Current concepts in theory and modelling of high energy hadronic interactions

Klaus Werner <werner@subatech.in2p3.fr>

in collaboration with

T. Pierog, R. Engel, S. Ostapchenko

Outline

- Key observations, large differences in the predictions from the different models
- □ The physics of
 - SIBYLL 2
 - QGSJET II
 - EPOS 1.99

Key observations

large differences in the predictions from the different models

Missing muons

Situation in 2006:

 non of the existent models (QGSJET, SIBYLL, NEXUS) can consistently describe all cosmic ray airshower data,

in particular:

data show considerably more muon production compared to simulations.

Not obvious how to fix this problem without creating others

Starting to use EPOS as interaction model, is was found:

- one gets significantly more muons,
- $\ \square$ without changing observables like X_{\max} too much

MUON PRODUCTION IN EXTENDED AIR SHOWER SIMULATIONS. Tanguy Pierog, Klaus Werner. Phys. Rev. Lett. 101, 171101 (2008).

Muon density MIA

Muon density AUGER

Why more muons in EPOS?

... because EPOS produces more baryons

Baryon = no $\pi^0 \rightarrow$ no EM cascade \rightarrow chance to make muons

The different models compared to accelerator data:

- □ similar concerning pions
- □ big differences concerning baryons

EPOS has been designed (and optimized) to understand ALL types of hadrons

→ careful studies of baryon production *

^{*} without thinking about CR applications

enormous amount of pp $(p\bar{p})$ data considered, at SPS, ISR, RHIC, TEVATRON

also πp , pA and πA

More muons require more electrons

Increase muon number (without changing the electrons) \rightarrow contradiction with KASCADE ($N_{\rm muons}$ - $N_{\rm electron}$ correlation)

Solution: non-linear effects (considered for particle production) also for cross section calculations

Consequences for Xmax

The physics of the models

- ☐ Semihard "Pomerons" : soft pQCD soft
- □ Remnants
- □ Partonic final state => strings

- ☐ no Remnants
- □ "main" scattering => qq-q strings

nucleon

☐ further scatterings => strings between gluon pairs

Nonlinear effects in EPOS

To include rescatterings of partons, fit parton-ladder¹ as $\alpha (x^+)^{\beta} (x^-)^{\beta}$ ², modify as

$$\alpha (x^+)^{\beta} (x^-)^{\beta+\varepsilon},$$

Effect can be summarized by a simple positive exponent ε

(dep on $\log s$ and N_{particip} , incorporating saturation)

nucleons

¹imaginary part of the corresponding amplitude in b-space $^{2}x^{+}, x^{-}$: light cone momentum fractions of the first ladder partons

Nonlinear effects in QGSJET

Pomeron-Pomeron coupling

- ☐ Summing all orders
- ☐ No energy conservation
- ☐ (in EPOS full energy conservation, but effective treatment of nonlinear effects)

Nonlinear effects in SIBYLL

Saturation scale obtained from

$$\frac{\alpha_s N_c}{Q^2} \times \frac{1}{N_c^2 - 1} \frac{xG}{\pi R^2} = 1$$

☐ Used as cutoff

Collective effects in EPOS in pp: high string densities possible => hydro

Summary

- Interaction models:
 - SIBYLL 2
 - QGSJET II
 - EPOS 1.99
- Theoretical concepts similar (multiple scattering of Gribov-Regge type, strings), but the practical implementation quite different
- Large differences in the predictions from the different models (=> muons)