

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY-(PCT)

WO 98/20157 (11) International Publication Number: (51) International Patent Classification 6: 14 May 1998 (14.05.98) (43) International Publication Date: C12Q 1/68

PCT/CA97/00829 (21) International Application Number:

4 November 1997 (04,11.97) (22) International Filing Date:

(30) Priority Data: US 4 November 1996 (04.11.96) 08/743,637

(71) Applicant (for all designated States except US): INFECTIO DIAGNOSTIC (I.D.I.) INC. [CA/CA]; 4ème étage, 2050, boulevard René Lévesque Ouest, Sainte-Foy, Québec G1V 2K8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BERGERON, Michel, G. [CA/CA]; 2069, rue Brûlard, Sillery, Québec GIT IG2 (CA). PICARD, François, J. [CA/CA]; 1245, rue de la Sapinière, Cap-Rouge, Québec GIY 1A1 (CA). OUELLETTE, Marc [CA/CA]; 1035 de Ploemel, Sillery, Québec GIS 3S1 (CA). ROY, Paul, H. [US/US]; 28, rue Charles Gamier, Loretteville, Québec G2A 2X8 (CA).

(74) Agents: DUBUC, Jean, H. et al.; Goudreau Gage Dubuc & Martineau Walker, The Stock Exchange Tower, Suite 3400, 800 Place Victoria, P.O. Box 242, Montreal, Québec H4Z 1E9 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SPECIES-SPECIFIC, GENUS-SPECIFIC AND UNIVERSAL DNA PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL AND FUNGAL PATHOGENS AND ASSOCIATED AN-TIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR DIAGNOSIS IN MICROBIOLOGY LABORATO-

DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample DNA from (57) Abstract (i) any bacterium, (ii) the species Streptococcus agalactiae, Staphylococcus saprophyticus, Enterococcus faecium, Neisseria meningitidis, Listeria monocytogenes and Candida albicans, and (iii) any species of the genera Streptococcus, Staphylococcus, Enterococcus, Neisseria and Candida are disclosed. DNA-based methods employing amplification primers or probes for detecting, identifying, and quantifying in a test sample antibiotic resistance genes selected from the group consisting of blazem, bla aacC3, aacA4, aac6'-lla, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6'-aph(2''), aad(6'), vat, vga, msrA, sul and int are also disclosed. The above microbial species, genera and resistance genes are all clinically relevant and commonly encountered in a variety of clinical specimens. These DNA-based assays are rapid, accurate and can be used in clinical microbiology laboratories for routine diagnosis. These novel diagnostic tools should be useful to improve the speed and accuracy of diagnosis of microbial infections, thereby allowing more effective treatments. Diagnostic kits for (i) the universal detection and quantification of bacteria, and/or (ii) the detection, identification and quantification of the above-mentioned bacterial and fungal species and/or genera, and/or (iii) the detection, identification and quantification of the above-mentioned antibiotic resistance genes are also claimed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG BJ CA CF CG CH CC	Albania Armenia Australia Australia Australia Azerbaijan Bosonia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Beain Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Cester Republic	BS FI FR GA GB GB GH GN GR HU IS II IS IT JP KE KG KP	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Kazakstan	LS LT LU LV MC MD MG MK ML MN MR NN MR MW MX NE NL NO NZ PL PT	Lesotho Lithuania Luxembourg Larvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal	SI SK SN SZ TD TG TJ TM TR TT UA UG US US VN YU	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkeenistan Turkeenistan Turked Uknaine Uganda United States of America Uzbekistan Yigoslavia
CI CM CN CU	Côte d'Ivoire Cameroon China	KP KR	Democratic People's Republic of Korea Republic of Korea	NO NZ PL	Norway New Zealand Poland	YU	Yugoslavia Zimbabwe

10

15

20

25

30

35

TITLE OF THE INVENTION

SPECIES-SPECIFIC, GENUS-SPECIFIC AND UNIVERSAL DNA PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL AND FUNGAL PATHOGENS AND ASSOCIATED ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR DIAGNOSIS IN MICROBIOLOGY LABORATORIES

BACKGROUND OF THE INVENTION

Classical methods for the identification and susceptibility testing of bacteria

Bacteria are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E™ system (bioMérieux). For susceptibility testing, clinical microbiology laboratories use methods including disk diffusion, agar dilution and broth microdilution. Although identifications based on biochemical tests and antibacterial susceptibility tests are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to identify the bacteria from clinical specimens as well as to determine their susceptibility to antimicrobial agents. There are some commercially available automated systems (i.e. the MicroScan system from Dade Diagnostics Corp. and the Vitek system from bioMérieux) which use sophisticated and expensive apparatus for faster microbial identification and susceptibility testing (Stager and Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These systems require shorter incubation periods, thereby allowing most bacterial identifications and susceptibility testing to be performed in less than 6 hours. Nevertheless, these faster systems always require the primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours for a pure culture or 2 days for a mixed culture. The fastest identification system, the autoSCAN-Walk-Away™ system (Dade Diagnostics Corp.) identifies both gram-negative and gram-positive bacterial species from standardized inoculum in as little as 2 hours and gives susceptibility patterns to most antibiotics in 5.5 hours. However, this system has a particularly high percentage (i.e. 3.3 to 40.5%) of non-conclusive identifications with bacterial species other than Enterobacteriaceae (Croizé J., 1995, Lett. Infectiol. 10:109-113; York et al., 1992, J. Clin. Microbiol. 30:2903-2910). For Enterobacteriaceae, the percentage of non-conclusive identifications was 2.7 to 11.4%.

A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiology laboratories. Tables 1 and 2 give the incidence for the most commonly isolated bacterial and fungal pathogens from various types of clinical specimens. These pathogens are the most frequently associated with nosocomial and community-acquired human infections and are therefore considered the most clinically important.

10

15

20

25

30

35

Clinical specimens tested in clinical microbiology laboratories

Most clinical specimens received in clinical microbiology laboratories are urine and blood samples. At the microbiology laboratory of the Centre Hospitalier de l'Université Laval (CHUL), urine and blood account for approximately 55% and 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Infections of the urinary tract, the respiratory tract and the bloodstream are usually of bacterial etiology and require antimicrobial therapy. In fact, all clinical samples received in the clinical microbiology laboratory are tested routinely for the identification of bacteria and susceptibility testing.

Conventional pathogen identification from clinical specimens

Urine specimens

The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains the classical semi-quantitative plate culture method in which 1 µL of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is normally associated with a bacterial count of 10° CFU/L or more in urine. However, infections with less than 10° CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative (i.e. bacterial count of less than 10° CFU/L; Table 3). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics. The biochemical and susceptibility testing normally require 18-24 hours of incubation.

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative specimens and a more efficient treatment and care management of patients. Several rapid identification methods (Uriscreen™, UTIscreen™, Flash Track™ DNA probes and others) have been compared to slower standard biochemical methods, which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and poor specificities as well as a high number of false negative and false positive results (Koening *et al.*, 1992, J. Clin. Microbiol. 30:342-345; Pezzlo *et al.*, 1992, J. Clin. Microbiol. 30:640-684).

Blood specimens

The blood specimens received in the microbiology laboratory are always submitted for culture. Blood culture systems may be manual, semi-automated or completely automated. The BACTEC system (from Becton Dickinson) and the

10

15

20

25

30

35

BacTAlert system (from Organon Teknika Corporation) are the two most widely used automated blood culture systems. These systems incubate blood culture bottles under optimal conditions for bacterial growth. Bacterial growth is monitored continuously to detect early positives by using highly sensitive bacterial growth detectors. Once growth is detected, a Gram stain is performed directly from the blood culture and then used to inoculate nutrient agar plates. Subsequently, bacterial identification and susceptibility testing are carried out from isolated bacterial colonies with automated systems as described previously. The bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, the vast majority of blood cultures are reported negative. For example, the percentage of negative blood cultures at the microbiology laboratory of the CHUL for the period February 1994–January 1995 was 93.1% (Table 3).

Other clinical samples

Upon receipt by the clinical microbiology laboratory, all body fluids other than blood and urine that are from normally sterile sites (i.e. cerebrospinal, synovial, pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture (Table 3).

Regarding clinical specimens which are not from sterile sites such as sputum or stool specimens, the laboratory diagnosis by culture is more problematic because of the contamination by the normal flora. The bacterial pathogens potentially associated with the infection are purified from the contaminants and then identified as described previously. Of course, the universal detection of bacteria would not be useful for the diagnosis of bacterial infections at these non sterile sites. On the other hand, DNA-based assays for species or genus detection and identification as well as for the detection of antibiotic resistance genes from these specimens would be very useful and would offer several advantages over classical identification and susceptibility testing methods.

DNA-based assays with any clinical specimens

There is an obvious need for rapid and accurate diagnostic tests for bacterial detection and identification directly from clinical specimens. DNA-based technologies are rapid and accurate and offer a great potential to improve the diagnosis of infectious diseases (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The DNA probes and amplification primers which are objects of the present invention are applicable for bacterial or fungal detection and identification directly from any clinical specimens such as blood cultures, blood, urine, sputum, cerebrospinal fluid, pus and other type of specimens (Table 3). The DNA-based tests proposed in this invention are superior in terms of both rapidity and accuracy to standard biochemical methods currently used for routine diagnosis from any clinical specimens in microbiology laboratories. Since

10

15

20

25

30

35

these tests are performed in around only one hour, they provide the clinicians with new diagnostic tools which should contribute to increase the efficiency of therapies with antimicrobial agents. Clinical specimens from organisms other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock and others) may also be tested with these assays.

A high percentage of culture negative specimens

Among all the clinical specimens received for routine diagnosis, approximately 80% of urine specimens and even more (around 95%) for other types of clinical specimens are negative for the presence of bacterial pathogens (Table 3). It would also be desirable, in addition to identify bacteria at the species or genus level in a given specimen, to screen out the high proportion of negative clinical specimens with a test detecting the presence of any bacterium (i.e. universal bacterial detection). Such a screening test may be based on the DNA amplification by PCR of a highly conserved genetic target found in all bacteria. Specimens negative for bacteria would not be amplified by this assay. On the other hand, those that are positive for bacteria would give a positive amplification signal with this assay.

Towards the development of rapid DNA-based diagnostic tests

A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for the identification of pathogens and antibiotic resistance genes from clinical samples (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). There is no need for culture of the bacterial pathogens, hence the organisms can be detected directly from clinical samples, thereby reducing the time associated with the isolation and identification of pathogens. Furthermore, DNA-based assays are more accurate for bacterial identification than currently used phenotypic identification systems which are based on biochemical tests. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of fastidious bacterial pathogens such as Mycobacterium tuberculosis, Chlamydia trachomatis, Neisseria gonorrhoeae as well as for the detection of a variety of viruses (Podzorski and Persing, Molecular detection and identification of microorganisms, In: P. Murray et al., 1995, Manual of Clinical Microbiology, ASM press, Washington D.C.). There are also other commercially available DNA-based assays which are used for culture confirmation assays.

Others have developed DNA-based tests for the detection and identification of bacterial pathogens which are objects of the present invention: *Staphylococcus* spp. (US patent application serial No. US 5 437 978), *Neisseria* spp. (US patent application

10

15

serial No. US 5 162 199 and European patent application serial No. EP 0 337 896 131) and *Listeria monocytogenes* (US patent applications serial Nos US 5 389 513 and US 5 089 386). However, the diagnostic tests described in these patents are based either on rRNA genes or on genetic targets different from those described in the present invention.

Although there are diagnostic kits or methods already used in clinical microbiology laboratories, there is still a need for an advantageous alternative to the conventional culture identification methods in order to improve the accuracy and the speed of the diagnosis of commonly encountered bacterial infections. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. metabolic level).

Knowledge of the genomic sequences of bacterial and fungal species continuously increases as testified by the number of sequences available from databases. From the sequences readily available from databases, there is no indication therefrom as to their potential for diagnostic purposes. For determining good candidates for diagnostic purposes, one could select sequences for DNA-based assays for (i) the species-specific detection and identification of commonly encountered bacterial or fungal pathogens, (ii) the genus-specific detection and identification of commonly encountered bacterial or fungal pathogens, (iii) the universal detection of bacterial or fungal pathogens and/or (iv) the specific detection and identification of antibiotic resistance genes. All of the above types of DNA-based assays may be performed directly from any type of clinical specimens or from a microbial culture.

25

30

35

20

In our co-pending U.S. (N.S. 08/526,840) and PCT (PCT/CA/95/00528) patent applications, we described DNA sequences suitable for (i) the species-specific detection and identification of 12 clinically important bacterial pathogens, (ii) the universal detection of bacteria, and (iii) the detection of 17 antibiotic resistance genes. This co-pending application described proprietary DNA sequences and DNA sequences selected from databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers derived from these sequences. All the nucleic acid sequences described in this patent application enter the composition of diagnostic kits and methods capable of a) detecting the presence of bacteria, b) detecting specifically the presence of 12 bacterial species and 17 antibiotic resistance genes. However, these methods and kits need to be improved, since the ideal kit and method should be capable of diagnosing close to 100% of microbial pathogens and antibiotic resistance genes. For example, infections caused by *Enterococcus faecium* have become a clinical problem because of its resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their

resistance profiles are desirable. Besides that, novel DNA sequences (probes and primers) capable of recognizing the same and other microbial pathogens or the same and additional antibiotic resistance genes are also desirable to aim at detecting more target genes and complement our earlier patent application.

5

STATEMENT OF THE INVENTION

It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and/or amplification primers for determining the presence and/or amount of nucleic acids:

10

- from specific microbial species or genera selected from the group consisting of Streptococcus species, Streptococcus agalactiae, Staphylococcus species, Staphylococcus saprophyticus, Enterococcus species, Enterococcus faecium, Neisseria species, Neisseria meningitidis, Listeria monocytogenes, Candida species and Candida albicans

15

- from an antibiotic resistance gene selected from the group consisting of bla_{lem} , bla_{rob} , bla_{shv} , bla_{oca} , blaZ, aadB, aacC1, aacC2, aacC3, aacA4, aac6'-lla, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6')-aph(2''), aad(6'), vat, vga, msrA, sul and int, and optionally,
 - from any bacterial species

20

25

in any sample suspected of containing said nucleic acids,

wherein each of said nucleic acids or a variant or part thereof comprises a selected target region hybridizable with said probe or primers;

said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said any bacterial species, specific microbial species or genus and antibiotic resistance gene.

In a specific embodiment, a similar method directed to each specific microbial species or genus detection and identification, antibiotic resistance genes detection, and universal bacterial detection, separately, is provided.

30

In a more specific embodiment, the method makes use of DNA fragments (proprietary fragments and fragments obtained from databases), selected for their capacity to sensitively, specifically and ubiquitously detect the targeted bacterial or fungal nucleic acids.

35

In a particularly preferred embodiment, oligonucleotides of at least 12 nucleotides in length have been derived from the longer DNA fragments, and are used in the present method as probes or amplification primers.

The proprietary oligonucleotides (probes and primers) are also another object of the invention.

Diagnostic kits comprising probes or amplification primers for the detection of

10

15

20

25

30

35

a microbial species or genus selected from the group consisting of Streptococcus species, Streptococcus agalactiae, Staphylococcus species, Staphylococcus saprophyticus, Enterococcus species, Enterococcus faecium, Neisseria species, Neisseria meningitidis, Listeria monocytogenes, Candida species and Candida albicans are also objects of the present invention.

Diagnostic kits further comprising probes or amplification primers for the detection of an antibiotic resistance gene selected from the group consisting of bla_{tem} , bla_{rob} , bla_{sh} , bla_{cxs} , $bla_{$

Diagnostic kits further comprising probes or amplification primers for the detection of any bacterial or fungal species, comprising or not comprising those for the detection of the specific microbial species or genus listed above, and further comprising or not comprising probes and primers for the antibiotic resistance genes listed above, are also objects of this invention.

In a preferred embodiment, such a kit allows for the separate or the simultaneous detection and identification of the above-listed microbial species or genus, antibiotic resistance genes and for the detection of any bacterium.

In the above methods and kits, amplification reactions may include a) polymerase chain reaction (PCR), b) ligase chain reaction, c) nucleic acid sequence-based amplification, d) self-sustained sequence replication, e) strand displacement amplification, f) branched DNA signal amplification, g) transcription-mediated amplification, h) cycling probe technology (CPT) i) nested PCR, or j) multiplex PCR.

In a preferred embodiment, a PCR protocol is used as an amplification reaction. In a particularly preferred embodiment, a PCR protocol is provided, comprising, for each amplification cycle, an annealing step of 30 seconds at 45-55°C and a denaturation step of only one second at 95°C, without any time allowed specifically for the elongation step. This PCR protocol has been standardized to be suitable for PCR reactions with all selected primer pairs, which greatly facilitates the testing because each clinical sample can be tested with universal, species-specific, genus-specific and antibiotic resistance gene PCR primers under uniform cycling conditions. Furthermore, various combinations of primer pairs may be used in multiplex PCR assays.

We aim at developing a rapid test or kit to discard rapidly all the samples which are negative for bacterial cells and to subsequently detect and identify the above bacterial and/or fungal species and genera and to determine rapidly the bacterial resistance to antibiotics. Although the sequences from the selected antibiotic resistance genes are available from databases and have been used to develop DNA-based tests for their detection, our approach is unique because it represents a major improvement over current gold standard diagnostic methods based on bact rial

cultures. Using an amplification method for the simultaneous bacterial detection and identification and antibiotic resistance genes detection, there is no need for culturing the clinical sample prior to testing. Moreover, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one hour under uniform amplification conditions. This procedure will save lives by optimizing treatment, will diminish antibiotic resistance because less antibiotics will be prescribed, will reduce the use of broad spectrum antibiotics which are expensive, decrease overall health care costs by preventing or shortening hospitalizations, and decrease the time and costs associated with clinical laboratory testing.

10

5

In the methods and kits described herein below, the oligonucleotide probes and amplification primers have been derived from larger sequences (i.e. DNA fragments of at least 100 base pairs). All DNA fragments have been obtained either from proprietary fragments or from databases. DNA fragments selected from databases are newly used in a method of detection according to the present invention, since they have been selected for their diagnostic potential.

15

20

25

30

35

It is clear to the individual skilled in the art that other oligonucleotide sequences appropriate for (i) the universal bacterial detection, (ii) the detection and identification of the above microbial species or genus and (iii) the detection of antibiotic resistance genes other than those listed in Annex VI may also be derived from the proprietary fragments or selected database sequences. For example, the oligonucleotide primers or probes may be shorter or longer than the ones we have chosen; they may also be selected anywhere else in the proprietary DNA fragments or in the sequences selected from databases; they may be also variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified by a given oligonucleotide PCR primer pair, the converse is also true; a given target DNA may hybridize to a variant oligonucleotide probe or be amplified by a variant oligonucleotide PCR primer. Alternatively, the oligonucleotides may be designed from any DNA fragment sequences for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of universal, species-specific, genus-specific and resistance gene-specific genomic or non-genomic DNA fragments which are used as a source of specific and ubiquitous oligonucleotide probes and/or amplification primers. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires much effort, it is quite possible for the individual skilled in the art to derive, from the selected DNA fragments, oligonucleotides other than the ones listed in Annex VI which are suitable for diagnostic purposes. When a proprietary fragment or a database sequence is selected for its specificity and ubiquity, it increases the probability that subsets thereof will also be specific and ubiquitous.

Since a high percentage of clinical specimens are negative for bacteria (Table

10

15

20

25

30

35

3), DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and database sequences. The amplification primers were selected from a gene highly conserved in bacteria and fungi, and are used to detect the presence of any bacterial pathogen in clinical specimens in order to determine rapidly (approximately one hour) whether it is positive or negative for bacteria. The selected gene, designated tuf, encodes a protein (EF-Tu) involved in the translational process during protein synthesis. The tuf gene sequence alignments used to derive the universal primers include both proprietary and database sequences (Example 1 and Annex I). This strategy allows the rapid screening of the numerous negative clinical specimens (around 80% of the specimens received, see Table 3) submitted for bacteriological testing. Tables 4, 5 and 6 provide a list of the bacterial or fungal species used to test the specificity of PCR primers and DNA probes. Table 7 gives a brief description of each species-specific, genus-specific and universal amplification assays which are objects of the present invention. Tables 8, 9 and 10 provide some relevant information about the proprietary and database sequences selected for diagnostic puposes.

DETAILED DESCRIPTION OF THE INVENTION

Development of species-specific, genus-specific, universal and antibiotic resistance gene-specific DNA probes and amplification primers for microorganisms

Selection from databases of sequences suitable for diagnostic purposes

In order to select sequences which are suitable for species-specific or genusspecific detection and identification of bacteria or fungi or, alternatively, for the universal detection of bacteria, the database sequences (GenBank, EMBL and Swiss-Prot) were chosen based on their potential for diagnostic purposes according to sequence information and computer analysis performed with these sequences. Initially, all sequence data available for the targeted microbial species or genus were carefully analyzed. The gene sequences which appeared the most promising for diagnostic purposes based on sequence information and on sequence comparisons with the corresponding gene in other microbial species or genera performed with the Genetics Computer Group (GCG, Wisconsin) programs were selected for testing by PCR. Optimal PCR amplification primers were chosen from the selected database sequences with the help of the Oligo™ 4.0 primer analysis software (National Biosciences Inc., Plymouth, Minn.). The chosen primers were tested in PCR assays for their specificity and ubiquity for the target microbial species or genus. In general, the identification of database sequences from which amplification primers suitable for species-specific or genus-specific detection and identification were selected involved the computer analysis and PCR testing of several candidate gene sequences before

10

15

20

25

30

35

obtaining a primer pair which is specific and ubiquitous for the target microbial species or genus. Annex VI provides a list of selected specific and ubiquitous PCR primer pairs. Annexes I to V and Examples 1 to 4 illustrate the strategy used to select genus-specific, species-specific and universal PCR primers from *tuf* sequences or from the *rec*A gene.

Oligonucleotide primers and probes design and synthesis

The DNA fragments sequenced by us or selected from databases (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from databases were tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the database sequences were selected based on their potential for being species-specific, genus-specific or universal for the detection of bacteria or fungi according to available sequence information and extensive analysis and that, in general, several candidate database sequences had to be tested in order to obtain the desired specificity, ubiquity and sensitivity.

Oligonucleotide probes and amplification primers derived from species-specific fragments selected from database sequences were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (i.e. the Genetics Computer Group (GCG) programs and the primer analysis software Oligo 4.0). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide and a high proportion of G or C residues at the 3' end (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

The oligonucleotide primers or probes may be derived from either strand of the duplex DNA. The primers or probes may consist of the bases A, G, C, or T or analogs and they may be degenerated at one or more chosen nucleotide position(s). The primers or probes may be of any suitable length and may be selected anywhere within the DNA sequences from proprietary fragments or from selected database sequences which are suitable for (i) the universal detection of bacteria, (ii) the species-specific detection and identification of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae and Candida albicans (iii) the genus-specific detection of Streptococcus species, Enterococcus species, Staphylococcus species and Neisseria species or (iv) the detection of the 26 above-mentioned clinically important antibiotic resistance genes.

10

15

20

25

30

35

Variants for a given target bacterial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Watson et al., 1987, Molecular Biology of the Gene, 4th ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same bacterial species may have a single or more nucleotide variation(s) at the oligonucleotide hybridization site. The person skilled in the art is well aware of the existence of variant bacterial or fungal DNA sequences for a specific gene and that the frequency of sequence variations depends on the selective pressure during evolution on a given gene product. The detection of a variant sequence for a region between two PCR primers may be demonstrated by sequencing the amplification product. In order to show the presence of sequence variants at the primer hybridization site, one has to amplify a larger DNA target with PCR primers outside that hybridization site. Sequencing of this larger fragment will allow the detection of sequence variation at this site. A similar strategy may be applied to show variants at the hybridization site of a probe. Insofar as the divergence of the target sequences or a part thereof does not affect the specificity and ubiquity of the amplification primers or probes, variant bacterial DNA is under the scope of this invention. Variants of the selected primers or probes may also be used to amplify or hybridize to a variant DNA.

Sequencing of tuf sequences from a variety of bacterial and fungal species

The nucleotide sequence of a portion of tuf genes was determined for a variety of bacterial and fungal species. The amplification primers SEQ ID NOs: 107 and 108, which amplify a tuf gene portion of approximately 890 bp, were used for the sequencing of bacterial tuf sequences. The amplification primers SEQ ID NOs: 109 and 172, which amplify a tuf gene portion of approximately 830 bp, were used for the sequencing of fungal tuf sequences. Both primer pairs can amplify tufA and tufB genes. This is not surprising because these two genes are nearly identical. For example, the entire tufA and tufB genes from E. coli differ at only 13 nucleotide positions (Neidhardt et al., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., American Society for Microbiology Press, Washington, D.C.). These amplification primers are degenerated at several nucleotide positions and contain inosines in order to allow the amplification of a wide range of tuf sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The amplification primers SEQ ID NOs: 107 and 108 could be used to amplify the tuf genes from any bacterial species. The amplification primers SEQ ID NOs: 109 and 172 could be used to amplify the tuf genes from any fungal species.

The *tuf* genes were amplified directly from bacterial or yeast cultures using the following amplification protocol: One μL of cell suspension was transferred directly to

10

15

20

25

30

35

19 μ L of a PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1 μ M of each of the 2 primers, 200 μ M of each of the four dNTPs, 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 min at 96°C followed by 30-35 cycles of 1 min at 95°C for the denaturation step, 1 min at 30-50°C for the annealing step and 1 min at 72°C for the extension step. Subsequently, twenty microliters of the PCRamplified mixture were resolved by electrophoresis in a 1.5% agarose gel. The gel was then visualized by staining with methylene blue (Flores et al., 1992, Biotechniques, 13:203-205). The size of the amplification products was estimated by comparison with a 100-bp molecular weight ladder. The band corresponding to the specific amplification product (i.e. approximately 890 or 830 bp for bacterial or fungal tuf sequences, respectively) was excised from the agarose gel and purified using the QIAquick™ gel extraction kit (QIAGEN Inc., Chatsworth, CA). The gel-purified DNA fragment was then used directly in the sequencing protocol. Both strands of the tuf genes amplification product were sequenced by the dideoxynucleotide chain termination sequencing method by using an Applied Biosystems automated DNA sequencer (model 373A) with their PRISM™ Sequenase® Terminator Double-stranded DNA Sequencing Kit (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA). The sequencing reactions were all performed by using the amplification primers (SEQ ID NOs: 107 to 109 and 172) and 100 ng per reaction of the gel-purified amplicon. In order to ensure that the determined sequence did not contain errors attributable to the sequencing of PCR artefacts, we have sequenced two preparations of the gel-purified tuf amplification product originating from two independent PCR amplifications. For all target microbial species, the sequences determined for both amplicon preparations were identical. Furthermore, the sequences of both strands were 100% complementary thereby confirming the high accuracy of the determined sequence. The tuf sequences determined using the above strategy are all in the Sequence Listing (i.e. SEQ ID NOs:118 to 146). Table 13 gives the originating microbial species and the source for each tuf sequence in the Sequence Listing.

The alignment of the *tuf* sequences determined by us or selected from databases reveals clearly that the length of the sequenced portion of the *tuf* genes is variable. There may be insertions or deletions of several amino acids. This explains why the size of the sequenced *tuf* amplification product was variable for both bacterial and fungal species. Among the *tuf* sequences determined by our group, we found insertions and deletions adding up to 5 amino acids or 15 nucleotides. Consequently, the nucleotide positions indicated on top of each of Annexes I to V do not correspond for *tuf* sequences having insertions or deletions.

It should also be noted that the various tuf sequences determined by us

10

15

20

25

30

35

occasionally contain degenerescences. These degenerated nucleotides correspond to sequence variations between *tufA* and *tufB* genes because the amplification primers amplify both *tuf* genes. These nucleotide variations were not attributable to nucleotide misincorporations by the *taq* DNA polymerase because the sequence of both strands were identical and also because the sequences determined with both preparations of the gel-purified *tuf* amplicons were identical.

The selection of amplification primers from tuf sequences

The *tuf* sequences determined by us or selected from databases were used to select PCR primers for (i) the universal detection of bacteria, (ii) the genus-specific detection and identification of *Enterococcus* spp. and *Staphylococcus* spp. and (iii) the species-specific detection and identification of *Candida albicans*. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of various *tuf* sequences. For more details about the selection of PCR primers from *tuf* sequences, please refer to Examples 1 to 3 and Annexes I to IV.

The selection of amplification primers from recA

The comparison of the nucleotide sequence for the *recA* gene from various bacterial species including 5 species of streptococci allowed the selection of *Streptococcus*-specific PCR primers. For more details about the selection of PCR primers from *recA*, please refer to Example 4 and Annex V.

DNA fragment isolation from Staphylococcus saprophyticus by arbitrarily primed PCR

DNA sequences of unknown coding potential for the species-specific detection and identification of *Staphylococcus saprophyticus* were obtained by the method of arbitrarily primed PCR (AP-PCR).

AP-PCR is a method which can be used to generate specific DNA probes for microorganisms (Fani *et al.*, 1993, Mol. Ecol. 2:243-250). A description of the AP-PCR protocol used to isolate a species-specific genomic DNA fragment from Staphylococcus saprophyticus follows. Twenty different oligonucleotide primers of 10 nucleotides in length (all included in the AP-PCR kit OPAD (Operon Technologies, Inc., Alameda, CA)) were tested systematically with DNAs from 3 bacterial strains of Staphylococcus saprophyticus (all obtained from the American Type Culture Collection (ATCC): numbers 15305, 35552 and 43867) as well as with DNA from four other staphylococcus species (Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Staphylococcus haemolyticus ATCC 29970 and Staphylococcus hominis ATCC 35982). For all bacterial species, amplification was performed from a bacterial suspension adjusted to a standard 0.5 McFarland which corresponds to approximately 1.5 x 10⁸ bacteria/mL. One μL of the standardized bacterial suspension was transferred directly to 19 μL of a PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂,

10

15

20

25

30

35

 $1.2~\mu\text{M}$ of only one of the 20 different AP-PCR primers OPAD, $200~\mu\text{M}$ of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler (MJ Research Inc.) as follows: 3 min at 96°C followed by 35 cycles of 1 min at 95°C for the denaturation step, 1 min at 32°C for the annealing step and 1 min at 72°C for the extension step. A final extension step of 7 min at 72°C was made after the 35 cycles to ensure complete extension of PCR products. Subsequently, twenty microliters of the PCR amplified mixture were resolved by electrophoresis in a 2% agarose gel containing $0.25~\mu\text{g/mL}$ of ethidium bromide. The size of the amplification products was estimated by comparison with a 50-bp molecular weight ladder.

Amplification patterns specific for *Staphylococcus saprophyticus* were observed with the AP-PCR primer OPAD-9 (SEQ ID NO: 25). Amplification with this primer consistently showed a band corresponding to a DNA fragment of approximately 450 bp for all *Staphylococcus saprophyticus* strains tested but not for any of the four other staphylococcal species tested. This species-specific pattern was confirmed by testing 10 more clinical isolates of *S. saprophyticus* selected from the culture collection of the microbiology laboratory of the CHUL as well as strains selected from the gram-positive bacterial species listed in Table 5.

The band corresponding to the approximately 450 bp amplicon which was specific and ubiquitous for *S. saprophyticus* based on AP-PCR was excised from the agarose gel and purified using the QlAquick™ gel extraction kit (QlAGEN Inc.). The gel-purified DNA fragment was cloned into the T/A cloning site of the pCR 2.1™ plasmid vector (Invitrogen Inc.) using T4 DNA ligase (New England BioLabs). Recombinant plasmids were transformed into *E. coli* DH5α competent cells using standard procedures. Plasmid DNA isolation was done by the method of Birnboim and Doly (Nucleic Acids Res. 7:1513-1523) for small-scale preparations. All plasmid DNA preparations were digested with the *Eco*Rl restriction endonuclease to ensure the presence of the approximately 450 bp AP-PCR insert into the recombinant plasmids. Subsequently, a large-scale and highly purified plasmid DNA preparation was performed from two selected clones shown to carry the AP-PCR insert by using the QlAGEN plasmid purification kit. These plasmid preparations were used for automated DNA sequencing.

Both strands of the AP-PCR insert from the two selected clones were sequenced by the dideoxynucleotide chain termination sequencing method with SP6 and T7 sequencing primers, by using an Applied Biosystems automated DNA sequencer as described previously. The analysis of the obtained sequences revealed that the DNA sequences for both strands from each clone were 100% complementary. Furthermore, it showed that the entire sequence determined for each clone were both identical. These sequencing data confirm the 100% accuracy for the determined 438

10

15

20

25

30

35

bp sequence (SEQ ID NO: 29). Optimal amplification primers have been selected from the sequenced AP-PCR Staphylococcus saprophyticus DNA fragment with the help of the primer analysis software Oligo™ 4.0. The selected primer sequences have been tested in PCR assays to verify their specificity and ubiquity (Table 7). These PCR primers were specific since there was no amplification with DNA from bacterial species other than S. saprophyticus selected from Tables 4 and 5. Furthermore, this assay was ubiquitous since 245 of 260 strains of S. saprophyticus were efficiently amplified with this PCR assay. When used in combination with another S. saprophyticus-specific PCR assay, which is an object of our co-pending U.S. (N.S. 08/526,840) and PCT (PCT/CA/95/00528) patent applications, the ubiquity reaches 100% for these 260 strains.

DNA amplification

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived from proprietary DNA fragments or from database sequences. Prior to synthesis, the potential primer pairs were analyzed by using the Oligo™ 4.0 software to verify that they are good candidates for PCR amplification.

During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the heat-denatured target DNA from the bacterial genome are used to amplify exponentially in vitro the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing et al, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Briefly, the PCR protocols were as follow: Treated clinical specimens or standardized bacterial or fungal suspensions (see below) were amplified in a 20 μ L PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStart™ antibody (Clontech Laboratories Inc., Palo Alto, CA). The TaqStart™ antibody, which is a neutralizing monoclonal antibody to Taq DNA polymerase, was added to all PCR reactions to enhance the specificity and the sensitivity of the amplifications (Kellogg et al., 1994, Biotechniques 16:1134-1137). The treatment of the clinical specimens varies with the type of specimen tested, since the composition and the sensitivity level required are different for each specimen type. It consists in a rapid protocol to lyse the bacterial cells and eliminate the PCR inhibitory effects (see example 11 for urine specimen preparation). For amplification from bacterial or fungal cultures, the samples were added directly to the PCR amplification mixture without any pre-treatment step (see example 10). Primer sequences derived from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide an internal control for all PCR reactions. Alternatively, the

10

15

20

25

30

internal control was derived from sequences not found in microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. The internal control derived from rRNA was also useful to monitor the efficiency of bacterial lysis protocols.

PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 second at 55°C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc.) and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. The number of cycles performed for the PCR assays varies according to the sensitivity level required. For example, the sensitivity level required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens because the concentration of microorganisms associated with a septicemia can be much lower than that associated with a urinary tract infection. Consequently, more sensitive PCR assays having more thermal cycles are required for direct detection from blood specimens. Similarly, PCR assays performed directly from bacterial or fungal cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is normally much lower in clinical specimens than in microbial cultures.

It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. TaqMan™ system from Perkin Elmer or Amplisensor™ from Biotronics). Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are very rapid, quantitative and can be automated (Example 14).

Microbial pathogens detection and identification may also be performed by solid support or liquid hybridization using species-specific internal DNA probes hybridizing to an amplification product. Such probes may be generated from any species-specific or genus-specific DNA amplification products which are objects of the present invention. Alternatively, the internal probes for species or genus detection and identification may be derived from the amplicons produced by the universal amplification assay. The oligonucleotide probes may be labeled with biotin or with digoxigenin or with any other reporter molecules.

To assure PCR efficiency, glycerol, dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of a target DNA having a high GC content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The

10

15

20

25

30

35

concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v/v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and MgCl₂ are 0.1-1.5 μ M and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods, see Examples 9 to 14.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), branched DNA (bDNA) and cycling probe technology (CPT) (Lee et al., 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other procedure which may be used to increase rapidity and sensitivity of the tests. Any oligonucleotide suitable for the amplification of nucleic acids by approaches other than PCR and derived from the species-specific, genus-specific and universal DNA fragments as well as from selected antibiotic resistance gene sequences included in this document are also under the scope of this invention.

Hybridization assays with oligonucleotide probes

In hybridization experiments, single-stranded oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria, such as ease of synthesis in large quantities, consistency in results from batch to batch and chemical stability. Briefly, for the hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide $\gamma^{-32}P(dATP)$ using T4 polynucleotide kinase (Pharmacia) (Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). The unincorporated radionucleotide was removed by passing the labeled oligonucleotide through a Sephadex G-50TM column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled in the art that labeling means other than the three above labels may be used.

Each oligonucleotide probe was then tested for its specificity by hybridization to DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6. All of the bacterial or fungal species tested were likely to be pathogens associated

with common infections or potential contaminants which can be isolated from clinical specimens. Each target DNA was released from bacterial cells using standard chemical treatments to lyse the cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Subsequently, the DNA was denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution. The fixed single-stranded target DNAs were then hybridized with the oligonucleotide probe cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2[™] ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Prehybridization conditions were in 1 M NaCl + 10% dextran sulfate + 1% SDS + 100 μ g/mL salmon sperm DNA at 65°C for 15 min. Hybridization was performed in fresh pre-hybridization solution containing the labeled probe at 65°C overnight. Posthybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs because of the high stringency of the washes.

20

25

5

10

15

An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus from which it was isolated. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most or all isolates of the target species or genus) by hybridization to microbial DNAs from clinical isolates of the species or genus of interest including ATCC strains. The DNAs from strains of the target species or genus were denatured, fixed onto nylon membranes and hybridized as described above. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates of the target species or genus.

Specificity and ubiquity tests for oligonucleotide primers and probes

35

30

The specificity of oligonucleotide primers and probes, derived either from the DNA fragments sequenced by us or selected from databases, was tested by amplification of DNA or by hybridization with bacterial or fungal species selected from those listed in Tables 4, 5 and 6, as described in the two previous sections. Oligonucleotides found to be specific were subsequently tested for their ubiquity by amplification (for primers) or by hybridization (for probes) with bacterial DNAs from isolates of the target species or genus. Results for specificity and ubiquity tests with the oligonucleotide primers are summarized in Table 7. The specificity and ubiquity of the PCR assays using the selected amplification primer pairs were tested directly from cultures (see Examples 9 and 10) of bacterial or fungal species.

with common infections or potential contaminants which can be isolated from clinical specimens. Each target DNA was released from bacterial cells using standard chemical treatments to lyse the cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Subsequently, the DNA was denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution. The fixed single-stranded target DNAs were then hybridized with the oligonucleotide probe cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2[™] ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Prehybridization conditions were in 1 M NaCl + 10% dextran sulfate + 1% SDS + 100 μ g/mL salmon sperm DNA at 65 °C for 15 min. Hybridization was performed in fresh pre-hybridization solution containing the labeled probe at 65°C overnight. Posthybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs because of the high stringency of the washes.

20

15

5

10

An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus from which it was isolated. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most or all isolates of the target species or genus) by hybridization to microbial DNAs from clinical isolates of the species or genus of interest including ATCC strains. The DNAs from strains of the target species or genus were denatured, fixed onto nylon membranes and hybridized as described above. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates of the target species or genus.

