UNIVERSIDAD NACIONAL DE SAN AGUSTÍN

Facultad de Producción y Servicios Ciencia de la Computación Física Computacional, Miguel Vizardo

Kevin Salazar Torres 20162013

2dª Práctica Movimiento de Proyectiles

Planteamiento del problema.

Se pide hallar la gráfica de la trayectoria, se verá que es parabólica, de un objeto con las siguientes características:

- posición inicial (0,0)
- diamétro de 6cm
- masa de m = 100g
- velocidad inicial de 25m/s
- ángulo de 37°, con respecto a la horizontal

Se tratarán estas condiciones <u>con influencia del aire</u> y <u>sin él</u>.

Para analizar el movimiento con resistencia del aire se empleará lo siguiente:

- Fuerza de resistencia del aire = 0.5*C*A*ρ*v²
 donde C es el coeficiente del resistencia, A es la sección transversal, ρ es la densidad del aire y v es la magnitud de la velocidad.
- Dado que el aire interviene en las componentes x e y, y que tanto velocidad como aceleración son vectores, habrá que hacer:

$$\begin{split} &a_x = -a*cos\theta = -0.5*C*A*\rho*v^2/m*cos\theta \\ &a_y = -a*sen\theta = -0.5*C*A*\rho*v^2/m*sen\theta \\ &v = sqrt(v_x^2 + v_y^2) \\ &v_x = v_{inicial}*cos\theta + a_x*t \\ &v_y = v_{inicial}*sen\theta + a_y*t \\ &x = v_{inicial}*cos\theta*t + 0.5*(a_x)*t^2 \\ &y = v_{inicial}*sen\theta*t + 0.5*(a_y)*t^2 \end{split}$$

Resultados

Los incrementos temporales fueron de 0.01 s. Se obtuvo la siguiente tabla:

tiempo	X	у	V _x	
0	0	0	19.9662	15.045
0.01	0.199619	0.149927	19.9575	14.9405
0.01	0.399152	0.29881	19.949	14.836
0.02	0.598601	0.44665	19.9405	14.7317
0.03	0.797967	0.593447	19.9322	14.6274
0.04	0.797307	0.739203	19.9239	14.5231
0.05	1.19646	0.733203	19.9259	14.419
0.00	1.39558	1.0276	19.9076	14.3149
0.07	1.59463	1.17023	19.8997	14.2109
0.08	1.79361	1.31184	19.8917	14.2109
0.09	1.79301	1.4524	19.8839	14.1009
	2.19133	1.4324	19.8762	
0.11	2.19133	1.73043		13.8992 13.7954
0.12			19.8685	13.6917
0.13	2.58877	1.86789	19.861	
0.14	2.78738	2.00432	19.8535	13.5881
0.15	2.98592	2.13971	19.8461	13.4845
4.00		10.0010	10 2010	 1 E000C
1.32	25.9037	10.9813	19.2819	1.59336
1.33	26.0971	10.9972	19.2776	1.49214
1.34	26.2905	11.0121	19.2733	1.39091
1.35	26.4837	11.0259	19.269	1.28966
1.36	26.677	11.0387	19.2647	1.18838
1.37	26.8701	11.0505	19.2603	1.08709
1.38	27.0632	11.0612	19.2559	0.985786
1.39	27.2563	11.071	19.2515	0.884457
1.4	27.4492	11.0797	19.247	0.783107
1.41	27.6422	11.0873	19.2426	0.681736
1.42	27.835	11.094	19.2381	0.580344
1.43	28.0278	11.0996	19.2335	0.478929
1.44	28.2205	11.1042	19.229	0.377491
1.45	28.4131	11.1077	19.2244	0.27603
1.46	28.6057	11.1103	19.2197	0.174545
1.47	28.7982	11.1118	19.2151	0.0730347
1.48	28.9907	11.1122	19.2104	-0.0285005
1.49	29.183	11.1116	19.2057	-0.130061
1.5	29.3753	11.11	19.2009	-0.231649
1.51	29.5675	11.1074	19.1961	-0.333263
1.52	29.7597	11.1037	19.1913	-0.434905
1.53	29.9517	11.0989	19.1864	-0.536575
1.54	30.1437	11.0932	19.1815	-0.638274
1.55	30.3356	11.0864	19.1766	-0.740002
1.56	30.5274	11.0785	19.1716	-0.84176

