# Bayesian Computation with R Scripts

Jim Albert

2020-12-18

# Contents

| 1 | Pre                                | face                                                       | 5  |  |  |
|---|------------------------------------|------------------------------------------------------------|----|--|--|
| 2 | Introduction to Bayesian Thinking  |                                                            |    |  |  |
|   | 2.1                                | Learning About the Proportion of Heavy Sleepers            | 7  |  |  |
|   | 2.2                                | Using a Discrete Prior                                     | 7  |  |  |
|   | 2.3                                | Using a Beta Prior                                         | 9  |  |  |
|   | 2.4                                | Using a Histogram Prior                                    | 11 |  |  |
|   | 2.5                                | Prediction                                                 | 13 |  |  |
| 3 | Sing                               | Single-Parameter Models 1                                  |    |  |  |
|   | 3.1                                | Normal Distribution with Known Mean but Unknown Variance . | 17 |  |  |
|   | 3.2                                | Estimating a Heart Transplant Mortality Rate               | 18 |  |  |
|   | 3.3                                | An Illustration of Bayesian Robustness                     | 20 |  |  |
|   | 3.4                                | Mixtures of Conjugate Priors                               | 23 |  |  |
|   | 3.5                                | A Bayesian Test of the Fairness of a Coin                  | 24 |  |  |
| 4 | Multiparameter Models 2            |                                                            |    |  |  |
|   | 4.1                                | Normal Data with Both Parameters Unknown                   | 27 |  |  |
|   | 4.2                                | A Multinomial Model                                        | 28 |  |  |
|   | 4.3                                | A Bioassay Experiment                                      | 30 |  |  |
|   | 4.4                                | Comparing Two Proportions                                  | 34 |  |  |
| 5 | Inti                               | roduction to Bayesian Computation                          | 37 |  |  |
|   | 5.1                                | A Beta-Binomial Model for Overdispersion                   | 37 |  |  |
|   | 5.2                                | Approximations Based on Posterior Modes                    | 39 |  |  |
|   | 5.3                                | Monte Carlo Method for Computing Integrals                 | 40 |  |  |
|   | 5.4                                | Rejection Sampling                                         | 40 |  |  |
|   | 5.5                                | Importance Sampling                                        | 41 |  |  |
|   | 5.6                                | Sampling Importance Resampling                             | 43 |  |  |
| 6 | Markov Chain Monte Carlo Methods 4 |                                                            |    |  |  |
|   | 6.1                                | Introduction to Discrete Markov Chains                     | 45 |  |  |
|   | 6.2                                | Learning about a Normal Population from Grouped Data       | 46 |  |  |
|   | 6.3                                | Example of Output Analysis                                 | 48 |  |  |

4 CONTENTS

|    | 6.4<br>6.5               | Modeling Data with Cauchy Errors                                   |  |  |  |
|----|--------------------------|--------------------------------------------------------------------|--|--|--|
| 7  | Hierarchical Modeling 59 |                                                                    |  |  |  |
|    | 7.1                      | Introduction to Hierarchical Modeling                              |  |  |  |
|    | 7.2                      | Individual or Combined Estimates 60                                |  |  |  |
|    | 7.3                      | Equal Mortality Rates?                                             |  |  |  |
|    | 7.4                      | Modeling a Prior Belief of Exchangeability                         |  |  |  |
|    | 7.5                      | Simulating from the Posterior                                      |  |  |  |
|    | 7.6                      | Posterior Inferences                                               |  |  |  |
|    | 7.7                      | Bayesian Sensitivity Analysis                                      |  |  |  |
|    | 7.8                      | Posterior Predictive Model Checking                                |  |  |  |
| 8  | Model Comparison 7       |                                                                    |  |  |  |
|    | 8.1                      | A One-Sided Test of a Normal Mean                                  |  |  |  |
|    | 8.2                      | A Two-Sided Test of a Normal Mean                                  |  |  |  |
|    | 8.3                      | Models for Soccer Goals                                            |  |  |  |
|    | 8.4                      | Is a Baseball Hitter Really Streaky?                               |  |  |  |
|    | 8.5                      | A Test of Independence in a Two-Way Contingency Table $ \dots  78$ |  |  |  |
| 9  | Reg                      | ression Models 81                                                  |  |  |  |
|    | 9.1                      | An Example of Bayesian Regression 81                               |  |  |  |
|    | 9.2                      | Modeling Using Zellner's g Prior                                   |  |  |  |
|    | 9.3                      | Survival Modeling                                                  |  |  |  |
| 10 | Gib                      | bs Sampling 93                                                     |  |  |  |
|    |                          | Robust Modeling                                                    |  |  |  |
|    |                          | Binary Response Regression with a Probit Link 94                   |  |  |  |
|    |                          | Estimating a Table of Means                                        |  |  |  |

# Chapter 1

# Preface

This book contains all of the R scripts and associated output for Chapters 2 through 10 of  $Bayesian\ Computation\ with\ R$  second edition.

In these scripts, I have avoided the use of the attach() function and spaces have been added to increase readability.

### Chapter 2

# Introduction to Bayesian Thinking

### 2.1 Learning About the Proportion of Heavy Sleepers

Want to learn about p, the proportion of heavy sleepers. Take a sample of 27 students and 11 are heavy sleepers.

### 2.2 Using a Discrete Prior

library(LearnBayes)

The prior for p:



```
The posterior for p:
data \leftarrow c(11, 16)
post <- pdisc(p, prior, data)</pre>
round(cbind(p, prior, post),2)
##
              p prior post
    [1,] 0.05 0.03 0.00
    [2,] 0.15 0.18 0.00
##
    [3,] 0.25 0.28 0.13
##
    [4,] 0.35 0.25 0.48
    [5,] 0.45 0.16 0.33
##
    [6,] 0.55 0.07 0.06
##
    [7,] 0.65 0.02 0.00
##
    [8,] 0.75 0.00 0.00
    [9,] 0.85 0.00 0.00
## [10,] 0.95 0.00 0.00
library(lattice)
PRIOR <- data.frame("prior", p, prior)</pre>
POST <- data.frame("posterior", p, post)
names(PRIOR) <- c("Type", "P", "Probability")</pre>
names(POST) <- c("Type", "P", "Probability")</pre>
data <- rbind(PRIOR, POST)</pre>
xyplot(Probability ~ P | Type, data=data,
        layout=c(1,2), type="h", lwd=3, col="black")
```



### 2.3 Using a Beta Prior

Construct a beta prior for p by inputting two percentiles:

```
quantile2 <- list(p=.9, x=.5)
quantile1 <- list(p=.5, x=.3)
(ab <- beta.select(quantile1,quantile2))</pre>
```

## [1] 3.26 7.19

Bayesian triplot:



### Posterior summaries:

```
1 - pbeta(0.5, a + s, b + f)
```

```
## [1] 0.0690226
qbeta(c(0.05, 0.95), a + s, b + f)
```

## [1] 0.2555267 0.5133608

Simulating from posterior:

```
ps <- rbeta(1000, a + s, b + f)
hist(ps, xlab="p")</pre>
```





```
sum(ps >= 0.5) / 1000
```

```
## [1] 0.064
quantile(ps, c(0.05, 0.95))
```

```
## 5% 95%
## 0.2530540 0.5124985
```

### 2.4 Using a Histogram Prior

Beliefs about p are expressed by a histogram prior. Illustrate brute force method of computing the posterior.



```
s <- 11
f <- 16
```

```
curve(histprior(x,midpt,prior) *
    dbeta(x, s + 1, f + 1),
    from=0, to=1, ylab="Posterior density")
```



2.5. PREDICTION

13



### 2.5 Prediction

Want to predict the number of heavy sleepers in a future sample of 20.

