APPENDIX

1

PROPERTY TABLES AND CHARTS (SI UNITS)

Molar mass, gas constant, and critical-point properties 882

Table A-1

Table A-2	Ideal-gas specific heats of various common gases 883
Table A-3	Properties of common liquids, solids, and foods 886
Table A-4	Saturated water—Temperature table 888
Table A-5	Saturated water—Pressure table 890
Table A-6	Superheated water 892
Table A-7	Compressed liquid water 896
Table A-8	Saturated ice—water vapor 897
Figure A-9	<i>T-s</i> diagram for water 898
Figure A-10	Mollier diagram for water 899
Table A-11	Saturated refrigerant-134a—Temperature table 900
Table A-12	Saturated refrigerant-134a—Pressure table 902
Table A-13	Superheated refrigerant-134a 903
Figure A-14	<i>P-h</i> diagram for refrigerant-134a 905
Figure A-15	Nelson–Obert generalized compressibility charts 906
Table A-16	Properties of the atmosphere at high altitude 907
Table A-17	Ideal-gas properties of air 908
Table A-18	Ideal-gas properties of nitrogen, N ₂ 910
Table A-19	Ideal-gas properties of oxygen, O ₂ 912
Table A-20	Ideal-gas properties of carbon dioxide, CO ₂ 914
Table A-21	Ideal-gas properties of carbon monoxide, CO 916
Table A-22	Ideal-gas properties of hydrogen, H ₂ 918
Table A-23	Ideal-gas properties of water vapor, H ₂ O 919
Table A-24	Ideal-gas properties of monatomic oxygen, O 921
Table A-25	Ideal-gas properties of hydroxyl, OH 921
Table A-26	Enthalpy of formation, Gibbs function of formation, and
	absolute entropy at 25°C, 1 atm 922
Table A-27	Properties of some common fuels and hydrocarbons 923
Table A-28	Natural logarithms of the equilibrium constant K_p 924
Figure A-29	Generalized enthalpy departure chart 925
Figure A-30	Generalized entropy departure chart 926
Figure A-31	Psychrometric chart at 1 atm total pressure 927
Table A-32	One-dimensional isentropic compressible-flow functions
	for an ideal gas with $k = 1.4$ 928
Table A-33	One-dimensional normal-shock functions for an ideal gas
	with $k = 1.4$ 929
Table A-34	Rayleigh flow functions for an ideal gas with $k = 1.4$ 930

TABLE A-1

Molar mass, gas constant, and critical-point properties

			Gas	Critica	K MPa m³/kı 132.5 3.77 0.08 405.5 11.28 0.07 151 4.86 0.07 562 4.92 0.26 584 10.34 0.13 425.2 3.80 0.25 304.2 7.39 0.09 133 3.50 0.09 556.4 4.56 0.27 417 7.71 0.12 536.6 5.47 0.24 384.7 4.01 0.21 451.7 5.17 0.19 305.5 4.48 0.14 516 6.38 0.16 282.4 5.12 0.12 5.3 0.23 0.05 507.9 3.03 0.36 33.3 1.30 0.06 209.4 5.50 0.09 191.1 4.64 0.09 513.2 7.95 0.11 416.3 6.68 0.14			
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	* '		Volume, m³/kmol		
Air	_	28.97	0.2870	132.5	3.77	0.0883		
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724		
Argon	Ar	39.948	0.2081	151	4.86	0.0749		
Benzene	C_6H_6	78.115	0.1064			0.2603		
Bromine	Br_2	159.808	0.0520	584	10.34	0.1355		
<i>n</i> -Butane	$C_4 H_{10}$	58.124	0.1430			0.2547		
Carbon dioxide	$\overrightarrow{CO}_{2}^{10}$	44.01	0.1889	304.2	7.39	0.0943		
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930		
Carbon tetrachloride	CCl_4	153.82	0.05405	556.4	4.56	0.2759		
Chlorine	Cl_2	70.906	0.1173	417	7.71	0.1242		
Chloroform	CHCl₃	119.38	0.06964	536.6	5.47	0.2403		
Dichlorodifluoromethane (R–12)	CCl ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179		
Dichlorofluoromethane (R–21)	CHČl ₂ F	102.92	0.08078	451.7	5.17	0.1973		
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480		
Ethyl alcohol	C_2H_5OH	46.07	0.1805	516	6.38	0.1673		
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242		
Helium	He	4.003	2.0769		0.23	0.0578		
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647			0.3677		
Hydrogen (normal)	H_2	2.016	4.1240			0.0649		
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924		
Methane	CH_4	16.043	0.5182		4.64	0.0993		
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180		
Methyl chloride	CH ₃ Cl	50.488	0.1647			0.1430		
Neon	Ne	20.183	0.4119			0.0417		
Nitrogen	N_2	28.013	0.2968			0.0899		
Nitrous oxide	N_2^- O	44.013	0.1889	309.7		0.0961		
Oxygen	O_2^2	31.999	0.2598	154.8	5.08	0.0780		
Propane	C_3H_8	44.097	0.1885			0.1998		
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810		
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217		
Tetrafluoroethane (R–134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993		
Trichlorofluoromethane (R–11)	CCl ₃ F	137.37	0.06052	471.2	4.38	0.2478		
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560		
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186		

^{*}The unit kJ/kg·K is equivalent to kPa·m³/kg·K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol·K and M is the molar mass.

Source of Data: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2

Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	c_p	c_{v}	
Gas	Formula	kJ/kg·K	kJ/kg⋅K	kJ/kg∙K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	$ ilde{ ext{CH}}_4$	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	$C_8^2H_{18}$	0.0729	1.7113	1.6385	1.044
Oxygen	O_2^{σ}	0.2598	0.918	0.658	1.395
Propane	$C_3^2H_8$	0.1885	1.6794	1.4909	1.126
Steam	$H_2^{\circ}O$	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source of Data: B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2000).

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Townsonstand	c _p kJ/kg⋅K	c _∪ kJ/kg·K	k	<i>c_p</i> kJ/kg⋅K	c _v kJ/kg∙K	k	$c_p \ ext{kJ/kg·K}$	c _∪ kJ/kg·K	C k
Temperature, K		Air		Са	rbon dioxide, (CO_2	Carb	on monoxide	, CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		$Hydrogen, H_2$			Nitrogen, N	I_2		Oxygen, O	2
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw–Hill, 1983), p. 783, Table A–4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

$$(T \text{ in K}, c_p \text{ in kJ/kmol·K})$$

						Temperature	%	error
Substance	Formula	а	b	c	d	range, K	Max.	Avg.
Nitrogen	N ₂	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Oxygen	O_2	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air		28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26
Carbon monoxide	CŌ	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273-1800	0.89	0.37
Carbon dioxide	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	H_2O	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NO	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
Nitrogen dioxide	\overline{NO}_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273–1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273–1500	0.91	0.36
Sulfur	S	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273–1800	0.99	0.38
Sulfur								
dioxide	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
Sulfur	_							
trioxide	SO_3	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
Benzene	C_6H_6	-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
Methanol	CH₄Ŏ	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
Ethanol	C_2H_6O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
Hydrogen	2 0							
chloride	HCl	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH_4	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	$C_2 \vec{H_6}$	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Propane	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
<i>n</i> -Butane	$C_{4}H_{10}$	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> -Butane	$C_4^{\dagger}H_{10}^{10}$	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Pentane	$C_5H_{12}^{-10}$	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
<i>n</i> -Hexane	$C_{6}H_{14}^{12}$	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273-1500	0.73	0.17

 $Source\ of\ Data:\ B.\ G.\ Kyle,\ Chemical\ and\ Process\ Thermodynamics\ (Englewood\ Cliffs,\ NJ:\ Prentice-Hall,\ 1984).$

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freezi	ng data	Liq	quid properti	es
Substance	Normal boiling point, °C	Latent heat of vaporization h_{fg} , kJ/kg	Freezing point, °C	Latent heat of fusion h_{ip} kJ/kg	Temperature, °C	Density ρ , kg/m ³	Specific heat c_p , kJ/kg·K
Ammonia	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium							
chloride by mass)	103.9	_	-17.4	_	20	1150	3.11
<i>n</i> -Butane	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Carbon dioxide	-78.4^{*}	230.5 (at 0°C)	-56.6		0	298	0.59
Ethanol	78.2	838.3	-114.2	109	25	783	2.46
Ethyl alcohol	78.6	855	-156	108	20	789	2.84
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.9	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8			-268.9	146.2	22.8
Hydrogen	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutane	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Kerosene	204–293	251	-24.9	 .	20	820	2.00
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
	~ . ~	1100	0.7.7	00.0	-100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
	4.4.0	2042		400 =	-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)	100	212.5	2100	10.5	25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum		230–384	1055	00.0	20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
D. C. 124	26.1	217.0	06.6		50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23
					-26.1	1374	1.27
					0	1295	1.34
Water	100	2257	0.0	222.7	25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25 50	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

 $^{^{\}circ}$ Sublimation temperature. (At pressures below the triple–point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing–point temperature of carbon dioxide is the triple–point temperature of -56.5° C.)

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

	Density,	Specific heat,		Density,	Specific heat,
Substance	$\rho \text{ kg/m}^3$	c_p kJ/kg·K	Substance	ρ kg/m ³	c_p kJ/kg·K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu,					
2% Zn, 2% Al)	8,280	0.400	Graphite	2500	0.711
			Granite	2700	1.017
Brass, yellow (65%					
Cu, 35% Zn)	8,310	0.400	Gypsum or plaster board	800	1.09
			Ice		
Copper			200 K		1.56
−173°C		0.254	220 K		1.71
−100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		Specific heat, kJ/kg·K		Latent heat of		Water			ic heat, cg·K	Latent heat of
	content,	Freezing	Above	Below	fusion,		content,	Freezing	Above	Below	fusion,
Food	% (mass)	point, °C	freezing	freezing	kJ/kg	Food	% (mass)	point, °C	freezing	freezing	kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese,											
swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	t 74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	e 74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source of Data: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing–point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air–Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

			c volume, ³ /kg	Inte	ernal ene kJ/kg	rgy,		<i>Enthalp</i> kJ/kg	у,		Entrop: kJ/kg·I	
Temp.,	Sat. Press.,	Sat.	Sat. vapor,	Sat.	Evap.,	Sat. vapor,	Sat.	Evap.,	Sat.	Sat.	Evap.,	Sat. vapor,
T °C	P _{sat} kPa	\mathbf{U}_f	Ug	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
0.01		0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5		0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10		0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15		0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20		0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25		0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30		0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35		0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40		0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45		0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947 25.043	0.001017 0.001020	7.6670 6.1935	251.16 272.09	2204.7 2190.3	2455.9 2462.4	251.18 272.12	2357.7 2345.4	2608.8 2617.5	0.8313 0.8937	7.0769 6.9360	7.9082 7.8296
65 70	31.202	0.001020	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.8937	6.7989	7.7540
75 80	38.597 47.416	0.001026 0.001029	4.1291 3.4053	313.99 334.97	2161.3 2146.6	2475.3 2481.6	314.03 335.02	2320.6 2308.0	2634.6 2643.0	1.0158	6.6655 6.5355	7.6812 7.6111
85	57.868	0.001029	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.0756 1.1346	6.4089	7.5435
90	70.183	0.001032	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492
165 170	700.93 792.18	0.001108 0.001114	0.27244 0.24260	696.46 718.20	1875.4 1857.5	2571.9 2575.7	697.24 719.08	2065.6 2048.8	2762.8 2767.9	1.9923	4.7143 4.6233	6.7067 6.6650
										2.0417		
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2 1977.9	2781.4	2.1875	4.3572	6.5447
190 195	1255.2 1398.8	0.001141 0.001149	0.15636 0.14089	806.00 828.18	1783.0 1763.6	2589.0 2591.7	807.43 829.78	1977.9	2785.3 2788.8	2.2355 2.2831	4.2705 4.1847	6.5059 6.4678
200	1554.9	0.001149	0.14089	850.46	1743.7	2594.2	852.26	1939.0	2792.0	2.3305	4.1847	6.4302
200	1001.7	0.001137	0.12/21	0.70	17 (3.1	2377.2	032.20	1737.0	2172.0	2.3303	1.0771	3.1302

