ITEC201006

natural number => fixty (857/8)

Introduction to Computer Science & Engineering

Lecture 2: Binary Number System

Jeonghun Park

Numeral Systems

- Main types
 - ► Natural numbers: N
 - ► Integers: Z
 - Rational numbers: Q
 - ► Complex numbers: ℂ
- Why do we care anyway?
 - Numbers are crucial to computing
 - A language of a computing system

Morning Brain Teaser

- Contrary to rational numbers, irrational numbers cannot be expressed as a quotient of two integers
 - Those two integers are relatively prime
- Then, prove $\sqrt{2}$ is a irrational number

Positional Notation

Decimal number

We are so familiar with positional notation of a decimal system that we probably don't think about it:

$$943 = 9 * 10^2 + 4 * 10^1 + 3$$

Our natural number system is base = 10

Other base

▶
$$943 = 1 * 8^3 + 6 * 8^2 + 5 * 8 + 7 = 1657_8$$

A general form with base = R

Positional Notation (Contd.)

Some notes

- $0 \le d_n < R, \ \forall n$
- Base larger than 10
 - ► We use an *alphabet*
 - 0, 1, 2, ..., 9, A, B, ..., F in hexagonal (=16) base
 - For example, $943 = 3AF_{16}$

Base Conversion

- Algorithm pseudocode
 - Given x, convert the new base \tilde{R}
 - 1. Find the maximum n such that $0 < \left\lfloor \frac{x}{\tilde{R}^n} \right\rfloor < \tilde{R}$
 - 2. Update $x \leftarrow x \tilde{R}^n * \left\lfloor \frac{x}{\tilde{R}^n} \right\rfloor$
 - 3. Iterate the step 1 \sim 2 until x=0

Binary Number System

- Binary number system
 - A number system with base = 2
- Why so special?
 - The base-2 number system is particularly important in computing
 - Natural representation of bits
 - \bullet 943 = 1110101111₂
 - Computers' storage unit only deals with 0 (low voltage) or
 1 (high voltage)

Relationship to other bases (1)

Octal (=8) base

▶ Why is this possible?: $8 = 2^3$

Relationship to other bases (2)

- Hexagonal (=16) base
 - ► $\frac{1}{1} \frac{1}{1} \frac{1010}{101} \frac{1111}{101} = \frac{1}{101} \frac{1}{101} = \frac{1}{101} \frac{1}{101} = \frac{1}{101} \frac{1}{101} = \frac{1}{101} =$
- Most computer engineers commonly use hexagonal base in their design
 - E.g., considering a 16 bits system,

Arithmetic in Binary

Same with decimal

Addition

Subtraction

Some Notes

- What is the maximum length of the bits after summing two 10 bits numbers?
 - ► The answer is 11 bits (Why?)

Fractional Bits

- How to represent a number smaller than 1?
 - ► Fractional bits 11.101

- There exist some numbers that cannot be represented in fractional bits (when the bits length is limited)
- ► This is called *quantization error*

Fractional Bits (Contd.)

- T/F: without any error, all the integers can be expressed in binary
 - F when the bits length is limited
- T/F: without any error, all the rational numbers can be expressed in binary
 - ► F when the bits length is limited
- Back to a 16 bits machine
 - How to use fractional bits in 16 bits machines?
 - There are multiple formats in 16 bits representation
 - \blacktriangleright I.e., we do not know the exact value only with $7{\rm FFF}$

S16.XX

- Consider our 16 bits system is as follows

 - In this case, our system might cover integers
 - This format is called \$16.00
- Now, consider that

 - ► In this case, our system might cover rational numbers < 1
 - This format is called S16.15

Some Notes

- Theoretically, any format is possible, e.g., S16.-10 or S16.99
 - What will change depending on the format?
 - What will be an efficient way to determine this format?
- What is the feasible range of S16.XX?

Conversion Algorithm

- Assume that we have a 16 bits machine
- Given an arbitrary value (could be an integer or rational number), design a pseudo algorithm that finds
 - Appropriate format (S16.??)
 - Exact hexagonal representation
 - Minimizing the quantization error

Quiz: Blind Separation

- Let assume we have 10 coins, where 4 of them are flipped
 - Assume that we cannot distinguish them by seeing or touching them
- Provide a method that
 - separates coins into two groups, and makes each group have same number of flipped coins
 - Any process is possible to be used
- Try to think algorithmically!

Negative Numbers

Assume that the format is S16.15

Non-sign bits value - Sign bit value

$$-0-1*2^0=-1$$

Other examples:

Feasible Range

- What is a feasible range of S16.15?
 - ► Maximum value: 7FFF = 01111111111111111

$$= -2^0$$
$$= -1$$

► Feasible range:

