Contents

	Pref	face	page xi	
	Par	t I Monte Carlo basics	1	
1	Introduction			
	1.1	The Monte Carlo method	3	
	1.2	Quantum Monte Carlo	5	
	1.3	Classical Monte Carlo	6	
2	Monte Carlo basics		11	
	2.1	Some probability concepts	11	
	2.2	Random sampling	15	
	2.3	Direct sampling methods	17	
		2.3.1 Discrete distributions	17	
		2.3.2 Continuous distributions	20	
	2.4	Markov chain Monte Carlo	23	
		2.4.1 Markov chains	24	
		2.4.2 Stochastic matrices	25	
	2.5	Detailed balance algorithms	28	
		2.5.1 Metropolis algorithm	28	
		2.5.2 Generalized Metropolis algorithms	31	
		2.5.3 Heat-bath algorithm	33	
	2.6	2.6 Rosenbluth's theorem		
	2.7	38		
	Exe	rcises	40	
3	Data analysis		43	
	3.1	43		
	3.2 Calculating averages and estimating errors			
	3.3 Correlated measurements and autocorrelation times			

vi Contents

	3.4	Blocking analysis	50
	3.5	Data sufficiency	52
	3.6	Error propagation	55
	3.7	Jackknife analysis	57
	3.8	Bootstrap analysis	59
	3.9	Monte Carlo computer program	61
	Exe	rcises	63
4	Mor	nte Carlo for classical many-body problems	66
	4.1	Many-body phase space	66
	4.2	Local updates	68
	4.3	Two-step selection	69
	4.4	Cluster updates	70
		4.4.1 Swendsen-Wang algorithm	71
		4.4.2 Graphical representation	73
		4.4.3 Correlation functions and cluster size	75
	4.5	Worm updates	76
	4.6	Closing remarks	80
	Exe	rcises	82
5	Qua	antum Monte Carlo primer	84
	5.1	Classical representation	84
	5.2	Quantum spins	86
		5.2.1 Longitudinal-field Ising model	86
		5.2.2 Transverse-field Ising model	87
		5.2.3 Continuous-time limit	92
		5.2.4 Zero-field XY model	98
		5.2.5 Simulation with loops	103
		5.2.6 Simulation with worms	106
		5.2.7 Ergodicity and winding numbers	110
	5.3	Bosons and Fermions	111
		5.3.1 Bosons	111
		5.3.2 Fermions	112
	5.4	Negative-sign problem	114
	5.5	Dynamics	115
	Exe	rcises	117
	Par	t II Finite temperature	119
6	Fini	ite-temperature quantum spin algorithms	121
	6.1	Feynman's path integral	121

		Contents	vii
6.2	Loop/o	cluster update	124
	_	General framework	124
	6.2.2	Continuous-time loop/cluster update	127
		XXZ models	129
	6.2.4	Correlation functions	132
	6.2.5	Magnetic fields	136
		Large spins $(S > \frac{1}{2})$	137
6.3	High-t	140	
	6.3.1	Stochastic series expansion	140
	6.3.2	"Continuous-time" limit	144
6.4	Worm	update	145
	6.4.1	Freezing problem	146
	6.4.2	Directed-loop algorithm	147
	6.4.3	Violation of the detailed balance condition	153
	6.4.4	Correlation functions	154
	6.4.5	XXZ model	156
	6.4.6	On-the-fly vertex generation	161
6.5	Towar	164	
	6.5.1	Extrapolation to zero temperature	166
	6.5.2	Quantum phase transitions	168
	6.5.3	Finite-size scaling	170
6.6	Applic	cations to Bosonic systems	174
Exer	cises		179
Dete	Determinant method		
7.1	Theore	etical framework	180
	7.1.1	Hubbard-Stratonovich transformations	181
	7.1.2	Determinantal weights	185
	7.1.3	Single-particle Green's function	188
7.2	Finite	temperature algorithm	189
	7.2.1	Matrix representation	190
	7.2.2	Metropolis sampling	192
	7.2.3	The algorithm	194
	7.2.4	Measurements	197
7.3	Hirsch	n-Fye algorithm	198
7.4	Matrix	x product stabilization	202
7.5	Comm	nents	209
Exer	exercises		

