

# Laboratório de Circuitos Lógicos (CICO231) - Projeto Final ZEPTOPROCESSADOR-III DE 16 BITS

## 1. INTRODUÇÃO:

Os processadores são os circuitos digitais mais complexos que temos hoje em dia, principalmente os de alto desempenho. O conceito por trás de um processador envolve a leitura de uma instrução de uma memória, decodificar a instrução, executá-la e voltar a ler a próxima instrução. O presente projeto desafia o aluno a desenvolver um processador programável simples, o ZeptoProcessador-III, com apenas 13 instruções.

#### 2. OBJETIVOS

Apresentar ao aluno os conceitos básicos que envolvem o projeto de processadores usando circuitos lógicos. O aluno deverá implementar um ZeptoProcessador-III de 16 bits capaz de executar programas com as seguintes instruções:

- 1) addi: Adição com imediato
- 2) subi: Subtração com Imediato
- 3) andi: AND bitwise com Imediato
- 4) ori: OR bitwise com Imediato
- 5) xori: XOR bitwise com Imediato
- 6) beq: Salto Condicional se igual
- 7) bne: Salto Condicional se diferente
- 8) ble: Salto Condicional menor ou igual (Signed)
- 9) bleu: Salto Condicional menor ou igual (Unsigned)
- 10) bgt: Salto Condicional maior que (Signed)
- 11) bgtu: Salto Condicional maior que (Unsigned)
- 12) jal: Salto incondicional ao endereço
- 13) jalr: Salto incondicional ao registrador

E executar programas com até 65536 instruções.

#### 3. METODOLOGIA

Todo o sistema digital deve ser implementado como um projeto no software de simulação Deeds, com a interação com o usuário feita através do uso de uma memória ROM para armazenar o programa, botão de reset e sinal de clock, que pode ser manual ou automático.

O projeto deve ser baseado em interligação configurável de blocos funcionais de acordo com a instrução a ser executada.

O ZeptoProcessador-III gerado deverá ser testado pela execução de uma bateria de programas de testes.

## 4. ESPECIFICAÇÕES DO SISTEMA DIGITAL

O ZeptoProcessador-III deve possuir:

- i) Uma memória de instruções capaz de armazenar até 65536 instruções de 32 bits cada uma.
- ii) Um registrador PC de 16 bits que indica o endereço na memória da instrução executada.
- iii) Um banco de 16 registradores R0...R15 que podem armazenar números de 16 bits. O registrador R0 possui o valor fixo 0.
- iv) Uma Unidade Lógico-Aritmética de 16 bits.

As instruções possuem 32 bits de tamanho codificados com os seguintes campos:

| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1   | 0  |
|----|----------|----|----|----|----|----|----|----|----|----|----|----|-----|-----|----|
|    | Rb       |    |    |    | R  | а  |    |    | R  | d  |    |    | Орс | ode |    |
|    |          |    |    |    |    |    |    |    |    |    |    |    |     |     |    |
| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17  | 16 |
|    | Imediato |    |    |    |    |    |    |    |    |    |    |    |     |     |    |

Ra: 4 bits que definem o registrador Ra (de RO a R15)Rb: 4 bits que definem o registrador Rb (de RO a R15)Rd: 4 bits que definem o registrador Rd (de RO a R15)

Imediato: Número de 16 bits

OpCode: são 4 bits que definem a instrução a ser executada

| OpCode | Mnemônico            | Nome                     | Operação                       |  |  |
|--------|----------------------|--------------------------|--------------------------------|--|--|
| 0000   | addi Rd, Ra, Rb, Imm | Soma com imediato        | Rd = Ra + Rb + Imm             |  |  |
| 0001   | subi Rd, Ra, Rb, Imm | Subtração com imediato   | Rd = Ra - Rb – Imm             |  |  |
| 0010   | andi Rd, Ra, Rb, Imm | And bitwise com imediato | Rd = Ra & Rb & Imm             |  |  |
| 0011   | ori Rd, Ra, Rb, Imm  | Or bitwise com imediato  | Rd = Ra   Rb   Imm             |  |  |
| 0100   | xori Rd, Ra, Rb, Imm | Xor bitwise com imediato | Rd = Ra ⊕ Rb ⊕ Imm             |  |  |
| 0101   | beq Ra, Rb, Imm      | Salto se igual           | Ra==Rb ? PC=PC+Imm : PC=PC+1   |  |  |
| 0110   | bne Ra, Rb, Imm      | Salto se diferente       | Ra!=Rb ? PC=PC+Imm : PC=PC+1   |  |  |
| 0111   | blo Da Dh Imm        | Salto se menor ou igual  | Ra<=Rb ? PC=PC+Imm : PC=PC+1   |  |  |
| 0111   | ble Ra,Rb,Imm        | Saito se menor ou iguar  | Ra e Rb considerados com sinal |  |  |
| 1000   | blou Pa Ph Imm       | Salto se menor ou igual  | Ra<=Rb ? PC=PC+Imm : PC=PC+1   |  |  |
| 1000   | bleu Ra, Rb, Imm     | unsigned                 | Ra e Rb considerados sem sinal |  |  |
| 1001   | bgt Ra, Rb, Imm      | Salto se maior           | Ra>Rb?PC=PC+Imm:PC=PC+1        |  |  |
| 1001   | ugt na, nu, iiiiiii  | Saito se maior           | Ra e Rb considerados com sinal |  |  |
| 1010   | bgtu Ra, Rb, Imm     | Salto se maior           | Ra>Rb ? PC=PC+Imm : PC=PC+1    |  |  |
| 1010   | bgtu Na, Nb, IIIIIII | unsigned                 | Ra e Rb considerados sem sinal |  |  |
| 1011   | jal Rd,Imm           | Salto incondicional ao   | Rd=PC+1 e PC=PC+Imm            |  |  |
|        | jai Nu,iiiiii        | endereço                 | Nu-reilere-retiiiiii           |  |  |
| 1100   | jalr Rd,Ra,Imm       | Salto incondicional ao   | Rd=PC+1 e PC=Ra+Imm            |  |  |
| 1100   | Jan Nu,Na,IIIIII     | registrador              |                                |  |  |

