

Traitement 1D

Modulation AM

Outils Numériques / Semestre 5 Institut d'Optique / B3_0

Déroulement du bloc 3

3 blocs de 4 séances (2h/séance)

- Sur machine
- En binôme
- 2 encadrant.es par séance

Déroulement du bloc

Séance 1 : problématique

Séance 2 : mise en œuvre numérique Séance 3 : mise en forme des résultats

Séance 4 : évaluation

Méthodes numériques

Intro / Langage haut niveau Problème 1 : circuit RC

Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Traitement de données 1D

Problème 3 : signal modulé en amplitude / acquisition numérique

Contexte

Instrumentation numérique

- Acquisition de données
- Sauvegarde de données
- Analyse des données
- Traitement des données

Signaux modulés en amplitude

Transformée de Fourier

Données initiales / Démarche

Fichier (CSV)

Etapes pour l'analyse

Etapes pour l'analyse

Travail à réaliser

- Etape 1 : Afficher des données provenant d'un fichier
 - Lire un fichier texte / tableur
 - Afficher les signaux contenus dans le fichier
- Etape 2 : Calculer, afficher et analyser le spectre du signal
 - Comprendre les données obtenues par le calcul
 - Afficher le spectre en recréant les axes fréquentiels
- Etape 3 : Simuler le phénomène de modulation d'amplitude et sa démodulation
 - Générer des signaux de tests et valider les étapes de démodulation
- Etape 4 : Démoduler un signal quelconque

Evaluation

- Auto-Evaluation du travail
 - Evaluation en séance 4
 Par binome

	BLOC 1
METHODES NUMERIQUES	A B C D
Ecriture Matricielle / Vectorielle	
Organisation en actions élémentaires	
Description des tests de validation	
Organisation des informations à traiter	
PROGRAMMATION	A B C D
Ecriture et commentaires (PEP 8)	
Utilisation, écriture et validation de fonctions	
Documentation des fonctions (PEP257)	
Utilisation de bibliothèques	
Ecriture et validation d'une bibliothèque	
INGENIEUR.E PHYSIQUE	A B C D
Graphiques pertinents et légendés	
Génération de données pertinentes de tests	
Analyse des données et validation modèle	

Quelques fonctions intéressantes

- lire des fichiers CSV
 - numpy .genfromtxt
 - pandas .read_csv
- créer de vecteurs / matrices
 - numpy .linspace .logspace
 - numpy .ones .zeros
- afficher des figures
 - pyplot .figure .plot .title .xlabel .ylabel .legend
- calculer la FFT
 - numpy .fft.fft .fft.fftshift

- transcodage / Numpy types
 - numpy .frombuffer .astype
- encodage B64
 - base64 .b64encode .b64decode
- encodage WAV
 - scipy.io .wavfile.read .write

Fichiers à analyser

- B3_data_01.csv
 - Issu d'un oscilloscope VoltCraft
 - Modulante sinusoïdale
- B3_data_02.txt
 - Format de données binaire 64
 - Modulante sinusoïdale
 - Fichier sonore / 24 kHz / 16 bits

- B3_data_03.txt
 - Format de données binaire 64
 - Multi-porteuses sinusoïdales
 - Fichier sonore / 160 kHz / 16 bits

http://lense.institutoptique.fr/ONIP/

Rappels sur la modulation d'amplitude

http://wcours.gel.ulaval.ca/2017/a/GEL3006/default/5notes/index.chtml

$$m(t)$$
 $p(t) = A_c \cdot \sin(\omega_c \cdot t)$

$$s(t) = (K \cdot m(t) + 1) \cdot p(t)$$

Filtrage

http://wcours.gel.ulaval.ca/2017/a/GEL3006/default/5notes/index.chtml

Rappel sur la Transformée de Fourier

Rappel sur la FFT

numpy .fft.fft .fft.fftshift

$$A_k = \sum_{m=0}^{n-1} a_m \exp \left\{ -2\pi i rac{mk}{n}
ight\} \qquad k=0,\ldots,n-1.$$

Rappel sur la FFT

numpy .fft.fft .fft.fftshift

$$A_k = \sum_{m=0}^{n-1} a_m \exp \left\{ -2\pi i rac{mk}{n}
ight\} \qquad k=0,\ldots,n-1.$$

If A = fft(a, n), then A[0] contains the zero-frequency term
Then A[1:n/2] contains the positive-frequency terms,
and A[n/2+1:] contains the negative-frequency terms

For an even number of input points, A[n/2] represents
both positive and negative Nyquist frequency,

For an odd number of input points, A[(n-1)/2] contains the largest positive frequency,
while A[(n+1)/2] contains the largest negative frequency.

Format Binaire 64

- Codage ASCII
 - 1 caractère codé sur 8 bits / 1 octet
- Codage entier
 - 1 entier sur 4 octets
- Codage Base 64
 - 1 donnée sur 6 bits : 4 données sur 3 octets

base64 .b64encode .b64decode

import base64

encoded = base64.b64encode(b'data to be encoded')

b'ZGF0YSB0byBiZSBlbmNvZGVk'

data = base64.b64decode(encoded)

b'data to be encoded'

Conversion en signaux sonores

The Canonical WAVE file format

scipy.io .wavfile.read .write

