Tutorial 05

L09 – Data export and import L10 – Graphics - Plots

 A dataset of about 400 cars with 8 characteristics such as horsepower, acceleration, etc is available in .CSV file

• The cars.csv file is uploaded in M Files folder in Teams.

Download the file and do the exercises discussed in the next slide.

1. Read the contents of "cars.csv" into a MATLAB TABLE named CarsData.

2. Display all the variable names in CarsData Table.

- 3. List all the Car names in an alphabetical order.
- 4. Count the number of cars in the Table

5. Find the Car Name that gives highest MPG (Miles-Per-Gallon)

- 6. What is the average MPG of all Cars?
- 7. List all the Car names that have MPG less than the average MPG of all Cars.
- 8. List all the Cars with model number greater than 80 and manufactured by Japan
- 9. List all the countries of origin who have manufactured cars with 6 cylinders.
- 10. Count the number of cars manufactured by each country between the years 72 and 76 with both years included.

• Refer : cars.csv.

Write MATLAB code to plot a bar chart showing the number of cars

manufactured by different countries.

• Find all cars manufactured by US in the year 1978 and write the all information related to them into a CSV file titled "US_cars.csv".

Given the following rain data for a given Week (Monday to Sunday): Plot

these values using MATLAB:

Give labels and title to the plot

Day	Rain amount
Monday	2.1 mm
Tuesday	10 mm
We dnesday	9.7 mm
Thursday	6.2 mm
Friday	2.5 mm
Saturday	0 mm
Sunday	8.5 mm

2/10/2025

Plotting of dynamic system

Given the autonomous system (differential equation): $\dot{x} = ax$, where $a = -\frac{1}{T}$, where T is the time constant.

The solution for the differential equation is: $x(t) = e^{at}x_0$

Set T = 5 and the initial condition x(0)= 1

Create a Script in MATLAB (.m file) where you plot the solution x(t) in the time interval $0 \le t \le 25$

Add Grid, and proper Title and Axis Labels to the plot

- Create a stairstep plot of sine evaluated at 40 equally spaced values between 0 and 4π .
- Plot the same stairstep plot setting the line style to a dot-dashed line, the marker symbol to circles, and the color to red.
- Also plot a stem graph of the same data.
- Plot these as subplots within a main plot.

- Plot magnitude versus frequency on log-log scale for the transfer function $G(s) = \frac{1}{1+0.02s}$, where $s=jw=j2\pi f$ and f is the frequency
- f ranges from 0 1000 Hz

 Illustrate the use of pie function to show the concentration of different industries in the region as per the following data. Include legends.

Industry	Number of Units
Textile	8
Software	20
Chemical	2
Telecom	7
Banking	10

11

• Plot function $x=e^{-a}$, $y=a^2$ where 0 <= a <= 10, using semilogx function

(Use semilogx(x,y))

2/10/2025

 Plot power versus time for 0<t<20 sec, with power on the log scale and time in the linear scale for a motor whose performance equations are given as follows:

given as follows:

Rotational speed, $w = 190(1-e^{-0.15t})$

Torque, $T = 8e^{-0.15t}$

Power =w x T

