Lezione 11 Geometria I

Federico De Sisti 2024-03-27

1 Varie robe su basi ortonormali

Proposizione 1

 $Sia\ B = \{v_1, \ldots, v_n\}$ una base ortonormale dello spazio euclideo V, la base $L = \{w_1, \ldots, w_n\}$ è ortonormale se e solo se $M = [Id_V]_L^B$ è ortogonale $(MM^t = Id_v)$

Dimostrazione

Sia $M=(m_{ij})$ per definizione di M $w_i=\sum_{j=1}^n m_{ji}v_j$ $1\leq i\leq n$

$$\langle w_i, w_j \rangle = \langle \sum_{k=1}^n m_{ki} v_k, \sum_{h=1}^n m_{hj} v_h \rangle = \sum_{k,h=1}^n m_{ki} m_{kj} \langle v_k, v_h \rangle = \sum_{k=1}^n m_{ki} m_{kj} = (M^t M)_{i,j}.$$

 \square Osservazione

Sia $V = \mathbb{R}[x] \ \langle p(x), q(x) \rangle = \int_{-1}^{1} p(x)q(x)dx$ è un prodotto scalare

Definizione 1 (Angolo non orientato tra vettori)

$$|\langle v, w \rangle| \le ||v|| ||w|| \Rightarrow -1 \le \frac{\langle v, w \rangle}{||v|| ||w||} \le 1 \quad (v, w \ne 0)$$
allora

 $\exists ! \in [0, \pi] : \cos = \frac{\langle v, w \rangle}{||v|| ||w||}$

è detto angolo non orientato tra v, w

Definizione 2

Sia $S \subseteq V$ con V spazio euclideo, $S^{\perp} := \{v \in V | \langle v, s \rangle = 0 \ \forall s \in S\}$

Osservazione

 S^{\perp} è un sottospazio vettoriale di V.

Siano $v_1, v_2 \in \dot{S}^{\perp}$ e $\alpha_{1,2} \in \mathbb{K}$

$$\Rightarrow \langle \alpha_1 v_1 + \alpha_2 v_2, s \rangle = \alpha_1 \langle v, s \rangle + \alpha_2 \langle v_2, s \rangle = 0 \quad \forall s \in S$$

Proposizione 2

Sia V uno spazio vettoriale euclideo e W un sottospazio di V allora

$$V = W + W^{\perp}$$

Dimostrazione

 $Sia \{w_1, \ldots, w_k\}$ una base ortogonale di W

consideriamo $\pi: V \to W$ con $\pi(v) = \sum_{i=1}^n \frac{\langle v, w_i \rangle}{\langle w_i, w_i \rangle} w_i$, dobbiamo mostrare che $V = W + W^{\perp}$ e che $W \cap W^{\perp} = \{0\}$ ma la seconda è ovvia poiché se $w \in W \cap W^t$ è ortogonale a se stesso $\Rightarrow \langle w, w \rangle = 0 \Leftrightarrow w = 0$

Osserviamo inoltre che se $v \in V \Rightarrow v = \pi(v) + (v - \pi(v))$ la richiesta è dunque $v - \pi(v) \in W^{\perp}$. Basta verificare che $\langle v - \pi(v), w_i \rangle = 0 \ \forall i$

$$\langle v - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} w_j \rangle = \langle v, w_i \rangle - \sum_{j=1}^n \frac{\langle v, w_j \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_i \rangle = \langle v, w_i \rangle - \frac{\langle v, w_i \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_j \rangle = 0.$$

 \square Osservazione

1- Se V è spazio euclideo e W è sottospazio di V,

 $(W, \langle, \rangle|_{W \times W})$ è uno spazio euclideo

2- Se $\{w_1, \ldots, w_k\}$ è base ortogonale di W risulta:

$$||v - \sum_{h=1}^{n} a_h w_i|| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||$$

 $||v - \sum_{h=1}^{n} a_h w_l| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||$ e vale l'uguaglianza se se solo se $a_h = \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle}$

Dimostrazione (Punto 2)

$$||v - \sum_{h=1}^{n} a_h w_k|| \ge ||v - \sum_{h=1}^{n} \frac{\langle v, w_h \rangle}{\langle w_h, w_h \rangle} w_h||;$$

$$||v - w||^2 = \langle v - u, v - u \rangle =$$

$$||v-w||^2 = \langle v-u, v-u \rangle =$$

$$= \langle v - w + w - u, v - w + w - u \rangle = \langle v - w, v - w \rangle + \langle w - u, w - u \rangle \ge ||v - w||^2$$

□ La lezione prosegue con lo svolgimento di alcuni esercizi

2 Prodotto vettoriale

Sia V uno spazio vettoriale euclideo per cui dim(V)=3 sia $\{v,j,k\}$ una base ortonormale di V

Definizione 3 (Prodotto vettoriale)

Dati
$$v = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 $w = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ pongo $v \wedge w = \begin{pmatrix} y_1 z_2 - y_2 z_1 \\ x_2 z_1 - x_1 z_2 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$

 B_1, B_2 si dicono concordemente orientate se $det([Id]_{B_1}^{B_2}) > 0$, questa è inoltre una relazione di equivalenza.

una relazione di equivalenza. Di fatti se
$$B_1 \sim B_2$$
, $B_2 \sim B_3$ $det([Id]_{B_1}^{B_3}) = det([Id]_{B_2}^{B_3}[Id]_{B_1}^{B_2}) = det([Id]_{B_2}^{B_3})det([Id]_{B_1}^{B_2}) > 0 \Rightarrow B_1 \sim B_2$