Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA4802 Ecuaciones en Derivadas Parciales 14 de Octubre de 2024

Auxiliar 10

Profesores: Rayssa Cajú y Claudio Muñoz **Auxiliares** Benjamin Bórquez, Vicente Salinas y Jessica Trespalacios

P1. Considere el PVI asociado a la ecuación de onda

$$\begin{cases} \partial_t^2 w - \Delta w = 0, & x \in \mathbb{R}^n, \quad t \in \mathbb{R}, \\ w(0, x) = f(x), \\ \partial_t w(0, x) = g(x) \end{cases}$$
 (1)

a) Si $f, g \in C_0^{\infty}(\mathbb{R}^n)$ son funciones de valor real, entonces la solución de (1) puede ser escrita de la siguiente forma:

$$w(t,x) = \cos(Dt)f + \frac{\sin(Dt)}{D}g,$$

con $\widehat{Dh}(\xi) = 2\pi |\xi| \hat{h}(\xi)$. Tenga en cuenta que:

$$\cos(Dt)f = f * (\cos(2\pi|\xi|t))\check{}, \qquad \frac{\sin(Dt)}{D}g = g * \left(\frac{\sin(2\pi|\xi|t)}{2\pi|\xi|t}\right)\check{}$$

b) Sea n=3 y $f\equiv 0$, pruebe que

$$w(t,x) = \frac{1}{4\pi t} \int_{\{|y|=t\}} g(x+y)dS_y.$$

Hint: Pruebe y use la siguiente identidad:

$$\int_{\{|x|=t\}} e^{2\pi i \xi \cdot x} dS_x = 4\pi t \frac{\sin(2\pi |\xi|t)}{2\pi |\xi|}$$

Si $g \in C_0^{\infty}(\mathbb{R}^3)$ está soportada en $\{x \in \mathbb{R}^3 : |x| \leq M\}$ ¿ cuál es el soporte de $w(t,\cdot)$?

c) Tomando n = 3 y $g \equiv 0$, prueve que

$$w(t,x) = \frac{1}{4\pi t^2} \int_{\{|y|=t\}} \left[f(x+y) + \nabla f(x+y) \cdot y \right] dS_y.$$

d) Si $E(t) = \int_{\mathbb{R}^n} ((\partial_t w)^2 + |\nabla_x w|^2)(t, x) dx$, entonces para cualquier $t \in \mathbb{R}$,

$$E(t) = E_0 = \int_{\mathbb{R}^n} (g^2 + |\nabla_x f|^2)(x) dx,$$

e) Muestre que

$$\lim_{t \to \infty} \int_{\mathbb{R}^n} (\partial_t w)^2(t, x) dx = \frac{E_0}{2}.$$

- **P2.** a) Sea $k \in \mathbb{N}$ y $p \in [1, \infty]$ y suponga que $u \in W^{k,p}_{loc}(\Omega)$. Entonces existe una sucesión de funciones suaves $u_l \in C_0^{\infty}(\Omega)$ tal que $u_l \longrightarrow u$ en $W^{k,p}_{loc}(\Omega)$ cuando $l \longrightarrow \infty$.
 - b) (Regla de Leibniz para derivadas débiles). Dado $p \in [1, \infty]$, sea $u \in W^{1,p}_{loc}(\Omega)$. Entonces $uv \in W^{1,p}_{loc}(\Omega)$ con:

$$D^{\alpha}(uv) = (D^{\alpha}u)v + u(D^{\alpha}v), \quad |\alpha| \le 1.$$