NURBS

Pierre Pansu

February 9, 2004

1 Courbes rationnelles

Un cercle ne peut pas être paramétré par des polynômes. En effet, si P et Q sont des polynômes non constants, $P^2 + Q^2$ est un polynôme non constant.

En revanche, le cercle unité admet une paramétrisation rationnelle

$$t \mapsto (\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}).$$

Exercice 1 Une cônique est une courbe plane définie par une équation du second degré (i.e. le lieu des zéros d'un polynôme en deux variables de degré total 2). Soit C une cônique non vide et non dégénérée (i.e. non réduite à une ou 2 droites) et P un point de C. En coupant C par les droites passant par P, montrer que C admet une paramétrisation rationnelle.

Définition 1.1 Une courbe paramétrée est dite rationnelle par morceaux si sur chaque intervalle d'une subdivision, chaque coordonnée est donnée par une fraction rationnelle (i.e. le quotient de deux polynômes) du paramètre.

1.1 Projection centrale

Réalisons l'espace affine \mathbf{R}^n comme l'hyperplan affine d'équation $\{x_0 = 1\}$ dans l'espace vectoriel \mathbf{R}^{n+1} . La projection centrale de \mathbf{R}^{n+1} privé de l'hyperplan vectoriel $\{x_0 = 0\}$ vers \mathbf{R}^n est définie comme suit : la projection d'un vecteur v non nul est l'intersection de la droite engendrée par v avec l'hyperplan \mathbf{R}^n . Analytiquement, elle s'écrit

$$(v_0,\ldots,v_n)\mapsto (\frac{v_1}{v_0},\ldots,\frac{v_n}{v_0}).$$

La projection centrale envoie les segments de droites ne rencontrant pas l'hyperplan $\{x_0 = 0\}$ sur des segments de droites. En particulier, sa restriction au demi-espace $\{x_0 > 0\}$ envoie segment sur segment, donc préserve la convexité.

Toute courbe rationnelle dans \mathbf{R}^n s'obtient par projection centrale d'une courbe polynômiale tracée dans \mathbf{R}^{n+1} . En effet, quitte à réduire au même dénominateur, une courbe paramétrée rationnelle s'écrit

$$t \mapsto X(t) = \left(\frac{Q_1(t)}{Q_0(t)}, \dots, \frac{Q_n(t)}{Q_0(t)}\right)$$

où les Q_i sont des polynômes en t. Alors X est la projection centrale de la courbe polynômiale

$$t \mapsto X(t) = (Q_0(t), \dots, Q_n(t)) \in \mathbf{R}^{n+1}.$$

1.2 Transformations projectives

Par définition, une transformation projective de \mathbb{R}^n est une application f définie sur \mathbb{R}^n (éventuellement privé d'un hyperplan affine) telle qu'il existe une matrice carrée inversible A de taille n+1 telle que f(P) soit la projection centrale de A(1,P).

Les bijections affines de \mathbf{R}^n sont des transformations projectives particulières (prendre pour A une matrice dont la première ligne est $(1,0,\ldots,0)$). Ce sont exactement les transformations projectives définies sur \mathbf{R}^n entier.

Les transformations projectives du plan préservent les côniques.

Il y a beaucoup de transformations projectives. Etant donnés deux quadrilatères plans non dégénérés (pas de côtés alignés), il existe une et une seule transformation projective du plan envoyant l'un sur l'autre.

2 B-splines rationnelles

Définition 2.1 Soit \mathbf{t} un vecteur de noeuds, soit \mathbf{P} un polygone de contrôle dans \mathbf{R}^n et w_i des poids (weights) attachés à chaque point de contrôle P_i . On suppose que les poids ne sont pas tous nuls. La courbe B-spline rationnelle (NURBS) de degré k associée à ces données est la courbe paramétrée par

$$t \mapsto X(t) = \frac{\sum_{i} w_i B_{i,k}(t) P_i}{\sum_{i} w_i B_{i,k}(t)}.$$

Lorsque le vecteur de noeuds prend la forme spéciale $(0,0,\ldots,0,1,1,\ldots,1)$, on parle de courbe de Bézier rationnelle.

