Сигнал о пожаре придет точно по адресу

И.Г. НеплохоВ, К.Т.Н.

Как отличить адресную систему пожарной сигнализации (СПС) от аналоговой и адресно-аналоговой? Каковы объективные признаки, отличающие эти классы систем? Как не дать себя обмануть недобросовестному поставщику, искажающему терминологию в рекламных целях? Отвечает на эти вопросы эксперт компании "Систем Сенсор Фаир Детекторс", кандидат технических наук Неплохов Игорь Геннадьевич. Он постарается осветить принципиальную разницу между неадресными, адресными и адресно-аналоговыми СПС.

опробуем привести сравнительный анализ неадресных (называемых иногда пороговыми или традиционными), адресных (опросных и неопросных) и адресно-аналоговых систем пожарной сигнализации в формате сводной таблицы.

Как видно из **таблицы 1**, в неадресной системе решение о возгорании принимает пожарный извещатель, в работоспособности которого можно убедиться только во время технического обслуживания СПС, которое проходит один раз в 6-12 месяцев (!). Очевидны и прочие недостатки систем этого типа: необходимость установки двух извещателей на помещение, высокая вероятность ложных срабатываний, локализация сигнала с точностью до шлейфа, ограничение контролируемой зоны, недостаточные для ряда объектов возможности управления пожарной автоматикой и прочее.

Адресные неопросные системы являются, по сути, пороговыми, дополненными

лишь возможностью передачи кода адреса сработавшего извещателя. Таким образом, этим системам присущи все недостатки неадресных: высокая вероятность ложных срабатываний, невозможность определить адреса извещателей, отключенных вследствие снятия или КЗ, невозможность автоматического контроля работоспособности пожарных извещателей (при любом отказе электроники связь извещателя с ПКП прекращается), необходимость установки 2-х извещателей на поме-

Адресно-аналоговые извещатели и модули контроля и управления

Таблица 1. Характеристики неадресных, адресных и адресно-аналоговых систем.

и адресно-аналоговых систем.				
Тип системы Признаки системы	Неадресные системы	Адресные неопрос- ные систе- мы	Адресные опросные системы (представлены в России на базе АМ-99 серии Леонардо)	Адресно- аналоговые системы
Компонент системы, принимающий решение о возгорании	Пожарный извеща		атель (ПИ)	Приемно-кон- трольная панель (ПКП)
Топология шлейфа	Радиальный шлейф	Адресная шина (АШ)	Адресная шина любой топологии (звезда, дерево, петля и т.п.)	Кольцевая адресная шина
Площадь и чис- ло помещений, контролируемых одним шлейфом	До 1600 м² (до 10 помещений, с ВУОС до 20) на одном этаже,до 300 м² на 2-х смежных этажах	Определяется характеристиками ПКП, извещателей и кабеля адресной шины		
Кол-во ПИ на помещение (по НПБ 88-2001)	2		1	
Локализация возгорания	Шлейф	Пожарный извещатель		ль
Сообщения, по- ступающие на ПКП	ПОЖАР, НЕИСПРАВ- НОСТЬ шлейфа	Адрес ПИ в режиме ПОЖАР, НЕИСПРАВ- НОСТЬ Ши- ны	Адрес ПИ, его состояние или неисправность, адреса отключенных ПИ при обрыве АШ или коротком замыкании	Значения контролируемых параметров, состояние устройств управления, адреса отключенных ПИ при обрыве АШ или коротком замыкании
Контроль рабо- тоспособности СПС в дежурном режиме	Нет		Автоматический контроль работоспособности при опросе всех адресных компонентов шлейфа	
Относительное время реакции (Т) на возгора- ние / неисправ- ность	Т / не обнаруживается		(0,5 - 1) Т / несколько периодов опроса	(0,01-0,1) Т / период опроса
Организация по- жарной автома- тики				Гибкая програм- мируемая струк- тура любой сложности с при- менением уни- версальных мо- дулей контроля и управления

Адресные опросные системы можно назвать переходными к адресно-аналоговому оборудованию: периодический опрос извещателей, включенных в адресную шину любой топологии, обеспечивает контроль их работоспособности при любом виде отказа, что позволяет устанавливать по одному извещателю в каждом в помещении вместо двух (согласно вышеуказанно-

Структура построения адресно-аналоговой системы "Сфера 2001"

му НПБ). Кроме того, произвольная структура адресной шины и значительное количество подключаемых ПИ (порядка ста штук) позволяют значительно уменьшить расходы на кабель и монтаж. В адресных опросных СПС могут быть реализованы сложные алгоритмы обработки информации, например автокомпенсация изменения чувствительности ПИ. Формирование сигналов "Неисправность" при падении чувствительности и сигналов "ТО" при запылении дымовой камеры ПИ позволяет значительно уменьшить расходы на техническое обслуживание. Сохранение чувствительности на постоянном уровне обеспечивает снижение вероятности ложных срабатываний даже при повышении в два раза чувствительности, соответственно уменьшается время определения возгорания. Использование адресных опросных систем значительно повышает надежность работы пожарной автоматики, хотя ее структура остается жесткой и, как в предыдущих системах, определяется типом используемого ПКП. Повторюсь, что и в неадресных и в адресных системах решение о пожаре принимает пожарный извещатель, что определяет ограничение функциональных возможностей СПС.

Важным отличием адресно-аналоговых СПС является то, что в них пожарный адресно-аналоговый извещатель лишь измеряет величину контролируемого параметра (уровень задымления или температуру) и транслирует его значение при обращении ПКП по соответствующему адресу. Адресно-аналоговый прибор приемно-контрольный (ААПКП) является специализированной ЭВМ, центром обработки данных по сложнейшим алгоритмам в реальном масштабе времени, обеспечивает максимальную скорость принятия решений и управления подсистемами пожарной автоматики, с отображением состояния объекта в виде текстовых сообщений и передачей их на ПЭВМ.

