FEUILLE D'EXERCICES N°11 Projection sur un convexe

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **&** sont exigibles au partiel et à l'examen.

Exercice 1 – Projection sur un convexe fermé et non vide

Module B6 – Théorème 1

Soit \mathcal{X} un espace de HILBERT. Soit $\mathcal{C} \subset \mathcal{X}$ un ensemble convexe, non vide et fermé. Soit $x_0 \in \mathcal{X}$. On s'intéresse au problème d'optimisation sous contraintes

Minimiser
$$||x - x_0||$$
 sous les contraintes $x \in \mathcal{C}$ (\mathcal{P})

(a) Justifier que le problème (\mathcal{P}) est-équivalent au problème

Minimiser
$$\frac{1}{2} \|x - x_0\|^2$$
 sous les contraintes $x \in \mathcal{C}$ (\mathcal{P}')

c'est-à-dire qu'ils partagent les mêmes solutions.

- (b) Unicité. Justifier que (P) admet au plus une solution.
- (c) Existence. Soit $(x_k)_{k \in \mathbb{N}^*}$ une suite minimisante d'éléments du problème (\mathcal{P}) , c'est-à-dire vérifiant $x_k \in \mathcal{C}$ pour tout $k \in \mathbb{N}^*$ et

$$\lim_{k \to +\infty} \frac{1}{2} \|x_0 - x_k\|^2 = \inf_{x \in \mathcal{C}} \frac{1}{2} \|x_0 - x\|^2 = \alpha$$

- (a) À quoi correspond la quantité α ?
- (b) On rappelle l'identité du parallélogramme

$$\forall (a,b) \in (\mathbb{R}^n)^2$$
 $||a+b||^2 + ||a-b||^2 = 2(||a||^2 + ||b||^2)$

Soit $(j,k) \in (\mathbb{N}^*)^2$. Appliquer l'identité du parallélogramme à $a = x_0 - x_k$ et $b = x_0 - x_j$.

(c) Justifier que

$$4 \left\| x_0 - \frac{x_j + x_k}{2} \right\|^2 \ge 8 \,\alpha$$

En déduire que

$$0 \le ||x_j - x_k||^2 \le 2\left(||x_0 - x_j||^2 + ||x_0 - x_k||^2\right) - 8\alpha$$

- (d) Justifier que la suite $(x_k)_{k \in \mathbb{N}^*}$ est une suite de CAUCHY. En déduire qu'elle est convergente. Notons x^* sa limite.
- (e) Montrer que $x^* \in \mathcal{C}$ et que $\lim_{k \to +\infty} \frac{1}{2} \|x_0 x_k\|^2 = \frac{1}{2} \|x_0 x^*\|^2 = \alpha$
- (f) En déduire que x^* est solution du problème (\mathcal{P}) .

♣ Exercice 2 – Inéquation variationnelle pour la projection

Module B6 – Proposition 6

Soit \mathcal{X} un espace de HILBERT. Soit $\mathcal{C} \subset \mathcal{X}$ un ensemble convexe, non vide et fermé. Soit $x_0 \in \mathcal{X}$. On note $\operatorname{proj}_{\mathcal{C}}(x_0)$ l'unique solution du problème

Minimiser
$$||x - x_0||$$
 sous les contraintes $x \in \mathcal{C}$ (\mathcal{P})

- (a) Écrire le problème d'inéquation variationnelle associé au problème (\mathcal{P}) .
- (b) Justifier que ce problème est équivalent au problème (\mathcal{P}) . En déduire que

$$\forall x \in \mathcal{C}, \qquad \langle x_0 - \operatorname{proj}_{\mathcal{C}}(x_0), x - \operatorname{proj}_{\mathcal{C}}(x_0) \rangle \leq 0$$

♣ Exercice 3 – Propriétés de la projection

Module B6 – Proposition 5 et Corollaire 1

Soit \mathcal{X} un espace de Hilbert. Soit $\mathcal{C} \subset \mathcal{X}$ un convexe non vide et fermé. On définit

$$\operatorname{proj}_{\mathcal{C}}: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathcal{X} \\ x_0 & \to & x^* \end{array} \right.$$

avec x^* la solution du problème

Minimiser
$$||x - x_0||$$
 sous les contraintes $x \in \mathcal{C}$ (\mathcal{P})

