SI040: Computação Gráfica

Aula 10 – Dithering

Vicente H. F. Batista

Sistemas de Informação Faculdade Paraíso do Ceará Juazeiro do Norte, 2011

Andamento do curso

- Introdução à Computação Gráfica
- Fundamentos de cor
- Sistemas e dispositivos gráficos
- Representação vetorial e matricial
- Introdução ao processamento de imagens digitais
- Geometria euclideana,

- afim e projetiva
- Representação de objetos gráficos
- Modelos de iluminação
- Traçado de raios
- Visualização
- Recorte
- Visibilidade
- Rasterização
- Métodos de colorização
- Mapeamento de textura

Andamento do curso

- Introdução à Computação Gráfica
- Fundamentos de cor
- Sistemas e dispositivos gráficos
- Representação vetorial e matricial
- Introdução ao processamento de imagens digitais
- Geometria euclideana,

- afim e projetiva
- Representação de objetos gráficos
- Modelos de iluminação
- Traçado de raios
- Visualização
- Recorte
- Visibilidade
- Rasterização
- Métodos de colorização
- Mapeamento de textura

Motivação

O processo de quantização provoca o aparecimento de descontinuidades acentuadas entre tons diferentes na imagem

Isto fica ainda mais perceptível em quantizações em 2 níveis

Motivação

O processo de quantização provoca o aparecimento de descontinuidades acentuadas entre tons diferentes na imagem

Isto fica ainda mais perceptível em quantizações em 2 níveis

 Como possibilitar a representação de gradientes de intensidades?

O campo de visão humano é de 150° na horizontal e de 120° na vertical

O campo de visão humano é de 150° na horizontal e de 120° na vertical

Nosso sistema visual faz uma média das cores dentro de um ângulo sólido de $1/60^{\circ}$ (ângulo de acuidade visual)

http://fr.wikipedia.org/wiki/Angle_solide

O campo de visão humano é de 150° na horizontal e de 120° na vertical

Nosso sistema visual faz uma média das cores dentro de um ângulo sólido de $1/60^{\circ}$ (ângulo de acuidade visual)

Assim, é possível perceber cores inexistentes, de modo individual, em uma cena

Logo, o importante é o meio tom

http://fr.wikipedia.org/wiki/Angle_solide

A percepção de detalhes em uma imagem depende então de 3 parâmetros:

- Distância da imagem ao olho
- Densidade de resolução
- Abertura do olho

Fisicamente, o que podemos fazer para aumentar a resolução perceptual?

Fisicamente, o que podemos fazer para aumentar a resolução perceptual?

 Exibir a imagem em dispositivo com maior densidade de resolução (ppi: pixels per inch)

Fisicamente, o que podemos fazer para aumentar a resolução perceptual?

- Exibir a imagem em dispositivo com maior densidade de resolução (ppi: pixels per inch)
- Observar a imagem a uma distância maior

Fisicamente, o que podemos fazer para aumentar a resolução perceptual?

- Exibir a imagem em dispositivo com maior densidade de resolução (ppi: pixels per inch)
- Observar a imagem a uma distância maior
- Observar a imagem com o olho um pouco mais fechado

Origens

Desde o século passado, a ideia de usar o meio tom para reproduzir escalas contínuas de cinza tem sido utilizada pela indústria de impressão (jornais, revistas, etc.)

Origens

Desde o século passado, a ideia de usar o meio tom para reproduzir escalas contínuas de cinza tem sido utilizada pela indústria de impressão (jornais, revistas, etc.)

Para imagens coloridas, as cores primárias são sobrepostas em ângulos diferentes

Origens

Desde o século passado, a ideia de usar o meio tom para reproduzir escalas contínuas de cinza tem sido utilizada pela indústria de impressão (jornais, revistas, etc.)

