

Internet of Things architectures et technologies

Communiquer

= rendre commun, partager, transmettre

Techniquement, il s'agit d'un échange d'information, uni ou bi-directionnel, au travers d'un « medium » accessible aux 2+ interlocuteurs.

Principes

modèle de référence: OSI

Modèle OSI ('70)

s'applique imparfaitement à la réalité, mais donne une liste exhaustive des concepts existants.

Ref. http://www.frameip.com/osi/

OSI #1 - lien physique

lien filaire

onde radio

• lumière

onde mécanique

OSI #2 - liaison de données

Fonctions:

- découpage du flux en "trames"
- correction/détection d'erreurs
- acquittement de transmission
- dédoublonnage

Exemple: Ethernet, RS-232, protocoles radio...

OSI #3 - couche "réseau"

=> comment "router" l'information dans un réseau multi-sauts

Fonctions:

gestion de sous-réseaux,

routages des trames/paquets

Exemple: IP

OSI #4 - transport

Fonctions:

garantir la délivrance,

optimisation des ressources réseau,

contrôle de flux

Exemple: TCP

OSI #5 - session

Fonctions:

- interface applicative,
- traduction adresse logique / adresse physique,
- coopération entre interlocuteurs de bout en bout

Exemples: DNS, session web (cookies), VoIP, jeu en ligne...

OSI #6 - présentation

Fonctions:

- syntax et sémantique de l'information échangée,
- encryption,
- compression,
- etc.

Exemples: Content-Types HTTP, HTML/CSS

OSI #7 - application

Fonctions:

- interaction avec l'utilisateur final,
- expose le service offert

Exemples: application web (webmail, réseau social...)

Algorithmes d'accès au medium

ALOHA: back-off exponentiel

CSMA: Carrier Sense Multiple Access

CD = collision detection

CA = collision avoidance

CR = collision resolution

FDMA = Frequency Division Multiple Access

TDMA = Time ...

CDMA = Code ...

Protocoles Radio

Les bandes de fréquence

Les bandes de fréquence

Les bandes de fréquence

Bandes "industrielles, scientifiques et médicales" (ISM)

Figure 2.13 • Répartition des bandes ISM en France et en Europe.

(radio-communications => directive RED, émission <500mW)

- 26 Mhz: téléphonie sans fil CTO
- 433 Mhz: domotique, télécommandes (voitures, portails), portiers vidéo, alarmes, jouets...
- 868 MHz: EnOcean, Z-Wave, Sigfox, LoRa
- 2,4 GHz: Bluetooth, Wifi, vidéo-surveillance, transmetteurs audio/video (max 10mW)
- 5,4 GHz: video "FPV" (25 mW)

PAN/LAN/WAN

PAN/LAN/WAN...

Échelle: Région / pays...

Echelle quartier/ville

Echelle: pièce / batiment

Réseau "personnel"

Protocoles Radio

ref: http://www.inov360.com/blog/reseaux-sim-less-le-nouvel-eldorado-du-m2m-et-de-linternet-des-objets-2/

Technologies PAN

PAN - lien série / bus

UART / I²C / SPI (Serial Peripheral Interface): échanges internes à l'équipement

RS-232 / RS-422...: liaisons série asynchrones

USB = Universal Serial Bus

bus CAN (Controller Area Network): automobile / industrie

PAN - NFC (Near Field Communications)

ou CCP = communication en champ proche

fréquence	13,56 MHz
portée	10 cm (1,5 m?)
débit	106/212/424 kbit/s
création	norme ISO/CEI 14443 (2004, Sony & Philips > NFC forum)
usages	carte puce sans contact, tags / badge RFID, synchronoisation courte portée (vCard)
propriétés	mode carte, lecteur (tags) ou pair à pair courte portée> sécurité fonctionnelle tag passif ou actif

