

Contents

IT CONCEPTS AND TERMINOLOGY	2
Understanding Notational Systems	2
Basics Of Computing	2
Comparing Units Of Measure	2
Troubleshooting Methodology	3
INFRASTRUCTURE	3
Internal Components Of Computers	3
Types Of Storage	4
Peripheral Devices And Installation	5
Virtualization And Cloud Technologies	6
Common Internet Service Types	7
NETWORKING FUNDAMENTALS	8
Core Principles of Computer Networking	8
Network Addresses and Network Identifiers	10
Network Models and Types	11
Networking Devices and Connectors	11
OPERATING SYSTEMS	12
What is an operating system?	12
Drivers, Applications, Tasks and System Services	13
File and Disk Management	13
Backup and Recovery	13
SOFTWARE AND APPLICATIONS	14
Common Software Applications	14
WEB BROWSING, CONFIGURATION & SECURITY	14
Secure Web Browsing	14
DATA AND DATABASE FUNDAMENTALS	15
Database Concepts and Structures	15
Working with Relational Databases	15
Database Operations and Access	16
SECURITY: KEEPING THINGS SAFE	16
Encryption and Data Protection	16
IMPACT AND USE OF AL	16

IT CONCEPTS AND TERMINOLOGY

Understanding Notational Systems

- A notational system is just a method to represent numbers
- Decimal is base 10. Everyday counting system 0-9
- Binary is called Base 2 uses 2 digits: 1 & 0. 1 = ON 0 = OFF
 - o Computers use switches
- Hexadecimal is base 16. 0-9 then letters. A-F. A = 10. B = 11 C = 12 etc.
 - Simplifies binary numbers
- Octal is Base 8. 0-7.
 - Occasionally used in programming languages

Basics Of Computing

- Four key stages of every action:
 - o Input
 - Processing
 - o Output
 - Storage

Comparing Units Of Measure

- A bit is the smallest unit of data in computing. Only have 2 values. 0 or 1
- Byte is 8 bits
- 1 kilobyte = 1024 bytes
- 1 megabyte = 1024 KB
- 1 gigabyte = 1024 MB
- 1 terabyte = 1024 GB
- Throughput is the speed of data transfer:
 - o 1 bps = 1 bit per second
 - o Kbps = 1000 bits per second
 - Mbps = 1000 bits per second
 - Mbps = 1 million bits per second
 - Gbps = 1 billion bits per second
- Processing speed is measured in Hertz which tells us how many cycles per second the CPU can perform:
 - 1 Megahertz: 1 million cycles per second
 - o 1 Gigahertz: 1 billion cycles per second

Troubleshooting Methodology

- Step 1 INDENTIFY THE PROBLEM with information gathering
- Step 2 ESTABLISH THEORY OF PROBABLE CAUSE with information gathered
- Step 3 TEST THE THEORY to confirm it's the root issue
- Step 4 ESTABLISH PLAN OF ACTION on how to fix and the impacts
- Step 5 IMPLEMENT SOLUTION
- Step 6 VERIFY SOLUTION AND PREVENT FUTURE ISSUES
- Step 7 DOCUMENT PROCESS

INFRASTRUCTURE

Internal Components Of Computers

- Motherboard:
 - o Central hub of computer. Main circuit board.
 - Holds CPU, RAM, storage and expansion cards and power connectors
 - Allows expansion such as GPUs
 - o Includes ports such as USB HDMI ethernet and many more
- Firmware and BIOS:
 - o BIOS stands for Basic Input Output System
 - UEFI stands for Unified Extensible Firmware Interface
 - BIOS/UEFI is the built in software and responsible for booting the system and managing communication between hardware and operating systems
 - o Firmware is the software embedded directly into the motherboard
 - When powered on BIOS performs a POST (power on self-test) to check if all essential hardware components are working. If ok, BIOS gives control to operating system (e.g. Windows 11)
- Central processing Unit (CPU)
 - o Brain of the computer
 - o Executes instructions it receives from OS and programs. Does everything
 - Modern CPUs have multiple cores and threads. A core is a processing unit that can handle its own tasks. A thread is a virtual core allowing the CPU to multitask more efficiently
 - o More cores and threads, the better it is at handling tasks
 - Clock speed is the speed of which the CPU processes data. Measured in GHz

- Random access memory (RAM)
 - Systems short term memory
 - Temporarily stores data the CPU needs. Volatile which means its all wiped if the computer is shut down or restarted
 - o More capacity, more apps and data can be handled without slowing down
 - o Faster RAM means system performance increases

