第二册

大青花鱼

目录

第一章	空间中的形状	5
1.1	点、直线、平面	5

4 目录

第一章 空间中的形状

我们已经通过公理体系研究过平面中的简单形状,将基本的平面形和 函数的图像联系起来,并且引入了向量的概念。现在,我们进一步研究立 体空间中的形状。人类生活在立体空间中,因此,研究空间中形体的性质, 对我们认识世界、改造世界有直接帮助。

1.1 点、直线、平面

和平面形一样,立体空间中的形也是从种种事物的形状总结提炼而来。 平面是人类最早总结出的概念之一。我们已经研究过平面中的形状,因此,研究立体空间时,我们把平面作为地位和点、直线相同的基本概念。

研究平面形状时,我们首先引进了公理体系。如今我们将平面公理体 系扩展为立体空间的公理体系。为此,我们要通过公设和公理定义**平面**以 及它和点、直线的关系。

我们定义面为点的集合,也是线运动的结果。平面是最基本的面,一般 用小写希腊字母 α, β, γ 等表示。

公理 1. 平面公理 过不共线的三点,有且仅有一个平面。

我们也说三角形(或圆)确定一个平面。不共线的三点 A、B、C 确定的平面,可以记作平面 ABC。

如何确定平面是"平"的呢?生活和生产中,我们一般用直线来确定一个面是不是平的。比如,木工常常用角尺的直角边放在刨好的木板上。如果直角边总能与板面紧密贴合,就说明木板已刨平了。水泥工用直的刮子将刚铺水泥的地面刮平。我们把人们总结出的经验作为判断"平面"的方法,用公理的形式确定下来。

公理 2. 平直公理 过平面上不重合两点的直线, 在平面中。

平直公理说明,直线要么与平面没有公共点,要么只交于一点,要么全部在平面里。直线与平面没有公共点,则称直线与平面平行,也用 // 表记;直线与平面恰有一公共点,则称直线与平面相交;直线与平面有两个或以上公共点,则直线在平面中,用集合的语言来说,直线 l 在平面 γ 中,就说明 l 是 γ 的子集。

设直线 l 与平面 γ 平行,没有公共点,那么它与 γ 中任何直线没有公共点。比如,给定 γ 中一点 A, γ 中经过 A 的任何直线,都与 l 没有公共点。

从平面公理和平直公理,容易得到又两种定义平面的方法:

定理 1.1.1. 过一条直线与该直线外一点,有且仅有一个平面。

证明: 设直线为 l, P 为 l 外一点。取 l 上不同的两点,和 P 构成不共线的三点。这三点确定一个平面。根据平直公理,l 在该平面中。

定理 1.1.2. 过两条相交的直线,有且仅有一个平面。

证明: 设有直线 l,m。如果 l,m 相交,设交点为 P,在 l,m 上各取不同于 P 的一点: Q,R,则 P,Q,R 不共线,于是确定一个平面 PQR,根据平直 公理,l,m 都在 PQR 中。

平面中,我们把两直线没有公共点叫做平行。空间中,两直线除了重合、相交和平行,还有另一种情况。我们称之为直线**异面**。前面的例子中,

根据平行公理,过 γ 中的点A,恰有一条直线与l平行,其余与l不相交的直线,都称与l异面。

哪条直线与l平行呢?显然,在空间中,我们需要补充平行公理:

公理 3. 平行公理 过直线外一点,有且仅有一条与它平行的直线。它在直线与点确定的平面上。

新版的平行公理在原来的基础上,指定了平行线的位置:在直线与点确定的平面上。换句话说,平行是一个平面内性质。两直线平行的关系必然发生在同一平面中。也正因如此,我们把其它的无公共点情形叫做异面。

从补充的平行公理出发,就得到另一种定义平面的方法:

