# Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 29. Oktober 2020

### AND









0 0

#### OR



| A | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

OR aus NAND











### Weitere Gates

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | NAND       | NOR         | XOR      | XNOR |
|-------------------------------------------------------|------------|-------------|----------|------|
|                                                       | A 7 & 0- C | A → ≥1 0- D | A 7 =1 E | 0- F |

|   |   | O NAND | NOR | вох<br>Е | HONX<br>F |
|---|---|--------|-----|----------|-----------|
| A | В | C      | D   | E        | F         |
| 0 | 0 | 1      | 1   | 0        | 1         |
| 0 | 1 | 1      | 0   | 1        | 0         |
| 1 | 0 | 1      | 0   | 1        | 0         |
| 1 | 1 | 0      | 0   | 0        | 1         |

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

## XOR aus NAND



XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

**PMOS** 

## **CMOS**

## NMOS





| G | Schalter | Y |
|---|----------|---|
| 0 | offen    | 1 |
| 1 | zu       | 0 |
|   |          |   |

| 7 | G | Schalter | Y |
|---|---|----------|---|
|   | 0 | zu       | 1 |
| ) | 1 | offen    | 0 |

## Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie  $\rightarrow$  PMOS parallel
- 4. NMOS parallel  $\rightarrow$  PMOS Serie

## Allg. Aufbau CMOS



## Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
  - Von GND aus mit äusserstem Block beginnen.
  - $PMOS \rightarrow NMOS$
- 4. Falls Pull-up:
  - Von  $V_{DD}$  aus mit äusserstem Block beginnen.
  - NMOS → PMOS.



#### Funktionsgleichung

| parallel: $\vee$ | Pull-Up: $y = 1$   | alle $I: 0 \to I$ invert.           |
|------------------|--------------------|-------------------------------------|
| Serie: ∧         | Pull-Down: $y = 0$ | alle I : $1 \rightarrow Gl$ . inver |

## **Boolsche Algebra**

#### Grundregeln

#### Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

## Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

#### Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

| Nicht      | $\overline{\overline{A}} = A$      |                              |
|------------|------------------------------------|------------------------------|
| Null-Th.   | $A \lor 0 = A$                     | $A \wedge 0 = 0$             |
| Eins-Th.   | $A\vee 1=1$                        | $A \wedge 1 = A$             |
| Idempotenz | $A \lor A = A$                     | $A \wedge A = A$             |
| V. Komp.   | $A \vee \overline{A} = 1$          | $A \wedge \overline{A} = 0$  |
| Adsorp.    | $A \vee (\overline{A} \wedge B)$   | $= A \vee B$                 |
|            | $A \wedge (\overline{A} \vee B)$   | $=A\wedge B$                 |
| Adsorp.    | $A \lor (A \land B)$               | = A                          |
|            | $A \wedge (A \vee B)$              | = A                          |
| Nachbar.G. | $(A \wedge B) \vee (\overline{A})$ | $\overline{A} \wedge B) = B$ |
|            | $(A \vee B) \wedge (\overline{A})$ | $\bar{A} \vee B) = B$        |

## De Morgan

- $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ 1. Regel
- 2. Regel  $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

#### Normalformen

| Minterm                                          | Maxterm                                            |
|--------------------------------------------------|----------------------------------------------------|
| AND-Ausdruck                                     | OR-Ausdruck                                        |
| Output: 1                                        | Output: 0                                          |
| $n$ Schaltvar. $\rightarrow 2^n$ mögl. Minterme. | $n$ Schaltvar. $\rightarrow 2^n$ mögl<br>Maxterme. |
| nicht-invertierte Var: $1$                       | nicht-invertierte Var: 0                           |
| invertierte Var: 0                               | invertierte Var: 0                                 |

### Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

#### Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

| A | В | Y | Minterme                           | Maxterme              |
|---|---|---|------------------------------------|-----------------------|
| 0 | 0 | 1 | $\overline{A} \wedge \overline{B}$ |                       |
| 0 | 1 | 0 |                                    | $A \vee \overline{B}$ |
| 1 | 0 | 0 |                                    | $\overline{A} \vee B$ |
| 1 | 1 | 1 | $A \wedge B$                       |                       |

**DNF** 
$$Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$
 1 Mint. erf.  $\rightarrow$  1 **KNF**  $Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$  1 Maxt. erf.  $\rightarrow$  0

Schaltung nur aus:

- NOR: KNF  $\rightarrow$  De Morgan
- NAND: DNF  $\rightarrow$  De Morgan
- Schaltung nur aus:
  - NOR: KNF  $\rightarrow$  De Morgan
  - XNOR: DNF  $\rightarrow$  De Morgan

## Karnaugh Diagramme (KVD)



| CD | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 0  | 1  | X  |    |
| 01 |    |    |    |    |
| 11 |    |    |    |    |
| 01 |    |    |    |    |

Hat das Karnaugh Diagramm 5 Dimensionen, wird die 5te Dimension auf zwei Tabellen aufgeteilt.

