CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

- 1. Why does math consider infinity?
- 2. Do infinite things exist

IBM 1301 disk storage unit (1961) 28MB capacity \$2,100 per month (\$18,000 today)

Logistics

- Course registration survey was due Thursday
 - Didn't complete it? No problem! Just do it soon
- Exercise 0_2 due Tuesday
 - Didn't complete it? No problem (this time)! Just request an extension.
- Exercise 0_3 due Today
 - Pick one of python/java
 - Didn't complete it? No problem(this time)! Just request an extension.
- Exercise due/release dates will be more "batched" going forward, staggered this time to test out the submission system
- First Quiz
 - Released Tomorrow, due Tuesday
- Exercises 1 x released tomorrow, see assignments page for deadlines

Last Class

- What does it mean to "represent" things with strings?
- How can we represent natural numbers with binary strings?
- How can we count things?
- What does it mean for a set to be infinite?

How many binary strings of any length?

- If we don't limit the length, how many strings are there?
 - $-\infty$
- What naturals can/can't we represent
- What does it mean to "represent"?
 - A surjective mapping from a set of strings onto a set
 - Ideally a bijection, but not necessary
- Are there things we can't represent?

Differences Between "real" computing and Math

- $(-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$
 - Answer?
- Nearly everything in math in infinite
- Everything in computing is finite
- If the numbers are large enough, computers will always start to do the math wrong

Why bother with infinity?

Representing N with binary strings

- Let $f_*(b) = f_n(b)$ when |b| = n
- For a binary string b, if $f_*(b) = x$, then $f_*(0b) = x$
 - Leading zeros don't change the value
 - Our procedure above gives an onto mapping from binary strings to the natural numbers
 - We can represent all natural numbers with binary strings

Countablility and Uncountability

- A set S is countable if $|S| \leq |\mathbb{N}|$
 - If $|S| = |\mathbb{N}|$, then S is "countably infinite"
- A set S is countable if there is an onto (surjective) function from \mathbb{N} to S

$\{0,1\}^*$ is countable

- We showed $|\{0,1\}^*| \ge |N|$
- Countable if $|\{0,1\}^*| \leq |\mathbb{N}|$
- Need to "represent" strings with naturals
- Idea: build a "list" of all strings, represent each string by its index in that list

Listing all strings

•
$$\{0,1\}^0 = \{""\}$$

•
$$\{0,1\}^1 = \{0,1\}$$

•
$$\{0,1\}^2 = \{00,01,10,11\}$$

•
$$\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$$
7 8 9 10 11 12 13 14

How Many Python/Java programs?

- How do we represent Java/Python programs?
- How many things can we represent using that method?

How many functions $\Sigma^* \to \Sigma^*$?

- Short answer: Too many!
 - Uncountable
 - $-\left|\left\{f\left|f:\Sigma^*\to\Sigma^*\right\}\right|>\left|\mathbb{N}\right|\right|$
- Conclusion: Some functions cannot be computed by any java/python program
- How to prove this?

Uncountably many functions

- If we show a subset of $\{f \mid f \colon \Sigma^* \to \Sigma^*\}$ is uncountable, then $\{f \mid f \colon \Sigma^* \to \Sigma^*\}$ is uncountable too
- Consider just the "yes/no" functions (decision problems): $\{f \mid f : \{0,1\}^* \rightarrow \{0,1\}\}$
- The right-hand column is an infinite binary string that represents that function

b	f(b)
un	1
0	0
1	0
00	1
01	1
10	1
11	1
000	0
001	0

$$|\{0,1\}^{\infty}| > |\mathbb{N}|$$

• Idea:

- show there is no way to "list" all finited binary strings
- Any list of binary strings we could ever try will be leaving out elements of $\{0,1\}^{\infty}$

$|\{0,1\}^{\infty}| > |\mathbb{N}|$

Attempt at mapping \mathbb{N} to $\{0,1\}^{\infty}$

 b_0 b_2 b_3 b_4 b_5 b_6 b_1

A string that our attempt missed

Derive by selecting each b_i as the opposite of the b_i from row i

$|\{0,1\}^{\infty}| > |\mathbb{N}|$ proof summary

- Assume towards reaching a contradiction that $\{0,1\}^{\infty}$ is countable
- This means we can find a bijection $f: \mathbb{N} \to \{0,1\}^{\infty}$
- Using f, we can find $s \in \{0,1\}^{\infty}$ which is not in the range of f:
 - let bit i of s be the opposite of bit i of f(i)
 - This is missing from the range because it must be different from every output (at the position indexed by the input)

Other countable/uncountable sets

- Countable sets:
 - Integers
 - Rational numbers
 - Any finite set

- Uncountable Sets:
 - Real numbers
 - The power set of any infinite set

Cantor's Theorem

- For any set S, $|S| < |2^S|$
- Even if S is infinite!
- Idea:
 - $-|S| \le |2^S| \text{ (why?)}$
 - There cannot be a bijection between S and 2^S

$$|S| \neq |2^S|$$

- Consider, towards reaching a contradiction, that there is a bijection $f: S \to 2^S$
- Consider the set $P = \{x : x \in S \land x \notin f(x)\}$
 - What are the "types" of:
 - S
 - 2^S
 - x
 - f(x)
 - P
- Let f(p) = P, is $p \in P$?

Conclusion

- There are countably many strings
 - And therefore binary strings, programs, etc.
- We can't write down (or compute) all things from an uncountable set
- There are uncountably many functions
- Some functions can't be implemented