Generalized Linear Models

Mario V. Wüthrich RiskLab, ETH Zurich

"Deep Learning with Actuarial Applications in R" Swiss Association of Actuaries SAA/SAV, Zurich October 14/15, 2021

Programme SAV Block Course

- Refresher: Generalized Linear Models (THU 9:00-10:30)
- Feed-Forward Neural Networks (THU 13:00-15:00)
- Discrimination-Free Insurance Pricing (THU 17:15-17:45)

- LocalGLMnet (FRI 9:00-10:30)
- Convolutional Neural Networks (FRI 13:00-14:30)
- Wrap Up (FRI 16:00-16:30)

Contents: Generalized Linear Models

- Starting with data
- Exponential dispersion family (EDF)
- Generalized linear models (GLMs)
- Maximum likelihood estimation (MLE)
- Canonical link and the balance property
- Covariate pre-processing / feature engineering
- Parameter selection

• Starting with Data

Car Insurance Claims Frequency Data

```
'data.frame': 678013 obs. of 12 variables:
   $ IDpol : num 1 3 5 10 11 13 15 17 18 21 ...
   $ ClaimNb : num 1 1 1 1 1 1 1 1 1 ...
   $ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15 ...
5 $ Area
               : Factor w/ 6 levels "A", "B", "C", "D", ...: 4 4 2 2 2 5 5 3 3 2 ...
6 $ VehPower : int
                      5 5 6 7 7 6 6 7 7 7 ...
   $ VehAge : int
                      0 0 2 0 0 2 2 0 0 0 ...
8 $ DrivAge : int 55 55 52 46 46 38 38 33 33 41 ...
  $ BonusMalus: int 50 50 50 50 50 50 68 68 50 ...
   $ VehBrand : Factor w/ 11 levels "B1", "B10", "B11", ...: 4 4 4 4 4 4 4 4 4 ...
   $ VehGas : Factor w/ 2 levels "Diesel", "Regular": 2 2 1 1 1 2 2 1 1 1 ...
11
                      1217 1217 54 76 76 3003 3003 137 137 60 ...
12
   $ Density : int
   $ Region : Factor w/ 22 levels "R11", "R21", "R22", ...: 18 18 3 15 15 8 8 20 20 12
13
```

- 3 categorical covariates, 1 binary covariate and 5 continuous covariates
- Goal: Find systematic effects to explain/predict claim counts ClaimNb.

Exposures and Claims

- Most exposures are between 0 and 1 year.
- Exposures bigger than 1 are considered to be data error and are capped at 1.
- Most insurance policies do not suffer any claim (class imbalance problem).

Continuous Covariates: Age of Driver

Systematic effects of continuous covariates are not necessarily monotone.

Categorical Covariates: French Region

observed frequencies per regional groups

Covariates: Dependence

These covariates show strong dependence/collinearity.

Goal: Regression Modeling

- Denote by x_i the covariates of insurance policy $1 \le i \le n$.
- **Goal:** Find regression function μ :

$$\boldsymbol{x}_i \mapsto \mu(\boldsymbol{x}_i),$$

such that for all insurance policies $1 \le i \le n$ we have

$$\mathbb{E}[N_i] = \mu(\boldsymbol{x}_i)v_i,$$

where N_i denotes the number of claims and $v_i > 0$ is the time exposure of insurance policy $1 \le i \le n$ (pro-rata temporis).

• μ extracts the systematic effects from information x_i to explain N_i .

• Exponential Dispersion Family (EDF)

Exponential Dispersion Family (EDF)

- Sir Fisher (1934), Barndorff-Nielsen (2014), Jørgensen (1986, 1987).
- Exponential dispersion family (EDF) gives a unified notational framework of a large family of distribution functions.
- The parametrization of this family is chosen such that it is particularly suitable for maximum likelihood estimation (MLE).
- The EDF is the base statistical model for generalized linear modeling (GLM) and for neural network regressions.
- Examples: Gaussian, Poisson, gamma, binomial, categorical, Tweedie's, inverse Gaussian models.

