Point operations for combining images

- Image averaging for noise reduction
- Combination of different exposures for high-dynamic range imaging
- Image subtraction for change detection
- Need for accurate alignment
- Displacement estimation

Image averaging for noise reduction

1 image

2 images

8 images

32 images

High-dynamic range imaging

-2 f-stops

+2 f-stops

+4 f-stops

Blended image from Exposure Fusion

[Tom Mertens et al. 2007]

Image subtraction

- Find differences/changes between 2 mostly identical images
- Example: digital subtraction angiography

Video background subtraction

New Frame Background Frame New Frame Background Frame Abs(.) $> \theta$? Abs(.) $> \theta$? **Update:**

Background[t] := α Background[t-1] + (1- α) New[t]

Image subtraction in IC manufacturing: inspection of photomasks

Mask image-1

Mask image-2

Difference image

Where is the defect?

Image g[x,y] (no defect)

Image f[x,y] (w/ defect)

Absolute difference between two images

/f-g/ w/o alignment

/f-g/ w/ alignment

Displacement estimation by block matching

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match

Image g[x,y]

Image f[x,y]

Rectangular array of pixels is selected as a measurement window

Displacement estimation by block matching

Image g[x,y]

 $\underline{\mathsf{Image}\,f\,[x,y]}$

. . . process repeated for another measurement window position.

Integer pixel shifts

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match

Image g[x,y]

Image f[x,y]

Rectangular array of pixels is selected as a measurement window

Integer pixel shifts

Rectangular array of pixels is selected as a measurement window

Measurement window is compared with a shifted array of pixels in the other image, to determine the best match

Error metric

Sum of Squared Differences

- Alternatives: SAD (Sum of Absolute Differences), cross correlation, mutual information . . .
- Robustness against outliers: sum of saturated squared differences, median of squared differences . . .

SSD values resulting from block matching

Block matching: search strategies

Full search

- All possible displacements within the search range are compared.
- Computationally expensive
- Highly regular, parallelizable

Block matching: search strategies

Conjugate direction search

- Alternate search in x and y directions
- Stop when there is no further improvement

Block matching: search strategies

Coarse-to-fine

- Start with coarsely spaced candidate displacements
- Smaller pattern when best match is in the middle
- Stop when desired displacement accuracy is reached

Absolute difference between images

w/ integer-pixel alignment

w/o alignment

Interpolation of the SSD Minimum

2-d Interpolation of SSD Minimum

Paraboloid

- Perfect fit through 6 points
- Approximate fit through
 - > 6 points

Sub-pixel accuracy

- Interpolate pixel raster of the reference image to desired sub-pixel accuracy (e.g., by bi-linear or bi-cubic interpolation)
- Straightforward extension of displacement vector search to fractional accuracy
- Example: half-pixel accurate displacements

$$\begin{pmatrix} \Delta_x \\ \Delta_y \end{pmatrix} = \begin{pmatrix} 4.5 \\ 4.5 \end{pmatrix}$$