# Simple summary statistics

A: Location and scale

#### Mean

The mean (expected value) of random variable X, or equivalently of its distribution, is

$$\mathbb{E}(X) = \begin{cases} \sum_{x} x \Pr(X = x) & \text{if } X \text{ is discrete} \\ \int x \ p(x) \ dx & \text{if } X \text{ is continuous with density } p(x) \end{cases}$$

The *empirical mean* of a set of data points  $x_1, \ldots, x_n$ :

$$\frac{1}{n}\sum_{i=1}^n x_i.$$

What is the relationship between these two definitions?

#### Median

Two ways of summarizing a set of numbers by a single number.

- The (empirical) mean
- The (empirical) median: the number in the middle, if you sort them

Find the median of the following sets of numbers:

- 10, -20, 100, 20, 50
- 50, 100, 60, 90, 20, 10

How can we define the median of a random variable X?

#### Mean vs median

In a certain neighborhood, there are 100 houses.

- 10 of the houses cost \$100K
- 60 of the houses cost \$200K
- 29 of the houses cost \$300K
- one house costs \$100M
- What is the mean house cost, roughly?
- What is the median cost?

#### **Variance**

We can summarize a random variable X by its mean  $\mu$  (or median).

Problem: This doesn't capture the **spread** of X.



Possible measure of spread: average distance from the mean,  $\mathbb{E}(|X - \mu|)$ ? For convenience, take the square instead of the absolute value.

**Variance:** 
$$\operatorname{var}(X) = \mathbb{E}(X - \mu)^2 = \mathbb{E}(X^2) - \mu^2$$
,

where  $\mu = \mathbb{E}(X)$ . The variance is always  $\geq 0$ .

#### Standard deviation

Recall:  $var(X) = \mathbb{E}(X - \mu)^2$ , where  $\mu = \mathbb{E}(X)$ .



The **standard deviation** of X is  $std(X) = \sqrt{var(X)}$ . It is, *roughly*, the average amount by which X differs from its mean.

Question: How does  $\operatorname{std}(X)$  relate to  $\mathbb{E}(|X - \mu|)$ ? Are they equal?

# B: Measuring dependence between variables

# Independent random variables

Random vars X, Y are **independent** if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y).

Independent or not?  $X,Y\in\{-1,0,1\}$ , with these probabilities:

|   |    | Y    |                      |      |
|---|----|------|----------------------|------|
|   |    | -1   | 0                    | 1    |
|   | -1 | 0.4  | 0.16                 | 0.24 |
| X | 0  | 0.05 | 0.02                 | 0.03 |
|   | 1  | 0.05 | 0.16<br>0.02<br>0.02 | 0.03 |

## **Testing independence**

Suppose you are given samples (X, Y) from a bivariate distribution:

$$(x_1,y_1),\ldots,(x_n,y_n)\in\mathbb{R}^2.$$

How would you test whether X and Y are independent?

# **Dependence**

Example: For a person chosen at random from a population, take

$$H = height$$

$$W = weight$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w).$$

This is unlikely to be true. Why?

#### **Correlation**

Height and weight are positively correlated.



Based on body measurements of 507 people at

https://ww2.amstat.org/publications/jse/datasets/body.txt

# **Types of correlation**



H, W positively correlated This also implies

$$\mathbb{E}[HW] > \mathbb{E}[H]\,\mathbb{E}[W]$$



$$X, Y$$
 negatively correlated  $\mathbb{E}[XY] < \mathbb{E}[X] \mathbb{E}[Y]$ 



$$X, Y$$
 uncorrelated  $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$ 

#### **Correlation coefficient: pictures**



#### **Covariance and correlation**

#### Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

#### Correlation

$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

This is always in the range [-1, 1].

# **E**xample

Find cov(X, Y) and corr(X, Y)

| X  | y         | Pr(x, y) |
|----|-----------|----------|
| 1  | 4         | 1/4      |
| 1  | <b>-4</b> | 1/4      |
| -1 | 4         | 1/8      |
| -1 | <b>-4</b> | 3/8      |

 $\textbf{Independent} \not\equiv \textbf{uncorrelated}$ 

#### C: Key properties of the mean and variance

## Linear functions of a single random variable

- If you double a set of numbers, how are their mean and variance affected?
- If you increase a set of numbers by 1, how much do their mean and variance change?
- Let X be any random variable. For some constants a, b, define a new random variable V = aX + b. Express  $\mathbb{E}(V)$  and var(V) in terms of  $\mathbb{E}(X)$  and var(X).

#### Linearity of expectation

A powerful and extremely useful property:

**Linearity of expectation**: For any random variables  $X_1, \ldots, X_m$ ,

$$\mathbb{E}(X_1+X_2+\cdots+X_m)=\mathbb{E}(X_1)+\mathbb{E}(X_2)+\cdots+\mathbb{E}(X_m).$$

## **Linearity of variance**

We've seen that  $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$ . Is this also true of variance, i.e., is var(X + Y) = var(X) + var(Y)?

• In general, **no**. Give a counterexample.

• But it is true if *X* and *Y* are **independent**.

## D: Postscript: Information-theoretic quantities

#### **Entropy and mutual information**

How "random" is a distribution?

• Easy but crude: variance.

• Much better: **entropy**.

How "dependent" are two variables?

• Easy but crude: correlation.

• Much better: mutual information.

Unfortunately these quantities are hard to empirically estimate.