Major Test in CHL604

Answer all questions:-

3.

1. Determine the initial and final porosities of the CaCO₃ pellet and the CaO pellet formed after decomposition.

The diameter, length and weight of $CaCO_3$ pellet are 0.64 cm, 0.665 cm and 0.37 gm respectively. The true densities of $CaCO_3$ and CaO are 2.7 gm/cc and 3.3 gm/cc respectively.

2. Determine the time required for 50% conversion and 50% penetration of the reaction front in the solid. Data :

$$4 H_2 + Fe_3O_4 \longrightarrow 4H_2O + 3Fe$$

 $\rho_{Fe_3O_4} = 4.6 \, gm/cc, R = 5mm$
Mol.wt of Iron is 56
 $K_r = 1.93 \times 10^5 \, exp (-24000/RT) cm/sec$
 $P = 1 \, atm, T = 600^{\circ}C$

From laboratory experiments, the time for complete conversion of 50μ , 100μ and 200μ sized particles are 5, 10 and 20 minutes respectively. A feed consisting of 40% of 50μ , 30% of 100μ and 30% of 200μ particles are fed to

a tubular reactor. If the residence of the solids is 8 min. in the reactor, determine the average conversion of the solids in the exit of the reactor.

4. The following data is obtained from Wicke-Kallenbach diffusion cell.

ZnO pellet wt = 0.75 gm ZnO pellet dia = 0.78 cm

ZnO pellet thickness = 0.74 cm

ZnO density = 5.42 gm/c.c

Exit flow rate of gas mixture on H_2 side = 10.65 cc/sec Exit flow rage of gas mixture on N_2 side = 5.2 cc/sec Partial pressure of H_2 on N_2 gas side = 27 mmHg Partial pressure of H_2 on H_2 gas side = 755 mmHg Total Pressure = 1 atm Temperature = 25°C

 $D(H_2-N_2) = 0.76 \text{ cm}^2/\text{sec}$

the pellet with the diffusing gases.

Determine the Tortuosity if equimolar counter current diffusion occurs in

5. The following data was obtained for the reaction A→R in an experimental packed bed catalytic reactor.

Wt of catalyst (kg)	→	0.85	1.62	3.0	4.4	6.3	9.0	11.5	15
Feed rate of A (K.mol/hr)		10	12	15	16	18	20	20	20
X_A		0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45

- (i) Find the reaction rate at 42.5% conversion of the feed.
- (ii) Find the amount of catalyst required to process a feed rate of 1000 K.mol/hr at 42.5% conversion level.
- 6.(i) Derive the equation for temperature variation with respect to concentration in the catalyst spherical solid for an exothermic reaction.
- (ii) Derive an equation for catalyst activity according to concentration independent deactivation.