

Compiling with Abstract Interpretation

PLDI 2024

Dorian Lesbre and Matthieu Lemerre

Copenhagen - June 26th, 2024

Motivations

Program analysis and transformations are mutually beneficial:

- Transformations can make analysis easier (ex: $e + e \rightarrow 2 * e$)
- Prior analysis can improve transformations (ex: dead code elimination)

Motivations

Program analysis and transformations are mutually beneficial:

- Transformations can make analysis easier (ex: $e + e \rightarrow 2 * e$)
- Prior analysis can improve transformations (ex: dead code elimination)

Abstract interpretation allows simultaneous combination of analyses, could it be extended to transformations?

Key ideas

- 1. Free algebra domains generate programs as analysis results, different languages have different domain signature;
- 2. **Domain functors** perform simultaneous compilation passes, soundness/completeness imply forward/backward simulations;
- 3. Online compilation to SSA improves precision of non-relational domains with constant overhead

1. Free algebra domain

Domain signature:

type state

Domain signature:

type state
val entrypoint: state

Domain signature:

type state

val entrypoint: state

 $\mathtt{val}\ \mathtt{apply}\colon\ \mathtt{rel}\to\mathtt{state}\to\mathtt{state}$

Domain signature:

type state

val entrypoint: state

val apply: $rel \rightarrow state \rightarrow state$

Domain signature:

type state

val entrypoint: state

 $\mathtt{val}\ \mathtt{apply}\colon\ \mathtt{rel}\to\mathtt{state}\to\mathtt{state}$

Free algebra domain

Implement domain signature:

```
module type DOMAIN = sig
  type state
  val entrypoint: state
  val apply: rel→state→state
  val join: state set→state
  val widen:
   loc→state→state→state
end
```


Free algebra domain

Implement domain signature:

```
module type DOMAIN = sig type state val entrypoint: state val apply: rel \rightarrow state \rightarrow state val join: state set \rightarrow state val widen: loc \rightarrow state \rightarrow state \rightarrow state end
```

As a free algebra:

Generating the program graph

■ Apply is a labeled edge:

$$\frac{}{\texttt{T} \xrightarrow{\texttt{rel}} \texttt{Apply}(\texttt{rel}, \ \texttt{T})} \text{TAPPLY}$$

Generating the program graph

■ Apply is a labeled edge:

$$\frac{}{\texttt{T} \xrightarrow{\texttt{rel}} \texttt{Apply}(\texttt{rel}, \ \texttt{T})} \text{TAPPLY}$$

■ Join inherits its elements' edges:

$$\frac{\texttt{T} \xrightarrow{\texttt{rel}} \texttt{U} \ \land \ \texttt{U} \in \texttt{S}}{\texttt{T} \xrightarrow{\texttt{rel}} \texttt{Join}(\texttt{S})} \text{TJoin}$$

Generating the program graph

■ Apply is a labeled edge:

$$\frac{}{\texttt{T} \xrightarrow{\texttt{rel}} \texttt{Apply}(\texttt{rel}, \ \texttt{T})} \text{TAPPLY}$$

■ Join inherits its elements' edges:

$$\frac{\mathtt{T} \xrightarrow{\mathtt{rel}} \mathtt{U} \wedge \mathtt{U} \in \mathtt{S}}{\mathtt{T} \xrightarrow{\mathtt{rel}} \mathtt{Join}(\mathtt{S})} \mathrm{TJoin}$$

Loc is unfolded to the pre-widening term

Graph isomorphism

Theorem

Analyzing with the free algebra domain yields a renaming of the initial CFG

2. Functors are compilation passes

Functors are compilation passes

Transformation functors just redefine apply:

```
module F(D : DOMAIN) : DOMAIN = struct
          = D.state
 type state
 let entrypoint = D.entrypoint
 let widen loc l r = D. widen loc l r
 let apply rel state =
   composition of state, D.apply, D.join
end
```