 Remark: This first chapter on GLMs gives us the basic understanding and tools for neural network regression modeling.

Exponential Dispersion Family (EDF)

• Assume $(Y_i)_i$ are independent with density

$$Y_i \sim f(y; \theta_i, v_i/\varphi) = \exp\left\{\frac{y\theta_i - \kappa(\theta_i)}{\varphi/v_i} + a(y; v_i/\varphi)\right\},$$

with

```
\begin{array}{ll} v_i>0 & \text{(known) exposure of risk $i$,} \\ \varphi>0 & \text{dispersion parameter,} \\ \theta_i\in\Theta & \text{canonical parameter of risk $i$ in the effective domain $\Theta$,} \\ \kappa:\Theta\to\mathbb{R} & \text{cumulant function (type of distribution),} \\ a(\cdot;\cdot) & \text{normalization, $not$ depending on the canonical parameter $\theta_i$.} \end{array}
```

Cumulant Function

• Assume $(Y_i)_i$ are independent with density

$$Y_i \sim f(y; \theta_i, v_i/\varphi) = \exp\left\{\frac{y\theta_i - \kappa(\theta_i)}{\varphi/v_i} + a(y; v_i/\varphi)\right\}.$$

- Cumulant function $\kappa: \Theta \to \mathbb{R}$ is convex and smooth in the interior of Θ .
- Examples:

$$\kappa(\theta) = \begin{cases} \theta^2/2 & \text{Gauss,} \\ \exp(\theta) & \text{Poisson,} \\ -\log(-\theta) & \text{gamma,} \\ \log(1+e^{\theta}) & \text{Bernoulli/binomial,} \\ -(-2\theta)^{1/2} & \text{inverse Gaussian,} \\ ((1-p)\theta)^{\frac{2-p}{1-p}}/(2-p) & \text{Tweedie with } p>1, \ p\neq 2. \end{cases}$$

Mean and Variance Function

The mean is given by

$$\mu_i = \mathbb{E}[Y_i] = \kappa'(\theta_i).$$

The variance is given by

$$Var(Y_i) = \frac{\varphi}{v_i} \kappa''(\theta_i) = \frac{\varphi}{v_i} V(\mu_i) > 0,$$

where $\mu \mapsto V(\mu) = \kappa''((\kappa')^{-1}(\mu))$ is the so-called variance function.

• Examples:

$$V(\mu) = \begin{cases} 1 & \text{Gauss,} \\ \mu & \text{Poisson,} \\ \mu^2 & \text{gamma,} \\ \mu^3 & \text{inverse Gaussian,} \\ \mu^p & \text{Tweedie with } p \geq 1. \end{cases}$$

Maximum Likelihood Estimation (MLE)

• MLE homogeneous θ case: log-likelihood of independent observations $(Y_i)_{i=1}^n$ is

$$\ell_{\mathbf{Y}}(\boldsymbol{\theta}) = \log \left(\prod_{i=1}^{n} f(Y_i; \boldsymbol{\theta}, v_i/\varphi) \right) = \sum_{i=1}^{n} \frac{Y_i \boldsymbol{\theta} - \kappa(\boldsymbol{\theta})}{\varphi/v_i} + a(Y_i; v_i/\varphi).$$

This provides score equations

$$\frac{\partial}{\partial \theta} \ell_{\mathbf{Y}}(\theta) = \sum_{i=1}^{n} \frac{v_i}{\varphi} [Y_i - \kappa'(\theta)] = 0,$$

and MLE $\widehat{\theta}$

$$\widehat{\theta} = (\kappa')^{-1} \left(\frac{\sum_{i=1}^{n} v_i Y_i}{\sum_{i=1}^{n} v_i} \right).$$

MLE is straightforward within the EDF!

Canonical Link and Unbiasedness

• Canonical link $h(\cdot) = (\kappa')^{-1}(\cdot)$

$$\mu = \mathbb{E}[Y] = \kappa'(\theta)$$
 or $h(\mu) = h(\mathbb{E}[Y]) = \theta$.

