CS480/680: Introduction to Machine Learning

Lec 17: Variational Auto-Encoders

Yaoliang Yu

July 08, 2024

Recap: Gaussian Distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

L1/2

$$p(\mathbf{x}) = (2\pi)^{-d/2} [\det(S)]^{-1/2} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} S^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Linear transformation of Gaussian is Gaussian

L17 2/2

Multi-modality

L17

Mixture Models

$$p(\mathbf{x}|\boldsymbol{\theta}) := \sum_{k=1}^{K} \underbrace{p(z=k) \cdot \underbrace{p(\mathbf{x}|z=k, \boldsymbol{\theta})}_{p(\mathbf{x}, z=k|\boldsymbol{\theta})}}^{:=\lambda_{k}} \underbrace{p_{k}(\mathbf{x}|\boldsymbol{\theta})}_{p(\mathbf{x}, z=k|\boldsymbol{\theta})}$$

- K: number of components; chosen beforehand
- $\lambda_k := p(z=k)$: mixing distribution, a.k.a.prior over the latent variable z
- θ : parameters; for convenience, we lump all parameters, including λ , into θ
- $p_k(\mathbf{x}|\boldsymbol{\theta}) := p(\mathbf{x}|z=k,\boldsymbol{\theta})$: k-th component density, a.k.a. conditional
- $p(\mathbf{x}, z = k | \boldsymbol{\theta})$: joint density between \mathbf{x} and z
- $p(\mathbf{x})$: marginal over \mathbf{x} , the observed variable
- $p(z = k | \mathbf{x}, \boldsymbol{\theta})$: posterior; given observation \mathbf{x} , infer latent z

L17 4/2:

Gaussian Mixture Models (GMM)

$$p(\mathbf{x}|\{\lambda_k, \boldsymbol{\mu}_k, S_k\}) = \sum_{k=1}^K \lambda_k \cdot (2\pi)^{-d/2} [\det(S_k)]^{-1/2} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^{\top} S_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

L17 5/22

Sampling from Mixture Models

$$p(\mathbf{x}|\boldsymbol{\theta}) := \sum_{k=1}^{K} \underbrace{p(z=k) \cdot \underbrace{p(\mathbf{x}|z=k, \boldsymbol{\theta})}_{p(\mathbf{x},z=k|\boldsymbol{\theta})}}^{p_k(\mathbf{x}|\boldsymbol{\theta})}$$

- Sample Z according to the mixing distribution $\lambda_k := p(z=k)$
- Sample X according to the conditional $p(\mathbf{x}|\mathbf{Z}=z,\boldsymbol{\theta})$
- (X,Z) form a sample from the joint density $p(\mathbf{x},z)$
- ullet Discard Z, X alone forms a sample from the marginal $p(\mathbf{x})$

L17 6/22

- Draw U $\sim \text{Uniform}(0,1)$
- Find which interval U lies in

L17 7/22

Estimation From Data

- Given i.i.d. sample $X_1, X_2, \dots, X_n \sim q(\mathbf{x})$, the unknown true data density
 - often replace $q(\mathbf{x})$ with $\hat{q}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\mathsf{X}_i}(\mathbf{x})$, i.e. a delta mass on each X_i w.p. $\frac{1}{n}$
- Model density that we choose (may or may not be correct):

$$p_{\theta}(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}) := \int p_{\theta}(\mathbf{z}) \cdot p_{\theta}(\mathbf{x}|\mathbf{z}) \, d\mathbf{z}$$

- The variables Z_1, \ldots, Z_n are missing (unobserved)
- Estimate the parameters θ
- Different methods under different constraints and parameterizations

L17 8/22

Minimizing KL = Maximum Likelihood Estimation (MLE)

$$\boxed{ \min_{\boldsymbol{\theta}} \ \mathsf{KL}(q \parallel p_{\boldsymbol{\theta}}) \qquad \equiv \qquad \max_{\boldsymbol{\theta}} \ \mathop{\mathbb{E}}_{\mathsf{X} \sim q} \log p_{\boldsymbol{\theta}}(\mathsf{X}) }$$

