It is assumed that all modeled domains have homogeneous material properties. The applied quantities of average electrical conductivity and relative dielectric permittivity for different tissues are shown in Table 1.

Table 1: Average conductivity and relative permittivity for various tissues [9]

Tissue	σ	$arepsilon_r^*$
	(S/m)	$\varepsilon_r = \varepsilon_r^* \times c_\varepsilon$
Scalp skin	0.465	1.2
Skull bone	0.010	0.8
CSF	1.654	0.6
Grey matter	0.274	1.2
White matter	0.126	1.2

The scaling parameter c_{ε} in the definition of relative electrical permittivity (Table 1) is equal to 10^2 , 10^4 , and 10^7 , respectively [9].

In the air region, the electrical conductivity is equal to $\sigma_{\rm air} = 0$ and the relative dielectric permittivity is $\varepsilon_r = 1$.

A cross-section (x > 0) of the 3D mesh used in TMS simulations is shown in Fig. 7.

Fig. 7: Cross-section view of the 3D mesh used in TMS simulations (for x > 0). Complete mesh consists of 1549185 domain elements (tetrahedral elements of the second order), 131156 boundary elements. The color range depicts a measure of the quality of the mesh elements represented by the element skewness.