CS 170 HW 1

Due on 2017-01-29, at 11:59 pm

1 (★) Study Group

List the names and SIDs of the members in your study group.

2 $(\star\star\star)$ Recurrence Relations

Solve the following recurrence relations and give a Θ bound for each of them.

- (a) (i) T(n) = 3T(n/4) + 4n
 - (ii) $T(n) = 45T(n/3) + .1n^3$
 - (iii) $T(n) = T(n-1) + c^n$, where c is a constant.
- (b) $T(n) = 2T(\sqrt{n}) + 3$, and T(2) = 3. (Hint: this means the recursion tree stops when the problem size is 2)

$3 \quad (\bigstar \bigstar \bigstar)$ Majority Elements

An array A[1...n] is said to have a majority element if more than half of its entries are the same. Given an array, the task is to design an efficient algorithm to tell whether the array has a majority element, and, if so, to find that element. The elements of the array are not necessarily from some ordered domain like the integers, and so there can be **no** comparisons of the form "is A[i] > A[j]?". (Think of the array elements as GIF files, say.) However you can answer questions of the form: "is A[i] = A[j]?" in constant time. Four part solutions are required for each part below.

- (a) Show how to solve this problem in $O(n \log n)$ time. (Hint: Split the array A into two arrays A_1 and A_2 of half the size. Does knowing the majority elements of A_1 and A_2 help you figure out the majority element of A? If so, you can use a divide-and-conquer approach.)
- (b) Can you give a linear-time algorithm?

4 $(\star\star\star\star)$ Squaring vs multiplying: matrices

The square of a matrix A is its product with itself, AA.

- (a) Show that five multiplications are sufficient to compute the square of a 2×2 matrix.
- (b) What is wrong with the following algorithm for computing the square of an $n \times n$ matrix? "Use a divide-and-conquer approach as in Strassen's algorithm, except that instead of getting 7 subproblems of size n/2, we now get 5 subproblems of size n/2 thanks to part (a). Using the same analysis as in Strassen's algorithm, we can conclude that the algorithm runs in $\Theta(n^{\log_2 5})$ time."

(c) In fact, squaring matrices is no easier than multiplying them. Show that if $n \times n$ matrices can be squared in $\Theta(n^c)$ time, then any $n \times n$ matrices can be multiplied in $\Theta(n^c)$ time.

5 $(\star\star\star)$ Hadamard matrices

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix [1]
- For $k > 0, H_k$ is the $2^k \times 2^k$ matrix

$$H_k = \left[\begin{array}{c|c} H_{k-1} & H_{k-1} \\ \hline H_{k-1} & -H_{k-1} \end{array} \right]$$

- (a) Write down the Hadamard matrices H_0 , H_1 , and H_2 .
- (b) Compute the matrix-vector product H_2v , where H_2 is the Hadamard matrix you found above, and $v = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is a column vector. Note that since H_2 is a 4×4 matrix, and v is a vector of length 4, the result will be a vector of length 4.
- (c) Now, we will compute another quantity. Take v_1 and v_2 to be the top and bottom halves of v respectively. Therefore, we have that $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. Compute $u_1 = H_1(v_1 + v_2)$ and $u_2 = H_1(v_1 v_2)$ to get two vectors of length 2. Stack u_1 above u_2 to get a vector u of length 4. What do you notice about u?
- (d) Suppose that

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

is a column vector of length $n=2^k$. v_1 and v_2 are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2}=2^{k-1}$. Write the matrix-vector product $H_k v$ in terms of H_{k-1} , v_1 , and v_2 (note that H_{k-1} is a matrix of dimension $\frac{n}{2} \times \frac{n}{2}$, or $2^{k-1} \times 2^{k-1}$). Since H_k is a $n \times n$ matrix, and v is a vector of length n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product $H_k v$, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time.