МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ по дисциплине «Введение в нереляционные базы данных» Тема: 16 ИС учета аспирантских достижений (Neo4j)

Студенты гр. 7382	 Филиппов И.С.
	 Бахеров Д.В.
	 Дрозд А.С.
Преподаватель	 Заславский М.М

Санкт-Петербург 2020

ЗАДАНИЕ

на индивидуальное домашнее задание

Студенты Филиппов И.С., Бахеров Д.В., Дрозд А.С.

Группа 7382
Тема работы: ИС учета аспирантских достижений (Neo4j)
Исходные данные:
Реализовать информационную систему учёта подготовки аспирантов к защите кандидатской работы
Содержание пояснительной записки:
«Содержание», «Введение», «Качественные требования к решению»,
«Сценарий использования», «Модель данных», «Разработка приложения»
«Заключение», «Список использованных источников»
Предполагаемый объем пояснительной записки:
Не менее 10 страниц.
Дата выдачи задания: 17.09.2020
Дата сдачи реферата: 01.02.2021
Дата защиты реферата: 01.02.2021
Студенты гр. 7382 Филиппов И.С.
Бахеров Д.В.
Дрозд А.С.
Преподаватель Заславский М.М.

СОДЕРЖАНИЕ

Введение

- 1. Качественные требования к решению
- 2. Сценарии использования
 - 2.1. Макет пользовательского интерфейса
 - 2.2. Описание возможных сценариев использования
- 3. Модель данных
 - 3.1. Нереляционная модель данных
 - 3.2. Аналог модели данных для реляционной БД
- 4. Разработанное приложение

Заключение

Список использованных источников

ВВЕДЕНИЕ

Реализовать веб-приложение для сбора данных о подготовке аспирантов к защите кандидатской работы через выполнение промежуточных заданий.

Работа с данными написана на языке Python с использованием пакета Neo4j. Графический интерфейс написан на Python с использованием пакета Flask.

1. КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ

Веб-приложение с некоторым UI, который позволяет:

- Добавлять аспирантов
- Добавлять выполненные работы
- Осуществлять поиск и просмотр выполненных конкретным аспирантом работ

Использована Neo4j в качестве СУБД

2. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

2.1. Макет пользовательского интерфейса

1. Домашняя страница: очистка СУБД, импорт и экспорт данных из СУБД

2. Добавление нового аспиранта

3. Добавление новой работы:

Ne	oSQL project
	задание
	Индекс
	Семест
	Ссылка на документ
	Login
	Password
	добавить! ть задание, если есть студент с таким логином-паролем

4. Просмотр статистики конкретного студента:

1. Work 0. Туре: Опубликованная статья. Semester: 2. Link: tmp@mail.ru.
2. Work 1. Туре: Обзор литературы. Semester: 1. Link: tmp@mail.ru.

Оценка на данный момент: 2

Mark

- 1. Туре: Опубликованная статья. Semester: 7. Link: tmp@mail.ru.
- 2. Туре: Опубликованная статья. Semester: 6. Link: tmp@mail.ru.
- 3. Туре: Опубликованная статья. Semester: 5. Link: tmp@mail.ru.
- 4. Туре: Опубликованная статья. Semester: 4. Link: tmp@mail.ru.
- 5. Туре: Опубликованная статья. Semester: 3. Link: tmp@mail.ru.
- 6. Туре: Опубликованная статья. Semester: 2. Link: tmp@mail.ru.
- 7. Туре: Обзор литературы. Semester: 1. Link: tmp@mail.ru.

Оценка на данный момент: 3

Mark

Works list

2.2 Описание возможных сценариев использования.

- 1. Добавление нового аспиранта. Для этого вводятся информационные поля (от имени и заканчивая email), и логин и пароль -- они нужны для добавления выполненных работ для отслеживания прогресса.
- 2. Добавление новой работы. Указание её типа (по старшинству из таблицы работ для получения оценки аспирантом), семестра, в котором она была сдана и ссылки на google-disc для просмотра и редактирования. Для того, чтобы добавить работу конкретному студенту, необходимо указать его логин и пароль -- в противном случае работа не добавится.
- 3. Поиск конкретного аспиранта -- необходимо указать его Имя-Фамилию-Отчество, и будет выведен список выполненных работ. Для того, чтобы посмотреть достижения какого-либо аспиранта не нужно знать его логин-пароль.
- 4. Просмотр найденных работ конкретного аспиранта в виде списка для отслеживания его прогресса и просмотр достигнутой на данный момент оценки.

МОДЕЛЬ ДАННЫХ

Схема базы данных Neo4j

3.

