

INSTITUTO POLITÉCNICO INDUSTRIAL DE LUANDA – IPIL/MAKARENCO ÁREA DE FORMAÇÃO DE INFORMÁTICA CURSO TÉCNICO DE GESTÃO DE SISTEMAS INFORMÁTICOS

PROJECTO TECNOLÓGICO

REESTRUTURAÇÃO DAS REDES LAN'S E IMPLEMENTAÇÃO DE UMA REDE MAN ENTRE O COLÉGIO PITABEL (NOVA VIDA E COMBATENTES)

Nome: Otaniela Luisa António Canzengo

Turma: IG13B

Luanda – LDA

Abril de 2021

INSTITUTO POLITÉCNICO INDUSTRIAL DE LUANDA – IPIL/MAKARENCO ÁREA DE FORMAÇÃO DE INFORMÁTICA CURSO TÉCNICO DE GESTÃO DE SISTEMAS INFORMÁTICOS

OTANIELA LUISA ANTÓNIO CANZENGO

REESTRUTURAÇÃO DAS REDES LAN'S E IMPLEMENTAÇÃO DE UMA REDE MAN ENTRE O COLÉGIO PITABEL (NOVA VIDA E COMBATENTES)

Trabalho de conclusão de curso apresentado ao Instituto Politécnico Industrial de Luanda - Área de Formação de Informática, orientado pelo prof. Eng.º Acúrcio Balão Cassongo como requisito parcial para obtenção do título de Técnico Médio, no Curso de Técnico de gestão de sistemas Informáticos.

(Orientador)

Prof. Engº. Acúrcio Balão Cassongo

VILA ALICE - LUANDA Abril de 2021

Epígrafe		

Agradecimentos

Agradeço primeiramente ao meu Deus Jeová por ter me mantido na trilha certa durante este trajecto estudantil e não só. Aos meus familiares e amigos que me têm ajudado a manter o foco. Agradeço também ao meu orientador, professor Acúrcio Balão Cassongo por me ter acompanhado e orientado durante este trajecto de forma paciente, não foi fácil exigiu muito esforço por parte dele.

Aos meus pais por apoiarem-me de forma financeira, emocional e espiritual, sem medir esforço.

Agradeço a todos que de forma direta ou indireta contribuíram para a realização do presente trabalho. À TODOS MUITO OBRIGADO.

Dedicatória

Este trabalho é dedicado aos meus pais, pois desde sempre têm me apoiado tanto em sentido financeiro, emocional bem como também espiritual.

Resumo

Este trabalho visa englobar todos os aspetos técnicos relacionados a redes de computadores em geral, como os seus objetivos, classificação e estruturação. Abordarei a respeito das camadas e protocolo que estruturam uma rede, nos fixando no modelo de referência OSI e nos protocolos utilizados na rede. Irei abordar sobre os componentes constituintes de uma rede local, explicando as suas funções. Por último, utilizarei a rede para dar uma ilustração, explicando a sua estruturação e as funções executadas pelos equipamentos que as compõem.

Palavras-chaves: Redes, Colégio Pitabel, MAN, LAN.

Abstract

This work aims to encompass all technical aspects related to computer networks in general, such as their objectives, classification and structuring. I will address the layers and protocol that structure a network, setting us no OSI reference model and the protocols used in the network. I will address the constituent components of a local network, explaining its functions. Finally, I will use the network to give an illustration, explaining its structure and the functions performed by the equipment that it comprises.

Keywords: Networks, Pitabel College, MAN, LAN.

ÍNDICE

Agradecimentos	ii
Dedicatória	iii
Resumo	iv
Abstract	v
Siglas e Abreviaturas	X
Introdução	12
Definição Do Problema	13
Hipoteses	13
Justificativa	13
Objectivos	14
Objectivo Geral	14
Objectivos Específicos	14
Resultado Esperado	15
Metodologias	16
CAPÍTULO - I FUNDAMENTAÇÃO TEÓRICA.	
1. Redes de Computadores	18
1.1 Hierarquia das Redes de Computadores	18
1.2. Redes Ponto-a-Ponto.	18
1.3. Redes cliente/servidor	19
1.4. Componentes de uma rede de computadores	20
1.4.1.Transmissão de dados	20
1.5. Tipos de redes de Computadores Quanto a Expansão Geográfica	21
1.6. Topologia das redes de computadores	22
1.6.1.Topologia em Barramento	22
1.6.2.Topologia em Estrela	22
1.7. Topolo gia em anel	23
1.8. Cabeamento em Redes de Computadores	23
1.9. Protocolos	26
1.9.1.Tipos de Protocolos	26
1.10 Modelo OSI	

1.11 TCP/IP	28
1.12 Classes de endereço	29
CAPÍTULO - II IMPLEMENTAÇÃO PRÁTICA	
2. Estudo do Caso	31
2.1 Planta Física da Instituição	34
2.2 Desenho de Rede	35
2.3 Tabela de segmentação das Redes	35
2.3.1 Roteamento Switch	38
2.3.2 Implementação do DHCP	39
2.4 Implementação do Voip (VOICE OVER INTERNET PROTOCOL)	40
2.5 Segurança da Rede	41
2.6 Camada de Aplicação	42
2.7 Camada de acesso	42
2.8 Segurança Camada 2	42
2.9 Serviços do Servidor	42
2.10 Ativos de Rede	43
2.11 Segurança Na Rede	44
CAPÍTULO - III VALIDAÇÃO DOS RESULTADOS	
3.1 Resultados	47
3.2 Configuração dos Switches	55
3.3 Configuração dos Routers	59
Conclusão	72
Recomendações	73
Glossário de Termos	74
Anexos	75
BILIOGRAFIA	78

Índice de Figuras

Figura 1 – Rede Ponto-a-Ponto	18
Figura 2 – Rede Cliente Servidor	19
Figura 3 – Topologia em Barramento	22
Figura 4 – Topologia em Estrela	22
Figura 5 – Topologia em Anel	23
Figura 6 – Cabo Par Trançado	24
Figura 7 – Cabo Coaxial	24
Figura 8 – Cabo Fibra óptica	24
Figura 9 – Colégios Pitabel	31
Figura 10 – Planta do colégio Pitabel 1	34
Figura 11 – Planta do Colégio Pitabel 2	34
Figura 12– Planta da Rede	35
Figura 13 - Estrutura da rede montada	47
Figura 14 - Telefone Voip Fonte Cisco Packet Trace	47
Figura 15 - Teste de Ping entre dois computadores por via IP Fonte Cisco Packe	t Trace48
Figura 16 - Ping entre computadores do pitabel 1 e 2 (fonte Cisco)	48
Figura 17 - Ping entre computadores do Pitabel 1 (fonte cisco)	49
Figura 18 - Ping entre computadores do pitabel 2 (fonte cisco)	49
Figura 19 - Email entre computadores do pitabel 1 e 2 (fonte cisco)	50
Figura 20 - Email entre computadores do pitabel 1 (fonte cisco)	50
Figura 21 - Email entre computadores do pitabel 1 e 2 (fonte cisco)	51
Figura 22 – Serviço HTTP (fonte cisco)	51
Figura 23 - IOT Camara 01 e 02 (fonte cisco)	52
Figura 24 - FTP. Envio de Arquivos Pitabel 1 (fonte cisco)	52
Figura 25 - FTP.verificação do Arquivo no Pitabel 1 (fonte cisco)	53
Figura 26 - FTP.envio de Arquivos de Pitabel para Pitabel (fonte cisco)	53
Figura 27 - FTP.verificação de transferencia de Arquivos (fonte cisco)	54
Figura 28 - Router (fonte cisco)	75
Figura 29- Switch Layer 3 (fonte cisco)	75

Figura 30 - Servidor Huawei	75
Figura 31 - Cabo de Fibra Óptica	76
Figura 32 - Cabo Par trançado STP	76
Figura 33 – Home Gateway-Hwawei	76
Figura 34 – Webcam-Camara Yuzun	76

