Chapter 13

FV Methods for the Incompressible Navier-Stokes Equations (INSE)

Definition 13.1. A *domain* is a connected and bounded regular open subset $\Omega \subset \mathbb{R}^{D}$ with D = 2, 3.

Definition 13.2. The incompressible Navier-Stokes equations (INSE) is

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{g} - \nabla p + \nu \Delta \mathbf{u}, \tag{13.1a}$$

$$\nabla \cdot \mathbf{u} = 0, \tag{13.1b}$$

where $t \in [0, +\infty)$ is time, $\mathbf{x} \in \mathbb{R}^{D}$ (D = 2,3) the spatial location, \mathbf{g} the external forcing term, p the pressure, \mathbf{u} the velocity, ν the dynamic viscosity.

Definition 13.3. The *Eulerian accelerations* of the INSE are vectors of time derivatives

$$\mathbf{a} := \frac{\partial \mathbf{u}}{\partial t}, \quad \mathbf{a}^* := -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g} + \nu \Delta \mathbf{u}.$$
 (13.2)

Definition 13.4. The pressure Poisson equation (PPE) is an elliptic equation that describes the relation between the pressure and the velocity in the INSE,

$$\Delta p = \nabla \cdot (\mathbf{g} - \mathbf{u} \cdot \nabla \mathbf{u}) \quad \text{in } \Omega, \tag{13.3a}$$

$$\mathbf{n} \cdot \nabla p = \mathbf{n} \cdot (\mathbf{a}^* - \mathbf{a})$$
 on $\partial \Omega$. (13.3b)

13.1 Leray-Helmholtz Projection

Definition 13.5. A projection $\overline{\mathbf{P}}$ is a linear transformation from a vector space to itself such that the idempotent condition holds

$$\overline{\mathbf{P}}^2 = \overline{\mathbf{P}}.\tag{13.4}$$

Definition 13.6. The Leray-Helmholtz projection on a domain $\Omega \subset \mathbb{R}^D$ is a projection $\mathscr{P}: \mathcal{C}^1(\Omega) \to \mathcal{C}^1(\Omega)$

$$\mathscr{P}\mathbf{v}^* := \mathbf{v} = \mathbf{v}^* - \nabla\phi \tag{13.5}$$

such that $\mathbf{v}, \mathbf{v}^* : \Omega \to \mathbb{R}^D$ are vector fields, \mathbf{v} satisfies $\nabla \cdot \mathbf{v} = 0$, and $\phi : \Omega \to \mathbb{R}$ is a scalar function.

Definition 13.7. The *no-penetration condition* for a vector field \mathbf{v} on a domain Ω is the boundary condition

$$\mathbf{v} \cdot \mathbf{n} = 0, \tag{13.6}$$

where **n** is the outward normal of the domain boundary $\partial\Omega$.

Lemma 13.8. On domains with periodic or no-penetration conditions, the Leray-Helmholtz projection is well defined and can be expressed as

$$\mathscr{P} = 1 - \nabla(\Delta_n)^{-1} \nabla \cdot, \tag{13.7}$$

where $(\Delta_n)^{-1}$ denotes solving Poisson's equation with pure Neumann conditions.

Proof. By Helmholtz's theorem, a sufficiently continuous vector field \mathbf{v}^* on regular compact domain $\overline{\Omega}$ in \mathbb{R}^D can be uniquely decomposed into a divergence-free part \mathbf{v} and a curl-free part $\nabla \phi$:

$$\begin{aligned} \mathbf{v}^* &= \mathbf{v} + \nabla \phi, \\ \nabla \cdot \mathbf{v} &= 0, & \nabla \times \nabla \phi &= \mathbf{0}. \end{aligned}$$

This is achieved by solving the Poisson's equation with pure Neumann boundary conditions:

$$\Delta \phi = \nabla \cdot \mathbf{v}^* \qquad \text{in } \Omega, \tag{13.8a}$$

$$\mathbf{n} \cdot \nabla \phi = \mathbf{n} \cdot (\mathbf{v}^* - \mathbf{v}) \quad \text{on } \partial \Omega,$$
 (13.8b)

where **n** denotes the outward normal of the domain boundary $\partial\Omega$. The above arguments justifies (13.7) and it remains to show that the BVP (13.8) admits a unique solution.

