Professor: Ekaterina Kostina Tutor: Julian Matthes

Aufgabe 1

(a) d_1 ist keine Norm, da sie die Dreiecksungleichung nicht erfüllt. Für x=0,y=1,z=2 gilt nämlich $(-2)^2 \ge 1^2 + 1^2$.

- (b) d_2 ist eine Norm, denn folgende Aussagen gelten:
 - Definitheit: $\sqrt{|x-y|} = 0 \Leftrightarrow |x-y| = 0 \implies x = y$. Offensichtlich gilt $\sqrt{|x-y|} > 0 \forall x,y \in \mathbb{R}$
 - Symmterie: Es gilt für $x,y\in\mathbb{R}$: $\sqrt{|x-y|}=\sqrt{|-(y-x)|}=\sqrt{|y-x|}$
 - Dreiecksungleichung: Es gilt für $x, y \in \mathbb{R}$:

$$\begin{split} |x-z| &\leq |x-y| + |y-z| \leq |x-y| + 2\sqrt{|x-y| \cdot |y-z|} + |y-z| \\ &\Leftrightarrow \sqrt{|x-z|} \leq \sqrt{|x-y| + |y-z|} \\ &\leq \sqrt{|x-y| + 2\sqrt{|x-y| \cdot |y-z|} + |y-z|} \\ &= \sqrt{|x-y|} + \sqrt{|y-z|} \end{split}$$

- (c) d_3 ist keine Norm, da sie die Definitheit nicht erfüllt: x = 1, y = -1: $|1^2 (-1)^2| = 0$ aber $x \neq y$
- (d) d_4 ist keine Norm, da sie die Definitheit nicht erfüllt: $x=1,y=0,5:|1-2\cdot0,5|=0$ aber $x\neq y$
- (e) d_4 ist eine Norm, denn folgende Aussagen gelten:
 - Definitheit: $\frac{|x-y|}{1+|x-y|}=0 \Leftrightarrow |x-y|=0 \implies x=y$. Offensichtlich gilt $\forall x,y \in \mathbb{R}: |x-y|>0$ und somit 1+|x-y|>0.
 - Symmetrie: Es gilt für $x,y\in\mathbb{R}\colon \frac{|x-y|}{1+|x-y|}=\frac{|-(y-x)|}{1+|-(y-x)|}=\frac{|y-x|}{1+|y-x|}$
 - Dreiecksungleichung: Es gilt für $x,y,z \in \mathbb{R}: \frac{|x-z|}{1+|x-z|} = \frac{|x-y+y-z|}{1+|x-y+y-z|} \le \frac{|x-y|+|y-z|}{1+|x-y|+|y-z|} = \frac{|x-y|}{1+|x-y|+|y-z|} + \frac{|y-z|}{1+|x-y|+|y-z|} \le \frac{|x-y|}{1+|x-y|} + \frac{|y-z|}{1+|y-z|}$

Aufgabe 2

Es gilt die Definitheit: $||x||_d = d(x,0) \ge 0$, $||x||_d = d(x,0) = 0 \xrightarrow{M1} x = 0$. Die Homogenität folgt aus E2, $||\lambda x||_d = d(\lambda x,0) = \lambda d(x,0) = \lambda ||x||_d$. Die Dreiecksungleichung erhalten wir schließlich mit E1 und der Dreiecksungleichung für die Metrik:

$$||x + y||_d = d(x + y, 0) \le d(0, x) + d(x, x + y) \stackrel{\text{E1}}{=} ||x||_d + d(y, 0) = ||x||_d + ||y||_d$$

Aufgabe 3

(a) Sei $b \ge 0$ beliebig. Wir betrachten die Funktion $f(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab$ mit den Ableitungen $f'(a) = a^{p-1} - b$ und $f''(a) = (p-1)a^{p-2} \stackrel{p>1,a>0}{>} 0$. Da die zweite Ableitung stets positiv ist, ist jede Extremstelle der Funktion ein Minimum. Setzen wir also f'(a) = 0, so erhalten wir $a^{p-1} = b$.

