GPU Multiple Sequence Aligner

Fourier-Space Cross-Correlation Alignment

Cross-Correlation Alignment

- Overview
 - Introduction
 - Cross-Correlation (Time-domain)
 - Cross-Correlation (Feq-domain)
 - DNA to Complex Time-Series
 - Alignment Results
 - Performance Results

Cross-Correlation Alignment

- Introduction
 - Common methods for alignment
 - Smith-Waterman
 - Needleman-Wunsch
 - Suffix trees
 - Many more...
 - Cross-Correlation
 - Well-studied Signal Processing method
 - Works well with Long sequences
 - Regular and Complementary matching in one

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (time-domain)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n^2) efficiency

- Cross-Correlation (Fourier-Space)
 - Compute similarity between 2 time-series
 - Also yields time-delay/phase-shift
 - O(n log n) efficiency when using FFT

- Correlation Theorem:
 - Corr(G,H) <==> FFT(G) FFT*(H)
 - Both G & H must be of length n

- Correlation Theorem:
 - Sliding dot-product of FFT(G) and complex Conj(FFT(H))
 - $F = FFT(G) \cdot FFT*(H)$

- Correlation Theorem:
 - Correlation = max (FFT(G) FFT*(H))
 - Shift = arg max (FFT(G) FFT*(H))

Time-Series vs DNA/RNA

- Transcription to numeric time-series
 - How do we translate to numeric values?

Nucleotide	Transcription
А	1
U/T	-1
С	i
G	-i

- Ex: AACGTGT => [1, 1, -i, i, -1, i, -1]

gagugucgugcagccuccaggccccccccucccgggagagccauaguggucugc

• len(G) = 54

len(G) = 54, must pad to size of H with zeros

len(H)

Alignment result, perfect match

• Alignment result, perfect "complementary" match

Non-exact matches, "Split Peaks"

Non-exact matches, "Split Peaks"

22.0 at shift 27:

19.0 at shift 15

Why use GPUs?

- Parallelism. Parallelism. Parallelism.
- FFT can be parallelized well
- Cross-Correlations are large sets of fully independent calculations.
- When you have 2496 cores... many things look better parallel.
- Test system:
 - Dual Quad Xeon(2.3Ghz), 30GB DDR3 1333
 - Tesla K20c 5GB GDDR5, 2496 cores @ 706MHz

Alignment Performance

GPU vs CPU performance

1000 sequence alignmnets of size n

Alignment Performance

GPU vs CPU performance

1000 sequence alignmnets of size n

Possible improvements

- Use GPU "streams" to line up work
- Implement CPU code in C/C++
- Also return Complementary matches
- Implement more post processing
 - Combine partial matches

Thanks

Questions?

• Github: https://github.com/madmaze/gpuFFTMSA