TECHNISCHE UNIVERSITÄT MÜNCHEN

Матн 3

MA9803 | B.Sc. Engineering Science and B.Sc. Aerospace

Modeling and Simulation with Ordinary Differential Equations

Lecturer Prof. Dr. Elisabeth Ullmann $\begin{array}{c} Notes\ by \\ {\rm Rangi\ Siebert} \end{array}$

Abstract

Some people think that stiff challenges are the best device to induce learning, but I am not one of them. The natural way to learn something is by spending vast amounts of easy, enjoyable time at it. This goes whether you want to speak German, sight-read at the piano, type, or do mathematics. Give me the German storybook for fifth graders that I feel like reading in bed, not Goethe and a dictionary. The latter will bring rapid progress at first, then exhaustion and failure to resolve.

L. N. Trefethen. Trefethen's index cards - Forty years of notes about People, Words and Mathematics. World Scientific, 2011, S. 86

Contents

1	\mathbf{Intr}	roduction	;
	1.1	Differential Equations	
	1.2	Problem Solving Steps in Science & Technology	
	1.3	Application: Solid Mechanics	
	1.4	Application: Electric Ciruits	
	1.5	Application: Chemical relations	
	1.6	Classification of ODEs	
2	Firs	t-order ODEs	
	2.1	Examples	
	2.2	Geometric Interpretation: Direction Field	
	2.3	Observations	
	2.4	Existence and Uniqueness of a Solution	
		2.4.1 Theorem: Peano	
		2.4.2 Theorem: Picard-Lindelöf	
	2.5	Examples and Recap	
	2.6	Separation of Variables	
	2.7	Example, Separation of Variables	
	2.8	Application: Water Container	
	2.9	Linear DE of first Order	1
	2.10	General Solution of the homogeneous DE	1
		General Solution for inhomogeneous DE	1
	2.12	Variation of Constants	1
		Electrical Circuit	1
		Bernoulli DE (nonlinear DE	1
		Application: Population Dynamics	1
		Order Reduction	1
		Example: Oscillation	1

3	Second-order Linear Differential Equations			
	3.1	Standard Form	17	
	3.2	Superposition Principle	18	
	3.3	Fundamental System ("basis")	19	
	3.4	Method of Lagrange	21	
	3.5	Example	21	
	3.6	Inhomogeneous DE and Variation of Constants	22	

1 Introduction

Previously: We had equations like $y^2 + 4y + 1 = 0$, where the solution is a number.

$$\int_{a}^{b} f(x)dt = \text{number} = F(b) - F(a)$$

New: f'(x) is given, determine f(x). The solution is a function.

$$Velocity(t) = Position'(t) given = Position(t) wanted$$

1.1 Differential Equations

Example: Interest rate

y(t): assets at time t.

 $\lambda < 0$: constant interest rate.

IVP
$$\begin{cases} y'(t) &= \lambda \cdot y(t), \\ y(0) &= y_0. \end{cases}$$

Example: Radioactive Decay

y(t): mass of a substance at time t.

 $\lambda < 0$: decay rate.

$$y'(t) = \lambda \cdot y(t)$$
.

1.2 Problem Solving Steps in Science & Technology

"Reality" \longrightarrow Model = "Mathematisation"

- Laws of nature (Physics, Chemistry).
- Assumtions, hypoteses \rightarrow differential equations.
- Analytical or symbolic solution (exact solution). not practical
- Numerical solution. in practise

Change of state = Function (State).

Ordenary Diff. Eqn. (ODE: one scalar variable (e.g. time) this semester

$$y'(t) = \lambda y(t).$$

Partial Diff. Eqn. (PDE): multiple variables (e.g. time and space) next semester (MA9804)

$$u = u(t, x) x = (x_1, x_2, x_3).$$
$$\frac{\delta u}{\delta t} = k \cdot \left(\frac{\delta^2 u}{\delta x_1^2} \frac{\delta^2 u}{\delta x_2^2} \frac{\delta^2 u}{\delta x_3^2}\right).$$

Heat equation. u: temperature

Oftentimes: Solution depends on (design) parameters. $y = y(t; \rho), u = u(t, x, \rho)$

- Parameter identification Inverse Problem
- Design optimisation
- Random / Stochastic parameters Uncertainty quantification

1.3 Application: Solid Mechanics

Newton's Laws of motion: $\frac{dp}{dt} = F$

Change of momentum = force action.

- a) Calculate orbits of satellites; today: GPS
- b) Vibrations in automobiles; reliability of structures. (earthquakes; springmass-system)

1.4 Application: Electric Ciruits

Ohm's Law: $U = R \cdot I$ (voltage = resistance * current)

Kirchhoff's Cirquit Laws: \rightarrow System of ODEs

Law of Induction: $U = n \cdot I'$ (Coil); $I = C \cdot U'$ (Capacitor). Here the ' is the time derivative.

