Lecture 19:

Estimating directional dynamic games with multiple equilibria: full solution MLE Econometric Society Summer Schools in Dynamic Structural

Fedor Iskhakov, Australian National University Dennis Kristensen, University College London John Rust, Georgetown University Bertel Schjerning, University of Copenhagen

> UCL, London July 6, 2025

ROAD MAP

- 1. Collusion of Australian corrugated fibre packaging (CFP) producers
- 2. Experiment with the model
- 3. State recursion algorithm
 - ► Theory of directional dynamic games (DDGs)
- 4. Recursive lexicographical search (RLS) algorithm
- 5. Full solution for the leapfrogging game
- Structural estimation of directional dynamic games with Nested RLS method
 - Construction of the NRLS estimator
 - Monte Carlo simulations

Nested Recursive Lexicographical Search (NRLS)

- ▶ Data from M independent markets from T periods $Z = \{a^{jt}, x^{jt}\}_{j \in \{1,...,N\}, t \in \{1,...,T\}}$
- Let the set of all MPE equilibria be $\mathcal{E} = \{1, \dots, K(\theta)\}$
- 1. Outer loop

Maximization of the likelihood function w.r.t. to structural parameters $\boldsymbol{\theta}$

$$\theta^{ML} = \arg\max_{\theta \in \Theta} \mathcal{L}(Z, \theta)$$

2. Inner loop

Maximization of the likelihood function w.r.t. equilibrium selection

$$\mathcal{L}(Z, \theta) = \arg \max_{k \in \{1, \dots, K(\theta)\}} \mathcal{L}(Z, \theta, V_{\theta}^{k})$$

Max of a function on a discrete set organized into RLS tree

Likelihood over the state space

▶ Given equilibrium k choice probabilities $P_i^k(a|x)$, likelihood is

$$\mathcal{L}(Z, \theta, V_{\theta}^k) = \sum_{j=1}^{N} \sum_{t=1}^{T} \sum_{i=1}^{J} \log P_i^k(a_i^{jt}|x^{jt}; \theta)$$

- Let ι index points in the state space $\iota = 1$ initial point, $\iota = S$ the terminal state
- ▶ Denote n_{ι} the number of observations in state x_{ι} and $n_{\iota}^{a_{i}}$ the number of observations of player i taking action a_{i} at x_{ι}

$$n_{\iota} = \sum_{j=1}^{N} \sum_{t=1}^{T} \mathbb{1}\{x^{jt} = x_{\iota}\} \qquad n_{\iota}^{a_{i}} = \sum_{j=1}^{N} \sum_{t=1}^{T} \mathbb{1}\{a_{i}^{jt} = a_{i}, x^{jt} = x_{\iota}\}$$

Then equilibrium-specific likelihood can be computed as

$$\mathcal{L}(Z, \theta, V_{\theta}^{k}) = \sum_{t=1}^{S} \sum_{i=1}^{J} \sum_{a} n_{t}^{a_{i}} \log P_{i}^{k}(a|x_{t}; \theta)$$

Data distribution over the state space

1000 markets, 5 time periods, init at apex of the pyramid

Branch and bound (BnB) method

Land and Doig, 1960 Econometrica

- ► Old method for solving discrete programming problems
- ► Maximizing/minimizing a function over a discrete set
- 1. Form a tree of subdivisions of the set of admissible plans
- Specify a bounding function representing the best attainable objective on a given subset
 - Monotonicity: the bounding function has to be weakly decreasing in the cardinality of the set argument (for max problem)
 - ▶ Has to equal the criterion function when computed at singletons
- Dismiss the subsets of the plans where the bound is below the current best attained value of the objective
- ► There are several flavors of BnB method, differences in implementation
- ▶ There are several extensions to the BnB method

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

$$f(x): \mathbb{R}^n \to \mathbb{R} \ \text{ objective function} \\ \Omega \ \text{ set of feasible } x \\ \mathcal{P}_j(\Omega) \ \text{ partition of } \Omega \ \text{ into } k_j+1 \ \text{ subsets}, \ k_0=0, \ \mathcal{P}_0(\Omega)=\Omega \\ \mathcal{P}_j(\Omega) = \{\Omega_{j1}, \ldots, \Omega_{jk_j}: \ \Omega_{ji} \cap \Omega_{ji'}=\varnothing, i \neq i', \ \cup_{i=1}^{k_j} \Omega_{ji}=\Omega \} \\ \{\mathcal{P}_j(\Omega)\}_{j=1,\ldots,J} \ \text{ a sequence of } J \ \text{ gradually refined partitions} \\ 0 = k_0 \leq k_1 \leq \cdots \leq k_J \\ |\Omega| \geq \max_i |\Omega_{k_1i}| \geq \cdots \geq \max_i |\Omega_{k_ji}| \geq \cdots \geq \max_i |\Omega_{k_ji}| \\ \forall j=1,\ldots,J, \forall i=1,\ldots,k_j, \forall j' < j: \ \exists i' \in \{1,\ldots,k_{j'}\} \ \text{ such that } \Omega_{ji} \subset \Omega_{j'i'} \end{cases}$$

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

Theory of BnB: bounding

$$\max f(x)$$
 s.t. $x \in \Omega$

 $g(\Omega_{ij}): 2^{\Omega} \to \mathbb{R}$ bounding function: from subsets of Ω to real line $g(\{x\}) = f(x)$ for singletons, i.e. when $\Omega_{ij} = \{x\}$

Monotonicity of bounding function

$$egin{aligned} orall \Omega_{j_1,i_1} \supset \Omega_{j_2,i_2} \supset \cdots \supset \Omega_{j_k,i_k} \ g(\Omega_{j_1,i_1}) \geq g(\Omega_{j_2,i_2}) \geq \cdots \geq g(\Omega_{j_k,i_k}) \end{aligned}$$

▶ Inequalities should be reversed for the minimization problem

BnB with NRLS

- **▶ Branching**: RLS tree
- Bounding: The bound function is partial likelihood calculated on the subset of states that

$$\mathcal{L}^{\mathsf{Part}}(Z, \theta, \mathcal{S}) = \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(a_{i}^{jt}|x^{jt}; \theta)$$
s.t. $(x^{jt}, a_{i}^{jt}) \in \mathcal{S}$

- ► Monotonically declines as more data is added
- Equals to the full log-likelihood at the leafs of RLS tree

 $\fbox{14} \cdot \fbox{13} \cdot \fbox{12} \cdot \fbox{11} \cdot \fbox{10} \text{ Partial loglikelihood} = -3.2$

Non-parametric likelihood bounding

▶ Replace choice probabilities $P_i^k(a|x_\iota;\theta)$ with frequencies n_ι^a/n_ι

$$\mathcal{L}^{\mathsf{non\text{-}par}}(Z^{\mathcal{S}}) = \sum_{\iota \in \mathcal{S}} \sum_{i=1}^J \sum_{\mathsf{a}} n_\iota^{\mathsf{a}_i} \log(n_\iota^{\mathsf{a}}/n_\iota)$$

- $ightharpoonup \mathcal{L}^{\text{non-par}}(Z^{\mathcal{S}})$ depends only on the counts from the data!
- ▶ Not hard to show algebraically that for any Z^S (\approx Gibbs inequality)

$$\mathcal{L}^{\mathsf{non-par}}(Z^{\mathcal{S}}) > L^{\mathsf{part}}(Z^{\mathcal{S}}, \theta, V_{\theta}^{k})$$

Therefore partial likelihood can be optimistically extrapolated by empirical likelihood at any step ι of the RLS tree traversal

$$\mathcal{L}^{\mathsf{part}}(Z^{\{S,S-1,\ldots,\iota\}},\theta,V_{\theta}^k) + \mathcal{L}^{\mathsf{non-par}}(Z^{\{\iota-1,\ldots,1\}})$$

Augmented partial likelihood is much more powerful bound for BnB

Non-parameteric likelihood bounding

 $\iota = \mathit{S} = 14$ (terminal state) on the left, $\iota = 1$ (initial state) on the right

BnB with non-parameteric likelihood bound

Greedy traversal + non-parameteric likelihood bound

BnB with non-parameteric likelihood bound, larger sample

Non-parametric o parametric likelihood as $extit{N} o \infty$ at true $heta \Rightarrow$ even less computation

Full enumeration RLS in larger sample

Comparing with the previous slide most of the computation is avoided!

BnB refinement with non-parametric likelihood

- For any amount of data the non-parametric likelihood is greater or equal to the parametric likelihood algebraically
- ▶ BnB augmented with non-parameteric likelihood bound gives sharper Bounding Rules → less computation
- ▶ Wih more data as $M \to \infty$
- Non-parametric log-likelihood converge to the likelihood line
- ▶ The width of the band between the blue lines in the plots decreases
 - → Even sharper Bounding Rules
 - \rightarrow Even less computation

MLE for any sample size, but easier to compute with more data!

ROAD MAP

- 1. Collusion of Australian corrugated fibre packaging (CFP) producers
- 2. Experiment with the model
- 3. State recursion algorithm
 - Theory of directional dynamic games (DDGs)
- 4. Recursive lexicographical search (RLS) algorithm
- 5. Full solution for the leapfrogging game
- Structural estimation of directional dynamic games with Nested RLS method
 - Construction of the NRLS estimator
 - Monte Carlo simulations

Markov Perfect Equilibria

- ► MPE is a pair of strategy profile and value functions
- ► In compact notation

$$V = \Psi^{V}(V, P, \theta)$$

 $P = \Psi^{P}(V, P, \theta)$

Set of all Markov Perfect Equilibria

$$SOL(\Psi, \theta) = \left\{ (P, V) \middle| \begin{array}{c} V = \Psi^{V}(V, P, \theta) \\ P = \Psi^{P}(V, P, \theta) \end{array} \right\}$$

- ▶ Ψ^{V} : $V, P \longrightarrow V$ Bellman operator
- \blacktriangleright Ψ^P : V, P \longrightarrow P Choice probability formulas (logit)
- $ightharpoonup \Gamma: P \longrightarrow V$ Hotz-Miller inversion

Estimation methods for dynamic stochastic games

- ► Two step (CCP) estimators
 - Fast, potentially large finite sample biases
 - Hotz, Miller (1993); Altug, Miller (1998); Pakes, Ostrovsky, and Berry (2007); Pesendorfer, Schmidt-Dengler (2008)
 - 1. Estimate $CCP \rightarrow \hat{P}$
 - 2. Method of moments Minimal distance Pseudo likelihood

$$\begin{split} \min_{\boldsymbol{\theta}} \left[\hat{P} - \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta}) \right]' \boldsymbol{W} \left[\hat{P} - \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta}) \right] \\ \max_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{Z}, \boldsymbol{\Psi}^{P}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \hat{P}), \hat{P}, \boldsymbol{\theta})) \end{split}$$

- Nested pseudo-likelihood (NPL)
 - Recursive two step pseudo-likelihood
 - Bridges the gap between efficiency and tractability
 - Unstable under multiplicity
 - Aguirregabiria, Mira (2007); Pesendorfer, Schmidt-Dengler (2010); Kasahara and Shimotsu (2012); Aguirregabiria, Marcoux (2021)

