Mathematische Methoden für Informatiker

Mitschrift zur Vorlesung Sommer Semester 2019

Bachelor of Science (B.Sc.)

Dozent: Prof. Dr. Ulrike Baumann vorgelegt von

...

MOHAMED ABDELSHAFI
m.abdelshafi@mail.de

MAHMOUD KIKI

Mahmoud.kiki@mailbox.tu-dresden.de

...

Tag der Einreichung: 3. Mai 2019

Inhaltsverzeichnis

1	Folg	ge und Reihen	2
	1.1	Vorlesung 1	2
		1.1.1 Folge	
	1.2	Rechnen mit Folgen	
	1.3	geometrische Summen Formel (Tafelwerk)	
	1.4	vorlesung 2	8
	1.5	Konvergenzkriterien	11
	1.6	Vorlesung 3	
	1.7	Grenzwerte rekursive definierte Folgen:	14
	1.8	Reihen:	15
		1.8.1 Rechnenregeln für Reihen	16
	1.9	Vorlesung 4	17
		Reihen	17
	1.11	Allgemeine harmonische Reihe	18
		Expotentiale Reihe	19
	1.13	Hauptkriterium	19
	1.14	Kriterium für Alternierende Reihe	20
	1.15	Quotienkriterium (QK):	20
		Wurzel Kriterium : WK	
	1.17	Vorlesung 5	22
		1.17.1 Rechnenregln für Funktionen (GWS anwenden)	27
	1.18	Vorlesung 6	28
		1.18.1 Ergebnis	28
	1.19	Vorlesung 7	31
		1.19.1 tafelwerk	31
Lis	t of	Theorems	33
T ic	t of	Theorems	26

Einleitung

Wir schreiben hier die vorlesungen von INF-120-1 (Mathematische Methoden für Informatiker) mit. wenn Ihr Fragen habt oder Fehlern gefunden Sie können gerne uns eine E-mail schreiben oder Sie können einfach bei github eine Issue (link) erstellen. wir freuen uns wenn Sie mit uns mitschreiben möchten, oder helfen mit der Fehlerbehebung.

Mohamed Abdelshafi Mahmoud Kiki

Kapitel 1

Folge und Reihen

1.1 Vorlesung 1

1.1.1 Folge

1.1 Definition (Folgen). Ein folge ist eine Abbildung

$$f: \mathbb{N} \to \underbrace{\mathbf{M}}_{Menge}: \mathbf{n} \mapsto \underbrace{x_n}_{folgenglied}$$

1.2 Bemerkung.

 $\mathbf{M} = \mathbb{R}$ reelewert Folge

 $\mathbf{M} = \mathbb{C}$ komplexwertig Folge

 $\mathbf{M} = \mathbb{R}^n$ vertical Folge

Bezeichnung (x_n) mit $(x_n) = \frac{n}{n+1}$

Aufzählung der folglieder: 0 , $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, \dots

1.3 Bemerkung.

zuwerten wird \mathbb{N} durch \mathbb{N} 0,1 ... erstellt.

1.4 Beispiel.

1. Konstante Folge (x_n) mit $x_n = a \in \mathbf{M}, a \dots$

$$x_n = a \in \mathbf{M}$$

- 2. Harmonische Folge (x_n) mit $x_n = \frac{1}{n+1}$ $n \ge 1$
- 3. Geometrische folge (x_n) mit $x_n = q^n$, $q \in \mathbb{R}, \dots$
- 4. Fibonaccifolge (x_n) mit

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

5. Fibonacci folgen (x_n)

$$X_0 = 0$$

 $X_1 = 1$
 $X_{n+1} = x_n + X_{n-1}$ $(n > 0)$

6. conway folge

7. folge aller Primzahlen:

$$2, 3, 5, 7, 11, 13, \dots$$

1.2 Rechnen mit Folgen

$$(M = \mathbb{R} \quad oder \quad M = \mathbb{C})$$

 $(x_n) + (y_n) := (x_n + y_n)$
 $K(x_n) := (Kx_n) \in \mathbb{R} \quad oder \quad \in \mathbb{C}$

1.5 Bemerkung.

 $Die\ Folge\ bildet\ ein\ Vektorraum.$

1.6 Definition (Beschränktheit).

- 1. Eine reellwertige Funktion ist in der Mathematik eine Funktion, deren Funktionswerte reelle Zahlen sind.
- 2. Eine reellwertige heißt beschränkt wenn gilt

$$\exists r \in \mathbb{R}_+, \forall r \in \mathbb{N} : |x_n| \leq r$$
Betrag einer reellen oder komplexer Zahl

1.7 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n \times \frac{1}{n}$
-1, $\frac{1}{2}$, $\frac{-1}{3}$, $\frac{1}{4}$, $\frac{-1}{5}$,...

1.8 Bemerkung.

$$(x_n)$$
 ist beschränkt mit $r = 1$ denn $|(-1)^n \frac{1}{n}| = |\frac{1}{n}| \le 1 \leftrightarrow r$

1.9 Beispiel.

$$(x_n)$$
 mit $x_n = (-1)^n$ $\frac{1}{n} + 1$ bechränkt $r = 3/2$

$$-3/2 \le x_n \le 3/2 \quad \forall n \in \mathbb{N}$$

1.10 Beispiel.

Standard:

Die folge
$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}$$
 ist beschränkt durch 3

Zu zeigen: $-3 \le x_n \le 3$ für alle $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n \cdot k} = \sum_{k=0}^n \binom{n}{k} a^{n \cdot k} b^k$$

$$\binom{n}{k} = \frac{n!}{k!(n-k!)} = \frac{n(n-1) - (n-k-1)}{k!}$$

$$\sum_{K=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{2.3} + \frac{1}{2.3.4} + \dots$$

1.3 geometrische Summen Formel (Tafelwerk)

6

1.11 Definition (Monoton).

Die Folge (x_n) heißt monoton $\{wachsend fallend\}$

$$wenn \quad gilt: \forall n \in \mathbb{N}: \left\{ \begin{array}{ll} x_n & \leq x_n+1 \\ x_n & \geq X_{n+1} \end{array} \right.$$

 $man\ spricht\ von\ Streng\ monotonie\ wenn \leq durch > und \geq durch < \dots$

1.12 Bemerkung.

$$x_n \leq X_{n+1} \iff x_n - X_{n+1} \leq 0 \quad \iff \frac{x_n}{X_{n+1}} \leq 1$$

1.13 Beispiel.

$$(x_n)$$
 mit $X_0 := 1$ $X_{n+1} := \sqrt{x_n + 6}$

ist Streng monoton wachsend Beweis mit Vollständiger Induktion

Standard Bsp: $((1+\frac{1}{n})^n)$ ist streng monoton wachsend

1.14 Bemerkung.

monoton	ja	nein
Beschränkkeit nein	$\binom{\frac{1}{n}}{(n)}$	$(-1)^n$ $(-1)^n$

1.15 Definition (Konvergenz, Divergenz).

- (x_n) heißt **Konvergenz** wenn (x_n) ein grenzwert hat.
- (x_n) heißt **Divergenz** wenn sie keinen grenzwert hat.

