#### organic compounds



Acta Crystallographica Section E

## Structure Reports Online

ISSN 1600-5368

# 8,11,24-Trioxa-21-thia-19-azapenta-cyclo[ $16.6.0.0^{2,7}.0^{12,17}.0^{19,23}$ ]tetracosa-2(7),3,5,12,14,16-hexaene

Seenivasan Karthiga Devi,<sup>a</sup> Thothadri Srinivasan,<sup>a</sup> Santhanagopalan Purushothaman,<sup>b</sup> Raghavachary Raghunathan<sup>b</sup> and Devadasan Velmurugan<sup>a</sup>\*

<sup>a</sup>Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>b</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: shirai2011@gmail.com

Received 27 April 2013; accepted 9 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma(C-C) = 0.003$  Å; R factor = 0.048; wR factor = 0.149; data-to-parameter ratio = 18.7.

In the title compound,  $C_{19}H_{19}NO_3S$ , the thiazole and oxazolidine rings each adopt an envelope conformation, with the S and O atoms as the respective flap atoms. The thiazole and oxazolidine rings (all atoms) make a dihedral angle of 66.39 (11)° while the phenyl rings subtend a dihedral angle of 22.71 (10)°.

#### **Related literature**

For the biological activity of thiazole derivatives, see: Guo *et al.* (2006); Karegoudar *et al.* (2008); Reddy *et al.* (1999).

#### **Experimental**

Crystal data

 $\begin{array}{lll} {\rm C_{19}H_{19}NO_{3}S} & V = 1639.4 \ (12) \ {\rm \mathring{A}}^{3} \\ M_{r} = 341.42 & Z = 4 \\ {\rm Monoclinic,} \ P2_{1}/c & {\rm Mo} \ K\alpha \ {\rm radiation} \\ a = 10.725 \ (5) \ {\rm \mathring{A}} & \mu = 0.22 \ {\rm mm}^{-1} \\ b = 10.405 \ (5) \ {\rm \mathring{A}} & T = 293 \ {\rm K} \\ c = 14.930 \ (5) \ {\rm \mathring{A}} & 0.30 \times 0.25 \times 0.20 \ {\rm mm} \\ \beta = 100.262 \ (5)^{\circ} & \end{array}$ 

Data collection

Bruker SMART APEXII areadetector diffractometer 4067 independent reflections 4067 independent reflections 2586 reflections with  $I > 2\sigma(I)$   $R_{\rm int} = 0.938, \ T_{\rm max} = 0.958$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.048 & 217 \ {\rm parameters} \\ WR(F^2) = 0.149 & {\rm H-atom\ parameters\ constrained} \\ S = 1.03 & \Delta\rho_{\rm max} = 0.64\ {\rm e\ \mathring{A}^{-3}} \\ 4067\ {\rm reflections} & \Delta\rho_{\rm min} = -0.34\ {\rm e\ \mathring{A}^{-3}} \end{array}$ 

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK,TS and DV acknowlege the UGC (SAPCAS) for the departmental facilities. SK thanks the DST PURSE for a Junior Research Fellowship and TS thanks the DST Inspire for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6902).

#### References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Guo, C. B., Guo, Y. S., Guo, Z. R., Xiao, J. F., Chu, F. M. & Cheng, G. F. (2006). Acta Chim. Sin. 64, 1559–1564.

Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267.

Reddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N. & Jajoo, H. K. (1999). J. Med. Chem. 42, 1927–1940.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

Acta Cryst. (2013). E69, o898 [doi:10.1107/S1600536813012798]

8,11,24-Trioxa-21-thia-19-azapentacyclo-[16.6.0.0<sup>2,7</sup>.0<sup>12,17</sup>.0<sup>19,23</sup>]tetracosa-2(7),3,5,12,14,16-hexaene

## Seenivasan Karthiga Devi, Thothadri Srinivasan, Santhanagopalan Purushothaman, Raghavachary Raghunathan and Devadasan Velmurugan

#### Comment

Thiazole derivatives have a varity of physiological effects, such as antiinflammatory (Guo *et al.*, 2006) and antimicrobial (Karegoudar *et al.*, 2008). Against this background, we report herein the crystal structure of the title compound.

