Notes for the book[1]

Zhipeng Song February 11, 2025

Contents

1	$Th\epsilon$	The concept of a spherical function				
	1.1	Review of some basic notions of representation theory				
	1.2	Decomposition of a representation with respect to a compact subgroup K and K -				
		finite representations	4			
	1.3	Elementary spherical functions of arbitrary type				
	1.4	Spherical functions on Lie groups				
	1.5	Gelfand's pairs (G,K)				
	1.6	Plancherel formula for G/K	6			
	1.7	Eigenfunction expansions in G/K	(
2	Str	Structure of semisimple Lie groups and differential operators on them				
	2.1	Groups of class \mathscr{H}	(
	2.2	Iwasawa decomposition. Roots. Weyl group	7			
	2.3	Parabolic subalgebras and parabolic subgroups	8			
	2.4	Integral formulae	Ć			
	2.5	Flag manifolds, Bruhat decomposition and Related Integral formulae	1(
	2.6	Differential operators on G and G/K	11			
3	The elementary spherical functions 1					
	3.1	Principal series representations and integral representations for their matrix coefficients	11			
	3.2	Determination of all elementary spherical functions. The functional equations	12			
	3.3	The Harish-Chandra transform	12			
	3.4	Finite dimensional representation theory of G and its consequences for the H -function				
		and the elementary spherical fucntions	13			
	3.5	Convexity properties of the H -function	13			
4	The	e Harish-Chandra series for φ_{λ} and the c-function	13			
	4.1	Radial components of spherical differential operators on A^+	14			
	4.2	The radial component of the Casimir operator	14			
	4.3	Construction of the eigenfunctions on G^+	14			
	4.4	The Harish-Chandra series for φ_{λ} and the c -function	15			
	4.5	Estimates for the Harish-Chandra series when λ becomes unbounded	15			
	4.6	Estimates for the elementary spherical functions. The functions Ξ and σ	16			
	4.7	The c -function	16			

5.1				
	The case when $rank(G/K) = 1$	16		
5.2	The basic differential equations viewed as a perturbation of a linear system: the			
	regular case	17		
5.3	Radial components on M'_{10} and M^+_{10}	18		
5.4	The basic differential equations viewed as a perturbation of a linear system: the			
	general case	19		
5.5	Spectral theory of representations of polynomial rings associated to finite reflexion			
	groups	19		
5.6	The initial estimates	20		
5.7	Perturbations of linear systems (with a priori estimates)	20		
5.8	Asymptotics of $\Phi_0(\lambda:\cdot)$ on M_{10}^+ . The function Θ	20		
5.9	Asymptotics of $\varphi(\lambda:\cdot)$	21		
5.10	Complements. Constant term for tempered 3-finite functions	21		
The L_2 theory. The Harish-Chandra transform on the Schwartz space of G/K				
6.1	The Schwartz spaces $\mathscr{C}(G)$ and $\mathscr{C}(G/K)$	21		
6.2	The Harish-Chandra transform on $\mathscr{C}(G//K)$	21		
6.3	Wave packets in $\mathscr{C}(G//K)$	22		
6.4	Satatements of the main theorems	22		
6.5	The method of Harish-Chandra	22		
6.6	The method of Gangolli-Helgason-Rosenberg	22		
L_p theory of Harish-Chandra transform. Fourier analysis on the spaces $\mathscr{C}^p(G//K)$				
7.1	Radial components and their expansions	23		
7.2	The differential equations, Initial estimates, and the approximating sequence	23		
7.3	Expressions for $\Phi^0 - \Phi_n^0, \Phi_n^0 - \Phi_{n-1}^0$ and estimates for $\Phi_0 - \exp(\Gamma_0)\Phi_n^0$	23		
7.4	Further study of the Φ_n^0 . The matrices Ω_q	23		
7.5	The functions Θ_q	23		
7.6	Asymptotic expansions for φ_{λ}	23		
7.7	The tube domains $\mathscr{F}^{\varepsilon}$,* $\mathscr{F}^{\varepsilon}$ and the function spaces $\mathscr{Z}(\mathscr{F}^{\varepsilon})$, $\bar{\mathscr{Z}}(\mathscr{F}^{\varepsilon})$	23		
7.8	The spaces $\mathscr{C}^p(G//K)$	23		
7.9	Study of the functions ψ_q	23		
7.10	Wave packets and the transform theory for $\mathscr{C}^p(G//K)$	23		
Erra	ata in [1]	24		
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 The 6.1 6.2 6.3 6.4 6.5 6.6 L_p tl 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	regular case 5.3 Radial components on M'_{10} and M^+_{10} 5.4 The basic differential equations viewed as a perturbation of a linear system: the general case 5.5 Spectral theory of representations of polynomial rings associated to finite reflexion groups 5.6 The initial estimates 5.7 Perturbations of linear systems (with a priori estimates) 5.8 Asymptotics of $\Phi_0(\lambda:\cdot)$ on M^+_{10} . The function Θ 5.9 Asymptotics of $\varphi(\lambda:\cdot)$ 5.10 Complements. Constant term for tempered \mathfrak{F} -finite functions The L_2 theory. The Harish-Chandra transform on the Schwartz space of G/K 6.1 The Schwartz spaces $\mathscr{C}(G)$ and $\mathscr{C}(G/K)$ 6.2 The Harish-Chandra transform on $\mathscr{C}(G/K)$ 6.3 Wave packets in $\mathscr{C}(G/K)$ 6.4 Satatements of the main theorems 6.5 The method of Harish-Chandra 6.6 The method of Gangolli-Helgason-Rosenberg L_p theory of Harish-Chandra transform. Fourier analysis on the spaces $\mathscr{C}^p(G/K)$ 7.1 Radial components and their expansions 7.2 The differential equations, Initial estimates, and the approximating sequence 7.3 Expressions for $\Phi^0 - \Phi^0_n$, $\Phi^0_n - \Phi^0_{n-1}$ and estimates for $\Phi_0 - \exp(\Gamma_0)\Phi^0_n$ 7.4 Further study of the Φ^0_n . The matrices Ω_q 7.5 The functions Θ_q 7.6 Asymptotic expansions for φ_λ 7.7 The tube domains $\mathscr{F}^\varepsilon, \mathscr{F}^\varepsilon$ and the function spaces $\mathscr{L}(\mathscr{F}^\varepsilon), \mathscr{Z}(\mathscr{F}^\varepsilon)$ 7.8 The spaces $\mathscr{C}^p(G/K)$ 7.9 Study of the functions ψ_q		

I am writing this note to help me more effectively find the symbols in [1].

1 The concept of a spherical function

1.1 Review of some basic notions of representation theory

- V: a Hausdorff locally convex topological vector space
- $\mathcal{B}(V)$: the algebra of all continuous linear operators on V, equipped with the strong topology, namely, the locally convex topology defined by the seminorms $L \mapsto \nu(Lv)(v \in V, \nu)$ a continuous seminorm on V)
- $M_c(G)$: the vector space of all complex-valued compactly supported Borel measures on G
- $C_c(G)$: the space of continuous compactly supported complex functions on G
- $\pi(\mu) := \int_G \pi(x) d\mu(x)$ where $\mu \in M_c(G)$ and π is a representation of G
- $\pi(f) := \pi(fdx) = \int_G \pi(x)f(x)dx$ where $f \in C_c(G)$ and π is a representation of G
- †: denotes Hilbert space adjoint
- $U(\mathfrak{g}_c)$: the universal enveloping algebra of \mathfrak{g}_c
- $\mathcal{E}'(G)$: the algebra of distributions on G with compact support
- $f(x;a) = (af)(x) := \frac{\partial^r}{\partial t_1 \cdots \partial t_r}|_0 f(x \exp t_1 X_1 \cdots \exp t_r X_r)$ where $a = X_1 \cdots X_r \in U(\mathfrak{g}_c)$ and $x \in G$
- $f(a;x) = (fa)(x) := \frac{\partial^r}{\partial t_1 \cdots \partial t_r}|_0 f(\exp t_1 X_1 \cdots \exp t_r X_r x)$ where $a = X_1 \cdots X_r \in U(\mathfrak{g}_c)$ and $x \in G$
- $f_1(x,y) = f(xy)$
- $f_{\pi,v}(x) := \pi(x)v$ where $x \in G, v \in V$
- $\pi(a)v = f_{\pi,v}(1;a)$ where $a \in U(\mathfrak{g}_c), v \in V$
- $\pi(X_1 \cdots X_r) = \frac{\partial^r}{\partial t_1 \cdots \partial t_r} |_{0} \pi(x \exp t_1 X_1 \cdots \exp t_r X_r)$
- V^{∞} : the subspace of differentiable vectors
- V^{ω} : the space of weakly analytic vectors
- $\mathfrak{Z} = U(\mathfrak{g}_c)^G$: centralizer of G in $U(\mathfrak{g}_c)$
- $\chi_{\pi}(\mathfrak{Z} \to \mathbb{C})$ infinitesimal character of π : a homomorphism such that $\pi(z)v = \chi_{\pi}(z)v, v \in V^{\infty}$

