## Session 8 Local Search and Metaheuristics

Daniel Diaz
Philippe Codognet
Salvador Abreu

### Optimization problems





### How about this?



#### COP: Motivation for Heuristic Methods

- NP-complete problems (most of the time, but not all)
- Optimization at least as hard as decison
- NP-complete decision problem -> NP-hard optimization problem
- For NP-hard COP there is probably no exact method where computing time is limited by a polynomal (in the instance size)
- Different choices
  - Exact methods (enumerative)
  - Approximation method (polynomial time)
  - Heuristic method (no a priori guarantees)
- In the real world:
  - Often requirements on response time
  - Optimization only one aspect
  - Problem size and response time requirements often rules out exact solution methods

### **Heuristics & Metaheuristics**

- From ancient greek ευρίσκω: « I find »
- current meaning: "a technique to guide the search toward the solution"
- Basic idea: should exploit problem knowledge
- The term *heuristic* was introduced in the book "How to solve it" [Polya 1957] (A guide for solving math problems)
- meta is from ancient greek μετά: above, beyond
  - e.g. metaphysics …
- Meta-heuristics are higher-level strategies to guide the search
- In particular to avoid getting trapped in local optima

#### How to Guide the Search?

- 1. Find a solution
  - Random configuration
  - Greedy solution
  - •
- 2. Check "how good" this solution is e.g. use the value of the objective function
- 3. Try to find a better solution i.e. try to identify best direction to go to
- 4. continue

### Given a Solution, How to Find a Better One?

- Modification of a given solution gives a "neighbor solution"
- A certain set of operations on a solution yields a set of neighbor solutions, called a neighborhood
- Evaluations of neighbors
  - Objective function value
  - Feasibility ?

### Example of TSP



Earlier solution:

12734561(184)

**Trivial solution:** 

12345671 (288)

Greedy construction:

13576421 (160)

|   | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|---|----|----|----|----|----|----|----|
| 1 | 0  | 18 | 17 | 23 | 23 | 23 | 23 |
| 2 | 2  | 0  | 88 | 23 | 8  | 17 | 32 |
| 3 | 17 | 33 | 0  | 23 | 7  | 43 | 23 |
| 4 | 33 | 73 | 4  | 0  | 9  | 23 | 19 |
| 5 | 9  | 65 | 6  | 65 | 0  | 54 | 23 |
| 6 | 25 | 99 | 2  | 15 | 23 | 0  | 13 |
| 7 | 83 | 40 | 23 | 43 | 77 | 23 | 0  |

... Better solutions?

### Example of TSP (2)

- Operator: 2-opt
  - choose 2 edges{a1,b1} & {a2,b2}
  - replace by {a1,a2} & {b1,b2}





- Operator: 1-opt
  - swap 2 cities in the tour

$$(c_1, c_2, ..., c_i, ..., c_j, ...c_n)$$
  
becomes  $(c_1, c_2, ..., c_j, ..., c_i, ...c_n)$ 

## Example of TSP (3)

Operator: 3-opt



- size of neighborhood?
  - O(n<sup>k</sup>) for k-opt
  - Can become quite big for large problem instances

# Constraints and Applications - 1.

### Example of Knapsack Problem

- Knapsack with capacity 101
- 10 items: 1,...,10
- Trivial solution: empty backpack, value 0
- Greedy solution, assign the items after value:
  - (0000010000), value 85
  - Better solutions?

|       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|----|----|----|----|----|----|----|----|----|----|
| Value | 79 | 32 | 47 | 18 | 26 | 85 | 33 | 40 | 45 | 59 |
| Size  | 85 | 26 | 48 | 21 | 22 | 95 | 43 | 45 | 55 | 52 |

### Example of Knapsack Problem (2)

- Greedy 0000010000 value 85
- Another solution 0010100000 value 73
- Natural operator: "Flip" a bit
  - If the item is in the knapsack, take it out
  - If the item is not in the knapsack, include it
- Some Neighbors of 0010100000 :
  - 0110100000 value 105
  - 1010100000 value 152, not feasible
  - 0010000000 value 47

|       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------|----|----|----|----|----|----|----|----|----|----|
| Value | 79 | 32 | 47 | 18 | 26 | 85 | 33 | 40 | 45 | 59 |
| Size  | 85 | 26 | 48 | 21 | 22 | 95 | 43 | 45 | 55 | 52 |
|       | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |

