SISTEM PEMILIHAN TEMPAT KOST BERBASIS SIG MENGGUNAKAN METODE ELECTRE DAN GOOGLE MAPS API

Yona Widya Sabrina Suprihatini¹⁾, Fahrul Agus²⁾, Hamdani³⁾

¹⁾Mahasiswa S1 Program Studi Ilmu Komputer FMIPA Universitas Mulawarman ^{2,3)}Dosen Program Studi Ilmu Komputer FMIPA Universitas Mulawarman Email: yona.ilkom08@gmail.com

ABSTRAK

Kost merupakan tempat tinggal sementara berupa blok - blok kamar dengan berbagai ukuran dan ditempati oleh para mahasiwa, pelajar, bahkan para karyawan yang berasal dari luar wilayah. Kost merupakan turunan dari frasa Belanda "indekos" yang mempunyai arti "makan di dalam", namun bila frasa tersebut dijabarkan lebih lanjut dapat pula berarti "tinggal dan ikut makan di dalam rumah tempat menumpang tinggal".

Terdapat empat kriteria utama bagi calon pengguna untuk melakukan pemilihan kost yaitu kriteria harga, kriteria luas, kriteria material, dan kriteria fasilitas., Penelitian dibangun dengan sistem pemilihan menggunakan metode ELECTRE untuk menangani pengurutan data multikriteria dan berbasis SIG. SIG adalah sistem yang berisikan data - data spasial dan atribut dengan menggunakan aplikasi Google Maps API sebagai basis spasial. Penelitian menghasilkan sistem aplikasi berbasis WEBGIS yang mampu memberikan rekomendasi untuk memilih dan mencari tempat kost

Kata Kunci: SPK, Kost, ELECTRE, SIG, Google Maps API.

PENDAHULUAN

Kost merupakan tempat tinggal sementara yang berupa blok - blok kamar dengan berbagai ukuran dan mayoritas ditempati oleh mahasiswa, pelajar, dan karyawan yang berasal dari luar daerah. Setiap kost memiliki kriteria yang berbeda – beda sehingga mempengaruhi harga dan kenyamanan dalam tiap kost dan membutuhkan pertimbangan dalam menentukan kost yang idel, nyaman dan sesuai dengan kriteia yang diharapkan. Karena mayoritas kost ditempati oleh seseorang yang berasal dari luar wilayah sehingga menimbulkan kendala dalam pencarian lokasi kost karena banyak dari pencari kost yang menguasai wilayah, maka dibutuhkan suatu alat penunjuk jalan yang lebih efisien.

Berdasarkan latar belakang yang ada, terinspirasi bagaimana membuat solusi dalam membuat solusi untuk mempermudah pencari kost dalam menentukan keputusan pemilihan kost yang mempunyai fasilitas petunjuk jalan yang efisien, maka diambil judul " Sistem Pemilihan Tempat Kost Berbasis SIG menggunakan Metode ELECTRE dan Google Maps API ". dengan batasan masalah yaitu penelitian dilakukan hanya di Jalan Pramuka dan Jalan Perjuangan Kota Samarinda. Kriteria yang digunakan oleh sistem adalah harga, jenis bangunan, fasilitas, dan luas kamar yang dimiliki masing - masing kost, dan sistem tidak membahas tentang transaksi penyewaan dan apapun yang berhubungan langsung antara pencari kost dengan pemilik kost. Adapun manfaat dari sistem yang dibuat adalah memudahkan pencari kost dalam memilih kost ideal dengan kriteria yang bervariasi, memudahkan pencari kost untuk mendapatkan informasi kost melalui web berbasis SIG, serta memudahkan pencari kost untuk mencari lokasi kost dengan aplikasi Google Maps API.

TINJAUAN PUSTAKA Sistem Pendukung Keputusan

Menurut Little, sistem pendukung keputusan merpan sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para manajer mengambil keputusan . Menurut Simon, proses pengambilan keputusan meliputi 3 fase yaitu [4]

- 1. Fase intelegence
- 2. Fase design
- 3. Fase choice

Metode ELECTRE

Menurut Janko, ELECTRE merupakan salah satu metode pengambilan keputusan multikriteria berdasarkan pada konsep outrangking dengan menggunakan perbandingan berpasangan dari alternatif pada kriteria yang sesuai. [3] Metode ELECTRE digunakan pada kondisi dimana altenatif yang kurang sesuai dengan kriteria dieliminasi, dan alternatif yang sesuai dapat dihasilkan.

