Advanced Calc. Homework 3

Colin Williams

September 15, 2020

Prove Theorem 3.5

Theorem. 3.5

The following holds $\forall a, b \in \mathbb{R}$:

- (i) $|a| \ge 0$
- (ii) $|ab| = |a| \cdot |b|$
- (*iii*) $|a+b| \le |a| + |b|$

Proof. (i)

Case 1: If $a \ge 0$, then |a| = a, so clearly $|a| \ge 0$.

Case 2: If $a \le 0$, then |a| = -a, so by Theorem 3.2 (i), we can say $-a \ge -0$. Since we've already shown that 0 = -0 and we know that |a| = -a, it is clear that this implies $|a| \ge 0$.

Since $a \le 0$ or $a \ge 0$ constitute all possible cases for a, we have shown that $|a| \ge 0$ for all a.

Proof. (ii)

Case 1: If $a \ge 0$ and $b \ge 0$, then $ab \ge 0$ by Theorem 3.2 (iii). Thus, |a| = a, |b| = b, and |ab| = ab. So,

$$ab = a \cdot b$$
$$\implies |ab| = |a| \cdot |b|$$

<u>Case 2:</u> If $a \ge 0$ and $b \le 0$, then $ab \le 0 \cdot b$ by Theorem 3.2 (ii) $\implies ab \le 0$ by Theorem 3.1 (ii) and the commutative law. Thus, |a| = a, |b| = -b, and |ab| = -ab. So,

$$ab = a \cdot b$$
 $\implies (ba) = b \cdot a$ by the commutative law
 $\implies -(ba) = (-b) \cdot a$ by Theorem 3.1 (iii)
 $\implies -(ab) = a \cdot (-b)$ by the commutative law
 $\implies |ab| = |a| \cdot |b|$ by above comments

<u>Case 3:</u> If $a \le 0$ and $b \ge 0$, then $ba \le 0 \cdot a$ by Theorem 3.2 (ii) $\implies ab \le 0$ by Theorem 3.1 (ii) and the commutative law. Thus, |a| = -a, |b| = b, and |ab| = -ab. So,

$$ab = a \cdot b$$

 $\implies -ab = (-a) \cdot b$ by Theorem 3.1 (iii)
 $\implies |ab| = |a| \cdot |b|$ by above comments

Case 4: If $a \le 0$ and $b \le 0$, then $-a \ge 0$ and $-b \ge 0$ by Theorem 3.2 (i) and the fact that 0 = -0. Thus, by Theorem 3.2 (iii) $(-a)(-b) \ge 0 \implies ab \ge 0$ by Theorem 3.1 (iv). Thus, |a| = -a, |b| = -b, and |ab| = ab. So,

$$ab = a \cdot b$$

 $\implies ab = (-a) \cdot (-b)$ by Theorem 3.1 (iv)
 $\implies |ab| = |a| \cdot |b|$ by above comments

Proof. (iii)

Since part (i) of this proof tells us that $|a| \ge 0$ for all a, we can also say that $-|a| \le 0$ by Theorem 3.2 (i) and the fact

that 0 = -0. Also, since a = |a| or a = -|a| for every a, we can conclude that $-|a| \le a \le |a|$. Similarly, $-|b| \le b \le |b|$ for any b as well. Starting with $-|a| \le a$, we can get:

$$\begin{aligned} -|a| + (-|b|) &\leq a + (-|b|) \\ \Longrightarrow -(|a| + |b|) &\leq a + b \\ \Longrightarrow -(a + b) &\leq |a| + |b| \end{aligned} \qquad \text{by DL on the left, and the fact that } -|b| &\leq b \\ \Longrightarrow -(a + b) &\leq |a| + |b| \end{aligned}$$

Similarly, if we start with $a \leq |a|$, we can get:

$$a+b \le |a|+b$$
 by O4
 $\le |a|+|b|$ since $b \le |b|$

Thus, since |a+b| either equals a+b or -(a+b) and both of those we have shown are less than or equal to |a|+|b|, we can conclude that $|a+b| \le |a|+|b|$.

