Compiladores Ejercicios de Análisis Sintáctico Mediante LR0

Garcia Lomeli Abraham Amos

8 de noviembre de 2018

Índice

La cadena a evaluar será:

	Ejercicio 1 1.1. Análisis
2.]	Ejercicio 2 2.1. Solución:
1.	Ejercicio 1
	Para este primer ejemplo, se utilizará una gramática que representa de manera parcial a las exsiones artiméticas, la cual se define como:
ı	$\mathbf{E}' \longrightarrow \mathbf{E}$
I	$E \longrightarrow E+T,T$
I	$T \longrightarrow T^*F,F$
I	$F \longrightarrow (E)$, num
	Al numerar cada regla tendremos:
i	$0 \to \mathbf{E}' \longrightarrow \mathbf{E}$
ı	$1 \to \mathbf{E} + \mathbf{T}$
ı	$2 \to \mathbf{T}$
ı	$3 \ \mathrm{T} \longrightarrow \mathrm{T}^*\mathrm{F}$
I	$ 4 \text{ T} \longrightarrow \text{F} $
I	$f 5 \ F \longrightarrow (E)$
ı	$lackbox{6} \ \mathrm{F} \longrightarrow \mathrm{num}$

(num+num)*num*num\$

1.1. Análisis

A continuación se muestra el resultado del análisis mediante LR0

Pila	Condesa	Acción		
0	(num+num)*num*num\$	D1		
0(1	num+num)*num*num\$	D2		
0(1num2	+num)*num*num\$	R6 F—→num		
0(1F5)	+num)*num*num\$	$R4 T \longrightarrow F$		
0(1T4	+num)*num*num\$	$R2 \to T$		
0(1E6	+num)*num*num\$	D7		
0(1E6+7)	num)*num*num\$	D2		
0(1E6+7num2)*num*num\$	R6 F→num		
0(1E6 + 7F5)*num*num\$	$R4 T \longrightarrow F$		
0(1E6+7T10)*num*num\$	$R1 \to E+T$		
0(1E6)*num*num\$	D9		
0(1E6)9	*num*num\$	$R5 F \longrightarrow (E)$		
0F5	*num*num\$	$R4 T \longrightarrow F$		
0T4	*num*num\$	D8		
0T4*8	num*num\$	D2		
0T4*8num2	*num\$	R6 F—→num		
0T4*8F11	*num\$	R3 T—→T*F		
0T4	*num\$	D8		
0T4*8	num\$	D2		
0T4*8num2	\$	R6 F—→num		
0T4*8F11	\$	R3 T—→T*F		
0T4	\$	$R2 \to T$		
0E3	\$	ACCEPT		

2. Ejercicio 2

Se busca obtener la tabla LR0 de la siguiente gramática:

- $\quad \blacksquare \ E' {\longrightarrow} \ E$
- \blacksquare E \longrightarrow wX,aY
- $\mathbf{X} \longrightarrow \mathbf{b}\mathbf{X},\mathbf{z}$
- $\mathbf{Y} \longrightarrow \mathbf{bY},\mathbf{z}$

2.1. Solución:

Primero se realizará la cerradura epsilon:

$${f C(E'\longrightarrow E)}={\{E'\longrightarrow E, E\longrightarrow \bullet wX, E\longrightarrow \bullet aY \}}=S_0$$

Luego se procede a analizar S_0 .

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_0,\mathbf{E}') = \{ \mathbf{E}' \longrightarrow \mathbf{E} \bullet \} = S_1$$

$$Ir_A(S_0, \mathbf{w}) = \{E \longrightarrow \mathbf{w} \bullet X, X \longrightarrow \bullet bX, X \longrightarrow \bullet z \} = S_2$$

■
$$\operatorname{Ir}_{\mathbf{A}}(S_0,\mathbf{a}) = \{ E \longrightarrow a \bullet Y, Y \longrightarrow \bullet bY, Y \longrightarrow \bullet z \} = S_3$$

Como la operación mover de todo conjunto donde \bullet sea el último simbolo es vacia, se omite el analisis de S_1

Ahora se realizará el análisis para S_2

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_2,\mathbf{X}) = \{ E \longrightarrow wX \bullet \} = S_4$$

• Ir_A(
$$S_2$$
,b)={X \longrightarrow b•X}= S_5

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_2,\mathbf{z}) = \{X \longrightarrow \mathbf{z} \bullet \} = S_6$$

Se procede con el análisis de S_3

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_3, \mathbf{Y}) = \{ E \longrightarrow aY \bullet \} = S_7$$

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_3,\mathbf{b}) = \{Y \longrightarrow \mathbf{b} \bullet Y \} = S_8$$

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_3,\mathbf{z}) = \{Y \longrightarrow \mathbf{z} \bullet \} = S_9$$

Como la operación mover de todo conjunto donde ullet sea el último simbolo es vacia, se omite el analisis de S_4

Se procede con el análisis de S_5

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_5,\mathbf{X}) = \{X \longrightarrow bX \bullet \} = S_{10}$$

Como la operación mover de todo conjunto donde \bullet sea el último simbolo es vacia, se omite el analisis de S_6 y S_7

Se procede con el análisis de S_8

•
$$\operatorname{Ir}_{-}\mathbf{A}(S_8,\mathbf{Y}) = \{Y \longrightarrow bY \bullet \} = S_{11}$$

Al finalizar lo anterior tendremos en la tabla:

	w	a	b	\mathbf{z}	\$ \mathbf{E}	X	\mathbf{Y}
0	d2	d3			1		
1							
2			d5	d6		4	
3			d8	d9			7
4							
5						10	
6							
7							
8							11
9							
10							
11							

Para S_1 , S_4 , S_6 , S_7 , S_9 , S_{10} y S_{11} sucede que el punto está al final, por lo tanto se debe hacer el follow de su lado izquierdo, siendo asi se sabe que:

- Follow(E')={\$}
- Follow(E)= $\{\$\}$
- Follow(X)= $\{\$\}$
- Follow(Y)= $\{\$\}$

Por lo tanto la tabla LR0 serà:

	w	a	b	\mathbf{z}	\$	\mathbf{E}	X	Y
0	d2	d3				1		
1					ACCEPT			
2			d5	d6			4	
3			d8	d9				7
4					ACCEPT			
5							10	
6					ACCEPT			
7					ACCEPT			
8								11
9					ACCEPT			
10					ACCEPT			
11					ACCEPT			