SENIOR HONOURS PROJECT

Freeing Neural Training Through Surfing

Georg Wölflein 170011885 Supervisor: Dr. Mike Weir

April 9, 2020

Word count: 1724 words

Abstract

TODO

Declaration

"I declare that the material submitted for assessment is my own work except where credit is explicitly given to others by citation or acknowledgement. This work was performed during the current academic year except where otherwise stated. The main text of this project report is 1724 words long, including project specification and plan. In submitting this project report to the University of St Andrews, I give permission for it to be made available for use in accordance with the regulations of the University Library. I also give permission for the title and abstract to be published and for copies of the report to be made and supplied at cost to any bona fide library or research worker, and to be made available on the World Wide Web. I retain the copyright in this work."

Georg Wölflein

Contents

1	Introduction	5
2	Context survey	6
3	Requirements specification 3.1 Ethics	7 7
Ι	Theory	8
4	Neural network theory 4.1 Supervised learning	9 10 10 11 12
5	Neural network learning 5.1 Gradient descent with mean squared error	15 15 15 15
6	Neural surfing theory 6.1 Weight and output spaces	16 16
7	Problems 7.1 Stripe problem	18 18
8	Generalising neural surfing	19
II	Framework	20
9	Design	21

10 Implementation	22
Bibliography	22

Introduction

Describe the problem you set out to solve and the extent of your success in solving it. You should include the aims and objectives of the project in order of importance and try to outline key aspects of your project for the reader to look for in the rest of your report. TODO

Context survey

Surveying the context, the background literature and any recent work with similar aims. The context survey describes the work already done in this area, either as described in textbooks, research papers, or in publicly available software. You may also describe potentially useful tools and technologies here but do not go into project-specific decisions.

- TensorFlow
- keras

TODO

Requirements specification

Primary objectives:

- 1. Design a generic framework that can be used for various neural training algorithms with a clear set of inputs and outputs at each step. This framework should include benchmarking capabilities.
- 2. For a simple case of this framework (when the dimensionality of the control space and output space are suitably low), implement a visualisation tool that shows the algorithm's steps.
- 3. Implement a particular training algorithm for the framework that uses potential field techniques.
- 4. Evaluate the performance of this and other algorithms on tasks of differing complexity, especially with regard to the local minimum problem and similar issues.

Secondary objectives:

1. Investigate how this approach can be generalized to other numerical optimisation problems.

3.1 Ethics

There are no ethical considerations. All questions on the preliminary self-assessment form were answered with "NO" and hence no ethics form had to be completed.

Part I Theory

Neural network theory

4.1 Supervised learning

Regression model In machine learning, a regression model f is defined as a mathematical function of the form

$$f(\mathbf{x}) = \hat{y} = y + \epsilon \tag{4.1}$$

that models the relationship between a D-dimensional feature vector $\mathbf{x} \in \mathbb{R}^D$ of independent (input) variables and the dependent (output) variable $y \in \mathbb{R}$. Given a particular \mathbf{x} , the model will produce a *prediction* for y which we denote \hat{y} . Here, the additive error term ϵ represents the discrepancy between y and \hat{y} .

Supervised learning A supervised learning algorithm for a regression task infers the function f given in (4.1) from a set of *labelled training data*. This dataset consists of N tuples of the form $\langle \mathbf{x}_i, y_i \rangle$ for i = 1, ..., N. For each feature vector \mathbf{x}_i , the corresponding y_i represents the observed output, or *label* [Burkov, 2019]. We use the vector

$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}^\mathsf{T} \tag{4.2}$$

to denote all the labelled outputs in the dataset, and the $N \times D$ matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N \end{bmatrix}^\mathsf{T} \tag{4.3}$$

for representing the corresponding feature vectors. Similarly,

$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}_1 & \hat{y}_2 & \cdots & \hat{y}_N \end{bmatrix}^\mathsf{T} \tag{4.4}$$

denotes a particular prediction for each training sample.

4.2 Artifical neural networks

Artifical neural networks (ANNs) take inspiration from the human brain and can be regarded as a set of interconnected neurons. More formally, an ANN is a directed graph of n neurons (referred to as nodes or units) with weighted edges (links). Each link connecting two units i and j is directed and associated with a real-valued weight $w_{i,j}$.

