Matemática Discreta I Primer parcial	1 ^{er} Apellido:	21 de enero de 2020 Tiempo 75 minutos
Dpto. Matematica Aplicada TIC ETS Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre:	Nota:

Ejercicio 1

Sea D_{105} el conjunto de todos los divisores positivos de 105, y sea | la relación de orden de divisibilidad, es decir, a|b significa que "a divide a b".

- a) (3 puntos) Dibuja el diagrama de Hasse del conjunto ordenado $(D_{105}, |)$.
- b) (3 puntos) Sea $B = \{3, 5, 21\}$ un subconjunto de D_{105} . Obtén, si existen, las cotas superiores e inferiores, supremo e ínfimo de B en $(D_{105}, |)$. Obtén, si existen, máximo y mínimo, maximales y minimales de B.
 - c) (3 puntos) ¿Es B con la relación de divisibilidad un retículo? Razona la respuesta.
 - d) (3 puntos) Obtén, si existen, los elementos complementarios de 5 y 15 en $(D_{105}, |)$.
 - e) (3 puntos) Razona si $(D_{105}, |)$ es un Álgebra de Boole.

Soluciones

a)
$$105 = 3 \cdot 5 \cdot 7$$
, $D_{105} = \{1, 3, 5, 7, 15, 21, 35, 105\}$

- - c) (B, |) no es retículo, puesto que no todo par de elementos en B tienen supremo e ínfimo.
 - d) El complementario de 5 es 21, y el complementario de 15 es 7.
- e) Sí es álgebra de Boole puesto que $(D_{105},|)$ es retículo, y es un retículo acotado, complementario y distributivo.

Ejercicio 2 (10 puntos)

Obtén una expresión booleana en forma de "mínima suma de productos" para la función booleana cuyo conjunto de verdad es $S = \{1100, 1110, 1111, 1011, 1000, 0100, 0000\}$. Resuelve utilizando uno de los dos métodos estudiados: Quine McCluskey o mapa de Karnaugh.

Solución:

*	0000		*	0 - 00		
*	0100		*	-000		
*	1000		*	-100		00
*	1100	\Rightarrow	*	1-00	\Rightarrow	00 -00
*	1011			11-0		=-00
*	1110			1-11		
*	1111			111-		

	1100	1110	1111	1011	1000	0100	0000
11-0	X	X					
1-11			X	X			
111-		X	X				
00	X				X	X	X

$$f(x, y, z, t) = z't' + xzt + xyt'$$
$$= z't' + xzt + xyz$$

Ejercicio 3

a) (5 puntos) Demuestra por inducción que 3 divide a $(n^3 - n)$ para todo $n \in \mathbb{N}$.

Solución:

La fórmula es cierta si k = 1, puesto que $1|(1^3 - 1) = 0$.

Hipótesis de inducción:

Supongamos que la fórmula es cierta para k = n.

Entonces si
$$k = n + 1$$
, $(n + 1)^3 - (n + 1) = n^3 + 3n^2 + 3n - n = (n^3 - n) + 3(n^2 + n)$.

3 divide a cada uno de los dos sumandos, por tanto 3 divide a la suma de ambos y la afirmación es cierta. Luego, se cumple la igualdad para todo $n \in \mathbb{N}$.

b) (10 puntos) Una determinada empresa tiene que transportar 910 paquetes de su producto, para ello dispone de dos transportistas T_1 y T_2 . Se sabe que cada envío de T_1 transporta 325 paquetes, mientras que cada envío de T_2 sólo transporta 26. ¿Cuántos envíos debe hacer la empresa con T_1 y T_2 para cumplir el objetivo previsto de enviar exactamente 910 paquetes? Teniendo en cuenta que T_1 cobra 10.000 \in por envío y T_2 sólo 1000 \in , ¿cuál de las soluciones anteriores es de coste mínimo?

Solución:

Sean x el número de envíos con T_1 e y el número de envíos con T_2 .

Hay que resolver la ecuación diofántica 325x + 26y = 910

$$325 = 26 \cdot 12 + 13$$

$$26 = 13 \cdot 2$$

Puesto que mcd(325, 26) = 13 y $13|910 = 13 \cdot 70$, la ecuación tiene soluciones enteras.

$$13 = 325 - 26 \cdot 12 \rightarrow 910 = 13 \cdot 70 = 325 \cdot 70 - 26 \cdot 840$$

La solución general de la ecuación diofántica es

$$\begin{cases} x = 70 + 2t \\ y = -840 - 25t \end{cases}, \forall t \in \mathbb{Z}$$

Puesto que debe ser

$$\begin{cases} x = 70 + 2t \ge 0 \\ y = -840 - 25t \ge 0 \end{cases} \rightarrow t = \begin{cases} -34 \\ -35 \end{cases} \rightarrow \begin{cases} x = 2, y = 10 \\ x = 0, y = 35 \end{cases}$$

Por tanto si calculamos el coste de cada solución resulta ser:

$$\begin{cases} x = 2, y = 10 \rightarrow 2 \cdot 10,000 + 10 \cdot 1,000 = 30,000 \text{ euros} \\ x = 0, y = 35 \rightarrow 35 \cdot 1,000 = 35,000 \text{ euros} \end{cases}$$

Siendo la solución más barata x = 2, y = 10.