ランダムな接続性を有する ネットワークポリマーの緩和挙動

佐々木裕

東亞合成

October 22, 2020

Outline

- はじめに
 - 本研究の目標とアプローチ
 - これまでの検討結果
 - 本発表の内容
- ② 「す抜け鎖」のランダムネットワークシミュレーション
 - アプローチ
 - 「す抜け鎖」のシミュレーション結果
- ③ KG 鎖でのシミュレーション結果
 - 平衡状態での振る舞い
 - 力学的な応答
 - 絡み合いを低減したネットワーク

- はじめに
 - 本研究の目標とアプローチ
 - これまでの検討結果
 - 本発表の内容
- ② 「す抜け鎖」のランダムネットワークシミュレーション
 - アプローチ
 - 「す抜け鎖」のシミュレーション結果
- (3) KG 鎖でのシミュレーション結果
 - 平衡状態での振る舞い
 - 力学的な応答
 - 絡み合いを低減したネットワーク

本研究の目標とアプローチ

本研究の目標とアプローチ

- 目標:破壊耐性向上の設計指針を得たい。
 - 耐久性、可逆性に優れた材料としてゴム材料を選択
- アプローチ
 - 実験的アプローチ
 - 構造明確なネットワークを超分子ネットワークで構築
 - フィラー無添加での高い破断伸びと強度
 - 既知のモデルとの多数の整合点と、よくわからない点。
 - マルチスケールシミュレーションでモデルを構築
 - 単純化したモデルで小さなスケールから始めたい。
 - 長さの揃ったストランドで MD シミュレーション
 - 最終的に、亀裂先端の挙動を FEM シミュレーション

本研究の目標とアプローチ これまでの検討結果 本発表の内容

ゴムの強靭性

破壊工学的な考え方

- クラック進展の抑制
- Andrews 理論 a
 - クラックの応力場
 - クラック進展時に、エネルギー散逸
 - ヒステリシスに由来

^aAndrews, E. H. and Fukahori, Y. J. of Mat. Sci. 12, 1307 (1977)

疲労破壊も考慮すると

- 可逆的な緩和であることが望ましい。
- 回復速度も重要。

ヒス・

.

aK.

Rub. C ^bH. Macron

規則ネットワーク構造 MD シミュレーション

ストランド長一定の規則構造

- 分岐数
 - 三分岐K4 構造
 - 四分岐ダイヤモンド構造
- ストランド
 - KG 鎖LJ ポテンシャルにより、 排除体積効果を導入
 - 素抜け鎖長距離相互作用を 無視した理想鎖

● K4 構造

ダイヤモンド構造

規則ネットワーク構造での検討結果

規則ネットワーク構造の振る舞い

- 一軸伸長で、アフィンネットワークモデルの挙動を示した
 - 分岐数、ストランドの性質(KG、素抜け)によらず
- ▲ 応力緩和で、主緩和がラウスモードの最長緩和時間程度
- **主緩和近傍に大きなエネルギー散逸** (tan δ > 1)を確認

一軸伸長結果

応力緩和挙動

粘弾性スペクトル

規則構造でのアフィン性

規則構造の特徴

- 規則構造においては、 結節点の<mark>連結性は等価</mark>
 - 結節点は規則構造の 平均位置に拘束
- 巨視的な変形後
 - 結節点の平均位置が アフィン移動
 - ゆらぎの異方性も類似

規則構造の模式図

緩和モードも単純

これまでの検討で出来ていないこと

規則構造でのシミュレーションでは

- アフィンネットワークモデルでの単純な緩和挙動
 - ガラス転移終端近傍に主緩和
 - ゆらぎの異方性が少ないためか?

ランダムネットワークの検討

- ゆらぎの異方性を多様化したい
 - ネットワーク構造の連結性にランダム性を導入
- ランダムネットワークモデルの特徴
 - アフィン変形を抑制?

