Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	
AFOSR-TR- 81 -0862 AD-AJC89	81
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED O1 Oct 76 - 30 Sep 81
LASER SPECTROSCOPY OF SOLID STATE ELECTROLYTES	Final Report: 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
James F. Scott, Professor 9. PERFORMING ORGANIZATION NAME AND ADDRESS	AFOSR-77-3105 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
The Regents of the University of Colorado	61102F
Campus Box B-19 Boulder, Colorado 80309	2301/A5
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research	December 9, 1981
NP Bolling Air Force Base, DC 20332	13. NUMBER OF PAGES Six
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
LLVL	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for nublic on those t	
distribution unlighted.	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES	
16. SUPPLEMENTARY NOTES	·
19. KEY WORDS (Continue on reverse side if necessary and in ntilly by block number)	
Superionic conductors	
Solid state electrolytes Laser spectroscopy	
Laber Specialists	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Optical spectroscopy and electrical and thermal measurements are described on the solid state electrolytes ('superionic conductors') such as silver tungstate and related compounds.	

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

ノてと

088400

Final Report on AFOSR

During the period 1975-1981 we endeavored to characterize two classes of silver-ion solid-state electrolytes for potential use in batteries of structure Ag/X/AgI and other similar anode/cathode chemistry; here X is the electrolyte. Most of our attention was focused upon the stoichiometric compounds arising from mixtures of AgI and Ag₂WO₄. The phase diagram for this system was initially studied by Takahashi and his colleagues in the Applied Chemistry Department at Nagoya University, Japan; further detailed analyses of some of the phases resulting from AgI + Ag₂WO₄ mixtures was also carried out by Geller and his co-workers at The University of Colorado. In our work specimens were received from Geller and from Takahashi and were found to be equivalent for the purposes of our measurements.

In 1980 the principal investigator of this grant, Prof. J. F. Scott, traveled to Japan as guest of the Physical Society of Japan to present lectures on the work supported by this grant. At this time several days were spent in Nagoya to permit detailed exchanges of scientific information, particularly with Prof. Takahashi, who had become a collaborator in the work on Ag₂₆I₁₈W₄O₁₆.

The initial work by Takahashi et al. on the AgI + Ag2WO4 family revealed at least four stable stoichiometric phases of general formula Ag_I_(WO4)_z. X-ray crystallographic measurements by Chan and Geller permitted unambiguous determination of percentages x,y, and z for the compound which had displayed the best ionic conductivity. This material, originally labeled Ag6I_4WO4 by Takahashi et al., was found to be Ag13I_9W2O8, and is usually written as Ag26I_18W4O4 in order to display explicitly the unusual W4O46 ion. It is noteworthy that this ion is octahedrally coordinated, in contrast to the more usual tetrahedral coordination of WO4 in tungstates (such as the scheelite family, etc.).

Ag₂₆I₁₈W₄O₁₆ had its potential use as a solid state battery electrolyte recognized immediately during the work by Takahashi et al., and in fact it was used to produce a "super-ionic" cell shortly after its discovery. For that reason it was emphasized in all our spectroscopic and electrical measurements.

As a first step in our understanding of the microscopic dynamics characterizing lattice properties and ionic conduction in this class of materials, we began with an analysis of the starting material, Ag2WO4, since it has none of the complications associated explicitly with silver ion mobility and general behavior. In addition, the original electrical work had revealed a break in slope in its electrical conductivity at about 300°C, suggestive of ionic conduction. It was therefore essential to understand whether some ionic conduction was present in this family of crystal even in the absence of silver ions; such conductivity could in principle arise from defects or vacancies. particularly oxygen vacancies. Our combined spectroscopic and electrical results on AgoWO, were published in Materials Research Bulletin. They showed spectroscopic and electrical anomalies near the temperature at which Takahashi's group originally found a change in slope in conductivity versus temperature; however, our results showed that this phenomenon was not a simple phase transition: The kinetics were irreversible and interpreted as simple chemical degradation. The laser Raman spectroscopy was especially revealing in this respect; the spectral changes noted were not in the low-frequency silver-ion vibrations, but in the tungsten-oxygen stretching modes near 800 cm . This leads us to hypothesize that oxygen was being lost from the crystal at slightly elevated temperatures. Approved for public release; distribution unlimited.

