General

 $var(AX) = A var(X)A^{T}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

 $P(X_1,...,X_n) = P(X_1)P(X_2|X_1)\cdots P(X_n|X_{1:n-1})$

Gaussian

$$p(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$
$$\log p(x) = -\frac{1}{2} \log |\Sigma| - \frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu) + C$$

Conditioning Gaussians

 $X_A \mid X_B = x_B \sim \mathcal{N}(\mu_{A|B}, \Sigma_{A|B})$ where $\mu_{A|B} = \mu_A + \Sigma_{AB}\Sigma_{BB}^{-1}(x_B - \mu_B),$ $\Sigma_{A|B} = \Sigma_{AA} - \Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA}.$

KL Divergence

KL(P||Q) = $\mathbb{E}_p[\log(\frac{p}{q})]$ If $P \sim \mathcal{N}(\mu_1, \Sigma_1)$ and $Q \sim \mathcal{N}(\mu_2, \Sigma_2)$, then $KL(P||Q) = \frac{1}{2} \left(\operatorname{tr} \Sigma_2^{-1} \Sigma_1 + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) - d + \log \frac{|\Sigma_2|}{|\Sigma_1|} \right)$

Entropy

 $H(p) = \mathbb{E}_p[-\log p]$

$$X \sim \mathcal{N}(\mu, \Sigma)$$
: $H(X) = \frac{1}{2} \log \left((2\pi e)^n |\Sigma| \right)$

Conditional Entropy

 $H(X \mid Y) = \mathbb{E}_{p(x,y)}[-\log p(x \mid y)]$ $H(X,Y) = H(X) + H(Y \mid X)$ $H(S \mid T) \ge H(S \mid T, U)$

Mutual Information

 $I(X;Y) = H(X) - H(X \mid Y) = I(Y;X) \ge 0$ $X \sim N(\mu, \Sigma), Y = X + \epsilon, \epsilon \sim N(0, \sigma^2 I)$ $\to I(X;Y) = \frac{1}{2} \log |I + \sigma^{-2} \Sigma|$

Bayesian Learning

Prediction:

 $p(y|x, x_{1:n}, y_{1:n}) = \int p(y|x, \theta) p(\theta|x_{1:n}, y_{1:n}) d\theta$

Convexity

f(tx+(1-t)y) \leq tf(x)+(1-t)f(y) f convex, g affine \Rightarrow f \circ g convex f non-decreasing, g convex \Rightarrow f \circ g convex

Change of Variables

If Y = g(X), then $p_Y(y) = p_X(g^{-1}(y)) \cdot |\det Dg^{-1}(y)|$.

Complexity

Matrix mult. $A \in \mathbb{R}^{n \times k}$, $B \in \mathbb{R}^{k \times d}$ is $\Theta(nkd)$

1 Bayesian Linear Regression

 $f = \mathbf{w}^{T} \mathbf{x}, y = f + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma_{n}^{2})$ $p(\mathbf{w}) = \mathcal{N}(0, \sigma_{p}^{2}\mathbf{I})$ $p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) = \mathcal{N}(\overline{\mu}, \overline{\Sigma}), \text{ where }$ $\overline{\Sigma} = (\sigma_{n}^{-2}\mathbf{X}^{T}\mathbf{X} + \sigma_{p}^{-2}\mathbf{I})^{-1},$ $\overline{\mu} = \sigma_{n}^{-2}\overline{\Sigma}\mathbf{X}^{T}\mathbf{y}.$

$$p(f \mid \mathbf{X}, \mathbf{y}, \mathbf{x}) = \mathcal{N}(\mathbf{x}^T \overline{\mu}, \mathbf{x}^T \overline{\Sigma} \mathbf{x})$$

$$p(y \mid \mathbf{X}, \mathbf{y}, \mathbf{x}) = \mathcal{N}(\mathbf{x}^T \overline{\mu}, \mathbf{x}^T \overline{\Sigma} \mathbf{x} + \sigma_n^2)$$

Epistemic: Uncertainty about model due to lack of data.

Aleatoric: Irreducible noise.

