2.ФУНКЦИИ, ИХ СВОЙСТВА И ГРАФИКИ

2.1. Основные понятия

ОПРЕДЕЛЕНИЕ. Переменная величина y называется функцией переменной величины x, если каждому численному значению x из множества X соответствует единственное определенное значение y из множества Y: y = f(x), $x \in X$, $y \in Y$. Переменная величина x называется **независимой переменной** или **аргументом**. Множество X называется **областью определения** функции (**ООФ**) или **областью допустимых значений аргумента** (**ОДЗ**). Множество Y изменения функции называется **областью значений** функции (**ОЗФ**).

ОПРЕДЕЛЕНИЕ. Графиком функции y = f(x) называется множество точек плоскости xOy, координаты которых связаны соотношением y = f(x). **Нули функции** y = f(x) — точки $x \in X$, при которых функция обращается в ноль, т.е. корни уравнения f(x) = 0.

ОПРЕДЕЛЕНИЕ. Функция f(x) с областью определения X называется **четной**, если для любого $x \in X$ выполняется равенство f(x) = f(-x).

Из определения четной функции следует, что ее график симметричен относительно оси ординат.

Например, функции $y = x^2$, y = |x| являются четными, их графики имеют вид:

ОПРЕДЕЛЕНИЕ. Функция f(x) с областью определения X называется **нечетной**, если для любого $x \in X$ выполняется равенство f(x) = -f(-x). График нечетной функции симметричен относительно начала координат.

Например, функции $y = x^3$ и y = 2x являются нечетными, их графики имеют вид:

Функция, в которой переменные x и y поменялись своими ролями, называется **обратной** по отношению к первоначальной функции. В свою очередь первоначальная функция является обратной к полученной.

Свойство графиков взаимно обратных функций: один получается из другого зеркальным отражением относительно биссектрисы первого и третьего координатных углов, т.е. линии y = x.

Множество значений обратной функции $y = f^{-1}(x)$ совпадает с областью определения функции y = f(x), а область определения обратной функции $y = f^{-1}(x)$ совпадает со множеством значений функции y = f(x).

2.2. Линейная функция

ОПРЕДЕЛЕНИЕ. Функция вида y = kx + b, где k и b — некоторые числа, называется линейной функцией.

- 1. Область определения $-x \in (-\infty, +\infty)$.
- 2. Множество значений: при $k \neq 0$ $y \in (-\infty, +\infty)$, при k = 0 y = b.
- 3. Четность, нечетность. При k = 0 функция четная, при b = 0 функция нечетная.
- 4. Периодичность. При k = 0 функция периодическая с любым положительным периодом. При $k \neq 0$ функция непериодическая.
 - 5. Точки пересечения с осями: $\left(-\frac{b}{k},0\right)u\left(0,b\right)$.
- 6. Промежутки знакопостоянства. При k = 0 функция сохраняет знак коэффициента b; функция положительна при k > 0, если $x > -\frac{b}{k}$, и при k < 0, если $x < -\frac{b}{k}$.
- 7. Промежутки монотонности и экстремумы. Функция возрастает при всех x, если k > 0, и убывает, если k < 0.
- 8. Графиком функции y = kx + b является прямая линия. Коэффициент k в уравнении прямой y = kx + b называется угловым коэффициентом прямой. Используя, например, геометрический смысл производной $y' = \operatorname{tg6}$, легко получаем в нашем случае $y' = k = \operatorname{tg6}$, т.е. $k = \operatorname{tg6}$, где α угол между прямой и положительным направлением оси Ox.

Варианты графиков:

Угол между двумя прямыми

$$k_1 = \operatorname{tg} \delta_1$$
, $k_2 = \operatorname{tg} \delta_2$.

$$tg\varphi = tg(\delta_2 - \delta_1) = \frac{|tg\delta_2 - tg\delta_1|}{1 + tg\delta_1 - tg\delta_2};$$

$$\operatorname{tg}\varphi = \frac{\left|k_2 - k_1\right|}{1 + k_1 \cdot k_2}.$$

Условие перпендикулярности прямых: $k_1 \cdot k_2 = -1$.

2.3. Квадратичная функция

ОПРЕДЕЛЕНИЕ. Функция, задаваемая формулой $y = ax^2 + bx + c$ $(a \ne 0)$, называется **квадратичной**.

