חדו"א 1מ' - אביב תשס"א - דף עזר בנושא מבחנים להתכנסות טורים

- $\lim_{n o \infty} a_n = 0$ הוא $\sum a_n$ התכנסות להתכנסות .1
- $f(a,\infty)$ על יורדת אינטגרל: תהי f(x) פונקציה חיובית מונוטונית פונקגיה תהי .2 כך ש- $f(n)=a_n$ איי:

מתכנס.
$$\int\limits_a^\infty f(x)dx \Longleftrightarrow \sum\limits_{n=1}^\infty a_n$$

- . מסוים. $a_n \leq M \cdot b_n$ מסוים. $\{b_n\}$, $\{a_n\}$ מסוים. $a_n \leq M \cdot b_n$ אזי:
 - $\sum a_n \Longleftrightarrow \sum b_n$ מתכנס.
 - מתבדר $\sum b_n \Longleftrightarrow \sum a_n$ (ב)
- $\lim_{n \to \infty} rac{a_n}{b_n} = L$, אויביות חיוביות $\{b_n\}$, $\{a_n\}$: הכללה של מבחן ההשוואה $\sum b_n$ ו- $\sum a_n$ ו- $\sum a_n$ אוי $0 < L < \infty$
 - אזי: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$. סדרה חיובית. $\{a_n\}$: מבחן המנה

$$\overline{\dim} < 1$$
 מתכנס מספיק $\sum a_n \longleftarrow 0 \le
ho < 1$ (א)

$$(\underline{\lim}>1$$
 מתבדר (מספיק $\sum a_n \longleftarrow
ho>1$ (ב)

- (ג) ho=1 המבתן נכשל.
- $ho>1\Longleftrightarrow\sum_{n=1}^{\infty}rac{1}{n^{p}}$.6
- -ט כך א $N(\varepsilon)$ קיים $\varepsilon>0$ לכל המכנס מתכנס מתכנס מבחן קושי: a_n בחן קושי: . $p\geq n\geq N(\varepsilon)$ לכל $|a_n+a_{n+1}+\ldots+a_p|<\varepsilon$
- .8 טור אי-שלילי מתכנס \Longleftrightarrow סדרת הסכומים החלקיים שלו חסומה.
 - אזי: $\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = \sigma$. אזיי. אזיי $\{a_n\}$

מתכנס מתכנס
$$\sum a_n \longleftarrow 0 \leq \sigma < 1$$

מתבדר
$$\sum a_n \longleftarrow \sigma > 1$$
 (ב)

(ג)
$$\sigma = 1$$
 המבתן נכשל.

- $\sum 2^n a_{2^n}$ -ו $\sum a_n$ אזי אורדת. אזי מונוטונית סדרה חיובית $\{a_n\}$ בדרים ומתבדרים יחדיו. מתכנסים ומתבדרים יחדיו.
 - $\lim_{n \to \infty} n\left(1 rac{a_{n+1}}{a_n}
 ight) = L$.סדרה חיובית. $\{a_n\}$ ישאי: .11*
 - מתכנס $\sum a_n \longleftarrow L > 1$ (א)
 - מתבדר $\sum a_n \longleftarrow L < 1$ (ב)
 - L=1 נכשל.
- אי: $\lim_{n\to\infty} \ln n \left(1-n\left(\frac{a_{n+1}}{a_n}\right)\right) = L$ סדרה חיובית. $\{a_n\}$ כדרה אינ: $\{a_n\}$ כדרה בית אינ:
 - $na_n \underset{n \to \infty}{\longrightarrow} 0 \Longleftrightarrow \Delta n$ מתכנס מתכנס מונוטונית יורדת, מונוטונית מונוטונית (a_n) .13
 - $orall n a_{n+1} \leq a_n$ (1) שפט לייבניץ: $\{a_n\}$ סדרה חיובית המקיימת: (2) סדרה חיובית $\{a_n\}$

 $\Sigma(-1)^n a_n$ אזי: $\Sigma(-1)^n a_n$ מתכנס, וכן מתקיים

$$|S| \leq |a_1|$$
 (N)

$$|S - S_n| < |a_{n+1}|$$
 (2)

15. חוק הצירוף:

- מתכנס, אז כל טור הנוצר ממנו ע"י הכנסת סוגריים מתכנס $\sum a_n$ אם אם הוא, ולאותו סכום.
 - (ב) פתיחת סוגריים בטור מתכנס יכולה לגרום לו להתבדר.
 - (ג) אם בכל סוגריים האברים בעלי אותו סימן, אז (ב) לא נכון.

16. תוק התילוף:

- אט איי שינוי שינוי סדר הנוצר ממנו ע"י שינוי סדר $\sum a_n$ אם אם האברים מתכנס אף הוא בהחלט, ולאותו סכום.
- בום לגרום אדר האברים לגרום לו ניתן ע"י שינוי סדר האברים לגרום לו בתנאי, אז ניתן או להתכנס לכל סכום, או להתבדר.
- .17 מתכנס, $a_n b_n$ אז $a_n b_n$ מתכנס, $\{b_n\}$ מונוטונית אם $\sum a_n b_n$ אם בחן אבל:
- $\{b_n\}$ ו- חסומה, הסכומים החלקיים של בחן דיריכלה: אם סדרת הסכומים החלקיים של בחן דיריכלה: אם סדרת הסכומים החלקיים של החטומית ל-0, אזי $\sum a_n b_n$ מתכנס.