Cooling Fans

- Maintains optimal temperature of internal components like CPU, GPU etc.
- o Prevents over heating by circulating air through the computer case
- Power Supply (PSU)
 - o Takes AC from wall outlet and converts it to DC
 - Higher end systems require higher wattage
 - o PSU has multiple connectors for each component

Storage Drives

- HDD uses spinning magnetic platters to read write data. Low price but slower
- SSD no moving parts and use flash memory. Quicker and commonly used
- Non-Volatile Memory Express (NVMe) fastest out there. They use PCIe lanes to achieve high data transfer rates. Ideal for gaming, video and editing
- Graphical processing unit GPU
 - Responsible for rendering graphics
 - Integrated GPUs are part of CPU and fine for everyday browsing
 - Dedicated GPUs have their own memory (VRAM) and essential for gaming, 3D rendering etc.
- Network Interface Card (NIC)
 - o Allows computer to connect to a network
 - Converts data from computer into signals that are sent over a network cable. Responsible for incoming and outgoing data packets

Types Of Storage

- Hard Disk Drive HDD
 - o Pros cheap and large amount of storage
 - o Cons slow and moving parts = wear out
 - o Faster the HDD spins, the faster data can be accessed. Measured in RPM
 - Most use SATA (serial advanced technology attachment) a standard to connect storage devices to the motherboard

- o Transfer speeds up to 600 Mbps
- Solid State Drives SSD
 - No moving parts makes them quicker, quieter and more durable
 - Use flash memory to store data much quicker than spinning platters
 - Pros blazing fast and more durable compared to HDDs
 - o Cons more expensive than HDDs
 - M2 SSDs are tiny and plug directly into motherboard and are even faster than SATA SSDs. M2 > SATA
 - NVMe drivers are even faster. These drives use PCIe bus to communicate directly to the CPU meaning up to 6x quicker than SSDs
 - Pros crazy fast. Perfect for data intensive tasks
 - Cons more expensive than SATA SSDs
- Random Access Memory (RAM)
 - Your systems quick access memory
 - Temporary and when no longer needed its flushed or returned to permanent storage media
 - Types of RAM:
 - DDR 3 older standard. Speeds up to 2133 mega transfers per second
 - DDR 4 currently most common. Speeds up to 4800 mega transfers per second
 - DDR 5 newest one on the market. Capable of over 6400 mega transfers per second
- Network Storage
 - Pros Great for file sharing, backups and media streaming
 - Cons not as fast as local storage
- Cloud Storage
 - o Pros access files from anywhere + automatic backups
 - o Cons limited by internet speed and pricey

Peripheral Devices And Installation

- Monitors main visual output
 - LCD monitors are most common providing good balance between price and quality
 - LED monitors are more energy efficient compared to LCD and provide brighter colours and better contrast
 - OLED monitors are premium with better colour accuracy and contrast often used in creative industries
 - Connect via display port (HDMI, Type-C) offer high resolution and refresh rates

- o VGA and DVI are older and lower refresh rates and resolution
- USB 3.1 and Type C offer high transfer speeds than older USB 2.0
- Power Protection (UPS)
 - Critical in defending devices from sudden power outages and surges
 - o Provides battery backup and surge protection
 - Steps in to provide just enough power to protect device from sudden power problems to be able to save work before system shuts down

• Drivers

- Act as the bridge between operating system and the hardware ensuring communication between the two
- o External peripherals will not work without them
- Most are plug and play meaning once plugged into the device the drivers are automatically installed, and the device can be used immediately
- Some require manual installation such as gaming peripherals and multifunctional printers

Virtualization And Cloud Technologies

- Virtualization is the technology that allows you to create virtual versions of physical hardware such as servers, storage media or even networks
- Allows multiple OS to run on one physical hardware component
- Hypervisors:
 - Software which sits between physical hardware and the VM
 - o Manages the VMs allocating resources like CPU and storage
 - o Type 1:
 - Run directly on hardware and include solutions like VMware ESXi
 - Type 2:
 - Run on top of existing OS such as Oracle VirtualBox
 - Virtual machines:
 - Individual OS like windows or Linux running on virtualized hardware. All run independently but share resources with each other
- Cloud computing refers to the delivery of computing resources such as servers and databases over the internet
- Instead of owning and maintaining physical hardware you can rent resources from providers like Amazon (AWS) Microsoft (Azure) or Google Cloud
- Key features:
 - On demand resources: allows users to access resources when needed.
 Pay for what you use
 - Public cloud: resources provided by 3rd party providers and shared across multiple users. Examples include AWS and Azure