## Constraints and Applications - 1

### Definition: Neighborhood

- Let (S,f) be a COP-instance
- A neighborhood function is a mapping from solutions to the set of possible solutions (i.e.,reached by a move)  $N: S \to 2^S$
- For a given solution  $s \in S$ , N defines a neighborhood of solutions:  $N(s) \subseteq S$  i.e., solutions in some sense "near" s
- $t \in N(s)$  is a neighbor of s

### Neighborhood

- A neighborhood somehow define a notion of proximity, thus distance between solutions
- It can be any type of distance, not only Euclidian
- e.g. Manhattan distance or Hamming distance



### Neighborhood Operators

Neighborhoods are most often defined by a given operation on solutions

- e.g. simple operations
  - Remove/Add an element (cf knapsack)
  - Interchange two or more elements of a solution, e.g.
     swap two elements (cf TSP)
  - changing the value of one or a few elements in solutions defined as vectors of decision variables

### Different neighborhoods

- Different neighborhood operators for same problem:  $N_{\sigma}(s), \sigma \in \Sigma$ 
  - e.g. 1-opt and 2-opt for the TSP
- Idea: change dynamically between them
  - change in the shape of the "landscape"
  - can help avoiding local minima



Changing the neighborhood from  $N_1$  to  $N_2$ 

### (recall) Terminology: Optima

Assume we want to solve

$$\max_{x \in \mathcal{F} \subseteq \mathcal{S}} f(x)$$

 Let x be our current (incumbent) solution in a local search

 If f(x) ≥ f(y) for all y in F, then we say that x is a global optimum (of f)

### (new) Terminology: Optima

- assume that  $\mathbf{N}$  is a neighborhood operator, so that  $\mathbf{N}(\mathbf{x})$  is the set of neighbors of  $\mathbf{x}$
- If f(x) ≥ f(y) for all y in N(x), then we say that x is a local optimum

(of f, with respect to neighborhood operator **N**)

A neighborhood function **N** is **exact** if every local optima w.r.t. **N** is also a global optima

# Constraints and Applications - 20

### Graphically



### Example of Local Search: Sorting

- Problem: sort a sequence of numbers from 1 to n
- Consider sequences of numbers in {1,...n} as solutions
- Objective function:  $f(\pi) = \sum_{i} * \pi_{i}$  (to maximize)
- This function guarantees that the optimum is the configuration sorted in increasing order
- K-exchange neighborhood:
  - Exchanging k elements in a given sequence or partition
- K-exchange neighborhood is exact for sorting
- 1-exchange neighborhood restricted to adjacent pairs

### Example of Local Search: Sorting

- Problem: sort a sequence of numbers from 1 to n
- Consider sequences of numbers in {1,...n} as solutions
- Objective function:  $f(\pi) = \sum_{i=1}^{n} i * \pi_i$  (to maximize)
- This function guarantees that the optimum is the configuration sorted in increasing order
- K-exchange neighborhood:
  - Exchanging k elements in a given sequence or partition
- K-exchange neighborhood is exact for sorting
- 1-exchange neighborhood restricted to adjacent pairs
- This is bubble sort!

### (Basic) Bubble Sort Algorithm

```
Swapped = false
Repeat
For i=1 to n-1
if(A[i] > A[i+1])
    swap(A[i],A[i+1])
    swapped = true
Until not swapped
```

| 1  | 2  | 3  | 4  | 5   | 6 |
|----|----|----|----|-----|---|
| 77 | 42 | 35 | 12 | 101 | 5 |

### **Iterative Improvement**



## Basic Local Search: Iterative Improvement

```
s \leftarrow \text{GenerateInitialSolution()}
egin{align*} \mathbf{repeat} \\ s \leftarrow \text{Improve}(\mathcal{N}(s)) \\ \mathbf{until} \ \text{no improvement is possible} \\ \end{aligned}
```

- Improve(N(S)) can be :
  - 1. First improvement
  - 2. Best improvement
  - 3. Intermediate option, e.g. "Best among *n*"
- observation: stops in local optimum

#### **God save the Queens**

- Place 8 queens on a chessboard so that no two queens attack each other
- Generalized to NxN chessboard





one solution for 50 x 50 chessboard

Constraints and Applications - 26

- Place 8 queens on a chessboard so that no two queens attack each other
- Generalized to NxN chessboard





one solution for 50 x 50 chessboard

Can we solve this problem by Local Search?

### Local Search for N-Queens

- Configuration: (Q1,...,Qn)
   Qi = j means queen on row i and column j
- Objective function :

minimize the number of attacks

(= 2 x number of violated disequation constraints)

- Neighborhood operator 1: change the position of one queen (i.e. change value of one Qi)
- Size of neighborhood: n\*(n-1)
- At each step there is a quadratic number of neighbors to evaluate...

