Corrigé : Série 2

1 Partie I

1.1 Consignes

Réaliser les exercices suivants directement sur la feuille de donnée. Joindre au rendu tous les éléments annexes (feuilles de brouillon). Aucune documentation, ni aucun dispositif électronique n'est autorisé (machine à calculer, ordinateur, etc.).

1.2 Représentation de l'information

Exercice 1

Convertir les nombres décimaux suivants en binaire.

- a) $17 \rightarrow 16 + 1 \rightarrow 00010001$
- b) $23 \rightarrow 16 + 4 + 2 + 1 \rightarrow 00010111$
- c) $127 \rightarrow 64 + 32 + 16 + 3 + 2 + 1 \rightarrow 011111111$ (On peut aussi observer que 127 = 128-1)

Exercice 2

Convertir les nombres binaires suivants en décimal.

a)
$$0110 = 4 + 2 = 6$$

b)
$$1010 = 8 + 2 = 10$$

b)
$$1010 = 8 + 2 = 10$$
 c) $0111 = 4 + 2 + 1 = 7$

Exercice 3

Convertir les nombres décimaux suivants en binaire, complément à deux.

a)
$$-5 \rightarrow -(0101) \rightarrow 1010 + 1 = 1011(ou11111011)$$

- b) $-7 \rightarrow 1001(ou111111001)$
- c) $-9 \rightarrow 0111(ou11110111)$

Exercice 4

Trouver le codage de Gray pour les nombres décimaux suivants.

a)
$$3 \to 0010$$

b)
$$5 \to 0111$$

c)
$$7 \to 0100$$

1.3 Les portes logiques

Exercice 5

Pour la porte logique OU (OR), donner la table de vérité et la représentation schématique de la porte.

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

1.4 Logique analytique

Exercice 6

Qu'est-ce qu'un système logique? Quelle est la différence avec une fonction logique?

Fonction logique : Ensemble de variables logiques reliées par des opérateurs logiques. Une fonction logique ne peut prendre que deux valeurs : 0 ou 1.

Système logique : Ensemble de composants qui effectuent des fonctions sur des signaux logiques dans le but de stocker, communiquer ou de transformer de l'information.

 \Longrightarrow La différence réside donc essentiellement dans le fait qu'une fonction ne produit qu'une seule "sortie".

Exercice 7

À quoi correspond l'égalité : $\overline{A+B} = \overline{A} \cdot \overline{B}$?

Au théorème (ou loi) de De Morgan

Exercice 8

Comment réécrire $\overline{A}\cdot B + A\cdot \overline{B}$ avec un seul opérateur ?

 $A \oplus B$

Exercice 9

Quelle est la fonction logique (sans optimisation) du schéma suivant.

 $S = \overline{A \cdot B} + C \cdot D + \overline{C \cdot \overline{D}}$

Exercice 10

Compléter la table de vérité pour le schéma de l'exercice précédent.

 $\underline{Indice: Il \ n'y \ a \ qu'un} \ seul \ état \ qui \ donne \ 0.$

A	B	C	D	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

1.5 Optimisation

Exercice 11

- a) Reprendre le schéma et la table de vérité des deux exercices précédents pour construire la table de Karnaugh correspondante.
- b) Déterminer les regroupements optimaux.
- c) Établir la fonction optimisée.

2 Partie II

2.1 Consignes

Cette partie est à réaliser avec logisim. Vous avez droit à toute la documentation.

2.2 Exercice 2.1

Réaliser dans logisim un circuit qui convertit un nombre binaire en codage de Gray pour un demi-octet (4 bits). Le rendu est un fichier .circ que vous devez déposer dans le moodle du cours.