Knowledge Engineering with Bayesian Network

Yuqing Tang

Doctoral Program in Computer Science The Graduate Center City University of New York ytang@cs.gc.cuny.edu

December 6, 2010

Outline

Introduction

2 Knowledge engineering with Bayesian Networks

Summary

Introduction

Knowledge Engineering with Bayesian Network (KEBN)

- KEBN: Overview
- The BN Knowledge Engineering Process
- Model construction
 - Variables and values
 - Graph Structure
 - Probabilities
 - Preferences
- Evaluation

Outline

Introduction

2 Knowledge engineering with Bayesian Networks

Summary

Knowledge engineering with Bayesian Networks

(Laskey, 1999)

- Objective: Construct a model to perform a defined task
- Participants: Collaboration between domain expert(s) and BN modelling expert(s), including use of automated methods.
- Process: iterate until "done"
 - Define task objective
 - Construct model
 - Evaluate model

KEBN

Production of Bayesian/decision nets for

Decision making: Which policy carries the least risk of failure?

Forward Prediction: Hypothetical or factual. Who will win the election?

Retrodiction/Diagnosis: Which illness do these symptoms indicate?

Monitoring/control: Do containment rods needs to be inserted here at Chernobal?

Explanation: Why did the patient die? Which cause exerts the greater influence?

Sensitivity Analysis: What range of probs/utilities make no difference to X?

Information value: What's the differential utility for changing precision of X to ϵ ?

KEBN lifecycle model

Notes on Lifecycle Model

- Phase 1: Building Bayesian Networks.
 - ▶ Major network components: structure, parameters and utilities.
 - Elicitation: from experts, learned with data mining methods, or some combination of the two.
- Phase 2: Evaluation.
 - Networks need to be validated for: predictive accuracy, respecting known temporal order of the variables and respecting known causal structure.
 - Use statistical data (if available) or expert judgement.
- Phase 3: Field Testing.
 - Domain expert use BN to test usability, performance, etc.
- Phase 4: Industrial Use.
 - Requires a statistics collection regime for on-going validation and/or refinement of the networks.
- Phase 5: Refinement.
 - ▶ Requires a process for receiving and incorporating change i requests
 - ► Includes regression testing to verify that changes do not undermine established performance.

KEBN spiral model

From Laskey & Mahoney (2000) Idea (from Boehm, Brooks): prototype-test cycle

KEBN tasks

For Bayesian Networks, identifying:

- What are the variables? What are their values/states?
- What is the graph structure? What are the direct causal relationships?
- What are the parameters (probabilities)? Is there local model structure?

When building decision nets, identifying:

- What are the available actions/decisions?
- What are the utility nodes & their dependencies?
- What are the preferences (utilities)?

The major methods are:

- Expert elicitation
- Automated learning from data
- Adapting from data

Identifying the Variables

Which are the most important variables?

- "Focus" or "query" variables
 - variables of interest
- "Evidence" or "observation" variables
 - ▶ What sources of evidence are available?
- "Context" variables
 - Sensing conditions, background causal conditions
- "Controllable" variables
 - variables that can be "set", by intervention

Start with query variables and spread out to related variables. NB: Roles of variables may change.

Variable values/states

- Variable values must be exclusive and exhaustive
 - Naive modelers sometimes create separate (often Boolean) variables for different states of the same variable
- Types of variables
 - Binary (2-valued, including Boolean)
 - Qualitative
 - Numeric discrete
 - Numeric continuous
- Dealing with infinite and continuous variable domains
 - Some BN software (e.g. Netica) requires that continuous variables be discretized
 - Discretization should be based on differences in effect on related variables (i.e. not just be even sized chunks)

Graphical structure

Goals in specifying graph structure

- Minimize probability elicitation: fewer nodes, fewer arcs, smaller state spaces
- Maximize fidelity of model
 - Sometimes requires more nodes, arcs, states
 - ▶ Tradeoff between more accurate model and cost of additional modelling
 - Too much detail can decrease accuracy
- Drawing arcs in causal direction is not "required" BUT
 - Increases conditional independence
 - Results in more compact model
 - Improves ease of probability elicitation
- If mixing continuous and discrete variables
 - Exact inference algorithms only for the case where discrete variables are ancestors, not descendants of continous variables

Relationships between variables I

Types of qualitative understanding can help determine local/global structure

- Causal relationships
 - Variables that could cause a variable to take a particular state
 - Variables that could prevent a variable taking a particular state
- Enabling variables
 - Conditions that permit, enhance or inhibit operation of a cause
- Effects of a variable
- Associated variables
 - When does knowing a value provide information about another variable?
- Dependent and independent variables
 - D-separation tests
 - Which pairs are directly connected? Probabilities dependent regardless of all other variables?

