

ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

KHOÁ LUẬN TỐT NGHIỆP

Học có giám sát với dữ liệu có phân bố thay đổi bằng mô hình dựa trên quan hệ nhân quả

GVHD: ThS. Trần Trung Kiên và TS. Nguyễn Ngọc Thảo

Nhóm sinh viên thực hiện:

20120032 - Phan Trường An

20120061 - Phạm Dương Trường Đức

Nội dung

- 1. Giới thiệu bài toán và một số phương pháp giải quyết đã được đề xuất
- 2. Mô hình mạng nơ-ron với phương pháp huấn luyện dựa trên quan hệ nhân quả CACM
- 3. Thực nghiệm
- 4. Kết luận & hướng phát triển

Nội dung

- 1. Giới thiệu bài toán và một số phương pháp giải quyết đã được đề xuất
- 2. Mô hình mạng nơ-ron với phương pháp huấn luyện dựa trên quan hệ nhân quả CACM
- 3. Thực nghiệm
- 4. Kết luận & hướng phát triển

a. Giới thiệu bài toán

Dữ liệu có phân bố thay đổi (Data distribution shift):

- Dữ liệu mà mô hình phải dự đoán có sự thay đổi phân bố so với dữ liệu được dùng để huấn luyện mô hình.
- Hệ quả: độ chính xác của kết quả dự đoán của mô hình giảm.

Khóa luận này tập trung vào bài toán dữ liệu có phân bố đầu vào thay đổi.

Định nghĩa bài toán

Cho dữ liệu của K miền huấn luyện, dữ liệu có dạng $\{(x_i, y_i)_{i=1}^n\}$. Trong đó:

- (x, y) phát sinh từ P(X, Y) = P(X)P(Y|X).
- Các miền này có cùng phân bố P(Y|X) nhưng khác phân bố P(X).
- Các cặp (x, y) có thể có thêm thuộc tính a (địa điểm, thời gian,...).

Yêu cầu: tìm một hàm dự đoán $g: \mathcal{X} \to \mathcal{Y}$ có kết quả dự đoán tốt trên miền mục tiêu. Miền mục tiêu có cùng phân bố P(Y|X) nhưng khác phân bố P(X) so với các miền huấn luyện.

Khó khăn và thách thức của bài toán

- Dữ liệu thực tế có thể xuất hiện nhiều loại phân bố thay đổi, phân bố thay đổi có thể xảy ra trên nhiều thuộc tính.
- Các thuật toán khái quát miền thường chỉ chống chịu tốt với một loại phân bố thay đổi.
- Các thuật toán khái quát miền thường chỉ giải quyết phân bố thay đổi trên một thuộc tính.

Ý nghĩa

- Giúp mô hình học máy giữ được hiệu suất tốt và đưa ra dự đoán đủ tốt với yêu cầu của người dùng.
- Giúp mở rộng mô hình học máy.

b. Một số phương pháp giải quyết bài toán đã được đề xuất

Empirical Risk Minimization (ERM)

- Xem như dữ liệu huấn luyện và kiểm tra có cùng phân bố với nhau.
- Ước lượng độ lỗi thực nghiệm (empirical risk) bằng cách tính trung bình của hàm lỗi trên dữ liệu huấn luyện.
- Tìm cách tối thiểu độ lỗi trung bình trên dữ liệu huấn luyện.

Correlation Alignment (CORAL) (2016) [1]

- Căn chỉnh dữ liệu huấn luyện theo dữ liệu của miền mục tiêu dựa trên hiệp phương sai.
- Dữ liệu huấn luyện sẽ có phân bố giống với dữ liệu của miền mục tiêu.

Causally Adaptive Constraint Minimization (CACM) (2022)

- Được đề xuất trong bài báo "Modeling the data-generating process is necessary for out-of-distribution generalization" ở hội nghị ICLR bởi nhóm tác giả của Microsoft Research [2].
- Tận dụng kiến thức về quá trình tạo ra dữ liệu và đồ thị nhân quả để tìm ra ràng buộc đúng.
- Vượt trội hơn các thuật toán khái quát miền khác trong nhiều trường hợp.
- Có thể hoạt động tốt trên dữ liệu có phân bố thay đổi trên nhiều thuộc tính.
- CACM là phương pháp chính được tìm hiểu sâu trong khóa luận này.

