### Perchè il sol-gel

- Può essere deposto su qualunque substrato con tecniche semplici e disponibili.
- È di facile ed **economica** realizzazione
- Caratteristiche fisico-chimiche adattabili alle necessità.
- È possibile drogare il materiale risultante con sostanze che conferiscano proprietà fisiche particolari quali nonlinearità o guadagno.



Il campo delle applicazioni potenziali del sol-gel è molto esteso, dai rivestimenti protettivi ad applicazioni in sensoristica o ottica integrata.

#### Soluzione di partenza

Tetraetoxi-silano (TEOS)
Acqua (per l'idrolisi)
HCI (come catalizzatore)
Acetilacetone
Butilato di titanio [Ti(n-Obu)<sub>4</sub>]

Il titanio permette di variare l'indice di rifrazione fra 1.45 (silice pura) e 2.3 (TiO<sub>2</sub>).

#### La reazione sol-gel



Il TEOS viene idrato in soluzione alcolica, in presenza di HCl come catalizzatore.





Il gruppo OH reagisce con un gruppo alcossido o OH e forma un nuovo legame.

### Gelificazione



# Deposizione di un film sol-gel





# **Spinning**





### Realizzazione di una guida sol-gel



### Guide a canale mediante scrittura diretta laser



### Guide a canale mediante tecniche fotolitografiche



### **Sputtering**



### Condizioni di sputtering : pressione

P<1mTorr : regime balistico

Libero cammino medio lungo ⇒ poche collisioni ⇒ Alta energia ioni Film risultano a grana fine e aderenti.

P>1mTorr : regime diffusivo

Libero cammino medio corto ⇒ molte collisioni ⇒ Bassa energia ioni Film risultano a grana grossa e meno aderenti.

### Sputtering:interazioni superficiali



- a) Perturbazione della topografia superficiale
- b) Distribuzione dell'ordine cristallino in monocristalli e creazione di difetti
- c) Reazioni chimiche superficiali
- d) Adsorbimento e desorbimento
- e) Impiantazione dei projettili
- f) Projettili
- g) Meccanismi di trasferimento dell'energia dal projettile ai materiale materiale emesso
- h) Trasformazione in energia termica del target dell'energia ceduta dal proiettile
- i) Prodotti pesanti dello sputtering, molecole
- ) Prodotti pesanti dello sputtering, molecole cluster
- m) Prodotti pesanti dello sputtering, atomi del target
- n) Prodotti pesanti dello sputtering, ioni del target
- o) Prodotti pesanti dello sputtering, proiettili riflessi
- p) Fotoni
- g) Elettroni

## Condizioni di sputtering: energia

- **≻Bassa** (E< 20-50 eV)
- >Moderata (50<E<1000eV): Knock on

Si ha una reazione a catena per la emissione degli ioni dal target.

- >Alta (1KeV<E<50Kev)
- Ogni ione libera più particelle dal target
- >Molto alta (E>50KeV)

Gli ioni si **impiantano** nel target ⇒ rate di deposizione basso.



## Condizioni di sputtering: pressione



### **Sputtering: materiali**

Non tutti i materiali hanno lo stesso rate di sputtering. Alcuni esempi (riferiti al rame=1):

| Materiale                      | Rate |
|--------------------------------|------|
| Cu                             | 1.00 |
| Al                             | 0.77 |
| Al <sub>2</sub> O <sub>3</sub> | 0.16 |
| Cr                             | 0.65 |
| Fe                             | 0.52 |
| Ni                             | 0.70 |
| Si0 <sub>2</sub>               | 0.49 |
| Ti                             | 0.41 |

### Lo sputtering all'incontrario: il Reactive Ion Etching

- Apparato del tutto simile a quello di un sistema di sputtering a diodo, ma il substrato è al posto del target.
- Vengono normalmente immessi gas reattivi con il substrato da processare.
- → + Gas inerti (es.: Ar) ⇒ processo +fisico e anisotropo
- → + Gas reattivi (es.: CHF<sub>3</sub>) ⇒ processo +chimico e isotropo
- È importante la selettività di etching fra maschera e substrato.

Per un vetro sodico-calcico si usano solitamente Ar e CHF<sub>3</sub> o CF<sub>4</sub>:

$$4CF_{3}^{+} + 3SiO_{2} \rightarrow 2CO + 2CO_{2} + 3SiF_{4} \qquad (Y = 2.25)$$

$$2CF_{3}^{+} + SiO_{2} \rightarrow COF_{2} + CO + SiF_{4} \qquad (Y = 1.5)$$

$$2CF_{3}^{+} + 3SiO_{2} \rightarrow O_{2} + 2CO_{2} + 3SiF_{2} \qquad (Y = 4.5)$$

$$2CF_{3}^{+} + 2SiO_{2} \rightarrow COF_{2} + CO + O_{2} + 2SiF_{2} \qquad (Y = 1.5)$$

$$2CHF_{2}^{+} + SiO_{2} \rightarrow 2CO + H_{2} + SiF_{4} \qquad (Y = 1.5)$$

$$2CF_{2}^{+} + SiO_{2} \rightarrow 2CO + SiF_{4} \qquad (Y = 1.5)$$

### Tecnica di etching



Parametri principali

- •Velocità di etching
- •Selettività del processo
- •Anisotropia del processo
- •Eventuali danni ai materiali

#### **Etching chimico**

- Velocità proporzionale alla concentrazione della soluzione
- Buona selettività
- Processo isotropo (non si ottengono buoni risultati per spessori > 1 micron)

**Soluzioni** usate più comunemente

 $NH_4$ : HF in  $H_2O$  (10:1)  $HF: HNO_3: H_2O$  (1:1:50)  $H_3PO_4: HNO_3: CH_3COOH: H_2O$  (16:1:2:1)  $NH_4: HF in H_2O$  (10:1) Alluminio, Titanio  $NH_4: HF in H_2O$  (16:1:2:1)  $NH_4: HF in H_2O$  (16:1:2:1)

#### **Tecnica lift-off**



- Tecnica che non richiede apparati di etching appositi
- Patterning sub-micrometrico possibile
- Non utilizzabile per film deposti ad alta temperatura o di spessore maggiore del fotoresist