1.16 Definition (grenzwert).

 $a \in \mathbb{R}$ heißt grenzwert von (x_n) , wenn gilt:

$$\underbrace{\forall \epsilon > 0}_{beliebes\ klein} \quad \underbrace{\exists \mathbf{N} \in \mathbb{N}}_{beliebes\ klein}, \forall n \in \mathbb{N} : m \ge \mathbb{N}$$

Sei $\varepsilon > 0$; ε fest

alle folglieder x_n mit $n \geq \mathbb{N} \curvearrowright$

1.4 vorlesung 2

ist die folge beschränkt, monoton?

$$(x_n)$$
 konvergierend : $\iff \exists a \in \mathbb{R} \quad \forall \epsilon > 0 \quad \exists n \in \mathbb{N} \quad \forall n \in \mathbb{N}$
 $n \ge N \Rightarrow |x_n - a| < \epsilon$

1.17 Satz. (x_n) konvergierend : \Rightarrow Der Grenzwert ist eindeutig beschränkt.

1.18 Beweis.

Sei a eine Grenzwert von (x_n) , b eine Grenzwert von (x_n) d.h sei $\epsilon > 0$, ϵ beliebig, ϵ fest

$$\exists N_a \quad \forall n \ge N_a : |x_n - a| < \epsilon \tag{1.18.1}$$

$$\exists N_b \quad \forall n \ge N_b : |x_n - b| < \epsilon \tag{1.18.2}$$

Sei $max \{N_a, N_b\} = N \ dann \ gilt :$

$$n \ge N \Rightarrow |x_n - a| < \epsilon \tag{1.18.3}$$

und

$$|x_n - b| < \epsilon \Rightarrow |x_n - a| + |x_n - b| < 2\epsilon \tag{1.18.4}$$

Annahme :- $a \neq b$, $d.h |a - b| \neq 0$

$$|a-b| = |a+0-b|$$

= $|(a-x_n) + (x_n-b)| \le |x_n-a| + |x_n-b| < 2\epsilon$
also $|a-b| < 2\epsilon$

wähle Z.B

$$\epsilon = \frac{|a-b|}{3} \quad dann \ gilt \ : |a-b| < \frac{2 \ |a-b|}{3}$$

 $\Rightarrow 1 < \frac{2}{3}$ falls Aussage, Widerspruch also ist die Annahme falsch also gilt a = b

1.19 Beispiel.

 x_n mit $x_n = \frac{1}{n}$ (harmonische Folge)

1.20 Beweis.

 $Sei \ \epsilon > 0, \epsilon belibig, \epsilon fest \ gesucht: N \ mit \ n \geq N$ hat den Grenzwert 0

$$\Rightarrow |x_n - a| = \left|\frac{1}{n} = 0\right| = \frac{1}{n} < \epsilon \tag{1.20.1}$$

wähle $N := \left[\frac{1}{\epsilon}\right] + 1$

1.21 Beispiel.

 $\epsilon = \frac{1}{100}$, gesucht N mit $n \geq N \Rightarrow \frac{1}{n} < \frac{1}{100}$ wähle N = 101

1.22 Schreibweise.

 x_n hat den Grenzwert a Limes $\lim_{n\to\infty} x_n = a$ x_n geht gegen a für n gegen Unendlich.

1.23 Definition (Nullfolge).

 x_n heißt Nullfolge ,wenn $\lim x_n = 0$ gilt.

1.24 Bemerkung.

Es ist leichter, die konvergente einer Folge zu beweisen, als den Grenzwert auszurechnen.

1.25 Beispiel.
$$x_n = \frac{1}{3} + \left(\frac{11-n}{9-n}\right)^9$$

Behauptung: $\lim_{n\to\infty} x_n = \frac{-2}{3}$

1.26 Lemma.

$$\lim_{n \to \infty} x_n + y_n = \left(\lim_{n \to \infty} x_n\right) + \left(\lim_{n \to \infty} y_n\right) \tag{1.26.1}$$

$$= \lim_{n \to \infty} \left(\left(\frac{1}{3} \right) + \left(\frac{11 - n}{9 + n} \right)^9 \right) = \lim_{n \to \infty} \frac{1}{3} + \lim_{n \to \infty} \left(\frac{11 - n}{9 + n} \right)^9 \tag{1.26.2}$$

$$= \frac{1}{3} + \left(\lim_{n \to \infty} \frac{11 - n}{9 + n}\right)^9 \tag{1.26.3}$$

$$= \frac{1}{3} + \lim_{n \to \infty} \left(\frac{n(\frac{1}{n} - 1)}{n(\frac{9}{n} + 1)} \right)^{9}$$
 (1.26.4)

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \left(\frac{11}{n}\right)}{\lim_{n \to \infty} \left(\frac{9}{n} + 1\right)}\right)^9 \tag{1.26.5}$$

$$= \frac{1}{3} + \left(\frac{\lim_{n \to \infty} \frac{11}{n} - \lim_{n \to \infty} 1}{\lim_{n \to \infty} \frac{9}{n} + \lim_{n \to \infty} 1}\right)^{9}$$
(1.26.6)

$$= \left(\frac{\lim_{n \to \infty} 11 \times \lim_{n \to \infty} \left(\frac{1}{n}\right) - 1}{\lim_{n \to \infty} 9 \times \lim_{n \to \infty} \left(\frac{1}{n}\right) + 1}\right)^{9}$$
(1.26.7)

$$\frac{1}{3} + (-1)^9 = \frac{1}{3} - 1 = \frac{-2}{3} \tag{1.26.8}$$

1.27 Definition (Unendliche Grenzwert).

Eine Folge (x_n) hat den unendliche Grenzwert ∞ , wenn gilt:

$$\forall r \in \mathbb{R} \quad \exists N \in N \quad \forall n \ge N : x_n > r$$

1.28 Schreibweise.

 $\lim_{n\to\infty} x_n = \infty$

1.29 Bemerkung.

 ∞ ist keine Grenzwerte und keine reelle Zahl.

