Лабораторая работа 4.03V

Кольца Ньютона

Выполнил: Коняхин Всеволод Владимирович, M32051, Вариант №10

Краткие теоретические сведения

В этой работе рассматривается интерференционная картина колец Ньютона, получаемая методом деления амплитуд, когда возникает оптическая разность хода.

Цель работы

Изучение интерференционной картины колец Ньютона. Определение радиуса кривизны плосковыпуклой линзы с помощью интерференционной картины колец Ньютона.

In [229]:

```
import sympy
import scipy
import numpy as np
import pandas as pd
from scipy.signal import argrelextrema
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10,5)
%matplotlib inline
```

Монохроматический источник, показатель преломления среды n_1

Длина волны $\lambda_1 = 645$ нм, показатель преломления среды $n_1 = 1.4$

```
In [191]:
```

```
lambd = 645 * 10 ** (-9)

n_1 = 1.4
```


Интенсивность от радиальной координаты $I_1(r)$

In [192]:

```
file_n1 = 'data/intensity_n1.csv'
n1_df = pd.read_csv(file_n1, sep=';', index_col=False)
```

In [193]:

```
I = np.array([float(element.replace(',', '.')) for element in np.array(n1_df['I'
])])
r = np.array([float(element.replace(',', '.')) for element in np.array(n1_df['r,
mm'])])
```

In [194]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Интенсивность от радиальной координаты $I_1(r)$')
ax.set_ylabel('Интенсивность')
ax.set_xlabel('Радиальная координата, мм')
ax.plot(r, I)
plt.show()
```


Определим радиусы светлых и темных колец:

In [195]:

```
# найдем локальные минимумы и максимумы
maxm = argrelextrema(I, np.greater)
minm = argrelextrema(I, np.less)
```

In [196]:

```
dark_rings_radiuses = r[minm]
light_rings_radiuses = r[maxm]
```

Радиусы светлых колец:

In [197]:

```
for r in light_rings_radiuses:
    print(str(r) + ' MM', end=', ')
```

0.48 mm, 0.8325 mm, 1.0725 mm, 1.27 mm, 1.44 mm, 1.5925 mm, 1.73 mm, 1.86 mm, 1.98 mm, 2.0925 mm, 2.2 mm, 2.3025 mm, 2.4 mm, 2.495 mm,

Радиусы темных колец:

In [198]:

```
for r in dark_rings_radiuses:
    print(str(r) + ' MM', end=', ')
```

 $0.68~{\rm MM},~0.96~{\rm MM},~1.175~{\rm MM},~1.3575~{\rm MM},~1.5175~{\rm MM},~1.6625~{\rm MM},~1.795~{\rm M}$ M, $1.92~{\rm MM},~2.0375~{\rm MM},~2.1475~{\rm MM},~2.25~{\rm MM},~2.3525~{\rm MM},~2.4475~{\rm MM},$

Построение графиков зависимостей квадратов радиусов колец от порядкового номера:

In [199]:

```
dark_rings_radiuses_squared = dark_rings_radiuses ** 2
light_rings_radiuses_squared = light_rings_radiuses ** 2
```

In [200]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Квадрат радиуса темного кольца от порядкового номера')
ax.set_ylabel('$R^2$')
ax.set_xlabel('Порядковый номер')
k, b = np.polyfit([i for i in range(1, len(dark_rings_radiuses_squared) + 1)], d
ark_rings_radiuses_squared, 1)
x = np.linspace(-b/k, 13.5, 6)
ax.scatter([i for i in range(1, len(dark_rings_radiuses_squared) + 1)], dark_rin
gs_radiuses_squared)
ax.plot(x, np.polyval([k, b], x), 'r--')
plt.show()
```


In [204]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Квадрат радиуса светлого кольца от порядкового номера')
ax.set_ylabel('$R^2$')
ax.set_xlabel('Порядковый номер')
k, b = np.polyfit([i for i in range(1, len(light_rings_radiuses_squared) + 1)],
light_rings_radiuses_squared, 1)
x = np.linspace(-b/k, 14.5, 6)
ax.scatter([i for i in range(1, len(light_rings_radiuses_squared) + 1)], light_r
ings_radiuses_squared)
ax.plot(x, np.polyval([k, b], x), 'r--')
plt.show()
```


Как видно из графиков, получилась линейная зависимость!

Расчет радиуса кривизны линзы:

Формула: $R=rac{r_m^2-r_n^2}{(m-n)\lambda}$, где m и n различные порядки интерференции для темных колец

In [205]:

In [206]:

```
curvature_radius_mean, curvature_radius_std = calculate_curvature_radius_range(d
ark_rings_radiuses, lambd)
print('Радиус кривизны линзы: {:.3f} +- {:.3f} м'.format(curvature_radius_mean,
curvature_radius_std))
```

Радиус кривизны линзы: 0.715 +- 0.003 м

Монохроматический источник, показатель преломления среды n_2

Длина волны $\lambda_1 = 645$ нм, показатель преломления среды $n_2 = 1.55$

In [208]:

```
lambd = 645 * 10 ** (-9)
n_2 = 1.55
```


Интенсивность от радиальной координаты $I_2(r)$

```
In [209]:
```

```
file_n2 = 'data/intensity_n2.csv'
n2_df = pd.read_csv(file_n2, sep=';', index_col=False)
```

In [210]:

```
I = np.array([float(element.replace(',', '.')) for element in np.array(n2_df['I'
])])
r = np.array([float(element.replace(',', '.')) for element in np.array(n2_df['r,
mm'])])
```

In [212]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Интенсивность от радиальной координаты $I_2(r)$')
ax.set_ylabel('Интенсивность')
ax.set_xlabel('Радиальная координата, мм')
ax.plot(r, I)
plt.show()
```


Определим радиусы светлых и темных колец:

In [213]:

```
# найдем локальные минимумы и максимумы
maxm = argrelextrema(I, np.greater)
minm = argrelextrema(I, np.less)
```

In [214]:

```
dark_rings_radiuses = r[minm]
light_rings_radiuses = r[maxm]
```

Радиусы светлых колец:

In [215]:

```
for r in light_rings_radiuses:
    print(str(r) + ' MM', end=', ')
```

0.455 MM, 0.79 MM, 1.02 MM, 1.2075 MM, 1.3675 MM, 1.5125 MM, 1.645 M M, 1.7675 MM, 1.88 MM, 1.9875 MM, 2.09 MM, 2.1875 MM, 2.28 MM, 2.37 MM, 2.4575 MM,

Радиусы темных колец:

In [216]:

```
for r in dark_rings_radiuses:
    print(str(r) + ' MM', end=', ')
```

0.645 MM, 0.9125 MM, 1.1175 MM, 1.29 MM, 1.4425 MM, 1.58 MM, 1.7075 MM, 1.825 MM, 1.935 MM, 2.04 MM, 2.14 MM, 2.235 MM, 2.325 MM, 2.4125 MM,

Построение графиков зависимостей квадратов радиусов колец от порядкового номера:

In [217]:

```
dark_rings_radiuses_squared = dark_rings_radiuses ** 2
light_rings_radiuses_squared = light_rings_radiuses ** 2
```

In [219]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Квадрат радиуса темного кольца от порядкового номера')
ax.set_ylabel('$R^2$')
ax.set_xlabel('Порядковый номер')
k, b = np.polyfit([i for i in range(1, len(dark_rings_radiuses_squared) + 1)], d
ark_rings_radiuses_squared, 1)
x = np.linspace(-b/k, 14.5, 6)
ax.scatter([i for i in range(1, len(dark_rings_radiuses_squared) + 1)], dark_rin
gs_radiuses_squared)
ax.plot(x, np.polyval([k, b], x), 'r--')
plt.show()
```


In [221]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Квадрат радиуса светлого кольца от порядкового номера')
ax.set_ylabel('$R^2$')
ax.set_xlabel('Порядковый номер')
k, b = np.polyfit([i for i in range(1, len(light_rings_radiuses_squared) + 1)],
light_rings_radiuses_squared, 1)
x = np.linspace(-b/k, 15.5, 6)
ax.scatter([i for i in range(1, len(light_rings_radiuses_squared) + 1)], light_rings_radiuses_squared)
ax.plot(x, np.polyval([k, b], x), 'r--')
plt.show()
```


Расчет радиуса кривизны линзы:

In [222]:

```
curvature_radius_mean, curvature_radius_std = calculate_curvature_radius_range(d
ark_rings_radiuses, lambd)
print('Радиус кривизны линзы: {:.3f} +- {:.3f} м'.format(curvature_radius_mean,
curvature_radius_std))
```

Радиус кривизны линзы: 0.645 +- 0.002 м

Бихроматическое излучение

```
Длина волны 1 \lambda_1=645 нм, Длина волны 2 \lambda_2=594 нм, показатель преломления среды n_2=1.55
```

```
In [265]:
```

```
lambda_1 = 645 * 10 ** (-9)
lambda_2 = 594 * 10 ** (-9)
n_2 = 1.55
```


Построение графика распределения интенсивности $I_3(r)$:

In [266]:

```
file_n3 = 'data/intensity_two_waves.csv'
n3_df = pd.read_csv(file_n3, sep=';', index_col=False)
```

In [267]:

```
I = np.array([float(element.replace(',', '.')) for element in np.array(n3_df['I'])])
r = np.array([float(element.replace(',', '.')) for element in np.array(n3_df['r, mm'])])
```