Índice de Tabelas

Tabela 1 – Formato de Endereço IP	29
Tabela 2 – Características do Colégio Pitabel (Nova Vida)	32
Tabela 3 – Características do Colégio Pitabel (Combatentes)	32
Tabela 4 – Discrição dos Activos de Redes	33
Tabela 5 – Endereço de IP por VLAN (Pitabel – Nova Vida)	35
Tabela 6 – Endereço de IP por VLAN (Pitabel – Combatentes)	37
Tabela 7 – Roteamento do Switch no Pitabel (38
Tabela 8 – Roteamento do Switch no Pitabel (Nova Vida)	39
Tabela 9 – Implementação do DHCP (Pitabel Nova Vida)	39
Tabela 10 – Implementação do DHCP (Pitabel Combatentes)	40
Tabela 11 – Implementação do VOIP (Pitabel (Nova vida)	40
Tabela 12 – Implementação do VOIP (Pitabel Combatentes)	41
Tabela 13 – Implementação do protocolo OSPF	44
Tabela 14 – Implementação da rota estática	44
Tabela 15 – Equipamentos usados na Rede	43
Tabela 16 – Segurança na Rede	44
Tabela 17 – Roteador ISP	44
Tabela 18 – Tabela de Orçamento	44

Siglas e Abreviaturas

- **DHCP** Dynamic Host Configuration Protocol (Lista de Controle de Acesso)
- **DNS** Domain Name Server (Sistema de Nomes de domínios)
- **HTTP** Hyper Text Protocol (Protocolo de transferência de hipertexto)
- **SMTP** Simple Mail Transfer Protocol (Protocolo Simples de Transferência de Arquivo)
- FTP File Transfer Protocol (Protocolo de Transferência de Arquivos)
- **UDP** User Datagram Protocol (Protocolo de -transferência de Dados)
- **WAN** wide área network (Rede de longa distância)
- **VLAN** Virtual Local Area Network (Rede Local Virtual)
- MAN Metropolitan Área Network (Rede metropolitana)
- Hosts Dispositivo com um Identificador Lógico (IP).
- LAN Local Área Network (Rede local)
- **IoT** Internet of Things / Internet das Coisas.
- **IP** Internet Protocol (Protocolo de Internet)
- **OSPF** -Open Shortext Path First (Abrir primeiro o caminho mais curto)

Introdução

Redes de computadores é um conjunto de equipamentos interligados de maneira a trocarem informações e compartilharem recursos, como arquivos de dados gravados, impressoras, modems, softwares e outros equipamentos. A redes estão cada vez mais no nosso dia dia, visto que muitas das actividades que realizamos está envolvido o uso de redes de computadores.

MAN é uma rede que pode abrangir uma cidade ou um campus que é formada partir de várias conexões de Lan`s próximas umas as outras numa grande escala em alta velocidade permitindo que se comuniquem umas com as outras formando uma só rede.

Este projecto está estruturado em três capítulos que são:

Capítulo I – Fundamentação Teórica

Na fundação teórica vamos abordar alguns conceitos de redes, como: os tipos de redes, como estão classificadas a rede, os tipos de topologia que existem e alguns pontos de redes que irei abordar ao longo do trabalho.

Capítulo II – Implementação de uma rede

Neste capítulo é onde se fala sobre o projecto, e como ele esta estruturado, que tipo de ferramenta foi usado para que a rede possa funcionar.

Capítulo III- Configuração da rede

Neste capítulo mostrei a validação de resultados que tive na reestruturação das redes LAN's bem como a rede MAN entre os colégios Pitabel (Nova Vida) e Pitabel (Rua dos Combatentes).

Definição Do Problema

Os colégios pitabeis a nível de Luanda no caso em estudo, padeciam de uma estrutura de rede precária, e visto que havia muita necessidade da implementação de uma rede que pudesse ser capaz de dar resposta aos problemas que os utentes desta mesma instituição enfrentavam, e na necessidade da troca de informações entre as filiais dos combatentes e do Projecto Nova Vida, surge a questão: *Porque não reestruturar as redes lan se implementar uma rede man nessa instituição?*

Hipoteses

Hipóteses são pré-respostas que podem ser confirmadas ou refutadas ao longo do trabalho. No entanto, para o presente elaboramos a seguintes hipóteses:

- ❖ Análisar e desenhar rigorosamente a maquete de rede no Cisco Packet Tracer.
- Configurar os serviços da rede com base na estrutura definida.
- ❖ Implementar na mesma e efectuar os devidos testes.

Justificativa

Levantou-se essas hipóteses pois nota-se claramente que existe uma grande dificuldade na troca de dados dentro da rede LAN nos colégios citados em estudo, claramente era quase impossível trocar informações entre as filias do projecto nova vida e a dos combatentes, nesta vertente eis a real necessidade de implementar-se a rede MAN e reestruturar-se as LAN's desses colégios.

Objectivos

Objectivo Geral

Restruturar as redes LAN's e propor uma infraestrutura de rede MAN entre o colégio Pitabel (Nova vida) e Colégio Pitabel (rua dos combatentes).

Objectivos Específicos

- ✓ Implementar uma rede MAN entre o Colégio Pitabel (Nova vida) e colégio Pitabel (rua dos combatentes)
- ✓ Melhorar a comunicação entre os funcionários;
- ✓ Garantir segurança na transferência de dados.
- ✓ Obter a partilha de recursos de forma simples e eficaz;
- ✓ Permitir a troca de informações;
- ✓ Redução de custos;

Resultado Esperado

Permitir que haja a comunicação esperada entre o colégio Pitabel do Nova Vida e a filial da rua dos combatentes com os serviços de email, IoT, HTTP, FTP, DNS.

Organização e segmentação da rede por meio da utilização de VLAN's, implementação do SSH/Tenelt e ACL de modos a segurar a rede.

Metodologias

A metodologia para o presente trabalho incluiu pesquisa bibliográfica com abordagem qualitativa, com introdução de conceitos gerais e com gradual enfoque no tema proposto. A coleta de dados foi realizada com base em conteúdos de livros, artigos e manuais técnicos dos principais fabricantes do segmento da área de redes de computadores. Os dados obtidos da análise bibliográfica foram apresentados na forma de textos descritivos e figuras. E também se usou a metodologia de pesquisa de campo este tipo de metodologia o investigador deixa de ter total controle sobre as variáveis, se limitando a observar, identificar, e coletar informações sobre o seu objeto de estudo no seu respetivo contexto original de vivência.

Além disso, usei também a **entrevista que** é uma conversa entre duas ou mais pessoas (o/s), entrevistador(es) e o(s) entrevistado(s). Onde perguntas são feitas pelo entrevistador de modo a obter informação necessária por parte do entrevistado. Foi necessário usar esse método para obter informação a cerca do trabalho implementado. Sendo que tive uma conversa aberta com a secretária da escola, onde obtive informações acerca das instituições em estudo.

Usei também a dedução que é um método hipotético-dedutivo que consiste na construção de conjecturas, ou seja, premissas com alta probabilidade e que a construção seja similar, baseada nas hipóteses, isto é, caso as hipóteses sejam verdadeiras, as conjecturas também serão.

CAPÍTULO – I FUNDAMENTAÇÃO TEÓRICA

1.1 - Redes de Computadores

Redes de computadores pode ser definida como uma estrutura de computadores e dispositivos conectados através de um sistema de comunicação com o objetivo de compartilharem informações e recursos entre si.

Hierarquia das Redes de Computadores

Do ponto de vista com que os dados de uma rede são compartilhados podemos classificar as redes em dois tipos básicos: Ponto-a-Ponto: que é usado em redes pequenas; Cliente/Servidor: que pode ser usado em redes pequenas ou em redes grandes. Esse tipo de classificação não depende da estrutura física usada pela rede (forma como está implementada), mas sim da maneira com que está configurada em software.

1.2- Redes Ponto-a-Ponto

Esse é o tipo de rede que pode ser montada, em praticamente todos os Sistemas Operacionais já vêm com suporte a rede ponto-a-ponto (com exceção do DOS). Neste tipo de rede, dados e periféricos podem ser compartilhados sem muita burocracia, qualquer micro pode facilmente ler e escrever arquivos armazenados em outros micros e também usar os periféricos instalados em outros PC's, mais isso só seria possível se houver uma comunicação correta, que é feita em cada micro, ou seja, não há um micro que tenha o papel de servidor da rede, todos os micros podem ser servidores de dados ou periféricos.

Figura 1 – Rede Ponto-a-Ponto (fonte: sites.google.com)

Vantagens e desvantagens de uma rede ponto-a-ponto:

- Usada em redes pequenas (normalmente até 10 micros);
- Baixo custo;
- Fácil implementação;
- Sistema simples de cabeamento;
- Micros funcionam normalmente sem estarem conectados a rede;
- Micros instalados em um mesmo ambiente de trabalho;
- Não existe micros servidores;
- A rede terá problemas.

1.3- Redes cliente/servidor

São processos, equipamentos ou dispositivos que disponibilizam recursos para outros processos, equipamento ou dispositivos. São caracterizados por serem processos passivos.

