Université IBN KHALDOUN –TIARET-Faculté Des Mathématiques et de l'informatique Département d'informatique, -2024/2025-

Recherche Bibliographique

Abdelkader OUARED

À propos de module (1/2)

POURQUOI CE COURS?

- Orientations pratiques pour bien mener le projet de fin d'étude.
 - Orientations pour faire une recherche documentaire
 - Orientations pour rédiger un bon mémoire
 - Orientations pour préparer une bonne présentation de soutenance

Déroulement du module

1 cours hebdomadaire (1h 30) sur les principaux concepts.

Evaluation

Mini projet + Examen écrit.

À propos de module (2/2)

Outils Logiciels

- Prise en main pour chaque outil logiciel
 - Latex : MiKTex, TeXStudio, TeXnicCenter, Winedt
 - Image : Inkscape ,WMF2EPS, xfig, https://www.onlinecharttool.com/
 - Graphique : Origine, Excel, Gnuplot, R
 - Carte <u>conceptuelle/Mentale</u>: MindManager, Xmind
 - Gestion de la bibliographie: zotero , bibtex

Mini projet :

Synthèse d'un papier de recherche

Contenu de ce Module

☐ Méthodologie de la recherche scientifique
☐ Lire/écrire un article de recherche
☐ L'écrit universitaire
□ Exposé oral
☐ La visibilité numérique (LinkedIn et création de contenu professionnel)
☐ Candidater pour un poste d'emploi
☐ Réussir l'entretien d'embauche
☐ Utiliser I'IA pour la recherche bibliographique

MOTIVATION

- Chacun improvise pour arriver au résultat
- Conséquences
 - Difficultés dans l'établissement du travail
 - Blocages récurrents et parfois abondant
 - Mémoires de mauvaise qualité
 - Slides de soutenances ne mettent pas en valeur le vrai travail réalisé

CONSTAT

- La formation à l'université est basée sur des cours divers
- Source du problème : la formation
 - ➤ Absence de formations pratiques sur certains aspects
 - Faire une recherche
 - Mener un travail de recherche
 - Organiser un travail
 - Construire un état de l'art
 - Analyser et critiquer l'existant
 - Rédiger un mémoire
 - Présenter un produit
 - Vendre un travail
 - Préparer la soutenance
 - Nécessité d'une formation sur ces différents aspects

Pourquoi un projet de fin d'étude?

PFE DE LICENCE

PFE DE LICENCE

PROJET DE DOCTORAT

Objectifs du cours

Les étudiants deviendront compétents dans:

- → Mener un travail de recherche
- → Lire et synthétiser un papier de recherche
- → Construire un état de l'art
- → Réussir l'écrit universitaire
- → Réussir l'exposé oral
- → Présenter un outil informatique
- → Reussir l'entretien d'embauche

Université IBN KHALDOUN –TIARET-Faculté Des Mathématiques et de l'informatique Département d'informatique, -2019/2020-

Recherche Bibliographique

Introduction à la Méthodologie de la Recherche Scientifique

Définition de la recherche?

La recherche est un effort organisé pour répondre à une question spécifique:

But de la recherche scientifique:

- Décrire le phénomène
- Interpréter le phénomène controller trouver les causes
- Prédire et / ou contrôler les phénomènes
- Application

Caractéristiques de bonne recherche:

- Précision
- Confiance
- Bonne recherche est systématique
- Bonne recherche est logique
- Bonne recherche est empirique
- Bonne recherche est réplicable (Reproductibilité)

Produire des connaissances sur le monde réel

Processus de la Recherche Scientifique

Processus de résolution des problèmes

Phase Conceptuelle

Définition de problème

Phase Méthodologique

Choix des méthodes pour résoudre le problème

Phase Empirique

Résolution du problème : Mise en application du plan de recherche Interprétation et diffusion des résultats

