

Simulation - Derivatives

ROBERTO ALEJANDRO CÁRDENAS OVANDO

Outline

- Derivatives
- Second derivatives
- Partial Derivatives
- Dicretization

Derivatives

*Rate of change of a function (slope)

Derivatives

Instantaneous rate of change of a function

Second derivative

It describes the rate of change speed

Partial Derivatives

- The function varies jointly to a set of variables
- Strategy: Take one to work with and the others are constant

Discretization

Taylor series about 0 (again)

Discretization

Discretization

- The intermediate value theorem:
- ❖If f is continuous on [a,b] and f(a) < k < f(b). Then, there exists at least one number c in the closed interval [a,b] for which f(c) = k</p>

Right approximation method

Left approximation method

Central difference approximation method

Second derivative approximation

HW

Code the second derivative approximation method (+10%)