Álgebra Linear - Lista de Exercícios 4

Caio Lins e Tiago da Silva

1. Sejam S e T dois subespaços de um espaço vetorial V.

Observação 1. Em geral, para mostrarmos que um conjunto \mathbb{V} é um espaço vetorial, precisamos verificar que, um, ele contém o vetor nulo e, dois, ele é fechado para a soma e para a multiplicação por escalar. Essa tarefa, no entanto, pode ser mitigada; ela é, com efeito, equivalente a mostrar que, se $u, v \in \mathbb{V}$ e $\alpha \in \mathbb{R}$, então $u + \alpha v \in \mathbb{V}^1$.

(a) Defina $S+T=\{s+t\;;\;s\in S\;\mathrm{e}\;t\in T\}$. Mostre que S+T é um subespaço vetorial.

Resolução:

Sejam, conforme a Observação 1, $u,v\in S+T$ e $\alpha\in\mathbb{R}$, e perceba que, nesse sentido, existem, por definição, $s_1,s_2\in S$ e $t_1,t_2\in T$ tais que $u=s_1+t_1$ e $v=s_2+t_2$. Desta forma, temos que $u+\alpha v=(s_1+\alpha s_2)+(t_1+\alpha t_2)\in S+T$, porquanto a caracterização de S e de T como espaços vetoriais garante, pela Observação 1, que $\hat{s}=s_1+\alpha s_2\in S$ e $\hat{t}=t_1+\alpha t_2\in T$ e, portanto, $\hat{s}+\hat{t}\in S+T$. Em particular, S+T é um espaço vetorial.

(b) Defina $S \cup T = \{x \; ; \; x \in S \text{ ou } x \in T\}$. Argumente que $S \cup T$ não é necessariamente um subespaço vetorial.

Resolução:

Geometricamente, a observação de que $S \cup T$ não é um espaço vetorial é bastante plausível; isso porque, em \mathbb{R}^2 , os (únicos) espaços vetoriais consistem no plano, nas retas que contêm a origem e na própria origem. Ora, a união de duas retas não é, em geral, uma reta (nem um plano, nem a origem); portanto, a união de dois espaços vetoriais não é, em geral, um espaço vetorial.

Vamos, dessa forma, formalizar essa verificação. Sejam, para isso, $s,t \in \mathbb{R}^2 \setminus \{0\}$ vetores não colineares, e escreva $S = \{\alpha s : \alpha \in \mathbb{R}\}$ e $T = \{\alpha t : \alpha \in \mathbb{R}\}$. Nesse sentido, temos, por um lado, que $s,t \in S \cup T$; por outro, $s+t \notin S \cup T$, porque, nesse caso, $s+t \in T$ e, logo, $s \in T$ ou $s+t \in S$ e, em consequência, $t \in S$, o que viola a não colinearidade entre s e t. Portanto, $S \cup T$ não é um espaço vetorial.

(c) Se S e T são retas no \mathbb{R}^3 , o que é S+T e $S\cup T$?

Resolução:

Como S e T são espaços vetoriais, essas retas contêm a origem; em particular, elas são colineares, S=T, ou concorrentes, $S\cap T=\{0\}$. Desse modo, temos, por um lado, que, se S=T, então S+T=S e $S\cup T=S$; por outro, se $S\cap T=\{0\}$, então S+T é o (único) plano que contém S e S0, enquanto S0, redundantemente, o conjunto dos vetores que estão em S0 ou em S0. Formalmente, podemos escrever, se $S=\{\alpha s: \alpha\in \mathbb{R}\}$ e $T=\{\alpha t: \alpha\in \mathbb{R}\}$,

$$S + T = \{ \alpha s + \beta t : \alpha, \beta \in \mathbb{R} \}$$

e

$$S \cup T = \{ \alpha(\xi s + (1 - \xi)t) : \alpha \in \mathbb{R} \in \xi \in \{1, 0\} \};$$

essa notação, no entanto, possivelmente não é tão expressiva quanto uma descrição verbal.

2. Como o núcleo N(C) é relacionado aos núcleos N(A) e N(B), onde $C = \begin{bmatrix} A \\ B \end{bmatrix}$?

¹Explicitamente, escolhemos u=v e $\alpha=-1$ para verificar que $0\in\mathbb{V}$; em seguida, solicitamos que $\alpha=1$ para verificar que $u+v\in\mathbb{V}$; enfim, pedimos que u=0 para verificar que $\alpha v\in\mathbb{V}$.

Resolução:

Vamos mostrar que $N(C) = N(A) \cap N(B)$. Seja, para isso, $v \in N(C)$, e perceba que, dessa forma,

(1)
$$Cv = \begin{bmatrix} Av \\ Bv \end{bmatrix} = 0 \implies Av = 0 \text{ e } Bv = 0;$$

logo, $v \in N(A)$ e $v \in N(B)$ e, consequentemente, $v \in N(A) \cap N(B)$. Portanto, $N(C) \subseteq N(A) \cap N(B)$. Correlativamente, a Equação (1) garante que, se $v \in N(A) \cap N(B)$, então Cv = 0 e, desse modo, $v \in N(C)$; temos, nesse sentido, que $N(A) \cap N(B) \subseteq N(C)$. Dessa maneira, $N(C) = N(A) \cap N(B)$.

