|Chapter 3 Vectors

Coordinate Systems

- Used to describe the position of a point in space
- With reference to the origin
 - (0, 0) for 2D
 - (0, 0, 0) for 3D
- Specific axes with scales and labels

Cartesian Coordinate System

- Rectangular coordinate system
- x-axis and y-axis intersect at the origin
- (x, y)

Vectors

Written as $\overset{\longrightarrow}{A}$ or ${\bf A}$ Magnitude of a vector written as |A| or A

Example

The displacement vector is independent of the path.

Equality of Two Vectors

- Two vectors are **equal** if they have the same **magnitude and direction**.
- $\bullet \ \ \, \overrightarrow{A} = \overrightarrow{B} \text{ and } |A| = |B| \text{, they point along parallel lines in the same direction}$

Adding Vectors

- Direction must be taken into account
- Units must be the same

Adding Vectors Graphically

draw the vectors from "head-to-tail".

Rules

Commutative Law of Addition: When two vectors are added, the sum is independent of the order of the addition.

$$\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{B} = \overrightarrow{A}$$

Associative Property of Addition: When adding three or more vectors, their sum is independent of the way in which the individual vectors are grouped

$$\overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C}) = (\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C}$$

All units must be the same, cm cannot be added to m

Negative of a Vector

Same magnitude but point to the opposite direction $-\overrightarrow{A}$ $\overrightarrow{A}+(-\overrightarrow{A})=0$ if added to the original vector will result 0

Subtracting Vectors

instead of $\overrightarrow{A}-\overrightarrow{B}$, use $\overrightarrow{A}+(-\overrightarrow{B})$

Multiplying or Dividing a Vector by a Scalar

$$2 imes\overrightarrow{A}=2\overrightarrow{A},-0.8 imes\overrightarrow{A}=-0.8\overrightarrow{A}$$

if the scalar is negative, the resultant vector will also be negative

Components of a Vector

Parts of a vector, one along the x-axis and one along the y-axis

 \overrightarrow{A}_x and \overrightarrow{A}_y are the component vector of \overrightarrow{A}

The components are scalar.

the projections are $\overrightarrow{A}_x = \overrightarrow{A}\cos\theta$ and $\overrightarrow{A}_y = \overrightarrow{A}\sin\theta$, thus $\overrightarrow{A} = \overrightarrow{A}_x + \overrightarrow{A}_y$

and
$$\overrightarrow{A}=\sqrt{\overrightarrow{A_x^2}+\overrightarrow{A_y^2}}$$
 and $heta= an^{-1}rac{\overrightarrow{A_y}}{\overrightarrow{A_x}}$

	sin		y	all		
A_{λ}	nega	tive	A_x	positiv	e	
A_{y}	A _y positive			A_y positive		
$A_{\mathfrak{p}}$	A_x negative			A_x positive		
A_{y}	nega	tive	A_y	negativ	ve	

Components can be positive and negative and will have the same unit as the original vector, vector in the 3rd quadrant, both the x and y will be negative.

Unit Vectors

- A unit vector is a dimensionless vector with a magnitude of exactly 1.
- They are only used to specify a direction.
- Symbols are $\hat{i},\,\hat{j}$ and \hat{k}

• They follow right-hand rules

- Since they are dimensionless, thus $\overset{
 ightharpoonup}{A}_x \cdot \hat{i}$ is the same as $\overset{
 ightharpoonup}{A}_y \cdot \hat{j}$
- And thus, $\overrightarrow{A} = \overrightarrow{A}_x\,\hat{i} + \overrightarrow{A}_y\,\hat{j} + \overrightarrow{A}_z\,\hat{k}$

Adding Vectors Using Unit Vectors

Using resultant vector

$$R = \overrightarrow{A} + \overrightarrow{B}$$

$$R = (\overrightarrow{A}_x\,\hat{i} + \overrightarrow{A}_y\,\hat{j}) + (\overrightarrow{B}_x\,\hat{i} + \overrightarrow{B}_y\,\hat{j})$$

$$R = (\overrightarrow{A}_x + \overrightarrow{B}_x)\,\hat{i} + (\overrightarrow{A}_y + \overrightarrow{B}_y)\,\hat{j}$$

$$R = R_x + R_y$$

$$R_x = A_x + B_x$$
 and $R_y = A_y + B_y$

$$R=\sqrt{R_x^2+R_y^2}$$
 and $heta= an^{-1}rac{R_y}{R_x}$

Angle of Vector in 3D

$$\begin{split} R &= \sqrt{R_x^2 + R_y^2 + R_z^2} \\ \theta_x &= \cos^{-1} \frac{R_x}{R} \\ \theta_y &= \cos^{-1} \frac{R_y}{R} \\ \theta_z &= \cos^{-1} \frac{R_z}{R} \end{split}$$

$$\theta_x = \cos^{-1} rac{R_x}{R}$$

$$\theta_y = \cos^{-1} \frac{R}{I}$$

$$heta_y = \cos^{-1} rac{R}{R_z}$$