Тема: Предел функции одной переменной

- 1^{0} . Определение предела функции в точке по Гейне.
- 2^{0} . Примеры вычисления предела функции в точке по Гейне. Бесконечно большие и бесконечно малые.
- 3^0 . Определение предела функции в точке по Коши. Эквивалентность определений предела по Гейне и по Коши. 4^0 . Свойства операции предела. Примеры. Односторонние пределы функции. 5^0 . Теорема Критерий существования предела функции в терминах существования пределов ее значений по подпоследовательностям. Условие Коши. Критерий Коши.

 1^0 . Нам понадобится вспомнить понятие предельной точки числового множества.

Определение. Пусть множество X вложено \mathbb{R} . Точка x_0 из \mathbb{R} называется предельной точкой X, если

$$\forall O(x_0) \quad \exists x_1 \in O(x_0) \cap X: \quad x_1 \neq x_0.$$

Любая внутренняя точка множества является его предельной точкой. Любая точка отрезка [a,b] является его предельной точкой.

Предельная точка множества может ему не принадлежать. Например, интервал (a,b) имеет предельными свои конечные точки a и b, которые ему не принадлежат.

Бесконечно удаленная точка $+\infty$ расширенной числовой прямой является предельной

точкой любого неограниченного сверху числового множества X: в любой окрестности $+\infty$ имеется элемент из X, отличный от $+\infty$.

Аналогично, бесконечно удаленная точка $-\infty$ расширенной числовой прямой является предельной точкой любого неограниченного снизу числового множества X: в любой окрестности $-\infty$ имеется элемент из X, отличный от $-\infty$.

Определение (предел функции по Гейне). Пусть имеется числовая функция y = f(x), $x \in X$, и x_0 — это предельная точка X. Тогда число C из расширенной числовой прямой называется пределом функции y = f(x)при $x \to x_0$, если для любой сходящейся к x_0 последовательности $\{x_n\}$ элементов множества X, ни один из которых не совпадает с точкой $x_{\mathbf{0}}$, числовая последовательность

 $y_{m{n}}=f(x_{m{n}})$, $n=1,2,\ldots$, СХОДИТСЯ КC:

$$x_n \in X, \, x_n \neq x_0, \, x_n \to x_0 \quad \Rightarrow \quad \lim_{n \to +\infty} f(x_n) = C.$$

Если предел C функции f(x) в точке x_0 существует, то пишут $\lim_{x \to x_0} f(x) = C$.

Отметим, что в определении предела функции не требуется, чтобы сама эта функция

была определена в предельной точке x_0 своей области определения $oldsymbol{X}$.

Функция не может иметь в одной и той же точке двух разных пределов (если предположить противное, то найдется числовая последовательность сходящаяся одновременно к двум разным пределам, что невозможно).

 2^0 . Докажем, например, что в любой точке x_0 из $\mathbb R$ косинус имеет предел, совпадающий с его же значением в этой точке:

$$\lim_{x \to x_0} \cos x = \cos x_0.$$

Доказательство. Справедливо равенство

$$\cos x_n - \cos x_0 = -2\sin\frac{x_n - x_0}{2}\sin\frac{x_n + x_0}{2}.$$

Используем следующие две оценки:

$$|\sinrac{x_n+x_0}{2}|\leqslant 1, \quad |\sinrac{x_n-x_0}{2}|\leqslant |rac{x_n-x_0}{2}|.$$

Подставляя их в предыдущее равенство, получаем

$$|\cos x_n - \cos x_0| \leqslant |x_n - x_0|.$$

Полагая, что $x_n o x_0$ при $n o \infty$, перейдем в последнем неравенстве к пределу при $n o \infty$. Тогда получим $\lim_{n o \infty} |\cos x_n - \cos x_0| = 0$.

Рассмотрим функцию $f(x) = \mathrm{sign}\,x$, задаваемую следующими равенствами:

$$sign x = +1$$
 ПРИ $x > 0$, $sign x = -1$ ПРИ $x < 0$.

