# Representation of Word/Document

Hyunjoong Kim

soy.lovit@gmail.com

github.com/lovit

- 1. Word2Vec
- 2. Doc2Vec
- 3. GloVe
- 4. FastText (subwords embedding)
- 5. FastText (supervised embedding)

### Embedding

- 임베딩은 데이터를 공간 x 에서 새로운 공간 y 로 보내는 것입니다.
  - 원하는 정보를 잘 저장하며 공간을 변환하는 것으로,
  - 어떤 정보를 보존할 것이냐에 따라서 다양한 임베딩 방법이 존재합니다.
- 각 임베딩 방법을 "어떤 정보를 보존"하려 하는지의 관점에서 살펴본다면, 각 알고리즘이 무엇을/어떻게 학습하는지 이해하기 쉽습니다.

### Distributed representation

- 단어/문서를 d차원 공간의 벡터로 표현합니다.
  - Word2Vec 이 대표적이며, 각 차원이 특별한 의미를 지니지는 않습니다.
- 벡터 공간은 단어의 "의미적 유사성"을 반영합니다.
  - 벡터가 비슷한 단어/문서는 의미가 비슷합니다.
  - 비슷함의 정의는 알고리즘마다 다릅니다.

```
'dog'= [0.31, -0.21, 2.01, 0.58, ...]

'cat'= [0.45, -0.17, 1.79, 0.61, ...]

'topic modeling'= [-2.01, 0.03, 0.22, 0.54, ...]

'dim. reduction'= [-1.88, 0.11, 0.19, 0.45, ...]
```

# Distributed representation

• 각 벡터는 "의미 공간"에서의 좌표값 역할을 합니다.



- Word2Vec은 CBOW, Skip-gram 두가지 형태로 제안되었습니다.
  - CBOW는 주위 단어로 현재 단어 w(t)를 예측하는 모델
  - Skipgram은 현재 단어 w(t)로 주위 단어 모두를 예측하는 모델



• Word2Vec은 |V| 개의 classes 를 예측하는 Softmax regression 입니다.

# Lookup table { cat: [.31, -.22, .54] dog: [.22, -0.3, -0.52] on: ... the: ... little: ... }

Lookup word vector V('cat') = [.31, -.22, .54]





### Logistic Regression

- Logistic Regression (LR)은 대표적인 binary classification 알고리즘
  - positive class에 속할 점수를 [0, 1] 사이로 표현하기 때문에 확률 모형처럼 이용

$$y_{\theta}(x) = \frac{1}{1 + \exp(-\theta^T x)}$$

• 학습 데이터  $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$  가 주어졌을 때, loss function은

$$J(\theta) = -\left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

### Logistic Regression

• Softmax regression은 Logistic regression의 multi class classification 버전

$$h_{\theta}(x) = \begin{bmatrix} P(y=1|x;\theta) \\ \dots \\ P(y=K|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)^{T}}x)} \exp\left(\begin{bmatrix} \theta^{(1)^{T}}x \\ \dots \\ \theta^{(K)^{T}}x \end{bmatrix}\right)$$

• 학습 데이터  $\{(x^{(1)},y^{(1)}),...,(x^{(m)},y^{(m)}\}$  가 주어졌을 때, loss function은

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\{y^{(i)} = k\} \log \frac{\exp(\theta^{(j)^{T}} x^{(i)})}{\sum_{j=1}^{K} \exp(\theta^{(j)^{T}} x^{(i)})}\right]$$



$$h_{\theta}(x) = \begin{bmatrix} P(w_{(t)} = cat) \\ P(w_{(t)} = dog) \\ P(w_{(t)} = table) \\ \dots \\ P(w_{(t)} = Vocab) \end{bmatrix} = \frac{1}{\sum_{j=1}^{|V|} \exp(\theta^{(j)^T} x)} \begin{bmatrix} \exp(v(cat)^T v_I) \\ \exp(v(dog)^T v_I) \\ \exp(v(table)^T v_I) \\ \dots \\ \exp(v(Vocab)^T v_I) \end{bmatrix}$$

x: Input vector (average of contextual word vector)

