FIT1043 Intro to Data Science

Assignment 1

Naveed Hassan

32799047

20/03/2022

Introduction

This assignment will take a logical approach to analyze the given data through the use of various python libraries and built in functions within it. The purpose of this study is to compare the Life Expectancy, Adult Mortality, Infant Deaths and GDPperCapita in South East Asian Countries

Importing Libraries

The first step is to import libraries. In this case we use Pandas and rename it as pd to make it easier to access. This library will be used for various purposes such as using the dataFrame structure and reading data files We will also use the matplotlib to visualize the data later on.

```
In [1]: import pandas as pd
In [2]: from matplotlib import pyplot as plt
```

Reading the Life Expectancy data file and Wrangling the useful data

Using the panda library, we read the csv file and store them as a data frame We also use the head function to output the top of the dataframe to check if the file has been read correctly

```
In [3]:
          life = pd.read csv('data/LifeExpectancyData-v2.csv')
          life.shape
         (2938, 15)
Out[3]:
In [4]:
          life.head()
Out[4]:
                                                               Adult
                                                                                Alcohol Hepatitis
               country Year
                                                                                                  Mea
                                 Status
                                        expectancy deaths
                                                           Mortality
                                                                           consumption
                                                                                               В
```

	country	Year	Status	Life expectancy	infant deaths	Adult Mortality	ВМІ	Alcohol consumption	Hepatitis B	Mea
0	Afghanistan	2015	Developing	65.0	62	263.0	19.1	0.01	65.0	1
1	Afghanistan	2014	Developing	59.9	64	271.0	18.6	0.01	62.0	
2	Afghanistan	2013	Developing	59.9	66	268.0	18.1	0.01	64.0	
3	Afghanistan	2012	Developing	59.5	69	272.0	17.6	0.01	67.0	2
4	Afghanistan	2011	Developing	59.2	71	275.0	17.2	0.01	68.0	3
4										•

Checking the basic statistics of the values in the files.

	bound method DataFrame.info of			country	Year	St	atus	Life	expectancy	
		- 2015	D	. 1		0		63		
0	Afghanista			eloping		55.0		62		
1	Afghanista			eloping		9.9		64		
2	Afghanista			eloping		9.9		66		
3	Afghanista			eloping		9.5		69		
4	Afghanista		Deve	eloping	5	59.2		71		
	73		D		,					
2933	Zimbabw			eloping		14.3		27		
2934	Zimbabw			eloping		14.5		26		
2935	Zimbabw			eloping		14.8		25		
2936	Zimbabw			eloping		15.3		25		
2937	Zimbabw	e 2000	Deve	eloping	2	16.0		24		
	Adult Mort	ality	BMI	Alcoho	l consumption	Hepati	tis B	Measl	.es	\
0		263.0	19.1		0.01		65.0	1	154	
1		271.0	18.6		0.01		62.0		492	
2		268.0	18.1		0.01		64.0		430	
3		272.0	17.6		0.01		67.0	2	787	
4		275.0	17.2		0.01		68.0	3	013	
			•••						• • •	
2933		723.0	27.1		4.36		68.0		31	
2934		715.0	26.7		4.06		7.0		998	
2935		73.0	26.3		4.43		73.0		304	
2936		686.0	25.9		1.72		76.0		529	
2937		665.0	25.5		1.68		79.0	1	.483	
	Polio Dip	htheria	H	IV/AIDS	Income compos	sition o	f reso	urces	\	
0	6.0	65.	0	0.1				0.479		
1	58.0	62.	0	0.1				0.476		
2	62.0	64.	0	0.1				0.470		
3	67.0	67.	0	0.1				0.463		
4	68.0	68.	0	0.1				0.454		
2022	67.0	٠.						0 407		
2933	67.0	65.		33.6				0.407		
2934	7.0	68.		36.7				0.418		
2935	73.0	71.		39.8				0.427		
2936	76.0	75.		42.1				0.427		
2937	78.0	78.	0	43.5				0.434		
	Schooling									
0	10.1									
1	10.0									
2	9.9									

```
3
             9.8
4
             9.5
             . . .
             9.2
2933
             9.5
2934
2935
            10.0
2936
             9.8
2937
             9.8
[2938 rows x 15 columns]>
```

Cleaning the data

Changing name 'Viet Nam' to 'Vietnam' and 'Timor-Leste' to 'East Timor'

```
In [6]:
    life.loc[life['country'] == 'Viet Nam','country'] = 'Vietnam'
    life.loc[life['country'] == 'Timor-Leste','country'] = 'East Timor'
    life.loc[life['country'] == 'Lao People\'s Democratic Republic','country'] = 'Laos'
```

Group the dataframe by country and status and use agg function

```
fun = {'Life expectancy ':{'max', 'mean'}, 'Adult Mortality': 'mean', ' BMI ': 'mean
Life_Expectancy = life.groupby(['country', 'Status']).agg(fun)
```

Drop the top level in column hierarchy and output final dataframe

```
In [8]:
#Life_Expectancy.columns = Life_Expectancy.columns.droplevel(0)
Life_Expectancy.columns = ['Mean Life Expectancy', 'Max Life Expectancy', 'Mean Adul
Life_Expectancy = Life_Expectancy.reset_index()
Life_Expectancy
```