1.57	30.7192	11.0696	19.1665	-0.943549
1.58	30.9108	11.0597	19.1615	-1.04537
•••	•••	•••	••••	•••
5.54	34.7903	-124.173	-7.40649	-59.873
5.55	33.2852	-125.851	-7.97152	-60.3967
5.56	31.6728	-127.61	-8.57308	-60.948
5.57	29.9381	-129.463	-9.21642	-61.5308
5.58	28.0623	-131.423	-9.90799	-62.1499
5.59	26.0225	-133.507	-10.6558	-62.8114
5.6	23.7896	-135.738	-11.4699	-63.5228
5.61	21.3265	-138.143	-12.3631	-64.2939
5.62	18.5849	-140.759	-13.3523	-65.1373
5.63	15.5009	-143.635	-14.4596	-66.0697
5.64	11.9874	-146.834	-15.7153	-67.1139
5.65	7.9236	-150.45	-17.1614	-68.3015
5.66	3.13562	-154.612	-18.8582	-69.6781
5.67	-2.63485	-159.515	-20.8956	-71.3113
5.68	-9.78854	-165.462	-23.4128	-73.3061
5.69	-18.9792	-172.944	-26.6372	-75.8338
5.7	-31.3416	-182.818	-30.9632	-79.1915

Se aprecia que la altura máxima se dará entre 1.47 s y 1.48 s pues se registra una velocidad en el eje y de cero en ese intervalo, luego va incrementando en sentido negativo. Esta altura máxima está entre 11.1118 m y 11.1122 m.

Para analizar el movimiento sin resistencia del aire:

La única aceleración que interviene es la de la gravedad.

$$\begin{aligned} a_y &= -g \\ v &= sqrt(v_x^2 + v_y^2) \\ v_x &= v_{inicial} * cos\theta \\ v_y &= v_{inicial} * sen\theta + a_y * t \\ x &= v_{inicial} * cos\theta * t \\ y &= v_{inicial} * sen\theta * t + 0.5 * (a_y) * t^2 \end{aligned}$$

Resultados

Los incrementos temporales fueron de 0.01 s. Se obtuvo la siguiente tabla:

<u>tiempo</u>	X	У	$V_{\underline{x}}$	<u>V</u> <u>y</u> _
0	0	0	19.9662	15.045
0.01	0.199662	0.14996	19.9662	14.947
0.02	0.399323	0.29894	19.9662	14.849
0.03	0.598985	0.44694	19.9662	14.751
0.04	0.798647	0.59396	19.9662	14.653
0.05	0.998309	0.74	19.9662	14.555
0.06	1.19797	0.88506	19.9662	14.457
0.07	1.39763	1.02914	19.9662	14.359
80.0	1.59729	1.17224	19.9662	14.261
0.09	1.79696	1.31436	19.9662	14.163
0.1	1.99662	1.4555	19.9662	14.065
0.11	2.19628	1.59566	19.9662	13.967
•••	•••	•••	•••	•••
1.37	27.3537	11.4148	19.9662	1.619
1.38	27.5533	11.4305	19.9662	1.521
1.39	27.753	11.4453	19.9662	1.423
1.4	27.9526	11.459	19.9662	1.325
1.41	28.1523	11.4718	19.9662	1.227
1.42	28.352	11.4835	19.9662	1.129
1.43	28.5516	11.4943	19.9662	1.031
1.44	28.7513	11.5042	19.9662	0.932995
1.45	28.951	11.513	19.9662	0.834995
1.46	29.1506	11.5209	19.9662	0.736995
1.47	29.3503	11.5277	19.9662	0.638995
1.48	29.5499	11.5336	19.9662	0.540995
1.49	29.7496	11.5386	19.9662	0.442995
1.5	29.9493	11.5425	19.9662	0.344995
1.51	30.1489	11.5455	19.9662	0.246995

1.52	30.3486	11.5474	19.9662	0.148995
1.53	30.5482	11.5484	19.9662	0.0509953
1.54	30.7479	11.5485	19.9662	-0.0470047
1.55	30.9476	11.5475	19.9662	-0.145005
1.56	31.1472	11.5456	19.9662	-0.243005
1.57	31.3469	11.5426	19.9662	-0.341005
1.58	31.5466	11.5387	19.9662	-0.439005
1.59	31.7462	11.5339	19.9662	-0.537005
1.6	31.9459	11.528	19.9662	-0.635005
1.61	32.1455	11.5212	19.9662	-0.733005
1.62	32.3452	11.5133	19.9662	-0.831005
•••	• • • •	•••	• • •	•••
5.64	112.609	-71.0133	19.9662	-40.227
5.65	112.809	-71.416	19.9662	-40.325
5.66	113.009	-71.8198	19.9662	-40.423
5.67	113.208	-72.2245	19.9662	-40.521
5.68	113.408	-72.6302	19.9662	-40.619
5.69	113.608	-73.0369	19.9662	-40.717
5.7	113.807	-73.4445	19.9662	-40.815

Se aprecia que la altura máxima se dará entre 1.53 s y 1.54 s pues se registra una velocidad en el eje y de cero en ese intervalo, luego va incrementando en sentido negativo. Esta altura máxima está entre 11.5484 m y 11.5485 m.

