Sequential Triangle Strip Generator Based on Hopfield Networks

Jiří Šíma

sima@cs.cas.cz Institute of Computer Science, Academy of Sciences of the Czech Republic, P.O. Box 5, 18207 Prague 8, Czech Republic

Radim Lněnička

r.lnenicka@centrum.cz Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech Republic

The important task of generating the minimum number of sequential triangle strips (tristrips) for a given triangulated surface model is motivated by applications in computer graphics. This hard combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction. In particular, the classes of equivalent optimal stripifications are mapped one to one to the minimum energy states reached by a Hopfield network during sequential computation starting at the zero initial state. Thus, the underlying Hopfield network powered by simulated annealing (i.e., Boltzmann machine), which is implemented in the program HTGEN, can be used for computing the semioptimal stripifications. Practical experiments confirm that one can obtain much better results using HTGEN than by a leading conventional stripification program FTSG (a reference stripification method not based on neural nets), although the running time of simulated annealing grows rapidly near the global optimum. Nevertheless, HTGEN exhibits empirical linear time complexity when the parameters of simulated annealing (i.e., the initial temperature and the stopping criterion) are fixed and thus provides the semioptimal offline solutions, even for huge models of hundreds of thousands of triangles, within a reasonable time.

1 Sequential Triangle Strips

Piecewise-linear surfaces defined by sets of triangles (triangulations) are widely used representations for geometric models. Computing a succinct encoding of a triangulated surface model represents an important problem in graphics and visualization. Current 3D graphics-rendering hardware often faces a memory bus bandwidth bottleneck in the processor-to-graphics pipeline. Apart from reducing the number of triangles that must

Figure 1: Tristrip (1,2,3,4,5,6,3,7,1).

be transmitted, it is also important to encode the triangulated surface efficiently. A common encoding scheme is based on sequential triangle strips, which avoid repeating the vertex coordinates of shared triangle edges. Triangle strips are supported by several graphics libraries (e.g., IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter tristrip) of length m-2 is an ordered sequence of $m \geq 3$ vertices $\sigma = (v_1, \ldots, v_m)$, which encodes the set of $n(\sigma) = m-2$ different triangles $T_{\sigma} = \{\{v_p, v_{p+1}, v_{p+2}\} \mid 1 \leq p \leq m-2\}$ so that their shared edges follow alternating left and right turns, as indicated in Figure 1 by the dashed lines. Thus, a triangulation consisting of a single tristrip with n triangles allows transmitting only n+2 (rather than 3n) vertices. In general, a triangulated surface model T with n triangles that is decomposed into k disjoint tristrips $\Sigma = \{\sigma_1, \ldots, \sigma_k\}$ requires only n+2k vertices to be transmitted. A crucial problem is to decompose a triangulated surface model into the fewest tristrips. This stripification problem was proven to be NP-complete (Estkowski, Mitchell, & Xiang, 2002). A more detailed comparison of conventional stripification algorithms including relevant references has recently been presented by Vaněček and Kolingerová (2007).

In this letter, a new method of generating tristrips for a given triangulated surface model T with n triangles, which is based on a linear-time reduction to the minimum energy problem in a Hopfield network \mathcal{H}_T with O(n) units and O(n) connections, is proposed. This approach has been inspired by a more complicated and incomplete reduction (e.g., sequential cycles were not excluded) introduced by Pospíšil and Zbořil (2004), which was supported only by experiments.

The letter is organized as follows. After a brief review of basic definitions concerning Hopfield nets in section 2, the main construction of Hopfield network \mathcal{H}_T for a given triangulation T is described in section 3.

The correctness of this reduction is formally verified in section 4 by proving a one-to-one correspondence between the classes of equivalent optimal stripifications of T and the minimum energy states reached by \mathcal{H}_T during sequential computation starting at the zero initial state (or \mathcal{H}_T can be initialized arbitrarily if one asymmetric weight is introduced). This provides another NP-completeness proof for the minimum energy problem in Hopfield nets.

In addition, \mathcal{H}_T combined with simulated annealing (i.e., Boltzmann machine) has been implemented in a program HTGEN (available online at http://www.cs.cas.cz/~sima/htgen-en.html). In section 5, HTGEN is compared to a leading stripification program FTSG (Xiang, Held, & Mitchell, 1999), which is considered to be a reference stripification method not based on neural nets. Practical experiments show that HTGEN can compute much better stripifications than FTSG, although the HTGEN running time grows rapidly when the global optimum is being approached. Furthermore, we study empirically how to choose the parameters of simulated annealing (i.e., the initial temperature and the stopping criterion) so that the correct stripification with a given number of tristrips is obtained in the shortest time. Moreover, the experiments show the average linear time complexity of HTGEN when the parameters of simulated annealing are fixed. Thus, one can use HTGEN for finding the semioptimal offline solutions even for huge models of hundreds of thousands of triangles within a reasonable time.

A preliminary version of this letter appeared as extended abstracts (Šíma, 2005a, 2005b) containing first practical experiments with HTGEN using grid models and a proof sketch, respectively.

2 The Minimum Energy Problem .

Hopfield (1982) introduced an influential associative memory model that has since come to be widely known as the (symmetric) Hopfield network. The fundamental characteristic of this model is its well-constrained convergence behavior as compared to arbitrary asymmetric networks. Part of the appeal of Hopfield nets stems from their connection to the much-studied Ising spin glass model in statistical physics (Barahona, 1982) and their natural hardware implementations using electrical networks (Hopfield, 1984) or optical computers (Farhat, Psaltis, Prata, & Paek, 1985). Hopfield networks have also been applied to the fast approximate solution of combinatorial optimization problems (Cichocki & Unbehauen, 1993; Hopfield & Tank, 1985).

Formally, a Hopfield network is composed of s computational units or neurons, indexed as $N = \{1, ..., s\}$, that are connected into an undirected graph or architecture, in which each connection between unit i and j is labeled with an integer symmetric weight w(i, j) = w(j, i). The

absence of a connection within the architecture indicates a zero weight between the respective neurons, and vice versa. Hereafter we assume w(j,j)=0 for every $j=1,\ldots,s$. The sequential discrete dynamics of such a network is considered here, in which the evolution of the network state $\mathbf{y}^{(t)}=(y_1^{(t)},\ldots,y_s^{(t)})\in\{0,1\}^s$ is determined for discrete time instants $t=0,1,2,\ldots$ as follows. The initial state $\mathbf{y}^{(0)}$ may be chosen arbitrarily, for example, $\mathbf{y}^{(0)}=(0,\ldots,0)$. At discrete time $t\geq 0$, the excitation of any neuron j is defined as

$$\xi_j^{(t)} = \sum_{i=1}^s w(i, j) y_i^{(t)} - h(j), \tag{2.1}$$

including an integer threshold h(j) local to unit j. At the next instant t+1, one (e.g., randomly) selected neuron j computes its new output $y_j^{(t+1)} = H(\xi_j^{(t)})$ by applying the Heaviside activation function $H(\xi)$ defined to be 1 for $\xi \geq 0$ and 0 for $\xi < 0$, that is, j becomes active when $H(\xi_j^{(t)}) = 1$, while j will be passive otherwise. The remaining units do not change their states, that is, $y_i^{(t+1)} = y_i^{(t)}$ for $i \neq j$. In this way, the new network state $\mathbf{y}^{(t+1)}$ at time t+1 is determined.

In order to avoid long, constant intermediate computations when only units that effectively do not change their outputs are updated, a macroscopic time $\tau=0,1,2,\ldots$ is introduced during which all the units in the network are updated. A computation of a Hopfield network converges or reaches a stable state $\mathbf{y}^{(\tau^*)}$ at macroscopic time $\tau^* \geq 0$ if $\mathbf{y}^{(\tau^*)} = \mathbf{y}^{(\tau^*+1)}$. The well-known fundamental property of a symmetric Hopfield network is that its dynamics is constrained by the energy function

$$E(\mathbf{y}) = -\frac{1}{2} \sum_{j=1}^{s} \sum_{i=1}^{s} w(i, j) y_i y_j + \sum_{j=1}^{s} h(j) y_j,$$
 (2.2)

which is a bounded function defined on its state space whose value decreases along any nonconstant computation path (to be precise, it is assumed here without loss of generality that $\xi_j^{(t)} \neq 0$; Parberry, 1994). It follows from the existence of such a function that starting from any initial state, the network converges toward some stable state corresponding to a local minimum of E (Hopfield, 1982). Thus, the cost function of a hard combinatorial optimization problem can be encoded into the energy function of a Hopfield network, which is then minimized in the course of computation. Hence, the minimum energy problem of finding a network state with minimum energy is of special interest. Nevertheless, this problem is in general NP-complete (Barahona, 1982; see also the review by Šíma & Orponen, 2003, for related results).

A stochastic variant of the Hopfield model, the Boltzmann machine (Ackley, Hinton, & Sejnowski, 1985), is also considered in which a randomly selected unit j becomes active at time t+1 ($y_j^{(t+1)}=1$), with probability $P(\xi_j^{(t)})$ computed by applying the probabilistic activation function $P:\Re \longrightarrow (0,1)$ defined as

$$P(\xi) = \frac{1}{1 + e^{-2\xi/T^{(t)}}},\tag{2.3}$$

where $T^{(\tau)} > 0$ is the so-called temperature at macroscopic time $\tau \geq 0$. This parameter is controlled by simulated annealing, for example,

$$T^{(\tau)} = \frac{T^{(0)}}{\log_2(1+\tau)},\tag{2.4}$$

for $\tau > 0$ and sufficiently high initial temperature $T^{(0)}$. Simulated annealing is a powerful heuristic method for avoiding the local minima in combinatorial optimization.

3 The Reduction _

3.1 Sequential Cycles. For the purpose of our reduction, the following definitions are introduced. Let T be a set of n triangles that represents a triangulated two-manifold surface model of genus 0 (possibly with boundaries) in which each edge is incident to at most two triangles. Moreover, choose and fix one of the two possible orientations of this surface. An edge is said to be internal if it is shared by exactly two triangles; otherwise it is a boundary edge. Denote by *I* and *B* the sets of internal and boundary edges, respectively, in the triangulation T. We will say that a tristrip σ traverses an internal edge e by the left turn or counterclockwise if the next edge e' to be traversed occurs on the left (with respect to the surface orientation) when one enters the triangle given by *e*, *e'* by crossing the edge *e* orthogonally. We speak about the right turns or the clockwise traversal in analogous manner. Thus, for instance, the tristrip depicted in Figure 1 traverses the edge {3, 4} counterclockwise, by the left turn, while the edge {6, 3} is traversed by this strip clockwise, by the right turn, with respect to the natural orientation (from the air).

Furthermore, a sequential cycle is a "cycled tristrip," that is, an ordered sequence of vertices $c=(v_1,\ldots,v_m)$ such that $v_{m-1}=v_1$ and $v_m=v_2$ where $m\geq 4$ is even, which encodes the set of m-2 different triangles $T_c=\{\{v_p,v_{p+1},v_{p+2}\}\,|\,1\leq p\leq m-2\}$. Also denote by I_c and B_c the sets of internal and boundary edges of sequential cycle c, respectively, that is, $I_c=\{\{v_p,v_{p+1}\}\,|\,1\leq p\leq m-2\}$ and $B_c=\{\{v_p,v_{p+2}\}\,|\,1\leq p\leq m-2\}$. An example of the sequential cycle is depicted in Figure 2 where its internal and

Figure 2: Sequential cycle (1,2,3,4,5,6,1,2).

boundary edges are indicated by the dashed and dotted lines, respectively. Let *C* be the set of all sequential cycles in *T*. This set can easily be generated in linear time as follows.

