1 Inverse Matrices

An inverse matrix A is invertible if there is a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$.

1.1 Examples

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \text{ are inverses}$$

$$\text{Since } AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ we can write } B = A^{-1}$$

$$\text{Not all matrices have inverses:}$$

$$A = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \text{ has no inverse}$$

$$\text{Since } AB = \begin{bmatrix} 0 & 0 \\ a+b & a+b \end{bmatrix} \neq I$$

1.2 Connection to Linear Transformations

 A^{-1} is the *inverse transformation* with respect to A (or T_A^{-1} w.r.t. T_A). The inverse of T is a linear transformation whose associated matrix is A^{-1} .

2 2x2 Inverse Formula

Let
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then if $ad-bc\neq 0$:
$$A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

This is a special case of a more general formula (which is complicated to compute but has the same idea for matrices of any size).

2.1 Using Gauss-Jordan to Find the Inverse

Suppose A has inverse A^{-1} . Then $AA^{-1}=I$ So $A[A^{-1}]=[I]$

To find A^{-1} , we need to solve the system $Ax = e_i$ for each i.

Instead of solving [Ax][Ax][Ax] individually, we can combine these systems into one matrix equation:

$$[A|e_1, e_2, ..., e_n] \rightarrow [I|A^{-1}]$$

1

If A doesn't have n pivots (one in each row), then A^{-1} does not exist.

If A has n pivots, then the algorithm produces A^{-1} .

2.2 Summary

- If A doesn't have n pivots, then A^{-1} doesn't exist
- \bullet If A has n pivots, then A is invertible and the RREF is $[I|A^{-1}]$

3 Example

Find A^{-1} , if it exists:

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 & 3 & | & 1 & 0 & 0 \\ 1 & 0 & 1 & | & 0 & 1 & 0 \\ 3 & 1 & 4 & | & 0 & 0 & 1 \end{bmatrix}$$

After row operations:

$$\begin{bmatrix} 1 & 0 & 0 & | & -1 & 3 & -1 \\ 0 & 1 & 0 & | & 3 & -8 & 3 \\ 0 & 0 & 1 & | & 1 & -2 & 1 \end{bmatrix}$$

Therefore:

$$A^{-1} = \begin{bmatrix} -1 & 3 & -1 \\ 3 & -8 & 3 \\ 1 & -2 & 1 \end{bmatrix}$$
 (Check: $AA^{-1} = I$)

4 Using Inverses to Solve Systems

If A exists, we can solve Ax = b by multiplying both sides by A^{-1} :

$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

However, this solution is $O(n^3)$ (as matrix multiplication is $O(n^3)$), which is inefficient.