In the title compound,  $C_{19}H_{19}NO_3S$ , (Fig. 1) both the thiazole ring and the oxazolidine ring adopt an *envelope* conformation. The thiazole ring (S1/N1/C17/C18/C19) makes a dihedral angle of 66.39 (11)° with the oxazolidine ring (O3/N1/C7/C8/C17). The thiazole ring makes a dihedral angle of 61.25 (11)° with the phenyl ring (C1-C6), it makes a dihedral angle of 79.60 (11)° with the other phenyl ring (C9-C14).

The oxazolidine ring makes a dihedral angle of 64.80 (11)° with the phenyl ring (C1-C6), it makes a dihedral angle of 67.26 (10)° with the other phenyl ring (C9-C14). The dihedral angle between the two phenyl rings is 22.71 (10)°. The molecular structure features weak intramolecular C–H···O and C–H···N hydrogen bonds (Table 1).

#### **Experimental**

A mixture of 2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde (1 mMol) and thiazolidine-4-carboxylic acid (1 mMol) was refluxed in acetonitrile (30ml) for about 5 hrs under  $N_2$  atm. After the completion of reaction as indicated by TLC, acetonitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (8:2) mixture as eluent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

#### Refinement

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.98 Å, with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and =  $1.2U_{eq}(C)$  for other H atoms.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Acta Cryst. (2013). E69, o898 Sup-1



Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

#### 8,11,24-Trioxa-21-thia-19-azapentacyclo[16.6.0.0<sup>2,7</sup>.0<sup>12,17</sup>.0<sup>19,23</sup>]tetracosa-2(7),3,5,12,14,16-hexaene

| Crystal data                  |
|-------------------------------|
| $C_{19}H_{19}NO_3S$           |
| $M_r = 341.42$                |
| Monoclinic, $P2_1/c$          |
| Hall symbol: -P 2ybc          |
| a = 10.725 (5)  Å             |
| b = 10.405 (5)  Å             |
| c = 14.930 (5)  Å             |
| $\beta = 100.262 (5)^{\circ}$ |
| $V = 1639.4 (12) \text{ Å}^3$ |
| Z=4                           |

```
F(000) = 720

D_x = 1.383 Mg m<sup>-3</sup>

Mo K\alpha radiation, \lambda = 0.71073 Å

Cell parameters from 4067 reflections

\theta = 1.9-28.4^{\circ}

\mu = 0.22 mm<sup>-1</sup>

T = 293 K

Block, colourless

0.30 \times 0.25 \times 0.20 mm
```

Acta Cryst. (2013). E69, o898 sup-2

#### Data collection

Bruker SMART APEXII area-detector 15331 measured reflections diffractometer 4067 independent reflections Radiation source: fine-focus sealed tube 2586 reflections with  $I > 2\sigma(I)$ Graphite monochromator  $R_{\rm int} = 0.030$  $\omega$  and  $\varphi$  scans  $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$  $h = -14 \rightarrow 14$ Absorption correction: multi-scan  $k = -13 \rightarrow 13$ (SADABS; Bruker, 2008)  $l = -19 \rightarrow 19$  $T_{\min} = 0.938, T_{\max} = 0.958$ 

#### Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.048$ Hydrogen site location: inferred from  $wR(F^2) = 0.149$ neighbouring sites S = 1.03H-atom parameters constrained 4067 reflections  $w = 1/[\sigma^2(F_0^2) + (0.0712P)^2 + 0.3653P]$ 217 parameters where  $P = (F_0^2 + 2F_c^2)/3$ 0 restraints  $(\Delta/\sigma)_{\text{max}} < 0.001$ Primary atom site location: structure-invariant  $\Delta \rho_{\text{max}} = 0.64 \text{ e Å}^{-3}$ direct methods  $\Delta \rho_{\min} = -0.34 \text{ e Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\mathring{A}^2)$ 

