Learning Set Functions Under the Optimal Subset Oracle via Equivariant Variational Inference

Zijing Ou^{1,2}, Tingyang Xu¹, Qinliang Su², Yingzhen Li³, Peilin Zhao¹, Yatao Bian^{1,*}

¹Tencent AI Lab ²Sun Yat—sen University ³Imperial College London

Data Generation Process:

$$S^* = \underset{S \in 2^V}{\operatorname{argmax}} F_{\theta^*}(S; V)$$
$$\sim p(S, V) =: \delta_{S = S^*|V}$$

$$S^* = \operatorname*{argmax}_{S \in 2^V} F_{\theta^*}(S; V)$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Function Value (FV) Oracle

$$S^* = \operatorname*{argmax}_{S \in 2^V} F_{\theta^*}(S; V)$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

Function Value (FV) Oracle

$$S^* = \operatorname*{argmax}_{S \in 2^V} F_{\theta^*}(S; V)$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

$$S$$

$$F_{\theta^*}(S)$$

$$F_{\theta^*}(S)$$

Function Value (FV) Oracle

$$S^* = \operatorname*{argmax}_{S \in 2^V} F_{\theta^*}(S; V)$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 1, FV oracle:

$$\theta^* = \min_{\theta} \sum_{i} L(F_{\theta}(S_i; V); F_{\theta^*}(S_i; V))$$

Curse of amounts of supervision signals

 \Rightarrow Training data in form of $\{(S_i, F_{\theta^*}(S_i; V))\}$ for each V

Optimal Subset (OS) Oracle

$$S^* = \operatorname*{argmax} F_{\theta^*}(S; V)$$

Goal: Learn a surrogate F_{θ} to approximate the oracle utility function F_{θ^*} .

Setting 2, OS oracle:

 \Rightarrow Training data in form of $\{(S^*, V)\}$

argmax
$$\mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^V$$
Monotonically grows with the utility function

argmax
$$\mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$
 $s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^V$
Monotonically grows with the utility function

How to construct a proper set mass function $p_{\theta}(S|V)$?

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

Varying ground set

$$F_{\theta}(\P) \rightarrow \blacksquare \qquad F_{\theta}(\P) \rightarrow \blacksquare \qquad F_{\theta}(\P) \rightarrow \blacksquare$$

$$\operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbb{P}(S^*,V)}[\log p_{\theta}(S^*|V)]$$

$$s.t.p_{\theta}(S|V) \propto F_{\theta}(S;V), \forall S \in 2^{V}$$

Desiderata:

Permutation invariance

$$F_{\theta}(\uparrow ,) = F_{\theta}(\uparrow ,)$$

Varying ground set

$$F_{\theta}(\uparrow) \rightarrow \blacksquare \qquad F_{\theta}(\uparrow \uparrow , \land) \rightarrow \blacksquare \qquad F_{\theta}(\uparrow \uparrow \uparrow , \land , \blacksquare) \rightarrow \blacksquare$$

Differentiability; Minimum prior & Scalibility

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

EBMs for Minimum Prior:

Energy-based modeling has maximum entropy

Energy-based Modeling

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

DeepSet for Permutation Invariance:

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Training Discrete EBMs:

Contrastive Divergence ⇒ Hard to converge

Score Matching ⇒ NonDifferentiable

Ratio Matching ⇒ Unstable

Separate training and inference procedure

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Marginal-based Loss:

$$\psi \in [0,1]^{|V|}$$
: odds that $s \in V$ shall be selected in the OS S^*

$$\psi^* = \operatorname*{argmax}_{\psi} \mathrm{D}(q(S;\psi) || p_{\theta}(S))$$

$$L(\theta; \psi^*) = \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log(1 - \psi_j^*) \right]$$

Cohesive training and inference procedure

Approximate MLE

$$p_{\theta}(S|V) = \frac{\exp(F_{\theta}(S;V))}{Z \leftarrow \text{Partition function } Z := \sum_{S \subseteq V} \exp(F_{\theta}(S;V))}$$

Marginal-based Loss:

 $\psi \in [0,1]^{|V|}$: odds that $s \in V$ shall be selected in the OS S^* $\psi^* = \operatorname*{argmax} D(q(S;\psi)||p_{\theta}(S))$ ψ

$$L(\boldsymbol{\theta}; \boldsymbol{\psi}^*) = \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \boldsymbol{\psi}_j^* - \sum_{j \in V_i \setminus S_i^*} \log(1 - \boldsymbol{\psi}_j^*) \right]$$

Require ψ^* is differentiable w.r.t. θ

Variational distribution
$$q(S; \psi) = \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j), \psi \in [0,1]^{|V|}$$

$$\min_{\psi} \mathbb{KL}(q(S; \psi) || p_{\theta}(S))$$

$$\Leftrightarrow \max_{\psi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}(q(S; \psi)) =: \text{ELBO}$$

$$\min_{\psi} \text{multilinear extension } f_{mt}^{F_{\theta}}(\psi) \coloneqq \sum_{S \subseteq V} F_{\theta}(S) \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j)$$

$$\min_{\psi} \mathbb{KL}(q(S; \psi) || p_{\theta}(S))$$

$$\Leftrightarrow \max_{\psi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}(q(S; \psi)) =: ELBO$$