In [268]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Интенсивность от радиальной координаты $I_3(r)$')
ax.set_ylabel('Интенсивность')
ax.set_xlabel('Радиальная координата, мм')
ax.plot(r, I)
plt.show()
```


Значения видности $V(\Delta)$:

$$V_{\scriptscriptstyle{\mathsf{9KCII}}}(r)=rac{I_{max}-I_{min}}{I_{max}+I_{min}}$$

In [303]:

```
def calculate_experimental_visibility(i_max, i_min):
    visib = (i_max - i_min) / (i_max + i_min)
    return visib
```

$$egin{aligned} V_{ ext{reop}}(r) &= lpha * |sinc\left[rac{\Delta w}{2c}\Delta_{opt}
ight]| \ \Delta_{opt} &= rac{r^2}{R_{lens}} + rac{\lambda}{2} pprox rac{r^2}{R_{lens}} \end{aligned}$$

In [308]:

```
def calculate_theoretical_visibility(w_range, r, R_lens, alpha=1.):
    light_speed = 299792458
    delta_opt = r ** 2 / R_lens
    visib = alpha * abs(np.sinc(w_range / (2 * light_speed) * delta_opt))
    return visib
```

In [309]:

```
maxm = argrelextrema(I, np.greater)
minm = argrelextrema(I, np.less)
```

In [310]:

```
theoretical_points = []
experimental_points = []
```

In [311]:

```
for min_idx, max_idx in zip(list(minm[0]), list(maxm[0])):
    min_radius, max_radius = r[min_idx], r[max_idx]
    min_intensity, max_intensity = I[min_idx], I[max_idx]

    theor_visib = calculate_theoretical_visibility(
        lambda_1 - lambda_2, (min_radius + max_radius) / 2, curvature_radius_mea
n)
    exp_visib = calculate_experimental_visibility(
        max_intensity, min_intensity)

    theoretical_points.append(theor_visib)
    experimental_points.append(exp_visib)
```

In [318]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Видность: экспериментальная (синяя) и теоретическая (красная)')
ax.set_ylabel('Видность')
ax.plot([i for i in range(len(theoretical_points))], theoretical_points, 'r')
ax.plot([i for i in range(len(experimental_points))], experimental_points, 'b')
plt.show()
```


Однородный сплошной спектр

Длина волны 1 $\lambda_1=594$ нм, Длина волны 2 $\lambda_2=645$ нм, показатель преломления среды $n_2=1.55$

In []:

```
lambda_1 = 594 * 10 ** (-9)
lambda_2 = 645 * 10 ** (-9)
n_2 = 1.55
```


In [319]:

```
file_n4 = 'data/intensity_period.csv'
n4_df = pd.read_csv(file_n4, sep=';', index_col=False)
```

In [320]:

```
I = np.array([float(element.replace(',', '.')) for element in np.array(n4_df['I'
])])
r = np.array([float(element.replace(',', '.')) for element in np.array(n4_df['r,
mm'])])
```

In [321]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Интенсивность от радиальной координаты $I_4(r)$')
ax.set_ylabel('Интенсивность')
ax.set_xlabel('Радиальная координата, мм')
ax.plot(r, I)
plt.show()
```


Значения видности $V(\Delta)$:

In [322]:

```
maxm = argrelextrema(I, np.greater)
minm = argrelextrema(I, np.less)
```

In [323]:

```
theoretical_points = []
experimental_points = []
```

In [324]:

```
for min_idx, max_idx in zip(list(minm[0]), list(maxm[0])):
    min_radius, max_radius = r[min_idx], r[max_idx]
    min_intensity, max_intensity = I[min_idx], I[max_idx]

theor_visib = calculate_theoretical_visibility(
        lambda_1 - lambda_2, (min_radius + max_radius) / 2, curvature_radius_mea

n)
    exp_visib = calculate_experimental_visibility(
        max_intensity, min_intensity)

theoretical_points.append(theor_visib)
    experimental_points.append(exp_visib)
```

In [325]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Видность: экспериментальная (синяя) и теоретическая (красная)')
ax.set_ylabel('Видность')
ax.plot([i for i in range(len(theoretical_points))], theoretical_points, 'r')
ax.plot([i for i in range(len(experimental_points))], experimental_points, 'b')
plt.show()
```


Выводы и анализ результатов работы

В ходе работы была рассмотренна интерференционная картина колец Ньютона. В частности, для монохроматического источника с двумя разными показателями преломления среды были построены графики зависимости интенсивности от радиальной координаты, найдены радиусы темных и светлых колец, продемонстрирована линейная зависимость квадрата радиуса колец к порядковому номеру. Так же были найдены радиусы кривизны для линзы. Для бихроматического излучения и однородного сплошного спектра были найдены зависимости интенсивности от радиальной координаты, теоретические и экспериментальные видности.