PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-359153

(43) Date of publication of application: 26.12.2001

(51)Int.CI.

H04Q 7/36 H04B 7/26 H04B 17/00 H04L 12/56 H04L 29/00 H04L 29/08

(21)Application number: 2000-180212

(71)Applicant: NEC CORP

(22)Date of filing:

15.06.2000

(72)Inventor: SAKATA MASAYUKI

(54) RADIO COMMUNICATION SYSTEM, BASE STATION AND MOBILE STATION

(57)Abstract:

PROBLEM TO BE SOLVED: To efficiently transmit and receive non-voice data by increasing/ decreasing the number of radio lines to be used between a base station and a mobile station. SOLUTION: This system is provided with a controller 4 to control the quantity of the radio lines, which is constituted of a measuring means 42 for measuring the data storage amounts of a buffer 21 of a base station 2 or a buffer 31 of a mobile station 3, a comparing means 43 for comparing each data storage amount measured by the measuring means 42 with first and second thresholds, and an increasing/decreasing means 44 for increasing/decreasing the quantity of radio lines so that each data storage amount can be set between the first threshold and the second threshold based on the compared result of the comparing means 43.

LEGAL STATUS

[Date of request for examination]

20.04.2001

[Date of sending the examiner's decision of rejection]

03.03.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-359153

(P2001-359153A)

(43)公開日 平成13年12月26日(2001.12.26)

(51) Int.Cl.7		酸別記号	F	F I			ī	テーマコード(参考)
H04Q	7/36		H0	4 B	17/00		В	5 K O 3 O
H04B	7/26				7/26		105D	5 K 0 3 4
	17/00						K	5 K 0 4 2
H04L	12/56		H0	4 L	11/20		102C	5K067
	29/00				13/00		S	
		永龍査審	有	於簡	マダス () () () () () () () () () (OL	(全 10 頁)	最終頁に続く
(21)出願番号		特願2000-180212(P2000-180212)	(71) 出願人 000004237					
					日本電	気株式	会社	
(22)出願日		平成12年6月15日(2000.6.15)	東京都港区芝五丁目7番1号					
			(72) 発明者 坂田 正征			正行		
					東京都	港区芝	五丁目7番1	号 日本電気株
					式会社	内		
			(74)	代理人	人 100065	385		
					弁理士	山下	穣平	
								最終頁に続く

(54) 【発明の名称】 無線通信システム、基地局及び移動局

(57)【要約】

【課題】 基地局と移動局との間で使用している無線回線の数を増減して、非音声データを効率よく送受信することを課題とする。

【解決手段】 基地局2のバッファ21又は移動局3のバッファ31のデータ蓄積量を計測する計測手段42と、計測手段42によって計測されたデータ蓄積量の各々と第1,第2のしきい値とを比較する比較手段43と、比較手段43の比較結果に基づいてデータ蓄積量の各々が第1のしきい値と第2のしきい値の間になるように無線回線の数量を増減する増減手段44とを有する無線回線の数量の制御装置4とを備えることを特徴とする。

【特許請求の範囲】

【請求項1】 移動局に対してデータを送信する際に使用する下り回線の数量を決定する第1決定手段と、前記データを一時的に蓄積する第1バッファと、前記第1決定手段によって決定された数量の前記下り回線を通じて前記第1バッファに蓄積されている前記データを前記移動局に対して送信する第1データ送信手段とを備えた基地局と、

前記基地局に対してデータを送信する際に使用する上り 回線の数量を決定する第2決定手段と、前記データを一 時的に蓄積する第2バッファと、前記第2決定手段によ って決定された数量の前記上り回線を通じて前記第2バ ッファに蓄積されている前記データを前記基地局に対し て送信する第2データ送信手段とを備えた移動局と、 前記第1バッファ, 前記第2バッファのデータ蓄積量の 各々を計測する第1, 第2計測手段と、前記第1, 第2 計測手段によって計測された前記データ蓄積量の各々と 第1、第2のしきい値とを各々比較する第1、第2比較 手段と、前記第1, 第2比較手段の比較結果に基づいて 前記データ蓄積量の各々が前記第1のしきい値と前記第 2のしきい値の間になるように前記上り回線又は前記下 り回線の数量を増減する第1, 第2増減手段とを有する 無線回線の数量の制御装置とを備えることを特徴とする 無線通信システム。

