My formalization project

Metin Ersin Arıcan

August 5, 2024

Chapter 1

Vectors

1.1

Proof.

Proof.

Proof.

Proof.

Basic Definitions and Lemmas

Lemma 1.1.1. For any vector $v : \operatorname{Fin} 2 \to \mathbb{N}$, we have v = ![v(0), v(1)]. Proof. 1.2 Theories Lemma 1.2.1. The theory of linear orders is a subset of DLO. Proof. Lemma 1.2.2. The theory of linear orders contains the reflexivity sentence. Proof. Lemma 1.2.3. The theory of linear orders contains the transitivity sentence.

Lemma 1.2.4. The theory of linear orders contains the antisymmetry sentence.

Lemma 1.2.6. Models of the theory of linear orders realize the reflexivity sentence.

Lemma 1.2.7. Models of the theory of linear orders realize the transitivity sentence.

Lemma 1.2.8. Models of the theory of linear orders realize the antisymmetry sentence.

Lemma 1.2.5. The theory of linear orders contains the totality sentence.

Lemma 1.2.9. Models of the theory of linear orders realize the totality sentence.	
Proof.]
Lemma 1.2.10. The theory DLO contains the reflexivity sentence.	
Proof.]
Lemma 1.2.11. The theory DLO contains the transitivity sentence	
Proof.]
Lemma 1.2.12. The theory DLO contains the antisymmetry sentence.	
Proof.]
Lemma 1.2.13. The theory DLO contains the totality sentence.	
Proof.]
Lemma 1.2.14. Models of the theory DLO realize the reflexivity sentence.	
Proof.]
Lemma 1.2.15. Models of the theory DLO realize the transitivity sentence.	
Proof.]
Lemma 1.2.16. Models of the theory DLO realize the antisymmetry sentence.	
Proof.	
Lemma 1.2.17. Models of the theory DLO realize the totality sentence.	
Proof.]
Lemma 1.2.18. Models of DLO are also models of the theory of linear orders.	
Proof.]
1.3 Instances	
Definition 1.3.1. Any structure of an ordered language is an ordered set.	
Definition 1.3.2. statement of your definition	
Definition 1.3.3. statement of your definition	
Definition 1.3.4. A language is binary relational if it has only binary relation symbols.	
Lemma 1.3.5. The canonical ordered language consisting of a single binary relation \leq is a binary relational language.	a
Proof.	

1.4 Structures

Lemma 1.4.1. Structures of a relational language have equal function maps.
Proof.
Lemma 1.4.2. Two structures of a relational language are equal if and only if they agree on the interpretation of all relation symbols.
Proof.
Lemma 1.4.3. Two structures of a binary relational language have equal relation maps if and only if they agree on the interpretation of all binary relation symbols.
Proof.
Lemma 1.4.4. Two structures of a binary relational language are equal if and only if they agree on the interpretation of all binary relation symbols.
Proof.
Lemma 1.4.5. statement of your lemma
Proof.

Chapter 2

Main Results

Theorem 2.0.1. The theory of dense linear orders without endpoints is \aleph_0 -categorical. Proof.