rsHRF: A Toolbox for Resting State HRF Deconvolution and Connectivity Analysis (MATLAB)

https://www.nitrc.org/projects/rshrf

Guo-Rong WU e-mail: guorongwu@swu.edu.cn

Sofie Van Den Bossche e-mail: Sofie.VanDenBossche@ugent.be

Daniele Marinazzo e-mail: daniele.marinazzo@ugent.be

Contents

OVER	леw	
GENER	RAL	3
	out data	
Sta	atistical analysis (second-level analyses)	3
Dis	splay (voxel-wise HRF visualization)	3
FA	Q	4
He	lp resources	4
Vei	rsion information	4
	NG STARTED	
Do	wnload	5
	tallation	
Sta	art the toolbox (SPM Plugin)	6
	sting State HRF	
	nnectivity Analysis	
	PROCESSING EXAMPLES	
	mo data	
Bat	tch interfaces and demo matlabbatch jobs	
0	Voxel-wise HRF estimation, deconvolution and connectivity analysis	
0	Vertex-wise HRF estimation, deconvolution and connectivity analysis	
0	(Volume) ROI-wise HRF estimation, deconvolution and connectivity analysis	
0	(Surface) ROI-wise HRF estimation, deconvolution and connectivity analysis	
0	Signals based HRF estimation, deconvolution and connectivity analysis	
0	Voxel-wise connectivity analysis	
0	Vertex-wise connectivity analysis	
0	(Volume) ROI-wise connectivity analysis	
0	(Surface) ROI-wise connectivity analysis	
0	Signals based connectivity analysis	
0	Display	
Sta	andalone demo codes	
0	rsHRF_demo_temporal_basis.m	
0	rsHRF_demo_FIR_sFIR.m	
0	rsHRF_demo_impulseest.m	
0	rsHRF_demo_voxel_calcium.m	
THIRD	-PARTY CODE	74
REFER	ENCE	75

Overview

rsHRF is a Matlab/Python-based cross-platform software for the computation, display, and analysis of resting-state hemodynamic response function (HRF).

rsHRF is aimed to retrieve the onsets of pseudo-events triggering a hemodynamic response from resting-state hemodynamic signal (e.g. BOLD-fMRI). It is based on point process theory (Tagliazucchi et al., 2012) and fits a model to retrieve the optimal lag between the events and the HRF onset, as well as the HRF shape, using the basis function sets (Wu et al., 2013; Wu & Marinazzo, 2015; Wu & Marinazzo, 2016). There are a number of basis function sets available in rsHRF, including "informed" basis set (canonical HRF with its delay and dispersion derivatives), Gamma functions, Fourier set (Hanning), (smoothed) Finite Impulse Response (FIR), and the nonparametric impulse response function.

Once that the HRF has been retrieved, it can be deconvolved from the time series (for example to improve lag-based connectivity estimates), or one can map the shape parameters everywhere in the brain (including white matter), and use it as a pathophysiological indicator.

Input can be 2D GIfTI, or 3D/4D NIfTI images, but also on time series matrices/vectors.

The output are three HRF shape parameters (response height, time to peak, full width at half maximum) for each voxel/vertex/ROI, plus the deconvolved time series, and the number of retrieved pseudo-events.

In the rsHRF MATLAB version, brain connectivity analysis (seed to voxels/vertices, ROI to ROI analysis) can be further performed using the (partial) correlation (Pearson/Spearman) and Granger causality methods (Pairwise GC, partially conditioned GC, Conditional GC).

General

Input data

In order to perform HRF/connectivity analyses using this toolbox you will need:

Resting-state functional data. Either 2D Surface (GIfTI), 3D/4D Volume (NIfTI), or time series (text/mat) can be analysed.

ROI definitions. for regions of interest (ROIs) based HRF/connectivity analysis, ROIs can be defined from mask images, MNI coordinates (or **native space** coordinates), or multiple-label images.

The following basic information should be defined before HRF analysis:

- Denoising: remove possible confounds in the resting-state hemodynamic signal, including motion, physiological and other noise sources;
- HRF basis function: informed basis function, Gamma functions, Fourier set (Hanning), (smooth) Finite impulse response, nonparametric impulse response;
- Duration of HRF;
- Minimum/maximum time delay;
- Microtime resolution for onset estimation;
- Serial correlation model (AR model);
- Threshold for point process detection;
- Temporal mask to exclude spurious events;

The brain connectivity analysis (seed based or ROI to ROI connectivity) can be further performed based on the signal with/without HRF deconvolution.

Statistical analysis (second-level analyses)

- With the 3dMVM function embedded in AFNI, one can even run a multivariate analysis in which the three HRF parameters are modelled as multiple, simultaneous response variables (Chen, Adleman, Saad, Leibenluft, & Cox, 2014).
- The Matlab code of multivariate analysis of variance (*manova*.m) can be used for statistical analysis of HRF parameters (e.g. ROI-wise HRFs). There are four different methods provided in *manova*.m: Wilks' lambda, Pillai's trace, Hotelling-Lawley trace, Roy's maximum root statistic.
- ..

Display (voxel-wise HRF visualization)

The HRF viewer (rsHRF_viewer.m) is designed to visualize the HRF shape at the voxel/ROI level with a statistical image (3D NIfTI) and HRF results (mat-file generated from rsHRF SPM plugin). For the moment, the rsHRF viewer only works with voxel-wise HRF results.

FAQ

1. Should the input data be standardized (i.e. z-scored) a priori?

No, the standardization of the resting-state fMRI BOLD signal has already been included in the code.

2. Should the input data already be denoised?

The input data consists of voxelwise/vertexwise resting-state fMRI BOLD signal, which you can already preprocess according to your favourite recipe; however, the rsHRF toolbox also provides the following denoising steps implemented in the SPM plugin:

- nuisance variable regression;
- polynomial detrending;
- band-pass filter (e.g. 0.01 0.1 Hz);
- despiking.

It is also possible to use a temporal mask to exclude some time points using the temporal mask for event detection included in the SPM plugin.

3. Voxel-/vertex-wise or ROI analysis?

The rsHRF toolbox consists of two main analysis options: 1) rsHRF retrieval and deconvolution and 2) connectivity analysis. Both analyses are supported on either the voxels/vertex or ROIsvolume levels.

The rsHRF retrieval and deconvolution is advised at the voxel level when possible, in order to avoid deviation from the mean in case of inhomogeneities within ROIs.

However, outlier removal is only legit when conducting a whole-brain analysis (3D volume).

Help resources

Forums for RS-HRF: https://www.nitrc.org/forum/?group id=1304

Version information

The historical modification information was summarized in rsHRF_update_log.txt, with a more detailed description in Github: https://github.com/compneuro-da/rsHRF/blob/update/documentation/manual/01 History%26Development.md

Getting started

Download

rsHRF and demo data can be downloaded from:

https://github.com/compneuro-da/rsHRF & www.nitrc.projects/rshrf

Installation

Copy or extract the whole folder "rsHRF" into the SPM toolbox directory. The folder "spm/toolbox/rsHRF" should now contain all m-files, matlabbatch job files (SPM plugin) as well as a subfolder named "demo-code", containing the demo codes (MATLAB Standalone).

This will allow you to start the program directly from the SPM user interface via the toolbox button on the GUI.

Note: run the rsHRF_install_SPM.m script in the MATLAB Command Window, all scripts within the downloaded rsHRF folder will be copied into a folder named 'rsHRF' located in the path/to/spm/toolbox/ folder.

Start the toolbox (SPM Plugin)

Via GUI

- o Click on toolbox and then select "rsHRF" from the drop-down menu.
- o Or, Click Batch, SPM → Tools → rsHRF

Via command line

Make sure that the directory of the m-files is included in the MATLAB search path. Then type 'rsHRF' or 'rsHRF conn' in the MATLAB prompt.

The following Main-menu should appear in an additional window:

Resting State HRF

Voxels

Voxel-wise HRF estimation, deconvolution and connectivity analysis (NIfTI files, 3D/4D volumes)

Vertices

Vertex-wise HRF estimation, deconvolution and connectivity analysis (GIfTI files, 2D surfaces)

ROIs-volume

ROI-wise HRF estimation, deconvolution and connectivity analysis (NIfTI files, 3D/4D volumes)

ROIs-surface

ROI-wise HRF estimation, deconvolution and connectivity analysis (GIfTI files, 2D surfaces)

Signals

Signals based HRF estimation, deconvolution and connectivity analysis (text/mat files)

Display

HRF Visualization

Connectivity Analysis

o Voxels

Voxel-wise connectivity analysis (NIfTI files, 3D/4D volumes)

Vertices

Vertex-wise connectivity analysis (GIfTI files, 2D surfaces)

o ROIs-volume

ROI-wise connectivity analysis (NIfTI files, 3D/4D volumes)

o ROIs-surface

ROI-wise connectivity analysis (GIfTI files, 2D surfaces)

o Signals

Signals based connectivity analysis (text/mat files)

Data processing examples

Demo data

The demo data (one subject, sub-10171) was from 'UCLA Consortium for Neuropsychiatric Phenomics LA5c Study', can be download from www.nitrc.projects/rshrf.

This data has been preprocessed by fMRIPrep and described in

 Gorgolewski KJ, Durnez J and Poldrack RA. Preprocessed Consortium for Neuropsychiatric Phenomics dataset. F1000Research 2017, 6:1262 https://doi.org/10.12688/f1000research.11964.2

Generate file for nuisance variable regression

- $>> dat = spm_load('D:\sub-10171\task-rest_bold_confounds.tsv');$
- >> nuisance = [dat.aCompCor00, dat.aCompCor01, dat.aCompCor02, dat.aCompCor03,

dat.aCompCor04, dat.aCompCor05, dat.X, dat.Y, dat.Z, dat.RotX, dat.RotY, dat.RotZ];

- >> save('D:\sub-10171\func\nuisance.txt','nuisance','-ascii')
- >> rp = [dat.X, dat.Y, dat.Z, dat.RotX, dat.RotY, dat.RotZ];
- >> save('D:\sub-10171\func\rp.txt','rp','-ascii')

Temporal mask

```
>> FD = dat.FramewiseDisplacement; FD(1)=0;
>> Temporal_Mask = double(FD<0.3); % [1 1 1 0 1 1 ....]; only for GUI input
```

The atlas files for ROIs analysis can be downloaded from

AAL3.nii	https://www.gin.cnrs.fr/en/tools/aal/	
Yeo 7 networks	ftp://surfer.nmr.mgh.harvard.edu/pub/data/Yeo_JNe	
	urophysiol11_MNI152.zip	
Schaefer-2018:	https://github.com/ThomasYeoLab/CBIG/	
Posterior cingulate (surface ROI)	converted from	
	\freesurfer\subjects\fsaverage5\label\lh.aparc.annot	

Batch interfaces and demo matlabbatch jobs

o Voxel-wise HRF estimation, deconvolution and connectivity analysis

The voxels-wise based analysis module in the matlabbatch is called by clicking the 'Voxels' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job 1: \spm12\toolbox\rsHRF\demo_jobs\vox_hrf_canon2dd_deconv_job1_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- HRF basis function: informed basis function;
- Duration of HRF: 32s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 2, i.e. TR/2 = 2/2=1s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- HRF parameter outlier will be removed and replaced by surrounding values.
- HRF computation only inside the '*brainmask.nii'
- The HRF parameters, and deconvolved data will be saved in NIfTI files.