- KL divergence: $\mathsf{KL}(q\|p) := \mathop{\mathbb{E}}_{\mathsf{X} \sim q} \log \frac{q(\mathsf{X})}{p(\mathsf{X})} = \int q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} \, \mathrm{d}\mathbf{x}$
 - > 0, with equality iff q = p
 - asymmetric: $KL(q||p) \neq KL(p||q)$
- For Gaussian Mixture Models (GMM):

$$\max_{\lambda_k, \boldsymbol{\mu}_k, S_k} \frac{1}{n} \sum_{i=1}^n \log \left[\sum_k \lambda_k (2\pi)^{-d/2} [\det(S_k)]^{-1/2} \exp\left[-\frac{1}{2} (\mathsf{X}_i - \boldsymbol{\mu}_k)^\top S_k^{-1} (\mathsf{X}_i - \boldsymbol{\mu}_k) \right] \right]$$

_17 9/23

Plug in the marginal density of mixtures:

$$\max_{\boldsymbol{\theta}} \underset{\mathsf{X} \sim q}{\mathbb{E}} \log \underbrace{\int p_{\boldsymbol{\theta}}(\mathsf{X}, \mathbf{z}) \, d\mathbf{z}}_{p_{\boldsymbol{\theta}}(\mathsf{X})} \implies \frac{\partial}{\partial \boldsymbol{\theta}} = \int \int \frac{\partial_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{p_{\boldsymbol{\theta}}(\mathbf{x})} q(\mathbf{x}) \, d\mathbf{x} \, d\mathbf{z}$$

$$= \int \int \frac{\partial_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})}{p_{\boldsymbol{\theta}}(\mathbf{x}) \cdot p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})} \cdot q(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x}) \cdot d\mathbf{x} \, d\mathbf{z}$$

$$= \underbrace{\mathbb{E}}_{(\mathsf{X}, \mathsf{Z}) \sim q(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})} [\partial_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathsf{X}, \mathsf{Z})]$$

• Hard to solve in general: gradient ascent often converges to poor local maxima

L17 10/2

The Power of Lifting

$$\min_{\mathbf{w}} \ \|X\mathbf{w} - \mathbf{y}\|_1, \quad ext{where} \quad \|\mathbf{a}\|_1 := \sum_{i} |a_i|$$

• A nice trick:

$$|t| = \frac{1}{2} \cdot \min_s [t^2/s^2 + s^2]$$

• Apply component-wise:

$$\min_{\mathbf{w}} \min_{\mathbf{s}} \ \frac{1}{2} \| \frac{1}{\mathbf{s}} \odot (X\mathbf{w} - \mathbf{y}) \|_2^2 + \frac{1}{2} \cdot \mathbf{1}^{\top} \mathbf{s}^2$$

- Fix w, find $s^2 = |Xw y|$
- Fix s, find w by $\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \| \frac{1}{s} \odot (X\mathbf{w} \mathbf{y}) \|_{2}^{2} + \frac{1}{2} \cdot \mathbf{1}^{\top} \mathbf{s}^{2}$

17

Expectation-Maximization (EM)

$$\mathsf{KL}\big(q(\mathbf{x}, \mathbf{z}) \parallel p(\mathbf{x}, \mathbf{z})\big) = \mathsf{KL}\big(q(\mathbf{x}) \parallel p(\mathbf{x})\big) + \underset{\mathbf{x} \sim q}{\mathbb{E}} \big[\mathsf{KL}\big(q(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z}|\mathbf{x})\big)\big]$$

• Expectation-Maximization (EM):

$$\min_{q(\mathbf{z}|\mathbf{x})} \min_{\boldsymbol{\theta}} \ \mathsf{KL}\big(q(\mathbf{x}) \cdot q(\mathbf{z}|\mathbf{x}) \parallel p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z})\big)$$

- Fix θ , $q(\mathbf{z}|\mathbf{x}) = p_{\theta}(\mathbf{z}|\mathbf{x})$: assuming conditional density $p_{\theta}(\mathbf{z}|\mathbf{x})$ easy to compute
- Fix $q(\mathbf{z}|\mathbf{x})$, find $\boldsymbol{\theta}$ by $\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \underset{(\mathsf{X},\mathsf{Z}) \sim q(\mathbf{x})q(\mathbf{z}|\mathbf{x})}{\mathbb{E}} [\log p_{\boldsymbol{\theta}}(\mathsf{X},\mathsf{Z})]$
 - MLE on the joint density $p_{\theta}(\mathbf{x}, \mathbf{z})$, instead of the marginal $p_{\theta}(\mathbf{x})$

.7 12/2:

A. P. Dempster, N. M. Laird, and D. B. Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1 (1977), pp. 1–38, I. Csiszár and G. Tusnády. "Information geometry and alternating minimization procedures". Statistics & Decisions, vol. Supplement, no. 1 (1984), pp. 205–237.

