WISCONSIN UNIV-STEVENS POINT WISCONSIN COOPERATIVE FI--ETC F/6 8/8 UPPER MISSISSIPPI RIVER WING DAM NOTCHING: THE PRE-NOTCHING FIS--ETC(U) AD-A096 634 MAY 80 R B PIERCE UNCLASSIFIED NL 1 or 3 AB A 0.96634

AD A 0 96634

UPPER MISSISSIPPI RIVER WING DAM NOTCHING: THE PRE-NOTCHING FISH STUDY.

Ву

(10)
[Rodney B. Pierce]
[12] 284]

Wisconsin Cooperative Fishery Research Unit

of Moch . w. therio,

A Thesis submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

College of Natural Resources

UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin

May 1980

415.181

Approved by the Graduate Committee of:

Dr. Daniel W. Coble, Committee Chairman Professor of Fisheries

Tenny E. Booke

Dr. Henry E. Booke Professor of Fisheries Accession For

NTIS GRA&I DTIC TAB Unannounced

Letter on T

Distribution/

Availability Codes

Avail and/or Dist Special

Dr. Frederick A. Copes Professor of Biology

gohn neleator

Dr. John R. Heaton Professor of Fisheries

ABSTRACT

Six wing dams and an adjacent side channel in Pool 13 of the Upper Mississippi River were studied in June, August, and October 1978, and June 1979 in the initial phase (prenotching) of a project to determine the effects of wing dam notching on fish and aquatic community characteristics.

Three wing dams were notched in June 1979.

Fifty two species of fish were caught in the study area with hoop nets, electrofishing gear, and a small-mesh seine. Thirty eight fish species were caught on or near wing dams. Electrofishing provided the widest variety of fish species and hoop netting provided the least. Electrofishing and hoop net catches were influenced by river stage or discharge.

Smallmouth buffalo were most important in hoop net catches near wing dams, and channel catfish, in side channel hoop nets. No bluegill, black crappie, or sauger older than age IV, and only one freshwater drum older than IV were caught in the study area.

Discharge varied from month to month and year to year. Water temperature and dissolved oxygen concentration were nearly uniform with depth and among sampling sites each month. Height of wing dams and their position with respect to an upstream bend in the river and to other wing dams influenced current velocity in the study area. Current sweeping over submerged wing dams and over emergent wing dams during high river stages helps prevent sediment accretion between them.

ACKNOWLEDGEMENTS

This study was supported by funds and materials from G.R.E.A.T. II (Great River Environmental Action Team) and the Wisconsin Cooperative Fishery Research Unit, University of Wisconsin-Stevens Point.

I would like to acknowledge my accomplices Tom Hall, Scott Corley, Dr. William LeGrande, and other members of the Wisconsin Cooperative Fishery Research Unit who spent long hours in the field with me. Thanks are also extended to Thomas Gengerke and John Pitlo of the Iowa Conservation Commission for their cooperation and assistance.

I thank Dr. Daniel W. Coble for supervision, guidance, and for his critical evaluations of this thesis.

I also express appreciation to committee members Dr.

Henry Booke, Dr. Fred Copes, and Dr. Jack Heaton.

I am particularly grateful to my wife, Ruth, for her patience, love, and support, and to my parents for their support.

TABLE OF CONTENTS

COMMITTEE	SIGNATURE	PAGE.					•		•		•		•		•					•	•		•		ii
ABSTRACT.				•															•					•	iii
ACKNOWLEDG	EMENTS			•															•				•		٧
TABLE OF C	ONTENTS .						•		•			•											•	•	vi
LIST OF TA	BLES																						•	٠,٧	iii
LIST OF FI	GURES				•										•										xii
LIST OF AP	PENDICES.				•																		•	. x	iii
INTRODUCTI	ON															•					•				1
STUDY AREA																									4
METHODS .				•					•					•	•										8
RESULTS AN	D DISCUSS:	ION																							20
Spec	ies Captui	red		•																					20
Spec	ies Group	Compos	sit	tic	n							•											•		20
Infl	uence of	Time o	f١	/ea	ır	ar	nd	Di	sc	ha	ırç	je	or	1 (at	cł	ies				•				30
	Time of	Year .						•								•					•			•	30
	Discharge	e								٠		•								•	•		•		42
	August Ca	atches																			•				47
Infl	uence of	Site o	r ŀ	łat	oit	tat	: c	n	tŀ	ıe	Cā	to	h								•				51
Fish	Use of E	nergen	t V	Nir	ng	Dā	ams														•	•			64
Fish	Marking	Result	Sá	anc	۱t	10 v	/en	ıer	ıt												•				73
Gear	Selectiv	ity																				•			74
	Gear Eff	icienc	у.																•					•	74
	Baited V	ersus	Unt	oa i	ite	ed	Но	ор	1 (let	s														80
	Size Sel	ection	01	F G	ea	ır					•	•		•			•	•							84
l ena	th-weight	Relati	ior	nsh	nir)S																			91

TABLE OF CONTENTS (continued)

	Age and Growth	•				•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	95
	Mortality	•						•					-	•								107
	Discharge	•							•						•		•		•			108
	Hydrographic Relief	•	•																			108
	Water Temperature and	d	Di	ssc	νſα	ed	0>	(yg	en					•								112
	Current Velocity	•	•		•		•			•			•					•				114
TTED/	ATURE CITED																					119

LIST OF TABLES

Table 1.	Total number and weight of each fish species caught in June, August, and October 1978 and June 1979 with hoop nets, electrofishing gear, and small-mesh seines	21
Table 2.	Total numbers of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the catch for each month	25
Table 3.	Total weight of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the catch for each month	25
Table 4.	Percent of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the total catch by number for each month	26
Table 5.	Percent of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the total catch by weight for each month	26
Table 6.	Reproductive guilds of fish species from river mile 548, Pool 13, of the Upper Mississippi River	28
Table 7.	Percent of each of Balon's reproductive guilds in the catch by number for each month, and all months combined	31
Table 8.	Most important five species by number and weight in electrofishing, hoop net, and seine catches combined for each month	33
Table 9.	Most important five species by number and weight in hoop net catches in each month	34
Table 10.	Number of emerald shiners, bluegill, freshwater drum, centrarchids other than bluegill, and cyprinids other than carp and emerald shiners caught by all gears combined in each month	35
Table 11.	Fish caught by electrofishing at emergent wing dams 26 and 28 in June, August, and October 1978	37
Table 12.	Numbers of various fish species in baited and unbaited hoop nets at wing dam 25, 26, 28, 29, 30, 31, and the side channel (June 1978)	38
Table 13.	Numbers of various fish species in baited and unbaited hoop nets at wing dams 25, 26, 28, 29, 30, 31, and the side channel (August 1978)	39

LIST OF TABLES (continued)

Table 14.	Numbers of various fish species in baited and unbaited hoop nets at wing dam 25, 26, 28, 29, 30, 31, and the side channel (October 1978)	40
Table 15.	Numbers of various fish species captured in baited and unbaited hoop nets at wing dam 25, 26, 28, 29, 30, 31, and the side channel (June 1979)	41
Table 16.	Average electrofishing catch rates for transects at emergent wing dams 26 and 28 during high (greater than 2.74 m) and low (less than 2.13 m) river stages	44
Table 17.	Fish caught by electrofishing at submerged wing dams 25, 29, 30, and 31 during all four months	45
Table 18.	Mean monthly discharge and hoop net catch rates for each month	46
Table 19.	Number of species caught by hoop netting and electro- fishing on or near each wing dam and in the side channel	48
Table 20.	Number of fish species caught at main channel border shoreline electrofishing transects in each month	49
Table 21.	Number of species caught on emergent wing dam electro- fishing transects in June, August, and October 1978	50
Table 22.	Percent by weight of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined	53
Table 23.	Percent by number of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined	53
Table 24.	Percent by number of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined. The influence of emerald shiner schools in the side channel and at the shoreline by wing dam 31 in August has been removed	54
Table 25.	Side channel electrofishing catches for each month	56
Table 26.	Main channel border shoreline electrofishing catches for each month	57
Table 27.	Emergent wing dam electrofishing catches for each month	58

LIST OF TABLES (continued)

Table 28.	Catch per unit effort at main channel border electro-fishing transects in each month	60
Table 29.	Percent by number and weight of fish categories in side channel and main channel border hoop net catches for all four months combined	62
Table 30.	Mean catch rates for baited and unbaited hoop nets in the side channel and near the wing dams each month	63
Table 31.	Number of species caught per day in baited and unbaited hoop nets in the side channel and near the wing dams each month	63
Table 32.	Number of fish caught per hour on emergent wing dam electrofishing transects in June, August, and October 1978	66
Table 33.	Electrofishing catch rates for carp, quillback, shorthead redhorse, sauger, and walleye at emergent wing dam transects in June, August, and October 1978	67
Table 34.	Summary of lengths and weights of all fish species caught by electrofishing in all sampling months	75
Table 35.	Summary of lengths and weights of all fish species caught by hoop netting in all sampling months	76
Table 36.	Summary of lengths and weights of all fish species caught by seining in all sampling months	77
Table 37.	Total numbers of fish of various species caught in baited and unbaited nets in all four months	83
Table 38.	Length frequency distributions of bluegill, black crappie, white crappie, and largemouth bass captured by A.C. electrofishing, hoop netting, and seining in all four months	86
Table 39.	Length frequency distributions of walleye, sauger, and freshwater drum captured by A.C. electrofishing, hoop netting, and seining in all four months	87
Table 40.	Length frequency distributions of channel catfish, flathead catfish, and tadpole madtoms captured by A.C. electrofishing, hoop netting, and seining in all four	ρα

LIST OF TABLES (continued)

Table 41.	Length frequency distributions of carp, smallmouth buffalo, quillback, and shorthead redhorse captured by A.C. electrofishing, hoop netting, and seining in all four months	89
Table 42.	Length frequency distributions of emerald shiners, river shiners, bullhead minnows, and logperch captured by A.C. electrofishing and seining in all four months	90
Table 43.	Length-weight relationships and correlation coefficients for carp, river carpsucker, quillback, smallmouth buffalo, and shorthead redhorse in Pool 13, Upper Mississippi River	92
Table 44.	Length-weight relationships and correlation coefficients for channel catfish, flathead catfish, bluegill, largemouth bass, white crappie, and black crappie in Pool 13, Upper Mississippi River	93
Table 45.	Length-weight relationships and correlation coefficients for sauger, walleye, and freshwater drum in Pool 13, Upper Mississippi River	94
Table 46.	Growth rates and backcalculated mean lengths at each annulus for bluegill in Pool 13, Upper Mississippi River	97
Table 47.	Growth rates and backcalculated mean lengths at each annulus for black crappie in Pool 13, Upper Mississippi River	98
Table 48.	Growth rates and backcalculated mean lengths at each annulus for sauger in Pool 13, Upper Mississippi River	99
Table 49.	Growth rates and backcalculated mean lengths at each annulus for freshwater drum in Pool 13, Upper Mississippi River	100
Table 50.	Length frequency distributions of channel catfish from this study assigned to various year classes on the basis of age and length frequency information collected by John Pitlo, Iowa Conservation Commission	101
Table 51.	Mean monthly discharges from Lock and Dam No. 12 during 1978 and early 1979	109
Table 52.	Mean (at 0.6 of depth) and standard deviation of current velocities measured at each wing dam and the side channel in each month	115

LIST OF FIGURES

Figure	1.	Wing dams 25, 26, 28, 29, 30, 31, and an adjacent side channel in Pool 13 of the Upper Mississippi River
Figure	2.	Electrofishing transects and hoop net stations for wing dams 25 and 26, Pool 13, Upper Mississippi River
Figure	3.	Electrofishing transects and hoop net stations for wing dams 28 and 29, Pool 13, Upper Mississippi River
Figure	4.	Electrofishing transects and hoop net stations for wing dams 30 and 31, Pool 13, Upper Mississippi River
Figure	5.	Electrofishing transects, hoop net stations, and seine stations in the side channel at river mile 548, Pool 13, Upper Mississippi River
Figure	6.	Bluegill distribution along emergent wing dam 26 in June, August, and October 1978
Figure	7.	Bluegill distribution along emergent wing dam 28 in June, August, and October 1978 69
Figure	8.	Freshwater drum distribution along emergent wing dam 26 in June, August, and October 1978
Figure	9.	Freshwater drum distribution along emergent wing dam 28 in June, August, and October 1978
Figure	10.	Average catch rates for baited and unbaited hoop nets in June, August, and October 1978
Figure	11.	Length-frequency histograms for bluegill and black crappie caught in August 1978
Figure	12.	Length-frequency histogram for sauger caught in August 1978
Figure	13.	Length-frequency histograms for freshwater drum caught in June, August, and October 1978
Figure	14.	Mean water temperatures and dissolved oxygen concentrations in each month

LIST OF APPENDICES

APPENDIX	Α.	Electrofishing catches for each transect during June, 1978. Shocking efforts are expressed in minutes and fix weights in grams	130
APPENDIX	В.	Electrofishing catches for each transect during August, 1978. Shocking efforts are expressed in minutes and weights in grams	140
APPENDIX	C.	Electrofishing catches for each transect during October, 1978. Shocking efforts are expressed in minutes and weights in grams	150
APPENDIX	D.	Electrofishing catches for each transect during June, 1979. Shocking efforts are expressed in minutes and fish weights in grams	159
APPENDIX	Ε.	Hoop net catches for each wing dam and the side channel during June, 1978. Weight is expressed in grams	166
APPENDIX	F.	Hoop net catches for each wing dam and the side channel in August, 1978. Fish weights are expressed in grams	172
APPENDIX	G.	Hoop net catches for each wing dam and the side channel in October, 1978. Fish weights are expressed in grams	178
APPENDIX	н.	Hoop net catches for each wing dam and the side channel in June, 1979. Fish weights are expressed in grams	184
APPENDIX	I.	June 1978 seine catches in the side channel	190
APPENDIX	J.	August 1978 seine catches in the side channel	191
APPENDIX	Κ.	October 1978 seine catches in the side channel	192
APPENDIX	L.	June 1979 seine catches in the side channel	193
APPENDIX	М.	Length-frequency distributions of each year class of bluegill caught in Pool 13	194
APPENDIX	N.	Length-frequency distributions of each year class of black crappie caught in Pool 13	195
APPENDIX	0.	Length-frequency distributions of each year class of sauger caught in Pool 13	196

APPENDIX P.	Length-frequency distributions of each year class of freshwater drum caught in Pool 13 197
APPENDIX Q.	Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for bluegill of ages II through IV
APPENDIX R.	Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for black crappie of ages I through IV
APPENDIX S.	Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for sauger of ages I through IV
APPENDIX T.	Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for freshwater drum of ages I through VI
APPENDIX U.	Hydrographic relief transects for each wing dam and the side channel in June, 1978
APPENDIX V.	Hydrographic relief transects for each wing dam and the side channel in August, 1978
APPENDIX W.	Hydrographic relief transects for each wing dam and the side channel in October, 1978
APPENDIX X.	Hydrographic relief transects for each wing dam and the side channel in June, 1979
APPENDIX Y.	Mean, range, and standard deviation (SD) of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in June 1978
APPENDIX Z.	Mean, range, and standard deviation (SD), of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in August 1978
APPENDIX AA.	Mean, range, and standard deviation (SD), of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in October 1978
APPENDIX BB.	Mean, range, and standard deviation (SD), of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in

APPENDIX	cc.	Water temperature $({}^{O}C)$ and dissolved oxygen concentration (mg 1^{-1}) measured throughout the water column at stations on the hydrographic relief transects in June, 1978
APPENDIX	DD.	Water temperature (O C) and dissolved oxygen concentration (mg 1^{-1}) measured throughout the water column at stations on the hydrographic relief transects in August, 1978
APPENDIX	EE.	Water temperature $({}^{O}C)$ and dissolved oxygen concentration (mg 1^{-1}) measured throughout the water column at stations on the hydrographic relief transects in October, 1978
APPENDIX	FF.	Water temperature $({}^{O}C)$ and dissolved oxygen concentration (mg ${}^{1-1}$) measured throughout the water column at stations on the hydrographic relief transects in June, 1979
APPENDIX	GG.	Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in June, 1978 253
APPENDIX	нн.	Current velocity (m sec ⁻¹) measured at each station on the hydrographic relief transects in August, 1978
APPENDIX	II.	Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in October, 1978
APPENDIX	JJ.	Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in June, 1979 265
APPENDIX	KK.	Mean current velocity (at 0.6 of depth) and staff gauge for the wing dams and side channel in June, August, and October 1978, and June 1979 269

INTRODUCTION

Wing dams are low structures of brush and rock rubble that extend from the river bank into the main channel.

Wing dams, also commonly referred to as wing dikes and spur dikes, divert water to the main channel, especially during periods of low flow, reducing the need for dredging. A major problem associated with wing dams has been sediment accretion in slack water areas between wing dams and adjacent backwaters causing loss of fish habitat (Funk and Robinson 1974). Currently, little information exists concerning the use of wing dams by fish and fish food organisms although wing dams are preferred fishing spots of many anglers.

Thousands of wing dams were built in the Upper Mississippi River by the U.S. Army Corps of Engineers to help maintain the 4.5 and 6 foot navigation channels authorized by Congress in 1890 and 1907. Construction of wing dams between 1890 and 1930 caused a slight decrease in the width of the Upper Mississippi River (Simons et al. 1975). Lateral wing dams closed off old channels, constricted low flows, and helped prevent the river from returning to another alignment. A permanent rise in water level caused by construction of a series of 29 locks and dams between 1930 and 1940 submerged many of the wing dams in the Upper Mississippi River.

In 1977, the Army Corps of Engineers submitted plans

to GREAT II (Great River Environmental Action Team), the organization charged with developing an environmentally sound river management plan, for repair of wing dams in Pools 13 and 19. The fish and wildlife work group of GREAT II proposed that notches be constructed in the wing dams to help reduce sedimentation between them. has been used extensively on the Missouri River in an attempt to restore slack water fish habitat by allowing flow into the area immediately below wing dams (Kallemeyn and Novotny 1976; Jennings 1979; Reynolds 1978; Dieffenbach 1980). The effects of notching have been variable because some notches have permitted scouring of sediments below wing dams and others have not. Much of the variation in success has been attributed to the height and location of notches in wing dams and to location of the wing dam in the flow field (Jennings 1979; Simons et al. 1974). Nonetheless, notching has created additional slack water habitat and increased habitat diversity for fish in channelized portions of the Missouri River (Kallemeyn and Novotny 1976; Jennings 1979).

This study was the initial phase of a project to determine the effects of wing dam notching on aquatic community characteristics in a wing dam field in Pool 13 of the Upper Mississippi River. Six wing dams and an adjacent side channel were studied in June, August, and October 1978, and June 1979. Three of the wing dams were notched in June 1979.

Objectives for this portion of the project were to describe physical characteristics of the study area, to determine fish species composition and relative abundance of fish at wing dams and in habitats associated with wing dams, and to identify factors such as time of year and habitat differences that may influence variations in relative abundance of fish. In conjunction with this fish study, benthic macroinvertebrates and sediments were investigated by Thomas Hall of the Wisconsin Cooperative Fishery Research Unit (Hall 1980). The post-notching study is presently being conducted by Scott Corley from the Wisconsin Cooperative Fishery Research Unit, and is scheduled to be completed in Fall 1980.

STUDY AREA

The study area encompassed wing dams 25, 26, 28, 29, 30, 31, and an unnamed side channel between river mile 547.4 and 548.6 in the upper end of Pool 13 of the Upper Mississippi River adjacent to Carroll County, Illinois (Figure 1). Pool 13, created by construction of Lock and Dam 13 north of Fulton, Illinois, in 1939, is 55 kilometers long and 178 meters above sea level. Pool 13 has 29,103 acres of surface water at flat pool stage, of which 7,276 acres are main channel. Almost 95 percent of the shoreline in Pool 13 is under federal control.

Bedrock in the area of the pool consists of Galena dolomite and Maquoketa shale from the Ordovician age. Depth to bedrock ranges from 9 to 46 meters. There are no glacial deposits in the northern area of Pool 13, but glacial deposits in the southern area of the pool are of the Illinoian and Kansan stages. Floodplain soils are silt-clay deposited 1 to 6 meters deep overlying sand. Pool 13 drains an area of 221,445 square kilometers. Approximately 1,415,232 metric tons of sediment enters Pool 13 annually. The river bed consists of sand with lesser amounts of silt-clay, gravel, and boulders (U.S. Army Corps of Engineers 1974).

River mile 548 is the major recurrent dredging site in Pool 13. About 892,335 cubic meters of sediments were dredged from the main channel between 1945 and 1975 (U.S.

FIGURE 1. Wing dams 25, 26, 28, 29, 30, 31, and an adjacent side channel in Pool 13 of the Upper Mississippi River.

Army Corps of Engineers 1974). Some of the dredge spoil was placed between wing dams 24 and 26, 27 and 29, and at wing dam 31 (Figure 1).

Two classes of Upper Mississippi River aquatic habitat, main channel border and side channel, were present. These areas were similar to habitats defined by the Upper Mississippi River Conservation Committee (Nord 1971).

The main channel border was the zone between the 2.74 meter (9 foot) navigation channel and islands or the Illinois river bank. All of the wing dams were in this area. The navigation channel edge of this zone was marked by buovs and was adjacent to the distal ends of the wing dams. Substrate of the main channel border was primarily sand and no rooted aquatic

vegetation was found growing there.

Side Channel

Main Channel Border

Side channels are departures from the main channel border area which have current during normal river stages. Some current was always present in the side channel at mile 548. The bottom consisted primarily of sand, but silt and clay were also present in varying amounts. Numerous fallen trees provided cover for fish along side channel shorelines.

The wing dams near mile 548 extended into the river as much as 300 meters from the Illinois bank. For the purposes

of this study, wing dams were classified as submerged or emergent. Submerged wing dams remained under water during periods of low flow. Wing dams 25, 29, 30, and 31 were submerged wing dams. Emergent wing dams were tall enough to breach the water surface during low flow conditions although they were submerged when the river was high in June 1978 and 1979. Wing dams 26 and 28 were emergent. Wing dam 28 was the tallest, only rarely being completely under water. Wing dam 26 was emergent only during August and October 1978. Notches were constructed in wing dams 25, 26, and 28 in June 1979. The notch in wing dam 25 was to be 46 meters wide and centered 84 meters from the Illinois bank. The notch in wing dam 26 was also to be 46 meters wide, but centered 99 meters from the Illinois bank. notch in 28 was to be constructed 91 meters wide and centered at 61 meters from the island. All notches were to be 1.5 meters deep. Because notching had not been completed by the end of my sampling in June, 1979, the actual dimensions were not measured.

METHODS

Fish Capture

Fish were caught with the aid of electrofishing gear (alternating current), hoop nets, and small-mesh seines.

A boom shocker, described by Novotny and Priegel (1974), was operated at 7-9 amperes with 230 volts or 9-11 amperes with 320 volts. Three transects were established on wing dam 25 and four transects on the remaining five wing dams for electrofishing (Figures 2-4). Transects, which were perpendicular to and crossed each wing dam, were located between the following distances from the Illinois bank:

- <u>Wing dam 25</u> (1) shoreline (2) between 60 and 105 meters
 - (3) between 150 and 200 meters.
- Wing dam 26 (1) shoreline (2) between 75 and 120 meters
 - (3) between 165 and 210 meters (4) between 260 and 300 meters.
- Wing dam 28 (1) shoreline (2) between 30 and 75 meters
 - (3) between 120 and 165 meters (4) between 240 and 290 meters.
- Wing dam 29 (1) shoreline (2) between 75 and 105 meters
 - (3) between 135 and 180 meters (4) between 230 and 275 meters.
- Wing dam 30 (1) shoreline (2) between 75 and 105 meters
- (3) between 135 and 185 meters (4) between 230 and 275 meters.
- Wing dam 31 (1) shoreline (2) between 75 and 105 meters
 - (3) between 135 and 180 meters (4) between 230 and 275 meters.

Distances from the bank were measured with the aid of a Rangematic distance finder. Transects were marked with

FIGURE 2. Electrofishing transects and hoop net stations for wing dams 25 and 26, Pool 13, Upper Mississippi River.

FIGURE 3. Electrofishing transects and hoop net stations for wing dams 28 and 29, Pool 13, Upper Mississippi River.

FIGURE 4. Electrofishing transects and hoop net stations for wing dams 30 and 31, Pool 13, Upper Mississippi River.

buoys. Shoreline transec. xtended approximately 50 meters upstream and downstream from the wing dams, and the other transects extended about 40 meters above and below each wing dam. The effort at transects on emergent wing dams 26 and 28 was concentrated along the rock rubble sides of the wing dams. Also, two shoreline transects were fished along each bank of the side channel (Figure 5). About 800 meters along the island and 1000 meters along the Illinois bank were electrofished.

Each transect was fished twice at night with 72 hours between efforts. Shocking effort was usually 30 minutes per transect. Effort was reduced to 15 minutes over submerged wing dams if no fish were being captured. A catch boat downstream (Hubley 1963a) was used to pick up fish missed by the netting crew in the shocker boat.

Two hoop nets (Greenbank 1946; Starrett and Barnickol 1955) were set above, and two below each wing dam (Figures 2-4). Nets were placed at about 1/4 and 1/2 of the distance to the distal ends of the dams. Nets downstream from the wing dams were staked to the river bed within 20 meters of the dam and were allowed to trail downstream with the net opening downstream. Upstream nets were staked so that the net was less than 20 meters upstream from the wing dam.

One hoop net was set at the upstream end of the side channel, two were in the central portion, and another in the downstream end of the side channel (Figure 5). Nets were

FIGURE 5. Electrofishing transects, hoop net stations, and seine stations in the side channel at river mile 548, Pool 13, Upper Mississippi River.

approximately 800, 400, and 70 meters from the lower end of the side channel. Hoop nets were 0.76 meters (2.5 feet) in diameter with 2.5 cm (1 inch) bar mesh. Each net contained seven hoops and had two throats, one attached to each of the second and fourth hoops. Most nets were fished unbaited for two consecutive days then baited with soybean cake (Mayhew 1973) for 2 days. Due to difficulties in retrieving the nets, eight nets in June and one net in October 1978 were fished longer than 2 days. Roughly 2 kg of soybean cake was used in each baited net.

Four shoreline seine hauls were made in the side channel at night during each sampling month. Two hauls were made on a beach at the northeast end of the side channel, one from a beach at the southwest end and one from a backwater in the central side channel (Figure 5). A 0.6 cm (.25 inch) mesh bag seine, 10 meters (32 feet) long was used in August and October 1978 and June 1979. In June 1978, a 6 meter (20 feet) long 0.6 cm mesh straight seine was used. Seine hauls were 9 to 18 meters in length.

Total length (Hile 1948) and weight measurements to the nearest millimeter and to the nearest 2 or 10 grams, depending on the scale used, were obtained for most fish. Minnows and other small fish were preserved for positive identification in a laboratory. No weights were obtained for preserved fish and no length measurements were obtained for 622 emerald shiners shocked in the side channel in August. Lengths and weights of fish with deformed or

damaged bodies were not used in computing length-weight relationships or mean, range, and standard deviation of length or weight.

Fish were marked with three fin clips to determine if movement was occurring within the study area and to enable me to evaluate the extent to which we were recapturing fish. Fish captured and released at wing dams 25, 26, and 28 were marked with left ventral fin clips. Fish from wing dams 29, 30, and 31 were given right ventral fin clips. The top of the caudal fin was clipped from fish captured in the side channel. Minnows and gizzard shad were not marked.

Age, Growth, Mortality Estimates

Scale samples from bluegill, black crappie, freshwater drum and sauger were taken from the left side of the fish beneath the tip of the folded pectoral fin. Impressions of the scales were make on 0.75 mm thick acetate slides (Smith 1954). Scale impressions were magnified 40 times on a microprojector (Van Oosten et al. 1934) for age determination. One scale from each fish was selected for measurement to each annulus and to the anterior margin of the scale. Measurements were made along the centermost radius beginning at the middle of the focus (Hile 1941).

Ages were assigned and scales measured by two workers independently. A third person aged the scales if the first two disagreed (Carlander 1961). The sample was discarded if none were in agreement. Additionally, ages were assigned

to channel catfish caught in this study on the basis of length-frequency distributions for each age class that were provided to me by John Pitlo, Bellevue Fishery Research Station, Iowa Conservation Commission. Using similar hoop nets, Pitlo collected channel catfish during the summer of 1978 in Pool 13 and determined their ages by microprojection of pectoral spine cross-sections (Sneed 1950; Marzolf 1955; Muncy 1959).

GM functional regressions were calculated to describe body length versus scale radius relationships (Ricker 1973). Lengths of fish with deformed or damaged bodies were not used in computing the body-scale relationship. Mortality or survival rates were estimated from catch curves (Ricker 1975).

Hydrographic Relief

Three hydrographic relief transects were established on each wing dam. Transects were perpendicular to and crossed each wing dam. The 61 meter (200 feet) long transects were located at the following distances from the Illinois bank:

Wing dam 25 - 90, 150, and 215 meters.

Wing dam 26 - 105, 170, and 260 meters.

Wing dam 28 - 60, 120, and 245 meters.

Wing dams 29, 30, and 31 - 60, 140, and 215 meters.

Three hydrographic relief transects also were located

in the lower, central, and upper ends of the side channel. Transects were approximately 70, 400, and 800 meters from the lower end of the side channel. Side channel transects were perpendicular to the current and ran the full width of the channel. Depths from a Vexilar sonar depth finder were recorded at 5 second intervals while a boat moved at a constant speed upstream along each wing dam transect or across the side channel transects (Lind 1979). No hydrographic relief information was obtained at wing dam 26 in June 1979 because the Army Corps of Engineers was notching that wing dam.

Water Temperature, Dissolved Oxygen, and Current Velocity

Water temperature (°C) and dissolved oxygen concentration (mg 1⁻¹) were determined with an air-calibrated oxygen-temperature probe (Yellow Springs Instrument Company, model 54A) at each meter of the water column at six stations for each wing dam. Stations were at each end of the hydrographic relief transects. Water temperature and dissolved oxygen were determined at four stations on each relief transect in the side channel. Stations in the side channel were equidistant along each transect. Calibration of the oxygen-temperature probe was verified with a laboratory grade mercury thermometer for water temperature and modified Winkler tests for dissolved oxygen (APHA 1975; EPA 1979).

Surface and subsurface velocity was measured at each of these stations with a cable suspended Price current

meter, model F584 (Welch 1948). Velocity was usually recorded at 0, 0.2, 0.6 of the depth and at the bottom. In depths less than one meter, velocity was recorded only at the surface, bottom, or at 0.5 of the depth. Calibration of the current meter was checked by comparing the velocity determined with the current meter with that of an orange traveling a measured distance at the water surface in a given time (Stalnaker and Arnette 1976).

Staff Gauge and Discharge

Hourly staff gauge measurements for the tailwaters of Lock and Dam 12 were obtained from U.S. Army Corps of Engineer personnel at the lock and dam. Mean monthly discharges for Lock and Dam 12 were courteously provided to me by the Rock Island District Corps of Engineers.

RESULTS AND DISCUSSION

Species Captured

Fifty two species of fish were caught with hoop nets, electrofishing gear, and small-mesh seines (Table 1 and Appendices A-L).

Rasmussen (1979), in the most comprehensive recent review of the distribution and relative abundance of fish in the Upper Mississippi River, listed 70 species as possible inhabitants of Pool 13. Shorthead redhorse, regarded by Rasmussen as not being generally distributed in Pool 13, were abundant at mile 548. Eleven rock bass and 14 silver redhorse, considered rare in Pool 13 by Rasmussen, were encountered in the study area. Three trout-perch were caught with small-mesh seines in June and August of 1978; there are no previous records of trout-perch in Pool 13. The trout-perch were caught between 10:00 and 12:00 PM along shallow sand beaches in the side channel. Trout-perch are generally found above Pool 10, but have been reported as far south as Pool 18 (Smith et al. 1971).

Species Group Composition

Grouping fish species into categories to provide a simpler view of the fish community was useful for comparing catches in various habitats, and may be helpful for

TABLE 1. Total number and weight of each fish species caught in June, August, and October 1978 and June 1979 with hoop nets, electrofishing gear, and small-mesh seines. Common and scientific nomenclature follows the American Fisheries Society check list (Bailey 1970).

Common name	Scientific name	Number captured	Weight (grams)
Shovelnose sturgeon	Scaphirhynchus platorynchus	2	1257
Paddlefish	Polyodon spathula	1	690
Longnose gar	Lepisosteus osseus	59	25,757
Shortnose gar	Lepisosteus platostomus	7	4120
Bowfin	Amia calva	1	266
Gizzard shad	Dorosoma cenedianum	28	1073
Mooneye	Hiodon tergisus	16	2315
Northern pike	Esox lucius	2	2960
Carp	Cyprinus carpio	308	417,593
Silvery minnow	Hybognathus nuchalis	19	-
Speckled chub	Hybopsis aestivalis	1	-
Silver chub	Hybopsis storeriana	115	362
Emerald shiner	Notropis atherinoides	1309	-
River shiner	Notropis blennius	229	-
Spottail shiner	Notropis hudsonius	13	-
Spotfin shiner	Notropis spilopterus	21	-
Fathead minnow	Pimephales promelas	1	-
Bullhead minnow	Pimephales vigilax	93	-
River carpsucker	Carpiodes carpio	59	34,237
Quillback	Carpiodes cyprinus	124	37,504
Highfin carpsucker	Carpiodes velifer	22	3863
Smallmouth buffalo	Ictiobus bubalus	325	168,338

TABLE 1 (continued)

Common name	Scientific name	Number captured	Weight (grams)
Bigmouth buffalo	Ictiobus cyprinellus	16	20,021
Black buffalo	Ictiobus niger	3	3505
Spotted sucker	Minytrema melanops	2	601
Silver redhorse	Moxostoma anisurum	14	14,712
Golden redhorse	Moxostoma erythrurum	22	4948
Shorthead redhorse	Moxostoma macrolepidotum	192	61,530
Black bullhead	Ictalurus melas	12	1505
Yellow bullhead	Ictalurus natalus	1	142
Channel catfish	<u>Ictalurus</u> punctatus	492	76,693
Stonecat	Noturus flavus	2	112
Tadpole madtom	Noturus gyrinus	28	~
Flathead catfish	Pylodictus olivaris	63	22,101
Trout-perch	Percopsis omiscomaycus	3	-
Brook silverside	Labidesthes sicculus	6	-
White bass	Morone chrysops	42	2875
Rock bass	Ambloplites rupestris	11	1034
Pumpkinseed	<u>Lepomis</u> <u>gibbosus</u>	1	92
Orangespotted sunfish	Lepomis humilis	89	195
Bluegill	Lepomis macrochirus	628 ^a	24,771
Smallmouth bass	Micropterus dolomieui	8	1848
Largemouth bass	Micropterus salmoides	62	9601
White crappie	Pomoxis annularis	72	6041
Black crappie	Pomoxis nigromaculatus	170	9094
Johnny darter	Etheostoma nigrum	1	-

TABLE 1 (continued)

Common name	Scientific name	Number captured	Weight (grams)
Yellow perch	Perca flavescens	1	98
Logperch	Percina caprodes	26	-
River darter	Percina shumardi	7	-
Sauger	Stizostedion canadense	270	26,089
Walleye	Stizostedion vitreum	52	9790
Freshwater drum	Aplodinotus grunniens	629 ^b	53,984
	Grand total	5680	1,051,717

^a Includes an estimated 132 young-of-the-year bluegill caught in August.

 $^{^{\}rm b}$ Includes an estimated 227 young-of-the-year freshwater drum caught in October.

comparing the pre-notching and post-notching fish communities. Christenson (1965) and Ellis (1978) grouped fish species from the Upper Mississippi River into six categories: game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish. Game fish encountered in this study were walleye, sauger, largemouth and smallmouth bass, and northern pike. Panfish (eight species) included white bass, yellow perch, and the remaining centrarchids. Catfish (five species) included all ictalurids except tadpole madtoms. Bowfin, longnose gar, and shortnose gar were considered predatory rough fish. Forage fish (16 species) were gizzard shad, tadpole madtoms, trout-perch, brook silverside, minnows, and darters. The remaining 15 species were classified as rough fish.

Forage and rough fish comprised 60% of the species found in the study area. Rough fish were the most important component of the catches, averaging 44% of the numbers and 78% of the weight in each month (Tables 2-5). The relatively high percentages of panfish and forage fish in August compared to June and October were caused by the abundance of bluegill and emerald shiners in August.

Schramm and Lewis (1974) grouped Mississippi River fishes according to their food habits in four categories based on diets primarily of plankton, benthos, benthos and fish, or fish. Although food habits of many Mississippi River fish species change with life history stage, time of

TABLE 2. Total numbers of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the catch for each month.

			Ca	ategory			
Date	Game fish	Panfish	Catfish	Predatory rough fish	Forage	Rough fish	Total
Jun 1978	71	63	94	22	107	280	637
Aug 1978	168	850	162	19	1633	423	3255
Oct 1978	124	71	262	2	123	749	1331
Jun 1979	31	31	51	24	37	286	460
Total	394	1015	569	67	1900	1738	5683

TABLE 3. Total weight (grams) of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the catch for each month.

			Ca	ategory			
Date	Game fish	Panfish	Catfish	Predatory rough fish	Forage	Rough fish	Total
Jun 1978	8267	3221	21,037	10,652	514	106,209	149,900
Aug 1978	18,652	35,179	29,459	7466	359	199,416	290,531
Oct 1978	17,977	3956	40,570	1150	498	339,335	403,486
Jun 1979	5392	1948	9345	10,875	64	180,280	207,904
Total	50,288	44,304	100,411	30,143	1435	825,240	1051,821

TABLE 4. Percent of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the total catch by number for each month.

	Category						
Month	Game fish	Panfish	Catfish	Predatory rough fish	Forage	Rough fish	
Jun 1978	11.1	9.9	14.8	3.5	16.8	44.0	
Aug 1978	5.2	26.1	5.0	0.6	50.2	13.0	
Oct 1978	9.3	5.3	19.7	0.2	9.2	56.3	
Jun 1979	6.7	6.7	11.1	5.2	8.0	62.2	

TABLE 5. Percent of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in the total catch by weight (grams) for each month.

	Category							
Month	Game fish	Panfish	Catfish	Predatory rough fish	Forage	Rough fish		
Jun 1978	5.5	2.1	14.0	7.1	0.3	70.9		
Aug 1978	6.4	12.1	10.1	2.6	0.1	68.6		
Oct 1978	4.5	1.0	10.1	0.3	0.1	84.1		
Jun 1979	2.6	0.9	4.5	5.2	0.0	86.7		

year, and food availability (Merz 1974; Bailey and Harrison 1945; Jude 1968; Nelson 1968; Ranthum 1969; Bur 1976; and Wynes 1976), benthic invertebrates apparently were an important food source in the study area. Fishes with diets primarily of benthos according to Schramm and Lewis (1974) were 51% of the catches by number and 81% of the catches by weight for all gear combined. Benthos feeding fishes were shovelnose sturgeon, mooneye, silver chub, spotfin shiner, river shiner, speckled chub, carp, yellow and black bullheads, stonecat, tadpole madtom, brook silverside, trout-perch, orangespotted sunfish, bluegill, pumpkinseed, johnny darter, logperch, river darter, freshwater drum and catostomids.

Balon (1975) and Muncy et al. (1979) proposed systems for grouping fish based on their reproductive strategies or niches. I assigned species from this study to Balon's "reproductive guilds" according to their spawning habits and early life history and development (Table 6) although I had limited knowledge of the reproductive habits of carpsuckers, buffalos, and shovelnose sturgeon. Balon's original classification scheme was used whenever there was confusion about the spawning habits of a species. For example, Pflieger (1965) reported that the spotfin shiner deposits eggs in loose bark or in crevices of logs and tree roots, which suggests that they are brood hiders rather than open substrate spawners as proposed by Balon

TABLE 6. Reproductive guilds (Balon 1975) of fish species from river mile 548, Pool 13, of the Upper Mississippi River.

Reproductive quilds

A. Nonguarders

- A. 1. Open substratum spawners
 - A. 1. 1. Pelagophils Emerald Shiner, Freshwater Drum, Speckled Chub.
 - A. 1. 2. Litho-pelagophils Gizzard Shad, Mooneye, Paddlefish.
 - A. 1. 3. <u>Lithophils</u> River Shiner, Spotted Sucker, Golden Redhorse, Silver Redhorse, Shorthead Redhorse, Trout-perch, Sauger, Walleye, Shovelnose Sturgeon.
 - A. 1. 4. Phyto-Lithophils Silvery Minnow, Silver Chub, Spotfin Shiner, Brook Silversides, White Bass, Yellow perch.
 - A. 1. 5. <u>Phytophils</u> Carp, Longnose Gar, Northern Pike, Bigmouth Buffalo, Shortnose Gar, Smallmouth Buffalo, Black Buffalo.
 - A. 1. 6. <u>Psammophils</u> Spottail Shiner, Quillback, Log Perch, River Carpsucker, Highfin Carpsucker.
- A. 2. Brood Hiders
 - A. 2. 1. Lithophils River Darter.
- B. Guarders
 - B. 1. Substratum choosers
 - B. 1. 2. Phytophils White Crappie
 - B. 2. Nest spawners
 - B. 2. 1. <u>Lithophils</u> Flathead Catfish, Black Bullhead, Smallmouth Bass, Rockbass, Bluegill, Orangespotted Sunfish.
 - B. 2. 2. Phytophils Bowfin, Black Crappie, Largemouth Bass.
 - B. 2. 5. <u>Speleophils</u> Channel Catfish, Yellow Bullhead, Stonecat, Tadpole Madtom, Johnny Darter.
 - B. 2. 6. Polyphils Pumpkinseed, Fathead minnow, Bullhead minnow.

(1975). Walleye spawn over rock and gravel (Johnson 1961; Niemuth et al. 1972) but also in flooded marshes (Priegel 1970) suggesting flexibility in their reproductive habits.

The river and its associated backwaters, coupled with seasonal flooding, provides a diverse array of reproductive opportunities. The number of guilds found in the study area was similar to the number reported for Canada (Balon 1975). Fourteen guilds represent all of the freshwater fishes of Canada. Twelve of these reproductive guilds were encountered at river mile 548 (Table 6). Guilds from the study area differed in their preferred spawning sites, reproductive behavior, and early life history and development.

Open substrate spawners exhibit no parental care.

Among them pelagophils (A.1.1) scatter non-adhesive eggs in open water. The eggs of pelagophils are buoyant, and the larvae, strongly phototropic. Lithophils (A.1.3) deposit eggs on rock or gravel substrates where the embryos develop, scatter, and hide. Phytophils (A.1.5) lay adhesive eggs in live or dead aquatic or flooded terrestrial plants. The larvae have no photophobic response as is found in lithophils. Other open substrate spawners were litho-pelagophils (A.1.2), which deposit eggs over rocks but their larvae are pelagic, phyto-lithophils (A.1.4), which deposit eggs on submerged plants, logs, rocks, or gravel, and psammophils (A.1.2), which scatter eggs over sandy bottoms. The only brood hiding fish encountered were

lithophils (A.2.1) which hide eggs but do not guard them.

