

Index

Ur	nit – 1 → Descriptive Statistics	3
1)	Method 1 → Frequency Distributions	4
2)	Method 2 → Measure of Central Tendency	6
3)	Method 3 → Measure of Variability	.12
4)	Method 4> Moments	.17
5)	Method 5 → Measures of Skewness	.19
6)	Method 6 → Kurtosis	.22

Unit - 1 --> Descriptive Statistics

Introduction

- → Statistics is the branch of science where we plan, gather and analyze information about a particular collection of objects under investigation.
- → Statistics techniques are used in every other field of science, engineering and humanity, ranging from computer science to industrial engineering to sociology and psychology.
- → For any statistical problem the initial information collection from the sample may look messy, and hence confusing. This initial information needs to be organized first before we make any sense out of it.
- → There are two types of statistics:
 - (1) Descriptive Statistics (Unit 1)
 - (2) Inferential Statistics (Unit 4 & 5)

<u>Descriptive Statistics and Inferential Statistics</u>

→ A data set is a collection of observations from a sample or entire population. This data set is summarized and organized by **Descriptive Statistics**.

Method 1 --> Frequency Distributions

Frequency Distribution

→ The distribution is a summary of the frequency of individual values or ranges of values for a variable.

Types of Frequency Distribution

- → There are two types of frequency distribution which is
 - (1) Frequency distribution of ungrouped data
 - (2) Frequency distribution of grouped data

Frequency Distribution of Ungrouped Data

- → The ungrouped frequency distribution is a type of frequency distribution that displays the frequency of each **individual** data value.
- → For Example:

Marks of 10 students are 10, 25, 26, 35, 03, 08, 19, 29, 30, 18.

Frequency Distribution of Grouped Data

(1) Discrete Frequency Distribution

- A discrete frequency distribution is a type of frequency distribution that shows each number and the number of times it appears in a list.
- For Example:

Data of students using library during exam time.

No. reading hours (x _i)	1	2	3	4	5	6
No. of students (f _i)	4	7	8	9	10	2

(2) Continuous Frequency Distribution

- A continuous frequency distribution is a series in which the data are classified into different **class intervals**.
- For Example:

Data of students using library during exam time.

No. reading hours (x _i)	0 – 2	3 – 5	6 – 8	9 – 11
No. of students (f _i)	11	7	8	0

Exclusive Class

 \rightarrow If classes of frequency distributions are 0-2, 2-4, 4-6, ... such classes are known as exclusive classes.

Inclusive Class

 \rightarrow If classes of frequency distributions are 0-2, 3-5, 6-8, ... such classes are known as inclusive classes.

Lower Boundary & Upper Boundary

 \rightarrow For the class $x_i - x_{i+1}$,

lower boundary is $\mathbf{x_i}$ and upper boundary is $\mathbf{x_{i+1}}$.

→ For Example:

For the class 3 - 5, Lower boundary is 3 and upper boundary is 5.

Class Length

- → A difference between Upper boundary and Lower boundary is known as class length.
- ightarrow It is denoted by ${f c}$ and defined as

$$c = Upper Boundary - Lower Boundary = x_{i+1} - x_i$$

→ For Example:

For the class
$$3 - 5$$
, class length is $5 - 3 = 2$.

Mid-Point of Class

- \rightarrow Mid point of class is used to find x_i in case of continuous frequency distribution.
- → It is defined as follow:

$$\label{eq:midpoint} \mbox{Mid point of class} = \mbox{x_i} = \frac{\mbox{Lower Boundary} + \mbox{Upper Boundary}}{2}$$

→ For Example:

For the class
$$3-5$$
, mid point is $\frac{3+5}{2}=4$.

Method 2 ---> Measure of Central Tendency

Central Tendency

- → The central tendency of a distribution is an estimate of the center of a distribution of values
- → There are three measures to estimate central tendency which is
 - (1) Mean(\overline{x})
 - (2) Median(M)
 - (3) Mode(Z)

2.1 Mean

- → The mean means **average**.
- \rightarrow Mean is denoted by " \bar{x} " and read as x bar.
- → Table of different formulae of mean.

