

Speaker: Wen-Hao Liu

Organizers: Stefanus Mantik, Gracieli Posser, William Chow, Yixiao Ding, Wen-Hao Liu

Cadence Design Systems http://www.ispd.cc/contests/18/index.htm

Contest Organizers

Wen-Hao Liu Contest chair

Stefanus Mantik Benchmarks

Yixiao Ding Benchmark testing

Gracieli Posser

William Chow Evaluation

Motivation

- Detailed routing is an dead-or-alive critical topic for advanced node enablement like N7, N5 and N3.
- Attract talents to address detailed routing challenges
- Drive practical detailed routing research to consider real design rules, memory scalability, and runtime scalability

Outline

- Problem Introduction
- Benchmark Suite Characteristics
- Evaluation Metrics
- Contest Results
- Result Study
- Acknowledgements

Initial Detailed Routing Problem

- Assuming that given routing guides are already well optimized for certain metrics, a detailed router needs to honor the guides as much as possible in order to keep the optimized metrics.
- If the initial detailed routing solution can meet the most common routing rules even it is not fully DRC clean, the later detailed routing refinement step will have less chance to largely disturb the routing solution.

Open / Short

- Open: If any pin in a net is disconnected, the net will be considered as an open net and the routing solution is invalid.
- Short: either a via metal or wire metal overlaps with another object like via metal, wire metal, blockages, or pin shapes.

Short violation

Spacing Table

- Spacing table specifies the required spacing between two objects according to their parallel-run length and widths
- To simplify the problem, we make spacing table only depend on widths. Namely, the spacing value remains the same regardless of the parallel-run length

End of line (eol) spacing rule

 The end-of-line (EOL) spacing rule indicates that an edge that is shorter than eolWidth, noted as end-of-line edge requires spacing greater than or equal to eolSpace beyond the EOL anywhere within (that is, less than) eolWithin distance

Cut Spacing

A cut spacing specifies the minimum spacing between via cuts.
 It applies for cuts from both different nets and the same net.

Stacked vias is allowed if their center are aligned.

Min-Area Rule (MAR)

 The min area rule specifies the minimum metal area required for polygons on each layer. All polygons must have an area that is greater than or equal to the specified area value.

Routing Preference Metrics

- Wrong-way Routing
- Off-track Routing
- Routing Guide Honoring
- Non-determinism Penalty

The challenges of this contest

- Pin-access location selection
- Via selection
- Patch wire insertion
- Memory and runtime controlling
 - Max runtime limit: 12 hours (real time).
 - Max memory limit: 64GB

VDG

Pin access solution

Different vias

EOL-violation triggered by a patch

Benchmark Suite Characteristics

- The benchmarks are derived from two real designs
 - a single-core 32-bit processor with four memory cores
 - a quad-core 32-bit processors with 16 on-chip memory blocks.
- The benchmarks are synthesized using generic 45nm and 32nm technology and cell libraries.
- Simplifications for the contest
 - Power and ground (PG) nets are removed
 - Non-default rules are removed
 - Timing related information are removed.
 - Design rules are simplified into a regular spacing rule and an EOL spacing rule, and a simple cut-to-cut spacing rule.

Benchmark Suite Characteristics

- The routing for every benchmark can be done within 1 hour and 6 GB memory by using the commercial routers with a single thread.
- Every benchmark is guaranteed to have a DRC-violationfree solution

- Each benchmark associates to different "quality" of the routing guides
 - High-quality guide: Contain DRC-free solution in routing guides
 - Low-quality guide: Have congestion issue, so detailed routing needs to escape routing guides to fix DRCs

Benchmark Suite Characteristics

- Three small testcases with sample solutions are released early to enable the early development
- The final evaluation is based 6 released and 4 hidden benchmarks