1.2 Decomposition of a representation with respect to a compact subgroup K and K-finite representations

- (G, K): a pair where G is a second countable locally compact group, unimodular and K is a compact subgroup
- $\mathscr{E}(K)$: the set of equivalence of the irreducible representations of K
- $\operatorname{ch}_{\mathfrak{d}}$: the character of $\mathfrak{d} \in \mathscr{E}(K)$
- $\xi_{\mathfrak{d}}(k) = \dim(\mathfrak{d}) \operatorname{ch}_{\mathfrak{d}}(k^{-1}), k \in K$
- $E_{\mathfrak{d}} = \pi(\xi_{\mathfrak{d}})$
- $V_0 = E_0 V$: the isotypical subspace of V corresponding to \mathfrak{d}
- $F \subset \mathscr{E}(K)$: finite set
- $E_F = \sum_{\mathfrak{d} \in F} E_{\mathfrak{d}}$
- $V_F = E_F V = \bigoplus_{\mathfrak{d} \in F} V_{\mathfrak{d}}$
- $v_{\mathfrak{d}} = E_{\mathfrak{d}}v$ the Fourier coefficient of $v \in V$
- $C_{\mathfrak{d}}(G) = E_{\mathfrak{d},\bar{\mathfrak{d}}}(C(G)) = \xi_{\mathfrak{d}} * C(G) * \xi_{\mathfrak{d}}$
- $C_{c,\mathfrak{d}}(G) = C_c(G) \cap C_{\mathfrak{d}}(G) = \xi_{\mathfrak{d}} * C_c(G) * \xi_{\mathfrak{d}}$
- $C(G//K) = C_1(G)$
- $C_c(G//K) = C_{c,1}(G)$
- $C_{c,F}(G) = \xi_F * C_c(G) * \xi_F$
- $C_{c,F}^{\infty}(G) = \xi_F * C_c^{\infty}(G) * \xi_F$
- $\xi_F = \sum_{\mathfrak{d} \in F} \xi_{\mathfrak{d}}$
- $I_c(G)$: the subalgebra of $C_c(G)$ of elements invariant under inner automorphisms by $k \in K$
- $I_{c,F}(G) = \xi_F * I_c(G) * \xi_F$
- $\bullet \ \pi_F(f) = \pi(f)|_{V_F}, f \in C_{c,F}(G)$
- $V^0 = \sum_{\mathfrak{d} \in \mathscr{E}(K)} V_{\mathfrak{d}}$ (algebraic sum) and $V^0 \subset V^{\infty}$ if π is K-finite
- $\mathfrak{Q} = U(\mathfrak{g}_c)^K = \text{centralizer of } K \text{ in } U(\mathfrak{g}_c)$
- $\Theta_{\pi}(C_c^{\infty}(G) \to \mathbb{C}) : f \mapsto \operatorname{tr}(\pi(f))$: the character of π

1.3 Elementary spherical functions of arbitrary type

- $\Phi_{\pi,F}(x) = E_F \pi(x) E_F$: the spherical function of type $F \subset \mathscr{E}(K)$ associated with π
- $\pi_F(f) = \langle f, \Phi_{\pi,F} \rangle := \int_C f(x) \Phi_{\pi,F}(x) dx$
- γ : a representation of $C_{c,F}(G)$ in U where U is a finite-dimensional vector space
- $\Psi(G \to \operatorname{Hom}_{\mathbb{C}}(U,U))$ such that $\gamma(f) = \langle f, \Psi \rangle$ and $\Psi = \bar{\xi}_F * \Psi * \bar{\xi}_F$
- $I_{c,\mathfrak{d}}(G)$: the subalgebra of elements invariant under the inner automorphisms $x \mapsto kxk^{-1}$ induced by elements of K
- $\bullet \ \Phi^{\sharp}: G \to \operatorname{Hom}_{\mathbb{C}}(W,W) \text{ such that (i) } \Phi^{\sharp}(1) = 1, \text{ (ii) } \Phi^{\sharp}(kxk^{-1}) = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp} * \bar{\xi}_{\mathfrak{d}} = \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}} * \Phi^{\sharp}(x), \text{ (iii) } \bar{\xi}_{\mathfrak{d}}$
- $\pi_{\mathfrak{d}} = \theta \otimes \sigma_{\mathfrak{d}}$: the irreducible representation of $C_{c,\mathfrak{d}}(G)$ in $V_{\mathfrak{d}}$ where $\sigma_{\mathfrak{d}}$ is an irreducible representations of $I_{c,\mathfrak{d}}(G)$ in some space $W_{\mathfrak{d}}$
- $\Phi_{\pi,\mathfrak{d}}^{\sharp}$: the continuous map of G into $\operatorname{Hom}_{\mathbb{C}}(W_{\mathfrak{d}},W_{\mathfrak{d}})$ that satisfies the conditions above and $\langle f,\Phi_{\pi,\mathfrak{d}}^{\sharp}\rangle = \sigma_{\mathfrak{d}}(f), f \in I_{c,\mathfrak{d}}(G)$. $\Phi_{\pi,\mathfrak{d}}^{\sharp}$ is called the elementary K-central spherical function of type \mathfrak{d} associated with π
- $\varphi_{\pi,\mathfrak{d}} = \operatorname{tr}(\Phi_{\pi,\mathfrak{d}}^{\sharp})$: the elementary trace spherical function of type \mathfrak{d} associated with π
- U the algebra of endomorphisms of V_F , also regarded as a bimodule for K by defining $\tau(k)u = \pi_F(k)u$ and $u\tau(k) = u\pi_F(k), k \in K, u \in U$ where $\pi_F(k) = E_F\pi(k)E_F$
- $\Phi = \Phi_{\pi,F}$ is a function from G to U which has the following covariance property: $\Phi(k_1xk_2) = \tau(k_1)\Phi(x)\tau(k_2)$ for all $k_1, k_2 \in K, x \in G$

1.4 Spherical functions on Lie groups

- $a^k := \operatorname{Ad}(k)a$ where $a \in U(\mathfrak{g}_c)$
- $\Psi(x:y) = \int_K \Phi^{\sharp}(xkyk^{-1})dk$

1.5 Gelfand's pairs (G, K)

- (G, K): Gelfand pair if $L^1(G//K)$ is commutative
- θ : an involutive automorphism of G
- G^{θ} : the subgroup of fixed points for θ
- V^K : the space of vectors invariant under K

1.6 Plancherel formula for G/K

- $\lambda(G \to B(L^2(G/K))): y \mapsto \lambda(y)$ such that $(\lambda(y)f)(\dot{x}) = f(y^{-1}\dot{x})$ where $\dot{x} \in G/K, f \in L^2(G/K)$
- \mathfrak{H} : a separable Hilbert space
- \mathfrak{U} : a commutative algebra of bounded operators in \mathfrak{H} such that \mathfrak{U} is closed in the operator norm topology and \mathfrak{U} is self-adjoint
- \mathfrak{U}_1 : a dense self-adjoint algebra of \mathfrak{U}
- $\sharp(f) = f^{\sharp} = \int_{K \times K} l(k_1) r(k_2) f dk_1 dk_2$: the projection of $L^1(G)$ onto $L^1(G//K)$ where r and l are left and right regular representations of G in $L^1(G)$
- $\Sigma(G//K)$ = spectrum of $L^1(G//K)$, i.e., the set of all continuous nontrivial homomorphisms of $L^1(G//K)$ into $\mathbb C$
- φ_{τ} : uniquely determined elementary spherical function such that $\langle f, \varphi_{\tau} \rangle = \tau(f)$ for all $f \in C_c(G//K)$ where $\tau \in \Sigma(G//K)$
- π_{τ} : a completely irreducible uniformly bounded representation of class 1 in a Banach space such that φ_{τ} is the elementary spherical function associated to π_{τ}
- $\Sigma_u(G//K) = \left\{ \tau \in \Sigma(G//K) : \tau((f * \tilde{f})^{\sharp}) \ge 0, \forall f \in L^1(G) \right\}$
- \hat{G} : the set of equivalence classes of irreducible unitary representations of G
- \hat{G}_1 : the set of classes of \hat{G} corresponding to class 1 representations

