PAT-NO:

JP02001236037A

DOCUMENT-IDENTIFIER:

JP 2001236037 A

TITLE:

DRIVING METHOD FOR PLASMA DISPLAY PANEL

PUBN-DATE:

August 31, 2001

INVENTOR-INFORMATION:

NAME COUNTRY
YOSHIDA, HIROYUKI N/A
MURATA, MINORU N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KENWOOD CORP

N/A

APPL-NO:

JP2000049104

APPL-DATE:

February 25, 2000

INT-CL (IPC): G09G003/28, G09G003/20, H04N005/66

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a driving method of a plasma display panel capable of suppressing the failure of pseudo contours in the display of a PDP(plasma display panel).

SOLUTION: In the driving method of a plasma display panel, the field period of a picture signal is divided into a first period and a second period consisting of prescribed unit display periods and the arrangement of subfield periods in the first period and the second period is performed so that even numbered subfields are made in an ascending order by counting them in the order of light emitting times from a subfield period whose lighting period is the shortest and odd numbered subfield periods are arranged in a

descending order

at the rear of the even numbered subfields. Then, in the first period, the odd

numbered line group of the panel is made to be lighted in prescribed timings

and in the second period, the even numbered line group of the panel is made to

be lighted in prescribed timings.

COPYRIGHT: (C) 2001, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-236037 (P2001-236037A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl. ⁷		識別記号	F I デーマコート* (参考	÷)
G09G	3/28		G09G 3/20 641E 5C058	
	3/20	6 4 1	641R 5C080	
	0,20		H04N 5/66 101B	,
H04N	5/66	101	G 0 9 G 3/28 K	
110414	3/00	101	G 0 9 G 5/26 K	
			審査請求 未請求 請求項の数4 OL (全 9	頁)
(21)出願番号	}	特願2000-49104(P2000-49104)	(71) 出願人 000003595	
			株式会社ケンウッド	
(22)出願日		平成12年2月25日(2000.2.25)	東京都投谷区道玄坂1丁目14番6号	
		•	(72)発明者 吉田 裕行	
			東京都渋谷区道玄坂1丁目14番6号	4 ≠₹
			会社ケンウッド内	77-7
			(72)発明者 村田 稔	
			東京都没谷区道玄坂1丁目14番6号	4 , ↑
			会社ケンウッド内	W+4
			(74)代理人 100085408	
			弁理士 山崎 降	
			1	
			Fターム(参考) 50058 AA11 BA03 BA04 BA07	
			5C080 AA05 BB05 DD04 EE19 EE29	
			FF09 JJ04 JJ05	

(54) 【発明の名称】 プラズマディスプレイパネルの駆動方法

(57)【要約】

【課題】PDPの表示において擬似輪郭障害を抑圧する ことのできるプラズマディスプレイパネルの駆動方法を 提供する。

【解決手段】プラズマディスプレイパネルの駆動方法において、画像信号のフィールド期間を所定の単位表示期間からなる第1の期間と第2の期間とに分割し、前記第1の期間及び第2の期間におけるサブフィールド期間の配置は、点灯期間が最も短いサブフィールド期間から発光時間の順に数えて偶数番目のサブフィールド期間を昇順に配置し、その後に奇数番目のサブフィールド期間を降順に配置するようにして、前記第1の期間にはプラズマディスプレイパネルの奇数ライン群を所定のタイミングで点灯させ、前記第2の期間にはプラズマディスプレイパネルの偶数ライン群を所定のタイミングで点灯させる。

, _ ,

【特許請求の範囲】

【請求項1】画像信号のフィールド期間を所定の単位表 示期間からなる第1の期間と第2の期間とに分割し、1 サブフィールド期間が少なくともアドレス期間と重み付 けされた表示期間とを持つようにして、前記単位表示期 間を表示階調数(2のN乗)に対応するN個(Nは3以 上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイバネルの駆動方法であって、前記第1の期間及 10 び第2の期間におけるサブフィールド期間の配置は、点 灯期間が最も短いサブフィールド期間から発光時間の順 に数えて偶数番目のサブフィールド期間を昇順に配置 し、その後に奇数番目のサブフィールド期間を降順に配 置するようにして、前記第1の期間にはプラズマディス プレイパネルの奇数ライン群を所定のタイミングで点灯 させ、前記第2の期間にはプラズマディスプレイパネル