Out[8]: Mean Mean **Mean Life Max Life** Mean Income Mean country **Status** Adult **Expectancy Expectancy Composition Schooling** Mortality of Resources 65.0 269.0625 15.51875 Afghanistan 58.19375 0.415375 8.21250 Developing Albania Developing 77.8 75.15625 45.0625 49.06875 0.709875 12.13750 2 75.6 73.61875 48.74375 Algeria Developing 108.1875 0.694875 12.71250 3 Angola Developing 56.0 49.01875 328.5625 18.01875 0.458375 8.04375 Antiqua 4 76.4 75.05625 127.5000 38.42500 0.488625 8.84375 and Developing Barbuda Venezuela 188 (Bolivarian Developing 74.1 73.38750 163.0000 54.48750 0.726812 12.78750 Republic of)

	country	Status	Mean Life Expectancy	Max Life Expectancy	Mean Adult Mortality	Mean BMI	Mean Income Composition of Resources	Mean Schooling
189	Vietnam	Developing	76.0	74.77500	126.5625	11.18750	0.627062	11.51250
190	Yemen	Developing	68.0	63.86250	211.8125	33.48750	0.475500	8.50625
191	Zambia	Developing	63.0	53.90625	354.3125	17.45000	0.498437	11.21250
192	Zimbabwe	Developing	67.0	50.48750	462.3750	25.13750	0.439125	9.82500

193 rows × 8 columns

→

Filtering out South East Asian Countries for the Life Expectancy DataFrame

We create a tuple of South East Asian Countries as

```
In [9]:
          Life_Expectancy['country'].unique()
         array(['Afghanistan', 'Albania', 'Algeria', 'Angola',
Out[9]:
                 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh',
                 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bhutan',
                 'Bolivia (Plurinational State of)', 'Bosnia and Herzegovina',
                 'Botswana', 'Brazil', 'Brunei Darussalam', 'Bulgaria',
                 'Burkina Faso', 'Burundi', 'Cabo Verde', 'Cambodia', 'Cameroon',
                 'Canada', 'Central African Republic', 'Chad', 'Chile', 'China',
                 'Colombia', 'Comoros', 'Congo', 'Cook Islands', 'Costa Rica',
                 'Croatia', 'Cuba', 'Cyprus', 'Czechia', "Côte d'Ivoire",
                 "Democratic People's Republic of Korea",
                 'Democratic Republic of the Congo', 'Denmark', 'Djibouti',
                 'Dominica', 'Dominican Republic', 'East Timor', 'Ecuador', 'Egypt', 'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia',
                 'Ethiopia', 'Fiji', 'Finland', 'France', 'Gabon', 'Gambia',
                 'Georgia', 'Germany', 'Ghana', 'Greece', 'Grenada', 'Guatemala',
                 'Guinea', 'Guinea-Bissau', 'Guyana', 'Haiti', 'Honduras',
                 'Hungary', 'Iceland', 'India', 'Indonesia',
                 'Iran (Islamic Republic of)', 'Iraq', 'Ireland', 'Israel', 'Italy', 'Jamaica', 'Japan', 'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati',
                 'Kuwait', 'Kyrgyzstan', 'Laos', 'Latvia', 'Lebanon', 'Lesotho',
                 'Liberia', 'Libya', 'Lithuania', 'Luxembourg', 'Madagascar',
                 'Malawi', 'Malaysia', 'Maldives', 'Mali', 'Malta',
                 'Marshall Islands', 'Mauritania', 'Mauritius', 'Mexico',
                 'Micronesia (Federated States of)', 'Monaco', 'Mongolia',
                 'Montenegro', 'Morocco', 'Mozambique', 'Myanmar', 'Namibia',
                 'Nauru', 'Nepal', 'Netherlands', 'New Zealand', 'Nicaragua',
                 'Niger', 'Nigeria', 'Niue', 'Norway', 'Oman', 'Pakistan', 'Palau',
                 'Panama', 'Papua New Guinea', 'Paraguay', 'Peru', 'Philippines',
                 'Poland', 'Portugal', 'Qatar', 'Republic of Korea', 'Republic of Moldova', 'Romania', 'Russian Federation', 'Rwanda',
                 'Saint Kitts and Nevis', 'Saint Lucia',
                 'Saint Vincent and the Grenadines', 'Samoa', 'San Marino',
                 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia',
                 'Seychelles', 'Sierra Leone', 'Singapore', 'Slovakia', 'Slovenia',
                 'Solomon Islands', 'Somalia', 'South Africa', 'South Sudan',
```

```
'Spain', 'Sri Lanka', 'Sudan', 'Suriname', 'Swaziland', 'Sweden', 'Switzerland', 'Syrian Arab Republic', 'Tajikistan', 'Thailand', 'The former Yugoslav republic of Macedonia', 'Togo', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Turkey', 'Turkmenistan', 'Tuvalu', 'Uganda', 'Ukraine', 'United Arab Emirates', 'United Kingdom of Great Britain and Northern Ireland', 'United Republic of Tanzania', 'United States of America', 'Uruguay', 'Uzbekistan', 'Vanuatu', 'Venezuela (Bolivarian Republic of)', 'Vietnam', 'Yemen', 'Zambia', 'Zimbabwe'], dtype=object)
```

In [10]:
 SEA = ('Brunei Darussalam', 'Cambodia', 'East Timor', 'Indonesia', 'Laos', 'Malaysia
 Life_Expectancy_SEA = Life_Expectancy[Life_Expectancy['country'].isin(SEA)]
 Life_Expectancy_SEA

