Unsupervised Learning

Introduction

- Dataset does not contain labels
- Clustering vs classification
- Different clustering algorithms
- K-Means numerical data
- Determining K
 - Random, Elbow method

K-Means Algorithm

```
Algorithm 1 K-Means Algorithm
 1: Given a set of data instances D = d_1, ..., d_n
 2: Determine K (the number of clusters)
 3: Randomly select centroids c_1 to c_k for each of the K clusters
 4: while the algorithm has not converged do
       for i \leftarrow 1 to n do
           for j \leftarrow 1 to K do
               Calculate the Euclidean distance e_i of d_i from the centroid of cluster k_i
           end for
           Add d_i to the cluster k_i with the smallest e_i value
       end for
10:
11:
       for j \leftarrow 1 to K do
12:
           for l \leftarrow 1 to m do
               Calculate the average a_l of the lth dimension of the data instances in
13:
               the cluster j
14:
           end for
15:
           Update the jth centroid to the averaged values a_i for each dimension of
16:
           the data instance
17:
       end for
18:
19: end while
```


Example Data Instances

Entity	Attr1	Attr2
1	1	1
2	1.5	2
3	3	4
4	5	7
5	3.5	5

Example Data Instances

Entity 1 (c1) =
$$sqrt((1.5-1)^2+(2-1)^2) = 1.12$$

Entity 1 (c2) =
$$sqrt((5-1)^2+(7-1)^2) = 7.21$$

Entity 3 (c1) =
$$sqrt((1.5-3)^2+(2-4)^2) = 2.50$$

Entity 3 (c2) =
$$sqrt((5-3)^2+(7-4)^2) = 3.61$$

Example Data Instances

Entity 5 (c1) =
$$sqrt((1.5-3.5)^2+(2-5)^2) = 3.61$$

Entity 5 (c2) =
$$sqrt((5-3.5)^2+(7-5)^2) = 2.5$$

Euclidean Distance – Iteration 1

Table 2: Euclidean distance-Iteration 1

Entity	Attr1	Attr2	Cluster 1	Cluster 2
1	1	1	1.12	7.21
3	3	4	2.5	3.61
5	3.5	5	3.61	2.5

Clusters 1 Updated Centroids

	Attr 1	Attr 2
Entity 1	1	1
Entity 2	1.5	2
Entity 3	3	4
Updated Centroid	1.83	2.33

Clusters 2 Updated Centroids

	Attr 1	Attr 2
Entity 4	5	7
Entity 5	3.5	5
Updated Centroid	4.25	6

Euclidean Distance – Iteration 2

Entity	Attr 1	Attr 2	Cluster (1.83, 2.33)	Cluster2 (4.25, 6)
Entity 1	1	1	1.57	5.96
Entity 2	1.5	2	0.46	4.85
Entity 3	3	4	2.04	2.35
Entity 4	5	7	5.64	1.25
Entity 5	3.5	5	3.15	1.25

k-mediods

- Clustering algorithm similar to k-means but with some key differences.
 - 1. Initialization: Randomly select initial medoids.
 - 2. Iteration: Assign data points to closest medoids based on dissimilarity.
 - 3. Medoid Reassignment: Check if swapping a data point with the current medoid improves the cluster's total distance. If so, swap them.
 - 4. Stopping Criterion: Stop iterating if no medoid swaps occur (indicating stability).
 - 5. Output: Return the final cluster assignments and medoids.

Unsupervised Applications

- k-Means uses the mean (average) of points within a cluster as the centroid.
- k-Medoids uses an actual data point from the cluster as the medoid, making it potentially more robust to outliers.
- k-Means requires data points to have numerical values for distance calculations.
- k-Medoids can work with other dissimilarity measures,
 making it more flexible for some data types.

Unsupervised Applications

- Clustering
- Association rules to associate variables e.g market basket analysis.
- Dimensionality reduction.

Unsupervised Applications

- Clustering
- Association rules to associate variables e.g market basket analysis.
- Dimensionality reduction.

