Bangalore Food Preference by Neighborhood

By: Manas Sinha

In this Jupyter Notebook we'll try to find which areas in Bangalore prefer which type of food and wh

1. Introduction

Bangalore is the third most populous city in India, and is home to many technology companies. Acco Bangalore's population consists of migrants which makes the city's population quite diverse. Undoubtedly when there is such a large quantity of migrants, there will be a lot of diversity in the fooc project is to categorically segment the neighborhoods of Bangalore into major clusters and examine examine the neighborhood cluster's food habits and taste. Further examination might reveal if food habits neighborhood.

This project will help to understand the diversity of a neighborhood by leveraging venue data from Fo clustering' machine learning algorithm. Exploratory Data Analysis (EDA) will help to discover further a neighborhood. Stakeholders would be the one who are interested to use this quantifiable analysis to cultures and cuisines over one of the the most diverse cities in India - Bangalore". This project can alwilling to open his or her restaurant. Or by a government authority to examine and study their city's cu

2. Data

The following data sources are used to implement our project:

- 1. Bangalore Neighborhoods: Which provides us with geocoded data for the city of Bangalore. The
- 2. Foursquare API:

Link: https://developer.foursquare.com/docs

Description: Foursquare API, a location data provider, will be used to make RESTful API calls to retrievel neighborhoods. This is the link to Foursquare Venue Category Hierarchy. Venues retrieved from all the into "Arts & Entertainment", "College & University", "Event", "Food", "Nightlife Spot", "Outdoors & Recreation follows:

```
'categories': [{'id': '4bf58dd8d48988d110941735',
```

'name': 'Italian Restaurant',

'pluralName': 'Italian Restaurants',

'shortName': 'Italian',

'icon': {'prefix': 'https://ss3.4sqi.net/img/categories_v2/food/italian_',

'suffix': '.png'}, 'primary': True}],

```
'verified': False,
'stats': {'tipCount': 17},
'url': 'http://eccorestaurantny.com',
'price': {'tier': 4, 'message': 'Very Expensive', 'currency'
```

▼ 3. Methodology

Importing Bangalore neighborhood dataset <u>found on Kaggle</u>

For simplicity reasons we have downloaded the .csv file beforehand instead of using the Kaggle API

```
#keeping only the necessary columns
blr_df = blr_df[['Neighborhood','Latitude','Longitude']]
blr_df.head()
```

₽		Neighborhood	Latitude	Longitude	
	0	Agram	45.813177	15.977048	
	1	Amruthahalli	13.066513	77.596624	
	2	Attur	11.663711	78.533551	
	3	Banaswadi	13.014162	77.651854	
	4	Bellandur	58.235358	26.683116	

▼ Map of Neighborhoodds

```
blr lat = 12.97
blr lon = 77.58
map blr = folium.Map(location=[blr lat,blr lon], zoom start=9)
# add markers to map
for lat, lng, neighborhood in zip(blr df['Latitude'], blr df['Longitude'], blr df['Neighborho
    label = '{}'.format(neighborhood)
    label = folium.Popup(label, parse html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=5,
        popup=label,
        color='blue',
        fill=True,
        fill color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(map_blr)
```

map_blr

▼ Understanding The Foursquare API better

results['response']['venues']

С⇒

```
[{'categories': [{'icon': {'prefix': '<a href="https://ss3.4sqi.net/img/categories-v2/food/defau">https://ss3.4sqi.net/img/categories-v2/food/defau</a>]
     'suffix': '.png'},
    'id': '54135bf5e4b08f3d2429dfde',
    'name': 'South Indian Restaurant',
    'pluralName': 'South Indian Restaurants',
    'primary': True,
    'shortName': 'South Indian'}],
  'hasPerk': False,
  'id': '4e1ace8d183880768f580e21',
  'location': {'address': 'Near Civil Court',
   'cc': 'IN',
   'city': 'Bangalore',
   'country': 'India',
   'distance': 485,
   'formattedAddress': ['Near Civil Court', 'Bangalore', 'Karnātaka', 'India'],
   'labeledLatLngs': [{'label': 'display',
     'lat': 12.972336965593202,
     'lng': 77.58377805364935}],
   'lat': 12.972336965593202,
   'lng': 77.58377805364935,
   'state': 'Karnātaka'},
  'name': 'Kaveri Bhavan',
  'referralId': 'v-1587056319'}]
```

The name of the restaurant is **Kaveri Bhavan** and the category is **South Indian Restaurant**

4. Analysis and Machine Learning

```
# one hot encoding
blr_onehot = pd.get_dummies(blr_venues[['Venue Category']], prefix="", prefix_sep="")
blr_onehot.head()
```

₽		Afghan Restaurant	American Restaurant	Andhra Restaurant	Asian Restaurant			Belgian Restaurant	Brewer
	0	0	1	0	0	0	0	0	
	1	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	

```
# move neighborhood column to the first column
Neighborhood = blr_onehot['Neighborhood']

blr_onehot.drop(labels=['Neighborhood'], axis=1,inplace = True)
blr_onehot.insert(0, 'Neighborhood', Neighborhood)

https://colab.research.google.com/drive/1h8pohCS4q 7r6V4hZqylDkYGldmA1E0v#scrollTo=AWtACDZoOQVm&printMode=true
```

blr_onehot.head()