|     | x            | y            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.67608 (18) | 0.00360 (19) | 0.35262 (13) | 0.0435 (4)                  |  |
| C2  | 0.5857 (2)   | 0.0394(2)    | 0.40363 (16) | 0.0580 (6)                  |  |
| H2  | 0.5126       | -0.0095      | 0.4013       | 0.070*                      |  |
| C3  | 0.6040(3)    | 0.1464(3)    | 0.45719 (16) | 0.0685 (7)                  |  |
| Н3  | 0.5437       | 0.1692       | 0.4920       | 0.082*                      |  |
| C4  | 0.7105 (3)   | 0.2208 (2)   | 0.46029 (16) | 0.0661 (7)                  |  |
| H4  | 0.7221       | 0.2943       | 0.4963       | 0.079*                      |  |
| C5  | 0.8005(2)    | 0.1848 (2)   | 0.40896 (14) | 0.0556 (5)                  |  |
| H5  | 0.8725       | 0.2352       | 0.4109       | 0.067*                      |  |
| C6  | 0.78602 (17) | 0.07568 (18) | 0.35488 (12) | 0.0417 (4)                  |  |
| C7  | 0.88455 (17) | 0.03869 (17) | 0.29832 (12) | 0.0386 (4)                  |  |
| H7  | 0.8874       | -0.0551      | 0.2933       | 0.046*                      |  |
| C8  | 0.85966 (16) | 0.09868 (18) | 0.20073 (12) | 0.0404 (4)                  |  |
| H8  | 0.8024       | 0.1723       | 0.1992       | 0.048*                      |  |
| C9  | 0.80786 (17) | 0.00603 (18) | 0.12575 (12) | 0.0401 (4)                  |  |
| C10 | 0.8866 (2)   | -0.0566(2)   | 0.07553 (13) | 0.0487 (5)                  |  |
| H10 | 0.9731       | -0.0392      | 0.0872       | 0.058*                      |  |