U. V. L.: UDE L. L.	
Help on: Voxel-wise HRF deconvolution	
Scans	10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc.nii,1
Denoising . Nuisance Covariates	
	Dilauh 40474/fi malaujaanaa tut
Multiple regressors	D:\sub-10171\func\nuisance.txt
. Polynomial Detrending	Linear
. Band-pass Filter	10.04.0.41
Band-pass filter(Hz)	[0.01 0.1]
. Despiking	Yes
. Which First?	No ROI analysis
HRF estimation	
. HRF Basis Functions	Canonical HRF (with time and dispersion derivatives)
TR	2
Length of HRF (seconds)	32
Number of basis functions (k)	NaN
Minimum & Maximum delay (seconds)	· · · · · · · · · · · · · · · · · · ·
Serial correlations	AR(1)
Microtime resolution	2
Microtime onset	1
Threshold (SD) for event detection	1
K (local peak $f([-K:K]+t) \le f(t)$)	2
Temporal mask for event detection	1x152 double
HRF Deconvolution	HRF Deconvolution on Unfiltered Data
Remove Outlier& Inpaint 3D	Yes
xplicit Mask	171_task-rest_bold_space-MNI152NLin2009cAsym_brainmask.nii,1
Connectivity Analysis	
Output Directory	D:\sub-10171\rsHRF_out
Save Data	
Save Deconvolved Data	Yes
Save HRF mat-file	Yes
Save HRF NIfTI/GIfTI-file	Yes
Save job parameters	Yes
Filename prefix	Deconv

Job1 results:

File Name	Description		
Deconv_RAW_FILE_NAME.nii	HRF deconvolved data		
Deconv_RAW_FILE_NAME_FWHM.nii	HRF parameter FWHM/width		
Deconv_RAW_FILE_NAME_Height.nii	HRF parameter response height		
Deconv_RAW_FILE_NAME_Height_PSC.nii	HRF parameter response height (percent signal change, PSC)		
Deconv_RAW_FILE_NAME_Time2peak.nii	HRF parameter time to peak		
Deconv_RAW_FILE_NAME_event_number.nii	estimated BOLD event number		
Outlier removed and Inpainted (Olrm)			
Deconv_RAW_FILE_NAME_Olrm.nii	HRF deconvolved data		
Deconv_RAW_FILE_NAME_Olrm_FWHM.nii	HRF parameter width		
Deconv_RAW_FILE_NAME_Olrm_Height.nii	HRF parameter response height		
Deconv_RAW_FILE_NAME_Olrm_Height_PSC.nii	HRF parameter response height (percent signal change, PSC)		
Deconv_RAW_FILE_NAME_Olrm_Time2peak.nii	HRF parameter time to peak		
Deconv_RAW_FILE_NAME_outlier_NAN.nii	detected outlier (value=1)		
Mat-files			
Deconv_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters		
Deconv_RAW_FILE_NAME_job.mat	analysis/model parameters		

RAW_FILE_NAME = sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc

hrf.mat			
Variable	Description		
V0	NIfTI header information		
smask_ind	matrix index of analysis mask		
event_number	number of detected spontaneous events		
event_bold:	timing information of spontaneous events		
PARA	HRF parameters: 1 st row: Response Height;		
	2 nd row: Time to peak; 3 rd row: Width at half peak		
para	input parameters for HRF estimation		
	I para		
	Field Value		
	■TR 2 ■T 2		
	■ T0 2		
	dt 1 ⊞order NaN		
	aR_lag 1		
	athr 1 ⊒len 32		
	⊞lag [4,5,6,7,8]		
hrfa	All HRF		
bf	HRF basis function		
beta_hrf	beta_hrf = [beta coefficients; estimated lag]		
	i.e. hrfa = bf*beta_hrf(1:size(bf,2),:);		
	%HRF baseline value for PSC calculation.		
	hrf_baseline = beta_hrf(1+size(bf,2),:);		
id_rm	index of removed outliers		
HeightPSC_rm:	response height (percent signal change, PSC), outlier removed		
PARA_rm	HRF parameters, outlier removed		
event_number_rm:	number of detected spontaneous events, outlier removed		

	Name
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc.nii
A.	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_event_number.nii
Ж	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_FWHM.nii
A.	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Height.nii
ė	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Height_PSC.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_hrf.mat
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_job.mat
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm_event_number.ni
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm_FWHM.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm_Height.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm_Height_PSC.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Olrm_Time2peak.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_outlier_NAN.nii
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Time2peak.nii

Job 2: \spm12\toolbox\rsHRF\demo jobs\vox hrf gamma job2 v23.mat

- Denoising: (1) remove motion (rp.txt), physiological confounds (top 5 principle components from CSF and white matter, here we only select voxels with value > 0.9 in covariate images for nuisance regression), Linear Polynomial detrending; (2) Bandpass filter (0.01~0.1 Hz); (3) Despking.
- HRF basis function: 4 Gamma functions;
- Duration of HRF: 24s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 4, i.e. TR/4 = 2/4=0.5s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: no;
- Do not perform HRF deconvolution.
- HRF parameter outlier will be removed and replaced by surrounding values.
- HRF computation only inside the '*brainmask.nii'
- The HRF parameters will be saved in NIfTI files.

Job2 results:

> tool (D:) > sub-10171 > rsHRF_out

Job 3: \spm12\toolbox\rsHRF\demo jobs\vox deconv job2 v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- HRF basis function: 3 Gamma functions;
- Duration of HRF: 32s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 4, i.e. TR/4 = 2/4=0.5s;
- Serial correlation model: none:
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: no;
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- HRF parameter outlier will be removed and replaced by surrounding values.
- HRF computation only inside the 'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii'
- Which first? (c)
 - o (a) First denoise then generate ROI signal
 - o (b) First generate ROI signal then denoise
 - (c) No ROI analysis (default)
 - if ROI analysis was included, it will automatedly change to (b) <-- (Job3).
- Connectivity analysis:
 - (1) Functional connectivity (FC): seed to voxels analysis.
 - Data: denoised BOLD and deconvolved BOLD
 - seed of interest information defined as: [x, y, z, radius]

- two seeds: [10 -62 61 4; -52 -63 5 5].
- o (2~4) Granger Causality (GC): ROI to ROI analysis.
 - Data: denoised BOLD and deconvolved BOLD
 - (2). pairwise GC, model order = 1;
 - (3). Conditional GC; model order = 1; only for deconvolved BOLD data.
 - (4). Partially Conditioned GC; model order=1; fixed number of conditional variables = 6, maximum number of conditional variables = 8 (which can be used for information gain plot).
- o (5) Functional connectivity (FC): ROI to ROI analysis.
 - Data: deconvolved BOLD
 - 14 sphere ROIs + 164 ROIs from atlas (AAL3, 164 ROIs are arranged in ascending order according to their label in AAL3 --- see AAL3.nii.txt for label information)

ROI index	Matrix index	ROI information	Label
1	[171701,1	[10,-62,61,4]	[]
2	1x14 dou	[-52,-63,5,5]	[]
3	1x26 dou	[-47,-51,-21,6]	[]
4	[76943,76	[46,-47,-17,4]	[]
5	1x26 dou	[47,-30,49,6]	[]
6	[156625,1	[22,-65,48,4]	[]
7	1x16 dou	[46,-59,4,5]	[]
8	[171771,1	[25,-58,60,4]	[]
9	1x14 dou	[-33,-46,47,5]	[]
10	[141464,1	[-27,-71,37,4]	[]
11	1x41 dou	[-32,-1,54,7]	[]
12	[86599,86	[-42,-60,-9,4]	[]
13	1x26 dou	[-17,-59,64,6]	[]
14	[167937,1	[29,-5,54,4]	[]
15	790x1 do	'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	1
16	755x1 do	'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	2
17	1088x1 d	'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	3
18	1116x1 d	'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	4
19	969x1 do	'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	5

Help on: Voxel-wise HRF deconvolution	
Scans	10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc.nii,1
Denoising	
. Nuisance Covariates	
Multiple regressors	D:\sub-10171\func\nuisance.txt
. Polynomial Detrending	Linear
. Band-pass Filter	
Band-pass filter(Hz)	[0.01 0.1]
. Despiking	Yes
. Which First?	No ROI analysis
HRF estimation	
. HRF Basis Functions	Gamma Functions
. TR	2
. Length of HRF (seconds)	32
. Number of basis functions (k)	3
. Minimum & Maximum delay (seconds)	[4 8]
. Serial correlations	none
. Microtime resolution	4
. Microtime onset	2
. Threshold (SD) for event detection	
. K (local peak f([-K:K]+t)<=f(t))	2
. Temporal mask for event detection	1x152 double
HRF Deconvolution	HRF Deconvolution on Unfiltered Data
Remove Outlier& Inpaint 3D	Yes
Explicit Mask	E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1
Connectivity Analysis	E. Spiritz Roombon 15 in the Gotto Jobby VAEO.IIII, I
3 3	
. FC	DOLD D
Data for Connectivity	BOLD and Deconvolved BOLD
Seed or ROI	Seed to voxels
ROI (Coordinate / NIfTI)	
ROI (x,y,z,radius [in mm])	2x4 double
Method	Pearson Correlation
Filename prefix	Conn_
. GC	
Data for Connectivity	BOLD and Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (Coordinate / NIfTI)	
ROI (x,y,z,radius [in mm])	14x4 double
Method	Pairwise GC(Granger causality)
Model order for GC	1
. Parameters for PCGC	[NaN NaN]
Filename prefix	Conn
. GC	
Data for Connectivity	Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (Coordinate / NIfTI)	NOTO NO
,	14x4 double
ROI (x,y,z,radius [in mm])	
Method	Conditional GC (only for ROIs)
Model order for GC	TAL-ALALA I
Parameters for PCGC	[NaN NaN]
Filename prefix	Conn_
. GC	8018 18
Data for Connectivity	BOLD and Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (Coordinate / NIFTI)	
ROI (x,y,z,radius [in mm])	14x4 double
Method	Partially Conditioned GC (only for ROIs)
Model order for GC	1
Parameters for PCGC	[6 8]
Filename prefix	Conn_
. FC	_
Data for Connectivity	Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (Coordinate / NIfTI)	
ROI (x,y,z,radius [in mm])	14x4 double
Atlas image	E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1
Method	Pearson Correlation
	Conn
Filename prefix	<u>-</u>
Output Directory	D:\sub-10171\rsHRF_out
Save Data	
. Save Deconvolved Data	No
. Save HRF mat-file	No
. Save HRF NIfTI/GIfTI-file	No
. Save job parameters	Yes
i Save job parameters Filename prefix	Deconv

• Job3 results:

	File Name	Description	
	Seed to Voxels		
Conn 1 RAW FILE	NAME Z Pearson.nii	Seed FC	
	NAME_SeedInfo_Pearson.mat	'Z Pearson'Fisher's z transformed	
		Pearson correlation coefficient,	
COIIII_1_KAVV_FILE	_NAME_corr_Pearson.nii	·	
		'corr_Pearson'Pearson correlation	
		coefficient),	
		based on the denoised BOLD data	
		'SeedInfo' seed information	
		([10 -62 61 4]):	
		seed information × 1/10 1x3 <u>cell</u>	
		1 2 3	
		1 [171701,1 [10,-62,61,4] []	
Conn_1_RAW_FILE	_NAME_deconv_Olrm_Z_Pearson.nii	Seed FC	
Conn_1_RAW_FILE	_NAME_deconv_Olrm_corr_Pearson.nii	'deconv_Olrm' based on the	
Conn_1_RAW_FILE	_NAME_deconv_Olrm_SeedInfo_Pearson.mat	deconvolved (outlier removed) BOLD	
		data	
Conn_1_RAW_FILE	NAME_deconv_Z_Pearson.nii	Seed ([10 -62 61 4]) FC	
Conn 1 RAW FILE	NAME decony corr Pearson.nii	'deconv' based on the deconvolved	
	 NAME_deconv_SeedInfo_Pearson.mat	BOLD data	
	 NAME_Z_Pearson.nii		
Conn 2 RAW FILE	 NAME_corr_Pearson.nii		
	NAME SeedInfo Pearson.mat		
	NAME deconv Olrm Z Pearson.nii		
	NAME deconv Olrm corr Pearson.nii	Seed ([-52 -63 5 5]]) FC	
	NAME deconv Olrm SeedInfo Pearson.mat		
	NAME deconv Z Pearson.nii		
	NAME deconv corr Pearson.nii		
	NAME deconv SeedInfo Pearson.mat		
CONN_Z_RAW_FILE			
ROI to ROI			
Conn_RAW_FILE_N	IAME_PWGC.mat	Pairwise GC	
1x1 struct with 9 fields			
Field -	Value	GC_Matrix: GC Value	
⊞seed_num	0	GC_Matrix(x,y) = GC from x to y	
⊞nvar	14	pval_Matrix: p-value (F-test)	
⊞ nobs ⊞ order	152 1	GC_Matrix_N: transformed GC	
■ GC_type	Pairwise GC'	N: GC value c is transformed into d,	
⊞ndinfo	[NaN,NaN]	which is considered to be	
⊞GC_Matrix	14x14 double	approximately normal.	
⊞ pval_Matrix	14x14 double	(Geweke 1982)	
⊞GC_Matrix_N	14x14 double	, ,	

Mat-files Deconv_RAW_FILE_NAME_job.mat analysis/model parameters

RAW_FILE_NAME = sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc

1 plot(diff(M.information_gain')); xlabel('n_d'); ylabel('\Delta y')

> tool (D:) > sub-10171 > rsHRF_out
Name
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii
Application Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_outlier_NAN.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_pwGC.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_PCGC.mat
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_corr_Pearson.nii
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_SeedInfo_Pearson.mat
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Z_Pearson.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_corr_Pearson.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_SeedInfo_Pearson.mat
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Z_Pearson.nii
Conn_sub-10171_task-rest_bold_space-MNl152NLin2009cAsym_preproc_deconv_pwGC.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_CGC.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Corr_Pearson.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_PCGC.mat
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_corr_Pearson.nii
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_SeedInfo_Pearson.mat
Conn_1_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_Z_Pearson.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_corr_Pearson.nii
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_SeedInfo_Pearson.mat
Conn_2_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Olrm_Z_Pearson.nii
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_OIrm_pwGC.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_OIrm_CGC.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_OIrm_Corr_Pearson.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_OIrm_PCGC.mat
Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_job.mat

o Vertex-wise HRF estimation, deconvolution and connectivity analysis

The vertex-wise based analysis module in the matlabbatch is called by clicking the 'Vertices' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job 4: \spm12\toolbox\rsHRF\demo_jobs\vertex_hrf_canon2dd_deconv_job4_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- HRF basis function: informed basis function;
- Duration of HRF: 32s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 2, i.e. TR/5 = 2/5=0.4s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- Explicit Mask: none.
- The HRF parameters, and deconvolved data will be saved in GIfTI files.

Help on: Vertex-wise HRF deconvolution	
	10171\func\sub-10171_task-rest_bold_space-fsaverage5.L.func.gii
Denoisina	
. Nuisance Covariates	
Multiple regressors	D:\sub-10171\func\nuisance.txt
. Polynomial Detrending	Linear
. Band-pass Filter	
Band-pass filter(Hz)	[0.01 0.1]
. Despiking	Yes
. Which First?	No ROI analysis
HRF estimation	
. HRF Basis Functions	Canonical HRF (with time and dispersion derivatives)
. TR	2
. Length of HRF (seconds)	32
. Number of basis functions (k)	NaN
. Minimum & Maximum delay (seconds)	[4 8]
. Serial correlations	AR(1)
. Microtime resolution	5
. Microtime onset	3
. Threshold (SD) for event detection	1
. K (local peak f([-K:K]+t)<=f(t))	2
. Temporal mask for event detection	1x152 double
. HRF Deconvolution	HRF Deconvolution on Unfiltered Data
Explicit Mask	
Connectivity Analysis	Direct 404741
Output Directory Save Data	D:\sub-10171\rsHRF_out
	V
. Save Deconvolved Data . Save HRF mat-file	Yes Yes
. Save HRF Mittl/GlfTI-file	Yes Yes
	Yes
. Save job parameters Filename prefix	Deconv
гленатте ргенх	Deconv_

• Job4 results:

File Name	Description		
Deconv_RAW_FILE_NAME.gii	HRF deconvolved data		
Deconv_RAW_FILE_NAME_FWHM.gii	HRF parameter FWHM/width		
Deconv_RAW_FILE_NAME_Height.gii	HRF parameter response height		
Deconv_RAW_FILE_NAME_Height_PSC.gii	HRF parameter response height		
	(percent signal change, PSC)		
Deconv_RAW_FILE_NAME_Time2peak.gii	HRF parameter time to peak		
Deconv_RAW_FILE_NAME_event_number.gii	estimated BOLD event number		
Mat-files			
Deconv_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters		
Deconv_RAW_FILE_NAME_job.mat	analysis/model parameters		

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.L.func

	hrf.mat		
Variable	Description	on	
V0	v0 ×		
	1x1 <u>struct</u> with 1 field		
	Field -	Value	
	■ dim	[10242,1]	
smask_ind	matrix index of an	alysis mask	
event_number	number of detected spo	ntaneous events	
event_bold:	timing information of spo	ontaneous events	
PARA	HRF parameters: 1st row:	Response Height;	
	2 nd row: Time to peak; 3 rd ro	w: Width at half peak	
para	input parameters for I	HRF estimation	
	gare X		
	Field ⁴ Value ■TR 2		
	⊞ T 5		
	≝T0 5 ≝dt 0.4000		
	order NaN		
	[⊞] AR_lag 1		
	■ thr 1 ■ len 32		
	⊞ lag 1x11 double		
	■ localK 2 ■ name 'Canonical HRF (with	time and dispersion derivatives)'	
hrfa	All HRF	, ,	
bf	HRF basis fur	nction	
beta_hrf	beta_hrf = [beta coefficie	nts; estimated lag]	
	i.e. hrfa = bf*beta_hrf	(1:size(bf,2),:);	
	%HRF baseline value for PSC calculation.		
	hrf_baseline = beta_hrf(1+size(bf,2),:);		

> tool (D:) > sub-10171 > rsHRF_out		
_	1001(01) 7 300 10111 7 131111 2000	
	Name	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_event_number.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_FWHM.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Height.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Height_PSC.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_hrf.mat	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Time2peak.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func.gii	
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_job.mat	

- **Job 5**: \spm12\toolbox\rsHRF\demo_jobs\vertex_hrf_gamma_deconv_FC_job5_v23.mat
 - Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
 - HRF basis function: 3 Gamma functions;
 - Duration of HRF: 24s;
 - Minimum/maximum time delay: 4s, 8s;
 - Microtime resolution for onset estimation: 1, i.e. TR = 2 s;
 - Serial correlation model: AR(1);
 - Threshold for point process detection: 1, i.e. mean + 1*SD;
 - Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
 - Temporal mask to exclude spurious events: [1 1 1 0 1 1];
 - HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
 - Explicit Mask: none.
 - The HRF parameters, and deconvolved data will be saved in GIfTI files.
 - Which first? First denoise then generate ROI signal
 - Connectivity analysis:
 - o (1) Functional connectivity (FC): seed to vertices analysis.
 - Data: denoised BOLD and deconvolved BOLD
 - seed of interest: posterior cingulate
 - o (2) Functional connectivity (FC): ROI to ROI analysis.
 - Data: denoised BOLD and deconvolved BOLD
 - 200 ROI from atlas (Schaefer-2018, 200 ROIs are arranged in ascending order according to their label in atlas file)
 - o (3) Granger causality (GC): ROI to ROI analysis.
 - Data: deconvolved BOLD
 - 7 ROIs from atlas (Yeo-2011, 7 ROIs are arranged in ascending order according to their label in atlas file)

Hala an Vertey wise HDE decompletion	
Help on: Vertex-wise HRF deconvolution Scans	10171\func\sub-10171 task-rest bold space-fsaverage5.L.func.gii
Denoising	1017 Thuricisub-1017 I_task-rest_bold_space-isaverages.t.huric.gii
. Nuisance Covariates	
. Multiple regressors	D:\sub-10171\func\nuisance.txt
. Polynomial Detrending	Linear
. Band-pass Filter	Emour
. Band-pass filter(Hz)	[0.01 0.1]
. Despiking	Yes
. Which First?	First denoise then generate ROI signal
HRF estimation	
. HRF Basis Functions	Gamma Functions
.TR	2
. Length of HRF (seconds)	24
. Number of basis functions (k)	3
. Minimum & Maximum delay (seconds)	[4 8]
. Serial correlations	AR(1)
. Microtime resolution	1
. Microtime onset	1
. Threshold (SD) for event detection	1
. K (local peak $f([-K:K]+t) \le f(t)$)	2
. Temporal mask for event detection	1x152 double
. HRF Deconvolution	HRF Deconvolution on Unfiltered Data
Explicit Mask	
Connectivity Analysis	
. FC	POLD and Decembered POLD
Data for Connectivity Seed or ROI	BOLD and Deconvolved BOLD Seed to vertices
ROI (GIFTI)	Seed to vertices
Mesh Mask	E:\spm12\toolbox\rsHRF\demo_jobs\posteriorcingulate_lh_aparc.gii
Method	Spearman Correlation
. Filename prefix	Conn
. FC	33111_
. Data for Connectivity	BOLD and Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (GIfTI)	
Mesh Atlas	HRF\demo_jobs\lh.Schaefer2018_400Parcels_7Networks_order.gii
Method	Pearson Correlation
Filename prefix	Conn_
. GC	
Data for Connectivity	Deconvolved BOLD
Seed or ROI	ROI to ROI
ROI (GIFTI)	
	spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii
Method	Conditional GC (only for ROIs)
Model order for GC	[1]
Parameters for PCGC	[NaN NaN]
Filename prefix	Conn_ Driggth 10171\re\UDE_out
Output Directory Save Data	D:\sub-10171\rsHRF_out
Save Data Save Deconvolved Data	Yes
. Save HRF mat-file	Yes
. Save HRF NlfTl/GlfTl-file	Yes
. Save job parameters	Yes
Filename prefix	Deconv_
	_

• Job5 results:

File Name	Description
Seed to Vertic	es
Conn_1_RAW_FILE_NAME_Z_Spearman.gii Conn_1_RAW_FILE_NAME_SeedInfo_Spearman.mat	Seed (posterior cingulate) FC '_Z_ Spearman'Fisher's z transformed Spearman correlation coefficient,
Conn_1_RAW_FILE_NAME_corr_Spearman.gii	'_corr_ Spearman' Spearman correlation coefficient), based on the denoised BOLD data 'SeedInfo' Seed information:
Conn_1_RAW_FILE_NAME_deconv_Z_Spearman.gii	Seed (posterior cingulate) FC
Conn_1_RAW_FILE_NAME_deconv_corr_Spearman.gii Conn_1_RAW_FILE_NAME_deconv_SeedInfo_Spearman.m	'_deconv' based on the deconvolved at BOLD data
ROI to ROI	
Field Value Seed_num nvar nobs 152 order ndinfo [NaN,NaN] GC_type 'Conditional GC' ndinfo [NaN,NaN] GC_Matrix 7x7 double pval_Matrix 7x7 double 1 1352x1 d 'E'\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 1 2 1861x1 d 'E'\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 2 3 1094x1 d 'E'\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 3 4 1087x1 d 'E'\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 5 6 1041x1 d 'E\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 5 7 12x1 do 'E\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 5 6 1041x1 d 'E\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 7 2207x1 d 'E\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 7	Conditional GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test)

> tool (D:) > sub-10171 > rsHRF_out		
Name		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_event_number.gii		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_FWHM.gii		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Height.gii		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Height_PSC.gii		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_hrf.mat		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_Time2peak.gii		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_Corr_Pearson.mat		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Spearman.gii		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Spearman.mat		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Spearman.gii		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func.gii		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_deconv_Corr_Pearson.mat		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_deconv_corr_Spearman.gii		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_deconv_SeedInfo_Spearman.mat		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_deconv_Z_Spearman.gii		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_deconv_CGC.mat		
Deconv_sub-10171_task-rest_bold_space-fsaverage5.L.func_job.mat		

o (Volume) ROI-wise HRF estimation, deconvolution and connectivity analysis

The volume based ROI analysis module in the matlabbatch is called by clicking the 'ROIs-volume' button in the main menu.