Specificity and ubiquity tests for oligonucleotide primers and probes

30

35

25

The specificity of oligonucleotide primers and probes, derived either from the DNA fragments sequenced by us or selected from databases, was tested by amplification of DNA or by hybridization with bacterial or fungal species selected from those listed in Tables 4, 5 and 6, as described in the two previous sections. Oligonucleotides found to be specific were subsequently tested for their ubiquity by amplification (for primers) or by hybridization (for probes) with bacterial DNAs from isolates of the target species or genus. Results for specificity and ubiquity tests with the oligonucleotide primers are summarized in Table 7. The specificity and ubiquity of the PCR assays using the selected amplification primer pairs were tested directly from cultures (see Examples 9 and 10) of bacterial or fungal species.

10

15

20

25

30

35

The various species-specific and genus-specific PCR assays which are objects of the present invention are all specific. For the PCR assays specific to bacterial species or genus, this means that DNA isolated from a wide variety of bacterial species, other than that from the target species or genus and selected from Tables 4 and 5, could not be amplified. For the PCR assay specific to *Candida albicans*, it means there was no amplification with genomic DNA from the fungal species listed in Table 6 as well as with a variety of bacterial species selected from Tables 4 and 5.

The various species-specific and genus-specific PCR assays which are objects of the present invention are also all ubiquitous (Table 7). (i) The species-specific PCR assays for E. faecium, L. monocytogenes, S. saprophyticus, S. agalactiae and C. albicans amplified genomic DNA from all or most strains of the target species tested, which were obtained from various sources and which are representative of the diversity within each target species (Table 7). The species identification of all of these strains was based on classical biochemical methods which are routinely used in clinical microbiology laboratories. (ii) The genus-specific PCR assays specific for Enterococcus spp., Staphylococcus spp., Streptococcus spp. and Neisseria spp. amplified genomic DNA from all or most strains of the target genus tested, which represent all clinically important bacterial species for each target genus. These strains were obtained from various sources and are representative of the diversity within each target genus. Again, the species identification of all of these strains was based on classical biochemical methods which are routinely used in clinical microbiology laboratories. More specifically, the four genus-specific PCR assays amplified the following species: (1) The Enterococcus-specific assay amplified efficiently DNA from all of the 11 enterococcal species tested including E. avium, E. casseliflavus, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. mundtii and E. raffinosus. (2) The Neisseria-specific assay amplified efficiently DNA from all of the 12 neisserial species tested including N. canis, N. cinerea, N. elongata, N. flavescens, N. gonorrhoeae, N. lactamica, N. meningitidis, N. mucosa, N. polysaccharea, N. sicca, N. subflava and N. weaveri. (3) The Staphylococcus-specific assay amplified efficiently DNA from 13 of the 14 staphylococcal species tested S. aureus, S. auricularis, S. capitis, S. cohnii, S. epidermidis, S. including haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. schleiferi, S. simulans, S. warneri and S. xylosus. The staphylococcal species which could not be amplified is S. sciuri. (4) Finally, the Streptococcus-specific assay amplified efficiently DNA from all of the 22 streptococcal species tested including S. agalactiae, S. anginosus, S. bovis, S. constellatus, S. crista, S. dysgalactiae, S. equi, S. gordonii, S. intermedius, S. mitis, S. mutans, S. oralis, S. parasanguis, S. pneumoniae, S. pyogenes, S. salivarius, S. sanguis, S. sabrinus, S. suis, S. uberis, S. vestibularis and S. viridans. On the other hand, the Streptococcus-specific assay did not amplify 3 out of 9 strains

10

15

20

25

30

35

of S. mutans and 1 out of 23 strains of S. salivarius, thereby showing a slight lack of ubiquity for these two streptococcal species.

All specific and ubiquitous amplification primers for each target microbial species or genus or antibiotic resistance gene investigated are listed in Annex VI. Divergence in the sequenced DNA fragments can occur, insofar as the divergence of these sequences or a part thereof does not affect the specificity of the probes or amplification primers. Variant bacterial DNA is under the scope of this invention.

The PCR amplification primers listed in Annex VI were all tested for their specificity and ubiquity using reference strains as well as clinical isolates from various geographical locations. The 351 reference strains used to test the amplification and hybridization assays (Tables 4, 5 and 6) were obtained from (i) the American Type Culture Collection (ATCC): 85%, (ii) the Laboratoire de santé publique du Québec (LSPQ): 10%, (iii) the Centers for Disease Control and Prevention (CDC): 3%, (iv) the National Culture Type Collection (NCTC): 1% and (v) several other reference laboratories throughout the world: 1%. These reference strains are representative of (i) 90 gram-negative bacterial species (169 strains; Table 4), (ii) 97 gram-positive bacterial species (154 strains; Table 5) and (iii) 12 fungal species (28 strains; Table 6). Antibiotic resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide clinicians, in approximately one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus-specific DNA-based tests, clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and clinically important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resistance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from databases, our strategy was to use the sequence from a portion or from the entire resistance gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of rapid DNA-based tests. The sequence from each of the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the Sequence Listing. Tables 9 and 10 summarize some characteristics of the selected antibiotic resistance genes. Our approach is unique because the antibiotic resistance genes detection and the bacterial detection and identification are performed simultaneously in multiplex assays under

10

15

uniform PCR amplification conditions (Example 13).

Annex VI provides a list of all amplification primers selected from 26 clinically important antibiotic resistance genes which were tested in PCR assays. The various PCR assays for antibiotic resistance genes detection and identification were validated by testing several resistant bacterial isolates known to carry the targeted gene and obtained from various countries. The testing of a large number of strains which do not carry the targeted resistance gene was also performed to ensure that all assays were specific. So far, all PCR assays for antibiotic resistance genes are highly specific and have detected all control resistant bacterial strains known to carry the targeted gene. The results of some clinical studies to validate the array of PCR assays for the detection and identification of antibiotic resistance genes and correlate these DNA-based assays with standard antimicrobials susceptibility testing methods are presented in Tables 11 and 12.

Universal bacterial detection

In the routine microbiology laboratory, a high percentage of clinical specimens sent for bacterial identification are negative by culture (Table 4). Testing clinical samples with universal amplification primers or universal probes to detect the presence of bacteria prior to specific identification and screen out the numerous negative specimens is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several amplification primers and probes were therefore synthesized from highly conserved portions of bacterial sequences from the *tuf* genes (Table 8). The universal primer selection was based on a multiple sequence alignment constructed with sequences determined by us or selected from available database

25

30

35

20

sequences as described in Example 1 and Annex I. For the identification of database sequences suitable for the universal detection of bacteria, we took advantage of the fact that the complete genome sequences for two distant microorganisms (i.e. Mycoplasma genitalium and Haemophilus influenzae) are available. A comparison of the amino acid sequence for all proteins encoded by the genome of these two distant microorganisms led to the identification of highly homologous proteins. An analysis of these homologous proteins allowed to select some promising candidates for the development of universal DNA-based assays for the detection of bacteria. Since the complete nucleotide sequence of several other microbial genomes are presently available in databases, a person skilled in the art could arrive to the same conclusions by comparing genomes sequences other than those of Mycoplasma genitalium and Haemophilus influenzae. The selected tuf gene encodes a protein (EF-Tu) involved in the translation process during protein synthesis. Subsequently, an extensive nucleotide sequence analysis was performed with the tuf gene sequences available in databases as well as with novel tuf sequences which w have determined as described previously. All computer analysis of amino acid and

10

15

20

25

30

35

nucleotide sequences were performed by using the GCG programs. Subsequently, optimal PCR primers for the universal amplification of bacteria were selected with the help of the Oligo™ program. The selected primers are degenerated at several nucleotide positions and contain several inosines in order to allow the amplification of all clinically relevant bacterial species (Annex I). Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Degenerated oligonucleotides consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY).

The amplification conditions with the universal primers were identical to those used for the species- and genus-specific amplification assays except that the annealing temperature was 50°C instead of 55°C. This universal PCR assay was specific and nearly ubiquitous for the detection of bacteria. The specificity for bacteria was verified by amplifying genomic DNA isolated from the 12 fungal species listed in Table 6 as well as genomic DNA from Leishmania donovani, Saccharomyces cerevisiae and human lymphocytes. None of the above eukaryotic DNA preparations could be amplified by the universal assay, thereby suggesting that this test is specific for bacteria. The ubiquity of the universal assay was verified by amplifying genomic DNAs from 116 reference strains which represent 95 of the most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Tables 4 and 5. We found that 104 of these 116 strains could be amplified. The bacterial species which could not be amplified belong to the following genera: Corynebacterium (11 species) and Stenotrophomonas (1 species). Sequencing of the tuf genes from these bacterial species has been recently performed. This sequencing data has been used to select new universal primers which may be more ubiquitous. These primers are in the process of being tested. We also observed that for several species the annealing temperature had to be reduced to 45°C in order to get an efficient amplification. These bacterial species include Gemella morbilbrum, Listeria spp. (3 species) and Gardnerella vaginalis. It is important to note that the 95 bacterial species selected from Tables 4 and 5 to test the ubiquity of the universal assay include all of the most clinically relevant bacterial species associated with a variety of human infections acquired in the community or in hospitals (nosocomial infections). The most clinically important bacterial and fungal pathogens are listed in Tables 1 and 2.

10

15

20

30

35

EXAMPLES AND ANNEXES

The following examples and annexes are intended to be illustrative of the various methods and compounds of the invention, rather than limiting the scope thereof.

The various annexes show the strategies used for the selection of amplification primers from tuf sequences or from the recA gene: (i) Annex I illustrates the strategy used for the selection of the universal amplification primers from tuf sequences. (ii) Annex II shows the strategy used for the selection of the amplification primers specific for the genus Enterococcus from tuf sequences. (iii) Annex III illustrates the strategy used for the selection of the amplification primers specific for the genus Staphylococcus from tuf sequences. (iv) Annex IV shows the strategy used for the selection of the amplification primers specific for the species Candida albicans from tuf sequences. (v) Annex V illustrates the strategy used for the selection of the amplification primers specific for the genus Streptococcus from recA sequences. (vi) Annex VI gives a list of all selected primer pairs. As shown in these annexes, the selected amplification primers may contain inosines and/or degenerescences. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Alternatively, degenerated oligonucleotides which consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches were used. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).

EXAMPLES

25 EXAMPLE 1:

Selection of universal PCR primers from tuf sequences. As shown in Annex I, the comparison of tuf sequences from a variety of bacterial and eukaryotic species allowed the selection of PCR primers which are universal for the detection of bacteria. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. This multiple sequence alignment includes tuf sequences from 38 bacterial species and 3 eukaryotic species either determined by us or selected from databases (Table 13). A careful analysis of this multiple sequence alignment allowed the selection of primer sequences which are conserved within eubacteria but which discriminate sequences from eukaryotes, thereby permitting the universal detection of bacteria. As shown in Annex I, the selected primers contain several inosines and degenerescences. This was necessary because there is a relatively high polymorphism among bacterial tuf sequences despite the fact that this gene is highly conserved. In fact, among the tuf sequences that we determined, we found many nucleotide variations as well as some deletions and/or

10

15

20

25

30

35

insertions of amino acids. The selected universal primers were specific and ubiquitous for bacteria (Table 7). Of the 95 most clinically important bacterial species tested, 12 were not amplified. These species belong to the genera *Corynebacterium* (11 species) and *Stenotrophomonas* (1 species). The universal primers did not amplify DNA of non-bacterial origin, including human and other types of eukaryotic DNA.

EXAMPLE 2:

Selection of genus-specific PCR primers from tuf sequences. As shown in Annexes 2 and 3, the comparison of tuf sequences from a variety of bacterial species allowed the selection of PCR primers specific for Enterococcus spp. or for Staphylococcus spp. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. These multiple sequence alignments include the tuf sequences of four representative bacterial species selected from each target genus as well as tuf sequences from species of other closely related bacterial genera. A careful analysis of those alignments allowed the selection of oligonucleotide sequences which are conserved within the target genus but which discriminate sequences from other closely related genera, thereby permitting the genus-specific and ubiquitous detection and identification of the target bacterial genus.

For the selection of primers specific for *Enterococcus* spp. (Annex II), we have sequenced a portion of approximately 890 bp of the *tuf* genes for *Enterococcus avium*, *E. faecalis*, *E. faecium* and *E. gallinarum*. All other *tuf* sequences used in the alignment were either sequenced by us or selected from databases. The analysis of this sequence alignment led to the selection of a primer pair specific and ubiquitous for *Enterococcus* spp. (Table 7). All of the 11 enterococcal species tested were efficiently amplified and there was no amplification with genomic DNA from bacterial species of other genera.

For the selection of primers specific for *Staphylococcus* spp. (Annex III), we have also sequenced a portion of approximately 890 bp of the *tuf* genes for *Staphylococcus aureus*, *S. epidermidis*, *S. saprophyticus* and *S. simulans*. All other *tuf* sequences used in the alignment were either sequenced by us or selected from databases. The analysis of this sequence alignment led to the selection of two primer pairs specific and ubiquitous for *Staphylococcus* spp. (Table 7). Annex III shows the strategy used to select one of these two PCR primer pairs. The same strategy was used to select the other primer pair. Of the 14 staphylococcal species tested, one (*S. sciuri*) could not be amplified by the *Staphylococcus*-specific PCR assays using either one of these two primer pairs. For PCR assays using either one of these two primer pairs, there was no amplification with DNA from species of other bacterial genera.

10

15

20

25

30

35

EXAMPLE 3:

Selection from tuf sequences of PCR primers specific for Candida albicans. As shown in Annex IV, the comparison of tuf sequences from a variety of bacterial and eukaryotic species allowed the selection of PCR primers specific for Candida albicans. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. This multiple sequence alignment includes tuf sequences of five representative fungal species selected from the genus Candida which were determined by our group (i.e. C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis) as well as tuf sequences from other closely related fungal species. tuf sequences from various bacterial species were also included. A careful analysis of this sequence alignment allowed the selection of primers from the C. albicans tuf sequence; these primers discriminate sequences from other closely related Candida species and other fungal species, thereby permitting the species-specific and ubiquitous detection and identification of C. albicans (Table 7). All of 88 Candida albicans strains tested were efficiently amplified and there was no amplification with genomic DNA from other fungal or bacterial species.

EXAMPLE 4:

Selection of PCR primers specific for Streptococcus from recA. As shown in Annex V, the comparison of the various bacterial recA gene sequences available from databases (GenBank and EMBL) was used as a basis for the selection of PCR primers which are specific and ubiquitous for the bacterial genus Streptococcus. Since sequences of the recA gene are available for many bacterial species including five species of streptococci, it was possible to choose sequences well conserved within the genus Streptococcus but distinct from the recA sequences for other bacterial genera. When there were mismatches between the recA gene sequences from the five Streptococcus species, an inosine residue was incorporated into the primer (Annex V). The selected primers, each containing one inosine and no degenerescence, were specific and ubiquitous for Streptococcus species (Table 7). This PCR assay amplified all of the 22 streptococcal species tested. However, the Streptococcus-specific assay did not amplify DNA from 3 out of 9 strains of S. mutans and 1 out of 3 strains of S. salivarius. There was no amplification with genomic DNA from other bacterial genera (Table 7).

EXAMPLE 5:

Nucleotide sequencing of DNA fragments. The nucleotide sequence of a portion of the *tuf* genes from a variety of bacterial or fungal species was determined by using the dideoxynucleotide chain termination sequencing method (Sanger *et al.*, 1977, Proc. Natl. Acad. Sci. USA. 74:5463-5467). The sequencing was performed by using an Applied Biosystems automated DNA sequencer (model 373A) with their PRISM™ Sequenase® Terminator Double-stranded DNA Sequencing Kit (Perkin-Elmer Corp.,

10

15

20

25

30

35

Applied Biosystems Division, Foster City, CA). The sequencing strategy does not discriminate tufA and tufB genes because the sequencing primers hybridize efficiently to both bacterial tuf genes. These DNA sequences are shown in the sequence listing (SEQ ID Nos: 118 to 146). The presence of several degenerated nucleotides in the various tuf sequences determined by our group (Table 13) corresponds to sequence variations between tufA and tufB.

Oligonucleotide primers and probes selection. Oligonucleotide probes and amplification primers were selected from the given proprietary DNA fragments or database sequences using the Oligo™ program and were synthesized with an automated ABI DNA synthesizer (Model 391, Perkin-Elmer Corp., Applied Biosystems Division) using phosphoramidite chemistry.

EXAMPLE 6:

Labeling of oligonucleotides for hybridization assays. Each oligonucleotide was 5' end-labeled with γ-32P (dATP) by the T4 polynucleotide kinase (Pharmacia) as described earlier. The label could also be non-radioactive.

Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6 as described earlier. Species-specific or genus-specific probes were those hybridizing only to DNA from the microbial species or genus from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.

Ubiquity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with strains of the target species or genus including reference strains and other strains obtained from various countries and which are representative of the diversity within each target species or genus. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes as described for specificity tests. The batteries of isolates constructed for each target species or genus contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species or genus.

EXAMPLE 7:

Same as example 6 except that a pool of specific oligonucleotide probes is used for microbial identification (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one microbial species and/or genus. Microbial identification could be performed from microbial cultures or directly from any clinical specimen.

EXAMPLE 8:

Same as example 6 except that bacteria or fungi were detected directly from clinical samples. Any biological sample was loaded directly onto a dot blot apparatus and cells were lysed in situ for bacterial or fungal detection and identification. Blood samples should be heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.

EXAMPLE 9:

5

10

15

20

30

35

PCR amplification. The technique of PCR was used to increase the sensitivity and the rapidity of the assays. The sets of primers were tested in PCR assays performed directly from bacterial colonies or from a standardized bacterial suspension (see Example 10) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in Annex VI.

Specificity and ubiquity tests for amplification primers. The specificity of all selected PCR primer pairs was tested against DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6 as described earlier. Primer pairs found specific for each species or genus were then tested for their ubiquity to ensure that each set of primers could amplify at least 90% of DNAs from a battery of isolates of the target species or genus. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates from around the world which are representative of the diversity within each species or genus.

Standard precautions to avoid false positive PCR results should be taken (Kwok and Higuchi, 1989, Nature, 239:237-238). Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.

25 **EXAMPLE 10:**

Amplification directly from bacterial or yeast cultures. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to approximately 1.5 x 10⁸ bacteria/mL). In the case of direct amplification from a colony, a portion of a colony was transferred using a plastic rod directly into a 20 μ L PCR reaction mixture containing 50 mM KCI, 10 mM Tris-HCI (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μM of each primer, 200 μM of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStart™ antibody (Clontech Laboratories Inc.). For the bacterial suspension, 1 μ L of the cell suspension was added to 19 μ L of the same PCR reaction mixture. For the identification from yeast cultures, 1 μL of a standard McFarland 1.0 (corresponds to approximately 3.0 x 10^a bacteria/mL) concentrated 100 times by centrifugation was added directly to the PCR reaction. This concentration step for yeast cells was performed because a McFarland 0.5 for yeast cells has approximately 200 times fewer cells than a McFarland 0.5 for bacterial cells.

10

15

20

25

30

35

PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 seconds at 55°C for the annealing-extension step) using a PTC-200 thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 0.25 $\mu \mathrm{g/mL}$ of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.

Primer sequences derived from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide an internal control for all PCR reactions. Alternatively, the internal control was derived from sequences not found in microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. The internal control derived from rRNA was also useful to monitor the efficiency of the bacterial lysis protocols. The internal control and the species-specific or genus-specific amplifications were performed simultaneously in multiplex PCR assays.

EXAMPLE 11:

Amplification directly from urine specimens. For PCR amplification performed directly from urine specimens, 1 μ L of urine was mixed with 4 μ L of a lysis solution containing 500 mM KCI, 100 mM tris-HCI (pH 9.0), 1% triton X-100. After incubation for at least 15 minutes at room temperature, 1 μ L of the treated urine specimen was added directly to 19 μL of the PCR reaction mixture. The final concentration of the PCR reagents was 50 mM KCl, 10 mM Tris (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs. In addition, each 20 μ L reaction contained 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStart™ antibody (Clontech Laboratories Inc.).

Strategies for the internal control, PCR amplification and agarose gel detection of the amplicons are as previously described in example 10.

EXAMPLE 12:

<u>Detection of antibiotic resistance genes</u>. The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described previously. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antiblotic resistance gene sequences. These tests, which allow the rapid evaluation of bacterial resistance to antimicrobial agents, can be performed either directly from clinical specimens, from a standardized bacterial suspension or from a bacterial colony and should complement diagnostic tests for the universal detection of bacteria as well as for the species-specific and genus-specific microbial detection and identification.

10

15

20

25

30

35

EXAMPLE 13:

Same as examples 10 and 11 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to reach an ubiquity of 100% for the specific targeted pathogen(s). For more heterogeneous microbial species or genus, a combination of PCR primer pairs may be required to detect and identify all representatives of the target species or genus.

Multiplex PCR assays could also be used to (i) detect simultaneously several microbial species and/or genera or, alternatively, (ii) to simultaneously detect and identify bacterial and/or fungal pathogens and detect specific antibiotic resistance genes either directly from a clinical specimen or from bacterial cultures.

For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorescent dyes emitting at different wavelengths. The fluorescent dyes can be each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorescent dyes (e.g. TaqMan™, Perkin Elmer). **EXAMPLE 14:**

<u>Detection of amplification products</u>. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 10) may be used for the revelation of amplification products. Such methods may be based on fluorescence polarization or on the detection of fluorescence after amplification (e.g. Amplisensor™, Biotronics; TaqMan™, Perkin-Elmer Corp.) or other labels such as biotin (SHARP Signal™ system, Digene Diagnostics). These methods are quantitative and may be automated. One of the amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific, genus-specific or universal DNA fragments is coupled with the fluorescent dyes or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorescent dyes emitting at different wavelengths are available. **EXAMPLE 15:**

Species-specific, genus-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), cycling probe technology (CPT) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test. Amplifications can be performed from isolated bacterial cultures or directly from any clinical specimen. The scope of this invention is therefore not limited to the use of the

DNA sequences from the enclosed Sequence Listing for PCR only but rather includes the use of any procedures to specifically detect bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.

EXAMPLE 16:

5

10

A test kit would contain sets of probes specific for each microbial species or genus as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set of universal probes labeled with non-radioactive labels as well as labeled species- or genus-specific probes for the detection of each pathogen of interest in specific types of clinical samples. The kit will also include test reagents necessary to perform the pre-hybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to be used as negative and positive controls for each hybridization test.

15

Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:

20

- A kit for the universal detection of bacterial or fungal pathogens from all clinical specimens which contains sets of probes specific for highly conserved regions of the microbial genomes.

- A kit for the detection of microbial pathogens retrieved from urine samples, which contains 5 specific test components (sets of probes for the detection of Enterococcus faecium, Enteroccus species, Staphylococcus saprophyticus, Staphylococcus species and Candida albicans).

25

- A kit for the detection of respiratory pathogens which contains 3 specific test components (sets of probes for the detection of Staphylococcus species, Enterococcus species and Candida albicans).

30

- A kit for the detection of pathogens retrieved from blood samples, which contains 10 specific test components (sets of probes for the detection of Streptococcus species, Streptococcus agalactiae, Staphylococcus species, Staphylococcus saprophyticus, Enterococcus species, Enterococcus faecium, Neisseria species, Neisseria meningitidis, Listeria monocytogenes and Candida albicans). This kit can also be applied for direct detection and identification from blood cultures.

35

- A kit for the detection of pathogens causing meningitis, which contains 5 specific test components (sets of probes for the detection of Streptococcus species, Listeria monocytogenes, Neisseria meningitidis, Neisseria species and Staphylococcus species).

- A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 26 following genes associated with antibiotic resistance: blaten, blaten, blaten, blace, blaz, aadB, aacC1, aacC2, aacC3, aacA4, aac6'-lla, ermA, ermB, ermC, mecA, vanA, vanB, vanC, satA, aac(6')-aph(2"), aad(6'), vat, vga, msrA, sul and int.

- Other kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant infections may also be developed.

EXAMPLE 17:

5

10

15

20

25

30

35

Same as example 16 except that the test kits contain all reagents and controls to perform DNA amplification assays. Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from microbial cultures. Components required for (i) universal bacterial detection, (ii) species-specific and genus-specific bacterial and/or fungal detection and identification and (iii) detection of antibiotic resistance genes will be included.

Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will contain the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for species-specific and genus-specific bacterial and/or fungal detection and identification as well as for the simultaneous antibiotic resistance genes detection will be included in kits for testing directly from bacterial or fungal cultures as well as in kits for testing directly from any type of clinical specimen.

The kits will be adapted for use with each type of specimen as described in example 16 for hybridization-based diagnostic kits.

EXAMPLE 18:

It is understood that the use of the probes and amplification primers described in this invention for bacterial and/or fungal detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, air, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria or fungi in biological samples from organisms other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock and others). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies.

This invention has been described herein above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These modifications are under the scope of this invention, as defined in the appended claims.

Table 1. Distribution (%) of nosocomial pathogens for various human infections in USA (1990-1992)¹.

-	Pathogen	UTI ²	SSI ³	BSI ⁴	Pneumonia	CSF⁵
-	Escherichia coli	27	9	5	4	2
	Staphylococcus aureus	2	21	17	21	2
	Staphylococcus epidermidis	2	6	20	0	1
	Enterococcus faecalis	16	12	9	2	0
	Enterococcus faecium	1	1	0	0	0
	Pseudomonas aeruginosa	12	9	3	18	0
	Klebsiella pneumoniae	7	3	4	9	0
	Proteus mirabilis	5	3	1	2	0
	Streptococcus pneumoniae	0	0	3	1	18
	Group B Streptococci	1	1	2	1	6
	Other Streptococci	3	5	2	1	3
	Haemophilus influenzae	0	0	0	6	45
	Neisseria meningitidis	0	0	0	0	14
	Listeria monocytogenes	0	0	0	. 0	3
	Other Enterococci	1	1	0	0	0
	Other Staphylococci	2		8	13	20
	Candida albicans	9	3	5	5	0
	Other Candida	2		1	3	10
	Enterobacter spp.	5	7	4	12	2
	Acinetobacter spp.	1	1	2	4	2
	Citrobacter spp.	2	1	1	1	0
	Serratia marcescens	1	1	1	3	1
	Other Klebsiella	1	1	1	2	1
	Others	0	6	4	5	0

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

² Urinary tract infection.

Surgical site infection.

⁴ Bloodstream infection.

^{35 &}lt;sup>5</sup> Cerebrospinal fluid.

Tabl 2. Distribution (%) of blo dstream infection pathog ns in Quebec (1995), Canada (1992), UK (1969-1988) and USA (1990-1992).

Organism	Quebec ¹	Canada ²	UK³		USA ⁴
			Community-	Hospital-	- Hospital-
			acquired	acquired	acquired
E. coli	15.6	53.8	24.8	20.3	5.0
S. epidermidis and other CoNS	25.8 ⁵	NI ⁶	0.5	7.2	31.0
S. aureus	9.6	NI	9.7	19.4	16.0
S. pneumoniae	6.3	NI	22.5	2.2	NR ⁷
E. faecalis	3.0	NI	1.0	4.2	NR
E. faecium	2.6	NI	0.2	0.5	NR
Enterococcus	NR	NI	NR	NR	9.0
spp.					3.0
H. influenzae	1.5	NR	3.4	0.4	NR
P. aeruginosa	1.5	8.2	1.0	8.2	3.0
K. pneumoniae	3.0	11.2	3.0	9.2	4.0
P. mirabilis	NR	3.9	2.8	5.3	1.0
S. pyogenes	NR	NI	1.9	0.9	NR
Enterobacter spp	o. 4.1	5.5	0.5	2.3	4.0
Candida spp.	8.5	NI	NR	1.0	8.0
Others	18.5	17.4 ⁸	28.7	18.9	19.0

- Data obtained for 270 isolates collected at the Centre Hospitalier de l'Université Laval (CHUL) during a 5 month period (May to October 1995).
 - Data from 10 hospitals throughout Canada representing 941 gram-negative bacterial isolates. (Chamberland *et al.*, 1992, Clin. Infect. Dis., 15:615-628).
 - Data from a 20-year study (1969-1988) for nearly 4000 isolates (Eykyn *et al.*, 1990, J. Antimicrob. Chemother., Suppl. C, 25:41-58).
 - Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).
 - 5 Coagulase-negative staphylococci.

- NI, not included. This survey included only gram-negative species.
- 35 7 NR, incidence not reported for these species or genera.
 - In this case, 17.4 stands for other gram-negative bacterial species.

1.

Table 3. Distribution of positive and negative clinical specimens tested at the microbiology laboratory of the CHUL (February 1994 – January 1995).

1330].			
Clinical specimens	No. of samples tested (%)	% of positive specimens	% of negative specimens
and/or sites	17,981 (54.5)	19.4	80.6
Urine	10,010 (30.4)	6.9	93.1
Blood culture/marrow	1,266 (3.8)	68.4	31.6
Sputum	1,136 (3.5)	72.3	27.7
Superficial pus	553 (1.7)	1.0	99.0
Cerebrospinal fluid Synovial fluid	523 (1.6)	2.7	97.3
Respiratory tract	502 (1.5)	56.6	43.4
Deep pus	473 (1.4)	56.8	43.2
Ears	289 (0.9)	47.1	52.9
5 Pleural and pericardial	132 (0.4)	1.0	99.0
fluid			
Peritoneal fluid	101(0.3)	28.6	71.4
Total:	32,966 (100.0)	20.0	80.0

Table 4. Gram-negative bacterial species (90) used to test the specificity of PCR primers and DNA probes (continues on next page).

	Bacterial species	Number of	Bacterial species	Number of
		reference		reference
		strains		strains
		tested*		tested*
5	Acinetobacter baumannii	1	Moraxella phenylpyruvica	1
	Acinetobacter Iwoffii	3	Morganella morganii	1
	Actinobacillus lignieresii	1	Neisseria animalis	1
	Alcaligenes faecalis	1	Neisseria canis	1
	Alcaligenes odorans	1	Neisseria caviae	1
10	Alcaligenes xylosoxydans		Neisseria cinerea	1
	subsp. denitrificans	1	Neisseria cuniculi	1
	Bacteroides distasonis	1	Neisseria elongata	1
			subsp. elongata	•
	Bacteroides fragilis	1	Neisseria elongata	1
			subsp. glycoytica	·
	Bacteroides ovatus	1	Neisseria flavescens	1
15	Bacteroides	1	Neisseria flavescens	1
	thetaiotaomicron		Branham	
	Bacteroides vulgatus	1	Neisseria gonorrhoeae	18
	Bordetella bronchiseptica	1	Neisseria lactamica	1
	Bordetella parapertussis	1	Neisseria meningitidis	4
20	Bordetella pertussis	2	Neisseria mucosa	2
	Burkholderia cepacia	1	Neisseria polysaccharea	1
	Citrobacter amalonaticus	1	Neisseria sicca	3
	Citrobacter diversus	2	Neisseria subflava	3
	subsp. koseri			-
25	Citrobacter freundii	1	Neisseria weaveri	1
	Comamonas acidovorans	1	Ochrobactrum antropi	1
	Enterobacter aerogenes	1	Pasteurella aerogenes	1
	Enterobacter	1	Pasteurella multocida	1
	agglomerans			-
30	Enterobacter cloacae	1	Prevotella melaninogenica	1
	Escherichia coli	9	Proteus mirabilis	3
	Escherichia fergusonii	1	Proteus vulgaris	1

•	Bacterial species	Number of reference strains	Bacterial species	Number of reference strains
		tested*		tested*
	Escherichia hermannii	1	Providencia alcalifaciens	1
	Escherichia vulneris	1	Providencia rettgeri	1
	Flavobacterium	1	Providencia rustigianii	1
	meningosepticum		Providencia stuartii	1
5	Flavobacteriu m	1	Providencia studitii	·
	indologenes		Pseudomonas aeruginosa	14
	Flavobacterium odoratum	1	Pseudomonas fluorescens	2
	Fusobacterium	2	PSBUGOMONAS Naoresoons	
	necrophorum		Pseudomonas stutzeri	1
0	Gardnerella vaginalis	1	Salmonella arizonae	1
	Haemophilus	1	Salmonella arizonas	
	haemolyticus	40	Salmonella choleraesuis	1
	Haemophilus influenzae	12	Salmonella gallinarum	1
	Haemophilus	1	Salmonella gallinara	
15	parahaemolyticus	0	Salmonella typhimurium	3
	Haemophilus	. 2	Samonena typnimarians	
	parainfluenzae		Serratia liquefaciens	1
	Hafnia alvei	1	Serratia marcescens	1
	Kingella indologenes	1	Serratia marcoscono	
20	subsp. suttonella	1	Shewanella putida	1
	Kingella kingae	1	Shigella boydii	1
	Klebsiella ornithinolytica	•	Shigella dysenteriae	1
	Klebsiella oxytoca	1	Shigella flexneri	1
	Klebsiella pneumoniae	8	Shigella sonnei	1
25	Moraxella atlantae	1	Stenotrophomonas	1
	Moraxella catarrhalis	5	maltophilia	
		1	Yersinia enterocolitica	1
	Moraxella lacunata	1	• • • • • • • • • • • • • • • • • • • •	
	Moraxella osloensis			

Most reference strains were obtained from the American Type Culture Collection (ATCC). The other ref rence strains were obtained from (i) the Laboratoire de Santé Publiqu du Québec (LSPQ), (ii) the Center for Disease Control and Prevention (CDC) and (iii) the National Culture Type Collection (NCTC).

Table 5. Gram-positiv bacterial species (97) used to test the specificity of PCR primers and DNA probes (continu s on next page).

	Bacterial species	Number	of Bacterial species	Nt I
		reference	Pacienal species	Number of
		strains		reference
		tested		strains
5	Abiotrophia adiacens	1	Micrococcus kristinae	testeda
	Abiotrophia defectiva	1	Micrococcus luteus	1
	Actinomyces israelii	1	Micrococcus Iylae	1
	Clostridium perfringens	1	Micrococcus roseus	1
	Corynebacterium accolens	1	Micrococcus varians	1.
10	Corynebacterium	1	Peptococcus niger	1
	aquaticum		- Piooooda mger	1
	Corynebacterium bovis	1	Peptostreptococcus anaerobius	1
	Corynebacterium cervicis	1	Peptostreptococcus asaccharolyticus	1
	Corynebacterium	6	Staphylococcus aureus	40
15	diphteriae		Filyiooodda dalega	10
	Corynebacterium	1	Staphylococcus auricularis	1
	flavescens		projection dancalaris	i
	Corynebacterium	6	Staphylococcus capitis	4
	genitalium		subsp. urealyticus	1
20	Corynebacterium jeikeium	1	Staphylococcus cohnii	4
	Corynebacterium kutcheri	1	Staphylococcus epidermidis	1 2
	Corynebacterium	1	Staphylococcus	2
	matruchotii		haemolyticus	4
	Corynebacterium	1	Staphylococcus hominis	2
25	minutissimum			4
	Corynebacterium	1	Staphylococcus	1
	mycetoides		lugdunensis	,
	Corynebacterium		Staphylococcus	3
	pseudodiphtheriticum		saprophyticus	3
30	Corynebacterium		Staphylococcus schleiferi	1
	pseudogenitalium			•
	Corynebacterium renale	1	Staphylococcus sciuri	1
	Corynebacterium striatum		Staphylococcus simulans	1
	Corynebacterium ulcerans		Staphylococcus warneri	1

_	Bacterial species	Number of	Bacterial species	Number of
•	Daotone -	reference		reference
		strains		strains
		testeda		tested
-	Corynebacterium	1	Staphylococcus xylosus	1
	urealyticum		-tti-o	6
	Corynebacterium xerosis	1	Streptococcus agalactiae	2
	Enterococcus avium	1 -	Streptococcus anginosus	2
	Enterococcus	1	Streptococcus bovis	2
	casseliflavus			4
	Enterococcus cecorum	1	Streptococcus constellatus	1
	Enterococcus dispar	1	Streptococcus crista	1
	Enterococcus durans	1	Streptococcus dysgalactiae	1
	Enterococcus faecalis	6	Streptococcus equi	1
)	Enterococcus faecium	3	Streptococcus gordonii	1
	Enterococcus flavescens	1	Group C Streptococci	1
	Enterococcus gallinarum	3	Group D Streptococci	1
	Enterococcus hirae	1	Group E Streptococci	1
_	Enterococcus mundtii	1	Group F Streptococci	.1
5	Enterococcus	1	Group G Streptococci	1
	pseudoavium			
	Enterococcus raffinosus	1	Streptococcus intermedius	1
	Enterococcus	1	Streptococcus mitis	2
_				
0	saccharolyticus Enterococcus solitarius	1	Streptococcus mutans	1
	Eubacterium lentum	1	Streptococcus oralis	1
	Gemella haemolysans	1	Streptococcus parasangui	s 1
	Gemella morbillorum	1	Streptococcus pneumonia	е 6
_	Lactobacillus acidophilus	. 1	Streptococcus pyogenes	3
25		1	Streptococcus salivarius	2
	Listeria innocua	1	Streptococcus sanguis	2
	Listeria ivanovii	1	Streptococcus sobrinus	1
	Listeria grayi	3	Streptococcus suis	1
	Listeria monocytogenes	1	Streptococcus uberis	1
30	Listeria murrayi	1	Streptococcus vestibulari	s 1
	Listeria seeligeri Listeria welshimeri	1	,	

Most reference strains were obtained from the American Type Culture Collection (ATCC). The other reference strains were obtained from (i) the Laboratoire de Santé Publique du Québec (LSPQ), (ii) the Center for Disease Control and Prevention (CDC) and (iii) the National Culture Type Collection (NCTC).

Table 6. Fungal species (12) us d to test the specificity of PCR primers and DNA probes.

Fungal species	Number of reference
•	strains tested
Candida albicans	12
Candida glabrata	1
Candida guilliermondii	1
Candida kefyr	3
Candida krusei	
Candida lusitaniae	2
Candida parapsilosis	1
Candida tropicalis	2
Rhodotorula glutinis	3
Rhodotorula minuta	1
Rhodotorula rubra	1
Saccharomyces cerevisiae	1
	1

Most reference strains were obtained from (i) the American Type Culture Collection (ATCC) and (ii) the Laboratoire de Santé Publique du Québec (LSPQ).

Table 7. PCR assays developed for several clinically important bacterial and fungal pathogens (continues on next page).

•	Organism	Primer Pair ^a	Amplicon	Ubiquity ^b	DNA amp	lification from
	Olganio	SEQ ID NO			culturec	specimens
	Enterococcus faecium	1-2	216	79/80	+	+
	Listeria monocytogenes	3-4	130	164/168°	+	+
	Neisseria meningitidis	5-6	177	258/258	+	+
	Staphylococcus	7-8	149	245/260	+	NT
	saprophyticus					
	Streptococcus	9-10	154	29/29	+	+
	agalactiae	-		00/00	+	NT
	Candida albicans	11-12	149	88/88		
	Enterococcus	13-14	112	87/87	+	NT
	spp. (11 species) ^f					
	Neisseria spp.	15-16	103	321/321	+	+
	(12 species) ^f					0_
	Staphylococcus spp.	17-18	192	13/14	+	NT
	(14 species)					-
	. •	19-20	221	13/14	+	NT
	Streptococcus spp.	21-22	153	210/214	9 +	+
	(22 species) ^f					
	Universal detection ^h	23-24	309	104/ 116	S¹ +	+
	(95 species)					

- All primer pairs are specific in PCR assays since no amplification was observed
 with DNA from the bacterial and fungal species other than the species of interest
 listed in Tables 4, 5 and 6.
 - Ubiquity was tested by using reference strains as well as strains from throughout the world, which are representatite of the diversity within each target species or genus.
- 30 ° For all primer pairs, PCR amplifications performed directly from a standardized microbial suspension (MacFarland) or from a colony were all specific and ubiquitous.
 - ^d PCR assays performed directly from blood cultures, urine specimens or

cerebrospinal fluid. NT, not tested.