- 'cat'과 'dog' 은 비슷한 문맥 단어 분포(contextual word distribution) 를 지니기 때문에 비슷한 word embedding vector 로 학습됩니다.
  - 'cat', 'dog' 은 모두 context vector 에 가깝게 이동합니다



- 'cat', 'dog'의 두 단어 벡터 모두 context vector에 가깝게 이동
- Context vector 와 차이가 많이나는 단어 'cat'은 학습량 (벡터의 변화량)도 큼

Softmax regression loss



• Softmax regression 은 알맞은 단어는 context vector 방향으로 당기고, 틀린 단어는 다른 방향으로 밀어냅니다.

$$h_{\theta}(x) = \begin{bmatrix} P(w_{(t)} = cat) \\ P(w_{(t)} = dog) \\ P(w_{(t)} = table) \\ \dots \\ P(w_{(t)} = Vocab) \end{bmatrix} = \frac{1}{\sum_{j=1}^{|V|} \exp(\theta^{(j)^T} x)} \begin{bmatrix} \exp(v(cat)^T v_I) \\ \exp(v(dog)^T v_I) \\ \exp(v(table)^T v_I) \\ \dots \\ \exp(v(Vocab)^T v_I) \end{bmatrix}$$



• Softmax regression 은 알맞은 단어는 context vector 방향으로 당기고, 틀린 단어는 다른 방향으로 밀어냅니다.

$$h_{\theta}(x) = \begin{bmatrix} P(w_{(t)} = cat) \\ P(w_{(t)} = dog) \\ P(w_{(t)} = table) \\ \dots \\ P(w_{(t)} = Vocab) \end{bmatrix} = \frac{1}{\sum_{j=1}^{|V|} \exp(\theta^{(j)^T} x)} \begin{bmatrix} \exp(v(cat)^T v_I) \\ \exp(v(dog)^T v_I) \\ \exp(v(table)^T v_I) \\ \dots \\ \exp(v(Vocab)^T v_I) \end{bmatrix}$$

• 'cat' 과 주변 단어들의 벡터들이 가까워지도록 단어 벡터를 이동시킵니다

- avg( V('a'), V('little'), V('sit'), V('on') ) 과 V('cat') 이 가까워집니다
- 각 단어 쌍 [(a, cat), (little, cat), (sit, cat), (on, cat)] 의 벡터를 가깝도록 만듭니다.

• Softmax regression 은 한 단어의 벡터를 학습하기 위해 V 개의 모든 단어 벡터를 수정하기 때문에 계산량이 큽니다.

• 학습 데이터  $\{(x^{(1)},y^{(1)}),...,(x^{(m)},y^{(m)}\}$  가 주어졌을 때, loss function은

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{V} 1\{w_{(t)} = cat\} \log \frac{\exp(\theta^{(j)^{T}} x^{(i)})}{\sum_{j=1}^{K} \exp(\theta^{(j)^{T}} x^{(i)})}\right]$$

- Negative sampling 은 cat 이 아닌 단어 일부를 샘플링하여 밀어냅니다.
  - A positive sample 'cat'과, 수십개 수준의 negative samples

$$h_{\theta}(x) = \begin{bmatrix} P(w_{(t)} = cat) \\ P(w_{(t)} = dog) \\ P(w_{(t)} = table) \\ ... \\ P(w_{(t)} = Vocab) \end{bmatrix} = \frac{1}{\sum_{j=1}^{|V|} \exp(\theta^{(j)^{T}}x)} \begin{bmatrix} \exp(v(cat)^{T}v_{I}) \\ \exp(v(dog)^{T}v_{I}) \\ \exp(v(table)^{T}v_{I}) \\ ... \\ \exp(v(Vocab)^{T}v_{I}) \end{bmatrix}$$



• (조금 더 디테일하게, 그래서 minor한 문제),

negative sampling을 할 때, 각 단어를 선택하는 확률 모델을 이용합니다

- 1. U(w)¾ / Z : unigram 기준 단어 w의 빈도수의 ¾ 승에 비례하여 샘플링
- 2.  $P(w) = 1 \sqrt{\frac{t}{f(w)}}$ : negative samples 인 단어 w 를 P(w) 확률로 제거
  - frequent / infrequent words 의 불균형을 맞추기 위함

• 'cat' 이 등장한 많은 문장이 있기 때문에, 한 번에 조금씩 V('cat') 을 학습하면 여러 문맥들을 모두 고려할 수 있습니다.