PAN - IEEE 802.15.4

fréquence	ISM : 868 Mhz (EU), 915 MHz (US) ou 2,4 GHz
débit	20 - 250 kbits/sec
création	IEEE, 2003
usages	base de nombreux protocoles domotique (ANT, EnOcean,)
propriétés	optimisé pour basse conso et bas coût CSMA/CA link quality energy detection couche MAC topologie étoile / mesh

PAN - Zigbee

basé sur 802.15.4 propriété Zigbee Alliance spécifications libres

fréquence	ISM: 868 Mhz (europe) ou 2.4Ghz
portée	10m
débit	20 - 250 kbits/sec
création	2004, ZigBee Alliance
usages	domotique
propriétés	simple, jusqu'à 65k noeuds, fiable, routage réactif, au-dessus de IEEE 802.15.4, peu sécurisé? profiles spécialisés: home automation, remote control, smart energy
coût chip	~1\$

6LOWPAN

6LowPan = UDP/IPv6 over 802.15.4

principal problème: MTU

(IPv6: 1280 bytes, 802.15.4: 127 bytes)

various optimizations

>> payload = 33 bytes per frame

header & payload compression

neighbor discovery

fragmentation / reassembly

fréquence	ISM: 868 Mhz (EU), 915 MHz (US) ou 2,4 GHz
création	IETF, 2007
usages	capteur contraint connecté à Internet!
propriétés	idem 802.15.4 + accès à Internet / adressage IP

PAN - Z-Wave / ZWave+

fréquence	ISM 868 Mhz (Europe)
portée	~50m
débit	<40 kbits/sec
création	Zen-Sys (start up danoise, maintenant Sigma Designs), 2005
usages	domotique (leader?)
propriétés	protocole propriétaire (un seul fondeur) certification via alliance ZWave réseau mesh (jusqu'à 232), sécurité relative

PAN - EnOcean

fréquence	ISM 868 Mhz (Europe)
portée	~30m en intérieur, jusqu'à 300m en extérieur
débit	125 kbits/sec (trame: 14 bytes)
création	EnOcean devient standard international ISO/IEC en 2012
usages	interrupteur sans file sans pile
propriétés	ultra-simple, ultra-basse consommation

PAN - bluetooth

Classe	Puissance	Portée
1	100 mW (20 dBm)	100 mètres
2	2,5 mW (4 dBm)	10 à 20 mètres
3	1 mW (0 dBm)	Quelques mètres

fréquence	2.4Ghz
portée	5m à 100m
débit	100 kbits/sec - 1Mbits/sec
versions	1.0 - 5 , "Low Energy"
création	Ericsson, 1994
usages	téléphonie/audio, communication très locale (accessoire personnel)
coût chip	~3\$

PAN - ANT / ANT+

fréquence	2.4Ghz
portée	30m
débit	20 kbits/sec
versions	1.0 - 4.1, "Low Energy"
création	Ericsson, 1994
usages	fitness, sport heart-monitor
propriétés	protocole propriétaire, basse consommation (22mA en réception, 13mA en émission), broadcast, ack, point à point, étoile, mesh (jusqu'à 65k noeuds) chiffrement AES 128

PAN - DECT

(Digital Enhanced Cordless Telecom.)

fréquence	1880 - 1920 Mhz (réservé en EU puis US)
portée	10m
débit	32 kbits/sec par channel*slot
création	1988-1992, ETSI
usages	téléphonie sans fil, baby monitoring
propriétés	FDMA, TDMA jusqu'à 120 comm. simultanées chiffrement optionnel différents profiles (allant jusqu'au roaming et lien GSM) émission 10mW

PAN - infra-rouge

Consumer IR: héritage HiFi/TV

S-Link (Sony)

RC-5 / RC-6 (Philips)

NEC

Infrared Data Association - groupement industriel ('90)

standard utilisé par PDAs, désormais désuet

IrLAP: Infrared Link Access Protocol

IrCOMM (=serial)

OBEX (object Exchange: vCard etc.)

etc.

