Оглавление

1 Что такое ЦОС	2
2 Основные типы сигналов	2
3 Типовые дискретные сигналы	3
4 Нормирование частоты	4
5 Основная полоса частот	5
6 Обобщенная схема ЦОС	5
7 Определение и свойства ЛДС	6
8 Математическое описание ЛДС	6
9 Нулевые начальные условия ЛДС	6
10 Физическая реализуемость ЛДС	7
11 Импульсная характеристика ЛДС	7
12 Формула свертки	7
13 Разностное уравнение	8
14 КИХ и БИХ ЛДС	9
15 Устойчивость ЛДС. Первый критерий устойчивости	9
16 Преобразование Лапласа	10
18 Основные свойства Z-преобразования	11
19 Обратное Z-преобразование	11
20 Связь комплексных р- и z-плоскостей. Смысл нормированной частоты	11
21 Что такое ИХ. Зачем она нужна.	14
22 Передаточная функция. Соотношения вход/выход в z-области.	14
23 Разностное уравнение рекурсивной и нерекурсивной ЛДС.	15
24 Частотная характеристика	16
25 АЧХ и ФЧХ	16
26 Соотношения вход/выход в частотной области	16
27 Основные свойства АЧХ и ФЧХ	16
28 Расчет АЧХ и ФЧХ	17
29 Два критерия устойчивости	18
30 Определение структуры	18
31 Структуры рекурсивной ЛДС	18
32 Прямая структура	19
33 Прямая каноническая структура	19
34 Каскадная структура	19
35 Параллельная структура	20
36 Прямая структура нерекурсивной ЛДС	21
37 Определение и классификация ЦФ	21
38 Основные этапы проектирования ЦФ	22
39 Задание требований к АЧХ	22
40 КИХ-фильтры с линейной ФЧХ	23
41 Четыре типа КИХ-фильтров с ЛФЧХ	23
42 Прямая приведенная структура КИХ-фильтра	23
43 Задачи	24

Вопросы ЦОС

1 Что такое ЦОС

Лекция:

ЦОС — это обработка цифровых сигналов средствами цифровой вычислительной техники.

Солонина:

Цифровая обработка сигналов (ЦОС) — это область науки и техники, в которой изучаются общие для различных технических приложений методы и алгоритмы обработки сигналов средствами цифровой вычислительной техники.

2 Основные типы сигналов

Сигналом называют физический процесс, несущий в себе информацию.

Математически сигнал описывается функцией времени, тип которой зависит от типа сигнала. К основным типам сигналов относят аналоговый, дискретный и цифровой.

Аналоговым называют сигнал, непрерывный по времени и состоянию. Такой сигнал описывается непрерывной или кусочно-непрерывной функцией x(t), при этом и аргумент, и функция могут принимать любые значения из некоторых интервалов $t_1 \le t_2$, $x_1 \le x \le x_2$ соответственно.

Дискретным называют сигнал, дискретный по времени и непрерывный по состоянию. Такой сигнал описывается последовательностью x(nT), n=0,1,2,..., (решетчатой функцией), которая определена только в дискретные моменты времени nT и может принимать любые значения из некоторого интервала $x_1 \le x \le x_2$.

Значения последовательности x(nT) называют отсчетами (samples), интервал T — периодом дискретизации, а обратную величину $f_0 = 1/T$ — частотой дискретизации.

Термины "дискретный сигнал" и "последовательность" в теории ЦОС тождественны.

Цифровым называют сигнал, дискретный по времени и квантованный по состоянию. Такой сигнал описывается квантованной последовательностью (квантованной решетчатой функцией) $x_{II}(nT)$, $n=0,\,1,\,2,\,...$, отсчеты которой в каждый момент времени nT принимают дискретные значения уровней квантования из некоторого интервала $x_1 \le x \le x_2$.

3 Типовые дискретные сигналы

Цифровой единичный импульс — последовательность с единственным отсчетом, отличным от нуля и равным единице в точке n=0.

$$u_0(n) = \begin{cases} 1, & n = 0; \\ 0, & n \neq 0. \end{cases}$$

Задержка цифрового единичного импульса, как и любой другой последовательности, эквивалентна ее сдвигу по оси времени вправо на m>0 отсчетов (m периодов дискретизации):

$$u_0(n-m) = \begin{cases} 1, & n=m; \\ 0, & n \neq m. \end{cases}$$

единичный импульс $u_0(n)$ играет туже роль, какую в аналоговой обработке играет δ - функция (функция Дирака) $\delta(t)$

Цифровой единичный скачок — последовательность, отсчеты которой равны единице при всех неотрицательных значениях n и нулю — в противном случае:

$$u_1(n) = \begin{cases} 1, & n \ge 0; \\ 0, & n < 0. \end{cases}$$

Задержанный цифровой единичный скачок описывается последовательностью:

$$u_1(n-m) = \begin{cases} 1, & n \ge m; \\ 0, & n < m. \end{cases}$$

Дискретная экспонента — последовательность, отсчеты которой определяются соотношением:

$$x(n) = \begin{cases} a^n, & n \ge 0; \\ 0, & n < 0. \end{cases}$$

Рис. 1.7. Знакопостоянная (a) и знакопеременная (δ) дискретные экспоненты

Дискретный гармонический сигнал — последовательность, отсчеты которой совпадают со значениями аналогового гармонического сигнала (синусоиды или косинусоиды) в моменты дискретного времени:

$$x(nT) = C\cos(\omega t)\big|_{t=nT} = C\cos(\omega nT)$$

где C — амплитуда, ω — частота, T — период дискретизации сигнала.