1.5 Application: Chemical relations

Chemical reaction: $A + B \xrightarrow{k} C$.

Here $c_A(t), c_B(t), c_C(t)$ are the Concentrations of the substance A, B, C in $\frac{\text{Mol}}{1}$.

Law of mass action: Change of concentration is proportional to the concentration of the resulting substances:

$$c'_C = k \cdot c_A \cdot c_B$$

$$c'_A = -k \cdot c_A \cdot c_B$$

$$c'_B = -k \cdot c_A \cdot c_B$$

1.6 Classification of ODEs

$$y(x)$$
.

x: independent variable scalar

y: dependent variable

Ordenary DE:

- System of ODEs: $y(x) \in \mathbb{R}^n, n > 1$.
- Single ODE: $y(x) \in \mathbb{R}, n = 1.$

Implicit DE of order m:

$$F(x, y(x), y'(x), ..., y^{(m)}(x)) = 0.$$

Explicit DE of order m:

$$y^{(m)}(x) = f(x, y(x), y'(x), ..., y^{(m-1)}(x)).$$

2 First-order ODEs

For now we have m=1, n=1. Consider y'(x)=f(x,y(x)). The **explicit** form of the ODE is noted like y'=f(x,y) explicit form of ODE. The function f is defined on $D=D_x\times D_y\in\mathbb{R}^2$.

2.1 Examples

"Strip":

y = 1 y = 0

"Rectangle":

2.2 Geometric Interpretation: Direction Field

$$y' = f(x, y).$$

f(x,y): Slop of tangent line of y(x) in point (x,y). Using software like dfield we can visualize f(x,y) as an vector field.

2.3 Observations

- 1. Through each point $(x_0, y_0) \in D$ there passes exactly one solution curve.
- 2. Each solution curve is **maximal**, meaning that the curve continues until the boundary of D (this includes a blow up to $+\infty$).
- 3. Solution curves don't intersect!

2.4 Existence and Uniqueness of a Solution

IVP (initial value problem): $y' = f(x, y), y(x_0) = y_0,$ domain D

Theorem: Peano 2.4.1

Assume that f is continuous on D and $(x_0, y_0) \in D$. Then the IVP has at leas one solution. This solution is minimal, meaning that we can continue the solution for $x < x_0$ and $x > x_0$ until the boundary of D.

Theorem: Picard-Lindelöf 2.4.2

Let f be continuous on D and let f be continuously differentiable with respect to y, that is, $\frac{\delta f}{\delta y}$ is continuous. Let $(x_0, y_0) \in D$. Then the IVP has a unique

Example:

implicit form of ODE

explicit form

$$(x^2 - x)y' = (2x - 1)y, y(x_0) = y_0.$$

$$(x^2 - x)y' = (2x - 1)y$$
, $y(x_0) = y_0$. $y' = \frac{2x - 1}{x^2 - x}y$ $f(x, y) = \frac{2x - 1}{x^2 - x}y$.

Three cases:

- 1. $x_0 \notin \{0, 1\}$: Unique solution (due to Picard-Lindelöf Thm.).
- 2. $x_0 \in \{0, 1\}$ and $y_0 = 0$: Infinitely many solution $y(x) = cx(x-1), c \in \mathbb{R}$ Check it!
- 3. $x_0 \in \{0, 1\}$ and $y_0 \neq 0$: No solution.

2.5Examples and Recap

IVP
$$\begin{cases} y' &= \lambda y, \\ y(x_0) &= y_0. \end{cases}$$

 $\lambda \in \mathbb{R}$ is a constant.

a) Domain of Definition D Here: $f(x,y) = \lambda y$ with x being the independent and y the dependent variable.

$$D = \mathbb{R} \times \mathbb{R}$$
.

Meaning: f is well defined for all $x \in \mathbb{R}$ and for all $y \in \mathbb{R}$

- b) Direction field, software dfield, geometric interpretation.
- Existence and uniquess of the solution of the DE (differential equation).

7

d) $y(x) = c \cdot e^{\lambda x}$, $c \in \mathbb{R}$ is the general solution of the DE. Check:

$$y' = c \cdot \lambda \cdot e^{\lambda x} = \lambda c e^{\lambda x} = \lambda y(x).$$

Parameter c is determined by the initial condition

$$y(x_0) = ce^{\lambda x_0} \stackrel{!}{=} y_0 \to c = y_0 e^{-\lambda x_0}.$$

Remark on "general solution": What does it mean? Suppose the DE $y' = \lambda y$ has another solution y. Then it holds:

$$\begin{split} \left(\frac{\tilde{y}}{e^{\lambda x}}\right)' &= \frac{\tilde{y}'e^{\lambda x} - \tilde{y}\lambda e^{\lambda x}}{(e^{\lambda x})^2} \\ &= \frac{e^{\lambda x}(\tilde{y}' - \lambda \tilde{y})}{e^{2\lambda x}} \\ &= e^{-\lambda x}(\tilde{y}' - \lambda \tilde{y}) = e^{-\lambda x} \cdot 0 = 0 \end{split}$$

 $\tilde{y}' - \lambda \tilde{y} = 0$ since \tilde{y} solves DE $\tilde{y}' = \lambda \tilde{y}$ by assumption.

