MÉTODO WEBSTER

Conceitos de capacidade e nível de serviço das vias

A capacidade de uma via é a maior quantidade de veículos, em unidade de carro de passeio (UCP) que ela comporta num determinado período.

Em vias urbanas, o elemento determinante da capacidade é a interseção, por ser o ponto mais crítico da via, onde se apresentam maiores graus de restrições à passagem e/ou onde o fluxo de veículos se interrompe. Essa capacidade depende de fatores físicos ou operacionais, mais ou menos fixos, que podem ser alterados mais facilmente – como a distribuição dos tempos livres na programação dos semáforos –, ou que dependem de ações mais complexas – como as mudanças físicas que exigem obras civis.

Conhecendo-se a capacidade de cada aproximação na interseção e os volumes de veículos que por elas transitam, determina-se o nível de serviço da via, definido como a relação entre o volume de tráfego e a capacidade da via.

As condições de tráfego são habitualmente classificadas em seis níveis de serviço, que variam das condições ideais ao fluxo forçado:

- Nível de serviço A –
 Via com baixos volumes e densidades, e elevada velocidade. O volume de veículos não interfere nessas condições e é inferior a 60% da capacidade da via.
- Nível de serviço B Apresenta fluxo estável e velocidades que começam a ser limitadas pelas condições de tráfego, embora o motorista detenha razoável grau de liberdade de escolha da velocidade do veículo. O volume varia entre 60% e 70% da capacidade da via.
- Nível de serviço C O fluxo é estável, porém a velocidade e as manobras são condicionadas pelos volumes mais elevados de tráfego, que atingem de 70% a 80% da capacidade da via.
- Nível de serviço D Aproxima-se do fluxo instável e as velocidades são afetadas pelas condições de operação. A liberdade de manobra é restrita e o volume situa-se na faixa entre 80% e 90% da capacidade da via.
- Nível de serviço E –
 O fluxo e a velocidade são instáveis e o volume atinge até 100% da capacidade da via, provocando paradas freqüentes. O comportamento diferenciado de um motorista condiciona o fluxo e a velocidade dos demais veículos.
- Nível de serviço F O fluxo é forçado, com baixíssimas velocidades. As paradas são freqüentes, resultando na formação de extensas filas. O volume está acima da capacidade da via.

Cálculo da capacidade da via

Com fundamento na definição do volume de serviço e volume máximo ou fluxo de saturação proposta por Webster, calcula-se a capacidade da via através da fórmula:

$$C = S.Z$$

onde:

$$S = V_{s.} f$$
 e $V_{s} = 525. L$

portanto,

$$C = 525 . L f Z$$

onde

C: capacidade da via ou da faixa,

S: fluxo de saturação ou volume máximo,

Vs : volume de serviço,

L: largura da via ou faixa de tráfego,

f : produto dos fatores que afetam o fluxo de tráfego

Z : relação entre o tempo de verde e o ciclo do semáforo.

Quando a largura da via ou faixa de tráfego for inferior a 5,20 m, utiliza-se a correspondência apresentada na tabela abaixo para determinação do volume de serviço:

L (m)	Vs (veíc./h)	
3,0	1.850	
3,3	1.875	
3,6	1.900	
3,9	1.950	
4,2	2.075	
4,5	2.250	
4,8	2.475	
5,2	2.700	

Os fatores que afetam ou limitam o fluxo e mais influenciam a capacidade da via são

• Fator de declividade – f dec : considera a existência de rampas na via e influencia a capacidade desta forma:

subidas até 10% reduzem a capacidade em 0,03 para cada 1% de rampa;

descidas até 5% acrescem a capacidade em 0,03 para cada 1% de rampa.

i	0%	+ 5%	+ 10%	- 3%	- 5%
f dec	1,0	0,85	0,70	1,09	1,15

• Fator de localização – f loc : considera as características e o uso no entorno da interseção e suas interferências, apresentando estes valores:

Localização	f loc	Descrição
Boa	1,20	Sem interferência, boa visibilidade.
Regular	1,00	Interrupções ocasionais de veículos, alterações na circulação, visibilidade regular.
Ruim	0,85	Velocidades baixas, interferências significativas, veículos estacionados, baixa visibilidade, fluidez difícil.