Recursive updates:

 $\mathbf{X}_{t+1}^{T} \mathbf{X}_{t+1} = \mathbf{X}_{t}^{T} \mathbf{X}_{t} + x_{t+1} x_{t+1}^{T}$ $\mathbf{X}_{t+1}^{T} y_{t+1} = \mathbf{X}_{t}^{T} y_{t} + y_{t+1} x_{t+1}$

2 Bayesian Logistic Regression

 $p(y_i \mid x_i, \theta) = \sigma(y_i w^T x_i) = \frac{1}{1 + e^{-y_i w^T x_i}}$

3 Gaussian Processes

Process s.t. $\forall A \subseteq \mathcal{X}, A = \{x_1, ..., x_m\}$ it holds $X_A = [X_{x_1}, ..., X_{x_m}] \sim \mathcal{N}(\mu_A, K_{AA})$ where $\mu_A^{(i)} = \mu(x_i)$ and $K_{AA}^{(ij)} = k(x_i, x_j)$

Kernel symmetric PSD

stationary if k(x, x') = k(x - x')isotropic if $k(x, x') = k(||x - x'||_2)$

RBF: smooth

Exponential: cont. & nowhere differentiable Matern: $\lceil \nu \rceil$ -times differentiable

Prediction

 $y_i = f(x_i) + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, \sigma^2), \ A = \{x_1, ..., x_m\}.$ Then $f \mid x_{1:m}, y_{1:m} \sim GP(\mu', k')$ where $\mu'(x) = \mu(x) + \mathbf{k}_{x,A}(\mathbf{K}_{AA} + \sigma^2 \mathbf{I})^{-1}(\mathbf{y}_A - \mu_A)$ $k'(x, x') = k(x, x') - \mathbf{k}_{x,A}(\mathbf{K}_{AA} + \sigma^2 \mathbf{I})^{-1}\mathbf{k}_{x',A}^T$ $k_{x,A} = [k(x, x_1), ..., k(x, x_m)]$ Predictive posterior: $y^* \mid x_{1:m}, y_{1:m}, x^* \sim \mathcal{N}(\mu'(x^*), \sigma^2 + k'(x^*, x^*))$

Model selection

Marginal likelihood maximization $\hat{\theta} = \arg \max_{\theta} p(y \mid X, \theta)$ = $\arg \max_{\theta} \int p(y \mid X, f) p(f \mid \theta) df$

Accelerating GPs

GP prediction has cost $\mathcal{O}(|A|^3)$ Kernel approximation: Find ϕ s.t. $k(x,x') \approx \phi(x)^T \phi(x')$, then do BLR

RFF: Stationary *k* has Fourier transf.:

$$k(x,x') = \int_{\mathbb{R}^d} p(\omega) e^{j\omega^T (x-x')} d\omega$$

$$\approx \frac{1}{m} \sum_{i} z_{w(i),b(i)}(x) z_{w(i),b(i)}(x')$$

$$\rightarrow$$
 Set $\phi_i(x) = \frac{1}{\sqrt{m}} z_{w^{(i)}, b^{(i)}}(x)$ where

$$\omega \sim p(\omega), b \sim \mathcal{U}[0, 2\pi],$$

 $z_{\omega,b}(x) = \sqrt{2}\cos(\omega^T x + b)$

4 Approximative Inference Laplace Approximation

$$p(\theta \mid y_{1:n}) \approx \mathcal{N}(\hat{\theta}, \Lambda^{-1}) =: q(\theta)$$

$$\hat{\theta} = \arg \max_{\theta} p(\theta \mid y), \Lambda = -\nabla^2 \log p(\hat{\theta} \mid y)$$

Prediction:

 $p(y^* \mid x^*, x_{1:n}, y_{1:n}) \approx \int p(y^* \mid f^*) q(f^*) df^*,$ with $q(f^*) = \int p(f^* \mid \theta) q(\theta) d\theta$.

