Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 8

Liveaufgaben (13.–14.01.2021)

Präsenzaufgabe 8.1: Determinante und Invertierbarkeit

Sei R ein kommutativer Ring. In den Beweisen zur Determinante wurde bisher an keiner Stelle die Division genutzt. Alle bisher in der Vorlesung bewiesenen Aussagen einschließlich Laplace-Entwicklung gelten also auch für Determinanten von Matrizen aus $M_n(R)$. Zudem dürfen Sie verwenden, dass $\forall A, B \in M_n(R)$: $\det(A \cdot B) = \det(A) \cdot \det(B)$, was in der nächsten Vorlesung bewiesen wird.

Definition Für $A \in M_n(R)$ ist die **Adjunkte** von A definiert als $\operatorname{adj}(A) \in M_n(R)$ mit $(\operatorname{adj}(A))_{j,i} := (-1)^{i+j} \det(A(i,j))$ (man beachte die Vertauschung von i und j!)

- a) Beweisen Sie $B := A \cdot \operatorname{adj}(A) = \det(A) \cdot \mathbb{1}_n$ und $C := \operatorname{adj}(A) \cdot A = \det(A) \cdot \mathbb{1}_n$. **Hinweis:** Schreiben Sie $B_{i,k}$ mit der Multiplikationsformel hin und vergleichen Sie mit der Laplace-Entwicklung. Für $i \neq k$ sollten Sie mit der Laplace-Entwicklung einer Matrix vergleichen, die aus A entsteht, indem Zeile k durch eine Kopie von Zeile i ersetzt wird. Für C wird ähnlich argumentiert.
- b) Was besagt die Aussage aus der vorigen Teilaufgabe im Fall n=2? Vergleichen Sie mit einer früheren Hausaufgabe.
- c) Folgern Sie: Es gibt $A^{-1} \in M_n(R)$ genau dann, wenn $\det(A)$ ein multiplikatives Inverses in R besitzt.

Präsenzaufgabe 8.2: Komplexität von Matrixoperationen

Anmerkung: In der Praxis sind bei Komplexitätsbetrachtungen die *Additionen* von Körperelementen im Vergleich zu den Multiplikationen vernachlässigbar.

a) Seien $A, B \in M_n(\mathbb{K})$. Wie viele Multiplikationen von Körperelementen treten bei der Berechnung von $A \cdot B$ nach der Formel $(AB)_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$ auf? Wie viele konkret für n = 2? **Anmerkung:** Dazu gab es bereits eine Präsenzaufgabe.

Bitte wenden

b) Sei
$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 und $B := \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$. Ferner sei $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} := A \cdot B$. Sei
$$m_1 := (a_{11} + a_{22}) \cdot (b_{11} + b_{22}) \qquad m_2 := (a_{21} + a_{22}) \cdot b_{11}$$
$$m_3 := a_{11} \cdot (b_{12} - b_{22}) \qquad m_4 := a_{22} \cdot (b_{21} - b_{11})$$
$$m_5 := (a_{11} + a_{12}) \cdot b_{22} \qquad m_6 := (a_{21} - a_{11}) \cdot (b_{11} + b_{12})$$
$$m_7 := (a_{12} - a_{22}) \cdot (b_{21} + b_{22})$$

Bei der Berechnung von $m_1, ..., m_7$ treten offenbar nur sieben Multiplikationen von Körperelementen auf. Verifizieren Sie

$$c_{11} = m_1 + m_4 - m_5 + m_7$$
 $c_{12} = m_3 + m_5$ $c_{21} = m_2 + m_4$ $c_{22} = m_1 - m_2 + m_3 + m_6$

Skizzieren Sie, wie man dies in einem Algorithmus für die Matrixmultiplikation verwenden kann, der eine kleinere Komplexität als der in der vorigen Teilaufgabe untersuchte Standardalgorithmus hat.

Anmerkung: Dieser Algorithmus heißt Strassen-Algorithmus.