Acta Cryst. (2013). E69, o898 Sup-3

| C11  | 0.8391 (2)   | -0.1444(2)    | 0.00832 (14)  | 0.0587 (6) |
|------|--------------|---------------|---------------|------------|
| H11  | 0.8933       | -0.1864       | -0.0243       | 0.070*     |
| C12  | 0.7101(2)    | -0.1691 (2)   | -0.00986 (14) | 0.0582 (6) |
| H12  | 0.6774       | -0.2282       | -0.0547       | 0.070*     |
| C13  | 0.6300(2)    | -0.1062(2)    | 0.03824 (14)  | 0.0517 (5) |
| H13  | 0.5434       | -0.1224       | 0.0255        | 0.062*     |
| C14  | 0.67837 (17) | -0.01947 (18) | 0.10528 (12)  | 0.0404 (4) |
| C15  | 0.50032 (19) | -0.0129(2)    | 0.18360 (16)  | 0.0538 (5) |
| H15A | 0.4389       | -0.0404       | 0.1314        | 0.065*     |
| H15B | 0.4584       | 0.0468        | 0.2184        | 0.065*     |
| C16  | 0.54456 (18) | -0.1283 (2)   | 0.24204 (15)  | 0.0535 (5) |
| H16A | 0.4819       | -0.1488       | 0.2793        | 0.064*     |
| H16B | 0.5516       | -0.2015       | 0.2031        | 0.064*     |
| C17  | 1.05652 (19) | 0.1675 (2)    | 0.27269 (14)  | 0.0507 (5) |
| H17  | 1.0490       | 0.2583        | 0.2885        | 0.061*     |
| C18  | 1.1925 (2)   | 0.1351 (3)    | 0.27092 (18)  | 0.0690 (7) |
| H18A | 1.2486       | 0.1820        | 0.3178        | 0.083*     |
| H18B | 1.2140       | 0.1560        | 0.2122        | 0.083*     |
| C19  | 1.1041 (2)   | -0.0106 (2)   | 0.37495 (17)  | 0.0653 (6) |
| H19A | 1.0625       | -0.0903       | 0.3861        | 0.078*     |
| H19B | 1.1540       | 0.0186        | 0.4320        | 0.078*     |
| N1   | 1.01005 (14) | 0.08607 (16)  | 0.33910 (11)  | 0.0472 (4) |
| O1   | 0.66449 (12) | -0.10640 (12) | 0.29984 (9)   | 0.0473 (3) |
| O2   | 0.60208 (12) | 0.05173 (13)  | 0.15245 (9)   | 0.0488 (4) |
| O3   | 0.98101 (12) | 0.14160 (14)  | 0.18684 (9)   | 0.0507 (4) |
| S1   | 1.20505 (6)  | -0.03571 (7)  | 0.29167 (6)   | 0.0782 (3) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0465 (10) | 0.0417 (10) | 0.0441 (10) | 0.0101 (8)   | 0.0126 (8)   | 0.0106 (8)   |
| C2  | 0.0566 (13) | 0.0594 (14) | 0.0645 (13) | 0.0105 (10)  | 0.0288 (11)  | 0.0127 (11)  |
| C3  | 0.0815 (18) | 0.0714 (16) | 0.0609 (14) | 0.0299 (14)  | 0.0351 (13)  | 0.0091 (12)  |
| C4  | 0.0878 (18) | 0.0574 (14) | 0.0537 (12) | 0.0204 (13)  | 0.0147 (12)  | -0.0083 (11) |
| C5  | 0.0636 (13) | 0.0524 (13) | 0.0502 (11) | 0.0061 (10)  | 0.0086 (10)  | -0.0087(10)  |
| C6  | 0.0450 (10) | 0.0420 (10) | 0.0374 (9)  | 0.0067 (8)   | 0.0053 (8)   | 0.0034(8)    |
| C7  | 0.0368 (9)  | 0.0384 (10) | 0.0402 (9)  | 0.0004(7)    | 0.0064 (7)   | -0.0012(8)   |
| C8  | 0.0376 (9)  | 0.0396 (10) | 0.0436 (9)  | -0.0009(7)   | 0.0061 (7)   | 0.0032 (8)   |
| C9  | 0.0437 (10) | 0.0402 (10) | 0.0353 (8)  | 0.0010(8)    | 0.0045 (8)   | 0.0072 (8)   |
| C10 | 0.0463 (11) | 0.0575 (13) | 0.0429 (10) | 0.0006 (9)   | 0.0090(8)    | 0.0003 (9)   |
| C11 | 0.0670 (14) | 0.0629 (14) | 0.0479 (11) | 0.0057 (11)  | 0.0153 (10)  | -0.0063 (10) |
| C12 | 0.0724 (15) | 0.0548 (13) | 0.0444 (11) | -0.0044(11)  | 0.0025 (10)  | -0.0077(10)  |
| C13 | 0.0488 (11) | 0.0515 (12) | 0.0514 (11) | -0.0051(9)   | -0.0007(9)   | 0.0001 (10)  |
| C14 | 0.0410 (10) | 0.0410 (10) | 0.0379 (9)  | 0.0019(8)    | 0.0036 (8)   | 0.0063 (8)   |
| C15 | 0.0374 (10) | 0.0616 (13) | 0.0622 (12) | 0.0019 (9)   | 0.0083 (9)   | 0.0054 (11)  |
| C16 | 0.0416 (11) | 0.0523 (13) | 0.0676 (13) | -0.0057(9)   | 0.0127 (10)  | 0.0010 (10)  |
| C17 | 0.0539 (12) | 0.0419 (11) | 0.0545 (11) | -0.0115 (9)  | 0.0044 (9)   | -0.0019(9)   |
| C18 | 0.0471 (12) | 0.0852 (18) | 0.0733 (15) | -0.0232 (12) | 0.0072 (11)  | 0.0086 (14)  |
| C19 | 0.0432 (11) | 0.0781 (16) | 0.0700 (14) | 0.0011 (11)  | -0.0025 (10) | 0.0228 (13)  |
| N1  | 0.0386 (8)  | 0.0540 (10) | 0.0465 (9)  | -0.0036(7)   | 0.0012 (7)   | -0.0003(8)   |