Estimation methods for dynamic stochastic games

- ► Equilibrium inequalities (BBL)
 - ► Minimize the one-sided discrepancies
 - Computationally feasible in large models
 - Bajari, Benkard, Levin (2007)
- Math programming with equilibrium constraints (MPEC)
 - MLE as constrained optimization
 - Does not rely on the structure of the problem
 - ► Much bigger computational problem
 - Su (2013); Egesdal, Lai and Su (2015)

$$\max_{(\theta,P,V)} \mathcal{L}(\mathsf{Z},\mathsf{P}) \text{ subject to } \mathsf{V} = \overline{\mathsf{\Psi}^\mathsf{V}(\mathsf{V},\mathsf{P},\theta)}, \mathsf{P} = \overline{\mathsf{\Psi}^\mathsf{P}(\mathsf{V},\mathsf{P},\theta)}$$

- ► All solution homotopy MLE
 - Borkovsky, Doraszelsky and Kryukov (2010)

Overview of NRLS

- Robust and computationally feasible^(?) MLE estimator for directional dynamic games (DDG)
- Rely of full solution algorithm that provably computes all MPE under certain regularity conditions
- Employ smart discrete programming method to maximize likelihood function over the finite set of equilibria
- ► Fully robust to multiplicity of MPE
- ► Relax single-equilibrium-in-data assumption
- ▶ Path to estimation of equilibrium selection rules

Monte Carlo simulations

Α

Single equilibrium in the model One equilibrium in the data

В

Multiple equilibria in the model Same equilibrium played the data

(

Multiple equilibria in the model Multiple equilibria in the data:

- Long panels, each market plays their own equilibrium
- Groups of markets play the same equilibrium

(not today)

Implementation details

- ► Two-step estimator, NPL and EPL
 - Matlab unconstrained optimizer (with numerical derivatives)
 - CCPs from frequency estimators
 - Max 120 iterations (for NPL and EPL)
- ► MPEC
 - ► Matlab constraint optimizer (interior-point) with analytic derivatives
 - MPEC-VP: Constraints on both values and choice probabilities (as in Egesdal, Lai and Su, 2015)
 - MPEC-P: Constraints in terms of choice probabilities + Hotz-Miller inversion (twice less variables)
 - Starting values from two-step estimator
- Estimated parameter k₁
- ► Sample size: 1000 markets in 5 time periods
- ▶ Parameters are chosen to ensure good coverage of the state space and non-degenerate CCPs in all states

Monte Carlo A, run 1: no multiplicity

Number of equilibria at true parameter: 1

Number of equilibria in the data: 1

	2step	NPL	EPL	MPEC-VP	MPEC-P	NRLS
True $k_1 = 3.5$	3.52786	3.49714	3.49488	3.49488	3.49486	3.49488
Bias	0.02786	-0.00286	-0.00512	-0.00512	-0.00514	-0.00512
MCSD	0.10037	0.06522	0.07042	0.07042	0.07078	0.07042
ave log-like	-1.16661	-1.16144	-1.16143	-1.16143	-1.16139	-1.16143
log-likelihood	-5833.07	-5807.21	-5807.16	-5807.16	-5806.95	-5807.16
log-like short	-	-0.050	-0.000	-0.000	-0.000	-0.000
KL divergence	0.03254	0.00021	0.00024	0.00024	0.00024	0.00024
P - P0	0.11270	0.00469	0.00495	0.00495	0.00500	0.00495
$ \Psi(P) - P $	0.16185	0.0000	0.0000	0.0000	0.0000	0.0000
$ \Gamma(v) - v $	0.87095	0.00000	0.00000	0.00000	0.00000	0.00000
Convrged of 100	-	100	100	100	99	100

- ► Equilibrium conditions satisfied (except 2step)
- ▶ Nearly all MLE estimators identical to the last digit
- ▶ NPL and EPL estimators approach MLE

