MC-202 Grafos

Marcelo S. Reis msreis@ic.unicamp.br

Universidade Estadual de Campinas

Segundo semestre de 2023

Redes Sociais

Como representar amizades em uma rede social?

Temos um conjunto de pessoas (Ana, Beto, Carlos, etc...)

Ligamos duas pessoas se elas se conhecem

Grafos

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Representamos um grafo visualmente

- com os vértices representados por pontos e
- as arestas representadas por curvas ligando dois vértices

1

Grafos

Matematicamente, um grafo G é um par ordenado (V,E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
- ullet é o conjunto de arestas do grafo
 - Representamos uma aresta ligando $u,v\in V$ como $\{u,v\}$
 - Para toda aresta $\{u,v\}$ em E, temos que $u \neq v$
 - Existe no máximo uma aresta $\{u,v\}$ em E
 - Ex:

4

Adjacência

O vértice 0 é vizinho do vértice 4

- Dizemos que 0 e 4 são adjacentes
- ullet Os vértices 0, 1 e 5 formam a vizinhança do vértice 4

Matriz de Adjacências

Vamos representar um grafo por uma matriz de adjacências

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 u e v são vizinhos
- adjacencia[u][v] = 0 u e v não são vizinhos

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	1
3	0	0	1	0	0	1
4	1	1	0	0	0	1
5	0 1 0 0 1 0	0	1	1	1	0

TAD Grafo

```
1 typedef grafo *p_grafo;
2
3 struct grafo {
    int **adj;
4
    int n;
6 };
7
8 p_grafo criar_grafo(int n);
9
10 void destroi_grafo(p_grafo g);
11
12 void insere_aresta(p_grafo g, int u, int v);
13
14 void remove_aresta(p_grafo g, int u, int v);
15
16 int tem_aresta(p_grafo g, int u, int v);
17
18 void imprime_arestas(p_grafo g);
19
20 ...
```

Inicialização e Destruição

```
1 p_grafo criar_grafo(int n) {
2 int i, j;
   p_grafo g = malloc(sizeof(struct grafo));
    g \rightarrow n = n;
    g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)
7
       g->adj[i] = malloc(n * sizeof(int));
8
    for (i = 0; i < n; i++)
9
      for (j = 0; j < n; j++)
10
          g \rightarrow adj[i][j] = 0;
    return g;
11
12 }
1 void destroi_grafo(p_grafo g) {
2 int i;
3
  for (i = 0; i < g->n; i++)
    free(g->adj[i]);
4
5 free(g->adj);
    free(g);
7 }
```

Manipulando arestas

```
1 void insere_aresta(p_grafo g, int u, int v) {
g->adj[u][v] = 1;
3 g->adj[v][u] = 1;
1 void remove_aresta(p_grafo g, int u, int v) {
g \rightarrow adj[u][v] = 0;
g \rightarrow adj[v][u] = 0;
1 int tem_aresta(p_grafo g, int u, int v) {
   return g->adj[u][v];
3 }
```

Lendo e Imprimindo um Grafo

```
1 p_grafo le_grafo() {
    int n, m, i, u, v;
  p_grafo g;
4 scanf("%d %d", &n, &m);
 g = criar_grafo(n);
6 for (i = 0; i < m; i++) {
      scanf("%d %d", &u, &v);
7
8 insere_aresta(g, u, v);
9
10
    return g;
11 }
1 void imprime_arestas(p_grafo g) {
    int u, v;
    for (u = 0; u < g->n; u++)
3
      for (v = u+1; v < g->n; v++)
4
     if (g->adj[u][v])
5
        printf("{%d,%d}\n", u, v);
7 }
```

Quem é o mais popular?

O grau de um vértice é o seu número de vizinhos


```
1 int grau(p_grafo g, int u) {
2    int v, grau = 0;
3    for (v = 0; v < g->n; v++)
4       if (g->adj[u][v])
5         grau++;
6    return grau;
7 }
```

Quem é o mais popular?

```
1 int mais_popular(p_grafo g) {
    int u, max, grau_max, grau_atual;
    max = 0:
3
    grau_max = grau(g, 0);
4
    for (u = 1; u < g->n; u++) {
5
       grau_atual = grau(g, u);
6
7
      if (grau_atual > grau_max) {
         grau_max = grau_atual;
8
9
        max = u;
10
11
12
    return max;
13 }
```

Indicando amigos

Queremos indicar novos amigos para Ana

Quem são os amigos dos amigos da Ana?

• Dentre esses quais não são ela mesma ou amigos dela?

Indicando amigos

Seguindo e sendo seguido

Como representar seguidores em redes sociais?

- A Ana segue o Beto e o Eduardo
- Ninguém segue a Ana
- O Daniel é seguido pelo Carlos e pelo Felipe
- O Eduardo segue o Beto que o segue de volta

Grafos dirigidos

Um Grafo dirigido (ou Digrafo)

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

Representamos um digrafo visualmente

- com os vértices representados por pontos e
- os arcos representadas por curvas com uma seta na ponta ligando dois vértices

Grafos dirigidos

Matematicamente, um digrafo G é um par (V, A)

- ullet V é o conjunto de vértices do grafo
- A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u,v \in V$ como (u,v)
 - -u é a cauda ou origem de (u,v)
 - -v é a cabeça ou destino de (u,v)
 - Podemos ter laços: arcos da forma (u, u)
 - Existe no máximo um arco (u, v) em A

Grafos e digrafos

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

- É o que já estamos fazendo na matriz de adjacências
- Ou seja, podemos usar uma matriz de adjacências para representar um digrafo
 - adjacencia[u][v] == 1: temos um arco de u para v
 - pode ser que adjacencia[u][v] != adjacencia[v][u]

Número de arestas de um grafo

Quantas arestas pode ter um grafo com n vértices?

