STAT462 Ass3

Chris Chang

2025-10-01

Part A

Classifying wine samples (classification trees)

text(classification.tree, pretty = 0, cex = 0.7)

In this question we will train tree-based classification algorithms to classify samples according to the variable Class, which states the cultivar used for the wine.

Q1.

Train a single tree-based classifier on the training set. Use cross-validation to prune this tree suitably. Visualise the classification tree.

```
# Read in data to train and test sets
train <- read.csv("Data for assignment 3-20251002\\wine_train.csv")</pre>
test <- read.csv("Data for assignment 3-20251002\\wine_test.csv")</pre>
# Ensure Class is categorical
train$Class <- as.factor(train$Class)</pre>
test$Class <- as.factor(test$Class)</pre>
# train a tree to classify
classification.tree <- tree(Class ~ ., train)</pre>
summary(classification.tree)
##
## Classification tree:
## tree(formula = Class ~ ., data = train)
## Variables actually used in tree construction:
## [1] "Proline"
                          "Flavanoids"
                                            "Color.intensity" "Alcohol"
## Number of terminal nodes: 7
## Residual mean deviance: 0.2472 = 33.37 / 135
## Misclassification error rate: 0.05634 = 8 / 142
# Plot the intital tree
plot(classification.tree)
```



```
cv.classification <- cv.tree(classification.tree, FUN = prune.misclass)

# Find out the best tree size that corresponds to the lowest deviance
best.size <- cv.classification$size[which.min(cv.classification$dev)]

# Use the best size to prune the tree
pruned.tree_best <- prune.misclass(classification.tree, best = best.size)
best.size</pre>
```

[1] 4

```
# Plot the tree after pruning
plot(pruned.tree_best)
text(pruned.tree_best, pretty = 0, cex = 0.7)
```



```
# Make predictions on test data
pruned.test.pred <- predict(pruned.tree_best, newdata = test, type = "class")
# Compute the error rate
pruned.er <- mean(pruned.test.pred != test$Class)
pruned.er</pre>
```

[1] 0.1666667

Q2.

Prune your tree enough so that you only need two features to make predictions. Visualise your data in these two dimensions, and illustrate the decision tree of your classifier graphically.

```
# pruning to two branches
pruned.tree_2 <- prune.misclass(classification.tree, best = 4)

# plot pruned tree with only 2 branches
plot(pruned.tree_2)
text(pruned.tree_2, pretty = 0, cex = 0.7)</pre>
```


Q3.

Fit a bagged classification tree model and/or a random forest to see whether you can improve on your single tree's performance.

```
\# Count the number of predictors. Class needs to be excluded.
num_predictors <- ncol(train) -1</pre>
# Fit a bagged tree
bag.tree <- randomForest(Class ~ . , data = train, mtry = num_predictors, importance=TRUE)</pre>
bag.tree
##
## Call:
    randomForest(formula = Class ~ ., data = train, mtry = num_predictors,
##
                                                                                  importance = TRUE)
##
                  Type of random forest: classification
                        Number of trees: 500
## No. of variables tried at each split: 13
##
##
           OOB estimate of error rate: 4.23%
## Confusion matrix:
      1 2 3 class.error
##
## 1 48 1 0 0.02040816
## 2 2 55 2 0.06779661
```

```
## 3 0 1 33 0.02941176

bag.pred <- predict(bag.tree, newdata = test)

bag.er <- mean(bag.pred != test$Class)

bag.er

## [1] 0

# Report most important features
varImpPlot(bag.tree)</pre>
```

bag.tree

Part B

Clustering the wine dataset (Hierarchical clustering and k-means)

```
plot_func <- function(data, label, title = "") {
    # Ensure labels are factor
    labels <- factor(labels)

# Convert to data frame if needed</pre>
```

Q1.

Perform hierarchical clustering on the wine dataset, but do not include the Class feature. Group the data into three clusters and check/visualise whether this is a good reconstruction of the (actual) classes recorded in the Class feature.

```
# Remove Class column for clustering
train_no_class <- train[, !(names(train) %in% "Class")]

# Distance matrix
dist_matrix <- dist(train_no_class)

# perform hierarchical clustering
hc.complete <- hclust(dist_matrix, method = "complete")
plot(hc.complete, main = "Hierarchical Clustering (Complete Linkage)", xlab = "", sub = "", cex = .3)

# Cut tree into 3 clusters
clusters <- cutree(hc.complete, k = 3)

plot(hc.complete, main = "Hierarchical Clustering (Complete Linkage)", xlab = "", sub = "", cex = .3)
# Sepcify a chosen number of clusters
rect.hclust(hc.complete, k = 3, border = "red")</pre>
```