- The four L. monocytogenes strains undetected are not clinical isolates. These strains were isolated from food and are not associated with a human infection.
- The bacterial species tested include all those clinically relevant for each genus (Tables 4 and 5). All of these species were efficiently amplified by their respective genus-specific PCR assay, except for the *Staphylococcus*-specific assay, which does not amplify *S. sciuri*.
 - The Streptococcus-specific PCR assay did not amplify 3 out of 9 strains of S. mutans and 1 out of 3 strains of S. salivarius.
- The primers selected for universal bacterial detection do not amplify DNA of non-bacterial origin, including human and other types of eukaryotic genomic DNA.
 - For the universal amplification, the 95 bacterial species tested represent the most clinically important bacterial species listed in Tables 4 and 5. The 12 strains not amplified are representatives of genera *Corynebacterium* (11 species) and *Stenotrophomonas* (1 species).

Table 8. Target genes for the various genus-specific, species-specific and universal amplification assays.

	Microorganisms	Gene	Protein encoded
	Candida albicans	tuf	translation elongation factor EF-Tu
	Enterococcus faecium	ddl	D-alanine:D-alanine ligase
	Listeria monocytogenes	actA	actin-assembly inducing protein
	Neisseria meningitidis	omp	outer membrane protein
	Streptococcus agalactiae	cAMP	cAMP factor
	Staphylococcus	unknown	unknown
	saprophyticus		division!
	Enterococcus spp.	tuf	translation elongation factor EF-Tu
	Neisseria spp.	asd	ASA-dehydrogenase
	Staphylococcus spp.	tuf	translation elongation factor EF-Tu
	Streptococcus spp.	recA	RecA protein
_	Universal detection	tu f	translation elongation factor EF-Tu

Table 9. Antibiotic resistance genes selected for diagnostic purpos s.

	Genes	SEQ IE	NOs	Antibiotics	Bacteria ^a
	Genes _	selected primers	originating fragment		
5	bla _{oxa}	49-50	110	β-lactams	Enterobacteriaceae, Pseudomonadaceae
	blaZ	51-52	111	β-lactams	Enterococcus spp.
	aac6'-Ila	61-64	112	Aminoglycosides	Pseudomonadaceae
	ermA	91-92	113	Macrolides	Staphylococcus spp.
0	ermB	93-94	114	Macrolides	Staphylococcus spp.
U	ermC	95-96	115	Macrolides	Staphylococcus spp.
	vanB	71-74	116	Vancomycin	Enterococcus spp.
	vanC	75-76	117	Vancomycin	Enterococcus spp.
	aad(6')	173-174		Streptomycin	Enterococcus spp.

Bacteria having high incidence for the specified antibiotic resistance genes. The presence of these antibiotic resistance genes in other bacteria is not excluded.

Table 10. Antibiotic resistance genes from our co-pending US (N.S. 08/526840) and PCT (PCT/CA/95/00528) patent applications for which w have selected PCR primer pairs.

5	Genes	SEQ ID NOs	Antibiotics	Bacteria ^a
		of selected primers		paciena.
•	bla _{tem}	37-40	β-lactams	Enterobacteriaceae
				Pseudomonadaceae
				Haemophilus spp.,
	6.1-	45.40		Neisseria spp.
	blarob	45-48	β-lactams	Haemophilus spp.,
10	h.).	44.44		Pasteurella spp.
10	blashv	41-44	β-lactams	Klebsiella spp.
				and other
	aadB	50.54		Enterobacteriaceae
	aacC1	53-54	Aminoglycosides	Enterobacteriaceae,
	aacC2	55-56		Pseudomonadaceae
5		57-58		
J	aacC3	59-60		
	aacA4	65-66		
	mecA	97-98	β-lactams	Staphylococcus spp.
	vanA	67-70	Vancomycin	Enterococcus spp.
0	satA	81-82	Macrolides	Enterococcus spp.
J	aac(6')-aph(2")	83-86	Aminoglycosides	Enterococcus spp.,
	vat	87-88		Staphylococcus spp.
	vga	89-90	Macrolides	Staphylococcus spp.
	msrA	77-80	Macrolides	Staphylococcus spp.
	int	99-102	Erythromycin	Staphylococcus spp.
		00-102	β-lactams,	Enterobacteriaceae,
	sul	103-106	trimethoprim,	
	-	103-100	aminoglycosides,	Pseudomonadaceae
			antiseptic,	
-	<u> </u>		chloramphenicol	

Bacteria having high incidence for the specified antibiotic resistance genes. The presence of these antibiotic resistance genes in other bacteria is not excluded.

Tabl 11. Correlation between disk diffusion and PCR amplification of antibiotic resistanc genes in *Staphylococcus* species^a.

			Disk diffusion (Kirby-Bauer) ^b		
Antibiotic	Phenotype	PCR	Resistant	Intermediate	Sensitive
Penicillin	blaZ	+	165	0	0
		-	0	0	31
Oxacillin	mecA	+	51	11	4
		-	2	0	128
Gentamyo	in aac(6')aph(2'')	+	24	18	6
,		-	0	0	148
Erythromy	cin <i>ermA</i>	+	15	0	0
,	ermB	+	0	0	0
	ermC	+	43	0	0
	msrA	+	4	0	0
		-	0	1	136

- The Staphylococcus strains studied include S. aureus (82 strains), S. epidermidis (83 strains), S. hominis (2 strains), S. capitis (3 strains), S. haemolyticus (9 strains), S. simulans (12 strains) and S. warneri (5 strains), for a total of 196 strains.
- Susceptibility testing was performed by the method of Kirby-Bauer according to the protocol reccommended by the National Committee of Clinical Laboratory Standards (NCCLS).

Table 12. Correlation between disk diffusion profiles and PCR amplification of antibiotic resistance g nes in *Enterococcus* speci s^a.

	_	Disk diffusion	n (Kirby-Bauer)b	
Antibiotic	Phenotype	PCR	Resistant	Sensitive
Ampicillin	blaZ	+	0	2
		-	1	30
Gentamycin	aac(6')aph(2'')	+	51	1
		-	3	38
Streptomycin	aad(6')	+	26	15
		-	6	27
Vancomycin	vanA	+	36	0
	vanB	+	26	0
		_	0	40

The Enterococcus strains studied include E. faecalis (33 strains) and E. faecium (69 strains), for a total of 102 strains.

Susceptibility testing was performed by the method of Kirby-Bauer according to the protocol reccommended by the National Committee of Clinical Laboratory Standards (NCCLS).

Table 13. Origin of *tuf* sequences in the Sequence Listing (continues on next page).

_	SEQ ID NO	Bacterial or fungal species	Source
5	118	Abiotrophia adiacens	This patent
•	119	Abiotrophia defectiva	This patent
	120	Candida albicans	This patent
	121	Candida glabrata	This patent
	122	Candida krusei	This patent
10	123	Candida parapsilosis	This patent
10	124	Candida tropicalis	This patent
	125	Corynebacterium accolens	This patent
	126	Corynebacterium diphteriae	This patent
	127	Corynebacterium genitalium	This patent
15	128	Corynebacterium jeikeium	This patent
10	129	Corynebacterium	This patent
		pseudotuberculosis	
	130	Corynebacterium striatum	This patent
	131	Enterococcus avium	This patent
	132	Enterococcus faecalis	This patent
20	133	Enterococcus faecium	This patent
	134	Enterococcus gallinarum	This patent
	135	Gardnerella vaginalis	This patent
	136	Listeria innocua	This patent
	137	Listeria ivanovii	This patent
25	138	Listeria monocytogenes	This patent
	139	Listeria seeligeri	This patent
	140	Staphylococcus aureus	This patent
	141	Staphylococcus epidermidis	This patent
	142	Staphylococcus saprophyticus	This patent
30	143	Staphylococcus simulans	This patent
	144	Streptococcus agalactiae	This patent
	145	Streptococcus pneumoniae	This patent

			· • •
	SEQ ID NO	Bacterial or fungal species	Source
	146	Streptococcus salivarius	This patent
	147	Agrobacterium tumefaciens	Database
	148	Bacillus subtilis	Database
	149	Bacteroides fragilis	Database
5	150	Borrelia burgdorferi	Database
	151	Brevibacterium linens	Database
	152	Burkholderia cepacia	Database
	153	Chlamydia trachomatis	Database
	154	Escherichia coli	Database
10	155	Fibrobacter succinogenes	Database
	156	Flavobacterium ferrugineum	Database
	157	Haemophilus influenzae	Database
	158	Helicobacter pylori	Database
	159	Micrococcus luteus	Database
15	160	Mycobacterium tuberculosis	Database
	161	Mycoplasma genitalium	Database
	162	Neisseria gonorrhoeae	Database
	163	Rickettsia prowazekii	Database
	164	Salmonella typhimurium	Database
20	165	Shewanella putida	Database
	166	Stigmatella aurantiaca	Database
	167	Streptococcus pyogenes	Database
	168	Thiobacillus cuprinus	Database
	169	Treponema pallidum	Database
25	170	Ureaplasma urealyticum	Database
	171	Wolinella succinogenes	Database

Annex I:	Strategy for the selection from tuf sequences of the universal amplification	
	primers (continues on pages 49 to 51).	
	QI ÕES	
	517776 802 NO	
Abiotrophia	CIGIAAC IGGIGIIGAA AIGI	
adiacens		
Abiotrophia	CT <u>ACCGITAC CGGIGIIGAA AIGII</u> CCAA <u>AIGGI TAIGCCAGGC GACAACGI</u> AC	
defectiva	74	
Agrobacterium	CGACTGTTAC CGGCGTTGAA ATGTICCAAATGGT TATGCCTGGC GACAACGICA	
tumefaciens	845	
Bacillus	CAACIGITAC AGGIGITGAA AIGIICCAAAIGGI TAIGCCIGGA GAIAALACIG	
subtilis	149	
Bacteroides	CAGTIGIAAC AGGIGITGAA ATGTICCAAATGGI AATGCCGGGI GAIAACSIAA	
fragilis	150	_
Borrelia	CTACTGITAC IGGIGIIGAA AIGIICCAAAIGGI IAIGCCIGGI GAIAAIQI	
burgdorferi	151	
Brevibacterium	CGACTGICAC CGCIAICGAG AIGIICCAGAIGGI CAIGCCCGGC GACACCACCG	
linens	1	•
Burkholderia	CGACCTGCAC GGGCGTTGAA AIGITCCAAATGGT CAIGCCGGGC GACAACGIG.	
cepacia	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~
Chlamydia	CGATIGITAC IGGGGTIGAA AIGTICAAGAIGGI CAIGCCIGGG GALAACEIG	
trachomatis	SC L	14
Corynebacterium	CCACCGITAC CGGIAICGAG AIGIICCAGAIGGI CAIGCIIGGC GACAACGICG	
diphteriae		

70

ហ

- 49 -

	Commehantoni			
	corymenacierium	CCACCGITAC CICCAICGAG AIGIICA.	CCACCOTTAC CTCCAICGAG AIGIICAAGAIGGI TAIGCCGGG GAGAAGA	
	genitalium		OLITANWA SOSSOSIO	127
	Corynebacterium	CCACCGTTAC CTCCATCGAG ATGTTCA		
	jeikeium	WATER STATE OF THE	ACAIGET TAIGEEGGE GACAACGITG	128
S	Enterococcus	CAACYGTTAC AGGTGTTGAA ATGTTCC	AGGTGTTGAA ATGTTC	
	faecalis		ANTECTIGGI GATAACGITG	132
	Enterococcus	CA <u>ACAGITAC</u> <u>IGGIGIIGAA</u> AIGIICC	IGGIGITGAA ATGTTCC DDATGGT CARCOCCE	
	faecium		CALCEGET GACAACGT.	133
	Escherichia	CTACCIGIAC IGGCGIIGAA ATGITC	CTACCTGIAC IGGCGTTGAA ATCTTCC	
10	coli		AGAIGGCGGGG GACAACAICA	154
	Fibrobacter	ACGICAICAC CGGIGIIGAA AIGIICC		
	succinogenes		TACICCEGET GACACGCICA	155
	Flavobacterium	CTACCGITAC AGGIGIIGAG ATGITCC		
	ferrugineum		HARIGGE TATGCCIGGI GAIAACACCA	156
15	Gardnerella	CCACCGICAC CICIAICGAG ACCITCC AAAWGGE	i i	
	vaginalis		THE TOTAL TOTAL STATES CANCELLY	135
	Haemophilus	CTACTGIAAC GGGIGIIGAA AIGIICC BAARCH NIMELL		
	influenzae		CONTRACT MATECCAGG GATAACAICA	157
	Helicobacter (CG <u>ACTGTAAC CGGTGTAGAA ATGTTT</u>	CGGTGTAGAA ATGTTT	
0	pylori			158
	Listeria T	TAGTAGTAAC IGGAGTAGAA AIGTICC		
	monocytogenes		TATAGA PRICECTORY GATAACATTG	138
	Micrococcus	CCACTGICAC CGGCAICGAG ATGITC		
	luteus		TOTAL CATGCCCGGC GACAACCC	159
ın	Mycobacterium C	CCACCGICAC CGGTGTGGAG ATGTTC		
	tuberculosis		NOBLECT SALECCOSST SACACACA	160

. 161	162	163	164	165	166	140	141	144	145	167	168	169
CAGT <u>IGITAC IGGAAIIGAA AIGII</u> CAAA <u>AIGGI</u> ICIA <u>CCIGGI GATAAIG</u> CIT	CCACCTGTAC CGGCGTTGAA AIGIICCAAAIGGI AAIGCCGGGI GAGAACGIAA	CGACTIGIAC AGGIGTAGAA AIGIICAAGAIGGI TAIGCCIGGA GATAAIGCTA	CTACCIGIAC IGGCGIIGAA AIGIICCAGAIGGI AAIGCCGGGC GACAACAICA	CAACGIGIAC IGGIGIAGAA AIGIICCAGAIGGI AAIGCCAGGC GAIAACAICA	CGGTCAICAC GGGGGIGGAG AIGTICCAGAIGGI GAIGCCGGGA GACAACAICG	CAACIGITAC AGGIGIIGAA AIGIICCAAAIGGI AAIGCCIGGI GAIAACGIIG	CAACTGITAC IGGIGIAGAA AIGTICCAAAIGGI TAIGCCIGGC GACAACGIIG	CAGTIGITAC IGGIGITGAA AIGIICCAAAIGGI TAIGCCIGGI GAIAACGITA	CAGTIGITAC IGGIGITGAA AIGITCCAAAIGGI AAIGCCIGGI GAIAACGIGA	CTGTIGITAC IGGIGITGAA AIGTICCAAAIGGI TAIGCCIGGI GAIAACGIGA	CCACCTGCAC CGGCGTGGAA AIGIICAAAAIGGI CAIGCCCGGC GAIAAIGIGA	CAGTGGTTAC IGGCAIIGAG AIGILTAACAIGGI GAAGCCGGGG GATAACACA
Mycoplasma	genitalium Neisseria	gonorrhoeae Rickettsia	prowazekii Salmonella	typhimurium Shewanella	putida Stigmatella	aurantiaca Staphylococcus	aureus Staphylococcus	epidermidis Streptococcus	agalactiae Streptococcus	pneumoniae Streptococcus	pyogenes Thiobacillus	cuprinus Treponema pallidum
		S			01.		15			20		25

		170		171		120										
	ATTIGGI IAIGCCAGGI GAIGACGITG		AGAIGGI IAIGCCIGGI GACAACGTTA		AGRAATI GGAAGAAAA CCAAAATT		G <u>aagat</u> Igaggagtc <u>c</u> cctaaghte		SAAGGAGCITGCGATG CCCGGGGAAGG	AIGGT LAIGCCIGGI GALAAYRT		SEQ ID NO: 24b		AYRIT ITCICCIGGC ATIACCAT		le fragment. Underlines
CTGTTGTTAC AGGS ATTACL	ATTIGET INTEGER SATGETTON ATTIGET INTEGER GATGACTION	CAACCGTAA TOTOLIS	AGGGITGAG AIGIICC AGAIGGI IAIGCTIGGI GACAACGTTA	GTGTTACCA		GIGICACTA	ombe	TGACACACACACACACACACACACACACACACACACACAC	ACIKKIAC ICATALIA CACAAGAAGAAGGAGCIIGCCAIG CCCGGGGAAGG	ASSETTION ANGLE	SEO ID NO.23	57:01	ACIENTA TOOL OF	LIGHT TIGHT ALGEL	pering refers to the F	selected to underline for the gene fragment. Underlined
Ureaplasma	urealyticum	Wolinella	succinogenes	. Candida	albicans	Schizo-	saccharomyces pombe	Human	Selected	equences.	Selected	universal	primer	sednences.	The sequence numbering	identical to the selected
				'n					10				1.5			

gment. Underlined nucleotides are "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "K", "R" and "Y" designate nucleotide positions which are degenerated. "K" stands for T or G; "R" stands for A or G; "Y" stands for C or This sequence is the reverse complement of the above tuf sequence. to the selected sequence or match that sequence. Д

	Annex II:	Strategy for the selection from tuf sequences of the amplification primers specific	ic for
		the genus Enterococcus (continues on pages 53 and 54).	
		314 348 401 435	SEO
Ŋ	5 Bacillus	CGCGA CACTG AAAAACCATT CATGATG CCA GTTGACGCGG ACAA <u>GTTAAA GICGGTGACG AAGTI</u> GAAAT	ID NO
	subtilis		
	Bacteroides	CGCGA <u>IGTIG ATAAACCTIT CTIGAIG</u> CCG GTAGAACTGG TGTTA <u>ICGAT GIAGGIGA</u> T <u>G AAAI</u> CGAAAT	149
	fragilis		
	Burkholderia	CGTGCAGT <u>IG AC</u> GGCG <u>CGII CCIGAIG</u> CCG GTGGACGCGG CATC <u>GI</u> GAAG <u>GICGGCGAAG AAAI</u> CGAAAT	152
10	10 cepacia		
	Chlamydia	AGAGAAATIG <u>ACAAGCCTII</u> CTIAAIGCCT ATTGACGTGG AATT <u>GIIAAA GII</u> TCCGATA <u>AAGTI</u> CAGTT	153
	trachomatis		
	Corynebacterium	ium CGTGAGACCG ACAAGCCAII CCICAIGCCI ATCGACGTGG CTCCCIGAAG GICAACGAGG ACGICGAGAT	126
	diphteriae		
15	Enterococcus	CGTGATACTG ACAAACCAIT CAIGAIGCCA GTCGACGTGG ACAAGIICGC GIIGGIGACG AAGIIGAAAT	131
	avium		
	Enterococcus	CGTGA <u>IACTG ACAAACCATT CATGATG</u> CCA GTCGACGTGG TGAA <u>GTTCGC GTTGGTGACG AAGTT</u> GAAAT	132
	faecalis		
	Enterococcus	CGTGA CAACG <u>ACAAACCATT</u> <u>CATGATG</u>CCA GTTGACGTGG ACAA<u>GTTCGC GTTGGTGACG AAGTT</u>GAAGT	133
20	20 faecium		
	Enterococcus	CGTGA <u>tactg acaraccatt catgatg</u> cca gtcgacgtgg acaa <u>gticgc gttggtga</u> tg <u>aagt</u> agaaat	134
	gallinarum		
	Escherichia	CGTGCGAI <u>IG ACAAGCCGTI CCIGCIG</u> CCG ATCGACGCGG TATCA <u>ICAAA GIIGGIGAAG AAGII</u> GAAAT	154
	coli		

	135		157		158		138		159		160		191		162		164		165		140		141	44 (7
CACGA <u>ICTIG ACAAGCCATT</u> CTIGAIGCCA ATCGACGTGG TAAGCICCCA ATCAAGG	TELLENGE CAGTIGAGAI	CGIGCGATIG ACCAACGGII CCITCITCCA ATCGACGAGG TATTATACAM	ACAGGIGATG ANGIAGAAT	mongac <u>actg</u> <u>Aaaabactit</u> <u>Ctigaig</u> ccg GttgaAgagg cgtggtgaba gtaccar	TAGECGATG BAGICGAAAT	<u> ALARACCAIT CAIGAIG</u> CCA GIIGACGIGG ACAA <u>GIIAAA</u> GIIGGIGACG		ACCEPT COTONIGCOG ATCGACGCGG CACCCIGAAG ATCAACA.		ALABOCCOII CCIGAIGCCG GICGACGCGG CGIGAICAAC GIGAACAA		CTIATIAGCA ATTGAAGAGG TGAACTCAAA GTAGCTCAAA		ALAMACCATI CCIGCIGCCT ATCGACGAGG TATCAICCAC GTTGGTGA		CCG ATCGACGCGG TATCATCAAA GTGGGGG	ACCEPTE SAGIIGAAAT	CCA ATCGACGTGG TATTGIACGC GTAGGGGAG	E.SECARCE ARGIIGAAAT	CAIGAIGCCA GITGACGTGG TCAAAICAAA GITGGTC333		- ACCOUNT CATGAIGCCA GIIGACGIGG ICAAAICAAA GIWGGIGAAA	141 IAITGABAT 141	
CACGA <u>ICTIG ACAAGCCAII</u> CTIG		Cerecear <u>re acceaecegre cer</u> r			CGTGATACTC		CGCGACAACAACAACAACAACAACAACAACAACAACAACA	ACAGCEGIT CCTGA		ACARGEGIT CCIGAI	CGTGAAGTAG	A AAAACTII CIIAII	CGTGCCGTGC	CIGCIO	CGTGCGATTG	E-AS ACAGGII GCIGCIGCCG ATCGACGCGG	CGTGACATCC	AIAAGCGTT CCTACTGCCA ATCGACGTGG	CGTGATTCTG BCRASS	DEPART CALL	CGTGATTCTC	- ACTORICATI CATGATEC	CGTGATTCTG	CAIGAIGC
Gardnerella Vaginalis	Haemophilms	influenzae	5 Helicobacter	Pylori	Listeria	monocytogenes	Micrococcus	10 luteus	Mycobacterium	tuberculosis	Mycoplasma	genitalium	15 Neisseria	gonorrhoeae	Salmonella	typhimurium	Shewanella	20 putida	Staphylococcus	aureus	Staphylococcus	epidermidis	25 Staphylococcus	saprophyticus

been related to the Enterococcus genus by 16S rRNA analysis.

144

CGTGA<u>IACIG ACAAACCTIT</u> ACIICIICCA GTTGA...CGTGG TACT<u>GIICG</u>T <u>GICAACGACG AAGII</u>GAAAT

Streptococcus

	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	agalactiae		E	u *
	Streptococcus	cgtgac <u>actg acaaaccatt</u> gc <u>itci</u> tcca gtcgacgtgg tatc <u>gti</u> aaa <u>gicaacgaagg arai</u> cgaaai	V <u>I</u> CGARAT	C.F.T
	pneumoniae	THE COMPANY STATE OF THE PARTY	FRACTION	167
ß	Streptococcus	CGCGAC <u>ACTG ACAAACCATT</u> GCITCIICCA GICGACGIGG 1ACI <u>GIICGI GICAACGACG AAAACGAAA</u>	* COUNTY	
	pyogenes		F 4 4 4 7 11 11 1	07.1
	Ureaplasma	CGTAG <u>TACTG ACAAACCATT CTT</u> ATTAGCA ATTGACGTGG TGTAT <u>TAAAA GILAA16A1G AGGIL</u> GAAA.	14449775	2
	urealyticum		E	
	Selected	TACTG ACAAACCAIT CAIGAIG AAGII	1	
10	10 sednences			
	ם הפידים הפידים	SEQ ID NO: 13		
	genus-specific		Į A	
	primer	TACTG ACAAACCATT CATGATG		
15	15 sequences:			
	The semience numbering	mbering refers to the $E.$ faecalis tu ℓ gene fragment. Underlined nucleotides	les are	
	identical to the selected	le selected sequence or match that sequence.		
		לוול האימלה מלה שני אביים רווי		
20	•	This sequence is the reverse complement of the above the sequence.		
	NOTE: The abo	The above primers also amplify tuf sequences from Abiotrophia species; this genus has recently	us has rec	ently

of the same of	. the amplification primers specific for
ō	
6 0000	ontinues on pages of
on from tuf sequ	continue
ategy for the selecti	the genus Staphylococcus (
ex III:	

	Annex III:	Strategy for the selection from tuf sequences of the genus Staphylococcus (continues on pages 56 a	tuf sequences of the amplification primers specific for ues on pages 56 and 57).
		385	420579 611 SEQ ID
	5 Bacillus	TGGCCGTGIA GAACGCGGAC AAGITA	TGGCCCTGIA GAACGCGGAC AAGITAAAGT CGGTTG CT833 CC3 C
	subtilis		CACACAGE INCANTCACT CCACACAGCA 148
	Bacteroides	AGGI <u>CGI</u> AIC GAAACIGGIG TIATC	
	fragilis		TIT GTAAACCGGG ICAGAITAAA CCTCACTCTA 149
	Burkholderia	GGGT <u>CG</u> TGTC GAGGGGG 400	
Н	10 c pacia	PATANT WARANTANTE	LCLCAAGGT CGGTGG CGAAGCCGGG TICGAICAC CCGCACACGC 152
	Chlamydia	TGGACGTATT GAGCGTGGAA TITTEL	
	trachomatis	WITAII WAREELEE	TICTIT GCTTGCCAAA CAGIGITAAA CCTCATAAA CAGIGITAAA CCTCATACAC 153
	Corynebacterium		
	diphteriae		TIG TIMAGCEAGG CGAITG TIMAGCCAGG CGCITACACC CCTCACACCG 126
Ä	15 Enterococcus	AGGACOTOTT GAACGTGGTG BACTTC	
	faecalis		TABLE CANTICOCCI 166TAG CTAAACCAGC TACAATCACT CCACACACAA 132
	Enterococcus	AGGTCGTGTT GAACGTGGA AAAAAAAAAAAAAAAAAAA	
	faecium	SOLTOWN SUBSTRACTION	ANGLICACGI IGGTAG CIAAACCAGG IACAAICACA CCICRIACAA 133
	Escherichia	CGGTCGTGTA GAACGCGT3 TATA	
20	20 coli		TGG CIAAGCG CACCAICAAG CCACCAICAAG CCGCACACCA 154
	Gardnerella	CGGTCGTGTT GAGCTATA ACCTACA	
	vaginalis	プングマンクロ じゅうかのかい	TICIOIGAC CACACOCA CAATGG CTGCTCCAGG TICIGIGACT CCACACACA

<i>r</i> .	8	138	159	160	161	162	164	165	140	141	142	143	
aggt <u>cotgt</u> a <u>gaacgaggt</u> a tt <u>atc</u> cgtac aggtag cgaaa <u>ccagg ttcaatcaca</u> <u>ccacaca</u> ctg 157	aggtaggait gabagaggcg tggtgabagt aggtat gcaaa <u>gcagg itcibicac</u> t <u>ccgcaca</u> aga 158	tgca <u>ccictt</u> <u>gaacgtgg</u> ac <u>aagttaaa</u> gt tggtag ctaaa <u>ccagg ttcgaitac</u> t <u>ccacaca</u> cta 13	CGGI <u>CGCGCC GAGCGCGC</u> A CCTGAAGAI CAATGG TGGAG <u>CCGGG CICCAICAC</u> C <u>CCGCACA</u> CCA 1	CGGA <u>CGIGI</u> G <u>GAGCGCGG</u> CG IG <u>AICAA</u> CGI GAAICA CCAAG <u>CCCGG CACCACG CCGCACA</u> CCG	aggaagatt gabagagg aactcaaagt aggtag caaaagg <u>ctctattaaa ccgcaca</u> aga 1	CGG <u>CCGIGIA GAGCGAGGI</u> A TC <u>AIC</u> CACGI IGGIGG CCAAACGG <u>GG IACIAICAC</u> I <u>CCICACA</u> CCA 1	CGGT <u>CGTGTA GAGCGCGGT</u> A TC <u>ATCAAA</u> GT GGGTGG CTAAG <u>CCGGG CACCATCA</u> AG <u>CCGCACA</u> CCA 1	AGGI <u>CGIGII GAGCGIGGI</u> A TIGIACGCGI AGGTAG CGAAG <u>CCAGG IICAAICA</u> AC <u>CCACACA</u> CTA	AGGCCGIGIT GAACGTGGTC AAATCAAAGT TGGTAG CTGCTCCTGG ITCAATTACA CCACALACTG	AGG <u>CCGIGII GAACGIGGIC AAAICAAA</u> GI WGGIAG CT <u>GCICCIGG IICIAIIACA CCACACA</u> CAA	AGG <u>CCGIGII GAACGIGGIC AAAICAAA</u> GI CGGIAG CI <u>GCICCIGG IACIAICACA CCACAIA</u> CAA	AGGCCGTGTT GAACGTGGTC AAATCAAAGT CGGTAG CAGCTCCTGG CTCTATTACT CCACACAA	
Haemophilus	influenzae Helicobacter	pylori 5 Listeria	monocytogenes Micrococcus	luteus Mycobacterium	10 tuberculosis Mycoplasma	genitalium Neisseria	gonorrhoeae 15 Salmonella	typhimurium Shewanella	putida <u>Staphylococc</u> us	20 aureus <u>Staphylococc</u> us	<u>epidermidis</u> <u>Staphylococcus</u>	<u>saprophyticus</u> 25 <u>Staphylococcus</u>	simulans
		2			Ä		+			••			

	144		145		170		
	CCACACACTA		CCACACACTA		CCTCACCGTA		CCACAYA
	TTCAATCAAC		TTCAATCAAC		AICAAITAAA		GCTCCTGG YWCWATYACA CCACAYA
	CTANACCAGE		CTAAACCAGG		TAAAACCAGG		GCTCCTGG
, i	7	, i		, and a second	P.I.T.		
CIGTTCGTCT		TCGTTABACT		TATTABABATTAT			WWW TOWN
AGGACGIAIC GACCGIGGIA	CACACCAGG ITCAAICAAC CCACACTA	AGGACGIAIC GACCGIGGIA	CARACTER CARACTER CINANCENGG ITCANICARC CCACACTA	TGGACGTGTT GAACGTGGTG	TANAMACCAGG AICAAIIBAA CCICACCIA	CCGIGIT GAACGIGGTC ASSUCANA	
Streptococcus	agalactiae	Streptococcus	pneumoniae	. Ureaplasma	urealyticum	Selected	sequences.

	SEQ ID NO: 18b		Trigiggi girathgwrc caggagc
SEQ ID NO: 17		CCGIGIT GAACGIGGIC AAAHCAAA	
10 Selected	genus-specific	primer	sequences:

ö "R", "W" and "Y" designate nucleotide positions which are degenerated. "R" stands for A or to the selected sequence or match that sequence. "W", for A or T; "Y", for C or T.

15 The sequence numbering refers to the s.aureus tuf gene fragment. Underlined nucleotides are identical

This sequence is the reverse complement of the above tuf sequence.

Strategy for the selection from tuf sequences of the amplification primers specific for the

	Annex IV:	200	ner mornoarag aus		59 And	60).			
		species Candida all	bicans (conti	albicans (continues on pages	1				
				Co	181			213 SEQ II	ID NO
		58			2		TIPETITE BEACTIFIED		120
	Candida	CGTCAAGAAG	CGTCAAGAAG GTTGGTTACA ACCCAAAGAC	CCCAAAGAC TGT	8	ATCCCCIPAGE			
	albicans				440	GGCTGGTGTC	Can decreed GICAAGGGIA AGAYCETGIT		121
	Candida	CATCAAGAAG	CAT <u>CAAGAAG GICGGITACA</u> A	CCCAAAGAC 191	.		i		
S	glabrata				4 5	GGCAGGTGTT	GECAGGIGIT GITAAGGGIA AGACCIIATI		122
	Candida	CATCAAGAAG	GTIGGTTACA	CCCAAAGA 16	:				
	krusei			į	E	BAATDDTJOA	GTTACCGGTA AGACCTTGTT		123
	Candida	CGTCAAGAAG	GTIGGTIACA	CGT <u>CAAGAAG GTTGGTTACA ACCGTAA</u> AGC 1611AA <u>652.251</u>		1700			
	parapsilosis				ć	かる なまがかましかり	GTTACCGGTA AGA		124
70	10 Candida		GTTGGTTACA	ACCCTAAGGC 16	T	2000	CGTCAAGAAG GTTGGTTACA ACCCTAAGGC 1G1CAA GGC1GGTTACA ACCTAAGAAG		
	tropicalis				í		GTCAAGGGTA AGA	CTCTTTT	
	Schizo-	CATCAAGAAG	GICGGILICA	PCCCCAAGAC CO	5	170	CATCAAGAAG GICGGIIIGA ACCCCAAGAC CGICAA GOGIGGAGA GICGGIIIGA		
	saccharom	saccharomyces pombe				でするでようしている	rererecada age	TACTEGA	
	Human	GGAGATCCG	gagcrgcrca	CCGAGITIGG CI	115 · · · · · · · · · ·	A GOVERNOOP	TATTCTGG	AGCTGATGAA	153
귀	15 Chlamydia	GGAGCTGCGC	GAGCTGCTCA	G <u>Caagta</u> cgg	T	CITCAR ALS			
	trachomatis				4	STODDES	TCCATCATCG ACC	TCATGCA	126
	Corynebacterium		r gagergeres	CTGAGCAGGA 13			GGAGATCCRT GAGCTGCTCG CTGAGCAGGA 11AGAS CTCCCTT		
	diphteriae				Litte	TGAAGAA	TGAAGAA AAATCITAG BATTAATGGC	TTAATGGC	132
	Enterococcus	cus GGAAGTTCGT		GACTTAITAT CAGAATACGA 1					
7	20 faecalis				Į		GGGAAGCG AAAATCCTGG AACTGGCTGG	TGGCTGG	154
	Escherichia		T GAACTICTGT	GGAAGTICGI GAACTICIGI CICAGLACGA CII			i .		
	coli								

156	135	157	138	159	162	164	140	145	169
ACCTGATGGA	ractc atgaa	AGTTAGCAAA	<u>ag</u> ttaatgga	<u>G</u> TTGATGGA	ACTGGCTAC	ACTGGCTGG	attaatgga	att ga tgaa	CTGCTTGC
· · GGGT <u>iaaa</u> gaa <u>atigaaa</u> acctgatgga	GACCTCCTCG AAGAAACGG CTTCAA GIGGGTAGAG ACCGTCAAGG AACTCATGAA	··GGGAAGAA AAAATCCTIG AGTTAGCADA	GG <u>g</u> aagct aaabt <u>rg</u> acg <u>ag</u> ttaatgga	itccer gagitgcigg cigcc <u>ag</u> ga attcaa g <u>i</u> gggicg <u>a</u> g ic <u>i</u> gicacac <u>ag</u> itgaigga	··A <u>cg</u> aag <u>aa</u> aaa <u>a</u> tcttcg gactggctac	··GGGAAGCG AAAATCATCG BACTGGCTGG	··· <u>Cgaagaa</u> aaagtcttag gattaatgga	··· <u>cg</u> aag <u>a</u> c a <u>i</u> cgiiaigg gaitgaigaa	ga <u>ig</u> cgcttg ctgg <u>ata</u> tgg gttgga ggatgcagct tg <u>tatig</u> agg <u>a</u> actgcttgc
GGGT <u>TAA</u>	\ G <u>I</u> GGGTAG <u>A</u> C			GIGGGTCGAG		· · GGGAAGCG	· · · <u>CG</u> AAG <u>AA</u>	· · · <u>cg</u> aag <u>a</u> c	GGAT <u>G</u> CAGCT
3 TTT.	3 CTTCA	CTCAATATGA CTT	ATT	. ATTCAA	CTT	CTT	CTT	CTT	GTTGGA
CTAAACGCG	<u>A</u> AGA <u>AAA</u> CG	CT <u>caata</u> t <i>gi</i>	CTGAATATGA	CTG <u>C</u> CC <u>AG</u> GA	C <u>C</u> AGCT <u>A</u> CGA	ct <u>ca</u> gt <u>a</u> cga	gcgaatatga	caga <u>a</u> t <u>a</u> cga	TGGATATGG
CGAGGTTCGC GAAGAACTGA CTAAACGCGG TTT	GACCTCCTCG	GGAAGTICGI <u>G</u> AACI <u>I</u> CTAI	TTCGT GALCTALTAA CTGAATATGA ATT	<u>G</u> agtigcigg	gaccrecter	zaactgetet	ACTTATTAB	ACCIA <u>I</u> IGT (AIGCGCTTG (
CGAGGIICGC	AGAGGTCCGT	GGAAGTTCGT	GGAAATTCGT	GGAAGTCCGT	GGAAATCCGC GACCTGCTGT CCAGCTACGA CTT	GGAAGTICGC GAACTGCTGT CICAGIACGA CTT	GGAAGTTCGT GACTTALTAA GCGAATATGA CTT	GGAAATCCGT GACCTAITGT CAGAATACGA CTT	AGAGGIGCGT o
Flavobacterium ferrugineum	Gardnerella Vaginalis	5 Kaemophilus influenzae	Listeria monocytogenes	Micrococcus luteus	<i>Neisseria gonorrhoe</i> ae	Salmonella typhimurium	15 Staphylococcus aureus	Streptococcus pn umoniae	nema dum
Flar	Garc vagi	5 Haem infl	List	Microco 10 luteus	Neis. gono	Salmc typhi	15 Staphyj aureus	Strep pn um	Treponema 20 pallidum

ATCCGGIADA GITACIGGIA AGACCI		SEQ ID NO: 12ª	AGGICITACC AGTAACTITAC CGGAT		derlined nucleotides are
ATCCGGIAAA GT		SEQ I	AGGICTIACC A(e fragment. Un
Chagaag Stiggitaca acccaaaga		SEQ ID NO: 11	CAAGAAG GIIGGITACA ACCCAAAGA		10 The sequence numbering refers to the Candida albicans tuf gene fragment. Underlined nucleotides are
Selected	sednences	Selected	5 species-specific primer	:sacuenbas	10 The sequence numbe

This sequence is the reverse-complement of the above tuf sequence.

identical to the selected sequence or match that sequence.