Adapun langkah - langkah yang dilakukan dalam penyelesaian masalah menggunakan metode ELECTRE adalah sebagai berikut :[2]

1. Normalisasi matrik keputusan

Dalam prosedur ini, setiap atribut diubah menjadi nilai yang comparable, Setiap normalisasi dari R_{ii} dapat dilakukan persamaan

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x^2 i j}}$$
, untuk i = 1,2,3,...m dan j = 1,2,3,...,n (1)

Sehingga didapat matriks R hasil normalisasi,

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ & \dots & & & \\ r_{m1} & r_{m2} & \dots & r_{mn} \end{bmatrix}$$

R adalah matriks yang telah dinormalisasi, m menyatakan alternatif. menyatakan kriteria dan r_{ii} adalah normalisasi pengukuran pilihan dari alternatif ke-I dalam hubungannya dengan kriteria ke-j.

Pembobotan pada matrik yang telah dinormalisasi

Setelah dinormalisasi, setiap kolom dari matrik R dikalikan dengan bobot - bobot (w_i) yang ditentukan oleh pembuat keputusan. Sehingga, weighted normalized matrix adalah V=RW yang ditulis dalam persamaan (2):

$$\mathbf{V} = \begin{bmatrix} v_{11} & v_{12} & \dots & v_{1n} \\ v_{21} & v_{22} & \dots & v_{2n} \\ & \dots & & & \\ v_{m1} & v_{m2} & \dots & v_{mn} \end{bmatrix}$$

$$\mathbf{RW} = \begin{bmatrix} w_1 r_{11} & w_2 r_{12} & \dots & w_n r_{1n} \\ w_1 r_{21} & w_2 r_{22} & \dots & w_n r_{2n} \\ \dots & & & & \\ w_1 r_{m1} & w_2 r_{m2} & \dots & w_n r_{mn} \end{bmatrix}$$
Dimana W adalah

3. Menentukan concordance dan discordance set Untuk setiap pasang dari alternatif k dan l $(k,l=1,2,3,..., m \text{ dan } k \neq 1)$ kumpulan kriteria J dibagi menjadi dua subsets, yaitu concordance dan discordance. Bilamana sebuah kriteria dalam suatu alternatif termasuk corcondance adalah

$$Ckl = \{j, ykl \ge ylj \}$$
 untuk $j = 1,2,3,...,n$

Sebaliknya, komplementer dari subset ini adalah discordance, yaitu bila:

$$Dkl = \{j, ykl < ylj \}$$
 untuk $j = 1,2,3,...,n$

- 4. Menghitung matriks concordance dan discordance
 - a. Concordance

Untuk menentukan nilai dari elemen elemen pada matriks concordance adalah dengan menjumlahkan bobot - bobot yang termasuk dalam subset concordance, secara matematisnya adalah pada Rumus (3):

$$c_{kl} = \sum_{i \in w} w_i \tag{3}$$

Sehingga matrik concordance yang dihasilkan adalah

$$C = \begin{bmatrix} & - & c_{12} & c_{13} & \dots & c_{1n} \\ & c_{21} & - & c_{23} & \dots & c_{2n} \\ & \dots & & & & & \\ & c_{m1} & c_{m2} & c_{m3} & \dots & - & & \end{bmatrix}$$

Discordance

Untuk menentukan nilai dari elemenelemen pada matriks discordance adalah dengan membagi maksimum selisih nilai kriteria yang termasuk dalam subset discordance dengan maksimum selisih nilai seluruh kriteria yang ada, secara matematisnya adalah:

$$\begin{aligned} d_{kl} &= \frac{\{max\,(v_{mn}-v_{mn-ln})\}, m, n\,\varepsilon\,D_{kl}}{\{max\,(v_{mn}-v_{mn-ln})\}, m, n\,=\,1,2,3,...} \\ \text{Sehingga diperoleh matrik } \textit{discordance} \end{aligned}$$

$$D = \begin{bmatrix} - & d_{12} & d_{13} & \dots & d_{1n} \\ d_{21} & - & d_{23} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