- 1. Область определения $-x \in (-\infty, +\infty)$.
- 2. Область значений. Выполним преобразование

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2\frac{b}{2a}x + \frac{c}{a}\right) = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = a\left(x^{2} + \frac{b}{2a}x + \frac{c}{a}\right) = a\left(x^{2} + \frac{b}{2a}\right) = a\left(x^{2} + \frac{b}{2a}x + \frac{c}{a}\right) = a\left(x^{2} + \frac{b}{2a}x + \frac$$

$$=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}=a\left(x+\frac{b^2}{2a}-\frac{D}{4a}\right),$$
 где $D=b^2-4ac$ — дискриминант.

Так как
$$\left(x+\frac{b}{2a}\right)^2 \ge 0$$
, то при $a>0$ $y\in\left(-\frac{D}{4a},+\infty\right)$, а при $a<0$ $y\in\left(-\infty,-\frac{D}{4a}\right)$.

- 3. При b = 0 функция четная.
- 4. Функция непериодическая.
- 5. Точки пересечения с осями координат:

$$(x_1,0),(x_2,0)$$
, где $x_1 = \frac{-b-\sqrt{D}}{2a}$, $x_2 = \frac{-b+\sqrt{D}}{2a}$, если $D > 0$;

$$\left(-\frac{b}{2a},0\right)$$
, если $D=0$; если $D<0$, точек пересечения нет.

Точка пересечения с осью Oy: (0, c).

6. Для нахождения промежутков монотонности и экстремумов найдем производную и критические точки:

$$y' = (ax^2 + bx + c)' = 2ax + b$$
; $2ax + b = 0$ $\Pi p M$ $x = -\frac{b}{2a}$.

Определим знаки y' в промежутках $\left(-\infty, -\frac{b}{2a}\right)$ и $\left(-\frac{b}{2a}, +\infty\right)$.

Результаты исследования представим в таблице

x	а	$\left(-\infty; -\frac{b}{2a}\right)$	$-\frac{b}{2a}$	$\left(-\frac{b}{2a};+\infty\right)$
Знак или значение <i>y'</i> Поведение <i>y</i>	<i>a</i> > 0	- /	0 min	+
Знак или значение <i>y'</i> Поведение <i>y</i>	<i>a</i> <0	+ \	0 max	_

Значения функции в точке экстремума $y\left(-\frac{b}{2a}\right) = -\frac{D}{4a}$.

7. Графиком функции $y = ax^2 + bx + c$ является парабола с вершиной в точке $\left(-\frac{b}{2a}, -\frac{D}{4a}\right)$. Она получается из графика функции $y = ax^2$ путем сдвига вдоль оси Ox на $-\frac{b}{2a}$ единиц (вправо, если $-\frac{b}{2a} > 0$, и влево, если $-\frac{b}{2a} < 0$) и последующего сдвига вдоль оси Oy на $-\frac{D}{4a}$ единиц (вверх, если $-\frac{D}{4a} > 0$, и вниз, если $-\frac{D}{4a} < 0$). Парабола имеет ось симметрии, ею

a<0

Варианты графиков представлены на рисунках.

В пункте 2 показано, что квадратичную функцию $y = ax^2 + bx + c$ всегда можно привести к виду $y = a(x - x_0)^2 + y_0$ путем выделения полного квадрата. Точка с координатами (x_0, y_0) вершина параболы.

ПРИМЕР. Постройте график функции $y = x^2 - 3x - 3$.

Выделим полный квадрат

$$y = x^2 - 3x - 3 = \underbrace{x^2 - 3}_{} x - 3 =$$

является прямая $x = -\frac{b}{2a}$.

$$= \left(x - \frac{3}{2}\right)^2 - \frac{9}{4} - \frac{3 \cdot 4}{4} = \left(x - \frac{3}{2}\right)^2 - \frac{21}{4} = (x - 1.5)^2 - 5.25.$$

Следовательно, A(1,5;-5,25) — вершина параболы. Найдем точку пересечения параболы с осью ординат. Если x = 0, то y = -3: точка (0, -3) — точка пересечения с осью O_y . Ветви параболы направлены вверх, так как a=1>0, ее график симметричен относительно прямой x = 1.5.

2.4. Степенные функции $y = x^{\alpha}$

$$y = x^n \quad (n \in N)$$

вида $y = x^n$, $n \in \mathbb{N}$, называется **степенной** ОПРЕДЕЛЕНИЕ. Функция функцией с натуральным показателем.

