可靠性、和谐性与完备性

王捍贫 北京大学信息科学技术学院软件研究所

复习

构造逻辑的过程:

- 命题演算推理形式系统P(和N) 语法.
- 语法的核心是推理: $\vdash \alpha$?
- P是符号演算。
- 公式的含义: 真、假、永真等 语义.
- 语义的核心是公式的永真性.
- 逻辑 = 语法 + 语义.

可靠性、和谐性与完全性

可靠性: P的内定理都是重言式.

完全性: 所有重言式都是P的内定理.

和谐性: P无矛盾,即无 α 能使 $\mid \alpha$ 和 $\mid \neg \alpha$ 同时成立

可靠性

定理29 若⊢ \mathbf{p} α ,则 α 是重言式.

证:

因 $\vdash_{\mathbf{P}} \alpha$, 故存在 α 在 \mathbf{P} 中的证明序列 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 下对i (1 $\leq i \leq n$)归纳证明每个 α_i 都是重言式.

- (1) 若i=1, α_1 必为公理, 由定理17知 α_1 为重言式
- (2) 假设 $\alpha_1, \alpha_2, \cdots, \alpha_{i-1}$ 都是重言式,下证 α_i 也是.
- (2.1) 若 α_i 是公理,则 α_i 为重言式.
- (2.2) 若 α_i 是由 α_j , α_k (1 $\leq j$, k < i) 用分离规则(M)得到的. 不妨设 α_k 为 $\alpha_j \to \alpha_i$. 由归纳假设知 α_j , α_k 是重言式. 由定理**18**知 α_i 也是重言式.

和谐性

定理30 对P的任何公式 α , $\vdash_{\mathbf{P}} \alpha$ 与 $\vdash_{\mathbf{P}} \neg \alpha$ 不能同时成立.

证:

若不然,则 α 与 $\neg \alpha$ 均为重言式.

从而对P的任一个指派 σ , $\alpha^{\sigma} = (\neg \alpha)^{\sigma} = 1$.

但 $(\neg \alpha)^{\sigma} = 1 - \alpha^{\sigma} = 0 \neq \alpha^{\sigma}$,矛盾.

注意: P中可能存在某个公式 α 使得 α 与 $\neg \alpha$ 均不是内定理.

推论10 P中至少有一个公式不是内定理.

一个记号

 $\beta(v_1, v_2, \dots, v_n)$ 表示P中具有如下条件的公式:

- (1) v_1, v_2, \dots, v_n 是互异的命题符号,
- (2) β 中出现的命题符号都在 v_1, v_2, \dots, v_n 中.

一个引理

设 $\beta(v_1, v_2, \dots, v_n)$ 为 \mathbf{P} 中一个公式, σ 为 \mathbf{P} 的一个指派. 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是如下构造的公式序列:

$$\alpha_i = \begin{cases} v_i & \stackrel{\text{\pmathrm{$$

- 则 (1) 当 $(\beta(v_1, v_2, \dots, v_n))^{\sigma} = 1$ 时, $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta$
 - (2) 当 $(\beta(v_1, v_2, \dots, v_n))^{\sigma} = 0$ 时, $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg \beta$

引理的证明(I)

证:对 β 中所含的联结词 \neg , \rightarrow 的个数d进行归纳证明.

(1) 当d = 0时, β 为某个命题符号 v_i , $\beta^{\sigma} = \sigma(v_i)$.

(1.1) 当 $\beta^{\sigma} = 1$ 时, $\sigma(v_i) = 1$, 从而 α_i 为 v_i . 即 α_i 就是 β , 故 $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \beta$.

(1.2) 当 $\beta^{\sigma} = 0$ 时, α_i 为 $\neg v_i$. 即 α_i 为 $\neg \beta$,故 $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \neg \beta$.

