

Gramática asociada a un AF

Sea el AF, A = $(\Sigma, Q, q0, f, F)$, existe una G3 LD tal que

$$L(G3LD) = L(A)$$

Es decir, el lenguaje que genera la gramática es el mismo que reconoce el Autómata

Veamos como se obtiene la gramática G={ Σ T, Σ N, S, P} a partir del AF= {Q, Σ , q0, f, F}.

Gramática asociada a un AF

Se construye la **gramática G3LD** (G={ Σ_T , Σ_N , S, P}) de la siguiente forma, a **partir del Autómata** (AF={ Σ , Q, q₀, f, F}):

- $\Sigma_T = \Sigma$; $\Sigma_N = Q$; $S = q_o$
- P= { ... }
 - 1. transición $f(p,a) = q \rightarrow si q \notin F \rightarrow p::= a q$
 - 2. Si $q \in F$ y $f(p,a) = q \rightarrow p := a$ y p := a q
 - 3. Si $q_0 \in F \rightarrow q_0 := \lambda$ (es axioma para dar λ)
 - 4. si $f(p, \lambda) = q \rightarrow si q \notin F \rightarrow p := q \text{ (redenominación)};$
 - 5. $q \in F \ y \ f(p, \lambda) = q \rightarrow p := q \ y \ p := \lambda \ (redenominación y no generativa)$

AF asociado a una G3 (cuando es LD)

Se ha visto el procedimiento para obtener el AF que aceptaba el lenguaje descrito por una G3LD, sin embargo, ese procedimiento no siempre conduce a un AFD.

Lo habitual es: G3LD \rightarrow AFND \rightarrow AFD

1. Ejemplo: Sea la G3LD hallar el AF correspondiente.

 $G = (\{d,c\}, \{A,S,T\}, A, \{A := cS, S := d | cS | dT, T := dT | d\})$

AF asociado a una G3

¿Y si queremos obtener un AF a partir de una G3LI?

G3LI → G3LD → AF

¿Y si queremos obtener una G3LI a partir de un AF?

AF → G3LD → G3LI

Q

Definición de ER (I)

"Metalenguaje para expresar el conjunto de palabras aceptadas por un AF (es decir, para expresar lenguajes de tipo 3 o regulares)"

Kleene, 1956

11

Definición de ER(I)

Ejemplo

Dado el alfabeto Σ = {0,1},

La ER 0*10* es una palabra del metalenguaje que representa las infinitas palabras del lenguaje regular formado por un 1, precedido y seguido de 0, 1 o infinitos 0s.

El lenguaje $\Sigma^{\textstyle *}$ puede representarse mediante la ER:

(0+1)*

El lenguaje {01, 101} puede representarse mediante la ER:

01 + 101

La ER 1(1+0)* representa todas las cadenas que empiezan por el símbolo 1.

Definición de ER(III)

Solo son EERR las que se obtienen de aplicar las reglas anteriores **un número finito de veces** sobre símbolos de Σ , \emptyset , λ

La prioridad de las operaciones es la siguiente:

* > • > +

. . 14

Equivalencia de EERR (II)

- 9) \varnothing * = λ
- 10) $\alpha^* \cdot \alpha^* = \alpha^*$
- 11) $\alpha \bullet \alpha^* = \alpha^* \bullet \alpha$
- 12) $(\alpha^*)^* = \alpha^*$

(IMPORTANTE)

- 13) $\alpha^* = \lambda + \alpha + \alpha^2 + ... + \alpha^n + \alpha^{n+1}. \alpha^*$
- 14) $\alpha^* = \lambda + \alpha \cdot \alpha^*$ (13 con n=0) (IMPORTANTE)
- 15) $\alpha^* = (\lambda + \alpha) n 1 + \alpha n \cdot \alpha^*$ (de 14, sustituyendo)
- 16) Sea f una función, $f: E^n_{\Sigma} \to E_{\Sigma}$ se verifica:

$$\mathsf{f}(\alpha,\,\beta,\,...,\,\sigma) + (\alpha+\beta+...+\sigma)^* = (\alpha+\beta+...+\sigma)^*$$

17) Sea f una función, $f: E^n_{\Sigma} \to E_{\Sigma}$ se verifica:

 $(f(\alpha^*, \beta^*, ..., \sigma^*))^* = (\alpha + \beta + ... + \sigma)^*$

Equivalencia de EERR (III)