Discrete prior approach:

```
##
                     pred
##
    [1,]
          0 2.030242e-02
##
    [2,]
          1 4.402694e-02
##
    [3,]
          2 6.894572e-02
##
    [4,]
          3 9.151046e-02
##
    [5,]
          4 1.064393e-01
##
          5 1.124487e-01
    [6,]
##
    [7,]
          6 1.104993e-01
##
    [8,]
          7 1.021397e-01
   [9,]
          8 8.932837e-02
## [10,] 9 7.416372e-02
```

```
## [11,] 10 5.851740e-02

## [12,] 11 4.383668e-02

## [13,] 12 3.107700e-02

## [14,] 13 2.071698e-02

## [15,] 14 1.284467e-02

## [16,] 15 7.277453e-03

## [17,] 16 3.667160e-03

## [18,] 17 1.575535e-03

## [19,] 18 5.381536e-04

## [20,] 19 1.285179e-04

## [21,] 20 1.584793e-05
```

#### Continuous prior approach:

```
ab <- c(3.26, 7.19)

m <- 20

ys <- 0:20

pred <- pbetap(ab, m, ys)
```

### Simulating predictive distribution:

```
p <- rbeta(1000, 3.26, 7.19)
y <- rbinom(1000, 20, p)
table(y)</pre>
```

```
## y
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19
## 11 52 70 101 105 102 116 100 84 67 47 50 32 20 21 9 10 2 1
freq <- table(y)
ys <- as.integer(names(freq))
predprob <- freq / sum(freq)
plot(ys, predprob, type="h", xlab="y",
    ylab="Predictive Probability")</pre>
```



dist <- cbind(ys, predprob)</pre>

covprob <- .9

Construction of a prediction interval:

```
discint(dist, covprob)

## $prob
## 12
## 0.926
##
## $set
## 1 2 3 4 5 6 7 8 9 10 11 12
## 1 2 3 4 5 6 7 8 9 10 11 12
```

### Chapter 3

# Single-Parameter Models

# 3.1 Normal Distribution with Known Mean but Unknown Variance

Assuming we have a sample  $\{y_j\}$  from a normal distribution with mean 0 and variance  $\sigma^2$ . Assuming the prior  $g(\sigma^2) \propto 1/\sigma^2$ , simulating from the posterior.

### library(LearnBayes)





```
quantile(s, probs = c(0.025, 0.5, 0.975))

## 2.5% 50% 97.5%
```

## 2.5% 50% 97.5% ## 13.16744 13.85293 14.60743

# 3.2 Estimating a Heart Transplant Mortality Rate

Have a sample  $\{y_j\}$  from a  $Poisson(e\lambda)$  distribution where the exposure e is known. Assigning  $\lambda$  a gamma $(\alpha, \beta)$  prior.

Predictive density:

```
alpha <- 16; beta <- 15174
yobs <- 1; ex <- 66
y <- 0:10
lam <- alpha / beta
py <- dpois(y, lam * ex) *
   dgamma(lam, shape = alpha, rate = beta) /
   dgamma(lam, shape = alpha + y, rate = beta + ex)
cbind(y, round(py, 3))</pre>
```

```
## y
## [1,] 0 0.933
## [2,] 1 0.065
## [3,] 2 0.002
## [4,] 3 0.000
```

```
##
    [5,] 4 0.000
##
    [6,] 5 0.000
##
   [7,] 6 0.000
## [8,] 7 0.000
## [9,] 8 0.000
## [10,] 9 0.000
## [11,] 10 0.000
Posterior density:
lambdaA <- rgamma(1000, shape = alpha + yobs,</pre>
               rate = beta + ex)
Data from a different hospital:
ex <- 1767; yobs <-4
y < -0:10
py <- dpois(y, lam * ex) *</pre>
 dgamma(lam, shape = alpha, rate = beta) /
  dgamma(lam, shape = alpha + y, rate = beta + ex)
 cbind(y, round(py, 3))
##
## [1,] 0 0.172
## [2,] 1 0.286
##
   [3,] 2 0.254
## [4,] 3 0.159
## [5,] 4 0.079
## [6,] 5 0.033
## [7,] 6 0.012
## [8,] 7 0.004
## [9,] 8 0.001
## [10,] 9 0.000
## [11,] 10 0.000
```

Prior and posteriors for two hospitals:

lambdaB <- rgamma(1000, shape = alpha + yobs,</pre>

rate = beta + ex)

### **HOSPITAL A**



### 

### 3.3 An Illustration of Bayesian Robustness

Assuming normal sampling (known standard deviation), compare the use of two priors on the mean  $\mu$ .

```
quantile1 <- list(p=.5, x=100)
quantile2 <- list(p=.95, x=120)
normal.select(quantile1, quantile2)

## $mu
## [1] 100
##
## $sigma
## [1] 12.15914

mu <- 100
tau <- 12.16
sigma <- 15
n <- 4
se <- sigma / sqrt(4)
ybar <- c(110, 125, 140)</pre>
```

```
tau1 <- 1 / sqrt(1 / se ^ 2 + 1 / tau ^ 2)
mu1 \leftarrow (ybar / se ^2 + mu / tau ^2) * tau1 ^2
summ1 <- cbind(ybar, mu1, tau1)</pre>
summ1
##
        ybar
                    mu1
                             tau1
## [1,] 110 107.2442 6.383469
## [2,] 125 118.1105 6.383469
## [3,] 140 128.9768 6.383469
Compare two possible priors for \mu:
tscale \leftarrow 20 / qt(0.95, 2)
tscale
## [1] 6.849349
par(mfrow=c(1, 1))
curve(1 / tscale * dt((x - mu) / tscale, 2),
   from=60, to=140, xlab="theta",
   ylab="Prior Density")
curve(dnorm(x, mean=mu, sd=tau), add=TRUE, lwd=3)
legend("topright", legend=c("t density",
                               "normal density"),
       lwd=c(1,3))
     0.05
                                                           t density
                                                           normal density
     0.04
Prior Density
     0.03
     0.02
     0.01
     0.00
           60
                         80
                                        100
                                                       120
                                                                     140
                                       theta
norm.t.compute <- function(ybar){</pre>
     theta <- seq(60, 180, length = 500)
     like <- dnorm(theta, mean=ybar,</pre>
                     sd=sigma/sqrt(n))
     prior <- dt((theta - mu) / tscale, 2)</pre>
```

```
## ybar mu1 t tau1 t
## [1,] 110 105.2921 5.841676
## [2,] 125 118.0841 7.885174
## [3,] 140 135.4134 7.973498
cbind(summ1, summ2)
```

```
## ybar mu1 tau1 ybar mu1 t tau1 t
## [1,] 110 107.2442 6.383469 110 105.2921 5.841676
## [2,] 125 118.1105 6.383469 125 118.0841 7.885174
## [3,] 140 128.9768 6.383469 140 135.4134 7.973498
```

#### Compare two posterior densities:



### 3.4 Mixtures of Conjugate Priors

Use a mixture of beta curves to reflect beliefs that a particular coin is biased.



```
probs <- c(.5, .5)
beta.par1 <- c(6, 14)
beta.par2 <- c(14, 6)
betapar <- rbind(beta.par1, beta.par2)</pre>
```

```
data \leftarrow c(7, 3)
post <- binomial.beta.mix(probs, betapar, data)</pre>
post
## $probs
## beta.par1 beta.par2
## 0.09269663 0.90730337
##
## $betapar
##
              [,1] [,2]
## beta.par1
                13
                      17
## beta.par2
                21
                       9
```

Compare prior and posterior densities for the probability coin lands heads.



### 3.5 A Bayesian Test of the Fairness of a Coin

Testing if a coin is fair. Observe 5 heads in 20 flips.

P-value calculation:

```
pbinom(5, 20, 0.5)
```

```
## [1] 0.02069473
```

Bayesian test of fairness using a mixture prior.

```
n <- 20
y <- 5
a <- 10
p <- 0.5
m1 <- dbinom(y, n, p) * dbeta(p, a, a) /
  dbeta(p, a + y, a + n - y)
lambda <- dbinom(y, n, p) / (dbinom(y, n, p) + m1)
lambda</pre>
```

```
## [1] 0.2802215
pbetat(p, .5, c(a, a), c(y, n - y))
```



```
n <- 20; y <- 5
a <- 10; p <- .5
m2 <- 0
for (k in 0:y){
   m2 <- m2 + dbinom(k, n, p) * dbeta(p, a, a) /
        dbeta(p, a + k, a + n - k)
}
lambda <- pbinom(y, n, p) / (pbinom(y, n, p) + m2)
lambda</pre>
```

## [1] 0.2184649

## Chapter 4

# Multiparameter Models

### 4.1 Normal Data with Both Parameters Unknown

Illustrates exact posterior sampling of  $(\mu, \sigma^2)$  for normal sampling with a non-informative prior.

```
library(LearnBayes)
```





```
quantile(mu, c(0.025, 0.975))

## 2.5% 97.5%

## 256.7045 301.1136

quantile(sqrt(sigma2), c(0.025, 0.975))

## 2.5% 97.5%

## 37.85306 73.41654
```

### 4.2 A Multinomial Model

Multinomial data and a uniform prior placed on the proportions. Sampling from the Dirichlet posterior distribution.

```
alpha <- c(728, 584, 138)
theta <- rdirichlet(1000, alpha)
```

```
hist(theta[, 1] - theta[, 2], main="")
```



Considers posterior distribution of Obama electoral votes for the 2008 presidential election.

```
prob.Obama <- function(j){</pre>
 p <- with(election.2008,
            rdirichlet(5000,
          500 * c(M.pct[j], 0.pct[j],
          100 - M.pct[j] - O.pct[j]) / 100 + 1))
 mean(p[, 2] > p[, 1])
Obama.win.probs <- sapply(1 : 51, prob.Obama)</pre>
sim.election <- function(){</pre>
  winner <- rbinom(51, 1,
               Obama.win.probs)
  sum(election.2008$EV * winner)
}
sim.EV <- replicate(1000, sim.election())</pre>
hist(sim.EV, min(sim.EV) : max(sim.EV), col="blue")
abline(v=365, lwd=3) # Obama received 365 votes
text(375, 30, "Actual \n Obama \n total")
```

### Histogram of sim.EV



### 4.3 A Bioassay Experiment

Bayesian fitting of a logistic model using data from a dose-response experiment.

```
x <- c(-0.86, -0.3, -0.05, 0.73)

n <- c(5, 5, 5, 5)

y <- c(0, 1, 3, 5)

data <- cbind(x, n, y)
```

Traditional logistic model fit.