Method	Ungrouped Data	Discrete Grouped Data	Continuous Grouped Data
Direct Method	$\frac{\sum x_i}{n}$	$\frac{\sum 1}{\sum}$	$\frac{f_i x_i}{f_i}$
Assumed Mean Method	$\frac{\sum d_i}{n}$	$A + \frac{\sum}{\sum}$	$\frac{\sum f_i d_i}{\sum f_i}$
Step Deviation Method			$A + \frac{\sum f_i u_i}{\sum f_i} \times c$

- \rightarrow n = total number of observations
- → In case of **continuous frequency distribution**,

 $x_i = mid$ value of the respective class.

- \rightarrow In case of **assumed mean method**, A can be any value from x_i .
- \rightarrow Use below formula to calculate $d_i \& u_i$

$$d_i = x_i - A \ ; \ u_i = \frac{x_i - A}{c}$$

Example of Method-2.1: Examples of Mean

С	1	Find the mean of data 10.2, 9.5, 8.3, 9.7, 9.5, 11.1, 7.8, 8.8, 9.5, 10.									
		Answer: 9.44									
С	2	Find the mean for following data:									
		Marks obtain	ied	20	9	25	50	40	80		
		Number of stud	dents	6	4	16	7	8	2		
		Answer: 32. 23									
С	3	Find the mean		lirect 1	method,	assumed	mean 1	nethod	d and step		
		deviation method	:								
		Marks	0 - 1	0	10 – 20	20 - 30	30 -	- 40	40 – 50		
		No. of students	5		10	40	2	0	25		
		Answer: 30									
С	4	Find the missing f	requen	cy f ₁ ar	nd f ₂ in th	e table giv	en belo	w, it is	being given		
		that the mean of t	he give	n frequ	iency dist	ribution is	50.				
		Class 0 – 20	20	- 40	40 - 60	60 - 8	0 80	- 100	Total		
		f 17		f ₁	32	f_2		19	100		
		Answer: $f_1 = 18$, f ₂	= 14							
С	5	A co-operative b	ank ha	ıs two	branche	s employ	ng 50	and 7	'0 workers		
		respectively. The	averag	e salari	ies paid b	y two res _l	ective	branch	nes are 360		
		and 390 rupees	per mo	nth. Ca	alculate t	he mean	of the s	salaries	s of all the		
		employees.									
		Answer: 377.5									

2.2 Median

- → The median is the value found at the **exact middle** of the set of values.
- \rightarrow Median is denoted by capital letter "M".
- → To compute the median, list all observations in ascending order and then locate the value in the center of the sample.
- → Table of formula of median.

Data	Formula
Ungrouped Data	If n is odd , then $M = \left(\frac{n+1}{2}\right)^{th}$ observation
Discrete Grouped Data	If n is even , then $M = \frac{\left(\frac{n}{2}\right)^{th} \text{ observation} + \left(\frac{n}{2} + 1\right)^{th} \text{ observation}}{2}$
Continuous Grouped Data	$M = L + \left(\frac{\frac{n}{2} - F}{f}\right) \times c$

 \rightarrow Where,

Median class = Class whose cumulative frequency with property min $\left\{ cf \mid cf \geq \frac{n}{2} \right\}$

L = Lower boundary point of the median class

n = Total number of observation (sum of the frequencies)