- Menentukan Matrik dominan concordance dan discordance
 - a. Concordance

Matrik dominan concordance dapat dibangun dengan bantuan nilai threshold, yaitu dengan membandingkan setiap nilai elemen matriks concordance dengan nilai threshold

$$C_{kl} \geq c$$

Dengan nilai thereshold (c), adalah:

$$\underline{c} = \frac{\sum_{k=1}^{n} \sum_{l=1}^{n} c_{kl}}{m * (m-l)}$$

Dan nilai setiap elemen matriks F sebagai matriks dominan concordance ditentukan sebagai berikut:

$f_{kl} = 1$, jika $c_{kl} \ge \underline{c}$ dan $f_{kl} = 0$, jika c_{kl} < c

b. Discordance

Untuk membangun matriks dominan *discordance* juga menggunakan bantuan nilai *threshold*, yaitu;

$$\underline{d} = \frac{\sum_{k=1}^{n} \sum_{l=1}^{n} d_{kl}}{m*(m-l)}$$
 Dan nilai setiap elemen untuk matriks

Dan nilai setiap elemen untuk matriks G sebagai matriks dominan discordance ditentukan sebagai berikut:

$$g_{kl} = 1$$
, jika $c_{kl} \ge \underline{d}$ dan $g_{kl} = 0$, jika $c_{kl} < d$

6. Menentukan aggregate dominance matrik
Langkah selanjutnya adalah menentukan
aggregate dominance matrix sebagai
matriks E, yang setiap elemennya
merupakan perkalian antara elemen
matriks F dengan elemen matriks G,
sebagai berikut:

$$e_{kl} = f_{kl} x g_{kl}$$

7. Eliminasi alternatif yang less favourable Matriks E memberikan urutan pilihan dari setiap alternatif, yaitu bila $e_{kl}=1$ maka alternatif A merupakan pilihan yang lebih baik daripada A_r sehingga baris dalam matriks E yang memiliki jumlah $e_{kl}=1$ paling sedikit dapat dieliminasi, dengan demikian alternatif terbaik adalah yang mendominasi alternatif lainnya.

Pemilihan

Untuk memperoleh kost yang sesuai dengan kebutuhan diperlukan pertimbangan yang tepat agar merasa nyaman pada saat menempati kost. Banyak ditemukan kost-kost yang bersifat bebas yang dapat berpengaruh negatif bagi pengguna kost, maka menentukan kriteria dalam pemilihan kost agar tidak salah memilih dalam pencarian kost sangat diperlukan. Mengingat berapa pentingnya kriteria dalam pemilihan kost, maka ada beberapa kriteria yang harus dipertimbangkan antara lain :

- 1. Harga
- 2. Jenis Bangunan
- 3. Luas
- 4. Fasilitas

Sistem Informasi Geografis (SIG) adalah suatu komponen yang terdiri dari perangkat lunak, perangkat keras, data geografis dan sumberdaya manusia yang bekerja bersama secara efektif untuk menangkap, menyimpan, memperbaiki, memperbarui, mengelola, memanipulasi, mengintegrasikan, menganalisa, dan menampilkan data dalam suatu informasi berbasis geografis (Budiyanto:2004).

Sistem Informasi Geografi (SIG) adalah suatu sistem informasi yang dapat memadukan antara data grafis dengan data teks (atribut) objek yang dihubungkan secara geografis di bumi (georeference). Sistem Informasi Geografi berfungsi menggabungkan data, mengatur data dan melakukan analisis data dan menghasilkan output vang dapat dijadikan acuan dalam pengambilan keputusan pada masalah geografi. Sistem Informasi Geografi (SIG) merupakan terjemahan dari Geographical Information System (GIS).Adapun manfaat dari SIG yang berdasarkan pada posisi dan klasifikasi, atribut, serta hubungan antaritem adalah sebagai berikut :[1]

- 1. Menjelaskan tentang lokasi dan letak
- 2. Menjelaskan kondisi ruang
- 3. Menjelaskan suatu kecenderungan (trend)
- 4. Menjelaskan tentang pola spasial (*Spatial Pattern*)
- 5. Permodelan

