

2018 NASAC报告交流

How far have we progressed in the journey?

An examination of cross-project defect prediction

周毓明

南京大学 2018.11.23

提纲

- (1) 跨项目缺陷预测
- 2 简单的预测模型
- 3 实验结果的对比
- 4 实验结论与建议

提纲

- (1) 跨项目缺陷预测
- 2 简单的预测模型
- 3 实验结果的对比
- 4 实验结论与建议

缺陷预测:基本问题

哪些模块有可能包含bug?

一个软件系统

缺陷预测: 分类场景

缺陷预测:排序场景

缺陷预测:一般流程

缺陷预测:一般流程

如果训练数据足够大, 缺陷预测一般具有较好性能

跨项目缺陷预测:基本概念

如果训练数据<mark>足够大,</mark> 缺陷预测一般具有较好性能

能否使用其他项目(源项目)的数据训练预测模型,在目标项目上使用(CPDP)?

跨项目缺陷预测: 主要挑战

如果训练数据<mark>足够大,</mark> 缺陷预测一般具有较好性能

能否使用其他项目(源项目)的数据训练预测模型,在目标项目上使用(CPDP)?

源项目和目标项目 数据分布不同 源项目和目标项目 使用异构的特征

跨项目缺陷预测: 主要挑战

源项目和目标项目 数据分布不同

挑战1: 常规的建模技术要求训练集和测试集

具有相似的数据分布特性?

源项目和目标项目 使用异构的特征

挑战2: 常规的建模技术要求训练集和测试集 使用相同的特征集?

目标项目

跨项目缺陷预测: 当前文献

到2017年3月止,发表72篇

(英文、全文可得、期刊/会议版只算期刊、分类/排序)

跨项目缺陷预测: 当前文献

learning

transfer

heterogeneous

提纲

- 1 跨项目缺陷预测
- 2 简单的预测模型
- 3 实验结果的对比
- 4 实验结论与建议

简单模型:重要性

Does Bug Prediction Support Human Developers? Findings from a Google Case Study

Chris Lewis¹, Zhongpeng Lin¹, Caitlin Sadowski², Xiaoyan Zhu³, Rong Ou², E. James Whitehead Jr.¹ University of California, Santa Cruz, USA ²Google Inc., USA ³Xi'an Jiaotong University, China {cflewis,linzhp,ejw}@soe.ucsc.edu, {supertri,rongou}@google.com, xyxyzh@gmail.com

简单模型:重要性

Less, but better

训练集

No	WMC	LCOM	 SLOC	Fault
1	35	96	 1255	2
2	73	100	2828	0

训练 模型

复杂模型

No	WMC	LCOM	•••	SLOC	Fault
1	15	9		135	?
2	45	10		282	?

应用 模型

训练集

No	WMC	LCOM	 SLOC	Fault
1	35	96	 1255	2
2	73	100	2828	0

训练 模型

复杂模型

测试集

No	WMC	LCOM	•••	SLOC	Fault
1	15	9		135	?
2	45	10		282	?

应用 模型

应用 模型

预测结果

需要对比

测试集

No	WMC	LCOM	•••	SLOC	Fault
1	15	9		135	?
2	45	10		282	?

分类场景(评价指标:F1和AUC等)

ManualDown: (规模越大, 缺陷数目可能越多)

- (1) 模块按源代码行SLOC从大到小排序
- (2) 前50%的模块预测为"有缺陷",其他为"无缺陷"
- (3) 审查或者测试"有缺陷"的模块

许多文献表明: ManualDown有较好的分类性能

测试集

No	WMC	LCOM	•••	SLOC	Fault
1	15	9		135	?
2	45	10		282	?

