Why Quantum Theory?

Lucien Hardy*
Centre for Quantum Computation,
The Clarendon Laboratory,
Parks road, Oxford OX1 3PU, UK

12 Nov 2001

Abstract

The usual formulation of quantum theory is rather abstract. In recent work I have shown that we can, nevertheless, obtain quantum theory from five reasonable axioms. Four of these axioms are obviously consistent with both classical probability theory and quantum theory. The remaining axiom requires that there exists a continuous reversible transformation between any two pure states. The requirement of continuity rules out classical probability theory. In this paper I will summarize the main points of this new approach. I will leave out the details of the proof that these axioms are equivalent to the usual formulation of quantum theory (for these see reference [1]).

^{*}hardy@qubit.org.

1 Introduction

The usual formulation of quantum theory is very obscure employing complex Hilbert spaces, Hermitean operators and so on. While many of us, as professional quantum theorists, have become very familiar with the theory, we should not mistake this familiarity for a sense that the formulation is physically reasonable. Quantum theory, when stripped of all its incidental structure, is simply a new type of probability theory. Its predecessor, classical probability theory, is very intuitive. It can be developed almost by pure thought alone employing only some very basic intuitions about the nature of the physical world. This prompts the question of whether quantum theory could have been developed in a similar way. Put another way, could a nineteenth century physicist have developed quantum theory without any particular reference to experimental data? In a recent paper I have shown that the basic structure of quantum theory for finite and countably infinite dimensional Hilbert spaces follows from a set of five reasonable axioms [1]. Four of these axioms are obviously consistent with both classical probability theory and with quantum theory. The remaining axiom states that there exists a continuous reversible transformation between any two pure states. This axiom rules out classical probability theory and gives us quantum theory. The key word in this axiom is the word "continuous". If it is dropped then we get classical probability theory instead. The proof that quantum theory follows from these axioms, although involving simple mathematics, is rather lengthy. In this paper I will simply discuss the main ideas referring interested readers to the main paper [1].

Various authors have set up axiomatic formulations of quantum theory, for example see references [2–11] (see also [12–14]). Much of this work is in the quantum logic tradition. The advantage of the present work is that there are a small number of simple axioms which can be easily motivated without any particular appeal to experiment, and, furthermore, the mathematical methods required to obtain quantum theory from these axioms are very straightforward (essentially just linear algebra).

2 Basic notions

We will consider situations in which a preparation apparatus prepares systems which may be transformed by a transformation apparatus and measured by a measurement apparatus. Associated with any given preparation will be a *state*. The state is defined to be (that thing described by) any mathematical object that can be used to determine the probability associated with each outcome of any measurement that may be performed on a system prepared by the associated preparation. The point is that,

if one knows the state, one can predict probabilities for any measurement that may be performed. It is not entirely clear that one will be able to ascribe states to preparations. The first axiom, to be introduced later, will make this possible by assuming that the same probability is obtained under the same circumstances. If we can ascribe a state it is clear from the definition above that one way of describing the state is by that mathematical object which simply lists all the probabilities for every outcome of every conceivable measurement that could possibly be made on the system. This would be a very long list. Since most physical theories have some structure, it is likely that this would be too much information. We can imagine that a set of *K* appropriately chosen probability measurements will be just sufficient and necessary to determine the state (so *K* is the smallest number of probabilities required to specify the state). We will call these the *fiducial measurements*. We can list just the probabilities corresponding to these fiducial measurements in the form of a column vector. Thus, the state can be written

$$\mathbf{p} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ p_K \end{pmatrix} . \tag{1}$$

We will call the integer *K* the *number of degrees of freedom*. This number plays an important role in this work.

The allowed states \mathbf{p} will belong to some set S. We expect that there will exist sets of states which can be distinguished from each other in this set by a single shot measurement. Consider one such set. If Alice picks a state from this set and sends it to Bob then Bob can set up a measurement apparatus such that each state gives rise to a disjoint set of outcomes. By knowing which outcomes are associated with which state, Bob can tell Alice which state she sent. Let the maximum number of states in any such set be called N. We will call N the dimension (because in quantum theory it corresponds to the dimension of the Hilbert space).

Associated with any particular type of system will be the two integers K and N. It turns out that in classical probability theory we have K = N and in quantum theory we have $K = N^2$. We will explain why this is the case later.

