MODULE THREE: DETERMINING CAUSE AND MAKING RELIABLE FORECASTS

TOPIC 8: SIMPLE LINEAR REGRESSION

Learning Objectives

At the completion of this topic, you should be able to:

- conduct a simple regression and interpret the meaning of the regression coefficients b₀ and b₁
- use regression analysis to predict the value of a dependent variable based on an independent variable
- assess the adequacy of your estimated model
- evaluate the assumptions of regression analysis
- make inferences about the slope and correlation coefficient
- comprehend the pitfalls in regression and ethical issues

*Introduction to Regression Analysis

Regression analysis is used to:

- predict the value of a dependent variable (Y) based on the value of at least one independent variable (X)
- explain the impact of changes in an independent variable on the dependent variable

Dependent variable (Y): the variable we wish to predict or explain (response variable)

Independent variable (X): the variable used to explain the dependent variable (explanatory variable)

+Types of Regression Models

Simple Linear Regression Model

+Types of Regression Models

Simple Linear Regression Model

+Types of Regression Models (cont)

Figure 12.2

Examples of types of relationships found in scatter diagrams

+Simple Linear Regression

Simple linear regression:

- Only one independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be caused by changes in X

+Simple Linear Regression Equation

The simple linear regression equation provides an estimate of the population regression line

+Simple Linear Regression

Example:

A manager of a local computer games store wishes to:

- examine the relationship between weekly sales (Y) and the number of customers making purchases (X) over a 10 week period; and
- use the results of that examination to predict future weekly sales

Weekly sales in \$1,000s (Y)	Number of Customers (X)		
245	1400		
312	1600		
279	1700		
308	1875		
199	1100		
219	1550		
405	2350		
324	2450		
319	1425		
255	1700		

Weekly sales model: scatter plot

	А	В	С	D	Е	F	G
1	Regression Statistics						
2	Multiple R	0.762113713		The re	gression equa	tion is:	
3	R Square	0.580817312	XX7 11	1 00.0	4022 . 0.10/	277 /	1
4	Adjusted R Square	0.528419476	Weekly	sales = 98.2	4833 + 0.109	977 (customers)
5	Standard Error	41.33032365					
6	Observations	10					
7							
8	ANOVA						
9		df	ss /	MS/	F	Significance F	
10	Regression	1	18934.93 <i>4</i> 78	18934.93478	11.08475762	0.010394016	
11	Residual 🖧	8	13665 <i>,5</i> 6522	<i>17</i> 08.195653			
12	Total	9	32600.5				
13							
14		Coefficients /	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

Weekly sales model: scatter plot and regression line

Weekly sales = 98.24833 + 0.10977 (customers)

Weekly sales = 98.24833 + 0.10977 (customers)

 b_0 is the estimated average value of Y when the value of X is zero (if X = 0 is in the range of observed X values)

• Here, for no customers, b_0 = 98.2483 which appears nonsensical. However, the intercept simply indicates that over the sample size selected, the portion of weekly sales not explained by number of customers is \$98,248.33. Also note that X=0 is outside the range of observed values

b₁ measures the estimated change in the average value of Y as a result of a one-unit change in X

• Here, $b_1 = .10977$ tells us that the average value of weekly sales increases by .10977(\$1,000) = \$109.77, on average, for each additional customer

Predict the weekly sales for the local store for 2,000 customers:

```
Weekly sales = 98.25 + 0.1098 (2000)
= 98.25 + 0.1098 (2000)
= 317.85
```

The predicted weekly sales for the local computer games store for 2,000 customers is 317.85 (\$1,000s) = \$317,850

+The Least-Squares Method

 b_0 and b_1 are obtained by finding the values of b_0 and b_1 that minimise the sum of the squared differences between actual values (Y) and predicted values (\hat{Y})

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

b₀ is the estimated average value of Y when the value of X is zero

b₁ is the estimated change in the average value of Y as a result of a one-unit change in X

+The Least-Squares Method

Figure 12.5

Microsoft Excel scatter diagram and prediction line for the Human Development Index data

Microsoft® product screen shots are reprinted with permission from Microsoft Corporation.