【請求項2】 前記制御装置は、前記第1又は第2計測 手段によって前記第1又は第2バッファのデータ蓄積量 を計測するタイミングを計時するためのタイマを備える ことを特徴とする請求項1に記載の無線通信システム。

【請求項3】 前記制御装置は、前記移動局又は前記基 地局に内蔵されていることを特徴とする請求項1又は2 に記載の無線通信システム。

【請求項4】 前記第1,又は第2増減手段によって増加された無線回線の数量が前記基地局と前記移動局との間で通信の開始時に相互に確認して使用できる前記上り回線又は下り回線の最大数を超えないようにすることを特徴とする請求項1から3のいずれか1項に記載の無線通信システム。

【請求項5】 移動局に対してデータを送信する際に使用する無線回線の数量を決定する決定手段と、前記データを一時的に蓄積するバッファと、前記決定手段によっ 40 て決定された数量の前記無線回線を用いて前記バッファに蓄積されている前記データを前記移動局に対して送信するデータ送信手段とを備えた基地局において、

前記パッファのデータ蓄積量の各々を計測する計測手段と、前記計測手段によって計測された前記データ蓄積量の各々と第1,第2のしきい値とを比較する比較手段と、前記比較手段の比較結果に基づいて前記データ蓄積量の各々が前記第1のしきい値と前記第2のしきい値の間になるように前記無線回線の数量を増減する増減手段とを有する無線回線の数量の制御装置とを備えることを50

特徴とする基地局。

【請求項6】 基地局に対してデータを送信する際に使用する無線回線の数量を決定する決定手段と、前記データを一時的に蓄積するバッファと、前記決定手段によって決定された数量の前記無線回線を用いて前記バッファに蓄積されている前記データを前記基地局に対して送信するデータ送信手段とを備えた移動局において、前記バッファのデータ蓄積量の各々を計測する計測手段

2

と、前記計測手段によって計測された前記データ蓄積量 の各々と第1,第2のしきい値とを比較する比較手段 と、前記比較手段の比較結果に基づいて前記データ蓄積 量の各々が前記第1のしきい値と前記第2のしきい値の 間になるように前記無線回線の数量を増減する増減手段 とを有する無線回線の数量の制御装置とを備えることを 特徴とする移動局。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、無線通信システム、基地局及び移動局に関し、特に、複数の無線回線を 20 用いてデータの送受信を行う無線通信システム、基地局 及び移動局に関する。

[0002]

【従来の技術】従来、携帯電話機、PHSなどの移動局と基地局との間でデータを送受信する際に、複数の無線回線を用いて音声データなどのリアルタイム性が要求されるデータ以外のデータ(以下、「非音声データ」と称する。)の送受信を行う手法が、たとえばTIA/EIAから発行されたTIA/EIA-95-B(Mobile Station-Base Station Compatibility Standard for Wideband Spread Spectrum Cellular Systems 00/MAR/99)や、TIA/EIA/IS-707-A (Data Service Options for Spread Spectrum Systems 00/APR/99)に規格されている。

【0003】上記規格のたとえばTIA/EIA/IS-707A.8(Radio Link Protocol Type 2)によると、下り回線及び上り回線が、9.6Kbps又は14.4Kbpsの速度でデータ伝送できる無線回線を各々最大8回線ずつ使用することができるとされており、たとえば基地局側でヘッダ部分にRLPである旨を付して非音声データを複数の下り回線に順々に振り分けて送信し、移動局側で受信したデータをヘッダ部分のRLPに従って1つにまとめるようにして通信している。

【0004】このような手法により、TIA/EIA/IS-707A. のRLP Type1の下り回線及び上り回線を1回線ずつ用いて通信する場合に比して、少ない伝送時間で非音声データを送受信できるようにしている。なお、移動局と基地局との間で種々のデータを送受信する前に、これらの間で使用する無線回線の数が決定され、その決定した数の無線回線を使用して、データを送受信するようにしている。

50 [0005]

【発明が解決しようとする課題】しかし、従来の技術では、種々のデータを送受信する前に、移動局と基地局との間で使用する無線回線の数が決定され、その決定された数の無線回線を使用して通信がされているが、通信中に、非音声データのデータ量に応じて使用している無線回線の数が増減されていなかった。

【0006】そのため、送信したいデータ量が多い場合にはデータを所要の伝送時間で伝送できなかったり、送信したいデータ量が少ない場合には確保している無線回線を有効に使用せず、不要な無線回線が生じることもあった。この場合、この不要な無線回線の確保によって基地局と周囲に存在する他の移動局との間で使用できる無線回線の数が減り、無線通信システム内でデータを効率よく送受信することができない。

【0007】そこで、本発明は、通信中に基地局と移動局との間で使用している無線回線の数を増減して、非音声データを効率よく送受信することを課題とする。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明は、移動局に対してデータを送信する際に使 用する下り回線の数量を決定する第1決定手段と、前記 データを一時的に蓄積する第1バッファと、前記第1決 定手段によって決定された数量の前記下り回線を通じて 前記第1バッファに蓄積されている前記データを前記移 動局に対して送信する第1データ送信手段とを備えた基 地局と、前記基地局に対してデータを送信する際に使用 する上り回線の数量を決定する第2決定手段と、前記デ ータを一時的に蓄積する第2バッファと、前記第2決定 手段によって決定された数量の前記上り回線を通じて前 記第2バッファに蓄積されている前記データを前記基地 局に対して送信する第2データ送信手段とを備えた移動 局と、前記第1バッファ,前記第2バッファのデータ蓄 積量の各々を計測する第1, 第2計測手段と、前記第 1, 第2計測手段によって計測された前記データ蓄積量 の各々と第1, 第2のしきい値とを各々比較する第1, 第2比較手段と、前記第1, 第2比較手段の比較結果に 基づいて前記データ蓄積量の各々が前記第1のしきい値 と前記第2のしきい値の間になるように前記上り回線又 は前記下り回線の数量を増減する第1、第2増減手段と を有する無線回線の数量の制御装置とを備えることを特 徴とする。

【0009】また、本発明は、移動局に対してデータを送信する際に使用する無線回線の数量を決定する決定手段と、前記データを一時的に蓄積するバッファと、前記決定手段によって決定された数量の前記無線回線を用いて前記バッファに蓄積されている前記データを前記移動局に対して送信するデータ送信手段とを備えた基地局において、前記バッファのデータ蓄積量の各々を計測する計測手段と、前記計測手段によって計測された前記データ蓄積量の各々と第1、第2のしきい値とを比較する比 50

較手段と、前記比較手段の比較結果に基づいて前記データ蓄積量の各々が前記第1のしきい値と前記第2のしきい値の間になるように前記無線回線の数量を増減する増減手段とを有する無線回線の数量の制御装置とを備えることを特徴とする。

4

【0010】さらに、本発明は、基地局に対してデータを送信する際に使用する無線回線の数量を決定する決定手段と、前記データを一時的に蓄積するバッファと、前記決定手段によって決定された数量の前記無線回線を用いて前記バッファに蓄積されている前記データを前記基地局に対して送信するデータ送信手段とを備えた移動局において、前記バッファのデータ蓄積量の各々を計測する計測手段と、前記計測手段によって計測された前記データ蓄積量の各々と第1,第2のしきい値とを比較する比較手段と、前記比較手段の比較結果に基づいて前記データ蓄積量の各々が前記第1のしきい値と前記第2のしきい値の間になるように前記無線回線の数量を増減する増減手段とを有する無線回線の数量の制御装置とを備えることを特徴とする。

20 [0011]

【発明の実施の形態】以下、本発明の実施形態について 図面を参照して説明する。

【0012】 (実施形態1)

(構成の説明) 図1は、本発明の実施形態1の無線通信 システムの構成図である。図1には、相互変換装置(In ter Working Function:以下、「IWF」と称する。) 1と、2台の移動制御局 (Base Station:以下、「B S」と称する。) 2, 2'と、移動局 (Mobile Statio n:以下、「MS」と称する。)3,3'と、2台の制御 装置4,4'とを示している。なお、実際には、他にも 複数のMS、BS等が無線通信システム上に存在する。 【0013】 IWF1は、図示しないフレームリレー網 やSMDS (Switched Multi-megabit Service) 網に接 続されており、また、IWF1とBS2, 2'とは、光 ファイバなどのケーブルを介して接続されており、この ケーブルのうち1方を非音声データの送受信用とし、他 方を制御信号の送受信用としている。また、制御装置 4, 4'とBS2, 2'とは各々光ファイバなどのケー ブルを介して接続されている。さらに、BS2とMS3 とはたとえば3本の下り回線と2本の上り回線とからな る無線回線で接続されている。MS3と制御装置4とは それぞれ1本ずつの無線回線で接続されている。

【0014】図2は、図1のMS3、BS2及び制御装置4の内部構成を示すブロック図である。図2(a)に示すように、MS3は、BS2から送信された非音声データ及びBS2側で使用できると判定された下り回線の最大数を受信する受信手段35と、受信した下り回線として使用可能な最大数とMS3本体のデータの処理能力とに基づいて実際に使用する下り回線の数を決定する決定手段36と、BS2宛に非音声データ及び決定した下

り回線の数を送信する送信手段34とを備えたRLP(Radio Link Protocol)制御部32と、送信手段34によって送信する非音声データを一時的に蓄積するバッファ31と、PPP(Point to Point Protocol) やその他の上位層プロトコルなどを制御する上位プロトコル制御部33とを備えている。

【0015】図2(b)に示すように、BS2は、IWF1から送信された非音声データ及びMS3から送信されるMS3側で使用できると判定された上り回線の最大数を受信する受信手段24と、受信した上り回線として使用可能な最大数と周囲の無線回線の使用状況とに基づいて実際に使用する上り回線の数を決定する決定手段25と、MS3宛に非音声データ及び決定した上り回線の数を送信する送信手段23とを備えたRLP制御部22と、IWF1からの非音声データをMS3へ送信する前に一時的に蓄積させてデータの送信タイミングなどを調整するバッファ21とを備えている。

【0016】図2(c)に示すように、制御装置4は、タイマ41からのタイミングに従って有線回線又は無線回線を通じてバッファ21,31のデータ蓄積量を計削する計測手段42と、計測されたデータ蓄積量と第1,第2の情報量のしきい値との大小をそれぞれ比較する比較手段43と、比較結果に基づいて無線回線の数量を増減する増幅手段44とを備えている。

【0017】なお、IWF1は、MS3及び他のMSとデータの送受信を行うBSを切り替えるものであり、図示しない電話機などから送信された非音声データをBS2にケーブルを介して出力するものである。

【0018】また、TCP(Transport control Protocol)を使用すると、ウィンドウサイズによってデータを 先送りする場合があり、この場合には、定常的にデータ がバッファ21、31に対して出力されることになるた め、バッファ21、31にデータが蓄積される。