Para imagens coloridas, as cores primárias são sobrepostas em ângulos diferentes

Métodos de dithering

Um método de dithering é caracterizado por uma função limiar L(x,y) cujo valor ${\bf não}$ é constante no interior da imagem

Realizar uma quantização de 8 bits em escala de cinza para dois níveis com limiar constante é equivalente a fazer L(x,y)=k, para $k\in\{0,1,\ldots,255\}$ fixo:

Métodos de dithering

Um método de dithering é caracterizado por uma função limiar L(x,y) cujo valor ${\bf não}$ é constante no interior da imagem

Realizar uma quantização de 8 bits em escala de cinza para dois níveis com limiar constante é equivalente a fazer L(x,y)=k, para $k\in\{0,1,\ldots,255\}$ fixo:

Métodos de dithering

Os métodos de dithering podem ser classificados segundo o tipo de sua função limiar:

- Determinístico ou aleatório
- Com aglomeração ou com dispersão
- Periódico ou aperiódico

Este método consiste em inserir uma perturbação na função limiar

Este método consiste em inserir uma perturbação na função limiar

O valor da perturbação é escolhido uniformemente no intervalo de intensidades da imagem

Este método consiste em inserir uma perturbação na função limiar

O valor da perturbação é escolhido uniformemente no intervalo de intensidades da imagem

Este método consiste em inserir uma perturbação na função limiar

O valor da perturbação é escolhido uniformemente no intervalo de intensidades da imagem

Introduz um ruído branco

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

Uma célula com $n \times n$ pixels consegue representar $n^2 + 1$ níveis de cinza

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

Uma célula com $n \times n$ pixels consegue representar $n^2 + 1$ níveis de cinza

35	30	18	22	31	36
29	15	10	17	21	32
14	9	5	6	16	20
13	4	1	2	11	19
28	8	3	7	24	25
34	27	12	23	26	33

35	30	18	22	31	36
29	15	10	17	21	32
14	9	5	6	16	20
13	4	1	2	11	19
28	8	3	7	24	25
34	27	12	23	26	33

37 níveis $(\frac{0}{36}, \frac{1}{36}, \dots, \frac{36}{36})$ e valor médio 17,5

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

Uma célula com $n \times n$ pixels consegue representar $n^2 + 1$ níveis de cinza

35	30	18	22	31	36
29	15	10	17	21	32
14	9	5	6	16	20
13	4	1	2	11	19
28	8	3	7	24	25
34	27	12	23	26	33

35	30	18	22	31	36
29	15	10	17	21	32
14	9	5	6	16	20
13	4	1	2	11	19
28	8	3	7	24	25
34	27	12	23	26	33

Comparar intensidades normalizadas entre 0 e 1

37 níveis $(\frac{0}{36}, \frac{1}{36}, \dots, \frac{36}{36})$ e valor médio 17,5

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

A densidade de células, denominada frequência de tela, é medida em linhas por polegada (lpi)

Bons resultados são alcançados com 120 e 150 lpi

Também conhecido por dithering ordenado com aglomeração

Particiona a imagem em blocos contíguos de ordem n, as células de dithering

A densidade de células, denominada frequência de tela, é medida em linhas por polegada (lpi)

Bons resultados são alcançados com 120 e 150 lpi

Conhecido como dithering de Bayer

Conhecido como dithering de Bayer

A célula de Bayer de ordem 2 possui 5 níveis

Conhecido como dithering de Bayer

A célula de Bayer de ordem 2 possui 5 níveis

Por exemplo, uma intensidade normalizada com valor de 1,7 deverá ser quantizada para a célula 2

Conhecido como dithering de Bayer

Conhecido como algoritmo de Floyd-Steinberg (1975)

Conhecido como algoritmo de Floyd-Steinberg (1975)

Busca minimizar o erro global de quantização por meio da propagação de erro aos pixels vizinhos

Conhecido como algoritmo de Floyd-Steinberg (1975)

Busca minimizar o erro global de quantização por meio da propagação de erro aos pixels vizinhos

$c = f(i, j)$ $\epsilon = c - q(c)$	0	0
c - c - q(c)	(i,j)	0

Conhecido como algoritmo de Floyd-Steinberg (1975)

Busca minimizar o erro global de quantização por meio da propagação de erro aos pixels vizinhos

$$f(i, j + 1) = f(i, j + 1) + \frac{3}{8}\epsilon$$

$$f(i+1,j+1) = f(i+1,j+1) + \frac{2}{8}\epsilon$$

$$c = f(i, j)$$

$$\epsilon = c - q(c)$$

$$f(i+1,j) = f(i+1,j) + \frac{3}{8}\epsilon$$

Conhecido como algoritmo de Floyd-Steinberg (1975)

Conhecido como algoritmo de Floyd-Steinberg (1975)

A propagação do erro na diagonal provoca o aparecimento de um padrão nesta direção

original

original constante

periódico c/ aglomeração

periódico c/ aglomeração

Bayer

