MISOLLAR

- 1. Tekislikda biror bazisga nisbatan uchta vektor oʻzining koordinatalari bilan berilgan: $\vec{a}(3;1), \vec{b}(-2;3), \vec{c}(5;2)$. \vec{c} vektorni \vec{a} va \vec{b} vektorlar orqali ifodalang.
 - 2. Tekislikda quyidagi vektorlar berilgan: $\vec{a}(3;1), \vec{b}(-2;3), \vec{c}(-8;1)$. Bazis vektorlar sifatida bu vektorlarning ixtiyoriy ikkitasini olib, ular orqali uchinchisini yoyilmasini yozing.
 - 3. $\beta = \{\vec{e}_1, \vec{e}_2\}$ bazisga koʻra $\vec{a}(3; -4)$. Agar $\vec{e}_1' = -2\vec{e}_1, \vec{e}_2' = -\frac{2}{5}\vec{e}_2$ boʻlsa, \vec{a} ning $\beta' = \{\vec{e}'_1, \vec{e}'_2\}$ bazisga nisbatan koordinatalarini toping.
 - 4. Quyida berilgan vektorlar uchligidan uchburchak mumkinmi?
 - 1) $\vec{a} = \vec{e}_1 + 2\vec{e}_2;$ $\vec{b} = 3\vec{e}_1 5\vec{e}_2;$ $\vec{c} = -4\vec{e}_1 + 3\vec{e}_2;$

 - 2) $\vec{a} = -2\vec{e}_1 + 3\vec{e}_2;$ $\vec{b} = \vec{e}_1 \vec{e}_2;$ $\vec{c} = 2\vec{e}_2;$ 3) $\vec{a} = 3\vec{e}_1;$ $\vec{b} = -2\vec{e}_1 2\vec{e}_2;$ $\vec{c} = \vec{e}_1 + 2\vec{e}_2$
 - 5. $\beta = \{\vec{e}_1, \vec{e}_2\}$ bazisga nisbatan $\vec{a}_1(0, -3, 0); \vec{a}_2(-2, 0, 5); \vec{a}_3(0, 2, -1); \vec{a}_4(0, 0, 7);$ $\vec{a}_5(1,0,0)$; $\vec{a}_6(0,1,-3)$; $\vec{a}_7(1,-2,3)$ berilgan:
 - 1) \vec{e}_1 va \vec{e}_3 vektorga kollinear vektorlarni;
 - 2) \vec{e}_1 va \vec{e}_3 bilan komplanar bo'lgan vektorlarni ko'rsating.
 - 6. $\overrightarrow{AB} = \overrightarrow{c}; \overrightarrow{BC} = \overrightarrow{a}; \overrightarrow{CA} = \overrightarrow{b}$ vektorlar ABC uchburchakning tomonlari. ABC uchburchakning $\overrightarrow{AQ}, \overrightarrow{BN}, \overrightarrow{CP}$ medianalaridan iborat vektorlarni $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ vektorlar orgali ifodalang.
 - 7. $\vec{a} = (-3,0,4)$ va $\vec{b} = (5,2,14)$ vektorlar orasidan bissektrisa bo'yicha chiquvchi \vec{c} vektorning koordinatalarini toping.
 - 8. Biror bazisda vektorlar koordinatalarda berilgan: $\vec{a} = \{1,1,2\}$ va $\vec{e}_1 = \{2, 2, -1\}; \vec{e}_2 = \{0, 4, 8\}; \vec{e}_3 = \{-1, -1, 3\}.$ Ushbu $\vec{e}_1, \vec{e}_2, \vec{e}_3$ vektorlar bazis tashkil etishiga ishonch hosil qiling va unda \vec{a} vektorning koordinatalarini toping.
 - 9. $\overrightarrow{AB} = (2, 6, -4); \overrightarrow{AC} = (4, 2, -2)$ vektorlar ABC uchburchakning tomonlari. Uchburchakning C uchidan o'tkazilgan \overrightarrow{CD} mediana vektorning uzunligini toping.
 - 10. \vec{a} vektor OX va OY o'qlari bilan mos ravishda $\alpha = \frac{\pi}{3}$, $\beta = \frac{2\pi}{3}$ li burchaklar tashkil etadi. Agar $|\vec{a}|=2$ bo'lsa, uning koordinatalarini hisoblang.
 - 11. Trapetsiyaning uchta ketma-ket A(-1,-2), B(1,3), C(9,9) uchlari berilgan. Trapetsiyaning asosi AD=15 bo'lsa, uning to'rtinchi D uchi topilsin.