【0019】(動作の説明)まず、本実施形態の動作の原理について図1を参照して説明する。たとえばBS2 から送信されたデータを、IWF1を中継してMS3へ送信する場合には、データを受けたIWF1からBS2に対して、BS2とMS3との間で無線回線の数を決定させるための制御信号がケーブルを介して出力される。BS2では、制御信号を入力すると、BS2側で使40用できる下り回線の最大数がいくつであるか判定される。そして、BS2の送信手段23によって、判定された下り回線の最大数がMS3に対して送信される。MS3では、受信手段35により送信された下り回線の最大数が受信される。

【0020】すると、これをトリガとして、MS3側で使用できる上り回線の最大数がいくつであるか判定される。そして、MS3の送信手段34によって、判定された上り回線の最大数がBS2に対して送信される。BS2では、受信手段24によりこれが受信される。

【0021】各受信手段24,35によって受信された使用できる無線回線の最大数は、決定手段25,36へ出力される。決定手段25では、入力した最大数とBS2に接続されているMSの無線回線の使用状況とに基づいて、実際に使用する上り回線の無線回線の数を決定する。また、入力した使用できる無線回線の最大数とMS3のデータの処理の処理能力とに基づいて下り回線の無線回線の数を決定する。こうして決定された上り回線及び下り回線の数は、送信手段23によって、MS3側へ送信され、受信手段35でこれが受信される。

【0022】その後、実際にBS2とMS3との間で無線回線が形成される。また、送信手段23は、IWF1に対して上り回線及び下り回線の数が決定した旨を通知する。IWF1は、この通知を受けると、ケーブルを介して、BS2に対してデータを送信する。BS2では、送信されたデータを受信して、バッファ21に一時的に蓄積する。

【0023】その後、送信タイミングなどが調整されてからバッファ21に蓄積しているデータを抽出して、それのヘッダ部分にRLPである旨を付してから、形成された下り回線を通じて、MS3に対して送信する。

【0024】ここで、BS2からMS3に対して送信するデータ量よりも、IWF1から送信される非音声データのデータ量の方が多い場合や、BS2からMS3に対して送信データにエラーなどが生じることによってデータを再送する必要が生じた場合には、バッファ21に蓄積されるデータ量が増加し、さらにデータの送信に遅延が生じるようになる。

【0025】このような事態を回避するには、無線回線の数を増加させて、送信するデータ量を増やすことが考えられ、たとえば、BS2に接続されている他のMSとの間の無線回線の使用数が減るなどのように、BS2に接続されている他のMSの無線回線の使用状況が変われば無線回線の数を増加させることも可能となる。

【0026】一方、BS2からMS3に対して送信するデータ量よりも、IWF1から送信される非音声データのデータ量の方が少ない場合には、送信タイミングをとるとすぐにデータが送信されるため、バッファ21にデータ量が蓄積されずにほぼスルー状態でMS3側へ送信される。しかもデータの送信に実際使用されず、不要な無線回線が生じる。この場合、この不要な無線回線の確保によってBS2と周囲に存在するMSとの間で使用できる無線回線の数が減り、BS2と周囲に存在するMSとの間でデータを効率よく送受信することができない。【0027】このように、一旦決定した無線回線の数に従ってBS2とMS3との間でデータを送受信すると、一方で必要数の無線回線が確保できない事態が生じ、他

【0028】そこで、以下説明するように、本実施形態 50 では、タイマ41に従って、定期的にバッファ21,3

方で不要な無線回線を確保する事態が生じる。

1に蓄積されているデータ量を、計測手段43によって 計測して、計測されたデータ量としきい値とを比較手段 43によって比較して、比較結果に基づいて無線回線の 数を増減手段44によって増減する。こうして、BS2 に接続されている他のMSとの間で非音声データを効率 よく送受信できるようにする。

【0029】なお、上記の本実施形態の動作の原理は、IWF1からMS3側へデータが送信される場合を例に説明したが、MS3からIWF1側へデータが送信される場合にも、同様に送信手段34,23、受信手段35,24及び決定手段36により、上り回線及び下り回線の本数が決定され、その後に形成された無線回線によって、データの送受信が行われる。

