

2nd Generation thinQ![™] SiC Schottky Diode

Features

- Revolutionary semiconductor material Silicon Carbide
- Switching behavior benchmark
- No reverse recovery/ No forward recovery
- No temperature influence on the switching behavior
- · High surge current capability
- Pb-free lead plating; RoHs compliant
- Qualified according to JEDEC¹⁾ for target applications
- Breakdown voltage tested at 5mA²⁾

Product Summary

V _{DC}	600	V
Q _c	24	nC
I _F	10	Α

PG-TO220-2-2

thinQ! 2G Diode specially designed for fast switching applications like:

- CCM PFC
- Motor Drives

Туре	Package	Marking	Pin 1	Pin 2
IDT10S60C	PG-TO220-2-2	D10S60C	С	Α

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous forward current	I _F	T _C <140 °C	10	Α
RMS forward current	I _{F,RMS}	f=50 Hz	15	
Surge non-repetitive forward current, sine halfwave	I _{F,SM}	T _C =25 °C, t _p =10 ms	84	
Repetitive peak forward current	I _{F,RM}	T _j =150 °C, T _C =100 °C, D=0.1	39	
Non-repetitive peak forward current	I _{F,max}	T _C =25 °C, t _p =10 μs	350	
i²t value	∫i²dt	T _C =25 °C, t _p =10 ms	35	A ² s
Repetitive peak reverse voltage	V_{RRM}		600	V
Diode ruggedness dv/dt	dv∕dt	V _R =0480V	50	V/ns
Power dissipation	P _{tot}	T _C =25 °C	100	W
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$		-55 175	°C
Mounting torque		M3 and M3.5 screws	60	Ncm

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R _{thJC}		-	-	1.5	K/W
Thermal resistance, junction - ambient	$R_{ m thJA}$	leaded	-	-	62	
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	1.6mm (0.063 in.) from case for 10s	-	-	260	°C
Electrical characteristics, at T_j =25 ° Static characteristics	C, unless	otherwise specified				
	V _{DC}	/ _R =0.14 mA	600	-	-	V
	V _{DC}	/ _R =0.14 mA / _F =10 A, <i>T</i> _j =25 °C	600	- 1.5	- 1.7	V
DC blocking voltage	+			- 1.5 1.7		V
DC blocking voltage	+	I _F =10 A, T _j =25 °C	-		1.7	V μA

AC characteristics

Total capacitive charge	Q _c	V_R =400 V, $I_F \le I_{F,max}$, -d i_F /d t =200 A/ μ s, T_j =150 °C	-	24	-	nC
Switching time ³⁾	t _c		1	1	<10	ns
Total capacitance	С	V _R =1 V, <i>f</i> =1 MHz	-	480	-	pF
		V _R =300 V, <i>f</i> =1 MHz	-	60	-	
		V _R =600 V, <i>f</i> =1 MHz	-	60	-	

¹⁾ J-STD20 and JESD22

 $^{^{2)}}$ All devices tested under avalanche conditions, for a time periode of 5ms, at 5mA.

 $^{^{3)}}t_{c}$ is the time constant for the capacitive displacement current waveform (independent from T_{j} , I_{LOAD} and di/dt), different from t_{rr} , which is dependent on T_{j} , I_{LOAD} , di/dt. No reverse recovery time constant t_{rr} due to absence of minority carrier injection.

⁴⁾ Only capacative charge occuring, guaranteed by design.

1 Power dissipation

P_{tot} =f(T_{C})

parameter: R_{thJC(max)}

2 Diode forward current

 $I_F = f(T_C); T_i \le 175 °C$

parameter: $R_{thJC(max)}$; $V_{F(max)}$

3 Typ. forward characteristic

 I_F =f(V_F); t_p =400 µs

parameter: $T_{\rm j}$

4 Typ. forward characteristic in surge current

mode

 $I_F = f(V_F)$; $t_p = 400 \mu s$; parameter: T_j

5 Typ. forward power dissipation vs.

average forward current

 $P_{F,AV}$ =f(I_F), T_C =100 °C, parameter: $D = t_p/T$

6 Typ. reverse current vs. reverse voltage

 $I_R = f(V_R)$

parameter: T_j

7 Transient thermal impedance

 Z_{thJC} =f(t_p)

parameter: $D = t_p/T$

8 Typ. capacitance vs. reverse voltage

 $C = f(V_R)$; $T_C = 25$ °C, f = 1 MHz

9 Typ. C stored energy

 $E_{\rm C}$ =f($V_{\rm R}$)

10 Typ. Capacitive charge vs. current slope

 $Q_{C} = f(di_{F}/dt)^{4}$; $T_{j} = 150 \text{ °C}$; $I_{F} \le I_{F,\text{max}}$

PG-TO220-2-2: Outline

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices, please contact your nearest Infineon Technologies office in Germany or our Infineon Technologies representatives worldwide (see address list).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Infineon Technologies' components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.