3. Considere a matriz

$$A = \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix}.$$

(a) Ache a sua forma escalonada reduzida.

Resolução:

O Gilbert Strang [1, página 89] distingue a forma *escalonada reduzida*, em que os pivôs precisam ser unitários, da forma *escalonada*, em que os pivôs podem, mas não precisam, ser unitários. Vou, portanto, adotar essa nomenclatura; mas essa distinção não é, nesse contexto, importante.

Nesse sentido, para computar a forma escolanada reduzida de A, subtraímos, inicialmente, duas vezes a linha um da linha três; em seguida, somamos três vezes a linha dois na linha três e, enfim, dividimos a linha dois pelo seu pivô, que é igual a quatro. Logo, se escrevermos R(A) para a forma escalonada reduzida da matriz A, ficamos com

$$R(A) = \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 1 & 1/4 & 7/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(b) Qual é o posto dessa matriz?

Resolução:

O posto é, formalmente, a dimensão do espaço linha de A, que, por definição, é a quantidade de linhas linearmente independentes de A. Coincidentemente, essa quantidade é igual ao número de pivôs de A; portanto, o posto de A é igual a dois.

(c) Ache uma solução especial para a equação Ax = 0.

Resolução:

Como Ax = 0 se, e somente se, R(A)x = 0, precisamos escolher um vetor $x \in \mathbb{R}^4$ que seja ortogonal a todas as linhas de R(A). Poderíamos, nesse sentido, utilizar o produto vetorial entre as duas linhas iniciais de A para computar um vetor ortogonal a elas; contudo, essa operação, com as propriedades de que ela goza em \mathbb{R}^3 , existe, conforme o Teorema 1 de [2], exclusivamente em \mathbb{R}^3 e \mathbb{R}^7 .

Vamos, portanto, aplicar uma abordagem sistemática: como as variáveis três e quatro de R(A) são livres, podemos escrever $x=\begin{bmatrix} x_1 & x_2 & 1 & 1 \end{bmatrix}$ e, em seguida, pedimos que $x_2=-\frac{1}{4}-\frac{7}{4}=-2$ e que $x_1=5\cdot 2-7-9=-6$ para garantir que x seja ortogonal às linhas um e dois de R(A). Dessa forma, temos

$$x = \begin{bmatrix} -6 \\ -2 \\ 1 \\ 1 \end{bmatrix},$$

que satisfaz Ax = 0.

4. Ache a matrizes A_1 e A_2 (não triviais) tais que posto $(A_1B) = 1$ e posto $(A_2B) = 0$ para $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

2

Resolução:

Há, possivelmente, alguma ambiguidade, nesse contexto, na expressão "não triviais"; vou, desse modo, assumir que A_1 e A_2 são não nulas. Nesse sentido, temos que, como $B^2 = 2B$, posto $(B^2) = \text{posto}(2B) = \text{posto}(B) = 1$; logo, escolhemos $A_1 = B$. Agora, como $v = \begin{bmatrix} 1 & -1 \end{bmatrix}$ satisfaz vB = 0, temos que

$$A_2 = \begin{bmatrix} v \\ v \end{bmatrix} = \begin{bmatrix} 1 - 1 \\ 1 - 1 \end{bmatrix}$$

satisfaz $A_2B = 0$ e, portanto, posto $(A_2B) = 0$.

- 5. Verdadeiro ou Falso:
 - (a) O espaço das matrizes simétricas é subespaço.

Resolução:

Seja $\mathcal{S} = \{A \in \mathbb{R}^{n \times n} : A^T = A\}$ o conjunto das matrizes simétricas (de dimensão n)² e escolha, conforme a Observação 1, $A, B \in \mathcal{S}$ e $\alpha \in \mathbb{R}$. Como, nesse sentido, $(A + \alpha B)^T = A^T + \alpha B^T = A + \alpha B$, temos que a matriz $A + \alpha B$ é simétrica e, logo, pertence a \mathcal{S} ; a arbitrariedade de A e B, em particular, garante que \mathcal{S} é um espaço vetorial e que a afirmação é **verdadeira**.

(b) O espaço das matrizes anti-simétricas é um subespaço.

Resolução:

Seja $\mathcal{A} = \{A \in \mathbb{R}^{n \times n} : A^T = -A\}$ o conjunto das matrizes antissimétricas. Vamos, conforme a Observação 1, escolher $A, B \in \mathcal{A}$ e $\alpha \in \mathbb{R}$; verificamos, dessa forma, que $(A + \alpha B)^T = A^T + \alpha B^T = -A + \alpha(-B) = -(A + \alpha B)$ e que, nesse sentido, $A + \alpha B$ é antissimétrica. Temos, desse modo, que $A + \alpha B \in \mathcal{A}$, o que implica que \mathcal{A} é um espaço vetorial e, portanto, a afirmação é **verdadeira**.

(c) O espaço das matrizes não-simétricas $(A^T \neq A)$ é um subespaço.

