川口康平・澤田真行『因果推論の計量経済学』

(日本評論社, 2024 年刊)

正誤情報一覧

2025.01.15 ver.2.4

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。また、ご指摘をいただいた皆さまには深く御礼申し上げます。

第1版版第2刷(2024年11月25日発行)時点の訂正(第1刷には、第2刷り時の訂正も必要です)

ページ等	誤	正
55ページ、	$\sum_{i}^{n} \bar{\epsilon}^{2}(7\bar{7})^{2}$	$\sum_{i=1}^{n} \bar{\epsilon}_{i}^{2} (Z_{i} - \bar{Z}_{i})^{2}$
(2.7) 式	$\widehat{\mathbb{V}}_{hetero} = \frac{\sum_{i=1}^{n} \bar{\epsilon}_{i}^{2} (Z_{i} - Z)^{2}}{n^{2} \bar{Z}^{2} (1 - \bar{Z})^{2}}$	$\widehat{\mathbb{V}}_{hetero} = \frac{\sum_{i=1}^{n} \bar{\epsilon}_{i}^{2} (Z_{i} - Z)^{2}}{[n(n-2)]^{2} \bar{Z}^{2} (1 - \bar{Z})^{2}}$
55ページ、		
(2.7) 式から	$n^2 \bar{Z}^2 (1 - \bar{Z})^2 = \frac{n_1^2 n_0^2}{n^2}$	$[n(n-2)]^2 \bar{Z}^2 (1-\bar{Z})^2 = \frac{n_1^2 n_0^2}{n^2}$
3 行下の式	n-	n^{2}
56ページ、	まず $\tilde{\alpha} = \alpha - \mu \mathbf{w}' \gamma$ として、	まず $\tilde{\alpha} = \alpha + \mu w' \gamma$ として、
下から 5 行		
目		
58ページ、	$\hat{\beta}_{ols} = \frac{\sum_{i=1}^{n} Z_i Y_i - \sum_{i=1}^{n} Z_i \sum_{i=1}^{n} Y_i}{(\sum_{i=1}^{n} Z_i)(1 - \sum_{i=1}^{n} Z_i)}$	$\hat{\beta}_{ols} = \frac{n^{-1} \sum_{i=1}^{n} Z_i Y_i - n^{-1} \sum_{i=1}^{n} Z_i n^{-1} \sum_{i=1}^{n} Y_i}{(n^{-1} \sum_{i=1}^{n} Z_i)(1 - n^{-1} \sum_{i=1}^{n} Z_i)}$
1~4行目	$\int_{i=1}^{n} Z_i (1 - \sum_{i=1}^{n} Z_i)$	
	$-\frac{\sum_{i=1}^n Z_i \mathbf{W}_i' \hat{\mathbf{\gamma}}_{ols} - \sum_{i=1}^n Z_i \sum_{i=1}^n \mathbf{W}_i' \hat{\mathbf{\gamma}}_{ols}}{\left(\sum_{i=1}^n Z_i\right) \left(1 - \sum_{i=1}^n Z_i\right)}$	$-\frac{n^{-1}\sum_{i=1}^{n}Z_{i}\mathbf{W}_{i}'\hat{\mathbf{\gamma}}_{ols}-n^{-1}\sum_{i=1}^{n}Z_{i}n^{-1}\sum_{i=1}^{n}\mathbf{W}_{i}'\hat{\mathbf{\gamma}}_{ols}}{(n^{-1}\sum_{i=1}^{n}Z_{i})(1-n^{-1}\sum_{i=1}^{n}Z_{i})}$
	$= \frac{(1 - \sum_{i=1}^{n} Z_i) \sum_{i=1}^{n} Z_i Y_i - \sum_{i=1}^{n} Z_i \sum_{i=1}^{n} (1 = Z_i) Y_i}{(\sum_{i=1}^{n} Z_i) (1 - \sum_{i=1}^{n} Z_i)}$	$= \frac{(1 - n^{-1} \sum_{i=1}^{n} Z_i) n^{-1} \sum_{i=1}^{n} Z_i Y_i - n^{-1} \sum_{i=1}^{n} Z_i n^{-1} \sum_{i=1}^{n} (1 - Z_i) Y_i}{(n^{-1} \sum_{i=1}^{n} Z_i) (1 - n^{-1} \sum_{i=1}^{n} Z_i)}$
	$-\frac{(1-\sum_{i=1}^{n}Z_{i})(\sum_{i=1}^{n}Z_{i}\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols}-\sum_{i=1}^{n}Z_{i}\sum_{i=1}^{n}(1-Z_{i})\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols})}{(\sum_{i=1}^{n}Z_{i})(1-\sum_{i=1}^{n}Z_{i})}$	$-\frac{(1-n^{-1}\sum_{i=1}^{n}Z_{i})(n^{-1}\sum_{i=1}^{n}Z_{i}\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols}-n^{-1}\sum_{i=1}^{n}Z_{i}n^{-1}\sum_{i=1}^{n}(1-Z_{i})\mathbf{W}_{i}'\hat{\mathbf{y}}_{ols})}{(n^{-1}\sum_{i=1}^{n}Z_{i})(1-n^{-1}\sum_{i=1}^{n}Z_{i})}$
		(*上式中の全ての Σ 記号の前に n^{-1} が入ります)
59ページ、	$\frac{\sum_{i=1}^{n} (Z_i - \bar{Z}) \left(Y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} Z_i - \mathbf{W}_i' \hat{\gamma}^* \right)^2}{n[n-2 - \dim(\mathbf{W}_i)] \bar{Z}^2 (1 - \bar{Z})^2}$	$\frac{\sum_{i=1}^{n} (Z_i - \bar{Z})^2 \left(Y_i - \hat{\alpha}_{ols} - \hat{\beta}_{ols} Z_i - \mathbf{W}_i' \hat{\gamma}^* \right)^2}{n[n-2 - \dim(\mathbf{W}_i)] \bar{Z}^2 (1 - \bar{Z})^2}$
(2.8) 式	$n[n-2-\dim(\mathbf{W}_i)]\bar{Z}^2(1-\bar{Z})^2$	$n[n-2-\dim(\mathbf{W}_i)]\bar{Z}^2(1-\bar{Z})^2$
70ページ、	大きく異なるだろう (MacKinnon, 2016)¹)。	大きく異なるだろう (MacKinnon, 2016; MacKinnon et al.,