Functor examples

■ Simplifications of conditionals:

Functor examples

■ Simplifications of conditionals:

■ Compilation of ternary expressions:

Functors modularity

Theorem

- F(collecting semantics) sound $\Rightarrow \forall D$ sound, F(D) sound
- F(collecting semantics) complete $\Rightarrow \forall D$ complete, F(D) complete

Corollary:

- F sound and G sound \Rightarrow F \circ G sound
- F complete and G complete \Rightarrow F \circ G complete

Generating programs through functors

When applying functors to the **free algebra** domain:

1. Functor soundness implies a forward simulation useful for analysis:

$$traces(source) \subseteq traces(target)$$

2. Functor completeness implies a backward simulation useful for compilation:

$$traces(source) \supseteq traces(target)$$

3. Compilation to SSA recovers context

SSA Form

Classical:

Single static assignment:

SSA Form

Classical:

Single static assignment:

SSA Domain signature

Classical domain signature:

```
module type DOMAIN = sig
  type state
  val entrypoint: state
  val apply:
    rel → state → state
  val join: state set → state

  val widen:
    loc → state → state → state
end
```

SSA domain signature:

```
module type SSA_DOMAIN = sig
  type state
  val entrypoint: state
  val assume:
    expr → state → state
  val join:
    ((var --> expr) * state) set → state
  val widen:
    loc → state → state → state
end
```

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state \triangleq (var --> ssa_expr) * D.state

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state \triangleq (var --> ssa_expr) * D.state

list

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state $\triangleq (var --> ssa_expr) * D.state$

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state $\triangleq (var --> ssa_expr) * D.state$ $r \mapsto r0$ $a \mapsto a0$; D.entrypoint start $h \mapsto h0$ r := 1 $r \mapsto 1$ b := b/2 $a \mapsto a0$; D.entrypoint a:=a*a assume b=0 else $r \mapsto 1$ D.assume (b0 \neq 0) D.entrypoint $a \mapsto a0$: end $b \mapsto b0$ else assume b even r:=r*a

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state $\triangleq (var --> ssa_expr) * D.state$ $r \mapsto r0$ $a \mapsto a0$; D.entrypoint start $h \mapsto h0$ r := 1 $r\mapsto 1$ b := b/2 $a \mapsto a0$; D.entrypoint a:=a*a $h \mapsto h0$ assume b=0 else $r \mapsto 1$ $a \mapsto a0$; D.assume (b0\neq 0) D.entrypoint end $h \mapsto h0$ else $r \mapsto 1$ assume b even D.assume (b0 odd) $(p_2 2)$ $a \mapsto a0$; $b \mapsto b0$ r:=r*a

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state \triangleq (var --> ssa_expr) * D.state $r \mapsto r0$ $a \mapsto a0$; D.entrypoint start $h \mapsto h0$ r := 1 $r\mapsto 1$ b := b/2 $a \mapsto a0$; D.entrypoint a:=a*a $h \mapsto h0$ assume b=0 else $r \mapsto 1$ $a \mapsto a0$; D.assume (b0\neq 0) D.entrypoint end $h \mapsto h0$ else $r \mapsto 1$ assume b even $a \mapsto a0$; D.assume (b0 odd) (p₂ 2) $h \mapsto h0$ r:=r*a $r \mapsto r4$ D.join (r4 \mapsto 1; p₂ 2) (r4 \mapsto 1*a0; p₂ 3) $a \mapsto a0$: $b \mapsto b0$

