Gödel Agent: A Self-Referential Agent Framework for Recursively Self-Improvement

Xunjian Yin, Xinyi Wang, Liangming Pan, Li Lin Xiaojun Wan, William Yang Wang PKU, UCSB

xjyin@pku.edu.cn

https://xunjianyin.github.io/

Language Agent

- Agents require human design.
 - For different tasks, such as coding, shopping, traveling, etc., specialized designs are needed It's too time-consuming and labor-intensive.
- Shouldn't agents themselves be able to generalize to different tasks?
 - Meta agent?
 - Design an agent that can design task-specific agents for different tasks.
 - Self-referential Agent
 - The agent can modify itself.

Self-referentiality

Human is selfreferential!

Meta-Meta-Learning Algorithm

Meta-Learning Algorithm

Learning Algorithm e.g. SGD, RL

Policy e.g. model weight

Traditional Paradigm (optimization || policy)

Self-referential Paradigm

≈ infinite levels of meta-meta-meta... Learning

≈ self-scored self-updating RL

One Analogy

	Human	Self-Referential Agent	
Intelligent Module	brain	LLM	
Perceptual and Action	body	code and tool	
Self-Referential Feature	Humans can train their brain and body to improve, thus becoming better	Self-referential agents can modify their code, even the underlying LLM, to improve themselve	
Self-Awareness	Can the brain recognize itself as a brain? Can it perceive its own mode?	Can LLM understand that it is one part of the modified codes?	

Self-Referential Agent (Gödel Agent)

The optimization module can be optimized by itself

Therefore the optimization capability is improving

So that in turn it can optimize itself better and better.

Different Perspectives of Gödel Agent

Overall Perspective

Module Perspective

Implementation Perspective

- 1. Add the logic to read and modify the code.
- 2. But how to modify the context of the currently running function (the main process)?

Implementation of Gödel Agent

Use recursive function instead of loop iteration.

```
Agent = Base_Agent(Initial_Optimizer, Initial_Policy)
Agent.self_improve()

class Base_Agent():
    def self_improve(self):
    actions = call_llm(self, goal, feedbacks)
    for action in actions:
        feedback = executor(action)
        feedbacks.append(feedback)
    self_improve()
```

Test-Time compute: improve text (context)
Test-Time compute & execute: improve logic
Test-Time Flow

```
class Base Agent():
    aef executor(self, action):
        if action.name == "self_aware":
            return read_code(self)
        if action.name == "self_modify":
            return modify_code(self, action.code)
```

Implementation of Gödel Agent

Iterations

Monkey Patch: reading and writing the *runtime memory*

Error Handling: error trace feedback

Main part: one recursive function

Actions

Results

Agent Name	F1 Score	re Accuracy (%)					
1-90-10 1 (41110	DROP	MGSM	MMLU	GPQA			
Hand-Designed Agent Systems							
Chain-of-Thought (Wei et al., 2022)	64.2 ± 0.9	28.0 ± 3.1	65.4 ± 3.3	29.2 ± 3.1			
COT-SC (Wang et al., 2023b)	64.4 ± 0.8	28.2 ± 3.1	65.9 ± 3.2	30.5 ± 3.2			
Self-Refine (Madaan et al., 2024)	59.2 ± 0.9	27.5 ± 3.1	63.5 ± 3.4	31.6 ± 3.2			
LLM Debate (Du et al., 2023)	60.6 ± 0.9	39.0 ± 3.4	65.6 ± 3.3	31.4 ± 3.2			
Step-back-Abs (Zheng et al., 2024)	60.4 ± 1.0	31.1 ± 3.2	65.1 ± 3.3	26.9 ± 3.0			
Quality-Diversity (Lu et al., 2024)	61.8 ± 0.9	23.8 ± 3.0	65.1 ± 3.3	30.2 ± 3.1			
Role Assignment (Xu et al., 2023)	65.8 ± 0.9	30.1 ± 3.2	64.5 ± 3.3	31.1 ± 3.1			
Meta-Learning Optimized Agents							
Meta Agent Search (Hu et al., 2024)	79.4 ± 0.8	53.4 ± 3.5	69.6 ± 3.2	34.6 ± 3.2			
Gödel Agent (Ours)							
Gödel-base (Closed-book; GPT-3.5)	$\textbf{80.9} \pm \textbf{0.8}$	$\textbf{64.2} \pm \textbf{3.4}$	$\textbf{70.9} \pm \textbf{3.1}$	$\textbf{34.9} \pm \textbf{3.3}$			
Gödel-free (No constraints)	90.5 ± 1.8	90.6 ± 2.0	87.9 ± 2.2	55.7 ± 3.1			

Table 1: Results of three paradigms of agents on different tasks. The highest value is highlighted in **bold**, and the second-highest value is <u>underlined</u>. Gödel-base is the constrained version of Gödel Agent, allowing for fair comparisons with other baselines. Gödel-free represents the standard implementation without any constraints, whose results are *italicized*. We report the test accuracy and the 95% bootstrap confidence interval on test sets³.

Results

Figure 4: (a) One representative example of Game of 24. (b) Accuracy progression for different initial policies.

Self-correction; Exploration; Innovation

	Hand-designed Agent	Meta Agent	Self-Referential Agent
Description	Designed by experts for specific tasks; logic remains unchanged	Experts design meta- learning algorithms, which optimize the agent for tasks	Designed to self-improve based on task feedback
Degree of Freedom	Minimal only selective memory accumulation allowed	Single-level task agents can be improved, but meta agent are fixed	Full agents and their optimization module can be improved
Advantages	controllable; practical	partially controllable; further optimization is possible	high freedom; strong generalizability; high creativity
Disadvantages	labor-intensive; poor generalizability	limited by the effectiveness of meta agent	strong reasoning and long- context capabilities are required
Current State	various applications are under development	research ongoing	early stage
Representative Works	Tree of Thought, OpenDevin, WebAgent, OpenHands	MetaAgent, AgentSquare, Aflow, GPTSwarm	Gödel Agent

Future Direction

Improving Effectiveness:

- Design stronger *optimization algorithms* to accelerate convergence, such as introducing MCTS and other algorithms.
- Develop more detailed environmental feedback mechanisms.

Self-Referencing Degree:

- Allow the agent to modify its goals.
- Allow the agent to modify its underlying **LLM**.

Multi-Agent:

- Multi-Gödel Agents with greater degrees of freedom, involving task splitting, parallel self-modification, communication etc.
- Other ways to improve model generalizability
 - (multi-modal, minimal data, dynamic environment, scientific tasks), self-referential intelligence

Following Works

A Self-Improving Coding Agent

Darwin Gödel Machine

Thank you!