Acta Cryst. (2013). E**69**, o898

| O1<br>O2 | 0.0407 (7)<br>0.0420 (7) | 0.0416 (8)<br>0.0461 (8) | 0.0598 (8)<br>0.0591 (8) | 0.0031 (6)<br>0.0028 (6) | 0.0095 (6)<br>0.0114 (6) | 0.0025 (6)<br>0.0029 (6) |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| O3       | 0.0468 (8)               | 0.0582 (9)               | 0.0470 (7)               | -0.0132 (6)              | 0.0076 (6)               | 0.0029 (7)               |
| S1       | 0.0494 (4)               | 0.0816 (5)               | 0.1040 (6)               | 0.0132 (0)               | 0.0148 (3)               | -0.0004 (4)              |
|          | 0.0151(1)                | 0.0010 (3)               | 0.1010(0)                | 0.0117 (3)               | 0.0110 (3)               | 0.0001(1)                |
| Geomet   | ric parameters (2        | Å, °)                    |                          |                          |                          |                          |
| C1—O1    | 1                        | 1.383                    | (2)                      | C12—C13                  |                          | 1.378 (3)                |
| C1—C2    | 2                        | 1.386                    | (3)                      | C12—H12                  |                          | 0.9300                   |
| C1—C6    |                          | 1.393                    | (3)                      | C13—C14                  |                          | 1.379 (3)                |
| C2—C3    | 3                        | 1.364                    | (3)                      | C13—H13                  |                          | 0.9300                   |
| C2—H2    | 2                        | 0.930                    | 0                        | C14—O2                   |                          | 1.386 (2)                |
| C3—C4    | 1                        | 1.374                    | (4)                      | C15—O2                   |                          | 1.428 (2)                |
| C3—H3    | 3                        | 0.930                    | 0                        | C15—C16                  |                          | 1.510 (3)                |
| C4—C5    | 5                        | 1.386                    | (3)                      | C15—H15A                 |                          | 0.9700                   |
| C4—H4    | 4                        | 0.930                    | 0                        | C15—H15B                 |                          | 0.9700                   |
| C5—C6    | 6                        | 1.386                    | (3)                      | C16—O1                   |                          | 1.434 (2)                |
| C5—H5    | 5                        | 0.930                    | 0                        | C16—H16A                 |                          | 0.9700                   |
| C6—C7    | 7                        | 1.515                    | (3)                      | C16—H16B                 |                          | 0.9700                   |
| C7—N1    | 1                        | 1.461                    | (2)                      | C17—O3                   |                          | 1.415 (2)                |
| C7—C8    | 3                        | 1.564                    | (2)                      | C17—N1                   |                          | 1.458 (3)                |
| C7—H7    | 7                        | 0.980                    | 0                        | C17—C18                  |                          | 1.501 (3)                |
| C8—O3    | 3                        | 1.426                    | (2)                      | C17—H17                  |                          | 0.9800                   |
| C8—C9    | )                        | 1.506                    | (3)                      | C18—S1                   |                          | 1.805 (3)                |
| C8—H8    | 3                        | 0.980                    | 0                        | C18—H18A                 |                          | 0.9700                   |
| C9—C1    | 10                       | 1.388                    | (3)                      | C18—H18B                 |                          | 0.9700                   |
| C9—C1    | 14                       | 1.393                    | (3)                      | C19—N1                   |                          | 1.457 (3)                |
| C10—C    | C11                      | 1.386                    | (3)                      | C19—S1                   |                          | 1.808 (3)                |
| C10—F    | H10                      | 0.930                    | 0                        | C19—H19A                 |                          | 0.9700                   |
| C11—C    | C12                      | 1.386                    | (3)                      | C19—H19B                 |                          | 0.9700                   |
| C11—E    | H11                      | 0.930                    | 0                        |                          |                          |                          |
| O1—C1    | 1—C2                     | 122.3                    | 3 (19)                   | C12—C13—H13              |                          | 120.0                    |
| O1—C1    | 1—C6                     | 116.7                    | 0 (16)                   | C14—C13—H13              |                          | 120.0                    |
| C2—C1    | I—C6                     | 120.9                    | (2)                      | C13—C14—O2               |                          | 122.64 (17)              |
| C3—C2    | 2—C1                     | 120.0                    | (2)                      | C13—C14—C9               |                          | 121.01 (18)              |
| C3—C2    | 2—H2                     | 120.0                    |                          | O2—C14—C9                |                          | 116.27 (16)              |
| C1—C2    | 2—H2                     | 120.0                    |                          | O2—C15—C16               |                          | 112.49 (16)              |
| C2—C3    | 3—C4                     | 120.8                    | (2)                      | O2—C15—H15A              |                          | 109.1                    |
| C2—C3    | 3—H3                     | 119.6                    |                          | C16—C15—H15A             | A                        | 109.1                    |
| C4—C3    | 3—H3                     | 119.6                    |                          | O2—C15—H15B              |                          | 109.1                    |
| C3—C4    | 1—C5                     | 119.0                    | (2)                      | C16—C15—H15E             | 3                        | 109.1                    |
| C3—C4    | 1—H4                     | 120.5                    |                          | H15A—C15—H1              | 5B                       | 107.8                    |
| C5—C4    | 1—H4                     | 120.5                    |                          | O1—C16—C15               |                          | 112.16 (16)              |
| C4—C5    | 5—C6                     | 121.8                    | (2)                      | O1—C16—H16A              |                          | 109.2                    |
| C4—C5    | 5—H5                     | 119.1                    |                          | C15—C16—H16A             | A                        | 109.2                    |
| C6—C5    | 5—H5                     | 119.1                    |                          | O1—C16—H16B              |                          | 109.2                    |
| C5—C6    | 6—C1                     | 117.4                    | 9 (18)                   | C15—C16—H16E             | 3                        | 109.2                    |
| C5—C6    | 6—C7                     | 121.0                    | 7 (18)                   | H16A—C16—H16             | 6B                       | 107.9                    |
|          | 5—C7                     | 121.4                    |                          | O3—C17—N1                |                          | 107.18 (15)              |

