Genetic Evaluation

Peter von Rohr

11 Oktober 2019

Consequences of Definition of Breeding Value

- Based on the average of a large number of offspring, because
 - offspring inherit a random sample of parental alleles
 - average over a large number of offspring reduces sampling effect
- ► The breeding value is defined as a deviation from the population mean
 - population mean depends on allele frequencies which are specific for each population
 - hence breeding values can only be compared within one population.
- Because the breeding value is defined as a deviation its expected value of the breeding value is 0

The Basic Model

$$y_{ij} = \mu_i + g_i + e_{ij}$$

where

 y_{ij} j^{th} record of animal i μ_i identifiable fixed environmental effect g_i sum of all additive (u), dominance (d) and epistatic effects of the genotype of animal i e_{ii} random environmental effects of animal i

Re-arranging Terms

New Model

$$y_{ij} = \mu_i + u_i + e_{ij}^*$$

where

```
y_{ij} j^{th} record of animal i

\mu_i identifiable fixed environmental effect

u_i sum of all additive (u) genetic effects of the genotype of a

e^*_{ii} dominance, epistatic and random environmental effects of
```

Infinitesimal Model

- Central Limit Theorem for u_i and e_{ij} lead to multivariate normal distributions with
 - \triangleright E(u) = 0 and E(e) = 0 and
 - Known variances and co-variances
 - ▶ No co-variances between u_i and e_{ij}
- \blacktriangleright μ is assumed to be constant for a given evaluation
- Phenotypic observation y_{ij} is the sum of two normally distributed random variables, therefore
 - \triangleright y_{ij} also follows a multivariate normal distribution
 - \triangleright $E(y) = \mu$

Decomposition of Breeding Value

Basic Principle of Predicting Breeding Values

Breeding values are predicted according to the following two steps.

- 1. Observations corrected for the appropriate mean performance values of animals under the same conditions
 - \triangleright conditions are described by the effects captured in μ_i .
- 2. The corrected observations are weighted by a certain factor
 - ▶ factor reflects the amount of information available for prediction

Animal's Own Performance - Single Record

- one phenotypic observation per animal
- \triangleright search for prediction \hat{u}_i of the breeding value u_i of animal i
- ightharpoonup assume u_i and y_i known for a certain population
- \rightarrow plot

Plot u against y

Regression

- red line denotes regression line from u_i onto y_i
- ▶ because phenotypes have genetic basis \rightarrow connection between u_i and y_i
- measure for connection: regression coefficient b

$$b = \frac{cov(u, y)}{var(y)}$$

$$= \frac{cov(u, \mu + u + e)}{var(y)}$$

$$= \frac{cov(u, u)}{var(y)}$$

$$= \frac{var(u)}{var(y)} = h^2$$

where h^2 is called **heritability**

Prediction

- ▶ Given a new y_i , what would be the predicted u_i ?
- ▶ Use regression line and compute \hat{u}_i

$$\hat{u}_i = b * (y_i - \mu)$$
$$= h^2 * (y_i - \mu)$$

Accuracy

▶ Measured as correlation between true breeding value *u* and selection criterion *y*

$$r_{u,y} = \frac{cov(u, y)}{\sigma_u \sigma_y}$$
$$= \frac{\sigma_u^2}{\sigma_u \sigma_y}$$
$$= \frac{\sigma_u}{\sigma_y}$$
$$= h$$

Response To Selection

$$R = i * r_{u,y}^2 * \sigma_y = i * h^2 * \sigma_y$$

Repeated Records

Additional component of variation

$$var(y) = var(g) + var(pe) + var(te)$$

$$t = \frac{var(g) + var(pe)}{var(y)}$$

Predicted breeding value

$$\hat{u}_i = b(\tilde{y}_i - \mu)$$

Regression Coefficient

$$b = \frac{cov(u, \tilde{y})}{var(\tilde{y})}$$

$$cov(u, \tilde{y}) = cov(u, g + pe + \frac{1}{n} \sum_{k=1}^{n} te_k) = \sigma_u^2$$

$$var(\tilde{y}) = var(g) + var(pe) + \frac{1}{n}var(te)$$

$$var(\tilde{y}) = t * \sigma_y^2 + \frac{1}{n}(1-t) * \sigma_y^2$$

= $\frac{1}{n}(n*t + (1-t))\sigma_y^2$
= $\frac{1 + (n-1)t}{n}\sigma_y^2$

Putting Results together

$$b = \frac{cov(u, \tilde{y})}{var(\tilde{y})}$$
$$= \frac{n\sigma_u^2}{(1 + (n-1)t)\sigma_y^2}$$
$$= \frac{nh^2}{1 + (n-1)t}$$

Progeny Records

$$\hat{u}_i = b * (\bar{y}_i - \mu)$$

where

$$b = \frac{cov(u, \bar{y})}{var(\bar{y})}$$

Covariance and Variance

$$cov(u, \bar{y}) = cov(u, \frac{1}{2}u_s + \frac{1}{2}u_d + \frac{1}{n}\sum_{k=1}^n m_k + \frac{1}{n}\sum_{k=1}^n e_k)$$

$$= cov(u, \frac{1}{2}u_s)$$

$$= \frac{1}{2}cov(u, u_s)$$

$$= \frac{1}{2}\sigma_u^2$$

 $var(\bar{y}) = (t + (1-t)/n)\sigma_y^2$

Results

$$b = \frac{1/2\sigma_u^2}{(t + (1 - t)/n)\sigma_y^2}$$

$$= \frac{1/2h^2\sigma_y^2}{(\frac{1}{4}h^2 + (1 - \frac{1}{4}h^2)/n)\sigma_y^2}$$

$$= \frac{2nh^2}{nh^2 + (4 - h^2)}$$

$$= \frac{2n}{n + (4 - h^2)/h^2}$$

$$= \frac{2n}{n + h^2}$$

with $k = \frac{4 - h^2}{h^2}$.