4.1, 4.2, 4.3, 4.4

Question. For each of the following sets:

- Question 4.1 If it is bounded above, list 3 upper bounds; otherwise, write Not Bounded Above.
- Question 4.2 If it is bounded below, list 3 lower bounds; otherwise, write Not Bounded Below.
- Question 4.3 Give its supremum if it has one; otherwise, write No Supremum.
- Question 4.4 Give its infimum if it has one; otherwise, write No Infimum.
- (a) S = [0, 1]
 - $1, 1.5, \sqrt{2}$
 - 0, -0.5, -2
 - $\sup(S) = 1$
 - $\inf(S) = 0$
- (b) S = (0,1)
 - $1, 17, \pi$
 - 0, -5, -22
 - $\sup(S) = 1$
 - $\inf(S) = 0$
- (c) $S = \{2, 7\}$
 - 7, 11, 8.8
 - 2, 1, 0
 - $\sup(S) = 7$
 - $\inf(S) = 2$
- (d) $S = \{\pi, e\}$
 - 4, 5, 6
 - 0, 1, 2
 - $\sup(S) = \pi$
 - $\inf(S) = e$
- (e) $S = \{\frac{1}{n} : n \in \mathbb{N}\}$
 - 2, 3, 4
 - 0, -1, -2
 - $\sup(S) = 1$ since the largest element occurs when n = 1 and corresponds to $\frac{1}{1} = 1$
 - $\inf(S) = 0$ since any r > 0 also satisfies $r \ge \frac{1}{N}$ for $N \ge \lceil \frac{1}{r} \rceil$, so r cannot be a lower bound.

- (f) $S = \{0\}$
 - 1, 2, 3
 - -1, -2, -3
 - $\sup(S) = 0$
 - $\inf(S) = 0$
- (g) $S = [0,1] \cup [2,3]$
 - 3, 4, 5
 - 0, -1, -2
 - $\sup(S) = 3$
 - $\inf(S) = 0$
- (h) $S = \bigcup_{n=1}^{\infty} [2n, 2n+1]$
 - Not Bounded Above
 - 2, 1, 0
 - No Supremum
 - $\inf(S) = 2$ since the interval with the smallest elements occurs when n = 1 and corresponds to [2,3] with minimum = 2.
- (i) $S = \bigcap_{n=1}^{\infty} \left[-\frac{1}{n}, 1 + \frac{1}{n} \right]$

First, note that S simply equals [0,1] since all $r \in [0,1]$ are in S and any r < 0 or > 1 of the form $r = -\varepsilon$ or $r = 1 + \varepsilon$ is not contained in the set $[-\frac{1}{N}, 1 + \frac{1}{N}]$ for $N \ge \lceil \frac{1}{\varepsilon} \rceil$ which is a requirement to belong to S.

- 2, 3, 4
- -1, -2, -3
- $\sup(S) = 1$
- $\inf(S) = 0$
- (j) $S = \{1 \frac{1}{3^n} : n \in \mathbb{N}\}$
 - 1, 2, 3
 - 0, -1, -2
 - $\sup(S) = 1$ since any r < 1 cannot be an upper bound since $r < 1 \frac{1}{3^N}$ for $N \ge \lceil \log_3(\frac{1}{1-r}) \rceil$. This value of N was found by solving $r < 1 \frac{1}{3^N}$ for N.
 - $\inf(S) = \frac{2}{3}$ since the smallest element in the list occurs at n = 1 and corresponds to $1 \frac{1}{3} = \frac{2}{3}$.
- (k) $S = \{n + \frac{(-1)^n}{n} : n \in \mathbb{N}\}$
 - Not Bounded Above
 - 0, -1, -2
 - No Supremum
 - $\inf(S) = 0$ since the smallest element occurs at n = 1 and corresponds to $1 + \frac{(-1)^1}{1} = 1 1 = 0$.
- (1) $S = \{ r \in \mathbb{Q} : r < 2 \}$
 - 3, 4, 5
 - Not Bounded Below
 - $\sup(S) = 2$ since 2 is greater than all elements of S and any r < 2 also has some $r < \frac{p}{q} < 2$
 - No Infimum
- (m) $S = \{r \in \mathbb{Q} : r^2 < 4\}$
 - 3, 4, 5
 - -3, -4, -5
 - $\sup(S) = 2$ by the same argument as before
 - $\inf(S) = -2$ by a similar argument as before
- (n) $S = \{ r \in \mathbb{Q} : r^2 < 2 \}$

