Model Zoo 2

Decision Trees

 $Describe \ the \ decision \ tree \ as \ implemented \ in \ {\tt sklearn.tree.DecisionTreeClassifier}.$

Theorem 1 (universal approximation). Let g be the ERM hypothesis for the class of binary decision trees with k nodes. Then,

$$\lim_{k \to \infty} E_{\rm in}(g) = 0. \tag{1}$$

Theorem 2. Let k be the number of nodes in a binary decision tree. Then the VC-dimension is bounded by

$$d_{\rm VC} = O(k\log(kd)). \tag{2}$$

Proof. See "Decision trees as partitioning machines to characterize their generalization properties," NeurIPS 2020. \Box

Corollary 1. Let j be the height of a binary decision tree. Then the VC dimension is bounded by

$$d_{\rm VC} = O(2^j j \log d). \tag{3}$$

Proof. The number of nodes $k = O(2^j)$. Substituting into Equation (2) gives Equation (3).

Note 1. These results directly contradict the advice given in scikit-learn's "Tips for Practical Use": https://scikit-learn.org/stable/modules/tree.html#tips-on-practical-use.

Problem 1. Describe how changes to the following hyperparameters to sklearn.tree.DecisionTreeClassifier affect the VC dimension (increase, decrease, stays the same).
1. criterion
2. max_depth
3. max_features
4. max_leaf_nodes
5. min_samples_leaf
6. min_samples_split
7. random_state

Ensemble Methods

The hypothesis class of ensemble methods is

$$L(B,T) = \left\{ \mathbf{x} \mapsto \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(\mathbf{x})\right) : \mathbf{w} \in \mathbb{R}^T, h_t \in B \right\}$$
(4)

where B is a set of "base" hypothesis classes and $T \in \mathbb{Z}$ is the number of hypotheses from B to combine.

Theorem 3 (universal approximation). Let g be the ERM hypothesis for L(B,T). Then

$$\lim_{T \to \infty} E_{\rm in}(g) = 0 \tag{5}$$

for any hypothesis class B that is a weak learner. A weak learner is any hypothesis class capable of achieving better than random error for any dataset. (All infinite hypothesis classes we've seen are examples of weak learners.)

Lemma 1. The VC-dimension of L(B,T) is

$$d_{VC}(L(B,T)) = O(Td_{VC}(B)\log(Td_{VC}(B)))$$
(6)

Proof. See Chapter 10, Lemma 10.3 of Understanding Machine Learning: From Theory to Algorithms. \Box

Fact 1. There are two main categories of ensemble algorithms:

1. boosting (e.g. AdaBoostClassifier, GradientBoostingClassifier, XGBoost, LightGBM), and

2. bagging (e.g. BaggingClassifier, RandomForestClassifier).

Problem 4. Decision trees are some of the most commonly "boosted" models.
1. Provide a tight upper bound on the VC dimension for an ensemble of decision trees.
2. If you increase the number of decision trees T in the ensemble, then how should you adjust the numb of nodes k in the decision trees?
3. If you increase the number of nodes k in the base decision trees, then how should you adjust the numb of decision trees in the ensemble T ?