Hence $\frac{\tilde{y}}{e^{\lambda x}} = \text{constant and } \tilde{y} = \text{constant} \cdot e^{\lambda x}$.

Hence all solutions of $y' = \lambda y$ have the form $y = ce^{\lambda x}$, $c \in \mathbb{R}$.

Today's topic: Analytical techniques do not work niques for the solution of first-order differential equations.

Be careful: Techniques do not work for all DEs; require assumptions!

2.6 Separation of Variables

$$y'(x) = f(x) \cdot g(y).$$

1. Particular solution: The zeros of g are stationary (constant) solutions.

Example: $g(y^* = 0 \rightarrow \tilde{y} \equiv y^* \text{ solves the DE.}$

Check:
$$0 = (y^*)' = \tilde{y}' = f(x) \cdot g(y^*)$$
 $g(y^*) = 0$

- 2. If f is continuous and g, g' are continuous, we couclude with (2.4) that the DE has a unique solution (Picard-Lindelöf Theorem).
- 3. Assume $g(y) \neq 0$:
 - (a) $\frac{dy}{dx} = f(x)g(x)$
 - (b) $\frac{dy}{g(y)} = f(x)dx$ Separation of variables
 - (c) $\int \frac{dy}{g(y)} = \int f(x)dx + c$ Parameter
 - (d) Calculate the antiderivatives.
 - (e) If possible, rearrange (d). and isolate y.

2.7 Example, Separation of Variables

$$y' = -x^2y$$
 (see previous lecture).

- $f(x) = -x^2$
- g(y) = y
- 1. Stationary solution: $y \equiv 0$
- 2.

$$\begin{split} \frac{dy}{dx} &= -x^2y\\ \frac{dy}{y} &= -x^2dx\\ \int \frac{dy}{y} &= -\int x^2dx + c, \quad c \in \mathbb{R}\\ \ln|y| &= -\frac{1}{3}x^3 + c\\ |y| &= \exp\left(-\frac{1}{3}x^3 + c\right) = e^c \cdot e^{-\frac{1}{3}x^3} \qquad e^c > 0\\ y &= \pm e^c \cdot e^{-\frac{1}{3}x^3} \quad \text{plus} \quad y \equiv 0 \end{split}$$

Summary: $y(x) = \tilde{c} \cdot e^{-\frac{1}{3}x^3}, \quad \tilde{c} \in \mathbb{R}$

general solution of DE

From now on "antilogarithm":

$$\ln |y| = (\dots) + c, \quad c \in \mathbb{R}$$
$$y = \tilde{c} \cdot e^{(\dots)}, \quad \tilde{c} \in \mathbb{R}$$

2.8 Application: Water Container

Given:: Cross-section area of cylindrical container A and cross-section area of (circular) outlet B.

Toricelli's Law:

$$v_{out} = \sqrt{2gh}$$
.

Wanted: h = h(t) water level in container.

Question: At which time is the container empty? For witch t^* does it hold $h(t^*) = 0$?

consider the change of volume ΔV of water in container.

$$\Delta V_{cont} = A \cdot \Delta h$$

$$\Delta V_{out} = \gamma \cdot B \cdot v_{out} \cdot \Delta t$$

 γ : Borda factor $\gamma = 0.62$ for circular outlet.

Conservation of Mass:

$$\begin{split} \Delta V_{cont} + \Delta V_{out} &= 0 \qquad \Delta V_{cont} = -\Delta V_{out} \\ A \cdot \Delta h &= -\gamma \cdot B \cdot \sqrt{2gh} \Delta t \\ A \cdot \frac{\Delta h}{\Delta t} &= -\gamma B \sqrt{2gh} \\ \Delta t \to 0 \\ A * h' &= -\gamma B \sqrt{2gh} \\ \\ \text{IVP for } h(t) \left\{ \begin{array}{l} h'(t) &= -\gamma B \sqrt{2gh(t)} \\ h(0) &= h_0. \end{array} \right. \end{split}$$

Solve my separation of variables!

1.
$$\tilde{g}(h) = \sqrt{h}$$

 $\tilde{f}(t) = -\gamma \frac{B}{A} \sqrt{2g}$
 $h'(t) = \tilde{f}(t) \cdot \tilde{g}(h)$
Stationary solution: $h \equiv 0$ is zero of $\tilde{g}(h) = \sqrt{h}$.

2. Domain of definition: $D = \mathbb{R} \times [0, \infty)$ (time $t \times$ water level h)

 $h \ge 0$ existence (Peano) h > 0 existence and uniqueness.