Periodic conditions imply $\oint_{\partial\Omega} \mathbf{n} \cdot \mathbf{v} = 0$. As for nopenetration conditions, Gauss theorem and $\nabla \cdot \mathbf{v} = 0$ yield

$$0 = \int_{\Omega} \nabla \cdot \mathbf{v} = \oint_{\partial \Omega} \mathbf{n} \cdot \mathbf{v},$$

thus the solvability of (13.8) holds. Since ϕ in (13.8) is determined up to an additive constant, $\nabla \phi$ is unique, which further implies the uniqueness of \mathbf{v} in (13.5).

Lemma 13.9. The Leray-Helmholtz projection \mathscr{P} satisfies

$$\mathscr{P}^2 = \mathscr{P}, \quad \nabla \cdot \mathscr{P} \mathbf{v}^* = 0, \quad \mathscr{P} \nabla \phi = \mathbf{0}.$$
 (13.9)

Proof. These identities follow from Definition 13.6 and Lemma 13.8. \Box

13.2 The approximate projection

Definition 13.10. The fourth-order approximate projection associated with the Leray-Helmholtz projection is the discrete operator

$$\mathbf{P} = \mathbf{I} - \mathbf{G} \mathbf{L}^{-1} \mathbf{D},\tag{13.10}$$

where \mathbf{I} is the identity operator and the other operators are the same as those in Definition 12.6.

Exercise 13.11. For periodic domains, express \mathbf{DG} as a linear combination of cell averages to verify that $\mathbf{DG} \neq \mathbf{L}$. What is the one-dimensional stencil of this operator? Can you say anything about this stencil?

Lemma 13.12. The approximate projection ${\bf P}$ is not a projection.

Proof. Exercise 13.11 implies $\mathbf{P}^2 \neq \mathbf{P}$, and the conclusion follows from Definition 13.5.

Exercise 13.13. Show that the discrete operator

$$\mathbf{P}_E = \mathbf{I} - \mathbf{G}(\mathbf{DG})^{-1}\mathbf{D} \tag{13.11}$$

is indeed a projection.

Definition 13.14. The FV scalar inner product and the FV vector inner product on a domain Ω are respectively

$$\begin{aligned}
\langle \phi, \psi \rangle_{S} &= h^{\mathcal{D}} \sum_{\mathbf{i}} \langle \phi \rangle_{\mathbf{i}} \langle \psi \rangle_{\mathbf{i}}, \\
\langle \mathbf{v}, \mathbf{w} \rangle_{V} &= h^{\mathcal{D}} \sum_{\mathbf{i}} \langle \mathbf{v} \rangle_{\mathbf{i}} \cdot \langle \mathbf{w} \rangle_{\mathbf{i}},
\end{aligned} (13.12)$$

where $\phi, \psi : \Omega \to \mathbb{R}$ are scalar functions and $\mathbf{v}, \mathbf{w} : \Omega \to \mathbb{R}^D$ are vector functions.

Lemma 13.15. On periodic domains, the linear maps G and -D in (12.18) and (12.19) are adjoint in the sense that

$$\langle \mathbf{D}\mathbf{u}, \phi \rangle_S = -\langle \mathbf{u}, \mathbf{G}\phi \rangle_V.$$
 (13.13)

The corresponding matrices satisfy $\mathbf{G} = -\mathbf{D}^T$.