排序场景 (评价指标: PofB20和Popt等)

ManualUp: (规模越小,缺陷密度可能越大)

- (1) 模块按源代码行SLOC从小到大排序
- (2) 从前往后依次审查或者测试

许多文献表明: ManualUp有较好的排序性能

对一个给定的跨项目缺陷预测模型

分类场景

跨项目预测模型应与测试集上的ManualDown比较

排序场景

跨项目预测模型应与测试集上的ManualUp比较

提纲

- (1) 跨项目缺陷预测
- 2 简单的预测模型
- 3 实验结果的对比
- 4 实验结论与建议

模型对比原则

现有CPDP模型 vs. 简单模型

原则1: 用原始论文使用的测试数据

原则2: 用原始论文使用的性能指标

原则3: 用原始论文中报告的性能值

原则4: 检查差别在统计上是否显著

(Wilcoxon signed-rank test)

检查差别在实用上是否重要

(cliff's delta)

预测结果对比: 分类场景

Study	The CPDP model	N	Indicator	Model pe	erformance	1 7	Difference		Statistic	al test		ect size
Study	The CPDP model	- IN	indicator	CPDP	ManualDown	mean	median	sd	p-value*	power	cliff's 8	Size
Zhang et al. [122]	MT+	18	F ₁	0.448(0.170)	0.484(0.178)	-0.036	-0.021	0.146	0.728	0.237	-0.136	Trivia
		100000	AUC	0.722(0.092)	0.749(0.065)	-0.027	-0.024	0.080	0.525	0.395	-0.148	Smal
Stuckman et al. [101]	Metric+CFA	6	F ₁	0.294(0.245)	0.269(0.258)	0.025	-0.001	0.052	1.000	0.249	<-0.001	Trivia
Aarti et al. [1]	ANN	19	F ₁	0.266(0.130)	0.382(0.134)	-0.116	-0.086	0.177	0.045	0.920	-0.457	Moderate
Herbold et al. [37]	EM	79	F ₁ AUC	0.419(0.176) 0.643(0.093)	0.464(0.201)	-0.045	-0.022 -0.093	0.136	0.025	0.947	-0.141 -0.507	Trivia Large
Jing et al. [42]	SSTCA+ISDA	- 8	F2	0.661(0.034)	0.582(0.093)	0.080	0.068	0.068	0.030	0.959	0.563	Large
ATTINE ATTIONNE ATTION			AUC	0.796(0.022)	0.760(0:062)	0.036	0.049	0.065	0.525	0.417	0.438	Moderate
Krishna et al. [52]	Bellwether	19	ED	0.386(0.073)	0.343(0.073)	0.043	0.024	0.093	0.228	0.660	0.277	Smal
Xia et al. [116]	HYDRA	29	F ₁	0.544(0.223)	0.515(0.164)	0.029	0.008	0.114	0.728	0.382	0.062	Trivia
Zhang et al. [123]	Universal	5	AUC	0.741(0.060)	0.725(0.056)	0.016	-0.013	0.051	1.000	0.112	0.120	Trivia
Wang et al. [109]	DBN	22	F,	0.568(0.151)	0.534(0.131)	0.033	-0.032	0.168	1.000	0.199	0.103	Trivia
Ryu et al. [93]	VCB-SVM	9	AUC	0.768(0.128)	0.788(0.074)	-0.020	0.005	0.066	1.000	0.179	0	Trivia
Ryu et al. [92]	MONBNN	13	Balance	0.621(0.073)	0.629(0.088)	-0,008	-0.014	0.039	0.620	0.133	-0.189	Smal
			AUC	0.686(0.105)	0.701(0.133)	-0.015	-0.016	0.062	0.526	0.179	-0.172	Sma
Hosseini et al. [39]	GIS	13	F ₁	0.484(0.284)	0.486(0.216)	-0.002	-0.024	0.099	1.000	0.051	0.018	Trivia
	0.0000		G ₂	0.543(0.241)	0.526(0.184)	0.017	-0.014	0.085	0.938	0.137	0.065	Trivia
Cheng et al. [17]	CCT-SVM	32	F ₁	0.556(0.156)	0.400(0.135)	0.156	0.113	0.197	< 0.001	1.000	0.541	Larg
	Section 1		AUC	0.741(0.062)	0.763(0.068)	-0.022	-0.019	0.076	0.369	0.506	-0.179	Sma
