Математичка, ты довольна? Часть 2.

Сапожников Денис

Contents

1	Алі	горитм Евклида	
	1.1	Определения	
	1.2	Медленный алгоритм	
	1.3	Быстрый алгоритм	
	1.4	Время работы	
	1.5	Упражнения	
2	Диофантовы уравнения и расширенный алгоритм Евклида		
	2.1	Одно решение $ax + by = gcd(a,b)$	
	2.2	Одно решение $ax + by = c$	
	2.3	Все решения $ax + by = c$	
	2.4	Возвращаемся к обратным элементам по модулю	
3	Pen	пето Эратосфера	
	3.1	Задача	
	3.2	Самый простой подход за $O(n\sqrt{n})$	
	3.3	Решение за $O(n\log n)$	
	3.4	Решение за $O(n \log \log n)$	
	3.5	Решение за $O(n)^*$	
4	Кил	тайская теорема об остатках (КТО)*	

Алгоритм Евклида 1

1.1 Определения

Определение (НОД). Наибольшим общим делителем (НОДом) двух чисел a и b называется

такое число
$$g$$
, что $\begin{cases} a \\ \vdots \\ g \\ g \end{cases}$ g — максимальное из возможных

Обозначения: HOД(a,b), или просто (a,b).

Пемма 1. Пусть (a,b) = g. Пусть $d - \kappa a \kappa o \ddot{u}$ -то (не обязательно наибольший) общий делитель a u b. Тогда g : d.

Proof. Через разложение на простые множители по ОТА.

Определение (НОК). Наименьшим общим кратным (НОКом) двух чисел a и b называется

Лемма 2.
$$(a, b) \cdot [a, b] = a \cdot b$$

Proof. Через разложение на простые множители по ОТА.

Данная лемма позволяет находит НОК по НОДу, таким образом надо научиться искать лишь НОД.

1.2 Медленный алгоритм

Лемма 3. Пусть $a \ge b$, тогда (a, b) = (a - b, b).

Proof. Пусть $(a,b) = g_1, (a-b,b) = g_2.$

Докажем, что $g_2
otin g_1$. Если $(a,b) = g_1$, то по определению НОДа: $a
otin g_1$. Значит и $a-b
otin g_1$. То есть получили, что a-b и $b
otin g_1$. По лемме $1
otin g_2
otin g_1$.

Теперь докажем, что $g_1
otin g_2$. Если $(a - b, b) = g_2$, то b и $a - b
otin g_2$. Значит и $a
otin g_2$. Получили: $a\ u\ b: g_2$. Значит по лемме $1\ g_1: g_2$.

Итого: $g_1 : g_2 \ u \ g_2 : g_1$. Значит, очевидно, $g_1 = g_2$ что и т.д.

Лемма 3 позволяет легко находить НОД двух чисел без разложения на простые множители.

```
int gcd(int a, int b) {
   if (a == 0 | b == 0)
     return a + b;
   if (a >= b)
     return gcd(a - b, b);
     return gcd(a, b - a);
7
```

По сути, мы уже доказали, что алгоритм корректный, но, увы, он долго работает, например, на тесте $(10^9, 1)$. На данном тесте будет выполняться 10^9 преобразований (a, 1) = (a - 1, 1) = $\dots (1,1) = (0,1) = 1.$

1.3 Быстрый алгоритм

Идея по ускорению: заметим, что из (a,b) = (a-b,b) следует, что (a,b) = (a%b,b), так как операция взятия по модулю эквивалента большому количеству вычитаний b.

Теперь алгоритм имеет вид

```
int gcd(int a, int b) {
   if (a == 0 || b == 0)
    return a + b;
   return gcd(b, a % b);
}
```

Более того, начиная с C++17 этот алгоритм есть в стандартной бибилоитеке numeric и называется gcd.

1.4 Время работы

Сейчас будет трюк. Следите за руками.

Пусть $a \geq b$. Тогда $0 \leq a\%b < b$. Что эквивалентно тому, что остатки от деления a на b лежат в интервале $\left[-\frac{b}{2};\frac{b}{2}\right]$. Тогда после каждой итерации НОДа модулю одного из чисел уменьшается хотя бы в 2 раза.

Таким образом время работы алгоритма будет $O(\log n)$.

1.5 Упражнения

Задача 4. $(a_1, a_2, \ldots, a_n) = (a_1, (a_2, a_3, \ldots a_n))$

Задача 5. Докажите, что простых чисел бесконечно много.

Решение. Возможно, стоит посмотреть на числа вида n! - 1.

Задача 6. Пусть $x=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}$. Найдите количество делителей числа.

Решение. $\alpha(x) = (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_k + 1)$

Задача 7. Докажите, что число $\underbrace{111\dots 1}_n$ для какого-то n делится на 123456789.

Решение. Посмотрим на остатки от деления первых 123456789+1 чисел вида $\underbrace{111\ldots 1}_n$. Различных остатков не больше 123456789. Значит по принципу Дирихле найдутся два одинаковых остатка, пусть это будут $\underbrace{111\ldots 1}_n$ и $\underbrace{111\ldots 1}_n$, где k>m.