上から 9~		2023)1)。
10 行目		
70ページ、	1) よりシンプルな、均一分散の分散推定量との比較	1) よりシンプルな、均一分散 <mark>における</mark> 比較が Moulton (1986) に
脚注 1)	が Moulton (1986) によって行われており、クラス	よって行われており、誤差項と(他の変数を統制した後の)共変
	ター頑健分散と均一分散を比較した比は「Moulton	量がそれぞれクラスター内で同じ相関を持っているときの、OLS
	ファクター (Moulton factor)」と呼ばれている。	推定量の真の(クラスター相関している)分散とクラスター分散
		のない分散を比較した比は「Moulton ファクター(Moulton
		factor)」と呼ばれている(MacKinnon et al., 2023)。
71ページ、	統計的推測の性能を改善することができる。その補	統計的推測の性能を改善することができる。その補正の 1 つが CV_3
上から 11 行	正の 1 つが CV_3 と呼ばれる補正である $^{3)}$ 。	と呼ばれる補正である (MacKinnon et al., 2023)3)。
目		
74ページ、	t統計量のブートストラップ法に基づく手続きを紹	t統計量のブートストラップ法に基づく手続きを紹介する
上から 14 行	介する。	(Cameron and Miller, 2015)。
目		
75ページ、	検定統計量 $w_b^* \equiv (\hat{\tau}_b^* - \hat{\tau})/\hat{\sigma}_b$ を得る	検定統計量 $w_b^* \equiv (\hat{\tau}_b^* - {\color{red}0})/\hat{\sigma}_b$ を得る
上から 10 行		
目		
220 ページ、	1) このうち後者の制約を、潜在結果の定義に織り込	1) 前者の制約を織り込んだ潜在結果モデルに対し、後者を潜在結
注1)の1	む代わりに明示的な制約とする場合がある。	果モデルに織り込まない明示的な制約とする場合がある
文目		(Wooldridge, 2021 など)。

第1版版第1刷(2024年9月20日発行)時点の訂正

ページ等	誤	正
16ページ、	$Y_i = \sum_{z \in Z} 1\{Z_i = z\} Y_i^*(Z_i)$	$Y_i = \sum_{\mathbf{z} \in \mathcal{I}} 1\{Z_i = z\} Y_i^*(\mathbf{z})$
(1.1)式および	$\sum_{z\in Z} I(z_l-z) I_l(z_l)$	$z \in \mathbb{Z}$
19ページ、		
下から8行目		
の式		
19ページ、	SUTVA (stable unit treatment value)	SUTVA (stable unit treatment value assumption)
上から5行目		
および 303 ペ		
ージ (索引)		
72ページ、	このとき、中間点の定理より	このとき、 <mark>平均値</mark> の定理より
下から5行目		
91ページ、	【下から9行目】この場合、統制群には…	【下から9行目】この場合、 <mark>処置群</mark> には…
下から9行	【下から8行目】すると、統制群の患者から…	【下から8行目】すると、 <mark>処置群</mark> の患者から…
目、8行目、4	【下から4行目】観測できるなら、統制群の中で…	【下から4行目】観測できるなら、 <mark>処置群</mark> の中で…