Autrement dit, la courbe B-spline rationnelle est la projection centrale de la courbe B-spline dans \mathbf{R}^{n+1} associée au vecteur de noeuds \mathbf{t} et aux points de contrôle $R_i = (w_i, w_i P_i) \in \mathbf{R}^{n+1}$. Noter que le polygone de contrôle \mathbf{P} est la projection centrale du polygone \mathbf{R} . D'autre part, multiplier tous les poids par une même constante non nulle ne change rien.

Exemple. Le quart de cercle unité comme courbe de Bézier rationnelle quadratique.

On pose $P_0 = (1,0)$, $P_1 = (1,1)$ et $P_2 = (0,1)$, $w_0 = w_1 = 1$, $w_2 = 2$. On choisit comme vecteur de noeuds (0,0,0,1,1,1). Alors la courbe de Bézier rationnelle de degré 2 obtenue est donnée pour $t \in [0,1]$ par

$$t\mapsto c(t)=(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}).$$

Son image est exactement un quart du cercle unité.

Exercice 2 Soit a un réel. Trouver des poids w_0 , w_1 et w_2 de sorte que la courbe de Bézier rationnelle de degré 2 associée au polygone de contrôle $P_0 = (1,1)$, $P_1 = (0,1)$, $P_2 = (-1,1)$ et à ces poids soit le quart de cercle paramétré par

$$t \mapsto c(\frac{t}{at+1-a}).$$

Exercice 3 Vérifier que la courbe B-spline rationnelle de degré 2 associée au polygone de contrôle $P_0=(1,1),\ P_1=(0,1),\ P_2=(-1,1),\ P_3=(-1,0),\ P_4=(-1,-1),\ P_5=(0,-1),\ P_6=(1,-1),\ P_7=(1,0)$ et $P_{i+8}=P_i$, aux poids $w_{2j+1}=1,\ w_{2j}=\frac{1}{\sqrt{2}}$ et au vecteur de noeuds $t_{2j}=t_{2j+1}=j$ est une paramétrisation périodique de période 4 du cercle unité.

2.1 Propriétés des courbes B-splines rationnelles

Elles se déduisent immédiatement des propriétés des courbes B-splines et de celles de la projection centrale.

Proposition 2.2 Soit \mathbf{t} un vecteur de noeuds, \mathbf{P} un polygone de contrôle et \mathbf{w} un vecteur de poids non nul. La courbe B-spline rationnelle X_k de degré k associée à ces données a les propriétés suivantes.

- 1. Sur chaque intervalle $[t_i, t_{i+1}]$, les coordonnées de X sont des fractions rationnelles de degré k (i.e. quotients de deux polynômes de degré k).
- 2. En un noeud de multiplicité r, la courbe X est de classe C^{k-r} .
- 3. Si le vecteur de noeuds, le polygone de contrôle et le vecteur de poids sont périodiques, alors la courbe est périodique.
- 4. Si $t_0 = t_1 = \ldots = t_k < t_{k+1}$ est un noeud de multiplicité k+1, et si les poids w_0 et w_1 sont non nuls, alors la courbe X_k est tangente en P_0 au polygone de contrôle.
- 5. Supposons le vecteur de noeud simple. Si k=2, la courbe X_2 est tangente à chaque côté du polygone de contrôle. Si k=3 et si trois sommets successifs de ${\bf P}$ sont sur une même droite D, celle-ci est tangente à la courbe X_3 .
- 6. Si $t \in [t_i, t_{i+1}[$, le point $X_k(t)$ ne dépend que les points de contrôle $P_{i-k}, P_{i-k+1}, \ldots, P_i$ et des poids $w_{i-k}, w_{i-k+1}, \ldots, w_i$. Si de plus les poids sont tous positifs ou nuls, $X_k(t)$ est dans l'enveloppe convexe des points $P_{i-k}, P_{i-k+1}, \ldots, P_i$.
- 7. Si H est un hyperplan affine de \mathbb{R}^n , alors

$$\#(X_k([t_k, t_m]) \cap H \leq \#\mathbf{P} \cap H.$$

En particulier, si le polygone **P** est convexe, la courbe $X_k([t_k, t_m])$ est convexe.

8. Soit f une transformation projective. Alors f(X) est une courbe B-spline rationnelle associée au vecteur de noeuds \mathbf{t} , au polygone de contrôle $f(\mathbf{P})$ et à un nouveau vecteur de poids \mathbf{w}' .