TABLE A-4Saturated water—Temperature table (*Concluded*)

			c volume, ³/kg	Inte	ernal ene kJ/kg	rgy,		Enthalpy kJ/kg	γ,		Entropy kJ/kg·K	
Temp.,	Sat. Press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, U_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205	1724.3	0.001164	0.11508	•	1723.5	2596.4	874.87	1920.0	2794.8	2.3776	4.0154	6.3930
210	1907.7	0.001173	0.10429		1702.9	2598.3	897.61	1899.7	2797.3	2.4245	3.9318	6.3563
215	2105.9	0.001181	0.094680		1681.9	2599.9	920.50	1878.8	2799.3	2.4712	3.8489	6.3200
220	2319.6	0.001190	0.086094		1660.5	2601.3	943.55	1857.4	2801.0	2.5176	3.7664	6.2840
225	2549.7	0.001199	0.078405		1638.6	2602.3	966.76	1835.4	2802.2	2.5639	3.6844	6.2483
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802.9	2.6100	3.6028	6.2128
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.6560	3.5216	6.1775
240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018	3.4405	6.1424
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596	6.1072
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933	3.2788	6.0721
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662
270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.9542	5.9305
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.8723	5.8944
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.7898	5.8579
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
315	10,556	0.001472	0.016849	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	5.5816
320	11,284	0.001499	0.015470	1445.1	1080.9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372
325	12,051	0.001528	0.014183	1475.0	1038.5	2513.4	1493.4	1191.0	2684.3	3.4998	1.9911	5.4908
330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907
340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358
345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765
350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.7788	1.4326	5.2114
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.1384
360	18,666	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.0537
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493
370	21,044	0.002217	0.004953	1844.5	385.6	2230.1	1891.2	443.1	2334.3	4.1119	0.6890	4.8009
373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

Source of Data: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

	Specific ve m³/k		nternal ene kJ/kg	ergy,		<i>Enthalpy,</i> kJ/kg	,		Entropy, kJ/kg·K	
Sat. Press., temp	, liquid,	Sat. Sat. vapor, liquid	* '	Sat. vapor,	Sat.	Evap.,	Sat.	Sat. liquid,	Evap.,	Sat. vapor,
P kPa $T_{\rm sat}$		U_g u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
1.0 6.9' 1.5 13.0 2.0 17.5 2.5 21.0 3.0 24.0	0.001001 60 0.001002 54	77.964 54.68 66.990 73.43 44.242 88.42 5.654 100.98	1 2325.5 2 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.9749 8.8270 8.7227 8.6421 8.5765
4.0 28.9 5.0 32.8 7.5 40.2 10 45.8 15 53.9	0.001005 23 0.001008 19 0.001010 14	(8.185) 137.75 (9.233) 168.74 (4.670) 191.79	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.4734 8.3938 8.2501 8.1488 8.0071
20 60.0 25 64.9 30 69.0 40 75.8 50 81.3	0.001020 0.001022 0.001026	7.6481 251.40 6.2034 271.93 5.2287 289.24 3.9933 317.58 3.2403 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.9073 7.8302 7.7675 7.6691 7.5931
75 91.7 100 99.6 101.325 99.9 125 105.9 150 111.3	0.001043 0.001043 0.001048	2.2172 384.36 1.6941 417.40 1.6734 418.95 1.3750 444.23 1.1594 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.4558 7.3589 7.3545 7.2841 7.2231
175 116.0 200 120.2 225 123.9 250 127.4 275 130.5	0.001061 0.001064 0.001067	1.0037 486.82 0.88578 504.50 0.79329 520.47 0.71873 535.08 0.65732 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 133.5 325 136.2 350 138.8 375 141.3 400 143.6	0.001076 0.001079 0.001081	0.60582 561.11 0.56199 572.84 0.52422 583.89 0.49133 594.32 0.46242 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9917 6.9650 6.9402 6.9171 6.8955
450 147.9 500 151.8 550 155.4 600 158.8 650 161.9 700 164.9 750 167.7	0.001093 0.001097 0.001101 0.001104 0.001108	0.41392 622.65 0.37483 639.54 0.34261 655.16 0.31560 669.72 0.29260 683.37 0.27278 696.23 0.25552 708.40	1934.5 1921.2 1908.8 1897.1 1886.1 1875.6 1865.6	2557.1 2560.7 2563.9 2566.8 2569.4 2571.8 2574.0	623.14 640.09 655.77 670.38 684.08 697.00 709.24	2120.3 2108.0 2096.6 2085.8 2075.5 2065.8 2056.4	2743.4 2748.1 2752.4 2756.2 2759.6 2762.8 2765.7	1.8205 1.8604 1.8970 1.9308 1.9623 1.9918 2.0195	5.0356 4.9603 4.8916 4.8285 4.7699 4.7153 4.6642	6.8561 6.8207 6.7886 6.7593 6.7322 6.7071 6.6837
750 107.7	0.001111	0.23332 700.40	1005.0	2317.0	707.27	2030.4	2103.1	2.0173	7.0072	0.003

TABLE A-5

Saturated water—Pressure table (Concluded)

		Specific m³,		Internal energ kJ/kg		rgy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Press.,	Sat. temp.,	Sat.	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat.	Sat. liquid,	Evap.,	Sat. vapor,
P kPa	$T_{\rm sat}$ °C	$U_{\!f}$	U _g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
800 850 900 950	170.41 172.94 175.35 177.66		0.24035 0.22690 0.21489 0.20411	719.97 731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6	2576.0 2577.9 2579.6 2581.3	720.87 731.95 742.56 752.74	2047.5 2038.8 2030.5 2022.4	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166	4.6160 4.5705 4.5273 4.4862	6.6616 6.6409 6.6213 6.6027
1000 1100 1200 1300 1400 1500	179.88 184.06 187.96 191.60 195.04 198.29			761.39 779.78 796.96 813.10 828.35 842.82	1821.4 1805.7 1790.9 1776.8 1763.4 1750.6	2582.8 2585.5 2587.8 2589.9 2591.8 2593.4	762.51 781.03 798.33 814.59 829.96 844.55	2014.6 1999.6 1985.4 1971.9 1958.9 1946.4	2777.1 2780.7 2783.8 2786.5 2788.9 2791.0	2.1381 2.1785 2.2159 2.2508 2.2835 2.3143	4.4470 4.3735 4.3058 4.2428 4.1840 4.1287	6.5850 6.5520 6.5217 6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	876.12 906.12 933.54 958.87 1004.6	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2795.2 2798.3 2800.5 2801.9 2803.2	2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001252 0.001286 0.001319	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1049.7 1087.4 1154.5 1213.8 1267.5	1753.0 1713.5 1639.7 1570.9 1505.2	2802.7 2800.8 2794.2 2784.6 2772.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1317.1 1363.7 1407.8 1450.2 1491.3	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1531.4 1571.0 1610.3 1649.9 1690.3	1131.3 1067.0 1000.5 931.1 857.4	2662.7 2637.9 2610.8 2581.0 2547.7	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8 0	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1732.2 1776.8 1826.6 1888.0 2011.1 2084.3	777.8 689.2 585.5 450.4 161.5	2510.0 2466.0 2412.1 2338.4 2172.6 2084.3	3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLE A-6 Superheated water Th h U h U U uи и °C m³/kg kJ/kg kJ/kg kJ/kg·K m³/kg kJ/kg kJ/kg kJ/kg·K m³/kg kJ/kg kJ/kg kJ/kg·K $P = 0.01 \text{ MPa } (45.81^{\circ}\text{C})^{*}$ $P = 0.05 \text{ MPa } (81.32^{\circ}\text{C})$ $P = 0.10 \text{ MPa } (99.61^{\circ}\text{C})$ Sat.† 14.670 2437.2 2583.9 8.1488 3.2403 2483.2 2505.6 2645.2 7.5931 1.6941 2675.0 7.3589 50 14.867 2443.3 2592.0 8.1741 100 17.196 2515.5 2687.5 8.4489 3.4187 2511.5 2682.4 7.6953 1.6959 2506.2 2675.8 7.3611 150 19.513 2587.9 2783.0 8.6893 3.8897 2585.7 2780.2 7.9413 1.9367 2582.9 2776.6 7.6148 8.9049 4.3562 2660.0 2877.8 8.1592 200 21.826 2661.4 2879.6 2.1724 2658.2 2875.5 7.8356 24.136 2736.1 2977.5 9.1015 4.8206 2735.1 2976.2 8.3568 2.4062 2733.9 2974.5 8.0346 250 26.446 2812.3 9.2827 3075.8 2.6389 300 3076.7 5.2841 2811.6 8.5387 2810.7 3074.5 8.2172 31.063 2969.3 3280.0 9.6094 6.2094 2968.9 3279.3 8.8659 3.1027 2968.3 3278.6 400 8.5452 35.680 3132.9 3489.7 9.8998 3132.6 3489.3 9.1566 3.5655 3132.2 3488.7 500 7.1338 8.8362 600 40.296 3303.3 3706.3 10.1631 8.0577 3303.1 3706.0 9.4201 4.0279 3302.8 3705.6 9.0999 4.4900 3480.4 3929.4 700 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 9.3424 800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 4160.4 9.8883 4.9519 3665.0 4160.2 9.5682 900 54.143 3856.9 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 5.4137 3856.7 4398.0 9.7800 1000 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.8755 4055.0 4642.6 9.9800 12.6745 4893.7 4259.8 1100 63.373 4260.0 4893.8 11.2326 4259.9 10.4897 6.3372 4893.6 10.1698 1200 67.989 4470.9 11.4132 13.5977 4470.8 5150.7 6.7988 4470.7 5150.8 10.6704 5150.6 10.3504 14.5209 72.604 4687.4 11.5857 4687.3 5413.3 10.8429 7.2605 4687.2 1300 5413.4 5413.3 10.5229 $P = 0.20 \text{ MPa} (120.21^{\circ}\text{C})$ $P = 0.30 \text{ MPa} (133.52^{\circ}\text{C})$ $P = 0.40 \text{ MPa} (143.61^{\circ}\text{C})$ Sat. 0.88578 2529.1 2706.3 7.1270 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.95986 2577.1 2769.1 7.2810 0.63402 2571.0 2761.2 7.0792 0.47088 2564.4 2752.8 6.9306 2654.6 2870.7 200 1.08049 7.5081 0.71643 2651.0 2865.9 7.3132 0.53434 2647.2 2860.9 7.1723 1.19890 2731.4 2971.2 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 250 7.7100 300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 2.01302 3302.2 3704.8 3301.6 3704.0 3301.0 3703.3 600 8.7793 1.34139 8.5915 1.00558 8.4580 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 700 8.7012 9.2479 2.47550 3664.7 4159.8 3664.3 4159.3 3663.9 4158.9 800 1.65004 9.0605 1.23730 8.9274 900 2.70656 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 9.4726 1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 1.46859 4054.3 4641.7 9.3396 1100 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 1.58414 4259.2 4892.9 9.5295 4470.3 4470.2 1200 3.39938 4470.5 5150.4 10.0304 2.26624 5150.2 9.8431 1.69966 5150.0 9.7102 2.42019 4686.9 5413.0 10.0157 4686.7 1300 3.63026 4687.1 5413.1 10.2029 1.81516 5412.8 9.8828 $P = 0.50 \text{ MPa} (151.83^{\circ}\text{C})$ $P = 0.60 \text{ MPa} (158.83^{\circ}\text{C})$ $P = 0.80 \text{ MPa} (170.41^{\circ}\text{C})$ 0.37483 0.24035 2576.0 Sat. 2560.7 2748.1 6.8207 0.31560 2566.8 2756.2 6.7593 2768.3 6.6616 0.42503 7.0610 2639.4 0.26088 2631.1 200 2643.3 2855.8 0.35212 2850.6 6.9683 2839.8 6.8177 2721.2 250 0.47443 2723.8 2961.0 7.2725 0.39390 2957.6 7.1833 0.29321 2715.9 2950.4 7.0402 300 3064.6 7.4614 0.43442 2801.4 7.3740 0.32416 2797.5 3056.9 7.2345 0.52261 2803.3 3062.0 7.6346 2881.6 7.5481 0.35442 2878.6 7.4107 350 0.57015 2883.0 3168.1 0.47428 3166.1 3162.2 400 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 0.61731 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 3478.1 3925.3 700 3927.0 8.5978 3926.4 8.5132 3477.2 8.3794 0.89696 3478.6 0.74725 0.56011 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 3662.5 4157.0 8.6061 0.61820 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090 1200 1.35972 4470.0 5149.8 9.6071 1.13309 4469.8 5149.6 9.5229 0.84980 4469.4 5149.3 9.3898 9.7797 4686.4 5412.5 9.6955 0.90761 4686.1 5412.2 1300 1.45214 4686.6 5412.6 1.21012 9.5625

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

[†] Properties of saturated vapor at the specified pressure.

TABL	E A-6											
Superhe	eated water	(Continu	ed)									
T	U	и	h	S	U	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
			Pa (179.88			= 1.20 MP				= 1.40 MP		
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.10437	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8.8310	0.41933	4051.7	4638.8	8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0	4890.5	8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652	4468.7	5148.5	9.2022	0.48558	4468.3	5148.1	9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
1500			Pa (201.37			= 1.80 MP				= 2.00 MP		
C-4												
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0	2847.2	6.4825	0.10381	2628.5	2836.1	6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.7	6.6088	0.11150	2680.3	2903.3	6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.9	6.8246	0.12551	2773.2	3024.2	6.7684
350	0.17459	2866.6	3146.0 3254.9	7.0713 7.2394	0.15460 0.16849	2863.6	3141.9	7.0120 7.1814	0.13860	2860.5 2945.9	3137.7 3248.4	6.9583 7.1292
400 500	0.19007 0.22029	2950.8 3120.1	3472.6	7.2394	0.10849	2948.3 3118.5	3251.6		0.15122	3116.9	3468.3	7.1292
600	0.22029	3293.9	3693.9	7.8101	0.19331	3292.7	3470.4 3692.3	7.4845 7.7543	0.17568 0.19962	3291.5	3690.7	7.4337
700	0.24999	3473.5	3920.5	8.0558	0.22200	3472.6	3919.4	8.0005	0.19902	3471.7	3918.2	7.7043
800	0.27941	3659.5	4153.4	8.2834	0.24822	3658.8	4152.4	8.2284	0.22320	3658.0	4151.5	8.1791
900	0.30803	3852.1	4392.6	8.4965	0.27420	3851.5	4391.9	8.4417	0.24074	3850.9	4391.1	8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.30020	4050.7	4637.6	8.6427	0.27012	4050.2	4637.1	8.5936
1100	0.30087	4256.6	4890.0	8.8878	0.32000	4030.7	4889.6	8.8331	0.29342	4050.2	4889.1	8.7842
1200	0.39389	4467.9	5147.7	9.0689	0.33166	4467.6	5147.3	9.0143	0.31007	4467.2	5147.0	8.9654
1300	0.42488	4684.8	5410.9	9.0089	0.40341	4684.5	5410.6	9.0143	0.36308	4684.2	5410.3	9.1384
1300			Pa (223.95							= 3.50 MP		
						= 3.00 MP						
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.2	6.1856	0.05706	2603.0	2802.7	6.1244
225	0.08026		2805.5									
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	26.6459	0.08118	2750.8	2994.3	6.5412	0.06845	2738.8	2978.4	6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.1	6.7450	0.07680	2836.0	3104.9	6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	3231.7	6.9235	0.08456	2927.2	3223.2	6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2	3344.9	7.0856	0.09198	3016.1	3338.1	7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6	3457.2	7.2359	0.09919	3104.5	3451.7	7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	3682.8	7.5103	0.11325	3282.5	3678.9	7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.2	7.7590	0.12702	3464.7	3909.3	7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.9	7.9885	0.14061	3652.5	4144.6	7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.5	8.2028	0.15410	3846.4	4385.7	8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.2	8.4045	0.16751	4046.4	4632.7	8.3324
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	4886.7	8.5955	0.18087	4252.5	4885.6	8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3	5145.1	8.7771	0.19420	4464.4	5144.1	8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.8786

TABL	.E A-6											
Superh	eated water	(Continue	ed)									
T	U	и	h	S	U	и	h	S	U	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	= 4.0 MPa	a (250.35°	C)	P =	= 4.5 MPa	ı (257.44°	C)	P =	= 5.0 MPa	. (263.94° (C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
600	0.09886	3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2605
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136
800 900	0.12292 0.13476	3650.6 3844.8	4142.3 4383.9	7.8523 8.0675	0.10916 0.11972	3648.8 3843.3	4140.0 4382.1	7.7962 8.0118	0.09816 0.10769	3646.9 3841.8	4137.7 4380.2	7.7458 7.9619
1000	0.13470	4045.1	4631.2	8.2698	0.11972	4043.9	4629.8	8.2144	0.10709	4042.6	4628.3	8.1648
1100	0.14033	4251.4	4884.4	8.4612	0.13020	4250.4	4883.2	8.4060	0.11715	4249.3	4882.1	8.3566
1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.12533	4461.6	5141.3	8.5388
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124
			a (275.59°				ı (285.83°				. (295.01°C	
Cat				5.8902	0.027378			5.8148				
Sat. 300	0.03245 0.03619	2589.9 2668.4	2784.6 2885.6	6.0703	0.027378		2772.6 2839.9	5.9337	0.023525 0.024279		2758.7 2786.5	5.7450 5.7937
350	0.03019	2790.4	3043.9	6.3357	0.029492		3016.9	6.2305	0.024279		2988.1	6.1321
400	0.04223	2893.7	3178.3	6.5432	0.033202		3159.2	6.4502	0.023373		3139.4	6.3658
450	0.05217	2989.9	3302.9	6.7219	0.037730		3288.3	6.6353	0.034344		3273.3	6.5579
500	0.05667	3083.1	3423.1	6.8826	0.048157		3411.4	6.8000	0.041767		3399.5	6.7266
550	0.06102	3175.2	3541.3	7.0308	0.051966		3531.6	6.9507	0.045172		3521.8	6.8800
600	0.06527	3267.2	3658.8	7.1693	0.055665		3650.6	7.0910	0.048463		3642.4	7.0221
700	0.07355	3453.0	3894.3	7.4247	0.062850		3888.3	7.3487	0.054829		3882.2	7.2822
800	0.08165	3643.2	4133.1	7.6582	0.069856		4128.5	7.5836	0.061011		4123.8	7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082		4369.3	7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571		4622.5	8.0055	0.073079		4619.6	7.9419
1100	0.10543	4247.1	4879.7	8.2709	0.090341		4877.4	8.1982	0.079025		4875.0	8.1350
1200	0.11326	4459.8	5139.4	8.4534	0.097075		5137.4	8.3810	0.084934		5135.5	8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781		5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
			a (303.35°)				a (311.00°	*			a (327.81°	
Sat.	0.020489		2742.9	5.6791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284				0.019877				0.016120	26240	2026.6	5.5120
350	0.025816		2957.3	6.0380	0.022440		2924.0	5.9460	0.016138		2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436		3097.5	6.2141	0.020030		3040.0	6.0433
450 500	0.033524 0.036793		3258.0	6.4872	0.029782 0.032811		3242.4	6.4219	0.023019 0.025630		3201.5 3343.6	6.2749
550	0.030793	3056.3 3153.0	3387.4 3512.0	6.6603 6.8164	0.032611		3375.1 3502.0	6.5995 6.7585	0.023030		3476.5	6.4651 6.6317
600	0.039863	3248.4	3634.1	6.9605	0.033033		3625.8	6.9045	0.028033		3604.6	6.7828
650	0.042801	3343.4	3755.2	7.0954	0.038378		3748.1	7.0408	0.030300		3730.2	6.9227
700		3438.8	3876.1	7.2229	0.043597		3870.0	7.1693	0.034612		3854.6	7.0540
800	0.054132	3632.0	4119.2	7.4606	0.048629		4114.5	7.4085	0.038724		4102.8	7.2967
900	0.059562		4365.7	7.6802	0.053547		4362.0	7.6290	0.042720		4352.9	7.5195
1000	0.064919	4032.4	4616.7	7.8855	0.058391		4613.8	7.8349	0.046641		4606.5	7.7269
1100	0.070224	4240.7	4872.7	8.0791	0.063183		4870.3	8.0289	0.050510		4864.5	7.9220
1200	0.075492		5133.6	8.2625	0.067938		5131.7	8.2126	0.054342		5127.0	8.1065
1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.1	8.2819