Summary of benchmark suite characteristics

ispd18_sample	45nm	Sample test for tutorial purpose
ispd18_sample2	45nm	Sample test with a block macro and nets connecting to the block
ispd18_sample3	45nm	Sample test that has IO pins and large design area
ispd18_test1	45nm	Standard cell netlist only
ispd18_test2	45nm	Standard cell netlist with IO pins
ispd18_test3	45nm	Standard cell netlist with IO pins and block macros
ispd18_test4	32nm	Design has Metal2 OBS in some of its standard cells
ispd18_test5	32nm	Design has Metal2 OBS, Metal2 Power/Ground pins, and routing direction is reversed
ispd18_test6	32nm	Design has Metal2 OBS, Metal2 Power/Ground pins, and reversed routing direction, but without any block macro
ispd18_test7	32nm	Quad-core design with Metal2 OBS and Metal2 Power/Ground pins as blockage
ispd18_test8	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage
ispd18_test9	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage, no block macro, higher utilization
ispd18_test10	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage, no block macro, extra congested area

Evaluation Process

Evaluation Metric

- The quality of result for a routing solution is measured by the following equation.
 A solution with a smaller scaled score is considered as a better solution in this contest
 - Scaled_score = raw_score * (1 + nondeterministic_penalty + runtime_factor)
- We will run each binary more than once. If we observe nondeterministic results, nondeterministic_penalty will be 3%; otherwise, it will be 0.

Metric	Weight
Short metal area	500
Number of spacing violations	500
Number of min-area violations	500
Total number of vias	2
Total length of wires	0.5
Total length of the wires outside of the routing guides	1
Total number of the vias outside of routing guides	1
Total length of off-track wires	0.5
Total number of off-track vias	1
Total length of wrong-way wires	1

Evaluation Metric (cont.)

- Runtime_factor = min(0.1, max(-0.1, <u>0.02</u> * log2(<u>Router_Wall_Time /</u> <u>Median_Wall_Time</u>))
 - For each benchmark, we will select the "median_wall_time" based on the binary which can generate valid solutions.
 - Based on the following curve, say, a router is 8X faster/slower than the median, it will get 6% score benefit/penalty
 - The runtime penalty/benefit is limited within 10% and -10%

Ranking Method

- Rank each team for each benchmark. The team with a smaller scaled score will get a smaller ranking number, which means a better ranking.
- Prune out the worst (i.e., biggest) ranking number, and then average the remaining rankings for each team. The team with the smallest averaged ranking number wins the contest.
- Example:

Scaled Score Table

	team 1	team 2	team 3	team 4	team 5
benchmark1	80	200	210	250	100
benchmark2	90	180	70	130	60
benchmark3	70	Χ	40	Χ	180
benchmark4	300	800	180	250	400
benchmark5	150	Χ	150	170	160

^{&#}x27;X' means a failure

Ranking Table

			0		
	team 1	team 2	team 3	team 4	team 5
benchmark1	1	3	4	5	2
benchmark2	3	5	2	4	1
benchmark3	2	5 (X)	1	5 (X)	3
benchmark4	3	5	1	2	4
benchmark5	1	5 (X)	1	4	3

Final Ranking Result

	team 1	team 2	team 3	team 4	team 5
benchmark1	1	3	4	5	2
benchmark2	3	5	2	4	1
benchmark3	2	5	1	5	3
benchmark4	3	5	1	2	4
benchmark5	1	5	1	4	3
Avg without the outlier	1.75	4.5	1.25	3.75	2.25

Participation Statistics

- 33 initial registrations
 - Asia: 22 teams
 - North America: 8 teams
 - South America: 2 teams
 - Europe: 1 team
 - Overall 9 different countries/regions
 - USA, China, Taiwan, Hong Kong, South Korea, Canada, Italy, Bangladesh, Brazil
- 12 alpha/beta binary submissions
- 10 final submissions

Top 5 teams

- Top 5 teams will get plaques
- Top 3 teams will get cash reward sponsored by Cadence
 - -1st \$700
 - $-2^{nd} 500
 - $-3^{rd} 300

