Department of Computer Engineering

B. Tech. in Computer Engineering

Scheme - 2020

Scheme and Curriculum of B. Tech. Computer Engineering

Scheme Summary

				<u> </u>		
Semester	Credits	Hours	Marks	No. of Theory Heads	No. of Practical Heads	Total Heads
I	18	26	575	5	7	12
II	19	26	550	5	6	11
III	21	26	525	5	3	8
IV	24	30	600	6	5	11
V	22	29	600	6	5	11
VI	21	26	650	7	5	12
VII	20	25	525	5	2	7
VIII	15	27	475	1	1	2
Total	160	215	4500	40	34	74

Course Category Credits Summary

			redits for	Course Cat	egory		
Semester	Core (C)	Basic Science and Humanities (BS &H)	Skills (A)	Electives (EL)	Open Electives (OE)	PROJECT/ INTRNSHIP (P)	TOTAL
I	9	6	3	0	0	0	18
II	6	11	2	0	0	0	19
III	14	4	3	0	0	0	21
IV	16	4	2	0	2	0	24
V	16	2	1	3	0	0	22
VI	9	5	2	3	2	0	21
VII	4	0	0	12	0	4	20
VIII	0	0	0	0	3	12	15
TOTAL	74	32	13	18	7	16	160

Scheme of B.Tech. In Computer Engineering

			Teaching Schem			heme		Evaluation Scheme					
Course	Name of	Course	16	aciiii	ig sc	ileille			Theory	/	Prac	tical	
Code	Course	Category	L	Т	Р	Total Hours	Credits	TAE	CAE	ESE	INT	EXT	Total Marks
					SEI	MESTER	R-I						
UBSL151	Matrices and Differential Calculus	BS1	2	1		3	3	10	15	50			75
UBSL101/ UBSP101	Engineering Physics	BS2	1	1	2	4	3	10	15	50	25		100
UCSL101/ UCSP101	Computer Programming	C1	2		4	6	4	10	15	50	50		125
UCSL102/ UCSP102	Foundations of Data Analytics	C2	1		2	3	2	10	15	50	25		100
UECL103/ UECP103	Introduction to Discrete Devices and Circuits	C3	2		2	4	3	10	15	50	25		100
UITP101	Problem Identification and Design Thinking	A1			2	2	1				25		25
UISP102	Introduction to Drones	A2			2	2	1				25		25
UISP101	101 Biomedical A		8	2	2	2	1				25		25
	TOTAL				16	26	18	50	75	250	200		575

Scheme of B. Tech. in Computer Engineering

			Teaching Scheme				Evaluation Scheme						
Course	Name of	Course	160	aciiii	ig Sc	ileille			Theory	1	Practical		
Code	Course	Category	L	Т	P	Total Hours	Credits	TAE	CAE	ESE	INT	EXT	Total Marks
	SEMESTER-II												
UBSL152	Integral Calculus and Differential Equations	lculus and ferential BS3		1		3	3	10	15	50			75
UBSL153	Linear Algebra and Statistics	BS4	2	1		3	3	10	15	50			75
UBSL131/ UBSL131	Environmental Chemistry	BS5	1		2	3	2	10	15	50	25		100
UITP102	Programming for Problem Solving	C4			4	4	2				50		50
UECL104/ UECP104	Modeling of Digital Circuits	C5	3		2	5	4	10	15	50	25		100
UHUL101/ UHUP101	Communicatio n Skills	H1	2		2	4	3	10	15	50	25		100
UECP105	Internet of Things	A4			2	2	1				25		25
UHUP102	P102 Foreign A5 Language				2	2	1				25		25
	TOTAL		10	2	14	26	19	50	75	250	175	-	550

Scheme of B. Tech. in Computer Engineering

			To	Teaching Scheme				Evaluation Scheme					
Course	Name of	Course	16	aciiii	ig Sc	ileille			Theory	1	Practical		
Code	Course	Category	L	Т	P	Total Hours	Credits	TAE	CAE	ESE	INT	EXT	Total Marks
	SEMESTER-III												
UBSL255	Discrete Mathematics and Graph Theory		3	1		4	4	10	15	50			75
UCSL201/ UCSP201	Data Structures and Algorithms	C6	3		2	5	4	10	15	50	25	25	125
UCSL202	Computer Architecture and Organization	C7	3			3	3	10	15	50			75
UCSL203	Formal Languages and Automata	C8	3			3	3	10	15	50			75
UITL201/ UITP201	Object Oriented Programming	С9	3		2	5	4	10	15	50	25	25	125
UCSP204 Python for Data Science		A6-A7- A8	15		6	6	3				50		50
	TOTAL			1	10	26	21	50	75	250	100	50	525

