

$$P_0 P_1 = a \sin(30^\circ) = \frac{1}{2} a$$

Les triangles $\mathrm{OP}_n\mathrm{P}_{n+1}$ et $\mathrm{OP}_{n+1}\mathrm{P}_{n+2}$ sont semblables pour tout $n\geqslant 0$:

$$\frac{\mathrm{OP}_n}{\mathrm{OP}_{n+1}} = \frac{\mathrm{OP}_{n+1}}{\mathrm{OP}_{n+2}} = \frac{\mathrm{P}_n\mathrm{P}_{n+1}}{\mathrm{P}_{n+1}\mathrm{P}_{n+2}}$$

Il en résulte
$$P_{n+1}P_{n+2} = \frac{OP_{n+1}}{OP_n} P_n P_{n+1} = \cos(30^\circ) P_n P_{n+1} = \frac{\sqrt{3}}{2} P_n P_{n+1}$$
.

Par conséquent, la suite $(P_nP_{n+1})_{n\geqslant 0}$ est une suite géométrique de premier terme $\frac{1}{2}a$ et de raison $\frac{\sqrt{3}}{2}$.

C'est pourquoi $P_n P_{n+1} = \frac{1}{2} a \left(\frac{\sqrt{3}}{2}\right)^n$.

Étant donné que $0<\frac{\sqrt{3}}{2}<1,$ la longueur de la spirale vaut :

$$\lim_{n \to +\infty} P_0 P_1 + P_1 P_2 + P_2 P_3 + \ldots + P_n P_{n+1} = \frac{1}{2} a \cdot \frac{1}{1 - \frac{\sqrt{3}}{2}} = \frac{1}{2} a \cdot \frac{1}{\frac{2 - \sqrt{3}}{2}} = \frac{1}{2} a \cdot \frac{1}{\frac{2 - \sqrt{3}}{2}} = \frac{1}{2} a \cdot \frac{1}{\frac{2 - \sqrt{3}}{2}} = \frac{1}{2} a \cdot \frac{2}{\frac{2 - \sqrt{$$