- 2, 3, 4
- \bullet -2, -3, -4
- $\sup(S) = \sqrt{2}$ by the same argument as (m) but with $\sqrt{2}$ instead of 2
- $\inf(S) = -\sqrt{2}$ by the same argument as (m) but with $\sqrt{2}$ instead of 2
- (o) $S = \{x \in \mathbb{R} : x < 0\}$
 - 0, 1, 2
 - Not Bounded Below
 - $\sup(S) = 0$ since 0 is greater than all elements in S and any r < 0 also satisfies r < s < 0 for $s \in S$. In particular, choose $s = \frac{r}{2}$.
 - No Infimum
- (p) $S = \{1, \frac{\pi}{3}, \pi^2, 10\}$
 - 11, 12, 13
 - 0, -1, -2
 - $\sup(S) = 10$
 - $\inf(S) = 1$
- (q) $S = \{0, 1, 2, 4, 8, 16\}$
 - 32, 64, 128
 - -1, -2, -4
 - $\sup(S) = 16$
 - $\inf(S) = 0$

(r) $S = \bigcap_{n=1}^{\infty} (1 - \frac{1}{n}, 1 + \frac{1}{n})$ First, note that S = 1. This is because 1 is in every set we are taking the intersection of and any number r of the form $r = 1 \pm \varepsilon \notin S$ because that r does not belong in the set $(1 - \frac{1}{N}, 1 + \frac{1}{N})$ for $N \ge \lceil \frac{1}{\varepsilon} \rceil$.

- 2, 3, 4
- 0, -1, -2
- $\sup(S) = 1$
- $\inf(S) = 1$
- (s) $S = \{\frac{1}{n} : n \in \mathbb{N} \text{ and } n \text{ is prime}\}$
 - 2, 3, 4
 - -1, -2, -3
 - $\sup(S) = \frac{1}{2}$ since the largest element of the set occurs when n=2 and corresponds to $\frac{1}{2}$
 - $\inf(S) = 0$ since 0 is less than all elements of S and since there are infinitely many primes, for any r > 0 we can also find a prime N such that $r > \frac{1}{N}$.
- (t) $S = \{x \in \mathbb{R} : x^3 < 8\}$
 - 3, 4, 5
 - Not Bounded Below
 - $\sup(S) = 2$ by similar reasoning as part (1).
 - No Infimum
- (u) $S = \{x^2 : x \in \mathbb{R}\}$
 - Not Bounded Above
 - -1, -2, -3
 - No Supremum
 - $\inf(S) = 0$ since the smallest element of this set happens when x = 0 and corresponds to $0^2 = 0$.
- (v) $S = \{\cos(\frac{n\pi}{3}) : n \in \mathbb{N}\}$
 - 2, 3, 4
 - -2, -3, -4