 Fator de estacionamento – f est : considera a perda de largura útil para estacionamento e a distância deste até a linha de retenção:

$$f est = L - P/L$$

onde:

$$P = 1,68 - 0,90 \times (d - 7,6) / Vd$$

onde:

L: largura da via, em metros,

P: perda da largura, em metros,

d : distância, em metros, entre a linha de retenção e o primeiro veículo estacionado,

Vd : tempo de verde da aproximação, em segundos.

Se d < 7,6 e P < 0, adota-se P = 0;

se há veículos de carga, aumenta-se a perda em 50%.

• Fator de equivalência – f eq : considera a composição do tráfego e a equivalência em unidades de carros de passeio (UCP).

$$f eq = V t / V eq$$

onde:

V t : volume total de veículos,

V eq : volume de automóveis + 1,75 x volume de caminhões + 2,25 x volume de ônibus + 2,50 x volume de caminhões conjugados

• Fator de conversão – f conv : considera as restrições à capacidade causadas pelas conversões efetuadas pelos veículos.

onde:

V eq : volume equivalente dos veículos que chegam à interseção,

V F: volume de veículos que seguem em frente,

V D: volume de veículos que fazem conversão à direita,

EIV - Estudo de Impacto de Vizinhança Condomínio Manhattan Residence Cachoeiro de Itapemirim-ES

V E : volume de veículos que fazem conversão à esquerda (usando-se 1,25 ou 1,75 conforme, respectivamente, trate-se de via de um ou de dois sentidos).

Quando V D, V E ≤ 0,1 V eq, desconsidera-se a restrição.

- Fator de parada de ônibus f on : considera a restrição imposta por pontos de ônibus na aproximação (antes e depois da interseção) desde que interfiram no fluxo. Para pontos de ônibus em meio de quadra, f on = 1,0. Para outras distâncias, adota-se o fator determinado pelo ábaco do Boletim Técnico da CET, nº 16.
- Fator de parada de interseção f int : considera a perda de capacidade em interseções não semaforizadas que causem interrupções no fluxo de tráfego.

$$f int = 0.57 Yi / Y + 0.43 Yi - 0.21 Y + 0.21$$

e Yi = Vi / Si

 $Y = \Sigma Yi$

Onde:

Yi : coeficiente de interseção para a aproximação,

Y: Σ Yi – coeficiente total,

Vi : número de veículos, em UCP, que chegam pela aproximação na hora pico,

Si : fluxo de saturação da aproximação i.

 Fator de semáforo – Z : considera o decréscimo da capacidade pela retenção e congestionamentos de veículos e filas.

$$Z = V_d / c$$

Onde:

Vd: tempo de verde (segundos)

c : tempo total de ciclo (segundos).

EIV - Estudo de Impacto de Vizinhança Condomínio Manhattan Residence Cachoeiro de Itapemirim-ES

Pela combinação desses fatores, conhecido o volume de veículos, obtém-se o nível de serviço teórico, que é a relação volume / capacidade, conforme a tabela a seguir:

Nível de serviço (NS)	Volume / capacidade (V/C)
NS > 1,00	F
0,97 ≤ NS ≤ 1,00	E-
0,94 ≤ NS ≤ 0,96	E
0,91 ≤ NS ≤ 0,93	E+
$0.87 \le NS \le 0.90$	D-
0,84 ≤ NS ≤ 0,86	D
0,81 ≤ NS ≤ 0,83	D+
0,77 ≤ NS ≤ 0,80	C-
$0.74 \le NS \le 0.76$	С
$0.71 \le NS \le 0.73$	C+
$0,67 \le NS \le 0,70$	B-
0,64 ≤ NS ≤ 0,66	В
0,61 ≤ NS ≤ 0,63	B+
0,57 ≤ NS ≤ 0,60	A-
0,54 ≤ NS ≤ 0,56	А
NS ≤ 0,53	A+

Fonte: RM-BMZ Missão BIRD-WATSON/REILLY