アプローチ

連結の異方性の導入

- 結節点の連結性に ランダム性を導入
 - 結節点のゆらぎに 位置依存性
- 巨視的な変形後
 - 多様な緩和モード
 - 緩和の長時間化?
- 解析を容易に、
 - 結合数、ストラン ド長を一定

ランダム構造の模式図

アプローチ

連結の異方性の導入

- 結節点の連結性に ランダム性を導入
 - 結節点のゆらぎに 位置依存性
- 巨視的な変形後
 - 多様な緩和モード
 - 緩和の長時間化?
- 解析を容易に、
 - 結合数、ストラン ド長を一定

ランダム構造の模式図

「素抜け鎖」でのファントムネットワークはすでに報告。

本発表の内容

すぬけ鎖の振り返り

- ランダムネットワーク作成のプロセス
- ランダムネットワークモデルの特徴の検討
 - ファントムネットワークモデルの確認
 - ネットワークの力学的応答

KG 鎖のランダムネットワークでの検討

- ランダムネットワークモデルの構築
- その力学的及び緩和挙動の明確化。
- 絡み合いの影響を確認

- 1 はじめに
 - 本研究の目標とアプローチ
 - これまでの検討結果
 - ・本発表の内容
- ② 「す抜け鎖」のランダムネットワークシミュレーション
 - アプローチ
 - 「す抜け鎖」のシミュレーション結果
- ③ KG 鎖でのシミュレーション結果
 - 平衡状態での振る舞い
 - 力学的な応答
 - 絡み合いを低減したネットワーク

ランダムなネットワークの作成

アルゴリズム

- 初期構造の作成
 - 実空間で 8-Chain Model で初期構造を作成。
 - 所望の分岐数にランダムに選択した結合を除去
 - 除去したジオメトリーに対応したトポロジーモデル
- - ラプラシアン行列で全体の連結性を確認しながら、
 - エッジ交換して、ランダム性を導入
- 到対応する実空間でのネットワーク初期構造作成

- のボンド(ピンクのボンド)を一つ選択:真ん中の状態
- ンドを含んだ平行四辺形のトポロジーを探す。

「す抜け鎖」の力学応答

「す抜け鎖」でのランダムネットワーク

四分岐ランダムネットワークモデル

一軸伸張結果

• 伸張速度低下でファントム応答に漸近

ステップ変形の応力緩和

- 高速伸長: $\dot{\gamma} = 1e^{-3}$
- 変位: $\lambda = 1.5$

- 1 はじめに
 - 本研究の目標とアプローチ
 - これまでの検討結果
 - 本発表の内容
- ② 「す抜け鎖」のランダムネットワークシミュレーション
 - アプローチ
 - 「す抜け鎖」のシミュレーション結果
- ③ KG 鎖でのシミュレーション結果
 - 平衡状態での振る舞い
 - 力学的な応答
 - 絡み合いを低減したネットワーク

初期構造の緩和

KG 鎖をストランドとするネットワークの作成

- 非結合ポテンシャルは LJ ポテンシャル $U_{LJ}(r_{ij})$ によりビーズ間に斥力相互作用 $(r_c = 2^{(1/6)}\sigma)$
- ボンドポテンシャルには FENE-LJ ポテンシャル

初期構造の緩和

- Auhl 等の方法 ^a に従い、
 - force-capped-LJ ポテンシャルを用いた
 - Slow Push Off により初期構造を緩和

$$U_{FCLJ}(r) = \begin{cases} (r - r_{fc}) * U'_{LJ}(r_{fc}) + U_{LJ}(r_{fc}) & \quad r < r_{fc} \\ \\ U_{LJ} & \quad r \ge r_{fc} \end{cases}$$

ポテ、

^aR. Auhl et al. Journal of Chemical Physics 119, 12718 (2003)

四分岐ネットワークの平衡構造

四分岐ネットワークの作成

- ストランドの末端間距離がホモポリマーと同等となるように、
- セグメント数 N=48 の ストランドを選択し、
- 多重度を3とした四分 岐ネットワークを作成。

