Design and Fabrication of VLSI Devices

Objectives:

- To study the materials used in fabrication of VLSI devices.
 - To study the structure of devices and process invovled in fabricating different types of VLSI circuits.

Fabrication Materials

DIfferent types of fabrication materials

Insulators

Conductors

Semiconductors

High electrical resistance

Used for isolation of devices

e.g. Silicon dioxide

Low electrical resistance

Used for conducting & formation

e.g. Gold & aluminum

Electrical resistivity at room temp.

Used for formation of devices

e.g. Silicon

Electrons and Holes

- Holes travel as do electrons.
- Material can be enriched in holes or electrons by introducing impurities.
- Holes in crystals can be enriched by embedding some boron atoms.
- Electrons in crystals can be enriched by embedding phosphorus atoms.

The Three Regions in a n-p Junction

Formation of a Diffused Junction

A mask is a specification of geometric shapes that need to be created on a certain layer. Masks are used to create specific patterns of each material in a sequential manner and create a complex pattern of several layers.

TTL Transistor

A nMOS Transistor

Enchancement Mode

A nMOS Transistor

Depletion Mode

Fabrication of VLSI Circuits

- 1. Create
- 2. Define
- 3. Etch

Photholithographic Process

Details of Fabrication Processes

Basic Design Rules

- 1. Size Rules
- 2. Separation Rules
 - 3. Overlap Rules

Basic nMOS Design Rules

	Diffusion Region Width	2λ
	Polysilicon Region Width	2λ
	Diffusion-Diffusion Spacing	3λ
~	Poly-Poly Spacing	2λ
	Polysilicon Gate Extension	2λ
	Contact Extension	λ
	Metal Width	3λ

Size and Separation Rules

Incorrectly and Correctly Formed Channels

Overlap Rules for Contact Cuts

(b)

Layout of Basic Devices

- nMOS Inverter
- CMOS Inverter
- nMOS NAND Gate
- nMOS NOR Gate
- CMOS NAND Gate
- CMOS NOR Gate

Complicated devices are constructed by using basic devices.

An nMOS Inverter

A CMOS Inverter

Comparison of CMOS and MOS Characteristics

CMOS	MOS	
Zero static power	Power is dissipated	
dissipation	in the circuit with	
	output of gate at '0'	
Power dis-	Power dis-	
sipated during logic	sipated during logic	
transition	transition	
Requires 2N devices	Requires (N+1) de-	
for	vices for N inputs	
N inputs for comple-		
mentary static gates		
CMOS encourages	Depletion, load and	
regular layout styles	different driver tran-	
	sistors create irregu-	
	larity in layout	

A nMOS NAND Gate

A nMOS NOR Gate

A CMOS NAND Gate

A CMOS NOR Gate

Additional Fabrication Factors

- Scaling
- Parasitic Effects
- Yield Statistics and Fabrication Costs
- Delay Computation
- Noise and Crosstalk
- Power Dissipation

Scaling and Parasitic Effects

The process of shrinking the layout, in which every dimension is multiplied by a factor is called *scaling*.

Parameter	Full scaling	CV scaling
Dimensions: width, length, oxide thickness	1/S	1/S
Voltages: Power, threshold	1/S	1
Gate capacitance	1/S	1/S
Current	1/S	S
Propagation delay	1/S	$1/S^2$

Parasitic effects includes the stray capacitance, the capacitance between the signal paths and ground, and the inherent capacitance of the MOS transistor.

Yield Statistics and Fabrication Costs

Yield of a chip depends on size of the chip and maturity of the process

$$C_{ud} = \frac{C_w}{N_d * Y}$$

 N_d =number of dies (chips) fit into a wafer

 C_{ud} =cost of an untested die, C_w =cost of wafer fabrication,

Y=probability of a die being functional after processing.

$$N_d = \pi \frac{(D - \alpha)^2}{4X^2}$$

D=diameter of the wafer,

 α =useless scrap edge distance of a wafer, X=chip dimension.

Yield Statistics and Fabrication Costs

$$Y = (1 - A\delta/c)^c$$

Y=yield, A=area of a single chip,

 δ =defect density, c=parameter that indicates defect clustering.

$$N_g = \frac{(X^2 - P * A_{io})}{A_g}$$

 N_q =number of gates in a single IC,

P=number of pads on the chip surface, A_g =area of a logic gate, A_{io} =area of an I/O cell.

$$P = 4(X/S - 1)$$

S=the minimum pad to pad pitch,

P=number of pads required to connect the chip to next level of interconnect.

Delay Computation

$$R = \frac{\rho l_c}{h_c w_c}$$

 ρ =resistivity, w_c , h_c , and l_c

are the width, thickness, and length of the conductor.

R=resistance of a uniform slab of conducting material.

$$C = \left[1.15 \left(\frac{w_c}{t_o}\right) + 2.80 \left(\frac{h_c}{t_o}\right)^{0.222} + \left[0.06 \left(\frac{w_c}{t_o}\right) + 1.66 \left(\frac{h_c}{t_o}\right) - 0.14 \left(\frac{h_c}{t_o}\right)^{0.222}\right] \left(\frac{t_o}{w_{ic}}\right)^{1.34} \epsilon_s \epsilon_o l_c$$

C=capacitance of the conductor, w_{ic} =spacing of chip interconnections, t_o =thickness of the oxide, ϵ_s =permittivity of free space, ϵ_o =dielectric constant of the insulator.

Noise Crosstalk

Noise principally stems from resistive and capacitive coupling.

Noise margin is defined in terms of two parameters:

Low Noise Margin(LNM) and High Noise Margin(HNM).

$$LNM = \max(V_{IL}) - \max(V_{OL})$$

$$HNM = \min(V_{OH}) - \min(V_{IH})$$

Where V_{IL} and V_{IH} are low and high input voltages and V_{OL}

and V_{OH} are low and high output voltages respectively.

One of the forms of noise is crosstalk, which is a result of mutual capacitance and inductance between neighboring lines.

Power Dissipation

- Temperature must be as uniform as possible over the entire chip surface.
- Heat generated must be efficiently removed from the chip surface.
- A CMOS gate uses 0.003 mW/MHz/gate in 'off' state and 0.8 mW/MHz/gate during its operation.
- A ECL system uses 25 mW/gate irrespective of state and operating frequency.

Summary

- 1. The three types of materials are insulators, conductors, and semiconductors.
- 2. A VLSI chip consists of several layers of different materials on a silicon wafer.
- 3. Each layer is defined by a mask.
- 4. VLSI fabrication process patterns each layer using a mask.
- 5. Complex VLSI circuits can be developed using basic VLSI devices.
- 6. Design rules must be followed to allow proper fabrication.
- 7. Several factors such as scaling, parasitic effects, yield statistics and fabrication Costs, delay computation, noise and crosstalk, and power dissipation play a keyrole in fabrication of VLSI chips.