Geralmente, os processadores são compostos dos seguintes elementos básicos que devem ser projetados pelo aluno:

#### 1) Registrador PC

Trata-se de um registrador (use o modelo do Deeds) que armazena o endereço da instrução a ser executada. O número de bits deste registrador depende da quantidade de memória de instruções uţilizada.



O dado de entrada E é escrito no registrador PC quando ocorrer a subida da borda de clock. Caso Reset=1, ao vir a borda de subida de clock o registrador é resetado, isto é, PC=0x0000.

## 2) Memória de Instruções

Consiste de uma memória do tipo ROM (use o modelo do Deeds) que deve ser programada com o código binário do programa do usuário. Dica: Use 2 módulos de ROM de 16 bits.



#### 3) Banco de Registradores

Para a execução das instruções tem-se disponível um banco de 16 registradores de 16 bits cada um. O Banco de Registradores deve possibilitar a leitura de 2 registradores Ra e Rb simultaneamente e a escrita no registrador Rd se WE=1 e vier a borda de subida do clock. Caso Reset=1 na borda de subida do clock, todos os 16 registradores são resetados.



## 4) Unidade Lógico-Aritmética

Circuito digital (pode usar a ULA que tem pronta no Deeds) capaz de realizar as operações de soma e subtração de números de 16 bits em complemento de 2. A operação deve ser selecionável por um sinal Op de 3 bits (000-add, 001-sub, 010-and, 011-or, 100-xor).



## 5) Comparador ==, !=, <= e > com sinal e sem sinal

Projete um circuito combinacional que receba 2 números A e B de 16 bits e indique em dois sinais de saída se A<=B e se A==B. Porém é necessário identificar se os números devem ser considerados com sinal ou sem sinal, assim acrescente um sinal de controle SU, onde SU=0 indica comparação sem sinal e SU=1 indica comparação com sinal.

#### 6) Bloco de Controle

Projete um circuito combinacional que recebe na entrada o OpCode da instrução a ser executada e gere todos os sinais de controle necessários (WE do BR, Op da ULA, SU do Comparador e seleção de multiplexadores).

#### 7) Sinais de Monitoramento

Acrescente ao seu processador displays de 7 segmentos hexadecimais que monitore os sinais: PC, Instrução, Ra e Rb.

### 5. EXEMPLOS DE PROGRAMAS

Em todos os programas exemplos aqui apresentados é pressuposto que o ZeptoProcessador-II inicia resetado (PC=0x0000 e Registradores=0x0000)

Exemplo 1: R1 = Contador de -16 a 16

| Endereço | )     | Código hexadecimal | Instrução        | Comentário          |
|----------|-------|--------------------|------------------|---------------------|
| 0x0000   |       | 0x0010 0011        | subi R1,R0,R0,16 | R1=-16              |
| 0x0001   |       | 0x0010 0020        | addi R2,R0,R0,16 | R2=16               |
| 0x0002   |       | 0x0001 0221        | subi R2,R2,R0,1  | R2=R2-1 devido ao = |
| 0x0003   | Loop: | 0x0001 0110        | addi R1,R1,R0,1  | R1=R1+1             |
| 0x0004   |       | 0xFFFF 2107        | ble R1,R2,-1     | R0<=R1? Loop : Next |
| 0x0005   | Fim:  | 0x0000 1105        | beq R1,R1,0      | J Fim - mostra R1   |

