- Introduzione
- 2 II problema
- Struttura del codice
- 4 Risultati
- Conclusioni

Introduzione Il problema Struttura del codice Risultati Conclusioni

- Introduzione
- 2 Il problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

L'equazione da risolvere

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r \frac{\partial C}{\partial S} - rC +
+ \int_{\mathbb{R}} \left(C(t, Se^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

L'equazione da risolvere

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r \frac{\partial C}{\partial S} - rC +
+ \int_{\mathbb{R}} \left(C(t, Se^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Possiamo scomporre il problema in due pezzi

 La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii

L'equazione da risolvere

$$\frac{\partial C}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 C}{\partial S^2} + r \frac{\partial C}{\partial S} - rC + + \int_{\mathbb{R}} \left(C(t, Se^y) - C(t, S) - S(e^y - 1) \frac{\partial C}{\partial S}(t, S) \right) \nu(dy) = 0.$$

Possiamo scomporre il problema in due pezzi

- La parte differenziale, trattata in modo usuale con l'aiuto della libreria deal.ii
- La parte integrale, trattata in modo esplicito ad ogni passaggio

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- Conclusioni

- Introduzione
- 2 II problema
- 3 Struttura del codice
- 4 Risultati
- 6 Conclusioni