This provides for the MLE

$$\widehat{\theta} = (\kappa')^{-1} \left(\frac{\sum_{i=1}^n v_i Y_i}{\sum_{i=1}^n v_i} \right) = h \left(\frac{\sum_{i=1}^n v_i Y_i}{\sum_{i=1}^n v_i} \right).$$

The latter gives a sufficient statistics.

Unbiasedness of estimated means in the homogeneous case

$$\mathbb{E}\left[\widehat{\mathbb{E}}[Y]\right] = \mathbb{E}\left[\kappa'(\widehat{\theta})\right] = \kappa'(\theta).$$

▶ Unbiasedness emphasizes that we receive the right price level in pricing.

• Generalized Linear Models (GLMs)

Generalized Linear Models (GLMs)

- Nelder-Wedderburn (1972) and McCullagh-Nelder (1983).
- Assume we have heterogeneity between $(Y_i)_{i=1}^n$ which manifests in systematic effects modeled through covariates/features $x_i \in \mathbb{R}^q$.
- Assume for link function choice g and regression parameter $\beta \in \mathbb{R}^{q+1}$

$$\boldsymbol{x}_i \mapsto \boldsymbol{g}(\boldsymbol{\mu}_i) = g(\mathbb{E}[Y_i]) = g(\kappa'(\theta_i)) = \beta_0 + \sum_{j=1}^q \beta_j x_{i,j}.$$

This gives a GLM with link function g. Parameter β_0 is called intercept/bias.

- Link g should be monotone and smooth.
- The choice $g = h = (\kappa')^{-1}$ is called canonical link.

Design Matrix

• Assume for link function choice g and regression parameter $\boldsymbol{\beta} \in \mathbb{R}^{q+1}$

$$\boldsymbol{x}_i \mapsto g(\mu_i) = g(\mathbb{E}[Y_i]) = \langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle = \beta_0 + \sum_{j=1}^q \beta_j x_{i,j}.$$

The design matrix is

$$\mathfrak{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^{\top} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,q} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,q} \end{pmatrix} \in \mathbb{R}^{n \times (q+1)}.$$

- The design matrix \mathfrak{X} is assumed to have full rank $q+1 \leq n$.
- Full rank property is important for uniqueness of MLE of β .

Maximum Likelihood Estimation of GLMs

• The log-likelihood of independent observations $(Y_i)_{i=1}^n$ is given by

$$\boldsymbol{\beta} \mapsto \ell_{\mathbf{Y}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{Y_i h(\mu_i) - \kappa(h(\mu_i))}{\varphi/v_i} + a(Y_i; v_i/\varphi),$$

with mean $\mu_i = \mu_i(\boldsymbol{\beta}) = g^{-1}\langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle$ and canonical parameter $\theta_i = h(\mu_i)$.

This provides score equations for MLE

$$\nabla_{\boldsymbol{\beta}} \, \ell_{\boldsymbol{Y}}(\boldsymbol{\beta}) = 0.$$

 Score equations are solved numerically with Fisher's scoring method or the iterated re-weighted least squares (IRLS) algorithm.

MLE and **Deviance Loss Functions**

• The log-likelihood of independent observations $(Y_i)_{i=1}^n$ is given by

$$\ell_{\mathbf{Y}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \frac{Y_i h(\mu_i) - \kappa(h(\mu_i))}{\varphi/v_i} + a(Y_i; v_i/\varphi),$$

with mean $\mu_i = \mu_i(\boldsymbol{\beta}) = g^{-1}\langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle$.

Maximizing log-likelihoods is equivalent to minimizing deviance losses

$$D^*(\boldsymbol{Y},\boldsymbol{\beta}) = 2\left[\ell_{\boldsymbol{Y}}(\boldsymbol{Y}) - \ell_{\boldsymbol{Y}}(\boldsymbol{\beta})\right]$$
$$= 2\sum_{i=1}^n \frac{v_i}{\varphi} \left[Y_i h(Y_i) - \kappa(h(Y_i)) - Y_i h(\mu_i) + \kappa(h(\mu_i))\right] \geq 0.$$

• The deviance loss of the Gaussian model is the square loss function, other examples of the EDF have deviance losses different from square losses.