Google Maps API merupakan SIG yang berbasis intenet yang disediakan oleh Google secara gratis (bukan untuk kepentingan komersial), Google Maps API Google Ride Finder, Google Transit, dan peta yang dapat disisipkan pada website lain melalui Google Maps API. Google Maps adalah layanan pemetaan berbasis web yang populer. User dapat menambahkan layanan Google Maps ke sebuah website menggunakan Google Maps API. Google Maps API dapat ditambahkan ke sebuah website menggunakan JavaScript dengan menyediakan banyak fasilitas dan utilitas untuk memanipulasi peta dan menambahkan konten ke peta melalui berbagai layanan, memungkinkan user untuk membuat aplikasi peta yang kuat pada sebuah website . Namun untuk dapat mengakses Google Maps, terlebih dahulu *user* harus melakukan pendaftaran API key dengan data pendaftaran berupa nama domain web yang akan bangun.

HASIL DAN PEMBAHASAN

Pengumpulan Data

Pengumpulan data merupakan tahap awal dalam melakukan proses pembangunan dalam system yang dibuat, adapun proses pengumpulan data meliputi pengumpulan data kost, pengumpulan data geografis, dan pengumpulan data penunjang.

Pada proses pengumpulan data geografis dibutuhkan *longitude* dan *latitude* tiap kost, lalu akan di*input*kan ke dalam visualisasi geografi dengan menggunakan aplikasi *Google Maps API*. Sebelum menggunakan *Google Maps API*, dibutuhkan beberapa langkah untuk mendapatkan *API Key* agar *Google Maps API* dapat digunakan pada system. Adapun langkah — langkah mendaftarkan *API Key* adalah sebagai berikut:

- API Console di 1. Kunjungi https://code.google.com/apis/console dan login dengan Account Google.
- 2. Klik link Service.
- 3. Aktifkan Google Maps API Service v3.
- 4. Klik link API Access dan akan tertera API Key seperti gambar yang dilingkari pada gambar 4.1 dengan catatan setiap akun memiliki api key masing - masing.

Gambar 4.1 Halaman API Access

Implementasi Sistem

Langkah awal dalam implementasi sistem adalah implementasi database, dalam sistem terdapat 5 database vaitu tabel user, tabel kriteria, tabel ketkriteria, tabel kost, dan tabel komentar.

Halaman masuk merupakan halaman utama yang muncul pada saat mengakses sistem.

Gambar 4.2 Halaman Masuk

Pada gambar 4.1 dijelaskan bahwa pada halaman masuk pengguna diwajibkan untuk mengisi data berupa nama pengguna dan kata sandi, apabila pengguna belum terdaftar maka pengguna dapat melakukan registrasi.

Halaman Pemilihan merupakan menu utama dalam website, karena pada halaman pemilihan metode ELECTRE diterapkan.

Gambar 4.3 Halaman Pemilihan

Pada gambar 4.3 dijelaskan halaman website terbagi menjadi 2 bagian yaitu bagian peta dan bagian spk, proses pemilihan dimulai dengan meng- klik tombol biru. Setelah meng-klik tombol biru akan muncul halaman baru.

Gambar 4.4 Halaman Pemilihan (Pilihan Gender)

Pada gambar 4.4 dijelaskan bahwa tahap selanjutnya setelah meng-klik tombol biru akan muncul halaman seperti gambar 4.4 yang menampilkan pemilihan gender. Pemilihan gender yang dimaksud adalah pemilihan kost berdasarkan gender, misalnya mencari kost perempuan, maka gender yang dipilih adalah perempuan. Ada 2 pilihan dalam pemilihan gender yaitu perempuan dan laki - laki.

Gambar 4.5 Halaman Pemilihan (Pemilihan kriteria kost)

Pada gambar 4.5 dijelaskan bahwa setelah memilih gender lalu akan muncul halaman baru yang berisi pengisian kriteria dengan bobot yang bisa diisi oleh pengguna.adapun kriteria yang digunakan antara lain harga, luas, jenis material dan fasilitas. Tiap tiap kriteria memiliki 3 nilai yang dapat dipilih oleh pengguna, selain memilih kriteria, pengguna juga harus mengisi perangkingan kriteria, artinya dari 4 kriteria yang dipilih, kriteria mana yang lebih didahulukan sehingga dibuat perangkingan kriteria dan akan muncul halaman selanjutnya.

