

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบกลางภาค, 2/2560

วิชา ENE 231 Digital Circuit and Logic Design สำหรับ นศ. ปี 2 ภาควิชาวิศวกรรมอิเล็กพรงนึก ส์และโทรคมนาคม สอบ อังคารที่ 6 มี.ค. พ.ศ. 2561

เวลา 13:00น - 16:00น

เลขที่บั่งสอบ

คำสั่ง

kay 13/3/61.

- 1. ข้อสอบมีทั้งหมด 4 ข้อ 15 หน้า (รวมใบปะหน้า) คะแนนรวมทั้งหมด 95 คะแนน
- 2. ไม่อนุญาต ให้นำหนังสือประกอบการเรียน และเอกสารที่เกี่ยวกับวิชาเข้าห้องสอบ
- แสดงวิธีทำลงในข้อสอบเท่านั้น (ถ้าพื้นที่ไม่พอให้ใช้ด้านหลังของข้อสอบได้)
- 4. ไม่อนุญาตให้ใช้เครื่องคิดเลขทุกชนิด
- 5. **ไม่อนุญาต**ให้นำพจนานุกรมเข้าห้องสอบ
- 6. ห้ามน้ำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

คำเตือนและคำแนะนำ

- เมื่อนักศึกษาทำข้อสอบเสร็จก่อนเวลา ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ
- นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา
- นักศึกษาควรดูข้อสอบทั้งหมดก่อนเริ่มลงมือทำและควรอ่านคำถามให้รอบคอบก่อนเริ่มทำการคำนวณ เพื่อไม่ให้เสียเวลา กับการคำนวณที่ไม่มีประโยชน์

ทำใจให้สบาย!!...ไม่ทุจริต!!...ขอให้โชคดีในการสอบ!!!

ผศ. ดร. พินิจ กำหอม (โทร. 9075, 9070) ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านก**ก**รประเมินจากคณะกรรมประจำภาคแล้ว

(รองศาสตราจารย์. ดร. ราชวดี ศิลาพันธ์) หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-สกุล:							รหัสนั	ักศึกษา:			
Prob. No.	1	2	3	4	5	6	7	8	9	10	Total _.
Full Score	20	30	35	10							95
Recieved Score											

- 1. (20 คะแนน) Information Representation, Digital Signals, and Radix Numbers
- 1.1.(4 คะแนน) พิจารณาสารสนเทศที่เป็นคำตอบของคำถามต่อไปนี้ เพื่อระบุเซตของตัวเลขที่เหมาะสมในการแทน สถานะของสารสนเทศ ให้กำหนดช่วงและความละเอียดของตัวเลขเองตามความเหมาะสม
- a. อุณหภูมิบริเวณผิวของ iC ตัวนี้ ณ เวลาที่วัด เป็นเท่าไรในหน่วยเซลเซียส
- b. ค่ากระแสไฟฟ้า AC 220V ที่ไหลผ่านสายไฟเส้นนี้ ณ เวลาที่วัดเป็นกี่แอมป์
- c. รถยนต์คันนี้กำลังอยู่ในสถานะอะไร? จอดอยู่, วิ่งอยู่, หรือ เข้าอู่ซ่อม

d. จากสัญญาณเสียงที่ได้ยินคน ๆ นี้สั่งงานให้ทำอะไร? เปิดไฟ ปิดไฟ เปิดแอร์ ปิดแอร์ หรือ ไม่ใช่การสั่งงาน

- 1.2.(6 คะแนน) จากโดเมนของสถานะของสารสนเทศที่ระบุด้วยเซตของตัวเลขต่อไปนี้ ให้แทนสารสนเทศดังกล่าว ด้วยสัญญาณดิจิทัล n บิท ด้วยวิธีการ offset เขียนสูตรความสัมพันธ์ระหว่างสัญญาณดิจิทัลกับสถานะของ สารสนเทศ
- a. สารสนเทศแทนด้วยเลขจำนวนจริงในช่วง -5 ถึง 5 ด้วยความละเอียด 0.001

	**
2.0	
ବ୍ୟବ	-สกล
00	011,101

รหัสประจำตัวนักศึกษา

b. สารสนเทศแทนด้วยเลขจำนวนเต็มในช่วง -30 ถึง 100

1.3.(3 คะแนน) <u>แสดง</u>การบวกเลขฐานต่อไปนี้

a.
$$22102.211_3 + 1212.012_3 = (\underline{})_3$$

b.
$$22102.211_5 + 1212.012_5 = ()_5$$

c.
$$21F2_{16} + 1A2B_{16} = (\underline{})_{16}$$

- 2. (30 คะแนน) Combination Systems and Boolean Algebra
- 2.1. (5 คะแนน) ให้ใช้ทฤษฎีของ Boolean Algebra แปลง logic expression ทางด้านซ้ายเป็น logic expression ทางด้านขวา