Scheme of B. Tech. in Computer Engineering

			To	Teaching Scheme				Evaluation Scheme						
Course		Course	160	aciiii	ig sc	Heilie			Theory	,	Practical			
Code	Name of Course	Catego ry	L	Т	Р	Total Hours	Credits	TAE	CAE	ESE	INT	EXT	Total Marks	
	SEMESTER-IV													
UBSL256	Transforms and Numerical Methods	BS7	3	1		4	4	10	15	50			75	
UITL202/ UITP202	Computer Networks	C10	3		2	5	4	10	15	50	25		100	
UCSL205/ UCSP205	Design and Analysis of C12 Algorithm		3		2	5	4	10	15	50	25	25	125	
UECL208/ UECP208	Applications of Microprocessors and Microcontrollers	C12	3		2	5	4	10	15	50	25		100	
UCSL206/ UCSP206	Operating System	C13	3		2	5	4	10	15	50	25		100	
UISL2XX	Open Elective - I	OE1	2			2	2	10	15	50			75	
UITP203 Data Analysis using R A9-A10		A9-A10			4	4	2				25		25	
	TOTAL			1	12	30	24	60	90	300	125	25	600	

Skill Category Courses

Semester	Details	Name	Credits
	A1	Problem Identification and Design Thinking	1
I	A2	1	
	A3	Biomedical Engineering	1
II	A4	Internet of Things	1
"	A5	Foreign Language	1
Ш	A6-A7-A8	Python for Data Science	3
IV	A9-A10	Data Analysis using R	2
V	A11	Aptitude	1
VI	A12	Employability Skills	1
VI	A13	Campus Recruitment Training	1

Course Title: Discrete Mathematics and Graph Theory											
Semester	III	Т	eachir	ig Scl	neme	Evaluation Scheme					
Semester	111						Theory	,	Prac	ctical	
Term	ODD	Th	Tu	Pr	Credits	TAE	CAE	ESE	INT	EXT	
Course Category	BS	3	1		4	10	15	50			
Course Code	UBSL255		4		Total		75		•		
		4 lot					75				

	This course introduces size and kind of objects.
Course	It also skills to analyze objects meeting the criteria, finding "largest",
Objectives	"smallest", or "optimal" objects.
Objectives	It also introduces combinatorial structures and apply algebraic techniques
	to combinatorial problems
	CO1: Know grouping of objects and operation, Relation, ordering of
	objects.
	CO2: Know Groups, their types and Applications.
Course	CO3: Know Rings, their types and Applications.
Outcomes	CO4: Solve different kinds Graph, Trees.
<u> </u>	CO5: Know the basics of combinatorial structure
	CO6: Solve number theory applications.

Course		Program Outcomes and Program Specific Outcomes														
Outcomes	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3										3	2			
CO2	3	3										3	2			
CO3	3	3										3	2			
CO4	3	3										3	2			
CO5	3	3										3	2			
CO6	3	3										3	2			

Unit	Contents	Hours
I	Set Theory Operations on sets, Laws of algebra of sets, Representation of sets on computer in terms of 0's & 1's. Partition & covering of a set, ordered pair, Product set, Relation–Different types of relations, Graph of relation, Matrix of relation, Transitive closure of relation, Properties of relations, Compatible relation. Functions, Partial ordering & partially ordered set, Hasse diagram of Poset, Totally ordered set, Peano axioms & Mathematical Induction.	7
II	Group Algebra or Algebraic systems like semigroup, monoid and examples. Homomorphism, Isomorphism of semigroup & monoid. Groups, properties of algebraic groups. Permutations groups, Subgroups, Cosets, Lagrange's theorem, properties of cyclic groups, generator of group, kernel of Homomorphism, quotient group, fundamental theorems & Homomorphism of groups, Residue classes & Fermats theorem.	8
III	Rings Rings, types of rings, Fields, subring, Integral domain. Simple properties of rings. Lattice as Poset& as algebraic system, Types of lattices, Hasse diagrams, Sublattice, direct product of Lattices, Lattice Homomorphism, complement of elements of lattices, Various lattices, composition tables, Lattice, Boolean algebra; Boolean Expressions, Equivalence of Boolean Expression by tables, Simplification of circuit & equivalent circuit by truth tables.	8
IV	Graph Theory Graphs and its types, Sub graph, Quotient graph, Euler path, complete path, in degree, out degree, reachability, cycle, matrix representation of graph. Transitive closure of graph, Adjacency matrix, Trees, Venn diagram, Representation of trees, binary trees, spanning trees, Prim's algorithm.	8
V	Combinatorics Definition of generating functions and examples, proof of simple combinatorial identities. Recursive relations: definitions & examples, explicitly formula for sequence, back tracking to find explicit formula of sequence, solving recurrence relations. Counting Theorem and application, multiplication principle of counting. Permutation & Combination with examples. The pigeon hole principle & extended pigeon hole principle and application of pigeon hole principle in solving simple problems.	8
VI	Number Theory Continued fractions, The study of continued fractions. Alpha has Infinite continued fraction if alpha is irrational. Alpha has periodic continued fractions if alpha is quadratic irrational. Application to approximation of irrationals by rationals. Hurwitz's theorem, Advanced topic on Combinatorial Theory.	8

