Applied Linear Algebra in Data Analysis Introduction to Optimization

Marks: 47

1. (Feasible sets) Find and sketch the feasible set for the following optimization problem to minimize $f(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^2$, subject to the following constraints. [Marks: 5]

(a)
$$\mathbf{h}(\mathbf{x}) = [3x_1 + 4x_2 - 5 = 0]$$

(b)
$$\mathbf{h}(\mathbf{x}) = [x_1 - x_2 - 2 = 0]^{\top} \text{ and } \mathbf{g}(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 + 1 \le 0 \\ x_1 + x_2 - 2 \ge 0 \end{bmatrix}$$

(c)
$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 \ge 0 \\ x_1 - x_2 \ge 0 \\ \mathbf{x}^{\top} \mathbf{x} \le 1.0 \\ \mathbf{x}^{\top} \mathbf{x} \ge 0.5 \end{bmatrix}$$

(d)
$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} x_1^2 - x_2 \ge 0 \\ x_1^2 + x_2 + 2 \le 0 \end{bmatrix}$$

(e)
$$\mathbf{g}(\mathbf{x}) = [-\mathbf{x}^{\top}\mathbf{x} \le 0]$$

2. (Vector derivatives) Demonstrate that the following gradients and Hessians with respect to the vector $\mathbf{x} \in \mathbb{R}^n$ are true. [Marks: 5]

(a)
$$f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{c}^{\top}$$
 and $\mathbf{H}_f(\mathbf{x}) = \mathbf{0}$

(b) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x}) = 2\mathbf{x}^{\top} \mathbf{A}$ and $\mathbf{H}_f(\mathbf{x}) = 2\mathbf{A}$, where \mathbf{A} is a symmetric matrix.

(c)
$$f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{C} \mathbf{x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{x}^{\top} (\mathbf{C} + \mathbf{C}^{\top})$$
 and $\mathbf{H}_f(\mathbf{x}) = \mathbf{C} + \mathbf{C}^{\top}$, where \mathbf{C} need not be symmetric.

(d) $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x}) = 2\mathbf{x}^{\top} \mathbf{A} + \mathbf{b}^{\top}$ and $\mathbf{H}_f(\mathbf{x}) = 2\mathbf{A}$, where \mathbf{A} is symmetric.

(e)
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} \longrightarrow \nabla_{\mathbf{x}}\mathbf{f}(\mathbf{x}) = \mathbf{A}.$$

3. Does the function $f(\mathbf{x}) = \mathbf{c}^{\top}\mathbf{x}$, where $\mathbf{c} \in \mathbb{R}^n$ have a minimum? Explain your answer. [Marks: 1]

4. Does the function $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c$ have a minimum? If so, where is the minimum and explain the conditions under which the function have a minimum. Explain you answer. [Marks: 2]

5. (Gradient descent) Consider function $f : \mathbb{R} \to \mathbb{R}$ such that $0 < f''(x) \le L$ for all $x \in \mathbb{R}$. Show that the following gradient descent algorithm converges to the minimum of the function f(x).

$$x_{k+1} = \mathbf{x}_k - \alpha_k f'(x_k), \ 0 < \alpha_k < \frac{2}{L}, \ k \in \{1, 2, \dots\}$$

1

This result can be extended to the case of $f: \mathbb{R}^n \to \mathbb{R}$, where $0 < \|\mathbf{H}_f(\mathbf{x})\|_2 \le L$ for all $\mathbf{x} \in \mathbb{R}^n$. Then, show that the following gradient descent algorithm converges to the minimum of the function $f(\mathbf{x})$. [Marks: 2]

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f\left(\mathbf{x}_k\right), \ 0 < \alpha_k < \frac{2}{L}, \ k \in \{1, 2, \dots\}$$

6. [Programming] The Rosenbrock's function is given by the following,

$$f(\mathbf{x}) = 100 (x_2 - x_1^2)^2 + (1 - x_1)^2$$

Write a Python/MATLAB program to minimize the Rosenbrock's function using the following algorithms and terminate the search when the norm of the gradient is less than 10^{-3} . [Marks: 8]

- (a) Gradient descent with a fixed step size $\alpha = 0.001$.
- (b) Gradient descent with a inexact line search.
- (c) Newton's method.
- (d) Levenberg-Marquardt method with a $\lambda = 0.1$.

