RECORDAR:

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

$$(a^{m})^{n} = a^{m-n}$$

$$a^{m} \cdot b^{m} = (a \cdot b)^{m}$$

$$\frac{a^{m}}{b^{m}} = \left(\frac{a}{b}\right)^{m}$$

1. Calcular las siguientes potencias de exponente natural (sin usar calculadora):

$$(-2)^5 =$$

$$(-2)^5 =$$
 $(-1)^{21} =$ $13^0 =$ $(-2)^2 =$ $1^{21} =$ $(-3)^4 =$ $(-2)^3 =$ $(-2)^3 =$ $(-9)^2 =$ $(-9)^3 =$ $(-9)^3 =$

$$(-2)^2 =$$

$$(-3)^4 =$$

$$(-2)^3 =$$

$$-2^3 =$$

$$(-9)^2 =$$

$$(-9)^3 =$$

$$(-1)^{10} =$$

$$1^{4569} = (-1)^{10} = (-1)^{523} = 1^0 = 235^0 = (-1)^0 = (0.75)^0 =$$

$$235^{0} =$$

$$(-1)^0 =$$

$$(0.75)^0 =$$

Calcular las siguientes potencias de exponente entero (sin usar calculadora), dejando el resultado en forma entera o fraccionaria:

$$1^{-7} = 1^{-10} = (-1)^{-4} = (-1)^{-7} = (-1)^{-10} =$$

3. Calcular las siguientes potencias de base fraccionaria, dejando el resultado en forma fraccionaria:

$$\left(\frac{5}{2}\right)^3 =$$

$$\left(\frac{9}{4}\right)^2 =$$

$$\left(-\frac{1}{5}\right)^2 =$$

$$\left(-\frac{3}{4}\right)^3 =$$

$$\left(\frac{9}{4}\right)^{-2}$$

$$\left(-\frac{5}{6}\right)^{-2} =$$

$$\left(\frac{2}{5}\right)^{-1} =$$

$$\left(-\frac{1}{2}\right)^{-5} =$$

$$\left(\frac{1}{2}\right)^2 =$$

$$\left(\frac{1}{2}\right)^{-2} =$$

$$\left(\frac{1}{2}\right)^{-1} =$$

$$\left(\frac{1}{2}\right)^{-3} =$$

$$\left(-\frac{1}{2}\right)^2 =$$

$$\left(-\frac{1}{2}\right)^{-2}$$

$$\left(\frac{1}{3}\right)^{-1} = \left(\frac{1}{2}\right)^{-3} = \left(-\frac{1}{2}\right)^2 = \left(-\frac{1}{2}\right)^{-2} = \left(-\frac{1}{2}\right)^3 = \left(-\frac{1}{2}\right)^3$$

$$\left(-\frac{1}{2}\right)^{-3}$$

$$\left(\frac{3}{2}\right)^2 =$$

$$\left(-\frac{1}{2}\right)^{\!\!-3} = \left(\!\!-\frac{3}{2}\right)^{\!\!2} = \left(\!\!-\frac{5}{2}\right)^{\!\!-2} = \left(\!\!-\frac{4}{7}\right)^{\!\!3} = \left(\!\!-\frac{3}{2}\right)^{\!\!-3} =$$

$$\left(\frac{4}{7}\right)^3 =$$

$$\left(\frac{3}{2}\right)^{-3} =$$

$$\left(-\frac{3}{2}\right)^2 =$$

$$\left(-\frac{5}{2}\right)^{-2} =$$

$$\left(-\frac{7}{2}\right)^3 =$$

$$\left(-\frac{9}{2}\right)^{-3} =$$

4. Pasar a forma de potencia de base entera lo más simple posible:

1millonésima = 1cienmilésim a =
$$\frac{1}{1024}$$
 = $\frac{1}{125}$ =

5. Pasar a potencia única de base racional, y simplificar el resultado:

6. Calcular, aplicando las propiedades de las potencias, y simplificando en todo momento:

a)
$$\left[\left(\frac{1}{5} \right)^2 \right]^3 =$$
 (Soluc: 1/15625)

b)
$$\left[\left(\frac{3}{4} \right)^{-2} \right]^2 =$$
 (Soluc: 256/81)

c)
$$\left[\left(\frac{2}{9} \right)^2 \right]^{-1} =$$
 (Soluc: 81/4)