$(a\bar{b} + a\bar{b}c + \bar{a})(a\bar{b} + a\bar{b}c + \bar{a})(a\bar{b} + \bar$	$a\bar{c} + ac + abc)(\overline{ab + c}) = a\bar{b}c$		
$(a\bar{b} + a\bar{b}c + \bar{a})(a\bar{b} + \bar{a})(ab$	$a\bar{c} + ac + abc)(\overline{ab + c}) = \underline{\hspace{1cm}}$	()
	=	()
	=	()
		()
		()
		(
	=	(
	=	(
	$= a \bar{b} c$	()

2.2. (5 คะแนน) ให้วิเคราะห์หาตารางความจริงของ Combinational system ที่อธิบายด้วยวงจรลอจิกข้างล่างนี้ แสดงขั้นตอนการทำ

2.3. (20 คะแนน) จากตารางความจริงที่กำหนดให้

- 2.3.1. (1 คะแนน) เขียน canonical SOP logic expression ของ z
- 2.3.2. (1 คะแนน) เขียน canonical POS logic expression ของ z
- 2.3.3. (12 คะแนน) ใช้ Karnaugh Map Technique ในการหา minimal SOP โดยแสดงขั้นตอนการทำ
- 2.3.4. (12 คะแนน) ใช้ Quine-McCluskey (QM) technique ในการหา minimal POS โดยแสดงขั้นตอนการ ทำ
- 2.3.5. (4 คะแนน) เปรียบเทียบ complexity ของ canonical SOP, canonical POS, minimal SOP, และ minimal POS

abod.	
0000	0
0001	0
0010	1
0011	1 .
0100	0
0101	1
0110	0
0111	1 .
1000	0
1001	1
1010	1
1011	1
1100	0
1101	1
1110	0
1111	0

- 3. (35 คะแนน) Digital Building Blocks and VHDL
 - 3.1.(15 คะแนน) จากสัญญลักษณ์ของ Digital Building Blocks ที่ให้มาในแต่ละข้อ ให้บอกชื่อ และเขียนตาราง แสดงการทำงาน (Function Table) ของมัน
- a. (1 คะแนน)_____

b. (1 คะแนน) ____

c. (2 คะแนน) _____

d. (1 คะแนน)_____

e. (2 คะแนน) _____

f. (2 คะแนน)

g. (2 คะแนน)

h. (2 คะแนน)

i. (2 คะแนน)

3.2.(10 คะแนน) จาก Block diagram อธิบายระบบดิจิทัลที่ให้มาในแต่ละข้อ ให้เขียน VHDL program เพื่อ อธิบายการทำงานของมัน

3.3.(10 คะแนน) จาก VHDL program อธิบายระบบดิจิทัลที่ให้มา ให้เขียน Block diagram ของมัน

```
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity timer is
  port (
    clk. reset : in std_logic:
               : out std_logic;
               : out std_logic_vector(15 downto 0));
    q
end entity timer;
architecture rtl of timer is
  constant INIT : unsigned(15 downto 0) := to_unsigned(40000-1,16);
  constant CNST : unsigned(15 downto 0) := to_unsigned(40000-1,16);
  signal r_reg, r_next : unsigned(15 downto 0);
  signal timer_p : std_logic;
begin -- architecture rtl
  process (clk, reset) is
  begin -- process
    if reset = '1' then
      r_reg <= INIT;
    elsif clk'svent and clk = '1' then -- rising clock edge
      r_reg <= r_next;
    end if;
  end process;
  timer_p \leftarrow '1' when r_reg = 0 else
              '0';
  r_next \leftarrow CNST when timer_p = '1' else
            r_reg - 1;
  t_p <= timer_p;
  q <= std_logic_vector(r_reg);</pre>
end architecture rtl;
```

4. (10 คะแนน) [Digital System Design Methodology] ให้อธิบายกระบวนการออกแบบระบบดิจิทัลเพื่อสร้างบน FPGA พอสังเขป การอธิบายควรให้ผู้อ่านเข้าใจประเด็นต่อไปนี้ ได้แก่ กระบวนการมีขั้นตอนอะไรบ้าง ใช้เครื่องมือ อะไรในการทำ ผลที่ได้ในแต่ละขั้นตอนเป็นอะไร