Proof. It suffices to show

$$\begin{split} &\langle \mathbf{D}\mathbf{u}, \phi \rangle_S + \langle \mathbf{u}, \mathbf{G}\phi \rangle_V \\ = &h^\mathrm{D} \sum_{\mathbf{i}} \left(\langle \phi \rangle_{\mathbf{i}} \, \mathbf{D} \, \langle \mathbf{u} \rangle_{\mathbf{i}} + \langle \mathbf{u} \rangle_{\mathbf{i}} \cdot \mathbf{G} \, \langle \phi \rangle_{\mathbf{i}} \right) = 0. \end{split}$$

Consider all possible terms containing $\langle \phi \rangle_{\mathbf{i}}$. For dimension d, $\sum_{\mathbf{j}} (\langle \phi \rangle_{\mathbf{j}} \mathbf{D} \langle \mathbf{u} \rangle_{\mathbf{j}})$ expands to

$$\langle \phi \rangle_{\mathbf{i}} (8 \langle u_d \rangle_{\mathbf{i} + \mathbf{e}^d} - \langle u_d \rangle_{\mathbf{i} + 2\mathbf{e}^d} - 8 \langle u_d \rangle_{\mathbf{i} - \mathbf{e}^d} + \langle u_d \rangle_{\mathbf{i} - 2\mathbf{e}^d}).$$

Similarly, $\sum_{\mathbf{j}} (\langle \mathbf{u} \rangle_{\mathbf{j}} \cdot \mathbf{G} \langle \phi \rangle_{\mathbf{j}})$ expands to

$$\langle \phi \rangle_{\mathbf{i}} \left(-8 \langle u_d \rangle_{\mathbf{i}+\mathbf{e}^d} + \langle u_d \rangle_{\mathbf{i}+2\mathbf{e}^d} + 8 \langle u_d \rangle_{\mathbf{i}-\mathbf{e}^d} - \langle u_d \rangle_{\mathbf{i}-2\mathbf{e}^d} \right).$$

In the former, all the terms are contributed by $\langle \phi \rangle_{\mathbf{i}} \mathbf{D} \langle \mathbf{u} \rangle_{\mathbf{i}}$; in the latter, no terms come from $\langle \mathbf{u} \rangle_{\mathbf{i}} \cdot \mathbf{G} \langle \phi \rangle_{\mathbf{i}}$, e.g., $-8 \langle \phi \rangle_{\mathbf{i}} \langle u_d \rangle_{\mathbf{i}+\mathbf{e}^d}$ is contributed by $\langle \mathbf{u} \rangle_{\mathbf{i}+\mathbf{e}^d} \cdot \mathbf{G} \langle \phi \rangle_{\mathbf{i}+\mathbf{e}^d}$. Because of periodicity, all five multi-indices are well defined for the cells to remain inside the domain, hence these above terms cancel. The same argument also applies to the terms containing $\langle u_d \rangle_{\mathbf{i}}$ for all d.

Corollary 13.16. On periodic domains, the corresponding matrix of the approximate projection operator \mathbf{P} defined in (13.10) is symmetric, i.e. $\mathbf{P}^T = \mathbf{P}$.

Proof. The symmetry of L and Lemma 13.15 yield

$$\mathbf{P}^T = (\mathbf{I} - \mathbf{G}\mathbf{L}^{-1}\mathbf{D})^T = \mathbf{I} - \mathbf{D}^T\mathbf{L}^{-1}\mathbf{G}^T = \mathbf{I} - \mathbf{G}\mathbf{L}^{-1}\mathbf{D} = \mathbf{P}.$$

Lemma 13.17. On periodic domains, the discrete gradient **G** in (12.18) and discrete Laplacian **L** in (12.20) commute,

$$\mathbf{GL} = \mathbf{LG}.\tag{13.14}$$

Consequently, the discrete Laplacian and the approximate projection commute,

$$\mathbf{PL} = \mathbf{LP}.\tag{13.15}$$

Proof. For a 1D periodic domain, let $\bar{\mathbf{G}}$ and $\bar{\mathbf{L}}$ denote the matrices of the discrete gradient operator and Laplacian operator scaled by 12h and 12h², respectively. From (12.18) and (12.20), we have

