

NTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI

ANTENNA PARABOLICA IN FUOCO PRIMARIO

In pratica spesso il feed ha un diagramma di radiazione F_f che non dipende da ϕ '

$$\mathbf{E}_{a}(r') = F_{f}\left(r' = 2f \tan \frac{\theta'}{2}\right) \left[1 + \left(\frac{r'}{2f}\right)^{2}\right]^{-1} = 20\log_{10}\left|F_{f}\right| - 20\log_{10}\left[1 + \left(\frac{r'}{2f}\right)^{2}\right] dB$$

La distribuzione di campo sull'apertura può essere approssimata con un andamento parabolico (con o senza piedistallo) dove il livello di illuminazione del bordo può essere trovato dalla formula precedente

$$C(dB) = 20 \log_{10} \left| F_f(\theta_0) \right| - 20 \log_{10} \left[1 + \frac{1}{16} \left(\frac{d}{f} \right)^2 \right]$$

 $\theta_0 o$ angolo che individua il bordo dello specchio d=2a o diametro dello specchio

9/18

Lezione 12 – Antenne a riflettore

ANTENNA PARABOLICA IN FUOCO PRIMARIO

illumination		HP	Side lobe level		HP	Side lobe level	
C(dB)	C	(rad)	(dB)	ϵ_{i}	(rad)	(dB)	$s_{\rm r}$
-8	0.398	$1.12\frac{\lambda}{2a}$	-21.5	0.942	$1.14\frac{\lambda}{2a}$	-24.7	0.918
-10	0.316	$1.14\frac{\lambda}{2a}$	-22.3	0.917	$1.17\frac{\lambda}{2a}$	-27.0	0.877
-12	0.251	$1.16\frac{\lambda}{2a}$	-22.9	0.893	$1.20\frac{\lambda}{2a}$	-29.5	0.834
-14	0.200	$1.17\frac{\lambda}{2a}$	-23.4	0.871	$1.23\frac{\lambda}{2\alpha}$	-31.7	0.792
-16	0.158	$1.19\frac{\lambda}{2\alpha}$	-23.8	0.850	$1.26\frac{\lambda}{2\omega}$	-33.5	0.754
-18	0.126	$1.20\frac{\lambda}{2\alpha}$	-24.1	0.833	$1.29\frac{\lambda}{2\alpha}$	-34.5	0.719
-20	0.100	$1.21\frac{\lambda}{2a}$	-243	0.817	$1.32 \frac{\lambda}{2a}$	-34.7	0.690

Prof. G. Pelosi - Laboratorio di Elettromagnetismo Numerico Dipartimento di Elettronica e Telecomunicazioni – Università

ANTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI

) Parabolic taper on a podestal $E_n(r) = C + (1-C) \left[1 - {r \choose n}^2\right]^2$ $f(\theta, n, C) = \frac{Cf(\theta, n = 0) + \frac{1}{n-C}f(\theta, n)}{C + \frac{1}{n+1}}$

10/18

TENNE I – ANTENNE PER SISTEMI DI TELECOMUNI CAZIONI

Lezione 12 – Antenne a riflettore

CALCOLO DEL GUADAGNO PER ANTENNE A RIFLETTORE

 $G_{\text{max}} = eD_{\text{max}}$ $e \le 1 \rightarrow \text{efficienza di radiazione (perdite ohmiche)}$

Per un'antenna ad apertura:

$$G_{\text{max}} = \frac{4\pi}{\lambda^2} A_e$$

A_e area efficace dell'antenna

$$A_e=arepsilon_{ap}S_a$$
 $arepsilon_{ap}\leq 1$ $ightarrow$ efficienza di apertura S_a $ightarrow$ area fisica dell'antenna

$$G_{\max} = \varepsilon_{ap} \frac{4\pi}{\lambda^2} S_a$$

$$\varepsilon_{ap} = e \varepsilon_t \varepsilon_1 \varepsilon_2 \varepsilon_3 \dots$$

13/18

Lezione 12 – Antenne a riflettore

CALCOLO DEL GUADAGNO PER ANTENNE A RIFLETTORE

- $e \approx 1$ l'efficienza di radiazione e è legata alle perdite ohmiche che per un'antenna a riflettore sono trascurabili
- ε_t efficienza di taper: dipende perdita di guadagno dovuta alla distribuzione del campo sull'apertura rispetto alla distribuzione uniforme
- efficienza di spillover: porzione di potenza radiata dal feed che non viene intercettata dal riflettore
- $arepsilon_2$ fattore di errore superficiale: le rugosità della superficie dello specchio causano degli errori di fase sull'apertura che causano effetti di cancellazione in campo lontano
- efficienza di bloccaggio: potenza che viene bloccata dal feed o dal riflettore secondario
- efficienza di bloccaggio delle strutture di sostegno: potenza che viene bloccata dalle strutture che sostengono il feed o il sub-riflettore

14/18

