Seleção natural

Bio 0208 - 2016

Diogo Meyer

Departamento de Genética e Biologia Evolutiva Universidade de São Paulo

Leitura básica: Ridley 5.6, 5.7, 5.10,5.12

Lembremos o quão complexas e ajustadas são as relações mútuas dos seres vivos uns aos outros e às suas condições físicas de vida. Seria então, improvável, pensar que variações úteis de algum modo a cada ser na grande e complexa batalha da vida, devam às vezes surgir ao longo de milhares de gerações? E se isso ocorre, podemos duvidar (lembrando que mais indivíduos nascem do que podem possivelmente sobreviver) que indivíduos com qualquer vantagem, por mais sutil que seja, sobre os outros, teriam uma melhor chance de sobreviver e procriar? Por outro lado, podemos ter certeza que qualquer variação minimamente prejudicial seria rigidamente rejeitada. Essa preservação das variações favoráveis e a rejeição das prejudiciais eu chamo de Seleção Natural.

Charles Darwin, em A origem das espécies, 1859

Visão contemporânea

→ se há variação na população

→ se essa variação contribui para a sobrevivência e reprodução diferencial

→ se essa variação é herdável

Haverá seleção natural

Quando há seleção natural?

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	75	105	70
sobrevivência	50%	50%	50%

Não há seleção: probabilidade de sobrevivência é igual para todos genótipos

Quando há seleção natural?

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência <u>normalizada</u>	1	1	3/4

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficiente seletivo é s=0,25
- "s" Mede decréscimo de sobrevivência devido a seleção.

Um modelo populacional para seleção natural (agora em proporções)

Genótipo	AA	Aa	aa
Valor adaptativo	WAA	W _{Aa}	W _{aa}
Valor adaptativo relativo	Waa/Waa	W _{Aa} /W _{AA}	Waa /WAA
Em função de "s"	1	1	1-s

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficiente seletivo é s=0,25
- "s" Mede decréscimo de sobrevivência devido a seleção.

O modelo genético de seleção

Parâmetro do modelo evolutivo	No modelo de seleção
Tamanho da população	Infinitamente grande
Cruzamento	aleatório
Sobrevivência e reprodução dos genótipos	Diferente entre genótipos
mutação e migração	Não há

Um modelo populacional para seleção natural

Genótipo	AA	Aa	aa
Valor adaptativo	1	1	1-s

Um modelo populacional para seleção natural

Genótipo	AA	Aa	aa
nascimento	p ²	2pq	q ²
Aptidão	1	1	1-s
adultos	p ²	2pq	q ² (1-s)

como calcular:

Exemplo de seleção

Redução de forma melânica de biston betularia em regiões sem poluição, na Inglaterra.

Um modelo populacional para seleção natural

	AA	Aa	aa
Ao nascimento	p^2	2pq	q^2
Valor adaptativo	W_{AA}	W_{Aa}	W_{aa}
Entre adultos	p^2W_{AA}	$2pqW_{Aa}$	q^2W_{aa}
Entre adultos normalizado	$\frac{p^2 W_{AA}}{\bar{W}}$	$\frac{2pqW_{Aa}}{\bar{W}}$	$\frac{q^2W_{aa}}{\bar{W}}$

$$\bar{W} = p^2 W_{AA} + 2pq W_{Aa} + q^2 W_{aa}$$

$$p' = \frac{p^2 W_{AA} + pq W_{Aa}}{\bar{W}}$$

$$q' = \frac{q^2 W_{aa} + pq W_{Aa}}{\bar{W}}$$

Diversos regimes seletivos

AA	Aa	aa	
1	1	1-s	dominância
1	1-s	1-s	recessividade
1	1-(s/2)	1-s	aditivo
1-s	1	1-t	vantagem do heterozigoto

Exemplos de seleção natural

Efeito da seleção num lócus: homogeneidade

Antes da seleção

Um exemplo de homogeneidade: lactase em humanos

Um exemplo de homogeneidade: lactase em humanos

Seleção natural em populações humanas

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção?

Detectando seleção: diferenciação

Seleção natural em populações humanas

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção?

→ ver se deriva explicaria tamanha diferença

Yi et al., 2010

Alta diferenciação: gene SLC24A5

Alta diferenciação: evidência de evolução adaptativa da **pigmentação** (Northon et al., 2007). Nesse caso o alelo comum na Europa e parte da Ásia contribui para a pigmentação cara, e foi favorecido nessas regiões.

Detectando seleção: distribuição geográfica

Valor adaptativo em zonas de malária

 $W_{AA} = 0.88$

 $W_{SS} = 0.14$

 $W_{AS} = 1,00$

Conceitos chave

- Há diferentes tipos de seleção:
 - direcional (com diferentes graus de dominância)
 - vantagem de heterozigoto

 Podemos estabelecer um model determinístico de seleção, que prevê mudança de p

Usamos várias abordagens para detectar seleção