Fuzhou University Wang-Yang Li, Zhuang Zhen, Genggeng Liu, Wenzh Guo, Ting-Chi Wang LuLuRoute National Taiwan University Hao Chen, Chen-Hao Hsu, Fan-Keng Sun, Ching-Yu Chen, and Yao-Wen Chang The Chinese University of Hong Kong Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jingsong Chen, Bentian Jiang, Evangeline F.Y. Young UFRGS-Brazil Universidade Federal do Rio Grande do Sul Mateus Fogaca, Jucemar Monteiro, Henrique Placide Andre Oliveira, Isadora Oliveira, Eder Matheus Monte Marcelo Johann, Ricardo Reis	Team	Team name	Affiliation	Members
Chen, and Yao-Wen Chang The Chinese University of Hong Kong UFRGS-Brazil Universidade Federal do Rio Grande do Sul NCTUdr National Chiao Tung University The Chinese University of Hong Kong Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jingsong Chen, Bentian Jiang, Evangeline F.Y. Young Mateus Fogaca, Jucemar Monteiro, Henrique Placide Andre Oliveira, Isadora Oliveira, Eder Matheus Monte Marcelo Johann, Ricardo Reis NCTUdr National Chiao Tung University Shih-Ting Lin, Ming-Jie Fong, Ching-Hsi Chen, Wei-IL Lai, He-Cheng Tsai, Yih-Lang Li TritonRoute University of California, San Andrew B. Kahng, Lutong Wang, Bangqi Xu	4	NTHU-DR	•	Chein-Hao Tsou, Chia-Chun Chung, Chao-Yuan Huang, Wang-Yang Li, Zhuang Zhen, Genggeng Liu, Wenzhong Guo, Ting-Chi Wang
Hong Kong UFRGS-Brazil Universidade Federal do Rio Grande do Sul NCTUdr National Chiao Tung University Shih-Ting Lin, Ming-Jie Fong, Ching-Hsi Chen, Wei-lai, He-Cheng Tsai, Yih-Lang Li TritonRoute Chen, Bentian Jiang, Evangeline F.Y. Young Mateus Fogaca, Jucemar Monteiro, Henrique Placide Andre Oliveira, Isadora Oliveira, Eder Matheus Monte Marcelo Johann, Ricardo Reis Shih-Ting Lin, Ming-Jie Fong, Ching-Hsi Chen, Wei-lai, He-Cheng Tsai, Yih-Lang Li University of California, San Andrew B. Kahng, Lutong Wang, Bangqi Xu	5	LuLuRoute	National Taiwan University	Hao Chen, Chen-Hao Hsu, Fan-Keng Sun, Ching-Yu Chen, and Yao-Wen Chang
Grande do Sul Andre Oliveira, Isadora Oliveira, Eder Matheus Mont Marcelo Johann, Ricardo Reis NCTUdr National Chiao Tung University Shih-Ting Lin, Ming-Jie Fong, Ching-Hsi Chen, Wei-lai, He-Cheng Tsai, Yih-Lang Li TritonRoute University of California, San Andrew B. Kahng, Lutong Wang, Bangqi Xu	7	Dr. CU	•	Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jingsong Chen, Bentian Jiang, Evangeline F.Y. Young
University Lai, He-Cheng Tsai, Yih-Lang Li 21 TritonRoute University of California, San Andrew B. Kahng, Lutong Wang, Bangqi Xu	9	UFRGS-Brazil		Mateus Fogaca, Jucemar Monteiro, Henrique Placido, Andre Oliveira, Isadora Oliveira, Eder Matheus Monteiro, Marcelo Johann, Ricardo Reis
	19	NCTUdr	_	Shih-Ting Lin, Ming-Jie Fong, Ching-Hsi Chen, Wei-Ren Lai, He-Cheng Tsai, Yih-Lang Li
	21	TritonRoute	·	Andrew B. Kahng, Lutong Wang, Bangqi Xu

