Университет ИТМО

Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №2 (УИР 2)

" Исследование систем марковского обслуживания на марковских моделях"

По дисциплине "Моделирование"

Выполнили:

Студенты группы Р3332:

Терновский И.Е.

Геля М.Р.

Вариант: 3/5/32

Санкт-Петербург

Оглавление

Постановка задачи и исходные данные	_
Выполнение	
Описание исследуемых систем	
Система 1	
Матрица интенсивностей переходов:	
Значения стационарных вероятностей в точке	
Система 2	
Элементы	
Матрица интенсивностей переходов	8
Значения стационарных вероятностей в точке	8
Характеристики систем.	8
Сравнение полученных характеристик	10
Вывод	11

Постановка задачи и исходные данные

Разработать марковские модели одно- и многоканальных СМО с однородным потоком заявок, рассчитать характеристики. Проанализировать и выбрать наилучший вариант построения СМО в соответствие с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

Вариант 3/5/32

Danuau -	Систе	ема 1	Система 2		
Вариант	П	EH	П	EH	
35	2	3/0	1(H _{1.4})	4	

- П число обслуживающих приборов
- $\Pi(H_{1.4})$ в приборе системы 2 длительность обслуживания распределена по гиперэкспоненциальному закону с коэффициентом вариации 1.4.
- ЕН Емкости накопителей.
 - о Представлена одним числом общий накопитель для всех приборов
 - о Емкости стоят перед каждым прибором соответственно.
- Критерий эффективности минимальная суммарная длина очередей заявок.

Рариант	Интенсивность	Ср.Длит.обсл.	Вероят	ности занятия пр	оибора
Вариант	λ, 1/c	b, c	П1	П2	П3
32	0.7	8	0.85	0.1	0.05

В случае системы 1, вероятность занятия $\Pi 1 = \Pi 1 = 0.85$, $\Pi 2 = \Pi 2 + \Pi 3 = 0.15$.

Выполнение

Интенсивность обслуживания 0.7 1/с, время обслуживания 8с.

Описание исследуемых систем

Система 1. В системе число обслуживающих приборов равно 2, оба имеют время обслуживания равное экспоненциальному распределению. Система имеет раздельную очередь, а точнее очередь имеет только 1 прибор, длина очереди 3.

- Интенсивность входного потока λ = 0.7 1/с
- Средняя длительность обслуживания b = 8c
- Интенсивность обслуживание прибора = $\mu = \frac{1}{b} = \frac{1}{8} = 0.125$
- Входной поток однородный: поступает последовательно один класс заявок.
- Дисциплина буферизации: без вытеснения заявок, т.е. при заполненном накопителе новая заявка отбрасывается.
- Многоканальная система.
- Приборы идентичные, т.е. время обслуживания заявок одинаково.

Изображение 1 Графическое представление СИСТЕМЫ 1

Таблица 1 Состояния Марковского процесса СИСТЕМА 1

Номер состояния	Обозначение (П1/П2/О1)
EO	0,0,0
E1	0,1,0
E2	1,0,0
E3	1,1,0
E4	1,0,1
E5	1,1,1
E6	1,0,2
E7	1,1,2
E8	1,1,3
E9	1,0,3

Изображение 2 Граф переходов марковского процесса СИСТЕМА 1

Принятые обозначения:

$$lp1 = \lambda * p1 = 0.595000$$

 $lp2 = \lambda * p2 = 0.105000$
 $n = \mu = 0.125000$

Матрица интенсивностей переходов:

	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9
EO	-0,700	lp2	lp1	0,000	0,000	0,000	0,000	0,000	0,000	0,000
E1	n	-0,720	0,000	lp1	0,000	0,000	0,000	0,000	0,000	0,000
E2	n	0,000	-0,825	lp2	lp1	0,000	0,000	0,000	0,000	0,000
E3	0,000	n	n	-0,845	0,000	lp1	0,000	0,000	0,000	0,000
E4	0,000	0,000	n	0,000	-0,825	lp2	lp1	0,000	0,000	0,000
E5	0,000	0,000	0,000	n	n	-0,845	0,000	lp1	0,000	0,000
E6	0,000	0,000	0,000	0,000	n	0,000	-0,825	lp2	0,000	lp1
E7	0,000	0,000	0,000	0,000	0,000	n	n	-0,845	lp1	0,000
E8	0,000	0,000	0,000	0,000	0,000	0,000	0,000	n	-0,250	n
E9	0,000	0,000	0,000	0,000	0,000	0,000	n	0,000	lp2	-0,230

Значения стационарных вероятностей в точке

p0	0.000837
р1	0.000703
p2	0.003982
р3	0.003345
p4	0.018955
р5	0.015922
p6	0.090226
р7	0.075790
р8	0.360761
р9	0.429478

Система 2. В системе число обслуживающих приборов равно 1, при этом время обслуживания этого прибора равно гиперэкспоненциальному распределению с коэффициентом вариации 1.4, система имеет очередь равную 4.

- Интенсивность входного потока $\lambda = 0.7 \text{ 1/c}$
- Средняя длительность обслуживания b = 8c
- Интенсивность обслуживание прибора $\mu = \frac{1}{b} = \frac{1}{8} = 0.125$
- $q \leq rac{2}{1+v^2} = rac{2}{1+2^2} = 0.4$, для большего интереса выберем q=0.2 $b_1 = [1+\sqrt{rac{1-q}{2q}(v^2-1)}]b = 28$, тогда $\mu_1' = rac{1}{8} = 0.125$
- $b_2 = [1 \sqrt{rac{q}{2(1-q)}(v^2-1)}]b = 3$, тогда $\mu_2' = rac{1}{3} = 0.333$
- Входной поток однородный: поступает последовательно один класс заявок.
- Дисциплина буферизации: без вытеснения заявок, т.е. при заполненном накопителе новая заявка отбрасывается.
- Одноканальная система.
- Критерий эффективности минимальная суммарная длина очередей заявок, но в данный случае не ясно что в системе можно изменить, поэтому видимо его можно опустить.

Так как система имеет прибор с гиперэкспоненциальным распределением, то для перехода к марковским процессам данный прибор разбивается на 2, таким образом что вероятность поступления на 1 равна q, на 2 равна (1-q), время обработки равняется b_1 и b_2 соответсвенно.

Изображение 3 Графическое представление Системы 2

Таблица 2 Состояния Марковского процесса СИСТЕМА 2

Номер состояния	Обозначение (П1.1/П1.2/О)
EO	0,0,0
E1	0,1,0
E2	1,0,0
E3	0,1,1
E4	1,0,1
E5	0,1,2
E6	1,0,2
E7	1,0,3
E8	0,1,3
E9	1,0,4
E10	0,1,4