(a) Soit $(x_1, x_2) \in \mathcal{X}^2$. Remarquer que

$$\operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2) = \operatorname{proj}_{\mathcal{C}}(x_1) - x_1 + x_1 - x_2 + x_2 - \operatorname{proj}_{\mathcal{C}}(x_2)$$

En déduire que

$$\|\operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2)\|^2 = \langle \operatorname{proj}_{\mathcal{C}}(x_1) - x_1, \operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2) \rangle + \langle x_1 - x_2, \operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2) \rangle + \langle x_2 - \operatorname{proj}_{\mathcal{C}}(x_2), \operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2) \rangle$$

(b) Justifier que

$$\langle x_1 - \operatorname{proj}_{\mathcal{C}}(x_1), x_2 - \operatorname{proj}_{\mathcal{C}}(x_1) \rangle \le 0$$
 et $\langle x_2 - \operatorname{proj}_{\mathcal{C}}(x_2), x_1 - \operatorname{proj}_{\mathcal{C}}(x_2) \rangle \le 0$

En déduire que $\|\operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2)\|^2 \le \langle x_1 - x_2, \operatorname{proj}_{\mathcal{C}}(x_1) - \operatorname{proj}_{\mathcal{C}}(x_2) \rangle$

puis
$$\|\text{proj}_{\mathcal{C}}(x_1) - \text{proj}_{\mathcal{C}}(x_2)\|^2 \le \|x_1 - x_2\| \|\text{proj}_{\mathcal{C}}(x_1) - \text{proj}_{\mathcal{C}}(x_2)\|$$

(c) En déduire que $\operatorname{proj}_{\mathcal{C}}$ est 1-lipschitzien, puis que $\operatorname{proj}_{\mathcal{C}}$ est continue.

Exercices fondamentaux

Exercice 4 – Projection sur un convexe dans le plan On considère les ensembles suivants

$$C_{1} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x \leq 0 \text{ et } y \leq 0 \right\}$$

$$C_{2} = \left\{ (x, y) \in \mathbb{R}^{2} \mid 2x + y \geq 0 \right\}$$

$$C_{3} = \left\{ (0, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 1 \right\}$$

$$C_{4} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} \leq 4 \right\}$$

Pour $i \in [1; 4]$, traiter les questions :

- (a) Montrer que l'ensemble C_i est convexe, non vide et fermé.
- (b) Représenter graphiquement l'ensemble C_i .
- (c) Soit $X_0 \in \mathbb{R}^2$. Calculer la projection de X_0 sur l'ensemble C_i et la représenter graphiquement.
- (d) À quoi correspond graphiquement la négativité de la quantité $\langle X_0 \operatorname{proj}_{\mathcal{C}_i}(X_0), 0 \operatorname{proj}_{\mathcal{C}_i}(X_0) \rangle$?

Exercice 5 – Projection orthogonale et théorème KKT Pour les ensembles C_i de l'Exercice 1, traiter les questions suivantes :

(a) Écrire le problème de la projection orthogonale comme un problème d'optimisation sous contraintes. On choisira une fonction objectif différentiable.

Pauline Tan 2 V2.3.2024

- (b) Justifier que les contraintes sont qualifiées au sens de Slater.
- (c) Écrire les conditions KKT pour le problème considéré. Déterminer les points qui satisfont les conditions écrites.

Compléments

* Exercice 6 – Lemme de FARKAS–MINKOWSKI Soit $n \in \mathbb{N}^*$. Soit $(a_i)_{1 \leq i \leq p}$ une famille libre de p vecteurs de \mathbb{R}^n . On pose

$$C = \left\{ \sum_{i=1}^{p} \widetilde{\lambda}_{i} \, a_{i} \mid \forall i \in \llbracket \, 1 \, ; \, p \, \rrbracket \, , \widetilde{\lambda}_{i} \geq 0 \right\}$$

- (a) Montrer que C est un ensemble convexe.
- (b) Montrer que l'ensemble C est fermé.
- (c) En déduire que la projection sur C est bien définie. On la note proj_C .
- (d) Soit $b \notin C$ un vecteur de \mathbb{R}^n . On définit $v = \operatorname{proj}_C(b) b$. Montrer que

$$\langle \operatorname{proj}_C(b), v \rangle = 0$$

- (e) Montrer que $\langle b, v \rangle < 0$ et $\forall i \in [1; p], \langle a_i, v \rangle < 0$
- (f) Comment ce résultat permet-il de démontrer le lemme de FARKAS-MINKOWSKI dans le cas d'une famille libre?