1.7 Eigenfunction expansions in G/K

- $H \subset G$: a closed subgroup
- $E_G(G/H)$: the algebra of all G-invariant continuous endomorphisms of $C^{\infty}(G/H)$
- $\operatorname{Diff}_G(G/H)$: the subalgebra of G-invariant differential operators on G/K

2 Structure of semisimple Lie groups and differential operators on them

2.1 Groups of class \mathcal{H}

- G^0 : the component contained identity
- The index of subgroup of $G^0:[G:G^0]<\infty$: G has only finitely many connected compositions

- ${}^{0}H := \bigcap_{X \in \operatorname{Hom}(H,\mathbb{R}_{+}^{\times})} \ker(X)$ for any real Lie group H, where \mathbb{R}_{+}^{\times} is the multiplicative group of positive reals and $\operatorname{Hom}(H,\mathbb{R}_{+}^{\times})$ is the set of continuous homomorphisms of H into \mathbb{R}_{+}^{\times}
- $C = \ker(Ad) = \text{centralizer of } \mathfrak{g} \text{ in } G$
- θ : Cartan involution
- G^{θ} : the set of fixed points of G
- $\bullet \ \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{s} \text{: the Cartan decomposition of } \mathfrak{g}$
- $G = K \exp \mathfrak{s}$: the Cartan decomposition of G
- B: the Cartan-Killing form
- $(X,Y) := B_{\theta}(X,Y) = -B(X,\theta Y)$
- $||X||^2 := B_{\theta}(X, X)$

2.2 Iwasawa decomposition. Roots. Weyl group

- \mathfrak{a} : a maximal abelian subspaces of \mathfrak{s}
- \mathfrak{m}_1 : the centralizer of \mathfrak{a} in \mathfrak{g}
- $\mathfrak{m} := \mathfrak{m}_1 \cap \mathfrak{k}$
- M_1 (resp. \tilde{M}_1): the centralizer (resp. normalizer) of \mathfrak{a} in G
- $M := M_1 \cap K$: the centralizer of \mathfrak{a} in K
- $\tilde{M} := \tilde{M}_1 \cap K$: the normalizer of \mathfrak{a} in K
- $\mathfrak{g}_{\lambda}=\{X\in\mathfrak{g}:[H,X]=\lambda(H)X,\forall H\in\mathfrak{a}\}$ for any $\lambda\in\mathfrak{a}^*$
- $\Delta = \Delta(\mathfrak{g}, \mathfrak{a})$: the set of all roots of $(\mathfrak{g}, \mathfrak{a})$
- Δ^+ : the set of all positive roots
- $S = {\alpha_i : 1 \leq i \leq r}$: the simple system
- $\mathfrak{n}:=\sum_{\lambda\in\Delta^+}\mathfrak{g}_\lambda$
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ (resp. G = KAN): the Iwasawa decomposition of \mathfrak{g} (resp. G)
- $\log: A \to \mathfrak{a}$
- s_{λ} : the reflection associated with λ
- $\sigma_{\lambda} = \{ \mu \in \mathfrak{a}_c^* : \langle \mu, \lambda \rangle = 0 \}$: the hyperplane
- \bullet $\mathfrak{w}\colon$ the Weyl group of $(\mathfrak{g},\mathfrak{a})$

- $W = \tilde{M}/M \simeq \mathfrak{w}$: the Weyl group of (G, A)
- \mathfrak{a}^+ : the positive Weyl chamber of \mathfrak{a}
- $A^+ = \exp(\mathfrak{a}^+)$

2.3 Parabolic subalgebras and parabolic subgroups

- $\mathfrak{h}_c \subset \mathfrak{g}_c$: a CSA(Cartan subalgebra)
- Q: a positive system of roots of $(\mathfrak{g}_c,\mathfrak{h}_c)$
- $\mathfrak{g}_{c,\alpha}$: the root subspaces
- $\mathfrak{b}_c = \mathfrak{h}_c + \sum_{\lambda \in Q} \mathfrak{g}_{c,\alpha}$: a Borel subalgebra of \mathfrak{g}_c
- $S \subset Q$: the set of simple roots
- $F \subset S$: finite subset
- Q_F : the set of roots in Q which are linear combinations of elements of F
- $\mathfrak{q}_{c,F}:=\mathfrak{b}_c+\sum_{\alpha\in -Q_F}\mathfrak{g}_{c,\alpha}$: a subalgebra of \mathfrak{g}_c containing \mathfrak{b}_c
- $\mathfrak{h}_{\mathfrak{m}}$: a CSA of \mathfrak{m}
- $\mathfrak{h} := \mathfrak{h}_{\mathfrak{m}} \oplus \mathfrak{a}$: a CSA of $\mathfrak{m} \oplus \mathfrak{a}$
- $Q_{\mathfrak{m}}$: a positive system of roots for pair $(\mathfrak{m}_c, (\mathfrak{h} \cap \mathfrak{k})_c)$
- Q^+ : the set of all roots of $(\mathfrak{g}_c,\mathfrak{a}_c)$ whose restrictions to \mathfrak{a} lie in $\Delta^+(\mathfrak{g},\mathfrak{a})$
- $Q := Q_{\mathfrak{m}} \cup Q^+$
- $\mathfrak{n}_c := \sum_{\alpha \in Q^+} \mathfrak{g}_{c,\alpha}$
- $\bullet \ \mathfrak{p} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n} \colon$ a minimal parabolic subalgebra of \mathfrak{g}
- Δ_F^+ : the subset of Δ^+ consisting of roots that are linear combinations of elements of F
- $\mathfrak{p}_F := \mathfrak{p} + \sum_{\alpha \in -\Delta_F^+} \mathfrak{g}_{\lambda}$: the standard psalgebras with respect to \mathfrak{p} or S
- $\bullet \ \mathfrak{p}_0 \text{: a psalgebra of } \mathfrak{g} \ (\text{of course contains } \mathfrak{p})$
- \mathfrak{n}_0 : the nilradical(nilpotent radical) of $\mathfrak{p}_0 \cap [\mathfrak{g}, \mathfrak{g}]$
- $\mathfrak{m}_{10} = \mathfrak{p}_0 \cap \theta(\mathfrak{p}_0)$
- $\mathfrak{p}_0 = \mathfrak{m}_{10} \oplus \mathfrak{n}_0$: the Levi decomposition of \mathfrak{p}_0
- $\mathfrak{a}_0 = \operatorname{center}(\mathfrak{m}_{10}) \cap \mathfrak{s}$
- $\bullet \ \mathfrak{m}_0 = \mathfrak{m}_{10} \ominus \mathfrak{a}_0$

- $\mathfrak{p}_0 = \mathfrak{m}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0$: the Langlands decomposition of \mathfrak{p}_0 .
- $\mathfrak{a}_F = \{ H \in \mathfrak{a} : \alpha(H) = 0, \ \forall \alpha \in F \}$
- $\bullet \ \Delta_F = \Delta_F^+ \cup -\Delta_F^+$
- $\mathfrak{m}_{1F} = \sum_{\lambda \in \Delta_F} \mathfrak{g}_{\lambda}$
- $\mathfrak{n}_F = \sum_{\lambda \in \Delta^+ \setminus \Delta_F^+} \mathfrak{g}_{\lambda}$ the nilradical of $\mathfrak{p}_F \cap [\mathfrak{g}, \mathfrak{g}]$
- M_{10} : the centralizer in G of \mathfrak{a}_0 (Also is called the reductive component of P_0)
- $M_0 = 0 (M_{10})$
- $K_{M_{10}} := K \cap M_{10} = K \cap M_{10}$
- $\bullet \ G = KP_0 = KM_0A_0N_0$
- $\bullet \ \theta_{M_{10}} = \theta|_{M_{10}}$
- $B_{M_{10}} = B|_{(\mathfrak{m}_{10})_c \times (\mathfrak{m}_{10})_c}$
- $M_{0\mathfrak{s}} = \exp(\mathfrak{m}_0 \cap \mathfrak{s})$
- $\Delta(\mathfrak{g},\mathfrak{a}_0) = \Delta(P_0)$: the set of all $\lambda \neq 0$ in \mathfrak{a}_0^* for which $\mathfrak{g}_{\lambda} \neq 0$
- \mathfrak{a}_0^+ : a chamber of \mathfrak{a}_0
- $\Delta(P_0:\mathfrak{a}_0^+)$: the set of roots in $\Delta(P_0)$ which are > 0 in \mathfrak{a}_0^+

