

13. a)

15. b)

SOLUCIONES

Parte I: PREGUNTAS TIPO TEST. 30%.

1. b) 4. b)	7. a)	10. c)
-------------	-------	--------

6. c)

Parte II: PROBLEMA. 70%.

12. a)

Apartado 1.

$$\begin{array}{ll} \text{PRIMERO}(S) = \{ \ id \ \} \\ \text{PRIMERO}(T) = \{ \ \neg, (, id \} \\ \end{array} \qquad \begin{array}{ll} \text{SIGUIENTE}(S) = \{ \ \$ \ \} \\ \text{SIGUIENTE}(T) = \{ \ \lor, \Rightarrow,), \$ \ \} \end{array}$$

La gramática no es LL(1) porque es ambigua (reglas $T \to T \lor T \mid T \Rightarrow T$), es recursiva por la izquierda y tiene factores comunes (en las mismas reglas de T).

Apartado 2

Para eliminar el problema de la ambigüedad, usamos una solución similar a la empleada en la gramática no ambigua de las expresiones aritméticas, teniendo en cuenta la asociatividad izquierda de los operadores y la precedencia:

$$\begin{array}{ll} S & \rightarrow id = E \\ E & \rightarrow E \Rightarrow T \mid T \\ T & \rightarrow T \vee F \mid F \\ F & \rightarrow \neg F \mid (E) \mid id \end{array}$$

La gramática no está todavía preparada para el análisis LL(1) puesto que tiene recursión inmediata por la izquierda en E y T. Eliminamos la recursión inmediata:

$$\begin{array}{ll} S & \rightarrow id = E \\ E & \rightarrow T \mid TE' \\ E' & \rightarrow \Rightarrow T \mid \Rightarrow TE' \\ T & \rightarrow F \mid FT' \\ T' & \rightarrow \lor F \mid \lor FT' \\ F & \rightarrow \lnot F \mid (E) \mid id \end{array}$$

Se debe dar un último paso antes de poder intentar el análisis LL(1): factorizar las reglas de producción:

$$\begin{array}{ll} S & \rightarrow id = E \\ E & \rightarrow TE' \\ E' & \rightarrow \lambda \mid \Rightarrow TE' \\ T & \rightarrow FT' \\ T' & \rightarrow \lambda \mid \vee FT' \\ F & \rightarrow \neg F \mid (E) \mid id \end{array}$$

Los conjuntos PRIMERO y SIGUIENTE de los no terminales de la gramática modificada son:

```
\begin{array}{lll} \operatorname{PRIMERO}(S) = \{ \ id \ \} & \operatorname{SIGUIENTE}(S) = \{ \ \$ \ \} \\ \operatorname{PRIMERO}(E) = \{ \ \neg \ ( \ id \ \} & \operatorname{SIGUIENTE}(E) = \{ \ ) \ \$ \ \} \\ \operatorname{PRIMERO}(T) = \{ \ \neg \ ( \ id \ \} & \operatorname{SIGUIENTE}(T) = \{ \ \Rightarrow \ ) \ \$ \ \} \\ \operatorname{PRIMERO}(T') = \{ \ \land \ \lor \ \} & \operatorname{SIGUIENTE}(T') = \{ \ \Rightarrow \ ) \ \$ \ \} \\ \operatorname{PRIMERO}(F) = \{ \ \neg \ ( \ id \ \} & \operatorname{SIGUIENTE}(F) = \{ \ \lor \ \Rightarrow \ ) \ \$ \ \} \end{array}
```

Los conjuntos PREDICT de las reglas de producción de la gramática modificada son:

```
\begin{array}{ll} \operatorname{PREDICT}(S \to id = E) = \{ \ id \} & \operatorname{PREDICT}(T' \to \lambda) = \{ \ \Rightarrow \ ) \ \$ \ \} \\ \operatorname{PREDICT}(E \to TE') = \{ \ \neg \ ( \ id \ \} & \operatorname{PREDICT}(T' \to \vee FT') = \{ \ \vee \ \} \\ \operatorname{PREDICT}(E' \to \lambda) = \{ \ ) \ \$ \ \} & \operatorname{PREDICT}(F \to \neg F) = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} & \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to FT') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \} \\ \operatorname{PREDICT}(T' \to T') = \{ \ \neg \ \}
```

De acuerdo con los conjuntos PREDICT anteriores, la gramática modificada es LL(1) puesto que la intersección de los conjuntos PREDICT de las reglas de un mismo no terminal es \emptyset .