F = Cumulative frequency of the class preceding the median class

f = The frequency of the median class

Example of Method-2.2: Median

С	1	Find the median of	of followin	a data:								
C	1		Find the median of following data:									
		20, 25, 30, 15, 17, 35, 26, 18, 40, 45, 50.										
		Answer: 26										
С	2	The given observa	tions hav	e been arr	ange	ed in a	scendin	g order. If	the	median		
		of the data is 63, f	ind the va	lue of x fo	r the	follo	wing da	ta:				
		29, 32, 48, 50, 3	x. x + 2.	72. 78. 8	34. 9	95.						
		27, 32, 13, 33, 1	-,,	,, .	, 1, ,	0.						
		Answer : x = 62										
С	3	Calculate the med	ian for the	e followin	g dat	a:						
				1	ı	T		1				
		Marks	20	9	2	25	50	40		80		
		No. of students	6	4	1	16	7	8		2		
		Answer: 25						•				
С	4	The following tab	le gives n	narks obta	ained	d by 5	0 stude	nts in sta	tist	ics. Find		
		the median.										
		Marks	0 - 10	10 - 2	20	20 -	- 30	30 - 40	4	0 - 50		
		No. of students	16	12		1	8	3		1		
		Answer: 17.5		_	'				•			
С	5	The median of 60	observati	ons (follo	wing	data)	is 28.5	Find x ar	nd y	·.		
		Marks		10 - 20		- 30						
			0 - 10				30 - 40		U	50 – 60		
		No. of students	5	X	2	20	15	У		5		
		Answer: $x = 8$,	y = 7									

2.3 Mode

- → The mode is the **most frequently** occurring value in the set.
- → Mode is denoted by capital letter "Z".
- → The mode is not necessarily unique, like mean and median. we can have data with two modes (bi-modal) or more than two modes (multi-modal).
- → Table of formula of mode.

Data	Formula
Ungrouped Data	Most repeated observation among given data
Discrete Grouped Data	Highest frequency among given data
Continuous Grouped Data	$Z = L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$

 \rightarrow Where,

Modal class = A class with highest frequency

L = Lower boundary of modal class

c = Class length

 f_1 = Frequency of the modal class

 f_0 = Frequency of the class before the modal class

f₂ = Frequency of the class after the modal class

Relation Between Mean, Median and Mode

 \rightarrow Z = 3M – $2\bar{x}$; where \bar{x} = Mean, M = Median, Z = Mode

Example of Method-2.3: Mode

С	1	If mean is 1	16 and med	dian is 20	. Calcu	late tł	ne mod	de.					
		Answer: 28											
С	2	Find the mode of following data:											
		(a) 2, 4, 2	, 5, 7, 2,	8, 9.									
		(b) 2, 8, 4	, 6, 10, 1	2, 4, 8,	14, 16								
		Answer: (a	Answer: (a) 2, (b) 4 & 8										
С	3	Find the m	ode of follo	owing da	ta:								
		Х		11	2	22		3	3	44			
		f	15 20 19 10										
		Answer: 2	2										
С	4	Find the m	ode of follo	owing da	ta:								
		Class	0 - 10	10	- 20	20 -	- 30	3	0 - 40	40 - 50			
		f	3		5	•	7		10	12			
			50 - 60	0 60	- 70	70 -	- 80	8	0 – 90	90 - 100			
			15	1	.2	(5		2	8			
		Answer: 5	5										
С	5	Obtain the	mean, mo	de and m	edian f	or the	follov	ving	informa	tion:			
		X	< 10	< 20	<	30	< 4	0	< 50	< 60			
		f	12	30	5	7	77	,	94	100			
		Answer: x̄	= 28,	M = 27	407 ,	Z =	= 25.0	625					

Method 3 ---> Measure of Variability

Measure of Variability

- → It refers to the **spread** of the values around the central tendency.
- → It is known as Measure of Dispersion.
- \rightarrow For Example:
 - -5, 0, 5 and -50, 0, 50 both have the same mean 0 but clearly the data given in the second case much more widely dispersed than those in the first case.
- ightarrow So, measures of central tendency are not sufficient for having some idea about dispersion.
- → Measures of dispersion gives the idea about the degree to which numerical data tend to spread about an average life.
- → There are certain measures of variability,
 - (1) Range
 - (2) Standard Deviation
 - (3) Mean Deviation

Range

- → Range is simply the highest value **minus** the lowest value of a set of data values.
- \rightarrow For Example:

Range of
$$-5, 0, 5$$
 is 10

Reason: Range = Highest value – lowest value =
$$5 - (-5)$$
 = 10

Standard Deviation

- → Standard deviation is a measure that is used to quantify the amount of variation or dispersion of a set of data values.
- \rightarrow It is denoted by " σ " and read as "sigma".