Technologies LAN

LAN - Ethernet

débit	fonction du câble (10BASE-T 10GBASE-T) jusqu'à 10Gb/sec
création	1973, Xerox PARC Robert METCALFE, David BOGGS
IEEE	IEEE 802.3

LAN - Ethernet

Un équipement réseau Ethernet est identifiable par son adresse "MAC" (Media Access Control): un identifiant physique sur 6 octets défini par le fabricant de la carte.

(source: https://fr.wikipedia.org/wiki/Adresse MAC)

MAC ethernet = b8:27:eb:26:aa:b4
avec b8:27:eb => Raspberry Pi Foundation

MAC Wifi = 00:e0:4c:10:44:3C avec 00:e0:4c => REALTEK SEMICONDUCTOR CORP.

- Bluetooth and NFC
- Calling and Messaging
- Carrier
- Wi-Fi

Overview

Wi-Fi HAL

Wi-Fi Infrastructure Features

STA/AP Concurrency

MAC Randomization

Passpoint R1

Carrier Wi-Fi

Wi-Fi Aware

Wi-Fi Round Trip Time (RTT)

Testing, Debugging, and Tuning Wi-Fi

Privacy: MAC Randomization

In Android 9, a developer option can be enabled (it is **disabled** by default) to cause the device to use a randomized MAC address when connecting to a Wi-Fi network. A different randomized MAC address is used per SSID.

MAC randomization prevents listeners from using MAC addresses to build a history of device activity, thus increasing user privacy.

Additionally, MAC addresses are randomized as part of Wi-Fi Aware and Wi-Fi RTT operations.

Implementation

To implement MAC randomization on your device:

- 1. Work with a Wi-Fi chip vendor to implement the IWifiStaIface.setMacAddress() HAL method.
 - The AOSP reference implementation brings the interface down, changes the MAC address, and brings the interface back up. This reference implementation behavior may not work with certain chip vendors.
- Set config_wifi_support_connected_mac_randomization
 ✓ to true in the Settings config.xml (this can be done in a device custom overlay).
 - This flag is used to control whether the Connected MAC Randomization toggle is shown in the developer
 option of the reference Settings implementation. If true, the toggle is shown; if false, the toggle is not shown.
- 3. Test your implementation using the methods described in Validation.

Contents
Implementation
Validation

4444

LAN - WiFi

fréquence	2,4 Ghz	
portée	plusieurs mètres	
débit	(b) 6 Mbits/sec, (a, g) 25 Mbits/sec, (n) 600 Mbits/ses (ac) 1,3 Gbits/sec	
création	IEEE, 1997	
IEEE	IEEE 802.11	
propriétés	modes: infrastructure, ad hoc, bridge, range-extender encryption: WEP, WPA/WPA2	

LAN - WiFi

Une "passerelle" Wifi est identifiée par un "SSID" qui peut être "broadcasté" de manière répétée, permettant sa découverte.

WEP et WPA sont des mécaniques d'autorisation et de chiffrement des échanges WiFi.

Wireless Network:	Enabled Disabled
Network Name (SSID):	HOME-D12F
Mode:	802.11 b/g/n ▼
	WPA2-PSK (AES) ▼
Channel Selection:	Open (risky) WEP 64 (risky) WEP 128 (risky)
	WPA-PSK (TKIP) WPA-PSK (AES) WPA2-PSK (TKIP)
Network Password:	WPA2-PSK (AES) WPAWPA2-PSK (TKIP/AES) (recommended)
Show Network Password:	€

