430.457

Introduction to Intelligent Systems

Prof. Songhwai Oh ECE, SNU

Chapter 13. Probabilistic Reasoning

BAYESIAN NETWORKS

Bayesian Networks

- Probability theory + Graph theory
- Compact representation for a complex probability distribution (cf. full joint distribution)
 - By taking advantage of independence and conditional independence
- A Bayesian network is a DAG (directed acyclic graph)
 - Node = random variable

Node X_i has a conditional probability distribution

P(X_i|Parents (X_i))

Example: Burglar Alarm

- A new burglar alarm at home
 - Fairly reliable at detecting a burglary, but also responds to minor earthquake
- Two neighbors, John and Mary, who calls you at work when they hear the alarm
 - John nearly always calls when he hears the alarm but sometimes confuses the telephone ringing with the alarm
 - Mary likes loud music and often misses the alarm
- Given the evidence of who has or has not called, what is the probability of a burglary?

Semantics of Bayesian Networks

- Two views on the semantics of Bayesian networks
 - A representation of the joint distribution
 - An encoding of a collection of conditional independence statements
 - * Two views are equivalent
- Full joint distribution for a Bayesian network:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

Constructing a Bayesian Network

• Chain rule:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1} | x_{n-2}, \dots, x_1) \cdots P(x_2 | x_1) P(x_1)$$

$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

- Bayesian networks: $P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i)).$
- Hence, we must have $P(X_i|X_{i-1},...,X_1)=P(X_i|Parents(X_i))$, provided that $Parents(X_i)\subseteq\{X_{i-1},...,X_1\}$.

Algorithm for constructing a Bayesian network

- Nodes: Determine the set of variables to model the domain and order them, $\{X_1, \ldots, X_n\}.$
- Links: For i = 1 to n do:
 - Choose a minimal set of parents for X_i from $\{X_1, \ldots, X_{i-1}\}$
 - For each parent insert a link from the parent to X_i
 - Associate the conditional probability tables, $P(X_i|Parents(X_i))$ to node X_i .

Compactness of Bayesian Networks

- \bullet Suppose we have n Boolean variables.
- Joint distribution requires 2^n numbers.
- A Bayesian network with at most degree k requires only $n2^k$ numbers.
- E.g., if n=30 and each node has five parents (k=5), a Bayesian network requires 960 numbers while the full joint distribution requires $2^{30} \approx 10^9 = 1,000,000,000$ numbers.
- The ordering of nodes at the construction of a Bayesian network determines the complexity of the resulting network.

Effects of Node Ordering

{ MaryCalls, JohnCalls, Alarm, Burglary, Earthquake}

{ MaryCalls, JohnCalls, Earthquake, Burglary, Alarm}

Compact representation if causes precede effects (causal model)

Conditional Independence

- a. Each variable is conditionally independent of its nondescendants given its parents (recall $P(X_i \mid Parents(X_i))$)
- b. A node is conditionally independent of all other nodes in the networks, given its parents, children, and co-parents (children's parents) - Markov blanket

EFFICIENT REPRESENTATION OF CONDITIONAL DISTRIBUTIONS

Noisy-OR Model

- Generalization of the logical OR. (E.g., Fever is true iff Cold, Flu, or Malaria is true.)
- Why noisy? There is an uncertainty about the ability of each parent to cause the child to be true.
- Assumptions: (1) all possible causes are listed, (2) inhibition of each parent is independent of inhibition of any other parents.
- Inhibition probabilities:

$$q_{cold} = P(\neg fever|cold, \neg flu, \neg malaria) = 0.6$$

 $q_{flu} = P(\neg fever|\neg cold, flu, \neg malaria) = 0.2$
 $q_{malaria} = P(\neg fever|\neg cold, \neg flu, malaria) = 0.1$

Fever is false iff all its true parents are inhibited.

• General rule:

$$P(x_i|parents(X_i)) = 1 - \prod_{\{j: X_j = true\}} q_j$$

Noisy-OR Model

$$q_{cold} = P(\neg fever|cold, \neg flu, \neg malaria) = 0.6$$

$$q_{flu} = P(\neg fever|\neg cold, flu, \neg malaria) = 0.2$$

$$q_{malaria} = P(\neg fever|\neg cold, \neg flu, malaria) = 0.1$$

$$P(x_i|parents(X_i)) = 1 - \prod_{\{j: X_j = true\}} q_j$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02 = 0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06 = 0.6 \times 0.1$
T	T	F	0.88	$0.12 = 0.6 \times 0.2$
T	T	T	0.988	0.012=0.6 imes0.2 imes0.1

• Requires only O(k) parameters instead of $O(2^k)$ for the full conditional probability table, where k is the number of parents.

Hybrid Bayesian Networks

- Representing continuous variables in a Bayesian network
 - Discretization (may requires large CPTs)
 - Parametric model (Gaussian, Gamma, Beta, etc.)
 - Nonparametric model
- Hybrid Bayesian network
 - A network with both discrete and continuous variables.

From Discrete to Continuous

- P(Cost|Harvest, Subsidy) can be specified using
 - -P(Cost|Harvest, Subsidy) and
 - $P(Cost|Harvest, \neg Subsidy).$

• Linear Gaussian model

$$P(c|h, subsidy) = \mathcal{N}(c|a_t h + b_t, \sigma_t^2) = \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left(-\frac{1}{2\sigma_t^2} \left(c - (a_t h + b_t)\right)^2\right)$$

$$P(c|h, \neg subsidy) = \mathcal{N}(c|a_f h + b_f, \sigma_f^2) = \frac{1}{\sqrt{2\pi}\sigma_f} \exp\left(-\frac{1}{2\sigma_f^2} \left(c - (a_f h + b_f)\right)^2\right)$$

From Continuous to Discrete

Specifying Buys given Cost:

• Probit distribution:

$$P(buys|Cost = c) = \Phi\left(\frac{-c + \mu}{\sigma}\right),$$

where $\Phi(x) = \int_{-\infty}^{x} \mathcal{N}(x|0,1)dx$.

• Logit distribution:

$$P(buys|Cost = c) = \frac{1}{1 + \exp\left(-2\frac{-c + \mu}{\sigma}\right)},$$

where $1/(1+e^{-x})$ is called a logistic function.