First, let us describe the type of scenario we wish to consider. This is shown in Fig. 1. We have three types of apparatus. The preparation apparatus prepares systems in some state. It has a knob on it for varying the type of state prepared. It also has a release button, whose role will be described shortly. The system then passes through a transformation apparatus. This has a knob on it which varies

Figure 1: The situation considered consists of a preparation device with a knob for varying the state of the system produced and a release button for releasing the system, a transformation device for transforming the state (and a knob to vary this transformation), and a measuring apparatus for measuring the state (with a knob to vary what is measured) which outputs classical information.

the transformation effected. Unless otherwise stated, we will assume that the transformation device is set to leave the state unchanged (i.e. effect the identity transformation). Finally the system impinges onto a measurement apparatus. This has a knob on it to vary the measurement being performed. It also has some classical information coming out. Either we obtain a non-null outcome, labeled l=1 to L, or we obtain a *null outcome*. We require that if the release button is pressed on the preparation apparatus (and assuming that the transformation is set to the identity) then we will certainly obtain a non-null outcome. On the other hand, if the release button is not pressed then we will certainly obtain a null outcome. To illustrate this we could think of an array of detectors labeled l=1 to L. If none of the detectors click then we can say this is a null result. Since we allow null outcomes we need not assume that states are normalized.

All quantities are reducible to measurements of probability. For example, any measurement of an expectation value is really a probability weighted sum. Therefore, we need only consider measurements of probability. Henceforth, when we refer to a "measurement" or a "probability measurement" we mean specifically a measurement of the probability that the outcome belongs to some non-null subset of outcomes with a given knob setting on the measurement apparatus.

If we never press the release button then all the fiducial probability measurements will be equal to zero (so the state will be represented by a column vector with *K* zero's). We will call this state the null state.

It is normal in probability theory to talk about pure states and mixed states.

A mixed state is any state which can be simulated by a mixture of two distinct states. Thus, we prepare randomly either state A or state B with probabilities λ and $1 - \lambda$ where $0 < \lambda < 1$. Pure states are defined to be those states (except the null state) which are not mixed states. Pure states will turn out to be extremal states in the set of allowed states (this set being convex).

We will now describe classical probability theory and then quantum theory. We will find that it is possible to give the two theories a very similar mathematical structure. This will help us to appreciate the similarities and differences between the two theories.

3 Classical probability theory

Consider a ball that can be in one of N boxes (or be missing). The state is fully determined by specifying the probabilities, p_n , for finding the ball in each box. This information can, as in the previous section, be written

$$\mathbf{p} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ p_N \end{pmatrix}. \tag{2}$$

Since the ball may be missing, the sum of the probabilities in this vector must be less than or equal to one. There are N entries in \mathbf{p} . Hence, K = N. There are some interesting special cases. The states

$$\mathbf{p}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad \mathbf{p}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad \text{etc.} \tag{3}$$

represent the case where the ball is definitely in one of the boxes. These states cannot be simulated by mixtures of other states and hence are pure states for this system. The state

$$\mathbf{p}_{\text{null}} = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \tag{4}$$

represents the case where the ball is missing. These N+1 states are extremal in the space of allowed states. Since we are casting classical probability theory and quantum theory in similar mathematical forms, let us consider how we can represent measurements in the classical case. One measurement we could make is to look and see if the ball is in box 1. The probability of finding the ball in box 1 is p_1 . We can write this as

$$p_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \cdot \begin{pmatrix} p_{1} \\ p_{2} \\ p_{3} \\ \vdots \\ p_{N} \end{pmatrix} = \mathbf{r}_{1} \cdot \mathbf{p}. \tag{5}$$

Hence, we can identify the vector \mathbf{r}_1 , defined as

$$\mathbf{r}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \tag{6}$$

with the measurement where we look to see if the ball is in box 1. We can write down similar vectors for the other boxes. However, we could perform more complicated measurements. For example, we could toss a λ biased coin and look in box 1 if it came up heads and in box 2 if it came up tails. In this case the measurement being performed would be represented by the vector

$$\mathbf{r} = \lambda \mathbf{r}_1 + (1 - \lambda)\mathbf{r}_2 \tag{7}$$

since then $\mathbf{r} \cdot \mathbf{p} = \lambda p_1 + (1 - \lambda)p_2$. In general it can be shown that the probability associated with any measurement is given by

$$prob_{meas} = \mathbf{r} \cdot \mathbf{p} \tag{8}$$

where r is associated with the measurement and p is associated with the state.