- $\sup(S) = 1$ since the largest element of this set happens when n is of the form n = 6k for $k \in \mathbb{N}$ and corresponds to $\cos(\frac{6k\pi}{3}) = \cos(2k\pi) = 1$.
- $\inf(S) = -1$ since the smallest element of this set happens when n is of the form n = 6k + 3 for $k \in \mathbb{N}$ and corresponds to $\cos(\frac{(6k+3)\pi}{3}) = \cos(2k\pi + \pi) = \cos(\pi) = -1$.
- (w) $S = \left\{ \sin\left(\frac{n\pi}{2}\right) : n \in \mathbb{N} \right\}$
 - 1, 2, 3
 - -1, -2, -3
 - $\sup(S) = \frac{\sqrt{3}}{2}$ since the largest element of this set happens when n is of the form n = 6k+1 or 6k+2 for $k \in \mathbb{N}$ and this corresponds to $\sin(\frac{(6k+1)\pi}{3}) = \sin(2k\pi + \frac{\pi}{3}) = \sin(\frac{\pi}{3}) = \sin(\frac{(6k+2)\pi}{3}) = \sin(2k\pi + \frac{2\pi}{3}) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}$
 - $\inf(S) = -\frac{\sqrt{3}}{2}$ since the smallest element of this set happens when n is of the form n = 6k + 4 or 6k + 5 for $k \in \mathbb{N}$ and this corresponds to $\sin(\frac{(6k+4)\pi}{3}) = \sin(2k\pi + \frac{4\pi}{3}) = \sin(\frac{4\pi}{3}) = -\frac{\sqrt{3}}{2}$ or $\sin(\frac{(6k+5)\pi}{3}) = \sin(2k\pi + \frac{5\pi}{3}) = \sin(\frac{5\pi}{3}) = -\frac{\sqrt{3}}{2}$

4.5

Question. Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove that if $\sup(S)$ belongs to S, then $\sup(S) = \max(S)$.

Proof.

Since $\sup(S)$ must be an upper bound of S, then by definition of an upper bound, $s \leq \sup(S)$ for all $s \in S$. Also since, by assumption, $\sup(S) \in S$, then $\sup(S)$ satisfies the definition of $\max(S)$, so $\sup(S) = \max(S)$.

4.7

Question. Let S and T be nonempty bounded subsets of \mathbb{R} .

- (a) Prove that if $S \subseteq T$, then $\inf(T) \le \inf(S) \le \sup(S) \le \sup(T)$.
- (b) Prove that $\sup(S \cup T) = \max\{\sup(S), \sup(T)\}.$

Proof. (a)

By definition of $\inf(T)$, we know that $\inf(T) \leq t$ for all $t \in T$. In particular, since $S \subseteq T$, we know that $s \in T$ for all $s \in S$. This means $\inf(T) \leq s$ for all $s \in S$, telling us that $\inf(T)$ is a lower bound of S. Furthermore since $\inf(S)$ is the <u>Greatest</u> Lower Bound of S, we know that $\inf(T) \leq \inf(S)$, the first of these inequalities.

Next, we know that $\inf(S) \leq s$ for all $s \in S$ and that $s \leq \sup(S)$ for all $s \in S$. Thus, fix some $s_0 \in S$ to give us that $\inf(S) \leq s_0$ and $s_0 \leq \sup(S) \implies \inf(S) \leq \sup(S)$ by O3. Therefore, we have our second of the desired inequalities.

Lastly, we know that $t \leq \sup(T)$ for all $t \in T$. Therefore, since $S \subseteq T$ tells us that $s \in T$ for all $s \in S$, we can conclude that $s \leq \sup(T)$ for all $s \in S$. This tells us that $\sup(T)$ is an upper bound of S. However, $\sup(S)$ is the <u>Least</u> Upper Bound, so we must have that $\sup(S) \leq \sup(T)$, the last of the desired inequalities.

We now know that $\inf(T) \leq \inf(S)$, $\inf(S) \leq \sup(S)$, and $\sup(S) \leq \sup(T)$. More compactly, this is equivalent to $\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T)$ exactly what we wished to prove.

