Understanding and Implementing Clustering Models

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Clustering as a form of unsupervised machine learning

Different families of clustering algorithms

Choosing the right clustering algorithm

K-means clustering

Hierarchical clustering

Clustering Algorithms

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Types of ML Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Patterns in Data

sense of this?

Patterns in Data

Group them based on some common attributes

A set of points, each representing a Facebook user

Same group = similar

Different group = different

Users in a Cluster

May like the same kind of music

May have gone to the same high school

May enjoy the same kinds of movies

Clustering

The distance between users indicates how similar they are

Maximize Intra-cluster Similarity

Distances between users in the same cluster should be small

Between users in different clusters distances should be large

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Autoencoding

Identify latent factors that drive data e.g. PCA

Same group = similar

Different group = different

BIRCH, Agglomerative Clustering

Hierarchical clustering algorithms

Also known as connectivity-based clustering

Build a tree representation of the data

Which may then be merged together into different numbers of clusters

Mean-shift, Affinity Propagation

Small datasets, large number of clusters

Both work well with uneven cluster sizes and manifold shapes

Mean-shift uses pairwise distances between points

Affinity Propagation does not need number of clusters to be specified

K-means, DBSCAN

Large datasets, moderate number of clusters

K-means for even cluster sizes and flat surfaces

Mini-batch K-means tweaks algorithm to be much faster, almost as good

DBSCAN for uneven cluster sizes and manifolds

Spectral Clustering

Small datasets, small number of clusters

Simple to implement

Intuitive results for data exploration

Even cluster sizes

Fine for manifolds

Relies on distances between points

Size of Dataset

Many	Mean-shift Affinity Propagation		Birch Agglomerative
Moderate			K-means DBSCAN
Few		Spectral	
	Consult	Madium	

Number of Clusters

Small

Medium

Large

Other Ways to Organize Clustering Algorithms

Hierarchical (Connectivity-based)

Centroid-based

Distribution-based

Density-based

Hierarchical Clustering

Group entities based on their connectivity; objects close to each other are more likely to be in the same cluster.

Centroid-based Clustering

Represent each cluster by a centroid (central vector) which may not be an actual entity at all. Cluster entities based on distance from these centroids.

Distribution-based Clustering

Entities that are likely from the same distribution are more likely to be in the same cluster. Work very well for artificially generated data which tend to be drawn by sampling random points from distributions.

Density-based Clustering

Define clusters based on regions of high density (concentration) of entities. Objects in sparse areas are often treated as noise.

Hard vs. Soft Clustering

Hard Clustering

Each point belongs in exactly one cluster

Virtually all famous clustering algorithms are hard clustering

Soft Clustering

Each point has a probability of being in each cluster

FCM (Fuzzy C-Means) is a relatively famous soft clustering algorithm

Clustering Objective

Centroid-based clustering algorithm

Maximize intra-cluster similarity

Minimize inter-cluster similarity

Initialize K centroids i.e means

Recalculate the mean for each cluster

Re-assign the points to clusters

Iterate until points are in their final clusters

Each cluster has a representative point called a reference vector

Because of how they are calculated, these reference vectors are often called centroids

The **K-means Clustering** algorithm is a famous Machine Learning algorithm to achieve this

Group entities based on their connectivity; objects close to each other are more likely to be in the same cluster.

Given t data points

Start with t clusters, each with 1 point

t clusters, each of 1 point

Merge the two clusters that are closest to each other

Merge the two clusters that are closest to each other

The number of clusters keeps reducing

The number of clusters keeps reducing

1 cluster, with all t points

Until just 1 cluster remains

1 cluster, with all t points

A tree diagram used to illustrate the arrangement of the clusters produced by hierarchical clustering

Agglomerative - start with many 1-point clusters, end with 1 big cluster

Divisive - start with 1 big cluster, end with many 1-point clusters

Demo

Performing k-means clustering on unlabeled data

Demo

Performing k-means clustering on labeled data

Demo

Performing agglomerative clustering on image data

Summary

Clustering as a form of unsupervised machine learning

Different families of clustering algorithms

Choosing the right clustering algorithm

K-means clustering

Hierarchical clustering

Related Courses

Building Regression Models with scikit-learn

Building Classification Models with scikit-learn

Building Clustering Models with scikit-learn