₽		Neighborhood	Afghan Restaurant	American Restaurant	Andhra Restaurant	Asian Restaurant	Austrian Restaurant	BBQ Joint	B Rest
	0	Agram	0	1	0	0	0	0	
	1	Agram	0	0	0	0	0	0	
	2	Agram	0	0	0	0	0	0	
	3	Agram	0	0	0	0	0	0	
	4	Agram	0	0	0	0	0	0	

Finding the top 15 food categories in Bangalore

venue_counts_described = venue_counts.describe().transpose()

venue_top15 = venue_counts_described.sort_values('max', ascending=False)[0:15]
venue top15

₽		count	mean	std	min	25%	50%	75%	max
	Indian Restaurant		5.54	5.618188	0.0	1.0	4.0	9.00	28.0
	Fast Food Restaurant	100.0	1.53	1.839274	0.0	0.0	1.0	2.00	10.0
	Middle Eastern Restaurant	100.0	0.14	1.015237	0.0	0.0	0.0	0.00	10.0
	South Indian Restaurant	100.0	0.69	1.125418	0.0	0.0	0.0	1.00	6.0
	Pizza Place	100.0	0.72	1.073840	0.0	0.0	0.0	1.00	6.0
	Chinese Restaurant	100.0	0.57	0.890522	0.0	0.0	0.0	1.00	5.0
	Italian Restaurant	100.0	0.26	0.733333	0.0	0.0	0.0	0.00	4.0
	Vegetarian / Vegan Restaurant	100.0	0.66	1.036895	0.0	0.0	0.0	1.00	4.0
	North Indian Restaurant	100.0	0.20	0.635642	0.0	0.0	0.0	0.00	4.0
	Kerala Restaurant	100.0	0.13	0.505625	0.0	0.0	0.0	0.00	4.0
	Doner Restaurant	100.0	0.04	0.400000	0.0	0.0	0.0	0.00	4.0
	Japanese Restaurant	100.0	0.07	0.355477	0.0	0.0	0.0	0.00	3.0
	Karnataka Restaurant	100.0	0.32	0.617587	0.0	0.0	0.0	0.25	3.0
	Multicuisine Indian Restaurant	100.0	0.14	0.449916	0.0	0.0	0.0	0.00	3.0
	Mediterranean Restaurant	100 0	ი იგ	0 342893	0 O	n n	0 0	0 00	3 0

```
import seaborn as sns
import matplotlib.pyplot as plt

fig, axes =plt.subplots(5, 2, figsize=(20,20), sharex=True)
axes = axes.flatten()

for ax, category in zip(axes, venue_top15_list):
    data = venue_counts[[category]].sort_values([category], ascending=False)[0:15]
    pal = sns.color_palette("Blues", len(data))
    sns.barplot(x=category, y=data.index, data=data, ax=ax, palette=np.array(pal[::-1]))

plt.tight_layout()
plt.show();
```


Grouping rows by neighborhood and by taking the mean of the frequency of occurrence of each cat

blr_grouped = blr_onehot.groupby('Neighborhood').mean().reset_index()
blr_grouped.head()

₽		Neighborhood	Afghan Restaurant	American Restaurant	Andhra Restaurant	Asian Restaurant	Austrian Restaurant	BBQ Joint	B Rest
	0	Achitnagar	0.0	0.000000	0.000000	0.200000	0.0	0.000	
	1	Adugodi	0.0	0.000000	0.000000	0.000000	0.0	0.000	
	2	Agram	0.0	0.153846	0.000000	0.076923	0.0	0.000	
	3	Akkur	0.0	0.000000	0.000000	0.125000	0.0	0.125	
	4	Amruthahalli	0.0	0.000000	0.068966	0.034483	0.0	0.000	

#new size of dataframe blr_grouped blr_grouped.shape

[→ (100, 70)

Creating new dataframe to display the top 5 venues for each neighborhood

for ind in np.arange(blr_grouped.shape[0]):
 neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(blr_grouped.iloc[ir
neighborhoods_venues_sorted.head()

₽		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4
	0	Achitnagar	Fast Food Restaurant	Indian Restaurant	Asian Restaurant	
	1	Adugodi	Indian Restaurant	Pizza Place	Lebanese Restaurant	
	2	Agram	Mediterranean Restaurant	Pizza Place	American Restaurant	
	3	Akkur	Italian Restaurant	Turkish Restaurant	Asian Restaurant	
	4	Amruthahalli	Indian Restaurant	Fast Food Restaurant	Andhra Restaurant	

Clustering Neighborhoods

```
blr_grouped_clustering = blr_grouped.drop('Neighborhood', 1)
```