Variational Inference

$$\begin{split} p(\theta \mid y) &= \frac{1}{Z} p(\theta, y) \approx q_{\lambda}(\theta) \\ q^*_{bwd} &\in \arg\min_q KL(\textbf{q}||\textbf{p}) \text{: } q \approx p \text{ where q large} \\ q^*_{fwd} &\in \arg\min_q KL(\textbf{p}||\textbf{q}) \text{: } q \approx p \text{ where p large} \\ \arg\min_q KL(\textbf{q}||\textbf{p}) \end{split}$$

 $= \arg\max_{q} \mathbb{E}_{\theta \sim q}[\log p(y, \theta)] + H(q)$ $= \arg\max_{q} \mathbb{E}_{\theta \sim q}[\log p(y \mid \theta)] - KL(q||p(\theta))$

 $\leq \log p(y)$ (using Jensen)

5 MCMC

Approximate predictive distribution $p(y^* \mid x^*, x_{1:n}, y_{1:n})$ $= \int p(y^* \mid x^*, \theta) p(\theta \mid (x, y)_{1:n}) d\theta$ $= \mathbb{E}_{\theta \sim p(\theta \mid (x, y)_{1:n})} [f(\theta)] \approx \frac{1}{m} \sum_{i=1}^m f(\theta^{(i)}),$ with samples $\theta^{(i)} \sim p(\theta \mid (x, y)_{1:n})$ from MC

with stationary distribution $p(\theta \mid (x, y)_{1:n})$.

Markov Chains

MC is ergodic if $\exists t$ s.t. every state is reachable from every state in *exactly* t steps.

A stationary ergodic MC has a unique and positive stationary distr. π , i.e. $\forall x$: $\lim_{t\to\infty} P(X_t=x)=\pi(x)$.

If MC satisfies detailed balance

i.e. $\forall x, x' : Q(x)P(x' \mid x) = Q(x')P(x \mid x')$, then $\pi(x) = \frac{1}{Z}Q(x)$.

Hoeffding

If $f \in [0, C]$ and x_i are iid samples of X, then $P(|\mathbb{E}f(X) - \frac{1}{N}\sum_{i=1}^{N} f(x_i)| > \epsilon) \le 2exp(-2N\epsilon^2/C^2)$

Gibbs Sampling

Init x^0 , fix observed RVs X_B to x_B For t = 1,... Set $x^t = x^{t-1}$ and select $j \in [m] \setminus B$. Update x_i^t by sampling from $P(X_i \mid x_{-i}^t)$.

Metropolis-Hastings

Needs proposal distr. $R(X' \mid X)$. For t = 1,...:

1) Sample $x \sim R(X' | X = x^{t-1})$

2) Set $x^t = \begin{cases} x, \text{ with prob. min}\{1, \frac{Q(x')R(x|x')}{Q(x)R(x'|x)}\} \\ x^{t-1}, \text{else} \end{cases}$

MALA/LMC

MH with $R(x' \mid x) = \mathcal{N}(x - \tau \nabla f(x), 2\tau I)$.

SGLD

MALA with subsampling of data for gradient computation of the energy function.

6 Bayesian Neural Networks MAP

 $\hat{\theta} = \arg\max_{\theta} \log p(\theta) + \sum_{i} \log p(y_i|x_i, \theta)$

Variational Inference

SGD on ELBO to find approximate posterior q_{λ} . Draw samples $\theta^{j} \sim q_{\lambda}$ and approximate $p(y^{*} \mid x^{*}, x_{1:n}, y_{1:n}) \approx \frac{1}{m} \sum_{i} p(y^{*} \mid x^{*}, \theta^{j})$.

7 Active Learning

Collect data maximally reducing uncertainty. Find $S \subseteq D$ maximizing mutual information $I(f;y_S) = H(f) - H(f \mid y_S) \stackrel{G.P.}{=} \frac{1}{2} \log |I + \sigma^{-2}K_S|$.

Greedy Optimization

Given $S_t = \{x_1, ..., x_t\}$, take

 $x_{t+1} = \arg\max_{x} F(S_t + x) \stackrel{G.P.}{=} \arg\max_{x} \sigma_t^2(x).$ Uncertainty Sampling:

 $x_{t+1} = \arg\max_{x} \sigma_t^2(x)$ Heteroscedastic Noise:

 $x_{t+1} \operatorname{arg\,max}_{x} \sigma_{t}^{2}(x) / \sigma_{n}^{2}(x)$

8 Bayesian Optimization

Sequentially pick $x_1,...,x_T \in D$, get $y_t = f(x_t) + \epsilon_t$, find $\max_x f(x)$.