Gambar 4.6 Halaman pemilihan Alternatif kost

Pada gambar 4.6 dijelaskan bahwa setelah kriteria dan bobot diisi maka halaman selanjutnya berisi pilihan - pilhan alternatif kost yang disediakan oleh sistem dan disesuaikan dengan kriteria yang dimasukkan pengguna seperti gambar. Terdapat 5 pilihan alternative, namun hanya dipilih 3 alternatif saja sesuai keinginan dari pengguna. Setelah tampil alternatif — alternatif pilihan, maka pengguna dapat merubah bobot yang sudah tersedia oleh sistem atau menggunakan bobot asli dari sistem.

Gambar 4.7 Halaman Pemilihan Hasil Alternatif Terbaik

Pada gambar 4.7 dijelaskan bahwa setelah dipilih alternatif yang diinginkan lau perintah selanjutnya adalah *klik* lanjut dan akan muncul halaman yang berisi hasil alternatif terbaik dengan metode *ELECTRE*

Gambar 4.7Halaman Pemilihan Hasil Alternatif Terbaik Bagian Akhir

Pada gambar 4.7 menjelaskan tentang alternatif (kost) terbaik yang dihitung menggunakan metode *ELECTRE* dan pada halaman ini di fasilitasi dengan deskripsi tentang alternatif tersebut serta penjelasan tentang lokasi alternatif tersebut.

Pengujian Sistem

Pengujian perhitungan dilakukan dengan dua tekhnik, yaitu yang pertama menggunakan tekhnik secara manual dan yang selanjutnya akan digunakan tekhnik secara komputerisasi.

Perhitungan dengan manual Adapun tabel perbandingan kriteria dalam tiap alternatif eperti pada tabel 4.6

Tabel 4.6 Tabel Kriteria pada alternatif

Tuber 1.0 Tuber Kriteria pada anternatir				
Alternatif	Kriteria			
	C1	C2	C3	C4
A2	1	3	3	3
A3	1	1	3	3
A3	1	2	3	3

Diketahui:

Bobot Prefensi: (1,2,3,3)

Matrik Keputusan Berdasarkan tabel 4.1:

$$X = 1 \quad 3 \quad 3 \quad 3 \\ 1 \quad 1 \quad 3 \quad 3 \\ 1 \quad 2 \quad 3 \quad 3$$

a. Menghitung nilai x_1 , x_2 , x_3 , x_4

$$x_1 = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} = 1,732$$

 $x_2 = \sqrt{3^2 + 1^2 + 2^2} = \sqrt{14} = 3,741$
 $x_3 = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{27} = 5,196$
 $x_4 = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{27} = 5,196$

b. Normalisasi matriks X dengan rumus

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x^2 ij}} = \frac{x_{ij}}{|x_{ij}|}$$

Maka perhitungannya adalah

c. Menentukan Weight (V)

$$\begin{array}{c} V_{11} = w_1 \; r_{11} = (1)(0,577) = \textbf{0,577} \\ V_{13} = w_3 \; r_{13} = (3)(0,577) = \textbf{1,731} \\ V_{21} = w_1 \; r_{21} = (1)(0,577) = \textbf{0,577} \\ V_{23} = w_3 \; r_{23} = (3)(0,577) = \textbf{1,731} \\ V_{31} = w_1 \; r_{31} = (1)(0,577) = \textbf{0,577} \\ V_{33} = w_3 \; r_{33} = (3)(0,577) = \textbf{1,731} \\ V_{12} = w_2 \; r_{12} = (2)(0,801) = \textbf{1,602} \\ V_{14} = w_4 \; r_{14} = (3)(0,577) = \textbf{1,731} \\ V_{22} = w_2 \; r_{22} = (2)(0,267) = \textbf{0,534} \\ V_{24} = w_4 \; r_{24} = (3)(0,577) = \textbf{1,731} \\ V_{32} = w_2 \; r_{32} = (2)(0,534) = \textbf{1,068} \\ V_{34} = w_4 \; r_{34} = (3)(0,577) = \textbf{1,731} \end{array}$$

