

ALGORITMO DE EUCLIDES

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 04) 12.JULIO.2022

Propiedades (Propiedades MDC y MMC)

Sean $a, b, c \in \mathbb{N}$. Entonces

- 1. $(a,b) = a \Leftrightarrow [a,b] = b \Leftrightarrow a \mid b$.
- **2.** (ca, cb) = c(a, b) y [ca, cb] = c[a, b].
- 3. (a,b) = (b,a) y [a,b] = [b,a].
- **4.** ((a,b),c)=(a,(b,c)) y [[a,b],c]=[a,[b,c]].
- 5. [(a,c),(b,c)] = ([a,b],c).
- 6. ([a,c],[b,c]) = [(a,b),c].
- 7. (a,b)[a,b] = ab.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

Prueba: Sea $S = \{xa + yb; x, y \in \mathbb{Z}, xa + yb > 0\}$.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

<u>Prueba</u>: Sea $S = \{xa + yb; \ x, y \in \mathbb{Z}, \ xa + yb > 0\}$. Observe que $a = 1 \cdot a + 0 \cdot b, b = 0 \cdot a + 1 \cdot b \in S$, de forma que S es no vacío.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

<u>Prueba</u>: Sea $S = \{xa + yb; x, y \in \mathbb{Z}, xa + yb > 0\}$. Observe que $a = 1 \cdot a + 0 \cdot b, b = 0 \cdot a + 1 \cdot b \in S$, de forma que S es no vacío. Por el principio del buen orden, S posee un elemento mínimo d > 0. En particular, d = Ma + Nb para algunos $M, N \in \mathbb{Z}$. Si aplicamos el algoritmo de la división, con d dividiendo a, existe $q \in Z$ tal que

$$a = qd + r$$
, $o \le r < d$.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

<u>Prueba</u>: Sea $S = \{xa + yb; x, y \in \mathbb{Z}, xa + yb > 0\}$. Observe que $a = 1 \cdot a + 0 \cdot b, b = 0 \cdot a + 1 \cdot b \in S$, de forma que S es no vacío. Por el principio del buen orden, S posee un elemento mínimo d > 0. En particular, d = Ma + Nb para algunos $M, N \in \mathbb{Z}$. Si aplicamos el algoritmo de la división, con d dividiendo a, existe $q \in Z$ tal que

$$a = qd + r$$
, $o \le r < d$.

Si r > 0, entonces r = a - qd = a - (Ma + Nb) = (1 - M)a - Nb sería elemento de S, lo que contradice la elección minimal de r en S. De ahí que r = 0. Portanto, $d \mid a$.

Lema (Teorema de Bézout)

Para todo $a, b \in \mathbb{Z}$, existen $M, N \in \mathbb{Z}$ tales que (a, b) = Ma + Nb.

<u>Prueba</u>: Sea $S = \{xa + yb; x, y \in \mathbb{Z}, xa + yb > 0\}$. Observe que $a = 1 \cdot a + 0 \cdot b, b = 0 \cdot a + 1 \cdot b \in S$, de forma que S es no vacío. Por el principio del buen orden, S posee un elemento mínimo d > 0. En particular, d = Ma + Nb para algunos $M, N \in \mathbb{Z}$. Si aplicamos el algoritmo de la división, con d dividiendo a, existe $q \in Z$ tal que

$$a = qd + r$$
, $o \le r < d$.

Si r > 0, entonces r = a - qd = a - (Ma + Nb) = (1 - M)a - Nb sería elemento de S, lo que contradice la elección minimal de r en S. De ahí que r = 0. Portanto, $d \mid a$.

Repitiendo el argumento anterior del algoritmo de la división pero ahora con d dividiendo b, se concluye también que $d \mid b$.

Así, d es un divisor común de a y b.