Out[10]:

	country	Status	Mean Life Expectancy	Max Life Expectancy	Mean Adult Mortality	Mean BMI	Mean Income Composition of Resources	Mean Schooling
2	Brunei Darussalam	Developing	78.3	76.48750	67.0625	29.71875	0.839375	14.10625
2	28 Cambodia	Developing	68.7	64.34375	196.3750	15.36250	0.491938	9.87500
į	East Timor	Developing	68.3	64.75625	170.3750	14.55000	0.517625	10.70000
7	78 Indonesia	Developing	69.1	67.55625	166.5625	19.95625	0.641437	11.61250
9	Laos	Developing	65.7	62.38125	197.1875	14.36250	0.515625	9.23125
10	Malaysia	Developing	75.0	73.75625	118.5625	29.16875	0.749125	12.56250
1	16 Myanmar	Developing	66.6	64.20000	154.3125	17.12500	0.488250	8.32500
13	Philippines	Developing	68.5	67.57500	217.9375	19.18750	0.650438	11.54375
15	Singapore	Developed	87.0	81.47500	62.0000	25.90625	0.866875	13.98125
17	70 Thailand	Developing	74.9	73.08125	160.3750	21.59375	0.694688	12.55000
18	39 Vietnam	Developing	76.0	74.77500	126.5625	11.18750	0.627062	11.51250

Manage any data type issues or data issues

```
In [11]:
          Life Expectancy SEA.dtypes
                                                    object
         country
Out[11]:
         Status
                                                    object
         Mean Life Expectancy
                                                   float64
         Max Life Expectancy
                                                   float64
         Mean Adult Mortality
                                                   float64
                                                   float64
         Mean Income Composition of Resources
                                                   float64
                                                   float64
         Mean Schooling
         dtype: object
```

The data types are correct, nothing to change

Reading the GDP data file and Wrangling the useful data

N/1 - - --

Using the panda library, we read the csv file and store them as a data frame We also use the function to output the dataframe to check if the file has been read correctly

```
In [12]: gdp = pd.read_csv('data/2019-GDP.csv')
    gdp.shape

Out[12]: (244, 6)

In [13]: gdp.sample(5)
```

Out[13]:		Unnamed:	Gross domestic product 2019	Unnamed: 2	Unnamed: 3	Unnamed:	Unnamed: 5
	215	SXM	NaN	NaN	Sint Maarten (Dutch part)	-	NaN
	216	SSD	NaN	NaN	South Sudan	-	NaN
	45	CHL	42	NaN	Chile	282,318	NaN
	188	GNB	185	NaN	Guinea-Bissau	1,340	NaN
	33	NOR	30	NaN	Norway	403.336	NaN

Cleaning the data

Changing name 'Timor-Leste' to 'East Timor'

```
In [14]:
            gdp['Unnamed: 3'].unique()
           array([nan, 'Economy', 'United States', 'China', 'Japan', 'Germany',
Out[14]:
                   'India', 'United Kingdom', 'France', 'Italy', 'Brazil', 'Canada',
                   'Russian Federation', 'Korea, Rep.', 'Spain', 'Australia',
                   'Mexico', 'Indonesia', 'Netherlands', 'Saudi Arabia', 'Turkey',
                   'Switzerland', 'Poland', 'Thailand', 'Sweden', 'Belgium',
                   'Argentina', 'Nigeria', 'Austria', 'Iran, Islamic Rep.', 'United Arab Emirates', 'Norway', 'Israel', 'Ireland',
                   'Philippines', 'Singapore', 'Hong Kong SAR, China', 'Malaysia', 'South Africa', 'Denmark', 'Colombia', 'Egypt, Arab Rep.',
                   'Bangladesh', 'Chile', 'Pakistan', 'Finland', 'Vietnam', 'Romania',
                   'Czech Republic', 'Portugal', 'Iraq', 'Peru', 'Greece', 'New Zealand', 'Qatar', 'Kazakhstan', 'Algeria', 'Hungary',
                   'Ukraine', 'Kuwait', 'Morocco', 'Ecuador', 'Slovak Republic',
                   'Puerto Rico', 'Cuba', 'Ethiopia', 'Kenya', 'Angola',
                   'Dominican Republic', 'Sri Lanka', 'Oman', 'Guatemala', 'Myanmar',
                   'Luxembourg', 'Bulgaria', 'Ghana', 'Panama', 'Tanzania', 'Belarus',
                   'Costa Rica', 'Croatia', "Côte d'Ivoire", 'Uzbekistan', 'Uruguay',
                   'Lithuania', 'Macao SAR, China', 'Slovenia', 'Lebanon', 'Libya', 'Serbia', 'Azerbaijan', 'Congo, Dem. Rep.', 'Jordan', 'Bolivia',
                   'Turkmenistan', 'Tunisia', 'Cameroon', 'Bahrain', 'Paraguay',
                   'Uganda', 'Latvia', 'Estonia', 'Nepal', 'Yemen, Rep.', 'Cambodia',
                   'El Salvador', 'Honduras', 'Papua New Guinea', 'Cyprus', 'Iceland',
                   'Trinidad and Tobago', 'Senegal', 'Zambia', 'Zimbabwe',
                   'Bosnia and Herzegovina', 'Afghanistan', 'Sudan', 'Botswana',
                   'Lao PDR', 'Georgia', 'Mali', 'Gabon', 'Jamaica', 'Burkina Faso',
                   'Albania', 'Mozambique', 'Malta', 'West Bank and Gaza', 'Benin',
                   'Mauritius', 'Madagascar', 'Mongolia', 'Armenia', 'Guinea',
                   'Brunei Darussalam', 'Niger', 'Bahamas, The', 'North Macedonia',
```

```
'Nicaragua', 'Namibia', 'Moldova', 'Chad', 'Equatorial Guinea', 'Congo, Rep.', 'Rwanda', 'Haiti', 'Kyrgyz Republic', 'Tajikistan',
'Kosovo', 'Malawi', 'Mauritania', 'Monaco', 'Isle of Man',
'Liechtenstein', 'Guam', 'Maldives', 'Fiji', 'Montenegro',
'Cayman Islands', 'Togo', 'Barbados', 'Eswatini', 'Guyana',
'Suriname', 'Sierra Leone', 'Virgin Islands (U.S.)', 'Djibouti',
'Andorra', 'Curaçao', 'Liberia', 'Aruba', 'Greenland', 'Burundi',
'Faroe Islands', 'Lesotho', 'Bhutan', 'Central African Republic',
'St. Lucia', 'Cabo Verde', 'Belize', 'Gambia, The', 'Antigua and Barbuda', 'Seychelles', 'Timor-Leste', 'San Marino',
'Solomon Islands', 'Guinea-Bissau', 'Northern Mariana Islands',
'Grenada', 'Comoros', 'St. Kitts and Nevis',
'Turks and Caicos Islands', 'Vanuatu', 'Samoa',
'St. Vincent and the Grenadines', 'American Samoa', 'Dominica',
'Tonga', 'São Tomé and Principe', 'Micronesia, Fed. Sts.', 'Palau', 'Marshall Islands', 'Kiribati', 'Nauru', 'Tuvalu', 'Bermuda',
'British Virgin Islands', 'Channel Islands', 'Eritrea',
'French Polynesia', 'Gibraltar', "Korea, Dem. People's Rep.",
'New Caledonia', 'Sint Maarten (Dutch part)', 'South Sudan',
'St. Martin (French part)', 'Syrian Arab Republic',
'Venezuela, RB', 'Somalia', 'World', 'East Asia & Pacific',
'Europe & Central Asia', 'Latin America & Caribbean',
'Middle East & North Africa', 'North America', 'South Asia',
'Sub-Saharan Africa', 'Low income', 'Lower middle income',
'Upper middle income', 'High income'], dtype=object)
```

```
In [15]:
    gdp.loc[gdp['Unnamed: 3'] == 'Timor-Leste','Unnamed: 3'] = 'East Timor'
    gdp.loc[gdp['Unnamed: 3'] == 'Lao PDR','Unnamed: 3'] = 'Laos'
```