Cumulative Regret

 $R_T = \sum_{t=1}^T \max_{x \in D} f(x) - f(x_t)$

GP-UCB

 $x_t = \arg\max_{x \in D} \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)$ (upper confidence bound \geq best lower bound) Thm: $f \sim GP$, correct $\beta_t : \frac{1}{T}R_T = \mathcal{O}^*(\sqrt{\gamma_T/T})$, $\gamma_T = \max_{|S| < T} I(f; \gamma_S)$ (information gain).

ΕI

choose $x_t = \arg \max_x EI(x)$ where $EI(x) = \int \max(0, y^* - y)p(y \mid x)dy$.

Thompson sampling

draw sample from $\tilde{GP} f | (x, y)_{1:t}$, select $x_{t+1} \in \arg \max_{x \in D} \tilde{f}(x)$.

9 Markov Decision Processes

A MDP is defined by States $X = \{1,..,n\}$, Actions $A = \{1,..,m\}$, Transition probabilities P(x' | x,a), Reward function r(x,a).

Policy

 $\pi: X \to A \text{ or } \pi(a \mid x)$

Action-Value Function

 $Q^{\pi}(x,a) = r(x,a) + \gamma \sum_{x'} P(x' \mid x,a) V^{\pi}(x')$

Value function

 $V^{\pi}(x) = J(\pi \mid X_{0} = x) = Q^{\pi}(x, \pi(x))$ $= \mathbb{E}[\sum_{t=0}^{\infty} \gamma^{t} r(X_{t}, \pi(X_{t})) \mid X_{0} = x]$ $\stackrel{\pi det}{=} r(x, \pi(x)) + \gamma \sum_{x'} P(x' \mid x, \pi(x)) V^{\pi}(x')$ $\stackrel{\pi r and.}{=} \sum_{a} \pi(a|x) [r(x, a) + \gamma \sum_{x'} P(x' \mid x, a) V^{\pi}(x')]$

 $\Leftrightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi} \text{ with } V_i^{\pi} = V^{\pi}(i),$ $r_i^{\pi} = r^{\pi}(i, \pi(i)) \text{ and } T_{i,i}^{\pi} = P(j \mid i, \pi(i)).$

Fixed Point Iteration

Init V_0^{π} . For t = 1,... do:

 $V_t^{\pi} = r^{\pi} + \gamma T^{\pi} V_{t-1}^{\pi}$ (contraction)

Greedy Policy w.r.t. V

induces greedy policy $\pi_V(x) =$ $\arg\max_{a} r(x,a) + \gamma \sum_{x'} P(x' \mid x,a) V(x')$

Thm: (Bellman) Optimal policy is greedy wrt. Problems of Model-based RL: its own value function.

Policy Iteration

Init arbitrary policy π . Until converged: Com- - Computation: repeatedly solve MDP pute $V^{\pi}(x)$; compute greedy policy π_G w.r.t. V^{π} ; set $\pi \leftarrow \pi_G$.

PI monotonically improves all values $V^{\pi_{t+1}}(x) \geq V^{\pi_t}(x) \forall x$. Converges to exact solution in $\mathcal{O}(n^2m/(1-\gamma))$ iterations.

Value Iteration

Init $V_0(x) = \max_a r(x, a)$. For t = 1,...Set $Q_t(x, a) = r(x, a) + \gamma \sum_{x'} P(x' \mid x, a) V_{t-1}(x')$ and $V_t(x) = \max_a Q_t(x, a)$. Stop if $||V_t - V_t|| = \max_a Q_t(x, a)$. $|V_{t-1}||_{\infty} \leq \epsilon$, then choose greedy policy w.r.t. V_t . Converges to ϵ -optimal policy in polynomially many iterations.

10 POMDP

Obtain only noisy observations Y_t of state X_t . Solve by modelling $P(X_t \mid y_{1:t})$.

Belief States

POMDP as MDP where states \equiv beliefs $P(X_t)$ $y_{1:t}$) in the orig. POMDP.