##

```
glmdata <- cbind(y, n - y)
results <- glm(glmdata ~ x, family = binomial)
summary(results)</pre>
```

```
## Call:
## glm(formula = glmdata ~ x, family = binomial)
##
## Deviance Residuals:
                    2
                              3
  -0.17236
              0.08133 -0.05869
                                  0.12237
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.8466
                            1.0191
                                     0.831
                                              0.406
```

```
## x
                  7.7488
                              4.8728
                                        1.590
                                                  0.112
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 15.791412 on 3 degrees of freedom
## Residual deviance: 0.054742 on 2 degrees of freedom
## AIC: 7.9648
##
## Number of Fisher Scoring iterations: 7
Illustration of a conditional means prior. When x = -.7, median and 90th
percentile of p are (.2,.4). When x = +.6, median and 90th percentile of p are
(.8, .95)
a1.b1 \leftarrow beta.select(list(p=.5, x=.2),
                     list(p=.9, x=.5))
a2.b2 \leftarrow beta.select(list(p=.5, x=.8),
                   list(p=.9, x=.98))
prior \leftarrow rbind(c(-0.7, 4.68, 1.12),
             c(0.6, 2.10, 0.74))
data.new <- rbind(data, prior)</pre>
Plot prior.
plot(c(-1,1), c(0, 1), type="n",
     xlab="Dose", ylab="Prob(death)")
lines(-0.7 * c(1, 1), qbeta(c(.25, .75),
      a1.b1[1], a1.b1[2]), lwd=4)
lines(0.6 * c(1, 1), qbeta(c(.25, .75),
      a2.b2[1], a2.b2[2]), lwd=4)
points(c(-0.7, 0.6), qbeta(.5, c(a1.b1[1],
          a2.b2[1]), c(a1.b1[2], a2.b2[2])),
         pch=19, cex=2)
text(-0.3, .2, "Beta(1.12, 3.56)")
text(.2, .8, "Beta(2.10, 0.74)")
response <- rbind(a1.b1, a2.b2)
x \leftarrow c(-0.7, 0.6)
fit <- glm(response ~ x, family = binomial)</pre>
## Warning in eval(family$initialize): non-integer counts in a binomial glm!
curve(exp(fit$coef[1] + fit$coef[2] * x) /
     (1 + \exp(\text{fit}\text{coef}[1] + \text{fit}\text{coef}[2] * x)),
     add=T)
```



Posterior of regression coefficients.

```
mycontour(logisticpost, c(-3, 3, -1, 9), data.new,
     xlab="beta0", ylab="beta1")
```





plot(density(s\$y), xlab="beta1")

### density.default(x = s\$y)



Estimation of LD50 parameter.

```
theta <- -sx / sy
hist(theta, xlab="LD-50", breaks=20,
xlim = c(-1, 1.5))
```





```
## 2.5% 97.5%
## -0.3194579 0.5101581
```

### 4.4 Comparing Two Proportions

Using Howard's dependent prior for two proportions. Graph of the prior.



### Graphs of the posterior.



# Chapter 5

# Introduction to Bayesian Computation

```
library(LearnBayes)
```

First consider posterior of  $(\eta, K)$ .



Instead look at posterior of  $(\log \frac{\eta}{1-\eta}, \log I)$ .



### 5.2 Approximations Based on Posterior Modes

```
fit <- laplace(betabinexch,</pre>
                c(-7, 6),
                cancermortality)
fit
## $mode
## [1] -6.819793 7.576111
##
## $var
                [,1]
                            [,2]
##
## [1,] 0.07896568 -0.1485087
## [2,] -0.14850874 1.3483208
##
## $int
## [1] -570.7743
##
## $converge
## [1] TRUE
npar <- list(m=fit$mode, v=fit$var)</pre>
mycontour(lbinorm,
           c(-8, -4.5, 3, 16.5),
           npar,
           xlab="logit eta", ylab="log K")
     16
     4
     7
log K
     10
     ω
     9
     4
          -8.0
                  -7.5
                          -7.0
                                  -6.5
                                           -6.0
                                                   -5.5
                                                           -5.0
                                                                   -4.5
                                     logit eta
se <- sqrt(diag(fit$var))</pre>
fit$mode - 1.645 * se
```

```
## [1] -7.282052 5.665982
fit$mode + 1.645 * se
## [1] -6.357535 9.486239
```

# 5.3 Monte Carlo Method for Computing Integrals

Illustration of a simple estimate of an integral by Monte Carlo.

```
p <- rbeta(1000, 14.26, 23.19)
est <- mean(p ^ 2)
se <- sd(p ^ 2) / sqrt(1000)
c(est,se)</pre>
```

## [1] 0.151521812 0.001944763

### 5.4 Rejection Sampling

Using rejection sampling for the overdispersion posterior with a multivariate t proposal density.

```
datapar <- list(data=cancermortality, par=tpar)

start <- c(-6.9, 12.4)
```

```
start <- c(-6.9, 12.4)
fit1 <- laplace(betabinT, start, datapar)
fit1$mode</pre>
```

```
## [1] -6.888963 12.421993
betabinT(fit1$mode, datapar)
```

```
## [1] -569.2829
```

```
theta <- rejectsampling(betabinexch,</pre>
                          tpar,
                        -569.2813,
                        10000,
                        cancermortality)
dim(theta)
## [1] 2389
                2
mycontour(betabinexch,
           c(-8, -4.5, 3, 16.5),
           cancermortality,
           xlab="logit eta", ylab="log K")
points(theta[,1],theta[,2])
     16
     4
     7
log K
     10
     ω
     9
          -8.0
                  -7.5
                          -7.0
                                   -6.5
                                           -6.0
                                                   -5.5
                                                            -5.0
                                                                    -4.5
                                     logit eta
```

### 5.5 Importance Sampling

Posterior density of  $\log K$ \$ conditional on a value of  $\eta$ .

```
betabinexch.cond <- function (log.K, data){
  eta <- exp(-6.818793) / (1 + exp(-6.818793))
  K <- exp(log.K)
  y <- data[, 1]
  n <- data[, 2]</pre>
```

Illustrate different choices of importance sampler.

```
I <- integrate(betabinexch.cond, 2, 16,</pre>
               cancermortality)
par(mfrow=c(2, 2))
curve(betabinexch.cond(x,
            cancermortality) / I$value,
            from=3, to=16,
            ylab="Density", xlab="log K", lwd=3,
                                                               main="Densities")
curve(dnorm(x, 8, 2), add=TRUE)
legend("topright",
       legend=c("Exact", "Normal"),
       lwd=c(3, 1)
curve(betabinexch.cond(x,
            cancermortality) / I$value /
                                                           ylab="Weight", xlab="log K",
           dnorm(x, 8, 2), from=3, to=16,
       main="Weight = g/p")
curve(betabinexch.cond(x,
            cancermortality) / I$ value,
          from=3, to=16,
          ylab="Density", xlab="log K",
          lwd=3, main="Densities")
curve(1 / 2 * dt(x - 8, df=2), add=TRUE)
legend("topright", legend=c("Exact", "T(2)"), lwd=c(3, 1))
curve(betabinexch.cond(x,
          cancermortality) / I$value /
        (1 / 2 * dt(x - 8, df=2)),
        from=3, to=16,
        ylab="Weight", xlab="log K",
        main="Weight = g/p")
```



### 5.6 Sampling Importance Resampling

Illustrate using the SIR algorithm for the beta-binomial density with a multivariate t proposal density.

