Nº Orden	Apellido y nombre	L.U.	Cantidad de hojas

Organización del Computador 2

Normas generales

- Numere las hojas entregadas. Complete en la primera hoja la cantidad total de hojas entregadas.
- Entregue esta hoja junto al examen, la misma no se incluye en la cantidad total de hojas entregadas.
- Está permitido tener los manuales y los apuntes con las listas de instrucciones en el examen. Está prohibido compartir manuales o apuntes entre alumnos durante el examen.
- Cada ejercicio debe realizarse en hojas separadas y numeradas. Debe identificarse cada hoja con nombre, apellido y LU.
- La devolución de los exámenes corregidos es personal. Los pedidos de revisión se realizarán por escrito, antes de retirar el examen corregido del aula.
- Los parciales tienen tres notas: I (Insuficiente): 0 a 59 pts, A- (Aprobado condicional): 60 a 64 pts y A (Aprobado): 65 a 100 pts. No se puede aprobar con A- ambos parciales. Los recuperatorios tienen dos notas: I: 0 a 64 pts y A: 65 a 100 pts.

Ej. 1. (40 puntos)

Un sistema de control para satélites utiliza una curiosa estructura de representación para las posiciones de los mismos. La misma se almacena por cuadrantes de forma recursiva.

```
struct pos {
  pos* cuad1;
  pos* cuad2;
  pos* cuad3;
  pos* cuad4;
  info* data;
}
```

La estructura contiene un puntero a cada uno de los cuadrantes, que a su vez contienen un nuevo conjunto de cuadrantes de forma recursiva. Estos además contienen un puntero a data, utilizado para almacenar la información sobre los satélites.

- (20p) (a) Implementar en ASM la función rotación (void rotate(pos* cuad)), que realiza un movimiento de los punteros a los cuadrantes de la siguiente manera: cuad1 → cuad2, cuad2 → cuad3, cuad3 → cuad4 y cuad4 → cuad1. Esta rotación debe realizarse para el cuadrante cuad pasado por parámetro y para todos sus cuadrantes sucesivamente de forma recursiva.
- (20p) (b) Implementar en ASM la función borrar hojas (void trim(pos* cuad, void* f_unir)), que se encarga de buscar todos los cuadrantes hoja (es decir aquellos en los cuales los punteros a cuadrantes son nulos) y unir sus datos con los de su padre por medio de la función f_unir pasada por parámetro. La aridad de la función es la siguiente: info* f_unir(info* padre, info* hoja).

Nota: se sugiere implementar la función auxiliar boolean esHoja(pos* cuad).

Ej. 2. (40 puntos)

Se tienen 3 matrices de enteros de 16 bits de $N \times N$ denominadas A, B y C sobre las cuales se debe operar respetando la siguiente función:

$$f(A,B,C)_{i,j} = \begin{cases} A_{i,j} \times 0.8 + B_{i,j} \times 0.2 & si \quad C_{i,j} > 1234 \\ A_{i,j} \times 0.2 + B_{i,j} \times 0.8 & si \quad C_{i,j} \le 1234 \end{cases}$$

- (30p) (a) Implementar en ASM la función que aplica f sobre las matrices. La aridad de la misma debe ser int16* aplicar(int16* A, int16* B, int16* C, unsigned int N). Notar que es necesario reservar memoria para la matriz resultado.
- (10p) (b) Explicar detalladamente cómo debería modificarse el código anterior si las matrices fueran de enteros de 16 bits sin signo.

Nota: N es multiplo de 4.

Ej. 3. (20 puntos)

Se busca implementar una metodología para contar cuantas veces se ejecuta cada instrucción. Para esto, el código a ejecutar fue modificado de forma que antes de cada instrucción se llame a la función void count(void). La misma deberá, cuidando de conservar el estado del procesador, obtener el puntero a la siguiente instrucción a ejecutar y llamar a una función que lo registre en la base de datos.

Para esta tarea se cuenta con la función register (void* addr) que toma la dirección de la próxima instrucción y suma 1 a su contador en la base de datos.

- (15p) (a) Implementar en ASM la función void count(void).
- (5p) (b) ¿Es posible alterar de forma estática un binario agregando los llamados a la función count? ¿Se puede presentar algún problema?

Nota₁: Todas las funciones respetan la convención C, con la excepción de que no modifican los registros xmm1 a xmm15.

Nota₂: Se recomienda usar las instrucciones LAHF, SAHF o equivalentes.