UNIT FOUR

The Assignment Model

The Assignment Model

Characteristics

- Special form of linear programming model similar to the transportation model.
- Supply at each source and demand at each destination limited to one unit.
- In a balanced model supply equals demand.
- In an unbalanced model supply does not equal demand.

The Assignment Model Example Problem Definition and Data

Problem: Assign four teams of officials to four games in a way that will minimize total distance traveled by the officials. Supply is always one team of officials, demand is for only one team of officials at each game.

		Gam	e Sites	
Officials	Raleigh	Atlanta	Durham	Clemson
A	210	90	180	160
В	100	70	130	200
С	175	105	140	170
D	80	65	105	120

The Assignment Model Example Problem Model Formulation

Minimize $Z = 210x_{AR} + 90x_{AA} + 180x_{AD} + 160x_{AC} + 100x_{BR} + 70x_{BA} + 130x_{BD} + 200x_{BC} + 175x_{CR} + 105x_{CA} + 140x_{CD} + 170x_{CC} + 80x_{DR} + 65x_{DA} + 105x_{DD} + 120x_{DC}$ subject to

$$x_{AR} + x_{AA} + x_{AD} + x_{AC} = 1$$
 $x_{BR} + x_{BA} + x_{BD} + x_{BC} = 1$
 $x_{CR} + x_{CA} + x_{CD} + x_{CC} = 1$
 $x_{DR} + x_{DA} + x_{DD} + x_{DC} = 1$
 $x_{AR} + x_{BR} + x_{CR} + x_{DR} = 1$
 $x_{AA} + x_{BA} + x_{CA} + x_{DA} = 1$
 $x_{AC} + x_{BC} + x_{CC} + x_{DC} = 1$
 $x_{AC} + x_{BC} + x_{CC} + x_{DC} = 1$

Solution of the Assignment Model (1 of 7)

- An *assignment problem* is a special form of the transportation problem where all supply and demand values equal one.
- Example: assigning four teams of officials to four games in a way that will minimize distance traveled by the officials.

Officials		Gam	e Sites	
	Raleigh	Atlanta	Dur ham	Clemson
A	210	90	180	160
В	100	70	130	200
С	175	105	140	1 7 0
D	80	65	105	120

Solution of the Assignment Model (2 of 7)

- An *opportunity cost table* is developed by first subtracting the minimum value in each row from all other row values *(row reductions)* and then repeating this process for each column.

Officials		Gam	e Sites			
	Raleigh	Atlanta	Durham	Clemson		
A	120	0	90	70		
В	30	0	60	130		
С	7 0	0	35	65		
D	15	0	40	55		

The Assignment Tableau with Row Reductions

Solution of the Assignment Model (3 of 7)

- The minimum value in each column is subtracted from all column values (*column reductions*).
 - Assignments can be made in the table wherever a zero is present.
- An *optimal solution* results when each of the four teams can be assigned to a different game.
 - Table 36 does not contain an optimal solution

Officials		Gam	e Sites	
	Raleigh	Atlanta	Durham	Clemson
A	105	0	55	15
В	15	0	25	7 5
С	55	0	0	10
D	0	O	5	O

The Tableau with Column Reductions

Solution of the Assignment Model (4 of 7)

- An optimal solution occurs when the number of independent unique assignments equals the number of rows and columns.
- If the number of unique assignments is less than the number of rows (or columns) a line test must be used.

Officials A		Game	e Sites	
	Raleigh	Atlanta	Durham	Clemson
	105	0	55	15
В	15	O	25	7 5
С	35	0	0	10
D	0	0	5	0

Solution of the Assignment Model (5 of 7)

- In a line test all zeros are crossed out by horizontal and vertical lines; the minimum uncrossed value is subtracted from all other uncrossed values and added to values where two lines cross.

Officials		Gam	e Sites	
	Raleigh	Atlanta	Dur ham	Clemson
A	90	0	40	0
В	0	0	10	60
С	55	15	0	10
D	0	15	5	0

The Second Iteration

Solution of the Assignment Model (6 of 7)

- At least four lines are required to cross out all zeros in table 38.
- This indicates an optimal solution has been reached.
- Assignments and distances:

<u>Assignment</u> <u>Distance</u>	<u>Distance</u>	<u>Assignment</u>	
Team A → Atlanta	90	Team A → Clemson	160
Team B \rightarrow Raleigh	100	Team B → Atlanta	70
Team $C \rightarrow Durham$	140	Team $C \rightarrow Durham$	140
Team $D \rightarrow Clemson$	120	Team D \rightarrow Raleigh	80
Total	450 miles	Total	450

miles

- If in initial assignment team A went to Clemson, result is the same; resulting assignments represent multiple optimal solutions.

Solution of the Assignment Model (7 of 7)

- When supply exceeds demand, a dummy column is added to the tableau.
- When demand exceeds supply, a dummy row is added to the tableau.
- The addition of a dummy row or column does not affect the solution method.
- A prohibited assignment is given a large relative cost of *M* so that it will never be selected.

Officials			Game Sites		
	Raleigh	Atlanta	Durham	Clemson	Dummy
A	210	90	180	160	0
В	100	7 0	130	200	0
С	1 7 5	105	140	170	0
D	80	65	105	120	0
Е	95	115	120	100	0

An Unbalanced Assignment Tableau with a Dummy Column

Solution of the Assignment Model Summary of Solution Steps

- 1. Perform row reductions.
- 2. Perform column reductions.
- 3 In the completed opportunity cost table, cross out all zeros using the minimum number of horizontal and/or vertical lines.
- 4. If fewer than *m* lines are required, subtract the minimum uncrossed value from all other uncrossed values, and add the same value to all cells where two lines intersect.
 - 5. Leave all other values unchanged and repeat step 3.
- 6. If *m* lines are required, the tableau contains the optimal solution. If fewer than *m* lines are required, repeat step 4.

Exercise: Make the optimal assignment of the following typists to the appropriate jobs.

Typist			Job		
	P	Q	R	S	T
A	85	75	65	125	75
В	90	78	66	132	78
\mathbf{C}	45	66	57	114	69
D	80	32	60	120	72
E	76	64	56	112	68