の偶数ライン群を所定のタイミングで点灯させることを

特徴とするプラズマディスプレイパネルの駆動方法。

1

【請求項2】画像信号のフィールド期間を所定の単位表 20 示期間からなる第1の期間と第2の期間とに分割し、1 サブフィールド期間が少なくともアドレス期間と重み付 けされた表示期間とを持つようにして、前記単位表示期 間を表示階調数(2のN乗)に対応するN個(Nは3以 上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間及 び第2の期間におけるサブフィールド期間の配置は、点 灯期間が最も短いサブフィールド期間から発光時間の順 30 に数えて奇数番目のサブフィールド期間を昇順に配置 し、その後に偶数番目のサブフィールド期間を降順に配 置するようにして、前記第1の期間にはプラズマディス プレイパネルの奇数ライン群を所定のタイミングで点灯 させ、前記第2の期間にはプラズマディスプレイパネル の偶数ライン群を所定のタイミングで点灯させることを 特徴とするプラズマディスプレイパネルの駆動方法。

【請求項3】画像信号のフィールド期間を所定の単位表示期間からなる第1の期間と第2の期間とに分割し、1サブフィールド期間が少なくともアドレス期間と重み付40けされた表示期間とを持つようにして、前記単位表示期間を表示階調数(2のN乗)に対応するN個(Nは3以上の整数)のサブフィールド期間と休止期間とに分割し、各サブフィールド期間における発光の有無を制御することによって階調のある画像を表示するプラズマディスプレイパネルの駆動方法であって、前記第1の期間におけるサブフィールド期間の配置は、点灯期間が最も短いサブフィールド期間から発光時間の順に数えて偶数番目のサブフィールド期間を昇順に配置し、その後に奇数番目のサブフィールド期間を降順に配置し、前記第2の50

期間におけるサブフィールド期間の配置は前記第1の期間における配置とは逆順に配置するようにして、前記第1の期間にはプラズマディスプレイパネルの奇数ライン群を所定のタイミングで点灯させ、前記第2の期間にはプラズマディスプレイパネルの偶数ライン群を所定のタイミングで点灯させることを特徴とするプラズマディスプレイパネルの駆動方法。

【請求項4】画像信号のフィールド期間を所定の単位表 示期間からなる第1の期間と第2の期間とに分割し、1 サブフィールド期間が少なくともアドレス期間と重み付 けされた表示期間とを持つようにして、前記単位表示期 間を表示階調数(2のN乗)に対応するN個(Nは3以 上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間に おけるサブフィールド期間の配置は、点灯期間が最も短 いサブフィールド期間から発光時間の順に数えて奇数番 目のサブフィールド期間を昇順に配置し、その後に偶数 番目のサブフィールド期間を降順に配置し、前記第2の 期間におけるサブフィールド期間の配置は、前記第1の 期間における配置とは逆順に配置するようにして、前記 第1の期間にはプラズマディスプレイパネルの奇数ライ ン群を所定のタイミングで点灯させ、前記第2の期間に はプラズマディスプレイパネルの偶数ライン群を所定の タイミングで点灯させることを特徴とするプラズマディ スプレイパネルの駆動方法。

【発明の詳細な説明】

[0001]

(発明の属する技術分野)本発明は、プラズマディスプレイパネル(以下単にPDPとも記す)の駆動方法に関し、特に、各画素の表示諧調をNビット(Nは3以上の整数)で表現し、前記各画素についての単位表示期間(例えば1/2フィールド期間や1フィールド期間または1フレーム期間)を前記表示階調数に対応したビット数Nと同じ数のサブフィールド期間に分割し、前記分割で得られた各サブフィールド期間における発光時間を前記Nビットのうちの各ビットに対応させて重み付けをすることによって画像信号の中間調画像を表示する方法に関するものである。

[0002]

【従来の技術】PDPのような閾値特性の大きいデバイスを用いた表示画面に画像の中間調を表示させる場合、一般に、発光時間の異なる複数の発光を表示対象の画像信号の諧調に応じて組み合わせることにより行われる。具体的には、画像信号をその輝度に応じてNビットの画像信号に変換し、各フィールド期間を前記N個(Nは3以上の整数)に分割してサブフィールド期間を値像信号のLSBに対応させ、最も発光時間が長いサブフィールド期間

