Optimization Theory

Lecture 14

Fudan University

luoluo@fudan.edu.cn

Outline

Stochastic Variance Reduced Gradient

2 Catalyst Acceleration and Direct Acceleration

3 Stochastic Recursive Gradient Algorithm

Outline

Stochastic Variance Reduced Gradient

- 2 Catalyst Acceleration and Direct Acceleration
- 3 Stochastic Recursive Gradient Algorithm

Stochastic Variance Reduced Gradient (SVRG)

$\textbf{Algorithm 1} \ \, \textbf{Stochastic Variance Reduced Gradient}$

```
1: Input: x_0, \eta, m, S
 2: \tilde{\mathbf{x}}^{(0)} = \mathbf{x}_0
 3: for s = 0, \dots, S-1
 4: \tilde{\boldsymbol{\mu}} = \nabla f(\tilde{\mathbf{x}}^{(s)})
 5: \mathbf{x}_0 = \tilde{\mathbf{x}} = \tilde{\mathbf{x}}^{(s)}
         for t = 0, ..., m-1
  6:
                draw i_t from \{1,\ldots,n\} uniformly
  7:
                \mathbf{x}_{t+1} = \mathbf{x}_t - \eta(\nabla f_{i,t}(\mathbf{x}_t) - \nabla f_{i,t}(\tilde{\mathbf{x}}) + \tilde{\boldsymbol{\mu}}),
  8:
            end for
 g.
           Option I: \tilde{\mathbf{x}}^{(s+1)} = \mathbf{x}_m
10:
            Option II: \tilde{\mathbf{x}}^{(s+1)} = \mathbf{x}_t for randomly chosen t \in \{0, \dots, m-1\}
11:
12: end for
13: Output: \tilde{\mathbf{x}}^{(S)}
```

Stochastic Variance Reduced Gradient (SVRG)

Assume $\eta = \Theta(1/L)$ and m is sufficient large so that

$$\rho = \frac{1}{\mu \eta (1 - 2L\eta)m} + \frac{2L\eta}{1 - 2L\eta} < 1,$$

then SVRG holds that

$$\mathbb{E}\big[f(\tilde{\mathbf{x}}^{(s)}) - f(\mathbf{x}^*)\big] \leq \rho^{s}(f(\tilde{\mathbf{x}}_0) - f(\mathbf{x}^*)).$$

The incremental first-order oracle complexity to achieve

$$\mathbb{E}\big[f(\tilde{\mathbf{x}}^{(s)}) - f(\mathbf{x}^*)\big] \le \epsilon$$

is at most $\mathcal{O}((\kappa + n) \log(1/\epsilon))$.

Loopless SVRG

Algorithm 2 L-SVRG

- 1: **Input:** η , T and p.
- 2: $\mathbf{x}_0 = \mathbf{w}_0$
- 3: **for** t = 0, 1, ..., T do
- 4: draw i_t from $\{1, \ldots, n\}$ uniformly
- 5: $\mathbf{v}_t = \nabla f_{i_t}(\mathbf{x}_t) \nabla f_{i_t}(\mathbf{w}_t) + \nabla f(\mathbf{w}_t)$
- 6: $\mathbf{x}_{t+1} = \mathbf{x}_t \eta \mathbf{v}_t$
- 7: $\mathbf{w}_{t+1} = \begin{cases} \mathbf{x}_t & \text{with probability } p \\ \mathbf{w}_t & \text{with probability } 1 p \end{cases}$
- 8: end for

Outline

Stochastic Variance Reduced Gradient

2 Catalyst Acceleration and Direct Acceleration

3 Stochastic Recursive Gradient Algorithm

Variance Reduction

Comparisons on IFO complexities:

- SAG/SVRG/SAGA is better than GD.
- ② SAG/SVRG/SAGA is worse than AGD when $\kappa \geq \Omega(n^2)$.
- **3** The optimal dependency on condition number should be $\sqrt{\kappa}$.

How to accelerate variance reduced methods?

Catalyst Acceleration

Consider the inexact proximal point iteration

$$\begin{split} \mathbf{x}_{t+1} &\approx \mathsf{prox}_{f/\gamma}(\mathbf{x}_t) \\ &= \mathop{\arg\min}_{\mathbf{x} \in \mathbb{R}^d} \left(f(\mathbf{x}) + \frac{\gamma}{2} \left\| \mathbf{x} - \mathbf{x}_t \right\|_2^2 \right). \end{split}$$

How design the algorithm?

- **1** Select appropriate value of γ .
- Introduce the step of acceleration.