В шкале дискретного нормированного времени и нормированной частоты это эквивалентно $x(n) = C \cos(\widehat{\omega}n)$

Дискретный комплексный гармонический сигнал — комплексная последовательность, отсчеты которой совпадают со значениями комплексного аналогового гармонического сигнала в моменты дискретного времени:

$$x(nT) = Ce^{j\omega t}|_{t=nT} = Ce^{j\omega nT}$$

4 Нормирование частоты

Дискретным временем называют значения аргумента nT, n = 0, 1, ..., дискретного x(nT) или цифрового $x_{tt}(nT)$ сигнала. Дискретным нормированным временем называют отношение дискретного времени к периоду дискретизации: $n = \frac{nT}{T}$, n = 0,1,2 ...

Шкала дискретного нормированного времени является унифицированной: при любых значениях периода дискретизации обеспечивается равенство x(nT) = x(n), n = 0, 1 ...

При описании дискретных и цифровых сигналов и систем в частотной области, наряду с частотами $f(\Gamma \mu)$ и ω ($\Gamma \mu/c$), используют нормированные частоты.

Нормированной частотой называют ее отношение к частоте дискретизации:

$$\hat{f} = \frac{f}{f_{\rm д}} = fT$$
(без размера)

$$\widehat{\omega} = \frac{\omega}{f_{\!\scriptscriptstyle \Pi}} = \omega T$$
(рад), где $\widehat{\omega} = 2\pi \widehat{f}$

Шкала нормированной частоты \hat{f} или $\hat{\omega}$ является унифицированной.

5 Основная полоса частот

Согласно теореме Котельникова, точное восстановление аналогового сигнала с финитным спектром, ограниченным верхней частотой $f_{\rm B}$, гарантируется при выборе частоты дискретизации $f_{\rm J}$ из условия $f_{\rm J} \ge 2f_{\rm B}$.

С этим связано понятие основной полосы частот в шкале частот f: $f \Rightarrow [0; \frac{f_{\mathbb{A}}}{2}]$

или
$$\omega$$
: $\omega \Rightarrow \left[0; \frac{\omega_{\text{д}}}{2}\right] = \left[0; \frac{2\pi f_{\text{д}}}{2}\right] = \left[0; \frac{\pi}{T}\right]$

В шкале нормированных частот \hat{f} или $\widehat{\omega}$ основная полоса частот унифицирована:

$$\hat{f} = [0; 0.05]$$

$$\widehat{\omega} = [0; \pi]$$

6 Обобщенная схема ЦОС

Обобщенная схема ЦОС отображает последовательность процедур, необходимых для преобразования исходного аналогового сигнала x(t) в другой аналоговый сигнал y(t) по заданному алгоритму средствами цифровой вычислительной техники.

В цифровой обработке сигнала можно выделить три основных этапа:

- формирование цифрового сигнала $x_{tt}(nT)$ из исходного аналогового сигнала x(t);
- преобразование входного цифрового сигнала $x_{II}(nT)$ в выходной цифровой сигнал $y_{II}(nT)$ по заданному алгоритму;
- формирование аналогового сигнала y(t) из цифрового сигнала $y_{II}(nT)$.

7 Определение и свойства ЛДС

ЛДС - Линейная дискретная система, которая выполняет требуемое преобразование входного сигнала (воздействия) в выходной сигнал (реакцию).

Система - физическое устройство или математическое преобразование.

В ЦОС система представляет собой математическое преобразование.

Свойства:

- 1) аддитивности: если воздействие равно сумме воздействий, то реакция равна сумме реакций на данные воздействия (принцип суперпозиции);
- 2) однородности: если воздействие умножено на константу, реакция будем умножена на ту же константу.

Систему называют дискретной, если воздействие и реакция — дискретные сигналы

Стационарная, если обладает свойством инвариантности во времени, то есть, когда задержка воздействия на время приводит к задержке реакции на то же время.

Параметры стационарной системы неизменны во времени.

8 Математическое описание ЛДС

Подобно линейной аналоговой системе, ЛДС описывается в трех областях:

- временной;
- области комплексной переменной;
- частотной.

В каждой их этих областей математическое описание ЛДС включает в себя:

- статическом режиме основную характеристику;
- в динамическом режиме соотношение вход/выход.

Соотношение вход/выход ЛДС называют ее математической моделью.

9 Нулевые начальные условия ЛДС

ЛДС может работать с нулевыми или ненулевыми начальными условиями. Нулевые начальные условия (ННУ) ЛДС означают, что до начала воздействия (n=0) все значения воздействия и реакции, которые может помнить система, равны нулю:

$$\begin{cases} x [(n-i)T]|_{(n-i)<0, i=1, 2, \dots} = 0; \\ y [(n-k)T]|_{(n-k)<0, k=1, 2, \dots} = 0, \end{cases}$$

где і и k — задержки воздействия и реакции.

Признаком ННУ является то, что в отрицательной области времени все значения воздействия и реакции равны нулю.