Among the guarders, phytophils (B.1.2) scatter eggs or attach them to submerged plants where they are cared for by the male parent. Nest spawners exhibit parental care and choose substrates of rock or gravel for nests (B.2.1 lithophils), or soft mud for nests of plant matter (B.2.2 phytophils), or cavities or undersurfaces of stones for nesting (B.2.5 speleophils). Polyphils (B.2.6) use a variety of substrates and materials for nests.

Some guilds were more important than others in the catches of all three gears combined. Most guilds included open substrate spawners, followed by nest spawners (Tables 6-7). The largest number of species, nine, occurred in the non-guarding lithophil guild (A.1.3). The greatest number of fish caught by all gear in all sampling periods combined were open water spawners (A.1.1 pelagophils, Table 7). Substantial changes in the importance of a guild may indicate the manner in which notching influences the fish community if reproductive habitats are changed.

Influence of Time of Year and Discharge on Catches

Time of Year

Species composition of catches for each month were similar, especially the species mainly comprising the biomass. Carp and smallmouth buffalo were major components of the biomass; they were consistently the most important

TABLE 7. Percent of each of Balon's reproductive guilds in the catch by number for each month, and all months combined.

Danmadustiva	luna	August	Octobou	1	All months
Reproductive guild	June 1978	August 1978	0ctober 1978	June 1979	combined
A.1.1.	17.3	42.9	30.1	7.4	34.1
A.1.2.	0.5	0.8	1.0	0.4	0.8
A.1.3.	29.5	8.8	15.9	21.4	13.8
A.1.4.	1.7	4.1	3.8	2.4	3.6
A.1.5.	15.1	6.3	20.7	31.4	12.7
A.1.6.	6.6	2.4	3.7	16.6	4.3
A.2.1.	0.0	0.2	0.2	0.0	0.1
B.1.2.	2.2	1.5	0.4	0.7	1.3
B.2.1.	8.5	20.8	3.1	8.3	14.3
B.2.2.	3.6	5.6	1.1	2.8	4.1
B.2.5.	11.0	5.2	19.5	6.6	9.3
B.2.6.	4.1	1.5	0.6	2.0	1.6

two species by weight in electrofishing, hoop net, and seine catches combined in every month (Table 8). Shorthead redhorse were also important in the catch by weight each month. Freshwater drum ranked in the most important five species by number every month. Channel catfish were most abundant in hoop net catches during all three months of 1978, comprising 27 to 58% of the catch, but smallmouth buffalo dominated June 1979 hoop net catches and were 40% by number of the catch (Table 9). Smallmouth buffalo were most important by weight in the hoop nets every month, comprising 24 to 55% of the catch.

Notwithstanding these consistencies, numbers of various species in the catches changed dramatically from month to month because of variation in numbers of cyprinids, especially emerald shiners; centrarchids, especially bluegill; and freshwater drum (Table 10). Percentages by number and weight of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish in each month (Tables 4-5) were significantly different (Chi-square = 37.2 to 129.6; 12 to 15 d.f.; p=.025), even when the effect of 1123 schooling emerald shiners caught in August was removed.

The emerald shiner and bluegill dominated numbers caught in all gears combined in August 1978, comprising 57% of the catch. A total of 823 emerald shiner were caught over sand bars in the side channel on August 13 (Appendix B). Another aggregation of 300 emerald shiners was captured along the shallow sand beach adjacent to wing dam 31 on August 16.

TABLE 8. Most important five species by number and weight (grams) in electrofishing, hoop net, and seine catches combined for each month.

Rank	June 1978	August 1978	October 1978	June 1979
		Number	er	
12843	100 Freshwater Drum 66 Channel Catfish 58 River Shiner 55 Sauger 50 Shorthead Redhorse	1268 Emerald Shiner 579 Bluegill 142 Channel Catfish 130 Black Craopie 127 Freshwater Drum	370 Freshwater Drum 256 Channel Catfish 144 Smallmouth Buffalo 126 Carp 93 Sauger	74 Smallmouth Buffalo 45 Carp 43 Quillback 43 Shorthead Redhorse 32 Freshwater Drum
		Weight	ht (grams)	
12845	46595 Carp 15863 Smallmouth Buffalo 15651 Shorthead Redhorse 10571 Channel Catfish 10362 Flathead Catfish	109835 Carp 39143 Smallmouth Buffalo 22551 Bluegill 22051 Channel Catfish 12110 Shorthead Redhorse	196960 Carp 68205 Smallmouth Buffalo 39148 Channel Catfish 32934 Freshwater Drum 13718 Shorthead Redhorse	64203 Carp 45127 Smallmouth Buffalo 20051 Shorthead Redhorse 17272 Quillback 15284 River Carpsucker

TABLE 9. Most important five species by number and weight (grams) in hoop net catches in each month.

June 1979	53 Smallmouth Buffalo 21 Channel Catfish 14 Freshwater Drum 12 Black Bullhead 11 Carp	34834 Smallmouth Buffalo 21320 Carp 3466 Channel Catfish 2660 River Carpsucker 2634 Freshwater Drum
October 1978	247 Channel Catfish 136 Smallmouth Buffalo 15 Freshwater Drum 6 Shorthead Redhorse 6 Sauger	Smallmouth Buffalo Channel Catfish Shorthead Redhorse Freshwater Drum River Carpsucker
August 1978	Number 108 Channel Catfish 68 Bluegill 66 Smallmouth Buffalo 59 Black Crapoie 37 White Crappie	Weight (grams) 35684 Smallmouth Buffalo 64583 18882 Channel Catfish 37093 6663 Carp 3507 6371 Bluegill 2618 6325 Flathead Catfish 2400
June 1978	62 Channel Catfish 36 Freshwater Drum 27 Flathead Catfish 16 Smallmouth Buffalo 7 Carp	11366 Smallmouth Buffalo 10362 Flathead Catfish 8387 Channel Catfish 7792 Carp 6502 Freshwater Drum
Rank	10844	12845

TABLE 10. Number of emerald shiners, bluegill, freshwater drum, centrarchids other than bluegill, and cyprinids other than carp and emerald shiners caught by all gears combined in each month.

		Number of Fish	f Fish	
Species	June 1978	August 1978	October 1978	June 1979
Emerald Shiner	10	1268	53	2
Bluegill	18	579	25	9
Freshwater Orum	100	127	370	32
Centrarchids other than Bluegill	46	311	31	25
Cyprinids other than Carp and Emerald Shiners	94	284	78	34

Schools of emerald shiner were shocked in 0.3 meters of water or less. Cyprinids other than emerald shiner and carp were also more abundant in August than other months. Almost 48% of the number of fish caught in August were minnows, whereas minnows were only 8 to 14% of catches in other months. Carp were abundant in all months.

Centrarchids, caught in all gears, were most abundant in August (Table 10). The 584 centrarchids shocked in August comprised 24% of the electrofishing catch. Only 24 to 44 centrarchids (5 to 14% of the catch) were caught by shocking in the other months. Largemouth bass, black crappie, and bluegill, three of the most abundant centrarchids, were found at emergent wing dams primarily in August (Table 11). In hoop net catches, 3, 164, 5, and 1 centrarchids were caught in June, August, and October 1978 and June 1979 (Tables 12-15). Centrarchids were present in hoop nets at all submerged wing dams in August, but not in other months. Bluegill, white crappie and black crappie were 41% of the August hoop net catch and only 1 to 2% of hoop net catches for other months. Similarly, Dunham and Bertram (1972) caught more centrarchids in mid-summer (July) than May by electrofishing, hoop netting, trap netting, and gill netting in Pools 12 and 13.

Bluegill abundance may have been related to high water temperatures but did not appear to be closely related to river stage. Bluegill were shocked on emergent wing dams almost exclusively in August when the water temperature was

TABLE 11. Fish caught by electrofishing at emergent wing dams 26 and 28 in June, August, and October 1978.

	····		
Species	June	August	October
Mooneye	1	5	1
Carp	3 2 3	38	27
Silver Chub	2	3	5
Emerald Shiner		64	2 3 4
River Shiner	1	12	3
Quillback	1	4	
Shorthead Redhorse	16	25	18
Sauger	2	19	17
Walleye	2	5	5
Freshwater Drum	5	22	161
Channel Catfish	0	10	3
Flathead Catfish	0	2	1
White Bass	0	5	5 1 3
Bluegill	0	160	1
Smallmouth Bass	0	3	3
White Crappie	0	4	1
Northern Logperch	0	11	1
River Darter	0	3	1
Shortnose Gar	2	0	0
Gizzard Shad	1	0	1
Spottail Shiner	0	2 2	0
Spotfin Shiner	0	2	0
Bullhead Minnow	1	4	0
River Carpsucker	0	1	0
Highfin Carpsucker	0	0	1
Rock Bass	2	2	0
Pumpkinseed	0	1	0
Orangespotted Sunfish	0	1	0
Largemouth Bass	0	15	0
Black Crappie	0	11	0

TABLE 12. Numbers of various fish species in baited (b) and unbaited (u) hoop nets at wing dam 25, 26, 28, 29, 30, 31, and the side channel (June 1978).

	25 u t	۵	76 u	9	28 u	ه م	29 u	٩	30 n	و	31 u	ъ Р	Side Channel u b	e b b	Total
Snovelnose Sturgeon C	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-
Carp	0		0	4	0	, ⊸1	0	0	0	0	0		0	0	7
Silver Chub	0	0	0	0	0	0	0		0	0	0	0	C	. →	2
Channel Catfish		~	7	12	-4	9	0	0	0	7	0	9	6 1	7	29
Flathead Catfish	2	2	4	1		0	~	m	2	~	9	-	H	-	27
Stonecat	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-
Smallmouth Buffalo	-	4		ю	0	വ	0	2	0	0	0	0	0	0	16
Snorthead Redhorse	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	H
White Crappie	0	0	0	0	, →	0	0	0	0	0	0	0	0	0	,
∂lack Crappie (0	0	0	0	-	1	0	0	0	0	0	0	0	0	2
Sauger	-	0	0	0	0	æ	0	0	0	0		0	0	0	5
Freshwater Orum	ω	က	11	2	2	2	က	2	0	0	0	0	2	-	36

TABLE 13. Numbers of various fish species in baited (b) and unbaited (u) hoop nets at wing dams 25 26, 28, 29, 30, 31, and the side channel (August 1978).

Sheries	25 u	م	26 u	ر م	n 7	28 p	2 n	29 b	e a	30 b	° ¬	31 b	channel u b	Total
Longnose Gar	1	0	0	0		0	2	0	0	0	0	0	1 0	5
Shortnose Gar	0	0	0	0	0	0	-	0	0	0	0	0	0	1
Carp	0		0	0	0	7	0	က	0	П	0	∞	0	14
Channel Catfish	0 1	12	0	0	0	9	0	59	-	4	-	17	1 37	108
Flathead Catfish	2	0	0	0	2	-	2	0	1	2	က	-	1 0	15
Smallmouth Buffalo	0 1	13	0	_	0	11	0	22	2	2	0	6	0 3	99
Shorthead Redhorse	0	0	0	0	0	0	0	0	0	0	2	0	0 0	2
White Bass	0	0	0	0	0	0		0	0	0	0	2	0 0	٣
Bluegill	0	4	~		10	12	0	4	0	0	2	0	13 21	68
White Crappie	4	7	4	-	8	4	7	-	0	0	1	0	4 2	37
Black Crappie	13	0	12	0	10	œ	က	0	0	-	2		7 2	29
Sauger	1	0	0	0	0	0	0	0	0	0	C	0	0 0	- →
Freshwater Drum	9	0	0	0	-	3	-	2	3	0	0	0	0 1	19

TABLE 14. Numbers of various fish species in baited (b) and unbaited (u) hoop nets at wing dam 25, 26, 28, 30, 31, and the side channel (October 1978).

Species	25 u b	26 u b	28 u b	29 u b	30 n p	31 u b	Side Channel u b	Total
Longnose Gar	0	0	1 0	0	0 0	0 0	0 0	1
Gizzard Shad	0 0	0	0	0	0	1 0	0	
Carp	0	0	0	0	0 1	0	0 1	2
Channel Catfish	3 11	1 4	1 3	0	0 7	0 32	5 180	247
Flathead Catfisn	0	0 0	0	1 1	0	1 1	0 0	4
River Carpsucker	0 1	0	0	0 1	0	0	0 0	2
Smallmouth Buffalo	1 21	0 17	1 42	0 31	0	2 6	3 9	136
Silver Redhorse	0 0	0 0	0	0	1 0	0	0 0	
Shorthead Redhorse	0 0	1 0	0	0	0	1 1	3 0	O
Bluegill	0 0	0	0 0	0	0 1	0	0 0	.
Black Crappie	0 0	1 0	1 2	0 0	0 0	0	0 0	4
Sauger	1 0	1 0	0 0	1 0	0	0 0	2 1	9
%alleye	0 0	0 0	0 0	0 0	0 1	0	1 0	2
Freshwater Drum	5 1	4 1	1 0	0	0	0	1 2	15

TABLE 15. Numbers of various fish species captured in baited (b) and unbaited (u) hoop nets at wing dams 25, 26, 28, 29, 30, 31, and the side channel (June 1979).

Species	25 u t	۵	26 u b	ν n	28 b	79 n	6	30 n	0	31 u	1 0	S.i Cha	Side Channel u b	Total
Shovelnose Sturgeon	0	0	0	-	0	0	0	0	0	0	0	0	0	
Longnose Gar		0	0	0	0	S	0	0	0	0	0	0	0	H
Carp	0	0	0 0	0	-	0	2	0	0	-	0	-	9	11
Silver Chub	0	0	0 0	0	0	0	0	0	0	0	_	0	0	-
Channel Catfish	5	m	2	0	m	က	0	က	-	0	0	0	0	21
Flathead Catfish	0		2 0	0	0	0	0	2	-	H	-	7	0	თ
Black Bullhead	m	e	4 0	0	0	0	0	0	0	0	0	0	2	. 12
River Carpsucker	0	-	0 0	0	0	0	0	0	0	2	0	0	0	က
Smallmouth Buffalo	0 12	٥.	1 19	0	7	0	9	~	0	0	4	~	2	53
Golden Redhorse	0		0	0	0	-	0	0	0	0	0	0	0	H
Snorthead Redhorse	1 0		0	0	0	0	0	0	0	-	0	0	0	2
Sunfish Hybrid	0		0 0	0	0	0	0	0	7	0	0	0	0	
Yellow Perch	0		0	7	0	0	0	0	0	0	0	0	0	-
Sauger	1 0		0 0	H	0	0	0	0		0	0	0	0	ო
Freshwater Drum			1 0	0	-	0	0	0	0	0	0	0	2	14

25°C and river stage was 1.5 to 1.8 meters. No bluegill were shocked on emergent wing dikes in June when water temperatures were 21° to 23°C and river stages were greater than 2.2 meters, and only one bluegill was shocked in October when the water was 13°C and river stage was 1.4 to 2.0 meters. In October, bluegill may have moved to deeper water for the winter (Scott and Crossman 1973). Most of the bluegill were one and two years old.

Freshwater drum replaced bluegill in late October as the most abundant species at emergent wing dams and main channel border shorelines. Drum were 61.5% of the electrofishing catch by number over emergent wing dams and 39.7% of catches along main channel border shorelines. Most of the drum were caught October 20 to 21 when the water temperature was 13°C and river stage was 1.4 meters and steady. Schools of freshwater drum were not found October 6 to 10 when the river stage was 1.9 to 2.0 meters and water temperature 13° to 14°C. Most of the freshwater drum were young-of-the-year and one year old fish. These schools or aggregations of a species, ie. freshwater drum, bluegill, and emerald shiners, should be considered when comparing pre- and post-notching conditions.

Discharge

Electrofishing catches were strongly influenced by river stage or discharge. Few fish were caught on wing dams during high flow conditions; for example only three fish

were caught at wing dams 26 and 28 during June 1979 when water stages were high (average 2.83 meters) and those dams were submerged. Shocking was most effective on emergent dams during river stages less than 2.13 meters (Table 16). Four hundred thirty four and 262 fish were caught at emergent wing dams in August and October when low flow conditions existed. The region between emergent wing dams may have also been more attractive to fish normally associated with slack water habitats during low flows. The wing dams reduced current velocities in these areas during low flows.

Low water transparency, strong water currents, and the depths of submerged wing dams made shocking ineffective over submerged wing dams in every month. Only 24 fish were caught by electrofishing over submerged dams 25, 29, 30, and 31 during all four months (Table 17). Current velocity as high as 96 cm sec⁻¹ hindered netting of shocked fish. Secchi disc transparency was never greater than 0.46 meters and was usually only 0.30 meters, making it difficult to see fish. The maximum effective depth for capturing fish was probably less than 0.6 meters since fish were rarely seen below that depth. Submerged wing dams were generally deeper than 1.5 meters.

Hoop net catch rates appeared to be negatively related to discharge (Table 18). Regression of the mean catch rate for hoop netting in each month with the mean monthly discharge yielded a correlation coefficient of -0.934.

TABLE 16. Average electrofishing catch rates for transects at emergent wing dams 26 and 28 during high (greater than 2.74 m) and low (less than $2.13\ m$) river stages.

	Average electrofishin (number of fish/30	
Month	High stage	Low stage
June 1978	0.7	6.7
August 1978		36.2
October 1978		21.8
June 1979	0.3	

TABLE 17. Fish caught by electrofishing at submerged wing dams 25, 29, 30, and 31 during all four months.

Species	Number captured
Longnose gar	2
Shortnose gar	1
Mooneye	2
Emerald shiner	3
Quillback	2
Smallmouth buffalo	1
Bigmouth buffalo	6
Shorthead redhorse	4
Channel catfish	1
Walleye	1
Freshwater drum	1

TABLE 18. Mean monthly discharge $(m^3 \, sec^{-1})$ and hoop net catch rates (number of fish/net day) for each month.

Date	Discharge	Catch rate
June 1978	1790	1.3
August 1978	1290	3.4
October 1978	1130	3.8
June 1979	2280	1.2

With natural log transformations of discharge and catch rates, a significant correlation coefficient (95% level) of -0.960 was obtained. A linear relationship does not have to be assumed when log transformations are used.

August Catches

Fish were most diverse throughout the study area in August. Forty two fish species were encountered in August, and 40, 38, and 35 species in October and June 1978, and June 1979. Significantly more species (paired t-test; 6 d.f.; p=.025) were caught throughout the study area by hoop netting and electrofishing combined in August than in any other month (Table 19). Dunham (1971) caught the greatest variety of species in August when electrofishing below navigation dams 12 through 26 on the Upper Mississippi River. Numbers of fish species found in most habitats in the study area were also greatest in August. More fish species (paired t-tests; 5 d.f.; p=.025) were present along main channel border shoreline electrofishing transects in August than in other months (Table 20). The greatest diversity of fish on emergent wing dam transects, 27 species, occurred in August (Table 21). The number of species seined in the side channel ranged from a high of 28 in August to 14 in June 1979.

Fish appeared to be most abundant in the study area in August. Total numbers of fish caught in the study area in August were 3255 versus 1331, 637, and 460 caught in October,

TABLE 19. Number of species caught by hoop netting and electrofishing on or near each wing dam and in the side channel.

		Number	of species	caught	
Site	June	August	October	June	Row
	1978	1978	1978	1979	Mean
Wing dam 25	12	16	10	18	14.0
Wing dam 26	19	27	20	16	20.5b,c,d
Wing dam 28	24	31	24	18	24.3d,e,f
Wing dam 29	15	21	12	10	14.5b,e
Wing dam 30	14	20	13	10	14.3c,f
Wing dam 31	8	21	16	16	15.3
Side channel	21	26	25	20	23.0
Column mean	16.1	23.1 ^a	17.1	15.4	17.9

 $^{^{\}text{a}}\text{August}$ values were significantly higher than other months (paired t-tests; 5 d.f.; p=.025).

b,c,d,e,f Values marked with the same superscript were significantly different (paired t-tests; 3 d.f.; p=.025).

TABLE 20. Number of fish species caught at main channel border shoreline electrofishing transects in each month.

		Number o	of species	caught	
Wing dam (shoreline transects)	June 1978	August 1978	October 1978	June 1979	Row mean
25	9	12	9	13	10.8 ^b
26	13	19	14	14	15.0 ^{b,c}
28	15	23	12	14	16.0 ^{d,e}
29	12	16	10	8	11.5 ^{c,d}
30	11	18	9	7	11.3 ^e
31	5	16	13	13	11.8
Column mean	10.8	17.3ª	11.2	11.5	12.7

 $^{^{\}text{a}}\text{August}$ values were significantly higher than other months (paired t-tests; 5 d.f.; p=.025)

b,c,d,eValues marked with the same superscript were significantly different (paired t-tests; 3 d.f.; p=.025).

TABLE 21. Number of species caught on emergent wing dam electrofishing transects in June, August, and October 1978.

	Num	ber of spec	ies caught	
Transect	June	August	October	Row mean
Wing dam 26				
Inside transect	4	12	8	8.0 ^d
Middle transect	6	17	8	10.3 ^e
Outside transect	Ō	10	5	10.3 ^e 5.0 ^d ,e
Wing dam 28				
Inside transect	0	21	11	10.7
Middle transect	11	14	11	12.0
Outside transect	3	12	6	7.0
Column mean	4.0a,b	14.3ª,c	8.2 ^{b,c}	8.8

a,b,c,d,eValues marked with the same superscript were significantly different (paired t-tests; 5 and 2 d.f.; p=.025).

June 1978, and June 1979 respectively. Fish were generally more abundant at electrofishing and seining study sites in August than in other months. With the exception of the shoreline transect at wing dam 28, catch rates at each electrofishing transect were highest in August, followed by October and June (Appendices A-D). At wing dam 28, more fish were caught in October than August because of schooling freshwater drum. Seine hauls netted 87 to 114 fish per haul in August, and 12 to 48 fish in June 1978. Only 2 to 12 fish per haul were seined in October and June 1979.

Influence of Site or Habitat on the Catch

Differences from sample month to sample month in species composition of the catches appeared to be greater than differences between habitats. Differences between habitats in percent by number or weight of game fish, panfish, catfish, predatory rough fish, forage fish, and rough fish were primarily due to variation in catches of three species: emerald shiner, smallmouth buffalo, and channel catfish. Differences with time, mentioned previously, were caused by many species.

Electrofishing catches allowed comparison of fish populations in three kinds of habitat: emergent wing dams, main channel border shorelines, and side channel shorelines. All three habitats had low current and were shallow enough to be susceptible to the boom shocker. The major difference

between the three habitats was the amount and kind of cover for fish. Emergent wing dams were entirely rock rip-rap with no fallen trees or emergent willows. Some rock rip-rap was found along main channel border shorelines adjacent to wing dams 25, 26, and 28, and a few fallen trees and emergent willows were present, but stretches of relatively barren sand were predominant. Fallen trees and emergent willows were most plentiful in the side channel, which also offered access to back water areas.

The composition of electrofishing catches was remarkably similar for the side channel, main channel border shorelines, and emergent wing dams. Percent by weight of game fish, panfish, catfish, rough fish, forage fish, and predatory rough fish were similar for each habitat (Table 22). The greatest difference between habitats was only 4.5% in predatory rough fish. Rough fish comprised most of the biomass in all three habitats. Percent by number of each fish category varied somewhat between habitats because of large schools of emerald shiners, totalling 1123 fish, that were present in the side channel and along the shoreline of wing dam 31 in August (Table 23 and Appendix B). When I removed the effect of the emerald shiners, there was no significant difference (Chi-square = 6.7; 10 d.f.; p=.025) between habitats in the percent by number of each category (Table 24).

Although most species were found in all three habitats

TABLE 22. Percent by weight of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined.

		Percent by weight	
Category	Side channel	Main channel border shorelines	Emergent wing dams
Game fish	5.6	6.6	6.7
Panfish	2.9	4.2	5.6
Catfish	1.8	1.1	1.8
Predatory rough fish	5.1	3.8	0.6
Forage fish	0.1	0.2	0.3
Rough fish	84.5	84.1	85.0
Totals	100	100	100

TABLE 23. Percent by number of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined.

		Percent by number	
Category	Side channel	Main channel border shorelines	Emergent wing dams
Game fish	5.6	11.4	9.6
Panfish	11.4	17.6	26.2
Catfish	0.9	1.0	2.3
Predatory rough fish	1.7	1.7	0.3
Forage fish	60.8	33.4	16.5
Rough fish	19.5	35.0	45.1
Totals	100	100	100

TABLE 24. Percent by number of fish categories in side channel, main channel border shoreline, and emergent wing dam electrofishing catches for all four months combined. The influence of emerald shiner schools in the side channel and at the shoreline by wing dam 31 in August has been removed.

	Percent by number		
Category	Side channel	Main channel border shorelines	Emergent wing dams
Game fish	12.8	13.8	9.6
Panfish	26.4	21.4	26.2
Catfish	2.0	1.2	2.3
Predatory rough fish	3.9	2.0	0.3
Forage fish	10.3	19.1	16.5
Rough fish	44.5	42.6	45.1
Totals	100	100	100

electrofished, some species were more important in certain habitats. Twenty three fish species were found in all three habitats, and carp were consistently important in number or weight in all (Tables 25-27). Quillback were important along main channel border shorelines. They ranked in the top three species by number or weight in border shoreline catches each month (Table 26). Shorthead redhorse were prominent in emergent wing dam catches, consistently ranking in the top three species by number or weight in each month's catch (Table 27).

Fish were most diverse and most abundant in the side channel. Significantly more fish species were caught per unit of effort in the side channel than along main channel border shorelines or emergent wing dams in each month (paired t-tests; 3 d.f.; p = .025). Electrofishing catch rates in the side channel were highest in each month, followed by main channel border shorelines and emergent wing dams (Tables 25-27), but the differences were not significant because of variability introduced by the large schools of emerald shiner in August. When the effect of the emerald shiners was removed, the differences in catches per effort between habitats were significant (paired t-tests; 3 d.f.; p=.025). In contrast, Bertrand and Miller (1973) found average side channel electrofishing catch rates were lower than catch rates at main channel border habitats in Pools 12 and 13 of the Upper Mississippi

TABLE 25. Side channel electrofishing catches for each month.

					0201
Catch and rank		June 1978	August 1978	October 1978	Anne 1979
Number of species/hour	/hour	9.5	12.5	12.5	9.5
Total number of fish captured		102	1098	163	93
Catch rate (fish/hour)		51.0	549.0	81.5	46.5
Rank (number)	3 2 3	Shorthead redhorse Sauger Carp	Emerald shiner Bluegill Carp	Carp Sauger Freshwater drum	River carpsucker Carp Smallmouth buffalo
Rank (weight)	3.50	Carp Shorthead redhorse Longnose gar	Carp Largemouth bass Smallmouth buffalo	Carp Freshwater drum Sauger	Carp River carpsucker Smallmouth buffalo

TABLE 26. Main channel burder shoreline electrofishing catches for each month.

Catch and rank	June 1978	August 1978	October 1978	June 1979
Number of species captured/hour	4.3	5.7	4.8	4.5
Total number of fish captured	144	606	423	189
Catch rate (fish/hour)	24.0	151.5	70.5	31.5
Rank 1 (number) 2	Sauger Quillback Freshwater drum	Emerald shiner Bluegill River shiner	Freshwater drum Carp Sauger	Quillback Carp Shorthead redhorse
Rank 1 (weight) 2	Carp Longnose gar Freshwater drum	Carp Bluegill Quillback	Carp Freshwater drum Quillback	Carp Shorthead redhorse Quillback

TABLE 27. Emergent wing dam electrofishing catches for each month.

Catch and rank	June 1978	August 1978	October 1978	June 1979
Number of species captured/nour	es 2.5	4.7	3.5	0.5
Total number of fish captured	44	434	262	က
Catch rate (fish/hour)	7.3	72.3	43.7	0.5
Rank (number)	Shorthead redhorse Freshwater drum Carp	Bluegill Emerald shiner Carp	Freshwater drum Carp Shorthead redhorse	Shorthead redhorse ^a Quillback ^a Shortnose gar ^a
Rank (weight)	Shorthead redhorse Carp Shortnose gar	Carp Bluegill Shorthead redhorse	Carp Freshwater drum Shorthead redhorse	Shorthead redhorse Quillback Shortnose gar

River. Bertrand speculated that the average catch rate in the main channel border would have been lower but he was not able to sample the main channel border in May. Extrachannel habitats are likely to offer increased fish abundance and production of fish food organisms (Schramm and Lewis 1974; Eggleton 1939; Kallemeyn and Novotny 1977; Jennings 1979; and Groen and Schmulbach 1978).

Cover and water depth along main channel border shore-lines probably affected catches. Wing dams 26 and 28 had more rip-rap, stumps, and logs along the channel border shorelines than the other wing dikes. More species were often caught (Table 20) and catch rates were usually higher (Table 28) along the shoreline at those two wing dams than at the others. Catch rates were also relatively high at the shoreline near wing dam 31. Fish may have been more vulnerable to electrofishing at the shoreline near wing dam 31 because of the shallowness of that shoreline compared to the others.

Hoop nets sampled two habitats: main channel border areas adjacent to wing dams, and the side channel. Hoop nets fished on the bottom in 1.5 to 5.0 meters of water where boom shocking was ineffective. Current was generally lower in the side channel than the main channel border although current velocity was low near emergent wing dams 26 and 28 during low river stages (Appendix II).

Species composition of hoop net catches in the side

TABLE 28. Catch per unit effort (number of fish/hour) at main channel border shoreline electrofishing transects in each month.

		Num	ber of fish	/hour	
Wing dam (shoreline transects)	June 1978	August 1978	October 1978	June 1979	Row mean
25	23	59	41	31	38.5
26	32	171	87	40	82.5
28	42	108	146	41	84.3
29	27	74	41	23	41.3
30	22	52	20	9	25.8
31	14	146 ^a	90	52	75.5
Column mean	26.7	101.7	70.8	32.7	58.0

 $^{^{}m a}$ The influence of a large catch of 300 emerald shiners has been removed by subtracting the emerald shiners from the catch at wing dam 31 (page 52).

channel and main channel border were similar in all but catfish and rough fish categories (Table 29). Channel catfish were more than twice as important in the side channel than in the main channel border, comprising 71% of the number and 54% of the weight of side channel hoop net catches, but only 25% of the number and 12% of the weight in the main channel border. Smallmouth buffalo were more important in the main channel border. Buffalo were 33% of the number and 53% of the weight in the channel border versus 5% of the number and 12% of the weight in the side channel.

Fish abundance was not different between side channel and main channel border hoop nets. Although the average catch rate for baited and unbaited nets in all months combined was 1.9 fish per day near the wing dams and 5.2 fish per day in the side channel, these catch rates were not significantly different (Table 30). Kallemeyn and Novotny (1977) also found no difference in hoop net catch per unit effort between side channels and main channel borders in channelized portions of the Missouri River.

However, as in electrofishing catches, significantly more species were caught per unit of effort in side channel hoop nets than in main channel border nets (Table 31).

Twenty three species were netted near wing dams versus thirteen species in the side channel, but about six times as much fishing took place near the wing dams. Hoop net

TABLE 29. Percent by number and weight of fish categories in side channel and main channel border hoop net catches for all four months combined.

	Perce	Percent number	Perc	Percent weight
Species category	Side channel	Main channel border	Side channel	Main channel border
Game fish	1.16	1.67	1.17	1.78
Panfish	14.16	16.61	6.17	4.24
Catfish	72.84	32.69	55.38	20.19
Predatory rough fish	0.29	1.03	0.78	1.46
Forage fish	0.29	0.39	0.06	0.08
Rough fish	11.27	47.62	36.44	72.24
Totals	100.0	100.0	100.0	100.0

TABLE 30. Mean catch rates for baited and unbaited hoop nets in the side channel and near the wing dams each month.

		Catch rate			
Habitat	June 1978	August 1978	October 1978	June 1979	Row mean
Baited nets					
Side channel	2.5	8.3	22.1	1.3	8.55 ^a
Wing dam	1.6	3.9	3.9	1.6	2.75 ^a
Unbaited nets					
Side channel	1.3	3.3	1.5	0.4	1.63 ^b
Wing dam	0.9	2.2	0.7	0.7	1.13 ^b
Column mean	1.58	4.43	7.05	1.00	3.52

a,bEach pair of values marked with the same superscript were not significantly different (paired t-tests; 3 d.f.; p=.025).

TABLE 31. Number of species caught per day in baited and unbaited hoop nets in the side channel and near the wing dams each month.

		Number of	species cau	ght/day	
Habitat	June 1978	August 1978	October 1978	June 1979	Row mean
Baited nets					
Side channel	. 50	.75	.57	.53	. 59 ^a
Wing dam	.21	.18	.21	.21	. 20 ^a
Unbaited nets					
Side channel	.50	.74	.61	.36	. 55 ^b
Wing dam	.11	.24	.22	.27	.21 ^b
Column mean	. 33	. 48	.40	. 34	.39

a,b Each pair of values marked with the same superscript were significantly different (paired t-tests; 3 d.f.; p=.025).

catches appeared to be similar at both submerged and emergent wing dams (Tables 12-15).

Fish Use of Emergent Wing Dams

Electrofishing catches of fish on emergent wing dams 26 and 28 during June, August, and October 1978 yielded the best information obtained about fish use of wing dams. During these months, river stages were low enough to make the boom shocker effective for catching fish along the exposed rock rubble of the wing dams. As many as 434 fish were shocked in shallow water along the rock rubble sides of emergent dikes in one sampling month.

One third of the fish species encountered by shocking on emergent wing dams, mooneye, carp, silver chub, emerald shiner, river shiner, quillback, shorthead redhorse, sauger, walleye, and freshwater drum, were present in every sampling month of 1978 (Table 11). Channel catfish, flathead catfish, logperch, river darter, white bass, bluegill, smallmouth bass, and white crappie were caught along the wing dams only during low river stages (less than 2.1 meters). A total of 38 fish species were caught at emergent and submerged wing dams by shocking and hoop netting in all sampling months (Tables 11-15).

Fish appeared to be equally abundant and diverse at emergent wing dam transects except the outside transects. Fewer fish and fish species were usually caught at the

outside transect of wing dams 26 and 28 in each month although the difference was significant only at wing dam 26 (Tables 2, 32). At wing dam 26 less rock rubble was exposed and susceptible to electrofishing at the outside transect than at other transects. Wing dam 26 dropped off into deep water abruptly in the outside transect. All other emergent wing dam transects did not differ significantly from each other in catch per effort or number of species caught (paired t-tests; 2 d.f.; p=.025).

No consistent trends were seen in the distribution of most fish species laterally along emergent wing dams. Carp, quillback, shorthead redhorse, sauger, and walleye showed no consistent increase or decrease in abundance from inside to outside transects at emergent wing dams 26 and 28 (Table 33). The distribution of bluegill between inside, middle, and outside transects was similar at wing dams 26 and 28 in August (Figures 6-7). Bluegill were least abundant at outside transects in August, the only month they were abundant. Thiel (1977) found that bluegill were more abundant on vegetated than on unvegetated wing dams in the Mississippi River near LaCrosse, Wisconsin. Freshwater drum showed a decline in abundance between the middle and outside transects in October (Figures 8-9).

Aquatic invertebrates on the wing dams may play a role in attracting fish to wing dams (Jennings 1979). Since much of the river bottom is relatively unproductive sand,

TABLE 32. Number of fish caught per hour on emergent wing dam electrofishing transects in June, August, and October 1978.

			(fish/hour)	
	June	August	October	Row
Transect	1978	1978	1978	mean
Wing dam 26				
Inside transect	6	55	46	35.7 ^d
Middle transect	10	67	63	46.7 ^e 17.3 ^d ,e
Outside transect	0	31	21	17.3 ^{a,e}
Wing dam 28				
Inside transect	0	112	74	62.0
Middle transect	25	113	35	57.7
Outside transect	3	56	23	27.3
Column mean	7.3 ^{a,b}	72.3 ^{a,c}	43.7 ^{b,c}	41.1

a,b,c,d,eEach pair of values marked with the same superscript were significantly different (paired t-tests; 2 and 5 d.f.; p= .025 and .05).

TABLE 33. Electrofishing catch rates for carp, quillback, shorthead redhorse, sauger, and walleye at emergent wing dam transects in June, August, and October 1978.

			Catch rate (m	(no. fish/hour)		
		Wing dam 26	5		Wing dam 28	
Species and month	Inside	Middle	Outside	Inside	Middle	Outside
Carp June August October	0 9 8	2 1 13	0 0 1	000	0 12 3	1 9
Quillback June August October	000	310	000	1 1 0	1 2 0	000
Shorthead redhorse June August October	n 6 m	4 2 0	092	0 12 9	6 0 2	0 11 0
Sauger June August October	1.50	0 2 4	130	200	2 8 2	2 1 0
Walleye June August October	0 0 1		1 0 0	0 5 7 1	001	1 2 0

Bluegill distribution along emergent wing dam 26 in June, August, and October 1978. FIGURE 6.

FIGURE 7. Bluegill distribution along emergent wing dam 28 in June, August, and October 1978.

FIGURE 8. Freshwater drum distribution along emergent wing dam 26 in June, August, and October 1978.

FIGURE 9. Freshwater drum distribution along emergent wing dam 28 in June, August, and October 1978.

the wing dams may provide important substrate for production of fish food organisms in the main channel border. Caddis flies (Potamyia flava, Cheumatopsyche sp., and Hydropsyche orris) and Hyalella were abundant on the wing dams. flies and other invertebrates colonized artificial substrates (Hester and Dendy 1962; Jacobi 1971) on the wing dams at densities up to 80,000 per square meter (Hall 1980). Hoopes (1960) and Carlander et al. (1959) considered Potamyia flava to be an important fish food but suggested negligible use of Cheumatopsyche campyla and Hydropsyche orris by Mississippi River fishes. Bur (1976) also reported use of caddis flies, especially Potamyia flava, by Mississippi River fishes. Jude (1968) reported that Potamyia flava was important in fish diets in late July and August in the Mississippi River. Large Hexagenia, because of emergence (Carlander et al. 1967), are less available to fish during this part of the summer. In August, bluegill may have been feeding at the wing dams (Thiel 1977). Most of the bluegill caught were one or two years old and 100 to 180 mm long (Appendix M). Wynes (1976) found that Mississippi River bluegill in this size range ate trichopterans and Hyalella. Most freshwater drum were young-of-the-year (average 136 mm), but there were also many of ages one and two (Appendix P). Ranthum (1969) found Potamyia to be important in the diet of drum less than 152 mm.

Wing dikes add to the diversity of cover types found

in the main channel border and may provide important cover or shelter from current if substantial sediment accretion between dams has not occurred. Sedimentation had not yet destroyed fish habitat by filling in areas between the wing dams (see Hydrographic Relief section). Numerous studies (Hickman 1975; Marzolf 1978; Johnson and Stein 1979; Minckley and Deacon 1959; and Kallemeyn and Novotny 1977) have shown the benefits of diverse cover for fish in streams or have indicated that fish in both lotic and lentic aquatic environments are attracted to shelter. I found darters, minnows, and small flathead and channel catfishes nestled among rocks and gravel on the dams (Appendices A-C). Current velocity at emergent wing dams was low during low flow conditions in August and October. Ranthum (1969) suggested that bluegill from the Upper Mississippi River prefer areas with little flow. A potentially detrimental impact of notching to fish may be the removal of 45 to 90 meters of wing dam which provides both shelter from current and substrate for aquatic macroinvertebrates.

Fish Marking Results and Movement

Individual fish were not caught repeatedly by my fishing efforts. Fin clips were applied to 3154 fish in the study area, and only 25 fish or 0.79% were recaptured. Recaptures included 7 carp, 5 bluegill, 3 flathead catfish, 2 each of quillback, channel catfish, and freshwater drum,

and 1 each of golden redhorse, shorthead redhorse, black crappie, and sauger.

Some movement of fish was evident within the study area. Five fish, 20% of the recaptures, were recaught in parts of the study area other than the site where they were originally captured and released. Four of the five fish had left the side channel and moved out to the main channel border area. Species which had moved were flathead catfish, channel catfish, quillback, and golden redhorse. Dramatic monthly changes in species composition at the various sites also indicated that fish movement was occurring (Tables 10-11, 25-27). Tagging studies of fish in the Upper Mississippi River, including those of Bahr (1977), Christenson (1952), Ellis (1978), Finke (1964), Gengerke (1977, 1978), Helms (1973), Hubley (1961, 1963a, 1963b), Iowa Conservationist (1959), and Schoumacher (1965) have indicated considerable upstream, downstream, and local movements of fish.

Gear Selectivity

Gear Efficiency

Electrofishing provided the widest variety of fish species and hoop netting provided the least variety. Shocking, seining, and hoop netting caught 44, 37, and 23 species, respectively, in all months combined (Tables 34-36). Bowfin, northern pike, yellow bullhead, black buffalo,

TABLE 34. Summary of lengths (mm) and weights (g) of all fish species caught by electrofishing in all sampling months.

		Length	다				Weigh	ht		
Species	Mean	Rang Min.	e Max.	S.D.	Sample Size	Mean	Rang Mfn.	e Max.	S.D.	Sample Stze
Longnose Gar	587.4	225.	831.	123.04	47	425.9	16.	1215.	247.19	47
Shortnose Gar	576.5	520.	. 299	50.17	φ.	593.3	485.	750.	113.56	φ.
Bowf 1n	288.0	. 588.	. 288	0.00	- 1	266.0	266.	266.	0.00	H
Gizzard Shad	129.8	63.	330.	56.66	27	42.8	4.	320.	71.42	:33
Mooneye	233.9	34.	310.	72.02	15	165.4	29.	305.	82.32	14
Northern Pike	626.0	574.	678.	73.54	7	1480.0	1200.	1760.	395.98	7
Carp	452.6	218.	744.	72.33	272	1394.8	160.	5380.	628.43	271
Silvery Minnow	59.8	40.	70.	10.73	12	0.0	•	0	0.00	0
Stlver Chub	83.8	36.	169.	40.02	36	31.3	24.	40.	5.32	Q
Emerald Shiner	43.1	15.	96	9.65	653	0.0	•	0	0.00	0
River Shiner	59.5	30.	86.	9.50	138	0.0	1	ö	0.00	0
Spottail Shiner	51.8	46.	22.	3.56	S	0.0	•	6	0.00	0
Spotfin Shiner	59.1	45.	72.	6.40	50	0.0	•	ö	0.00	0
Bullhead Minnow	52.9	38.	72.	7.82	41	0.0	•	ö	0.00	0
Channel Catfish	262.2	79.	522.	94.66	37	239.1	ė.	1850.	349.42	37
Flathead Catfish	229.4	84.	371.	102.89	80	194.4	9	580	189.42	æ
Storecat	91.0	91.	91.	0.00		8.0	∞	œ	0.00	-
Yellow Bullhead	215.0	215.	215.	00.00		142.0	142.	142.	0.00	-
Loguerch	65.0	56.	100	11.64	15	0.0	•	0	0.00	0
River Darter	61.2	49.	73.	10.01	ស	0.0	•	ö	0.00	0
Sauger	218.2	101	480.	50.61	230	91.2	Ġ.	1200.	110.65	5 53
Walleye	274.4	178.	455.	63.81	45	197.6	41.	830.	169.30	45
River Carpsucker	325.2	156.	431.	70.32	54	540.3	25.	1100.	299.07	54
Highfin Carpsucker	232.8	138.	305.	43.12	50	132.6	62.	440	100.71	6
Quillback	273.1	124.	434.	67.59	122	305.9	22.	1125.	200.14	121
Bignouth Buffalo	400.0	249.	601.	131.83	14	1424.8	255.	3500.	1233.26	7
Smallmouth Buffalo	291.1	125.	200	70.97	53	412.7	29.	1400	249.54	53
Black Buffalo	477.0	476.	478.	1,41	2	1615.0	1615.	1670.	77.78	~
Silver Redhorse	427.8	350.	5/8.	60.02	12	1059.3	502.	2300.	467.97	12
Chorthord Dodhows	275.3	20 20 20 20 20 20 20 20 20 20 20 20 20	416.	97.04	יו נ	214.0	44.	1300.	767.38	7.
Spot ted Sucker	293.0	38.	293	00.10	· -	317.0	317:	317	6.707	, -
White Bass	158.5	93.	314.	69.43	32	83.6	9	375.	100.84	. 62
Rock Bass	169.8	152.	199.	17.40	6	114.9	78.	169.	34.58	6
Pumkinseed	149.0	149.	149.	0.00		92.0	92.	92.	0.00	
Orangespotted Sunfish	67.5	52.	35.	7.13	46	6.1	۶,	19.	3.31	35
Bluegill	107.9	27.	203.	36.49	465	45.1	_;	236.	37.10	402
Smallmouth Bass	238.4	160.	362.	96.69	œ	231.0	52.	670.	215.85	œ
Largemouth Bass	195.4	28	352.	74.95	09	160.0		700.	164.02	9
White Crappie	182.7	100.	240.	35.95	22	100.0	22.	200.	46.20	2
Black Crappie	145.9	55.	241.	36.53	83	60.1	۰.2	218.	43.68	82
Freshvater Orum	168.4	52.	25. 26. 27.	54.52	465	83.1	~	920.	93, 33	458
Brook Silversides	63.5	59.	68	6.36	2	0.0	,	Ċ.	0.00	0
Paddlef1sh	604.0	604.	604.	0.00		0.069	690.	620.	0.00	~

TABLE 35. Summary of lengths (mm) and weights (g) of all fish species caught by hoop netting in all sampling months.

