Symmetry of the order parameter for high-temperature superconductivity James F.Annett(1990)

January 21, 2025

Outline

- Introduction
- The symmetry group
 - quartic term
 - gradient term
- Triplet states
- References

Introduction

Ginzburg-Landau equation:

$$f[\Delta] = \alpha_{ij} \Delta_i^* \Delta_j + \beta_{ijkl} \Delta_i^* \Delta_j^* \Delta_k \Delta_l + K_{ijkl} \partial_i \Delta_j^* \partial_k \Delta_l \tag{1}$$

$$G = G_0 \times U(1) \times T \tag{2}$$

 $\Delta \to R^{ij}(g_0) exp(i\phi) \Delta_j$, then the first term of 1 will be:

$$\alpha_{ij}R_{ik}(g)R_{jl}^*(g)\Delta_k^*\Delta_l = R_{ki}^{\dagger}(g)\alpha_{ij}R_{jl}(g)\Delta_k^*\Delta_l$$

To be invariant we should have:

$$R_{ki}^{\dagger}(g)\alpha_{ij}R_{jl}(g)=\alpha_{kl}$$

or in another form:

$$R(g)\alpha = \alpha R(g)$$

Schur's Lemma

Have the form

$$[\alpha_{ij}] = \begin{bmatrix} \begin{bmatrix} \alpha^1 & 0 \\ 0 & \alpha^1 \end{bmatrix} & 0 & \cdots \\ 0 & \begin{bmatrix} \alpha^2 & \cdots \\ \vdots & \ddots \end{bmatrix} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 (3)

$$\Delta_i = \sum_{i=1}^g \eta_j x_i^{(j)} \tag{4}$$

What is $\mathbf{x}^{(j)}$: Matrix that diagonalizes α_{ij} . $\mathbf{x}^{(j)}$., A matrix.

$$\Delta_j \to \sum_i \Gamma_{ij}(g) \Delta_i = \sum_{l,k} \Gamma'_{lk} \eta_l x_j^{(k)}$$
 (5)

Left = Right, we have:

$$\sum_{i,l} \Gamma_{ij} x_i^{(l)} \eta_l = \sum_{l,k} \Gamma'_{lk} x_j^{(k)} \eta_l \tag{6}$$

Comparing term of η_I

$$\Gamma'_{lk}x^{(k)}_{j} = x^{(l)}_{i}\gamma_{ij} \tag{7}$$

$$\Gamma' = X\Gamma X^{-1} \tag{8}$$

 η_i and Δ_i transform according to the same representation.

$$f[\eta] = \alpha (T - T_c) \eta_i^* \eta_i + \beta_{ijkl} \eta_i^* \eta_i^* \eta_k \eta_l + K_{ijkl} \partial_i \eta_i^* \partial_k \eta_l + \cdot$$
 (9)

$$G = SO(3) \times G_c \times U(1) \times T \tag{10}$$

For SO(3): singlet and triplet.

For G_c : determined by crystal structure. Here we consider Orthorhombic symmetry and Tetragonal symmetry. (table)

 $\Delta_i^*\Delta_j$ transform under the direct product of representations $\Gamma^*\otimes\Gamma=\Gamma_1\oplus\cdots$, which can be rewrite as a direct sum of irreducible representations.

To get the appropriate linear combination, we should get the **C-G** coefficients.

Projection Method

Example:

The basis of representation $E_g \otimes E_g^*$ is $\{\eta_1\eta_1^*, \eta_1\eta_2^*, \eta_2\eta_1^*, \eta_2\eta_2^*\}$, which transform like the direct product matrices of E_g and E_g^* .

Table 2. Group character tables for the (a) D_{2h} point group and (b) the D_{4h} point group.

D _{2h} basis	Representation	E	C_2^z	C_2^y	C_2^x	i	iC²2	iC ₂	iC_2^x
1 XY XZ YZ	$\begin{matrix}\mathbf{A_{1g}}\\\mathbf{B_{1g}}\\\mathbf{B_{2g}}\\\mathbf{B_{3g}}\end{matrix}$	1 1 1	1 1 -1 -1	1 -1 1 -1	1 -1 -1 1	1 1 1 1	1 1 -1 -1	$ \begin{array}{r} 1 \\ -1 \\ 1 \\ -1 \end{array} $	1 -1 -1 1
XYZ Z Y X	A _{1u} B _{1u} B _{2u} B _{3u}	1 1 1	1 1 -1 -1	1 -1 1 -1	1 -1 -1 1	-1 -1 -1 -1	-1 -1 1	-1 1 -1 1	-1 1 1 -1
			(a)						