LAN/WAN - Wavenis

Wavenis et les autres "prétendants" aux faibles consommations

	Wavenis	802.15.4 ZigBee	KNX	Bluetooth
Bandes de fréquence	868 MHz (Europe) 915 MHz (USA) 433 MHz (Asie)	868 MHz (Europe) 915 MHz (USA) 2,4 GHz (monde)	433 MHz 868 MHz (Europe)	2,4 GHz
Couche physique PHY	FHSS Mono-canal	DSSS	Monocanal	FHSS
Débit effectif	4K < 20 K < 100 Kbps	25 Kps	16 Kbps	1 Mbps
Autonomie de la pile (typique)	10 ans	3 ans	2 ans	-
Portée	200 m à l'extérieur 1 km à l'extérieur	20 m	50 m	10 m

fréquence	ISM: 868 MHz	
portée	jusqu'à 1km en champ libre	
débit	19 kbit/s (max 100)	
création	Coronis Systems (FR)	
usages	télé-relève, smart lighting	
propriétés	technologie propriétaire (mais alliance ouverte) longue portée trame courte (max ques centaines de bytes) basse consommation gestion batterie pas de crypto (couche app.)	

source: http://www.mesures.com/pdf/old/Wavenis.pdf

LAN - M-Bus

Mode	Frequency(MHz)	Notes
S (Stationary)	868	Meters send data few times a day
T (Frequent Transmit)	868	Meters send data several times a day
C (Compact)	868	Higher data rate version of mode T
N (Narrowband)	169	Long range, narrow band system
R (Frequent Receive)	868	Collector reads multiple meters on different frequency channels
F (Frequent Tx and Rx)	433	Frequent bi-directional communication

fréquence	ISM: 868MHz, 433MHz, 169MHz	
création	europe, 2013	
usages	télé-relève gaz ou électicité	
propriétés	standard européen (EN 13757-4) différents mode (et freq.) France: mode N, très simple, standard industriel (Grdf)	

source: http://www.adeunis-rf.com/ / http://pages.silabs.com/rs/634-SLU-379/images/introduction-to-wireless-mbus.pdf

Technologies WAN

GSM/GPRS/3G/4G...

source:

http://blog.thiga.fr/innovation-digitale/mobile-mieux-comprendre-les-frequences-et-les-technologies/

GSM/GPRS/3G/4G...

·70 – ·80	Radiocom 2000 (analogique) / Nordic Mobile Telephone (NMT) (numérique)	1G
1990	GSM: tout numérique, standard européen (ETSI) puis mondial (3GPP) interopérabilité et roaming	2G
2000	General Packet Radio Service (GPRS) : connexion de données (data)	
2003	EDGE (Enhanced Data Rates for GSM Evolution) optimisation data (compression)	
2004	UMTS voix et data en simultané + meilleur bande passante	3G
2005 / 2006 (2008 / 2010)	HSDPA (H) / HSPA (H+)	3.5 G
2008 / 2009	LTE (Long Term Evolution) / LTE Avdanced ("4G") standard mondial (3GPP), 100% paquets	4G

Evolution réseaux cellulaire pour l'IoT

Enjeux: optimiser bande passante / consommation énergétique + focalisation sur échanges data

LTE cat M1 (3gpp) évolution LTE pour IoT

NB-IoT (Huawei)
protocole IoT compatible avec gateways LTE Huawei

CG-GSM: évolution 2G pour IoT

5G IoT ???

WAN - Sigfox

Techno / Réseau privé (licensing) couverture internationale "LPWAN" (long range, low power)

fréquence	ISM: 868MHz (EU)	
création	Sigfox (FR), 2010	
débit	< 100 bit/s	
usages	télé-relève, transport	
propriétés	propriétaire low power long range (30 - 50km) bi-directionnel ultra narrow band	
	jusqu'à récemment unidirectionnel (=> émission multiples et pas de garantie)	
	Jan San San San San San San San San San S	

WAN - LoRa (LoRaWAN)

concurrent Sigfox, standardisation via LoRa Alliance, spec ouverte mais un seul fondeur, réseaux privés ou publiques

fréquence	ISM: 868MHz (EU)	
création	Cycléo (FR) puis Semtech, 2012	
débit	0,3 - 50 kbit/s	
usages	télé-relève, smart city	
propriétés	low power long range (1 - 15km) communication large bande réseaux privés ou publique (basestation très peu chère) sécurisé (double crypto) bi-directionnel / ack	