2.4 Integral formulae

- $\rho(H) := \frac{1}{2} \operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}} = \frac{1}{2} \sum_{\alpha \in \Delta^+} n(\alpha) \alpha \text{ for all } H \in \mathfrak{a} \text{ where } n(\alpha) = \dim \mathfrak{g}_{\alpha}$
- $\rho_{P_0}(H) = \frac{1}{2}\operatorname{tr}(\operatorname{ad} H)_{\mathfrak{n}_0}, \ H \in \mathfrak{a}_0$
- $d_P(MA \to \mathbb{R}_+^{\times}) : m_1 = |\det \operatorname{Ad}(m_1)_{\mathfrak{n}}|^{1/2} \text{ where } m_1 \in MA$
- $d_{P_0}(M_0A_0 \to \mathbb{R}_+^{\times}) : m_1 = |\det \operatorname{Ad}(m_1)_{\mathfrak{n}_0}|^{1/2} \text{ where } m_1 \in M_0A_0$
- $J(a) = \prod_{\alpha \in \Delta^+} (e^{\alpha(\log a)} e^{-\alpha(\log a)})^{n(\alpha)}$ for all $a \in A$
- $\bullet \ G^* = G/A_0$
- $a^{x^*} = xax^{-1}$ where $a \in A_0$ and $x \in G$

2.5 Flag manifolds, Bruhat decomposition and Related Integral formulae

- G/Q: flag manifolds of G where Q is a psgrp
- G/P is called the flag manifold of G if P = MAN and G = KAN
- X = G/P
- $\operatorname{rk}(G) = \operatorname{rk}(G/K)$: the real rank of G
- $\pi x = xP(x \in G)$
- $i(X \to K/M) : x \mapsto \overline{k(x)}$ the natural identification
- x_s : a representative of $s \in \tilde{M}$
- $G = \bigcup_{x \in \mathfrak{w}} Nx_s P(\text{disjoint union})$: the Bruhat decomposition of G
- $NsP = Nx_sP$
- $\pi(x_s) = \underline{s}(s \in \mathfrak{w})$
- $X = \bigcup_{s \in \mathfrak{w}} N\underline{s}$ (disjoint union): the Bruhat decomposition of X
- $\bullet \ \Delta_s^+ = \{\alpha \in \Delta^+ : s^{-1}\alpha \in \Delta^+\}$
- $\bullet \ _s\Delta^+ = \{\alpha \in \Delta^+ : s^{-1}\alpha \in -\Delta^+ \}$
- $\mathfrak{n}_s = \sum_{\alpha \in \Delta_s^+} \mathfrak{g}_{\alpha}$ and $_s \mathfrak{n} = \sum_{\alpha \in _s \Delta^+} \mathfrak{g}_{\alpha}$
- $N_s = \exp(\mathfrak{n}_s)$ and $sN = \exp(s\mathfrak{n})$
- \mathfrak{w}_F : the subgroup of \mathfrak{w} generated by the reflexion s_α for all $\alpha \in F$
- $\Omega_1 = \pi(\bar{N})$ and $\Omega_s = x_s \cdot \pi(\bar{N})$
- $\gamma_s(\bar{n}) = \pi(x_s\bar{n})$
- $m(s) = x_s^{-1} m x_s$ for $m \in MA$ and $s \in \mathfrak{w}$
- $\beta_s(X) = \pi(x_s \cdot \exp X)$ for $X \in \bar{\mathfrak{n}}$
- $\bullet \ a(x:k) = a(xk)$
- $\bullet \ \ H(x:k) = H(xk)$

2.6 Differential operators on G and G/K

- L: real Lie group with its Lie algebra \mathfrak{l} , and the universal enveloping algebra $U(\mathfrak{l}_c)$
- $W \subset L$: open set
- Diff(W): the algebra of differential operators on W
- $D_x \in U(\mathfrak{l}_c)$: the local expression of $D \in \mathrm{Diff}(W)$ at $x \in W$ such that $(Df)(x) = f(x; D_x)$ for all $f \in C^{\infty}(W)$
- $R_a(f) = fa$ for all $a \in U(\mathfrak{l}_c)$
- $S(\mathfrak{l}_c)$: the symmetric algebra over \mathfrak{l}_c
- $\lambda(S(\mathfrak{l}_c) \to U(\mathfrak{l}_c)): X_1 \dots X_r \mapsto \frac{1}{r!} \sum_{\sigma} X_{\sigma(1)} \dots X_{\sigma(r)}$ where σ funs over the set of all permutations of $(1, \dots, r)$
- $I_{\mathfrak{w}} = I_{\mathfrak{w}}(\mathfrak{h}_c)$: the algebra of \mathfrak{w} -invariant in $S(\mathfrak{h}_c)$
- $I = I(\mathfrak{g}_c) = S(\mathfrak{g}_c)^G$
- $\mathfrak{k}_0 = \mathfrak{k} \cap \mathfrak{m}_{10}$
- $\mathfrak{s}_{10} = \mathfrak{s} \cap \mathfrak{m}_{10}$
- $\mathfrak{s}_0 = \mathfrak{s} \cap \mathfrak{m}_0$
- ullet * $\mathfrak{a} = \mathfrak{a} \cap \mathfrak{m}_0$
- \bullet * $\mathfrak{n} = \mathfrak{n} \cap \mathfrak{m}_0$
- $\beta_n: U(\mathfrak{g}_c) \to U(\mathfrak{a}_c)$: the projection defined by the direct sum $U(\mathfrak{g}_c) = U(\mathfrak{a}_c) \oplus (\mathfrak{k} U(\mathfrak{g}_c) + U(\mathfrak{g}_c)\mathfrak{n})$ where $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$
- $\gamma_{\mathfrak{n}} = \gamma = \gamma_{\mathfrak{g}/\mathfrak{a}} : \mathfrak{Q} \to U(\mathfrak{a}_c)$ such that $\gamma_{\mathfrak{n}}(a)(\lambda) = \beta(a)(\lambda \rho)$ where $\lambda \in \mathfrak{a}_c^*$ and $a \in \mathfrak{Q}$

3 The elementary spherical functions

3.1 Principal series representations and integral representations for their matrix coefficients

- $\mathscr{F} = \mathfrak{a}_C^*$, $\mathscr{F}_R = \mathfrak{a}^*$, $\mathscr{F}_I = (-1)^{1/2} \mathscr{F}_R$
- $\xi_{\beta}(a) = e^{\beta \log a} (\beta \in \mathcal{F}, a \in A)$: the quasicharacter of A
- σ : a f.d. unitary reps. of the compact group M in a Hilbert space $W(\sigma)$
- $(\sigma, \lambda)(man) = \sigma(m)\xi_{\lambda+\rho}(a)$: the representation of P = MAN

- $\mathfrak{B}(\sigma,\lambda)$: the space of all Borel functions $f(G \to W(\sigma))$ such that $f(xp) = (\sigma,\lambda)(p)^{-1}f(x), x \in G, p \in P$
- $f_K = f|_K$ for any $f \in \mathfrak{B}(\sigma, \lambda)$
- $\mathfrak{B}(\sigma)$: the space of Borel functions $g(K \to W(\sigma))$ such that $g(km) = \sigma^{-1}g(k), \ k \in K, m \in M$
- $\mathfrak{H}(\sigma)$: the Hilbert space of functions $g \in \mathfrak{B}(\sigma)$ for which $\|g\|^2 = \int_{K/M} |g(k)|^2 d\bar{k} = \int_k |g(k)|^2 dk$ is finite
- $\mathfrak{H}(\sigma,\lambda)$: the Hilbert space of functions $f \in \mathfrak{B}(\sigma,\lambda)$ such that $f_K \in \mathfrak{H}(\sigma)$
- $\pi_{\sigma,\lambda}: G \to B(\mathfrak{H}(\sigma))$: the representation given by $(\pi_{\sigma,\lambda}(x)g)(k) = e^{-(\lambda+\rho)(H(x^{-1}k))}g(x^{-1}[k])$
- $\pi_{\lambda} = \pi_{1,\lambda}$ where 1 = trivial representation of M
- φ_{λ} : the matrix coefficient of π_{λ} defined by the function 1: $\varphi_{\lambda}(x) = \varphi(\lambda : x) = (\pi_{\lambda}(x)1, 1)$ where (\cdot, \cdot) denoting the scaler product in $L^{2}(K)$
- $\varphi_{\lambda}(x) = \int_{K} e^{-(\lambda + \rho)(H(x^{-1}k))} dk$
- $\Xi = \varphi_0$: the basic spherical function