VHDL Concurrent Statements

- 1. Concurrent Signal Assignment Statements
 - 1.1. Simple Concurrent Signal Assignment Statements

```
Syntax
```

```
<target signal> <= <waveform>; <target signal> <= <waveform> after <time delay>;
```

1.2. Conditional Signal Assignment (when-else) Statements

Syntax

1.3. Select Signal Assignment (with-select) Statements

Syntax

2. Process Statements

Syntax

Possible Sequential Statements

2.1. Sequential signal assignments

```
<target signal> <= <waveform>;
```

2.2. Variable assignments

```
<target variable> := <value>;
```

2.3. If statements

```
if <condition#1> then
               <sequential statements#1>
          elsif <condition#2> then
               <sequential statements#2>
          elsif <condition#(n-1) then
              <sequential statements#(n-1)</pre>
          else
             <sequential statements#n>
          end if;
  2.4. Case statements
           case <select signal or variable> is
              when <choices#1> =>
                 <sequential statements#1>
              when <choice#2> =>
                 <sequential statement#2>
              when <choices#(n-1)> =>
                 <sequential statement#(n-1)>
              when others =>
                 <sequential statement#n>
           end case;
   2.5. Loop statements
           for <index> in <range> loop
              <sequential statements>
           end loop;
           while <condition> loop
            <sequential statements>
           end loop;
3. Component Instantiations
     <label>: <component name>
                   [generic map (<generic name#1> => <actual#1>,
                                  <generic name#2> => <actual#2>,
                                   ) ]
                   port map (<port name#1> => <actual#1>,
                             <port name#2> => <actual#2>,
                             <port name#n => <actual#n>);
```

Useful VHDL Templates for describing basic building blocks

1. 2-input Multiplexor in which z is the output, a0, a1 are the 2 inputs, s is the select signal

```
1.1. Using when-else
```

```
z <= a0 when s = '0' else
a1;
1.2.Using with-select
with s select
z <= a0 when '0',</pre>
```

al when others;

- 2. 4-input Multiplexor in which z is the output, a0, a1, a2, a3 are the 4 inputs, s is the select signal
 - 2.1. Using when-else

```
z <= a0 when s = "00" else
    a1 when s = "01" else
    a2 when s = "10" else
    a3;</pre>
```

2.2. Using with-select

3. Registers using process

```
Register name: r
Clock signal : clk
Input signal : r_next
Output signal: r_reg
```

end if;

3.1. without asynchronous reset

```
process (clk)
begin
  if clk'event and clk='1' then
    r_reg <= r_next;
  end if;
end if;</pre>
```

3.2. with *active-high asynchronous reset* signal whose name is **reset** and the register is reset to **INIT**

```
process (clk, reset)
begin
  if reset='1' then
    r_reg <= INIT;
elsif clk'event and clk='1' then
    r_reg <= r_next;
end if;</pre>
```

Boolean Algebra Postulates and Logic Theorems

Huntington's Postulates of Bealean Algebra

1. Closure Properties

(P1a)
$$a + b \in \{0, 1\}$$

(P1b)
$$a \cdot b \in \{0, 1\}$$

2. Identity Properties

(P2a)
$$a + 0 = a$$

(P2b)
$$a \cdot 1 = a$$

3. Commutative Properties

(P3a)
$$a + b = b + a$$

(P3b)
$$a \cdot b = b \cdot a$$

4. Distributive Properties

(P4a)
$$a+b\cdot c=(a+b)\cdot (a+c)$$

(P4b)
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

5. Complement Properties

(P5a)
$$a + \bar{a} = 1$$

(P5b)
$$a \cdot \bar{a} = 0$$

Table 2.3 List of important logic theorems

No.	Statement	Theorem's Name
	$X + 1 = 1$ $X \cdot 0 = 0$	(Null element)
	$X + X = X$ $X \cdot X = X$	(Idempotency)
(T3)	(X')' = X	(Involution)
	$(X+Y) + Z = X + (Y+Z)$ $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$	(Associativity)
	$X + X \cdot Y = X$ $X \cdot (X + Y) = X$	(Covering or Absorbtion)
. ,	$X \cdot Y + X \cdot Y' = X$ $(X + Y) \cdot (X + Y') = X$	(Combining or Adjacency)
. ,	$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$ $(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$	(Consensus)
	$\overline{X + Y} = \overline{X} \cdot \overline{Y}$ $\overline{X \cdot Y} = \overline{X} + \overline{Y}$	(De Morgan)