鎖に沿ったセグメント間 距離のトラジェクトリ

末端間距離の分布関数

四分岐ネットワークの力学応答

一軸伸張結果

- 伸張速度の低下により ネオフッキアンに漸近
- ANM よりも応力は高い

Moony-Rivlin Plot

• Shear Rate = 1e-4

• Shear Rate = 5e-5

四分岐ネットワークの力学応答

一軸伸張結果

- 伸張速度の低下により ネオフッキアンに漸近
- ANM よりも応力は高い

応力緩和関数 G(t)

- ステップ変形 ($\lambda = 2.0$)
- 最長緩和の長時間化
- ANM よりも高弾性率

ランダムネットワークの絡み合い解析

N48 のネットワークの PPA

- ストランド内部の非結 合ポテンシャルを無効
- 多数の絡み合いが存在

仮想的なモデル状態

- 全ての非結合ポテンシャルを無効
- す抜けに設定した PPA

PPA: Primitive Path Analysis

絡み合いを低減したネットワーク

NPT 計算での初期構造の緩和

- 密度の低い初期状態から NPT 計算により圧縮して、
- 絡み合いを極力排除した初期構造を作成した。

絡み合いを低減したネットワーク

PPA for 4-Chain-NPT

4-Chain

応力緩和関数 G(t)

- ステップ変形 ($\lambda = 2.0$)
- 弾性率が PNM に漸近

絡み合いを低減したネットワーク

PPA for 4-Chain-NPT

4-Chain

応力緩和関数 G(t)

- ステップ変形 ($\lambda = 2.0$)
- 弾性率が PNM に漸近
- 定数を足せば KG と類似

おわりに

本発表の内容

- ネットワーク構造の連結性にランダム性を導入
 - 各ノードごとにランダムな結合性を導入
 - ストランド長がガウス分布するランダムネットワーク 構造
- ランダムネットワーク構造の力学的応答
 - 比較的長時間での緩和を確認
 - Trapped Entanglements が緩和後の弾性率に影響
 - ファントムネットワークモデルの挙動を確認

「す抜け鎖」での一軸伸長

一軸伸長:Z軸方向に二倍に伸長

- ストランド:す抜け鎖
- 四分岐ランダムネットワークモデル
- 初期長さ: |R_z| = 3.46
- 伸長後: $|R_z| = 5.62 \Leftarrow$ 二倍には伸びていない

補足資料

- ⚠ ランダムネットワークの作成
 - ランダムネットワークの作成
 - ネットワークのトポロジー
 - ラプラシアン行列
- ⑤ ファントムネットワークの理論
 - ファントムネットワークの理論
 - ファントムネットワークの振る舞い
- 6 その他
 - 破壊について
 - 破壊と粘弾性
 - ネットワークの振る舞い

トポロジーモデルへの変換

実空間での初期構造

2×2×2 個の ユニットセル

• ユニットセルから除去

<u>トポ</u>ロジーモデル

分岐数を 4 に減じた トポロジーモデル

それぞれの分岐数での初期構造

初期構造の作成

- 実空間で 8-Chain Model で初期構造を作成。
- 所望の分岐数にランダムに選択した結合を除去
- 除去したジオメトリーに対応したトポロジーモデル

分岐数: 3, 4, 5 分岐

- 3 分岐では、全てが連結 していない
- 4 分岐では、連結してい ないものもある
- 5 分岐でも二種類のみ

トポロジーモデルからのランダム性の導入

- 初期状態は、黒色のボンドと潜在的な緑色のボンド(8-Chain のときに存在)
- 任意のボンド(ピンクのボンド)を一つ選択:真ん中の状態
- そのボンドを含んだ平行四辺形のトポロジーを探す。
- 二本毎にセット(黒色のボンドと緑色のボンド)で入れ替える。