Figure: matlabbatch GUI for volume based ROI HRF deconvolution.

Demo jobs

Batch Editor → Load Batch 🛎

Job 6: \spm12\toolbox\rsHRF\demo_jobs\ROI_hrf_canon2dd_deconv_job6_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First denoise then generate ROI signal
- ROI definition:
 - o atlas image: AAL3.nii
 - o MNI coordinates+radius(sphere): 264 x 4
- HRF basis function: informed basis function (canonical HRF + time derivative);
- Duration of HRF: 32s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 2, i.e. TR/5 = 2/5=0.4s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- HRF computation only inside the '*brainmask.nii'
- The HRF parameters, and deconvolved data will be saved in Mat files.

Job6 results:

File Name	Description
Deconv_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters
Deconv_RAW_FILE_NAME.mat	HRF deconvolved BOLD data
Deconv_RAW_FILE_NAME_job.mat	analysis/model parameters

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.L.func

	hrf.mat		
Variable	Description		
event_number	number of	detected spontaneous events	
event_bold:	timing infor	mation of spontaneous events	
PARA	HRF parame	ters: 1 st row: Response Height;	
	2 nd row: Time to	peak; 3 rd row: Width at half peak	
para	input par	rameters for HRF estimation	
	para ×		
	Field -	Value	
	∄TR	2	
	∌ ⊤	5	
	∄ T0	5	
	∄ dt	0.4000 NaM	
	∄order ⊞AR lag	NaN 1	
	#thr	1	
	∃ len	32	
	∄lag	1x11 double	
	∄localK	2	
	₃name	'Canonical HRF (with time derivative)'	
hrfa		All HRF	
bf		HRF basis function	
beta_hrf	beta_hrf = [beta coefficients; estimated lag]		
	i.e. hrfa = bf*beta_hrf(1:size(bf,2),:);		
	%HRF baseline value for PSC calculation.		
	hrf_baseline = beta_hrf(1+size(bf,2),:);		

	Deconv_RAW_FILE_NAME.mat			
Variable	Description			
data	(Denoised) BOLD data			
data_deconv	HRF deconvolved BOLD Data			
roiinfo	ROI information:			
	1 (80819,80 [-25,-98,-12,4]	3		
	2 [80836,80 [27,-97,-13,4] 3 [78625,78 [24,32,-18,4]	0		
	4 [66899,66 [-56,-45,-24,4] 5 [68805,68 [8,41,-24,4] 6 [72436,72 [-21,-22,-20,4]	0		
	7 [77323,77 [17,28,-17,4] 8 [67295,67 -37,-29,-26,4]	0		
	9 [72464,72 [65,-24,-19,4] 10 [62190,62 [52,-34,-27,4]	0		
	264[167937,1 [29,-5,54,4]	0		
	265 790x1 do			
	267 1088x1 d E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1\ 268 1116x1 d E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1\	4		
	269 969x1 do 'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1' 270 1065x1 d 'E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1'	6		
	271 220x1 do E:\spm12\toolbox\rsHR\demo_jobs\AAL3.nii,1' 272 32x1 do E:\spm12\toolbox\rsHR\demo_jobs\AAL3.nii,1'	8		
	273 597x1 do E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1\ 274 476x1 do E:\spm12\toolbox\rsHRF\demo_jobs\AAL3.nii,1\	10		

>	tool (D:) →	sub-10171	>	rsHRF_out	
	Name				
	Deconv	_sub-10171_	tas	sk-rest_bold_space-MNI152NLin2009cAsym_preproc_hrf.mat	
	Deconv	_sub-10171_	tas	sk-rest_bold_space-MNI152NLin2009cAsym_preproc.mat	
	Deconv	_sub-10171	tas	sk-rest_bold_space-MNI152NLin2009cAsym_preproc_job.mat	

Job7: \spm12\toolbox\rsHRF\demo_jobs\ROI_hrf_gamma_deconv_FC_GC_job7_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First generate ROI signal then denoise
- ROI definition:
 - o atlas image: AAL3.nii
 - o MNI coordinates+radius(sphere): 264 x 4
- HRF basis function: 3 Gamma functions;
- Duration of HRF: 32s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 1, i.e. TR = 2 s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- Explicit Mask: none.
- The HRF parameters, and deconvolved data will be saved in mat files.
- Connectivity analysis: ROI to ROI; Data: denoised BOLD and deconvolved BOLD
 - o (1) Functional connectivity (FC): Pearson correlation.
 - o (2) Functional connectivity (FC): Pearson Partial correlation.
 - o (3) Granger causality (GC): Pairwise Granger causality.
 - o (4) Granger causality (GC): Conditional Granger causality.

>	tool (D:) > Sub-10171 > rsHRF_out
	Name
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Corr_PartialPearson.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Corr_Pearson.mat
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_hrf.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_pwGC.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_CGC.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Corr_PartialPearson.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_Corr_Pearson.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_pwGC.mat
	Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_deconv_CGC.mat
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc.mat
	Deconv_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_job.mat

Help on: ROI-wise HRF deconvolution	
	10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc.nii,1
Denoising	
Nuisance Covariates	
. Multiple regressors	D:\sub-10171\func\nuisance.txt
Polynomial Detrending	Linear
Band-pass Filter	Lilleai
-	[0.04.0.4]
. Band-pass filter(Hz)	[0.01 0.1]
Despiking	Yes
Which First?	First generate ROI signal then denoise
OI (Coordinate / NIfTI)	
Atlas image	7Networks_MNI152_FreeSurferConformed2mm_LiberalMask.nii,1
ROI (x,y,z,radius [in mm])	9x4 double
IRF estimation	
HRF Basis Functions	Gamma Functions
TR	2
Length of HRF (seconds)	32
Number of basis functions (k)	3
Minimum & Maximum delay (seconds)	[4 8]
Serial correlations	AR(1)
Microtime resolution	1
Microtime resolution Microtime onset	1
Threshold (SD) for event detection	1
K (local peak f([-K:K]+t) <= f(t))	2
Temporal mask for event detection	1x152 double
HRF Deconvolution	HRF Deconvolution on Unfiltered Data
	171_task-rest_bold_space-MNI152NLin2009cAsym_brainmask.nii,1
Connectivity Analysis	
FC	
. Data for Connectivity	BOLD and Deconvolved BOLD
. Method	Pearson Correlation
. Filename prefix	Conn
FC	
. Data for Connectivity	BOLD and Deconvolved BOLD
. Method	Pearson Partial Correlation (only for ROIs)
. Filename prefix	Conn_
GC Data for Connectivity	DOLD and December 4 DOLD
. Data for Connectivity	BOLD and Deconvolved BOLD
. Method	Pairwise GC(Granger causality)
. Model order for GC	1
. Parameters for PCGC	[NaN NaN]
. Filename prefix	Conn_
GC	
. Data for Connectivity	BOLD and Deconvolved BOLD
. Method	Conditional GC (only for ROIs)
. Model order for GC	1
. Parameters for PCGC	[6 8]
. Filename prefix	Conn
•	_
Output Directory	D:\sub-10171\rsHRF_out
Save Data	
Save Deconvolved Data	Yes
Save HRF mat-file	Yes
Save job parameters	Yes
Filename prefix	Deconv

Job7 results:

• JUK	o7 results:	1
	File Name	Description
roiid = []: % RC	OI information was saved in Deconv_RAW_FI	Workspace Name △ Value M 1x1 struct IF NAME mat □ rollid II
10114 [], 70114		
	ROI to ROI	
Conn_RAW_FILE	_NAME_CGC.mat	
Conn_RAW_FILE	_NAME_deconv_CGC.mat	
Field -	Value	Conditional GC
■ seed_num ■ nvar ■ nobs ■ order ■ GC_type ■ ndinfo ■ GC_Matrix	0 16 152 1 'Conditional GC' [6,8] <i>16x16 double</i>	GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test)
■ pval_Matrix	16x16 double	
	_NAME_pwGC.mat _NAME_deconv_pwGC.mat Value 0	Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y
■ nvar ■ nobs ■ order ■ GC_type ■ ndinfo ■ GC_Matrix	16 152 1 'Pairwise GC' [NaN,NaN] 16x16 double	pval_Matrix: p-value (F-test) GC_Matrix_N: transformed GC N: GC value c is transformed into d, which is considered to be approximately normal. (Geweke 1982)
□ pval_Matrix □ GC_Matrix_N	16x16 double 16x16 double	
Conn_RAW_FILE_ Conn_RAW_FILE_	_NAME_Corr_Pearson.mat _NAME_Corr_PartialPearson.mat	
Field ↑ ■ seed_num ■ nvar ■ nobs ■ Matrix_r ■ Matrix_z ■ Matrix_pval	Value 0 16 152 16x16 double 16x16 double 16x16 double	Matric_r: Pearson correlation coefficient), Matrix_z: Fisher's z transformed Pearson correlation coefficient, Matric_pval: p-value (t-test)
	NAME deconv Corr Pearson.mat	
	_NAME_deconv_Corr_PartialPearson.mat	
	Mat-files	
Dec	onv RAW FILE NAME job.mat	analysis/model parameters
	econv_RAW_FILE_NAME.mat	HRF deconvolved BOLD data

o (Surface) ROI-wise HRF estimation, deconvolution and connectivity analysis

The surface based ROI analysis module in the matlabbatch is called by clicking the 'ROIssurface' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job8: \spm12\toolbox\rsHRF\demo_jobs\ROI_vertex_hrf_gamma_deconv_FC_GC_job8.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First generate ROI signal then denoise
- ROI definition:
 - o atlas mesh: Yeo 7 networks
- HRF basis function: Smooth FIR
- Duration of HRF: 24s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 1, i.e. TR2s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- The HRF parameters, and deconvolved data will be saved in Mat files

• Job8 results:

File Name	Description
Deconv_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters
Deconv_RAW_FILE_NAME.mat	HRF deconvolved BOLD data
Deconv_RAW_FILE_NAME_job.mat	analysis/model parameters