Filtering out South East Asian Countries for the GDP DataFrame

We create a tuple of South East Asian Countries as SEA because it is faster as compared to lists and requires less memory

```
In [16]:
SEA = ('Brunei Darussalam', 'Cambodia', 'East Timor', 'Indonesia', 'Laos', 'Malaysia
GDP_SEA = gdp[gdp['Unnamed: 3'].isin(SEA)]
GDP_SEA_1 = GDP_SEA.drop(['Unnamed: 0','Unnamed: 2', 'Unnamed: 5', 'Gross domestic p
GDP_SEA_Final = GDP_SEA_1.rename(columns = {'Unnamed: 3': 'country','Unnamed: 4': 'G
GDP_SEA_Final
```

Out[16]:		country	GDP (Millions US Dollars)
	19	Indonesia	1,119,191
	25	Thailand	543,650
	36	Philippines	376,796
	37	Singapore	372,063
	39	Malaysia	364,702
	48	Vietnam	261,921
	74	Myanmar	76,086
	106	Cambodia	27,089
	120	Laos	18,174

	country	GDP (Millions US Dollars)
136	Brunei Darussalam	13,469
185	East Timor	1.674

Reading The population.csv file

and checking if it is read correctly

```
In [18]:
           population = pd.read_csv('data/2020-Population.csv')
           population.shape
           (305, 78)
Out[18]:
In [19]:
           population.sample(5)
Out[19]:
                Unnamed:
                          Unnamed:
                                      Unnamed:
                                                  Unnamed:
                                                             Unnamed:
                                                                                      Unnamed: Unnamed:
                                                                         Unnamed: 5
                        0
                                               2
                                                                                                          7
                                             Iran
                                          (Islamic
           136
                      121
                             Estimates
                                                        NaN
                                                                         Country/Area
                                                                                            5501
                                                                                                     17 119
                                         Republic
                                              of)
           116
                      101
                                                                         Country/Area
                                                                                             922
                                                                                                        456
                             Estimates
                                           Oman
                                                        NaN
                 © August
                   2019 by
                    United
            11
                                 NaN
                                            NaN
                                                        NaN
                                                                   NaN
                                                                                NaN
                                                                                            NaN
                                                                                                       NaN
                  Nations,
                     made
                  availabl...
           101
                       86
                             Estimates
                                                                                             912
                                                                                                      8 986
                                         Morocco
                                                        NaN
                                                                    504
                                                                         Country/Area
                                         Western
           289
                      274
                             Estimates
                                                        NaN
                                                                    926
                                                                            Subregion
                                                                                             917
                                                                                                    142 414
                                          Europe
          5 rows × 78 columns
```

Cleaning the Population Dataframe and producing only the relevant Data

Out[21]:		country	2019 Population (Thousands)
	152	Brunei Darussalam	433
	153	Cambodia	16 487
	154	Indonesia	270 626
	155	Laos	7 169
	156	Malaysia	31 950
	157	Myanmar	54 045
	158	Philippines	108 117
	159	Singapore	5 804
	160	Thailand	69 626
	161	East Timor	1 293
	162	Vietnam	96 462

Creating a dataframe for perCapitaGDP

GDP per capita shows a country's GDP divided by its total population.