Protocoles

Protocole standard (RFCs) - a permis la naissance d'Internet! Adresse uniquement le routage d'un paquet (= "datagram")

Information de source / destination Fragmentation / réassemblage Unicast / Multicast / Broadcast

unicast

1980 - IPv4:

adresses 32 bits

1998 - IPv6 (IETF):

adresses 128 bits, intègre IPSec, optimisations pour réseaux privés

header IPv4:

- ICMP(Internet Control Message Protocol): signalisation liée à IP (ex: ping, notification de problème de transmission...)
- IGMP (Internet Group Message Protocol): gestion souscriptions multicase
- ARP (Address Resolution Protocol): pour résolution MAC / IP IPv4 (en IPv6 : NDP = Neighbor Discovery Protocol)

Reserved address blocks

Range	Description	Reference
0.0.0.0/8	Current network (only valid as source address)	RFC 6890@
10.0.0.0/8	Private network	RFC 1918₽
100.64.0.0/10	Shared Address Space	RFC 6598₺
127.0.0.0/8	Loopback	RFC 6890₺
169.254.0.0/16	Link-local	RFC 3927₽
172.16.0.0/12	Private network	RFC 1918₺
192.0.0.0/24	IETF Protocol Assignments	RFC 6890₺
192.0.2.0/24	TEST-NET-1, documentation and examples	RFC 5737₺
192.88.99.0/24	IPv6 to IPv4 relay (includes 2002::/16)	RFC 3068₺
192.168.0.0/16	Private network	RFC 1918₺
198.18.0.0/15	Network benchmark tests	RFC 2544₺
198.51.100.0/24	TEST-NET-2, documentation and examples	RFC 5737₺
203.0.113.0/24	TEST-NET-3, documentation and examples	RFC 5737₺
224.0.0.0/4	IP multicast (former Class D network)	RFC 5771 ₺
240.0.0.0/4	Reserved (former Class E network)	RFC 1700 ₺
255.255.255.255	Broadcast RF0	

```
% ifconfig
wlp3s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
   inet 192.168.43.43   netmask 255.255.255.0   broadcast 192.168.43.255
   inet6 fe80::f425:7aeb:24cd:6539   prefixlen 64   scopeid 0x20<link>
    ether e0:94:67:75:5b:9d   txqueuelen 1000 (Ethernet)
   RX packets 430830   bytes 537633029 (537.6 MB)
   RX errors 0 dropped 0 overruns 0 frame 0
   TX packets 112598   bytes 14531015 (14.5 MB)
   TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```
% traceroute google.fr
traceroute to google.fr (216.58.206.227), 64 hops max
     192.168.43.1 1,397ms 1,146ms 1,267ms
     10.125.116.5 33,115ms 41,063ms 40,006ms
     10.125.120.28 33,564ms 36,529ms 40,065ms
     10.125.120.50 41,584ms 89.89.100.226 30,213ms 38,649ms
     89.89.100.226 39,677ms 212.194.171.148 48,507ms 89.89.100.226 29,912ms
     212.194.171.148 48,818ms 41,455ms 38,826ms
     * * 212.194.171.153 54,967ms
     * 209.85.148.0 36,251ms 28,879ms
     209.85.148.0 28,171ms 108.170.252.227 26,019ms 23,790ms
10
     108.170.252.226 27,502ms 64.233.175.243 32,163ms 36,535ms
11
     216.239.35.201 35,001ms 72.14.238.52 33,994ms 35,852ms
     108.170.235.98 34,871ms 108.170.244.225 33,287ms 34,869ms
12
13
     108.170.244.161 38,731ms 216.239.48.147 37,382ms 33,764ms
 14
     216.239.48.151 36,393ms 216.58.206.227 34,924ms 216.239.48.151 32,685ms
```

UDP (User Datagram Protocol)

Fine couche au dessus d'IP:

- port source/cible,
- somme de contrôle additionnelle

Port Source (16 bits)	Port Destination (16 bits)
Longueur (16 bits)	Somme de contrôle (16 bits)
Données (lo	ngueur variable)

<u>Usages</u>: NTP, DNS, temps-réel / faible latence (VoIP, jeux), CoAP => de nouveaux tendances pour optimiser latence (QUIC / draft HTTP 3)

TCP (Transmission Control Protocol)

le plus répandu au dessus de IP.

