Analisis Asosiasi 2

CS 4333 Data Mining Imelda Atastina

Atribut Kategoris

- Masalah : Bagaimana menerapkan analisisi asosiasi pada atribut yang bertipe kategoris?
- Solusi: Transformasi data menjadi "item-item" (Binary Item), sehingga bentuk data seperti data transaksi, baru diterapkan algoritma-algoritma pada metoda analisis asosiasi

Contoh Data

Gender	Education	State	Chat Online	Shop Online	Privacy Concern
Female	Graduate	Illinois	Yes	Yes	Yes
Male	College	California	No	No	No
Male	Graduate	Michigan	Yes	Yes	Yes
Female	College	Virginia	No	Yes	Yes
Female	Graduate	California	No	No	Yes
Male	College	Minnesota	Yes	Yes	Yes
Male	College	Alaska	Yes	Yes	No
Male	High School	Oregon	No	No	No
Female	Graduate	Texas	Yes	No	No

Data Hasil Transformasi

Male	Female	Education =Graduate	Education = College	 Shop Online = Yes	Shop Online =No
0	1	1	0	 1	0
1	0	0	1	 0	1
1	0	1	0	1	0
0	1	0	1	 1	0
0	1	1	0	 0	1
1	0	0	1	 1	0

Issue yang harus dipertimbangkan (1)

 Beberapa nilai atribut kurang sering muncul untuk menjadi "frequent pattern".
 Solusi yang diusulkan munculkan kategori baru sehingga yang kurang sering muncul nilainya menjadi lebih besar.

Contoh: munculkan kategori "lain-lain"

Issue yang harus dipertimbangkan (2)

 Beberapa nilai atribut terlalu tinggi frekuensinya dibandingkan nilai atribut lainnya, sehingga dapat memunculkan "redundant pattern".

Solusi yang diusulkan lakukan preprocessing dengan menghilangkan atribut yang dianggap kurang penting atau redundant

Contoh: {Computer at home= Yes, Shop

Online = Yes}-> {Privacy Concern = Yes}

Issue yang harus dipertimbangkan (3)

- Waktu proses menjadi lama, terutama jika ada item yang terbentuk dengan frekuensi tinggi, shg candidate itemset yang terbentukpun banyak.
- Solusi: Hindari membentuk candidate itemset yang mengandung lebih dari satu item dari atribut yang sama, krn support countnya pasti nol

Contoh: {State = X, State = Y,}

Atribut Kontinu

- Dikenal juga dengan nama quantitative association rules
- Preprocessing yang dapat dilakukan :
 - Metoda Diskritisasi
 - Metoda Statistik
 - Metoda Non diskritisasi

Metoda Diskritisasi

- Diskritisasi pada data kontinu, dilakukan dengan mengelompokkan nilai dari data kontinu tersebut pada sejumlah interval.
- Setelah itu diikuti dengan transformasi binarisasi data diskrit sebelum dapat dilakukan proses analisis asosiasi

Diskritisasi (2)

- Parameter kunci dalam proses diskritisasi adalah jumlah interval (range interval) yang digunakan untuk membagi data pada tiap atribut.
- Salah menentukan interval dapat berakibat tidak muncul rule yang memenuhi treshold atau justru terlalu banyak rule yang muncul

Contoh

Gender	Age	Income	•••	Privacy Concern
Female	26	90 K		Yes
Male	51	135 K		No
Male	29	80 K		Yes
Female	45	120 K		Yes
Female	31	95 K		Yes
Male	25	55 K		Yes
				No

 Data Age dibagi dalam interval sbb:

. .