Говоря об адресно-аналоговой аппаратуре, необходимо, в первую очередь, упомянуть о протоколе - уникальном для каждой системы языке общения ее компонентов. Наиболее популярным и распространенным среди производителей адресноаналоговых приемно-контрольных панелей пожарной сигнализации является протокол 200-й серии System Sensor. На его базе разработаны ААПКП таких известных во

Структура построения адресно-аналоговой системы на базе ПКП серии "Рубеж

всем мире компаний, как Honeywell, Notifier, ESMI, Ademco, FCI, Labor Strauss и пр. Причем использование единого базового протокола не означает, что компоненты этих систем совместимы друг с другом: System Sensor дает возможность своим партнерам защитить их коммерческие интересы и может модифицировать базовый 200-ый протокол для разработки ААПКП под определенным брендом. Кстати, в Европе доля ААСПС уже превышает 60%, в то время как в России пока не

превышает 10%! Отрадно, что за последние два года появились и первые российские разработки - компаний "Сфера безопасности XXI век" и "Сигма-ИС".

Хотелось бы кратко привести характерные особенности ААСПС, разработанных на базе 200-го протокола.

Непрерывный динамический опрос (с периодом не более 5 секунд) всех адресных устройств, отслеживающий скорость изменения параметров задымленности, температуры, состояния устройств пожарной автоматики в реальном масштабе времени. При этом происходит анализ развития пожарной ситуации на объекте с формированием предупредительных сигналов на самых ранних этапах возгорания. Например, при использовании адресно-аналоговых оптико-элекронных ПИ скорость реакции на возгорание по сравнению с пороговыми ПИ повышается в 10 раз, а при применении адресно-аналоговых лазерных (точечных) ПИ - в 100 раз!

Кольцевая архитектура шлейфов, являющихся шинами данных с двунаправленной передачей контролирующих и управляющих сигналов. При обрыве шлейфа ААПКП фиксирует место неисправности и формирует соответствующее сообщение, кольцевой шлейф трансформируется в два радиальных и все компоненты продолжают функционировать.

Повышенная живучесть системы: при коротком замыкании шлейфа отключается только его участок между двумя устройствами локализации КЗ, остальная часть системы остается работоспособной. Некоторые модели адресно-аналоговых извещателей, а также все модули контроля и управления серии 200 оснащены встроенным изолятором.

Возможность изменения чувствительности ПИ в зависимости от условий эксплуатации и времени работы (режимы "день/ночь", "рабочий день/выходной"), а также оценивать состояние объекта по данным нескольких ПИ, находящихся в одном или разных помещениях, позволяет адаптировать систему к особенностям объекта любого функционального назначения.

Организация противопожарной защиты объекта любой сложности с использованием огромного спектра адресно-аналоговых извещателей: дымового оптико-электронного 2251EM, теплового максимально-дифференциального 5251HTEM, комбинированного 2251 TEM, лазерного для особо чистых помещений 7251, дымового оп-

искробезопасном исполнении (серий WR4001 и WR2001) и прочие.

ния внешними устройствами и автоматики пожаротушения.

модулей, сочетающих и функции контроля и функции управления.

тико-электронного для запыленных помещений Filtrex, дымового оптико-электронного в искробезопасном исполнении 2251 EIS, а также ручного M500 KAC, ручного в

Модули контроля и управления обеспечивают управление системами пожаротушения и автоматической пожарной защиты здания. Предусмотрена возможность подключения в шлейф сигнализации 99-ти блоков управления дополнительно к 99-ти извещателям, таким образом, общее число адресуемых устройств в одном шлейфе

Возможность подключения подшлейфа неадресных извещателей посредством

Конфигурация (программирование) системы, помимо базовой заводской конфигурации, позволяет произвольно разбить ПИ на группы, менять их чувствительность, дополнить ПИ и модули текстовыми описаниями, прописать логику управле-

Возможность объединения нескольких ААПКП в единую систему посредством концентратора: к примеру, возможно объединить до 16-ти ПКП ESA (ESMI) посредством концентратора MESA, что позволяет защитить объект площадью до 600 000 м2. Минимальные затраты на обслуживание обеспечиваются автоматической сигнализацией о необходимости проведения технического обслуживания ПИ. А если учесть, что в адресно-аналоговых извещателях 200-й серии реализована функция автокомпенсации уровня запыленности дымовой камеры, то период между ТО увеличи-

Гибкая организация взаимодействия систем пожарной автоматики, подключаемых непосредственно в кольцевой шлейф сигнализации с помощью универсальных

Интеграция в АСУ ТП здания. Опыт установки систем безопасности на реальных объектах показал, что заказчик редко ограничивается лишь одной системой. Обычно это видеонаблюдение, охранная и пожарная сигнализации, система оповещения и контроля доступа. Современные информационные технологии позволяют создать интеллектуальную систему обеспечения безопасности здания, осуществляющую

вается.

составляет 198.

соответствующего модуля.

оперативный мониторинг событий и управление функциями ряда подсистем.

стью, гибкостью, и будущее, безусловно, за адресно-аналоговыми системами.

ной сигнализации от аналоговой и адресно-аналоговой, можно будет узнать на бесплатных семинарах, которые будут проводить представители компании "Систем Сенсор Фаир Детекторс" в Центральном офисе компа-

нии "Тинко" (Москва, 3-й Балтийский переулок, дом 3) в январе-феврале 2004