Así, d es un divisor común de a y b. Si c es otro divisor común de a y b, entonces $c \mid a, c \mid b \mid c \mid Ma + Nb = d$. Portanto d = (a, b), y hemos establecido que existen $M, N \in \mathbb{Z}$ tales que

$$d = (a, b) = Ma + Nb.$$

Así, d es un divisor común de a y b. Si c es otro divisor común de a y b, entonces $c \mid a, c \mid b \mid c \mid Ma + Nb = d$. Portanto d = (a, b), y hemos establecido que existen $M, N \in \mathbb{Z}$ tales que

$$d = (a, b) = Ma + Nb.$$

Definición

Dos enteros a y b se llaman **primos relativos** o **coprimos** si no tienen factores en común (aparte de 1). Esto es, si (a,b) = 1.

Así, d es un divisor común de a y b.

Si c es otro divisor común de a y b, entonces $c \mid a$, $c \mid b \mid c \mid Ma + Nb = d$. Portanto d = (a, b), y hemos establecido que existen $M, N \in \mathbb{Z}$ tales que

$$d = (a, b) = Ma + Nb.$$

Definición

Dos enteros a y b se llaman **primos relativos** o **coprimos** si no tienen factores en común (aparte de 1). Esto es, si (a,b) = 1.

Corolario

a y b son primos relativos. si y sólo si, existen $M, N \in \mathbb{Z}$ tales que Ma + Nb = 1. \square \underline{Prueba} : (\Rightarrow) a, b primos relativos, \Rightarrow existen $M, N \in \mathbb{Z}$ con 1 = (a, b) = Ma + Nb. (\Leftarrow) Si $d \mid a$ y $d \mid b$, entonces $d \mid Ma + Nb = 1$. Luego, |d| = 1.

Corolario

- a) Si $a \mid c, b \mid c \ y \ (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

Corolario

- a) Si $a \mid c$, $b \mid c$ y (a, b) = 1, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1.

Corolario

- a) Si $a \mid c, b \mid c y (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1. Luego xac + ybc = c.

Corolario

- a) Si $a \mid c, b \mid c \ y \ (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1. Luego xac + ybc = c. Ahora $b \mid c \Rightarrow ab \mid ac \mid xac$

Corolario

- a) Si $a \mid c, b \mid c y (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1. Luego xac + ybc = c.

Ahora $b \mid c \Rightarrow ab \mid ac \mid xac y a \mid c \Rightarrow ab \mid bc \mid ybc$.

Corolario

- a) Si $a \mid c, b \mid c y (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a,b)=1, por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c.

Ahora $b \mid c \Rightarrow ab \mid ac \mid xac \ y \ a \mid c \Rightarrow ab \mid bc \mid ybc$. De ahí que $ab \mid xac + ybc = c$.

Corolario

- a) Si $a \mid c, b \mid c \ y \ (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1. Luego xac + ybc = c.

Ahora $b \mid c \Rightarrow ab \mid ac \mid xac \ y \ a \mid c \Rightarrow ab \mid bc \mid ybc$. De ahí que $ab \mid xac + ybc = c$.

(b) Como (a,b)=1, de nuevo por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1.

Corolario

- a) Si $a \mid c, b \mid c y (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a,b)=1, por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c. Ahora $b\mid c \Rightarrow ab\mid ac\mid xac\mid ac\mid ab\mid bc\mid ybc$. De ahí que

 $ab \mid xac + ybc = c$.

(b) Como (a,b)=1, de nuevo por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c.

Corolario

- a) Si $a \mid c, b \mid c y (a, b) = 1$, entonces $ab \mid c$.
- b) (Lema de EUCLIDES) Si $a \mid bc \ y \ (a,b) = 1$, entonces $a \mid c$.

<u>Prueba</u>: (a) Como (a, b) = 1, por el Teorema de Bézout, existen $x, y \in \mathbb{Z}$ tales que xa + yb = 1. Luego xac + ybc = c.

Ahora $b \mid c \Rightarrow ab \mid ac \mid xac \ y \ a \mid c \Rightarrow ab \mid bc \mid ybc$. De ahı que $ab \mid xac + ybc = c$.

(b) Como (a,b)=1, de nuevo por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=1. Luego xac+ybc=c.

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

Prueba: Sea d = (a, b).

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=d.

