Approx date	Activity and Notes
13/10/2022	Accepted onto project by David
17/10/2022 -	Given reading list by David, and read over this period. Initally
7/11/2022	focused on understanding the principles of QEC and CQEC. Dif-
1/11/2022	ficult as required some understanding of both device physics and
	QC theory to understand lots of the papers.
7/11/2022	Gave initial presentation on CQEC principles. Focused on intro-
.,,	ducing Krauss operators, Lindblad eqn etc to introduce continu-
	ous quantum feedback as a error control mechanism. In the end
	the CQEC was implemented as by Dressel et al. did using con-
	tinuous measurment and discrete correction flips. Another initial
	focus was 'weak measurement'. This was a red herring, as after
	my understanding of the theory developed, I realised that there
	is no inherent benefit to weak measurement, but rather it may be
	a price worth paying for very rapid imperfect measurements that
	nonetheless are effective at error tracking, as in Dressel's paper.
7/11/2022 -	Started looking at quantum dot device physics, particularly by
25/11/2022	reading review sent to me by Giovanni, but also other bits and
	bobs, e.g. Elzerman readout. Started to use DotHamiltoniser
	package written by David and colleagues to get my head around
	how gates are applied in QD systems. This is where I produced
	some of the plots in the 'implementing gates' appendix of my
	report.
25/11/2022	Developed script for time evolution using DotHamiltoniser with
	scipy, at the suggestion of David and Normann. Was able to
OF /11 /2022	demonstrate an X gate working.
25/11/2022 -	Attempted to set up simulation for 3 qubits to implement
01/12/2022	CPHASE, which I knew would be a part of a continuous scheme,
	using my scipy script. It was far too slow to be practical, as the
	software was not optimised for high dimensional systems, and regenerated the hamiltonian matrices at each iteration.
01/12/2022	Project proposal and risk assessment submitted. At this point, I
01/12/2022	knew either developing or finding a more effective simulator would
	be an important bottleneck in writing a proof-of-concept simula-
	tion for CQEC.
01/12/2022 -	Major Topic revision + exams. Continued to ponder simulation
20/01/2023	methods but without substantial time devoted to the project.
' ' '	Could not find a software package that performs this particular
	niche.
20/01/2023 -	Taught myself about C python extensions and about CUDA, and
23/01/2023	set myself the task of creating a basic template python extension
	that could perform CPU and GPU vector addition. Completed
	within 3 days: TemplateCudaEx on GitHub.
23/01/2023 -	Developed first version of FastHamiltoniser, which applied the
26/01/2023	tech I learned how to use in the previous three days to a package
	for hubbard-friendly sparse matrix operations.
26/01/2023 -	Building Hamiltoniser and TimeEvolution. These are quite com-
13/02/2023	plex pieces of softwareland so effort has to go into thinking about
	how to structure the software. Then started trying to implement
	logic gates on the simulation. Managed to create demo of 7 X gates
	applied to a 7 qubit system which I presented to the group

6/02/2023	on this date. Whilst I was making progress on the gate imple-
	mentations, I realised I was still unsure exactly how we could
	implement a continuous error correction scheme in silicon, as
	analagous to Dressel's paper, as there was no obvious way of per-
	forming a measurement on a qubit which was non-demolition and
	continuous. Instead at this meeting I proposed attempting to op-
	,
	timise repeated error correction schemes. My initial suggestion
	was to apply an information-theoretic approach: that you could
	maximise the effectiveness of an error correction scheme by max-
	imising the expected information per parity measurement. Also
	at this meeting, Chris has the idea of placing qubits in potentials
	that were unstable to bitflip errors, so you could see tunelling if
	such an error ocurred. It was pointed out this could not help with
	phase flip errors.
6/02/2023 -	Tried to solve the problem of Chris' scheme by applying it to both
8/02/2023	phase and bit errors. Came up with locked states idea, spent
0/02/2023	
	some time figuring out properties, e.g. how to construct them
	(group structure only figured out during writeup) Pleased with
	the concept from a mathematical neatness point of view but don't
	think its very practical.
8/02/2023 -	Continued to work on simuation side whilst still unsure about how
13/02/2023	CQEC will eventually be implemented. At this point David and I
	think the simulator might just be used to demonstrate DQEC as
	a demonstration of the software.
13/02/2023 -	Tried to implement CPHASE on my simulator. Became appar-
21/02/2023	ent that step size required for accurate simulation was too small
-1/02/2020	due to fast rotating terms in Hamiltonian due to U splitting. Re-
	alised I needed to implement interaction picture simulation - this
	required additions to both the C extension and the python classes
	to support. Also needed a more convenient way of instructing the
	simulator to do things (e.g. schdule different drives, couplings);
	came up with recursive time steps feature. By the end of this pe-
	riod I had produced working demonstrations of CPHASE gates,
	as well as Hadamard Gates.
21/02/2023 -	Now seemed that simulator had sufficient capability, but still
25/02/2023	wanted to develop some theory for the simulator to test! Still
	unsure about how to do CQEC, did a series of derivations around
	DQEC. First looked to shore up my understanding of decoherence
	by deriving the evolution of density matrices under various pro-
	cesses 'channels', and how they related to the Krauss operators.
	Derived the result (standard in textbooks, it turns out) about the
	equivalence of phase (bit) wander and phase (bit) flips and the
25 /02 /2022	implications for evolution of DMs under these processes.
25/02/2023 -	The next step seemed to me to approach the problem of a single
28/02/2023	measurement and correction flip of a single qubit (not a triple) as
	I wrongly thought this analysis could be somehow generalised to
	parity measurements on 3 qubits for the Shor code. Derived full
	density matrix evolution for this system and calculated the steady
	state behaviour as a function of readout times, tunelling rates etc.
28/02/2023 -	Tried to generalise my analysis to 3 qubits and parity measure-
5/03/2023	ments using various intuitive possible mappings. Realised the
	two systems were fundamentally different, in that parity mea-
	surements are inherently symmetric: an error correction code will
	always treat 000 and 111 the same, so the system will eventu-
	ally equilibrate. However, this gave me the idea of the Markovian
	analysis I present in the report.
5/03/2022	I presented this analysis to my supervisors. We now agreed that
0,00,2022	it worked as a standalone thoeretical result and that we should
	finally try and crack how to do CQEC in silicon. Giovanni and
	Normann had been discussing and thought it might be possible to