$Confirmation_vs_Findings$

Xiaochuan Tian

July 16, 2015

Contents

1	\mathbf{Fin}	dings	1
	1.1	Along ridge coupling for reconciling discrepancy between 2D	
		model $M(0.3^{\sim}0.5)$ and field observation	2
	1.2	Asynchronous faulting induced isochron-parallel tensile failure	
		as a mechanism for corrugations	2
	1.3	From major features	2
		1.3.1 mass wasting	2
		1.3.2 hourglass median valley	2
2	Confirmation		
	2.1	Average $M = 0.6425$ for separating abyssal hills and OCC	
		formation	2
	2.2	From major features	2
		2.2.1 Inward fault jump	2
		2.2.2 Mullion structure	2

1 Findings

1.1 and 1.2 need field evidences.

1.1 Along ridge coupling for reconciling discrepancy between 2D model $M(0.3^{\circ}0.5)$ and field observation.

1.2 Asynchronous faulting induced isochron-parallel tensile failure as a mechanism for corrugations.

1.3 From major features

Comparing model results and field observation can help to infer historical tectonics and magmatism evolution.

1.3.1 mass wasting

1.3.2 hourglass median valley

2 Confirmation

2.1 Average M = 0.6425 for separating abyssal hills and OCC formation.

This is first mentioned by [Buck et al., 2005] in 2D version, we confirm that when M increase, faulting begin to alternate. We update on: first, it is 3D version average M for varying M along the ridge; Second, it is very sensitive to weakening rate because only type 2 (slower) weakening results in fault alternation. Further investigation needed to be done on different functional forms, ranges of M variations and different weakening rates.

2.2 From major features

2.2.1 Inward fault jump

First mentioned by [Tucholke et al., 1998], but first time 3D modeling. It provide an explanation for brother domes.

2.2.2 Mullion structure

Due to Anastomosing (Smith et al., 2014) or continuous casting model (Spencer, 1999). Still first time in 3D modeling.