を画像信号のMSBに対応させるようにして、前記各サブフィールド期間を前記画像信号の各ビットにそれぞれ対応させる。

【0004】図3はAC型プラズマディスプレイパネルの電極配線を示す図である。図3に示すように、PDPのパネル400には3種類の電極が配線され、水平方向にはX電極(発光表示の維持パルス印加用電極)401とY電極(走査パルス印加用電極)402が平行に配線され、垂直方向にはA電極(アドレスパルス印加用電極)403が配線される。そして前記3つの電極の交点で放電セル404が形成される。パネルの複数のX電極は全てが共通に接続されるか、あるいは奇数ラインと偶20数ラインとに分けて共通に接続され、各サブフィールド期間におけるアドレス期間にはA電極に画像信号に応じたアドレスパルスを印加すると共にY電極に所定の走査パルスを順次印加し、表示期間にはX電極401とY電極402とに発光表示の維持パルスを印加する。

【0005】図6はAC型プラズマディスプレイパネル の第1の従来例駆動方法を示す図である。ここでは図3 に示すX電極は全て共通に接続されて駆動される。図6 (a)に示すように、例えば、階調数を2の5乗、即ち 32階調で中間調を表示する場合には、各画素について 30 の1フィールド表示期間(以下単にフィールド期間とも 記す) 1F (例えば (1/60) 秒 (=約16.7ms ec))を5つのサブフィールド期間SF1、……… …、SF5に分割し、各サブフィールド期間SF1、… ……、SF5は少なくともアドレス期間APと表示期 間SPとを有し、該表示期間SPに1:2:4:8:1 6の比率の重み付けをする。これは各サブフィールド期 間の表示期間には重み付けされた数の維持パルスをPD PのX電極とY電極とに印加して行われ、例えば2進符 号の比の数だけ印加することにより行われる。前記各サ ブフィールド期間におけるアドレス期間には、図3に示 すA電極に所定のアドレスパルスが印加される。即ち、 Y電極のY1、Y2、Y3、……、Ynと順次走査パル スが印加され、各サブフィールド期間における表示期間 には、X電極に維持パルスが印加されて発光すべき画素

【0006】最も発光時間の短いSF1は画像信号のL SBに対応し、最も発光時間の長いSF5は画像信号の MSBに対応し、他のサブフィールド期間もそれぞれ画 像信号の各ピットに対応する。アドレス期間APはどの 50

は全画面で同時に発光する。

4

サブフィールド期間でも同一である。また、各ビットに対応するサブフィールド期間の表示順番は、単位表示期間内で例えば、SF1、SF2、SF3、SF4、SF5と一定の順番となっている。図6の(b)はアドレス期間にPDPの走査電極(Y電極)に印加する走査パルス500の様子を示し、第1の水平走査線の電極Y1から第nの水平走査線の電極Ynまで順次走査パルス500を印加して一つのアドレス期間が終了する。AはPDPのアドレス電極に印加されるアドレスパルス501を示し、該アドレスパルスの有無は前記画像信号の諧調に応じて決められる。

【0007】前記アドレスパルにより点灯されるサブフィールド期間と画像信号の諧調との対応関係を図8に示す。図8において白枠は点灯を示し、黒枠は非点灯を示す。図のように諧調1ではLSBに対応するサブフィールド期間SFO1だけが点灯し、階調16ではMSBに対応するサブフィールド期間SFO5だけが点灯し、その間は表示される諧調に応じてそれぞれのサブフィールド期間の点灯、非点灯が定められる。

20 【0008】前記したように、アドレス期間ではY電極の上から順番に所定の走査パルス500を時系列的に印加し、Y電極を上から下まで一度走査することによって、一つのサブフィールド期間のアドレス期間が終了する。この走査パルス500に同期してA電極には画素情報のアドレスパルス501を印加する。この走査パルスとアドレスパルスが時間的に重なったときに放電が生じ、壁電荷を形成して書き込みが行われ、表示期間に維持パルスを印加することにより発光する。