- Private cloud: resources are dedicated to a single organization. Either hosted internally or by a third party provider
- Hybrid Cloud: combines public and private elements allowing data to move between the 2 if needed. Provided in different models:
 - Infrastructure as a service (IaaS): provides virtualised resources
 - Platform as a service (PaaS): delivers a platform for developers to build application without worrying about underlying infrastructure
 - Software as a Service (SaaS): delivers software applications over internet removing need for installing things
- Key differences between virtualization and cloud computing:
 - Virtualization: you control and own the physical hardware, but you create virtual environments on top of it. You manage both physical server and the VMs running on it
 - Cloud computing: the physical infrastructure is managed by 3rd party. You don't own or manage hardware. Only manage the virtual resources you rented

Common Internet Service Types

- Fiber Optic Internet
 - o One of the fastest and reliable internet connections available
 - Uses fibre optic cables to transmit data as pulses of light. Offers high bandwidth and low latency
 - o Offers speeds up to 1 Gbps and even more
 - o More resistant to interference and degradation
- Cable Internet
 - Most widely used in urban areas
 - Uses coaxial cables already laid for cable TV making it readily available in many areas
 - Can offer speeds up to 1 Gbps but often limited to 500 Mbps depending on the plan
 - Operates on shared network meaning speeds depends on the amount the network is being used
- Digital subscriber line
 - Uses pre-existing telephone lines to transmit internet data making it widely available
 - Common in rural areas
 - Slower compared to fibre and cable
 - o Speeds between 5 Mbps to 50 Mbps

Satellite Internet

- Often used in remote or rural areas where no other internet services are available
- Available pretty much everywhere
- Speeds range from 10 Mbps to 50 Mbps
- o High latency however (delays) due to distance
- Fixed wireless internet
 - Internet delivered wirelessly from a base station to a receiver installed at your location
 - o Commonly used in rural areas where physical cales aren't feasible
 - o Requires clear line of sight no obstructions

NETWORKING FUNDAMENTALS

Core Principles of Computer Networking

- A network is a collection of devices that are connected to one another enabling them to communicate and share resources. They can be established physically through wired connections like ethernet or through Wi-Fi and Bluetooth
- Communication is governed by protocols. One of the most common is TCP/IP which stands for transmission control protocol / internet protocol. The most common protocol
- Types of Networks:
 - Local area networks (LANs)
 - Connects devices within a small geographical area such as an office or school. Often used for sharing files and printers
 - Wired LANs
 - Use ethernet cables
 - Wireless LANs (WLANs)
 - Use Wi-Fi connections to connect devices
 - Wide Area Networks (WANs)
 - Spans large geographical areas and connects multiple LANs
 - Often used by businesses to connect multiple office locations
 - Metropolitan Area Networks (MANs)
 - Larger than a LAN but smaller than a WAN
 - Usually covers a city or metropolitan area
 - Personal Area Networks (PANs)

- Used for connecting devices near an individual such as Bluetooth connections between headphones and a phone
- What does a network do?
 - o Share resources like files, printers and storage
 - o Enable communications through Teams, Zoom and Slack
 - Provide access to internet to all users
- Network protocols:
 - o TCP/IP
 - Fundamental protocol that governs most internet and network traffic. Breaks down data into packets, sends them across the network and reassembles them at the other end
 - o HTTP/HTTPS
 - Used for web browsing and ensure reliable communication between browser and websites
 - o FTP (File Transfer Protocol)
 - Used to transfer files between computers on a network and uploading/downloading files from a server
- Network Ports:
 - o Critical in understanding how devices communicate across a network
 - Act as doorways through which data flows helping services and apps connect easily
 - Think of it as a virtual door that allows specific types of data to enter and leave a device
 - Each port is assigned a number corresponding to a specific service or protocol. For example:
 - Port 80 for HTTP
 - Port 443 for HTTPS
 - o Port numbers range from 0 to 65,535
 - Numbers are standardized by Internet Assigned Numbers Authority (IANA)
 - o The 2 primary protocols that use ports are TCP and UDP (user datagram)
 - o Port Ranges:
 - 0-1023 are reserved for commonly used protocols such as:
 - Port 80 for HTTP
 - Port 443 for HTTPS
 - Port 25 for SMTP (sending email0
 - Port 53 for DNS
 - Port 21 for FTP (file transfer)
 - 1024-49,151 for registered ports. These ports are registered for use by specific applications or services such as:
 - Port 3306 for MySQL database communication