Use SIR to examine the sensitivity of the posterior inference to removal of individual observations.



# Chapter 6

# Markov Chain Monte Carlo Methods

#### 6.1 Introduction to Discrete Markov Chains

Illustration of sampling from a random walk distribution.

```
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.50 0.50 0.00 0.00 0.00 0.00
## [2,] 0.25 0.50 0.25 0.00 0.00 0.00
## [3,] 0.00 0.25 0.50 0.25 0.00 0.00
## [4,] 0.00 0.00 0.25 0.50 0.25 0.00
## [5,] 0.00 0.00 0.00 0.25 0.50 0.25
## [6,] 0.00 0.00 0.00 0.00 0.50 0.50

s <- array(0, c(50000, 1))
s[1] <- 3
for (j in 2:50000){
    s[j] <- sample(1:6, size=1, prob=P[s[j - 1],])
}</pre>
```

```
m \leftarrow c(500, 2000, 8000, 50000)
for (i in 1:4){
   print(table(s[1:m[i]]) / m[i])
##
##
       1
             2
                    3
## 0.138 0.158 0.142 0.194 0.236 0.132
##
##
               2
                      3
                              4
## 0.1010 0.1895 0.1810 0.1905 0.2080 0.1300
##
                             3
          1
                                      4
## 0.111250 0.209375 0.195000 0.190625 0.186625 0.107125
##
##
                 2
                          3
## 0.10062 0.19684 0.20054 0.20030 0.19934 0.10236
w \leftarrow matrix(c(.1, .2, .2, .2, .2, .1),
            nrow=1, ncol=6)
w %∗% P
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.1 0.2 0.2 0.2 0.2 0.1
```

# 6.2 Learning about a Normal Population from Grouped Data

Have normally distributed data where the data is observed in grouped form. Consider the posterior of  $(\mu, \log \sigma)$ .

First obtain normal approximation to posterior.

```
start <- c(70, 1)
fit <- laplace(groupeddatapost, start, d)</pre>
## $mode
## [1] 70.169880 0.973644
##
## $var
##
                 [,1]
                               [,2]
## [1,] 3.534713e-02 3.520776e-05
## [2,] 3.520776e-05 3.146470e-03
## $int
## [1] -350.6305
##
## $converge
## [1] TRUE
Now use a Metropolis (random walk) MCMC algorithm.
modal.sds <- sqrt(diag(fit$var))</pre>
proposal <- list(var=fit$var, scale=2)</pre>
fit2 <- rwmetrop(groupeddatapost,</pre>
                  proposal,
                  start,
                  10000, d)
fit2$accept
## [1] 0.3011
post.means <- apply(fit2$par, 2, mean)</pre>
post.sds <- apply(fit2$par, 2, sd)</pre>
cbind(c(fit$mode), modal.sds)
##
                    modal.sds
## [1,] 70.169880 0.18800834
## [2,] 0.973644 0.05609341
cbind(post.means, post.sds)
        post.means post.sds
## [1,] 70.1683845 0.18297635
## [2,] 0.9803531 0.05545176
mycontour(groupeddatapost,
          c(69, 71, .6, 1.3), d,
       xlab="mu",ylab="log sigma")
points(fit2$par[5001:10000, 1],
```



### 6.3 Example of Output Analysis

Illustrate MCMC diagnositics for different Metropolis chains with different proposal widths.

```
d <- list(int.lo=c(-Inf, seq(66, 74, by=2)),</pre>
        int.hi=c(seq(66, 74, by=2), Inf),
        f=c(14, 30, 49, 70, 33, 15))
library(coda)
library(lattice)
start <- c(70,1)
 fit <- laplace(groupeddatapost, start, d)</pre>
start <- c(65,1)
 proposal <- list(var=fit$var, scale=0.2)</pre>
 bayesfit <- rwmetrop(groupeddatapost,</pre>
                        proposal,
                        start,
                        10000, d)
dimnames(bayesfit$par)[[2]] <- c("mu", "log sigma")</pre>
 xyplot(mcmc(bayesfit$par[-c(1:2000), ]),
        col="black")
```







```
## Iterations = 1:8000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 8000
##
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
                         SD Naive SE Time-series SE
               Mean
## mu
            70.1703 0.21342 0.0023861
                                          0.028804
## log sigma 0.9774 0.05308 0.0005934
                                           0.005875
## 2. Quantiles for each variable:
##
##
               2.5%
                        25%
                                50%
                                       75% 97.5%
## mu
            69.7478 70.0242 70.1792 70.316 70.589
## log sigma 0.8756 0.9395 0.9761 1.017 1.076
batchSE(mcmc(bayesfit$par[-c(1:2000), ]),
        batchSize=50)
```



par(mfrow=c(2,1))
autocorr.plot(sim.parameters,auto.layout=FALSE)





summary(sim.parameters)

##
## Iterations = 1:8000

```
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 8000
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
                          SD Naive SE Time-series SE
##
                Mean
             70.1768 0.19412 0.0021703
## mu
                                             0.005967
## log sigma 0.9795 0.05732 0.0006409
                                             0.001795
## 2. Quantiles for each variable:
##
##
                2.5%
                         25%
                                 50%
                                        75% 97.5%
             69.7923 70.0437 70.1745 70.309 70.556
## mu
## log sigma 0.8677 0.9398 0.9804 1.019 1.088
 batchSE(sim.parameters, batchSize=50)
##
                 log sigma
            mu
## 0.006082428 0.001632771
```

### 6.4 Modeling Data with Cauchy Errors

Assuming data that is sampled from a Cauchy density with a noninformative prior placed on the location and scale parameters.

```
mean(darwin$difference)
## [1] 21.66667
log(sd(darwin$difference))
## [1] 3.65253
First illustrate normal approximation.
laplace(cauchyerrorpost,
        c(21.6, 3.6),
        darwin$difference)
## $mode
## [1] 24.701745 2.772619
##
## $var
##
              [,1]
                         [,2]
## [1,] 34.9600525 0.3672899
## [2,] 0.3672899 0.1378279
##
```

```
## $int
## [1] -73.2404
##
## $converge
## [1] TRUE
laplace(cauchyerrorpost,
        .1 * c(21.6, 3.6),
        darwin$difference)$mode
## [1] 24.698151 2.772345
c(24.7 - 4 * sqrt(34.96), 24.7 + 4 * sqrt(34.96))
## [1] 1.049207 48.350793
c(2.77 - 4 * sqrt(.138), 2.77 + 4 * sqrt(.138))
## [1] 1.284066 4.255934
mycontour(cauchyerrorpost,
          c(-10, 60, 1, 4.5),
          darwin$difference,
          xlab="mu", ylab="log sigma")
     4.0
log sigma
     3.0
     2.0
     0.
                   0
          -10
                          10
                                  20
                                                          50
                                          30
                                                  40
                                                                  60
                                      mu
fitlaplace <- laplace(cauchyerrorpost,</pre>
                       c(21.6, 3.6),
                       darwin$difference)
mycontour(lbinorm,
          c(-10, 60, 1, 4.5),
          list(m=fitlaplace$mode,
```

```
v=fitlaplace$var),
xlab="mu",ylab="log sigma")
```



Next illustrate random walk Metropolis.



Illustrate metropolis-hastings independence chain.

Illustrate metropolis-within-Gibbs.

```
apply(fitrw$par,2,mean)
## [1] 25.461642 2.838586
apply(fitrw$par,2,sd)
## [1] 6.9419258 0.3693491
```

#### Analysis of the Stanford Heart Transplant 6.5Data

Using a Pareto model to analyze heart transplant data.