【0030】図3は、無線回線(下り回線及び上り回線)の数量を増加させる場合の動作を示すフローチャートである。まず、上記のような手法によって、無線回線の数が決定され、その後、実際に無線回線が形成される。そして、BS2のパッファ21にIWF1から送信されるデータが一時的に蓄積されて、送信タイミングなどが調整されてからデータの送信が開始する。すると、タイマ41がオンされ、たとえば5秒とか10秒のように一定時間毎に計測手段42に対して信号が出力される。

【0031】計測手段42は、タイマ41から信号が出力されると、所定時間が経過したと判別して(ステップA1)、これをトリガとしてバッファ21に蓄えられているデータ量を参照して、バッファ21に蓄積されているデータ量と境界値(しきい値)とを比較する(ステップA2)。

【0032】このときバッファ21に蓄積されているデータ量が境界値未満の場合には図3に示す処理を終了する。一方、バッファ21に蓄積されているデータ量が境界値以上の場合には(ステップA3)、再度、MS3に対してMS3側で使用できる下り回線の最大数がいくつであるかを増減手段44によって確認する。

【0033】そして、実際に使用している下り回線の数がステップA3で確認した下り回線の最大数よりも少ない場合には(ステップA4)、BS2本体と他のMSとの間における下り回線の使用状況が、たとえば空きチャネル数を調べるなどして、増減手段44によって確認される。そして、BS2と他のMSとの間における下り回線の使用数が少なくて、BS2とMS3との間の下り回線の数を増加できる場合には、ステップS5へ移行し、そうでない場合には、図3に示す処理を終了する。

【0034】ステップS5では、増減手段44によって、バッファ21に蓄積されているデータ量に応じて、MS3側で使用できる下り回線の最大数を超えない範囲で増数が決定され、たとえばTIA/EIA-95-Bや、TIA/EIA/IS-707-Aの規定に基づいて、新たに追加する下り回線を確保して下り回線の数が増加される。

【0035】なお、ステップA2でバッファ21のデータの蓄積量との比較で用いられる境界値は、たとえば、RLPtype2を利用した場合であって、無線回線の1回線あたり、Multiplex Optionが1,3,5,7,9,11,13,15 (たとえば、データ伝送速度が9.6Kbyte) の時は、最大データ伝送量が [20byte/20ms = 5Kbyte/5s] であることから、5 Kbyteとしている。したがって、バッファ21のデータ

の蓄積量が5Kbyte以上の場合には、下り回線を1回線、

8

10Kbyte以上の時には下り回線を2回線というように、5 10 Kbyte毎に可能な範囲で下り回線を追加する。

【0036】また、無線回線の1回線あたり、Multiple x Optionが2, 4, 6, 8, 10, 12, 14, 16 (たとえば、データ伝送速度が14.4Kbyte) の時は、最大データ伝送量が [32b yte/20ms = 8Kbyte/5s] であることから、境界値は、8K byteとしている。したがって、バッファ21のデータの蓄積量が8Kbyte以上の時には下り回線を1回線、16Kbyte以上の時には下り回線を2回線というように、8Kbyte 毎に可能な範囲で下り回線を追加する。

【0037】そして、最大の下り回線が確保できたかどうかを増減手段44によって確認する(ステップA6)。下り回線の増加処理手順が完了したと確認されると、図3に示す処理が終了して、増加した下り回線もデータの送受信に使用される。このように、BS2からMS3へデータを送信する下り回線の数量を増加させることで、バッファ21のデータの蓄積量が緩和され、データ遅延を解消することができる。

【0038】(実施形態2)つぎに、図3を用いて、上り回線を数量を増加させる場合の動作について説明する。なお、本実施形態の無線通信システムの構成は、図1、図2と同様である。