Determine the optimal number of clusters for k-means clustering using Silhouette Method

```
plt.plot(K_sil, sil, 'bx-')
plt.xlabel('k')
plt.ylabel('silhouette_score')
plt.title('Silhouette Method For Optimal k')
plt.show()
```


At k=2 and k=6 there is peak. Let's use k=6

Let's create a new dataframe that includes the cluster as well as the top 5 venues for each neighborh

merge neighborhoods_venues_sorted with blr_data to add latitude/longitude for each neighbor
blr_merged = neighborhoods_venues_sorted.join(blr_df.set_index('Neighborhood'), on='Neighbork
blr_merged.head()

C→

Cluster Labels Neighborhood 1st Most Common 2nd Most Common 3rd Most Common 4th Venue Venue Venue

Creating a Map for Visualization

```
1100laurani
```

```
map_clusters = folium.Map(location=[12.97, 77.58], zoom_start=10)
# set color scheme for the clusters
colors_array = cm.rainbow(np.linspace(0, 1, kclusters))
rainbow = [colors.rgb2hex(i) for i in colors_array]
# add markers to the map
markers_colors = []
for lat, lon, poi, cluster in zip(blr_merged['Latitude'], blr_merged['Longitude'], blr_merged
    label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
    folium.CircleMarker(
        [lat, lon],
        radius=5,
        popup=label,
        color=rainbow[cluster-1],
        fill=True,
        fill_color=rainbow[cluster-1],
        fill opacity=0.7).add to(map clusters)
map clusters
 C→
```


▼ 5. Results

Cluster 0

cluster_0 = blr_merged.loc[blr_merged['Cluster Labels'] == 0, blr_merged.columns[1:12]]
cluster_0.head(5)

 \Box

•		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	Latit
	2	Agram	Mediterranean Restaurant	Pizza Place	American Restaurant	Fast Food Restaurant	Japanese Restaurant	45.813
	3	Akkur	Italian Restaurant	Turkish Restaurant	Asian Restaurant	BBQ Joint	Belgian Restaurant	50.733
	3	Akkur	Italian Restaurant	Turkish Restaurant	Asian Restaurant	BBQ Joint	Belgian Restaurant	50.733

Cluster 1

cluster_1 = blr_merged.loc[blr_merged['Cluster Labels'] == 1, blr_merged.columns[1:12]]
cluster_1.head(5)

₽		Neighborhood 1st Most Common Venue		2nd Most Common Venue	3rd Most Common Venue	4th M
	16	Byagadadenahalli	Pizza Place	Halal Restaurant	Falafel Restaurant	Fast Food
	39	Hulimangala	Pizza Place	Halal Restaurant	Falafel Restaurant	Fast Food
	60	Laggere	Pizza Place	Halal Restaurant	Falafel Restaurant	Fast Food
	73	NAL	Pizza Place	Halal Restaurant	Falafel Restaurant	Fast Food
	96	Whitefield	Pizza Place	Chinese Restaurant	Dumpling Restaurant	Falafe

Cluster 2

cluster_2 = blr_merged.loc[blr_merged['Cluster Labels'] == 2, blr_merged.columns[1:12]]
cluster_2.head(5)

С→

1st Most 2nd Most 3rd Most 4th Most 5th Most

Cluster 3

cluster_3 = blr_merged.loc[blr_merged['Cluster Labels'] == 3, blr_merged.columns[1:12]]
cluster_3.head(5)

₽				2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	Latit
	0	Achitnagar	Fast Food Restaurant	Indian Restaurant	Asian Restaurant	Yemeni Restaurant	Halal Restaurant	13.091
	1	Adugodi	Indian Restaurant	Pizza Place	Lebanese Restaurant	Rajasthani Restaurant	Fast Food Restaurant	12.942
	4	Amruthahalli	Indian Restaurant	Fast Food Restaurant	Andhra Restaurant	Pizza Place	Karnataka Restaurant	13.066
			0 4 1 2	1 12		_		

Cluster 4

cluster_4 = blr_merged.loc[blr_merged['Cluster Labels'] == 4, blr_merged.columns[1:12]]
cluster_4.head(5)

₽		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	Latit
	13	Bellandur	Fast Food Restaurant	Yemeni Restaurant	Halal Restaurant	Falafel Restaurant	French Restaurant	58.235
	34	HighCourt	Fast Food Restaurant	Pizza Place	Halal Restaurant	Falafel Restaurant	French Restaurant	53.783
	82	Rajanakunte	Fast Food Restaurant	Yemeni Restaurant	Halal Restaurant	Falafel Restaurant	French Restaurant	13.169

Cluster 5

cluster_5 = blr_merged.loc[blr_merged['Cluster Labels'] == 5, blr_merged.columns[1:12]]
cluster_5.head(5)

С⇒

			1st Most	2nd Most	3rd Most	4th Most	5th Most	
Tha	nk Y	ou						
	0.4	P. L.L.	- M	namataka -	remeni	Паіаі	raiaiei	10 000
	31	Hadonahalli	Vegetarian / Vegan	Yemeni Restaurant	Halal Restaurant	Falafel Restaurant	Fast Food Restaurant	13.369