Apartado 3.

Obviamente, la gramática no es SLR(1), LR(1) ni LALR(1), puesto que es ambigua.

Calculamos la colección LR(0):

$$I_{12} = \operatorname{Goto}(I_8,T) = \left\{ \begin{array}{ll} T \to T \ \lor \ T \\ T \to T \ \lor \ T \end{array} \right. & \operatorname{Goto}(I_{10},\vee) = I_8 \\ T \to T \ \lor \ T \\ T \to T \ \lor \ T \end{array} \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{10},\vee) = I_8 \\ \operatorname{Goto}(I_{10},\Rightarrow) = I_9 \\ \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{10},\vee) = I_8 \\ \operatorname{Goto}(I_{11},) \) = \left\{ \begin{array}{ll} T \to (T) \ \cdot \ \right\} \end{array} \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{11},\vee) = I_8 \\ \operatorname{Goto}(I_{11},\vee) = I_8 \\ \operatorname{Goto}(I_{11},\Rightarrow) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{11},\vee) = I_8 \\ \operatorname{Goto}(I_{11},\vee) = I_8 \\ \operatorname{Goto}(I_{12},\vee) = I_8 \\ \operatorname{Goto}(I_{12},\Rightarrow) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{12},\vee) = I_8 \\ \operatorname{Goto}(I_{12},\Rightarrow) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{12},\vee) = I_8 \\ \operatorname{Goto}(I_{12},\Rightarrow) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\Rightarrow) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\otimes) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\otimes) = I_9 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \\ \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{ll} \operatorname{Goto}(I_{13},\vee) = I_8 \end{array} \right. \\ & \left\{ \begin{array}{l$$

Para determinar las acciones de reducción, es necesario obtener previamente los conjuntos SIGUIENTE de los no terminales de la gramática inicial:

$$\begin{array}{ll} \operatorname{PRIMERO}(S) = \{ \ id \ \} \\ \operatorname{PRIMERO}(T) = \{ \ \neg \ (\ id \ \} \\ \end{array} \qquad \begin{array}{ll} \operatorname{SIGUIENTE}(S) = \{ \ \$ \ \} \\ \operatorname{SIGUIENTE}(T) = \{ \ \lor \ \Rightarrow \) \ \$ \ \} \end{array}$$

A partir de los cálculos anteriores, podemos construir la siguiente tabla de análisis SLR:

Estado	Acción			IR-A						
ESTADO	id	=	V	\Rightarrow	_	()	\$	S	T
0	d2								1	
1								acc		
<u> - 2</u>		d3								
3	d7				$\overline{d5}$	$\overline{d6}$				4
$ \frac{1}{4}$			d8	d9						
5	d7				d5	d6				10
6	d7				d5	d6				11
7			<u>r6</u>	r6			<u>r6</u>			
8	$\overline{d7}$				$\overline{d5}$	<u>d6</u>				12
9 9	d7				$\overline{d5}$	$\overline{d6}$				13
10			d8/r4	d9/r4			$\overline{r4}$			
11			d8				d14			
12	T		d8/r2	d9/r2			r2			
13			d8/r3	d9/r3			r3	r3		
14			r5	r5			r5	r5		

La numeración de las reglas de producción usada en la tabla es la siguiente:

1.
$$S \rightarrow id = T$$

2. $T \rightarrow T \lor T$
3. $T \rightarrow T \Rightarrow T$
4. $T \rightarrow \neg T$
5. $T \rightarrow (T)$
6. $T \rightarrow id$

Los conflictos de la tabla se resuelven usando las precedencias y asociatividades de los operadores lógicos. La mayor precedencia corresponde a \neg , luego a \lor y por último a \Rightarrow . Estos dos últimos operadores tienen asociatividad izquierda.