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.R.func

	hrf.mat			
Variable	Description			
event_number	number	of detected s	pontaneou	s events
event_bold:	timing ir	nformation of	spontaneou	us events
PARA	HRF para	meters: 1st ro	w: Respons	se Height;
	2 nd row: Time	e to peak; 3 rd	row: Widtl	h at half peak
para	input parameters for HRF estimation			
		Field -	Value	
		■TR	2	
		■T	1	
		⊞T0 ⊞dt	2	
		■order	NaN	
		■AR_lag	1	
		⊞ thr	1	
	⊞ len 24 ⊞ lag [2,3,4]			
		⊞ localK ⊪estimation	2 'sFIR'	
hrfa	All HRF			
beta_hrf	beta_hrf = [beta coefficients; estimated lag]			
	i.e. hrfa = beta_hrf(1:end-2,:);			
	%HRF baseline value for PSC calculation.			
	hrf_baseline = beta_hrf(end-1,:);			

Deconv_RAW_FILE_NAME.mat				
Variable			Description	
data		(Denoised) BOLD data		
data_deconv		HRF deconvolved BOLD Data		
roiinfo		ROI information:		
		1 2 3		
	1	1352x1 d	'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii'	1
	2	2 1861x1 d 'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 2		
	3	3 1094x1 d 'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 3		
	4	4 1087x1 d 'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 4		
	5	5 712x1 do 'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 5		
	6	6 1041x1 d 'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii' 6		
	7	2207x1 d	'E:\spm12\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii'	7

> tool (D:) > sub-10171 > rsHRF_out

Name
Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func.mat
Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func_hrf.mat
Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func_job.mat

Job9: \spm12\toolbox\rsHRF\demo_jobs\ROI_hrf_FIR_deconv_FC_GC_job9_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First generate ROI signal then denoise
- ROI definition:
 - o atlas mesh: Yeo 7 networks
- HRF basis function: FIRDuration of HRF: 24s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 1, i.e. TR = 2 s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- Explicit Mask: none.
- The HRF parameters, and deconvolved data will be saved in mat files.
- Connectivity analysis: ROI to ROI; Data: denoised BOLD and deconvolved BOLD
 - o (1) Functional connectivity (FC): Pearson correlation.
 - o (2) Granger causality (GC): Pairwise Granger causality.

Help on: (Surface)ROI-wise HRF deconvolution		^
Scans	1\func\sub-10171_task-rest_bold_space-fsaverage5.R.func.gii	
Denoising		
. Nuisance Covariates		
Multiple regressors	D:\sub-10171\func\nuisance.txt	
. Polynomial Detrending	Linear	
. Band-pass Filter		
Band-pass filter(Hz)	[0.01 0.1]	
. Despiking	Yes	
. Which First?	First generate ROI signal then denoise	
ROI (GIfTI)		
. Mesh Atlas	2\toolbox\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii	
HRF estimation		
. HRF Basis Functions	Finite Impulse Response (FIR)	
. TR	2	
. Length of HRF (seconds)	24	
. Number of basis functions (k)	NaN	
. Minimum & Maximum delay (seconds)	[4 8]	
. Serial correlations	AR(1)	
. Microtime resolution	1	
. Microtime onset	1	
. Threshold (SD) for event detection	1	
. K (local peak f([-K:K]+t)<=f(t))	2	
. Temporal mask for event detection	1x152 double	
. HRF Deconvolution	HRF Deconvolution on Unfiltered Data	
Explicit Mask		
Connectivity Analysis		
.FC		
Data for Connectivity	BOLD and Deconvolved BOLD	
Method	Pearson Correlation	
Filename prefix	Conn_	
. GC		
Data for Connectivity	BOLD and Deconvolved BOLD	
Method	Pairwise GC(Granger causality)	
Model order for GC	1	
Parameters for PCGC	[NaN NaN]	
Filename prefix	Conn_	
Output Directory	D:\sub-10171\rsHRF_out	
Save Data	_	
. Save Deconvolved Data	Yes	
. Save HRF mat-file	Yes	
. Save job parameters	Yes	
Filename prefix	Deconv_	V

• Job9 results:

File Name	Description
Deconv_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters
Deconv_RAW_FILE_NAME.mat	HRF deconvolved BOLD data
Deconv_RAW_FILE_NAME_job.mat	analysis/model parameters

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.R.func

	File Name	Description		
roiid = []; % RO	I information was saved in Deconv_RAW			
	ROI to ROI			
	NAME_pwGC.mat NAME_deconv_pwGC.mat Value 0 7 152 1 'Pairwise GC' [NaN,NaN] 7x7 double 7x7 double 7x7 double	Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test) GC_Matrix_N: transformed GC N: GC value c is transformed into d, which is considered to be approximately normal. (Geweke 1982)		
	NAME_Corr_Pearson.mat NAME_deconv_Corr_Pearson.mat Value 0 7 152 7x7 double 7x7 double 7x7 double 7x7 double Mat-files	Matric_r: Pearson correlation coefficient), Matrix_z: Fisher's z transformed Pearson correlation coefficient, Matric_pval: p-value (t-test)		
D				
	nv_RAW_FILE_NAME_job.mat	analysis/model parameters		
De	conv_RAW_FILE_NAME.mat	HRF deconvolved BOLD data		

Name

	Conn_sub-10171_task-rest_bold_space-fsaverage5.R.func_Corr_Pearson.mat
D.	Conn_sub-10171_task-rest_bold_space-fsaverage5.R.func_deconv_Corr_Pearson.mat
L.	Conn_sub-10171_task-rest_bold_space-fsaverage5.R.func_pwGC.mat
,	Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func_hrf.mat
	Conn_sub-10171_task-rest_bold_space-fsaverage5.R.func_deconv_pwGC.mat
L.	Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func.mat
	Deconv_sub-10171_task-rest_bold_space-fsaverage5.R.func_job.mat

o Signals based HRF estimation, deconvolution and connectivity analysis

The time series analysis module in the matlabbatch is called by clicking the 'Signals' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job10: \spm12\toolbox\rsHRF\demo_jobs\sig_hrf_gamma_deconv_FC_GC_job10_v23.mat This job file included three different jobs, the first two for HRF estimation and deconvolution, the third one further perform connectivity analysis. (1,2):

- Input Data:
 - o (1) dat1
 - o (2) dat1 & dat2
- Denoising: no.
- Which first? No ROI analysis.
- HRF basis function: 3 Gamma functions.
- Duration of HRF: 24s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 4, i.e. TR/4=0.5s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- The HRF parameters, and deconvolved data will be saved in Mat files

3.

- Denoising: no.
- Which first? No ROI analysis.
- HRF basis function: 3 Gamma functions.
- Duration of HRF: 24s;
- Minimum/maximum time delay: 4s, 8s;
- Microtime resolution for onset estimation: 1, i.e. TR2s;
- Serial correlation model: AR(1);
- Threshold for point process detection: 1, i.e. mean + 1*SD;
- Local peak identification: as a 'spontaneous' event, the detected point process (t) should also be the local peak ($f(t \pm 1) < f(t) & f(t \pm 2) < f(t)$).
- Temporal mask to exclude spurious events: [1 1 1 0 1 1];
- HRF estimation from denoised data (1,2,3), but HRF deconvolution will be performed on the denoised data (1) without temporal filtering.
- The HRF parameters, and deconvolved data will be saved in Mat files (prefix: Deconv2).
- Connectivity analysis: ROI to ROI; Data: deconvolved BOLD
 - o (1) Functional connectivity (FC): Pearson correlation.
 - o (2) Granger causality (GC): Conditional Granger causality.

ROI signal HRF deconvolution ^	Help on: ROI signal HRF deconvolution	
ROI signal HRF deconvolution	Data	
ROI signal HRF deconvolution	. Data	
	Preprocessed ROI signals	D:\sub-10171\func\sig_preproc.mat
	Variable Name in the Mat-file	dat1
	Denoising	
	. Nuisance Covariates	
	. Polynomial Detrending	No
	. Band-pass Filter	
	. Despiking	No
	. Which First?	No ROI analysis
	HRF estimation	
	. HRF Basis Functions	Gamma Functions
	. TR	2
	. Length of HRF (seconds)	24
	. Number of basis functions (k)	3
	. Minimum & Maximum delay (seconds)	[4 8]
	. Serial correlations	AR(1)
	. Microtime resolution	4
	. Microtime onset	1
	. Threshold (SD) for event detection	1
	. K (local peak f([-K:K]+t)<=f(t))	2
	. Temporal mask for event detection	1x152 double
	. HRF Deconvolution	HRF Deconvolution on Unfiltered Data
	Connectivity Analysis	
	Output Directory	D:\sub-10171\rsHRF_out
	Save Data	
	. Save Deconvolved Data	Yes
	. Save HRF mat-file	Yes
	. Save job parameters	Yes
	Filename prefix	Deconv_ \

ROI signal HRF deconvolution ROI signal HRF deconvolution ROI signal HRF deconvolution Data Data
. Preprocessed ROI signals
. Variable Name in the Mat-file
Data
. Preprocessed ROI signals
. Variable Name in the Mat-file D:\sub-10171\func\sig_preproc.mat D:\sub-10171\func\sig_preproc.mat dat2 Denoising
. Nuisance Covariates
. Polynomial Detrending
. Band-pass Filter No Despiking Which First? No ROI analysis HRF estimation . HRF Basis Functions Gamma Functions TR
Length of HRF (seconds)
Number of basis functions (k)
Minimum & Maximum delay (seconds) [4 8] Serial correlations
. Microtime resolution
. Microtime onset
. Threshold (SD) for event detection
.K (local peak (fl.-K (R-t)-=f(t))
. Temporal mask for event detection
.HRT Deconvolution
.HRT Deconvolution
.Connectivity Analysis
.Output Directory
.Save Data
. Save Deconvolved Data
.Save HRT mat-file
.Save in Anagmeters Serial correlations AR(1) 1x152 double HRF Deconvolution on Unfiltered Data D:\sub-10171\rsHRF_out Yes . Save job parameters Filename prefix Deconv2_

ROI signal HRF deconvolution ROI signal HRF deconvolution ROI signal HRF deconvolution Data
Data
Preprocessed ROI signals
Variable Name in the Mat-file D:\sub-10171\func\sig_preproc.mat Denoising
Nuisance Covariates
Polynomial Detrending
Band-pass Filter
Despiking
Which First? No No ROI analysis HRF estimation . HRF Basis Functions Gamma Functions TR
Length of HRF (seconds)
Number of basis functions (k)
Minimum & Maximum delay (seconds) 24 3 [4 8] Minimum & Maximum delay (second Serial correlations |
Microtime resolution |
Microtime onset |
Threshold (SD) for event detection |
K (local peak f(I-KK)+1⟩=f(1) |
Temporal mask for event detection |
HRF Deconvolution | AR(1) 1x152 double
HRF Deconvolution on Unfiltered Data Connectivity Analysis FC

Data for Connectivity

Method

Filename prefix Deconvolved BOLD Pearson Correlation Conn_ Deconvolved BOLD Conditional GC (only for ROIs) Data for Connectivity Method

Model order for GC

Parameters for PCGC [NaN NaN] Filename prefix Conn_ D:\sub-10171\rsHRF_out Output Directory Save Data
. Save Deconvolved Data
. Save HRF mat-file
. Save job parameters Yes Yes Deconv3 Filename prefix

• Job10 results:

File Name	Description
Deconv_combROI_RAW_FILE_NAME_hrf.mat	
Deconv2_combROI_RAW_FILE_NAME_hrf.mat	HRF and HRF parameters
Deconv3_ combROI_RAW_FILE_NAME_hrf.mat	
Deconv_combROI_RAW_FILE_NAME.mat	
Deconv2_combROI_RAW_FILE_NAME.mat	HRF deconvolved BOLD data
Deconv3_ combROI_RAW_FILE_NAME.mat	
Deconv_combROI_RAW_FILE_NAME_job.mat	
Deconv2_combROI_RAW_FILE_NAME_job.mat	analysis/model parameters
Deconv3_combROI_RAW_FILE_NAME_job.mat	

