

Analysis of Customer Satisfaction using Sentiment Analysis

Roghieh Farajialamooti Seda Sensoy Sraboni Bhuiyan

Group X

Topics

- Data Gathering
- Preprocessing
- Analysis using Naïve Bayes
- SVM Machine Learning Model
- LSTM Deep Learning Model using Word Embedding Vectorization
- LSTM Deep Learning Model using TF-IDF Vectorization
- Results

Data Gathering

- Dataset
 - ► How to Download

- Specification
 - ► Excel File of Size 1500 with Two Columns: Comment, Sentiment
 - ► Separate 1290 of Data

```
youtube = build('youtube', 'v3', developerKey='KEY')
video id = '78IJdhvY1zg'
comments = []
request = youtube.commentThreads().list(
    part='snippet',
    videoId=video id,
    textFormat='plainText')
while request:
    response = request.execute()
    for item in response['items']:
        comment =
item['snippet']['topLevelComment']['snippet']['textDispla
y']
        comments.append(comment)
    request = youtube.commentThreads().list next(request,
response)
```

Preprocessing

- Tokenization
 - Regular Expression: I'm --> "I", ",", "m"
 - NLTK: I'm ---> "I", "'m"
 - Digits stick to Words -> Manually Separated
- POS Tagging
 - Challenge: Role of Word
 - Solution: Add Subject to the sentences starting with verb
- Not Relevant
 - NER
 - Lemmatization

TF-IDF


```
ngram_range = (1, 3)
num = data['comment'].str.split().explode().nunique()
print('Unique Words in Data: ', num)
tfidf_vectorizer = TfidfVectorizer(ngram_range=ngram_range, min_df=5,
max_features=num, stop_words='english')
```

Sentiment Analysis using TF-IDF Vectorization + Tokens + POS Tags

```
X_train_new, X_test_new, y_train_new, y_test_new =
train test split(
    data_tfidf, data['sentiment_numeric'], test_size=0.2,
random_state=20, stratify=data['sentiment_numeric'])
classifier = MultinomialNB()
classifier.fit(X_train_new, y_train_new)
y_pred = classifier.predict(X_test_new)
accuracy = accuracy_score(y_test_new, y_pred)
classification_rep = classification_report(y_test_new,
y_pred, target_names=sentiment_mapping.keys())
print(f'Accuracy: {accuracy:.2f}')
print(classification_rep)
```

Sentiment Analysis using TF-IDF Vectorization + Tokens + POS Tags

Accuracy: 0.81

	Precision	recall	f1-score	support
positive	0.89	0.86	0.88	86
Neutral	0.79	0.74	0.77	86
negative	0.76	0.83	0.79	86
accuracy			0.81	258
macro avg	0.81	0.81	0.81	258
weighted av	g 0.81	0.81	0.81	258

Sentiment Analysis using TF-IDF Vectorization + Tokens + POS Tags

Predicted Positive	Predicted	Neutral	Predicted Negative
--------------------	-----------	---------	---------------------------

Actual Positive	74	10	2
Actual Neutral	18	63	5
Actual Negative	10	7	69

SVM

```
X train tfidf = tfidf vectorizer.fit transform(X train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
param_grid_svm = {'C': [0.1, 1, 10,100], 'gamma': ['scale', 'auto'], 'kernel': ['linear',
'rbf']}
svm_model = SVC(random_state=1)
svm model grid = GridSearchCV(estimator=svm model, param grid=param grid svm, verbose=10,
cv=\overline{5}, n \overline{jobs}=-1)
svm_model_grid.fit(X_train_tfidf, y_train)
results df = pd.DataFrame(svm model grid.cv results )
print('Grid Search Results:')
print(results_df[['params', 'mean_test_score', 'rank_test_score']])
best estimator svm = svm model grid.best estimator
y pred = best estimator svm.predict(X test tfidf)
```

Best Estimator: SVC(C=10, random_state=1)

Accuracy: 0.88

Classification Report:

I	orecision	recall	f1-score	support
positive	0.92	0.93	0.92	86
neutral	0.80	0.87	0.83	86
negative	0.92	0.83	0.87	86
accuracy			0.88	258
macro avg	0.88	0.88	0.88	258
weighted avg	0.88	0.88	0.88	258

Predicted	Positive	Predicted Neutral	Predicted Negative
Actual Positive	79	7	0
Actual Neutral	11	75	0
Actual Negative	0	14	72

Lowest Misclassification

LSTM with Word Embedding Vectorization

```
X_train = X_train.astype(str)
X_test = X_test.astype(str)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X_train)
tokenizer.fit_on_texts(X test)
X_train_sequences = tokenizer.texts_to_sequences(X_train)
X_test_sequences = tokenizer.texts_to_sequences(X_test)
max sequence length = num
X_train_padded = pad_sequences(X_train_sequences, maxlen=max_sequence_length,
padding='post')
X_test_padded = pad_sequences(X_test_sequences, maxlen=max_sequence_length,
padding='post')
```

LSTM with Word Embedding Vectorization

```
embedding_dim = 50
embedding_matrix = {}
with open('glove.6B.50d.txt', encoding='utf-8') as f:
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embedding_matrix[word] = coefs
vocab_size = len(tokenizer.word_index) + 1
embedding_matrix_for_model = np.zeros((vocab_size, embedding_dim))
for word, i in tokenizer.word index.items():
    embedding vector = embedding matrix.get(word)
    if embedding_vector is not None:
        embedding_matrix_for_model[i] = embedding_vector
```


Layer (type)	Output Shape	Param #	17	6
embedding_4 (Embedding)	(None, 2791, 50)	 101800	Nuse 4	
bidirectional_8 (Bidirectional)	(None, 2791, 100)	40400		
dropout_4 (Dropout)	(None, 2791, 100)	0		
bidirectional_9 (Bidirectional)	(None, 100)	60400		
dense_3 (Dense)	(None, 3)	303		
	2012 B 105	Arrest .	- Annual Dr.	water of

Total params: 202903 (792.59 KB)

Trainable params: 101103 (394.93 KB)

Non-trainable params: 101800 (397.66 KB)

	precision	recall	f1-score	support
positive	0.89	0.86	0.88	86
neutral	0.76	0.88	0.82	86
negative	0.91	0.79	0.84	86
accuracy			0.84	258
macro avg	0.85	0.84	0.85	258
weighted avg	0.85	0.84	0.85	258

LSTM with Word Embedding Vectorization

LSTM with TF-IDF Vectorization

TF-IDF Vectorization:

- 1. Converts text to numerical form, preserving important word frequencies
- 2. Balances word significance across documents

Model Structure:

- Embedding Layer: Projects words into a dense vector space
- **2. Bidirectional LSTM Layers**: Captures context from both past and future data points
- **3. Dropout Layer**: Prevents overfitting by randomly dropping units
- **4. Dense Output Layer**: Classifies text into sentiment categories

Training Details:

1. Epochs: 10

2. Batch Size: 16

3. Validation Split: 10%

Performance Metrics:

- 1. Tested accuracy and loss
- 2. Improvement across epochs

Challenges & Insights:

- 1. Complexity and training time
- 2. Overfitting concerns
- 3. Effectiveness in capturing sentiment nuances

LSTM with TF-IDF Vectorization

```
X train tfidf = tfidf vectorizer.fit transform(X train)
X test tfidf = tfidf vectorizer.transform(X test)
model lstm = Sequential()
max sequence length = max(X train tfidf.shape[1], X test tfidf.shape[1])
model_lstm.add(Embedding(input_dim=X_train_tfidf.shape[1], output_dim=50,
input length=max sequence length))
model lstm.add(Bidirectional(LSTM(50, return sequences=True)))
model lstm.add(Dropout(0.2))
model lstm.add(Bidirectional(LSTM(50)))
model lstm.add(Dense(3, activation='softmax'))
model lstm.compile(loss='sparse categorical crossentropy', optimizer='adam',
metrics=['accuracy'])
model lstm.fit(X train tfidf.toarray(), y train, epochs=10, batch size=16, validation split =
0.1)
test_loss, test_acc = model_lstm.evaluate(X_test_tfidf.toarray())
```