Examples of Deviance Loss Functions

Gaussian case:

$$D^*(\boldsymbol{Y},\boldsymbol{\beta}) = \sum_{i=1}^n \frac{v_i}{\varphi} (Y_i - \mu_i)^2 \geq 0.$$

Gamma case:

$$D^*(\boldsymbol{Y},\boldsymbol{\beta}) = 2\sum_{i=1}^n \frac{v_i}{\varphi} \left(\frac{Y_i}{\mu_i} - 1 + \log \left(\frac{\mu_i}{Y_i} \right) \right) \geq 0.$$

Inverse Gaussian case:

$$D^*(\mathbf{Y}, \boldsymbol{\beta}) = \sum_{i=1}^n \frac{v_i (Y_i - \mu_i)^2}{\varphi \mu_i^2 Y_i} \ge 0.$$

Poisson case:

$$D^*(\mathbf{Y}, \boldsymbol{\beta}) = 2\sum_{i=1}^n \frac{v_i}{\varphi} \left(\mu_i - Y_i - Y_i \log \left(\frac{\mu_i}{Y_i} \right) \right) \ge 0.$$

Balance Property under Canonical Link

• Under the canonical link $g=h=(\kappa')^{-1}$ we have balance property for the MLE

$$\sum_{i=1}^{n} v_i \widehat{\mathbb{E}}[Y_i] = \sum_{i=1}^{n} v_i \kappa' \langle \widehat{\boldsymbol{\beta}}, \boldsymbol{x}_i \rangle = \sum_{i=1}^{n} v_i Y_i.$$

▶ The estimated model mean over the entire portfolio is unbiased.

• If one does not work with the canonical link, one should correct in $\widehat{\beta}_0$ for the bias.

• Feature Engineering / Covariate Pre-Processing

Feature Engineering

Assume monotone link function choice g

$$\boldsymbol{x}_i \mapsto \mu_i = \mathbb{E}[Y_i] = g^{-1}\langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle = g^{-1} \left(\beta_0 + \sum_{j=1}^q \beta_j x_{i,j} \right).$$

- What about categorical covariates and non-monotone covariates?
- What about different interactions?

One-Hot Encoding of Categorical Covariates

$\mathtt{B1} \mapsto oldsymbol{e}_1 =$	1	0	0	0	0	0	0	0	0	0	0
B10 $\mapsto \boldsymbol{e}_2 =$	0	1	0	0	0	0	0	0	0	0	0
B11 $\mapsto \boldsymbol{e}_3 =$	0	0	1	0	0	0	0	0	0	0	0
B12 $\mapsto oldsymbol{e}_4 =$	0	0	0	1	0	0	0	0	0	0	0
B13 $\mapsto oldsymbol{e}_5 =$	0	0	0	0	1	0	0	0	0	0	0
B14 \mapsto $oldsymbol{e}_6 =$	0	0	0	0	0	1	0	0	0	0	0
B2 $\mapsto e_7 =$	0	0	0	0	0	0	1	0	0	0	0
B3 $\mapsto oldsymbol{e}_8 =$	0	0	0	0	0	0	0	1	0	0	0
B4 \mapsto $\boldsymbol{e}_9 =$	0	0	0	0	0	0	0	0	1	0	0
B5 \mapsto $oldsymbol{e}_{10} =$	0	0	0	0	0	0	0	0	0	1	0
B6 $\mapsto oldsymbol{e}_{11} =$	0	0	0	0	0	0	0	0	0	0	1

- One-hot encoding for the 11 car brands: $\mathbf{brand} \mapsto e_{\mathbf{j}} \in \mathbb{R}^{11}$.
- One-hot encoding does not lead to full rank design matrices \mathfrak{X} , because we have a redundancy.

