Assignment 3 Applied Stochastic Processes Habib University – Fall 2023

Ali Asghar Yousuf - ay
06993 Muhammad Murtaza - mm06369

December 10, 2023

1 Bertsekas and Tsitsiklis, Section 7.1

1. Problem 2

Dave fails quizzes with probability $\frac{1}{4}$, independent of other quizzes.

(a) What is the probability that Dave fails exactly two of the next six quizzes?

Solution:

$$\begin{split} P(\text{Dave fails exactly two of the next six quizzes}) &= \binom{6}{2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^4 \\ &= 15 \times \frac{1}{16} \times \frac{81}{256} \\ &= \frac{1215}{4096} \\ &= 0.296875 \end{split}$$

(b) What is the expected number of quizzes that Dave will pass before he has failed three times?

Solution:

No. of times he failed = 3Total no. of quizzes taken to fail 3 times = n

$$n * \frac{1}{4} = 3$$
$$n = 12$$

Dave takes 12 quizzes to fail 3 times. Therefore, he passes 9 quizzes.

(c) What is the probability that the second and third time Dave fails a quiz will occur when he takes his eighth and ninth quizzes, respectively?

Solution:

 $\begin{aligned} & 1\text{st Fail} \rightarrow 1-7 \text{ quizzes} \\ & 2\text{nd Fail} \rightarrow 8\text{th quiz} \\ & 3\text{rd Fail} \rightarrow 9\text{th quiz} \end{aligned}$

$$\begin{split} P(X) &= P(1 \text{ fail in } 7 \text{ tests}) \cdot P(2 \text{nd fail in } 8 \text{th test}) \cdot P(3 \text{rd fail in } 9 \text{th test}) \\ &= \binom{7}{1} \left(\frac{1}{4}\right)^1 \left(\frac{3}{4}\right)^6 \cdot \frac{1}{4} \cdot \frac{1}{4} \\ &= \frac{7 \cdot 3^6}{4^9} = \frac{5103}{262144} \\ &= 0.0194568634 \end{split}$$

(d) What is the probability that Dave fails two quizzes in a row before he passes two quizzes in a row?

Solution:

F = Fail, P = Pass

$$\begin{split} P(X) &= P(\text{Dave fails two quizzes in a row before he passes two quizzes in a row}) \\ &= P(FF \cup PFF \cup FPFF \cup PFPFF \cup FPFPFF \cup \dots) \\ &= \frac{[P(F)]^2}{1 - P(F) \cdot P(P)} + \frac{P(P) \cdot [P(F)]^2}{1 - P(F) \cdot P(P)} \\ &= \frac{\left(\frac{1}{4}\right)^2}{1 - \frac{1}{4} \cdot \frac{3}{4}} + \frac{\frac{3}{4} \cdot \left(\frac{1}{4}\right)^2}{1 - \frac{1}{4} \cdot \frac{3}{4}} \\ &= \frac{7}{52} \end{split}$$

2. Problem 3

A computer system carries out tasks submitted by two users. Time is divided into slots. A slot can be idle, with probability $P_I = \frac{1}{6}$, and busy with probability $P_B = \frac{5}{6}$. During a busy slot, there is probability $P_{1|B} = \frac{2}{5}$ (respectively, $P_{2|B} = \frac{3}{5}$) that a task from user 1 (respectively, 2)

is executed. We assume that events related to different slots are independent. $T_1 = \text{Task}$ from user 1.

(a) Find the probability that a task from user 1 is executed for the first time during the 4th slot

Solution: If a task from user 1 is executed for the first time during the 4th slot, then the task from user 1 is not executed in the first 3 slots (they are busy and not accepting from user 1) and is executed in the 4th slot (4th slot maybe idle and execute or busy and execute).

 $P(T_1 \text{ is executed for the first time during the 4th slot})$ = $P(T_1 \text{ is not executed in the first 3 slots}) \cdot P(T_1 \text{ is executed in the 4th slot})$

$$= \left(\frac{5}{6} \times \frac{3}{5}\right)^3 \cdot \left[\left(\frac{1}{6} \times 1\right) + \left(\frac{5}{6} \times \frac{2}{5}\right)\right]$$

$$= \left(\frac{1}{2}\right)^3 \cdot \left[\frac{1}{6} + \frac{1}{3}\right]$$

$$= \frac{1}{8} \cdot \frac{1}{2}$$

$$= \frac{1}{16}$$

(b) Given that exactly 5 out of the first 10 slots were idle, find the probability that the 6th idle slot is slot 12.

Solution: Since exactly 5 out of the first 10 slots were idle, therefore, the 11th slot is busy.

And since the slots are independent,

$$P(6\text{th idle slot is slot } 12)$$

$$= P(11\text{th slot is busy}) \cdot P(12\text{th slot is idle})$$

$$= \frac{5}{6} \times \frac{1}{6}$$

$$= \frac{5}{36}$$

$$= 0.138889$$

(c) Find the expected number of slots up to and including the 5th task from user 1.

Solution: Probability of a task from user 1.

$$P(T_1) = P_I \cdot P_{1|I} + P_B \cdot P_{1|B}$$

$$= \frac{1}{6} \cdot 1 + \frac{5}{6} \cdot \frac{2}{5}$$

$$= \frac{1}{6} + \frac{1}{3}$$

$$= \frac{1}{2}$$

Probability of 5th task from user 1 (first 4 slots are busy and not accepting from user 1).

$$P(5\text{th task from user 1}) = \left(\frac{1}{2}\right)^5$$

$$= \frac{1}{32}$$

Expected number of slots up to and including the 5th task from user 1 is the reciprocal of the probability of 5th task from user 1 = 32

(d) Find the expected number of busy slots up to and including the 5th task from user 1.

Solution: In busy slots, there is probability $P_{1|B} = \frac{2}{5}$ that a task from user 1 is executed.

Probability of 5th task from user $1 = \left(\frac{5}{6}\right)^5 \cdot \frac{2}{5} = 0.16075$

Expected number of busy slots up to and including the 5th task from user 1 is the reciprocal of the probability of 5th task from user $1 = \frac{1}{0.16075} = 6.219$

(e) Find the PMF, mean, and variance of the number of tasks from user 2 until the time of the 5th task from user 1.

Solution:

$$\binom{k+r-1}{k}p^k(1-p)^r$$

$$p = \left(\frac{1}{6} + \frac{5}{6} \times \frac{3}{5}\right) = \frac{2}{3}$$

$$\binom{k+r-1}{k}\left(\frac{2}{3}\right)^k\left(\frac{1}{3}\right)^r$$

$$\text{Mean} = \frac{pr}{1-p} = 2r$$

$$\text{Variance} = \frac{pr}{(1-p)^2} = 6r$$

The expression $\binom{k+r-1}{k}p^k(1-p)^r$ represents the probability of having k successes and r failures in a sequence of trials, where each trial has a success probability of p and a failure probability of 1-p (Binomial distribution).

In this case, p is calculated as $\left(\frac{1}{6} + \frac{5}{6} \times \frac{3}{5}\right) = \frac{2}{3}$.

The mean and variance of this distribution are given by Mean $=\frac{pr}{1-p}=2r$ and Variance $=\frac{pr}{(1-p)^2}=6r$, respectively.

2 Leon-Garcia, Section 11

1. **11.9**

Let X_n be an iid integer-valued random process. Show that X_n is a Markov process and give its one-step transition probability matrix.

Solution: