

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 200)3142435 A
------------------------------	------------

(43) Date of publication of application: 16.05.03

(51) Int. CI H01L 21/304

> B24B 37/00 B24B 57/02 C09K 3/14

(21) Application number: 2001334107

(22) Date of filing: 31.10.01

(71) Applicant: **FUJIMI INC**

(72) Inventor:

TAKAMI SHINICHIRO INA KATSUYOSHI

(54) ABRASIVE COMPOUND AND POLISHING METHOD USING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an abrasive compound which hardly produces polishing marks and is COPYRIGHT: (C)2003,JPO superior in cleaning properties.

SOLUTION: An abrasive compound is composed of colloidal silica, a kind of bicarbonate, and water, Impurity elements contained in the abrasive compound are each 100 ppb or below in concentration, and the abrasive compound may contain hydrogen peroxide.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-142435 (P2003-142435A)

(43)公開日 平成15年5月16日(2003.5.16)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H01L	21/304	6 2 2	H01L	21/304	6 2 2 D	3 C 0 4 7
B 2 4 B	37/00		B 2 4 B	37/00	Н	3 C 0 5 8
	57/02			57/02		
C 0 9 K	3/14	550	C 0 9 K	3/14	550D	
					5507	

審査請求 未請求 請求項の数9 OL (全 9 頁)

特顧2001-334107(P2001-334107)	(71)出職人	000236702 株式会社フジミインコーポレーテッド
平成13年10月31日(2001.10.31)		愛知県西春日井郡西枇杷島町地領2丁目1 番地の1
	(72)発明者	高 見 信一郎 愛知県西春日井郡西枇杷島町地領二丁目1 番地の1 株式会社フジミインコーポレー テッド内
	(74)代理人	100075812 弁理士 吉武 賢次 (外3名)
		最終頁に続く
		平成13年10月31日(2001.10.31) (72)発明者

(54) 【発明の名称】 研磨用組成物およびそれを用いた研磨方法

(57)【要約】

た研磨用組成物の提供。 【解決手段】 コロイダルシリカ、少なくとも一つの重 炭酸塩、および水、を含んでなる研磨用組成物であっ て、研磨用組成物中の不純物元素の各元素濃度がそれぞ れ100ppb以下である研磨用組成物。さらに過酸化 水素を含んでなることもできる。

【課題】 研磨傷の発生が著しく少なく、洗浄性に優れ

【特許請求の範囲】

【請求項1】下記(a)~(c)(a)コロイダルシリカ、(b) 重談酸アンモニウム、重炭酸リチウム、重炭酸カリウム、東次酸・サンリカン、東次酸のサンス・電子のは、東京の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、現代の大きなのでなるのが、ないでアルミニウム、ガリウム、インジウム、タリウム、スズ、第、ビスマス、フッ素、および塩素の各元素濃度がそれぞれ100ppb以下であることを特徴とする研修用組収納。

1

【請求項2】コロイダルシリカがゾルゲル法により生成 されたものである、請求項1に記載の研磨用組成物。

【請求項3】比表面積を基準とするコロイダルシリカの 粒子径が70~110nmの範囲内であり、かつ光学的 に測定されるコロイダルシリカの粒子径が180~26 0nmの範囲内である、請求項1または2に記載の研磨 用組成物。

【請求項4】重炭酸塩の含有量が、70~220ppm の範囲内である、請求項1~3のいずれか1項に記載の 研磨用組成物。

【請求項5】(d) 過酸化水素をさらに含んでなる、請求項1~4のいずれか1項に記載の研磨用組成物。

【請求項6】過酸化水素の含有量が、10~200ppmの範囲内である、請求項5に記載の研磨用組成物。 【請求項7】研磨用組成物のpHが5~8の範囲である、請求項1~6のいずれか1項に記載の研磨用組成物。

【請求項8】研磨用組成物の電気伝導度が、80~21 0μS/cmの範囲内であり、かつオストワルト粘度計 で測定される粘度が、1.7~2.5mPasの範囲内 である、請求項1~7のいずれか1項に記載の研磨用組 成物。

【請求項9】半導体デパイスの製造工程において、請求 項1~8のいずれか1項に記載の研修用組成物を用い て、半導体デパイスを研修することを特徴とする、半導 体デバイスの研修方法。

【発明の詳細な説明】

[0001]

【発明の背景】発明の分野

本発明は、半導体デバイス表面平坦化加工に好適な研磨 用組成物に関するものである。さらに詳しくは、本発明 は、半導体デバイス製造に係るデバイスウェーファーの プロセス加工時において、いわゆる化学的・機械的研婚 (Chemical Mechanical Polishing、以下、CMPとい

う)技術が適用されている半導体デバイスの研磨において、研磨傷の発生が著しく少なく、かつ洗浄性に優れた研磨用組成物に関するものである。

【0002】従来の技術

近年のコンピューター製品の進歩は目覚ましく、これに 使用される部品、たとえばリLS1は、年々高集積化、 高速化の一途をたどっている。これに伴い、半導体装置 のデザインルールは年々微調化が進み、テバイス製造プ ロセスでの焦点深度は浅くなり、パターン形成面に要求 される平坦性は厳しくなってきている。

【0003】その中で、その平坦化工程を研修によって 達成しようとする試みがなされ、現在、多くのデバイス 10 製造プロセスの一つとして活用されている。この研修工 程は、一般所にはCMPと呼ばれており、今後もその利 用類な対等さのと予想をれる。現在、CMP工程にお いて使用される研修用程成物は、フュームドシリカを水 に分散とせたスラリーを用いるものが多く、それらは主 定輪を練りず単化に利用されている。

【0004】一般的に、フュームドシリカを用いたスラ リーとしては、フュームドシリカに水酸化カリウムまた はアンモニアなどのアルカリを加え、水に分散させたも のが用いられている。アルカリを加えるのは、フューム

20 ドシリカを水中に安定に分散させるため、かつ、絶縁膜などに対する高い研修速度を速まするためである。従って、このようなスラリーのpHは一般的に9以上であることが多い。

【0005】 むかしながら、従来のフュームドシリカ含 有スラリーは、フュームドシリカ微程子が驚集すること があった。これは、スラリー中に存在する不純物が原因 と推測される。そのメカニズムは図1に示すとおりであ る。図1には、不純物としてアルミニウムイオンが存在 する場合を示している。スラリーはアルカリ性であり、 30 不純物がない状態ではシリカ微粒子はスラリー中に安定

「今時かない仏像いはシリカ版を下はネノリーでは交換 に分散している。しかし、アルニコウムイサン存在すると、アルミニウムイオンに保地した水酸基と、リカ教 粒子表面の水酸基とが脱水縮合を起こし、その結果、フ ュートドシリカ酸粒子の表面にあるケイ素原子が不純的 を介して結合し、複集を起こすものと考えられる。

【0006】このような凝集現象は、熱および圧力が発生し、脱水縮合が起こりやすくなっている研磨時において生じる。このとき発生する凝集体は、研磨時にウェフ

40 アー表面に傷を発生させやすく、結果的にデバイスの歩 留まりを悪化させる。さらに、研密時には、ウェファー 表面の原子とシリカ微粒子が向の原子とが予能物を介し て結合し、シリカ微粒子がウェーファー表面に付着す る。このように付着した微核は、研磨終了後にもウェー ファー表面にとどまり、通常の洗浄では取り除かれない ことが多く、洗浄後のウェーファー表面にシリカ粒子が 残似してしまい、さらにデバイスの少野まりを悪化させ てしまう。さらに、スラリーは凝集体の除去を目的に濾 速に付されることもある。すなわち、スラリーを使用す 50 る前にフィルターを用いていて濾過したり、スラリーを

てスラリー中に存在する凝集体を除去することが一般的 になされている。しかしながら、シリカの粒子がフィル ターを通過する際に、その水圧により脱水縮合が起こ り、粒子の凝集が発生することがある。言い換えると、 凝集体を除去するための濾過によって、かえって凝集体 を発生させてしまうことにもなりかねないのである。 【0007】このような観点から、研磨時や濾過時にシ リカ微粒子の凝集が起こりにくく、凝集体による研磨傷 の発生が少なく、かつ研磨後の洗浄性に優れた研磨用組 成物が切望されている。本発明は、上記問題を効果的に 解決するためになされたものである。即ち、本発明の日 的は、凝集体による研磨傷の発生が少なく、かつ研磨後 の洗浄性に優れた研磨用組成物を提供することである。

[0008] 【発明の概要】本発明による研磨用組成物は、下記 (a) ~ (d) の各成分を含んでなるものであって、 (a) コロイダルシリカ、(b) 重炭酸アンモニウム、 重炭酸リチウム、重炭酸カリウム、重炭酸ナトリウム、 およびそれらの混合物からなる群から選択される少なく とも一つの重炭砂塩、および(c)水、を含んでなるも のであって、研磨用組成物中の2A族、3A族、4A 族、5A族、6A族、7A族、8族、1B族、2B族、 ランタノイド、およびアクチノイドに包含される各元 素、ならびにアルミニウム、ガリウム、インジウム、タ リウム、スズ、鉛、ビスマス、フッ素、および塩素の各 元素濃度がそれぞれ100ppb以下であることを特徴 とするものである。

【0009】本発明によれば、シリカ微粒子の凝集体に よる研磨傷の発生が極めて少なく、かつ研磨後の洗浄性 30 に優れた研磨用組成物が提供される。

[0010]

【発明の具体的説明】(a) コロイダルシリカ

本発明による研磨用組成物は、コロイダルシリカを含ん でなる。コロイダルシリカは、研磨材として機械的加工 を担うものである。コロイダルシリカには、既知のいく つかの結晶形態を持ち、また、製造方法も各種知られて いる。本発明による研磨用組成物には、本発明の効果を 損なわないように不純物含有量が少ないものが好ましい が、それらの結晶形態、および製造方法にとらわれるこ となく、任意のものが使用できる。その中でもゾルゲル 法により生成されるコロイダルシリカが好ましい。ゾル ゲル法によるコロイダルシリカは、一般的には、ケイ酸 メチルをメタノール、アンモニア、および水からなる溶 媒中に溶解させ、加水分解させることにより製造され る。このような方法によれば、不純物含有量の少ないコ ロイダルシリカの分散液を製造することができる。 【0011】ゾルゲル法以外のコロイダルシリカの製造

方法としては、例えば、四塩化ケイ素を加熱して製造す

ロイダルシリカを成長させる方法などがある。しかしな がら、四塩化ケイ素を出発原料として使用する方法で は、できあがったコロイダルシリカには塩素が不純物と して混入することがある。また、ケイ酸ナトリウムを原 料として用いた方法では、原料中にアルカリ土類金属 や、銅、鉄、クロム等の金属不純物が含まれていること が一般的である。従って、これらの方法により製造され たコロイダルシリカを用いる場合には、不純物を除去す るための精製処理を行うことが好ましい。

【0012】本発明によるコロイダルシリカの研磨用組 成物に対する含有量は、適切な研磨速度を維持し、研磨 用組成物の安定な分散状態を保ち、かつ研磨用組成物の 製造を容易にするという観点から、一般的には、10~ 25重量%、好ましくは15~22重量%、の範囲内で ある。コロイダルシリカの含有量が上記に示された範囲 内にあれば、適切な研磨速度、具体的には300~2、 000Å/min、を達成でき、かつ長期にわたって安 定に保存することができる。工程時間の短縮という観点 からは、研磨速度は高いことが望ましいが、デバイスの 20 平坦化研磨においては、研磨速度が高すぎると、研磨時 間などの調整による加工量の制御が困難になったり、研 磨傷の発生が多くなったりするなどの問題が起こるた め、研磨速度は前記した範囲内にすることが好ましい。 【0013】また、本発明による研磨用組成物に用いる コロイダルシリカの大きさは、窒素吸着法(BET法) にて測定された表面積と粒子の密度から計算された表面 積から算出される平均粒子径(以下、表面積粒子径と記 す) で、一般的には70~110nmの範囲内である。 更に、光学式粒径測定装置、例えばCOULTERN 4 plus(COULTER社製)、により光学散乱法 にて計測される平均粒子径(以下、光学式粒子径と記 す) で、一般的には、180~260nm、好ましくは 200~240nm、の範囲内である。コロイダルシリ カの粒子径がこの範囲であれば、研磨速度を適切に維持 することができるうえ、研磨用組成物を長期間にわたっ て安定に保存することができる。 【0014】(b) 重炭酸塩

本発明による研磨用組成物は、重炭酸アンモニウム、重 炭酸リチウム、重炭酸カリウム、重炭酸ナトリウム、お 40 よびそれらの混合物からなる群から選択される少なくと も一つの重慶勝塩を含んでなる。これらのうち、研磨後 のウェーファー表面の汚染を防止するという観点から、 重炭酸アンモニウムを用いることが好ましい。

【0015】本発明による研磨用組成物において、重炭 酸塩は前記したコロイダルシリカを組成物中で安定に分 散させる作用を発揮するものである。このような作用 は、重炭酸塩が組成物中に存在することで、コロイダル シリカ表面に電気二重層が、容易に且つ安定に形成され るためと推測される。この結果、研磨用組成物全体の粘 る方法、および、ケイ酸ナトリウムをイオン交換し、コ 50 度が下がり、研磨用組成物の取り扱い性が容易になると いう効果も発現する。本発明による研磨用組成物におい て、重炭酸塩の含有量は、研磨用組成物中のシリカ微粒 子の分散安定性を維持するという観点から、一般に70 ~200ppm、好ましくは80~150ppm、の範 囲内である。重炭酸塩の添加量は、コロイダルシリカの 分散安定性を維持できる最低限の量を添加すればよく、 経済性や研磨後のウェーファー表面の汚染などを考慮し ても、少ないことが好ましい。

[0016] (c) xk

本発明による研療用組成物は媒体として水を含んでな る。本発明による研磨用組成物に用いられる水は、工 水、市水、イオン交換水および蒸留水のいずれの水も使 用可能であるが、実質的に金属イオンを含有していない ものが好ましい。特に、金属イオンを実質的に含有しな いイオン交換水を濾過し、異物を除去したものを使用す ることが好ましい。

【0017】(d) 過酸化水素

本発明による研磨用組成物は、過酸化水素を含んでなる ことが好ましい。この渦酸化水素は、研磨用組成物中 するために用いるものである。その含有量は、含まれる 場合には、一般的には10~200ppm、好ましくは 20~150pm、の範囲内である。過酸化水素の添 加量は、前記目的を達成できる最低限の量を添加すれば よく、経済性や研磨後のウェーファー表面の汚染などを 考慮しても、少ないことが好ましい。

【0018】研磨用組成物

本発明による研磨用組成物は、前記した(a)~(d) の各成分を含んでなるものである。そして、その研磨用 組成物中の2A族、3A族、4A族、5A族、6A族、 7 A族、8族、1 B族、2 B族、ランタノイド、および アクチノイドに包含される各元素、ならびにアルミニウ ム、ガリウム、インジウム、タリウム、スズ、鉛、ビス マス、フッ素、および塩素の各元素(以下、これらの元 素を単に不純物ということがある)の濃度がそれぞれ1 00ppb以下であることが必要である。さらには、こ れらの各元素の濃度が50ppb以下であることがより 好ましい。このように、不純物元素が少ないことによっ て、本発明による研磨用組成物は、研磨傷の発生を著し く抑制し、かつ優れた洗浄性を発揮するものである。

【0019】さらには、本発明による研磨用組成物が満 酸化水素を含有する場合においては、過酸化水素の分解 が抑制されている。これは、不練物として組成物中に存 在する遷移金属は、過酸化水素の分解を加速させる作用 を有するが、そのような元素の含有量が著しく低い本発 明による研磨用組成物では、過酸化水素が分解しにくく なっている。従って、過酸化水素の効果、すなわちバク テリアなどの繁殖抑制効果、が長期間発現し、研磨用組 成物を長期にわたって安定に保存できる。

【0020】本発明による研磨用組成物は、前記各成分 50 μS/cm、好ましくは90~160μS/cm、の範

を混合して、溶解または分散させることにより製造され る。各成分の添加順序は特に限定されない。また、溶解 または分散も任意の方法、例えば翼式撹拌機による撹 拌、超音波の印加など、により行うことができる。

【0021】本発明による研磨用組成物は、前記の各成 分を配合した後、濾過して巨大粒子や溶解していない異 物などを除去するために濾過することが好ましい。濾過 は、行う場合には、開口径が少なくとも10μm以下。 好ましくは5 μ m以下、より好ましくは1 μ m以下、の

10 フィルターにより濾過される。原料中に存在することの ある巨大粒子や異物による研磨傷の発生を抑制するため に、本発明による研磨用組成物を調製する場合には濾過 を行うことが好ましい。