1.30 Bemerkung.

Grenzwertsätze gelten nicht für uneigentliche Grenzwerte.

1.31 Bemerkung.

 $gilt \lim_{n \to \infty} x_n = \infty \ dann \ schreibt \ man \lim_{n \to \infty} -x_n = -\infty$

1.32 Beispiel.

 $x_n \ mit \ x_n = q^n$, $q \in \mathbb{R}$, $q \ fest.$

$$\lim_{n\to\infty}q^n=\begin{cases} 0, & |q|<1\\ 1, & |q|=1\\ \infty, & q>1\\ ex.nicht, & q\leq -1 \end{cases}$$

1.5 Konvergenzkriterien

(zum Beweis der Existenz eine Grenzwert, nicht zum berechnen von Grenzwert)

(1) x_n konvergent \Rightarrow (x_n) beschränkt.

wenn (x_n) nicht beschränkt $\Rightarrow (x_n)$ nicht konvergent.

- (2) Monotonie Kriterium: wenn (x_n) beschränkt ist können wir fragen ob (x_n) konvergent.
 - (x_n) beschränkt von Monotonie $\Rightarrow (x_n)$ konvergent.

1.33 Beispiel.

 $\left((-1)^n \times \frac{1}{n}\right)$ konvergent (Nullfolge) diese Folge ist beschränkt aber nicht Monoton

$$\lim_{n\to\infty} \left(\left(1 + \frac{1}{n}\right)^n \right)$$

existiert. Diese ist beschränkt und monoton.

$$\Rightarrow \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

existiert.

$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right) = e^a$$

1.6 Vorlesung 3

1.34 Beispiel.

$$\lim_{n \to \infty} \frac{11+n}{9-n} ? x_n = \frac{11+n}{9-n} = \frac{n}{n} \frac{\frac{11}{n}+1}{\frac{9}{n}-1} (1.34.1)$$

$$\lim_{n \to \infty} \left(\frac{11}{n} + 1 \right) = 1 \tag{1.34.2}$$

$$\lim_{n \to \infty} \left(\frac{9}{n} - 1 \right) = -1 \tag{1.34.3}$$

$$\lim_{n \to \infty} (x_n) = \frac{1}{-1} = -1 \tag{1.34.4}$$

1.35 Lemma (Quetschlemma). Seien $(x_n), (y_n)$ Folgen mit $\lim_{n\to\infty} (x_n) = \lim_{n\to\infty} (y_n) = a$ und es gelte $x_n \le z_n \le y_n$ für fast alle" $n \in \mathbb{N}$

Dann gilt für die Folge $(Z_n) \lim_{n \to \infty} (z_n) = a$

1.36 Beispiel.

Ist die Folge $(-1)^n \frac{1}{n}$ konvergent ?

$$-\frac{1}{n} \le \left(-1\right)^n \left(\frac{1}{n}\right) \le 1\frac{1}{n}$$

$$\lim_{n\to\infty} -\left(\frac{1}{n}\right) = -1$$

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0 \Rightarrow \lim_{n \to \infty} (-1)^n \frac{1}{n} = 0$$

1.37 Beispiel.

$$x_n \le \frac{a^n}{n!} = \frac{a}{n} \times \frac{a^{a-1}}{n-1!} \tag{1.37.1}$$

 $denn\ x_n=0\leq \tfrac{a_n}{n!}\leq y_n\ ,\ gesucht!\underbrace{\quad y_n}_{\substack{\lim\limits_{n\to\infty}y_n=0}}\ f\"ur\ hinreichend\ großes\ n.$

$$\frac{a^{n}}{n!} = \frac{a}{n} \times \frac{a^{n-1}}{(n-1)!}$$

$$\leq \frac{1}{2} \times \frac{a^{n-1}}{(n-1)!}$$

$$= \frac{1}{2} \times \frac{a}{(n-1)} \times \frac{a^{n-2}}{(n-2)!}$$

$$\leq \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-2}}{(n-2)!}$$

$$\leq \frac{1}{2} \times \frac{1}{2} \times \frac{a^{n-3}}{(n-3)!}$$

$$y_{n} = (\frac{1}{2})^{n-k} \times \frac{a^{k}}{k!} \quad k \text{ ist fest}$$
(1.37.2)

Es gilt $\frac{a^n}{n!} \le y_n$ für hinreichend großes n und $\lim_{n \to \infty} (y_n)$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n-k} \times \underbrace{\frac{a^k}{k!}}_{Konst}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^n \times \lim_{n \to \infty} \left(\frac{1}{2}\right)^{-k} \times \lim_{n \to \infty} \left(\frac{a^k}{k!}\right)$$

$$= 0.\left(\frac{1}{2}\right)^{-k} \times \frac{a^k}{k!} = 0$$

$$(1.37.3)$$

1.7 Grenzwerte rekursive definierte Folgen:

man kann oft durch lösen Fixpunktgleichung" berechnen.

$$x_0$$
 , $x_{n+1} = ln(x_n)$

Folge, Falls (x_n) hinreichend ist, was gelten

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n-1} = \lim_{n \to \infty} x_{n-2} = \dots = 4$$

1.38 Beispiel.

$$(x_n)$$
 $x_0 = \frac{7}{5}$, $x_{n+1} = \frac{1}{3}(x_n^2 + 2)$

 $\ddot{U}(x_n)$ ist monoton fallend, beschränkt, konvergent.

$$\lim_{n \to \infty} x_n = a \quad , \quad \lim_{n \to \infty} x_{n+1} = a$$

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{1}{3} (x_n^2 + 2) = \frac{1}{3} \lim_{n \to \infty} (x_n^2 + 2) = \frac{1}{3} (\lim_{n \to \infty} (x_n))^2 + 2)$$

Fixpunktgleichung

$$a = \frac{1}{3}(a^2 + 2)$$
, gesucht = a

$$3a = a^2 + 2 \Leftrightarrow a^2 - 3a + 2 = 0$$

$$\Leftrightarrow a_{1/2} = \frac{3}{2} \pm \sqrt{\frac{9}{4} - \frac{8}{4}} = \frac{3}{2} \pm \frac{1}{2}$$