Layer (type) Output Shape Param #

embedding_3 (Embedding) (None, 401, 50) 20050

bidirectional_6 (Bidirectional) (None, 401, 100) 40400

dropout_3 (Dropout) (None, 401, 100) 0

bidirectional_7 (Bidirectional) (None, 100) 60400

dense_2 (Dense) (None, 3) 303

Total params: 121153 (473.25 KB)

Trainable params: 121153 (473.25 KB)

Non-trainable params: 0 (0.00 Byte)

LSTM with TF-IDF Vectorization

	precision	recall	f1-score	support	
positive	0.00	0.00	0.00	86	
neutral	0.00	0.00	0.00	86	
negative	0.33	1.00	0.50	86	
accuracy			0.33	258	
macro avg	0.11	0.33	0.17	258	
weighted avg	0.11	0.33	0.17	258	

LSTM with TF-IDF Vectorization

	Predicted Positive	Predicted Neutral	Predicted Negative	
Actual Positive	0	86	0	
Actual Neutral	0	86	0	
Actual Negative	0	0	86	

Prediction

```
def predict sentiment(comment):
   comment_sequence = tokenizer.texts_to_sequences([comment])
   comment padded = pad sequences(comment sequence, maxlen=50, padding='post')
   lstm_predictions = model_lstm.predict(comment_vectorized)
   lstm_pretrained_prediction = model_pretrained.predict(comment_padded)
   svm_predicted_class_index = np.argmax(svm_prediction)
   nb_predicted_class_index = np.argmax(nb_prediction)
   lstm_predicted_class_index = np.argmax(lstm_predictions)
   lstm_pretrained_prediction_class_index = np.argmax(lstm_pretrained_prediction)
   svm_sentiment = sentiment_classes[svm_predicted_class_index]
   nb_sentiment = sentiment_classes[nb_predicted_class_index]
   lstm_sentiment = sentiment_classes[lstm_predicted_class_index]
   lstm_pretrained_sentiment=sentiment_classes[lstm_pretrained_prediction_class_index]
   return svm_sentiment, nb_sentiment, lstm_sentiment, lstm_pretrained_sentiment, tokens,
pos tags
```

Prediction

```
def predict_from_command_line():
    comment = input('Enter your comment: ')
    if comment:
        svm sentiment, nb sentiment,
1stm sentiment, 1stm pretrained sentiment,
tokens, pos tags= predict sentiment(comment)
        print(f'Tokens: {tokens}')
        print(f'POS Tags: {pos tags}')
        print(f'SVM Model Prediction:
{svm_sentiment}')
        print(f'Naive Bayes Model Prediction:
{nb sentiment}')
        print(f'LSTM Model Prediction:
{lstm sentiment}')
        print(f'LSTM Pretrained Model
Prediction: {lstm pretrained sentiment}')
    else:
        print('Please enter a comment.')
predict from command line()
```

```
Enter your comment: I hate the movie

1/1 [============] - 0s 67ms/step
1/1 [===========] - 0s 29ms/step
Tokens: ['I', 'hate', 'the', 'movie']
POS Tags: ['PRP', 'VBP', 'DT', 'NN']
SVM Model Prediction: negative
Naive Bayes Model Prediction: negative
LSTM Model Prediction: positive
LSTM Pretrained Model Prediction: negative
```

Results & Comparison

Compare Results of Different Model:

Model	Accuracy
Naïve Bayes	0.81
SVM	0.88
LSTM with Word Embedding Vectorization	0.84
LSTM with TF-IDF Vectorization	0.33

Suggestion:

Best Model: LSTM

Suggestion on Improvement: More Data for Vectorization & Training

