WHAT IS CLAIMED IS:

1	1. A substrate processing system comprising:	
2	a processing chamber for holding a substrate during processing;	
3	an alternating voltage supply connected with the processing chamber to	
4	capacitively couple energy to a plasma formed within the processing chamber; and	
5	an impedance matching network coupled with the alternating voltage suppl	y,
6	the impedance matching network comprising:	
7	a variable resistive element having a first plurality of states to defin	e
8	distinct real parts of an impedance in accordance with the first plurality of states; and	
9	a variable reactive element having a second plurality of states to de	fine
10	distinct imaginary parts of the impedance in accordance with the second plurality of states	.
1	2. The substrate processing system recited in claim 1 wherein the	
2	alternating voltage supply includes an intrinsic resistive matching load.	
1	3. The substrate processing system recited in claim 2 wherein the vari	ahle
2	resistive element comprises a transformer for transforming the intrinsic resistive matching	
3	load into one of the distinct real parts of the impedance in accordance with a state of the	,
4	transformer.	
7	dansiormer.	
1	4. The substrate processing system recited in claim 3 wherein the	
2	transformer comprises:	
3	a first coil having a fixed number of turns coupled with the intrinsic resistiv	ve
4	matching load; and	
5	a secondary coil having a variable number of turns corresponding to the fir	st
6	plurality of states.	
1	5. The substrate processing system recited in claim 4 wherein the first	
2	plurality of states consists of a finite number of discrete states, each such state being defin	ed
3	by a position of a switch to select a number of turns in the secondary coil.	
1	6. The substrate processing system recited in claim 4 wherein the first	
2	plurality of states is a continuum of states.	
_	proceeding of states is a continuant of states.	

7. The substrate processing system recited in claim 1 wherein the variable reactive element comprises a coil in series with the variable resistive element, the coil having a variable number of turns corresponding to the second plurality of states.

- 8. The substrate processing system recited in claim 7 wherein the coil comprises a plurality of inductive elements connected in series with the variable resistive element, the second plurality of states being defined by a state of a switch to select a subset of the plurality of inductive elements.
- 9. The substrate processing system recited in claim 1 wherein the second plurality of states consists of a finite number of discrete states.
- 1 10. The substrate processing system recited in claim 1 wherein the second 2 plurality of states is a continuum of states.
 - 11. The substrate processing system recited in claim 1 wherein the first plurality of states consists of a finite number of discrete states.
 - 12. The substrate processing system recited in claim 1 wherein the first plurality of states is a continuum of states.
 - 13. The substrate processing system recited in claim 1 wherein the alternating voltage supply comprises a radio-frequency voltage supply.
 - 14. A method for processing a substrate, the method comprising:

 positioning the substrate in a processing chamber;

 capacitively coupling an alternating voltage supply with the processing

 chamber to couple energy to a plasma formed within the processing chamber; and

 matching an impedance defined by processing conditions for the substrate,

 comprising:
- matching a real part of the impedance by selecting one of a first
 plurality of states of a variable resistance element coupled with the alternating voltage
 supply; and
- matching an imaginary part of the impedance by selecting one of a second plurality of states of a variable reactive element coupled with the alternating voltage supply.

1	15. The method recited in claim 14 wherein:
2	the alternating voltage supply includes an intrinsic resistive matching load;
3	and
4	matching the real part of the impedance comprises transforming the intrinsic
5	resistive matching load with a transformer in accordance with a state of the transformer.
1	16. The method recited in claim 15 wherein:
2	the transformer comprises a first coil having a fixed number of turns coupled
3	with the resistive matching load and a second coil having a variable number of turns
4	corresponding to the first plurality of states; and
5	matching the real part of the impedance comprises selecting the number of
6	turns for the second coil.
1	17. The method recited in claim 16 wherein:
2	the first plurality of states consists of a finite number of discrete states, each
3	such state being defined by a position of a switch to select a number of turns in the secondary
4	coil; and
5	matching the real part of the impedance comprises positioning the switch.
1	18. The method recited in claim 16 wherein the first plurality of states is a
2	continuum of states.
1	19. The method recited in claim 14 wherein:
2	the variable reactive element comprises a coil in series with the variable
3	resistive element, the coil having a variable number of turns corresponding to the second
4	plurality of states; and
5	matching the imaginary part of the impedance comprises selecting the number
6	of turns for the coil.
1	20. The method recited in claim 19 wherein:
2	the coil comprises a plurality of inductive elements connected in series with
3	the variable resistive element; and
4	selecting the number of coils comprises selecting a state of a switch to select a
5	subset of the plurality of inductive elements.

- 1 21. The method recited in claim 14 wherein the alternating voltage supply
- 2 comprises a radio-frequency voltage supply.