【0009】しかしながら、上述した従来の中間調画像表示方法では、サブフィールド期間SF1~SF5の表示順番が一定(固定)であったので、人間の顔などのように明るさがなだらかに変わる部分がゆっくり動く場面で、本来明るさの変化がなだらかな部分に急激な明るさの変化が生じ、表示画質を著しく損ねてしまうという問題点があった。この擬似輪郭障事の問題を解決する方法として提案された従来のAC型プラズマディスプレイパネルの駆動方法を図7に示す。ここでは図3に示すX電極は、奇数ライン同士、或いは偶数ライン同士が共通に接続され、奇数ライン群と偶数ライン群が別々に駆動される。

【0010】図7に示すAC型プラズマディスプレイバネルの第2の従来例駆動方法では、表示階調数(2のN乗)に対応するNを5とし、奇数ライン群のフィールドを5つのサブフィールド期間(SF01、SF02、SF03、SF04、SF05)と休止期間に分け、前記サブフィールドの期間を1フィールド期間の略1/2以下の期間とし、休止期間を1フィールド期間の略1/2以上の期間とする。そして前記サブフィールドの期間は奇数ライン群ではフィールドの前方に寄せ、偶数ライン群ではフィールドの後方に寄せる。

6

【0011】各サブフィールド期間は少なくともアドレ ス期間と表示期間を有し、表示期間の時間幅すなわち維 持パルスの数は各サブフィールド期間で重み付けする。 ここではサブフィールド期間の表示期間を2進符号の 1:2:4:8:16の比とする。 奇数ライン群のサブ フィールドの期間では偶数ライン群は休止期間とする。 偶数ライン群はサブフィールドの期間をフィールドの後 方に配置し、偶数ライン群のサブフィールドの期間では 奇数ライン群を休止期間とする。偶数ライン群のサブフ ィールド期間は奇数ライン群のサブフィールド期間と同 10 じく5つのサブフィールド期間(SFE1、SFE2、SFE3、SFE 4、SFE5)で構成し、各サブフィールド期間の表示期間は 奇数ライン群のサブフィールド期間の表示期間と同じと する。

【0012】この場合のサブフィールド期間の表示態様 は図4(a)に示す通りである。同図に示すように、奇 数ライン群では表示期間の昇順(小さい順)にSFO 1、SFO2、SFO3、SFO4、SFO5の順に配 置されてその順に点灯され、偶数ラインでは表示期間の 昇順にSFE1、SFE2、SFE3、SFE4、SF 20 E5の順に配置されてその順に点灯される。

【0013】例えば、動画像の縁部で、画像信号の諧調 が第Kフィールドでは15で、第K+1フィールドで1 6に変化した場合、図8に示す対応表から明らかなよう に、第KフィールドではSFO1からSFO4までとS FE1からSFE4までとで点灯し、第K+1フィール ドでは、SFO5とSFE5とで点灯し、点灯パターが 大きく変化する。この様子が図4(a)に示されてい る。この結果、擬似輪郭が出易いフィールドの境界に着 目すると、SFO1からSFO4まで連続して点灯した 30 後に、SFE5からSFO4までの期間Tにわたって非 点灯期間が連続する。前記非点灯期間Tは1フィールド 期間1Fの約1/2に相当する。このように長い点灯期 間の後に長い非点灯期間がある場合など、点灯パターン が大きく変化したときには、擬似輪郭が出易いことが知 られている。

[0014]

【発明が解決しようとする課題】図6に示す第1の従来 例駆動方法では、各画素の単位表示期間即ち全てのサブ フィールド期間の表示に要する期間がアドレス期間など も含めて1Fであったものが、図7に示す第2の従来例 駆動方法では、各画素の単位表示期間が1/2Fに短縮 されており、その分、擬似輪郭による画質障害は低減さ れる。しかしながら、諧調の変化点で発光パターンが大 きく変化して非点灯のサブフィールド期間が長時間続く 点は同じであり、十分に擬似輪郭障害が抑圧されている とは言えず、さらなる改善が望まれていた。本発明は前 記した問題点に鑑みてなされたもので、PDPの表示に おいて擬似輪郭障害を抑圧することのできるプラズマデ

る。

[0015]