Figura 2 – Rede Cliente Servidor (fonte: pt.wikipédia.com)

Exemplos:

- Servidor de Arquivos: Armazena arquivos que podem ser acessados, alterados ou excluídos por outros equipamentos, processos ou dispositivos a ele conectados.
- Servidor de impressão: É um dispositivo de impressão (impressora) conectada a um computador ou diretamente a rede que disponibiliza serviço de impressão para outros equipamentos, processos ou dispositivos.

- Servidor de aplicação: É responsável por executar aplicações do tipo cliente/servidor como, por exemplo um banco de dados. Ao contrário do servidor de arquivos, esse tipo de servidor faz processamento de informações.
- Servidor de correio eletrónico: Responsável pelo processamento e pela entrega de mensagens eletrónicas. Se for um e-mail destinado a uma pessoa fora da rede, este deverá ser passado ao servidor de comunicação.
- Servidor de comunicação: Usado para comunicação da sua rede com outras redes, como a internet. Ex: Se você acessa a internet através de uma linha telefónica convencional, o servidor de comunicação pode ser um computador com uma placa modem.

1.3.1- Componentes de uma rede de computadores

Para que uma rede funcione existe um conjunto de elementos necessários que são:

- **Servidor:** é um micro que oferece recursos para rede. Em rede ponto-a-ponto todos os computadores funcionam ora sendo servidores ora sendo clientes;
- Cliente: é um micro ou dispositivo que acessa recursos oferecidos pela rede;
- **Recurso:** qualquer coisa que possa ser oferecida e usada pelos clientes da rede, como impressoras, arquivos, unidades de disco, internet;
- Protocolo: forma de comunicação determinada pelos dispositivos de forma a se comunicar;
- Cabeamento: os dados da rede transmitem os dados que serão trocados entre os dispositivos que compõem a rede;
- Placa de rede: permite a conexão dos PC's à rede já que a comunicação interna do computador é feita de forma totalmente diferente a utilização pelas redes;
- **Hardware de rede:** eventualmente poderá ser necessário o uso de periféricos para melhorar o desempenho da rede.

1.3.2- Transmissão de dados

As redes de computadores foram criadas com um único objectivo, a transmissão de dados. Existem três (3) formas de transmissão de dados:

Simplex: Onde um sinal vai somente da origem par o destino, sem um retorno. Antigos terminais simples utilizavam este método para coleta de informações apenas.

Half Duplex: Onde o sinal é transmitido da origem par o destino e vice-versa, porém não simultaneamente.

Full Duplex: Onde o sinal poderá ser transmitido simultaneamente entre as suas extremidades, em ambos os sentidos.

1.3.3- Tipos de redes de Computadores Quanto a Expansão Geográfica

As redes de computadores podem ser classificadas de duas formas que são: quanto a expansão geográfica e quanto a topologia de interconexão. Quanto à expansão geográfica estão classificadas em:

Redes Local - LAN (Local Área Network - Rede de alcance local): são redes privadas contidas em uma sala, em um prédio, ou em um campus universitário que tem alguns quilômetros de extensão. Elas são amplamente usadas para conectar computadores pessoais e estações de trabalhos em escritórios e instalações industriais permitindo o compartilhamento de recursos (por exemplo, impressoras, banco de dados, planilhas, CD-ROM, etc..) e logicamente a troca de informações.

Rede Metropolitana - MAN (Metropolitana Área Network - Rede de alcance Metropolitano): é na verdade, uma versão ampliada de uma LAN, pois basicamente os dois tipos de rede utilizam tecnologias semelhantes. Uma MAN pode abranger um grupo de escritórios vizinhos ou até mesmo uma cidade inteira e pode ser privada ou pública.

Rede Distribuída - WAN (Wide Área Network - Rede de alcance remoto): abrange uma ampla área geográfica, com frequência um país ou continente. Ela contém um conjunto de máquinas cuja a finalidade é executar os programas e aplicações dos usuários.

1.4- Topologia das redes de computadores

A topologia pode ser entendida como a maneira pela qual os enlaces de comunicação e dispositivos estão interligados, provendo efetivamente a transmissão do sinal entre nós da rede.

1.4.1- Topologia em Barramento

Nesse tipo de topologia todos os micros são ligados fisicamente a um mesmo cabo, com isso, nenhum computador pode usá-lo enquanto uma comunicação está sendo efetuada.

O tamanho máximo do trecho da rede está limitado ao limite do cabo. Determinado por atenuação do material e das conexões, além do limite imposto pelo tempo de transmissão do sinal no meio.

Figura 3 – Topologia em Barramento (fonte: bosontreinamentos.com.br)

1.4.2- Topologia em Estrela

Esse tipo de topologia é caracterizado pela ligação de todos os nós (pontos de acesso à rede) a um dispositivo central, que possui o controle supervisor do sistema, que por sua vez deve possuir um elevado grau de "inteligência", uma vez que todo o controle de fluxo de mensagens, através da rede deve ser efetuado por ele.

Figura 4 – Topologia em Estrela (fonte: estudoderedes.wordpess.com)

Vantagens

- Fácil de modificar e adicionar novos dispositivos.
- Falha em dos computadores não afeta a rede.

Desvantagens

- Se o dispositivo central (Hub ou Switch) falhar toda rede caí.
- Investimento razoável em cabeamento e conectorização, porém menor do que na topologia em barramento.

1.4.3- Topologia em anel

Uma rede em anel consiste de estações conectadas através de um caminho fechado, tradicionalmente representado por um anel.

Figura 5 – Topologia em Anel (fonte: bosontreinamentos.com.br)

1.5- Cabeamento em Redes de Computadores

O projeto de cabeamento de uma rede, que parte do meio físico é usado para interligar computadores, é um fator de grande importância para o bom desempenho de uma rede. Esse projeto envolve aspetos sobre a taxa e transmissão, largura de banda, facilidade de instalação, imunidade a ruídos, confiabilidade, custos de interface, exigências geográficas, conformidade com padrões internacionais e disponibilidade de componentes. O sistema de cabeamento determina a estabilidade de uma rede.

1.5.1- Cabo Par Trançado

É o meio de transmissão mais antigo e ainda o mais comum. Esse cabo consiste em dois fios entrelaçados em forma helicoidal. Os cabos par-trançados atualmente possuem quatro pares dispostos dentro de uma proteção externa de PVC. Existem dois tipos que são:

STP (Shielded Twisted Pair – Par Trançado Blindado)

Esse tipo de cabo possui em volta dos pares uma espécie de papel alumínio. Essa proteção de alumínio serve como uma blindagem adicional contra interferências externas, como motores elétricos, reatores de lâmpadas e equipamentos industriais, que geram ondas eletromagnéticas que podem corromper os dados que trafegam pelo cabo. Esse cabo tem a vantagem de transmitir dados com menores interferências, porém, possui custo elevado e maior peso, o que o torna mais difícil para passar em tubulações.

UTP (Unshielded Twisted Pair – Par Trançado Não Blindado)

Esse é o cabo mais simples e mais barato para as redes locais. É conhecido popularmente como "cabo de internet", já que as pessoas têm o hábito de compartilhar internet com os vizinhos utilizando esse cabo; também é ainda o mais utilizado para montar redes locais nas empresas. Ele não possui blindagem, o que o torna mais barato e mais leve, facilitando a passagem por tubulações.

Figura 6 – Cabo Par Trançado (fonte: oficinadanet.com.br)

1.5.2- Cabo Coaxial

Os cabos coaxiais inauguraram as primeiras redes locais que evoluíram para os padrões que temos. Hoje não são mais utilizados para instalação de novas redes locais. A existência de redes antigas e a necessidade de conhecimento histórico nos levam abordar os aspetos tecnológicos e as características desse meio de transmissão. Sua forma visual é semelhante a fibra óptica: um condutor central de cobre, um isolante PVC, uma malha externa metálica, e por fim a capa.

Podemos observar que esse cabo, diferentemente do cabo par trançado UTP, possuí uma malha de cobre ou alumínio que envolve o núcleo do cabo. Essa malha serve como blindagem como fenômenos eletromagnéticos externos, como motores elétricos, redes sem fios, reatores de lâmpadas, telefones sem fios, etc.

Figura 7- Cabo Coaxial (fonte: oficinadanet.com.br)

1.5.3- Fibra óptica

Os cabos de fibra óptica popularizaram-se e hoje têm um papel fundamental nas telecomunicações, principalmente em ambientes que necessitam de uma alta largura de banda como é o caso da telefonia, televisão a cabo, entre outros. A redução do preço da fibra, o alcance e a quantidade de dados que é possível trafegar nela são alguns dos motivos da aceitação e utilização das fibras ópticas em longas distâncias, bem como, gradativamente nas redes locais de computadores.