Nội dung

- 1. Giới thiệu bài toán và một số phương pháp giải quyết đã được đề xuất
- 2. Mô hình mạng nơ-ron với phương pháp huấn luyện dựa trên quan hệ nhân quả CACM
- 3. Thực nghiệm
- 4. Kết luận & hướng phát triển

a. Dạng mô hình

Hình 1: Ví dụ về mạng truyền thẳng kết nối đầy đủ đơn giản

b. Huấn luyện mô hình bằng phương pháp CACM

- b.1. Xác định đồ thị nhân quả ứng với dữ liệu đang xét
- b.2. Huấn luyện mô hình bằng phương pháp CACM từ dữ liệu huấn luyện và đồ thị nhân quả

b.1. Xác định đồ thị nhân quả ứng với dữ liệu đang xét

Hình 2: Canonical causal graph

Nguồn: Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization

b.1. Xác định đồ thị nhân quả ứng với dữ liệu đang xét

Hình 3: Đồ thị nhận dạng nhân quả

Nguồn: Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization

Quan hệ Causal và Independent

Hình 4: Ví dụ về quan hệ Causal và Independent

		Tr	Test			
	0.9		0.8		0.1	
Y=0	/ 3		\forall	ત્વ	~	0
Y=1	9	∞	80	5	மு	9

	Train				Test	
	15°		60°		90°	
Y=0	-	0	۲	ર્	H	0
Y=1	IJ	\$	4	6	9	8

Colored MNIST: $A_{cause} = color$ (color bị ảnh hưởng bởi nhãn Y) Rotated MNIST: $A_{ind} = rotate$ (rotate độc lập với nhãn Y)

Thuật toán CACM

Đầu vào: Bộ dữ liệu $(x_i, a_i, y_i)_{v=1}^n$, đồ thị nhân quả DAG

Đầu ra: Hàm dự đoán g(x): $X \to Y$

Pha 1: Rút ra các ràng buộc độc lập chính xác từ đồ thị nhân quả

Pha 2: Áp dụng Regularization penalty sử dụng các ràng buộc đã rút

ra

Thuật toán CACM

Đầu vào: Bộ dữ liệu $(x_i, a_i, y_i)_{v=1}^n$, đồ thị nhân quả DAG

Đầu ra: Hàm dự đoán g(x): $X \to Y$

Pha 1: Rút ra các ràng buộc độc lập chính xác từ đồ thị nhân quả

Pha 2: Áp dụng Regularization penalty sử dụng các ràng buộc đã rút ra

Thuật toán CACM

Đầu vào: Bộ dữ liệu $(x_i, a_i, y_i)_{v=1}^n$, đồ thị nhân quả DAG

Đầu ra: Hàm dự đoán g(x): $X \to Y$

Pha 1: Rút ra các ràng buộc độc lập chính xác từ đồ thị nhân quả

Pha 2: Áp dụng Regularization penalty sử dụng các ràng buộc đã rút ra

D-separation [3]

Nếu G là một đồ thị có hướng trong đó X,Y và S là các tập hợp đỉnh rời rạc. Một đường đi vô hướng p giữa X và Y được xem là bị chặn (d-separated) bởi S khi và chỉ khi có ít nhất một trong hai điều kiện sau thoả mãn:

- 1. p chứa một chain $x \to z \to y$ hoặc một fork $x \leftarrow z \to y$ sao cho nút nằm giữa z thuộc S.
- 2. p chứa một collider $x \to z \leftarrow y$ sao cho nút nằm giữa z và "con cháu" của z không thuộc S.

Nếu S chặn mọi đường đi từ một nút trong X đến một nút trong Y thì X và Y d-separated bởi S nghĩa là X và Y độc lập có điều kiện trên S ($X \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid \! Y \mid \! S$).

Các điều kiện độc lập có ràng buộc thoả mãn bởi X_c là:

- 1. Independent: $X_c \perp \perp A_{ind}$; $X_c \perp \perp E$; $X_c \perp \perp A_{ind} | Y$; $X_c \perp \perp A_{ind} | E$; $X_c \perp \perp A_{ind} | Y$, E
- 2. Causal: $X_c \perp \perp A_{cause}|Y; X_c \perp \perp E; X_c \perp \perp A_{cause}|Y, E|$
- 3. Confounded: $X_c \perp \!\!\! \perp A_{conf}$; $X_c \perp \!\!\! \perp E$; $X_c \perp \!\!\! \perp A_{conf}|E$
- 4. Selected: $X_c \perp \perp A_{sel}|Y; X_c \perp \perp A_{sel}|Y, E$

Thuật toán CACM

Pha 1: Rút ra các ràng buộc độc lập chính xác từ đồ thị nhân quả Xét các thuộc tính $A \in \mathcal{A}$:

Nếu X_c và A d-seperated **th**ì

 $X_c \perp \perp A$ là ràng buộc độc lập hợp lệ **hoặc nếu** X_c và A d-seperated điều kiện A_s^* **th**ì $X_c \perp \perp A | A_s$ là ràng buộc độc lập hợp lệ

* (A_s là tập con bất kì của $\mathcal{A}\setminus\{A\}\cup\{Y\}$)

