In Exercises 16–17 a segment joins the midpoints of two sides of a triangle. Find the values of x and y.

16.

17.

18. Given: A is the midpoint of \overline{OX} ;

$$\overline{AB} \parallel \overline{XY}; \overline{BC} \parallel \overline{YZ}$$

Prove: $\overline{AC} \parallel \overline{XZ}$

19. Given: $\square ABCD$; $\overline{BE} \parallel \overline{MD}$;

M is the midpoint of
$$\overline{AB}$$
.

Prove: DE = BC

20. Given: \overrightarrow{PQ} , \overrightarrow{RS} , and \overrightarrow{TU} are each perpendicular to \overrightarrow{UQ} ; R is the midpoint of \overrightarrow{PT} .

Prove: R is equidistant from U and Q.

21. EFGH is a parallelogram whose diagonals intersect at P. M is the midpoint of \overline{FG} . Prove that $MP = \frac{1}{2}EF$.

22. A skew quadrilateral SKEW is shown. M, N, O, and P are the midpoints of \overline{SK} , \overline{KE} , \overline{WE} , and \overline{SW} . Explain why PMNO is a parallelogram.

23. Draw $\triangle ABC$ and label the midpoints of \overline{AB} , \overline{AC} , and \overline{BC} as X, Y, and \overline{Z} , respectively. Let P be the midpoint of \overline{BZ} and Q be the midpoint of \overline{CZ} . Prove that PX = QY.

24. Draw $\triangle ABC$ and let D be the midpoint of \overline{AB} . Let E be the midpoint of \overline{CD} . Let \overline{F} be the intersection of \overline{AE} and \overline{BC} . Draw \overline{DG} parallel to \overline{EF} meeting \overline{BC} at G. Prove that BG = GF = FC.