+Predictions in Regression Analysis:Interpolation versus Extrapolation

When using a regression model for prediction, only predict within the relevant range of data

+Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

 $SSE = \sum (Y_i - \hat{Y}_i)^2$

Measures the variation of the Y_i values around their mean Y

Explained variation attributable to the relationship between X and Y

Variation attributable to factors other than the relationship between X and Y

+The Coefficient of Determination, r²

The Coefficient of Determination (r^2) is equal to the regression sum of squares (i.e. the explained variation) divided by the total sum of squares (i.e. the total variation)

$$r^2 = \frac{\text{regression sum of squares}}{\text{total sum of squares}} = \frac{\text{SSR}}{\text{SST}}$$

It measures the proportion of the variation in Y that is explained by the Independent variable X in the regression model

+The Coefficient of Determination, r^2 (Cont)

- Perfect linear relationship between X and Y
- 100% of the variation in Y is explained by variation in X

- No linear relationship between X and Y
- The value of Y does not depend on X (none of the variation in Y is explained by variation in X)

+The Coefficient of Determination, r² (Cont)

$0 < r^2 < 1$

Weaker linear relationships between X and Y:

Some, but not all, of the variation in Y is explained by variation in X

+The Coefficient of Determination, r² (Cont)

	A	В	С	D	Е	F	G	
1	Regression Statistics							
2	Multiple R	0.762113713	_{r2} ₄SSF	R 18934.9	$\frac{9348}{9348} = 0.58$	002		
3	R Square	0.580817312 -	r' =7ss1	$\Gamma = \frac{1}{32600.5}$		002		
4	Adjusted R Square	0.528419476	/					
5	Standard Error	41.33032365		58 08% of	the variation is	n weekly sales is		
6	Observations	10		58.08% of the variation in weekly sales is explained by variation in number of customers				
7				explained by variation in humber of customers				
8	ANOVA							
9		df	/ ss	MS	F	Significance F		
10	Regression	1	18934.93478	18934.93478	11.08475762	0.010394016		
11	Residual	8	13665.56522	1708.195653				
12	Total	9	32600.5					
13								
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711	
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541	

+Standard Error of the Estimate

The standard deviation of the variation of observations around the regression line is estimated by:

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

Where:

SSE = error sum of squares n = sample size

+Standard Error of the Estimate (Cont)

Excel Output:

	Α	В	С	D	Е	F	G
1	Regression Statistics						
2	Multiple R	0.762113713	~				
3	R Square	0.580817312	S	$_{\rm x}=4$	1-330	32	
4	Adjusted R Square	0.528419476	J Y	$X = \mathbf{I}$	1.550		
5	Standard Error	41.33032365					
6	Observations	10					
7							
8	ANOVA						
9		df	SS	MS	F	Significance F	
10	Regression	1	18934.93478	18934.93478	11.08475762	0.010394016	
11	Residual	8	13665.56522	1708.195653			
12	Total	9	32600.5				
13							
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

+Standard Error of the Estimate - Comparing Standard Errors

 S_{YX} is a measure of the variation of observed Y values from the regression line

The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data

i.e. S_{YX} = \$41.33K is moderately small relative to weekly sales in the \$200 - \$300K range

+Assumptions

Use the acronym LINE:

Linearity

- The underlying relationship between X and Y is linear
 Independence of errors
- Error values are statistically independent

Normality of error

- Error values (ε) are normally distributed for any given value of X
 Equal variance (homoscedasticity)
- The probability distribution of the errors has constant variance

*Residual Analysis

The residual for observation i, e_i , is the difference between its observed and predicted value $e_i = Y_i - \hat{Y}_i$

Check the assumptions of regression by examining the residuals:

- Examine for linearity assumption
- Evaluate independence assumption
- Evaluate normal distribution assumption
- Examine for constant variance for all levels of X (homoscedasticity)

Graphical Analysis of Residuals

Can plot residuals vs. X

+Residual Analysis for Linearity

*Residual Analysis for Independence

*Residual Analysis for Normality

A normal probability plot of the residuals can be used to check for normality:

+Residual Analysis for Equal Variance (Homoscedasticity)

*Residual Analysis – Excel Residual Output

RESIDUAL OUTPUT							
	Predicted Weekly Sales	Residuals					
1	251.92316	-6.923162					
2	273.87671	38.12329					
3	284.85348	-5.853484					
4	304.06284	3.937162					
5	218.99284	-19.99284					
6	268.38832	-49.38832					
7	356.20251	48.79749					
8	367.17929	-43.17929					
9	254.6674	64.33264					
10	284.85348	-29.85348					