【0039】まず、実施形態1と同様に無線回線の数が決定され、その後、実際に無線回線が形成される。そして、上位プロトコル制御部33からのデータが、MS3内のバッファ31に一時的に蓄積されて、送信タイミングなどが調整されてからデータの送信が開始する。すると、実施形態1と同様に、タイマ41からの信号によって所定時間が経過したと判別されると(ステップA1)、バッファ31に蓄積されているデータ量と境界値とを比較する(ステップA2)。

0 【0040】このときバッファ31に蓄積されているデータ量が境界値未満の場合には図3に示す処理を終了する。一方、バッファ31に蓄積されているデータ量が境界値以上の場合には(ステップA3)、再度、BS2に対してBS2側で使用できる上り回線の最大数がいくつであるかを増減手段44によって確認する。

【0041】そして、実際に使用している上り回線の数がステップA3で確認した上り回線の最大数よりも少ない場合には(ステップA4)、増減手段44によって、バッファ31に蓄積されているデータ量に応じて、MS 50 3側で使用できる上り回線の最大数を超えない範囲で追

加する上り回線数が決定され、たとえばTIA/EIA-95-B や、TIA/EIA/IS-707-Aの規定に基づいて、新たに追加す る上り回線を確保して上り回線の数が増加される(ステ ップA5)。なお、ステップA2でバッファ31のデー タの蓄積量との比較で用いられる境界値は、実施形態1

と同様としている。

【0042】そして、最大の上り回線が確保できたかど うかを増減手段44によって確認する(ステップA 6)。上り回線の増加処理手順が完了したと確認される と、図3に示す処理が終了して、増加した上り回線もデ ータの送受信に使用される。このように、MS3からB S2へデータを送信する上り回線の数量を増加させるこ とで、バッファ31のデータの蓄積量が緩和され、デー タ遅延を解消することができる。

【0043】(実施形態3)図4は、無線回線を数量を 減少させる場合の動作を示すフローチャートである。な お、本実施形態の無線通信システムの構成は、図1,図 2と同様である。

【0044】まず、実施形態1と同様に無線回線の数が 決定され、その後、実際に無線回線が形成される。その 後に、BS2のパッファ21にIWF1から送信される データが一時的に蓄積されて、送信タイミングなどが調 整されてからデータの送信が開始する。そして、実施形 態1と同様に、タイマ41からの信号によって所定時間 が経過したと判別されると(ステップA11)、計測手 段42は、タイマ41からの信号をトリガとしてバッフ ァ21に蓄えられているデータ量と境界値とを比較する (ステップA12)。

【0045】このときバッファ21に蓄えられているデ ータ量が境界値と比較され(ステップA13)、境界値 未満であると確認された場合には図4に示す処理を終了 し、一方、そうでない場合には、不要な下り回線が存在 するとみなして、増減手段44によって実際に形成して いる下り回線の数をたとえばTIA/EIA-95-Bや、TIA/EIA/ IS-707-Aの規定に基づいて、たとえば半減する (ステッ プA14)。なお、ステップA12でバッファ21のデ ータの蓄積量と比較として用いられる境界値は例えば、 数Kbyteのように非常に小さい値としている。

【0046】そして、下り回線の減少処理手順が完了し A15)。具体的には、下り回線の数を減らしすぎた場 合には、たとえば実施形態1で説明したように、下り回 線を増加して下り回線数を調整するなどして所要の減少 処理を行う。

【0047】下り回線の減少処理手順が完了したと確認 されると、図4に示す処理が終了して、残った下り回線 によってデータの送受信がされる。このように、BS2 からMS3ヘデータを送信する下り回線の数量を減少さ せることで、BS2と他のMSとの間で使用できる下り 回線が増加するので、BS2に接続されている他のMS 50

のデータの伝送効率を上げることができる。

【0048】なお、本実施形態では、バッファ21に蓄 えられているデータ量が所定の境界値を下回っていると きに、下り回線の数をたとえば半減させる場合を例に説 明したが、1/3に減らすとか1/4に減らすとしても よい。