# nstraints and Applications - 29

### Local Search for N-Queens (2)

- Neighborhood operator 2:
  - compute for each queen the number of other queens attacking it
  - select the most conflicting queen
  - Consider only its alternative positions as neighbors

- Neighborhood of size n-1
- Each step of local search is thus faster
- But... is this a good heuristic?



← cost for each queen

← Global cost



Queen 3 will be selected

Alternative values gives Other global costs



Queen 3 will be selected

Alternative values gives Other global costs

Move to row 5 is the best



... and continue!



| 1 | 1 | 0 | 1 |
|---|---|---|---|



### Another Model for N-Queens LS

Another model by considering:

– permutation of {1,...,n} as configurations

 objective function: minimize conflicting queens (diagonals only)

Neighborhood: all possible swaps of 2 values

# Local Search / Neighborhood Search

- a Combinatorial Optimization Problem (COP)
- an initial solution (e.g. random)
- a defined search neighborhood (neighboring solutions)
- a move operator (e.g. flip a variable), going from one solution to a neighboring solution
- an evaluation function for moves (rating possibilities)
  - often myopic
- a neighborhood evaluation strategy (first, best, etc)
  - i.e. a move selection strategy
- a stopping criterion
  - e.g. local optimum

### Advantages of Local Search

- For many problems, it is quite easy to design a local search
  - i.e., LS can be applied to almost any problem
- The idea of improving a solution by making small changes is easy to understand
- The use of neigborhoods sometimes makes the optimal solution seem "close", e.g.:
  - A knapsack has n items
  - The search space has  $2^n$  members
  - From any solution, no more than n flips are required to reach an optimal solution!

- Some neighborhoods can become very large (time consuming to examine all the neighbors)
- The search stops when no improvement can be found: *local* optimum
- Restarting the search might help, but is often not very effective in itself – needs a strategy!

 How can we avoid getting stuck in a local optimum?

# Metaheuristics (1)

Concept introduced by Glover (1986)

 Generic heuristic solution approach designed to control and guide specific problem-oriented heuristics

Often inspired by analogy with natural processes

Rapid development over the last 15 years

# Metaheuristics (2)

- Main point is to escape local minima
- Many different ideas:
  - Random restart
  - Accept "bad moves" (i.e. worse w.r.t. objective function)
  - Use memory to record "bad solutions" to be avoided
  - Use a population of solutions
  - Mix any of the above
- This gives a lot of different methods!

# **Typical Search Trajectory**



# Constraints and Applications - 44

#### Some well-known Metaheuristics

Simulated Annealing (SA)

Tabu Search (TS)

Genetic Algorithms (GA)

Scatter Search (SS)

# anstraints and Applications - 4.

#### Other Metaheuristics

- Iterative Local Search (ILS)
- Guided Local Search (GLS)
- Adaptive Memory Procedures (AMP)
- Variable Neighborhood Search (VNS)
- Threshold Acceptance methods (TA)
- Ant Colony Optimization (ACO)
- Greedy Randomized Adaptive Search Procedure (GRASP)
- Evolutionary Algorithms (EA)
- Memetic Algorithms (MA)
- And many others:
  - Particle Swarm, The Harmony Method, The Great Deluge Method,
     Shuffled Leaping-Frog Algorithm, Squeaky Wheel Optimization, Artificial
     Bee Colony, Cukoo Search, Firefly Optimization ...

# onstraints and Applications - 4

#### Metaheuristic Classification

- x/y/z Classification
  - x = A (adaptive memory) or M (memoryless)
  - y = N (systematic neighborhood search)or S (random sampling)
  - z = 1 (one current solution)or P (population of solutions)
- Examples
  - Tabu search (A/N/1)
  - Simulated Annealing (M/S/1)
  - Genetic Algorithms (M/S/P)
  - Scatter Search (M/N/P)

# Single Solution vs Population-based

- Single-solution based algorithms
  - Hill Climbing
  - Simulated Annealing
  - Tabu Search
- Population based algorithms
  - Genetic Algorithm
  - Ant Colony Optimization
  - Particle Swarm Optimization

# Nature inspired vs Non-nature inspired

Genetic Algorithms

- Swarm Intelligence
  - Ant Colony Optimization
  - Particle Swarm Optimization
- Also
  - Bee Colony Optimization
  - Firefly Optimization
  - Cuckoo Search