ITCS 531: Number Theory 1 solutions

Rob Egrot

Q1

Consider the following (false) theorem:

Theorem

If $a, b \in \mathbb{N}$ and a = b then a = 0.

Proof.

$$a = b$$

$$a^{2} = ab$$

$$a^{2} - b^{2} = ab - b^{2}$$

$$(a - b)(a + b) = (a - b)b$$

$$a + b = b$$

$$a = 0$$

What is wrong with this proof?

Division by zero!

Use the well-ordering principle to show that

$$2+4+6+\ldots+2n=n(n+1).$$

- Suppose this is not true for all natural numbers.
- ▶ By well-ordering, let *k* be smallest number for which the identity is not true.
- \triangleright k cannot be 1 as identity is true for n=1.
- ▶ Identity must be true for k-1. So we have

$$2 + \ldots + 2(k-1) = (k-1)(k),$$

and so, adding 2k to both sides we have

$$2 + \ldots + 2(k-1) + 2k = (k-1)(k) + 2k.$$

But

$$(k-1)(k) + 2k = (k)(k+1),$$

and so

$$2 + \ldots + 2k = (k)(k+1).$$

This is a contradiction because k is supposed to invalidate the identity.

Let $n \in \mathbb{N}$. If n^2 is even must n also be even? Give a proof or a counterexample.

- **By** the fundamental theorem of arithmetic, n^2 has a unique prime factorization.
- The same is true for *n*.
- ► Suppose $n = p_1 \dots p_k$.
- $\blacktriangleright \text{ Then } n^2 = p_1 \dots p_k p_1 \dots p_k.$
- ▶ If n^2 is even then $2|n^2$.
- Since $n^2 = p_1 \dots p_k p_1 \dots p_k$, we must have $2|p_i|$ for some $i \in \{1, \dots, k\}$.
- ▶ But this means 2|n.
- ► So *n* is even too.

Q4

Let $n \in \mathbb{N} \setminus \{0\}$. Then using theorem 1.2 prove that $\log_5(n)$ is either a natural number or irrational.

- ▶ If $5^{\frac{a}{b}} = n$ then $5^a = n^b$.
- $ightharpoonup n^b$ can be uniquely factorized into primes.
- Since $n^b = 5^a$ we know this factorization must just be 55...5 (a list of a fives).
- n must also have a unique factorization into primes.
- As $n^b = 55...5$, the factorization of n must be a list of fives.
- ▶ I.e. $n = 5^k$ for some k.
- ▶ But if we take a product of *b* copies of this list of fives we get n^b , which is 5^a .
- ► I.e. $5^a = (5^k)^b$, so a = kb.
- This means that b must divide a.
- ln other words, $\frac{a}{b}$ must be a natural number.

Is the result from exercise 4 still true if we replace 5 with 4? Provide a proof or a counterexample.

- ► It's not true.
- For example, $\log_4 2 = \frac{1}{2}$.