Change the data types

We need to change data tpes of gdp and population to int so we can perform mathematical operations

```
In [23]:
          import locale
          from locale import atof
In [24]:
          locale.setlocale(locale.LC_NUMERIC, '')
          perCapitaGDP['GDP (Millions US Dollars)'] = perCapitaGDP['GDP (Millions US Dollars)'
          perCapitaGDP['2019 Population (Thousands)'] = perCapitaGDP['2019 Population (Thousan
          perCapitaGDP['2019 Population (Thousands)'] = perCapitaGDP['2019 Population (Thousan')
          perCapitaGDP.dtypes
         country
                                          object
Out[24]:
         GDP (Millions US Dollars)
                                         float64
         2019 Population (Thousands)
                                         float64
         dtype: object
```

Converting the population as a whole

Multiplying by 1000 to make it easier to understand

In [25]:

#perCapitaGDP['GDP'] = perCapitaGDP['GDP (Millions US Dollars)'].mul(1000000)
#perCapitaGDP['2019 Population'] = perCapitaGDP['2019 Population (Thousands)'].mul(1
perCapitaGDP = perCapitaGDP[['country', 'GDP (Millions US Dollars)', '2019 Populatio
perCapitaGDP

Out[25]:	country	GDP (Millions US Dollars)	2019 Population (Thousands)
0	Indonesia	1119191.0	270626.0
1	Thailand	543650.0	69626.0
2	Philippines	376796.0	108117.0
3	Singapore	372063.0	5804.0
4	Malaysia	364702.0	31950.0
5	Vietnam	261921.0	96462.0
6	Myanmar	76086.0	54045.0
7	Cambodia	27089.0	16487.0
8	Laos	18174.0	7169.0
9	Brunei Darussalam	13469.0	433.0

Find perCapitaGDP

CDD (MIII)

East Timor

In [26]:

10

perCapitaGDP['perCapitaGDP (Millions of USD per 1000 people)'] = perCapitaGDP['GDP
perCapitaGDP

1293.0

1674.0

\sim		$\Gamma \sim$	-	7
() (IT.	1 /	6	

	country	GDP (Millions US Dollars)	2019 Population (Thousands)	perCapitaGDP (Millions of USD per 1000 people)
0	Indonesia	1119191.0	270626.0	4.135563
1	Thailand	543650.0	69626.0	7.808146
2	Philippines	376796.0	108117.0	3.485076
3	Singapore	372063.0	5804.0	64.104583
4	Malaysia	364702.0	31950.0	11.414773
5	Vietnam	261921.0	96462.0	2.715276
6	Myanmar	76086.0	54045.0	1.407827
7	Cambodia	27089.0	16487.0	1.643052
8	Laos	18174.0	7169.0	2.535082
9	Brunei Darussalam	13469.0	433.0	31.106236
10	East Timor	1674.0	1293.0	1.294664

Merging the Data

and verifying that it has been merged correctly

	country	Status	Mean Life Expectancy	Max Life Expectancy	Mean Adult Mortality	Mean BMI	Mean Income Composition of Resources	Mean Schooling
0	Brunei Darussalam	Developing	78.3	76.48750	67.0625	29.71875	0.839375	14.10625
1	Cambodia	Developing	68.7	64.34375	196.3750	15.36250	0.491938	9.87500
2	East Timor	Developing	68.3	64.75625	170.3750	14.55000	0.517625	10.70000
3	Indonesia	Developing	69.1	67.55625	166.5625	19.95625	0.641437	11.61250
4	Laos	Developing	65.7	62.38125	197.1875	14.36250	0.515625	9.23125
5	Malaysia	Developing	75.0	73.75625	118.5625	29.16875	0.749125	12.56250
6	Myanmar	Developing	66.6	64.20000	154.3125	17.12500	0.488250	8.32500
7	Philippines	Developing	68.5	67.57500	217.9375	19.18750	0.650438	11.54375
8	Singapore	Developed	87.0	81.47500	62.0000	25.90625	0.866875	13.98125
9	Thailand	Developing	74.9	73.08125	160.3750	21.59375	0.694688	12.55000
10	Vietnam	Developing	76.0	74.77500	126.5625	11.18750	0.627062	11.51250
4								•

Q1

1. Each country will be classified as developing or developed. With this in mind, how would you visualise the expected life expectancy for the South East Asian population for developed or developing countries? Give some kind of insight (although it may be straight forward and easily understood from the visualisation).