Laplace fit.

```
start <- c(0, 3, -1)
laplacefit <- laplace(transplantpost,</pre>
                       start, stanfordheart)
laplacefit
## $mode
## [1] -0.09210954 3.38385249 -0.72334008
##
## $var
##
                 [,1]
                               [,2]
                                            [,3]
## [1,] 0.172788525 -0.009282308 -0.04995160
## [2,] -0.009282308  0.214737054  0.09301323
## [3,] -0.049951602 0.093013230 0.06891796
##
## $int
## [1] -376.2504
##
## $converge
## [1] TRUE
Random walk metropolis.
proposal <- list(var=laplacefit$var, scale=2)</pre>
s <- rwmetrop(transplantpost,</pre>
               proposal,
               start, 10000, stanfordheart)
s$accept
## [1] 0.1878
par(mfrow=c(2,2))
tau \leftarrow exp(s*par[,1])
plot(density(tau), main="TAU")
```

```
lambda <- exp(s$par[,2])</pre>
plot(density(lambda), main="LAMBDA")
p <- exp(s$par[,3])</pre>
plot(density(p), main="P")
                    TAU
                                                            LAMBDA
Density
                                          Density
    9.0
                                              0.000
                2
                    3
                       4
                           5
                               6
                                                           50
                                                                    100
                                                                             150
         N = 10000 Bandwidth = 0.05492
                                                    N = 10000 Bandwidth = 2.003
                     Ρ
Density
    2.0
          0.2
                  0.6
                          1.0
                                  1.4
          N = 10000 Bandwidth = 0.0171
apply(exp(s$par), 2, quantile, c(.05, .5, .95))
##
               [,1]
                          [,2]
                                      [,3]
## 5% 0.4816982 13.52028 0.3185855
## 50% 0.9500635 30.09466 0.4760481
## 95% 1.8746643 65.04539 0.7455402
par(mfrow=c(1, 1))
t < seq(1, 240)
p5 <- 0*t
p50 \leftarrow 0 * t
p95 <- 0 * t
for (j in 1:240){
   S \leftarrow (lambda / (lambda + t[j])) ^ p
   q \leftarrow quantile(S, c(.05, .5, .95))
   p5[j] \leftarrow q[1]
   p50[j] \leftarrow q[2]
   p95[j] \leftarrow q[3]
```

Estimating a patient's survival curve.



## Chapter 7

# Hierarchical Modeling

### 7.1 Introduction to Hierarchical Modeling

```
library(LearnBayes)
library(lattice)
Fit logistic model for home run data for a particular player
logistic.fit <- function(player){</pre>
  d <- subset(sluggerdata, Player==player)</pre>
  x <- d$Age
  x2 \leftarrow d^2 e^2
  response <- cbind(d$HR, d$AB - d$HR)
  list(Age=x,
       p=glm(response ~ x + x2,
              family=binomial)$fitted)
}
names <- unique(sluggerdata$Player)</pre>
newdata <- NULL
for (j in 1:9){
  fit <-logistic.fit(as.character(names[j]))</pre>
  newdata <- rbind(newdata,</pre>
             data.frame(as.character(names[j]),
                         fit$Age, fit$p))
}
names(newdata) <- c("Player", "Age", "Fitted")</pre>
xyplot(Fitted ~ Age | Player,
       data=newdata,
       type="1", lwd=3, col="black")
```





## 7.3 Equal Mortality Rates?

Using posterior predictive checks to see if equal mortality rate model is appropriate.

#### Histogram of ys94



Find posterior predictive distribution of each observation with its posterior predictive distribution.



### 7.4 Modeling a Prior Belief of Exchangeability

Graph of two-stage prior to model a belief in exchangeability of the Poisson rates.

```
pgexchprior <- function(lambda, pars){</pre>
alpha <- pars[1]</pre>
a <- pars[2]
b <- pars[3]
(alpha - 1) * log(prod(lambda)) -
  (2 * alpha + a) * log(alpha * sum(lambda) + b)
}
alpha \leftarrow c(5, 20, 80, 400)
par(mfrow=c(2, 2))
for (j in 1:4){
    mycontour(pgexchprior,
               c(.001, 5, .001, 5),
               c(alpha[j], 10, 10),
          main=paste("ALPHA = ",alpha[j]),
         xlab="LAMBDA 1", ylab="LAMBDA 2")
}
```



### 7.5 Simulating from the Posterior

Representing posterior as  $[\mu, \alpha]$   $[\{\lambda_i\}|\mu, \alpha]$ .

```
Focus on posterior of [\mu, \alpha]:
```

```
datapar \leftarrow list(data = hearttransplants, z0 = 0.53)
start \leftarrow c(2, -7)
fit <- laplace(poissgamexch, start, datapar)</pre>
## $mode
## [1]
        1.883954 -6.955446
##
## $var
                 [,1]
                                [,2]
##
## [1,] 0.233694921 -0.003086655
## [2,] -0.003086655 0.005866020
##
## $int
## [1] -2208.503
##
## $converge
## [1] TRUE
par(mfrow = c(1, 1))
mycontour(poissgamexch, c(0, 8, -7.3, -6.6),
```

```
datapar,
xlab="log alpha", ylab="log mu")
```





plot(density(fitgibbs\$par[, 1], bw = 0.2))

### density.default(x = fitgibbs\$par[, 1], bw = 0.2)



N = 1000 Bandwidth = 0.2

#### Posterior of rates:



#### 7.6 Posterior Inferences



Look at posteriors of shrinkages.

```
shrink <-function(i)
with(hearttransplants,
         mean(alpha / (alpha + e[i] * mu)))
shrinkage=sapply(1:94, shrink)
with(hearttransplants,
         plot(log(e), shrinkage))</pre>
```



Comparing hospitals.

```
mrate <- function(i){</pre>
   with(hearttransplants,
       mean(rgamma(1000, y[i] + alpha,
                    e[i] + alpha/mu)))
}
hospital <- 1:94
meanrate <- sapply(hospital,mrate)</pre>
hospital[meanrate == min(meanrate)]
## [1] 85
sim.lambda <- function(i) {</pre>
  with(hearttransplants,
       rgamma(1000, y[i] + alpha,
               e[i] + alpha / mu))
LAM <- sapply(1:94, sim.lambda)
compare.rates <- function(x) {</pre>
  nc <- NCOL(x)</pre>
  ij <- as.matrix(expand.grid(1:nc, 1:nc))</pre>
  m \leftarrow as.matrix(x[,ij[,1]] > x[,ij[,2]])
  matrix(colMeans(m), nc, nc, byrow = TRUE)
better <- compare.rates(LAM)</pre>
better[1:24, 85]
```

```
## [1] 0.195 0.197 0.095 0.124 0.141 0.231 0.214 0.168 0.079 0.198 0.197 0.162 ## [13] 0.198 0.098 0.069 0.209 0.231 0.095 0.265 0.153 0.140 0.154 0.051 0.067
```

### 7.7 Bayesian Sensitivity Analysis

Explore sensitivity of inference with respect to the choice of  $z_0$  in prior.

```
datapar <- list(data = hearttransplants,</pre>
                  z0 = 0.53)
start <- c(4, -7)
fitgibbs <-gibbs(poissgamexch,
                   start, 1000,
                   c(1,.15), datapar)
sir.old.new <- function(theta, prior, prior.new){</pre>
  log.g <- log(prior(theta))</pre>
  log.g.new <- log(prior.new(theta))</pre>
  wt <- exp(log.g.new - log.g -
               max(log.g.new - log.g))
  probs <- wt / sum(wt)</pre>
  n <- length(probs)</pre>
  indices <- sample(1:n, size=n,</pre>
                      prob=probs, replace=TRUE)
  theta[indices]
}
prior <- function(theta){</pre>
  0.53 * \exp(\text{theta}) / (\exp(\text{theta}) + 0.53) ^ 2
prior.new <- function(theta){</pre>
  5 * exp(theta) / (exp(theta) + 5) ^ 2
log.alpha <- fitgibbs$par[, 1]</pre>
log.alpha.new <- sir.old.new(log.alpha,</pre>
                                 prior, prior.new)
library(lattice)
draw.graph <- function(){</pre>
  LOG.ALPHA <- data.frame("prior", log.alpha)</pre>
  names(LOG.ALPHA) <- c("Prior", "log.alpha")</pre>
  LOG.ALPHA.NEW <- data.frame("new.prior",
                                  log.alpha.new)
  names(LOG.ALPHA.NEW) <- c("Prior","log.alpha")</pre>
  D <- densityplot(~ log.alpha,
```

### Original Prior and Posterior (solid), New Prior and Posterior (dashed)



### 7.8 Posterior Predictive Model Checking

```
Study predictive distributions of observations.
```

```
datapar <- list(data = hearttransplants, z0 = 0.53)
start <- c(4, -7)
fitgibbs <- gibbs(poissgamexch,</pre>
```

### Histogram of ys94



Explore the probabilities that the predictive distribution of each observation is at least as large as observed  $y_i$ .

```
min(pleft, pright)
pout.exchange <- sapply(1:94, prob.out)</pre>
plot(pout, pout.exchange,
     xlab="P(extreme), equal means",
     ylab="P(extreme), exchangeable")
abline(0,1)
                             9.0
P(extreme), exchangeable
    0.5
    0.4
    0.3
    0.2
         0.0
                 0.1
                         0.2
                                 0.3
                                         0.4
                                                 0.5
                                                          0.6
                                                                 0.7
```