TABL	E A-6											
Superhe	eated water	(Conclud	led)									
T	U	и	h	S	V	и	h	S	U	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	= 15.0 MF	Pa (342.16°	°C)	P =	17.5 MP	a (354.67°	°C)	P =	20.0 MP	a (365.75°	C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463		2902.4	5.7211	0.009950		2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204		3111.4	6.0212	0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385		3276.7	6.2424	0.014793		3241.2	6.1446
550		3106.2	3450.4	6.5230	0.019305		3423.6	6.4266	0.016571		3396.2	6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073		3561.3	6.5890	0.018185		3539.0	6.5075
650 700	0.026804 0.028621	3310.1 3409.8	3712.1 3839.1	6.8233 6.9573	0.022742 0.024342		3693.8 3823.5	6.7366 6.8735	0.019695 0.021134		3675.3 3807.8	6.6593 6.7991
800	0.028021	3609.3	4091.1	7.2037	0.024342		4079.3	7.1237	0.021134		4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.027403		4334.6	7.3511	0.025870		4325.4	7.0331
1000	0.033303	4017.1	4599.2	7.6378	0.030348		4592.0	7.5616	0.020434		4584.7	7.4950
1100	0.030000	4227.7	4858.6	7.8339	0.035213		4852.8	7.7588	0.023020		4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806		5117.6	7.9449	0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556		5386.5	8.1215	0.036371		5382.7	8.0574
			5.0 MPa			P = 30.				P = 35.		
375	0.001978	1799.9	1849.4	4.0345	0.001792		1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.001792		2152.8	4.4758	0.002105		1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299		2611.8	5.1473	0.003434		2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737		2821.0	5.4422	0.004957		2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691		3084.8	5.7956	0.006933		2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175		3279.7	6.0403	0.008348	2925.8	3218.0	5.9093
600		3140.0	3493.5	6.3637	0.011445		3446.8	6.2373	0.009523		3399.0	6.1229
650		3251.9	3637.7	6.5243	0.012590		3599.4	6.4074	0.010565		3560.7	6.3030
700		3359.9	3776.0	6.6702	0.013654		3743.9	6.5599	0.011523		3711.6	6.4623
800		3570.7	4043.8	6.9322	0.015628		4020.0	6.8301	0.013278		3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473		4288.8	7.0695	0.014904		4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240		4555.8	7.2880	0.016450		4541.5	7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954		4823.9	7.4906	0.017942		4812.4	7.4118
1200 1300	0.027157 0.029115	4424.6 4647.2	5103.5 5375.1	7.7710 7.9494	0.022630 0.024279		5094.2 5367.6	7.6807 7.8602	0.019398 0.020827	4631.2	5085.0 5360.2	7.6034 7.7841
1300	0.029113		0.0 MPa	7.7474	0.024279		0.0 MPa	7.8002	0.020827	P = 60.		7.7041
275	0.001641			2 9200	0.001560			2.7642	0.001502			2.71.40
375		1677.0	1742.6	3.8290	0.001560			3.7642 4.0029	0.001503		1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731		1874.4		0.001633		1843.2	3.9317
425 450	0.002538 0.003692	2097.5 2364.2	2199.0 2511.8	4.5044 4.9449	0.002009 0.002487		2060.7 2284.7	4.2746 4.5896	0.001816 0.002086		2001.8 2180.2	4.1630 4.4140
500	0.003692	2681.6	2906.5	5.4744	0.002487		2722.6	5.1762	0.002086		2570.3	4.4140
550	0.003023	2875.1	3154.4	5.7857	0.005118		3025.4	5.5563	0.002932		2901.9	5.3517
600	0.000983	3026.8	3350.4	6.0170	0.005118		3252.6	5.8245	0.003933		3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.006957		3443.5	6.0373	0.005591		3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717		3614.6	6.2179	0.006265		3551.3	6.0814
800	0.011521	3511.8	3972.6	6.6613	0.009073		3925.8	6.5225	0.007456		3880.0	6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296	3702.0	4216.8	6.7819	0.008519	3670.9	4182.1	6.6725
1000	0.014360	3952.9	4527.3	7.1355	0.011441		4499.4	7.0131	0.009504		4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534		4778.9	7.2244	0.010439		4757.3	7.1255
1200	0.016976	4396.9	5075.9	7.5357	0.013590		5058.1	7.4207	0.011339		5040.8	7.3248
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

360

380

0.0018248

1703.6

1740.1

3.8787

TABLE A-7 Compressed liquid water Th U h U h и и и S S °C m³/kg kJ/kg m³/kg $kJ/kg\cdot K$ m³/kg kJ/kg kJ/kg·K kJ/kg kJ/kg kJ/kg kJ/kg kJ/kg·K $P = 5 \text{ MPa } (263.94^{\circ}\text{C})$ $P = 10 \text{ MPa} (311.00^{\circ}\text{C})$ $P = 15 \text{ MPa} (342.16^{\circ}\text{C})$ 0.0012862 1148.1 1154.5 2.9207 0.0014522 1393.3 1407.9 3.3603 0.0016572 1585.5 1610.3 3.6848 Sat. 0.0009977 0.04 5.03 0.0001 0.0009952 0.12 10.07 0.0003 0.0009928 0.18 15.07 0.0004 0.2954 97.93 20 0.0009996 83.61 88.61 0.0009973 83.31 93.28 0.2943 0.0009951 83.01 0.2932 171.95 40 0.0010057 166.92 0.5705 0.0010035 166.33 176.37 180.77 0.5666 0.5685 0.0010013 165.75 60 0.0010149 250.29 255.36 0.8287 0.0010127 249.43 259.55 0.8260 0.0010105 248.58 263.74 0.8234 338.96 1.0723 342.94 346.92 80 0.0010267 333.82 0.0010244 332.69 1.0691 0.0010221 331.59 1.0659 1.3034 0.0010410 417.65 422.85 416.23 426.62 1.2996 0.0010361 414.85 430.39 100 0.0010385 1.2958 0.0010576 501.91 507.19 1.5236 0.0010549 500.18 510.73 1.5191 0.0010522 498.50 514.28 1.5148 120 592.18 1.7344 598.75 140 0.0010769 586.80 0.0010738 584.72 595.45 1.7293 0.0010708 582.69 1.7243 0.0010954 0.0010988 678.04 1.9374 670.06 681.01 0.0010920 667.63 684.01 1.9259 160 672.55 1.9316 0.0011240 759.47 765.09 2.1338 0.0011200 756.48 767.68 2.1271 0.0011160 753.58 770.32 2.1206 180 847.92 2.3251 200 0.0011531 853.68 0.0011482 844.32 855.80 2.3174 0.0011435 840.84 858.00 2.3100 220 0.0011868 938.39 944.32 2.5127 0.0011809 934.01 945.82 2.5037 0.0011752 929.81 947.43 2.4951 2.6983 240 0.0012268 1031.6 1037.7 0.0012192 1026.2 1038.3 2.6876 0.0012121 1021.0 1039.2 2.6774 0.0012560 260 0.0012755 0.0012653 1121.6 1134.3 2.8710 1115.1 1134.0 2.8586 1128.5 1134.9 2.8841 0.0013096 280 1221.8 1235.0 3.0565 3.0410 0.0013226 1213.4 1233.0 300 0.0013980 1329.4 1343.3 3.2488 0.0013783 1317.6 1338.3 3.2279 320 0.0014733 1431.9 1454.0 3.4263 340 0.0016311 1567.9 1592.4 3.6555 $P = 20 \text{ MPa} (365.75^{\circ}\text{C})$ P = 30 MPaP = 50 MPaSat. 0.0020378 1785.8 1826.6 4.0146 0.0009904 0.23 20.03 0.0005 0.0009857 0.29 29.86 0.0003 0.0009767 0.29 49.13 -0.001020 0.0009929 82.71 102.57 0.2921 0.0009886 82.11 111.77 0.2897 0.0009805 80.93 129.95 0.2845 40 0.0009992 165.17 185.16 0.5646 0.0009951 164.05 193.90 0.5607 0.0009872 161.90 211.25 0.5528 60 0.0010084 247.75 267.92 0.8208 0.0010042 246.14 276.26 0.8156 0.0009962 243.08 292.88 0.8055 80 0.0010199 330.50 350.90 1.0627 0.0010155 328.40 358.86 1.0564 374.78 1.0442 0.0010072 324.42 434.17 1.2920 441.74 405.94 456.94 1.2705 100 0.0010337 413.50 0.0010290 410.87 1.2847 0.0010201 0.0010496 496.85 517.84 1.5105 0.0010445 493.66 525.00 1.5020 0.0010349 487.69 539.43 1.4859 120 140 0.0010679 580.71 602.07 1.7194 0.0010623 576.90 608.76 1.7098 0.0010517 569.77 622.36 1.6916 160 0.0010886 665.28 687.05 1.9203 0.0010823 660.74 693.21 1.9094 0.0010704 652.33 705.85 1.8889 750.78 773.02 2.1143 2.0790 180 0.0011122 0.0011049 745.40 778.55 2.1020 0.0010914 735.49 790.06 2.3027 0.0011390 837.49 860.27 0.0011304 831.11 865.02 2.2888 0.0011149 819.45 875.19 2.2628 200 925.77 2.4867 2.4707 220 0.0011697 949.16 0.0011595 918.15 952.93 0.0011412 904.39 961.45 2.4414 1016.1 240 0.0012053 1040.2 2.6676 0.0011927 1006.9 1042.7 2.6491 0.0011708 990.55 1049.1 2.6156 0.0012472 1109.0 2.8469 1097.8 1078.2 1138.4 2.7864 260 1134.0 0.0012314 1134.7 2.8250 0.0012044 280 0.0012978 1205.6 1231.5 3.0265 0.0012770 1191.5 1229.8 0.0012430 1167.7 1229.9 2.9547 3.0001 0.0013611 1328.9 300 1307.2 1334.4 3.2091 0.0013322 1288.9 3.1761 0.00128791259.6 1324.0 3.1218 0.0014450 3.3996 1391.7 0.0013409 1354.3 320 1416.6 1445.5 0.0014014 1433.7 3.3558 1421.4 3.2888 0.0014932 0.0015693 1571.6 3.6086 1502.4 1547.1 0.0014049 1452.9 340 1540.2 3.5438 1523.1 3.4575