Relationships between variables II

Matilda – software tool for visual exploration of dependencies (Boneh, 2002)

- Temporal ordering of variables
- Explaining away/undermining
- Causal non-interaction/additivity
- Causal interaction
 - Positive/negative Synergy
 - Preemption
 - Interference/XOR
- Screening off: causal proximity
- Explanatory value
- Predictive value

Probabilities

- The parameters for a BN are a set of conditional probability distributions of child values given values of parents
- One distribution for each combination of values of parent variables
- Assessment is exponential in the number of parent variables
- The number of parameters can be reduced by taking advantage of additional structure in the domain (called local model structure)

Probability Elicitation

- Discrete variables
 - ▶ Direct elicitation: *p* = 0.7
 - ▶ Odds (esp. for very small probs): 1 in 10,000
 - Qualitative assessment: "very high probability"
 - ★ Use scale with numerical and verbal anchors (van der Gaag et al., 1999)
 - ★ Do mapping separately from qualitative assessment
- Continuous variables
 - bi-section method
 - ★ Elicit median: equally likely to be above and below
 - ★ Elicty 25th percentile: bisects interval below median
 - ★ Continue with other percentiles till fine enough discriminations
- Often useful to fit standard functional form to expert's judgements
- Need to discreteize for most BN software

Probability elicitation

Graphical aids are known to be helpful

- pie charts
- histograms

Probability elicitation (cont.)

- Combination of qualitative and quantitative assessment
- Automated correction of incoherent probabilities (Hope, Korb & Nicholson, 2002)
 - Minimizing squared deviations from original estimates
- Automated maxentropy fill of CPTs (Hope, Korb & Nicholson, 2002)
- Automated normalization of CPTs (Hope, Korb & Nicholson, 2002)
- Use of lotteries to force estimates (also useful for utility elicitation)

Local model structure

Not every cell in CPT is independent from every other cell. Examples:

- Deterministic nodes
 - ▶ It is possible to have nodes where the value of a child is exactly specified (logically or numerically) by its parents
- Linear relationships:

$$X+i=a_0X_0+\ldots a_nX_n+\epsilon_i$$

Logit model (binary, 2 parents):

$$log_2 \frac{P(X_2|X_0, X_1)}{P(\neg X_2|X_0, X_1)} = a + bX_0 + cX_1 + dX_1X_2$$

- Partitions of parent state space
- Independence of causal influence
- Contingent substructures

Elicitation by Partition

(See Heckerman, 1991)

- Partition state set of parents into subsets
 - set of subsets is called a partition
 - each subset is a partition element
- Elicit one probability distribution per partition element
- Child is independent of parent given partition element
- Examples
 - ► *P*(*reportedLoc*, *sensor-type*, *weather*) independent of sensor type given *weather* = *sunny*
 - ▶ $P(fever = high \ disease)$ is the same for $disease \in \{flu, measles\}$.

Independence of Causal Influence (ICI)

- Assumption: causal influences operate independently of each other in producing effect
 - Probability that C1 causes effect does not depend on whether C2 is operating
 - Excludes synergy or inhibition
- Examples
 - Noisy logic gates (Noisy-OR, Noisy-AND, Noisy-XOR)
 - Noisy adder
 - Noisy max
 - General noisy deterministic function

Noisy-OR nodes

- Adds some uncertainty to logical OR.
 Example: Fever true if and only if Cold, Flu, or Malaria is true.
 Assumptions:
 - each cause has an independent chance of causing the effect.
 - all possible causes are listed
 - ▶ inhibitors are independent E.g.: whatever inhibits *Cold* from causing *Fever* is independent of whatever inhibits *Flu* from causing a *Fever*.
- Inhibitors summarised as "noise parameters".

Noisy-OR parameters

Example

Given P(Fever|Cold) = 0.4, P(Fever|Flu) = 0.8, and P(Fever|Malaria) = 0.9, then noise parameters are $P(\neg Fever|Cold) = 0.6$, $P(\neg Fever|Flu) = 0.2$ and $P(\neg Fever|Malaria) = 0.1$ respectively. Probability that output node is False is the product of the noise parameters for all the input nodes that are true.

