CPSC 354 Report

Drew Floyd

Contents

1	The MU-Puzzle	2
2	Rewriting Assignment	3

1 The MU-Puzzle

```
\mathrm{MI} \to \mathrm{MU}
```

Rule 1: If you possess a string whose last letter is I, add U.

Rule 2: Suppose you have Mx, you may add Mxx.

Rule 3: If III occurs in one of the strings, you may make a new string with U in place of III.

Rule 4: If UU, you can drop it.

 $\begin{array}{c} \text{MI} \\ \text{MII} \ \ Mxx \\ \text{MIIII} \ \ Mxx \\ \text{MIIIIIIIII} \ \ Mxx \\ \text{MUIIU} \ \ MIU \\ \varnothing \end{array}$

MI \rightarrow use Mxx rule ∞ times MIIII...

No matter what Rule you use you will never be able to get 0 Mod3, because I will always be 1 mod 3 or 2 mod 3

MUUU

MIII

Rule 1 does not affect # of I's.

Rule 2 does not give 0 mod 3.

Rule 3 does not solve the problem as removing 3 I's does not change the output of mod3.

Rule 4 does not change the # of I's.

We can never get rid of all of the I's, $0 \mod 3$ is not possible. Thus you cannot get MU from MI.

2 Rewriting Assignment

1.
$$A = \{\}$$

 $R = \{\}$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

2.
$$A = \{a\}$$

 $R = \{\}$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

3.
$$A = \{a\}$$

 $R = \{(a, a)\}$

This diagram is not terminating due to the presence of infinite loops, confluent because all paths merge, but does not have a unique normal form as multiple results are possible.

4.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (a, b)\}$

This diagram is terminating as there are no infinite loops, not confluent because paths diverge, and does not have a unique normal form due to multiple end states.

5.
$$A = \{a, b\}$$

 $R = \{(a, a), (a, b)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and does not have a unique normal form due to no single end state.

6.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (b, b), (a, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and has a unique normal form due to having a single end state on c.

7.
$$A = \{a, b, c\}$$

 $R = \{(a, b), (b, b), (a, c), (c, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and does not have a unique normal form due to no end states.

Properties

${ m T}$	\mathbf{C}	U	Example(s)	Explanation
True	True	True	1, 2	These examples terminate, are confluent, and have a
				unique normal form because all paths lead to a single
TT.	TD.	T2 1	NT	final state without divergence or loops.
True	True	False	None	This state is impossible because confluence implies a
True	False	True	None	unique normal form when termination is true. This state is impossible because non-confluence
True	raise	True	None	means paths diverge, which contradicts having a
				unique normal form.
True	False	False	4	This example terminates but is not confluent due to
				diverging paths and does not have a unique normal
				form as multiple end states exist.
False	True	True	None	This state is impossible because non-termination
				contradicts having a unique normal form.
False	True	False	3	This example does not terminate but is confluent
				because all paths merge, though it does not have a
Б.1	Б.1	TT.	3.7	unique normal form due to multiple results.
False	False	True	None	This state is impossible because non-termination and
				non-confluence contradict having a unique normal form.
False	False	False	5, 6, 7	These examples do not terminate, are not confluent
raise	raise	raise	5, 0, 1	due to diverging paths, and do not have a unique
				normal form as no single end state exists.
				normal rorm as no single one source ontoles.

T: Terminating, C: Confluent, U: Unique Normal Form