- 12. \vec{i} , \vec{j} , \vec{k} bazis boʻyicha vektorlar yoyilmasi berilgan: $\vec{c} = 16\vec{i} 15\vec{j} + 12\vec{k}$. Shu bazis boʻyicha \vec{c} vektorga parallel va qarama-qarshi \vec{d} vektorning yoyilmasini aniqlang, bunda $|\vec{d}| = 75$ ga teng.
- 13. Tekislikda $\vec{p}(2;-3), \vec{q}(1;2)$ vektorlar berilgan boʻlsin. $\vec{a}(9;4)$ vektorni \vec{p}, \vec{q} bazis boʻyicha yoyilmasini toping.
- 14. Tekislikda $\vec{p}(-4;1)$, $\vec{q}(3;-5)$ vektorlar berilgan bo'lsin. $\vec{a}(11;-7)$ vektorni \vec{p} , \vec{q} bazis bo'yicha yoyilmasini toping.
- 15. Tekislikda $\vec{p}(3;-2), \vec{q}(-4;1)$ vektorlar berilgan boʻlsin. $\vec{a}(17;-8)$ vektorni \vec{p},\vec{q} bazis boʻyicha yoyilmasini toping.
- 16. Tekislikda $\vec{a}(3;-2), \vec{b}(-2;1)$ va $\vec{c}(7;-4)$ vektorlar berilgan. Har bir vektorni, qolgan ikki vektorni bazis sifatida qabul qilib, yoyilmasini aniqlang.
- 17. $\vec{p}(3;-2;1)$, $\vec{q}(-1;1;-2)$, $\vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. \vec{p} , \vec{q} , \vec{r} bazis boʻyicha $\vec{c} = \alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 18. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{c}, \vec{q}, \vec{r}$ bazis boʻyicha $\vec{p} = \alpha \vec{c} + \beta \vec{q} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 19. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{p}, \vec{c}, \vec{r}$ bazis boʻyicha $\vec{q} = \alpha \vec{p} + \beta \vec{c} + \gamma \vec{r}$ vektorning yoyilmasini toping.
- 20. $\vec{p}(3;-2;1), \vec{q}(-1;1;-2), \vec{r}(2;1;-3)$ va $\vec{c}(11;-6;5)$ vektorlar berilgan. $\vec{p}, \vec{q}, \vec{c}$ bazis bo'yicha $\vec{r} = \alpha \vec{p} + \beta \vec{q} + \gamma \vec{c}$ vektorning yoyilmasini toping.
- 21. $\vec{p}(1;-2;1)$, $\vec{q}(-1;5;3)$, $\vec{r}(7;1;-1)$ vektorlar berilgan. \vec{p} , \vec{q} , \vec{r} bazis boʻyicha $\vec{c}(12;-9;6)$ vektorning yoyilmasini toping.
- 22. $\vec{a}(3;-1), \vec{b}(1;-2), \vec{c}(-1;7)$ vektorlar berilgan. \vec{a}, \vec{b} bazis bo'yicha $\vec{p} = \vec{a} + \vec{b} + \vec{c}$ vektorning yoyilmasini aniqlang.
- 23. $\vec{a}(2;1;0)$, $\vec{b}(1;-1;2)$, $\vec{c}(2;2;-1)$ va $\vec{d}(3;7;-7)$ vektorlar berilgan boʻlsin. Har bir vektorning yoyilmasini qolgan uchta vektorni bazis sifatida qabul qilib aniqlang.
- 24. $\overrightarrow{AB} = \{2;6;-4\}$ va $\overrightarrow{AC}\{4;2;-2\}$ vektorlar \overrightarrow{ABC} uchburchakning yon tomonlariga mos keladi. Uchburchakning medianalariga toʻgʻri keluvchi $\overrightarrow{AM},\overrightarrow{BN},\overrightarrow{CP}$ vektorlarning koordinatalarini aniqlang.
- 25. $\vec{x}(n;n+4;n-1)$ vektorni $\vec{e}_1(1;1;0)$, $\vec{e}_2(1;0;1)$ va $\vec{e}_3(0;1;1)$ bazisdagi yoyilmasini toping.
- 26. Biror bazisda vektorlar koordinatalarda berilgan: $\overline{a} = \{1, 1, 2\}$ va $\overline{e}_1 = \{2, 2, -1\}$, $\overline{e}_2 = \{0, 4, 8\}$, $\overline{e}_3 = \{-1, -1, 3\}$. Ushbu $\overline{e}_1, \overline{e}_2, \overline{e}_3$ vektorlar bazis tashkil etishiga ishonch hosil qiling va unda \overline{a} vektorning koordinatalarini toping.
- 27. R^3 da $x_1 + x_2 + x_3 = 1$ tenglamani qanoatlantiruvchi vektorlar toʻplami qism fazo boʻla oladimi?
- 28. R³da birinchi va uchinchi koordinatalar ustma-ust tushuvchi

to'plami qism fazo hosil qiladimi?

- 29. Tartibi 3 ga teng boʻlgan koʻphadlar toʻplami qism fazo hosil qila oladimi?
- 30. $\vec{e}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ vektor koordinatalarini toping.
- 31. $\vec{e}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ vektor koordinatalarini toping.
- 32. $\vec{e}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ vektor koordinatalarini toping.
- 33. $\vec{e}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\vec{e}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ bazisda $\vec{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ vektor koordinatalarini toping.