81 12 29 030

Such a hypothesis of oxygen loss at elevated temperatures was in total disagreement with the weight measurements on Ag_WO_A reported earlier in the Ph.D. thesis of Bottelberghs at Utrecht, but was confirmed in subsequent measurements by our group. Most important, this conclusion permitted the growth of very large single crystals of Ag_6I_18W_O_16 subsequently at our university, for we concluded that if oxygen were lost from Ag_WO_A at such modest temperatures (300°C), that a similar process must be going on in the growth of Ag_6I_18W_O_16, resulting in a deviation from stoichiometry and difficulty in producing large single crystals. Working under this hypothesis, Prof. Geller and his assistants attempted to grow Ag_6I_18W_O_16 under much higher overpressures of oxygen (7 atm) than had ever been used before. The results were immediately successful, with single crystals of order 1 cc resulting.

Thus armed with both an understanding of Ag_NO_A and large specimens of Ag_6I_18W_4O_6, we proceeded to obtain and analyze the laser Raman spectra of the latter material. In the initial study we found evidence for two structural phase transitions: a superionic one near 280 K was continuous; and a ferroelectric one at 199 K was nearly continuous (slightly first order). In addition a small anomaly was also observable at 247 K but was too ambiguous in the early measurements to be identified clearly as a third phase transition. A second study of these phase transitions characterized the ferroelectric properties near 199 K in more detail, yielding the Curie constants, demonstrating the expected mean-field behavior, and measuring the hysteresis. It also produced the frequency dependence of the a.c. conductivity, which was found not to agree with the predictions of Lines. but with a more general theory of Habbal, from our own group, as well as with experimental results on related superionic materials. The important qualitative point is that the a.c. conductivity in the superionic phase varies linearly with frequency at low frequencies, and not quadratically (the quadratic prediction is that of Lines frequencies, and not quadratically (the quadratic prediction is that of Lines frequencies).

Our firal study of the three phase transitions in Ag₂₆I₁₈W₄O₁₆ was made via specific heat techniques employing scanning calorimetry. These studies confirmed our earlier hypotheses: that the transition near 280 K was second-order and to a superionic state; and that the transition at 199 K was slightly first-order. In addition, the third tentatively observed transition at 247 K was also found to be first order. Thermal hysteris widths for both first-order transitions were measured. Characteristics for all three transitions were found to be in accord with predictions of the phenomenological theories generally in use for ferroelectrics; parameters characterizing the free energy of Ag₂₆I₁₈W₄O₁₆ were evaluated or at least estimated. The shape of the C₁(T) curve near the second-order transition at about 280 K was fitted and found to be in accord with theoretical predictions. Finally, the electrical conductivity temperature dependence reported by Geller et al. above 200 K was reconciled; Because of Geller's failure to recognize the second-order transition at 280 K, he had fitted his conductivity data above 247 K to a bizarre, nonlinear temperature dependence; this was simply wrong, and incidentally resulted in the equally errongous conclusion that As₂₆I₁₈W₄ is an ionic conductor, fully disordered, above 247 K.

Two other systems were analyzed during the course of work sponsored by this grant. The first of these was strontium tetraiododiargentate octahydrate (SrAg_I_4.8H_2O). The primary motivation for the study of this material is that it had been observed previously that anhydrous compounds of silver halides with strontium or barium halides, were unobtainable under normal growth conditions. It had been speculated that this is due to the particular coordination requirements of the alkaline earth ions, and that the addition of waters of hydration would allow that coordination to be satisfied. Thus, SrAg_I_4.8H_2O was selected for study, even though it is not itself an ionic conductor, because its understanding should lead to the ability to comprehend subtleties involving anhydrous double salts of silver which are of more practical utility.

