C. Kinstley, A. Nabar, T. Williams, C. Vollmer

April 26, 2017

- 1 Improving OLS
 - What can be improved?
 - Subset Selection & Ridge Regression
- 2 Lasso
 - Variable Selection
 - Properties of the Estimates

- 3 Tuning Parameter
 - Cross-Validation
 - BIC
 - Shooting Method
- 4 Examples
 - Prostate Cancer
 - Oil and Gas
 - House Prices
- 5 Simulation Analysis
- 6 Adaptive Lasso
 - Oracle Property

- 1 Improving OLS
 - What can be improved?
 - Subset Selection & Ridge Regression
- 2 Lasso

- 3 Tuning Parameter
- 4 Examples
- 5 Simulation Analysis
- 6 Adaptive Lasso

Recall the ordinary least squares procedure (OLS) estimates unknown coefficients in a linear regression model by minimizing the squared difference between the predicted and actual responses.

• We would like to fit n data points to a model of the form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} F$$

- Let X denote the $n \times p$ design matrix where the x_{ii} th entry is the ith point of sample data corresponding to the ith dependent variable and Y the response vector
- So long as n > p OLS gives us a best-fit hyper-plane as follows:

■ The difference between the actual and predicted response for each data point $i \in 1...n$ is

$$\epsilon_i = Y_i - X\beta$$

 We minimize the sum of the squared differences, i.e minimize the function

$$E(\hat{\beta}) = \sum_{i=1}^{n} \epsilon_i^2 = \|Y_2^2 - X\beta\|_2^2$$

It can be shown that the minimizers are $\hat{\beta} = (X^T X)^{-1} X^T Y$ but these solutions are usually approximated

Problems with OLS

Two common problems with OLS estimates are as follows:

- Imprecision
- OLS yields unbiased estimates but the variance may be large.
- How does this happen? Recall that the least squares estimation $\hat{\beta} = (X^T X)^{-1} X^T Y$.
- If (X^TX) is near-singular, then small changes in the X might lead to large changes in $\hat{\beta}$.
- So, even if our $\hat{\beta}$ fits one sample well, there is no guarantee it will fit other samples well, let alone the population!

What can be improved?

- Interpretation
- A large number of independent variables can make the model difficult to interpret, especially when we want to isolate the "most important" variables.
- Do we care about variables with very small coefficients?

Improving OLS Lasso Examples Simulation Analysis Adaptive Lasso Conclusion

Subset Selection & Ridge Regression

Improving OLS: Subset Selection

Subset Selection

- Simply ignore one or more of the independent variables! That is, set the coefficient(s) to 0.
- This helps with interpretability, if only because there is less to interpret.
- Drawback: Subset Selection is a discrete process. Regressors are either kept or dropped; there is no in-between. Small changes in the sampling data can thus result in very different models.
- Not computationally practical for high dimensional data

o●oo Subset Selection & Ridge Regression

Improving OLS: Ridge Regression

Ridge Regression

- In Ridge regression we again minimize $E(\beta) = ||Y X\beta||_2^2$
- But subject to the constraint that

$$\sum_{i=1}^{p-1} \beta_i^2 = \|\beta\|_2^2 \le t \text{ for } t \ge 0$$

Improving OLS: Ridge Regression

Ridge Regression

This is equivalent to the unconstrained minimization of

$$E^{R}(\beta) = ||Y = X\beta||_{2}^{2} + \lambda ||\beta||_{2}^{2}$$

where λ is a function of t

Improving OLS: Ridge Regression

Ridge Regression

- In terms of the coefficients, $\hat{\beta}^R$, it is equivalent to adding a small constant value λ to diagonal entries of (X^TX) in the OLS solution
- This prevents the matrix from being singular or near-singular.
- Drawback: Reduces the variance, but does not set any coefficients to 0, so it doesn't help with interpretability. It also adds bias.

