MAC 2311 CALCULUS I CRN 85503

Final Exam

Term Fall, 2024

Full Name:

Instructions

- 1. Total time: 2 hour 15 minutes.
- 2. Write the information requested above.
- 3. Switch off any electronic devices.
- 4. Calculators are not allowed.
- 5. Write the solution in the given space.
- 6. Show all your work for full credit.
- 7. Scratch papers are provided but will not be graded.

Q.N.	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Bonus	10	
Total	100	

1. (10 points) Find the derivative of the following functions (No need to simplify):

(a)
$$f(x) = \sqrt{x} \cdot \tan(x^2 + 1)$$

(b)
$$g(t) = \frac{\cos t}{3 + 2\sin t}$$

 $2.\ (10\ \mathrm{points})$ Find the limit using l'Hospital's Rule (where you can apply).

(a)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

(b) $\lim_{x \to \infty} \frac{\ln x}{x}$

3. (10 points) Find the derivative $\frac{dy}{dx}$ (or y') by implicit differentiation.

$$xe^y = x - y$$

4. (10 points) $f(x) = x^3 - 3x^2 + 5$

(a) (7 pts) Find the intervals on which f is increasing or decreasing.

(b) (3 pts) Find the local maximum and minimum values of f using First Derivative Test.

						0						
_	(10:+-) Tr:1 +1	-1: c	' -	: _ 1	400 4	1		·	11		: 1_ 1 _
a.	TU DOINES	i rina the	dimensions of	а гестапоте	with area	400 m	wnose	perimeter	1S 2S	sman	as n	ossinie
٠.	(10 points	, 1 1114 0110	difficient of	a recuaring	WICH CHOCK	100 111	****	Pormicoci	10 000	DIII	CLD P	ODDIDIO.

(Hint: Area = length \times width, Perimeter = 2 (length) + 2 (width))

6. (10 points) Find the function f(x) using anti-derivatives.

$$f'''(x) = \sin x$$
, $f(0) = 2$, $f'(0) = 1$, $f''(0) = 3$

- 7. (10 points) Find the below integrals.
 - (a) Indefinite Integral: $\int \frac{5x^2 + 2 + \sqrt{x}}{x} dx$

(b) Definite Integral: $\int_{-1}^{3} (e^x - \pi) dx$

8.	(10 points) Two cars start moving from the same point. One travels north at 3 mi/h and the other travels
	east at 4 mi/h. At what rate is the distance between the cars increasing one hour later?
	(Hint: Pythagorean theorem: $(dist)^2 = x^2 + y^2$)

- 9. (10 points)
 - (a) (5 pts) Use the Fundamental Theorem of Calculus to find the derivative of the function f'(x).

$$f(x) = \int_0^{\tan x} t \, e^{-t^2} \, dt$$

(b) (5 pts) If $\int_{1}^{7} f(x) dx = 10$ and $\int_{1}^{7} g(x) dx = 5$, find $\int_{1}^{7} [3f(x) - 2g(x)] dx$.

- 10. (10 points) $f(x) = 1 + 3x^2 2x^3$
 - (a) (5 pts) Find the inflection points of f, and the intervals on which f is concave upward or concave downward.

(b) (5 pts) Find the local maximum and minimum values of f using the **Second Derivative Test**.

Bonus Problem (Extra 10 points)

(a) Find the integral by using substitution: $\int x e^{x^2} dx$

(b) Find the integral: $\int_{-2}^{2} (x^{99} + x^3 + x) dx$