Aufgabe 1: "Formale Verifikation"

Gegeben sei folgende Methode zur Berechnung der Anzahl der notwendigen Züge beim Spiel "Die Türme von Hanoi":

```
int hanoi(int nr, char from, char to) {
    char free = (char) ('A' + 'B' + 'C' - from - to);
    if (nr > 0) {
        int moves = 1;
        moves += hanoi(nr - 1, from, free);
        System.out.println("Move piece nr. " + nr + " from " + from + " to " + to);
        moves += hanoi(nr - 1, free, to);
        return moves;
} else {
        return 0;
} else {
        return 0;
}
```

(a) Beweisen Sie formal mittels vollständiger Induktion, dass zum Umlegen von k Scheiben (z. B. vom Turm A zum Turm C) insgesamt $2^k - 1$ Schritte notwendig sind, also dass für $k \ge 0$ folgender Zusammenhang gilt:

hanoi
$$(k, 'A', 'C') = 2^k - 1$$

Zu zeigen:
$$\text{hanoi}(k, \text{'A'}, \text{'C'}) = 2^k - 1$$
 I. A.: $k = 0$
$$\text{hanoi}(0, \text{'A'}, \text{'C'}) = 0$$

$$2^0 - 1 = 1 - 1 = 0$$
 I. V.:
$$\text{hanoi}(k, \text{'A'}, \text{'C'}) = 2^k - 1$$
 I. S.: $k \to k + 1$
$$\text{hanoi}(k + 1, \text{'A'}, \text{'C'}) = 1 + \text{hanoi}(k, \text{'A'}, \text{'B'}) + \text{hanoi}(k, \text{'B'}, \text{'C'})$$

$$= 1 + 2^k - 1 + 2^k - 1$$

$$= 2 \cdot 2^k - 1$$

$$= 2^{k+1} - 1$$

(b) Geben Sie eine geeignete Terminierungsfunktion an und begründen Sie kurz Ihre Wahl!

Betrachte die Argumentenfolge $k, k-1, k-2, \ldots, 0$.

 \Rightarrow Terminierungsfunktion: T(k) = k

Nachweis für ganzzahlige $k \ge 0$:

- T(k) ist auf der Folge der Argumente streng monoton fallend bei jedem Rekursionsschritt.
- Bei der impliziten Annahme k ist ganzzahlig und $k \geq 0$ ist T(k) nach unten durch 0 beschränkt.