RNN-like fixed-point iteration:

$$\psi^{(0)} \leftarrow \text{Initialize in } [0,1]^{|V|}$$

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}}(\psi^{(k-1)})\right)\right)^{-1}$$

$$\psi_{\theta}^{*} \leftarrow \psi_{\theta}^{(K)}$$

$$MFVI(\psi^{(0)}, V, K)$$

$$\min_{\psi} \mathbb{KL}(q(S; \psi) || p_{\theta}(S))$$

$$\Leftrightarrow \max_{\psi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}(q(S; \psi)) =: ELBO$$

RNN-like fixed-point iteration:

$$\psi^{(0)} \leftarrow \text{Initialize in } [0,1]^{|V|}$$

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}}(\psi^{(k-1)})\right)\right)^{-1}$$

$$\psi_{\theta}^{*} \leftarrow \psi_{\theta}^{(K)}$$

$$MFVI(\psi^{(0)}, V, K)$$

$$\psi_{\theta}^* = \text{MFVI}(\psi^{(0)}, V, K)$$
 is **differentiable** w.r.t. θ

$$L(\boldsymbol{\theta}; \boldsymbol{\psi}^*) = \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \boldsymbol{\psi}_j^* - \sum_{j \in V_i \setminus S_i^*} \log (1 - \boldsymbol{\psi}_j^*) \right]$$

Algorithm DiffMF(V, S*):

Initialize variational parameter ψ

$$\psi^{(0)} \leftarrow 0.5 * \mathbf{1}$$

Compute the variational marginals

$$\psi^* \leftarrow \text{MFVI}(\psi^{(0)}, V, K)$$

Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*)$$

Training:

Initialize variational parameter ψ

$$\psi^{(0)} \leftarrow 0.5 * \mathbf{1}$$

Compute the variational marginals

$$\psi^* \leftarrow \mathsf{MFVI}(\psi^{(0)}, V, K)$$

Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*)$$

Inference:

$$S = \operatorname{topN}(\psi^*)$$

$$\psi^* = \mathsf{MFVI}(\psi^{(0)}, V, K)$$

Open problems of DiffMF

Expensive computation complexity

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}} (\psi^{(k-1)})\right)\right)^{-1}$$

Discard interaction pattern

$$q(S; \boldsymbol{\psi}) = \prod_{i \in S} \boldsymbol{\psi_i} \prod_{j \notin S} (1 - \boldsymbol{\psi_j}), \boldsymbol{\psi} \in [0, 1]^{|V|}$$

Independent assumption

expensive sampling loop per data point

Reduce computation complexity

$$\psi_{\theta}^{(k)} \leftarrow \left(1 + \exp\left(-\nabla_{\psi^{(k-1)}} f_{mt}^{F_{\theta}} (\psi^{(k-1)})\right)\right)^{-1}$$

Approximate with neural networks:

expensive sampling loop per data point

neural network
$$q_{\phi} : \mathbb{R}^{|V|} \to \mathbb{R}^{|V|}$$

$$L = \mathbb{KL}(q_{\phi}(S; \psi) || p_{\theta}(S))$$

$$= f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}\left(q_{\phi}(S; \psi)\right) + const$$

 $q_{\phi}(S; \psi)$ should satisfy **equivariant**

Reduce computation complexity

$$\phi^* = \operatorname*{argmax}_{\phi} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}\left(q_{\phi}(S; \psi)\right) \coloneqq \text{ELBO}$$

EquiNet($V; \phi$) with permutation equivariance

Induce interaction pattern

$$q(S; \psi) = \prod_{i \in S} \psi_i \prod_{j \notin S} (1 - \psi_j), \psi \in [0,1]^{|V|}$$

Independent assumption

Correlation-aware inference:

Cumulative distribution function

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix})$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \sim c(Q_1(x_1), Q_2(x_2))$$

Induce interaction pattern

$$q(s_1, s_2, ..., s_{|V|}) = c(Q_1(s_1), Q_2(s_2), ..., Q_{|V|}(s_{|V|})) \prod_{i=1}^{|V|} q_i(s_i)$$
Apply Gaussian copula here

Induce Gaussian copula:

Sample an auxiliary noise

$$g \sim N(0, \Sigma) \rightarrow \frac{\text{Covariance matrix}}{\text{parameterized by neural network}}$$

Apply element-wise Gaussian CDF

$$u = \Phi_{diag(\Sigma)}(g)$$

Obtain binary sample

$$s = \mathbb{I}(\psi \leq u) o$$
 Original logits of Bernoulli

$$\phi^* = \operatorname*{argmax} f_{mt}^{F_{\theta}}(\psi) + \mathbb{H}\left(q_{\phi}(S; \psi)\right) \coloneqq \operatorname{ELBO}$$

$$\theta^* = \operatorname*{argmin} \sum_{i=1}^{N} \left[-\sum_{j \in S_i^*} \log \psi_j^* - \sum_{j \in V_i \setminus S_i^*} \log(1 - \psi_j^*)\right]$$

$$\psi^* = \operatorname{MFVI}(\psi^{(0)}, V, K)$$

Algorithm EquiVSet(V, S^*):