Exercice 4 On fixe $s \in \mathbf{R}$. Déterminer le point P_1 et les poids w_0 , w_1 , et w_2 de sorte que la courbe de Bézier rationnelle de degré 2 associée au polygone de contrôle $P_0 = (1,1)$, $w_0 = ?$, $P_1 = ?$, $w_1 = ?$, $P_2 = (\frac{1-s^2}{1+s^2}, \frac{2s}{1+s^2})$, $w_2 = ?$, soit le secteur circulaire paramétré par

$$t \mapsto (\frac{1 - s^2 t^2}{1 + s^2 t^2}, \frac{2st}{1 + s^2 t^2}).$$

Même question pour la paramétrisation du secteur opposé,

$$t \mapsto (\frac{(2t-1)^2 - s^2t^2}{(2t-1)^2 + s^2t^2}, \frac{2st(2t-1)}{(2t-1)^2 + s^2t^2}).$$

Exercice 5 Montrer que toute courbe de Bézier rationnelle de degré 2 est contenue dans une cônique.

2.2 Dérivées, courbure

Les formules pour les dérivées successives d'une courbe B-spline rationnelle se déduisent de celles relatives aux courbes B-splines. On n'énonce que le cas particulier des dérivées aux extrémités.

Proposition 2.3 Soit t un vecteur de noeuds, P un polygone de contrôle et w un vecteur de poids non nul. Soit $k \geq 2$. On note X_k la courbe B-spline rationnelle de degré k associée à ces données. Supposons que $t_0 = t_1 = \ldots = t_k < t_{k+1}$ et que $P_0 \neq P_1$. Alors $X_k(t_k) = P_0$,

$$X'_k(t_k) = \frac{k}{t_{k+1} - t_k} \frac{w_1}{w_0} (P_1 - P_0),$$

$$X_k'(t_k) \wedge X_k''(t_k) = \frac{k^2(k-1)}{(t_{k+1} - t_k)^2(t_{k+2} - t_k)} \frac{w_1 w_2}{w_0^2} (P_1 - P_0) \wedge (P_2 - P_0)$$

et si w_0 et w_1 sont non nuls, la courbure au point P_0 vaut

$$\kappa = \frac{k-1}{k} \frac{t_{k+1} - t_k}{t_{k+2} - t_k} \frac{w_1 w_2}{w_0^2} \frac{2A}{c^3}$$

où A est l'aire (algébrique pour une courbe tracée dans un plan orienté) du triangle $P_0P_1P_2$ et c la longueur du côté P_0P_1 .

Supposons que $k \geq 3$, que w_0 , w_1 et κ sont non nuls. Alors la torsion de la courbe en P_0 vaut

$$\theta = \frac{k-2}{k} \frac{t_{k+1} - t_k}{t_{k+3} - t_k} \frac{w_0 w_3}{w_1 w_2} \frac{3V}{2A^2}$$

où V est le volume du simplexe de sommets P_0 , P_1 , P_2 et P_3 .

Il y a un énoncé correspondant à l'autre extrémité t_m : remplacer t_i par t_{m-i} , w_i par $w_{m-k-1-i}$ et P_i par $P_{m-k-1-i}$.

Preuve. Comme tout est invariant par translation, on peut supposer que $P_0 = 0$, de sorte que $X(t_0) = P_0 = 0$. Si X est la projection centrale d'une courbe Y, alors

$$Y = (x_0, x_0 X), \quad Y' = (x'_0, x'_0 X + x_0 X').$$

Par conséquent $w_0 X'_k(t_0) = Z(t_0)$ où Z est la courbe B-spline de degré k de points de contrôle les $w_i P_i$. La proposition ?? donne

$$Z'(t_0) = \frac{k}{t_{k+1} - t_0} (w_1 P_1 - w_0 P_0)$$

donc

$$X'_k(t_0) = \frac{k}{t_{k+1} - t_0} \frac{w_1}{w_0} P_1.$$

On dérive une seconde fois.

$$Y'' = (x_0'', x_0''X + 2x_0'X' + x_0X'')$$

donne

$$w_0^2 X_k'(t_0) \wedge X_k''(t_0) = (x_0' X + x_0 X') \wedge (x_0'' X + 2x_0' X' + x_0 X'') = Z'(t_0) \wedge Z''(t_0)$$