10 Физическая реализуемость ЛДС

ЛДС называется физически реализуемой, если для нее выполняются условия физической реализуемости:

- 1) при ННУ реакция не может возникнуть раньше воздействия (причинно-следственная связь);
- 2) при ННУ реакция в любой момент времени п зависит от отсчетов воздействия в данный и предшествующие моменты времени и не зависит от ее будущих отсчетов.

11 Импульсная характеристика ЛДС

Основной характеристикой ЛДС во временной области является импульсная характеристика (ИХ).

Импульсной характеристикой ЛДС h(n) называется реакция ЛДС на цифровой единичный импульс $u_0(n)$ при ННУ.

По определению в отрицательной области времени ИХ h(n) равна нулю.

 ${\rm HX}\ {\rm h(n)}$ называют основной характеристикой ЛДС, т. к. зная ее, можно определить реакцию на произвольное воздействие.

12 Формула свертки

Определим реакцию на произвольное воздействие x(n) при известной ИХ h(n).

Воздействие \rightarrow реакция:

1) согласно определению:

$$u_0(n) \rightarrow h(n)$$

2) согласно свойству инвариантности во времени:

$$u_0(n-m) \rightarrow h(n-m)$$

3) согласно свойству однородности:

$$x(m)u_0(n-m) \rightarrow x(m)h(n-m);$$

4) согласно свойству аддитивности при ННУ ($m \ge 0$):

$$\sum_{m=0}^{\infty} x(m)u_0(n-m) \to \sum_{m=0}^{\infty} x(m)h(n-m)$$

5) согласно фильтрующему свойству цифрового единичного импульса, слева имеем воздействие x(n), а справа — реакцию y(n) в виде свертки воздействия и ИX:

$$x(n) = \sum_{m=0}^{\infty} x(m)u_0(n-m) \longrightarrow y(n) = \sum_{m=0}^{\infty} x(m)h(n-m)$$

Данное соотношение вход/выход называют формулой свертки, которая имеет две тождественные записи:

$$y(n) = \begin{cases} \sum_{m=0}^{\infty} x(m)h(n-m); \\ \sum_{m=0}^{\infty} h(m)x(n-m). \end{cases}$$

Или в области дискретного времени:

$$y(nT) = \begin{cases} \sum_{m=0}^{\infty} x(mT)h[(n-m)T]; \\ \sum_{m=0}^{\infty} h(mT)x[(n-m)T]. \end{cases}$$

13 Разностное уравнение

При переходе $t \to nT$ линейное дифференциальное уравнение преобразуется в линейное разностное уравнение (РУ) т.к. в области дискретного времени производным соответствуют разделенные разности

$$y(nT) = \sum_{i=0}^{N-1} b_i x [(n-i)T] - \sum_{k=1}^{M-1} a_k y [(n-k)T].$$

В области дискретного нормированного времени РУ имеет вид:

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i) - \sum_{k=1}^{M-1} a_k y(n-k).$$

где і и k - задержки воздействия и реакции.

Параметрами ЛДС называют коэффициенты РУ b_i и a_k Есть ЛДС:

1) Рекурсивная, если ее реакция зависит от отсчетов воздействия текущего и прошлых и от прошлых отсчетов реакции, т.е. в РУ хотя бы один коэффициент а_к не равен 0

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i) - \sum_{k=1}^{M-1} a_k y(n-k).$$

2) Нерекурсивная, если ее реакция зависит от отсчетов воздействия текущего и прошлых, т.е. в РУ все коэффициент а_к равны 0

$$y(n) = \sum_{i=0}^{N-1} b_i x(n-i)$$

Порядок рекурсивной ЛДС равен (M-1) при (N-1) \leq (M-1) Порядок рекурсивной ЛДС равен (N-1)

14 КИХ и БИХ ЛДС

Показано, что рекурсивные и нерекурсивные ЛДС отличаются видом РУ.

Выводы КИХ:

- 1) ИХ нерекурсивных ЛДС конечная, отсюда тождественное название КИХ ЛДС.
- 2) Значения (отсчеты) ИХ КИХ ЛДС равны коэффициентам РУ:

 $h(n) = b_i$, i = n = 0, 1, ..., N-1, а длина ИХ равна N.

Выводы БИХ:

- 1) ИХ рекурсивных ЛДС бесконечная, поэтому их также называют БИХ ЛДС.
- 2) ИХ БИХ ЛДС в аналитическом виде может быть получена только для простейших ЛДС 1-го и 2-го порядков.
- 3) В общем случае ИХ БИХ ЛДС рассчитывается по РУ.

15 Устойчивость ЛДС. Первый критерий устойчивости

ЛДС называется устойчивой, если при ограниченном воздействии

$$\max_{n} |x(n)| \le R_x$$

где R_x – любое, сколь угодно большое положительное число, не равное бесконечности, и произвольных, но ограниченных начальных условиях реакция также ограничена

$$\max_{n} |y(n)| \le R_y$$

где R_y – любое сколь угодно большое положительное число, не равное бесконечности.

Первый критерий устойчивости ЛДС: для того, чтобы ЛДС была устойчивой необходимо и достаточно, чтобы выполнялось условие абсолютной сходимости ряда:

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

Выводы:

1) КИХ ЛДС устойчивы по определению:

$$\sum_{n=0}^{N-1} |h(n)| \neq \infty$$

2) Для БИХ ЛДС требуется проверка устойчивости.

