Using ADC on Firebird-V Robot

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology Bombay

> IIT Bombay February 26, 2020

Agenda for Discussion

- Analog to Digital Conversion
 - What is an ADC
 - Steps in ADC
 - Need for ADC
 - ADC of ATmega2560
 - ADC Channels
- 2 Coding ADC
 - ADC Initialization
 - ADCSRA
 - ADCSRB
 - ADMUX
 - ACSR
 - Algorithm for ADC

What is an ADC Steps in ADC Need for ADC ADC of ATmega256 ADC Channels

What is an ADC

What is an ADC

Onverts a signal from analog (continuous) to digital form.

What is an ADC

Onverts a signal from analog (continuous) to digital form.

To process the data using processor, we need to convert the analog signals to the digital signals.

What is an ADC Steps in ADC Need for ADC ADC of ATmega250 ADC Channels

Steps in ADC

What is an ADC Steps in ADC Need for ADC ADC of ATmega250 ADC Channels

Steps in ADC

- Sampling
- Quantization
- Encoding

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

What is an ADC Steps in ADC Need for ADC ADC of ATmega250 ADC Channels

What is an ADC Steps in ADC Need for ADC ADC of ATmega256 ADC Channels

Need for ADC

IR Proximity sensors

What is an ADC Steps in ADC Need for ADC ADC of ATmega250 ADC Channels

- IR Proximity sensors
- Sharp IR Range sensors

What is an ADC Steps in ADC Need for ADC ADC of ATmega256 ADC Channels

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors

What is an ADC Steps in ADC Need for ADC ADC of ATmega250 ADC Channels

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors
- Battery voltage sensor

- IR Proximity sensors
- Sharp IR Range sensors
- White line sensors
- Battery voltage sensor
- ø etc..

What is an ADC Steps in ADC Need for ADC ADC of ATmega2560 ADC Channels

What is an ADC Steps in ADC Need for ADC ADC of ATmega2560 ADC Channels

In-Built ADC of ATmega2560

10-bit SAR type ADC

- 10-bit SAR type ADC
- lacktriangle Minimum voltage change (Vref $/ 2^n$)

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage
- Free Running or Single Conversion Mode

- 10-bit SAR type ADC
- Minimum voltage change (Vref / 2ⁿ)
- **13** 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 4 14 Differential Input Channels
- Optional Left Adjustment for ADC Result Readout
- 0 VCC ADC Input Voltage Range
- 2.7 VCC Differential ADC Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage
- Free Running or Single Conversion Mode
- Interrupt on ADC Conversion Complete

ADC Channels

Pin No.	Pin Name	Description
97	PF0/ADC0	ADC input for Battery Voltage Monitoring
96	PF1/ADC1	ADC input for White Line Sensor 3(Right)
95	PF2/ADC2	ADC input for White Line Sensor 2(Center)
94	PF3/ADC3	ADC input for White Line Sensor 1(Left)
93	PF4/ADC4	ADC input for IR proximity analog sensor 1
92	PF5/ADC5	ADC input for IR proximity analog sensor 2
91	PF6/ADC6	ADC input for IR proximity analog sensor 3
90	PF7/ADC7	ADC input for IR proximity analog sensor 4
89	PK0/ADC8	ADC input for IR proximity analog sensor 5
88	PK1/ADC9	ADC input for Sharp IR range sensor 1
87	PK2/ADC10	ADC input for Sharp IR range sensor 2
86	PK3/ADC11	ADC input for Sharp IR range sensor 3
85	PK4/ADC12	ADC input for Sharp IR range sensor 4
84	PK5/ADC13	ADC input for Sharp IR range sensor 5
83	PK6/ADC14	ADC input for Servo Pod 1
82	PK7/ADC15	ADC input for Servo Pod 2

