EPITA	/ S3

<u>NOM</u> :<u>PRENOM</u> :....

Décembre 2015 GROUPE :.....

Partiel n° 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet. Un formulaire est donné en annexe

Exercice 1 (5points)

Les questions a et b sont indépendantes

a- Soit T(x,y,z) une fonction scalaire de température. Sachant que la fonction T(x,y,z) est différentielle totale exacte, montrer que : $ro\vec{t}(gra\vec{d}(T)) = \vec{0}$

b- Une distribution sphériques de charges électriques crée un potentiel électrique V(r), dont l'expression en un point M de l'espace est $V(r) = K.r \exp(-\alpha.r)$; Où α et K sont des constantes. En coordonnées sphériques :

$$\overrightarrow{grad} (f(r,\theta,\varphi)) = \frac{\partial f}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e}_\theta + \frac{1}{r} \sin \theta \frac{\partial f}{\partial \varphi} \vec{e}_\varphi$$

f (r, θ , φ) est une fonction quelconque.

1- Sans faire de calcul, donner la direction du vecteur champ électrique \vec{E} , sachant que: $\vec{E} = -gra\vec{d}(V)$.

EPITA / S3	Décembre 2015
 Utiliser cette dernière formule pour exprimer les composant créé par cette distribution. 	tes du champ électrostatique $\overset{ ightarrow}{E}$
Exercice 2 (8 points) es questions I, II et III sont indépendantes - a) Retrouver la deuxième équation de Maxwell.	

EPITA / S3	Décembre 2015
III-b) Réécrire cette équation dans le milieu air (ou vide). Doi En déduire la célérité dans le milieu vide (ou air) des ondes é	nner la signification de la constante $\mu_0.\mathcal{E}_0.$ Electromagnétiques.
II-c) Sachant que le champ magnétique $\vec{B}(y,t) = B_0 \cos(k.y-t)$ ropagation dans l'air, retrouver une relation entre ω et k.	$(\omega t) \overline{e}_z$ est solution de l'équation de

EPITA / S3	Décembre 2015
Exercice 3 (7 points)	
Les vecteurs champs électromagnétiques d'une onde plane progressive et sinuso idale d	qui se propage
dans l'air sont d'expressions :	
$\begin{cases} \vec{E}(x,t) = E_0 \cos(k.x - \omega t) \vec{e}_y \\ \vec{B}(x,t) = \frac{E_0}{c} \cos(k.x - \omega t) \vec{e}_z \end{cases}$	
$\vec{B}(x,t) = \frac{E_0}{c}\cos(k.x - \omega t)\vec{e}_z$	
Montrer que ces deux vecteurs vérifient les quatre équations de Maxwell (dans l'air), sa	chant que :
$\omega = k.c.$,

EPITA / S3	Décembre 2015

Formulaire

<u>Equations de Maxwell dans un milieu quelconque</u>:

1)
$$div(\vec{E}) = \frac{\rho}{\varepsilon}$$

3)
$$ro \ \vec{t} \ (\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

$$2)~div(\vec{B})=0$$

3)
$$ro \ \vec{t} \ (\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$

4) $ro \ \vec{t} \ (\vec{B}) = \mu . \vec{J} + \mu \varepsilon \ \frac{\partial \vec{E}}{\partial t}$

<u>Théorème de Gréen-Ostrogradski</u> : $\oiint_{S} \vec{U}.d\vec{S} = \iiint_{\tau} div (\vec{U}) d\tau$