[Ejercicios verdadero o Falso.]

- 1) Verdadero.
- 2) Verdadero.
- 3) Falso.
- 4) Verdadero.
- 5)Falso

[Ejercicios multiple opción.]

- 1) La opción verdadera es a).
- 2) La opción verdadera es c).

[Ejercicio desarrollo.]

[Ejercicio 1.] .

- 1) Ver teórico.
- 2) parte a). Consideramos $s_1=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)$ $s_2=(\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}})$ entonces $\{s_1,s_2\}$ es una base ortonormal de S. Entonces

$$P_S(x,y,z) = <(x,y,z), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0) > (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0) + <(x,y,z), (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}) > (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}).$$

- 2) parte b). Todas las proyecciones son autoadjuntas entonces $P_S^* = P_S$.
- 2) parte c). Si consideramos $s_0 = (1, 1, -1)$, se cumple que $s_0 \in S^{\perp}$. Entonces $P_S(s_0) = 0$. Como $||P_S(s_0)|| \neq ||s_0||$ entonces P_S No es ortogonal.
- 2) parte d). Para cualquier $v \in \mathbb{R}^3$, por definición de P_S , se cumple que $P_S(v) \in S$. Entonces $P_{S^{\perp}}(P_S(v)) = 0$, por lo tanto T(v) = 0 para todo $v \in \mathbb{R}^3$. De donde se deduce que $T^* = 0$.

[Ejercicio 2.] Ver teórico.