Алгоритм верификации состязательной устойчивости времени доставки сумки по отношению к эмбеддингам вершин для всей конвейерной сети

1.1 Анализ графа сети

Данный алгоритм основывается на уже разработанном алгоритме верификации [1]. Можно выполнить верификацию на всех парах вершин в графе конвейерной сети, число которых равняется $\binom{n}{2}$, где n — размер графа. Но мы можем улучшить производительность алгоритма, минимизируя количество пар. Рассмотрим пример графа, представленный на рисунке 1.

Рисунок 1 — Пример конвейерной сети

Мы считаем, что разделители хорошо обучены, поэтому сумка обычно движется по кратчайшему пути. Тогда если устойчивость для пары вершин (j_1,d_4) доказана, мы можем считать, что она соблюдается для суффиксов кратчайшего пути: $(d_1,d_4),(d_3,d_4)$ — так как соответствующие нейронные сети будут получать одинаковые эмбеддинги на вход.

Задача поиска ожидаемого времени доставки параметризируется множеством разделителей, поэтому время доставки для исходной пары и для суффикса соответственно можно формализовать следующим образом: $\{d_1,d_3\} \to t_{j_1}, \, \{d_3\} \to t_{d_3}$. Задача для суффикса является подзадачей для исходной пары. Нам также следует учитывать, что если пара не является суффиксом, она может повторять задачу другой пары, как в случае с (j_1,d_4) и (j_2,d_4) .

Чтобы из множества пар, на которых необходимо запускать верификацию, исключить наибольшее число элементов, будем искать пару, которая имеет наибольший кратчайший путь и содержит наибольшее число суффиксов.

1.2 Описание алгоритма

Псевдокод алгоритма приведен в листинге 1.

Листинг 1 — Псевдокод алгоритма

```
1: procedure PAIRS(g)
         V \leftarrow \operatorname{Nodes}(g)
        for pair \in V^2 do
 3:
            p \leftarrow \text{DijkstraPath}(g, \text{pair})
 4:
 5:
            if \exists p \land \text{diverter} \in p \text{ then}
                 P \leftarrow p
 6:
            end if
 7:
        end for
 8:
 9:
        Sort(P)
10:
                                                         ⊳ по возрастанию кол-ва узлов
        while P \neq \emptyset do
11:
            p \leftarrow \text{Pop}(P)
12:
            RemoveSuffixes(P, p)
13:
            pair \leftarrow (p[0], p[-1])
14:
            if Diverters(pair) \notin Diverters(WithSink(res, p[-1])) then
15:
16:
                 res \leftarrow pair
            end if
17:
        end while
18:
19:
        return res
20:
21: end procedure
22:
23: procedure FullEmbAdvVerif(g)
        for p \in Pairs(g) do
24:
            m \leftarrow \text{CreateAbsorbingMC}(g, p[1])
25:
                                                                  ⊳ если конечный узел не
26:
                                                     ⊳ является стоком, то необходимо
27:
                                                    ⊳ удалить все его исходящие ребра
             s \leftarrow \text{CreateEDTSolver}(m, p[0])
28:
            if NontrivDvtrs(s) = \emptyset then
29:
                 continue
30:
            end if
31:
32:
            t_{\top} \leftarrow \text{BoundEstimation}(s)
33:
            for k \in (0.95, 0.99, 1.01, 1.05) do
34:
35:
                 t_b \leftarrow t_{\top} \cdot k
36:
                 res \leftarrow EmbAdvVerif(t_b)
37:
            end for
        end for
38:
39: end procedure
```

- 1. Для каждой пары узлов графа конвейерной сети находим кратчайший путь (4). Если путь существует и содержит хотя бы один разделитель, то сохраняем его (5–6).
- 2. Извлекаем самый длинный путь и удаляем все его суффиксы из множества найденных путей (10–13). Если множество разделителей данной пары не совпадает с каким-либо множеством разделителей сохраненных пар, которые имеют тот же сток, то сохраняем эту пару (14–

16).

3. Если найденная пара имеет нетривиальные разделители, то находим для нее оценку времени доставки и выполняем верификацию (24–36).

1.3 Результат работы

Результаты выполнения алгоритма приведены в таблице 1

Таблица 1 — Результат полной верификации сети

	$t_{ op}$	t_b	Вериф.	Прод.,
				$^{\mathrm{c}}$
$o_1 \rightarrow d_7$	40.10	38.10	_	0.09
		39.70	_	0.19
		40.50	+	0.78
		42.11	+	0.52
$o_1 \rightarrow d_8$	50.10	47.60	_	0.09
		49.60	_	0.11
		50.60	+	0.74
		52.61	+	0.34
$o_1 \rightarrow i_0$	50.15	47.64	_	0.09
		49.65	_	0.11
		50.65	+	0.77
		52.66	+	0.53
$o_0 \rightarrow i_0$	40.20	38.19	_	0.10
		39.80	_	0.12
		40.60	+	0.94
		42.21	+	0.66
$o_0 \rightarrow i_1$	53.10	50.45	_	0.11
		52.57	_	0.11
		53.63	+	0.76
		55.76	+	0.41
$o_1 \rightarrow i_1$	43.25	41.09	_	0.15
		42.82	_	0.17
		43.68	+	2.85
		45.41	+	1.80
$o_1 \rightarrow i_2$	53.06	50.41	_	0.12
		52.53	_	0.16
		53.59	+	4.54
		55.71	+	1.64
$o_0 \rightarrow i_2$	53.07	50.42	_	0.09
		52.54	_	0.11
		53.60	+	0.63
		55.72	+	0.28

$o_1 \rightarrow i_3$	43.10	40.95	_	0.14
		42.67	_	0.17
		43.53	+	2.27
		45.26	+	1.45
$o_0 \rightarrow i_3$	43.15	40.99	_	0.10
		42.72	_	0.11
		43.58	+	0.91
		45.31	+	0.54
$d_3 \rightarrow i_3$	43.10	40.95	_	0.10
		42.67	_	0.12
		43.53	+	0.82
		45.26	+	0.56
$o_1 \rightarrow j_0$	30.10	28.60	_	0.09
		29.80	_	0.11
		30.40	+	0.89
		31.61	+	0.52

Список литературы

^[1] Мультиагентные алгоритмы маршрутизации на основе глубоких нейронных сетей с подкреплением и их верификация. — Санкт-Петербург. — $2020.-108~\mathrm{c}.$