On utilise à nouveau la proposition ?? (voir aussi la preuve de la proposition ??). Comme on a supposé que $P_0 = 0$,

$$Z'(t_0) \wedge Z''(t_0) = \frac{k^2(k-1)}{(t_{k+1} - t_0)^2(t_{k+2} - t_0)} w_1 P_1 \wedge w_2 P_2$$

et enfin

$$X_k'(t_0) \wedge X_k''(t_0) = \frac{k^2(k-1)}{(t_{k+1} - t_k)^2(t_{k+2} - t_k)} \frac{w_1 w_2}{w_0^2} P_1 \wedge P_2.$$

Supposons que $k \geq 3$. On dérive une troisième fois

$$Y''' = (x_0''', x_0'''X + 3x_0'X' + 3x_0'X'' + x_0X''')$$

donne

$$\begin{split} w_0^3 \det(X_k'(t_0), X_k''(t_0), X_k'''(t_0)) &= \det(x_0'X + x_0 X', x_0''X + 2x_0'X' + x_0 X'', \\ & x_0'''X + 3x_0'X' + 3x_0'X'' + x_0 X''') \\ &= \det(Z'(t_0), Z''(t_0), Z'''(t_0)) \\ &= \frac{k^3 (k-1)^2 (k-2)}{(t_{k+1} - t_0)^3 (t_{k+2} - t_0)^2 (t_{k+3} - t_0)} \det(w_1 P_1, w_2 P_2, w_3 P_3) \end{split}$$

soit

$$\det(X_k'(t_0), X_k''(t_0), X_k'''(t_0)) = \frac{k^3(k-1)^2(k-2)}{(t_{k+1} - t_0)^3(t_{k+2} - t_0)^2(t_{k+3} - t_0)} \frac{w_1 w_2 w_3}{w_0^3} 6V.$$

et on conclut avec la formule

$$\theta = \frac{\det(X', X'', X''')}{\|X' \wedge X''\|^2}. \blacksquare$$

Corollaire 2.4 Soit $k \geq 2$. Soient \mathbf{t} et $\bar{\mathbf{t}}$ deux vecteurs de noeuds tels que t_0 (resp. \bar{t}_m) soit de multiplicité k+1. Soient \mathbf{P} et $\bar{\mathbf{P}}$ deux polygones de contrôle dont le premier côté est de longueur non nulle. Soient \mathbf{w} et $\bar{\mathbf{w}}$ deux vecteurs de poids tels que w_0 , w_1 , \bar{w}_{m-k-2} et \bar{w}_{m-k-1} sont non nuls. On note X_k et \bar{X}_k les courbes B-splines rationnelles de degré k associée à ces données. Notons γ la courbe obtenue en mettant ces deux NURBS bout à bout. Alors

- La courbe γ est de classe G^0 si et seulement si $P_0 = \bar{P}_{m-k-1}$;
- γ est de classe G^1 si et seulement si $P_0 = \bar{P}_{m-k-1}$ et les points \bar{P}_{m-k-2} , P_0 et P_1 sont alignés dans cet ordre sur une droite D;
- γ est de classe G^2 si et seulement si $P_0 = \bar{P}_{m-k-1}$, les points \bar{P}_{m-k-2} , P_0 et P_1 sont alignés dans cet ordre sur une droite D, les points \bar{P}_{m-k-3} , P_2 et la droite D sont dans un même plan π et l'équation

$$\frac{t_{k+2} - t_k}{t_{k+1} - t_k} \frac{w_1 w_2}{w_0^2} \frac{A}{c^3} = \frac{\bar{t}_m - \bar{t}_{m-k-2}}{\bar{t}_m - \bar{t}_{m-k-1}} \frac{\bar{w}_{m-k-3} \bar{w}_{m-k-2}}{\bar{w}_{m-k-1}^2} \frac{\bar{A}}{\bar{c}^3}$$

est satisfaite, où A (resp. \bar{A}) est l'aire algébrique du triangle

$$P_0 P_1 P_2$$
 (resp. $\bar{P}_{m-k-3} \bar{P}_{m-k-2} \bar{P}_{m-k-1}$)

dans le plan π et c (resp. \bar{c}) la longueur du côté P_0P_1 (resp. $\bar{P}_{m-k-2}\bar{P}_{m-k-1}$).