Text	1.	Discrete Mathematical structure with application to computer science by Trembley & Manohar (Mc. Graw Hill)								
Books	2.	Discrete Mathematical Structure by Kolmann , Busby & Ross (PHI)								
	3.	Discrete mathematics by Lipschutz& Lipson , Schaum's outline, TMH								
	1.	Discrete Mathematics by Liu								
	2.	Discrete Mathematics by John Truss (Addison Wesley, 2000)								
Reference	3.	Foundations of Discrete Mathematical by K. D. Joshi (Willey Eastern).								
Books	4.	Set Theory by Lipschutz (Schaum Series, Asian Student Edition).								
	5.	Modern Algebra by M. L. Khanna (Jai Prakash Nath& Company								
	5.	Meerut).								
on line TL Material	1.	https://onlinecourses.nptel.ac.in/noc20_cs37/unit?unit=41&lesson=42								

Course Title: UCSL201:Data Structure and Algorithms											
Semester	III	Teaching Scheme			heme	Evaluation Scheme					
Semester	111						Theory	′	Prac INT 25	ctical	
Term	ODD	Th	Tu Pr Credits TAE CAE ES					ESE	INT	EXT	
Course Category	С	3		2	4	10	15	50	25		
Course Code	UCSL201	3		2	4	10	13	30	25		
Course Code	UCSP201	5		Total	75			25			
			3		Total	100					

	This course introduces basic idea of data structure while making aware of methods and structure used to organize large amount of data.
Course	It's also aimed at developing skill to implement methods to solve specific
Objectives	problems using basic data structures.
	The course also provides career opportunities in design of data,
	implementation of data, technique to sort and searching the data.
	CO1: Illustrate various technique to for searching, Sorting and hashing
	CO2: Explain the significance of dynamic memory management
	Techniques
Course	CO3: Design and analyze different linear data structure techniques to
Outcomes	solve real world problem.
	CO4: Implement non-linear data structure to find solution for given
	engineering applications.
	CO5: Summarize different categories of data Structures

Course	Program Outcomes and Program Specific Outcomes														
Outcomes	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		3	2	3									1		
CO2		2	3	3									2		
CO3		3	3	3									2	1	
CO4		3	3	3									3	2	
CO5		3	3	2									3	1	

Unit	Contents	Hour s
I	Introduction –Common operations on data structures, Types of data structures, Data structures & Programming, Program Design, Complexities, Time Complexity, order of Growth, Asymptotic Notation. Sorting and Searching Introduction, Sorting, Insertion Sort, Selection Sort, Merging, Merge-Sort, Shell Sort, Radix Sort, Searching and Data Modification, Hashing	9
II	Arrays: Introduction, Linear Arrays, Arrays as ADT, Representation of Linear array in Memory, Traversing Linear Arrays, Inserting and deleting, Sorting; Bubble Sort, Searching; Linear Search, Binary Search,: Linked List: Introduction: Linked Lists, Representation of Linked Lists in Memory, Traversing a Linked List, Searching a Linked List, Memory Allocation; Garbage Collection, Insertion into a Linked List, Deletion from a Linked List, Header Linked List, Circularly Linked Lists, Two-Way Lists (or Doubly Linked Lists).	9
III	Stacks, Queue and Recursion- Introduction, Stacks ,Array Representation of Stacks ,Linked Representation of Stacks, Stack as ADT, Arithmetic Expression; Polish Notation, Application of Stacks, Recursion, Towers of Hanoi, Implementation of Recursive Procedures by Stacks, Queue, Linked Representation of Queues, Queues as ADT, Circular Queues, Deques, Priority Queues, Applications of Queues	9
IV	Trees and Binary Trees -Binary Trees • Representation, Operations: Insert, Delete, Traversal: Preorder, Inorder, Postorder, Traversal Algorithms Using Stacks, Header Nodes; Threads, Threaded Binary Trees, Binary Search Trees, Searching and Inserting in Binary Search Trees, Deleting in a Binary Search Tree, Balanced Binary Trees, AVL Search Trees, Insertion in an AVL Search Tree, m-way Search Trees, Searching, Insertion and Deletion in an m-way Search tree, B-Trees, Searching, Insertion and Deletion in a B-tree, B+-Trees Graph Algorithms	10
V	Graphs and their Applications -) Introduction, Graph Theory Terminology, Sequential Representation of Graphs, Adjacency Matrix; Path Matrix, Linked Representation of a Graph, Operations on Graphs, Traversing a Graph, Posets; Topological Sorting, Spanning Trees	8

