

Électronique de puissance et actionneurs dans l'aéronautique $_{\text{TP - Amesim}}$

Auteur:

Julien $\boldsymbol{\mathit{Huynh}}$

 $Encadr\'e\ par$: M. Debiane

Version 1.0.0 March 23, 2020

Contents

1	Obj	jectif	1
2	Act	ionneur hydraulique	2
	2.1	Modélisation et application	2
	2.2	Détermination de paramètres supplémentaires	3
	2.3	Modélisation et simulation dans Amesim	
		2.3.1 Blocs utilisés	4
		2.3.2 Paramétrage	6
		2.3.3 Simulation	8
	2.4	Conclusion	10
	2.5	Tableau global des paramètres	11
3	Act	ionneur électrique	12

Chapter 1

Objectif

L'objectif de ce TP est de manipuler Amesim afin de simuler deux des actionneurs utilisés dans l'aéronautique et vus en cours, les actionneurs hydrauliques et les actionneurs full électriques.

Ces actionneurs seront placés dans des systèmes mécatroniques combinant hydraulique, mécanique et électrique. L'objectif sera de contrôler le système.

Lors de la compilation de la modélisation, on choisira pour chaque bloc son premier submodel.

Chapter 2

Actionneur hydraulique

2.1 Modélisation et application

On modélise le système hydrau-mécanique suivant :

Figure 2.1: Système hydrau-mécanique à modéliser

Les grandeurs de notre système sont pour la partie hydraulique :

- $P_{service} = 207$ bars (Pression standard de service dans un avion non A380)
- Bande passante servo valve: 50Hz
- $I_{sv} = \pm 10mA$ (Finesse de la servo valve)
- $\Delta P = 35$ bars par orifice
- Course vérin : 300 m
- $F_{verin} = 10\ 000\ N$
- $v_{verin} = 150 \text{ mm/s}$

Pour la partie mécanique, les grandeurs sont :

- $k=1.3\times 10^6~\mathrm{N/m}$
- $m_1 = 10 \text{ kg}$
- $m_2 = 150 \text{ kg}$
- f = 10 N/(m/s)

2.2 Détermination de paramètres supplémentaires

Lors de la modélisation sur Amesim de notre système, nous aurons besoin de 3 autres grandeurs qui nous permettront de paramétrer correctement notre simulation. Ceux-ci sont :

- 1. Q_n le débit nominal au niveau de la servo valve
- 2. D le diamètre du piston
- 3. d le diamètre de la tige

Ces grandeurs sont reliées par une autre que l'on devra également calculer, qui est la surface d'action du vérin. On suppose pour des raisons de dimensionnement et de cohérence que $D=3\times d$ Nous avons donc :

$$S = S_{piston} - S_{tige} = \frac{\pi D^2}{4} - \frac{\pi d^2}{4} = \frac{\pi}{4} \times 8d^2 = 2\pi d \tag{2.1}$$

D'où:

$$d = \sqrt{\frac{S}{2\pi}} \tag{2.2}$$

$$D = 3\sqrt{\frac{S}{2\pi}} \tag{2.3}$$

On commence par calculer la surface :

$$S = \frac{F}{P} = \frac{10\ 000N}{207 \times 10^5\ Pa} = 4.83092 \times 10^{-4} m^2 \tag{2.4}$$

D'où:

$$d = \sqrt{\frac{S}{2\pi}} = 8.7685 \ mm \tag{2.5}$$

$$D = 3\sqrt{\frac{S}{2\pi}} = 26.3055 \ mm \tag{2.6}$$

$$Q_n = S \times v = 0.15 \times S = 7.2464 \times 10^{-5} \ m^3/s = 4.34784 \ L/min$$
 (2.7)

Ces calculs sont fait en régime permanent, en statique, c'est pour cela que l'on considère une pression de 207 bars.