代数的連結性の分布関数

サンプリング数の増加 (> 1000,000 times)

- 3,5分岐トポロジーモデルは、単鋒性に
- 4 分岐のトポロジーモデルでは、二峰性 サンプリング数を増やすと若干変化

3-Chain Model

4-Chain Model

5-Chain Model

ネットワークの分岐数の処理

以下のようにノード番号を付与したネットワークを考えると、

隣接行列、および、次数行列は、

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

となる。

ラプラシアン行列

ラプラシアン行列は、隣接 行列 A と次数行列 D により 以下のように定義される。

$$L \equiv D - A$$

4 つのノードからなるネット ワークの例であれば、

$$L = \begin{pmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

となり、非負の固有値。

グラフが非連結であるとき、連結した成分ごとにブロック対角化できるので、固有値のの重複数がグラフの連結成分ブロックの総数となる。

「代数的連結性」

「グラフが連結である場合、 ラプラシアン行列の固有値 0 の重複数は 1」となる。 固有値を昇順にみた時、0 に 次ぐ二番目の固有値がグラ フの連結性の強さを示す指 標となり、「代数的連結性」 と呼ばれる。

- 4 ランダムネットワークの作成
 - ランダムネットワークの作成
 - ネットワークのトポロジー
 - ラプラシアン行列
- **⑤** ファントムネットワークの理論
 - ファントムネットワークの理論
 - ファントムネットワークの振る舞い
- 6 その他
 - 破壊について
 - 破壊と粘弾性
 - ネットワークの振る舞い

有限サイズ効果

末端の壁面固定の効果

- 壁面に末端が固定
 - n 本のストランド
 - セグメント数: N
 - 他端が架橋点(r)
- 架橋点の運動性
 - 壁と N/n 個の短い ストランドと等価
 - 壁の移動(変形)の 影響減少

内部の鎖が受ける変形

- システム内部の鎖の末端はガウス分布
- ●壁面固定の末端からの 変形が内部に伝達して、

$$G = \xi \nu k_B T$$

$$\begin{cases} \xi_\infty = 1 - \frac{2}{f} \quad \text{System} \sim \infty \\ \xi_s = \frac{f-1}{f+1} \quad \text{Small Limit} \end{cases}$$

ファントムネットワークのゆらぎ

ゆらぎの入ったポテンシャル

• ストランドの末端間ベクトル R_{nm} を、 架橋点の位置ベクトル r_n を用いて、

$$oldsymbol{R}_{nm} \equiv oldsymbol{r}_n - oldsymbol{r}_m$$

系のポテンシャルエネルギーは、

$$U = \frac{k}{2} \sum_{\langle nm \rangle} \mathbf{R}_{nm}^2$$

• これは、自然長で決まる定数項と、ゆらぎに起因した 第二項に分割でき、その和で以下となる。

$$U = \frac{k}{2} \sum_{\langle nm \rangle} \mathbf{R}_{nm}^{(0)^2} + \frac{k}{2} \sum_{\langle nm \rangle} \Delta \mathbf{R}_{nm}^2$$

ファントムネットワークのゆらぎ

アンサンブル平均の二つの表式

$$\begin{cases} \langle U \rangle = N_{strands} \frac{k}{2} \langle \Delta \mathbf{R}^2 \rangle \\ \langle U \rangle = 3(N_{nodes} - 1) \frac{1}{2} k_B T \end{cases}$$

なお、第二式は等分配側より導出した。

ファントムネットワークでのゆらぎ

ullet 架橋点数 N_{nodes} 、架橋点官能基数 f とすれば、

$$\langle \Delta {\bf R}^2 \rangle = \frac{3k_BT}{k}\frac{2}{f}\left(1-\frac{1}{N_{nodes}}\right)$$

ullet 適切な条件で、ストランドの自然長 R_0 を用いて、

$$\langle \Delta \mathbf{R}^2 \rangle = \frac{2}{f} R_0^2$$

- 4 ランダムネットワークの作成
 - ランダムネットワークの作成
 - ネットワークのトポロジー
 - ラプラシアン行列
- **⑤** ファントムネットワークの理論
 - ファントムネットワークの理論
 - ファントムネットワークの振る舞い
- 6 その他
 - 破壊について
 - 破壊と粘弾性
 - ネットワークの振る舞い

