

ARJUNA NEET BATCH

DPP-11

Structure of Atom

 The wavelength associated with a ball of 200 g and moving with a speed of 5m/hour is of the order of

$$f m = 2009 \Rightarrow \frac{200}{10^3} \Rightarrow \frac{200 \times 10^3}{10^3} \text{Kg}$$

$$f V = \frac{5m}{hour}$$

$$\lambda = 6.626 \times 10^{-34}$$
 $\lambda = 6.626 \times 10^{-34}$
 $\lambda = 6.626 \times 10^{-3}$

$$\frac{3}{3}$$
 = $\frac{31}{23.9}$ × $\frac{31}{10}$ m = $\frac{31}{20.39}$ × $\frac{30}{10}$ m

(B)
$$1,0,0,+1/2$$

(C)
$$1,0,0,-1/2$$

(D)
$$2,0,0,+1/2$$

$$(A) \quad 4,2$$

4,3

(D) 3,4

$$l = 0 \rightarrow s$$

(C) 8

B) 7

D) 10

5. The correct order of increasing energy of atomic orbital is

(A)
$$5p < 4f < 6s < 5d$$

$$(B)$$
 5p < 6s < 4f < 5d

(C)
$$4f < 5p < 5d < 6s$$

(D)
$$5p < 5d < 4f < 6s$$

Energy -> Multielectronic species

Both Bury Ruly

M+l (1) Energy (1)

of Value of n+l is somme

m (f) E (f)

6. Which shell would be the first to have 'g' sub-shell?

- (A) L
- (C) N

(B) M

K - 1 2 rd
M - 3 rd
M - 3 rd
N - 4 rd
N - 4 rd

shew no > no of subshew 1 st mu -> 1 substrue -> 1s 2nd show > 2 substance 7 25, 25 3d snew -> 3 submer > 35, 3p, 3d, 4h snew -> 4 submer -> 45, 4p, 4d, 4f 5 submer -> 55, 5p, 5d, 5f(5g)

(A)
$$3,2,1,1/2$$

(C)
$$4,1,0,-1/2$$

8. The energies of orbitals of H-atom are in the order

$$3s = 3p = 3d < 4s = 4p$$

(D)
$$3s = 3p = 3d < 4s < 4p$$

H-atoms Unielectronic

Energy MM, EM y n'i same, Esame

(A)
$$n = 4, l = 2, m = -2, s = -2$$

(B)
$$n = 4$$
. $l = 4$, $m = 0$. $s = 1/2$

$$n = 4, l = 3, m = -3, s = 1/2$$

(D)
$$n = 4$$
. $l = 0$, $m = 0$, $s = 0$

$$M = 1$$
 to ∞ $M \neq 0$, -ive, ∞

- **4** is
- (A)

$$M = 4$$

(n=4) No. of electrons in a show of 2n2

(A) Three

B) One

(C) Five

Seven

$$(l=3) \rightarrow f$$
 substitutes

一3,-2,-1,0,サ1,十2,十3

- (A) $\sqrt{6}\hbar$
- (C) \hbar

(D)
$$\sqrt{2}\hbar$$

Orbital A. Monmentum =
$$\int l(l+1) h$$
 or $\int l(l+1) \frac{h}{2\pi}$

13. Which of the following electronic level would allow the hydrogen to absorb a photon but not emit a photon?

(A) 3s (B)

 $(C) 2s \qquad (D) 1$

14. Which of the following transition will emit maximum energy in hydrogen atom?

- (A) $4f \rightarrow 2s$
- (C) $4p \rightarrow 2s$

$$M_1 = 2$$

15. In an atom, which has 2K, 8L, 18M and 2N electros in the ground state. The total number of electrons having magnetic quantum number, m = 0 is

16. A p-orbital can accommodate upto

(A) Four electrons

(B) Six electrons

Two electrons

(D) Eight electrons

- 17. The number of radial nodes in 4s and 3p orbitals are respectively
 - (A) 2,0
 - (C) 2,2

- **B**j 3,1
- (D) 3,2

radial node / sphuical node + n-1-1

18. Which of the following orbital is with the four lobes present on the axis?

(C) d_{yz}

dn²-y², ol² on me axis

dny, dyz, dzn 116be — In Dww anis

19. Which of the following statement concerning the four quantum number is incorrect?

- (A) n gives the size of an orbital
- (B) I gives the shape of an orbital
- m gives the energy of the electron in Orbital
- (D) s gives the direction of spin of electron in the orbital

20. Which of the following has maximum number of unpaired electrons?

$$(A) Mg^{2+}$$

(C)
$$Fe^{2+}$$

(C)
$$Fe^{2+}$$
 $Mg^{+2} \rightarrow 10e^{2} \rightarrow 15^{2}, 25^{2}, 2p^{6}, 35^{2} \rightarrow 0 \text{ unpaired } e^{2}$
 $12 Mg^{+2} \rightarrow 10e^{2} \rightarrow 15^{2}, 25^{2}, 2p^{6}, 35^{2} \rightarrow 0 \text{ unpaired } e^{2}$
 $12 Mg^{+3} \rightarrow 19e^{2} \rightarrow 15^{2}, 25^{2}, 2p^{6}, 35^{2}, 3p^{6}, 3d$
 $12 Mg^{+2} \rightarrow 10e^{2} \rightarrow 15^{2}, 25^{2}, 2p^{6}, 35^{2} \rightarrow 0 \text{ unpaired } e^{2}$

$$26 \text{ Fe} = 34e^{\Theta_{-1}S^2}, 2S^2, 2p^6, 3S^2, 3p^6, 3d^6$$

$$111111 \rightarrow \text{unbaid}$$

$$35$$
 $M_n \stackrel{?}{=} 33e \rightarrow 15^2 25^2$, 26 , 35^2 , 36 , $3d^5 \rightarrow 5$ unbaind

Shee

21. Two electrons in K shall will not have

(A) Same principal quantum number

(B) Same azimuthal quantum number

(C) Same magnetic quantum number

(D) Same spin quantum number

22. Which of the following electronic configuration is not possible?

- (A) 2p³
- (C) $4s^1$

23. The orbital diagram in which both Pauli's exclusion principle and Hund's rule are violated is

23. The number of waves in the third orbit of Hatom

- (A)
- **(C)**

No. of wavel 7 sheer no

25. If kinetic energy of a proton is increased nine times, the wavelength of the de-Broglie wave associated with it would become

- (A) 3 times
- (C) 1/3 times

- (B) 9 times
- (D) 1/9 times

1-1-9-1 heroms

- 26. The de-Broglie wavelength of an electron travelling with 10% of velocity of light is equal to
 - (A) 242.4 pm
 - (C) 2.42 pm

Thank You