アナログ回路工学(5月21日,第03回講義)

電気電子情報工学専攻 情報通信制御システム工学講座 坪根 正

アナログ回路工学(5/21, 第03回講義) (初めに 1/2) 担当:坪根 正

登録時に名前とメールアドレスを入力したと思いますが、「名前はフルネーム」「メールアドレスはstnのもの(sXXXXXX@stn.nagaokaut.ac.jp)」でお願いします。もし異なる書式で入った人は、一度出て入り直してください。(このメールアドレスで出席確認をします)(受講資格が無い人のチェックも行います)

質問などはチャットに書き込んでみて下さい (まだ教員側も慣れてないので, 皆さんと一緒に慣れていきたいと思っています) アナログ回路工学(5/21, 第03回講義) (初めに 2/2) 担当:坪根 正

とても大切なこと:

Zoom授業の録画等を 学生が勝手に複製・配布することは禁止です

十分に注意して下さい

アナログ回路工学(5/21, 第03回講義, 前回の復習) (MOSFETの電流電圧特性) 担当:坪根 正

MOSFETの電流電圧特性(ドレイン電流 I_D)

アナログ回路工学(5/21, 第03回講義, 前回の復習) (MOSFETの動作領域) 担当:坪根 正

アナログ回路工学 (5/21, 第03回講義, 前回の復習) (MOSFETのドレイン電流 担当: 坪根 正

V_{DS} V_{GS}	$V_{DS} < V_{GS} - V_{th}$	$V_{DS} > V_{GS} - V_{th}$
$V_{GS} > V_{th}$ 強反転	$I_{D} = \mu C_{ox} \frac{W}{L} \left\{ (V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right\}$ 非飽和(線形)	$I_D = \frac{1}{2}\mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2$ 飽和
$V_{GS} < V_{th}$ 弱反転	$I_D \approx 0$	

アナログ回路工学(5/21, 第03回講義) (本日の講義内容) 担当:坪根 正

電流電圧特性の2次効果を理解する チャネル長変調効果

MOSFETの増幅作用を理解する

アナログ回路工学(5/21, 第03回講義) (チャネル長変調効果) 担当:坪根 正

ピンチオフが発生 (x = L')で反転層が止まる)

ドレイン電流:

$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2$$

L'にする必要がある

アナログ回路工学(5/21, 第03回講義) (チャネル長変調効果) 担当:坪根 正

 $V_{DS} > V_{GS} - V_{th}$ の場合(飽和領域)

$$I_{D} = \frac{1}{2} \mu C_{ox} \frac{W}{L'} (V_{GS} - V_{th})^{2}$$

$$\frac{1}{L'} = \frac{1}{L} \frac{1}{\left(1 - \frac{\Delta L}{L}\right)} = \frac{1}{L} \left(1 + \frac{\Delta L}{L}\right)$$

$$\frac{1}{1-x} = 1 + x + x^2 \cdots$$

$$(L' = L - \Delta L)$$

$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS})$$

$$\frac{\Delta L}{L} \cong \lambda V_{DS}$$
とする

λ: チャネル長変調係数

アナログ回路工学(5/21, 第03回講義) (チャネル長変調効果) 担当: 坪根 正

出力コンダクタンス g_o は V_{GS} に依存して変化 \rightarrow この飽和領域での I_D の V_{DS} 依存性は誤差と扱われることも多い

アナログ回路工学(5/21, 第03回講義) (チャネル長と出力コンダクタンス) 担当:坪根 正

チャネル長が $L = L_1$ の時と $L = A2L_1$ の時の特性の違いは?

出力コンダクタンス: g_o

$$g_o = \frac{\partial I_D}{\partial V_{DS}} \propto \frac{1}{L^2}$$

Lが大きいほど出力コンダクタンスg_oは小さくなる

→ 電流駆動能力は低下

アナログ回路工学 (5/21, 第03回講義) (トランス(伝達)コンダクタンス g_m) 担当:坪根 正

 V_{DS} の関数として g_m を図示すると?(チャネル長変調効果は無視した場合)

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

線形領域:

$$\mu C_{ox} \frac{W}{L} V_{DS}$$

飽和領域:

$$\mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})$$

アナログ回路工学(5/21, 第03回講義) (MOSFETのバイアス) 担当: 坪根 正

MOSFETが飽和領域で動作していることを確認するには?

チャネル長変調効果を無視すると

 $V_{OUT} > V_{GS} - V_{th}$ であれば良いので、

$$V_{OUT} = V_{DD} - R_D I_D$$

$$= V_{DD} - \frac{1}{2} g_m (V_{GS} - V_{th}) R_D$$

$$> V_{GS} - V_{th}$$

よって、
$$V_{DD} > (V_{GS} - V_{th}) \left(1 + \frac{1}{2}g_m R_D\right)$$

(必要なバイアスの大きさが分かる)

アナログ回路工学(5/21, 第03回講義) (まとめ1/3, MOSFETの増幅作用) 担当:坪根 正

微小な入力摂動(ゲート電圧信号の変化)を 大きな出力変動(ドレイン電流の変化)として取り出す

飽和領域:
$$I_D = \frac{1}{2} \mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda V_{DS})$$

アナログ回路工学(5/21, 第03回講義) (まとめ2/3) 担当:坪根正

アナログ回路工学(5/21, 第03回講義) (まとめ3/3) 担当:坪根 正

V_{DS} V_{GS}	$V_{DS} < V_{GS} - V_{th}$	$V_{DS} > V_{GS} - V_{th}$
$V_{GS} > V_{th}$ 強反転	$I_D = \mu C_{ox} \frac{W}{L} \left\{ (V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right\}$ 非飽和(線形)	$I_{D} = \frac{1}{2}\mu C_{ox} \frac{W}{L} (V_{GS} - V_{th})^{2} (1 + \lambda V_{DS})$ 飽和
$V_{GS} < V_{th}$ 弱反転	$I_D \approx 0$	

アナログ回路工学(5/21, 第03回講義) (最後に) 担当:坪根 正

本日の演習問題の締め切りは 5月25日(月) 23:59 です

- -- 演習問題の解答をILIASへ提出して下さい
- -- ファイル形式はpdfにして下さい)
- -- ファイル名は全て半角で

学籍番号-analog-2桁の講義番号.pdf として下さい例: 2031XXXXX-analog-03.pdf のように)

半角ハイフン

半角ハイフン

協力をお願いします