A particular unit i's excitation, denoted ex_i , is calculated as the weighted sum

$$ex_i = \sum_{i=1}^{n} w_{j,i} a_j + b_i \tag{4.5}$$

where $a_j \in \mathbb{R}$ is another unit j's activation and $b_i \in \mathbb{R}$ is the ith unit's bias. Notice that if there exists no link between unit i and a particular j then simply $w_{i,j} = 0$ and therefore j will not contribute to i's excitation.

The unit i's activation is its excitation applied to a non-linear activation function, g. We have

$$a_i = g(ex_i) = g\left(\sum_{j=1}^n w_{j,i}a_j + b_i\right).$$
 (4.6)

Activation functions will be explored in more detail in Section 4.2.1.

ANNs as regression models We can employ an ANN to model a regression problem of the form given in (4.1). To do so, we need at least D+1 neurons in the network. We consider the first D units to be the *input* neurons, and the last neuron, n, is the output unit. Furthermore, we require $w_{j,k} = 0$ for $j,k \in \mathbb{Z}^+$ where $j \leq n$ and $k \leq D$ to ensure that there are no links feeding into the input neurons.

To obtain the prediction \hat{y} given the *D*-dimensional feature vector \mathbf{x} , we set the activation of the *i*th unit to the value the *i*th element in \mathbf{x} for i = 1, ..., D. Then, we propagate the activations using (4.6) until finally the prediction is the activation of the last neuron, $\hat{y} = a_n$. This process is often called *forward propagation* or *forward pass* [Russell and Norvig, 2010].

4.2.1 Activation functions

In its original form, McCulloch and Pitts defined the neuron as having only a binary activation [McCulloch and Pitts, 1943]. This means that in our model in (4.6), we would require $a_i \in \{0,1\}$ and hence an activation function of the form $g: \mathbb{R} \to \{0,1\}$. Applied to our model, this function would be defined¹ as

$$g_{\text{step}}(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$
 (4.7)

¹In fact, McCulloch and Pitts defined the activation to be zero when $x < \theta$ for a threshold parameter $\theta \in \mathbb{R}$ and one otherwise, but in our model the bias term b_i acts as the threshold.

Figure 4.1: A single-layer perceptron with three input and four output neurons.

Common activation functions include the sigmoid

$$S(x) = \frac{1}{1 + e^{-x}} \tag{4.8}$$

TODO

4.2.2 Single-layer network

We introduce a single-layer network (SLN) as a type of ANN which consists of two conceptual layers, an input and an output layer. Every input node is connected to every output node, but there are no intra-layer links (i.e. there are no links between any two input nodes or any two output nodes), as shown in Figure 4.1. This is what we call a fully-connected feedforward architecture. SLN architectures will always form a directed acyclic graph (DAG) because there are no intra-layer or backwards connections.

We purposefully use the term SLN instead of single-layer perceptron (SLP) to avoid confusion. A SLP has only one output unit and uses the step activation function given in (4.7) [Rosenblatt, 1958]. In our definition of a SLN we allow more than one output and impose no restrictions on g. We still use the term 'single layer' because the input layer, lacking any incoming weight or bias connections, is not considered to be a 'proper' layer.

Let us consider a SLN with m inputs and n outputs. Since every output unit i only has connections from every input unit j, we can adapt (4.6) to give

the activation of a particular output neuron i as

$$a_i = y_i = g\left(ex_i\right) = g\left(\sum_{j=1}^m w_{j,i}x_j + b_i\right) = g\left(\mathbf{w}_i^\mathsf{T}\mathbf{x}_i + b_i\right) \tag{4.9}$$

where $\mathbf{w}_i = \begin{bmatrix} w_{1,i} & w_{2,i} & \cdots & w_{m,i} \end{bmatrix}^\mathsf{T}$ represents the weights of all the edges that connect to output unit *i*. If we use the $m \times n$ matrix

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{n} \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,n} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{m,1} & w_{m,2} & \cdots & w_{m,n} \end{bmatrix}$$
(4.10)

to capture all weights and the vector $\mathbf{b} = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^\mathsf{T}$ for the biases, we can give a mathematical formula describing the relationship between the inputs and outputs as

$$\mathbf{f}_{SLN}(\mathbf{x}; \mathbf{W}, \mathbf{b}, \mathbf{g}) = \mathbf{g} (\mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b}).$$
 (4.11)

Unlike the formula for a regression model, this is a vector-valued function, due to the fact that there are multiple outputs.

Note that when n = 1, we reach the same form as in (4.1). Moreover, if we additionally use the step activation function from (4.7), we arrive at the SLP model given by Rosenblatt [1958].