пусть это будут $\underbrace{111\dots 1}_k$ и $\underbrace{111\dots 1}_m$, где k>m. Посмотрим на число $\underbrace{111\dots 1}_k$ — $\underbrace{111\dots 1}_m$. Оно делится на 123456789 и имеет вид $\underbrace{111\dots 1}_{k-m}$ 0000000. Оноделим его на 10^m , результат будет иметь вид $\underbrace{111\dots 1}_{k-m}$ и всё ещё делиться на 123456789, так как 10 и 123456789 были взаимнопросты.

Задача 8. Научитесь вычислять $\lceil \frac{a}{b} \rceil$ без if.

Решение.

```
(a + b - 1) / b;
```

2 Диофантовы уравнения и расширенный алгоритм Евклида

2.1 Одно решение ax + by = gcd(a, b)

Задача. Найти одно решение уравнения ax + by = g, где g — это HOД(a,b).

Пусть (x_0, y_0) – это решение уравнения (b%a)x + ay = g. Научимся находить решение исходного уравнения.

По определению остатка от деления: $b \mod a = b - \lfloor \frac{b}{a} \rfloor a$

Значит: $g = (b \mod a)x_1 + ay_1 = (b - \lfloor \frac{b}{a} \rfloor a)x_1 + ay_1 = bx_1 + a(y_1 - \lfloor \frac{b}{a} \rfloor x_1)$

В итоге формулы для пересчёта следующие:

$$\begin{cases} x_0 = y_1 - \lfloor \frac{b}{a} \rfloor x_1 \\ y_0 = x_1 \end{cases}$$

```
int gcd(int a, int b, int &x, int &y) {
    if (a == 0) {
        x = 0, y = 1;
        return a + b;
    }
    int x1, y1;
    int g = gcd(b % a, a, x1, y1);
    x = y1 - (b / a) * x1;
    y = x1;
    return g;
}
```

2.2 Одно решение ax + by = c

А теперь давайте решим уравнение ax + by = c для произвольного c. Если c
cdot gcd(a,b), то всё просто: знаем решение уравнения

$$ax_0 + by_0 = q$$

Домножим обе части на $\frac{c}{g}$

$$a\left(\frac{c}{g}x_0\right) + b\left(\frac{c}{g}y_0\right) = c$$

То есть

$$\begin{cases} x = \frac{c}{g}x_0\\ y = \frac{c}{g}y_0 \end{cases}$$

Если же $c \not | gcd(a,b)$, то решений, очевидно, нет, так как

2.3 Все решения ax + by = c

Лемма. Пусть (x_0, y_0) — это решение уравнения ax + by = c. Тогда все решения имею вид:

$$\begin{cases} x = x_0 + \frac{b}{g}t \\ y = y_0 - \frac{a}{g}t \end{cases}, t \in \mathbb{Z}$$

Proof. Рассмотрим ещё одно решение (x_1, y_1) уравнения ax + by = c и приравняем правые части:

$$ax_0 + by_0 = ax_1 + by_1$$

$$a(x_0 - x_1) = b(y_1 - y_0)$$

$$\left(\frac{a}{g}\right)(x_0 - x_1) = \left(\frac{b}{g}\right)(y_1 - y_0)$$

$$a'(x_0 - x_1) = b'(y_1 - y_0)$$

Левая часть делится на a', значит и правая часть тоже должна делиться на a'. Так как мы сократили обе части на (a,b), то (a',b')=1, значит (y_1-y_0) : a'. То есть $y_1=y_0+a'\cdot t=y_0-\frac{a}{g}\cdot t$ для $t\in\mathbb{Z}$. В пару к такому y_1 подходит единственное решение $x_1=x_0+\frac{b}{g}\cdot t$.

2.4 Возвращаемся к обратным элементам по модулю

$$ab \equiv 1 \pmod{n}$$

 $ab + kn = 1$

А это просто диофантово уравнение, решив которое мы найдем искомое a.

Итоговая сложность алгоритма $O(\log n)$

При этом мы решили для всех случаев, когда $\gcd(a,n)=1$, а для других доказали, что решений нет.

3 Решето Эратосфера

3.1 Задача

Хотим найти все простые числа от 2 до n.

3.2 Самый простой подход за $O(n\sqrt{n})$

Заметим, что все имеет смысл перебирать делители лишь до \sqrt{x} , так как если есть делитель больше корня - d, то будет и делитель меньше корня: $\frac{x}{d}$. Поэтому код будет такой:

```
vector < bool > is_prime (n, true);
for (int i = 2; i <= n; i++)
for (int j = 2; j * j <= i; j++)
if (i % j == 0)
    is_prime[i] = false;</pre>
```

3.3 Решение за $O(n \log n)$

Пусть если число простое, то переберём все числа, которые делятся на него, то есть $2p, 3p, 4p, \ldots$ и пометим их как составные. Ну и действительно так мы пометим все числа составными, когда в качестве p мы возьмем любой простой делитель составного числа.

```
vector < bool > is _ prime (n, true);
for (int i = 2; i <= n; i++)
    if (is _ prime[i])
    for (int j = 2 * i; j <= n; j += i)
        is _ prime[j] = false;</pre>
```

Bремя работы. Для каждого простого числа p внутренний фор сделает $\frac{n}{p}$ итераций. Значит

всего алгоритм сделает не больше чем $\sum_{i=1}^n \frac{n}{i} = O(n \log n)^{-1}$, что и т.д.

