Chapter 3 – Probability

Conditional Probability, Independence and applications

Lecture 6

Probability of long term freq.

Dr. Lasantha Premarathna

Conditional Probability

- Conditional probability is used to determine how two events are related; that is, we can determine the probability of one event given the occurrence of another related event.
- For any two events, A and B with P(B) > 0, the conditional probability of A given that B has occurred written as $P(A \mid B)$ and read as "the probability of A given B" and is calculated by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
The probability in the denominator is always for the "given" event

Example:

For two events A and B, P(A) = 0.60, P(B) = 0.40, and P(B|A) = 0.6. Find P(A|B).

$$P(B|A) = \frac{P(A \cap B)}{0.6} = 0.6.$$

$$P(A \cap B) = 0.36.$$

$$P(A \cap B) = \frac{0.36}{0.4} = 0.9$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Notice that if we rearrange the equation above we get the **Multiplication Rule:**

$$P(A \cap B) = P(B) \times P(A|B)$$
 and $P(A \cap B) = P(A) \times P(B|A)$

Independent Events Defined Using Conditional Probabilities

Two events, A and B are independent if knowing that one occurs does not change the probability that the other occurs. That is:

$$P(A|B) = P(A)$$

The probability of A is the same when we are given that B has occurred. Equivalently, A and B are independent if

$$P(B|A) = P(B)$$

Two events A and B are **independent** if and only if

$$P(A \cap B) = P(A) P(B)$$

Therefore, to obtain the probability that two independent events will occur, we simply find the product of their individual probabilities.

events with that of independent events.

Example: Suppose that you flip a fair coin and roll a fair die. What is the probability of obtaining a Tail and an even number? Show that obtaining a Tail and an even number are independent.

A = coin, fail.
B = die, even
A=
$$\{T1, T2, T3, T4, T5, T6\}$$

B = $\{H2, T2, H4, T4, H6, T6\}$
AnB = $\{T2, T4, T6\}$
Since equally likely. And - $H_{6}, T_{6}, T_$

Example: A machine has 8 switches. The probability that any particular switch work properly is 0.99. Assuming independent operation of the switches, calculate the probability that at least one switch fails to work properly.

Example:

If events A and B are independent then

- (a) A^c and B are also independent
- (b) A and B^c are also independent
- (c) A^c and B^c are also independent

(a)
$$P(A^{c} \cap B) = P(B) - P(A \cap B)$$
 (c)
 $= P(B) - P(A) \times P(B)$ $P(A^{c} \cap B^{c}) = 1 - P(A \cap B)$
 $= P(B) \times (1 - P(A))$ $= 1 - P(A) \times P(B)$
 $= P(B) \times P(A^{c})$
(b) WLOG, see (a)
 $= P(B^{c}) \times P(B^{c})$
 $= P(B^{c}) \times P(B^{c})$

Example: Consider two events D and E with probabilities

$$P(D) = 0.5$$
, $P(E) = 0.6$ and $P(D \cup E) = 0.65$

- (i) Find P(E|D)
- (ii) Are E and D independent?

$$0.65 = 0.5 + 0.6 - P(DnE)$$

 $0.65 - 1.1 = -P(DnE)$
 $P(DnE) = 0.45$
 $0.45 = 0.5 \times 0.62$
 $0.45 \neq 0.3$
Thure fore not indp.

Next: Lecture 7

• Chapter 3 : Bayes Theorem