- Los conflictos $T[10, \vee]$ y $T[10, \Rightarrow]$) se resuelven empleando r4, por mayor precedencia de \neg .
- \blacksquare El conflicto $T[12, \lor]$ se resuelve empleando r2, por asociatividad izquierda de \lor .

- El conflicto $T[12, \Rightarrow]$ se resuelve empleando r2, por mayor precedencia de \vee frente a \Rightarrow .
- El conflicto $T[13, \lor]$ se resuelve empleando d8, por mayor precedencia de \lor frente a \Rightarrow .
- El conflicto $T[13, \Rightarrow]$ se resuelve empleando r3, por asociatividad izquierda de \Rightarrow .

Apartado 4.

La simulación de la cadena $id = id \Rightarrow \forall id$ con tratamiento de errores en modo pánico es la siguiente:

PILA	Entrada	Acción
0	$id = id \Rightarrow \lor id \$$	d2
$0\ id\ 2$	$=id \Rightarrow \lor id \$$	d3
0 id 2 = 3	$id \Rightarrow \lor id \$$	d7
0 id 2 = 3 id 7	$\Rightarrow \lor id \$$	$r6 T \rightarrow id$
$0 \ id \ 2 \ = \ 3 \ T \ 4$	$\Rightarrow \lor id \$$	d9
$0 id 2 = 3 T 4 \Rightarrow 9$	\vee id \$	Error: usar IR-A[9,T] y $\lor \in \mathtt{SIGUIENTE}(T)$
$0 id 2 = 3 T 4 \Rightarrow 9 T 13$	\vee id \$	d8
$0 id 2 = 3 T 4 \Rightarrow 9 T 13 \lor 8$	$id \ \$$	d7
$0 id 2 = 3 T 4 \Rightarrow 9 T 13 \lor 8 id 7$	\$	$r6 T \rightarrow id$
$0 id 2 = 3 T 4 \Rightarrow 9 T 13 \lor 8 T 12$	\$	$r2 T \to T \lor T$
$0 id 2 = 3 T 4 \Rightarrow 9 T 13$	\$	$r3 T \to T \Rightarrow T$
$0 \ id \ 2 \ = \ 3 \ T \ 4$	\$	$r1 S \rightarrow id = T$
0 S 1	\$	No acepta por errores

Apartado 5.

Para realizar la definición dirigida por la sintaxis que se solicita, emplearemos los siguientes atributos:

Símbolo	Atributo	Descripción
id	lex	Lexema del identificador
T	equiv	Cadena de texto con la fórmula equivalente sin el operador \Rightarrow
T	neg	Cadena de texto con la fórmula equivalente sin el operador \Rightarrow y negada
S	equiv	Cadena de texto con la fórmula equivalente sin el operador \Rightarrow

 $Usando\ el\ operador + como\ concatenador\ de\ cadenas\ de\ texto,\ las\ reglas\ semánticas\ para\ la\ evaluación\ de\ los\ atributos\ de\ cada\ símbolo\ son:$

Regla de producción	Regla semántica
$T \rightarrow id$	T.equiv = id.lex; T.neg = "¬" + id.lex;
$T o (T_1)$	$T.equiv = "(" + T_1.equiv + ")"; T.neg = "(" + T_1.neg + ")";$
$T \rightarrow \neg T_1$	$T.equiv = T_1.neg; T.neg = T_1.equiv;$
$T \to T_1 \Rightarrow T_2$	$T.$ equiv = $T_1.$ neg + "\" + $T_2.$ equiv; $T.$ neg = $T_1.$ equiv + "\" + $T_2.$ neg;
$T \to T_1 \vee T_2$	$T.$ equiv = $T_1.$ equiv + "\" + $T_2.$ equiv; $T.$ neg = $T_1.$ neg + "\" + $T_2.$ neg;
$S \rightarrow id = T$	S.equiv = T.equiv;

Por el modo de evaluar los atributos, todos ellos son sintetizados. Por tanto, la gramática atribuida es S-atribuida. También es L-atribuida, porque por definición las gramáticas L-atribuidas incluyen a las S-atribuidas.

Con esta DDS, para la cadena solicitada en el enunciado, podemos construir un árbol sintáctico decorado como el que se indica en la siguiente página.

