Sales Forecast for Pharmacy with Dynamical Prices

汇报人:杨继琛、谢宇、徐佳杭、万芳彬

目录 CONTENTS

01 描述性分析 特征工程 03 模型拟合 04 结果分析 05 思考与总结

PART 1

描述性分析

Data Description

问题描述

通过建立预测模型,在动态价格下,针对每一次消费者登录网站的行为,预测消费者是否会购买药品,进而预测邮购药房的收入。

原始数据

Items.csv 药品种类

• pid: 药品唯一标识号

• manufacturer: 药品制造商编号

• group: 药品分组

• category, pharmForm: 药品剂型信息

• content, unit: 药品剂量信息

• genericProduct: 是否为基因药物

• salesIndex: 配药规范代码

• campaignIndex: 行为标签

• rrp: 建议售价

Items.csv

• 共有22035条数据,其中category,pharmForm,campaignIndex三列有缺失值

Items.csv

- · 共有533种不同的group, 我们推测group中的数字和字母的位数代表不同含义。
- 截取group的前两个变量,设为group12变量,截取group的中间两个变量,设为group34变量;

Item数据分析 - salesIndex

原始数据

train.csv & class.csv

lineID,

Day

Pid

adFlag

Availability

CompetitorPrice

price

Click

Basket

Order

revenue

按照day进行总结

Price

• Reference price和price有强相关关系,价格在参考售价的上下浮动。

Price & competitor price

- 计算价格和竞争者价格的比值, 计算 出我方的竞争力。
- 可以看出基本在1周围上下浮动,有明显的异常值

competitorPrice [‡]	price [‡]
24.19	0.08
24.19	0.08
24.19	0.08

竞争力对行为的影响

可以发现数据显示和我们的直观想象不同,我方价格竞争力越大, order的频率反而降低

Availability分析

- Availability四种类型的个数占比
- 针对不同的availability,分别计算三种action的概率
- 可以发现1类型order的概率最高,说明发现有货时更容易倾向于购买

revenue

计算quantity = Revenue/price,可以发现有order的条目中,绝大多数都是1次,但是有quantity大于1的情形。

• 对train数据集进行Unique

‡	pid [‡]	day [‡]	adFlag [‡]	availability [‡]	competitorPrice [‡]	price [‡]	n() -	n_distinct(click) [‡]	n_distinct(basket) [‡]	n_distinct(order)
755878	2655	90	1	1	14.26	15.35	622	2	2	2
755877	2655	88	1	1	13.74	15.35	615	2	2	2
755876	2655	83	1	1	15.37	15.35	610	2	2	2
755875	2655	24	1	1	14.26	15.35	609	2	2	2
755873	2655	82	1	1	13.74	15.35	608	2	2	2
755874	2655	85	1	1	13.74	15.35	608	2	2	2
755871	2655	25	1	1	13.74	15.35	606	2	2	2
755872	2655	54	1	1	13.74	15.35	606	2	2	2
755870	2655	92	1	1	13.74	15.35	605	2	2	2
755869	2655	81	1	1	13.74	15.35	603	2	2	2
755866	2655	42	1	1	13.74	15.35	602	2	2	2

PART 2

特征工程

FEATURE ENGINEERING

数据预处理—变量转换

DATA PROCESSING

content:

将其中类似 "X*Y*Z" 的字符串转化为数值

group:

将前1/2位和3/4位数字拆分出来组成新变量: group12, group34

unit:

我们认为可能代表药品单位,对单位进行统一

- ML and L unified_ML,
- KG and G unified_G
- CM and M > unified_CM
- ST ___ unified_ST
- P unified P

理--缺失值填补

DATA PROCESSING

基于朴素贝叶斯进行数据填补

数值型变量填补

- 用相同商品的竞争者价格均值填补;
- 用出现重复商品的竞争者价格均值进一步填补;
- 用相似商品的竞争者价格均值填补;

(group, content, unit, day 7, salesIndex, adFlag等相同)