list

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state $\triangleq (var --> ssa_expr) * D.state$ $r \mapsto r0$ $a \mapsto a0$; D.entrypoint start r := 1 $r \mapsto r1$ $r1 \mapsto 1$ $r1 \mapsto r4$ D.join $a1 \mapsto a0$; p_2 start $a1 \mapsto a0 * a0$; p_2 4 $a \mapsto a1$; $b1 \mapsto b0/2$ $b \mapsto b1$ assume b=0 else $a \mapsto a0$; D.assume (b0\neq 0) D.entrypoint end $h \mapsto h0$ else $r \mapsto 1$ assume b even $a \mapsto a0$; D.assume (b0 odd) (p₂ 2) $h \mapsto h0$ r:=r*a $r \mapsto r4$ $a \mapsto a0$; D.join (r4 \mapsto 1; p₂ 2) (r4 \mapsto 1*a0; p₂ 3) $b \mapsto b0$

list

 $LiftSSA(D: SSA_DOMAIN) \rightarrow DOMAIN$ with state \triangleq (var --> ssa_expr) * D.state

Compilation to SSA is done via a functor:

■ LiftSSA(D).state \triangleq (var --> ssa_expr) * D.state

Compilation to SSA is done via a functor:

- LiftSSA(D).state \triangleq (var --> ssa_expr) * D.state

Compilation to SSA is done via a functor:

- LiftSSA(D).state \triangleq (var --> ssa_expr) * D.state
- LiftSSA(D).apply(assume e, (store, state)) ≜
 (store, D.assume (subst store e) state)

Compilation to SSA is done via a functor:

- LiftSSA(D).state \triangleq (var --> ssa_expr) * D.state
- LiftSSA(D).apply(assume e, (store, state)) \triangleq (store, D.assume (subst store e) state)
- LiftSSA(D).join creates new ϕ variables when stores disagree

Results on the LiftSSA functor

Theorem

LiftSSA is sound and complete.

Theorem

There is a forward and backward simulation between source code and the code generated by LiftSSA(SSA free algebra).

SSA immutability allows storing information about value of expressions.

Bytecode:

```
x := ...;
y := x*x;
z := y+1;
c := x != 3;
d := 1 < y;
e := y <= 25;
f := c&&d&&e;
assume f;</pre>
```

SSA immutability allows storing information about value of expressions.

Bytecode:

Store: inlines variables

```
\begin{array}{lll} x := & \ldots; & x \mapsto x0 \\ y := & x*x; & y \mapsto x0 \times x0 \\ z := & y+1; & z \mapsto x0 \times x0 + 1 \\ c := & x != 3; & c \mapsto x0 \neq 3 \\ d := & 1 < y; & d \mapsto 1 < x0 \times x0 \\ e := & y <= 25; & e \mapsto x0 \times x0 \leqslant 25 \\ f := & c \& d \& \& e; & f \mapsto x0 \neq 3 \land 1 < x0 \times x0 \land x0 \times x0 \leqslant 25 \\ assume & f : \end{array}
```

SSA immutability allows storing information about value of expressions.

Bytecode:

$$x := \ldots;$$
 $y := x*x;$

$$z := v+1;$$

$$c := x != 3:$$

$$d := 1 < y;$$

$$f := c \& d \& e;$$

assume f;

Store: inlines variables

$$x \mapsto x0$$

 $y \mapsto x0 \times x0$

$$z \mapsto x0 \times x0 + 1$$

$$c \mapsto x0 \neq 3$$

$$d \mapsto 1 < x0 \times x0$$

 $e \mapsto x0 \times x0 \le 25$

$$e \mapsto x0 \times x0 \leqslant 25$$

$$\mathtt{f} \mapsto x0 \neq 3 \land 1 < x0 \times x0 \land x0 \times x0 \leqslant 25$$

Numeric state:

$$x0 \in [-5:5]$$

$$x0 \times x0 \in [2:25]$$

$$x0 \times x0 + 1 \in [3:26]$$

$$x0 \neq 3 \in \{1\}$$

SSA immutability allows storing information about value of expressions.