В нуле значение этой функции не определяем. Заметим, что нуль является предельной точкой области определения функции $f(x) = \operatorname{sign} x$ и докажем, что в этой точке функция предела не имеет.

 \mathcal{eta} оказательство. Пусть $x_n = \frac{(-1)^n}{n}$, тогда

$$\lim_{n\to\infty}x_n=0.$$

При этом $f(x_{2n})=\mathrm{sign}\,\frac{1}{2n}=+1$, а $f(x_{2n+1})=\mathrm{sign}\,(-\frac{1}{2n+1})=-1$. Следовательно, верхний и нижний пределы последовательности $y_n=f(x_n)$ друг с другом не совпадают и, таким образом, предела у этой последовательности не существует.

Докажем, что функция $f(x) = \cos x$ не имеет предела при $x \to +\infty$.

 \mathcal{L} оказательство. Предположим, что $\lim_{x \to \infty} \cos x$ существует и равен числу C. Тогда должны быть справедливы равенства

$$C = \lim_{n \to \infty} \cos n\pi = \lim_{k \to \infty} \cos 2k\pi = +1,$$

$$C = \lim_{n \to \infty} \cos n\pi = \lim_{k \to \infty} \cos (2k+1)\pi = -1.$$

Это противоречие показывает, что исходное предположение неверно.

Лемма (второй замечательный предел). Функция $f(x) = \left(1 + \frac{1}{x}\right)^x$ имеет пределом при $x \to +\infty$ число Эйлера e:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e. \tag{E}$$

Доказательство. По определению числа Эй-

лера имеем равенство

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

Таким образом, в произвольной окрестности O(e)=(a,b) числа Эйлера начиная с некоторого номера N оказываются все числа вида $\left(1+\frac{1}{n}\right)^n$, то есть

$$orall \, n \geqslant N \qquad \Rightarrow \qquad \left(1+rac{1}{n}
ight)^{n} \in (a,b).$$

Пусть последовательность $\{n_k\}$, $k=1,2,\ldots$, натуральных чисел при $k\to +\infty$ также стремится к $+\infty$. Тогда найдется номер K=K(N), начиная с которого все числа вида $\left(1+\frac{1}{n_k}\right)^{n_k}$ попадают в интервал (a,b):

$$\forall n_k \geqslant K(N) \quad \Rightarrow \quad \left(1 + \frac{1}{n_k}\right)^{n_k} \in (a,b).$$

Это по определению означает, что

$$\lim_{k o\infty}\Bigl(1+rac{1}{n_k}\Bigr)^{n_k}=e.$$

Пусть теперь есть последовательность $\{x_k\}$, $k=1,2,\ldots$, вещественных чисел при $k\to +\infty$ стремящихся к $+\infty$: $\lim_{k\to\infty}x_k=+\infty$.

Будем предполагать, что все эти числа не меньше двух: $x_k \geqslant 2$. Если это не так, то все лишние числа отбросим.

Далее полагаем $n_{m k}=[x_{m k}]$, где символ [x] обозначает целую часть положительного числа

x. По определению целой части для всех k имеем двустороннюю оценку $n_k \leqslant x_k < n_k + 1$. Следовательно, справедливы неравенства

$$\left(1+rac{1}{n_k+1}
ight)^{n_k}\leqslant \left(1+rac{1}{x_k}
ight)^{n_k}\leqslant \left(1+rac{1}{x_k}
ight)^{n_k}$$

$$\leqslant \left(1 + \frac{1}{x_k}\right)^{x_k} \leqslant \left(1 + \frac{1}{n_k}\right)^{n_k + 1}.$$

Заметив, что $n_k \to +\infty$ при $k \to +\infty$, перейдем к пределу в последней цепочке неравенств.

