Recitation 4/21

Sungwoo Jeong Tuesday 10AM, 11AM

April 21, 2020

Eigenvalues, Continued

- Eigenvalues are values λ such that shifted matrix $A - \lambda I$ have nonempty nullspace.

$$\exists x \neq 0 \text{ such that } (A - \lambda I)x = 0$$

- Determinant of $A \lambda I$ is a degree n polynomial of λ . n solutions of the polynomial are exactly the eigenvalues. (Why?)
- We have exactly n eigenvalues, counting multiplicities (i.e. for 3 by 3 matrix we can have three eigenvalues, 1, 1, 2)

Diagonalization

- Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors x_1, \ldots, x_n . n equations $Ax_i = \lambda x_i$ can be simultaneously represented as,

$$AX = X\Lambda$$

where X is a matrix with i^{th} column x_i , Λ is a diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$.

- If X is invertible (X has linearly independent eigenvectors), We can now express A as

$$A = X\Lambda X^{-1}$$

and this is called a **Diagonalization or Eigendecomposition** of A.

- Why Diagonalization is so powerful and important?

Problems

1. Compute eigenvalues of $A=\begin{pmatrix}1&0&4\\1&3&1\\2&4&-1\end{pmatrix}$ using the polynomial $\det(A-\lambda I).$

2. (a) Let f_0, f_1, \ldots be Fibonacci sequence with $f_0, f_1 = 0, 1$. Find 2 by 2 matrix A such that $\binom{f_{n+1}}{f_n} = A \binom{f_n}{f_{n-1}}$. Then, express $\binom{f_{n+1}}{f_n}$ in terms of A.

1

(b) Find eigenvectors, eigenvalues, and eigendecomposition of A .
(c) (Challenging) Express the eigendecomposition of A^{100} . With a small assumption(Regard a very small number as 0), prove that the ratio f_{101}/f_{100} is same as the largest eigenvalue.
(d) Find formula for f_n .
(a) I ha formata for j_{η} .
3. Think about another sequence g_0, g_1, \ldots with relationship $g_{i+1} = 2g_i + g_{i-1}$ and $g_0, g_1 = 0, 1$. Find formula for g_n .
4. True or false. Prove or give counterexample.
(a) Diagonalizable matrices are invertible.
(b) Invertible matrices are diagonalizable.
(c) Non-diagonalizable matrices can be invertible.
(d) Non-invertible matirice can be diagonalizable.
(e) If A is diagonalizable then A^5 is diagonalizable.
(f) Squared singular values of A are eigenvalues of A^2
(g) Squared singular values of A are eigenvalues of A^TA
(h) Squared singular values of A are eigenvalues of AA^T

ANSWERS

1. $\det(A - \lambda I) = (\lambda - 5)(\lambda - 1)(\lambda + 3)$ so eigenvalues are 5, 1, -3.

2.(a)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
. $\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = A \begin{pmatrix} f_n \\ f_{n-1} \end{pmatrix} = \dots = A^n \begin{pmatrix} f_1 \\ f_0 \end{pmatrix} = A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

(b) $\det(A - \lambda I) = \lambda^2 - \lambda - 1$ so $\lambda = \frac{1 \pm \sqrt{5}}{2}$. To find eigenvectors, $A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 \end{pmatrix} = \frac{1 + \sqrt{5}}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ we have $x_1 = \frac{1 + \sqrt{5}}{2} x_2$, and from the second eigenvalue similarly we obtain $x_1 = \frac{1 - \sqrt{5}}{2} x_2$. So two eigenvectors, $A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 \end{pmatrix} = \frac{1 + \sqrt{5}}{2} x_2$. tors are $v_1, v_2 = \begin{pmatrix} \frac{1+\sqrt{5}}{2}x \\ x \end{pmatrix}, \begin{pmatrix} \frac{1-\sqrt{5}}{2}x \\ x \end{pmatrix}$. We can take x = 1 for simplicity. Eigendecomposition becomes,

$$A = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}^{-1}$$

(c) From Eigendecomposition, $A^{100} = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^{100} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}^{-1}$ and assuming that $\left(\frac{1-\sqrt{5}}{2}\right)^{100} \sim 0$ (power of number less than 1 approaches 0), we can say

$$A^{100} = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{100} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}^{-1}$$

and since $\begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{pmatrix}$ we finally deduce

$$\begin{pmatrix} f_{101} \\ f_{100} \end{pmatrix} = A^{100} \begin{pmatrix} f_1 \\ f_0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{100} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{1-\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{101} \\ \left(\frac{1+\sqrt{5}}{2}\right)^{100} \end{pmatrix}$$

and the ratio between two numbers is $\frac{1+\sqrt{5}}{2}$.

(d) Generalizing problem (c) but without assumption.

$$\begin{pmatrix} f_{n+1} \\ f_n \end{pmatrix} = A^n \begin{pmatrix} f_1 \\ f_0 \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^n & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^n \end{pmatrix} \begin{pmatrix} 1 & -\frac{1-\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and computing the matrix multiplication we have

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

3. Set up another A, in this case it is $A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$. The eigendecomposition is given as,

$$A = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1 + \sqrt{2} & 1 - \sqrt{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 + \sqrt{2} & 0 \\ 0 & 1 - \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & -1 + \sqrt{2} \\ -1 & 1 + \sqrt{2} \end{pmatrix}$$

and we can deduce from

$$\begin{pmatrix} g_{n+1} \\ g_n \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1+\sqrt{2} & 1-\sqrt{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} (1+\sqrt{2})^n & 0 \\ 0 & (1-\sqrt{2})^n \end{pmatrix} \begin{pmatrix} 1 & -1+\sqrt{2} \\ -1 & 1+\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

that $g_n = \frac{1}{2\sqrt{2}}((1+\sqrt{2})^n - (1-\sqrt{2})^n)$

- 4. (a) Not if they have zero eigenvalues. For example zero matrix
- (b) False. They can have all nonzero eigenvalues but the eigenvectors can be linearly independent. For example, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ has eigenvalues 1, 1 and they share same eigenvectors so they form a linearly dependent eigenvectors thus not diagonalizable.

3

- (c) True. Exactly same example as above.
- (d) True. the ones with zero eigenvalues.
- (e) True. $A=X\Lambda X^{-1}$ implies $A^5=X\Lambda^5 X^{-1},$ a diagonalization of $A^5.$
- (f) False. $\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$. (g) True. $A = U\Sigma V^T$ implies $A^TA = V\Sigma^2 V^T$ which is a eigendecomposition of A^TA . (h) True. $A = U\Sigma V^T$ implies $AA^T = U\Sigma^2 U^T$ which is a eigendecomposition of A^TA .