目 录

1	义子	1
2	图片	2
	2.1 单张图片	2
	2.2 含子图的图片	2
	2.3 复杂图片	3
3	表格	3
	3.1 小型三线表	3
	3.2 大型横版三线表	4
4	公式	4
	4.1 段落内数学环境	4
	4.2 数学表达式	4
	4.3 大型数学表达式	4
	4.4 定理	6
5	代码	6
	5.1 算法与伪代码	6
	5.2 Python 代码	6
	5.3 R 代码	8

中文模版 Demo

孟之然

2024年1月12日

1 文字

当提到文档排版与编辑 [1-4],LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

LaTeX 的模板系统和丰富的宏包使得用户能够专注于内容创作,而无需过多担心格式。通过使用 LaTeX,用户可以更加灵活地控制文档的结构、样式和布局,确保最终输出符合个人或机构的规范要求。

另一个 LaTeX 的优势是其强大的交叉引用和自动编号功能。使用 LaTeX,用户可以轻松引用文档中的图表、公式和章节,而不必手动管理编号。这不仅提高了文档的可维护性,还确保了文档的一致性和准确性。

- 今天的天气真好
- 今天的天气真好
- 今天的天气真好
- 今天的天气真好

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

- 1. 今天的天气真好
- 2. 今天的天气真好
- 3. 今天的天气真好
- 4. 今天的天气真好

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

定义1 今天的天气真好

定义 2 今天的天气真好

2 图片

2.1 单张图片

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

图 2.1 这是图片的图注

2.2 含子图的图片

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

图 2.2 这是图片的图注

2.3 复杂图片

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

图 2.3 这是图片的图注

3 表格

3.1 小型三线表

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、

美观的文档。

表 3.1 这是表格的表注

Header 1	Header 2	Header 3
Cell 1	Cell 2	Cell 3
Cell 4	Cell 5	Cell 6

3.2 大型横版三线表

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

4 公式

4.1 段落内数学环境

我们比较了对照组 (n=3) 和实验组 (n=3) 的菌落数。

4.2 数学表达式

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

$$\overbrace{1+2+\cdots+100}$$

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

$$\frac{k}{k-1} = 0.5 (4.1)$$

4.3 大型数学表达式

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

当提到文档排版与编辑, LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档

表 3.2 这是表格的表注

Header 1	Header 2	Header 3	Header 4	Header 5	Header 6	Header 7	Header 8	Header 9	Header 10
Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	Cell 10
Cell 11	Cell 12	Cell 13	Cell 14	Cell 15	Cell 16	Cell 17	Cell 18	Cell 19	Cell 20
Cell 21	Cell 22	Cell 23	Cell 24	Cell 25	Cell 26	Cell 27	Cell 28	Cell 29	Cell 30
Cell 31	Cell 32	Cell 33	Cell 34	Cell 35	Cell 36	Cell 37	Cell 38	Cell 39	Cell 40
Cell 41	Cell 42	Cell 43	Cell 44	Cell 45	Cell 46	Cell 47	Cell 48	Cell 49	Cell 50
Cell 51	Cell 52	Cell 53	Cell 54	Cell 55	Cell 56	Cell 57	Cell 58	Cell 59	Cell 60
Cell 61	Cell 62	Cell 63	Cell 64	Cell 65	Cell 66	Cell 67	Cell 68	Cell 69	Cell 70
Cell 71	Cell 72	Cell 73	Cell 74	Cell 75	Cell 76	Cell 77	Cell 78	Cell 79	Cell 80
Cell 81	Cell 82	Cell 83	Cell 84	Cell 85	Cell 86	Cell 87	Cell 88	Cell 89	Cell 90
Cell 91	Cell 92	Cell 93	Cell 94	Cell 95	Cell 96	Cell 97	Cell 98	Cell 99	Cell 100

输出而闻名。LaTeX的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

$$\begin{cases} 3x + 5y + z &= 1\\ 7x - 2y + 4z &= 2\\ -6x + 3y + 2z &= 3 \end{cases}$$
(4.2)