Kaur et al. [45]	POP	16	AUC	0.762(0.087)	0.747(0.086)	0.015	0.022	0.034	0.341	0.549	0.102	Trivia
Catal et al. [14]	Threshold	6.	AUC	0.685(0.055)	0.755(0.064)	-0.070	-0.068	0.037	0.094	0.998	-0.611	Larg
He et al. [29]	TDSelector	15	AUC	0.720(0.080)	0.721(0.110)	-0.002	-0.003	0.059	0.938	0.053	-0.102	Trivia
Ryu et al. [94]	HISNN	6	Balance	0.669(0.041)	0.646(0.039)	0.023	0.036	0.035	0.369	0.427	0.389	Moderat
Peters et al. [85]	LACE2	10	G ₁	0.583(0.051)	0.662(0.048)	-0.078	-0.066	0.039	0.010	1.000	-0.760	Larg
Jing et al. [41]	CCA+	74	F ₁	0.592(0.170)	0.418(0.156)	0.174	0.141	0.188	< 0.001	1.000	0.553	Larg
Nam et al. [79]	HDP	28	AUC	0.711(0.108)	0.713(0.114)	-0.003	-0.001	0.026	0.648	0.102	-0.036	Trivia
Singh et al. [99]	NB	42	AUC	0.701(0.099)	0.758(0.083)	-0.052	-0.030	0.095	0.002	0.954	-0.286	Sma
Zhang et al. [126]	Max	10	F ₁	0.413(0.115)	0.399(0.136)	0.014	0.038	0.120	0.588	0.069	0.100	Trivia
Cao et al. [13]	TCANN	26	F ₁	0.451(0.186)	0.450(0.178)	0.001	< 0.001	0.035	1.000	0.054	-0,009	Trivia
Panichella et al. [82]	CODEP(BN)	10	AUC	0.861(0.072)	0.730(0.111)	0.131	0.088	0.105	0.010	0.994	0.820	Larg
Mizuno et al. [66]	Text	6	F ₁	0.463(0.223)	0.503(0.255)	-0.040	0.002	0.120	1.000	0.145	-0.167	Sma
He et al. [27]	IFS(tca)	19	F ₁	0.475(0.104)	0.469(0.172)	0.007	0.004	0.164	1.000	0.055	0.058	Trivia
Peters et al. [84]	LACE1(m40)	10	G_1	0.598(0.101)	0.604(0.104)	-0.006	-0.010	0.064	1.000	0.062	-0.060	Trivia
Peters et al. [86]	Peter-filter	21	Gi	0.694(0.265)	0.667(0.172)	0.028	0.061	0.342	0.622	0.072	0.263	Sma
Turhan et al. [107]	Mixed	32	Balance	0.623(0.105)	0.638(0.063)	-0.015	0.010	0.110	1.000	0.157	-0.021	Trivia
Nam et al. [80]	TCA+	26	F ₁	0.454(0.151)	0.450(0.178)	0.004	-0.013	0.061	1.000	0.066	0.030	Trivia
Ma et al. [61]	TNB	9	F ₁	0.376(0.172)	0.370(0.152)	0.006	0.003	0.031	0.938	0.102	0.012	Trivia
			AUC	0.699(0.076)	0.788(0.074)	-0.089	-0.076	0.031	0.018	1.000	-0.630	Larg
Uchigaki et al. [108]	Ensemble	20	AUC	0.701(0.058)	0.724(0.064)	-0.024	-0.033	0.019	0.004	1.000	-0.430	Moderat
He et al. [32]	DT	34	\mathbf{F}_{1}	0.627(0.156)	0.490(0.172)	0.137	0.121	0.067	< 0.001	1.000	0.420	Moderat
Liu et al. [59]	GP(V-V)	18	NECM	0.741(0.153)	0.730(0.102)	0.011	-0.005	0.069	1.000	0.093	-0.022	Trivia
Khoshgoftaar et al.[48]	MLMD	18	NECM	0.862(0.214)	0.730(0.102)	0.133	0.139	0.167	0.031	0.978	0.380	Moderat

^{*:} Benjamini-Hochberg-corrected p-value. BN: Bayes Network.