3.4 Решение за $O(n \log \log n)$

Заметим факт, что нам необходимо помечать все простые делители, начиная не с 2i, а с i^2 по идее из пункта 1. Таким образом нужно лишь заменить строку 4 и поменять условия для строки 2, чтобы не возникало переполнений:

```
vector < bool > is_prime(n, true);
for (int i = 2; i * i <= n; i++)
   if (is_prime[i])
   for (int j = i * i; j <= n; j += i)
        is_prime[j] = false;</pre>
```

Почему это работает за $O(n \log \log n)$? Для доказательства используется факт, что простых чисел от 1 до n порядка $\frac{n}{\ln n}$ и они распределены примерно равномерно, а далее считается интеграл, более подробно можно прочитать на e-maxx.

¹В целом, это известный факт, но доказывать мы его, конечно же, не будем

3.5 Решение за $O(n)^*$

Вместо того, чтобы считать только пометку, простое ли было число, но и минимальное простое, на которое оно делится - p_i . Ещё будем поддерживать массив простых чисел от 2 до текущего i.

Пусть у нас есть текущее i. Обновим массив p с помощью i: пройдём по всем числам вида $x_i = p_i \cdot i$ (пока $p_i \leq p_i$) и отметим для них минимальное простое как p_i .

Итого код получается очень простым и лаконичным.

```
vector < int > pr;
vector < int > p(n, 0);

for (int i = 2; i < n; i++) {
    if (p[i] == 0) {
        p[i] = i;
        pr.push_back(i);
    }

for (int j = 0; j < pr.size() && pr[j] <= pr[i] && i * pr[j] < n; ++j)
    pr[i * pr[j]] = pr[j];
}</pre>
```

Рассмотрим произвольное число x. Из того, что оно единственным образом представляется в виде $x = p(x) \cdot y$, где p(x) - минимальное простое число, на которое делится x следует, что алгоритм посетит каждое число ровно один раз. Значит время работы O(n)

4 Китайская теорема об остатках (КТО)*

Пусть у нас есть система сравнений:

$$\begin{cases} a \equiv x_1(\bmod p_1) \\ a \equiv x_2(\bmod p_2) \\ \dots \\ a \equiv x_n(\bmod p_n) \end{cases}$$

И ещё все модули попарно взаимнопросты, то есть $\forall i, j : gcd(p_i, p_j) = 1$ Утверждения про такую систему:

• Каждому числу из отрезка $[0; p_1p_2 \dots p_n-1]$ соответствует единственный набор переменных (x_1, x_2, \dots, x_n) , удовлетворяющий системе уравнений.

Будем обозначать это как $a \Leftrightarrow (x_1, x_2, \dots, x_n)$

• Любой из операций +, -, * соответствует ровно такая же над набором чисел $\{x_i\}$, то есть, если $a \Leftrightarrow (x_1, x_2, \dots x_n)$ и $b \Leftrightarrow (y_1, y_2, \dots y_n)$, тогда

```
a+b \Leftrightarrow (x_1+y_1,x_2+y_2,\ldots,x_n+y_n)

ab \Leftrightarrow (x_1y_1,x_2y_2,\ldots,x_ny_n)
```

Понятно, как, зная число, получить набор $\{x_i\}$. Но как это сделать в обратную сторону? Обозначим за $r_{i,j}$ обратный элемент к p_i по модулю p_j

Будем находить наше число a в таком виде:

$$a = y_1 + y_2 p_1 + y_3 p_1 p_2 + \dots + y_n p_1 \dots p_n$$

Тогда из 1-го уравнения знаем, что

$$y_1 = x_1$$

Из второго:

$$x_2 = y_1 + y_2 p_1$$
$$x_2 - y_1 = y_2 p_1$$
$$(a_2 - x_1)r_{1,2} = x_2$$

Ровно так же можно посчитать любое x_k алгоритм, очень похожим на схему Горнера за O(k), значит восстановление всех x_i и искомого a - $O(n^2)$.

```
int a = 0, curp = 1;
    for (int i = 0; i < n; ++i) {
2
      y[i] = x[i];
      for (int j = 0; j < i; ++j) {
        y[i] = r[j][i] * (y[i] - y[j]);
        y[i] = y[i] \% p[i];
         if (y[i] < 0)
          y[i] += p[i];
10
11
      a += curp * y[i];
12
      curp *= p[i];
13
    }
14
```

Но проблема в том, что встроенные типы очень быстро переполнятся, поэтому обычно придётся написать длинную арифметику.