3.2 Determination of all elementary spherical functions. The functional equations

3.3 The Harish-Chandra transform

- $\mathscr{H} f(\lambda) = \int_G f(x) \varphi_{\lambda}(x) dx$ for all $\lambda \in \mathscr{F}$: the Harish-Chandra transform of $f \in C_c(G//K)$
- $\mathscr{A}(f)(a) = e^{\rho(\log a)} \int_N f(an) dn$ for all $a \in A$: the Abel transform of $f \in C_c(G//K)$
- $\hat{g}(\lambda) = \int_A g(a) e^{\lambda(\log a)} da$ for all $\lambda \in \mathscr{F}$: the Fourier transform of $g \in C_c(A)$
- $\mathscr{P}(\mathscr{F})$: the space of all entire functions on \mathscr{F} of Paley-Weiner type, i.e., entire functions on \mathscr{F} which are Fourier transform of C^{∞} functions on A with compact support
- $\mathscr{P}(\mathscr{F})^{\mathfrak{w}}$: the subspace of \mathfrak{w} -invariant elements of $\mathscr{P}(\mathscr{F})$

3.4 Finite dimensional representation theory of G and its consequences for the H-function and the elementary spherical functions

- $V(\pi_{\Lambda})_{\mathfrak{d}}$: the corresponding isotypical space for any $\mathfrak{d} \in \mathscr{E}(K)$
- $\Lambda \in \mathfrak{h}_c^*$
- $\mathfrak{u} = \mathfrak{k} + i \mathfrak{s}$: a compact form of \mathfrak{g}_c and U the corresponding compact subgroup of G_c
- \mathscr{D} : the set of all $\Lambda \in \mathfrak{h}_c^*$ which are dominant (relative to Q) and integral
- \mathcal{D}_1 : the set of all $\Lambda \in \mathfrak{h}_c^*$ for which π_{Λ} are of class 1
- L: the semilattice generated by $S \subset \Delta^+$
- $Q_{\alpha}(X) = \frac{4\langle X, \theta X \rangle}{\langle \bar{H}_{\alpha}, \theta \bar{X}_{\alpha} \rangle} = \|\alpha\|^2 \|X\|^2$: the quadratic form
- H_1 : the restriction of H to \bar{N}_1
- polynomial(p.155)
- homogeneous of degree $\mu(p.115)$

3.5 Convexity properties of the *H*-function

- $^+\mathfrak{a} = \{H \in \mathfrak{a} : \langle H, H' \rangle \ge 0 \text{ for all } H' \in \mathfrak{a}^+ \}$
- $a^* = (a^{s_0})^{-1} = u_0 a^{-1} u_0^{-1}$ where $s_0 \in \mathfrak{w}$ such that $s_0 \Delta^+ = -\Delta^+$ and $u_0 \in K$ induce the element s_0
- Co(H, \mathfrak{w}): the convex hull of the elements H^s (is the set of linear combinations $\sum_{s \in \mathfrak{w}} c_s H^s$, $c_s \ge 0$, $\sum_s c_s \le 1$)

4 The Harish-Chandra series for φ_{λ} and the c-function

- \tilde{D} : the radial component of differential operator D
- $\tilde{\varphi}_{\lambda}$: the restriction of φ_{λ} on A^{+}
- $\tilde{q}/\tilde{\varphi_{\lambda}} = \gamma(q)(\lambda)\tilde{\varphi_{\lambda}}$: the differential equations where $q \in \mathfrak{Q}, \gamma = \gamma_{\mathfrak{g}/\mathfrak{g}}$
- $\Phi(\lambda:\cdot) = e^{\lambda-\rho} + \sum_{\mu\in L_+} a_{\mu}(\lambda)e^{\lambda-\rho-\mu}$: the solutions of the above
- $\beta(q) = e^{-\rho} \circ \gamma(q) \circ e^{\rho}$

4.1 Radial components of spherical differential operators on A^+

•
$$\psi(K \times A \times K \to G) : (k_1, h, k_2) \mapsto k_1 h k_2$$

$$\bullet \ G^+ = KA^+K$$

•
$$A' = \bigcup_{s \in \mathfrak{w}} sA^+$$
: the regular subset of A

•
$$b(U(\mathfrak{g}_c) \to U(\mathfrak{a}_{\mathbb{C}})) : g \mapsto b(g)$$
: the projection

•
$$\xi_{\lambda} = e^{\lambda \circ \log}$$

$$\bullet \ f_{\alpha} = (\xi_{\alpha} - \xi_{-\alpha})^{-1}$$

•
$$g_{\alpha} = \xi_{-\alpha}(\xi_{\alpha} - \xi_{-\alpha})^{-1}$$
,

•
$$\mathcal{R}_0$$
: the algebra with unit generated over \mathbb{C} by the f_{α} and $g_{\alpha}(\alpha > 0)$

•
$$\mathcal{R}_{0,d}$$
: the span of monomials in these generators of degree d

•
$$\mathscr{R}_0^+ = \sum_{d \geq 1} \mathscr{R}_{0,d}$$

•
$$\mathcal{R}_0^{(d)} = \sum_{1 \ge e \le d} \mathcal{R}_{0,e}$$

•
$$\delta'(g) = b(g) + \sum_{1 \le i \le n} \psi_i u_i$$
 where $\psi_i = c(\xi_i') c(\xi_i) \varphi_i$

•
$$\chi: \mathfrak{Q} \to \mathbb{C}$$
: a homomorphism

•
$$A(U:\chi) = \{g \in C^{\infty}(U): \delta'(q)f = \chi(q)f \text{ for all } q \in \mathfrak{Q}\}$$
 for any open set $U \subset A^+$

4.2 The radial component of the Casimir operator

• ω : Casimir operator

•
$$J(h) = \prod_{\alpha>0} (e^{\alpha(\log h)} - e^{-\alpha(\log h)})^{n(\alpha)}$$
: the Jacobian for the polar decomposition of G .

•
$$g_1(t) = e^{-2t}(1 - e^{-2t})^{-1}$$

•
$$g_2(t) = e^{-4t}(1 - e^{-4t})^{-1}$$

•
$$\rho_0 = \rho(H_0) = \frac{1}{2}(p+2q)$$

4.3 Construction of the eigenfunctions on G^+

•
$$\psi(\lambda:t) = e^{t\rho}\varphi_{\lambda}(\exp tH_0), \ t \in \mathbb{R}$$

•
$$\psi_{\lambda}(h) = e^{\rho(\log h)} \varphi_{\lambda}(h)$$
 for $h \in A^+$

•
$$L = \left\{ \sum_{1 < i < r} m_i \alpha_i : m_1, \cdots, m_r \text{ integers } \ge 0 \right\}$$

$$\bullet \ L^+ = L \backslash \left\{ 0 \right\}$$

- $\mu \prec \mu'$ if $\mu' \mu \in L^+$
- $m(\mu) = m_1 + \cdots + m_r$ if $\mu = m_1\alpha_1 + \cdots + m_r\alpha_r$: the level of μ
- \bullet b: a complex-valued function on L
- $f_b(H) = \sum_{\mu \in L} b(\mu) e^{-\mu(H)}, H_R \in \mathfrak{a}^+$
- \mathcal{R}_{00} : the algebra of all functions f_b
- \mathscr{R}_{00}^+ : the ideal in \mathscr{R}_{00} of all functions with b(0) = 0
- $\tilde{f}(h) = f(\log h), h \in A^+$
- $\widetilde{\mathscr{R}}_{00}^+$: coressponding function in \mathscr{R}_{00}^+ defined on A^+
- $a_{\mu}(\lambda)$: the rational functions of λ
- $\sigma_{\mu} = \left\{ \lambda \in \mathscr{F} : \langle \mu, \lambda \rangle = \frac{1}{2} \langle \mu, \mu \rangle \right\}, \ \mu \in L^+$: the hyperplane in \mathscr{F}
- $\bullet \ \mathscr{F}^{\vee} = \mathscr{F} \setminus \bigcup_{\mu \in L^+} \sigma_{\mu}$
- $\bullet \ \mathscr{F}_{\eta} = \{\lambda \in \mathscr{F} : \langle \lambda_{\mathbb{R}}, \alpha_i \rangle < \eta, 1 \leq i \leq r\} \subset \mathscr{F}^{\vee}$
- $\mathscr{F}_I(\varepsilon) = \{\lambda \in \mathscr{F} : \|\lambda_R\| \le \varepsilon\} \subset \mathscr{F}^\vee$
- $\mathscr{F}_{\mu}^{\vee} = \mathscr{F} \setminus \bigcup_{\nu \in L^+, \nu \prec \mu} \sigma_{\nu}$

4.4 The Harish-Chandra series for φ_{λ} and the c-fucnction

- $\tau_{\nu}(s,t) = \{\lambda \in \mathfrak{a}_{\mathbb{C}}^* : s\lambda t\lambda = \nu\}$
- * $\mathscr{F} = \mathscr{F} \setminus \bigcup_{s \in \mathfrak{m}, \mu \in L^+} s \sigma_{\mu} \cup \bigcup_{s, t \in \mathfrak{m}, \nu \in L^+} \tau_{\nu}(s, t)$
- \mathfrak{w}_{λ} : the stabilizer of λ in \mathfrak{w}
- $c_s(\lambda) = \mathbf{c}(s\lambda)$