16 Преобразование Лапласа

Преобразованием Лапласа (прямым односторонним) функции x(t) называют следующий интеграл (интеграл Лапласа):

$$X_a(p) = L\{x(t)\} = \int_0^\infty x(t)e^{-pt}dt$$

где комплексная переменная р — оператор Лапласа: $p = \sigma + j\omega$

Функцию x(t) (вещественную или комплексную, равную нулю в области отрицательного времени) называют оригиналом, а комплексную функцию $X_a(p)$ — ее L-изображением (изображением по Лапласу).

В области дискретного времени $t \to nT$, где непрерывной функции x(t) соответствует последовательность x(nT), от преобразования Лапласа переходят к дискретному преобразованию Лапласа в виде ряда: $X(e^{pT}) = D\{x(nT)\} = \sum_{n=0}^{\infty} x(nT)e^{-pnT}$

17 Прямое Z-преобразование

Z-преобразование получено на основе дискретного преобразования Лапласа в результате замены переменных

$$z = e^{pT}$$

Z-преобразованием (прямым односторонним) последовательности x(n) = x(nT) называют следующий ряд:

$$X(z)=Z\{x(n)\}=\sum_{n=0}^{\infty}x(n)z^{-n}$$
, где Z — оператор прямого Z-преобразования.

Последовательность x(n) (вещественную или комплексную, равную нулю в области отрицательного времени) называют оригиналом, а комплексную функцию X(z) — ее z-изображением.

Z-преобразование справедливо только в области абсолютной сходимости ряда

$$\sum_{n=0}^{\infty} |x(n)z^{-n}| < \infty$$
, которую называют областью сходимости z — изображения.

18 Основные свойства Z-преобразования

Приведем следующие основные свойства Z-преобразования.

1) *Линейность*: z-изображение линейной комбинации последовательностей равно линейной комбинации их z-изображений:

$$x(n) = a_1 x_1(n) + a_2 x_2(n) + ... \Leftrightarrow X(z) = a_1 X_1(z) + a_2 X_2(z) + ...$$

2) *Теорема о задержке*: z-изображение задержанной последовательности x(n-m), m > 0, равно z-изображению последовательности x(n), умноженному на z^{-m} :

$$x(n) \Leftrightarrow X(z)$$

 $x(n-m) \Leftrightarrow X(z)z^{-m}$

3) *Теорема о свертке*: z-изображение свертки последовательностей равно произведению z-изображений сворачиваемых последовательностей:

$$x(n) = \begin{cases} \sum_{m=0}^{\infty} x_1(m) x_2(n-m) \\ \sum_{m=0}^{\infty} x_1(n-m) x_2(m) \end{cases} \Leftrightarrow X(z) = X_1(z) X_2(z)$$

19 Обратное Z-преобразование

Последовательность (оригинал) x(n) по известному z-изображению X z() находится с помощью обратного Z-преобразования:

$$x(n) = Z^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz,$$

где Z^{-1} — оператор обратного Z-преобразования; C — любой замкнутый контур в области сходимости подынтегральной функции, охватывающий все ее особые точки (полюсы) и начало координат комплексной z-плоскости.

для определения обратного Z-преобразования существуют более простые способы на основе:

- теоремы Коши о вычетах
- разложения z-изображения на простые дроби
- таблицы соответствий

20 Связь комплексных р- и z-плоскостей. Смысл нормированной частоты

$$z = e^{pT} = e^{\sigma T} e^{j\widehat{\omega}}$$

Комплексная переменная z может быть представлена в двух формах:

• Алгебраической:

$$z = \xi + j\eta$$
,

где $\xi = e^{\sigma T} \cos \widehat{\omega}; \ \eta = e^{\sigma T} \sin \widehat{\omega}.$

• Показательной:

$$z = re^{j\varphi}$$

Сравнивая с $z = e^{pT} = e^{\sigma T} e^{j\widehat{\omega}}$:

$$r=e^{\sigma T};\, \varphi=\widehat{\omega}$$

Вывод: нормированная частота ω (рад) — это угол на комплексной z-плоскости, измеряемый в радианах.

Связь комплексных р- и z-плоскостей

1. Начало координат р-плоскости:

$$z = e^{pT} = e^{\sigma T} e^{j\omega T} = 1e^{j0}$$

Вывод: начало координат р-плоскости отображается в точку z = 1.

2. Точки р-плоскости $p = \pm j \frac{\pi}{r}$:

$$z = e^{pT} = e^{\sigma T} e^{j\omega T} = 1e^{\pm j\pi}$$

Вывод: две точки $p=\pm j\frac{\pi}{r}$ отображаются в одну точку z=-1

3. Отрезок на оси частот p-плоскости $-j\frac{\pi}{T} :$

$$z = e^{pT} = e^{\sigma T} e^{j\omega T} = 1e^{j\omega T}, \qquad -\pi < \hat{\omega} \le \pi$$

Вывод: отрезок $-j\frac{\pi}{T} длиной <math>\frac{2\pi}{T} = \omega_{\text{д}}$ отображается в *единичную* окружность.

Рис. 3.4. Отображение отрезка *p*-плоскости $-j\frac{\pi}{T} на$ *z*-плоскость

4. Ось частот p-плоскости $-j\infty :$

$$z = e^{pT} = e^{\sigma T} e^{j\omega T} = 1 e^{j\omega T} , \qquad -\infty < \widehat{\omega} \le \infty$$

Вывод: Ось частот p-плоскости отображается в *единичную окружность* с бесконечным числом оборотов.

