Study Guide to Accompany

Operating Systems Concepts essentials Second Edition by Silberschatz, Galvin and Gagne

By Andrew DeNicola, BU ECE Class of 2012

Figures Copyright © John Wiley & Sons 2012

Introduction

- An OS is a program that acts as an intermediary between a user of a computer and the computer hardware
- Goals: Execute user programs, make the comp. system easy to use, utilize hardware efficiently
- Computer system: Hardware

 OS

 Applications

 Users (

 = 'uses')
- OS is:
 - Resource allocator: decides between conflicting requests for efficient and fair resource use
 - Control program: controls execution of programs to prevent errors and improper use of computer
- Kernel: the one program running at all times on the computer
- <u>Bootstrap program:</u> loaded at power-up or reboot
 - Stored in ROM or EPROM (known as <u>firmware</u>), Initializes all aspects of system, loads OS kernel and starts
 execution
- I/O and CPU can execute concurrently
- Device controllers inform CPU that it is finished w/ operation by causing an interrupt
 - Interrupt transfers control to the interrupt service routine generally, through the <u>interrupt vector</u>, which contains the addresses of all the service routines
 - Incoming interrupts are disabled while another interrupt is being processed
 - <u>Trap</u> is a software generated interrupt caused by error or user request
 - OS determines which type of interrupt has occurred by polling or the vectored interrupt system
- System call: request to the operating system to allow user to wait for I/O completion
- <u>Device-status table:</u> contains entry for each I/O device indicating its type, address, and state
 - OS indexes into the I/O device table to determine device status and to modify the table entry to include interrupt
- Storage structure:
 - Main memory <u>random access</u>, <u>volatile</u>
 - Secondary storage extension of main memory That provides large <u>non-volatile</u> storage
 - Disk divided into <u>tracks</u> which are subdivided into <u>sectors</u>. <u>Disk controller</u> determines logical interaction between the device and the computer.
- <u>Caching</u> copying information into faster storage system
- <u>Multiprocessor Systems:</u> Increased throughput, economy of scale, increased reliability
 - Can be asymmetric or symmetric
 - <u>Clustered systems</u> Linked multiprocessor systems
- Multiprogramming Provides efficiency via job scheduling
 - When OS has to wait (ex: for I/O), switches to another job
- <u>Timesharing</u> CPU switches jobs so frequently that each user can interact with each job while it is running (<u>interactive computing</u>)
- <u>Dual-mode</u> operation allows OS to protect itself and other system components <u>User mode</u> and <u>kernel mode</u>
 - Some instructions are only executable in kernel mode, these are privileged
- Single-threaded processes have one program counter, multi-threaded processes have one PC per thread
- Protection mechanism for controlling access of processes or users to resources defined by the OS
- <u>Security</u> defense of a system against attacks
- User IDs (UID), one per user, and Group IDs, determine which users and groups of users have which privileges

OS Structures

- User Interface (UI) Can be Command-Line (CLI) or Graphics User Interface (GUI) or Batch
 - These allow for the user to interact with the system services via system calls (typically written in C/C++)
- Other system services that a helpful to the <u>user</u> include: program execution, I/O operations, file-system manipulation, communications, and error detection
- Services that exist to ensure efficient OS operation are: resource allocation, accounting, protection and security
- Most system calls are accessed by Application Program Interface (API) such as Win32, POSIX, Java
- Usually there is a number associated with each system call
 - System call interface maintains a table indexed according to these numbers
- Parameters may need to be passed to the OS during a system call, may be done by:
 - Passing in <u>registers</u>, address of parameter stored in a <u>block</u>, <u>pushed</u> onto the stack by the program and <u>popped</u> off by the OS
 - Block and stack methods do not limit the number or length of parameters being passed
- <u>Process control</u> system calls include: end, abort, load, execute, create/terminate process, wait, allocate/free memory
- <u>File management</u> system calls include: create/delete file, open/close file, read, write, get/set attributes
- <u>Device management</u> system calls: request/release device, read, write, logically attach/detach devices
- <u>Information maintenance</u> system calls: get/set time, get/set system data, get/set process/file/device attributes
- <u>Communications</u> system calls: create/delete communication connection, send/receive, transfer status information
- OS Layered approach:
 - The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface
 - With modularity, layers are selected such that each uses functions (operations) and services of only lower-level layers
- <u>Virtual machine</u>: uses layered approach, treats hardware and the OS kernel as though they were all hardware.
 - Host creates the illusion that a process has its own processor and own virtual memory
 - Each guest provided with a 'virtual' copy of the underlying computer
- Application failures can generate <u>core dump</u> file capturing memory of the process
- Operating system failure can generate <u>crash dump</u> file containing kernel memory