Thuật toán CACM

Đầu vào: Bộ dữ liệu $(x_i, a_i, y_i)_{v=1}^n$, đồ thị nhân quả DAG

Đầu ra: Hàm dự đoán g(x): $X \to Y$

Pha 1: Rút ra các ràng buộc độc lập chính xác từ đồ thị nhân quả

Pha 2: Áp dụng Regularization penalty sử dụng các ràng buộc đã rút ra

Thuật toán CACM

Pha 2: Áp dụng Regularization penalty sử dụng các ràng buộc đã rút ra

Xét các thuộc tính $A \in \mathcal{A}$:

Nếu
$$X_c \perp \perp A$$
 thì

$$RegPenalty_A = \sum_{|E|} \sum_{i=1}^{|A|} \sum_{j>i} MMD\left(P(\phi(x)|A_i), P(\phi(x)|A_j)\right)$$

hoặc nếu $X_c \perp \!\!\! \perp A|A_s$ thì

$$RegPenalty_A = \sum_{|E|} \sum_{a \in A_s} \sum_{i=1}^{|A|} \sum_{j>i} MMD\left(P(\phi(x)|A_i, a), P(\phi(x)|A_j, a)\right)$$

$$RegPenalty = \sum_{A \in \mathcal{A}} \lambda_A RegPenalty_A$$

$$g_1, \phi = \operatorname{argmin}_{g_1, \phi}$$
; $L(g_1(\phi(x)), y) + RegPenalty$

Nội dung

- 1. Giới thiệu bài toán và một số phương pháp giải quyết đã được đề xuất
- 2. Mô hình mạng nơ-ron với phương pháp huấn luyện dựa trên quan hệ nhân quả CACM
- 3. Thực nghiệm
- 4. Kết luận & hướng phát triển

Bộ dữ liệu MNIST

Hình 5: Colored MNIST

		Tr	Test				
	15°		60	60°		90°	
Y=0	-	\2	۲	ş	Ħ	0	
Y=1	IJ	8	2	0	9	8	

Hình 6: Rotated MNIST

2 lớp:

- 0: số bé hơn 5
- 1: số lớn hơn hoặc bằng 5

Colored MNIST: $A_{cause} = color$ (thuộc tính color bị ảnh hưởng bởi nhãn)

Rotated MNIST: $A_{ind} = rotate$ (thuộc tính rotate độc lập với nhãn)

Bộ dữ liệu MNIST

		Tr	Test			
	(0.9, 15°)		(0.8, 60°)		(0.1, 90°)	
Y=0	~	0	7	*	7	0
Y=1	8	9	6	4	9	b

Hình 7: Một số mẫu dữ liệu Colored+Rotated MNIST

Colored+Rotated MNIST: thay đổi phân bố đa thuộc tính:

- $A_{cause} = color$
- $A_{ind} = rotate$

Bộ dữ liệu small NORB

Hình 8: Một số mẫu dữ liệu small NORB

5 lớp: động vật bốn chân, nhân vật, máy bay, xe tải, xe ô tô

Lighting small NORB: $A_{cause} = lighting$ (lighting bị ảnh hưởng bởi nhãn)

Azimuth small NORB: $A_{ind} = azimuth$ (azimuth độc lập với nhãn)

Lighting+Azimuth small NORB: thay đổi phân bố đa thuộc tính

- $A_{cause} = lighting$
- $A_{ind} = azimuth$

So sánh kết quả thí nghiệm với bài báo gốc

Algo	MNIST Accuracy			small NORB Accuracy				
	color	rotation	$col{+}rot$	lighting	azimuth	$light{+}azi$		
	Các kết quả trong bài báo gốc							
ERM	30.9 ± 1.6	61.9 ± 0.5	25.2 ± 1.3	65.5 ± 0.7	78.6 ± 0.7	64.0 ± 1.2		
CORAL	28.5 ± 0.8	$62.5\ \pm0.7$	23.5 ± 1.1	64.7 ± 0.5	77.2 ± 0.7	62.9 ± 0.3		
CACM	$70.4\ \pm0.5$	62.4 ± 0.4	$54.1\ \pm1.3$	$85.4\ \pm0.5$	$80.5\ \pm0.6$	$69.6\ \pm1.6$		
	Các kết quả từ thí nghiệm của khóa luận							
ERM	30.8 ± 0.6	61.6 ± 0.2	25.5 ± 1.0	70.8 ± 1.7	77.6 ± 0.7	64.1 ± 4.3		
CORAL	30.7 ± 0.3	61.3 ± 0.9	24.9 ± 1.6	72.2 ± 2.5	$77.8\ \pm1.3$	68.0 ± 3.2		
CACM	72.0 ± 0.7	61.9 ± 0.6	$49.5\ \pm0.3$	86.8 ± 3.4	77.5 ± 1.8	76.7 ± 4.7		

Bảng 1: Kết quả thí nghiệm trên các bộ dữ liệu MNIST và small NORB. Các kết quả ở đây là độ chính xác dự đoán (%) trên tập kiểm tra.