Acta Cryst. (2013). E**69**, o898

| N1—C7—C6     | 111.36 (15)  | O3—C17—C18             | 110.00 (18)  |
|--------------|--------------|------------------------|--------------|
| N1—C7—C8     | 104.20 (14)  | N1—C17—C18             | 109.38 (18)  |
| C6—C7—C8     | 113.43 (14)  | O3—C17—H17             | 110.1        |
| N1—C7—H7     | 109.2        | N1—C17—H17             | 110.1        |
| C6—C7—H7     | 109.2        | C18—C17—H17            | 110.1        |
| C8—C7—H7     | 109.2        | C17—C18—S1             | 105.17 (14)  |
| O3—C8—C9     | 108.52 (14)  | C17—C18—H18A           | 110.7        |
| O3—C8—C7     | 104.59 (14)  | S1—C18—H18A            | 110.7        |
| C9—C8—C7     | 114.59 (15)  | C17—C18—H18B           | 110.7        |
| O3—C8—H8     | 109.7        | S1—C18—H18B            | 110.7        |
| С9—С8—Н8     | 109.7        | H18A—C18—H18B          | 108.8        |
| C7—C8—H8     | 109.7        | N1—C19—S1              | 107.90 (15)  |
| C10—C9—C14   | 118.11 (18)  | N1—C19—H19A            | 110.1        |
| C10—C9—C8    | 121.49 (17)  | S1—C19—H19A            | 110.1        |
| C14—C9—C8    | 120.40 (16)  | N1—C19—H19B            | 110.1        |
| C11—C10—C9   | 121.33 (19)  | S1—C19—H19B            | 110.1        |
| C11—C10—C)   | 119.3        | H19A—C19—H19B          | 108.4        |
| C9—C10—H10   | 119.3        | C17—N1—C19             |              |
| C12—C11—C10  | 119.3 (2)    |                        | 110.68 (17)  |
|              |              | C17—N1—C7              | 108.30 (15)  |
| C12—C11—H11  | 120.3        | C19—N1—C7<br>C1—O1—C16 | 116.49 (17)  |
| C10—C11—H11  | 120.3        |                        | 117.03 (14)  |
| C13—C12—C11  | 120.2 (2)    | C14—O2—C15             | 117.95 (16)  |
| C13—C12—H12  | 119.9        | C17—O3—C8              | 108.54 (14)  |
| C11—C12—H12  | 119.9        | C18—S1—C19             | 86.56 (12)   |
| C12—C13—C14  | 120.0 (2)    |                        |              |
| O1—C1—C2—C3  | 177.59 (19)  | C10—C9—C14—C13         | 1.2 (3)      |
| C6—C1—C2—C3  | -0.2 (3)     | C8—C9—C14—C13          | -178.50 (17) |
| C1—C2—C3—C4  | 1.0 (3)      | C10—C9—C14—O2          | -175.54 (16) |
| C2—C3—C4—C5  | -0.8 (4)     | C8—C9—C14—O2           | 4.7 (2)      |
| C3—C4—C5—C6  | -0.2 (3)     | O2—C15—C16—O1          | 37.5 (3)     |
| C4—C5—C6—C1  | 1.0 (3)      | O3—C17—C18—S1          | -83.13 (18)  |
