

The Sun's Temperature Structure

Alphonse Sterling
NASA/MSFC

Solar Physicist (“Astrophysicist”): Solar eruptions (prominences, flares & CMEs), spicules (chromospheric jets), coronal jets.
Yohkoh, Hinode satellites (including operations).

The Solar Atmosphere

The Outer layers (Atmospheres) of the Sun:

- Photosphere

2003/10/28 06:24 UT

- Chromosphere

Stéphane Basille
Chromospheric Lyman-alpha

- Corona

Formation of the Sun

Initially, have a blob of gas...

...and gravity:

$$F = \frac{GMm}{r^2}$$

$$\mathbf{F} = \frac{GMm}{r^2}\hat{\mathbf{r}}$$

Length ~ 0.5 km

Diameter ~5000 km

Interior Temperature Structure

Sun's Central Core Temperature (Estimate)

- $m = \rho A R$
- $F = GmM/R^2$
- $p = F/A = G\rho M/R$
- $p/\rho = GM/R$

- $pV = NkT$
- $p/\rho = kT/m_A$

- $GM/R = kT/m_A$
- $T = Gm_AM/(kR)$

- $T = 2.3 \cdot 10^7 \text{ K}$

<http://www.jgiesen.de/astro/temperature.htm>

Might this *gravitational contraction*
mechanism power the Sun (Stars)??

This is *not* the main story for core and interior conditions

- Core conditions (temperature, density,...) sufficient to generate *fusion*.
- Processes are complicated, but one of the consequences is:

Mass “mismatch” of 0.0285 amu $\sim 5 \times 10^{-26}$ g...

...which appears as *energy* via $E=mc^2$.

Get the full structure by solving equations for:

- Mass conservation
- Hydrostatic equilibrium
- Energy transport via radiation
- Energy production

- Convective instability sets in when:

$$\left| \frac{dT}{dr} \right|_{outside} > \left| \frac{dT}{dr} \right|_{adiabatic}$$

Hinode SOT Granulation Movie

BBSO Granulation (near IR; 60 min)

Convection on *Pluto* too??

2003/10/28 06:24 UT

The Photosphere

The Solar Interior's Temperature Distribution

The Outer Solar Atmosphere

(First, an overview)

Muhammad Rayhan
500px.com/rayhancygnus

Chromosphere

H-alpha ($H\alpha$) transition in hydrogen atom; 656.3 nm.

Chromosphere in H α

August 21, 2017 Total Solar Eclipse Path

August 21, 2017 Total Solar Eclipse Path

We have to go to *space* to see the Sun's outer atmosphere with regularity.

The Electromagnetic Spectrum

NASA

The Corona from Yohkoh/SXT

Atmosphere's Temperature Structure

The Corona

- Expected to be cool, but found strange spectral lines, first during 1869 eclipse.
- Many explanations considered, including a “new” element: *coronium*.
- **But this didn’t work....**

The Corona: Continued...

- The mystery spectral lines found to be due to highly-ionized familiar elements ~1940.
So this was a sloooow process: 1869 eclipse observations, and 1939~1943 explanation!!
- Structured with loops; late 1960s and 1970s observations from balloons, Skylab, etc.
- This structure due to the magnetic field.

The Corona: Continued Again...

Now, let's consider the temperature structure between the photosphere and the corona.

First question: What makes the corona hot??

And the answer for today is...

Magic!!

Actually, a hot corona is not as mysterious as it seems....

Just assume a hot corona. Now, what does the temperature structure look like?

Energy balance equation:

$$H - R = C$$

R=Radiation losses; “known.”

C= Thermal Conduction;
form known.

H= the “magic” Heating.

Recipe: Adjust H until predictions of energy-balance equation match observations. (Rosner, Tucker, Vaiana 1978.)

Form of Thermal Conduction:

$$\mathbf{C} = \nabla \cdot \mathbf{F}_c$$

$$\mathbf{F}_c = -\kappa_0 T^{5/2} \nabla T$$

In 1-dimension (along a loop), this is:

$$F_c = -\kappa_0 T^{5/2} \frac{dT}{dz}$$

(From K. Lang: The Sun from Space, 2000)

$$H - R = C$$

At around $T \sim 10^5$ K:

$$-R \approx C$$

$$R \approx \frac{d}{dz} \left[\kappa_0 T^{5/2} \frac{dT}{dz} \right]$$

Strong radiation in this temperature range means a steep temperature gradient is needed for energy balance. This leads to a “thin” transition region.

The Sun's Temperature Structure

But, is this correct??

- (Just considering the atmospheric portion)
- There are many assumptions, including:
 - 1-dimensional calculations
 - Static atmosphere
 - Etc.

An example: The Transition Region:

- Saw coronal movie earlier
- Now, with the IRIS satellite, can see the transition region

The “IRIS” satellite observes the transition region

2015/06/25 07:29:15.910

[IRIS Launch on Pegasus XL June 27, 2013 NASA ...](#)

Another example: Prominences/Filaments

Chromospheric material suspended in the corona

And the conclusion is...

- The derived atmospheric structure is “approximately” correct.
- It is a good starting point for considering solar phenomena.
- Have to keep in mind the limitations, based on what you are focusing on.
- Both the “approximate” temperature structure, and the “detailed” temperature structure, hold fascinating solar science questions (e.g coronal heating; prominence formation, stability, and instability) .

Magnetism is the key to many of the changing features of the Sun.

SDO/HMI Quick-Look Continuum: 20140418_214500

FMS 150505

FMS 1505
SDO/HMI 2014-04-18T21:52:19.500

Hinode/XRT
Mesh-AI 2014/04/18

FMS 150505

FMS 150505

- We study the Sun from the ground and from space.
- There are several satellites currently observing the Sun from space.
- Often, operation of these satellites requires that people from different parts of the world work together.

The Solar Atmosphere

The Outer layers (Atmospheres) of the Sun:

- Photosphere

2003/10/28 06:24 UT

- Chromosphere

Enhanced image
© Alexander Kotsos

- Corona

2008 Aug 1 - China (Sterling)

2008 Aug 1, China (Sterling)

Corona – The Sun's outermost atmosphere

Hinode (ひので)

FMS 150505

FMS 150505

FMS 150505