Consider a classical bit. This is a system with N=2. In this case the extremal states are

$$\mathbf{p}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \mathbf{p}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \mathbf{p}_{\text{null}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
 (9)

The set of allowed states $S_{\text{classical}}$ are given by the convex hull of these extremal states as shown in Fig. 2a. Note that the normalized states (for which $p_1 + p_2 = 1$)

Figure 2: (a) Allowed states for classical bit are inside triangle. States on the hypotenuse are normalized. (b) Normalized states for a qubit are in the ball inside the unit cube as shown.

lie on the hypotenuse. Note also that the pure states form a discrete set. There is no continuous path from one pure state to another which goes through the pure states.

We see that classical probability theory is characterized by K = N, by the set $S_{\text{classical}}$ of allowed states \mathbf{p} and the set $R_{\text{classical}}$ of allowed measurements \mathbf{r} , and by the formula $\operatorname{prob}_{\text{meas}} = \mathbf{r} \cdot \mathbf{p}$.

4 Quantum theory

Let us begin describing the quantum case by discussing an example. Consider a spin half particle (an example of a qubit). Its state is represented by a density matrix ρ which can be written

$$\rho = \begin{pmatrix} p_{z+} & a \\ a^* & p_{z-} \end{pmatrix}$$
(10)

where

$$a = p_{x+} - p_{y+} - \frac{1-i}{2}(p_{z+} + p_{z-}). \tag{11}$$

Here, p_{z+} is the probability the particle has spin up along the +z direction and the other probabilities are defined similarly. This means that rather than

representing the state by ρ , we can represent it by

$$\mathbf{p} = \begin{pmatrix} p_{z+} \\ p_{z-} \\ p_{x+} \\ p_{y+} \end{pmatrix}. \tag{12}$$

This mathematical object contains the same information as ρ . Hence, for N=2 we have K=4. The set of allowed states can be calculated from the condition that ρ is positive. Since there are four parameters it is not easy to visualize the shape of this set. However, if we impose normalization $(p_{z+}+p_{z-}=1)$, thus eliminating one variable, then we can picture the allowed set of states in three dimensions. We find that the allowed states are inside that ball which sits just in the unit cube in the first octant of the variables p_{x+} , p_{y+} , p_{z+} as shown in Fig. 2b. This is basically the Block sphere in a different coordinate set. All the points on the surface of the ball represent pure states (since they are extremal). Hence, unlike in the classical case, the pure states form a continuous set. This will be the key difference between the two theories.

The density matrix for N=2 is specified by 4 real parameters and this is why we need four probabilities. In general, the density matrix for a system of dimension N is specified by N^2 real parameters (since we have N real numbers along the diagonal and N(N-1)/2 complex numbers above the diagonal). Not surprisingly then, we can show that we need N^2 probabilities to describe a general state:

$$\mathbf{p} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ \vdots \\ p_{N^2} \end{pmatrix}. \tag{13}$$

Hence, $K = N^2$. Various authors have noticed that the state can be represented by probabilities [16–19].

Associated with each probability measurement in quantum theory is a positive operator *A*. The probability for that measurement is given by the trace formula:

$$prob_{meas} = tr(A\rho) \tag{14}$$

Now, since ρ is linear in the probabilities p_k for k = 1 to N^2 , it follows that we can write

$$prob_{meas} = \mathbf{r} \cdot \mathbf{p}. \tag{15}$$

The vector \mathbf{r} can be determined from A. It describes the measurement.

Quantum theory is characterized by $K = N^2$, by the set S_{quantum} of allowed states \mathbf{p} and the set R_{quantum} of allowed measurements \mathbf{r} , and by the formula $\text{prob}_{\text{meas}} = \mathbf{r} \cdot \mathbf{p}$.

It is also interesting to think about the effect of the transformation device on the state. In quantum theory, transformations are described by unitary transformations or, in the case of open systems, by superoperators. When acting on \mathbf{p} , it can be shown that such transformations can be written

$$\mathbf{p} \longrightarrow Z\mathbf{p}$$
 (16)

where Z is a $K \times K$ real matrix. (A similar statement holds for transformations in the case of classical probability theory.) Allowed transformations belong to some set $Z \in \Gamma_{\text{quantum}}$.

