APPENDIX MATHEMATICAL TABLES

TABLE A.1 Summary of properties of the Fourier transform

Property	Mathematical Description
1. Linearity	$ag_1(t) + bg_2(t) \rightleftharpoons aG_1(f) + bG_2(f)$
2. Time scaling	where a and b are constants $g(at) \rightleftharpoons \frac{1}{ a } G\left(\frac{f}{a}\right)$
	where a is a constant
3. Duality	If $g(t) \rightleftharpoons G(f)$,
	then $G(t) \rightleftharpoons g(-f)$
4. Time shifting	$g(t-t_0) \rightleftharpoons G(f) \exp(-j2\pi f t_0)$
5. Frequency shifting	$\exp(j2\pi f_c t)g(t) \rightleftharpoons G(f-f_c)$
6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t) dt = G(0)$
7. Area under $G(f)$	$g(0) = \int_{-\infty}^{\infty} G(f) df$
8. Differentiation in the time domain	$J-\infty$
9. Integration in the time domain	$\frac{d}{dt}g(t) \rightleftharpoons j2\pi f G(f)$ $\int_{-\infty}^{t} g(\tau)d\tau \rightleftharpoons \frac{1}{j2\pi f} G(f) + \frac{G(0)}{2} \delta(f)$
10. Conjugate functions	If $g(t) \rightleftharpoons G(f)$,
J. G	then $g^*(t) \rightleftharpoons G^*(-f)$
11. Multiplication in the time domain	$g_1(t)g_2(t) \rightleftharpoons \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda) d\lambda$
12. Convolution in the time domain	
13. Rayleigh's energy theorem	$\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau)d\tau \rightleftharpoons G_1(f)G_2(f)$ $\int_{-\infty}^{\infty} g(t) ^2 dt = \int_{-\infty}^{\infty} G(f) ^2 df$

MATHEMATICAL TABLES

Time Function	Fourier Transform
$rect\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
$\operatorname{sinc}(2Wt)$	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(-at)u(t), a > 0$	$\frac{1}{a+j2\pi f}$
$\exp(-a t), a > 0$	$\frac{2a}{a^2 + (2\pi f)^2}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
$\exp(j2\pi f_c t)$	$\delta(f - f_c)$
$\cos(2\pi f_c t)$	$\frac{1}{2} [\delta(f - f_c) + \delta(f + f_c)]$ $\frac{1}{2j} [\delta(f - f_c) - \delta(f + f_c)]$
$\sin(2\pi f_c t)$	
sgn(t)	$\frac{1}{j\pi f}$
<u>1</u>	$-j \operatorname{sgn}(f)$
πt	
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\sum_{i=-\infty}^{\infty} \delta(t-iT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta\left(f - \frac{n}{T_0}\right)$

Notes: u(t) = unit step function $\delta(t) = \text{Dirac delta function}$ $\operatorname{rect}(t) = \operatorname{rectangular function}$ $\operatorname{sgn}(t) = \operatorname{signum function}$ $\operatorname{sinc}(t) = \operatorname{sinc function}$