【課題を解決するための手段】本発明のディジタルテレ ビ放送受信装置は前記課題を解決するためになされたも のであり、第1の発明のプラズマディスプレイパネルの 駆動方法は、画像信号のフィールド期間を所定の単位表 示期間からなる第1の期間と第2の期間とに分割し、1 サブフィールド期間が少なくともアドレス期間と重み付 けされた表示期間とを持つようにして、前記単位表示期 間を表示階調数 (2のN乗) に対応するN個 (Nは3以 上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間及 び第2の期間におけるサブフィールド期間の配置は、点 灯期間が最も短いサブフィールド期間から発光時間の順 に数えて偶数番目のサブフィールド期間を昇順に配置 し、その後に奇数番目のサブフィールド期間を降順に配 置するようにして、前記第1の期間にはプラズマディス プレイパネルの奇数ライン群を所定のタイミングで点灯 させ、前記第2の期間にはプラズマディスプレイパネル の偶数ライン群を所定のタイミングで点灯させるように したプラズマディスプレイパネルの駆動方法である。 【0016】本発明のプラズマディスプレイパネルの駆 動方法によれば、1フィールド期間を奇数ライン群を駆 動する期間と偶数ライン群を駆動する期間とに2分割し たので、前記単位表示時間が短縮され、かつ、分割した 各期間におけるN個(Nは3以上の整数)のサブフィー ルド期間の配列は、該期間の中央付近にMSBに対応す る最も発光期間の長いサブフィールド期間を配列し、そ れ以外のサブフィールド期間を前記MSB対応のサブフ ィールド期間の前後に分散することにより、動画像にお ける隣接画素間での発光の時間的な重心位置の変動を小 さくできる。したがって、輝度値の変動に伴なう発光重 心の変動を小さくして、擬似輪郭による画質障害を低減 できる。

【0017】第2の発明のプラズマディスプレイパネル の駆動方法は、画像信号のフィールド期間を所定の単位 表示期間からなる第1の期間と第2の期間とに分割し、 1サブフィールド期間が少なくともアドレス期間と重み 付けされた表示期間とを持つようにして、前記単位表示 期間を表示階調数(2のN乗)に対応するN個(Nは3 以上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間及 び第2の期間におけるサブフィールド期間の配置は、点 灯期間が最も短いサブフィールド期間から発光時間の順 に数えて奇数番目のサブフィールド期間を昇順に配置 ィスプレイパネルの駆動方法を提供することを目的とす 50 し、その後に偶数番目のサブフィールド期間を降順に配

置するようにして、前記第1の期間にはプラズマディスプレイパネルの奇数ライン群を所定のタイミングで点灯させ、前記第2の期間にはプラズマディスプレイパネルの偶数ライン群を所定のタイミングで点灯させるようにしたプラズマディスプレイパネルの駆動方法である。

【0018】第3の発明のプラズマディスプレイパネル の駆動方法は、画像信号のフィールド期間を所定の単位 表示期間からなる第1の期間と第2の期間とに分割し、 1サブフィールド期間が少なくともアドレス期間と重み 付けされた表示期間とを持つようにして、前記単位表示 期間を表示階調数(2のN乗)に対応するN個(Nは3 以上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間に おけるサブフィールド期間の配置は、点灯期間が最も短 いサブフィールド期間から発光時間の順に数えて偶数番・ 目のサブフィールド期間を昇順に配置し、その後に奇数 番目のサブフィールド期間を降順に配置し、前記第2の 期間におけるサブフィールド期間の配置は前記第1の期 20 間における配置とは逆順に配置するようにして、前記第 1の期間にはプラズマディスプレイパネルの奇数ライン 群を所定のタイミングで点灯させ、前記第2の期間には プラズマディスプレイパネルの偶数ライン群を所定のタ イミングで点灯させるようにしたプラズマディスプレイ パネルの駆動方法である。

【0019】本発明によれば、第1の発明で述べた作用効果に加えて、奇数ラインと偶数ラインではN個(Nは3以上の整数)のサブフィールド期間の配列を逆順にしたことにより、動画の動く方向の前後に生じる偽イメー 30ジの明暗が各ライン毎に逆転し、偽イメージがライン毎に打ち消される。