Hierarchical Clustering (Complete Linkage)


```
# Cut tree into 3 clusters
clusters <- cutree(hc.complete, k = 3)</pre>
# 3. PCA-based plotting function
plot_func <- function(data, labels, title = "") {</pre>
  # Ensure labels is a vector and factor
  labels <- factor(as.vector(labels))</pre>
  # Convert data to data frame if needed
  data <- as.data.frame(data)</pre>
  # PCA to reduce to 2D
  pca <- prcomp(data, scale. = TRUE)</pre>
  pca_df <- as.data.frame(pca$x[, 1:2])</pre>
  colnames(pca_df) <- c("PC1", "PC2")</pre>
  # Add labels
  pca_df$label <- labels</pre>
  # Plot
  ggplot(pca_df, aes(x = PC1, y = PC2, color = label)) +
    geom_point(size = 3, alpha = 0.7) +
    scale_color_manual(values = c("#00AFBB", "#FC4E07", "#e7b800",
                                    "#006400", "#9400D3", "#FF8C00", "#008080")) +
    labs(title = title, x = "PC1", y = "PC2", color = "Cluster/Class") +
    theme minimal()
```

```
# Manual remapping - adjust these numbers based on what you see
# If cluster 1 should be class 2, cluster 2 should be class 1, cluster 3 should be class 3:
manual_map <- c(3, 1, 2) # Adjust these based on your dendrogram
remapped_clusters <- manual_map[clusters]

# Plot hierarchical clustering result
plot_func(train_no_class, remapped_clusters, "Hierarchical Clustering (3 Clusters)")</pre>
```

Hierarchical Clustering (3 Clusters)


```
# Plot actual Class labels
plot_func(train_no_class, train$Class, "Actual Wine Classes")
```


Q2.

Do the same using the k-means algorithm, for k=3. For visualisation, you can pick the two features that were sufficient for classification in question A, and plot datapoints in these two dimensions, comparing actual classes and predicted cluster labels.

```
dat <- train[,c("Proline", "Flavanoids")]
k.clus <- kmeans(dat, 3)

plot_func_clus <- function(data, label, title = "") {
    data$label <- factor(label)

    x_col <- colnames(data)[1]
    y_col <- colnames(data)[2]
    label <- colnames(data)[3]

p <- data %>%
    ggplot(data = ., mapping = aes(x = .data[[x_col]], y = .data[[y_col]], color = .data[[label]])) +
    scale_color_manual(values = c("#00AFBB", "#FC4E07", "#e7b800", "#006400", "#9400D3", "#FF8C00", "#00
    geom_point(size = 3.0, alpha = 0.7) +
    labs(
        title = title,
```

```
x = x_col, y = y_col, color = "Cluster Result"
) +
    theme_grey()
return(p)
}

# Manual remapping - adjust these numbers based on what you see
# If cluster 1 should be class 2, cluster 2 should be class 1, cluster 3 should be class 3:
manual_map <- c(3, 1, 2) # Adjust these based on your dendrogram
remapped_clusters <- manual_map[k.clus$cluster]

plot_func_clus(dat, remapped_clusters, "k-means clustering result")</pre>
```

k-means clustering result


```
# Plot actual Class labels
plot_func_clus(dat, train$Class, "Actual Wine Classes")
```

Actual Wine Classes

Q3.

You will likely not get great results, because your features vary on very different orders of magnitude (for example, Nonflavanoid.phenols is mostly between 0 and 1, but Proline is in the 1000 range). Normalise all numerical features using either z-score transformation or min-max normalisation, which will bring them into comparable orders of magnitude. Then repeat parts 1. and 2., and see whether your results improve.

```
# Remove Class column for clustering
train_no_class <- train[, !(names(train) %in% "Class")]

# Scale all predictors
scaled_train <- scale(train_no_class)
scaled_train <- as.data.frame(scaled_train)

# Distance matrix
dist_matrix <- dist(scaled_train)

# perform hierarchical clustering
hc.complete <- hclust(dist_matrix, method = "complete")
plot(hc.complete, main = "Hierarchical Clustering (Complete Linkage)", xlab = "", sub = "", cex = .3)

# Cut tree into 3 clusters
clusters <- cutree(hc.complete, k = 3)

plot(hc.complete, main = "Hierarchical Clustering (Complete Linkage)", xlab = "", sub = "", cex = .3)</pre>
```

```
# Sepcify a chosen number of clusters
rect.hclust(hc.complete, k = 3, border = "red")
```

Hierarchical Clustering (Complete Linkage)


```
# Cut tree into 3 clusters
clusters <- cutree(hc.complete, k = 3)

# Manual remapping - adjust these numbers based on what you see
# If cluster 1 should be class 2, cluster 2 should be class 1, cluster 3 should be class 3:
manual_map <- c(3, 1, 2) # Adjust these based on your dendrogram
remapped_clusters <- manual_map[clusters]

# Plot hierarchical clustering result
plot_func(scaled_train, remapped_clusters, "Hierarchical Clustering (3 Clusters)")</pre>
```


Plot actual Class labels
plot_func(scaled_train, train\$Class, "Actual Wine Classes")


```
dat <- train[,c("Proline", "Flavanoids")]
dat <- as.data.frame(scale(dat))

k.clus <- kmeans(dat, 3)

# This colour remapping code is from Claude

# Create a mapping from k-means clusters to actual classes

# Find which cluster number corresponds to which class
cluster_to_class <- sapply(1:3, function(cluster) {

    # Get the most common actual class for this cluster
    cluster_members <- train$Class[k.clus$cluster == cluster]
    as.numeric(names(sort(table(cluster_members), decreasing = TRUE)[1]))
})

# Remap cluster labels to match actual classes
remapped_clusters <- cluster_to_class[k.clus$cluster]

plot_func_clus(dat, k.clus$cluster, "k-means clustering result")</pre>
```

k-means clustering result

Plot actual Class labels
plot_func_clus(dat, train\$Class, "Actual Wine Classes")