Proof. (b)

It is clear that $\sup(S) \leq \max\{\sup(S), \sup(T)\}$ and $\sup(T) \leq \max\{\sup(S), \sup(T)\}$. By definition, we know that $s \leq \sup(S)$ for all $s \in S$ and $t \leq \sup(T)$ for all $t \in T$. We can use O3 to deduce that $s \leq \max\{\sup(S), \sup(T)\}$ and $t \leq \max\{\sup(S), \sup(T)\}$ for all $s \in S$ and $t \in T$. This means that for any $t \in S \cup T$, we have that $t \leq \max\{\sup(S), \sup(T)\}$ i.e. $\max\{\sup(S), \sup(T)\}$ is an upper bound for $t \in S \cup T$. Furthermore, we know that $t \in S \cup T$ is the Least Upper Bound of $t \in S \cup T$.

On the other hand, since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, then by part (a) of this questions, we know that $\sup(S) \leq \sup(S \cup T)$ and $\sup(T) \leq \sup(S \cup T)$. Also, since $\max\{\sup(S), \sup(T)\}$ equals either $\sup(S)$ or $\sup(T)$, we know that $\max\{\sup(S), \sup(T)\} \leq \sup(S \cup T)$.

Since we have shown this previous inequality holds in both directions, then by O2, we know that $\sup(S \cup T) = \max\{\sup(S), \sup(T)\}.$

4.9

Question.

Let S be a nonempty subset of \mathbb{R} that is bounded below. Define -S to be the set $\{-s : s \in S\}$ and let $s_0 = \sup(-S)$. Prove the following:

- (1) $-s_0 \le s$ for all $s \in S$.
- (2) If $t \leq s$ for all $s \in S$, then $t \leq -s_0$.

Proof. (1)

Since $s_0 = \sup(-S)$, then by the definition of Supremum, we know that $\tilde{s} \leq s_0$ for every $\tilde{s} \in -S$. By the definition of -S, we know this is equivalent to saying $-s \leq s_0$ for every $s \in S$. Lastly, by Theorem 3.2 (i), we can say that $-s_0 \leq -(-s)$ for every $s \in S$ which is equivalent to $-s_0 \leq s$ for every $s \in S$ since -(-c) = c for all $c \in \mathbb{R}$. Thus, we have proven the desired inequality.

Proof. (2)

Let t be such that $t \leq s$ for all $s \in S$. Then, by Theorem 3.2 (i), we can say that $-s \leq -t$ for all $s \in S$. However, by the definition above of -S, this is the same as saying $\tilde{s} \leq -t$ for all $\tilde{s} \in -S$. Therefore, this shows that -t is an upper bound for -S. However, since s_0 is the <u>Least</u> Upper Bound of -S, we know that $s_0 \leq -t$. Then, again by Theorem 3.2 (i), we can say that $-(-t) \leq -s_0$ which is the same as saying $t \leq -s_0$, exactly what we wanted to show.

4.14

Question.

Let A and B be nonempty bounded subsets of \mathbb{R} and define $A + B = \{a + b : a \in A, b \in B\}$.

- (a) Prove that $\sup(A+B) = \sup(A) + \sup(B)$.
- (b) Prove that $\inf(A+B) = \inf(A) + \inf(B)$.

Proof. (a)

For any $x \in A + B$, x is of the form x = a + b for $a \in A$ and $b \in B$. Clearly, $a + b \le \sup(A) + \sup(B)$ since $a \le \sup(A)$ and $b \le \sup(B)$. Thus, for any $x \in A + B$, $x \le \sup(A) + \sup(B)$. In other words, $\sup(A) + \sup(B)$ is an upper bound for A + B. However, since $\sup(A + B)$ is the Least Upper Bound of A + B, we have that $\sup(A + B) \le \sup(A) + \sup(B)$.