【0022】本発明による研磨用組成物は、そのまま研 磨用組成物として使用できる状態で供給することができ るほか、であるが、前記の各成分を高濃度で含有する、 すなわち濃縮された研磨用組成物を準備しておき、使用 時に希釈して所望の組成物を得ることも可能である。あ るいは、組成物を2以上の液剤に分けて準備しておくこ で、パクテリア、カビ、微生物などが発生するのを抑制 20 とも可能である。例えば、(a) コロイダルシリカおよ び(c)水からなる第一液と、(d)過酸化水素、

(b) 重炭酸塩、および(c) 水からなる第二液とに分 けて準備し、使用時にこれら2つの組成物を混合して使 用することも可能である。保存安定性の面からも組成物 を2液に分けることは有利である場合がある。

【0023】これら不純物の濃度の測定は、通常用いら れている分析装置、例えば誘導結合プラズマ質量分析装 置(ICM-MS)、誘導結合高周波プラズマ分光分析 装置(ICP分光分析装置)、原子吸光分析装置等によ 30 り行うことができる。また、フッ素および塩素の測定に は、イオンクロマトグラフィーなどを用いることができ る.

[0024] pH

本発明による研磨用組成物の p H は、各成分の配合量に よって変化するが、一般には5~8、好ましくは6~ 7. 5、の範囲内である。研磨用組成物のpHが中性に 近いことによって、組成物中の水酸基の量が低くなり、 コロイダルシリカの凝集が特に抑制され、その結果、本 発明の効果が強く発現するようになる。さらには、研磨 40 用組成物が中性に近いことは、取り扱い性および安全性 の面で好ましく、また環境に対する配慮からも好まし い。本発明による研磨用組成物における成分のうち、重 炭酸塩の量が最もpHに影響する。重炭酸塩の適切な含 有量は前記したとおりであるが、適切な量の重炭酸塩を 含んでなる研磨用組成物は、上記範囲のpHとなること が一般的である。ここで、重炭酸塩は緩衝剤として作用

しているということもできる。 【0025】電気伝導度

本発明による研磨用組成物は、一般的には80~210

囲内の電気伝導度を示す。本発明による研磨用組成物に おいて、電気伝導度は主に重炭酸塩の添加量に左右され る。重炭酸塩の適切な含有量は前記したとおりである が、適切な量の重炭酸塩を含んでなる研磨用組成物は、 上記範囲の電気伝導度を有することが一般的である。な お、不純物が存在する場合、研磨用組成物の電気伝導度 が変化することがあり、不純物の存在を電気伝導度の測 定により検出することができることもある。

【0026】粘度

本発明による研磨用組成物は、オストワルト粘度計によ 10 【実施例】実験 1 って測定した粘度が、一般に1.7~2.5mPas、 好ましくは1.8~2.3mPas、である。本発明に よる研磨用組成物において、粘度は組成物中に存在する シリカ微粒子の表面に形成される電気二重層が安定に形 成された場合に低くなる傾向があり、そのとき同時に分 散安定性も優れたものとなる。ここで、粘度は前記した 電気伝導度と同様に重炭酸塩の添加量に左右されるが、 適切な量の重炭酸塩を含んでなる研磨用組成物は、上記 節囲の粘度を有することが一般的である。粘度は、研磨 用組成物を配管を経由して供給する場合に、高い圧力が 必要になったり、配管の細い部分で閉塞したりしないよ うに、あるいは研磨用組成物をフィルターを用いて濾過 する場合に目詰まりが頻繁に起こらないように、高すぎ ないことが好ましい。

【0027】研磨方法

太発明による研修用組成物は、一般に半導体デバイスの 研磨に用いられるものである。本発明による研磨用組成 物は、従来のいかなる研磨方法や研磨条件と組み合わせ ることもできる。

研磨機、および他を使用することができる。また、研磨 パッドは、スウェードタイプ、不織布タイプ、植毛布タ イプ、紀毛タイプ等を用いることができる。また、半導* * 体デバイスの研磨において、表面をより平坦にするため に、2段階以上の研磨をすることがある。このような多 段階での研磨において、本発明による研磨用組成物を初 期の研磨あるいは後期の研磨、すなわち仕上げ研磨、の いずれにも用いることができる。本発明による研磨用組 成物は、研磨傷の発生が少なく、また研磨後の表面に研 磨材などの付着が少ないため、特に仕上げ研磨に用いる ことが好ましい。