1. Область определения функции

$$D(y) \in (0, +\infty).$$

$$D(y) \in (-\infty, +\infty)$$

- 2. Функция является четной при четном n и нечетной при нечетном n.
- 3. Если *n* нечетно, то функция $y = x^n$ возрастает при $x \in (-\infty, +\infty)$; если *n* четно, то функция $y = x^n$ возрастает при $x \in [0, \infty)$ и убывает при $x \in (-\infty, 0]$.
 - 4. Функция непрерывна на $(-\infty, +\infty)$.

ОПРЕДЕЛЕНИЕ. Функция вида $y = x^{-n}$ называется **степенной функцией с** целым отрицательным показателем.

- 1. Область определения функции $-x \in (-\infty, 0) \cup (0, +\infty)$.
- 2. Функция является четной при четном n и нечетной при нечетном n.
- 3. Функция убывает при x > 0; при x < 0 функция убывает, если n нечетное, и возрастает, если n четное.
- 4. Функция непрерывна на $(-\infty,0)$ и на $(0,+\infty)$; x=0 точка разрыва функции.

Обратной пропорциональностью называется функция, заданная формулой $y = \frac{k}{r}$, где $k \neq 0$.

- 1). Область определения $x \in (-\infty,0) \cup (0,\infty)$.
- 2). Область значений $x \in (-\infty,0) \cup (0,\infty)$. График не проходит через начало координат.
- 3). $y = \frac{k}{x}$ нечетная функция (поскольку $f(-x) = \frac{k}{-x} = -\frac{k}{x} = -f(x)$. График этой функции симметричен относительно начала координат.
- 4). Если k > 0, то функция $y = \frac{k}{x}$ убывает на промежутке $(0, +\infty)$ и на промежутке $(-\infty, 0)$. Если k < 0,

то функция $y = \frac{k}{x}$ возрастает на промежутке $(-\infty, 0)$ и на промежутке $(0, +\infty)$.

- 5). Точек пересечения с осями координат не существует.
- 6). При k > 0 y > 0 на $(0, +\infty)$, y < 0 на $(-\infty, 0)$. При k < 0 y > 0 на $(-\infty, 0)$, y < 0 на $(0, +\infty)$.
- 7). Функция непериодическая.
- 8). Если k < 0, то ветви графика расположены в II и IV координатных четвертях. Графиком обратной пропорциональности $y = \frac{k}{r}, k \neq 0$ является гипербола.

Функция $y = \sqrt[n]{x}$ является обратной к функции $y = x^n$. Отразив график функции $y=x^n$ симметрично относительно прямой y=x ,получим график функции $y=\sqrt[n]{x}$.

$$y = x^{p/q} \quad (p, q \in Z, \ q \neq 0)$$

2.5. Дробно-линейная функция

ОПРЕДЕЛЕНИЕ. Функция вида $y = \frac{ax + b}{cx + d}$, где a, b, c, d — постоянные, $c \neq 0$, $ad \neq bc$, называется дробно-линейной.

- 1. Область определения функции $x \in (-\infty, -d/c) \cup (-d/c, +\infty)$.
- 2. Для построения графика преобразуем функцию, выделив в ее выражении целую часть следующим образом.

Преобразуем тождественно числитель, чтобы выделить в нем слагаемое, содержащее знаменатель

$$ax + b = \frac{a}{c}(cx + d) - \frac{ad}{c} + b$$
;

поделив это выражение почленно на (cx+d), получим

$$y = \frac{a}{c} - \frac{\frac{ad}{c} - b}{cx + d} = \frac{a}{c} + \frac{\frac{bc - ad}{c^2}}{x + \frac{d}{c}},$$

таким образом, обозначая $\frac{a}{c} = n$, $\frac{d}{c} = m$, $k = \frac{bc - ad}{c^2}$, видим, что $y = \frac{ax + b}{cx + d} = n + \frac{k}{x + m}$, где n — целая часть исходного выражения.

дробно-линейной функции получается График сдвигом графика гиперболы $y = \frac{k}{x}$ на m единиц вдоль оси Ox и на n единиц вдоль оси Oy . Прямые y = n и x = m

оси Ox и п... являются асимптотами гиперос.. **ПРИМЕР.** Постройте график функции $y = \frac{2x}{x+1}$. Запишем эту функцию так: $y = 2 - \frac{3}{x+1}$. Графиком функции $y = \frac{2x}{x+1}$.