Alle Stellen, an denen diese Bedingung gilt, sind also lokale Minima. Setzen wir in f einfach $b=a^{p-1}$, so erhalten wir $f(a)=\frac{a^p}{p}+\frac{a^{(p-1)\cdot q}}{q}-a\cdot a^{p-1}\stackrel{*}{=}\left(\frac{1}{p}+\frac{1}{q}\right)a^p-a\cdot a^{p-1}=a^p-a^p=0,$ wobei * aus $\frac{1}{p}+\frac{1}{q}=1\Longleftrightarrow p+q=pq\Longleftrightarrow p=q(p-1)$ folgt. Am Rand, also bei a=0, erhalten wir außerdem $f(0)=\frac{b^q}{q}\geq 0$. Also ist bei beliebigem b die Funktion f(a) stets größer 0. Daraus folgt sofort $\frac{a^p}{p}+\frac{b^q}{q}\geq ab$, was zu zeigen war.

(b)

$$\begin{split} &1 = \frac{1}{q} + \frac{1}{p} \\ &= \frac{1}{q} \cdot \frac{\sum_{i=1}^{n} |a_{i}|^{p}}{\sum_{j=1}^{n} |a_{j}|^{p}} + \frac{1}{p} \cdot \frac{\sum_{i=1}^{n} |b_{i}|^{q}}{\sum_{j=1}^{n} |b_{j}|^{q}} \\ &= \frac{1}{p} \sum_{i=1}^{n} \frac{|a_{i}|^{p}}{\sum_{j=1}^{n} |a_{j}|^{p}} + \frac{1}{q} \sum_{i=1}^{n} \frac{|b_{i}|^{q}}{\sum_{j=1}^{n} |b_{j}|^{q}} \\ &= \sum_{i=1}^{n} \frac{1}{p} \left(\frac{|a_{i}|}{\left(\sum_{j=1}^{n} |a_{j}|^{p}\right)^{\frac{1}{p}}} \right)^{p} + \frac{1}{q} \left(\frac{|b_{i}|}{\left(\sum_{j=1}^{n} |b_{j}|^{q}\right)^{\frac{1}{q}}} \right)^{q} \\ &\stackrel{\text{Young}}{\geq} \sum_{i=1}^{n} \left(\frac{|a_{i}|}{\left(\sum_{j=1}^{n} |a_{j}|^{p}\right)^{\frac{1}{p}}} \right) \cdot \left(\frac{|b_{i}|}{\left(\sum_{j=1}^{n} |b_{j}|^{q}\right)^{\frac{1}{q}}} \right) \\ &= \frac{\sum_{i=1}^{n} |a_{i}b_{i}|}{\left(\sum_{j=1}^{n} |a_{j}|^{p}\right)^{\frac{1}{p}} \cdot \left(\sum_{j=1}^{n} |b_{j}|^{q}\right)^{\frac{1}{q}}} \end{split}$$

Multiplizieren wir nun den Nenner auf die andere Seite, so erhalten wir die Behauptung

$$\left(\sum_{j=1}^{n} |a_j|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{j=1}^{n} |b_j|^q\right)^{\frac{1}{q}} \ge \sum_{i=1}^{n} |a_i b_i|$$

Aufgabe 4

(a) Betrachte $(f_n)_{n\in\mathbb{N}}$ mit $f_n:[0,1]\longrightarrow\mathbb{R}$ definiert durch:

$$f_n(x) = \begin{cases} 1 - \frac{2}{\frac{1}{n} - \frac{1}{n+1}} (x - \frac{1}{n}) & \left| \frac{1}{n} < x \le \frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2} \right| \\ 1 + \frac{2}{\frac{1}{n} - \frac{1}{n+1}} (x - \frac{1}{n}) & \left| \frac{1}{n} - \frac{\frac{1}{n} - \frac{1}{n+1}}{2} \le x \le \frac{1}{n} \right| \\ 0 & |\text{sonst} \end{cases}$$

Für n=1 ist offensichtlich der erste Fall in der Funktionsdefinition irrelevant, der Beweis geht dann völlig analog, nur ohne diesen Fall. **Z.Z.** f_n ist stetig.