	1.	AVAho, J Hopcroft, JD Ullman, Data Structures and Algorithms, Addison- Wesley, 1983.
Text Books	2.	THCormen, CF Leiserson, RL Rivest, C Stein, Introduction to Algorithms, 3rd Ed., MIT Press, 2009.
	3.	Sahni, S., "Data Structures, Algorithms, and Applications in C++", WCB/McGraw-Hill.
EBooks	1.	https://apps2.mdp.ac.id/perpustakaan/ebook/Karya%20Umum/Dsa.pdf
Referenc	1.	Data Structures & Algorithms, 1e, Alfred V.Aho, Jeffery D. Ullman , Person.
e Books	2.	MT Goodrich, R Tamassia, DM Mount, Data Structures and Algorithms in Java, 5th Ed., Wiley, 2010. (Equivalent book in C also exists.)

	3.	Wirth, N., "Algorithms and Data Structures", Prentice-Hall of India.
Outline TI	1.	https://nptel.ac.in/courses/106/102/106102064/
Online TL Material	2.	http://cse01-iiith.vlabs.ac.in/
ivialerial	3.	https://ds2-iiith.vlabs.ac.in/data-structures-2/

0	Data Structure and Algorithms lab
Sr. No.	Name of Experiments / Mini Projects/ Case Studies
1	Consider a student database of SY COMP class (at least 10 records). Database contains different fields of every student like Roll No, Name and SGPA.(array of objects of class) a) Design a roll call list, arrange list of students according to roll numbers in ascending order (Use Bubble Sort) b) Arrange list of students alphabetically. (Use Insertion sort) c) Arrange list of students to find out first ten toppers from a class. (Use Quick sort) d) Search students according to SGPA. If more than one student having same SGPA, then print list of all students having same SGPA. e) Search a particular student according to name using binary search
2	without recursion. Department of Computer Engineering has student's club named 'COMET'.
2	Students of Second, third and final year of department can be granted membership on request. Similarly one may cancel the membership of club. First node is reserved for president of club and last node is reserved for secretary of club. Write program to maintain club member's information using singly linked list. Store student MIS registration no. and Name. Write functions to a) Add and delete the members as well as president or even secretary. b) Compute total number of members of club c) Display members d) Display list in reverse order using recursion e) Two linked lists exists for two divisions. Concatenate two lists
3	Implement Stack using a linked list. Use this stack to perform evaluation of a postfix expression.
4	Queues are frequently used in computer programming, and a typical example is the creation of a job queue by an operating system. If the operating system does not use priorities, then the jobs are processed in the order they enter the system. Write a program for simulating job queue. Write functions to add job and delete job from queue.
5	A double-ended queue (deque) is a linear list in which additions and deletions may be made at either end. Obtain a data representation mapping a deque into a one-dimensional array. Write a program to simulate deque with functions to add and delete elements from either end of the deque
6	A book consists of chapters, chapters consist of sections and sections consist of subsections. Construct a tree and print the nodes. Find the time and space requirements of your method.
7	Implement binary tree using linked list and perform recursive traversals.
8	Beginning with an empty binary search tree, Construct binary search tree by inserting the values in the order given. After constructing a binary tree i. Insert new node ii. Find number of nodes in longest path

	iii. Minimum data value found in the tree
	iv. Change a tree so that the roles of the left and right pointers are swapped
	at every node
	v. Search a value
9	Implement graph using adjacency list or matrix and perform DFS or BFS.
10	You have a business with several offices; you want to lease phone lines to
	connect them up with each other; and the phone company charges different
	amounts of money to connect different pairs of cities. You want a set of lines
	that connects all your offices with a minimum total cost. Solve the problem
	by suggesting appropriate data structures.
Open End	ded Experiments / New Experiments
1	A classic problem that can be solved by backtracking is called the Eight
	Queens problem, which comes from the game of chess. The chess board
	consists of 64 square arranged in an 8 by 8 grid. The board normally
	alternates between black and white square, but this is not relevant for the
	present problem. The queen can move as far as she wants in any direction,
	as long as she follows a straight line, Vertically, horizontally, or diagonally.
	Write C++ program for generating all possible configurations for 4-queen's
	problem.
2	A Dictionary stores keywords & its meanings. Provide facility for adding new
	keywords, deleting keywords, updating values of any entry. Provide facility to
	display whole data sorted in ascending/ Descending order. Also find how
	many maximum comparisons may require for finding any keyword. Use
	Binary tree and find the complexity for finding a keyword.