Exemplo 2: R3 = Soma dos números ímpares de 0 a 15

| Endereço     | Código hexadecimal | Instrução        | Comentário            |
|--------------|--------------------|------------------|-----------------------|
| 0x0000       | 0x0001 0010        | addi R1,R0,R0,1  | R1=1 primeiro ímpar   |
| 0x0001       | 0x000F 0020        | addi R2,R0,R0,15 | R2=15 valor final     |
| 0x0002       | 0x0001 0220        | addi R2,R2,R0,1  | R2=R2+1 (devido ao =) |
| 0x0003 Loop: | 0x0004 2108        | bleu R2,R1,4     | R2<=R1 ? Fim : Next   |
| 0x0004       | 0x0000 1330        | addi R3,R3,R1,0  | R3=R3+R1 somatório    |
| 0x0005       | 0x0002 0110        | addi R1,R1,R0,2  | R1=R1+2 próximo ímpar |
| 0x0006       | 0xFFFD 0005        | beq R0,R0,-3     | J Loop                |
| 0x0007 Fim:  | 0x0000 3305        | beq R3,R3,0      | J Fim - mostra R3     |

#### 6. Programa a desenvolver

Elabore os algoritmos e implemente no ZeptoProcessador-III, onde os programas iniciam com:

| Endereço |       | Código hexadecimal | Instrução       | Comentário              |
|----------|-------|--------------------|-----------------|-------------------------|
| 0x0000   |       | 0x0000 0010        | addi R1,R0,R0,0 | R1 = 0 Resultado        |
| 0x0001   |       | 0xXXXX 0020        | addi R2,R0,R0,X | R2 = X                  |
| 0x0002   |       | 0xYYYY 0030        | addi R3,R0,R0,Y | R3 = Y                  |
| 0x0003   |       | 0x0002 00FB        | jal R15, Proc   | R15=0x0004 PC=Proc      |
| 0x0004   | Fim:  | 0x0000 1105        | beq R1,R1,0     | J Fim - mostra R1       |
| 0x0005   | Proc: |                    |                 |                         |
| ••••     |       |                    |                 |                         |
| 0xZZZZ   |       | 0x0000 0F0C        | jalr R0,R15,0   | Retorna resultado em R1 |

- 1) (0,5) Multu.drs: R1 = R2  $\times$  R3: Multiplicação de dois números sem sinal (R2<256 e R3<256)
- a. Filme o funcionamento
- b. Desenhe o diagrama temporal da execução na maior frequência
- 2) (0,5) Mult.drs: R1 = R2  $\times$  R3: Multiplicação de dois números com sinal (-181<R2< 181 e 181< R3< 181)
- a. Filme o funcionamento
- b. Desenhe o diagrama temporal da execução na maior frequência
- 3) (0,5) Divu.drs: R1 = R2 / R3: Divisão inteira de dois números sem sinal (R2<65536 e R3<65536)
  - a. Filme o funcionamento
  - b. Desenhe o diagrama temporal da execução na maior frequência
- 4) (0,5) Div.drs: R1 = R2 / R3: Divisão inteira de dois números com sinal (-32768<R2< 32768 e -32768< R3< 32768)
  - a. Filme o funcionamento
  - b. Desenhe o diagrama temporal da execução na maior frequência

- 5) (0,5) Remu.drs: R1 = R2 % R3: Resto da divisão inteira de dois números sem sinal (R2<65536 e R3<65536)
  - a. Filme o funcionamento
  - b. Desenhe o diagrama temporal da execução na maior frequência
- 6) (0,5) Rem.drs: R1 = R2 % R3: Resto da divisão inteira de dois números com sinal (-32768<R2< 32768 e -32768 < R3< 32768)
  - c. Filme o funcionamento
  - d. Desenhe o diagrama temporal da execução na maior frequência
- 7) (1,0) Primo.drs: Apresente no display o primeiro número primo entre R2 e R3 (0<R2<R3).
  - e. Filme o funcionamento
  - f. Desenhe o diagrama temporal da execução na maior frequência
- 8) (1,0) Qual a maior frequência de clock que seu ZeptoProcessor-III consegue executar corretamente todos os programas anteriores? O que limita?

# 6. AVALIAÇÃO E CRONOGRAMA

Avaliação do protótipo será feita através do Relatório (2,0) e por um programa de Teste.drs (2,0), elaborado pelo professor e monitores, executado no seu processador.

No dia 05/11/2021 deve ser entregue pelo Aprender3 um arquivo com o nome 'Projeto\_G04.zip' contendo todos os arquivos necessários para a execução do seu ZeptoProcessador-III no Deeds com o programa Primo.drs carregado na memória, programas (conteúdo da memória em arquivos .drs) e o .pdf do relatório no formato usual.

## 7. SUMÁRIO

Este projeto visa aplicar os conhecimentos adquiridos ao longo das disciplinas Circuitos Lógicos e Laboratório de Circuitos Lógicos para o desenvolvimento de um sistema digital programável, o ZeptoProcessador-III de 13 instruções.

# 8. EQUIPAMENTOS E MATERIAL

Software Deeds