高分子材料への期待と不安

地球温暖化対策の CO_2 削減へ向けて、 「自動車を中心とした運送機器の抜本的な軽量化」 が提唱されている。

高分子材料への期待

- 現行の鉄鋼主体 ⇒ 高分子材料を含むマルチマテリア ル化
- 高分子材料によるマルチマテリアル化のポイント
 - 高い比強度の有効利用
 - 特徴を生かした適材適所 ⇔ 適切な接合方法の選択
 - 「接着接合」への高分子の利用
 - 「柔らかさを生かした弾性接着接合」
 - 耐久性が不明確(特に疲労破壊に対して)

破壊工学の考え方

破壊工学の考え方

- 系中のクラック存在を前提に材料の耐久性を評価
- 「クラック近傍の応力集中を如何に抑制?」がポイント

破壊工学の観点から(微視的)

クラック先端で応力集中 応力拡大係数 K_I で評価

$$K_I = \sigma \sqrt{\pi c}$$

クラック進展の抑制⇒ 降伏応力 σ_Y に反比例

$$d \propto \left(\frac{K_I}{\sigma_Y}\right)^2$$

ゴムの強靭性

Andrews 理論

クラック先端の応力の等高線表示

- クラック成長時の応力場の 考察より、
 - Loading 場と Unloading 場の 差が重要。
 - この差はヒステリシスに由来
- ひずみエネルギー開放率が低減⇒ 強靭さの起源。

Andrews, E. H. and Fukahori, Y., Journal of Materials Science, 12, 1307 (1977)

ゴムの破壊と粘弾性

ゴムの破壊

大変形を伴う非線形現象だが、時間温度換算則の成立が 多数報告

亀裂先端近傍での大変形

時間温度換算則の成立

Fig. 1. Ultimate properties of an SBR rubber measured at different strain rates and temperatures. Data plotted against the logarithm of the time to break (4) reduced to -10° C. (Data from work cited in footnote 1.)

SBR での伸びきり効果

Fig. 3. Stress-strain curves at -35°C and at various extension rates.

Smith TL., Dickie RA., J. Pol. Sci. part A-2 (1969) 7 635

室温で伸び切りが出ないはずの SBR

- 低温、高速変形で SBR でも伸びきり効果が発現
- 時間温度換算則で考えてみれば?

ガラス状態の高分子材料の疲労と破壊

破壊のモード(巨視的)

脆性破壊 ⇔ 延性破壊 脆性破壊は、降伏前にミクロな クラックが進展した破壊

降伏と劣化

- 靭性向上のため
 - 局所的な降伏が必須。(クレイズのような局所的な破壊も)
 - 一般に、高分子材料の降伏は不可逆。
- 降伏による劣化
 - 降伏 ⇔ 本質的には、少しずつ破壊。
 - 破壊領域への水分の浸透 ← 長期耐久性の欠如

架橋点近傍の拘束状態に基づく二つのモデル

ストランドと架橋点

架橋点はストランド経由で 直接連結した架橋点以外 の、近接する多数のストラ ンド(図中の×)に囲まれ ている。 ● "Affine NW Model" 架橋点は周辺に強く拘束 され巨視的変形と相似に 移動。(Affine 変形)

$$G = \nu k_B T$$
 ν は、ストランドの数密度

"Phantom NW Model"架橋点が大きく揺らぎ、ずり弾性率(G)が低下。

$$G=\xi
u k_B T$$
 $\xi=1-rac{2}{f}$ f は架橋点の分岐数

架橋点の近傍

G. J. Lake and A. G. Thomas (1967)