Heoднозначность отображения точек <math>p-плоскости на z-плоскость Mножеству точек на p-плоскости (рис. 3.5):

$$p = \pm jk \frac{\pi}{T}, \ k = 1, 3, 5, ...$$

соответствует одна точка на z-плоскости $z=e^{pT}=e^{\sigma T}e^{j\omega T}=1e^{\pm jk\pi}=-1$.

Однозначное отображение — внутри коридора $-j\frac{\pi}{T} , где <math>-\pi < z \le \pi$ (один оборот единичной окружности).

Рис. 3.5. Отображение точек p-плоскости на z-плоскость

5. Коридор в *левой р*-полуплоскости: $\sigma \le 0$, $-j\frac{\pi}{T} < \omega \le j\frac{\pi}{T}$:

$$z = e^{pT} = e^{\sigma T} e^{j\omega T} = r e^{\pm j\widehat{\omega}}$$
, где $r \le 1$ и $-\pi < \widehat{\omega} \le \pi$.

Вывод: Коридор в *певой р*-полуплоскости отображается в единичный круг, а коридор в *правой р*-полуплоскости — область вне единичного круга.

Рис. 3.6. Отображение левой *p*-полуплоскости на *z*-плоскость

21 Что такое ИХ. Зачем она нужна.

Основной характеристикой ЛДС во временной области является импульсная характеристика (ИХ).

Импульсной характеристикой ЛДС h(n) называется реакция ЛДС на цифровой единичный импульс $u_0(n)$ при ННУ.

По определению в отрицательной области времени ИХ h(n) равна нулю.

 ${\rm HX}\ h(n)$ называют основной характеристикой ЛДС, т. к. зная ее, можно определить реакцию на произвольное воздействие.

22 Передаточная функция. Соотношения вход/выход в z-области.

Основной характеристикой ЛДС в z-области является z-изображение импульсной характеристики h(n):

$$H(z) = Z\{h(n)\}$$

При известном z-изображении H(z) импульсная характеристика h(n) находится с помощью обратного Z-преобразования

$$h(n) = Z^{-1}{H(z)}$$

где H(z) называют передаточной функцией (ПФ) ЛДС; это математическое определение ПФ.

Соотношение вход/выход ЛДС во временной области описывалось с помощью формулы свертки, либо в виде разностного уравнения.

Передаточной функцией H(z) ЛДС называется отношение z-изображения реакции к z-изображению воздействия при нулевых начальных условиях.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{Z\{h(n)\}}{Z\{u_0(n)\}} = Z\{h(n)\}$$

Передаточную функцию общего вида

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}}$$

Порядком П Φ называют наибольшее из чисел (N -1) и (M -1).

Здесь и далее полагаем, что порядок многочлена числителя не превосходит порядка многочлена знаменателя: $(N-1) \le (M-1)$.

Нулями ПФ называют значения z, при которых H(z) оказывается равной нулю.

Особыми точками (полюсами) $\Pi\Phi$ называют значения z, при которых знаменатель H(z) оказывается равным нулю.

23 Разностное уравнение рекурсивной и нерекурсивной ЛДС.

Взаимосвязь между воздействием x(nT) и реакцией y(nT) — соотношение вход/выход — может описываться разностным уравнением (РУ):

$$y(n) = \sum_{i=0}^{N-1} b_i x [(n-i)T] - \sum_{k=1}^{M-1} a_k y [(n-k)T]$$

где b_i , a_k – коэффициенты уравнения (вещественные константы);

x(nT), y(nT) — воздействие и реакция (вещественные или комплексные сигналы);

і, k – значения задержек воздействия и реакции соответственно;

N, M – константы;

x[(n-i)T], y[(n-k)T] — воздействие и реакция, задержанные на i и k периодов дискретизации соответственно.

Коэффициенты b_i и a_k называются внутренними параметрами (параметрами) ЛДС.

Линейная дискретная система называется рекурсивной, если хотя бы один из коэффициентов а_к разностного уравнения не равен нулю:

 $a_k \neq 0$ хотя бы для одного из значений k

Линейная дискретная система называется нерекурсивной, если все коэффициенты a_k разностного уравнения равны нулю:

$$a_k = 0, k = 1, 2, ..., M - 1$$

24 Частотная характеристика

Частотной характеристикой (ЧХ) $H(e^{j\omega})$ ЛДС называется частотная зависимость отношения реакции к дискретному гармоническому воздействию в установившемся режиме.