Assume $\mathbf{x}_1 = \begin{bmatrix} -2 & 2 \end{bmatrix}^{\mathsf{T}}$ as the initial guess. Plot the trajectory of the \mathbf{x} for the four different algorithms in different colors along with the contour of the Rosenbrock's function. How long did the four methods take to reach the termination condition? [Marks: 2]

7. (**Perceptron**) A perceptron is a simple model of a neuron that takes a set of inputs $\{x_1, x_2, \ldots, x_n\}$ and produces an output y based on a set of weights $\{w_1, w_2, \ldots, w_n\}$ and a bias w_0 . The output of the perceptron y is given by the following equation,

$$y = f\left(\sum_{i=1}^{n} w_i x_i + w_0\right)$$

The function $f(\bullet)$ is called the activation function of the perceptron. One of the most common activation functions is the Sigmoid function, which is defined as follows,

$$f(z) = \frac{1}{1 + \exp(-z)}$$

The following figure shows a simple perceptron with two inputs $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \in \mathbb{R}^2$, and a weight vector $\mathbf{w} = \begin{bmatrix} w_0 & w_1 & w_2 \end{bmatrix} \in \mathbb{R}^3$. The output of this perceptron is given by,

$$y = \frac{1}{1 + \exp\left(-\mathbf{w}^{\top} \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}\right)}$$

We wish to fit the perceptron to a set of data $\{(\mathbf{x}_l, y_l)\}_{l=1}^m$, where $\mathbf{x}_l \in \mathbb{R}^4$ and $y_l \in \{0, 1\}$. The perceptron is trained by minimizing the following loss function,

$$l\left(\mathbf{w}\right) = \sum_{l=1}^{m} \left(y_l - \frac{1}{1 + \exp\left(-\mathbf{w}^{\top} \tilde{\mathbf{x}}_i\right)} \right)^2$$

where, $\tilde{\mathbf{x}}_i = \begin{bmatrix} 1 \\ \mathbf{x}_l \end{bmatrix}$.

The optimization problem can be formulated as the following,

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} l\left(\mathbf{w}\right)$$

We can solve this using a gradient descent algorithm, starting with a random guess for the weight vector \mathbf{w}_1 and update the weight vector using the following update rule,

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \nabla l\left(\mathbf{w}_k\right)$$

where, α_k is the step size.

Find the expression for the gradient of the loss function $\nabla l(\mathbf{w})$. [Marks: 4]

8. Consider the following optimization problem,

$$\min_{\mathbf{x}} \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x}$$

s.t.
$$\mathbf{x}^{\mathsf{T}} \mathbf{P} \mathbf{x} =$$

Find the expression for the minimizer of this problem \mathbf{x}^* and the minimum value of the objective function $\frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x}$. [Marks: 2]

9. Find the minimizer and maximizer of the following optimization problem $\mathbf{x} \in \mathbb{R}^3$,

$$\min_{\mathbf{x}} (\mathbf{a}^{\top} \mathbf{x}) (\mathbf{b}^{\top} \mathbf{x})$$

s.t. $x_1 + x_2 = 0$
 $x_2 + x_3 = 0$

where,
$$\mathbf{a} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. [Marks: 2]

10. Consider the following optimization problem,

$$\min_{\mathbf{x}} (x_1 - a)^2 + (x_2 - b)^2$$

s.t. $x_1^2 + x_2^2 \le 1$

where, $a, b \in \mathbb{R}$ are constant such that $a^2 + b^2 \ge 1$.

Let $\mathbf{x}^* = \begin{bmatrix} x_1^* & x_2^* \end{bmatrix}^\top$ be the minimizer of the above optimization problem. [Marks: 10]

(a) Use the first order necessary conditions for the unconstrained optimization problem to show that $(x_1^*)^2 + (x_2^*)^2 = 1$.

- (b) Use the KKT theorem to show that \mathbf{x}^* is unique and has the form $\mathbf{x}^* = \alpha \begin{bmatrix} a \\ b \end{bmatrix}$, where $\alpha \in \mathbb{R}$ is a positive constant.
- (c) Find the expression for α in terms of a and b.
- (d) Can you explain the solution to this problem geometrically.
- (e) Does the above analysis hold when the constraint $a^2 + b^2 < 1$? Explain your answer. If it does not, what would be the solution \mathbf{x}^* in this case?
- 11. Consider the following optimization problem,

$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$

s.t. $\mathbf{a}^{\top} \mathbf{x} \le b$

where, the non-zero vectors $\mathbf{a}, \mathbf{c} \in \mathbb{R}^n$ and $b \in \mathbb{R}$ are constants. [Marks: 6]

- (a) Under what conditions does the above optimization problem have a solution?
- (b) When the above optimization problem has a solution, is the solution unique? If yes, find the unique minimizer \mathbf{x}^* , else find the set of all minimizers.
- (c) Can you explain these results geometrically?