Получим для крайних выражений следующие равенства:

$$\lim_{k\to\infty} \left(1 + \frac{1}{n_k + 1}\right)^{n_k} = \lim_{k\to\infty} \left(1 + \frac{1}{n_k + 1}\right)^{n_k + 1} = e,$$

$$\lim_{k\to\infty} \left(1 + \frac{1}{n_k}\right)^{n_k+1} = \lim_{k\to\infty} \left(1 + \frac{1}{n_k}\right)^{n_k} = e.$$

Следовательно, по теореме о зажатой последовательности имеет место предельное равенство

$$\lim_{k o \infty} \left(1 + rac{1}{x_k}\right)^{x_k} = e.$$

Это соотношение справедливо для всякой последовательности $\{x_k\}$, $k=1,2,\ldots$, вещественных чисел при $k\to +\infty$ стремящихся к $+\infty$. По определению предела функции по Гейне имеем искомое равенство (E).

Сделав в предельном равенстве (E) замену переменной $t=rac{1}{x}$, получим

$$e = \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{t \to +0} \left(1 + t\right)^{\frac{1}{t}}.$$
 (E')

Это равенство известно как второй замечательный предел.

Если существует предел $\lim_{x\to +\infty} f(x)=A$ и вместе с ним предел $\lim_{x\to -\infty} f(x)=A$, то пишут " $f(x)\to A$ при $x\to \infty$ ", или, что тоже самое, $\lim_{x\to \infty} f(x)=A$.

Определение. Функция f(x) называется бесконечно большой при $x \to x_0$, где x_0 — предельная точка области определения D_f , если

выполняется предельное равенство

$$\lim_{x \to x_0} |f(x)| = +\infty.$$

Если же $\lim_{x \to x_0} f(x) = 0$, то f(x) называется бесконечно малой при $x \to x_0$.

Например, функция $y=x^2$ является бесконечно малой при $x \to 0$ и бесконечно большой при $x \to \infty$.

Функция $y=1-\cos x$ — это бесконечно малая при $x \to 0$.

Функция $y=x^{-\alpha}$, где $\alpha>0$, — это бесконечно большая при $x\to 0$.

 3^0 . В анализе используется еще одно определение предела функции в точке, эквивалентное уже приведенному выше определению предела функции по Гейне.

Определение (предел функции по Коши). Пусть имеется числовая функция y=f(x), $x\in X$, и x_0 — это предельная точка X.

Тогда число C из расширенной числовой прямой называется пределом функции y=f(x) при $x \to x_0$, если для любой окрестности O(C) числа C существует такая окрестность $O(x_0)$ предельной точки, что для произвольного x

из пересечения $O(x_0) \cap X$, $x \neq x_0$, значение f(x) принадлежит окрестности O(C):

$$orall O(C) \quad \exists \, O(x_0): \, orall \, x \in O(x_0) \cap X, x
eq x_0 \quad \Rightarrow \ f(x) \in O(C).$$

Если x_0 — предельная точка числового множества $M\subset \mathbb{R}$, то существует последовательность $\{x_n\},\ x_n\in M,\ x_n\neq x_0$, и такая, что $\lim_{n\to\infty}x_n=x_0$.

Докажите это характеристическое свойство предельных точек в качестве упражнения.

Теорема. Определения предела функции по Гейне и по Коши эквивалентны.

 \mathcal{A} оказательство. Пусть точка x_0 предельная для области определения функции f(x) и при

этом f(x) o C при $x o x_0$ в смысле определения предела по Коши.

Рассмотрим любую последовательность $\{x_n\}$, где $x_n \in X$, $x_n \neq x_0$, и такую, что

$$\lim_{n\to\infty}x_n=x_0.$$

Последовательности с таким свойством существуют в силу характеристического свойства предельной точки x_0 области определения функции f(x).

Тогда, во-первых, для любой окрестности O(C) существует окрестность $O(x_0)$ такая, что

$$\forall x \in O(x_0) \cap X, \quad x \neq x_0 \quad \Rightarrow \quad f(x) \in O(C).$$

Во-вторых, по определению предела существует номер N со свойством, что $\forall\, n\,\geqslant\, N$ точка x_n принадлежит $O(x_0)$.