5 The axioms

We will soon state the five axioms. But first let us point out a number of features of classical probability theory and quantum theory. Both theories are probability theories. We can only build a useful theory of probability if the world is such that the same probability is obtained under the same circumstances. Axiom 1 imposes this condition. The remaining axioms impose restrictions on the structure of the probability theory we derive. To motivate Axiom 2 consider the situation where a ball can be in one of five boxes. Then N = 5. However, if the state is constrained so that the ball is never found in the last two boxes then the system will behave like one with N=3. Similarly, if the state of a quantum system is constrained to a lower dimensional subspace of the Hilbert space then it will behave like a system of the dimension of the subspace. We will say, in general, that a state is constrained to an M dimensional subspace if, with the measurement apparatus set to distinguish a set of N distinguishable states, the only outcomes observed (apart from the null outcome) are those associated with a subset of M of these distinguishable states. In both classical and quantum theory the system will behave like one of dimension M in such cases. To motivate the third axiom consider a composite system consisting of systems A and B. In both classical and quantum theory we have that $N = N_A N_B$ and $K = K_A K_B$. One set of functions K = K(N) which satisfy these properties are $K = N^r$ where r is a positive integer. In fact, it will turn out from the axioms that K(N) must be of this form. The simplest case is K = N (with r = 1). This is consistent with classical probability theory. However, the fourth axiom will imply that there exists a continuous set of pure states. This rules out K = N. The next simplest case is $K = N^2$. This corresponds to quantum theory. The role of Axiom 5 will be to take the simplest case consistent with the constraints imposed by the axioms (namely $K = N^2$).

The five axioms for quantum theory are:

- **Axiom 1** *Probabilities.* Relative frequencies (measured by taking the proportion of times a particular outcome is observed) tend to the same value (which we call the probability) for any case where a given measurement is performed on a ensemble of *n* systems prepared by some given preparation in the limit as *n* becomes infinite.
- **Axiom 2** *Subspaces*. There exist systems for which $N = 1, 2, \dots$, and, furthermore, all systems of dimension N, or systems of higher dimension but where the state is constrained to an N dimensional subspace, have the same properties.
- **Axiom 3** *Composite systems.* A composite system consisting of subsystems A and B satisfies $N = N_A N_B$ and $K = K_A K_B$.
- **Axiom 4** *Continuity.* There exists a continuous reversible transformation on a system between any two pure states of that system for systems of any dimension N.
- **Axiom 5** *Simplicity.* For each given *N*, *K* takes the minimum value consistent with the other axioms.

The axioms are written in a slightly different (though obviously equivalent) form to those given in [1]. If the word "continuous" is dropped from Axiom 4 then, because of the simplicity axiom, we obtain classical probability theory instead of quantum theory. It is rather striking that the difference between classical probability theory and quantum theory is just one word.

A few comments on these axioms are appropriate here. We can think of any probability theory as a structure. This structure, however, has no physical meaning unless we have a way of relating it to the real world. The first axiom deals with this aspect. It states that probabilities, defined as limiting relative frequencies, are the same each time they are measured. There are various different interpretations of probability. Axiom 1, as stated, favours the frequency approach. However, one could recast this axiom in keeping with other interpretations such as the Bayesian approach [15]. In this paper we are primarily concerned with the structure of quantum theory and so will not try to be sophisticated with regard to the interpretation of probability theory. However, these are important matters which deserve further attention.

By a "continuous transformation" we mean one that can be built up of many transformations which are themselves only infinitesimally different from the identity transformation. The motivation for the continuity axiom is simply that we would like physics to be continuous. There is no way, in finite dimensional

classical probability theory, of going in a continuous way from one pure state to another. It is classical probability theory that has the "jumps".

The motivation for $N = N_A N_B$ is fairly clear. For example, if we have two dice then $N_A = N_B = 6$ and N = 36. However, the motivation for $K = K_A K_B$ is not so clear. It follows from two intuitions. Intuition A: Pure states represent definite states. This motivates Assumption α : If one of the two subsystems is in a pure state then any joint probabilities factorize (since a system in a definite state should not be correlated with any other system). From this we can show that the number of degrees of freedom associated with the separable states (those states that can be regarded as a mixture of states whose joint probabilities factorize) is

$$K_{\text{separable}} = K_A K_B.$$
 (17)

Intuition B: There should not be more entanglement than necessary. This motivates Assumption β : $K = K_{\text{separable}}$. Hence, $K = K_A K_B$ follows.

The simplicity axiom has a slightly awkward status. It is perhaps better regarded as a meta-axiom (applied to a set of axioms). As a guiding principle in physics, simplicity is perfectly valid. However, it would more satisfactory to either show that theories with $K = N^r$ for r > 2 do not exist or that they can be ruled out by adding some additional reasonable axiom. On the other hand, if such theories do exist, then it would be very interesting to actually construct them and investigate their properties. It may turn out that they have even better information processing capacity than quantum theory. Furthermore, there may be a downward compatibility. Thus, classical probability theory can be embedded in quantum theory (by only taking orthogonal states). It may be that quantum theory can be embedded in a higher power theory. If this turned out to be the case then such a theory may be consistent with all the empirical data collected to date and could therefore be a true theory of the world.

