Exercises for TTF

Introduction to Theory of Computation Summer semester 2025

Exercises below are your homework; they will be discussed during exercise classes. Problems marked with a (*) are more challenging.

Week 10

- 1. Do the "trivial exercise" from the lecture on non-computable functions, that is, show that if language L is decidable, then there exists an acceptor of L.
- 2. We call a language *Turing-acceptable* if it has an acceptor. Show that the collection of Turing-acceptable languages is closed under the operation of
 - (a) union;
 - (b) concatenation;
 - (c) star;
 - (d) intersection.
- 3. Give descriptions of Turing machine that decides the language

 $\{w \mid w \in \{0,1\}^* \text{ contains an equal number of 0s as 1s}\}.$

4.

- (a) Show that the relation \equiv is indeed an equivalence relation on set of all languages over some alphabet A.
- (b) Prove that reducibility of languages is a partial order relation on the equivalence classes of \equiv .
- 5. Prove Lemma 2 from the lecture on non-computable functions. That is, show

Lemma 2. Let L < L'. Then

- if L' is decidable then L is decidable;
- if L is undecidable then L' is undecidable.
- 6. Let $w \in \mathbb{B}^*$. Are the following languages decidable? Sketch your arguments.
 - (a) $L_{dfa} = \{(M, w) : M \text{ is a deterministic finite automaton accepting } w\};$
 - (b) $L_{\text{cfg}} = \{(G, w) : G \text{ is a context free grammar deriving string } w\};$
 - (c) a context free language.