		Leng	th				Weig	rt T		
		Rang	ه		Samole		Rang	۵		Sample
Species	Mean	Min. M	Max.	S.D.	Size	Mean	Min.	Max.	S.D.	Size
Longnose Gar	628.0	599.	673.	22.32	00	474.4	406.	580.	56.98	•
Shortnose Gar	552.0	552.	552.	0.00	-	560.0	560.	560.	0.00	-
Gizzard Shad	210.0	210.	210.	0.00		88.0	88	88	0.00	-
Carp	403.8	203.	640.	113.56	34	1085.1	142.	3400.	837.53	34
Silver Chub	184.3	171.	196.	12.58	က	58.0	40.	70.	15.87	က
Channel Catfish	265.4	79.	421.	35,94	438	155.3	10.	720.	68.87	435
Flathead Catfish	311.7	187.	493.	68.35	55	373.6	74.	1620.	283.47	55
Stonecat	217.0	217.	217.	0.00	-	104.4	104.	104.	0.00	
Sauger	342.1	188.	471.	67.36	15	363.7	190.	930.	201.70	14
Walleye	279.0	271.	287.	11.31	2	178.5	147.	210.	44.55	2
River Carpsucker	408.4	360.	440.	31.19	2	1012.0	.099	1340.	280.21	'n
Smallmouth Buffalo	325.4	209.	483.	41.57	268	542.0	116.	1850.	222.58	268
Silver Redhorse	551.0	551.	551.	0.00	-	2000.0	2000.	2000.	0.00	~
Golden Redhorse	321.0	321.	321.	0.00		370.0	370.	370.	0.00	
Shorthead Redhorse	360.7	292.	452.	53.60	11	572.3	278.	1210.	282.20	11
White Bass	228.7	197.	262.	32.53	က	152.7	90.	236.	75.16	ო
Bluegill	153.7	105.	201.	24.39	9 8	94.0	28.	183.	41.32	89
White Crappie	190.7	131.	262.	35.58	33	103.5	28.	256.	66.99	39
Black Crappie	151.6	114.	233.	29.62	65	62.0	26.	204.	43.42	65
Freshwater Drum	235.2	124.	388.	49.29	83	183.6	4.	900	131.99	• 83
Shovelnose Sturgeon	645.0	638.	652.	9.90	2	628.5	407.	850.	313.25	2
Yellow Perch	188.0	188.	188.	0.00		98.0	98.	98	0.00	-
Black Bullhead	192.5	159.	285.	43.15	12	125.4	.69	364.	82.42	12

TABLE 36. Summary of lengths (mm) and weights (g) of all fish species caught by seining in all sampling months.

Species Mean Min. Bange Sample Longnose Gar 605.0	Range		Sample					
605.0 605. 605. 0.00 38.0 38. 38. 0.00 46.1 42. 411. 0.00 46.0 30. 31. 31. 0.00 47.9 29. 66. 11.94 46.9 26. 73. 9.27 47.9 29. 66. 11.94 47.4 23. 67. 8.83 47.4 23. 67. 8.83 47.4 23. 67. 8.83 47.6 49. 49. 0.00 47.7 4 23. 67. 8.83 41.0 38. 44. 4.24 41.0 38. 48. 50. 0.00 39.7 34. 50. 14.91 54.4 23. 170. 36.86 55. 24. 249. 88.20 87.1 26. 223. 56.31 48.3 14. 322. 40.32 11.41	Mfn.	S.D.	Size	Mean	Range Min. Ma	ige Max	S	Sample
## 605.0 605. 605. 0.00 ## 46.1 605. 0.00 ## 46.1 42. 38. 3.8 ## 46.0 30. 91. 8.77 ## 47.9 29. 66. 11.94 ## 47.9 29. 66. 11.94 ## 47.9 29. 66. 11.94 ## 47.0 47. 0.00 ## 47.0 47. 47. 0.00 ## 47.0 47. 47. 0.00 ## 47.0 47. 47. 0.00 ## 47.0 49. 49. 69. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 0.00 ## 47.0 49. 49. 49. 60.00 ## 47.0 49. 49. 49. 60.00 ## 47.0 49. 49. 49. 69. 49. 69. 69. 69. 69. 69. 69. 69. 69. 69. 6								
## 46.10 411. 411. 0.00 ## 46.1 42. 53. 3.93 # 46.0 30. 91. 8.77 # 47.9 29. 66. 11.94 # 47.9 26. 73. 9.27 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.4 23. 36. 162 # 47.6 47. 47. 0.00 # 47.4 23. 36. 162 # 47.6 47. 47. 0.00 # 47.4 23. 36. 162 # 47.9 49. 49. 49. 0.00 # 47.4 23. 36. 163 # 46.1 33. 36. 162 # 47.9 49. 49. 49. 0.00 # 47.4 23. 36. 170 # 47.9 49. 49. 49. 14.91 # 48.3 14. 322. 40.32 # 46.1 32. 40.32 # 46.1 32. 40.32 # 46.1 32. 40.32 # 46.1 32. 40.32 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.1 36.86 # 46.3 14.4 322. 40.32 # 46.3 36.86 # 46	38.	86		600.0	.009	900	88	~ <
## 46.1 42. 53. 3.93 # 6.0 30. 31. 31. 0.00 # 7.9 29. 66. 11.94 # 6.9 26. 73. 9.27 # 7.4 23. 67. 8.83 # 7.0 47.4 4.24 # 7.0 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 0.00 # 7.0 47. 47. 47. 47. 0.00 # 7.0 47. 47. 47. 47. 47. 47. 47. 47. 47. 47.	411.	80	۱	940.0	940	940	88	> ~
r 46.0 30. 91. 8.77 31.0 31.0 31. 91. 8.77 31.0 31.0 31. 31. 0.00 r 47.9 29. 66. 11.94 46.9 26. 73. 9.27 47.4 23. 67. 8.83 47.4 23. 67. 8.83 47.4 23. 67. 8.83 47.0 47. 0.00 8.8 9.42 88.0 49. 83. 9.42 41.0 38. 44. 4.24 41.0 38. 44. 4.24 41.0 39.5 31. 68. 9.42 88.0 49. 83. 9.30 172.5 172. 227. 0.00 8e 227.0 227. 227. 0.00 8e 198.0 198. 198. 0.00 8e 280.0 280. 280. 0.00 8e 280.0 280. 280. 0.00 8e 280.0 280. 280. 0.00 8e 280.0 280. 88.13 127.0 31. 290. 88.13 127.0 31. 290. 88.5 8e 28.5 24. 249. 88.20 87.1 26. 223. 56.31 48.3 14. 322. 40.32 114.11	42.	3,93	. ~		;		86	- د
r 47.9 29. 66. 11.94 46.9 26. 73. 9.27 er 46.9 26. 73. 9.27 vw 47.4 23. 67. 8.83 vw 47.4 23. 67. 8.83 vw 47.4 23. 67. 8.83 vw 47.0 47. 47. 0.00 sh 61.3 36. 162. 35.99 a10 47.0 49. 49. 0.00 sh 61.3 36. 162. 35.99 a10 227.0 227. 227. 0.00 se 227.0 227. 227. 0.00 se 228.0 225. 225. 0.00 se 288.0 198. 198. 0.00 se 288.0 288. 0.00 se 288.0 388. 0.00 se 388. 0.00 se 389.	30.	8.77	75	0.0	•	ċ	0.0) C
r 47.9 29. 66. 11.94 er 46.9 26. 73. 9.27 er 45.6 40. 55. 4.98 r 49.0 49. 49. 0.00 sh 47.4 23. 67. 8.83 47.0 47. 47. 67. 0.00 sh 61.3 36. 162. 35.99 a10. 41.0 38. 44. 4.24 165.8 30. 293. 71.16 27.0 190. 396. 77.40 a10. 172.5 172. 173. 0.71 falo 225.0 227. 227. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 Sunfish 61.3 24. 90. 14.91 55. 82.5 24. 249. 88.20 87.1 26.5 66. 187. 85.56 184.3 35. 59.1141	31.	0.00		0.0	•	; c		o C
er 46.9 26. 73. 9.27 r 45.6 40. 55. 4.98 r 49.0 49. 49. 67. 8.83 w 47.4 23. 67. 8.83 sh 61.3 36. 162. 35.99 m 58.0 49. 83. 9.42 41.0 38. 44. 4.24 165.8 30. 293. 71.16 272.0 190. 396. 77.40 272.0 190. 396. 77.40 se 225.0 227. 27. 0.00 se 226.0 227. 27. 0.00 se 226.0 227. 27. 0.00 se 226.0 227. 37. 0.00 se 280.0 39.7 34. 36. 8.96 127.0 31. 290. 85.13 89.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 48.3 14. 322. 40.32 ide 42.3 35. 56.31	29.	11.94	34	0.0	•	ċ	000) C
er 45.6 40. 55. 4.98 r 49.0 49. 49. 67. 8.83 sh 47.4 23. 67. 8.83 sh 61.3 36. 162. 35.99 m 58.0 49. 83. 9.42 41.0 38. 44. 4.24 165.8 30. 293. 71.16 272.0 190. 396. 77.40 272.0 190. 396. 77.40 272.0 190. 227. 0.00 se 225.0 227. 27. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 28.0 280. 0.00 39.7 34. 90. 14.91 28.0 56. 187. 85.56 28.0 6 280. 171. 102.53 24. 249. 88.20 87.1 26. 223. 56.31 an 48.3 14. 322. 40.32	26.	9.27	90	0.0	•		0.00	. 0
r 49.0 49. 49. 49. 0.00 sh 47.4 23. 67. 8.83 sh 61.3 36. 162. 35.99 sh 61.3 36. 162. 35.99 sh 61.3 36. 162. 35.99 sh 49. 47. 47. 0.00 se 28.0 49. 83. 9.42 se 272.0 190. 286. 77.40 se 28.0 225. 225. 0.00 se 28.0 198. 198. 0.00 se 280.0 280. 0.00 se 280.0 280. 0.00 se 280.0 280. 0.00 39.7 34. 50. 8.96 se 280.0 280. 0.00 se 280.0 280. 0.00 39.7 34. 50. 8.96 se 26. 27. 90. 14.91 se 28. <t< td=""><td>40.</td><td>4.98</td><td>80</td><td>0.0</td><td>ı</td><td></td><td>0.00</td><td>0</td></t<>	40.	4.98	80	0.0	ı		0.00	0
sh 47.4 23. 67. 8.83 sh 47.0 47. 47. 0.00 sh 61.3 36. 162. 35.99 m 39.5 31. 68. 9.42 41.0 38. 44. 4.24 165.8 30. 293. 71.16 272.0 190. 396. 77.40 272.0 190. 396. 77.40 alo 172.5 172. 173. 0.70 se 255.0 225. 225. 0.00 se 268.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 280. 0.00 se 259.6 154. 382. 90.46 se 269.5 154. 382. 90.46 se 269.5 154. 382. 90.46 se 269.6 154. 382. 90.46 se 269.7 34. 50. 8.96 127.0 31. 290. 85.13 se 280.0 280. 171. 102.53 se 280.0 280. 171. 102.53 se 280.0 280. 240. 36.86 se 280.0 280. 171. 102.53 se 280.0 280. 171. 102.53 se 280.0 280. 171. 102.53 se 280.0 31. 24. 249. 88.20 se 280.0 31. 26. 223. 56.31 and 48.3 14. 322. 40.32		0.00		0.0	•	0	0.00	0
sh 47.0 47. 47. 0.00 sh 61.3 36. 162. 35.99 m 39.5 31. 68. 9.42 58.0 49. 83. 9.30 41.0 38. 44. 4.24 165.8 30. 293. 77.16 272.0 190. 396. 77.40 277.0 227. 227. 0.00 se 225.0 225. 225. 0.00 se 198.0 198. 198. 0.00 se 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 58. 82.5 24. 249. 88.20 186. 248. 25. 88.20 187.1 26. 223. 56.31 187.1 26. 223. 56.31 188.2 24. 249. 88.20 189.3 14. 322. 40.32	7.4 23.	8.83	52	0.0	•	0	0.00	0
sh 61.3 36. 162. 35.99 m 39.5 31. 68. 9.42 58.0 49. 83. 9.42 41.0 38. 44. 4.24 41.0 38. 44. 4.24 165.8 30. 293. 77.16 272.0 190. 293. 77.40 alo 277. 277. 0.00 se 225.0 225. 225. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 280.0 280. 280. 0.00 se 280.0 280. 280. 0.00 39.7 34. 50. 8.56 se 280.0 280. 8.36 ss 171. 102.53 sc 26. 177. 36. sc 172. 36. 11.41 <tr< td=""><td>47.</td><td>0.00</td><td></td><td>0.0</td><td>•</td><td>0</td><td>0.00</td><td>0</td></tr<>	47.	0.00		0.0	•	0	0.00	0
m 39.5 31. 68. 9.42 58.0 49. 83. 9.30 41.0 38. 44. 4.24 165.8 30. 293. 71.16 272.0 190. 396. 77.40 277.0 190. 396. 77.40 37.0 37. 37. 0.00 se 255.0 225. 225. 0.00 se 198.0 198. 198. 0.00 se 269.6 154. 382. 90.46 r 39.7 34. 50. 85.13 39.7 34. 50. 85.13 58.6 126.5 66. 187. 36.86 ss 126.5 66. 187. 85.66 ss 126.5 66. 187. 85.66 ss 126.5 66. 187. 85.63 um 48.3 14. 322. 40.32	36.	35.99	16	20.0	20.	20.	00.0	
58.0 49. 83. 9.30 41.0 38. 44. 4.24 165.8 30. 293. 71.16 272.0 190. 396. 77.40 272.0 227. 227. 0.00 37.0 37. 37. 0.00 37.0 172.5 172. 173. 0.71 172.5 172.5 173. 0.71 180.0 198.0 198. 0.00 5e 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 7 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 5s 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 14.11	31.	9.45	28	0.0	•	0	0.0	0
## 41.0	49.	9.30	11	0.0	•	0	0.00	0
165.8 30. 293. 71.16 272.0 190. 396. 77.40 277.0 227. 227. 9.00 37.0 37. 0.00 alo 172.5 172. 173. 0.71 ffalo 225.0 225. 225. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 280.0 280. 0.00 39.7 34. 36. 8.96 127.0 31. 290. 8.96 127.0 31. 290. 8.96 89.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 55 66. 187. 85.56 87.1 26. 223. 56.31 1m 48.3 14. 322. 40.32 11.41 35. 59. 11.41	38.	4.24	2	0.0	•	0	0.00	0
ucker 272.0 190. 396. 77.40 ucker 227.0 227. 227. 0.00 alo 172.5 172. 173. 0.00 se 198. 198. 198. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 280.0 280. 0.00 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 ss 126.5 66. 187. 85.56 m 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	30.	71.16	25	0.0	1	·	0.00	0
ucker 227.0 227. 227. 0.00 alo 37.0 37. 37. 0.00 alo 172.5 172. 173. 0.71 ffalo 225.0 225. 0.00 se 198.0 198. 198. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 ss 126.5 66. 187. 85.56 ss 126.5 66. 187. 85.56 ss 126.5 66. 187. 85.56 ide 42.3 35. 56.31	190.	77.40	5	540.0	540.	540.	0.00	
alo 37.0 37. 37. 0.00 ffalo 225.0 225. 225. 0.00 se 198.0 198. 198. 0.71 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 ss 126.5 66. 187. 85.56 ss 126.5 67.1 102.31 mm 48.3 14. 322. 40.32 ide 42.3 35. 56.31	227.	0.00		0.0	•	<u>.</u>	0.00	0
falo 172.5 172. 173. 0.71 ffalo 225.0 225. 225. 0.00 se 198.0 198. 198. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 ss 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 um 48.3 14. 322. 40.32	37.	0.00	-	0.0	•	0	0.00	0
ffalo 225.0 225. 225. 0.00 se 198.0 198. 198. 0.00 se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 39.7 34. 50. 8.96 127.0 31. 290. 85.13 Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 ss 126.5 66. 187. 85.56 ss 82.5 24. 249. 88.20 mm 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	172.	0.71	2	74.0	74.	74.	0.00	-
se 198.0 198. 198. 0.00 se 208.5 186. 248. 27.26 horse 259.6 1154. 382. 90.46 r 280.0 280. 0.89. 0.00 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 5 126.5 66. 187. 85.56 ss 82.5 24. 249. 88.20 87.1 26. 223. 56.31 um 48.3 14. 322. 40.32 ide 208.5 58.5 59. 11.41	225.	0.00	-	0.0	•	0.	0.00	0
se 208.5 186. 248. 27.26 horse 259.6 154. 382. 90.46 r 280.0 280. 280. 0.00 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 5 126.5 66. 187. 85.56 ss 82.5 24. 249. 88.20 mm 48.3 14. 322. 40.32 ide 229.6 27.26	198.	0.00		0.0		0	0.00	0
rorse 259.6 154. 382. 90.46 r 280.0 280. 280. 0.00 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 ss 126.5 66. 187. 85.56 87.1 26. 223. 56.31 um 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	186.	27.26	4	90.0	90	90.	0.00	
Sunfish 280.0 280. 280. 0.00 39.7 34. 50. 8.96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 5 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 Jm 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	154.	90.46	ഹ	520.0	520.	520.	0.00	_
39.7 34. 50. 8 96 127.0 31. 290. 85.13 98.5 26. 171. 102.53 5 126.5 66. 187. 85.86 82.5 24. 249. 88.20 87.1 26. 223. 56.31 Jm 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	280.	0.00	(284.0	284.	284.	0.0	
Sunfish 61.3 24. 290. 85.13 98.5 26. 171. 102.53 54. 90. 14.91 54.4 23. 170. 36.86 55 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 Jm 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	34.	8.96 9.96	ו ניי	0.0	•		0.00	0
Sunfish 61.3 24. 90. 14.91 54.4 23. 170. 36.86 55 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 Jun 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	31.	85.13	~ 0	0.0	•	· ·	0.0	0
ss 126.5 66. 187. 85.56 82.0 mm 48.3 14. 322. 40.32 ide 18.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	%	102.53	7 (0.0	•		9.0	0 0
ss 126.5 66. 187. 85.56 82.5 24. 249. 88.20 87.1 26. 223. 56.31 um 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	23.	14.91	2 5		۱ ٔ		98	-
82.5 24. 249. 88.20 87.1 26. 223. 56.31 mm 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	66.	30.00	, ,		4.		36	→ c
M 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	24.	88.30	,	0.00	8	. 0	36	> -
um 48.3 14. 322. 40.32 ide 42.3 35. 59. 11.41	26.	56.31	22	146.5	12.	176	41 72	٠,
ide 42.3 35. 59. 11.41	14.	40.32	79	500.0	200	200	0.00	
	42.3 35. 59.	11.41	4	0.0	•	0	0.0	0
0.00	47.0 47. 47.	0.00	_	0.0	•	0	0.00	0

smallmouth bass, a pumpkinseed, and a paddlefish were caught only with the shocker. Shovelnose sturgeon, black bullheads, and a yellow perch were found in hoop nets but not in other gear. Johnny darter, trout-perch, tadpole madtoms, a fathead minnow, and speckled chub were only caught with the seine.

The amount of effort used with each gear influenced month to month variation in number of species caught by each gear. Seining showed the greatest variation with time in number of species caught during each sampling month. Electrofishing yielded 30 to 38 species each sampling month, hoop netting captured 12 to 15 species, and seining, 14 to 28 species (Appendices A-L). Different amounts of effort for each gear can affect comparisons between different gears (Funk 1958). Greater variation in number of species seined each month was expected because much less effort was expended seining than shocking or hoop netting. Only four or five short seine hauls were made each sampling month compared to 19.5 hours of shocking and about 112 net days of hoop netting.

Bluegill and freshwater drum were vulnerable to all gears but the other species which were most susceptible to each gear differed. Emerald shiners, followed by bluegill and freshwater drum, carp, sauger, and shorthead redhorse were caught in greatest numbers electrofishing (Table 34). Bertram and Dunham (1972) felt the effective-

ness of A.C. shocking was excellent for collecting carp and bluegill, good for freshwater drum, but only fair for sauger in the Upper Mississippi River. Channel catfish and smallmouth buffalo were most vulnerable to hoop netting but freshwater drum, bluegill, and black crappie were also important in hoop net catches (Table 35). Funk (1958) found hoop nets to be effective for catching channel catfish. Bluegill ranked fourth in abundance in hoop net catches even though they may be adept at escaping from hoop nets (Hansen 1944). Bluegill, river shiners, freshwater drum, silver chubs, and bullhead minnows were most abundant in seine hauls (Table 36). Reynolds and Simpson (1978) found that small seines were effective for catching bluegill.

Large variations in catch success were evident in all three gears. Electrofishing catch rates were extremely variable, ranging from 0 to 924 fish per 30 minute transect. Hoop net catch rates ranged from 0 to 44.2 fish per net day. The largest hoop net catch was 135 fish from one baited hoop net that fished for three days in the side channel. Seining netted 2 to 114 fish per haul. Time of year, river stage, and site differences probably influenced these variations through their effects on water conditions during sampling and on fish behavior (Lagler 1978; Pope et al. 1975; Vincent 1971).

Baited Versus Unbaited Hoop Nets

Hoop nets have been baited with soybean cake and cheese (Mayhew 1973; Harrison 1954) and cottonseed oil cake (Carter 1954) to increase catches of commercial fish. Mayhew (1973) found that cheese bait increased catch success for channel catfish, and soybean cake increased catch success for carp in the Des Moines River, Iowa.

In this study, hoop nets baited with soybean cake caught significantly more fish (paired t-tests; 23 and 27 d.f.; p=.025) than unbaited nets in each month of 1978. Average catch rates for all four months combined were 3.67 fish per net day in baited nets and 1.20 fish per net day in unbaited nets. These rates compare favorably with the 2.4 fish per net day reported by Starrett and Barnickol (1955) for the Mississippi River, and 1.2 fish per day reported by Carter (1954) for Kentucky Lake.

The month when the catch rate was highest differed between baited nets and unbaited nets (Figure 10). Catches in unbaited nets were greatest in August because of the number of centrarchids caught (Table 13). Highest catches in baited nets occurred in October because of large catches of channel catfish and smallmouth buffalo. Hoop net catch rates were similar in June of 1978 and 1979; 0.9 and 0.7 fish per day in unbaited nets and 1.6 and 1.6 fish per net day in baited nets.

Baited and unbaited nets differed in the species for which they were most selective, and in the number of

AD-A096 634 WISCONSIN UNIV-STEVENS POINT WISCONSIN COOPERATIVE FI--ETC F/6 8/8 UPPER MISSISSIPPI RIVER WING DAM NOTCHING: THE PRE-NOTCHING FIS--ETC(U) MAY 80 R B PIERCE UNCLASSIFIED NL 2 № 3 ADA 1108694

FIGURE 10. Average catch rates for baited and unbaited hoop nets in June, August, and October 1978.

species they caught. Significantly more channel catfish, smallmouth buffalo, carp, and bluegill (Chi-square; 1 d.f.; p=.05) were caught by baited nets than by unbaited nets (Table 37). Unbaited nets caught more flathead catfish, freshwater drum, and black crappie than baited nets (Chi-square; 1 d.f.; p=.05). Twenty one species of fish were caught in unbaited nets versus 16 in baited hoop nets. Longnose gar, shortnose gar, gizzard shad, silver redhorse, golden redhorse, shorthead redhorse, and yellow perch were caught in unbaited nets but not in baited nets (Tables 12-15). Stonecat and silver chub were captured in baited nets but not in unbaited nets.

The additional cost of baiting nets with soybean cake was greater than recent market values for most commercial fish. I estimated the cost of baiting hoop nets with 2 kg of soybean cake per net to be about 54¢ per net day. Since baiting resulted in an additional catch of 2.47 fish or 0.87 kg per net day over unbaited nets, baiting cost 22¢ per additional fish or 62¢ per kg (28¢ per 1b.). Gengerke and Beck (1978) reported market values (¢ per 1b.) for fish in Iowa of: carp, 7; buffalo, 22; freshwater drum, 16; channel and flathead catfish, 52; bullheads, 18; and carpsuckers and redhorse, 5. Catch rates (kg per net day) for legal size channel and flathead catfish (300 mm or longer) were actually higher in unbaited than baited nets. One commercial fisherman in Pool 13 stopped baiting his nets because he could not justify the cost. However,

TABLE 37. Total numbers of fish of various species caught in baited and unbaited nets in all four months.

	Number of fish	
Species	Unbaited hoop nets	Baited hoop nets
Carp	2	32
Smallmouth buffalo	14	257
Channel catfish	39	399
Flathead catfish	37	18
Bluegill	26	43
Black crappie	50	15
Freshwater drum	52	30

baiting may cost experienced commercial fishermen less than it did us because they are more efficient fishermen, and they buy large quantities of soybean at discounted rates. Soybean cake for this study cost \$15.20 per 36 kg (80 lb.) sack.

Size Selection of Gear

Eighteen fish species were chosen to compare gear size selection: walleye, sauger, logperch, freshwater drum, channel catfish, flathead catfish, tadpole madtom, smallmouth buffalo, quillback, shorthead redhorse, carp, emerald shiner, river shiner, bullhead minnow, bluegill, black crappie, white crappie, and largemouth bass. These species represent a large proportion of the numbers, biomass, and families of fish caught in the study area. The most important sport and commercial fishes are represented.

Electrofishing was the least size selective of the three fishing gears. The widest range of sizes of fish, 15 mm (emerald shiner) to 831 mm (longnose gar) in total length, was caught electrofishing (Table 34). Lagler (1978) stated that electrofishing is one of the least selective active fishing methods. Hoop nets caught fish from 79 mm (channel catfish) to 673 mm (longnose gar) in total length (Table 35). Fish from 14 mm (freshwater drum) to 605 mm (longnose gar) were seined (Table 36). Compared to electrofishing, hoop netting was more effective for

catching large individuals and seining was more effective for catching small fish (Tables 38-42). Average lengths of fish of all species caught in each gear were 64 mm for seining, 179 mm for electrofishing, and 273 mm for hoop netting. Two exceptions to this general pattern were found: the mean length of carp was greater in electrofishing catches than in hoop nets and the average length of emerald shiners was smaller in electrofishing catches than seine hauls. No explanation for these two exceptions were apparent.

Average sizes of smallmouth buffalo, freshwater drum, channel catfish, flathead catfish, bluegill, black crappie, and white crappie were similar to those found by Starrett and Barnickol (1955) in hoop nets of similar mesh size in the Mississippi River. Mean lengths found by Starrett and Barnickol usually differed by less than 50 mm from mean lengths found in this study. Carp were an exception. The average length of carp caught in hoop nets during this study was 150 mm shorter than those caught by Starrett and Barnickol. The smaller size of carp in this study may have been the result of some combination of increased fishing pressure on carp since the 1950's, differences in sample sizes, or differences in year class strength of carp between the 1950's and 1978. Since commercial fishing pressure on carp in Pool 13 has increased over the past 25 years (Rasmussen 1979), large carp may now be less abun-

TABLE 38. Length frequency distributions of bluegill, black crappie, white crappie, and largemouth bass captured by A.C. electrofishing, hoop netting, and seining in all four months.

ISS	86	
Largemouth bass		126.5 85.56 2
Largem	10001100000001	195.4 74.95 60
Seine	N	82.5 88.20 11
White crappie Hoop net	2441 828 4	190.7 35.58 39
AC	17 7 5 7 4	182.7 35.95 22
Seine	874 H4H H	87.1 56.31 22
Black crappie Hoop net	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	151.6 29.62 65
AC B1	100 100 100 100 100 100 100 100 100 100	145.9 36.53 83
Seine	62 11 14 13 3	54.4 36.86 94
Bluegill Hoop met	9 13 29 3	153.7 24.49 68
AC	24 38 20 94 134 7 7 1	107.9 36.49 465
Length range (mm)	21-40 41-60 61-80 81-100 101-120 121-140 141-160 201-220 221-240 241-260 261-280 281-300 301-320 321-340	Mean length Stand. dev. Sample size

TABLE 39. Length frequency distributions of walleye, sauger, and freshwater drum captured by A.C. electrofishing, hoop netting, and seining in all four months.

drum Seine	10 33 14 7 1	48.3 40.32 79
Freshwater drum Hoop net S	25 111 131 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1	235.2 49.29 83
AC	2 16 26 17 18 17 17 11 11 11 11 11	168.4 54.82 465
Seine		165.8 71.16 25
Sauger Hoop net	1 132532 1	342.1 67.36 15
AC	8 27 30 445 30 11 11 15 11	218.2 59.61 230
Seine	1 2 1 1	272.0 77.40 5
Walleye Hoop net		279.0 11.31 2
AC	1 10 10 12 13 13 13 13 13 13 13 13 13 13 13 13 13	274.4 63.81 45
Length range(mm)	0-20 21-40 41-60 61-80 81-100 101-120 121-140 141-160 161-180 221-240 221-240 221-240 221-240 231-340 331-340 331-340 341-360 341-360 401-420 401-420 441-460 441-460	Mean length Stand. dev. Sample size

TABLE 40. Length frequency distributions of channel catfish, flathead catfish, and tadpole madtoms captured by A.C. electrofishing, hoop netting, and seining in all four months.

Length	i	Channel catfish	fish	Flathe	ad catfish	Tadpole madtom
range (mm)	AC	Hoop net	Seine	AC	AC Hoop net	Seine
21-40 41-60 61-80 81-100 101-120 121-140 141-160 161-180 201-220 221-240 241-260 261-280 281-300 301-320 331-340 341-360 361-440 441-460 461-480 461-480 461-460 461-450 521-540	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 100 86 35 15 15 1	1 1 503	2	2m4m∞r0∞622m	2 8 8
Mean length Stand. dev. Sample size	262.2 94.66 37	265.4 35.94 438	61.3 35.99 16	229.4 102.89 8	311.7 68.35 55	39.5 9.42 28

TABLE 41. Length frequency distributions of carp, smallmouth buffalo, quillback, and shorthead redhorse captured by A.C. electrofishing, hoop netting, and seining in all four months.

3 3 2 8 8 15 16 1 1	2 75 75 128 51 9		18 18 31 41 2	11 26 34 45 9		1 2
3 88 16 7 1	2 75 128 51 9		18 18 31 41 2	11 26 34 45 9		5 1
3 15 16 1 1	2 75 128 51 9	-	18 18 31 41 8	11 26 34 45 9		1 2
2 8 15 7 1	2 75 128 51 9		18 18 41 8 2	26 34 45 26		2
8 15 16 1	2 75 128 51 9		18 31 41 2	34 45 9 26		5
15 16 7 1	75 128 51 9		31 41 2 8	45 26		
16 7 1	128 51 9		4 1 8 2	9 26		
7	51 9		∞ ~	56	4	
~ ~	6		2		m	 -
1				20	2	
				က	-	
	က					
		225.0	273.1	276.9	360.7	259.6
		0.0	67.59	91.86	53.60	90.46
411.0 0.0 1	291.1 70.97 53	325.4 41.57 268		325.4 41.57 268	325.4 225.0 41.57 0.0 268 1	325.4 225.0 273.1 41.57 0.0 67.59 268 1 122

TABLE 42. Length frequency distributions of emerald shiners, river shiners, bullhead minnows, and logperch captured by A.C. electrofishing and seining in all four months.

dant. Sample sizes were greater for all species in this study than those of Starrett and Barnickol. Variation in year class strength can result in a difference in mean size of fish in catches; whether such a difference occurred for carp in these two studies is not known.

Length-weight Relationships

G.M. functional regressions describing length-weight relationships ($ln\ W = ln\ a + b\ ln\ TL$) were calculated for each fish species for which 20 or more individuals were caught in each sampling month (Tables 43-45). Ricker (1973) explained that G.M. functional regressions are more suitable than ordinary predictive regressions for describing the length-weight relationship.

In this study, coefficients of least squares length-weight regressions were similar to coefficients reported in the literature. Slopes and intercepts of regression lines were average compared to ranges found in Carlander (1969, 1977) for carp, river carpsucker, smallmouth buffalo, shorthead redhorse, channel catfish, flathead catfish, bluegill, largemouth bass, and white and black crappie. Slopes and intercepts in this study also resembled coefficients of regressions reported by Greenbank (1950), Andersen (1972), Meyer (1962), Buchholz (1957), Wynes (1976), Carter (1968), Vasey (1967), Eberley (1975), and Bur (1976) for carp, shorthead redhorse, river carp-

TABLE 43. Length-weight relationships and correlation coefficients (r) for carp, river carpsucker, quillback, smallmouth buffalo, and shorthead redhorse in Pool 13, Upper Mississippi River.

Species	Number of fish	Least squares regression	٤	GM functional regression
Carp ** June 1978 August 1978 October 1978 June 1979	38 99 44	ln W = -9.80 + 2.77 ln TL ln W = -9.96 + 2.79 ln TL ln W = -10.18 + 2.84 ln TL ln W = -9.20 + 2.68 ln TL	.993 .993 .978	ln W = -9.93 + 2.79 ln TL ln W = -10.05 + 2.81 ln TL ln W = -10.75 + 2.94 ln TL ln W = -9.57 + 2.74 ln TL
River Carpsucker June 1979	25	In W = -10.80 + 2.94 In TL	.978	ln W = -11.18 + 3.00 ln TL
Quillback June 1978 August 1978 October 1978 June 1979 All months combined	29 25 25 121	ln W = -10.72 + 2.90 ln TL ln W = -10.80 + 2.91 ln TL ln W = -11.33 + 3.01 ln TL ln W = -11.22 + 2.99 ln TL ln W = -10.96 + 2.94 ln TL	.995 .996 .995 .987	ln W = -10.80 + 2.91 ln TL ln W = -10.84 + 2.92 ln TL ln W = -11.44 + 3.03 ln TL ln W = -11.44 + 3.03 ln TL ln W = -11.05 + 2.96 ln TL
Smallmouth Buffalo ** June 1978 August 1978 October 1978 June 1979	30 75 144 71	ln W = -10.09 + 2.81 ln TL ln W = -9.80 + 2.77 ln TL ln W = -10.63 + 2.91 ln TL ln W = -10.96 + 2.98 ln TL	.975 .961 .976	ln W = -10.50 + 2.88 ln TL ln W = -10.42 + 2.88 ln TL ln W = -11.01 + 2.98 ln TL ln W = -11.47 + 3.06 ln TL
Shorthead Redhorse ** June 1978 August 1978 October 1978 June 1979	50 52 39	ln W = -10.88 + 2.89 ln TL ln W = -11.38 + 3.00 ln TL ln W = -12.00 + 3.11 ln TL ln W = -10.18 + 2.79 ln TL	.998 .995 .997	ln W = -10.89 + 2.90 ln TL ln W = -11.47 + 3.01 ln TL ln W = -12.08 + 3.12 ln TL ln W = -10.84 + 2.90 ln TL

Significant difference between monthly least squares regressions at 95% confidence level. Significant difference between monthly least squares regressions at 99% confidence level.

TABLE 44. Length-weight relationships and correlation coefficients (r) for channel catfish, flathead catfish, bluegill, largemouth bass, white crappie, and black crappie in Pool 13, Upper Mississippi River.

Species	Number of fish	Least squares regression r	r GM functional regr	regression
Channel Catfish * June 1978	99	$W = -12.17 + 3.08 \ln TL$	1n W = -12.50 +	14 Jn
August 1978	125	= -11.41 + 2.94 In TL	= -11.68	99 In TL
October 1978	254	$W = -12.26 + 3.09 \ln TL$	ln W = -12.57 +	15 ln
June 1979	28	W = -12.38 + 3.12 ln TL	In W = -13.24 +	28 ln
Flathead Catfish *	7.0	12 00 t = 12 12 12 12 12 12 12 12 12 12 12 12 12		, c
August 1978	20	-11.34 + 2.97 ln TL	-11.63 + 3.	49 III 1L 02 In TL
Bluegill **				
August 1978	422	In W = -11.42 + 3.15 In TL . 9	.985 ln W = -11.64 + 3.	3.20 In TL
October 1978	24	$W = -10.30 + 2.92 \ln T_L$	In W = -10.41 +	드
Largemouth Bass	ØV	11 20 t 2 0 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	· .	
	P		+0.6 + CE:TI = - M III 066	1 = +0
White Crappie	Ç		;	
August 1978	20	in W = -12.22 + 3.19 in TL	.992 In W = -12.35 + 3.	3.22 In TL
Black Crappie	,			
August 1978	111	in W = -12.38 + 3.26 in IL .9	.974 In W = $-12.80 + 3.35$.35 In TL

Significant difference between monthly least squares regressions at 95% confidence level. Significant difference between monthly least squares regressions at 99% confidence level. *

TABLE 45. Length-weight relationships and correlation coefficients (r) for sauger, walleye, and freshwater drum in Pool 13, Upper Mississippi River.

and the second second

Species	Number of fish	Least squares regression	<u>s</u> _	GM functional regression
Sauger				
June 1978 August 1978	20 82	In W = -12.51 + 3.12 in IL In W = -11.90 + 3.01 In TL	.988	In W = -12.71 + 3.16 In TL In W = -12.26 + 3.07 In TL
October 1978		W = -13.02 + 3.22 ln	966.	W = -13.09 + 3.23 ln
June 1979 All months combined		W = -11.55 + 2.95 In	.967	$W = -12.09 + 3.05 \ln 1$
		M = -12.20 T 3.00 III	. 303	M = -12.34 + 3.13 IN
Walleye October 1978	22	ln W = -12.97 + 3.22 ln TL	.991	ln W = -13.13 + 3.25 ln TL
Freshwater Drum *				
June 1978	61	W = -11.35 + 3.01 ln	930	W = -11.51 + 3.04 ln
August 1978	87	W = -12.05 + 3.13 In	.983	W = -12.30 + 3.18 ln
October 1978	363	ln W = -11.96 + 3.13 ln TL	.989	ln W = -12.14 + 3.16 ln TL
June 1979	31	W = -12.22 + 3.18 ln	966.	W = -12.29 + 3.19 ln

Significant difference between monthly least squares regressions at 95% confidence level. Significant difference between monthly least squares regressions at 99% confidence level. * *

sucker, bluegill, largemouth bass, white and black crappie, sauger, and walleye in the Upper Mississippi and Des Moines Rivers.

Differences between monthly length-weight regressions for each species were tested by analysis of covariance (LeCren 1951; Li 1969) with adjusted mean intercepts. Carp, smallmouth buffalo, shorthead redhorse, channel catfish, flathead catfish, bluegill, and freshwater drum length-weight relationships changed significantly (p=.025) from sampling month to month but quillback and sauger lengthweight relationships did not seem to change (Tables 43-45). Carp and shorthead redhorse conditions were lowest in June, shortly after spawning, and increased from June to August to October during the growing season. Channel catfish and flathead catfish condition decreased between June and August, possibly because spawning occurred. Small sample sizes may also have contributed to monthly differences in length-weight relationships since no biological reasons were apparent for changes in smallmouth buffalo, bluegill, and freshwater drum condition.

Age and Growth

Bluegill, black crappie, sauger, freshwater drum, and channel catfish were species selected for age and growth analysis because of their abundance at emergent wing dams or importance to commercial and sport fisheries.

Freshwater drum and bluegill were chosen because of their abundance in emergent wing dam catches during August and October. Sauger, bluegill, and black crappie have been the most important game fish and panfish in the sport fishery (Greenbank 1950b; Fleener 1975; Wright 1970; Ackerman 1976). Channel catfish and freshwater drum are important components of both commercial and sport fisheries (Rasmussen 1979; Fleener 1975; Barnickol and Starrett 1951).

The areas that I sampled contained primarily young fish of the five selected species. Age I and II bluegill, age I black crappie, age I sauger, and age O, I, and II freshwater drum were abundant in pre-notching catches (Tables 46-49, Appendices M-P). Age II and III channel catfish were also estimated to be abundant in the catches (Table 50). No bluegill, black crappie, or sauger older than age IV, and only one freshwater drum and channel catfish older than IV were caught. Similarly, Jergens and Childers (1959) reported no sauger older than age IV in a sample of 267 sauger from Pools 13, 14, 15, and 19. Christenson and Smith (1965) found few fish older than five years of age in three Upper Mississippi River back waters. Heavy commercial fishing pressure may be removing a substantial proportion of older channel catfish from the river (Gengerke and Beck 1978; Helms 1975; Schoumacher 1965). Other investigators (Butler and Smith 1949; Vasey

TABLE 46. Growth rates and backcalculated mean lengths (mm) at each annulus for bluegill in Pool 13, Upper Mississippi River.

Year class	Sample size	Calculat 1	ted mean 2	length at 3	each annulus 4
1977	130	66.0			
1976	88	57.5	129.0		
1975	5	52.9	118.1	162.	5
1974	3	40.9	94.1	131.	9 167.0
Column Stand. Increme	dev.	54.3 10.5 54.3	113.7 17.8 59.4	147. 21. 33.	6 0.0
Weighte Stand. Increme		62.1 5.0 62.1	127.3 6.5 65.2	151. 15. 23.	8 0.1
		G =2. G _X =2. G ^x =2.	1562 0).5492).7435).0261	0.3245 ^a b o.0886 ^b 0.7607 ^c

 $^{a\bar{G}}$ is the mean growth rate based on column means. $^{b}G_{\chi}$ is the population growth rate based on growth from one year class to the next. ^{C}G is the true growth rate based on growth between the last two calculated mean lengths for each year class.

TABLE 47. Growth rates and backcalculated mean lengths (mm) at each annulus for black crappie in Pool 13, Upper Mississippi River.

