Envy-free house allocation with minimum subsidy

Davin Choo, Yan Hao Ling, Warut Suksompong, Nicholas Teh, Jian Zhang

^{*} Alphabetical ordering; Class project of CS6235 AY22/23 Sem 2; Appeared in Operations Research Letters (ORL), 2024

Agent utility u_i(item)

Agent utility u_i(item)

$$u \approx (60 + 4 = 10 = u \approx (80)$$

Envy-free allocation if we assume additive utilities

Envy-free allocation may not exist in general (whoever does NOT get ball will be envious)

Envy-free allocation if we assume *additive* utilities

There is an envy-free allocation if we allow incomplete allocation

House allocation problem

- m houses
- n agents
- m ≥ n
- Each agent gets exactly one house
 - Complete allocation when m = n
 - Incomplete allocation when m > n

10

3

10

4

An incomplete envy-free allocation since m = 3 > 2 = n

Envy-free relaxations for indivisible goods

- Problem: Envy-free allocation may not always exist
- Common relaxations of envy-free (EF)
 - EF1: Envy-free up to at most 1 item
 - No longer envy if drop some good from other agent's bundle
 - EFX: Envy-free up to at most any item
 - No longer envy if drop any good from other agent's bundle

Doesn't make sense in the house allocation problem!

Envy-free relaxations for indivisible goods

- Problem: Envy-free allocation may not always exist
- Common relaxations of envy-free (EF)
 - External subsidy Envy-free = Zero subsidies required!
 - Total utility = Allocated good utility + given subsidy

If we give a subsidy of \$3 to and \$0 to :

u = (1 + 3 = 10 = u = (1 + 3) + 0

Envy-free allocation with subsidies

- Allocation $\mathbf{a} = (a_1, ..., a_n)$, where each a_i is a distinct house
- Subsidy vector $\mathbf{s} = (s_1, ..., s_n)$, where $s_i \ge 0$ for all $i \in [n]$
- Outcome (a, s) is envy-free if

 $u_i(a_i) + s_i \ge u_i(a_j) + s_j$, for every pair of agents i, j \in [n]

Agent i's perspective

- I currently get u_i(a_i) + s_i
- If I swap places with agent j, I get u_i(a_j) + s_j
- I don't feel any happier, so I don't envy agent j

If we give a subsidy of \$3 to and \$0 to :

$$u \odot (1 + 3 = 10 = u \odot (1 + 0) + 0$$

Envy-free allocation with

- Allocation $\mathbf{a} = (a_1, ..., a_n)$, where each
- Subsidy vector $\mathbf{s} = (s_1, ..., s_n), \mathbf{s}$
- Outcome (a, s) is envy-free if

$$u_i(a_i) + s_i \ge u_i(a_i) + s_i$$
, for eve

10

7

10

6

4

Not all allocations can be made envy-free!

or eve $air \in agents i, j \in [n]$

Envy-free allocation with §

- Allocation $\mathbf{a} = (a_1, ..., a_n)$, where each
- Subsidy vector $\mathbf{s} = (s_1, ..., s_n), \mathbf{v}$
- Outcome (a, s) is envy-free if

$$u_i(a_i) + s_i \ge u_i(a_i) + s_i$$

Agent

2

10

10 6 Not all allocations can be made envy-free!

, for eve agents i, $j \in [n]$

$$3 + s_1 = u_1(a_1) + s_1 \ge u_1(a_2) + s_2 = 7 + s_2$$

 $4 + s_2 = u_2(a_2) + s_2 \ge u_2(a_1) + s_1 = 6 + s_1$

Since
$$3 + s_1 \ge 7 + s_2$$
 and $4 + s_2 \ge 6 + s_1$, we see that $s_1 \ge (7-3) + s_2 \ge (7-3) + (6-4) + s_1 = 6 + s_1$ i.e. $s_1 \ge 6 + s_1 \iff 0 \ge 6$ (Impossible)

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
 - There is a polynomial time algorithm to check if there is an envy-free allocation
 - If such an envy-free allocation exists, output it

[GSV19] Jiarui Gan, Warut Suksompong, Alexandros A Voudouris. Envy-freeness in house allocation problems. Mathematical Social Sciences, 2019.