Don't-Care-Zustände  $X \in \{0,1\}$  Redundante, überflüssige oder unmögliche Kombinationen der Eingangsvariablen werden mit einem  $\boldsymbol{X}$  markiert.

### Päckchen

- Päckchen immer rechteckig (Ausnahme: über Ecken).
- Umfassen möglichst grosse Zweierpotenz.
- Dürfen über Ecken und Grenzen hinausgehen und sich überlappen.

## DNF

- 1. KVD ausfüllen.
- Päckchen mit 1 uo X.
- 3. Vereinfachte Minterme aufstellen.
- 4. Minterme mit OR verbinden.

#### KNF

- 1. KVD ausfüllen.
- Päckchen mit 0 uo X.
- 3. Vereinfachte Maxterme aufstellen.
- 4. Maxterme mit AND verbinden.

#### Hazard

Kurzzeitige, unerwünschte Änderung der Signalwerte, die durch Zeitverzögerung der Gatter entstehen.



Statische Hazards Stellen im KVD, an denen sich Päckchen orthogonal berühren, aber nicht überlappen.

Lösung Berührende Päckchen mit zusätzlichen (möglichst grossen) Päckchen verbinden.

## **Zahlensysteme**

zu berechnende positive Zahl

Basis/Radix von D

Koeffizient

$$D = \sum_{-\infty}^{\infty} b_i \cdot R^i$$

Darstellung D in Basis  $R: \ldots b_2 b_1 b_0 . b_{-1} b_{-2} \ldots R$ 

 $b_i \in \{0, 1, \dots, 9\}$ Dezimal Dual/Binär 2  $b_i \in \{0, 1\}$ Oktal  $b_i \in \{0, 1, \dots, 7\}$ Hexa  $b_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$ 

## Umwandlung Zahlensysteme

1. Ganzzahlige Division mit R:  $D/R = Q_0 + r_0$ . 2.

$$Q_i/R = Q_{i+1} + r_{i+1}$$

bis  $Q_i = 0$ .

3. Erste Operation gibt MSB, letze Operation gibt LSB (aka. unten nach oben lesen.)

#### Für $1 > D \ge 0$

$$D \cdot R = P_0 \quad K_{-1} = \text{floor}(P_0) \quad a_{-1} = P_0 - K_{-1}$$
  
 $a_{-1} \cdot R = P_{-1} \dots$ 

 $K_i$ : Koeffizienten für Zahlensystem. Erste Operation gibt MSB, letze Operation gibt LSB (aka von oben nach un-

### Byte

#### Binär zu Hex

| 0000 | 0 | 0100 | 4 | 1000 | 8 | 1100         | C |
|------|---|------|---|------|---|--------------|---|
| 0001 | 1 | 0101 | 5 | 1001 | 9 | 1100<br>1101 | D |
| 0010 | 2 | 0110 | 6 | 1010 | A | 1110         | E |
| 0011 | 3 | 0111 | 7 | 1011 | B | 1110<br>1111 | F |

#### Zweierkomplement

Sign Bit 0: positiv 1: negativ

#### Konstruktion

- 1. Zahl |Z| in Binär B umwandeln.
- $2.\ B$  bitweise invertieren
- 3. 1 zu LSB addieren (! Übertrag)
- 4. Sign Bit hinzufügen (zuvorderst).

Ist die Blocklänge länger als Zahl, vorangehende 0(-en) miteinbeziehen.

#### 2<sup>er</sup>Komplement zu Dezimal

$$D_{(10)} = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

Wertebereich 2<sup>er</sup>-Komp.  $\left[-2^{n-1}, 2^{n-1} - 1\right]$ 

## mQn

$$D_{(10)} = -b_m \cdot 2^m + \sum_{i=0}^{m-1} b_i \cdot 2^i + \sum_{i=1}^n b_i \cdot 2^{-i}$$

Sign-Bit muss nur einmal vor dem m codiert werden.

m: Vorkommabits, n: Nachkommabits

### Binäre Rechenoperationen

#### Addition

#### Subtraktion

Bitweise Addition der Binärzahlen. Leere Slots werden mit 0 aufgefüllt.

Addition via 2<sup>er</sup>Komp. Übertrag von MSB ignorieren.

## Multiplikation

schoben.

· Bitweise Multiplikation des Multiplikanden a mit  $b_i$  des Multiplikator.

 $b_0 \cdot a$  Sukzessive Multiplikationen wer- $+b_1 \cdot a \ 0$ den um ein Bit (0) nach links ver- $+b_2 \cdot a \ 0 \ 0$ 

• Anzahl Nachkommabits ergibt sich aus der Summe der Anzahl Nachk.bits der Operatoren.

 $+b_3 \cdot a \ 0 \ 0 \ 0$ 

#### Division