4.2 关系的合成

1、 合成的定义

设 R_1 是从A到B的关系, R_2 是从B到C的关系,从A到C的合成关系记作 $R_2 \circ R_1$ (或 R_2R_1),定义为

 $\left\{ \langle x, z \rangle \middle| x \in A \land z \in C \land \exists y (y \in B \land \langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2) \right\}$

关系图: A C

例如: 如果 R_1 是 "…是…的兄弟", R_2 是 "…是…的父亲", 那么 $R_2 \circ R_1$ 就是 "…是…的叔伯", $R_2 \circ R_2$ 就是 "…是…的祖父"。

例2 设
$$A=\{1,2,3,4\}$$
, $R=\{<1,1>,<1,3>,<2,4>\}$, $S=\{<1,4>,<3,2>,<4,3>\}$, 求 $R\circ S$, $S\circ R\circ$

注:不一定有 $R \circ S = S \circ R$ 。

定理 $1(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$ 即合成运算满足结合律

定理2

$$(1)R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$$

$$(2)\left(R_2 \cup R_3\right) \circ R_4 = \left(R_2 \circ R_4\right) \cup \left(R_3 \circ R_4\right)$$

$$(3)R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$$

$$(4)(R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4)$$

$$(5)$$
若 $R_2 \subseteq R_3$,则 $R_1 \circ R_2 \subseteq R_1 \circ R_3$, $R_{,2} \circ R_4 \subseteq R_3 \circ R_4$

2、关系R 的幂

定义:设R为A上的关系,n为自然数,则R的n次幂定义为:

- (1) $R^0 = \{ \langle x, x \rangle | x \in A \} = I_A$
- (2) $R^{n+1}=R^n \circ R$

例 设 $A = \{a,b,c,d\}$, $R = \{\langle a,b \rangle,\langle b,a \rangle,\langle b,c \rangle,\langle c,d \rangle\}$, 求 R^0 , R^2 , R^3

定理3 设R为A上的二元关系,m,n为自然数,那么

- $(1) R^m \circ R^n = R^{m+n}$
- $(2) (R^m)^n = R^{mn}$

3、合成关系的矩阵表达

设R是从A到B的关系,S是从B到C的关系,且R,S的关系矩阵分别为 M_R , M_S ,则R,S的合成关系矩阵 $M_{S \circ R} = M_R M_S$ 。

(布尔矩阵的布尔乘法): 把矩阵乘法中的矩阵加 法改为\,,乘法改为\,,其它不变。

逻辑加法: 0+0=0, 0+1=1,

$$1+0=1$$
, $1+1=1$

 $S \circ R$ 的关系图可将R, S的关系图连接起来求得。

例3 设 $A=\{1,2,3,4\}$,R,S均为A上的二元关系, $R = \{<1,4>,<2,3>,<3,2>\}, S = \{<2,1>,<3,2>,<4,3>\},$ 用关系矩阵求 $S \circ R$,并画出 $S \circ R$ 的关系图。

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{S} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{S} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_{S \circ R} = M_R \cdot M_S = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A \xrightarrow{A} A \xrightarrow{A} A$$

$$A \xrightarrow{A} A \xrightarrow{A} A$$

$$A \xrightarrow{A} A \xrightarrow{A} A$$

练习 设 $A=\{1,2,3,4\}$,均为A上的二元关系 $R=\{<1,2>,<1,3>,<2,3>,<2,4>,<3,4>\}$,求R, R^2 , R^3 的关系矩阵与关系图

如果 $R \circ R \subset R$,关系R称为传递的。

例4 设
$$A = \{1,2,3\}$$
, A 上的关系 $R_1 = \{\langle 1,2\rangle,\langle 1,3\rangle\}$ $R_2 = \{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle,\langle 2,3\rangle\}$ 判断 R_1,R_2 是否传递的。

解: 因 $R_1 \cdot R_1 = \phi \subseteq R_1$, 所以 R_1 是传递的。

因
$$R_2 \cdot R_2 = \{\langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle\} \not\subseteq R_2$$
,所以 R_2 不是传递的。

3、逆关系

定义:设A和B是任意两个集合,若R是A,B上的二元关系,则B,A 上的二元关系: {<b,a>|<a,b> $\in R$ }称为关系R的逆关系,记作R-1

- 例 (1) Z上的关系<的逆关系是>
 - (2) 集合族上的关系⊆的逆关系是⊇

定理1 $R \subseteq A \times B$,R的关系矩阵为 M_R ,则 R^{-1} 关系矩阵 $M_R = (M_R)^{\mathrm{T}}$ 。

例5 设 $A=\{1,2,3,4\}$,A上的二元关系 $R=\{<1,2>,<1,3>,<2,3>,<2,4>,<3,4>\}$,求 R^{-1} 的关系矩阵与关系图

