RFIDice Tray

Project Description Draft

Andrew Troyer

Western Washington University
Electrical Engineering
Class of 2021

1. Summary

The RFIDice Tray is a tray that intakes dice that are RFID labeled. The dice tray corresponds the RFID of the dice to the number of sides on the die and displays a random number for that type of die. The RFIDice Tray is a neat desk toy and is useful for any game that requires multiple types of dice.

2. System Design

Hardware Description

MCU

The MCU for this project needs to have a few communication options for communicating to the RFID chip, enough GPIO for listening to buttons and the wake-up sensor, and output to GPIO for the 7 Segment Displays.

I decided on the MK22 because it is something I am familiar with, it comes in a non-BGA package, and has enough GPIO and I²C Ports.

MCU Resources Required

- o 3x GPIO Ports
- 1x Inter-Integrated Circuit (I²C)

Other Hardware Components

I have decided to use the PN532 NFC controller as my RFID reader. The device is a little overkill for what I'm doing but it does everything I need it to do.

For the wake-up sensor all I need is a simple op-amp to let the MCU know to trigger an RFID read. A general purpose op amp LM 358 will work well enough.

3. Development Plan

Week 1: Order Development boards and parts

Week 2: Test RFID Sensor with Arduino

Week 3: Design initial dice detector circuit

Week 4: Test initial dice detector circuit

Week 5: Generate Schematic Design

Week 6: Review Schematic Design, Start final parts list

Week 7: Final Hardware Redesign

Week 8: Order PCBS

Week 9: Assemble and test boards

Week 10: Revise if needed, order new board if needed

Week 11: Assemble and test new boards if needed

Week 12: Spring Break

Week 13: Begin software Design (Setup environment)

Week 14: Design initial dice sensor software

Week 15: Design Communication with RFID chip

Week 16: Test RFID with RFID reader

Week 17: Combine initial dice sensor and RFID reader

Week 18: Finish combination

Week 19: Finish combination

Week 20: Finish Software design

Week 21: Software design reviews

Week 23: Revise code and test

Week 24: Demonstration

Development Tools

- K22 Development Board
- PN532 Breakout Board
- 4032 RFID Tags
- Arduino Board
- Digital Multimeter
- Altium
- MCUXpresso

Appendix A - Preliminary Parts List:

Part	Manufacturer P/N	Qty	Distrubuter	Bulk Lead Time	Single Lead Time
MCU	MK22FN512VLH12	1	Digikey	16 weeks	Immediate
RFID Reader	PN5321A3HN,C106,55	1	Digikey	8 weeks	Immediate
Gen. Op Amp	LM358BAIDR	1	Digikey	6 weeks	Immediate
RFID Tags	4032	7	Digikey	2 weeks	Immediate

Appendix B – Cost Breakdown

Part	Manufacturer P/N	Qty	Bulk	Single	Total Bulk	Total Single
			Cost/Unit	Cost/Unit	Cost/Unit	Cost/Unit
MCU	MK22FN512VLH12	1	\$5.56	\$8.45	\$5.56	\$8.45
RFID Reader	PN5321A3HN,C106,55	1	\$6.85	\$10.96	\$6.85	\$10.96
Gen. Op Amp	LM358BAIDR	1	\$0.36	\$0.12	\$0.36	\$0.12
RFID Tags	4032	7	\$2.95	\$2.95	\$2.95	\$2.95
					\$15.72	\$22.48

Appendix C – Power Budget Calculations

Operation	Max Conditions			
Device Name	Current	Voltage	Power	
Microcontroller	158 mA	3.8 V	0.6W	
RFID Reader	30 Ma	5.5 V	0.165W	

Bibliography

M. Murdock, *Digital Detection of Physical Dice Rolls Via Conductive Dice Tray - Disney Enterprises*, *Inc.*, 20-Aug-2015. [Online]. Available: https://www.freepatentsonline.com/y2015/0231486.html. [Accessed: 23-Oct-2020].

http://www.vs.inf.ethz.ch/publ/papers/hinske-pergames07.pdf