SSN COLLEGE OF ENGINEERING Department of Mathematics

UMA1477 & UMA1478

<u>UNIT - 2 TWO DIMENSIONAL RANDOM VARIABLES</u>

Prepared by Dr.N.Padmapriya

One dimensional random variable has been considered to a random experiment for which the outcome has only one characteristic. In many situations, we will be interested in recording two or more characteristics of the outcome of a random experiment. i.e., two or more random variables will be defined on the same space.

Two dimensional random variable

Let S be the sample space of a random experiment. Let X and Y be two random variables defined on S. Then the pair (X, Y) is called a *two dimensional random variable* or a bivariate random variable. Let $s \in S$ be a sample point. Since X and Y are random variables associated with S we have real numbers x and y. The bivariate random variable (X, Y) can be considered as a function which assigns to each point $s \in S$ appoint (x, y) in the 2D plane. The range space of a bivariate random variable (X, Y) is denoted by

$$R_{yy} = \{(x, y) / s \in SandX(s) = x, Y(s) = y\}$$

Discrete bivariate random variable

If both the random variables X and Y are discrete then (X,Y) is called a *discrete* bivariate random variable.

Continuous bivariate random variable

If both the random variables X and Y are continuous then (X,Y) is called a continuous bivariate random variable.

Mixed bivariate random variable

If one of X and Y is discrete while the other one is continuous, then (X,Y) is called a *mixed bivariate random variable*.

Example

Consider the random experiment in which two fair dice are thrown simultaneously. Define a random variable X as the number on the first die and Y as the number of second die. Then (X,Y) is a *bivariate random variable*.

Joint probability mass function

Let X and Y be random variables defined on sample space S with respective image sets $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_m\}$. The probability of the ordered pair (x_i, y_j) is $P(X = x_i, Y = y_j) = P(X = x_i \cap Y = y_j)$ which is written as $P_{XY}(x_i, y_j)$ or simple P_{ij} is called the joint probability mass function of X and Y and is represented in the following form.

X\Y	y ₁	y ₂	•••	У		y _m	Total
X ₁	p ₁₁	p ₁₂		p_{1j}	•••	p_{1m}	p _{1.}
\mathbf{x}_2	p_{21}	\boldsymbol{p}_{22}	•••	p_{2j}	•••	\mathbf{p}_{1m} \mathbf{p}_{2m}	p _{2.}
M	M	M		M		$^{ ext{M}}$ $p_{ ext{im}}$	M
X _i	p_{i1}	\boldsymbol{p}_{i2}		\boldsymbol{p}_{ij}		\boldsymbol{p}_{im}	p _{i.}
M	M	M		M		M	M
X _n	p_{n1}	p_{n2}		\boldsymbol{p}_{nj}		M \mathbf{p}_{nm}	p _{n.}
Total	p _{.1}	p _{.2}		p _{. j}		p _{.m}	1

Properties of joint probability mass function

1.
$$0 \le P_{XY}(x_i, y_j) \le 1, i = 1,...,n, j = 1,...,m$$

2.
$$\sum_{x_i} \sum_{y_j} P_{XY}(x_i, y_j) = 1$$

Marginal probability mass function

Suppose $P_{XY}(\mathbf{x}_i, y_j)$ is the joint probability mass function of (\mathbf{X}, \mathbf{Y}) . Suppose for a fixed value $X = x_i$ the random variable Y can take the possible values y_j , j = 1, 2, ..., m. Then, the probability distribution of X is

$$P_X(x_i) = P(X = x_i) = \sum_{y_i} P_{XY}(x_i, y_j)$$

Where the summation is taken over all possible pairs (x_i, y_j) with x_i is fixed. The function $P_X(x_i)$, i = 1, 2, ..., n is called the marginal probability mass function of X. Similarly,

$$P_Y(y_j) = P(Y = y_j) = \sum_{x_i} P_{XY}(x_i, y_j)$$

Where the summation is taken over all possible pairs (x_i, y_j) with y_j fixed (j = 1, 2, ..., m) is called the marginal probability mass function of Y.