214

214

8

Continuous-time impurity solvers

8.1 Quantum impurity models

7

viii Contents

	8.1.1	Chain representation	216
	8.1.2	Action formulation	217
8.2	Dynaı	mical mean-field theory	219
	8.2.1	Single-site effective model	219
	8.2.2	DMFT approximation	221
	8.2.3	DMFT self-consistency loop	222
	8.2.4	Simulation of strongly correlated materials	223
	8.2.5	Cluster extensions	226
8.3	Gener	ral strategy	228
8.4	Weak	-coupling approach	230
	8.4.1	Sampling	232
	8.4.2	Determinant ratios and fast matrix updates	233
	8.4.3	Measurement of the Green's function	234
	8.4.4	Multi-orbital and cluster impurity problems	236
8.5	Strong	g-coupling approach	237
	8.5.1	Sampling	240
	8.5.2	Measurement of the Green's function	240
	8.5.3	Generalization – Matrix formalism	244
		Generalization – Krylov formalism	247
8.6	Infinit	te- <i>U</i> limit: Kondo model	249
		Weak-coupling approach	249
		Strong-coupling approach	252
8.7		minant structure and sign problem	254
		Combination of diagrams into a determinant	254
		Absence of a sign problem	256
8.8	Scalin	ng of the algorithms	258
Exe	rcises		262
Par	t III Z	Zero temperature	265
Vari	ational	Monte Carlo	267
9.1	Variat	ional Monte Carlo	267
	9.1.1	The variational principle	267
	9.1.2	Monte Carlo sampling	270
9.2	Trial s		272
	9.2.1	Slater-Jastrow states	273
	9.2.2	Gutzwiller projected states	274
	9.2.3	Valence bond states	282
	9.2.4	Tensor network states	287
9.3	Trial-	state optimization	291
		Linear method	293

9

Contents	ix
Comenis	17

	9.3.2	Newton's method	296
	9.3.3	Connection between linear and Newton methods	298
	9.3.4	Energy variance optimization	298
	9.3.5	Stabilization	299
	9.3.6	Summary of the linear and Newton's optimization methods	299
	Exercises		301
10	Power meth	nods	302
	10.1 Deteri	ministic direct and inverse power methods	302
	10.2 Monte	e Carlo power methods	305
	10.2.1	Monte Carlo direct power method	306
	10.2.2	2 Monte Carlo inverse power method	310
		astic reconfiguration	314
		's function Monte Carlo methods	320
		Linear method	322
	10.4.2	2 Diffusion Monte Carlo	324
		3 Importance sampling	326
	10.5 Measu	urements	327
	10.6 Excite		329
	10.6.1	Correlation function Monte Carlo	329
		2 Modified power method	331
	10.7 Comn	nents	334
	Exercises		337
11	Fermion gro	ound state methods	338
	11.1 Sign p	problem	338
	11.2 Fixed-	-node method	341
	11.3 Const	rained-path method	345
	11.4 Estima	ators	349
	11.4.1	Mixed estimator	349
	11.4.2	2 Forward walking and back propagation	352
	11.5 The al	lgorithms	355
		rained-phase method	360
	Exercises		363
	Part IV (Other topics	365
12	2		367
		ninary comments	367
	12.2 Dynar	mical correlation functions	370
	12.3 Bayes	sian statistical inference	373

x Contents

	12	3.1 Principle of maximum entropy	375
		3.2 The likelihood function and prior probability	378
		.3.3 The "best" solutions	380
		alysis details and the Ockham factor	383
		actical considerations	388
		omments	395
	Exercise	es	396
13	Paralleli	zation	398
	13.1 Pa	rallel architectures	398
		ngle-spin update on a shared-memory computer	399
		ngle-spin update on a distributed-memory computer	402
		op/cluster update and union-find algorithm	403
		ion-find algorithm for shared-memory computers	408
		ion-find algorithm for distributed-memory computers	411
	13.7 Ba	ck to the future	413
Appe	endix A	Alias method	416
Appe	endix B	Rejection method	418
Арре	endix C	Extended-ensemble methods	420
Арре	endix D	Loop/cluster algorithms: SU(N) model	425
Арре	endix E	Long-range interactions	428
Appe	endix F	Thouless's theorem	432
Appe	endix G	Hubbard-Stratonovich transformations	435
Арре	endix H	Multi-electron propagator	441
Арре	endix I	Zero temperature determinant method	445
Арре	endix J	Anderson impurity model: chain representation	449
Арре	endix K	Anderson impurity model: action formulation	451
Appe	endix L	Continuous-time auxiliary-field algorithm	455
Appe	endix M	Continuous-time determinant algorithm	459
Арре	endix N	Correlated sampling	462
Appe	endix O	The Bryan algorithm	464
-	Referenc	ces	469
	Index		484