Recap: Expectation-Maximization (EM)

- Given training data $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim q(\mathbf{x})$, the data density
- Parameterize $p_{\theta}(\mathbf{x}, \mathbf{z})$, the joint model density, e.g., Gaussian mixture
- Estimate θ by minimizing some "distance" between q (the unknown data density) and p_{θ} (the chosen model density):

$$\min_{\boldsymbol{\theta}} \min_{q(\mathbf{z}|\mathbf{x})} \mathsf{KL} \big(q(\mathbf{x}) q(\mathbf{z}|\mathbf{x}) \parallel p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) \big) \approx -\frac{1}{n} \sum_{i=1}^{n} \int [\log q(\mathbf{z}|\mathbf{x}_i) - \log p_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{z})] \cdot q(\mathbf{z}|\mathbf{x}_i) \, d\mathbf{z}$$

$$q(\mathbf{z}|\mathbf{x}) = p_{\boldsymbol{\theta}}(\mathbf{z}|\mathbf{x})$$

- After training, can generate new data $X \sim p_{\theta}(\mathbf{x}, \mathbf{z})$ (by discarding Z)
- Need a training sample from $q(\mathbf{x})$, an explicit form of $p_{\theta}(\mathbf{x}, \mathbf{z})$ and $p_{\theta}(\mathbf{z}|\mathbf{x})$
 - Monte Carlo EM: can sample from $p_{\theta}(\mathbf{z}|\mathbf{x})$

17 14/22

Auto-Encoder

- ullet High dimensional input $\mathbf{x} \in \mathbb{R}^d$
- ullet Linearly project (encode) to a low dimensional code $\mathbf{h} = V\mathbf{x} \in \mathbb{R}^k$
- Linearly reconstruct (decode) so that $\mathbf{x} \approx U\mathbf{h}$:

$$\min_{U \in \mathbb{R}^{d \times k}} \ \min_{V \in \mathbb{R}^{k \times d}} \ \mathbb{E} \|UV\mathbf{x} - \mathbf{x}\|_2^2$$

• Apply change-of-variable to arrive at the equivalent problem:

$$\min_{W \in \mathbb{R}^{d \times d}} \mathbb{E} \|W\mathbf{x} - \mathbf{x}\|_2^2, \quad \text{s.t.} \quad \text{rank}(W) \le k$$

ullet Optimal W given by principle component analysis (PCA)

Variational Inference

$$\min_{\boldsymbol{\theta}} \min_{\boldsymbol{\phi}} \ \mathsf{KL} \big(q(\mathbf{x}) q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}) \parallel p_{\boldsymbol{\theta}}(\mathbf{x} | \mathbf{z}) p(\mathbf{z}) \big)$$

- Parameterize $p_{\theta}(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) \cdot p_{\theta}(\mathbf{x}|\mathbf{z})$, with $p(\mathbf{z})$ standard Gaussian (say)
- Parameterize $q_{\phi}(\mathbf{z}|\mathbf{x})$, in case the optimal solution $p_{\theta}(\mathbf{z}|\mathbf{x})$ is hard to compute
- Decoder: $p_{\theta}(\mathbf{x}|\mathbf{z})$, from latent \mathbf{z} to observation \mathbf{x}
- Encoder: $q_{\phi}(\mathbf{z}|\mathbf{x})$, from observation \mathbf{x} to latent \mathbf{z}
- After training, can generate new data $X \sim p_{\theta}(\mathbf{x}|\mathsf{Z})$, where $\mathsf{Z} \sim p(\mathbf{z})$
- With only a training sample from $q(\mathbf{x})$, $p_{\theta}(\mathbf{x}|\mathbf{z})$ and $q_{\phi}(\mathbf{z}|\mathbf{x})$

.17

17/22

D. P. Kingma and M. Welling. "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representation. 2014, D. J. Rezende, S. Mohamed, and D. Wierstra. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". In: Proceedings of the 31st International Conference on Machine Learning. 2014.

