

Analog IC Design

Lecture 03 Review on Semiconductors Basics

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- What are semiconductors?
- Electrons and holes
- ☐ N-type and P-type silicon
- ☐ Drift and diffusion current
- ☐ The PN-junction

What are Semiconductors

- \Box Conductors \rightarrow Ex: copper
- ☐ Insulators → Ex: glass
- Semiconductors are materials whose conductivity lies between that of conductors and insulators
- What is so special about semiconductors?
 - The electrical conductivity can be dramatically changed by introducing extrinsic dopant atoms
 - We have two types of carriers: electrons and holes
- \Box Silicon (Si) is the semiconductor material used in the majority of today's electronic devices

Silicon Crystal

- ☐ Covalent bonds are formed by sharing of the valence electrons
- ☐ At 0 K, all bonds are intact and no free electrons are available

Electrons and Holes

- At room temperature, some of the covalent bonds are broken by thermal generation
- \square Each broken bond gives rise to a free electron (e^-) and a hole (h^+)
 - Both e^- and h^+ become available for current conduction

Intrinsic Silicon

- \Box Carrier concentration is the number of charge carriers per unit volume (cm^3)
- ☐ At thermal equilibrium, the recombination rate is equal to the generation rate
- \Box The concentration of free electrons (n) is equal to the concentration of holes (p)

$$n = p = n_i$$

 \blacksquare The product of n and p is constant (depends only on temperature)

$$np = n_i^2$$

Doped (Extrinsic) Silicon

- Doping involves introducing impurity atoms into the silicon crystal
- To increase the concentration of free electrons (n) silicon is doped with a pentavalent (valence = 5) impurity (Ex: Phosphorus)
 - Each dopant atom (donor) gives a free e^- and a fixed positive charge (+ve ion)
 - Electrons become the majority carriers $(n \gg p)$
 - The doped silicon is n-type
- \Box To increase the concentration of holes (p) silicon is doped with a trivalent (valence = 3) impurity (Ex: Boron)
 - Each dopant atom (acceptor) gives a h^+ and a fixed negative charge (-ve ion)
 - Holes become the majority carriers $(p \gg n)$
 - The doped silicon is p-type

N-Type Silicon

- \square Each dopant atom (donor) gives a free e^- and a fixed positive charge (+ve ion)
 - N_D : donor concentration
- \blacksquare Electrons become the majority carriers $(n \approx N_D \gg p)$

P-Type Silicon

- \square Each dopant atom (acceptor) gives a h^+ and a fixed negative charge (-ve ion)
 - N_A : acceptor concentration
- \blacksquare Holes become the majority carriers $(p \approx N_A \gg n)$

Current Flow: (1) Drift Current

- \Box Current flows due to electrical field (E)
 - Holes are accelerated in the direction of E

$$h^+$$
 drift velocity = $v_{p-drift} = \mu_p E$

■ Free electrons are accelerated in the direction opposite to *E*

$$e^-$$
 drift velocity = $v_{n-drift} = -\mu_n E$

- \square μ is the mobility: $\mu_n=2-4$ times μ_p
- Note that if there are no carriers, there will be no current, even if there is an electric field

Current Flow: (2) Diffusion Current

- Current flows due to carrier concentration gradient
 - Carriers diffuse from the region of high concentration to the region of low concentration

The PN Junction (The Diode)

PN Junction in Equilibrium (o.c.)

- \square Diffusion current (I_D) flows due to concentration gradient
 - A depletion region of uncovered fixed charges is formed
 - The uncovered charges create $E \rightarrow$ drift current (I_S)
- \square $I_D = I_S \rightarrow$ net current $(I_D I_S)$ is zero
- \Box Capacitance $(C) = \frac{\epsilon A}{d}$

Depletion region Fixed charges

PN Junction in Equilibrium (o.c.)

Built-in electric field and barrier voltage due to depletion region

$$V_0 = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right) \approx 2.3 V_T \log \left(\frac{N_A N_D}{n_i^2} \right) \approx 0.6 - 0.9 V$$

 \square The barrier voltage (V_0) limits carrier diffusion

03: Semiconductors Basics [Sedra/Smith, 2015]

14

PN Junction in Reverse (Rvr) Bias

- ☐ The applied reverse voltage increases diffusion barrier
 - Opposes diffusion current
- Electric field increases
 - But drift current almost unchanged: no carriers to accelerate
- \square Net current is very small $\approx -I_S$
- \Box Depletion width increases \rightarrow capacitance decreases
 - Capacitance at zero bias is larger

PN Junction in Forward (Fwd) Bias

- ☐ The applied forward voltage decreases diffusion barrier
 - Dramatically increases diffusion current
- \square Net current is very high $=I_D-I_Spprox I_D=I_Se^{rac{V_F}{V_T}}$
 - Forward current exponentially increases with voltage across diode (V_F)
- Depletion width decreases

PN Junction IV Characteristics

$$\square I = I_S(e^{\frac{V}{V_T}} - 1)$$

- Forward: High diffusion current exponentially dependent on $V = V_F$
- Reverse: Very small drift current almost independent of $V = -V_R$
- Breakdown: Very high reverse current at LARGE reverse bias voltage

Thank you!

References

☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015.

☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014.