Win/Tie/Loss in the Classification Prediction Scenario

	Statistical significance	Practical importance
Number of comparisons	5/29/8	5/30/7
Number of studies	5/23/7	5/23/7

预测结果对比: 分类场景

Study	The CPDP model	N	Indicator	Model pe	erformance		Difference		Statistic	al test	Effe	ct size
Study	The CPDP model	IN	Indicator	CPDP	ManualDown	mean	median	sd	p-value"	power	cliff's 8	Size
Panichella et al. [82]	CODEP(BN)	10	AUC	0.861(0.072)	0.730(0.111)	0.131	0.088	0.105	0.004	0.994	0.820	Large
Jing et al. [42]	CODEP	-8	F2	0.415(0.071)	0.582(0.093)	-0.167	-0.197	0.068	0.018	1.000	-0.875	Large
			AUC	0.635(0.035)	0.760(0.062)	-0.125	-0.136	0.067	0.012	1.000	-1.000	Large
Xia et al. [116]	CODEP(LR)	29	F ₁	0.417(0.116)	0.515(0.164)	-0.098	-0.055	0.129	< 0.001	0.998	-0.400	Moderate
Zhang et al. [126]	CODEP(LR)	10	F ₁	0.301(0.131)	0.399(0.136)	-0.098	-0.032	0.212	0.261	0.385	~0.340	Moderate
Herbold et al. [35]	CODEP(BN)	86	F ₁	0.360(0.169)	0.475(0.204)	-0.115	-0.089	0.174	< 0.001	1.000	-0.339	Moderate
			G ₁	0.467(0.197)	0.646(0.085)	-0.178	-0.152	0.192	< 0.001	1.000	-0.573	Large
			MCC	0.238(0.151)	0.255(0.169)	-0.017	-0.013	0.130	0.268	0.324	-0.082	Trivia
			AUC	0.617(0.080)	0.732(0.113)	-0.115	-0.111	0.093	< 0.001	1.000	-0.626	Large

^{*:} Benjamini-Hochberg-corrected p-value.

Study	N	Indicator	Model pe	rformance	1	Difference	- 1	Statistic	al test	Effe	ct size
Study	IN	indicator	CPDP	ManualDown	mean	median	sd	p-value*	power	cliff's δ	Size
Jing et al. [41]	74	F ₁	0.592(0.170)	0.418(0.156)	0.174	0.141	0.188	< 0.001	1.000	0.553	Large
Cheng et al. [17]	32	F ₁	0.535(0.161)	0.400(0.135)	0.135	0.102	0.201	< 0.001	0.996	0.480	Large
1111 TAKO - 171 BO		AUC	0.719(0.062)	0.763(0.068)	-0.044	-0.037	0.078	0.009	0.969	-0.346	Moderate
Li et al. [57]	30	AUC	0.641(0.062)	0.749(0.072)	-0.108	-0.109	0.075	< 0.001	1.000	-0.739	Large
Li et al. [58]	28	F2	0.482(0.112)	0.517(0.144)	-0.035	-0.058	0.097	0.074	0.622	-0.154	Small
		G ₃	0.635(0.051)	0.642(0.079)	-0.007	-0.021	0.073	0.399	0.099	-0.230	Small
		AUC	0.669(0.058)	0.713(0.114)	-0.043	-0.059	0.094	0.009	0.830	-0.421	Moderate

^{*:} Benjamini-Hochberg-corrected p-value.