d)
$$\left(\frac{1}{6} \cdot \frac{3}{2}\right)^5 =$$
 (Soluc: 1/1024)

e)
$$\left[\left(-\frac{6}{5} \right) \cdot \frac{1}{8} \cdot (-2) \right]^{-4} =$$
 (Soluc: 10000/81)

f)
$$\left[\left(-\frac{5}{3} \right)^{-2} \right]^{-1} =$$

g)
$$\left(\frac{2}{3}\right)^{-4} \cdot \left(\frac{5}{3}\right)^{-3} \cdot \left(\frac{1}{4}\right)^{-3} \cdot \left(-\frac{3}{5}\right)^{-5} =$$
 (Soluc: -900)

h)
$$\left[\left(\frac{4}{7} \right)^{-2} \right]^3 =$$
 (Soluc:117649/4096)

$$i) \left[\frac{15}{7} \cdot \left(\frac{21}{5} \right)^2 \cdot (-1) \cdot \frac{2}{3} \right]^3 = \left(\text{Soluc} : -\frac{3^6 \cdot 7^3 \cdot 2^3}{5^3} \right)$$

j)
$$\frac{\left(\frac{2}{7}\right)^2 \cdot \left(\frac{2}{7}\right)^5}{\left(\frac{2}{7}\right)^4} =$$
 (Soluc:8/343)

k)
$$a^2 \cdot a^2 \cdot a^3 =$$
 (Soluc: a^3)

(Soluc: 8)
$$\frac{(2^{-5})^0}{2^{-3}} =$$

m)
$$\frac{2^3}{(5\cdot 2)^{-5}} =$$

n)
$$\left[\left(\frac{5}{2} \right)^3 \right]^{-4} \cdot \left(\frac{4}{5} \right)^{-2} =$$
 (Soluc:2⁸/5¹⁰)

0)
$$\frac{2^{-3} \cdot (-2)^4 \cdot (-4)^{-1}}{-2} =$$
 (Soluc: 1/4)

p)
$$\frac{\left(\frac{1}{2}\right)^{-3} \cdot \left(-\frac{1}{4}\right)^2}{2^{-1}} =$$
 (Soluc: 1)

q)
$$\frac{\left(\frac{4}{9}\right)^{-1} \cdot \left(\frac{5}{4}\right)^3}{\left(\frac{25}{3}\right)^2 \cdot \left(\frac{1}{3}\right)^{-3} \cdot 2^{-7}} =$$
 (Soluc: 3/10)

7. Ídem:

a)
$$\frac{2^3 \cdot 2^4 \cdot 5^3 \cdot 5^{-1}}{2^{-1} \cdot 2^2 \cdot 5^{-2} \cdot 5^{-3}} =$$
 (Soluc: $2^6 \cdot 5^7$)

b)
$$\frac{3^{-2} \cdot 7^2 \cdot 3 \cdot 7^{-4} \cdot 3^5}{7^3 \cdot 3^{-1} \cdot 7^{-5} \cdot 3^4} =$$
 (Soluc: 3)

c)
$$\frac{3^8 \cdot 7^{-1} \cdot 5^2 \cdot 7^3 \cdot 3^{-2}}{7^4 \cdot 5^{-1} \cdot 3^5 \cdot 5^3 \cdot 7^{-2}} =$$
 (Soluc: 3)

d)
$$\frac{2^7 \cdot 2^5 \cdot 2^3 \cdot 2^0}{2 \cdot 2^3 \cdot 2^5 \cdot 2^6} =$$
 (Soluc: 1)

e)
$$\frac{2^3 \cdot 4^5 \cdot 2^6 \cdot 2 \cdot 8^{30}}{16 \cdot 2^3 \cdot 32 \cdot 2^4} =$$
 (Soluc: 2^{94})

f)
$$\frac{15^2 \cdot 3^2 \cdot 5^3 \cdot 45^2}{25 \cdot 5^3 \cdot 125 \cdot 27} =$$
 (Soluc: 243/5)

g)
$$\frac{6 \cdot 12^3 \cdot 18^2 \cdot 3^2 \cdot 108^2}{27^2 \cdot 3^2 \cdot 16 \cdot 48 \cdot 36} =$$
 (Soluc: 1944)

h)
$$\frac{15^2 \cdot 5^{-2} \cdot 5^3 \cdot 45^2}{(5^3)^2 \cdot 27 \cdot 3^{-2}} =$$
 (Soluc: 243/5)

