

REACTIVO PARA FOSFATASA ALCALINA

USO

Para la determinación cuantitativa de fosfatasa alcalina en suero humano.

HISTORIA DEL METODO:

La fosfatasa alcalina se determina midiendo la hidrólisis de varios esteres fosfóricos y que fué presentado como sustrato de Fujita en 1939.

Bessey Lowry y Brock. publicaron un procedimiento de punto firme en 1946, mientras Bower y Mclomo reportaban un procedimiento cientifico en 1966. En 1974 el comité de Enzimas de la Sociedad de Quimica y Fisiología Clinica Escandinava adoptó la modificación como el procedimiento recomendado. Este metodo se basa en los anteriores y en el de Wilkinson.

PRINCIPIO:

 $p - Npp + H_2O \xrightarrow{Alk. Phos.} p - Nitrofenol + H_3PO4$

El N-Nitrofenyl Fosfato es hidrolizado a P-Nitrofenol y fosfato inorgánico. La razón de hidrólisis del P-NPP medida a 405, es directamente proporcional a la actividad de la fosfatasa alcalina.

REACTIVOS:

Las concentraciones se refieren a los reactivos reconstituidos. Reactivo Fosfatsa Alcalina: P-Nitrofenilfosfato 10mM Buffer (PH 10.1+`0.1) activador.

PRECAUCIONES:

- 1. Para diagnóstico "In Vitro" solamente.
- 2. Evite ingestión de todos los materiales.

PREPARACION:

Reconstituya con agua destilada especificado en cada vial, disuelva despacio.

ALMACENAMIENTO:

Alamacenar el reactivo de 2-8°C.

El reactivo reconstituido es estable por 60 dias cuando está a 2-8°C en bote de vidrio ámbar. 7 dias a temperatura ambiente.

DETERIORO DEL REACTIVO:

No use si:

- 1. El polvo seco se humedece
- 2. El reactivo reconstituido tiene densidad óptica mayor que 1.0 a 405 nM.

RECOLECCION Y ALMACENAMIENTO DE LA MUESTRA:

1. Utilice suero no hemolizado (no utilice plasma ya que los agentes anticoagulantes inhiben la actividad de la fosfatasa alcalina)

2. Las muestras deben almacenarse de 2-8°C y correrse en dos dias máximo.

INTERFERENCIAS:

Algunas drogas o substancias afectanla actividad de la fosfatasa alcalina.

MATERIALES REQUERIDOS:

Reactivo de fosfatasa alcalina.

MATERIALES REQUERIDOS PERO NO PROVISTOS:

- 1. Instrumentos de pipeteo.
- 2. Tubo de ensayo o gradilla.
- Reloj.
- 4. Espectrofotómetro 405 nM.
- 5. Baño María o block térmico.

PROCEDIMIENTO AUTOMATIZADO:

Vea instrucciones de aplicaciones específicas del instrumento

PROCEDIMIENTO MANUAL:

- 1. Reconstituya el reactivo según instrucciones.
- Pipetee 1.0 ml. de reactivo en los tubos apropiados y pre-incube a 37°C por 5 minutos.
- 3. Ponga en cero el espectrofotómetro con agua a 405 nm.
- 4. Transfiera 0.025ml. (25ul) de muestra al reactivo, mezcle e incube a 37°C. Repita las lecturas cada minuto
- 5. los próximos 2 minutos.
- 6. Después de un minuto lea y ante la absorbancia regrese el tubo al block. Repita las lecturas cada minuto los
- 7. próximos 2 minutos.
- 8. Calcule la diferencia promedio de absorción por minuto.
- 9. La Abs/min multiplicada por el factor 2187 (cálculos) nos dará los resultados en iu L.
- Las muestras con valores sobre 800 IU/L. se deben diluir 1:1 con solución salina, corra de nuevo y
- 11. multiplique por dos.

NOTA:

Si el espectrofotómetro cuenta con cubeta de temperatura controlada deje el tubo mientras se toman las lecturas.

CALIBRACION:

El procedimiento es estandarizado por la absorción milimolar del P-Nitrofenol (18-75 a 405 nM) bajo

condiciones específicas. Los resultados se basan en el cambio de absorbancia por unidad de tiempo. Todos los parámetros deben ser conocidos y controlados.

CONTROL DE CALIDAD:

Los sueros control normal y anormal se deben correr rutinariamente para monitorear la validez de reacción.

CALCULOS:

La unidad internacional (IU/L) es la unidad enzima que cataliza la transformación de un micromol de sustrato por minuto bajo condiciones específicas.

$$IU / L = \Delta Abs./min. \times 1000 \times 1.025 = \Delta Abs./min \times 2187$$

18.75 × 1 × .025

DONDE:

Δ ABS/MIN = Cambio de absorción

1000 = Conversión de IU/ml a IU/L

1.025 = Volumen total de reacción.

18.75 = Absorción milimolar del P-Nitrofenol

1 = Trayecto de la luz en cm.

NOTA:

Si los parámetros se alteran, el factor deberá ser calculado utilizando la fórmula anterior.

UNIDADES SI:

Multiplique UI/L. por 16.67 = (NKAT/L)

LIMITACIONES:

Esta metodologia mide la fosfatasa alcalina total irrespectivamente del tejido órgano de origen. Para un diagnóstico diferencial pueden necesitarse mas pruebas.

VALORES SUGERIDOS:

Adultos: 35-123 IU/L a 37°C

Niños: tienen valores normales mayores.

DESEMPEÑO:

- 1. Linearidad 800 IU/L.
- Comparación: Coeficiente de correlación de 0.999 con una ecuación de regresión de Y-0.98x-2.5
- 3. Precición:

Entre Prueba

Conc.	S.D.	C.V.%
66	0.5	0.8
147	0.7	0.5

Prueba a Prueba

Conc.	S.D.	C.V.%
69	1.7	2.5
151	1.6	1.1

REFERENCIAS:

- 1. Fujita h j Biochem, (Japan) 30.69 (1969)
- 2. Bassey, o,a, Lowry, O.H., Brock, M,J,J, Biol Chem, 164.321 (1964)
- 3. Bowers, G.N.. Jr. Mcomb, R,B,Clin. Chem, 12:70 (1966)
- 4. The comitee on Enzymes of the escandinavan Society for Clinical Chemistry and Clinical Phsicology, Scand, J. Clin. Lab. Invest. 32:291 (1974)
- 5. Wilkinson, J.H. el al, Clin, Chem, 15:487 (1969)
- 6. Young D.S., el al Clin Chem 21:1d (1975)
- 7. Demetriou, J.A., Drewes, P.A., Gin, J.B. Clinical Chemistry: Principes and Technics, 2nd Ed, Hagerstown (MD), Harper and Row, p.927 (1974)
- 8. Rej.,R.,Clin, Chem, 23:1903 (1977).

REV. 2/90