Processes

- <u>Process</u> contains a program counter, stack, and data section.
 - <u>Text section</u>: program code itself
 - <u>Stack</u>: temporary data (function parameters, return addresses, local variables)
 - <u>Data section</u>: global variables
 - Heap: contains memory dynamically allocated during run-time
- <u>Process Control Block (PCB)</u>: contains information associated with each process: process state, PC, CPU registers, scheduling information, accounting information, I/O status information
- Types of processes:
 - <u>I/O Bound</u>: spends more time doing I/O than computations, many short CPU bursts
 - <u>CPU Bound</u>: spends more time doing computations, few very long CPU bursts
- When CPU switches to another process, the system must save the state of the old process (to PCB) and load the saved state (from PCB) for the new process via a <u>context switch</u>
 - Time of a context switch is dependent on hardware
- Parent processes create children processes (form a tree)
 - <u>PID</u> allows for process management
 - Parents and children can share all/some/none resources
 - Parents can execute concurrently with children or wait until children terminate
 - o fork() system call creates new process
 - exec() system call used after a fork to replace the processes' memory space with a new program
- Cooperating processes need interprocess communication (IPC): shared memory or message passing
- Message passing may be blocking or non-blocking
 - Blocking is considered synchronous
 - Blocking send has the sender block until the message is received.
 - Blocking receive has the receiver block until a message is available
 - Non-blocking is considered asynchronous
 - Non-blocking send has the sender send the message and continue
 - Non-blocking receive has the receiver receive a valid message or null

Threads

- Threads are fundamental unit of CPU utilization that forms the basis of multi-threaded computer systems
- Process creation is heavy-weight while thread creation is light-weight
 - Can simplify code and increase efficiency
- Kernels are generally multi-threaded
- Multi-threading models include: Many-to-One, One-to-One, Many-to-Many
 - Many-to-One: Many user-level threads mapped to single kernel thread
 - o One-to-One: Each user-level thread maps to kernel thread
 - Many-to-Many: Many user-level threads mapped to many kernel threads
- Thread library provides programmer with API for creating and managing threads
- Issues include: thread cancellation, signal handling (synchronous/asynchronous), handling thread-specific data, and scheduler activations.
 - Cancellation:
 - Asynchronous cancellation terminates the target thread immediately
 - Deferred cancellation allows the target thread to periodically check if it should be canceled
 - o Signal handler processes signals generated by a particular event, delivered to a process, handled
 - Scheduler activations provide upcalls a communication mechanism from the kernel to the thread library.
 - Allows application to maintain the correct number of kernel threads

Process Synchronization

- <u>Race Condition</u>: several processes access and manipulate the same data concurrently, outcome depends on which order each access takes place.
- Each process has <u>critical section</u> of code, where it is manipulating data
 - To solve critical section <u>problem</u> each process must ask permission to enter critical section in <u>entry section</u>, follow critical section with exit section and then execute the remainder section
 - Especially difficult to solve this problem in preemptive kernels
- Peterson's Solution: solution for two processes
 - Two processes share two variables: int turn and Boolean flag[2]
 - **turn:** whose turn it is to enter the critical section
 - **flag:** indication of whether or not a process is ready to enter critical section
 - flag[i] = true indicates that process P_i is ready
 - Algorithm for process P_i:

- Modern machines provide atomic hardware instructions: <u>Atomic</u> = non-interruptable
- Solution using Locks:

• Solution using Test-And-Set: Shared boolean variable lock, initialized to FALSE

```
boolean TestAndSet (boolean *target){
    boolean rv = *target;
    *target = TRUE;"
    return rv:
}
```

• Solution using Swap: Shared bool variable lock initialized to FALSE; Each process has local bool variable key

```
void Swap (boolean *a, boolean *b){
    boolean temp = *a;
    *a = *b;
    *b = temp:
}
```

- <u>Semaphore</u>: Synchronization tool that does not require busy waiting
 - Standard operations: wait() and signal() these are the only operations that can access semaphore S
 - Can have <u>counting</u> (unrestricted range) and <u>binary</u> (0 or 1) semaphores
- <u>Deadlock</u>: Two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes (most OSes do not prevent or deal with deadlocks)
 - Can cause <u>starvation</u> and <u>priority inversion</u> (lower priority process holds lock needed by higher-priority process)

Process Synchronization (Continued)

- Other synchronization problems include <u>Bounded-Buffer Problem</u> and <u>Readers-Writers Problem</u>
- Monitor is a high-level abstraction that provides a convenient and effective mechanism for process synchronization
 - Only one process may be active within the monitor at a time
 - Can utilize <u>condition</u> variables to suspend a resume processes (ex: condition x, y;)
 - x.wait() a process that invokes the operation is suspended until x.signal()
 - x.signal() resumes one of processes (if any) that invoked x.wait()
 - Can be implemented with semaphores

CPU Scheduling

- Process execution consists of a cycle of CPU execution and I/O wait
- CPU scheduling decisions take place when a process:
 - Switches from running to waiting (nonpreemptive)
 - Switches from running to ready (preemptive)
 - Switches from waiting to ready (preemptive)
 - Terminates (nonpreemptive)
- The <u>dispatcher</u> module gives control of the CPU to the process selected by the short-term scheduler
 - <u>Dispatch latency</u>- the time it takes for the dispatcher to stop one process and start another
- Scheduling algorithms are chosen based on optimization criteria (ex: throughput, turnaround time, etc.)
 - FCFS, SJF, Shortest-Remaining-Time-First (preemptive SJF), Round Robin, Priority
- Determining length of next CPU burst: Exponential Averaging:
 - 1. $t_n = \text{actual length of } n^{\frac{1}{\text{th}}} CPU \text{ burst}$
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$ (commonly α set to 1/2)
 - Define: $\tau_{n+1} = \alpha * t_n + (1-\alpha)\tau_n$
- <u>Priority Scheduling</u> can result in <u>starvation</u>, which can be solved by <u>aging</u> a process (as time progresses, increase the priority)
- In <u>Round Robin</u>, small time quantums can result in large amounts of context switches
 - Time quantum should be chosen so that 80% of processes have shorter burst times that the time quantum
- <u>Multilevel Queues</u> and <u>Multilevel Feedback Queues</u> have multiple process queues that have different priority levels

- o In the Feedback queue, priority is not fixed → Processes can be promoted and demoted to different queues
- Feedback queues can have different scheduling algorithms at different levels
- Multiprocessor Scheduling is done in several different ways:
 - Asymmetric multiprocessing: only one processor accesses system data structures → no need to data share
 - Symmetric multiprocessing: each processor is self-scheduling (currently the most common method)
 - <u>Processor affinity</u>: a process running on one processor is more likely to continue to run on the same processor (so that the processor's memory still contains data specific to that specific process)
- <u>Little's Formula</u> can help determine average wait time per process in any scheduling algorithm:
 - $\circ \quad n = \lambda \ x \ W$
 - n = avg queue length; W = avg waiting time in queue; $\lambda = average$ arrival rate into queue
- Simulations are programmed models of a computer system with variable clocks
 - Used to gather statistics indicating algorithm performance
 - Running simulations is more accurate than queuing models (like Little's Law)
 - Although more accurate, high cost and high risk