Year class	Sample size	Calcula 1	ted mean 1	ength at eac	ch annulus 4
1977	84	95.1			
1976	12	81.5	152.5		
1975	8	66.0	131.7	181.3	
1974	2	46.0	100.3	158.3	187.9
Column Stand. Increme	dev.	72.1 21.1 72.1	128.1 26.3 56.0	169.8 16.2 41.6	187.9 0.0 18.1
Weighte Stand. Increme		90.4 10.5 90.4	140.2 16.3 49.7	176.7 9.7 36.5	187.9 0.2 11.2
		G _v =1	.4260 0.	5226 0.1	853 ^a 078 ^b 171 ^c

 $^{a}\bar{\mathsf{G}}$ is the mean growth rate based on column means. $^{b}\mathsf{G}_{x}$ is the population growth rate based on growth from one year class to the next.

^CG is the true growth rate based on growth between the last two calculated mean lengths for each year class.

TABLE 48. Growth rates and backcalculated mean lengths (mm) at each annulus for sauger in Pool 13, Upper Mississippi River.

Year class	Sample size	Calcula 1	ted mean	length at	each annulus 4
1977	125	163.9			
1976	24	148.3	240.0		
1975	7	141.9	264.3	332.4	•
1974	1	144.0	224.6	258.5	281.8
Column Stand. Increme	dev.	149.5 9.9 149.5	243.0 20.0 93.4	295.4 52.3 52.5	0.0
Weighte Stand. Increme		160.4 7.0 160.4	244.9 10.8 84.4	323.2 26.1 78.3	281.8
		G = 1.3 G = 1.2 G = 1.5	202	0.8874 1.0411 0.7337	4377 ^a 5279 b 0.2762 ^c

 $[^]a\bar{\mathsf{G}}$ is the mean growth rate based on column means. $^b\mathsf{G}_x$ is the population growth rate based on growth from one year class to the next.

^CG is the true growth rate based on growth between the last two calculated mean lengths for each year class.

TABLE 49. Growth rates and backcalculated mean lengths (mm) at each annulus for freshwater drum in Pool 13, Upper Mississippi River.

Year	Sample	Calcul	lated mean	length at	t each ann	ulus	
class	size	<u> </u>	2	3	4	5	6
1977	90	145.5					
1976	63	120.3	211.2				
1975	12	117.7	194.0	245.2			
1974	4	120.7	190.4	262.7	301.5		
1972	1	160.5	123.5	278.8	315.7	344.6	363.0
Column Stand. Increme	dev.	132.9 19.1 132.9	206.8 18.8 73.8	262.3 16.8 55.5	308.6 10.0 46.3	344.6 0.0 36.0	363.0 0.0 18.4
Weighte Stand. Increme		133.7 12.9 133.7	207.8 7.8 74.1	251.3 10.4 43.5	304.4 6.3 53.1	344.6 344.6 40.2	363.0 363.0 18.4
		G = 1.3 G _x =1.1 G = 1.7	974 0.601 801 0.473 823 0.741	0.655	1 0.0000	0.00	549 ^a 500 ^b 549 ^c

 $^{^{}a\bar{G}}$ is the mean growth rate based on column means. $^{bG}_{X}$ is the population growth rate based on growth from one year class to the next. ^{c}G is the true growth rate based on growth between the last two calculated mean lengths for each year class.

TABLE 50. Length-frequency distributions of channel catfish from this study assigned to various year classes on the basis of age and length-frequency information collected by John Pitlo, Iowa Conservation Commission. Channel catfish from my study were caught in June, August, and October 1978.

	Number	1077	1076	Year class	1074	1070
range (mm)	of fish	1977	1976	1975	1974	1973
106-130	1	1				
131-155	1	1 1				
156-180	0 7					
181-205	7	5	2			
206-230	64	17	45	2		
231-255	98		87	11		
256-280	121		47	74		
281-305	95			90	5	
306-330	36			31	5 5 4 1	
331-355	8			3	5	
356-380	4				4	
381-405	1				1	
406-430	1					1
Total number	437	24	181	211	20	1
in each year class						
Mean length of		206	243	285	332	418
each year class (mm)	S			200		

1967; Carter 1968) have reported finding more older age classes of freshwater drum and sauger in catches from the Upper Mississippi River.

The small number of scale samples that I was unable to age did not affect the conclusion that fish older than age IV were generally absent in the catches. Scale samples from 3 bluegill, 3 black crappie, 2 sauger, and 1 freshwater drum were discarded because of disagreement between workers over the number of annuli present. Only one of these fish, a sauger, may have been older than IV years old. Totals of 234 bluegill, 108 black crappie, 174 sauger, and 335 freshwater drum were aged from scale samples. Six scale samples were not aged because scale regeneration was apparent.

Length-frequency distributions (Weatherley 1972; Everhart et al. 1975) and the work of other investigators (Sprugel 1954; Carlander 1950; Erickson 1952; Regier 1962; Butler and Smith 1949) supported the validity of the scale method for aging bluegill, black crappie, sauger, and freshwater drum. The first two peaks in length-frequency histograms for bluegill, black crappie, and sauger (Figures 11-12) corresponded to modal length ranges for ages 0 and I (Appendices M-O). Growth of young-of-the-year freshwater drum from June to August to October 1978 was also evident in length-frequency histograms (Figure 13). Because scale samples were taken throughout the 1978 growing season,

FIGURE 11. Length-frequency histograms for bluegill and black crappie caught in August 1978.

FIGURE 12. Length-frequency histogram for sauger caught in August 1978.

FIGURE 13. Length-frequency histograms for freshwater drum caught in June, August, and October 1978.

- Complete Co.

length-frequency distribution by year class showed much overlap of older year classes.

Growth of the youngest age group may have been overestimated because of gear selection. Sampling methods tend to catch the fastest growing or earliest hatching individuals in younger age groups (Carlander 1974). Most of the fish aged were caught electrofishing, and electrofishing tended to select for intermediate sized fish.

Lee's phenomenon was evident in bluegill and black crappie backcalculated lengths since backcalculated mean lengths at each annulus were consistently smaller with increasing age of the fish from which scales were collected (Tables 46-47). Biased sampling or size selective mortality or both (Ricker 1969; Bagenal and Tesch 1978) were the most likely causes of Lee's phenomenon in this study.

Bluegill, black crappie, sauger, and freshwater drum grew more slowly beyond age II than those species in several other studies on the Upper Mississippi River (Christenson and Smith 1965; Butler and Smith 1949; Vasey 1967; Jergens and Childers 1959; and Carter 1968). In contrast, bluegill growth to age III was greater than found by Wynes (1976) for bluegill in the Mississippi River near LaCrosse, Wisconsin. Bluegill grew slightly faster than average for Ohio, Indiana, Illinois, and Icwa waters combined, and black crappie grew slower than average for northern waters (Carlander 1977).

Body-scale relationships appeared to be linear. The following G.M. functional regressions represented the body-scale relationships:

bluegill TL = 18.283 + .985 SL,

black crappie TL = 25.544 + 1.075 SL,

sauger TL = 40.153 + 2.120 SL,

freshwater drum TL = 23.714 + 1.315 SL.

Correlation coefficients (r) for the body-scale regressions were .977 for bluegill, .964 for black crappie, .973 for sauger, and for freshwater drum, .982.

Mortality

Annual mortality rates calculated from the slopes of catch curves (Ricker 1975) ranged from 62 to 82%. Total annual mortality was 82% for bluegill af ages II through IV, 69% for black crappie of ages I through IV, 79% for sauger from age I to IV, and 62% for freshwater drum of ages I to VI caught hoop netting and shocking (Appendices Q-T). Bluegill, black crappie, and freshwater drum mortality rates were within the ranges of mortalities listed by Carlander (1977), and Butler (1965) for freshwater drum in the Upper Mississippi River. Ricker (1949) found annual mortality rates of 26 to 60% for unexploited sauger populations, and Hackney and Holbrook (1978) estimated sauger annual mortality rate to be 88% in seven Tennessee and Cumberland River impoundments. Hoop netting

and shocking catches were combined to include fish from both shallow and deep water habitats for mortality estimates. Age groups used to calculate mortality were susceptible to both gears.

Discharge

Discharge is a dominant factor in any river environment; it influences river stage (depth), current velocity, sediment loading, turbidity, and erosion (Leopold 1962; Hynes 1970; Beaumont 1975; Simons et al. 1975; Maddock 1972) as well as catches of fish (Table 18) and aquatic benthic macroinvertebrate populations (Hall 1980). Discharge in Pool 13 varied from month to month and year to year. Monthly mean discharges throughout 1978 and early 1979 fluctuated widely with the lowest discharges occurring during winter (Table 51). Annual mean discharges from 1970 through 1979 ranged from 770 to $1855 \text{ m}^3 \text{ sec}^{-1}$. Although the 1978 annual mean discharge was similar to the average for the decade, 1320 and 1355 m^3 sec^{-1} , respectively, the pattern during 1978 was not typical. The maximum discharge occurred in July instead of earlier in spring. The $1740 \text{ m}^3 \text{ sec}^{-1}$ annual mean discharge for 1979was considerably higher than average for the past ten years.

Hydrographic Relief

No substantial accumulation of sediments in the main

TABLE 51. Mean monthly discharges from Lock and Dam No. 12 during 1978 and early 1979 (courtesy of the Rock Island District Corps of Engineers).

	Mean monthly	discharge
Month	3 sec $^{-1}$	$ft^3 sec^{-1}$
1978		
January	920	32,400
February	680	24,100
March	990	34,900
April	2620	92,500
May	1670	58,800
June	1790	63,200
July	2670	94,200
August	1290	45,400
September	1780	63,000
October	1130	39,900
November	910	32,100
December	710	25,100
1979		
January	620	22,000
February	680	24,000
March	1870	66,000
April	3860	136,300
1a <i>y</i>	3840	135,700
June	2280	80,500
July	1840	65,000

channel border between 1976 and 1979 was evident. Although depths varied according to river stage, my comparison of depths found throughout the main channel border with soundings recorded on a 1976 Army Corps of Engineers' map of the study area revealed no accumulation of sediments. Current passing over submerged dams and over emergent dams during river stages higher than 2.1 m must have helped prevent sedimentation in the main channel border area between wing dams. Submerged wing dams and emergent wing dams during high flows were similar to sills in the Missouri River (Wolfender 1980) because current swept over the dams. Sediment build up does not occur below sills.

Deep scour holes were not apparent immediately down-stream from submerged wing dams although they were present at the distal ends of emergent wing dams 26 and 28. The maximum depth recorded, 11.7 m, was found in the outside transect at wing dam 28.

Depth near the tallest wing dams was shallower than near submerged dams. Depth near submerged wing dams was usually greater than 2.6 m (Appendix W). The river bed between emergent wing dams 26 and 28 was often only about 1.5 m under water.

Portions of some wing dams had either eroded away or had been covered with sand. Examples were the inside transects at wing dams 25 and 29 (Appendix V), which we were only able to locate by a combination of techniques

including "feeling" the substrate for rocks with a grappling hook and sonar depth observations. In most of the other hydrographic relief figures (Apendices U-X), the crest of the wing dam is visible as a small peak or mound near the center of each figure. The peaks appear small because the scale was small, and transects were 67 m long but the wing dams were seldom taller than 2.2 m.

The depth of the wing dams under water (Appendices U-X) fluctuated with river stage. River stages ranged from 2.9 to 3.0 meters in June 1978, 2.3 to 2.6 meters in August, 1.9 to 2.2 meters in October, and 2.9 to 3.1 meters in June 1979 during periods when depths were recorded along hydrographic relief transects. Current swept over all of the wing dams when the river was higher than 2.1 meters. The crests of wing dams 26 and 28, the tallest wing dams, were a minimum of 0.9 meters below the water surface in June 1979 but emerged as much as 0.5 meters in October. Submerged wing dams 25, 29, 30, and 31 were never closer than 1.1 meters to the water surface.

Although hydrographic relief transects were difficult to duplicate precisely, I believe the bottom relief figures (Appendices U-X) provide an adequate picture of bottom contours in the study area. Transects were difficult to duplicate because of limitation of accuracy of the range finder in measuring distances from shore. Range finder measurements varied an average of 1.4 meters at distances of 64 and 110 meters, resulting in 1.3 to 2.2% error.

Since the wing dams were as much as 300 meters long and the notches as wide as 90 meters, measurement errors of a few meters should not lead to false conclusions concerning the effects of notching.

Water Temperature and Dissolved Oxygen

Water temperature and dissolved oxygen concentrations were similar from site to site and from top to bottom in the water column in each sampling month (Appendices Y-FF). The maximum temperature difference found between sites in a sampling month was 1.9° C in August. Temperatures varied less than 1° C in the water column. The maximum difference in oxygen concentration usually was less than 1.5 mg 1^{-1} . Water in a river channel rarely stratifies because of turbulence (Welcomme 1979).

Water temperature and dissolved oxygen concentration followed normal seasonal fluctuations (Figure 14) that have been described for the Mississippi River (Dorris et al. 1963). Temperatures ranged from 15.1° C in October to 24° C in August and dissolved oxygen levels ranged from a low of 5.2 mg 1^{-1} in June 1978 to 8.5 mg 1^{-1} in October. Dissolved oxygen concentration was lowest in June of both years because of high water temperature and possibly also, turbidity from high discharges. Secchi disc transparency was as low as 0.1 m in June 1978. Delfino (1977) and Hynes (1970) related low oxygen levels to high temperature

FIGURE 14. Mean water temperatures and dissolved oxygen concentrations in each month.

and large amounts of suspended sediments and biological oxygen demand during high spring discharges. Dissolved oxygen levels increased during low discharges in August and October. Dorris et al. (1963) reported that low stream discharge in the Mississippi River was accompanied by increased levels of oxygen and photosynthetic production.

Since dissolved oxygen concentrations were greater than $5.0~\text{mg}~\text{l}^{-1}$, it appeared that oxygen levels were adequate for fish (EPA 1973, Whitmore et al. 1960). However, dissolved oxygen concentration was not measured at night when levels might have been lower.

Current Velocity

Current velocity varied according to river stage. Current velocities along hydrographic relief transects in the side channel ranged from 0 to 77 cm \sec^{-1} and in the main channel border near the wing dams, from 5 to 96 cm \sec^{-1} (Appendices GG-JJ). Mean velocities (Leopold et al. 1964) at each wing dam and in the side channel (Table 52) were significantly higher in June of both years, when water level was highest, than in August or October (paired t-tests; 5 and 6 d.f.; p=.025). Mean velocity was also significantly higher in August than in October, when the water level was lowest. Mean wing dam and side channel velocities were significantly correlated (p=.05; r=.986 and .984) with river stage (Appendix HH). Natural

TABLE 52. Mean (at 0.6 of depth) and standard deviation (SD) of current velocities measured at each wing dam and the side channel in each month.

				Velocity (cm \sec^{-1})	cm sec ⁻¹)			
Site	June 1978 Mean SD	1978 SD	August 1978 Mean SD	1978 SD	October 1978 Mean SD	. 1978 SD	June 1979 Mean SD	1979 SD
Wing dam 25	61	11	33	9	32	13	51	12
Wing dam 26	54	23	31	13	18	4	ı	•
Wing dam 28	42	7	30	æ	20	16	39	6
Wing dam 29	64	17	51	15	38	13	54	15
Wing dam 30	89	6	61	9	47	11	29	80
Wing dam 31	99	7	59	7	47	0	99	11
Side channel	43	16	37	14	23	11	45	6
	,							

log transformations of mean wing dam and side channel velocities were also significantly correlated with natural log transformations of river stage (p=.05; r=.992 and .980).

Height of wing dams and their position with respect to an upstream bend in the river and to other wing dams influenced current velocity in the study area. Mean velocity was slowest at emergent wing dams and below a bend which deflected the thalweg away from the upper end of the study area. Velocity at emergent wing dams 26 and 28 (Table 52) was significantly lower than at the submerged dams (paired t-tests; 3 and 2 d.f.; p=.025 and .05). Velocity was also significantly higher (paired t-tests; 3 d.f.; p=.025) at submerged dams 30 and 31 at the lower end of the study area than at submerged wing dams 25 and 29 (Figure 1). Velocity at wing dam 25 was lower because the dam was located immediately below the bend, and velocity at wing dam 29 was reduced by emergent wing dam 28. In the side channel, current velocity increased from upstream to downstream.

No immediate effect of notching on current velocity in June 1979 was apparent. Although discharge was greater in June 1979 than June 1978, current velocities throughout the water column near the notch in wing dam 28 were slower in 1979 than 1978 (Appendices GG-JJ).

Current velocity generally decreased from top to bottom in the water column (Appendices GG-JJ). Leopold et al.

(1964) and Hynes (1970) stated that velocity decreases logrithmically with increasing depth. In this study, highest velocity was usually near the surface and the lowest, near the river bed. Exceptions to these generalizations may have been caused by turbulence from the wing dams interrupting flow.

Bottom velocity in the main channel border was usually sufficient to transport fine sediment. Fine sand, between .06 and .25 mm in diameter (Cummins 1962), was only present in small amounts in the study area (Hall 1980) because bottom velocity often exceeded the 20 to 30 cm sec⁻¹, which is necessary to move fine sand (Hynes 1970). Bottom velocity at submerged wing dams was generally strong enough to move sand during both high and low river stages. Some of the bottom velocities recorded at emergent wing dams during high river stages were strong enough to move even coarse sand, but at low stages would allow deposition of sand. Patches of silt and clay were also present in the study area because compacted clay is less readily carried off than sand (Hynes 1970).

Bottom velocity in the side channel was usually sufficient to move fine sand up to .25 mm in diameter, and during higher river stages it was often sufficient to move coarse sand up to 1 mm diameter. Mean bottom velocity in the side channel ranged from 28 to 43 cm \sec^{-1} in the three sampling months other than October. During periods

of higher discharge (Table 51) bottom velocity was usually within the 30 to 70 cm \sec^{-1} range which is necessary to move coarse sand. Bottom velocity in the side channel in October (Appendix II), which ranged from 0 to 43 cm \sec^{-1} , was often slow enough to allow deposition of fine sand.

Notching could help prevent sand deposition during low flow periods such as October if it increased bottom velocity in the side channel above the critical levels. However, notching would have the opposite effect if it increased the amount of sediment entering the side channel without increasing bottom velocity above critical levels. Unsuitable upstream openings to side channels, including wing dam notches, can increase sedimentation rates in side channels and other backwater areas (Simons et al. 1974, 1975; Ackerman et al. 1977).

LITERATURE CITED

- Ackerman, G.L. 1976. Creel survey of the winter ice fishery of the Upper Mississippi River. Iowa Conservation Commission Project No. 76-II-C-31: 156-174.
- Ackerman, G.L., P.E. Koehn, and B.J. Persen. 1977. Pre-alteration study of the fishery and morphology of Cassville Slough. Iowa Conservation Commission Project No. 77-II-C-15: 99-108.
- Andersen, R.A. 1972. Food habits, length-weight relations, and condition of the shorthead redhorse, Moxostoma macrolepidotum (Lesueur), and the carp, Cyprinus carpio L., collected from the Mississippi River near Monticello, Minnesota. M.A. Thesis, St. Cloud State College, St. Cloud, Minnesota. 111 pp.
- APHA. 1975. Standard methods for the examination of water and wastewater, 14th edition. American Public Health Association, Washington, D.C. 1193 pp.
- Bagenal, T.B., and F.W. Tesch. 1978. Age and growth. Pages 101-136 in Bagenal, T.B. editor. Methods for assessment of fish production in fresh waters. IBP Handbook No. 3. Blackwell Scientific Publications, Oxford. 365 pp.
- Bahr, D.M. 1977. Homing, swimming behavior, range, activity patterns, and reaction to increasing water levels of walleyes (<u>Stizostedion vitreum vitreum</u>) as determined by radio-telemetry in navigation pools 7 and 8 of the Upper Mississippi River during spring, 1976. M.S. Thesis. University of Wisconsin, LaCrosse, Wisconsin. 67 pp.
- Bailey, R.M., J.E. Fitch, E.S. Herald, E.A. Lachner, C.C. Lindsey, C.R. Robins, and W.B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada, 3rd edition. American Fisheries Society Special Publication No. 6. 150 pp.
- Bailey, R.M., and H.M. Harrison. 1945. Food habits of the southern channel catfish, <u>Ictalurus lacustris punctatus</u>, in the Des Moines River, Iowa. Transactions of the American Fisheries Society 75: 110-138.
- Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Research Board of Canada 32(6): 821-864.
- Barnickol, P.G., and W.C. Starrett. 1951. Commercial and sport fishes of the Mississippi River between Caruthersville, Missouri, and Dubuque, Iowa. Bulletin of the Illinois Natural History Survey 25: 267-350.

- Beaumont, P. 1975. Hydrology. Pages 1-38 in Whitton, B.A. editor. River ecology. Blackwell Scientific Publications, Oxford. 725 pp.
- Bertrand, B.A., and L.L. Dunham. 1972. Efficiency of four fish sampling devices at seven stations on the Mississippi River in August and September, 1972. Illinois Department of Conservation, Division of Fisheries mimeo. 15 pp.
- Bertrand, B.A., and T. Miller. 1973. Fish population survey of aquatic habitat types in Pools 12 and 13 of the Mississippi River. Illinois Department of Conservation Division of Fisheries mimeo. 14 pp.
- Buchholz, M. 1957. Age and growth of river carpsucker in the Des Moines River, Iowa. Proceedings of the Iowa Acadamy of Science 64: 589-600.
- Bur, M.T. 1976. Age, growth, and food habits of Catostomidae in Pool 8 of the Upper Mississippi River. M.S. Thesis, University of Wisconsin, LaCrosse, Wisconsin. 107 pp.
- Butler, R.L. 1965. Freshwater drum, <u>Aplodinotus grunniens</u>, in the navigational impoundments of the <u>Upper Mississippi River</u>. Transactions of the American Fisheries Society 94(4): 339-349.
- Butler, R.L., and L.L. Smith. 1949. The age and rate of growth of the sheepshead, <u>Aplodinotus grunniens</u> Rafinesque, in the Upper Mississippi River navigation pools. Transactions of the American Fisheries Society 79: 43-54.
- Carlander, K.D. 1950. Growth rate studies of saugers, <u>Stizostedion</u> canadense canadense (Smith), and yellow perch, <u>Perca flavescens</u> (Mitchill), from Lake of the Woods, Minnesota. Transactions of the American Fisheries Society 79: 30-42.
- Carlander, K.D. 1961. Variations on rereading walleye scales. Transactions of the American Fisheries Society 90(2): 230-231.
- Carlander, K.D. 1969. Handbook of freshwater fishery biology. Volume 1. Iowa State University Press, Ames, Iowa. 752 pp.
- Carlander, K.D. 1974. Difficulties in ageing fish in relation to inland fishery management. Pages 200-205 in Bagenal, T., editor. The ageing of fish. Unwin Brothers Limited, Surrey, England. 234 pp.
- Carlander, K.D. 1977. Handbook of freshwater fishery biology. Volume 2. Iowa State University Press, Ames, Iowa. 431 pp.
- Carlander, K.D., C.A. Carlson, V. Gooch, and T.L. Wenke. 1967.
 Populations of Hexagenia mayfly naiads in Pool 19, Mississippi River, 1959-1963. Ecology 48(5): 873-878.

- Carlander, K.D., C.R. Fremling, and D.T. Hoopes. 1959. Biology of caddis flies and mayflies in impounded areas of the Mississippi River. Proceedings of the Upper Mississippi River Conservation Committee. 1959: 128-129.
- Carter, E.R. 1954. An evaluation of nine types of commercial fishing gear in Kentucky Lake. Transactions of the Kentucky Academy of Science 15(3): 56-80.
- Carter, N.E. 1968. Age and growth of sauger in Pool 19 of the Mississippi River. Proceedings of the Iowa Academy of Science 75: 179-183.
- Christenson, L.M. 1952. Wondering catfish. Wisconsin Conservation Bulletin 17(3): 16-18.
- Christenson, L.M., and L.L. Smith. 1965. Characteristics of fish populations in Upper Mississippi River backwater areas. U.S. Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlife Circular No. 212. 53 pp.
- Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67(2): 477-504.
- Delfino, J.J. 1977. Effects of river discharge and suspended sediment on water quality in the Mississippi River. Journal of Environmental Science and Health 12(3): 79-94.
- Dieffenbach, B. 1980. Mitigating the wide Missouri. Missouri Conservationist 41(1): 22-25.
- Dorris, T.C., B.J. Copeland, and G.J. Lauer. 1963. Limnology of the Middle Mississippi River. IV. Physical and chemical limnology of river and chute. Limnology and Oceanography 8: 79-88.
- Dunham, L.L. 1971. Fish sampling by electrofishing gear below navigation dams No. 12-26 on the Mississippi River. Illinois Department of Conservation, Division of Fisheries mimeo. 21 pp.
- Dunham, L.L., and B.A. Bertrand. 1972. Sampling of Savannah Army Depot waters, May 17-19 and July 12-14, 1972. Illinois Department of Conservation, Division of Fisheries mimeo. 4 pp.
- Eberley, L.W. 1975. Spawning activities of major fish species in the Monticello area of the Mississippi River. M.A. Thesis, St. Cloud State College, St. Cloud, Minnesota. 80 pp.
- Eggleton, F.E. 1939. Fresh water communities. American Midland Naturalist 21: 56.

- Ellis, J.M. 1978. Fish communities in three successional stages of side channels of the Upper Mississippi River. M.S. Thesis, University of Missouri, Columbia, Missouri. 66 pp.
- EPA. 1973. Water quality criteria. 1972. Environmental Protection Agency, Ecological Research Series EPA-R3-73-033. 549 pp.
- EPA. 1979. Methods for chemical analysis of water and wastes. Environmental Protection Agency, Environmental Monitoring and Support Laboratory. EPA-600/4-79-020.
- Erickson, J.G. 1952. Age and growth of the black and white crappies,

 <u>Pomoxis nigromaculatus</u> and <u>P. annularis</u> Rafinesque, in Clear Lake,

 <u>Iowa. Iowa State College Journal of Science 26(3): 491-505.</u>
- Finke, A.H. 1964. White bass tagging study. Wisconsin Conservation Department, Fish Management Division, Management Report No. 6. 11 pp.
- Fleener, G.G. 1975. The 1972-1973 sport fishery survey of the Upper Mississippi River. Contribution of the Upper Mississippi River Conservation Committee. 112 pp.
- Funk, J.L. 1958. Relative efficiency and selectivity of gear used in the study of stream fish populations. Transactions of the 23rd North American Wildlife Conference: 236-248.
- Funk, J.L., and J.W. Robinson. 1974. Changes in the channel of the lower Missouri River and effects on fish and wildlife. Missouri Department of Conservation, Aquatic Series No. 11. 52 pp.
- Gengerke, T. 1977. Northern pike investigations. Iowa Conservation Commission Commercial Fisheries Investigations Project No. 2-225-R. 37 pp.
- Gengerke, T.W. 1978. Paddlefish investigations. Iowa Conservation Commission Commercial Fisheries Investigations Project No. 2-255-R. 86 pp.
- Gengerke, T.W., and R.D. Beck. 1978. Assessment of change in commercial length limit of channel catfish. Iowa Conservation Commission, Commercial Fisheries Investigations Annual Performance Report for Project No. 2-316-R. 16 pp.
- Greenbank, J.T. 1946. A comparison of the characteristics of various types of commercial fishing gear. Pages 165-173 in Keenlyne, K.D. editor. 1974. Upper Mississippi River Conservation Committee investigational reports. Upper Mississippi River Conservation Committee. 179 pp.

- Greenbank, J. 1950a. The length-weight relationship of some Upper Mississippi River fishes. Upper Mississippi River Conservation Committee. 12 pp.
- Greenbank, J. 1950b. Creel census on the Upper Mississippi River.
 Proceedings of the Upper Mississippi River Conservation Committee,
 1950.
- Hackney, P.A., and J.A. Holbrook. 1978. Sauger, walleye, and yellow perch in the southeastern United States. Pages 74-81 in Kendall, R.L. editor. Selected coolwater fishes of North America. American Fisheries Society Special Publication No. 11. 437 pp.
- Hall, T.J. 1980. Influence of wing dam notching on aquatic macroinvertebrates in Pool 13, Upper Mississippi River. M.S. Thesis, University of Wisconsin, Stevens Point, Wisconsin.
- Hansen, D.F. 1944. Rate of escape of fishes from hoop nets. Transactions of the Illinois State Academy of Science 37: 115-122.
- Harrison, H.M. 1954. An estimate of the population of channel catfish in the Humbolt area with notes on the hoop net as a sampling instrument. Quarterly Biological Reports, Iowa Fish and Game Division 6: 21-25.
- Helms, D.R. 1973. Progress report on the second year study of shovelnose sturgeon in the Mississippi River. Iowa Conservation Commission Commercial Fisheries Investigations Project No. 2-156-R-2. 33 pp.
- Helms, D.R. 1975. Variations in the abundance of channel catfish year classes in the Upper Mississippi River and causative factors. Iowa Conservation Commission, Fisheries Section Technical Series 75-1. 31 pp.
- Hester, F.E., and J.S. Dendy. 1962. A multiple-plate sampler for aquatic macro-invertebrates. Transactions of the American Fisheries Society 91(4): 420-421.
- Hickman, G.D. 1975. Value of instream cover to the fish populations of middle Fabius River, Missouri. Missouri Department of Conservation Aquatic Series No. 14. 7 pp.
- Hile, R. 1941. Age and growth of the rock bass, <u>Ambloplites rupestris</u> (Rafinesque), in Nebish Lake, Wisconsin. Transactions of the Wisconsin Academy of Science, Arts and Letters 33: 189-337.
- Hile, R. 1948. Standardization of methods of expressing lengths and weights of fish. Transactions of the American Fisheries Society 75 (1945): 157-164.

- Hoopes, D.T. 1960. Utilization of mayflies and caddis flies by some Mississippi River fishes. Transactions of the American Fisheries Society 89(1): 32-34.
- Hubley, R.C. 1961. Harvest and movement of channel catfish in the Upper Mississippi River. Wisconsin Conservation Department, West Central Area Investigational Memorandum No. 12. 11 pp.
- Hubley, R.C. 1963a. The second year of walleye and sauger tagging on the Upper Mississippi River. Wisconsin Conservation Department, West Central Area Investigations Memorandum No. 16. 4 pp.
- Hubley, R.C. 1963b. Movements of tagged channel catfish in the Upper Mississippi River. Transactions of the American Fisheries Society 92(2): 165-168.
- Hynes, H.B.N. 1970. The ecology of running waters. Liverpool University Press, Liverpool. 555 pp.
- Iowa Conservationist. 1959. Walleye studies on the Mississippi. Iowa Conservationist 18(7): 151-152.
- Jacobi, G.Z. 1971. A quantitative artificial substrate sampler for benthic macroinvertebrates. Transactions of the American Fisheries Society 100(1): 136-138.
- Jennings, D.K. 1979. An evaluation of aquatic habitat associated with notched dikes on the Missouri River, Missouri. M.S. Thesis, Unversity of Missouri, Columbia, Missouri. 262 pp.
- Jergens, G.D., and W. Childers. 1959. Ages at given lengths for some species taken in U.M.R.C.C. cooperative field survey, 1956, in the Wisconsin-Iowa-Illinois waters of the Mississippi River.

 Proceedings of the Upper Mississippi River Conservation Committee 13: 113-121.
- Johnson, D.L., and R.A. Stein, editors. 1979. Response of fish to habitat structure in standing water. American Fisheries Society Special Publication No. 6. 77 pp.
- Johnson, F.H. 1961. Walleye egg survival during incubation on several types of bottom in Lake Winnibigosh, Minnesota, and connecting waters. Transactions of the American Fisheries Society 90: 312-322.
- Jude, D.J. 1968. Bottom fauna utilization and distribution of 10 species of fish in Pool 19, Mississippi River. M.S. Thesis, Iowa State University, Ames, Iowa. 238 pp.
- Kallemeyn, L.W., and J.F. Novotny. 1977. Fish and fish food organisms in various habitats of the Missouri River in South Dakota, Nebraska, and Iowa. U.S. Fish and Wildlife Service, National Stream Alteration Team FWS/OBS-77/25. 100 pp.

- Lagler, K.F. 1978. Capture, sampling, and examination of fishes.
 Pages 7-47 in Bagenal, T.B. editor. Methods for the assessment of
 fish production in fresh waters, 3rd edition. IBP Handbook No. 3.
 Blackwell Scientific Publications, Oxford. 365 pp.
- LeCren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis).

 Journal of Animal Ecology 20(2): 201-219.
- Leopold, L.B. 1962. Rivers. American Scientist 50: 511-537.
- Leopold, L.B., M.G. Wolman, and J.P. Miller. 1964. Fluvial processes in geomorphology. W.H. Freeman and Company, San Francisco. 522 pp.
- Li, J.C.R. 1969. Statistical inference I. Edwards Brothers, Inc., Ann Arbor, Michigan. 658 pp.
- Lind, O.T. 1979. Handbook of common methods in limnology. 2nd edition. Mosby Company, St. Louis, Missouri. 199 pp.
- Maddock, T. 1972. Hydrologic behavior of stream channels. Transactions of the 37th North American Wildlife and Natural Resources Conference 37: 366-374.
- Marzolf, R.G. 1955. Use of pectoral spines and vertebrae for determining age and rate of growth of the channel catfish. Journal of Wildlife Management 19(2): 243-249.
- Marzolf, R.G. 1978. The potential effects of clearing and snagging on stream ecosystems. U.S. Fish and Wildlife Service, National Stream Alteration Project FWS/OBS-78/14. 31 pp.
- Merz, E.A. 1974. Importance of aquatic invertebrates as fish food in selected areas of the Upper Mississippi River. M.S. Thesis, University of Wisconsin, LaCrosse, Wisconsin. 50 pp.
- Meyer, W.H. 1962. Life history of three species of redhorse (Moxostoma) in the Des Moines River, Iowa. Transections of the American Fisheries Society 91(4): 412-419.
- Minckley, W.L., and J.E. Deacon. 1959. Biology of the flathead catfish in Kansas. Transactions of the American Fisheries Society 88(4): 344-355.
- Muncy, R.J. 1959. Age and growth of channel catfish from the Des Moines River, Boone County, Iowa, 1955 and 1956. Iowa State Journal of Science 43(2): 127-137.
- Muncy, R.L., G.J. Atchison, R.V. Bulkley, B.W. Menzel, L.G. Perry, and R.C. Summerfelt. 1979. Effects of suspended solids and sediment on reproduction and early life of warmwater fishes: a review. Environmental Protection Agency EPA-600/3-79-042.

- Nelson, W.R. 1968. Reproduction and early life history of sauger, Stizostedion canadense, in Lewis and Clark Lake. Transactions of the American Fisheries Society 97: 159-166.
- Niemuth, W., W. Churchill, and T. Wirth. 1972. Walleye, its life history, ecology, and management. Wisconsin Department of Natural Resources, Publication No. 227-72. 20 pp.
- Nord, R.C. 1971. Names and descriptions of aquatic habitats. Pages 3-4 in Sternberg, R.B. Upper Mississippi River habitat classification survey. Upper Mississippi River Conservation Committee, Fisheries Technical Section Special Report.
- Novotny, D.W., and G.R. Priegel. 1974. Electrofishing boats improved designs and operational guidelines to increase the effectiveness of boom shockers. Wisconsin Department of Natural Resources Technical Bulletin No. 73. 49 pp.
- Pflieger, W.L. 1965. Reproductive behavior of the minnows, <u>Notropis</u> spilopterus and <u>Notropis</u> whipplii. Copeia 1965(1): 1-8.
- Pope, J.A., A.R. Margetts, J.M. Hamley, and E.F. Akyuz. 1975. Manual of methods for fish stock assessment. Part III. Selectivity of fishing gear. FAO Fisheries Technical Paper No. 41. 65 pp.
- Priegel, G.R. 1970. Reproduction and early life history of the walleye in the Lake Winnebago region. Wisconsin Department of Natural Resources Technical Bulletin No. 45. 105 pp.
- Ranthum, R.G. 1969. Distribution and food habits of several species of fish in Pool 19, Mississippi River. M.S. Thesis, Iowa State University, Ames, Iowa. 207 pp.
- Rasmussen, J.L. 1979. A compendium of fishery information on the Upper Mississippi River, 2nd edition. A Contribution of the Upper Mississippi River Conservation Committee. 373 pp.
- Regier, H.A. 1962. Validation of the scale method for estimating age and growth of bluegills. Transactions of the American Fisheries Society 91(4): 362-374.
- Reynolds, J.B. 1977. Missouri River notched dike study annual composite report 1977. U.S. Fish and Wildlife Service, National Stream Alteration Team, Columbia, Missouri. 15 pp.
- Reynolds, J.B., and D.E. Simpson. 1978. Evaluation of fish sampling methods and rotenone census. Pages 11-24 in Novinger, G.D., and J.G. Dillard, editors. New approaches to the management of small impoundments. American Fisheries Society Special Publication No. 5. 132 pp.

4-46

- Ricker, W.E. 1949. Mortality rates in some little-exploited populations of freshwater fishes. Transactions of the American Fisheries Society 77: 114-128.
- Ricker, W.E. 1969. Effects of size-selective mortality and sampling bias on estimates of growth, mortality, production, and yield.

 Journal of the Fisheries Research Board of Canada 26(3): 479-541.
- Ricker, W.E. 1973. Linear regressions in fishery research. Journal of the Fisheries Research Board of Canada 30: 409-434.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin No. 191 of the Fisheries Research Board of Canada, Ottawa, Canada. 382 pp.
- Schoumacher, R. 1965a. Movement of walleye and sauger in the Upper Mississippi River. Transactions of the American Fisheries Society 94(3): 270-271.
- Schoumacher, R. 1965b. Commercial channel catfish catch studies in the Mississippi River in 1964. Iowa Conservation Commission, Quarterly Biological Reports 17(2): 14-16.
- Schramm, H.L., and W.M. Lewis. 1974. Study of importance of backwater chutes to a riverine fishery. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. Contract Report Y-74-4. 144 pp.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Bulletin No. 184 of the Fisheries Research Board of Canada, Ottawa, Canada. 966 pp.
- Simons, D.B., S.A. Schumm, and M.A. Stevens. 1974. Geomorphology of the Middle Mississippi River. Contract Report Y-74-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. 110 pp.
- Simons, D.B., P.F. Lagasse, Y.H. Chen, and S.A. Schumm. 1975. The river environment a reference document. U.S. Fish and Wildlife Service, Twin Cities, Minnesota. 494 pp.
- Smith, P.W., A.C. Lopinot, and W.L. Pflieger. 1971. A distributional atlas of Upper Mississippi River fishes. Illinois Natural History Survey, Biological Notes No. 73. 20 pp.
- Smith, S.H. 1954. Method of producing plastic impressions of fish scales without using heat. The Progressive Fish-Culturist. 16: 75-78.
- Sneed, K. 1950. A method for calculating the growth of channel catfish, <u>Ictalurus lacustris punctatus</u>. Transactions of the American Fisheries Society. 80: 174-183.

- Sprugel, G.J. 1954. Growth of bluegills in a new lake, with particular reference to false annuli. Transactions of the American Fisheries Society 83: 58-75.
- Stalnaker, C.B., and J.L. Arnette. 1976. Methodologies for the determination of stream resource flow requirements: An assessment. U.S. Fish and Wildlife Service, Office of Biological Services, Western Water Allocation.
- Starrett, W.C., and P.G. Barnickol. 1955. Efficiency and selectivity of commercial fishing devices used on the Mississippi River. Bulletin of the Illinois Natural History Survey 26: 325-366.
- Thiel, P. 1977. Project to determine the significance of wing dams, riprap, and sand as fishery habitat. Wisconsin Department of Natural Resources Summary Report. 17 pp.
- U.S. Army Corps of Engineers. 1974. Operations and maintenance, Upper Mississippi River 9-foot navigation channel. Final environmental impact statement, Pool 13 supplement. Rock Island District Army Corps of Engineers, Rock Island, Illinois. 80 pp.
- Van Oosten, J., H.J. Deason, and F.W. Jobes. 1934. A microprojection machine designed for the study of fish scales. International Council for the Exploration of the Sea. Journal du Conseil 9(2): 241-248.
- Vasey, F.W. 1967. Age and growth of walleye and sauger in Pool 11 of the Mississippi River. Iowa State Journal of Science 41(4): 447-466.
- Vincent, R. 1971. River electrofishing and fish population estimates. The Progressive Fish-Culturist 33(3): 163-169.
- Weatherley, A.H. 1972. Growth and ecology of fish populations. Academic Press Inc., New York. 293 pp.
- Welch, P.S. 1948. Limnological methods. McGraw-Hill Book Company, Inc., New York. 381 pp.
- Welcomme, R.L. 1979. Fisheries ecology of floodplain rivers. Longman Group Limited, London. 317 pp.
- Whitmore, C.M., C.E. Warren, and P. Doudoroff. 1960. Avoidance reactions of salmonid and centrarchid fishes to low oxygen concentrations. Transactions of the American Fisheries Society 89(1): 17-26.
- Wolfender, M. 1980. New life for the Missouri River. Missouri Conservationist 41(1): 29-31.

- Wright, K.J. 1970. The 1967-1968 sport fishery survey of the Upper Mississippi River. Contribution of the Upper Mississippi River Conservation Committee. 116 pp.
- Wynes, D.L. 1976. Age, growth, and food habits of the Centrarchidae in Pool 8 of the Upper Mississippi River. M.S. Thesis, University of Wisconsin, LaCrosse, Wisconsin. 170 pp.

APPENDIX A

Electrofishing catches for each transect during June, 1978. Shocking efforts are expressed in minutes and fish weights in grams.

APPENDIX A

Wing dam 25: Shoreline transect.

TOTAL EFFORT: 60. SPECIE	NOR OF Fish	FISH/HOUR	TOTAL MEIGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL NUMBER
LONG NOSE GAR	1	1-0	360.	4.80	4.35
CARP	•	4.0	4340.	57.89	17.39
SAUGER	3	3.0	114.	1.52	13-04
GUILLBACK	5	5.0	1122.	14.97	21.74
SMALLHOUTH BUFFALO	1	1.0	130.	1.73	4.35
SHORTHEAD REDHORSE	2	2.0	1090-	14.54	8.70
LARGEHOUTH BASS	2	2.0	103.	1-37	8.70
BLACK CRAPPIE	2	2.0	39.	0.52	8.70
FRESHWATER DRUM	. 3	3-0	199.	2.65	13-04
TOTALS	23	23-0	7497	100.00	100-00

Wing dam 25: 60-105 meter transect.

TOTAL EFFORT : SPECIE	60.	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF GRAND TOTAL HEIGHT	PCT OF Grand Total Number
EMERALD SHINER		1	1.0	0.	0.00	100.00
TOTALS		1	1-0	0	0.00	100.00

Wing dam 25: 150-200 meter transect.

TOTAL EFFGRT : SPECIE	60.	NBR OF FISH	F ISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR		1	1.0	480.	100.00	100.00
TOTALS		1	1.0	480	160.00	100-00

Wing dam 26: Shoreline transect.

