

## **TÉCNICAS AVANZADAS**

Convolutional Neural Networks (CNNs)

Antonio M. López

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

# UAB Universitat Autònoma de Barcelona

### SECUENCIA DE PROCESAMIENTO:



Clasificador  $(C_{w,T}(x))$ : Descriptor (x) + Modelo (w) + Umbral (T).

<u>Descriptores</u>: HOG, LBP, Haar ... → diseñados "a mano" → dos décadas haciendo propuestas.

<u>Modelos</u>: Regresión Logística, SVM, AdaBoost, RF ... → genéricos, se aprenden.

<u>Umbral</u>: fijado para operar en un rango de FPPI vs Tasa de Error.

Núcleo

Sinapsis





Sinapsis

Sinapsis

- Aprender el clasificador en su totalidad, es decir, **aprender los descriptores** en lugar de diseñarlos a mano.
- → La idea tiene más de 40 años, pero hasta hace poco era muy complicado llevarla a la práctica en problemas de visión por computador debido a que la capacidad de cálculo no estaba "a la altura" por un coste relativamente bajo. Las GPUs (procesadores gráficos) han tirado abajo ese muro.



Neurona Artificial: modelo matemático simple de una neurona (McCulloch & Pitts, 1943)





Función de Entrada:  $w^{T}x$ . es decir, se suman las entradas  $x_i$  ponderadas por los pesos  $w_i$ .

Salida











Caso de ANN totalmente conectada

Imagen: 64 x 128 → 8.192 píxeles

Si

tenemos 1000 neuronas en esta 1ª capa,

Entonces,

solo para esta capa, tenemos ~8M de parámetros.

Como los descriptores se aprenden de los datos, la cantidad de ejemplos que necesitaríamos sería "descomunal".

- En visión por computador podemos explotar algunas observaciones para reducir el número de parámetros y definir una topología de red más parecida a sistemas visuales de inspiración biológica.
- UAB Universitat Autònoma de Barcelona

- Neuronas del córtex visual de los gatos (Hubel & Wiesel, 1959, 1962):
  - → Cada neurona "simple" del córtex se responsabiliza de una pequeña región "bidimensional" del campo visual.
  - → Hay solapamiento para cubrir todo el campo visual.
  - → Estas neuronas actúan como filtros locales basados en convolución.
  - → El filtro se repite actuando localmente.
  - → Hay distintos tipos de filtros (p.e., detectores de contornos orientados).
  - → Las neuronas "complejas" abarcan mayor campo visual y son más robustas a la posición exacta de los estímulos: capa con sub-muestreo.



- Cada neurona "simple" del córtex se responsabiliza de una pequeña región "bidimensional" del campo visual.
- Hay solapamiento para cubrir todo el campo visual.
- Estas neuronas actúan como filtros locales basados en convolución.
- El filtro se repite actuando localmente.
- → Primera capa de la red: por cada pixel una neurona de CONVOLUCIÓN (excepto bordes).
- → Hablamos de redes neuronales de convolución (convolutional neural networks: CNNs).

Es el mismo filtro de convolución para todas las neuronas  $\rightarrow$  aprender  $n \times m$  parámetros (ignorando el sesgo/bias).







de Barcelona

- Hay distintos tipos de filtros.
- → Primera capa de la red: por cada pixel varias Neuronas diferentes de CONVOLUCIÓ (excepto bordes) → BANCO de FILTROS.
- $\rightarrow$  Aprender  $K \times n \times m$  parámetros (ignorando el sesgo/bias).



- Las neuronas "complejas" abarcan mayor campo visual y son más robustas a la posición exacta de los estímulos: capa con sub-muestreo.
- → Se define una rejilla sin solapamiento, con celdas de tamaño constante.
- → De cada celda sacaremos un solo valor.
- → Ejemplos: max-pooling; promediado; parametrizados.





- Hiperparámetros (decisiones):
  - Tamaño filtros  $(n \times m)$ .
  - Número de filtros (K).
  - Tipo de sub-muestreo.
  - Tamaño celda de sub-muestreo.

Ejemplo muy popular: LeNet.

http://yann.lecun.com/exdb/lenet/ http://deeplearning.net/tutorial/lenet.h





- → Capas Ocultas: descriptores de complejidad creciente →
- → Cuestión clave: topología de la red (capas y conexiones)

Clasificación (multiclase)

Visualización de algunas capas en distintas CNNs que podemos encontrar en la literatura. <a href="http://cs231n.github.io/understanding-cnn/">http://cs231n.github.io/understanding-cnn/</a>



Filtros para detectar altas frecuencias en escalas de gris.

Filtros para detectar características de baja frecuencia de los canales de color.

## Primera capa de convolución en AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," NIPS'2012.



## Quinta capa en la CNN propuesta en:

Matthew D. Zeiler, Rob Fergus, "Visualizing and Understanding Convolutional Netwroks," ECCV'2014.





- → "Off-the-self features": usar el esquema clásico pero con descriptores aprendidos.
- → Cogemos el banco de filtros, se aplica en la imagen y luego se usa SVM, AdaBoost, RF, DPM, etc.

Ali S. Razavian, Hossein Azizpour, Josephine Sullivan, Stefan Carlsson, "CNN Features off-the-self: an Astounding Baseline for Recognition," CVPR'2014.



- Conceptos clave de este vídeo:
  - Descriptores diseñados a "mano" vs "aprendidos".
  - Las CNNs permiten aprender esos descriptores, con niveles de complejidad crecientes, e incorporando la etapa de clasificación, es decir, todo bajo el mismo paradigma.