A Closer Look

$$\mathsf{KL}\big(q(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})\big) \equiv \underbrace{-\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}\log p_{\theta}(\mathbf{x}|\mathbf{z})}_{\text{reconstruction}} + \underbrace{\mathbb{E}_{q(\mathbf{x})}\Big[\mathsf{KL}\big(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z})\big)\Big]}_{\text{regularization}}$$

- ullet Stochastic gradient w.r.t. $oldsymbol{ heta}$ is standard as long as we have $p_{oldsymbol{ heta}}$ explicitly
- ullet Stochastic gradient w.r.t. ϕ can be computed via the log-trick:

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}} f_{\phi}(\mathsf{X}, \mathsf{Z}) = \mathbb{E}_{q_{\phi}} [f_{\phi} \nabla_{\phi} \log(f_{\phi} q_{\phi})]$$

• Can choose prior $p(\mathbf{z})$ and posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$ so that the regularization term is available in closed-form

- e.g.,
$$\mathsf{KL}\big(\mathcal{N}(\mathbf{m},S) \parallel \mathcal{N}(\mathbf{0},\mathbb{I}_d)\big) = \frac{1}{2} \big[\operatorname{tr}(S) + \|\mathbf{m}\|_2^2 - 1 - \log \det S]$$

_17 18/22

VAE as Triangular Flow

- Consider reference densities $s(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) \cdot q(\mathbf{x})$ and $r(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) \cdot \mathcal{N}(\mathbf{x}; \mathbf{0}, I)$
 - recall that q is the (unknown) data density and p is say standard Gaussian

Theorem: Uniqueness for increasing triangular maps

For any two densities r and p on \mathbb{R}^d , there exists a unique (up to permutation) increasing triangular map \mathbf{T} so that $p = \mathbf{T}_{\#}r$.

- It follows that $p_{\theta}(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z}) = (\mathbf{T}_{\theta} \times \mathrm{Id})_{\#}r$, where $\mathbf{T}_{\theta} : \mathbb{R}^{z+x} \to \mathbb{R}^x$
- Similarly, $q_{\phi}(\mathbf{x}, \mathbf{z}) = q(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x}) = (\mathrm{Id} \times \mathbf{S}_{\phi})_{\#}s$, where $\mathbf{S}_{\phi} : \mathbb{R}^{z+x} \to \mathbb{R}^{z}$

L17 19/2:

A Trivial Look

$$\mathsf{KL}\big(q(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})\big) = \mathsf{KL}\big((\mathrm{Id} \times \mathbf{S}_{\phi})_{\#}s \| (\mathbf{T}_{\theta} \times \mathrm{Id})_{\#}r\big)$$

- ullet Can apply change-of-variable to compute density of $p_{m{ heta}}(\mathbf{x},\mathbf{z}) = (\mathbf{T}_{m{ heta}} imes \mathrm{Id})_{\#}r$
- Can sample from $q_{\phi}(\mathbf{x}, \mathbf{z}) = (\mathrm{Id} \times \mathbf{S}_{\phi})_{\#} s$; recall $s(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) \cdot q(\mathbf{x})$ $\text{ e.g., } S_{\phi}(\mathbf{x}, \mathbf{z}) = \mathbf{m}_{\phi}(\mathbf{x}) + \sigma_{\phi}(\mathbf{x}) \odot \mathbf{z}$

$$\mathsf{KL}\big(q(\mathbf{x})q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})\big) \equiv \underbrace{-\mathbb{E}_{q_{\phi}(\mathbf{x},\mathbf{z})}\log p_{\theta}(\mathbf{x}|\mathbf{z})}_{\text{reconstruction}} + \underbrace{\mathbb{E}_{q(\mathbf{x})}\Big[\mathsf{KL}\big(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z})\big)\Big]}_{\text{regularization}}$$

L17 20/22

(a) Learned Frey Face manifold

66666600000000000000

(b) Learned MNIST manifold

L17 22/22

