n 22 a, 6 6 2

$$3 \equiv M \pmod{8}$$

$$M \equiv -5 \pmod{8}$$

$$a \equiv b \pmod{n}$$
 $a \equiv_n b$

$$x = b$$

0,1,..., ~-1

2

0,n,2n, 1	1, n+1, -, 1	- / ~	[n-2]	n-1, 21-1,
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		h-2	\ \ \ !\

Własności relacji przystawania

Faht. Yord:
$$a \equiv b \pmod{n}$$
 i $c \equiv d \pmod{n}$,

to $a + c \equiv b + d \pmod{n}$

over $a \cdot c \equiv b \cdot d \pmod{n}$.

Dov. $c \downarrow a$.

Wirosch.

Yard: $a \equiv b \pmod{n}$ to

Dov.

Dov.

Winosah.

Maidi
$$a \equiv b \pmod{n}$$
, to

 $a \equiv b \pmod{n}$
 $a \equiv b \pmod{n}$

$$a = b \pmod{n}$$

$$(a) \qquad | a - b |$$

$$a > V \qquad | a - b = n \cdot k$$

$$k \in \mathbb{Z}$$

Przykład rzykład 2024 d2) lenia 4 pren 11? $4^2 \equiv 5 \pmod{2}$ John pert resita 20/1,..., 21 y $7^3 \equiv 5.7 \pmod{U}$ k 1 4 mod 22 $J^3 = 13 \pmod{22}$ $2\Lambda \equiv -\Lambda \pmod{22}$ $7^5 = -1 \pmod{2} | ()^2$ +> 410 = 1 (mod 22) 1()k 21=-1 grok = 1 (mod 22) $= 4^{2020}$; $7^4 = 1.4^9 = 3 \pmod{2}$

Małe twierdzenie Fermata

$$n \ge 2$$
, $a \in \mathbb{Z}$ $a \in \mathbb{Z}$

Funkcja Eulera

q(n) = liuba lint naturalmed < n, thore sp "uppedme pleusse 2 n $\mathcal{N} \in \mathcal{N}$ \(\phi(10) = 1\hbar{1}^3\hbar{1}^4\hbar{1}^4\har{1}^9\har{1}^6

1. You'di p fest trubp pierussep i $a \in \mathbb{N}$, to $\varphi(p^a) = p^a - p^{a-1}$ 2. Yaidi NUD(m,n) = 1, to $\varphi(m\cdot n) = \varphi(m)\cdot\varphi(n)$

$$\varphi(2^3 \cdot 3^2 \cdot 3^4) \stackrel{?}{=} \varphi(2^3) \cdot \varphi(3^2) \cdot \varphi(7^4) \stackrel{!}{=}$$

$$= (2^3 - 2^2)(3^2 - 3^4)(7^4 - 7^3) =$$

TH. Eulera:
$$yeight = 1$$
 $yeight = 1$ $yeight = 1$ $yeight$

$$n = 22, \quad \alpha = 7$$

$$\varphi(21) = \varphi(2 \cdot 11) = \varphi(2) \cdot \varphi(11) = 1 \cdot 10 = 10$$

$$TE = 7 \quad (mod 21)$$

Kongruencje liniowe z jedną niewiadomą

$$mx = a \qquad x = m$$

$$mx = a \pmod{n}$$

$$x = a \pmod{n}$$

$$x = a \pmod{n}$$

$$x = b \pmod{n}$$