Sumamry Summary

Ottavia M. Epifania 15/6/2021

Distribuzione normale

Theta normale

Distribuzione Skewness "normale"

```
library(PearsonDS)
set.seed(666)
moments <- c(mean = -2, variance = 1, skewness = 0.71,
    kurtosis = 4)
true_theta_sk <- c(rpearson(1000, moments = moments))</pre>
b <- runif(100, -3, 3)
a = c(runif(100, 0.4, 2))
data_sk <- sirt::sim.raschtype(true_theta_sk, b = b,</pre>
    fixed.a = a)
diff_true <- matrix(cbind(1:length(b), b), ncol = 2)</pre>
discr_true <- array(c(rep(0, length(a)), a), c(length(a),</pre>
    2, 1), dimnames = list(paste0("I", 1:length(a)),
    c("Cat0", "Cat1"), "Dim01"))
summary(true_theta_sk)
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
   -4.569 -2.723 -2.117 -2.023 -1.431
                                               1.010
hist(true_theta_sk, main = "Skewness normale")
```

Skewness normale

Skewness estrema

```
set.seed(666)
moments <- c(mean = -2, variance = 2, skewness = 1.71,
    kurtosis = 8)
true_theta_sk_ex <- c(rpearson(1000, moments = moments))</pre>
b <- runif(100, -3, 3)
a = c(runif(100, 0.4, 2))
data_sk_ex <- sirt::sim.raschtype(true_theta_sk_ex,</pre>
    b = b, fixed.a = a)
diff_true <- matrix(cbind(1:length(b), b), ncol = 2)</pre>
discr_true <- array(c(rep(0, length(a)), a), c(length(a),</pre>
    2, 1), dimnames = list(paste0("I", 1:length(a)),
    c("Cat0", "Cat1"), "Dim01"))
summary(true_theta_sk_ex)
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                               Max.
   -3.850 -2.987 -2.311 -2.013 -1.413
                                               7.265
hist(true_theta_sk_ex, main = "Skewness estrema")
```

Skewness estrema

Distribuzione uniforme

Theta uniform

Stima del modello inziale

Modello iniziale con tutti gli item stimato come (questo è vero per tutte le distribuzioni):

```
m2pl <- tam.mml(data, xsi.fixed = diff_true, B = discr_true)</pre>
```

Trovo i valori theta target

SUlla base dei theta osservati

Guided

Guided new

```
cut_value <- list()
# tengo solo la prima selezione di item
for (i in 1:length(num_item)) {
    cut_value[[i]] = seq(min(true_theta), max(true_theta),
        length = num_item[i])
}</pre>
```

Cluster

Smart

Theta teorico tra -3 e 3

```
data_info_smart <- data.frame(items = 1:(ncol(data)),</pre>
    info = numeric((ncol(data))))
for (i in 1:nrow(data_info_smart)) {
    data_info_smart[i, "info"] <- mean(IRT.informationCurves(m2pl,</pre>
        theta = seq(-3, 3, length = 1000), iIndex = lab_item[i])$info_curves_item)
}
# ora scrivi il codice per la procedura iterativa
# dove dato un certo numero di item, trova il
# massimo e mano a mano toglie quel'item
filtro <- list()
data_temp <- list()</pre>
for (i in 1:length((num_item))) {
    filtro[[i]] <- data_info_smart[which(data_info_smart$info ==
        max(data_info_smart$info)), ]
    for (j in 1:(num_item[i] - 1)) {
        data_temp[[j]] <- data_info_smart[!data_info_smart$items %in%</pre>
            filtro[[i]]$items, ]
        filtro[[i]] <- rbind(filtro[[i]], data_temp[[j]][which(data_temp[[j]]$info ==</pre>
            max(data_temp[[j]]$info)), ])
    names(filtro)[[i]] <- paste("number", num_item[i],</pre>
        sep = "")
}
```

Calcolo informatività per ogni theta target

```
info_test <- NULL</pre>
temp <- list()</pre>
value <- list()</pre>
temp data <- NULL
info_data <- NULL</pre>
for (j in 1:length(cut_value)) {
    # contiene i theta target
    value[[j]] <- cut_value[[j]][1:nrow(cut_value[[j]]),</pre>
    for (i in 1:length(lab_item)) {
        # per ognuno dei 100 item viene calcolata l'info
        # per ogni theta target
        for (m in 1:nrow(value[[j]])) {
            temp_data <- data.frame(theta_target = IRT.informationCurves(m2pl,</pre>
                theta = value[[j]][m, "mean_theta"],
                iIndex = lab_item[i])$theta, test_info = mean(IRT.informationCurves(m2pl,
                theta = value[[j]][m, "mean_theta"],
                iIndex = lab_item[i])$test_info_curve),
                item_info = mean(colSums(IRT.informationCurves(m2pl,
                   theta = value[[j]][m, "mean_theta"],
                   iIndex = lab_item[i])$info_curves_item)),
                item = lab_item[i], num_item = paste("number",
                   nrow(value[[j]]), sep = ""))
            info_data <- rbind(info_data, temp_data) # data frame dove per ogni theta target</pre>
si ha
        } # l'info di ogni item
    }
}
```

