COL 351: Analysis and Design of Algorithms

Lecture 23

Q1(a): Design an algorithm that verifies whether a given undirected graph (not necessarily connected) with n vertices and m edges is acyclic or not in O(n) time.

Perform DFS traversal of G and slob if $\{1 - \text{all vertices are visited, or } \}$

| entre | 11 - you find a back edge / a verten is visited "twice"

OFS

Q1(b): Let $G = K_n$ be a complete graph on n vertices where for any distinct $i, j \in [1,n]$ weight(i, j) = i + j. Find an MST of G.

$$wt(MST) = 3 + 9 + --- + n + n + n + 1$$

du other edges incident b''i" have wt > (i+1).

Q1(b): Let $G = K_n$ be a complete graph on n vertices where for any distinct $i, j \in [1, n]$ weight(i, j) = |i - j|. Find an MST of G.

$$wt(MST) = |x(M-1)| = M-1$$

Q2: Design a linear-time algorithm that takes as input a forest F on n vertices and determines whether it has a perfect matching: a set of edges that touches each node exactly once.

Q2: Design a linear-time algorithm that takes as input a forest
$$F$$
 on n vertices and determines whether it has a perfect matching: a set of edges that touches each node exactly once.

X

Vertices of degree 0 in F

X

Vertices of degree 1 in F

While (V(F) is non-empty)

ff(Xol >0 Relien False

Floe

x < any verter of dog 1. y e neighbor of n.

Remove 2, y from V(F)

For $3 \in N(y) \setminus x$ is deg (3) = deg(3) - 1.

If deg(3) = 0 : $\text{add } 3 \text{ to } x_1$ Thue.

Q3: Given is a sequence $X = (x_1, ..., x_n)$. Design an $O(n^2)$ time algorithm to find the minimum number of characters that needs to be inserted in X to get a palindrome.

ans
$$(LABEL)=2$$
 $(ABE)=2$

Q3: Given is a sequence $X = (x_1, ..., x_n)$. Design an $Q(n^2)$ time algorithm to find the minimum number of characters that needs to be inserted in X to get a palindrome.

$$OPT(i,j) = Sol^n$$
 for substring $X[i,j]$
 $OPT(i,j) = -\infty$ $j < i$
 $OPT(i,i) = 0$, $\forall i$

$$OPT(i,j) = \begin{cases} OPT(i+1,j-1) & \chi_i = \chi \\ O(i) & \text{otherwise} \\ MIN & \text{otherwise} \\ 1 + OPT(i+1,j) & \text{otherwise} \\ Single & \text{otherwise} \end{cases}$$

Imp Ques: In which order should you visit verten pairs?

Need to hande (i,j) pairs in increasing order of value of |i-j|.

Q4: Let G be a DAG with vertex-set $\{1,2,...,n\}$ and topological ordering (1,2,...,n). For each pair (x,y), let N(x,y) denote the number of distinct paths from x to y in G.

Let \cong be an equivalence relation on vertex-pairs of G, such that $(a, b) \cong (c, d)$ iff N(a, b) = N(c, d).

(a) Provide a recursive relation to compute N(x, y) from $N(x_1, y), ..., N(x_t, y)$, where $x_1, ..., x_t$ are out-neighbours of x in G.

$$P = \text{Collection of All (2e my)}$$
 paths in G
 $P_i = \text{Collection of All (2e my)}$ paths in G (2 is 2e)
edge path

$$N(x,y) = \sum_{i=1}^{t} N(x_i,y)$$
 = Here we assume $N(x,x) = 1$

If some one has defined N(n, n) = 0, then equivall change

84(a) Part 2: Show how to compute N(x,y), for all pairs (x,y) in Go

So fritialize
$$N(x,x)=1$$
, $\forall x$
o det $N(x,y)=0$ whenever $y < x$

· Finally use the recursive relation to compute N(x,y).

Q4: Let G be a DAG with vertex-set $\{1,2,...,n\}$ and topological ordering (1,2,...,n). For each pair (x,y), let N(x,y) denote the number of distinct paths from x to y in G.

Let \cong be an equivalence relation on vertex-pairs of G, such that $(a, b) \cong (c, d)$ iff N(a, b) = N(c, d).

(b) Argue that for any (x, y), $N(x, y) \le 2^n$. Next show that for any two pairs (a, b), (c, d) the no. of prime factors of |N(a, b) - N(c, d)| is at most n.

Each 2 -> y Corresponds Subset of 52H, ..., y-1's

path in G

(12) (13) (18) (2) (2+1, y-1)

\$\{10, 12, 14, 18\}\$ a subset of \(\frac{1}{2} \) \(\frac{1}{2} \)

e possible # of & wheets

Let
$$X = |N(a,b) - N(c,d)| \leq 2^n$$

$$\Rightarrow \propto \leq n$$

 $X = \beta$, β_2 β_3 --- β_α

 $(p_i \geqslant 2)$

Q4: Let G be a DAG with vertex-set $\{1,2,\ldots,n\}$ and topological ordering $(1,2,\ldots,n)$. For each pair (x,y), let N(x,y) denote the number of distinct paths from x to y in G.

Let \cong be an equivalence relation on vertex-pairs of G, such that $(a, b) \cong (c, d)$ iff N(a, b) = N(c, d).

(c) Design an O(mn) time algorithm that computes with probability (1 - 1/n) the equivalence classes under equivalence relation \cong .

Let
$$\beta = \text{random prime in range } [2, n^7]$$
.

Let $H: \mathcal{A} \longrightarrow (\mathcal{A}) \mod \beta$ be a hash function.

Note: If
$$x_1 \dots x_t$$
 are out-neighbors of x_t , then

$$H(N(x,y)) = H(N(x,y)) + \dots + H(N(x_t,y)) \mod b$$

$$O(t) \begin{cases} -O(m) & \text{time for single } \mathcal{G} \\ -O(mn) & \text{the } \mathcal{G} \end{cases}$$

Ne say
$$(a,b) \cong (c,d)$$
 iff $H(N(a,b)) = H(N(c,d))$

Take 2 paies (a,b), (c,d) with $N(a,b) \neq N(c,d)$

Prob
$$/$$
 $H(N(a,b) = H(N(c,d))) =$

 $Prob \left(H(N(a,b) = H(N(c,d)) \right) =$

Peob (p divides
$$N(a,b) - N(c,d)$$
) $\leq \frac{m}{O(m^{7}/coq n^{7})} \leq \frac{1}{n^{5}}$

By union boul

Prob of expol in =
$$\#$$
 of Choices f (a,b) , (c,d) $< \frac{n^4}{n^5} < \frac{n^5}{n^5}$

entire algo

Fact: For number of size n

we can +,-, *, mod.

in O(c) time

WORD RAM Model

worky with n, n2

bus size = O(log_2n)

64 bit & J O(1) time

$$H(N(x,y)) = \left(H(N(x_1,y)) + --+ H(N(x_1,y))\right)$$

$$mod b.$$

 $\forall y \quad O(m \cdot n)$