Машинное обучение

Лекция 2. Линейные модели. Градиентный спуск

(12.02.2022)

Даниил Литвинов Лаврентий Данилов

Общие сведения

План

- 1. Линейная модель регрессии
- 2. Как линейные модели обучаются?
- 3. Линейная модель классификации

Что это такое?

х — баллы за экзамен по английскому 1

у — баллы за экзамен по английскому 2

Х	у
1	5
3	11
9	35
10	33

Что это такое?

А какая модель нам нужна?

$$MSE = \frac{1}{N} \underbrace{\underbrace{\underbrace{Y}}_{i=1}^{N} (y_i - \hat{y}_i)^{N}}_{Ni=1} \rightarrow \min$$

$$14AE = \frac{1}{N} \underbrace{\underbrace{\underbrace{Y}}_{i=1}^{N} (y_i - \hat{y}_i)^{N}}_{Ni=1} \rightarrow \min$$

Интерпретация коэффициентов

Зачем нужны линейные модели?

- 1. Предсказание интересующей нас величины
- 2. Оценка влияния различных факторов на нашу целевую переменную
- 3. Линейные модели очень легко использовать и интерпретировать
- 4. Линейные модели могут восстанавливать даже **нелинейные зависимости**

А если у нас много независимых переменных?

$$y = w_0 + w_1 x + w_2 z + \ldots + w_n t + \epsilon$$

площадь	число комнат	школа близко	цена квартиры
50	2	нет	5000
1000	7	да	11000
30	1	нет	3500
100	4	нет	33333

Множественная линейная регрессия дает нам плоскость

Производные

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	$k e^{kx}$
$\ln x = \log_{\mathrm{e}} x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$

Производные

$$\frac{y(x,y,z)}{\partial y} = 2x^2 + 3y^2 - 5in 2$$

$$\frac{\partial y}{\partial x} = 4x$$

$$\frac{\partial y}{\partial y} = 6y$$

$$\frac{\partial y}{\partial y} = 6y$$

$$\frac{\partial y}{\partial y} = 6y$$

Производные (традие им)

- · yougebouen 6 nanp. naud. poma op-yen
- · Anonimpreguerm ynny bucup mand y Tock,

Производные

Как оценивать коэффициенты модели?

Как оценивать коэффициенты модели?

$$MSE = \frac{1}{N} \left(y - xw \right)^2 = \frac{1}{N} \left(y - xw \right) \left[y - xw \right]$$

$$\nabla MSE = \frac{1}{N} \cdot 2 \cdot x \left[y - xw \right] = \frac{2}{N} \cdot x^{T} \left(xw - y \right)$$

$$w = \frac{1}{N} \cdot 2 \cdot x \left[y - xw \right] = \frac{2}{N} \cdot x^{T} \left(xw - y \right)$$

Градиентный спуск

Формулы

$$y=w_0+w_1x+\epsilon \ y=Xw$$

$$rac{dLoss}{dw} =
abla Loss = 2X^T(Xw-y)$$

$$Loss = \frac{1}{\sqrt{(y-Xw)^T(y-Xw)}}$$

$$w = (X^T X)^{-1} X^T y$$

Градиентный спуск

$$Loss = 1 \choose \mathcal{N} (y - Xw)^T (y - Xw) \quad rac{dLoss}{dw} =
abla Loss = 2X^T (Xw - y)$$

$$w$$
 = np.random.randn(m + 1)
Пока grad(Loss) != 0:
 w -= η * grad(Loss)

Отдых -> логистическая регрессия

Связь событий и признаков

В зависимости от предикторов события могут происходить чаще или реже – логика, совпадающая с логикой связи количественной переменной отклика с набором предикторов.

Например, по мере роста температуры воздуха летом чаще будут встречаться люди в шортах: событие "встретился человек в шортах" положительно связано с температурой воздуха.

Событие "проведение исследования" явно связана с предиктором "объем полученного финансирования", однако эта связь может быть совсем непростой.

А что если хотим классификацию?

Допустим бинарная классификация

Отношение шансов

Шансы (odds) часто представляют в виде отношения шансов (odds ratio)

Если отношение шансов > 1, то вероятность наступления события выше, чем вероятность того, что оно не произойдет.

Если отношение шансов < 1, то наоборот.

Если можно оценить вероятность положительного события, то отношение шансов выглядит так:

$$odds = \frac{\pi}{1-\pi}$$

Отношение шансов варьируется от 0 до +∞.

Попробуем сами $(-\infty;+\infty)$

Логиты

Отношение шансов можно преобразовать в логиты(logit):

$$ln(odds) = ln(\frac{\pi}{1 - \pi})$$

- Значения логитов это трансформированные оценки вероятности события.
- Логиты варьируют от -∞ до +∞.
- Логиты симметричны относительно 0, т.е. ln(1).
- Для построения моделей в качестве зависимой переменной удобнее брать логиты.

Считаем вероятность

Как такое учить? BCE Loss

BCE =
$$\frac{1}{N} \sum_{i=1}^{N} - \left[y_i \cdot \ln p_i + (1 - y_i) \cdot \ln (1 - p_i) \right]$$

 $y_i = \{0,1\}$
 $p_i = \{0,1\}$
 $p_i = \{0,1\}$

Как такое учить? BCE Loss

Качество классификации

Качество классификации. ROC кривая

<u>рисуем свою ROC кривую</u>

Построение ROC кривой

POT-AUC = 0.75