Course Title: UCSL202:Computer Architecture and Organization												
Semester	III	Course	Title	: Con	nputer A	rchitec	ture an	d Orga	nizat	ion		
Term	Odd	Tea	aching	Sch	eme	Е	Evaluat	ion Sc	heme)		
161111	Odd						Theory	Practical				
Course Category	C7	Th	Tu	Pr	Credits	TAE	CAE	ESE	Int	Ext		
Course Code	UCSL2	3			3	10	15	50		I		
			3		Total			75				

Course Objectives	To understand the design principles of digital computing systems
	To provide essential understanding of different subsystems of modern
	computer system and design aspects these subsystems3
Objectives	To provide overview on performance enhancement methods in instruction
	execution
	CO1: To describe the basic components and design of a computer
	system
	CO2: To examine the issues involved in the instruction execution and
Course	various stages of instruction life stage
Outcomes	CO3: To apply the concept of various memories and interfacing
	technologies
	CO4: To analyze the different parallel processing technique
	CO5: To design different high performance computing architecture

Course			Pro	gran	n Out	come	s and	d Pro	gram	Spe	cific (Outco	mes		
Outcom	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
es	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3		
CO2		3											2		
CO3		3											2		
CO4			3										3		
CO5			3											3	

Unit	Contents	Hours
I	Basic functional blocks of a computer: CPU, memory, input-output subsystems, control unit. Instruction set architecture of a CPU –registers, instruction execution cycle, RTL interpretation of instructions, addressing modes, instruction set, Instruction set architecture CISC, RISC, Case study –instruction sets of common CPUs	8
II	Fixed point Addition, Subtraction, Multiplication and Division. Floating Point arithmetic, High performance arithmetic, Sub word parallelism, Booth's algorithm, integer division • Data representation method • Booths multiplication, division algorithm and example • IEEE standard single and double precision format and examples	8
III	Memory hierarchy, Memory Chip Organization, Cache memory, Virtual memory. Parallel Bus Architectures, Internal Communication Methodologies, Serial Bus Architectures, Mass storage, Input and Output Devices, Segmentation, TLB, Page replacement algorithms	8
IV	Pipelining: Basic concepts of pipelining, throughput and speedup, pipeline hazards Pipelining: Basic concepts of pipelining, Arithmetic and Instruction Pipeline, throughput and speedup, pipeline hazards, Introduction, Logic Design Conventions, Building a Datapath – A Simple Implementation scheme – An Overview of Pipelining – Pipelined Datapath and Control. Data Hazards: Forwarding versus Stalling, Control Hazards, Exceptions, Parallelism via Instructions	8
V	CPU control unit design: hardwired and micro-programmed design approaches, Case study - design of a simple hypothetical CPU.	8

	1.	Introduction to Parallel Computing by Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar in Pearson Publication
Text	2.	Advance computer Architecture by Kai Hwang under Tata McGraw Hill
Books		publications
	3.	Introduction to Parallel Processing: Algorithms & Architectures,
	٥.	Behrooz Parhami in Springer Shop
		Computer Architecture and Organization by William Stalling
		http://home.ustc.edu.cn/~leedsong/reference_books_tools/Computer%
EBooks	1.	20Organization%20and%20Architecture%2010th%20-
		%20William%20Stallings.pdf
		V 1
	1.	Introduction to Parallel Processing by P. Ravi Prakash, M. Sasikumar,
		Dinesh Shikhare By PHI Publications
Referen	2.	Fundamentals of Parallel Processing by Jordan Harry, Alaghband Gita,
ce	۷.	PHI Publication
Books		Parallel Computers – Architecture and Programming by V. Rajaraman
	3	And C. Siva Ram Murthy.
	4.	Introduction to Parallel Programming by Steven Brawer
Online	т.	Introduction to Faraller Frogramming by Gleven Brawer
Online		NDTI - Lucy //
TL	1.	NPTL https://nptel.ac.in/courses/106/105/106105163/
Material		

	Course Title: UCSL203: Formal Languages and Automata									
Semester	Ш									
Term	Odd	Т	eachir	ng Sch	neme		Evaluat Theory	ion Sch	eme Prac	tical
Course Category	C8	Th	Tu	Pr	Credits	TAE	CAE	ESE	Int	Ext
Course Code	UCSL203	3			3	10	15	50		
			3		Total		•	75	•	

	th	o provide introduction to some of the central ideas of eoretical computer science from the perspective of rmal languages.							
Course	aı	o introduce the fundamental concepts of formal languages, rammars and automata theory.							
Objectives	• 0	lassify machines by their power to recognize languages and se finite state machines to solve problems in computing.							
	• To	 To understand deterministic and non-deterministic machines. 							
	• U	se of Turing Machine and Pushdown Automata in Formal Language.							
		Understand the abstract machines and their power to recognize the valid Languages.							
Course	CO ₂	Modeling of finite state machines for solving computing problems.							
Outcomes	CO3	Design context free grammars for formal languages.							
	CO4	Apply Formal language to solve problems based on push down automata.							
	CO ₅	Solve problems based on linear bounded automata and Turing							