(Picard-Lindelöt)

3. Separation of variables.

$$\begin{aligned} & \det \, \mu := \gamma \frac{B}{A} \sqrt{2g}, \quad h > 0 \\ & \frac{dh}{dt} = -\mu \sqrt{h} \\ & \int \frac{dh}{\sqrt{h}} = -\mu \cdot \int 1 \cdot dt + c \\ & 2\sqrt{h} = -\mu \cdot t + c \end{aligned}$$

Initial condition:
$$h(0) = h_0 > 0 \rightarrow c = \sqrt{h_0} = -\mu \cdot 0 + c$$

 $2\sqrt{h} = -\mu \cdot t + 2\sqrt{h_0}$ Rearrange, isolate h
 $h(t) = \frac{1}{4}(2\sqrt{h_0} - \mu t)^2$ as long as $h > 0$!

Complete Solution:

$$h(t) = \begin{cases} \frac{1}{4} (2\sqrt{h_0} - \mu t)^2 & t \le t^*, \\ 0 & t > t^*. \end{cases}$$

When is
$$h(t^*)=0$$

$$2\sqrt{h_0}=\mu t^*$$

$$t^*=\frac{2\sqrt{h_0}}{\mu}.$$

2.9 Linear DE of first Order

Standard form: y'(x) = +p(x)y(x) = r(x) p, r can be nonlinear functions in x

DE is linear in y, y', not allowed are terms like $(y')^2, \sin(y), y \cdot y'$ etc.

p = p(x), r = r(x) continuous \rightarrow existance and uniqueness solution

Recall: y' = f(x, y)

Here:

$$y' = r(x) - p(x) \cdot y(x) =: f(x, y)$$

$$\frac{\delta f}{\delta y} = -p(x)$$

Concepts:

$$y'(x) + p(x)y(x) = 0$$
 homogeneous linear DE $y*(x) + p(x)y(x) = r(x)$ inhoogeneous linear DE $r(x) \not\equiv 0$

Remarks:

Ax = b linear system of equations

Ax = 0 homogeneous linear system of equations

 $b \neq 0$ inhomogeneous linear system of equations.

2.10 General Solution of the homogeneous DE

$$y*(x) + p(x)y(x) = 0$$
 $y' = \frac{dy}{dx}$
$$\frac{dy}{dx} = -p(x)y(x)$$

Variables of p(x) and y(x) are separate.

- 1. Stationary solution: $y \equiv 0$
- 2. $y \neq 0$, separation of variables.

$$\frac{dy}{dx} = -p(x)y(x)$$

$$\int \frac{dy}{y} = -\int_{x_0}^x p(z)dz + c$$

$$ln|y| = -\int_{x_0}^x p(z)dz + c = P(x) - P(x_0) + c$$

$$= -P(x) + \tilde{c}$$

Let $P(\cdot)$ denote the antiderivative of $p(\cdot)$, that is, P(z) = p(z).

"antilogarithm":

$$y(x) = \hat{c} \cdot e^{-P(x)}, \quad \hat{c} \in \mathbb{R}.$$

<u>Reminder</u>: $\int_{x_0}^x p(z)dz =: F(x)$

$$\frac{dF}{dx} = p(x) \cdot \frac{dx}{dx} - p(x)\frac{dx_0}{dx} + 0 = p(x).$$

by the Leibniz rule for parametric integrals.

2.11 General Solution for inhomogeneous DE

Let y_1, y_2 denote solutions of the inhomogeneous DE:

$$y'_{1}(x) + p(x)y_{1}(x) = r(x)$$

$$y_{2} * (x) + p(x)y_{2}(x) = r(x)$$
subtract:
$$(y_{1} - y_{2})' + p(x)(y_{1} - y_{2}) = 0$$

$$y_{D} := y_{1} + y_{2} \rightarrow y_{1} = y_{2} + y_{D}$$

 $y_D'(x) + p(x)y_D(x) = 0$

Using (2.10):

$$y_D(x) = c * e^{-P(x)}, \quad c \in \mathbb{R}$$
$$y_1(x)y_2(x) + ce^{-P(x)}, \quad c \in \mathbb{R}$$

 $\begin{array}{l} {\rm general~solution~of~in} {\rm homogeneous~DE} & = {\rm particular~solution~of} \\ {\rm homogeneous~DE} & + {\rm mogeneous~DE} \end{array} + \begin{array}{l} {\rm general~solution~of~homogeneous~DE} \end{array}.$

2.12 Variation of Constants

Ansatz to obtain a particular solution of the inhomogeneous DE

$$y_{p} = c(x)e^{-P(x)}$$
 $c = c(x)$.