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
 - There is a polynomial time algorithm to check if there is an envy-free allocation
 - If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
 - Studied fair division of goods with subsidies + additive utilities
 - Complete allocation of items without m ≥ n restriction; agents can receive 0, or >1 good

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
 - There is a polynomial time algorithm to check if there is an envy-free allocation
 - If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
 - Studied fair division of goods with subsidies + additive utilities
 - Complete allocation of items without m ≥ n restriction; agents can receive 0, or >1 good
 - Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
 - An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
 - There is a polynomial time algorithm to check if there is an envy-free allocation
 - If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
 - Studied fair division of goods with subsidies + additive utilities
 - Complete allocation of items without m ≥ n restriction; agents can receive 0, or >1 good
 - Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
 - An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy
 - There is a characterization of envy-freeable allocations
 - Implies that an envy-freeable allocation always exists for the house allocation problem
 - Given an envy-freeable allocation, there is a polynomial time algorithm to compute the unique corresponding subsidy vector that minimizes ∑_i s_i

- [Jiarui Gan, Warut Suksompong, Alexandros A Voudouris; 2019]
 - There is a polynomial time algorithm to check if there is an envy-free allocation
 - If such an envy-free allocation exists, output it
- [Daniel Halpern, Nisarg Shah; 2019]
 - Studied fair division of goods with subsidies + additive utilities
 - Complete allocation of items without m ≥ n restriction; agents can receive 0, or >1 good
 - Definition: Envy-freeable (Informal: "Can find subsidy vector that works")
 - An allocation of goods is envy-freeable if there is a subsidy vector such that all agents are envy-free given their items' value(s) + subsidy
 - There is a characterization of envy-freeable allocations
 - Implies that an envy-freeable allocation always exists for the house allocation problem
 - Given an envy-freeable allocation, there is a polynomial time algorithm to compute the unique corresponding subsidy vector that minimizes ∑_i s_i
- [Siddharth Barman, Anand Krishna, Y. Narahari, Soumyarup Sadhukhan; 2022]
 - If (a, s) is envy-free outcome, then so is (a_{σ}, s_{σ}) for any permutation σ whenever a_{σ} is envy-freeable

Question

Given a house allocation problem instance, how do we find a minimum total subsidy allocation outcome?

(Remark: 0 total subsidy = Envy-free)

- Recall from prior works:
 - [GSV19] There is a polynomial time algorithm to check if an envy-free allocation exists, and output one if it exists
 - [HS19] Given an envy-freeable allocation (always exists), there is a poly time algorithm to compute the unique corresponding minimum total subsidy vector
 - [BKNS22] If (a, s) is envy-free outcome, then so is (a_{σ}, s_{σ}) for any permutation σ whenever a_{σ} is envy-freeable

Minimum-subsidy envy-free outcome is NP-hard

- Reduction from Vertex Cover
 - $n = |V|^4 + |V|^3 + |E|$ agents
 - $m = |V|^4 + |V|^3 + |V|^2$ houses
 - Vertex cover size $\leq k \Leftrightarrow \text{Total subsidy} \leq \frac{k}{|V|}$

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} $(V ^2 \text{ for each } v)$
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

• Since any subset of n-1 vertices is a vertex cover, may assume that k < |V| - 1

• Suppose $C \subseteq V$ is a vertex cover with $|C| \le k$

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose $C \subseteq V$ is a vertex cover with $|C| \le k$
- Proposed allocation
 - Assign each special agent to special house
 - Assign each vertex agent of type v to vertex house v_{bad}

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} $(V ^2 \text{ for each } v)$
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
ď	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose $C \subseteq V$ is a vertex cover with $|C| \le k$
- Proposed allocation
 - Assign each special agent to special house
 - Assign each vertex agent of type v to vertex house v_{bad}
 - For each edge agent corresponding to edge $\{x, y\}$, at least x or y must be in C
 - If $x \in C$, assign edge agent $\{x, y\}$ to x_{good}
 - If $y \in C$, assign edge agent $\{x, y\}$ to y_{good}
 - If both x and y are in C, assign arbitrarily

Always possible since there are |V| good houses for each vertex

Special $(|V|^4)$

 $(|V|^2 \text{ for each } w \in V)$

Vertex w

Vertex v_{good}

(|V| for each v)

1 if $v \in \{x, y\}$

0 otherwise

 $1 + |V|^{-3}$ if v = w

otherwise

Vertex $v_{\rm bad}$

0

 $(|V|^2 \text{ for each } v)$

Observation: In this allocation, only vertex agents v can possibly envy edge agents v. No one else envies anyone else.

