Support Vector Machine

Kernel trick

Recap

Support

Margin

$$y_i(\beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \cdots) \ge M$$

Recap

$$y_i(\beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \cdots) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0$$

$$\epsilon_i \ge 0$$

$$\sum_{i=1}^n \epsilon_i \le C$$

Beyond linearly separable data

How can we separate this kind of data with SVC?

SVM using Kernels

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0$$

$$\sum_{i=1}^n \epsilon_i \le C$$

Why SVM called non-parameteric when there are coefficients?

How SVM finds a solution?

$$y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \cdots \beta_p x_{ip}) \ge M (1 - \epsilon_i)$$

Inner product:
$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^{n} x_{ij} x_{i'j}$$

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$

How SVM finds a solution?

It computes inner product between observations

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$

The original function $f(X) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$ can be rewritten to

$$f(x) = \beta_0 + \sum_{i=1}^n \alpha_i \langle x, x_i \rangle$$
 (Caution: SVM needs inputs normalized)

We need n(n-1)/2 inner products to calculate

What about this data?

When data is not linearly separable

When data is not linearly separable

When data is not linearly separable

Not linearly separable in 2D

We can separate in 3D

Adding higher order terms

$$X_1, X_2, \ldots, X_p$$
 Great! I can add higher order terms...

$$X_1, X_1^2, X_2, X_2^2, \dots, X_p, X_p^2$$
 But...

subject to
$$y_i \left(\beta_0 + \sum_{j=1}^p \beta_{j1} x_{ij} + \sum_{j=1}^p \beta_{j2} x_{ij}^2 \right) \ge M(1 - \epsilon_i)$$

$$\sum_{i=1}^{n} \epsilon_i \le C, \quad \epsilon_i \ge 0, \quad \sum_{j=1}^{p} \sum_{k=1}^{2} \beta_{jk}^2 = 1.$$

The Kernel trick

Let's generalize this function (the inner product)

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$

to a kernel $K(x_i, x_{i'})$

$$K(x_i, x_{i'}) = (1 + \sum_{j=1}^{p} x_{ij} x_{i'j})^d$$

Then, we get
$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i)$$

The Kernel trick

Non-linear kernels can take care of non-linear decision boundary

Polynomial Kernel

Non-linear kernels can take care of non-linear decision boundary

Polynomial kernel

$$K(x_i, x_{i'}) = (1 + \sum_{i=1}^{p} x_{ij} x_{i'j})^d$$

Radial Kernel

Non-linear kernels can take care of non-linear decision boundary

Radial Basis Function Kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$

Choice of Kernels

Choice of Kernels

Choice of Kernels

Hinge Loss

$$\underset{\beta_0,\beta_1,\ldots,\beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max\left[0,1-y_i f(x_i)\right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

When to use which model?

For Binary classification

SVM Logistic regression