

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1 CLAIMS

What is claimed is:

1. A method for computing a distance of a received word from a codeword, the codeword being a concatenation of L symbols
5 selected from two disjoint symbol subsets X and Y, the codeword being included in one of a plurality of code-subsets, the received word being represented by L inputs, each of the L inputs uniquely corresponding to one of L dimensions, the method comprising the operations of:

10 (a) producing a set of one-dimensional errors from the L inputs, each of the one-dimensional errors representing a distance metric between one of the L inputs and a symbol in one of the two disjoint symbol-subsets; and

15 (b) combining the one-dimensional errors to produce a set of L-dimensional errors such that each of the L-dimensional errors is a distance of the received word from a nearest codeword in one of the code-subsets.

2. The method of claim 1 wherein each of the one-dimensional errors is represented by substantially fewer bits than each of the L inputs.

3. The method of claim 1 wherein operation (a) comprises the operation of slicing each of the L inputs with respect to
25 each of the two disjoint symbol-subsets X and Y to produce a set of X-based errors, a set of Y-based errors and corresponding sets of X-based and Y-based decisions, the sets of X-based and Y-based errors forming the set of one-dimensional errors, the sets of X-based and Y-based decisions forming the set of one-dimensional decisions, each of the X-based and Y-based decisions being a symbol in a corresponding symbol-subset closest in distance to
30 one of the L inputs, each of the one-dimensional errors representing a distance metric between a corresponding one-dimensional decision and one of the L inputs.

1 4. The method of claim 3 wherein each of the one-dimensional errors is represented by 3 bits.

5 5. The method of claim 3 wherein the operation of slicing is performed via a look-up table.

6. The method of claim 5 wherein the look-up table is implemented using a read-only-memory storage device.

10 7. The method of claim 5 wherein the look-up table is implemented using a random-logic device.

8. The method of claim 1 wherein operation (a) comprises the operation of:

15 (1) slicing each of the L inputs with respect to each of the two disjoint symbol-subsets X and Y to produce a set of X-based decisions and a set of Y-based decisions, the sets of X-based and Y-based decisions forming the set of one-dimensional decisions, each of the X-based and Y-based decisions being a symbol in a corresponding symbol-subset closest in distance to one of the L inputs;

20 (2) slicing each of the L inputs with respect to a symbol-set comprising all symbols of the two disjoint symbol-subsets to produce a set of hard decisions; and

25 (3) combining each of the sets of X-based and Y-based decisions with the set of hard decisions to produce the set of one-dimensional errors, each of the one-dimensional errors representing a distance metric between the corresponding one-dimensional decision and one of the L inputs.

30

9. The method of claim 8 wherein operations (1), (2) and (3) are performed via a look-up table.

10. The method of claim 9 wherein the look-up table is implemented using a read-only-memory storage device.

1 11. The method of claim 9 wherein the look-up table is
5 implemented using a random-logic device.

5 12. The method of claim 8 wherein each of the one-dimensional errors is represented by one bit.

13. The method of claim 1 wherein operation (b) comprises the operations of:

10 combining the one-dimensional errors to produce two-dimensional errors;

 combining the two-dimensional errors to produce intermediate L-dimensional errors;

15 arranging the intermediate L-dimensional errors into pairs of errors such that the pairs of errors correspond one-to-one to the code-subsets; and

 determining a minimum for each of the pairs of errors, the minima being the L-dimensional errors.

20 14. The method of claim 1 wherein L is equal to 4.

15. The method of claim 1 wherein the plurality of code-subsets comprises 2^{L-1} code-subsets.

25 16. The method of claim 15 wherein the set of one-dimensional errors comprises $2L$ one-dimensional errors.

17. The method of claim 16 wherein the set of L-dimensional errors comprises 2^{L-1} L-dimensional errors.

30 18. The method of claim 17 wherein operation (b) comprises the operations of:

 combining the $2L$ one-dimensional errors to produce $2L$ two-dimensional errors;

35 combining the $2L$ two-dimensional errors to produce the 2^L intermediate L-dimensional errors;

1 arranging the 2^L intermediate L-dimensional errors into
2 $^{L-1}$ pairs of errors such that the 2 $^{L-1}$ pairs of errors correspond
one-to-one to the 2 $^{L-1}$ code-subsets; and

5 determining a minimum for each of the 2 $^{L-1}$ pairs of
errors, the minima being the 2 $^{L-1}$ L-dimensional errors.

10 19. A system for computing a distance of a received word
from a codeword, the codeword being a concatenation of L symbols
selected from two disjoint symbol-subsets X and Y, the codeword
being included in one of a plurality of code-subsets, the
received word being represented by L inputs, each of the L inputs
uniquely corresponding to one of L dimensions, the system
comprising:

15 (a) a set of slicers for producing a set of one-
dimensional errors from the L inputs, each of the one-dimensional
errors representing a distance metric between one of the L-inputs
and a symbol in one of the two disjoint symbol-subsets; and

20 (b) a combining module for combining the one-
dimensional errors to produce a set of L-dimensional errors such
that each of the L-dimensional errors is a distance of the
received word from a nearest codeword in one of the code-subsets.

25 20. The system of claim 19 wherein each of the one-
dimensional errors is represented by substantially fewer bits
than each of the L inputs.

30 21. The system of claim 19 wherein the slicers slice the
L inputs with respect to each of the two disjoint symbol-subsets
X and Y to produce a set of X-based errors, a set of Y-based
errors and corresponding sets of X-based and Y-based decisions,
the sets of X-based and Y-based errors forming the set of one-
dimensional errors, the sets of X-based and Y-based decisions
forming the set of one-dimensional decisions, each of the X-based
and Y-based decisions being a symbol in a corresponding symbol-
35 subset closest in distance to one of the L inputs, each of the

1 one-dimensional errors representing a distance metric between a
corresponding one-dimensional decision and one of the L inputs.