P(extreme), equal means

## Chapter 8

# Model Comparison

#### 8.1 A One-Sided Test of a Normal Mean

```
Bayesian testing of \mu \le \mu_0 against \mu > \mu_0.
library(LearnBayes)
pmean <- 170
pvar <- 25
probH <- pnorm(175, pmean, sqrt(pvar))</pre>
probA <- 1 - probH</pre>
prior.odds <- probH / probA</pre>
prior.odds
## [1] 5.302974
weights <- c(182, 172, 173, 176, 176, 180,
              173, 174, 179, 175)
xbar <- mean(weights)</pre>
sigma2 <- 3 ^ 2 / length(weights)</pre>
post.precision <- 1 / sigma2 + 1 / pvar</pre>
post.var <- 1 / post.precision</pre>
post.mean <- (xbar / sigma2 + pmean / pvar) /</pre>
           post.precision
c(post.mean, sqrt(post.var))
## [1] 175.7915058
                       0.9320546
post.odds <- pnorm(175, post.mean,</pre>
                     sqrt(post.var)) /
            (1 - pnorm(175, post.mean,
```

```
sqrt(post.var)))
post.odds
## [1] 0.2467017
BF <- post.odds / prior.odds
## [1] 0.04652139
postH <- probH * BF / (probH * BF + probA)</pre>
postH
## [1] 0.1978835
Contrast with a frequentist p-value calculation.
z <- sqrt(length(weights)) *</pre>
  (mean(weights) - 175) / 3
1 - pnorm(z)
## [1] 0.1459203
weights <- c(182, 172, 173, 176, 176, 180,
          173, 174, 179, 175)
data <- c(mean(weights), length(weights), 3)</pre>
prior.par \leftarrow c(170, 1000)
mnormt.onesided(175, prior.par, data)
## $BF
## [1] 0.1694947
##
## $prior.odds
## [1] 1.008011
##
## $post.odds
## [1] 0.1708525
##
## $postH
## [1] 0.1459215
```

#### 8.2 A Two-Sided Test of a Normal Mean

```
Bayesian testing of \mu = \mu_0 against \mu \neq \mu_0.
```

```
weights <- c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)
```

```
data <- c(mean(weights), length(weights), 3)
t <- c(.5, 1, 2, 4, 8)
mnormt.twosided(170, .5, t, data)

## $bf
## [1] 1.462146e-02 3.897038e-05 1.894326e-07 2.591162e-08 2.309739e-08
##
## $post
## [1] 1.441076e-02 3.896887e-05 1.894325e-07 2.591162e-08 2.309739e-08</pre>
```

#### 8.3 Models for Soccer Goals

## [3,] 0.5825195 0.1224723 -5.076316 ## [4,] 0.4899414 0.1320165 -2.137216

Illustrates the use of the marginal likelihood to compare several Bayesian models for soccer goals.

```
datapar <- list(data=soccergoals$goals,</pre>
                 par=c(4.57, 1.43))
fit1 <- laplace(logpoissgamma, .5, datapar)</pre>
datapar <- list(data=soccergoals$goals,</pre>
                 par=c(1, .5))
fit2 <- laplace(logpoissnormal, .5, datapar)</pre>
datapar <- list(data=soccergoals$goals,</pre>
                 par=c(2, .5))
fit3 <- laplace(logpoissnormal, .5, datapar)</pre>
datapar <- list(data=soccergoals$goals,</pre>
                 par=c(1, 2))
fit4 <- laplace(logpoissnormal, .5, datapar)</pre>
postmode <- c(fit1$mode, fit2$mode, fit3$mode,</pre>
               fit4$mode)
postsd <- sqrt(c(fit1$var, fit2$var, fit3$var,</pre>
                   fit4$var))
logmarg <- c(fit1$int, fit2$int, fit3$int,</pre>
              fit4$int)
cbind(postmode,postsd,logmarg)
##
         postmode
                       postsd
                               logmarg
## [1,] 0.5248047 0.1274414 -1.502977
## [2,] 0.5207825 0.1260712 -1.255171
```

## data: data

### 8.4 Is a Baseball Hitter Really Streaky?

Defines a family of streaky models to measure the level of support for streakiness by a Bayes factor.

```
data <- cbind(jeter2004$H, jeter2004$AB)</pre>
data1 <- regroup(data, 5)</pre>
log.marg <- function(logK){</pre>
     laplace(bfexch, 0,
           list(data=data1, K=exp(logK)))$int
log.K \leftarrow seq(2, 6)
K <- exp(log.K)</pre>
log.BF <- sapply(log.K, log.marg)</pre>
BF <- exp(log.BF)
round(data.frame(log.K, K, log.BF, BF), 2)
##
     log.K
                 K log.BF
                              BF
## 1
              7.39 -4.04 0.02
          3 20.09
## 2
                      0.17 1.19
## 3
          4 54.60
                      0.92 2.51
## 4
          5 148.41
                      0.57 1.78
## 5
          6 403.43
                      0.26 1.29
```

# 8.5 A Test of Independence in a Two-Way Contingency Table

Constructs several Bayes factor statistics for two-way contingency tables.

```
data \leftarrow matrix(c(11, 9, 68, 23, 3, 5),
                c(2, 3))
data
##
         [,1] [,2] [,3]
## [1,]
                68
           11
## [2,]
                23
                       5
Traditional chi-square test of independence.
chisq.test(data)
## Warning in chisq.test(data): Chi-squared approximation may be incorrect
##
##
   Pearson's Chi-squared test
##
```

```
## X-squared = 6.9264, df = 2, p-value = 0.03133
```

Bayes factor against independence using uniform priors.

```
a=matrix(rep(1, 6), c(2, 3))
a

## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
ctable(data, a)
```

#### ## [1] 1.662173

Consider Bayes factors against independence for alternatives close to independence.

```
log.K <- seq(2,7)
compute.log.BF <- function(log.K){
    log(bfindep(data, exp(log.K), 100000)$bf)
}
log.BF <- sapply(log.K, compute.log.BF)
BF <- exp(log.BF)</pre>
```

```
## 1 log.K log.BF BF
## 1 2 -0.59 0.55
## 2 3 0.26 1.30
## 3 4 0.77 2.16
## 4 5 0.73 2.08
## 5 6 0.43 1.54
## 6 7 0.20 1.22
```

round(data.frame(log.K, log.BF, BF), 2)

# Chapter 9

xaxp=c(0, 1, 1))

# Regression Models

### 9.1 An Example of Bayesian Regression

```
library(LearnBayes)
logtime <- log(birdextinct$time)</pre>
plot(birdextinct$nesting, logtime)
out <- (logtime > 3)
text(birdextinct$nesting[out], logtime[out],
     label=birdextinct$species[out], pos = 2)
           Raven o
                     Ringed_plover Skylark O
                                                           Starling o
    က
               2
                                    6
                                               8
                          4
                                                         10
                                                                   12
                               birdextinct$nesting
plot(jitter(birdextinct$size), logtime,
```



jitter(birdextinct\$size)



jitter(birdextinct\$status)

Least-squares fit:

```
##
## Call:
## lm(formula = logtime ~ nesting + size + status, data = birdextinct,
```

```
##
     x = TRUE, y = TRUE)
##
## Residuals:
     Min
           10 Median
                        3Q
                              Max
## -1.8410 -0.2932 -0.0709 0.2165 2.5167
##
## Coefficients:
          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.43087 0.20706 2.081 0.041870 *
## nesting
          ## size
          ## status
          ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6524 on 58 degrees of freedom
## Multiple R-squared: 0.5982, Adjusted R-squared: 0.5775
## F-statistic: 28.79 on 3 and 58 DF, p-value: 1.577e-11
```

Sampling from posterior using vague priors for parameters.

```
theta.sample <- blinreg(fit$y, fit$x, 5000)

par(mfrow=c(2,2))
hist(theta.sample$beta[,2], main="NESTING",
    xlab=expression(beta[1]))
hist(theta.sample$beta[,3], main="SIZE",
    xlab=expression(beta[2]))
hist(theta.sample$beta[,4], main="STATUS",
    xlab=expression(beta[3]))
hist(theta.sample$sigma, main="ERROR SD",
    xlab=expression(sigma))</pre>
```







```
## X(Intercept) Xnesting Xsize Xstatus
## 5% 0.09782926 0.2060394 -0.9349520 0.1973827
## 50% 0.42879649 0.2654044 -0.6539278 0.5011496
## 95% 0.78922321 0.3268835 -0.3771980 0.8145627
quantile(theta.sample$sigma, c(.05, .5, .95))
```

```
## 5% 50% 95%
## 0.5691949 0.6548724 0.7692441
```

Estimating mean extinction times:

```
cov1 <- c(1, 4, 0, 0)
cov2 <- c(1, 4, 1, 0)
cov3 <- c(1, 4, 0, 1)
cov4 <- c(1, 4, 1, 1)
X1 <- rbind(cov1, cov2, cov3, cov4)
mean.draws <- blinregexpected(X1, theta.sample)</pre>
```

```
xlab="log TIME")
}
```







Covariate set C



Covariate set D

Predicting future extinction times:



Model checking: posterior predictive distribution distributions of each future observation, showing actual observation as solid dot.