Charles	NI.	Indicator	Model pe	1	Difference		Statistic	al test	Effect size		
Study	IN	indicator	CPDP	ManualDown	mean	median	sd	p-value*	power	cliff's δ	Size
Jing et al. [42]	74	F2	0.661(0.034)	0.582(0.093)	0.080	0.068	0.068	0.008	0.959	0.563	Large
		AUC	0.796(0.022)	0.760(0.062)	0.036	0.049	0.065	0.250	0.417	0.438	Moderate
Li et al. [57]	30	AUC	0.659(0.064)	0.749(0.072)	-0.089	-0.086	0.032	< 0.001	1.000	-0.633	Large

^{*:} Benjamini-Hochberg-corrected p-value.

分类场景

ManualDown不比大多数现有的CPDP模型差

预测结果对比: 排序场景

Study	the	N	Indicator	Model pe	rformance		Difference		Statistic	al test	Effe	ct size
Study	CPDP model	14	Indicator	CPDP	ManualUp	mean	median	sd	p-value*	power	cliff s δ	Size
Xia et al. [116]	HYDRA	29	PofB20	0.330(0.146)	0.481(0.192)	-0.150	-0.109	0.157	< 0.001	1.000	-0.467	Moderate
You et al. [118]	ROCPDP	39	Prec@10	0.382(0.179)	0.621(0.256)	-0.238	-0.200	0.263	< 0.001	1.000	-0.563	Large
Canfora et al. [12]	MODEP(LR)	10	AUCEC	0.836(0.129)	0.759(0.158)	0.077	0.085	0.044	0.023	1.000	0.280	Small
Zhang et al. [126]	Bagging(J48)	10	NofB20	40.6(33.964)	37.7(31.457)	2,900	-2.000	15.481	1.000	0.104	-0.030	Trivial
Panichella et al. [82]	CODEP(LR)	10	AUCEC	0.541(0.079)	0.718(0.158)	-0.177	-0.111	0.224	0.046	0.814	-0.740	Large

^{*:} Benjamini-Hochberg-corrected p-value.

2004. Se	Statistical significance	Practical importance			
Number of comparisons	1/1/3	1/1/3			
Number of studies	1/1/3	1/1/3			

Study	the CPDP model	N	Indicator	Model performance		Difference		Statistical test		Effect size		
				CPDP	ManualUp	mean	median	sd	p-value*	power	cliff's 8	Size
Canfora et al. [12]	MODEP(LR)	10	AUCEC	0.836(0.129)	0.759(0.158)	0.077	0.085	0.044	0.028	1.000	0.280	Small
Xia et al. [116]	MODEP(LR)	29	PofB20	0.191(0.109)	0.481(0.192)	-0.290	-0.295	0.243	< 0.001	1.000	-0.772	Large
Chen et al. [16]	MULTI-M	30	ACC	0.730(0.078)	0.747(0.073)	-0.017	-0.007	0.119	0.487	0.148	-0,211	Small
			Popt	0.889(0.045)	0.899(0.043)	-0.009	-0.007	0.070	0.487	0.143	-0.289	Small

^{*:} Benjamini-Hochberg-corrected p-value.

排序场景

ManualUp不比现有的CPDP模型差

Herbold等的CPDP Benchmark

亮点1: 实现了2008-2015期间24个CPDP模型

亮点2: 实现了4个项目内的baseline模型

亮点3: 在86个公共数据集上对比24+4个模型

亮点4: 采用F1、G1、AUC和MCC性能评价

亮点5: 源代码和分析结果公开

分类场景

ManualDown vs. 24个CPDP模型

与Herbold等的Benchmark对比

与Herbold等的Benchmark对比

提纲

- 1 跨项目缺陷预测
- 2 简单的预测模型
- 3 实验结果的对比
- 4 实验结论与建议

实验结论与建议

- ① 应该将简单模型作为baseline模型对比
- 2 应该全面考虑CPDP的挑战性问题
- 3 使用大量数据集和多个性能指标全面评价

谢谢!