1626.8

1782.0

1675.6

1838.2

0.0016276

0.0018729

3.7499

4.0026

0.0014848

0.0015884

1556.5

1667.1

1630.7

1746.5

3.6301

3.8102

TABLE A-8

Saturated ice-water vapor

		Specific m³/		Inte	rnal ene kJ/kg	rgy,		Enthalpy kJ/kg	,		<i>Entropy,</i> kJ/kg·K	
Temp., T°C	Sat. press., P_{sat} kPa	Sat. ice, v_i	Sat. vapor, U_g	Sat. ice, u_i	Subl., u_{ig}	Sat. vapor, u_g	Sat. ice, h_i	Subl., h_{ig}	Sat. vapor, h_g	Sat. ice, s_i	Subl., s_{ig}	Sat. vapor, s_g
0.01 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32	0.61169 0.61115 0.51772 0.43748 0.36873 0.30998 0.25990 0.21732 0.18121 0.15068 0.12492 0.10326 0.08510 0.06991 0.05725 0.04673 0.03802 0.03082	0.001091 0.001091 0.001090 0.001090 0.001090 0.001089 0.001088 0.001088 0.001087 0.001087 0.001087 0.001087 0.001087 0.001086 0.001086	942.51 1131.3 1362.0 1644.7 1992.2 2421.0 2951.7	-333.40 -333.43 -337.63 -341.80 -345.94 -350.04 -354.12 -358.17 -362.18 -366.17 -370.13 -374.06 -377.95 -381.82 -385.66 -389.47 -393.25 -397.00	2707.9 2707.9 2709.4 2710.8 2712.2 2713.5 2714.8 2716.1 2717.3 2718.6 2719.7 2720.9 2722.0 2723.1 2724.2 2725.2 2726.2 2727.2	2374.5 2374.5 2371.8 2369.0 2366.2 2363.5 2360.7 2357.9 2355.2 2349.6 2346.8 2344.1 2341.3 2338.5 2335.7 2332.9 2330.2	-333.40 -333.43 -337.63 -341.80 -345.93 -350.04 -354.12 -358.17 -362.18 -366.17 -370.13 -374.06 -377.95 -381.82 -385.66 -389.47 -393.25 -397.00	2833.9 2833.9 2834.5 2835.0 2835.4 2835.8 2836.2 2836.6 2837.2 2837.5 2837.7 2837.9 2838.1 2838.2 2838.3 2838.4 2838.4	2500.5 2500.5 2496.8 2493.2 2489.5 2485.8 2482.1 2478.4 2474.7 2471.0 2467.3 2463.6 2459.9 2456.2 2452.5 2448.8 2445.1 2441.4	-1.2202 -1.2204 -1.2358 -1.2513 -1.2667 -1.2821 -1.2976 -1.3130 -1.3284 -1.3439 -1.3593 -1.3748 -1.3903 -1.4057 -1.4212 -1.4367 -1.4521 -1.4676	10.374 10.375 10.453 10.533 10.613 10.695 10.778 10.862 10.947 11.033 11.121 11.209 11.300 11.391 11.484 11.578 11.673 11.770	9.154 9.154 9.218 9.282 9.347 9.413 9.480 9.549 9.618 9.689 9.761 9.835 9.909 9.985 10.063 10.141 10.221 10.303
-34 -36 -38 -40	0.02490 0.02004 0.01608 0.01285	0.001085 0.001085 0.001085 0.001084	5460.1 6750.5	-400.72 -404.40 -408.07 -411.70	2728.1 2729.0 2729.9 2730.7	2327.4 2324.6 2321.8 2319.0	-400.72 -404.40 -408.07 -411.70	2838.5 2838.4 2838.4 2838.3	2437.7 2434.0 2430.3 2426.6	-1.4831 -1.4986 -1.5141 -1.5296	11.869 11.969 12.071 12.174	10.386 10.470 10.557 10.644

FIGURE A–9 *T-s* diagram for water.

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

FIGURE A-10

Mollier diagram for water.

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

TABLE A-11

Saturated refrigerant-134a—Temperature table

Sa	urate	u remigera	nt-134a—1e	imperature t	aute								
			Specific		Int	ernal ene	rgy,		Enthalpy	,		Entropy,	
			m ³ /l	kg		kJ/kg			kJ/kg			kJ/kg·K	
		Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Te	emp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
	°C	$P_{\rm sat}$ kPa	U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	s_g
∠	40	51.25	0.0007053	0.36064	-0.036	207.42	207.38	0.00	225.86	225.86	0.00000		0.96869
-3		56.86	0.0007082		2.472	206.06	208.53	2.512	224.62	227.13	0.01071		0.96588
— 3		62.95		0.29740	4.987	204.69	209.68	5.032		228.40	0.02137		0.96319
-3		69.56	0.0007111	0.27082	7.509	203.32	210.83	7.559	222.10	229.66		0.92867	
-3		76.71		0.24706	10.04	201.94	211.97	10.09	220.83	230.93		0.92569	
-3		84.43	0.0007171	0.22577	12.58	200.55	213.12	12.64	219.55	232.19		0.90289	
-2		92.76		0.22577	15.12	199.15	214.27	15.19	218.25	233.44	0.05297		0.95364
$-\frac{2}{2}$		101.73		0.18947	17.67	197.75	215.42	17.75	216.25	234.70	0.00337		0.95152
-2 -2		111.37	0.0007204		20.23	196.34	216.57	20.31	215.63	235.94		0.86542	
-2 -2		121.72		0.17398	22.80	194.92	217.71	22.89	214.30	237.19		0.85323	
-2 -2		132.82	0.0007328	0.13999	25.37	194.92	218.86	25.47	212.96	238.43		0.83323	
		132.82	0.0007301			193.49			212.90	239.67			
-1		157.38		0.13389	27.96 30.55	192.03	220.00 221.15	28.07	211.00	240.90	0.11473	0.82927 0.81749	
							222.29	30.67		240.90			
- 1		170.93 185.37		0.11605	33.15 35.76	189.14	223.42	33.28	208.84		0.13493		0.94076
- 1		200.74	0.0007498 0.0007533		38.38	187.66	224.56	35.90	207.44	243.34 244.55		0.79429 0.78286	
-1						186.18		38.53	206.02				
	-8	217.08	0.0007570		41.01	184.69	225.69	41.17	204.59	245.76		0.77154	
	-6	234.44	0.0007607		43.64	183.18	226.82	43.82	203.14	246.95		0.76033	
	-4	252.85	0.0007644		46.29	181.66	227.94	46.48	201.66	248.14	0.18469		0.93390
	-2	272.36	0.0007683		48.94	180.12	229.07	49.15	200.17	249.33		0.73819	
	0	293.01	0.0007722		51.61	178.58	230.18	51.83	198.67	250.50	0.20432		0.93158
	2	314.84	0.0007761		54.28	177.01	231.30	54.53	197.14	251.66	0.21408		0.93050
	4	337.90	0.0007802		56.97	175.44	232.40	57.23	195.58	252.82	0.22381		0.92946
	6	362.23	0.0007843		59.66	173.84	233.51	59.95	194.01	253.96	0.23351		0.92847
	8	387.88	0.0007886		62.37	172.23	234.60	62.68	192.42	255.09	0.24318		0.92752
	10	414.89	0.0007929		65.09	170.61	235.69	65.42	190.80	256.22	0.25282	0.67380	
	12	443.31	0.0007973		67.82	168.96	236.78	68.17	189.16	257.33	0.26243		0.92574
	14	473.19	0.0008018		70.56	167.30	237.86	70.94	187.49	258.43	0.27201		0.92490
	16	504.58	0.0008064		73.31	165.62	238.93	73.72	185.80	259.51	0.28157		0.92409
	18	537.52	0.0008112		76.07	163.92	239.99	76.51	184.08	260.59	0.29111		0.92330
	20	572.07	0.0008160		78.85	162.19	241.04	79.32	182.33	261.64		0.62192	
	22	608.27	0.0008209		81.64	160.45	242.09	82.14	180.55	262.69		0.61168	
	24	646.18	0.0008260		84.44	158.68	243.13	84.98	178.74	263.72	0.31959		0.92107
	26	685.84	0.0008312		87.26	156.89	244.15	87.83	176.90	264.73	0.32905		0.92036
	28	727.31	0.0008366		90.09	155.08	245.17	90.70	175.03	265.73		0.58117	
	30	770.64	0.0008421		92.93	153.24	246.17	93.58	173.13	266.71		0.57105	
	32	815.89	0.0008477		95.79	151.37	247.17	96.49	171.19	267.67		0.56095	
	34	863.11	0.0008535		98.67	149.48	248.15	99.41	169.21	268.61		0.55086	
	36	912.35	0.0008595		101.56	147.55	249.11	102.34	167.19	269.53		0.54077	
	38	963.68	0.0008657		104.47	145.60	250.07	105.30	165.13	270.44		0.53068	
		1017.1	0.0008720		107.39	143.61	251.00	108.28	163.03	271.31		0.52059	
		1072.8	0.0008786		110.34	141.59	251.92	111.28	160.89	272.17		0.51048	
4	44	1130.7	0.0008854	0.017837	113.30	139.53	252.83	114.30	158.70	273.00	0.41371	0.50036	0.91407

TABLE A-11

Saturated refrigerant-134a—Temperature table (Concluded)

		Specific m³,		In:	ternal ene kJ/kg	rgy,		Enthalpy kJ/kg	,		Entropy, kJ/kg·K	
_	Sat.	Sat.	Sat.	Sat.	_	Sat.	Sat.	_	Sat.	Sat.	_	Sat.
Temp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T °C	$P_{\rm sat}$ kPa	$\mathbf{U}_{\!f}$	U_g	u_f	u_{fg}	u_g	$h_{\!f}$	$h_{\!f\!g}$	h_g	S_f	S_{fg}	S_g
46	1191.0	0.0008924	0.016866	116.28	137.43	253.71	117.34	156.46	273.80	0.42311	0.49020	0.91331
48	1253.6	0.0008997	0.015951	119.28	135.30	254.58	120.41	154.17	274.57	0.43251	0.48001	0.91252
52	1386.2	0.0009151	0.014276	125.35	130.89	256.24	126.62	149.41	276.03	0.45136	0.45948	0.91084
56	1529.1	0.0009317	0.012782	131.52	126.29	257.81	132.94	144.41	277.35	0.47028	0.43870	0.90898
60	1682.8	0.0009498	0.011434	137.79	121.45	259.23	139.38	139.09	278.47	0.48930	0.41746	0.90676
65	1891.0	0.0009751	0.009959	145.80	115.06	260.86	147.64	132.05	279.69	0.51330	0.39048	0.90379
70	2118.2	0.0010037	0.008650	154.03	108.17	262.20	156.15	124.37	280.52	0.53763	0.36239	0.90002
75	2365.8	0.0010373	0.007486	162.55	100.62	263.17	165.01	115.87	280.88	0.56252	0.33279	0.89531
80	2635.3	0.0010774	0.006439	171.43	92.22	263.66	174.27	106.35	280.63	0.58812	0.30113	0.88925
85	2928.2	0.0011273	0.005484	180.81	82.64	263.45	184.11	95.39	279.51	0.61487	0.26632	0.88120
90	3246.9	0.0011938	0.004591	190.94	71.19	262.13	194.82	82.22	277.04	0.64354	0.22638	0.86991
95	3594.1	0.0012945	0.003713	202.49	56.25	258.73	207.14	64.94	272.08	0.67605	0.17638	0.85243
100	3975.1	0.0015269	0.002657	218.73	29.72	248.46	224.80	34.22	259.02	0.72224	0.09169	0.81393

Source of Data: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner–Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