- Suppose $C \subseteq V$ is a vertex cover with $|C| \le k$
- Proposed allocation
 - Assign each special agent to special house
 - Assign each vertex agent of type v to vertex house v_{bad}
 - For each edge agent corresponding to edge $\{x, y\}$, at least x or y must be in C
 - If $x \in C$, assign edge agent $\{x, y\}$ to x_{good}
 - If $y \in C$, assign edge agent $\{x, y\}$ to y_{good}
 - If both x and y are in C, assign arbitrarily

Always possible since there are |V| good houses for each vertex

Special $(|V|^4)$

 $(|V|^2 \text{ for each } w \in V)$

Vertex w

- Proposed subsidy
 - If $v \in C$, give $|V|^{-3}$ to each vertex agent of type v
 - Give 0 to everyone else

$$\sum_{i} s_{i} = \frac{|V|^{2} \cdot |C|}{|V|^{3}} = \frac{|C|}{|V|} \le \frac{k}{|V|}$$

Observation: This subsidy of $|V|^{-3}$ does not create new envy since $1 > 0 + |V|^{-3}$

Vertex v_{good}

(|V| for each v)

1 if $v \in \{x, y\}$

0 otherwise

 $1 + |V|^{-3}$ if v = w

Vertex $v_{\rm bad}$

0

 $(|V|^2 \text{ for each } v)$

Vertex cover size
$$\leq k \leftarrow Total subsidy \leq \frac{k}{|V|}$$

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } \mathbf{a} \}$
- Claim 1: T is a vertex cover
 Claim 2: |T| ≤ k

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define T = { $v \in V : \exists$ edge agent receiving house of type v_{good} in a }
- Claim 1: T is a vertex cover
 - $n = |V|^4 + |V|^3 + |E| > |V|^3 + |V|^2 = m |V|^4$ •

- n = |V|⁴ + |V|³ + |E| agents
 m = |V|⁴ + |V|³ + |V|² houses
- Since $n > m |V|^4$, by pigeonhole principle, some special house is allocated
- If special agent not assigned special house, need to give subsidy of 1

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} $(V ^2 \text{ for each } v)$
	Special $(V ^4)$	1	0	0
Agents	Vertex w $(V ^2 \text{ for each } w \in V)$	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
Ý	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
 - $n = |V|^4 + |V|^3 + |E| > |V|^3 + |V|^2 = m |V|^4$
 - Since $n > m |V|^4$, by pigeonhole principle, some special house is allocated
 - If special agent not assigned special house, need to give subsidy of 1
 - k < |V| 1 $\Rightarrow \sum_i s_i \le \frac{k}{|V|} < \frac{|V|-1}{|V|} < 1 \Rightarrow Any \text{ agent's } s_i \text{ subsidy is } < 1$
 - So, it must be the case that all special agents are assigned the special houses

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
 - All special agents are assigned all the special houses

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w $(V ^2 \text{ for each } w \in V)$	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
ξ.	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
 - All special agents are assigned all the special houses
 - For edge agent $\{x, y\}$ to require < 1 subsidy, must assign x_{good} or y_{good}
 - This means that $T \cap \{x, y\} \neq \emptyset$ for any edge $\{x, y\} \in E$
 - That is, T is a vertex cover

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
- Claim 2: $|T| \le k$
 - For any $v \in T$,
 - There is some edge agent receiving v_{good} (defⁿ of T)

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{\kappa}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
- Claim 2: |T| ≤ k
 - For any $v \in T$,
 - There is some edge agent receiving v_{good} (defⁿ of T)
 - Need to give vertex agent of type v either v_{good} or v_{bad}
 - If assigned v_{bad} , need to also give subsidy of $|V|^{-3}$