- protocole connecté (couche "session")
- ré-ordonnancement de paquets ("segments")
- détection de perte / reprise
- contrôle de flux (windowing)

<u>Usages</u>: protocoles haut niveau session (Telnet, SSH, HTTP, FTP, SMTP...)

TCP

Format d'une trame:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
Port Source 2 octets	Port destination 2 octets	
Numéro de séquence		
Numéro d'acquittement		
Taille de l'en-tête Réservé ECN / NS CWR ECE URG ACK PSH RST SYN FIN	Fenêtre	
Somme de contrôle	Pointeur de données urgentes	
Options	Remplissage	
Données	<i>*</i>	

TCP

Source: http://www.cs.unc.edu/~fhernand/diss-html/img88.png

DNS protocol

"Domain Name System", 1983. bâti sur UDP (ou TCP)

permet d'interroger un inventaire pour obtenir des informations sur un nom de domaine:

adresse(s) IP (par type de service: mail, etc.)

DNS secondaires

info sécurité

info contact

serveurs racine: ICANN

DHCP

"Dynamic Host Configuration Protocol"

Configuration IP dynamique:

- attribution d'une IP
- IP passerelle

- ..

Emission / réception en Broadcast IP.

HTTP

"HyperText Transfer Protocol" le protocole du "web" (1991 - Tim Berners-Lee)

Requête / réponse au dessus de TCP/IP.

Verbe (GET/POST...) + URL. Headers

Version 2 (2015): échanges asynchrones

```
Connexion au serveur par telne
$ telnet www.perdu.com 80
Trying 208.97.177.124...
Connected to www.perdu.com.
Escape character is '1'.
                                                 Requête HTTP
GET / http/1.1
Host: www.perdu.com
                                                 Réponse du serveur : headers
HTTP/1.1 200 OK
Date: Sat, 17 Aug 2013 11:59:04 GMT
Server: Apache
Accept-Ranges: bytes
X-Mod-Pagespeed: 1.1.23.1-2169
Vary: Accept-Encoding
Cache-Control: max-age-0, no-cache
Content-Length: 284
Content-Type: text/html
<html><head><title>Vous Etes Perdu ?</title></head><body><ht>Perdu sur 1'Interne
t ?</h1><h2>Pas de paníque, on va vous aider</h2><strong>
êtes ici</strong></body></html>
                                                 Réponse du serveur : bodu
```


CoAP

"Constrained Application Protocol" équivalent HTTP compact sur UDP (ou SMS ou TCP)

Authentification via DTLS.

Mécanisme de Pub/Sub.

			Table 3 Mess	sage Format	
0			1	2	3
0 1	23	4567	89012345	6789012345	678901
Ver	T	OC	Code	MessageII	D
			Token (if any,	TKL bytes)	
			Options (if any)	
			Payload (if any)	

source: http://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/

SOAP

"Simple Object Access Protocole"

Protocol RPC (remote procedure call) via échanges XML sur HTTP.

WSDL (WebService Description Language): contrat d'interface pour WebService SOAP.

XMPP

"eXtensible Messaging and Presence Protocole"

Protocole de messaging, XML sur TCP.

(Jabber, repris par IETF)

MQTT

"MQ Telemetry Protocol"

Protocole publish/subscribe au dessus de TCP/IP.

authentification clients

contrôle fin de qos de publication (niveau d'acquittement)

client

Server (« broker »)

connect (clientId, username/pwd) connack publish (topic, message, qos) (opt) puback... subscribe (topic, qos) (opt) suback... publish (topic, message, gos)

AMQP

"Advanced Message Queue Protocol"

Publish/Subscribe (et admin de router/topics) via TCP/IP.