Does not appear to violate any regression assumptions

*Inferences About the Slope

The standard error of the regression slope coefficient (b₁) is estimated by:

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the least squares slope

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate

*Inferences About the Slope – Excel Output

	Α	В	С	D	Е	F	G
1	Regression Statistics						
2	Multiple R	0.762113713					
3	R Square	0.580817312				~~	
4	Adjusted R Square	0.528419476	.5	$b_{b_1} = 0$	1 ()32	9/	
5	Standard Error	41.33032365		b₁ — `).UUL	.01	
6	Observations	10		I			
7				1			
8	ANOVA						
9		df	SS	<i>n</i> /is	F	Significance F	
10	Regression	1	18934.93478	1893/4.93478	11.08475762	0.010394016	
11	Residual	8	13665.56522	1708.195653			
12	Total	9	32600.5				
13							
14		Coefficients	Standard Error	/ t Stat	P-value	Lower 95%	Upper 95%
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541

+t Test for the Slope

t test for a population slope

Is there a linear relationship between X and Y?

Null and alternative hypotheses:

 H_0 : $\beta_1 = 0$ (no linear relationship)

 H_1 : $\beta_1 \neq 0$ (linear relationship does exist)

Test statistic with d.f. = n-2

$$t = \frac{b_1 - \beta_1}{S_{b_1}}$$

Where: b_1 = regression slope coefficient β_1 = hypothesised slope S_h = standard error of the slope

+t Test for the Slope

$$t = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{0.10977 - 0}{0.03297} = 3.32938$$

t Test for the Slope

 $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$

Test Statistic: t = 3.329

T critical = \pm 2.3060 (from t tables)

Decision: Reject H₀ **Conclusion:** There is sufficient evidence that number of customers affects weekly sales

Reject H₀

+*F* Test for Significance

F Test statistic

$$F = \frac{MSR}{MSE}$$
 where:

$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

F follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom

k = the number of independent (explanatory) variables in the regression model

+*F* Test for Significance – Excel Output

	A	В	С	D	Е	F	G	
2	Multiple R	0.762113713						
3	R Square	0.580817312	MS	SR 189	34.9348			
4	Adjusted R Square	0.528419476		= :		= 11.0848		
5	Standard Error	41.33032365	M:	SE 170	08.1957			
6	Observations	10			1			
7			With 1 and 8 de	With 1 and 8 degrees of freedom			P-value for the F Test	
8	ANOVA		7			1		
9		df /	SS	MS	/ F	Significance F		
10	Regression	1 /	18934.93478	18934.93478	11.08475762	0.010394016		
11	Residual	8 ′	13665.56522	1708.195653				
12	Total	9						
13								
14		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
15	Intercept	98.24832962	58.03347858	1.692959513	0.128918812	-35.57711186	232.0737711	
16	Number of customers	0.109767738	0.032969443	3.329377962	0.010394016	0.033740065	0.18579541	

+F Test for Significance - Example

*Confidence Interval Estimation for the Slope (β₁)

$$b_{\scriptscriptstyle 1} \pm t_{\scriptscriptstyle n-2} S_{\scriptscriptstyle b_{\scriptscriptstyle 1}}$$

d.f. = n - 2 Excel Printout for Weekly sales:

	Coefficien ts	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Customers	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

At 95% level of confidence, the confidence interval for the slope is (0.03374, 0.18580); i.e. we are 95% confident that the average impact on weekly sales is between \$33.74 and \$185.80 per customer

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between weekly sales and number of customers at the .05 level of significance

+t Test for the Correlation Coefficient

Hypotheses

 H_0 : $\rho = 0$

 $H_1: \rho \neq 0$

no association (correlation) between X and Y

statistically significant association (correlation) exists

Test statistic

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$
 where
$$r = +\sqrt{r^2} \text{ if } b_1 > 0$$
$$r = -\sqrt{r^2} \text{ if } b_1 < 0$$

(with n-2 degrees of freedom)

+t Test for the Correlation Coefficient

- Example

Is there evidence of a significant linear relationship between weekly sales and number of customers at the .05 level of significance?

Decision: Reject H_o **Conclusion:** There is evidence of a significant linear association at the 5% level of significance

+Pitfalls in Regression and Ethical Issues

- Lacking an awareness of the assumptions underlying leastsquares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range
- Concluding that a significant relationship in observational study is due to a cause and effect relationship