[0029]

表2に示される通りの、濃度、表面積粒子径、および光 学式粒子径を有するコロイダルシリカ分散物をゾルゲル 法で調製した。なお、コロイダルシリカ分散物の分散媒 は、すべて水に置換してから実験を行った。これらコロ イダルシリカの不純物元素の含有量は、いずれも50p p b 以下であった。ついで、各分散物に重炭酸アンモニ ウムを90ppm、過酸化水素を50ppm含有させ、 開口径5μmのフィルターによって濾過を行い、研磨用 組成物を調製した。このようにして実施例1~19の研 20 磨用組成物を得た。また、比較例として市販のフューム ドシリカスラリー (SS-25、Cabot Micr oelectronics社製)を開口径5μmのフィ ルターで濾渦し、研磨用組成物として使用した(比較例 SS-25について、ICP分光分析装置で金属 不純物を測定した結果は下記の通りであった。

Mg:5ppb未満 A1:63ppb Ca:30p pb未満 Ti:21ppb Cr:344ppb F e:1, 250ppb Ni:153ppb Cu 1 Oppb未満 Zn:10ppb未満 Ag:5ppb 【0028】例えば、研磨機として、片面研磨機、両面 30 未満 Pb:30ppb未満 Na:1, 491ppb 【0030】実施例1~19および比較例1の研磨用組 成物を用いて、下記の研磨条件および洗浄条件にて研磨 および洗浄を行った。

> <研磨条件> 被加工物:

研磨機: 片面CMP研磨機(CMS200、東芝機械製)

TEOSプランケットウェーファー

(CVD法により製膜された8インチウェーファー) 研磨パッド: ポリウレタン製の積層研磨パッド

(IC-1000/Suba400,

Rodel Inc計製)

7 n s i (約50 k P a)

加工圧力:

90秒 加工時間: 定盤回転数: $30 \, \mathrm{r} \, \mathrm{pm}$ キャリア回転数: 32 r p m

研磨用組成物の供給: 200cc/分 <洗浄条件1>

プラテンリンス (水研磨によるリンス)

加工圧力: 1 psi(約7 kPa)

加工時間: 20秒 定盤回転数: 100 r pm 9 オャリア回転数: 103 r p m ブラシスクラブ: 60 秒 希フッ酸 (0.5%) スピンリンス: 20 秒 輸水スピンリンス: 10 秒 超音波輪水スピンリンス: 20 秒 輸水スととリンス: 20 秒

【0031】研磨および洗浄を行う前と、行った後でT *-表面の、C EOS膜の厚さを測定し、その厚みの差から研修速度を 置(SP17 算出した。なお、TEOS膜の厚さは光学式膜厚測定器 10 で測定した。

(VM-2030、大日本スクリーン株式会社製) を用いて測定した。さらに、研磨および洗浄後のウェーファ* 表 1

* 一表面の、0. 2 μ m以上の欠陥数を、表面欠陥測定装置(SP1TBI、KLA-Tencor社製)を用い て測定した。

【0032】得られた結果をまとめると以下の通りであった。

	コロイダル	表面積	光学式	研磨速度	表面欠陥
	シリカ濃度	粒子径	粒子径	(A/分)	(個/枚)
	(重量%)	(n m)	(n m)		
実施例1	5	9 0	220	250	1.5
実施例2	1.0	9 0	220	5 0 0	2.0
実施例3	1.5	9.0	220	700	2.5
実施例4	2 0	9 0	220	1000	3.0
実施例5	2 2	9 0	220	1100	3 2
実施例6	2 5	9 0	220	1250	4.0
実施例7	3 0	9 0	220	1500	5.0
実施例8	2 0	6.0	220	1500	6.0
実施例9	2 0	7 0	220	1 4 0 0	5.0
実施例10	2 0	8.0	220	1200	4.0
実施例11	2 0	100	220	1000	3 0
実施例12	2 0	110	220	900	3.0
実施例13	2 0	120	220	800	2 5
実施例14	2 0	9 0	160	800	3.0
実施例15	2 0	9 0	180	900	3.0
実施例16	2 0	9.0	200	1000	3 0
実施例17	2 0	9 0	2 4 0	1150	3 0
実施例18	2 0	9 0	260	1200	3.0
実施例19	2 0	9 0	300	1200	3.0
比較例1	_	_		2700	220