- Port 3306 for remote desktop protocol (RDP)
- Port 1433 for Microsoft SQL server
- 49,152-65,535 are not assigned any specific services and are typically used dynamically by applications when trying to establish a temporary connection. AKA ephemeral ports
- Why are ports important:
 - Managing network traffic
 - Security (firewalls)
 - Troubleshooting

Network Addresses and Network Identifiers

- A network address is used to uniquely identify devices such as computers, routers and servers on a network. 2 main types of address:
 - o IP address
 - MAC address
- IP address:
 - o Numeric label assigned to each device connected to a network
 - o Tells network where device is located so data can be routed correctly
 - o Most common is IPv4 written as four numbers separated by a dot
 - Each number ranges from 0-255
 - First part of the IP is the network portion; identifies the network
 - Last bits are the host portion. Identifies the device on the network
 - o IPv6 uses one 128 bit addresses instead of IPv4 32 bit addresses
 - Allows for almost unlimited number of unique IP addresses
 - Allows for more devices to be uniquely identified
 - Improved security and better support for mobile networks
- Public vs Private IP addresses
 - Public IPs are assigned to devices connected to the internet. Unique across the whole web and are assigned by Internet service providers
 - Private Ips are used within LANs. They are used to identify devices inside the local network
- Subnetting
 - The process of dividing a larger network into smaller subnetworks or subnets
 - Subnet mask
 - A special kind of address used to define which portion of the IP refers to the network and the host
- MAC Address
 - Every device has a MAC address and is uniquely assigned by the manufacturer

- Typically, 48 bits written in hexadecimal format separated by colons or hyphens
- The first 24 bits (3 bytes) is the manufacturer and the last 24 is the unique identifier
- o Are used within local networks to deliver data to the correct device

Network Models and Types

- The OSI Model is a 7 layer framework used to standardize the functions of a telecommunication or computing system. Each layer is responsible for a specific aspect of network communication:
 - o 1. Physical Layer deals with physical connections such as cables
 - o 2. Data Link Layer responsible for node-to-node data transfer
 - o 3. Network Layer manages routing and forwarding of packets like lps
 - 4. Transport Layer provides reliable data transfer, error checking and flow control for TCP and UDP
 - o 5. Session Layer manages sessions or connections between devices
 - o 6. Presentation Layer ensures data is in a readable format
 - 7. Application Layer closest to end user. Manages high-level services like file transfer and web browsing

• The TCP/IP Model:

- Network Interface Layer combines OSI physical and data link layers handling hardware and direct node communication
- o Internet Layer corresponds to the OSI Network layer managing lps
- Transport Layer handles data integrity and reliability
- o Application Layer manages protocols such as HTTP, SMTP and FTP

Networking Devices and Connectors

Router

- Responsible for directing traffic between different networks
- Routes data packets based on destination IP

Switches

- Used within a LAN to connect multiple devices such as computers, printers and servers to a network
- Use MAC addresses to direct data packets to correct device

Access Points

- o A wireless access point extends coverage of a wired network
- Act as a bridge between wired network and wireless devices allowing them to connect without physical connections

- Modems
 - Connects your network to the internet
- Ethernet Cables:
 - o Cat5e
 - Supports speeds up to 1 Gbps typically used in home networks
 - o Cat6
 - Supports speeds up to 10 Gbps. Commonly used in businesses
 - Cat6a and Cat7
 - Higher speeds and better shielding. Ideal for data centres
 - o RJ-45 connectors
 - Ethernet cables, standardized for networking
- Fiber optic cables
 - Use light to transmit data. Used in high speed and long distance connections
 - Greater bandwidth and lower latency
 - Subscriber connector
 - Common in enterprise networks. Uses push pull mechanism
 - Lucent connector
 - Smaller and often used in data centres

OPERATING SYSTEMS

What is an operating system?