Beweis. Da Polynome stetig sind, ist f_n ganz sicher auf

$$\left[0, \frac{1}{n} - \frac{\frac{1}{n} - \frac{1}{n+1}}{2}\right) \cup \left(\frac{1}{n} - \frac{\frac{1}{n} - \frac{1}{n+1}}{2}, \frac{1}{n}\right) \cup \left(\frac{1}{n}, \frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2}\right) \cup \left(\frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2}, 1\right]$$

stetig. Nun untersuchen wir die rechts- und linksseitigen Grenzwerte an den 3 fehlenden Stellen.

$$\lim_{x > \frac{1}{n} - \frac{1}{n-\frac{1}{n+1}}} f(x) = 0 = \lim_{x > \frac{1}{n} - \frac{1}{n-\frac{1}{n+1}}} f(x),$$

$$\lim_{x > \frac{1}{n}} f(x) = 1 = \lim_{x > \frac{1}{n}} f(x)$$

und

$$\lim_{x \nearrow \frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2}} f(x) = 0 = \lim_{x \searrow \frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2}} f(x).$$

Z.Z. $f_n(x)f_m(x) = 0$ $\forall x \in [0,1], \ \forall n \neq m$

Beweis. Sei O.B.d.A. m>n. Aus der Funktionsdefinition sieht man sofort, dass $f_n(x)\neq 0$ nur für $x\in I_n$ mit

$$I_n \coloneqq \left[\frac{1}{n} - \frac{\frac{1}{n} - \frac{1}{n+1}}{2}, \frac{1}{n} + \frac{\frac{1}{n} - \frac{1}{n+1}}{2}\right]$$

gelten kann. Es genügt also zu zeigen, dass $I_n \cap I_m = \emptyset$ oder äquivalent dazu, dass $\max I_m < \min I_n$. Wir beweisen zunächst, dass $\max I_{n+1} < \min I_n$, woraus dann induktiv die Behauptung folgt.

$$n(n+1) < (n+1)(n+2)$$

$$\frac{1}{(n+1)(n+2)} < \frac{1}{n(n+1)}$$

$$\frac{(n+2) - (n+1)}{(n+1)(n+2)} < \frac{(n+1) - n}{n(n+1)}$$

$$\frac{1}{n+1} - \frac{1}{n+2} < \frac{1}{n} - \frac{1}{n+1}$$

$$\frac{2}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} < \frac{2}{n} - \frac{1}{n} + \frac{1}{n+1}$$

$$\frac{1}{n+1} + \frac{\frac{1}{n+1} - \frac{1}{n+2}}{2} < \frac{1}{n} - \frac{\frac{1}{n} + \frac{1}{n+1}}{2}$$

$$\max I_{n+1} < \min I_n$$

(b) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge mit den Eigenschaften aus (a). Dann gilt für $n,m\in\mathbb{N}$ mit $n\neq m$ wegen $f_n(x)f_m(x)=0$ auch $f_n(x)=1 \implies f_m(x)=0$ und wegen $\|f_n\|_{\infty}=1$ existiert stets solch ein x. Daher gilt $\|f_n-f_m\|_{\infty}=1 \forall n,m\in\mathbb{N}$. Gäbe es eine konvergente Teilfolge $(f_{n_k})_{k\in\mathbb{N}}$, so wäre diese auch eine Cauchy-Folge, sodass es n,m mit $\|f_n-f_m\|_{\infty}<1$ geben müsste, Widerspruch.