So sánh CACM ràng buộc đúng với CACM ràng buộc sai

(Thí nghiệm mở rộng ngoài bài báo gốc)

Algo	color	MNIST Accuracy rotation	$col{+}rot$
CACM ràng buộc đúng	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	61.9 ± 0.6	49.5 ± 0.3
CACM ràng buộc sai		61.6 ± 0.4	27.9 ± 1.3

Bảng 2: Kết quả thí nghiệm CACM trên các bộ dữ liệu MNIST với ràng buộc sai. Các kết quả ở đây là độ chính xác dự đoán (%) trên tập kiểm tra.

So sánh CACM ràng buộc đúng với CACM ràng buộc sai

(Thí nghiệm mở rộng ngoài bài báo gốc)

	${ m small\ NORB}$			
Algo		Accuracy		
	lighting	azimuth	light + azi	
CACM ràng buộc đúng	86.8 ± 3.4	77.5 ± 1.8	$76.7\ \pm4.7$	
CACM ràng buộc sai	85.3 ± 3.4	$\textbf{78.1}\ \pm\textbf{1.4}$	66.1 ± 5.0	

Bảng 3: Kết quả thí nghiệm CACM trên các bộ dữ liệu small NORB với ràng buộc sai. Các kết quả ở đây là độ chính xác dự đoán (%) trên tập kiểm tra.

Áp dụng phương pháp CACM cho dữ liệu ảnh thực tế

(Thí nghiệm mở rộng ngoài bài báo gốc)

	Train	•	Val (OOD)	Test (OOD)
d = Hospital 1	d = Hospital 2	d = Hospital 3	d = Hospital 4	d = Hospital 5
y = Normal				
y = Tumor	1000 A			

Hình 9: Một số mẫu dữ liệu Camelyon17

2 lớp:

0: không có khối u

• 1: có khối u

Có sự khác biệt trong quá trình **nhuộm tiêu bản** và **thu thập dữ liệu** giữa các bệnh viện.

 $\Rightarrow A_{ind} = hospital$

Áp dụng phương pháp CACM cho dữ liệu ảnh thực tế

(Thí nghiệm mở rộng ngoài bài báo gốc)

Algo	Validation (IID)	Camelyon17 Accuracy Validation (OOD)	Test (OOD)
ERM	$\begin{array}{c c} 92.0 \pm 0.3 \\ 85.3 \pm 8.1 \\ 92.2 \pm 0.9 \end{array}$	91.2 ± 1.5	81.5 ± 2.6
CORAL		71.0 ± 18.1	71.8 ± 5.7
CACM		93.3 ± 0.5	83.2 ± 2.6

Bảng 4: Kết quả thí nghiệm trên bộ dữ liệu Camelyon17. Các kết quả ở đây là độ chính xác dự đoán (%).

Nội dung

- 1. Giới thiệu bài toán và một số phương pháp giải quyết đã được đề xuất
- 2. Mô hình mạng nơ-ron với phương pháp huấn luyện dựa trên quan hệ nhân quả CACM
- 3. Thực nghiệm
- 4. Kết luận & hướng phát triển

4. Kết luận & hướng phát triển

Kết quả đạt được:

- Cài đặt thành công CACM.
- Kết quả của khóa luận tương quan với bài báo gốc.
- · Thí nghiệm đánh giá hiệu suất của CACM với ràng buộc sai.
- Thí nghiệm CACM với dữ liệu ảnh thực tế.

4. Kết luận & hướng phát triển

Kết luận:

- CACM vượt trội hơn ERM và CORAL trong đa số trường hợp.
- CACM hoạt động tốt trên dữ liệu có phân bố thay đổi trên nhiều thuộc tính do áp dụng ràng buộc riêng cho từng loại thay đổi.
- Ràng buộc sai làm giảm đáng kể hiệu suất của CACM.
- CACM hoạt động tốt trên dữ liệu ảnh thực tế.

4. Kết luận & hướng phát triển

Hướng phát triển:

- Thí nghiệm CACM với loại dữ liệu khác (âm thanh, văn bản).
- Thí nghiệm để đánh giá điểm mạnh, điểm yếu của CACM.

Tài liệu tham khảo

- [1] B. Sun, J. Feng, and K. Saenko, "Return of frustratingly easy domain adaptation," in Proceedings of the AAAI conference on artificial intelligence, 2016.
- [2] J. N. Kaur, E. Kiciman, and A. Sharma, "Modeling the data-generating process is necessary for out-of-distribution generalization," International Conference on Learning Representations, 2022.
- [3] Hayduk, Leslie et al. "Pearl's D-separation: One more step into causal thinking". In: Structural Equation Modeling 10.2 (2003), pp. 289–311.

Cảm ơn Quý Thầy, Cô và các bạn đã lắng nghe!