Até
$$\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$
 arestas

Grafos esparsos

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

Facebook tem 2,2 bilhões de usuários ativos/mês

- Uma matriz de adjacências teria $4,84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...
- Imprimir todos os amigos de uma pessoa leva O(n)
 - Teríamos que percorrer 2,2 bilhões de posições
 - Um usuário comum tem bem menos amigos do que isso...
 - Facebook coloca um limite de 5000 amigos

Grafos esparsos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Exemplos:

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é dn/2 = O(n)
- Grafos com $O(n \lg n)$ arestas

Não dizemos que um grafo com n(n-1)/20 arestas é esparso

- O número de arestas não é assintoticamente menor...
- É da mesma ordem de grandeza que n^2 ...

Listas de Adjacência

Representando um grafo por Listas de Adjacência:

- Temos uma lista ligada para cada vértice
- A lista armazena quais são os vizinhos do vértice

TAD Grafo com Listas de Adjacência

```
1 typedef struct no *p_no;
3 struct no {
4 int v;
5 p_no prox;
6 };
7
8 typedef struct grafo *p_grafo;
9
10 struct grafo {
   p_no *adjacencia;
11
12
   int n;
13 };
14
15 p_grafo criar_grafo(int n);
16
17 void destroi_grafo(p_grafo g);
18
19 void insere_aresta(p_grafo g, int u, int v);
20
21 void remove_aresta(p_grafo g, int u, int v);
22
  int tem_aresta(p_grafo g, int u, int v);
24
25 void imprime_arestas(p_grafo g);
```

Inicialização e Destruição

```
1 p_grafo criar_grafo(int n) {
2 int i:
  p_grafo g = malloc(sizeof(struct grafo));
4
   g->n = n;
   g->adjacencia = malloc(n * sizeof(p_no));
5
6 for (i = 0; i < n; i++)
     g->adjacencia[i] = NULL;
7
8
   return g;
9 }
1 void libera_lista(p_no lista) {
2 if (lista != NULL) {
     libera_lista(lista->prox);
3
4
     free(lista);
6 }
1 void destroi_grafo(p_grafo g) {
2 int i:
3
 for (i = 0; i < g->n; i++)
     libera_lista(g->adjacencia[i]);
4
5
   free(g->adjacencia);
   free(g);
6
7 }
                                  24
```

Inserindo uma aresta

```
p_no insere_na_lista(p_no lista, int v) {
    p_no novo = malloc(sizeof(struct no));
    novo->v = v;
    novo->prox = lista;
    return novo;
}

void insere_aresta(p_grafo g, int u, int v) {
    g->adjacencia[v] = insere_na_lista(g->adjacencia[v], u);
    g->adjacencia[u] = insere_na_lista(g->adjacencia[u], v);
}
```

Removendo uma aresta

```
1 p_no remove_da_lista(p_no lista, int v) {
p_no proximo;
3 if (lista == NULL)
    return NULL:
4
5 else if (lista->v == v) {
    proximo = lista->prox;
6
7
    free(lista);
    return proximo;
8
9
   } else {
      lista->prox = remove_da_lista(lista->prox, v);
10
      return lista;
11
12
13 }
1 void remove_aresta(p_grafo g, int u, int v) {
    g->adjacencia[u] = remove_da_lista(g->adjacencia[u], v);
    g->adjacencia[v] = remove_da_lista(g->adjacencia[v], u);
```

Verificando se tem uma aresta e imprimindo

```
1 int tem_aresta(p_grafo g, int u, int v) {
2 p_no t;
for (t = g->adjacencia[u]; t != NULL; t = t->prox)
4 if (t->v == v)
     return 1;
6 return 0:
7 }
1 void imprime_arestas(p_grafo g) {
2 int u;
3 p no t;
4 for (u = 0; u < g->n; u++)
     for (t = g->adjacencia[u]; t != NULL; t = t->prox)
5
       printf("{%d,%d}\n", u, t->v);
7 }
```

O Problema das Pontes de Königsberg

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Leonhard Euler, em 1736, modelou o problema como um grafo

- Provou que tal passeio não é possível
- E fundou a Teoria dos Grafos...

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

- Podemos ter arestas paralelas (ou múltiplas)
- Ao invés de um conjunto de arestas, temos um multiconjunto de arestas
- Pode ser representada por Listas de Adjacência
 - Por Matriz de Adjacências é mais difícil

Comparação Listas e Matrizes

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

As duas permitem representar grafos, digrafos e multigrafos

• mas multigrafos é mais fácil com Listas de Adjacência

Qual usar?

• Depende das operações usadas e se o grafo é esparso

Importância dos Grafos

Grafos são amplamente usados na Computação e na Matemática para a modelagem de problemas:

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos
- Páginas na Internet: links são arcos de uma página para a outra - podemos querer ver qual é a página mais popular
- Redes de Computadores: a topologia de uma rede de computadores é um grafo
- Circuitos Eletrônicos: podemos criar algoritmos para ver se há curto-circuito por exemplo
- etc...