Week - 01:

Derivatives:

The video is introducing **calculus** as a way to understand how things change—specifically how one quantity (like speed) changes with another (like time). It's using the example of a car's motion to make this idea more understandable.

1. Speed-Time Graph:

- Imagine a graph where **speed** is on the vertical axis and **time** is on the horizontal axis.
- If the car was moving at the **same speed the whole time**, the graph would be a **flat horizontal line**.
- But in this case, the graph is **not flat**, which means the speed is changing the car is **accelerating** and **decelerating**.

2. Acceleration from the Graph:

- The **slope** (or steepness) of the speed-time graph at any point tells us the **acceleration** at that point.
 - If the line is going **up**, the car is **accelerating**.
 - If the line is going **down**, the car is **decelerating**.

• The slope at a single point is called the **local gradient**, and it can be visualized with a **tangent line** (a straight line that just touches the curve).

3. Acceleration-Time Graph:

- By calculating the slope at every point on the speed-time graph, we can create a **new graph** that shows **acceleration versus time**.
- If a car moves at **constant speed**, the speed-time graph is flat (slope = 0), so the acceleration-time graph would also be a flat line **at zero**.
- In more complex cases:
 - Acceleration is **positive** when speed increases.
 - Zero when speed stops increasing (i.e., reaches its peak).
 - Negative when the car slows down.

4. Understanding Derivatives:

- What we've done by finding the slope of the speed graph is essentially taking its derivative.
- The derivative is a new function that tells us the rate of change (how fast something changes).
- In this case:
 - Speed is the derivative of distance.
 - Acceleration is the derivative of speed.
 - Jerk is the derivative of acceleration (how quickly acceleration is changing).

5. Going Backwards – Anti-derivative:

- You can also go in reverse:
 - If you have a speed-time graph, and you ask: "What function would give this speed when I take its slope?" you're looking for the anti-derivative or integral.

- In this example, the anti-derivative of speed is **distance**.
 - Why? Because the rate of change of distance over time (its slope) is speed.

Definition of a derivative:

Key Concepts

- 1. Gradient (Slope)
 - For straight lines:

$$ext{Gradient} = rac{ ext{Rise}}{ ext{Run}} = rac{f(x_2) - f(x_1)}{x_2 - x_1}$$

- 2. Derivative Definition
 - · For curved functions, gradient at a point is:

$$f'(x) = \lim_{\Delta x o 0} rac{f(x + \Delta x) - f(x)}{\Delta x}$$

• This is the formal definition of a derivative.

1. Power Rule

Used to differentiate functions like $f(x)=ax^n$

Formula:

$$rac{d}{dx}[ax^n] = a \cdot n \cdot x^{n-1}$$

Example:

$$\frac{d}{dx}[5x^3] = 15x^2$$

+ 2. Sum Rule

Used when differentiating a sum or difference of functions.

📌 Formula:

$$rac{d}{dx}[f(x)+g(x)]=f'(x)+g'(x)$$

Example:

$$\frac{d}{dx}[3x^2+2x]=6x+2$$

X 3. Product Rule

Used when differentiating the **product** of two functions.

Formula:

$$rac{d}{dx}[f(x)\cdot g(x)] = f'(x)g(x) + f(x)g'(x)$$

Example:

If $f(x) = x^2$, $g(x) = \sin(x)$, then:

$$rac{d}{dx}[x^2\sin(x)] = 2x\sin(x) + x^2\cos(x)$$

Used to differentiate **composite functions** (function inside a function).

Formula:

If f(x) = g(h(x)), then:

$$f'(x) = g'(h(x)) \cdot h'(x)$$

Example:

$$rac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x$$

Week - 02:

Multivariable systems:

Now, we're moving into **multivariable systems**, where more than one variable affects the outcome — and we use **partial derivatives**.

What's a Variable, Constant, and Parameter?

- Dependent variable: Changes because of something else (e.g., speed depends on time).
- Independent variable: You choose or control it (e.g., time just passes).
- Constants: Don't change in your current context (e.g., car's mass).
- **Parameters**: Variables that can change *across different scenarios* (like drag coefficient for different car models) not always changing *in the moment*, but adjustable in design.

So, **what's a constant or a variable depends on the context.** Something that is constant in one problem might be a variable in another.

Partial Derivatives: A Way to Handle Multivariable Systems

In multivariate calculus, functions depend on many variables.

