Trabajo práctico N°3: "Perceptrón simple y multicapa"

- Dizenhaus, Manuel 61101
- De Simone, Franco 61100
- Cornidez, Milagros 61432

Ejercicio 1: Perceptrón simple con funciones "AND" y "XOR"

Perceptrón simple con función escalón

$$\Theta(x) = egin{cases} 1 & x \geq 0 \ -1 & x < 0 \end{cases}$$

Análisis previo a aprendizaje

¿Qué puede decir acerca de los problemas que puede resolver el perceptron simple escalón en relación a la resolución de los problemas que se le pidió que haga que el perceptron aprenda?

Ejercicio 2: Perceptrón simple lineal y no lineal

Comparación de funciones de activación

$$\Theta(x) = egin{cases} 1 & x \geq 0 \ -1 & x < 0 \end{cases}$$

$$\Theta(x) = x$$

Comparación de funciones de activación

$$\Theta(x) = tanh(eta x)$$
 / $\Theta(x) = rac{1}{1 + e^{-2eta x}}$

Entonces... ¿Cómo está definido el problema?

Datos de entrada Salida esperada

4.4793	-4.0765	4.4558
-4.1793	-4.9218	1.7664
-3.9429	-0.7689	4.8830
-3.5796	1.5557	2.6683
-3.3354	2.2292	-1.6330
1.2096	0.3121	1.6238
0.7371	-3.9118	-2.5583
-4.4792	1.3177	-2.0449
4.3120	-3.7350	1.8018
2.2866	-3.6570	0.2785
2.3784	-4.0141	-0.8841
-4.3660	-3.5797	1.0264
3.6044	-3.3175	2.5052
4.3441	-3.0375	0.8353

87.3174	
1.5257	
39.7859	
45.5674	
13.3589	
74.5119	
3.3358	
4.2974	
66.5833	
26.0005	
14.6809	
1.8713	
71.0139	
63.8979	

Como vemos, el problema está definido en el mundo de los **reales**.

Sin embargo, las funciones de activación para el perceptrón **no lineal** trabajan en un dominio acotado:

[-1, 1] para Tanh y [0,1] para Logistic

¿Qué resultados podemos esperar?

Recordemos que la función de error, se define:

$$E(w) = \frac{1}{2} \sum_{\mu=1}^{p} (\zeta^{\mu} - O^{\mu})^{2}$$
$$= \frac{1}{2} \sum_{\mu=1}^{p} (\zeta^{\mu} - \sum_{i=0}^{N} w_{i} \xi_{i}^{\mu})^{2}$$

Es decir, hace una sumatoria del error individual de **todos los datos de entrada** para un w dado.

Para este problema, p = 200.

Comenzamos corriendo nuestros tres perceptrones (Lineal, No Lineal-Tanh y No Lineal-Logistic) con los mismos parámetros (n = 0.01, en este caso).

- Lineal: w = [5.46630434 5.8458933 7.33922599 43.41572817],Error = 9276.726667578221
- No Lineal-Tanh: w = [2.55258424 2.1226252 2.80237545 11.82953935]
 Error = 272833.54961020884
- No Lineal-Logistic: w = [2.50580911 2.52596159 3.34135418 7.74599989]
 Error = 272742.2204678929

Error vs Iteraciones

n = 0.01

Perceptrón No Lineal (Tanh)

Perceptrón No Lineal (Logistic)

Una buena forma de medir la capacidad de generalización de un perceptrón es dividir el conjunto de entrada en dos nuevos conjuntos: Conjunto de Entrenamiento y Conjunto de Prueba (Test).

Se "entrena" la red con el Conjunto de Entrenamiento (de k elementos),
 generando un vector w de pesos óptimo para ese conjunto.

 Se utiliza dicho vector w con los elementos del Conjunto de Prueba, y se evalúa su efectividad.

¿Cómo elijo el mejor conjunto de entrenamiento?

Validación Cruzada (K-fold cross validation)

Se divide el conjunto de entrada en k subconjuntos de igual tamaño

 Se toma uno de los k conjuntos para que sea el Conjunto Test, mientras que los restantes conforman el Conjunto de Entrenamiento

 Se entrena y se testea, eligiendo el Conjunto de Entrenamiento que de mejores resultados para el Conjunto Test -> mejor capacidad de generalización Tomamos k = 10, obteniendo 10 subconjuntos de 20 elementos.

Cada uno de los K_i subconjuntos hace de Conjunto Test en una iteración.

Tomando el conjunto k2 como
Conjunto Test, los 9 subconjuntos
restantes conforman el mejor Conjunto
de Entrenamiento.

i	accuracy
1	0,0705
2	0,0839
3	0,0794
4	0,0823
5	0,0744
6	0,0709
7	0,0552
8	0,0831
9	0,0634
10	0,0751

Ejercicio 3: Perceptrón multicapa

Perceptrón multicapa

Retropropagación entre capa m y m-1

$$\Delta W_{ij} = \eta \sum_{\mu} \delta^{\mu}_{i} V^{\mu}_{j}$$

Con i siendo la capa m, j la capa m-1, δ el error en la capa i, y V la activación de la unidad en la capa j

Ejercicio 3.1: "Función XOR con perceptrón multicapa"

Función XOR

Como vimos en el ejercicio 1, la función XOR no es linealmente separable.

$$-1 = falso$$

$$\Theta(x) = tanh(\beta x)$$

$$\eta = 0.01, \beta = 0.5$$

En 500 iteraciones:

h = [0.87521761], expectedOut = 1, error = [0.01557065]

h = [0.87041819], expectedOut = 1, error = [0.01679144]

h = [-0.88584369], expectedOut = -1, error = [0.01303166]

h = [-0.90799768], expectedOut = -1, error = [0.00846443]

errorPromedio = [0.013484545]

Ejercicio 3.2: "Par o impar"

Par o impar

Input = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ExpectedOutput = [-1, 1, -1, 1, -1, 1, -1, 1, -1, 1]

Siendo -1 = par

1 = impar

Arquitectura

¿Qué podría decir acerca de la capacidad para generalizar de la red?

h = [-0.9866189], expectedOut = -1, error = [0.00017905]

h = [0.98816169], expectedOut = 1, error = [0.00014015]

Error = 0.001462807690676029

Ejercicio 3.3:

"Números del 0 al 9"

Números del 0-9

```
Input = "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"
```

```
ExpectedOutput = [ [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]
```

Arquitectura

$$\Theta(x) = tanh(\beta x)$$

$$\eta = 0.01, \beta = 0.5$$

Estimado= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Error = 0.006199835529370979

Resultados con y sin ruido

