

UJI DUA RATA-RATA

TATIK WIDIHARIH

DUA POPULASI INDEPENDEN

VARIANSI SAMA (A)

Statistik hitung:

$$t_{hit} = \frac{\bar{X}_1 - \bar{X}_2 - d_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Digunakan tabel T Studden dengan derajad bebas n_1+n_2-2

Uji dua sisi:

$$H_0: \mu_1 - \mu_2 = d_0$$

 $H_1: \mu_1 - \mu_2 \neq d_0$

Kriteria uji

Tolak H₀ jika t_{hit} terletak pada daerah arsir

Uji satu sisi (kanan)

Rumusan hipotesis:

- ▶ $H_0: \mu_1 \mu_2 \le d_0$
- \blacktriangleright H₁: μ_1 μ_2 > d₀, tolak H₀ jika t_{hit} terletak pada daerah arsir

Uji satu sisi kiri

Rumusan hipotesis:

 $H_0: \mu_1 - \mu_2 \ge d_0$

 $H_1: \mu_1 - \mu_2 < d_0$ tolak H_0 jika t_{hit} terletak pada daerah arsir

VARIANSI TIDAK SAMA (B)

Statistik Hitung

$$t_{hit} = \frac{\bar{X}_1 - \bar{X}_2 - d_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

Digunakan tabel T Studden dengan derajad bebas k

$$k = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 - 1}}$$

Pemilihan kondisi A atau B dengan uji kesamaan variansi

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$

Statistik hitung:

$$F_{hit} = \frac{S_1^2}{S_2^2}$$

Tolak
$$H_0$$
 Jika: $F_{hit} \ge F_{n_1-1;n_2-1;\frac{\alpha}{2}}$ atau $F_{hit} \le F_{n_1-1;n_2-1;\left(1-\frac{\alpha}{2}\right)}$

Contoh 1

Ada dua metode optimasi (1 dan 2) yang akan diuji apakah kedua metode tersebut mempunyai waktu running (dalam menit) yang sama bila digunakan paket R. Diperoleh data waktu running sebagai berikut:

Metode 1	1.54 1.76 1.79 1.51 1.37 1.69 1.71 1.80 1.78 1.61 1.59
Metode 2	1.62 1.48 1.53 1.72 1.29 1.52 1.46 1.39 1.28 1.70 1.53

Bagaimana kesimpulan anda, ujilah dengan α=5%

Penyelesaian

$$H_0: \mu_1 - \mu_2 = 0 \text{ vs } H_1: \mu_1 - \mu_2 \neq 0$$

 $n_1 = 11, \ \bar{X}_1 = 1.65 \ S_1^2 = 0.0192$

$$n_2 = 11$$
, $\bar{X}_2 = 1.5018$ $S_2^2 = 0.0212$

Untuk memilih uji rata-rata menggunakan kondisi A atau B dilakukan uji kesamaan variansi terlebih dahulu.

$$H_0: \sigma_1^2 = \sigma_2^2 \ vs \ H_1: \sigma_1^2 \neq \sigma_2^2$$

$$F_{hit} = \frac{S_1^2}{S_2^2} = \frac{0.0192}{0.0212} = 0.9056$$

$$F_{10;10;2.5\%} = 3.72$$
 dan $F_{10;10;97.5\%} = \frac{1}{3.72} = 0.269$

Kesimpulan : H_0 : $\sigma_1^2 = \sigma_2^2$ diterima, sehingga gunakan kondisi A

$$t_{hit} = \frac{\bar{X}_1 - \bar{X}_2 - 0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} = \frac{(11 - 1).0.0192 + (11 - 1).0.0212}{11 + 11 - 2} = 0.020158$$

$$S_p = \sqrt{0.020158} = 0.14198$$

$$t_{hit} = \frac{1.65 - 1.5018 - 0}{0.14198 \sqrt{\frac{1}{11} + \frac{1}{11}}} = 2.4477$$

$$t_{20,2.5\%} = 2.086$$

Kesimpulan: tolak H₀ rata-rata waktu running metode 1 lebih lama dari metode 2

Contoh 2

Dua jenis varitas yaitu lokal dan baru dicobakan untuk diketahui produksinya.

