Import wymaganych pakietów

```
In [1]: import numpy as np import pandas as pd
```

Wczytanie pliku

```
In [2]: df = pd.read_csv("Zbiór danych Titanic.arff.txt", header = 0, na_values = "?")
df.head(20)
```

Out[2]:		pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
	0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	В5	S	2	NaN	St Louis, MO
	1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	C22 C26	S	11	NaN	Montreal, PQ / Chesterville, ON
	2	1	0	Allison, Miss. Helen Loraine	female	2.0000	1	2	113781	151.5500	C22 C26	S	NaN	NaN	Montreal, PQ / Chesterville, ON
	3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	C22 C26	S	NaN	135.0	Montreal, PQ / Chesterville, ON
	4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25.0000	1	2	113781	151.5500	C22 C26	S	NaN	NaN	Montreal, PQ / Chesterville, ON
	5	1	1	Anderson, Mr. Harry	male	48.0000	0	0	19952	26.5500	E12	S	3	NaN	New York, NY
	6	1	1	Andrews, Miss. Kornelia Theodosia	female	63.0000	1	0	13502	77.9583	D7	S	10	NaN	Hudson, NY
	7	1	0	Andrews, Mr. Thomas Jr	male	39.0000	0	0	112050	0.0000	A36	S	NaN	NaN	Belfast, NI
	8	1	1	Appleton, Mrs. Edward Dale (Charlotte Lamson)	female	53.0000	2	0	11769	51.4792	C101	S	D	NaN	Bayside, Queens, NY
	9	1	0	Artagaveytia, Mr. Ramon	male	71.0000	0	0	PC 17609	49.5042	NaN	С	NaN	22.0	Montevideo, Uruguay
	10	1	0	Astor, Col. John Jacob	male	47.0000	1	0	PC 17757	227.5250	C62 C64	С	NaN	124.0	New York, NY
	11	1	1	Astor, Mrs. John Jacob (Madeleine Talmadge Force)	female	18.0000	1	0	PC 17757	227.5250	C62 C64	С	4	NaN	New York, NY
	12	1	1	Aubart, Mme. Leontine Pauline	female	24.0000	0	0	PC 17477	69.3000	B35	С	9	NaN	Paris, France
	13	1	1	Barber, Miss. Ellen 'Nellie'	female	26.0000	0	0	19877	78.8500	NaN	S	6	NaN	NaN
	14	1	1	Barkworth, Mr. Algernon Henry Wilson	male	80.0000	0	0	27042	30.0000	A23	S	В	NaN	Hessle, Yorks
	15	1	0	Baumann, Mr. John D	male	NaN	0	0	PC 17318	25.9250	NaN	S	NaN	NaN	New York, NY
	16	1	0	Baxter, Mr. Quigg Edmond	male	24.0000	0	1	PC 17558	247.5208	B58 B60	С	NaN	NaN	Montreal, PQ
	17	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0000	0	1	PC 17558	247.5208	B58 B60	С	6	NaN	Montreal, PQ
	18	1	1	Bazzani, Miss. Albina	female	32.0000	0	0	11813	76.2917	D15	С	8	NaN	NaN
	19	1	0	Beattie, Mr. Thomson	male	36.0000	0	0	13050	75.2417	C6	С	Α	NaN	Winnipeg, MN

llość wartości brakujących w danych kolumnach:

```
Out[3]: pclass
                        0
                        0
        survived
        name
                        0
        sex
        age
                      263
        sibsp
        parch
                       0
        ticket
                      0
        fare
                       1
        cabin
                     1014
        embarked
                      2
                     823
                     1188
        body
        home.dest
                      564
        dtype: int64
```

Procentowy udział wartości brakujących:

```
In [4]: df.isnull().mean() * 100
Out[4]: pclass
                     0.000000
                   0.000000
        survived
        name
                    0.000000
                    0.000000
        sex
        age
                   20.091673
        sibsp
                    0.000000
        parch
                    0.000000
                    0.000000
        ticket
                    0.076394
        fare
                   77.463713
        cabin
        embarked
                     0.152788
                   62.872422
        boat
                    90.756303
        body
        home.dest
                   43.086325
        dtype: float64
```