Lösung: $a_1 = 2$ (keine Lösung), $a_2 = 1$

1.39 Beispiel.

$$(x_n)$$
 mit $(x_0) = c \in \mathbb{R}, c \text{ fest } x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$

- (1) (x_n) beschränkt \checkmark
- (2) (x_n) Monoton \checkmark

Also (x_n) konvergent

Sei
$$\lim_{n \to \infty} x_n = a$$
. Dann $\lim_{n \to \infty} x_{n-1} = \lim_{n \to \infty} \frac{1}{2}(x_n) + \frac{c}{x_n} = \frac{1}{2}(a + \frac{a}{c}) = a$

$$\Leftrightarrow 2a = a + \frac{c}{a} \Leftrightarrow a = \frac{c}{a} \Leftrightarrow a^2 = c \Leftrightarrow a = \sqrt{c}$$

1.40 Bemerkung.

Der Nachweis der konvergent der rekursiv definierte Folge darf nicht weggelassen werden, denn Z.B $x_0 = 2$, $x_{n+1} = x_n^2$ 2, 4,16,256,... divergent gegen $+\infty$

Annahme:
$$\lim_{n \to \infty} x_n = a$$
 $\underbrace{\lim_{n \to \infty} x_{n+1}}_{a} = \underbrace{\lim_{n \to \infty} x_n^2}_{a^2} \Rightarrow a \in \{0, 1\}$

1.8 Reihen:

1.41 Definition (Unendliche Reihen).

 $Sei(a_n)$ eine reellefolge (komplexwertig) Folge

$$\sum_{k=0}^{n} a_k = a_a, a_1, \dots, a_n,$$

n-k heißt Partialsumme. (S_n) heißt unendliche Reihe. $schriebweise: (S_n)^{\infty} = bsw(S_n)$

$$\left(\sum_{l=0}^{n} a_l\right)$$

bzw

$$\left(\sum_{l=0}^{\infty} a_l\right)$$

1.42 Bemerkung.

Reihen sind spezielle Folgen, alle konvergent oder divergent.

1.43 Definition (wert der Reihe).

Für eine konvergente Reihen wird der Grenzwert auch wert der Reihe genannt.

1.44 Schreibweise.

$$: \lim_{n \to \infty} S_n =$$

$$\lim_{n\to\infty}\sum_{k=0}^n a_k$$

bzw

$$\sum_{k=0}^{\infty} a_k$$

1.45 Beispiel.

Teleskopreihe

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) in \ Grenzwert \ der \ Reihe \ ist$$

$$\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k-1}\right) = 1$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k-1}\right)$$

$$= \lim_{n \to \infty} \left(\frac{-1}{2}\right) + \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3}\right) \left(-\frac{1}{4}\right) + \cdots + \left(\frac{1}{n}\right) - \frac{1}{n+1}$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - 0 = 1$$

1.46 Beispiel.

geometrische Reihe $\sum_{k=0}^{\infty} q^k$ ist für

konvergent . wert der Reihe für |q|<1 $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$ für |q|<1 konvergent , werte der Reihe für

$$|q| < 1: \sum_{k=0}^{n} q^k = \dots$$

$$S_n = q^0 + q^1 + \dots + q^n | * q$$

$$-qS_n = q^1 + q^2 + \dots + q^{n+1}$$

$$(1 - q)S_n = q^0 - q^{n+1}$$

$$S_n = \frac{1 - q^{n+1}}{1 - q} = \frac{1}{1 - q} (1 - q)^{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \frac{1}{1 - q} \times \lim_{n \to \infty} ((1 - q)^{n+1})$$

$$= \frac{1}{1 - q} (1 - \lim_{n \to \infty} q^{n+1}) = \frac{1}{1 - q}$$

1.8.1 Rechnenregeln für Reihen

konvergent Reihe kann man addieren oder subtrahieren mit einem Skalar multiplizieren wie endliche Summen. <u>ABER:</u> das gilt im Allgemein nicht für das Multiplizieren

1.9 Vorlesung 4

1.10 Reihen

1.47 Beispiel.

Zur geometrischen Reihen gesucht : A

$$2A = 1^2 + (\frac{1}{2})^2 + (\frac{1}{4})^2 + \dots + (\frac{1}{k})^2 + \dots$$

$$= \left(\frac{1}{4}\right)^0 + \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2^2}\right)^3 + \left(\frac{1}{2^2}\right)^k + \dots$$

$$9 = \frac{1}{4} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3} = 2A \Rightarrow A = \frac{2}{3}$$

1.48 Beispiel.

$$0, 4\overline{3} = \frac{3}{4} + \frac{3}{100} + \frac{3}{10000} + \dots$$

$$\frac{4}{10} + \frac{3}{100} (\frac{1}{10})^0 + \frac{1}{10} + \frac{3}{10^2} + \dots$$

$$= \frac{4}{10} + \frac{3}{100} \times \frac{1}{1 - \frac{1}{10}}$$

$$= \frac{4}{10} + \frac{1}{30} = \frac{12 + 1}{30} = \frac{13}{30}$$

$$(1.48.1)$$

 $wenn \ 0, 4\overline{3} \ erlaubt \ w\"{a}re, \ dann,$

$$\frac{4}{10} + \frac{9}{100} \times \frac{10}{9} = \frac{4}{10} + \frac{1}{10} = \frac{5}{10} = \frac{1}{2} = 0.5$$

1.49 Beispiel.

$$\sum_{R=1}^{\infty} \frac{1}{K} \ ist \ divergent \ , denn \ \lim_{\infty} \sum_{K=1}^{n} \frac{1}{k} \ ex. \ nicht$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \dots + \frac{1}{16} + \dots + \frac{1}{n}$$

$$> 1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{} + \underbrace{\frac{1}{10} + \frac{1}{16}}_{} + \cdots + \underbrace{\frac{1}{n}}_{}$$

$$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots + \frac{1}{n} \rightarrow \lim_{n \to \infty} s_n = \infty$$

1.11 Allgemeine harmonische Reihe

$$\sum_{K=1}^{\infty} \frac{1}{k^{\alpha}} \quad (\infty \quad \text{fest}, \quad mit \quad \alpha \in \mathbb{R}) \qquad \text{falls} \quad \alpha \geq 1 \to \text{konvergent}$$
 falls $\alpha \leq 1 \to \text{Divergent}$

1.50 Beispiel.

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$
 ist konvergent

$$\sum_{k=1}^{\infty} \frac{1}{k^{\frac{1}{2}}} \qquad ist \ Divergent$$

1.51 Beweis (Monotoniekriterium).

mit Monotoniekriterium für Folge

Reihe ist konvergent $\begin{cases} (1) & \sum_{K=1}^{n} \frac{1}{k^2} & ist monoton wachsend. \\ (2) & \sum_{K=1}^{n} \frac{1}{k^2} & ist beschränkt. \end{cases}$

$$\sum_{K=1}^{\infty} \frac{1}{k^2} = \frac{1}{1} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots + \frac{1}{8^2}$$

$$<1+\frac{1}{4}+\underbrace{\frac{1}{2^2}+\frac{1}{2^2}}_{2.\frac{1}{4}}+\underbrace{\frac{1}{4^2}+\cdots+\frac{1}{4^2}}_{4.\frac{1}{4^2}}+$$

$$1 + \frac{1}{4} + \frac{1}{2} \cdot 1 + \underbrace{\frac{1}{4}}_{(\frac{1}{2})^2} + \underbrace{\frac{1}{8}}_{(\frac{1}{2})^3} = 1 + \frac{1}{4} + \frac{\frac{9}{4}}{1 - \frac{1}{2} - 1}$$

1.12 Expotentiale Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} (1 - \frac{1}{n})^n =: e \text{ ist konvergent}$$

1.13 Hauptkriterium

* konvergent die Reihe $\sum_{k=0}^{\infty} a_k$ dann ist (a_k) Nullfolge.

$$\lim_{k \to \infty} a_k \neq 0 \Rightarrow \sum_{k=0}^{\infty} a_k \quad \underbrace{nullkonvergent}_{divergend}$$

oder

$$\lim_{k \to -\infty} a_k \quad ex.null$$

1.52 Beispiel.

$$\sum_{K=1}^{\infty} \frac{3k^2 + 1}{4k^2 - 1} \quad divergend, \quad aber \quad \sum_{K=1}^{\infty} \frac{1}{k} \quad divergend \quad und \; \frac{1}{k} \; Null \; folge$$

1.53 Beweis.

$$\sum_{K=0}^{\infty} a_k \quad (konvergent) \Rightarrow \underbrace{(a_k) \quad Nullfolge}_{\underset{k \to \infty}{\lim} a_k = 0}$$

$$s_n = \sum_{K=0}^n a_k$$
 , $s_{n+1} = \sum_{k=0}^{n+1} a_k$, $s_{n+1} = s_n + s_{n+1}$

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{n+1}$$
 , $\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0$

1.14 Kriterium für Alternierende Reihe

1.54 Beweis (Alternierende Reihe).

$$\sum_{K=0}^{\infty} (-1)^k \frac{1}{k} ist \ konvergent$$

$$\sum_{K=0}^{\infty} (-1)^k a_k$$

wobei (a_k) einer Streng monoton fallend Nullfolge mit $a_k \ge 0$ \Rightarrow Die Reihe ist konvergent.

Also
$$\sum_{K=0}^{\infty} (-1)^k \frac{1}{k}$$
 ist konvergent.

1.55 Definition (absolute Reihe).

Eine Reihe $\sum_{k=0}^{\infty} a_k$ heißt absolute konvergent wenn $\sum_{k=0}^{\infty} |a_k|$ konvergent ist.

1.56 Beispiel.

$$\sum_{K=1}^{\infty} (-1)^k \frac{1}{k} \text{ ist konvergent , aber nicht absolute konvergent}$$

$$\sum_{K=1}^{\infty} (-1)^k \frac{1}{k^2} \text{ ist kovergend und } \textbf{absolute} \text{ konvergent}$$

1.57 Satz.

$$Reihe \sum_{K=0}^{\infty} a_k$$
 absolut konvergent \Rightarrow $Reihe \sum_{K=0}^{\infty} a_k$ ist Konvergent

1.58 Bemerkung.

absolute konvergente Reihe kann man multiplizieren wie endliche summen. (aber konvergente Reihen nicht!)

20

1.15 Quotienkriterium (QK):

Für absolute Konvergenz, wenn gilt:

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right| \begin{cases} <1\Rightarrow \sum_{k=0}^{\infty} \quad \text{ist absolut konvergent} \\ >1\Rightarrow \quad \text{ist divergent}) \\ =1\Rightarrow \quad \text{Kriterium ist nicht anwendbar} \end{cases}$$

1.16 Wurzel Kriterium: WK

Die Reihe $\sum_{K=0}^{\infty} a_k$ ist **absolute** konvergent genau wenn \Leftrightarrow :

$$\lim_{k\to\infty} \sqrt[k]{|a_k|} \begin{cases} <1 \Rightarrow \sum_{K=0}^\infty a_k & \text{ist absolut konvergent} \\ >1 \Rightarrow & \text{ist divergent} \\ =1 \Rightarrow & \text{Kriterium ist nicht anwendbar} \end{cases}$$

1.59 Beispiel (QK).

$$\begin{split} &\sum_{K=0}^{\infty} \frac{1}{k!} \\ &\lim_{k \to \infty} \left| \frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} \right| \\ &= \lim_{k \to \infty} \frac{k!}{(k+1)!} \\ &= \lim_{k \to \infty} \frac{1}{k+1} = 0 \\ &d.h < 1 \Rightarrow \quad Die \; Reihe \; ist \; absoulte \; Konvergent. \end{split}$$

1.60 Beispiel (WK).

$$\lim_{k \to \infty} \sqrt[k]{\left|\frac{1}{k!}\right|}$$

$$= \lim_{k \to \infty} \frac{\sqrt[k]{1}}{\sqrt[k]{k!}} = \frac{1}{\lim_{k \to \infty} \sqrt[k]{k!}} = 0 < 1$$

Die Reihe is absolut konvergent.

1.17 Vorlesung 5

Zusammenfassung:

Folgen / Reihen / Konvergenz ? / Grenzwert ?