$$\bar{\mathbf{G}}_{i,j} = \begin{cases} \pm 8, & j = \text{mod}(i \pm 1, m) \\ \mp 1, & j = \text{mod}(i \pm 2, m) \\ 0, & \text{otherwise} \end{cases} , \tag{13.16}$$

$$\bar{\mathbf{L}}_{i,j} = \begin{cases}
-30, & j = i \\
16, & j = \text{mod}(i \pm 1, m) \\
-1, & j = \text{mod}(i \pm 2, m) \\
0, & \text{otherwise}
\end{cases} ,$$
(13.17)

where m is the number of cells. To avoid clustering of notation, I drop "mod" in the indices of matrix entries to use the cyclic shorthands " $i \pm \cdot$ " for "mod $(i \pm \cdot, m)$," " $k \pm \cdot$ " for "mod $(k \pm \cdot, m)$," and so on. It follows that

$$\begin{split} (\bar{\mathbf{G}}\bar{\mathbf{L}})_{k,\ell} &&= \sum_{j=k-2}^{k+2} \bar{\mathbf{G}}_{k,j} \bar{\mathbf{L}}_{j,\ell} \\ &= -\bar{\mathbf{L}}_{k+2,\ell} + 8\bar{\mathbf{L}}_{k+1,\ell} - 8\bar{\mathbf{L}}_{k-1,\ell} + \bar{\mathbf{L}}_{k-2,\ell}, \\ (\bar{\mathbf{L}}\bar{\mathbf{G}})_{k,\ell} &&= \sum_{j=k-2}^{k+2} \bar{\mathbf{L}}_{k,j} \bar{\mathbf{G}}_{j,\ell} \\ &&= -\bar{\mathbf{L}}_{k,\ell-2} + 8\bar{\mathbf{L}}_{k,\ell-1} - 8\bar{\mathbf{L}}_{k,\ell+1} + \bar{\mathbf{L}}_{k,\ell+2}. \end{split}$$

Since $\bar{\mathbf{L}}$ is a Toeplitz matrix, we have $\bar{\mathbf{L}}_{k+2,\ell} = \bar{\mathbf{L}}_{k,\ell-2}$, $\bar{\mathbf{L}}_{k+1,\ell} = \bar{\mathbf{L}}_{k,\ell-1}$, and so on. It follows that

$$\bar{\mathbf{G}}\bar{\mathbf{L}} = \bar{\mathbf{L}}\bar{\mathbf{G}}.\tag{13.18}$$

For a 2D domain, the matrices of the discrete operators can be expressed as Kronecker products of their 1D counterparts and identity matrices

$$12h^2\mathbf{L} = \bar{\mathbf{L}}\otimes\mathbf{I} + \mathbf{I}\otimes\bar{\mathbf{L}}, \quad 12h\mathbf{G} = (\bar{\mathbf{G}}\otimes\mathbf{I}, \ \mathbf{I}\otimes\bar{\mathbf{G}})^T.$$
 (13.19)

In order to prove (13.14), it suffices to show that **L** commutes with each subblock of **G**, which follows from (13.18) and the mixed-product property of Kronecker products, i.e. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$. For three and higher dimensions, (13.14) can be proved by a straightforward induction based on the 1D and 2D arguments.

Finally, (13.15) follows directly from (13.10), (13.14), and Lemma 13.15. \Box

Theorem 13.18. On periodic domains, both the spectral radius and the Euclidean 2-norm of the approximate projection operator are one,

$$\rho(\mathbf{P}) = \|\mathbf{P}\|_2 = 1. \tag{13.20}$$

Furthermore, \mathbf{P} is a fourth-order approximation to the Leray-Helmholtz projection,

$$\mathbf{P} \left\langle \mathbf{u} \right\rangle_{\mathbf{i}} - \frac{1}{h^{\mathrm{D}}} \int_{\mathcal{C}_{\mathbf{i}}} \left(\mathbf{I} - \nabla (\Delta_{n}^{-1}) \nabla \cdot \right) \mathbf{u} = O(h^{4}). \tag{13.21}$$

