Polygon Triangulation Guarding an Art Gallery

Min-Te Sun, Ph.D.

Guarding an Art Gallery

- How many cameras are needed?
- Where to place these cameras?
- We would like to minimize the number of cameras!

Art Gallery Model

- If we model an art gallery by a simple polygon P, then
 - the minimum number of cameras to guard it is NP-hard
 - the conservative approach is to place one camera at each vertex
- Can we do better?

Triangulate Simple Polygon

- Every simple polygon P admits a triangulation T_P, and any triangulation of a simple polygon with n vertices consists of exactly n-2 triangles
 - n-2 cameras?
 - n/2 cameras?
 - Can we do better?

3-Coloring

- 3-coloring of T_P
 - Each vertex of P is assigned a color white, gray, or black
 - The coloring will be such that any two vertices connected by an edge or a diagonal have different colors
- Dual graph of T_P, G(T_P), has a node for every triangle in T_D
 - the triangle corresponding to a node v is denoted by t(v).
 - There is an arc between two nodes v and μ if t(v) and $t(\mu)$ share a diagonal

The Property of Dual Graph

- G(T_P) is a tree, because
 - G(T_P) is connected
 - The removal of any diagonal cuts P into two => The removal of any edge from G(T_P) splits G(T_P)
- How to do 3-coloring? => DFS is started from any node of G(T_P) for coloring
 - Because G(T_P) is a tree, the node adjacent to the newly visit one have not been visited before
- We now only need floor(n/3) cameras
 - Can we do better?

Art Gallery Theorem

- For a simple polygon with n vertices,
- floor(n/3) cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras.

Triangulation of Simple Polygon

- Can be easily done in O(n²)
 - Can we do better?
- If the polygon can be divided into several convex polygon, then triangulation can be done in O(n)
 - Not easily doable in most cases

Triangulation of Simple Polygon

- Idea Sketch
- 1. Partition a polygon into y-monotone pieces
- 2. Triangulate each y-monotone piece separately

y-Monotone Piece

- A simple polygon is monotone with respect to a line / if for any line /' perpendicular to / the intersection of the polygon with /' is connected.
 - How to partition simple polygon into monotone pieces? => plane sweep!

Five Types of Vertices

- Start vertex
- Split vertex
- End vertex
- Merge vertex
- Regular vertex

- = start vertex
- = end vertex
- = regular vertex
- ▲ = split vertex
- ▼ = merge vertex

y-monotone vs Split/Merge Vertices

 A polygon is y-monotone if it has no split vertices or merge vertices

Removal of Split/Merge Vertices

- · Add diagonal
 - going upward from each split vertex
 - going downward from each merge vertex
- helper(e_i) is defined as the lowest vertex above the sweep line such that the horizontal segment connecting the vertex to e_i lies inside P
 - helper(e_i) can be the upper endpoint of e_i itself

when the sweep line reaches vm

MAKEMONOTONE Algorithm

Algorithm MAKEMONOTONE(P)

Input. A simple polygon P stored in a doubly-connected edge list D. *Output.* A partitioning of \mathcal{P} into monotone subpolygons, stored in \mathcal{D} .

- Construct a priority queue Q on the vertices of P, using their y-coordinates as priority. If two points have the same y-coordinate, the one with smaller x-coordinate has higher priority.
- Initialize an empty binary search tree T.
- 3. while Q is not empty
- do Remove the vertex v_i with the highest priority from Q.
- Call the appropriate procedure to handle the vertex, depending on its type.

Handle of Different Vertices

- · One subroutine for each type of vertices
- The doubly connected edge list is used to store the information of the polygon before and after adding diagonals
- If multiple points have the same y value, the one with smaller x value take precedence
- A simple polygon with n vertices can be partitioned into y-monotone polygons in O(nlogn) time using O(n) storage

Triangulate y-Monotone Polygon

- Idea sketch
 - Break vertices into left chain and right chain
 - Maintain a stack keeping vertices have not handled
- If next vertex is on different chain, pop all vertices in stack and create diagonals
- 2. If next vertex is on the same chain, then
 - pop out vertices if diagonals can be created
 - push the current vertex otherwise

Triangulation Algorithm

 $\textbf{Algorithm} \ Triangulate Monotone Polygon(\mathcal{P})$

Input. A strictly y-monotone polygon $\mathcal P$ stored in a doubly-connected edge list $\mathcal D$.

Output. A triangulation of $\mathcal P$ stored in the doubly-connected edge list $\mathcal D.$

- Merge the vertices on the left chain and the vertices on the right chain of P
 into one sequence, sorted on decreasing y-coordinate. If two vertices have
 the same y-coordinate, then the leftmost one comes first. Let u₁,...,un
 denote the sorted sequence.
- 2. Initialize an empty stack S, and push u_1 and u_2 onto it.
- 3. for $j \leftarrow 3$ to n-1
- do if u_j and the vertex on top of S are on different chains
- then Pop all vertices from S.
 - Insert into \mathcal{D} a diagonal from u_j to each popped vertex, except the last one.
- 7. Push u_{j-1} and u_j onto S.
- else Pop one vertex from 8.
 - Pop the other vertices from S as long as the diagonals from u_j to them are inside P. Insert these diagonals into D. Push the last vertex that has been popped back onto S.
- 10. Push u_j onto S.
- 11. Add diagonals from u_n' to all stack vertices except the first and the last one.

Additional Notes

- In the first case, the shape ready to be processed looks like a overturned funnel
 - The consecutive vertices stored in the stack always have angle greater than $\boldsymbol{\pi}$
- A y-monotone polygon with n vertices can be triangulated in O(n)
- The algorithm is actually similar to the convex hull algorithm in Chap 1

End of Story

- A simple polygon with n vertices can be triangulated in O(nlogn) time with an algorithm that uses O(n) storage
- A planar subdivision with n vertices in total can be triangulated in O(nlogn) time with an algorithm that uses O(n) storage