• RAW_FILE_NAME = sig_preproc

	load('Deconv_ RAW_FILE_NAME_hrf.mat')		
Variable	Description		
event_number	number of detected spontaneous events		
event_bold:	timing in	formation of spon	taneous events
PARA	HRF parar	meters: 1 st row: R	esponse Height;
	2 nd row: Time	e to peak; 3 rd row	: Width at half peak
para	input parameters for HRF estimation		
	Field TR T T T dt orde AR thr len lag loca nam	2 4 0.5000 or 3 lag 1 1 24 [8,9,10,11]	,12,13,14,15,16] unctions'
hrfa	All HRF		
beta_hrf	beta_hrf = [beta coefficients; estimated lag]		
	i.e. hrfa = beta_hrf(1:end-2,:);		

%HRF baseline value for PSC calculation. hrf_baseline = beta_hrf(end-1,:);

File Name			Description
	ROI to ROI (lo	oad Deconv2_RAW_	FILE_NAME.mat)
Conn_RAW_FIL	E_NAME_deconv_	CGC.mat	
Field Seed_num seed_num nvar nobs order GC_type ndinfo GC_Matrix	Value 0 7 152 1 'Conditional GC' [NaN,NaN] 7x7 double		Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test)
Pyval_Matrix 7x7 double Conn_RAW_FILE_NAME_deconv_Co		Corr_Pearson.mat	
Field * # seed_num # nvar # nobs # Matrix_r # Matrix_z # Matrix_pval	Value 0 7 152 7x7 double 7x7 double 7x7 double		Matric_r: Pearson correlation coefficient), Matrix_z: Fisher's z transformed Pearson correlation coefficient, Matric_pval: p-value (t-test)

in rsHRF_global_para.m line 20:

%% Combine all input signals (here are dat1, dat2) for connectivity analysis

para.combine_ROI = 1; (default parameter)	para.combine_ROI = 0;
add '_combROI_' in result file names	add variable name as postfix in result file names, e.g. '_dat1', '_dat2'
> tool (D:) > sub-10171 > rsHRF_out Name Deconv_combROl_sig_preproc.mat Deconv_combROl_sig_preproc_phrf.mat Deconv_combROl_sig_preproc_job.mat Conn_combROl_sig_preproc_deconv_CGC.mat Conn_combROl_sig_preproc_deconv_Corr_Pearson.mat Deconv2_combROl_sig_preproc_hrf.mat Deconv2_combROl_sig_preproc_job.mat Deconv3_combROl_sig_preproc_job.mat Deconv3_combROl_sig_preproc_hrf.mat Deconv3_combROl_sig_preproc_hrf.mat Deconv3_combROl_sig_preproc_job.mat Deconv3_combROl_sig_preproc_job.mat	> tool (D:) > sub-10171 > rsHRF_out Name Deconv_sig_preproc_dat1.mat Deconv_sig_preproc_dat1_hrf.mat Deconv_sig_preproc_dat1_job.mat Deconv_sig_preproc_dat1_hrf.mat Conn_sig_preproc_dat2_deconv_CGC.mat Conn_sig_preproc_dat2_deconv_Corr_Pearson.mat Deconv2_sig_preproc_dat1.mat Deconv2_sig_preproc_dat1_job.mat Deconv2_sig_preproc_dat2.mat Deconv2_sig_preproc_dat2_hrf.mat Deconv2_sig_preproc_dat2_job.mat Deconv3_sig_preproc_dat2.mat Deconv3_sig_preproc_dat2_hrf.mat Deconv3_sig_preproc_dat2_hrf.mat Deconv3_sig_preproc_dat2_job.mat Deconv3_sig_preproc_dat2_job.mat

o Voxel-wise connectivity analysis

The voxel-wise connectivity analysis module in the matlabbatch is called by clicking the (rsHRF conn) 'Voxels' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job 11: \spm12\toolbox\rsHRF\demo_jobs\vox_seed_FC_GC_job11_v23.mat

- Spatial Smooth: Gaussian kernel [8 8 8]
- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? (c)
 - o (a) First denoise then generate ROI signal
 - o (b) First generate ROI signal then denoise
 - (c) No ROI analysis (default)
 - as seed ROI analysis was included, it will change to (b) <-- (Job11).
- Connectivity analysis:
 - (1~2) Functional connectivity (FC) : seed to voxels analysis.
 - (1) Spearman Correlation
 (2) Pearson Correlation
 - seed of interest information defined as: [x, y, z, radius]
 - two seeds: [10 -62 61 4;

- o (3) Granger Causality (GC): seed to voxels analysis.
 - pairwise GC, model order = 1;

• Job11 results:

File Name	Description
RAW_FILE_NAME_conn_job.mat	Analysis parameters
Conn2_RAW_FILE_NAME_Seedinfo_Pearson.mat seed_information	Seed region: sphere radius 4mm, center at [10 -62 61] corr_Pearson: Pearson correlation coefficient, Z_Pearson: Fisher's z transformed Pearson correlation coefficient
Conn*_RAW_FILE_NAME_Seedinfo_Pearson.mat	Seed based functional connectivity
Conn_ RAW_FILE_NAME_SeedInfo_pwGC_order1.mat Conn_ RAW_FILE_NAME_inflow_N_pwGC_order1.nii Conn_ RAW_FILE_NAME_inflow_pval_pwGC_order1.nii Conn_ RAW_FILE_NAME_inflow_pwGC_order1.nii Conn_ RAW_FILE_NAME_outflow_N_pwGC_order1.nii Conn_ RAW_FILE_NAME_outflow_pval_pwGC_order1.nii Conn_ RAW_FILE_NAME_outflow_pval_pwGC_order1.nii Conn_ RAW_FILE_NAME_outflow_pwGC_order1.nii	pwGC: Pairwise GC _order1: Model order = 1 inflow = others to seed region outflow = seed region to others pval: p-value (F-test) *_N_pwGC: transformed GC N: GC value c is transformed into d, which is considered to be approximately normal. (Geweke 1982)

RAW_FILE_NAME = ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc

Name

Conn_1_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn 1 ssub-10171 task-rest bold space-MNI152NLin2009cAsvm preproc corr Spearman,nii Conn_1_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat Conn 1 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc SeedInfo Spearman.mat A Conn_1_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii Conn_1_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Spearman.nii Conn_2_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii A Conn_2_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Spearman.nii Conn 2 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc SeedInfo Pearson.mat Conn_2_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Spearman.mat Conn_2_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii A Conn_2_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Spearman.nii Conn_3_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn_3_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat Application (%) Conn_3_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii Application 4_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn_4_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat A Conn 4 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc Z Pearson.nii APConn_5_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn_5_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat Conn_6_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn 6 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc SeedInfo Pearson, mat Conn_6_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii Application (2015) Conn_7_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn_7_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat AP Conn 7 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc Z Pearson.nii A Conn_8_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn_8_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_Pearson.mat Conn_8_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii Application (%) Conn_9_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_corr_Pearson.nii Conn 9 ssub-10171 task-rest bold space-MNI152NLin2009cAsym preproc SeedInfo Pearson.mat Conn_9_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Z_Pearson.nii Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_inflow_N_pwGC_order1.nii Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_inflow_pval_pwGC_order1.nii Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_inflow_pwGC_order1.nii Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_outflow_N_pwGC_order1.nii Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_outflow_pval_pwGC_order1.nii Application in the property of the property of

Conn_ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_SeedInfo_pwGC_order1.mat

ssub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_conn_job.mat

Vertex-wise connectivity analysis

The vertex-wise based analysis module in the matlabbatch is called by clicking the (rsHRF conn) 'Vertices' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🖻

Job 12: \spm12\toolbox\rsHRF\demo_jobs\vertex_seed_FC_GC_job12_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? (b)
 - o (a) First denoise then generate ROI signal
 - o (b) First generate ROI signal then denoise
 - (c) No ROI analysis (default)
- Connectivity analysis:
 - o Functional connectivity (FC): seed to vertices analysis.
 - Pearson Correlation
 - seed of interest information defined as: mesh atlas
 - seven seeds: Yeo 7 networks.

Help on: Vertex-wise Connectivity An	alysis	^
Scans	ub-10171_task-rest_bold_space-fsaverage5.L.func.gii	
Denoising		
. Nuisance Covariates		
Multiple regressors	D:\sub-10171\func\nuisance.txt	
. Polynomial Detrending	Linear	
. Band-pass Filter		
Band-pass filter(Hz)	[0.01 0.1]	
TR	2	
. Despiking	Yes	
. Which First?	First generate ROI signal then denoise	
Explicit Mask		
Connectivity Analysis		
. FC		
Seed or ROI	Seed to vertices	
ROI (GIFTI)		
Mesh Atlas	\rsHRF\demo_jobs\lh.Yeo2011_7Networks_N1000.gii	
Method	Pearson Correlation	
Filename prefix	Conn_	
Output Directory	D:\sub-10171\rsHRF_out	
Save job parameters	Yes	

• Job12 results:

File Name	Description
RAW_FILE_NAME_conn_job.mat	Analysis parameters
Conn2_RAW_FILE_NAME_Seedinfo_Pearson.mat	
seed_information 🗶	Seed region: label=2 in Yeo 7 network
1x3 <u>cell</u>	corr Pearson: Pearson correlation
1 2 3	coefficient,
1 1861x1 d lh.Yeo2011_7Networks_N1000.gii 2	
Conn2_RAW_FILE_NAME_corr_Pearson.gii	Pearson correlation coefficient
Conn2_RAW_FILE_NAME_Z_Pearson.gii	
Conn*_RAW_FILE_NAME_Seedinfo_Pearson.mat	
Conn*_RAW_FILE_NAME_corr_Pearson.gii	Seed based functional connectivity
Conn*_RAW_FILE_NAME_Z_Pearson.gii	

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.L.func

> tool (D:) > sub-10171 > rsHRF_out

Na	me
	Conn_1_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_1_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_1_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_2_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_2_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_2_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_3_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_3_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_3_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_4_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_4_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_4_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_5_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_5_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_5_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_6_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_6_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_6_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	Conn_7_sub-10171_task-rest_bold_space-fsaverage5.L.func_corr_Pearson.gii
	Conn_7_sub-10171_task-rest_bold_space-fsaverage5.L.func_SeedInfo_Pearson.ma
	Conn_7_sub-10171_task-rest_bold_space-fsaverage5.L.func_Z_Pearson.gii
	sub-10171_task-rest_bold_space-fsaverage5.L.func_conn_job.mat

o (Volume) ROI-wise connectivity analysis

The volume based ROI analysis module in the matlabbatch is called by clicking the (rsHRF conn) 'ROIs-volume' button in the main menu.

Figure: matlabbatch GUI for volume based ROI connectivity analysis.