最后用实际价格填补。

因子型变量填补

- 1. 用manufacturer, group12, group34, unit 相同的数据中占比最高的进行填补;
- 2. 用manufacturer, group12, group34相同的数据中占比最高的填补;
- 3. 用group12, group34相同的数据中占比最高的填补;
- 将前三轮填补完成之后的300条数据用频数最高的值进行填补。

变量分类	变量序号	变量名	变量含义	
	1	day_7	以7天为周期对时间进行划分	
时间特征	2	day_14	以14天为周期对时间进行划分	
	3	day_30	以30天为周期对时间进行划分	
	4	rrp_per_unit	平均每个单位商品的参考价格	
	5	price_per_unit	平均每个单位商品的实际销售价格	
	6	competitorPrice_per_unit	平均每个单位商品的竞争者价格	
	7	price_diff	实际销售价格和竞争者价格的差价	
价格特征	8	price_discount	自实际销售价格相比于参考价格的折扣	
川竹台村北	9	competitorPrice_discount	自身和竞争者的折扣差	
	10	price_discount_diff	竞争者的折扣	
	11	is_lower_price	是否比竞争者更低价	
	12	is_discount	是否有折扣	
	13	is_greater_discount	是否比竞争者更低折扣	

变量分类	变量序号	变量名	变量含义	
	14	price_discount_min	同类商品的最低价	
	15	price_discount_p25	同类商品价格的四分位数	
	16	price_discount_med	同类商品价格的中位数	
价格特征	17	price_discount_p75	同类商品价格的四分之三位数	
川竹百寸寸址	18	price_discount_max	同类商品价格的最高价格	
	19	price_discount_min	同类商品的最低价	
	20	price_discount_p25	同类商品价格的四分位数	
	21	price_discount_med	同类商品价格的中位数	
	22	click_time	同一pid商品被点击次数	
次数特征	23	basket_time	同一pid商品被收藏次数	
	24	order_time	同一pid商品被购买次数	
	25	group12_order	group12中购买总量	
购买特征	26	group34_order	group34中购买总量	
	27	week_order	一周中每一天购买总量	

特征工程 FEATURE ENGINEERING

变量分类	变量序号	变量名	变量含义
	28	price_per_ML	平均每ML价格
	29	price_per_G	平均每G价格
	30	price_per_CM	平均每CM价格
	31	price_per_ST	平均每ST价格
	32	price_per_P	平均每P价格
	33	Cprice_per_ML	平均每ML竞争者价格
	34	Cprice_per_G	平均每G竞争者价格
单位价格特征	35	Cprice_per_CM	平均每CM竞争者价格
	36	Cprice_per_ST	平均每ST竞争者价格
	37	Cprice_per_P	平均每P竞争者价格
	38	rrp_per_ML	平均每ML参考价格
	39	rrp_per_G	平均每G参考价格
	40	rrp_per_CM	平均每CM参考价格
	41	rrp_per_ST	平均每ST参考价格
	42	rrp_per_P	平均每P参考价格

变量分类	变量序号	变量名	变量含义
	43	num_pid_order	每一个pid曾经的购买量(先验)
	44	pid_prob	每一个pid被再次购买的概率
概率特征	45	availability_likelihood	借助order进行likelihood编码
	46	pid_likelihood	借助order进行likelihood编码
	47	day_7_likelihood	借助order进行likelihood编码

总共47个变量,

涵盖了: 时间特征、价格特征、次数特征、次数特征、

单位价格特征、概率特征

PART 3

模型拟合 MODELING

数据集划分

Likelihood Encoding

主要思想:

将category类变量用对应的label变量 取值的均值来替代,同时为了避免变 量的信息没能传递给label,使用K折 交叉法进行取值。

利用train数据集中的order变量 train/validate/test数据集对 group_34、group_12、content、 unit、group、pharmForm等变量进 行了likelihood encoding。