ADC Channels

Pin No.	Pin Name	Description
97	PF0/ADC0	ADC input for Battery Voltage Monitoring
96	PF1/ADC1	ADC input for White Line Sensor 3(Right)
95	PF2/ADC2	ADC input for White Line Sensor 2(Center)
94	PF3/ADC3	ADC input for White Line Sensor 1(Left)
93	PF4/ADC4	ADC input for IR proximity analog sensor 1
92	PF5/ADC5	ADC input for IR proximity analog sensor 2
91	PF6/ADC6	ADC input for IR proximity analog sensor 3
90	PF7/ADC7	ADC input for IR proximity analog sensor 4
89	PK0/ADC8	ADC input for IR proximity analog sensor 5
88	PK1/ADC9	ADC input for Sharp IR range sensor 1
87	PK2/ADC10	ADC input for Sharp IR range sensor 2
86	PK3/ADC11	ADC input for Sharp IR range sensor 3
85	PK4/ADC12	ADC input for Sharp IR range sensor 4
84	PK5/ADC13	ADC input for Sharp IR range sensor 5
83	PK6/ADC14	ADC input for Servo Pod 1
82	PK7/ADC15	ADC input for Servo Pod 2

ADC Initialization ADCSRA ADCSRB ADMUX ACSR

ADC Initialization

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

ADCSRA - ADC Control and Status Register A

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- 3 ADMUX ADC Multiplexer Selection Register

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- ADMUX ADC Multiplexer Selection Register
- 4 ACSR Analog Comparator Control and Status Register

ADC Initialization

To program ADC, we have to initialize few registers.

These registers are:

- ADCSRA ADC Control and Status Register A
- ADCSRB ADC Control and Status Register B
- ADMUX ADC Multiplexer Selection Register
- ACSR Analog Comparator Control and Status Register
- All these registers are 8 Bit

ADCSRA- ADC Control and Status Register A

ADCSRA- ADC Control and Status Register A

Bit Sy	mbol Descr	iption	Bit Value
--------	------------	--------	-----------

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	

ADCSRA- ADC Control and Status Register A

This register is used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1

ADCSRA

ADCSRA- ADC Control and Status Register A

This register is used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	

ADCSRA- ADC Control and Status Register A

This register is used to control ADC operation

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA- ADC Control and Status Register A

Bit	Symbol	Description	Bit Value
7	ADEN	ADC Enable	1
6	ADSC	ADC Start Conversion	0
5	ADATE	ADC Auto Trigger Enable	0
4	ADIF	ADC Interrupt Flag	0
3	ADIE	ADC Interrupt Enable	0
2	ADPS2	ADC Prescaler Select Bits	1
1	ADPS1	ADC Prescaler Select Bits	1
0	ADPS0	ADC Prescaler Select Bits	0

ADCSRA

ADC Prescaler Selection Bit

ADC Prescaler Selection Bit

Table 26-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

ADC clock frequency = (F_CPU / Division Factor) =
$$14745600 / 64$$
 = 230 kHz (approx.)

ADCSRB- ADC Control and Status Register B

This register is used to control ADC operation

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
-----	--------	-------------	-----------

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	

ADCSRB- ADC Control and Status Register B

This register is used to control ADC operation

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

ADCSRB- ADC Control and Status Register B

Bit	Symbol	Description	Bit Value
7	-	Reserved Bit	-
6	ACME	Analog Comparator Multiplexer Enable	0
5	-	Reserved Bit	-
4	-	Reserved Bit	-
3	MUX5	ADC Channel selection bit-5	0
2	ADTS2	ADC Auto Trigger Source Bits	0
1	ADTS1	ADC Auto Trigger Source Bits	0
0	ADTS0	ADC Auto Trigger Source Bits	0

Table 26-6. ADC Auto Trigger Source Selections

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match A
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

ADMUX - ADC Multiplexer Selection Register

This register is used to select reference voltage and ADC channel

ADMUX - ADC Multiplexer Selection Register

This register is used to select reference voltage and ADC channel

Bit	Symbol	Description	Bit Value
-----	--------	-------------	-----------

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	

ADMUX - ADC Multiplexer Selection Register

	Bit	Symbol	Description	Bit Value
	7	REFS1	Reference Selection Bit	0
ĺ	6	REFS0	Reference Selection Bit	1

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	1

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

ADMUX - ADC Multiplexer Selection Register

Bit	Symbol	Description	Bit Value
7	REFS1	Reference Selection Bit	0
6	REFS0	Reference Selection Bit	1
5	ADLAR	ADC Left Adjust Result	1
4	MUX4	ADC Channel selection bit-4	0
3	MUX3	ADC Channel selection bit-3	0
2	MUX2	ADC Channel selection bit-2	0
1	MUX1	ADC Channel selection bit-1	0
0	MUX0	ADC Channel selection bit-0	0