Model checking via bayes residuals  $y_i-x_i\beta$ . Graph of absolute values of residuals that exceeds a particular constant.



### 9.2 Modeling Using Zellner's g Prior

Illustrating the role of the parameter c:

```
X <- cbind(1, puffin$Distance -</pre>
              mean(puffin$Distance))
c.prior \leftarrow c(0.1, 0.5, 5, 2)
fit <- vector("list", 4)</pre>
for (j in 1:4){
  prior <- list(b0=c(8, 0), c0=c.prior[j])</pre>
  fit[[j]] <- blinreg(puffin$Nest, X, 1000, prior)</pre>
BETA <- NULL
for (j in 1:4){
  s=data.frame(Prior=paste("c =",
                 as.character(c.prior[j])),
          beta0=fit[[j]]$beta[, 1],
          beta1=fit[[j]]$beta[, 2])
  BETA <- rbind(BETA, s)</pre>
library(lattice)
with(BETA,
     xyplot(beta1 ~ beta0 | Prior,
             type=c("p", "g"),
             col="black"))
```



Model selection of all regression models using g priors:

```
data <- list(y=puffin$Nest,</pre>
           X=cbind(1, puffin$Grass, puffin$Soil))
prior \leftarrow list(b0=c(0, 0, 0), c0=100)
beta.start <- with(puffin,</pre>
         lm(Nest ~ Grass + Soil)$coef)
laplace(reg.gprior.post,
       c(beta.start, 0),
       list(data=data, prior=prior))$int
## [1] -136.3957
X \leftarrow puffin[, -1]
y <- puffin$Nest
c <- 100
bayes.model.selection(y, X, c, constant=FALSE)
## $mod.prob
     Grass Soil Angle Distance
                               log.m
## 1 FALSE FALSE FALSE FALSE -132.18 0.00000
## 2 TRUE FALSE FALSE FALSE -134.05 0.00000
## 3 FALSE TRUE FALSE FALSE -134.51 0.00000
## 4 TRUE TRUE FALSE FALSE -136.40 0.00000
## 5 FALSE FALSE TRUE FALSE -112.67 0.00000
## 6
     TRUE FALSE TRUE FALSE -113.18 0.00000
## 7 FALSE TRUE TRUE FALSE -114.96 0.00000
## 8 TRUE TRUE TRUE FALSE -115.40 0.00000
## 9 FALSE FALSE FALSE TRUE -103.30 0.03500
                         TRUE -105.57 0.00360
## 10 TRUE FALSE FALSE
## 11 FALSE TRUE FALSE
                      TRUE -100.37 0.65065
## 12 TRUE TRUE FALSE
                         TRUE -102.35 0.08992
## 13 FALSE FALSE TRUE
                         TRUE -102.81 0.05682
## 14 TRUE FALSE TRUE
                         TRUE -105.09 0.00581
## 15 FALSE TRUE TRUE
                         TRUE -101.88 0.14386
## 16 TRUE TRUE TRUE
                         TRUE -104.19 0.01434
##
## $converge
## [16] TRUE
```

### 9.3 Survival Modeling

Traditional fit using a Weibull model:

```
data = chemotherapy)
## Call:
## survreg(formula = Surv(time, status) ~ factor(treat) + age, data = chemotherapy,
       dist = "weibull")
##
## Coefficients:
##
      (Intercept) factor(treat)2
                                             age
##
      10.98683919
                      0.56145663 -0.07897718
##
## Scale= 0.5489202
## Loglik(model) = -88.7 Loglik(intercept only) = -98
## Chisq= 18.41 on 2 degrees of freedom, p= 0.000101
## n = 26
Bayesian fit:
start <- c(-.5, 9, .5, -.05)
d <- with(chemotherapy,</pre>
          cbind(time, status, treat - 1, age))
fit <- laplace(weibullregpost, start, d)</pre>
fit
## $mode
## [1] -0.59986796 10.98663371 0.56151088 -0.07897316
##
## $var
##
                [,1]
                             [,2]
                                          [,3]
                                                         [,4]
## [1,] 0.057298875 0.13530436 0.004541435 -0.0020828431
## [2,] 0.135304360 1.67428176 -0.156631948 -0.0255278352
## [3,] 0.004541435 -0.15663195 0.115450201 0.0017880712
## [4,] -0.002082843 -0.02552784 0.001788071 0.0003995202
##
## $int
## [1] -25.31207
##
## $converge
## [1] TRUE
proposal <- list(var=fit$var, scale=1.5)</pre>
bayesfit <- rwmetrop(weibullregpost,</pre>
                     proposal,
                     fit$mode,
                     10000, d)
bayesfit$accept
```

#### ## [1] 0.271

```
par(mfrow=c(2, 2))
sigma <- exp(bayesfit$par[, 1])
mu <- bayesfit$par[, 2]
beta1 <- bayesfit$par[, 3]
beta2 <- bayesfit$par[, 4]
hist(beta1, xlab="treatment", main="")
hist(beta2, xlab="age", main="")
hist(sigma, xlab="sigma", main="")</pre>
```







# Chapter 10

# Gibbs Sampling

### 10.1 Robust Modeling

Illustrating Gibbs sampling using a t sampling model.

```
library(LearnBayes)

fit <- robustt(darwin$difference, 4, 10000)

plot(density(fit$mu), xlab="mu")</pre>
```

#### density.default(x = fit\$mu)



The  $\lambda_j$  parameters indicate the outlying observations.



### 10.2 Binary Response Regression with a Probit Link

Missing data and Gibbs sampling

Traditional probit fit:

```
##
## Call:
## glm(formula = survival ~ X - 1, family = binomial(link = probit),
      data = donner)
##
## Deviance Residuals:
     Min 1Q Median
                                3Q
                                          Max
## -1.7420 -1.0555 -0.2756 0.8861
                                       2.0339
##
## Coefficients:
##
        Estimate Std. Error z value Pr(>|z|)
## X
         1.91730 0.76438
                             2.508
                                      0.0121 *
## Xage -0.04571
                    0.02076 - 2.202
                                      0.0277 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 62.383 on 45 degrees of freedom
## Residual deviance: 51.283 on 42 degrees of freedom
## AIC: 57.283
## Number of Fisher Scoring iterations: 5
Bayesian fit of the probit model using data augmentation.
m <- 10000
fit <- bayes.probit(donner$survival, X, m)</pre>
apply(fit$beta,2,mean)
## [1] 2.08778647 -0.05013532 -1.02079631
apply(fit$beta,2,sd)
## [1] 0.81408634 0.02171058 0.45311813
Posterior distributions of specific probabilities.
a \leftarrow seq(15, 65)
X1 \leftarrow cbind(1, a, 1)
p.male <- bprobit.probs(X1, fit$beta)</pre>
plot(a, apply(p.male, 2, quantile, .5),
     type="l", ylim=c(0,1),
  xlab="age", ylab="Probability of Survival")
lines(a,apply(p.male, 2, quantile, .05), lty=2)
lines(a,apply(p.male, 2, quantile, .95), lty=2)
```



Proper priors and model selection of probit models.

```
y <- donner$survival
X <- cbind(1, donner$age, donner$male)</pre>
beta0 \leftarrow c(0,0,0)
c0 <- 100
PO <- t(X) %*% X / c0
bayes.probit(y, X, 1000,
             list(beta=beta0, P=P0))$log.marg
## [1] -31.5737
bayes.probit(y, X[, -2], 1000,
   list(beta=beta0[-2], P=P0[-2, -2]))$log.marg
## [1] -32.77612
bayes.probit(y, X[, -3], 1000,
   list(beta=beta0[-3], P=P0[-3, -3]))$log.marg
## [1] -32.06246
bayes.probit(y, X[, -c(2, 3)], 1000,
              list(beta=beta0[-c(2, 3)],
      P=P0[-c(2, 3), -c(2, 3)])$log.marg
```

