MACS 201: Hilbert spaces and probability

1 Hilbert spaces

Def. Let \mathcal{H} be a complex linear space. An **inner-product** on \mathcal{H} is a function $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{C}$ which satisfies the following properties :

- (i) $\forall (x, y) \in \mathcal{H} \times \mathcal{H}, \langle x \mid y \rangle = \overline{\langle y \mid x \rangle},$
- (ii) $\forall x, y, z \in \mathcal{H} \forall (\alpha, \beta) \in \mathbf{C} \times \mathbf{C}, \langle \alpha x + \beta y \mid z \rangle = \alpha \langle x \mid z \rangle + \beta \langle y \mid z \rangle$,
- (iii) $\forall x \in \mathcal{H}, (\langle x \mid x \rangle = 0) \iff (x = 0)$

Then $\|\cdot\|: x \mapsto \sqrt{\langle x \mid x \rangle} \ge 0$ defines a norm on \mathcal{H} . Both are continuous.

Th. For all $x, y \in \mathcal{H}$, we have :

- a) Cauchy-Schwarz inequality: $|\langle x \mid y \rangle| \leq ||x|| \cdot ||y||$,
- b) triangular inequality: $|||x|| ||y|| \le ||x y|| \le ||x|| + ||y||$,
- c) Parallelogram inequality: $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$.

Def. An inner-product space \mathcal{H} is called an **Hilbert space** if it is complete.

Prop. For all measured space $(\Omega, \mathcal{F}, \mu)$, the space $L^2(\Omega, \mathcal{F}, \mu)$ endowed with $\langle f \mid g \rangle = \int f \bar{g} \, d\mu$ is a Hilbert space.

Def. Two vectors $x, y \in \mathcal{H}$ are **orthogonal** if $\langle x \mid y \rangle = 0$ which we denoted by $x \perp y$. If \mathcal{S} is a subspace of \mathcal{H} , we write $x \perp \mathcal{S}$ if $\forall s \in \mathcal{S}, x \perp s$. Also we write $\mathcal{S} \perp \mathcal{T}$ if all vectors in \mathcal{S} are orthogonal to \mathcal{T} .

Not. If $\mathcal{H} = \mathcal{A} + \mathcal{B}$ and $\mathcal{A} \perp \mathcal{B}$ we will denote $\mathcal{H} = \mathcal{A} \stackrel{\perp}{\oplus} \mathcal{B}$.

Def. Let \mathcal{E} be a subset of an Hilbert space \mathcal{H} . The orthogonal set of \mathcal{E} is $\mathcal{E}^{\perp} = \{x \in \mathcal{H} \mid \forall y \in \mathcal{E}, \langle x \mid y \rangle = 0\}$.

Th. If \mathcal{E} is a subset of an Hilbert space \mathcal{H} , then \mathcal{E}^{\perp} is closed.

Orthogonal and orthonormal bases

Def. Let E be a subset of \mathcal{H} . It is an orthogonal set if for all $(x,y) \in E \times E, x \neq y, x \perp y$. If moreover $\forall x \in E, \|x\| = 1$, we say that E is orthonormal.

Th. Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of an Hilbert space \mathcal{H} and let $(\alpha_i)_{i\geqslant 1}\in \mathbf{C^N}$. The series $\sum_{i=1}^{\infty}\alpha_i e_i$ converges in \mathcal{H} if and only if $\sum_i |\alpha_i|^2 < \infty$, in which case $\|\sum_{i=1}^{\infty}\alpha_i e_i\|^2 = \sum_{i=1}^{\infty} |\alpha_i|^2$.

Prop. Let $x \in \mathcal{H}$ (Hilbert space) and $E = \{e_1, \dots, e_n\}$ a finite orthonormal set of vectors. Then $||x - \sum_{k=1}^n \langle x \mid e_k \rangle e_k||^2 = ||x||^2 - \sum_{k=1}^n |\langle x \mid e_k \rangle|^2 = \inf\{||x - y||^2, y \in \operatorname{Span}(e_1, \dots, e_n)\}.$

Cor (Bessel inequality). Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of a Hilbert space \mathcal{H} . Then \forall , $x\in\mathcal{H}$, $\sum_{i=1}^{\infty}|\langle x\mid e_i\rangle|^2\leqslant \|x\|^2$.

Def. A subset E of a Hilbert space \mathcal{H} is said **dense** if $\overline{\mathrm{Span}}(E) = \mathcal{H}$. An orthonormal dense sequence is called a Hilbert basis.

Prop. Consider the measured space $(\Omega, \mathcal{F}, \mu)$ and the Hilbert space $\mathcal{H} = L^2(\Omega, \mathcal{F}, \mu)$, $\overline{\mathrm{Span}}(\mathbf{1}_A, A \in \mathcal{F}) = \mathcal{H}$.

Th. Let $(e_i)_{i\geqslant 1}$ be a Hilbert basis of the Hilbert space \mathcal{H} . Then $\forall x\in\mathcal{H}, x=\sum_{i=1}^{\infty}\langle x\mid e_i\rangle\,e_i$.

Th. Let $(e_i)_{i\geqslant 1}$ be an orthonormal sequence of the Hilbert space \mathcal{H} . The following assertions are equivalent:

- (i) $(e_i)_{i \ge 1}$ is a Hilbert basis,
- (ii) if some $x \in \mathcal{H}$ satisfies $\forall i \geq 1, \langle x \mid e_i \rangle = 0$ then x = 0,
- (iii) $\forall x \in \mathcal{H}, ||x||^2 = \sum_{i=1}^{\infty} |\langle x \mid e_i \rangle|^2$.

Th. A Hilbert space \mathcal{H} if separable (i.e. contains a countable dense subset) if and only if it admits a Hilbert basis.

Fourier series

Let $\psi_n \colon x \mapsto \frac{1}{\sqrt{2\pi}} e^{inx}, n \in \mathbf{Z}$. Let $L^1(\mathbf{T})$ denote the set of 2π -periodic locally integrable functions. For $f \in L^1(\mathbf{T})$, set $\forall n \in \mathbf{N}, f_n = \sum_{k=-n}^n \left(\int_{\mathbf{T}} f \bar{\phi}_k \right) \phi_k$.

Th. Let f be a continuous 2π -periodic function. Then the Cesaro sequence $\frac{1}{n}\sum_{k=0}^{n-1}f_k$ converges uniformly to f.

Cor. Let μ be a finite measure on the Borel sets of $\mathbf{T} = \mathbf{R}/(2\pi\mathbf{Z})$. The sequence $(\phi_n)_{n \in \mathbf{Z}}$ is dense in the Hilbert space $L^2(\mathbf{T}, \mathcal{B}(\mathbf{T}), \mu)$.

Cor. The sequence $(\phi_n)_{n\in\mathbf{Z}}$ is a Hilbert basis in $L^2(\mathbf{T})$. In particular, $\forall f\in L^2(\mathbf{T}), f=\sum_{k=-\infty}^\infty \alpha_k\phi_k$ with $\alpha_k=\frac{1}{\sqrt{2\pi}}\int_{\mathbf{T}}f(x)e^{-ikx}\,\mathrm{d}x$ when the infinite sum converges in $L^2(\mathbf{T})$. The Parseval identity then reads $\int_{\mathbf{T}}|f(x)|^2\,\mathrm{d}x=\sum_{k=-\infty}^\infty |\alpha_k|^2$.