Porté par consortium bancaire / IT(JP Morgan) depuis 2003.

Plusieurs version incompatibles (0.9.1, 1.0)

FTP

"File Transfer Protocol"

Partage (list, lecture, suppression) et transfert de fichiers.

Double connections TCP: contrôle et transfert.

Autres protocoles notables

- BitTorrent: partage de fichiers
- SSH ("secure shell"): terminal à distance
- SCP ("secure copy"): transfert de fichier (basé sur SSH)
- NTP (network time protocol): synchronisation d'horloges
- SMTP / POP / IMAP : messagerie électronique (email)
- ...

Cryptographie

= outils et techniques pour sécuriser des échanges

Chiffrement symétrique

Principe:

un secret (ou « clé ») est connu de l'émetteur et du destinataire, un algorithme permet de passer du contenu en clair au contenu chiffré et inversement au moyen du secret (S).

Implémentations:

- Chiffrement par bloc: DES, 3DES, IDEA, Blowfish, AES*
- Chiffrement par flux: RC4, SEAL

Chiffrement Asymétrique

Principe:

- une paire clé privée / clé publique est utilisée,
- un contenu peut être <u>chiffré</u> via la clé publique puis déchiffré par la clé privée, ou encore <u>signé</u> via la clée privée et vérifié par la clé publique.

La clé publique est diffusable librement.

Implémentations / Algorithmes:

RSA (1978) / Diffie et Hellman / Courbes elliptiques

Certificat cryptographique

Principe:

un certificat cryptographique associe une clé publique à une identité, pour une plage de temps donnée.

Un certificat peut lui-même être signé par une « autorité de certification », on peut ainsi créer des « chaine de certification ».

Standard: X.509

Identité du site web

Site web: www.facebook.com

Propriétaire: Ce site web ne fournit pas d'informations sur son propriétaire.

Vérifiée par : DigiCert Inc

Expire le: jeudi 25 janvier 2018

Détails du certificat : « *.facebook.com »

Ce certificat a été vérifié pour les utilisations suivantes :

Certificat client SSI

Certificat serveur SSL

Émis pour

Nom commun (CN) *.facebook.com
Organisation (O) Facebook, Inc.

Unité d'organisation (OU) < Ne fait pas partie du certificat>

Numéro de série 0C:00:99:87:D7:89:C9:F6:66:26:31:7F:8C:FA:7C:1C

Émis par

Nom commun (CN) DigiCert SHA2 High Assurance Server CA

Organisation (O) DigiCert Inc

Unité d'organisation (OU) www.digicert.com

Période de validité

Débute le vendredi 9 décembre 2016 Expire le jeudi 25 janvier 2018

Empreintes numériques

Empreinte numérique SHA-256 15:21:51:B3:87:41:2A:95:AB:90:FD:46:64:F2:D9:88: 80:40:8E:9E:43:91:31:24:E4:C9:12:26:A4:83:38:6B

Empreinte numérique SHA1 93:6F:91:2B:AF:AD:21:6F:A5:15:25:6E:57:2C:DC:35:A1:45:1A:A5

Certificats cryptographiques - compléments

CSR

« Certificate Signature Request »

il s'agit d'une demande de signature dde certificat auprès d'un autorité: la demande est chiffrée avec la clé publique de l'autorité.

CRL

« Certificat Revocation List »

Permet de diffuser une liste de certificats « blak listés » (parce que volés par exemple).

Hash cryptographique

Principe:

une fonction de « hashing » permet de produire une « empreinte » (le « hash ») compact d'un contenu.

On ne peut pas remonter du de l'empreinte au contenu d'origine.

On ne peut pas forger de contenu ayant une empreinte donné.

