Exercise Sheet 5

47/100 Peter Reithofer, 394407 László Dirks, 398777 Khulan Bayarkhuu, 394604

16/16

Exercise 1 (LTL Satisfaction):

- $TS \not\models \varphi_1$. Be $\pi_1 := (\pi_1)_i$ with $(\pi_1)_i = s_2$ if 2|i and else $(\pi_1)_i = s_4$ for $i \geq 0$. Then $\pi_1 \not\models \varphi_1$.
- $TS \models \varphi_2$. From any state except s_4 all transitions lead to either s_4 or to a state in which c holds. Any transition from s_4 leads to a state in which c holds.
- $TS \models \varphi_3$. $\bigcirc \neg c$ holds only for paths with the prefix s_1, s_4 or s_2, s_4 . Any transition from s_4 leads to a state in which c holds, thus $\bigcirc \bigcirc c$ holds for any path with one of said prefixes.
- $TS \not\models \varphi_4$ Be $\pi_4 := (\pi_4)_i$ any path over TS with $(\pi_4)_0 = s_2$. Then $\pi_4 \not\models \varphi_4$, since $\{c\} \not\models a$.
- $TS \models \varphi_5$. In all states but $s_1 = a \lor b$ holds. For any path s_1 can only ever occur as the initial state. Thus for any path starting in $s_2 = a \lor b$ always holds. $s_1 \models a$. As s_2 can only occur as an initial state, we can follow that $TS \models \varphi_5$.
- $TS \not\models \varphi_6$ Be π_6 some path over TS starting with $s_1s_4s_2...$ Then $\pi_6 \not\models \bigcirc \bigcirc b$ and $s_1 \not\models b \lor c$. Thus, $\pi_6 \not\models \varphi_6$.
- $TS \not\models \varphi_7$ Be $\pi_7 := (\pi_7)_i$ any path over TS with $(\pi_7)_0 = s_2$. It holds that the initial state $s_2 \not\mod s$. Since there is no previous state which could have "released" the requirement that b has to hold, this implies that $\pi_7 \not\models \varphi_7$.

Exercise 2 (Fairness and LTL):

22/22

6/6

- a) The following paths satisfy fair:
 - $-\pi_1 := (\pi_1)_i$ with $(\pi_1)_i = s_0$, if 2|i, and $(\pi_1)_i = s_1$ else.
 - $-\pi_{2,j} := (\pi_{2,j})_i$ with $(\pi_{2,j})_i = (\pi_1)_i$, if i < j and $(\pi_{2,j})_i = s_2$ for $i \ge j$ for some $j \in \mathbb{N}, 2|j$.
 - $-\pi_{3,j} := (\pi_{3,j})_i$ with $(\pi_{3,j})_i = s_3$, if i < j and $(\pi_{2,j})_i = s_4$ for i = j and $(\pi_{2,j})_i = s_5$ for i > j for some $j \in \mathbb{N}_{>0}$.
- b) $-TS \not\models_{fair} \varphi_1$. Since $s_0 \models b$ and $s_1 \models b$, it holds that $\pi_1 \not\models \varphi_1$ ($\Box \neg b$ is never established).
 - $-TS \models_{fair} \varphi_2.$ For π_1 b holds in every state on the path. Thus $\pi_1 \models \varphi_2$. \checkmark For $\pi_{2,j}, j \in \mathbb{N}, 2 | j$ it holds that $(\pi_{2,j})_i \models b, i < j$ and $(\pi_{2,j})_i \models \neg b, i \geq j$. Thus $\pi_{2,j} \models \varphi_2 \checkmark$ For $\pi_{3,j}, j \in \mathbb{N}_{>0}$ it holds that $(\pi_{2,j})_i \models b, i \leq j$ and $(\pi_{2,j})_i \models \neg b, i > j$. Thus $\pi_{3,j} \models \varphi_2 \checkmark$ qed.
 - $-TS \not\models_{fair} \varphi_3$. Since $s_0 \models b$ and $s_1 \models b$, it holds that $\pi_1 \not\models \varphi_3$ ($\Box \neg b$ is never established).
- c) From part b) we can directly deduce that both $TS \not\models \varphi_1$ and $TS \not\models \varphi_1$ due to the fact that the fairness assumption only restricts the set of considered paths. Further $TS \models \varphi_2$ does hold. The only initial, infinite path not satisfying the fairness property is $\pi_4 = s_3, s_3, s_3, s_3, \ldots$ Since $s_3 \models b$, it follows that $\pi_4 \models \Box b$ which qua definition implies that $\pi_4 \models \varphi_2$. From part b) we know that all other initial paths of TS model φ_2 and thus it holds that $TS \models \varphi_2$.

Aufgabe 3 (Model Checking LTL property):

3/4

9/30

					$\psi_2 :=$	$\tau a \wedge \neg \psi_1$	$_1, \neg \psi_2,$			
					$\psi, \neg \psi$	'}		tollow-up	ا ا	
(b) Using notation from lecture i.e. $\neg a, \neg b \in s_1$, and $a, b \in s_6$. 4/8	
		a	$b \mid (a$	$a \wedge b$	$\psi_1 = (\neg b)U(a \land$	$b) \mid \psi_2 =$	$\neg a \land \neg \psi_1$	$\psi = \text{true}U\psi$	$ u_2$	
	s_1	0	0	0	0		1	1		
	s_2	0	0	0	1		0	0	V	
	s_3	0	0	0	1		0	1	V,	
	s_4	0	1	0	0		1	1		
	s_5	-	1	1	1		0	0		
	s_6	$\frac{1}{4}$	1	1	1		0	1	✓	,
(c)	G_{ab} :	=16	0 2. δ .	$(\mathcal{O}_0,\mathfrak{F})$	where 1		0	0	10	2/10
(c) $G_{\psi} := (Q, \Sigma, \delta, Q_0, \mathfrak{F})$ where 1 $-Q := (s_1,, S_6)$									_ / (3	
				, © 6}	0		G	1		
$-\Sigma := 2^{AP}$										
$- Q_0 := \{s_1, s_3, s_4, s_6\} \checkmark$										
$- \mathfrak{F} := \{\{s_1, s_5, s_6\}, \{s_1, s_2, s_4, s_5\}\}\$										
and δ given by:										
	Sta	te	Letter	r	State					
	$\overline{s_1}$		Ø		$\{s_2\}$ \leftthreetimes					
	s_2		Ø		$\{s_2, s_3, s_5, s_6\}$. /				
	s_3		Ø	$\{\underline{\mathbf{s}_1},$	$\{s_2, s_3, s_5, s_6\}_{\ensuremath{ ionethickleskip}}$					
	s_4		$\{b\}$		{} x					
	s_5		$\{a,b\}$		{ } 🗶	•				
	s_6		$\{a,b\}$.	{ }					ala
(d)										017

Aufgabe 4 (CTL Semantics):

(d)

Aufgabe 5 (Equivalence CTL and LTL):