Permitivity. Charge apacitors-(F/m)Store electric charge with 1-son one Conductor and (+) on the others Capacitona: ability of Capacitor to stone thange Changelles 3 5 symbol-التاريخ (H Π 3 Ø cm Ur Patrential difference between Two Capacitor and inductor (Farad) (AF, mf glass parafine paper 2.5 3.0 S IN DIE ζO Permitivity of vacuum (8,85 pf) حيداد مرة للادة د dr-Separation (m) Ar Area of either plate (my 1,0006 (3) 2 (1 2000 2.4 6 - + sin Gnductors ITTS (TE TO THE Sec

Series. Total induction G Paralle inductana (H) induced collage Permittil ty هي سما حده المادة لدع المجال للمتنافيس في م 2 NO-- permanbility of war (4 11+ 107 ) Ill m # Li + k3 Current Linkage Flux عدداللغان 2 ~ length (a) A Coss vaction Area (m) (e) W/ 2 \* Colleil, as e= Noo 5













1> Permitivity of vacuum (8,85pl > Copacitona : ability of Capacitar to stone U - Potiential different between Iwo Two Conductor separated by an in sulator Imperos: Company Store electric charge with the san one مل سماحيه(وعترة المادة حي ( (F/m) · C = E A - Area of either plate (m3) Conductor and (+) on the others C > F (Farad) (MF, m [ parafine paper 2.5 d R-separation (m) 7.5 Gepacitor and inductor dir 1.0006 a c = Q Chageles mi G glass رق ائ رق 3 Per mitivity " -> symbol-Capacitocs-וווועלי (5) replace lovoit by shortcircuit galigan B remove 5 volt andreplace it by shuting it. I llapping: シャドト circuit by adding the response from Egopping Joil >3.32 Usut = 0.88 x 10 3 x 3 3 x 103 - 2.9 Volt (7) Colculate the total response (vont) for 3\*157\*103 \* 3.3 \*103 = 10.4 vol Plassure college at 3,3 xa (Vout) measure Vout at 3.3km measure vait" at 3.3Km 1) Construct the Circuit Egal Vout - 13,3 volt 10/4 as fig (2) P S Sc 1345 33 Kg. וווועלילי Lout. Pro Godure

| A:                    |                                                | عردالمتان ر                               |
|-----------------------|------------------------------------------------|-------------------------------------------|
| 54                    | llageng:                                       |                                           |
|                       | tobal apacitance destablichex                  | inductina (H) Linkage Plux                |
|                       | Pamillel O. CT - Ci + Cr+C3+                   | CE Current                                |
| A LOW                 | Series 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + | ) Ac                                      |
| TO THE REAL PROPERTY. | Emagy storage We = 1 C V2                      | Permatility - Length (m)  4 = 4046        |
|                       |                                                | Dermability of vacuum (4 114 to 7 ) All m |
|                       | 1-1-                                           | م ساحه المادة لدم الموالياف الإس مسار     |
| ÷.n                   | electric current Flows throughtit              | induced Wolfage (e) e= Nd0 - Ldi          |
|                       | PLAN (Wh) ip is                                | Total induction a destallas x             |
| , ,                   |                                                | Demilo                                    |
|                       | T CORROLL T                                    |                                           |
| any.                  |                                                | Fronty Storage will 1122                  |
| 1                     |                                                | 4                                         |
|                       | 5                                              |                                           |
| 107                   |                                                |                                           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | llagáig3: | inductor        | L(H)            | $\frac{1-\sqrt{2}}{\sqrt{2}}$ | Permability | 4 = 40 + 10 = 4   H/a) |              | 7 + 13 - 1 | (1) 2 (1) | <u> </u> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-----------------|-------------------------------|-------------|------------------------|--------------|------------|-----------|----------|
| , the state of the |           | Symbol Gepacher | Gladation C = 0 |                               | Pemeliu. Jy | 18 - 8<br>18 - 18      | Serise 1 +1. |            | 2 (1)     |          |