Course			Pro	gram	Outo	come	s and	d Pro	gram	n Spe	cific (Outco	omes		
Outcom	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
es	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3												3		
CO2		3											2		
CO3		3											2		
CO4			3										3		
CO5			3											3	

Unit	Contents	Hours
I	Introduction- Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with €- moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA"s with and without €-moves – Equivalence of finite Automaton.	08
II	Regular Expressions- Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Properties of Regular Languages Pumping Lemma for Regular Languages, Applications of the Pumping Lemma, Closure Properties of Regular Languages, Decision Properties of Regular Languages.	08
III	Context-Free Grammars: Chomsky hierarchy of languages. Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages.	08
IV	Push Down Automata- Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.	08
V	Definitions of Turing machines – Models – Computable languages and functions – Techniques for Turing machine construction – Multi head and Multi tape Turing Machines – The Halting problem.	80

		Introduction to Automata Theory, Languages, and Computation,
Text	1	3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D.
Books		Ullman, Pearson Education.
DOOKS	2	Introduction to the Theory of Computation, Michael Sipser, 3 rd edition,
		Cengage Learning.
	1	Introduction to Languages and The Theory of Computation, John C
		Martin, TMH.
Reference	2	Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
Books	3	A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B,
DOOKS		Cambridge University Press.
	4	Introduction to Formal languages Automata Theory and
		Computation Kamala Krithivasan, Rama R, Pearson.

Course Title: UIT	Course Title: UITL201:Object Oriented Programming									
Semester	III	Te	Teaching Scheme				Evalua	ition S	cheme	!
Semester	111						Theory	′	Prac	ctical
Term	ODD	Th	Tu	Pr	Credits	TAE	CAE	ESE	INT	EXT
Course Category	PC									
		3	-	2	4	10	15	50	25	-
	UITL201/									
Course Code	UITP201	JITP201			TOTAL		75	25		
			5		TOTAL			100		

	1. This course introduces student's general idea and concepts of object									
Course	oriented programming.									
Course	2. It is also aimed at developing skills to implement these concepts									
Objectives	3. The course provide carrier opportunities in design of some applications									
	as object oriented concepts plays dominant role in software development									
	Up on successful completion of this course, student will be able to:									
	CO1: Articulate the principles of object oriented programming using C++									
	CO2: Apply function overloading, constructor overloading, operator									
Course	overloading & its uses in programming									
Outcomes	CO3: Implement inheritance and polymorphis concepts and its use for									
Gattoninos	application development									
	CO4: Implement static and dynamic memory allocation for software									
	development									
	CO5: Develop generic programming applications using templates									

Course Outcomes		Program Outcomes and Program Specific Outcomes													
	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	P01	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1		3											2		
CO2			3										3		
CO3			2	2									3		
CO4				2									2		
CO5				2									2		

Unit	Contents	Hours
	Principles Of Object Oriented Programming:	
I	Differences between C and C++. A look at procedure Oriented programming, object oriented programming paradigm, basic concepts of OOP, Benefits of OOP, OO languages, A sample program, structure of C++ program. Introduction to OOPS: The origins of C++, What is Object Oriented Programming?, Some C++ fundamentals, Headers & Name Spaces, Introducing C++ Classes, Function overloading, Operator overloading, Inheritance, Constructors & Destructors, Function & Operator Overloading:	8
II	Overloading Constructor functions, Localizing variables, Function overloading & Ambiguity, Finding the address of an overloaded function, this Pointer, Operator overloading, References, Using reference to overload a unary operator, Overloading [], overloading (), Applying operator overloading.	8
III	Inheritance, Virtual Functions and Polymorphism Inheritance and the access specifies, Constructors and Destructors in derived classes, Multiple Inheritance, Passing parameters to a basic class, Pointers and references to derived types, Virtual Functions, Why virtual functions?, Pure virtual functions and abstract types, Early Vs Late binding.	8
IV	Static & Dynamic allocation Static & Dynamic allocation using new and delete, static class members, Virtual base classes, const member functions and mutable, volatile member functions, Using the asm keyword, linkage specification, The .* and ->* operators, Creating conversion functions, Copy constructors, Granting access, namespaces, Explicit constructors, typename and export.	8
V	Templates & Exception Handling Class templates, class templates with multiple parameters, function templates, function templates with multiple parameters, Exception Handling, fundamentals, options the uncaught exception (), Applying exception Handling, and RTTI, casting operators, Recent trends in Object Oriented Programming in C++, Advanced topics & its Application	8

Text Books	1.	Object Oriented Programming in C++ -Robert Lafore, edition, Galgotia publications
DOOKS	2.	The Complete Reference C++, Herbert Schildt, 4th Edition, TMH
EBooks	1.	Cryptography & network security by atul kahate https://www.pdfdrive.com/cryptography-network-security-by-atul-kahate-e124796757.html
Reference	1.	Let's C++ by Y. Kanetkar, BPB publications
Books	2	Object oriented programming with C++, E Balagurusamy, 4th edition, TMH