4.2.3 Multi-layer perceptron

A multi-layer perceptron (MLP) is a fully-connected feedforward ANN architecture with multiple layers which we will define in terms of multiple nested functions as in Burkov [2019]. A MLP with L layers is the mathematical function

$$f_{\text{MLP}}(\mathbf{x}) = \hat{y} = f_L \left(\mathbf{f}_{L-1} \left(\dots \left(\mathbf{f}_1 \left(\mathbf{x} \right) \right) \right) \right)$$

$$(4.12)$$

where $\mathbf{f}_l(\mathbf{x}) = \mathbf{f}_{SLN}(\mathbf{x}; \mathbf{W}_l, \mathbf{b}_l, \mathbf{g}_l)$ for l = 1, ..., L - 1. In order to fully define a MLP, we need the three-tuple

$$\langle \mathcal{W}, \mathcal{B}, \mathcal{G} \rangle$$
 (4.13)

where $\mathcal{W} = \mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_L$ are the weight matrices, $\mathcal{B} = \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_L$ the bias vectors, and $\mathcal{G} = \mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_L$ the vector-valued activation functions. Notice that for every l < L, \mathbf{W}_l is a $n_l \times m_l$ matrix such that $n_l = m_{l+1}$ to esnure that the number of outputs of layer l is the number of inputs to layer l+1. This means that the MLP has m_1 input neurons. The outermost function f_L is the scalar-valued function $f_L(\mathbf{x}) = f_{\text{SLN}}(\mathbf{x}; \mathbf{W}_L, \mathbf{b}_L, \mathbf{g}_L)$ because it represents a SLN with only one output unit which also means that $\|\mathbf{b}_L\| = 1$, \mathbf{W}_L has only one row, and finally $n_L = 1$.

The graph representing this type of network consists of connecting the outputs of the SLN representing layer l with the inputs of the SLN representing

Figure 4.2: A multi-layer perceptron with three inputs and two hidden layers.

layer l+1, as shown in Figure 4.2. The layers between the input and output layers are referred to as hidden layers.

Since MLPs are simply nested SLNs, it follows that MLPs retain the DAG property and are therefore feed forward networks as well. In the forward pass, the activations are propagated from layer to layer (i.e. nested function to nested function) as in (4.11).

Neural network learning

- 5.1 Gradient descent with mean squared error
- 5.2 Local minimum problem
- 5.3 Simulated annealing

Neural surfing theory

6.1 Weight and output spaces

In Section 4.2.3 we determined that we need the three tuple from (4.13) to fully define a MLP. Most importantly, we have $\mathcal{W} = \mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_L$ and $\mathcal{B} = \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_L$ representing each layer's weight matrices and bias vectors, respectively.

Weight space We define the weight space W of a MLP as the set of all possible assignments to its *trainable parameters*. The trainable parameters are its weights and biases, so the weight space encompasses all possible configurations of W and \mathcal{B} .

A SLN with m inputs and n outputs will have $m \times n$ weights and n biases, totalling n(m+1) trainable parameters. Now consider a MLP with L layers, where m_1, m_2, \ldots, m_L is the number of inputs to each layer. For any layer l, the number of outputs n_l is m_{l+1} except for the last layer where $n_L = 1$. It follows that the total number of trainable parameters in the network is

$$P = \sum_{l=1}^{L} (n_l(m_l + 1))$$
$$= \sum_{l=1}^{L-1} (m_{l+1}(m_l + 1)) + m_L + 1,$$

so the weight space for that network is defined as

$$W = \mathbb{R}^P. \tag{6.1}$$

Output space The output space \mathcal{O} spans the space of all possible output predictions on the training set. In our definition of a MLP from Section 4.2.3, it states that the network must only have one output node and thus the prediction \hat{y} is a scalar.

From (4.4), the vector $\hat{\mathbf{y}}$ represents the prediction \hat{y} for all N training samples. This means that the output space spans all possible assignments of $\hat{\mathbf{y}}$, so

$$\mathcal{O} = \mathbb{R}^N. \tag{6.2}$$

Relationship between weight and output spaces TODO

Problems

7.1 Stripe problem

Generalising neural surfing

Generalize to classification as regression with multiple output variables

Part II Framework

Design

TODO

Implementation

TODO

Bibliography

Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The Bulletin of Mathematical Biophysics*, 5(4):115–133.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):386–408.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Pearson, 3rd edition.