MKP - Metoda konečných prvků, úvod ke cvičení

naposledy upraveno: 7. října 2019

Podmínky zápočtu:

- 1. 2 malé písemky, cca na 30 min (dohromady potřeba dosáhnout alespoň 50%)
- 2. semestrální práce (implementace + zpráva)
- 3. docházka: povoleny max. 3 absence; náprava individuální

MATLAB

- desktopová verze (TUL licence)
- online verze (internetový prohlížeč) + MATLAB drive: https://www.mathworks.com/products/matlab-online.html https://drive.matlab.com/
- Octave: https://www.gnu.org/software/octave/
- Octave online: https://octave-online.net/

Další materiály:

- https://astra.cxi.tul.cz/ucebny/mkp/
- https://people.nti.tul.cz/~pavel.exner/
- Lineární algebra s Matlabem, Kozubek, T. a kol., 2012: http://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/linearni_algebra_s_matlabem.pdf
- Matematické modelování a metoda konečných prvků, Blaheta, R., 2012 http://mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/numericke_metody_2.pdf

Vedení tepla	Porézní proudění	Mechanika	Elektrostatika	Difúzní transport
Fourierův zákon	Darcyho zákon	Hookův zákon	Elektrický potenciál	Fickův zákon
$q = -\lambda T'$	q = -Kp'	$\sigma = -Eu'$	$E = -\varphi', D = \varepsilon E$	q = -Dc'
$-(\lambda T')' = f$	-(Kp')' = f	-(Eu')' = f	$-(\varepsilon\varphi')'=f$	-(Dc')' = f
q - tepelný tok	q - Darcyho rychlost	σ - napětí	${\cal E}$ - elektrické pole	q - difúzní tok
λ - tepelná vodivost	K - hydraulická vodivost	E - Youngův modul pružnosti	ε - permitivita	D - difuzivita
T - teplota	p - tlak	u - posunutí	arphi - elektrický potenciál	c - koncentrace
		ve 2D:		
$-\operatorname{div}(\nabla T) = f$	$-\operatorname{div}(K\nabla p) = f$	$-\operatorname{div}(E\nabla u) = f$	$-\operatorname{div}(\varepsilon\nabla\varphi)=f$	$-\operatorname{div}(D\nabla c) = f$

Úkoly (opakování diferenciálních operátorů):

- $\Delta(uv) = ? \quad u, v \in C^2(\mathbf{R})$
- $\mathbf{r} = (x, y), r = |\mathbf{r}| = \sqrt{x^2 + y^2}$, určete: $\nabla r, \Delta r$
- $\mathbf{r} = (x, y, z), r = |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$, určete: $\nabla \times \mathbf{r}$, div $(\nabla \times \mathbf{r})$
- Ukažte, že potenciální pole s potenciálem ω má nulovou rotaci, tedy že $\nabla \times (\nabla \omega) = 0$.
- Na kvádru $x \in [0,1], y \in [0,3], z \in [0,2]$ spočítejte

$$\int_{S} \mathbf{F} \cdot \mathbf{n} \, ds, \qquad \mathbf{F} = (3x + z^{77}, y^{2} - \sin x^{2}z, xz + ye^{x^{5}}).$$

Úkoly (opakování Matlab):

- Naimplementujte maticové násobení $\mathbb{C}^{m \times p} = \mathbb{A}^{m \times n} \mathbb{B}^{n \times p}$ ve složkovém tvaru: $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.
- Napište funkci generující matici $m \times m$ tohoto tvaru (můžete použít funkci diag):

$$\begin{pmatrix} m & m-1 & m-2 & m-3 & \dots & 1 \\ m-1 & m & m-1 & m-2 & \dots & 2 \\ m-2 & m-1 & m & m-1 & \dots & 3 \\ m-3 & m-2 & m-1 & m & \dots & 4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & 4 & \dots & m \end{pmatrix}.$$

- Vygenerujte náhodnou matici $m \times m$, m > 10 a nalezněte její největší prvek (pozici i hodnotu). Proveď te nejprve pomocí for cyklu, poté pomocí funkce max.
- Naimplementujte Gaussovu eliminaci s řádkovou pivotací (alespoň dopředný chod převod to horního trojúhelníkového tvaru).