Projection and orthogonality principle

Th (Projection theorem). Let \mathcal{E} be a closed convex subset of a Hilbert space \mathcal{H} and $x \in \mathcal{H}$. Then the following holds:

- (i) There exists a unique vector $\operatorname{proj}(x \mid \mathcal{E}) \in \mathcal{E}$ such that $||x \operatorname{proj}(x \mid \mathcal{E})|| = \inf_{w \in \mathcal{E}} ||x w||$.
- (ii) If moreover \mathcal{E} is a linear subspace, $\operatorname{proj}(x \mid \mathcal{E})$ is the unique $\hat{x} \in \mathcal{E}$ such that $x \hat{x} \in \mathcal{E}^{\perp}$. It is called the orthogonal projection of x onto \mathcal{E} .

Prop. Let \mathcal{H} be a Hilbert space and $\mathcal{E}, \mathcal{E}_1, \mathcal{E}_2$ closed subspaces of \mathcal{H} . Then the following assertions hold.

- (i) Suppose that $\mathcal{E} = \overline{\operatorname{Span}}\left((e_k)_{k \in \mathbb{N}}\right)$ with (e_k) being an orthonormal sequence. Then $\operatorname{proj}(h \mid \mathcal{E}) = \sum_{k=0}^{\infty} \langle h \mid e_k \rangle e_k$.
- (ii) The function $\operatorname{proj}(\cdot \mid \mathcal{H}) \colon x \mapsto \operatorname{proj}(x \mid \mathcal{E})$ is linear and continuous on \mathcal{H} .
- (iii) $||x||^2 = ||\operatorname{proj}(x \mid \mathcal{E})||^2 + ||x \operatorname{proj}(x \mid \mathcal{E})||^2$
- (iv) $(x \in \mathcal{E} \iff \operatorname{proj}(x \mid \mathcal{E}) = x)$ and $(x \in \mathcal{E}^{\perp} \iff \operatorname{proj}(x \mid \mathcal{E}) = 0)$
- (v) If $\mathcal{E}_1 \subset \mathcal{E}_2$ then $\forall x \in \mathcal{H}$, $\operatorname{proj}(\operatorname{proj}(x \mid \mathcal{E}_{\in} \mid \mathcal{E}_1) = \operatorname{proj}(x \mid \mathcal{E}_1)$
- (vi) If $\mathcal{E}_1 \perp \mathcal{E}_2$ then $\forall x \in \mathcal{H}$, $\operatorname{proj}\left(x \mid \mathcal{E}_1 \overset{\perp}{\oplus} \mathcal{E}_2\right) = \operatorname{proj}(x \mid \mathcal{E}_1) + \operatorname{proj}(x \mid \mathcal{E}_2)$

Th. Let $(M_n)_{n \in \mathbb{Z}}$ be an increasing sequence of closed subspaces of an Hilbert space \mathcal{H} .

- 1. Denote $M_{-\infty} = \bigcap_n M_n$. Then $\forall h \in \mathcal{H}$, $\operatorname{proj}(h \mid M_{-\infty}) = \lim_{n \to -\infty} \operatorname{proj}(h \mid M_n)$.
- 2. Denote $M_{\infty} = \overline{\bigcup_n M_n}$. Then $\forall h \in \mathcal{H}$, $\operatorname{proj}(h \mid M_{\infty}) = \lim_{n \to \infty} \operatorname{proj}(h \mid M_n)$.

Prop. Let \mathcal{E} and \mathcal{F} be two subspaces of a Hilbert space \mathcal{H} . If $\mathcal{E} \stackrel{\perp}{\oplus} \mathcal{F} = \mathcal{H}$, then $\mathcal{F} = \mathcal{E}^{\perp}$.

Th. If \mathcal{E} is a closed subspace of a Hilbert space \mathcal{H} then $\mathcal{E} \stackrel{\perp}{\oplus} \mathcal{E}^{\perp} = \mathcal{H}$. Moreover $(E^{\perp})^{\perp} = \mathcal{E}$.

Th (Riesz representation theorem). *Let* \mathcal{H} *be a Hilbert space. Then* $F : \mathcal{H} \to \mathbf{C}$ *is a non-zero continuous linear form if and only if* $\exists x \in \mathcal{H} \setminus \{0\}, \forall y \in \mathcal{H}, F(y) = \langle y \mid x \rangle$.

Unitary Operator

Def. Let \mathcal{H} and \mathcal{I} be two Hilbert spaces. An **isometric** operator $S \colon \mathcal{H} \to \mathcal{I}$ is a linear application such that $\forall (v,w) \in \mathcal{H}^2, \langle Sv \mid Sw \rangle_{\mathcal{I}} = \langle v \mid w \rangle_{\mathcal{H}}$. If it is moreover bijective, it is a **unitary** operator. In this case we also says that \mathcal{H} and \mathcal{I} are isomorphic.

Th. *Let* \mathcal{H} *be a separable Hilbert space.*

- (i) If \mathcal{H} has infinite dimension, it is isomorphic to l^2 .
- (ii) If \mathcal{H} has dimension n, it is isomorphic to \mathbb{C}^n .

Th. Let \mathcal{H} and \mathcal{I} be two Hilbert spaces and \mathcal{G} a subspace of \mathcal{H} .

- (i) Let $S: \mathcal{G} \to \mathcal{I}$ be isometric on \mathcal{G} . Then S admits a unique isometric extension $\bar{S}: \bar{\mathcal{G}} \to \mathcal{I}$ and $\bar{S}(\bar{\mathcal{G}})$ is the closure of $S(\mathcal{G})$ in \mathcal{I} .
- (ii) Let $(v_t)_{t\in T}$ and $(w_t)_{t\in T}$ be two set of vectors in \mathcal{H} and \mathcal{I} indexed by an arbitrary index set T. Suppose $\forall (s,t) \in T^2, \langle v_t \mid v_s \rangle_{\mathcal{H}} = \langle w_t \mid w_s \rangle_{\mathcal{I}}$. Then, there exists a unique isometric operator $S \colon \overline{\operatorname{Span}}((v_t)_{t\in T}) \to \overline{\operatorname{Span}}((w_t)_{t\in T})$ such that $\forall t \in T, Sv_t = w_t$. Moreover, $S(\overline{\operatorname{Span}}((v_t)_{t\in T})) = \overline{\operatorname{Span}}((w_t)_{t\in T})$.

2 Probability

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space.

Th (π - λ theorem). *If* $A \subset C$ *with* A *a* π -system and C *a* λ -system, then $\sigma(A) = C$.

Th (Characterization of probability measures). Let \mathcal{C} be a π -system on Ω and $\mathcal{F} = \sigma(\mathcal{C})$ the smallest σ -field containing \mathcal{C} . Then a probability measure μ on (Ω, \mathcal{F}) is uniquely characterized by $\mu(A)$ on $A \in \mathcal{C}$.