Wartości brakujące mają widoczny udział dla kolumn: age, cabin, boat, body, home.dest

llość cech:

```
In [5]: len(df.columns)
```

Out[5]: 14

Zbiór zawiera 14 cech:

- pclass klasa, którą podrożował dany pasażer
- survived 0 = zginął w katastrofie; 1 = przeżył
- name dane osobowe pasażera
- sex płeć
- age wiek
- sibsp ilość rodzeństwa lub małżonków danego pasażera na pogładzie
- parch ilość rodziców i dzieci danego pasażera na pokładzie
- ticket nr biletu
- fare opłata za podróż
- cabin nr kabiny
- embarked port, w którym pasażer wsiadł (S Southampton, C Cherbourg, Q Queenstown)
- boat oznaczenie łodzi ratunkowej, do której wsiadł pasażer
- **body** nr identyfikacyjny ciała (jeśli zginął w katastrofie i udało się odnaleźć ciało)
- home.dest miejsce zamieszkania lub cel podróży

Już na pierwszy rzut oka można zauważyć sporo wartości NaN w kolumnach body i boat, co jest zrozumiałe, gdyż najczęściej brakuje ich dla pasażerów, którzy zginęli w katastrofie (nie zdążyli wsiąść na łódź ratunkową, nie udało się znaleźć ich ciał)

Można również dostrzec powtarzające się wartości w kolumnach: ticket, fare, czy też cabin

Przed użyciem funkcji **isnull()** należało przy wczytaniu ustalić, że wartości NA w zbiorze danych są oznaczone przez znaki zapytania (normalnie za wartości NA uznaje się po prostu puste pola)

Dla upewnienia się, że wartości brakujące nie były oznaczone w inny sposób:

```
In [6]: df.isnull().sum() + df.notnull().sum() == len(df)
```

```
Out[6]: pclass
                       True
         survived
         name
                       True
         sex
                       True
         age
                       True
         sibsp
                       True
         parch
                       True
         ticket
                       True
         fare
                       True
         cabin
                       True
         embarked
                       True
         boat
                       True
         body
                       True
         home.dest
                       True
         dtype: bool
```

Możemy stworzyć zmienną kategoryczną, np. dla zmiennej **body**, która poinformuje nas o wartości brakującej. Dodatkowo możemy użyć operacji **groupby**, aby zmapować brakujące wartości danej kolumny i powiązanie z wartością **survived** (0 lub 1)

```
In [7]: df['BodyNull'] = np.where(df['body'].isnull(), 1, 0)
        df.groupby(['survived'])['BodyNull'].mean()
        survived
              0.850433
         0
         1
              1.000000
         Name: BodyNull, dtype: float64
In [8]: #to samo w jednej linijce
        df.groupby(['survived'])['body'].apply(lambda x: np.where(x.isnull(), 1, 0).mean())
         survived
Out[8]:
              0.850433
         0
         1
              1.000000
        Name: body, dtype: float64
In [9]: df.head(10)[['survived', 'body', 'BodyNull']]
Out[9]:
           survived body BodyNull
        0
                     NaN
         1
                     NaN
        2
                 0
                     NaN
                                 1
        3
                    135.0
                 0
         4
                     NaN
                                 1
         5
                     NaN
        6
                  1
                     NaN
                                 1
        7
                 0
                     NaN
        8
                     NaN
        9
                 0
                     22.0
                                 0
```

Operacja ta pozwoliła nam zobaczyć jaki jest odsetek brakującej wartości zmiennej **body** w zależności czy ktoś przeżył katastrofę.

Dochodzimy do oczywistego wniosku, że dla tych, którzy przeżyli, wartości brakujące body mają 100% udziału w tej grupie (nie szukano i identyfikowano ciał ocalałych).

Dla tych, którzy zginęli udział ten jednak też jest bardzo duży (85%), co oznacza, że nie odnaleziono i zidentyfikowano aż 85% ciał ofiar.