4.5 Estimates for the Harish-Chandra series when λ becomes unbounded

- $\Psi(\lambda:h) := J(h)^{1/2}\Phi(\lambda:h)$
- $\sigma(G \to \mathbb{R}) : x \mapsto d(K, Kx)$ where $d(\cdot, \cdot)$ is the geodesic distance on S.
- $c_{\mu}(\lambda)$ page 154, is of at most polynomial growth in μ

4.6 Estimates for the elementary spherical functions. The functions Ξ and σ

- λ_R : the components in \mathscr{F}_R for $\lambda \in \mathscr{F}$
- λ_I : the components in \mathscr{F}_I for $\lambda \in \mathscr{F}$
- \mathscr{F}_R^+ : the open chamber of elements $\nu \in \mathfrak{a}^*$ such that $H_{\nu} \in \mathfrak{a}^+$
- $\beta(\log a) = \min_{1 \le i \le r} \alpha_i(\log a)$ for $a \in A^+$
- $\pi(\lambda) = \prod_{\alpha \in \Delta^{++}} \langle \lambda, \alpha \rangle$
- $\mathbf{b} = \pi \cdot \mathbf{c}$
- $\mathscr{F}_{R,\varepsilon} = C_0(\varepsilon \rho : \mathfrak{w})$: the convex hull of the points $\varepsilon s \rho(\varepsilon > 0, s \in \mathfrak{w})$
- $\sigma(x) := d(K, Kx)$ where $S = K \setminus G$, and $d(\cdot, \cdot)$ is the geodesic distance on S

4.7 The c-function

- $\hat{T}(g) = T(\hat{g})$: the Fourier transform of tempered distribution T on A where $g \in \mathscr{S}(\mathscr{F}_I)$
- R: a set of roots having the following properties: (i) R is contained in some positive system of roots, (ii) $\alpha, \beta \in R, \alpha + \beta \in \Delta \Rightarrow \alpha + \beta \in R$
- $\mathfrak{g}_{-R} = \sum_{\alpha \in -R} \mathfrak{g}_{\alpha}$
- $\bar{\mathfrak{n}}_{-R} = \sum_{\alpha \in -R \cap -\Delta^+} \mathfrak{g}_{\alpha}$
- $\mathfrak{n}_{-R} = \sum_{\alpha \in -R \cap \Delta^+} \mathfrak{g}_{\alpha}$
- $J_R(\lambda) = \int_{\bar{N}_{-R}} e^{-(\lambda+\rho)(H(\bar{n}))} d\bar{N}_{-R}$ for all $\lambda \in \mathscr{F}$
- $\Omega = \left\{ \lambda \in \mathscr{F} : \frac{\langle \lambda_R, \alpha \rangle}{\langle \alpha, \alpha \rangle} > -\min(a, \frac{1}{2}n(\alpha)) \text{ for all } \alpha \in \Delta^{++} \right\}$
- $\mathscr{D}_{\lambda} = \left\{ f \in C^{\infty}(G) : f(xan) = e^{-(\lambda + \rho)(\log a)} f(x) \text{ for all } x \in G, a \in A, n \in N \right\}$
- $\mathscr{S}(\mathscr{F}_I)$: the Schwartz space of \mathscr{F}_I

5 Asymptotic behavior of elementary spherical functions

5.1 The case when rank(G/K) = 1

- $\psi(\lambda:t) = e^{t\rho_0}\varphi(\lambda:\exp tH_0)$ where $\alpha(H_0) = 1$ and $\rho_0 = \rho(H_0) = \frac{1}{2}(p+2q)$
- $f = 2(pg_1 + 2qg_2)$ where g_1, g_2 is defined as before

•
$$\Psi(\lambda:t) = \begin{bmatrix} \psi(\lambda:t) \\ \frac{d}{dt}\psi(\lambda:t) \end{bmatrix}$$

$$\bullet \ \Gamma(\lambda) = \begin{bmatrix} 0 & 1 \\ \lambda^2 & 0 \end{bmatrix}$$

$$M(t) = \begin{bmatrix} 0 & 0 \\ \rho_0 f & f \end{bmatrix}$$

•
$$\Theta(\lambda:t) = \Theta(-\lambda:t) = \exp(-t\Gamma(\lambda))\Psi(\lambda:t)$$

•
$$M(\lambda; t) = \exp(-t\Gamma(\lambda))M(t)\exp(t\Gamma(\lambda))$$

•
$$\Theta(\lambda) = \lim_{t \to \infty} \Theta(\lambda : t)$$

•
$$E(\lambda) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2\lambda} \\ \frac{\lambda}{2} & \frac{1}{2} \end{bmatrix}$$

5.2 The basic differential equations viewed as a perturbation of a linear system: the regular case

- $I = I_{\mathfrak{w}}(\mathfrak{a}_c)$: the subalgebra of \mathfrak{w} -invariant elements of $U(\mathfrak{a}_c)$
- $u_1 = 1, u_2, \dots, u_w(w = |\mathfrak{w}|)$ are homogeneous and such that $U(\mathfrak{a}_c) = \bigoplus_{1 \leq i \leq w} Iu_i$
- $p_{u:ij} \in I$ such that, for given $u \in U(\mathfrak{a}_c)$, $uu_j = \sum_{1 \leq i \leq w} p_{u,ij} u_i$, $i \leq j \leq w$
- $\bullet \ B(u) = (p_{u:ij})_{1 \le i,j \le w}$
- $\Gamma(u) = B(u)^t$ where t = transpose
- $\Gamma(\lambda : u) = \Gamma(u)(\lambda) = (p_{u:ij}(\lambda))_{1 \le i,j \le w}$

•
$$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$$

- $\delta'(q)$: the radial component of $q \in \mathfrak{Q}$ on A^+
- $\delta(q) = e^{\rho} \circ \delta'(q) \circ e^{-\rho}$
- $g_{u:ijr} \in \mathcal{R}^+$, $q_{u:ijr} \in \mathfrak{Q}(1 \le i, \le w, 1 \le r \le w)$ such that for $i \le j \le w$,

$$uu_j = \sum_{1 \le i \le w} u_i \delta(q_{u:ij}) + \sum_{1 \le i \le w} \sum_{1 \le r \le m} g_{u:ijr} u_i \delta(q_{u:ijr})$$

- $\tau(H) = \min_{\alpha \in S} \alpha(H) \quad (H \in \mathfrak{a})$
- $(E_u(\lambda:h))_{jk} = \sum_{1 < r < m} \gamma(q_{u:kjr})(\lambda)g_{u:kjr}(h)$
- $S_{\eta} = \{ h \in A^+ : |\tau(\log h)| \ge \eta \|\log h\| \}$
- $H_0 \in \mathrm{Cl}(\mathfrak{a}^+)$ such that $H_0 \notin Z_{\mathfrak{g}}$
- G_{H_0} : the centralizer of H_0 in G
- \mathfrak{Q}_{H_0} : the analogue of \mathfrak{Q} for G_{H_0}

5.3 Radial components on M'_{10} and M'_{10}

- F: the set of simple roots vanishing at H_0
- $P_0 = M_{10}N_0 = M_0A_0N_0$: standard psgrp associated to F
- Δ_0^+ : the set of roots in Δ^+ vanishing at H_0
- $\mathfrak{q} = \mathfrak{g} \ominus \mathfrak{m}_{10}$
- ullet $\mathfrak{q}_{\mathfrak{k}}=\mathfrak{q}\cap\mathfrak{k}$
- $\bullet \ \mathfrak{q}_{\mathfrak{s}} = \mathfrak{q} \cap \mathfrak{s}$
- $K_0 = K \cap M_0 = K \cap M_{10}$: the maximal compact subgroup of M_{10}
- $M'_{10} = \{ m \in M_{10} : (\operatorname{Ad} m \operatorname{Ad}(\theta(m)))_{\mathfrak{n}_0} \text{ is invertible} \}$
- ullet $\mathfrak{w}_0=\mathfrak{w}(\mathfrak{m}_{10},\mathfrak{a})$
- $\bullet \ G' = KM'_{10}K$
- $\bullet \ \mathfrak{Q}_0 = U(\mathfrak{s}_{10})^{K_0}$
- $\varepsilon_0(a) = \exp\left(-\min_{\alpha \in \Delta^+ \setminus \Delta_0^+} \alpha(\log a)\right), \ \forall a \in A$
- $M_{10}^+ = \{ m \in M_{10} : \varepsilon_0(m) < 1 \}$
- $\bullet \ A_{H_0}^+ = \left\{ a \in \operatorname{Cl}(A^+) : \alpha(\log a) > 0, \forall \alpha \in \Delta^+ \backslash \Delta_0^+ \right\}$
- \bullet $\mathfrak{b}\colon \mathbf{a}$ linesr subspace of \mathfrak{g}
- $U(\mathfrak{b}) = U(\mathfrak{b}_c) = \lambda(S(\mathfrak{b}))$ where $S(\mathfrak{b}) = S(\mathfrak{b}_c)$ is the symmetric algebra over \mathfrak{b}_c
- $S_d(\mathfrak{b})$: the homogeneous subspaces of $S(\mathfrak{g})$
- $U_d(\mathfrak{b}) = \lambda(S_d(\mathfrak{b}))$
- $U^+(\mathfrak{b}) = \bigoplus_{d>1} U_d(\mathfrak{b})$
- $\beta_0: U(\mathfrak{g}) \to U(\mathfrak{s}_{10})$: the projection such that $\beta_0(g^k) = \beta_0(g)^k$ for all $g \in U(\mathfrak{g}), k \in K_0$