Sr. No.	Name of Experiments / Mini Projects/ Case Studies
1	Write a program to compute the area of triangle and circle by overloading
	the area() function.
2	Define a class to represent a bank account. Include the following members :
	Data members:- Name of depositor, Account number, Type of account,
	Balance amount in the account
	Member functions:- To assign initial values, To deposit an amount, To
	withdraw an amount after checking the balance, To display name & balance
3	Write a main program to test program using class and object. Create two classes DM and DB which stores values of distances. DM stores
3	distances in meters and centimeters and DB in feet and inches. Write a
	program that can read values for the class objects and add one object of DM
	with another object of DB. Use a friend function to carry out addition
	operation
4	Create a class MAT of size m * n. Define all possible matrix operations for
	MAT type objects
5	Create Stud class to display student information using constructor and
	destructor. (Default constructor, Multiple constructor, Copy constructor,
	Overloaded constructor)
6	Consider class network of given figure. The class master derives information
	,
7	
,	
	contents. Write a program using polymorphism and virtual function.
8	Write a program to show use of this pointer, new and delete.
9	Write a function template for finding the minimum value contained in an
	array
10	
1	
2	
	Write a program to show use of this pointer, new and delete. Write a function template for finding the minimum value contained in an

Semester	III	Course Title: UCSP104				4: Pyt	hon fo	on for Data Science				
Term	III	Teaching Scheme				Evaluation Scheme						
161111	111						Theory	Practical				
Course Category	A6-A7-A8	Th	Tu	Pr	Credits	TAE	CAE	ESE	Int	Ext		
Course Code	UCSP104	I		6	3				50			
		6 Total					50					

Course Objectives	To get comfortable with the main elements of Python programming with basic statistics analysis
	Aim to import, clean, enrich, transform, visualize and output the analysis of a large dataset
	Reshape and merge data to prepare for advanced analytics
	CO1: Describe the concepts to write, test and debug Python 3 code with confidence
Course	CO2: Discuss on including working with Containers, Conditionals & Loops, Functions & Modules and Error Handling.
Outcomes	CO3: Identify the fundamentals of some of the most widely used Python Packages; including NumPy, Pandas and Matplotlib
	CO4: Apply these concepts to Data Analysis and Data Visualization projects.
	CO5: Build and code a Graphical User Interface (GUI) to run a program.

Course	РО	PSO	PSO	PSO											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2	3		2								2	2	
CO2		3	2		3								2	3	
CO3		3	3		3								3	3	
CO4		2	2		2								3	2	
CO5		2	2		2								2	2	

Unit	Contents	Hours
I	Introduction: Data Science and Business Buzzwords, Difference between Analysis and Analytics, Data Science Info graphic, Tools in Data Science, Applications	3
II	Basics Of Python Spyder (Tool): Introduction Spyder, Setting working Directory, Creating and saving a script file, File execution, clearing console, removing variables from environment, clearing environment, Commenting script files, Variable creation, Arithmetic and logical operators, Data types and associated operations	3
III	Data Structures: Lists, Tuples, Dictionary, Sets, Numpy, Array, Matrix and associated operations, Linear algebra and related operations Control Structures: Control structures using Toyota Corolla dataset, if-else, for loop, for loop with if break, while loop	3
IV	Pandas Dataframe: Pandas dataframe and dataframe related operations, Reading files, exploratory data analysis, Data preparation and preprocessing Data Visualization: Data visualization on Toyoto Corolla dataset using matplotlib and seaborn libraries Scatter plot, Line plot, Bar plot, Histogram, Box plot, Pair plot	3
V	Regression: Predictive Modeling, Linear Regression, Model Assessment, Diagnostic to implement linear fit model Classification: Cross validation, Classification, Logistic regression, Performance measure Clustering: KNN, K-means clustering Multiple Regression: Multiple Regression, Decision Tree Case Studies	3

Text Books	1.	Practical Data Science with Python 3, Varga , Ervin, ISBN 978-1-4842-4859-1, Publisher- Apress
	2.	Python for Data Science For Dummies 2nd Edition by John Paul
		Mueller, Luca Massaron, Wiley, ISBN 9781119547624
	1.	Python Data Science Handbook, ISBN-13: 978-1491912058,
Reference		Publisher- O'Reilly Media
Books	2.	Python Data Science Essentials, By Boschetti Alberto, ISBN:
		9781785280429, 9781785280429, Publisher: Packt Publishing Limited
on line TL Material	1.	The Data Science Course 2020: Complete Data Science Bootcamp
		https://www.udemy.com/course/the-data-science-course-complete-
		data-science-bootcamp/

Sr.	Name of Experiments
No.	
1	Apply for Input Output functions and operators in Python
2	Perform and implement various control structures in Python
3	Create and Perform various operations data types in Python