Insert ansatz in the inhomogeneous DE (product rule!)

$$y'_{P}(x) + p(x)y_{P}(x)i = r(x)$$

$$c'(x)e^{-P(x)} - p(x)e^{-P(x)}c(x) + p(x)c(x)e^{-P(x)} = r(x)$$

$$c'(x)e^{-P(x)} = r(x)$$

$$c'(x) = e^{P(x)}r(x)$$

$$c(x) = \int_{x_{0}}^{x} e^{P(z)}r(z)dz + \tilde{c}.$$

Summary: $y_{P}(x) = c(x)e^{-P(x)}$

2.13 Electrical Circuit

$$L \cdot I'(t) + R \cdot I(t) = U \in (\omega t) \tag{1}$$

Check linearity of (1):

a) General solution of homogeneous equation:

$$L * I'(t) + R(I) = 0.$$

Sep. of var.: $I(t) = \tilde{c}e^{-R \cdot \frac{t}{L}}, \quad \tilde{c} \in \mathbb{R}$

b) Particular solution if inhomogeneous equation (1).

Ansarz (variation of constants):

 $\begin{array}{ll} y_p(t) = c(t)e^{-R\cdot\frac{t}{L}} & \text{Insert in inhomogeneous equation} \\ Ly_p'(t) + Ry_p(t) = U\sin(\omega t) \\ Lc*(t)e^{-R\frac{t}{L}} + Lc(t)\left(-\frac{R}{L}\right)e^{-R\frac{t}{L}} + Rc(t)e^{-R\frac{t}{L}} = U\sin(\omega t) \end{array}$

$$c'(t) = \underbrace{\frac{U}{L}\sin(\omega t e^{R\frac{t}{L}})}_{\text{Integrate with respect to }t.} \ .$$
 Integration by parts $2x$

 $c(t) = Ue^{R\frac{t}{L}} \cdot \frac{R\sin(\omega t) - \omega\cos(\omega t)}{R^2 + \omega^2 L^2}.$

2.14 Bernoulli DE (nonlinear DE

$$y' + p(x)y = r(x)y^{\alpha}, \quad \alpha \in \mathbb{R}$$
 (2)

 $\alpha \in \{0;1\} \quad \text{1st order linear DE}$

 $\alpha \notin \{0,1\}$ Ansatz: $u(x) = y(x)^{1-\alpha}$

 $r(x) \neq 0$

$$u'(x) = (1 - \alpha)y(x)^{-\alpha} \cdot y'(x)$$

$$= (1 - \alpha)y(x)^{-\alpha} \cdot \underbrace{(-p(x)y(x) + r(x)y^{\alpha})}_{y' \text{ according to DE (2)}}$$

$$= (1 - \alpha)(-p(x)u(x) + r(x))$$

$$\Rightarrow u * (x) + (1 - \alpha)p(x)u(x) = (1 - \alpha)r(x)$$

2.15 Application: Population Dynamics

y(t): population density, $y \ge 0$

 a, y_{∞} : model parameters; constant in time

a>0 : population growth rate $y>y_{\infty}\Rightarrow y'<0$

 $y_{\infty} > 0$: carrying capacity, limit population

Observation:

$$y' = ay - \frac{a}{y_{\infty}} \cdot y^{2}$$
$$y' + p(x)y = r(x)y^{\alpha}$$

$$=-au+\frac{a}{y_{\infty}}$$

homomegous DE: U' = -au

1.
$$u_{hom}0(t) = c \cdot e^{-at}, \quad c \in \mathbb{R}$$

2. Variation of constants: $u_p(t) = c(t)e^{-at}$... $c'(t) = e^{at}e^{-at} = \frac{1}{y_{\infty}}$ constant function!

$$u'_p = -au_p + \frac{a}{y_\infty}$$
$$0 = \frac{-a}{y_\infty} + \frac{a}{y_\infty}$$

- 4. Initial condition:

$$y(0) = y_0$$

$$u(0) = \frac{1}{y(0)} = \frac{1}{y_0}$$

$$\frac{1}{y_0} = u(0) = \frac{1}{y_\infty} + c \to c = \frac{1}{y_0} - \frac{1}{y_\infty} = \frac{y_\infty - y_0}{y_0 y_\infty}$$

5.
$$y(t) = u(t)^{-1} = \underbrace{\frac{y_{\infty}}{1 + (\frac{y_{\infty} - y_0}{y_0})e^{-at}}}_{\text{Solution of the IVP}}$$
Observe: $\lim_{t \to +\infty} y(t) = \frac{y_{\infty}}{1 + (\dots) \cdot 0} = y_{\infty}$

- 6. Remark: Stationary solutions: $y' = ay(1 \frac{y}{y_{\infty}}) = f(y)$
 - \bullet zero of f
 - $y_1 \equiv 0$
 - $y_2 \equiv y_\infty$

Note: The symbol \equiv means a functions is constant equal to the right-hand side.

2.16 Order Reduction

Autonomous 2nd order DE.

$$F(y, y', y'') = 0.$$

y = y(x) The independent variable x does not occur explicitly in the DE

Idea: Consider y as independent variable and $v = \frac{dy}{dx} = v(y)$ as dependent variable.

$$F(y, \underbrace{v(y)}_{=y'}, ?) = 0$$

$$y'' = \frac{dy'}{dx} = \frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = \frac{dv}{dy} \cdot v(y)$$

Summary: $F(y, v(y), v(y) \cdot \frac{dv}{dy}) = 0$

Step 1: Solve 1st order DE to obtain v = v(y).