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=d. Dividiendo la ecuación anterior entre d, escribimos

$$x\left(\frac{a}{d}\right)+y\left(\frac{b}{d}\right)=1.$$

Corolario

Si d = (a, b), entonces $(\frac{a}{d}, \frac{b}{d}) = 1$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $x,y\in\mathbb{Z}$ tales que xa+yb=d. Dividiendo la ecuación anterior entre d, escribimos

$$x\left(\frac{a}{d}\right)+y\left(\frac{b}{d}\right)=1.$$

Como $x,y\in\mathbb{Z}$, por el corolario al Teorema de Bézout a esta última ecuación, entonces $\frac{a}{d}$ y $\frac{b}{d}$ son primos relativos, y $\left(\frac{a}{d},\frac{b}{d}\right)=1$. \Box

Nota Aclaratoria! El Lema de Bézout **no es** un si y sólo si. De hecho más adelante vamos a probar que los enteros n que admiten representación en la forma n = xa + yb son precisamente los múltiplos de d = (a, b).

Sin embargo, vale un si y sólo sí, cuando se tiene xa + yb = 1. La única forma que 1 sea combinación lineal de a y b es cuando son coprimos.

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

Prop: a,b=ab, para $a,b\in\mathbb{N}$.

Prueba: Sea d = (a, b).

Prop: a,b=ab, para $a,b\in\mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = \left(\frac{a}{d}\right)b = a\left(\frac{b}{d}\right)$, sabemos que m es un múltiplo común de a y de b.

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = \left(\frac{a}{d}\right)b = a\left(\frac{b}{d}\right)$, sabemos que m es un múltiplo común de a y de b.

$$\frac{n}{m} = \frac{n}{ab/a}$$

Prop: a,b=ab, para $a,b\in\mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab}$$

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab}$$

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab} = n\left(\frac{M}{b} + \frac{N}{a}\right)$$

Prop: a,b=ab, para $a,b\in\mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab} = n\left(\frac{M}{b} + \frac{N}{a}\right) = \frac{n}{b}M + \frac{n}{a}N \in \mathbb{Z}.$$

MDC y MMC

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

Suponga que n es otro múltiplo común de a y de b. Mostramos que $n \mid m$. En efecto,

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab} = n\left(\frac{M}{b} + \frac{N}{a}\right) = \frac{n}{b}M + \frac{n}{a}N \in \mathbb{Z}.$$

Portanto, $m \mid n$, y entonces m = [a, b] es el mínimo múltiplo común.

MDC y MMC

Prop: a,b = ab, para $a,b \in \mathbb{N}$.

<u>Prueba</u>: Sea d=(a,b). Por el Teorema de Bézout, existen $M,N\in\mathbb{Z}$ tales que Ma+Nb=d.

Por otro lado, $d \mid ab$. Sea entonces $m = \frac{ab}{d} \in \mathbb{N}$. Como $m = (\frac{a}{d})b = a(\frac{b}{d})$, sabemos que m es un múltiplo común de a y de b.

Suponga que n es otro múltiplo común de a y de b. Mostramos que $n \mid m$. En efecto,

$$\frac{n}{m} = \frac{n}{ab/d} = \frac{nd}{ab} = \frac{n(Ma + Nb)}{ab} = n\left(\frac{M}{b} + \frac{N}{a}\right) = \frac{n}{b}M + \frac{n}{a}N \in \mathbb{Z}.$$

Portanto, $m \mid n$, y entonces m = [a, b] es el mínimo múltiplo común. Se concluye que ab = md = a, b.

Ejemplo: Calcular el MDC y MMC de 360 y 84.

Ejemplo: Calcular el MDC y MMC de 360 y 84.

Solución: Factoramos los números 360 y 84 (en factores primos):

Los divisores coumnes para 360 y 84 son 2, 2, 3. Entonces $(360, 84) = 2^2 \cdot 3 = 12$. Por otro lado, $[360, 84] = 2^3 \cdot 3^2 \cdot 5 \cdot 7 = 2520$.

Lema

Para $a, b \in \mathbb{Z}$, (a, b) = (a - b, b) = (a, b - a).

Lema

Para $a, b \in \mathbb{Z}$, (a, b) = (a - b, b) = (a, b - a).

<u>Prueba</u>: Mostramos (a, b) = (a - b, b). La otra igualdad es análoga.