Open nets comparison

Mem: out-of-memory Time: over 12 hours

No output : no solution at exit

	Α	В	C	D	E	F
test1	0	0	0	0	0	0
test2	0	0	0	0	0	0
test3	0	0	0	0	0	0
test4	0	0	0	0	0	No output
test5	0	0	0	0	0	Mem
test6	0	0	0	0	0	Time
test7	No output	0	Time	Mem	Time	Mem
test8	0	0	Time	Mem	Time	Mem
test9	0	0	0	0	900	Mem
test10	0	0	0	Mem	900	Mem

Normalized Runtimes

Scaled scores considering run-time factor

Normalized Scaled Scores

No non-deterministic penalty is applied

Final ranking

Normalized scaled scores

	Α	В	С	D	Е	F
test1	1.00	1.76	14.61	14.59	17.05	2.99
test2	1.00	1.31	14.77	11.23	12.13	5.32
test3	1.00	1.29	21.01	7.45	8.34	6.63
test4	1.54	1.00	17.06	11.12	5.34	
test5	1.00	1.09	12.02	3.83	4.58	
test6	1.00	1.15	4.25	6.83	4.73	
test7		1.00				
test8	1.00	1.11				
test9	1.00	1.25	4.36	6.93		
test10	1.00	1.27	5.24			

Ranking

	Α	В	С	D	E	F
test1	1	2	5	4	6	3
test2	1	2	6	4	5	3
test3	1	2	6	4	5	3
test4	2	1	5	4	3	10
test5	1	2	5	3	4	10
test6	1	2	3	5	4	10
test7	10	1	10	10	10	10
test8	1	2	10	10	10	10
test9	1	2	3	4	10	10
test10	1	2	3	10	10	10
	1.1	1.8	5.1	5.3	6.3	7.7

Ranking Announcement

- 1st Place:
 - TritonRoute (UCSD)
- 2nd Place
 - Dr. CU (The Chinese University of Hong Kong)
- 3rd Place*:
 - LuLuRoute (National Taiwan University),
 - NTHU-DR (National Tsing Hua University and Fuzhou University)
- 4th Place:
 - UFRGS-Brazil (Universidade Federal do Rio Grande do Sul)
- 5th Place:
 - NCTUdr (National Chiao Tung University)

^{*} According to the original ranking policy, LuLuRoute should place number 3. However, from the data standpoint, NTHU-DR is tie for the 3rd place, so we rank them both at 3rd place.

Wire length (WL) and Number of Vias (test9)

TritonRoute

Highest total WL

Dr. CU

Smallest total WL

Wire Length

	TritonRoute	Dr. CU	LuLuRoute	NTHU-DR
Metal1	25095.91	50013.64	2014.21	18090.30
Metal2	680645.10	679947.80	827436.93	658983.80
Metal3	1900920.78	1813273.30	1917989.05	1858156.50
Metal4	1794372.99	1588512.00	1651408.95e	1607125.75
Metal5	825504.39	722913.65	747514.40	757713.20
Metal6	550743.27	507752.35	503127.80	528075.10
Metal7	50411.31	39547.12	46296.28	41391.80
Metal8	52188.20	48876.42	46376.42	50872.65
Metal9	461.67	127.00	125.6	124.80
Total	5880343.61	5450963.28	5742289.64	5520533.90

LuLuRoute

- Less total number of vias
- Less vias and WL on Metal1

NTHU-DR

- Highest number of vias
- High number of vias on Metal1

of vias

	TritonRoute	Dr. CU	LuLuRoute	NTHU-DR
Metal1	815555	837309	813378	1125973
Metal2	1046560	902325	851538	1186597
Metal3	694711	411615	425999	534103
Metal4	256893	138774	153246	178200
Metal5	84010	50113	50682	57974
Metal6	16488	7607	7606	8905
Metal7	5690	4105	3928	4610
Metal8	352	24	22	25
Metal9	0	0	0	0
Total	2920259	2351872	2306399	3096387