Create a dataframe using groupby function to visualise the relevant data

```
fun2 = {'Mean Life Expectancy':'mean'}
groupby_status = final_df.groupby('Status').agg(fun2)
```

Reset the index of the dataframe and output the data

```
In [30]: groupby_status = groupby_status.reset_index()
    groupby_status
```

 Out[30]:
 Status
 Mean Life Expectancy

 0
 Developed
 87.00

 1
 Developing
 71.11

Visualise as a bar chart

```
In [31]:
    bar = groupby_status.plot.bar(figsize = (5,6))
    # figsize sets size of plot
    bar.set_xticklabels(groupby_status['Status'],rotation = 45)
    # use values of column 'class' as the x axis labels.
    plt.xlabel('Status')
    # setting a label for x axis
    plt.ylabel('Mean Life Expectancy (Years)')
    # Setting a label for y axis
    plt.title('Comparison of Mean Life Expectancy in Developed vs Developing countries')
# Setting the title of chart
```

Out[31]: Text(0.5, 1.0, 'Comparison of Mean Life Expectancy in Developed vs Developing countries')

Comparison of Mean Life Expectancy in Developed vs Developing countries

Answer 1

We use a graph to visualize the data as it is between only 2 variables and one of them being a value. Hence the most suitable option being a bar chart.

As visualised in the bar chart produced above, the average life expectancy in already developed countries is significantly larger as compared to the presently developing countries.

In comparison, the mean life expectancy in developed countries is approximately 87 years as seen in the bar chart whereas the mean life expectancy in developing countries is in the range of 70-72 years. This could suggest that developed countries produce a safer lifestyle, hence improving the average life expectancy as compared to developing countries

Q2.

Create a bar graph for each country, with side-by-side bars for population, mean life expectancy, and adult mortality. There are two difficulties here: first, the default graph will be difficult to visualise due to big disparities in the numbers, and second, this information may not provide a decent visualisation. These two challenges need you to figure out, create the necessary code adjustments for the visualisation, and explainwhy the data used for the graph may be misleading (some general knowledge / domain expertise required).

Create a dataframe using groupby function to visualise the relevant data

```
In [32]: fun3 = {'Mean Life Expectancy':'mean', 'Mean Adult Mortality': 'mean', '2019 Populat
groupby_country = final_df.groupby('country').agg(fun3)
In [33]: groupby_country = groupby_country.reset_index()
groupby_country
```

Out[33]:		country	Mean Life Expectancy	Mean Adult Mortality	2019 Population (Thousands)
	0	Brunei Darussalam	78.3	67.0625	433.0
	1	Cambodia	68.7	196.3750	16487.0
	2	East Timor	68.3	170.3750	1293.0
	3	Indonesia	69.1	166.5625	270626.0
	4	Laos	65.7	197.1875	7169.0
	5	Malaysia	75.0	118.5625	31950.0
	6	Myanmar	66.6	154.3125	54045.0
	7	Philippines	68.5	217.9375	108117.0
	8	Singapore	87.0	62.0000	5804.0
	9	Thailand	74.9	160.3750	69626.0
	10	Vietnam	76.0	126.5625	96462.0

Original Graph

```
In [34]: bar = groupby_country.plot.bar(figsize = (8,5))
    # figsize sets size of plot
    bar.set_xticklabels(groupby_country['country'],rotation = 90)
    # use values of column 'class' as the x axis labels.
    plt.xlabel('Country')
    # setting a label for x axis
```

plt.ylabel('Value')
Setting a Label for y axis
plt.title('Comparison of Mean Life Expectancy, Adult Mortality and population in Sou
Setting the title of chart

Out[34]: Text(0.5, 1.0, 'Comparison of Mean Life Expectancy, Adult Mortality and population in South East Asian Countries')

Comparison of Mean Life Expectancy, Adult Mortality and population in South East Asian Countries

As we can see, its difficult to visualise the relevant data, hence we improve the graph

Improving the graph

In [35]:
 groupby_country['2019 Population (Millions)'] = groupby_country['2019 Population (The
 groupby_country.drop('2019 Population (Thousands)', axis = 1, inplace = True)
 groupby_country

Out[35]:		country	Mean Life Expectancy	Mean Adult Mortality	2019 Population (Millions)
	0	Brunei Darussalam	78.3	67.0625	0.433
	1	Cambodia	68.7	196.3750	16.487
	2	East Timor	68.3	170.3750	1.293
	3	Indonesia	69.1	166.5625	270.626
	4	Laos	65.7	197.1875	7.169
	5	Malaysia	75.0	118.5625	31.950
	6	Myanmar	66.6	154.3125	54.045
	7	Philippines	68.5	217.9375	108.117
	8	Singapore	87.0	62.0000	5.804
	9	Thailand	74.9	160.3750	69.626

	country	Mean Life Expectancy	Mean Adult Mortality	2019 Population (Millions)
10	Vietnam	76.0	126.5625	96.462

```
In [36]:
    bar = groupby_country.plot.bar(figsize = (8,5))
    # figsize sets size of plot
    bar.set_xticklabels(groupby_country['country'],rotation = 90)
# use values of column 'class' as the x axis labels.
    plt.xlabel('Country')
# setting a label for x axis
    plt.ylabel('Value')
# Setting a label for y axis
    plt.title('Comparison of Mean Life Expectancy, Adult Mortality and population in Sou
# Setting the title of chart
```

Out[36]: Text(0.5, 1.0, 'Comparison of Mean Life Expectancy, Adult Mortality and population in South East Asian Countries')

We can convert the population into millions and display the graph, but it still doesn't clearly visualise the smaller population as there is a massive disparity between the populations of the countries (ex: Brunei, East Timor and Singapore)

Solution

We can create a multiline graph with different markers and adjusted marker size to make the value pop out. This gives a more understandable visualization for the comparison of Mean Life Expectancy, Adult Mortality and population in South East Asian Countries

```
fig, ax = plt.subplots(figsize=[9, 7])
ax.plot(groupby_country['country'], groupby_country['Mean Life Expectancy'], marker=
ax.plot(groupby_country['country'], groupby_country['Mean Adult Mortality'], marker=
```

```
ax.plot(groupby_country['country'], groupby_country['2019 Population (Millions)'], m
plt.xticks(rotation=30)
ax.set_xlabel('Countries')
ax.set_ylabel('Values (Years/ Population (Millions))')
plt.legend()
plt.title('Comparison of Mean Life Expectancy, Adult Mortality and population in Sou
plt.show()
```

Comparison of Mean Life Expectancy, Adult Mortality and population in South East Asian Countries

Q3.