行目		
105ページ、	$\frac{1}{2} \sum_{(v^*(1,0), v^*(0,0))} v^*(0,0)$	$\frac{1}{2} \sum_{v \in \{1,1\}} v^*(0,1)$
下から2行目	$\frac{1}{n_{at}} \sum_{G_i = at} \left(Y_i^*(1,0) - Y_i^*(0,0) \right)$	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,1) - Y_i^*(0,1))$
106ページ、	$\frac{1}{2} \sum_{x} (Y_{x}^{*}(1,1) - Y_{x}^{*}(0,1))$	$\frac{1}{2}\sum_{i} (y_{i}^{*}(1,0) - y_{i}^{*}(0,0))$
上から2行目	$\frac{1}{n_{nt}} \sum_{G_i = nt} \left(Y_i^*(1,1) - Y_i^*(0,1) \right)$	$\frac{1}{n_{nt}} \sum_{G_i = nt} \left(Y_i^*(1,0) - Y_i^*(0,0) \right)$
109ページ、	$\mathbb{E}[D_i v_i \mid Z_i = 1] = \frac{\text{(中略)}}{\text{(中略)}} \mathbb{P}[D_i^*(Z_i) = 1]$	$\mathbb{E}[D_i v_i \mid Z_i = 1] = \frac{\text{(中略)}}{\text{[P[D_i^*(1) = 1]}}$
上から5行目		
109ページ、	$\pi_1 = $	$\pi_1 = \boxed{ ext{(中略)}} = \mathbb{E}[\mathit{D}_i^* \mid \mathit{Z}_i = 1]$
下から6行目		
122 ページ、	統制群を途中で	標本を途中で
上から2行目		
134 ページ、	処置受取は第4章で	処置 <mark>割当</mark> は第4章で
下から2行目		
152 ページ、	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i + \cdots$	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i^2 + \cdots$
上から3行目	$I_i - \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i + \cdots$	$I_i = \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i^- + \cdots$
159 ページ、		【青字の「正の」をトル】
上から2段落	次に、図 6.4 (b) はサポートの端点の近傍における	次に、図 6.4 (b) はサポートの端点の近傍における
目	推定を図示している。このとき、カーネル推定(グ	推定を図示している。このとき、カーネル推定(グ
	レーの点線)は真の関数に対して、正のバイアスが	レーの点線)は真の関数に対して、バイアスが生じ
	生じる片側s≥0の観測のみを用いることになって	る片側 $s \geq 0$ の観測のみを用いることになってい
	いる。図 6.4 (a) の場合と異なり、正のバイアスを	る。図 6.4 (a) の場合と異なり、バイアスを打ち消
	打ち消す相手である $s < 0$ 側の観測が存在しない。	す相手である $s<0$ 側の観測が存在しない。その結
	その結果、 <mark>正の</mark> バイアスが打ち消されずに残って	果、バイアスが打ち消されずに残ってしまう。この
	しまう。 この図 6.4 (b) のように打ち消す相手とな	図 6.4 (b) のように打ち消す相手となる観測がな
	る観測がない場合には、関数の傾きを捉えられて	い場合には、関数の傾きを捉えられていないこと
	いないことに起因するバイアスが生じており、こ	に起因するバイアスが生じており、このバイアス
	のバイアスはhに応じて線形増加する。	はhに応じて線形増加する。
179 ページ、	【上から 12 行目】	【上から 12 行目】
上から 12 行目	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = co\} \mid S = \epsilon]$	$= \lim_{\epsilon \uparrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = at\} \mid S = \epsilon]$
189 ページ、	$CI^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$	$I^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} + cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}} \right]$
下から 14 行目	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
269 ページ、	統制群は当然、2000~2010 年に	処置群は当然、2000~2010 年に
下から1行目		
270 ページ、	合併を経験した通勤圏も統制群に含め、	合併を経験した通勤圏も <mark>処置</mark> 群に含め、
上から4行目		