Calcolo info massima di ogni item per uno specifico theta target

```
temp_data <- NULL
temp_maxrange <- NULL
temp <- NULL
max temp <- NULL
for (i in 1:length(unique(info_data$num_item))) {
    temp_data <- info_data[info_data$num_item %in%</pre>
        unique(info_data$num_item)[i], ]
    temp_maxrange <- aggregate(test_info ~ item + theta_target,</pre>
        data = temp_data, max)
    temp_maxrange$range_name <- unique(temp_data$num_item) # trova L'item maggiormente infor</pre>
mativo
    # per ogni theta target toglie l'item e il theta e
    # ricomincia da capo
    for (j in 1:length(unique(temp_maxrange$theta_target))) {
        temp <- temp_maxrange[which(temp_maxrange$test_info ==</pre>
            max(temp_maxrange$test_info)), ]
        temp_maxrange <- temp_maxrange[which(temp_maxrange$item !=</pre>
            temp$item & temp_maxrange$theta_target !=
            temp$theta target), ]
        max_temp <- rbind(max_temp, temp)</pre>
    }
}
```

Stimo in maniera ricorsiva il modello selezionando gli item trovati al punto precedente

Parametri degli item liberi

Parametri degli item vincolati

```
out_range_theta <- list()</pre>
  model_out_range_theta <- list()</pre>
  info_out_range_theta <- list()</pre>
  for (i in 1:length(unique(max_temp$range_name))) {
    out_range_theta[[i]] <- data[, c(max_temp[max_temp$range_name %in%unique(max_temp$range_n</pre>
ame)[i],
                                                 "item"])]
    model_out_range_theta[[i]] <- tam.mml(out_range_theta[[i]], # stimo il modello tenendo</pre>
                                                # gli item fissi ma selezionando
                                            # solo i parametri degli item selezionati
                                                xsi.fixed =
                                              cbind(1:ncol(out_range_theta[[i]]),
                                                     diff_true[as.integer(gsub("I00|I0|I",
                                                               colnames(out_range_theta[[i]]))),
2]),
                                                B =
                                              array(c(rep(0, ncol(out_range_theta[[i]])),
                                                        discr_true[,2,][as.integer(gsub("I00|I0|
Ι",
                                                                        colnames(out_range_theta
[[i]])))]),
                                                      c(ncol(out_range_theta[[i]]),2,1),
                                                      dimnames = list(colnames(out_range_theta
[[i]]),
                                                                       c("Cat0", "Cat1"),
                                                                       "Dim01")))
    info_out_range_theta[[i]] <- IRT.informationCurves(model_out_range_theta[[i]],</pre>
                                                          theta = seq(-3, 3, length = 1000))
    names(info_out_range_theta)[[i]] <- unique(max_temp$range_name)[i]</pre>
  }
```

Calcolo info nuovi modelli e reliability

(Stesso codice per i modelli stimati tenendo fissi i parametri degli item)

```
info_summary_range <- NULL</pre>
temp <- NULL
for(i in 1:length(info_out_range)) {
  temp <- data.frame(info_test = mean(info_out_range[[i]]$test_info_curve),</pre>
                      range_name = names(info_out_range)[[i]],
                      item = paste(colnames(out_range[[i]]), collapse = ","))
  info_summary_range <- rbind(info_summary_range,</pre>
                                temp)
}
info_summary_range$rel <- 1 - (1/sqrt(info_summary_range$info_test))^2</pre>
info_summary_range <- rbind(info_summary_range,</pre>
                               data.frame(info_test = sum(info_start),
                                          range_name = "all",
                                           item = "all",
                                          rel = 1 - (1/sqrt(info_start))^2))
info_summary_range$selection <- "guided"</pre>
```

TIF con tutti gli item

TIF-All item

Tif gruppi di item

Normale Parametri liberi

Normale Parametri liberi

Normale parametri fissi:

Normale Parametri fissi

Skewness parametri liberi

Sk Parametri liberi

Parametri liberi SK estrema

```
ggplot(temp_graph_sk_ex, aes(x = theta, y = info, group = sel,
    col = sel)) + geom_line(aes(linetype = sel), lwd = 1.4) +
    facet_wrap(~num_item) + theme(legend.position = "top") +
    ggtitle("Sk estrema Parametri liberi")
```

theta

Sk estrema Parametri liberi

Parametri fissi skenweness

Sk estrema Parametri fissi

Parametri fissi skewness estrema

Sk Parametri fissi

Uniforme parametri liberi

Uniforme Parametri liberi

Parametri fissi uniforme

Uniforme Parametri fissi

Informazione

Reliability

Bias assoluto

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ stimati sul modello con tutti gli item.

RMSE

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ stimati sul modello con tutti gli item.

Bias assoluto valori osservati

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

RMSE valori osservati

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

Bias assoluto per gruppi di theta

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

Bias per gruppi di theta

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

A differenza del punto precedente, il bias non ha il valore assoluto. Essendo $\hat{\theta}-\theta$, valori positivi indicano sovrastima, valori negativi indicano sottostima.

RMSE per gruppi di theta