## [1] -32.98507

#### 10.3 Estimating a Table of Means

```
rlabels <- c("91-99", "81-90", "71-80",
             "61-70", "51-60", "41-50",
            "31-40", "21-30")
clabels <- c("16-18", "19-21", "22-24",
             "25-27", "28-30")
gpa <- matrix(iowagpa[, 1],</pre>
             nrow = 8, ncol = 5, byrow = T)
dimnames(gpa) <- list(HSR = rlabels,</pre>
                     ACTC = clabels)
gpa
##
         ACTC
## HSR
          16-18 19-21 22-24 25-27 28-30
##
    91-99 2.64 3.10 3.01 3.07 3.34
##
    81-90 2.24 2.63 2.74 2.76 2.91
    71-80 2.43 2.47 2.64 2.73 2.47
    61-70 2.31 2.37 2.32 2.24 2.31
##
##
    51-60 2.04 2.20 2.01 2.43 2.38
##
    41-50 1.88 1.82 1.84 2.12 2.05
    31-40 1.86 2.28 1.67 1.89 1.79
##
    21-30 1.70 1.65 1.51 1.67 2.33
##
samplesizes <- matrix(iowagpa[, 2],</pre>
                 nrow = 8, ncol = 5, byrow = T)
dimnames(samplesizes) <- list(HSR = rlabels,</pre>
                             ACTC = clabels)
samplesizes
##
         ACTC
## HSR
          16-18 19-21 22-24 25-27 28-30
##
    91-99
              8
                   15
                       78
                              182
                                    166
    81-90
             20
                   71
                              178
##
                        168
                                     91
##
    71-80
             40 116
                      180
                              133
                                     46
    61-70
           34 93 124
##
                              101
                                     19
                  73
##
    51-60
             41
                       62
                              58
                                     9
##
    41-50
             19
                   25
                       36
                               49
                                     16
##
    31-40
             8
                   9
                       15
                               29
                                      9
##
    21-30
              4
                    5
                          9
                               11
                                      1
act <- seq(17, 29, by = 3)
matplot(act, t(gpa), type = "1", lwd = 3,
 xlim = c(17, 34), col=1:8, lty=1:8)
legend(30, 3, lty = 1:8, lwd = 3,
     legend = c("HSR=9", "HSR=8",
    "HSR=7", "HSR=6", "HSR=5", "HSR=4",
```



Fitting a Bayesian model with a flat prior over the restricted space.

```
MU <- ordergibbs(iowagpa, 5000)
postmeans <- apply(MU, 2, mean)</pre>
postmeans <- matrix(postmeans, nrow = 8, ncol = 5)</pre>
postmeans <- postmeans[seq(8, 1, -1), ]</pre>
dimnames(postmeans) <-</pre>
  list(HSR=rlabels, ACTC=clabels)
round(postmeans, 2)
##
          ACTC
## HSR
           16-18 19-21 22-24 25-27 28-30
##
     91-99 2.65 2.92 3.01 3.09
                                   3.34
##
     81-90
            2.41
                 2.62
                       2.73
                              2.78
                                   2.92
##
     71-80 2.33 2.47
                       2.62 2.67 2.71
##
     61-70 2.21 2.30
                       2.33 2.37 2.50
##
     51-60 1.99 2.11
                       2.15 2.31 2.41
##
     41-50 1.76
                 1.86
                       1.94 2.10 2.21
##
     31-40 1.59 1.74 1.81 1.91 2.04
     21-30 1.23 1.42 1.55 1.69 1.88
matplot(act, t(postmeans), type = "1",
        lty=1:8, lwd = 3, col = 1,
        xlim = c(17, 34))
legend(30, 3, lty = 1:8, lwd = 2,
      legend = c("HSR=9", "HSR=8",
     "HSR=7", "HSR=6", "HSR=5", "HSR=4",
```

```
"HSR=3", "HSR=2"))
    3.0
                                                            HSR=9
                                                             HSR=8
t(postmeans)
    2.5
                                                             HSR=7
                                                             HSR=6
                                                             HSR=5
    2.0
                                                             HSR=4
                                                             HSR=3
                                                             HSR=2
    1.5
                    20
                                    25
                                                     30
                                      act
postsds <- apply(MU, 2, sd)</pre>
postsds <- matrix(postsds, nrow = 8, ncol = 5)</pre>
postsds <- postsds[seq(8, 1, -1), ]</pre>
dimnames(postsds) <- list(HSR=rlabels,</pre>
                           ACTC=clabels)
round(postsds, 3)
##
          ACTC
## HSR
           16-18 19-21 22-24 25-27 28-30
##
     91-99 0.141 0.085 0.054 0.043 0.051
##
     81-90 0.075 0.059 0.038 0.038 0.063
     71-80 0.064 0.051 0.038 0.039 0.047
##
     61-70 0.066 0.039 0.036 0.038 0.080
##
     51-60 0.076 0.053 0.055 0.049 0.075
     41-50 0.082 0.067 0.067 0.071 0.086
##
##
     31-40 0.115 0.078 0.072 0.075 0.099
##
     21-30 0.183 0.139 0.118 0.113 0.131
s <- .65
se <- s / sqrt(samplesizes)</pre>
round(postsds / se, 2)
##
          ACTC
## HSR
           16-18 19-21 22-24 25-27 28-30
##
     91-99 0.61 0.51 0.74
                               0.90
                                     1.00
     81-90 0.52 0.76
                        0.75
                               0.79
                                      0.92
##
##
     71-80 0.62 0.85 0.78 0.69 0.49
```

```
##
    61-70 0.59 0.59 0.62 0.59
                                 0.53
##
    51-60
           0.75
                0.70 0.66
                            0.57
                                  0.34
##
    41-50
           0.55
                0.52
                      0.62 0.76
                                 0.53
##
    31-40
           0.50
                0.36
                      0.43 0.62
                                 0.46
    21-30
           0.56
                0.48 0.54 0.58
##
                                 0.20
```

Fit of a hierarchical regression prior:

```
FIT <- hiergibbs(iowagpa, 5000)
```

#### **HIGH SCHOOL RANK**



#### **ACT SCORE**



## 2.5% 25% 50% 75% 97.5% ## 0.02224535 0.02619811 0.02835767 0.03049379 0.03455889

```
quantile(FIT$var,
         c(.025, .25, .5, .75, .975))
          2.5%
                         25%
                                      50%
                                                   75%
                                                              97.5%
## 0.001099840 0.001967612 0.002783425 0.003925143 0.007472338
posterior.means <- apply(FIT$mu, 2, mean)</pre>
posterior.means <- matrix(posterior.means,</pre>
                            nrow = 8, ncol = 5,
                            byrow = T)
par(mfrow=c(1, 1))
matplot(act, t(posterior.means),
        type = "l", lwd = 3, lty=1:8, col=1,
        xlim = c(17, 34))
legend(30, 3, lty = 1:8, lwd = 2,
       legend = c("HSR=9", "HSR=8", "HSR=7",
                   "HSR=6", "HSR=5", "HSR=4",
                   "HSR=3", "HSR=2"))
    3.0
                                                              HSR=9
(posterior.means)
                                                              HSR=8
    2.5
                                                              HSR=7
                                                              HSR=6
                                                              HSR=5
                                                              HSR=4
    2.0
                                                              HSR=3
                                                              HSR=2
    7.
                    20
                                     25
                                                      30
                                       act
p <- 1 - pnorm((2.5 - FIT$mu) / .65)</pre>
prob.success <- apply(p, 2, mean)</pre>
prob.success <- matrix(prob.success,</pre>
                         nrow=8, ncol=5, byrow=T)
dimnames(prob.success) <- list(HSR=rlabels,</pre>
                                 ACTC=clabels)
round(prob.success,3)
```

```
## HSR 16-18 19-21 22-24 25-27 28-30 ## 91-99 0.690 0.749 0.781 0.813 0.879 ## 81-90 0.556 0.617 0.663 0.690 0.757 ## 71-80 0.466 0.503 0.579 0.630 0.628 ## 61-70 0.360 0.411 0.425 0.439 0.538 ## 51-60 0.249 0.304 0.304 0.409 0.440 ## 41-50 0.168 0.193 0.221 0.282 0.319 ## 31-40 0.107 0.140 0.152 0.189 0.224 ## 21-30 0.061 0.078 0.095 0.121 0.153
```