4.4 定理

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

Theory 1. 这是一条定理。

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

5 代码

5.1 算法与伪代码

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

5.2 Python 代码

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

```
class Person:
def __init__(self, name, age):
    self.name = name
    self.age = age

def greet(self):
    print("Hello, my name is " + self.name + " and I am " + str(self.age) + " years old.")

class Student(Person):
    def __init__(self, name, age, grade):
        super().__init__(name, age)
```



```
Data: G = (X, U) such that G^{tc} is an order.
```

Algorithm 1: IntervalRestriction

```
Result: G' = (X, V) with V \subseteq U such that G'^{tc} is an interval order.
     begin
          V \longleftarrow U
          S \longleftarrow \emptyset
          for x \in X do
              NbSuccInS(x) \longleftarrow 0
              NbPredInMin(x) \longleftarrow 0
             NbPredNotInMin(x) \longleftarrow |ImPred(x)|
          for x \in X do
              if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then
               \triangle AppendToMin(x)
          while S \neq \emptyset do
              remove x from the list of T of maximal index
REM
              while |S \cap ImSucc(x)| \neq |S| do
                  for y \in S - ImSucc(x) do
                       \overline{\{ \text{ remove from } V \text{ all the arcs } zy : \}}
                      \mathbf{for}\;z\in ImPred(y)\cap Min\;\mathbf{do}
                           remove the arc zy from V
                           NbSuccInS(z) \leftarrow NbSuccInS(z) - 1
                           move z in T to the list preceding its present list
                          {i.e. If z \in T[k], move z from T[k] to T[k-1]}
                       NbPredInMin(y) \longleftarrow 0
                      NbPredNotInMin(y) \longleftarrow 0
                      S \longleftarrow S - \{y\}
                      AppendToMin(y)
              RemoveFromMin(x)
```



```
self.grade = grade

def study(self):
    print(self.name + " is studying.")

alice = Student('Alice', 20, 'Sophomore')
alice.greet()
alice.study()
```

5.3 R 代码

当提到文档排版与编辑,LaTeX 无疑是一个强大而灵活的工具。它以其卓越的数学公式排版和高质量的文档输出而闻名。LaTeX 的一个显著优势在于它对复杂的排版需求提供了完美的支持,使得用户能够轻松创建专业、美观的文档。

```
# Define a function to calculate the mean
        calculate_mean <- function(x) {</pre>
          sum_x <- sum(x)</pre>
          n <- length(x)
          mean_x <- sum_x / n</pre>
          return(mean_x)
        # Define a function to calculate the variance
        calculate_variance <- function(x) {</pre>
10
          mean_x <- calculate_mean(x)</pre>
          squared_diffs <- (x - mean_x)^2</pre>
          sum_squared_diffs <- sum(squared_diffs)</pre>
          n <- length(x)</pre>
          variance_x <- sum_squared_diffs / (n - 1)</pre>
          return(variance_x)
        # Use the functions
19
        x \leftarrow c(1, 2, 3, 4, 5)
20
        mean_x <- calculate_mean(x)</pre>
        variance_x <- calculate_variance(x)</pre>
        print(paste("Mean of x:", mean_x))
24
        print(paste("Variance of x:", variance_x))
```


参考文献

- [1] Vrushali Bhagat and Matthew L. Becker. Degradable adhesives for surgery and tissue engineering. *Biomacromolecules*, 18(10):3009–3039, 2017.
- [2] Daniela Matias De C. Bittencourt, Paula Oliveira, Valquíria Alice Michalczechen-Lacerda, Grácia Maria Soares Rosinha, Justin A. Jones, and Elibio L. Rech. Bioengineering of spider silks for the production of biomedical materials. Frontiers in Bioengineering and Biotechnology, 10:958486, 2022.
- [3] M. Jane Brennan, Bridget F. Kilbride, Jonathan J. Wilker, and Julie C. Liu. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. *Biomaterials*, 124:116–125, 2017.
- [4] Elena Doblhofer, Aniela Heidebrecht, and Thomas Scheibel. To spin or not to spin: Spider silk fibers and more. *Applied Microbiology and Biotechnology*, 99(22):9361–9380, 2015.