CTG<u>gaaai</u>ct gtga<u>t</u>gcgcc<u>t ga</u>cccgttca ggcgc...agctc gt<u>atgatgag</u> c<u>caggcgatg cgtaa</u>gcttg

Enterobacter

Enterococcus agglomerans

20 faecium

Escherichia

TTA<u>gagaitg</u> <u>ccgai</u>gcc<u>it</u> ag<u>it</u>tcaagt ggtgc...agctc ga**ctaaig**tc <u>icaagc</u>acta <u>cgtaa</u>attat

CTG<u>gaaaict gtgac</u>gccc<u>t ggcgcgttct</u> ggcgc...ggcac gt<u>atgatgag</u> c<u>caggcgaig cgtaa</u>gctgg

ecific for	574 SEQ	ID NO		AGCTGA		AACTTA		<u>a</u> attaa		AGTTAA		GATGA
Strategy for the selection from the rech gene of the amplification primers specific the genus Streptococcus (continues on pages 62 and 63).		IC <u>gagaita Cogaq</u> gcgc <u>t</u> ggigcgctcg ggctcggccc gcc <u>igaigag</u> c <u>cagg</u> cgcig cgcaagctta				SUCCESTANCE OF COLORS OF TAXABLE AGABACTTA				GEAGCAGCTA GATTAATGTC ACAAGCCTTA AGAAAGTTAA		SANCEC GITIGAIGAG ICAGGGGCIG CGIAAGAIGA
of the amplificat and 63).		C GCCIGAIGAG C		GCCIGAIGTC G		GACITAIGIC I		GCATGAIGTC G		GATTAATGTC AS		GTTIGATGAG TO
ne of t 62 and	449540	66000		GGCCC		AGCAA		AGCTC		. AGCTA	i	. AGCGC
ech gel pages	449.	GGCTC.		GGCTC.	i (100000	į		ָ ֓֞֞֞֞֞֞֞֞֞֓֞֞֞֞֩֞֞֓֓֞֩֞֞֩֞֞֩֓֞֩֞֩	GGAGC	, , ,	
from the rontinues or		<u>GGIGCGCTCG</u>		<u> </u>	ברי היינית מינית מינית	Total	出で出出してきている。	1011000000	みなみずかる	TO THE WAY OF THE		171707
le selection togoccus (c		<u>Cogac</u> ecec <u>r</u>		アンランラマセデンス	TAGAAACTAT		CAGAGCICTT		CAGAAGCTTT		TAGATATGCT	•
Strategy for the selection from the recA gen the genus Streptococcus (continues on pages	415	CTC <u>GAGAT</u> CA	CTCGAAATCA		TTAGAAATTG		TTGAGTATTG		TTAGAAATAA		CTGGAGATIG	
Annex V: Str.		S · Bordetella pertussis	Burkholderia	cepacia	Campylobacter	10 jejuni	Chlamydia	trachomatis	Clostridium	perfringens	15 Corynebacterium	${\it pseudotuberculosis}$
		w				10					15	~4

GCGAACAGAA GAATAGAATI TTAATGCATT ACCGCGACCT GTGAGTTAC G <u>CAAAGCTIG AG</u> ACATTAAA	TIAGABATIT TAGABACGAT CACCAGAAGC GGAGGAGCAA GGC <u>ITAIGAA</u> CAASAACGAT GACTAAGAAGTIT TAGABACGAT CATABACTTG	CTTCAAAITG CIGAAAAIT GAITACTICT GGAGCAGCAC GTAIGAIGTC ACAAGCCAIG LEIAAACIO	CTG <u>GAAATT</u> A CTGA <u>TA</u> TGCI GGIGCGTTCT GCAGCGGCAA GAT <u>IGAIG</u> TC G <u>CAAGCCCIG CGIAA</u> ATTGA	tttgctctta tcgaatcait aattaaaaca aacaatgcaa ga <u>atgatg</u> tc aaaaggttg cgaagaatac	TIG <u>garaict</u> gc <u>gaca</u> cgc <u>t</u> cg <u>t</u> ccgttcg ggcggggcgc gcc <u>tgaigag icaggc</u> tt <u>ig cgcar</u> actga	CTG <u>GAAAII</u> T GI <u>GAIGCAII</u> AIC <u>I</u> CGCICI GGTGCCGCAC GI <u>AIGAIGAG</u> C <u>CAAGCTAIG CGIAA</u> ACTAG	CTG <u>garat</u> ca <u>c</u> c <u>gaca</u> tgct ggtgcgctcc aacgcggcac gcc <u>tgaig</u> tc c <u>caggc</u> gc <u>tg cgcaa</u> gatca	CTGGABAICT GIGAIGCGCI GACCCGCTCC GGCGCGGCGC GCAIGAIGAG CCAGGCGAIG CGIAAGCTGG	CTG <u>GAAAI</u> CT GT <u>GAC</u> GCCC <u>T g</u> GCGCGTTCT GGCGCGGCAC GT <u>ATGATGAG</u> C <u>CAGGCGATG CGTAA</u> GCTGG	CTIGAAAICG CCGAAGCAII IGIIAGAAGI GGIGCAGCIC GTIIAAIGIC ACAAGCGTIA CGIAAACTIT	TTAGAAAIIG CAGGAAAAII GAIIGACICI GGGGC32	CTT <u>GAAATIG CAGGGAAAII GAIIGA</u> TICT GGCGCAGCAC GC <u>AIGAIGAG ICAAGCGAIG CGIAA</u> ATTAT 33	
Haemophilus influenzae	acter	pylori 5 Lactococcus	lactis Legionella	pneumophila Mycoplasma	10 genitalium Neisseria	gonorrhoeae Proteus	mirabilis 15 Pseudomonas	aeruginosa Serratia	marcescens Shigella	<pre>20 flexneri Staphylococcus</pre>	aureus <u>Streptococcus</u>	<u>gordonii</u> 25 <u>Streptococcus</u>	mutans

74			35		36										
CTT <u>GAGATTG CGGGNAAATI GATTGA</u> CTCA GGTGCGGCTC GT <u>ATGATGAG</u> C <u>CAGGCC</u> ATG CGTAAACTTG		CTIGARATIG CAGGIAAAII GAITGAITCI GGTGC BGCBC CM3MC3MC3		CTCGAAAIIG CAGGIAAGCI GATTGACTCT GGTGC 20000 Cm. m		CTGGAAATTT GTGAIGCACT GGCTCGCTGT GGTGC	GIAIGTIGTC GCAAGCAATG CGTAAACTGA	CTGGAAAIIT GTGAIGCGCT GACTCGCTCT GGTGC	si <u>atgatgag</u> c <u>caggctatg cgtaa</u> gctgg		AIGAIGAG ICAIGCCAIG CGIAA		SEQ ID NO: 22b		IIACGCAI GGCIIGACIC AICAI
GGCTC		ָ ר ני) ()	ָ ֖֖֖֖֖֖֓֞֞֒֓֓֓֓֞֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֓֓֡֓֓֡֓֡֓֡֓֡	ב ה ה ה	Ç	בר הרבר. מרפר ה	, 0 0							
GGTGC		GGTGC		נפשטט	,	`		ייייייייייייייייייייייייייייייייייייייי							
GATIGACTCA		GATIGATICT		GATTGACTCT		GGCTCGCTCT		GACTCGCTCT		GATIGA				ATIGA	
CGGGAAAATI		CAGGTAAATT		CAGGTAAGCT		GTGAIGCACT		TEATGCGCT		GAAATIG CAGGIAAATI GATIGA		SEQ ID NO: 21		GAAATIG CAGGIAAATI GATIGA	
CTTGAGATIG		CTTGAAATIG		CTCGAAATTG		CTGGAAATTT		CTGGAAATTT (GAAATTG		SE		GAAATIG C	
Streptococcus	puemoniae	Streptococcus	pyogenes	5 Streptococcus	salivarius	Vibrio	cholerae	Yersinia	10 pestis	Selected	sednences	Selected	15 genus-specific	primer	sequences:
				Ŋ					10				15		

The sequence numbering refers to the S.pneumoniae recA sequence. Underlined nucleotides are identical 20 to the selected sequence or match that sequence. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides G or T. , C)

This sequence is the reverse complement of the above recA sequence.

Specific and ubiquitous primers for DNA amplification Annex VI:

	ID NO Nucleotide sequence	Originatin	DNA fragment
SEQ	ID NO NGOZOGOZ	SEQ ID	Nucleotide
		МО	position
Bac	terial species: Enterococcus faecium		
	5'-TGC TTT AGC AAC AGC CTA TCA G	26*	273-294
1 2 ^b	TOT TOT TOT GGC ACT TCG	26	468-488
Bac	cterial species: Listeria monocytogen	es	
	5'-TGC GGC TAT AAA TGA AGA GGC	27	
3 4	TOTAL TOTAL TOTAL TOTAL GGC TTT	27	a 448-468
<u>Ba</u>	cterial species: Neisseria meningitio	dis .	
	5'-CCA GCG GTA TTG TTT GGT GGT	28	
5	5'-CAG GCG GCC TTT AAT AAT TTC	28	3ª 212-232
<u>B</u>	acterial species: Staphylococcus sapr	ophyticus	
	7 5'- AGA TCG AAT TCC ACA TGA AGG	TTA TTA TGA 2	-
	7 51- AGA TCG AAT TCG TCAA CAA TCA 8b 51- TCG CTT CTC CCT CAA CAA TCA	AAC TAT CCT 2	ge 409-438
B	acterial species: Streptococcus agala	actiae	
5	9 5'-TTT CAC CAG CTG TAT TAG AAG	TA 3	30ª 59-81
	9 5'-TTT CAC CAG CTO 2772 10b 5'-GTT CCC TGA ACA TTA TCT TTG	AT	190-21
	Fungal species: Candida albicans		
0	11 5'-CAA GAA GGT TGG TTA CAA CCC	AAA GA	120° 61-86
	11 5'-CAA GAR GGI TGG TAA CTT TAC 12b 5'-AGG TCT TAC CAG TAA CTT TAC	CGG AT	120° 184-20

Sequences from databases.

b These sequences are from the opposite DNA strand of the sequence of the 35 originating fragment given in the Sequence Listing.

Sequences determined by our group.

WO 98/20157
PCT/CA97/00829 -

Annex VI: Specific and ubiquitous primers for DNA amplification (continues on next page)

	ID NO Nucleotide sequence	Originating	DNA fragment
5 Bacte		SEQ ID	Nucleotide
3 Bacte	rial genus: Enterococcus		position
13 14ª <u>Bacte</u>	5'-TAC TGA CAA ACC ATT CAT GAT G	131-134ª,b	319-340° 410-430°
0			
15 16ª <u>Bacte</u>	5'-CTG GCG CGG TAT GGT CGG TT 5'-GCC GAC GTT GGA AGT GGT AAA G Cial genus: Staphylococcus	31°	21-40 [¢] 102-123 [¢]
5 17	El CCC mon		
18ª	5'-CCG TGT TGA ACG TGG TCA AAT CAA A	140-143ª,b	391-4159
19	5'-TRT GTG GTG TRA TWG WRC CAG GAG C	140-143a,b	584-608ª
20 ^d	5'-ACA ACG TGG WCA AGT WTT AGC WGC T	140-143*,5	562-5839
	5'-ACC ATT TCW GTA CCT TCT GGT AAG T	140-143ª,b	729-7539
Bacter	ial genus: Streptococcus		
· 21	5'-GAA ATT GCA GGI AAA TTG ATT GA 5'-TTA CGC ATG GCI TGA CTC ATC AT	22	418-440 ^h 547-569 ^h
	Universal primers		
23	5'-ACI KKI ACI GGI GTI GAR ARG TT	118-146°.b 4	93-515 ¹
244	5'-AYR TTI TCI CCI GGC ATT AGG >-	147-171 ^{2.2} 118-146 ^{2.5} 7	78~800 [±]

^{30 *} These sequences were aligned to derive the corresponding primer.

b tuf sequences determined by our group.

 $^{^{\}rm c}$ The nucleotide positions refer to the E. faecalis tuf gene fragment (SEQ ID NO: 132).

These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

[•] Sequences from databases.

The nucleotide positions refer to the N. meningitidis asd gene fragment (SEQ ID NO: 31).

- $^{\rm g}$ The nucleotide positions refer to the S. aureus tuf gene fragment (SEQ ID NO: 140).
- The nucleotide positions refer to the S. pneumoniae recA gene (SEQ ID NO: 34).
- 5 The nucleotide positions refer to the E. coli tuf gene fragment (SEQ ID NO: 154).

Annex VI: Specific and ubiquitous	primers	for	DNA	amplification
-----------------------------------	---------	-----	-----	---------------

			are anni ampit	rication
	SEQ	ID NO Nucleotide sequence	Originating	DNA fragment
			SEQ ID	Nucleotide
	Anti	highia	NO	position
5	37	biotic resistance gene: blate		
	38	5'-CTA TGT GGC GCG GTA TTA TC	-	_
		5'-CGC AGT GTT ATC ACT CAT GG	-	-
	39	5'-CTG AAT GAA GCC ATA CCA AA		
	40	5'-ATC AGC AAT AAA CCA GCC AG	-	-
10			-	-
	<u>Anti</u>	biotic resistance gene: blashy		
	41	El man and		•
	42	5'-TTA CCA TGA GCG ATA ACA GC	· -	
15	74	5'-CTC ATT CAG TTC CGT TTC CC	-	-
	43	5'-CAG CTC CTC CTC CAG		
	44	5'-CAG CTG CTG CAG TGG ATG GT 5'-CGC TCT GCT TTG TTA TTC GG	-	_
		TOT GET TIG TIA TIC GG	-	-
	Antib	piotic resistance gene: blarob		
20		rop		
	45	5'-TAC GCC AAC ATC GTG GAA AG	_	
	46	5'-TTG AAT TTG GCT TCT TCG GT	- -	-
	47	F1 mm		-
25	48	5'-GGG ATA CAG AAA CGG GAC AT	-	_
	40	5'-TAA ATC TTT TTC AGG CAG CG	-	-
	Antib:	iotic resistance gene: bla _{oxa}		
30	49	5'-GAT GGT TTG AAG GGT TTA TTA TAA G	110ª	404
30	50 ^b	5'-AAT TTA GTG TGT TTA GAA TGG TGA T	110	686-710
	Antihi		· -	802-826
	THEFT	otic resistance gene: blaz		
	51	5'-ACT TCA ACA CCT GCT GCT TTC		
35	52 ^b	5'-TGA CCA CTT TTA TCA GCA ACC	111*	511-531
		Jan 10A GCA ACC	1112	663-683
	Antibi	otic resistance gene: aadB		
40	53 54	5'-GGC AAT AGT TGA AAT GCT CG	-	-
. •	34	5'-CAG CTG TTA CAA CGG ACT GG	-	_
	Antibio	otic resistance gene: aacCl		
	55	51 TCT ATC ATC ATC		
45	56	5'-TCT ATG ATC TCG CAG TCT CC	-	- .
-		5'-ATC GTC ACC GTA ATC TGC TT		•

Sequences from databases.

SUBSTITUTE SHEET (RULE 26)

b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex VI:	Specific	and	ubiquitous	primers	for	DNA	amplification
-----------	----------	-----	------------	---------	-----	-----	---------------

GEO. TI	D NO Nucleotide sequence	Originating	DNA fragment
SEQ II	5 NO 2-1-1	SEQ ID	Nucleotide
		NO	position
- Battib	iotic resistance gene: aacC2		
<u>AUCTO</u>			
57	5'-CAT TCT CGA TTG CTT TGC TA	-	-
58	5'-CCG AAA TGC TTC TCA AGA TA	-	_
Antil	piotic resistance gene: aacC3		
)	5'-CTG GAT TAT GGC TAC GGA GT	-	-
59 60	5'-AGC AGT GTG ATG GTA TCC AG	-	-
Antil	biotic resistance gene: aac6'-IIa		
5		112ª	123-142
61	5'-GAC TCT TGA TGA AGT GCT GG	112°	284-303
62b	5'-CTG GTC TAT TCC TCG CAC TC		
	5'-TAT GAG AAG GCA GGA TTC GT	112ª	445-464
63 O 64 ^b	man can acc att GT	112*	522-541
Anti	biotic resistance gene: aacA4		
65	5'-GAG TTG CTG TTC AAT GAT CC	-	-
25 66	5'-GTG TTT GAA CCA TGT ACA CG	-	-
Ant	ibiotic resistance gene: aad(6')		
	3 5'-TCT TTA GCA GAA CAG GAT GAA	-	-
17 30 17	4 5'-GAA TAA TTC ATA TCC TCC G	-	-
	ibiotic resistance gene: vanA 5'-TGT AGA GGT CTA GCC CGT GT	-	-
67 68	GGG NTA ACG ACT GTA TG		-
35	and god TC	_	-
69	5'-ATA AAG ATG ATA GGC CGG TG	-	-
70	5'-TGC TGT CAT ATT GTC TTG CC		
An	tibiotic resistance gene: vanB		
40	1 5'-ATT ATC TTC GGC GGT TGC TC	116ª	22-41
	1 5'-ATT ATC TTC GGC GGT 130 12 2b 5'-GAC TAT CGG CTT CCC ATT CC	116ª	171-19
•		116ª	575-59
7	3 5'-CGA TAG AAG CAG CAG GAC AA	116ª ·	713-73
45 7	4b 5'-CTG ATG GAT GCG GAA GAT AC		

Sequences from databases.

SUBSTITUTE SHEET (RULE 26)

These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex VI: Specific and ubiquitous primers for DNA amplification

	SEQ	ID NO Nucleotide sequence				
		- Jodacnee	Originating	DNA fragment		
			SEQ ID	Nucleotide		
	Anti	biotic resistance gene: vanC	NO	position		
5		vanC				
	75	See the ign and and the	1172			
	76 ^b	5'-GTG ACT TTW GTG ATC CCT TTT GA	117ª 117º	373-393		
	Antil			541-563		
10	HILLI	piotic resistance gene: msrA				
	77	5'-TCC AAT CAT TGC ACA AAA TC				
	78	5'-AAT TCC CTC TAT TTG GTG GT	-	-		
			-	-		
15	79	THE CITY OCC AGI AAA GCT AA	_			
13	80	5'-TGG TTT TTC AAC TTC TTC CA	-	-		
	Antib	iotic resistance gene: satA				
		satA				
00	81	5'-TCA TAG AAT GGA TGG CTC AA	_			
20	82	5'-AGC TAC TAT TGC ACC ATC CC	-	-		
	Antib.	iotic mada		-		
	THICE D.	iotic resistance gene: aac(6')-aph(2")				
	83	5'-CAA TAA GGG CAT ACC AAA AAT C				
25	84	5'-CCT TAA CAT TTG TGG CAT TAT C	_	-		
				-		
	85 86	5'-TTG GGA AGA TGA AGT TTT TAG A	~	_		
	00	5'-CCT TTA CTC CAA TAA TTT GGC T	-	-		
30	Antibi	otic resistance gene: vat				
	87	5'-TTT CAT CTA TTC AGG ATG GG	-			
	88	5'-GGA GCA ACA TTC TTT GTG AC	-	- -		
35	Antibio	otic resistance gene: vga				
		Julic resistance gene: vga				
•	89	5'-TGT GCC TGA AGA AGG TAT TG	_			
	90	5'-CGT GTT ACT TCA CCA CCA CT	-	<u>-</u>		
40	· Antihi-	tia madata		-		
	SHETDIC	tic resistance gene: ermA				
	91	5'-TAT CTT ATC GTT GAG AAG GGA TT				
	92 ^b	5'-CTA CAC TTG GCT TAG CAM CAL	113ª	370-392		
		A. A.	113*	487-508		

^{45 *} Sequences from databases.

b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex VI: Specific and ubiquitous primers for DNA amplification

SEQ ID	NO Nucleotide sequence	Originating DNA fragment	
		SEQ ID NO	Nucleotide position
	him registance gene: ermB		
Antibi	otic resistance <u>gene</u> : ermB		
	5'-CTA TCT GAT TGT TGA AGA AGG ATT	114	366-389
93 94 ^b	5'-GTT TAC TCT TGG TTT AGG ATG AAA	114	484-507
Antibi	otic resistance gene: ermC		
	5'-CTT GTT GAT CAC GAT AAT TTC C	115°	214-23
95 96°	5'-ATC TTT TAG CAA ACC CGT ATT C	115°	382-403
Antib	iotic resistance gene: mecA		
	5'-AAC AGG TGA ATT ATT AGC ACT TGT AAG	-	-
97 98	5'-ATT GCT GTT AAT ATT TTT TGA GTT GAA	-	-
Antib	iotic resistance gene: int	•	
	5'-GTG ATC GAA ATC CAG ATC C	-	-
99 100	5'-ATC CTC GGT TTT CTG GAA G	-	-
	5'-CTG GTC ATA CAT GTG ATG G	-	-
101 102	5'-GAT GTT ACC CGA GAG CTT G	-	-
Antil	piotic resistance gene: sul		
103	5'-TTA AGC GTG CAT AAT AAG CC	-	-
103	aga men cer cac caa cr	-	-
105	5'-TTT ACT AAG CTT GCC CCT TC	-	-
105 106	TO CAG CAA TTA TGA GC		

^{35 *} Sequences from databases.

b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

- 71 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: INFECTIO DIAGNOSTIC (I.D.I.) INC.
 - (B) STREET: 2050, BOULEVARD RENE LEVESQUE OUEST, 4E ETAGE
 - (C) CITY: STE-FOY
 - (D) STATE: QUEBEC
 - (E) COUNTRY: CANADA
 - (F) POSTAL CODE (ZIP): G1V 2K8
 - (G) TELEPHONE: (418) 681-4343
 - (H) TELEFAX: (418) 681-5254
 - (A) NAME: BERGERON, MICHEL G.
 - (B) STREET: 2069 RUE BRULARD
 - (C) CITY: SILLERY
 - (D) STATE: QUEBEC
 - (E) COUNTRY: CANADA
 - (F) POSTAL CODE (ZIP): GIT 1G2
 - (A) NAME: PICARD, FRANCOIS J.
 - (B) STREET: 1245, RUE DE LA SAPINIERE
 - (C) CITY: CAP-ROUGE
 - (D) STATE: QUEBEC
 - (E) COUNTRY: CANADA
 - (F) POSTAL CODE (ZIP): G1Y 1A1
 - (A) NAME: OUELLETTE, MARC
 - (B) STREET: 1035 DE PLOERMEL
 - (C) CITY: SILLERY
 - (D) STATE: QUEBEC
 - (E) COUNTRY: CANADA
 - (F) POSTAL CODE (ZIP): G1S 3S1
 - (A) NAME: ROY, PAUL H.
 - (B) STREET: 28, RUE CHARLES GARNIER
 - (C) CITY: LORETTEVILLE
 - (D) STATE: QUEBEC
 - (E) COUNTRY: CANADA
 - (F) POSTAL CODE (ZIP): G2A 3S1
- (ii) TITLE OF INVENTION: SPECIES-SPECIFIC, GENIUS-SPECIFIC AND UNIVERSAL DNA PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL AND FUNGAL PATHOGENS AND ASSOCIATED ANTIBIOTIC RESISTANCE GENES ...
- (iii) NUMBER OF SEQUENCES: 174
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/743,637 (B) FILING DATE: 04-NOV-1996	
(2) INFORMATION FOR SEQ ID NO: 1:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus faecium	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	22
TGCTTTAGCA ACAGCCTATC AG	24
(2) INFORMATION FOR SEQ ID NO: 2:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus faecium	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	21
TAAACTTCTT CCGGCACTTC G	21
(2) INFORMATION FOR SEQ ID NO: 3:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Listeria monocytogenes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
TGCGGCTATA AATGAAGAGG C	. 2
(2) INFORMATION FOR SEQ ID NO: 4:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Listeria monocytogenes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
ATCCGATGAT GCTATGGCTT T	
(2) INFORMATION FOR SEQ ID NO: 5:	21
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria meningitidis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
CCAGCGGTAT TGTTTGGTGG T	
(2) INFORMATION FOR SEQ ID NO: 6:	21
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria meningitidis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
CAGGCGGCCT TTAATAATTT C	
(2) INFORMATION FOR SEQ ID NO: 7:	21
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
GATCGAATT CCACATGAAG GTTATTATGA	30
2) INFORMATION FOR SEQ ID NO: 8:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus saprophyticus	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	20
TCGCTTCTCC CTCAACAATC AAACTATCCT	30
(2) INFORMATION FOR SEQ ID NO: 9:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Streptococcus agalactiae	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
TTTCACCAGC TGTATTAGAA GTA	-23
(2) INFORMATION FOR SEQ ID NO: 10:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
GTTCCCTGAA CATTATCTTT GAT	22
(2) INFORMATION FOR SEQ ID NO: 11:	23
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Candida albicans	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
CAAGAAGGTT GGTTACAACC CAAAGA	26
(2) INFORMATION FOR SEQ ID NO: 12:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Candida albicans	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
AGGTCTTACC AGTAACTTTA CCGGAT	26
(2) INFORMATION FOR SEQ ID NO: 13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
TACTGACAAA CCATTCATGA TG	22
(2) INFORMATION FOR SEQ ID NO: 14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
AACTTCGTCA CCAACGCGAA C	21
(2) INFORMATION FOR SEQ ID NO: 15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	20
CTGGCGCGGT ATGGTCGGTT	20
(2) INFORMATION FOR SEQ ID NO: 16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
GCCGACGTTG GAAGTGGTAA AG	22
(2) INFORMATION FOR SEQ ID NO: 17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	25
CCGTGTTGAA CGTGGTCAAA TCAAA	25
(2) INFORMATION FOR SEQ ID NO: 18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs	

GAAATTGCAG GNAAATTGAT TGA

23

- 77 -

ē

```
(B) TYPE: nucleic acid
             (C) STRANDEDNESS: single
             (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: DNA (genomic)
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:
  TRTGTGGTGT RATWGWRCCA GGAGC
                                                                          25
  (2) INFORMATION FOR SEQ ID NO: 19:
       (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 25 base pairs
            (B) TYPE: nucleic acid
            (C) STRANDEDNESS: single
            (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: DNA (genomic)
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
 ACAACGTGGW CAAGTWTTAG CWGCT
                                                                         25
 (2) INFORMATION FOR SEQ ID NO: 20:
      (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 25 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: DNA (genomic)
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
ACCATTTCWG TACCTTCTGG TAAGT
                                                                         25
(2) INFORMATION FOR SEQ ID NO: 21:
     (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 23 base pairs
          (B) TYPE: nucleic acid
          (C) STRANDEDNESS: single
       (D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: DNA (genomic)
   (ix) FEATURE:
         (A) NAME/KEY: misc_feature
         (B) LOCATION:12
         (D) OTHER INFORMATION:/note= "n = inosine"
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:
```

PCT/CA97/00829 -WO 98/20157

- 78 -

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION:12
- (D) OTHER INFORMATION:/note= "n = inosine"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

TTACGCATGG CNTGACTCAT CAT

23

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:3
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:6
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:9
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:12
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:15
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

10

23

ACNKKNACNG GNGTNGARAT GTT	
(2) INFORMATION FOR SEQ ID NO: 24:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 23 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(ix) FEATURE:	
(A) NAME/KEY: misc_feature	
(B) LOCATION:6	
(D) OTHER INFORMATION:/note= "n = inosine"	
(ix) FEATURE:	
(A) NAME/KEY: misc_feature	
(B) LOCATION: 9	
(D) OTHER INFORMATION:/note= "n = inosine"	
(ix) FEATURE:	
(A) NAME/KEY: misc_feature	
(B) LOCATION: 12	
(D) OTHER INFORMATION:/note= "n = inosine"	
(ix) FEATURE:	
(A) NAME (VIII)	
(A) NAME/KEY: misc_feature (B) LOCATION:18	
(D) OTHER INCORMATION /	
(D) OTHER INFORMATION:/note= "n = inosine"	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
AYRTTNTCNC CNGGCATNAC CAT	
(2) INFORMATION FOR SEQ ID NO: 25:	23
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 10 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOI DOWN TO THE	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
TCGCTTCTCC	
·	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 600 base pairs

(2) INFORMATION FOR SEQ ID NO: 26:

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double

- 80 **-**

(D) '	ropology:	linear
-------	-----------	--------

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Enterococcus faecium

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

TTCTTAGAGA CATTGAATAT GCCTTATGTC GGCGCAGGCG TATTGACCAG TGCATGTGCC 60 ATGGATAAAA TCATGACCAA GTATATTTTA CAAGCTGCTG GTGTGCCGCA AGTTCCTTAT 120 GTACCAGTAC TTAAGAATCA ATGGAAAGAA AATCCTAAAA AAGTATTTGA TCAATGTGAA 180 GGTTCTTTGC TTTATCCGAT GTTTGTCAAA CCTGCGAATA TGGGTTCTAG TGTCGGCATT ACAAAGGCAG AAAACCGAGA AGAGCTGCAA AATGCTTTAG CAACAGCCTA TCAGTATGAT 300 TCTCGAGCAA TCGTTGAACA AGGAATTGAA GCGCGCGAAA TCGAAGTTGC TGTATTAGGA 360 AATGAAGATG TTCGGACGAC TTTGCCTGGC GAAGTCGTAA AAGACGTAGC ATTCTATGAT 420 TATGAAGCCA AATATATCAA TAATAAAATC GAAATGCAGA TTCCAGCCGA AGTGCCGGAA 480 GAAGTTTATC AAAAAGCGCA AGAGTACGCG AAGTTAGCTT ACACGATGTT AGGTGGAAGC 540 GGATTGAGCC GGTGCGATTT CTTTTTGACA AATAAAAATG AATTATTCCT GAATGAATTA 600

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1920 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Listeria monocytogenes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

GTGGGATTAA ACAGATTTAT GCGTGCGATG ATGGTGGTTT TCATTACTGC CAATTGCATT 60

ACGATTAACC CCGACATAAT ATTTGCAGCG ACAGATAGCG AAGATTCTAG TCTAAACACA 120

GATGAATGGG AAGAAGAAAA AACAGAAGAG CAACCAAGCG AGGTAAATAC GGGACCAAGA 180

TACGAAACTG CACGTGAAGT AAGTTCACGT GATATTAAAG AACTAGAAAA ATCGAATAAA 240

GTGAGAAATA CGAACAAAGC AGACCTAATA GCAATGTTGA AAGAAAAAGC AGAAAAAGGT 300

CCAAATATCA ATAATAACAA CAGTGAACAA ACTGAGAATG CGGCTATAAA TGAAGAGGCT 360

TCAGGAGGGG AGGA TOTAL	
TCAGGAGCCG ACCGACCAGC TATACAAGTG GAGCGTCGTC ATCCAGGATT GCCATCGGAT	r 420
AGCGCAGCGG AAATTAAAAA AAGAAGGAAA GCCATAGCAT CATCGGATAG TGAGCTTGAA	480
AGCCTTACTT ATCCGGATAA ACCAACAAAA GTAAATAAGA AAAAAGTGGC GAAAGAGTCA	540
GTTGCGGATG CTTCTGAAAG TGACTTAGAT TCTAGCATGC AGTCAGCAGA TGAGTCTTCA	600
CCACAACCTT TAAAAGCAAA CCAACAACCA TTTTTCCCTA AAGTATTTAA AAAAATAAAA	660
GATGCGGGGA AATGGGTACG TGATAAAATC GACGAAAATC CTGAAGTAAA GAAAGCGATT	720
GTTGATAAAA GTGCAGGGTT AATTGACCAA TTATTAACCA AAAAGAAAAG	720
AATGCTTCGG ACTTCCCGCC ACCACCTACG GATGAAGAGT TAAGACTTGC TTTGCCAGAG	
ACACCAATGC TTCTTGGTTT TAATGCTCCT GCTACATCAG AACCGAGCTC ATTCGAATTT	840
CCACCACCAC CTACGGATGA AGAGTTAAGA CTTGCTTTGC CAGAGACGCC AATGCTTCTT	900
GGTTTTAATG CTCCTGCTAC ATCGGAACCG AGCTCGTTCG AATTTCCACC GCCTCCAACA	960
GAAGATGAAC TAGAAATCAT CCCCCAAACA	1020
GAAGATGAAC TAGAAATCAT CCGGGAAACA GCATCCTCGC TAGATTCTAG TTTTACAAGA	1080
GGGGATTTAG CTAGTTTGAG AAATGCTATT AATCGCCATA GTCAAAATTT CTCTGATTTC	1140
CCACCAATCC CAACAGAAGA AGAGTTGAAC GGGAGAGGCG GTAGACCAAC ATCTGAAGAA	1200
TTTAGTTCGC TGAATAGTGG TGATTTTACA GATGACGAAA ACAGCGAGAC AACAGAAGAA	1260
GAAATTGATC GCCTAGCTGA TTTAAGAGAT AGAGGAACAG GAAAACACTC AAGAAATGCG	1320
GGTTTTTTAC CATTAAATCC GTTTGCTAGC AGCCCGGTTC CTTCGTTAAG TCCAAAGGTA	1380
TCGAAAATAA GCGACCGGGC TCTGATAAGT GACATAACTA AAAAAACGCC ATTTAAGAAT	1440
CCATCACAGC CATTAAATGT GTTTAATAAA AAAACTACAA CGAAAACAGT GACTAAAAAA	1500
CCAACCCCTG TAAAGACCGC ACCAAAGCTA GCAGAACTTC CTGCCACAAA ACCACAAGAA	1560
ACCGTACTTA GGGAAAATAA AACACCCTTT ATAGAAAAAC AAGCAGAAAC AAACAAGCAG	1620
TCAATTAATA TGCCGAGCCT ACCAGTAATC CAAAAAGAAG CTACAGAGAG CGATAAAGAC	
GAAATGAAAC CACAAACCGA GGAAAAAATG GTAGAGGAAA GCGAATCAGC TAATAACGCA	1680
AACGGAAAAA ATCGTTCTGC TGGCATTGAA GAAGGAAAAC TAATTGCTAA AAGTGCAGAA	1740
GACGAAAAAG CGAAGGAAGA ACCAGGGAAC CATACGACGT TAATTCTTGC AATGTTAGCT	1800
ATTGGCGTGT TCTCTTTAGG GGCGTTTATC AAAATTATTC AATTAAGAAA AAATAATTAA	1860
(2) INFORMATION FOR SEQ ID NO: 28:	1920

(i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 415 base pairs

TTGTTGAGGG AGAAGCGA

end of the second

- 82 -	
(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Neisseria meningitidis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
TACCGGTACG CTAAATATTG GTGATGTATT GGATATTATG ATTTGGGAAG CGCCGCCAGC	60
GGTATTGTTT GGTGGTGGCC TTTCTTCGAT GGGCTCGGGT AGTGCGCAAC AAACCAAGTT	120
GCCGGAGCAA CTGGTGACGG CACGTGGTAC GGTTTCTGTG CCGTTTGTTG GCGATATTTC	180 :
GGTGGTCGGT AAAACGCCTG GTCAGGTTCA GGAAATTATT AAAGGCCGCC TGAAAAAAAT	240
GGCCAATCAG CCGCAAGTGA TGGTGCGCTT GGTGCAGAAT AATGCGGCAA ATGTATCGGT	300
GATTCGCGCA GGCAATAGTG TGCGTATGCC GTTGACGGCA GCCGGTGAGC GTGTGTTGGA	360
TGCGGTGGCT GCGGTAGGTG GTTCAACGGC AAATGTGCAG GATACGAATG TGCAG	415
(2) INFORMATION FOR SEQ ID NO: 29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 438 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
TCGCTTCTCC AGAAGAAATT TTAGAAACAT ATCTAGAAAA TCCCAAATTA GATAAACCGT	60
TTATATTATG TGAATACGCA CATGCAATGG GAAATTCACC AGGAGATCTT AATGCATATC	120
AAACATTAAT TGAAAAATAT GATAGTTTTA TTGGCGGTTT TGTTTGGGAA TGGTGTGATC	180
ATAGCATTCA GGTTGGGATA AAGGAAGGTA AACCAATTTT TAGATATGGT GGAGATTTTG	240
GTGAGGCCTT ACATGACGGT AATTTTTGTG TTGATGGTAT TGTTTCGCCA GATCGAATTC	300
CACATGAAGG TTATTATGAG TTTAAACATG AACATAGACC TTTGAGATTG GTTAACGAAG	
AGGATTATCG GTTTACATTG AAGAATCAAT TTGATTTTAC AAATGCGGAG GATAGTTTGA	

420 438

INFORMATION	FOR	SEQ	ID	NO:	30:
-------------------------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 768 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus agalactiae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

ATGAACGTTA CACATATGAT GTATCTATCT GGAACTCTAG TGGCTGGTGC ATTGTTATTT 60 TCACCAGCTG TATTAGAAGT ACATGCTGAT CAAGTGACAA CTCCACAAGT GGTAAATCAT 120 GTAAATAGTA ATAATCAAGC CCAGCAAATG GCTCAAAAGC TTGATCAAGA TAGCATTCAG 180 TTGAGAAATA TCAAAGATAA TGTTCAGGGA ACAGATTATG AAAAACCGGT TAATGAGGCT 240 ATTACTAGCG TGGAAAAATT AAAGACTTCA TTGCGTGCCA ACCCTGAGAC AGTTTATGAT 300 TTGAATTCTA TTGGTAGTCG TGTAGAAGCC TTAACAGATG TGATTGAAGC AATCACTTTT 360 TCAACTCAAC ATTTAACAAA TAAGGTTAGT CAAGCAAATA TTGATATGGG ATTTGGGATA 420 ACTAAGCTAG TTATTCGCAT TTTAGATCCA TTTGCTTCAG TTGATTCAAT TAAAGCTCAA 480 GTTAACGATG TAAAGGCATT AGAACAAAAA GTTTTAACTT ATCCTGATTT AAAACCAACT 540 GATAGAGCTA CCATCTATAC AAAATCAAAA CTTGATAAGG AAATCTGGAA TACACGCTTT 600 ACTAGAGATA AAAAAGTACT TAACGTCAAA GAATTTAAAG TTTACAATAC TTTAAATAAA 660 GCAATCACAC ATGCTGTTGG AGTTCAGTTG AATCCAAATG TTACGGTACA ACAAGTTGAT 720 CAAGAGATTG TAACATTACA AGCAGCACTT CAAACAGCAT TAAAATAA 768

- (2) INFORMATION FOR SEQ ID NO: 31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 421 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Neisseria meningitidis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

 $(x,y) = \sum_{i \in \mathcal{I}_{i}} \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i} \right) \left(x^{i} - y^{i} \right) + \left(x^{i} - y^{i$

- 84 -

	60
ATGAAAGTAG GTTTCGTCGG CTGGCGCGGT ATGGTCGGTT CGGTTTTGAT GCAGCGTATG	
AAAGAAGAAA ACGACTTCGC CCACATTCCC GAAGCGTTTT TCTTTACCAC TTCCAACGTC	120
GGCGGCGCAC GCCCTGATTT CGGTCAGGCG GCTAAAACAT TATTGGACGC GAACAACGTT	180
GCCGAGCTGG CAAAAATGGA CATCATCGTT ACCTGCCAAG GCGGCGACTA CACCAAATCC	240
GTCTTCCAAG CCCTGCGCGA CAGCGGCTGG AACGGCTACT GGATTGACGC GGCATCCTCG	300
CTGCGTATGA AAGACGACGC GATTATCGTC CTCGACCCCG TCAACCGCAA CGTCATCGAC	360
AACGGCCTCA AAAACGGCGT GAAAAACTAC ATCGGCGGCA ACTGTACCGT TTCCCTGATG	420
	421
С	
(2) INFORMATION FOR SEQ ID NO: 32:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 213 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus gordonii</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
TTCATAGACG CTGAGCACGC TTTGGATCCA TCTTACGCGG CTGCTCTAGG TGTAAATATT	60
GATGAGCTGT TGCTATCTCA ACCAGATTCT GGTGAGCAAG GTTTAGAAAT TGCAGGAAAA	120
TTGATTGACT CTGGGGCAGT TGATTTAGTT GTCATCGACT CTGTTGCAGC TCTTGTACCA	180
CGTGCGGAAA TCGATGGAGA TATCGGTGAT AGC	213
(2) INFORMATION FOR SEQ ID NO: 33:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 692 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus mutans</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
GGGCCGGAAT CTTCTGGTAA GACAACTGTC GCTCTTCATG CTGCTGCTCA GGCGCAAAAA	60

