This weeks problem set provides practice with the Gram-Schmidt process and adjoint operators. A question marked with a \dagger is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 6: due Friday 16 March: questions 22a from 6.2 and 4a, b below.

- 1. From section 6.2, problems 1, 2b, g, i, k, 5^* , 6, 7, 9, 13^* , 17^* , 22.
- 2. From section 6.3, problems 1, 2a, 3a, c, 4, 6, 8*.
- 3. From section 6.4, problems 1, 2a, c, 4, 7, 11, 24.
- 4. Let V be a finite dimensional inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .
 - (a) Fix $y \in V$ and suppose $\langle x, y \rangle = 0$ for all $x \in V$. Show that y = 0.

Solution: Let $B = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Then

$$y = \sum_{i=1}^{n} \langle y, v_i \rangle v_i = 0$$

since $\langle y, v_i \rangle = 0$ for all i.

(b) Let $T: V \longrightarrow V$ be a linear map such that $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all pairs $x, y \in V$ (we call such a map an *isometry*). Prove that T is an isomorphism.

Solution: First we show that T is injective. Suppose that T(x) = T(y). One one hand we have

$$||T(x)|| = \langle T(x), T(x) \rangle = \langle x, x \rangle.$$

On the other hand,

$$||T(x)|| = \langle T(x), T(x) \rangle = \langle T(x), T(y) \rangle = \langle x, y \rangle.$$

Thus $\langle x, x \rangle = \langle x, y \rangle$, i.e. $\langle 0, x - y \rangle = 0$. Thus by the above, x - y = 0 or x = y.

Now, since T is an injective map from V to V, it must be surjective by the dimension theorem. Thus it is an isomorphism.

(c) (not for homework)[†] Find all isometries $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that have $\det T = 1$.

Solution: Solution to 22 from 6.2. The question asks us to consider the vector space $\mathcal{C}([0,1],\mathbb{R})$ of continuous functions on [0,1] into \mathbb{R} with inner product, $\langle f,g\rangle=\int_0^1 f(t)g(t)\ dt$, and to use the Gram Schmidt process to find an orthonormal basis for the subspace span $\{t,\sqrt{t}\}$.

Part a). We use the Gram-Schmidt process to define first an orthogonal basis $\{f_1, f_2\}$. Set $f_1 = t$. Then

$$f_2 = \sqrt{t} - \frac{\langle \sqrt{t}, t \rangle}{||t||^2} t.$$

To get an explicit expression we do some calculations.

$$||t||^2 = \int_0^1 t^2 dt = \frac{1}{3}.$$

$$\langle \sqrt{t}, t \rangle = \int_0^1 t^{3/2} dt = \frac{2}{5}.$$

$$||\sqrt{t}||^2 = \int_0^1 t dt = \frac{1}{2}.$$

Putting this together we get

$$f_2 = \sqrt{t} - \frac{6}{5}t.$$

To get an orthonormal basis, we need to normalise, so we need to calculate

$$||f_2||^2 = \int_0^1 \left(\sqrt{t} - \frac{6}{5}t\right)^2 dt$$
$$= \int_0^1 t - \frac{12}{5}t^{3/2} + \frac{36}{25}t^2 dt$$
$$= \frac{1}{2} - \frac{24}{25} + \frac{36}{75} = \frac{1}{50}$$

We already know that $||f_1|| = \frac{1}{\sqrt{3}}$ and now we also know $||f_2|| = \frac{1}{5\sqrt{2}}$ thus, an orthonormal basis is

$$\{g_1 = \sqrt{3}t, g_2 = \sqrt{2}\left(5\sqrt{t} - 6t\right)\}.$$

Part b). We want to project t^2 onto W. The result will be

$$\langle t^2, g_1 \rangle g_1 + \langle t^2, g_2 \rangle g_2.$$

We calculate the coefficients.

$$\langle t^2, g_1 \rangle = \int_0^1 \sqrt{3}t^3 dt = \frac{\sqrt{3}}{4}.$$

$$\langle t^2, g_2 \rangle = \int_0^1 \sqrt{2} \left(5t^{5/2} - 6t^{3/2} \right) dt$$

$$= \sqrt{2} \left(\frac{10}{7} - \frac{12}{5} \right)$$

$$= -\frac{34\sqrt{2}}{35}.$$

Thus, the best approximation is

$$\frac{3}{4}t - \frac{68}{35}\left(5\sqrt{t} - 6t\right) = \frac{1737}{140}t - \frac{68}{7}\sqrt{t}.$$