

Data in Python Handling data arrays in Python

Norhasliza Yusof

https://github.com/lizayusof/IVC_Astrostat_ML

Reading data arrays (tips and trick)

Handling data arrays as data frame using Pandas

- Pandas is a fast, powerful, flexible way and easy to use for data analysis and manipulations tools.
- Types of file format can be handled by Pandas in Python:
 - CSV
 - txt
 - XISX
 - hdf5
 - html
 - json
 - xml

Introduction to data structure

8 36

9 40

9 10 60

Getting started. Reading text file and visualising data

```
In [1]: import numpy as np
         import pandas as pd
         We want to read data from text file
In [2]: df = pd.read_fwf('data.txt') #reading text file. fwf = fixed-width text file
         print(df)
            9 40
         8 10 60
         The data read without a header and pandas assign as first column as 1 and second column as 2 We can plot data from the file that we read using pandas.
         But we need to assign the header name
In [3]: import matplotlib.pyplot as plt
In [4]: df = pd.read_fwf('data.txt', sep='\s+', header=None, names=['x','y'])
         print(df)
            4 16
            5 20
            6 30
            7 32
```


Pandas I/O is a set of top level reader functions accessed like pandas.read_csv() that generally return a pandas object

Selected format type commonly used in astronomy/astrophysics

Format Type	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	Fixed-width text file	read_fwf	
text	LateX		Styler.to_latex
binary	XIsx (MS Excel)	read_excel	to_excel
binary	OpenDocument	read_excel	
binary	HDF5 Format	read_hdf	to_hdf

More info: pandas.pydata.org

Continued from previous slide

```
In [3]: import matplotlib.pyplot as plt
In [4]: df = pd.read_fwf('data.txt', sep='\s+', header=None, names=['x','y'])
        print(df)
        9 10 60
In [5]: plt.plot(df['x'],df['y']) #we assigned the header as x and x that is within the dataframe
Out[5]: [<matplotlib.lines.Line2D at 0x7ffbe3c17950>]
         60
         50
         40
         30
```


Introduction to data structure

Continued from previous slide

If your data contained header, we have to modify the read pandas statement and add header = 0 We assign new data frame to call new data. If you put the same name for data frame (df) as previous one, python will overwrite the data frame.

Now pandas read file together with the header and note that we do not need to assign names in read pandas. Now we plot again the data

```
In [9]: plt.plot(df1['x'],df1['y']) #remember the numbering for your new data frame!
```

Out[9]: [<matplotlib.lines.Line2D at 0x7ffbe3e7c350>]

UNIVERSITY OF MALAYA

Exploring large dataset

This is how the csv usually look like if you open using text editor/ vim/nedit

Stars

Temperature	L	R	A_M	Color	Spectral_Class	Туре
3068	0.0024	0.17	16.12	Red	М	0
3042	0.0005	0.1542	16.6	Red	М	0
2600	0.0003	0.102	18.7	Red	М	0
2800	0.0002	0.16	16.65	Red	М	0
1939	0.000138	0.103	20.06	Red	М	0
2840	0.00065	0.11	16.98	Red	М	0
2637	0.00073	0.127	17.22	Red	М	0
2600	0.0004	0.096	17.4	Red	М	0
2650	0.00069	0.11	17.45	Red	М	0
2700	0.00018	0.13	16.05	Red	М	0
3600	0.0029	0.51	10.69	Red	М	1
3129	0.0122	0.3761	11.79	Red	М	1
3134	0.0004	0.196	13.21	Red	М	1
3628	0.0055	0.393	10.48	Red	М	1
2650	0.0006	0.14	11.782	Red	М	1
3340	0.0038	0.24	13.07	Red	М	1
2799	0.0018	0.16	14.79	Red	М	1
3692	0.00367	0.47	10.8	Red	М	1
3192	0.00362	0.1967	13.53	Red	М	1
3441	0.039	0.351	11.18	Red	М	1
25000	0.056	0.0084	10.58	Blue White	В	2
7740	0.00049	0.01234	14.02	White	Α	2
7220	0.00017	0.011	14.23	White	F	2
8500	0.0005	0.01	14.5	White	Α	2
16500	0.013	0.014	11.89	Blue White	В	2
12990	0.000085	0.00984	12.23	Yellowish White	F	2
8570	0.00081	0.0097	14.2	Blue white	Α	2
7700	0.00011	0.0128	14.47	Yellowish White	F	2
11790	0.00015	0.011	12.59	Yellowish White	F	2
7230	0.00008	0.013	14.08	Pale yellow orange	F	2
39000	204000	10.6	-4.7	Blue	0	3
30000	28840	6.3	-4.2	Blue-white	В	3
15276	1136	7.2	-1.97	Blue-white	В	3
9700	74	2.89	0.16	Whitish	В	3

- If open file via Excel (in MS) or numbers (Mac OSX), the cvs file automatically converted in the column.
- Easier to see and check the data or column.
- Let's explore the data!
- Code for manipulating and visualisation of this data is available at https://github.com/ lizayusof/IVC_Astrostat_ML/Intro_Python/ dataset.ipynb