定理2 设R, R_1 , R_2 是集合A,B上的二元关系,则

(1)
$$(R^{-1})^{-1}=R$$
;

(2)
$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$$

(3)
$$(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$$

(4)
$$(A \times B)^{-1} = B \times A$$
;

(5)
$$\Phi^{-1} = \Phi$$

(6)
$$R_1 \subseteq R_2$$
,则 $R_1^{-1} \subseteq R_2^{-1}$

定理3 设 R_2 是A,B上的二元关系, R_1 是B,C上的二元关系,则

$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$

例6 设 $A=\{a,b,c\}$,R,S为A上的二元关系,其关系矩阵分别为

$$\boldsymbol{M}_{R} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \boldsymbol{M}_{S} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

关系在各种运算下保持原有特性问题。

原有性质运算	自反性	反自反性	对称性	反对称性	传递性
R^{-1}	√	√	√	√	*
$R_1 \cap R_2$	√	✓	✓	√	*
$R_1 \bigcup R_2$	√	✓	✓	×	×
$R_1 - R_2$	×	√	√	√	×
$R_1 \circ R_2$	√	×	×	×	×

4.3 关系的闭包

定义 给定集合X,R是X中的二元关系,若有另一关系 R' 满足下列条件:

- (1) R' 是自反的(对称的、传递的);
- $(2) R' \supset R$;
- (3) 对于任一自反(对称、可传递)关系R'',若 $R'' \supseteq R$,则必有 $R'' \supseteq R'$;则称R'是R的自反(对称、传递)闭包,并依次用r(R),s(R),t(R)来表示之。

定理1 给定集合X,R是X上的二元关系,则

- (1) R是自反的当且仅当 r(R)=R;
- (2) R是对称的当且仅当 s(R)=R;
- (3) R是可传递的当且仅当 t(R)=R。

例如: 设
$$X=\{a,b\}$$
, $R=\{\langle a,a\rangle \langle a,b\rangle \}$, 则

$$r(R) = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, b \rangle \},$$

 $s(R) = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle \},$
 $t(R) = \{ \langle a, a \rangle, \langle a, b \rangle \} = R$

构造R的自反、对称和传递闭包的方法就是给R 补充必要的序偶,使它具有所希望的特性。

定理2 设R是X上的二元关系, I_x 是X上的恒等 关系,则有 $r(R) = R \cup I_x$.

定理3 设R是X上的二元关系,则有 $s(R) = R \cup R^{-1}$.

定理4 设R是X上的二元关系,则有

$$t(R) = R \cup R^2 \cup R^3 \cup \cdots \cup_{i=1}^{\infty} R^i.$$

例2: 设 $X=\{a,b,c\}$,
二元关系 $R=\{\langle a,b\rangle \langle b,c\rangle \langle c,a\rangle \}$,
求r(R), s(R), t(R)。

解:
$$r(R)=R \cup I_x = \{ < a, b > < b, c > < c, a > < a, a > < b, b > < c, c > \}$$
.
$$s(R)=R \cup R^{-1} = \{ < a, b > < b, a > < b, c > < < c, b > < c, a > < a, c > \} .$$

$$t(R)=\{ < a, b > < b, c > < c, a > < a, c > \} .$$

$$< a, c > < b, a > < c, b > < c, c > \}.$$

定理5 给定集合X,且 |X| = n,设R是X上的二元关系,则有

$$t(R) = R \bigcup R^2 \bigcup R^3 \bigcup \cdots \bigcup R^k$$
$$= \bigcup_{i=1}^k R^i, \quad (0 \le k \le n).$$

例3: 设 $X=\{a,b,c\}$, |X|=3, 二元关系 $R=\{\langle a,b\rangle \langle b,c\rangle \langle c,a\rangle \}$, 求 t(R).

解: $R^2 = R \circ R = \{ \langle a, c \rangle \langle b, a \rangle \langle c, b \rangle \}$, $R^3 = R^2 \circ R = \{ \langle a, a \rangle \langle b, b \rangle \langle c, c \rangle \}$, $R^4 = R$,

 例4: 设 $X=\{a,b,c,d\}$, $R=\{\langle a,b\rangle\langle b,c\rangle\langle c,d\rangle\},$ 求 t(R).

解:
$$R^2 = \{ \langle a, c \rangle \langle b, d \rangle \}$$
,
 $R^3 = \{ \langle a, d \rangle \}$, $R^4 = \emptyset$
 $t(R) = R \cup R^2 \cup R^3 \cup R^4$
 $= \{ \langle a, b \rangle \langle b, c \rangle \langle c, d \rangle$
 $\langle a, c \rangle \langle b, d \rangle \langle a, d \rangle \}$.