【0033】表1の結果より、本発明による研修用組成 物を用いて研修加工をした場合、用いたコロイダルシリ カの表面が観圧子径または光学式粒子径の大小にかかわら ず、表面欠陥は著しく低いレベルであることがわかる。 一方、市板のフュームドシリカスラリーを用いた場合に は、表面欠陥が多くなっている。

【0034】実験2

前記実施例4の研密用組成物、および比較例1の研密用 件1に従って行・ 組成物を担いて、練り返し洗浄による可能は、希フッ酸に よる洗浄を繰り返し行うことによって、TEOS膜表面 にできた研密偏による公施を増幅させ、かつウェーファ 上に付着したコロイダルシリカを極力除去することを 目のとしている。すなわち、希フッ酸による洗浄を繰り。の すとおりである。 の すとおりである。

返すことで、TEOS膜上に残っていたコロイダルシリ 力は除去され、一方で表面にできた微細な研修像を希フ 一般スピンリンスによって物大させることで、実験1に 40 よる表面欠陥測定装置で検出されなかったような微細な 研修像を未始出することを目的としている。

【0035】まず、実験1と関導の研修条件にて研修を行った。次いで、研修後一回目の洗浄は前記した洗浄条件1に従って行った。ただし、希フ・歳とピンリンスの時間は40秒間とした。その後、TEOS際の表面欠陥を測定し、さらに下記洗浄条件2のプロセスで洗浄を行った後、再度表面欠陥を評価した。この洗浄条件2による洗浄と、表面欠陥の評価を4回にわたって繰り返し実施した。繰り返し洗浄による表面欠陥の推移は図2に示せたりでまた。

(7)

<洗浄条件2> 希フッ酸(0,5%)スピンリンス: 70秒 純水スピンリンス: 2010 スピン乾燥: 20秒

【0036】図2の結果から、本発明による研磨用組成 物を用いた場合の表面欠陥は、洗浄を繰り返し行っても 増大せず、常に低いレベルで一定であることがわかる。 これに対して、比較例1のフュームドシリカによって研 磨を行うと、洗浄を繰り返すことによって欠陥が増大し ており、研磨によってTEOS膜の表面に、通常の測定 10 度計により測定した。得られた結果は表2に示すとおり では検出できない微細な欠陥が多数生じていたことがわ

かった。

*実施例4に使用したコロイダルシリカ分散物(濃度20 重量%、表面精粒子径90nm、光学式粒子径220n m) に対して、表2に示す通りに重炭酸アンモニウムの 添加量を変化させた研磨用組成物を調製した。なお、過 酸化水素の濃度は20ppmで一定とした。次いで、各 々の研磨用組成物を開口径5μmのフィルターで濾過し た。このときの濾過性を評価した。さらに、電気伝導度 をCONDUCTIVITY METER DS-12 (堀場製作所製) により測定し、粘度をオストワルト粘

である。

[0038]

【0037】実験3: 重炭酸アンモニウムによる効果 * 表2

	重炭酸アンモ	電気伝導度	粘度	濾過性
	ニウム濃度	(μ S / c m)	(mPas)	
	(ppm)			
実施例20	5.0	6.0	10	濾過に時間を要した
実施例21	7.0	8.0	2. 5	問題なし
実施例22	8.0	9 0	2. 1	問題なし
実施例23	150	160	2. 0	問題なし
実施例24	200	2 1 0	1. 9	問題なし
実施例25	300	280	1.8	問題なし
P+較例2	0	2.0	4.0	濾過不可

※た。

【0039】実験4:過酸化水素による効果

実施例4に使用したコロイダルシリカ分散物(濃度20 重量%. 表面結紛子径90nm. 光学式粉子径220n m) に対して、 表3に示す通りに渦酸化水素の添加量を 変化させた研磨用組成物を調製した。なお、重炭酸アン モニウムの濃度は85ppmで一定とした。次いで、各 30 【0041】 々の研磨用組成物を開口径5μmのフィルターで濾過し※