Lema

Para $a, b \in \mathbb{Z}$, (a, b) = (a - b, b) = (a, b - a).

<u>Prueba</u>: Mostramos (a, b) = (a - b, b). La otra igualdad es análoga.

Sean d=(a,b), c=(a-b,b). Entonces $d\mid a$, $d\mid b \Rightarrow d\mid a-b$.

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a, b) = (a - b, b). La otra igualdad es análoga. Sean d = (a, b), c = (a - b, b). Entonces $d \mid a, d \mid b \Rightarrow d \mid a - b$. Luego, $d \mid c$.

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a,b)=(a-b,b). La otra igualdad es análoga. Sean d=(a,b), c=(a-b,b). Entonces $d\mid a$, $d\mid b\Rightarrow d\mid a-b$. Luego, $d\mid c$.

Ahora, $c \mid a - b$, $c \mid b \Rightarrow c \mid (a - b) + b = a$.

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a,b)=(a-b,b). La otra igualdad es análoga. Sean d=(a,b), c=(a-b,b). Entonces $d\mid a$, $d\mid b\Rightarrow d\mid a-b$. Luego, $d\mid c$.

Ahora, $c \mid a-b$, $c \mid b \Rightarrow c \mid (a-b)+b=a$. De ahí, $c \mid d$. Esto muestra que d=c. \Box

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a,b)=(a-b,b). La otra igualdad es análoga. Sean d=(a,b), c=(a-b,b). Entonces $d\mid a$, $d\mid b\Rightarrow d\mid a-b$. Luego, $d\mid c$.

Ahora, $c \mid a-b$, $c \mid b \Rightarrow c \mid (a-b)+b=a$. De ahí, $c \mid d$. Esto muestra que d=c. \Box

Lema

Para todo $a \in \mathbb{Z}$, (a, o) = |a|.

Lema

Para
$$a, b \in \mathbb{Z}$$
, $(a, b) = (a - b, b) = (a, b - a)$.

<u>Prueba</u>: Mostramos (a,b)=(a-b,b). La otra igualdad es análoga. Sean d=(a,b), c=(a-b,b). Entonces $d\mid a$, $d\mid b\Rightarrow d\mid a-b$. Luego, $d\mid c$.

Ahora, $c \mid a-b$, $c \mid b \Rightarrow c \mid (a-b)+b=a$. De ahí, $c \mid d$. Esto muestra que d=c. \Box

Lema

Para todo $a \in \mathbb{Z}$, (a, o) = |a|.

<u>Prueba</u>: $a \mid o \ y \ a \mid a \Rightarrow a \mid (a, o)$. Por otro lado, $(a, o) \mid a$. luego, por antisimetría, (a, o) = |a|.

Esto ya nos da un primer algoritmo para calcular (a, b):

Esto ya nos da un primer algoritmo para calcular (a, b):

```
Algoritmo 1: (Cálculo del MDC por restas).
def mdc(a, b):
   if (b > a):
     return mdc(b,a)
   if (b == 0):
     return a
   else:
     return mdc(a-b.a)
```

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Si
$$a = qb + r$$
, entonces $(a, b) = (b, r)$.

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Lema (Euclides)

Si
$$a = qb + r$$
, entonces $(a, b) = (b, r)$.

Prueba: Sean d = (a, b) y f = (b, r).

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Lema (Euclides)

Si a = qb + r, entonces (a, b) = (b, r).

Prueba: Sean d = (a, b) y f = (b, r).

Como $d \mid a \vee d \mid b$, entonces $d \mid a - qb = r$. Luego $d \mid (b, r) = f$.

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Lema (Euclides)

Si
$$a = qb + r$$
, entonces $(a, b) = (b, r)$.

Prueba: Sean
$$d = (a, b)$$
 y $f = (b, r)$.

Como
$$d \mid a \vee d \mid b$$
, entonces $d \mid a - qb = r$. Luego $d \mid (b, r) = f$.

Como
$$f \mid b$$
 y $f \mid r$, entonces $f \mid qb - r = a$. Luego $f \mid (a, b) = d$.