En disposant d'un hash, il est donc possible de s'assurer qu'un contenu n'a pas été altéré.

Implémentations / Algorithmes: MD5, SHA1, SHA256

Résumé - outils cryptographiques

Chiffrement symétrique vs asymétrique

Symétrique:

AFS

Asymétrique

RSa

ECC

Hash: md5, Sha

Certificat = identité + clé publique (format: x509)

CSR: certificate signature request

CRK: Certificate Revocation List

Protocoles cryptographiques: SSL / TLS

```
SSL = « Secure Socket Layer » (Netscape, 1994)

TLS = « Transport Layer Security » (= SSL v3.0) (1999 IETF)
```

Fonctions:

- Authentification (serveur et/ou client)
 => éviter l'usurpation d'identité d'un des interlocuteurs
- Confidentialité des échanges
 => empêcher le vol de données sensibles par interception
- Intégrité des informations transmises
 => empêcher l'injection de données fabriquées

SSL/TLS

DTLS (Datagram TLS)

- = TLS appliqué à un transport "datagram" (UDP, SMS...)
- Échange de « records »
- numéro de séquence explicite
- Accepte doublons, pertes...
- Encryption « stateless » (pas de chiffrement par flot)

Principes

Modèle OSI:

modèle théorique en 7 couches distribuant les mécanismes utiles à une communication applicative:

couches physique / liaison / réseau / transport / session / présentation /application

• Communication radio:

l'utilisation des différentes bandes de fréquence est encadré, certaines bandes sont réservées (usage militaire, bandes sous licence opérateur), d'autres sont ouvertes (bandes "ISM")

Protocoles:

un "protocole" est un ensemble de règle / convention qui permettent à deux interlocuteurs d'échanger et de se comprendre.

(ex: fréquences à utiliser et rythme d'échange, manière de détecter la présence / pallier aux collisions / erreurs, découpage et représentation des données...)

Protocoles radio

il en existe de très nombreux, qui se démarquent par des différence de portée/débit/verbosité/sécurité, certains sont même spécifiques à un domaine d'application.

Exemples:

- oLes standard (généralistes): Wifi, Bluetooth / BLE, 802.15.4, NFC
- ODomotique: zigbee, z-wave, EnOcean
- o "LPWAN" bas débit, basse consommation et longue portée: LoRa, Sigfox
- ○Spécifiques: Ant/Ant+ (sport), Dect (téléphonie fixe), Wavenis / MBus (relève de compteurs)
- ∘ Réseaux cellulaire (sur fréquences privées) : GSM, 2G/3G/4G... (derrière lesquels un forêt de technologies: GPRS, HSPA, LTE...=)

L'IoT a pour particularité de pousser à l'émergence de protocoles basse consommation, ce qui se diffuse dans les standards cellulaire par ex. (NB-IOT, LTE-M).

Protocoles IP

- Internet repose sur la famille des protocoles "IP" qui permettent à des ordinateurs de communiquer d'un bout à l'autre du globe.
- TCP et UDP sont les deux protocoles de transport majeurs au dessus d'IP, sur lesquels se fondent l'ultra majorité des protocoles applicatifs modernes (HTTP pour le web, SMTP/POP/... pour les mails, FTP/bittorrent pour l'échange de fichiers...)
- HTTP est utilisé par ailleurs exposer des "services web / API": des interfaces web applicatives permettant d'interconnecter des programmes ("services web"), associé aux formats JSON ou XML pour représenter la donnée.

Cryptographie

= un ensemble d'outils fondés sur les mathématiques, permettant de sécuriser échanges ou secret:

- authentifier: s'assurer de l'identité d'un interlocuteur
- chiffrer: rendre un contenu / un échange incompréhensible pour un attaquant

TLS (et son pendant pour UDP: DTLS) est un protocole permettant de sécuriser une communication TCP.

Un "certificat" identifie un interlocuteur de confiance.

Les bandes de fréquence