ADC Reference Voltage Selection Bit

ADC Reference Voltage Selection Bit

 Table 26-3.
 Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection ⁽¹⁾
0	0	AREF, Internal V _{REF} turned off
0	1	AVCC with external capacitor at AREF pin
1	0	Internal 1.1V Voltage Reference with external capacitor at AREF pin
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin

ADC Left Adjustment Bit

ADC Left Adjustment Bit

The ADC Data Register – ADCL and ADCH

ADLAR = 0

Bit 15 14 13 12 11 10 8 9 ADC9 ADC8 **ADCH** ADC7 ADC6 ADC5 ADC4 ADC₃ ADC₂ ADC1 ADC₀ ADCL 5 Read/Write R R R R R R R R R R Initial Value 0 0 0 0 0 0 0 0

ADLAR = 1

Bit 15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC₆ ADC5 ADC4 ADC3 ADC₂ ADC1 ADC0 _ _ 5 Read/Write R R R R R R R R R R Initial Value 0 0 0

ADCH ADCL

ADMUX5:0 Channel Selection

ADMUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

ADMUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

ADMUX5:0 Channel Selection

MUX5:0	ADC Channel
000000	ADC0
000001	ADC1
000010	ADC2
000011	ADC3
000100	ADC4
000101	ADC5
000110	ADC6
000111	ADC7

MUX5:0	ADC Channel
100000	ADC8
100001	ADC9
100010	ADC10
100011	ADC11
100100	ADC12
100101	ADC13
100110	ADC14
100111	ADC15

ACSR - Analog Comparator Control and Status Register

This register is used for Analog Comparator

ACSR - Analog Comparator Control and Status Register

Bit	Symbol	Description	Bit Value

ACSR - Analog Comparator Control and Status Register

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	

ACSR - Analog Comparator Control and Status Register

	Bit	Symbol	Description	Bit Value
ſ	7	ACD	Analog Comparator Disable	1

ACSR - Analog Comparator Control and Status Register

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR - Analog Comparator Control and Status Register

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

ACSR - Analog Comparator Control and Status Register

Bit	Symbol	Description	Bit Value
7	ACD	Analog Comparator Disable	1
6	ACBG	Analog Comparator Bandgap Select	0
5	ACO	Analog Comparator Output	0
4	ACI	Analog Comparator Interrupt Flag	0
3	ACIE	Analog Comparator Interrupt Enable	0
2	ACIC	Analog Comparator Input Capture Enable	0
1	ACIS1	Analog Comparator Interrupt Mode Select	0
0	ACIS0	Analog Comparator Interrupt Mode Select	0

Algorithm for ADC

Oconfigure the PORT as Input and deactivate the pull-up resistors

Algorithm for ADC

- Onfigure the PORT as Input and deactivate the pull-up resistors
- Initialize the ADC registers

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]

- Oconfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:

- Onfigure the PORT as Input and deactivate the pull-up resistors
- Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR

- Oconfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR
 - ADSC bit it updates from 1 to 0 once ADC conversion completes

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR
 - ADSC bit it updates from 1 to 0 once ADC conversion completes
- Read the converted data from ADC data registers

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR
 - ADSC bit it updates from 1 to 0 once ADC conversion completes
- Read the converted data from ADC data registers
- Reset the ADIF bit, MUX[5:0] bits to their default values used during the initialization of ADC. Note: To clear ADIF bit, one must write logical one to the bit

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR
 - ADSC bit it updates from 1 to 0 once ADC conversion completes
- Read the converted data from ADC data registers
- Reset the ADIF bit, MUX[5:0] bits to their default values used during the initialization of ADC. Note: To clear ADIF bit, one must write logical one to the bit
- Repeat the steps from 3, for next ADC conversion

- Onfigure the PORT as Input and deactivate the pull-up resistors
- ② Initialize the ADC registers
- Set/reset the appropriate Channel Selection bits: MUX[5:0]
- Start ADC conversion by setting the ADSC bit in ADCSRA register
- Use polling method to check:
 - ADIF bit it updates from 0 to 1 once ADC conversion complete OR
 - ADSC bit it updates from 1 to 0 once ADC conversion completes
- Read the converted data from ADC data registers
- Reset the ADIF bit, MUX[5:0] bits to their default values used during the initialization of ADC. Note: To clear ADIF bit, one must write logical one to the bit
- Repeat the steps from 3, for next ADC conversion

Thank You!