Resolução:

A afirmação é **falsa**: a matriz nula é simétrica e, portanto, o conjunto das matrizes não simétricas não contém o elemento nulo da adição; ele não é, logo, um espaço vetorial.

6. Se $A \notin 4 \times 4$ e inversível, descreva todos os vetores no núcleo da matriz $B = \begin{bmatrix} A & A \end{bmatrix}$ (que é 4×8).

Resolução:

Seja $v \in N(B) \subseteq \mathbb{R}^8$ e escreva $v = \begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$, com $v_1, v_2 \in \mathbb{R}^4$. Nesse sentido, temos que Bv = 0 e

$$(2) Bv = Av_1 + Av_2;$$

logo, $Av_1 = -Av_2$ e, como A é invertível, $v_1 = -v_2$. Por outro lado, se $v_1 = -v_2$, então, pela Equação (2), $v \in N(B)$. Portanto, o núcleo de B é igual a

$$\left\{ \begin{bmatrix} u \\ -u \end{bmatrix} : u \in \mathbb{R}^4 \right\}.$$

- 7. Mostre por contra-exemplos que as seguintes afirmações são falsas em geral:
 - (a) $A \in A^T$ tem os mesmo núcleos.

Resolução:

Perceba que, se A não é quadrada, então os núcleos de A e de A^T são subconjuntos de conjuntos distintos; em particular, eles não são iguais. No entanto, a afirmação é falsa, em geral, mesmo que A seja quadrada; escolha, com efeito,

3

²É plausível escrever que esse conjunto não é, como descrito do enunciado, um espaço vetorial; isso porque o tamanho da matriz não é informado e, portanto, não temos a garantia de que a soma está bem definida: sem essa operação, não podemos definir um espaço vetorial. Essa observação, aliás, pode ser estendida para o item (b).

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e verifique que $N(A) = \{v \in \mathbb{R}^3 : \langle v, e_2 \rangle = 0\}$, enquanto $N(A^T) = \{v \in \mathbb{R}^3 : \langle v, e_1 \rangle = 0\}$ (escrevemos e_i para o vetor em que todas as coordenadas são nulas, exceto a *i*-ésima, que é unitária).

(b) $A \in A^T$ tem as mesmas variáveis livres.

Resolução:

Seja R(A) a forma escalonada da matriz A: chamamos de variáveis básicas de A ao conjunto de variáveis que correspondem aos pivôs; dizemos que as outras são as variáveis livres. Dessa forma, na matriz do item (a), temos que, para a matriz A, as variáveis um e três são livres, enquanto, para A^T , as variáveis dois e três são livres. Portanto, as variáveis livres de A e de A^T são distintas, e a afirmação é falsa.

(c) Se R é a forma escalonada de A, então R^T é a forma escalonada de A.

Resolução:

Escrevendo, como no exercício três, R(A) para a forma escalonada da matriz A, temos que, se A é a matriz do item (a), R(A) = A e

$$R(A^T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$

em particular, $R(A^T) \neq R(A)^T$, e a afirmação é falsa.

8. Construa uma matriz cujo espaço coluna contenha (1,1,5) e (0,3,1) e cujo núcleo contenha (1,1,2).

Resolução:

Seja A uma matriz tal que o núcleo contém o vetor (1,1,2) e o espaço coluna, os vetores (1,1,5) e (0,3,1), perceba que, como esses espaços são subconjuntos de \mathbb{R}^3 , $A \in \mathbb{R}^{3\times 3}$. Nessas condições, temos que existem vetores $u,v \in \mathbb{R}^3$ tais que

$$A = \begin{bmatrix} u & v & -2(u+v) \end{bmatrix}$$

(isso porque $(1,1,2) \in N(A)$); escolhemos, portanto, u = (1,1,5) e v = (0,3,1), de modo que $Ae_1 = u$ e $Ae_2 = v$; isto é, u e v estão no espaço coluna de A. Dessa forma,

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 1 & 3 & -8 \\ 5 & 1 & -12 \end{bmatrix}$$

satisfaz as condições do enunciado.

9. Construa uma matriz cujo núcleo contenha todos os múltiplos de (4,3,2,1).

Resolução:

Seja v=(4,3,2,1). Vamos, agora, escolher um vetor linha u em $\mathbb{R}^{1\times 4}$ tal que uv=0 e, portanto, v pertencerá ao núcleo de u. Heuristicamente, escrevemos $v=(v_1,v_2)$, com $v_1,v_2\in\mathbb{R}^2$, e escolhemos $u=(v_1^\perp,v_2^\perp)^T$, em que v_i^\perp satisfaz, para $1\leq i\leq 2,$ $\langle v_i^\perp,v_i\rangle=0$. Ora, como $v_1^\perp=(-3,4)$ e $v_2^\perp=(-1,2)$ satisfazem essas condições,

$$u = \begin{bmatrix} -3 & 4 & -1 & 2 \end{bmatrix}$$

4

é uma matriz tal que $v \in N(u)$.

Referências

- [1] Gilbert Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Belmont, CA, 2006.
- [2] W. S. Massey. Cross products of vectors in higher dimensional euclidean spaces. The American Mathematical Monthly, 90(10):697, December 1983.