| C4—C5—C6—C7  | 1.0 (3)      | N1—C17—C18—S1          | 34.3 (2)     |
| 01—C1—C6—C5  | ` '          | O3—C17—C16—S1          | * *          |
|              | -178.67 (16) |                        | 112.63 (19)  |
| C2—C1—C6—C5  | -0.8 (3)     | C18—C17—N1—C19         | -6.6 (2)     |
| 01—C1—C6—C7  | 3.1 (2)      | O3—C17—N1—C7           | -16.2 (2)    |
| C2—C1—C6—C7  | -179.04 (17) | C18—C17—N1—C7          | -135.44 (18) |
| C5—C6—C7—N1  | 27.6 (2)     | S1—C19—N1—C17          | -24.3 (2)    |
| C1—C6—C7—N1  | -154.15 (16) | S1—C19—N1—C7           | 100.01 (18)  |
| C5—C6—C7—C8  | -89.5 (2)    | C6—C7—N1—C17           | -122.40 (17) |
| C1—C6—C7—C8  | 88.7 (2)     | C8—C7—N1—C17           | 0.25 (19)    |
| N1—C7—C8—O3  | 15.47 (18)   | C6—C7—N1—C19           | 112.12 (19)  |
| C6—C7—C8—O3  | 136.75 (16)  | C8—C7—N1—C19           | -125.24 (18) |
| N1—C7—C8—C9  | 134.16 (16)  | C2—C1—O1—C16           | 47.3 (2)     |
| C6—C7—C8—C9  | -104.56 (18) | C6—C1—O1—C16           | -134.80 (18) |
| O3—C8—C9—C10 | 20.6 (2)     | C15—C16—O1—C1          | 51.5 (2)     |
| C7—C8—C9—C10 | -95.9 (2)    | C13—C14—O2—C15         | 44.0 (2)     |
| O3—C8—C9—C14 | -159.70 (16) | C9—C14—O2—C15          | -139.28 (17) |
| C7—C8—C9—C14 | 83.8 (2)     | C16—C15—O2—C14         | 55.3 (2)     |
|              |              |                        |              |

*Acta Cryst.* (2013). E**69**, o898

| C14—C9—C10—C11  | -1.5 (3)    | N1—C17—O3—C8   | 27.1 (2)     |
|-----------------|-------------|----------------|--------------|
| C8—C9—C10—C11   | 178.18 (18) | C18—C17—O3—C8  | 145.91 (17)  |
| C9—C10—C11—C12  | 0.8 (3)     | C9—C8—O3—C17   | -148.93 (15) |
| C10—C11—C12—C13 | 0.3 (3)     | C7—C8—O3—C17   | -26.20(19)   |
| C11—C12—C13—C14 | -0.6(3)     | C17—C18—S1—C19 | -40.58 (17)  |
| C12—C13—C14—O2  | 176.39 (17) | N1—C19—S1—C18  | 37.84 (17)   |
| C12—C13—C14—C9  | -0.2(3)     |                |              |

#### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i> | <i>D</i> —H | H···A | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|-------------------------|-------------|-------|-----------|-------------------------|
| C5—H5···N1              | 0.93        | 2.51  | 2.834(3)  | 101                     |
| C7—H7···O1              | 0.98        | 2.47  | 2.805 (3) | 100                     |
| C10—H10···O3            | 0.93        | 2.39  | 2.728 (3) | 101                     |

Acta Cryst. (2013). E69, o898 Sup-7