Monte Carlo B, run 1: little multiplicity

Number of equilibria at true parameter: 3

Number of equilibria in the data: 1 Data generating equilibrium: stable

	2step	NPL	EPL	MPEC-VP	MPEC-P	NRLS
True k1=7.5	7.55163	7.49844	7.49918	7.65318	7.35124	7.49919
Bias	0.05163	-0.00156	-0.00082	0.15318	-0.14876	-0.00081
MCSD	0.17875	0.06062	0.03413	0.99742	0.47136	0.03413
ave log-like	-0.84779	-0.84425	-0.84421	-0.88682	-0.87541	-0.84421
log-likelihood	-21194.86	-21106.33	-21105.13	-22170.40	-21885.37	-21105.13
log-like short	-	-1.206	-0.000	-1062.740	-776.809	-0.000
KL divergence	0.02557	0.00040	0.00013	0.23536	0.16051	0.00013
$ P - P_{0} $	0.11085	0.00490	0.00280	1 <u>.17</u> 66	0.20957	0.00280
$ \Psi(P)-P $	0.170940	0.000000	0.000000	00	0.000000	0.000000
$ \Gamma(v) - v $	1.189853	0.000000	0.000000	0.000000	0.000000	0.000001
N runs of 100	100	100	100	98	97	100

- ► MPEC convergence deteriorates
- Equilibrium conditions are satisfied, but estimators start to converge to wrong equilibria (as seen from KL divergence from the data generating equilibrium)

Likelihood correspondence

Lines are costructed using symmetric KL-divergence

Monte Carlo B, run 2: little multiplicity, unstable

Number of equilibria at true parameter: 3

Number of equilibria in the data: 1 Data generating equilibrium: unstable

	2step	NPL	EPL	MPEC-VP	MPEC-P	NRLS
True k1=7.5	7.54238	7.39276	7.48044	7.73133	7.63100	7.50176
Bias	0.04238	-0.10724	-0.01956	0.23133	0.13100	0.00176
MCSD	0.17145	0.05608	0.15801	0.72988	0.89874	0.03820
ave log-like	-0.86834	-0.89374	-0.86550	-0.88512	-0.90196	-0.86504
log-likelihood	-21708.60	-22343.58	-21637.54	-22127.91	-22549.06	-21626.12
log-like short	-	-765.242	-11.413	-502.121	-920.643	-0.000
KL divergence	0.02271	0.15996	0.00257	0.11452	0.20182	0.00012
$ P - P_{0} $	0.09757	0.20709	0.00619	0.03860	0.02504	0.00307
$ \Psi(P) - P $	0.160102	0.000000	0.000000	0.000000	0.000000	0.000000
$ \Gamma(v) - v $	1.126738	0.000000	0.000000	0.000000	0.000000	0.000001
N runs of 100	100	18	100	99	98	100

- ► NPL estimator fails to converge
- ► Similar convergence issues for MPEC
- ► EPL estimator performs well

Aguirregabiria, Marcoux (2021)

Likelihood correspondence

Lines are costructed using symmetric KL-divergence

Monte Carlo B, run 3: discontinuous likelihood

Number of equilibria at true parameter: 9

Number of equilibria in the data: 1

Data generating equilibrium: unstable, near "cliffs"

	2step	NPL	EPL	MPEC-VP	MPEC-P	NRLS
True k1=3.5	3.49739	3.55144	3.64772	3.65943	3.67027	3.50212
Bias	-0.00261	0.05144	0.14772	0.15943	0.17027	0.00212
MCSD	0.13999	0.07133	0.12900	0.12693	0.11583	0.03255
ave log-like	-0.27494	-0.29474	-0.29528	-0.30330	-0.30257	-0.25086
log-likelihood	-1374.721	-1473.695	-1476.425	-1516.503	-1512.847	-1254.320
log-like short	-	-219.375	-222.104	-270.999	-267.523	-0.000
KL divergence	0.01512	0.04889	0.04495	0.04102	0.04078	0.00016
$ P - P_{0} $	0.62850	0.86124	0.83062	0.66562	0.65879	0.01610
$ \Psi(P) - P $	0.763764	0.000000	0.000000	0.000000	0.000000	0.000002
$ \Gamma(v) - v $	0.852850	0.000000	0.000000	0.000000	0.000000	0.000005
N runs of 100	100	100	100	28	27	100