Demo jobs

Batch Editor → Load Batch 🛎

Job 13: \spm12\toolbox\rsHRF\demo_jobs\ROI_FC_GC_job13_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First generate ROI signal then denoise
- ROI definition:
 - o atlas image: Yeo 7 networks
 - MNI coordinates+radius(sphere): 5 x 4
- Connectivity analysis:
 - o (1) Pearson Correlation (2) Spearman Correlation
 - (3) Pairwise GC (4)Conditional GC (5) Partially conditioned GC

Job13 results:

File Name	Description
RAW_FILE_NAME_conn_job.mat RAW_FILE_NAME_roinfo.mat	analysis/model parameters
Conn_RAW_FILE_NAME_pwGC.mat	Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test) GC_Matrix_N: transformed GC N: GC value c is transformed into d,

RAW FILE NAME = sub-10171 task-rest bold space-MNI152NLin2009cAsym preproc

1 plot(diff(M.information_gain')); xlabel('n_d'); ylabel('\Delta y')

Name ^	
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_CGC.mat	
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Corr_Pearso	n.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_Corr_Spearn	nan.mat
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_PCGC.mat	
Conn_sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_pwGC.mat	
sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_conn_job.mat	
sub-10171_task-rest_bold_space-MNI152NLin2009cAsym_preproc_roinfo.mat	

o (Surface) ROI-wise connectivity analysis

The surface based ROI analysis module in the matlabbatch is called by clicking the (rsHRF conn) 'ROIs-surface' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job 14: \spm12\toolbox\rsHRF\demo_jobs\vertex_ROI_FC_GC_job14_v23.mat

- Denoising: (1) remove motion, physiological confounds---aCompcor (saved in nuisance.txt), Linear Polynomial detrending; (2) Band-pass filter (0.01~0.1 Hz); (3) Despking.
- Which first? First generate ROI signal then denoise
- ROI definition:
 - o atlas image: Yeo 7 networks
 - o MNI coordinates+radius(sphere): 5 x 4
- Connectivity analysis:
 - o (1) Pearson Correlation (2) Spearman Correlation
 - o (3) Pairwise GC (4)Conditional GC (5) Partially conditioned GC

• Job14 results:

File Name	Description
RAW_FILE_NAME_conn_job.mat RAW_FILE_NAME_roinfo.mat	analysis/model parameters
Conn RAW_FILE_NAME_pwGC.mat M	Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test) GC_Matrix_N: transformed GC N: GC value c is transformed into d, which is considered to be approximately normal. (Geweke 1982)
Conn_RAW_FILE_NAME_Corr_Pearson.mat	Matric_r: Pearson/Spearman correlation coefficient), Matrix_z: Fisher's z transformed Pearson correlation coefficient, Matric_pval: p-value (t-test)

RAW_FILE_NAME = sub-10171_task-rest_bold_space-fsaverage5.L.func

>	> tool (D:) > sub-10171 > rsHRF_out		
	Name		
	Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_Corr_Pearson.mat		
	Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_pwGC.mat		
	sub-10171_task-rest_bold_space-fsaverage5.L.func_conn_job.mat		
	sub-10171_task-rest_bold_space-fsaverage5.L.func_roinfo.mat		

o Signals based connectivity analysis

The time series analysis module in the matlabbatch is called by clicking the (rsHRF conn) 'Signals' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job15: \spm12\toolbox\rsHRF\demo_jobs\sig_FC_GC_job15_v23.mat
This job file included three different jobs, the first two for HRF estimation and deconvolution,
the third one further perform connectivity analysis.
(1,2):

- Input Data:
 - o dat2
- Denoising: no.
- Which first? No ROI analysis.
- Connectivity analysis: ROI to ROI
 - o (1) Functional connectivity (FC): Spearman correlation.
 - o (2) Granger causality (GC): Pairwise Granger causality.

• Job15 results:

File Name		Description
Conn_combROI_RAW_FILE_NAME_job.mat Deconv2_combROI_RAW_FILE_NAME_job.mat Deconv3_combROI_RAW_FILE_NAME_job.mat		analysis/model parameters
Conn_RAW_FILE_N		Pairwise GC GC_Matrix: GC Value GC_Matrix(x,y) = GC from x to y pval_Matrix: p-value (F-test) GC_Matrix_N: transformed GC N: GC value c is transformed into d, which is considered to be approximately normal. (Geweke 1982)
Conn_RAW_FILE_NAM	Value Value 0 7 152 7x7 double 7x7 double 7x7 double	Matric_r: Pearson/Spearman correlation coefficient), Matrix_z: Fisher's z transformed Pearson correlation coefficient, Matric_pval: p-value (t-test)

RAW_FILE_NAME = sig_preproc

> tool (D:) > sub-10171 > rsHRF_out		
Name		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_Corr_Pearson.mat		
Conn_sub-10171_task-rest_bold_space-fsaverage5.L.func_pwGC.mat		
sub-10171_task-rest_bold_space-fsaverage5.L.func_conn_job.mat		
sub-10171_task-rest_bold_space-fsaverage5.L.func_roinfo.mat		
combROI_sig_preproc_conn_job.mat		
Conn_combROI_sig_preproc_Corr_Spearman.mat		
Conn_combROI_sig_preproc_pwGC.mat		

o Display

The HRF visualization module in the matlabbatch is called by clicking the 'Display' button in the main menu.

Demo jobs

Batch Editor → Load Batch 🛎

Job15: \spm12\toolbox\rsHRF\demo_jobs\rsHRF_viewer_v23.mat

- Underlay Image: an anatomical image, e.g. E:\spm12\canonical\single subj T1.nii:
- Statistical Image: (F)T maps.
- HRF mat-files: HRF mat-files generated in voxel-wise HRF analysis
 - Group 1: 27 subjects Group 2: 33 subjects

click 'plot' to generate one voxel HRF plot

(MNI coordinate: [024 24 26], T-value= 4.787)

change 'Radius' to generate sphere ROI HRF plot

change MNI coordinate (click on the brain or manually edit the coordinates), (negative/positive) Threshold, cluster size(Extent), Sphere Radius.

Standalone demo codes

Some standalone demo codes were designed for the application on two specific examples, i.e., a sample voxel from the Human Connectome Project (HCP;

HCP_100307_rfMRI_REST1_LR_Atlas_hp2000_clean_dtseries.mat) and Calcium-BOLD data (calcium 2Hz 15s stimulation.mat).

o rsHRF demo temporal basis.m

```
% Demo code for HRF deconvolution (Temporal Basis Functions)
clc,clear;close all;
%%=====BOLD-fMRI Data=======
load HCP 100307 rfMRI REST1 LR Atlas hp2000 clean dtseries.mat
nobs=size(bold sig,1);
TR = .72:
bands=[0.01 0.1]; %bandpass filter lower and upper bound
data = rsHRF_band_filter(bold_sig,TR,bands);
sigma = std(data);
%%=====PARAMETERS============
para.TR = TR;
BF = {'Canonical HRF (with time derivative)'
'Canonical HRF (with time and dispersion derivatives)'
'Gamma functions'
'Fourier set'
'Fourier set (Hanning)'}:
% choose the set of basis functions THIS MUST BE AN INPUT
bf_id = 3; % Gamma functions
para.name = BF{bf_id};
para.order = 3; % for Gamma functions or Fourier set
temporal mask = []; % without mask, it means temporal mask = logical(ones(nobs,1)); i.e.
all time points included. nobs: number of observation = size(data,1). if want to exclude the
first 1~5 time points, let temporal mask(1:5)=0;
% temporal mask = logical(ones(nobs,1)); temporal mask(5:15)=0;
para.T = 3; % magnification factor of temporal grid with respect to TR. i.e. para.T=1 for no
upsampling, para.T=3 for 3x finer grid
para.T0 = 1; % position of the reference slice in bins, on the grid defined by para.T. For
example, if the reference slice is the middle one, then para.T0=fix(para.T/2)
if para.T==1
  para.T0 = 1;
end
para.dt = para.TR/para.T; % fine scale time resolution.
para.AR lag = 1; % AR(1) noise autocorrelation.
para.thr = 1; % (mean+) para.thr*standard deviation threshold to detect event.
para.len = 24; % length of HRF, in seconds
min onset search = 4; % minimum delay allowed between event and HRF onset
(seconds)
max_onset_search = 8; % maximum delay allowed between event and HRF onset
(seconds)
para.lag = fix(min_onset_search/para.dt):fix(max_onset_search/para.dt);
%%======HRF estimation===========
```

```
tic
[beta hrf, bf, event bold] = rsHRF estimation temporal basis(data,para,temporal mask);
hrfa = bf*beta_hrf(1:size(bf,2),:); %HRF
nvar = size(hrfa,2); PARA = zeros(3,nvar);
for voxel id=1:nvar
  hrf1 = hrfa(:,voxel_id);
  PARA(:,voxel_id) = rsHRF_get_HRF_parameters(hrf1,para.dt); % estimate HRF
parameter
end
toc
%%======HRF deconvolution======
disp('Deconvolving HRF ...');
T = round(para.len/TR);
if para.T>1
  hrfa_TR = resample(hrfa,1,para.T);
  hrfa_TR = hrfa;
end
hrf=hrfa_TR;
flag_deconv_raw = 0;
if flag deconv raw %HRF deconvolution with raw/filtered data
  zdata = zscore(bold_sig);
else
  zdata = zscore(data);
end
data_deconv = rsHRF_iterative_wiener_deconv(zdata,hrf./sigma);
event_number=length(event_bold{1,1});
disp('Done');
%% example plots
event_plot=nan(1,nobs);
event plot(event bold{1,1})=1;
figure(1);plot((1:length(hrfa(:,1)))*TR/para.T,hrfa(:,1),'b');xlabel('Time (s)')
title(['HRF (',BF{bf_id},')'])
figure(2);plot((1:nobs)*TR,zscore(data(:,1)));
hold on;plot((1:nobs)*TR,zscore(data_deconv(:,1)),'r');
stem((1:nobs)*TR,event_plot,'k');legend('BOLD','Deconvolved BOLD','BOLD
events');xlabel('Time (s)')
```

```
% Demo code for HRF deconvolution ((Smooth) Finite Impulse Response estimation)
clc.clear:close all:
%%=====BOLD-fMRI Data=========
load HCP_100307_rfMRI_REST1_LR_Atlas_hp2000_clean_dtseries.mat
nobs=size(bold_sig,1);
TR = .72;
bands=[0.01 0.1]; %bandpass filter lower and upper bound
data = rsHRF band filter(bold sig,TR,bands);
sigma = std(data);
%%======PARAMETERS=========
para.TR = TR;
BF = \{'FIR'\}
'sFIR'};
bf_id = 1:
para.estimation = BF{bf id}; % sFIR
temporal mask = []; % without mask, it means temporal mask = logical(ones(nobs,1)); i.e.
all time points included. nobs: number of observation = size(data,1). if want to exclude the
first 1~5 time points, let temporal mask(1:5)=0;
% temporal_mask = logical(ones(nobs,1)); temporal_mask(5:15)=0;
para.T = 1;
para.T0 = 1;
if para.T>1| para.T0>1
  para.T = 1; para.T0 = 1;
end
para.dt = para.TR/para.T; % fine scale time resolution.
para.AR_lag = 1; % AR(1) noise autocorrelation.
para.thr = 1; % (mean+) para.thr*standard deviation threshold to detect event.
para.len = 20; % length of HRF, in seconds
min onset search = 4; % minimum delay allowed between event and HRF onset
(seconds)
max onset search = 8; % maximum delay allowed between event and HRF onset
(seconds)
para.lag = fix(min onset search/para.dt):fix(max onset search/para.dt);
%%======HRF estimation========
tic
[beta_hrf, event_bold] = rsHRF_estimation_FIR(data,para,temporal_mask);
hrfa = beta hrf(1:end-2,:); %HRF
nvar = size(hrfa,2); PARA = zeros(3,nvar);
for voxel id=1:nvar
  hrf1 = hrfa(:,voxel id);
  PARA(:,voxel id) = rsHRF get HRF parameters(hrf1,para.dt); % estimate HRF
parameter
end
toc
%%======HRF deconvolution=======
disp('Deconvolving HRF ...');
tic
```

```
hrf=hrfa(:,1);
flag deconv raw = 1;
if flag_deconv_raw %HRF deconvolution with raw/filtered data
  zdata = zscore(bold_sig);
else
  zdata = zscore(data);
data deconv = rsHRF iterative wiener deconv(zdata,hrf./sigma);
event_number=length(event_bold{1,1});
toc
disp('Done');
%% example plots
event_plot=nan(1,nobs);
event_plot(event_bold{1,1})=1;
figure(1);plot((1:length(hrfa(:,1)))*TR,hrfa(:,1),'b');xlabel('Time (s)')
title(['HRF (',BF{bf_id},')'])
figure(2);plot((1:nobs)*TR,zscore(data(:,1)));
hold on;plot((1:nobs)*TR,zscore(data_deconv(:,1)),'r');
stem((1:nobs)*TR,event_plot,'k');legend('BOLD','Deconvolved BOLD','BOLD
events');xlabel('Time (s)')
```