Example: Imagine you're calculating the **mass** of a can using its:

- Radius r
- Height h
- Wall thickness t
- Material density ρ

The formula for mass:

$$m = \left(2\pi r^2 + 2\pi r h\right) \cdot t \cdot
ho$$

Now, if you want to know how mass changes when you only increase height h, keep the others constant. That's called a partial derivative:

$$\frac{\partial m}{\partial h} = 2\pi r t \rho$$

This tells you: for every unit increase in height, the mass increases by this much (assuming r, t, ρ stay the same).

📌 Key Takeaways

• Context matters: Constants, variables, and parameters shift depending on the situation.

- Partial differentiation means taking the derivative with respect to one variable while treating others as constants.
- It's just like normal derivatives, but in higher dimensions.
- Use the ∂ (curly d) symbol to show it's a partial derivative.

1. A Trickier Example Function

We're given a multivariable function:

$$f(x,y,z) = \sin(x) \cdot e^{yz^2}$$

Let's find partial derivatives one at a time:

♦ Partial Derivative with respect to *x*:

Only $\sin(x)$ involves x. Treat e^{yz^2} as constant.

$$rac{\partial f}{\partial x} = \cos(x) \cdot e^{yz^2}$$

♦ Partial Derivative with respect to *y*:

Only yz^2 has y. Use the **chain rule** on the exponential.

$$rac{\partial f}{\partial u} = \sin(x) \cdot e^{yz^2} \cdot z^2$$

♦ Partial Derivative with respect to z:

Again, use the **chain rule**, since yz^2 involves z.

$$rac{\partial f}{\partial z} = \sin(x) \cdot e^{yz^2} \cdot 2yz$$

Introducing the Total Derivative

Now imagine:

The variables x, y, z are each functions of a **new variable** t:

- x = t 1
- $y = t^2$
- $z = \frac{1}{t}$

We want to find how the entire function f changes as t changes — this is the **total derivative**:

$$\frac{df}{dt}$$

Why Not Just Plug In and Differentiate?

Yes, you *could* substitute all of x(t), y(t), z(t) into the original f and then differentiate. But if the function is **huge**, that can get messy.

Instead, use the chain rule across all variables.

O Total Derivative Formula:

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial f}{\partial z} \cdot \frac{dz}{dt}$$

This means:

Add up how much f changes with each variable, **multiplied** by how much that variable changes with t.

$$f(x,y,z) = \sin(x) e^{yz^2}$$

$$\frac{\partial f}{\partial x} = \cos(x) e^{yz^2}$$

$$\frac{\partial f}{\partial y} = z^2 \sin(x) e^{yz^2}$$

$$\frac{\partial f}{\partial z} = 2yz \sin(x) e^{yz^2}$$

$$\frac{dz}{dt} = 1$$

$$\frac{dz}{dt} = 2t$$

$$\frac{dz}{dt} = -t^{-2}$$

$$\frac{df(x,y,z)}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$

$$\frac{df(x,y,z)}{dt} = \cos(x) e^{yz^2} \times 1 + z^2 \sin(x) e^{yz^2} \times 2t + 2yz \sin(x) e^{yz^2} \times (-t^{-2})$$
3:58/4:43

Key Takeaways:

- Partial derivatives look at one variable at a time.
- The total derivative looks at how a function changes when all its inputs are changing.
- It uses the **chain rule** across multiple variables.
- Very handy when variables depend on another variable like time, space, etc.

What Is the Jacobian?

The **Jacobian** is a fancy name for something simple:

It's a **vector of all partial derivatives** of a function with respect to its input variables.

If you have a function like:

$$f(x_1,x_2,x_3,\dots)$$

Then the Jacobian is just:

$$J = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}, \dots\right)$$

By convention, we write this as a **row vector**.

Example: A Simple Function

Given:

$$f(x,y,z) = x^2y + 3z$$

Let's build the Jacobian step by step:

- 1. $\frac{\partial f}{\partial x} = 2xy$
- 2. $\frac{\partial f}{\partial y} = x^2$
- 3. $\frac{\partial f}{\partial z} = 3$

So the Jacobian is:

$$J = (2xy, x^2, 3)$$

What Does the Jacobian Tell Us?

Think of the Jacobian as:

- A gradient vector,
- That points in the direction of the steepest increase in the function,
- With each component showing how **sensitive** the function is to changes in that particular variable.

