Rzyz:
$$\beta = -0.7137 \text{ rad}$$
 $\beta = 2.4279 \text{ rad}$
(relative) $\Theta = 1.0472 \text{ rad}$ $\Theta = -1.0472 \text{ rad}$

$$\psi = 2.3562 \text{ rad}$$
 $\psi = -0.7854 \text{ rad}$

RPY:
$$\phi = \frac{0.0600}{0.0600}$$
 rad $\phi = \frac{-3.0816}{3.0679}$ rad $\phi = \frac{-2.6603}{2.0699}$ rad $\phi = \frac{-2.6603}{2.0699}$ rad $\phi = \frac{0.6847}{2.0699}$ rad $\phi = \frac{-2.4569}{2.0699}$ rad

(absolute)
$$k = 1.583$$
 (0.5834
-0.0 (8 0.0768
-80 86 0.8086

Problem 2

*

Solved using MATLAB

	0,0000	0.0000	00000	60001)	
	-01710	-0,4614	012133	0 1000 0	
H=	-0,8660	0'2500	0.4330	0,0000	4
11 X	0.4698	6.1107	0 8758	0.5000	L

*	Problem 3
	solved using MATLAB.
	NOTE: The given motrix is NOT a generic
1 1 1	rotation moutrix.
	R = 2 sin 4. sin 0 - 2 sin 0 +1
	R. RT = 1 - 0 - 204000
	-2c4348Θ
	-224.coso -2C45450
2	However, observing closely, we see that if
	0= nTL for n=0,1,2 50=0
	[12300] 23 [7012]
	$(1.1 = (25^2 + 0.0 - 2(0) + 1 = 1)$
1	and R.RT = [1 0 0] = I
	0 1 0
	a hair a mtation
	Hence inthis case, R can be a rotation
	moutrix.

_

* Problem 4 Solved using MATLAB. There is no feasible sol to satisfy the conditions of rotation matrix for the given moutrix. NOTE: If the last clement (133) of the given moutrix was also unknown it could have the followin possible sol's so as to satisfy the conditions of a generic rotation mostrix: 133 = [-1/12, -1, 1] any of these values

satisfies the

conditions of a rotation

mouthix (with given matrix $r_{12} = r_{21} = 0.707 = 1/12$. Problem 5 Solved Using MATLAB. * Problem 6 Proved using MATLAB.