Not. For p > 0, we denote by $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbf{P})$ the space of random variables X such that $\mathbf{E}(|X|^p) < \infty$ and by $L^p(\Omega, \mathcal{F}, \mathbf{P})$ the one identifying random variables that are equal **P**-a.s.

Conditional calculus

Lem. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ and \mathcal{G} a sub- σ -field of \mathcal{F} . Then there exists $Y \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbf{P})$ such that

$$\forall A \in \mathcal{G}, \mathbf{E}(X \mathbf{1}_A) = \mathbf{E}(Y \mathbf{1}_A) \tag{1}$$

Moreover the following assertions hold.

- (i) If $Y' \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbf{P})$ also satisfies (1) then Y' = Y **P**-a.s.
- (ii) If $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbf{P})$, then $Y = \text{proj}(X \mid L^2(\Omega, \mathcal{G}, \mathbf{P}))$.
- (iii) (1) continues to hold extended as $\mathbf{E}(XZ) = \mathbf{E}(YZ)$ for all \mathcal{G} -measurable r.v. Z such that $\mathbf{E}(|XZ|) < \infty$.

Def. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ and \mathcal{G} a sub- σ -field of \mathcal{F} . The unique $Y \in L^1(\Omega, \mathcal{G}, \mathbf{P})$ defined by (1) is called the **conditional expectation** of X given \mathcal{G} , and denoted by $Y = \mathbf{E}(x \mid \mathcal{G})$.

Prop. Suppose that $X, Y, Z, (X_n)_{n \ge 1} \in L^1(\Omega, \mathcal{F}, \mathbf{P})$. The following hold **P**-a.s.

- (i) (linearity) $\forall a, b \in \mathbf{R}, \mathbf{E}(aX + bY \mid \mathcal{G}) = a\mathbf{E}(X \mid \mathcal{G}) + b\mathbf{E}(Y \mid \mathcal{G})$
- (ii) If X is G-measurable, $\mathbf{E}(X \mid \mathcal{G}) = X$
- (iii) If $G = \{\emptyset, \Omega\}$ is the trivial σ -field, then $\mathbf{E}(X \mid G) = \mathbf{E}(X)$
- (iv) If X is independent of G then $\mathbf{E}(X \mid \mathcal{G}) = \mathbf{E}(X)$
- (v) (positivity) If $X \leq Y$ then $\mathbf{E}(X \mid \mathcal{G}) \leq \mathbf{E}(Y \mid \mathcal{G})$
- (vi) $\mathbf{E}(X \mid \mathcal{G}) \vee \mathbf{E}(Y \mid \mathcal{G}) \leqslant \mathbf{E}(X \vee Y \mid \mathcal{G}), \mathbf{E}(X \mid \mathcal{G})_{+} \leqslant \mathbf{E}(X_{+} \mid \mathcal{G}) \text{ and } |\mathbf{E}(X \mid \mathcal{G})| \leqslant \mathbf{E}(|X| \mid \mathcal{G})$
- (vii) (tower property) If \mathcal{H} is a sub- σ -field of \mathcal{F} such that $\mathcal{G} \subset \mathcal{H}$ then $\mathbf{E}(\mathbf{E}(X \mid \mathcal{H}) \mid \mathcal{G}) = \mathbf{E}(X \mid \mathcal{G})$
- (viii) The expectation is not modified by conditional expectation: $\mathbf{E}(\mathbf{E}(X \mid \mathcal{G})) = \mathbf{E}(X)$
- (ix) If X is G-measurable and $XY \in L^1(\Omega, \mathcal{F}, \mathbf{P})$, then $\mathbf{E}(XY \mid \mathcal{G}) = X \cdot \mathbf{E}(Y \mid \mathcal{G})$
- **Def.** Let Y be a r.v. and $\sigma(X)$ the sub- σ -field generated by a r.v. X. If $\mathbf{E}(Y \mid \sigma(X))$ is well-defined, it is written as $\mathbf{E}(Y \mid X)$ and is called the **conditional expectation** of Y given X.

Def. Let \mathcal{G} be a sub- σ -field of \mathcal{F} . For any event $A \in \mathcal{F}$, we denote $\mathbf{P}(A \mid \mathcal{G}) = \mathbf{E}(\mathbf{1}_A \mid \mathcal{G})$. The mapping $A \mapsto \mathbf{P}(A \mid \mathcal{G})$ is called a **version of the conditional probability** of A given \mathcal{G} .

Def. Let \mathcal{G} be a sub- σ -field of \mathcal{F} . A **regular version** of the conditional probability of \mathbf{P} given \mathcal{G} is a function $\mathbf{P}^{\mathcal{G}}: \Omega \times \mathcal{F} \to [0:1]$ such that

- (i) For all $A \in \mathcal{F}$, $\mathbf{P}^{\mathcal{G}}(A) \colon \omega \mapsto \mathbf{P}^{\mathcal{G}}(\omega, A)$ is \mathcal{G} -measurable and is a version of the conditional probability of A given \mathcal{G} , $\mathbf{P}^{\mathcal{G}}(A) = \mathbf{P}(A \mid \mathcal{G})$.
- (ii) For all $\omega \in \Omega$, the mapping $A \mapsto \mathbf{P}^{\mathcal{G}}(\omega, A)$ is a probability on \mathcal{F} .

Lem. Let $\mathbf{P}^{\mathcal{G}}$ be a regular version of the conditional probability of \mathbf{P} given \mathcal{G} and let $Y \in L^1(\Omega, \mathcal{F}, \mathbf{P})$. Then $\mathbf{E}(Y \mid \mathcal{G}) = \mathbf{E}^{\mathcal{G}}(Y) \mathbf{P}$ -a.s., with $\mathbf{E}^{\mathcal{G}}(Y) : \omega \mapsto \int Y(\omega') \mathbf{P}^{\mathcal{G}}(\omega, d\omega')$.

Def. Let \mathcal{G} be a sub- σ -field of \mathcal{F} . Let (Y, \mathcal{Y}) be a measurable space and let Y be an Y-valued random variable. A regular version of the conditional distribution of Y given \mathcal{G} is a function $\mathbf{P}^{Y|\mathcal{G}} \colon \Omega \times \mathcal{Y} \to [0\,;1]$ such that

- (i) For all $A \in \mathcal{Y}$, $\omega \mapsto \mathbf{P}^{Y|\mathcal{G}}(\omega, A)$ is \mathcal{G} measurable and is a version of conditional distribution of Y given \mathcal{G} , $\mathbf{P}^{Y|\mathcal{G}}(\cdot, A) = \mathbf{P}(Y \in A \mid \mathcal{G})$ **P-**a.s.
- (ii) For every ω , $A \mapsto \mathbf{P}^{Y|\mathcal{G}}(\omega, A)$ is a probability on \mathcal{Y} .