Изображение 4 Граф переходов марковского процесса СИСТЕМА 2

Элементы

$$lp1 = \lambda * p1 = 0.1400$$

$$lp2 = \lambda * p2 = 0.5600$$

$$n1 = \mu'_1 = 0.125000$$

$$n2 = \mu'_2 = 0.333000$$

$$l = \lambda = 0.700000$$

$$n1p1 = \mu'_1 * p1 = 0.025000$$

$$n1p2 = \mu'_1 * p2 = 0.100000$$

$$n2p1 = \mu'_2 * p1 = 0.066600$$

$$n2p2 = \mu'_2 * p2 = 0.266400$$

Матрица интенсивностей переходов

	E0	E1	E2	ЕЗ	E4	E5	E6	E7	E8	E9	E10
E0	-0,7	lp2	lp1	0	0	0	0	0	0	0	0
E1	n2	1,033	0	0	1	0	0	0	0	0	0
E2	n1	0	0,825	1	0	0	0	0	0	0	0
E3	0	n1p2	n1p1	0,825	0	0	1	0	0	0	0
E4	0	n2p2	n2p1	0	1,033	1	0	0	0	0	0
E5	0	0	n2p1	0	n2p2	1,033	0	0	1	0	0
E6	0	0	0	n1p1	n1p2	0	0,825	1	0	0	0
E7	0	0	0	0	0	n1p2	n1p1	0,825	0	1	0
E8	0	0	0	0	0	n2p2	n2p1	0	1,033	0	1
E9	0	0	0	0	0	0	0	n1p1	n1p2	0,125	0
E10	0	0	0	0	0	0	0	n2p1	n2p2	0	0,333

Значения стационарных вероятностей в точке

p0	0.006945
p1	0.011323
p2	0.008725
р3	0.008050
p4	0.026288
р5	0.064170
p6	0.021341
р7	0.054374
p8	0.159341
р9	0.304495
p10	0.334950

Характеристики систем.

Хар-ка	Прибор	Расчетная формула	Сис.1	Сис.2
	П1 (С1)	$y_{11} = \frac{\lambda}{\mu} * p_1$	4,76	1
Нагрузка	П2 (С1)	$y_{12} = \frac{\lambda}{\mu} * p_2$	0,84	1
	Сумм(С1)	$y_1 = \frac{\lambda}{\mu}$	5,6	-

	П1 (С2)	$y_{21} = b * \lambda * p_1$	-	3,92
	П2 (С2)	$y_{21} = b * \lambda * p_2$		1,68
	Cymm(C2)	$y_2 = b * \lambda$	-	5,6
	Π1 (C1)	$p_{11} = 1 - (p_0 + p_1)$	0,99846	-
	П2 (С1)	$p_{12} = 1 - (p_0 + p_2 + p_4 + p_6 + p_9)$	0,456522	-
	Сумм(С1)	$p_1 = (p_{11} + p_{12})/2$	0,727491	-
Загрузка	П1 (С2)	$p_{21} = 1 - (p_0 + p_1 + p_3 + p_5 + p_8 + p_{10})$	-	0,415221
	П2 (С2)	$p_{22} = 1 - (p_0 + p_2 + p_4 + p_6 + p_7 + p_9)$	-	0,577832
	Сумм(С2)	$p_2 = (p_{21} + p_{22})/2$	-	0,4965265
	П1 (С1)	$l_{11} = p_4 + p_5 + 2p_6 + 2p_7 + 3p_8 + 3p_9$	2,737626	-
	П2 (С1)	l_{12}	0	-
	Сумм(С1)	$l_1 = l_{11} + l_{12}$	2,737626	-
Длина	П1 (С2)	-	-	
очереди	П2 (С2)	-	-	
	Сумм(С2)	$\begin{aligned} l_2 &= p_3 + p_4 + 2p_5 \\ &+ 2p_6 \\ &+ 3p_7 \\ &+ 3p_8 \\ &+ 4p_9 \\ &+ 4p_{10} \end{aligned}$	-	3,404285
	П1 (С1)	$m_{11} = l_{11} + \rho_{11}$	3,736086	-
	П2 (С1)	$m_{12} = l_{12} + \rho_{12}$	0,456522	-
Имело запо и	Сумм(С1)	$m_1 = m_{11} + m_{12}$	4,192608	-
Число заявок	П1 (С2)	$m_{21} = l_{21} + \rho_{21}$	-	0,415221
	П2 (С2)	$m_{22} = l_{22} + \rho_{22}$	-	0,577832
	Сумм(С2)	$m_2 = l_2 + m_{22} + m_{11}$	-	4,397338
	П1 (С1)	$w_{11} = l_{11}/\lambda_{11}^{'}$	124,2968	-
	П2 (С1)	$w_{12} = l_{12}/\lambda_{12}^{'}$	0	-
Время ожидания	Сумм(С1)	$w_1 = l_1/\lambda_1^{'}$	6,11804	-
	П1 (С2)	-	-	-
	П2 (С2)	-	-	-
	Сумм(С2)	$w_2 = l_2/\lambda_2$	-	13,48827
Время	П1 (С1)	$u_{11} = m_{11}/\lambda_{11}^{'}$	169,6300	-
пребывания	П2 (С1)	$u_{12} = m_{12}/\lambda_{12}^{'}$	1,4121	-
Преобівания	Сумм(С1)	$u_1 = m_1/\lambda_1^{'}$	9,36964	-