引理的证明(II)

- (2) 假设定理对满足 $d \leq k$ 的所有d都成立,下证定理在d = k + 1时也成立.
- (2.1) 着 β 为($\neg \beta_1$), 则 β_1 中的联结词个 $d_1 = k$.
- (2.1.1) 当 $\beta^{\sigma} = 1$ 时, $\beta_1^{\sigma} = 0$. 由归纳假设知: $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \neg \beta_1$,即 $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \beta$.
- (2.1.2) 当 $\beta^{\sigma} = 0$ 时, $\beta_1^{\sigma} = 1$. 由归纳假设知: $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta_1$,由于 $\beta_1 \vdash \neg \neg \beta_1$,故 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg \neg \beta_1$,即 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg \beta$.

引理的证明(III)

(2.2) 若 β 为 $\beta_1 \rightarrow \beta_2$,则 β_1 , β_2 中所含联结词的个数均 $\leq k$.

(2.2.1) 当 $\beta^{\sigma} = 0$ 时, $\beta_1^{\sigma} = 1$,且 $\beta_2^{\sigma} = 0$. 由归纳假设知: $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta_1$ $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg \beta_2$ 由例29知: $\vdash \beta_1 \rightarrow (\neg \beta_2 \rightarrow \neg (\beta_1 \rightarrow \beta_2),$ 故 $\beta_1, \neg \beta_2 \vdash \neg (\beta_1 \rightarrow \beta_2),$ 从而 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg (\beta_1 \rightarrow \beta_2),$ 即 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \neg \beta$.

引理的证明(IV)

$$(2.2.2)$$
 当 $\beta^{\sigma} = 1$ 时, $\beta_1^{\sigma} = 0$ 或 $\beta_2^{\sigma} = 1$.

- (i) 若 $\beta_2^{\sigma} = 1$, 则 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta_2$. 由于 $\beta_2 \vdash \beta_1 \rightarrow \beta_2$, 故 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta_1 \rightarrow \beta_2$, 即 $\alpha_1, \alpha_2, \dots, \alpha_n \vdash \beta$.
- (ii) 若 $\beta_1^{\sigma} = 0$ 则, α_1 , α_2 , \cdots , $\alpha_n \vdash \neg \beta_1$. 由于 $\neg \beta_1 \vdash \beta_1 \rightarrow \beta_2$, 故 α_1 , α_2 , \cdots , $\alpha_n \vdash \beta_1 \rightarrow \beta_2$, 即 α_1 , α_2 , \cdots , $\alpha_n \vdash \beta$.

完全性

定理31 若 β 是P中重言式,则 $\vdash_{\mathbf{P}} \beta$.

证:

设 v_1, v_2, \cdots, v_n 是 β 中出现的全部互异命题符号.

对P中任一组满足下列条件的公式 $\alpha_1, \alpha_2, \cdots, \alpha_n$:

每个
$$\alpha_i$$
为 v_i 或 $\neg v_i$ (1 $\leq i \leq n$)

由于 β 永真, 由引理知:

$$\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \beta$$

因为 α_n 可为 v_n , 也可为 $\neg v_n$, 故

$$\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \quad v_n \vdash \beta$$

$$\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \neg v_n \vdash \beta$$

完全性(续)

由演绎定理知:

$$\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1} \vdash v_{n} \rightarrow \beta$$
 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1} \vdash \neg v_{n} \rightarrow \beta$
但 $\vdash (v_{n} \rightarrow \beta) \rightarrow ((\neg v_{n} \rightarrow \beta) \rightarrow \beta)$,故
 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1} \vdash \beta$
仿上可得: $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2} \vdash \beta$
 \vdots
 $\alpha_{1}, \alpha_{2} \vdash \beta$
 $\alpha_{1} \vdash \beta$
即 $v_{1} \vdash \beta$, $\neg v_{1} \vdash \beta$, 故 $\vdash v_{1} \rightarrow \beta$, $\vdash \neg v_{1} \rightarrow \beta$. 从而 $\vdash \beta$.

注

- 命题演算内定理是可判定的,即问题:
 P的公式α是否为P的内定理?
 可在有限步内作出回答。
- 定理的机器证明与辅助证明。
- 可靠性与完全性能否推广到带前提的情形?

作业

p.509(p.102). 26 27 28 谢谢