• [a, little, cat, sit, on, table], [my, pretty, cat, ran, out], ....

• 조금씩 학습 = 작은 learning rate

- Word2Vec은 단어간의 관계성이 추출되는 효과가 있습니다.
  - "V(나라) V(수도)" 벡터가 (나라, 수도) 에 공유됩니다.



- Word2Vec은 단어간의 관계성이 추출되는 효과가 있습니다
  - V(kings) V(king) = V(queens) V(queen)





- Word analogy 라 하여, 유사어 탐색 문제와 더불어 word embedding 의 정량적 평가 기준으로 널리 쓰입니다.
  - "kings: king = queens: queen" 와 같은 정답 데이터가 마련되어 있습니다.

### Doc2Vec

- Doc2Vec 은 Document Id 를 가상의 단어로 생각한 Word2Vec 입니다.
  - Document id와 word가 같은 embedding 공간에서 학습됩니다.



### Doc2Vec

- Doc2Vec 은 Document Id 를 가상의 단어로 생각한 Word2Vec 입니다.
  - Word2Vec처럼 2가지 모델 구조가 제안되었습니다.



- Document id 를 단어처럼 취급
- (doc id) 로 문서 내 모든 단어를 예측하는 Softmax regression



- Document id 를 단어처럼 취급
- (Doc id, the, cat, sat) 를 이용하여 sat 다음의 단어를 예측하는 Softmax regression

### Doc2Vec

• Doc2vec 은 한 문서에 등장한 단어 벡터들과 document id vector 를 한 곳에 모으는 효과가 있습니다.

Document = "my pet, a little cat sit on table"



# Paragraph2Vec

- Document vector 간의 관계도 학습됩니다.
  - 위키피디아의 각 문서 (doc)를 이용하여 Doc2Vec 을 학습하였습니다.

| Article               | Cosine<br>Similarity | Article               | Cosine<br>Similarity |
|-----------------------|----------------------|-----------------------|----------------------|
| Christina Aguilera    | 0.674                | Ayumi Hamasaki        | 0.539                |
| Beyonce               | 0.645                | Shoko Nakagawa        | 0.531                |
| Madonna (entertainer) | 0.643                | Izumi Sakai           | 0.512                |
| Artpop                | 0.640                | Urbangarde            | 0.505                |
| Britney Spears        | 0.640                | Ringo Sheena          | 0.503                |
| Cyndi Lauper          | 0.632                | Toshiaki Kasuga       | 0.492                |
| Rihanna               | 0.631                | Chihiro Onitsuka      | 0.487                |
| Pink (singer)         | 0.628                | Namie Amuro           | 0.485                |
| Born This Way         | 0.627                | Yakuza (video game)   | 0.485                |
| The Monster Ball Tour | 0.620                | Nozomi Sasaki (model) | 0.485                |

<sup>(</sup>a) Nearest neighbor of "Lady Gaga" (b) "Lady Gaga" – "American" + "Japanese"

### Paragraph2Vec

- "Lady Gaga" "American" + "Japanese"
  - "Lady Gaga" "American" : 미국과 관련된 단어를 전반적으로 제거합니다
  - "American" 에 관계된 단어를 "Japanese"의 단어로 치환한 것과 같습니다.

### Paragraph2Vec

- Document vector 는 문서 내의 단어 벡터 (Bag of words)를 압축합니다.
  - 단어 분포의 압축이기 때문에, 문서의 주제를 표현하기에 적합합니다.
  - 소수의 단어에 큰 영향을 받지 않습니다.
  - 특정한 단어의 유무가 중요한 작업에는 적합하지 않습니다.