2.6. Показательная функция $y = a^x$ $(a > 0, a \ne 1)$

ОПРЕДЕЛЕНИЕ. Функция вида $y = a^x$, где a — некоторое положительное число, не равное единице $(a > 0, a \ne 1)$, называется показательной.

- 1. Область определения функции $x \in (-\infty, +\infty)$.
- 2. Множество значений функции $y \in (0, +\infty)$.
- 3. При x = 0 значение функции y = 1.
- 4. При a > 1 функция возрастает на всей числовой оси; если x > 0, то $y = a^x > 1$; если x < 0, то $0 < a^x < 1$.
- 5. При 0 < a < 1 функция убывает на всей числовой оси; если x > 0, то $0 < a^x < 1$; если x < 0, то $a^x > 1$.

2.7. Логарифмы и их свойства

ОПРЕДЕЛЕНИЕ. Логарифмом числа b по основанию a, где b > 0, a > 0, $a \ne 1$, называется показатель степени, в которую надо возвести основание a, чтобы получить число b.

x — логарифм $(x = \log_a b)$ числа b > 0 по основанию a > 0 $(a \ne 1)$, если $a^x = b$.

$$a^{\log_a b} = b$$

1.
$$\log_a 1 = 0$$
. 2. $\log_a a = 1$. 3. $\log_a bc = \log_a |b| + \log_a |c|$ ($bc > 0$).

4.
$$\log_a \frac{b}{c} = \log_a |b| - \log_a |c|$$
 $(bc > 0)$. 5. $\log_a b^n = n \cdot \log_a b$.

6.
$$\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$$
. 7. $\log_{a^m} b^n = \frac{n}{m} \log_a b$. 8. $\log_{a^n} b = \frac{1}{n} \log_a b$.

9.
$$\log_a b = \log_{a^n} b^n$$
. 10. $\log_a b = \frac{\log_c b}{\log_c a}$. 11. $\log_a b = \log_c b \cdot \log_a c$. 12. $\log_a b = \frac{1}{\log_b a}$. 13. $\log_{10} b = \lg b$. 14. $\log_e b = \ln b$.

12.
$$\log_a b = \frac{1}{\log_a a}$$
. 13. $\log_{10} b = \lg b$. 14. $\log_e b = \ln b$.

2.8. Логарифмическая функция $y = \log_a x$ (a > 0, $a \ne 1$)

ОПРЕДЕЛЕНИЕ. Функция, обратная показательной функции, называется логарифмической: $y = \log_a x$.

- 1. Область определения функции $x \in (0, +\infty)$.
- 2. Множество значений функции $y \in (-\infty, +\infty)$.
- 3. При x = 1 $y = \log_a x = 0$.
- 4. При a > 1 функция возрастает; если 0 < x < 1, то $\log_a x < 0$, если x > 1, то
- 5. При 0 < a < 1 функция убывает; если 0 < x < 1, то $\log_a x > 0$, если x > 1, то $\log_a x < 0$.

2.9. Геометрические преобразования графиков функций

Если известен график функции y = f(x), то с помощью некоторых преобразований можно построить графики более сложных функций.

График функции $f(x \pm a)$ получается Значение функции f(x-a) при $x=x_0+a$ совпадает со значением f(x) при $x=x_0$.

- 2. График функции $f(x)\pm a$ получается параллельным переносом графика функции f(x) вдоль оси Oy на $\pm a$.
- 3. График функции $k \cdot f(x)$ получается растяжением графика f(x) вдоль оси Oy в k (k>0) раз при k>1 и сжатием вдоль этой оси в 1/k раз при 0 < k < 1; если k < 0, то к этому преобразованию добавляется зеркальное отражение относительно оси Ох.

|f(x)|

4. График функции f(kx) получается сжатием графика f(x) вдоль оси Ox в k(k > 0) раз при k > 1 и растяжением вдоль этой же оси в k раз при 0 < k < 1; если k < 0, то к этому преобразованию добавляется зеркальное отражение относительно оси Оу.

- 5. График функции |f(x)| получается из графика функции f(x) следующим преобразованием: часть графика, лежащая выше оси Ох, остается на месте; часть графика, лежащая ниже f(x)оси Ох, зеркально отражается относительно оси Ох
- 6. График функции f(x) получается из графика f(x) следующим преобразованием: при $x \ge 0$ график не при график заменяется изменяется; *x* < 0 зеркальное отражение относительно оси Оу части графика, соответствующей $x \ge 0$.