Update parameter
$$\phi$$

$$\phi \leftarrow \phi + \eta \nabla_{\phi} \text{ELBO}(\phi) \qquad \rightarrow \text{Optimize } \phi$$
Initialize variational parameter
$$\psi^{(0)} \leftarrow \text{EquiNet}(V; \phi)$$
One step fixed point iteration
$$\psi^* \leftarrow \text{MFVI}(\psi^{(0)}, V, K = 1)$$
Update parameter θ

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta; \psi^*) \qquad \rightarrow \text{Optimize } \theta$$

Application: Product Recommender

Table 2: Product recommendation results in the MJC metric on the Amazon dataset.

Categories	Random	PGM	DeepSet (NoSetFn)	DiffMF (ours)	${\tt EquiVSet}_{ind}\;(ours)$	EquiVSet _{copula} (ours)
Toys	0.0832	0.4414 ± 0.0036	0.4287 ± 0.0047	0.6147 ± 0.0102	0.6491 ± 0.0152	0.6762 ± 0.0221
Furniture	0.0651	0.1746 ± 0.0069	0.1758 ± 0.0072	0.1744 ± 0.0121	$\textbf{0.1775} \pm \textbf{0.0108}$	0.1724 ± 0.0091
Gear	0.0771	0.4712 ± 0.0037	0.3806 ± 0.0019	0.5622 ± 0.0171	0.6103 ± 0.0193	0.6973 ± 0.0119
Carseats	0.0659	$\textbf{0.2330} \pm \textbf{0.0115}$	0.2121 ± 0.0096	0.2229 ± 0.0104	0.2141 ± 0.0073	0.2149 ± 0.0123
Bath	0.0763	0.5638 ± 0.0077	0.4241 ± 0.0058	0.6901 ± 0.0061	0.6457 ± 0.0200	0.7567 ± 0.0095
Health	0.0758	0.4493 ± 0.0024	0.4481 ± 0.0041	0.5650 ± 0.0092	0.6315 ± 0.0153	0.7003 ± 0.0159
Diaper	0.0839	0.5802 ± 0.0092	0.4572 ± 0.0050	0.7011 ± 0.0112	0.7344 ± 0.0199	0.8275 ± 0.0136
Bedding	0.0791	0.4799 ± 0.0061	0.4824 ± 0.0081	0.6408 ± 0.0093	0.6287 ± 0.0195	0.7688 ± 0.0121
Safety	0.0648	0.2495 ± 0.0060	0.2211 ± 0.0044	0.2007 ± 0.0527	0.2250 ± 0.0287	0.2524 ± 0.0285
Feeding	0.0925	0.5596 ± 0.0081	0.4295 ± 0.0021	0.7496 ± 0.0114	0.6955 ± 0.0063	0.8101 ± 0.0074
Apparel	0.0918	0.5333 ± 0.0050	0.5074 ± 0.0036	0.6708 ± 0.0225	0.6465 ± 0.0150	0.7521 ± 0.0114
Media	0.0944	0.4406 ± 0.0092	0.4241 ± 0.0105	0.5145 ± 0.0105	0.5506 ± 0.0072	$\textbf{0.5694} \pm \textbf{0.0105}$

Metric: MJC :=
$$\frac{1}{|\mathcal{D}_t|} \sum_{(V,S^*) \in \mathcal{D}_t} \frac{|S^* \cap S|}{|S^* \cup S|}$$

Application: Anomaly Detection

Table 3: Set anomaly detection results in the MJC metric.

Method	Double MNIST	CelebA
Random	0.0816	0.2187
PGM	0.3031 ± 0.0118	0.4812 ± 0.0064
DeepSet (NoSetFn)	0.1108 ± 0.0031	0.3915 ± 0.0133
DiffMF (ours)	0.6064 ± 0.0133	0.5455 ± 0.0079
EquiVSet _{ind} (ours)	0.4054 ± 0.0122	0.5310 ± 0.0123
EquiVSet _{copula} (ours)	0.5878 ± 0.0068	0.5549 ± 0.0053

Application: Compound Selection

Application: Compound Selection

Table 4: Compound selection results in the MJC metric.

Method	PDBBind	BindingDB
Random	0.0725	0.0267
PGM	0.3499 ± 0.0087	0.1760 ± 0.0055
DeepSet (NoSetFn)	0.3189 ± 0.0034	0.1615 ± 0.0074
DiffMF (ours)	0.3534 ± 0.0143	0.1894 ± 0.0021
EquiVSet _{ind} (ours)	0.3553 ± 0.0049	0.1904 ± 0.0034
EquiVSet _{copula} (ours)	0.3536 ± 0.0083	0.1875 ± 0.0032

Thank you!