 $\sigma^2 = \frac{N_0$