4	Apply the dataframes in python for data reading, preparation and preprocessing
5	Perform various visualization using matplotlib and seaborn
6	Perform the analysis of various dataset and plot histogram on it
7	Study and Implement regression for predictive modelling and linear regression
8	Study and Implement various classification models on data sets
9	Study and Implement various clustering models on data sets
10	Study and Implement multiple regression models on data sets
11	Given a case study: Perform Interactive Data analysis with SciPy

Extra expt. list

Group A						
Sr.No	Name of the Experiment	Assignment Mapped	Unit Mapped			
1	Introduction to data Science and Python Spyder Tool with its some basic operation	-	1,2			
2.	 a) Write a program that prompts the user to input the radius of a circle and outputs the area and circumference of the circle. The formula is b) Suppose a, b, and c denote the lengths of the sides of a triangle. Then the area of the triangle can be calculated using the formula: Area = √s(s - a)(s - b)(s - c) where where w	1	2			
3.	Write python program to accept subject marks and to display their Grade card.	1,2	2,3			
4.	 Functions a) Write a function reverse to reverse a list. Without using the reverse function. b) Write function to compute gcd, lcm of two numbers. Each function shouldn't exceed one line. 	1	2,3			
5.	Write a program in python that accepts a string to setup a passwords. Your entered password must meet the following requirements: The password must be at least eight characters long. It must contain at least one uppercase letter. It must contain at least one lowercase letter. It must contain at least one numeric digit. Your program should should perform this validation.	1,2	2,3			
6	 a. Write a program to count the numbers of characters in the string and store them in a dictionary data structure b. To write a python program to generate all permutations of a given string using list or tuple 	3	2,3			

7	Write a program that generates a random number and asks the user to guess what the number is. If the user's	1,2, 3	2,3
	guess is higher than the random number, the program should display "Too high, try again." If the user's guess is lower than the random number, the program should display "Too low, try again." The program should use a loop that repeats until the user correctly guesses the random number. Program should count and display number of tries to win the game.		
	Group B	<u> </u>	
Sr. No	Experiment Name	Course Assignment Mapped	Unit Mapped
8	Create a 2D numpy array of 6 soccer team players with their [height(meters), weight(kgs)] by reshaping an 1D numpy array. i) Find out the average height ii) median height iii) standard deviation on height iv) Calcute the bmi and print the bmis >25 v) Create two arrays by checking the bmis. a) Arr1: bmi >25 b) Arr2: bmi <25 and print both the arrays	4	4
9	Write a python function that takes two numpy.ndarray objects, checks if they are the same shape (printing ERROR and aborting if they aren't), then raises the numbers b of the second array to the exponents a in the first array. Do this without using numpy functions like numpy.power in your function. Make sure that it works with differently sized numpy arrays arrays of 0 dimensions, 1 dimension and 2 dimensions. Do the same using the numpy.power function.	4	4
10	Write a python program to search for a string in an heterogenous array of 7 items by using a user defined function that accepts two arguments. i) If string found return the position of the string ii)if string not found, add the string to the list. Note: Do not use built in functions/methods.	4	4
11	Using Panads library read excel sample file of 100 records into Dataframe. Also write these 100 records into particular sheet of excel file.	4	4
12	Using Panads library read CSV/excel sample file and write into JSON file formation	4	4
13	Write a python program to create a DataFrame of 6 rows from Dictionary. First create a Tourism_visitors dictionary from four lists of "Cities", "Visitors", "signups" and "Weekdays". Convert the dictionary to Dataframe importing Pandas library. And create row_labels as the short forms of the country names. And display the DataFrame.	4	4
14	Download 100 CC Records csv from http://eforexcel.com/wp/downloads-17-sample-csv-files-data-sets-for-testing-credit-card/ . And read the CSV into a DataFrame. Display the card type, holder name, issuing bank 		

and credit limit of the holders from 20 to 40(row
indexes) using loc and iloc commands.

Display all columns and table information.

Group C

Sr. No	Experiment Name	Course Assignment Mapped	Unit Mapped
15	i. Handle the null values if any by removing them or perform imputation ii. Import the necessary package and perform the train and test split on the dataset.	4	5
16	Perform various data visualization using matpoltlib library.	5	5
17	Plot line and scatter charts for students interests in programming against their year in the Engineering college. And derive a distribution of the same over 10 years using a histogram.	6	5
18	Study and Implement any one type of regression model (linear, multiple regression) using appropriate dataset	7,10	5
19	Using Naïve Bayes, Decision Tree, KNN predict if a customer with certain age and Salary will purchase a product or not	8	5
20	Study and Implement K-mean clustering using appropriate dataset.	9	5
21	Given a case study: Perform Interactive Data analysis on titanic dataset using data analysis tool.	11	5