Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3214 К работе допущен

Студент Силинцев Владислав Работа выполнена

Преподаватель Хвастунов Н.Н. Отчет принят

Рабочий протокол и отчет по лабораторной работе №03.13

Магнитное поле Земли

- 1. Цель работы.
 - 1) Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца.
 - 2) Определить горизонтальную составляющую магнитного поля Земли.
- 2. Задачи, решаемые при выполнении работы.
 - Измерить значения силы тока, при которых магнитная стрелка компаса отклоняется на заданное количество градусов.
 - Измерить значение горизонтальной составляющей вектора магнитной индукции Земли.
 - Сравнить полученное значение с табличным.
- 3. Объект исследования.

Магнитное поле Земли.

4. Метод экспериментального исследования.

Исследование магнитного поля Земли с использованием компаса и катушек Гельмгольца.

5. Рабочие формулы и исходные данные.

$$ullet$$
 $\langle I
angle = rac{\displaystyle\sum_{i=1}^n I_i}{n}$ — среднее значение силы тока.

- $B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{I \, n}{R}$ величина магнитного поля катушек Гельмгольца.
- R = 0.15 M -радиус катушек.
- n=100 число витков в каждой из катушек.
- $\gamma_i = \frac{\sin{(\alpha_i)}}{\sin{(\varphi \alpha_i)}}$ значение коэффициента γ_i .
- $\varphi = 160^{\circ}$ угол между вектором магнитного поля катушек и направлением магнитной стрелки компаса.
- $B_c = B_h \cdot \gamma$ магнитная индукция катушек Гельмгольца через магнитную индукцию Земли.
- $b = \frac{\sum\limits_{i=1}^{n} x_{i}y_{i}}{\sum\limits_{i=1}^{n} x_{i}^{2}}$ расчет углового коэффициента методом наименьших квадратов, если

прямая проходит через начало координат.

• $S_b^2 = \frac{1}{\sum_{i=1}^n \chi_i^2} \cdot \frac{\sum_{i=1}^n d_i^2}{n-1}$ – расчет СКО углового коэффициента методом наименьших

квадратов, если прямая проходит через начало координат.

- $d_i = y_i b x_i$ значение параметра d_i , если прямая проходит через начало координат.
- $b\pm t_{\alpha,n-1}\cdot S_b$ доверительный интервал для углового коэффициента, где $t_{\alpha,n-1}=2$,2, при $\alpha=0$,95 и n=14.

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Цифровой	0-1 A	1 мА
2	Компас	Магнитный	0-360°	1°

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

φ=160°	Ток в катушках, мА					
α_i	I_1	I_2	I_2	$\langle I \rangle$	$\frac{\sin\left(\alpha_{i}\right)}{\sin\left(\varphi-\alpha_{i}\right)}$	B_c , мк T л
10°	15	14	15	14,67	0,3473	8,7919
20°	21	24	23	22,67	0,5321	13,5876
30°	22	23	22	22,33	0,6527	13,3877
40°	24	25	24	24,33	0,7422	14,5866
50°	28	29	28	28,33	0,8152	16,9844
60°	30	33	32	31,67	0,8794	18,9826
70°	36	35	35	35,33	0,9397	21,1806
80°	37	37	37	37	1	22,1797
90°	39	37	38	38	1,0642	22,7791
100°	42	42	41	41,67	1,1372	24,9771
110°	44	45	45	44,67	1,2267	26,7755
120°	48	47	47	47,33	1,3473	28,3740
130°	56	55	55	55,33	1,5321	33,1696
140°	66	66	66	66	1,8794	39,5638

Пример вычислений:
$$\langle I \rangle = \frac{\sum\limits_{i=1}^{n} I_{i}}{n} = \frac{15 + 14 + 15}{3} \approx 14,67$$
 мА.

Пример вычислений:
$$B_c = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R} = 4\pi \cdot 10^{-7} \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \frac{14,67 \cdot 10^{-3} \cdot 100}{0,15} \approx 8,7919$$
 мкТл.

Пример вычислений:
$$y_1 = \frac{\sin(\alpha_1)}{\sin(\varphi - \alpha_1)} = \frac{\sin(10)}{\sin(160 - 10)} \approx 0,3473.$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Найдем магнитную индукцию Земли методом наименьших квадратов, учитывая

зависимость
$$B_c = B_h \cdot \gamma$$
: $B_h = \frac{\displaystyle\sum_{i=1}^n \gamma_i B_{c_i}}{\displaystyle\sum_{i=1}^n \gamma_i^2} \approx 21,5209 \, \text{мкТл}.$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Вычислим СКО:
$$S_{B_h}^{\ \ 2} = \frac{1}{\sum\limits_{i=1}^n \gamma_i^2} \cdot \frac{\sum\limits_{i=1}^n d_i^2}{n-1}$$
, где $d_i = B_{c_i} - B_h \cdot \gamma_i$. Тогда $S_{B_h}^{\ \ 2} \approx 0,0563\,\mathrm{mkTn}^2$. Вычислим $t_{\alpha,n-1} \cdot S_{B_i} = 2,2 \cdot \sqrt{0,0563} \approx 0,522\,\mathrm{mkTn}$.

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1: Зависимость $B_c = B_c(\gamma_i)$.

12. Окончательные результаты.

$$B_b = 21,5 \pm 0,5 \text{ мкТл}.$$

13. Выводы и анализ результатов работы.

В ходе этой работы я исследовал магнитное поле Земли. Полученное значение горизонтальной составляющей магнитной индукции Земли B_h =21,5±0,5 MκT Λ . Значение, полученное с помощью IGRF-14 в Санкт-Петербурге примерно равно 14,8 MκT Λ , что хоть и близко к полученному значению, но имеет большую погрешность и не принадлежит доверительному интервалу.

Ссылка на источник: http://serv.izmiran.ru/cgi-bin/igrf14 formgm.py.

14. Дополнительн	вые задания.
15. Выполнение д	ополнительных заданий.
16. Замечания пр также помещаюг	еподавателя (исправления, вызванные замечаниями преподавателя n в этот пункт).
Примечание:	 Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу. Приложения 1 и 2 вкладывают в бланк протокола-отчета.

Приложение 2

График 1: Зависимость $B_c = B_c(\gamma_i)$.