Observe first that for the fixed orientation of triangulated surface, a tristrip can traverse an internal edge either clockwise or counterclockwise, that is, any edge can possibly be an internal edge of at most two sequential cycles. This is because any sequential cycle is already uniquely determined only by specifying one of its internal edges and the direction in which this edge is traversed by the cycle (i.e., either clockwise or counterclockwise). In other words, two sequential cycles that share an internal edge traversed by these two cycles in the same direction must necessarily coincide since the walk around the cycle is unambiguously determined by alternating the left and right turns. Thus, starting with an arbitrary internal edge that we traverse either clockwise or counterclockwise, we go on along a corresponding tristrip by alternating the left and right turns. This tristrip may end up in a boundary edge of the surface, or it may terminate before some edge would be traversed twice by this tristrip, both clockwise and counterclockwise, which is not allowed since by definition one tristrip may encode only different triangles. The last possibility is that following this tristrip, we come back to the initial edge, which is traversed along the tristrip solely clockwise or solely counterclockwise. In this case, the tristrip is properly cycled (encoding different triangles) and represents one sequential cycle, which is included in C. Hence, C can be obtained by repeating this procedure until all internal edges are traversed both clockwise and counterclockwise (along different tristrips). Clearly, the computational time that is needed for generating *C* is proportional to the number of edges in *T*, which is linear in terms of n.

In addition, we will assign a unique representative internal edge $e_c \in I_c$ to each sequential cycle $c \in C$ in T by using the following (linear time) algorithm, in which $R \subseteq C$ denotes the set of sequential cycles to which

their representative edges have already been assigned in the course of computation:

- 1. $R := \emptyset$
- 2. while $R \neq C$ do
 - (a) choose any cycle $c \in C \setminus R$
 - (b) choose any edge from I_c to be the representative edge e_c of c
 - (c) $R := R \cup \{c\}$
 - (d) while $(\exists c' \in C \setminus R)$ $(e_c \in I_c \cap I_{c'})$ do
 - i. choose any edge from $I_{c'} \setminus \{e_c\}$ to be the representative edge $e_{c'}$ of c'
 - ii. $R := R \cup \{c'\}$
 - iii. c := c'

This procedure guarantees that no representative edge is assigned to two cycles at the same time. Indeed, if a representative edge e_c is assigned to some sequential cycle $c \in C$ for the first time, which is done in step 2b or 2d(i), then this edge can possibly be an internal edge of at most one other sequential cycle $c' \in C$, that is, $e_c \in I_c \cap I_{c'}$. In such a case, when condition of **while** statement 2d is satisfied, a representative edge $e_{c'}$ different from e_c is assigned to e' in step 2d(i). Hence, the edge e_c can only be a representative edge of one cycle e'.

3.2 The Construction of Hopfield Network \mathcal{H}_T . In this section, we describe the construction of a Hopfield network \mathcal{H}_T , which is used for generating the stripifications for a given triangulation T. The Hopfield network \mathcal{H}_T is composed of two parts corresponding to a disjoint partition $N = N_1 \cup N_2$ of the set of neurons in \mathcal{H}_T . The first part of \mathcal{H}_T , which basically encodes tristrips of a stripification Σ , contains two neurons ℓ_e and r_e for each internal edge $e \in I$ in T,

$$N_1 = \{\ell_e, r_e \mid e \in I\}. \tag{3.1}$$

In particular, two triangles in T that share an internal edge e are connected in a tristrip $\sigma \in \Sigma$ if and only if a corresponding neuron either ℓ_e or r_e is active, which also indicates that the underlying tristrip σ traverses edge e either counterclockwise ($y_{\ell_e} = 1$) or clockwise ($y_{r_e} = 1$), respectively. The architecture of the first part of \mathcal{H}_T (specified below) ensures that the Hopfield network \mathcal{H}_T converges to the states that encode disjoint correct tristrips, which alternate left and right turns. The second part of \mathcal{H}_T , on the other hand, contains two neurons a_c and a_c for each sequential cycle $c \in C$ in T:

$$N_2 = \{a_c, d_c \mid c \in C\}. \tag{3.2}$$

The purpose of this part is to prevent \mathcal{H}_T from converging to the states that encode cycled strips of triangles along the sequential cycles that appear in

Figure 3: Construction of \mathcal{H}_T related to $e \in I$.

the triangulation T (Estkowski et al., 2002). As follows from the analysis in section 4, such infeasible states must be excluded because their energy given by equation 2.2 is less than those encoding the optimal stripifications.

We now specify the architecture of the first part of \mathcal{H}_T in detail. Let $e=\{v_1,v_2\}\in I$ be an internal edge in T and $L_e=\{e,e_1,e_2,e_3,e_4\}$ with $e_1=\{v_1,v_3\},\ e_2=\{v_2,v_3\},\ e_3=\{v_2,v_4\},$ and $e_4=\{v_1,v_4\}$ denote the set of edges of the two triangles $\{v_1,v_2,v_3\}$ and $\{v_1,v_2,v_4\}$ that share this edge e (see Figure 3). Furthermore, denote by $J_e=\{\ell_f,r_f\mid f\in L_e\cap I\}$ the set of neurons that are associated with the internal edges from L_e . In the Hopfield network \mathcal{H}_T , unit ℓ_e is connected by negative weights with all neurons from J_e except for units r_{e_2} (if $e_2\in I$), ℓ_e , and r_{e_4} (if $e_4\in I$) whose states may encode a tristrip $\sigma\in\Sigma$ that traverses edge e counterclockwise. In particular, if neuron ℓ_e is active $(y_{\ell_e}=1)$, then these negative weights ensure that the neurons in

$$J_{\ell_e} = J_e \setminus \{r_{e_2}, \ell_e, r_{e_4}\} \tag{3.3}$$

connected to ℓ_e are passive (i.e., $y_i = 0$ for $i \in J_{\ell_e}$), which locally forces the tristrip σ to alternate the left and right turns and allows σ to continue through internal edges e_2, e_4 clockwise. Such a situation (for $L_e \subseteq I$) is depicted in Figure 3, where the edges shared by consecutive triangles of σ are marked together with the associated active neurons r_{e_2} , ℓ_e , r_{e_4} . Similarly, unit r_e is connected with the neurons from

$$J_{r_e} = J_e \setminus \{\ell_{e_1}, r_e, \ell_{e_3}\},\tag{3.4}$$

which may encode a tristrip that traverses edge e clockwise. Recall that any internal edge is shared by exactly two triangles, and hence our construction in Figure 3 covers any complex triangulation T. Thus, for each internal edge $e \in I$, define the symmetric weights of neurons from N_1 as

$$w(i, \ell_e) = w(\ell_e, i) = -7 \text{ for } i \in J_{\ell_e},$$

 $w(i, r_e) = w(r_e, i) = -7 \text{ for } i \in J_{r_e},$

$$(3.5)$$

which ensures that the Hopfield network \mathcal{H}_T converges to the states that encode correct stripifications of T.

Furthermore, for each representative edge e_c corresponding to a unique sequential cycle $c \in C$, denote by j_c one of the two neurons associated with e_c , namely, $j_c = \ell_{e_c}$, if the cycled tristrip c traverses e_c counterclockwise, or $j_c = r_{e_c}$ if c traverses e_c clockwise. Let $J = \{j_c \mid c \in C\}$ be the set of all such units, whereas $J' = N_1 \setminus J$ contains the remaining neurons in the first part of \mathcal{H}_T . We can now define the thresholds of neurons from $N_1 = J \cup J'$ as

$$h(j) = \begin{cases} 1 + 2b_{e(j)} & \text{for } j \in J \\ -5 + 2b_{e(j)} & \text{for } j \in J' \end{cases},$$
 (3.6)

where e(j) = e denotes an internal edge that unit $j \in \{\ell_e, r_e\}$ is associated with, and b_e ($e \in I$) is the number of sequential cycles $c \in C$ whose boundary B_c excluding L_{e_c} contains edge e, that is, $b_e = |\{c \in C \mid e \in B'_c\}|$ where $B'_c = (B_c \cap I) \setminus L_{e_c}$ is the set of internal edges that create the boundary of sequential cycle c excluding the edges in L_{e_c} . Obviously $b_e \leq 2$ since any edge can possibly be a boundary edge of at most two sequential cycles. This is because any edge e is shared by at most two triangles, and the two other edges in each of these triangles may belong only to the internal edges of one sequential cycle that has e as its boundary edge since by traversing one of these two edges in the direction that avoids the other one, we could possibly produce a sequential cycle, which, however, has e as an internal edge.

The architecture of the second part of the Hopfield network \mathcal{H}_T , whose purpose is to avoid the states of \mathcal{H}_T encoding the cycled tristrips, will now be defined (see Figure 4). Each neuron d_c ($c \in C$) in N_2 computes the disjunction (OR) of Boolean outputs from all the neurons $i \in N_1$ associated with boundary edges $e(i) \in \mathcal{B}'_c$ of sequential cycle c (except for the edges of L_{e_c}). As outlined in Figure 4, this is implemented by the following (symmetric) weights and threshold for each sequential cycle $c \in C$:

$$w(i, d_c) = w(d_c, i) = 2$$
 for all $i \in N_1$ such that $e(i) \in B'_c$, (3.7)

$$h(d_c) = 1. (3.8)$$

Figure 4: Construction of \mathcal{H}_T related to $c \in C$.

Furthermore, only if this neuron d_c is active is the activation of unit j_c from N_1 associated with the representative edge e_c enabled by using the positive (symmetric) weight defined for each $c \in C$:

$$w(d_c, j_c) = w(j_c, d_c) = 7.$$
 (3.9)

For the passive neuron d_c , on the other hand, unit $j_c \in J$ stays passive due to its positive threshold 3.6. Hence, any tristrip σ may then traverse edge e_c along the sequential cycle c ($y_{j_c} = 1$) only if some boundary edge $e(i) \in B'_c$ of c is traversed by another tristrip σ' ($y_i = 1$) crossing the sequential cycle c. This ensures that the tristrip σ is not cycled along c since it is cut by tristrip σ' . Thus, the states of Hopfield network \mathcal{H}_T do not encode cycled tristrips. In addition, unit a_c balances the contribution of active d_c to the energy 2.2 when j_c is passive. As depicted in Figure 4, this is implemented by the following symmetric weights and threshold for each $c \in C$:

$$w(d_c, a_c) = w(a_c, d_c) = 2, \quad w(j_c, a_c) = w(a_c, j_c) = -2,$$
 (3.10)

$$h(a_c) = 1.$$
 (3.11)

This completes the construction of the Hopfield network \mathcal{H}_T .

Moreover, observe that the number of units $s = |N_1| + |N_2| = 2|I| + 2|C| = O(n)$ in \mathcal{H}_T given by definitions 3.1 and 3.2 is linear in terms of triangulation size n = |T| because the number of sequential cycles |C| can be upper-bounded by 2|I| = O(n) since each internal edge can be traversed by at most two sequential cycles. Similarly, the number of connections in \mathcal{H}_T can be upper-bounded by $7 \cdot 2|I| + 2 \cdot 2|I| + 3|C| = O(n)$ according to

equations 3.5, 3.7, and 3.9 to 3.10, respectively, since each internal edge may appear in B_c for at most two $c \in C$. Clearly, the reduction can also be done within linear time O(n) since the thresholds and symmetric weights are first computed for the neurons in N_1 by formula 3.6 and by formula 3.5 for every internal edge in I, respectively, and then for the units in N_2 by formulas 3.7 to 3.11 for every sequential cycle in C.