- 1 Improving OLS
- 2 Lasso
 - Variable Selection
 - Properties of the Estimates

- 3 Tuning Parameter
- 4 Examples
- 5 Simulation Analysis
- 6 Adaptive Lasso

Enter the Lasso

- L.A.S.S.O: Least Absolute Shrinkage and Selection Operator.
- Like Ridge we minimize $E(\beta)$ under a constraint, the lasso coefficients are found by minimizing

$$E^{L}(\beta) = \|Y - X\beta\|_{2}^{2} \text{ subject to } \|\hat{\beta}\|_{1}^{2} \le t$$

- We are using the 1 norm, instead of the 2 norm used in ridge
- As in Ridge this can be written as an unconstrained optimization problem with $\lambda(t)$

utline Improving OLS Lasso Examples Simulation Analysis Adaptive Lasso Conclusio

Variable Selection

Variable Selection

- Lasso has the desirable property that it will usually set some of the coefficients equal to zero
- Like in subset selection this leads to a more interpretable model overall
- In Ridge and OLS the minimizing coefficients are almost always non-zero

Variable Selection

Why is this?

Consider the constrained optimization problems for lasso and ridge in the case of two variables

pictureofconstrainedproblem

Properties of the Estimates

- As in Ridge and subset selection the Lasso enjoys lower variance in the magnitude of coefficients than OLS
- Why? I'm not sure...

- 1 Improving OLS
- 2 Lasso

- 3 Tuning Parameter
 - Cross-Validation
 - BIC
 - Shooting Method
- 4 Examples
- 5 Simulation Analysis
- 6 Adaptive Lasso

Tuning parameter

• t or $\lambda(t)$ determines the amount of shrinkage we apply to the OLS estimates

■ Define $t_o = \sum_{j=1}^p |B_j|$, at $t \ge t_o$ we recover the OLS estimates

Tuning parameter

- Setting $t \le t_0$ will shrink the solutions toward 0.
- For example, setting $t = \frac{t_0}{2}$ is similar to selecting the best subset containing half of the regressors.

Why is this?

In the 2-D case this looks like

pictureofconstrainedproblem

Selecting t or $\lambda(t)$

■ In the equivalent unconstrained problem $\lambda(t)$ is a function of t

$$E^{L}(\beta) = ||Y = X\beta||_{2}^{2} + \lambda ||\beta||_{1}^{2}$$

Because the

- 1 Improving OLS
- 2 Lasso

- 3 Tuning Parameter
- 4 Examples
 - Prostate Cancer
 - Oil and Gas
 - House Prices
- 5 Simulation Analysis
- 6 Adaptive Lasso

- 1 Improving OLS
- 2 Lasso

- 3 Tuning Parameter
- 4 Examples
- 5 Simulation Analysis
- 6 Adaptive Lasso

- 1 Improving OLS
- 2 Lasso

- 3 Tuning Parameter
- 4 Examples
- 5 Simulation Analysis
- 6 Adaptive LassoOracle Property

$$y_1 = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$$

$$\hat{\beta}(lasso) = argmin_{\beta} \left\| y - \sum_{j=1}^{p} x_{j} \beta_{j} \right\|^{2} + \lambda \sum_{j=1}^{p} |\beta|$$

- Small number of large effects.
 - Subset selection is best, Lasso is second best, Ridge Regression is worst.
- Small to moderate number of moderate-sized effects.
 - Lasso is best, Ridge regression is second best, Subset selection is worst
- Large of small effects.
 - Ridge regression is best, Lasso is second best, Subset selection is worst.

Lasso vs. Subset Selection vs. Ridge Regression

- Do these results make sense?
 - Recall that the Lasso was designed to work like Ridge regression but with some of the benefits of Subset selection.
 - It thus makes sense for the Lasso to fall between Ridge regression and Subset selection on extreme cases and to beat both of them on cases not well-suited to either.
- CAUTION!
 - These results refer to prediction accuracy
 - As for interpretability:
 - Subset selection > Lasso > Ridge regression, always
 - Why? More nonzero coefficients = more interpretable, always

Conclusion