Содержание

1 Введение 2

1 Введение

Определение 1.1. Пусть функция f ограничена на \mathbb{R} , (2π) -периодична и интегрируема на любом конечном отрезке $[a,b] \subset \mathbb{R}$. Тогда рядом Фурье для этой функции будем называть такого крокодила:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx, \tag{1}$$

 $r\partial e$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt.$$
 (2)

Сформулируем достаточные условия Дирихле:

Теорема 1.2. f(x) имеет на $[-\pi, \pi]$:

- 1. конечное число локальных экстремумов,
- 2. не более чем счетное число разрывов I рода.

Тогда ряд (1) сходится поточечно к $\frac{f(x+0)+f(x-0)}{2}$.

Как всем известно с десткого сада, система функций $\{1,\cos kx,\sin kx\}$, $k\in\mathbb{N}$ образует в пространстве L_2 полную ортогональную систему. Но все любят экспоненты, поэтому можно сказать, что

$$1 = e^{i0x}$$
, $\cos kx = \frac{e^{ikx} + e^{-ikx}}{2}$, $\sin kx = \frac{e^{ikx} - e^{-ikx}}{2}$.

Тогда система $\left\{e^{ikx}\right\}, k \in \mathbb{N}$ тоже будет полной. Пересчитаем коэффициенты:

$$\sum_{k=-\infty}^{\infty} c_k e^{ikx} = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx.$$

Отсюда методом пристальново взгляда получаем формулы для коэффициентов c_k :

$$\begin{cases} c_{-k} &= (a_k + ib_k)/2, & k \in \mathbb{N}, \\ c_0 &= a_0/2, \\ c_k &= (a_k - ib_k)/2, & k \in \mathbb{N}, \end{cases}$$

где $a_k,\ b_k$ считаются по формулам (2). Теперь немного физической интерпретании:

- $|c_k|$ амплитуда комплексных гармонических колебаний,
- k частота комплексных гармонических колебаний,
- \bullet arg c_k начальная фаза.