Production scientifique

Processus de la Recherche Scientifique

Processus de résolution des problèmes

Phase Conceptuelle

Définition du problème

Phase Méthodologique

Choix des méthodes pour résoudre le problème

Phase Empirique

Résolution du problème : Mise en application du plan de recherche Interprétation et diffusion des résultats

Production scientifique

Conceptualisation Poser la question de recherche générale

Problème générale:

- Scientifique
- Ecart:
 - [Situation actuelle insatisfaisante, Situation envisagée satisfaisante]
- On peut pas commencer la recherche \rightarrow s'il n'y a pas un pb

• Question de recherche générale:

- Enoncer la question générale avec toutes les dimensions du pb
- C'est une question générale avec ces dimension

Objectif générale

• C'est le résultat (but) que l'on souhaite atteindre par la démarche de recherche.

Intérêt de la recherche

- Pourquoi?
- Domaines application (Cadre d'Étude)
- Etude de cas (Case Study)
- Avoir un cadre plus générale
- Reproduction de la démarche proposée dans d'autres Domaines
- •

Conceptualisation Poser la question de recherche générale

► Exemple

- Problème: Faible utilisation des unités de protection des CPUs
- Question de recherche Générale: Comment exploiter le CPU d'une manière optimale ?
- Objectif général: Identifier les raisons de cette faible utilisation
- Intérêt de la recherche: Optimisation des performances des applications massives pour réponde aux besoins des décideurs

Conceptualisation

Problématiser (Ecart scientifique)

Question de Recherche Générale

Au départ:

Un intérêt, une idée, une intuition, une découverte ...

Un bon chercheur

Etat de l'art (Travaux précédents)
 Large connaissances dans le domaine de recherche
 La patience, La persistance,
 Lire, lire et lire
 Capacité d'imaginer et de deviner

- Liberté de la tradition, la créativité, la discipline
- L'Effort, la fatigue et la discussion avec des spécialistes
- la minutie (ou l'attention portée aux détails).

Question de Recherche Spécifique

A l'arrivée:

Un sujet de recherche...

S'il intéresse le chercheur

S'il présente une **pertinence social**

S'il est **faisable** en termes de temps, de

moyens (financiers, technique,...)

S'il est **problématisé**

Conceptualisation Explorer la littérature scientifique :

EXPLORATION

« Toute recherche prend racine dans des recherches antérieures »

MACE et al. 2016

• **Objectif**: Réaliser l'inventaire et l'examen critique de ce qui a été publié dans la littérature scientifique sur le sujet étudié.

Comment:

- Dimensionnement de problème
- Lecture dans la littérature
- Connaitre les éléments de ce problèmes et ces dimensions
 - Prendre une seule dimension : Pourquoi ?
 - Lecture exhaustive (exploratoire)
 - Construire une bibliographie plus exhaustive

Conceptualisation Explorer la littérature scientifique

• L'état de l'art: Définition

On appelle état de l'art, l'état des connaissances existantes sur un sujet d'étude.

C'est à dire ?

Une étude *ciblée*, *approfondie* et *critique* des travaux (existants) réalisés sur un thème particulier.

« Toute recherche prend racine dans des recherches antérieures »

MACE et al. 2016

Conceptualisation Explorer la littérature scientifique

• État de l'art : le processus

C'est un processus itératif composé de :

1. Recherche bibliographique

- Établir une liste de mots clés
- Collecte de papiers
- · Sélection de papiers
- Lecture approfondie (critique)

2. Raffinement de la liste des mots clés

- Structuration et organisation des mots clés
- Résumé de plu ou moins d'une demi page par article

3. Synthèse

- Classification des approches selon des critères à fixer
- Tirer des conclusions, des leçons
- Suggérer des recommandations
- · Résultats de la synthèse

4. Valorisation: Rédaction (Un chapitre, Une section, Un article (survey))

« Toute recherche prend racine dans des recherches antérieures »

MACE et al. 2016

Conceptualisation Explorer la littérature scientifique

- État de l'art : le processus
- Lecture critique

« Toute recherche prend racine dans des recherches antérieures »

MACE et al. 2016

- Lecture minutieuse des papiers sélectionnés du début jusqu'à la fin, en identifiant
 - a) Les points forts de la solution proposée,
 - b) Les points faibles et les limites
 - c) Des améliorations qui peuvent être apportées
 - d) Des idées pour accomplir ces améliorations
- Quelques questions à se poser pour chaque papier?
- Comment la solution proposée diffère des autres!
 - → A partir de cadre d'étude, le chercheur commence de chercher la solution

Débat (5 mn?)

