A Subspace Acceleration Method for Fixed Point Iterations

Neil N. Carlson Keith Miller

Fixed Point Iteration

Fixed point iteration for $x^* = g(x^*)$, $g: \mathbb{R}^m \to \mathbb{R}^m$:

$$x_0$$
 given for $n=0,1,2,\ldots$ do $x_{n+1}=g(x_n)$ end for

 $x_n \to x^*$ if $||x^* - x_0||$ and $||Dg(x^*)||$ are sufficiently small.

Fixed point iteration for $f(x^*) = 0$, $f: \mathbb{R}^m \to \mathbb{R}^m$, (g(x) = x - f(x)):

$$x_0$$
 given for $n=0,1,2,\ldots$ do $x_{n+1}=x_n-f(x_n)$ end for

 $x_n \to x^*$ if $||x^* - x_0||$ and $||Df(x^*) - I||$ are sufficiently small.

Modified Newton Methods: An Aside

Newton's method for $f(x^*) = 0$, $f: \mathbb{R}^m \to \mathbb{R}^m$:

$$x_0$$
 given for $n=0,1,2,\ldots$ do $x_{n+1}=x_n-[\mathrm{D}f(x_n)]^{-1}f(x_n)$ end for

Modified Newton's method replaces $Df(x_n)$ with $P(x_n)$.

Example: $P(x_n) = Df(\bar{x})$ (constant) for some \bar{x} .

Define $h(x) = [P(x)]^{-1} f(x)$. Then this modified Newton iteration is just a fixed point iteration for $h(x^*) = 0$.

Accelerated FP Correction: Motivation

Rewrite our iteration as

$$x_0$$
 given for $n=0,1,2,\ldots$ do $v_{n+1}=f(x_n)$ (Correction) $x_{n+1}=x_n-v_{n+1}$ end for

If we were free to choose v_{n+1} , how would we choose it? Perhaps as the solution of

$$0 = f(x_n - v_{n+1}) \approx f(x_n) - Df(x_n) v_{n+1}.$$

FP iteration: Don't know $Df(x_n)$, so just approximate it by I.

But if $Df \approx \text{constant}$, we **DO** know something about Df!

The Accelerated FP Correction

To generate the correction v_{n+1} we have available:

Corrections: $v_1, \ldots, v_n, \qquad V_n = [v_1 \cdots v_n], \qquad \mathcal{V}_n = \operatorname{span}\{v_1, \ldots, v_n\}$

f-differences: $w_1, \ldots, w_n, \quad W_n = [w_1 \cdots w_n], \quad \mathcal{W}_n = \operatorname{span}\{w_1, \ldots, w_n\}$

where $w_j = f(x_{j-1}) - f(x_j)$, $(w_j \approx Df v_j)$.

Idea: Split the correction $v_{n+1} = v' + v''$, with $v' \in \mathcal{V}_n$:

$$0 = f(x_n) - Df(x_n) (v' + v'') \quad \leadsto \quad 0 = f(x_n) - Df v' - I v''.$$

Accelerated correction (Carlson & Miller, SISC '98):

$$v_{n+1} = \underbrace{V_n z}_{\in \mathcal{V}_n} + \underbrace{\left(f(x_n) - W_n z\right)}_{\in \mathcal{W}_n^{\perp}}$$

where $z = \operatorname{argmin}_{\zeta \in \mathbb{R}^n} || f(x_n) - W_n \zeta ||$.

The Nonlinear Reality

Of course Df isn't constant. In recognition of this fact we consider the most recent corrections and differences to be the most reliable.

- Use the w_j in reverse order.
- lacksquare Only use a limited number of the most recent w_j .
- lacksquare Drop any w_i that is nearly in the span of the preceding vectors.

The Accelerated FP Iteration

To summarize, the accelerated fixed point iteration is

```
\begin{array}{l} x:=x_0\\ \textbf{repeat}\\ v:=\mathrm{FPA}\big(f(x)\big) \quad \  (v:=f(x) \text{ is the unaccelerated correction})\\ x:=x-v\\ \textbf{until converged} \end{array}
```

The acceleration procedure FPA is a black box. It sits in the loop listening to the sequence of function evaluations $f(x_0), f(x_1), \ldots$ and returning the accelerated corrections v_1, v_2, \ldots