Catalyst Acceleration

Algorithm 3 Catalyst Acceleration

- 1: **Input:** initial point $\mathbf{x}_0 \in \mathbb{R}^d$, iterations number T, parameters γ and $\alpha_0 > 0$, sequence $\{\epsilon_t\}$, sub-problem solver A.
- 2: $q = \mu/(\mu + \gamma)$, $\mathbf{y}_0 = \mathbf{x}_0$
- 3: **for** t = 0, 1, ..., T do
- 4: Apply A to find

$$\begin{aligned} \mathbf{x}_{t+1} &\approx \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^d} \left(G_t(\mathbf{x}) \triangleq f(\mathbf{x}) + \frac{\gamma}{2} \left\| \mathbf{x} - \mathbf{y}_t \right\|_2^2 \right) \\ \text{such that } G_t(\mathbf{x}_{t+1}) - G_t^* \leq \epsilon_t \end{aligned}$$

- 5: Compute $\alpha_t \in (0,1)$ from equation $\alpha_{t+1}^2 = (1-\alpha_{t+1})\alpha_t^2 + q\alpha_{t+1}$
- 6: Compute $\mathbf{y}_{t+1} = \mathbf{x}_{t+1} + \beta_t(\mathbf{x}_{t+1} \mathbf{x}_t)$, where $\beta_t = \frac{\alpha_t(1 \alpha_t)}{\alpha_t^2 + \alpha_{t+1}}$
- 7: end for
- 8: **Output: x**_T

Catalyst Acceleration

Theorem

Let $\alpha_0 = \sqrt{q}$ with $q = \mu/(\mu + \beta)$ and

$$\epsilon_t = \frac{2}{9}(f(\mathbf{x}_0) - f^*)(1 - \rho)^{t+1}$$
 with $\rho < \sqrt{q}$.

Then Algorithm 3 generates $\{\mathbf{x}_t\}$ such that

$$f(\mathbf{x}_t) - f^* \le \frac{8(1-\rho)^t}{(\sqrt{q}-\rho)^2} (f(\mathbf{x}_0) - f^*).$$

A generic framework for acceleration:

1 Let \mathcal{A} be GD and $\beta = \Theta(L)$, then total FO complexity is

$$\tilde{\mathcal{O}}(\sqrt{\kappa} \log(1/\epsilon)).$$

2 Let \mathcal{A} be SVRG and $\beta = \Theta(L/n)$, then total IFO complexity is

$$\tilde{\mathcal{O}}(\sqrt{\kappa n} \log(1/\epsilon)), \quad \text{where} \quad \kappa \geq \Omega(n).$$

Direct Acceleration: Katyusha

Algorithm 4 Katyusha

```
1: Input: \mathbf{x}_0, \eta, m, S, \tau_1, \tau_2
 2: \mathbf{y}_0 = \mathbf{z}_0 = \tilde{\mathbf{x}}^{(0)} = \mathbf{x}_0
 3: for s = 0, \dots, S-1
 4: \tilde{\boldsymbol{\mu}}^{(s)} = \nabla f(\tilde{\mathbf{x}}^{(s)})
  5: for t = 0, ..., m-1
  6:
                 k = sm + t
                  \mathbf{x}_{k+1} = \tau_1 \mathbf{z}_k + \tau_2 \tilde{\mathbf{x}}^{(s)} + (1 - \tau_1 - \tau_2) \mathbf{v}_k
                  draw i_k from \{1, \ldots, n\} uniformly
  8.
                  \mathbf{z}_{k+1} = \mathbf{z}_k - \eta(\nabla f_{i_k}(\mathbf{x}_t) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \tilde{\boldsymbol{\mu}}^{(s)}),
 g.
10:
                  \mathbf{y}_{k+1} = \mathbf{x}_{k+1} + \tau_1(\mathbf{z}_{k+1} - \mathbf{z}_k).
             end for
11:
             \tilde{\mathbf{x}}^{(s+1)} = \left(\sum_{i=0}^{m-1} (1+\eta\mu)^{j}\right)^{-1} \sum_{i=0}^{m-1} (1+\eta\mu)^{j} \mathbf{y}_{sm+j+1}
12:
13: end for
14: Output: \tilde{\mathbf{x}}^{(S)}
```

Direct Acceleration: Katyusha

Katyusha outputs $\tilde{\mathbf{x}}^{(S)}$ satisfying $\mathbb{E}[f(\tilde{\mathbf{x}}^{(S)})] - f^* \leq \epsilon$ within

- $\mathcal{O}\left((n+\sqrt{\kappa n})\log(1/\epsilon)\right)$ IFO complexity for strongly convex objective;
- $\mathcal{O}(n \log(1/\epsilon) + \sqrt{nL/\epsilon})$ IFO complexity for convex objective.

The above results achieve the near optimal IFO complexities.

Outline

Stochastic Variance Reduced Gradient

2 Catalyst Acceleration and Direct Acceleration

3 Stochastic Recursive Gradient Algorithm

Stochastic Recursive Gradient Algorithm

Stochastic Recursive Gradient Algorithm (SARAH)

Algorithm 5 Stochastic Variance Reduced Gradient

```
1: Input: x_0, \eta, m, S
 2: \tilde{\mathbf{x}}^{(0)} = \mathbf{x}_0
 3: for s = 0, \dots, S-1
      \mathbf{v}_0 = \nabla f(\tilde{\mathbf{x}}^{(s)})
 5: \mathbf{x}_0 = \tilde{\mathbf{x}} = \tilde{\mathbf{x}}^{(s)}
          for t = 0, ..., m-1
  6:
                draw i_t from \{1, \ldots, n\} uniformly
  7:
  8:
                \mathbf{x}_{t+1} = \mathbf{x}_t - \eta \mathbf{v}_t
                \mathbf{v}_{t+1} = \nabla f_{i_t}(\mathbf{x}_{t+1}) - \nabla f_{i_t}(\mathbf{x}_t) + \mathbf{v}_t
 9:
           end for
10:
           \tilde{\mathbf{x}}^{(s+1)} = \mathbf{x}_t for randomly chosen t \in \{0, \dots, m-1\}
11:
12: end for
13: Output: \tilde{\mathbf{x}}^{(S)}
```