TOTAL EFFORT : 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand total Weight	PCT OF Grand Total Number
LONG NOSE GAR	2	2.0	1845.	17.12	6.25
SHORT NOSE GAR	1	1.0	560.	5-20	3.13
CARP	2	2.0	3645.	33.82	6.25
SAUGER	4	4.0	526.	4.88	12.50
HIGHFIN CARPSUCKER	1	1.0	137.	1.27	3.13
CUILLBACK	7	7.0	2092.	19.41	21.88
SMALLMOUTH BUFFALO	1	1.0	720-	6.68	3.13
SHORTHEAD RECHORSE	3	3.0	555.	5.15	9.38
BLUEGILL	2	2.0	73.	0.68	6.25
LARGEMOUTH BASS	1	1.0	249.	2.31	3.13
HHITE CRAPPIE	3	3 - G	245.	2.27	9.38
BLACK CRAPPIE	4	4.0	87.	0.81	12.50
FRESHWATER DRUM	.1	1.0	45.	0.42	3.13
TOTALS	32	32.0	10779	100.00	100.00

Wing dam 26: 75-120 meter transect.

TOTAL EFFORT: 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	, PCT OF Grand Total Number
SHORT NOSE GAR	1	1.0	485.	22.38	16.67
SILVER CHUB	1	1.0	30.	1.38	16.67
EMERALD SHINER	1	1.0	0 -	0.00	16.67
SHORTHEAD REDHORSE	3	3.0	1652.	76.23	50.00
TGTALS	6	6.0	2167	100.00	100.00

Wing dam 26: 165-210 meter transect.

TOTAL EFFORT: 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
SHORT NOSE GAR	•	1 • ŭ	545.	5.91	10.00
GIZZARD SHAD	i	1.0	320.	5.23	10.00
CARP	ż	2.0	3040.	49.71	20.00
HALLEYE	ī	1.0	45.	0.74	10.00
SHALLHOUTH BUFFALO	1	1.0	342.	5.59	10.00
SHORTHEAD REDHORSE	4	4.0	1824.	29.82	40.00
TOTALS	10	10. u	6116	100.00	100.00

Wing dam 26: 260-300 meter transect.

TOTAL EFFORT : SPECIE	60.	NOR OF Fish	F1SH/HCUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT DF Grand total Number
TOTALS		ð	0.0	0	0.00	0.00

Wing dam 28: Shoreline transect.

TOTAL EFFORT : 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR	2	2.0	785.	5.70	4.76
CARP	7	7.0	9475.	68.78	16.67
SPOTFIN SHINER	1	1.0	0.	0-00	2.38
BULLHEAD MINNOW	1	1.0	0.	0.00	2.38
SAUGER	3	3.0	129.	0.94	7.14
RIVER CARPSUCKER	1	1.0	155.	1.13	2.38
SILVER REDHORSE	1	1.0	1085.	7.88	2.38
GOLDEN REDHORSE	1	1.0	185.	1.34	2.38
SHORTHEAD REDHORSE	3	3-0	264.	1.92	7.14
ROCK BASS	2	2-0	169.	1.23	4.76
BLUEGILL	7	7.0	227.	1.65	16.67
SHALLHOUTH BASS	1	1 • G	52•	0.38	2.38
WHITE CRAPPIE	-1	1.0	66.	0.48	2.38
HLACK CRAPPIE	4	4-0	400.	2.90	9.52
FRESHHATER ORUM	7	7 - 0	783.	5.68	16.67
TOTALS	42	42.0	13775	100.09	100-90

Wing dam 28: 30-75 meter transect.

TOTAL EFFORT : SPECIE	60.	NBR OF Fish	F I SH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
TOTALS		0	0.0	0	0.00	0.00

Wing dam 28: 120-165 meters.

TOTAL EFFORT: 60. SPECIE	NOR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT DF Grand Total Height	PCT OF Grand Total Number
HOONEYE	1	1.0	155.	7.99	4.00
SILVER CHU8	1	1.0	24.	1.24	4.00
EMERALO SHINER	2	2.0	٥.	0.00	8.00
RIVER SHINER	1	1.0	0.	0.00	4-00
BULLHEAD MINNON	1	1.0	0.	0.00	4.00
SAUGER	2	2.0	82.	4.23	8-00
CUILLBACK	ı	1.0	55.	2.84	4 - 00
SPALLHOUTH BUFFALO	1	1.0	29.	1.50	4.00
SHORTHEAD REDHORSE	9	9.0	1114.	57.45	36.00
RGCK BASS	2	2.0	205.	10.57	8.00
FRESHWATER DRUM	•	4.0	275.	14.18	16.00
TOTALS	25	25.0	1939	100.00	100.00

Wing dam 28: 240-290 meter transect.

TOTAL EFFORT: 60. SPECIE	NBR OF Fish	FISH/HCUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT DF Grand Total Number
CARP	1	1.0	1130.	76.71	33.33
HALLEYE	1	1.0	282.	19.14	33.33
FRESHWATER DRUM	1	1.0	61-	4.14	33.33
TOTALS	3	3.0	1473	100.00	100.00

136
APPENDIX A (continued)

Wing dam 29: Shoreline transect.

TOTAL EFFORT : Specie	60.	NOR OF FISH	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Height	PCT OF Grand Total Number
LONG NOSE GAR CARP SAUGER HALLEYE RIVER CARPSUCKER QUILLBACK BIGHOUTH BUFFALO SHALLHOUTH BUFFALO SHORTHEAD REDHORSE BLUEGILL BLACK CRAPPIE FRESHWATER ORUM		2 1 3 2 1 1 2 2 1 3	2.0 1.0 8.0 1.0 3.0 2.0 1.0 2.0 2.0	895. 865. 475. 48. 1830. 784. 256. 500. 289. 130. 34. 192.	15.30 14.79 8.12 0.82 31.29 13.41 4.36 0.85 4.94 2.22 0.58 3.28	7.41 3.70 29.63 3.70 11.11 7.41 3.70 3.70 7.41 7.41 3.70
TOTALS		27	27.0	5848	100.00	100.00
TOTAL EFFORT : Specie	Wing	dam 29:	75-105 met	er tran	sect.	PCT OF
37.33.33		FISH		WEIGHT	GRAND TOTAL WEIGHT	GRAND TOTAL NUMBER
EMERALD SHINER	•	1	1.0	0.	0.00	100-00
TOTALS		1	1.0	0	0.00	100.00
	Wing	dam 29:	135-180 me	ter tra	nsect.	•
TOTAL EFFORT : SPECIE	60.	NOR OF Fish	FISH/nCUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT DF Grand Total Number
EMERALO SHINER		1	1.0	Q.	0.00	100.00
TOTALS		1	1.0	G	0.00	100.00
TOTAL EFFORT : SPECIE	Wing	dam 29: NBR OF FISH	230-275 me	ter trai	NSECT. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number
TOTALS		0	0.0	0	0.00	0.00

APPENDIX A (continued)
Wing dam 30: Shoreline transect.

FISH/HOUR TOTAL

WEIGHT

NBR OF

FISH

PCT OF GRAND TOTAL

NUMBER

PCT OF

GRAND TOTAL

WEIGHT

TOTAL EFFORT :

SPECIE

60.

SILVER CHUB RIVER SHINER CHANNEL CATFISH SAUGER QUILLBACK SHALLMOUTH BUFFALO SHORTHEAD REDHURSE WHITE BASS BLUEGILL LARGEMOUTH BASS FRESHWATER DRUM TOTALS		2 2 1 2 2 1 2 1 1 2 2 2	2.0 2.0 1.0 7.0 1.0 2.0 2.0 1.0 2.0	30. 0. 14. 291. 384. 118. 545. 73. 57. 52. 212.	1.69 0.00 0.79 16.39 21.62 6.64 30.69 4.11 3.21 2.93 11.94	9.09 9.09 4.55 31.82 4.55 9.09 9.09 4.55 9.09 4.55
	Wing	dam 30:	75-105 me	ter trar	isect.	
TOTAL EFFORT : Specie	60.	NBR OF FISH	FISH/HOUR	TOTAL HEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
TOTALS		0	0.0	0	0.00	0.00
	Wing	dam 30:	135-180 me	eter tra	nsect.	,
TOTAL EFFORT : Specie	60.	NBR OF FISH	F I SH/HOUR	TCTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
TOTALS		o	0.0	0	0.00	0.00
	Wing	dam 30:	230-275 me	ter tra	nsect.	
TOTAL EFFORT : (SPECIE	60.	NBR OF Fish	F1SH/hOUR	TOTAL NEIGHT	PCT OF Grand Total Neight	PCT OF Grand Total Number
TOTALS		0	0.0	0	0.00	0.00

Wing dam 31: Shoreline transect.

	# T116		Dilor Clinc	or on IDCC	••	
TOTAL EFFORT : SPECIE	60.	NBR OF FISH	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR SAUGER HALLEYE CUILLBACK SHORTHEAD REDHORSE	<u>:</u>	1 4 2 5 2	1 - 0 4 - 0 2 - 0 5 - 0 2 - 0	220. 142. 116. 480. 1065.	10.87 7.02 5.73 23.73 52.64	7.14 28.57 14.29 35.71 14.29
TOTALS		14	14.0	2023	100.00	100.00
TOTAL EFFORT : SPECIE	Wing	dam 31: NBR OF FISH	75-105 met	er tran TOTAL WEIGHT	Sect. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand total Number
TOTALS		C	0.6	0	0.00	0.00
TOTAL EFFORT : SPECIE	Wing	dam 31: NBR OF	135-180 me	eter tra TOTAL WEIGHT	nsect. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number
TOTALS		0	0-0	0	0.00	0.00
TOTAL EFFORT & SPECIE	Wing	dam 31: NBR OF FISH	230-275 me FISH/HOUR	eter tra TOTAL WEIGHT	nsect. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number

TOTALS

APPENDIX A (continued)

Side Channel: Right bank.

TOTAL EFFORT: 60. SPECIE	NBR OF Fish	F I SH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR	2	2.0	692.	4.26	3.28
CARP	3	3.0	3601.	22.16	4.92
CHANNEL CATFISH	1	1.0	300.	1.85	1.64
SAUGER	12	12.0	591.	3.64	19.67
HALLEYE	3	3-0	908.	5.59	4.92
RIVER CARPSUCKER	3	3.0	680.	4.18	4.92
GUILLBACK	6	6.0	1304.	8.02	9.84
SHALLHOUTH BUFFALO	2	2.0	1100.	6.77	3.28
SILVER REDHORSE	2 2	2.0	1495.	9.20	3.28
GOLDEN REDHORSE	3	3.0	242.	1.49	4.92
SHORTHEAD REDHORSE	16	16.0	4773.	29.37	26.23
HHITE BASS	1	1.0	70.	0.43	1.64
BLUEGILL	3	3.0	125.	0.77	4.92
WHITE CRAPPIE	1	1.0	100.	0.62	1.64
FRESHWATER DRUM	3	3.0	271.	1.67	4.92
TOTALS	61	61-0	16252	100.00	100.00

Side Channel: Left bank.

TOTAL EFFORT: 60. SPECIE	NBR DF Fish	FISH/HOUR	TOTAL HEIGHT	PCT OF Grand Total Weight	PCT DF Grand Total Number
LONG NOSE GAR	7	7.0	3035.	11.83	17.07
SMORT NOSE GAR	1	1.0	750.	2.92	2.44
CARP	9	9.0	10257.	39.99	21.95
CHANNEL CATFISH	1	1-0	1850.	7.21	2.44
SAUGER	2	2.0	138.	0.54	4.88
HALLEYE	1	1-0	426.	1.64	2.44
RIVER CARPSUCKER	4	4.0	2658.	10.36	9.76
QUILLBACK	2	2.0	787.	3.07	4.88
SMALLMOUTH BUFFALO	5	5-0	1458.	5.68	12.20
BLACK BUFFALO	1	1.0	1670.	6.51	2.44
SILVER REDHOR se	1	1.0	600.	2.34	2.44
SHORTHEAD REDHORSE	2	2 • û	1240.	4.83	4.88
SPOTTED SUCKER	1	1.0	317.	1.24	2.44
BLUEGILL	1	1.0	92.	0.36	2.44
BLACK CRAPPIE	1	1.0	144.	0.56	2.44
FRESHMATER DRUM	2	2.6	232.	0.90	4.88
TOTALS	41	41.0	25648	100.00	100.00

APPENDIX B

Electrofishing catches for each transect during August, 1978. Shocking efforts are expressed in minutes and weights in grams.

APPENDIX B

OATE(S): 80978, 81278, TOTAL EFFORT: 60. SPECIE	Wing dam	25: Sho	reline	transect.	
	NOR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
BOHFIN	1	1.0	266.	3.95	. 1.69
CARP	i	1.0	530.	7.87	1.69
EHERALD SHINER	ī	1.0	0.	0.00	1.69
SAUGER .	7	7.0	334.	4.96	11.86
HIGHFIN CARPSUCKER	5	5.0	1187.	17.63	8.47
CUILLBACK	8	8.3	2239.	33.25	13.56
GRANGE SPOTTED SUNFISH	2	2.0	11.	0.16	3.39
BLUEGILL	17	17.0	1316.	19.55	28.81
LARGEHOUTH BASS	1	1.0	1.	0.01	1.69
MHITE CRAPPIE	1	1.0	110.	1.63	1.69
BLACK CRAPPIE	7	7.0	540.	8.02	11.86
FRESHWATER DRUM	8	8.0	199.	2.96	13.56
TOTALS	59	59.0	6733	100.00	100.00

GATE(S): 81078, TOTAL EFFORT: SPECIE	81478,	Wing dam NBR OF FISH	25: 60-1 FISH/HOUR	TOTAL	transect. PCT OF GRAND TOTAL HEIGHT	PCT OF Grand Total Number
LONG NOSE GAR		1	2.0	394.	100.00	100.00
TOTALS		1	2.0	394	100-00	100-00

UATE(S): 81478, 810; TOTAL EFFORT: 30. SPECIE	Va, Wing dam NBR OF FISH	25: 150- FISH/HQUR	-200 met fotal weight	er transect. PCT OF GRAND TOTAL HEIGHT	PCT OF Grand Total Number
*****	0	0 - 0	0	0.00	0.00

142
APPENDIX B (continued)

DATE(S): 81078, 81778, TOTAL EFFORT: 60. SPECIE	Wing dam	26: Sho	reline	transect.	
	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
GIZZARD SHAD	1	1.0	5.	0.05	0.58
HOONEYE	1	1.0	245.	2.22	0.58
NORTHERN PIKE	1	1.0	1760.	15.98	0.58
CARP	1	1.0	463.	4.20	0.58
EMERALD'SHINER	4	4.0	0.	0.00	2.34
SPOTFIN SHINER	11	11.0	0.	0.00	6.43
BULLHEAD MINNOW	1	1.0	0.	0.00	0.58
CHANNEL CATFISH	1	1.0	200-	1.82	0.58
FLATHEAD CATFISH	1	1.0	580.	5.26	0.58
N. LEGPERCH	1	1.0	Ō.	0.00	8ز.0
SAUGER	16	16.0	1691.	15.35	9.36
MALLEYE	1	1.0	443.	4.02	0.58
RIVER CARPSUCKER	1	1.0	286.	2.60	0.58
GRANGE SPOTTED SUNFISH	10	10-0	51.	0.46	5.85
BLUEGILL	93	93-0	3371.	30.60	54.39
LARGEMOUTH BASS	10	10.0	1188.	10.78	5.85
HHITE CRAPPIE	1	1.0	196.	1.78	0.58
BLACK CRAPPIE	9	9.0	497.	4.51	5.26
FRESHHATER DRUM	7	7.0	41-	0.37	4.09
TOTALS	171	171.0	11017	100.00	100.00

GATE(S): 81778, 81178, TOTAL EFFORT: 60.	Wing dam 26: 75-120 meter transect.					
SPECIE	N9R OF Fish	FISH/HOUR	TOTAL HEIGHT	PCT OF Grand Total Height	PCT OF Grand Total Number	
HOONEYE	1	1.0	195.	2.36	1.82	
CARP	6	6 • v	5540.	66.93	10.91	
SILVER CHUB	1	1.0	34.	0.41	1.82	
EMERALD SHINER	1	1.0	0.	0.00	1.82	
SPOTFIN SHINER	2	2.0	0.	0.00	3.64	
N. LCGPERCH	1	1.0	0.	0.00	1.82	
SAUGER	5	5.0	429.	5.18	9.09	
SHORTHEAD RECHORSE	2	2.0	354.	4.28	3.64	
BLUEGILL	29	29.0	1130.	13.65	52.73	
LARGEMOUTH BASS	1	1.0	112.	1.35	1.82	
BLACK CRAPPIE	1	1-0	61.	0.98	1.82	
FRESHWATER DRUM	5	5 • û	462.	4.86	9.09	
TOTALS	55	55.0	8277	100.00	100.00	

JATE(S): 81878, 81178, TOTAL EFFORT: 60.	Wing dam 26: 165-210 meter transect.						
SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number		
MOONEYE	1	1.0	166.	3.77	1.49		
CARP	1	1.0	1180.	26.80	1.49		
CHANNEL CATFISH	1	1.0	34.	0.77	1.49		
N. LOGPERCH	1	1.ů	0.	0.00	1.49		
RIVER DARTER	1	1.0	٥.	0.00	1.49		
SAUGER	2	2.0	123.	2.79	2.99		
⊦ ALLEYE	1	1.0	134.	3.04	1.49		
QUILLBACK	1	1.0	114.	2.59	1.49		
SHORTHEAD REDHORSE	2	2.0	322.	7.31	2.99		
MHITE BASS	2	2.0	14.	0.32	2.99		
ROCK BASS	1	1.0	121.	2.75	1.49		
PUHPKI NSE EO	1	1.0	92.	2.09	1.49		
3LUEGILL	4.4	44.0	1492.	33.49	65.67		
LARGENCUTH BASS	1	1.0	142.	3.23	1.49		
HHITE CRAPPIE	1 2 2 3	2.0	144.	3.27	2.99		
BLACK CRAPPIE	2	2.0	96.	2-18	2.99		
FRESHWATER DRUM	3	3.0	229.	5.20	4.48		
TOTALS	67	67.0	4403	100-00	100-00		

GATE(S): d1178, 81778, TOTAL EFFORT: 45.	Wing dam 26: 260-300 meter transect.						
SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number		
HODNEYE	1	1.3	56.	2.42	3.23		
EMERALD SHINER	Ž	2.7	o.	0.00	6.45		
CHANNEL CATFISH	2	2.7	68.	2.94	6.45		
N. LOGPERCH	3	4.0	٥.	0.00	9.68		
RIVER GARTER	2	2.7	0.	0.00	6.45		
SAUGER	3	4.0	264.	12.26	9.68		
SHORTHEAD REDHORSE	6	5.0	1052.	45.42	19.35		
BLUEGILL	7	9.3	489.	21.11	22.58		
BLACK CRAPPIE	3	4.0	193.	0.33	9.68		
FRESHWATER DRUN	2	2.7	174.	7.51	6.45		
TOTALS	31	41.3	2316	100.00	100.00		

144
APPENDIX B (continued)

Wing dam 28: Shoreline transect. 81678. 81278. UATE(S): TOTAL EFFORT : 60. NBR OF FISH/HOUR TOTAL PCT OF PCT DF SPECIE GRAND TOTAL GRAND TOTAL FISH *EIGHT* WEIGHT NUMBER LONG NOSE GAR 1 1-0 16. 0.14 0.93 0.13 GIZZARO SHAD 1.0 15. 1 0.93 6340. CARP 4 . û 54.54 3.70 EMERALD SHINER 12 12.0 0. 0.00 11.11 0. RIVER SHINER 10.0 0.00 10 9.26 SPOTTAIL SHINER 2.0 G. 0.00 1.85 2 G. 1.85 SPOTFIN SHINER 2.0 0.00 BULLHEAD MINNOW 8 8.0 0. 0.00 7.41 224. CHANNEL CATFISH 2 2.0 1.93 1.85 173. 3 SAUGER 3.¢ 1.49 2.78 RIVER CARPSUCKER 1 1.0 152. 1.31 0.93 HIGHFIN CARPSUCKER 1 1.0 Э. 0.00 0.93 161. CUILLBACK 2 2.0 1.39 1.85 BLACK BUFFALO 0.93 1 1.0 1560. 13.42 0.93 GOLDEN REDHORSE 1 1.0 246. 2.12 SHORTHEAD REDHORSE 1 1.0 61. 0.52 0.93 0. 0.00 ERE STINA 1 1.0 0.93 33. CRANGE SPOTTED SUNFISH 6.0 0.28 5.56 BLUEGILL 28 28.0 1090. 9.38 25.93 LARGEHOUTH BASS 6 6.0 991. 8.53 5.56 76. WHITE CRAPPIE 0.65 1 1.0 0.93 HLACK CRAPPIE 9. Ú 308. 2.65 8.33 5 1.53 FRESHWATER DRUM 5-0 176. 4.63 108 168.Q 11624 100.00 100.00 TOTALS

DATE(S): 31178, 81778, TOTAL EFFORT: 60. SPECIE	Wing dam	28: 30-	75 meter	transect.		
	NBR OF Fish	FISH/HOUR	TOTAL HE IGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number	
MOONEYE	1	1 - G	302.	3.45	0.89	
SILVER CHUB	1	1.0	30.	0.34	0.89	
LHERALD SHINER	15	15.0	G.	0.00	13.39	
RIVER SHINER	10	10.4	0.	0.00	8.93	
SPOTTAIL SHINER	1	1.0	0.	0.00	0.89	
BULLHEAD MINNOW	4	4-0	٥.	0.00	3.57	
CHANNEL CATFISH	7	7.0	1866.	21.33	6.25	
FLATHEAD CATFISH	7 2 3 5 2	2.0	77.	0.88	1.79	
N. LGGPERCH	3	3 - U	0 -	0.00	2.68	
SAUGER	5	5. u	650.	7.43	4.46	
HALLEYE	2	2.0	268.	3.06	1.79	
RIVER CARPSUCKER	1	1.0	115.	1.31	0.89	
CUILLBACK	1	1.0	432.	4.94	0.89	
SHORTHEAD REDHORSE	12	12.0	2423.	27.66	10.71	
MHITE HASS	1	1-0	7.	0.08	9.89	
BLUEGILL	29	29.6	1050.	12.00	25.89	
SMALLHOUTH BASS	2	2.0	404.	4.62	1.79	
LARGEHOUTH BASS	4	4.0	650.	7.43	3.57	
WHITE CRAPPIE	2	2.0	138.	1.58	1.79	
BLACK CRAPPIE	4 2 3	3.0	144.	1.65	2.68	
FRESHWATER DRUM	6	6.0	197.	2.25	5.36	
TOTALS	112	112.0	8750	100.00	100.00	

A STATE OF THE STA

OATE(S): 81078, 81778, TOTAL EFFORT: 60. SPECIE	Wing da	Wing dam 28: 120-165 meters.					
	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number		
HOONEYE	. 1	1.0	128.	0.66	0.88		
CARP	12	12.0	15990.	82.26	10.62		
EHERALD SHINER	45	45.0	٥.	0.00	39.62		
RIVER SHINER	1	1.0	0.	0.00	0.88		
SPOTTAIL SHINER	1	1.0	٥.	0.00	0.88		
N. LOGPERCH	3	3.0	0.	0.00	2.65		
SAUGER	3	3.0	257.	1.32	2.65		
CUILLBACK	2 2	2.0	724.	3.73	1.77		
WHITE BASS	2	2.0	235.	1.21	1.77		
BLUEGILL	32	32.0	1350.	6.95	28.32		
SHALLHOUTH BASS	1	1.0	111.	0.57	0.88		
LARGEHOUTH BASS		3.0	197.	1.01	2.65		
BLACK CRAPPIE	2	2.0	105.	0.54	1.77		
FRESHWATER DRUM	3 2 5	5.0	339.	1.75	4.42		
TOTALS	113	113.0	19426	100.00	100.00		

CATE(S): 81078, 81778, TOTAL EFFORT: 60. SPECIE	Wing dam 28: 240-290 meters transect.					
	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number	
CARP	19	19.0	24705.	91.50	33.93	
SILVER CHUB	1	1.0	40.	0.15	1.79	
EMERALO SHINER	1	1.0	0.	0.00	1.79	
FIVER SHINER	1	1.0	0.	0.00	1.79	
SAUGER	1	1-0	74.	0.27	1.79	
PALLEYE	2	2.0	217.	0.80	3.57	
SHORTHEAD REDHORSE	3	3.0	526.	1.95	5.36	
POCK BASS	1	1-0	128.	0.47	1.79	
DRANGE SPOTTED SUNFISH	1	1.0	7.	0.03	1.79	
BLUEGILL	19	19.0	577.	2.14	33.93	
LARGEMOUTH BASS	6	6.0	633.	2.34	10.71	
FRESHMATER DRUM	1	1 - 0	94.	0.35	1.79	
TOTALS	56	56.0	27001	100.06	100.00	

	Wing dam 29: Shoreline transect.					
TOTAL EFFORT : 60. SPECIF	NBR OF FISH	FISH/HDUR	TOTAL WEIGHT	PCT DF Grand Total Weight	PCT OF Grand Total Number	
CARP SILVER CHUB EMERALD SHINER SPOTTAIL SHINER BULLHEAD MINNON FLATHEAD CATFISH N. LOGPERCH SAUGER GIGNOUTH BUFFALO SMALLHOUTH BUFFALO BLACK BUFFALO HHITE BASS BLUEGILL LARGEMCUIH BASS BLACK CRAPPIE	3 1 6 1 3 1 1 10 1 2 1 1 2 9	3.0 1.0 6.0 1.0 3.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0	4430. 0. 0. 0. 240. 653. 1030. 630. 275. 6. 1397. 493. 174.	47.34 0.00 0.00 0.00 0.00 2.56 0.00 6.98 11.01 6.73 2.94 0.06 14.93 5.27	4.05 1.35 8.11 1.35 4.05 1.35 1.35 1.35 2.70 1.35 2.70 1.35 39.19 4.05	
FRESHWATER DRUM	4	4.0	30.	0.32	5.41	
TOTALS	74	74.0	9358	100.00	100.00	
		-		•		
DATE(S): 81678, 81378, TOTAL EFFORT: 30.	Wing da	m 29: 75-	105 met	er transect.		
SPECIE	NBR OF Fish	FISH/HOUR	TOTAL HEIGHT	PCT DF Grand total Weight		
BIGHCUTH BUFFALO	1	2.0	1720.	100.00	100.00	
TOTALS	1	2 - 0	1720	100.00	100.00	
DATE(S): 81378, 81678, TOTAL EFFORT: 30. SPECIE				ter transect. PCT OF GRAND TOTAL BEIGHT	PCT DF	
HALLEYE	1	2.0	650.	100.00	100.00	
TOTALS	1	2.0	650	100.00	100.00	
DATE(S): 81578, 81678, TOTAL EFFORT: 30.				ter transect.		
SPECIE	NBR OF FISM	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number	
BIGHOUTH BUFFALO	2	4.0	4500.	100.00	100.00	
TOTALS	2	4.0	4500	100.00	100.00	

NBR OF FISH 1 1 2 2 3 9 2 1 3 1 3 2 3 9 3	1.0 1.0 2.0 2.0 3.0 9.0 2.0 1.0 3.0	148. 18. 18. 1240. 0. 0. 306. 186. 100.	1.41 0.17 11.82 0.00 0.00 0.00 2.92	PCT OF GRAND TOTAL NUMBER 1.92 1.92 3.85 3.85 5.77 17.31 3.85
1 2 3 9 2 1 3 1 3 2	1.0 2.0 3.0 9.0 2.0 1.0 3.0 1.0	18. 1240. 0. 0. 306. 186.	0.17 11.82 0.00 0.00 0.00 2.92 1.77	1.92 3.85 3.85 5.77 17.31
2 3 9 2 1 3 1 3 2 3	2.0 2.0 3.0 9.0 2.0 1.0 3.0 1.0	1240. 0. 0. 306. 186.	11.82 0.00 0.00 0.00 2.92 1.77	3.85 3.85 5.77 17.31
2 1 3 1 3 2 3	2.0 3.0 9.0 2.0 1.0 3.0 1.0	0. 0. 306. 186.	0.00 0.00 0.00 2.92 1.77	3.85 5.77 17.31
2 1 3 1 3 2 3	3.0 9.0 2.0 1.0 3.0 1.0 3.0	0. 0. 306. 186. 100.	0.00 0.00 2.92 1.77	5.77 17.31
2 1 3 1 3 2 3	9.0 2.0 1.0 3.0 1.0 3.0 2.0	0. 306. 186. 100.	0.00 2.92 1.77	17.31
2 1 3 1 3 2 3	2.0 1.0 3.0 1.0 3.0 2.0	306. 186. 100.	2.92 1.77	
3 1 3 2 3 9	3.0 1.0 3.0 2.0	100.		3.07
3 1 3 2 3 9	1.0 3.0 2.0			1.92
3 2 3 9	3.0 2.0	00.	0.95 0.63	5.77 1.92
2 3 9 3	2.0	1942.	18.51	5.77
3 9 3		1312.	12.51	3.85
9 3		1084.	10.33	5.77
3	9.0	3605.	34.36	17.31
	3-0	304.	2.90	5.77
1 1	1.0 1.0	14.	0.13 0.00	1.92 1.92
5	5.6	166.	1.58	9.62
52	52.0	10491	100.00	100.00
Wing da	m 30: 75-:	105 mete	r transect.	· · · · · · · · · · · · · · · · · · ·
NBR OF FISH	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Height	PCT OF Grand Total Number
1	2.0	820.	100.00	100.00
1	2.0	820	100.00	100.00
Wing da	am 30: 135	5-180 me	ter transect.	
NBR OF FISH	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
1	2.0	3500.	100.00	100.00
1	2.0	3500	100.00	100-00
	Wing day NBR OF FISH Wing day NBR OF FISH	52 52.0 Wing dam 30: 75-2 NBR OF FISH/HOUR 1 2.0 1 2.0 Wing dam 30: 135 NBR OF FISH/HOUR FISH 1 2.0 1 2.0	52 52.0 10491 Wing dam 30: 75-105 mete NBR OF FISH/HOUR TOTAL 1 2.0 820 Wing dam 30: 135-180 me NBR OF FISH/HOUR TOTAL FISH WEIGHT 1 2.0 3500.	Wing dam 30: 75-105 meter transect. NBR OF FISH/HOUR TOTAL PCT OF FISH 1 2.0 820. 100.00 1 2.0 820 100.00 Wing dam 30: 135-180 meter transect. NBR OF FISH/HOUR TOTAL PCT OF MEIGHT 1 2.0 3500. 100.00 1 2.0 3500. 100.00

Carlotte and the Carlotte

0.00

0.00

TOTALS

148
APPENDIX B (continued)

DATE(S): 81478, 81678,	Wing dar	m 31: Sho	reline	transect	
TOTAL EFFORT : 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL HEIGHT		PCT OF Grand Total Number
LONG NOSE GAR GIZZARO SHAD CARP SILVER CHUB EMERALD SHINER RIVER SHINER BULLHEAD MINNOM SAUGER MALLEYE. HIGHFIN CARPSUCKER GUILLBACK SHORTHEAD REDHORSE BLUEGILL HHITE CRAPPIE BLACK CRAPPIE FRESHWATER ORUM	2 18 1 6 319 46 5 16 6 2 5 3 5 1	2.0 18.0 1.0 6.0 319.0 46.0 5.0 16.0 6.0 2.0 5.0 1.0 2.0 9.0	902. 217. 370. 0. 0. 998. 585. 288. 948. 304. 129. 82. 175. 55.	17.85 4.29 7.32 0.00 0.00 0.00 19.75 11.58 5.70 18.76 6.02 2.55 1.62 3.46 1.09	0.45 4.04 0.22 1.35 71.52 10.31 1.12 3.59 1.35 0.45 1.12 0.67 1.12 0.67 1.12
	770				
DATE(S): 81478, 81678, TOTAL EFFORT: 30. SPECIE	Wing da		105 met Total Weight	er transect. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number
SHORTHEAD REDHORSE	1	2.0	790.	100.00	100.00
TOTALS	1	2.0	790	100.00	100.00
GATE(S): 81478, 81678, TOTAL EFFORT: 30. SPECIE		•		ter transect. PCT OF GRAND TOTAL MEIGHT	PCT OF Grand Total Number
TOTALS	0	0.0	G	0.00	0.00
DATE(S): 81478, 81678, TOTAL EFFORT: 30. SPECIE	Wing dan	n 31: 230- FISH/HOUR		ter transect. PCT OF GRAND TOTAL PEIGHT	PCT OF Grand Total Number
BIGHOUTH BUFFALO	1	2.0	3360.	100.00	100.00
TOTALS	1	2.0	3360	100.00	100.00

ELECTROFISHING

Side Channel
DATE(S): 81378, 80978, 80878,

TOTAL EFFORT: 120.		ο,			
SPECIE	NBR OF FISH	FISH/HOUR		PCT OF GRAND TOTAL WEIGHT	PCT OF GRAND TOTAL NUMBER
LONGNOSE GAR	6	3.0	2061.	3.47	0.55
CARP	34	17.0	41454.	69.76	3.10
SILVERY MINNOW	5	2.5	0.	0.00	0.46
SILVER CHUB	5 5	2.5	Ö.	0.00	0.46
EMERALD SHINER	833	416.5	0.	0.00	75.87
RIVER SHINER	12	6.0	0.	0.00	1.09
SPOTFIN SHINER	1	0.5	0.	0.00	0.09
BULLHEAD MINNOW	8	4.0	0.	0.00	0.73
CHANNEL CATFISH	8 4 1	2.0	471.	0.79	0.36
N. LOGPERCH	1	0.5	0.	0.00	0.09
SAUGER	9 1 3 1 4 2	4.5	545.	0.92	0.82
WALLEYE	1	0.5	126.	0.21	0.09
RIVER CARPSUCKER	3	1.5	1540.	2.59	0.27
HIGHFIN CARPSUCKER	1	0.5	62.	0.10	0.09
QUILLBACK	4	2.0	151.	0.25	0.36
BIGMOUTH BUFFALO	2	1.0	669.	1.13	0.18
SMALLMOUTH BUFFALO	7	3.5	2829.	4.76	0.64
GOLDEN REDHORSE	1	0.5	60.	0.10	0.09
SHORTHEAD REDHORSE	11	5.5	1228.	2.07	1.00
ORANGESPOTTED SUNFISH		11.5	50.	0.08	2.09
BLUEGILL	86	43.0	2775.	4.67	7.83
LARGEMOUTH BASS	14	7.0	2952.	4.97	1.28
WHITE CARPPIE	4	2.0	521.	0.88	0.36
BLACK CRAPPIE	10	5.0	434.	0.73	0.91
FRESHWATER DRUM	13	6.5	1492.	2.51	1.18
TOTALS	1098	549.0	59420.	100.00	100.00

APPENDIX C

Electrofishing catches for each transect during October, 1978. Shocking efforts are expressed in minutes and fish weights in grams.

DATE(\$): 101078,102278,	Wing dam 25: Shoreline transect.					
TOTAL EFFORT: 60. SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF . Grand total Number	
CARP YELLOW BULLHEAD SAUGER WALLEYE RIVER CARPSUCKER SMALLMOUTH BUFFALO WHITE BASS FRESHWATER DRUM BROOK SILVERSIDES	7 1 4 3 1 1 1 4 19	7.0 1.0 4.0 3.0 1.0 1.0 4.0	11220. 142. 470. 417. 520. 138. 119. 1599.	76.72 0.97 3.21 2.35 3.56 0.94 0.91 10.93	17.07 2.44 9.76 7.32 2.44 2.44 9.76 46.34	
TOTALS	41	41.0	14625	100.00	100.00	
DATE(S): 101079,102275, TOTAL EFFORT: 30. SPECIE	. Wing da Ner CF Fish	m 25: 60-1 FISH/HO		PCT UF	PCT OF GRAND TOTAL Number	
CHANNEL LATFISH Smallh duth Buffald	1	2.0	290. 1400.	17.16 82.84	50.00 50.00	
TOTALS	2	4.0	1690	100.06	100.00	
DATE(S): 131374,102178, TOTAL EFFORT: 30. SPECIE	Wing d Nar of FISH	am 25: 150 FISH/hD		r transect. PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number	
TOTALS	0	0.0	0	0.00	0.00	

DATE(S): 101078,102176, TOTAL EFFORT: 60.	Wing dam 26: Shoreline transect.			transect.	•	
SPECIE	NBR OF FISH	FISH/HOUP	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL Numjer	
CARP	17	17.0	25490.	74.04	19.54	
SILVER CHUS	1	1.0	û.	0.00	1.15	
EMERALO SHINER	6	6.0	0.	0.00	6.90	
SAUGER	23	23.G	2472.	7.19	26.44	
RIVER CARPSULKER	4	4.0	2250.	6.54	4.50	
HIGHFIN CARPSUCKER	1	1.0	147.	0.43	1.15	
OUILLBACK	≟ C	10.0	2892.	8.40	11.49	
SHONTHEAD REUHGRSE	1	1.0	232.	0.67	1.15	
WHITE BASS	6 2	6.0	151.	0.44	6.90	
BLULGILL	2	2.0	55.	0.16	2.30	
LARGEMOUTH BASS	1	1.0	151.	0.44	1.15	
WHITE CRAPPIE	3 2	3.0	225.	0.65	3.45	
SLAUK CRAPPIE	2	2. C	31.	0.09	2.30	
FRESHWATER DRUM	10	13.0	330.	0.96	11.49	
TOTALS	87	67.0	34426	100.00	100-00	

DATE(S): 103678,102178, TOTAL EFFORT: 60. SPECIE	Wing dam 26: 75-120 meter transect.				
	NBR OF Fish	FISH/HOUP	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL NUMBER
MOONEYE	1	1.9	250.	2.78	2.17
CARP	3	3.0	4600.	51.18	6.52
N. LUGPERCH	1	1.0	0.	0.00	2.17
SAUGER	1	1.0	54.	0.60	2.17
HALLEYE	1	1.0	172.	1.91	2.17
SHORTHEAD REDHERSE	5	5.0	740.	8.23	10.97
SMALLMOUTH 6455	1	1.0	390.	4.34	2.17
FRESHWATER DRUM	33	33.0	2752.	30.95	71.74
TOTALS	46	46.C	8988	100.00	100.00

DATE(S): 100778,102178, TOTAL EFFORT: 60.	Wing dam 26: 165-210 meter transect				
TOTAL EFFORT: 60. SPECIE	NOR OF FISH	F15H/HOUP	TOTAL WEIGHT	PCT OF Grand Total Height	PCT OF GRAND TOTAL NUMBER
GIZZARD SHAD	1	1.0	4.	0.01	1.59
CARP	13	13.0	24650.	78.98	20.63
SAUGER	4	4.0	435.	1.39	6.35
WALLEYE	1	1.0	110.	0.35	1.59
QUILLBACK	3	3.0	806.	2.56	4.76
WHITE BASS	2	2.0	487.	1.57	3.17
SMALLHOUTH BASS	1	1.0	673.	2.15	1.59
FRESHWATER DRUH	38	38.0	4048.	12.97	60.32
TOTALS	63	63.0	31212	100.00	100.00

DATE(5): 10)778,102178, TOTAL EFFORT: 60.	Wing dam 26: 260-300 meter transect.					
TOTAL EFFORT: 60. SPECIE	NBR OF F1SH	FISH/HCU9	TOTAL HEIGHT	PCT GF GRAND TOTAL WEIGHT	PCT OF Grand Total Number	
CARP	1	1.0	2540.	29.03	4.76	
SAUGER	1	1.0	141.	1.61	4.76	
MALLEYE	1	1.0	830.	9.49	4.76	
SHORTHEAD RECHORSE	2	2.0	1846.	21.03	9.52	
FRESHHATER DRUM	16	16.0	3399.	38.85	76.19	
TOTALS	21	21.0	8750	100.00	100.00	

Wing dam 28: Shoreline transect.

DATE(S): 101078,162178, TOTAL EFFORT: 60.					
SPECIE	NBR OF Fish	FISH/HOUP	TOTAL WEIGHT	PCT OF GRAND TOTAL KEIGHT	PCT DF Grand Total Number
CARP	32	32.0	4926).	56.11	21.92
EMENALO SHINER	4	4.0	0.	0.00	2.74
BULLHEAD MINNON	1	1.0	0.	0.00	0.53
RIVER BARTER	· ī	1.0	Ü.	0.00	0.68
SAUGER	5	5.0	33≯.	0.59	3.42
WALLEYE	5	5.0	5E4.	1.16	3.42
RIVER CAMPSUCKER	5	5.0	2280.	3.99	3.42
HIGHFIN CARPSUCKER	1	1.0	212.	0.37	9-63
QUILLBACK	i	1.0	70.	0.12	9.65
BIGHOUTH BUFFALO	ī	1.0	455.	Q . AG	0.68
WHITE BASS	ī	1.0	18.	0.03	0.58
FRESHWATER DRUM	89	89.0	3910.	6.43	60.96
TOTALS	146	146.0	57238	100.00	109.00

Wing dam 28: 30-75 meter transect.

DATE(S): 101075-102078-					
TOTAL EFFORT : 60.				•	
SPECIE	NBR OF	FISH/HOUR	TOTAL	PCT OF	PCT OF
	FISH		WEIGHT	GRAND TOTAL WEIGHT	GRAND TOTAL NUMBER
SILVER CHUB	2	2.0	٥.	0.00	2.70
EMERALD SHINER	1	1.0	٥.	0 • 0 ü	1.35
CHANNEL CATFISH	3	3.0	899.	8.43	4.05
FLATHEAD CATFISH	ì	1.0	6.	0.06	1.35
STONECAT	ĭ	1.0	8.	0.07	1.35
RIVER DARTER	i	1.0	0.	0.00	1.35
SAUBER	5	5.0	656.	6.24	5.76
WALLEYE	ĭ	1.6	360.	3 - 37	1.35
QUILLBACK	i	1.0	350.	3.56	1.35
SHORTHEAD PEDHORSE	Ğ	9.0	2275.	21.33	12.16
FRESHWATER DRUM	49	49.0	6073.	56.93	65.22
TOTALS	74	74.0	10667	100.00	100.20

Wing dam 28: 120-165 meter transect.

DATE(S): 101078,102076, TOTAL EFFORT: 60.					
TOTAL EFFORT: 60. SPECIE	NOR OF Fish	FI\$H/HOUP	TOTAL WEIGHT	PCT GF GRAND TOTAL WEIGHT	PCT OF Grand Total Number
CARP	3	3.0	4620.	63.06	9.57
SILVER CHUB	3	3.0	0.	0.00	8.57
RIVER SHINER	3	3.0	Ů.	0.00	P.57
SAUGER	2	2.0	987.	13.47	5.71
WALLEYE	1	1.0	470.	6.42	2.36
HIGHFIN CARPSUCKER	1	1.0	132.	1.50	2.85
SHORTHEAD REDHORSE	. 2	2.0	128.	1.75	5.71
WHILE BASS	2	2.0	200.	2.73	5.71
BLUEGILL	1	1.0	32.	0.44	2.96
WHITE CRAPPIE	i	1.0	99.	1.35	2.86
FRESHWATER DRUM	16	16.0	658.	8.98	45.71
TOTALS	35	35.0	7326	160.66	100.00

Wing dam 28: 240-290 meter transect.

