CSC373 Worksheet 0 Solution

July 18, 2020

1. <u>Notes:</u>

- Substitution method
 - Solves recurrences
 - * Recurrence characters the running time of divide-and-conquer algorithm
 - How it works:
 - 1. Make a guess for the solution
 - 2. Use mathematical induction to prove the guess is correct or incorrect.

Example:

Recurrence: $T(n) = 2T(\lfloor n/2 \rfloor) + n$

Guess: $T(n) = \mathcal{O}(n \log n)$,

We need to show $T(n) \leq cn \lg n$.

- 1. Assume the bound holds for all positive m < n, in particular $m = \lfloor n/2 \rfloor$
- 2. Find the upper bound of T(m)

$$T(|n/2|) \le c|n/2|\lg(|n/2|)$$

3. Show $T(n) = 2T(\lfloor n/2 \rfloor) + n$ leads to $T(n) \le cn \lg n$

$$T(n) \le 2(c\lfloor n/2\rfloor \lg(\lfloor n/2\rfloor)) + n$$
 (1)

$$\leq cn\lg(n/2) + n \tag{2}$$

$$= cn\lg(n) - cn\lg 2 + n \tag{3}$$

$$= cn \lg(n) - cn + n \tag{4}$$

$$\leq cn\lg(n) - cn + cn \tag{5}$$

$$\leq cn \lg(n)$$
(6)

4. Show that the boundary holds using mathematical induction

Doesn't have information in detail. Skipping this for now.

- Making good guess
 - * Three suggestions
 - 1. Using recursion tree
 - 2. Through practice
 - 3. prove loose upper and lower bounds on the recurrence and then reduce the range of uncertainty