CATCCCC	GEN					
		TTT CATTGATGC				120
		rga tgagctttt				180
		ATT GATTGATTC				240
		ACG TGCGGAGATI				300
TTACAAG	CAC GCATGATO	AG TCAAGCGATG	CGTAAATTAT	CAGCTTCAAT	СААТААААСА	360
AAAACCAT	TTG CTATTTT	AT TAATCAATTG	CGGGAAAAAG	TTGGTATTAT	GTTTGGTAAT	420
CCAGAAAC	AA CCCCTGGC	GG GCGTGCCTTG	AAGTTTTATT	CTTCTGTGCG	TCTTGATGTC	480
CGCGGCAA	ТА СТСАААТТ	AA AGGAACCGGG	GAACAAAAAG	ACAGCAATAT	TGGTAAAGAG	540
		AA AAATAAAGTT				600
		AT TTCTCGTACA				660
		GG AGCTTGGTAC				
						692

- (2) INFORMATION FOR SEQ ID NO: 34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1204 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

ATGGCGAAAA AACCAAAAAA ATTAGAAGAA ATTTCAAAAA AATTTGGGGC AGAACGTGAA 60 AAGGCCTTGA ATGACGCTCT TAAATTGATT GAGAAAGACT TTGGTAAAGG ATCAATCATG 120 CGTTTGGGTG AACGTGCGGA GCAAAAGGTG CAAGTGATGA GCTCAGGTTC TTTAGCTCTT 180 GACATTGCCC TTGGCTCAGG TGGTTATCCT AAGGGACGTA TCATCGAAAT CTATGGCCCA 240 GAGTCATCTG GTAAGACAAC GGTTGCCCTT CATGCAGTTG CACAAGCGCA AAAAGAAGGT 300 GGGATTGCTG CCTTTATCGA TGCGGAACAT GCCCTTGATC CAGCTTATGC TGCGGCCCTT 360 GGTGTCAATA TTGACGAATT GCTCTTGTCT CAACCAGACT CAGGAGAGCA AGGTCTTGAG 420 ATTGCGGGAA AATTGATTGA CTCAGGTGCA GTTGATCTTG TCGTAGTCGA CTCAGTTGCT 480 GCCCTTGTTC CTCGTGCGGA AATTGATGGA GATATCGGAG ATAGCCATGT TGGTTTGCAG 540 GCTCGTATGA TGAGCCAGGC CATGCGTAAA CTTGGCGCCT CTATCAATAA AACCAAAACA 600

- 86 -

ATTGCCATTT	TTATCAACCA	ATTGCGTGAA	AAAGTTGGAG	TGATGTTTGG	AAATCCAGAA	660
ACAACACCGG	GCGGACGTGC	TTTGAAATTC	TATGCTTCAG	TCCGCTTGGA	TGTTCGTGGT	720
AATACACAAA	TTAAGGGAAC	TGGTGATCAA	AAAGAAACCA	ATGTCGGTAA	AGAAACTAAG	780
ATTAAGGTTG	таааааатаа	GGTAGCTCCA	CCGTTTAAGG	AAGCCGTAGT	TGAAATTATG	840
TACGGAGAAG	GAATTTCTAA	GACTGGTGAG	CTTTTGAAGA	TTGCAAGCGA	TTTGGATATT	900
ATCAAAAAAG	CAGGGGCTTG	GTATTCTTAC	AAAGATGAAA	AAATTGGGCA	AGGTTCTGAG	960
AATGCTAAGA	AATACTTGGC	AGAGCACCCA	GAAATCTTTG	ATGAAATTGA	TAAGCAAGTC	1020
CGTTCTAAAT	TTGGCTTGAT	TGATGGAGAA	GAAGTTTCAG	AACAAGATAC	TGAAAACAAA	1080
AAAGATGAGC	CAAAGAAAGA	AGAAGCAGTG	AATGAAGAAG	TTCCGCTTGA	CTTAGGCGAT	1140
GAACTTGAAA	TCGAAATTGA	AGAATAAGCT	GTTAAAGCAG	TGGAGAAATC	CGCTACTTTT	1200
TCGA						1204

- (2) INFORMATION FOR SEQ ID NO: 35:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 981 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pyogenes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:

ATGCGTTCAG GAAGTCTAGC TCTTGATATT GCTTGGATAG CTGGTGGTTA TCCTAAAGGA 60 CGTATCATCG AAATCTATGG TCCAGAGTCT TCCGGTAAAA CGACTGTGGC TTTACATGCT 120 GTAGCACAAG CTCAAAAAGA AGGTGGAATC GCAGCCTTTA TCGATGCCGA GCATGCGCTT 180 GATCCAGCTT ATGCTGCTGC GCTTGGGGTT AATATTGATG AACTTCTCTT GTCTCAACCA 240 GATTCTGGAG AACAAGGACT TGAAATTGCA GGTAAATTGA TTGATTCTGG TGCGGTTGAC 300 CTGGTTGTTG TCGATTCAGT AGCAGCTTTA GTGCCACGTG CTGAAATTGA TGGTGATATT 360 GGCGATAGCC ATGTCGGATT GCAAGCACGT ATGATGAGTC AGGCCATGCG TAAATTATCA 420 GCTTCTATTA ATAAAACAAA AACTATCGCA ATCTTTATCA ACCAATTGCG TGAAAAAGTT 480 GGTGTGATGT TTGGAAATCC TGAAACAACA CCAGGTGGTC GAGCTTTGAA ATTCTATGCT TCTGTTCGGC TGGATGTGCG TGGAAACAAC CAAATTAAAG GAACTGGTGA CCAAAAGATA 600

	•
GCCAGCATTG GTAAGGAGAC CAAAATCAAG GTTGTTAAAA ACAAGGTCGC TCCGCCATTT	660
AAGGTAGCAG AAGTTGAAAT CATGTATGGG GAAGGTATTT CTCGTACAGG GGAGCTTGTG	720
AAAATTGCTT CTGATTTGGA CATTATCCAA AAAGCAGGTG CTTGGTTCTC TTATAATGGT	780
GAGAAGATTG GCCAAGGTTC TGAAAATGCT AAGCGTTATT TGGCCGATCA TCCACAATTG	840
TTTGATGAAA TCGACCGTAA AGTACGTGTT AAATTTGGTT TGCTTGAAGA AAGCGAAGAA	900
GAATCTGCTA TGGCAGTAGC ATCAGAAGAA ACCGATGATC TTGCTTTAGA TTTAGATAAT	960
GGTATTGAAA TTGAAGATTA A	
(2) INFORMATION FOR SEQ ID NO: 36:	981
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus salivarius	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
GCGTATGCAC GAGCTCTAGG TGTTAATATC GATGAGCTTC TTTTGTCGCA GCCTGATTCT	. 60
GGTGAGCAAG GTCTCGAAAT TGCAGGTAAG CTGATTGACT CTGGTGCAGT GGATTTAGTT	120
GTTGTTGACT CAGTTGCGGC CTTCGTACCA CGTGCAGAAA TTGATGGAGA TAGTGGTGAC	180
AGTCATGTAG GACTTCAAGC GCGTATGATG AGTCAAGCCA TGCGTAAACT TTCTGCATCT	240
ATTAATAAAA CAAAAACGAT TGCTATCTTT ATTAACCAGT TGCGTGAAAA AGTTGGTATC	300
ATGTTTGGTA AC	
(2) INFORMATION FOR SEQ ID NO: 37:	312
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
CTATGTGGCG CGGTATTATC	
(2) INFORMATION FOR SEQ ID NO: 38:	20

WO 98/20157 PCT/CA97/00829 -

- 88 -

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	20
CGCAGTGTTA TCACTCATGG	20
(2) INFORMATION FOR SEQ ID NO: 39:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
CTGAATGAAG CCATACCAAA	20
(2) INFORMATION FOR SEQ ID NO: 40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
ATCAGCAATA AACCAGCCAG	20
(2) INFORMATION FOR SEQ ID NO: 41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
TTACCATGAG CGATAACAGC	2
(2) INFORMATION FOR SEQ ID NO: 42:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
CTCATTCAGT TCCGTTTCCC	
(2) INFORMATION FOR SEQ ID NO: 43:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
CAGCTGCTGC AGTGGATGGT	
(2) INFORMATION FOR SEQ ID NO: 44:	20
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
CGCTCTGCTT TGTTATTCGG	
(2) INFORMATION FOR SEQ ID NO: 45:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
FACGCCAACA TCGTGGAAAG	
(2) INFORMATION FOR SEQ ID NO: 46:	20

WO 98/20157 PCT/CA97/00829 -

- 90 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
TGAATTTGG CTTCTTCGGT	20
2) INFORMATION FOR SEQ ID NO: 47:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
GGGATACAGA AACGGGACAT	20
(2) INFORMATION FOR SEQ ID NO: 48:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
TAAATCTTTT TCAGGCAGCG	20
(2) INFORMATION FOR SEQ ID NO: 49:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
GATGGTTTGA AGGGTTTATT ATAAG	25
(2) INFORMATION FOR SEQ ID NO: 50:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
AATTTAGTGT GTTTAGAATG GTGAT	
(2) INFORMATION FOR SEQ ID NO: 51:	25
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
ACTTCAACAC CTGCTGCTTT C	
(2) INFORMATION FOR SEQ ID NO: 52:	21
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
TGACCACTTT TATCAGCAAC C	_
(2) INFORMATION FOR SEQ ID NO: 53:	21
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
GGCAATAGTT GAAATGCTCG	
(2) INFORMATION FOR SEQ ID NO: 54:	20

- 92 -

e garage and a second of the contraction

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
CAGCTGTTAC AACGGACTGG	20
(2) INFORMATION FOR SEQ ID NO: 55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	2.0
TCTATGATCT CGCAGTCTCC	20
(2) INFORMATION FOR SEQ ID NO: 56:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
ATCGTCACCG TAATCTGCTT	20
(2) INFORMATION FOR SEQ ID NO: 57:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
CATTCTCGAT TGCTTTGCTA	20
(2) INFORMATION FOR SEQ ID NO: 58:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
CCGAAATGCT TCTCAAGATA	_
(2) INFORMATION FOR SEQ ID NO: 59:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
CTGGATTATG GCTACGGAGT	
(2) INFORMATION FOR SEQ ID NO: 60:	20
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
AGCAGTGTGA TGGTATCCAG	
(2) INFORMATION FOR SEQ ID NO: 61:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
GACTCTTGAT GAAGTGCTGG	
(2) INFORMATION FOR SEQ ID NO: 62:	20

- 94 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
CTGGTCTATT CCTCGCACTC	20
(2) INFORMATION FOR SEQ ID NO: 63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
TATGAGAAGG CAGGATTCGT	20
(2) INFORMATION FOR SEQ ID NO: 64:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
GCTTTCTCTC GAAGGCTTGT	20
(2) INFORMATION FOR SEQ ID NO: 65:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
GAGTTGCTGT TCAATGATCC	20
(2) INFORMATION FOR SEQ ID NO: 66:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
GTGTTTGAAC CATGTACACG	20
(2) INFORMATION FOR SEQ ID NO: 67:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
TGTAGAGGTC TAGCCCGTGT	20
(2) INFORMATION FOR SEQ ID NO: 68:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
ACGGGGATAA CGACTGTATG	20
(2) INFORMATION FOR SEQ ID NO: 69:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
ATAAAGATGA TAGGCCGGTG	20
(2) INFORMATION FOR SEQ ID NO: 70:	

- 96 **-**

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	20
GCTGTCATA TTGTCTTGCC	20
2) INFORMATION FOR SEQ ID NO: 71:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
ATTATCTTCG GCGGTTGCTC	20
(2) INFORMATION FOR SEQ ID NO: 72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
GACTATCGGC TTCCCATTCC	20
(2) INFORMATION FOR SEQ ID NO: 73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	^
CGATAGAAGC AGCAGGACAA	2
(2) INFORMATION FOR SEQ ID NO: 74:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
CTGATGGATG CGGAAGATAC	20
(2) INFORMATION FOR SEQ ID NO: 75:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
GCCTTATGTA TGAACAAATG G	-
(2) INFORMATION FOR SEQ ID NO: 76:	21
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii): MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
GTGACTTTWG TGATCCCTTT TGA	23
(2) INFORMATION FOR SEQ ID NO: 77:	23
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
TCCAATCATT GCACAAAATC	20
(2) INFORMATION FOR SEO ID NO. 78.	20

- 98 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	20
AATTCCCTCT ATTTGGTGGT	20
(2) INFORMATION FOR SEQ ID NO: 79:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) Type: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	20
TCCCAAGCCA GTAAAGCTAA	
(2) INFORMATION FOR SEQ ID NO: 80:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) Type: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	20
TGGTTTTTCA ACTTCTTCCA	20
(2) INFORMATION FOR SEQ ID NO: 81:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) Type: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
TCATAGAATG GATGGCTCAA	20
(2) INFORMATION FOR SEQ ID NO: 82:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
AGCTACTATT GCACCATCCC	2
(2) INFORMATION FOR SEQ ID NO: 83:	_
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
CAATAAGGGC ATACCAAAAA TC	22
(2) INFORMATION FOR SEQ ID NO: 84:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
CCTTAACATT TGTGGCATTA TC	22
(2) INFORMATION FOR SEQ ID NO: 85:	42
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
TTGGGAAGAT GAAGTTTTTA GA	22
(2) INFORMATION FOR SEQ ID NO: 86:	44

PCT/CA97/00829-

- 100 -

WO 98/20157

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
CCTTTACTCC AATAATTTGG CT	22
(2) INFORMATION FOR SEQ ID NO: 87:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
TITCATCTAT TCAGGATGGG	20
(2) INFORMATION FOR SEQ ID NO: 88:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
GGAGCAACAT TCTTTGTGAC	20
(2) INFORMATION FOR SEQ ID NO: 89:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
TGTGCCTGAA GAAGGTATTG	20
(2) INFORMATION FOR SEQ ID NO: 90:	

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
CGTGTTACTT CACCACCACT	2.0
(2) INFORMATION FOR SEQ ID NO: 91:	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
TATCTTATCG TTGAGAAGGG ATT	
(2) INFORMATION FOR SEQ ID NO: 92:	23
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
CTACACTTGG CTTAGGATGA AA (2) INFORMATION FOR SEQ ID NO: 93:	22
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	,
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
CTATCTGATT GTTGAAGAAG GATT	24
(2) INFORMATION FOR SEC ID NO. 24.	44

WO 98/20157 PCT/CA97/00829 -

- 102 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
GTTTACTCTT GGTTTAGGAT GAAA	24
(2) INFORMATION FOR SEQ ID NO: 95:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
CTTGTTGATC ACGATAATTT CC	22
(2) INFORMATION FOR SEQ ID NO: 96:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
ATCTTTTAGC AAACCCGTAT TC	22
(2) INFORMATION FOR SEQ ID NO: 97:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
AACAGGTGAA TTATTAGCAC TTGTAAG	2
THE PARTY FOR SEC ID NO: 98:	

(i) SEQUENCE CHARACTERISTICS:

(A) DENGIH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
ATTGCTGTTA ATATTTTTTG AGTTGAA	27
(2) INFORMATION FOR SEQ ID NO: 99:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
GTGATCGAAA TCCAGATCC	19
(2) INFORMATION FOR SEQ ID NO: 100:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	•
ATCCTCGGTT TTCTGGAAG	19
(2) INFORMATION FOR SEQ ID NO: 101:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
CTGGTCATAC ATGTGATGG	19
(2) INFORMATION FOR SEQ ID NO: 102:	

- 104 -

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	19
GATGTTACCC GAGAGCTTG	
(2) INFORMATION FOR SEQ ID NO: 103:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	20
TTAAGCGTGC ATAATAAGCC	20
(2) INFORMATION FOR SEQ ID NO: 104:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	2.0
TTGCGATTAC TTCGCCAACT	20
(2) INFORMATION FOR SEQ ID NO: 105:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
TTTACTAAGC TTGCCCCTTC	20
(2) INFORMATION FOR SEQ ID NO: 106:	

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

AAAAGGCAGC AATTATGAGC

20

- (2) INFORMATION FOR SEQ ID NO: 107:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:9
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:12
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:15
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:18
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:21
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

AAYATGATNA CNGGNGCNGC NCARATGGA

29

- (2) INFORMATION FOR SEQ ID NO: 108:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid

PCT/CA97/00829 -WO 98/20157

- 106 -

```
(C) STRANDEDNESS: single
```

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

- (A) NAME/KEY: misc_feature
- (B) LOCATION: 3
- (D) OTHER INFORMATION:/note= "n = inosine"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:6
 - (D) OTHER INFORMATION:/note= "n = inosine"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:9
 - (D) OTHER INFORMATION:/note= "n = inosine"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:12
 - (D) OTHER INFORMATION:/note= "n = inosine"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:

CCNACUGTUC KUCCRCCYTC RCG

(2) INFORMATION FOR SEQ ID NO: 109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:6
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:12
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:15
 - (D) OTHER INFORMATION:/note= "n = inosine"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature

23

(B)	LOCATION:	1	E
-----	-----------	---	---

- (D) OTHER INFORMATION:/note= "n = inosine"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:

CARYTNATHG TNGCNGTNAA YAARATGGA

29

(2) INFORMATION FOR SEQ ID NO: 110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

ATGAAAAACA CAATACATAT CAACTTCGCT ATTTTTTTAA TAATTGCAAA TATTATCTAC 60 AGCAGCGCCA GTGCATCAAC AGATATCTCT ACTGTTGCAT CTCCATTATT TGAAGGAACT 120 GAAGGTTGTT TTTTACTTTA CGATGCATCC ACAAACGCTG AAATTGCTCA ATTCAATAAA 180 GCAAAGTGTG CAACGCAAAT GGCACCAGAT TCAACTTTCA AGATCGCATT ATCACTTATG 240 GCATTTGATG CGGAAATAAT AGATCAGAAA ACCATATTCA AATGGGATAA AACCCCCAAA 300 GGAATGGAGA TCTGGAACAG CAATCATACA CCAAAGACGT GGATGCAATT TTCTGTTGTT 360 TGGGTTTCGC AAGAAATAAC CCAAAAAATT AGATTAAATA AAATCAAGAA TTATCTCAAA 420 GATTTTGATT ATGGAAATCA AGACTTCTCT GGAGATAAAG AAAGAAACAA CGGATTAACA 480 GAAGCATGGC TCGAAAGTAG CTTAAAAATT TCACCAGAAG AACAAATTCA ATTCCTGCGT 540 AAAATTATTA ATCACAATCT CCCAGTTAAA AACTCAGCCA TAGAAAACAC CATAGAGAAC 600 ATGTATCTAC AAGATCTGGA TAATAGTACA AAACTGTATG GGAAAACTGG TGCAGGATTC 660 ACAGCAAATA GAACCTTACA AAACGGATGG TTTGAAGGGT TTATTATAAG CAAATCAGGA 720 CATAAATATG TTTTTGTGTC CGCACTTACA GGAAACTTGG GGTCGAATTT AACATCAAGC 780 ATAAAAGCCA AGAAAAATGC GATCACCATT CTAAACACAC TAAATTTATA A 831

- (2) INFORMATION FOR SEQ ID NO: 111:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 846 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- 108 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111: TTGAAAAAGT TAATATTTTT AATTGTAATT GCTTTAGTTT TAAGTGCATG TAATTCAAAC 60 AGTTCACATG CCAAAGAGTT AAATGATTTA GAAAAAAAT ATAATGCTCA TATTGGTGTT 120 TATGCTTTAG ATACTAAAAG TGGTAAGGAA GTAAAATTTA ATTCAGATAA GAGATTTGCC 180 TATGCTTCAA CTTCAAAAGC GATAAATAGT GCTATTTTGT TAGAACAAGT ACCTTATAAT 240 AAGTTAAATA AAAAAGTACA TATTAACAAA GATGATATAG TTGCTTATTC TCCTATTTTA 300 GAAAAATATG TAGGAAAAGA TATCACTTTA AAAGCACTTA TTGAGGCTTC AATGACATAT 360 AGTGATAATA CAGCAAACAA TAAAATTATA AAAGAAATCG GTGGAATCAA AAAAGTTAAA 420 CAACGTCTAA AAGAACTAGG AGATAAAGTA ACAAATCCAG TTAGATATGA GATAGAATTA 480 AATTACTATT CACCAAAGAG CAAAAAAGAT ACTTCAACAC CTGCTGCTTT CGGTAAGACT 540 TTAAATAAAC TTATCGCAAA TGGAAAATTA AGCAAAGAAA ACAAAAAATT CTTACTTGAT 600 TTAATGTTAA ATAATAAAAG CGGAGATACT TTAATTAAAG ACGGTGTTCC AAAAGACTAT AAGGTTGCTG ATAAAAGTGG TCAAGCAATA ACATATGCTT CTAGAAATGA TGTTGCTTTT 720 GTTTATCCTA AGGGCCAATC TGAACCTATT GTTTTAGTCA TTTTTACGAA TAAAGACAAT 780 AAAAGTGATA AGCCAAATGA TAAGTTGATA AGTGAAACCG CCAAGAGTGT AATGAAGGAA 840 846 TTTTAA

(2) INFORMATION FOR SEQ ID NO: 112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 555 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

ATGTCCGCGA GCACCCCCC CATAACTCTT CGCCTCATGA CCGAGCGCGA CCTGCCGATG 60

CTCCATGACT GGCTCAACCG GCCGCACATC GTTGAGTGGT GGGGTGGCGA CGAAGAGCGA 120

CCGACTCTTG ATGAAGTGCT GGGAACACTAC CTGCCCAGAG CGATGGCGGA AGAGTCCGTA 180

ACACCGTACA TCGCAATGCT GGGCGAGGAA CCGATCGGCT ATGCTCAGTC GTACGTCGCG 240

CTCGGAAGCC GTGATGGCTG GTGGGAAGAT GAAACTGATC CAGGAGTGCG AGGAATAGAC 300

CAGTCTCTGG CTGACCCGAC ACAGTTGAAC AAAGGCCTAG GAACAAGGCT TGTCCGCGCT 360

CTCGTTGAAC TACTGTTCTC GGACCCCACC GTGACGAAGA TTCAGACCGA CCCGACTCCG	
AACAACCATC GAGCCATACG CTGCTATGAG AAGGCAGGAT TCGTGCGGGA GAAGATCATC	420
ACCACGCCTG ACGGGCCGGC CCTTTT CARE	480
ACCACGCCTG ACGGGCCGGC GGTTTACATG GTTCAAACAC GACAAGCCTT CGAGAGAAAG	540
	555
(2) INFORMATION FOR SEQ ID NO: 113:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 732 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113:	
ATGAACCAGA AAAACCCTAA AGACACGCAA AATTTTATTA CTTCTAAAAA GCATGTAAAA	60
GAAATATTGA ATCACACGAA TATCAGTAAA CAAGACAACG TAATAGAAAT CGGATCAGGA	120
AAAGGACATT TTACCAAAGA GCTAGTCAAA ATGAGTCGAT CAGTTACTGC TATAGAAATT	180
GATGGAGGCT TATGTCAAGT GACTAAAGAA GCGGTAAACC CCTCTGAGAA TATAAAAGTG	240
ATTCAAACGG ATATTCTAAA ATTTTCCTTC CCAAAACATA TAAACTATAA GATATATGGT	300
AATATTCCTT ATAACATCAG TACGGATATT GTCAAAAGAA TTACCTTTGA AAGTCAGGCT	360
AAATATAGCT ATCTTATCGT TGAGAAGGGA TTTGCGAAAA GATTGCAAAA TCTGCAACGA	420
GCTTTGGGTT TACTATTAAT GGTGGAGATG GATATAAAAA TGCTCAAAAA AGTACCACCA	480
CTATATTTTC ATCCTAAGCC AAGTGTAGAC TCTGTATTGA TTGTTCTTGA ACGACATCAA	540
CCATTGATTT CAAAGAAGGA CTACAAAAAG TATCGATCTT TTGTTTATAA GTGGGTAAAC	600
CGTGAATATC GTGTTCTTTT CACTAAAAAC CAATTCCGAC AGGCTTTGAA GCATGCAAAT	660
GTCACTAATA TTAATAAACT ATCGAAGGAA CAATTTCTTT CTATTTTCAA TAGTTACAAA	720
TTGTTTCACT AA	732
(2) INFORMATION FOR SEQ ID NO: 114:	134

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 738 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

WO 98/20157

- 110 **-**

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:	
ATGAACAAAA ATATAAAATA TTCTCAAAAC TTTTTAACGA GTGAAAAAGT ACTCAACCAA	60
ATAATAAAAC AATTGAATTT AAAAGAAACC GATACCGTTT ACGAAATTGG AACAGGTAAA	120
GGCATTTAA CGACGAAACT GGCTAAAATA AGTAAACAGG TAACGTCTAT TGAATTAGAC	180
AGTCATCTAT TCAACTTATC GTCAGAAAAA TTAAAATCGA ATACTCGTGT CACTTTAATT	240
CACCAAGATA TTCTACAGTT TCAATTCCCT AACAAACAGA GGTATAAAAT TGTTGGGAAT	300
ATTCCTTACC ATTTAAGCAC ACAAATTATT AAAAAAGTGG TTTTTGAAAG CCATGCGTCT	360
GACATCTATC TGATTGTTGA AGAAGGATTC TACAAGCGTA CCTTGGATAT TCACCGAACA	420
CTAGGGTTGC TCTTGCACAC TCAAGTCTCG ATTCAGCAAT TGCTTAAGCT GCCAGCGGAA	480
TGCTTTCATC CTAAACCAAG AGTAAACAGT GTCTTAATAA AACTTACCCG CCATACCACA	540
GATGTTCCAG ATAAATATTG GAAGCTATAT ACGTACTTTG TTTCAAAATG GGTCAATCGA	600
GATATCGTC AACTGTTTAC TAAAAATCAG TTTCATCAAG CAATGAAACA CGCCAAAGTA	660
AACAATTTAA GTACCGTTAC TTATGAGCAA GTATTGTCTA TTTTTAATAG TTATCTATTA	720
TTTAACGGGA GGAAATAA	738
(2) INFORMATION FOR SEQ ID NO: 115:	
(2) INFORMATION FOR SEQ.	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 735 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:

ATGAACGAGA AAAATATAAA ACACAGTCAA AACTTTATTA CTTCAAAACA TAATATAGAT 60 AAAATAATGA CAAATATAAG ATTAAATGAA CATGATAATA TCTTTGAAAT CGGCTCAGGA 120 AAAGGGCATT TTACCCTTGA ATTAGTACAG AGGTGTAATT TCGTAACTGC CATTGAAATA 180 GACCATAAAT TATGCAAAAC TACAGAAAAT AAACTTGTTG ATCACGATAA TTTCCAAGTT 240 TTAAACAAGG ATATATTGCA GTTTAAATTT CCTAAAAACC AATCCTATAA AATATTTGGT 300 AATATACCTT ATAACATAAG TACGGATATA ATACGCAAAA TTGTTTTTGA TAGTATAGCT 360 GATGAGATTT ATTTAATCGT GGAATACGGG TTTGCTAAAA GATTATTAAA TACAAAACGC 420 TCATTGGCAT TATTTTTAAT GGCAGAAGTT GATATTTCTA TATTAAGTAT GGTTCCAAGA 480

GAATATTTTC	ATCCTAAACC	TAGAGTGAAT	AGCTCACTTA	TCACAMMA	TAGAAAAAA	
TCAAGAATAT	CACACAAAA			TCAGATTAAA	TAGAAAAAA	540
- o. B. G. F. T. T.	CACACAAAGA	TAAACAGAAG	TATAATTATT	TCGTTATGAA	ATGGGTTAAC	600
AAAGAATACA	AGAAAATATT	TACAAAAAAT	CAATTTAACA	ATTCCTTDDDD	ACATGCAGGA	
ATTGACGATT	ТАААСААТАТ	TACCTEMON		CC11AAA	ACATGCAGGA	660
	TAAACAATAT	IAGCITIGAA	CAATTCTTAT	CTCTTTTCAA	TAGCTATAAA	720
TTATTTAATA	AGTAA					
101	_					735

- (2) INFORMATION FOR SEQ ID NO: 116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1029 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

ATGAATAAAA TAAAACTOGG AATTA	
ATGAATAAAA TAAAAGTCGC AATTATCTTC GGCGGTTGCT CGGAGGAACA TGATGTGTCG	60
GTAAAATCCG CAATAGAAAT TGCTGCGAAC ATTAATACTG AAAAATTCGA TCCGCACTAC	120
ATCGGAATTA CAAAAAACGG CGTATGGAAG CTATGCAAGA AGCCATGTAC GGAATGGGAA	
GCCGATAGTC TCCCCGCCAT ATTCTCCCCG GATAGGAAAA CGCATGGTCT GCTTGTCATG	180
AAAGAAAGAG AATAGGAAAG	240
AAAGAAAGAG AATACGAAAC TCGGCGTATT GACGTGGCTT TCCCGGTTTT GCATGGCAAA	300
TGCGGGGAGG ATGGTGCGAT ACAGGGTCTG TTTGAATTGT CTGGTATCCC CTATGTAGGC	360
TGCGATATTC AAAGCTCCGC AGCTTGCATG GACAAATCAC TGGCCTACAT TCTTACAAAA	
AATGCGGGCA TCGCCGTCCC CGAATTTCAA ATGATTGAAA AAGGTGACAA ACCGGAGGCG	420
AGGACGCTTA CCTACGGTTA	480
AGGACGCTTA CCTACCCTGT CTTTGTGAAG CCGGCACGGT CAGGTTCGTC CTTTGGCGTA	540
ACCAAAGTAA ACAGTACGGA AGAACTAAAC GCTGCGATAG AAGCAGCAGG ACAATATGAT	600
GGAAAAATCT TAATTGAGCA AGCGATTTCG GGCTGTGAGG TCGGCTGCGC GGTCATGGGA	
AACGAGGATG ATTTGATTGT CGGCGAAGTG GATCAAATCC GGTTGAGCCA CGGTATCTTC	660
CGCATCCATC ACCANAGO THE CANAGO GATCAAATCC GGTTGAGCCA CGGTATCTTC	720
CGCATCCATC AGGAAAACGA GCCGGAAAAA GGCTCAGAGA ATGCGATGAT TATCGTTCCA	780
GCAGACATTC CGGTCGAGGA ACGAAATCGG GTGCAAGAAA CGGCAAAGAA AGTATATCGG	840
GTGCTTGGAT GCAGAGGGCT TGCTCGTGTT GATCTTTTTT TGCAGGAGGA TGGCGGCATC	040
GTTCTAAACG AGGTCAATAC CCTGCCCGGT TTTACATCGT ACAGCCGCTA TCCACGCATG	900
GCGGCTGCCG CACGAATGA ACAGCCGCTA TCCACGCATG	960
GCGGCTGCCG CAGGAATCAC GCTTCCCGCA CTAATTGACA GCCTGATTAC ATTGGCGATA	1020

- 112 -

GAGAGGTGA 1029

(2) INFORMATION FOR SEQ ID NO: 117:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1031 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:

ATGAAAAAA TTGCCGTTTT ATTTGGAGGG AATTCTCCAG AATACTCAGT GTCACTAACC	60
TCAGCAGCAA GTGTGATCCA AGCTATTGAC CCGCTGAAAT ATGAAGTAAT GACCATTGGC	120
ATCGCACCAA CAATGGATTG GTATTGGTAT CAAGGAAACC TCGCGAATGT TCGCAATGAT	180
ACTTGGCTAG AAGATCACAA AAACTGTCAC CAGCTGACTT TTTCTAGCCA AGGATTTATA	240
TTAGGAGAAA AACGAATCGT CCCTGATGTC CTCTTTCCAG TCTTGCATGG GAAGTATGGC	300
GAGGATGGCT GTATCCAAGG ACTGCTTGAA CTAATGAACC TGCCTTATGT TGGTTGCCAT	360
GTCGCTGCCT CCGCATTATG TATGAACAAA TGGCTCTTGC ATCAACTTGC TGATACCATG	420
GGAATCGCTA GTGCTCCCAC TTTGCTTTTA TCCCGCTATG AAAACGATCC TGCCACAATC	480
GATCGTTTTA TTCAAGACCA TGGATTCCCG ATCTTTATCA AGCCGAATGA AGCCGGTTCT	540
TCAAAAGGGA TCACAAAAGT AACTGACAAA ACAGCGCTCC AATCTGCATT AACGACTGCT	600
TTTGCTTACG GTTCTACTGT GTTGATCCAA AAGGCGATAG CGGGTATTGA AATTGGCTGC	660
GGCATCTTAG GAAATGAGCA ATTGACGATT GGTGCTTGTG ATGCGATTTC TCTTGTCGAC	720
GGTTTTTTG ATTTGAAGA GAAATACCAA TTAATCAGCG CCACGATCAC TGTCCCAGCA	780
CCATTGCCTC TCGCGCTTGA ATCACAGATC AAGGAGCAGG CACAGCTGCT TTATCGAAAC	840
TTGGGATTGA CGGGTCTGGC TCGAATCGAT TTTTTCGTCA CCAATCAAGG AGCGATTTAT	900
TTAAACGAAA TCAACACCAT GCCGGGATTT ACTGGGCACT CCCGCTACCC AGCTATGATG	960
GCGGAAGTCG: GGTTATCCTA CGAAATATTA GTAGAGCAAT TGATTGCACT GGCAGAGGAG	1020
GACAAACGAT G	1031

(2) INFORMATION FOR SEQ ID NO: 118:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 809 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D)	TOPOLOGY:	linear
-----	-----------	--------

- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Abiotrophia adiacens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

TGGTGCTATC TTAGTAGTAT CTGCAGCTGA TGGTCCAATG CCTCAAACAC GTGAACACAT 60 CTTATTATCA CGTCAAGTAG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAGTTGACAT 120 GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCAGA 180 ATACGATTTC CCAGGCGATG ACACTCCAGT TGTTGCAGGT TCTGCTTTAC GCGCTTTAGA 240 AGGCGACGCT TCATACRAAG AAAAAATCTT AGAATTAATG GCTGCTGTTG ACGAATACAT 300 TCCAACTCCA GAACGYGACG TTGACAAACC ATTCATGATG CCAGTTGAAG ACGTGTTCTC 360 AATCACAGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGTGTTGG 420 TGACGAAGTT GAAATCGTTG GTATTTCAGA AGAAACTTCA AAAACAACTG TAACTGGTGT 480 TGAAATGTTC CGTAAATTGT TAGACTACGC TGAAGCAGGG GATAACATTG GTACATTATT 540 ACGTGGTGTT ACACGTGACA ACATCGAACG TGGACAAGTT CTTGCTAAAC CAGGAACAAT 600 CACTCCACAT ACTAAATTCA AAGCTGAAGT TTACGTATTA ACTAAAGAAG AAGGTGGACG 660 TCATACTCCA TTCTTCTCTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CAGACATCAC 720 TGGTGTTTGT GTGTTACCAG AAGGCGTTGA AATGGTAATG CCTGGTGATA ACGTAACTAT 780 GGAAGTTGAA TTAATTCACC CAGTAGCGA 809

- (2) INFORMATION FOR SEQ ID NO: 119:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Abiotrophia defectiva
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:

CGGCGCGATC CTCGTTGTAT CTGCTGCTGA CGGCCCAATG CCACAAACTC GTGAACACAT 60 CCTCTTGTCT CGTCAAGTTG GTGTTCCTTA CATCGTAGTA TTCTTGAACA AAGTTGACAT 120 - 114 -

				GTTCGTGACC		180
ATACGACTTC	CCAGGCGACG	ACACTCCAGT	TATCGCTGGT	TCAGCTTTGA	AAGCTTTAGA	240
AGGGCACGCT	AACTACGAAG	CTAAAGTTTT	AGAATTGATG	GAACAAGTTG	ATGCTTACAT	300
AGGCGACGCI	CAACGTGACA	CTGACAAGCC	ATTCATGATG	CCAGTCGAAG	ACGTATTCTC	360
					TTCGCGTTGG	420
					TTACCGGTGT	480
						540
					GTACCTTGTT	600
					CAGGTTCAAT	660
					AAGGTGGTCG	
TCACACTCC	TTCTTCTCT/	ACTACCGTC	ACAATTCTA	C TTCCGTACA	A CTGACGTAAC	720
					A ACGTACAAAT	780
	A TTGATCCAC					81
GGTTGTTGA	n IIONICO	-				

(2) INFORMATION FOR SEQ ID NO: 120:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida albicans
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:

CTCTGTCAAA TGGGACAAAA ACAGATTTGA AGAAATCATC AAGGAAACCT CCAACTTCGT 60 CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT CCAATCTCTG GTTGGAATGG 120 TGACAACWTG ATTGAASCAT CCACCAACTG TCCATGGTAC AAGGGTTGGG AAAAGGAAAC 180 CANATCCGGT ANAGTTACTG GTANGACCTT GTTAGANGCT ATTGACCGCTA TTGANCCACC 240 AACCAGACCA ACCGACAAAC CATTGAGATT GCCATTRCAA GATGTTTACA AGATCGGTGG 300 TATTGGTACT GTGCCAGTCG GTAGAGTTGA AACTGGTATC ATCAAAGCCG GTATGGTWGT 360 TACTTTCGCC CCAGCTGGTG TTACCACTGA AGTCAARTCC GTTGAAATGC ATCACGAACA 420 ATTGGCTGAA GGTGTTCCAG GTGACAATGT TRGTTTCAAC GTTAAGAACR TTTCCGTTAA 480 AGAAATTAGA AGAGGTAACG TTTGTGGTGA CTCCAAGAAC GATCCACCAA AGGGTTGTGA 540

WO 98/20157

- 115 -

1. 1. 1. 1. 1. 1

(0)						754
TGCTGCTATC	GTCAAGATGG	TCCCAACCAA	ACCA			
	AGAACTGGTA			AAATTCGTCA	AATCCGGTGA	720
COMMON -	GATTGTCACR	CTGCCCACAT	TGCTTGTAAA	TTCGACRCTT	TGGTTGAAAA	660
TCCACTO				CHARICICIG	CIGGTTACTC	600
CTCTTTCAAT	GCCCAAGTCA	TTGTTTTGAA	CCATCCAGGT	<u>ር</u> እ እ ፕሮሞርሞሪ	CTGGTTACTC	

- (2) INFORMATION FOR SEQ ID NO: 121:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida glabrata
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

TCTGTCAAGT GGGATGAATC CAGATTCGCT GAAATCGTTA AGGAAACCTC CAACTTCATC 60 AAGAAGGTCG GTTACAACCC AAAGACTGTT CCATTCGTCC CAATCTCTGG TTGGAACGGT 120 GACAACATGA TTGAAGCCAC CACCAACGCT TCCTGGTACA AGGGTTGGGA AAAGGAAACC 180 AAGGCTGGTG TCGTCAAGGG TAAGACCTTG TTGGAAGCCA TTGACGCTAT CGAACCACCA 240 ACCAGACCAA CTGACAAGCC ATTGAGATTG CCATTGCAAG ATGTCTACAA GATCGGTGGT 300 ATCGGTACGG TGCCAGTCGG TAGAGTCGAA ACCGGTGTCA TCAAGCCAGG TATGGTTGTT 360 ACCTTCGCCC CAGCTGGTGT TACCACTGAA GTCAAGTCCG TTGAAATGCA CCACGAACAA 420 TTGACTGAAG GTTTGCCAGG TGACAACGTT GGTTTCAACG TTAAGAACGT TTCCGTTAAG 480 GAAATCAGAA GAGGTAATGT CTGTGGTGAC TCCAAGAACG ACCCACCAAA GGCTGCTGCT 540 TCTTTCAACG CTACCGTCAT TGTCTTGAAC CACCCAGGTC AAATCTCTGC TGGTTACTCT 600 CCAGTTTTGG ACTGTCACAC CGCCCACATT GCTTGTAAGT TCGAAGAATT GTTGGAAAAG 660 AACGACAGAA GATCCGGTAA GAAGTTGGAA GACTCTCCAA AGTTCTTGAA GTCCGGTGAC 720 GCTGCTTTGG TTAAGTTCGT TCCATCCAAG CCA 753