Def. Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be two measurable spaces. A **kernel** is a mapping $Q: X \times \mathcal{Y} \to [0; \infty]$ satisfying the following conditions :

- (i) for every $A \in \mathcal{Y}$, the mapping $Q(\cdot, A) : x \mapsto Q(x, A)$ is a measurable function,
- (ii) for every $x \in X$, the mapping $Q(x, \cdot) : A \mapsto Q(x, A)$ is a measure on \mathcal{Y} .

Q is said to be finite if $\forall x \in X, Q(x, Y) < \infty$. It is called a probability kernel if $\forall x \in X, Q(x, Y) = 1$. It is called a Markov kernel if it is a probability kernel on $X \times \mathcal{X}$.

Def. Let X and Y be random variables with values in the measure spaces (X, \mathcal{X}) and (Y, \mathcal{Y}) respectively. A **regular version of the conditional distribution of** Y **given** X is a probability kernel $\mathbf{P}^{X|Y}: X \times \mathcal{Y} \to [0\,;1]$ such that $\forall A \in \mathcal{Y}, \mathbf{P}^{Y|X}(X,A) = \mathbf{P}(Y \in A \mid X)$ **P**-a.s.

Th. Let \mathcal{G} be sub- σ -field of \mathcal{F} . Let $d \geqslant 1$ and Y be an $(\mathbf{R}^D, \mathcal{B}(\mathbf{R}^d))$ -valued random variable. Then, there exists a regular version of the conditional distribution of Y given \mathcal{G} , $\mathbf{P}^{Y|\mathcal{G}}$, and this version is unique in the sense that for any other regular version $\bar{\mathbf{P}}^{Y|\mathcal{G}}$ of this distribution, for \mathbf{P} -almost every ω it holds that $\forall F \in \mathcal{F}, \mathbf{P}^{Y|\mathcal{G}}(\omega, F) = \bar{\mathbf{P}}^{Y|\mathcal{G}}(\omega, F)$. Moreover, if $\mathcal{G} = \sigma(X)$ for some r.v. X with values in a measurable space (X, \mathcal{X}) , there also exists a unique regular version (hence a probability kernel) $\mathbf{P}^{Y|X}$.

Lem. Let $\mathbf{P}^{Y|X}$ bee a regular version of the conditional expectation of Y given X. Then, for any real-valued measurable function g on Y such that $\mathbf{E}(|g(Y)| < \infty$, we have $\mathbf{E}(g(Y) \mid X) = \int g(Y) \mathbf{P}^{Y|X}(X, \mathrm{d}y)$, \mathbf{P} -a.s.

Prop. Let **X** and **Y** be two jointly Gaussian vectors, respectively valued in \mathbb{R}^p and \mathbb{R}^q . Then the following holds.

- (i) If $Cov(\mathbf{Y})$ is invertible, then $\hat{\mathbf{X}} := proj(\mathbf{X} \mid Span(1, \mathbf{Y}))$ is given by $\hat{\mathbf{X}} = \mathbf{E}(\mathbf{X}) + Cov(\mathbf{X}, \mathbf{Y}) Cov(\mathbf{Y})^{-1}(\mathbf{Y} \mathbf{E}(\mathbf{Y}))$, and $Cov(\mathbf{X} \hat{\mathbf{X}}) = Cov(\mathbf{X}) Cov(\mathbf{X}, \mathbf{Y}) Cov(\mathbf{Y})^{-1} Cov(\mathbf{Y}, \mathbf{X})$.
- (ii) We have $\mathbf{E}(\mathbf{X} \mid \mathbf{Y}) = \text{proj}(\mathbf{X} \mid \text{Span}(1, \mathbf{Y}))$.
- (iii) Let $\hat{\mathbf{X}} = \mathbf{E}(\mathbf{X} \mid \mathbf{Y})$. Then $\mathrm{Cov}(\mathbf{X} \hat{\mathbf{X}}) = \mathbf{E}\left(\mathbf{X}(\mathbf{X} \hat{\mathbf{X}})^\mathsf{T}\right) = \mathbf{E}\left((\mathbf{X} \hat{\mathbf{X}})\mathbf{X}^\mathsf{T}\right)$ and $\mathbf{P}^{\mathbf{Y}\mid\mathbf{X}}(\mathbf{X},\cdot) = \mathcal{N}\left(\hat{\mathbf{X}},\mathrm{Cov}\left(\mathbf{X} \hat{\mathbf{X}}\right)\right)$.

Radon-Nikodym derivative

Def. If $\forall A \in \mathcal{F}, \mu(A) = \int_A \phi \, d\lambda$, we say that the λ -a.e. equivalent class of ϕ is the **Radon-Nikodym derivative** of μ with respect to λ , and write $\phi = \frac{d\mu}{d\lambda}$.

Def. Let λ be a measure on (Ω, \mathcal{F}) . We say that a σ -finite measure μ is **absolutely continuous** with repsect to λ or that λ dominates μ and we write $\mu \ll \lambda$ if $\forall A \in \mathcal{F}, (\lambda(A) = 0) \implies (\mu(A) = 0)$.

Th (Radon-Nikodym theorem). Let $\lambda, \mu \in \mathbf{M}_+(\Omega, \mathcal{F})$ be σ -finite measures such that $\mu \ll \lambda$. Then, there exists a non-negative Borel function ϕ such that $\forall A \in \mathcal{F}, \mu(A) = \int_A \phi \, d\lambda$.

Def. Let (X,Y) be two random elements admitting a density f with respect to measure $\xi \otimes \xi'$ on $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$. Then the function $(x,y) \mapsto f(y \mid x) = \frac{f(x,y)}{\int f(x,y') \, \mathrm{d}\xi'(y')}$ is called the **conditional density** of Y given X.

Th. Let (X,Y) be two random elements admitting a density $f: X \times Y \to \mathbf{R}_+$ with respect to $\xi \otimes \xi'$ on $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$. Then, $\forall x \in X, \forall A \in \mathcal{Y}, \mathbf{P}^{Y|X}(x,A) = \int_A f(y \mid x) \xi'(\mathrm{d}y)$.

Lem. Let P and Q be two probabilities on the measurable space (Ω, \mathcal{F}) and let $\nu \in \mathbf{M}_+(\Omega, \mathcal{F})$ dominate both P and Q (e.g. $\nu = P + Q$). Let f_P and f_Q denote the densities of P and Q with respect to ν . Then, $\mathrm{KL}(P\|Q) = \int \ln\left(\frac{f_P}{f_Q}\right) \mathrm{d}P$ is always well defined and takes values in $[0\,;\infty]$. Moreover we have :

- (i) If Q does not dominate P then $KL(P||Q) = \infty$.
- (ii) If $P \ll Q$ then $\mathrm{KL}(P\|Q) = \int \ln\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}P$ (may be finite or infinite).
- (iii) We have $KL(P||Q) = 0 \iff P = Q$.

Def. The quantity KL(P||Q) is called the **Kullback-Leibler divergence** between P and Q.

Th. Let P and Q be two probabilities on the measurable space (Ω, \mathcal{F}) and X a measurable mapping from (Ω, \mathcal{F}) to (X, \mathcal{X}) . Then we have $\mathrm{KL}\left(P^X\|Q^X\right) \leqslant \mathrm{KL}(P\|Q)$.