Actions $A = \{1,...,m\}$, Transitions: $P(Y_{t+1} =$ $y \mid b_t, a_t \rangle = \sum_{x,x'} b_t(x) P(x' \mid x, a_t) P(y \mid x');$ $b_{t+1}(x') = \frac{1}{7} \sum_{x} b_t(x) P(X_{t+1} = x' \mid X_t =$ $(x, a_t)P(y_{t+1} \mid x')$

Reward: $r(b_t, a_t) = \sum_{x} b_t(x) r(x, a_t)$

11 Reinforcement Learning

Planning in unknown MDP.

- On-policy: agent has full control (actions) Off-policy: no control, only observational da-
- 12 Model-Based RL

Learn MDP and use optimal π . MLE estimate from path trajectory τ :

$$P(X_{t+1} \mid X_t, A) \approx \frac{Cnt(X_{t+1}, X_t, A)}{Cnt(X_t, A)}; r(x, a) \approx N_{x, a}^{-1} \sum_{t: X_t = x, A_t = a} R_t$$

ϵ_{t} -greedy:

Tradeoff exploration-exploitation W.p. ϵ_t : rand. action; w.p. $1 - \epsilon_t$: best action. If ϵ_t satisfies RM \implies converge to π^* w.p. 1.

Robbins-Monro (RM) $\sum_{t} \epsilon_{t} = \infty$, $\sum_{t} \epsilon_{t}^{2} < \infty$

R_{max}-Algorithm

Assume $r(x, a) \in [0, R_{max}]$. Set unknown r(x, a)to R_{max} , add fairy tale state x^* , set $P(x^* \mid x, a) =$ 1, compute π . Repeat: run π while updating r(x,a), $P(x' \mid x,a)$, then recompute π .

Thm: W.p. $1 - \delta$, R_{max} will reach ϵ -opt policy in #steps polynomial in $|X|, |A|, T, 1/\epsilon, \log(1 - \epsilon)$ δ), R_{max} .

Note: MDP is assumed ergodic.

- Memory required: $P(x' \mid x, a) \approx \mathcal{O}(|X|^2 |A|)$, $r(x,a) \approx \mathcal{O}(|X||A|)$

13 Model-Free RL

Directly estimate value function

TD-Learning (On)

Follow π , get (x, a, r, x').

$$\hat{V}^{\pi}(x) \leftarrow (1 - \alpha_t) \hat{V}^{\pi}(x) + \alpha_t (r + \gamma \hat{V}^{\pi}(x'))$$

Thm: If α_t satisfies RM and all (x, a) are chosen infinitely often, then \hat{V} converges to V^{π}

Q-learning (Off)

Init $Q(x,a) = \frac{R_{max}}{1-\nu} \prod_{t=1}^{T_{init}} (1-\alpha_t)^{-1}$.

Pick a (e.g. ϵ_t greedy), get (x, a, r, x'): $Q(x, a) \leftarrow$ $(1 - \alpha_t)Q(x, a) + \alpha_t(r + \gamma \max_{a'} Q(x', a'))$

At convergence $\pi_G(x) = \arg\max_a Q(x, a)$.

Thm: If α_t satisfies RM and all (x, a) are chosen infinitely often, then Q converges to Q* a.s. Same PAC guarantee as for R_{max} .

Computation time: $\mathcal{O}(|A|)$, Memory: $\mathcal{O}(|X||A|)$

14 RL via Function Approximation

Learn approximation of (action-)value function $V(x;\theta)$, $Q(x,a;\theta)$.

TD-learning as SGD

Tabular TD update is equivalent to SGD on the loss $l = \frac{1}{2}(V(x;\theta) - r - \gamma V(x';\theta_{old})^2$.

Parametric Q-learning (Off)

SGD on the loss

$$l = \frac{1}{2}(Q(x,a;\theta) - r - \gamma \max_{a'} Q(x',a';\theta))^2.$$

DQN: Q-learning with NN as func. approx. Use experience replay data D, cloned network to maintain constant NN across episode.

$$L(\theta) = \sum_{(x,a,r,x')\in D} (r + \gamma \max_{a'} Q(x',a';\theta^{old}) -$$

 $Q(x,a;\theta))^2$

Double DQN: Use new NN to evaluate \max_a ; prevents maximization bias.

$$L^{\text{\tiny DDQN}}(\theta) = \sum_{(x,a,r,x') \in D} [r + \gamma \max_{a'} Q(x', a^*(\theta); \theta^{old})]$$

 $-Q(x,a;\theta)$]², $a^*(\theta) = \arg\max_{a'} Q(x',a';\theta)$ Finding $a_t = \arg \max_a Q(x_t, a; \theta)$ is intractable for |A| large. In gradient, a^* is ignored.