4 The Correctness of the Reduction

The correctness of the reduction introduced in section 3 will be verified by proving theorem 1 below. Let \mathcal{S}_T be the set of optimal stripifications with the minimum number of tristrips for T. Define $\Sigma \in \mathcal{S}_T$ as equivalent to $\Sigma' \in \mathcal{S}_T$ if their corresponding tristrips encode the same sets of triangles: $\Sigma \sim \Sigma'$ iff $\{T_\sigma \mid \sigma \in \Sigma\} = \{T_{\sigma'} \mid \sigma' \in \Sigma'\}$. For example, two equivalent optimal stripifications may differ in a tristrip σ encoding the triangles of a sequential cycle $c \in C$ ($T_\sigma = T_c$), which is split at two different positions. Moreover, let $[\Sigma]_\sim = \{\Sigma' \in \mathcal{S}_T \mid \Sigma' \sim \Sigma\}$ be the class of optimal stripifications equivalent to $\Sigma \in \mathcal{S}_T$, and denote by $\mathcal{S}_T/_\sim = \{[\Sigma]_\sim \mid \Sigma \in \mathcal{S}_T\}$ the partition of \mathcal{S}_T into these equivalence classes.

Theorem 1. Let \mathcal{H}_T be a Hopfield network corresponding to a triangulation T with n triangles and denote by $Y^* \subseteq \{0, 1\}^s$ the set of all stable states that can be reached during sequential computation by \mathcal{H}_T starting at the zero initial state. Then each state $y \in Y^*$ encodes a correct stripification Σ_y of T and has energy

$$E(y) = 5(k - n) \tag{4.1}$$

where k is the number of tristrips in Σ_y . In addition, there is a one-to-one correspondence between the classes of equivalent optimal stripifications $[\Sigma]_{\sim} \in \mathcal{S}_T/_{\sim}$ having the minimum number of tristrips for T and the states in Y^* with the minimum energy $\min_{y \in Y^*} E(y)$.

Proof. Particular statements of the theorem are proven in the following three sections.

4.1 The States in Y^* **Encode Correct Stripifications.** The stripification $\Sigma_{\mathbf{y}}$ is decoded from $\mathbf{y} \in Y^*$ as follows. Denote by $I_0 = \{e \in I \mid y_{\ell_e} = y_{r_e} = 0\}$ the set of internal edges $e \in I$ whose associated neurons ℓ_e , r_e are both passive while its complement $I_1 = I \setminus I_0$ is composed of the internal edges with one of the two associated neurons being active (we will prove below that either $y_{\ell_e} = 1$ or $y_{r_e} = 1$). Then each ordered sequence $\sigma = (v_1, \ldots, v_m)$ of $m \geq 3$ vertices that encodes $n(\sigma) = m - 2$ different triangles $\{v_p, v_{p+1}, v_{p+2}\} \in T$ for $1 \leq p \leq m - 2$ whose edges $e_0 = \{v_1, v_3\}$, $e_m = \{v_{m-2}, v_m\}$, and $e_p = \{v_p, v_{p+1}\}$ for $1 \leq p \leq m - 1$ satisfy $e_0, e_1, e_{m-1}, e_m \in I_0 \cup B$ and $e_2, \ldots, e_{m-2} \in I_1$, is included in $\Sigma_{\mathbf{y}}$. Notice that $\sigma \in \Sigma_{\mathbf{y}}$ with

 $n(\sigma) = 1$ encodes a single triangle with all its edges in $I_0 \cup B$. It will be proven that Σ_y corresponding to a stable state $y \in Y^*$ is a correct stripification of T.

We first observe that for every active neuron $j \in N_1$ ($y_j = 1$), all the units $i \in J_j$ are passive ($y_i = 0$), where J_j is defined in equations 3.3 and 3.4. In particular, for each unit $j \in N_1 = J \cup J'$, the number of positive weights 3.7 contributing to its excitation ξ_j is at most $b_{e(j)}$, and these are subtracted within threshold h(j) according to equation 3.6. Hence, if all the units $i \in J_j$ are passive, then $\xi_j \leq 5$ for $j \in J'$ due to equation 3.6, whereas $\xi_j \leq 6$ for $j \in J$ may include positive weight 3.9. Thus, any active unit $i \in J_j$ contributing to ξ_j via negative weight 3.5 makes unit j passive. By the construction of \mathcal{H}_T , this guarantees that sets T_σ for $\sigma \in \Sigma_y$ are pairwise disjoint and that each $\sigma \in \Sigma_y$ encodes different triangles whose shared edges follow alternating left and right turns.

Further, it must also be checked that the stripification $\Sigma_{\mathbf{y}}$ covers all triangles in T: $\bigcup_{\sigma \in \Sigma_{\mathbf{v}}} T_{\sigma} = T$. Any triangle in T either creates a trivial tristrip σ with $n(\sigma) = 1$ when all its edges are in $I_0 \cup B$, or it is connected to a tristrip (at least one of its edges is in I_1). The only problematic case that must be avoided would appear when this tristrip is cycled, which means that such a tristrip would not satisfy, for example, $e_1 \in I_0 \cup B$ in the definition of $\Sigma_{\mathbf{v}}$. Thus, according to the definition of $\Sigma_{\mathbf{v}}$, it suffices to prove that there is no sequential cycle $c = (v_1, \dots, v_m)$ (recall $v_{m-1} = v_1, v_m = v_2$) such that $e_p = \{v_p, v_{p+1}\} \in I_1$ for every $p = 1, \dots, m-2$. Suppose on the contrary that such $c \in C$ exists, which implies $B_c \cap I \subseteq I_0$. Then the unit $j_c \in J$ associated with its representative edge $e_c = e_q$ for some $1 \le q \le m-2$ could not be activated during sequential computation of \mathcal{H}_T starting at the zero state (i.e., $y_{j_c}^{(t)} = 0$ for any $t \ge 0$) since its positive threshold $h(j_c)$ defined in equation 3.6 can be reached only by weight 3.9 from d_c . However, d_c computes the disjunction of outputs from the neurons $i \in N_1$ associated with $e(i) \in B'_c \subseteq$ I_0 according to equations 3.7 and 3.8, which are passive in the course of computation. Hence, $y_{d_c}^{(t)}=0$ for $t\geq 0$, making unit a_c also passive. Thus, $e_q\in I_0$, which is a contradiction. This completes the argument for Σ_y to be a correct stripification of T.

4.2 The Energy of States in Y^* . Assume that Σ_y contains k tristrips. From the definition of Σ_y , each tristrip $\sigma \in \Sigma_y$ is encoded using the active neurons associated with $n(\sigma) - 1$ edges from I_1 . Hence, the number of active units in N_1 is

$$|I_1| = \sum_{\sigma \in \Sigma_{\mathbf{v}}} (n(\sigma) - 1) = n - k. \tag{4.2}$$

We will show that each active neuron $j \in N_1$ is accompanied by a contribution of -5 to the energy 2.2, which gives formula 4.1 according to equation 4.2. Assume that a neuron $j \in N_1 = J' \cup J$ is active, which implies

 $y_i = 0$ for every unit $i \in J_j$. Moreover, neuron j is connected to $b_{e(j)}$ units d_c for $c \in C$, such that $e(j) \in B'_c$, which are active because the underlying disjunctions include active j. Consider first the case when the active neuron j is from J', which produces the following contribution to the energy:

$$-\frac{1}{2}b_{e(j)}w(d_c, j) - \frac{1}{2}b_{e(j)}w(j, d_c) + h(j)$$

$$= -b_{e(j)}w(d_c, j) + h(j)$$

$$= -2b_{e(j)} - 5 + 2b_{e(j)} = -5,$$
(4.3)

according to equations 2.2, 3.6, and 3.7. Similarly, the active neuron $j = j_{c_1}$ from J for some $c_1 \in C$ assumes active d_{c_1} and makes a_{c_1} passive due to equations 3.10 and 3.11, which contributes to the energy

$$-b_{e(j)}w(d_c, j) - w(d_{c_1}, j_{c_1}) + h(j) + h(d_{c_1})$$

$$= -2b_{e(j)} - 7 + 1 + 2b_{e(j)} + 1 = -5$$
(4.4)

according to equations 3.6 to 3.9. In addition, unit a_c for any $c \in C$ balances the contribution of active neuron d_c to the energy when j_c is passive, that is,

$$-w(a_c, d_c) + h(d_c) + h(a_c) = -2 + 1 + 1 = 0$$
(4.5)

according to equations 3.8, 3.10, and 3.11.

4.3 One-to-One Correspondence. We show that for any optimal stripification $\Sigma \in \mathcal{S}_T$, there is one state $\mathbf{y} \in Y^*$ of \mathcal{H}_T such that $\Sigma \in [\Sigma_{\mathbf{y}}]_{\sim}$. An optimal stripification Σ' equivalent to Σ is used to determine this state \mathbf{y} so that $\Sigma' = \Sigma_{\mathbf{y}}$. In particular, for each tristrip $\sigma \in \Sigma$ that encodes triangles $T_{\sigma} = T_c$ of some sequential cycle $c \in C$, define a corresponding tristrip $\sigma' = (v_1, \ldots, v_m) \in \Sigma'$ so that $T_{\sigma'} = T_{\sigma}$ and σ' starts and terminates with the representative edge $e_c = \{v_1, v_2\} = \{v_{m-1}, v_m\}$ of c. Now we can define the state \mathbf{y} of \mathcal{H}_T as follows. For each $e \in I$, either ℓ_e or r_e is active iff there exists a tristrip $\sigma = (v_1, \ldots, v_m) \in \Sigma'$ traversing the edge $e = \{v_p, v_{p+1}\}$ for some $2 \le p \le m - 2$ counterclockwise or clockwise, respectively. In addition, for each $c \in C$, unit d_c is active iff there is an active neuron $i \in N_1$ associated with $e(i) \in B'_c$, whereas unit a_c is active iff d_c is active and j_c is passive. Clearly, \mathbf{y} is a stable state of \mathcal{H}_T . It must still be proven that \mathbf{y} can be reached during sequential computation by \mathcal{H}_T starting at the zero initial state: $\mathbf{y} \in Y^*$.

For this purpose, define a directed graph G = (C, A) whose vertices are sequential cycles and $(c_1, c_2) \in A$ is an edge of G iff $e_{c_1} \in B'_{c_2}$. Let C' be the set of all the vertices $c \in C$ with $y_{j_c} = 1$ that create directed cycles in G. For a contradiction, suppose that all the units $i \in N_1$ associated with $e(i) \in \bigcup_{c \in C'} B'_c \setminus E_{C'}$ where $E_{C'} = \{e_c \mid c \in C'\}$ are passive. Notice that for each $c \in C'$, the units $i \in N_1$ associated with $e(i) \in B_c \cap L_{e_c}$ are also passive due to j_c being active. Hence, $y_i = 0$ for all $i \in N_1$ such that $e(i) \in \bigcup_{c \in C'} B_c \setminus E_{C'}$.

Such a stable state cannot be reached during any sequential computation by \mathcal{H}_T starting at the zero initial state, which means $\mathbf{y} \notin Y^*$. This is because neuron j_{c_1} for any $c_1 \in C'$ can be activated only by the corresponding unit d_{c_1} whose activation depends solely on an active neuron j_{c_2} for another $c_2 \in C'$ within a directed cycle of G (i.e., $(c_2, c_1) \in A$), since the remaining neurons associated with the edges from $B'_{c_1} \setminus E_{C'}$, which represent the inputs for the disjunction computed by d_{c_1} , are passive. As $\Sigma_{\mathbf{y}}$ is optimal stripification, the underlying tristrips traverse the internal edges of sequential cycles from C' as much as possible, being interrupted only by edges from $\bigcup_{c \in C'} B_c \setminus E_{C'}$.

Observe that any tristrip $\sigma \in \Sigma_{\mathbf{y}}$ crossing some sequential cycle $c_1 \in C'$, that is, $\emptyset \neq T_{\sigma} \cap T_{c_1} \neq T_{\sigma}$, ends within this sequential cycle c_1 because σ enters c_1 only by traversing its boundary edge $e_{c_2} \in B'_{c_1}$ with $y_{j_{c_2}} = 1$, which is the only representative edge of a sequential cycle $c_2 \in C'$, which necessarily contains σ , that is, $T_{\sigma} \subseteq T_{c_2}$. In addition, we will prove that any sequential cycle $c \in C'$ contains at least two tristrips $\sigma_1, \sigma_2 \in \Sigma_{\mathbf{y}}$, that is, $T_{\sigma_1} \subseteq T_c$ and $T_{\sigma_2} \subseteq T_c$. Let $c_1, c_2 \in C'$ be sequential cycles such that $(c_1, c), (c, c_2) \in A$ are two consecutive edges within a directed cycle in G (possibly $c_1 = c_2$). The tristrip $\sigma \in \Sigma_{\mathbf{y}}$ that traverses the representative edge $e_{c_1} \in B'_c$ cuts the sequential cycle c ($\emptyset \neq T_{\sigma} \cap T_c \neq T_{\sigma}$) whose remaining triangles in $T_c \setminus T_{\sigma}$ could still be linked together in one tristrip $\sigma_1 \in \Sigma_{\mathbf{y}}$ so that $T_{\sigma_1} = T_c \setminus T_{\sigma}$. However, such a tristrip σ_1 enters the sequential cycle c_2 ($\emptyset \neq T_{\sigma_1} \cap T_{c_2} \neq T_{\sigma_1}$) by traversing the representative edge $e_c \in B'_{c_2}$, which implies $e_c \notin I_{c_1}$, and thus σ_1 terminates in c_2 , which cuts σ_1 in two parts. Hence, there must be at least two tristrips $\sigma_1, \sigma_2 \in \Sigma_{\mathbf{y}}$ such that $T_{\sigma_1}, T_{\sigma_2} \subseteq T_c$.

Thus, a stripification Σ_y' with fewer tristrips can be constructed from Σ_y by introducing only one tristrip $\sigma^* \in \Sigma_y'$ such that $T_{\sigma^*} = T_c$ (e.g., $y_{j_c} = 0$) instead of the two tristrips $\sigma_1, \sigma_2 \in \Sigma_y$, and by shortening any tristrip $\sigma \in \Sigma_y$ that crosses and thus ends within the sequential cycle c, to $\sigma' \in \Sigma_y'$ so that $T_{\sigma'} \cap T_c = \emptyset$, which does not increase the number of tristrips. This contradicts the assumption that Σ_y is the optimal stripification, and hence $\mathbf{y} \in Y^*$. Obviously, the class of equivalent optimal stripifications $[\Sigma_y]_\sim$ with the minimum number of tristrips corresponds uniquely to the state $\mathbf{y} \in Y^*$ having the minimum energy $\min_{\mathbf{y} \in Y^*} E(\mathbf{y})$ according to formula 4.1. This completes the proof of theorem 1.

Note that the reduction in theorem 1 together with the fact that the stripification problem is NP-complete (Estkowski et al., 2002) provides another NP-completeness proof for the minimum energy problem in Hopfield networks (cf. Barahona, 1982; Šíma & Orponen, 2003). In addition, the restriction to the zero initial network state in theorem 1 can sometimes be inconvenient, for example, in stochastic computation. Without this constraint, however, \mathcal{H}_T may reach infeasible states. In particular, an initially active unit j_c can activate d_c in spite of $y_i = 0$ for all $i \in N_1$ such that $e(i) \in B'_c$, which admits a cycled tristrip along the sequential cycle c. Nevertheless, this can be secured by introducing the asymmetric weight $w(d_c, j_c) = 7$ for

each $c \in C$ whereas $w(j_c, d_c) = 0$ (cf. equation 3.9). This revision, which is implemented in our program HTGEN and used for experiments in section 5, does not break the convergence of \mathcal{H}_T to the states $\mathbf{y} \in Y^*$.

5 Experiments _

5.1 Program HTGEN. An ANSI C program HTGEN (available online at http://www.cs.cas.cz/~sima/htgen-en.html) has been created to automate the reduction from theorem 1, including the simulation of the Hopfield network \mathcal{H}_T , using simulated annealing. The input for HTGEN is an object file (in the Wavefront .obj format)¹ describing triangulated surface model T by a list of geometric vertices with their coordinates, followed by a list of triangular faces, each composed of three vertex reference numbers. The program generates a corresponding \mathcal{H}_T , which then computes a stripification $\Sigma_{\mathbf{v}}$ of T. This is extracted from the final stable state $\mathbf{v} = \mathbf{v}^{(\tau^*)} \in Y^*$ of \mathcal{H}_T at macroscopic time τ^* into an output objf format file containing a list of tristrips together with vertex data (the .objf format is a variant of the Wavefront .obj format which includes a data type for tristrips).² The user may control the Boltzmann machine by specifying the initial temperature $T^{(0)}$ in equation 2.4 and the stopping criterion ε given as the maximum percentage of unstable units at the end of stochastic computation (the input values of ε are given in percentages, e.g., $\varepsilon = 0.1$ stands for 0.1%).

The experiments with HTGEN program were performed on a notebook HP Compaq n×6110 1.6 GHz with 512 MB RAM, running a Linux operating system. The running time, which is stated in seconds below, represents a real time exploited for overall computation including the system overhead but not including the time needed for constructing the Hopfield network \mathcal{H}_T (which did not exceed 1 second in most cases).

5.2 Used Models. We have conducted experiments with the HTGEN program using 3D geometric models represented by polygonal meshes from several repositories, mostly from the Web page of Gooch.³ The detailed characteristics of models (number of vertices, number of triangles, number of sequential cycles), together with those of corresponding Hopfield nets (number of neurons, number of connections) used in the experiments, are summarized in Table 1. In particular, we have used a suite of 13 data sets that represent a single asteroid, differing only in the level of detail corresponding to the size of the mesh (see Figure 5). The smallest data set of this suite

¹See http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/OBJ.spec for further information on the Wavefront .obj format.

²See http://www.cs.sunysb.edu/~stripe/ for further information on the .objf format. ³http://www.cs.northwestern.edu/~ago820/cs351/Models/OBJmodels/.

Table 1: C	Characteristics of	Models Used	in Ex	periments.
------------	--------------------	-------------	-------	------------

	Triar	ngulated Mes	h T	Hopfield	Network \mathcal{H}_T
Model	Number of Vertices	Number of Triangles	Number of Seq. Cycles	Number of Neurons	Number of Connections
Asteroid250	110	216	20	688	3544
Asteroid500	223	442	12	1350	5445
Asteroid1k	477	950	18	2886	11,757
Asteroid2.5k	1211	2418	30	7314	30,039
Asteroid5k	2422	4840	43	14,606	60,237
Asteroid10k	4916	9828	62	29,608	122,476
Asteroid20k	9902	19,800	89	59,578	246,971
Asteroid40k	19,814	39,624	126	119,124	494,550
Asteroid60k	29,798	59,592	155	179,086	743,981
Asteroid80k	39,782	79,560	179	239,038	993,437
Asteroid100k	49,649	99,294	200	298,282	1,239,987
Asteroid200k	99,467	198,930	284	597,358	2,484,945
Asteroid300k	149,802	299,600	349	899,498	3,742,939
Shuttle	476	616	0	1528	4490
F-16	2344	4592	9	13,794	48,643
Cessna	6763	7446	10	16,882	46,083
Lung	3121	6076	4	18,064	63,116
Triceratops	2832	5660	2	16,984	59,532
Roman	10,473	20,904	0	62,548	218,426
Bunny	34,834	69,451	1	208,132	727,951
Dragon	437,645	871,414	334	2,610,640	9,144,021

Figure 5: Asteroid1k model (950 triangles).

Figure 6: Triceratops model (5660 triangles).

consists of 216 triangles and the largest, 299,600 triangles. As for other models from the Web page of Gooch, we have conducted experiments with a space shuttle data set consisting of 616 triangles, two airplane data sets (F-16 and Cessna), and a lung data set; the sizes of these three models vary from 4592 to 7446 triangles. Furthermore, we have worked with the triceratops data set depicted in Figure 6 (5660 triangles), which is by Viewpoint Animation Engineering and available online from the Web page of Hu;⁴ with a man figure data set, Roman (20,904 triangles) from the 3D Cafe Web Site;⁵ and with a Stanford bunny data set (69,451 triangles) and a dragon data set (871,414 triangles), which are provided by Level of Detail for 3D Graphics Web Site.⁶ In some cases, we had to convert a data set into the .obj format or triangulate a polygonal mesh. For the triangulation, we used part of the source code of a software package LODestar by Sainitzer and Buchegger.⁷

5.3 Number of Trials. The resulting number of tristrips obtained using HTGEN and the corresponding running times were averaged over several trials of simulated annealing. In order to justify the results of our experiments below, we first explored how the achieved stripification quality (the best number of tristrips) depends on the number of performed trials of simulated annealing. For each of three selected models, Asteroid2.5k (2418 triangles), Asteroid10k (9828 triangles), and Roman (20,904 triangles), 15 experiments have been conducted, each for a fixed number of trials; the results are summarized in Table 2. For example, during 10 trials, the best

⁴http://www.cis.uab.edu/info/grads/hux/Data/obj.html.

⁵http://www.3dcafe.com/.

⁶http://lodbook.com/models/.

⁷Available online at http://www.cg.tuwien.ac.at/research/vr/lodestar/Download/.

	Best Nu	mber of Tristrip	s
Number of Trials	Asteroid2.5k	Asteroid10k	Roman
10	244	929	2442
20	227	929	2425
30	228	897	2410
40	221	941	2405
50	228	938	2403
60	224	905	2408
70	219	908	2392
80	223	918	2412
90	220	945	2401
100	223	939	2380
200	214	935	2364
400	219	893	2395
600	208	905	2372
800	217	895	2364
1000	211	915	2380

Table 2: Best Number of Tristrips versus Number of Trials.

numbers of tristrips, 244, 929, and 2442, respectively, were obtained for the underlying three models, while 223, 939, and 2380 were computed within 100 trials, and 211, 915, and 2380 were achieved after 1000 trials. It appears that after several trials, the stripification quality does not substantially increase with the increasing number of trials, and one can consider the results that are averaged over 10 to 30 trials to be reasonably reliable.

5.4 The Choice of Initial Temperature $T^{(0)}$ and Stopping Criterion ε . In the following experiment, we investigated the dependence of the resulting number of tristrips and the corresponding running time on both the initial temperature $T^{(0)}$ and the stopping criterion ε . The Asteroid 40k model (39,624 triangles) is used to illustrate these dependencies, and the results are averaged over 10 trials. In particular, rows and columns in Tables 3 to 6 correspond to different values of $T^{(0)}$ and ε , respectively. Here we present only a selected window of the whole picture; many more experiments have been conducted for wider domains and more detailed scales of $T^{(0)}$ and ε (Table 6 is incomplete since the time needed for computing the underlying missing values exceeded reasonable limits). Furthermore, each cell in these tables shows the average number of tristrips over 10 trials, the minimum number of tristrips achieved in the best trial, the average real running time in seconds, and the average macroscopic time, respectively, for corresponding $T^{(0)}$ and ε . It appears that for a fixed initial temperature $T^{(0)}$ (corresponding to a row in the tables), the running time increases with decreasing ε , while the quality of resulting stripifications improves at the same time. Similarly, for a fixed ε (corresponding to a column in the tables), one can achieve better

Table 3: Dependence on the Parameters of Simulated Annealing: $\varepsilon=6,7,\ldots,$ 17, $T^{(0)}=2,4,\ldots,40$, Asteroid40k (39,624 Triangles), 10 Trials.

τ ⁽⁰⁾ ε	17	16	15	14	13	12	11	10	9	8	7	6]
2	11978 11869 3.2 4.0	11951 11827 3.3 4.2	11976 11914 3.2 4.2	11952 11858 3.1 4.1	11945 11854 3.0 4.2	11951 11848 3.2 4.0	11674 11611 3.9 5.0	11659 11566 3.8 5.0	11640 11567 3.8 5.0	11632 11587 3.7 5.0	11669 11605 3.7 5.0	11672 11583 3.9 5.0	
4	11030 10995 3.8 5.0		10995 10900 4.0 5.3	11038 10928 4.0 5.3	11057 10923 4.0 5.2	10988 10913 3.7 5.3	11032	10488 10421 4.3 6.2	10487 10383 4.4 6.0	10480 10397 4.6 6.1	10455 10337 4.2 6.1	10492 10430 4.4 6.1	
6	11212 11113 3.7	11247 11108 4.1	10552 10449 4.4	10564 10460 4.6	10570 10475 4.7	10593 10528 4.5	10578 10446 4.5	9957 9892 5.0	9984 9879 5.2 7.1	9958 9869 5.3	9485 9384 5.8	9505 9460 5.5	10000
8	10880	4.9	6.1 10894 10848 4.8	10235 5.2	6.2 10347 10268 5.3 7.1	6.1 10289 10166 5.1 7.2	6.1 10024 9670 5.6	7.0 9735 9682 6.0	9755 9671 5.7	7.0 9236 9171 6.4	8.1 9245 8835 6.4	8.0 8864 8767 7.1	9000
10	6.2 10750 10639 5.3 7.2		6.3 10749 10678 5.3 7.4	10111 6.1	7.1 10206 10065 5.8 8.3	10005 9684 5.7	7.6 9675 9580 6.5 9.3	9420 9084 7.0	9266 9189 7.3	9.1 8874 8795 7.3	9.1 8535 8448 8.2	8169 8084 8.9	
12	10643		10177 10088 6.4 9.3	8.3 10266 10206 6.4 9.2	9822 9711 7.1 10.1	9764 9689 7.1 10.2	9.3 9374 9309 7.8 11.2	9.7 9045 8952 8.4 12.3	10.2 8722 8527 9.3 13.1	8425 8298 9.4 14.0	12.0 8104 7913 10.6 15.1	7623 7556 11.5 17.2	8000
14	10677 10593 6.3 9.3	10460	10341 10255 7.3 10.4	9960 9843 7.8 11.4	9606 9465 8.5 12.3	9412 9159 8.6 12.8	9121 8929 9.6 13.8	8738 8558 10.6 15.2	8438 8320 11.0 16.3	7978 7827 12.0 18.0	7569 7455 13.7 20.0	7076 6877 15.1 22.8	
16		10418	10196 10101 8.7 12.5	9836 9761 8.9 13.1	9601 9472 9.8 14.4	9236 9095 10.5 15.6	8876 8765 11.5 17.1	8423 8319 13.1 19.2	8063 7943 13.9 21.1	7659 7581 15.5 23.3	7145 7030 17.8 26.4	6520 6413 20.9 31.0	7000
18	10537 10319 8.9 12.9	10232 10109 9.1 13.8	9984 9923 10.5 15.2	9676 9598 11.0 16.3	9394 9253 12.3 18.0	9043 8873 13.2 19.7	8666 8555 14.1 21.6	8233 8105 16.6 24.5	7780 7633 17.6 27.0	7243 7118 20.7 31.2	6688 6576 23.7 35.5	6093 6012 27.5 41.7	
20	10446 10373 10.6 15.5	10188 10001 11.1 16.8	9943 9821 12.6 18.4	9615 9561 13.8 20.2	9281 9141 15.1 22.5	8837 8626 17.1 25.3	8472 8358 18.3 27.8	7969 7845 20.8 31.7	7508 7425 23.7 35.8	6984 6858 26.8 41.2	6298 6125 31.9 48.3	5706 5649 37.6 57.3	6000
22	10440 10299 12.2 18.4	10131 9950 13.6 20.3	9855 9678 15.0 22.4	9438 9337 16.7 25.2	9106 9038 18.9 28.4	8670 8575 20.7 31.8	8242 8051 23.6 36.0	7806 7698 27.0 41.5	7248 7128 31.3 47.5	6612 6398 36.5 55.1	5977 5871 42.0 64.9	5329 5167 50.1 77.9	
24	10360 10241 15.2 22.6	10036 9934 17.0 25.1	9773 9610 18.6 28.2	9398 9276 20.3 31.4	9010 8923 23.7 35.9	8607 8538 27.1 40.6	8123 7978 30.3 47.0	7598 7504 35.3 54.0	7025 6889 40.9 62.5	6382 6220 48.3 74.2	5690 5513 56.7 87.8	4961 4811 71.2 108.3	5000
26	10286 10202 18.9 27.6	10050 9973 20.2 30.7	9728 9539 23.3 35.3	9328 9166 26.7 40.6	8927 8792 30.5 46.0	8527 8435 34.7 52.9	7934 7861 40.2 61.4	7434 7316 47.1 71.4	6812 6654 54.6 83.8	6186 6056 65.1 100.2	5437 5358 77.4 120.4	4675 4579 96.3 148.3	
28	10342 10238 22.2 33.8	10017 9899 26.0 38.7	9663 9526 29.6 44.5	9307 9205 33.7 51.7	8848 8803 38.7 59.3	8402 8259 45.3 69.1	7858 7718 53.2 81.3	7285 7164 61.9 95.5	6601 6506 74.1 113.2	5914 5824 87.6 134.5	5201 5080 106.1 164.2	4370 4262 134.7 205.9	
30	10262 10150 27.7 41.8	9967 9894 31.9 49.0	9651 9516 36.9 56.0	9203 9123 43.2 66.4	8803 8652 50.0 77.1	8338 8174 58.5 90.1	7758 7683 70.3 107.2	7138 6982 82.4 127.2	6489 6348 97.9 151.6	5721 5576 120.3 184.9	4985 4882 146.9 227.0	4107 4060 184.8 287.2	
32	10258 10147 34.7 52.9	9936 9868 40.5 61.7	9576 9502 47.9 72.7	9176 9097 55.6 84.3	8750 8581 65.0 99.9	8219 8157 78.8 121.3	7708 7630 93.1 143.0	7087 6922 110.6 170.8	6366 6295 134.1 206.9	5603 5521 164.3 252.5	4752 4670 202.3 311.5	3831 3705 253.5 393.6	4000

τ ⁽⁰⁾ ε	17	16	15	14	13	12	11	10	9	8	7	6
34	10270	9922	9562	9172	8768	8219	7653	6966	6254	5404	4576	3629
01	10203	9813	9432	9065	8612	8033	7587	6847	6199	5319	4450	3517
	43.1	50.7	59.8	71.5	84.9	103.4	123.1	148.3	207.2	225.2	276.2	352.1
36	65.2 10240	76.9 9944	91.4 9533	109.3 9160	130.4 8731	158.4 8218	190.6 7589	229.8	278.4 6191	344.6	425.8	545.7 3472
30	10178	9801	9415	9084	8638	8080	7393	6898	6059	5272	4305	3386
	53.0	64.7	75.8	91.1	109.9	134.0	163.8	201.8	244.9	302.2	375.9	486.4
20	81.2	98.5	117.0	141.1	170.7	207.8	252.9	312.3	377.9	468.2	583.6	750.8
38	10249 10162	9923	9537 9414	9156 9031	8698	8176 8006	7545	6876	6110 6036	5242	4248	3303
	67.2	80.6	97.8	118.2	146.3	178.8	216.8	270.7	330.8	416.7	520.9	668.3
	103.0	124.1	150.0	183.5	225.6	278.0	340.2	418.3	513.4	646.2		1036.7
40	10194	9930	9535	9176	8670	8132	7551	6856	6033	5059	4084	3161
	10064	9820	9443	9035	8581	8053	7420	6716	5893	4833	3913	3057
	83.3 128.5	101.5 156.0	126.0 195.6	154.2 238.9	189.6 294.4	236.2 366.1	292.5 453.5	366.6 566.3	452.2 700.7	564.3 874.8	716.1 1110.7	934.4 1450.5
	100	000		90	00	8	000 70	00	60	00 500	00 400	0

Table 3: (Continued)

stripification results by increasing $T^{(0)}$ at the cost of additional running time.

In addition, contour lines connecting the cells in the tables that represent approximately the same quality of stripification are marked in the tables. In particular, each contour line separates the cells of the table into two groups. All the cells with fewer average tristrips than associated with the contour line belong to one group; the other group consists of the cells whose average number of tristrips is greater than or equal to this number. We can observe from the shape of these contour lines that a required number of tristrips need not be achieved at all for ε greater than some upper threshold, while this number is obtained for some small $T^{(0)}$ if ε is below some lower threshold. The transition between these two extremes seems to be continuous, while smaller initial temperatures $T^{(0)}$ are sufficient for smaller ε . The shortest running time is usually achieved within this transition region closer to the lower threshold of ε , where the contour line stagnates at some level of $T^{(0)}$ (see the cells with numbers in boldface; for each contour line, only one minimum with the greatest ε is marked, although the minimum time measured with precision in seconds is actually achieved in more cases). Hence, ε can be chosen to be not much above the lower threshold where the contour line corresponding to the minimum number of tristrips saturates and the quality of stripifications scales with $T^{(0)}$ (see the column corresponding to $\varepsilon = 1$ in Table 4). Based on these observations, suitable values for ε and $T^{(0)}$ can be chosen empirically so that HTGEN achieves semioptimal stripifications within a reasonable running time.

5.5 The Average Time Complexity. We have also measured empirically how the computational time used by HTGEN depends on the model size, that is, the number of triangles. For various fixed values of

Table 4: Dependence on the Parameters of Simulated Annealing: $\varepsilon=1,1.5,\ldots,6,\ T^{(0)}=1.5,3,\ldots,30$, Asteroid40k (39,624 Triangles), 10 Trials.

	$T^{(0)}$	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	
	1.5	12076 11980	12070	12095	12110	12126	12082 12011 3.8 5.0	12108 11991 3.9 5.0	12094	12058	12055	12033 11955	
		3.8 5.0	12014 3.8 5.0	12029 3.6 5.0	3.7	12077 3.4 5.0	3.8	3.9	3.8	4.4	4.5	4.4	
	3	10774	10780	10809	10789	10750	10740	10518	10519	10534	10330	10254	
		$ 10610 \\ 4.4$	4.6	4.3	4.5	10590 4.7	5.0	10399 5.3 7.0	10406 5.0 7.0	10422 5.1 7.0	10190 5.7 8.0	10185 6.2 9.0	
10000	4.5	6.0 9964	6.0 9991	6.0	6.0 9981	9639	6.2 9635	7.0 9390	7.0 9377		8.0	9.0 8598	10000 9000
	1.0	9849 5.0	9925 5.3	9972 9895 5.0	9924	9591 5.5	9584 5.9	9289	9230 6.5	9154 9058 7.3	8941 7.7	8513 9.4	5000
		7.0	7.1	7.0	5.2 7.0	8.0	8.2	9.0	9.2	10.0	11.1	13.9	
	6	9483 9396	9515 9388	9117 9042	9126 9063	8944 8722	8831 8760	8556 8454	8328 8171	8161 8045	7814 7703	7404 7313	8000
		5.5 8.0	5.9 8.1	6.4 9.0	6.7 9.0	6.8 9.5	6.8 10.0	7.8 11.0	8.3 12.0	8.9 13.1	10.4 15.3	13.2 19.8	
9000	7.5	8833	8824	8682 8413	8517 8398	8231 8170	8006	7786	7605 7381	7274 7221	6855 6812	6428	7000
		8761 7.0	8693 6.8	7.0	8.0	8.1	7922 9.0	7694	10.3	11.5	14.2	6278 18.4	
	9	10.1 8373	10.1 8332	10.5 8060	11.1 7874	12.0 7682	13.0 7440	7173 7072	15.0 6893	17.1 6510	6096	27.1 5593	6000
		8251 8.4	8178 8.5	7990 8.8	7721 9.6	7682 7547 9.9	7276 10.8	7072 11.6	6826 13.0	6412 15.0	5996 18.6	5593 5510 25.0	
	10 E	11.9	12.0	13.0	13.9	14.8	16.0	17.5	19.4	22.7	27.9	38.0	F000
	10.5	8041 7931	7772 7627	7546 7409	7364 7310	7124 7035	6867	6592 6523	6229 6111	5838 5712	5377 5308	4849 4788	5000
		9.3 14.0	10.4 15.2	10.8 16.1	11.7 17.0	12.1 18.4	13.8 19.8	15.0 22.1	16.5 25.2	19.4 30.0	24.9 38.0	35.0 53.4	
8000	12	7631 7513	7408 7290	7084 6892	6859	6582 6433	6272 6202	5932	5605 5512	5236 5098	4784 4657	4255 4171	
		7513 11.4 17.1	7290 12.3 18.3	6892 13.2 19.9	6698 14.7 21.3	6433 15.5 23.1	6202 17.9 26.1	19.1 29.1	22.4 33.6	26.3 40.3	33.8 51.3	4171 48.2 74.7	
	13.5	7240	6939	6694	6372	6102	5794	5399	5030	4678	4234	3726	4000
		7170 14.3	6766	6585 16.0	6274 17.9	6004 19.7	5679 21.6	5314 24.8	4917 29.1	4561 35.1	4176 46.0	3647 69.5	
7000	15	21.0 6806	22.9 6551	24.6 6228	26.7 5954	29.8 5616	32.7 5247	37.9 4934	44.6 4551	53.8 4144	71.0 3714	106.5 3179	
		6571 17.9	6387 18.7	6125 21.0	5856 22.9	5464 24.7	5164 28.8	4813 33.0	4494 39.3	$\frac{4064}{48.4}$	3605 64.8	3093 99.5	
	16.5	26.6	28.5	31.5	34.2 5517	38.0	42.9	49.9 4424	58.9 4084	74.1	100.1 3226	155.1	2000
	16.5	6288	5987	5697	5452	5166 5049	4599	4376	4007	3652 3514	3105	2778 2690	3000
		6288 22.1 33.4	24.5 36.1	25.9 39.9	5452 28.5 43.5	32.2 49.3	36.8 56.8	42.6 65.5	51.2 79.3	65.5 100.6	91.8 141.2	142.9 222.3	
	18	6096 6011	5815 5723	5455 5403	5123 5000	4803 4715	4426 4337	4029 3925	3658 3549	3274 3215	2854 2774	2363 2281	
		27.8 41.7	30.1 45.6	33.0 50.4	36.8 56.5	41.8 63.7	48.4 73.3	56.6 86.8	68.5 106.2	89.5 136.7	124.7 192.6	206.3 320.6	
6000	19.5	5754	5404	5084	4775	4365	4028	3637	3268	2835	2449	2050	
		5656 35.0 53.3	5328 38.1	4958 42.5	4684	4255 53.9	3921 62.4 95.6	3518 75.0	3195 91.7	2759 123.2	2364 177.8	1956 301.1	
	21	5477	58.6 5095	64.9	73.6 4431	82.9 4008		115.3 3279	141.5 2893	188.6 2530	275.3 2129	467.9 1790	2000
		5267 43.7	4985 48.0	4692 54.6	4331 61.5	3813 70.5	3642 3483 82.4	3279 3236 100.6	2893 2796 125.2	2530 2480 167.6	2129 2072 251.5	1753 442.2	
	22.5	66.9 5194	74.3	83.0 4483	93.6	108.2	127.0 3329	154.7	125.2 193.7 2616	259.4 2215	387.8	686.0 1502	
	22.3	5018 55.4	4728 62.9	4355	3932 78.8	3596	3178 109.0	2888	2512 170.4	2163 232.8	1772 354.9	1404	
		55.4 84.5	95.9	67.9 105.6	121.8	91.2 140.2	167.2	132.0 204.5	263.2	232.8 359.6		657.5 1018.5	

	τ ⁽⁰⁾ ε	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	
	24	5008 4920 70.0 108.0	4565 4492 79.2 121.8	4201 4111 88.0 136.5	3781 3596 100.4 155.6	3382 3295 117.8 183.5	3049 2951 140.9 219.4	2687 2627 175.3 272.0	2308 2223 229.9 355.7	1965 1882 319.7 497.2	1668 1609 506.7 783.4	1304 1237 963.1 1495.9	
5000	25.5	4699 4526 89.9 137.8	4270 4193 99.4 153.2	3962 3904 112.8 175.4	3533 3484 130.7 202.0	3119 3022 153.4 236.6	2758 2681 184.4 286.1	2419 2359 233.0 362.9	2078 1990 313.4 484.2	1752 1682 442.0 686.6	1427 1340 710.1 1102.3	1112 1073 1397.4 2175.0	
	27	4480 4382 113.1 175.1	4087 4020 129.3 198.9	3695 3538 147.0 227.3	3321 3118 170.0 262.8	2914 2845 199.2 308.1	2477 2392 247.1 382.4	2138 2049 313.0 485.8	1854 1729 428.0 663.9	1560 1425 621.8 963.5	1248 1210 1017.7 1580.4	978 931 2086.0 3243.8	1000
	28.5	4252 4071 145.5 224.4	3853 3738 163.9 252.5	3462 3345 186.8 288.3	3084 3035 218.8 341.3	2658 2523 265.3 410.8	2297 2207 323.5 502.2	1994 1882 414.0 645.9	1634 1545 574.6 893.8	1376 1296 859.8 1337.5	1083 976 1465.3 2273.7	807 710 3120.6 4825.9	
	30	4118 3986 183.0 282.9	3676 3555 209.0 323.2	3272 3144 241.5 372.1	2835 2683 287.0 444.0	2488 2375 343.4 535.1	2099 1971 429.1 666.4	1756 1657 564.4 876.2	1478 1376 784.9 1219.6	1227 1112 1212.6 1882.5	966 893 2108.2 3264.3	702 590 4593.4 7143.1	
		40	00	30	00		20	00		10	00		

Table 4: (Continued)

initial temperature $T^{(0)}$ and stopping criterion ε , the Boltzmann machine converged within almost a constant number of macroscopic time steps for the asteroid model meshes whose sizes were scaled from 216 up to 198,930 triangles (except for some minor fluctuations for small meshes). This is illustrated in Tables 7, 8, and 9, where the results are presented for $T^{(0)}=5$, $\varepsilon=0.1$, $T^{(0)}=9$, $\varepsilon=0.3$, and $T^{(0)}=13$, $\varepsilon=0.5$, respectively. These experiments provide evidence for the average linear time complexity of HTGEN since by construction, the execution of one macroscopic step depends linearly on the number of triangles in the model (see the end of section 3 for the proof). When this empirical time complexity is

⁸In contrast to this mathematically proved fact, the actual average computational time in seconds presented in the next-to-the-last column of Tables 7, 8, and 9 does not create a clear straight line on the whole domain of mesh size, and the linear dependency can be observed only for the mesh size between 19,800 triangles (Asteroid20k) and 99,294 triangles (Asteroid100k). The reason for this discrepancy seems to be caused by the fact that the practical implementation running on the computer is influenced by the cache memory overhead, which drastically slows the computation for huge models. This effect can be partially weakened by using a higher-performance computer (e.g., with a larger RAM capacity), as it is also illustrated in these tables where the average computational time in seconds achieved alternatively with 2.2 GHz processor having 2 GB RAM is presented in parentheses, improving the empirical linear time dependency also for a larger mesh size of the Asteroid200k model. In addition, the actual number of sequential cycles may not increase exactly linearly with the mesh size (see Table 1) since we know only that it is bounded by a linear function. Nevertheless, our statement concerning the empirical linear time complexity relies on the measurements of average macroscopic time, which does not depend on the implementation or a particular number of sequential cycles.

Table 5: Dependence on the Parameters of Simulated Annealing: $\varepsilon=0.2,0.3,\ldots,1,\ T^{(0)}=1,2,\ldots,20$, Asteroid40k (39,624 Triangles), 10 Trials.

	τ ⁽⁰⁾ ε	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	
	1	12568 12476	12550 12486 3.9	12567 12477 3.9	12578 12496	12571 12486 3.7	12566 12439	12527 12381	12561 12458	12529 12476	
		4.0 4.9	5.0	5.0	4.0 5.0	4.9	4.2 5.6	4.0 5.2	12458 3.9 5.5	4.1 5.3	
	2	11460 11396	11436 11354	11463 11356	11439 11333	11450 11400	11424 11354	11398 11273	11354 11243	11366 11197	
		5.0 7.0	4.8 7.0	4.7 7.0	5.1 7.0	4.9 7.0	5.8 8.0	5.7 8.0	6.1 8.6	6.8 9.3	
	3	10232 10168	10249 10175	10161 10033	10179 10103	10132 10031	10090 9996	9984 9924	9886 9766	9852 9733	10000
		6.4 9.0	6.3 9.1	6.7 9.9	6.9 10.0	7.5 10.8	7.9 11.3	8.4 12.3	9.5 14.2	11.2 16.6	
10000	4	9101 9023	9095 9014	8975 8869	8947 8810	8860 8814	8752 8630	8644 8578 13.0	8562 8449	8435 8361	9000
		8.5 12.0	8.7 12.7	9.2 13.6	9.8 14.3	10.3 15.2	11.4 16.8	19.2	14.7 22.0	17.8 27.5	
9000	5	8157 8018	8111 8016	8005 7933	7907 7862	7780 7659	7678 7543	7525 7433	7328 7248	7166 7014	8000
		10.4 15.7	$\frac{11.4}{16.7}$	12.0 17.7	13.0 19.0	13.7 21.0	15.2 23.2	17.8 27.0	21.3 32.8	27.6 42.6	
8000	6	7392 7285	7239 7142	7127 7014	7070 7018	6912 6834	6774 6668	6654 6570	6427 6373	6132 6029	7000
		13.0 19.6	14.9 21.6	15.1	16.5 24.6	18.8	19.9 30.7	24.3 37.4	30.1 46.1	41.5 63.6	
7000	7	6720	6598	6489	6288	6230	6056	5847	5639	5373	6000
		6583 16.3	6507 17.7	6391 19.8	6144 21.2	6158 23.6	5904 26.7	5760 32.7	5584 41.1	5304 58.1	
	8	24.5 6088	26.6 6026	29.1 5872	32.3 5759	35.5 5583	41.0 5426	49.9 5236	62.9 4997	89.5 4696	5000
		5992 20.6	5905 21.7	5872 5822 24.3	5687 25.8	5515 30.2	5322 35.5	5110 42.0	4891 55.1	4563 82.3	
6000		31.0	33.4	36.2	40.0	45.6	54.0	64.9	85.1	127.8	
6000	9	5594 5521	5511 5448	5385 5317	5230 5172	5039 4968	4870 4810	4691 4567	4435 4373	4158 4071	
		25.8 38.2	26.7 41.1	29.8 45.6	33.5 50.9	38.2 58.9	46.4 71.2	55.5 85.7	73.9 114.8	107.9 167.5	
	10	5122 5083	4976 4888	4856 4720	4724 4619	4553 4436	4383 4276	4185 4117	3972 3890	3661 3564	4000
		31.4 47.5	33.1 51.1	4720 38.1 57.6	42.6 65.8	50.0 76.7	4276 57.0 88.6	73.6 114.2	96.8 150.7	149.5 234.1	
5000	11	4661 4580	4572 4497	4431 4382	4269 4203	4118 4046	3942 3856	3787 3683	3514 3423	3225 3161	
		38.4 59.1	41.9 64.8	47.8 74.1	53.4 82.3	63.6 98.7	76.4 117.5	95.4 147.8	131.1 204.2	203.9 320.7	
	12	4253	4113	4023	3897	3720	3548	3356	3131	2809	3000
		$\frac{4151}{48.1}$	4021 54.7	3915 59.5	3821 69.2	3662 81.5	3410 95.3	3270 124.9	3029 172.4	2749 278.6	
4000	13	74.4 3859	84.6 3758	92.7 3608	106.8 3480	125.3 3361	148.8 3191	194.4	269.4 2772	434.8 2523	
		3737 62.2	3641 66.7	3464	3373 90.1	3281 105.4	3116 125.6	2895 165.3	2647 231.9	2442 379.0	
	1.4	95.9	104.0	77.2	139.1	164.0	195.7	256.4	361.1	594.4	
	14	3529 3470	3414 3289	3289 3228 99.5	3161 3040	3010 2906	2856 2778	2659 2577 219.7	2465 2346	2211 2119	
		77.4 120.3	85.4 132.9	153.8	116.5 179.5	136.2 210.6	167.2 259.7	340.1	308.7 480.3	496.6 777.3	
	15	3175 3099	3104 3055	2965 2916	2842 2759	2717 2636	2562 2482	2403 2343	2213 2102	1967 1890	2000
3000		100.4 155.2	111.9 172.9	126.3 196.6	147.3 229.3	178.2 277.1	222.4 345.8	290.6 452.0	407.7 635.2	681.7 1066.1	

	$T^{(0)}$ ε	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	
	16	2884 2806 126.5 196.4	2822 2769 142.3 222.3	2650 2554 164.4 254.4	2537 2496 191.3 296.9	2402 2340 231.1 361.2	2287 2182 291.8 453.8	2119 2032 375.0 585.8	1954 1837 558.0 867.1	1732 1651 938.0 1465.0	
	17	2631 2530 161.8 252.1	2549 2435 183.4 283.5	2412 2365 213.5 331.3	2298 2184 254.8 397.2	2153 2085 301.5 469.8	2036 1932 382.4 595.4	1912 1837 523.3 812.9	1736 1666 761.2 1182.9	1524 1473 1284.8 1996.9	
	18	2404 2336 210.6 326.6	2277 2202 239.8 370.8	2186 2051 274.8 427.8	2070 2002 326.9 508.8	1940 1841 401.3 627.2	1832 1696 510.7 793.4	1698 1619 704.3 1100.6	1494 1396 1013.8 1582.7	1318 1205 1737.6 2719.1	
	19	2140 2050 262.5 408.3	2061 1974 309.2 480.8	1949 1872 362.3 561.5	1866 1770 427.1 664.0	1786 1716 537.3 834.5	1662 1574 689.8 1074.7	1484 1418 944.3 1470.0	1323 1227 1402.6 2189.2	1166 1023 2485.5 3888.9	
2000	20	1938 1845 343.7 533.5	1846 1795 394.4 614.9	1764 1655 470.4 731.5	1648 1569 575.2 890.9	1565 1460 694.5 1083.3	1448 1358 918.5 1434.3	1337 1278 1235.9 1932.5	1197 1115 1930.7 2997.4		1000
									10	00	

Table 5: (Continued)

confronted with the fact that the stripification problem is NP-complete in general (Estkowski et al., 2002), this suggests that there must be a rigorous, efficient approximation algorithm for this problem.

5.6 Comparing with FTSG. Program HTGEN has been compared against a leading practical system FTSG version 1.31 (Estkowski et al., 2002; Xiang et al., 1999) that computes online stripifications. Program FTSG is considered to be a reference stripification method not based on neural nets that is widely used in comparisons for evaluating newly proposed stripification algorithms (Vaněček & Kolingerová, 2007). Experiments have been conducted using six models (Shuttle, F-16, Triceratops, Lung, Cessna, Bunny) whose sizes vary from 616 to 69,451 triangles. In each experiment, program HTGEN performed 30 trials, sufficient to obtain reasonable results (see section 5.3), and the best solution has been chosen (in any case the best and average results, e.g., in Tables 3 to 9, do not differ drastically). Suitable parameters ε and $T^{(0)}$ of HTGEN were chosen for each model separately using the heuristics proposed in section 5.4 so that the resulting stripifications consist of as few tristrips as possible at the cost of a reasonable amount of time. Also, FTSG was run with its best options (the best combination of four relevant options, -bfs, -dfs, -alt, and -sgi, in addition to two implicitly used options, -opt and -sync; see Xiang et al., 1999, for a description of these options), which led to the least number of tristrips in the resulting stripification. The results of these experiments are summarized in Table 10, which shows that

Table 6: Dependence on the Parameters of Simulated Annealing: $\varepsilon=0.02$, $0.04,\ldots,0.2,\ T^{(0)}=1,2,\ldots,20$, Asteroid40k (39,624 Triangles), 10 Trials.

	τ ⁽⁰⁾ ε	0.2	0.18	0.16	0.14	0.12	0.1	0.08	0.06	0.04	0.02	
	1	12558 12487	12582 12531	12501 12434	12549 12486	12555	12544 12475	12559 12517	12555 12386	12547 12419	12569 12497	
		3.6 5.2	4.1 5.4	3.8 5.1	4.0 5.2	12506 3.9 5.2	3.7 5.2	4.2 5.8	4.5 6.0	4.2 6.2	4.4 5.9	
	2	11337 11279	11329 11265	11278 11197	11358 11264	11312 11167	11328 11223	11312 11206	11305 11234	11305 11196	11267 11186	
		6.6	6.7 9.4	6.9 9.9	6.9 9.9	7.3 10.9	7.4 11.1	8.2 11.7	8.6 12.8	9.5 14.0	11.1 16.5	
10000	3	9842 9736	9824 9732	9809 9749	9839 9684	9770 9713	9747 9614	9721 9633	9681 9605	9685 9601	9631 9528	10000
		11.2 16.7	12.0 17.5	12.2 18.0	12.9 19.3	13.6	15.0 22.2	15.8 23.6	18.1 27.1	22.5 34.0	29.1 44.4	9000
9000	4	8369	8372	8334	8308	8263	8247	8155	8097	8003	7920	8000
		8255 18.4 27.9	8256 19.1 29.1	8245 20.8 31.7	8211 21.9 33.3	8183 24.4	8172 26.3 40.7	8079 30.4	7982 36.1	7869 45.0 70.4	7805 70.1	
8000	5	7146	7128	7029	7006	36.6 6914	6879	47.1 6804	56.3 6678	6561	108.8	7000
		7052	7048 29.5	6951 33.1	6945 35.3	6826 40.3	6804 45.5	6686 53.1	6608	6466 88.3	6299 146.0	
7000	6	42.9 6191	45.7 6110	51.2 6033	54.2 5971	62.4 5903	70.0 5772	82.4 5718	102.5 5590	136.4 5430	230.1 5243	6000
		6104 40.3	6021 44.2	5960 50.4	5908 54.1	5853 60.5	5662 72.8	5632 86.6	5526 111.9	5260 157.0	5126 277.2	
6000	7	61.7 5351	69.1 5275	77.2 5226	5150	94.2 5068	113.3 4968	135.5	175.5 4738	243.8 4527	434.3 4279	5000
0000		5267 58.5	5275 5227 62.4	5226 5191 71.4	5074 80.7	4999 92.4	4860 109.7	4824 4758 135.5	4667 178.4	4468 259.5	4189 479.3	5000
5000	8	90.6	97.4 4623	111.4 4525	123.5 4445	143.3 4388	170.2 4258	210.2 4137	279.3 3987	406.6 3758	752.6 3496	4000
3000	0	4575 81.3	4518 88.3	4456 103.5	4365 119.3	4300 137.1	4224 165.0	4059 210.5	3922 275.9	3641 427.3	3428 878.1	4000
		127.6	137.4	159.6	184.6	214.6	258.7	328.0	432.0	674.8	1384.1	2000
	9	4160 4060	4046 3995	3964	3906 3827	3804 3724	3675 3616	3553 3447	3391 3316	3192 3088	2859 2745	3000
		109.7 171.4	123.1 193.0	138.5 216.6	158.8 251.1	192.6 300.5	230.6 362.2	297.1 467.7	431.9 679.7	672.0 1056.3	1550.0 2436.4	
4000	10	3652 3598	3563 3370	3520 3436	3413 3333 222.2	3295 3241 273.3	3138 3018	3022 2909	2878 2831	2644 2595	2346 2238 2232.6	
		150.0 233.5	169.8 266.4	192.4 300.0	222.2 347.0	273.3 428.1	326.1 509.5	440.6 692.7	619.6 972.8	1008.5 1586.7	2232.6 3497.2	
	11	3196 3054	3154 3063	3042 2965	2986 2909	2920 2839	2753 2695	2648 2576	2463 2368	2242 2126	1920 1811	2000
		203.2	229.5 359.3	2965 272.2 425.5	315.3 495.9	2839 373.5 583.9	471.8 740.8	2576 598.6 939.7	875.9 1377.5	1614.2 2531.2	3909.0 6146.2	
3000	12	2848 2768	2797 2714	2711 2628	2630 2546	2511 2444	2392 2320	2270 2189	2133 2053	1906 1817	1627 1490	
		284.9 446.5	316.3 494.6	356.0 558.6	426.3 669.2	502.7 793.4	633.7 997.4	875.1 1375.2	1206.2 1892.2	2233.5 3513.7	5894.7	
	13	2508 2458	2476 2318	2377 2305	2306 2216	2204 2111	2095 1978	2005 1884	1818 1746	1653 1533		
		363.1 568.6	428.4 670.6	475.0 746.0	574.3 900.5	701.5 1100.2	900.2 1414.0	1181.7 1858.5	1785.3 2808.2	3143.7 4951 9		
	14	2224 2125	2129 2057	2052 1959	2014 1900	1903 1812	1813 1760	1698 1559	1571 1407	2701.7	ı	
		508.9 796.3	568.7 892.5	658.7 1031.5	770.5 1208.5	992.0 1560.0	1246.7 1955 9	1654.5 2599.5	2560.0 4018.8			
2000	15	1942	1880	1795	1759	1701	1610	1492	2010.0	ı		
		1842 678.6	1821 779.0	1740 930.0	1684 1085.9	1633 1329.6	1513 1679.7 2642.2	1397 2480.6				
	\sqcup	1063.1	1220.9	1458.9	1/03.3	∠∪05.0	2042.2	3898.3	l			

$T^{(0)}$ ε	0.2	0.18	0.16	0.14	0.12	0.1	0.08	0.06	0.04	0.02
16	1701 1659 930.2	1708 1656 1045.6	1594 1552 1287.1	1563 1458 1542.6	1460 1361 1887.2	1420 1368 2432.7				
17	1451.0 1515 1445 1279.2 2003.5	1635.2 1469 1334 1467.9 2297.9	2018.8 1400 1321 1769.2 2780.7	2415.6 1347 1279 2174.9 3406.4	2956.0 1291 1231 2722.9 4272.5	3816.0				
18	1334 1257 1706.1 2660.1	1270 1165 2025.1 3169.4	1241 1170 2454.7 3846.4	1162 1026 2892.3 4542.7	12, 210	1				
19	1167 1115 2435.7 3809.2	1130 1090 2865.3 4479.7	1070 898 3481.5 5451.9		•					
20	1006 901 3424.2 5339.0	971 919 3944.2 6172.4	1000	•						

Table 6: (Continued)

one can achieve much better results by HTGEN than by using FTSG with its most successful options (typically -dfs, -alt; Xiang et al., 1999), although the running time of HTGEN (averaged over the 30 trials to keep this table consistent with the previous ones) grows rapidly when the global optimum is being approached. Moreover, for the F-16 and Triceratops models, the stripification results obtained by HTGEN and FTSG are graphically depicted in Figures 7, 8, and 9, 10, respectively, where the superiority of HTGEN over FTSG in the average length of tristrips is clearly visible. As concerns the time complexity, system HTGEN cannot compete with real-time program FTSG providing the stripifications within a few tens of milliseconds. Nevertheless, HTGEN can be useful if one is interested in the stripification with a small number of tristrips that may be computed at the preprocessing stage.