→ Table of different formulae of standard deviation.

Method	Ungrouped Data	Discrete Grouped Data	Continuous Grouped Data
Direct Method	$\sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$	$\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{f_i x_i^2}{\sum f_i} - \left(\frac{\sum f_i x_i}{\sum f_i}\right)^2$
Assumed Mean Method	$\sqrt{\frac{\sum d_i^2}{n} - \left(\frac{\sum d_i}{n}\right)^2}$	$\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{f_i d_i^2}{\sum f_i} - \left(\frac{\sum f_i d_i}{\sum f_i}\right)^2$
Step Deviation Method			$\sqrt{\frac{\sum f_i u_i^2}{\sum f_i} - \left(\frac{\sum f_i u_i}{\sum f_i}\right)^2} \times c$

- \rightarrow n = total number of observations
- \rightarrow In case of **continuous frequency distribution**, $x_i = \text{mid value of the respective class.}$
- \rightarrow In case of **assumed mean method**, A can be any value from x_i .
- → Use below formula to calculate d_i & u_i

$$d_i = x_i - A \ ; \ u_i = \frac{x_i - A}{c}$$

Variance

- → Variance is expectation of the squared deviation.
- → It informally measures how far a set of (random) numbers are spread out from their mean.
- \rightarrow It is denoted by capital letter "V" and defined as $V = \sigma^2$.

Coefficient of Variation

- → The Coefficient of Variation is the ratio of the standard deviation to the mean and shows the extent of variability in relation to the mean of the population.
- → Coefficient of Variance is defined as

$$C. V. = \frac{\sigma}{\overline{x}} \times 100$$

- → If C.V. is high, then it is less consistent. Similarly, if C.V. is less, then it is more consistent.
- ightarrow The higher the Coefficient of Variation, the greater the dispersion.

Mean Deviation

- → The mean deviation is defined as a statistical measure that is used to calculate the average deviation from the mean value of the given data set.
- → In a simple word, the mean deviation is used to calculate how far the values fall from the middle of the data set.
- → Table of different formulae of mean deviation:

Method	Ungrouped Data	Grouped Data
M.D. about Mean	$\frac{\sum x_i - \overline{x} }{n}$	$\frac{\sum f_i x_i - \overline{x} }{\sum f_i}$
M.D. about Median	$\frac{\sum \mid x_i - M \mid}{n}$	$\frac{\sum f_i x_i - M }{\sum f_i}$
M.D. about Mode	$\frac{\sum x_i - Z }{n}$	$\frac{\sum f_i x_i - Z }{\sum f_i}$

Example of Method-3: Dispersion

С	1	Find tl	he stand	ard devi	atio	on for the	e foll	lowing	data:				
		6, 7, 10, 12, 13, 4, 8, 12.											
			Answer: 3. 0414										
С	2	Find tl	ne stand	ard devi	atio	on for the	e foll	lowing	distribu	tion:			
		Σ	K	2		4		6		8		10	
		1	f	3		4		2		1		6	
		Answ	er: 10. 1	1094					·		·		
С	3	Find tl	ne stand	ard devi	atio	on and va	ariar	nce for t	the follo	wing o	listrib	ution:	
		Х	0 - 10	10 - 2	0	20 - 30	3	0 - 40	40 - 50	50	- 60	60 - 7	0
		f	6	14		10		8	1		3	8	
		Answ	er: σ =	19.6214	ŀ,	$\mathbf{V} = 3$	84.	9993		•			
С	4	The a	rithmeti	c means	of	runs sc	ored	by thr	ee bats	men A	A, B an	d C, in	the
		same	series c	of 10 inr	ing	gs, are 5	0, 48	3 and 1	12 resp	ectivel	y. The	e stand	ard
		deviat	ions of	their ru	ns	are 15,	12 a	nd 2 re	espectiv	ely. W	/ho is	the m	ost
		consis	tent of t	he three	?								
		Answ	er: Bats	man C i	s m	iore con	sist	ent.					
С	5	Two n	nachines	s A, B are	us	sed to fil	l a m	nixture	of ceme	nt con	crete	in a bea	am.
		Find	the sta	ndard (lev	iation o	of e	ach m	achine	& co	mmer	it on	the
		perfor	mances	of two n	ac	hines.							
		Α	32	28	ŀ7	63	71	39	10	60	96	14	
		В	B 19 31 48 53 67 90 10 62 40 80										
		Answ	er: σ _^ =	25.495	0.	σ _P =	24	.4290				•	-
									-C		Ala -	والمام ما	. D
			Ther	e is less	va	riability	7 in 1	tne pei	riorma	nce of	tne n	nachin	e B.