DATE(S): 101078,102073, TOTAL EFFORT: 45. SPECIE						
SªECIE	NBR OF F1SH	FISH/HOUP	TOTAL HEIGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL NUMBER	
CARP	7	9.3	11810.	89.96	30.43	
EMEMALD SHINER	1	1.3	0.	0.00	4.35	
SAUGÉR	4	5.3	350.	2.67	17.39	
WHITE BASS	1	1.3	375.	2.06	4.35	
SZAE HTUCKLIAME	1	1.3	150.	0.76	4.35	
FRESHHATER DRUM	9	12.0	493.	3.76	39.13	
TOTALS	23	30.7	13128	100.00	:00.00	

DATE(\$): 10067#+102178+	Wing				
TOTAL EFFORT: 60. SPECIE	N9R OF Fish	FISH/HOUP	TOTAL HEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF GRAND TOTAL NUMBER
CARP	5	5.0	9140.	65.80	12.20
EMERALD SHINER	4	4.0	0.	0.00	9.76
BULLHEAD MINNOW	1	1.0	0.	0.00	2.44
SAUGER	3 1	3.0	268.	2.17	7.32
RIVER CAR?SUCKER Quille 4CK	2	1.0 2.0	252. 805.	2.04 6.51	2.44 4.58
SMALLMOUTH BUFFALD	i	1.0	380.	3.07	2.44
SHORIHEAD RESHERS	3	3.0	856.	6.92	7.32
CCAE SCIN	1	1.0	238.	1.92	2.44
FRESHHATER DRUM	20	50.0	1432.	11.58	48.78
TOTALS	-1	41.0	12371	100.06	100.00
•					
	Wing	dam 29: 7	5-105 met	er transect.	
DATE(S): 100678,102178.					
TOTAL EFFORT: 30.					
\$>ECIE	NBR OF Fish	FISH/HOUP	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
TOTALS	0	0.0	0	0.00	0.00
DATE(\$): 103678-102178-	Wing	ı dam 29: 1	35-180 me	ter transect.	
TOTAL EFFORT: 30.	****	5 * 6 W 4 W 6 W B	20744	007 05	
SPECIE	NBR OF Fish	FISH/HOUR	TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF LATOT ON ARD REMUN
FRESHWATER DRUM	1	2.0	510.	100.00	100.00
TOTALS	1	2.0	510	100.00	100.00
	112	. dam 20 2	20 275	ton tuancost	
DATE(\$): 133678,102178, TOTAL EFFORT: 30.	พาทฤ	j udili 29; 2	3U-4/3 ME	ter transect.	
SPECIE	NBR OF Fish	FISH/HOUP	TOTAL WEIGHT	PCT OF GRAND TOTAL BEIGHT	PCT OF Grand Total Number
BIGNOUTH SUFFALD	1	2.0	2900.	100.00	100.00

DATE(\$): 100678,102178, TOTAL EFFORT: 60.	Wir	ng dam 30:	Shoreline	transect.		
\$2ECIE	NBR OF FISH	FISH/HOUP	WEIGHT	PCT OF Grand Total Meight	PCT OF Grand Total Number	
MOONEYE	:	1.0	72.	1.34	5.00	
EMERALD SHINER	1	1.0	0.	0.00	5.00	
SAUGER	2	2.0	414.	7.71	10.00	
HALLEYE	1	1.0	390.	7.27	5.00	
QUILLBACK	3	3.0	978.	18.22	15.00	
SMALLMOUTH SUFFALO	1	1.0	190.	3.54	5.00	
GOLDEN REDAJASE	1	1.0	243.	5 • 27	5.00	
SHORTHEAD RECHGRSE	6	6 • C	2398.	44.68	30.00	
FRESHWATER DRUM	4	4.0	642.	11.96	20.00	
TOTALS	20	28.c	5367	120.00	100.00	
DATE(\$): 103678,192179,	Wii	ng dam 30:	75-105 me	ter transect.		
TOTAL EFFORT: 30.						
SPECIE	NBR OF FISH		TOTAL WEIGHT	PCT OF Grand Total Weight	PCT DF GRAND TOTAL Number	
SHORTHEAD REJHC95E	1	2.0.	534.	100.00	100.00	
TOTALS .	1	2.0	534	100.00	100-00	
OATE(\$): 107678,102179,	Wing dam 30: 135-180 meter transect.					
TOTAL EFFORT: 30. SPECIE	NBR OF FISH	FISH/HÖUP	TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number	
TOTALS	0	0.0	0	0.00	0.90	
DATE(S): 100678,102178,	Wi	ng dam 30:	230-275 m	meter transect.		
TOTAL EFFORT: 30.						
SPECIE	NOR OF FISH	FISHVHOUP	TGTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF GRAND TOTAL NUMBER	
TOTALS	0	0.0	0	0.00 ·	0.00	

DATE(S): 100679,102178, TOTAL EFFORT: 60.	Wing				
SPECIE	NBR GF Fish	F1SH/HOU®	TGTAL WEIGHT	PCT OF GRAND TOTAL HEIGHT	PCT OF GRAND TOTAL NUMBER
GIZZARD SHAD	2	2.0	179.	3.15	2.22
MODALYE	2	2.0	459.	8.09	2.22
CARP	· <u>1</u>	1.0	2360.	41.59	1.11
SILVERY MINNOW	7	7.0	0.	0.00	7.78
SILVER CHUB EMEKALD SHINER	1 5	1.0 5.0	0. 0.	0.00 0.00	1.1i 5.56
RIVER SHINER	37	37.0	0.	0.00	41.11
CHANNEL CATFISH	i	1.0	134.	2.36	1.11
SAUGER	4	4.0	405.	7.14	4.44
ONITERYCK	2	2.0	156.	2.75	2.22
WHITE dass	1	1.0	42.	0.74	1.11
FRESHWATER ORUM	26	26.0	1250.	22.03	28.99
PADLE FISH	i	1.0	690.	12.16	1-11
TOTALS	90	90.0	5675	100.00	100.00
				,	
DATE(5): 103678,102178, TOTAL EFFORT: 30.	Wing	dam 31: 75-	105 mete	r transect.	
SPECIE SO.	NBR OF Flam	FISH/HOUR	TOTAL WEIGHT	PCT OF GRAND TOTAL .HEIGHT	PCT DF GRAND TOTAL NUMBER
MOONEYE	· 1	2.0	2).	100.00	190.00
TCTALS	i	2.0	29	100.00	100.00
DATE(5): 100678,102178, TOTAL EFFORT: 30.	Wing	dam 31: 135	-180 met	er trans e ct.	
255CIE	NBK OF Fish	'FISH/HOUP	TOTAL WETGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL RIEMUN
TOTALS	0	0.0	3	0.00	0.00
DATa(5): 100674.102174.	Wina	dam 31: 230)-275 met	er transect.	
TOTAL EFFORT : 30.	•••••				
?>EC1E	NØR OF Fish	FISH/HQU®	TOTAL	PCT OF Grand Total Height	PCT OF GRAND TOTAL NUMBER
TOTALS	. 0	0.0	0	0.00	2.00

Side channel: Left bank.

DATE(S): 100478,101178, TOTAL EFFORT: 60.					
SPECIE	NSR OF FISH	FISHZHOUR	TOTAL WEIGHT	PCT OF Grand Total Neight	PCT DF Grand Total Number
GIZZARU SHAD	_1	1.0	73.	0.13	1.16
CARP	33	33.0	47530.	83.31	38.37
EMERALO SHINER	2	2.0	e.	0.00	2.33
SAUGER	11	11.0	1113.	1.95	12.79
HALLEYE	2	5.0	372.	0.65	2.33
RIVER CARPSUCKER	4	4.0	3835.	6.72	4.65
HIGHFIN CARPSUCKER	1	1.0	142.	0.25	1.16
BIGNOUTH BUFFALD	2	2.0	1073.	1.88	2.33
SMALLHOUTH BUFFALO	2	3.0	130%	2.29	3.49
WHITE BASS	1	1.0	20.	0.05	1.16
RUCA BASS	2	5.0	247.	0.43	2.33
ORANGE SPOITED SUNFISH	2	2.0	14.	0.02	2.33
BLUEGILL	11	11.0	425.	0.74	12.79
LARGENBUTH BASS	1	1.0	208.	0.36	1.16
BLACK CRAPPIE	3	3.0	214.	0.36	3.49
FRESHWATER ORUM	Ē	6.0	45).	0.82	6.98
BRJUX SILVERSIDES	ĭ	1.0	0.	0.00	1.16
TOTALS	- 36	36.0	57050	100.00	100.00

Side channel: Right bank.

DATE(\$): 100478-101178. TGTAL EFFORT: 60.			•		
SPECIE	NBR OF	FISH/HOUP	TOTAL	PCT OF	PCT OF
	FISH	•	WEIGHT	GRAND TOTAL	GRAND TOTAL
	•			WEIGHT	NUMBER
SHONT NOSE GAR	1	1.0	720.	5.59	1.30
GIZZARU SHAD	ī	1.0	154.	1.20	1.30
MOONEYE	i	1.0	88.	0.68	1.30
CARP	ž	2.0	3440.	26.72	2.60
SILVER CHUB	7	7.0	0.	0.00	9.09
EMERALD SHINER	2	2.0	Ö.	0.00	2.60
BULLHEAD MINNON	2	2.0	ŏ.	0.00	2.60
CHANNEL CAIFISH	-	4.0	732.	5.69	5.19
SAUGER	13	13.0	1571.	12.20	15.88
HALLEYE	4	4.0	750.	5.83	5.19
QUILLBACK	3	3.0	426.	3.31	3.90
SHALLHOUTH BUFFALD	ī.	1.0	205.	1.59	1.30
GOL WEN REDAUKSE	3	3.0	394.	3.06	3.90
SHORTHEAD RESHORSE	7	7.0	1208.	9.36	9.09
BLUEGILL	9	9.0	343.	2.66	11.69
LARGEMOUTH BASS	2	2.0	255.	1.98	2.60
BLALK CRAPFIE	1	1.0	58.	0.53	1.30
FRESHMATER DRUM	14	14.0	2519.	19.57	18-18
TOTALS	77	77.0	12873	100.00	100.00

APPENDIX D

Electrofishing catches for each transect during June 1979. Shocking efforts are expressed in minutes and fish weights in grams.

APPENDIX D

Wing dam 25: Shoreline transect.

DATE(5): 61579, 62179, TOTAL EFFORT: 60.					
SPECIS	VAR OF FISH	FISAZADUR	TOTAL MEIGHT	POT OF GRAND TOTAL WOIGHT	POT OF GRAND TOTAL NUMBER
LONGNOSE FAR	2	2.0	1254.	9.7?	6.45
CARP	2 3	3.0	4150.	32.17	9.65
SILVER CHUB	1	1.0	0.	0.00	3.23
RIVER SHIMER	6	5.9	ე.	0.00	19.35
BULLHEAD MINNOW	6 2	2.0	0.	0.00	6.45
SAUGER	3	3.0	1314.	10.19	9.65
HIGHFIN CARPSUCKED	1	1.0	204.	1.54	3.23
QUILLM-CK	5	6.0	2797.	21.04	19.35
SMALLMUTH BUFFILD	1	1.0	650.	5.04	3.23
SILVER REPHONSE	1	1.0	1230.	9.35	₹, ? ₹
GOLDEN RETHURS:	1	1.0	350.	5.59	3.23
SHORTHUA / RECHURSE	3	3.9	395.	3.05	4.29
FRESHWATER DRUM	1	1.0	57.	0.44	3.23
TOTALS	31	31.0	12991	100.00	100.00

SITE(S): SATE(S): 61579, 62179, TOTAL EFFORT: 30.	Wing	dam 25: 6	50-105 me	ter transect.	
SPECIE	434 OF F154	FISHZHGUR	TOTAL MEIGHT	FOR TOP LATOT CHAPS THDIBM	AAA43 (1.147F) Sae43 (1.147F) Said (1.
HODNEYE	1	2.0	170.	150.00	100.00
TOTALS	1	2.0	170	100.00	100.00

SITE(S): CATE(S): 62179, 61579,	Win	g dam 25:	150-200 m	eter transect.	
TOTAL EFFORT : 30. SPECIE	NOR OF FISH	FISHZHƏDA	MEIGHT	POT OF GRAND TOTAL HEIGHT	POT NE GRAPO TITAL GRAPUN PRANUN
TOTALE	0	0.0	0		0.00

161
APPENDIX D (continued)

DATE(S): 61579, 62179,	₩ing	dam 26: S	horeline	transect.	1
TOTAL EFFORT: 60. SPECIE	NHR OF Fish	FISHZHOUR	TOTAL WEIGHT	POT OF GRAND TOTAL HEIGHT	POT OF GRAND TOTAL Number
LONGNOSE GAR	2	2.0	345.	4.32	5.00
(484)	5	5.0	5540.	23.31	12.50
RIVER SHINER	i	1.0	0.	0.00	2.00
CHANNEL CATFISH	2	2.0	50H.	2.59	5.00
SAUGSA	4	4.0	157.	0.35	10.00
PIVER CARRSUCKER	1	1.0	450.	2.55	2.50
HIGHFIN CARPSUCKER	1	1.0	361.	1.34	2.50
OUILLBACK	2	2.0	726.	3.71	. 5.00
SMALLMOUTH BUFFALM	3	3.0	1052.	5.37	7.5)
SILVER RETHURSE	3	3.0	4600.	23.44	7.50
GOLJEN RICHORSA	2	2.0	444.	2.27	٠٠٦
SHORTHEAD REDHORSE	9	9.1	4337.	22.00	22.32
BLACK CRAPPIC	3	3.5	360.	1.34	7.57
FPESHWATES ORUM	2	2.5	109.	3.52	5.00
TOTALS	40	40.7	17579	109.00	130.03
DATE(S): 61679, 62179, FOTAL EFFORT: 60.	Win	g dam 26:	75-120 me	ter transect.	
5103°3	NBR OF	FIS4/H3JR			POT OF
	FISH		MEIGHT	GEAND INTAL	GRANT TOTAL
•				MELWHT	484923
TOTALS	3	0.0	0	0.00	ე. ენ
		•			
DATE(S): 61579, 62179, TOTAL EFFORT: 60.	Wir	ng dam 26:	165-210 r	neter transect.	
3°ECTE	NER CE Fish	FT&4VH373	TOTAL WEIGHT	POT OF GRAND TOTAL WEIGHT	क्टूच त्र व्युद्धुत्त क्ष्मिस्ट अध्यक्त्र
TOTALS .	a	0.0	. 0	c.on	9. 00
DATE(\$): 51679. 62179.	Wil	ng dam 26:	260-300	meter transect.	
TOTAL EFFORT: 60. SPECIZ	NBR OF Fish	FTSHZHOUR	TOTAL	POT OF GRAND TOTAL HEIGHT	PCT IF GREAD FITEL NUMBES
TOTALS	0	0.0	0	0.00	7.00
TOTALS	0	0.0	0	0.50	7.00

162
APPENDIX D (continued)

			•		
DATE(S): 61579, 62079, TOTAL EFFORT: 60. SPECIE	Wing dam 28: Shoreline transect.				
	NOR OF FISH	FICH NH2 IR	TOTAL Meight	PCT OF GPAND TOTAL WEIGHT	PCT OF LATCT CHAPD F3RPUN
LENGNOSE GAR	?	2.0	560.	2.02	4.38
**OOKEY2	ı	1.0	0.	2.30	2.44
CARP	6	5.0	12330.	45.53	14.63
CHANNEL CATFISH	3,	3.0	684.	2.47	7.32
RIVER CARPSUCKER	1	1.0	522.	1.39	2.44
QUILLBACK	6	5.0	2976.	19.75	14.63
SMALLMOUTH AUFFALT	3	3.0	1534.	5.55	7.32
SILVER PERHOASE	?	2.0	°3≯0.	4.64	4.43
SPERFERS CALFIRDMS	11	11.0	5096	14.43	26.33
ROCK BASS	1	1.0	154.	0.59	2.44
36026166	1	1.0	76.	3.48	2.44
SMALLHOUTH BASS	1	1.0	121.	7.44	2.44
LARGEMOUTH BASS FRESHWATER ORUM	1	1.0	485.	1.75	2.44
rragheatha dead	2	5.0	215.	0.79	4.55
TOTALS	41	41.0	27661	100.00	130.09
(1570 (2010	Wing dam 28: 30-75 meter transect.				
UATE(S): 61579, 62079, TOTAL EFFORT: 60.					
SPECIE	NBR OF	FUCHVH2UR		POT OF	POT OF
	FISH		MEIGHT	SERMS TOTAL	JAINO TOTAL
				WEIGHT	สถิตติระ
SHORTNUSE GAR	1	1.0	500.	197.00	100.00
					100.07
TOTALS	1	1.7	500	100.00	100.00
			<u>.</u> .		
	114	dam 20.	120 165		_
	wing	dam 28:	120-165	meter transect	ι.
GATE(S): 61579, 62079,					
TOTAL EFFORT :					
SPECIT	NBR OF Fish	FTSHZEWIR	TOTAL WEIGHT	30 179 14101 (V258 140174	PET OF GRAND TOTAL PROPEUM
TOTALS	0	0.0	0	0.00	ე. ეე
		dam 20.	240, 200		
******	wing	dam 28:	240-290	meter transect	ι.
DATE(S): 61579, 62079, TOTAL EFFORT: 60.					
SPECIE	438 OF	FISHZHOUR	TOTAL	POT OF	ent of
3. 50 12	FISH	7 1 2 11 7 M 211 N	WEIGHT	GRAND TOTAL	GREND TOTAL
	F & - F1		- 6 4 9 7	= 4 \	NUMAFR
					10 · 1. II
BUILLBACK	1	1.0	850.	48.57	50.00
SHORTHEAD REDHORSE	1	1.3	900.	51.43	50.00
****	_				
TOTALS	2	2.0	1750	100.00	100.00

	Wing	g dam 29: S	horeline	transect.	
DATE(S): 61979, 61479,	•				i
TOTAL EFFORT: 60. 3°EC1E	VOR OF Fish	FT SHZHOUR	TOTAL WEIGHT	POT OF GOAND TOTAL MEIGHT	POT OF SRIME TOTAL NUMBER
LONGNOSE GAR CARP	4 4	4.0 4.0 4.0	1514. 2572. 2136.	14.37 24.23 29.12	17.39 17.39 17.39
RIVAR CARPSUCKER OUILLRACK SMALLMOUTH BUFFALO SHORTHEAU REDHURST	3 3 1	3.0 3.0 1.0	1644.	15.49 13.03	13.04 13.04 4.35
SLACH GRAPPIC FRESHWATER ORDA	2 2	2.0	150.	1.41	3.79 3.79
TOTALS	23	23.0	10616	100.0)	100.00
DATE(\$): 61379, 61479,	Win	g dam 29: 1	75-105 me:	ter transect.	
FOTAL EFFORT : 30. SPECIE	NUR OF FIIH	हर् डम्/ मास	TOTAL WEIGHT	201 OF SPAND TOTAL WILDHIT	AAmata Garas tulef Starse
TOTALS	0	0.0	0	0.00	0.90
	Win	g dam 29:	135-180 m	eter transect.	
DATE(S): 61379, 61479, TOTAL CEFORT: 30. SPECIE	HBR OF FISH	FISH/HTUR	TOTAL MEIGHT	POT DE BEAND TOTAL Theire	POT OF GRAND TOTAL BUMHLE
	Wir	ng dam 29:	230-275 m	eter transect.	
DATE(S): 61379, 61479, TOTAL EFFORT: 30. SPECIE	438 OF FISH	FISHZHJUR	AD1:F	PCT 3F GEAND TOTAL THOUSH	OCT FF GRAND TOTAL NUMBER

0.0

0.00

0.00

TOTALS

164
APPENDIX D (continued)

			·		
DATE(S): 61479, 61779. TOTAL EFFORT: 60.	W-	ing dam 31:	Shoreline	e transect.	
TOTAL EFFORT: 60. SPECIT	439 OF Fish	FUCHNHZIF	TOTAL WEIGHT	PCT OF GPAND TOTAL WEIGHT	POT OF JETCT CRARB POEMUR POEMUR
LONGNOSE FAR	3	3.0	1444.	17.37	5.77
CARP	3	3.0	2124.	15.25	5.77
SILVER CHUB	1	1.7	0.	0 • ບ ລ	1.92
CHERALU SHINIR	1	1.0	0.	9.3 0	1.9?
SAUGER	9	3. 0	423.	3.04	15.19
HIGHFIN CARPSUCKED	1	1.0	105.	0.75	1.92
QUILL 3-CK	17	17.7	4544.	33.35	32.59
GOLUEY RETHORSE	1	1.0	790.	5.03	1.92
SHORTHEAD REDHURSE	10	10.0	3744.	25.31	19.23
MHDTE daug	1	1.7	50.	9.35	1.98
BLUEGILL	2	2.0	140.	1.01	35
WHITE CAAPPIE	1	1.0	101.	2.73	1.44
FPESHWATER DRUM	3	3.0	451.	3.24	5.77
TOTALS	5?	52.0	17425	100.30	100.00
DATE(S): 61779, 61379,	W	ing dam 31:	75-105 m	eter transect.	
TOTAL IFFORT : 30.					
. SPECIE	VAR OF Fish	FISHZMÖUR	ACICH.	POT OF GRAND FOTAL WEIGHT	#01 SF 03440 TOTAL NUMBS3
FOTALS	o	0.0	0	3.39	7.02
DATE(S): 61779, 61379,	W	ling dam 31:	135-180	meter transect.	
TOTAL EFFORT : 30.					
SPECIE	MBR OF FISH	FISHZHOUR	TOTAL PEIGHT	POT OF SEANO TOTAL MEIGHT	#FT OF GRANN TOTAL HUMHUP
TOTALS	9	0.7	0	0.00	0.00
CATE(S): 61779, 61379, fotal effort: 30. SPECIE			230-275	meter transect. PCT RE GSANO TOTAL WEIGHT	PCT QF GRAND JATEL SERMUN
TOTALS	0	0.0	0	0.00	0.00

Side channel: Right bank.

TATE(S): 61979, 61479, TOTAL LEFORT: 50.					
5°EC 17	VB3 OF	FISHZAJUR	TOTAL	20 1 16	307 €7
	FISH		MEIGHT	GRAND TOTAL	GRAN) TOTAL
		·		#TIWHT	યાઇ બધ ્ ક
LONGNOSE CAP	3	3.0	1495.	5.33	5 • 3 é
EARP	3	5.0	10411.	37.37	14.29
CHANNEL CATFISH	1	1.0	95.	9.3.	1.79
FLATHERD CATEISH	1	1.0	305.	1.17	1.79
SAUGER	3	3.0	272.	1. 71	5.35
RIVER LARPSUCKER	13	13.0	7139.	25.47	23.21
HIGHFIR CARPSUCKER	3	3.0	532.	2.43	5. 35
SUILLSACK	6	6.0	2212.	7.3-	10.71
BIGMOUTH PUFFALD	6 1 2 5	1.7	434.	1.70	1.70
SMALLM: UTH BUFFALC	2	2.0	945.	3	3.57
SHORTHLAD REDHURSE	5	5.0	7733.	3.93	9.93
GRANGISPOTTRO SUNFISH	1	1.0	19.	0.07	1.79
BLUZGILL	2	2.1	205.	1.74	3.47
MHITE CRAPPIE	1	1.0	0.	0.00	1.79
BLACK CRAPPIZ	1	1.7	96.	7.34	. 1.74
FRESHWATER DRUM	Š	5.7	927.	3.50	3.93
TOTALS	56	56.0	2R0d4	130.00	199.00

Side channel: Left bank.

DATE(S): 61779, 61479, TOTAL EFFORT: 60.		•			
SPECIE	NBR OF	FISH/HOUR	LATET	OCT CE	PCT OF
	FISH		MEIGHT	PEIGHT PEIGHT	GRENO TOTAL NUMBER
LONGNOSE GAR	5	5.0	2504.	15.15	13.51
CARP	4	4.0	4660.	30.05	10.01
SPOTFIN SHINER	3	3.0	o.	0.00	8.11
BULLHEAD MINNOW	4	4.0	0.	9.09	10.41
CHANNEL CATRISH	1	1.0	170.	1.10	2.70
RIVER CARPSUCKER	3	3.0	2367.	15.26	8.11
SMALEMOUTH RUFFALD	9	9.0	4638.	29.91	24.32
GRANGESPOTTED SUNFISH	1	1.0	10.	0.06	2.70
BLUEGILL	1	1.0	52.	0.34	2.70
LARGEMOUTH HASS	2	2.0	738.	4.76	5.41
BLACK CRASPIE	3	3.0	315.	2.35	9.11
FRESHWATER DRUM	1	1.0	52.	0.34	2.70
TOTALS	37	37 - 0	15509	100.00	100.00

APPENDIX E

Hoop net catches for each wing dam and the side channel during June, 1978. Weight is expressed in grams.

SITE(5): 25 DATE(5): 60778,

TOTAL HOURS SET: 288.00 UNBAITED

SPECIE	N9R OF Fish	F15H/24 HR	TOTAL WE IGHT	PCT DF GRAND TOTAL HEIGHT	PCT OF Grand Total Number
CHANNEL CATFISH	. 5	0.4	457.	15.48	29.41
FLATHEAU CATFISH	ž	0.2	504.	17.07	11.76
SAUGER	ī	0-1	191.	6.47	5.68
SPALLHGUTH BUFFALO	i	0.1	500.	16.94	, 5 . 88
FRESHWATER DRUM	8	0.7	1300.	44.04	47.06
TOTALS	17	1.4	2952	100.00	160-00

HOOPNETTING

SITE(S): 26 DATE(S): 60878, 60978, 61178, 60678,

TOTAL HOURS SET: 432.00

CHILABRU

SPECIE	NBR OF Fish	FISH/24 H	R TOTAL HEIGHT	PCT DF GRAND TOTAL HEIGHT	PCT OF Grand Total Number
CHANNEL CATFISH	1	0 - 1	106.	1.60	5.88
FLATHEAD CATFISH	4	0 + 2	3668.	55.48	23.53
SMALLHOUTH BUFFALO	1	0-1	1085.	16.41	5.86
FRESHHATER DRUM	11	0.6	1752.	26.50	64.71
TCTALS	17	0.9	6611	100.00	100-00

HOOPNETTING

SITE(S): 28 CATE(S): 60678, 60878.

TOTAL HOURS SET: 144.30

UNBAITED

SPECIE	NBR GF Fish	F15H/24 HI	R TOTAL MEIGHT	PCT OF Grand Total Meight	PCT DF Grand Total Number
CHANNEL CATFISH	1	0.2	96.	12.15	16.67
FLATHEAD CATFISH	1	0.2	230.	29.11	16.67
HHITE CRAPPIE	i	9.2	79.	10.00	16.67
BLACK CRAPPIE	1	0.2	162.	20.51	16.67
FRESHHATEP ORUM	2	0.3	223.	28.23	33-33
TOTALS	6	1.0	790	100.00	100.00

HOOPNETTING

5	I	T	Ε	€	5)	ŧ	29
D.	A	I	ε	(5)	:	60678,

TOTAL HOURS SET:	208.50	UNBAITED					
SPECIE	NBR OF Fish	F I SH / 24 H F	R TOTAL HEIGHT	PCT OF Grano Total Height	PCT OF Grand Total Number		
FLATHEAD CATFISH FRESHWATER DRUM	2	0 - 2 0 - 3	670. 1241.	35.06 64.94	40.00 60.00		
TOTALS	•	0.6	1011	100.00	100.00		

HOOPNETTING

SITE(S): 30 DATE(S): 61178,

TOTAL HOURS SET: 288.00 UNBAITED

SPEC IE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF Grand Total Height	PCT DF ACTOR CHARD Nathun
FLATHEAD CATFISH	2	0.2	436.	100.00	100.00
TOTALS	2	0.2	4 3 6	100.00	100.00

HOOPNETTING

SITE(S): 31 DATE(S): 60978, 60778,

TCTAL HOURS SET: 144.30 UNBAITED

SPECIE	NBR OF Fish	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT DF Grand Total Number
FLATHEAD CATFISH	6	1.0	2368.	84.63	85.71
SAUGER	1	0.2	430.	15.37	14.29
TOTALS	7	1.2	2798	100.00	100.00

HOOPNETTING

SITE(S): 25 GATE(S): 60978.

TOTAL HOURS SET: 192.00 BATTED

SPECIE	NOR OF Fish	FISH/24 I	HR TOTAL Weight	PCT OF Grand Total Meight	PCT OF Grand Total Number
CARP	1	0.1	505.	10.66	9.09
CHANNEL CATFISH	ī	0.1	132.	2.84	9.09
FLATHEAD CATFISH	2	0.3	458.	9.87	18.18
SMALLMOUTH BUFFALO	Ā	0.5	2985.	64.33	36.36
FRESHWATER DRUM	3	0-4	560.	12.07	27.27
TOTALS	11	1-4	4640	100.00	100-00

HOOPNETTING

SITE(5): 26

LATE(S): 61078, 61178, 61378, 60878,

TOTAL HOURS SET: 192.30 BAITED

SPECIE	NBR OF FISH	FISH/24	HR TOTAL HEIGHT	PCT OF Grand Total Height	PCT OF STAND TOTAL NUMBER
CARP	4	0.5	5835.	58.19	16.18
CHANNEL CATFISH	12	1.5	1677.	16.72	54.55
FLATHEAD CATFISH	1	0.1	250.	2.79	4.55
SMALLHOUTH BUFFALO	3	0-4	1855.	18.50	13.64
FRESHMATER ORUN	2	0 - 3	380.	3.79	9.09
TOTALS	22	2.8	10027	100.00	100.00

HOOPNETFING

SITE(S): 28. DATE(S): 62278, 60878, 61078,

TOTAL HOURS SET: 192.30

BAITEG

SPECIE	NBR OF	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CABB	•	0.1	142.	2.46	5.56
CARP		0-4	1374.	23.65	33.33
CHANNEL CATFISH		0.4	1143.	19.84	16.67
SAUGER	3	=			
SMALLMOUTH BUFFALD	>	0 - 6	2621.	45.49	27.78
ELACK CRAPPIE	1	0 - 1	168.	2.92	5.56
FRESHWATER DRUM	2	0.3	314.	5.45	11.11
TOTALS	16	2.3	5762	100.00	100.00

HOOPNETTING

SITE(S): 29 DATE(S): 60878.

TOTAL HOURS SET: 192.00 BAITED

SPECIE	NBR OF Fish	FISH/24 H	IR TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
SILVER CHUB	1	0.1	70.	1.99	12.50
FLATHEAD CATFISH	3	0.4	672.	19.07	37.50
SMALLMOUTH BUFFALO	2	0.3	2320.	65.83	25.00
FRESHWATER DRUN	2	0 - 3	462.	13.11	25.00
TOTALS	6	1.0	3524	100.00	100.00

HOOPNETTING

SITE(S): 30 DATE(S): 62278,

TOTAL HOURS SET: 192.00

BAITED

SPECIE	NBR OF Fish	FISH/24 HR	TOTAL NEIGHT	PCT OF Grand Total Weight	PCT DF Grand Total Number
CHANNEL CATFISH	7	0.9	769.	51.40	70.00
FLATHEAD CATFISH	1	0.1	216.	14.44	10.00
STONECAT	1	0.1	104.	6.95	10.00
SHOVELNOSE STURGEON	1	0-1	407.	27.21	10.00
TCTALS	10	1.3	1496	100.00	100.00

HOOPNETTING

SITE(S): 31 UATE(S): 6227d, 60978, 61178.

TOTAL HOURS SET: 192.00

BAITED

SPECIE	NGR OF Fish	FISH/24 HF	R TOTAL HEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CARP	1	0.i	1310.	51.88	12.50
CHANNEL CATFISH	6	0.8	895.	35.45	75.00
FLATHEAD CATFISH	1	0-1	320.	12.67	12.50
TOTALS	8	1.0	2525	100.00	100.00

HOOPNETTING

DATE(S): 60778,	S.	ide channel		
TOTAL HOURS SET:	192.00	UNBAITED		
SPECIE	NBR OF F1SH	FISH/24 HR TOTAL WEIGHT	PCT OF Grand Total Weight	PGT OF Grand Total Number
CHANNEL CATFISH FLATHEAD CATFISH SHORTHEAD REDHORSE FRESHWATER DRUM	6 1 1 2	0.8 652. 0.1 200. 0.1 720. 0.3 206.	36.67 11.25 40.49 11.59	60.00 10.00 10.00 20.00
TOTALS	10	1.3 1778	100.00	100.00

HOOPNETTING

DATE(5): 60978,	S	ide channel			
TGTAL HOURS SET:	192.00	BAITED			
SPECIE	NƏR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF Grand Chal Height	, PCT OF Grand Total Number
SILVER CHUB CHANNEL CATFISH FLATHEAD CATFISH FRESHWATER ORUM	1 17 1	0 - 1 2 - 1 0 - 1 0 - 1	40. 2229. 340.	1.50 83.39 12.72 2.39	5.00 85.00 5.00 5.00
TOTALS	20	2.5	2673	100.00	100.00

APPENDIX F

Hoop net catches for each wing dam and the side channel in August, 1978. Fish weights are expressed in grams.

SITE(S): 25 DATE(S): 80778, 80978,

TOTAL HOURS SET: 191.50 UNBAITED

SPECIE	NBR OF FISH	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR	1	0-1	480.	13.78	3.70
FLATHEAD CATFISH	2	0.3	1040.	29.86	7.41
SAUGER	1	0-1	218.	6.26	3.70
WHITE CRAPPIE	4	0.5	306.	8.79	14.81
BLACK CRAPPIE	13	1.6	661.	18.98	48.15
FRESHWATER ORUN	6	0.8	778.	22.34	22.22
TOTALS	27	3.4	3483	100-00	100.00

HOOPNETTING

SITE(S): 26 DATE(S): 80778.

TOTAL HOURS SET: 192.62 UNBAITED

SPECIE	NBR OF FISH	FISH/24 HR	TOTAL HEIGHT	PCT OF Grand Total Meight	PCT OF Grand Total Number
GLUEGILL	1	0.1	120.	8.11	5.88
HHITE CRAPPIE		0.5	558.	37.70	23.53
BLACK CRAPPIE	12	1.5	802.	54.19	70.59
TOTALS	17	2.1	1480	100-00	100.00

HOOPNETTING

SITE(S): 28 UATE(S): 80778, 80978,

TOTAL HOURS SET: 194.38 UNBAITED

SPECIE	Har of Fish	FISH/24 4	R TOTAL WEIGHT	PCT OF Grand Total Height	PCT OF Grand Total Number
LONG NOSE GAR	1	0-1	560.	20.27	3.13
FLATHEAD CATFISH	Ž	0.2	149.	5.21	6.25
BLUEGILL	10	1.2	993.	34.70	31.25
HHITE CRAPPIE	8	1.0	546.	19.08	25.00
BLACK CRAPPIE	10	1.2	404.	14.12	31.25
FRESHWATER DRUN	1	9-1	190.	6.64	3-13
TOTALS	32	4 . G	2862	100.00	100-00

174
APPENDIX F (continued)

51	Té	: ():	29	
ப்∧	16	15):		1178.

TOTAL HOURS SET:	199.00	UNBALLED			
SPECIE	NBR OF	FISH/24 HR	TOTAL	PCT OF	PCT OF
3, 33, 33	FISH		WEIGHT	GRAND TOTAL	GRAND TOTAL
			_	KEIGHT	NUMBER
LONG NOSE GAR	2	0.2	944.	24.65	18.16
SHORT NOSE GAR	1	0.1	563.	14.62	9.09
FLATHEAD CATFISH	2	0.2	1116.	28.98	18.18
HHITE BASS	1	3.1	132.	3.45	9.09
HHITE CRAPPIE	1	0.1	248.	6.48	9.09
BLACK CRAPPIE	3	0.4	236.	6.16	27.27
EDECHLATED DRIM	•	Λ.1	600.	15.67	9.09

3830

HOOPNETTING

11

SITE	(5):	30 .
GATE	(5):	80778

TOTAL HOURS SET: 200.47

TOTALS

SPECIE	NBR OF Fish	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT GF Grand Total Number
CHANNEL CATFISH	1	J.1	100.	3.99	11.11
FLATHEAD CATFISH	ī	0.1	85.	3.39	11.11
SMALLHGUTH BUFFALO	2	3.2	1630.	65.07	22.22
FRESHMATER DRUM	5	0.6	690.	27.54	55.56
TGTALS	9	1.1	2505	100.00	100.00

UNBAITED

HOOPNETTING

S I	TΞ	(5)	:	31
LA	TE	(S)	:	89778.

TOTAL	HOURS	SET:	205.03	UNBAITED

SPECIE	NBR DF Fish	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CHANNEL CATFISH	1	0.1	94.	3.29	9.09
FLATHEAD CATFISH	3	0.4	1645.	57.52	27.27
SHORTHEAD REDHORSE	2	0.2	628.	21.96	18.16
9L VE GILL	2	0.2	216.	7.55	18.18
PHITE CRAPPIE	1	0.1	78.	2.73	9.09
HLACK CRAPPIE	2	0 - 2	199.	6.96	18.18
TGTALS	11	1 - 3	2860	100.00	100.00

HODPNETTING APPENDIX F (continued)

5	I	Ī	Ε	ſ	5)	:	25
D	٨	T	£	(S)	ŧ	81176.

TOTAL	HOURS	SET:	203.00	BAITED
		36.		~~1160

SPEC IE	NOR OF FISH	FISH/24 HR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CARP	1	0.1	480.	4.63	2.70
CHANNEL CATFISH	12	1.4	2119.	20.42	32.43
SPALLHOUTH BUFFALO	13	1.5	6519.	62.83	35.14
BLUEGILL	4	0.5	479.	4.62	10.81
HHITE CRAPPIE	7	0 - 8	778.	7.50	18.92
TOTALS	37	4.4	10375	100.00	100.00

HODPNETTING

SITE(S): 26 GATE(S): 81678.

TOTAL HOURS SET: 214.33 BAITED

SPECIE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF GRAND TOTAL NUMBER
SMALLHGUTH BUFFALO	1	0.1	570.	62.16	33.33
BLUEGILL	1	0.1	103.	11.23	33.33
MHITE CRAPPIE	1	0.1	244.	26.61	33.33
TOTALS	3	0 - 3	917	100.00	100.00

HUBPHETFING

SITE(5): 28 GATE(5): d1179,

FOTAL HOURS SET: 199.20 BAITED

SPECIE	NBR OF Fish	F15H/24 HR	TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Tutal Number
LARP	1	0.1	450.	4.72	2.17
CHANNEL CATFISH	6	0.7	1015.	10.66	13.04
FLATHEAD CATFISH	1	0.1	520.	5.45	2.17
SMALLMOUTH BUFFALO	11	1 - 3	5365.	56.30	23.91
aluE G1lL	12	1.4	ø56.	6.98	26.09
HHITE CRAPPIE	•	0.5	426.	4.47	8.70
BLACK CRAPPIE	8	1.0	312.	3.27	17.39
FRESHWATER DRUN	3	0.4	567.	6.16	6.52
TOTALS	46	5.5	9535	109.00	100.00

HOOPNETTING APPENDIX F (continued)

SITE(S): 29 DATE(S): 61578,

TOTAL HOURS SET: 203.25

BAITES

SPECIE	NBR OF Fish	F1SH/24	HR TOTAL WEIGHT	PCT OF Grand total Weight	PCT OF Grand Total Number
CARP	3	0.4	2125.	10.58	4.92
CHANNEL CATFISH	29	3.4	5460.	27.23	47.54
SMALLHOUTH BUFFALO	22	2.6	11363.	56.47	36.07
SCUEGILE	4	0.5	598.	2.97	6.56
HHITE CRAPPIE	1	0.1	155.	0.77	1.64
FRESHWATER DRUM	2	0 - 2	398.	1.98	3.20
TOTALS	61	7.2	20122	100.00	100.00

HOGPNETTING

SITE(S): 30 OATE(S): 81178,

TGTAL HOURS SET: 234.50

8-1160

SPECIE	NBR OF FISH	F184/24 +	R TOTAL WEIGHT	PCT GF GPAND TOTAL PEIGHT	PCT OF Grand Total Number
CARP	1	0.1	315.	6 16	
CHANNEL CATFISH		_		6.16	7.69
	•	0.5	524.	10.24	30.77
FLATHEAD CAIFISH	2	0.2	735.	14.42	15.38
SMALLMOUTH BUFFALD	5	9.6	3503.	68.46	38.46
BLACK CRAPPIE	1	0 - 1	37.	0.72	7.69
TOTALS	13	1.5	5117	100.00	1ú0.00

HOOPNETTING

SITE(S): 31 CATE(S): 61178.

TOTAL HOURS SET: 204.17

BAITED

SPECIE	NBR OF Fish	FISH/24 HR	TOTAL HEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CARP	5	0.9	3290.	24.39	21.05
CHANNEL CATFISH	17	2.0	3649.	27.05	44.74
FLATHEAD CATFISH	1	0.1	355.	6.34	2.63
SMALLHGUTH BUFFALO	9	1.1	5330.	39.52	23.66
MHITE HASS	2	0.2	326.	2.42	5.26
BLACK CRAPPIE	1	0-1	38.	0.28	2.63
TOTALS	38	4.5	13488	100.00	100.00

WISCONSIN UNIV-STEVENS POINT WISCONSIN COOPERATIVE FI--ETC F/6 8/8 UPPER MISSISSIPPI RIVER WING DAM NOTCHING: THE PRE-NOTCHING FIS--ETC(U) AD-A096 634 MAY 80 R B PIERCE UNCLASSIFIED NL 3 ∞ 3 4D A 5966 44 END DATE FILMED 4-81 DTIC

HOOPNETFING

GATE(5): 811	78.	Side channel
TOTAL HOURS SE	T: 193.50	UNBAITED

SPECIE	NBR OF Fish	FISH/24 H	R TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
LONG NOSE GAR	1	0.1	515.	20.82	3.70
CHANNEL CATFISH	ī	0.1	112.	4.53	3.70
FLATHEAD CATFISH	ī	0.1	183.	7.40	3.70
ALUE GILL	13	1.6	1007.	40.70	48.15
MHITE CRAPPIE	4	0.5	209.	8.45	14.81
BLACK CRAPPIE	7	0.9	448.	18.11	25.93
TOTALS	27	3.3	2474	100-00	100.00

HOOPNETTING

JATE(5): 81578.	Side channel				
TOTAL HOURS SET:	191.30	BAITED	•		
SPECIE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF Grand Total Height	PCT OF Grand Total Number
CHANNEL CATFISH SHALLHOUTH BUFFALD BLUEGILL HHITE CRAPPIE BLACK CRAPPIE FRESHWATER ORUM	37 3 21 2 2	4.6 0.4 2.6 0.3 0.3	5788. 1401. 1999. 160. 252. 240.	55.82 14.24 20.32 1.63 2.56 2.44	56.06 4.55 31.82 3.03 3.03
TOTALS	66	8.3	9840	190-00	100.00

APPENDIX G

Hoop net catches for each wing dam and the side channel in October, 1978. Fish weights are expressed in grams.