Neu: Funktionen

Approximation von Funktionen

Potenzreihen

Taylorreihen

fourierreihen

Näherungsweise Berechnung

1.61 Definition.

 $f: \mathbb{D} \to \mathbb{R}$ heißt reelle Funktion in einer reellen veränderlichen

1.62 Bemerkung (Definitionsbereich).

Bild von f

$$f(D) = \{ f(x) \mid x \in D \}$$

Graph von f

$$Graph(f) = \{(x \mid f(x)) \mid x \in D\}$$

1.63 Definition.

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}, a \in D$

f heißt in a stetig, wenn gilt:

$$\forall (X_n): X_n \in D \text{ und } \lim_{n \to \infty} f(x_n) = f(a) \text{ für alle Folgen } (x_n)$$

Die Folgenglieder sollen in Definitionsbereich liegen (Die in Definitionsbereich liegen können und den Grenzwert a haben)

* Ich weiß, dass $f(x_n)$ existiert $(f(x_n) ex.)$ Folge $f(x_n)ex.$, soll einen Grenzwert besitzen. \checkmark $f(\lim_{n\to\infty} x_n)\checkmark\checkmark$

1.64 Bemerkung.

$$\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$$

★ Grenzwertbildung und Funktion Wertberechnung sind bei stetig Funktion in der Reihenfolge vertauschbar!

1.65 Berechnung.

$$\lim_{x \to a} f(x)$$

d.h für jede Folge x_n , die gegen a konvergiert, konvergiert die Folge der Funktionierte gegen f(a).

1.66 Bemerkung.

f stetig in $a \Leftrightarrow$

- 1) f(a) und
- 2) $\lim_{x\to a} f(x)$ ex. und
- 3) Grenzwert = Funktionswert $\lim_{x\to a} f(x) = f(a)$

1.67 Beispiel.

1)

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{(x - 1)}$$

Ist f(x) stetig in a = 1?

a) f(1) ex ? nein , d.h f ist in a = 1 nicht stetig

b)

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = ?$$

Sei (x_n) eine beliebige Folge und $x_n \in D(f)$ und $\lim_{x\to\infty} (x_n) = 1$

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{(x-1)(x+1)}{(x-1)} = \lim_{n \to \infty} (x_n+1) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} 1 = 1 + 1 = 2$$

d.h Grenzwert ex. (und es ist 2).

 ${\it Man \ sagt} \ , \ f \ {\it hat \ an \ der \ stelle \ 1 \ eine \ L\"{\it ücke}}.$

1.68 Beispiel.

(2)

$$f(x) = \frac{1}{x} \quad , \quad a = 0$$

(i) betrachte ? $\lim_{x\to 0^-} f(x)$: d.h wir betrachten alle Folgen (x_n)

$$X_n \in D, X_n \leq 0 \lim_{n \to \infty} (x_n) = 0$$

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \frac{1}{x_n}$$

$$= \frac{\lim_{n \to \infty} 1}{\lim_{n \to -\infty} x_n} = \frac{1}{\lim_{n \to -\infty} x_n} = -\infty$$

$$d.h \quad \lim_{x \to 0^-} f(x) ex .nicht$$

(ii) Betrachte $\lim_{n\to+0} f(x_n)$, ex .nicht

$$f(x) = \begin{cases} 1, & x \ge 0 \\ \frac{1}{x}, & x < 0 \end{cases} a = 0 , f(0) = 1 ex.$$

$$\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = -\infty ex. \ nicht$$

 $\begin{array}{c|c}
 & y \\
 & f(x) \\
\hline
 & -2 \\
\hline
 & -2
\end{array}$

$$f(x) = \underbrace{sgn(x)}_{sprung} = \left\{ \begin{array}{l} +1, & x \ge 0 \\ -1, & x < 0 \end{array} \right\}$$

$$\neq \left\{ \begin{array}{ll} \lim\limits_{x \to 0^{-}} f(x) = -1 & ex. \\ \lim\limits_{x \to 0^{+}} f(x) = 1 & ex. \end{array} \right\} \lim\limits_{x \to 0} f(x) \quad ex. \ nicht \ , \ O \ heißt \ Sprungstelle$$

1.69 Definition.

 $f : \to \mathbb{R}$, $D \subseteq \mathbb{R}$ heißt stetig, wenn f für alle $a \in D$ stetig

1.70 Beispiel.

elementare Funktionen und deren Verfügungen sind stetig auf dem gesamten Definitionsbereich.

Z.B

Polynomfunktion , rationale Funktionen, Winkelfunktionen , Potenzfunktionen , Wurzelfunktionen , Exponentialfunktionen und Logarithmusfunktion.

1.71 Beispiel.

 $f: D \to \mathbb{R}: x \to \frac{1}{x} = x^{-1}$ ist stetig auf dem gesamten Defintionsbereich $D = \mathbb{R} \setminus \{0\}$

1.72 Beweis.

Sei $a \in D = \mathbb{R} \setminus \{0\} \ (d.h \ a \neq 0)$

$$f(a) = \frac{1}{a} \tag{1}$$

$$\lim_{n \to \infty} f(x) = \lim_{n \to \infty} \frac{1}{x} \tag{2}$$

Sei x_n eine beliebige Folge und $x_n \in \underline{D}$ und $\lim_{n \to \infty} x_n = a$,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_1} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} x_2} = 1$$

$$\frac{1}{a} \in \mathbb{R}$$
 ex.

1.17.1 Rechnenregln für Funktionen (GWS anwenden)

$$\lim_{x \to \infty} (f(x) \pm g(x)) = \lim_{x \to \infty} f(x) \pm \lim_{x \to \infty} g(x), \text{ wo bei} g(x) \neq 0$$
$$\lim_{n \to \infty} (f(n) \pm g(n)) = \lim_{n \to \infty} f(n) \pm \lim_{n \to \infty} g(n)$$

1.73 Satz.

$$f: D \Rightarrow \mathbb{R}, \quad D \subseteq \mathbb{R} \text{ ist in } a \in D \text{ Stetig } \Leftrightarrow \forall_{\epsilon} > 0 \quad \exists \delta > 0: |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

$$(1.73.1)$$

1.18 Vorlesung 6

$$|x-a| < \delta$$

$$|x-a| = \begin{cases} x-a, \ x-a \ge 0 \\ -(x-a), \ x-a < 0 \end{cases} = \begin{cases} x-a, x \ge \\ a-x, x < a \end{cases} \begin{cases} x \le a : x-a < \delta \Rightarrow x < a+\delta \\ x < a : a-x < \delta \Rightarrow a-\delta < x \end{cases} \Rightarrow (1.73.2)$$

$$\begin{cases} a \le x < a + \delta \\ a + \delta < x < a \end{cases} \tag{1.73.3}$$