Saturate	ed refriger	ant-134a—P	ressure table	<u> </u>								
		Specific m³/		Inte	ernal ene kJ/kg	rgy,		Enthalpy kJ/kg	,		<i>Entropy,</i> kJ/kg⋅K	
Press.,	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
P	temp.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
kPa	$T_{\rm sat}$ $^{\circ}$ C		U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	s_g
60	-36.95		0.31108	3.795	205.34	209.13		223.96	227.80	0.01633	0.94812	0.96445
70	-30.93 -33.87	0.0007097 0.0007143	0.31108	7.672	203.34	210.90	7.722		227.80	0.01033	0.94812	0.96443
80	-33.87 -31.13	0.0007143	0.20921	11.14	203.23	210.90	11.20	220.27	231.47	0.03204	0.92783	0.96047
90			0.23749	14.30		212.46	14.36	218.67	233.04	0.04707	0.91009	0.95710
100	-28.65 -26.37	0.0007222 0.0007258	0.21201	17.19	199.60 198.01	215.90	17.27	217.19	233.04	0.00003	0.88008	0.95434
120	-20.37 -22.32	0.0007238	0.19233	22.38	195.15	217.53	22.47	217.19	234.40	0.07182	0.85520	0.93191
140	-22.32 -18.77	0.0007323	0.10210	26.96	193.13	217.55	27.06	214.32	230.99	0.09209	0.83320	0.94769
160	-16.77 -15.60	0.0007381	0.14020	31.06	192.00	219.30	31.18	209.96	239.19	0.11080	0.83587	0.94407
180	-13.00 -12.73	0.0007433	0.12333	34.81	188.20	223.01	34.94	207.95	242.90	0.12080	0.79848	0.94202
200	-12.73 -10.09	0.0007483	0.11049	38.26	186.25	224.51	38.41	206.09	244.50	0.14131	0.78339	0.93788
240	-5.38	0.0007532	0.093931	44.46	182.71	227.17	44.64	202.68	247.32	0.13449	0.75689	0.93475
280	-3.36 -1.25	0.0007618	0.0033434	49.95	179.54	229.49	50.16	199.61	249.77	0.17780	0.73406	0.93473
320	$\frac{-1.25}{2.46}$	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.19622	0.73400	0.93226
360	5.82	0.0007771	0.056809	59.42	173.99	233.41	59.70	194.15	253.86	0.21031	0.69591	0.93020
400	8.91	0.0007905	0.050309	63.61	173.49	235.41	63.92	191.68	255.61	0.23203	0.67954	0.92630
450	12.46	0.0007983	0.045677	68.44	168.58	237.03	68.80	188.78	257.58	0.26462	0.66093	0.92555
500	15.71	0.0007963	0.043077	72.92	165.86	238.77	73.32	186.04	259.36	0.28021	0.64399	0.92420
550	18.73	0.0008129	0.037452	77.09	163.29	240.38	77.54	183.44	260.98	0.29460	0.62842	0.92302
600	21.55	0.0008198	0.034335	81.01	160.84	241.86	81.50	180.95	262.46	0.30799	0.61398	0.92302
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82	0.32052	0.60048	0.92100
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08	0.33232	0.58780	0.92012
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25	0.34348	0.57582	0.91930
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34	0.35408	0.56445	0.91853
850	33.45	0.0008519	0.024091	97.88	150.00	247.88	98.61	169.75	268.36	0.36417	0.55362	0.91779
900	35.51	0.0008580	0.022703	100.84	148.03	248.88	101.62	167.69	269.31	0.37383	0.54326	0.91709
950	37.48	0.0008640	0.021456	103.70	146.11	249.82	104.52	165.68	270.20	0.38307	0.53333	0.91641
1000	39.37	0.0008700	0.020329	106.47	144.24	250.71	107.34	163.70	271.04	0.39196	0.52378	0.91574
1200	46.29	0.0008935	0.016728	116.72	137.12	253.84	117.79	156.12	273.92	0.42449	0.48870	0.91320
1400	52.40	0.0009167	0.014119	125.96	130.44	256.40	127.25	148.92	276.17	0.45325	0.45742	0.91067
1600	57.88	0.0009400	0.012134	134.45	124.05	258.50	135.96	141.96	277.92	0.47921	0.42881	0.90802
1800	62.87	0.0009639	0.010568	142.36	117.85	260.21	144.09	135.14	279.23	0.50304	0.40213	0.90517
2000	67.45	0.0009887	0.009297	149.81	111.75	261.56	151.78	128.36	280.15	0.52519	0.37684	0.90204
2500	77.54	0.0010567	0.006941	167.02	96.47	263.49	169.66	111.18	280.84	0.57542	0.31701	0.89243
3000	86.16	0.0011410	0.005272	183.09	80.17	263.26	186.51	92.57	279.08	0.62133	0.25759	0.87893
2000	00.20						200.04	<i>y</i> = ,		,,,,,,,,,,		

TAB	LE A-13											
Superl	heated refrig	erant-134	a									
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg		kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.0	06 MPa (7	$T_{\rm sat} = -36$	5.95°C)	P = 0.1	0 MPa (T	$_{\rm sat} = -26.$	37°C)	P=0.	14 MPa (<i>T</i>	$T_{\rm sat} = -18.7$	77°C)
Sat.	0.31108	209.13	227.80	0.9645	0.19255	215.21	234.46	0.9519	0.14020	219.56	239.19	0.9447
-20	0.33608	220.62	240.78	1.0175	0.19841	219.68	239.52	0.9721				
-10	0.35048	227.57	248.60	1.0478	0.20743	226.77	247.51	1.0031	0.14605	225.93	246.37	0.9724
0	0.36476	234.67	256.56	1.0775	0.21630 0.22506	233.97 241.32	255.60	1.0333	0.15263 0.15908	233.25 240.68	254.61 262.95	1.0032
10 20	0.37893 0.39302	241.94 249.37	264.68 272.95	1.1067 1.1354	0.22300	241.32	263.82 272.18	1.0628 1.0919	0.13908	248.24	202.93	1.0331 1.0625
30	0.40705	256.97	281.39	1.1637	0.23373	256.46	280.69	1.1204	0.10344	255.95	279.99	1.0913
40	0.42102	264.73	289.99	1.1916	0.25088	264.27	289.36	1.1485	0.17794	263.80	288.72	1.1196
50	0.43495	272.66	298.75	1.2192	0.25937	272.24	298.17	1.1762	0.18412	271.81	297.59	1.1475
60	0.44883	280.75	307.68	1.2464	0.26783	280.36	307.15	1.2036	0.19025	279.97	306.61	1.1750
70	0.46269	289.01	316.77	1.2732	0.27626	288.65	316.28	1.2306	0.19635	288.29	315.78	1.2021
80	0.47651	297.43	326.02	1.2998	0.28465	297.10	325.57	1.2573	0.20242	296.77	325.11	1.2289
90	0.49032	306.02	335.43	1.3261	0.29303	305.71	335.01	1.2836	0.20847	305.40	334.59	1.2554
100	0.50410	314.76	345.01	1.3521	0.30138	314.48	344.61	1.3097	0.21449	314.19	344.22	1.2815
	P=0.	18 MPa (7	$T_{\rm sat} = -12$	2.73°C)	P = 0.2	0 MPa (<i>T</i>	$_{\rm sat} = -10.$	09°C)	P = 0	.24 MPa (′	$T_{\rm sat} = -5.3$	8°C)
Sat.	0.11049	223.01	242.90	0.9398	0.09995	224.51	244.50	0.9379	0.08398	227.17	247.32	0.9348
-10	0.11189	225.04	245.18	0.9485	0.09991	224.57	244.56	0.9381				
0	0.11722	232.49	253.59	0.9799	0.10481	232.11	253.07	0.9699	0.08617	231.30	251.98	0.9520
10	0.12240	240.02	262.05	1.0103	0.10955	239.69	261.60	1.0005	0.09026	239.00	260.66	0.9832
20	0.12748	247.66	270.60	1.0400	0.11418	247.36	270.20	1.0304	0.09423	246.76	269.38	1.0134
30	0.13248	255.43	279.27	1.0691	0.11874	255.16	278.91	1.0596	0.09812	254.63	278.17	1.0429
40	0.13741	263.33	288.07	1.0976	0.12322	263.09	287.74	1.0882	0.10193	262.61	287.07	1.0718
50	0.14230	271.38	297.00	1.1257	0.12766	271.16	296.70	1.1164	0.10570	270.73	296.09	1.1002
60	0.14715	279.58	306.07	1.1533	0.13206	279.38	305.79	1.1441	0.10942	278.98	305.24	1.1281
70	0.15196	287.93	315.28	1.1806	0.13641	287.75	315.03	1.1714	0.11310	287.38	314.53	1.1555
80	0.15673	296.43	324.65	1.2075	0.14074	296.27	324.41	1.1984	0.11675	295.93	323.95	1.1826
90	0.16149	305.09	334.16	1.2340	0.14504	304.93	333.94	1.2250	0.12038	304.62	333.51	1.2093
100	0.16622	313.90	343.82	1.2603	0.14933	313.75	343.62	1.2513	0.12398	313.46	343.22	1.2356
	P=0	.28 MPa (.25°C)		.32 MPa ($T_{\rm sat} = 8.91$	
Sat.	0.07243	229.49		0.9323	0.06368	231.55	251.93	0.9303	0.051266	235.10	255.61	0.9271
0	0.07282	230.46	250.85	0.9362	0.05505	005.55	250 50	0.0515	0.051501	225.00	256.50	0.0206
10	0.07646	238.29	259.70	0.9681	0.06609	237.56	258.70	0.9545	0.051506	235.99	256.59	0.9306
20	0.07997	246.15	268.54	0.9987	0.06925	245.51	267.67	0.9856	0.054213	244.19	265.88	0.9628
30	0.08338		277.42		0.07231			1.0158			275.09	
40	0.08672	262.12	286.40	1.0577	0.07530		285.72	1.0452	0.059292	260.60	284.32	1.0237
50	0.09000	270.28	295.48	1.0862	0.07823	269.83	294.87	1.0739	0.061724	268.92	293.61	1.0529
60	0.09324	278.58	304.69	1.1143	0.08111	278.17	304.12	1.1022	0.064104	277.34	302.98	1.0814
70 80	0.09644 0.09961	287.01 295.59	314.01 323.48	1.1419 1.1690	0.08395 0.08675	286.64 295.24	313.50 323.00	1.1299 1.1572	0.066443 0.068747	285.88 294.54	312.45 322.04	1.1095 1.1370
90	0.09961	304.30	323.46	1.1090	0.08953	303.99	332.64	1.1372	0.008747	303.34	331.75	1.1570
100	0.10273	313.17	342.81	1.1938	0.08933	312.87	342.41	1.2106	0.071023	312.28	341.59	1.1908
110	0.10387	322.18	352.69	1.2484	0.09229	321.91	352.31	1.2368	0.075504	321.35	351.55	1.2172
120	0.11205	331.34	362.72	1.2742	0.09303	331.08	362.36	1.2627	0.077717	330.56	361.65	1.2432
130	0.11512	340.65	372.88	1.2998	0.10045	340.41	372.55	1.2883	0.079913	339.92	371.89	1.2689
140	0.11818	350.11	383.20	1.3251	0.10314	349.88	382.89	1.3136	0.082096	349.42	382.26	1.2943
									2.2.2			

