

DPP - 3

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/58

Video Solution on YouTube:-

https://youtu.be/uUgK5PMvkDo

- Q 1. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is:
 - (a) 4 R T

(b) 5 R T

(c) 15 R T

(d) 11 R T

- Q 2. The molecules of an ideal gas have 6 degrees of freedom. The temperature of the gas is T. The average translational kinetic energy of its molecules is:
 - (a) $\frac{3}{2}$ k T

(b) $\frac{6}{2}$ k T

(c) k T

 $(d)^{\frac{2}{1}} k T$

Q 3. The average translational kinetic energy of O₂ (molar mass 32) molecules at a particular temperature is 0.048 eV. The translational kinetic energy of N₂ (molar mass 28) molecules in eV at the same temperature is –

(a) 0.0015

(b) 0.003

(c) 0.048

(d) 0.768

Q 4. A gas sample is enclosed in a closed container, temperature of gas is continuously increasing. Match the correct options in column-ll corresponding to column-l

(1101 90011 9011 1110 0012 00 00 00 00 00 00 00 00 00 00 00 00 00	- II COII COP	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Column I		Column II
(a)Internal energy of gas	(P)	Increases
(b)Average momentum of gas molecules	(q)	Decreases
(c)Number of molecules moving with most probable speed	(r)	Zero
(d) $\frac{v_{avg}}{v_{rms}}$	(s)	Remains constant

- Q 5. Temperature of an ideal gas is 300 K. The change in temperature of the gas when its volume changes from V to 2V in the process P = aV (Here, a is a positive constant) is:
 - (a) 900 K

(b)1200 K

(c) 600 K

(d) 300 K

Q 6. In the ρ -T graph shown in figure, match the following:

hysicsaholics

Table-1

Table-2

- (a) Process a-b
- Constant volume (p)
- Process b-c (b)
- $\Delta U = 0$ (q)
- (c) Process c-d
- (r) P increasing
- (d) Process d-a
- P decreasing (s)

 $\frac{1}{2}$. Here, P_0 and V_0 are One mole of an ideal gas undergoes a process P: Q 7.

constants. Change in temperature of the gas when volume is changed from $V = V_0$ to

V =
$$2V_0$$
 is:
(a) $-\frac{2P_0V_0}{5R}$

(b)
$$\frac{11P_0V_0}{10R}$$

$$(c) - \frac{5P_0V_0}{4R}$$

(d)
$$P_0V_0$$

Two containers of equal volume contain the same gas at pressures p₁ and p₂ and Q 8. absolute temperatures T₁ and T₂ respectively. On joining the vessels, the gas reaches a common pressure p and a common temperature T. The ratio P/T is equal to

(a)
$$\frac{p_1}{r_1} + \frac{p_2}{r_2}$$

(b)
$$\frac{1}{2} \left[\frac{p_1}{T_1} + \frac{p_2}{T_2} \right]$$

(c)
$$\frac{p_1T_2 + p_2T_1}{T_1 + T_2}$$

(d)
$$\frac{p_1 T_2 - p_2 T_2}{T_1 - T_2}$$

Q9. What is the ratio of pressures on the left and right sides?

(a) p_2T_2/p_1T_1 (c) $\frac{p_1+p_2}{T_1+T_2}$

(b) $p_1 T_2 / p_2 T_1$ (d) $\frac{p_1 T_1}{p_2 T_2}$

Q 10. What is the final equilibrium temperature?

- (b) $\frac{p_1p_2(T_1+T_2)}{p_1T_2+p_2T_1}$ (d) $\frac{T_1^2p_2^2}{p_1T_2+p_2T_1}$

Answer Key

Q.1	d	Q.2		Q.3	c	Q.4	a(p) , b(r ,	Q.5
			a				s), $c(q)$,	a
							$\mathbf{d}(\mathbf{s})$	
Q.6	a(q, r), b(p,	Q.7		Q.8	b	Q.9	b	Q.10
	\mathbf{r}), $\mathbf{c}(\mathbf{q},\mathbf{s})$,]	b					a
	d(p, s)							