Следовательно, для $\forall\, n\,\geqslant\, N$ значение $f(x_n)$

принадлежит O(C). Таким образом,

$$\lim_{n o\infty}f(x_n)=C,$$

то есть C — это предел функции f(x) в смысле определения по Гейне.

Обратное утверждение докажите самостоятельно.

При определении предела функции часто используют понятие проколотой окрестности. Определение. Множество $\{x \in O(x_0) \mid x \neq x_0\}$ называется проколотой окрестностью точки x_0 . Проколотая окрестность точки обозначается символом $\dot{O}(x_0)$.

Например, проколотая окрестность интервала $O(x_0)=(a,b)$ это объединение двух меньших интервалов $\dot{O}(x_0)=(a,x_0)\cup(x_0,b)$. Для

бесконечно удаленной точки справедливо равенство $\dot{O}(+\infty) = O(+\infty)$.

С использованием понятия проколотой окрестности условие Коши существования предела функции $\lim_{x \to x_0} f(x) = C$ записывается следующим образом:

$$\forall \, O(C) \, \exists \, O(x_0): \, \forall \, x \in \dot{O}(x_0) \cap D_f \quad \Rightarrow f(x) \in O(C).$$

Если $x_0 \in \mathbb{R}$ и $C \in \mathbb{R}$, то условие Коши существования предела функции $\lim_{x \to x_0} f(x) = C$ допускает также следующую эквивалентную форму записи:

$$\forall\,\varepsilon>0\,\,\exists\,\delta>0:\,\,\forall\,x\in\dot{O}_{\delta}(x_0)\cap D_f\quad \Rightarrow\, f(x)\in O_{\varepsilon}(C).$$

Если функция f(x) определена лишь в некоторой проколотой окрестности точки x_0 , то

существование предела $\lim_{x \to x_0} f(x) = C$ означает, что

$$egin{aligned} orall \, arepsilon > 0 \, \exists \, \delta > 0 : \, orall \, x : |x - x_0| < \delta, |x - x_0| > 0 \end{aligned} \Rightarrow \ |f(x) - C| < arepsilon.$$

 4^0 . По своим свойствам операция взятия предела функции в точке сходна с операцией

вычисления предела числовой последовательности. Приведем перечень некоторых из этих аналогичных свойств.

1. Если
$$\lim_{x o x_0} f(x) = C$$
, то $\lim_{x o x_0} |f(x)| = C$.

2. Пусть функции $\varphi(x)$ и $\psi(x)$ подчинены неравенству

$$arphi(x)\leqslant \psi(x)$$
 ДЛЯ $orall\,x\in X,\,x
eq x_0$

и при этом существуют равные пределы

$$\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \psi(x).$$

Тогда для любой функции f(x), $x \in X$, удовлетворяющей условию

$$arphi(x)\leqslant f(x)\leqslant \psi(x)$$
 ДЛЯ $orall\,x\in X,\,x
eq x_0,$

существует предел

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} \varphi(x) = \lim_{x\to x_0} \psi(x).$$

3. Пусть функции $\varphi(x)$ и $\psi(x)$ подчинены неравенству $\varphi(x)\leqslant \psi(x)$ для $\forall\,x\in X\cap\dot{O}(x_0).$ Тогда

$$\lim_{x o x_0} arphi(x) \leqslant \lim_{x o x_0} \psi(x),$$

если только оба последних предела существуют.

4. ЕСЛИ
$$\lim_{x \to x_0} \varphi(x) < \lim_{x \to x_0} \psi(x)$$
, ТО

$$\exists O(x_0): \quad \varphi(x) < \psi(x) \quad \forall x \in X \cap \dot{O}(x_0).$$

5. Имеют место равенства

$$\lim_{x \to x_0} (\varphi(x) \pm \psi(x)) = \lim_{x \to x_0} \varphi(x) \pm \lim_{x \to x_0} \psi(x),$$

$$\lim_{x \to x_0} \varphi(x) \cdot \psi(x) = \lim_{x \to x_0} \varphi(x) \cdot \lim_{x \to x_0} \psi(x)$$

при условии, что все присутствующие в формулах пределы существуют и конечны.