Two results of interest were obtained for SrAg_I_4.8H_O. Firstly, it was determined that the energies of the silver ion vibrations were higher than in silver electrolytes, in general, with the two lowest lying modes at 65 and 25_cm (compared, for example, with 23 and 32 cm in RbAg_I_5 or 20 and 35 cm in Ag_6I_8W_4O_6); this is compatible with tighter silver ion bonding in the nonconducting compounds. Second, the very low frequency mode at 25 cm remains underdamped in saturated aquaeous solution, confirming the hypothesis of Geller and Dudley that "it is probable that the saturated solution itself contains...AgI_4 chain entities." The spectral verification of intact AgI_4 chains in an aqueous solution of ionic compound is itself_highly unusual, although similar evidence has been reported for NiCl_2.

The second system we studied during the last year of AFOSR grant NP77-3105A was pyridinium silver iodide, (C₅H₅NH)Ag₅I₆. This material has a sufficiently high ionic electrical conductivity to qualify as a practical material for silver ion batteries (30 inverse ohm-cm at 100°C). Its crystal structure in the ordered phase below 50°C is P6/mcc with two formula groups in the primitive hexagonal unit cell. The phase transition at 50°C is thought to be orderdisorder, involving silver ion hopping with an activation enthalpy of 0.21 eV. Our spectroscopic study confirmed the order-disorder character of this phase transition, and further showed that the silver ion vibration which changes from vibrational (and underdamped) to diffusive at 50°C lies at 32 cm at ambient temperatures (295K). This mode is considerably broader in width (full width at half maximum is 24 cm at 295K) than all other vibrations in the crystal, but it remains a propagating excitation up until 50°C. Its temperature dependence of linewidth and cross-section contains the dynamic information of interest regarding the kinetics of silver ion behavior in the region of interest above room temperature.

In summary, the studies performed under AFOSR grant NP77-3105/A have permitted an understanding of the microscopic dynamics of three families of silver salts of importance for solid state batteries: the Ag_I(WO₄) family, which already has seen device application in Japa... the pyridinium silver iodide family, which has ionic conductivity near that of RbAg₄I₅; and the hydrates of silver-barium and silver-strontium, which cannot yey be grown at ambient pressure in the amorphous (and presumably conducting) forms.

The same of the sa

References:

- 1) T. Takahashi, S. Ikeda, and O. Yamamoto, J. Electrochem. Soc. 119, 477 (1972).
- 2) Lilian Y. Y. Chan and S. Geller, J. Solid State Chem. 21, 331 (1977).
- 3) A. Turkovic, D. L. Fox, J. F. Scott, S. Geller, and G. F. Ruse, Mat. Res. Bull. 12, 189 (1977).
- 4) P. H. Brttelberghs, Thesis, Utrecht (1976): "Phase Diagrams and Solid State Electrochemical Properties of Some MaxO, Compounds," p.29.
- 5) F. Habbal, J. A. Zvirgzds, and J. F. Scott, J. Chem. Phys. 69, 4984 (1978).
- 6) J. F. Scott, F. Habbal, and J. A. Zvirgzds, J. Chem. Phys. 72, 2760 (1980).
- 7) M. E. Lines, Phys. Rev. B19, 1183 (1979).
- 8) M. E. Lines, Phys. Rev. Bl9, 1189 (1979).
- 9) F. Habbal, J. Phys. Cl2, L789 (1979).
- 10) I. M. Hodge, M. D. Ingram, and A. R. West, J. Am. Chem. Soc. 59, 360 (1976).
- 11) R. D. Armstrong and K. Taylor, J. Electroanal. Chem. 63, 9 (1975).
- 12) A. L. Greer, F. Habbal, J. F. Scott, and T. Takahashi, J. Chem. Phys. 73, 5833 (1980).
- 13) S. Geller, S. A. Wilber, G. F. Ruse, J. R. Akridge, and A. Turkovic, Phys. Rev. B21, 2506 (1980).
- 14) S. Geller and T. O. Dudley, Jr., J. Solid State Chem.
- 15) R. A. Howe, W. S. Howells, and J. E. Enderby, J. Phys. C7, L111 (1974).
- 16) M. P. Fontana, Sol. St. Commun. 18, 765 (1976).
- 17) G. Maisano, P. Migliardo, F. Wanderlingh, and M. P. Fontana, J. Chem. Phys. 68, 5594(1978); 69, 676 (1978).
- 18) A. K. Soper, G. W. Neilson, J. E. Enderby, and R. A. Howe, J. Phys. C10, 1792 (1977); N. Quirke and A. K. Soper, J. Phys. C10, 1803 (1977).
- 19) C. M. Sorensen and J. F. Scott, J. Phys. C10, L115 (1977).
- 20) R. Mills, N. H. March, P. V. Giaquinta, M. Parrinello, and M. P. Toso, Chem. Phys. 26, 237 (1977).
- 21) D. J. Toms and J. F. Scott, J. Chem. Phys. 74, 3723 (1981).
- 22) S. Geller and B. B. Owens, J. Phys. Chem. Solids 33, 1241 (1972).
- 23) S. Geller, Science 176, 1016 (1972).
- 24) S. Geller, Fast Ion Transport in Solids: Solid State Batteries and Devices, edited by W. van Gool (North Holland, Amsterdam, 1973), p.607.
- 25) T. Takahashi, Superionic Conductors, edited by G. D. Mahan and W. L. Roth (Plenum, New York, 1976), p.379; H. Ikeda, "Solid State Electrochemical Cell (Memoriode)" in Rechargeable Batteries in Japan, edited by Y. Miyake and A. Kozawa, (JEC Press, Cleveland, 1977), p.441.