- (2) INFORMATION FOR SEQ ID NO: 122:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 752 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- 116 -

(iii) MOLECULE	TYPE:	DNA	(genomic)
----------------	-------	-----	-----------

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: Candida krusei
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 122:

		_	mmcmc3 7	CCANACCCAA	AACTTCATCA	60
CCGTTAAGTG	GGATGAAAAC	AGATTTGAAG	AAATTGTCAA	GGMMCCCM		
AGAAGGTTGG	TTACAACCCA	AAGACTGTTC	CATTCGTTCC	AATCTCTGGT	TGGAATGGTG	120
a Ca a Carcar	TGAAGCATCC	ACCAACTGTC	CATGGTACAA	GGGTTGGACT	AAGGAAACCA	180
ACAACATGAT	marma a CCCT	AAGACCTTAT	TAGAAGCAAT	CGATGCTATT	GAACCACCTG	240
AGGCAGGTGT	TGTTAAGGG1	Andrice		manymin Ch NG	ATTGGTGGTA	300
TCAGACCAAC	CGAAAAGCCA	TTAAGATTAC	CATTACAAGA	TGTTTACAAG	ATTGGTGGTA	2.50
TTGGTACTGT	GCCAGTCGGT	AGAGTCGAAA	CCGGTGTCAT	TAAGCCAGGT	ATGGTTGTCA	360
	accaggTGTC	ACCACCGAAG	; TCAAATCCGT	TGAAATGCAC	CATGAACAAT	420
CITTIGCICC	A001.00	·	GTTTCAACGT	TAAGAACGT	TCTGTCAAGG	480
TAGAACAAGG	TGTTCCAGG	GAIAACOII		•	GGTGCAGCTT	540
ATATCAAGAG	AGGTAACGT	TGTGGTGAC	r CCAAGAACGA	CCCACCAAA	GGTGCAGCTT	600
CTTTCAATGO	TCAAGTCAT	r GTCTTGAAC	C ACCCTGGTC	A AATTTCCGC	r GGTTACTCTC	
	s ምምርምሮ <u>ል</u> ሮልሮ	T GCCCACATT	G CATGTAAGT	T CGACGAATT	A ATCGAAAAGA	660
CAGTCTTGG	4 IIGICACAC		C ACCATCCAA	a GTCYGTCAA	G TCTGGTGATG	720
TTGACAGAA	G AACTGGTAA	G TCTGTTGAA	G ACCAICCAA			752
CAGCTATCG	T CAAGATGGT	C CCAACCAAG	C CA			

(2) INFORMATION FOR SEQ ID NO: 123:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida parapsilosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

CTCAGTCAAA TGGGACAAGA RCAGATACGA AGAAATTGTC AAGGAAACTT CCAACTTCGT 60 CAAGAAGGTT GGTTACAACC CTAAAGCTGT CCCATTCGTC CCAATCTCTG GTTGGAACGG 120 TGACAATATG ATTGAACCAT CAACCAACTG TCCATGGTAC AAGGGTTGGG AAAAGGAAAC 180 TARAGCTGGT AAGGTTACCG GTAAGACCTT GTTGGAAGCT ATCGATGCTA TCGARCCACC 240

AACCAGACCA ACTGACAAGC CATTGAGATT GCCATTGCAA GATGTCTACA AGATTGGTGG	
GCCATTGCAA GATGTCTACA AGATTGGTGG	300
TATTGGAACT GTGCCAGTTG GTAGAGTTGA AACCGGTATC ATCAAGGCTG GTATGGTTGT	
TACTITIGCC CCAGCTGGTG TTACGACTGS	360
TACTITTECC CCAGCTEGTE TTACCACTEA AGTCAAGTCC GTTGAAATEC ACCACGAACA	420
ATTGACTGAA GGTGTCCCAG GTGACAATGT TGGTTTCAAC GTCAAGAACG TTTCAGTTAA	
GGAAATCAGA AGACGTAACG TAYTOTTAA	480
GGAAATCAGA AGAGGTAACG TYTGTGGTGA CTCCAAGAAC GATCCACCAA AGGGATGTGA	540
YTCCTTCAAT GCTCAAGTTA TTGTCTTGAA CCACCCAGGT CAAATCTCTG CTGGTTACTC	
ACCAGTCTTG GATTCTGAGA GROOM	600
ACCAGTCTTG GATTGTCACA CTGCCCACAT TGCTTGTAAA TTCGACACTT TGATTGAAAA	660
GATTGACAGA AGAACCGGTA AGAAATTGGA AGWTGAACCA AAATTCATCA AGTCCGGTGA	000
TGCTGCVATG CTCATCA AGTCCGGTGA	720
TGCTGCYATC GTCAAGATGG TCCCAACCAA GCCA	754
(2)	/ 54

- (2) INFORMATION FOR SEQ ID NO: 124:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Candida tropicalis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:

TCTGTTAAAT GGGACAARAA CAGATTTGAA GAAATTATCA AGGA	A A A COURT COME A COME
AAGAAGGTTG GTTACAACCC TAAGGCTGTT CCATTCGTTC CAAT	GACTIC TAACITCGTC 60
GACAACATCA TOTALA	CTCWGG TTGGAATGGT 120
GACAACATGA TTGAAGCTTC TACCAACTGT CCATGGTACA AGGG	TTGGGA AAAAGAAACC 180
AAGGCTGGTA AGGTTACCGG TAAGACTTTG TTGGAAGCCA TTGA	TGCTAT TGAACCACCT 240
TCAAGACCAA CTGACAAGCC ATTGAGATTG CCATTGCAAG ATGT	TTACAA CAMBGOTT
ATTGGTACTG TGCCAGTCGG TAGAGTTGAA ACTGGTGTCA TCAA	TINCAH GAITGGTGGT 300
ACTITYGCCC CACCITICITION	AGCCGG TATGGTTGTT 360
ACTITYGCCC CAGCTGGTGT TACCACTGAA GTCAAATCCG TYGAF	AATGCA CCACGAACAA 420
TTGGCTGAAG GTGTCCCAGG TGACAATGTT GGTTTCAACG TTAAG	SAACGT TTCTGTTAAA 480
GAAATTAGAA GAGGTAACGT TTGTGGTGAC TCCAAGAACG ATCCA	CCAAA COO
TCTTTCAACG CTCAAGTTAT TCTCTTCAAC	CCAAA GGGTTGTGAC 540
TCTTTCAACG CTCAAGTTAT TGTCTTGAAC CACCCAGGTC AAATY	TCTGC TGGTTACTCT 600
CCAGTCTTGG ATTGTCACAC TGCTCATATT GCTTGTAAAT TCGAC	ACCTT GGTTGAAAAG 660
ATTGACAGAA GAACTGGTAA GAAATTGGAA GAAAATCCAA AATTC	GTCAA ATCCCCTCAT
	720

- 118 -

	753
GCTGCTATTG TCAAGATGGT TCCAACCAAA CCA	
(2) INFORMATION FOR SEQ ID NO: 125:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Corynebacterium accolens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:	
CGGCGCTATC CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GCGAGCACGT	60
TCTGCTTGCT CGCCAGGTTG GCGTTCCTTA CATCCTCGTT GCACTGAACA AGTGCGACAT	120
GGTTGATGAT GAGGAAATCA TCGAGCTCGT GGAGATGGAG ATCTCCGAGC TGCTCGCAGA	180
GCAGGACTAC GATGAGGAAG CTCCTATCGT TCACATCTCC GCTCTGAAGG CACTCGAGGG	240
TGACGAGAAG TGGGTACAGT CCATCGTTGA CCTGATGGAT GCCTGCGACA ACTCCATCCC	300
TGATCCGGAG CGCGCTACCG ATCAGCCGTT CTTGATGCCT ATCGAGGACA TCTTCACCAT	360
TACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGTCGTCTGA ACGTCAACGA	420
GGACGTTGAG ATCATCGGTA TCCAGGAGAA GTCCCAGAAC ACCACCGTTA CCGGTATCGA	480
GATGTTCCGC AAGATGATGG ACTACACCGA GGCTGGCGAC AACTGTGGTC TGCTTCTGCG	540
TGGTACCAAG CGTGAGGACG TTGAGCGTGG CCAGGTTGTT ATCAAGCCGG GCGCTTACAC	60
CCCTCACACC AAGTTCGAGG GTTCCGTCTA CGTCCTGAAG AAGGAAGAGG GCGGCCGCCA	66
CACCCCGYTC ATGAACAACT ACCGTCCTCA GTTCTACTTC CGCACCACCG ACGTTACCGG	72
TGTTGTGAAC CTGCCTGAGG GCACCGAGAT GGTTATGCCT GGCGACAACG TTGAGATGTC	78
TGTTGAGCTC ATCCAGCCTG TTGCTATGGA CGAG	83
(2) INFORMATION FOR SEQ ID NO: 126:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(vi) ORIGINAL SOURCE:

(ii) MOLECULE TYPE: DNA (genomic)

- 119 -

WO 98/20157 PCT/CA97/00829 -

(A) ORGANISM: Corynebacterium diphteriae

			cor yne.	Jacc	eri	un d	iphteri	a
(xi)	SEQUENCE	DESCRI	PTION:	SEQ	ID	NO:	126:	

CGGCGCAAT	C CTCGTTGTT	G CTGCCACCG	A CGGCCCAAT	G CCTCAGACC	C GTGAGCACGT	60
TCTGCTCGC	T CGCCAGGTC	G GCGTTCCTT	A CATCCTCGT	T GCTCTGAAC	A AGTGCGACAT	120
GGTTGATGA	T GAGGAAATC	A TCGAGCTCG	r cgagatgga	G ATCCRTGAG	C TGCTCGCTGA	180
GCAGGATTA	C GACGAAGAG	G CTCCAATCA	r ccacatctcc	GCACTGAAG	G CTCTTGAGGG	240
CGACGAGAA	G TGGACCCAGT	CCATCATCG	CCTCATGCAG	GCTTGCKATO	ATTCCATCCC	300
AGACCCAGAC	G CGTGAGACCG	ACAAGCCATT	CCTCATGCCT	' ATCGAGGACA	TCTTCACCAT	360
CACCGGCCGC	GGTACCGTTG	TTACCGGCCG	TGTTGAGCGT	GGCTCCCTGA	AGGTCAACGA	420
GGACGTCGAG	ATCATCGGTA	TCCGCGAGAA	KGCTACCACC	ACCACCGTTA	CCGGTATCGA	480
GATGTTCCGT	AAGCTTCTCG	ACTACACCGA	GGCTGGCGAC	AACTGTGGTC	TGCTTCTCCG	540
TGGCGTTAAG	CGCGAAGACG	TTGAGCGTGG	CCAGGTTGTT	GTTAAGCCAG	GCGCTTACAC	600
CCCTCACACC	GAGTTCGAGG	GCTCTGTCTA	CGTTCTGTCC	AAGGACGAGG	GTGGCCGCCA	660
CACCCCATTC	TTCGACAACT	ACCGCCCACA	GTTCTACTTC	CGCACCACCG	ACGTTACCGG	720
TGTTGTGAAG	CTTCCTGAGG	GCACCGAGAT	GGTCATGCCT	GGCGACAACG	TCGACATGTC	780
	ATCCAGCCTG					814

(2) INFORMATION FOR SEQ ID NO: 127:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Corynebacterium genitalium
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

CGGCGCCATC CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GTGAGCACGT 60

TCTGCTGGCT CGCCAGGTTG GCGTTCCGTA CATCCTAGTT GCACTGAACA AGTGCGACAT 120

GGTTGATGAT GAGGAGCTGC TGGAGCTCGT CGACGATGGAG GTCCGCGAGC TGCTGGCTGA 180

GCAGGACTTC GACGAGGAAG CACCTGTTGT TCACATCTCC GCACTGAAGG CCCTGGAGGG 240

CGACGAGAAG TGGGCTAAGC AGATCCTGGA GCTCATGGAG GCTTGCGACA ACTCCATCCC 300

PCT/CA97/00829 - WO 98/20157

- 120 -

GGATCCGGAG CGCGAGACCG ACAAGCCGTT CCTGATGCCG GTTGRGGACA TCTTCACCAT 360 TACCGGCCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCGTCCTGA ACCTGAACGA 420 CGAGGTCGAG ATCCTGGGCA TCCGCGAGAA GTCCACCAAG ACCACCGTTA CCTCCATCGA 480 GATGTTCAAC AAGCTGCTGG ACACCGCAGA GGCTGGCGAC AACGCCGCAC TGCTGCTGCG 540 TGGCCTGAAG CGCGAAGATG TTGAGCGTGG TCAGATCGTT GCTAAGCCGG GCGAGTACAC 600 CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTTCTGTCC AAGGACGAGG GTGGCCGCCA 660 CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTATTTC CGCACCACCG ACGTTACCGG 720 TGTTGTGAAG CTGCCGGAGG GCACCGAGAT GGTTATGCCG GGCGACAACG TTGACATGTC 780 814 CGTCACCCTG ATCCAGCCGG TTGCTATGGA CGAG

- (2) INFORMATION FOR SEQ ID NO: 128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Corynebacterium jeikeium
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

CGGCGCCATC CTGGTTGTTG CCGCAACCGA TGGCCCGATG CCGCAGACCC GCGAGCACGT 60 TCTGCTGGCY CGCCAGGTTG GCGTTCCGTA CATCCTGGTT GCACTGAACA AGTGTGACAT 120 GGTTGACGAT GAGGAGCTGC TGGAGCTCGT CGAGATGGAG GTCCGCGAGC TGCTGGCTGA 180 GCAGGACTTC GACGAGGAAG CTCCGGTTGT TCACATCTCC GCACTGAAGG CCCTGGAGGG 240 CGACGAGAAG TGGGCTAACC AGATTCTCGA GCTGATGCAG GCTTGCGACG AGTCTATCCC 300 GGATCCGGAG CGCGAGACCG ACAAGCCGTT CCTGATGCCG GTTGWGGACA TCTTCACCAT 360 TACCGGTCGC GGTACCGTTG TTACCGGCCG TGTTGAGCGT GGCATCCTGA ACCTGAACGA 420 CGAGGTTGAG ATCCTGGGTA TCCGCGAGAA GTCCCAGAAG ACCACCGTTA CCTCCATCGA 480 GATGTTCAAC AAGCTGCTGG ACACCGCAGA GGCTGGCRAC AACGCTGCAC TGCTGCTGCG 540 TGGTCTGAAG CGCGAGGACG TTGAGCGTGG CCAGATCATC GCTAAGCCGG GCGAGTACAC 600 CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTTCTGTCC AAGGACGAGG GCGGCCGCCA 660 CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTACTTC CGCACCACCG ACGTTACCGG 720 WO 98/20157 PCT/CA97/00829-

- 121 -	
TGTTGTGAAG CTGCCTGAGG GCACCGAGAT GGTTATGCCG GGCGACAACG TYGACATGTC	780
(2) INFORMATION FOR SEQ ID NO: 129:	814
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 748 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Corynebacterium pseudodiphteriticum	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
CGGCGCTATC TTGGTTGTTG CAGCTACCGA CGGCCCAATG CCACAGACTC GCGAGCACGT	60
TCTGCTGGCT CGCCAGGTTG GCGTTCCTTA CATCCTGGTT GCACTAAACA AGTGCGACAT	120
GGTTGACGAC GAGGAAATCC TCGAGCTCGT CGAGATGGAG ATCCGCGAAT TGCTGGCTGA	180
CCAGGAATTC GACGAAGAAG CTCCAATCGT TCACATCTCC GCAGTCGGCG CCTTGGAAGG	240
CGAAGAGAGG TGGGTTAACG CCATCGTTGA ACTGATGGAT GCTTGTGACG AGTCGATCCC	300
TGATCCAGAC CGTGCTACCG ACAAGCCATT CCTGATGCCT ATCGAGGACA TCTTCACCAT	360
TACCGGTCGT GGCACCGTTG TTACGGGTCG TGTTGAGCGT GGTTCCCTGA AGGTCAACGA	420
AGAAGTCGAG ATCATCGGCA TCAAGGAAAA GTCCCAGAAG ACCACCATCA CCGGTATCGA	480
AATGTTCCGC AAGATGCTGG ACTACACCGA GGCCGGCGAC AACGCTGGTC TGCTGCTTCG	540
CGGTACCAAG CGTGAAGACG TTGAGCGTGG ACAGGTTATC GTTGCTCCAG GTGCTTACAG	600
CACCCACAAG AAGTTCGAAG GTTCCGTCTA CGTTCTTTCC AAGGACGAGG GCGGCCGCCA	660
CACCCCGTTC TTCGACAACT ACCGTCCTCA GTTCTACTTC CGCACCACCG ACGTTACCGG	720
TGTTGTTACC CTGCCTGAGG GCACCGAG	748
(2) INFORMATION FOR SEQ ID NO: 130:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

- 122 -

(A) ORGANISM: Corynebacterium striatum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130: GGCGCTATCT TGGTTGTTGC TGCAACCGAT GGCCCGRTGC CGCAGACCCG CGAGCACGTT 60 CTTCTGGCTC GCCAGGTTGG CGTTCCTTAC ATCCTCGTTG CACTGAACAA GTGCGACATG 120 GTTGACGACG AGGAAATTAT CGAGCTCGTC GAGATGGAGA TCCGCGAACT GCTCGCAGAG 180 CAGGACTACG ATGAGGAAGC TCCGATCGTT CACATCTCTG CTCTGAAGGC TCTTGAGGGC 240 GRCGAGAAGT GGGTACAGGC TATCGTTGAC CTGATGCAGG CTTGCGATGA CTCCATCCCG 3.00 GATCCGGAGC GCGAGCTGGA CAAGCCGTTC CTGATGCCAA TCGAGGACAT CTTCACCATC 3.60 ACCGGCCGCG GTACCGTTGT TACTGGCCGT GTTGAGCGTG GCTCCCTGAA CGTCAACGAG 420: GACGTTGAGA TCATCGGTAT CCAGGACARG TCCATCTCCA CCACCGTTAC CGGTATCGAG 480 ATGYTCCGCA AGATGATGGA CTACACCGAG GCTGGCGACA ACTGTGGTCT GCTTCTGCGT 540 GGTACCAAGC GTGAAGAGGT TGAGCGCGGC CAGGTTGTTA TTAAGCCGGG CGCTTACACC 600 CCTCACACCC AGTTCGAGGG TTCCGTCTAC GTCCTGAAGA AGGAAGAGGG CGGCCGCCAC 660 ACCCCGTTCA TGGACAACTA CCGTCCGCAG TTCTACTTCC GCACCACCGA CGTTACCGGC 720 GTCATCAAGC TGCCTGAGGG CACCGAGATG GTTATGCCTG GCGACAACGT CGAGATGTCY 780

(2) INFORMATION FOR SEQ ID NO: 131:

GTCGAGCTGA TCCAGCCGGT CGCTATGGAC GAG

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus avium
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:

CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACTC GTGAACACAT 60

CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAATGGATAT 120

GGTTGACGAT GAAGAATTAC TTGAATTAGT TGAAATGGAA GTTCGTGACT TATTAACTGA 180

ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCAGGT TCAGCGTTGA AAGCTTTAGA 240

AGGCGACGCT TCATACGAAG AAAAAATCTT AGAATTAATG GCTGCTGTTG ACGAATATAT 300

813

WO 98/20157 PCT/CA97/00829 -

CCCAACACCA	GTTCGTGATA	CTGACAAACC	ATTCATGATG	CCAGTCGAAG	ACGTATTCTC	360
AATCACTGGT	CGTGGTACTG	TTGCAACTGG	TCGTGTTGAA	CGTGGACAAG	TTCGCGTTGG	420
TGACGAAGTT	GAAATCGTAG	GTATCGCTGA	CGAAACTGCT	AAAACAACTG	TTACAGGTGT	480
TGAAATGTTC	CGTAAATTGT	TAGACTACGC	TGAAGCAGGT	GACAACATCG	GTGCTTTGTT	
ACGTGGTGTT	GCACGTGAAG	ATATCCAACG	TGGACAAGTA	TTGGCTAAAC	CAGCTTCAAT	540
CACTCCACAT	ACAAAATTCT	CTGCAGAAGT	TTATGTTCTA	ACTAAAGAAG	AAGGTGGACG	600
TCATACTCCA	TTCTTCACTA	ACTACCGTCC	TCAGTTCTAC	TTCCGTACAA	CTCACCTAAG	660
TGGTGTAGTT	GATCTACCAG	AAGGTACTGA	AATGGTWATG	CCTGGGGATA	ACCUR ROWS -	720
GGAAGTTGAA	TTGATYCACC (CAATYGCGGT 1	AGAAGAC		ACGIAACTAT	780
(2) INFORMAT						817

- (2) INFORMATION FOR SEQ ID NO: 132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Enterococcus faecalis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGTCCTATG CCTCAAACAC GTGAACATAT 60 CTTATTATCA CGTAACGTTG GTGTACCATA CATCGTTGTA TTCTTAAACA AAATGGATAT 120 GGTTGATGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCAGA 180 ATACGATTTC CCAGGCGATG ATGTTCCAGT TATCGCAGGT TCTGCTTTGA AAGCTTTAGA 240 AGGCGACGAG TCTTATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT CCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC 360 AATCACTGGA CGTGGTACTG TTGCTACAGG ACGTGTTGAA CGTGGTGAAG TTCGCGTTGG 420 TGACGAAGTT GAAATCGTTG GTATTAAAGA CGAAACATCT AAAACAACYG TTACAGGTGT 480 TGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCAGGC GACAACMTCG GTGCTTTATT 540 ACGTGGTGTA GCACGTGAAG ATATCGAACG TGGACAAGTA TTAGCTAAAC CAGCTACAAT 600 CACTCCACAC ACAAAATTCA AAGCTGAAGT ATACGTATTA TCAAAAGAAG AAGGCGGACG 660 TCACACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CAGACGTTAC 720

WO 98/20157

- 124 -

TGGTGTTGTA GAATTGCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACGTTGCTAT	780
GGACGTTGAA TTAATTCACC CAATCGCTAT CGAAGAC	817
(2) INFORMATION FOR SEQ ID NO: 133:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 774 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Enterococcus faecium	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:	
CGGAGCTATC TTGGTAGTTT CTGCTGCTGA CGGCCCAATG CCTCAAACTC GTGAACACAT	60
CCTATTGTCT CGTCAAGTTG GTGTTCCTTA CATCGTTGTA TTCTTGAACA AAGTAGACAT	120
GGTTGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTAACAGA	180
ATACRAATTC CCTGGTGRCG ATGTTCCTGT AGTTGCTGGA TCAGCTTTGA AAGCTCTAGA	240
AGGCGACGCT TCATACGAAG AAAAAATTCT TGAATTAATG GCTGCAGTTG ACGAATACAT	300
CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ACGTGTTCTC	360 420
AATTACTGGA CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG	
TGACGAAGTT GAAGTTGTTG GTATTGCTGA AGAAACTTCA AAAACAACAG TTACTGGTGT	480
TGAAATGTTC CGTAAATTGT TAGACYACGC TGAAGCTGGA GACRACATTG GTGCTTTACT	540
ACGTGGTGTT GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT	600
CACACCTCRT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACAAAAGAAG AAGGTGGACG	660
TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC	720
AGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTCATG CCCGGTGACA ACGT	774
(2) INFORMATION FOR SEQ ID NO: 134:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 809 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:

WO 98/20157

(A) ORGANISM: Enterococcus gallinarum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:

CGGTGCGATC TTAGTAGTAT CTGCTGCTGA CGGTCCTATG CCTCAAACTC GTGAACACAT	60
CTTGTTATCA CGTAACGTTG GCGTACCATA CATCGTTGTT TTCTTGAACA AAATGGATAT	120
GGTTGAYGAC GAAGAATTGC TAGAATTAGT TGAAATGGAA GTTCGTGACC TATTGTCTGA	
ATATGACTTC CCAGGCGACG ATGTTCCTGT AATCGCCGGT TCTGCTTTGA AAGCTCTTGA	180
AGGAGATCCT TCATACGAAG AAAAAATCAT GGAATTGATG GCTGCAGTTG ACGAATACGT	240
TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC	300
AATCACTGGA CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGACAAG TTCGCGTTGG	360
TGATGAAGTA GAAATCGTTG GTATTGCTGA CGAAACTGCT AAAACAACTG TAACAGGTGT	420
TGAAATGTTC CGTAAATTGT TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT	480
ACGTGGGGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACAAT	540
CACACCTCAT ACABATTCA ACCTCANCE TOGACAGTA TTGGCTAAAG CTGGTACAAT	600
CACACCTCAT ACAAAATTCA AAGCTGAAGT TTATGTTTTG ACAAAAGAAG AAGGTGGACG	660
TCACACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC	720
TGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTGATG CCTGGCGACA ACGTGACCAT	780
CGACGTTGAA TTGATRCACC CAATCGCTC	809

- (2) INFORMATION FOR SEQ ID NO: 135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 823 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Gardnerella vaginalis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

TGGCGCAATC CTCGTGGTTG CTGCTACCGA CGGTCCAATG GCTCAGACCC GTGAACACGT 60
CTTGCTTGCT AAGCAGGTCG GCGTTCCAAA AATTCTTGTT GCTTTGAACA AGTGCGATAT 120
GGTTGACGAC GAAGAGCTTA TCGATCTCGT TGAAGAAGAG GTCCGTGACC TCCTCGAAGA 180
AAACGGCTTC GATCGCGATT GCCCAGTCYT CCGTACTTCC GCTTACGGCG CTTTGCATGA 240
TGACGCTCCA GACCACGACA AGTGGGTAGA GACCGTCAAG GAACTCATGA AGGCTGTTGA 300

PCT/CA97/00829 - WO 98/20157

- 126 -

	CCAACCCCAA	ሪ መሮ እ ሮር እ ፕርጥ	TGACAAGCCA	TTCTTGATGC	CAATCGAAGA	360
CGAGTACATC	CCAACCCCAA	CICACGAICI	10		CTCCTAACCT	420
TGTGTTCACC	ATCTCCGGTC	GTGGTYCCGT	TGTCACCGGT	CGTGTTGAGC	GTGGTAAGCT	
сссаатсаас	ACCCCAGTTG	AGATCGTTGG	TTTGCGCGAT	ACCCAGACCA	CCACCGTCAC	480
	accttccaca	AGCAGATGGA	TGAGGCAGAG	GCTGGCGATA	ACACTGGTCT	540
CTCTATCGAG	7,000	CTACCCACGT	TGAGCGTGGT	CAGGTTGTGG	CTGCTCCAGG	600
TCTTCTCCGC	GGTATCAACC	GIACCOACOI	20110		ACGACGAAGG	660
TTCTGTGACT	CCACACACCA	AGTTCGAAGG	CGAAGTTTAC	GTCTTGACCA	AGGACGAAGG	
	· TCGCCATTCI	TCTCCAACT	CCGTCCACAG	TTCTACTTCC	GTACCACCGA	720
TGGCCGTCAC	, 100000		CATCGABATC	GTTCAGCCA(G GCGATCACGC	780
						823
AACCTTCAC	r GTTGAGTTG	A TCCAGGCTA	r cgcaatggai	A GAG		023

(2) INFORMATION FOR SEQ ID NO: 136:

1

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Listeria innocua
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:

CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACATAT 60 CTTACTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT GGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGCGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240 AGGTGAAGCT GACTGGGAAG CTAAAATTGA CGAGTTAATG GAAGCTGTAG ATTCTTACAT 300 TCCAACTCCA GAACGTGATA CTGACAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC 360 AATCACTGGT CGTGGAACAG TTGCAACTGG ACGTGTTGAA CGTGGACAAG TTAAAGTTGG 420 TGACGAAGTA GAAGTTATCG GTATTGAAGA AGAAAGCAAA AAAGTAGTAG TAACTGGAGT 480 AGAAATGTTC CGTAAATTAC TAGACTACGC TGAAGCTGGC GACAACATTG GCGCACTTCT 540 ACGTGGTGTT GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTAGCTAAAC CAGGTTCGAT 600 TACTCCACAC ACTAACTTCA AAGCTGAAAC TTATGTTTTA ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720

818

TGGTATTGTT ACACTTCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACATTGAGCT	700
TGCAGTTGAA CTAATTGCAC CAATCGCTAT CGAAGAC	780
(2) INFORMATION FOR SEQ ID NO: 137:	817
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Listeria ivanovii	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGTCCAATG CCACAAACTC GTGAACATAT	60
TCTTACTTTC ACGTCAAGTT GGTGTTCCAT ACATCGTTGT ATTCATGAAC AAATGTGACA	
TGGTTGACGA TGAAGAATTA CTTGAATTAG TTGAAATGGA AATTCGTGAT CTATTAACTG	120
AATATGAATT CCCTGGCGAC GACATTCCTG TAATCAAAGG TTCAGCTCTT AAAGCACTTC	180
AAGGTGAAGC TGATTGGGAA GCTAAAATTG ACGAGTTAAT GGAAGCTGTA GATTCTTACA	240
TTCCAACTCC AGAACGTGAT ACTGACAAAC CATTCATGAT GCCAGTTGAG GATGTATTCT	300
CAATCACTGG TCGTGGAACA GTTGCAACTG GACGTGTTGA ACGTGGACAA GTTAAAGTTG	360
GTGACGAAGT AGAAGTTATC GGTATTGAAG AAGAAAGCAA AAAAGTAGTA GTAACTGGAG	420
TAGAAATGTT CCGTAAATTA CTAGACTACG CTGAAGCTGG CGACAACATT GGCGCACTTC	480
TACGTGGTGT TGCTCGTGAA GATATCCAAC GTGGTCAAGT ATTAGCTAAA CCAGGTTCGA	540
TTACTCCACA TACTAACTTC AAAGCTGAAA CTTATGTTTT AACTAAAGAA GAAGGTGGAC	600
GTCATACTCC ATTCTTCAAC AACTACCGCC CACAATTCTA TTTCCGTACT ACTGACGTAA	660
CTGGTATTGT TACACTTCCA GAAGGTACTG AAATGGTAAT GCCTGGTGAT AACATTGAGC	720
TTGCAGTTGA ACTAATTGCA CCAATCGCTA TCGAAGAC	780
	

- (2) INFORMATION FOR SEQ ID NO: 138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- 128 -

(vi)	ORIGINAL	SOURCE:	
, /		and the second of the second o	

(A) ORGANISM: Listeria monocytogenes

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138: CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACATAT 60 CTTACTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT 120 GGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGCGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240 AGGTGAAGCT GACTGGGAAG CTAAAATTGA CGAGTTAATG GAAGCTGTAG ATTCTTACAT 300 TCCAACTCCW GAACGTGATA CTGACAAACC ATTCATGATG CCAGTTGAGG ATGTATTCTC 360 AATCACTGGT CGTGGAACAG TTGCAACTGG ACGTGTTGAA CGTGGACAAG TTAAAGTTGG 420 TGACGAAGTA GAAGTTATCG GTATCGAAGA AGAAAGCAAA AAAGTAGTAG TAACTGGAGT 480 AGAAATGTTC CGTAAATTAC TAGACTACGC TGAAGCTGGC GACAACATTG GCGCACTTCT 540 ACGTGGTGTT GCTCGTGAAG ATATCCAACR TGGTCAAGTA TTAGCTAAAC CAGGTTCGAT 600 TACTCCACAC ACTAACTTCA AAGCTGAAAC TTATGTTTTA ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720

TGGTATTGTT ACACTTCCAG AAGGTACTGA AATGGTAAYG CCTGGTGATA ACATTGAGCT

780 817

(2) INFORMATION FOR SEQ ID NO: 139:

(i) SEQUENCE CHARACTERISTICS:

TGCAGTTGAA CTAATTGCAC CAATCGCTAT CGAAGAC

- (A) LENGTH: 817 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Listeria seeligeri
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:

CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACATAT 60 CTTACTTCA CGTCAAGTTG GTGTTCCATA CATCGTTGTA TTCATGAACA AATGTGACAT 120 GGTTGACGAT GAAGAATTAC TTGAATTAGT TGAAATGGAA ATTCGTGATC TATTAACTGA 180 ATATGAATTC CCTGGTGATG ACATTCCTGT AATCAAAGGT TCAGCTCTTA AAGCACTTCA 240

SUBSTITUTE SHEET (RULE 26)

099	ASTESASETS	DAADDADAAA	ADIATIATOD	ATATĐAAĐAD	DAAADTTAAD	TOWTUOUSON
009	DATTAADTTƏ	STOOTOSIOS	ATTATĐAADT	DDIDOVYDAL	ээдэхдэээ	TO 2.1.2.2.2.2.2.2.4.2.2.2.4.2.2.4.2.2.4.2.2.2.2.2.4.2
075					DATTATTAAA	
480					DATTATTAGA	
450					STOATSSTSO SOTASTAAAS	
360					TTA5T52AA5	
300	TADATTDATA					
240						
08T	ADGCTTTAGA					
720	TACASTICACAT		AADDTAAADA	TĐATTAAĐAT	TATTAADAAD	TABDABTTBB
09	TACACATE A		ATDATDATIA :	DDADDATDTD	OTTBOAATĐO	AOTATTTTT
	TADADAADTD :			RECTGCTG	TATDATDATT :	OTATESTES

- (x;) SEĞNENCE DESCHIBLION: SEĞ ID NO: 140:
- (vi) ORIGINAL SOURCE:
 - (ii) MOLECULE TYPE: DNA (genomic)

- (D) TOPOLOGY: linear
- (C) STRANDEDNESS: double
- (B) TYPE: nucleic acid
- (A) LENGTH: 814 base pairs
- (i) SEQUENCE CHARACTERISTICS:
- (S) INFORMATION FOR SEQ ID NO: 140:

718 DADADA TATOGOTAGO CANTORATO AGENTACADO TODADITADA ATADIDOTOS DIAATDDIAA ADIDATADA DADOTIDADA TIDITATADI 780 DAATEDABTD ATDATEDOTT TATDITAADA DODDODATDA ADAADITOTA ADOTDADADI 150 SOABSTEAM BAABAATDA ATTTTATT DAAASTDSAA ADTTDAATDA TADADDAAT 099 009 TABOTTEBAD DAAATDEATT ATEAADTEST EDAADOTATA BAAETESTED TTEAEGTETET TOTTOADDDD DITADAACTGGC CEACAACTTGC GACAACATTG GCGCCACTTCT 015 087 TGACGARGTA GARGTAATGG GTATTGAAGA AGAAAGTAATGG TAACTGGAGT AATCACTGGT CGTGGAACTG TTGCAACTGG ACGTGTGAA CGTGGACAAG TTAAAGTTGG 450 360 TCCAACTCCA GAACGTGATA CTGACAACA CCAGTTGAGG ATGTTTTCTC ACCTEANACT GACTEGGAAG CTAAATTGA CGACTTAATG GAAGCTGTAG TJGACATTACAT 300

	PCT/CA97/0082
VA 09/20157	

WO 98/20157	
	· -
- 130 -	
CACTCCATTC TTCTCAAACT ATCGTCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG	720
TGTTGTTCAC TTACCAGAAG GTACTGAAAT GGTAATGCCT GGTGATAACG TTGAAATGAC	780
AGTAGAATTA ATCGCTCCAA TCGCGATTGA AGAC	814
(2) INFORMATION FOR SEQ ID NO: 141:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 814 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus epidermidis	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
CGGCGGTATC TTAGTTGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC GTGAACACAT	60
CUTTATTATCA CGTAACGTTG GTGTACCAGC ATTAGTTGTA TTCTTAAACA AAGTTGACAT	120

CTTATTATCA CGTAACGTTG GTGTACCAGC GGTAGACGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAAGCGA 180 ATATGACTTC CCAGGTGACG ATGTACCTGT AATCGCTGGT TCTGCATTAA AAGCATTAGA 240 AGGCGATGCT GAATACGAAC AAAAAATCTT AGACTTAATG CAAGCAGTTG ATGATTACAT 300 TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTWGG 420 TGAAGAAGTT GAAATCATCG GTATGCACGA AACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG 540 TGGTGTTGCA CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCTATTAC 600 ACCACACAA AAATTCAAAG CTGAAGTATA CGTATTATCT AAAGATGAAG GTGGACGTCA 660 CACTCCATTC TTCACTAACT ATCGCCCACA ATTCTATTTC CRTACTACTG ACGTAACTGG 720 TGTTGTAAAC TTACCAGAAG GTACAGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC 780 814 AGTTGAATTA ATCGCTCCAA TCGCTATCGA AGAC

(2) INFORMATION FOR SEQ ID NO: 142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	DNA	(genomic)	
1 1	ADT G 7100 -				

- (vi) ORIGINAL SOURCE:
 (A) ORGANISM: Staphylococcus saprophyticus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCACAAACTC GTGAACACAT 60 TCTTTTATCA CGTRACGTTG GTGYTCCAGC ATTAGTTGTA TTCTTAAACA AAGTTGACAT 120 GGTTGACGAY GAAGAATTAT TAGAATTRGT AGAAATGGAA GTTCGTGRCT TATTAAGCGA 180 ATATGACTTC CCAGGTGACG ATGTACCTGT AATCTCTGGT TCTGCATTAA AAGCTTTAGA 240 AGGCGACGCT GACTATGAGC AAAAAATCTT AGACTTAATG CAAGCTGTTG ATGACTYCAT 300 TCCAACACCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTCGG 420 TGAAGAAATC GARATCATCG GTATGCAAGA AGAATCAAGC AAAACAACTG TTACTGGTGT 480 AGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCTGGT GACAACATTG GTGCATTATT 540 ACGTGGTGTT TCACGTGATG ATGTACAACG TGGTCAAGTT TTAGCTGCTC CTGGTACTAT 600 CACACCACAT ACAAAATTCA AAGCGGATGT TTACGTTTTA TCTAAAGATG AAGGTGGTCG 660 TCATACGCCA TTCTTCACTA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC 720 TGGTGTTGTT AACTTACCAG AAGGTACTGA AATGGTTATG CCTGGCGATA ACGTTGAAAT 780 GGATGTTGAA TTAATTTCTC CAATCGCTAT TGAAGAC 817

- (2) INFORMATION FOR SEQ ID NO: 143:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Staphylococcus simulans
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

CGGCGGTATC TTAGTAGTAT CTGCTGCAGA TGGTCCAATG CCACAAACTC GTGAACACAT 60 CTTATTATCA CGTAACGTTG GTGTACCAGC TTTAGTTGTA TTCTTAAACA AAGCTGACAT 120 GGTTGACGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTATCTGA 180 PCT/CA97/00829 -WO 98/20157