- 18) $(\alpha^* + \beta^*)^* = (\alpha^* \bullet \beta^*)^* = (\alpha + \beta)^*$ (IMPORTANTE)
- 19) $(\alpha \bullet \beta)^* \bullet \alpha = \alpha \bullet (\beta \bullet \alpha)^*$
- 20) $(\alpha^* \bullet \beta)^* \bullet \alpha^* = (\alpha + \beta)^*$
- 21) $(\alpha^* \bullet \beta)^* = \lambda + (\alpha + \beta)^* \bullet \beta$ (de 14 con 20)
- 22) Reglas de Inferencia:

Dadas tres EERR (L, A y B), sea la ecuación

L = AL + B

donde $\lambda \notin A$, entonces se verifica que

L = A*B

Solución al problema de análisis. Ecuaciones características.

Problema Análisis: AF -> ER

Resolución:

Dado un AF, escribir las ecuaciones características de cada uno de sus estados, resolverlas y obtener la ER buscada.

23

Solución al problema de análisis. Ecuaciones características.

ECUACIONES CARACTERÍSTICAS:

Describen todas las cadenas que se pueden reconocer desde un estado dado

Se escribe una ecuación x_i por estado q_i

- Primer miembro: x_i
- El segundo miembro tiene un término por cada rama que salga de qi
 - 。 Las ramas tienen la forma $a_{ij} \bullet x_j$ donde a_{ij} es la etiqueta de la rama que une q_i con q_i , x_i es la variable correspondiente a q_j
 - 。 Se añade un término a_{ii} por cada rama que une qi con un estado final
 - $_{
 m --}$ Se añade λ si ${
 m q}_{
 m i}$ es final._-SOLO si es final sin ramas o SOLO ramas al sumidero
 - 。 Si de un estado q_i no sale ninguna rama, el segundo miembro será:
 - si es final: $x_i = \lambda$
 - si no es final: $x_i = \emptyset$

Algoritmo de resolución problema de Análisis.

- 1. Escribir las ecuaciones características del AF
- 2. Resolverlas
- 3. Si el estado inicial es q_0 , X_0 nos da el conjunto de cadenas que conducen desde q_0 a q_f y por tanto el lenguaje aceptado por el AF

27

Solución de las ecuaciones características.

La Ecuación Característica de la forma: X = AX + B, donde:

- X: conjunto de cadenas que permiten pasar de q_i a $q_f \in F$
- A: conjunto de cadenas que permiten, partiendo de un estado q, llegar a g.
- B: conjunto de cadenas que permiten llegar al estado final, sin volver a pasar por el q_i de partida.

↓ (solución de Arden o reducción al absurdo)

La solución es: X = A* ● B

@000


```
Ejemplos.
                          Derivada Expresiones
Regulares
Obtener las G3 LD equivalentes a las ER dadas:
                                                         R = a a* b b* es igual que
                                                         R = a \cdot a^* \cdot b \cdot b^*
R = a a* b b*, \Sigma = \{a,b\}
- Da(R) = Da(a) a* b b* = a* b b*
- Db(R) = \emptyset
- Daa(R) = Da(a* b b*) = Da(a*) b b* + \lambda Da(b b*) = a*bb* = Da(R)
- Dab(R) = Db(a* b b*) = Db(a*) b b* + \lambda Db(b b*) = b*
- Daba(R) = Da(b*) = \emptyset
- Dabb(R) = Db(b*) = Db(b) b^* = b^* = Dab(R)
- Da(R)= a*bb*
                                \delta(Da(R)) = \emptyset
– Daa(R)= a*bb*
                                \delta(\mathsf{Daa}(\mathsf{R})) = \emptyset
Dab(R)= b*
                                \delta(\mathsf{Dab}(\mathsf{R})) = \lambda
                                                                                               43

    Dabb(R)= b*

                                \delta(Dabb(R)) = \lambda
 Color El di Stubril
                                                                               @000
```


Bibliografía

- Libro Básico 1 Bibliografía (AAM). Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw-Hill (2007). Apartado 7.2
- Libro Básico 2 Bibliografía (HMU). John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman. Introducción a la teoría de autómatas, lenguajes y computación (3ª edición). Ed, Pearson Addison Wesley. Tema 3
- Libro Básico 4 Bibliografía (AAM). Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de lenguajes, gramáticas y autómatas. Publicaciones R.A.E.C. 1997
 Tema 7