Diduga selisih rata-rata produksi varitas baru dengan varitas local lebih dari 2 kw, diperoleh data:

Baru	74.94 84.14 68.69 38.60 60.77 68.11 42.99 42.20 64.05 43.90	
	52.09 68.22 45.77 73.27 52.18 63.98	
Lokal	41.33 50.67 43.16 51.11 54.38 47.60 46.60 58.60 46.95 49.27	ı
	45.15 51.62 43.82 43.32 50.05 38.74 59.61 53.77 50.50 52.86	

bagaimana kesimpulan anda ujilah dengan α = 10%

Penyelesaian

$$H_0: \mu_B - \mu_L \le 2 \ vs \ H_1: \mu_B - \mu_L > 2$$
 $n_B = 16, \ \bar{X}_B = 58.66133 \ S_B^2 = 190.4728$ $n_L = 20, \ \bar{X}_L = 48.9555 \ S_L^2 = 30.15064$

Untuk memilih uji rata-rata menggunakan kondisi A atau B dilakukan uji kesamaan variansi terlebih dahulu.

$$H_0: \sigma_B^2 = \sigma_L^2 \text{ vs } H_1: \sigma_B^2 \neq \sigma_L^2$$

$$F_{hit} = \frac{S_B^2}{S_L^2} = \frac{190.4728}{30.15064} = 6.3174$$

$$F_{15;19;5\%} = 2.23$$
 dan $F_{15;19;97.5\%} = \frac{1}{F_{19;15;5\%}} = \frac{1}{2.33} = 0.4292$

Kesimpulan: H_0 : $\sigma_B^2 = \sigma_L^2$ ditolak, sehingga gunakan kondisi B.

$$t_{hit} = \frac{\bar{X}_B - \bar{X}_L - 2}{\sqrt{\frac{S_B^2}{n_B} + \frac{S_L^2}{n_L}}} = \frac{58.99375 - 48.9555 - 2}{\sqrt{\frac{190.4728}{16} + \frac{30.15064}{20}}} = 2.1949$$

Derajad bebas dari tabel T

$$k = \frac{\left(\frac{S_B^2}{n_B} + \frac{S_L^2}{n_L}\right)^2}{\left(\frac{S_B^2}{n_B}\right)^2 + \left(\frac{S_L^2}{n_L}\right)^2} = 17.56$$

Kesimpulan: H₀ ditolak, selisih rata-rata produksi varitas baru dengan varitas local lebih dari 2 kw

UJI BERPASANGAN

Pasangan	1	2	3 n
Pengamatan 1	X_1	X_2	X ₃ X _n
Pengamatan 2	Υ ₁	Y_2	Y ₃ Y _n
d = X-Y	d_1	d_2	d ₃ d _n

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

$$S_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$$

Hipotesis dan statistik hitung

$$H_0: \mu_D = d_0 \ vs \ H_1: \mu_D \neq d_0$$

$$H_0: \mu_D \le d_0 \ vs \ H_1: \mu_D > d_0$$

$$H_0: \mu_D \ge d_0 \ vs \ H_1: \mu_D < d_0$$

Statistik hitung:

$$t_{hit} = \frac{\bar{d} - d_0}{S_D / \sqrt{n}}$$

dibandingkan dengan tabel T Studdent dengan derajad bebas n-1

Contoh 3

Suatu program diet baru dapat menurunkan berat badan lebih dari 1,0 kg selama 2 minggu. Diasumsikan berat badan berdistribusi normal, dan dari 10 orang yang mengikuti program ini diperoleh data berat badan sebagai berikut:

pasangan	1	2	3	4	5	6	7	8	9	10
sebelum	58.5	60.3	61.7	69	64	62.6	56.7	72.3	69.4	70.5
sesudah	55.2	59.3	55.2	72.9	57.2	60.2	54.5	69.1	65.3	67.2

bagaimana kesimpulan anda ujilah dengan α = 5%

Penyelesaian

pasangan	1	2	3	4	5	6	7	8	9	10
sebelum	58.5	60.3	61.7	69	64	62.6	56.7	72.3	69.4	70.5
sesudah	55.2	59.3	55.2	72.9	57.2	2 60.2	54.5	69.1	65.3	67.2
d	3.30	1.00	6.50	-3.9	6.80	2.40	2.20	3.2	4.10	3.3

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = 2.89$$

$$S_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2 = 8.9566$$

$$H_0: \mu_D \le 1 \ vs \ H_1: \mu_D > 1$$

$$t_{hit} = \frac{\bar{d} - d_0}{S_D / \sqrt{n}} = \frac{2.89 - 1}{2.9928 / \sqrt{10}} = 1.9971$$

$$t_{9;5\%} = 1.833$$

Kesimpulan: H₀ ditolak, Suatu program diet baru dapat menurunkan berat badan lebih dari 1,0 kg selama 2 minggu

Jetima Kasik