179
APPENDIX G (continued)

Wing dam 25

TOTAL HOURS SET:	206-67	UNBAITED .		
SPECIE	NOR OF Fish	FISH/24 HR TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CHANNEL CATFISH SAUGER SMALLHOUTH BUFFALO FRESHWATER DRUN	3 1 1 5	0.3 446. 0.1 380. 0.1 550. 0.6 856.	19.96 17.03 24.64 38.35	30.00 10.00 10.00 50.00
TOTALS	10	1-2 2232	100-00	100.00

Wing dam 26

TOTAL HOURS SET:	181.00	UNBAI TED		
SPECIE	NBR OF Fish	FISH/24 HR TOTAL WEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CHANNEL CATFISH SAUGER SHORTHEAD REDHORSE BLACK CRAPPIE FRESHWATER DRUM	1 1 1 1 4	0-1 76. 0-1 226. 0-1 640. 0-1 48. 0-5 826.	4.19 12.44 35.24 2.64 45.48	12.50 12.50 12.50 12.50 50.00
TOTALS	8	1.1 1816	100.00	100-00

Wing dam 28

IUTAL HOURS SELE	191-00	OMBATIED			•
SPECIE	NBR OF Fish	FISH/24 HR TOTAL PCT OF HEIGHT GRAND TO HEIGHT	GRAND TOTAL	PCT OF Grand Total Number	
LONG NOSE GAR	1	0.1	430.	41.59	20.00
CHANNEL CATFISH	ī	0.1	26.	2.51	20.00
SMALLHCUTH BUFFALO	ī	0.1	365.	35.30	20.00
BLACK CRAPPIE	1	0-1	76.	7.35	20.00
FRESHWATER DRUM	1	0.1	137.	13.25	20.00
TOTALS	5	0-7	1034	100.00	100.00

180
APPENDIX G (continued)

TOTAL HOURS SET:	181.58	Wing dam 29	· •		
SPECIE	NBR OF Fish	FISH/24 HR	TOTAL NEIGHT	PCT OF . Grand total height	PCT OF Grand Total Number
FLATHEAD CATFISH SAUGER	. 1	0 - 1 0 - 1	510. 192.	72.65 27.35	50.00 50.00
TOTALS	2	0.3	702	100.00	100.00

•		Wing dam 3	0.		
TOTAL HOURS SET:	162.75	UNBAITED		•	
SPECIE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF GRAND TOTAL MEIGHT	PCT OF Grand Total Number
SILVER RECHORSE	1	0.1	2000.	100.00	100.00
TOTALS	•	0.1	2000	100.00	100.00

Wing dam 31						
TOTAL HOURS SET:	162.67	UNBALTED	•			
SPECIE	NBR OF Fish	FISH/24 HI	R TOTAL Weight	PCT OF Grand Total Weight	PCT OF Grand Total Number	
GIZZARD SHAD FLATHEAD CATFISH SHALLHOUTH BUFFALD SHORTHEAD REOHORSE	1 1 2 1	0.1 0.1 0.3 0.1	88. 108. 1550. 580.	3-78 4-64 66-64 24-94	20-00 20-00 40-00 20-00	
TOTALS	S	0.7	2326	100.00	100-00	

Wing dam 25

TOTAL HOURS SET:	188-33	BAITED			
SPECIE ·	NBR OF Fish	FISH/24	HR TOTAL MEIGHT	PCT OF Grand Total Weight	PCT OF Grand Total Number
CHANNEL CATFISH	. 11	1.4	1618.	13.96	32.35
RIVER CARPSUCKER	1	0-1	1060-	9.14	2.94
SHALLHOUTH BUFFALO	21	2.7	8760.	75.57	61.76
FRESHWATER DRUM	1	0.1	154.	1.33	2.94
TOTALS	34	4.3	11592	100.00	100.00

Wing dam 26

TOTAL HOURS SET:	193-58	BAITED			•
SPECIE	NBR DF Fish	FISH/24 H	R TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT DF Grand Total Number
CHANNEL CATFISH Smallhguth Buffald Freshwater Orun	4 17 1	0.5 2.1 0.1	788. 7152. 215.	9-66 87-70 2-64	18-18 77-27 4-55
TOTALS	. 22	2.7	8155	100.00	100.00

Wing dam 28

TOTAL HOURS SET:	193.33	BAITEO				
SPECIE	NBR GF Fish	FISH/24	HR TOTAL HEIGHT	PCT OF GRAND TOTAL HEIGHT	PCT DF Grand Total Number	
CHANNEL CATFISH Smallhouth Buffalo Black Crappie	3 42 2	0.4 5.2 0.2	400. 17226. 190.	2.25 96.69 1.07	6.38 89.36 4.26	
TOTALS	47	5.8	17816	100.00	100.00	

182
APPENDIX G (continued)
Wing dam 29

TOTAL HOURS SET:	192.00	BAITED		
SPECIE	NOR OF Fish	FISH/24 HR TOTAL WEIGH	PCT OF T GRAND TOTAL WEIGHT	PCT OF Grand Total Number
FLATHEAD CATFISH	1	0.1 490.	2.36	3.03
RIVER CARPSUCKER	1	0.1 1340.	6.46	3-03
SHALLHOUTH BUFFALD	31	3.9 18907.	91.18	93.94
TOTALS	33	4.1 20737	100.00	100.00

Wing	dam	30
------	-----	----

TOTAL HOURS SET:	196-25	BAITED			
SPECIE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT OF Grand Total Number
CARP	1	0.1	620.	15.34	7.69
CHANKEL CATFISH	7	0.9	1252.	30.98	53.85
HALLEYE	1	0.1	210.	5.20	7.69
SPALLHOUTH BUFFALO	3	0.4	1870.	46.28	23.08
BLUEGILL	1	0-1	89.	2.50	7.69
TOTALS	13	1-6	4041	100.00	199-00

Wing dam 31

TOTAL HOURS SET:	197.92	BAITED				
SPECIE	NBR OF Fish	FISH/24 HR TOTAL WEIGH		PCT OF Grand Total Number		
CHANNEL CATFISH	32	3.9 5615.	60.01	80.00		
FLATHEAD CATFISH	1	0.1 300.	3-21	2.50		
SMALLHOUTH BUFFALO	Ğ	0.7 2232.	23.85	15.00		
SHORTHEAD REDHORSE	1	0.1 1210.	12.93	2.50		
TOTALS	40	4.9 - 9357	100-00	. 100-00		

		Side channel	•		•
TOTAL HOURS SET:	236_LT	unbai ted			,
SPECIE	NBR OF Fish	FISH/24 HR	TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT DF Grand Total Number
CHANNEL CATFISH	5	0.5	584.	13.61	33-35
SAUGER	Z	0.2	631-	14-60	13.33
HALLEYE	1	0.1	147.	3.40	6.67
SHALLHOUTH BUFFALD	3	0.5	1832.	42-40	20.00
SHORTHEAD REDHORSE	3	0.3	1077-	24.92	20-00
FRESHWATER ORUN	1	0.1	46.	1-06	6.67
TOTALS	15	1.5	4321	100.00	100.00

Side channel							
TOTAL HOURS SET:	209.50	BAITED		٠.			
SPECIE	NBR OF Fish	FISH/24 HR 1	TOTAL SE IGHT	PCT OF GRAND TOTAL WEIGHT	PCT DF GRAND TOTAL NUMBER		
CARP	. 1 180	0.1	500. 284.	1.59 83.43	0.5Z		
CHANNEL CATFISH SAUGER	100	20-6 20	197.	0.63	93-26 0-52		
SMALLHOUTH BUFFALO	-		139.	13.14	4.66		
FRESHWATER DRUM	2	0-2	384.	1-22	1.04		
TOTALS	- 193	22-1 31	504	100-00	100-00		

APPENDIX H

Hoop net catches for each wing dam and the side channel in June, 1979. Fish weights are expressed in grams.

	APPE	ENDIX H			
DATE(5): 61079,	Wing	dam 25			
TOTAL HOURS SET:	191.67	UNBAITED			
SPEC IZ	18R OF Fish	FIS4/24 H	R TOTAL WEIGHT	POT OF GEAMO TOTAL ATIONT	POT OF GRAND TOTAL NUMB: 5
LONGNOSE GAR CHARREL CATFISH SAUGER SHORTHLAU RECHORST FRESHWATIT DRUM BLACK BULLHIAD TOTALS	1 2 1 1 1 3	0.1 0.3 0.1 0.1 0.1 0.4	406. 240. 422. 590. 254. 319.	19.12 10.71 19.53 25.33 11.74 14.23	11.11 22.27 11.11 11.11 11.11 33.33
10.862	,	1.1	141		
DATL(S): 61079,	Wing	dam 26			
TOTAL HOURS SET:	192.30	UNBAITES			
SPECIE	NBR OF Fish	FT54/24 A	TEPTSW THOTSW	201 OF GP443 TOTAL MSIGHT	POT OF GRAND TOTAL NUMBER
CHANNEL CATFISH FLATHEAD CATFISH SMALLHOUTH BUFFALO FRESHWATER DRUM BLACK BULLHEAD TOTALS	5 2 1 2 4	0.6 0.3 0.1 0.3 0.5	898. 546. 434. 312. 429.	34.29 20.05 16.57 11.91 15.35	35.71 14.29 7.14 14.29 29.57
DATE(S): 61979,	Win	g dam 28			
TOTAL HOUPS SET:	192.33	UNBAITED			,
SPECIE	HBR OF Fish	FISH/24 -	HR TOTAL VEIGHT	POT OF GPAND TOTAL THUISH	₽01 0F GR4NO TOTAL YUMHFR
SAUGER SHOVFLNGST STURGERN YELLOW PERCH	. 1 1 1	0.1 0.1 0.1	329. 850. 98.	25.76 66.56 7.67	33.33 33.33 33.33

100.00

100.00

TOTALS

3

0.4

1277

DATE(S): 61079.

Wing dam 29

TOTAL HOURS SET:

193.00

UMBAITED

SPECIT		NBR OF Fish	FI\$HZ84 d	R TOTAL MEIGHT	POT OF GRAND TOTAL MOTERAT	PCT OF GRAMN TOTAL MUNSTR
CHARNEL CATFISH		3	9.4	59é.	51.70	75.00
GOLDEN RECHORSE		1	0.1	370.	39.30	25.00
TOTALS	•	4	0.5	966	100.00	100.0)

SITE(S): DATE(S):

Wing dam 30

61079,

TOTAL HOURS SET: 191.67

UN BAIT.

SPECIE		HBR OF Fish	£154/24 a	A TOTAL MEIGHT	POT JE 494NO FOTAL RELGHT	POT (F GRANG TOTAL NUMBER
CHANNEL CATFISH		3	0.4	730.	40.47	50.00
FLATHEAG CATFISH		2	0.5	244.	13.53	33.33
SMALLMOUTH BUFFALO	•	1	0.1	330.	45.01	15.67
TOTALS		6	0.8	1904	100.00	100.00

OATE(S): 61479, 61279, 61079, Wing dam 31

TOTAL HOURS SET:

196.42

UNBAITE

SPECIE	NBR OF FISH	FISH/24 H	R TOTAL WEIGHT	POT OF Grand Total Weight	POT OF GRAND TOTAL REBMUN
CARP	1	0.1	2570.	44.27	20.00
FLATHEND CATEISH	1	0.1	395.	5.63	20.00
RIVER CARPSUCKER	2	0.2	2000.	34.45	40.00
SHORTHEAD REDHURST	1	0.1	850.	14.04	20.00
TOTALS	5	0.6	5405	100.00	100.00

	ATTEMPTA II (continuea,			
DATE(S): 61279,	Wing da	m 25			-
TOTAL HOURS SET:	190.00	BAITED			·
SPECIE	NBR OF Fish	FISH/24	HR TOTAL Weight		POT OF GRAND TOTAL NO 4HIA
CHANNEL CATFISH FLATHEAD CATFISH RIVER CARPSUCKER SMALLHOUTH BUFFALO FRESHWATER DRUM BLACK BULLHEAD	3 1 1 12 7 3	0.4 0.1 0.1 1.5 0.9	463. 390. 600. 6747. 993. 564.	4.75 3.97 5.72 69.06 10.15 5.74	11.11 3.70 3.70 444 25.33 11.11
TOTALS	['] 27	3 • 4	9827	109.38	100.00
DATE(S): 61779,	Wing da	m 26			
TOTAL HOURS SET:	192.67	SAITEN			
SPECIE	NER OF FISH	FISH/24	HR TOTAL MEIGHT	POT OF Grand Total Bildhi	201 0F 684%) TOT√6 9U48€8
CHANNEL CATFISH SMALLHOUTH BUFFALT FRESHWATZE DRUM	1. 19 1	0 • 1 2 • 4 0 • 1	104. 11630. 72.	0+o3 93+o1 0+o1	4.70 93.43 4.76
TOTALS	21	2.5	11606	100.00	109-00
CATE(5): 61279,	Wing da	m 28			
TOTAL HOURS SET:	180.47	## ITED			
SPECIE	NOR OF Fish	F15H/24	JATOT SH THOIGH	PCT OF GPAND TOTAL WEIGHT	PC TOS JATUT (NASO RBEMUK
CARP CHANNEL CATFISH SMALLMGUTH BUFFALO FPESHWATER SRUM	1 3 7 1	0.1 0.4 0.9 0.1	7450. 292. 5993. 364.	26.93 3.21 65.36 4.00	9.33 25.00 59.33 9.33

1?

9099

100.00

100.00

TOTALS

DATE(\$): 61279,	Wing	dam 29			
TOTAL HOURS SET:	186.75	84ITED			
SPEC IF	NOR OF Fish	F19H/04 H	IR TOTAL WEIGHT	POT OF TOTAL THEIGHT	POT OF GRAND TOTAL NUMBER
CARP SMALLMOUTH OUFFALD	2 6	0 • 3 0 • 8	4200. 5246.	44.45 55.54	25.00 75.00
TOTALS	ģ	1.0	0446	100.00	100.00
:	· ·				
DATE(S): 61279,	Win	g dam 30			
TOTAL HOURS SET:	135.70	BAITED			
SPECIE	NBR OF Fish	FISH/24)	HR TOTAL MEIGHT	POT OF GRAND TOTAL WEIGHT	PCT OF GRAND TOTAL NUMBER
CHANNEL CATFISH FLAIMEAG CATFISH SAUGER UNKNOWN	1 1 1	0 • 1 0 • 1 0 • 1 0 • 1	138. 84. 930. 194.	10. y9 5. 09 74. u4 4. 24	25.00 25.90 25.00 25.90
TOTALS	4	0.5	1256	100.00	100.00
DATE(5): 61679, 61	170. 4122a. Wir	ng dam 31			
	196.00	8+17E5			
SPECIE	NOR OF	F1\$4/24	HR TOTAL WEIGHT	PCT OF GRAND TOTAL WEIGHT	PCT CF GRAND TOTAL NUMBER
SILVER CHUB FLAIHEAD CATFISH SMALLMUUTH BUFFALD	1 1 4	0.1 0.1 0.5	64. 600. 3100.	1.70 15.74 82.36	16.67 16.67 66.67

TOTALS

100.00

100.00

3764

DATE(5): 61079,	Side	channel		
TOTAL HOURS SET:	199.67	UNBAITET		
SPECIE	MAR OF Fish	FISHZ24 HR TOTAL Height	POT LE GEAND TOTAL RELUAT	POT OF GHAND TOTAL NUMPER
CARP FLATHEAD CATFISH SMALLMGUTH BUFFALO	1 1 1	0.1 1200. 0.1 202. 0.1 254.	72.46 12.20 15.34	33.33 33.33 33.33
TOTALS	3	0.4 1656	100.00	100.00

DATE(S): 61279. Side channel
TOTAL HOURS SET: 179.67 HAITED

SPECIE	NBR OF FISH	FTS4/24 H	R TOTAL WEIGHT	PCT OF GRAND TOTAL NUMBER	
CARP SPALLMOUTH BUFFALP FRESHWATER DRUM	6 2 2	0 • 4 0 • 3 0 • 3	19900. 600. 524.	3A • ⊃0 4 • ¤7 5 • ⊍7	57.00 16.57 15.57
BLACK BULLHEAD	2	0.3	193.	1.57	16.57
TOTALS	12	1.6	12317	100.00	100.00

 $\label{eq:APPENDIXI} \mbox{\cite{thm1}} \mbox{\cite{thm2}} \mbox{\ci$

Species	Numb∵: of fish	Percent of grand total number
Mooneye	1	0.62
Emerald shiner	4	2.47
River shiner	55	33.95
Bullhead minnow	26	16.05
Fathead minnow	1	0.62
Channel catfish	1	0.62
Sauger	5	3.09
Walleye	1	0.62
Quillback	1	0.62
Bigmouth buffalo	2	1.23
Golden redhorse	2	1.23
Shorthead redhorse	1	0.62
Spotted sucker	1	0.62
Trout-perch	2	1.23
White bass	2	1.23
Orangespotted sunfish	4	2.47
Bluegill	1	0.62
White crappie	8	4.94
Black crappie	5	3.09
Freshwater drum	39	24.07
Total	s 162	100.0

APPENDIX J

August 1978 seine catches in the side channel.

Species	Number of fish	Percent of grand total number
Longnose gar	1	0.25
Carp	1 1 7	0.25
Silvery minnow	7	1.72
Silver chub	70	17.24
Emerald shiner	26	6.40
River shiner	22	5.42
Spottail shiner	7	1.72
Bullhead minnow	19	4.68
Channel catfish	15	3.69
Tadpole madtom	26	6.40
Logperch		2.22
River darter	9 2 12 2 1 1 2 1 1 1	0.49
Sauger	12	2.96
Walleye	2	0.49
Highfin carpsucker	1	0.25
Smallmouth buffalo	1	0.25
Golden redhorse	2	0.49
Shorthead redhorse	1	0.25
Trout-perch	1	0.25
White bass	1	0.25
Rock bass	1	0.25
Orangespotted sunfish	31	7.64
Bluegill	92	22.66
Largemouth bass	2	0.49
White crappie	2 1	0.25
Black crappie	15	3.69
Freshwater drum	35	8.62
Brook silverside	3	0.74
Totals	406	100.0

APPENDIX K
October 1978 seine catches in the side channel.

Species	Number of fish	Percent of grand total number
Silver chub	4	8.51
Speckled chub	1	2.13
Emerald shiner	3	6.38
River shiner	4	8.51
Bullhead minnow	4	8.51
Tadpole madtom	1	2.13
Logperch	2	4.26
Sauger	5	10.64
Walleye	2	4.26
Silver redhorse	1	2.13
Shorthead redhorse	3	6.38
White bass	3	6.38
Orangespotted sunfish	4	8.51
Bluegill	1	2.13
White crappie	1	2.13
Black crappie	1	2.13
Freshwater drum	5	10.64
Brook silverside	1	2.13
Johnny darter	_1_	2.13
Totals	47	100.0

APPENDIX L

June 1979 seine catches in the side channel.

Species	Number of fish	Percent of grand total number
Silver chub	1	3.33
Emerald shiner	1	3.33
River shiner	9	30.00
Spottail shiner	1	3.33
Spotfin shiner	1	3.33
Bullhead minnow	3	10.00
Tadpole madtom	1	3.33
Sauger	3	10.00
White bass	1	3.33
Rock bass	1	3.33
Orangespotted sunfish	4	13.33
White crappie	1	3.33
Black crappie	1	3.33
Small unknown suckers	2	6.67
Totals	30	100.0

APPENDIX M

Length-frequency distributions of each year class of bluegill caught in Pool 13.

Length		Y	ear class			
range (mm)	1978	1977	1976	1975	1974	
41-60	3					
61-80	2	4				
81-100	3	36	3			
101-120		49	6			
121-140		35	16			
141-160		5	21	1		
161-180		1	38	2	2	
181-200			3	2	1	
201-220			1			
Totals	8	130	88		3	

APPENDIX N

Length-frequency distributions of each year class of black crappie caught in Pool 13.

Length		•	Year clas	5		
range (mm)	1978	1977	1976	1975	1974	
61-80	1					
81-100	-	1				
101-120		3				
121-140		54	1			
141-160		19	2			
161-180		6	1			
181-200		1	6	2	2	
201-220			2	3		
221-240			1	3		
Totals	1	84	13	8	2	

 $\label{eq:APPENDIX 0} \mbox{Length-frequency distributions of each year class of sauger caught} \\ \mbox{in Pool 13.}$

	Length			Υe	ar class		
**************************************	range (mm)	1978	1977	1976	1975	1974	
	101-120	4					
		4 5 2 2 3					
	121-140	5					
	141-160	2					
	161-180	2	18	1			
	181-200	3	19				
	201-220	_	28				
	221-240		30	3			
	241-260			3			
			19	3			
	261-280		10	5			
	281-300		1	4	1		
	301-320			5	1	1	
	321-340			1	ī	-	
	341-360			-	1		
	361-380			•	ī		
				2	1		
	381~400						
	401-420				1		
	421-440						
	441-460				1		
	Totals	16	125	24			

APPENDIX P

Length-frequency distributions of each year class of freshwater drum caught in Pool 13.

Length	Year class							
range (mm)	1978	1977	1976	1975	1974	1973	1972	
41-60	1							•
61-80	7							•
81-100	14							
101-120	13							
121-140	49							
141-160	55	11	1					
161-180	25	13						
181-200	1	15	2 6					
201-220		24	6	1				
221-240		20	12					
241-260		7	20	2				
261-280			15	4				
281-300			5 2	4 2 2 1				
301-320			2	2	2			
321-340				1	1			-
341-360					1			
361-380								•
381-400							1	-
Totals	165	90	63	12	4	0	1	

APPENDIX Q

Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for bluegill of ages II through IV.

APPENDIX R

Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for black crappie of ages I through IV.

APPENDIX S

Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for sauger of ages I through IV.

APPENDIX T

Catch curve, correlation coefficient (r), and instantaneous rate of total mortality (Z) for freshwater drum of ages I through VI.

APPENDIX U

Hydrographic relief transects for each wing dam and the side channel in June, 1978.

APPENDIX U

The second leaves the second l

APPENDIX V

Hydrographic relief transects for each wing dam and the side channel in August, 1978.

	oı e ö 21 913 <i>m</i>	\$5 \$1
u pstrea m		S.Agen 0
APPENDIX V Wing Dam 25 215 m. transect	150 m. transect	90 m. transect
downstream		67 meters

	£	O 5 10	
APPENDIX V (continued) Wing Dam 28	ream 245 m. transect upstream	120 m. transect	60 m. transect
	downstream		

	Wing Dam 29	
downstream	215 m. transect	upptream
	140 m. transect	
		•
	60 m. transect	
~~		

Statam Statam

O. 01 67 meters upstrea m APPENDIX V (continued)

Wing Dam 30 215 m. transect 140 m. transect 60 m. transect downstream 2 meters

s meters ٥ 01 67 meters upstream APPENDIX V (continued) Wing Dam 31 60 m. transect 140 m. transect 215 m. transect downstream O meters

$\overline{}$
∇
Ф
⋾
Ξ
_
-
ىد
_
00
٠.
>
>
-
×
×I
VIQ
×I
NDIX
ENDIX
PENDIX
PENDIX
ENDIX
PENDIX
PENDIX

	nater.	
01	<u> </u>	۱ ٥
west . east		Upper Transect

Middle Transect

Lower Transect

0 meters

100 meters

APPENDIX W

Hydrographic relief transects for each wing dam and the side channel in October, 1978.

·	·							-1			,	French 1			,	
		† : : • .		1:::::	1	1	1		i	;	: .	1	Jane 1	1	1	
	1	1	1::::	1::::	1: . : :	1::::	2134	3W	1				i ·			' i
				+	,	17			المراض			<u> </u>	 		يغ	
	1 :	/	1:1:	11	 						1	1	1	l ·	Ţ	
	1							+	. د			1			; E	
			<u> </u>	-	· ·	† ·	1	1	ili. Biran ilinah	·			ļ	1-	- 0	
	ean.	4.4			•				1					1		: • • 1
1	ັ້		1		! : :	ļ				•					1	
	i 🚝 i			#			1	1.							i .	!
	יוע			1												
	sdn			1.117			1	1:	•		1 :			1	11.11	·
[- 3-														1111	
			1				<u> </u>	1							1	
	·		1				ļ		į	ļ., . .					i · ·	
	1		1				1			1			1		1	! !
	 		 	 		 -	 								 	
	1															
	+		11				1 :		1		1				1:::::::	l i
								 					}			
	1						1	1		†			1		1	! . : : : 1
}	 		 	ļ		ļ · · ·		1					H · · · · · · ·		† · · · ·	
			1				1	/		,			J]	
1	<u> </u>			1			i	1		1					1::::::::::	
			I.													
1							<u> </u>	• • • • • • • • • • • • • • • • • • • •						• • • • •		
	ļ -						F	1								
			1													1::521
	 		4.	∤			 			 					ļ !	
							F	Ţ								
							1	t							 	
	I										4					
	- 			 		. u		 			<u> </u>				 	
F	- 20			1		- S	}-				- W					
₹ €				1							· •		!		1::	
	-5					ā		+-			F -	I			 	
× 6	<u> </u>					_	1	1			2				.	
<u></u>	· · · -					-	├ ┊ ── 	 			 				 •	
Z	· ···· · · · · · · · · · · · · · · · ·															
								-		1						
<u> </u>	E.,					Ę					E					
⊕ Q	Ε										E					
A P E	£										O m					
App E						50 m.			A 100 mm							
Mnβ Ung	2 S H															
M ng																
Aββ N O O O O O O O O O O O O O O O O O O																
W Ing																
W Ing																
en lug			7													
App paragraph of the p																
App de																
β di																
β diβ β line																
Wing E																
3																
3																
βη η η η η η η η η η η η η η η η η η η																
3																
3																
3	5															
3	5															
3	5															
3	5					5						·				
3	5										06					
3	5					5					06					
3	5					5					06	·				
3	5					5					06					
3	5					5					06					
3	5					5					06					
3	5					5					06					
3	5					9					06					
3	5					5					06					
3	5										06					
3	5										0					
3	-fredm										0					
3	5										0					
3	5										06					

John stream 2060 m transect 170 m transect 105 m Transect 105 m Transect 200 m transect					220				-
deur streem 260 m transet	444					T#4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
deur streem 260 m transet					1:2:1112:11	1::::	1:::::::	1::::1::	
deur streem 260 m transet					4-15+ bhe		1		
Weight Stream 1260 m transect					1115111111	10.	1	1	
down stream 260 m transact 170 m transact 105 m transact 260 m transact 2					4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1	{	1	
down stream 260 m transact 170 m transact 105 m transact 260 m transact 2						†*			
Journal Present					1		 		
Journal Present			TTT TTT					1.1 1 1 1 1 1 1	
Journal Present			++		4	 	╅╌┿╍╺╂╺┆┧╂		
Journal Present	 				1 - - - - - - - - - 	1 1 - + - 1		1	• • • • • • • • • • • • • • • • • • • •
Journal Present					4-	1++++1:+++	┨╼┾╸╸┨╼┾┤╏	- 	• • • • • • • • • • • • • • • • • • • •
Journal Present		***							
Journal Present	1				₽	╽ ┡ ╸╸ ┠╼╼╌┦	┨┵┵╍┹╸┾┼┫	 	++1
22 (C) m 23 (C) m 25									
22 (C) m 23 (C) m 25	}	├ ┷┷╼╼╃╌╼╼╌╽ <mark></mark>	╎╤┋╸╸╏╒┋╤┋		┨ ┊╞ ┆┫╂┾┊┼╺	┨┿╅╏┧╂╾╾┯╬	┦┑┙ ╺╺ ┨ ╍┿╅┠	┨╌ ┼╍ ╸┊╸ ┦╼ ┨ ╌┼╌┼╴	+++
22 (C) m 23 (C) m 25									
22 (C) m 23 (C) m 25	 	 		 	 	 	 		
22 (C) m 23 (C) m 25								 	
22 (C) m 23 (C) m 25	1	▎╼┊┊╒ ┫╌╾╼┼╫			╂┯┼┤╉┠┧┼╁╋	11111	<u> </u>		
22 (C) m 23 (C) m 25								 	
22 (C) m 23 (C) m 25	 	 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1:1		
22 (C) m 23 (C) m 25					1	 	+	1 + 1	+++++++++++++++++++++++++++++++++++++++
22 (C) m 23 (C) m 25	1				1		1 - 1 - 1 - 1 - 1 - 1		
22 (C) m 23 (C) m 25	1	1			1	 	{ -{ { 	∤ →→⊷∤→←	
22 (C) m 23 (C) m 25									
22 (C) m 23 (C) m 25					111	 	╏╸╸╸╸ ┎┩╌	∤∸····∤ ∤÷··	++
22 (C) m 23 (C) m 25					1				
22 (C) m 23 (C) m 25	1				1	┠┋┋┋	╏ ┆┵┵┼╂	 + 	1-1
22 (C) m 23 (C) m 25									
22 (C) m 23 (C) m 25	 				 	 	 		
22 (C) m 23 (C) m 25					1 : 1 :				
22 (C) m 23 (C) m 25	H++++	▎ ▎		-+++	 	 	1 - 1 - 1 - 1 - 1 - 1	! !	
22 (C) m 23 (C) m 25	U								
22 (C) m 23 (C) m 25	<u>P</u>	│ ┯╃╼╼╂╼╂			1 - 1	<u> </u>		1	
22 (C) m 23 (C) m 25									
22 (C) m 23 (C) m 25	 						<u> </u>		
22 (C) m 23 (C) m 25	200				1-11-1				
22 (C) m 23 (C) m 25	E	•					יי		
22 (C) m 23 (C) m 25	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				┨┷╂┷╂╼╼╴			f [:	
22 (C) m 23 (C) m 25				VA .					
	E	┈┋┈ ┞┈╫╼┼			1:1:1:1:		<u> </u>		
	3 2		— <u>, , , , , , , , , , , , , , , , , , ,</u>		1-1		┤╌┇╌╌┤╌ ┞╍┼	h	
down stream	20						↓~~~~~~		
down stream	-	- E			▋┆┪┊ ┤╍╸		e 		
down stream									
down stream	Z	\circ			 - - 		10		
down stream		20		9:	1-11-1-1	,			
down stream			/		┨┼╢┼┼╁┼				
down stream	-d	77							
	 		A 11111						
			+		1 - A-1	 	 - - - 	 	
down stream	<u> </u>				1 - 1 1 1 1 1 1 1	I			
down stream	[++++	-++-	++1-+		1 · · · · · · · · · · · · · · · · · · ·	 	┨┑╸╏╸┨╻ ╏╂╸	 	
					1:111			1	
	h	┞╃┋╛┩ ╉╅┵╸╸╋	/+++		<u>╉┾┾┼</u> ╫┼┼		 	<u> </u>	
down street			1	+ + 11111	1 1	1	 - - - - - - - - 	├	++
down street	1	├┌<u>╁</u>╎╏╏ ╌╌╌╏	· · · · · · · · · · · · · · · · · · ·	· - · ! + J + +	<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>		
down street					1	 	1		
down street					1		11		
down street					┃ ╻╴┼╸┃┣╶╍┿	 	╄ ╵╶╶ ╌╂╺ ┤╏	┡┊╸┊ ┠╺╌	
down street					1				
		 	 		 	L	L 		والمراسية ويستراق والأز
]	$\Pi \Pi \Pi$	
	}	<u>5</u>					<u> </u>		
		2			J	 	 		
	h	-C -	it				1		
		=			·	 		├ - .	₆
					1	1			
	F	-5			∤ 	 	╽ ┈╶╌╴╸ ┃╸ ┈╶╣	<u> </u>	j •
		3			1		1 1 1 1		
					╅╶ ┷┷╸ ╟ ┼┵┷╾	 	<u> </u>	<u> </u>	
		i							
	 		╌╌╌╂╌╺┾┧╏		 	<u> </u>	<u> </u>		
							1		
	1	 				 	<u> </u>		
	PHI III					 		1FIT	
	1	┝╛┥╄┯╅╼╼╌╸┪			 	t		1	
							لمتصلصينا	 	

				222									
						1	•						
	1	I 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	e hairs	44								1 ::!
	1			15		0							
				11.11								<u> </u>	
						7;		: : :				Ŧ.	
E-	1	1				:1:.	,	,		1			1
E - 5	1::::: <u> ::</u> ::			::::1	1.7.1.1					1: :::::		I. I. I	1::::[
	1				4.5.		+++	4				'	
	1	1:11			i	1	11:11	<u> </u>		1:::::			1::::1
	1	 				++	++++			1-:			
	 -									 			
	1 - 1 - 1 - 1 - 1			1111						1:377			
				; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						1			
	1	 						#######################################		1=:			
					+ + +					1			
	1 <i>1-1</i>	<u> </u>		:::::::::::::::::::::::::::::::::::::::						1			
	<u> </u>				7 + 7 - 1	:-+		}		1			
	1			- 1						1	\vdash	-	
	Y								1	1:		H-1.	
		1						===:		1	- 1		
ļ 										1			
	11							<u> </u>		1			
	 #					. 🗆				1			
	1==1===			//		: [.==:1		1			
	1\\ -			:::/		: :							
12 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	 		-	1		- +				1			
3:	· · · · · · · · · · · · · · · · · · ·		Fransec					ransect		4:			
-	 			}		+		18	+-}	4		1 :	
ontin mamsec		F ==	2					- = -					• • • • •
0 d E						1		-0-		1		1	
	1 13					- †			•	1 + 1			
<u> </u>	1		- 			. 1				F	_ :		
			- 			-1							
			÷ .					Ę					
3 on E			£					Ę				,	
3 on £			£					Ę					
3 on £			- 										
3 on £			£					Ę					
3 on £			£					Ę					
3 on E			£					Ę					
3 0 E			£					Ę					
3 0 E			£					Ę					
3 on £			£					Ę					
3 0 E			£					Ę					
3 0 E			£					# 9					
3 0 E			£					# 9					
3 0 E		┞╺┊╶╸ ╸╸ ╏ ╶╸	£					# 09		+			
3 0 E			£					# 9					*
3 on £			\$ 0 F					# 09		.+4~+			*
3 on £			\$ 0 F					# 099					*
APPENDIX W			\$ 0 F					# 099					*
APPENDIX W			\$ 0 F					# 099					*
APPENDIX W			95					# 09					*
APPENDIX W			95					# 09					*
APPENDIX W			\$ 0 F					# 09				57	*
APPENDIX W	 		\$ 0 F					# 09				57	*
APPENDIX W			\$ 0 F					# 09				57	
APPENDIX W			\$ 0 F					# 099				meters	*
Tream Tream			\$ 0 F					# 09				O meters	
down stream			0 L					E 099				O meters	
down stream								E 009				O meters	
down stream								E 009				O meters	
down stream			95					E 099				O meters	

			 	224) 		 	 		· 	,
				en BTB	ш						
			97	- 5		0			ارد		
			 			1 - 1 - 1	 	1	و ٦		
	80								67 meters		
	upstream										
		1					 				
		/									
								 /			
38							 4-				
12 C	2 8 8		ransect				 ransect		:		
Connection 3	Hransect P		a Z				-ra	 			
3 6	Ė		Ė				 Ë		-		
3 60 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	512		140				 60				
2											
	E			++++							
	9						 				
	downstream						 		ters.		
	-6						 		O meters		
								 	. 0		
		1			1						

	m 22h
01. 2. O	
\$ 1	
3	meters
	0
	+
0 4	S S S S S S S S S S S S S S S S S S S
	à l'all distribution de la constant
0 O O	P P P P P P P P P P P P P P P P P P P
	2
	<u> </u>
# # # # # # # # # # # # # # # # # # #	
	in the second of
	•

APPENDIX X

Hydrographic relief transects for each wing dam and the side channel in June, 1979.

F		1	1								1			1	1	٠.	
		1:	1::::			1:::::	1				!			! .	•	•	!
,				+		.	• • •	4-6-6	•	1 .	•		i			S	
	7	+ -		·			01			. D		,	:			يَعِ	
			4	1		1		1		·			• • •	1		: - 2 0	:
		† *	1 1	<u> </u>		1								1::::	1:5:	و	
1		: 			- 							}		·		,≛	- •
- i		E	į				1		i							0	111111
	1 - :		1			1 : : : :			Ι					11		_	1 11 1
	4	1 Z		4 4			‡		4 .			i	1	 		ì	
	+		 	11	1777		1	1				1	1	11		1	
]	rpst	1	1		1111											i i
	1	1		· · · · · · · · · · · · · · · · · · ·	1	j	1		4	. • •	· · · · ·	i • • • •		!!: :	•	1	1 - 1 -
			1		1	* · · · · ·						1	ļ	1 -			11
i =	1	·			i	} · · →						1		 -			!
1	11111	1:::::		1 : 11		1 1	† 1 1				1::::	1				1	1:::::1
					1												
,	 	 	 	++	+	T	 -			 		1		1		1	1 1
		T		1 1	1		, -		.,		1			# ::::::			1
· · ·	.	i		 	·		· · · · ·		, ,		·			 		† · • ·- · ·	† · · · · •
			1	<u> </u>	1		+					1	i				• · · · · · · ·
							· · · · ·							H - · · · · ·			
	1	1		<u> </u>	1	<u> </u>	1	1:::::			1 : : : :	1:::::		11: 1: 1:		1:::::	1:.::1
1	1	I		12::1						1	• • • •	1	1				1::::1
	+	 -	 	∤ 	+	 	 -	 	 	 -	 -	 	 -	1		 	 i
1	1		1	11	1::			1	1::::		1::::	1					1:::::1
1	1						↓		\		· · · · ·			f · · · ·		• • •	+
1	+	1	1	1	<u> </u>	1			1				1	1 2 2 2 2		1	1 1
T	L	7									ļ	1					1
		∤∸•••			H	 -	 	· ···- ·	+ · · ·		· · · · ·					j : • • • •	<u>† - : </u>
	1	1	1	1				1	<i>T</i>	1	I	1				1	
	+	 	 	+	H	 	 -	ļj		 		 	 	<u> </u>		 	
	1			177 1	1		1						1 : 1				1 : : : : 1
T.		-							****				·/				 !
u	4	1145		1	+			• • • • • • •		i			1	• • •			اـــــــــــــــــــــــــــــــــــــ
C	4	- 101 .			1		nsec					ransect	- 7				
	+	anse		} }	j ·		- DJ	} <u>-</u> \				٠.٠٠				1	}
×	1	ا کا ا		1: _1	.1			1 : . : :1				10					
	_	-5-	 	 	 		 						 				
X		1 3		1.1.1	1	• • • • • •	2	1			· · · · · · · · · · · · · · · · · · ·	- 2					
-0				I									l				'· i
2	¥	† <u>-</u> -			+				++++		• • • •					† · ·	- · · -
- 44	1	- 5					. 5						1				
ــــــــــــــــــــــــــــــــــــــ	<u> </u>	٤			1		E					F				1	
- Q	*						• • • · · ·					Ē					
ــــــــــــــــــــــــــــــــــــــ	1	Σ					0					E 0				1	
-0-		\bar{n}					• • • · · ·					₩ 06					
-0-							0					90					
-0-		\bar{n}					0					. 40 m					
-0-	3	\bar{n}					0					.₩ 06					
- C-		\bar{n}					0					m 06					
-0-	3	\bar{n}					0					- 40 m					
-0-		\bar{n}					0					40 m					
- C-	8	\bar{n}					0					- 40 m					
- C-	3	\bar{n}					0					ш 0 <i>6</i>					
- C-	3	\bar{n}					0					т 96 m					
-0-		\bar{n}					0					ш 06					
- C-	N	\bar{n}					0					H 06					
- C-	3	\bar{n}					0					H 06					
- C-		\bar{n}					0					H 06					
- C-		\bar{n}					0										
- C-	S	\bar{n}					0										
- C-		\bar{n}					0										
- C-		\bar{n}					0	 +									
- C-		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					0										
- C-		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					0	 +									
- C-		2					0										
- C-		2					0										
- C-		2					0										
- A		2					0										
- A		2					0										
- C-		2					0										
- C-		2					0										
- C-		2					0										
- C-		2					0										
- A		2					0										
- C-		2					0										
		2					0									meters	
		2 2					0 5										
		do unstreem					0									meters	
		do unstreem					0 15									meters	
		do unstreem					0 15									meters	
		do unstreem					0 15									meters	

	······································													
1					1									
	1	. []		L18+s	w	i			}					1.
 	 				↓	-		 	١			·	:	ļ ·
driff in the line of	1.111111111		-91	· >		D		1	1 : : •			meters		1
						∷ن		1		- -		ā		
		1			<u> </u>	1		1		-1:			· .	
										-}∤	•	E		
	1 1111111		1	1:::1:				1	1 : :	11:	: : : :	[: :	1 :::	1.
	1 4 +			├				• • • •	٠ · · ا	- ∰ -	• • •	· •	1	. · ·
pstream	1			1	1					1		19	,	1
	1 - 1 - 1 - 1	1	• { • • • • {	[* : [* :		11.	• • • • •			11.				(·
	7.									11.				1:
	† <i>†</i> . †	 		-					· · ·	11.				1
	1 . 1									∤ ∤⊸				
	1:1:1::::::::::::::::::::::::::::::::::							1	1 : ":	11:				1::
	 - 							 		╂╁╌				
			_11							11:				
	1-1									f -} →				
	1 1 - 1	1								П-				
	1 - 1	1		- 1				<u> </u>		1				
 -	-			- 4						ŀΓ				
	1-1	1								<u> - </u>				
	-	+			 -					∤ ∓-				
	1.1-1	11	1							<i>t.</i> ±	_:::1			11::::
		+												• • • •
	1								1.1					
J	f - f	+		J.				·	1-4					
		1	- 1	=1					T. T	-1-				
 - 	 	+		-1-					 	+				
	1-1-1		1						1.1.	:1:	<u> </u>			
	1 - 1	t		1					+		-			
- 00C)	 								1	7	_			
100 to			ransect					7	1:1:		_]			
=			. نه	- 1				ser	1					
									-1-					
- 분 등			- 2							-	}			
										+				
	l l													
- CO			+	- 1 -	;			tran	1.4		-			
Continued Dam 200									+		-			
<u> </u>									1					
~ ση Ε			Ě					-						
× g			Ξ					Ë						
× g			Ξ					Ë						
× g														
× g			Ξ					Ë						
× g			Ξ					Ë						
× g			Ξ					Ë						
~ ση Ε			Ξ					Ë						
× g			Ξ					Ë						
× g			Ξ					Ë						
× g			Ξ					Ë						
× g			Ξ					Ë			T 1 1			
× g			Ξ					Ë						
× gn E			Ξ					Ë						
× gn E			Ξ					Ë						
× gn E			Ξ					Ë						
× gn E			Ξ					Ë						
× g			Ξ					Ë						<u> </u>
× gn E			Ξ					Ë						
× gn E			Ξ					Ë						· · · · · ·
× gn E			Ξ					Ë						
MPPENDIX X			\$ 0 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Ë						
MPPENDIX X			\$ 0 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Ë						
APPENDIX X			\$ 0 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Ë						
APPENDIX X			3 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Ë						
APPENDIX X			3 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Ë						
APPENDIX X			3 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Ë						
APPENDIX X			120 æ											
APPENDIX X			120 æ					60 m						
APPENDIX X			120 x											
downstream 245 m			120 x									meters		
APPENDIX X			120 x									meters		
downstream 2.45 m			120 x									meters		
downstream 2.45 m			120 x									O meters		
downstream 2.45 m			120 x									meters		
downstream 2.45 m												O merters		
downstream 2.45 m												O meters		