【0020】第4の発明のプラズマディスプレイパネル の駆動方法は、画像信号のフィールド期間を所定の単位 表示期間からなる第1の期間と第2の期間とに分割し、 1サブフィールド期間が少なくともアドレス期間と重み 付けされた表示期間とを持つようにして、前記単位表示 期間を表示階調数(2のN乗)に対応するN個(Nは3 以上の整数)のサブフィールド期間と休止期間とに分割 し、各サブフィールド期間における発光の有無を制御す ることによって階調のある画像を表示するプラズマディ スプレイパネルの駆動方法であって、前記第1の期間に おけるサブフィールド期間の配置は、点灯期間が最も短、 いサブフィールド期間から発光時間の順に数えて奇数番 目のサブフィールド期間を昇順に配置し、その後に偶数 番目のサブフィールド期間を降順に配置し、前記第2の 期間におけるサブフィールド期間の配置は、前記第1の 期間における配置とは逆順に配置するようにして、前記 第1の期間にはプラズマディスプレイパネルの奇数ライ

はプラズマディスプレイパネルの偶数ライン群を所定の タイミングで点灯させるようにしたプラズマディスプレ イパネルの駆動方法である。

[0021]

【発明の実施の形態】本発明は上述の問題点に鑑みなされたもので、画像信号のフィールド期間を所定の単位表示期間からなる第1の期間と第2の期間とに分割し、前記単位表示期間を表示階調数(2のN乗)に対応するN個(Nは3以上の整数)のサブフィールド期間と休止期間とに分割し、前記第1の期間及び第2の期間におけるサブフィールド期間を前記期間の最前又は最後に配置し、点灯期間が最も長いサブフィールド期間を前記期間の最前又は最後に配置し、点灯期間が最も長いサブフィールド期間を前記期間の中心付近に配置し、前記第1の期間にはプラズマディスプレイパネルの奇数ライン群を所定のタイミングで点灯させ、前記第2の期間にはプラズマディスプレイパネルの偶数ライン群を所定のタイミングで点灯させるようにして、擬似輪郭による画質の劣化を防ぐことができるプラズマディスプレイパネルの駆動方法である。

20 【0022】以下、本発明によるプラズマディスプレイパネルの駆動方法の第1実施例について図面と共に説明する。図1は本発明第1実施例のプラズマディスプレイパネルの駆動方法におけるサブフィールド期間の配置を示す図である。本発明では駆動するプラズマディスプレイパネルは図3に例示したような一般的なAC型プラズマディスプレイパネルであり、X電極、Y電極とも奇数ライン群と偶数ラインは別々に駆動される。図1に示す例は、画像信号を2の5乗、即ち32階調で表示させるために、画像信号を5ビットの画像信号に変換し、1フィールド期間を5つのサブフィールド期間に分割して表示させるようにしたものである。

【0023】この例では、奇数ライン群のフィールドを5つのサブフィールド期間(SF02、SF04、SF05、SF03、SF01)と休止期間とに分け、サブフィールドの期間をフィールドの略半分以下の期間とし、休止期間をフィールドの略半分以上の期間とする。そして前記サブフィールドの期間はフィールドの前方に寄せる。各サブフィールド期間は少なくともアドレス期間と表示期間を有し、表示期間の時間幅つまり維持バルスの数は各サブフィールド期間での表示期間を2進符号の1:2:4:8:16の比とする。

おけるサブフィールド期間の配置は、点灯期間が最も短いサブフィールド期間から発光時間の順に数えて奇数番目のサブフィールド期間を昇順に配置し、その後に偶数番目のサブフィールド期間を降順に配置し、前記第2の期間におけるサブフィールド期間の配置は、前記第1の期間における配置とは逆順に配置するようにして、前記第1の期間にはプラズマディスプレイパネルの奇数ライン群のサブフィールド期間と同じく5つのサブフィールド期間にはプラズマディスプレイパネルの奇数ライン群のサブフィールド期間での表示期間は奇数ライン群と所定のタイミングで点灯させ、前記第2の期間に50 し、各サブフィールド期間での表示期間は奇数ライン群

のサブフィールド期間の表示期間と同じとする。

【0025】前記重み付けされたサブフィールド期間の配置は、奇数ライン群では前からSFO2、SFO4、SFO5、SFO3、SFO1の順であり、偶数ライン群では前からSFE2、SFE4、SFE5、SFE3、SFE1の順である。このようにサブフィールド期間の配置はLSBに対応するサブフィールド期間をまず昇順に数えて、偶数番目のサブフィールド期間をまず昇順に配置し、次に、奇数番目のサブフィールド期間を降順(発光期間の大きい順)に配置する。