- ► Similar convergence issues
- Poor estimates by EPL, NPL and MPEC (constraints are satisfied, yet low likelihood and high KL divergence)

Likelihood correspondence

Lines are costructed using symmetric KL-divergence

Monte Carlo B, run 4: massive multiplicity

Number of equilibria at true parameter: 2455

Number of equilibria in the data: 1

Time to enumerate all equilibria (RLS): 10m 39s

	1-NPL	NPL	EPL	NRLS
True k1=3.75	3.70959	3.71272	3.78905	3.74241
Bias	-0.04041	-0.03728	0.03905	-0.00759
MCSD	0.11089	0.06814	0.40716	0.03032
ave log-likelihood	-0.38681557	-0.37348793	-0.45256293	-0.35998461
log-likelihood	-1934.078	-1867.440	-2262.815	-1799.923
log-like shortfall	-	-66.529	-467.607	-0.000
KL divergence	Inf	14.07523	12231.59186	0.32429
$ P-P_{0} $	0.82204	0.65580	0.79241	0.07454
$ \Psi(P) - P $	0.963574	0.000000	0.000000	0.000006
$ \Gamma(v) - v $	7.020899	0.000000	0.000000	0.000008
N runs of 100	100	18	68	100
CPU time	0.159s	11.262s	4.013s	4.731s

- Severe convergence problems for NPL and EPL
- ▶ Poor eqb identification (low likelihood and high KL divergence)
- NRLS has comparable CPU time (much faster than full enumeration)

Monte Carlo C, multiple equilibria in the data

The path forward:

- Assume that the same equilibrium is played in each market over time
- ► Grouped fixed-effects, groups defined by the equilibria played
- 1. Joint grouped fixed-effects estimation
 - ightharpoonup Estimate the partition of the markets into groups playing different equilibria together with heta
 - ► For each market compute maximum likelihood over all equilibria and "assign" it to the relevant group (estimation+classification)
 - Computationally very demanding: BnB market-by-market, non-parametric refinement has no bite
- 2. Two-step grouped fixed-effects estimation
 - Step 1: partition the markets based on some observable characteristics (K-means clustering)
 - \triangleright Step 2: estimate θ allowing different equilibria in different groups
 - Small additional computational cost!

Conclusions: Bertrand investments model

- Many types of endogenous coordination is possible in equilibrium
 - Leapfrogging (alternating investments)
 - Preemption (investment by cost leader)
 - Duplicative (simultaneous investments)
- ▶ Full rent dissipation and monopoly outcomes are supported as MPE.
- ▶ Numerous MPE equilibria and "Folk theorem"-like result
- ► The equilibria are generally inefficient due to over-investment
 - Duplicative or excessively frequent investments

Conclusions: Solution of dynamic games

- ► When equilibrium is not unique the computation algorithm inadvertently acts as an equilibrium selection mechanism
- When directionality in the state space is present, state recursion algorithm is preferred to time iterations
- ▶ Plethora of Markov perfect equilibria poses new challenges:
 - ▶ How firms manage to coordinate on a particular equilibrium?
 - Increased difficulties for empirical applications.
 - Daunting perspectives for identification of equilibrium selection rule from the data.
- ► Estimation of dynamic games with multiple equilibria Nested Recursive Lexicographical Search (NRLS)

Conclusions: NRLS estimator

- ► Full solution MLE estimator for dynamic games of a particular type, namely directional dynamic games (DDGs)
- Nested loop: outer likelihood max + inner model solver
- Need to maximize over the set of all equilibria ↔ daunting computational task
- Smart BnB algorithm not to waste time on unlikely MPE
- NRLS is MLE estimator for dynamic games of a particular type, directional dynamic games (DDGs)
 - Fully robust to multiplicity of equilibria
 - Able to identify multiple equilibria in the data