Proof. It follows from Corollary 13.16 that $\rho(\mathbf{P}) = 1$ implies $\|\mathbf{P}\|_2 = 1$, hence we only need to show the former. For the projection \mathbf{P}_E in (13.11), we have $\lambda(\mathbf{P}_E) \in \{0,1\}$ since its minimal polynomial is $\mathbf{P}_E^2 - \mathbf{P}_E = 0$. Let $\mathbf{P}_E = \mathbf{I} - \mathbf{Q}_E$, $\mathbf{P} = \mathbf{I} - \mathbf{Q}$. Clearly, $\lambda(\mathbf{Q}_E) \in \{0,1\}$, and we only need to show $0 \le \lambda(\mathbf{Q}) \le 1$. By Lemma 13.17, \mathbf{G} commutes with both \mathbf{L}^{-1} and $\mathbf{D}\mathbf{G}$. Thus we have

$$\mathbf{Q} = \mathbf{G}\mathbf{L}^{-1}(\mathbf{D}\mathbf{G})(\mathbf{D}\mathbf{G})^{-1}\mathbf{D}$$

$$= \mathbf{L}^{-1}(\mathbf{D}\mathbf{G})\mathbf{G}(\mathbf{D}\mathbf{G})^{-1}\mathbf{D}$$

$$= \mathbf{L}^{-1}\mathbf{D}\mathbf{G}\mathbf{Q}_{E},$$

and it suffices to shows

$$0 \le \lambda \left(\mathbf{L}^{-1} \mathbf{D} \mathbf{G} \right) \le 1.$$

Using discrete Fourier analysis, we can define the shift operator as

$$s_d \langle \phi \rangle_{\mathbf{i}} = \langle \phi \rangle_{\mathbf{i} + \mathbf{e}^d},$$
 (13.22)

whose eigenvectors are the single Fourier modes with the eigenvalues $e^{\mathrm{i}\beta_d}$, where $\beta_d = \kappa_d \frac{\pi}{N}$, $\kappa_d = 1, \cdots, N-1$, and N the total number of points in dimension d. It follows from (12.18), (12.19), and (12.20) that for a given Fourier component,

$$\lambda \left(\mathbf{DG} \right) = -\frac{4}{h^2} \sum_{d=1}^{D} \sin^2 \frac{\beta_d}{2} \left(1 - \sin^2 \frac{\beta_d}{2} \right) \left(1 + \frac{2}{3} \sin^2 \frac{\beta_d}{2} \right)^2;$$

$$\mathbf{L} = \frac{1}{12h^2} \sum_{d=1}^{D} \left(16s_d + \frac{16}{s_d} - 30 - s_d^2 - \frac{1}{s_d^2} \right)$$

$$\Rightarrow \lambda(\mathbf{L}) = -\frac{4}{h^2} \sum_{d=1}^{D} \sin^2 \frac{\beta_d}{2} \left(1 + \frac{1}{3} \sin^2 \frac{\beta_d}{2} \right).$$

 $\lambda\left(\mathbf{L}^{-1}\mathbf{D}\mathbf{G}\right) \geq 0$ follows from the negative definiteness of $\lambda(\mathbf{L})$ and $\lambda(\mathbf{D}\mathbf{G})$. $\lambda\left(\mathbf{L}^{-1}\mathbf{D}\mathbf{G}\right) \leq 1$ holds because

$$\eta(1-\eta)\left(1+\frac{2}{3}\eta\right)^2 - \eta\left(1+\frac{1}{3}\eta\right) = -\frac{4}{9}\eta^2(2\eta+\eta^2) \le 0,$$

for $\eta = \sin^2 \frac{\beta_d}{2} \in [0, 1]$.

Finally, (13.21) follows directly from (12.24a), (12.24b), and (12.24c) in Lemma 12.7; it can also be proved via considering the Taylor expansions of the symbols of individual operators for any fixed Fourier mode.