【0026】図2は本発明における飛び越し走査を説明 する図であり、プラズマディスプレイパネルのY電極に 印加する走査パルスを示した図である。走査パルスは各 サブフィールド期間におけるアドレス期間に所定のパル スが画素ごとに印加される。奇数ライン群に対応するY 電極はY1、Y3、Y5…であり、サブフィールド期間 の一つであるSFO2のアドレス期間の走査パルス50 0はY電極を一本おきに走査する飛び越し走査で印加さ れるものとする。またこの奇数ライン群で走査を行って いるときには偶数のライン群は休止期間とする。このよ 20 うに奇数ライン群のサブフィールド期間のアドレス期間 は一本おきの飛び越し走査とするため、アドレス期間は 図6に示す第1の従来例に比して半分の時間となる。ま た偶数ライン群のサブフィールド期間の一つであるSF E2のアドレス期間では偶数ライン群に対応するY電極 のY2、Y4、Y6…のみに走査パルス500を印加し 飛び越し走査を行う。

【0027】本発明では、サブフィールド期間における表示期間の維持パルスはプラズマディスプレイパネルの X電極とY電極とに交互に印加する。このX電極に印加 30 する維持パルスについては、奇数ライン群のX電極は共 通に接続し同じ維持パルスの電圧波形を印加し、偶数ライン群のX電極も同じである。そして、奇数ライン群の X電極にはSFO2の表示期間に維持パルスを印加し、 偶数ライン群のX電極にはこのSFO2の表示期間には 維持パルスを印加しない。同様にSFE2における表示 期間には偶数ライン群に対応したX電極に維持パルスを 印加し、奇数ライン群に対応したX電極には維持パルスを 印加し、の数ライン群に対応したX電極には維持パルスを 印加し、の数ライン群に対応したX電極には維持パルスを の加しない。

【0028】前記Y電極に印加する維持パルスについては、前記SFO2における表示期間に奇数ライン群に対応したY電極であるY1、Y3、Y5…のみに維持パルスを印加する。同様にSFE2における表示期間には偶数ライン群に対応したY2、Y4、Y6…のみに維持パルスを印加し、奇数ライン群に対応したY電極には維持パルスを印加しない。

【0029】図4は、本発明の一実施例と従来例との発 光態様の比較をするための図であり、図4(a)は前記 第2の従来例によるものであり、図4(b)は本発明の 第1実施例によるものである。図4に示す発光態様は、 同図(a)も(b)も、動画像の縁部の画素の諧調が、第Kフィールドでは図8に示す画像信号の諧調15で、第K+1フィールドで16に変化した場合のものであり、図4(a)についてはすでに説明した通りである。図4(b)は本発明の第1実施例における発光態様を示すのものであり、第Kフィールドでは時間軸の前方からSFO2、SFO4、SFO3、SFO1、SFE2、SFE4、SFE3、SFE1が配置され、この順に点灯し、第K+1フィールドでは、SFO5とSFE5が10点灯する。

10

【0030】フィールドの境界に注目すると、SFE 3、SFE 1が点灯した後、SFO2、SFO4が非点灯となる。このように非点灯期間が短く、(a)のような長い点灯期間の直後に長い非点灯期間となるような表示パターンではなく、フィールドの境界で擬似輪郭による画質障害が抑圧される。またMSBに対応するSFO5又はSFE5が点灯から非点灯に切り替わるとき、及びその逆のときには擬似輪郭が出易いが、第Kフィールドでは発光がSFO5及びSFE5の前後に分散され、第K+1フィールドでは発光がSFO5及びSFE5だけであるから、両フィールド間で発光の時間的重心が大きく動くことがなく、擬似輪郭が生じ難い。

【0031】次に本発明プラズマディスプレイパネルの駆動方法の第2実施例について説明する。第2実施例においては第1実施例とはサブフィールド期間の配置が異なる。即ち第2実施例における前記重み付けされたサブフィールド期間の配置は、奇数ライン群ではSFO1、SFO3、SFO5、SFO4、SFO2の順であり、偶数ライン群ではSFE1、SFE3、SFE5、SFE4、SFE2の順である。このようにサブフィールド期間の配置はLSBに対応するサブフィールド期間をまず昇順に配置し、次に、偶数番目のサブフィールド期間を降順に配置する。この場合の効果は前記した第1実施例と同じである。