Основной характеристикой ЛДС в частотной области является Фурье-изображение ее импульсной характеристики, которое определяется с помощью преобразования Фурье:

$$H(e^{j\omega T}) = \sum_{n=0}^{\infty} h(n) e^{-j\omega Tn}$$

25 АЧХ и ФЧХ

Амплитудно-частотной характеристикой ЛДС $A(\omega)$ называется частотная зависимость отношения амплитуды реакции к амплитуде дискретного гармонического воздействия в установившемся режиме:

$$\frac{C_y}{C_x} = \frac{C_x A(\widehat{\omega})}{C_x} = A(\widehat{\omega})$$

Фазочастотной характеристикой ЛДС $\phi(\omega)$ называется частотная зависимость разности фаз реакции и дискретного гармонического воздействия в установившемся режиме:

$$\varphi_{y}(\widehat{\omega}) - \varphi_{x}(\widehat{\omega}) = [\varphi_{x}(\widehat{\omega}) + \varphi(\widehat{\omega})] - \varphi_{x}(\widehat{\omega}) = \varphi(\widehat{\omega})$$

26 Соотношения вход/выход в частотной области

Частотной характеристикой (ЧХ) $H(e^{j\omega})$ ЛДС называется частотная зависимость отношения реакции к дискретному гармоническому воздействию в установившемся режиме.

$$H(e^{j\hat{\omega}}) = \frac{y(n)}{x(n)}\bigg|_{x(n) = C_{\omega}e^{j\hat{\omega}n}}$$

Объединить не противоречащие друг другу определения частотной характеристики:

$$H(e^{j\hat{\omega}}) = \frac{\left|Y(e^{j\hat{\omega}})\right|}{\left|X(e^{j\hat{\omega}})\right|} e^{j\left[\phi_{y}(\hat{\omega}) - \phi_{x}(\hat{\omega})\right]} = \frac{C_{y}(\hat{\omega})}{C_{x}} e^{j\left[\phi_{y}(\hat{\omega}) - \phi_{x}(\hat{\omega})\right]} = \frac{C_{x} A(\hat{\omega})}{C_{x}} e^{j\phi(\hat{\omega})} = A(\hat{\omega}) e^{j\phi(\hat{\omega})}$$

27 Основные свойства АЧХ и ФЧХ

- Непрерывность. ЧХ, АЧХ и ФЧХ непрерывные функции частоты по определению.
- Периодичность. ЧХ, АЧХ и ФЧХ периодические функции частоты. Периодичность функций следует из периодичности их аргумента. В зависимости от используемой шкалы частот, период будет равен:

$$f \Rightarrow f_{\pi};$$

 $\hat{f} \Rightarrow 1;$
 $\omega \Rightarrow \omega_{\pi};$
 $\hat{\omega} \Rightarrow 2\pi.$

Таким образом, следствием перехода от непрерывного времени к дискретному $t \to nT$ оказывается периодичность частотных характеристик.

• Четность АЧХ и нечетность ФЧХ. Если коэффициенты передаточной функции — вещественные числа (а другие случаи мы не рассматриваем), то модуль частотной характеристики (АЧХ) является четной, а аргумент (ФЧХ) — нечетной функцией частоты:

$$\left| H(e^{j\hat{\omega}}) \right| = \left| H(e^{-j\hat{\omega}}) \right|;$$

$$\arg \left\{ H(e^{j\hat{\omega}}) \right\} = -\arg \left\{ H(e^{-j\hat{\omega}}) \right\}$$

• АЧХ и ФЧХ рассчитывают в основной полосе частот

$$f \Rightarrow \left[0; \frac{f_{\pi}}{2}\right];$$

$$\hat{f} \Rightarrow \left[0; 0, 5\right];$$

$$\omega \Rightarrow \left[0; \frac{\omega_{\pi}}{2}\right] = \left[0; \frac{\pi}{T}\right];$$

$$\hat{\omega} \Rightarrow \left[0; \pi\right].$$

28 Расчет АЧХ и ФЧХ

Расчет АЧХ и ФЧХ линейной дискретной системы выполняется по известной nepedamouhoй функции H(z), которая при подстановке $z=e^{j\hat{\omega}}$ принимает вид:

$$H(e^{j\hat{\omega}}) = \frac{\sum_{i=0}^{N-1} b_i e^{-j(i\hat{\omega})}}{1 + \sum_{k=1}^{M-1} a_k e^{-j(k\hat{\omega})}}$$

Разложив экспоненты и выделив вещественные и мнимые части в числителе (индекс "ч") и знаменателе (индекс "з"):

$$H(e^{j\hat{\omega}}) = \frac{\left[b_{0} + \sum_{i=1}^{N-1} b_{i} \cos(i\hat{\omega})\right] - j \sum_{i=1}^{N-1} b_{i} \sin(i\hat{\omega})}{\left[1 + \sum_{k=1}^{M-1} a_{k} \cos(k\hat{\omega})\right] - j \sum_{k=1}^{M-1} a_{k} \sin(k\hat{\omega})} = \frac{\operatorname{Re}_{q} + j \operatorname{Im}_{q}}{\operatorname{Re}_{3} + j \operatorname{Im}_{3}}$$

получаем формулы для АЧХ и ФЧХ — модуля и аргумента частотной характеристики соответственно:

$$A(\hat{\omega}) = \left| H(e^{j\hat{\omega}}) \right| = \sqrt{\frac{Re_{_{\mathbf{q}}}^2 + Im_{_{\mathbf{q}}}^2}{Re_{_{_{\mathbf{q}}}}^2 + Im_{_{_{\mathbf{q}}}}^2}};$$

$$\phi(\hat{\omega}) = \arg\left\{ H(e^{j\omega T}) \right\} = \arctan\left(\frac{Im_{_{\mathbf{q}}}}{Re_{_{\mathbf{q}}}}\right) - \arctan\left(\frac{Im_{_{\mathbf{q}}}}{Re_{_{_{\mathbf{q}}}}}\right)$$

29 Два критерия устойчивости

Первый критерий устойчивости ЛДС: для того, чтобы ЛДС была устойчивой необходимо и достаточно, чтобы выполнялось условие абсолютной сходимости ряда:

$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

Второй критерий устойчивости: для того, чтобы ЛДС была устойчивой необходимо и достаточно чтобы все полюсы передаточной функции находились внутри единичного круга.

