IL PROBLEMA DELLA HOLTIPLICAZIONE DI SEQUENZE DI MATRICI

- A MATRICE Pxq
- B MATRICE 9x1

Cij = Ai. Bij + Aiz · Bij + ... + Aig · Bqj

PRODOTTO DI MATRICI "RIGHE-PER-COLONNE"

BCR, 1] Atrik) MATRIX-HULTIPLY (A,B) p = roust A) q := columns [A] ri= columns (B) for i = 1 to P for j= 1 to r do C[i,]) i=> for ki= 1 to 9 do Ctij) =: C[ij] + A[i,k]. B[k,j] COMPLESSITA' O(P.9.1)

MOLTIPLICAZIONE DI SEQUENZE DI MATRICI

- A NOI INTERESSA CALCOLARE A, A2' 11, 'An

- IL PRODOTTO DI MATRICI E' ASSOCIATIVO,

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$P_0 \times P_3$$

$$P_1 \times P_3$$

$$P_0 \times P_2$$

$$P_1 \times P_2$$

$$P_2 \times P_3$$

$$P_1 \times P_2$$

$$P_2 \times P_3$$

$$P_1 \times P_2$$

<u>esempio</u>

$$A_1: 10 \times 100$$
 $A_2: 100 \times 5$
 $A_3: 5 \times 50$
 $\#((A_1 \cdot A_2) \cdot A_3) = 10 \cdot 100 \cdot 5 + 10 \cdot 100 \cdot 50$
 $\#((A_2 \cdot A_3)) = 100 \cdot 5 \cdot 50 + 10 \cdot 100 \cdot 50$
 $\#(A_1 \cdot (A_2 \cdot A_3)) = 100 \cdot 5 \cdot 50 + 10 \cdot 100 \cdot 50$
 $= 25000 + 50000 = 75,000$

ESEMPIO (DIVERSE PARENTESIZZAZIONI)

$$A_1 \times A_2 \times A_3 \times A_4$$

$$((A_1 \times A_2) \times (A_3 \times A_4))$$

$$(A_1 \times (A_2 \times A_3) \times A_4))$$

$$(A_{1}\times(A_{2}\times(A_{3}\times A_{4})))$$

$$\left(\left(\left(A_{1}\times A_{2}\right)\times A_{3}\right)\times A_{4}\right)$$

$$((A_1 \times (A_2 \times A_3) \times A_4)$$

DEF. PARENTESIZZAZIONI COMPLETE DI UNA SEQUENZA DI MATRICI

SI DICE CHE UN'ESPRESSIONE E E' COMPLETAMENTE PARENTEGIZZATA SE VALE UNA DELLE SEGUENTI CONDIZIONI:

- E E' UNA SINGOLA MATRICE
- E HA LA FORMA (E1.E2), DOVE
 - E, ED E, SOND ESPRESSION

COMPLETAMENTE PARENTESIZZATE.

METODO ESAUSTIVO

LA COMPLESSITA DEL METODO ESAUSTIVO E'
DOMINATA DAL NUMERO DI DIVERSE PARENTESIZZAZIONI

P(n) = # DIVERSE PARENTESIZZAZIONI DI UNA SEQUENZA DI M MATRICI

$$\begin{cases} P(1) = 1 \\ P(n) = \sum_{i=1}^{m-1} P(i) \cdot P(m-i) \end{cases}$$

$$P(1)=1$$

 $P(2)=1$
 $P(3)=P(1)P(2)+P(2)\cdot P(1)=2$
 $P(4)=P(1)\cdot P(3)+P(2)\cdot P(2)+P(3)\cdot P(1)=2+1+2=5$

$$P(n) = \sum_{i=1}^{m-1} P(i) \cdot P(n-i) = \sum_{i=1}^{m-2} P(i) \cdot P(n-i) = \sum_{i=1}^{m-2} P(i)$$

$$P(n) = i = 1$$

$$= 2P(1) \cdot P(m-1) + \sum_{i=2}^{n-2} P(i) \cdot P(m-i) \ge 2 \cdot P(m-i)$$

$$= 2P(n) > 2P(m-1) \ge 2 \cdot 2P(m-2) = 2^2 \cdot P(m-2)$$

$$= 2^{n-2} \cdot P(2) = 2^{n-2}$$

$$= P(n) = \Omega(2^n)$$

NUMERI DI CATALAN

$$P(n+1) = \frac{1}{m+1} {2m \choose n} = \frac{(2m)!}{(m+1)! m!}$$

$$P(n) = \Omega\left(4^{m}/\sqrt{m^{3}}\right)$$

CARATTERIZZAZIONE DI UNA SOLUZIONE OTTIMA
SIA E UNA PARENTESIZZAZIONE OTTIMA
PER LA SERUENZA DI MATRICI (AI, A2,..., Am) DI
DIMENSIONI (PO, PI, P2,..., Pn).