2.3 Modélisation et simulation dans Amesim

2.3.1 Blocs utilisés

- Génératrice de pression (207 bars) (Hydraulique, Sources)
- Servo valve, quatre ports fermés (Hydraulique, Command valves extended)
- By-pass piloté, électrovalve (Hydraulique, Command valves)
- Vérin (Hydraulique, Linear actuators)
- Masse sans friction (Mécanique, Translation)
- Capteur de position (Mécanique, Translation)
- Ressort (Mécanique, Translation)
- Masse avec friction (Mécanique, Translation)
- Jonction de comparaison/différentiation (Signal, Maths)
- PID (Signal, Continuous)

La modélisation du système sous Amesim est donc :

Figure 2.2: Modélisation sur Amesim

Le gain ajouté à la sortie du PID a une valeur de -1 et a été placé car la commande était opposée au step voulu.

2.3.2 Paramétrage

Les paramètres obtenus par calcul précédemment sont en **gras**. Les valeurs non mentionnées dans ces tableaux sont celles définies par défaut par Amesim.

Génératrice de pression

On choisit pour la génératrice de pression de n'avoir qu'un seul stage, on ne souhaite pas avoir des paliers et souhaitons représenter l'actionneur dans un régime permanent où la pression est déjà au niveau de la pression opérationnelle standard d'un avion à P=207 bars.

Paramètre	Valeur	Unité
Number of stages	1	_
Pressure start of S1	207	bars
Pressure end of S1	207	bars
Duration of S1	1e6	seconds

Table 2.1: Paramètrage de la génératrice de pression

Servo valve

Paramètre	Valeur	Unité
Valve characteristic	cs	
Valve rated current	10	mA
Valve natural frequency	50	Hz
Duration of S1	1×10^{6}	seconds
Pressure drops and flow	rates	
P to A flow rate at max opening	4.34784	L/min
P to A corresponding pressure drop	35	bars
B to T flow rate at max opening	4.34784	L/min
P to A corresponding pressure drop	35	bars
P to B flow rate at max opening	4.34784	L/min
P to A corresponding pressure drop	35	bars
A to T flow rate at max opening	4.34784	L/min
P to A corresponding pressure drop	35	bars

Table 2.2: Paramètrage de la servo valve

By-pass piloté

Pour le by-pass piloté, on utilise une électrovalve pilotée par un signal en entrée. Par exemple, on peut utiliser la valve02 qui est fermée lors que le signal de commande est à

k=0 (fonctionnement normal) et est ouverte lorsque ce signal est à k=1. La valeur de ce signal est à paramétrer dans le signal constant k sur le port 3 du by-pass.

Paramètre	Valeur	Unité	
Valve			
Valve natural frequency	50	Hz	
Valve control			
Control signal value	0/1	-	

Table 2.3: Paramètrage du by pass

Vérin

Paramètre	Valeur	Unité
Piston diameter	26.3055	mm
Rod diameter at port 1 end	8.7685	mm
Rod diameter at port 2 end	8.7685	mm
Length of stroke (course)	300	mm

Table 2.4: Paramètrage du vérin

Première masse

La première masse est celle entre le vérin et le capteur.

Paramètre	Valeur	Unité
Mass	10	kg

Table 2.5: Paramètrage de la première masse

Ressort

Paramètre	Valeur	Unité
Spring rate (raideur)	1.3×10^{6}	kg

Table 2.6: Paramètrage du ressort

Deuxième masse

La deuxième masse est celle qui subit une force et est reliée au ressort. Elle est également soumise à une friction.

Paramètre	Valeur	Unité		
Mass				
Mass	150	kg		
Coefficient of viscous friction	10	m N/(m/s)		
Force applied to the mass				
Value of k signal	5000	- (defined as Newton in the force block)		

Table 2.7: Paramètrage de la deuxième masse

Commande

Pour l'objectif visé, on utilise un step en entrée du PID avec :

Paramètre	Valeur	Unité
Value after step	0.1	- (physiquement, des m)
Step time	2	S

Table 2.8: Paramètrage du step

PID

Les paramètres du PID ont été obtenus par tâtonnements en réglant tout d'abord la partie proportionnelle avec le reste à 0 puis, en réglant le paramètre intégral avec la partie proportionnelle fixée. Cela permet d'avoir tout d'abord un bon rise time pour approcher de la valeur souhaitée rapidement puis de réduire l'erreur en steady state, le tout sans avoir un trop grand overshoot.

On évite le coefficient dérivatif car celui-ci n'est pas nécessaire ici, on préfère utiliser un filtre dérivatif lorsque c'est réellement nécessaire.