0.026753 354.57

0.027566 364.63

0.028367 374.80 408.84

0.029158 385.10 420.09

386.68

397.71

1.2192

1.2450

1.2704

1.2955

150

160

170

180

PROPERTY TABLES AND CHARTS TABLE A-13 Superheated refrigerant-134a (Concluded) Th s U h U hи uи S S °C m³/kg kJ/kg m³/kg m³/kg kJ/kg kJ/kg·K kJ/kg kJ/kg kJ/kg·K kJ/kg kJ/kg·K kJ/kg $P = 0.50 \text{ MPa} (T_{\text{sat}} = 15.71^{\circ}\text{C})$ $P = 0.60 \text{ MPa} (T_{\text{sat}} = 21.55^{\circ}\text{C})$ $P = 0.70 \text{ MPa} (T_{\text{sat}} = 26.69^{\circ}\text{C})$ 0.041168 238.77 259.36 0.9242 0.034335 241.86 262.46 0.9220 0.029392 244.51 265.08 0.9201 Sat. 242.42 263.48 0.9384 0.042115 250.86 273.03 0.035984 249.24 270.83 0.9500 0.029966 247.49 268.47 0.9314 30 0.044338 0.9704 0.046456 259.27 282.50 0.037865 257.88 280.60 0.9817 0.031696 256.41 278.59 40 1.0011 0.9642 50 0.048499 267.73 291.98 1.0309 0.039659 266.50 290.30 1.0122 0.033322 265.22 288.54 0.9955 0.050485 276.27 60 301.51 1.0600 0.041389 275.17 300.00 1.0417 0.034875 274.03 298.44 1.0257 0.052427 284.91 0.043069 283.91 309.75 0.036373 282.88 308.34 70 311.12 1.0884 1.0706 1.0550 0.054331 293.65 292.74 319.57 320.82 1.1163 0.044710 1.0988 0.037829 291.81 318.29 1.0835 80 90 0.056205 302.52 330.63 1.1436 0.046318 301.69 329.48 1.1265 0.039250 300.84 328.31 1.1115 311.52 339.49 100 0.047900 310.75 0.040642 309.96 0.058053 340.55 1.1706 1.1536 338.41 1.1389 0.059880 320.65 350.59 1.1971 0.049458 319.93 349.61 1.1804 0.042010 319.21 348.61 1.1659 110 329.24 120 0.061687 329.91 360.75 1.2233 0.050997 359.84 1.2068 0.043358 328.57 358.92 1.1925 130 0.063479 339.31 371.05 1.2492 0.052519 338.69 370.20 1.2328 0.044688 338.06 369.34 1.2186 140 0.065256 348.85 381.47 1.2747 0.054027 348.26 380.68 1.2585 0.046004 347.67 379.88 1.2445 391.29 357.98 150 0.067021 358.52 392.04 1.3000 0.055522 0.047306 357.42 390.54 1.2700 1.2838 0.068775 368.34 367.83 367.31 402.73 1.3250 402.03 1.3089 0.048597 401.32 1.2952 160 0.057006 $P = 0.80 \text{ MPa} (T_{\text{sat}} = 31.31^{\circ}\text{C})$ $P = 0.90 \text{ MPa} (T_{\text{sat}} = 35.51^{\circ}\text{C})$ $P = 1.00 \text{ MPa} (T_{\text{sat}} = 39.37^{\circ}\text{C})$ 0.025645 246.82 267.34 0.9185 0.022686 248.82 269.25 0.9169 0.020319 250.71 271.04 0.9157 Sat. 254.84 276.46 0.023375 253.15 274.19 0.020406 251.32 271.73 40 0.027035 0.9481 0.9328 0.9180 50 0.028547 263.87 286.71 0.9803 0.024809 262.46 284.79 0.9661 0.021796 260.96 282.76 0.9526 60 0.029973 272.85 296.82 1.0111 0.026146 271.62 295.15 0.9977 0.023068 270.33 293.40 0.9851 70 0.031340 281.83 306.90 1.0409 0.027413 280.74 305.41 1.0280 0.024261 279.61 303.87 1.0160 80 0.032659 290.86 316.99 1.0699 0.028630 289.88 315.65 1.0574 0.025398 288.87 314.27 1.0459 0.033941 299.97 299.08 0.026492 298.17 90 327.12 1.0982 0.029806 325.90 1.0861 324.66 1.0749 100 0.035193 309.17 337.32 1.1259 0.030951 308.35 336.21 1.1141 0.027552 307.52 335.08 1.1032 316.96 0.036420 318.47 347.61 1.1531 0.032068 317.72 346.58 1.1415 0.028584 345.54 1.1309 110 0.037625 327.89 1.1798 0.033164 327.19 357.04 0.029592 326.49 356.08 1.1580 120 357.99 1.1684 130 0.038813 337.42 368.47 1.2062 0.034241 336.78 367.59 1.1949 0.030581 336.12 366.70 1.1847 140 0.039985 347.08 379.07 1.2321 0.035302 346.48 378.25 1.2211 0.031554 345.87 377.42 1.2110 356.30 150 0.041143 356.86 389.78 1.2577 0.036349 389.01 1.2468 0.032512 355.73 388.24 1.2369 366.25 160 0.042290 366.78 400.61 1.2830 0.037384 399.89 1.2722 0.033457 365.71 399.17 1.2624 170 0.043427 376.83 376.33 410.89 1.2973 0.034392 410.22 411.57 1.3081 0.038408 375.82 1.2876 180 0.044554 387.01 422.65 1.3328 0.039423 386.54 422.02 1.3221 0.035317 386.06 421.38 1.3125 $P = 1.40 \text{ MPa} (T_{\text{sat}} = 52.40^{\circ}\text{C})$ $P = 1.20 \text{ MPa} (T_{\text{sat}} = 46.29^{\circ}\text{C})$ $P = 1.60 \text{ MPa} (T_{\text{sat}} = 57.88^{\circ}\text{C})$ 0.016728 253.84 273.92 0.9132 0.014119 256.40 276.17 0.9107 0.012134 258.50 277.92 0.9080 Sat. 278.28 50 0.017201 257.64 0.9268 267.57 0.018404 289.66 0.9615 0.015005 264.46 285.47 0.9389 0.012372 260.91 280.71 0.9164 60 297.10 277.23 0.9939 274.62 0.013430 271.78 70 0.019502 300.63 0.016060 0.9733 293.27 0.9536 0.020529 286.77 1.0249 0.017023 284.51 308.34 1.0056 0.014362 282.11 305.09 80 311.40 0.9875 296.28 322.09 294.28 90 0.021506 1.0547 0.017923 319.37 1.0364 0.015215 292.19 316.53 1.0195 330.30 0.022442 305.81 332.74 0.018778 304.01 0.016014 302.16 100 1.0836 1.0661 327.78 1.0501 0.023348 315.40 343.41 0.019597 313.76 341.19 1.0949 0.016773 312.09 338.93 110 1.1119 1.0795 120 0.024228 325.05 354.12 1.1395 0.020388 323.55 352.09 1.1230 0.017500 322.03 350.03 1.1081 130 0.025086 334.79 364.90 1.1665 0.021155 333.41 363.02 1.1504 0.018201 332.02 361.14 1.1360 344.63 343.34 140 0.025927 375.74 1.1931 0.021904 374.01 1.1773 0.018882 342.06 372.27 1.1633

353.37

363.51

373.75 407.43

384.12 418.78

385.07

396.20

1.2038

1.2298

1.2554

1.2808

0.022636

0.023355

0.024061

0.024757

0.019545

0.020194

0.020830

0.021456

352.19

362.40

372.71

383.13

383.46

394.71

406.04

417.46

1.1901

1.2164

1.2422

1.2677

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Source of Data: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A-16

Properties of the atmosphere at high altitude

Altitude,	Temperature, °C	Pressure, kPa	Gravity g, m/s²	Speed of sound, m/s	Density, kg/m³	Viscosity μ, kg/m·s	Thermal conductivity, W/m·K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891	1.687×10^{-5}	0.0237
3400	-7.09	66.63	9.796	327.0	0.872	1.681×10^{-5}	0.0236
3600	-8.39	64.94	9.796	326.2	0.854	1.674×10^{-5}	0.0235
3800	-9.69	63.28	9.795	325.4	0.837	1.668×10^{-5}	0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721	1.622×10^{-5}	0.0227
5400	-20.1	51.23	9.790	318.9	0.705	1.615×10^{-5}	0.0226
5600	-21.4	49.86	9.789	318.1	0.690	1.608×10^{-5}	0.0224
5800	-22.7	48.52	9.785	317.3	0.675	1.602×10^{-5}	0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646	1.588×10^{-5}	0.0221
6400	-26.6	44.69	9.787	314.8	0.631	1.582×10^{-5}	0.0220
6600	-27.9	43.47	9.786	314.0	0.617	1.575×10^{-5}	0.0219
6800	-29.2	42.27	9.785	313.1	0.604	1.568×10^{-5}	0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312	1.422×10^{-5}	0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source of Data: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABLE A-17

T 1 1				c ·
Ideal	l-oas	\mathbf{nro}	perties	of air
raca	540	pro	oci ties	or un

Ideal-g	as properties	s of air									
T	h		и		s°	T	h		и		s°
K	kJ/kg	P_r	kJ/kg	U_r	kJ/kg·K	K	kJ/kg	P_r	kJ/kg	U_r	kJ/kg·K
200 210	199.97 209.97	0.3363 0.3987	142.56 149.69	1707.0 1512.0	1.29559 1.34444	580 590	586.04 596.52	14.38 15.31	419.55 427.15	115.7 110.6	2.37348 2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230 240	230.02 240.02	0.5477 0.6355	164.00 171.13	1205.0 1084.0	1.43557 1.47824	610 620	617.53 628.07	17.30 18.36	442.42 450.09	101.2 96.92	2.42644 2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260 270	260.09 270.11	0.8405 0.9590	185.45 192.60	887.8 808.0	1.55848 1.59634	640 650	649.22 659.84	20.64 21.86	465.50 473.25	88.99 85.34	2.47716 2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295 298	295.17 298.18	1.3068 1.3543	210.49 212.64	647.9 631.9	1.68515 1.69528	690 700	702.52 713.27	27.29 28.80	504.45 512.33	72.56 69.76	2.55731 2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310 315	310.24 315.27	1.5546 1.6442	221.25 224.85	572.3 549.8	1.73498 1.75106	730 740	745.62 756.44	33.72 35.50	536.07	62.13 59.82	2.61803
320	313.27	1.0442	228.42	549.8 528.6	1.75106	750	767.29	33.30 37.35	544.02 551.99	59.82 57.63	2.63280 2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340 350	340.42 350.49	2.149 2.379	242.82 250.02	454.1 422.2	1.82790 1.85708	800 820	821.95 843.98	47.75 52.59	592.30 608.59	48.08 44.84	2.71787 2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.74304
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390 400	390.88 400.98	3.481 3.806	278.93 286.16	321.5 301.6	1.96633 1.99194	900 920	932.93 955.38	75.29 82.05	674.58 691.28	34.31 32.18	2.84856 2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440 450	441.61 451.80	5.332 5.775	315.30 322.62	236.8 223.6	2.08870 2.11161	1000 1020	1046.04 1068.89	114.0 123.4	758.94 776.10	25.17 23.72	2.96770 2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490 500	492.74 503.02	7.824 8.411	352.08 359.49	179.7 170.6	2.19876 2.21952	1100 1120	1161.07 1184.28	167.1 179.7	845.33 862.79	18.896 17.886	3.07732 3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2 238.0	915.57	15.241	3.15916
540 550	544.35 554.74	11.10 11.86	389.34 396.86	139.7 133.1	2.29906 2.31809	1200 1220	1277.79 1301.31	238.0 254.7	933.33 951.09	14.470 13.747	3.17888 3.19834
560	565.17	12.66	404.42	127.0	2.33685	1240	1324.93	272.3	968.95	13.069	3.21751
570	575.59	13.50	411.97	121.2	2.35531						