Uma fibra óptica nada mais é do que uma pequena haste de vidro, revestida por materiais protetores, que utiliza-se da refração interna total, para poder transmitir feixes de luz ao longo da fibra por grandes distâncias. Junta-se a capacidade de transmissão da fibra com o fato da perda ser mínima em grande parte dos casos.

Figura 8- Cabo Fibra óptica (fonte: oficinadanet.com)

1.6- Protocolos

Protocolo é a "linguagem" usada pelos dispositivos de uma rede de modo que eles consigam se entender, isto é, trocar informações entre si. Um protocolo é um conjunto de regras que governa a comunicação de dado.

1.6.1- Tipos de Protocolos

Existem vários tipos de protocolos. A seguir, estão descritos os principais:

- HTTP *HyperText Transfer Protocol* é usado principalmente para acessar dados na *World Wide Web*. Esse protocolo permite a transferência de dados na forma de textos simples, hipertextos, áudios, vídeos entre muitas outras.
- SMTP Simplex Mail Transfer Protocol esse protocolo é o mecanismo padrão de correio eletrônico da internet.
- FTP File Transfer Protocol o protocolo de transferência de arquivos FTP é o
 mecanismo padrão oferecido pela internet para copiar um arquivo de um host para
 outro.
- DNS Domain Name Server esse protocolo de aplicação tem por função identificar endereços IPS e manter uma tabela com os endereços dos caminhos de algumas redes na internet.
- **IP Internet Protocol** é o principal protocolo do nível de inter-rede na arquitetura TCP/IP.
- TCP Transmission Control Protocol a característica desse protocolo é oferecer um serviço confiável entre aplicações.

1.7- Modelo OSI

O modelo de referência OSI é o método para descrever como os conjuntos interconectados de hardware e software de rede podem ser organizados para que trabalhem concomitantemente no mundo das redes. Com efeito, o modelo OSI oferece um modo de dividir arbitrariamente a tarefa da rede em pedaços separados, que estão sujeitos ao processo formal de padronização.

Para fazer isso o modelo OSI descreve sete camadas de funções de rede, que são:

- **1.Físico:** A função dessa camada é lidar com a transmissão pura de uma cadeia de bits através de um canal de comunicação. Deve garantir que, quando um lado transmite uma cadeia de 8 bits "1", este seja recebido como 8 bits "1" do outro lado, e não com um bit "0" dentro da cadeia.
- **2.Enlace dos dados:** a principal função dessa camada é detetar e, opcionalmente, corrigir possíveis erros que possam ocorrer durante a transmissão sobre o meio físico. O nível de enlace vai converter um canal não confiável em um canal confiável para o uso do nível da rede.
- **3.Rede:** o objectivo da camada de rede é fornecer a camada de transporte uma independência quanto a considerações de chaveamento e roteamento associadas ao estabelecimento e operações de uma conexão de rede. A camada de rede é responsável pela colocação da informação na rede. Esta camada verifica e envia mensagens utilizando o endereço do nó de destino.
- **4.Transporte:** Na camada de transporte, a comunicação é fim a fim, isto é, a entidade da camada de transporte da máquina de origem se comunica com a entidade do nível de transporte da máquina de destino.
- **5.Sessão:** A camada de sessão permite que duas aplicações em computadores diferentes estabeleçam uma sessão de comunicação.
- **6.Apresentação:** A camada de apresentação converte o formato do dado recebido pela camada de aplicação em um formato comum a ser usado na transmissão desse dado.
- **7. Aplicação:** A camada de aplicação faz a interface entre o protocolo de comunicação e o aplicativo que pediu ou receberá a informação através da rede

1.8- TCP/IP

O protocolo TCP/IP é o protocolo mais usado atualmente nas redes locais, isso devido a internet, pois ela utiliza este tipo de protocolo, praticamente obrigando todos os fabricantes de sistemas operacionais de redes a suportarem esse protocolo. Uma das grandes vantagens desse protocolo é a possibilidade de ser roteável, ou seja, ele foi desenvolvido para redes de grande porte, permitindo que os dados possam seguir vários caminhos distintos até o seu destinatário.

1.8.1- Modelo TCP/IP

A partir de um projeto do Departamento de Defesa dos Estados Unidos (DARP) chamado ARPANET, financiado pela Advanced Research Projects Agency (ARPA), foi desenvolvido um novo modelo baseado no modelo de referência OSI, este novo modelo foi denominado Modelo TCP/IP.

O modelo de referência mais conhecido é o TCP/IP (Transmisson Control Protocol / Internet Protocol). O modelo TCP/IP é projetado por quatro camadas que são:

- **1.Interface de rede:** Esta camada, de acesso à rede, é a primeira do modelo TCP/IP, sua função é dar suporte à camada de rede, através dos serviços de acesso físico e lógico ao meio físico.
- **2.Inter-rede**:O nível inter-rede (Internet) é o responsável pelo envio dos datagramas de um computador qualquer para o outro computador, independente de suas localizações na rede.
- **3.Transporte:** A camada de transporte é responsável por prover suporte à camada de aplicação de maneira confiável (ou não), independente dos serviços oferecidos pelas camadas de interface de rede e inter-rede.
- **4.**Aplicação: A quarta camada do modelo TCP/IP é denominada de camada de aplicação. Nesta camada, estão os protocolos que dão suporte às aplicações dos usuários.

1.9- Endereçamento IP

Na internet, cada computador conectado à rede tem um endereço IP. Todos os endereços IPv4 possuem 32 *bits*. Os endereços IP são atribuídos à interface de rede do computador, normalmente, às placas de rede.

O endereço IP é dividido em duas partes. A primeira identifica a rede à qual o computador está conectado, e a segunda o host dentro da rede.

1.9.1- Classes de endereço

Para melhor aproveitamento dos endereços disponíveis, os desenvolvedores do TCP/IP dividiram o endereçamento IP em cinco classes, denominadas A, B,C,D e E, sendo que as três primeiras são usadas para fins de endereçamento e as duas últimas são reservadas para expansões futuras. Na classe A, apenas o primeiro octeto identifica a rede, na classe B são usados os dois primeiros octetos e na classe C temos os três primeiros octetos reservados para a rede e apenas o último reservado para a identificação dos hosts dentro da rede.

Tabela 1 - Formato de Endereço IP

Quadro 1: Formatos de endereços IP		
Classe	Intervalo de endereços	Nº de endereços IP por rede
A	1.0.0.0 a 127.255.255.255	16.777.216
В	128.0.0.0 a 191.255.255.255	65.635
C	192.0.0.0 a 223.255.255.255	256
D	224.0.0.0 a 239.255.255.255	Multicast
E	240.0.0.0 a 247.255.255.255	Uso futuro

CAPÍTULO - II IMPLEMENTAÇÃO PRÁTICA

2.1- Estudo do Caso

A sede do colégio Pitabel está localizado na Nova Vida, ocupando uma área geográfica de 6800 m², a capacidade do Instituto é de 720 alunos, o 2° está localizado na rua dos combatentes. Os Institutos estão equipados com meios de ensino e equipamentos de laboratórios credenciados.

Pitabel (Nova Vida)

Pitabel (rua dos Combatentes)

Figura 9 – Colégios Pitabel (fonte: m.facebook-Colégio pitabel)

O meu projeto foi feito nessas duas instituições. A sua estrutura está subdividida por:

- Área Administrativa
- Sala dos Professores
- Coordenações
- Sala de Informática
- Biblioteca
- Salas de Aulas

Áreas afetadas pelo Projecto:

- Área Administrativa
- Coordenações
- Salas de Informáticas

Tabela 2 - Características do Colégio Pitabel (Nova Vida)

Departamentos	Localização	Número de usuários
Direção Administrativa	R/Chão	1
Secretaria Geral	R/Chão	2
Posto Médico	1º Andar	1
Direção Geral	1° Andar	11
Direção Pedagógica	1° Andar	1
Coor. Línguas e atividades	1° Andar	4
Coor. Físicas e Biológicas e C. económicas e jurídicas	1° Andar	2
Coor. Contabilidade e Gestão	1° Andar	2
Coor. Informática e Gestão	1° Andar	2
Sala dos Professores1	R/Chão	2
Sala dos professores 2	R/Chão	

Tabela 3 - Características do Colégio Pitabel (Combatentes)

Departamentos	Localização	Número de usuários
Direção Administrativa	R/Chão	1
Secretaria	R/Chão	2
Sala dos Professores1	1° Andar	1
Sala dos professores 2	1° Andar	11
Direção Pedagógica	1° Andar	1
Direção Geral	1° Andar	4
Coor. Físicas e Biológicas e C. económicas e jurídicas	1° Andar	2
Coor. Contabilidade e Gestão	1° Andar	2
Coor. Informática e ciências humanas	1° Andar	2

Para a implementação da rede foi necessário alguns activos de redes que são:

Tabela 4 - Discrição dos equipamentos usados na rede

Nomes	Activos
Webcam (cisco IOT)	
Switch de Distribuição (Cisco 3560)	
Router (cisco 2911)	63
Switch (cisco 2960)	
Servidor (server-PT)	
PC (cisco PC-PT)	
Internet (cluster)	
Ligação 2MB (serial DCE)	
Cabo UTP CAT 5	
Impressora (Print)	
IP Phone	IP

2.2 Planta Física da Instituição

Figura 10 – Planta do colégio Pitabel (fonte Visio)

Figura 11 – Planta do colégio Pitabel 2 (fonte visio)

2.3 Desenho de Rede

Figura 12 – Planta da Rede (fonte Autora)

2.4 Tabela de segmentação das Redes

Os endereços IPS do colégio Pitabel (Nova Vida) serão disponibilizados a partir de 192.168.0.0.