6 Derivation of quantum theory from the axioms

The proof that these axioms give quantum theory is rather complicated and so we will content ourselves here with simply indicating how the various steps of the proof work. The reader is referred to [1] for details of the proofs.

6.1 Linearity

It follows from Axiom 1 that measured probabilities do not depend on the particular ensemble being used. Thus, we can associate a state, **p**, with a preparation as discussed in Section 2. The probability associated with a general measurement

will be given by some function of the state:

$$prob_{meas} = f(\mathbf{p}). \tag{18}$$

This function will, in general, be different for each measurement. Let \mathbf{p}_C be the mixed state prepared when state \mathbf{p}_A is prepared with probability λ and state \mathbf{p}_B is prepared with probability $1 - \lambda$. Then we have

$$f(\mathbf{p}_C) = \lambda f(\mathbf{p}_A) + (1 - \lambda) f(\mathbf{p}_B). \tag{19}$$

We can apply this equation to the fiducial measurements themselves. This gives

$$\mathbf{p}_C = \lambda \mathbf{p}_A + (1 - \lambda) \mathbf{p}_B \tag{20}$$

since this equation is true for each component by (19). Hence,

$$f(\lambda \mathbf{p}_A + (1 - \lambda)\mathbf{p}_B) = \lambda f(\mathbf{p}_A) + (1 - \lambda)f(\mathbf{p}_B)$$
(21)

This can be used to prove that the function f is linear in p. Hence, we can write

$$prob_{meas} = \mathbf{r} \cdot \mathbf{p} \tag{22}$$

where \mathbf{r} is a vector associated with the measurement. It follows from (20) that the set of allowed states S must be convex. The extremal states (except the null state) are the pure states. They cannot be written as a mixture of any other states.

6.2 Proof that $K = N^r$

Axiom 2 says that any system of dimension N has the same properties. This implies that K = K(N). From Axiom 3 we can write

$$K(N_A N_B) = K(N_A)K(N_B). (23)$$

Such functions are known in number theory as *completely multiplicative*. It follows from the subspace axiom that

$$K(N+1) > K(N). \tag{24}$$

From (23, 24) it can be proven that

$$K = N^{\alpha} \tag{25}$$

where $\alpha > 0$. Since K is an integer we must have $K = N^r$ where $r = 1, 2, \cdots$. Wootters, employing related reasoning, has also come to the equation $K = N^r$ as a possible relationship between K and N [16].

The simplicity axiom requires that we take the smallest value of r consistent with axioms 1 to 4. If we drop the word "continuous" from Axiom 4 then this gives K = N and it can be shown that we obtain classical probability theory. However, it can be shown that the K = N case cannot give rise to a continuous set of pure states. Hence, if Axiom 4 is left as it is then we must, by the simplicity axiom, have $K = N^2$.

6.3 Qubits

We can consider the case where N=2. Since $K=N^2$ we then have K=4. One of these degrees of freedom is associated with normalization. If we consider normalized states we have only three degrees of freedom. Axiom 4 requires that there exist continuous reversible transformations between any two pure states. These reversible transformations will form a group. It can be shown that they generate a set of pure states which are on the surface of a ball corresponding exactly to the quantum case (discussed in Section 4).

6.4 General N

Having obtained quantum theory for the special case N=2 we can use this in conjunction with the subspace axiom to recover quantum theory for general N. We do this by considering two dimensional subspaces. We require that, if the state is restricted to any given two dimensional subspace, then it behaves like a qubit. With this constraint we can obtain the trace formula for predicting probabilities and the constraints that ${\bf r}$ and ${\bf p}$ correspond to the positive operators A and ρ respectively.

6.5 Transformations

It can be shown from linearity that transformations are of the form $\mathbf{p} \to Z\mathbf{p}$ where $Z \in \Gamma$ is a $K \times K$ real matrix. By considering composite systems we can find the most general class of transformations consistent with the axioms. These turn out to correspond to the completely positive linear trace non-increasing maps of standard quantum theory [20,21].