Isu penting dalam proses diskritisasi (1)

- Proses komputasi menjadi mahal, perhatikan jika data terbagi menjadi k interval, maka akan ada k(k-1)/2 binary item yang harus dibentuk, dan jika item-item tersebut frequent, maka candidate itemset yang terbentukpun banyak.
- Solusi yang diusulkan : gunakan nilai treshold support yang maksimum

Isu penting dalam proses diskritisasi (2)

- Banyak redundant rule yang terbentuk
- Contoh:

```
R1 : {Age ∈ [16,20), Gender = Male}-> {Chat Online = Yes}
R2 : {Age ∈ [16,24), Gender = Male}-> {Chat Online = Yes}
Seharusnya yang digunakan R2 saja , karena coverage nya
lebih besar, jadi R1 merupakan redundant rule
```

Metoda Statistik

- Dalam pembentukan rule statistik yang digunakan adalah statistik deskriptif seperti rata-rata,median, variansi, dsb. Digunakan untuk menggambarkan populasi atribut yang dianggap menarik
- Untuk memvalidasi rule yang terpilih digunakan uji hipotesa

Metoda Non Diskritisasi

 Contoh penggunaan metoda non diskritisasi adalah text mining yang dikenal dengan algoritma Min-Apriori

Min-Apriori (Han et al)

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Contoh:

W1 dan W2 cenderung muncul bersamaan

Min-Apriori

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Solusi yang potensial :
 Ubah menjadi matriks 0/1 dan gunakan algoritma yang ada (mis. Apriori)
- Diskritisasi tidak diperlukan karena user justru menginginkan asosiasi antar kata bukan pada range katakata

Min-Apriori

- Bagaimana menentukan nilai support sbh kata?
 - Normalisasi vektor kata mis. menggunakan L₁ norm
 - Setiap kata harus mempunyai nilai support 1.0

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

TID	W1	W2	W3	W4	W5
					0.17
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Min-Apriori

Definisi support :

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5
					0.17
					0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1,W2,W3)

$$= 0 + 0 + 0 + 0 + 0.17$$

$$= 0.17$$

Sifat Anti-monotone Support

TID	W1	W2	W3	W4	W5
D1	0.40	0.33	0.00	0.00	0.17
D2	0.00	0.00	0.33 0.00	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Contoh:

$$Sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

$$Sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$$

$$Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17$$

Latihan

N o	Weat her Cond ition	Driver'sCondition	Traffic Violation	Seat Bealt	Crash Severity
1	Good	Alcohol-impaired	Exceed speed limit	No	Major
2	Bad	Sober	None	Yes	Minor
3	Good	Sober	Disobey stop sign	Yes	Minor
4	Good	Sober	Exceed speed limit	Yes	Major
5	Bad	Sober	Disobey Traffing signal	No	Major
6	Good	Alcohol-impaired	Disobey stop sign	Yes	Minor
7	Bad	Sober	None	Yes	Major
8	Good	Alcohol-impaired	Disobey Traffing signal	Yes	Major
9	Good	Alcohol-impaired	None	No	Major
10	Bad	Sober	Disobey Traffing signal	No	Major
11	Good	Alcohol-impaired	Exceed speed limit	Yes	Major
12	Bad	Sober	Disobey stop sign	Yes	Minor

- a. Show binarized version of the data
- b. Assuming support treshold 30%, how many candidate and frequent itemset will be generated?
- c. Assuming min confidence 70%, generate the rules!

Latihan

Α	В	С
1	1	1
2	1	1
3	1	0
4	1	0
5	1	1
6	0	1
7	0	0
8	1	1
9	0	0
10	0	0
11	0	0
12	0	1

The first attribute is continuous while the remaining two attributes are asymmetric binary. A Rule is considered strong if its support exceeds 15% and its confidence exceeds 60%. The given supports the following two rules

a.
$$\{(1 \le A \le 2), B = 1\} -> \{C = 1\}$$

b.
$$\{(5 \le A \le 8), B = 1\} -> \{C = 1\}$$

- (i) Compute the support and confidence for both rules
- (ii) Use discertize with bind-width = 2,3, 4, state wether the above two rules discovered by the Apriori algorithm