o rsHRF demo impulseest.m

```
% Demo code for HRF deconvolution (Nonparametric impulse response estimations)
clc.clear:close all:
%%=====BOLD-fMRI Data=========
load HCP_100307_rfMRI_REST1_LR_Atlas_hp2000_clean_dtseries.mat
bold_sig = double(bold_sig); % double
nobs=size(bold_sig,1);
TR = .72;
bands=[0.01 0.1]; %bandpass filter lower and upper bound
data = rsHRF band filter(bold sig,TR,bands);
%%======PARAMETERS===========
para.TR = TR;
options = impulseestOptions; % see impulseestOptions.m for help
options.RegularizationKernel = 'none'; %Regularizing kernel, used for regularized
estimates of impulse response for all input-output channels. Regularization reduces
variance of estimated model coefficients and produces a smoother response by trading
variance for bias
para.options = options;
temporal_mask = []; % without mask, it means temporal_mask = logical(ones(nobs,1)); i.e.
all time points included. nobs: number of observation = size(data,1), if want to exclude the
first 1\sim5 time points, let temporal mask(1:5)=0:
% temporal mask = logical(ones(nobs,1)); temporal mask(5:15)=0;
para.T = 1;
para.T0 = 1;
if para.T>1| para.T0>1
  para.T = 1; para.T0 = 1;
para.dt = para.TR/para.T; % fine scale time resolution.
para.thr = 1; % (mean+) para.thr*standard deviation threshold to detect event.
para.len = 24; % length of HRF, in seconds
min onset search = 5; % minimum delay allowed between event and HRF onset
(seconds)
max onset search = 8; % maximum delay allowed between event and HRF onset
(seconds)
para.lag = fix(min onset search/para.dt):fix(max onset search/para.dt);
%%======HRF estimation========
tic
[data,mu,sigma]=zscore(data);
[beta hrf, event bold] = rsHRF estimation impulseest(data,para);
hrfa = beta hrf; %HRF
nvar = size(hrfa,2); PARA = zeros(3,nvar);
for voxel id=1:nvar
  hrf1 = hrfa(:,voxel_id);
  PARA(:,voxel id) = rsHRF get HRF parameters(hrf1,para.dt); % estimate HRF
parameter
end
toc
%%======HRF deconvolution=======
disp('Deconvolving HRF ...');
```

```
tic
hrf=hrfa(:,1);
flag_deconv_raw = 1;
if flag_deconv_raw %HRF deconvolution with raw/filtered data
  zdata = zscore(bold_sig);
else
  zdata = data;
end
data_deconv = rsHRF_iterative_wiener_deconv(zdata,hrf);
event_number=length(event_bold{1,1});
disp('Done');
%% example plots
event_plot=nan(1,nobs);
event_plot(event_bold{1,1})=1;
figure(1);plot((1:length(hrfa(:,1)))*TR/para.T,hrfa(:,1),'b');xlabel('Time (s)')
title('HRF (nonparametric impulse response estimation)')
figure(2);plot((1:nobs)*TR,zscore(data(:,1)));
hold on;plot((1:nobs)*TR,zscore(data_deconv(:,1)),'r');
stem((1:nobs)*TR,event_plot,'k');legend('BOLD','Deconvolved BOLD','BOLD
events');xlabel('Time (s)')
```

```
% (Calcium BOLD Data) demo code for HRF deconvolution
clc.clear
%% load calcium data
load('calcium_2Hz_15s_stimulation.mat')
%%=====BOLD-fMRI Data============
TR = BOLD time(1);
bands = [0.01 0.1]; %bandpass filter lower and upper bound
data = rsHRF_band_filter(BOLD_calcium',TR,bands);
sigma = std(data);
%%======PARAMETERS===========
para.TR = TR;
if 1
  BF = \{'FIR'\}
  'sFIR'};
  % choose the set of basis functions THIS MUST BE AN INPUT
  bf id = 1:
  para.estimation = BF{bf id}; % sFIR
  para.T = 1;
  para.T0 = 1;
  if para.T>1| para.T0>1
    para.T = 1; para.T0 = 1;
  end
  flag_FIR = 1;
else
  BF = {'Canonical HRF (with time derivative)'
  'Canonical HRF (with time and dispersion derivatives)'
  'Gamma functions'
  'Fourier set'
  'Fourier set (Hanning)'}:
  % choose the set of basis functions THIS MUST BE AN INPUT
  bf id = 2:
  para.name = BF{bf_id}; % Gamma functions
  para.order = 3; % for Gamma functions or Fourier set
  para.T = 1; % magnification factor of temporal grid with respect to TR. i.e. para.T=1 for
no upsampling, para.T=3 for 3x finer grid
  para.T0 = 1; % position of the reference slice in bins, on the grid defined by para.T. For
example, if the reference slice is the middle one, then para.T0=fix(para.T/2)
  if para.T==1
    para.T0 = 1;
  end
  flag_FIR = 0;
end
```

```
temporal_mask = []; % without mask, it means temporal_mask = logical(ones(nobs,1)); i.e.
all time points included. nobs: number of observation = size(data,1). if want to exclude the
first 1~5 time points, let temporal mask(1:5)=0;
% temporal mask = logical(ones(nobs,1)); temporal mask(5:15)=0;
para.dt = para.TR/para.T; % fine scale time resolution.
para.AR_lag = 1; % AR(1) noise autocorrelation.
para.thr = 1; % (mean+) para.thr*standard deviation threshold to detect event.
para.len = 24; % length of HRF, in seconds
min_onset_search = 2; % minimum delay allowed between event and HRF onset
(seconds)
max onset search = 6; % maximum delay allowed between event and HRF onset
(seconds)
para.lag = fix(min onset search/para.dt):fix(max onset search/para.dt);
%%======HRF estimation========
tic
if flag_FIR
  [beta_hrf, event_bold] = rsHRF_estimation_FIR(data,para,temporal_mask,0);
  hrfa = beta_hrf(1:end-2,:); %HRF
  [beta_hrf, bf, event_bold] =
rsHRF estimation temporal basis(data,para,temporal mask,0);
  hrfa = bf*beta hrf(1:size(bf,2),:); %HRF
nvar = size(hrfa,2); PARA = zeros(3,nvar);
for voxel_id=1:nvar
  hrf1 = hrfa(:,voxel_id);
  PARA(:,voxel id) = rsHRF get HRF parameters(hrf1,para.dt); % estimate HRF
parameter
end
toc
%%======HRF deconvolution=========
disp('Deconvolving HRF ...');
T = round(para.len/TR);
if para.T>1
  hrfa TR = resample(hrfa,1,para.T);
  hrfa_TR = hrfa;
end
hrf=hrfa_TR;
flag deconv raw = 1;
if flag deconv raw %HRF deconvolution with raw/filtered data
  zdata = zscore(BOLD calcium');
  zdata = zscore(data);
end
```

```
data_deconv = rsHRF_iterative_wiener_deconv(zdata,hrf./sigma,100);
event number=length(event bold{1,1});
toc
disp('Done');
%% example plots
nobs = size(BOLD calcium,2);
event plot=nan(1,nobs);
event_plot(event_bold{1,1})=1;
figure(1);plot((1:length(hrfa(:,1)))*TR/para.T,hrfa(:,1),'b');xlabel('Time (s)')
title(['HRF (',BF{bf_id},')'])
figure('WindowState', 'maximized');
% plot(BOLD_time,zscore(BOLD_calcium));
hold all:
plot(BOLD_time,zscore(data(:,1)));
plot(BOLD_time,zscore(data_deconv(:,1)),'r');
calcium_time = dt*(0:length(calcium_raw)-1);
plot(calcium_time,zscore(calcium_raw)-5,'g')
stem(trigger time, trigger times*0.1, 'v.');
stem((1:nobs)*TR/para.T,event_plot,'k');legend('BOLD(filtered)','Deconvolved
BOLD', 'calcium', '2Hz 15s 2.5mA stimulation', 'BOLD events'); xlabel('Time (s)')
% stem((1:nobs)*TR/para.T,event_plot,'k');legend('BOLD(raw)','Deconvolved
BOLD', 'calcium', '2Hz 15s 2.5mA stimulation', 'BOLD events'); xlabel('Time (s)')
set(gca, 'FontSize', 15, 'FontWeight', 'Bold');
```

Third-party code

Some parts of the codes are from the third-party toolbox.

- Some HRF basis functions are from SPM toolbox (spm_get_bf.m, spm_hrf.m)
- o rsHRF_get_HRF_parameters.m is modified from the HRF Estimation Toolbox (get_parameters2.m).
- Some subfunctions of rsHRF_mvgc.m are from MVGC Multivariate Granger Causality MATLAB® Toolbox, including: data_to_autocov.m, autocov_to_var.m, mvgc_pval.m, mvgc_cdf, dlyap_aitr.m).
- Outliers (detected from HRF parameter response height) are deleted (rsHRF_deleteoutliers.m) and interpolated (rsHRF_deleteoutliers.m) using deleteoutliers.m and inpaint nans3.m.
- The *knee_pt*.m function is used as an alternative to min() for the rsHRF lag estimation (rsHRF knee pt.m).
- o conn_filter.m is a subfunction in rsHRF_band_filter.m for band-pass filtering.

Reference

Chen, G., Adleman, N. E., Saad, Z. S., Leibenluft, E., & Cox, R. W. (2014). Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model. NeuroImage, 99, 571-588. https://doi.org/10.1016/j.neuroimage.2014.06.027

Marinazzo, D., Pellicoro, M., & Stramaglia, S. (2012). Causal information approach to partial conditioning in multivariate data sets. Computational and mathematical methods in medicine, 2012.

https://doi.org/10.1155/2012/303601

Wu, G. R., Liao, W., Stramaglia, S., Ding, J. R., Chen, H., & Marinazzo, D. (2013). A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Medical Image Analysis, 17(3), 365-374. https://doi.org/10.1016/j.media.2013.01.003

Wu, G. R., Liao, W., Stramaglia, S., Chen, H., & Marinazzo, D. (2013). Recovering directed networks in neuroimaging datasets using partially conditioned Granger causality. Brain connectivity, 3(3), 294-301. https://doi.org/10.1089/brain.2013.0142

Wu, G. R., & Marinazzo, D. (2015). Retrieving the Hemodynamic Response Function in resting state fMRI: Methodology and applications. PeerJ PrePrints. https://peerj.com/preprints/1317

Wu, G. R., & Marinazzo, D. (2016). Sensitivity of the resting-state haemodynamic response function estimation to autonomic nervous system fluctuations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2067), 20150190. https://doi.org/10.1098/rsta.2015.0190

Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American statistical association, 77(378), 304-313. https://doi.org/10.1080/01621459.1982.10477803

Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology, 3, 15. https://doi.org/10.3389/fphys.2012.00015