Rem. Recall that $\forall A \in \mathcal{X}, P^X(A) = \int_{X^{-1}(A)} dP$ while $\forall F \in \mathcal{F}, P(F) = \int_F dP$.

3 Mathematical statistics

Statistical modeling

Def. Let (Ω, \mathcal{F}) be a measurable space and \mathcal{P} a collection of probabilities on this space. Let X be a measurable function from (Ω, \mathcal{F}) to the observation space (X, \mathcal{X}) . We say that \mathcal{P} is a **statistical model** for the observation variable X and denote $\mathcal{P}^X = (P^X)_{P \in \mathcal{P}}$ the corresponding collection of probability distributions.

It is usual in statistics to consider $\Omega = X$, $\mathcal{F} = \mathcal{X}$ and $X(\omega) = \omega$, in which case $\forall P \in \mathcal{P}, P = P^X$.

Def. Let $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$ and \mathcal{P} be a statistical model for X. We say that \mathcal{P} is a ν -dominated model for X, or that \mathcal{P}^X is ν -dominated, if $\forall P \in \mathcal{P}, P^X \ll \nu$.

Lem (Halmos and Savage). Let $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$. Consider a ν -dominated model \mathcal{P} for the variable X. Then there exists a countable collection $(P_n)_{n\geqslant 1}$ in \mathcal{P} such that \mathcal{P}^X is also dominated by $\mu = \sum_{n\geqslant 1} 2^{-n} P_n^X$.

Def. Let \mathcal{P} be a statistical model for the observation variable X. We say that \mathcal{P} is a **parametric model** for X if there exists a finite dimensional set Θ such that $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$.

Def. Let \mathcal{P} be a statistical model for X. Any finite dimensional quantity $t(P^X)$ only depending on P^X as $P \in \mathcal{P}$ is called an **identifiable parameter**.

Def. Let \mathcal{P} be a statistical model for X. A **statistic** in this context is any random variable T valued in $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$ with $d \ge 1$, defined by T = g(X) where g is a Borel function not depending on $P \in \mathcal{P}$.

If a statistic is used as a guess for a parameter $t(P) \in \mathbf{R}^d$, it is called an **estimator** of t(P). In this case, the **bias** of T for estimating t(P) is defined as $\operatorname{Bias}(T,P) = \int T \, \mathrm{d}P - t(P)$ whenever $\int |T| \, \mathrm{d}P < \infty$. We say that T is an *unbiased* estimator of t(P) if $\forall P \in \mathcal{P}, \int T \, \mathrm{d}P = t(P)$. The **quadratic risk** or **mean squared error** (in the case d=1) is defined by $\operatorname{MSE}(T,P) = \int (T-t(P))^2 \, \mathrm{d}P = \operatorname{Var}(T) + \operatorname{Bias}(T,P)^2$.

Def. Let T be a statistic valued in $(\mathbf{R}^d, \mathbf{R}^{\mathcal{D}})$ with $d \geqslant 1$. We say that T is a **sufficient statistic** for the model \mathcal{P} if, for all $P \in \mathcal{P}$, the conditional distribution of X given T does not depend on P, that is, there exists a probability kernel $Q \subset \mathbf{R}^d \times \mathcal{X}$ such that, for all $P \in \mathcal{P}$, Q is a regular version of $P^{X|T}$.

Lem. Let S be a sufficient statistic associated to the Markov kernel Q and let T=g(X) be an unbiased estimator of the parameter t(P) (both real valued). Define $T^R=\int g(x)Q(S,\mathrm{d}x)$. Then T^R is an unbiased estimator of the parameter t and its variance is smaller than that of T. As a consequence we have, $\forall P\in\mathcal{P},\mathrm{MSE}\,(T^R,P)\leqslant\mathrm{MSE}(T,P)$.

Th (Fisher Factorization theorem). Let $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$. Consider a ν -dominated model \mathcal{P} for X and let S = g(X) be a d-dimensional statistic. Then S is a sufficient statistic for the model \mathcal{P} if and only if there exists a non-negative Borel function h on X such that $\forall P \in \mathcal{P}$, there exists a Borel function $f_P \colon \mathbf{R}^d \to \mathbf{R}_+$ such that $\frac{\mathrm{d} P^X}{\mathrm{d} \nu} = h \cdot f_P \circ g$.

Def. Consider a ν -dominated model \mathcal{P} for X. For all $P \in \mathcal{P}$, let us denote by f_P the density of P^X with respect to ν . The **likelihood function** is defined as $P \mapsto f_P \circ X$ on $P \in \mathcal{P}$.

Then, $f_{P_1}(X) \ge f_{P_2}(X)$ is an indication that $\mathrm{KL}\left(P_*^X \| P_1^X\right) \le \mathrm{KL}\left(P_*^X \| P_2^X\right)$ where P_* is the true distribution of X.

Rem. Interestingly, we note that if one has a sufficient statistic S = g(X), by the Fisher Factorization theorem, to compare $f_{P_1}(X)$ and $f_{P_2}(X)$, we only need to observe S.

With a parametric model we define the likelihood function directly on Θ , $\theta \mapsto f_{\theta} \circ X$ where f_{θ} denotes the density of P_{θ} with respect to ν .

Def. A statistic $\hat{\theta}_n$ valued in Θ such that $f_{\hat{\theta}_n} \circ X = \max_{\theta \in \Theta} f_{\theta} \circ X$ is called a **maximum likelihood estimator** (MLE).

Statistical testing

We define two hypothesis, respectively called the *null hypothesis* and the *alternative hypothesis*.

- (\mathbf{H}_0) the observation variable X has distribution P^X with $P \in \mathcal{P}_0$,
- (**H**₁) X has distribution P^X with $P \in \mathcal{P}_1$,

with $\{\mathcal{P}_0, \mathcal{P}_1\}$ a partition of a statistical model \mathcal{P} . (\mathbf{H}_i) is simple if \mathcal{P}_i reduces to one point.

Def. A **statistical test** is a statistic δ with values in $\{0,1\}$. If $\delta = 0$ we say that we accept (\mathbf{H}_0) . Otherwise we reject it.

To evaluate the performance of a test δ , two type of risks are considered :

- The first type risk is defined as $P \mapsto P(\delta = 1)$ as $P \in \mathcal{P}_0$.
- The second type risk is defined as $P \mapsto P(\delta = 0)$ as $P \in \mathcal{P}_1$.

We call *power* of δ the application $P \mapsto P(\delta = 1)$ as $P \in \mathcal{P}_1$.

Def. Let $\alpha \in [0;1]$. We say that a test δ is of level α if $\sup_{P \in \mathcal{P}_0} P(\delta = 1) \leqslant \alpha$. We say that δ is uniformly more powerful then δ' for level α if both are of level α and $\forall P \in \mathcal{P}_1, P(\delta = 1) \geqslant P(\delta' = 1)$.

Simple hypotheses

We consider $\mathcal{P}_0 = \{P_0\}$ and $\mathcal{P}_1 = \{P_1\}$, with f_0 and f_1 the densities of P_0^X and P_1^X with respect to a common dominating measure.