Tabela 5 - Endereço de IP por VLAN (Pitabel – Nova Vida)

Vlan	Rede	Primeiro IP	Último IP	Prefixo	Broadcast
VLAN	192.168.2.1	192.168.2.3	192.168.2.2	/24	192.168.2.255
2					
VLAN	192.168.3.1	192.168.3.3	192.168.3.2	/24	192.168.3.36
3					
VLAN	192.168.4.1	192.168.4.1	192.168.4.2	/24	192.168.4.255
4					

VLAN	192.168.5.1	192.168.5.2	192.168.5.3	/24	192.168.5.255
5					
VLAN	192.168.6.1	192.168.6.2	192.168.6.4	/24	192.168.6.255
6					
VLAN	192.168.7.1	192.168.7.2	192.168.7.3	/24	192.168.7.255
7					
VLAN	192.168.8.1	192.168.8.3	192.168.3.3	/24	192.168.8.255
8					
VLAN	192.168.9.1	192.168.9.3	192.168.9.3	/24	192.168.9.255
9					
VLAN	192.168.10.1	192.168.10.3	192.168.10.3	/24	192.168.10.255
10					
VLAN	192.168.11.1	192.168.11.3	192.168.11.3	/24	192.168.11.255
11					
VLAN	192.168.12.1	192.168.12.3	192.168.12.3	/24	192.168.12.255
12					
VLAN	192.168.13.1	192.168.13.3	192.168.13.3	/24	192.168.13.255
13					
VLAN	192.168.20.1	192.168.14.3	192.168.14.3	/24	192.168.13.255
20					
VLAN	192.168.99.1	192.168.99.3	192.168.99.3	/24	192.168.99.255
99					
VLAN	192.168.100.1	192.168.100.3	192.168.100.3	/24	192.168.100.255
100					

Os endereços Ip's do colégio Pitabel (rua dos Combatentes) serão disponibilizados a partir de 192.168.0.0.

Vlan	Rede	Primeiro IP	Último IP	Prefixo	Broadcast
VLAN	192.168.15.1	192.168.2.3	192.168.15.2	/24	192.168.15.255
15					
VLAN	192.168.16.1	192.168.3.3	192.168.16.2	/24	192.168.16.36
16					
VLAN	192.168.17.1	192.168.4.1	192.168.17.2	/24	192.168.17.255
17					
VLAN	192.168.18.1	192.168.5.2	192.168.18.3	/24	192.168.18.255
18					
VLAN	192.168.191	192.168.6.2	192.168.19.4	/24	192.168.19.255
19					
VLAN	192.168.20.1	192.168.7.2	192.168.20.3	/24	192.168.20.255
20					
VLAN	192.168.21.1	192.168.8.3	192.168.21.3	/24	192.168.21.255
21					
VLAN	192.168.22.1	192.168.9.3	192.168.22.3	/24	192.168.22.255
22					
VLAN	192.168.23.1	192.168.10.3	192.168.23.3	/24	192.168.23.255
23					
VLAN	192.168.24.1	192.168.11.3	192.168.24.3	/24	192.168.24.255
24					

Tabela 6 - Endereço de IP por VLAN (Pitabel - Combatentes)

Nome Vlan	IP	Máscara
Coordenações	192.168.15.1/17	255.255.255.224
Laboratório	192.168.58.33	255.255.255.224

Finanças	192.168.58.65	255.255.255.240
Recursos Humanos	192.168.58.81	255.255.255.248
Direção	192.168.58.89	255.255.255.248
VOIP	192.168.24.0	255.255.255.0

2.4.1 Roteamento Switch

O Swicth ela permite que o tráfego seja roteado entre as vlans, fornecendo um gateway padrão para a VLAN.

Ela fornece conectividade IP da camada 3 ao switch e suporta configurações de bridging e protocolo de roteamento.

Tabela 7 - Roteamento do Switch no Pitabel (Nova Vida)

Interface vlan	Descrição	Nome da vlan	Rede
VLAN 2	Roteamento da Vlan2	Coor de CFB, CEJ	192.168.2.1
VLAN 3	Roteamento da Vlan3	C. Cont	192.168.3.1
VLAN 4	Roteamento da Vlan4	Coor.C. Humanas	192.168.4.1
VLAN 5	Roteamento da Vlan5	Sala dos Professores	192.168.5.1
VLAN 6	Roteamento da Vlan6	Direção Geral	192.168.6.1
VLAN 7	Roteamento da Vlan7	Coor.L. Atividades	192.168.7.1
VLAN 8	Roteamento da Vlan8	Sec	192.168.8.1
VLAN 9	Roteamento da Vlan9	ADM	192.168.9.1
VLAN 10	Roteamento da Vlan10	Info.G	192.168.10.1
VLAN 11	Roteamento da Vlan11	A.Trans	192.168.11.1
VLAN 12	Roteamento da Vlan12	PDG	192.168.12.1
VLAN 13	Roteamento da Vlan13	Servidor	192.168.13.1
VLAN 20	Roteamento da Vlan20	Voz	192.168.20.1

Tabela 8 – Roteamento no Switch do Pitabel (Combatentes)

Interface vlan	Descrição	Nome da vlan	Rede
VLAN 15	Roteamento da Vlan15	Coor de CFB, CEJ	192.168.15.1
VLAN 16	Roteamento da Vlan16	C. Cont	192.168.16.1
VLAN 17	Roteamento da Vlan17	Coor.C. Humanas	192.168.17.1
VLAN 18	Roteamento da Vlan18	Sala dos Professores	192.168.18.1
VLAN 19	Roteamento da Vlan19	Direção Geral	192.168.19.1
VLAN 20	Roteamento da Vlan20	Coor.L. Atividades	192.168.20.1
VLAN 21	Roteamento da Vlan21	Sec	192.168.21.1
VLAN 22	Roteamento da Vlan22	ADM	192.168.22.1
VLAN 23	Roteamento da Vlan23	Info.G	192.168.10.1
VLAN 24	Roteamento da Vlan24	Servidor	192.168.24.2
VLAN 30	Roteamento da Vlan30	Voz	192.168.30.1

2.4.2 Implementação do DHCP

Para que haja distribuição de IPS, é necessário configurar o DHCP porque ela pode garantir o acesso automático dos endereços IP nos hosts.

Uns dos principais benefícios do DHCP é a facilidade dos usuários se conectarem a uma rede.