Stochastic Recursive Gradient Algorithm (SARAH)

SARAH outputs $\tilde{\mathbf{x}}^{(S)}$ satisfying $\mathbb{E}\left\|\nabla f(\tilde{\mathbf{x}}^{(S)})\right\|_2 \leq \epsilon$ within

- $\mathcal{O}((n+\kappa)\log(1/\epsilon))$ IFO complexity for strongly convex objective;
- ② $\mathcal{O}((n+L/\epsilon^2)\log(1/\epsilon))$ IFO complexity for convex objective.

The more interesting result is in the nonconvex optimization:

Cong Fang, Chris Junchi Li, Zhouchen Lin, Tong Zhang. SPIDER: Near-optimal non-convex optimization via stochastic path-integrated differential estimator. NeurIPS 2018.

SGD for Nonconvex Optimization

We consider the stochastic optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[F(\mathbf{x}; \xi)],$$

where $f(\mathbf{x})$ is L-smooth and lower bounded, and each $F(\mathbf{x}; \xi)$ is differentiable.

Suppose there exists $\sigma > 0$ such that $\mathbb{E} \|\nabla F(\mathbf{x}; \xi) - \nabla f(\mathbf{x})\|_2^2 \le \sigma^2$ for any $\mathbf{x} \in \mathbb{R}^d$. We run SGD iteration

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \cdot \frac{1}{|\mathcal{S}_t|} \sum_{\xi \in \mathcal{S}_t} \nabla F(\mathbf{x}_t; \xi)$$

with $S_t = \{\xi_1, \dots, \xi_b\}$, where $\xi_i \stackrel{\text{i.i.d}}{\sim} \mathcal{D}$.

It can find an ϵ -stationary point of $f(\cdot)$ within

$$\mathcal{O}(L\sigma^2\epsilon^{-4})$$

stochastic first-order oracle (SFO) complexity in expectation.

SARAH/SPIDER for Nonconvex Optimization

We consider the L-average smooth function, i.e. there exists L>0 such that

$$\mathbb{E} \|\nabla F(\mathbf{x}; \xi) - \nabla F(\mathbf{y}; \xi)\|_{2}^{2} \leq L^{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

The algorithms with stochastic recursive gradient require

$$\mathcal{O}(\sigma^2\epsilon^{-2} + L\sigma^2\epsilon^{-3})$$

SFO complexity to find an ϵ -stationary point.

SARAH/SPIDER for Nonconvex Optimization

We consider the finite-sum problem

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}).$$

Under the *L*-average smooth assumption, the algorithms with stochastic recursive gradient require

$$\mathcal{O}(n + L\sqrt{n}\epsilon^{-2})$$

SFO complexity to find an ϵ -stationary point.

Algorithm 6 ProbAbilistic Gradient Estimator (PAGE)

- 1: **Input:** η , T, b_0 , b and p.
- 2: $S_0 = \{\xi_1, \dots, \xi_{b_0}\}$ with $\xi_i \stackrel{\text{i.i.d}}{\sim} \mathcal{D}$
- 3: $\mathbf{v}_0 = \frac{1}{b_0} \sum_{\xi \in \mathcal{S}_0} \nabla F(\mathbf{x}_0; \xi)$
- 4: **for** t = 0, 1, ..., T do
- 5: $\mathbf{x}_{t+1} = \mathbf{x}_t \eta \mathbf{v}_t$
- 6: draw $\zeta_t \sim \text{Bernoulli}(p)$

7:
$$\mathcal{S}_{t+1} = \begin{cases} \{\xi_1, \dots, \xi_{b_0}\} \text{ with } \xi_i \overset{\text{i.i.d}}{\sim} \mathcal{D}, & \zeta_t = 1 \\ \{\xi_1, \dots, \xi_b\} \text{ with } \xi_i \overset{\text{i.i.d}}{\sim} \mathcal{D}, & \zeta_t = 0 \end{cases}$$
8:
$$\mathbf{v}_{t+1} = \begin{cases} \frac{1}{b_0} \sum_{\xi \in \mathcal{S}_{t+1}} \nabla F(\mathbf{x}_{t+1}; \xi), & \zeta_t = 1 \\ \mathbf{v}_t + \frac{1}{b} \sum_{\xi \in \mathcal{S}_{t+1}} (\nabla F(\mathbf{x}_{t+1}; \xi) - \nabla F(\mathbf{x}_t; \xi)), & \zeta_t = 0 \end{cases}$$

- 9: end for
- 10: $\mathbf{x}_{\mathrm{out}} = \mathbf{x}_t$ for randomly chosen $t \in \{0, \dots, T-1\}$