Independent random variables

Two random variables X and Y are said to be independent if

$$P(X = x_i, Y = y_i) = P(X = x_i)P(Y = y_i), i = 1, 2, ..., n, j = 1, 2, ..., m$$

Otherwise they are said to be dependent. In other words, if $P_{XY}(x_i, y_j) = P_X(x_i) P_Y(y_j)$ then X and Y are independent.

Joint probability distribution

Let (X,Y) be a bivariate random variable. Then their joint distribution function or

joint cumulative distribution function is denoted by $F_{XY}(x, y)$ or F(x, y) and it represents the probability that simultaneously the observation (X, Y) will have

$$F_{xy}(x, y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} p(x_i, y_j) - discrete$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f(x, y) dx dy - continous$$

Properties - jcdf

$$1.F(-\infty, y) = 0$$

$$2.F(x,\infty)=0$$

$$3.F(-\infty,\infty)=1$$

$$4.\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$$

Conditional probability function

Let (X, Y) be a discrete bivariate random variable with joint probability mass function

$$P_{X_{/Y}}(x_{i/y_{j}}) = P(X = x_{i/Y} = y_{j}) = \frac{P(X = x \cap Y = y_{j})}{P(Y = y_{j})}$$

then,
$$=\frac{P_{XY}(x_i, y_j)}{P_Y(y_j)}, P_Y(y_j) > 0$$

is called the conditional probability mass function of X given $Y=y_j$. Similarly the conditional probability mass function of Y given $X=x_i$ is defined as

$$P_{Y/X}(y_j/x_i) = \frac{P_{XY}(x_i, y_j)}{P_X(x_i)}, P_X(x_j) > 0$$

Continuous Random Variable

If (X, Y) can assume all values in a specified region R in the xy-plane (X,Y) is called a two dimensional continuous random variable.

Joint probability density function

If (X, Y) is a 2D continuous random variable, then

$$P\left\{x - \frac{dx}{2} \le X \le x + \frac{dx}{2} \& y - \frac{dy}{2} \le Y \le y + \frac{dy}{2}\right\} = f(x, y) dx dy$$
 then f(x,y) is called the joint pdf of (X,Y) provided f(x,y) satisfies the following conditions.

Properties-jpdf

$$1.f(x, y) \ge 0$$
$$2.\iint_{R} f(x, y) dx dy = 1$$

Marginal probability density function

Let (X, Y) be a continuous bivarate random variable with joint pdf $f_{XY}(x, y)$. The marginal probability density functions of X and Y are defined as

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

$$f_{Y}(y) = \int_{0}^{\infty} f_{XY}(x, y) dx$$

respectively.

Conditional probability function

If (X, Y) is a continuous bivariate random variable with joint pdf $f_{XY}(x, y)$ then the conditional probability density function of Y given that X = x is defined by

$$f_{Y/X}(Y/X) = \frac{f_{XY}(x, y)}{f_{Y}(x)}, f_{X}(x) > 0$$

Similarly, the conditional probability density function of X given Y=y is

$$f_{X/Y}(X/y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}, f_{Y}(y) > 0$$

Properties

$$1.f_{Y/X}(\sqrt[y]{X}) \ge 0$$

$$2.\int_{-\infty}^{\infty} f_{\frac{Y}{X}}(\frac{y}{x})dy = 1$$

Independent random variables

The continuous random variables X and Y with joint pdf $f_{XY}(x,y)$ are said be independent if $f_{XY}(x,y) = f_X(x)f_Y(y)$.

Formulas

Cov(X,Y) = E(XY)-E(X)E(Y)

$$V(aX+b) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X.Y)$$

$$\sigma_x^2 = E(X^2) - [E(X)]^2$$

$$\sigma_y^2 = E(Y^2) - [E(Y)]^2$$

Correlation

Karl Pearson's coefficient of correlation = $\rho(X,Y) = r(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y}$, $-1 \le r \le 1$

Lines of regression

Line of regression of X on Y

$$X - x = r \frac{\sigma_y}{\sigma_x} (Y - y)$$

Line of regression of Y on X

$$Y - \overline{y} = r \frac{\sigma_x}{\sigma_y} (X - \overline{x})$$