Set-A

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: B. Sc in Computer Science and Engineering

Exam Name: Quiz#2 (Section B)

Year: 2nd

Semester: Fall, 21

Semester: 2nd

Course Number: Math 2203 Course Name: Mathematics IV

Total Marks: 20 Time: 25 Minutes

Answer all the following questions:		Marks
1.	Define directional derivative. Find out the values of a , b , c so that $\vec{A} = (x + y + az) \hat{\imath} + (bx + 3y - z) \hat{\jmath} + (3x + cy + z) \hat{k}$ is irrotational. Hence find the scalar potential function φ , such that $\vec{A} = \nabla \varphi$.	10
2.	Define closed curve with example. Evaluate $\int_{c} \vec{F} \cdot \vec{dr}$ where <i>C</i> is the curve in the <i>xy</i> -plane, $y = x^{3}$, from (1, 1) to (2, 8) and $\vec{F} = (5xy - 6x^{2})\hat{\imath} + (2y - 4x)\hat{\jmath}$.	10

Set-B

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: B. Sc in Computer Science and Engineering

Exam Name: Quiz#2 (Section B)

Semester: Fall, 21

Year: 2nd Semester: 2nd Course Number: Math 2203 Course Name: Mathematics IV

Total Marks: 20 Time: 25 Minutes

Answer all the following questions:		Marks
1.	Define Gradient. Find out the values of a , b , c so that $\vec{A} = (x + 2y + az) \hat{\imath} + (bx - 3y - z) \hat{\jmath} + (4x + cy + 2z) \hat{k}$ is irrotational. Hence find the scalar potential function φ , such that $\vec{A} = \nabla \varphi$.	10
2.	Define total differential. Evaluate $\int_{c} \vec{F} \cdot \vec{dr}$ along the straight line joining $(0, 0, 0)$ and $(1, 2, 3)$ where $\vec{F} = (2y^2 + 3)\hat{\imath} + yz\hat{\jmath} + (xy - z)\hat{k}$.	10