30 Определение структуры

Структура отображает алгоритм вычисления реакции по РУ при ННУ.

Вид структуры определяется видом передаточной функции.

31 Структуры рекурсивной ЛДС

Три вида передаточной функции с вещественными коэффициентами определяют три структуры рекурсивной ЛДС:

1) общий вид → прямая структура (и ее модификации):

$$H(z) = \frac{\sum_{i=0}^{N-1} b_i z^{-i}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}}$$

произведения множителей второго порядка (4.14)—(4.15) → каскадная структура:

$$H(z) = \prod_{k=1}^{K} H_k(z);$$

$$H_k(z) = \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}};$$

3) сумма дробей второго порядка (4.17)—(4.18) \rightarrow параллельная структура:

$$H(z) = \sum_{k=1}^{K} H_k(z),$$

$$H_k(z) = \frac{B_{0k} + B_{1k}z^{-1}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

32 Прямая структура

Рассмотрим на примере звена 2-го порядка.

Передаточная функция звена в общем виде (4.5):

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Структура отображает алгоритм вычисления реакции по РУ:

$$y(n) = b_0x(n) + b_1x(n-1) + b_2x(n-2) - a_1y(n-1) - a_2y(n-2)$$

Рис. 6.1. Прямая структура биквадратного звена

33 Прямая каноническая структура

Структуру называют канонической, если число элементов задержки в ней минимально и равно порядку передаточной функции - $\max \{(M-1), (N-1)\}$.

Прямая каноническая структура определяется эквивалентным представлением передаточной функции H(z) в виде произведения двух передаточных функций

Рис. 6.2. Построение прямой канонической структуры

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 + \sum_{k=1}^{M-1} a_k \cdot z^{-k}} \cdot \sum_{i=0}^{N-1} b_i \cdot z^{-i} = \frac{V(z)}{X(z)} \cdot \frac{Y(z)}{V(z)} = H_1(z) \cdot H_2(z),$$

34 Каскадная структура

Каскадная структура определяется эквивалентным представлением дробнорациональной передаточной функции в виде произведения:

$$H(z) = G \prod_{k=1}^{L} \left(\frac{1 + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}} \right) = G \prod_{k=1}^{L} H_k(z)$$

и отображает алгоритм вычисления реакции y(n) в виде системы разностных уравнений с последовательным вычислением реакций биквадратных звеньев $y_k(n)$, $k = 1, 2..., L, y_L(n) = y(n)$ с передаточными функциями $H_k(z)$.

Рис. 6.7. Каскадная структура рекурсивной ЛДС

35 Параллельная структура

Параллельная структура определяется эквивалентным представлением дробнорациональной передаточной функции в виде суммы:

ис. 6.8. Параллельная структура рекурсивной ЛДС

и отображает алгоритм вычисления реакции y(n) в виде уравнения с параллельным вычислением реакций звеньев с передаточными функциями $H_k(z)$ при одинаковом воздействии x(n):

$$y(n) = \sum_{k=1}^{L} y_k(n)$$

36 Прямая структура нерекурсивной ЛДС

Прямая структура нерекурсивной ЛДС определяется рациональной передаточной функцией:

$$H(z) = \sum_{i=0}^{N-1} b_i z^{-i}$$

и отображает алгоритм вычисления реакции y(n) в виде разностного уравнения при HHY:

Рис. 6.9. Прямая структура нерекурсивной ЛДС

37 Определение и классификация ЦФ

Цифровым фильтром (ЦФ) называют систему, выполняющую преобразование входного сигнала в выходной в соответствии с алгоритмом, отображаемым заданной структурой, реализованной на базе цифрового устройства.

Рис. 14.1. Цифровой фильтр до реализации (линейная дискретная система)

Классификация цифровых фильтров

Двум типам ЛДС, КИХ- и БИХ-системам, соответствуют два типа ЦФ:

- КИХ-фильтр (FIR Filter, Finite Impulse Response Filter);
- БИХ-фильтр (IIR Filter, Infinite Impulse Response Filter).

Частотно-избирательные цифровые фильтры предназначены для селекции спектральных составляющих входной последовательности: их выделения в полосе пропускания и подавления в полосе задерживания, причем эти полосы частот заранее известны и разнесены.

Выделяют четыре основных типа избирательности ЦФ:

- ФНЧ фильтр нижних частот (Lowpass Filter);
- ФВЧ фильтр верхних частот (Highpass Filter);
- ПФ полосовой фильтр (Bandpass Filter);
- РФ режекторный фильтр (Bandstop Filter).

38 Основные этапы проектирования ЦФ

Основные этапы проектирования ЦФ:

- 1. Задание требований к АЧХ.
- 2. Выбор типа ЦФ (КИХ или БИХ).
- 3. Выбор метода синтеза.
- 4. Синтез ЦФ расчет передаточной функции H(z).
- 5. Выбор структуры ЦФ.
- 6. Компьютерное моделирование структуры ЦФ с учетом конечной разрядности данных.
- 7. Реализация структуры ЦФ на ЦПОС, ПЛИС и т. п.