【0040】このようにして得られた各研磨用組成物 を、35℃で3ヶ月密閉下放置し、その後、研磨用組成 物内にバクテリアが発生してるか否かを目視にて観察し た。得られた結果は表3に示すとおりであった。

表3

温酸化水表濃度 バクテリア発生状況

	(ppm)	
実施例26	0	数カ所赤いバクテリアのコロニーが発生
実施例27	5	若干赤いコロニーが点在するが使用に問題ない
実施例28	1 0	バクテリアの発生無し
実施例29	2 0	バクテリアの発生無し
実施例30	150	バクテリアの発生無し
実施例31	200	バクテリアの発生無し
実施例32	300	バクテリアの発生無し。過酸化水素の気化のため
		容黙に若干のふくらみが発生

この結果より、本発明による研磨用組成物は、過酸化水 素を10 p p m以上含んでいれば長期にわたって安定に 保存できることがわかる。また、過酸化水素を含まない 参考例は保存性は劣るものの、研磨に際する研磨傷が少 ないという本願発明の効果を十分発揮するものである。 【0042】実験5:pHによる効果

実施例4に使用したコロイダルシリカ分散物 (濃度20 重量%、表面積粒子径90 n m、光学式粒子径220 n 50 ℃で1ヶ月間密閉化放置し、その後の粘度(1ヶ月放置

m) に対して、重炭酸アンモニウムを85ppm、過酸 化水素を20ppm添加した研磨用組成物を調製した。 この研磨用組成物を分割し、それぞれを表5に示すとお りのpHに調整した。pHの調整には、アンモニアまた は炭酸を用いた。pHを調整した後、それぞれの研磨用 組成物を開口径5μmのフィルターで濾過し、製造直後 の粘度を測定した。このように準備したスラリーを50

13

後の粘度)を測定した。なお、放置によって沈殿が生じ た場合には、それらを十分撹拌し、組成物を均一にした [0043] 後に測定した。得られた結果は表4に示すとおりであ *

表4

	рΗ	粘度 (m P a s)	
		製造直後	1ヶ月保存後
実施例33	4	5	5
実施例34	5	2. 5	2. 5
実施例35	6	2. 2	2. 2
実施例36	7.5	2. 1	2.1
実施例37	8	2.4	2. 5
宝飾例3.8	9	1.0	1.0

この結果より、pHを4~9の範囲内の組成物は、保存 時に粘度値の変化が小さいことがわかる。 【0044】実験6:濾過による効果

実施例4に使用したコロイダルシリカ分散物(濃度20 重量%、表面積粒子径90nm、光学式粒子径220n m) に対して、重炭酸アンモニウムを85ppm、過酸 化水素を20ppm添加した研磨用組成物を調製した。

pHの調整は特に行わなかった。この研磨用組成物を分※20

※割し、それぞれを表5に示す開口径のフィルターを用い て濾過した。なお、実施例39の研磨用組成物は濾過を 行わなかった。これらの研磨用組成物を用いて、実験1 と同じ条件で研磨および洗浄、ならびに研磨後の表面欠 陥の評価を行った。得られた結果は下記の通りであっ

[0045]

表 5

	フィルター開口径(µm)	表面欠陥(個/枚)
実施例39	-	150
実施例40	2 0	7 0
実施例41	1 0	4 0
実施例42	5	3 0
実施例43	3	2 0
宇旋側11	1	1.5

【0046】この結果より、濾過を行うことによって表 面欠陥が減少することが確認できた。さらに、開口径1 30 【図1】従来のフュームドシリカ含有スラリーにおける 0 μ m以下のフィルターによって濾過を行うことによっ て、表面欠陥が著しく少なくなっており、本発明による 研磨用組成物は開口径が10 um以下のフィルターを用 いて濾過することが好ましいことがわかる。

★【図面の簡単な説明】

シリカ衛粒子凝集メカニズムの概念図。 【図2】実験2における、繰り返し洗浄による欠陥数の 変化を示す図。

[図1]

フロントページの続き

(72)発明者 伊 奈 克 芳

愛知県西春日井郡西枇杷島町地領二丁目1 番地の1 株式会社フジミインコーポレー テッド内 F ターム(参考) 3C047 FF08 GG20 3C058 AA07 CA01 CB02 DA02 DA12