								.										7
	,					i : :	• • •	1		.				1	_	•	•	•
1:						1	11-11	219TS	ш		İ		:			•		
1		1	1	1		L:::: <u>.</u>			· · ·	.	! +	+	<u>:</u>	 				
	1:::::	1	1 . :	i:::::	1:::::		11.	5		٠ (١)	1:	1	!	1::				
			1							. نسب	1:							
<u> </u>		-				1	1	 	· · · · · · · · · · · · · · · · · · ·				 	!	·		<u>_e</u> _	
1	1::::	1	1	1:4::				i : : : : :	1				1	1:1			E	
		1 - :				1		1						1 - 1			-	
		1		1				1						1	-		3	
				1 -1					1	-	1			1				
<u> </u>	1		1	1:1			1::::		1.1.1	i				1		→ → ····	<u> </u>	
	-	+	 						 			 						•
			1										1 : : : .				1	
									1					11			1	
1	<u> </u>	<u> </u>		1 1					 								1	
									Ţ					1-1				
					1									! : 1			1 1.1 1 1	• • • • • • • • • • • • • • • • • • • •
	+	1							1					: 1				• • • • • • •
1	1	ł	ļ	1 1]		<u> </u>			: :	1-1			1	1
	1				1			ļ						-1				
	ļ	,		1				·	1					1:1				† • • · · ·
-	1:			1	 				1						- 1			
	+		_	J												:		
		i		1					1									
	1:-:							1:::	<i>f</i>	-,				-:				
	<u> </u>	1	<u> </u>		·				/								 	
F	T							/										
		1	t		-			1				1:55					L==:	
De de d	+	·	<u> </u>	<u> </u>														
<u>a</u> 5	J																	
3							- -											
	· · · · · · · · · · · · · · · · · · ·	15-										ě.		•				
cont	5	anse					Δ					- 2				•		
0	d	_ E					- 8					ğ						
UC	Y	- 22	f														~~~	
							-										L	
=		+					-			==		- 						
×		+		=			Ä.			==		Ē						
×	<u> </u>	± ±					ř.					È						
×		5 m. #					90 m. t					E O			-			
×		15 m t		1			(40 m. t					60 m						
×		215 m. Tr					(40 m. t					e 0						
×		215 m. Tr					11 (40 m. t					6 0 m						
×		215 m T					140 m. t					60 m						
MAPPENDIX X		215 m. Tr					140 m. t					6 0						
×		215 m +					(40 m. t					6 0						
×		215 m. tr					140 4					9						
×	1	215 m. T					140 m. t											
×		215 m. F					1 (40 //					4 9 9						
×		215 m. F					140 14.											
×		215 m. F					140 4.					60 m.						
×	3	215 m. t					(40 m. 1					9 W						
×	3	215 m. t					(40 m. h											
×		2					(40 m. h		1			ф 9						
×		2					140 14.		1			# 						
×		2					140 m. t		1			60 m. t						
×		2					1 140 m.		1			60 m. t						
×		21					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
×		21					40 140 141					9			1 *			
×		21					40 140 141								1 *			
×		21					40 140								1 *			
ARRENDIX		2.1					1.40 1.40 1.40										Sat	
ARRENDIX		2.1					140 141										ters	
ARRENDIX		2.1					4 740 40								1 *		neters	
ARRENDIX		21															meters	
ARRENDIX		21															O meters	
ARRENDIX		21															O meters	
ARRENDIX		2.1															O meters	
ARRENDIX		2.1															O meters	
APPENDIX		21															O meters	

1:-:											: .					!
1,711111				1:::::	1::::	enat a	4	.		1		1	1			!
					 31	5	-			 						•
	1								1			1 : : :		97	•	
					 	1	1	- ::.	1::::		,		ļ .	meter		•
	Ε			1	 1				1				7 7	<u> </u>		
	ream		1		 					1.:		1.3		F		•
			1111											~		
b : 12 1	upst		1111	1	 				1::12	1 : . :		i : :	1.1			
	۰						1]			1: 7:			• •	ļ 1 1 . .
	1.3.	ļ;		1	 		1					111	1			
			1.1		 - : : : :		: : :		1111	1			1.7			
			1 1 1 1	f:::::	 		f:::: †	1	1	1		1!1:::	1:1		· ·	
	1	 	1		 								1:1			
h				·	 				 -			1.	11			
			J		 					[1 1 1 1	17	11	[1.7.	
			7		 				1			1	1-1			
		77.7	/===		 			1==:				 ::::::	1:1	+		1 : : : : 1
	1				 	<u> </u>						*	1-1	!		1
t	1	I = I		 	 		L			 		1::	111	;		
HH					 			<u> </u>	+	 			1-1			
								T					1-1			
	13:22				 											
	<u> </u>			11	 			1					‡ ::‡			
	1			† i	 						1		1.1			1
	<u> </u>				 			1	ļ	 	: · : <u>-1</u> .		1-1			: : : : i
Continued 30		Ų		1	 						f		' .F	<u></u> f	}	
<u>a</u> 0				T == 1	 			-,	ļ				- 4			
<u>-</u> m	7		\::::::	* :- !	 t		7	~-		3-						'
	, a		1		 ย์		1			Į į			- ‡:			
E F	ransect		1		 an sec		1			ransect	-t		ı			
0 5	2 - }	: <u> </u>	1::-		 					E	1		ŀ			:===
50			1-		 -								- }			
														1		
L	: <u>-</u> -				 نے					<u> </u>			Ì	=		
× 6	Ė		=	1 -	 Ę					Ë				\equiv		
× 5				1	 											
×-5	2			1 -	140 m.					60 m.						
×-5				1												
* 5 § 3	2															
* 5 § 3	2															
×-5	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2															
* 5 § 3	2						1=						i . I			
* 5 § 3	2												i . I			
* 5 § 3	2															
* 5 § 3	2.65									09						
* 5 § 3	2.65															
* 5 § 3	2.65									09						
* 5 § 3	2.65									09						
* 5 § 3	2.65									09						
* 5 § 3	2.65									09						
* 5 § 3	2.65									09						
* 5 § 3	downstream 215									09						
* 5 § 3	downstream 215									09						
2.5 2.3	2.65									09						
2.5 2.3	downstream 215									09						
2.5 2.3	downstream 215									09						
2.5 2.3	downstream 215									09						

		· · · · · · · · · · · · · · · · · · ·	2	31		,		
			ะาร	ət am				•
			01	5	0			neters
							 	E
	/							
B				· · · · · · · · · · · · · · · · · · ·				
<u> </u>			+3			Sec.		
dont in ued			Transect			t a		
Ξ Δ 			Ė			É		
×××			0.4			0.9	-	
8-3 0			7			Ψ.		
4								
							- : : :	
							1	
							1	<u> </u>
			. 4 - s	4 . 4				
								2
	\							meters
							I L	E
·			. i					-
				1.1 1				

							2	32					Π				
		1	a m				n										
	- 0	-	5					::				. : : :				-	
	1														ers	<u> </u>	
					: :::::	:::::	: :								3 8		·
															00		:
				- : : :											- · · · · · · · · · · · · · · · · · · ·		
			+ ::						•					: : : : :			-
			1														
	:		-							٠.				1		-	
\$			1		Sec.					n se						- - -	
					<u> </u>					Ë				Fran		-	
	← ∤				unden					dd dd				via v			
2 2 4 6					D					£							
		\exists											1				
															_ •		
			1				 1						1	.	-o		
	+						1	-				<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	-	· · · · · ·	
	3		1				 H-			, , , , , , , , , , , , , , , , , , ,	• • • • • •			· · · · ·			
	-	:-7					#:						: :	· ·			
							 		· · · ·				1. : . : . . : -		i		

APPENDIX Y

Mean, range, and standard deviation (SD) of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in June 1978.

1		Temperature (⁰ C)	(O _C)		Diss	Dissolved oxygen (mg	/gen (mg]	-1)
Site	Mean	Range Min.	Max.	SD	Mean	Kange Min.	ge Max.	GS
25	21.6	21.3	21.8	. 181	5.8	5.2	6.3	.318
97	21.8	21.8	21.9	.031	0.9	5.6	6.2	.211
28	21.4	21.1	21.8	.173	5.7	5.3	6.1	.223
59	21.7	21.3	21.8	.120	6.1	5.6	9.9	.120
30	21.6	21.3	22.0	.236	6.1	5.8	6.4	.145
31	21.5	21.3	21.8	.173	6.1	5.5	6.4	.173
Side channel	21.8	21.7	21.9	990.	5.7	5.2	6.2	.254

APPENDIX Z

Mean, range, and standard deviation (SD), of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in August, 1978.

	Te	Temperature (^O C)	(0 ₀) e		Disso	lved oxyg	Dissolved oxygen (mg 1-1)	1)
		Range	3			Range	e)
Site	Mean	Min.	Max.	SD	Mean	Min.	Max.	SD
25	23.6	23.2	24.0	.282	7.7	7.5	8.0	. 132
26	23.0	22.9	23.1	.042	7.4	7.0	7.7	. 189
28	22.7	22.7	22.9	920.	7.3	7.1	7.7	.171
59	22.8	22.5	23.0	. 198	7.1	6.9	7.4	. 128
30	22.1	21.9	22.3	.117	7.4	7.1	7.6	. 126
31	22.2	22.0	23.0	.230	6.7	6.5	7.2	. 136
Side channel	23.2	23.0	23.4	.111	7.3	7.0	7.5	. 104

APPENDIX AA

for a singe, and standard deviation (SD), of water temperature and dissolved oxygen substations measured at each wing dam and the side channel in October, 1978.

		:						
	Te	Temperature (°C)	(00)	,	Dissol	Dissolved oxygen (mg 1-1)	$(mg 1^{-1})$	
, , f.	Mean	Min.	Max.	SD	Mean	Min.	Max.	200
23	16.0	15.9	16.1	.041	7.8	7.4	8.1	.224
• •	16.0	15.9	16.0	.033	7.6	7.4	7.8	. 111
88	15.7	15.5	16.0	. 127	8.1	7.8	8.2	.135
¢ .	15.6	15.4	15.8	. 133	8.2	8.0	8.4	. 116
ક્ષ	15.6	15.1	15.9	.244	8.2	8.0	8.5	. 121
	15.7	15.5	16.0	. 162	8.3	8.1	8.5	.121
S.3% Offante.	15.8	15.5	15.9	.106	8.0	9.7	8.4	.215
:								

APPENDIX BB

Mean, range, and standard deviation (SD), of water temperature and dissolved oxygen concentrations measured at each wing dam and the side channel in June, 1979.

Dissolved oxygen (mg 1-1)	Mean Min. Max. SD	7.1 5.8 7.8 .791	7.1 6.6 7.5 .289	6.4 6.1 6.7 .205	6.7 6.4 7.0 .215	6.4 5.6 7.0 .418	5.6 5.3 5.9 ,160
1 1 1 1	SD	0.	. 388	.231	0.	. 323	.221
re (°C)	Max.	20.0	21.0	20.5	20.0	21.0	21.0
Temperature (OC)	Min. Nanye	20.0	20.0	20.0	20.0	20.0	20.0
	Mean	20.0	20.2	20.1	20.0	20.2	20.6
	Site	25	28	53	30	31	Side

APPENDIX CC

Water temperature ($^{\rm O}$ C, and dissolved oxygen concentration (mg 1^{-1}) measured throughout the water column at stations on the hydrographic relief transects in June, 1978.

Station 1	Depth Temp D.O. (meters) (ecf) (pfm) 0 21.9 5.5 1 21.9 5.5 2.4 21.9 5.5	Depth Temp D.O. (myles) (ec.) (ppm) 0 21.8 5.4 2 21.8 5.6 3 21.8 5.6
inued) Station 2	Depth Temp D.O. (method) (cc) (ppm) 0 21.9 5.1 1 21.9 5.3 2 21.9 5.2	Depth Temp D.O. (meters) (oc) (ppm) 0 21.8 5.7 1 248 5.5 2 21.8 5.6
APPENDIX CC (continued) Station 3	Daylk Tamp. D.O. (cc) (pp) O 21.9 5.5 1 21.9 5.5 3 21.9 5.5	Depth Temp. D.O. (maters) (c.C.) (ppm) 0 21.7 5.4 1 21.8 5.4 1.8 21.8 5.4
Station 4	Peerth Temps D.o. (rp.) 2 21.9 6.1 3 21.9 6.1 4 21.9 6.1	Depth Temp D.O. (comps) (cc) (ppm) 0 21.8 5.9 1.8 5.6
	Upper Chute Transact	Middle Chute Transact

Depth Temp D.C. 0 21.8 5.8 1 21.8 5.7 2.7 21.8 5.7
- Fe
2 - 0 - 6
Depth Terro Do. 0 21.8 5.8 1 21.8 5.8
0.00 8.00 8.00
F2 7 7
de de la companya de
5. 7 × × × × × × × × × × × × × × × × × ×
11.6 5.8 5.8 5.8 5.1 5.1 5.7
÷
0.00 N. N. N.
Jerst Temps D.O. 218 5.4
til 0 - 1:
Q
.
Transact
L

APPENDIX DD

Water temperature ($^{\rm O}$ C) and dissolved oxygen concentration (mg 1 $^{-1}$) measured throughout the water column at stations on the hydrographic relief transects in August, 1978.

23.0 23.0 23.0

2.7 2.7 2.7

13.1 13.1

0 0 0

7.3

23.2

0.0

23

23.0 23.0

0 6.

lower chute transect

West	;	i	,	:	ı	4	;	ł	6	ć	,	E ast
	Dent.	ĘŞ.	(D.O.	Depth (neters)	Cenp.	(pp.m)	() Ce (1) () () () () () () () () () () () () ()	E S	(e e e	(meters)	()	اق ج
	٥	13.1	7.4	0	23.3	12	•	23.3	7.3	•	23.4	7.1
upper chute	_	13.2	7.4	-	13.1	1.1	9.0	13.3	7.5	-	13.4	7.7
	7	13.2	7.4	7	13.1	7.2	<u> </u>	13.3	7.4	5	23.4	7.0
transect	6 K	23.2 23.2	3 13.2 7.4 3.4 23.2 7.3	 	23.2	2.0						
middle Chute	G	ć ć	7.3	c	23.7	73	•	23.2	7.3	۰	292	7.3
	, c	220	7.7	60	23.2	7.3	-	737	7.7	_	13.1	11
transect	? = 	230	7.1	} 	i	}	~	231	7.2	7	13.2	7.3
	:						13	23.2	. 22	2.4	13.1	7.2

APPENDIX EE

Water temperature ($^{\rm O}$ C) and dissolved oxygen concentration (mg 1 $^{-1}$) measured throughout the water column at stations on the hydrographic relief transects in October, 1978.

	0 7.7 16.0 1 7.4 16.0 2 7.5 16.0 2.9 7.5 16.0
25 x	7.5 16.0 7.4 16.0 7.5 16.1 7.4 16 1
76 th	0 7.6 16.0 i 7.5 16.0 2 7.4 16.0 2.3 7.4 16.0
26 % 0 7.7 16.0 1 7.6 16.0 2 7.6 16.0 2 7.6 16.0 2 7.6 16.0 2 7.6 16.0 2 7.7 15.9 3 7.6 16.0 2 7.5 16.0 2 2.5 7.5 16.0 2.5 7.8 16.0	7.8 16.0 7.6 16.0 7.6 16.0 7.6 16.0
Dam y	0 8.0 16.0 1 8.0 15.8 1.4 8.0 15.8
28 cm 0 8.0 15.7 1 8.0 15.7 2 7.9 15.7 3 7.9 15.7 4 7.8 15.7 5 7.9 15.7 6 7.9 15.7 6.5 8.0 15.7	8.2 15.6 8.1 15.6 8.0 15.7

THE PERSON NAMED IN

Desth Temp D.O. Depth Temp D.O. ISS T.7 T.8 T.8 T.8 T.9 T.9 T.9 T.9 T.9 T.8 T.8 T.9 T.9 T.9 T.8		East	248	
Depth Temp D.O. IS.8 8.3		0.0. (ppm) 7.9	%. %	გდდ 4 % 4
Depth Temp D.O. Depth Temp D.O. Depth Temp D.O. Oepth Temp D.O. 79 79 0 15.8 8.3		(c.) p. 15.9	<u> </u>	5.9 9.82
Depth Temp. D.O. Depth Temp. D.O. Depth Temp. Cecy Cecyon			0-13	
Depth Temp. D.O. Depth Temp. D.O. Depth Continue (septence) (c.) (spm.) (spm.) (c.) (spm.) (spm.) (c.) (spm.)			8.1 7.9 7.9	88 8.2
Depth Temp. D.O. Depth Temp. D.O. Depth Continue (septence) (c.) (spm.) (spm.) (c.) (spm.) (spm.) (c.) (spm.)	(p a	15.8 15.8	8.5.5. 8.6.6.	5.9 6.2
Depth Temp. D.O. Depth Temp. D.O. (app. 15.7 7.9 15.8 7.9 7.9 15.7 7.8 2 15.8 7.7 3.3 15.7 7.8 2 15.8 7.7 7.8 2 15.8 7.7 7.8 7.9 15.8 7.7 7.8 7.9 7.9 15.8 7.7 7.8 7.9 7.9 15.8 7.7 7.8 7.9 7.9 7.9 15.8 8.2 0.1 15.8 8.3 0.5 15.8 8.3 0.5 15.8 8.3 0.5 15.8 8.3 0.5 15.8 8.3		Depth (meters	0-7:	0.5
Depth Temp. D.O. Depth (methors) (c.C.) (ppm) (methors) (c.C.) (ppm) (methors) (c.C.) (ppm) (methors) (c.C.) 7.9 (c.C.) 7.9 (c.C.) 7.8 (c.C.) 7.9 (c.C.) 7			8.7 7.7 7.7	83
Depth Temp. D.O. Depth (methors) (c.C.) (ppm) (methors) (c.C.) (ppm) (methors) (c.C.) (ppm) (methors) (c.C.) 7.9 (c.C.) 7.9 (c.C.) 7.8 (c.C.) 7.9 (c.C.) 7	APPEN	7.9 7.9 15.8 15.8 15.8	<u> </u>	8.21
Depth Temp. O 15.5 15.7 3 15.7 3.5 15.6 O 15.8 O.5 15.8		Depth (meters)	0-2	ō
Depth 335 33 33 35 35 35 35 35 35 35 35 35 35		0.0. 7.7. 7.8. 7.88 0.88	80.0	8.1
			<u>ಸ್</u> ಜ	15.8 8.31
Upper Chute Transect Transect Transect Transect		Depth Matters)	<u>a</u>	0 5.5
	<u>-</u>	upper Chute Transect	Middle Chute Transect	Lower Chute Transect

APPENDIX FF

Water temperature ($^{\rm O}$ C) and dissolved oxygen concentration (mg l⁻¹) measured throughout the water column at stations on the hydrographic relief transects in June, 1979.

APPENDIX FF (continued)

وnilu	y y	0 10 20 20 30 40 50	7.0 6.9 7.0 7.0 7.0	20 20 20 20 20 20 20 20 20 20		zgagagaga Zgagagaga	/ 6	6.7 6.6 6.6 6.6 6.8 6.8	20 20 20 20 20 20 20	-	, constant	0 1.0 2.9 3.0 4.0 4.5	66 64 64 64 64	20 20 20 20 20 20 20 20
Dam 30 1.0 1.0 2.0 3.0 4.0 4.7	6.9 6.9 6.9 6.9 7.0	20 20 20 20 20 20			0 1.0 2.0 3.0 4.0 5.0	/	20 20 20 20 20 20			0 L0 2.0 3.0 3.8	6.6 6.5 6.5 6.5	20 20 20 20 20		
Wing Dam	zzariž	0 1.0 2.0 3.0 4.0 4.5	7.0 6.9 6.9 6.9 6.8 6.7	20 20 20 20 20 20		~ 20 mg	0 1.0 2.0 3.0 4.0 5.0 5.5	6.6 6.6 6.6 6.6 6.6 6.6	20 20 20 20 20 20 20	·	yang g	0 10 20 3.0 3.5	6.I 5.6 5.7 5.8 5.8	2; 2; 2; 2; 2; 2;
31 00 10 20 3.0 4.0 5.0 5.5	6.8 6.8 6.9 6.9 6.9	20 20 20 20 20 20 20 20			0 1.0 23.0 4.0 5.0	6.4 6.3 6.3 6.4 6.4	20 20 20 20 20 20			0 10 1.0 3.0 3.5	5.9 5.9 5.9 5.9	21 21 21 21 21 21		

APPENDIX FF (continued)

o Milana tereso da Albada

APPENDIX GG

Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in June, 1978.

APPENDIX GG

	Jing Da		
	300 ft. ti	ransect	
Upsti	ream	Dowr	stream
Depth	Velocity	Depth	Velocity
Ò	.5 7	Ó	.44
0.8	.49	0.7	.56
24	.48	2.1	.51
4.0	.28	2.8	.38.
		<i>3.</i> 5	.27

lı	ling Dam	25	
	500 ft.		
Upsi	tream	Downs	itream
Depth	Velocity	Depth	Velocity
Ó	.54	0	.77
1.2	.56	1.2	.72
3.6	.54	3.6	.72
6	.36	6	.53

t	Jing Dam	25	
•	700 ft. to	ansect	
Upstr	eam	Down	stream
Depth	Velocity	Depth	Velocity
0	.86	Ó	.84
1.3	.80	1.3	.75
3.9	.71	3.9	.68
5.2	.66	5.2	.72
65	17	45	40

(u)	ung Dam	46	
3	50 ft. trai	nsect	
Upst	ream	Downs	tream
Depth	Velocity	Depth	Velocity
0	.53	0	.49
0.7	.51	0.8	.50
2.1	.48	2.4	.38
3.5	.34	4.0	.40

· ·	Wing Dar	n 26	
5	550 ft. to	ansect	
Upstr	eam	Downs	tream
Depth	Velocity	Depth	Velocity
Ó	.49	0	.35
0.8	.45	1.3	.33
2.4	.43	3.9	.32
3.8	34	6.7	16

		tream
	Depth	Velocity
.82	Ö	.91
.80	1.3	.96
.74	3.9	.90
.70	6.5	.8 6
	oo ft. tr ream <u>Velocity</u> .82 .80 .74	Velocity Depth .82 0 .80 1.3 .74 3.9

	ing Dan 200 ft. tra		
Upstr	eam	Downs	tream
Cepth	Velocity	Depth	Velocity
0	.54	0	.63
0.6	.54	0.6	.63
1.7	.48	1.7	.53
2.8	.39	2.8	.34

u	nng Dam	20	
4	00° ft. tr	ansect	
Upst	ream	Downst	ream
Depth	Velocity	Depth	Velocity
Ó	.48	0	.34
0.4	.46	0.6	.36
1.1	.43	1.7	.35
1.9	.35	2.8	.20

APPENDIX GG (continued)

	Wing Dam 28 600 ft. transect					Jing Dam 100 ft. tro		
Upstream Downstream				Ups	tream	Down	stream	
Depth	Velocity	Depth	Velocity	De	eth	Velocity	Depth	Velocity
Ò	.37	Ó	.40	(.49	0	.66
0.4	.43	0.6	.32	0	9	.43	1.0	.56
1.3	.37	1.7	.37	2	.7	.43	3.0	.47
2.2	.25	2.8	.25	4	.5	.33	5.0	.38

ng Dam	29		lı	Wing Dam 29				
Oft. tran	sect		700 ft. transect					
ım.	Downs	stream	Ups-	tream	Downs	itream		
Velocity	Depth	Velocity	<u>Depth</u>	Velocity	Depth	Velocity		
.62	Ò	.80	0	.72	0	.86		
.67	1.0	.84	1.0	.71	1,0	.84		
,60	3.0	.72	3.0	.71	3.0	.88		
.55	5.0	.43	5.0	.48	5.0	.62		
	0 ft. tran 2m Velocity .62 .67 .60	Velocity Depth .62 0 .67 1.0 .60 3.0	0 ft. transect 2m Downstream Velocity Depth Velocity .62 0 .80 .67 1.0 .84 .60 3.0 .72	0 ft. transect 7 am Downstream Ups Velocity Depth Depth .62 0 .80 0 .67 1.0 .84 1.0 .60 3.0 .72 3.0	0 ft. transect 700 ft. t am Downstream Upstream Velocity Depth Velocity .62 0 .80 0 .72 .67 1.0 .84 1.0 .71 .60 3.0 .72 3.0 .71	0 ft. transect 700 ft. transect 2m Downstream Upstream Downs Velocity Depth Velocity Depth Velocity Depth .62 0 .80 0 .72 0 .67 1.0 .84 1.0 .71 1.0 .60 3.0 .72 3.0 .71 3.0		

	Jing Dam 200 ft. trai			Wing Dam 30 450 ft. transect			
	ream		stream	Upstream Downstre			itream
,			Velocity	•	Velocity		
0	.82	Ò	.74	Ó	.79	0	.77
0.9	.84	1.0	.60	1.1	.75	1.2	.77
2.7	.72	3.0	.64	3.3	.67	3.6	.60
4.5	.44	5.0	.46	5.5	.49	6.0	.50
			<u>.</u>				

	Jing Dan 100 ft. tr				Jing Dar		
Upsto	tream Downstream			Upst	ream	Downst	ream
Deoth	Velocity	Depth	Velocity	<u>Depth</u>	Volocity	Depth	Velocity
Ò	.92	0	.93	0	.74	٥	.83
1.1	.88	1.3	.8 8	0.6	.70	0.7	.74
3.3	.84	3.9	.61	1.8	.65	2.0	.72
5.5	.52	6.5	.52	2.9	.47	3.4	.52

APPENDIX GG (continued)

Wing Dam 31			L	Wing Dam 31				
4	50 ft. tra	insect	ect 700 ft. tra			ransect	ansect	
Upstream Downstream			Upst	ream	Down	stream		
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
0	.76	Ó	.88	0	.77	0	.81	
1.0	.75	1.0	.84	1.0	.80	1.3	.78	
3.0	.72	3.0	.56	3.0	.70	3.9	.59	
5.0	.47	5.0	.43	5.0	.43	6.5	.43	

Upper Chute transect

Sta	ation 1	Station 2 St		tion 3	Station 4		
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
0.5	.51	0.5	.23	0.6	.17	Ó.8	.5 <i>0</i> '
1.4	.46	1.4	.35	1.8	.13	2.4	.48

Central Chute transect

Sta	ation 1	Stat	Station 2		ition 3	Stat	ion 4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
0.6	.50	0.4	.60	0.4	<i>.</i> 53	0.2	.19
1.8	.43	1.3	.54	1.1	.49	0.6	.27

Lower Chute transect

51	ation 1	Stati	on 2	Sta	tion 3	Stat	ion 4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
0.5	.77	0.2	.64	0.4	.23 ′	0.3	.47
1.6	.68	0.7	.62			1.0	.42

APPENDIX HH

Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in August, 1978.

APPENDIX HH

Wing Dam 25				Wing Dam 25				
	300 ft.	transec	†		500 f	t. tran	sect	
Upstre	am	Dowr	istream	Upsto	ream	Dow	nstream	
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
Ó	.29	0	.34	Ó	.32	0	.34	
0.6	.30	0.6	.37	0.6	.32	0.6	.35	
1.8	.33	1.8	.30	1.8	.29	1.8	.26	
2.7	.21	2.8	.22	3.0	.19	2.7	.20	

Wing Dam 25 700 ft. transect			Wing Dam 26 350 ft. transect				
Upst	ream	Down	stream	Upst	ream	Down	nstream
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ö	.43	Ò	.50	Ò	.31	0	.60
ł	.46	1	.52	0.5	.31	0.6	.37
3	.38	3	.43	1.5	.30	1.8	.19
5	.28	5	.26	2.5	.20	3.0	.21

Wing Dam 26 550 ft. transect			Wing Dam 26 850 ft. transect				
Upstream Downstream		istream	Upstream Down		nstream		
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ó	.27	Ò	.23	Ò	.49	Ò	.23
0.5	.28	0.6	.19	0.8	.43	1.6	.16
1.5	.25	1.7	.46	2.4	.47	5.8	.20
2.5	.21	2.8	.17	4.0	.26		

Wing Dam 28				Wing Dam 28			
200 ft. transect			400 ft. transect				
Upst	ream	Down	istream	Upst	ream	Dow	nstream
Depth	Velocity	Depth	Yelocity	Depth	Velocity	Depth	Velocity
Ò	.33	Ò	.40	Ò	.37	Ó	.44
0.4	.33	0.5	.40	0.4	.37	0.4	.18
1.1	.29	1.4	.42	1.1	.30	1.2	.36
1.8	.24	2.3	.29	1.8	.18	2.0	.26

APPENDIX HH (continued)

1	D وniل	am 28	
8	300 ft.	transect	
Upstre	am	Down	stream
Depth	Yelocity	Depth	Velocity
0	.23	Ó	.24
0.3	.23	0.4	.20
0.8	.22	1.2	.22
1.3	.16	2.0	.18

Wing Dam 29							
2	00 ft. t	ransect					
Upstream Downstream							
Depth	Velocity	Depth	Velocity				
Ó	.19	Ó	.41				
0.7	.18	0.9	.37				
2.1	.26	2.6	.41				
3.5	.20	4.3	.29				

L	Jing Da	m 29					
4	150 ft. t	ransect					
Upstream Downstream							
Depth	Velocity	Depth	Velocity				
0	.5 <i>9</i>	0	.84				
0.6	.61	0.7	.64				
1.2	.62	2.1	.64				
3.0	.49	3.5	.49				

L.	Jing Da	m 29				
7	00 ft.	transect				
Upstream Downstream						
Depth	Velocity	Depth	Velocity			
Ò	.61	٥	.84			
0.8	.51	0.8	.72			
2.4	.50	2.4	.64			
4.0	. 38	4.0	.33			

L	Jing Dai	m 30			
2	100 ft. ta	ransect			
Upstream Downstream					
Depth	Velocity	Depth	Velocity		
Ó	.53	0	.72		
0.7	ا6,	0.7	.70		
2.0	.55	2.1	.60		
33	.48	3.5	.37		

لى	Jing Dam	1 30			
4:	50 ft. tr	ansect			
Ups	tream	Downs	Downstream		
Depth	Velocity	Depth	Velocity		
Ò	.72	0	.64		
0.9	.68	(.60		
2.7	.62	3	.54		
4.5	.49	5	.18		

	Jing Dai		
7	00 ft tr		
Jest.	ream	Downs	tream
-seth	Velocity	Depth	Velocity
	.77	0	.80
•	74	C.8	.79
	• 1	2.4	.70
	4 .	4.0	. 50

W	ling Do	ım 31	
20	00 ft.	transect	
Upst	ream	Downs	tream
Depth	Velocity	Depth	Velocity
Ò	.59	0	.70
0.4	.58	0.5	.70
1.2	.48	1.4	.63
2.0	.37	2.3	.46

APPENDIX HH (continued)

Wing Dam 31			Wing Dam 31					
4	50 ft. t	ransect		70	00 ft. 1	transect		
Upstre	Upstream Downstream		ream	Upstr	eam	Downs	stream	
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
Ò	.65 ·	Ö	.77 `	Ò	.68	0	.79	
0.9	.65	0.8	.79	0.9	.61	0.9	.77	
2.6	.59	2.4	.65	2.6	.55	2.6	.65	
4.3	.43	4.0	.43	4.3	.43	4.4	.39	

			Upp	er Chu	te trans	sect			
east			, ,						west
3	\$ 1 .	ation 1	t2	ation 2	St	ation 3	Sta	tion 4	
	Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
	Ò	.38	o	.43	ö	.16	Ò	.29	
	0.3	.34	0.6	.52	0.6	.17	0.7	.31	
	1.0	.32	1.2	.27	1.7	.05	2.0	.32	
	1.7	.25			2.8	.05	3.4	.23	

51	ation L	5ta	tion 2	Stati	ion 3	Stat	ion 4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ö	.44	Ò	.43 ·	Ò	.33	Ò	.25
0.5	.36	0.5	.49	0.3	.33	0.5	.26
1.4	.37	1.4	.45). (.22
2.4	10	2.2	27				

Central Chute transect

S :	tation 1	Stat	tien 2	Stat	ion 3	Stati	on 4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ö	.64	0	.58	Ò	.37 ·	Ö	.50
0.3	.60	0.5	.50	0.4	.37	0.2	.44
1.0	.60	1.0	.42	0.8	.30	0.5	.40
1.6	.40					0.9	.40

Chute transect

APPENDIX II

Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in October, 1978.

APPENDIX II

	Jing Dam 100 ft. tra	-				Jing Dam 25 00 ft. transect		
Upstre	pstream Downstream			Upst		Dow		
Depth	Yelocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
0	.28	0	.26	Ó	.26	Ö	.21	
0.6	.21	0.5	.28	0.6	.28	0.6	.26	
1.8	.19	1.5	.26	. 1.8	.19	1.8	.32	
2.9	.17	2.3	.21	3.0	.17	3.0	.28	

	Jing Dam 100 H. Tro			Wing Dam 26 350 ft. transect				
	ream			Upst	ream	Dow	nstream	
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
0	.48	0	.59	Ó	.24	Ó	.19	
1.3	.48	1.2	.61	0.5	.24	0.5	.15	
3.9	.48	3.6	.48	1.5	.17	1.5	.21	
6.0	.17	6.0	.30	2.3	.13	2.5	.13	

	Wing Dam 26 550 ft. transect				Wing Dam 26 850 ft. transect				
Upst	Upstream Downstream			Upsi	ream	Dow	nstream		
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity		
Ó	.21	Ó	.15	Ò	.19	Ó	.21		
0.5	.19	0.7	.13	0.5	.19	1.0	.17		
1.5	.21	2.1	.21	1.5	.13	3.0	.13		
2.5	.08	35	.10	2.7	.09	5.0	.13		

Wing Dam 28 200 ft. transect			Wing Dam 2B 400 ft. transect						
		Down		Upstream			Downstream		
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity		
0	.11	Ó	.27	Ó	.19	Ó	.19		
۵3	.11.	۵3	.24	ai	.17	a3	.21		
0.9	.14	0.9	.16	0.3	.15	0.9	.15		
1.4	.07	1.4	.08	0.5	.17	1.4	.13		

APPENDIX II (continued)

Wing Dam 2B				Wing Dam 29						
8	800 ft. transect				200° ft. transect					
Upstream Downstream			stream	Upstream Downstream						
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity			
0	.61	0	.17	O	.32	0	.46			
1.0	.59	F3	.15	0.7	.30	0.7	.48			
3.0	<i>.</i> 52	3.9	.05	2.1	.13	2.1	_41			
4.8	.50	6.5	.11	3.4	.24	3.6	.30			

Wing Dam 29 450 ft. transect					Wing Dam 29 700 ft. transect					
Upst	Upstream Downstream		Up.	stream	Downs.	tream				
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity			
0	.54	0	.50	Ò	.41	Ò	.48			
0.5	.48	0.7	.57	0.7	.39	0.7	.46			
1.5	-52	2.1	.43	2.1	.39	2.1	.37			
2.5	.39	3.5	.32	3.5	.41	3.6	.37			

	ling Dam 00 ft. t				ing Dam 30 60 ft, transect				
Upst	Upstream Downstream			Upst	Upstream Downstrea				
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity		
0	.54	Ó	.52	٥	.52	ò	.52		
0.5	.59	0.5	.54	0.8	.54	1.0	.43		
1.5	. 57	1.5	.4B	2.4	.43	3.0	.32		
2.5	.39	2.4	.43	4.0	.28	4.8	.32		

Wing Dam 30 700 ft. transect				ling Dam 00 ft. tra			
Upst	ream	Down	stream	Upst	ream	Downs	stream
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
٥	.68	0	.83	Ö	.50	Ò	.52
0.7	.68	0.7	.61	0.5	.52	0.5	.54
2.1	.61	2.1	.43	1.5	.32	1.5	.46
3.4	.32	3.6	.37	2.3	.35	2.4	-41

APPENDIX II (continued)

Wing Dam 31				Wing Dam 31				
	50 ft. tr				700 ft. transect			
Upst	ream	Downs	tream		Ups	tream	Downs	tream
•			Velocity		Depth	Velocity	Depth	Velocity
Ö	.61	ö	.61		Ò	.59	0	.41
0.7	.59	0.7	.65	,	0.8	.59	0.7	.52
2.1	.50	2.1	.59		2.4	.48	2.1	.48
3.6	.39	3.5	.50		4.2	.39	3.7	.28

		upper	Chute	Transect	
east	Station 1	Station	. 2	Station 3	Stati

51	ation	Stat	tion 2	Stat	ion_3	Stat	ion 4
Depth	Velocity	Depth	<u>Velocity</u>	Depth	Velocity	Depth	Yelocity
Ö	.19	Ö	.35	Ó	.19	0	.13
0.6	.13	0.6	.28	0.5	.06	0.7	.15
1.1	.17	1.0	.28	1.5	.06	2.1	.13
,,,,				2.4	0	3.5	.06

west

Central Chute transect

51	tation 1	Sta	tion_2	Stati	ion 3	5tat	ion 4
Depth	Velocity	Depth	<u>Velocity</u>	Depth	Velocity	Depth	Velocity
Ó	.24	Ö	.35	0	.19		
0.3	.28	0.3	.35	0.2	.17	0.1	.21
0.9	.17	0.9	.32	0.6	.17		
1.5	.24	1.5	.30	1.2	.19		

Lower Chute transect

St	ation_L	Stat	tion 2	<u>Stati</u>	<u>on 3</u>	Stati	on 4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ó	.54	0	.37			0	.39
0.2	.54	0.3	. 32	0.1	.28	0.3	.24
0.7	.46						
1.2	.43						

APPENDIX JJ

Current velocity (m \sec^{-1}) measured at each station on the hydrographic relief transects in June, 1979.

APPENDIX JJ

	Jing Dam							
	Upstream Downstream							
Depth	Velocity	Depth	Velocity					
Ö	.41	Ò	.48					
0.7	.41	96	.46					
2.1	.37	1.8	.43					
2.8	.28	2.4	.35					
3.5	.28	3.1	. 32					

	Wing Di 500 ft		.†
Upstr	'eam	Down	stream
Depth	Velocity	Depth	Velocity
Ò	.50`	Ó	.59
0.7	.46	0.8	.46
2.1	.46	2.4	.46
2.8	.41	3.2	.26
3.7	.26	4.2	.32

	Jing Dam		
7	700°ft. tro	ansect	
Ups	tream	Down	stream
Depth	Velocity	Depth	Velocity
0	.79	Ó	.72
1.3	.74	1.3	.72
3.9	.68	3.9	.63
5.2	.68	5.2	.61
6.4	.50	6.5	.54

	Wing Do	ım 28						
200 ft. transect								
Upst	ream	Downs	tream					
Depth	Velocity	Depth	Velocity					
Ò	.52 ·	Ó	.39					
0.6	.50	0.6	.43					
1.8	.43	1.8	.39					
2.4	.37	2.4	.32					
2.8	.28	2.8	.24					

	ling Dam 00 ft. tro		
Upst	tream	Downs	itream
Depth	Velocity	Depth	Velocity
Ò	.50	0	.61
0.4	.48	0.4	.59
1.2	.46	1.2	.50
1.6	.39	1.7	.48
2.3	.32		

	Wing D	am 28	
	800 ft.	transec	†
Upst	tream	Down	stream
Depth	Velocity	Depth	Velocity
0	.43	0	.32
24	.32	0.6	.32
1.3	.30	1.8	.28
1.7	.28	2.4	.21
2.2	.26	2.9	.09

u	ing Dam	27	
2	00 ft. tr	ansect	
Upsi	tream	Down	stream
Depth	Velocity	Depth	Velocity
Ó	.46	Ò	.50
0.9	.43	1.0	.48
2.7	.41	3.0	.48 `
3.6	.35	4.0	.43
4.5	.28	5.0	.39

	Wing Do								
	450 ft. transect								
Upstream Downstream									
Depth	Velocity	Depth	Velocity						
0	.43	Ö	.81						
0.7	.46	0.9	.74						
2.1	.37	2.7	.63						
2.8	.28	3.6	.54						
3.5	.28	4.5	.37						

APPENDIX JJ (continued)

h	Jing Dam	29			Wing [Dam 30	
7	00° ft. tra	insect			200 ft.	transect	
Upstr	ream	Down	stream	Up 5	tream	Down	nstream
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
Ó	.83	0	.83	Ò	.70	Ò	.85
0.9	.79	0.8	.79	0.9	.59	0.8	.83
2.8	.74	2.4	.63	2.7	.61	2.3	.70
3.8	.61	3.6	.43	3.6	.61	3.0	.61
4.7	.37	4.0	.30	4.5	.37	3.8	.50

	Jing Dam 50°ft. tra				Wing D 700 ft.	am 30 transect	
Upstr	eam	Down	stream	Ups	tream	Dow	nstream
Depth	Velocity	Depth	Velocity	Depth	Velocity	Deeth	Velocity
Ó	.61	0	.94	Ö	. 8 5	Ò	.96
1.0	.59	1.0	.90	1.0	.76	0.9	.83
3.0	.61	3.0	.81	3.0	.70	2.8	.61
4.0	.54	4.0	.70	4.0	.68	3.8	.61
5.0	. 28	5.0	.50	5.0	.46	4.7	.46

	Jing Dam 00 ft. trai				Wing Do	am 31 transect	
Upstr	ream	Down	stream	Upst	ream	Down	stream
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
O	.70	0	.74	Ó	.83	Ó	.94
0.7	.68	Q7	. 7 9	1.1	.68	LO	.7 9
2.1	.65	2.1	.61	3.3	. 65	3.0	.83
2.8	.61	2.8	.37	4.4	.52	4.0	.70
3.5	.46	35	. 37	5.5	.50	5.0	.57

	Wing	Dam 31	
	700	ft. transect	
Up	stream	Dou	onstream
Depth	Velocity	Depth	Velocity
Ó	.83	Ö	.92
0.9	.85	1.1	.92
2.7	.74	3.3	.50
3.6	.7 9	4.4	.37
4.5	.28	5.5	.35

APPENDIX JJ (continued)

u	pper	Chute	Transect
---	------	-------	----------

easi	1								we
	=	ration 1	Stat	tion 2	. <u>Stat</u>	ion 3	Statio	<u>n 4</u>	
	Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity	
	Ö	.48	Ö	.39	Ò	.43	0	.52	
	1.5	.39	2.4	.28	2.4	.39	2.7	.57	
	2.6	.17	4.0	.26	4.0	.26	4.5	.41	

Central Chute Transect

St	ation	Stati	on 2	<u>Stati</u>	on 3	Statio	on_4
Depth	Velocity	Depth	Velocity	Depth	Velocity	Depth	Velocity
ó	.43	Ò	.57	Ö	.52	٥	<i>.</i> 52
1.8	.39	1.5	.57	0.8	,43	0.5	.52
3.0	.21	2.5	.28				

Lower Chute Transect

St	tation	Stati	on 2	Stat	on 3	Statio	<u>n 4</u>
Depth	Velocity	Death	Velocity	Depth	<u>Velocity</u>	Depth	Velocity
Ó	.70	Ò	.68	Ò	.43	0	.39
1.2	.52	0.8	.52	0.8	.43	1.0	.43
20	.52	1.2	.39	1.2	.30	1.5	.35

APPENDIX KK

Mean current velocity (at 0.6 depth) and staff gauge for the wing dams and side channel in June, August, and October 1978, and June 1979.

Date	Staff guage (meters)	Mean wing dam velocity (cm sec ⁻¹)	Mean side channel velocity (cm sec ⁻¹)
1978			
June	3.0	59	43
August	2.5	44	37
October	2.0	34	23
1979			
June	3.0	55	45