39 Задание требований к АЧХ

Требования задаются к нормированной AЧX в основной полосе частот $[0; \frac{f_{\text{д}}}{2}]$ включают в себя:

- частоту дискретизации f_{∂} ;
- граничные частоты полос пропускания (ПП) и полос задерживания (ПЗ);
- максимально допустимые отклонения АЧХ.

Для БИХ-фильтров требования задаются к АЧХ в децибелах — к характеристике затухания:

$$a(f) = -20lg\hat{A}(f)$$
 (дБ)

В требованиях к характеристике затухания вместо значений допустимых отклонений $\delta 1$, $\delta 2$ задаются:

- а_{тах} (дБ) максимально допустимое затухание в ПП;
- а_{min} (дБ) минимально допустимое затухание в ПЗ.

40 КИХ-фильтры с линейной ФЧХ

Условие линейности ФЧХ (ЛФЧХ): КИХ-фильтр с передаточной функцией:

$$H(z) = \sum_{i=0}^{N-1} b_i z^{-i} = \sum_{n=0}^{N-1} h(n) z^{-n}$$

обладает строго линейной ФЧХ (с точностью до скачков на π), если для его ИХ h(n) выполняется одно из двух условий:

• симметрии:

$$h(n) = h(N - 1 - n)$$

• антисимметрии:

$$h(n) = -h(N - 1 - n)$$

Ось симметрии (антисимметрии) ИХ h(n) — в точке $n = \frac{N-1}{2}$

Скачок ЛФЧХ на π — в точках, где АЧХ равна нулю.

Длина КИХ-фильтра равна количеству коэффициентов передаточной функции N.

Порядок КИХ-фильтра равен порядку передаточной функции

$$R = N - 1$$

41 Четыре типа КИХ-фильтров с ЛФЧХ

Тип КИХ-фильтра	Импульсная характеристика	Длина фильтра N	Порядок фильтра <i>R</i>
1	Симметричная	Нечетная	Четный
2		Четная	Нечетный
3	Антисимметричная	Нечетная	Четный
4		Четная	Нечетный

42 Прямая приведенная структура КИХ-фильтра

Прямая приведенная структура КИХ-фильтра типа 1 длины N=7 определяется передаточной функцией с приведением подобных слагаемых с симметричными отсчетами ИХ:

$$H(z) = h_0 + h_1 z^{-1} + h_2 z^{-2} + h_3 z^{-3} + h_2 z^{-4} + h_1 z^{-5} + h_0 z^{-6} =$$

$$= h_0 (1 + z^{-6}) + h_1 (z^{-1} + z^{-5}) + h_2 (z^{-2} + z^{-4}) + h_3 z^{-3},$$

и отображает алгоритм вычисления реакции в виде разностного уравнения при ННУ:

$$y(n) = h_0 [x(n) + x(n-6)] + h_1 [x(n-1) + x(n-5)] + h_2 [x(n-2) + x(n-4)] + h_3 x(n-3)$$

На рисунке представлена прямая приведенная структура КИХ-фильтра типа 1 произвольной длины N:

Рис. 15.7. Прямая приведенная структура КИХ-фильтра типа 1

43 Задачи

1. Домножить $\Pi\Phi$ на z^2 :

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} | \cdot z^2 \Longrightarrow \frac{b_0 z^2 + b_1 z + b_2}{z^2 + a_1 z + a_2}$$

2. Нули: Приравнять числитель к нулю

Если коэффициент $b_0 = 1$, то вычисление комплексно-сопряженных нулей можно упростить: не умножая числитель и знаменатель $\Pi\Phi$ на z^2 , определять нули в виде, где r_0 и ϕ_0 рассчитываются по формулам подобным, а именно:

$$b_2 = r_0^2$$
; $b_1 = -2r_0\cos(\varphi_0)$

$$b_0 z^2 + b_1 z + b_2 = 0$$

$$D_0 = b_1^2 - 4b_0 b_2$$

• Если $D_0 < 0$:

$$z_{0 1,2} = -\frac{b_1}{2b_0} \pm j \sqrt{\frac{b_1^2 - 4b_0b_2}{2b_0}} = \xi_0 \pm j\eta_0$$

$$z_{0\,1,2} = r_0 e^{\pm j\varphi_0}$$

где радиус r_0 и угол ϕ_0 определяются из и соответственно:

$$r_0 = \sqrt{\xi_0^2 + \eta_0^2}; \ \varphi_0 = arctg(\frac{\eta_0}{\xi_0})$$

Если $D_0 \ge 0$:

$$z_{0\;1,2} = -\frac{b_1}{2b_0} \pm \sqrt{\frac{b_1^2 - 4b_0b_2}{2b_0}}$$

3. Полюса: Приравнять знаменатель к нулю

$$z^2 + a_1 z + a_2 = 0$$

$$D_* = \frac{a_1^2}{4} - a_2$$

$$z_{*12} = r_* e^{\pm j\varphi_*}$$

$$Z_{* 1,2} = r_* e^{\pm j\varphi_*}$$

$$\begin{cases} r_* = \sqrt{a_2} \\ \varphi_* = \arccos(-\frac{a_1}{2r_*}) \end{cases}$$