6.6 State update rule

One of the more mysterious features of quantum theory is the state update rule. If the system emerges from the measurement apparatus its state will, in general, have changed. In text books the von Neumann projection principle is usually given. However, this is by no means the most general state change that can happen after a measurement. In general, we expect each outcome l to be associated with a particular transformation $Z_l \in \Gamma$ of the state. The normalization associated with the state after a particular measurement result will be consistent with the probability for that outcome. These transformations can all be taken together. Hence we require $\sum_l Z_l \in \Gamma$. These constraints are sufficient to give the most general state update rule of quantum theory. It is interesting to note that exactly the same constraints apply in classical probability theory. Thus, the

strangeness associated with the state update rule in quantum theory is not so much due the way in which the state is updated as it is due to the nature of the sets *S* and *R* in quantum theory.

7 Discussion

The basic property from which quantum theory follow is that there should be continuous transformations between pure states. In classical probability theory for discrete systems it is necessary to jump between pure states. We might ask what would have happened had a nineteenth century physicist complained about "dammed classical jumps". It is possible that he would have gone on to develop quantum theory. There is a sense in which quantum theory is more reasonable than classical theory exactly because there do exist these continuous transformations.

There are various reasons for developing reasonable axioms. Firstly, physics is primarily about explanation and we can be said to have explained quantum theory more deeply if we give reasonable axioms. Secondly, by having a deeper understanding of the origin of quantum theory we are more likely to be able to extend or adapt the theory to new domains of applicability (such as quantum gravity). Thirdly, the fact that we put quantum theory and classical probability theory on such a similar footing may point the way to a deeper appreciation of the relationship between classical and quantum information. And finally, these new axioms may shed some light on the interpretation of quantum theory.

Acknowledgements

This work is funded by a Royal Society University Research Fellowship.

References

- [1] L. Hardy, Quantum theory from five reasonable axioms, quant-ph/0101012 (2001).
- [2] G. Birkhoff and J. von Neumann, Ann. Math. 37, 743 (1936).
- [3] G. W. Mackey, The mathematical foundations of quantum mechanics (W. A. Benjamin Inc, New York, 1963).
- [4] J. M. Jauch and C. Piron, Helv. Phys. Acta **36**, 837 (1963); C. Piron, Helv. Phys. Acta **37**, 439 (1964).

- [5] G. Ludwig, Commun. Math. Phys. 9, 1 (1968), G. Ludwig, Foundations of quantum mechanics volumes I and II (Springer-Verlag, New York, 1983 and 1985).
- [6] B. Mielnik, Commun. Math. Phys. 9, 55 (1968).
- [7] A. Lande, Am. J. Phys. 42, 459 (1974).
- [8] D. I. Fivel, Phys. Rev. A 50 2108 (1994).
- [9] L. Accardi, Il Nuovo Cimento 110B, 685 (1995).
- [10] N. P. Landsman, Int. J. of Theoretical Phys. **37**, 343 (1998) and *Mathematical topics between classical and quantum mechanics* (Springer, New York, 1998).
- [11] B. Coecke, D. Moore, A. Wilce, *Current research in operational quantum logic: algebras, categories, languages* (Fundamental theories of physics series, Kluwer Academic Publishers, 2000), also available on quant-ph/0008019.
- [12] A. M. Gleason, Annals of Math 6, 885 (1957).
- [13] S. Kochen and E.P. Specker, J. Math and Mech. 17, 59 (1967).
- [14] I. Pitowsky, Lecture notes in physics **321** (Springer-Verlag, Berlin-Heildelburg 1989).
- [15] R. Schack, private communication.
- [16] W. K. Wootters, Local accessibility of quantum states, in Complexity, entropy and the physics of information edited by W. H. Zurek (Addison-Wesley, 1990) and W. K. Wootters, Found. Phys **16**, 319 (1986).
- [17] E. Prugovecki, Int. J. Theor. Phys. 16, 321 (1977).
- [18] P. Busch, M. Grabowski, and P. J. Lahti, *Operational quantum physics*, Springer-Verlag, Berlin LNP, vol m31 (1995).
- [19] S. Weigert, Phys. Rev. Lett. 84, 802 (2000).
- [20] K. Kraus, *States*, *effects*, and operations: Fundamental notions of quantum theory (Springer-Verlag, Berlin, 1983); B. Schumacher, quant-ph/9604023 (appendix A); J. Preskill *Lecture notes for physics* 229: quantum information and computation, available at http://www.theory.ca.tech.edu/preskill/ph229 (see chapter 3).
- [21] M. A. Nielsen and I. L. Chuang, *Quantum information and quantum information*, (Cambridge University Press, 2000).