Paramètre	Valeur	Unité
Proportional gain	50	-
Integral gain	0.2	-

Table 2.9: Paramètrage du PID

2.3.3 Simulation

L'objectif de la simulation et du système est d'avoir un mouvement détecté par le capteur et que ce mouvement corresponde à une commande que l'on définit. On a ici choisi d'avoir un step à 100 mm soit 0.1 m. Pour des raisons de lisibilité on a choisi de mettre le step time à 2 secondes.

Le contrôle est effectué par un PID dont les paramètres sont réglés en fixant d'abord la partie proportionnelle puis la partie intégrale pour éliminer l'erreur en régime permanent.

En utilisant tous les paramètres cités auparavant, nous avons le graph suivant :

Figure 2.3: Réaction du système à la commande

On voit sur ce graphique que le temps de convergence est environ de 12 secondes et, d'après les résultats de la simulation, la valeur finale du déplacement est de 0.10042 m soit une erreur de régime permanent de 0.42%.

Au 424 TP - Amesim March 23, 2020

2.4. Conclusion Page 10/12

2.4 Conclusion

Plusieurs difficultées ont été rencontrées dans cette simulation. Celles-ci venaient principalement de fait que l'outil utilisé m'est nouveau. Le choix des blocs et les paramétrages pour certains éléments (servo valve et vérin) ont été assez difficiles étant donné la grande plage de paramètres disponibles.

La première difficulté est apparue lors du choix pour le By-Pass piloté, pour lequel la valve02 a été choisie puisqu'elle permettait de controller le débit en tout ou rien via un signal en entrée. Ce signal en entrée est 0 lorsque le By-Pass n'est pas actif et 1 lorsqu'il l'est.

Ensuite, j'ignorais au départ que faire pour définir le fluide nécessaire à notre système, qui a ensuite été défini dans Amesim par l'élément "General Hydraulic Properties".

Dans le vérin, un déplacement initial du piston (# sur Amesim) a été défini lors du troubleshoot afin de limiter les problèmes d'oscillations et d'instabilité sur le déplacement détecté par le capteur. Cependant, après d'autres tests en ayant relancé Amesim, les oscillations sont réapparues avec la nouvelle condition initiale, c'est pour cela que cette valeur a ensuite été remise à sa valeur par défaut soit 0 m au lieu des 0.15 m fixé lors du troubleshoot.

Au 424 TP - Amesim March 23, 2020

2.5 Tableau global des paramètres

Paramètre	Valeur	Unité			
Génératrice de pression					
Number of stages	1	-			
Pressure start of S1	207	bars			
Pressure end of S1	207	bars			
Duration of S1	1e6	seconds			
Caractér	istiques de l	a servo valve			
Valve rated current	10	mA			
Valve natural frequency	50	Hz			
Duration of S1	1×10^{6}	seconds			
Débits et pert	tes de charge	e de la servo valve			
P to A flow rate at max opening	4.34784	m L/min			
P to A corresponding pressure drop	35	bars			
B to T flow rate at max opening	4.34784	L/min			
P to A corresponding pressure drop	35	bars			
P to B flow rate at max opening	4.34784	L/min			
P to A corresponding pressure drop	35	bars			
A to T flow rate at max opening	4.34784	L/min			
P to A corresponding pressure drop	35	bars			
	Valve By-P	ass			
Valve natural frequency	50	Hz			
Pi	lotage du B	y-Pass			
Control signal value	0/1	-			
	Vérin				
Piston diameter	26.3055	mm			
Rod diameter at port 1 end	8.7685	mm			
Rod diameter at port 2 end	8.7685	mm			
Length of stroke (course)	300	mm			
	Première m	asse			
Mass	10	kg			
	Ressort				
Spring rate (raideur)	1.3×10^{6}	kg			
Deuxième masse					
Mass	150	kg			
Coefficient of viscous friction	10	N/(m/s)			
Force appliquée à la deuxième masse					
Value of k signal	5000	- (defined as Newton in the force block)			
Commande step					
Value after step	0.1	- (physiquement, des m)			
Step time	2	S			
PID					
Proportional gain	50	-			
Integral gain	0.2	-			

Table 2.10: Paramètrage global

Chapter 3

Actionneur électrique