15 Policy Gradient Methods

Maximize $J(\theta) = \mathbb{E}_{\pi_{\theta}}[\sum_{t=0}^{T} \gamma^{t} r(x_{t}, a_{t})]$ by SGD. $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} r(\tau) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)]$ For Actor: consider $\nabla_{\theta_{\pi}} \mathbb{E}_{a \sim \pi(x; \theta_{\pi})} \dot{Q}(x, a; \theta_{Q})$ MDP $(\tau = (x, a, r, x')_{1:T}): \pi_{\theta}(\tau)$ $= p(x_0) \prod_{t=0}^{T} \pi(a_t \mid x_t; \theta) p(x_{t+1} \mid x_t, a_t)$ $\rightarrow \nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \sum_{t=0}^{T} \nabla_{\theta} \log \pi(a_{t})]$ $x_t;\theta)$

Can reduce variance via baselines:

 $\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)\nabla \log \pi_{\theta}(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}}[(r(\tau) - b)\nabla \log \pi_{\theta}(\tau)]$ E.g. $\nabla J_T(\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^T \gamma^t G_t \nabla_\theta \log \pi(a_t \mid x_t; \theta) \right]$ with $G_t = \sum_{m=0}^{T-t} \gamma^m r_{t+m}$.

REINFORCE (On)

Init $\pi(a \mid x; \theta)$. Repeat:

Generate episode $(x_i, a_i, r_i)_{i=0}^T$.

Compute G_t , update θ :

$$\theta \leftarrow \theta + \eta \sum_{t=0}^{T} \gamma^t G_t \nabla_{\theta} \log \pi(a_t \mid x_t; \theta)$$

Advantage Function

 $A^{\pi}(x,a) = Q^{\pi}(x,a) - V^{\pi}(x)$

$$\forall x, a, \pi : A^{\pi^*}(x, a) \le 0; \max_a A^{\pi}(x, a) \ge 0$$

16 Actor-Critic

Approximate both Q^{π} (or V^{π}) and π_{θ} . Reinterpret score gradient: $\nabla_{\theta_{\pi}} J(\theta_{\pi}) =$ $\mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q(x_{t}, a_{t}; \theta_{Q}) \nabla \log \pi(a_{t} \mid x_{t}; \theta_{\pi}) \right]$ $= \mathbb{E}_{(x,a) \sim \pi_{\theta}} [Q(x,a;\theta_{O}) \nabla \log \pi(a \mid x;\theta_{\pi})]$

Allows online updates:

$$\theta_{\pi} \leftarrow \theta_{\pi} + \eta_{t} Q(x, a; \theta_{Q}) \nabla \log \pi(a \mid x; \theta_{\pi})$$

$$\theta_{Q} \leftarrow \theta_{Q} - \eta_{t} \delta \nabla Q(x, a; \theta_{Q})$$

Variance reduction: replace with $Q(x, a; \theta_O)$ – $V(x;\theta_V) \rightarrow A2C.$

17 Off-Policy Actor Critic

Replace $\max_{a'} Q(x', a'; \theta^{old})$ in DQN loss by $\pi(x';\theta_{\pi})$, where π should follow the greedy policy to model $\max_{a'}$. This is equivalent to: $\theta_{\pi}^* \in \operatorname{arg\,max}_{\theta} \mathbb{E}_{x \sim u}[Q(x, \pi(x; \theta); \theta_O)],$

where $\mu(x) > 0$ 'explores all states'.

Needs deterministic π . Inject additional action noise to encourage exploration.