5.7 Huge Models. In the last experiment whose results are presented in Table 11, program HTGEN has been tested on huge models (Asteroid300k, Dragon) with hundreds of thousands of triangles, for which only three trials were performed for $\varepsilon=0.3$ and $T^{(0)}=10$. It appears that the stripifications better than those obtained using FTSG with its optimal options (e.g. 133,072 tristrips within 7 seconds for the Dragon model) were still achieved in a doable time frame.

Table 7: Empirical Average Time Complexity: 100 Trials, $\varepsilon = 0.1, T^{(0)} = 5$.

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Co Time in S Higher-Pe Comp	verage Computational Time in Seconds (on Higher-Performance Computer) ^a	Average Macroscopic Time
Asteroid250	216	31	39	6.97	0.06	(0.04)	79.98
Asteroid300 Asteroid1k	447 950	6/ 151	82 171	6.60 6.29	0.06 0.22	(0.06)	43.14 59.69
Asteroid2.5k	2418	397	429	60.9	0.76	(0.52)	62.67
Asteroid5k	4840	808	853	5.99	2.03	(1.47)	67.43
Asteroid10k	9828	1633	1711	6.02	5.45	(3.89)	68.17
Asteroid20k	19,800	3342	3435	5.92	15.32	(10.69)	70.26
Asteroid40k	39,624	6720	8989	5.90	45.51	(25.81)	70.41
Asteroid60k	59,592	10,090	10,327	5.91	84.39	(47.61)	69.51
Asteroid80k	79,560	13,525	13,757	5.88	132.88	(74.34)	70.35
Asteroid100k	99,294	16,995	17,176	5.84	184.62	(104.49)	70.07
Asteroid200k	198,930	34,109	34,400	5.83	520.39	(293.51)	70.25

^aSee note 8.

Table 8: Empirical Average Time Complexity: 80 Trials, $\varepsilon=0.3, T^{(0)}=9.$

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Computat Time in Seconds (Higher-Performa Computer) ^a	rerage Computational IIme in Seconds (on Higher-Performance Computer) ^a	Average Macroscopic Time
Asteroid250	216	18	27 58	12.00	0.11	(0.08)	159.35
Asteroid1k	950	98	114	11.05	0.40	(0.26)	106.62
Asteroid2.5k	2418	255	280	9.48	1.38	(86.0)	113.84
Asteroid5k	4840	518	556	9.34	3.51	(2.39)	116.59
Asteroid10k	9828	1052	1114	9.34	9.20	(6.26)	114.76
Asteroid20k	19,800	2148	2237	9.22	24.82	(17.29)	114.45
Asteroid40k	39,624	4347	4451	9.12	73.09	(40.46)	113.53
Asteroid60k	59,592	6550	0699	9.10	136.74	(75.91)	112.86
Asteroid80k	79,560	8650	8688	9.20	212.34	(118.80)	113.06
Asteroid100k	99,294	10,884	11,110	9.12	296.31	(167.10)	112.94
Asteroid200k	198,930	21,994	22,257	9.04	818.58	(465.71)	111.65

^aSee note 8.

Table 9: Empirical Average Time Complexity: 50 Trials, $\varepsilon=0.5,\,T^{(0)}=13.$

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Cc Time in S Higher-Pt Comp	verage Computational Time in Seconds (on Higher-Performance Computer) ^a	Average Macroscopic Time
Asteroid250	216	12	21	18.00	0.28	(0.20)	392.76
Asteroid500	442	26	43	17.00	0.28	(0.18)	180.60
Asteroid1k	950	72	88	13.19	0.72	(0.48)	191.00
Asteroid2.5k	2418	188	208	12.86	2.38	(1.66)	199.72
Asteroid5k	4840	355	405	13.63	6.04	(4.36)	199.76
Asteroid10k	8888	762	808	12.90	16.18	(11.16)	200.94
Asteroid20k	19,800	1535	1605	12.90	44.86	(30.24)	204.48
Asteroid40k	39,624	3047	3204	13.00	127.64	(72.44)	197.92
Asteroid60k	59,592	4653	4784	12.81	239.30	(132.98)	198.16
Asteroid80k	79,560	6217	6365	12.80	370.70	(206.38)	197.16
Asteroid100k	99,294	7802	2962	12.73	517.62	(286.70)	197.08
Asteroid200k	198,930	15,595	15,923	12.76	1424.80	(816.38)	194.98

^aSee note 8.

Table 10: Comparing HTGEN Against FTSG.

FTSG	Number of Tristrips	145 478 960 857 1459 6191
	Options	-dfs -alt -dfs -alt -bfs -dfs -alt -dfs -alt
	Average Macroscopic Time	1588.67 7192.13 7915.13 10,940.00 6712.93 2748.20
HTGEN (30 Trials)	Average Computational Time (s)	2.70 197.57 286.33 428.03 241.17 4129.93
HTGEN	Best Number of Tristrips	95 312 557 613 1249 4404
	$T^{(0)}$	17 26 20 19 19
	ઙ	0.12 0.6 0.2 0.14 0.5 0.7
	Number of Triangles	616 4592 5660 6076 7446 69,451
	Model	Shuttle F-16 Triceratops Lung Cessna Bunny

Figure 7: Program: HTGEN, model: F-16, number of tristrips: 312.

Figure 8: Program: FTSG, model: F-16, number of tristrips: 478.

Figure 9: Program: HTGEN, model: Triceratops, number of tristrips: 557.

Figure 10: Program: FTSG, model: Triceratops, number of tristrips: 960.

Model	Number of Triangles	Best Number of Tristrips	Average Computational Time	Average Macroscopic Time	Memory Usage
Asteroid300k	299,600	29,702	32 min, 56 s	147.33	139 MB
Dragon	871,414	130,106	4 h, 25 min, 50 s	235.00	390 MB

Table 11: Huge Models: Three Trials, $\varepsilon = 0.3$, $T^{(0)} = 10$.

6 Conclusion _

We have proposed a new heuristic method for generating sequential triangle strips for a given triangulated surface model, which represents an important hard (NP-complete) problem in computer graphics and visualization. In particular, we have reduced this stripification problem to the minimum energy problem in Hopfield networks and formally proven that there is a one-to-one correspondence between the optimal stripification representatives and the minimum energy states reachable by the Hopfield net from the initial zero state. This result is important not only from a theoretical point of view, providing an interesting relation between two combinatorial problems of different types, but the method is also practically applicable since the construction of the Hopfield net uses only a linear number of units and connections.

Thus, we have implemented the reduction in our program HTGEN (including the simulated annealing) for computing the semioptimal stripifications. We have conducted plenty of practical experiments that confirmed that HTGEN can generate smaller numbers of tristrips than those obtained by the leading conventional stripification program FTSG (a reference stripification method not based on neural nets), although the HTGEN running time grows rapidly near the global optimum. Particularly, HTGEN cannot compete with the real-time program FTSG, which provides the stripifications within a few milliseconds. Nevertheless, HTGEN can be used to generate almost optimal stripifications when one is satisfied by offline solutions at the preprocessing stage. In addition, HTGEN exhibits empirical linear time complexity for fixed parameters of simulated annealing, and the stripifications were computed using HTGEN even for huge models of hundreds of thousands of triangles in a reasonable time frame. This suggests that a rigorous approximation algorithm with a high-performance guarantee might exist for the stripification problem whose design represents an important open problem. Another challenge for future research is to generalize the method for sequential strips with zero-area triangles, which are also supported in practical graphics systems, or for nontriangular meshes.

Acknowledgments _

We thank Joseph S. B. Mitchell for providing us the FTSG program for testing purposes. The presentation of this letter benefited from the valuable comments of anonymous reviewers. JŠ's research was partially supported by Information Society project 1ET100300517 and Institutional Research Plan AV0Z10300504. RL's work was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic through project 1M0572.

References _

- Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. *Cognitive Science*, 9(1), 147–169.
- Barahona, F. (1982). On the computational complexity of Ising spin glass models. *Journal of Physics A: Mathematical and General*, 15(10), 3241–3253.
- Cichocki, A., & Unbehauen, R. (1993). *Neural networks for optimization and signal processing*. Chichester: Wiley.
- Estkowski, R., Mitchell, J. S. B., & Xiang, X. (2002). Optimal decomposition of polygonal models into triangle strips. In *Proceedings of the 18th Annual Symposium on Computational Geometry (SCG 2002)* (pp. 254–263). New York: ACM Press.
- Farhat, N. H., Psaltis, D., Prata, A., & Paek, E. (1985). Optical implementation of the Hopfield model. *Applied Optics*, 24(10), 1469–1475.
- Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the National Academy of Sciences USA*, 79, 2554–2558.
- Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. *Proceedings of the National Academy of Sciences USA*, 81, 3088–3092.
- Hopfield, J. J., & Tank, D. W. (1985). "Neural" computation of decisions in optimization problems. *Biological Cybernetics*, 52(3), 141–152.
- Parberry, I. (1994). *Circuit complexity and neural networks*. Cambridge, MA: MIT Press. Pospíšil, D., & Zbořil, F. (2004). Building triangle strips using Hopfield neural net-
- work. In *Proceedings of the 6th International Scientific Conference on Electronic Computers and Informatics (ECI 2004)* (pp. 394–398). Košice, Slovakia: University of Technology.
- Šíma, J. (2005a). Generating sequential triangle strips by using Hopfield nets. In *Proceedings of the 7th International Conference on Adaptive and Natural Computing Algorithms (ICANNGA'2005)* (pp. 25–28). Berlin: Springer-Verlag.
- Šíma, J. (2005b). Optimal triangle stripifications as minimum energy states in Hopfield nets. In *Proceedings of the 15th International Conference on Artificial Neural Networks (ICANN'2005)*, LNCS 3696 (pp. 199–204). Berlin: Springer-Verlag.
- Šíma, J., & Orponen, P. (2003). General-purpose computation with neural networks: A survey of complexity theoretic results. *Neural Computation*, 15(12), 2727– 2778.

Vaněček, P., & Kolingerová, I. (2007). Comparison of triangle strips algorithms. *Computers and Graphics*, 31(1), 100–118.

Xiang, X., Held, M., & Mitchell, J. S. B. (1999). Fast and effective stripification of polygonal surface models. In *Proceedings of the ACM Symposium on Interactive 3D Graphics* (pp. 71–78). New York: ACM Press.

Received October 16, 2007; accepted June 24, 2008.