Dummy Coding of Categorical Covariates

B1	0	0	0	0	0	0	0	0	0	0
B10	1	0	0	0	0	0	0	0	0	0
B11	0	1	0	0	0	0	0	0	0	0
B12	0	0	1	0	0	0	0	0	0	0
B13	0	0	0	1	0	0	0	0	0	0
B14	0	0	0	0	1	0	0	0	0	0
B2	0	0	0	0	0	1	0	0	0	0
В3	0	0	0	0	0	0	1	0	0	0
B4	0	0	0	0	0	0	0	1	0	0
B5	0	0	0	0	0	0	0	0	1	0
В6	0	0	0	0	0	0	0	0	0	1

- Declare one label as reference level and drop the corresponding column.
- Dummy coding for the 11 car brands: $\operatorname{brand} \mapsto \boldsymbol{x}_{\mathrm{j}} \in \mathbb{R}^{10}$.
- Dummy coding leads to full rank design matrices \mathfrak{X} .
- There are other full rank codings like Helmert's contrast coding.

Pre-Processing of Continuous Covariates (1/2)

age	class 1:	18-20
age	class 2:	21-25
age	class 3:	26-30
age	class 4:	31-40
age	class 5:	41-50
age	class 6:	51-60
age	class 7:	61-70
age	class 8:	71-90

• Continuous features need feature engineering, too, to bring them into the right functional form for GLM. Assume we have log-link for g

$$\boldsymbol{x} \mapsto \log (\mathbb{E}[Y]) = \langle \boldsymbol{\beta}, \boldsymbol{x} \rangle = \beta_0 + \sum_{j=1}^q \beta_j x_j.$$

We build homogeneous categorical classes, and then apply dummy coding.

Pre-Processing of Continuous Covariates (2/2)

- Categorical coding of continuous covariates has some disadvantages.
- By changing continuous features to categorical dummies we lose adjacency relationships between neighboring classes.
- The number of parameters can grow very large if we have many classes.
- Balance property holds true on every categorical level. Caution: if we have very rare categorical levels this will lead to over-fitting; and it will also lead to high correlations with the intercept β_0 .
- One may also consider other functional forms for continuous covariates, e.g.,

age
$$\mapsto \beta_1 \text{age} + \beta_2 \text{age}^2 + \beta_3 \log(\text{age})$$
.

• Similarly, we can model interactions between covariate components

$$(age, weight) \mapsto \beta_1 age + \beta_2 weight + \beta_3 age/weight.$$

Variable Selection

Variable Selection: Likelihood Ratio Test (LRT)

- Null hypothesis H_0 : $\beta_1 = \ldots = \beta_p = 0$ for given $1 \le p \le q$.
- Likelihood ratio test (LRT). Calculate test statistics (nested models)

$$\chi_{\mathbf{Y}}^2 = D^*(\mathbf{Y}, \widehat{\boldsymbol{\beta}}_{H_0}) - D^*(\mathbf{Y}, \widehat{\boldsymbol{\beta}}_{\text{full}}) \ge 0.$$

Under H_0 , test statistics χ^2_Y is approximately χ^2 -distributed with p df.

Variable Selection: Wald Test

- Null hypothesis H_0 : $\beta_p = (\beta_1, \dots, \beta_p)^\top = 0$ for given $1 \le p \le q$.
- Wald test. Choose matrix I_p such that $I_p\beta_{\text{full}} = \beta_p$. Consider Wald statistics

$$W = (I_p \widehat{\boldsymbol{\beta}}_{\text{full}} - 0)^{\top} \left(I_p \, \mathcal{I}(\widehat{\boldsymbol{\beta}}_{\text{full}})^{-1} \, I_p^{\top} \right)^{-1} (I_p \widehat{\boldsymbol{\beta}}_{\text{full}} - 0).$$

Under H_0 , test statistics W is approximately χ^2 -distributed with p df.