Emplea el algoritmo de la división como base. Conocido por los griegos (publicado por EUCLIDES).

Lema (Euclides)

Si
$$a = qb + r$$
, entonces $(a, b) = (b, r)$.

Prueba: Sean d = (a, b) y f = (b, r).

Como $d \mid a \vee d \mid b$, entonces $d \mid a - qb = r$. Luego $d \mid (b, r) = f$.

Como $f \mid b$ y $f \mid r$, entonces $f \mid qb - r = a$. Luego $f \mid (a, b) = d$.

Por antisimetría, $d \mid f$ y $f \mid d \Rightarrow (a,b) = d = f = (b,r)$.

El Algoritmo de Euclides se basa en el hecho que en la división a = qb + r, podemos descartar el dividendo y calcular (a, b) como (b, r).

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a, b \in \mathbb{Z}$ cuyo máximo común (a, b) divisor se desea calcular.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a, b \in \mathbb{Z}$ cuyo máximo común (a, b) divisor se desea calcular. Como (|a|, |b|) = (a, b), podemos suponer que a > b > 0.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1b + r_1$$
, con $0 \le r_1 < b$.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1b + r_1$$
, con $0 \le r_1 < b$.

Si $r_1 = 0$, entonces $b \mid a y (a, b) = b$.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1 b + r_1$$
, con $0 \le r_1 < b$.

Si $r_1 = 0$, entonces $b \mid a$ y (a, b) = b. Cuando $r_1 \neq 0$, dividimos b por r_1 para producir enteros q_2 , r_2 tales que

$$b = q_2 r_1 + r_2$$
, con $0 \le r_2 < r_1$.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1 b + r_1$$
, con $0 \le r_1 < b$.

Si $r_1 = 0$, entonces $b \mid a$ y (a, b) = b. Cuando $r_1 \neq 0$, dividimos b por r_1 para producir enteros q_2 , r_2 tales que

$$b = q_2 r_1 + r_2,$$
 con $0 \le r_2 < r_1.$

Si $r_2 = o$, entonces $r_1 \mid b$ y $(b, r_1) = r_1$, y nos detenemos.

El algoritmo euclidiano se puede describir de la siguiente manera: sean $a,b\in\mathbb{Z}$ cuyo máximo común (a,b) divisor se desea calcular. Como (|a|,|b|)=(a,b), podemos suponer que a>b> o. El primer paso es aplicar el Algoritmo de la División, para obtener

$$a = q_1 b + r_1$$
, con o $\leq r_1 < b$.

Si $r_1 = 0$, entonces $b \mid a$ y (a, b) = b. Cuando $r_1 \neq 0$, dividimos b por r_1 para producir enteros q_2 , r_2 tales que

$$b = q_2 r_1 + r_2,$$
 con $0 \le r_2 < r_1.$

Si $r_2 = 0$, entonces $r_1 \mid b$ y $(b, r_1) = r_1$, y nos detenemos. Caso contrario, $r_2 \neq 0$, continuamos este proceso y dividimos r_1 por r_2 para producir enteros q_3 , r_3 tales que

$$r_1 = q_3 r_2 + r_3,$$
 con $0 \le r_3 < r_2.$

Este proceso de división continúa hasta que aparece un residuo cero, digamos, en el paso n + l, donde r_{n-1} se divide por r_n .

Este proceso de división continúa hasta que aparece un residuo cero, digamos, en el paso n + l, donde r_{n-1} se divide por r_n .

El resultado es el siguiente sistema de ecuaciones:

$$a = q_{1}b + r_{1}, \quad 0 \le r_{1} < b$$

$$b = q_{2}r_{1} + r_{2}, \quad 0 \le r_{2} < r_{1}$$

$$r_{1} = q_{3}r_{2} + r_{3}, \quad 0 \le r_{3} < r_{2}$$

$$...$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n}, \quad 0 \le r_{n} < r_{n-1}$$

$$r_{n-1} = q_{n+1}r_{n} + 0.$$
(1)

Este proceso de división continúa hasta que aparece un residuo cero, digamos, en el paso n + l, donde r_{n-1} se divide por r_n .