Tabela 9 - Implementação do DHCP (Pitabel Nova Vida)

POOL	REDE	MASCARA	GATEWAY	DNS
VLAN 2	192.168.2.1	255.255.255.0	192.168.2.1	192.168.13.2
VLAN 3	192.168.3.1	255.255.255.0	192.168.3.1	192.168.13.2
VLAN 4	192.168.4.1	255.255.255.0	192.168.4.1	192.168.13.2
VLAN 5	192.168.5.1	255.255.255.0	192.168.5.1	192.168.13.2
VLAN 6	192.168.6.1	255.255.255.0	192.168.6.1	192.168.13.2
VLAN 7	192.168.7.1	255.255.255.0	192.168.7.1	192.168.13.2
VLAN 8	192.168.8.1	255.255.255.0	192.168.8.1	192.168.13.2
VLAN 9	192.168.9.1	255.255.255.0	192.168.9.1	192.168.13.2
VLAN10	192.168.10.1	255.255.255.0	192.168.10.1	192.168.13.2
VLAN 11	192.168.11.1	255.255.255.0	192.168.11.1	192.168.13.2
VLAN 12	192.168.12.1	255.255.255.0	192.168.12.1	192.168.13.2
VLAN 13	192.168.13.1	255.255.255.0	192.168.13.1	192.168.13.2
VLAN 20	192.168.14.1	255.255.255.0	192.168.14.1	192.168.13.2

Tabela 10 - Implementação do DHCP (Pitabel Combatentes)

POOL	REDE	MASCARA	GATEWAY	DNS
VLAN 15	192.168.15.1	255.255.255.0	192.168.15.1	192.168.23.2
VLAN 16	192.168.16.1	255.255.255.0	192.168.16.1	192.168.23.2
VLAN 17	192.168.17.1	255.255.255.0	192.168.17.1	192.168.23.2
VLAN 18	192.168.18.1	255.255.255.0	192.168.18.1	192.168.23.2
VLAN 19	192.168.19.1	255.255.255.0	192.168.19.1	192.168.13.2
VLAN 20	192.168.20.1	255.255.255.0	192.168.20.1	192.168.23.2
VLAN 21	192.168.21.1	255.255.255.0	192.168.21.1	192.168.23.2
VLAN 22	192.168.22.1	255.255.255.0	192.168.22.1	192.168.23.2
VLAN 23	192.168.23.1	255.255.255.0	192.168.23.1	192.168.23.2
VLAN 24	192.168.24.1	255.255.255.0	192.168.24.1	192.168.23.2

2.5. Implementa ção do Voip (VOICE OVER INTERNET PROTOCOL)

Tabela 11 - Implementação do VOIP (Pitabel Nova Vida)

Site	Departamento	Número
Pitabel	Direção Geral	102
Pitabel	Direção Pedagógica	101
Pitabel	Secretaria	106
Pitabel	Informática	109
Pitabel	Cont, Linguais	107
Pitabel	Coordenação de CFB, CEJ	108
Pitabel	Área de Transporte	104
Pitabel	Sala dos Professores	105

Tabela 12 – Implementação do VOIP (Pitabel Combatentes)

Site	Departamento	Número
Pitabel	Direção Geral	201
Pitabel	Direção Pedagógica	203
Pitabel	Secretaria	207
Pitabel	Informática	205
Pitabel	Cont, Linguais	204
Pitabel	Coordenação de CFB, CEJ	202

Pitabel	Posto Médico	208
Pitabel	Sala dos Professores	206

2.5.1- Implementação do Protocolo OSPF

O OSPF permite a divisão de uma rede em áreas e torna possível o roteamento dentro de cada área e através das áreas.

Tabela 13 – Implementação do protocolo OSPF

Dispositivo	Protocolo	Discrição	Router IP
R1	OSPF	Ligado ao S1	172.16.1.1
R2	OSPF	Ligado ao S2	172.16.2.2

2.5.2- Implementação da Rota Estática

As rotas Estáticas, são configuradas para estabelecer uma comunicação direta entre os roteadores ou mesmo entre redes diferentes, e é necessário que o administrador diga ao roteador como chegar a uma determinada rede.

Tabela 14 – Implementação da rota estática

Dispositivo	Rota Destino	Discrição
R1	172.16.16.1	Central 1
Central 1	172.16.18.1	Router-ISP
R2	172.16.20.1	Filial
Filial 1	172.16.19.1	Router-ISP

2.6. Segurança da Rede

A segurança na rede esta relacionada com proteção de um conjunto de dados, no sentido de preservar o valor que possuem para um individuo ou uma organização. O conceito se aplica a todos os aspectos de protecção de informações de dados.

Portanto, a segurança torna a rede segura, assim como protege e supervisiona as operações sendo feitas.

2.7. Camada de Aplicação

A camada de aplicação e a que mais notamos no dia-a-dia, pois interagimos direito com ela através de softwares como cliente de correio, programas de mensagens instantâneas. Do ponto de vista do conceito, a camada 7 basicamente a interface direta para inserção e recepção de dados. Nela e que actuam o DNS, o Telnet, o FTP. E ela pode tanto iniciar quanto finalizar o processo, pois como a camada física, se encontra em um dos extremos do modelo. Sendo a camada de acesso mais próxima dos usuários finais utilizaremos softwares e antivírus para proteção das informações, dos usuários finais na nossa rede que são o Avast e Norton.

2.8. Camada de acesso

A camada de acesso faz interface com dispositivos finais, como PCS, impressores telefones ip, para fornecer ao restante da rede. Na camada de acesso podem estar roteadores, switch, brigde, hubs e pontos de acesso wireless. O principal propósito da camada de acesso e fornecer um meio de conectar dispositivos a rede e controlar quais tem permissão de comunicação.

2.9. -Segurança Camada 2

Os switch da camada de acesso utilizados neste trabalho Catalyst possuem uma característica chamada port-security que controla os endereços MAC atribuídos a cada porta, identificamos um conjunto de endereços MAC permitidos para essa porta, finalmente devemos definir como interface com segurança de porta deveria reagir se ocorre uma tentativa de violação para isso utilizando o restrict, para a implementação do mesmo foi necessário seguir com os parâmetros da tabela abaixo:

2.10. -Serviços do Servidor

Para a centralização de uma rede foi implementado um servidor para cada colégio que foi fornecido os serviços de: DNS, HTTP, E-MAIL, FTP, IOT.

- HTTP-para melhor descrição ou ter informações a cerca do instituto, é necessário implementar um servidor web.
- E-MAIL-Quaisquer institutos necessitam de um método de armazenar, encaminhar, enviar e recuperar mensagem eletrónicas na rede.

- DNS- é um serviço de rede que permite a utilização de nomes de domínios como pitabel.com ao invés de utilizar seu endereço,
- FTP- na necessidade de se transferir um arquivo entre um cliente e servidor, a instituição implementou serviços FTP para possibilitar transferências de arquivos entre um cliente e um servidor.

2.10- Ativos de Rede

Tabela 15 – Discrição dos activos da Rede

ATIVOS	DESCRIÇÃO
Computador	Equipamento utilizado pelos usuários.
Router	Dispositivo de rede que tem como função interligar redes diferentes
Switch de Destribuição	Serve de concentrador em uma rede de computador com a diferença de que recebe um sinal vindo de um computador origem e entrega
Switch de Acesso	Tem a função de conectar vários dispositivos numa rede como impressoras, computadores, servidores, permitindo que compartilhem informações e conversem entre si.
Telefone	Usa a tecnologia de voz ip para fazer e transmitir chamadas em uma rede
Home gateway	Responsável por fazer a interconexão entre todos os dispositivos moveis em uma rede sem fio
Servidor	Tem a função de fornecer serviços a uma rede de computador
Impressora	Tem a função de dispositivos de saída, imprimindo textos, gráficos etc, quando está conectado a um computador ou a uma rede.
Webcam	É projetado para gravar e transmitir vídeo através da internet ligado a uma rede.
Cabos	Servem para que os dispositivos da rede se comuniquem por meio de conexões por cabos.

2.10.1- Segurança Na Rede

Tabela 16 - Segurança na Rede

Dispositivos	Interfaces	Tipo de Segurança	Nº de Mac	Mac Security
S1	F0/1-24	Restrict	4	Sticky
S2	F0/1-24	Restrict	4	Sticky
S3	F0/1-24	Restrict	4	Sticky
S4	F0/1-24	Restrict	4	Sticky
S5	F0/1-24	Restrict	4	Sticky
S6	F0/1-24	Restrict	4	Sticky

2.11- Roteador ISP

O ISP (Provedora de serviços de internet), refere-se a empresas que fornecem as pessoas acesso a internet. O roteador ISP vai receber o sinal de uma provedora (UNITEL), e este mesmo roteador ISP está ligada ao roteador Central1 e Filial dos colégios permitindo que estes mesmos dispositivos estejam conectados através da internet.