Def. The statistic $T = \frac{f_1(X)}{f_0(X)}$ is called the **likelihood ratio statistic**. Let $t \in [0; \infty]$. The test defined by $\delta = \begin{cases} 1 & \text{if } T \geqslant t \\ 0 & \text{otherwise} \end{cases}$ is called the **likelihood ratio test** with threshold t.

Th. Denote by T the likelihood ratio corresponding to \mathcal{P}_0 and \mathcal{P}_1 . Let $t \in [0; \infty]$ and set $\alpha_t = P_0(T \ge t)$. Then the likelihood ratio test with threshold t is uniformly more powerful than any other test δ' for the level α_t . Moreover, if δ' is of level α_t and as powerful as δ , then they coincide on the set $\{T \ne t\}$ P_i -a.s. for $i \in \{0,1\}$.

Fisher information matrix

We consider a parametric ν -dominated model $\mathcal{P}=(P_{\theta})_{\theta\in\Theta}$ for the observation variable X valued in (X,\mathcal{X}) , and denote by f_{θ} the density of P_{θ} with respect to ν . We assume that Θ is an open subset of \mathbf{R}^n and denote by $\|f\|:=\left(\int_{\mathsf{X}}|f(x)|^2\,\nu(\mathrm{d}x)\right)^{\frac{1}{2}}$ the norm of the Hilbert space $L^2(\mathsf{X},\mathcal{X},\nu)$. Observe that $\forall \theta\in\Theta,\xi_{\theta}=\sqrt{f_{\theta}}\in L^2(\mathsf{X},\mathcal{X},\nu)$.

Def. We say that \mathcal{P} is **Hellinger differentiable** at θ if $\theta' \mapsto \xi_{\theta}$ defined from $\Theta \to L^{2}(\mathsf{X}, \mathcal{X}, \nu)$ admits a derivative at $\theta : \exists ! \dot{\xi}_{\theta} \in (L^{2}(\mathsf{X}, \mathcal{X}, \nu))^{d}, \lim_{\theta' \to \theta} \frac{1}{|\theta' - \theta|} \|\xi_{\theta'} - \xi_{\theta} - \dot{\xi}_{\theta}^{T}(\theta' - \theta)\| = 0.$

Lem. Let $\theta \in \Theta$ and $V \subset \Theta$ be a neighborhood of θ . Suppose that for ν -a.e. x and all $\theta' \in V$, we can write $\xi_{\theta'}(x) = \xi_{\theta}(x) + \int_{t=0}^{1} g_{t\theta'+(1-t)\theta}^{T}(x)(\theta'-\theta) dt$, where, for all $x \in X$, g satisfies one of the following assertions,

- (i) we have $\lim_{\epsilon \downarrow 0} \left\| \sup_{|\theta' \theta| \leqslant \epsilon} |g_{\theta'} g_{\theta}| \right\| = 0$,
- (ii) for ν -a.e. x, $\theta' \mapsto g_{\theta'}(x)$ is continuous and $\exists \epsilon > 0$, $\left\| \sup_{|\theta' \theta| \leqslant \epsilon} |g_{\theta'}| \right\| < \infty$.

Then \mathcal{P} is Hellinger differentiable at θ with derivative g_{θ} .

The derivarive of $\theta \mapsto \ln f_{\theta}(X)$ is called the score function.

Lem. Suppose that $A := \{f_{\theta} > 0\}$ does not depend on θ and $\forall x \in A, \theta \mapsto \ln f_{\theta}(x)$ is continuously differentiable on Θ with derivative $\theta \mapsto \dot{l}_{\theta}(x)$. Suppose moreover that $\forall \theta \in \Theta$ there exists a neighborhood V of θ such that $\int \sup_{\theta' \in V} \left(\left| \dot{l}_{\theta}(x) \right|^2 f_{\theta}(x) \right) \nu(\mathrm{d}x) < \infty$. Then \mathcal{P} is Hellinger differentiable with Hellinger derivative given by $\dot{\xi}_{\theta}(x) = \frac{1}{2}\dot{l}_{\theta}(x)\xi_{\theta}(x) \mathbf{1}_{A}(x)$.

Def. Let \mathcal{P} be Hellinger differentiable with Hellinger derivative $\dot{\xi}_{\theta}$. The **Fisher information matrix** is defined as $\mathcal{I}(\theta) := 4 \int_{\mathsf{X}} \dot{\xi}_{\theta}(x) \dot{\xi}_{\theta}(x)^{\mathsf{T}} \nu(\mathrm{d}x)$.

With the conditions of the previous lemma we have $\mathcal{I}(\theta) = \mathbf{E}_{\theta} \left[\left(\dot{l}_{\theta}(X) \right)^2 \right]$.

Th. Let \mathcal{P} be Hellinger differentiable with Hellinger derivative $\dot{\xi}_{\theta}$. Let T = g(X) be a scalar statistic such that, for some $\epsilon > 0$, $\sup_{|\theta' - \theta| \le \epsilon} \mathbf{E}_{\theta} \left(T^2 \right) < \infty$. Define $\psi \colon \theta \to \mathbf{E}_{\theta}(T)$. Then ψ is differentiable at θ and, if $\mathcal{I}(\theta)$ is positive definite, we have $\operatorname{Var}_{\theta}(T) \geqslant \dot{\psi}(\theta)^{\mathsf{T}} \mathcal{I}(\theta)^{-1} \dot{\psi}(\theta)$.

Def. Let T be as in the previous theorem. If $\forall \theta \in \Theta, \operatorname{Var}_{\theta}(T) = \dot{\psi}(\theta)^{\mathsf{T}} \mathcal{I}(\theta)^{-1} \dot{\psi}(\theta)$, we say that T is an efficient estimator of $\psi(\theta)$.

4 Random processes

Random processes

We consider a probability space $(\Omega, \mathcal{F}, \mathbf{P})$, an index T and a measurable space (X, \mathcal{X}) called the observation space.

Def. A random process defined on $(\Omega, \mathcal{F}, \mathbf{P})$, indexed on T and valued in (X, \mathcal{X}) is a collection $(X_t)_{t \in T}$ of r.v. defined on $(\Omega, \mathcal{F}, \mathbf{P})$ and taking values in (X, \mathcal{X}) .

Def. For each $\omega \in \Omega$, the application $t \mapsto X_t(\omega)$ is called the **path** associated to the experiment ω .

Def. A filtration of a measurable space (Ω, \mathcal{F}) is an increasing sequence $(\mathcal{F}_t)_{t \in T}$ of sub- σ -fields of \mathcal{F} . A filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in T}, \mathbf{P})$ is a probability space endowed with a filtration. A random process $(X_t)_{t \in T}$ defined on $(\Omega, \mathcal{F}, \mathbf{P})$ is said to be **adapted** to the filtration if for each $t \in T$, X_t is \mathcal{F}_t -measurable. Then we note $((X_t, \mathcal{F}_t))_{t \in T}$.

Def. The **natural filtration** of a process $(X_t)_{t \in T}$ is the smallest filtration with respect to which $(X_t)_{t \in T}$ is adapted, i.e. $\forall t \in T, \mathcal{F}_t^X = \sigma(X_s, s \leq t)$.

