WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT DER UNIVERSITÄT ZÜRICH PROFESSUR FÜR MATHEMATIK DER WIRTSCHAFTSWISSENSCHAFTEN ÜBUNGEN ZUR VORLESUNG MATHEMATIK II

Serie 10 ab 29.04.2019 FS 2019

Es werden die Aufgaben 1,2a),2c),4,6d),6e) und 8 in den Tutorien besprochen.

Aufgabe 1 (Vertikalschnitte)

- (a) Betrachten Sie die Funktion $f_1 = x_1^2 + x_1x_2$. Bestimmen Sie den Vertikalschnitt von f_1 ausgehend von $\mathbf{x}^0 = \mathbf{0}$ in Richtung
 - (i) e^1 ,
 - (ii) e^2 ,
- (iii) der Diagonalen $\mathbf{r}_d = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$? (b) Betrachten Sie die Funktion $f_2 = 6 3x_1 2x_2$. Bestimmen Sie den Vertikalschnitt von f_2 ausgehend von $\mathbf{x}^0 = \mathbf{0}$ in Richtung
 - (i) e^1 ,
 - (ii) e^2 ,
 - (iii) der Diagonalen $\mathbf{r}_d = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$?

Aufgabe 2 (Stetigkeit)

Bestimmen Sie den natürlichen Definitionsbereich der folgenden Funktionen in 2 Variablen und untersuchen Sie die Funktionen auf Stetigkeit.

(a)
$$f_1(\mathbf{x}) = f_1(x_1, x_2) = \ln(x_1^2 + \sqrt{x_1}\sqrt{x_2})$$

(b)
$$f_2(\mathbf{x}) = f_2(x_1, x_2) = \frac{x_1^2 + x_1 x_2 - x_2^2}{x_1^2 + x_2^2 + 1}$$

(c)
$$f_3(\mathbf{x}) = f_3(x_1, x_2) = \frac{x_1^2 + x_1 x_2 - x_2^2}{x_1^2 + x_2^2 - 1}$$

(d)
$$f_4(\mathbf{x}) = f_4(x_1, x_2) = \ln(x_1^2 - x_2^2)$$

Aufgabe 3 (Stetigkeit - Verständnis)

Welche der folgenden Aussagen sind wahr und welche falsch?

(1) Das Produkt zweier stetiger Funktionen in mehreren Variablen mit identischem Definitionsbereich <i>D</i> ist stetig auf <i>D</i> .	□ wahr	□ falsch
(2) Der Quotient zweier stetiger Funktionen in mehreren Variablen mit identischem Definitionsbereich D ist stetig auf D .	□ wahr	□ falsch
(3) Jede stetige Funktion ist nach allen Variablen partiell differenzierbar.	□ wahr	□ falsch

(4) Ist eine Funktion nach allen Variablen partiell differenzierbar, so ist sie auch stetig. \square wahr

☐ falsch

Serie 10 FS 2019

Aufgabe 4 (Gradient)

Bestimmen Sie den Gradienten an einer beliebige Stelle x⁰ des Definitionsbereiches folgender Funktionen:

(a)
$$f(\mathbf{x}) = \ln(x_1^2 + x_2^2 + 1), \quad \mathbf{x} \in D_f = \mathbb{R}^2$$

(b)
$$g(\mathbf{x}) = x_1^2 + x_2^4 + a^6 - x_1 x_2^3 - 2x_3$$
, $a \in \mathbb{R}$ und $\mathbf{x} \in D_g = \mathbb{R}^3$

(c)
$$b(\mathbf{x}) = \frac{1 - e^{-a(x_2 - x_1)}}{a}, \quad a \in \mathbb{R} \setminus \{0\} \text{ und } \mathbf{x} \in D_b = \mathbb{R}^2$$

(d)
$$p(\mathbf{x}) = cx_1^{0.4}x_2^{0.6}$$
, $c \in \mathbb{R}$ und $\mathbf{x} \in D_p = \mathbb{R}^2$.

Aufgabe 5 (Die Tangentialebene)

(a) Betrachten Sie die Funktion

$$f(\mathbf{x}) = \ln\left(1 + x_1^2 + x_2^2\right), \ \mathbf{x} \in D \subseteq \mathbb{R}^2.$$

Bestimmen Sie die Tangentialebene von f an der Stelle $\mathbf{x}^0 = (1,2)^T$.

