

Ayudantía 5

Problema 1

a) Sabiendo que para -1 < x < 1, se cumple

$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}$$

determinar la serie de potencias, en torno a x = 0, de la función $\ln (1 + x)$.

b) Utilice el resultado anterior para calcular el valor de $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$.

Problema 2

Encuentre una representación como serie de potencias para las siguientes funciones y determine el intervalo de convergencia.

a)
$$f(x) = \frac{3}{x^2 - x - 2}$$

b)
$$f(x) = \arctan\left(\frac{x}{3}\right)$$

Problema 3

Calcule la serie de Taylor para $f(x) = \sin(x)$ centrada en $a = \frac{\pi}{2}$ y determine el radio de convergencia asociado.

Problema 4

Determine la serie de Maclaurin de la función f(x). Luego, utilize los primeros 4 términos de la serie para estimar el valor de f(0,1).

$$f(x) = e^x + \arctan(x)$$

Problema 5*

Demuestre que para cualquier R > 1 y $N \in \mathbb{N}$, existe una constante c > 0 tal que para todo $n \geq N$,

$$\left(1+\frac{R}{N}\right)\left(1+\frac{R}{N+1}\right)\cdots\left(1+\frac{R}{n}\right)\geq cn^R.$$

Problema 6*

(Principio de Unicidad) Sea $I = (\alpha, \beta) \subset \mathbb{R}$ un intervalo y $f : I \to \mathbb{R}$ una función analítica en I (esto es, que coincide con sus series de Taylor en I). Demuestre que las siguientes tres propiedades son equivalentes:

- (i) f es constantemente 0 en I.
- (ii) Existe $b \in I$ tal que $f^{(n)}(b) = 0$ para todo $n \ge 0$.
- (iii) Existe una secuencia $(x_n)_{n\in\mathbb{N}}$ de números no-repetidos en I tales que $f(x_n)=0$ para todo $n\in\mathbb{N}$, la cual converge a un punto de I.

Concluya que:

- a) Si dos funciones f y g analíticas en I coinciden en cualquier subintervalo $(c \epsilon, c + \epsilon) \subset I$, entonces f = g en todo I.
- b) Si f es una función analítica en I que no es constantemente 0, entonces para cualquier $x_0 \in I$, f puede ser escrita como $f(x) = (x x_0)^m g(x)$, donde $m \ge 0$ es algún entero y g(x) es una función analítica en I tal que $g(x_0) \ne 0$.