Cold	Flu	Mal	P(Fev)	$P(\neg Fev)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	1 - 0.02	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	1 - 0.06	$0.06 = 0.6 \times 0.1$
Т	Т	F	1 - 0.12	$0.12 = 0.6 \times 0.2$
Т	Т	Т	1 - 0.012	$0.012 = 0.6 \times 0.2 \times 0.1$

Savings: for a binary noisy-OR node with 9 parents (10 nodes in total)

- CPT requires $1024 = 2^{10}$ parameters;
- noisy-OR requires 11 parameters

Classification Tree Representation

(Boutillier et al. 1996). Example: Suppose node X has 3 parents, A, B, C (all nodes Boolean).

Α	_В	C	P(X A,B,C)
T	T	T	1.0
T	T	F	1.0
T	T	T	1.0
T	F	F	1.0
F	T	T	0.1
F	T	F	0.9
F	F	T	0.0
F	F	F	

(a)

(b)

(c)

Savings: CPT = 8, tree rep = 4 parameters.

Object-oriented BNs

- Facilitate network construction wrt both structure and probabilities
- Allow representation of commonalities across variables
- Inheritance of priors and CPTs

Not widely used.

Decision Analysis

Since 1970s there have been nice software packages for decision analysis:

- Eliciting actions
- Eliciting utilities
- Eliciting probabilities
- Building decision trees
- Sensitivity analysis, etc.

See: Raiffa's Introduction to Decision Analysis (an excellent book!)
Main differences from KEBN:

- Scale: tens vs thousands of parms!
- Structure: trees reflect state-action combinations, not causal structure, prediction, intervention

Eliciting Decision Networks

- Action nodes: What actions can be taken in domain?
- Utility node(s):
 - What unit(s) will "utile" be measured in?
 - Are there difference aspects to the utility that should each be represented in a separate utility node?
- Graph structure:
 - Which variables can decision/actions affects?
 - Does the action/decision affect the utility?
 - ▶ What are the outcome variables that there are preferences about?

Model Evaluation

- Elicitation review
 - Review variable and value definition
 - ★ clarity test, agreement on definitions, consistency
 - Review graph and local model structure
 - Review probabilities
 - * compare probabilities with each other
- Sensitivity analysis (Laskey, 1993)
 - Measures effect of one variable on another
- Case-based evaluation
 - Run model on test of test cases
 - Compare with expert judgement or "ground truth"
- Validation methods using data (if available)
 - Predictive Accuracy
 - Expected value
 - Kullback-Leibler divergence
 - ▶ (Bayesian) Information reward

The need to prototype!

Why prototype?

- It's just the best software development process overall (Brooks).
 Organic growth of software:
 - tracks the specs
 - has manageable size (at least initially)
- Attacks the comprehensiveness vs. intelligibility trade-off from the right starting point.
- Few off-the-shelf models; prototyping helps us fill in the gaps, helps write the specs

Prototypes

- Initial prototypes minimize risk
 - Don't oversell result
 - Employ available capabilities
 - Simplify variables, structure, questions answered
 - Provide working product for assessment
- Incremental prototypes
 - Simple, quick extension to last
 - Attacks high priority subset of difficult issues
 - Helps refine understanding of requirements/approach

More recent KEBN methodolgies

When BNs are not appropriate

- If the problem is a "one-off", for which there is no data available and any model built won't be used again.
 Bayesian networks might still be used in a one-off modeling process without going through all the KENB knowledge engineering process.
- There are no domain experts, nor useful data.
- If the problem is very complex or not obviously decomposable, it may not be worth attempting to analyze into a Bayesian network.
- If the problem is essentially one of learning a function from available data, and a "black bloc" model is all that is required
 - Artificial neural network, or
 - Other standard machine learning technique

Outline

Introduction

2 Knowledge engineering with Bayesian Networks

Summary

Summary

- Various BN structures are available to compactly and accurately represent certain types of domain features.
- There is an interplay between elements of the KE process: variable choice, graph structure and parameters.
- No standard knowledge engineering process exists as yet.
- Integration of expert elicitation and automated methods still in early stages.
- There are few existing tools for supporting the BN KE process.
 - We at Monash are developing some! (e.g. VerbalBN, Matilda)

Acknowledgments

Lecture 9 is extracted from

http://www.csse.monash.edu.au/courseware/cse458/L5-4.pdf, and composed of materials from [Korb and Nicholson, 2003, Chapter 9] with the instructor's own interpretations. The instructor takes full responsibility of any mistakes in the slides.

References I

K. Korb and A. E. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall /CRC, 2003.