- $\mathcal{I}(\widehat{\boldsymbol{\beta}}_{\text{full}})$ is Fisher's information matrix; the above test is based on asymptotic normality of the MLE $\widehat{\boldsymbol{\beta}}_{\text{full}}$.
- Model only needs to be fitted once.

Model Selection: AIC

• Akaike's information criterion (AIC) is useful for non-nested models

$$AIC = -2\ell_{\mathbf{Y}}(\widehat{\boldsymbol{\beta}}) + 2\dim(\boldsymbol{\beta}).$$

- Models do not need to be nested.
- Models can have different distributions.
- AIC considers all terms of the log-likelihood (also normalizing constants).
- Models need to be estimated with MLE.
- Different models need to consider the same data on the same scale (log-normal vs. gamma).

Example: Poisson Frequency GLM

```
1 Call:
2 glm(formula = claims ~ powerCAT + area + log(dens) + gas + ageCAT +
3
                        acCAT + brand + ct, family = poisson(), data = dat, offset =
5 Deviance Residuals:
      Min
                1Q Median
                                 3 Q
                                        Max
  -1.1373 -0.3820 -0.2838 -0.1624 4.3856
9 Coefficients:
10
                 Estimate Std. Error z value Pr(>!z!)
11 (Intercept) -1.903e+00 4.699e-02 -40.509 < 2e-16 ***
12 powerCAT2 2.681e-01 2.121e-02 12.637 < 2e-16 ***
13 .
14 .
15 powerCAT9
            -1.044e-01 4.708e-02 -2.218 0.026564 *
              4.333e-02 1.927e-02 2.248 0.024561 *
16 area
17 log(dens) 3.224e-02 1.432e-02 2.251 0.024385 *
18 gasRegular 6.868e-02 1.339e-02 5.129 2.92e-07 ***
19 .
20
21 ctZG
            -8.123e-02 4.638e-02 -1.751 0.079900 .
22 ---
23 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
24
25 (Dispersion parameter for poisson family taken to be 1)
```

26

Null deviance: 145532 on 499999 degrees of freedom Residual deviance: 140641 on 499943 degrees of freedom

29 AIC: 191132

Forward Parameter Selection: ANOVA

```
Analysis of Deviance Table
  Model: poisson, link: log
4
  Response: claims
6
  Terms added sequentially (first to last)
8
9
10
           Df Deviance Resid. Df Resid. Dev
11 NULL
                         499999
                                    145532
12 acCAT
            3 2927.32
                         499996
                                   142605
          7 850.00
13 ageCAT
                      499989
                                   141755
14 ct
           25 363.29
                      499964
                                   141392
                      499954
15 brand
           10 124.37
                                   141267
16 powerCAT 8 315.48 499946
                                   140952
17 gas
            1 50.53 499945
                                   140901
                      499944
18 area
            1 255.20
                                   140646
19 log(dens)
                  5.07
                         499943
                                   140641
```

Pay attention: order of covariates inclusion is important.

Backward Parameter Reduction: Drop1

```
1 Single term deletions
3 Model:
4 claims ~ acCAT + ageCAT + ct + brand + powerCAT + gas + area + log(dens)
                         AIC
           Df Deviance
                                LRT Pr(>Chi)
                140641 191132
7 <none>
         3 142942 193426 2300.61 < 2.2e-16 ***
8 acCAT
9 ageCAT 7 141485 191962 843.91 < 2.2e-16 ***
10 ct
           25 140966 191406 324.86 < 2.2e-16 ***
11 brand 10 140791 191261 149.70 < 2.2e-16 ***
12 powerCAT 8 140969 191443 327.68 < 2.2e-16 ***
       1 140667 191156 26.32 2.891e-07 ***
13 gas
        1 140646 191135 5.06 0.02453 *
14 area
15 log(dens) 1 140646 191135 5.07 0.02434 *
16 ---
17 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
```

We should keep the full model according to AIC and according to the LRT on a 5% significance level.