Tublications resulting from AFOSR grant NP77-3105/A:

- 1) "High Temperature Raman Spectroscopy of Silver Tetratungstate, Ag₈W₄O₁₆," Materials Research Bulletin 12, pp.189-196 (1977), by A. Turkovic, D. L. Fox, J. F. Scott, S. Geller, and G. F. Ruse.
- 2) "Raman Spectroscopy of Ag₂₆I₁₈W₄O₁₆," Bulletin of the American Physical Society 23, 303 (1978), by Juris A. Zvirgzds, Fawwaz Habbal, and J. F. Scott.
- 3) "Raman Spectroscopy of Structural Phase Transitions in Ag 26 18 4016,"

 Journal of Chemical Physics 69, 4984-4989, by F. Habbal, J. A. Zvirgzds, and

 J. F. Scott (1978).
- 4) "Ferroelectric Phase Transition in the Superionic Conductor Ag 26 18 40 16" Journal of Chemical Physics 72, 2760-2762 (1980), by J. F. Scott, F. Habbal, and J. A. Zvirgzds.
- 5) "Raman Spectroscop; of Strontium Tetraiododiargentate Octahydrate, SrAg_I_.8H_O, and its Aqueous Solutions," Journal of Chemical Physics 70, 1236-1239 (1979), by F. Habbal, J. A. Zvirgzds, A. J. Hurd, and J. F. Scott.
- 6) "Raman Spectroscopy of the Superionic Conductor Pyridinium Silver Iodide, (C5H5NH)Ag5I6, in the Ordered Phase," Journal of Chemical Physics 74, 3723-3725 (1981), by D. J. Toms and J. F. Scott.
- 7) "Specific Heat Anomalies and Phase Transitions in the Solid Electrolyte Ag₂₆I₁₉W₄O₁₆," Journal of Chemical Physics <u>73</u>, 5833-5837 (1980), by A. L. Greer, F. Habbal, J. F. Scott, and T. Tıkahashi.

All of the above publications explicitly acknowledge AFOSR support.

Ph.D. students and postdoctoral research associates supported wholly or in part by AFOSR grant NP77-3105/A and their subsequent employment:

- D. L. Fox, Bell Telephone Laboratories, Murray Hill, NJ (Ph.D. 1979).
- G. E. Feldkamp, Bell Telephone Laboratories, Holmdel, NJ (Ph.D. 1981).
- A. J. Hurd, Brandeis University (Ph.D. 1981).

Postdoctorals:

- F. Habbal (now on the faculty at Harvard University)
- D. J. Toms (Univ. Colorado)