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
- Claim 2: |T| ≤ k
 - For any $v \in T$,
 - There is some edge agent receiving v_{good} (defⁿ of T)
 - Need to give vertex agent of type v either v_{good} or v_{bad}
 - If assigned v_{bad} , need to also give subsidy of $|V|^{-3}$
 - There are $|V|^2$ vertex agents of type v but only |V| v_{good} houses (some are already taken)
 - So, total subsidy is at least $|T| \cdot (|V|^2 |V|) \cdot |V|^{-3}$

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} ($ V ^2$ for each v)
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
- Claim 2: |T| ≤ k
 - Total subsidy is at least $|T| \cdot (|V|^2 |V|) \cdot |V|^{-3}$

- Suppose outcome (a, s) is envy-free outcome with $\sum_i s_i \leq \frac{k}{|V|}$
- Define $T = \{ v \in V : \exists \text{ edge agent receiving house of type } v_{good} \text{ in } a \}$
- Claim 1: T is a vertex cover
- Claim 2: |T| ≤ k
 - Total subsidy is at least $|T| \cdot (|V|^2 |V|) \cdot |V|^{-3}$
 - Suppose, for a contradiction, that $|T| \ge k + 1$. Then,

$$\sum_{i} s_{i} \ge \frac{|T| \cdot (|V|^{2} - |V|)}{|V|^{3}} \ge \frac{(k+1) \cdot (|V|^{2} - |V|)}{|V|^{3}} = \frac{1}{|V|} \cdot \left(k+1 - \frac{k+1}{|V|}\right) > \frac{k}{|V|}$$

Since k < |V| - 1

• Contradiction, so $|T| \le k$

Minimum-subsidy envy-free outcome is NP-hard

- Reduction from Vertex Cover
 - Vertex cover size $\leq k \Leftrightarrow \text{Total subsidy} \leq \frac{k}{|V|}$

		Houses		
		Special $(V ^4)$	Vertex v_{good} (V for each v)	Vertex v_{bad} $(V ^2 \text{ for each } v)$
	Special (V ⁴)	1	0	0
Agents	Vertex w ($ V ^2$ for each $w \in V$)	0	$\begin{cases} 1 + V ^{-3} & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$	$\begin{cases} 1 & \text{if } v = w \\ 0 & \text{otherwise} \end{cases}$
Ag	Edge $e = \{x, y\}$ (1 for each $e \in E$)	1	$\begin{cases} 1 & \text{if } v \in \{x, y\} \\ 0 & \text{otherwise} \end{cases}$	0

- Modifying $\hat{u}_i(h) = u_i(h) + c_i$, for some $c_i \ge 0$, does not affect envy-freeness
- So, the NP-hardness argument holds even for normalized utilities where we have the same value of $\sum_h u_i(h)$ for all agents, after accounting for the c_i 's

Two tractable cases

1) Identical valuations / utility functions

2) Similar number of agents and houses

Two tractable cases

- 1) Identical valuations / utility functions
 - $u_i(any item) = u_i(same item)$ for all $i, j \in [n]$
 - Without loss of generality, by relabelling,
 - $u(h_1) \ge u(h_2) \ge ... \ge u(h_m)$
 - Agent i is assigned the ith most valuable house within the subset of assigned houses
- 2) Similar number of agents and houses

Two tractable cases

1) Identical valuations / utility functions

- $u_i(any item) = u_i(same item)$ for all $i, j \in [n]$
- Without loss of generality, by relabelling,
 - $u(h_1) \ge u(h_2) \ge ... \ge u(h_m)$
 - Agent i is assigned the ith most valuable house within the subset of assigned houses

2) Similar number of agents and houses

- m = n + c, for some constant $c \ge 0$
- Since $\binom{m}{n} = \binom{n+c}{n} = \binom{n+c}{c} \in O(n^c)$ is polynomial for constant $c \ge 0$, suffice to show that the case of m = n can be solved in polynomial time

Tractable case 1: Identical valuations

• **Observation 1**: Subsidy required is exactly the sum of value differences to the most valuable assigned house

