

A Less Prickly Cactus

LASSP Theory Pizza Talks, July 19th, 2012 Zach(tus) Lamberty

So Frustrating...

What is frustration?

Brian Schmidt v. Saul Perlmutter, picture by Nicholas Suntzeff

So Frustrating...

- Why study it?
 - Lots of lattices
 - Weird stuff
 - Macroscopic ground state degeneracies
 - "Accidental" symmetries
 - Quantum Spin Liquid state (avoids magnetic ordering down to T = 0)
 - Fractional / anyonic excitations
 - Ground states robust to local perturbation ("Topological" states)
 - Order by disorder effects
 - Some real materials: S = 3/2 and 5/2 Jarosites, S = 1/2 Herbertsmithite, S = 3/2 BSZCGO

Kagome!

Classical Heisenberg AFM ordered

$$H = J \sum_{\langle i,j \rangle} S_i \cdot S_j$$

$$= \frac{J}{2} \sum_{\Delta} \sum_{i \in \Delta} S_i + C$$

- Quantum S = 1/2
 - No LRO in spin-spin correlation
 - ▶ Rapid decay in higher-order correlations
 - Very small or no spin gap
 - Gapless singlet sector
- Quantum S = 1
 - Large spin gap
- ightharpoonup Quantum S = 3/2
 - Very small or no spin gap
- Not a lot of intuition for any "medium" S, especially S > 1/2!

Kagome!

- ▶ Want large lattice sizes and S > 1/2
 - ▶ ED exponentially difficult (State of the art: 48 sites)
 - No good way to choose variational wave function for QMC (which also has the sign problem)
 - Density Matrix Renormalization Group methods...

▶ DMRG State of the Art: 726-site cylinder, 108-site taurus

Husimi is dreamy

The Husimi Cactus is locally the same, but loopless!

- Should capture "local" physics
 - Coplanar order, spin disorder, VBS states
- Will miss "loop" physics
 - Coloring selection, spin-loop tunneling, spin liquid flux patterns

Husimi is dreamy

 $ightharpoonup O(m^4)$ infinite DMRG algorithm:

▶ Largest simulations: 210000 sites, 20 – 30 kept states

Slow down, enjoy the view

$$H = \sum_{\langle i,j \rangle} \left(\frac{J_x}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) + J_z S_i^z S_j^z \right) + d \sum_i \left(S_z^i \right)^2$$
 Heisenberg Anisotropy On-site easy axis anisotropy

Proposed phase diagram (based on Kagome)

Our primary diagnostic tools are spin-spin correlations

$$\langle S_i \cdot S_{i+R} \rangle$$

$$\langle S_i^z S_{i+R}^z \rangle$$

$$\langle S_i^{\pm} S_{i+R}^{\mp} \rangle$$

$$C(i,i+r) \propto \left\{ \begin{array}{c} 1/R^0, & \text{ferromagnet} \\ \left(-\frac{1}{2}\right)^R, & \text{3-coloring} \end{array} \right.$$

lacktriangle Test case: XY Ferromagnet (J_x/J_z large and negative)

- \triangleright z-axis correlation decay to zero rapidly
- ▶ In-plane correlations decay to a non-zero constant

lacktriangle Disordered quantum paramagnet (large d/J_z)

Exponentially decaying spin-spin correlations, as expected

▶ 120-degree states and 3-color ordering

 \blacktriangleright The closer the decay is to $(-1/2)^R$, the closer the state is to being 3-color-ordered

lacksquare Scaling at the Isotropic Point $J_x=J_z$ for $S\geq 1$

- Qualitative agreement for larger S values
- Some difficulties near the Isotropic Heisenberg point