Wednesday warm-up: Forces III

Prof. Jordan C. Hanson

September 29, 2025

1 Memory Bank

- Force of drag, in air or other gas: $F_D = \frac{1}{2}C\rho Av^2$.
- In the above formula, C is an empirical constant, ρ is the density of the air or gas, A is the area of the object, and v is the object's velocity.
- The horizontal force of friction: $\vec{f} = -\mu N\hat{i}$, where μ can be either the *static* or *kinetic* coefficient of friction.
- 4. Calculate the deceleration of a snow boarder going up a slope of 10 degrees, assuming the coefficient of friction for waxed wood on wet snow (0.1).

2 Forces III

- 1. Suppose a cyclist with $A=0.5~\mathrm{m^2},~C=1.0,$ and total mass $m=70~\mathrm{kg}$ is pedalling at 20 m/s. Assume the density of air is $\rho=1.2~\mathrm{kg~m^{-3}}$. (a) What is the drag force on the system? (b) What is the drag force if the speed drops to 10 m/s? (c) Suppose the speed is now 20 m/s again, but the cyclist ducks down to lower the area to $A=0.25~\mathrm{m^2}$. What is the new drag force?
- 5. Sometimes, friction can be *static*. That is, there's enough friction to keep an object stuck in position. Suppose a sled is on a hill with incline angle θ , and the coefficient of static friction is μ_s . Show that the maximum θ , such that the sled does not move, satisfies

$$\mu_k = \tan \theta \tag{1}$$

- 2. Show that the acceleration of any object down a frictionless incline that makes an angle θ with the horizontal is $a=g\sin\theta$. (Note that this acceleration is independent of mass.)
- 6. Let the force of drag be $F_D = (1/2)C\rho Av^2$, and the weight of a falling system be w = mg. Show that the maximum speed the system can achieve is

$$v = \sqrt{\frac{2mg}{C\rho A}} \tag{2}$$

Estimate this speed for a falcon diving to catch prey, letting C=0.1.

- 3. (a) Show that the acceleration of any object down an incline where friction behaves simply (that is, where $f_k = \mu_k N$) is $a = g(\sin \theta \mu_k \cos \theta)$. Show that the acceleration reduces to the expression found in the previous problem when friction becomes negligibly small.
 - 1