Dans chaque cas, on considère la représentation graphique d'une fonction f. Donnez dans un même tableau, le tableau de signe de la dérivée de f et le tableau de variation de f.

Propriété 1. Soit f une fonction dérivable sur un intervalle I :

- ullet Si f' est positive sur I, alors f est croissante sur $I.\,$
- ullet Si f' est négative sur I, alors f est décroissante sur I.

Soit f la fonction définie sur $\mathbb R$ par $f(x) = -3x^2 + 3x - 1$.

- **a.** Calculer f'(x).
- **b.** Étudier le signe de f'(x).
- ${f c.}$ En déduire les variations de f.
- **d.** Déterminez l'extremum de f.

Reprendre l'exercice précédent pour les fonctions suivantes:

1. $f(x) = 2x^2 - 3x + 1$ 2. $f(x) = -x^2 + 2x - 3$

Extremum local

Définition 1. Soit f une fonction dérivable sur un intervalle I : dire que f admet un maximum local (resp. un minimum local) en $c \in I$ signifie que f(c) est le maximum (resp. le minimum) de f sur un intervalle $]a;b[\subset I]$ contenant c.

Dire que f admet un $\emph{extremum local}$ en \emph{c} signifie que f admet un maximum ou un minimum local en c.

E4 On considère la représentation graphique d'une fonction f définie sur $\left[-5;5\right]$ et dérivable sur l'intervalle]-5;5[.

- a. Par lecture graphique, indiquez le ou les valeurs où la fonction admet un extremum local, déterminez la nature de cet extremum et donnez la valeur de cet extremum.
- b. Quel est le maximum de la fonction sur l'intervalle [-5;5] ?
- c. Ouel est le minimum de la fonction sur ce même intervalle ?

Propriété 2. Soit f une fonction dérivable sur un intervalle I=]a;b[et $c\in I$.

Si f admet un extremum local en c, alors f'(c) = 0.

E5 Déduire de l'exercice précédent des valeurs où la fonction admet une dérivée nulle.

Propriété 3. Soit f une fonction dérivable sur un intervalle I=]a;b[et $c\in I$.

- Si f'(c) = 0
- et si f' change de signe en c,

alors f admet un extremum local en c.

E6 Étudiez les variations des fonctions suivantes sur l'intervalle $\left[-10;10
ight]$ en calculant la dérivée. En déduire les extremums locaux :

- a. $f:x\longmapsto x^2$
- **b.** $f: x \longmapsto x^3$

E7 Étudiez les variations des fonctions suivantes puis déterminez les extremums locaux :

- a. $f(x) = x^3 27x + 18$
- **b.** $f(x) = -x^3 + 3x^2 9$
- **c.** Une fonction f de degré 3 tel que la dérivée est une fonction de degré 2 ayant au moins 1 comme racine : $f(x) = x^3 - 3x^2 + 3x - 1$ Indication : dérivez la fonction puis factorisez $f^{\prime}(x)$. Utilisez le tableau de signe de $f^{\prime}(x)$ pour déterminer les variations de f . Il y a deux valeurs où f admet un extremum local.