XGBOOST

Algorithm 1: Exact Greedy Algorithm for Split Finding

```
Input: I, instance set of current node

Input: d, feature dimension

gain \leftarrow 0

G \leftarrow \sum_{i \in I} g_i, H \leftarrow \sum_{i \in I} h_i

for k = 1 to m do

G_L \leftarrow 0, H_L \leftarrow 0

for j in sorted(I, by \mathbf{x}_{jk}) do

G_L \leftarrow G_L + g_j, H_L \leftarrow H_L + h_j

G_R \leftarrow G - G_L, H_R \leftarrow H - H_L

score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda})

end

end

Output: Split with max score
```

Algorithm 2: Approximate Algorithm for Split Finding

for
$$k=1$$
 to m do

Propose $S_k = \{s_{k1}, s_{k2}, \cdots s_{kl}\}$ by percentiles on feature k .

Proposal can be done per tree (global), or per split(local).

end

for $k=1$ to m do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \geq \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$
end

Follow same step as in previous section to find max score only among proposed splits.

LGBM

为了解决在大样本高纬度数据的环境下耗时的问题, Lightgbm使用了如下解决办法:

- 1. GOSS (基于梯度的单边采样),不是使用所用的样本点来计算梯度,而是对样本进行 采样来计算梯度;
- 2. EFB (互斥特征捆绑) , 这里不是使用所有的特征来进行扫描获得最佳的切分点, 而是将某些特征进行捆绑在一起来降低特征的维度, 是寻找最佳切分点的消耗减少。 这样大大的降低的处理样本的时间复杂度, 甚至有时还会提升精度。

Algorithm 2: Gradient-based One-Side Sampling

```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
     preds \leftarrow models.predict(I)
     g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
     sorted \leftarrow GetSortedIndices(abs(g))
     topSet \leftarrow sorted[1:topN]
     randSet \leftarrow RandomPick(sorted[topN:len(I)],
     randN)
     usedSet \leftarrow topSet + randSet
     w[randSet] \times = fact \triangleright Assign weight fact to the
     small gradient data.
     newModel \leftarrow L(I[usedSet], \rightarrow g[usedSet],
    w[usedSet])
    models.append(newModel)
```

Algorithm 3: Greedy Bundling

```
Input: F: features, K: max conflict count

Construct graph G

searchOrder \leftarrow G.sortByDegree()

bundles \leftarrow \{\}, bundlesConflict \leftarrow \{\}

for i in searchOrder do

needNew \leftarrow True

for j = 1 to len(bundles) do

cnt \leftarrow ConflictCnt(bundles[j],F[i])

if cnt + bundlesConflict[i] \le K then

bundles[j].add(F[i]), needNew \leftarrow False

break

if needNew then

Add F[i] as a new bundle to bundles

Output: bundles
```

模型架构

两层模型:

第一层模型用XGBoost预测是否购买行为;

第二层模型使用GLM预测购买数量的多少。

PART 4

结果分析 RESULT ANALYSIS

WORKFLOW

模型准确率

特征重要性 FEATURE INMPORTANCE

PART 5

思考与总结

THINKING AND CONCLUSION

思考与总结

Conclusion

- 1. 缺少user数据: 个体是否购买药品实际与个体特征的相关性最高。所以预测order准确率的上限不会太高。
- 2. 数据相关性较差,可以在train上达到100% 正确率,但是在test上效果很差,所以需要提取 强相关变量。
- 3. 正负样本不均衡, 训练时需要给正样本 (order=1) 加权。
- 4. 数据特征完全一样,但order的结果不同的这些数据需要重视。

我们学到的 What We Learned

- 1. 对数据集的理解十分重要,需要每个人都去做"重复"的探索性分析。
- 2. 有了想法就一定要去实现, 然后再评价好坏。
- 3. 构建模型和特征工程同步,随时修正和调整,随着模型的深入会有更多的启发。
- 4. 留出时间调参,充分调用可使用的计算资源。

THANK YOU

感谢聆听, 批评指导