Example:

At point (0,0,0) the Jacobian is:

$$J(0,0,0)=(0,0,3)$$

This means the function **only increases in the z direction** at that point — the x and y directions have no effect there.

To help build intuition, the video walks through a more complex 2D function. Here's how they visualized it:

1. Color plot

Shows high values (bright) and low values (dark) of the function.

2. 3D plot

Adds **height** for the function value (z) — a landscape with hills and valleys.

3. Contour plot

Like a topographic map. Lines represent **equal height** (constant z-values). Close lines mean steep slope.

4. Add Jacobian vectors

At every point, add an arrow showing:

- The direction of steepest uphill
- The **length** of the arrow represents how steep the slope is

Key Observations from the Visualization

- Arrows always point uphill, toward higher function values
- Steeper regions (where contour lines are close together) → longer Jacobian vectors
- Flat regions or peaks/valleys → short or zero Jacobian vectors

Final Thoughts

- The Jacobian gives you direction + magnitude of steepest change
- It's just partial derivatives grouped into a vector nothing too scary!
- Visually, it helps you navigate a function's landscape
- In high dimensions, we can't visualize it but the **math still works**, and that's powerful

Jacobian as a Vector (Gradient)

The core idea here is that the **Jacobian** can describe not just how a **scalar function** changes with respect to its inputs, but also how a **vector-valued function** changes — and that's when the Jacobian becomes a **matrix**.

We begin with a scalar function:

$$f(x,y)=e^{-x^2+y^2}$$

To find the Jacobian vector, we calculate the partial derivatives:

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$

This gives a 2D vector (a gradient), pointing in the direction of steepest increase of the function.

Example: Checking Specific Points

- At (-1, 1) → Jacobian points toward the origin
- At (2, 2) → Smaller vector, still points toward the origin
- At (0, 0) → Zero vector → function is flat (this could be a maximum, minimum, or saddle point)

When you look at the **whole vector field**, you see that vectors all point **towards the origin**, suggesting it is a **maximum**.

Visualized in 3D → function is like a hill, highest at the origin.

Jacobian as a Matrix (For Vector-Valued Functions)

We now move on to functions that return vectors, not just single numbers.

Suppose:

- u(x,y) = x + 2y
- v(x,y) = 3y 2x

This defines a new vector-valued function:

$$F(x,y) = egin{bmatrix} u(x,y) \ v(x,y) \end{bmatrix}$$

How to Build the Jacobian Matrix

For vector functions, the Jacobian becomes a matrix where:

- Each row is the gradient of one output function.
- Each column corresponds to an input variable.

So the Jacobian matrix is:

$$J = egin{bmatrix} rac{\partial u}{\partial x} & rac{\partial u}{\partial y} \ rac{\partial v}{\partial x} & rac{\partial v}{\partial y} \end{bmatrix} = egin{bmatrix} 1 & 2 \ -2 & 3 \end{bmatrix}$$

This matrix transforms a vector in the (x, y) space into one in the (u, v) space.

Test It Out:

Given (x,y)=(2,3), apply the transformation:

$$\begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + 2 \cdot 3 = 8 \\ -2 \cdot 2 + 3 \cdot 3 = 5 \end{bmatrix} \Rightarrow (u, v) = (8, 5)$$

Part 3: What If the Functions Are Nonlinear?

In real-world problems, the functions are usually **nonlinear**.

But if a function is **smooth** (no jumps or sharp corners), then even though it's nonlinear overall, we can:

Zoom into a small region and approximate it as linear using the Jacobian.

This is **super important** in areas like optimization and machine learning — we repeatedly approximate nonlinear functions with linear ones during updates (like in gradient descent).

Part 4: Real Example - Polar to Cartesian

Switching coordinates is a common transformation. For instance:

- $x = r \cos\theta x$
- $y = r \sin\theta y$

We can build the Jacobian matrix of this transformation, and compute its determinant:

$$J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

The determinant of this matrix is:

$$\det(J) = r$$

This tells us that:

- As you move away from the origin (increasing rrr), area scales by rrr.
- The transformation is "stretching space" more as you move further out.

Summary – What You Should Now Understand

Concept	Meaning
Jacobian Vector	For scalar-valued functions: points in direction of steepest slope (gradient)
Jacobian Matrix	For vector-valued functions: linear approximation of how output vectors change with inputs
Use of Jacobians	Crucial for optimization, coordinate transformations, and machine learning algorithms
Determinant of Jacobian	Tells how space is scaled under transformation (important in integration and probability)