Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3266	К работе допущен
Студент Хоанг Ван Куан, Самарина Арина,	Работа выполнена
Коляда Анастасия	
Преподаватель Сорокина Елена Константиновна	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.08

Эффект Холла в примесных полупроводниках

1. Цель работы.

- Изучить эффект Холла в примесных полупроводниках. Ознакомиться сметодом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

2. Задачи, решаемые при выполнении работы.

- Исследуйте зависимость ЭДС Холла U_x от величины магнитного поля B при постоянной силе тока и постоянной температуре
- Исследуйте зависимость ЭДС Холла U_x от величины тока I при постоянной величине магнитного поля и постоянной температуре
- Исследуйте зависимость ЭДС Холла U_x от температуры при постоянной величине магнитного поля и постоянном токе

3. Объект исследования.

- комплекса МУК-ТТ1

4. Метод экспериментального исследования.

- Анализ
- Лабораторный эксперимент

5. Рабочие формулы и исходные данные.

1. Напряжением Холла

$$U_x = R_x \frac{IB}{b}$$

где І - сила тока, протекающего через образец

В - индукция магнитного поля

b – толщина образца (размер по магнитному полю)

 R_x – постоянная Холла, зависящая от рода вещества

2. Сила Лоренца

$$\overrightarrow{F_{\pi}} = q_e \left[\overrightarrow{v_{\text{Ap}}}, \overrightarrow{B} \right]$$

3. Электроны будут испытывать со стороны этого электрического поля действие силы

$$\overrightarrow{F_{\mathfrak{I},\pi}} = -q_e \overrightarrow{E}$$
 $\rightarrow \overrightarrow{F_{\pi}} = q_e \overrightarrow{E_{\chi}}$ где $E_{\chi} = \frac{U_{\chi}}{d}$

4. Датчик изготовлен из донорного полупроводника, то его электропроводность определяется формулой

определяется формулой
$$\sigma=\,q_e n \mu, \quad \mu=rac{v_{
m дp}}{F}$$

5. Постоянная Холла в области температур, для которой концентрация свободных электронов много больше концентрации дырок, определяется формулой

$$R_x = a \frac{1}{q_e n}$$

6. Все эти характеристики зависят от температуры Т и от типа рассеяния. При низких температурах

$$n = n_0 exp\left(\frac{-\Delta E_a}{k_6 T}\right)$$

где ΔE_a — энергия активации примеси, k_6 — постоянная Больцмана. 7. Электропроводность образца σ — величина обратная его удельному сопротивлению ρ :

$$\sigma = \frac{1}{\rho} = \frac{IL_{12}}{U_{12}bd}$$

8. Удельное сопротивление входит в формулу для сопротивления образца между точками 1и2

$$R_{12} = \rho \frac{L_{12}}{bd}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1				

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 4. Рабочая схема для измерения ЭДС Холла

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Измерить	<i>T, K</i>		
	U_{12} , B		
Вычислить	1/T 1/K		
	σ		
	сименс		
	lnσ		

Таблица 1. I = 1mA

Измерить	В, мТл		
	U'_{34} , B		
	$U^{\prime\prime}_{34}$, B		
Вычислить	U_x , B		

Таблица 2.T= K, I= мкА.

Измерить	В, мТл		
	U'_{34} , B		
	U''_{34} , B		
Вычислить	U_{x} , B		

Таблица 3.T= K, I= мкА.

Измерить	В, мТл		
	U'_{34} , B		
	U''_{34} , B		
Вычислить	U_x , B		

Таблица 4.T= K, I= мкА.