➤ Quels sont les risques majeurs s'il ne fait pas bon état de l'art?

Conceptualisation Knowledge Gap

Conceptualisation Poser la question de la recherche spécifique

• Stratégie pour poser la question de recherche

- Les travaux similaires (related works) ayant touché de près ou de loin ta thématique (avec des références pour appuyer ce que tu dis)
- Une thèse prend l'ancrage à partir des travaux précédents ou connexes (faits dans d'autres domaines de recherches ou d'applications) afin de trouver sa voie (contribution originale)

Figure 3: Classification of database energy-efficiency methods.

Processus de la Recherche Scientifique

Processus de résolution des problèmes

Phase Conceptuelle

Définition de problème

Phase Méthodologique

Choix des méthodes pour résoudre le problème

Phase Empirique

Résolution de problème : Mise en application du plan de recherche Interprétation et diffusion des résultats

Production scientifique

Phase Méthodologique Formalisation du problème

- La formalisation du problème de recherche:
 - Définir les éléments/variables de problème
 - Définir les Entrées / Sorties, Contraintes, Objectifs...
 - Prenant on considération la question générale de recherche
 - Le choix de **problème spécifique** de recherche
 - Et l'énonciation de la **question spécifique** qui donne son sens au futur travail de recherche

Phase Méthodologique Formalisation du problème (Exemple)

Nous rappelons qu'un problème d'emploi du temps d'examens consiste à placer un ensemble d'examens dans un ensemble de salles durant une session tout en respectant les contraintes dures du problème.

Phase Méthodologique Formalisation du problème (Exemple)

Modélisation des données

• Nous modélisons le problème par un graphe non orienté G (E, AC), où E l'ensemble des nœuds représente l'ensemble des examens et AC est l'ensemble des arêtes tel que chaque arête [i, j] 2 AC si au moins un étudiant est inscrit aux deux examens i et j . A chaque arête [i, j] est associé un poids wi j C, qui représente le nombre d'étudiants inscrits aux deux examens.

Ensembles

E: ensemble des examens à placer et n^E leur nombre.

P: ensemble des périodes et n^P leur nombre.

R: ensemble des salles et n^R leur nombre.

D : ensemble des durées différentes des périodes $\bigcup_i d_i^E$ et n^D leur nombre.

Paramètres

s_i^E: nombre d'étudiants inscrits à l'examen i.

 s_r^R : capacité de la salle r.

 d_i^E : durée de l'examen i.

 d_p^P : durée de la période p.

 w_r^R : le poids lié à la pénalité de l'utilisation de la salle r.

 w_p^P : le poids lié à la pénalité de l'utilisation de la période p.

 y_{pq} : un booléen qui est à 1 si la période p et q sont dans le même jour. w^{2R} : poids pour la contrainte two-in-a-row.