El resultado es el siguiente sistema de ecuaciones:

$$a = q_{1}b + r_{1}, \quad 0 \le r_{1} < b$$

$$b = q_{2}r_{1} + r_{2}, \quad 0 \le r_{2} < r_{1}$$

$$r_{1} = q_{3}r_{2} + r_{3}, \quad 0 \le r_{3} < r_{2}$$

$$...$$

$$r_{n-2} = q_{n}r_{n-1} + r_{n}, \quad 0 \le r_{n} < r_{n-1}$$

$$r_{n-1} = q_{n+1}r_{n} + 0.$$
(1)

Argumentamos que r_n , el último residuo distinto de cero que aparece de esta manera, es igual a (a,b).

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Por el Lema de Euclides, del sistema de ecuaciones (1), podemos concluir que

$$(a,b)=(b,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-1},r_n)=(r_n,0)=r_n.$$

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Por el Lema de Euclides, del sistema de ecuaciones (1), podemos concluir que

$$(a,b)=(b,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-1},r_n)=(r_n,o)=r_n.$$

Falta nada más garantizar un detalle. Que el sistema de ecuaciones (1) es posible.

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Por el Lema de Euclides, del sistema de ecuaciones (1), podemos concluir que

$$(a,b)=(b,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-1},r_n)=(r_n,o)=r_n.$$

Falta nada más garantizar un detalle. Que el sistema de ecuaciones (1) es posible. La construcción de las relaciones $r_{i-1}=q_{i+1}r_i+r_{i+1}$, $i=0,1,\ldots,n$, (aquí $r_{-1}=a,r_0=b$) está garantizada por el Algoritmo de la División.

Teorema (Algoritmo de Euclides)

En el sistema de ecuaciones (1), el máximo divisor común de a y b coincide con el último residuo diferente de cero. Esto es, $(a,b) = r_n$.

Prueba:

Por el Lema de Euclides, del sistema de ecuaciones (1), podemos concluir que

$$(a,b)=(b,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-1},r_n)=(r_n,o)=r_n.$$

Falta nada más garantizar un detalle. Que el sistema de ecuaciones (1) es posible. La construcción de las relaciones $r_{i-1}=q_{i+1}r_i+r_{i+1}$, $i=0,1,\ldots,n$, (aquí $r_{-1}=a,r_0=b$) está garantizada por el Algoritmo de la División.

Ademas, de la relación de los residuos o $\leq r_i < r_{i-1}$, i = 1, 2, ..., n,

se tiene que

$$0 = r_{n+1} < r_n < r_{n-1} < \ldots < r_1 < b.$$

se tiene que

$$0 = r_{n+1} < r_n < r_{n-1} < \ldots < r_1 < b.$$

Por lo tanto hay a lo sumo b ecuaciones en el sistema (1).

se tiene que

$$0 = r_{n+1} < r_n < r_{n-1} < \ldots < r_1 < b.$$

Por lo tanto hay a lo sumo *b* ecuaciones en el sistema (1). Esto garantiza que el Algoritmo de Euclides consiste a lo sumo de *b* pasos.

se tiene que

$$0 = r_{n+1} < r_n < r_{n-1} < \ldots < r_1 < b.$$

Por lo tanto hay a lo sumo b ecuaciones en el sistema (1). Esto garantiza que el Algoritmo de Euclides consiste a lo sumo de b pasos. En particular, es finito y termina. \Box

$$12378 = 4 \cdot 3054 + 162$$

$$12378 = 4 \cdot 3054 + 162$$
$$3054 = 18 \cdot 162 + 138$$

$$12378 = 4 \cdot 3054 + 162$$
$$3054 = 18 \cdot 162 + 138$$
$$162 = 1 \cdot 138 + 24$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

Ejemplo: Hallar (12378, 3054).

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

Luego, (12378, 3054) = 6.