To show the inequality in the other direction, fix b_0 as some arbitrary element of B. Next, note that $x \leq \sup(A+B)$ for all $x \in A+B$, i.e. $a+b \leq \sup(A+B)$ for all $a \in A$ and $b \in B$. In particular, $a+b_0 \leq \sup(A+B)$ for all $a \in A$. Thus, $a+b_0-b_0 \leq \sup(A+B)-b_0$ for all $a \in A$ by O4. Using A4 and A3, we can finally conclude that $a \leq \sup(A+B)-b_0$ for all $a \in A$. In other words, $\sup(A+B)-b_0$ is an upper bound for A. However, since $\sup(A)$ is the <u>Least</u> Upper Bound for A, we have that $\sup(A) \leq \sup(A+B)-b_0$. From this we can get:

$$\sup(A) \leq \sup(A+B) - b_0$$

$$\implies -(\sup(A+B) - b_0) \leq -\sup(A)$$

$$\implies -\sup(A+B) + b_0 \leq -\sup(A)$$

$$\implies -\sup(A+B) + b_0 + \sup(A+B) \leq -\sup(A) + \sup(A+B)$$

$$\implies b_0 - \sup(A+B) + \sup(A+B) \leq \sup(A+B) - \sup(A)$$

$$\implies b_0 \leq \sup(A+B) - \sup(A)$$
by A2
$$\implies b_0 \leq \sup(A+B) - \sup(A)$$
by A2, A4, and A3 in that order

Therefore, since this b_0 can be any arbitrary element of B, we have shown that $\sup(A+B) - \sup(A)$ is an upper bound for B. However, since $\sup(B)$ is the <u>Least</u> Upper Bound for B, we have that $\sup(B) \le \sup(A+B) - \sup(A)$. Thus, by applying O4 with $\sup(A)$, then applying A4 and A3 on the right and A2 on the left, we get precisely $\sup(A) + \sup(B) \le \sup(A+B)$

Therefore, we have shown that $\sup(A+B) \leq \sup(A) + \sup(B)$ and $\sup(A) + \sup(B) \leq \sup(A+B)$. Therefore, by O2, we have that $\sup(A+B) = \sup(A) + \sup(B)$, exactly what we wanted to prove.

Proof. (b)

Similarly to in (a), we know that for any $x = a + b \in A + B$, we have that $\inf(A) + \inf(B) \le a + b$ since $\inf(A) \le a$ and $\inf(B) \le b$. Thus, $\inf(A) + \inf(B) \le x$ for all $x \in A + B$ meaning that $\inf(A) + \inf(B)$ is a lower bound for A + B. However, since $\inf(A + B)$ is the <u>Greatest</u> Lower Bound, we know that $\inf(A) + \inf(B) \le \inf(A + B)$.

Motivated from above, we will fix b_0 as some arbitrary element of B and notice that $\inf(A+B) \leq x$ for all $x \in A+B$. In particular, $\inf(A+B) \leq a+b_0$ for all $a \in A$. By adding $-b_0$ to both sides according to O4 and then using A4 and

A3, we can see that $\inf(A+B) - b_0 \le a$ for all $a \in A$. In other words, $\inf(A+B) - b_0$ is a lower bound for A. However, since $\inf(A)$ is the <u>Greatest</u> Lower Bound, we see that $\inf(A+B) - b_0 \le \inf(A)$. Following this we can see that:

$$\inf(A+B) - b_0 \le \inf(A)$$
 $\implies \inf(A+B) - \inf(A) \le b_0$ by using a nearly identical set of steps used in part (a)

Therefore, since b_0 can be any arbitrary element of B, this shows us that $\inf(A+B) - \inf(A)$ is a lower bound for B. However, since $\inf(B)$ is the <u>Greatest</u> lower bound for B, we get that $\inf(A+B) - \inf(A) \le \inf(B)$. By applying O4, A4, A3, and A2, we immediately get that $\inf(A+B) \le \inf(A) + \inf(B)$.

Therefore, we have shown that $\inf(A) + \inf(B) \leq \inf(A+B)$ and $\inf(A+B) \leq \inf(A) + \inf(B)$. Thus, by O2, we get $\inf(A+B) = \inf(A) = \inf(B)$, exactly what we wanted to prove.