$$\mathbf{V} = \begin{array}{ccccc} 0,577 & 1,602 & 1,731 & 1,731 \\ 0,577 & 0,534 & 1,731 & 1,731 \\ 0,577 & 1,068 & 1,731 & 1,731 \end{array}$$

d. Concordance dan Discordance

$C_{12} = \{1,2,3,4\}$	${f D_{12}} = \{\ \}$
$C_{13} = \{1,2,3,4\}$	$\mathbf{D_{13}} = \{\ \}$
$C_{21} = \{1,3,4\}$	$\mathbf{D_{21}} = \{2\}$
$C_{23} = \{1,3,4\}$	$\mathbf{D_{23}} = \{2\}$
$C_{31} = \{1,3,4\}$	$\mathbf{D_{31}} = \{2\}$
$C_{32} = \{1,2,3,4\}$	${f D_{32}} = \{\ \}$

e. Matrik Concordance dan Discordance Concordance

 $C_{12} = 1 + 2 + 3 + 3 = 9$ $C_{13} = 1 + 2 + 3 + 3 = 9$

 $\mathbf{C}_{21} = 1 + 3 + 3 = 7$

 $C_{23} = 1+3+3 = 7$ $C_{31} = 1+3+3 = 7$

 $C_{31} = 1+3+3 = 7$ $C_{32} = 1+2+3+3 = 9$

$$\mathbf{c} = \begin{bmatrix} & - & 9 & 9 \\ & 7 & - & 7 \\ & 7 & 9 & - \end{bmatrix}$$

Discordance

$$\mathbf{D} = \begin{bmatrix} & - & 0 & 0 \\ & 1 & - & 1 \\ & 1 & 0 & - \end{bmatrix}$$

f. Menentukan c dan d

$$\underline{\mathbf{c}} = \frac{9+9+7+7+9}{3(3-1)} = 8$$

$$\underline{\mathbf{d}} = \frac{0+0+0+1+1+1}{3(3-1)} = 0.5$$

g. Hasil perhitungan

$$\mathbf{F} = \begin{array}{cccc} - & 1 & 1 \\ 0 & - & 0 \\ 0 & 1 & - \end{array}$$

0.57735026	0.80178372	0.57735026	0.57735026
	573727	918963	0.0770000
918963	313121	, 10, 00	918963
0.57735026	0.26726124	0.57735026	0.57735026
918963	191242	91896	918963
0.57735026	0.53452248	0.57735026	0.57735026
918963	382485	918963	918963

$$\mathbf{E} = \begin{array}{cccc} & 1 & & 0 & & - \\ & - & & 0 & & 0 \\ & 0 & & - & & 0 \\ & 0 & & 0 & & - \end{array}$$

Kesimpulan: Dikarenakan hasil tidak ada yang menghasilkan nilai 1 maka hasil keputusan dengan metode *ELECTRE* adalah dengan menggunakan nilai V yaitu

$$V1=(0,577)+(1,602)+(1,731)+(1,731) = 5,641$$

 $V2=(0,577)+(0,534)+(1,731)+(1,731) = 4,573$
 $V3=(0,577)+(1,068)+(1,731)+(1,731) = 5.107$

Dengan hasil diatas maka disimpulkan bahwa Alternatif dengan peringkat pertama adalah A1, peringkat kedua adalah A3, dan peringkat ketiga adalah A2.

