

Joint Probabilistic Matching Using m-Best Solutions

Seyed Hamid Rezatofighi¹ Anton Milan¹ Zhen Zhang² Qinfeng Shi¹ Anthony Dick¹ Ian Reid¹ ¹Australian Centre for Visual Technologies (ACVT), School of Computer Science, The University of Adelaide, Australia ²School of Computer Science and Technology, Northwestern Polytechnical University, Xian, China

Motivation & Contribution

Graph matching is typically approached by solving a MAP problem, e.g. maximizing a joint matching score.

We argue that

- Globally optimal solution may or may not be easily achieved,
- Even the optimal solution does not necessarily yield the correct matching assignment

To improve matching results, we propose to use...

Approx. marginals instead of MAP: m-best soutions instead of a single solution.

One-to-One Graph Matching

Bipartite, K-Partite and Multipartite Graphs

A constrained binary program

Maximizing (or minimising) a joint matching probability $p(\cdot)$ (or objective cost $f(\cdot)$)

$$X^* = \underset{X \in \mathcal{X}}{\operatorname{argmax}} p(X),$$

$$\underset{X \in \mathcal{X}}{f(X)},$$

$$(1)$$

where ${\mathcal X}$ is the one-to-one matching space

$$\mathcal{X} = \left\{ X = \left(x_i^j \right)_{\forall i, j} \middle| x_i^j \in \{0, 1\}, \forall j : \sum_i x_i^j \leqslant 1, \forall i : \sum_j x_i^j = 1 \right\}$$

A linear inequality constraint $AX \leqslant B$

Marginalization vs. MAP

MAP estimate ingnores underlying distribution and picks only one solution.

Marginalization, a safer choice

- Encodes the entire distribution to untangle potential ambiquities,
- Improves matching ranking due to averaging / smoothing property

$$\mathfrak{p}(x_{i}^{j} = 1) = \sum_{\{X \in \mathcal{X} | x_{i}^{j} = 1\}} p(X),$$

$$c_{i}^{j} = -\log \sum_{\{X \in \mathcal{X} | x_{i}^{j} = 1\}} e^{-f(X)}.$$

$$\{X \in \mathcal{X} | x_{i}^{j} = 1\}$$
(2)

Exact marginalization is NP-hard: It requires all feasible solutions to build the distribution.

Approximation using m-best solutions

Computing *m*-Best Solutions

Naive exclusion strategy

- General approach,
- Impractical for large values of *m*

 $X_m^* = \text{argmin } f(X)$ $AX \leqslant B$ ÁX ≤B

Binary tree partitioning [5]

Partition the space into a set of disjoint subspaces

- Efficient approach,
- Not a good strategy for weak solvers

Experimental Results

Applications with linear objectives $X^* = \text{argmin}$ $C^\top X$

DataSet	Method	Recognition rate %			rune
(size)	Metriou	Rank-1	Rank-2	Rank-5	(Sec.)
RAiD (20 × 20)	FT [1]	74.0	82.0	96.0	
	mbst-FT	85.0	99.0	100.0	1.6
WARD (35 × 35)	FT [1]	50.3	70.9	0.88	
	mbst-FT	7 2.0	81.1	92.6	4.2
iLIDS (59 × 59)	AvgF [4]	51.9	60.7	72.4	
	mbst-AvgF	54.7	63.6	7 5.4	15.4
3DPeS (96 × 96)	AvgF [4]	53.6	64.1	76.9	
	mbst-AvgF	57.5	67.9	7 9.5	31.8
VIPeR (316 × 316)	AvgF [4]	44.9	58.3	76.3	
	mbst-AvgF	50.5	63.0	7 8.0	201.9
CUHK01 (485 × 485)	AvgF [4]	51.9	63.3	75.1	
	mbst-AvgF	62.8	70 .9	7 8.8	485.6
CUHK03 (100 × 100)	AvgF [4]	57.4	71.7	85.9	
	mbst-AvgF	7 4.2	83.1	90.7	33.5

Experimental Results

Application with a quadratic objective $X^* = argmax X^T KX$

Feature Matching

We used two different solvers (IPFP [3] and BP [6]) for this application.

Discussion

- No apparent correlation between similarity of solutions and their contribution toward accuracy,
- Finding a solution with a better objective

References

[1] A. Das, A. Chakraborty, and A. K. Roy-Chowdhury. Consistent re-identification in a camera network. In ECCV 2014.

[2] C. Dicle, O. I. Camps, and M. Sznaier. The way they move: Tracking multiple targets with similar

[3] M. Leordeanu, R. Sukthankar, and M. Hebert. Unsupervised learning for graph matching. IJCV, 96(1):28– 45, Apr. 2011. [4] S. Paisitkriangkrai, C. Shen, and A. v. d. Hengel. Learning to rank in person re-identification with metric

[5] H. S. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid. Joint probabilistic data association

revisited. In ICCV 2015. [6] Z. Zhang, Q. Shi, J. McAuley, W. Wei, Y. Zhang, and A. van den Hengel. Pairwise matching through Max-Weight bipartite belief propagation. In CVPR 2016.