Feuille de TD n.7 de IPD 2015-2016, Ensimag 2A IF

H. Guiol & J. Lelong

Exercice 1. (Processus d'Itô).

Soit B un mouvement brownien. Donner la décomposition d'Itô (si elle existe) des processus suivants

$$X_t = X_0 e^{(r-\sigma^2/2)t + \sigma B_t}$$
 pour $r > 0$ et $\sigma \in \mathbb{R}$.

Réponse. On applique la formule d'Itô à la fonction $f(t,x) = x_0 e^{(r-\sigma^2/2)t+\sigma x}$ qui vérifie bien les conditions d'application et on obtient (sous notation différentielle)

$$dX_t = rX_t \ dt + \sigma X_t \ dB_t$$

On vérifie qu'il s'agit bien d'une décomposition d'Itô. En effet X_t est \mathcal{F}_t adapté et on a bien $\int_0^t (|rX_s| + \sigma^2 X_s^2) ds < +\infty$.

$$X_t = X_0 e^{-at} + \int_0^t e^{-a(t-s)} dBs \text{ pour } a \in \mathbb{R}.$$

Réponse. Il suffit de voir que $X_t = f(t, Y_t)$ où $f(t, x) = e^{-at}(x_0 + x)$ et $Y_t = \int_0^t e^{as} \ dBs$ qui est un processus d'Itô de crochet $\langle Y \rangle_t = \int_0^t e^{2as} \ ds$ d'ou en notation différentielle

$$dX_t = -aX_t dt + dB_t$$

qui est un processus d'Itô.

$$X_t = \frac{B_t}{1+t}.$$

Réponse. Ici on a simplement $dX_t = \frac{1}{1+t}(-X_t dt + dB_t)$ qui est un processus d'Itô.

$$X_t = B_t - tB_1 \text{ pour } t \in [0, 1].$$

Réponse. On a $dX_t = -B_1 dt + dB_t$ qui n'est pas un processus d'ito car il n'est pas adapté! En revanche le processus solution de

$$dY_t = -\frac{Y_t}{1-t} dt + dB_t$$

avec $Y_0 = Y_1 = 0$ est un processus d'Itô qui s'écrit $Y_t = (1-t) \int_0^t \frac{1}{1-s} dB_s$ qui est Gaussien centré de variance t(1-t) i.e. qui est de même loi que le pont Brownien.

$$X_t = B_t^2 - B_t W_t + W_t^2$$
 où W est un MBS indépendant de B .

Réponse. On applique la formule d'Itô multidimensionnelle à $f(x,y) = x^2 - xy + y^2$ d'où

$$dX_t = 2 dt + (2B_t + W_t) dB_t + (2W_t + B_t) dW_t$$

qui est un processus d'Itô.

Exercice 2. (Martingale exponentielle).

Soit $h: \mathbb{R} \to \mathbb{R}$ une fonction déterministe mesurable telle que $\int_0^t h(s)^2 ds < +\infty$ pour tout $t \geq 0$.

1. Montrer que

$$\mathbb{E}\left[e^{\int_0^t h(s) \ dB_s}\right] = e^{\frac{1}{2}\int_0^t h(s)^2 \ ds}.$$

Réponse. On voit que $\int_0^t h(s) \ dB_s$ est gaussien centré de variance $\int_0^t h(s)^2 \ ds$. D'où le résultat.

2. Calculer

$$\mathbb{E}\left[e^{\int_0^t h(u) \ dB_u} \big| \mathcal{F}_s\right]$$

pour $s \leq t$.

Réponse. Il suffit de décomposer l'intégrale en $\int_0^t h(u) \ dB_u = \int_0^s h(u) \ dB_u + \int_s^t h(u) \ dB_u$ d'où

$$\mathbb{E}\left[e^{\int_0^t h(u) \ dB_u} \middle| \mathcal{F}_s\right] = e^{\int_0^s h(u) \ dB_u} \cdot e^{\frac{1}{2} \int_t^s h(u)^2 \ du}$$

3. En combinant les deux questions précédentes, en déduire que le processus M défini par

$$M_t = \exp\left(\int_0^t h(s) \ dB_s - \frac{1}{2} \int_0^t h(s)^2 \ ds\right),$$

pour $t \leq T$, est une martingale.