Serial No.: 09/837,760
Filed: April 17, 2001
Page: 2 of 6

AMENDMENTS TO THE CLAIMS:

Please cancel claims 8 and 9, without prejudice or disclaimer of subject matter. This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

to 3. (Cancelled.)

4. (Previously Presented) A circuit comprising:

a first delay device including a control input and at least one output;

a second delay device including the control input and at least one output;

a control signal line coupled to, and configured to provide a control signal to, the control input of the first delay device and the second delay device, the control signal being based on the at least one output of the first delay device and on a clock;

a sampling signal line coupled to, and configured to provide a sampling signal based on the at least one output of the first delay device; and

a sampling device coupled to the at least one output of the second delay device and coupled to the sampling signal line, the sampling device configured to sample the at least one output of the second delay device based on a value of the sampling signal,

wherein the second delay device includes multiple outputs, and the sampling device is coupled to the multiple outputs,

wherein the first delay device comprises a first delay line,

wherein the first delay line includes cascaded inverters, and

wherein the cascaded inverters are arranged in a feedback configuration and at least two consecutive inverters are configured with common initial conditions so as to produce a distinctive pattern during operation of the first delay line.

5. (Previously Presented) The circuit of claim 4 further comprising a comparator that includes a first input coupled to the at least one output of the first delay device, a second input coupled to the clock, and an output coupled to the control signal line.

Serial No.: 09/837,760 Filed: April 17, 2001

Page : 3 of 6

6. (Previously Presented) The circuit of claim 5 wherein the comparator is configured to

provide on the output an error signal between the at least one output of the first delay device and

the clock.

7. (Previously Presented) The circuit of claim 6 further comprising a voltage adjustment

device disposed between the output of the comparator and the control signal line, and configured

to provide the control signal on the control signal line based on the error signal.

8. to 10. (Cancelled)

11. (Previously Presented) The circuit of claim 4 wherein the sampling device comprises a

latch configured to sample the multiple outputs of the second delay device together based on the

value of the sampling signal.

12. (Previously Presented) The circuit of claim 4 wherein the sampling device comprises a

latch.

(Cancelled)

14. (Previously Presented) The circuit of claim 4 wherein the second delay device comprises

a second delay line.

15. (Cancelled)

16. (Previously Presented) The circuit of claim 4 wherein the cascaded inverters include an

odd number of inverters.

17. (Cancelled)

18. (Previously Presented) A circuit comprising:

Serial No.: 09/837,760 Filed: April 17, 2001 Page: 4 of 6

a first delay device including a control input and at least one output;

a second delay device including the control input and at least one output;

a control signal line coupled to, and configured to provide a control signal to, the control input of the first delay device and the second delay device, the control signal being based on the at least one output of the first delay device and on a clock;

a sampling signal line coupled to, and configured to provide a sampling signal based on the at least one output of the first delay device; and

a sampling device coupled to the at least one output of the second delay device and coupled to the sampling signal line, the sampling device configured to sample the at least one output of the second delay device based on a value of the sampling signal,

wherein the second delay device includes multiple outputs, and the sampling device is coupled to the multiple outputs,

wherein the first delay device comprises a first delay line,

wherein the first delay line includes cascaded inverters, and

wherein the control input of the first delay line comprises a supply voltage input, and a level of supply voltage on the supply voltage input affects switching speed of the cascaded inverters.

- 19. (Previously Presented) The circuit of claim 14 wherein the second delay line comprises an input configured to be coupled to a data source and is configured to hold data representing one bit of the data source.
- 20. (Previously Presented) The circuit of claim 19 wherein the sampling device is configured to sample the data with multiple samples such that each bit is sampled multiple times.
- (Previously Presented) The circuit of claim 4 wherein the second delay device comprises an input configured to be coupled to a data source.
- (Previously Presented) A circuit comprising:
- a first delay line including an odd number of cascaded inverters, a supply voltage input, and at least one output, the cascaded inverters being arranged in a feedback configuration and at

Serial No.: 09/837,760
Filed: April 17, 2001
Page: 5 of 6

least two consecutive inverters being configured with common initial conditions so as to produce a distinctive pattern during operation of the first delay line, wherein a level of supply voltage on the supply voltage input affects switching speed of the cascaded inverters;

a second delay line including an input configured to be coupled to a data source, multiple outputs, and a control input;

a comparator including a first input coupled to an output of the first delay line, a second input coupled to a clock, and at least one output, the comparator being configured to provide on the output an error signal between the output of the first delay line and the clock;

a control signal line coupled to the at least one output of the comparator, the supply voltage input of the first delay line, and the control input of the second delay line, the control signal line being configured to provide a control signal, based on the error signal, to the supply voltage input of the first delay line and the control input of the second delay line;

a sampling signal line coupled to, and configured to provide a sampling signal based on, the at least one output of the first delay line; and

a sampling device coupled to the multiple outputs of the second delay line and coupled to the sampling signal line, the sampling device configured to sample the multiple outputs of the second delay line based on a value of the sampling signal.

23. (Previously Presented) The circuit of claim 22 wherein:

the second delay line comprises an odd number of cascaded inverters.

the control input comprises a supply voltage input, and

a level of supply voltage on the supply voltage input of the second delay line affects switching speed of the cascaded inverters of the second delay line.