i)
$$\frac{2^{-1} \cdot (2^3)^5 \cdot 4 \cdot 5^3}{100 \cdot 2^{-2} \cdot 8} =$$
 (Soluc: $5 \cdot 2^{13}$)

$$j)\ \frac{2^3 \cdot 8^{-3} \cdot 12^{-1} \cdot (-3)^2}{6^2 \cdot 16^{-2} \cdot 3^{-3}} =$$

$$k) \ \frac{6^4 \cdot 9^2 \cdot 2^{-4} \cdot 3^{-5} \cdot 2^{-1}}{18^3 \cdot 2^{-5} \cdot 3^6 \cdot \left(3^3\right)^{-3}} =$$

I)
$$\frac{4^{3} \cdot (3^{-2})^{-3} \cdot 27^{-3} \cdot 32^{2} \cdot (36^{2})^{-2}}{8^{2} \cdot (2^{6})^{2} \cdot (9^{-3})^{5} \cdot 24^{-3} \cdot [(3^{-2})^{2}]^{-5}} =$$
 (Soluc: 9/2)

m)
$$\frac{(3^2)^3 \cdot 3^{-2} \cdot (2^{-2})^3 \cdot (2^2)^{-3}}{18 \cdot (3^{-1})^{-2} \cdot 2^{-7} \cdot (2^2)^{-3}} =$$
 (Soluc: 1)

$$n) \ \frac{2^3 \cdot (3^{-2})^{-3} \cdot (-8)^{-2} \cdot (6^2)^{-4}}{[(-9)^{-2})]^3 \cdot 16^{-1} \cdot 4^{-3} \cdot [(-3)^{-2}]^{-3}} =$$

8. Calcular, pasando previamente a potencias semejantes. Dejar el resultado en forma de potencia:

a)
$$2^6+2^5=$$
 (Soluc: $3\cdot 2^5$)

b)
$$3^7 - 3^5 =$$
 (Soluc: 8·3⁵)

c)
$$5 \cdot 2^{10} + 4^5 - 3 \cdot 2^{10} =$$
 (Soluc: $3 \cdot 2^{10}$)

d)
$$15 \cdot 10^8 - 4 \cdot 10^5 =$$
 (Soluc: $14996 \cdot 10^5$)

e)
$$2^9+2^9=$$
 (Soluc: 2^{10})

f)
$$5.4^4-16^2-3.2^8=$$
 (Soluc: 2^8)

g)
$$2^{20}-2^{19}=$$
 (Soluc: 2^{19})

h)
$$3.2^8 + 16^2 - 5.4^4 =$$
 (Soluc: -2⁸)

i)
$$3^{10}-3^8=$$
 (Soluc: $8\cdot 3^8$)

9. Calcular, aplicando las propiedades de las potencias, y simplificando en todo momento:

a)
$$\frac{4^4 \cdot 8^{-1/3} \cdot 16^2}{\left(\frac{1}{2}\right)^3 \cdot 8^6} =$$

NOTACIÓN CIENTÍFICA:

11. Escribir en notación científica los siguientes números:

a) 300.000.000	f) 0,000001	k) 150 millones \$	p) 1
b) 456	g) -78986,34	l) 7,3	q) 0,011001
c) 0,5	h) 0,0000093	m) 73	r) 16.730.000
d) 0,0000000065	i) 1.230.000.000.000	n) 0,00010001	s) -345,45
e) 18.400.000.000	j) 14 billones €	o) 10	

- **12.** Realizar las siguientes operaciones de dos formas distintas (y comprobar que se obtiene el mismo resultado):
 - Aplicando las propiedades de las potencias.
 - Utilizando la calculadora científica.

- 13. La estrella más cercana a nuestro sistema solar es α-Centauri, que está a una distancia de tan sólo 4,3 años luz. Expresar, en km, esta distancia en notación científica. (Dato: velocidad de la luz: 300.000 km/s)
 (Soluc: 4,068·10¹³ km)
- 14. Calcular el volumen aproximado (en m³) de la Tierra, tomando como valor medio de su radio 6378 km, dando el resultado en notación científica con dos cifras decimales.

Dato: volumende la esfera:
$$\frac{4}{3}\pi r^3$$
 (Soluc: 1,15·10²¹ m³)