Module 4 Quiz

1. Suppose P(k) denotes the degree distribution of the following network, what is the value of P(2) + P(3)?

1 point

- 0 1/2
- 0 1/
- ½
- O %
- 2. Let P(k) denote the in-degree distribution of the given network below. What value of k gives the highest value of P(k)?

1 point

- O 3
- 0
- 1
- O 2

3.	Select all that apply	1 point
	Networks with a power law distribution have many nodes with large degree and a few nodes with very small degree.	
	If we draw a power law distribution in log-log scale, the distribution will look like a straight line.	
	In the Preferential Attachment Model, a new node always connects to the node with highest in-degree.	
	✓ The Preferential Attachment Model generates a network with a power law degree distribution.	
4.	Select all that apply	1 point
	Some Small-world networks have high local clustering coefficient and small average shortest path.	
	✓ The degree distribution of small-world networks follows power-law distribution.	
	✓ In the small-world model starting with k nearest neighbors, increasing the rewiring probability p generally decreases both the average clustering coefficient and average shortest path.	
	Small-world networks are always connected.	
	The Preferential Attachment Model generates a small-world network.	
W	RONG	
5	Suppose we want to generate several small-world networks with k nearest neighbors and rewiring probability p. If p remains the same and we increase k, which best describes the variation of average local clustering coefficient and average shortest path?	1 point
	O Both of them will increase.	
	O Both of them will decrease.	
	Average local clustering coefficient will increase and average shortest path will decrease.	
	Average local clustering coefficient will decrease and average shortest path will increase.	

- 0.29
- 0.33
- 0.40
- 0.50

- 0.20
- 0.33
- 0.70
- 0.83

- () 5
- O 8
- 10
- O 15

- The Common Neighbor Soundarajan-Hopcroft score of node C and node D is 2.
- The Common Neighbor Soundarajan-Hopcroft score of node A and node G is 4.
- The Resource Allocation Soundarajan-Hopcroft score of node E and node F is 0.
- The Resource Allocation Soundarajan-Hopcroft score of node A and node G is 0.7