Microsoft SQL Server 2019 Design & Develop

Masoud Mirzakhani Senior DW/ ETL/ BI Architect

Microsoft SQL Server 2019 Design & Develop

Masoud Mirzakhani Senior DW/ ETL/ BI Architect

- Master of Science in Information Technology
- QAZVIN AZAD UNIVERSITY
- Bachelor of Science in Information Technology
- PARAND AZAD UNIVERSITY
- md.mirzakhani@gmail.com
- (+98) 919 475 25 75
- linkedin.com/in/masoudmirzakhani

Syllabus

Design and implement database objects

	Design tables and schemas based on business requirements.		
Design and Implement	Improve the design of tables by using normalization.		
a Relational Database Schema	Write table create statements.		
	Determine the most efficient data types to use.		
Ensure Data Integrity with Constraints	Define table and foreign key constraints to enforce business rules.		
	Write Transact-SQL statements to add constraints to tables.		
	Identify results of Data Manipulation Language (DML) statements given existing tables and constraints.		
	Identify proper usage of PRIMARY KEY constraint.		

Syllabus

Manage data with Transact-SQL

	Identify proper SELECT query structure.		
	Write specific queries to satisfy business requirements.		
Create Transact-SQL	Construct results from multiple queries using set operators.		
SELECT queries	Distinguish between UNION and UNION ALL behavior.		
	Identify the query that would return expected results based on provided table structure and/or data.		
	Write queries with join statements based on provided tables, data, and requirements.		
Query multiple tables	Determine proper usage of INNER JOIN, LEFT/RIGHT/FULL OUTER JOIN, and CROSS JOIN.		
by using joins	Construct multiple JOIN operators using AND and OR.		
	Determine the correct results when presented with multi-table SELECT statements and source data;		
	Write queries with NULLs on joins.		
Implement functions	Construct queries using scalar-valued and table-valued functions.		
and aggregate data	Use built-in aggregate functions.		

Syllabus

Query data with advanced Transact-SQL components

	Determine the results of queries using subqueries and table joins.
Query data by using Subqueries	Evaluate performance differences between table joins and correlated subqueries based on provided data and query plans.
and	Distinguish between the use of CROSS APPLY and OUTER APPLY.
APPLY	Write APPLY statements that return a given data set based on supplied data.
	Use windowing functions to group and rank the results of a query.
Group	Distinguish between using Windowing Functions and GROUP BY.
and pivot data	Construct complex GROUP BY clauses using GROUPING SETS, and CUBE.
by using queries	Construct PIVOT and UNPIVOT statements to return desired results based on supplied data.
	Determine the impact of NULL values in PIVOT and UNPIVOT queries.

Reference

Itzik Ben-Gan

Question?

What is Database?

Spread Sheet VS Database

Spread Sheet	Database
Optimized for simple data analysis	Powerful relational analysis
Rich formatting features	Tabular report format
Limited ability to compare data from different sources	Manage data from different sources
Self-contained documents	Dedicated database servers
Limited security options.	Permissions increase security
One user at a time	Multiple simultaneous users
Data Volume Restricted	Able to access and manage large amounts of data

History

- The Navigational Database Model (1960)
- The **Relational Database Model** (1970)
- NoSQL and NewSQL (2000)

Relational Database Model

Edgar Frank "Ted" Codd (1923 – 2003)

Relational Database Model

- (1969)
- Set Theory
- Relational Algebra

Operation	My HTML	Symbol
Projection	PROJECT	π
Selection	SELECT	σ
Renaming	RENAME	ρ
Union	UNION	
Intersection	INTERSECTION	\cap
Assignment	<-	\leftarrow

Operation	My HTML	Symbol
Cartesian product	x	×
Join	JOIN	M
Left outer join	LEFT OUTER JOIN	M
Right outer join	RIGHT OUTER JOIN	X
Full outer join	FULL OUTER JOIN	M
Semijoin	SEMIJOIN	X

