	CCT – Departamento de Matemática							
	Componente Curricular: Cálculo Diferencial e Integral II	Profa: Joselma						
UEPB	Aluno(a):							

Lista de Exercícios - Sequências e Séries (Unidade II)

1 – Para cada uma das sequências $\{a_n\}$ dadas abaixo, ache os quatro primeiros termos e calcule $\lim_{n\to\infty} a_n$, se existir.

11 700		
a) $\left\{\frac{n}{3n+2}\right\}$	b) $\left\{ \frac{7-4n^2}{3+2n^2} \right\}$	c) {-5}
d) $\left\{ \frac{2}{\sqrt{n^2+9}} \right\}$	e) $\left\{ (-1)^{n+1} \frac{3n}{n^2 + 4n + 5} \right\}$	f) $\{1 + (-1)^{n+1}\}$

2 – Verifique se a sequência converge ou diverge; se convergir, ache o limite.

a) $\left\{6\left(-\frac{5}{6}\right)^n\right\}$	b) {1000 - n}	c) $\left\{ (-1)^n \frac{\ln n}{n} \right\}$
d) $\left\{\frac{4n^4+1}{2n^2-1}\right\}$	e) $\left\{\frac{e^n}{n^4}\right\}$	f) $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$
g) $\{2^{-n} sen n\}$	h) $\left\{ \frac{n^2}{2n-1} - \frac{n^2}{2n+1} \right\}$	i) $\left\{\sqrt{n+1} - \sqrt{n}\right\}$
j) $\{\cos \pi n\}$	$k) \left\{ \frac{n^{-10}}{\sec n} \right\}$	$1) \{e^{-n} \ln n\}$

3 – Calcule os limites das seguintes sequências:

$a) \lim_{n \to \infty} \frac{7 - 4n^2}{3 + 2n^2}$	b) $\lim_{n\to\infty} [1+(0,1)^n]$	c) $\lim_{n\to\infty} (-1)^{n+1} \frac{\sqrt{n}}{n+1}$
$d) \lim_{n \to \infty} \sqrt{n^2 + 1} - n$	e) $\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$	f) $\lim_{n\to\infty} \frac{1}{n} cosn$

4 - Achar os cinco primeiros termos e o n $^{\underline{mo}}$ termo, a_n , da sequência definida abaixo e em seguida calcule $\lim_{n\to\infty}a_n$.

a)
$$a_1 = 3 e \ a_{k+1} = \frac{1}{2} a_k \text{ para } k \ge 1.$$
 b) $a_1 = 2 e \ a_{k+1} = a_k + 3 \text{ para } k \ge 1$

- 5 Os termos da sequência definida pela recorrência $a_1 = 5$ e $a_{k+1} = \sqrt{a_k}$ (para $k \ge 1$) podem ser gerados digitando o 5 na calculadora e pressionando repetidas vezes a tecla \sqrt{x} .
 - a) Descreva o que acontece com os termos da sequência quando k aumenta.
 - b) Ache os quatro primeiros termos e o n mo termo, a_n , desta sequência. Em seguida, calcule $\lim_{n\to\infty}a_n$.
 - c) A sequência $\{a_n\}$ é monótona? Justifique.

GABARITO

Of ID/ III O											
1)a) $\frac{1}{5}$, $\frac{1}{4}$, $\frac{3}{11}$, $\frac{2}{7}$; $\lim_{n \to \infty} a_n = \frac{1}{3}$					b) $\frac{3}{5}$, $-\frac{9}{11}$, $-\frac{29}{21}$, $-\frac{57}{35}$; $\lim_{n \to \infty} a_n = -2$						
c) -5,-5,-5; $\lim_{n\to\infty} a_n = -5$					$d)\frac{2}{\sqrt{10}}, \frac{2}{\sqrt{13}}, \frac{2}{\sqrt{18}}, \frac{2}{5}; \lim_{n \to \infty} a_n = 0$						
e) $\frac{3}{10}$, $-\frac{6}{17}$, $\frac{9}{26}$, $-\frac{12}{37}$; $\lim_{n \to \infty} a_n = 0$				f) 2,0,2,0; $\lim_{n\to\infty} a_n$ não existe							
2)a) <i>C</i> : 0	b) <i>D</i>	c)	d)	e) <i>D</i>	f)	C: e		g) <i>C</i> : 0	h) $C:\frac{1}{2}$	i) <i>C</i> :0	j) <i>D</i>
		C:0	D						_		
4)a) 2,5,8,9,12; $\lim_{n\to\infty} a_n = \infty$ b) $\frac{1}{2}$				b) $\frac{1}{2}$,	$\frac{3}{1}, \frac{3}{1}, \frac{3}{1}, \frac{3}{16}; \lim_{n \to \infty} a_n = 0$						
5)a)A sequência parece convergir para 1 c) S				c) Sir	Sim, pois $a_1 > a_2 > a_3 > \dots > a_n > \dots$, isto						
é				$ eq (a_n > a_{n+1}, para\ todo\ n \in \mathbb{N}. $							