ToC Question Bank 7

- 1. Show that the following languages are not CFL.
 - i. $L = \{0^{i}1^{j}2^{i}3^{j} | i \ge 1, j \ge 1\}$
 - ii. $L = \{0^p | p \text{ is a prime}\}\$
 - iii. $L = \{a^n b^n c^i | i \le n\}$
 - iv. $L = \{a^{i}b^{j}|i \le i^{2}\}$
 - v. $L = \{a^i b^j c^k | k = ij\}$
 - vi. $L = (w \text{ belong to } \{a, b, c\} \ n_a(w) \le n_b(w) \le n_c(w)$
 - vii. $L = \{ 0^{2n}1^{3n}0^n \mid n \ge 0 \}$
 - viii. $L = \{a^nb^na^nb^n \mid n >= 0\}$
- 1. Design Turing Machine to recognize
 - a. $L = \{ 0^{2n} \mid n \ge 0 \}.$
 - b. $L = \{0^n 1^n 2^n\}$ where $n \ge 1$
 - c. All strings over $\{0, 1\}$ in which the number "01" pairs is odd.
 - d. To check the palindrome of the string of any length.
 - e. To add 2 unary numbers separated by a 0.
 - f. To get the function c = f(a-b) where and b are two unary numbers separated by a 0 and a is always greater than b.
 - g. $L = \{0^{i}1^{j}2^{k}\}$ where i x j = k, I, j, $k \ge 1$
 - h. Given a list of strings over {0, 1} separated by #, determine if all strings are different.
 - i. $q_0w q_fww^R$
 - j. ww \vdash w#w, where w $\{1\}$ *
 - k. w where w $\{1\}$ *
 - 1. w w mod 2 where w {1}*
 - m. $L = \{(a+b)*b(a+b)*\}.$
 - n. $L = \{w \# w' : w \in \{a, b\} * \text{ and } w \text{ is a substring of } w'\}.$
 - o. To accept a string with 'aba' as its substring
 - p. $L = \{ b^n a^n b^n \mid n \ge 0 \}.$
 - q. $w \in \{a, b, c\} * | n_a(w) = n_b(w) \text{ and } n_a(w) > n_c(w) \}$
 - r. that changes all the a's on its tape to b's and vice versa
 - s. that doubles each character in its input string. For example, if the input is 0100, then the machine should change its tape so it contains 00110000