### GloVe

- Word2Vec 은  $P(W_t|W_{[t-2:t+2]})$ 처럼 단어의 등장 확률을 보존합니다.
- GloVe 는 두 단어  $w_{i}$ ,  $w_{j}$  의 co-occurrence frequency  $X_{ij}$ 를 보존합니다.



$$J = \sum_{i,j} f(X_{ij}) * (w_i^T w_j + b_i + b_j - log(X_{ij}))^2$$

- $f(X_{ij})$  는 co-occurrence 에 따른 중요도입니다.
- 빈도수가 높은 두 단어  $w_i$ ,  $w_j$  에 집중합니다.

- Out of vocabulary 문제를 해결하기 위하여 제안되었습니다.
- Word Piece Model 도 미등록단어 문제를 해결하기 위하여 단어를 subwords 로 표현합니다.
  - 그러나 WPM 은 겹치지않는 subwords 를 이용합니다.
  - 'appear' → 'app' + 'ear'

- FastText 는 bag of character n-gram으로 단어를 표현합니다.
  - 단어의 시작과 끝을 구분하기 위해 <, > 추가
  - Character 3-gram:
    - 'where' → '<wh, whe, her, ere, re>'
  - 단, "<, >"를 추가한 단어 자체도 special unit 으로 추가됩니다
    - 'where' → '<wh, whe, her, ere, re>, <where>'
  - 논문에서는 3 ~ 6 gram 의 모든 subwords 를 합쳐서 사용

- ullet 단어 w 의 벡터  $oldsymbol{W_{(t)}}$  를 subwords 벡터의 합으로 표현합니다
  - W =where
  - $W_{(t)} = \sum_{g \in G_w} z_g$
  - 3 6 grams 을 이용한다면,
    - $\mathbf{z}_{g} = [\langle wh, whe, ere, re \rangle, \langle whe, wher, ..., \langle where, where \rangle]$

- Fasttext 는 노이즈가 있는 단어도 비슷한 벡터로 표현할 수 있습니다.
  - where  $\rightarrow$  <wh, whe, her, ere, re> 서로 다른 subwords
  - wherre → <wh, whe, her, err, rre, re>

- 대부분의 subwords 가 공통으로 존재하기 때문에 'where', 'wherre' 의 벡터는 비슷합니다.
  - 각 단어의 벡터는 subword vectors 의 합으로 표현됩니다.

### Word2Vec Loss

$$\log(1 + \exp(-w_{(t)}^T w_{[t-w:t+w]})) + \sum_{n \in N_{t,c}} \log(1 + \exp(w_{(t)}^T w_n))$$



### **FastText Loss**

$$\log \left( 1 + \exp(-\sum_{g \in G_W} w_g^T w_{[t-w:t+w]}) \right) + \sum_{n \in N_{t,c}} \log \left( 1 + \exp\left(\sum_{g \in G_W} w_g^T w_{[t-w:t+w]}\right) \right)$$

loss from positive samples

loss from negative samples

- FastText 에서는 word 와 context 의 subwords 끼리 가까워집니다
- 문맥적인 의미가 비슷한 <young 과 adole, adoles, doles 는 높은 similarity 를 지닙니다
  - 빨간색일수록 두 subword vectors 간의 유사도는 큽니다.



#### FastText

- 학습 때 포함되지 않은 단어 (OOV) 는 subword vectors 의 합으로 word representation inference 가 이뤄집니다
- Word2Vec 에서 학습이 잘 이뤄지지 않던 infrequent words 도 subwords 에 의하여 word vector 가 "enriching" 됩니다

• Facebook Research github\* 에는 세 개의 논문이 참조되어 있습니다.

- 1. Enriching Word Vectors with Subword Information
- 2. Bag of Tricks for Efficient Text Classification
- 3. FastText.zip: Compressing text classification models (효율적인 문서 분류를 위한 모델 압축)

• 앞서 말한 unsupervised word embedding 은 1번 논문입니다.

- 2 번 논문은 문서 분류를 위한 단어 임베딩 방법 입니다.
  - Word2Vec, Doc2Vec, GloVe, FastText (1 번 논문) 은 다른 목적을 위한 word embedding 이 아니었습니다.
  - 이들은 단어의 문맥이나 (Word2Vec), 문서 내 단어 분포를 보존합니다 (Doc2Vec).
  - Document classification 이 목적이기 때문에 이를 위한 단어 벡터를 학습합니다.

