Analyse

Martin Andrieux, Nathan Maillet

1 Continuité et Dérivabilité

Définition

f est dite *convexe* si et seulement si pour a et b dans I et pour t dans [0;1]:

$$f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$$

Inégalité de Taylor-Lagrange

$$\left\| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right\| \leqslant \frac{(b-a)^{n+1}}{(n+1)!} \left\| f^{(n+1)} \right\|_{\infty}$$

Taylor avec reste intégral —

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Taylor-Young

$$f(x) = \sum_{k=0}^n \frac{(x-\alpha)^k}{k!} f^{(k)}(\alpha) + o\left((x-\alpha)^n\right)$$

Prolongement C^1

f continue de I dans \mathbb{R} , \mathfrak{a} dans I, f dérivable sur I\{ \mathfrak{a} }. Si f' a une limite \mathfrak{l} en \mathfrak{a} , alors f est dérivable en \mathfrak{a} et $\mathfrak{f}'(\mathfrak{a}) = \mathfrak{l}$.

Théorème fondamental

$$F: x \mapsto \int_{a}^{x} f(t)dt$$

F est continue et dérivable avec F' = f. Si f est continue, alors f possède des primitives.

2 Intégrale à paramètre

Théorème de continuité

- $f: U \times I \rightarrow \mathbb{C}$
- $\forall x \in U, t \mapsto f(x, t) \text{ est } \mathcal{C}_{\mathrm{pm}}^{0}$
- $\forall t \in I, x \mapsto f(x, t) \text{ est } C^0$
- $\bullet \ \mbox{Il existe} \ \phi: \mbox{I} \to \mathbb{R}, \, \mathcal{C}^0_{\rm pm} \ \mbox{et sommable telle que}$

$$\forall x \in U, \forall t \in I | |f(x,t)| \leq \varphi(t)$$

Alors F est définie et \mathcal{C}^0 sur U, avec

$$F(x) = \int_{I} f(x, t) dt$$

Théorème de dérivabilité

- $f: U \times I \rightarrow \mathbb{C}$
- $\bullet \ \forall x \in U, \ t \mapsto f(x,t) \ \mathrm{est} \ \mathcal{C}^0_{\mathrm{pm}} \ \mathrm{et \ sommable}$
- $\bullet \ \forall t \in I, \, x \mapsto f(x,t) \, \operatorname{est} \, \mathcal{C}^1$
- $\forall x \in U, t \mapsto \frac{\partial f}{\partial x}(x, t) \text{ est } \mathcal{C}_{pm}^0$
- \bullet Il existe $\phi:I\to\mathbb{R},\,\mathcal{C}^0_{\mathrm{pm}}$ et sommable telle que

$$\forall x \in U, \forall t \in I \quad \left| \frac{\partial f}{\partial x}(x, t) \right| \leqslant \varphi(t)$$

Alors F est définie et C^1 sur U, avec

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

fonction Γ

On défnit la fonction Γ comme suit :

$$\Gamma: \mathbf{x} \mapsto \int_0^{+\infty} \mathbf{t}^{\mathbf{x}-1} e^{-\mathbf{t}} d\mathbf{t}$$

On a alors $\Gamma(x+1)=x\Gamma(x)$ et $\Gamma(n+1)=n!$ pour n dans \mathbb{N} . $\Gamma(\frac{1}{2})=\sqrt{\pi}$.

3 Suites et séries de fonctions

Définition

On dit qu'une suite de fonctions f_n converge simplement vers f si :

$$\forall x \quad f_{n(x)} \xrightarrow[n \to +\infty]{} f(x)$$

La limite simple conserve les propriétés portant sur un nombre fini de points, comme la positivité, la croissance et la convexité.

Définition

On dit qu'une suite de fonctions f_n converge uniformément vers f si

$$\begin{split} \forall \epsilon > 0, \ \exists \ n_\epsilon \in \mathbb{N} \, / \, \forall n \geqslant n_\epsilon \\ \forall \ x, \quad \|f_n(x) - f(x)\| \leqslant \epsilon \end{split}$$

La convergence uniforme de (f_n) est la convergence pour $\| \cdot \|_{\infty}$

La convergence uniforme d'une série est équivalente à la convergence uniforme du reste vers 0.

La convergence uniforme entraı̂ne la convergence simple.

Définition

On dit qu'une série converge *normalement* si la série des normes infinies converge. La convergence normale entraı̂ne la convergence uniforme.

Théorèmes pour la convergence uniforme

La convergence uniforme conserve :

- la continuité
- la limite
- la sommabilité avec égalité des intégrales
- la dérivabilité et la continuité de la dérivée, avec égalité des dérivées. (Dans ce cas, la convergence simple des f_n suffit, avec convergenence uniforme des f'_n)

Convergence dominée

- \bullet Pour tout $\mathfrak{n},\, f_{\mathfrak{n}}$ est $\mathcal{C}^0_{\mathrm{pm}}$
- ullet f est $\mathcal{C}^0_{\mathrm{pm}}$
- (f_n) converge simplement vers f
- Il existe ϕ continue par morceaux et sommable telle que $|f_\pi(x)|\leqslant \phi(x)$

Alors les f_n et f sont sommables sur I est

$$\int_{I} f_{n}(x) dx \xrightarrow[n \to +\infty]{} \int_{I} f(x) dx$$

Sommation terme à terme

- Pour tout n, u_n est C_{pm}^0
- \bullet La série des \mathfrak{u}_n converge simplement
- Les sommes partielles sont $\mathcal{C}^0_{\mathrm{pm}}$
- \bullet Les u_n sont sommables et $\sum_{n\geqslant 0}\int_I |u_{n(x)}|dx$ converge

Alors les $\sum\limits_{0}^{+\infty}u_{n}$ est sommable sur I et

$$\int_{I} \left(\sum_{n=0}^{+\infty} u_n(x) \right) dx = \sum_{n=0}^{+\infty} \left(\int_{I} u_n(x) dx \right)$$

Théorème d'approximation de Weierstrass

Toute fonction continue sur un segment à valeurs dans $\mathbb C$ est limite uniforme d'une suite de fonctions polynomiales.