Список сущностей модели

User, Work

Описание назначений коллекций, типов данных и сущностей

Коллекции:

Название	Описание
User	Содержит информацию о пользователе
Work	Содержит информацию о работе

Описание User:

Название	Тип данных	Описание
name	String	Имя пользователя
surname	String	Фамилия пользователя

patronymic	String	Отчество пользователя
group_number	Integer	Номер группы
year_of_admissio n	Integer	Год поступления
email	String	Электронная почта
login	String	Логин
password	String	Пароль

Описание Work:

Назван ие	Тип данны х	Описание
work_id	Integer	Идентификационный номер работы
semeste r_num	Integer	Семестр, в течении которого была выполнена данная работа
link	String	Ссылка на документ
index	String	Показатель работы

Удельный объем информации. Оценка удельного объема информации, хранимой в модели NoSql

Тип данных	Размер
String	2 байта/символ
Integer	4 байта

Размер одной User: User_size = 2*name_length + 2*surname_length + 2*patronymic_length + 4 + 4 + 2*email_length + 2*login_length + 2*password_length = 8 + 2*(name_length + surname_length + patronymic_length + email_length + login_length + password_length)

Pазмер одной Work: Work_size = 4 + 4 + 2*link_length + 2*index_length = 8 + 2*(link_length + index_length)

Общий объем БД:

USERS NUM * User size + WORKS NUM * Work size

USERS NUM - количество пользователей

WORKS NUM - количество всех работ всех пользователей

Избыточность модели

Отсутствует избыточность данных. Это означает, что существующие данные в базе данных не могут быть образованы путем объединения или комбинирования прочих данных той же базы данных.

Направление роста модели при увеличении количества объектов каждой сущности.

При росте количества сущностей User сущности Work автоматически не добавляются. Увеличение количества сущностей Work не влияет на количество Users, добавление работы подразумевает лишь одного пользователя.

Схема базы данных Sql

Удельный объем информации. Оценка удельного объема информации, хранимой в модели Sql

Размер одной User: User_size = 2*name_length + 2*surname_length + 2*patronymic_length + 4 + 4 + 2*email_length + 2*login_length + 2*password_length = 8 + 2*(name_length + surname_length + patronymic_length + email_length + login_length + password_length)

Pазмер одной Work: Work_size = 4 + 4 + 2*link_length + 2*index_length + 2*user login length = 8 + 2*(link length + index length + user login length)

Общий объем БД:

USERS_NUM * User_size + WORKS_NUM * Work_size

USERS_NUM - количество пользователей

WORKS_NUM - количество всех работ всех пользователей

Количество задействованных коллекций:

User, Work

Пример хранения данных в БД NoSql


```
$ MATCH (u:User {name: "Daniil"})-[:LINKED_TO]→(w) RETURN u, w
(S)
Graph
               "identity": 0,
                                                                                               "identity": 40,
               "labels": [
                                                                                                "labels": [
                 "User"
                                                                                                 "Work"
               ],
                                                                                               ],
              "properties": {
                                                                                               "properties": {
                                                                                             "link": "link",
             "patronymic": "Vladislavovich",
              "password": "input_password",
                                                                                              "work_id": 1,
             "group_number": 7382,
                                                                                              "index": "Conference_report",
             "year_of_admission": 2017,
                                                                                              "semester_num": 6
              "surname": "Baherov",
             "name": "Daniil",
             "login": "input_login",
              "email": "input_email"
```

Сравнение SQL и NoSQL

SQL реализация данной БД занимает больше памяти, так как в сущности Work нужно дополнительно хранить поле user_login для связи с родительской сущностью User, в результате чего происходит дублирование информации.

Схема базы данных MongoDB

Модель состоит из 2 коллекций:

Graduate - хранит информацию о студенте

- * id Int уникальный идентификатор человека
- * name String имя
- * surname String фамилия
- * patronymic String отчество
- * group number Int номер группы
- * year of admission Int год поступленияя
- * email String email
- * login String логин, чтобы добавлять себе сделанные работы
- * password String пароль, чтобы добавлять себе сделанные работый)
- * works Object работы, если есть

* p_id - Array[Object] - список работ

Work - хранит информацию о работе

- * id int уникальный идентификатор работы
- * semester Int семестр, в котором она была выполнена
- * index Int номер работы в списке работ аспиранта
- * link String ссылка на google doc работы
- * student Object студент, сделавший её
 - * f id Int идентификатор студента

4. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

Добавление аспиранта

Добавление работы

Просмотр статистики

Work 0. Туре: Грант / конкурс / программа для ЭВМ / методичка. Semester: 6. Link: tmp2@mail.ru.

Work 1. Туре: Опубликованная статья. Semester: 2. Link: tmp@mail.ru.

ЗАКЛЮЧЕНИЕ

В ходе работы было получено веб-приложение, с помощью которого (после доработки фронтенда), можно осуществлять учёт достижений аспирантов при подготовке к защите.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://neo4j.com/docs
- $2.\ https://flask-doc.readthedocs.io/en/latest/$
- 3. https://docs.docker.com/
- 4. https://aws.amazon.com/ru/nosql/
- 5. https://docs.mongodb.com/