- Document classification 이 목적입니다.
  - 문서 분류의 정답 label 이 있으니 이 정보를 적극적으로 활용하여 이에 적합한 단어의 임베딩 벡터를 학습해야 합니다.
  - 문맥의 유사성 기준에서는 'good', 'bad' 은 비슷합니다.
  - 하지만 감성 분류에서는 'good' 과 'bad' 는 서로 다르게 표현되야 합니다.

- 문서 내 모든 단어가 average 됩니다.
- 단어가 아닌 label 을 예측합니다.



- 다양한 데이터의 실험에서 좋은 성능을 보여줍니다.
  - 복잡한 딥러닝 모델들과도 비슷한 성능을 보입니다.
  - 애초에 Bag of Words 모델이 기본적으로 좋은 성능을 보입니다.

| Model                             | AG           | Sogou        | DBP          | Yelp P.      | Yelp F.      | Yah. A.      | Amz. F.      | Amz. P.      |
|-----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| BoW (Zhang et al., 2015)          | 88.8         | 92.9         | 96.6         | 92.2         | 58.0         | 68.9         | 54.6         | 90.4         |
| ngrams (Zhang et al., 2015)       | 92.0         | 97.1         | 98.6         | 95.6         | 56.3         | 68.5         | 54.3         | 92.0         |
| ngrams TFIDF (Zhang et al., 2015) | 92.4         | 97.2         | 98.7         | 95.4         | 54.8         | 68.5         | 52.4         | 91.5         |
| char-CNN (Zhang and LeCun, 2015)  | 87.2         | 95.1         | 98.3         | 94.7         | 62.0         | 71.2         | 59.5         | 94.5         |
| char-CRNN (Xiao and Cho, 2016)    | 91.4         | 95.2         | 98.6         | 94.5         | 61.8         | 71.7         | 59.2         | 94.1         |
| VDCNN (Conneau et al., 2016)      | 91.3         | 96.8         | 98.7         | 95.7         | 64.7         | 73.4         | 63.0         | 95.7         |
| fastText, $h = 10$                | 91.5<br>92.5 | 93.9<br>96.8 | 98.1<br>98.6 | 93.8<br>95.7 | 60.4<br>63.9 | 72.0<br>72.3 | 55.8<br>60.2 | 91.2<br>94.6 |
| fastText, $h = 10$ , bigram       | 92.3         | 90.8         | 96.0         | 93.7         | 03.9         | 12.3         | 00.2         | 94.0         |

**Table 1:** Test accuracy [%] on sentiment datasets. FastText has been run with the same parameters for all the datasets. It has 10 hidden units and we evaluate it with and without bigrams. For char-CNN, we show the best reported numbers without data augmentation.

• FastText 은 특정 label 에 자주 등장한 단어를 label 방향으로 당겨옵니다.



• FastText 은 특정 label 에 자주 등장한 단어를 label 방향으로 당겨옵니다.



Document: [이, 영화, 진짜, 꿀잼, 완전, 재밌어, 추천, 해]

• 여러 labels 에 모두 등장하는 단어는 어떤 label 과도 가까워지지 않으면 됩니다.



- Bigram + Linear model 은 document classification 의 base model 입니다.
  - 'not bad' 는 negative 가 아니지만, unigram 은 이를 반영하지 못합니다.
  - Bigram 까지만 이용해도 이 문제는 충분히 해결됩니다.



# Notes of embedding methods

• Levy and Goldberg (2014) 는 Word2Vec 의 skip-gram 은 (word, context) co-occurrence 에 Shifted PPMI 를 적용한 것과 같음을 증명하였습니다.

$$loss = \sum_{w \in V_W} \sum_{c \in V_C} \#(w, c) \cdot \left( \log \sigma(\overrightarrow{w} \cdot \overrightarrow{c}) + k \cdot E_{C_N P_D} [\log \sigma(-\overrightarrow{w} \cdot \overrightarrow{c_N})] \right)$$

$$\vec{w} \cdot \vec{c} = \log \left( \frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \cdot \frac{1}{k} \right) = \log \left( \frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \right) - \log(k)$$

• (word – context) pair 의 context 는 word 와 앞/뒤로 windows 안에 함께 등장한 단어입니다.