Сосчитаем пределы некоторых конкретных числовых функций. В первую очередь уста-

новим, что

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Для обоснования этого равенства, известного как первый замечательный предел, воспользуемся следующей хорошо известной двусторонней оценкой:

$$\cos x \leqslant rac{\sin x}{x} \leqslant 1 \qquad orall x: |x| \leqslant rac{\pi}{2}.$$

Перейдя здесь к пределу при $x \to 0$, получим искомое предельное соотношение.

Справедливы также следующие равенства:

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1.$$

Далее, если $\alpha>0$, то $\lim_{x o 0} x^{\alpha}=0$.

При изучении функции в окрестности точки x_0 числовой прямой часто исследуют поведение функции слева и справа от этой точки по отдельности.

При этом, в частности, используется понятие одностороннего предела функции, а именно, ее предела при $x \to x_0$ с дополнительным условием в виде одного из неравенств $x < x_0$ или $x > x_0$.

Для обозначения односторонних пределов используются специальные символы. Предел справа обозначают как

$$f(x_0 + 0) = \lim_{x \to x_0, x > x_0} f(x) \equiv \lim_{x \to x_0 + 0} f(x),$$

а для предела слева используют запись

$$f(x_0 - 0) = \lim_{x \to x_0, x < x_0} f(x) \equiv \lim_{x \to x_0 - 0} f(x).$$

Односторонние пределы обладают всеми свойствами обычных пределов.

Теорема. Если функция f(x) определена и монотонна на интервале (a,b), то в любой точке x_0 этого интервала существуют ее односторонние пределы. Если при этом функ-

ция f(x) возрастающая, то справедливо двустороннее неравенство

$$f(x_0-0) \leqslant f(x_0) \leqslant f(x_0+0).$$

Докажите теорему в качестве упражнения.

 5^0 . Сформулируем два критерия существования предела функции в точке.

Теорема (первый критерий). Пусть точка x_0 предельная для области определения X функции f(x). Тогда предел $\lim_{x \to x_0} f(x)$ существует в том и только том случае, если для любой сходящейся к x_0 последовательности $\{x_n\}$ ЭЛЕМЕНТОВ X, НИ ОДИН ИЗ КОТОРЫХ НЕ СОВПАдает с точкой x_0 , сходится числовая послеДОВательность $y_{m{n}}=f(x_{m{n}})$, $n=1,2,\ldots$

$$\exists \lim_{x \to x_0} f(x) \Leftrightarrow \ \left\{ orall \left\{ x_n \right\} : x_n \in X, \, x_n
eq x_0, \, x_n o x_0 \Rightarrow \ \exists \lim_{n o +\infty} f(x_n) \right\}.$$

 \mathcal{A} оказательство. Пусть последовательность $\{x_n\}$ элементов множества X удовлетворяет условию

$$x_n \in X, \; x_n
eq x_0, \quad x_n o x_0$$
 ПРИ $n o \infty$. (\star)

Заметим, что хотя бы одна последовательность со свойством (\star) обязательно найдется, что следует из условия о предельности точки x_0 для множества X.

Если при этом существует предел функции $\lim_{x \to x_0} f(x)$, то по определению предела функции по Гейне существует и предел последовательности $\lim_{n \to +\infty} f(x_n)$.

Установим обратное, для чего покажем, что предел последовательности $\lim_{n \to +\infty} f(x_n)$ не зависит от изначального выбора $\{x_n\}$ со свойством (\star) . Пусть есть две какие-то последовательности $\{x_n'\}$ и $\{x_n''\}$, каждая из которых обладает свойством (\star) , то есть

$$x_n' \in X, \; x_n'
eq x_0, \quad x_n' o x_0 \quad \text{при} \quad n o \infty \quad (\star)$$

И

$$x_n'' \in X, \; x_n''
eq x_0, \quad x_n'' o x_0 \quad \text{при} \quad n o \infty. \; (\star)$$

Образуем составную последовательность $\{x_n\}$, положив

$$x_{2k-1}=x_k'$$
 И $x_{2k}=x_k''$ ПРИ $k=1,2,\ldots$

Новая составная последовательность $\{x_n\}$, как легко заметить, также обладает свойством (\star) . Но тогда по условию теоремы обязан существовать предел последовательности $\lim_{n\to +\infty} f(x_n)$.