Step 2:

$$\frac{dy}{dx} = v(y)$$
 1st order DE for y
$$\frac{dy}{v(y)} = dx$$
 Separtation of the variables!

2.17 Example: Oscillation

A mass m is secured to the wall with a spring (coefficient k) allowing vertical translation y = y(t).

$$m \cdot y'' + k \cdot y = 0$$

Order reduction: $F(y,y',y'')=m\cdot y''+k\cdot y=0$ Variable t does not occur explicitly in DE \to autonomous DE

m > 0 mass

k > 0 spring constant

Ansatz:
$$v = v(y) = y' \longrightarrow y'' = v(y) \cdot \frac{dv}{dy}$$

DE:

1. Separation of var.

$$\begin{split} v\frac{dv}{dy} &= -\frac{k}{m}y\\ \int vdv &= -\frac{k}{m}\int ydy + \underbrace{\tilde{c}}_{\geq 0}\\ &\frac{1}{2}v^2 = -\frac{1}{2}\frac{k}{m}y^2 + \frac{1}{2}c_1^2\\ v &= v(y) = \pm (c_1^2 - \frac{k}{m}y^2)^{\frac{1}{2}} \end{split}$$

2. $y' = \pm (c_1^2 - \frac{k}{m}y^2)^{\frac{1}{2}}$ Solve my separation of var. $y = y(t), y' = \frac{dy}{dt}$

$$\underbrace{\pm \int \frac{dy}{\left(c_1^2 - \frac{k}{m}y^2\right)}}_{(*)} = \int dt + c_2.$$

Note:
$$\left(\frac{1}{|\alpha|\arcsin(\alpha y)}\right)' = \frac{1}{|\alpha|} \cdot \alpha \cdot \frac{1}{\sqrt{1-\alpha^2 y^2}} = \pm \frac{1}{\sqrt{1-\alpha^2 y^2}}$$

$$(*) = \frac{\pm 1}{|c_1|} \int \frac{dy}{\left(1 - \frac{k}{m} \frac{1}{c_1^2} y^2\right)^{\frac{1}{2}}}$$

$$= \frac{1}{|c_1|} \sqrt{\frac{k}{m}}^{-1} |c_1| \arcsin\left(\sqrt{\frac{k}{m}} c_1^{-1} y\right)$$

$$\sqrt{\frac{k}{m}}^{-1} \arcsin\left(\sqrt{\frac{k}{m}} c_1^{-1} y\right) = t + c_2$$

$$\arcsin\left(\sqrt{\frac{k}{m}} c_1^{-1} y\right) = \sqrt{\frac{k}{m}} t + \tilde{c}_2$$

$$\sqrt{\frac{k}{m}} c_1^{-1} y = \sin\left(\sqrt{\frac{k}{m}} t + \tilde{c}_2\right)$$

$$y = \sqrt{\frac{m}{k}} c_1 \sin\left(\sqrt{\frac{k}{m}} t + \tilde{c}_2\right)$$

$$y(t) = \tilde{c}_1 \sin\left(\sqrt{\frac{k}{m}} t + \tilde{c}_2\right)$$

 \rightarrow two parameters in general solution

3 Second-order Linear Differential Equations

3.1 Standard Form

IVP
$$\begin{cases} y''(x) + p(x)y'(x) + q(x)y(x) = r(x) \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases}$$
 initial conditions

Existance and uniqueness of solution for p, q, r continuous (\rightarrow Picard-Lindelöf).

Idea: Rewrite IVP as system of two 1st order DEs

Concepts:

 $r(x) \equiv 0$ homogeneous DE $r(x) \not\equiv 0$ inhomogeneous DE (see 1st order DEs)

Solution:
$$y(x) = y_{\text{hom}}(x) + y_p(x)$$

general solution of inhomoegnous DE = $\frac{\text{general solution}}{\text{of hom. DE}} + \frac{\text{(one)}}{\text{tion of inhomog. DE}}$

$$y''_{\text{hom}} + p(x)y'_{\text{hom}}(x) + q(x)y_{\text{hom}}(x) = 0$$

 $y''_{n}(x) + p(x)y'_{n}(x) + q(x)y_{n}(x) = r(x)$

 y_{hom} has TWO parameters (\rightarrow two initial conditions)

3.2 Superposition Principle

Let y_1, y_2 denote solutions of the homogeneous DE.