2. Perhitungan dengan komputerisasi

a. Matrik Keputusan

Kost:				
	5	1	3	3
	3			
	34	1	1	3
	3			
	37	1	2	3
	3			
Vhere	:		Bobot:	
Geno	ler	1	0	1

Where:		Bobot:	
Gender	1	0	1
Harga	1	1	2
Luas	2	2	3
Material	3	2	3
Fasilitas	3	3	3

Array Binding	*:
0	5
1	34
2	37

b. Matrik Normalisasi

Temporary Norm:

emporary No.		
1	3	
2	14	
3	27	
4	27	

Matrik Normalisasi :

c. Matrik Weight Normalized

d. Himpunan Concordance & Discordance

Himpunan Concordance:
0 0123 0123
023 0 023
023 0123 0

Himpunan Discordance

ширина	an Discord	iance.	
0	0		
1	1	0	1
2	1	0	

e. Matriks Concordance & Discordance

Matriks Concordance:

0	0	9	9
1	7	0	7
2	7	9	0
Matr	iks Disco	ordance:	
0	0	0	0
1	1	0	1
2	1	Λ	Λ

f Matriks F,G & E

Matriks F:

0	0	1	1
1	0	0	0
1 2	0	1	0

Mat	riks G :		
0	0	1	1
1	0	0	0
2	0	1	0
Mat	riks E:		
0	0	1	1
1	0	0	0
2.	0	1	0

g. Matriks Electree & Normal Weight Matriks Electree

0	2
1	0
2	1

h. Matriks Normal Weight:

0 1.4112548339505 1 1.1439935920381 2 1.2776242129943

Berdasarkan perhitungan yang dilakukan secara manual ataupun yang dilakukan secara komputerisasi memiliki hasil yang sama, dan dapat dinyatakan bahwa metode *ELECTRE* yang telah diterapkan pada program sesuai dengan metode yang sebenarnya.

KESIMPULAN

Dari hasil penelitian yang dilakukan, maka dapat diambil beberapa kesimpulan antara lain:

- Telah dibuat website sistem pemilihan tempat kost yang berbasis SIG dengan menggunakan metode ELECTRE sebagai dasar perhitungannya dan Google Maps API sebagai visualisasi geografi.
- 2. Sistem Penunjang keputusan dengan metode *ELECTRE* mampu melakukan perangkingan kost terbaik sebagai rekomendasi pilihan berdasarkan kriteria yang dimiliki oleh sistem.
- 3. Sistem Penunjang keputusan yang dilengkapi dengan *Googgle Maps API* mampu menunjukkan lokasi kost yang menjadi alternatif terbaik pilihan.
- 4. Sistem mampu memberikan fasilitas—fasilitas penunjang yang dapat memberikan kemudahan bagi pengguna dalam mengambil informasi yang diberikan oleh sistem.
- Hasil uji coba pada sistem mendapatkan hasil yang sama baik menggunakan perhitungan manual maupun menggunakan sistem yaitu hasil terbaik diperoleh oleh kost Gayatri berdasarkan kriteria yang di*input*kan.

Adapun Dari penelitian yang telah dilakukan, dapat dihasilkan beberapa saran

yang berguna dalam pengembangan sistem lanjutan yaitu antara lain:

- 1. Agar pada penelitian lanjutan dalam pengumpulan kriteria lebih ditingkatkan dalam kapasitas kriteria sehingga tidak hanya terpaku pada 4 kriteria.
- 2. Agar pada penelitian lanjutan memperluas objek pencarian alternatif dan tidak bertumpu hanya pada Jalan Pramuka dan Perjuangan.
- 3. Agar pada penelitian lanjutan fasilitas yang disediakan oleh *Google Maps API* dapat lebih maksimal dipergunakan dengan ditambah fitur fitur yang lebih canggih dan dapat menghubungkan langsung dengan pemilik kost.

DAFTAR PUSTAKA

- [1] Budiyanto E, 2004,"Sistem Informasi Geografis Menggunakan MapInfo", Yogyakarta, Penerbit Andi
- [2] Kusumadewi S, Hartati S, Agus H, dan Wardoyo R. 2006," Fuzzy Multi-Attribute Decision Making (Fuzzy MADM)", Jakarta: Graha Ilmu
- [3] Mursetyo, T.H. 2010, "Penggunaan Metode ELECTRE Pada Sistem Pendukung Keputusan Pemilihan Rumah (Studi Kasus P.T. yekape)", Skripsi Sarjana Sistem Informasi Surabaya, STIKOM Surabaya.
- [4] Turban, E., Aronson, J.E., dan Liang, T. P. 2005. Sistem Pendukung Keputusan dan Sistem Cerdas. Terjemahan Dwi Prabantini. Yogyakarta : Andi