Exercice 1

On dispose de deux composants : un conducteur ohmique de résistance $R=150~\Omega$ et un condensateur de capacité C inconnue. L'objectif de l'exercice est de déterminer la valeur de C. Pour cela, on choisit d'étudier la charge du condensateur à travers le conducteur ohmique à l'aide d'un générateur de tension de f.e.m. E=5,1~V.

On réalise donc le montage schématisé ci-dessous et on utilise par exemple un système d'acquisition informatique.

Montage n°1

1. Etude théorique

Les conventions de sens et d'orientation pour le courant et les tensions sont indiquées sur le schéma du montage.

- 1.1 Ecrire la relation qui existe entre E, U_R et u_C (donner le nom de la loi utilisée).
- 1.2 Exprimer U_R en fonction de l'intensité i du courant (donner le nom de la loi utilisée).
- 1.3 Rappeler l'expression de i en fonction de q, charge portée par l'armature reliée au point B du circuit.
- 1.4 Rappeler l'expression de q en fonction de u_c. En déduire celle de i en fonction de u_C.
- 1.5 En utilisant les résultats précédents montrer que la tension aux armatures du condensateur u_C(t) vérifie l'équation différentielle :

$$\tau . \frac{du_c}{dt} + u_c = E \quad (1).$$

Donner l'expression de τ .

- 1.6 Montrer que τ est bien homogène à un temps.
- 1.7 Vérifier que $u_C(t) = E[1 \exp(-\frac{t}{\tau})]$ est solution de l'équation différentielle précédente (exp représente la fonction exponentielle).

2. Montage

2.1 Indiquer sur le montage n°1 les branchements nécessaires pour suivre l'évolution de la tension $u_C(t)$ aux bornes du condensateur en fonction du temps. Les bornes utilisées pour l'acquisition sont notées Voie 1 et Ref (qui sert de masse).

On suppose le condensateur déchargé. A l'instant t = 0, on ferme l'interrupteur K. On obtient la courbe $n^{\circ}1$ ci-dessous.

- 2.2 Déterminer graphiquement, en expliquant brièvement la méthode utilisée, la valeur de τ.
- 2.3 En déduire la valeur de C.
- 2.4 Quelle est l'énergie accumulée par le condensateur au cours de cette charge ?

Exercice 2

On envisage le circuit suivant constitué d'un conducteur ohmique de résistance R et d'un condensateur de capacité C.

À l'instant t=0, le condensateur est chargé sous la tension $U_0=10\ V.$ On notera :

- u_C la tension aux bornes du condensateur à l'instant t, et l'on a $u_C(0) = U_0$
- u_R la tension aux bornes du conducteur ohmique à l'instant t,
- i l'intensité du courant à l'instant t. Cette intensité a été comptée positivement au cours de la charge du condensateur,
- q_A la charge de l'armature A du condensateur à l'instant t.

 u_R

1. ÉTABLISSEMENT DE L'EQUATION DIFFERENTIELLE LORS DE LA DECHARGE

- 1.1 Ouelle relation lie u_R et u_C ?
- 1.2 Rappeler la relation qui lie la charge q_A de l'armature A à la tension u_C.
- 1.3 Quel est le signe de i ? Établir la relation liant l'intensité i du courant à la tension u_C.
- 1.4 Montrer que l'équation différentielle régissant l'évolution de u_C peut s'écrire :

$$\alpha u_{\rm C} + \frac{du_{\rm C}}{dt} = 0$$
 où α est une constante non nulle.

Donner alors l'expression de α en fonction de R et C.

2. SOLUTION DE L'ÉQUATION DIFFÉRENTIELLE

Une solution de l'équation différentielle peut s'écrire $u_C = Ae^{-\beta t}$ où A et β sont deux constantes positives non nulles.

- 2.1 En utilisant l'équation différentielle, montrer que $\beta = \frac{1}{RC}$.
- 2.2 Déterminer la valeur de A.
- 2.3 Indiquer parmi les **courbes 1**et **2** données ci-après, celle qui peut représenter u_C. Justifier la réponse.

3. INTENSITÉ DU COURANT

Pour tous les calculs numériques effectués dans cette partie, on prendra RC = 0,07s

3.1 En utilisant les résultats précédents, montrer que $i=-\frac{U_0}{R}e^{-\left(\frac{t}{RC}\right)}.$

- 3.2 Déterminer la valeur I_0 de i à t = 0.
- 3.3 En justifiant la réponse, indiquer parmi les quatre courbes ci-dessous celle qui peut représenter i.

Exercice 3

Un circuit électrique comporte, placés en série : un générateur idéal de tension continue de f.é.m. E=6,00 V, un interrupteur K, une bobine d'inductance L et de résistance $r=10,0 \Omega$ et un conducteur ohmique de résistance $R=190 \Omega$. Un ordinateur relié au montage par une interface appropriée permet de visualiser au cours du temps les valeurs des tensions u_{AB} et u_{BC} .

Le schéma du circuit ci-contre précise l'orientation du circuit et les tensions étudiées.

A t = 0, on ferme l'interrupteur K et on procède à l'acquisition. On obtient les deux courbes présentées en fin d'exercice, notées courbe 1 et courbe 2.

- 1. Etude du montage.
- 1.1. A défaut d'ordinateur et d'interface d'acquisition, quel type d'appareil peut-on utiliser pour visualiser le phénomène étudié ?
- 1.2. Donner l'expression de u_{AB} en fonction de l'intensité i du courant.
- 1.3. Donner l'expression de u_{BC} en fonction de l'intensité i du courant.
- 1.4. Associer les courbes 1 et 2 aux tensions u_{AB} et u_{BC}. Justifier.
- 2. Détermination de l'intensité du courant en régime permanent.
- 2.1. Etablir l'équation différentielle vérifiée par l'intensité i du courant.
- 2.2. Comment s'écrit cette équation différentielle lorsque le régime permanent est atteint ? En déduire l'expression de I₀, intensité du courant qui traverse le circuit lorsque le régime permanent est établi.
- 2.3. Exploiter l'une des courbes pour retrouver cette valeur de I₀.

- 3. Calcul de l'inductance L de la bobine.
- 3.1. Exploiter l'une des deux courbes pour déterminer la constante de temps τ du montage. Expliciter votre méthode.
- 3.2. Rappeler l'expression de la constante de temps τ en fonction des grandeurs caractéristiques du circuit.
- 3.3. À partir de la valeur de τ mesurée, calculer l'inductance L de la bobine.