1.18.1 Ergebnis

$$|x-a| < \delta \Leftrightarrow a-\delta < x < a+\delta$$

 $\Leftrightarrow x \in (a-\delta, a+d)$ offenes intervall $|x-a| < \delta$

x liegt in der δ -Umgebung von a

$$|f(x) - f(a)| < \epsilon \Leftrightarrow f(x) \text{ liegt in der } \epsilon\text{-umgebung con} f(a)$$

 $\Leftrightarrow f(x) \in (f(a) - \epsilon, f(a) + \epsilon) \epsilon > 0$

$$I(\frac{1}{e}) = I(e^{-1}) = 1.k \quad \text{rell}I(e^{-n}) = I(\underbrace{e^{-1} \dots e^{-1}}_{n}) = I(e^{-1}) + \dots + I(e^{-1}) = k.n \quad (1.73.4)$$

$$\frac{n}{m} \in Q: I(e^{-\frac{n}{n}}) = k.\frac{n}{m}, \text{ denn}$$

$$\tag{1.73.5}$$

$$kn = I(e^{-n}) = I(e^{-\frac{n}{m} \cdot m}) = \underbrace{I(e^{-\frac{n}{m}} \cdot ... e^{-\frac{n}{m}})}_{m} + \dots + I(e^{-\frac{n}{m}}) = I(e^{-\frac{n}{m}}) + \dots + I(e^{-\frac{n}{m}})$$
(1.73.6)

$$r \in \mathbb{R}_{+} : I(e^{-r}) = ?$$
 (1.73.7)

$$\lim_{n\to\infty} \underline{q_n} = r$$

$$I(e^{-r}) = I(e^{-\lim_{n\to\infty}(q_n)}) = I(e^{\lim_{n\to\infty}(-\frac{q}{n})}) \stackrel{e \text{ stetig}}{\stackrel{=}{=}} I(\lim_{n\to\infty}e^{-q_n}) \stackrel{I \text{ stetig}}{\stackrel{=}{=}} \lim_{n\to\infty}I(e^{-\frac{q}{n}}) = \lim_{n\to\infty}k.q_n = \underbrace{k.r}_{n\to\infty}q_n$$

$$I(\frac{1}{e}) = I(e^{-1}) = \frac{1}{k} \text{rell}$$

$$I(p) = I(e^{\ln p}) = \underbrace{k}_{>0} (-\ln p) = \underbrace{-k}_{<0} \ln p$$

1.74 Beispiel.

$$D(x) = \begin{cases} 1, x \in \mathbb{Q} & (rational) \\ 0, x \in \mathbb{R} \backslash \mathbb{Q} & (irrational) \end{cases}$$

steteig für welche a?

1. Fall: a rational

2. Fall: a irrational

a rational: a fest

sei $\varepsilon = \frac{1}{2}$, beliebig $\exists \delta > 0 \forall x \in D : |x - a| < \delta \Rightarrow |D(x) - D(a)| < \frac{1}{2}$ Sei δ beliebig, δ δ 0, x irrational, fest

 $|x - a| < d \Rightarrow |0 - 1| = |11 = 1 < \frac{1}{2}, widerspruch$

 $\Rightarrow D$ ist nicht stetig, für jede $a \in \mathbb{R}$

Sei $\delta > 0$, beliebig, x rational, fest $|x - a| < \delta \Rightarrow |\underbrace{D(x)}_{0} - \underbrace{D(a)}_{0}| < \frac{1}{2} = \varepsilon \Rightarrow 1 < \frac{1}{2}$

Widerspruch

 $\Rightarrow D \text{ ist nicht stetig für jede } a \in \mathbb{R} \backslash \mathbb{Q}$

1.75 Satz. Sei $f:[a,b] \to \mathbb{R}$, stetig f besetzt in [a,b] ein globale Maximum und ein golbales Minimum

1.76 Bemerkung.

Beide (unklar!)veränderung sind wichtig

1.77 Bemerkung (a,k).

$$=x\in\mathbb{R}$$
 — $a\leq x\leq b$

1.78 Satz (ZWS). Sei $f:[a,b] \to \mathbb{R}$ stetig, $\frac{x_m}{x_M}$ eine globale Minimale stelle eine golbale Maximalestalle

Sei $\hat{y} \in [f(x_m), f(x_M) : Dann \ ex. \ \hat{x} \in [a,b] \ mit \ \hat{y} = f(\hat{x})$

1.79 Bemerkung.

Jeder zwischenwert wird als Funktionswert angenommen

1.80 Satz (Nullstellen). Sei $f:[a,b] \to \mathbb{R}$ stetig, f(a).f(b) < 0 Dann beliebig f in [a,] eine Nullstell x_0 , $[a,b] : f(x_0) = 0$

Beweis.
$$f(a) < 0, f(x) > 0$$
 (analog für $f(a) > 0, f(b) < 0$)

$$\left(\frac{a_1+b_1}{2}\right) = \begin{cases} 0, \frac{a_1+b_1}{2} \text{ ist die gesamte Nullstelle} \\ < 0, a_2 = \frac{a_1+a_2}{2}, b2 = b1 \\ > 0, a_2 = a_1, b_2 = \frac{a_1+b_1}{2} \end{cases}$$

usw.
$$\frac{a_2 + b_2}{2}$$
berechnen

$$f(..) \begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$$

Stetigmax

beschränkt $\Rightarrow konvergent$

sei
$$\lim_{n \to \infty} a_n =: c$$

sei $\lim_{n \to \infty} a_n =: c$
 $a \le \dots \le b_2 \le b_1 \le b$ ex. $\lim_{n \to \infty} b_n = 2$

$$\lim_{n \to \infty} |a_n - b_n| = \lim_{n \to \infty} \frac{|a - b|}{2^{n-1}}$$

$$= |a - b| \lim_{n \to \infty} \frac{1}{2^{n-1}}$$

$$= |a - b|.0$$

$$= 0$$

$$\lim_{n\to\infty}b_n=c$$

Betrachte (b_n)

Stetigmax

beschränkt

 $\Rightarrow konvergent$

Falls keine Nullstelle beim bilden von a_n, b_n gefunden wurden

$$f(c) = f(\lim_{n \to \infty} a_n) \stackrel{fstetig}{\stackrel{}{=}} \lim_{n \to \infty} f(a_n) \ge 0$$

$$= f(c) = f(\lim_{n \to \infty} b_n) \stackrel{fstetig}{\stackrel{}{=}} \lim_{n \to \infty} f(b_n) \le 0$$