5 22. The system of claim 21 wherein each of the one-dimensional errors is represented by 3 bits.

23. The system of claim 21 wherein the slicers are implemented using a look-up table.

10 24. The system of claim 23 wherein the look-up table is implemented using a read-only-memory storage device.

25. The system of claim 23 wherein the look-up table is implemented using a random-logic device.

15

26. The system of claim 19 wherein the set of slicers comprises:

20 (1) first slicers for slicing each of the L inputs with respect to each of the two disjoint symbol-subsets X and Y to produce a set of X-based decisions and a set of Y-based decisions, the sets of X-based and Y-based decisions forming the set of one-dimensional decisions, each of the X-based and Y-based decisions being a symbol in a corresponding symbol-subset closest in distance to one of the L inputs;

25 (2) second slicers for slicing each of the L inputs with respect to a symbol-set comprising all symbols of the two disjoint symbol-subsets to produce a set of hard decisions; and

30 (3) error-computing modules for combining each of the sets of X-based and Y-based decisions with the set of hard decisions to produce the set of one-dimensional errors, each of the one-dimensional errors representing a distance metric between the corresponding one-dimensional decision and one of the L inputs.

1 27. The system of claim 26 wherein the first and second
slicers and the error computing modules are implemented using a
look-up table.

5 28. The system of claim 27 wherein the look-up table is
implemented using a read-only-memory storage device.

29. The system of claim 27 wherein the look-up table is
implemented using a random-logic device.

10 30. The system of claim 26 wherein each of the one-
dimensional errors is represented by one bit.

15 31. The system of claim 19 wherein the combining module
comprises:

a first set of adders for combining the one-dimensional
errors to produce two-dimensional errors;

a second set of adders for combining the two-
dimensional errors to produce intermediate L-dimensional errors,

20 the intermediate L-dimensional errors being arranged into pairs
of errors such that the pairs of errors correspond one-to-one to
the code-subsets; and

25 a minimum-select module for determining a minimum for
each of the pairs of errors, the minima being the L-dimensional
errors.

32. The system of claim 19 wherein L is equal to 4.

33. The system of claim 19 wherein the plurality of code-
30 subsets comprises 2^{L-1} code-subsets.

34. The system of claim 33 wherein the set of one-
dimensional errors comprises $2L$ one-dimensional errors.

1 35. The system of claim 34 wherein the set of L-dimensional
errors comprises 2^{L-1} L-dimensional errors.

5 36. The system of claim 35 wherein the combining module
comprises:

 a first set of adders for combining the $2L$ one-dimensional errors to produce $2L$ two-dimensional errors;

10 a second set of adders for combining the $2L$ two-dimensional errors to produce the 2^L intermediate L-dimensional errors, the 2^L intermediate L-dimensional errors being arranged into 2^{L-1} pairs of errors such that the 2^{L-1} pairs of errors correspond one-to-one to the 2^{L-1} code-subsets; and

15 a minimum-select module for determining a minimum for each of the 2^{L-1} pairs of errors, the minima being the 2^{L-1} L-dimensional errors.

20 37. The system of claim 19 wherein the system is included in a communication transceiver configured to transmit and receive information signals encoded in accordance with a multi-level symbolic scheme.

25 38. A method for computing a distance of a received word from a codeword, the codeword being a concatenation of L symbols selected from two disjoint symbol-subsets, the codeword being included in one of 2^{L-1} code-subsets, the received word being represented by 2^{L-1} input sets, each of the 2^{L-1} input sets having L inputs, each of the L inputs uniquely corresponding to one of L dimensions, each of the 2^{L-1} input sets corresponding to one of the 2^{L-1} code-subsets, the method comprising the operations of:

30 (a) slicing each of the L inputs of each of the 2^{L-1} input sets with respect to each of the two disjoint symbol-subsets to produce an error set of $2L$ one-dimensional errors for each of the 2^{L-1} code-subsets; and

35 (b) combining one-dimensional errors within each of the error sets to produce 2^{L-2} L-dimensional errors for the

1 corresponding code-subset such that each of the 2^{L-2} L-dimensional errors is a distance of the received word from one of codewords.

39. The method of claim 38 wherein L is equal to 4.

5 40. The method of claim 38 wherein operation (b) comprises the operations of:

combining the $2L$ one-dimensional errors to produce $2L$ two-dimensional errors;

10 combining the $2L$ two-dimensional errors to produce a set of 2^L intermediate L-dimensional errors;

arranging the 2^L intermediate L-dimensional errors into 2^{L-1} pairs of errors such that the 2^{L-1} pairs of errors correspond one-to-one to the 2^{L-1} code-subsets; and

15 determining a minimum for each of the 2^{L-1} pairs, the minima being the 2^{L-1} L-dimensional errors.

41. The method of claim 40 wherein operation (a) comprises the operation of producing a decision set of $2L$ one-dimensional decisions for each of the 2^{L-1} code-subsets.

42. The method of claim 40 wherein operation (b) comprises the operation of combining one-dimensional decisions within each of the decision sets to produce 2^{L-2} L-dimensional decisions for 25 the corresponding code-subset such that each of the 2^{L-2} L-dimensional decisions is a codeword closest in distance to the received word, the codeword being in one of 2^{L-2} code-subsets included in the 2^{L-1} code-subsets.

30 43. The method of claim 38 wherein the method is performed in a communication transceiver configured to transmit and receive information signals encoded in accordance with a multi-level symbolic scheme.