

- Why do we care?
 - Subnetting
 - Access lists
 - Used in many other places

Joke

- There are only 10 types of people in the world.
- Those that understand binary and those that don't.

- All computers function by using a system of switches that can either be on or off
 - Off = 0
 - On = 1
- Binary values = 0 or 1

- Cable
 - Either has current or doesn't
 - Binary values = 0 or 1

- 2 states
- 2 cables

- $2 \times 2 = 4$
- Or $2^2 = 4$

- And so on: 4 cables gives 16 binary values:
- 00001000
- 0001 1001
- 00101010
- 0011 1011
- 01001100
- 01011101
- 01101110
- 0111 1111

- 2 states
- 4 cables

- $2 \times 4 = 16$
- Or $2^4 = 16$

- 2 to the power of 0 (2^0) = 1
- 2 to the power of 1 (2¹)
 - which is 2 multiplied together 1 time (2x1) = 2
- 2 to the power of 2 (2²)
 - which is 2 multiplied together 2 times (2x2) = 4
- 2 to the power of 3 (2³)
 - which is 2 multiplied together 3 times (2x2x2) = 8
- 2 to the power of 4 (2⁴)
 - which is 2 multiplied together 4 times (2x2x2x2) = 16

- 2 to the power of 5 (2⁵)
 - which is 2 multiplied together 5 times (2x2x2x2x2) = 32
- 2 to the power of 6 (2⁶)
 - which is 2 multiplied together 6 times (2x2x2x2x2x2) = 64
- 2 to the power of 7 (2^7)
 - which is 2 multiplied together 7 times (2x2x2x2x2x2x2) = 128
- 2 to the power of 8 (2⁸)
 - which is 2 multiplied together 8 times (2x2x2x2x2x2x2x2) = 256

A table to remember

Base Exponent	27	26	2 ⁵	24	2 ³	2^2	21	20
Binary	1	1	1	1	1	1	1	1
Decimal	128	64	32	16	8	4	2	1

Example 1

• If all binary bits are a one, the binary equivalent of 255 is:

Base Exponent	27	26	2^5	2^4	2 ³	2 ²	21	20
Binary	1	1	1	1	1	1	1	1
Decimal	128	64	32	16	8	4	2	1

$$\bullet$$
 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

- Or written this way:
 - 11111111 in binary = 255 in decimal

Example 2

What is the binary equivalent of 1 in decimal?

```
Base Exponent
2^7
2^6
2^5
2^4
2^3
2^2
2^1
2^0

Binary
0
0
0
0
0
0
0
0
1

Decimal
\frac{120}{120}
\frac{14}{120}
\frac{12}{120}
\frac{14}{120}
\frac{12}{120}
```

- 1 in binary = 1 in decimal
- Or written this way:
 - 00000001 in binary = 1 in decimal

Example 3 Question:

• What is the binary equivalent of 192 in decimal?

Base Exponent	27	26	2 ⁵	2^4	2 ³	2 ²	21	20
Binary	0	0	0	0	0	0	0	0
Decimal	128	64	32	16	8	4	2	1

Example 3: Answer

• What is the binary equivalent of 192 in decimal:

Base Exponent	27	26	2 ⁵	2^4	2 ³	2 ²	21	2^{0}
Binary	1	1	0	0	0	0	0	0
Decimal	128	64	32	16	8	4	2	1

- 128 + 64 = 192 in decimal
- Or written this way:
 - 11000000 in binary = 192 in decimal

Example 4: Question

What is the binary equivalent of 253 in decimal?

Base Exponent	2^7	2^6	2^5	2^4	2 ³	2^2	21	2^{0}
Binary	0	0	0	0	0	0	0	0
Decimal	128	64	32	16	8	4	2	1

Example 4: Answer

What is the binary equivalent of 253 in decimal:

- 128 + 64 + 32 + 16 + 8 + 4 + 1= 253 in decimal
- Or written this way:
 - 11111101 in binary = 253 in decimal

- An IPv4 address is an address used to uniquely identify a device on an IP network
- 4 octets in length
- Value in each octet is 8 bits (8 cables) in the range 0 to 255

```
10. 129. 16. 123 (decimal) 0000101.10000001.00010000.01111011 (binary)
```



```
10. 129. 16. 123 (decimal) 0000101.10000001.00010000.01111011 (binary)
```



```
10. 129. 16. 123 (decimal) 0000101.10000001.00010000.01111011 (binary)
```

```
Base Exponent
27
26
25
24
23
22
21
20

Binary
0
0
0
0
1
0
1
0

Decimal
128
64
32
16
8
4
2
1
```

- \bullet 8 + 2 = 10
 - 00001010 in binary = 10 in decimal


```
10. 129. 16. 123 (decimal) 0000101.10000001.00010000.01111011 (binary)
```

```
Base Exponent
27
26
25
24
23
22
21
20

Binary
1
0
0
0
0
0
0
0
1

Decimal
128
64
32
16
8
4
2
1
```

- 128 + 1 = 129
 - 10000001 in binary = 129 in decimal


```
10. 129. 16. 123 (decimal) 0000101.10000001.00010000.01111011 (binary)
```

```
Base Exponent
27
26
25
24
23
22
21
20

Binary
0
0
0
1
0
0
0
0

Decimal
128
64
32
16
8
4
2
1
```

- 16 = 16
 - 00001000 in binary = 16 in decimal


```
10. 129. 16. 123 (decimal) 00001010.10000001.00010000.01111011 (binary)
```

```
Base Exponent
27
26
25
24
23
22
21
20

Binary
0
1
1
1
1
0
1
1

Decimal
128
64
32
16
8
4
2
1
```

- 64 + 32 + 16 + 8 + 2 + 1 = 123
 - 01111011 in binary = 123 in decimal

Calculators

- Binary, Decimal and Hexadecimal Converter:
 - https://davidbombal.com/binary-decimalhexadecimal-converter/
- Visual Binary to Binary:
 - https://davidbombal.com/decimal-to-binary/
- Subnet Calculator:
 - https://davidbombal.com/subnetting-conceptscalculator/

Test yourself

- Unlimited tests:
 - https://davidbombal.com/free-quiz/
 - https://davidbombal.com/binary-to-decimal-quiz/
 - https://davidbombal.com/decimal-to-binary-quiz/