(b) Betrachten Sie die Funktion

$$f(\mathbf{x}) = \ln(x_1) - x_1 x_2^2, \ \mathbf{x} \in D \subseteq \mathbb{R}^2.$$

Bestimmen Sie die Tangentialebene von f an der Stelle $\mathbf{x}^0 = (1,2)^T$.

(c) Betrachten Sie die Funktion

$$f(\mathbf{x}) = x_2 + \sqrt{x_1^3 x_2}, \ \mathbf{x} \in D \subseteq \mathbb{R}^2.$$

Bestimmen Sie die Tangentialebene von f an der Stelle $\mathbf{x}^0 = (2,8)^T$.

(d) Betrachten Sie die Funktion

$$f(\mathbf{x}) = \ln(2x_1 + e^{x_2}), \ \mathbf{x} \in D \subseteq \mathbb{R}^2.$$

Bestimmen Sie die Tangentialebene von f an der Stelle $\mathbf{x}^0 = (0,0)^T$.

Aufgabe 6 (Die Hesse-Matrix)

- (a) Betrachten Sie die Funktion $t: \mathbb{R}^3 \to \mathbb{R}$ mit $t(\mathbf{x}) = x_1 + x_2 + x_3$. Bestimmen Sie die Hesse-Matrix
- von t an der Stelle $\mathbf{x}^0 = (x_1^0, x_2^0)^T$. (b) Betrachten Sie die Funktion $u : \mathbb{R}^3 \to \mathbb{R}$ mit $u(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2$. Bestimmen Sie die Hesse-Matrix von u an der Stelle $\mathbf{x}^0 = (x_1^0, x_2^0)^T$. (c) Betrachten Sie die Funktion $w : \mathbb{R}^2 \to \mathbb{R}$ mit $w(\mathbf{x}) = \frac{1}{4}x_1^2 + 2x_1 + x_1x_2 3x_2 + 1$. Bestimmen Sie
- die Hesse-Matrix von w an der Stelle $\mathbf{x}^0 = (x_1^0, x_2^0)^T$.

Serie 10 FS 2019

(d) Betrachten Sie die Funktion $f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ mit $f(\mathbf{x})=-\sqrt{x_1x_2}+\frac{1}{2}x_1^2+\frac{1}{2}x_2^2$. Bestimmen Sie die Hesse-Matrix von f an der Stelle $\mathbf{x}^0=(x_1^0,x_2^0)^T$.

- (e) Betrachten Sie die Funktion $g:(0,\infty)\times(0,\infty)\to\mathbb{R}$ mit $g(\mathbf{x})=\ln(2x_1+x_2)$. Bestimmen Sie die Hesse-Matrix von g an der Stelle $\mathbf{x}^0=(x_1^0,x_2^0)^T$.
- (f) Betrachten Sie die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$ mit $h(\mathbf{x}) = e^{x_1} x_1 e^{-x_2}$. Bestimmen Sie die Hesse-Matrix von h an der Stelle $\mathbf{x}^0 = (x_1^0, x_2^0)^T$.
- (g) Ist die Hesse-Matrix immer symmetrisch?

Aufgabe 7 (Hesse-Matrix - Verständnis)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ eine Funktion in 3 Variablen. Beurteilen Sie folgende Aussagen:

(1) Ist f zweimal stetig nach allen Variablen differenzierbar, dann ist die dabei entstehende 3×3 Hesse-Matrix symmetrisch.	□ wahr	□ falsch
(2) Ist f eine quadratische Funktion, so ist die Hesse-Matrix von f eine Diagonalmatrix.	□ wahr	□ falsch
(3) Ist f eine quadratische Funktion, so ist die Hesse-Matrix unabhängig von der betrachteten Stelle \mathbf{x}^0 .	□ wahr	□ falsch
(4) Ist <i>f</i> eine affin-lineare Funktion, so ist die Hesse-Matrix von <i>f</i> die Einheitsmatrix <i>I</i> .	□ wahr	□ falsch

Aufgabe 8 (Tangentialebene und das Taylorpolynom)