Suppositions the $n \ge 2$, $E = (E_1 \cdot E_2)$,

CON E_1 parentesizzazione di (A_1, \dots, A_k) E_2 parentesizzazione di (A_{k+1}, \dots, A_m) $1 \le k \le m-1$

POICHE'

#(E) = #(E1) + #(E2) + P3 P4 Pn

NE SEGUE CHE

-E1 PARENTESIZZAZIONE OTTIHA DI (A1,..., A4)

- EZ PARENTESIZZAZIONE OTTIMA DI (AKHI)", AM)

PERTANTO LA CLASSE DEI SOTTOPROBLEMI DA RISOLVERE E' DATA DA:

 $f(A_{i},...,A_{j}): 1 \leq i \leq j \leq m$

m[i,j) = COSTO DI UMA SOLUZIONE OTTIMA
DI (Ai, m, Aj)

DEFINIZIONE RICORSIVA DEL COSTO DI UNA PARENTESIZZAZIONE OTTINA

$$m[i,j] = \begin{cases} 0 \\ min \left(m[i,k] + m[k+1,j] + Pi-PkPj \right) & i \neq j \\ i \leq k \leq j \end{cases}$$

PASSO 3: CALCOLO DEL VALORE DI UNA SOLUZ. OTTIMA MATRIX_CHAIN_ORDER (P) for i =1 to m m[i,i) = = for A != 1 to m-1 do for i:=1 to m- D do $j := \Delta + i$ m[ij] 1=+00 for ki=i to j-1 do $q := m[i_1k] + m[k_1)j] + P_{i-1}P_kP_j$ if $q < m[i_1j]$ then $m[i_1j] := q$ $s[i_1j] := q$ return m,s FIN QUI 9/11/2021

PASSO 4: COSTRUZIONE DI UNA SOLUZIONE OTTIMA MATRIX-CHAIN-NULTIPLY (A, S, i, () if i=j then return Ai X:= MATRIX_CHAIN_MULTIPLY (A, S, i, SCi,j)

Y:= MATEIX_CHAIN_HULTIPLY (A,S, S[ij]+1,j)
return HATZIX_MULTIPLY (X,Y)

 $(A_1 \times (A_2 \times A_3)) \times (A_2 \times A_3) \times A_6$

ESEMP10

$$A = (A_1, A_2, A_3, A_4, A_5, A_6)$$

 $p = (30, 35, 15, 5, 10, 20, 25)$

	1	/ 2		3		4	· 5		6	•	
1	0	15750	78	75	937.	5 3	11875	3	15/2	25	
2	-	0	262	79		- 5	Z 125	3		3	
3	-	-	0		750	73		4	10 500	>	
4	-		+_	+	730	4	2500	3	5975	۲	
7		_			0		1000	4	3500	S	
5	_	-	_	Τ,		T		+	_	4	
6	,_	_	_	 -	_		0	Ľ	5000	ľ	
							_		0		
(A1.(A2.A3)).((A4.A5).A6)											

ESEMPIO

$$p = (30, 35, 15, 5, 10, 20, 25)$$

30×35×15=15,750

35×15×5= 15,750÷30×5=2,625

15×5×10= 2,625÷35×10=750

5×10×20= 750÷15×20=1,000

10×20×25= 1,000÷5×25=5,000

$$A = (A_1, A_2, A_3, A_4, A_5, A_6)$$

p = (30, 35, 15, 5, 10, 20, 25)

	1	2_	3	4	5	6
1	0	157501	7875	9375 3	118753	15125
2	_	O	2625	4375 ³	7125 ³	195003
3	_	_	0	750 ³	2500 3	5375 ³
4	_	1	1	0	1000 4	3200 2
5	_	1	1	1	0	5000 5
6	_	_)	_	—	O

 $(A_1 \times (A_2 \times A_3)) \times ((A_4 \times A_5) \times A_6)$

Es.
$$m[1,5] = min (m[1,k) + m[k+1,5] + P_0 P_k P_5)$$

 $= min \{m[1,1) + m[2,5] + P_0 P_1 P_5,$
 $m[1,2) + m[3,5] + P_0 P_2 P_5,$
 $m[1,3) + m[4,5] + P_0 P_3 P_5,$
 $m[1,4) + m[5,5] + P_0 P_4 P_5,$
 $= min \{0 + 7(25 + 30.35.20,$
 $15750 + 2500 + 30.15.20,$
 $15755 + 1000 + 30.5.20,$
 $15755 + 0 + 30.10.20,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$
 $15750 + 2500 + 9000,$