- For every question, start your answer on a new page.
- Do not hand in your scratch paper. Please do hand in this exam sheet, or leave it behind on your table.
- You are not allowed to use books nor printed or handwritten formula sheets. See the final page for supplied formulas.
- 1. For each of the following questions, write an essential answer in maximally 2 sentences.
- a. What's the difference between classification and regression?
- b. What's the difference between classification and clustering?
- c. What's more appropriate to say and why: "the likelihood of the parameters" or "the likelihood of the data"?
- d. Why does maximum likelihood estimation become a better approximation to Bayesian learning as you collect more data?
- e. Consider a classification problem with Gaussian class-conditional sampling distributions $p(x_n|\mathcal{C}_1)$ and $p(x_n|\mathcal{C}_2)$ for the feature observations x_n and class priors $p(\mathcal{C}_1) = \pi$, $p(\mathcal{C}_2) = 1 \pi$. Under what condition (for the Gaussian class conditional distributions) is the discrimination boundary between the two classes a hyperplane?
- f. Write out the sampling distribution p(x) for a Gaussian Mixture model with observations x and K hidden clusters.
- g. Why is (probabilistic) principal components analysis more popular than factor analysis in the signal processing community?
- h. Given is a model

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z}, \Psi)$$

 $p(\mathbf{z}) = \mathcal{N}(0, I)$

Work out an expression for the marginal distribution $p(\mathbf{x})$.

- i. What's the difference between a hidden Markov model and a linear Dynamical system? For the same number of state variables, which of these two models has a larger memory capacity, and why?
- j. Consider a discriminative classification model where

$$p(C_k|x,\hat{\theta}) = \frac{\exp\left(\hat{\theta}_k^T x\right)}{\sum_{k'} \exp\left(\hat{\theta}_{k'}^T x\right)}$$

is the probability that feature x belongs to class k. Show that the discrimination boundary between two classes is a straight line.

2. Consider a model $p(x, z|\theta) = p(x|z, \theta)p(z|\theta)$ where x and z relate to observed and unobserved variables, respectively. Also available is an observed data set $D = \{x_1, x_2, \dots, x_N\}$. One iteration of the EM-algorithm for estimating the parameters θ is described by

$$\hat{\theta}^{(m+1)} := \arg \max_{\theta} \left(\sum_{z} p(z|x=D, \hat{\theta}^{(m)}) \log p(x=D, z|\theta) \right).$$

- a. Apparently, in order to execute EM, we need to work out an expression for the 'responsibility' $p(z|x=D,\hat{\theta}^{(m)})$. Use Bayes rule to show how we can compute the responsibility that allows us to execute an EM step?
- b. Why do we need multiple iterations in the EM algorithm?
- c. Why can't we just use simple maximum log-likelihood to estimate parameters, as described by

$$\hat{\theta} := \arg \max_{\theta} \log p(x = D, z | \theta)$$
?

3. Consider the following state-space model:

$$z_k = Az_{k-1} + w_k$$

$$x_k = Cz_k + v_k$$

$$w_k \sim \mathcal{N}(0, \Sigma_w)$$

$$v_k \sim \mathcal{N}(0, \Sigma_v)$$

$$z_0 \sim \mathcal{N}(0, \Sigma_0)$$

where k = 1, 2, ..., n is the time step counter; z_k is an *unobserved* state sequence; x_k is an *observed* sequence; w_k and v_k are (unobserved) state and observation noise sequences respectively; A, C, Σ_v, Σ_w and Σ_0 are known parameters.

- a. Draw the Forney-style factor graph for this model for the k^{th} time step.
- b. We are interested in estimating z_k from a given estimate for z_{k-1} and the current observation x_k , i.e., we are interested in computing $p(z_k|z_{k-1},x_k)$. Can $p(z_k|z_{k-1},x_k)$ be expressed as a Gaussian distribution? Explain why or why not in one sentence.
- c. Draw the message passing schedule for computing $p(z_k|z_{k-1},x_k)$ by drawing arrows in the factor graph. Indicate the order of the messages by assigning numbers to the arrows (1) for the first message; (2) for the second message and so on).
- **4.** A model \mathcal{M} is described (among others) by a single real valued parameter θ , $0 < \theta < 1$ and a symbol alphabet $\{0, 1, \ldots\}$.

The system described by \mathcal{M} can produce data $d \in \{0, 1, ...\}$ with a probability written as $p(d|\mathcal{M}, \theta)$. We also consider a prior distribution over θ written as $p(\theta|\mathcal{M})$.

a. Show that for any fixed data d, $p(\theta|\mathcal{M}, d)$ is a scaled version of $p(\theta|\mathcal{M})p(d|\mathcal{M}, \theta)$, or in other words, show that for any fixed d,

$$\frac{p(\theta|\mathcal{M}, d)}{p(\theta|\mathcal{M})p(d|\mathcal{M}, \theta)}$$

does not depend on θ .