Relational Database Model

Enterprise	Open Source
IBM DB2	MySQL
Microsoft Access	PostgreSQL
Microsoft SQL Server	SQLite
Oracle	
SAP HANA	
Teradata	

SEQUEL (Structured English QUEry Language)

- (1970)
- IBM
- Donald D. Chamberlin and Raymond F. Boyce

The acronym **SEQUEL** changed to **SQL**

- Structured Query Language
- ANSI and ISO adopted the standard "Database Language SQL"
- (1986)

SQL Languages

RDBMS	Language	Full Name
IBM DB2	SQL PL	SQL Procedural Language
Microsoft SQL Server	T-SQL	Transact-SQL
MySQL	SQL/PSM	SQL/Persistent Stored Module
Oracle	PL/SQL	Procedural Language/SQL
PostgreSQL	PL/pgSQL	Procedural Language/PostgreSQL Structured Query Language
SAP HANA	SQLScript	SQL Script
Teradata	SPL	Stored Procedural Language

			Factor			
Total Price	Quantity	Unit Price	Product	Date	Customer Name	Factor Number
2000	2	1000	Snack	1398-01-01	Ali	1
15000	3	5000	Chips	1398-01-01	Ali	1
8000	2	4000	Coca	1398-01-01	Ali	1
20000	4	5000	7UP	1398-01-02	Ahmad	2
20000	4	5000	Pepsi	1398-01-02	Ahmad	2
20000	4	5000	Fanta	1398-01-02	Ahmad	2

Factor Header			
Date	Customer Name	Factor Number	
1398-01-01	Ali	1	
1398-01-02	Ahmad	2	

Factor Detail				
Total Price	Quantity	Unit Price	Product	Factor Number
2000	2	1000	Snack	1
15000	3	5000	Chips	1
8000	2	4000	Coca	1
20000	4	5000	7UP	2
20000	4	5000	Pepsi	2
20000	4	5000	Fanta	2

Factor Header				
Date	Customer Code	Factor Number		
1398-01-01	11	1		
1398-01-02	2	2		

Factor Detail						
Total Price	Quantity	Unit Price	Product Code	Row Number	Factor Number	
2000	2	1000	1	1	1	
15000	3	5000	2	2	1	
8000	2	4000	3	3	1	
20000	4	5000	1	1	2	
20000	4	5000	5	2	2	
20000	4	5000	6	3	2	

		Customer	
Birth Date	Sex	Customer Name	Customer Code
		Ali	1
		Ahmad	2

Product				
Product Name	Product Code			
Snack	1			
Chips	2			
Coca	3			
7UP	4			
Pepsi	5			
Fanta	6			

	Factor	Header						Customer	
Date *		comer de *	Factor Number *U			Birth Date	Sex	Customer Name *	Customer Code *U
1398-01-01	L í	11	1			تاريخ	ķ.	متن	عدد
1398-01-02)	2	2					Ali	1
1000 01 01		_	_					Ahmad	2
Factor Detail						Produ	ct		
Total Price *	Quantit y *	Unit Price *	Product Code *	Row Number *U1	Factor Number *U1			roduct ame *	Product Code *U
2000	2	1000	1	1	1		9	Snack	1
15000	3	5000	2	2	1		(Chips	2
8000	2	4000	3	3	1			Coca	3
20000	4	5000	1	1	2			7UP	4
20000	4	5000	5	2	2			Pepsi	5
20000	4	5000	6	3	2		ı	- anta	6

Naming Conventions

Rule	Example
Plural 'S'	Customers
Finglish	Kala
English Alphabetic Characters	Factor-Header
Abbreviation	TelNo
KeyWord	Date

Multiple Word Identifiers

Title	Example
Snake Case	snake_case
Snake Case (All Caps)	SNAKE_CASE
Camel Case	camelCase
Kebab-case	kebab-case
Pascal Case	PascalCase