Definition 0.1. [1] A σ^{+-} labeling of G is an injection $f:V(G) \to \{0,1,\ldots,2m-2\}$ which induces a bijective length function $\ell:E(G) \to \{1,2,\ldots,m\}$ where $\ell(uv)=f(v)-f(u)$ for every edge $uv \in E(G)$ with $u \in A$ and $v \in B$, and f has the additional property that $f(u)-f(v) \neq m$ for all $u \in A$ and $v \in B$.

Theorem 0.2. (Freyberg and Tran, [1]). Let G be a bipartite graph with m edges and a σ^{+-} -labeling such that the edge of length m is a pendant edge e. Then there exists a G-decomposition of K_{2mr} and K_{2mr+1} for every positive integer r.

Construction 0.3. Let F be a forest graph on seven edges, and consider K_{21} . Recall that any K_n via ℓ has edge lengths in $L = \{1, 2, ..., \lfloor \frac{n}{2} \rfloor \}$. If B_{σ} is the σ^{+-} labeling of F, then by Theorem 0.2 every edge of length in $L_{\sigma} = \{1, 2, ..., 7\} \subset L$ is generated by B_{σ} via $\phi_1 := v \mapsto v + 1$ on $V(B_{\sigma})$. Let $\mathcal{B}_{\sigma} = \langle B_{\sigma} \rangle_{\phi_1}$. So then $F \setminus \bigcup_{G \in \mathcal{B}_{\sigma}} G$ contains all edges with lengths in L_{σ} .

Recall that in any K_n there exist n edges of each distinct length, but every edge is also uniquely determined by it's endpoints. If we partition the vertices of K_{21} modulo 7, naturally this induces a singleton edge partition modulo 7×7 . We can consolidate this partition via $\ell_7 := ab \mapsto a+b \pmod{7}$ on the edges. So now we see that in partitioning the edges of K_{21} via ℓ_7 and ℓ , each partite set $P_{i,j}$ will have three edges of the same length which also belong to the same equivalence class with respect to ℓ_7 where $(i,j) \in L \times \mathbb{Z}_7$. The result is that $L_i = \bigcup_{j \in \mathbb{Z}_7} P_{i,j} = \{uv \in E(K_{21}) \mid \ell(uv) = i\}$.

Let $\phi_7 := v \mapsto v + 7$, $B_{i,j} \subset K_{21}$ be a subgraph which contains some edge ab with $(\ell \times \ell_7 \ (ab)) = (i,j)$, and $\mathcal{B}_{i,j} = \langle B_{i,j} \rangle_{\phi_7}$. Then if $\mathcal{H}_{i,j} = \bigcup_{G \in \mathcal{B}_{i,j}} G$ we must have that $P_{i,j} \subset E(\mathcal{H}_{i,j})$. Therefore, we must have that $L_i \subset E(\bigcup_{j \in \mathbb{Z}_7} \mathcal{H}_{i,j}) = \{uv \in E(K_{21}) \mid \ell(uv) = i\}$.

So if there exist edge-disjoint blocks $B_1, B_2, B_3 \cong F$ with only edges of lengths in L^* , let $\mathcal{B}_i = \langle B_i \rangle_{\phi_7}$ for $i \in \{1, 2, 3\}$. So $\bigcup_{i \in \{1, 2, 3\}} \mathcal{B}_i$ must contain all edges of lengths in L^* in K_{21} and therefore,

the existence of such blocks give $\mathcal{B}_{21} = \mathcal{B}_{\sigma} \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$, an F-design of order 21.

Construction 0.4. Let F be a forest graph on seven edges and consider K_{22} . We let B_{σ} refer to the same block as previously described in the construction for F-designs of order 21. Similarly to in the previous construction, if B_1, B_2, B_3, B_4 are edge-wise disjoint blocks which are isomorphic to F with only edges of lengths $\{8, 9, 10\} \cup \{\infty\}$ via ϕ_7 where we take $\infty = 0$ with respect to computing ℓ_7 . Then using the previous conventions for \mathcal{B}_i where $i \in \{1, 2, 3, 4, \sigma\}$,

the existence of such blocks give $\mathcal{B}_{22} = \mathcal{B}_{\sigma} \cup \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4$, an F-design of order 22.

Definition 0.5. Consider any edge $uv \in E(K_n)$. We say:

$$uv$$
 is a wraparound edge if $\ell(uv) = n - |u - v|$ (1)

$$uv$$
 is a short edge if $\ell(uv) = |u - v|$ (2)

(3)

.

Now for any edge $uv \in E(K_n)$, without loss of generality v < u and we say:

$$v$$
 is a wraparound vertex if uv is a wraparound edge (4)

$$u$$
 is a short vertex if $\forall ux \in E(K_n), ux$ is a short edge (5)

Algorithm 0.6. Let F be a forest on seven edges, \mathcal{B}_{21} , \mathcal{B}_{22} be the F-decompositions of K_{21} , K_{22} , respectively, given by Constructions 0.3 and 0.4, and consider K_{14t+7} along with K_{14+8} where we take the vertices to be members of $\mathbb{Z}_{21} \cup \{\infty\}$ in the natural way (according to C_{14t+7} and C_{14+8} where $22 \mapsto \infty$ along with all it's incident edge lengths).

For each block in

Construction 0.7. Let F be a forest on seven edges and consider K_{14t+7} and K_{14t+8} for $t > 1 \in \mathbb{N}$. By definition, K_{14t+7} has edge-lengths [1,7t+3]. Let us define the following edge length intervals: $I_{\sigma} = [1,7]$, $I_0 = [8,10]$ and $I_j = (I_{\sigma}+10)+7(j-1)=[11+7(j-1),17+7(j-1)]$ for all j > 0. So $L = \bigcup_{0 \le j \le t} I_j \cup I_{\sigma}$ is the set of all distinct lengths in K_{14t+8} for t > 1.

References

- [1] B. Freyberg and N. Tran, Decomposition of complete graphs into bipartite unicyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 133-142.
- [2] R. C. Bunge, A. Chantasartrassmee, S.I. El-Zanati, and C. Vanden Eyn-den, On cyclic decompositions of complete graphs into tripartite graphs, J. Graph Theory 72 (2013), 90–111.