5.4 The basic differential equations viewed as a perturbation of a linear system: the general case

•
$$\mathfrak{H} = \bigoplus_{d>0} (\mathfrak{H} \cap U_d(\mathfrak{a}))$$

 \bullet $\mathfrak{H}_{\mathfrak{w}_0}\colon$ the subspace of \mathfrak{w}_0 invariant elements on \mathfrak{H}

•
$$\dim \mathfrak{H}_{\mathfrak{w}_0} = [\mathfrak{w}, \mathfrak{w}_0] := k$$

•
$$\Phi_0(\lambda:m:v) = \Gamma_0(\lambda:v)\Phi_0(\lambda:m) + \Phi_0(\lambda:m:E_v)$$
 and $v \in \mathfrak{Q}_0, \lambda \in \mathscr{F}, m \in M'_{10}$

•
$$\Phi_0(\lambda : m) = \begin{bmatrix} \varphi(\lambda : m; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : m; u_w \circ e^{\rho}) \end{bmatrix}$$

$$\bullet \ E_v = \begin{bmatrix} \sum_{1 \leq p \leq p_v} \psi_{v:1p} \mu_{v:1p}, & 0 \\ & \vdots & \\ \sum_{1 \leq p \leq p_v} \psi_{v:jp} \mu_{v:jp}, & 0 \\ & \vdots & \\ \sum_{1 \leq p \leq p_v} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix} : \text{ a } k \times k \text{ matrix of differential operators on } M'_{10} \text{ with coefficients }$$

$$\mathcal{R}^+$$

•
$$\Gamma_0(\lambda:v) := \Gamma_0(v)(\lambda) = (\gamma_{\mathfrak{g}/\mathfrak{a}}(q_{v:ij})(\lambda))_{1 \leq i,j \leq k}$$

5.5 Spectral theory of representations of polynomial rings associated to finite reflexion groups

• $F_{\mathbb{R}}$: a real vector space of finite dimension

• F: complexification of $F_{\mathbb{R}}$

• W: a finite reflexion group on $F_{\mathbb{R}}$

ullet P: the algebra of polynomials on F

• $P_d(d \ge 0)$: the homogeneous components

• $H \subset P$ is homogeneous if $H = \bigoplus_{d>0} (H \cap P_d)$

• $I = I_W$: the algebra of W-invariant elements of P

• w = |W|

• $\lambda_{\sigma} \in F_{\mathbb{R}}^* \subset F^*$: associated to $\sigma \in W$

• $\pi = \prod_{\sigma} \lambda_{\sigma}$

- W_0 : arbitrary reflexion subgroup of W
- $I_0 = I_{W_0}$
- $\pi = \prod_{\sigma}^{0} \lambda_{\sigma}$ where the superfix 0 means the product is only over the reflexions in W_{0}
- $w_0 = |W_0|$
- $e(\lambda) = (u_1(\lambda) \cdots u_w(\lambda))^T$
- $e_s(\lambda) = e(s^{-1}\lambda)$
- $E(\lambda) := (e_{js}(\lambda))_{1 \le j \le w, s \in W}$

5.6 The initial estimates

- $\rho_0 = \frac{1}{2} \sum_{\alpha \in \Delta_0^+} m_\alpha \alpha$
- $d_{P_0}(h) = e^{(\rho \rho_0)(\log h)}$ for all $h \in A$
- H_1, \dots, H_p : a specific basis of \mathfrak{a}_0 such that: $\mathfrak{a}_0 = (\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}]) \oplus \mathfrak{v}$. $\alpha_1, \dots, \alpha_q$ is the set of simple roots not vanishing at H_0 , we have $q = \dim(\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}])$ and $\alpha_i = 0$ on \mathfrak{v} for all i. Choose H_i so that
 - 1. $H_1, \dots H_q$ the basis of $(\mathfrak{a}_0 \cap [\mathfrak{g}, \mathfrak{g}])$ dual to $\alpha_1, \dots, \alpha_q$
 - 2. H_{q+1}, \dots, H_p the basis of \mathfrak{v}
- $\mathfrak{a}_0^+ = \{H \in \mathfrak{a}_0^+ : \alpha_i(H) > 0, 1 \le i \le q\}$: a conical open set in \mathfrak{a}_0^+ when η is small enough.
- $\tau_0(H) = \min_{1 \le i \le q} |\alpha_i(H)|, H \in \mathfrak{a}_0$

5.7 Perturbations of linear systems (with a priori estimates)

•

5.8 Asymptotics of $\Phi_0(\lambda:\cdot)$ on M_{10}^+ . The function Θ

- $\mathfrak{a}_0^+(\eta) := \left\{ H \in \mathfrak{a}_0^+ : \tau_0(H) > \eta \, \|H\| \right\}$ for any $\eta > 0$
- $H \xrightarrow{P_0} \infty$ if for some $\eta > 0$, $H \in \mathfrak{a}_0^+(\eta)$ and $||H|| \to \infty$
- $\mathscr{F}_I(\kappa) = \{\lambda \in \mathscr{F} : \|\lambda_R\| < \kappa\}$ for some $\kappa > 0$
- $\Theta(\lambda:m) = \lim_{\substack{\mathfrak{a}_0^+ \ni H \xrightarrow{P_0} \infty}} \exp(-\Gamma_0(\lambda:H)) \Phi_0(\lambda:m\exp H)$
- $\Theta(\lambda:m;\mu) = \lim_{\mathfrak{a}_0^+ \ni H \xrightarrow{P_0}_{\infty}} \exp(-\Gamma_0(\lambda:H)) \Phi_0(\lambda:m\exp H;\mu)$ where $\mu \in U(\mathfrak{m}_{10})$
- $\Theta(\lambda : m; g) = \Gamma_0(\lambda : g)\Theta(\lambda : m)$

- $\theta(\lambda:m) = \int_{K_0} e^{(\lambda-\rho_0)(H(mk_0))} dk_0$
- $\theta(\lambda: ma) = e^{\lambda(\log a)}\theta(\lambda: m)$ for $m \in M, a \in A$ if H_0 is regular
- $\psi(\lambda:m) = \Theta_1(\lambda:m)$ where $\Theta_j(1 \leq j \leq k)$ are the components of Θ
- \mathbf{c}_0 : the Harish-Chandra \mathbf{c} -function on M_{10}
- $f_1 \sim f_2$ if $f_1(\exp tX) f_2(\exp tX) \to 0$ as $t \to +\infty$
- $S(\mathcal{F})$: the symmetric algebra over \mathcal{F}
- $\psi(\lambda:m) = |\mathfrak{w}_0|^{-1} \sum_{s \in \mathfrak{m}} (\mathbf{c}(s\lambda)/\mathfrak{c}_0(s\lambda)) \theta(s\lambda:m)$ for all $m \in M_{10}$
- $\tau_0(H) = \min_{\alpha \in \Delta^+ \backslash \Delta_0^+} \alpha(H), H \in \mathfrak{a}$

5.9 Asymptotics of $\varphi(\lambda:\cdot)$

- $\gamma_0(b) = d_{P_0} \circ \beta_0(b) \circ d_{P_0}^{-1}$
- $A^+(H_0:\zeta) := \{a \in \mathrm{Cl}(A^+) : \tau_0(\log a) > \zeta \|\log a\| \}$ for any $\zeta > 0$

5.10 Complements. Constant term for tempered 3-finite functions

6 The L_2 theory. The Harish-Chandra transform on the Schwartz space of G/K

- **6.1** The Schwartz spaces $\mathscr{C}(G)$ and $\mathscr{C}(G/K)$
 - $\mathscr{C}(G)$: the space of all C^{∞} functions f on G such that, for each $a, b \in U(\mathfrak{g})$, the two-sided derivative afb satisfies the strong inequality
 - $\mathscr{C}(G//K)$: the spherical Schwartz space which is the subspace of $\mathscr{C}(G)$ consisting of spherical functions

