

Predicting a Continuous Outcome

Data Mining Prof. Dawn Woodard School of ORIE Cornell University

The Regression Task

- So far we have considered the classification task
- In this task the goal is to predict the value of a categorical outcome
- In order to do this we have training data that includes the value of both predictors and outcome
- Another type of supervised learning is prediction of the value of a continuous outcome; this is called the regression task
- We will still have training data that includes the value of both predictors and outcome

Let Y_i be the outcome variable, and x_{ij} be the jth predictor value, for the ith observation. Multiple linear regression does prediction of Y_i as a linear function of the predictors:

Multiple linear regression model with *p* predictors:

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \ldots + \beta_{p}x_{ip} + \epsilon_{i}$$

$$\epsilon_{i} \stackrel{\text{iid}}{\sim} N(0, \sigma^{2})$$

$$i = 1, \ldots, n$$

5

The assumptions of multiple linear regression are:

The training step for multiple linear regression consists of:

The prediction step consists of:

Example: Cheese Data

Example: 30 samples of cheese; for each we know:

Taste: Subjective taste test score, obtained by combining the scores of several tasters

Acetic: Log of concentration of acetic acid

H2S: Log of concentration of hydrogen sulfide

Lactic: Concentration of lactic acid

Case 1 2 3	taste 12.3 20.9 39	Acetic 4.543 5.159 5.366	H2S 3.135 5.043 5.438	Lactic 0.86 1.53 1.57
4	47.9	5.759	7.496	1.81
5	5.6	4.663	3.807	0.99
6	25.9	5.697	7.601	1.09
7	37.3	5.892	8.726	1.29
8	21.9	6.078	7.966	1.78
9	18.1	4.898	3.85	1.29
10	21	5.242	4.174	1.58
1 1	3 V C	L 71	C 110	1 60

Goal: to predict taste based on the chemical composition. Why?

Pairwise scatterplots (interpretation?):

How would you characterize the relationships?

So fit the linear regression model with Y_i equal to the taste score, and the predictors x_{i1} , x_{i2} , and x_{i3} equal to the values of Acetic, H2S, and Lactic.

■ R code for TRAINING step on cheese data (estimation of $\beta_0, \beta_1, \beta_2, \beta_3, \sigma^2$ using the 30 cheese samples):

```
cheeseLM = Im(formula = taste \sim acetic + h2s + lactic, data = cheese)
```

summary(cheeseLM)

R Syntax

Side note about R:

- In R, functions like Im have arguments, like formula and data
- When you call the function you can write: myFunction(myArgument1 = "hello", myArgument2 = 5)
- It also works if you leave out the argument names, but only if all the arguments are in the correct order: myFunction("hello", 5)

Cheese Linear Model

Results for cheese data:

Cheese Linear Model

Mark the estimate of β_0 Mark the estimate of β_2 , the regression coefficient for H2S Mark the estimate of σ

```
Call: Im(formula = taste ~ acetic + h2s + lactic, data = cheese)
Residuals:
   Min 10 Median 30 Max
-17.39 -6.612 -1.009 4.908 25.45
Coefficients:
             Value Std. Error t value Pr(>|t|)
(Intercept) -28.8768 19.7354 -1.4632 0.1554
    acetic 0.3277 4.4598 0.0735 0.9420
       h2s 3.9118 1.2484 3.1334 0.0042
    lactic 19.6705 8.6291 2.2796 0.0311
Residual standard error: 10.13 on 26 degrees of freedom
Multiple R-Squared: 0.6518
F-statistic: 16.22 on 3 and 26 degrees of freedom, the p-value is
  3.81e-006
```


- Recall that in naive Bayes we calculated $Pr(Y|X_1,...,X_p)$ from our model in order to predict the value of Y.
- In linear regression we are also calculating $Pr(Y|X_1,...,X_p)$, the distribution of Y given $X_1,...,X_p$, from our model, to predict the value of Y

■ For the cheese example, what do we predict the taste rating to be if Acetic = 5.1, H2S = 9, and Lactic = 1.2?

When should we transform the (outcome or predictor) variables?

What do we do when we're predicting a continuous outcome and the relationship between the predictors and outcome is nonlinear?

Option 1:

Transform the predictor so that the relationship is linear

Note: This works sometimes but not always.

example of when this works:

Example of when this doesn't work:

Reason:

Option 2:

Include polynomial terms in the regression:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \epsilon_i$$

Option 3:

■ Discretize the predictor:

e.g.: cut into $X_3 < a$, $X_3 \ge a$; then the linear regression for this new binary predictor looks like:

If you instead discretize into more categories you can get a more flexible model

- A method based on this discretization idea is regression trees.
- The corresponding method for categorical outcomes is called <u>classification trees</u>; we saw an informal version of these in the first week of class.

Ex 1: One predictor X_1

Ex 2: 2 continuous predictors X_1 , X_2

Regression Trees

Regression tree benefits:

Regression Trees

Back to Ex 2:

Notice the **interaction:** the effect of X_1 on \hat{Y} depends on the value of X_2 .