Def. We call **finite dimensional distributions**, or **fidi distributions**, of the process X the collection of probability measures $(\mathbf{P}_I)_{I \in \mathcal{I}}$ where \mathbf{P}_I denotes the probability distribution of the random vector $\{X_t, t \in I\}$.

Let $J \subset I$ two finite subsets. Let us denote bu $\Pi_{I,J}$ the canonical projection of X^I onto X^J defined by $\forall x = (x_t)_{t \in I} \in \mathsf{X}^I, \Pi_{I,J}(x) = (x_t)_{t \in J}$. Then $\mathbf{P}_I \circ \Pi_{I,J}^{-1} = \mathbf{P}_J$ (compatibility condition). We denote $\Pi_I = \Pi_{T,I}$ and $\Pi_s = \Pi_{\{s\}}$ where $s \in T$.

Th (Kolmogorov). Let \mathcal{I} be the set of all finite subsets of T. Suppose that, for all $I \in \mathcal{I}$, ν_I is a probability measure on $(\mathsf{X}^I,\mathcal{X}^{\otimes I})$ and that the collection $\{\nu_I,I\in\mathcal{I}\}$ satisfies $\forall I,J\in\mathcal{I},I\subseteq J,\nu_I\circ\Pi_{I,J}^{-1}=\nu_J$. Then there exists a unique probability measure \mathbf{P} on $(\mathsf{X}^T,\mathcal{X}^{\otimes T})$ such that, $\forall I\in\mathcal{I},\nu_I=\mathbf{P}\circ\Pi_I^{-1}$.

Def. Let $X = (X_t)_{t \in T}$ be a random process defined on $(\Omega, \mathcal{F}, \mathbf{P})$. The **law in the sense of fidi distribution** is the image measure \mathbf{P}^X , that is, the unique probability measure defined on $(\mathsf{X}^T, \mathcal{X}^{\otimes T})$ that satisfies $\forall I \in \mathcal{I}, \mathbf{P}^X \circ \Pi_I^{-1} = \mathbf{P}_I$, i.e. $\forall (A_t)_{t \in I} \in \mathcal{X}^I, \mathbf{P}^X \left(\prod_{i \in I} A_t \times \mathsf{X}^{T \setminus I}\right) = \mathbf{P}(X_t \in A_t, t \in I)$.

Def. The canonical functions defined on $(\mathsf{X}^T,\mathcal{X}^{\otimes T})$ is the collection of measurable functions $(\xi_t)_{t\in T}$ valued in (X,\mathcal{X}) as $\forall \omega=(\omega_t)_{t\in T}\in \mathsf{X}^T, \xi_t(\omega)=\omega_t$. When $(\mathsf{X}^T,\mathcal{X}^{\otimes T})$ is endowed with the image measure \mathbf{P}^X then the **canonical process** $(\xi_t)_{t\in T}$ defined on $(\mathsf{X}^T,\mathcal{X}^{\otimes T},\mathbf{P}^X)$ has the same fidi distribution as X.

Gaussian processes

Def. The real valued r.v. X is Gaussian if its characteristic function satisfies $\phi_X(u) = \mathbf{E}(e^{iuX}) = \exp(i\mu u - \sigma^2 u^2/2)$ where $\mu \in \mathbf{R}$ and $\sigma \in \mathbf{R}_+$.

If $\sigma \neq 0$ then X admits a probability density function $p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

Def. A random vector $[X_1, \dots, X_n]^\mathsf{T}$ valued in \mathbf{R}^n is a Gaussian vector if any linear combination of X_1, \dots, X_n is a Gaussian variable.

Let μ denote the mean vector of $[X_1,\ldots,X_n]^\mathsf{T}$ and Γ its covariance matrix. Then $\forall u\in\mathbf{R}^n,Y=u^\mathsf{T}X$ is Gaussian, $\mathbf{E}(Y)=u^\mathsf{T}\mu$ and $\mathrm{Var}(Y)=u^\mathsf{T}\Gamma u$. Thus $\phi_X(u)=\mathbf{E}\left[\exp\left(iu^\mathsf{T}X\right)\right]=\exp\left(iu^\mathsf{T}\mu-\frac{1}{2}u^\mathsf{T}\Gamma u\right)$.

Prop. The probability distribution of an n-dimensional Gaussian vector X is determined by its mean vector and covariance matrix Γ . We denote $X \sim \mathcal{N}(\mu, \Gamma)$. Conversely, for all vector $\mu \in \mathbf{R}^n$ and all non-negative symmetric matrix Γ , the distribution $\mathcal{N}(\mu, \Gamma)$ is well defined.

Lem. Let $X \sim \mathcal{N}(\mu, \Gamma)$ with $\mu \in \mathbf{R}^n$ and Γ a $n \times n$ non-negative symmetric matrix. Then X has independent components if and only if Γ is diagonal.

Prop. Let $X \sim \mathcal{N}(\mu, \Gamma)$ with $\mu \in \mathbf{R}^n$ and Γ a $n \times n$ non-negative symmetric matrix. If Γ is full rank, the probability distribution of X admits a density defined in \mathbf{R}^n by $p(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Gamma)}} \exp\left(-\frac{1}{2}(x-\mu)^\mathsf{T}\Gamma^{-1}(x-\mu)\right)$.

Def. A real-valued random process $X = (X_t)_{t \in T}$ is called a **Gaussian process** if, for all finite set of indices $I = \{t_1, \ldots, t_n\}, [X_{t_1}, \ldots, X_{t_n}]^\mathsf{T}$ is a Gaussian vector.

Th. Let T be any set of indices, $\mu: T \to \mathbf{R}$ and $\gamma: T \times T \to \mathbf{R}$ such that all restrictions Γ_I to the set $I \times I$ with $I \subset T$ finite are nonnegative symmetrice matrices. Then one can define a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and a gaussien process $(X_t)_{t \in T}$ defined on this space with mean μ and covariance function γ , that is such that, $\forall s, t \in T, \mu(t) = \mathbf{E}[X_t]$ and $\gamma(s,t) = \mathbf{E}[(X_s - \mu(s))(X_t - \mu(t))]$.

Def. Let T, μ and γ be as above. We denote by $\mathcal{N}(\mu, \gamma)$ the law of the Gaussian process with mean μ and covariance γ in the sense of fidi distribution.

Strict stationarity of a random process in discrete time

Suppose that $T = \mathbf{Z}$ or $T = \mathbf{N}$.

Def. We denote by $S: X^T \to X^T$ and call the **shift operator** the mapping defined by $\forall x = (x_t)_{t \in T}, S(x) = (x_{t+1})_{t \in T}$. For all $\tau \in T$ we define S^{τ} by $S^{\tau}(x) = (x_{t+\tau})_{t \in \tau}$. The operator $B = S^{-1}$ is called the **backshift operator**.

Def. A random process $(X_t)_{t \in T}$ is **strictly stationary** if X and $S \circ X$ have the same law, i.e. $\mathbf{P}^{S \circ X} = \mathbf{P}^X$.