- Software that serves as the interface between the user and the hardware of the device
- Manages everything from executing apps to controlling hardware resources
- Key functions of an OS:
 - Resource management OS allocates memory, processor time and storage to different tasks and applications
 - o User interface either through command line or graphical
 - Security and access control manages user permissions and authorizations

- Application management the OS loads, runs and manages software applications ensuring they run smoothly and don't interfere with each other
- Basics of the OS;
 - Kernel core part of the OS. Responsible for managing hardware and enabling communication between hardware and software
 - Process management ensures multiple apps and services run simultaneously without conflict
 - File system management allows user and apps to read and write files efficiently

Drivers, Applications, Tasks and System Services

- Drivers are small software programs that allow the OS to interact with hardware
- In Windows, this manages in Device Manager
- If a device isn't working properly, you made need to update the driver
- Operating systems provide tools to install and uninstall apps
- The OS can manage system resources and prioritize applications#

File and Disk Management

- A filesystem organizes data into files and directories and keeps track of where those files are stored. Can also manage permissions
- Different types of file systems:
 - NTFS (New Technology File System)
 - Used by Windows
 - Supports large sizes, encryption and access control
 - o FAT32 (File Allocation Table)
 - Legacy supported by Windows, macOS and Linux
 - Up to 4GB file size and 8TB disk partitions
 - o exFAT
 - more modern filesystem that supports larger files and compatible with both Windows and macOS
 - commonly used in external drives and flash drives
 - o APFS (Apple File System)
 - Used by macOS for efficient data handling and encryption
 - o ext4
 - common filesystem used by Linux distributions
 - known for stability and performance

Backup and Recovery

Full backup:

- Involves copying all data on a system or device to another storage location
- o Pros simple and complete with all data backed up at once
- o Cons time consuming and requires storage space
- Incremental Backup:
 - Saves only the changes made since the last backup (full or incremental)
 - o Pros faster and space-efficient
 - o Cons restoration may take longer
- Differential Backup:
 - o Saves all changes made since the last full backup
 - Pros quicker than full backups but more comprehensive than incremental backups
 - Cons uses more storage than incremental backups, but less than full backups

SOFTWARE AND APPLICATIONS

Common Software Applications

- Software is a collection of instructions, or code, that tells a computer how to perform specific tasks
- Software runs on the hardware and makes the computer functional
- Various types:
 - System Software
 - Includes OS and utilities that manage hardware
 - Application Software
 - Includes programs designed for specific tasks such as browsers and mail clients

WEB BROWSING, CONFIGURATION & SECURITY

Secure Web Browsing

- Different types of malware:
 - o Viruses
 - Attach themselves to legitimate programs or files and spread when the files are shared or opened
 - Spyware

- Collects information from your computer like browsing habits and passwords
- Ransomware
 - Locks your files or system and demands payment to restore access
- Adware
 - Generates unwanted ads on your device and can slow it down
- Trojan Horses
 - Disguise themselves as legitimate software. Once installed they create backdoors allowing root access to the system

DATA AND DATABASE FUNDAMENTALS

Database Concepts and Structures

- Relational databases (SQL)
 - Store data in tables with rows and columns with structure and rigor
 - o Organises data into relationships using keys
 - Tables are linked together by primary keys and foreign keys to connect related data across tables
- Non-Relational Databases (NoSQL)
 - Don't use predefined tables. Instead, they offer flexible data models making them ideal for unstructured data like documents and social media feeds
- Key-Value Databases
 - Stores data as pairs of keys and values
 - o For example, retrieving the price of an item using its product ID

Working with Relational Databases

- What exactly does a schema do?
 - Defines tables and columns
 - Enforces data types
 - Establishes relationships
- Primary keys
 - A unique identifier for each record in a table. Ensures no two records are identical which maintains data integrity. Often a ID number
- Foreign keys
 - o A field in one table that refers to the primary key in another table
 - Create relationships between tables allowing links

o Example in an order you assign a table number or customer ID

Database Operations and Access

- CRUD:
 - o Create
 - o Read
 - o Update
 - o Delete
- Local databases:
 - o Hosted on a server or machine within your organization
 - o Pros faster access and more security and control
 - o Cons requires physical resources. Remote access can be tricky
- Cloud databases:
 - o Hosted on remote server managed by a provider
 - o Pros accessible anywhere. Scalable. Maintenance provided
 - o Cons internet connectivity required. Higer risk to data security

SECURITY: KEEPING THINGS SAFE

Encryption and Data Protection

- Symmetric encryption:
 - o The same key is used for both encryption and decryption
 - o Means sender and receiver must have the same key
 - Fast and efficient
 - o Often used in file encryption
- Asymmetric encryption
 - 2 different keys public key and private key
 - Commonly used for secure communications. Sending emails and establishing SSL/TLS connections in web browsers

IMPACT AND USE OF AI

- Two types of AI:
 - o Narrow Al
 - Designed for specific tasks
 - Doesn't possess general intelligence
 - General Al
 - Aims to mimic human intelligence
 - Still largely theoretical and not yet realized