Preuve. On combine la proposition 2.3 avec le théorème 5 du cours sur la courbure des courbes. L'hypothèse de coplanarité garantit que les NURBS ont la même normale en P_0 . L'équation comporte une égalité de signes. Elle entraı̂ne d'une part l'égalité des courbures, et d'autre part le fait que les normales orientées coı̈ncident. \blacksquare

Remarque. De la même façon, on peut écrire la condition de raccord G^3 , en dimension 2 ou bien en dimension 3 lorsque P_0 n'est pas un point d'inflexion. La condition d'égalité des dérivées de courbure est plutôt compliquée.

Remarque. Etant donnés deux polygones de contrôle satisfaisant aux conditions d'alignement et de coplanarité du corollaire 2.4, il est toujours possible d'ajuster les poids pour compléter la continuïté G^2 .

Exemple. Partons de la courbe en bosse de l'exercice 11 du chapitre sur les B-splines. Tâchons de la raccorder à une droite horizontale en gardant le même polygone de contrôle et le même vecteurs de noeuds. Il suffit d'annuler la courbure, par exemple en introduisant les poids $w_2 = 0$, $w_0 = w_1 = w_3 = w_4 = 1$. La courbe obtenue est un segment de droite. Pour raccorder la courbe en bosse au cercle de rayon 1 de tangente horizontale en (-2,0), situé au-dessus de la courbe en bosse, il suffit de rendre la courbure égale à 1. Or la courbure vaut initialement $2/3(2-a)^2$. On pose $w_0 = w_4 = 1$, $w_1 = w_2 = w_3 = 6 - 3a$. Pour raccorder la courbe en bosse à l'autre cercle de rayon 1 de tangente horizontale en (-2,0), il suffit de changer un signe, par exemple celui de w_2 .

Exercice 6 Sans changer de polygone de contrôle, peut on déformer la courbe de Bézier cubique de l'exercice 5 du chapitre sur les B-splines en une courbe de Bezier cubique rationnelle γ telle qu'en raccordant γ à sa translatée de vecteur (2,0), on obtienne une courbe de classe G^2 ?

2.3 Effet des poids

On se limite au cas où les poids sont positifs ou nuls. Clairement, si on décrit un point Q de \mathbb{R}^n comme barycentre de points P_i avec poids positifs ou nuls w_i , lorsque le rapport $w_i / \sum w_i$ tend vers l'infini, le point Q se rapproche de P_i . Par conséquent, augmenter le poids d'un point de contrôle rapproche la courbe de ce point. On trouvera des figures illustrant ce phénomène dans le livre [HL].

2.4 Généralisation

Soient Q_0, \ldots, Q_m des points de \mathbf{R}^n . Considérons la courbe paramétrée

$$t \mapsto X(t) = \frac{\sum_{i} B_{i,k}(t) Q_i}{\sum_{i} B_{i,k}(t)}.$$

Si les poids w_i sont tous non nuls, alors X est la courbe B-spline rationnelle associée aux points de contrôle $P_i = w_i^{-1}Q_i$. Si on autorise que certains poids soient nuls, on obtient une classe plus large de courbes. Partant d'une vraie NURBS ($w_i \neq 0$), faisons tendre certains poids (mais pas tous) vers 0. Les points P_i correspondant tendent vers l'infini dans la direction Q_i . Autrement dit, les Q_i tels que $w_i = 0$ doivent être considérés comme des vecteurs indiquant qu'un point de contrôle P_i est parti à l'infini. Ce point de vue est développé dans le livre [N] de G. Farin.

References

- [F] G. FARIN, Curves and surfaces for computer aided geometric design, a practical guide. 2nd ed. Academic Press. Boston, Mass. (1990).
- [N] G. FARIN, NURBS. From projective geometry to practical use. 2nd ed. A. K. Peters, Wellesley, Mass. (1999).
- [HL] J. HOSCHEK, D. LASSER,

Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart (1989). English translation: Fundamentals of computer aided geometric design. A. K. Peters, Wellesley, Mass. (1993).

- [K] R. KRESS, Numerical Analysis. Graduate Texts in Math. 181. Springer, Heidelberg (1998).
- [R] J.-J. RISLER, Méthodes mathématiques pour la CAO. Masson, Paris (1991).