Question	Scheme	Marks
8 (a)	$\alpha + \beta = \frac{k}{3}$ and $\alpha\beta = -\frac{1}{3}$	B1
	$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2 \Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	$\alpha^{2} + \beta^{2} = \left(\frac{k}{3}\right)^{3} - 2\left(-\frac{1}{3}\right) = \frac{k^{2}}{9} + \frac{2}{3} = \frac{k^{2} + 6}{9} *$	A1 cso [3]
(b)	$\alpha^4 + \beta^4 = \left(\alpha^2 + \beta^2\right)^2 - 2\alpha^2\beta^2$	M1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2$	M1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2 \Rightarrow k^4 + 12k^2 - 448 = 0$	M1
	$k^4 + 12k^2 - 448 = (k^2 - 16)(k^2 + 28) = 0 \Rightarrow k^2 = 16 \Rightarrow k = 4$	M1A1 [5]
(c)	Sum: $\frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{\alpha^4 + \beta^4 + 2\alpha\beta}{\alpha\beta}$	M1
	$\frac{\alpha^{3} + \beta}{\beta} + \frac{\beta^{3} + \alpha}{\alpha} = \frac{\frac{466}{81} + 2\left(-\frac{1}{3}\right)}{-\frac{1}{3}} = -\frac{412}{27}$	A1
	Product: $\left(\frac{\alpha^3 + \beta}{\beta}\right) \left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\alpha^4 + \beta^4 + (\alpha\beta)^3 + \alpha\beta}{\alpha\beta}$	M1
	$\left(\frac{\alpha^3 + \beta}{\beta}\right) \left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\frac{466}{81} + \left(-\frac{1}{3}\right)^3 + \left(-\frac{1}{3}\right)}{\left(-\frac{1}{3}\right)} = -\frac{436}{27}$ $3TQ: x^2 + \frac{412}{27}x - \frac{436}{27} = 0 \Rightarrow 27x^2 + 412x - 436 = 0$	A1
	3TQ: $x^2 + \frac{412}{27}x - \frac{436}{27} = 0 \Rightarrow 27x^2 + 412x - 436 = 0$	M1A1
	- ' - '	[6]
Total 14 marks		

Question	Scheme	Marks
8(a)	$\alpha + \beta = \frac{k}{3}$ and $\alpha\beta = -\frac{1}{3}$	B1
	For the correct algebra on $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1
	For substituting <i>their</i> sum and <i>their</i> product to give a simplified expression for	
	$\alpha^2 + \beta^2 = \left(\frac{k}{3}\right)^3 - 2\left(-\frac{1}{3}\right) = \frac{k^2}{9} + \frac{2}{3} = \frac{k^2 + 6}{9}$ *	A1 cso [3]

		T
(b)	For the correct algebra on $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$	M1
	Or	
	$\alpha^4 + \beta^4 = (\alpha + \beta)^4 - 4\alpha\beta(\alpha^2 + \beta^2) - 6\alpha^2\beta^2$	
	For substituting the values for $\alpha^2 + \beta^2$ (in terms of k) and $\alpha\beta$	
	into their $\alpha^4 + \beta^4$ and equating to $\frac{466}{81}$	M1
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2$	M1
	Or for substituting the values for $\alpha^2 + \beta^2$ (in terms of k), $\alpha +$	
	β and $\alpha\beta$ into their $\alpha^4 + \beta^4$ and equating to $\frac{466}{81}$	
	For forming a simplified quadratic.	
	$\frac{466}{81} = \left(\frac{k^2 + 6}{9}\right)^2 - 2\left(-\frac{1}{3}\right)^2 \Rightarrow k^4 + 12k^2 - 448 = 0$	M1
	Or for $\left(\frac{k^2+6}{9}\right)^2 = \frac{448}{81}$ Their quadratic must come from an attempt at $\alpha^4 + \beta^4$	
	For solving their quadratic.	
	$k^4 + 12k^2 - 448 = (k^2 - 16)(k^2 + 28) = 0 \Rightarrow k^2 = 16 \Rightarrow k = 4$	
	Their quadratic must come from an attempt at $\alpha^4 + \beta^4$	M1
	For the correct value of $k = 4$	A1
	If they give $k = \pm 4$ this is A0	[5]
(c)	For the correct algebra on the sum.	
	$\frac{\alpha^3 + \beta}{\beta} + \frac{\beta^3 + \alpha}{\alpha} = \frac{\alpha^4 + \beta^4 + 2\alpha\beta}{\alpha\beta}$	M1
	For the correct value of the sum.	
	$\frac{\alpha^{3} + \beta}{\beta} + \frac{\beta^{3} + \alpha}{\alpha} = \frac{\frac{466}{81} + 2\left(-\frac{1}{3}\right)}{1} = -\frac{412}{27}$	A1
	$\frac{\beta}{\beta} + \frac{\beta}{\alpha} = \frac{\beta}{-\frac{1}{3}} = -\frac{27}{27}$	
	For the correct algebra on the product.	
	$\left(\frac{\alpha^3 + \beta}{\beta}\right)\left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\alpha^4 + \beta^4 + (\alpha\beta)^3 + \alpha\beta}{\alpha\beta}$	M1
	For the correct value of the product.	
	$\left(\frac{\alpha^3 + \beta}{\beta}\right)\left(\frac{\beta^3 + \alpha}{\alpha}\right) = \frac{\frac{466}{81} + \left(-\frac{1}{3}\right)^3 + \left(-\frac{1}{3}\right)}{\left(-\frac{1}{3}\right)} = -\frac{436}{27}$	
	$ \left(\begin{array}{ccc} \beta & \beta & \alpha & \beta \\ & & \left(-\frac{1}{3} \right) \end{array} \right) $	A1
	For the 3TQ from their values of the sum and product (used	
	correctly) [= 0 not required for this mark].	
		M1