COMP 5630/6630:Machine Learning

Lecture 4: Logistic Regression and Regularization

Predicting House Type: Learn a Mapping from $x \rightarrow y$

Dataset of the living areas, bedrooms, prices, and types of 47 houses

L	iving area (ft²)	# bedrooms	Price (1000\$s)	Туре
	1643	4	256	Apartment
	1356	3	202	Apartment
	1678	3	287	House
			•••	
	3000	4	400	House
		Υ		
X = Input features				y = Class label

y = Class label

1 = House

0 = Apartment/ not a house

House Type Prediction

- Supervised Learning
 - Given a training dataset, learn a mapping (hypothesis, h) from x > y, where y is labelled
 - Goal: Given a new datapoint, x (test data), predict the most accurate output, y, using the learned hypothesis, h
 - learned mapping = trained model

Logistic Regression: Hypothesis

Recap: Linear regression hypothesis

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

• How does the logistic regression hypothesis differ from that of linear regression?

Logistic Regression: Hypothesis

Recap: Linear regression hypothesis

$$h(x) = \sum_{i=0}^{n} \theta_i x_i = \theta^T x,$$

- How does the logistic regression hypothesis differ from that of linear regression?
- Does not make sense to have predictions greater than 1 or less then 0.
 - Since the labels of y are 1 and 0 and $y \in \{0, 1\}$.

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

Logistic Regression Model

- Goal
 - Define a function to satisfy $0 \le h_{\theta}(x) \le 1$
 - Take a probabilistic approach to represent $h = p(y = 1 | x; \theta)$
- Logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\intercal} \boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$
 $\theta^{T} x = \theta_{0} + \sum_{j=1}^{n} \theta_{j} x_{j}$

$$\theta^T x = \theta_0 + \sum_{j=1}^n \theta_j x_j$$

Logistic Regression Decision Boundary

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Logistic Regression Decision Boundary

Any Idea?

Logistic Regression Decision Boundary

Predict y = 1 if $-3 + x_1 + x_2 \ge 0$

Logistic Regression: Cost/ Objective Function to get Θ

- Gradient Descent!
- What do we need for gradient descent?
 - An objective function $J(\theta)$
 - A learning rate α
 - An initial "guess" for θ called θ_i
- Then, update θ_i until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

$$\theta^T x = \theta_0 + \sum_{j=1}^n \theta_j x_j$$

Defining the Objective Function J(θ)

• Let say,
$$P(y=1\mid x;\theta)=h_{\theta}(x)$$
 Chance of predicting a house given X
$$P(y=0\mid x;\theta)=1-h_{\theta}(x)$$
 Chance of predicting an apartment given X Sum of two probabilities must equal to one

Combining:

$$p(y \mid x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Plugging y = 1 into
$$(h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}$$
 yields $h_{\theta}(x)$
Plugging y = 0 into $(h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}$ yields $1 - h_{\theta}(x)$

Defining the Objective Function J(θ)

• Given:
$$p(y \mid x; \theta) = (h_{\theta}(x))^y (1 - h_{\theta}(x))^{1-y}$$

- We want to estimate θ that will capture the dependency between y and x.
- We will instead call it the *likelihood function* that maximizes $p(y|x; \theta)$ and is given by

$$L(\theta) = \prod_{i=1}^{m} p(y^{(i)} \mid x^{(i)}; \theta) = \prod_{i=1}^{m} \left(h_{\theta}(x^{(i)}) \right)^{y^{(i)}} \left(1 - h_{\theta}(x^{(i)}) \right)^{1 - y^{(i)}}$$

Defining the Objective Function $J(\theta)$

- How can we get θ ?
- The principal of *maximum likelihood*
 - Choose θ that makes the data as high probability as possible
 - Choose θ to maximize L(θ).
- Instead of maximizing $L(\theta)$, we can also maximize any strictly increasing function of $L(\theta)$.
 - We will maximize the log likelihood $\ell(\theta)$:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log(1 - h(x^{(i)}))$$

Recap: House Type Prediction Problem

- Given a training dataset, learn a mapping (hypothesis, h) from x→ y, where y is labelled
 - Chance of predicting a house given X
 - Chance of predicting an apartment given X

- h → Choose θ that will capture the dependency between y and x
 - Define likelihood
 - Take log likelihood
- Goal of learning h:
 - Maximize log likelihood
 - Given a new datapoint, x (test data), predict the most accurate output, y, using the learned hypothesis, h

```
y = 0: Apartment/
not a house
y = 1: House
```

How do we get θ ?

- Gradient Descent!
- Then, update θ_i until convergence as follows

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

• So what is $\frac{\partial}{\partial \theta_j} J(\theta)$?

Gradient Descent J(θ)

- Goal
 - Maximize the log likelihood = $\sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1-y^{(i)}) \log(1-h(x^{(i)}))$
 - Equivalently, *minimize* $J(\theta)$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

$$rac{\partial}{\partial heta_j} J(heta) = rac{1}{m} \sum_{i=1}^m \Bigl[h_ heta(x^{(i)}) - y^{(i)} \Bigr] x_j^{(i)}$$

Derivation is in the handout

Regularization

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

(g= sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Addressing Overfitting

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm (later in course).
- 2. Regularization
 - Keep all the features, but reduce magnitude/values of parameters $heta_j$
 - Works well when we have a lot of features, each of which contributes a bit to predicting \boldsymbol{y}

Intuition of Regularization

Suppose we penalize and make Θ_3 and Θ_4 really small. Minimize $J(\Theta)$

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\Theta}(x^{(i)}) - y^{(i)})^{2} + 1000 \Theta_{3} + 2000 \Theta_{4}$$
 ~ 0

Regularization in Linear Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Normal Equation with Regularization

•
$$\mathbf{X} = \begin{bmatrix} 1 & 1643 & 4 \\ 1 & 1356 & 3 \\ 1 & 1678 & 3 \end{bmatrix}$$
 $\mathbf{y} = \begin{bmatrix} 256 \\ 202 \\ 287 \end{bmatrix}$

Dimension of X, mxn = m examples, n features Dimension of y = mx1

X ₀	x _{1 =} Living area (ft²)	x ₂ =#bedrooms	y= Price(1000\$s)
1	1643	4	256
1	1356	3	202
1	1678	3	287

• Regularization: add an extra Identity matrix (n+1, n+1) to (X^TX) where n=# features, and extra 1 denotes the extra column of 1s for bias term.

$$\Theta = \left(X^T X + \lambda egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ . & . & . & 1 & . & . & . \ . & . & . & . & 1 & . & . \ . & . & . & . & . & 1 & . & . \ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}_{(n+1,n+1)}^{-1} X^T Y$$

Non regularized: $\theta = (X^T X)^{-1} X^T y$

Logistic Regression with Regularization

•
$$\log L(\theta) + \lambda \sum_{j=1}^{p} |\beta_j|$$

L1 penalty, known as "Lasso regression"

• log L(
$$\theta$$
) + $\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$

L1 and L2 penalty, known as "Elastic net"