- 132 -

car commo	CCTGGTGACG	ATGTACCAGT	TATCGTTGGT	TCTGCATTAA	AAGCTTTAGA	240
ATACGACTIC	GAATACGAAC	TOTAGGGG	AGACTTAATG	CAAGCTGTAG	ATGACTACAT	300
AGGCGACCCA	GAACGTGACT		TTTCATGATG	CCAGTTGAGG	ACGTATTCTC	360
CCCAACTCCA	GAACGTGACT	CTGATAAACC	All College	ССТССТСААА	TCAAAGTCGG	420
AATCACTGGT	CGTGGTACTG	TAGCAACAGG	CCGTGTTGAA	2272677676	TCAAAGTCGG	480
TGAAGAAGTT	GAAATCATCG	GTATCACTGA	AGAAAGCAAG	AAAACAACAG	TTACAGGTGT	540
AGAAATGTTC	CGTAAATTAT	TAGACTACGC	TGAAGCTGGT	GACAACATCG	GTGCTTTATT	
ACGTGGTGTT	GCACGTGAAG	ACGTACAACG	TGGACAAGTA	TTAGCAGCTC	CTGGCTCTAT	600
ሞልሮፕሮርACAC	ACAAAATTCA	AAGCTGATGI	TTACGTTTT	TCTAAAGAAG	AAGGTGGACG	660
manma cmcci	· TTCTTCACT	A ACTACCGCCC	ACAATTCTA	TTCCGTACT	A CTGACGTAAC	720
TCATACTCC	- CACTETACCA	n aggtactg	A AATGGTTAT	G CCTGGCGAT	A ACGTAGAAAT	780
						817
GACTGTTGA	A TTGATCGCT	C CAATCGCGA	1 10,210,10			

(2) INFORMATION FOR SEQ ID NO: 144:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus agalactiae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

CGGAGCTATC CTTGTAGTTG CTTCAACTGA TGGACCAATG CCACAAACTC GTGAGCACAT 60 CCTTCTTCA CGTCAAGTTG GTGTTAAACA CCTTATCGTA TTCATGAACA AAGTTGACCT 120 TGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATTCGTGACC TTCTTTCAGA 180 ATACGACTTC CCAGGTGATG ACCTTCCAGT TATCCAAGGT TCAGCTCTTA AAGCACTTGA 240 AGGCGACGAA AAATACGAAG ACATCATCAT GGAATTGATG AGCACTGTTG ATGAGTACAT 300 TCCAGAACCA GAACGTGATA CTGACAAACC TTTACTTCTT CCAGTTGAAG ATGTATTCTC 360 AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTACTG TTCGTGTCAA 420 CGACGAAGTT GAAATCGTTG GTATTAAAGA AGATATCCAA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTTCTTCT 540 TCGTGGTGTT CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT 600

CAAC	CCACAC	ACTAAATTTA	AAGGTGAAGT	TT NO N MOSS		AAGGTGGACG	
TO MIN				TIACATCCTT	TCTAAAGAAG	AAGGTGGACG	660
ICATA	ACTCCA	TTCTTCAACA	ACTACCGTCC	ACAATTCTAC	TTCCGTACAA	CTGACGTAAC	
AGGTT	CAATC	GAACTTCCAG	CAGGAACAGA	A A TCCTTA TO		ACGTTACTAT	720
CCNAC	mmas s			AAIGGITATG	CCTGGTGATA	ACGTTACTAT	780
CGAAG	TIGAA	TTGATTCACC	CAATCGCCGT	AGAACAA			
(2) T	MEARIN						817

- (2) INFORMATION FOR SEQ ID NO: 145:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Streptococcus pneumoniae
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 145:

CGGAGCTATC CTTGTAGTAG CTTCAACTGA CGGACCAATG CCACAAACTC GTGAGCACAT 60 CCTTCTTTCA CGTCAGGTTG GTGTTAAACA CCTTATCGTC TTCATGAACA AAGTTGACTT 120 GGTTGACGAC GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TATTGTCAGA 180 ATACGACTTC CCAGGTGACG ATCTTCCAGT TATCCAAGGT TCAGCACTTA AAGCTCTTGA 240 AGGTGACTCT AAATACGAAG ACATCGTTAT GGAATTGATG AACACAGTTG ATGAGTATAT 300 CCCAGAACCA GAACGTGACA CTGACAAACC ATTGCTTCTT CCAGTCGAGG ACGTATTCTC 360 AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTATCG TTAAAGTCAA 420 CGACGAAATC GAAATCGTTG GTATCAAAGA AGAAACTCRA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGAAGG TCTTGCTGGA GATAACGTAG GTGTCCTTCT 540 TCGTGGTGTT CAACGTGATG AAATCGAACG TGGACAAGTT ATCGCTAAAC CAGGTTCAAT 600 CAACCCACAC ACTAAATTCA AAGGTGAAGT CTACATCCTT ACTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGTCC ACAATTCTAC TTCCGTACTA CTGACGTTAC 720 AGGTTCAATC GAACTTCCAG CAGGTACTGA AATGGTAATG CCTGGTGATA ACGTGACAAT 780 CGACGTTGAG TTGATTCACC CAATCGCCGT AGAACAA 817

- (2) INFORMATION FOR SEQ ID NO: 146:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid

(C)	STRANDEDNESS:	double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Streptococcus salivarius

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

CGGTGCGATC CTTGTAGTAG CATCTACTGA CGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTCA CGTCAGGTTG GTGTTAAACA CCTTATCGTC TTCATGAACA AAGTTGACTT 120 GGTTGACGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TTCTTTCAGA 180 ATACGATTC CCAGGTGATG ACATTCCAGT TATCCAAGGT TCAGCTCTTA AAGCTCTTGA 240 AGGTGATTCT AAATACGAAG ACATCATCAT GGACTTGATG AACACTGTTG ACGAATACAT 300 CCCAGAACCA GAACGTGACA CTGACAAACC ATTGTTGCTT CCAGTCGAAG ACGTATTCTC 360 AATCACTGGT CGTGGTACTG TTGCTTCAGG ACGTATCGAC CGTGGTGTTG TTCGTGTCAA 420 TGACGAAGTT GAAATCGTTG GTCTTAAAGA AGACATCCAA AAAGCAGTTG TTACTGGTGT 480 TGAAATGTTC CGTAAACAAC TTGACGRAGG TATTGCCGGA GATAACGTCG GTGTTCTTCT 540 TCGTGGTATC CAACGTGATG AAATCGAACG TGGTCAAGTA TTGGCTGCAC CTGGTTCAAT 600 CAACCCACAC ACTAAATTCA AAGGTGAAGT TTACATCCTT TCTAAAGAAG AAGGTGGACG 660 TCACACTCCA TTCTTCAACA ACTACCGTCC ACAGTTCTAC TTCCGTACAA CTGACGTAAC 720 AGGTTCAATC GAACTTCCTG CAGGTACTGA AATGGTTATG CCTGGTGATA ACGTGACTAT 780 817 CGACGTTGAG TTGATCCACC CAATCGCCGT TGAACAA

(2) INFORMATION FOR SEQ ID NO: 147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Agrobacterium tumefaciens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:

AACATGATCA CCGGTGCTGC CGAGATGGAC GGCGCGATCC TGGTTTGCTC GGCTGCCGAC 60 GGCCCGATGC CACAGACCCG CGAGCACATC CTGCTTGCCC GTCAGGTGGG CGTTCCGGCC 120

ATCGTCGTGT TCCTCAACAA GGTCGACCAG GTTGACGACG CCGAGCTTCT CGAGCTCGTC	
CACCETTORNO CONTROLL CONTROL CONT	180
GAGCTTGAAG TTCGCGAACT TCTGTCGTCC TACGACTTCC CGGGCGACGA TATCCCGATC	
ATCAAGGGTT CGGCACTTGC TGCTCTTGAA GATTCTGACA AGAAGATCGG TGAAGACGCG	240
ATGGGGGA AGAAGATCGG TGAAGACGCG	300
ATCCGCGAGC TGATGGCTGC TGTCGACGCC TACATCCCGA CGCCTGAGCG TCCGATCGAC	
CAGCCGTTCC TGATGCCGAT CGAACACGTG	360
CAGCCGTTCC TGATGCCGAT CGAAGACGTG TTCTCGATCT CGGGTCGTGG TACGGTTGTG	420
ACGGGTCGCG TTGAGCGCGG TATCGTCAAG GTTGGTGAAG AAGTCGAAAT CGTCGGCATC	
CGTCCGACCT CGAAGACGAC TGTTACCCCC CTTTACCCCC	480
CGTCCGACCT CGAAGACGAC TGTTACCGGC GTTGAAATGT TCCGCAAGCT GCTCGACCAG	540
GGCCAGGCCG GCGACAACAT CGGTGCACTC GTTCGCGGCG TTACCCGTGA CGGCGTCGAG	
CGTGGTCAGA TCCTGTGCAA CCCCCCTTGG	600
CGTGGTCAGA TCCTGTGCAA GCCGGGTTCG GTCAAGCCGC ACAAGAAGTT CATGGCAGAA	660
GCCTACATCC TGACGAAGGA AGAAGGCGGC CGTCATACGC CGTTCTTCAC GAACTACCGT	
CCGCAGTTCT ACTTCCGTAC GACTGACCTTT ACCOUNT	720
CCGCAGTTCT ACTTCCGTAC GACTGACGTT ACCGGTATCG TTTCGCTTCC TGAAGGCACG	780
GAAATGGTTA TGCCTGGCGA CAACGTCACT GTTGAAGTCG AGCTGATCGT TCCGATCGCG	
ATGGAAGAAA AGCTGCGCTT CGCTATCCGC GAAGAAA	840
ATGGAAGAAA AGCTGCGCTT CGCTATCCGC GAAGGCGGCC GTACCGTCGG CGCCGGC	897
(2) INFORMATION FOR SEQ ID NO: 148:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 885 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bacillus subtilis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

ATGATCACTG GTGCTGCGCA AATGGACGGA GCTATCCTTG TAGTATCTGC TGCTGATGGC CCAATGCCAC AAACTCGTGA GCACATCCTT CTTTCTAAAA ACGTTGGTGT ACCATACATC 60 GTTGTATTCT TAAACAAATG CGACATGGTA GACGACGAAG AGCTTCTTGA ACTAGTTGAA 120 ATGGAAGTTC GCGATCTTCT TAGCGAATAC GACTTCCCTG GTGATGATGT ACCAGTTGTT 180 240 AAAGGTTCTG CTCTTAAAGC TCTTGAAGGA GACGCTGAGT GGGAAGCTAA AATCTTCGAA 300 CTTATGGATG CGGTTGATGA GTACATCCCA ACTCCAGAAC GCGACACTGA AAAACCATTC 360 ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACAGTTGC TACTGGCCGT 420 GTAGAACGCG GACAAGTTAA AGTCGGTGAC GAAGTTGAAA TCATCGGTCT TCAAGAAGAG 480

PCT/CA97/00829 - WO 98/20157

- 136 -

AACAAGAAAA CAACTGTTAC AGGTGTTGAA ATGTTCCGTA AGCTTCTTGA TTACGCTGAA 540
GCTGGTGACA ACATTGGTGC CCTTCTCGC GGTGTATCTC GTGAAGAAAT CCAACGTGGT 600
CAAGTACTTG CTAAAACCAGG TACAATCACT CCACACAGCA AATTCAAAGC TGAAGTTTAC 660
GTTCTTCTAA AAGAAGAGGG TGGACGTCAT ACTCCATTCT TCTCTAACTA CCGTCCTCAG 720
TTCTACTTCC GTACAACTGA CGTAACTGGT ATCATCCATC TTCCAGAAGG CGTAGAAATG 780
GTTATGCCTG GAGATAACAC TGAAATGAAC GTTGAACTTA TTTCTACAAT CGCTATCGAA 840
GAAGGAACTC GTTTCTCTAT TCGTGAAGGC GGACGTACTG TTGGT 885

(2) INFORMATION FOR SEQ ID NO: 149:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 882 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bacteroides fragilis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

ATGGTTACTG GTGCTGCTCA GATGGACGGT GCTATCATTG TAGTTGCTGC TACTGATGGT 60 CCGATGCCTC AGACTCGTGA GCACATCCTT TTGGCTCGTC AGGTAAACGT TCCGAAGCTG 120 GTTGTATTCA TGAACAAGTG CGATATGGTT GAAGATGCTG AGATGTTGGA ACTTGTTGAA 180 ATGGAAATGA GAGAATTGCT TTCATTCTAT GATTTCGACG GTGACAATAC TCCGATCATT 240 CAGGGTTCTG CTCTTGGTGC ATTGAACGGC GTAGAAAAAT GGGAAGACAA AGTAATGGAA 300 CTGATGGAAG CTGTTGATAC TTGGATTCCA CTGCCTCCGC GCGATGTTGA TAAACCTTTC 360 TTGATGCCGG TAGAAGACGT GTTCTCTATC ACAGGTCGTG GTACTGTAGC TACAGGTCGT 420 ATCGAAACTG GTGTTATCCA TGTAGGTGAT GAAATCGAAA TCCTCGGTTT GGGTGAAGAT 480 AAGAAATCAG TTGTAACAGG TGTTGAAATG TTCCGCAAAC TTCTGGATCA GGGTGAAGCT 540 GGTGACAACG TAGGTCTGTT GCTTCGTGGT GTTGACAAGA ACGAAATCAA ACGTGGTATG 600 GTTCTTTGTA AACCGGGTCA GATTAAACCT CACTCTAAAT TCAAAGCAGA GGTTTATATC 660 CTGAAGAAG AAGAAGGTGG TCGTCACACT CCATTCCATA ACAAATATCG TCCTCAGTTC 720 TACCTGCGTA CTATGGACTG TACAGGTGAA ATCACTCTTC CGGAAGGAAC TGAAATGGTA 780 ATGCCGGGTG ATAACGTAAC TATCACTGTA GAGTTGATCT ATCCGGTTGC ACTGAACATC 840

GGTCTTCGTT	TCGCTATCCG	CGAAGGTGGA	CGTACAGTAG	GT

882

- (2) INFORMATION FOR SEQ ID NO: 150:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 888 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Borrelia burgdorferi
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

AATATGATT	'A CAGGAGCAC	בר שנים האשמים				
		C ICAMAIGGE	YI GCAGCGATA	AC TTTTAGTTG	C TGCTGATAGT	60
GGTGCTGAG	C CTCAAACAA	A AGAGCATTI	G CTTCTTGCT	C AAAGAATGG	G AATAAAGAAA	120
ATAATAGTT	т ттттааата	A ATTGGACTT	A GCAGATCCT	G AACTTGTTG	A GCTTGTTGAA	180
GTTGAAGTT	r tagaacttg	Т ТБААААТА	T GGCTTTTCA	G CTGATACTC	C AATAATCAAA	240
GGTTCAGCT	TTGGGGCTA	T GTCAAATCC	A GAAGATCCT	G AATCTACAA <i>I</i>	ATGCGTTAAA	300
GAACTTCTTC	AATCTATGG	A TAATTATTT	r gatcttcca	3 AAAGAGATAT	TGACAAGCCA	
TTTTTGCTTG	CTGTTGAAGA	A TGTATTTCT	T ATTTCAGGA	A GAGGCACTGT	TGCTACTGGG	360
CGTATTGAAA	GAGGTATTAT	TAAAGTTGGT	CAAGAAGTTO	AAATAGTTCC	AATTAAAGAA	420
ACCAGAAAAA	CTACTGTTAC	TGGTGTTGAA	ATGTTCCAGA	A A A TOTAL COMMON	GCAAGGTCAA	480
GCAGGGGATA	ATGTTGGTCT	ጥርጥጥጥር አርአ	CCCCCCCC	AAAAAGACAT	GCAAGGTCAA	540
CAAGTTTTGT	CACCEGGAG		GGCGTTGATA	AAAAAGACAT	TGAGAGGGG	600
TCmmmor	CAGCICCAGG	TACAATTACT	CCACACAAGA	AATTTAAAGC	TTCAATTTAT	660
1GTTTGACTA	AAGAAGAAGG	CGGTAGGCAC	AAGCCATTTT	TCCCAGGGTA	TAGACCACAG	720
TTCTTTTTTA	GAACAACCGA	TGTTACTGGA	GTTGTTGCTT	TAGAGGGCAA	AGAAATGGTT	780
ATGCCTGGTG	ATAATGTTGA	TATTATTGTT	GAGCTGATCT	CTTCAATAGC	TATGGATAAG	840
ATGTAGAAT	TTGCTGTTCG	AGAAGGTGGA	AGAACCGTTG	CTTCAGGA		
						888

- (2) INFORMATION FOR SEQ ID NO: 151:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- 138 **-**

(vi)	ORIG	LAAL	SOURCE	E:	
	(2)	ODG7	- MPTM	Brevibacterium	linens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:

ACATGATCA	CCGGTGCCGC	TCAGATGGAC	GGTGCGATCC	TCGTCGTCGC	CGCTACCGAC	60
			CTGCTCGCGC			120
			GTCGATGACG			180
			CAGGACTTCG			240
			GGCGACGAGA			300
			CCGGAGCCGG			360
			ATCACCGGTC			420
			GACGAAATCG			480
			: GAGATGTTCC			540
			CGCGGCACCA			600
			ACCCCGCACA			660
					CTACCGTCCG	720
					GGGCACCGAG	78
					GATCGCTATG	84
			A GGTGGCCGC			89
GAGGACCGC	C TCCGCTTCG	C MAICCGCGA	W 20100000			

- (2) INFORMATION FOR SEQ ID NO: 152:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 888 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Burkholderia cepacia
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:

ATGATCACGG GCGCAGCGCA GATGGACGGC GCGATCCTGG TTTGCTCGGC AGCAGACGGC 60

CCGATGCCGC AAACGCGTGA GCACATCCTG CTGGCGCGTC AGGTTGGTGT TCCGTACATC 120

ATCGTGTTCC TGAACAAGTG CGACAGTGTG GACGACGCTG AACTGCTCGA GCTGGTCGAG 180

ATGGAAGTTC GCGAACTCCT GTCGAAGTAC GACTTCCCGG GC	CGACGACAC	GCCGATCGTG	240
AAGGGTTCGG CCAAGCTGGC GCTGGAAGGC GACACGGGCG AG	GCTGGGCGA	AGTGGCGATC	300
ATGAGCCTGG CAGACGCGCT GGACACGTAC ATCCCGACGC CG	GGAGCGTGC	AGTTGACGGC	360
GCGTTCCTGA TGCCGGTGGA AGACGTGTTC TCGATCTCGG GC	CCGTGGTAC	GGTGGTGACG	420
GGTCGTGTCG AGCGCGGCAT CGTGAAGGTC GGCGAAGAAA TC	GAAATCGT	CGGTATCAAG	480
CCGACGGTGA AGACGACCTG CACGGGCGTT GAAATGTTCC GC	CAAGCTGCT (GGACCAAGGT	540
CAGGCAGGCG ACAACGTCGG TATCCTGCTG CGCGGCACGA AGG	CGTGAAGA (CGTGGAGCGT	600
GGCCAGGTTC TGGCGAAGCC GGGTTCGATC ACGCCGCACA CGC	CACTTCAC C	GCTGAAGTG	660
TACGTGCTGA GCAAGGACGA AGGCGGCCGT CACACGCCGT TCT	ТТСААСАА С	TACCGTCCG	720
CAGTTCTACT TCCGTACGAC GGACGTGACG GGCTCGATCG AGC	CTGCCGAA G	GACAAGGAA	780
ATGGTGATGC CGGGCGACAA CGTGTCGATC ACGGTGAAGC TGA	ATTGCTCC G	ATCGCGATG	840
GAAGAAGGTC TGCGCTTCGC AATCCGTGAA GGCGGCCGTA CGG	GTCGGC		888
(2) INFORMATION FOR SEQ ID NO: 153:			

- - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Chlamydia trachomatis
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:

					TGCAACAGAC	60
GGAGCTATGC	CTCAAACTAA	AGAGCATATT	CTTTTGGCAA	GACAAGTTGG	GGTTCCTTAC	120
ATCGTTGTTT	TTCTCAATAA	AATTGACATG	ATTTCCGAAG	AAGACGCTGA	ATTGGTCGAC	180
TTGGTTGAGA	TGGAGTTGGC	TGAGCTTCTT	GAAGAGAAAG	GATACAAAGG	GTGTCCAATC	240
ATCAGAGGTT	CTGCTCTGAA	AGCTTTGGAA	GGAGATGCTG	CATACATAGA	GAAAGTTCGA	300
GAGCTAATGC	AAGCCGTCGA	TGATAATATC	CCTACTCCAG	AAAGAGAAAT	TGACAAGCCT	360
TTCTTAATGC	CTATTGAGGA	CGTGTTCTCT	ATCTCCGGAC	GAGGAACTGT	AGTAACTGGA	420
CGTATTGAGC						480
ACTAAAGAAA						540

PCT/CA97/00829 -WO 98/20157

- 140 -

GCAGGAGAGA ACGTTGGATT GCTCCTCAGA GGTATTGGTA AGAACGATGT GGAAAGAGGA 600 ATGGTTGTTT GCTTGCCAAA CAGTGTTAAA CCTCATACAC AGTTTAAGTG TGCTGTTTAC 660 GTTCTGCAAA AAGAAGAAGG TGGACGACAT AAGCCTTTCT TCACAGGATA TAGACCTCAA 720 TTCTTCTTCC GTACAACAGA CGTTACAGGT GTGGTAACTC TGCCTGAGGG AGTTGAGATG 780 GTCATGCCTG GGGATAACGT TGAGTTTGAA GTGCAATTGA TTAGCCCTGT GGCTTTAGAA 840 GAAGGTATGA GATTTGCGAT TCGTGAAGGT GGTCGTACAA TCGGTGCTGG A 891

(2) INFORMATION FOR SEQ ID NO: 154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Escherichia coli
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

AACATGATCA CCGGTGCTGC GCAGATGGAC GGCGCGATCC TGGTAGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC 120 ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT 180 GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC 240 GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCCTG 300 GAACTGGCTG GCTTCCTGGA TTCTTACATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG 360 TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT 420 CGTGTAGAAC GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG 480 ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT 540 GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT 600 CAGGTACTGG CTAAGCCGGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC 660 ATTCTGTCCA AAGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG 720 TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG 780 GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC 840 GACGGTCTGC GTTTCGCAAT CCGTGAAGGC GGCCGTACCG TTGGCGCGGG C 891

60

2) INFORMATION	FOR	SEQ	ID	NO:	155:
----------------	-----	-----	----	-----	------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Fibrobacter succinogenes
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

AACATGGTGA CTGGTGCT	CC MCN CNMCC				
AACATGGTGA CTGGTGCT	GC TCAGATGG	AC GGCGCTATO	CC TCGTTGTT(C CGCTACTGAC	60
GGTCCGATGC CGCAGACT	CG CGAACACA	TC CTTCTCGCT	C ACCAGGTTO	G CGTGCCGAAG	120
ATCGTCGTGT TCATGAAC	AA GTGCGACAI	rg gttgacgai	G CTGAAATTC	T CGACCTCGTC	180
GAAATGGAAG TTCGCGAA	CT CCTCTCCAA	G TATGACTTC	G ACGGTGACA	A CÁCCCCGATC	240
ATCCGTGGTT CCGCTCTC	AA GGCCCTCGA	A GGCGATCCG	G AATACCAGG	A CAAGGTCATG	300
GAACTCATGA ACGCTTGCC	SA CGAATACAT	C CCGCTCCCG	C AGCGCGATA	C CGACAAGCCG	360
TTCCTCATGC CGATCGAAG	A CGTGTTCAC	G ATTACTGGC	C GCGGCACTG	CGCTACTGGC	420
CGTATCGAAC GCGGTGTCG	T TCGCTTGAA	C GACAAGGTT	AACGTATCGO	TCTCGGTGAA	480
ACCACCGAAT ACGTCATCA					
GCAGGTGACA ACGTTGGTC	T CCTCCTCCG1	GGTGCTGAAA	AGAAGGACAT	CGTCCCTCCG	540
ATGGTTCTCG CAGCTCCGA	A GTCTGTCACT	' CCGCACACCG	AATTTAAGGC	TCA A A TCTA	600
GTTCTCACGA AGGACGAAGO	TGGCCGTCAC	ACGCCGTTCA	TGA ATCCCOMA	GGGTTAC	660
TTCTACTTCC GCACCACCG	CGTTACTGGT	ACGATCCACC	TOTALIGGUIA	CCGTCCGCAG	720
GTTACTCCGG GTGACACGGT	' CACGATCCAC	CTCD & COMO	TCCCGGAAGG	TGTCGAAATG	780
AAGCAGCTCC GCTTCGCTAT	CCCTCNACCT	GIGAACCTCA	TCGCTCCGAT	CGCTATGGAA	840
AAGCAGCTCC GCTTCGCTAT	CCGIGAAGGT	GGACGTACTG	TTGGTGCTGG	С	891

(2) INFORMATION FOR SEQ ID NO: 156:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 894 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:

(A)	ORGANISM:	Flavobacterium	ferrugineum
-----	-----------	----------------	-------------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:	
AACATGATCA CCGGTGCTGC CCAGATGGAC GGTGCTATCT TAGTTGTGGC TGCATCAGAC	60
GGTCCTATGC CTCAAACAAA AGAACACATC CTGCTTGCTG CCCAGGTAGG TGTACCTAAA	120
ATGGTTGTGT TTCTGAATAA AGTTGACCTC GTTGACGACG AAGAGCTCCT GGAGCTGGTT	180
GAGATCGAGG TTCGCGAAGA ACTGACTAAA CGCGGTTTCG ACGGCGACAA CACTCCAATC	240
ATCAAAGGTT CCGCTACAGG CGCCCTCGCT GGTGAAGAAA AGTGGGTTAA AGAAATTGAA	300
AACCTGATGG ACGCTGTTGA CAGCTACATC CCACTGCCTC CTCGTCCGGT TGATCTGCCG	360
AACCIGNIOS TO THE TOTAL CONTROL CONTRO	420

TTCCTGATGA GCGTAGAGGA CGTATTCTCT ATCACTGGTC GTGGTACTGT TGCTACCGGT 420

CGTATCGAGC GTGGCCGTAT CAAAGTTGGT GAGACTGTTG AGATCGTAGG TCTGCAGGAG 480

TCTCCCCTGA ACTCTACCGT TACAGGTGTT GAGATGTTCC GCAAACTCCT CGACGAAGGT 540

GAAGCTGGTG ATAACGCCGG TCTCCTCCTC CGTGGTGTTG AAAAAAACACA GATCCGTCGC 600

GGTATGGTAA TCGTTAAACC CGGTTCCATC ACTCCGCACA CGGACTTCAA AGGCGAAGTT 660

TACGTACTGA GCAAAGACGA AGGTGGCCGT CACACTCCAT TCTTCAACAA ATACCGTCCT 720

CAATTCTACT TCCGTACAAC TGACGTTACA GGTGAAGTAG AACTGAACGC AGGAACAGAA 780
ATGGTTATGC CTGGTGATAA CACCAACCTG ACCGTTAAAC TGATCCAACC GATCGCTATG 840

GAAAAAGGTC TGAAATTCGC GATCCGCGAA GGTGGCCGTA CCGTAGGTGC AGGA 894

(2) INFORMATION FOR SEQ ID NO: 157:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Haemophilus influenzae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

AATATGATTA CTGGTGCGC ACAAATGGAT GGTGCTATTT TAGTAGTAG AGCAACAGAT 60

GGTCCTATGC CACAAACTCG TGAACACATC TTATTAGGTC GCCAAGTAGG TGTTCCATAC 120

ATCATCGTAT TCTTAAACAA ATGCGACATG GTAGATGACG AAGAGTTATT AGAATTAGTC 180

GAAATGGAAG TTCGTGAACT TCTATCTCAA TATGACTTCC CAGGTGACGA TACACCAATC 240

GTACGTGGTT CAGCATTACA AGCGTTAAAC GGGGTA	
GTACGTGGTT CAGCATTACA AGCGTTAAAC GGCGTAGCAG AATGGGAAGA AAAAATCCTT	300
GAGTTAGCAA ACCACTTAGA TACTTACATC CCAGAACCAG AACGTGCGAT TGACCAACCG	360
TTCCTTCTTC CAATCGAAGA TGTGTTCTCA ATCTCAGGTC GTGGTACTGT AGTAACAGGT	
CGTGTAGAAC GAGGTATTAT CCGTACAGGT GATGAAGTAG AAATCGTCGG TATCAAAGAT	420
ACAGCGAAAA CTACTGTAAC GGGTGTTGAA ATGTTCCGTA AATTACTTGA CGAAGGTCGT	480
GCAGGTGAAA ACATCGGTGC ATTATTACCT GGTAGA	540
GCAGGTGAAA ACATCGGTGC ATTATTACGT GGTACCAAAC GTGAAGAAAT CGAACGTGGT	600
CAAGTATTAG CGAAACCAGG TTCAATCACA CCACACACTG ACTTCGAATC AGAAGTGTAC	660
GTATTATCAA AAGATGAAGG TGGTCGTCAT ACTCCATTCT TCAAAGGTTA CCGTCCACAA	720
TTCTATTTCC GTACAACAGA CGTGACTGGT ACAATCGAAT TACCAGAAGG CGTGGAAATG	780
GTAATGCCAG GCGATAACAT CAAGATGACA GTAAGCTTAA TCCACCCAAT TGCGATGGAT	
CAAGGTTTAC GTTTCGCAAT CCGTGAAGGT GGCCGTACAG TAGGTGCAGG C	840
	891
(2) INFORMATION FOR SEQ ID NO: 158:	

- - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 906 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Helicobacter pylori
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

AACATGATCA CCGGTGCGGC GCAAATGGAC GGAGCGATTT TGGTTGTTTC TGCAGCTGAT 60 GGCCCTATGC CTCAAACTAG GGAGCATATC TTATTGTCTC GTCAAGTAGG CGTGCCTCAC 120 ATCGTTGTTT TCTTAAACAA ACAAGACATG GTAGATGACC AAGAATTGTT AGAACTTGTA 180 GAAATGGAAG TGCGCGAATT GTTGAGCGCG TATGAATTTC CTGGCGATGA CACTCCTATC 240 GTAGCGGGTT CAGCTTTAAG AGCTTTAGAA GAAGCAAAGG CTGGTAATGT GGGTGAATGG 300 GGTGAAAAAG TGCTTAAACT TATGGCTGAA GTGGATGCCT ATATCCCTAC TCCAGAAAGA 360 GACACTGAAA AAACTTTCTT GATGCCGGTT GAAGATGTGT TCTCTATTGC GGGTAGAGGG 420 ACTGTGGTTA CAGGTAGGAT TGAAAGAGGC GTGGTGAAAG TAGGCGATGA AGTGGAAATC 480 GTTGGTATCA GACCTACACA AAAAACGACT GTAACCGGTG TAGAAATGTT TAGGAAAGAG 540 TTGGAAAAG GTGAAGCCGG CGATAATGTG GGCGTGCTTT TGAGAGGAAC TAAAAAAGAA 600

PCT/CA97/00829 - WO 98/20157

- 144 -

GAAGTGGAAC GCGGTATGGT TCTATGCAAA CCAGGTTCTA TCACTCCGCA CAAGAAATTT 660
GAGGGAGAAA TTTATGTCCT TTCTAAAGAA GAAGGCGGGA GACACACTCC ATTCTTCACC 720
AATTACCGCC CGCAATTCTA TGTGCGCACA ACTGATGTGA CTGGCTCTAT CACCCTTCCT 780
GAAGGCGTAG AAATGGTTAT GCCTGGCGAT AATGTGAAAA TCACTGTAGA GTTGATTAGC 840
CCTGTTGCGT TAGAGTTGGG AACTAAATTT GCGATTCGTG AAGGCGGTAG GACCGTTGGT 900
GCTGGT

- (2) INFORMATION FOR SEQ ID NO: 159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Micrococcus luteus
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

AACATGATCA CCGGCGCCGC TCAGATGGAC GGCGCGATCC TCGTGGTCGC CGCTACCGAC 60 GGCCCGATGG CCCAGACCCG TGAGCACGTG CTCCTGGCCC GCCAGGTCGG CGTGCCGGCC 120 CTGCTCGTGG CCCTGAACAA GTCGGACATG GTGGAGGACG AGGAGCTCCT CGAGCGTGTC 180 GAGATGGAGG TCCGGCAGCT GCTGTCCTCC AGGAGCTTCG ACGTCGACGA GGCCCCGGTC 240 ATCCGCACCT CCGCTCTGAA GGCCCTCGAG GGCGACCCCC AGTGGGTCAA GTCCGTCGAG 300 GACCTCATGG ATGCCGTGGA CGAGTACATC CCGGACCCGG TGCGCGACAA GGACAAGCCG 360 TTCCTGATGC CGATCGAGGA CGTCTTCACG ATCACCGGCC GTGGCACCGT GGTGACCGGT 420 CGCGCCGAGC GCGGCACCCT GAAGATCAAC TCCGAGGTCG AGATCGTCGG CATCCGCGAC 480 GTGCAGAAGA CCACTGTCAC CGGCATCGAG ATGTTCCACA AGCAGCTCGA CGAGGCCTGG 540 GCCGGCGAGA ACTGCGGTCT GCTCGTGCGC GGTCTGAAGC GCGACGACGT CGAGCGCGGC 600 CAGGTGCTGG TGGAGCCGGG CTCCATCACC CCGCACACCA ACTTCGAGGC GAACGTCTAC 660 ATCCTGTCCA AGGACGAGGG TGGGCGTCAC ACCCCGTTCT ACTCGAACTA CCGCGCGCAG 720 TTCTACTTCC GCACCACCGA CGTCACCGGC GTCATCACGC TGCCCGAGGG CACCGAGATG 780 GTCATGCCCG GCGACACCAC CGAGATGTCG GTCGAGCTCA TCCAGCCGAT CGCCATGGAG 840 891 GAGGGCCTCG GCTTCGCCAT CCGCGAGGGT GGCCGCACCG TGGGCTCCGG C

(2) INFORMATION FOR SEQ ID NO: 160	(2)	INFORMATION	FOR	SEQ	ID	NO:	160
------------------------------------	-----	-------------	-----	-----	----	-----	-----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mycobacterium tuberculosis
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:

AACATGATCA CCGGCGCCGC GCAGATGGAC GGTGCGATCC TGGTGGTCGC CGCCACCGAC GGCCCGATGC CCCAGACCCG CGAGCACGTT CTGCTGGCGC GTCAAGTGGG TGTGCCCTAC 60 120 ATCCTGGTAG CGCTGAACAA GGCCGACGCA GTGGACGACG AGGAGCTGCT CGAACTCGTC 180 GAGATGGAGG TCCGCGAGCT GCTGGCTGCC CAGGAATTCG ACGAGGACGC CCCGGTTGTG 240 CGGGTCTCGG CGCTCAAGGC GCTCGAGGGT GACGCGAAGT GGGTTGCCTC TGTCGAGGAA 300 CTGATGAACG CGGTCGACGA GTCGATTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC 360 CTGATGCCGG TCGAGGACGT CTTCACCATT ACCGGCCGCG GAACCGTGGT CACCGGACGT 420 GTGGAGCGCG GCGTGATCAA CGTGAACGAG GAAGTTGAGA TCGTCGGCCATCG 480 ACCACCAAGA CCACCGTCAC CGGTGTGGAG ATGTTCCGCA AGCTGCTCGA CCAGGGCCAG 540 GCGGGCGACA ACGTTGGTTT GCTGCTGCGG GGCGTCAAGC GCGAGGACGT CGAGCGTGGC 600 CAGGTTGTCA CCAAGCCCGG CACCACCAC CCGCACACCG AGTTCGAAGG CCAGGTCTAC 660 ATCCTGTCCA AGGACGAGGG CGGCCGGCAC ACGCCGTTCT TCAACAACTA CCGTCCGCAG 720 TTCTACTTCC GCACCACCGA CGTGACCGGT GTGGTGACAC TGCCGGAGGG CACCGAGATG 780 GTGATGCCCG GTGACACAC CAACATCTCG GTGAAGTTGA TCCAGCCCGT CGCCATGGAC 840 GAAGGTCTGC GTTTCGCGAT CCGCGAGGGT GGCCGCACCG TGGGCGCCGG C 891

(2) INFORMATION FOR SEQ ID NO: 161:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:

- 146 -

(A)	ORGANISM:	Mycoplasma	genitalium
-----	-----------	------------	------------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161: AATATGATCA CAGGTGCTGC ACAAATGGAT GGAGCTATTC TAGTTGTTTC AGCAACTGAT 60 AGTGTGATGC CCCAAACCCG CGAGCACATC TTACTTGCCC GCCAAGTAGG GGTTCCTAAA 120 ATGGTAGTTT TTCTAAACAA GTGTGATATT GCTAGTGATG AAGAGGTACA AGAACTTGTT 180 GCTGAAGAAG TACGTGATCT GTTAACTTCC TATGGTTTTG ATGGTAAGAA CACTCCTATT 240 ATTTATGGCT CAGCTTTAAA AGCATTGGAA GGTGATCCAA AGTGGGAGGC TAAGATCCAT 300 GATTTGATTA AAGCAGTTGA TGAATGGATT CCAACTCCTA CACGTGAAGT AGATAAACCT 360 TTCTTATTAG CAATTGAAGA TACGATGACC ATTACTGGTA GAGGTACAGT TGTTACAGGA 420 AGAGTTGAAA GAGGTGAACT CAAAGTAGGT CAAGAAGTTG AAATTGTTGG TTTAAAACCA 480 ATTAGAAAA CAGTTGTTAC TGGAATTGAA ATGTTCAAAA AGGAACTTGA TTCAGCAATG 540 GCTGGTGACA ATGCTGGGGT ATTATTACGT GGTGTTGAAC GTAAAGAAGT TGAAAGAGGT 600 CAAGTTTTAG CAAAACCAGG CTCTATTAAA CCGCACAAGA AATTTAAAGC TGAGATCTAT 660 GCTTTAAAGA AAGAAGAAGG TGGTAGACAC ACTGGTTTTT TAAACGGTTA CCGTCCTCAA 720 TICTATTTCC GTACCACTGA TGTAACTGGT TCTATTGCTT TAGCTGAAAA TACTGAAATG 780 GTTCTACCTG GTGATAATGC TTCTATTACT GTTGAGTTAA TTGCTCCTAT CGCTTGTGAA 840 B91 AAAGGTAGTA AGTTCTCAAT TCGTGAAGGT GGTAGAACTG TAGGGGCAGG C

(2) INFORMATION FOR SEQ ID NO: 162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Neisseria gonorrheae
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:

AACATGATTA CCGGCGCCGC ACAAATGGAC GGTGCAATCC TGGTATGTTC TGCTGCCGAC 60

GGCCCTATGC CGCAAACCCG CGAACACATC CTGCTGGCCC GTCAAGTAGG CGTACCTTAC 120

ATCATCGTGT TCATGAACAA ATGCGACATG GTCGACGATG CCGAGCTGTT CCAACTGGTT 180

GAAATGGAAA TCCGCGACCT GCTGTCCAGC TACGACTTCC CCGGCGACGA CTGCCCGATC 240

and the state of the particles of the pa

GTACAAGGTT CCGCACTGAA AGCCTTGGAA GGCGATGCCG CTTACGAAGA AAAAATCTTC GAACTGGCTA CCGCATTGGA CAGATACATC CCGACTCCCG AGCGTGCCGT GGACAAACCA 300 TTCCTGCTGC CTATCGAAGA CGTGTTCTCC ATTTCCGGCC GCGGTACCGT AGTCACCGGC 360 CGTGTAGAGC GAGGTATCAT CCACGTTGGT GACGAGATTG AAATCGTCGG TCTGAAAGAA 420 ACCCAAAAAA CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGTCAG 480 GCGGGCGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC GTGAAGACGT AGAACGCGGT 540 CAGGTATTGG CCAAACGGGG TACTATCACT CCTCACACCA AGTTCAAAGC AGAAGTGTAC 600 GTATTGAGCA AAGAAGAGGG CGGCCCCCAT ACCCCGTTTT TCGCCAACTA CCGTCCCCAA 660 TTCTACTTCC GTACCACTGA CGTAACCGGC ACGATTACTT TGGAAAAAGG TGTGGAAATG 720 780 GTAATGCCGG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT CGCTATGGAA GAAGGTCTGC GCTTTGCGAT TCGCGAAGGC GGCCGTACCG TGGGTGCCGG C 840 891

- (2) INFORMATION FOR SEQ ID NO: 163:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Rickettsia prowazekii
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:

AATATGATAA CTGGTGCCGC TCAGATGGAT GGTGCTATAT TAGTAGTTTC TGCTGCTGAT GGTCCTATGC CTCAAACTAG AGAACATATA TTACTGGCAA AACAGGTAGG TGTACCTGCT 60 ATGGTAGTAT TTTTGAATAA AGTAGATATG GTAGATGATC CTGACCTATT AGAATTAGTT 120 GAGATGGAAG TAAGAGAATT ATTATCAAAA TATGGTTTCC CTGGTAATGA AATACCTATT 180 ATTAAAGGTT CTGCACTTCA AGCTTTAGAA GGAAAACCTG AAGGTGAAAA AGCTATTAAT 240 GAGTTAATGA ATGCAGTAGA TACGTATATA CCTCAGCCTA TAGAGCTACA AGATAAACCT 300 TTTTTAATGC CAATAGAGGA TGTATTTCT ATTTCAGGCA GAGGTACCGT TGTAACTGGT 360 AGAGTGGAGT CAGGCATAAT TAAGGTGGGT GAAGAAATTG AAATAGTAGG TCTAAAAAAT 420 ACGCAAAAAA CGACTTGTAC AGGTGTAGAA ATGTTCAGAA AATTACTTGA TGAAGGACAA 480 TCTGGAGATA ATGTCGGTAT ATTACTACGT GGTACAAAAA GAGAAGAAGT AGAAAGAGGA 540 600

PCT/CA97/00829 - WO 98/20157

- 148 -

CAAGTACTTG CAAAACCTGG GAGCATAAAA CCGCATGATA AATTTGAAGC TGAAGTGTAT 660

GTGCTTAGTA AAGAGGAAGG TGGACGTCAT ACCCCATTTA CTAATGATTA TCGCCCACAG 720

TTCTATTTTA GAACAACAGA TGTTACCGGC ACAATAAAAT TGCCTTCTGA TAAGCAGATG 780

GTTATGCCTG GAGATAATGC TACTTTTCA GTAGAATTAA TTAAGCCGAT TGCTATGCAA 840

GAAGGGTTAA AATTCTCTAT ACGTGAAGGT GGTAGAACAG TAGGAGCCGG T 891

(2) INFORMATION FOR SEQ ID NO: 164:

and the contract of the first of

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 891 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Salmonella typhimurium
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164:

AACATGATCA CCGGTGCTGC TCAGATGGAC GGCGCGATCC TGGTTGTTGC TGCGACTGAC 60 GGCCCGATGC CGCAGACCCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC 120 ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT 180 GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC 240 GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC 300 GAACTGGCTG GCTTCCTGGA TTCTTATATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG 360 TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT 420 CGTGTAGAGC GCGGTATCAT CAAAGTGGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAG 480 ACTCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT 540 GCCGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT 600 CAGGTACTGG CTAAGCCGGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC 660 ATTCTGTCCA AAGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG 720 TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG 780 GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC 840 891 GACGGTCTGC GTTTCGCAAT CCGTGAAGGC GGCCGTACCG TTGGCGCGGG C

(2) INFORMATION FOR SEQ ID NO: 165:

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

- (A) LENGTH: 881 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Shewanella putida
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

ATGATCACTG GTGCTGCACA GATGGACGGC GCGATTCTGG TAGTCGCTTC AACAGACGGT CCAATGCCAC AGACTCGTGA GCACATCCTG CTTTCTCGTC AGGTTGGCGT ACCATTCATC ATCGTATTCA TGAACAAATG TGACATGGTA GATGACGAAG AGCTGTTAGA GCTAGTTGAG 120 180 ATGGAAGTGC GTGAACTGTT ATCAGAATAC GATTTCCCAG GTGATGACTT ACCGGTAATC CAAGGTTCAG CTCTGAAAGC GCTAGAAGGC GAGCCAGAGT GGGAAGCAAA AATCCTTGAA 240 TTAGCAGCGG CGCTGGATTC TTACATTCCA GAACCACAAC GTGACATCGA TAAGCCGTTC 300 CTACTGCCAA TCGAAGACGT ATTCTCAATT TCAGGCCGTG GTACAGTAGT AACAGGTCGT 360 GTTGAGCGTG GTATTGTACG CGTAGGCGAC GAAGTTGAAA TCGTTGGTGT ACGTGCGACA 420 480 ACTAAGACAA CGTGTACTGG TGTAGAAATG TTCCGTAAAC TGCTTGACGA AGGTCGTGCA GGTGAGAACT GTGGTATTTT GTTACGTGGT ACTAAGCGTG ATGACGTAGA ACGTGGTCAA 540 GTATTAGCGA AGCCAGGTTC AATCAACCCA CACACTACTT TTGAATCAGA AGTTTACGTA 600 660 CTGTCAAAAG AAGAAGGTGG TCGTCACACG CCATTCTTCA AAGGCTACCG TCCACAGTTC TACTTCCGTA CAACTGACGT AACCGGTACT ATCGAACTGC CAGAAGGCGT AGAGATGGTA 720 780 ATGCCAGGCG ATAACATCAA GATGGTAGTG ACACTGATTT GCCCAATCGC GATGGACGAA 840 GGTTTACGCT TCGCAATCCG TGAAGGCGGT CGTACAGTGG T 881

- (2) INFORMATION FOR SEQ ID NO: 166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 897 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Stigmatella aurantiáca

PCT/CA97/00829 -WO 98/20157

- 150 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:	
(XI) SEQUENCE DESCRIPTIONS GENERALITY TEGTEGTETC CECEGCCGAC	60
AACATGATCA CGGGCGGGC GCAGATGGAC GGAGCGATTC TGGTGGTGTC CGCGGCCGAC	120
GGCCCGATGC CCCAGACGCG TGAGCACATC CTGCTGGCCA GGCAGGTGGG CGTGCCCTAC	
ATCGTCGTCT TCCTGAACAA GGTGGACATG CTGGACGATC CGGAGCTGCG CGAGCTGGTG	180
GAGATGGAGG TGCGCGACCT GCTCAAGAAG TACGAGTTCC CGGGCGACAG CATCCCCATC	240
ATCCCTGGCA GCGCGCTCAA GGCGCTGGAG GGAGACACCA GCGACATCGG CGAGGGAGCG	300
ATCCTGAAGC TGATGGCGGC GGTGGACGAG TACATCCCGA CGCCGCAGCG TGCGACGGAC	360
AAGCCGTTCC TGATGCCGGT GGAAGACGTG TTCTCCATCG CAGGCCGAGG AACGGTGGCG	420
ACGGGCCGAG TGGAGCGCGG CAAGATCAAG GTGGGCGAGG AAGTGGAGAT CGTGGGGATC	480
ACGGGCCGAG TGGAGCGCG CATCACGGGG GTGGAGATGT TCCGCAAGCT GCTGGACGAG	540
CGTCCGACGC AGAAGACGGT CATCHEOLOGIC GGCATGGCGG GAGACAACAT CGGAGCGCTG CTGCGAGGCC TGAAGCGCGA GGACCTGGAG	600
GGCATGGCGG GAGACAACAI CGGAGCGCTO ATACCCGC ACACGAAGTT CAAGGCGCAG	660
CGTGGGCAGG TGCTGGCGAA CTGGGGGAGC ATCAACCCGC ACACGAAGTT CAAGGCGCAG	720
GTGTACGTGC TGTCGAAGGA AGAGGGAGGG CGGCACACGC CGTTCTTCAA GGGATACCGG	780
CCGCAGTTCT ACTTCCGGAC GACGGACGTG ACCGGAACGG TGAAGCTGCC GGACAACGTG	840
GAGATGGTGA TGCCGGGAGA CAACATCGCC ATCGAGGTGG AGCTCATTAC TCCGGTCGCC	
ATGGAGAAGG AGCTGCCGTT CGCCATCCGT GAGGGTGGCC GCACGGTGGG CGCCGGC	897
(2) INFORMATION FOR SEQ ID NO: 167:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 894 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	•
(ii) MOLECULE TYPE: DNA (genomic)	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Streptococcus pyogenes</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:	
AACATGATCA CTGGTGCCGC TCAAATGGAC GGAGCTATCC TTGTAGTTGC TTCAACTGAT	,60
GGACCAATGC CACAAACTCG TGAGCACATC CTTCTTTCAC GTCAGGTTGG TGTTAAACAC	120
CTTATCGTGT TCATGAACAA AGTTGACCTT GTTGATGACG AAGAGTTGCT TGAATTAGTT	180
	240

240

300

GAGATGGAAA TTCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA CCTTCCAGTT

ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGCGACACTA AATTTGAAGA CATCATCATG

WO 98/20157

- 151 -

GAATTGATGG ATACTGTTGA TTCATACATT CCAGAACCAG AACGCGACAC TGACAAACCA	
TTGCTTCTTCT	360
TTGCTTCTTC CAGTCGAAGA CGTATTCTCA ATTACAGGTC GTGGTACAGT TGCTTCAGGA	
CGTATCGACC GTGGTACTGT TCGTGTCAAC GACGAAATCG AAATCGTTGG TATCAAAGAA	420
GAAACTAAAA AAGCTGTTGT TACTGGTTG	480
GAAACTAAAA AAGCTGTTGT TACTGGTGTT GAAATGTTCC GTAAACAACT TGACGAAGGT	540
CTTGCAGGAG ACAACGTAGG TATCCTTCTT CGTGGTGTTC AACGTGACGA AATCGAACGT	
GGTCAAGTTA TTGCTAAACC AAGTTCAATC AACCCACACA CTAAATTCAA AGGTGAAGTA	600
TATATCCTTT CTARGOGO	660
TATATCCTTT CTAAAGACGA AGGTGGACGT CACACTCCAT TCTTCAACAA CTACCGTCCA	720
CAATTCTACT TCCGTACAAC TGACGTAACA GGTTCAATCG AACTTCCAGC AGGTACAGAA	120
ATGGTTATGC CTGGTGATAA CGTGACAAMG	780
ATGGTTATGC CTGGTGATAA CGTGACAATC AACGTTGAGT TGATCCACCC AATCGCCGTA	840
GAACAAGGTA CTACTTTCTC AATCCGTGAA GGTGGACGTA CTGTTGGTTC AGGT	
(2) INFORMATION FOR SEQ ID NO: 168:	894
· · · · · · · · · · · · · · · · · · ·	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 897 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Thiobacillus cuprinus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

AACATGATCA CCGGTGCGGC CCAGATGGAC GGCGCCATCC TGGTCGTGTC CGCCGCCGAC GGCCCCATGC CCCAAACCCG CGAGCACATC CTGCTGGCGC GTCAGGTGGG CGTGCCCTAC 60 ATCATCGTGT TCCTCAACAA GTGCGACATG GTCGACGACG CCGAGCTGCT CGAACTCGTC 120 GAGATGGAAG TGCGCGAGCT GCTGTCCAAG TACGACTTCC CCGGTGACGA CACCCCCATC 180 ATCAAGGGCT CGGCCAAGCT GGCCCTCGAA GGCGACAAGG GCGAACTGGG CGAAGGCGCC 240 ATTCTCAAGC TGGCCGAGGC CCTGGACACC TACATCCCCA CGCCCGAGCG GGCCGTCGAC 300 GGCGCGTTCC TCATGCCCGT GGAAGACGTG TTCTCCATCT CCGGGCGCGG CACGGTGGTC 360 ACCGGGCGTG TGGAGCGCGG CATCATCAAG GTCGGCGAGG AAATCGAGAT TGTCGGCCTC 420 AAGCCCACCC TCAAGACCAC CTGCACCGGC GTGGAAATGT TCAGGAAGCT GCTCGACCAG 480 GGCCAGGCCG GCGACAACGT CGGCATCTTG CTGCGCGGCA CCAAGCGCGA GGAAGTCGAG 540 600 CGCGGCCAGG TGCTGTGCAA ACCCGGCTCG ATCAAGCCCC ACACCCACTT CACCGCCGAG 660

PCT/CA97/00829 ⁻ WO 98/20157

- 152 -

GTGTACGTGC TGAGCAAGGA CGAGGGCGGC CGCCACACCC CCTTCTTCAA CAACTACCGC 720
CCGCAGTTCT ACTTCCGCAC CACCGACGTC ACCGGCGCA TCGAACTGCC CAAGGACAAG 780
GAAATGGTCA TGCCCGGCGA TAATGTGAGC ATCACCGTCA AGCTCATCGC CCCCATCGCC 840
ATGGAAGAAG GCCTGCGCTT CGCCATCCGC GAAGGCGGCC GCACCGTCGG CGCCGGC 897

(2) INFORMATION FOR SEQ ID NO: 169:

gregory and some of the end of

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 894 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Treponema pallidum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

AATATGATCA CGGGTGCTGC GCAGATGGAC GGTGGTATTC TCGTCGTGTC TGCGCCTGAC 60 GGCGTTATGC CACAGACGAA GGAGCATCTT CTGCTCGCCC GTCAGGTTGG TGTTCCCTCC 120 ATCATTGTTT TTTTGAACAA GGTTGATTTG GTTGATGATC CTGAGTTGCT AGAGCTGGTG 180 GAAGAAGAG TGCGTGATGC GCTTGCTGGA TATGGGTTTT CGCGTGAGAC GCCTATCGTC 240 AAGGGGTCTG CGTTTAAAGC TCTGCAGGAT GGCGCTTCCC CGGAGGATGC AGCTTGTATT 300 GAGGAACTGC TTGCGGCCAT GGATTCCTAC TTTGAAGACC CAGTGCGTGA CGACGCAAGA 360 CCTTTCTTGC TCTCTATCGA GGATGTGTAC ACTATTTCTG GGCGTGGTAC CGTTGTCACG 420 GGGCGCATCG AATGTGGGGT AATTAGTCTG AATGAAGAGG TCGAGATCGT CGGGATTAAG 480 CCCACTAAGA AAACAGTGGT TACTGGCATT GAGATGTTTA ATAAGTTGCT TGATCAGGGA 540 ATTGCAGGTG ATAACGTGGG GCTGCTTTTG CGCGGGGTGG ATAAAAAAAGA GGTTGAGCGC 600 GGTCAGGTGC TTTCTAAGCC CGGTTCTATT AAGCCACACA CCAAGTTTGA GGCGCAGATC 660 TACGTGCTCT CTAAGGAAGA GGGTGGCCGT CACAGTCCTT TTTTTCAAGG TTATCGTCCG 720 CAGTTTTATT TTAGAACTAC TGACATTACC GGTACGATTT CTCTTCCTGA AGGGGTAGAC 780 ATGGTGAAGC CGGGGGATAA CACCAAGATT ATAGGTGAGC TCATCCACCC GATAGCTATG 840 GACAAGGGTC TGAAGCTTGC GATTCGTGAA GGGGGGCGCA CTATTGCTTC TGGT 894

- (2) INFORMATION FOR SEQ ID NO: 170:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 891 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Ureaplasma urealyticum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

AATATGATTA CAGGGGCAGC ACAAATGGAT GGAGCAATTT TAGTTATTGC TGCATCTGAT GGGGTTATGG CTCAAACTAA AGAACATATT TTATTAGCAC GTCAAGTTGG TGTTCCAAAA 60 ATCGTTGTTT TCTTAAACAA ATGTGATTTC ATGACAGATC CAGATATGCA AGATCTTGTT 120 GAAATGGAAG TTCGTGAATT ATTATCTAAA TATGGATTTG ATGGCGATAA CACACCAGTT 180 ATTCGTGGTT CAGGTCTTAA GGCTTTAGAA GGAGATCCAG TTTGAGAAGC AAAAATTGAT 240 GAATTAATGG ACGCAGTTGA TTCATGAATT CCATTACCAG AACGTAGTAC TGACAAACCA 300 TTCTTATTAG CAATTGAAGA TGTATTCACA ATTTCAGGAC GTGGTACAGT AGTAACTGGA 360 CGTGTTGAAC GTGGTGTATT AAAAGTTAAT GATGAGGTTG AAATTGTTGG TCTAAAAGAC 420 ACTCAAAAAA CTGTTGTTAC AGGAATTGAA ATGTTTAGAA AATCATTAGA TCAAGCTGAA 480 GCTGGTGATA ATGCTGGTAT TTTATTACGT GGTATTAAAA AAGAAGATGT TGAACGTGGT 540 CAAGTACTTG TAAAACCAGG ATCAATTAAA CCTCACCGTA CTTTTACTGC TAAAGTTTAT 600 ATTCTTAAAA AAGAAGAAGG TGGACGTCAT ACACCTATTG TTTCAGGATA CCGTCCACAA 660 TTCTATTTTA GAACAACAGA TGTAACAGGT GCTATTTCAT TACCTGCTGG TGTTGATTTG 720 GTTATGCCAG GTGATGACGT TGAAATGACT GTAGAATTAA TTGCTCCAGT TGCGATTGAA 780 GATGGATCTA AATTCTCAAT CCGTGAAGGT GGTAAAACTG TAGGTCATGG T 840 891

- (2) INFORMATION FOR SEQ ID NO: 171:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 909 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Wolinella succinogenes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:

AACATGATTA CAGGTGCTGC TCAAATGGAT GGCGCGATTC TTGTTGTTTC TGCGGCGGAT 60 GGCCCCATGC CCCAAACTAG GGAGCACATT CTTCTTCTC GACAAGTAGG CGTTCCTTAC 120 ATCGTGGTTT TCTTGAACAA AGAAGATATG GTTGATGACG CTGAGCTTCT TGAGCTTGTT 180 GAAATGGAAG TTAGAGAACT TCTTAGCAAC TACGACTTCC CTGGAGATGA CACTCCTATC 240 GTTGCAGGTT CCGCTCTTAA AGCTCTTGAA GAGGCTAACG ACCAGGAAAA TGTTGGCGAG 300 TGGGGCGAGA AAGTATTGAA GCTTATGGCT GAGGTTGACC GATATATTCC TACGCCTGAG 360 CGAGATGTGG ATAAGCCTTT CCTTATGCCT GTTGAAGACG TATTCTCCAT CGCGGGTCGT 420 GGAACCGTTG TGACAGGAAG AATTGAAAGA GGCGTGGTTA AAGTCGGTGA CGAAGTAGAA 480 540 ATCGTTGGTA TCCGAAACAC ACAAAAAACA ACCGTAACTG GCGTTGAGAT GTTCCGAAAA GAGCTCGACA AGGGTGAGGC GGGTGACAAC GTTGGTGTTC TTTTGAGAGG CACCAAGAAA 600 GAAGATGTTG AGAGAGGTAT GGTTCTTTGT AAAATAGGTT CTATCACTCC TCACACTAAC 660 TTTGAAGGTG AAGTTTACGT TCTTTCCAAA GAGGAAGGCG GACGACACAC TCCATTCTTC AATGGATACC GACCTCAGTT CTATGTTAGA ACTACAGACG TTACCGGTTC TATCTCTCTT CCTGAGGGCG TAGAGATGGT TATGCCTGGT GACAACGTTA AGATCAATGT TGAGCTTATC 840 GCTCCTGTAG CCCTCGAAGA GGGAACACGA TTCGCGATCC GTGAAGGTGG TCGAACCGTT 900 909 GGTGCGGGT

- (2) INFORMATION FOR SEQ ID NO: 172:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:

*

- (A) NAME/KEY: misc_feature
- (B) LOCATION:6
- (D) OTHER INFORMATION:/note= "n = inosine"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:12
 - (D) OTHER INFORMATION:/note= "n = inosine"
- (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION:18
 - (D) OTHER INFORMATION:/note= "n = inosine"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:	••
TARTCNGTRA ANGCYTCNAC RCACAT	
(2) INFORMATION FOR SEQ ID NO: 173:	26
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	•
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173	
TCTTTAGCAG AACAGGATGA A	
(2) INFORMATION FOR SEQ ID NO: 174:	21
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:	
GAATAATTCC ATATCCTCCG	
•	20

20

CLAIMS

What is claimed is:

- 1. A method using probes and/or amplification primers which are specific, ubiquitous and sensitive for determining the presence and/or amount of nucleic acids:
- from a bacterial antibiotic resistance gene selected from the group consisting of bla_{tern}, bla_{sh}, bla_{coa}, aacC1, aacC2, aacC3, aac6'-lla, aacA4, aad(6'), vanA, vanB, vanC, msrA, satA, aac(6')-aph(2"), vat, vga, ermA, ermB, ermC, mecA, int and sul, and
- from specific bacterial and fungal species selected from the group consisting
 of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis,
 Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans,
 Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus
 species and Candida species,

in any sample suspected of containing said bacterial and/or fungal nucleic acids,

wherein each of said nucleic acid or variant or part thereof comprises a selected target region hybridizable with said probes or primers;

said method comprising the following steps: contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said specific bacterial and/or fungal species and bacterial antibiotic resistance genes.

- A method according to claim 1, which further makes use of probes and/or primers which are specific, ubiquitous and sensitive for determining the presence and/or amount of nucleic acids from any bacterium or fungus.
- The method of claim 1, which is performed directly from a test sample.
- 25 4. The method of claim 1, which is performed directly from a test sample consisting of a bacterial and/or fungal culture or suspension.
 - The method of claim 1, wherein said nucleic acids are all detected under uniform hybridization or amplification conditions.
- The method of claim 1, wherein said nucleic acids are amplified by a method
 selected from the group consisting of:
 - a) polymerase chain reaction (PCR),
 - b) ligase chain reaction (LCR),
 - c) nucleic acid sequence-based amplification (NASBA),

SUBSTITUTE SHEET (RULE 26)

- d) self-sustained sequence replication (3SR),
- e) strand displacement amplification (SDA),
- f) branched DNA signal amplification (bDNA),
- g) transcription-mediated amplification (TMA),
- h) cycling probe technology (CPT),
 - i) nested PCR, and
 - j) multiplex PCR.
 - The method of claim 6, wherein said nucleic acids are amplified by PCR.
- 8. The method of claim 7, wherein the PCR protocol achieves within one hour uniform amplification conditions the determination of the presence of said seconds at 45-55°C and a denaturation step of only one second at 95°C without any time specifically allowed to an elongation step.
- A method for the detection, identification and/or quantification of a microorganism selected from the group consisting of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, directly from a test sample or from bacterial and/or fungal cultures, which comprises the following steps:
 - a) depositing and fixing on an inert support or leaving in solution the said microorganism DNA of the sample or of a substantially homogeneous population of said microorganism isolated from this sample, or
- inoculating said sample or said substantially homogeneous population of microorganism isolated from this sample on an inert support, and lysing in situ said inoculated sample or said isolated microorganism to release the said microorganism DNA,

said microorganism DNA being made in a substantially single-stranded form;

b) contacting said single-stranded DNA with a probe, said probe comprising at least one single-stranded nucleic acid which nucleotide sequence is selected from the group consisting of SEQ ID NOs: 26, 27, 28, 29, 30, 120, 131 to 134, 31, 140 to 143, 32 to 36, 120 to 124, a sequence complementary thereof, a part thereof having at least 12 nucleotides in length, and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of *Enterococcus faecium*, *Listeria*

15

25

30

35

monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, respectively, albicans, under conditions such that the nucleic acid of said probe can selectively hybridize with said microorganism DNA, whereby a hybridization complex is formed; and

- c) detecting the presence of said hybridization complex on said inert support or in said solution as an indication of the presence and/or amount of said microorganism, in said test sample.
- A method for detecting the presence and/or amount of a microorganism selected from the group consisting of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, 10 Candida albicans, Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, in a test sample which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said microorganism DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from a nucleotide sequence within the group consisting 20 of SEQ ID NOs: 26, 27, 28, 29, 30, 120, 131 to 134, 31, 140 to 143, 32 to 36, 120 to 124, respectively with regard to said microorganism, a sequence complementary thereof, and a variant thereof;
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of said microorganisms, in said test sample.
 - The method of claim 10, wherein said pair of primers is defined in SEQ ID NOs: 1 and 2, 3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12, 13 and 14, 15 and 16, 17 to 20, 21 and 22, respectively, for each of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus Enterococcus species, Neisseria species, Candida albicans, Staphylococcus species and Streptococcus species.

30

- A method for detecting the presence and/or amount of any bacterium directly 12. from a test sample or a bacterial culture, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogeneous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogeneous population of bacteria isolated from this sample on an inert support, and lysing in situ said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being made in a substantially single-stranded form;

- b) contacting said single-stranded DNA with a probe, said probe comprising at 10 least one single-stranded nucleic acid which nucleotide sequence is selected from the group consisting of SEQ ID NOs: 118, 119, 125 to 171, a sequence complementary thereof, a part thereof having at least 12 nucleotides in length, and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of any bacterial species, under conditions such that the nucleic acid of said probe can 15 selectively hybridize with said bacterial DNA, whereby a hybridization complex is
- c) detecting the presence of said hybridization complex on said inert support or in said solution as an indication of the presence and/or amount of any bacterium in 20 said test sample.
 - A method for detecting the presence and/or amount of any bacterium in a test 13. sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of 25 any bacterial DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from a nucleotide sequence within the group consisting of SEQ ID NO: 118, 119, 125 to 171, a sequence complementary thereof, and a variant thereof;
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
- c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of any bacterium in said test sample. 35

10

15

20

30

35

4

- 14. The method of claim 13, wherein said pair of primers is defined in SEQ ID NOs:23 and 24.
- 15. A method for obtaining *tuf* sequences from any bacterium directly from a test sample or a bacterial culture, which comprises the following steps:
- a) treating said sample with an aqueous solution containing a pair of primers having a sequence selected within the nucleotide sequences defined in SEQ ID NOs: 107 and 108, a part thereof having at least 12 nucleotides in length, a sequence complementary thereof, and a variant thereof, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial *tuf* gene that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
- b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence; and
- d) determining the nucleotide sequence of the said amplified target sequence by using any DNA sequencing method.
- 16. A method for detecting the presence and/or amount of any fungus directly from a test sample or a fungal culture, which comprises the following steps:
- a) depositing and fixing on an inert support or leaving in solution the fungal DNA of the sample or of a substantially homogeneous population of fungi isolated from this sample, or

inoculating said sample or said substantially homogeneous population of fungi isolated from this sample on an inert support, and lysing *in situ* said inoculated sample or isolated fungi to release the fungal DNA,

said fungal DNA being made in a substantially single-stranded form;

- b) contacting said single-stranded DNA with a probe, said probe comprising at least one single-stranded nucleotide sequence selected from the group consisting of SEQ ID NOs: 120 to 124, a sequence complementary thereof, a part thereof having at least 12 nucleotides in length, and a variant thereof, which specifically and ubiquitously anneals with strains or representatives of any fungus, under conditions such that the nucleic acid of said probe can selectively hybridize with said fungal DNA, whereby a hybridization complex is formed; and
- c) detecting the presence of said hybridization complex on said inert support or SUBSTITUTE SHEET (RULE 26)

30

in said solution as an indication of the presence and/or amount of any fungus in said test sample.

- 17. A method for detecting the presence and/or amount of any fungus in a test sample which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of oligonucleotide primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of any fungal DNA that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from a nucleotide sequence within the group consisting of SEQ ID NOs: 120 to 124, a sequence complementary thereof, and a variant thereof:
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of the presence and/or amount of any fungus in said test sample.
 - 18. A method for obtaining *tuf* sequences from any fungus directly from a test sample or a fungal culture, which comprises the following steps:
- a) treating said sample with an aqueous solution containing a pair of primers having a sequence selected within the nucleotide sequence defined in SEQ ID NOs: 109 and 172, a part thereof having at least 12 nucleotides in length, a sequence complementary thereof, and a variant thereof, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said fungal tuf gene that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence; and
 - d) determining the nucleotide sequence of the said amplified target sequence by using any DNA sequencing method.

 19. A method as defending
- 19. A method as defined in claim 1, which comprises the evaluation of the presence
 35 of a bacterial resistance mediated by a bacterial antibiotic resistance gene selected

15

20

25

30

35

4

from the group consisting of bla_{oxa}, blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC, directly from a test sample or a bacterial culture, which comprises the following steps:

a) depositing and fixing on an inert support or leaving in solution the bacterial DNA of the sample or of a substantially homogeneous population of bacteria isolated from this sample, or

inoculating said sample or said substantially homogeneous population of bacteria isolated from this sample on an inert support, and lysing *in situ* said inoculated sample or isolated bacteria to release the bacterial DNA,

said bacterial DNA being made in a substantially single-stranded form;

- b) contacting said single-stranded DNA with a probe, said probe comprising at least one single-stranded nucleotide sequence having at least 12 nucleotide in length is selected from the group consisting of SEQ ID NOs: 110, 111, 112, 113, 114 115, 116, 117, a sequence complementary thereof, and a variant thereof, which specifically hybridizes with said bacterial antibiotic resistance gene, respectively; and
 - c) detecting the presence of a hybridization complex as an indication of a bacterial resistance mediated by said one of said bacterial antibiotic resistance genes.
 - 20. A method as defined in claim 1, which comprises the evaluation of the presence of a bacterial resistance mediated by a bacterial antibiotic resistance gene selected from the group consisting of bla_{oxa}, blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC, directly from a test sample or a bacterial culture, which comprises the following steps:
 - a) treating said sample with an aqueous solution containing at least one pair of primers having at least 12 nucleotides in length, one of said primers being capable of hybridizing selectively with one of the two complementary strands of said bacterial antibiotic resistance gene that contains a target sequence, and the other of said primers being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template, said at least one pair of primers being chosen from a nucleotide sequence within the group consisting of SEQ ID NOs: 110, 111, 112, 113, 114, 115, 116, 117, respectively with regard to said bacterial antibiotic resistance gene, a sequence complementary thereof, and a variant thereof:
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance mediated by one of said bacterial antibiotic resistance genes.

 SUBSTITUTE SHEET (RULE 26)

15

20

- A method as defined in claim 1, which comprises the evaluation of the presence 21. of a bacterial resistance gene selected from the group consisting of bla_{tem} bla_{shn} , bla_{rob} , bla_{oxa}, blaZ, aadB, aacC1, aacC2, aacC3, aac6'-lla, aacA4, aad(6'), vanA, vanB, vanC, msrA, satA, aac(6')-aph(2"), vat, vga, ermA, ermB, ermC, mecA, int and sul, directly from a test sample or a bacterial culture, which comprises the following steps:
- a) treating said sample with an aqueous solution containing at least one pair of primers having a sequence selected in the group consisting of SEQ ID NOs: 37 to 40, 41 to 44, 45 to 48, 49 and 50, 51 and 52, 53 and 54, 55 and 56, 57 and 58, 59 to 60, 61 to 64, 65 and 66, 173 and 174, 67 to 70, 71 to 74, 75 and 76, 77 to 80, 81 and 82, 83 to 86, 87 and 88, 89 and 90, 91 and 92, 93 and 94, 95 and 96, 97 and 98, 99 to 10 102, 103 to 106, a part thereof having at least 12 nucleotides in length, a sequence complementary thereof, a variant thereof, and mixtures thereof, one of said primers of said pair being capable of hybridizing selectively with one of the two complementary strands of its respective bacterial antibiotic resistance gene that contains a target sequence, and the other of said primers of said pairs being capable of hybridizing with the other of said strands so as to form an extension product which contains the target sequence as a template;
 - b) synthesizing an extension product of each of said primers, said extension product containing the target sequence, and amplifying said target sequence, if any, to a detectable level; and
 - c) detecting the presence and/or amount of said amplified target sequence as an indication of a bacterial resistance mediated by one of said bacterial antibiotic resistance genes.
- A nucleic acid having the nucleotide sequence of any one of SEQ ID NOs: 26 22. to 36, 110 to 171, a part thereof, a sequence complementary thereof, and variant 25 thereof which, when in single-stranded form, ubiquitously and specifically hybridizes with a target bacterial or fungal DNA as a probe or as a primer.
- An oligonucleotide having the nucleotide sequence of any one of SEQ ID NOs: 1 to 25, 37 to 109, 172 to 174, a part thereof, a sequence complementary thereof, and variant thereof, which ubiquitously and specifically hybridizes with a target bacterial or 30 fungal DNA as a probe or as a primer. 24.
 - A recombinant plasmid comprising a nucleic acid as defined in claim 22. 25.
 - A recombinant host which has been transformed by a recombinant plasmid according to claim 24.
- 35 A recombinant host according to claim 25 wherein said host is Escherichia coli. 26. 27.
 - A diagnostic kit for the detection and/or quantification of the nucleic acids of any SUBSTITUTE SHEET (RULE 26) 1 777 "

20

25

30

35

4

ŗ

combination of the microbial species and/or genera selected from the group consisting of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, comprising any suitable combination of probes of at species and Candida species, comprising any suitable combination of SEQ ID NOs: 26 least 12 nucleotides in length selected from the group consisting of SEQ ID NOs: 26 variants thereof.

- 28. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the microbial species and/or genera selected from the group consisting of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans, Staphylococcus species, Neisseria species, Staphylococcus species, Streptococcus Enterococcus species, Neisseria species, Staphylococcus species, Streptococcus species and Candida species, comprising any suitable combination of primers of at species and Candida species, comprising any suitable combination of SEQ ID NOs: 26 least 12 nucleotides in length selected from the group consisting of SEQ ID NOs: 26 variants thereof.
 - 29. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the microbial species and/or genera selected from the group consisting of Enterococcus faecium, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus saprophyticus, Streptococcus agalactiae, Candida albicans, Enterococcus species, Neisseria species, Staphylococcus species and Streptococcus Enterococcus species, Neisseria species, Staphylococcus species and Streptococcus species, comprising any suitable combination of primers selected from the group species, comprising any suitable combination of primers selected from the group consisting of SEQ ID NOs: 1 to 22, parts thereof having at least 12 nucleotides in length, sequences complementary thereof, and variants thereof.
 - 30. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes selected from the group consisting of bla_{0x2} blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC, comprising any suitable combination of probes of at least 12 nucleotides in length selected from the group consisting of SEQ ID NOs: 110 to 117, sequences complementary thereof, and variants thereof
 - variants thereot.

 31. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes selected from the group consisting of bla_{oxp} blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC, comprising any suitable combination of primers of at least 12 nucleotides in length selected from the group combination of SEQ ID NOs: 110 to 117, sequences complementary thereof, and variants thereof.

; •

15

32. A diagnostic kit for the detection and/or quantification of the nucleic acids of any combination of the bacterial resistance genes selected from the group consisting of bla_{terry} bla_{shy} bla_{rob} bla_{cca}, blaZ, aadB, aacC1, aacC2, aacC3, aac6'-lla, aacA4, aad(6'), vanA, vanB, vanC, msrA, satA, aac(6')-aph(2"), vat, vga, ermA, ermB, ermC, mecA, int and sul, comprising any suitable combination of primers selected from the group consisting of SEQ ID NOs: 37 to 106, 173 and 174, a part thereof having at least 12 nucleotides in length, sequences complementary thereof, and variants thereof.

A diagnostic kit for the detection and/or quantification of the nucleic acids of any bacterium and/or fungus, comprising any combination of probes of at least 12 nucleotides in length selected from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof, and variants thereof.

- 34. A diagnostic kit for the detection and/or quantification of the nucleic acids of any bacterium and/or fungus, comprising any suitable combination of primers of at least 12 nucleotides in length selected from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof.
- 35. A diagnostic kit for the detection and/or quantification of the nucleic acids of any bacterium, comprising a pair of primers having a sequence selected within the nucleotide sequence defined in SEQ ID NOs: 23 and 24, parts thereof having at least 12 nucleotides in length, sequences complementary thereof, and variants thereof.
- 36. A diagnostic kit, as defined in claim 27, further comprising any combination of probes of at least 12 nucleotides in length selected within a nucleotide sequence from and variants thereof, for the simultaneous detection and/or quantification of nucleic 37. A diagnostic kit
- 37. A diagnostic kit, as defined in claim 28, further comprising any suitable combination of primers of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterium and/or fungus.
- 38. A diagnostic kit, as defined in claim 29, further comprising a pair of primers having a sequence selected within the nucleotide sequence defined in SEQ ID NOs: complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterium.
- 35 39. A diagnostic kit, as defined in claim 27, further comprising any combination of probes of at least 12 nucleotides in length selected within a nucleotide sequence from

30

35

the group consisting of SEQ ID NOs: 110 to 117, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of bla_{oxa}, blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC.

- A diagnostic kit, as defined in claim 28, further comprising any suitable combination of primers of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 110 to 117, sequences 40. 5 complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of blaoxa, blaZ, aac6'-lla, ermA, ermB, ermC, vanB, vanC. 10
 - A diagnostic kit, as defined in claim 29, further comprising any suitable combination of primers of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 37 to 106, 173 and 174, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterial antibiotic resistance gene selected from the group consisting of blatem, blatem aacC1, aacC2, aacC3, aacA4, aac6'-lla, aad(6'), ermA, ermB, ermC, mecA, vanA, 15 vanB, vanC, satA, aac(6')-aph(2"), vat, vga, msrA, sul and int.
 - A diagnostic kit, as defined in claim 30, further comprising any combination of probes of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic 20 acids of any bacterium and/or fungus.
 - A diagnostic kit, as defined in claim 31, further comprising any suitable combination of primers of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterium and/or fungus.
 - A diagnostic kit, as defined in claim 32, further comprising a pair of primers having a sequence selected within the nucleotide sequence defined in SEQ ID NO 23 and 24, parts thereof having at least 12 nucleotides in length, sequencomplementary thereof, and variants thereof, for the simultaneous detection a quantification of nucleic acids of any bacterium.
 - A diagnostic kit, as defined in claim 39, further comprising any combi probes of at least 12 nucleotides in length selected within a nucleotide sequ the group consisting of SEQ ID NOs: 118 to 171, sequences complement and variants thereof, for the simultaneous detection and/or quantification

10

acids of any bacterium and/or fungus.

- 46. A diagnostic kit, as defined in claim 40, further comprising any suitable combination of primers of at least 12 nucleotides in length selected within a nucleotide sequence from the group consisting of SEQ ID NOs: 118 to 171, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or quantification of nucleic acids of any bacterium and/or fungus
- 47. A diagnostic kit, as defined in claim 41, further comprising a pair of primers having a sequence selected within the nucleotide sequence defined in SEQ ID NOs: 23 and 24, parts thereof having at least 12 nucleotides in length, sequences complementary thereof, and variants thereof, for the simultaneous detection and/or