For the final question, you will probably need the non-aggregated data from "LifeExpectancyData-v2.csv". You are to extract the data that's related only to Singapore and then plot a line graph on the Life expectancy over time. Again, plot another line graph to visualise the Adult mortality and infant deaths over time. Explain in what circumstances would the first line graph be useful (if at all) and What effect will infant and adult mortality rates have on life expectancy?

The Original Life Expectancy dataframe is saved as Life_Expectancy

In [38]: life.sample(5)

Out[38]:		country	Year	Status	Life expectancy	infant deaths	Adult Mortality	ВМІ	Alcohol consumption	Hepatitis B
	752	Denmark	2000	Developed	76.9	0	12.0	52.2	11.69	NaN

		country	Year	Status	Life expectancy	infant deaths	Adult Mortality	вмі	Alcohol consumption	Hepatitis B
	318	Bolivia (Plurinational State of)	2001	Developing	63.3	14	238.0	43.3	2.20	77.0
	745	Denmark	2007	Developed	78.4	0	93.0	55.9	10.99	NaN
	1313	Jamaica	2000	Developing	72.6	1	171.0	41.6	3.46	NaN
	32	Algeria	2015	Developing	75.6	21	19.0	59.5	NaN	95.0
	4									•
In [39]:	sing	apore = life	e.loc[life['coun	try'] == 'S	Singapor	re']			
In [40]:	sing	apore.reset_	_index	z()						
Out[40]:					Lif	e infan	t Adul	t	Alcoho	ol Hepatiti

	index	country	Year	Status	Life expectancy	infant deaths	Adult Mortality	ВМІ	Alcohol consumption	Hepatiti:
0	2313	Singapore	2015	Developed	83.1	0	55.0	33.2	1.79	96.0
1	2314	Singapore	2014	Developed	82.9	0	56.0	32.9	1.83	96.0
2	2315	Singapore	2013	Developed	82.7	0	57.0	32.7	1.83	97.0
3	2316	Singapore	2012	Developed	82.5	0	59.0	32.4	1.89	97.0
4	2317	Singapore	2011	Developed	82.2	0	6.0	32.1	1.80	96.0
5	2318	Singapore	2010	Developed	82.0	0	61.0	31.8	1.84	96.0
6	2319	Singapore	2009	Developed	81.7	0	62.0	31.5	1.73	96.0
7	2320	Singapore	2008	Developed	81.4	0	64.0	31.2	1.70	97.0
8	2321	Singapore	2007	Developed	81.1	0	65.0	3.9	1.60	96.0
9	2322	Singapore	2006	Developed	87.0	0	66.0	3.5	1.55	95.0
10	2323	Singapore	2005	Developed	82.0	0	69.0	3.2	1.49	96.0
11	2324	Singapore	2004	Developed	79.7	0	71.0	29.9	1.45	94.(
12	2325	Singapore	2003	Developed	79.3	0	73.0	29.6	1.43	95.0
13	2326	Singapore	2002	Developed	79.0	0	74.0	29.2	2.16	95.0
14	2327	Singapore	2001	Developed	78.7	0	76.0	28.9	2.08	95.0
15	2328	Singapore	2000	Developed	78.3	0	78.0	28.5	2.03	97.0
4										>

Arrange the data in ascending order of year

```
In [41]: singapore.sort_values('Year')
```

Out[41]:

	country	Year	Status	Life expectancy	infant deaths	Adult Mortality	ВМІ	Alcohol consumption	Hepatitis B	Μŧ
2328	Singapore	2000	Developed	78.3	0	78.0	28.5	2.03	97.0	
2327	Singapore	2001	Developed	78.7	0	76.0	28.9	2.08	95.0	
2326	Singapore	2002	Developed	79.0	0	74.0	29.2	2.16	95.0	
2325	Singapore	2003	Developed	79.3	0	73.0	29.6	1.43	95.0	
2324	Singapore	2004	Developed	79.7	0	71.0	29.9	1.45	94.0	
2323	Singapore	2005	Developed	82.0	0	69.0	3.2	1.49	96.0	
2322	Singapore	2006	Developed	87.0	0	66.0	3.5	1.55	95.0	
2321	Singapore	2007	Developed	81.1	0	65.0	3.9	1.60	96.0	
2320	Singapore	2008	Developed	81.4	0	64.0	31.2	1.70	97.0	
2319	Singapore	2009	Developed	81.7	0	62.0	31.5	1.73	96.0	
2318	Singapore	2010	Developed	82.0	0	61.0	31.8	1.84	96.0	
2317	Singapore	2011	Developed	82.2	0	6.0	32.1	1.80	96.0	
2316	Singapore	2012	Developed	82.5	0	59.0	32.4	1.89	97.0	
2315	Singapore	2013	Developed	82.7	0	57.0	32.7	1.83	97.0	
2314	Singapore	2014	Developed	82.9	0	56.0	32.9	1.83	96.0	
2313	Singapore	2015	Developed	83.1	0	55.0	33.2	1.79	96.0	
4										•