1.19 Vorlesung 7

$$f: D \to \mathbb{R}, D \subseteq \mathbb{R}, a \notin D$$

$$\lim_{x \to a} f(x) = r \in \mathbb{R} \iff \forall (x_n) \lim_{n \to \infty} x_n = a \text{ und } x_n \in D$$

$$\Rightarrow \lim_{n \to \infty} f(x_n) = r$$

1.81 Beispiel.

GWS nicht anwendbar $\lim_{x\to 0} \underbrace{x \sin x}_{x \to 0} = \lim_{x\to 0} x$. $\lim_{x\to 0} \sin x = 0.0 = 0$

1.82 Bemerkung.

GWS nicht anwendbar $\lim_{x\to 0} (x \sin \frac{1}{x}) \lim_{x\to 0} \lim_{x\to 0} \sin \frac{1}{x}$

1.83 Definition.

Sei $f:(a,b) \to \mathbb{R}, x_0 \in (a,b)$ $x_0 \in (a,b) \Leftrightarrow x_0 \in \mathbb{R} \text{ und } a < s_0 < b (\Leftrightarrow (skizzenotcomplate))$ $f \text{ ist in } x_0 \text{ differenzierbar } : \Leftrightarrow f'(x_0) \coloneqq \varprojlim_{f \neq x_0} \underbrace{f(x) - f(x_0)}_{x - x_0} \text{ existiert } (f'(x_0) \in \mathbb{R})$

Falls der grenzwert ex., nennt man $f'(x_0)$ die erste Ableitung von f in x_0 Ex. $f'(x_0)$ für alle $x_0 \in (a,b)$, dann netnnt man $f':(a,b) \to \mathbb{R} \longmapsto f'(x_0)$ die erste Abbleitung von f

1.84 Beispiel.

 $f(x) = \frac{1}{x} \ auf(0,r) \ r \in \mathbb{R}_{>0} \ ,r \ fest \ und \ x_0 \in (0,)r, \ ges: f'(x_0)$

$$f'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x_0 - x}{x \cdot x_0}}{x - x_0} = \lim_{x \to x_0} \frac{(x_0 - x)(-1)}{x - x_0(x - x_0)} = \lim_{x \to x_0} (-\frac{1}{x_0}) \frac{1}{x} = -\frac{1}{x_0} \lim_{x \to x_0} \frac{1}{x}$$

$$\stackrel{\frac{1}{x} \text{ stetigf}}{=} -\frac{1}{x} \cdot \frac{1}{x} = -\frac{1}{x^2}$$

$$f':(0,r)\to\mathbb{R}:x\longmapsto -\frac{1}{x^2}in\ die\ erste\ Abbildung\ von\ f(x)=\frac{1}{x}$$

1.19.1 tafelwerk

$$f f'$$

$$x^{n} nx^{n-1}$$

$$\downarrow n = -1 \downarrow$$

$$\frac{1}{2} -\frac{1}{2}$$

1.85 Satz. f in x_0 differenzierbar $\Rightarrow f$ in x_0 stetig

Beweis. Sei f in x_0 d.b $\Rightarrow f'(x_0) = \lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$ ex. ...

List of Theorems

1.1	Definition (Folgen)	2
1.2	Bemerkung	2
1.3	Bemerkung	2
1.4	Beispiel	3
1.5	Bemerkung	4
1.6	Definition (Beschränktheit)	5
1.7	Beispiel	5
1.8	Bemerkung	5
1.9	Beispiel	6
1.10	Beispiel	6
	Definition (Monoton)	6
	Bemerkung	7
	Beispiel	7
	Bemerkung	7
	Definition (Konvergenz, Divergenz)	7
1.16	Definition (grenzwert)	7
	Satz	8
1.18	Beweis	8
1.19	Beispiel	9
1.20	Beweis	9
1.21	Beispiel	9
	Schreibweise	9
	Definition (Nullfolge)	9
	Bemerkung	9
	Beispiel	9
	Lemma	10
	Definition (Unendliche Grenzwert)	10
	Schreibweise	10
	Bemerkung	10
	Bemerkung	10
	Bemerkung	11
	Beispiel	11
	Beispiel	11
	Beispiel	12
	Lemma (Quetschlemma)	12
	Beispiel	12

1.37	Beispiel	13
	Beispiel	14
1.39	Beispiel	14
	Bemerkung	14
1.41	Definition (Unendliche Reihen)	15
	Bemerkung	15
1.43	Definition (wert der Reihe)	15
	Schreibweise	15
	Beispiel	15
	Beispiel	16
	Beispiel	17
	Beispiel	17
	Beispiel	18
	Beispiel	18
	Beweis (Monotoniekriterium)	18
	Beispiel	19
	Beweis	19
1.54	Beweis (Alternierende Reihe)	20
	Definition (absolute Reihe)	20
	Beispiel	20
	Satz	20
	Bemerkung	20
	Beispiel (QK)	21
	Beispiel (WK)	21
	Definition	22
	Bemerkung (Definitionsbereich)	22
	Definition	22
	Bemerkung	22
	Berechnung	22
	Bemerkung	23
	Beispiel	23
	Beispiel	24
1.69	Definition	25
	Beispiel	26
1.71	Beispiel	26
	Beweis	27
	Satz	27
	Beispiel	29
	Satz	29
1.76	Bemerkung	29
	Bemerkung (a,k)	29
	Satz (ZWS)	29
	Bemerkung	29
	Satz (Nullstellen)	29
	Beispiel	31
	Remerking	31

1.83	Definition	31
1.84	Beispiel	31
1.85	Satz	32
ignoi	reall.show=definition	

List of Theorems

1.4	Beispiel	3
1.7	Beispiel	5
1.9	Beispiel	6
1.10	Beispiel	6
1.13	Beispiel	7
1.19	Beispiel	9
1.21	Beispiel	9
1.25	Beispiel	9
1.32	Beispiel	11
1.33	Beispiel	11
1.34	Beispiel	12
1.36	Beispiel	12
1.37	Beispiel	13
1.38	Beispiel	14
1.39	Beispiel	14
1.45	Beispiel	15
1.46	Beispiel	16
1.47	Beispiel	17
1.48	Beispiel	17
1.49	Beispiel	18
1.50	Beispiel	18
1.52	Beispiel	19
1.56	Beispiel	20
1.59	Beispiel (QK)	21
1.60	Beispiel (WK)	21
1.67	Beispiel	23
1.68	Beispiel	24
1.70	Beispiel	26
	Beispiel	26
	Beispiel	29
1.81	Beispiel	31
	Beispiel	31