Superposition = linear combination:

$$y(x) := \underbrace{a}_{\text{constant}} \cdot y_1(x) + \underbrace{b}_{\text{constant}} \cdot y_2(x).$$

$$y'(x) = ay'_1(x) + by'_2(x)$$

$$y''(x) = ay''_1(x) + by''_2(x)$$

$$y''_1(x) + p(x)y'_1(x) + q(x)y_1(x) = 0 \quad | \cdot a$$

$$y''_2(x) + p(x)y'_2(x) + q(x)y_2(x) = 0 \quad | \cdot b$$

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$

- Any superposition of solutions of homogeneous DE is again a solution of homogeneous DE.
- General solution of inhomogeneous DE has the form:

$$y(x) = c_1 \cdot y_1(x) + c_2 \cdot y_2(x) + y_n(x).$$

Question: Under which conditions can we choose c_1 and c_2 such that we can impose any pair (x_0, y_0) and (x_0, y_0) or initial conditions?

Answer: $y(x_0) = y_0 \text{ and } y'(x_0) = y'_0$

Ansatz: $y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x)$

Initial conditions:

$$(x) \begin{cases} c_1 y_1(x_0) + c_2 y_2(x_0) &= \overbrace{y(x_0)}^{=!y_0} - y_p(x), \\ c_1 y_1'(x_0) + c_2 y_2 * (x_0) &= \underbrace{y'(x_0)}_{=!y_0'} - y_p'(x_0). \end{cases}$$

Note that (*) is a 2×2 linear system of equns for unknowns c_1, c_2

$$\underbrace{\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}}_{\vec{c}} = \underbrace{\begin{pmatrix} y_0 - y_p(x_0) \\ y_0' - y_p'(x_0) \end{pmatrix}}_{\vec{h} \in \mathbb{P}^2}.$$

The vector $\vec{b} \in \mathbb{R}^2$ takes on arbitrary values. To ensure that $A\vec{c} = \vec{b}$ has a section we require: det $A = |A| \neq 0$ A is an invertable matrix

$$w(y_1, y_2)\Big|_{x=x_0} := \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{vmatrix} + = y_1(x_0)y'_2(x_0) - y'_1(x_0)y_2(x_0) \neq 0$$

 $egin{array}{lcl} w & : & \mbox{Wronski determinant (function of $x!$)} \\ w & = & w(x) \\ w_{(y_1,y_2)}(x) & = & \mbox{a} \\ \end{array}$

Recall: y''(x) + p(x)y'(x) + q(x)y(x) = r(x)

General solution: $y(x) = c_1y_1(x) + c_2y_2(x) + y_p(x), \quad c_1, c_2 \in \mathbb{R}$

 y_p : some solution of inhom. DE $r(x) \neq 0$ y_1, y_2 : solutions of hom. DE $r(x) \equiv 0$

Important condition: $w_{(y_1,y_2)}(x) \neq 0$

$$w_{(y_1,y_2)}(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}.$$

3.3 Fundamental System ("basis")

Definition: Let y_1, y_2 be solutions of the homogeneous DE. y_1 and y_2 are called fundamental system if $w_{(y_1,y_2)}(x) \neq 0$ for all x in a suitable interval [a,b].

Ex.:
$$y''(x) - y(x) = 0$$

 $y_1(x) = e^x$
 $y_2() = e^{-x}$

$$w(y_1, y_2) = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = -1 - 1) - 2 \neq 0.$$

 \Rightarrow $\{y_1; y_2\}$ is a fundamental system for the DE y'' - y = 0

Ex.:
$$y''(x) - y'(x) = 0$$
, $y_1(x) = e^x$, $y_2(x) \equiv 1$

$$w(y_1), y(y_2) = \begin{vmatrix} e^x & 1 \\ e^x & 0 \end{vmatrix} = 0 - e^x = -e^x \neq 0.$$

 \Rightarrow $\{y_1; y_2\}$ is a fundamental system for the DE y'' - y' = 0

Remark: w = w(x) satisfies a 1st order DE:

$$w' = (y_1 y_2' - y_1' y_2)' = y_1' y_2' + \underbrace{y_1 y_2''' - y_1'' y_2}_{} = w' - y_1' y_2'.$$

$$y_1'' + p(x) y_1' + q(x) y_1(x) = 0 \quad | \cdot (-y_2)_{} \\ y_2'' + p(x) y_2' + q(x) y_2(x) = 0 \quad | \cdot y_1_{} \\ w'(x) + p(x) w(x) + 0 = 0.$$

1st order linear homogeneous DE \rightarrow separation of variables

Solution:
$$w(x) = \underbrace{w(x_0)}_{\text{initial condition}} \cdot \underbrace{e^{-\int_{x_0}^x p(z)dz}}_{>0}$$
 Hence we conclude that only two cases are possible:

- 1. $w(y_1(x), y_2(x)) \equiv 0$ for all x,
- 2. $w(y_1(x), y_2(x)) \neq 0$ for all x.