Variables de décision

Soient les variables de décision $X_{ip}^{P}, X_{ir}^{R}, X_{ipr}^{PR},$ tels que :

$$X_{ip}^{p} = \begin{cases} 1, & \text{ssi l'examen } i \text{ est affect\'e à la p\'eriode } p. \\ 0, & \text{sinon.} \end{cases}$$

$$X_{ir}^{R} = \begin{cases} 1, & \text{ssi l'examen } i \text{ est affect\'e à la salle } r. \\ 0, & \text{sinon.} \end{cases}$$

$$X_{ipr}^{PR} = \begin{cases} 1, & \text{ssi l'examen } i \text{ est affect\'e à la p\'eriode } p \text{ et à la salle } r. \\ 0, & \text{sinon.} \end{cases}$$

Les variables X_{ip}^P , X_{ir}^R sont les variables de décision primaires et X_{ipr}^{PR} les variables de décision secondaires. La valeur d'une variable secondaire est forcée à l'affectation d'une valeur aux variables primaires qui lui sont liés. Elles sont utilisées pour faciliter l'écriture des contraintes.

Phase Méthodologique Objectif Spécifique

- Définir l'angle d'attaque disciplinaire
 - Comment on va traiter le problème ?

Choix d'un objectif de recherche :

- Si le problème est formulé, sous quel angle disciplinaire, je vais l'aborder?
- En connaissance de cause choisir son angle:
 - C'est une restriction explicite du regard.
 - Objectif spécifique dans le cadre du champ choisi.
 - C'est un zoom sur un aspect particulier du champ.
 - Il précisera l'objectif spécifique et influence la méthodologie
 - Un engagement et **conscience** des enjeux.
 - Responsabilité.

Phase Méthodologique Objectif Spécifique

Caractéristique d'un objectif spécifique

- Caractéristique
 - Clarté
 - Pertinence
 - Faisabilité
 - Il a l'intention: de décrire, de comprendre ou d'expliquer
 - Choisir un objectif et un seul

Phase Méthodologique Objectif Spécifique

Comment formuler un objectif de recherche

- Résume ce qui doit être réalisé par l'étude
- Focalise sur les résultats et non pas sur l'effort scientifique
- Peut être exprimé sous forme de déclaration ou de question
- Lié à la question de la recherche
- Deux catégories: (Objectifs principaux, Sous objectifs)
- Les objectifs sont généralement dirigés par des verbes à l'infinitif tels que:
 - •Identifier, Établir, Décrire, Déterminer, Estimer, Développer, Comparer, Analyser, Collecter, Comparer, Analyser

Exemple: Problèmes et Objectifs

- To identify the refinement strategy to automate the task of refinement.
- To develop a refinement strategy for generating formal models from tabular expressions.
- Formal reasoning of tabular expressions.
- To integrate the completeness and disjointness checks using formal verification.
- To use the existing tools support to check automated refinement (i.e.
- To detect inconsistencies and errors in the documented system.
- To demonstrate our account of applying the refinement strategy to an Insulin Infusion Pump (IIP) case study.

Phase Méthodologique Définir un cadre de recherche

Choix d'un cadre par rapport au champ et à l'objectif spécifique

• A partir de l'angle d'attaque disciplinaire:

Définir le référentiel théorique précis qui sera principalement utilisé dans l'étude.

Il a pour fonction de:

- 1. Faciliter la vie au chercheur
- 2. Ouvrir des portes nouvelles.
- 3. Introduire dans la réflexion des concepts originaux et enrichir l'ensemble de la démarche.

Processus de la Recherche Scientifique

Processus de résolution des problèmes

Phase Conceptuelle

Définition de problème

Phase Méthodologique

Choix des méthodes pour résoudre le problème

Phase Empirique

Résolution de problème : Mise en application du plan de recherche Interprétation et diffusion des résultats

Production scientifique

Phase de Validation L'Expérimenatation

Expérimentation

« The true method of knowledge is experiment. »
— William Blake(1757-1827)

- Validité d'une hypothèse et a obtenir des données quantitatives.
- C'est un découpage sur le réel en contrôlons les variables
- En recherche expérimentale, le chercheur est en mesure de vérifier les facteurs qui influencent ou peuvent influencer l'objet d'étude.
- L'expérimentation se distingue de l'expérience empirique en ce qu'elle exige un protocole scientifique
- Méthode de validation (benchmarking, simulation, étude de cas, feedback, instanciation ..)
- Science Exacte vs Science Sociale vs Mathématique

Phase Empirique

L'hypothèse est la base de l'expérience!