Deep Deterministic Policy Gradient (DDPG)

Init θ_O, θ_π . Rrepeat: Observe x, execute a = $\pi(x;\theta_{\pi}) + \epsilon$, observe r, x', store in D. If time to update: For some iterations: sample B from D, compute targets

$$y = r + \gamma Q(x', \pi(x', \theta_{\pi}^{old}), \theta_{Q}^{old})$$
, update
Critic: $\theta_{Q} \leftarrow \theta_{Q} - \frac{\eta}{|B|} \sum_{B} \nabla (Q(x, a; \theta_{Q}) - y)^{2}$,

Actor:
$$\theta_{\pi} \leftarrow \theta_{\pi} + \frac{\eta}{|B|} \sum_{B} \nabla Q(x, \pi(x; \theta_{\pi}); \theta_{Q}),$$

Params: $\theta_i^{old} \leftarrow (1 - \rho)\theta_i^{old} + \rho\theta_i$, $j \in \{\pi, Q\}$

Randomized policy DDPG: For Critic: sample $a' \sim \pi(x'; \theta_{\pi}^{old})$ to get unbiased y estimates.

Reparametrization trick: $a = \psi(x; \theta_{\pi}, \epsilon)$ $\nabla_{\theta_{\pi}} \mathbb{E}_{a \sim \pi_{\theta_{\pi}}} Q(x, a; \theta_{Q}) = \mathbb{E}_{\epsilon} \nabla_{\theta_{\pi}} Q(x, \psi(x; \theta_{\pi}, \epsilon); \theta_{Q})$

18 Model-Based Deep RL

MPC (deterministic dynamics)

Given model $x_{t+1} = f(x_t, a_t)$, plan over finite horizon H. At each step t, maximize

$$|J_H(a_{t:t+H-1}) := \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau})
 x_{\tau}(a_{t:\tau-1}) = f(f(...(f(x_t, a_t), a_{t+1})..))
 then carry out a_t , then replan.$$

Optimize via gradient based methods (diff. r, f, cont. action) or via random shooting.

Random shooting

Sample $a_{t:t+H-1}^{(i)}$ and pick $\arg\max_{i} J_{H}(a_{t:t+H-1}^{(i)}).$

MPC with Value estimate

 $J_H(a_{t:t+H-1}) := \sum_{\tau=t:t+H-1} \gamma^{\tau-t} r_{\tau}(x_{\tau}(a_{t:\tau-1}), a_{\tau}) +$ $\gamma^H V(x_{t+H})$ $H = 1 \rightarrow J_1(a_t) = Q(x_t, a_t); \pi_G = \arg\max_a J_1(a)$

MPC (stochastic dynamics)

 $\max_{a_{t:t+H-1}} \mathbb{E} \left[\sum_{x_{t+1:t+H}} \gamma^{\tau-t} r_{\tau} + \gamma^{H} V(x_{t+H}) \right]$ $a_{t:t+H-1}$

Parametrized policy

 $J_H(\theta) = \underset{x_0 \sim \mu}{\mathbb{E}} \left[\underset{\tau = 0: H-1}{\sum} \gamma^{\tau} r_{\tau} + \gamma^H Q(x_H, \pi(x_H, \theta)) \mid \theta \right]$ $(H = 0 \Leftrightarrow DDPG \text{ obj.})$

MPC (unknown dynamics)

follow π , learn f, r, Q off-policy from replay buf, replan π .

BUT: point estimates have poor performance, errors compound \rightarrow use bayesian learning: Model distribution over f (BNN, GP) and use (approximate) inference (exact, VI, MCMC,..).

Greedy exploitation for model-based RL:

1) $D = \{\}$, prior $P(f \mid \{\})$ 2) repeat: plan new π to maximize $\max_{\pi} \mathbb{E}_{f \sim P(\cdot|D)} J(\pi, f)$, rollout π , add new data to D, update posterior $P(f \mid D)$.

PETS algorithm:

Ensemble of NNs predicting cond. Gaussian transition distr., use MPC.

Thompson Sampling:

Like greedy but in 2) sample model $f \sim P(\cdot \mid$ D) and then $max_{\pi}J(\pi, f)$ Use epistemic noise to drive exploration.

Optimistic exploration:

Like greedy but in 2) $\max_{\pi} \max_{f \in M(D)} J(\pi, f)$; with M(D) set of plausible models given D.