6.2 The Harish-Chandra transform on $\mathcal{C}(G//K)$

• $\mathscr{S}(A)$: the Schwartz space of the vector group A

6.3 Wave packets in $\mathcal{C}(G//K)$

- $\varphi_a'(x) = \varphi'(a:x) = \int_{\mathscr{F}_I} a(\lambda) \varphi(\lambda:x) d\lambda$ for any $a \in L^1(\mathscr{F}_I)$
- $\varphi_a(x) = \varphi(a:x) := \int_{\mathscr{F}_I} a(\lambda)\pi(\lambda)\varphi(\lambda:x)d\lambda$ for any $a \in \mathscr{S}(\mathscr{F}_I)$
- $\varphi_a(x;b) = \varphi(a:x;b) := \int_{\mathscr{F}_I} a(\lambda)\pi(\lambda)\varphi(\lambda:x;b)d\lambda$ for any $a \in \mathscr{S}(\mathscr{F}_I)$ and $b \in U(\mathfrak{g})$
- $\hat{a}(\lambda:y) = \hat{a}_y(\lambda) = \int_{L_I^*} a(\lambda:\nu) e^{\langle y,\nu \rangle} d\nu$: the partial Fourier transform of a, where $a \in \mathscr{S}(\mathscr{F}_I \times L_I^*)$ and L_I^* being the imaginary dual $(-1)^{1/2}L^*$ of L
- $E(\lambda:h)$: the "error term" is estimated by $|E(\lambda:h)| \leq C(1+||\lambda||)^{m_0}(1+\sigma(h))^{m_0}e^{-2\tau_0(\log h)}$
- $E(\pi a : h) = \int_{\mathscr{F}_I} \pi(\lambda) a(\lambda) E(\lambda : h) d\lambda$
- $A^+(H_0:\zeta) = \{h \in \text{Cl}(A^+): \tau_0(\log h) > \zeta \sigma(h)\}$ where $H_0 \neq 0$
- $\psi_a(x) := \psi(a:x) = \int_{\mathscr{F}_I} a(\lambda) \varphi(\lambda:x) |\mathbf{c}(\lambda)|^{-2} d\lambda$

6.4 Satatements of the main theorems

6.5 The method of Harish-Chandra

- $\theta^{(v)}(\lambda:x:h) = \sum_{s\in\mathfrak{w}} \mathbf{c}(s\lambda)v(s\lambda)e^{(s\lambda-\rho)(H(x)+(s\lambda)(\log h))}$ for any $v\in U(\mathfrak{a}),\ h\in A,\ \lambda\in\mathscr{F}_I'$
- $\theta^{(v)}(a:x:h) = \int_{\mathscr{F}_I} a(\lambda)\theta^{(v)}(\lambda:x:h) \mathbf{c}(\lambda^{-1}) \mathbf{c}(-\lambda)^{-1} d\lambda$ for any $v \in U(\mathfrak{a}), h \in A, a \in C_c^{\infty}(\mathscr{F}_I')^{\mathfrak{w}}$
- $a^{(v)}(\lambda) = a(\lambda) \mathbf{c}(-\lambda)^{-1} v(\lambda)$
- $\widehat{a^{(v)}}(h) = \int_{\mathscr{F}_I} e^{\lambda(\log h)} a^{(v)}(\lambda) d\lambda$
- $F(\bar{n}:h) = F(\bar{n}h), \ (\bar{n} \in \bar{N}, h \in A)$ for any function F on G
- $\mathcal{J}(\mathscr{S}(\mathscr{F}_I)^{\mathfrak{w}} \to \mathscr{C}(G//K)) : \mathcal{J}(a) = |\mathfrak{w}|^{-1} \psi_{a^{\vee}}$
- $a^{\vee}(\lambda) = a(-\lambda)(\lambda \in \mathscr{F}_I)$

6.6 The method of Gangolli-Helgason-Rosenberg

- $A(r) = \{a \in A : \sigma(a) = \|\log a\| \le r\}$ for any r > 0
- $G(r) = \{x \in G : \sigma(x) = \le r\}$
- $\mathscr{P}_r(\mathscr{F})$: the space of all entire functions f on \mathscr{F} with the following property: for any $N \geq 0$ there is a constant $C_N > 0$ such that $|f(\lambda)| \leq C_N (a + ||\lambda||)^{-N} e^{r||\lambda_R||}$

- 7 L_p theory of Harish-Chandra transform. Fourier analysis on the spaces $\mathscr{C}^p(G//K)$
- 7.1 Radial components and their expansions
- 7.2 The differential equations, Initial estimates, and the approximating sequence
- 7.3 Expressions for $\Phi^0 \Phi^0_n, \Phi^0_n \Phi^0_{n-1}$ and estimates for $\Phi_0 \exp(\Gamma_0)\Phi^0_n$
- 7.4 Further study of the Φ_n^0 . The matrices Ω_q
- 7.5 The functions Θ_q
- 7.6 Asymptotic expansions for φ_{λ}
- 7.7 The tube domains $\mathscr{F}^{\varepsilon}, ^{*}\mathscr{F}^{\varepsilon}$ and the function spaces $\mathscr{Z}(\mathscr{F}^{\varepsilon}), \bar{\mathscr{Z}}(\mathscr{F}^{\varepsilon})$
- 7.8 The spaces $\mathscr{C}^p(G//K)$
- 7.9 Study of the functions ψ_q
- 7.10 Wave packets and the transform theory for $\mathscr{C}^p(G//K)$

Appendix A Errata in [1]

$\overline{{\rm Page}^{{\rm line}\downarrow}_{{\rm line}\uparrow}}$	instead of	Read
67 ₁₀	$\mathfrak{m}_{1F} = \sum_{\lambda \in \Delta_F} \mathfrak{g}_{\lambda}$	$\mathfrak{m}_{1F}=\mathfrak{m}\oplus\mathfrak{a}\oplus\sum_{\lambda\in\Delta_F}\mathfrak{g}_\lambda$
95^{7}	$-2\sum_{1\leq i\leq a}\rho(H_i)$	$-2\sum_{1\leq i\leq a}\rho(H_i)H_i$
103_{10}	$e^{(\lambda+\rho)(H(x^{-1}k))}f(x^{-1}[k])$	$e^{(\lambda+\rho)(H(x^{-1}k))}g(x^{-1}[k])$
152^{10}	$\sum_{s\in\mathfrak{w}}\mathbf{c}_s(\lambda)(s\lambda:h)$	$ \sum_{s \in \mathfrak{w}} \mathbf{c}_s(\lambda) \Phi(s\lambda : h) $
156^{1}	${\mathscr F}_n$	${\mathscr F}_\eta$
$183^{1}3$	1/2(n-r)	(1/2)(n-r)
198 ₁₀	$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$	$\Phi_0(\lambda : h) = \begin{bmatrix} \varphi(\lambda : h_j; u_1 \circ e^{\rho}) \\ \vdots \\ \varphi(\lambda : h_j; u_w \circ e^{\rho}) \end{bmatrix}$
200_{18}	$n = n^0$	next section.
201^{10}	$K_0 = K_0 \cap M_0$	$K_0 = K \cap M_0$
204^{11}	(5.2.23)	(5.3.23)
212_{7}	$E_{v} = \begin{bmatrix} \sum_{1 \leq p \leq p_{v}} \psi_{v:1p} \mu_{v:1p}, & 0 \\ \sum_{1 \leq p \leq p_{v}} \psi_{v:jp} \mu_{v:jp}, & 0 \\ \sum_{1 \leq p \leq p_{v}} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix}$	$E_v = \begin{bmatrix} \sum_{1 \le p \le p_v} \psi_{v:1p} \mu_{v:1p}, & 0 \\ \vdots & & \\ \sum_{1 \le p \le p_v} \psi_{v:jp} \mu_{v:jp}, & 0 \\ \vdots & & \\ \sum_{1 \le p \le p_v} \psi_{v:kp} \mu_{v:kp}, & 0 \end{bmatrix}$
243_{11}	$\varphi(\lambda :; b)$	$\varphi(\lambda:a;b)$
229_{7}	$-t_1T_1$	t_1T_1
227_{3}	$\int f(\mathbf{t})$	$\mathbf{f}(\mathbf{t})$
243_2	$s = s(b, \zeta) > 0$	$s = s(b, \zeta) \ge 0$

References

[1] R. Gangolli and V. S. Varadarajan, *Harmonic analysis of spherical functions on real reductive groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 101, Springer-Verlag, Berlin, 1988. MR 954385