	П1 (С2)	-	-	-
	П2 (С2)	-	-	-
	Сумм(С2)	$u_2 = m_2/\lambda_2$	-	17,4228
	П1 (С1)	$\pi_{11} = p_8 + p_9$	0,790239	-
Development	П2 (С1)	$\pi_{12} = p_1 + p_3 + p_5 \\ + p_7 + p_8$	0,456655	1
Вероятность	Сумм(С1)	$\pi_1 = p_8$	0.360761	-
потери	П1 (С2)	•	-	1
	П2 (С2)	-	-	-
	Сумм(С2)	$\pi_2 = p_9 + p_{10}$	-	0,639445
	П1 (С1)	$\lambda'_{11} = P_1 * \lambda * (1 - \pi_{11})$	0,022024905	-
	П2 (С1)	$\lambda'_{12} = P_2 * \lambda * (1 - \pi_{12})$	0,323290275	-
Производит.	Сумм(С1)	$\lambda_1' = \lambda * (1 - \pi_1)$	0,4474673	-
	П1 (С2)	-	-	-
	П2 (С2)	-	-	-
	Сумм(С2)	$\lambda_2' = \lambda * (1 - \pi_2)$	-	0,2523885

График 1 Полученные характеристики систем

Сравнение полученных характеристик.

- Системы имеют одинаковую нагрузку, так как поток заявок один и тот же.
- Система 1 имеет большую загрузку, так как для расчетов было принято, что она имеет 2 прибора, которые не могут работать вместе.
- Длина очереди в Системе 2 больше, потому что в системе 2 очередь общая и на 1 больше.
- Время ожидания в системе 2 в 2 раза больше, в следствии того, что средняя интенсивность прибора больше, чем в системе 1.

- Время прибывания так же больше почти в 2 раза, по той же причине.
- Вероятность потери у системы 2 больше, так как несмотря на чуть большую очередь, общая производительность системы почти в 2 раза меньше, и при одном потоке заявок потерь, очевидно, будет больше.

Таблица 3 Сравнение полученных характеристик систем

	нагрузк а	загрузк а	длина очеред и	число заявок	время ожидан ия	время пребыв ания	вероят ность потери	произв одител ьность
систем а 1	5,6	0,727	2,737	4,19	6,118	9,3696	0,36076	0,4474
систем а 2	5,6	0,496	3,404	4,39	13,48	17,422	0,6394	0,252

Так как по варианту нам следует выбрать систему с наименьшей общей очередью, то такой системой будет система 1, по мимо минимальной очереди, система 1 лучше почти по всем характеристикам.

Вывод

В ходе работы были исследованы две системы массового обслуживания на основе марковских моделей: многоканальная (Система 1) и одноканальная с гиперэкспоненциальным распределением времени обслуживания (Система 2). Был проведен анализ характеристик каждой системы, включая загрузку, длину очереди, вероятность потери и производительность.

Сравнительный анализ показал, что, несмотря на одинаковую нагрузку, Система 1 демонстрирует более высокую производительность и меньшую длину очереди по сравнению с Системой 2. Время ожидания и пребывания в Системе 2 оказалось почти вдвое больше, что связано с высокой средней интенсивностью обслуживания прибора. Вероятность потери также выше в Системе 2, что указывает на менее эффективное управление потоком заявок.

По критерию наименьшей суммарной длины очередей, Система 1 была признана оптимальной для выполнения задания.