- L'élaboration d'une hypothèse est la première étape dans la conception et la réalisation d'une expérience.
- L'hypothèse doit être claire, spécifique et testable.

Principaux composants de l'expérience

Experimentation Formulation des hypothèse

- Indique la relation (Causalité < cause effet >, Corrélation) entre la variable indépendante VD!
 - Rappelez-vous ... vous testez toujours pour voir si la variable indépendante a un effet sur la variable dépendante.

Est écrit dans le format suivant:

•

"Si la (variable indépendante) est (décrit un changement), alors la variable (dépendante) va? (décrite un changement)

Vous devez toujours utiliser cette déclaration **«Si... alors...»** qui énonce votre hypothèse parce que c'est la relation entre l'**VI** et le **VD**!

- Ex1: Il y a une relation significative entre le choix de la taille du page système et la dégradation de performance
- Ex2: Quand on veut mesurer par précision l'impact de X sur Y: Le coût de requêtes augmente si le nombre des jointures augmente.

Question

Quelles sont les différences entre les deux termes «proposition» et «hypothèse»?

Le titre de votre expérience

- Comme votre hypothèse, le titre de votre expérience a également un format spécifique que vous devez utiliser.
- Il montre également la relation entre l'VI et le VD.
 - Est écrit dans le format suivant:
 - "L'effet de (variable indépendante) sur la (variable dépendante)."
 - Rappelez-vous, dans votre expérience, vous cherchez à voir si l'VI a un effet sur le VD

Experimentation Exercice:

- Formuler des hypothèses pour chaque sujet de recherche suivant:
 - Observer le comportement de l'apprenant durant les séances des travaux pratiques (TPs)
 - Référentiel des APIs web pour augmenter la réutilisation durant les développement
 - Proposer un Framework pour initier les enfants à la programmation informatique

Processus de la Recherche Scientifique

Processus de résolution des problèmes

Phase Conceptuelle

Définition de problème

Phase Méthodologique

Choix des méthodes pour résoudre le problème

Phase Empirique

Résolution de problème : Mise en application du plan de recherche Interprétation et diffusion des résultats

Production scientifique

Phase de Production Interprétation et diffusion des résultats

Interprétation

- Constater les résultat si il sont vérifiable
- Présenter les résultats par apport aux hypothèse
- Interpréter et discuter les résultats
- Retour critique sur la méthode utilisée
- Ouvrir des pistes de recherche éventuelle

Production

- Chapitres de livre
- Papiers des conférences
- Papiers des revues
- Startup
- Rapport
- Thèse

La pensée et la mémoire sont visuelles

Comment analyser les données ?

- Nous avons besoin de visualiser les données
- Présentation de données
 - o Manière de présentation dépend de:
 - Type de données (Catégorique, Continué, Mixte)
 - · Objectif de la recherche
 - Méthodes de présentation:
 - figure, diagramme ou tableau, multimédias, les animations et les vidéos etc.

Vous voyez ce que je veux dire?

Increase in Confusing Graphs

- o Est-ce que c'est facile a lire?
- o Est-ce que c'est lisible ?
- o Pouvez-vous comprendre?
- o Est-ce que ça fait du sens?

Objectifs:

- Expliquer
- Découvrir
- Prise de décision
- Analyser les données

Raisonnement Déduction (Top down approach)

Raisonnement Induction (Bottom up approach)

- Expliquer les implications de votre découverte, pourquoi sont-elles importantes, comment elles affectent notre compréhension du problème de la recherche.
- Discuter et évaluer les résultats du conflit
- Discuter des résultats inattendus
- Identifier les faiblesses et les limites
- Que pourrait-on faire pour améliorer cette étude
- Quelles études futures pourraient être réalisées sur la base de cette étude

Débat (?mn)

MERCI POUR VOTRE AIMABLE ATTENTION