Stationarity preserving transformations

In this section, we set $T = \mathbf{Z}$, $X = \mathbf{C}^d$ and $\mathcal{X} = \mathcal{B}(\mathbf{C}^d)$ for some integer $d \ge 1$.

Def. Let ϕ be a measurable function from $(X^T, \mathcal{X}^{\otimes T})$ to $(Y^T, \mathcal{Y}^{\otimes T})$ and $X = (X_t)_{t \in T}$ be a process with values in (X, \mathcal{X}) . A ϕ -filtering process $Y = (Y_t)_{t \in T}$ is defined as $\forall t, Y = \phi \circ X$ or, equivalently, $Y_t = \Pi_t(\phi(X))$. Thus Y makes its values in (Y, \mathcal{Y}) . If ϕ is linear, we will say that Y is obtained by linear filtering of X.

Def. A ϕ -filter is **shift invariant** if ϕ commutes with S.

Rem. A shift invariant ϕ -filter preserves the strict stationarity and is entirely determined by its composition with the canonical projection Π_0

5 Weakly stationary processes

 L^2 processes

Def. The process $X=(X_t)_{t\in T}$ defined on $(\Omega,\mathcal{F},\mathbf{P})$ with values in \mathbf{C}^d is an L^2 process if $\forall t\in T,X_t=L^2(\Omega,\mathcal{F},\mathbf{P})$. Its **mean function** is defined on T by $\mu(t)=\mathbf{E}(X_t)$ and the **covariance function** is defined on $T\times T$ by $\Gamma(s,t)=\mathrm{Cov}(X_s,X_t)=\mathbf{E}\left((X_s-\mu(s))(X_t-\mu(t))^{\mathsf{H}}\right)$.

Prop. Let Γ be the covariance function of a L^2 process $X = (X_t)_{t \in T}$ with values in \mathbb{C}^d . The following properties hold.

- (i) Hermitian symmetry: $\forall s, t \in T, \Gamma(s, t) = \Gamma(t, s)^{\mathsf{H}}$.
- (ii) Nonnegativity: $\forall n \in \mathbf{N}^*, t_1, \dots, t_n \in T, a_1, \dots, a_n \in \mathbf{C}^d, \sum_{1 \le k, m \le n} a_k^H \Gamma(t_k, t_m) a_m \geqslant 0.$

Conversely, if Γ satisfies these two properties, there exists an L^2 process with values in \mathbf{C}^d with covariance function Γ . In the scalar case (d=1), we also use he notation $\gamma(s,t)$.

Weakly sationary processes

Def. Let $\mu \in \mathbf{C}^d$ and $\Gamma \colon \mathbf{Z} \to \mathbf{C}^{d \times d}$. A process $(X_t)_{t \in \mathbf{Z}}$ with values in \mathbf{C}^d is said **weakly stationary** with mean μ and autocovariance function Γ if all the following assertions hold :

- (i) X is an L^2 process, i.e. $\mathbf{E}\left(\left|X_t\right|^2\right) < +\infty$,
- (ii) $\forall t \in \mathbf{Z}, \mathbf{E}(X_t) = \mu$,
- (iii) $\forall (s,t) \in \mathbf{Z} \times \mathbf{Z}, \operatorname{Cov}(X_s, X_t) = \Gamma(s-t).$

A strictly stationary L^2 process is weakly stationary.

Prop. The autocovariance function $\gamma \colon \mathbf{Z} \to \mathbf{C}$ of a complex valued weakly stationary process satisfies the following:

- (i) Hermition symmetry: $\forall s \in \mathbf{Z}, \gamma(-s) = \overline{\gamma(s)}$.
- (ii) Nonnegative definiteness: $\forall i \in \mathbf{N}^*, a_1, \dots, a_n \in \mathbf{C}, \sum_{s=1}^n \sum_{t=1}^n \overline{a_s} \gamma(s-t) a t \geqslant 0.$

Def. Let X be a weakly stationary process with autocovariance function γ such that $\gamma(0) \neq 0$. The **autocorrelation function** of X is defined as $\forall \tau \in \mathbf{Z}, \rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)}$. It is normalized in the sense that $\rho(0) = 1$ and $\forall s \in \mathbf{Z}, |\rho(s)| \leq 1$.

Def. A **weak white noise** is a centered weakly stationary process whose autocovariance function satisfies $\gamma(0) = \sigma^2 > 0$ and $\forall s \neq 0, \gamma(s) = 0$. We will denote $(X_t) \sim \text{WN}(0, \sigma^2)$. When a white noise is an i.i.d. process it is called a **strong white noise**. We will denote $(X_t) \sim \text{IID}(0, \sigma^2)$.

6 Markov chains: basic definitions

Deffinition using conditioning

Def. Let $(\Omega, \mathcal{F}, (\mathcal{F}_k)_{k \in \mathbb{N}}, \mathbf{P})$ be a filtered probability space and (X, \mathcal{X}) be a measurable space. An adapteted stochastic process $((X_k, \mathcal{F}_k))_{k \in \mathbb{N}}$ on X is a **Markov chain** if $\forall k \in \mathbb{N}, \forall A \in \mathcal{X}, \mathbf{P}(X_{k+1} \in A \mid \mathcal{F}_k) = \mathbf{P}(X_{k+1} \in A \mid A_k)$.

Prop. Let $((X_k, \mathcal{F}_k))_{k \in \mathbb{N}}$ be an adapted stochastic process. The following propoerties are equivalent:

- (i) $((X_k, \mathcal{F}_k))_{k \in \mathbb{N}}$ is a Markov chain,
- (ii) $\forall k \in \mathbb{N}, \forall Y \in L^1(\Omega, \sigma(X_l, l \geqslant k), \mathbf{P}), \mathbf{E}(Y \mid \mathcal{F}_k) = \mathbf{E}(Y \mid X_k) \mathbf{P}$ -a.s.
- (iii) $\forall k \in \mathbb{N}, \forall Y \in L^1(\Omega, \sigma(X_l, l \geq k), \mathbf{P}), \forall Z \in L^{\infty}(\Omega, \mathcal{F}_k, \mathbf{P}), \mathbf{E}(YZ \mid X_k) = \mathbf{E}(Y \mid X_k)\mathbf{E}(Z \mid X_k) \mathbf{P}$ -a.s.

How to use kernels

Let N be a kernel and f be a measurable function defined on Y. We denote by Nf the function defined on X by $Nf: x \mapsto \int_{\mathsf{Y}} N(x, \mathrm{d}y) f(y)$ whenever this integral is well-defined (for instance if f is non-negative). **Prop.** Let N be a kernel on $\mathsf{X} \times \mathcal{Y}$. Then $\forall f \in \mathbf{F}_+(\mathsf{Y},\mathcal{Y}), Nf \in \mathbf{F}_+(\mathsf{X},\mathcal{X})$. Moreover, if N is a probability kernel, then $\forall f \in \mathbf{F}_b(\mathsf{X},\mathcal{X}), Nf \in \mathbf{F}_b(\mathsf{Y},\mathcal{Y})$.