定理 1.1.3. 过两条平行的直线,有且仅有一个平面。

证明: 设直线 l / / m,在 l 上找两点 P_1, P_2 ,在 m 上找一点 Q。 P_1P_2Q 确 定唯一平面 γ 。 在平面 γ 中,过 Q 作 l 的平行线。根据平行公理,这条平行线就是 m。因此 l, m 共面,它们确定唯一平面 γ 。

再来看两个平面的关系。两个平面相交,交集是什么呢?生活中的经验告诉我们,两个平面相交,交集是直线。比如,裁纸刀的刀面是平的,切在纸上,将纸面分成两部分,裁痕是直的。我们把这个性质用公理描述为:

公理 4. 交面公理 两个平面如果有交集,则交集至少包含两个不重合的点。

交面公理说明,两个平面不可能只交于一点。如果它们有两个(不重合的)公共点,那么根据平直公理,两平面的交集包括过这两点的直线。而如果两平面的交集中还有不属于这条直线的第三点,那么根据平面公理,这三点确定一个平面,于是两平面重合。

综上所述,从交面公理可以推出:要么两平面没有共同点,要么交集为一条直线 l,称为两平面相交于直线 l;要么两平面重合。

有了交面公理,我们可以证明下面这个定理。它将平行直线的性质拓展到空间中。由于证明繁琐,有些地方把它当作公理引入。

定理 1.1.4. 如果直线 l_1, l_2 都平行于直线 m, 那么 l_1, l_2 平行或重合。

证明: 设 l_1, m 确定的平面为 γ_1, l_2, m 确定的平面为 γ_2 。分两种情况讨论:

1. γ_1, γ_2 重合。那么 l_1, l_2, m 都在此平面上。根据平面直线的结论, l_1, l_2 平行或重合。

2. γ_1, γ_2 不重合。于是 $\gamma_1 \cap \gamma_2 = m$ 。取 l_1 上一点 P,P 与 l_2 确定平面 β 。 $l_2 \notin \gamma_1$,所以 β, γ_1 不重合。设 $\beta \cap \gamma_1 = n$ 。

首先证明 $n // l_2$ 。 反设 n 交 l_2 于点 Q,则 $Q \in \gamma_1 \cap \gamma_2 = m$,于是 $Q \in m \cap l_2$ 。这与 $m // l_2$ 矛盾。因此 $n // l_2$ 。

再证明 $n \mid / m$ 。反设 n 交 m 于点 Q,则过 Q 有 $m \mid / l_2$ 和 $n \mid / l_2$,于是 n = m。但 $P \in n$,因此 $P \in m \cap l_1$,这与 $m \mid / l_1$ 矛盾。因此 $n \mid / m$ 。

n 与 l_1 都平行于 m,且有公共点 P,所以 $n=l_1$ 。所以 $l_1 // l_2$ 。

上面提到,两平面要么无公共点,要么相交,要么重合。那么,两平面是否可以无公共点呢?我们把无公共点的平面称为平行平面,也用 // 表记。平面中,平行公理告诉我们,过直线外一点,恰有一条直线与之平行。空间中的平面,也有类似的结论:

定理 1.1.5. 过平面外一点,恰有一平面与之平行。

证明: 设平面 α 外有点 P。在 α 上选一点 A,过 A 作两相交直线 l,m (交 点为 A)。根据平行公理,过 P 恰有直线 l',m' 分别与 l,m 平行。l',m' 相交于点 P,确定平面 α' 。下面证明 α,α' 无公共点,即 α' // α 。

反设 α, α' 有公共点。由于 $P \in \alpha'$ 在 α 外,两者不重合。因此 $\alpha \cap \alpha'$ 是一条直线,记为 n。l, m, n 共面,l, m 相交,因此 l, m 中至少有一条与 n

相交。设 l 与 n 相交,交点为 Q。Q \in n \subset α' , Q \notin l' 。在 α' 中,过 Q 可 作 l' 的平行线。但这条线在 α' 中,因此不是 l 。这与平行公理矛盾。

因此, α , α' 无公共点, $\alpha' \parallel \alpha$ 。