【0032】次に本発明プラズマディスプレイパネルの駆動方法の第3実施例について説明する。第3実施例においては第1実施例とはサブフィールド期間の配置が異なる。即ち第3実施例における前記重み付けされたサブ40フィールド期間の配置は、奇数ライン群ではSFO2、SFO4、SFO5、SFO3、SFO1の順であり、偶数ライン群ではSFE1、SFE3、SFE5、SFE4、SFE2の順である。このようにサブフィールド期間の配置は奇数ライン群と偶数ライン群とで逆順に配置される。この発光態様は図5(b)に示されている。【0033】図5は本発明における第3の実施例と第2の従来例との発光態様の比較をするための図である。図5(b)に示す本発明の第3実施例によれば、第1実施例について述べた効果に加えて、相隣るライン間で、擬質額の移動方向が逆となり、これによって一層擬似輪

11

郭による画質障害が抑圧される効果がある。すなわち、PDPの各ラインにおける5個のサブフィールド期間の表示順番が、相隣るライン間で逆の順番となるので、動画の動く方向の前後に生じる偽イメージの明暗が各ライン毎に逆転し、偽イメージがライン毎に打ち消される【0034】また、図には示さないが、他のサブフィールド期間の配置方法として、奇数ライン群のサブフィールド期間の順番をSF02とし、偶数ライン群のサブフィールド期間の順番をSFE2、SFE4、SFE5、SFE3、SFE1としても良い。このよりにすることによって図5(b)に示す第3実施例と同様に、動画像の動く方向の前部と後縁部に見える偽イメージの明暗が奇数ラインと偶数ラインとで反転するので、奇数ラインと偶数ラインで偽イメージが打ち消され、疑似輪郭による画質障害が抑圧される。

【0035】なお、前記実施例では、階調数を2のN乗であるとして、N=5として32階調表示の場合について本発明を適用したが、本発明はこれに限るものでなく、Nが5以外の3以上の整数の場合について利用できることは勿論である。また、実施例ではプラズマディス 20プレイパネルを例に説明したが、これにかぎられず1フィールドを複数のサブフィールド期間に分割し、各サブフィールド期間の発光時間を制御して中間調を表示するようにしたパネル型ディスプレイにも同様に適用できる。

【図面の簡単な説明】

【図1】本発明第1実施例のプラズマディスプレイバネルの駆動方法におけるサブフィールド期間の配置を示す図である。

【図2】本発明における飛び越し走査を説明する図である

【図3】AC型プラズマディスプレイパネルの電極配線 を示す図である。

【図4】本発明の第1実施例と第2の従来例との発光態 様の比較をするための図である。

【図5】本発明における第3の実施例と第2の従来例との発光態様の比較をするための図である。

【図6】AC型プラズマディスプレイパネルの第1の従 来例駆動方法を示す図である。

【図7】AC型プラズマディスプレイパネルの第2の従来例駆動方法を示す図である。

【図8】表示諧調と表示パターンとの対応関係を示す図 である。

【符号の説明】

Y1、Y3、Y5---奇数群の走査電極Y2、Y4、Y6---奇数群の走査電極A1、A2、A3---アドレス電極

SFO1、SFO2、SFO3— サブフィールド 期間

SFE1、SFE2、SFE3— サブフィールド 期間

400 パネル

401 X電極(発光表示の維持パルス印加用電極)

402 Y電板(走査パルス印加用電極)

403 A電極(アドレスパルス印加用電極)

404 放電セル

【図1】

【図2】

【図3】

【図6】 【図8】 <u>世来の点打パターン</u> SF01 SF02 SF03 SF04 SF05 サブフィールド <u> 1フィールド(1F)</u> 表示期間 表示期間 表示期間 表示期間 二 点灯 3 非点灯 5 6 7 (a) 8 9 10 11 12 13 _-500 14 __-500 15 16 **]_**-500 17 18 19 20 21 22 23 24 25 26 (b) 27 28 29

BEST AVAILABLE COPY