Let

$$p(\theta|\mathcal{M}) = 6\theta(1-\theta),$$

$$p(d|\mathcal{M}, \theta) = (1-\theta)\theta^{d}.$$

- b. Determine the probability $p(d|\mathcal{M})$ for the data d=4. Note: compute the exact value.
- c. Use the Laplace approximation for $p(d|\mathcal{M})$ with the given $p(\theta|\mathcal{M})$ and $p(d|\mathcal{M},\theta)$ for an estimated result.

5. We implement an e-mail spam filter using two features that we can extract from an e-mail. A feature can be the occurrence of a particular word or phrase in the e-mail.

Given an e-mail E we denote the extracted features by F and G.

F = 1 means that feature F is present in the e-mail E.

F = 0 means that feature F is absent. And likewise for feature G.

The variable C indicates whether E is spam (C = 1) or not (C = 0).

We are given 300 e-mails that are already classified. The following table shows how many e-mails contained certain features and the classification.

F	G	C	nr of e-mails
0	0	0	20
0	0	1	40
0	1	0	60
0	1	1	10
1	0	0	5
1	0	1	120
1	1	0	15
1	1	1	30

a. From the table given above you can determine probability estimates using the maximum likelihood estimates. e.g. the probability P(C=1), i.e. the probability that an email will be spam, is approximated by:

$$P(C=1) = \frac{\text{\# of e-mails with } C=1}{\text{total \# of e-mails}} = \frac{200}{300} = 0.6667.$$

Note that the method using a beta prior would be better suited but we'll use the maximum likelihood because it is simpler.

Determine the following estimates.

$$\begin{split} P(F=1|C=0), P(F=1|C=1), \\ P(G=1|C=0), P(G=1|C=1), \\ P(F=0,G=0|C=0), P(F=0,G=1|C=0), \\ P(F=1,G=0|C=0), P(F=1,G=1|C=0), \\ P(F=0,G=0|C=1), P(F=0,G=1|C=1), \\ P(F=1,G=0|C=1), P(F=1,G=1|C=1). \end{split}$$

Model M_1 for e-mail does not consider any feature. So P(C) can be used to estimate the probability that the next e-mail will be spam or not. We will write that as $P(C|M_1)$.

b. Model M_2 considers only feature F to predict whether the next e-mail will be spam or not. Use Bayes rule and the probability estimates determined in the previous question to determine an estimate for $P(C|M_2) = P(C|F)$.

Model M_3 considers feature G only and model M_4 considers both F and G and assumes that F and G are independent given the classification C.

- c. Use Bayes rule again to show how you would calculate $P(C|M_4)$.
- d. The models M_1, M_2, \ldots, M_4 all have a certain number of free parameters. Determine the number of free parameters for each of the four models. HINT: Consider the number of free parameters of the joint distribution.
- e. Given the training set of the 300 e-mail as shown in the table above, which of the five models would you prefer? Use an MDL argument in your answer.

HINT: You will need an estimate for the email entropy for each model. For model M_1 you make an estimate of H(C) using the maximum likelihood estimate P(C=1) = 0.6667. Likewise you

calculate for M_2 the entropy H(C|F) and thus you'll need to compute P(C,F). For M_3 you must compute the entropy H(C|G); for M_4 you calculate H(C|F,G) and for M_5 also H(C|F,G) although this will be a different calculation than for M_4 .

The following table gives these estimated entropies and you may use them in your answer.

$$\begin{split} H(M_1) &= H(C) = 0.9183, & X \text{ is empty, so } P(C,X) = P(C) \\ H(M_2) &= H(C|F) = 0.7127, & X = F, \text{ so } P(C,X) = P(C)P(F|C) \\ H(M_3) &= H(C|G) = 0.7096, & X = G, \text{ so } P(C,X) = P(C)P(G|C) \\ H(M_4) &= H(C|F,G) = 0.5604, & X = F,G, \text{ so } P(C,X) = P(C)P(F|C)P(G|C) \end{split}$$

Appendix: formulas

$$|A^{-1}| = |A|^{-1}$$

$$\nabla_A \log |A| = (A^T)^{-1} = (A^{-1})^T$$

$$\operatorname{Tr}[ABC] = \operatorname{Tr}[CAB] = \operatorname{Tr}[BCA]$$

$$\nabla_A \operatorname{Tr}[AB] = \nabla_A \operatorname{Tr}[BA] = B^T$$

$$\nabla_A \operatorname{Tr}[ABA^T] = A(B + B^T)$$

$$\nabla_x x^T A x = (A + A^T) x$$

$$\nabla_X a^T X b = \nabla_X \operatorname{Tr}[ba^T X] = ab^T$$

Points that can be scored per question:

Question 1: all subquestions 1 point each. Total 10 points.

Question 2: a) 2 points; b) 2 points; c) 1 point. Total 5 points.

Question 3: a) 2 points; b) 1 point; c) 2 points. Total 5 points.

Question 4: a) 2 points; b) 4 points; c) 4 points. Total 10 points.

Question 5: a) 2 points; b) 2 points; c) 2 points; d) 2 points; e) 2 points. Total 10 points.

Max score that can be obtained: 40 points.

The final grade is obtained by dividing the score by 4 and rounding to the nearest integer.