Bytecode:	Store: inlines variables	Numeric state:		
x :=;	$x\mapsto x0$	$x0 \in [-5:5]$		
y := x*x;	$y\mapsto x0\times x0$	$x0 \times x0 \in [2:25]$		
z := y+1;	$z \mapsto x0 \times x0 + 1$	$x0 \times x0 + 1 \in [3:26]$		
c := x != 3;	$c\mapsto x0\neq 3$	$\mathtt{x0} \neq \mathtt{3} \in \{\mathtt{1}\}$		
d := 1 < y;	$\mathtt{d}\mapsto 1< x0 imes x0$			
e := y <= 25;	$e \mapsto x0 \times x0 \leqslant 25$			
f := c&&d&&e	$\mathtt{f} \mapsto x0 \neq 3 \land 1 < x0 \times x0$	$\land x0 \times x0 \leqslant 25$		
assume f;				

Theorem

LiftSSA(Num) can analyze bytecode with the same precision as source.

list

Examples of precision gains

LiftSSA(Num) improves precision in a number of cases:

- propagate across statements: c = y < 0; if (c) ...
- learn from related variables:

$$y = x+1; z = y*y; if(2 \le y \le 5) ...$$

- increase precision of the numeric abstraction:
 if (x != 0) assert(x != 0)
- can also perform global value numbering

4. Evaluation

Experiments

- RQ1. Precision increase of the SSA non-relational domain?
- RQ2. Performance cost of LiftSSA?
- RQ3. Performance cost of free algebra domain?

RQ1: Experimental results

Experiment	SSA=Std	SSA⊐Std	SSA⊏Std	Incomp.
All states, all variables (sum)	2M	10k	0	0
All states, all variables (avg)	12k	52	0	0
All states, successors (sum) All states, successors (avg)	16k	656	0	0
	83	3	0	0

Table: Comparison of SSA and standard non-relational domains precision

Result: no precision loss, gains in 1-10% of cases.

W 100 000

RQ2&3: Experimental results

File	LOC	Ν	LiftSSA(N)	$N \times FA$	FA	LiftSSA(FA)	$LiftSSA(FA{\times}N)$
c00.c	237	57	130 (2.3)	66 (1.16)	6 (0.11)	130 (2.3)	136 (2.39)
c02.c	393	87	86 (0.99)	103 (1.18)	17 (0.2)	334 (3.82)	81 (0.93)
c04.c	304	13	39 (3.09)	11 (0.9)	3 (0.25)	45 (3.54)	40 (3.15)
c07.c	397	12	25 (2.09)	12 (1.05)	9 (0.8)	131 (11.1)	27 (2.28)
c18.c	292	84	193 (2.3)	93 (1.11)	8 (0.1)	234 (2.79)	180 (2.15)
c23.c	3174	50	348 (7.02)	52 (1.05)	90 (1.82)	20.7s (418)	346 (6.98)
c24.c	11076	6.2s	20.4s (3.3)	5.3s (0.86)	2s (0.33)	>10min	18.6s (3.01)
c29.c	2347	140	276 (1.98)	119 (0.85)	99 (0.71)	15.1s (108)	588 (4.21)
c30.c	1178	200	355 (1.77)	189 (0.95)	70 (0.35)	8.8s (44.2)	1361 (6.8)

Table: Execution times in milliseconds

Conclusion

Contributions: our method allows us to:

- Generate imperative/SSA programs as abstract interpretation results (free algebra domain)
- Implement and prove compilation passes using abstract interpretation (functors)
- Improve non-relational precision at a constant overhead (LiftSSA(Num))
- Implemented as part of the Codex library (https://codex.top)

Limits:

- Focused on forwards analyses, not on backwards ones
- Compilation functors from the CFG signature are local to statements

W WW

Going further

https://codex.top/papers/

 ${\tt 2024-pldi-compiling-with-abstract-interpretation}$

paper: 10.1145/3656392

appendices: https://hal.science/hal-04535159

artifact: 10.5281/zenodo.10895582

contact: dorian.lesbre@cea.fr and matthieu.lemerre@cea.fr