При этом $\{f(x'_n)\}$ и $\{f(x''_n)\}$ — это подпоследовательности в $\{f(x_n)\}$. Но если последовательность сходится, то к тому же пределу сходится и любая ее подпоследовательность. В частности,

$$\lim_{n\to+\infty} f(x_n) = \lim_{n\to+\infty} f(x_n') = \lim_{n\to+\infty} f(x_n'').$$

Воспользовавшись определением предела функции по Гейне, заключаем, что этот общий

(один и тот же) для всех последовательностей образов $\{f(x_n)\}$, где $\{x_n\}$ обладает свойством (\star) , предел $\lim_{n \to +\infty} f(x_n)$ и является искомым пределом функции f(x) в предельной точке x_0 ее области определения.

Определение (условие Коши). Пусть точка x_0 предельная для области определения X функции f(x). Тогда говорят, что f(x) удо-

влетворяет в x_0 условию Коши, если

$$\forall \, \varepsilon > 0 \, \exists \, O(x_0): \, \forall \, x, x' \in \dot{O}(x_0) \cap X \Rightarrow$$

$$|f(x) - f(x')| < \varepsilon.$$

Теорема (критерий Коши). Пусть точка x_0 предельная для области определения X функции f(x). Тогда конечный предел $\lim_{x \to x_0} f(x)$ существует в том и только том случае, если функция f(x) удовлетворяет в x_0 условию Коши.

Доказательство. Пусть существует конечный предел $\lim_{x \to x_0} f(x) = A$, $A \in \mathbb{R}$. Тогда по определению предела для любого $\varepsilon > 0$ найдется такая окрестность $O(x_0)$, что

$$\forall x \in \dot{O}(x_0) \cap X \quad \Rightarrow \quad |f(x) - A| < \frac{\varepsilon}{2}.$$

Пользуясь этим неравенством, а также неравенством треугольника, получаем

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} x,x' \in \dot{O}(x_0) \cap X \Rightarrow \ & |f(x)-f(x')| \leqslant |f(x)-A| + |A-f(x')| < arepsilon. \end{aligned}$$

Таким образом, функция f(x) удовлетворяет в x_0 условию Коши.

Установим обратное. Пусть последовательность $\{x_n\}$ элементов множества X обладает свойством

$$x_n \in X, \; x_n
eq x_0, \quad x_n o x_0$$
 ПРИ $n o \infty$. (\star)

Тогда для любого $\varepsilon>0$ найдется такой номер $N=N(\varepsilon)$, что для любых натуральных $m\geqslant N$ и $n\geqslant N$ точки x_m и x_n попадут в пересечение $\dot{O}(x_0)\cap X$. Но функция f(x) удовлетворяет в x_0 условию Коши и, следовательно,

$$\forall m \geqslant N, \ n \geqslant N \quad \Rightarrow \quad |f(x_m) - f(x_n)| < \varepsilon.$$

Это означает, что последовательность образов $y_n = f(x_n)$ фундаментальна в множестве $\mathbb R$ вещественных чисел. В силу полноты \mathbb{R} эта фундаментальная последовательность обязана иметь конечный вещественный предел:

$$A = \lim_{n \to \infty} f(x_n).$$

Последовательность $\{x_n\}$ со свойством (\star) в проведенных нами рассуждениях была произвольной. Поэтому к функции f(x) применима уже доказанная теорема о первом критерии существования предела в точке. Та-

ким образом, предел $\lim_{x \to x_0} f(x)$ существует и равен A.