# **Continuous Functions**

Felix Lentze & Dominic Plein

Date: July 10th, 2024

# Contents

| 1 | Cor | ntinuous Functions                            | 2 |
|---|-----|-----------------------------------------------|---|
| 2 | Exa | Examples                                      |   |
|   | 2.1 | The constant function is continuous           | 3 |
|   | 2.2 | Functions $x \mapsto mx + y_0$ are continuous | 3 |
|   | 2.3 | The parabola is continuous                    | 4 |
|   | 2.4 | The hyperbola is continuous                   | 5 |

## 1 Continuous Functions

Text excerpts remixed from Vladimir A. Zorich - Mathematical Analysis I as well as Stephen Abbott - Understanding Analysis.

Let f be a real-valued function defined in a neighborhood of a point  $a \in \mathbb{R}$ . In intuitive terms, the function f is continuous at a if its value f(x) approaches the value f(a) that it assumes at the point a itself as x gets nearer to a.

**Definition 1** (Continuous at a point). A function  $f:D\subseteq\mathbb{R}\to\mathbb{R}$  is continuous at the point  $a\in D$  if

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D : \quad \left( |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon \right)$$
 (1)

If f is continuous at every point in the domain D, then we say that f is continuous on D.

## 2 Examples

Here, we give a few examples of continuous functions alongside the respective proofs.

#### 2.1 The constant function is continuous

**Theorem 1.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function given by f(x) := c, where  $c \in \mathbb{R}$ . That is, f is a constant function. Then f is continuous at every point  $a \in \mathbb{R}$ .

*Proof.* Let  $a \in \mathbb{R}$  be an arbitrary point where we want to show that  $f : \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto c$  is continuous. Let  $\varepsilon > 0$ . We choose  $\delta := 1 > 0$ . Let  $x \in \mathbb{R}$ . Then:

$$|f(x) - f(a)| = |c - c| = |0| = 0 < \varepsilon$$

With that, the implication also holds true since its conclusion is always true (as shown above) irregardless of the premise.

$$|x - a| < \delta \Rightarrow |f(x) - f(a)| = 0 < \varepsilon$$

Therefore, f is continuous at a.

### 2.2 Functions $x \mapsto mx + y_0$ are continuous

**Theorem 2.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a function given by  $f(x) := m \cdot x + y_0$ , where  $m, y_0 \in \mathbb{R}$ . Then f is continuous at every point  $a \in \mathbb{R}$ .

*Proof.* Let  $a \in \mathbb{R}$  be an arbitrary point where we want to show that  $f : \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto m \cdot x + y_0$  is continuous.

We first consider the simpler case where the slope is 0, that is  $\mathbf{m} = \mathbf{0}$ . Then our function is given by  $f(x) = y_0$  for all  $x \in \mathbb{R}$ . This is a constant function and we have already shown that constant functions are continuous. Therefore, f is continuous at a when m = 0.

Now to the more interesting case where  $\mathbf{m} \neq \mathbf{0}$ . Let  $\varepsilon > 0$ . We choose  $\delta := \frac{\varepsilon}{|m|}$ . Since  $\epsilon > 0$  and |m| > 0, we have  $\delta > 0$ .

Let  $x \in \mathbb{R}$  and  $|x - a| < \delta$ . Then:

$$|f(x) - f(a)| = |(m \cdot x + y_0) - (m \cdot a - y_0)|$$

$$= |m \cdot x - m \cdot a|$$

$$= |m \cdot (x - a)|$$

$$= |m| \cdot |x - a|$$

$$< |m| \cdot \delta = |m| \cdot \frac{\varepsilon}{|m|} = \varepsilon$$

In the last line, we have used the fact that  $|x-a| < \delta$  and then used our definition of  $\delta$ .

The argument shows that  $|f(x) - f(a)| < \varepsilon$ , which proves the continuity of f at a.

### 2.3 The parabola is continuous

**Theorem 3.** Let  $f : \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) := x^2$ . That is, f is a parabola. Then f is continuous at every point  $a \in \mathbb{R}$ .

*Proof.* Let  $a \in \mathbb{R}$  be an arbitrary point where we want to show that  $f : \mathbb{R} \to \mathbb{R}$ ,  $x \mapsto x^2$  is continuous.

Let  $\epsilon > 0$ . We choose  $\delta := \min\left(\frac{\epsilon}{2|a|+1},1\right)$ . Since  $\epsilon > 0$  and 2|a|+1>0 and 1>0, we have  $\delta > 0$ .

Let  $x \in \mathbb{R}$  and  $|x - a| < \delta$ . Then:

$$|f(x) - f(a)| = |x^2 - a^2| = |(x+a)(x-a)|$$

$$= |x+a| \cdot |x-a|$$

$$\leq (|x|+|a|) \cdot |x-a|$$

$$\leq (|x|+|a|) \cdot \delta$$

$$\leq ((|a|+\delta)+|a|) \cdot \delta$$

$$= (2|a|+\delta) \cdot \delta$$

$$\leq (2|a|+1) \cdot \frac{\epsilon}{2|a|+1}$$

$$= \epsilon$$

$$|x+a| \leq |x|+|a|$$

$$|x-a| < \delta$$

$$|x| < |a|+\delta (*)$$

$$|x| < |a|+\delta (*)$$

$$|x| < |a|+\delta (*)$$

(\*) is true because  $|x| = |a + (x - a)| \le |a| + |x - a| < |a| + \delta$ . Therefore,  $|x| < |a| + \delta$ .

The argument shows that  $|f(x) - f(a)| < \epsilon$ , which proves the continuity of f at a.

## 2.4 The hyperbola is continuous

*Proof.* Sei  $x \in \mathbb{R}$  mit  $x \neq 0$  und  $\epsilon > 0$  gegeben. Wir müssen ein  $\delta > 0$  finden, so dass für alle y mit  $0 < |y - x| < \delta$  gilt, dass  $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$ .

Setze  $\delta = \min\left(\frac{\epsilon|x|^2}{2}, \frac{|x|}{2}\right)$ .

• Da  $\epsilon > 0$  und |x| > 0, ist  $\delta > 0$ .

Sei nun y mit  $y \neq 0$  und  $|y - x| < \delta$  gegeben.

- Zuerst zeigen wir, dass  $\left|\frac{1}{x} \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right|$ :  $\left|\frac{1}{x} \frac{1}{y}\right| = \left|\frac{y-x}{xy}\right|$  $= \frac{|y-x|}{|x||y|}$
- Da  $|y-x|<\delta\leq \frac{|x|}{2},$  folgt  $|y|>\frac{|x|}{2}$ : |y|=|x+(y-x)|  $\geq |x|-|y-x|$   $>|x|-\frac{|x|}{2}$   $=\frac{|x|}{2}$
- Da  $\delta \leq \frac{\epsilon |x|^2}{2}$ , folgt:

$$\begin{aligned} \frac{|x-y|}{|x||y|} &< \frac{\delta}{|x| \cdot \frac{|x|}{2}} \\ &= \frac{\delta}{\frac{|x|^2}{2}} \\ &\leq \frac{\frac{\epsilon|x|^2}{2}}{\frac{|x|^2}{2}} \\ &= \epsilon \end{aligned}$$

Somit haben wir gezeigt, dass für alle y mit  $y \neq 0$  und  $|y - x| < \delta$  gilt, dass  $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$ . Daher ist f stetig an x.