Betrachten Sie die Funktion $f:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ mit

$$f(\mathbf{x}) = \ln(2x_1 + e^{x_2}).$$

- (a) Bestimmen Sie die Tangentialebene von f an der Stelle $\mathbf{x}^0 = (1,0)^T$.
- (b) Bestimmen Sie das Taylorpolynom 1. Ordnung von f an der Stelle $\mathbf{x}^0 = (1,0)^T$.
- (c) Bestimmen Sie das Taylorpolynom 2. Ordnung von f an der Stelle $\mathbf{x}^0 = (1,0)^T$.
- (d) Berechnen Sie einen Näherungswert für f(2,1) mit Hilfe
 - (i) des 1. Taylorpolynoms an der Stelle $\mathbf{x}^0 = (1,0)^T$,
 - (ii) des 2. Taylorpolynoms an der Stelle $\mathbf{x}^0 = (1,0)^T$.
- (e) Vergleichen Sie die Näherungen aus Teilaufgabe (d) mit dem exakten Wert von f(2,1).

Aufgabe 9 (Das Taylorpolynom)

- (a) Betrachten Sie die Funktion $l: \mathbb{R}^2 \to \mathbb{R}$ mit $l(\mathbf{x}) = e^{x_1 + 2x_2}$. Bestimmen Sie das Taylorpolynom 1. und 2. Ordnung von l an der Stelle $\mathbf{x}^0 = \mathbf{0}$.
- (b) Betrachten Sie die Funktion $f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ mit $f(\mathbf{x})=-\sqrt{x_1x_2}+\frac{1}{2}x_1^2+\frac{1}{2}x_2^2$. Bestimmen Sie das Taylorpolynom 1. und 2. Ordnung von f an der Stelle $\mathbf{x}^0=(1,1)^T$.
- (c) Betrachten Sie die Funktion $t : \mathbb{R}^3 \to \mathbb{R}$ mit $t(\mathbf{x}) = x_1 + x_2 + x_3$. Bestimmen Sie das Taylorpolynom 1. und 2. Ordnung von t an der Stelle $\mathbf{x}^0 = (1, 0, -1)^T$.

Serie 10 FS 2019

(d) Betrachten Sie die Funktion $h: \mathbb{R}^2 \to \mathbb{R}$ mit $h(\mathbf{x}) = e^{x_1} - x_1 e^{-x_2}$. Bestimmen Sie das Taylorpolynom 1. und 2. Ordnung von h an der Stelle $\mathbf{x}^0 = \mathbf{0}$.

Aufgabe 10 (Produktion)

Gegeben ist folgende Produktionsfunktion f eines Unternehmens:

$$y = f(\mathbf{x}) = f(x_1, x_2, x_3) = x_1 + \sqrt{x_2 x_3} = x_1 + \sqrt{x_2} \sqrt{x_3}$$

mit den Produktionsfaktorquantitäten $x_1, x_2, x_3 \ge 0$ und der Produktquantität $y \ge 0$.

- (a) Berechnen Sie die partiellen Ableitungen nach x_1 , x_2 und x_3 an einer beliebigen Stelle \mathbf{x}^0 .
- (b) Aktuell nutzt das Unternehmen $x_1^0 = 10$, $x_2^0 = 81$ und $x_3^0 = 49$ Einheiten der Produktionsfaktoren. Wie verändert sich die Produktionsquantität, wenn x_2 erhöht wird?
- (c) Wieder nutzt das Unternehmen $x_1^0 = 10$, $x_2^0 = 81$ und $x_3^0 = 49$ Einheiten der Produktionsfaktoren. Wie verändert sich die Produktionsquantität, wenn sich x_1, x_2 und x_3 je um eine Einheit erhöhen? Berechnen Sie diese Änderung exakt und vergleichen Sie das Ergebnis mit der Näherung, die Sie mit Hilfe des totalen Differentials erhalten.

Aufgabe 11 ((#) Verallgemeinerte Kettenregel)

Sei
$$f(\mathbf{x}) = x_1^2 + x_2^5 - 9x_1x_2$$
 und $g(t) = (g_1(t), g_2(t)) = (t^4, 3t)$. Sei zudem $h = f \circ g$. Berechnen Sie $h'(1) = (f \circ g)'(1)$.