TA		

Ideal-gas properties of air (Concluded)

T	h		и		s°	T	h		и		s°
K	kJ/kg	P_r	kJ/kg	U_r	kJ/kg∙K	K	kJ/kg	P_r	kJ/kg	U_r	kJ/kg∙K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and U_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE A-18

Ideal-gas properties of nitrogen, N₂

T K	\overline{h} kJ/kmol	ū kJ/kmol	¯s° kJ/kmol∙K	T K	\overline{h} kJ/kmol	ū kJ/kmol	\overline{s}° kJ/kmol·K
0	0	0	0	600	17,563	12,574	212.066
220	6,391	4,562	182.639	610	17,864	12,792	212.564
230	6,683	4,770	183.938	620	18,166	13,011	213.055
240	6,975	4,979	185.180	630	18,468	13,230	213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260	7,558	5,396	187.514	650	19,075	13,671	214.489
270	7,849	5,604	188.614	660	19,380	13,892	214.954
280	8,141	5,813	189.673	670	19,685	14,114	215.413
290	8,432	6,021	190.695	680	19,991	14,337	215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310	9,014	6,437	192.638	710	20,912	15,008	217.192
320	9,306	6,645	193.562	720	21,220	15,234	217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760	22,460	16,141	219.301
370	10,763	7,687	197.794	770	22,772	16,370	219.709
380	11,055	7,895	198.572	780	23,085	16,599	220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430	12,518	8,943	202.189	830	24,658	17,757	222.067
440	12,811	9,153	202.863	840	24,974	17,990	222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500	14,581	10,423	206.630	900	26,890	19,407	224.647
510	14,876	10,635	207.216	910	27,210	19,644	225.002
520	15,172	10,848	207.792	920	27,532	19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560	16,363	11,707	209.999	960	28,826	20,844	226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064
580	16,962	12,139	211.049	980	29,476	21,328	227.398
590	17,262	12,356	211.562	990	29,803	21,571	227.728

TABLE A-18

Ideal-gas properties of nitrogen, N₂ (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1720	54,807	40,507	246.580	3200	108,830	82,224	269.186
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763

Source of Data: Tables A–18 through A–25 are adapted from Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 787–98. Originally published in JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLE A-19

Ideal-gas properties of oxygen, O₂

T K	\overline{h} kJ/kmol	ū kJ/kmol	\overline{s}° kJ/kmol·K	T K	\overline{h} kJ/kmol	\overline{u} kJ/kmol	\overline{s}° kJ/kmol·K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TABLE A-19

Ideal-gas properties of oxygen, O₂ (Concluded)

T K	\overline{h} kJ/kmol	\overline{u} kJ/kmol	√s° kJ/kmol·K	T K	\overline{h} kJ/kmol	\overline{u} kJ/kmol	\overline{s}° kJ/kmol·K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

TABLE A-20

Ideal-gas properties of carbon dioxide, CO₂

T K	\overline{h} kJ/kmol	ū kJ/kmol	\overline{s}° kJ/kmol \cdot K	T K	\overline{h} kJ/kmol	ū kJ/kmol	\overline{s}° kJ/kmol·K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728
530	19,029	14,622	237.439	930	39,000	31,268	265.304
540	19,485	14,996	238.292	940	39,535	31,719	265.877
550	19,945	15,372	239.135	950	40,070	32,171	266.444
560	20,407	15,751	239.962	960	40,607	32,625	267.007
570	20,870	16,131	240.789	970	41,145	33,081	267.566
580	21,337	16,515	241.602	980	41,685	33,537	268.119
590	21,807	16,902	242.405	990	42,226	33,995	268.670

TABLE A-20

Ideal-gas properties of carbon dioxide, CO₂ (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLE A-21

Ideal-gas properties of carbon monoxide, CO

T K	\overline{h} kJ/kmol	ӣ kJ/kmol	\overline{s}° kJ/kmol·K	T K	\overline{h} kJ/kmol	и kJ/kmol	¯s° kJ/kmol∙K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLE A-21

Ideal-gas properties of carbon monoxide, CO (Concluded)

T	\overline{h}	\overline{u}	<u>s</u> °	T	\overline{h}	\overline{u}	<u>s</u> °
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494

TABLE A-22

Ideal-gas properties of hydrogen, H₂

T	-		\overline{s}°		-		\overline{s}°
T K	\overline{h} kJ/kmol	и kJ/kmol	s° kJ/kmol∙K	T K	<i>h</i> kJ/kmol	ū kJ/kmol	s° kJ/kmol⋅K
0	0 7,370	0 5,209	0 126.636	1440 1480	42,808 44,091	30,835	177.410
260 270	7,370 7,657	5,209 5,412	120.030	1520	45,384	31,786 32,746	178.291 179.153
280	7,945	5,617	128.765	1560	46,683	33,713	179.133
290	8,233	5,822	129.775	1600	47,990	34,687	180.820
298	8,468	5,989	130.574	1640	49,303	35,668	181.632
300	8,522	6,027	130.754	1680	50,622	36,654	182.428
320	9,100	6,440	132.621	1720	51,947	37,646	183.208
340	9,680	6,853	134.378	1760	53,279	38,645	183.973
360	10,262	7,268	136.039	1800	54,618	39,652	184.724
380	10,843	7,684	137.612	1840	55,962	40,663	185.463
400	11,426	8,100	139.106	1880	57,311	41,680	186.190
420 440	12,010 12,594	8,518 8,936	140.529 141.888	1920 1960	58,668 60,031	42,705 43,735	186.904 187.607
460	13,179	9,355	143.187	2000	61,400	44,771	188.297
480	13,764	9,773	144.432	2050	63,119	46,074	189.148
500	14,350	10,193	145.628	2100	64,847	47,386	189.979
520	14,935	10,611	146.775	2150	66,584	48,708	190.796
560	16,107	11,451	148.945	2200	68,328	50,037	191.598
600	17,280	12,291	150.968	2250	70,080	51,373	192.385
640	18,453	13,133	152.863	2300	71,839	52,716	193.159
680	19,630	13,976	154.645	2350	73,608	54,069	193.921
720	20,807	14,821	156.328	2400	75,383	55,429	194.669
760 800	21,988 23,171	15,669 16,520	157.923 159.440	2450 2500	77,168 78,960	56,798 58,175	195.403 196.125
840 880	24,359 25,551	17,375 18,235	160.891 162.277	2550 2600	80,755 82,558	59,554 60,941	196.837 197.539
920	26,747	19,098	162.277	2650	84,368	62,335	198.229
960	27,948	19,966	164.884	2700	86,186	63,737	198.907
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391
1280	37,749 39,002	27,106	173.687	3100	100,926	75,152 76,604	203.995 204.592
1320 1360	39,002 40,263	28,027 28,955	174.652 175.593	3150 3200	102,793 104,667	76,604 78,061	204.592
1400	41,530	29,889	175.595	3250	106,545	79,523	205.765
1700	71,550	27,007	170.510	3230	100,545	17,525	203.703

TABLE A-23

Ideal-gas properties of water vapor, H₂O

T K	\overline{h}	ū kJ/kmol	\overline{s}° kJ/kmol·K	T K	\overline{h}	ū kJ/kmol	¯s° kJ/kmol∙K
	kJ/kmol				kJ/kmol		
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

TABLE A-23

Ideal-gas properties of water vapor, H₂O (Continued)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756

TA		

Ideal-gas properties of monatomic oxygen, O

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	2400	50,894	30,940	204.932
298	6,852	4,373	160.944	2450	51,936	31,566	205.362
300	6,892	4,398	161.079	2500	52,979	32,193	205.783
500	11,197	7,040	172.088	2550	54,021	32,820	206.196
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831

ТΔ	R	IF	Δ-	-25

Ideal-gas properties of hydroxyl, OH

racar gas p	——————————————————————————————————————						
T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

TABLE A-26

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

		$\overline{h}_{\!f}^{\circ}$	\overline{g}_f°	\overline{s}°
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol·K
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	$O_2(g)$	0	0	205.04
Carbon monoxide	CO(g)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2\tilde{O}(g)$	-241,820	-228,590	188.83
Water	$H_2^2O(l)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(l)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	$CH_3OH(g)$	-200,670	-162,000	239.70
Methyl alcohol	$CH_3OH(l)$	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(l)$	-277,690	-174,890	160.70
Oxygen	O(g)	+249,190	+231,770	161.06
Hydrogen	H(g)	+218,000	+203,290	114.72
Nitrogen	N(g)	+472,650	+455,510	153.30
Hydroxyl	OH(g)	+39,460	+34,280	183.70

Source of Data: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A-27

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, 1c_p kJ/kg·K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H_2	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CÔ	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH_{4}	16.043	_	509	2.20	55,530	50,050
Methanol (l)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (l)	C_2H_6O	46.069	0.790	919	2.44	29,670	26,810
Propane (l)	C_3H_8	44.097	0.500	335	2.77	50,330	46,340
Butane (<i>l</i>)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (<i>l</i>)	C_5H_{10}	70.134	0.641	363	2.20	47,760	44,630
Isopentane (l)	C_5H_{12}	72.150	0.626	_	2.32	48,570	44,910
Benzene (l)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (l)	$C_{6}H_{12}$	84.161	0.673	392	1.84	47,500	44,400
Hexane (<i>l</i>)	$C_{6}H_{14}$	86.177	0.660	366	2.27	48,310	44,740
Toluene (<i>l</i>)	C_7H_8	92.141	0.867	412	1.71	42,400	40,500
Heptane (<i>l</i>)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (l)	C_8H_{18}	114.231	0.703	363	2.23	47,890	44,430
Decane (l)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (<i>l</i>)	$C_n H_{1.87n}$	100-110	0.72 - 0.78	350	2.4	47,300	44,000
Light diesel (<i>l</i>)	$C_nH_{1.8n}$	170	0.78 - 0.84	270	2.2	46,100	43,200
Heavy diesel (l)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1}At\ 1$ atm and 20°C. $^2At\ 25^\circ C$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels. $^3At\ 25^\circ C$. Multiply by molar mass to obtain heating values in kJ/kmol.

TABLE A-28

Natural logarithms of the equilibrium constant K_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \rightleftharpoons \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.,							
K	$H_2 \leftrightharpoons 2H$	$O_2 \leftrightharpoons 2O$	$N_2 \leftrightharpoons 2N$	$H_2O \leftrightharpoons H_2 + \frac{1}{2}O_2$	$H_2O \leftrightharpoons \frac{1}{2}H_2 + OH$	$CO_2 \leftrightharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source of Data: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

FIGURE A-29

Generalized enthalpy departure chart.

Source of Data: Redrawn from Gordon van Wylen and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976.

FIGURE A-30

Generalized entropy departure chart.

Source of Data: Redrawn from Gordon van Wylen and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976.

ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa

©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31

Psychrometric chart at 1 atm total pressure.

Reprinted from American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.