Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1

з дисципліни «Комп'ютерна графіка та мультимедіа»

Виконав:

студент групи ІП-05

Гапій Денис Едуардович

номер у списку групи: 5

Перевірив: Родіонов П. Ю.

Тема: «Вступ до комп'ютерної графіки»

Meta: навчитися створюватися та редагувати шейдери, використовуючи платформу ShaderToy та бібліотеку WebGL.

Завдання 1:

Приклади з методички:


```
Код

**Code Results of TagColor | TagColor
```


Код	<pre>void mainImage(out vec4 fragColor, in vec2 fragCoord) vec2 xy = fragCoord.xy; // get curr pxl coords xy.x = xy.x / iResolution.x; xy.y = xy.y / iResolution.y; vec4 solidRed = vec4(0.0, 0.0, 0.0, 1.0); solidRed.r = xy.x; fragColor = solidRed; } </pre>		
Шейдер	N ▶ 868.83 59.7 fps 800 x 450 Rec 4 1		
Нотатки	Так як ділення на iResolution обмежело координати в діапазоні від 0 до 1 (так само як і діапазон для кольорів у vec4). Прирівнявши коодинати по X та параметр Червоного - маємо зміну чорного кольору на чорний за допомогою градієнту		

текстура каналу +градієнт по Голубому параметру


```
код

**Roginal Proof of the Control of the Control
```


Завдання 2:

Створіть шейдер, що заливає довільним кольором екран.

Завдання 3:

В тексті роботи змініть приклад з горизонтальним градієнтом на вертикальний

або діагональний. Також можна додати нові кольори.

Завдання 4:

Спробуйте написати шейдер, що робить зображення чорно-білим.

Завдання 5:

Спробуйте написати шейдер, який міняє кольорове зображення на чорно-біле

та знову робить його кольоровим.

ш	_	_		
н	Δ		Гν	IA
	U	ra ⁻	ın	v

Кольорове зображення змінюється на Чорно-Біле відносно часу (по синусоїді)

Висновок:

Виконуючи цю лабораторну роботу, я дізнався основні теоретичні поняття, по типу: Шейдер, GLSL, Графіка, Програмовані шейдери і тд. Опанував базовий функціонал платформи <u>ShaderToy</u> та основні методи / синтаксис мови GLSL.

Також використовуючи наведені викладачем приклади та трохи експерементуючи зі зміною значень координат / кольорів, бавлячись з додаванням у шейдер залежності від часу - вдалось реалізувати чимало різноманітних моделей забарвлення шейдеру.

Дізнався про нові ресурси: веб-плафторму https://gamedevelopment.tutsplus.com/ та цікавий ютуб канал (The Art of Code). Дякую ;)

He менш корисним було почути, а потім і прочитати про алгоритм Cosine Wave Pattern.