Ex.: $w(x) \equiv -2$

Ex.: $w(x) = -e^x \neq 0$ for all x

Question: What happens in the case $w(y_1, y_2) \equiv 0$? $\{y_1; y_2\}$ is not a fundamental system.

$$y_1y_2' - y_1'y_2 = 0 \text{ for all } x; \quad y_1, y_2 \neq 0$$
 (3)

Let's consider the quotient $\frac{y_1}{y_2}$:

$$\frac{y_1'}{y_2}' = \frac{y_1'y_2 - y_1y_2'}{y_2^2} = 0$$
 by (3).

Hence $\frac{y_1}{y_2}$ is constant in x! We conclude:

$$y_1(x) = \tilde{c} \cdot y_2(x), \quad \tilde{c} \in \mathbb{R} \setminus \{0\}.$$

 $\Rightarrow y_1$ and y_2 are not linearly independent and are no basis / fundamental system for the homogeneous DE.

Ex: $y_1(x) = e^x$ $y_2(x) = e^{-x}$: $\frac{y_1}{y_2}$ is not a constant \rightarrow basis.

Ex: $y_1(x) = e^x$ $y_2(x) \equiv_0 : \frac{y_1}{y_2}$ is not a constant \rightarrow basis.

Next goal: Construct y_1 and y_2

3.4 Method of Lagrange

Setting: y_1 is already known; how to calculate y_2 ?

$$y_1'' + p(x)y_1' + q(x)y_1 = 0 (4)$$

Ansatz: $y_2(x) = u(x)y_1(x)$ u(x) is not a constant function!

$$y'_2 = u'y_1 + uy'_1$$
 (product rule)
 $y''_2 = u''y_1 + u'y'_1 + u'y'_1 + uy''_1$

$$0 = y_2'' + py_2' + qy_2$$

$$= u''y_1 + u'y_1' + u'y_1' + uy_1'' + pu'y_1 + puy_1' + quy_1$$

$$= u''y_1 + 2u'y_1' + uy_1'' + pu'y_1 + puy_1'' + quy_1$$

$$= u''y_1 + u'(2y_1' + py_1) + u\underbrace{(y_1''' + py_1'' + qy_1)}_{=0 \text{ by } (4)}$$

$$= u''y_1 + u'(2y_1' + py_1)$$

Substitution: v = u' v' = u'' v = v(x)

$$0 = v'y_1 + v(2y_1' + py_1)$$
 1st order homogeneous DE inv $y_1 \neq 0$

Rearrange:

$$v' + v(2\frac{y_1'}{y_1} + p) = 0$$
 \leftarrow separation of variables.

Obtain one (!) solution v(x) = exp(...) > 0

Back substitution:

$$u'(x) = v(x)$$
$$u(x) = \int exp(...)dz > 0$$

Hence u(x) is not a constant function!

3.5 Example

$$x(x-1)y''(x) = xy'(x) + y(x) = 0$$
(5)

Standard form of (5):

$$y''(x) - (x-1)^{-1}y'(x) + x^{-1}(x-1)^{-1}y(x) = 0.$$

unique solution for $x \neq 0$ and $x \neq 1$. We consider x > 1

1. $y_1 = x$ solves (5).

$$0 - (x-1)^{-1} \cdot 1 + x^{-1}(x-1)^{-1}x = 0.$$

2. Method of Lagrange:

$$y_2(x) = u(x) \cdot y_1(x) = u(x) \cdot x.$$

 $y'_2 = u' \cdot x + u, \quad y''_2 = u''x + u' \cdot 2.$

Insert in DE (5):

$$x(x-1)(u'' \cdot x + 2u') - x(u' \cdot x + u) + u \cdot x = 0$$
$$u'' \cdot x^{2}(x-1) + u'(2x^{2} - 2x - x^{2}) = 0$$
$$u'' \cdot x \cdot (x-1) + u' \cdot (x-2) = 0$$

3. Substitution v = u'

$$v' \cdot x \cdot (x-1) + v \cdot (x-2) = 0, \quad \frac{dv}{dx} = v'.$$

$$x \cdot (x-1) \cdot \frac{dv}{dx} = -(x-2) \cdot v$$

$$\int \frac{dv}{v} = -\int \frac{x-2}{x \cdot (x-1)} dx \text{ 0only one solution, not general solution}$$

$$\ln |v| = \dots$$

$$v(x) = \frac{x-1}{x^2} = \frac{1}{x} - \frac{1}{x^2} = u'(x)$$

$$u(x) = \ln |x| + \frac{1}{x} = \ln x + \frac{1}{x} \text{ for } x > 1$$

$$y_2(x) = u(x) \cdot y_1(x) = x \cdot \ln x + 1$$

3.6 Inhomogeneous DE and Variation of Constants

Standard form:

$$y'' + p(x)y' + q(x)y = r(x)$$
(6)

Fundamental system: $\{y_1; y_2\}$

$$y_1'' + py_1' + q = 0$$
$$y_2'' + py_2' + q = 0$$
$$W = y_1y_2' - y_2y_1' \neq 0$$

Goal: Construct a particular solution y_p of the DE (6).