Week 3: Risk and Evaluation of Alternatives

- Making Decisions in Low-Uncertainty vs. High-Uncertainty Settings
- ◆ Example: Evaluating a Wireless Data Plan
- Reward and Risk
- ◆ Connecting Random Inputs and Random Outputs
- Simulating Uncertain Outcomes in Excel
- ◆ Interpreting Simulation Results: "Short" vs. "Long" Simulations
- Using Histograms to Visualize Simulation Results

Example: Evaluating a Wireless Data Plan

- A business analytics consultant based in Philadelphia is considering changing her wireless data plan to accommodate her family's growing use of video streaming services
- Under her current data plan called "Family Share" she pays \$10 for each GB of data her family uses
- ◆ After doing research on data plans offered by her wireless carrier, the consultant has decided to select the plan her carrier calls "Superior Share"
- Under the Superior Share plan, the consultant will pay a flat fee of \$160 for up to 20GB of data per month. This data allowance may be shared among the members of her family

Example: Evaluating a Wireless Data Plan

- If her family's actual monthly data usage exceeds 20GB, she will then have to pay for any data usage above this threshold at the rate of \$15 per GB
 - For example, if her family's monthly data usage is 22GB, her monthly payment will be \$160+(22-20)*\$15 = \$190

- If her family's actual monthly data usage does not exceed 20GB, she will still have to pay the full \$160 amount, and the amount of unused data under 20GB will not "roll over" to the next month
 - For example, if her family's monthly data usage is 17GB, her monthly payment will be \$160

We Have a Complete Description of the Random Future Monthly Payments Under the Old Plan

- Consultant estimates that her monthly data usage is distributed as a normal random variable with the mean 23 GB and the standard deviation 5 GB
- ◆ So, the expected value of monthly payments under the old plan is \$230
- ◆ The standard deviation of monthly payments under the old plan is \$50

What About the Distribution of Monthly Payments Under the New Data Plan?

- What is the expected monthly payment under the new data plan?
- What is the standard deviation of the monthly payments under the new data plan?

An Algebraic Formula: Monthly Payment for Any Value of Data Usage

- ♦ We can calculate the monthly payment value P (in \$) for any value of data usage U (in GB)
- ◆ If U is below or at 20, then the monthly payment P is 160
- If *U* is above 20, then the monthly payment is 160 + 15*(U-20)
- ♦ We can combine these two cases into a single EXCEL formula:

$$P = 160 + IF(U>20,15*(U-20),0)$$

◆ The IF function looks at the Condition: if the Condition is true, then the value of IF is equal to Choice1; if the Condition is false, then the value of IF is equal to Choice2

An Algebraic Formula: Monthly Payment for Any Value of Data Usage

- \bullet P = 160 + IF(U>20,15*(U-20),0)
- ◆ *U* is distributed as a normal random variable with a mean of 23, and a standard deviation of 5
- ♦ What is the distribution of P?
- ♦ What is the expected value of P?
- ♦ What is the standard deviation of P?

Expected Value of Monthly Payment Under the New Plan?

- \bullet P = 160 + IF(U>20,15*(U-20),0)
- ◆ Expected value of *U* is 23
- ♦ So, shouldn't the expected value of P be 160 + 15*(23-20) = 205?
- In general, we do not get the correct value for the expected monthly payment that way
- ◆ Example: suppose that *U* takes only 2 values, 18 with probability 50% and 28 with probability 50% (so that the expected data usage value of *U* is still 23)
 - If *U*=18, then *P*=160
 - If U=28, then P=160+15*(28-20)=280
 - The expected value of P is 0.5*160+0.5*280 = 220
 - This value is very different from 205, the value one gets after plugging in the expected data usage value into the monthly payment formula

Simulation as an Analytics Tool

◆ Simulation is a tool that uses a probability distribution of the "input" random variable (such as data usage U) to create a distribution of the "output" random variable (such as monthly payment P)

Simulation as an Analytics Tool

♦ In each step of a simulation, a random instance of the "input" variable is generated...

... and the resulting value of the "cutput" is calculated:

$$P = 160 + IF(U > 20, 15*(U-20), 0)$$

Simulation as an Analytics Tool

- ◆ These simulation steps (called "simulation runs") can be repeated as many times as necessary to generate the "sample distribution" of "output" values
- Once this "sample distribution" of output is generated, it can be analyzed to determine estimates for the expected value, standard deviation, etc. – and any other reward and risk measures we choose
- ◆ Excel can be used for both running the simulation and for the follow-up analysis

Running Simulation in Excel: Analysis ToolPak

♦ Likely to be a part of standard Excel installation on Windows

Running Simulation in Excel: Analysis ToolPak

- ◆ Likely to be a part of standard Excel installation on Windows
- On Mac (see https://support.microsoft.com/en-us/kb/2431349)
 - Included on Excel 2016 for Mac
 - Not included on earlier versions of Excel, but you can use a similar free software called StatPlus:mac LE, available here: http://www.analystsoft.com/en/products/statplusmacle/

 On Google Sheets: an equivalent add-on called XLMiner Analysis ToolPak is available

Simulated Data Usage Values and Corresponding Monthly Payment Values: Excel Implementation

	А	В	С	D	E	F
1	DataPlan10.xlsx	Wireless Data Plan	Simulation Run	Data Usage, U (GB)	Payment, P (\$)	
2	Operations Analytics MOOC		1	11.9319952	160	
3			2	24.0282690	220.4240354	
4	Data Allowance (GB)	20	3	\$B\$5+IF(D2>\$B\$4,\$B\$6*(D2-\$B\$4),0)		
5	Fixed Payment (\$)	160	4	21.7321587	185.9823805	_
6	Rate Above Allowance (\$/GB)	15	5	34.2335329	373.5029929	
7			6	16.5820597	160	
8	Expected Data Usage (GB)	23	7	30.7079676	320.619514	
9	St. Dev. of Data Usage (GB)	5	8	36.9010808	413.5162123	
10			9	20.3471859	165.2077878	
11			10	28.3229996	284.8449946	
12			=AVERAGE(D2	<mark>2:D11)</mark>	=AVERAGE(E2:	E11)
13			Sample Mean	25.0470054	252.9339988	
14			Sample St. Dev.	7.787935101	92.19007977	
15			=STDEV(D2:	D11)	=STDEV(E2:E11)
10	Cl. 14					

♦ See DataPlan10.xlsx