13.3 The INSE on periodic domains

Theorem 13.19. The following ODE is a fourth-order approximation to the INSE (13.1) on periodic domains:

$$\frac{d\langle \mathbf{u} \rangle}{dt} = \mathbf{P} \left(-\mathbf{D} \langle \mathbf{u} \mathbf{u} \rangle + \langle \mathbf{g} \rangle + \nu \mathbf{L} \langle \mathbf{u} \rangle \right). \tag{13.23}$$

Proof. This follows from applying the Leray-Helmholtz projection to the INSE (13.1), taking average of the resulting equation, using (13.21) and Lemma 12.7.

Algorithm 13.20. A fourth-order FV method for solving the INSE on periodic domains is obtained by directly applying the ERK-ESDIRK IMEX algorithm (12.35) to the ODE system (13.23) with

$$\mathbf{X}^{[\mathrm{E}]} \langle \mathbf{u} \rangle = -\mathbf{D} \langle \mathbf{u} \mathbf{u} \rangle + \langle \mathbf{g} \rangle, \qquad \mathbf{X}^{[\mathrm{I}]} \langle \mathbf{u} \rangle = \nu \mathbf{L} \langle \mathbf{u} \rangle. \quad (13.24)$$

More precisely, the algorithmic steps are

$$\langle \mathbf{u} \rangle^{(1)} = \langle \mathbf{u} \rangle^n \approx \langle \mathbf{u}(t^n) \rangle, \qquad (13.25a)$$

for $s = 2, 3, ..., n_s$,

$$(\mathbf{I} - k\nu\gamma\mathbf{L})\langle\mathbf{u}\rangle^{(s)} = \langle\mathbf{u}\rangle^n + k\sum_{j=1}^{s-1} a_{s,j}^{[\mathbf{E}]} \mathbf{P} \mathbf{X}^{[\mathbf{E}]} \langle\mathbf{u}\rangle^{(j)}$$

$${}_{s-1}$$

$$+ k\nu \sum_{j=1}^{s-1} a_{s,j}^{[\mathbf{I}]} \mathbf{L} \langle \mathbf{u} \rangle^{(j)}, \qquad (13.25b)$$

$$\langle \mathbf{u}^* \rangle^{n+1} = \langle \mathbf{u} \rangle^n + k \sum_{s=1}^{n_s} b_s^{[\mathrm{E}]} \mathbf{X}^{[\mathrm{E}]} \langle \mathbf{u} \rangle^{(s)}$$

$$+k\nu\sum_{s=1}^{n_s}b_s^{[\mathrm{I}]}\mathbf{L}\langle\mathbf{u}\rangle^{(s)},$$
 (13.25c)

$$\langle \mathbf{u} \rangle^{n+1} = \mathbf{P} \langle \mathbf{u}^* \rangle^{n+1}.$$
 (13.25d)

At any time instant, the pressure can be extracted from the velocity by solving the discrete pressure Poisson equation

$$\mathbf{L} \langle p \rangle = \mathbf{D} (\langle \mathbf{g} \rangle - \mathbf{D} \langle \mathbf{u} \mathbf{u} \rangle + \nu \mathbf{L} \langle \mathbf{u} \rangle)$$
 (13.26)

with periodic boundary conditions.

Theorem 13.21. The solution $\langle \mathbf{u} \rangle$ produced by Algorithm 13.20 evolves in a vector space that is solenoidal with fourth-order accuracy, i.e. $\mathbf{D} \langle \mathbf{u} \rangle = O(h^4)$.

Proof. It suffices to point out that the velocity at each intermediate stage satisfies $\mathbf{D} \langle \mathbf{u} \rangle^{(s)} = O(h^4)$ because

- the initial velocity $\langle \mathbf{u} \rangle^n$ satisfies $\mathbf{D} \langle \mathbf{u} \rangle^n = O(h^4)$,
- $\mathbf{DPX}^{[E]}\langle \mathbf{u}\rangle = O(h^4)$,
- L is linear and commutes with P.