Consecuencias:

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18)$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18) = 24 - 1(138 - 5 \cdot 24)$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18) = 24 - 1(138 - 5 \cdot 24) = 6(24) - 1(138)$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18) = 24 - 1(138 - 5 \cdot 24) = 6(24) - 1(138)$$

= $6(162 - 138) - 1(138) = 6(162) - 7(138)$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18) = 24 - 1(138 - 5 \cdot 24) = 6(24) - 1(138)$$

$$= 6(162 - 138) - 1(138) = 6(162) - 7(138)$$

$$= 6(162) - 7(3054 - 18 \cdot 162) = 132(162) - 7(3054)$$

$$12378 = 4 \cdot 3054 + 162$$

$$3054 = 18 \cdot 162 + 138$$

$$162 = 1 \cdot 138 + 24$$

$$138 = 5 \cdot 24 + 18$$

$$24 = 1 \cdot 18 + 6$$

$$18 = 3 \cdot 6 + 0$$

$$(12378, 3054) = 6 = 24 - 1(18) = 24 - 1(138 - 5 \cdot 24) = 6(24) - 1(138)$$

$$= 6(162 - 138) - 1(138) = 6(162) - 7(138)$$

$$= 6(162) - 7(3054 - 18 \cdot 162) = 132(162) - 7(3054)$$

$$= 132(12378 - 4 \cdot 3054) - 7(3054) = 132(12378) + (-535)(3054).$$

El algoritmo de Euclides puede escribirse en forma matricial.

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

$$= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_2 \\ r_3 \end{pmatrix}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \\
= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_2 \\ r_3 \end{pmatrix} \\
= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_n \\ 0 \end{pmatrix}$$

El algoritmo de Euclides puede escribirse en forma matricial. Observe que

$$a = q_1b + r_1 \qquad \Rightarrow \qquad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

$$= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_2 \\ r_3 \end{pmatrix}$$

$$= \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_3 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_n \\ 0 \end{pmatrix}$$

$$= \mathbf{M} \begin{pmatrix} r_n \\ 0 \end{pmatrix}$$

Si
$$\mathbf{M}=\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
, y como det $\mathbf{M}=(-1)^n$, entonces $\mathbf{M}^{-1}=(-1)^n\begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$, y tenemos

Si
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
, y como det $\mathbf{M} = (-1)^n$, entonces $\mathbf{M}^{-1} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$, y tenemos $\begin{pmatrix} r_n \\ 0 \end{pmatrix} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$.

Si
$$\mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
, y como det $\mathbf{M} = (-1)^n$, entonces $\mathbf{M}^{-1} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$, y tenemos

$$\begin{pmatrix} r_n \\ o \end{pmatrix} = (-1)^n \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

En particular $(a,b) = r_n = (-1)^n (m_{22}a - m_{21}b)$, da los coeficientes en el Teorema de Bézout.

La eficiencia computacional del algoritmo de Euclides se ha estudiado a fondo.

• A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a,b) está acotado por b.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2 \log_2 b + 1$.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2 \log_2 b + 1$.
- ÉMILE LÉGER (1837), estudió el peor caso.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2 \log_2 b + 1$.
- ÉMILE LÉGER (1837), estudió el peor caso.
- GABRIEL LAMÉ (1844), refina el análisis de Finck. Mostró que el número de pasos requeridos nunca es más de cinco veces el número h de dígitos en base 10 del número menor b.

La eficiencia computacional del algoritmo de Euclides se ha estudiado a fondo.

- A. A. L. REYNAUD (1811), demostró que el número de pasos de división en la entrada (a, b) está acotado por b.
- Más tarde mejoró esto a $\frac{b}{2} + 2$.
- P. J. E. FINCK (1841), mostró que el número de pasos de división es como máximo $2 \log_2 b + 1$.
- ÉMILE LÉGER (1837), estudió el peor caso.
- GABRIEL LAMÉ (1844), refina el análisis de Finck. Mostró que el número de pasos requeridos nunca es más de cinco veces el número h de dígitos en base 10 del número menor b.

Obs! El peor caso corresponde a cuando todo cociente $q_i = 1$ en el sistema (1). Fibonacci.

Comparación de valores en el algoritmo de Euclides. (a) d=(a,b). (b) Número requerido de pasos. (c) Observe las diagonales que requieren más pasos coinciden con números a y b con una relación cercana al valor $\varphi=\frac{1+\sqrt{5}}{2}$, e.g. números de Fibonacci consecutivos.