Tabela 17- Roteador ISP

Nome	Speed	Duplex	Interface	Descrição
ISP	1Gbps	Full	S0/0/0	Ligado a Central1
ISP	1Gbps	Full	S0/0/1	Ligado a Filial

2.12 - Tabela de Orçamento

Tabela 18 – Tabela de orçamento

Equipamento	Marca	Modelo	Quantia	Custos
Router	Cisco	2911	2	249.100 KZ
Multiswitch	DLINK	ML-350	2	113.356 KZ
Telefone Voip	DLINK		17	4 847.584
Home gateway	Hawei	HG532c	1	
Cabos			16	4.800 kz

Conectores		RJ45	50	1.250 KZ
Calhas	DLINK		20	8.000 KZ
Total				
		Jhkj		

SERVIÇOS		
Reestruturação da Rede	60.000 KZ	
Implementação da Rede 1.000.000KZ		
TOTAL 1.060.000 KZ		

CAPÍTULO III VALIDAÇÃO DOS RESULTADOS

3.1. Resultados

Figura 13-Estrutura da rede montada (Fonte: cisco)

Figura 14 - Telefone Voip (Fonte: Cisco)

Figura 15 - Teste de Ping entre dois computadores por via IP (Fonte: Cisco)

Figura 16 - Ping entre computadores do pitabel 1 e 2 (fonte: cisco)

Figura 17 - Ping entre computadores do Pitabel 1 (fonte: cisco)

Figura 18 - Ping entre computadores do pitabel 2 (fonte: cisco)

Figura 19 - Email entre computadores do pitabel 1 (fonte: cisco)

Figura 20 - Email entre computadores do pitabel 1 e 2 (fonte: cisco)

Figura 21 - Email entre computadores do pitabel 2 (fonte Cisco Packet Tracer)

Figura 22 – Serviço HTTP (fonte: cisco)

Figura 23 – IOT camara 01 e 02 (fonte: cisco)

Figura 24 - FTP. Envio de aquivos pitabel 1 (fonte: cisco)

Figura 25 - FTP. Verificação do arquivo no pitabel1 (fonte: cisco)

Figura 26 - FTP. Envio de arquivos de pitabel1 para pitabel2 (fonte: cisco)

Figura 27 - FTP. Verificação de transferência do arquivo de pitabel1 para pitabel2 (fonte: cisco)

3.2. Configuração dos Switches

```
hostname S1
!
enable password S1
!
username S1 password 0 S1
!
ip ssh version 2
ip domain-name Pitabel.com
spanning-tree mode pvst
interface FastEthernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
interface FastEthernet0/2
switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
!
interface FastEthernet0/3
!
interface FastEthernet0/4
interface FastEthernet0/5
!
```

```
interface FastEthernet0/6
interface FastEthernet0/7
interface FastEthernet0/8
interface FastEthernet0/9
!
interface FastEthernet0/10
interface FastEthernet0/11
interface FastEthernet0/12
interface FastEthernet0/13
interface FastEthernet0/14
interface FastEthernet0/15
interface FastEthernet0/16
interface FastEthernet0/17
interface FastEthernet0/18
interface FastEthernet0/19
interface FastEthernet0/20
```

```
!
interface FastEthernet0/21
interface FastEthernet0/22
interface FastEthernet0/23
ļ
interface FastEthernet0/24
ļ
interface GigabitEthernet0/1
switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
interface GigabitEthernet0/2
switchport trunk encapsulation dot1q
switchport mode trunk
switchport nonegotiate
ļ
interface Vlan1
ip address 172.16.99.2 255.255.255.0
shutdown
ļ
ip default-gateway 172.16.99.1
ip classless
ip flow-export version 9
line con 0
```

```
! line aux 0 ! line vty 0 4 password S1 login local transport input ssh line vty 5 13 password S1 login local transport input ssh ! end
```

3.3. Configuração dos Routers

```
hostname R1
enable secret 5 $1$mERr$jzzeYSszI5tIEoAh2kGm0/
enable password R1
ip dhcp excluded-address 192.168.2.1
ip dhcp excluded-address 192.168.3.1
ip dhcp excluded-address 192.168.4.1
ip dhcp excluded-address 192.168.5.1
ip dhcp excluded-address 192.168.6.1
ip dhcp excluded-address 192.168.7.1
ip dhcp excluded-address 192.168.8.1
ip dhcp excluded-address 192.168.9.1
ip dhcp excluded-address 192.168.10.1
ip dhcp excluded-address 192.168.20.1
ip dhcp excluded-address 192.168.100.1
ip dhcp excluded-address 192.168.99.1
ip dhcp excluded-address 192.168.12.1
!
ip dhcp pool vlan2
network 192.168.2.0 255.255.255.0
default-router 192.168.2.1
dns-server 192.168.11.2
ip dhcp pool vlan3
network 192.168.3.0 255.255.255.0
```

default-router 192.168.3.1

dns-server 192.168.11.2

ip dhcp pool vlan4

network 192.168.4.0 255.255.255.0

default-router 192.168.4.1

dns-server 192.168.11.2

ip dhcp pool vlan5

network 192.168.5.0 255.255.255.0

default-router 192.168.5.1

dns-server 192.168.11.2

ip dhcp pool vlan6

network 192.168.6.0 255.255.255.0

default-router 192.168.6.1

dns-server 192.168.11.2

ip dhcp pool vlan7

network 192.168.7.0 255.255.255.0

default-router 192.168.7.1

dns-server 192.168.11.2

ip dhcp pool vlan8

network 192.168.8.0 255.255.255.0

default-router 192.168.8.1

dns-server 192.168.11.2

ip dhcp pool vlan9

network 192.168.9.0 255.255.255.0

default-router 192.168.9.1

dns-server 192.168.11.2

ip dhcp pool vlan10

network 192.168.10.0 255.255.255.0

default-router 192.168.10.1

```
dns-server 192.168.11.2
ip dhcp pool voz
network 192.168.20.0 255.255.255.0
default-router 192.168.20.1
option 150 ip 192.168.20.1
ip dhcp pool vlan100
network 192.168.100.0 255.255.255.0
default-router 192.168.100.1
dns-server 192.168.99.2
ip dhcp pool vlan99
network 192.168.99.0 255.255.255.0
default-router 192.168.99.1
dns-server 192.168.99.2
ip dhcp pool vlan12
network 192.168.12.0 255.255.255.0
default-router 192.168.12.1
dns-server 192.168.11.2
aaa new-model
aaa authentication login default local
aaa authentication login tenelt-login local
no ip cef
no ipv6 cef
username R1 password 0 R1
ļ
```

```
license udi pid CISCO2911/K9 sn FTX1524LT5O-
license boot module c2900 technology-package uck9
ip ssh version 1
ip domain-name Pitabel.com
spanning-tree mode pvst
!
interface GigabitEthernet0/0
no ip address
duplex auto
speed auto
shutdown
interface GigabitEthernet0/1
ip address 172.16.1.1 255.255.255.0
duplex auto
speed auto
interface GigabitEthernet0/1.1
encapsulation dot1Q 1 native
ip address 172.16.99.1 255.255.255.0
ļ
interface GigabitEthernet0/1.2
encapsulation dot1Q 2
ip address 192.168.2.1 255.255.255.0
interface GigabitEthernet0/1.3
encapsulation dot1Q3
```

```
ip address 192.168.3.1 255.255.255.0
interface GigabitEthernet0/1.4
encapsulation dot1Q4
ip address 192.168.4.1 255.255.255.0
interface GigabitEthernet0/1.5
encapsulation dot1Q5
ip address 192.168.5.1 255.255.255.0
interface GigabitEthernet0/1.6
encapsulation dot1Q6
ip address 192.168.6.1 255.255.255.0
interface GigabitEthernet0/1.7
encapsulation dot1Q 7
ip address 192.168.7.1 255.255.255.0
interface GigabitEthernet0/1.8
encapsulation dot1Q8
ip address 192.168.8.1 255.255.255.0
interface GigabitEthernet0/1.9
encapsulation dot1Q9
ip address 192.168.9.1 255.255.255.0
interface GigabitEthernet0/1.10
encapsulation dot1Q 10
ip address 192.168.10.1 255.255.255.0
```

```
!
interface GigabitEthernet0/1.11
encapsulation dot1Q 11
ip address 192.168.11.1 255.255.255.0
interface GigabitEthernet0/1.12
encapsulation dot1Q 12
ip address 192.168.12.1 255.255.255.0
ļ
interface GigabitEthernet0/1.99
encapsulation dot1Q 99
ip address 192.168.99.1 255.255.255.0
interface GigabitEthernet0/1.100
encapsulation dot1Q 100
ip address 192.168.100.1 255.255.255.0
interface GigabitEthernet0/2
ip address 172.16.2.1 255.255.255.0
duplex auto
speed auto
interface GigabitEthernet0/2.2
encapsulation dot1Q 2
no ip address
interface GigabitEthernet0/2.20
encapsulation dot1Q 20
ip address 192.168.20.1 255.255.255.0
```

```
!
interface Serial0/0/0
ip address 128.16.1.1 255.255.255.0
clock rate 2000000
ļ
interface SerialO/0/1
no ip address
clock rate 2000000
shutdown
ļ
interface SerialO/1/0
no ip address
clock rate 2000000
shutdown
interface SerialO/1/1
no ip address
clock rate 2000000
shutdown
interface Vlan1
no ip address
shutdown
router ospf 1
log-adjacency-changes
network 172.16.1.0 0.0.0.255 area 0
network 172.16.2.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 0
```