C An analysis of monthly wages paid to the workers of two firms A and B belonging to the same industry gives the following results:

	Firm A	Firm B
Number of workers	500	600
Average daily wage	186	175
Variance of distribution of wages	81	100

- (1) Which firm has a larger wage bill?
- (2) In which firm, is there greater variability in individual wages?
- (3) Calculate average daily wages of all the workers in the firms A & B taken together.

Answer: (1) Firm B, (2) Firm B, (3) 180

C 7 Find the mean deviation about the mean and median for the following data: 2, 4, 7, 8, 9.

Answer: $MD(\bar{x}) = 2.4$, MD(M) = 2.2

C 8 Find mean deviation about the mean, median and mode for the following data:

X	5	10	15	20	25
f	7	4	6	3	5

Answer: $MD(\bar{x}) = 6.32$, MD(M) = 6.2, MD(Z) = 9

C 9 Find mean deviation about the mean, median and mode for the following data:

Class	5 – 25	25 – 45	45 – 65	65 – 85	85 - 105
f	12	8	14	20	6

Answer: $MD(\bar{x}) = 21.33$, MD(M) = 21.904, MD(Z) = 23.466

Method 4 ---> Moments

Moments

- → Moment is the arithmetic **mean** of the various powers of the deviations of items from their assumed mean or actual mean.
- → There are three types of moments which is
 - (1) Moment about mean
 - (2) Moment about assumed mean
 - (3) Moment about zero

Moment bout mean

- → If deviations of data are taken from mean, then it is known as moment about mean.
- → It is also known as central moment.
- \rightarrow It is denoted by " μ_r ".

Moment about assumed mean

- \rightarrow If deviations of data are taken about any assumed value(a) from x_i , then it is known as moment about assumed mean.
- \rightarrow It is denoted by " μ_r' ".

Moment about zero

- → If deviations of data are taken about any zero, it is known as moment about zero.
- \rightarrow It is denoted by " $\mathbf{v_r}$ ".
- → Table of different formulae of moment.

Moment about	Ungrouped Data	Grouped Data
Mean (μ _r)	$\frac{\sum (x_i - \overline{x})^r}{n}$	$\frac{\sum f_i (x_i - \overline{x})^r}{\sum f_i}$
Assumed mean (μ'_r)	$\frac{\sum (x_i - a)^r}{n}$	$\frac{\sum f_i (x_i - a)^r}{\sum f_i}$
Zero (v _r)	$\frac{\sum x_i^r}{n}$	$\frac{\sum f_i x_i^r}{\sum f_i}$

Where, r = 1, 2, 3, 4, ...

Example of Method-4: Moments

C | 1 | Find the first four moments about assumed mean 5, actual mean and zero for the data 1, 3, 7, 9, 10.

Answer: $\mu = 0$, 12, -12, 208.8

 $\mu' = 1,$ 13, 25, 233.8

v = 6, 48, 420, 3808.8

C Calculate the four moments about assumed mean 5, actual mean and zero for following distribution.