Tractable case 1: Identical valuations

- Observation 1: Subsidy required is exactly the sum of value differences to the most valuable assigned house
- Observation 2: For any fixed "most valuable assigned house", we should always assign the contiguous n-1 houses right after it

Tractable case 1: Identical valuations

- Observation 1: Subsidy required is exactly the sum of value differences to the most valuable assigned house
- Observation 2: For any fixed "most valuable assigned house", we should always assign the contiguous n-1 houses right after it
- Polynomial time algorithm to compute minimum subsidy allocation
 - 1. Compute prefix sums of values so we can compute required subsidy
 - 2. Check through all m-n "most valuable assigned house"
 - 3. Output the best option

- Consider weighted complete bipartite graph G
 - Left partite: Agents
 - Right partite: Houses
 - Edge weights: u_i(h_i), agent i's utility for house j
 - A perfect matching corresponds to an allocation

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G

 Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector s

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G

 Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector s

Maybe some other allocation has a smaller subsidy vector?

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G

 Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector s
- Since m = n, any envy-free allocation is a permutation of a
- [BKNS22] $(\mathbf{a}_{\sigma}, \mathbf{s}_{\sigma})$ is also envy-free for permutation σ if \mathbf{a}_{σ} is envy-freeable
- Since **s** and \mathbf{s}_{σ} are just permutations, the total subsidy is the same

- Consider weighted complete bipartite graph G
- [HS19] Maximum weight perfect matching in G

 Envy-freeable allocation a
- Suppose a can be made envy-free with minimum subsidy vector s
- Since m = n, any envy-free allocation is a permutation of a
- [BKNS22] $(\mathbf{a}_{\sigma}, \mathbf{s}_{\sigma})$ is also envy-free for permutation σ if \mathbf{a}_{σ} is envy-freeable
- Since **s** and \mathbf{s}_{σ} are just permutations, the total subsidy is the same
- Polynomial time algorithm to compute minimum subsidy allocation
 - 1. Compute maximum weight perfect matching in G to get allocation a
 - 2. Compute corresponding minimum total subsidy vector **s** in polynomial time [HS19]
 - 3. Output (a, s)

Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
 - All agents have identical utilities
 - Similar number of houses and agents (m = n + c, for constant $c \ge 0$)

Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
 - All agents have identical utilities
 - Similar number of houses and agents (m = n + c, for constant $c \ge 0$)
- Conjecture: Polynomial time possible if identical preferences

Distinct utility functions but same preference ordering

Maybe "contiguous" observation also holds?

Conclusion and future directions

- NP-hard in general to compute minimum subsidy envy-free allocation
- 2 tractable cases
 - All agents have identical utilities
 - Similar number of houses and agents (m = n + c, for constant $c \ge 0$)
- Conjecture: Polynomial time possible if identical preferences
- Design approximation algorithms or prove hardness?
- Other notions of fairness? Pareto efficiency?
- Strategic behavior?
 - No deterministic mechanism can be strategy-proof (See Example 5.1 in paper)

Lying about own utility function helps

BACK UP SLIDES

Polynomial time algorithm for computing minimum subsidy vector

- Given allocation a = (a₁, ..., a_n), compute envy graph G_a
 - Vertices correspond to agents
 - Edges are directed and weighted
 - Weight of edge $i \rightarrow j$ is $u_i(a_i) u_i(a_i)$, i.e. how much agent i envies agent j's allocation
 - Note that edge weights can be negative
- Define ℓ(i,j) as maximum weight of any path in G_a starting from i and ending at j
- Define $\ell(i) = \max_{j \in [n]} \ell(i,j)$
- [HS19, Theorem 2] $\mathbf{s} = (\ell(1), ..., \ell(n))$ is the unique minimum total subsidy vector

Characterization of envy-freeable allocations

- [HS19, Theorem 1] The following are equivalent:
 - Allocation $\mathbf{a} = (a_1, \dots, a_n)$ is envy-freeable
 - Allocation a maximizes utilitarian welfare across all reassignments

$$\sum_{i} u_{i}(a_{i}) \geq \sum_{i} u_{i}(a_{\sigma(i)})$$
, for any permutation σ

• Envy graph G_a has no positive-weight cycles

For house allocation (m = n), the second condition corresponds to maximum weight perfect matching