10

【0049】(実施形態4)つぎに、図4を用いて、上 り回線の数量を減少させる場合の動作について説明す る。なお、本実施形態の無線通信システムの構成は、図 1, 図2と同様である。

【0050】まず、実施形態1と同様に無線回線の数が 決定され、その後、実際に無線回線が形成される。そし て、上位プロトコル制御部33からのデータが、MS3 内のバッファ31に一時的に蓄積されて、送信タイミン グなどが調整されてからデータの送信が開始する。する と、実施形態1と同様に、タイマ41からの信号によっ て所定時間が経過したと判別されると(ステップA1 1)、バッファ31に蓄積されているデータ量と境界値 とを比較する (ステップA12)。

【0051】このときバッファ31に蓄積されているデ ータ量が境界値未満であると確認された場合には図4に 示す処理を終了し、一方、そうでない場合には(ステッ プA13)、不要な上り回線が存在するとみなして、増 - 減手段44によって実際に形成している上り回線の数を たとえばTIA/EIA-95-Bや、TIA/EIA/IS-707-Aの規定に基 づいて、たとえば半減する(ステップA14)。なお、 ステップA12でバッファ21のデータの蓄積量と比較 として用いられる境界値はたとえば数byteのように非常 に小さい値としている。

【0052】そして、上り回線の減少処理手順が完了し たかどうかを増減手段44によって確認する(ステップ A15)。上り回線の減少処理手順が完了したと確認さ れると、図4に示す処理が終了して、残った上り回線に よってデータの送受信がされる。このように、MS3か らBS2ヘデータを送信する上り回線の数量を減少させ ることで、BS2と他のMSとの間で使用できる上り回 線が増加するので、BS2に接続されている他のMSの データの伝送効率を上げることができる。

【0053】以上本発明の各実施形態では、無線回線数 たかどうかを増減手段44によって確認する(ステップ 40 を増減する場合を例に説明したが、無線チャネルや周波 数帯域数を増減することによってデータの伝送効率を向 上させてもよい。

[0054]

【発明の効果】以上、説明したように、本発明は、基地 局のバッファ又は移動局のバッファのデータ蓄積量を計 測して、このデータ蓄積量と第1,第2のしきい値とを 比較する。そして、比較結果に基づいてデータ蓄積量が 第1のしきい値と第2のしきい値の間になるように上り 回線の数量を増減するため、基地局と移動局との間で使 用している上り回線の数を増減して、非音声データを効

率よく送受信することができる。

【図面の簡単な説明】

【図1】本発明の実施形態1の無線通信システムの構成 図である。

【図2】図1のMS3、BS2及び制御装置4の内部構成を示すプロック図である。

【図3】無線回線の数量を増加させる場合の動作を示すフローチャートである。

【図4】無線回線を数量を減少させる場合の動作を示す フローチャートである。

【符号の説明】

1 IWF

2, 2' BS

3, 3' MS

4, 4' 制御装置

21, 31 パッファ

22, 32 RLP制御部

33 上位プロトコル制御部

23,34 送信手段

24, 35 受信手段

25, 36 決定手段

41 タイマ

10 42 計測手段

43 比較手段

44 增減手段

【図4】

フロントページの続き

(51) Int. C1. ⁷

識別記号

FΙ

テーマコード(参考)

H O 4 L 29/08

H O 4 L 13/00

307Z

Fターム(参考) 5K030 GA02 GA13 HA08 HC09 JL01 JL04 JT09 KA03 LC11 MA13

MB15

5K034 AA01 BB06 EE03 HH50 HH64

5K042 AA08 DA00 FA01 FA15 GA01

JA01 NA04

5K067 AA13 BB04 DD30 DD52 DD53

DD57 EE02 EE10 EE23 EE66

HH22 HH23 KK15 LL11

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потить

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.