X	2	3	4	5	6
f	1	3	7	3	1

Answer: $\mu = 0$, 0.9333, 0, 2.5333

 $\mu' = -1, \qquad 1.\,9333, \qquad -3.\,8, \qquad 9.\,1333$

v = 4, 16.9333, 75.2, 348.1333

C Calculate the moments about assumed mean 25, actual mean and zero for following distribution:

Class	0 - 10	10 - 20	20 - 30	30 - 40
f	1	3	4	2

Answer: $\mu = 0$, 81, -144, 14817

 $\mu' = -3$, 90, -900, 21000

v = 22, 565, 15850, 471625

Method 5 --- Measures of Skewness

Skewness

- → In symmetrical distribution, the mean, median, and mode is equal.
- → When a frequency distribution is not symmetrical, it is known as asymmetrical or skewed.
- → Skewness means lake of symmetry.

Measures of Skewness

- → Measure of skewness give us an idea about the extent of lopsidedness in a data.
- → The various measures of skewness are
 - (1) Karl Pearson's method
 - (2) Method of moments

Karl Pearson's Method

→ Karl Pearson's coefficient of skewness is defined as

$$Skewness = \frac{Mean - Mode}{Standard Deviation}$$

Method of Moments

→ **Measure of skewness** is obtained from moment about mean and defined as

$$Skewness = \beta_1 = \frac{(\mu_3)^2}{(\mu_2)^3}$$

- → The skewness value can be either positive or negative or zero or even undefined.
- → If skewness value is zero, then the distribution is known as symmetric.
- → If standard deviation is zero, then the skewness is not defined.

Types of Skewness

→ Positive skewness

The right tail is longer; the mass of the distribution is concentrated on the left.

→ Negative skewness

The left tail is longer; the mass of the distribution is concentrated on the right.

Example of Method-5: Skewness

С	1	Compute the Karl F	Pearson's coefficien	t of skewness for d	ata:					
		25, 15, 23, 40, 27, 25, 23, 25, 20								
		23, 13, 23, 40, 27, 23, 23, 20								
		Answer: -0.03								
С	2	Karl Pearson's coef	fficient of skewnes	s of a distribution i	s 0.32, its standard					
		deviation is 6.5 and	l mean is 29.6. Find	the mode for the d	listribution.					
		Answer: 27.52								
С	3	For a group of 10 items, $\sum x = 452$, $\sum x^2 = 24270$ and mode is 43.7 then,								
		find Karl Pearson's coefficient of skewness.								
		Answer: 0.077								
С	4	From the marks scored by 100 students in section A and 100 students in								
		section B of a class, the following measures were obtained								
		Section A								
		Determine which distribution of marks is more skewed.								
		American Continu	Namono deservit							
		Answer: Section I	3 is more skewed							

С	10	Prove that the skewness of the following data is 0.0390 using method of								
		moment.								
		Class $0-10$ $10-20$ $20-30$ $30-40$								
		Frequency	1	3	4	2				

Method 6 ---> Kurtosis

Introduction

- → Measures of central tendency, dispersion and skewness of a random variable cannot give a complete idea about the probability distribution.
- → So, another characteristic, Kurtosis is required.

Kurtosis

- → Kurtosis measures the flatness/peakedness of a distribution.
- \rightarrow It is denoted by " β_2 " defined as

$$\beta_2 = \frac{\mu_4}{(\mu_2)^2}$$

- \rightarrow The greater the value of β_2 , the more peaked is the distribution.
- When the value of $\beta_2 = 3$, the curve is normal curve and the distribution is known as **mesokurtic**.
- \rightarrow When the value of $\beta_2 > 3$, the curve is more peaked than normal curve and the distribution is known as **leptokurtic**.
- \rightarrow When the value of β_2 < 3, the curve is less peaked than normal curve and the distribution is known as **platykurtic**.

Example of Method-6: Kurtosis

С	1	Find the K	urtosis for	the followi	ng data. A	lso commer	nt on type	of	
		distribution	distribution.						
		X	2	3	4	5	6		
		f	1	3	7	3	1		
		Answer: Kurtosis = 2.9082, Distribution is platykurtic							
С	2	Find out the	kurtosis of t	the following	g data:				
		Class 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50							
		f 10 20 40 20 10							
		Answer: 2.	5						

* * * * * End of the Unit * * * *