Możemy zrobić takie mapowanie według zmiennej survived dla wszystkich zmiennych, dla których przedtem zauważyliśmy znaczny udział wartości brakujących:

Albo też pogrupować według innej zmiennej, np. pclass

```
 In ~ [11]: ~ df.groupby("pclass")[['boat', 'body', 'home.dest', 'age', 'cabin']].apply(lambda ~ x: ~ x.isnull().mean()).style.for a continuous continuo
```

```
boat body home.dest age cabin
pclass
        0.38
              0.89
                          0.11 0.12
                                       0.21
     1
     2
        0.60
               0.89
                          0.06
                                       0.92
                                0.06
     3 0.76
              0.92
                          0.72 0.29
                                       0.98
```

Można pójść jeszcze krok dalej i pogrupować według obu tych zmiennych:

```
df.groupby(["survived", "pclass"])[['boat', 'body', 'home.dest', 'age', 'cabin']].apply(lambda x: x.isnull().mea
                  boat body home.dest age cabin
survived pclass
               1 0.98
                        0.72
                                   0.07 0.16
                                               0.28
       0
               2
                0.99
                        0.80
                                   0.09 0.08
                                               0.96
                  0.99
                        0.90
                                   0.73 0.30
                                               0.99
                 0.01
                        1.00
                                   0.12 0.10
                                               0.17
                                               0.86
               2 0.07
                                   0.02 0.03
       1
                        1 00
               3 0.08
                        1.00
                                   0.70 0.28
                                               0.95
```

Na podstawie analizy powyższych tabel można dojść do wniosków:

- dla zmiennych home.dest, age i cabin rozkład udziału wartości brakujących według klasy jest niezależny od tego czy pasażerowie przeżyli katastrofę
- wartości brakujące dla home.dest są wyraźnie zależne od klasy (najwięcej dla 3). Nieznacznie wyższy udział wartości NA dla
 zmiennej home.dest przy grupowaniu według survived dla zmarłych może być związany z tym, że większość ofiar katastrofy to
 pasażerowie 3 klasy (sprawdzenie poniżej)
- wartości NA dla zmiennej boat są jednoznacznie zależne od tego czy ktoś przeżył katastrofę (NA związane ze śmiercią)
- wartości NA dla age nie są wyraźnie zależne od żadnej ze zmiennych, według których grupowaliśmy
- wartości NA dla zmiennej body nie występują jeśli ktoś przeżył katastrofę (oczywiste nie szukano i identyfikowano ciał ocalałych).
 Dla zmarłych jednak także jest on niezależny od klasy (bardzo wysokie udziały procentowe wartości brakujących w każdej)

Podsumowanie:

df[df['age'].isnull()].notnull().mean()

- możemy usunąć wartości brakujące z kolumn fare i embarked ze względu na małą ilość zakładamy, że są to wartości typu MCAR
- wartości brakujące typu MAR boat, body (zależne, przynajmniej częściowo, od survived), cabin, home.dest (zależne od klasy).
 Do tej grupy zaliczymy też age, ponieważ brakujące wartości w tej kolumnie są związane z brakami np. w cabin (pokazane poniżej)
 Kolumnę boat w zasadzie w całości można usunąć ze zbioru (brak nowej informacji bardzo silne powiązanie z survived). Innych danych brakujących ze względu na dużą ilość nie można po prostu usunąć. Rozwiązaniem jest np. wypełnienie braków (imputacja).

```
In [14]: # odsetek brakujących wartości dla innych zmiennych, gdy wartości brakuje dla age
         df[df['age'].isnull()].isnull().mean()
Out[14]:
                       0.000000
         pclass
                       0.000000
          survived
          name
                       0.000000
                       0.000000
          sex
                       1.000000
          age
                       0.000000
          sibsp
          parch
                       0.000000
                       0.000000
          ticket
                       0.000000
          fare
                       0.912548
          cabin
          embarked
                       0.000000
          boat
                       0.737643
                       0.996198
          body
          home.dest
                       0.771863
          BodyNull
                       0.000000
          dtype: float64
In [15]: # odsetek wartości not-null dla innych zmiennych, gdy wartości brakuje dla age
```

```
1.000000
1.000000
Out[15]: pclass
           survived
          name
                         1.000000
           sex
                         0.000000
          age
           sibsp
                         1.000000
          parch
                         1.000000
           ticket
           fare
                         1.000000
           cabin
                         0.087452
           embarked
                         1.000000
           boat
                         0.262357
           body
                         0.003802
           \verb|home.dest|
                         0.228137
          BodyNull 1 dtype: float64
                         1.000000
```

In []: