Στο report για τους αλγορίθμους αρχικοποίησης καταλήξαμε στο συμπέρασμα ότι όλοι οι αλγόριθμοι έχουν τα δυνατά και τα αδύνατα σημεία τους. Ο convex hull επιστρέφει τα καλύτερα πολύγωνα αλλά απαιτεί περισσότερο χρόνο, ο onion απαιτεί αισθητά λιγότερο χρόνο αλλά τα πολύγωνά του δεν είναι ιδιαίτερα καλά και ο incremental αποτελεί μια καλή μέση λύση, με καλύτερους χρόνους από τον convex hull και καλύτερα πολύγωνα από τον onion, αλλά με περιορισμένο εύρος (από 500 σημεία και πάνω καθυστερεί αρκετά).

Με αυτό κατά νου, έχει νόημα για την αρχικοποίηση του local search αλγορίθμου να δοκιμάσουμε και τους 3 αλγορίθμους αρχικοποίησης. Έτσι, δημιουργούνται οι 3 συνδυασμοί LocCon, LocInc και LocOnion. Θεωρητικά ο LocCon θα πρέπει για μικρό πλήθος σημείων (μέχρι και 100 σημεία) να επιστρέφει τα καλύτερα αποτελέσματα, ο LocInc να έχει τη δυνατότητα εκεί που αποτυγχάνει ο LocCon να φέρνει σχετικά καλά αποτελέσματα και ο LocOnion εκεί που αποτυγχάνει ο LocInc απλά να βελτιστοποιεί το πολύγωνο εντός των χρονικών πλαισίων που έχουν δοθεί.

Να σημειωθεί πως για όλα τα δεδομένα είχαμε τα εξής

- L=1
- Threshold = InitialScore + input για μεγιστοποίηση, με μέγιστο threshold το 0.84.

Threshold = InitialScore - input για ελαχιστοποίηση, με ελάχιστο threshold το 0.20.

Εξαίρεση στα παραπάνω αποτελούν τα σημειοσύνολα με λιγότερο από 100 σημεία όπου το Threshold κατά την ελαχιστοποίηση ήταν 0.20 και κατά την μεγιστοποίηση 0.84

Ας δούμε αρχικά τα δεδομένα για την μεγιστοποίηση στους παρακάτω πίνακες:

	Score	Run Time	Cut-Off Time
stars-10	0.890	6 ms	5000 ms
us-night-15	0.844	47 ms	7500 ms
euro-night-20	0.864	63 ms	10000 ms
london-30	0.840	218 ms	15000 ms
stars-40	0.843	762 ms	20000 ms
us-night-45	0.937	1077 ms	22500 ms
uniform-50-1	0.914	1697 ms	25000 ms
uniform-60-2	0.863	3159 ms	30000 ms
us-night-80	0.941	8270 ms	40000 ms
london-100	0.860	20591 ms	50000 ms
paris-200	0 (RunTime>CutOff)	198168 ms	100000 ms

Πίνακας 1.LocalSearch with ConvexHull (Max)

	Score	Run Time	Cut-Off Time
stars-10	0.748	27 ms	5000 ms
us-night-15	0.797	75 ms	7500 ms
euro-night-20	0.835	234 ms	10000 ms
london-30	0.828	879 ms	15000 ms
stars-40	0.774	2063 ms	20000 ms
us-night-45	0.792	3131 ms	22500 ms
uniform-50-1	0.797	3429 ms	25000 ms
uniform-60-2	0.829	12098 ms	30000 ms
us-night-80	0.759	31093 ms	40000 ms
london-100	0.775	13771 ms	50000 ms
paris-200	0.692	40193 ms	100000 ms
paris-300	0 (RunTime>CutOff)	163567 ms	150000 ms

Πίνακας 2. LocalSearch with Incremental (Max)

	Score	Run Time	Cut-Off Time
stars-10	0.847	7 ms	5000 ms
us-night-15	0.826	103 ms	7500 ms
euro-night-20	0.842	37 ms	10000 ms
london-30	0.845	535 ms	15000 ms
stars-40	0.789	2675 ms	20000 ms
us-night-45	0.863	372 ms	22500 ms
uniform-50-1	0.792	4456 ms	25000 ms
uniform-60-2	0.796	10632 ms	30000 ms
us-night-80	0.849	6312 ms	40000 ms
london-100	0.676	4247 ms	50000 ms
paris-200	0.596	36035 ms	100000 ms
paris-300	0.640	133689 ms	150000 ms

Πίνακας 3.LocalSearch with Onion (Max)

Κοιτώντας τα παραπάνω αποτελέσματα, φαίνεται να επαληθεύονται οι θεωρίες μας. Όντως ο LocCon για λιγότερα από 200 σημεία επιστρέφει τα καλύτερα και γρηγορότερα αποτελέσματα αλλά για 200 σημεία και πάνω ξεπερνά τον επιτρεπόμενο χρόνο. Ο LocInc για τα σημεία που τον θέλουμε (100+) κάνει καλύτερη δουλεία από τον LocOnion αλλά αποτυγχάνει νωρίτερα από ότι περιμέναμε. Τέλος, ο LocOnion πετυχαίνει εκεί που άλλοι αποτυγχάνουν αλλά ,αν κρίνουμε από τα λιγοστά περιθώρια που έχει, θα χρειαστεί να μειώσουμε το threshold για μεγαλύτερα σημειοσύνολα. Αυτό που αξίζει να παρατηρήσουμε είναι πως ο LocCon ξεπερνάει τα επιτρεπτά επίπεδα του threshold. Αυτό είναι απόρροια της ποιότητας του αρχικού πολυγώνου, χαρακτηριστικό για το οποίο άλλωστε προτιμάται ο convex hull. Βέβαια, αυτό είναι που υπογράφει και την καταδίκη του σε μεγαλύτερα σημειοσύνολα.

Ας δούμε τώρα τα αποτελέσματα για ελαχιστοποίηση:

	Score	Run Time	Cut-Off Time
us-night-15	0.447	64 ms	7500 ms
euro-night-20	0.173	111 ms	10000 ms
london-30	0.238	678 ms	15000 ms
us-night-45	0.175	2001 ms	22500 ms
uniform-50-1	0.195	2546 ms	25000 ms
uniform-60-2	0.209	10787 ms	30000 ms
us-night-80	0.173	12270 ms	40000 ms
london-100	0.198	27342 ms	50000 ms
paris-200	1 (RunTime>CutOff)	356725 ms	100000 ms

Πίνακας 4.LocalSearch with ConvexHull (Min)

	Score	Run Time	Cut-Off Time
us-night-15	0.322	57 ms	7500 ms
euro-night-20	0.212	144 ms	10000 ms
london-30	0.189	386 ms	15000 ms
us-night-45	0.196	492 ms	22500 ms
uniform-50-1	0.219	2343 ms	25000 ms
uniform-60-2	0.220	7344 ms	30000 ms
us-night-80	0.235	14152 ms	40000 ms
london-100	0.301	5477 ms	50000 ms
paris-200	0.278	45916 ms	100000 ms
paris-300	1 (RunTime>CutOff)	186664 ms	150000 ms

Πίνακας 5.LocalSearch with Incremental (Min)

	Score	Run Time	Cut-Off Time
us-night-15	0.341	86 ms	7500 ms
euro-night-20	0.285	116 ms	10000 ms
london-30	0.336	326 ms	15000 ms
us-night-45	0.269	1741 ms	22500 ms
uniform-50-1	0.251	2486 ms	25000 ms
uniform-60-2	0.269	5983 ms	30000 ms
us-night-80	0.279	6536 ms	40000 ms
london-100	0.468	5025 ms	50000 ms
paris-200	1 (RunTime>CutOff)	109504 ms	100000 ms
paris-300	1 (RunTime>CutOff)	253476 ms	150000 ms

Πίνακας 6.LocalSearch with Onion (Min)

Αν υπάρχει κάτι αξιοπρόσεχτο με τα αποτελέσματα της ελαχιστοποίησης, για το οποίο δεν μας είχε προϊδεάσει η μεγιστοποίηση, είναι πως ο συνδυασμός LocInc είναι αρκετά υποσχόμενος. Εν αντιθέσει με την μεγιστοποίηση, τα αποτελέσματα του είναι αρκετά πιο κοντά σε αυτά του convex_hull (τα οποία αποδεχόμαστε σαν τα καλύτερα δυνατά) με αρκετά ικανοποιητικούς χρόνους. Μάλιστα σε κάποιες περιπτώσεις είναι μέχρι και καλύτερα. Αυτό που αφήνει αρνητική εντύπωση είναι η αδυναμία του συνδυασμού LocOnion να παράξει αποτελέσματα εντός των επιθυμητών ορίων για το σχετικά αξιοπρεπές threshold που έχουμε επιλέξει. Προφανώς και μπορούμε να είμαστε εντός των επιθυμητών χρόνων, απλά το threshold θα μειωθεί τόσο πολύ που η βελτίωση θα είναι ανεπαίσθητη. Με αυτό κατά νου, ίσως είναι προτιμότερο, όταν πρόκειται για ελαχιστοποίηση, να ποντάρουμε στο συνδυασμό Locinc. Βέβαια, για κάποια μεγέθη και έπειτα, ο συνδυασμός LocOnion αποτελεί αναγκαίο κακό.

Λαμβάνοντας υπόψη τα παραπάνω, καταλήγουμε σε συμπεράσματα εφάμιλλα της αρχικοποίησης. Κάθε συνδυασμός που περιέχει σαν αρχικοποίηση τον convex hull (δύναται να) παράγει τα καλύτερα αποτελέσματα από άποψη σκορ. Η χρησιμότητα όμως αυτών των συνδυασμών ωχριά σχετικά γρήγορα, αφού για περισσότερα από 100 σημεία μόνο η φάση της αρχικοποίησης μας θέτει εκτός των επιτρεπτών ορίων. Μια σχετικά καλή εναλλακτική αποτελεί ο συνδυασμός Loclnc, ο

οποίος και αυτός είναι βραχύβιος (αποτυγχάνει στα 300 σημεία) παράγοντας αξιοπρόσεκτα καλά αποτελέσματα όταν πρόκειται για ελαχιστοποίηση. Τέλος, ο συνδυασμός LocOnion είναι αναπόφευκτος για σημειοσύνολα με 300+ σημεία, με την σημείωση ότι θα πρέπει να ρίξουμε αρκετά το threshold για να μην ξεπεράσουμε τους επιτρεπτούς χρόνους.

Σαν σημείωση αξίζει να αναφερθεί πως η μεταβλητή L έχει σχεδόν σε όλες τις περιπτώσεις τιμή 1. Όπως αναλύθηκε και στο report της 2^{ης} εργασίας, αύξηση στην τιμή της δεν εγγυάται και καλύτερα αποτελέσματα, μόνο μεγαλύτερο χρόνο. Ίσως για σημειοσύνολα με λιγότερο από 50 σημεία να δικαιολογείται μια αλλαγή της σε L=2, μιας και οι συγκεκριμένοι χρόνοι απέχουν αρκετά από το CutOff.