University of British Columbia Department of Mechanical Engineering

MECH366 Modeling of Mechatronic Systems Homework 4

Due: October 28 (Monday), 2019, 3pm

For each of the following systems, derive the state-space model by using the linear graph.

1. Two-tank system connected with a transformer. The notations are explained in the following table. What are not shown in the figure are assumed to be negligible. The inputs are the volume flow rates Q_1 and Q_2 [m³/s], and the outputs are the heights h_1 and h_2 [m].

Notation	Unit	Meaning
\overline{C}	$[\mathrm{m}^5/\mathrm{N}]$	Fluid capacitance
I	$[\mathrm{Ns^2/m^5}]$	Fluid inertance
R	$[\mathrm{Ns/m^5}]$	Fluid resistance
A	[m ²] Section area	
P_a	$[N/m^2]$	Ambient pressure

2. Semiconductor material in a heating chamber

- Two input are the heat transfer rate into the wall Q_i (control input), and the ambient temperature T_o (disturbance input).
- One output is the temperature T_s .
- Notations (see the figure)

	Mass	Specific heat	Temperature
Gas in the chamber	m_c	c_c	T_c
Silicon	m_s	c_s	T_s
Wall	m_w	c_w	T_w
Ambient			T_o

- $-h_s$ and A_s : Convective heat transfer coefficient at the interface of silicon and gas inside the chamber, and the effective surface area
- $-h_i$ and A_i : Convective heat transfer coefficient at the inside surface of the chamber wall, and the effective surface area
- $-h_o$ and A_o : Convective heat transfer coefficient at the outside surface of the chamber wall, and the effective surface area