network 192.168.3.0 0.0.0.255 area 0 network 192.168.4.0 0.0.0.255 area 0 network 192.168.5.0 0.0.0.255 area 0 network 192.168.6.0 0.0.0.255 area 0 network 192.168.7.0 0.0.0.255 area 0 network 192.168.8.0 0.0.0.255 area 0 network 192.168.9.0 0.0.0.255 area 0 network 192.168.10.0 0.0.0.255 area 0 network 192.168.11.0 0.0.0.255 area 0 network 192.168.20.0 0.0.0.255 area 0 network 128.16.1.0 0.0.0.255 area 0 network 192.168.100.0 0.0.0.255 area 0 ip classless ip route 0.0.0.0 0.0.0.0 128.16.1.2 ip route 192.168.15.0 255.255.255.0 30.0.0.2 ip route 192.168.16.0 255.255.255.0 30.0.0.2 ip route 192.168.17.0 255.255.255.0 30.0.0.2 ip route 192.168.18.0 255.255.255.0 30.0.0.2 ip route 192.168.19.0 255.255.255.0 30.0.0.2 ip route 192.168.20.0 255.255.255.0 30.0.0.2 ip route 192.168.21.0 255.255.255.0 30.0.0.2 ip route 192.168.22.0 255.255.255.0 30.0.0.2 ip route 192.168.24.0 255.255.255.0 30.0.0.2 ip route 192.168.2.0 255.255.255.0 30.0.0.1 ip route 192.168.3.0 255.255.255.0 30.0.0.1 ip route 192.168.4.0 255.255.255.0 30.0.0.1 ip route 192.168.5.0 255.255.255.0 30.0.0.1 ip route 192.168.6.0 255.255.255.0 30.0.0.1

```
ip route 192.168.7.0 255.255.255.0 30.0.0.1
ip route 192.168.8.0 255.255.255.0 30.0.0.1
ip route 192.168.9.0 255.255.255.0 30.0.0.1
ip route 192.168.10.0 255.255.255.0 30.0.0.1
ip route 192.168.11.0 255.255.255.0 30.0.0.1
ip route 192.168.12.0 255.255.255.0 30.0.0.1
ip route 192.168.13.0 255.255.255.0 30.0.0.1
ip route 192.168.99.0 255.255.255.0 30.0.0.2
ip route 192.168.100.0 255.255.255.0 30.0.0.2
ip route 192.168.100.0 255.255.255.0 30.0.0.1
ip route 192.168.99.0 255.255.255.0 30.0.0.1
ip flow-export version 9
dial-peer voice 1 voip
destination-pattern 200.
session target ipv4:30.0.0.2
telephony-service
max-ephones 10
max-dn 10
ip source-address 192.168.20.1 port 2000
auto assign 1 to 10
ephone-dn 1
number 101
ephone-dn 2
number 102
```

```
!
ephone-dn 3
number 103
ephone-dn 4
number 104
ephone-dn 5
number 105
ephone-dn 6
number 106
ephone-dn 7
number 107
ephone-dn 8
number 108
!
ephone-dn 9
number 109
ephone-dn 10
number 110
ephone 1
device-security-mode none
mac-address 000C.8540.B46B
type 7960
```

```
button 1:5
ephone 2
device-security-mode none
mac-address 0060.3E56.2218
type 7960
button 1:6
ephone 3
device-security-mode none
mac-address 0001.43A0.125A
type 7960
button 1:7
ephone 4
device-security-mode none
mac-address 000A.F34C.C580
type 7960
button 1:8
ephone 5
device-security-mode none
mac-address 000A.F330.287C
type 7960
button 1:9
ephone 6
device-security-mode none
mac-address 0090.2BCD.6339
```

```
type 7960
button 1:3
ephone 7
device-security-mode none
mac-address 0002.16A8.EB08
type 7960
button 1:1
!
ephone 8
device-security-mode none
mac-address 00D0.BCE5.BD5D
type 7960
button 1:2
ephone 9
device-security-mode none
mac-address 0001.4371.C5D3
type 7960
button 1:4
ļ
line con 0
login authentication default
line aux 0
line vty 0 4
password R1
login authentication TENELT-LOGIN
```

```
transport input ssh
line vty 5 13
password R1
transport input ssh
!
end
```

R1#

Conclusão

Após a implementação feita, nota-se que é possível a comunicação digital entre os entre dispositivos nos dois colégios bem como também nos departamentos locais da instituição em estudo e, após a implementação é possível trocar documento, emails, bem como outros serviços entre os colégios sem necessidade de deslocamento físico por parte dos funcionários.

De acordo com os objectivos deste trabalho concluí que a implementação de uma rede LAN e MAN trará grandes benefícios para os Colégios (Pitabel).

E com a implementação de uma rede de computadores vai garantir maior segurança na transferência de dados, tornando mais viável a comunicação entre os funcionários possibilitando à troca de informações e recursos entre os mesmos. Sem esquecer que dentre as várias vantagens que é fornecida pela rede haverá uma redução de custos, no que tange a deslocação, bens e outros serviços que antes não eram possíveis face a inexistência da rede MAN entre os colégios.

Além do mais, sabe-se que é com muito esforço que atingimos os nossos alvos, e, nessa linha de ideias, foi com muito sacrifício que consegui atingir os objectivos específicos delineados neste trabalho tornando assim o objectivo geral uma realidade.

Recomendações

- Recomenda-se à instituição:
- que tenha um administrador a rede para gerenciar a rede de forma segura;
- Que utilize cabeamento por fibra óptica para melhor transmissão dos dados na rede.
- Que contrate um bom gestor de redes para melhor gestão, controle e tratamento da rede.
- Que se utilize Switchs do tipo 2960.
- Que façam manutenção na rede de três em três meses para melhor conservação e durabilidade da rede.

Glossário de Termos

Endereço MAC: um endereço MAC (Media Access Control) também conhecido como endereço físico, é atribuído quando da fabricação de

IP: Serve pra identificar um dispositivo na rede.

Gateway: é um dispositivo que permite a comunicação entre redes.Ping: é um utilitário que usa o protocolo ICMP para testar a conectividade entre equipamentos. É um comando disponível praticamente em todos os sistemas operacionais. Seu funcionamento consiste no envio de pacotes para o equipamento de destino e na "escuta" das respostas.

IoT: Internet das coisas é um conceito que se refere à interconexão digital de objetos cotidianos com a internet, conexão dos objetos mais do que das pessoas. Em outras palavras, a internet das coisas nada mais é que uma rede de objetos físicos capaz de reunir e de transmitir dados.

Home Gateway: em Português significa "Porta de entrada ou porta de acesso á casa.

Anexos

Figura 28 – Router (fonte: dreamshop.com.br)

Figura 29 - Servidor Huawei (fonte: Huawei.com)

Figura 30 - Switch Layer (fonte: Diamond USA)

Figura 31 - Cabo de Fibra Óptica (fonte: infolp.com.br)

Figura 32 - Cabo Par trançado STP (fonte: sites.google.com)

Figura 33 – Home gateway-Huawei (fonte: 4gltemall.com)

 $Figura\ 34-webcam-camera\ Yuzun\ (fonte:\ 4gltemall.com)$

BILIOGRAFIA

Método hipotético-dedutivo – Wikipédia, a enciclopédia livre (wikipedia.org)

Entrevista – Wikipédia, a enciclopédia livre (wikipedia.org)

ALMEIDA, Marcus; ROSA, Priscila. Internet, Intranet e Redes Corporativas. Rio de Janeiro: Brasport, 2000.

DANTAS, Mario. Redes Locais – INE 5344. UFSC/CTC/INE - Departamento de Informática e Estatística. Florianópolis, [s.d.]. Disponível em: http://www.inf.ufsc.br/~mario/aulalan.pdf>. Acesso em: 1° dez. 2009.

FOROUZAN, Behrouz A. Comunicação de Dados e Redes de Computadores. 3ª edição. Porto Alegre: Bookman, 2006.

GALLO, Hancock. Comunicação entre Computadores e Tecnologias de Rede. [S.l.]: Ed. Thomson Pioneira, 2003.

ALBUQUERQUE, F. TCP/IP – Internet: protocolos e tecnologias. Rio de Janeiro: Axcel Books, 2001.