D _{4h} basis	Representation	E	C2	2C ₄	2C'2	2C''_2	i	iC ₂	2iC ₄	2iC ₂	2iC ₂ "
1	A_{1g}	1	1	1	1	1	1	1	1	1	1
$(X^2 - Y^2)$ $(X^2 - Y^2)$	$egin{array}{c} \mathbf{A_{2g}} \\ \mathbf{B_{1g}} \end{array}$	1	1	-1	1	-1 -1	1	1	-1^{1}	-1 1	-1
(XZ,YZ)	$\mathbf{B}_{\mathbf{2g}}^{\mathbf{2g}}$ $\mathbf{E}_{\mathbf{g}}^{\mathbf{g}}$	1 2	$-\frac{1}{2}$	$-1 \\ 0$	$-1 \\ 0$	1 0	1 2	$-\frac{1}{2}$	$-1 \\ 0$	$-1 \\ 0$	1 0
$XYZ(X^2-Y^2)$	•	1	1	1	1	1	-1	-1	-1	-1	-1
Z XYZ	A _{2u} B _{1u}	1 1	1 1	1 -1	-1 1	$-1 \\ -1$	$-1 \\ -1$	$-1 \\ -1$	1 1	-1	1
$Z(X^2 - Y^2)$ (X, Y)	B _{2u} E _u	1 2	$-\frac{1}{2}$	$-1 \\ 0$	$-1 \\ 0$	1 0	$-1 \\ -2$	$-\frac{1}{2}$	1 0	1 0	$-1 \\ 0$

(b)

Table 3. The four possible order parameters which can occur for the high-temperature superconductors. The equation number of the free energy for each is also given.

Order parameter	Space representations	Spin representations	Free energy
η	orthorhombic tetragonal A ₁ ,A ₂ ,B ₁ ,B ₂	singlet triplet (strong spin-orbit)	2.9
(η_1,η_2)	tetragonal E	singlet triplet (strong spin-orbit)	2.10
(η_1,η_2,η_3)	orthorhombic tetragonal A ₁ ,A ₂ ,B ₁ ,B ₂	triplet (weak spin-orbit)	2.11
$\begin{bmatrix} \eta_{11} & \eta_{21} & \eta_{31} \\ \eta_{21} & \eta_{22} & \eta_{32} \end{bmatrix}$	tetragonal E	triplet (weak spin-orbit)	2.12

Take section (2.3.2. Tetragonal symmetry)[?] as an example. the product like $\eta_i\eta_j$ transform according to :

$$E_g \otimes E_g = A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g} \tag{11}$$

And the quartic term is $(E_g \otimes E_g)^* \otimes (E_g \otimes E_g)$ such that:

$$(A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g})^* \otimes (A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g}) = 4A_{1g} \oplus \cdots (12)$$

Note that

$$A_{1g} \otimes A_{1g} = A_{1g}$$
 $A_{2g} \otimes A_{2g} = A_{1g}$ $B_{1g} \otimes B_{1g} = A_{1g}$ $B_{2g} \otimes B_{2g} = A_{1g}$

Then the four invariants are:

$$|\eta_1\eta_1 + \eta_2\eta_2|^2$$
, $|\eta_1\eta_1 - \eta_2\eta_2|^2$, $|\eta_1\eta_2 + \eta_2\eta_1|^2$ $|\eta_1\eta_2 - \eta_2\eta_1|^2 = 0$

Note that ∂_i transforms like $E_u \oplus A_{2\mu}$ because the basis of E_u and $A_{2\mu}$ is (x,y) and z. Thus $\partial_i \eta_i$ transforms like $(E_\mu \oplus A_{2\mu}) \otimes E_g$.

$$(E_{\mu} \oplus A_{2\mu}) \otimes E_{g} = A_{1\mu} \oplus A_{2\mu} \oplus B_{1\mu} \oplus B_{2\mu} \oplus E_{\mu}$$
 (13)

Thus $\partial_i \eta_i \partial_k \eta_i^*$ transform like:

$$(A_{1\mu} \oplus A_{2\mu} \oplus B_{1\mu} \oplus B_{2\mu} \oplus E_{\mu}) \otimes (A_{1\mu} \oplus A_{2\mu} \oplus B_{1\mu} \oplus B_{2\mu} \oplus E_{\mu})^* = (4+1)A_{1g} \oplus \cdots$$

$$(14)$$

The first four A_{1g} are derived from:

$$A_{1u} \otimes A_{1u} = A_{2u} \otimes A_{2u} = B_{1u} \otimes B_{1u} = B_{2u} \otimes B_{2u} = A_{1g}$$
 (15)

the fifth A_{1g} derived from:

$$E_u \otimes E_u = A_{1g} \oplus A_{2g} \oplus B_{1g} \oplus B_{2g} \tag{16}$$

Then the basis of E_u is $(\partial_z \eta_1, \partial_z \eta_2)$. Given equation (16) and the projection matrix of A_{1g} (I will give the prgram calculate this matrx later) we can get the first invariant combination: $|\partial_z \eta_1|^2 + |\partial_z \eta_2|^2$. In case you want to know, the projection matrix of A_{1g} is:

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$E_{u} \otimes E_{g} = A_{1\mu} \oplus A_{2\mu} \oplus B_{1\mu} \oplus B_{2\mu}$$
 (17)

The basis of $E_u \otimes E_g$ is $(\partial_x \eta_1, \partial_x \eta_2, \partial_y \eta_1, \partial_y \eta_2)$. We calculate the projection matrix of $A_{1u}, A_{2u}, B_{1u}, B_{2u}$ and get the basis are separately:

$$\partial_{x}\eta_{2} - \partial_{y}\eta_{1} \qquad \qquad \partial_{x}\eta_{1} + \partial_{y}\eta_{2} \qquad (18)$$

$$\partial_{\mathsf{x}}\eta_2 + \partial_{\mathsf{y}}\eta_1 \qquad \qquad \partial_{\mathsf{x}}\eta_1 - \partial_{\mathsf{y}}\eta_2 \tag{19}$$

Finally the **Ginzburg-Landau** free energy is therefore of the following form:

$$f[\eta_{1}, \eta_{2}] = \alpha (T - T_{c})\eta_{i}^{*}\eta_{i} + \beta_{1}(\eta_{i}\eta_{i})^{2} + \beta_{2}|\eta_{i}\eta_{i}|^{2} + \beta_{3}(|\eta_{1}|^{4} + |\eta_{2}|^{4})$$
(20)
+
$$\frac{\hbar^{2}}{2m'_{1}}(|\partial_{x}\eta_{1}|^{2} + |\partial_{y}\eta_{2}|^{2}) + \frac{\hbar^{2}}{2m''_{1}}(|\partial_{y}\eta_{1}|^{2} + |\partial_{x}\eta_{2}|^{2})$$
(21)
+
$$\frac{\hbar^{2}}{2m_{2}}(|\partial_{x}\eta_{1}|^{2} + |\partial_{z}\eta_{2}|^{2})$$
(22)

$$+\frac{\hbar^{2}}{2m_{3}'}(\partial_{x}\eta_{2}^{*}\partial_{y}\eta_{1}+c.c)+\frac{\hbar^{2}}{2m_{3}''}(\partial_{x}\eta_{1}^{*}\partial_{y}\eta_{2}+c.c)$$
(23)

Once we get the singlet states, it's easy to generalize singlet states to triplet states as below:

The singlet state of Orthorhombic symmetry is $\eta\eta\eta^*\eta^*$. The triplet states take the form $\eta_u\eta_u\eta_v^*\eta_v^*$ and $\eta_u\eta_v\eta_u^*\eta_v^*$. The gradient term takes the form $\partial_i\eta_u\partial_j\eta_u^*$.

For singlet term, we have:

$$\eta_i^* \eta_i \eta_j^* \eta_j \qquad \eta_i \eta_i \eta_j^* \eta_j^* \qquad \epsilon_{ijk} \eta_i \eta_j^* \eta_j^* \qquad \epsilon_{ijk} \eta_i \eta_i^* \eta_j^* \qquad (24)$$

where the second and third term should be understood as $\epsilon_{ij3} \cdot \cdots$. The triplet states take the form:

$$\eta_{ui}^* \eta_{ui} \eta_{vj}^* \eta_{vj} \qquad \eta_{ui} \eta_{ui} \eta_{vj}^* \eta_{vj}^* \qquad \epsilon_{ijk} \eta_{ui} \eta_{ui} \eta_{vj}^* \eta_{vj}^* \qquad \epsilon_{ijk} \eta_{ui}^* \eta_{ui} \eta_{vj}^* \eta_{vj} \qquad (25)$$

$$\eta_{ui}^* \eta_{vi} \eta_{vj}^* \eta_{uj} \qquad \eta_{ui} \eta_{vi} \eta_{uj}^* \eta_{vj}^* \qquad \epsilon_{ijk} \eta_{ui} \eta_{vi} \eta_{vj}^* \eta_{vj}^* \qquad \epsilon_{ijk} \eta_{ui}^* \eta_{vi} \eta_{vj}^* \eta_{uj} \qquad (26)$$

Note that the forth term is zero.

References

- M. El-Batanouny and F. Wooten. *Symmetry and Condensed Matter Physics*. Cambridge University Press, 2008.
- Annett, James F. "Symmetry of the order parameter for high-temperature superconductivity." Advances in Physics 39.2 (1990): 83-126.
- Rykhlinskaya, Katja, and Stephan Fritzsche. "Generation of Clebsch–Gordan coefficients for the point and double groups." Computer physics communications 174.11 (2006): 903-913.

Thank You!

Questions?