• Shifted PPMI 는 k 보다 큰 PMI 만 값을 보존하며, 이보다 작은 값은 0 으로 변환합니다.

$$SPPMI_k(x,y) = \max(0, PMI(x,y) - \log(k))$$

• Co-occurrence + PMI 를 이용하는 방법을 explicit representation 이라 합니다. 문맥의 단어를 해석할 수 있는 장점이 있습니다.

• Word2Vec 처럼 dense vector representation 을 얻기 위해서, co-occurrence matrix 에 SVD 를 적용할 수 있습니다.

# Skip-gram vs. GloVe

• Skip-gram 은 (Shifted) PMI 정보를 학습합니다.

$$\vec{w} \cdot \vec{c} = \log \left( \frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \cdot \frac{1}{k} \right) = \log \left( \frac{\#(w,c) \cdot |D|}{\#(w) \cdot \#(c)} \right) - \log(k)$$

# Skip-gram vs. GloVe

• GloVe 에서 bias 를 학습하지 않는다면, co-occurrence 값을 학습합니다.

$$J = \sum_{i,j} f(X_{ij}) * (w_i^T w_j - log(X_{ij}))^2$$

# Skip-gram vs. GloVe

• 각 단어의 bias 를 각 단어의 빈도수로 지정하면 GloVe 의 embedding vector 도 co-occurrence 의 PMI 를 학습합니다.

$$J = \sum_{i,j} f(X_{ij}) * (w_i^T w_j + b_i + b_j - \log(X_{ij}))^2$$

• 우리는 bias 를 단어의 빈도수로 고정하지는 않습니다. 하지만 GloVe 는  $b_i$  가  $w_i$  의 빈도수와 비슷한 값이 되도록 학습합니다. • Word2Vec, GloVe, explicit representation 모두 (word, context) 의 co-occurrence 정보를 이용합니다.

# Two embedding space in Word2Vec

- 앞의 Word2Vec 의 설명은 개념적인 설명이며, 실제 구현체에서는 두 개의 lookup tables 이 존재하기도 합니다
  - Target / context words 가 서로 다른 lookup tables 을 이용합니다



# Two embedding space in Word2Vec

- 앞의 Word2Vec 의 설명은 개념적인 설명이며, 실제 구현체에서는 두 개의 lookup tables 이 존재하기도 합니다
  - Context vector 주위로 target words 가 움직이는 현상은 동일하며,
  - 우리는 target words embedding vector 를 이용합니다.
- Context vector 를 만들 때 concatenation 을 한다면 target words 의 lookup tables 의 각 벡터의 크기는 context vector 보다 2 × w 배 큽니다.

# Highlighting contexts

- GloVe 는 harmonic weight function 을 이용합니다.
  - Co-occurrence 를 계산할 때, 기준 단어와 가까울수록 유의미한 문맥일 가능성이 높습니다.
  - window = 3 일 때, 거리에 반비례한 가중치,  $[\frac{1}{3}, \frac{2}{3}, \frac{3}{3}]$  을 곱한 co-occurrence 를 이용한다면 문맥이 더 잘 강조될 수 있습니다.

# Highlighting contexts

• Negative sampling 구현 시, context words 는 negative samples 이 될 수 없도록 강제하기도 합니다.

# Handling rare words

- Word2Vec 의 negative sampling 은 아래의 분포를 이용합니다.
  - $U(w)^{3/4} / Z$
- 이는 PMI 를 다음처럼 변형하는 것과 같습니다.
  - $PMI_{\alpha}(w,c) = \log \frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}(c)}$ ,

where 
$$\widehat{P}_{\alpha}(c)=rac{\#(c)^{lpha}}{\Sigma\#(c)^{lpha}}$$
 ,  $0, normally  $lpha=0.75$$ 

• Infrequent prob. 에 의한 왜곡을 방지합니다.