• Car Insurance Frequency Example

Example: Poisson Frequency Model (1/2)

- The Poisson model has dispersion $\varphi = 1$.
- The Poisson model has cumulant function

$$\theta \mapsto \kappa(\theta) = \exp(\theta).$$

Mean and variance of EDFs are given by

$$\mu_i = \mathbb{E}[Y_i] = \kappa'(\theta_i) = \exp(\theta_i),$$

$$\operatorname{Var}(Y_i) = \frac{\varphi}{v_i} \kappa''(\theta_i) = \frac{1}{v_i} \exp(\theta_i) = \frac{1}{v_i} \mu_i.$$

 $\triangleright N_i = v_i Y_i$ has a Poisson distribution with mean $v_i \mu_i$.

Example: Poisson Frequency Model (2/2)

ullet Mean of the Poisson model for $N_i=v_iY_i$

$$v_i \mu_i = \mathbb{E}[N_i] = v_i \kappa'(\theta_i) = v_i \exp(\theta_i) = \exp(\log v_i + \theta_i).$$

The term $\log v_i$ is called offset.

• The Poisson GLM with canonical link $g = h = \log$ is given by

$$\boldsymbol{x}_i \mapsto \log \left(\mathbb{E}\left[N_i \right] \right) = \log v_i + \langle \boldsymbol{\beta}, \boldsymbol{x}_i \rangle = \log v_i + \beta_0 + \sum_{j=1}^q \beta_j x_{i,j}.$$

	run time	# param. $q+1$	AIC	in-sample loss	out-of-sample loss
homogeneous model	_	1	263'143	32.935	33.861
Model GLM1	20s	49	253'062	31.267	32.171

Losses are in 10^{-2} .

Further Points

- To prevent from over-fitting: regularization can be used.
- Ridge regression is based on an L^2 -penalization and generally reduces regression parameter components in β (exclude the intercept β_0).
- LASSO (least absolute shrinkage and selection operator) regression is based on an L^1 -penalization and can set regression parameter components exactly to zero.
- LASSO has difficulties with collinearity in covariate components, therefore, sometimes an elastic net regularization is used which combines ridge and LASSO.
- Regularization has a Bayesian interpretation.
- Generalized additive models (GAMs) allow for more flexibility than GLMs in marginal covariate component modeling. But they often suffer from computational complexity.

References

- Barndorff-Nielsen (2014). Information and Exponential Families: In Statistical Theory. Wiley
- Charpentier (2015). Computational Actuarial Science with R. CRC Press.
- Efron, Hastie (2016). Computer Age Statistical Inference: Algorithms, Evidence, and Data Science. Cambridge UP.
- Fahrmeir, Tutz (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer.
- Fisher (1934). Two new properties of mathematical likelihood. Proceeding of the Royal Society A 144, 285-307.
- Hastie, Tibshirani, Friedman (2009). The Elements of Statistical Learning. Springer.
- Jørgensen (1986). Some properties of exponential dispersion models. Scandinavian Journal of Statistics 13/3, 187-197.
- Jørgensen (1987). Exponential dispersion models. Journal of the Royal Statistical Society. Series B (Methodological) 49/2, 127-145.
- Jørgensen (1997). The Theory of Dispersion Models. Chapman & Hall.
- Lehmann (1983). Theory of Point Estimation. Wiley.
- Lorentzen, Mayer (2020). Peeking into the black box: an actuarial case study for interpretable machine learning.
 SSRN 3595944.
- McCullagh, Nelder (1983). Generalized Linear Models. Chapman & Hall.
- Nelder, Wedderburn (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General) 135/3, 370-384.
- Noll, Salzmann, Wüthrich (2018). Case study: French motor third-party liability claims. SSRN 3164764.
- Ohlsson, Johansson (2010). Non-Life Insurance Pricing with Generalized Linear Models. Springer.
- Wüthrich, Buser (2016). Data Analytics for Non-Life Insurance Pricing. SSRN 2870308, Version September 10, 2020.
- Wüthrich, Merz (2021). Statistical Foundations of Actuarial Learning and its Applications. SSRN 3822407.