Group by Year for life expectancy

```
fun4 = {'Life expectancy ':'mean'}
groupby_year = singapore.groupby('Year').agg(fun4)
```

Arrange the dataframe

```
In [43]:
    groupby_year = groupby_year.reset_index()
    groupby_year
```

Out[43]:		Year	Life expectancy
	0	2000	78.3
	1	2001	78.7
	2	2002	79.0
	3	2003	79.3
	4	2004	79.7
	5	2005	82.0
	6	2006	87.0
	7	2007	81.1
	8	2008	81.4

	Year	Life expectancy
9	2009	81.7
10	2010	82.0
11	2011	82.2
12	2012	82.5
13	2013	82.7
14	2014	82.9
15	2015	83.1

```
fig, ax = plt.subplots(figsize=[20, 10])
ax.plot(groupby_year['Year'], groupby_year['Life expectancy '], marker='o', markersi
ax.set_xlabel('Year')
ax.set_ylabel('Life Expectancy')
plt.title('Progression of Life expectancy with time')
plt.show()
```


Removing obvious anomaly

```
filt1 = groupby_year['Life expectancy '] < 85
groupby_year = groupby_year[filt1]
groupby_year</pre>
```

Out[45]:		Year	Life expectancy
	0	2000	78.3
	1	2001	78.7
	2	2002	79.0
	3	2003	79.3
	4	2004	79.7
	5	2005	82.0

	Year	Life expectancy
7	2007	81.1
8	2008	81.4
9	2009	81.7
10	2010	82.0
11	2011	82.2
12	2012	82.5
13	2013	82.7
14	2014	82.9
15	2015	83.1

```
fig, ax = plt.subplots(figsize=[20, 10])
ax.plot(groupby_year['Year'], groupby_year['Life expectancy '], marker='o', markersi
ax.set_xlabel('Year')
ax.set_ylabel('Life Expectancy')
plt.title('Progression of Life expectancy with time')
plt.show()
```


Group by year for Adult Mortality and Infant Deaths

```
In [47]:
    fun5 = {'Adult Mortality':'mean', 'infant deaths': 'mean'}
    groupby_year2 = singapore.groupby('Year').agg(fun5)
    groupby_year2 = groupby_year2.reset_index()
    groupby_year2
```

Out[47]:		Year	Adult Mortality	infant deaths
	0	2000	78.0	0.0
	1	2001	76.0	0.0
	2	2002	74.0	0.0
	3	2003	73.0	0.0

	Year	Adult Mortality	infant deaths
4	2004	71.0	0.0
5	2005	69.0	0.0
6	2006	66.0	0.0
7	2007	65.0	0.0
8	2008	64.0	0.0
9	2009	62.0	0.0
10	2010	61.0	0.0
11	2011	6.0	0.0
12	2012	59.0	0.0
13	2013	57.0	0.0
14	2014	56.0	0.0
15	2015	55.0	0.0

Removing outliers

```
filt2 = groupby_year2['Adult Mortality'] > 50.0
groupby_year2 = groupby_year2[filt2]
groupby_year2
```

```
Out[48]:
                 Year
                       Adult Mortality infant deaths
               2000
                                   78.0
                                                   0.0
                2001
                                   76.0
                                                   0.0
                2002
                                   74.0
                                                   0.0
                2003
                                                   0.0
                                   73.0
                2004
                                   71.0
                                                   0.0
                2005
                                                   0.0
                                   69.0
                2006
                                   66.0
                                                   0.0
             7 2007
                                   65.0
                                                   0.0
                2008
                                   64.0
                                                   0.0
                2009
                                   62.0
                                                   0.0
               2010
                                   61.0
                                                   0.0
            12 2012
                                   59.0
                                                   0.0
                2013
                                   57.0
                                                   0.0
            14 2014
                                                   0.0
                                   56.0
            15 2015
                                   55.0
                                                   0.0
```

```
fig, ax = plt.subplots(figsize=[9, 7])
ax.plot(groupby_year2['Year'], groupby_year2['infant deaths'], marker='o', markersiz
```

```
ax.plot(groupby_year2['Year'], groupby_year2['Adult Mortality'], marker='p', markers
plt.xticks(rotation=30)
ax.set_xlabel('Year')
ax.set_ylabel('Value')
plt.legend()
plt.title('Comparison of Adult Mortality and infant deaths in Singapore through the
plt.show()
```


Answer 3

The first line graph will be useful when analyzing the average life expectancy of Singapore over time, this might be able to help us figure out what factors can affect the average life expectancy in the country by comparing other data

As we can see from the 2nd graph, the mean adult mortality gradually decreases with time, we can compare it to the 1st graph, which depicts the life expectancy increasing through the years, hence we can conclude that the decline in adult mortality results in a rise in life expectancy over the years.

The comparison between infant deaths and life expectancy is inconclusive as there is no valuable data as the infant deaths is 0 throughout the period analyzed

Conclusion

In conclusion, We used tools of python and various libraries such as pandas and matplotlib to wrangle, analyze and visualize data to compare the Populations of South East Asian Countries with the Life Expectancies and GDP for each country.