Pin access

TritonRoute

LuLuRoute

Dr. CU

NTHU-DR

Patch Wires

TritonRoute

LuLuRoute

NTHU-DR

Violations caused by transition vias

TritonRoute

ionet701

Dr.CU

LuLuRoute

Transition via

Result Overview

Memory usage (in GB)

Green: best memory usage with valid solution

Red: out-of-memory Grey: solution is invalid

	TritonRout e	Dr. CU	LuLuRoute	NTHU-DR	UFRGS- Brazil	NCTUdr
test1	4.64	0.78	0.69	0.92	0.27	1.38
test2	32.55	1.92	1.80	9.47	1.07	16.86
test3	43.40	1.95	1.86	10.26	1.19	24.04
test4	46.52	3.58	3.78	24.78	3.42	56.55
test5	24.25	4.51	4.47	28.44	3.96	64.00
test6	28.40	6.38	5.25	38.26	4.83	56.25
test7	4.10	10.15	8.86	64.00	7.72	64.14
test8	41.81	10.34	9.20	64.01	7.45	64.14
test9	40.16	10.30	8.89	61.89	8.50	64.13
test10	45.15	10.82	9.48	64.00	9.07	64.07

Memory and runtime scalability for ispd18_test3

TritonRoute: memory increases with number of threads

Dr.CU: memory increases but not as much

Acknowledgment

Patrick Haspel, Cheryl Mendenhall, Angelos Athanasiadis, Anton Klotzand, Tracy Zhu, Mike Stanton, Abdulrahman Zaidan and Nicolas Bouyssy cādence

ACADEMIC NETWORK

Neal Chang from Chip Implement Center (CIC) in Taiwan and Linda Dougherty from CMC Microsystems in Canada.

License setup help

Yufeng Luo, Mehmet C. Yildiz, Zhuo Li, Chuck Alpert, Jing Chen, Chris Chu and Ismail S. Bustany

Contest advise

Guilherme A. Flach, Jucemar Monteiro and Mateus Fogaça for the adjustments on Rsyn academic tool.

https://github.com/rsyn/rsyn-x

Potential Extensions for the Future Contest

- Inclusion of VDD/VSS special nets
- Inclusion of non-default-rule (NDR) nets
- Larger designs (>1M nets, >5X larger than the current biggest benchmarks)
- Revise metric functions
- More routing rules
 - Parallel-run spacing rule
 - Corner-to-corner spacing rule
 - Adjacent-cut spacing rule
 - Same-mask/diff-mask rule

cādence®

© 2018 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.

The first set of public benchmarks (released on 12/26/2017)

ispd18_test1	45nm	Standard cell netlist only
ispd18_test2	45nm	Standard cell netlist with IO pins
ispd18_test3	45nm	Standard cell netlist with IO pins and block macros

ispd18_test1

ispd18_test2

ispd18_test3

The second set of public benchmarks (released on 02/04/2017)

ispd18_test4	32nm	Design has Metal2 OBS in some of its standard cells
ispd18_test5	32nm	Design has Metal2 OBS, Metal2 Power/Ground pins, and routing direction is reversed
ispd18_test6	32nm	Design has Metal2 OBS, Metal2 Power/Ground pins, and reversed routing direction, but without any block macro

ispd18_test4

ispd18_test5

ispd18_test6

Hidden benchmarks

ispd18_test7	32nm	Quad-core design with Metal2 OBS and Metal2 Power/Ground pins as blockage
ispd18_test8	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage
ispd18_test9	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage, no block macro, higher utilization
ispd18_test10	32nm	Quad-core design with Metal2 to Metal3 OBS and Metal2 to Metal4 Power/Ground pins as blockage, no block macro, extra congested area

ispd18_test7

ispd18_test8

ispd18_test9

ispd18_test10

