Section 1.1

1. (-4, -8, 12)

 $2. \quad (-6,0,-3)$

3. (1,-1)

4. (5, -2)

5. (5,1,1)

6. (4, -3)

7. (-3, -2, 2)

8. (-2,5)

9. (-9, -3, 1)

10. $\sqrt{13}$

11. $\sqrt{14}$

12. $\sqrt{5}$

13. $\sqrt{17}$

14. $\sqrt{17}$

15. $\sqrt{14} + \sqrt{5}$

16. $5\sqrt{17}$

17. $\left(\frac{3}{5}, -\frac{4}{5}\right)$ 18. $\left(\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}\right)$

19. $\left(-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ 20. $\left(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$

 $21. \quad (4,2)$

 $22. \quad (-3, 2, 4)$

23. (1, -4, -7)

24. (-3,5)

25. 2i - 3k

26. (3, 2, -1)

27. $\sqrt{14}$

37. Yes

Section 1.2

1. 4

2. 12

3. 4

4. -24 5. (11, -7, -10)

6. -38

7. (-22, 14, 20) 8. (-57, -57, 0)

13. $-\frac{8}{\sqrt{5}\sqrt{29}}$ 14. $\frac{5}{\sqrt{14}\sqrt{5}}$

15. $-\frac{1}{2}$

16. $\frac{1}{\sqrt{2}}$

17. any multiple of (-4,7,-1) 18. any multiple of (4,5,-2)

19. $\frac{\sqrt{14}}{2}$

20. $3\sqrt{3}$

22. The cross product of a vector and a scalar is not defined.

23. The dot product of a vector and a scalar is not defined.

34. Note: The formula given in question 33 is wrong. There should be absolute value signs rather than magnitude signs around the scalar quantity $(\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w}$.

Answer: $V = |(\mathbf{u} \times \mathbf{v}) \bullet \mathbf{w}| = 1$.

Section 1.3

1.
$$(3,1,2) \bullet (\mathbf{x} - (2,-1,-4)) = 0;$$
 $3x + y + 2z = -3$

2.
$$(-3,0,1) \bullet (\mathbf{x} - (1,2,3)) = 0;$$
 $-3x + z = 0$

3.
$$(2,1,3) \bullet (\mathbf{x} - (0,0,0)) = 0;$$
 $2x + y + 3z = 0$

4.
$$(1,2,-2) \bullet (\mathbf{x} - (-1,2,3)) = 0;$$
 $x + 2y - 2z = -3$

5.
$$(3,6,1) \bullet (\mathbf{x} - (-1,2,3)) = 0;$$
 $3x + 6y + z = 12$

6.
$$(2,-1,1) \bullet (\mathbf{x} - (0,0,5)) = 0$$

7.
$$(2,3,0) \bullet (\mathbf{x} - (\frac{1}{2},0,0)) = 0$$

8.
$$(0,0,1) \bullet (\mathbf{x} - (0,0,0)) = 0$$

9.
$$(2,1) \bullet (\mathbf{x} - (-1,2)) = 0$$

10.
$$(0,2) \bullet (\mathbf{x} - (2,-1)) = 0$$

11.
$$(2,-1) \bullet (\mathbf{x} - (-2,5)) = 0$$

12.
$$(4,3) \bullet (\mathbf{x} - (1,-3)) = 0$$

13.
$$\mathbf{x}(t) = (2, 1, -3) + t(1, 2, 2);$$
 $x = 2 + t, y = 1 + 2t, z = -3 + 2t$

14.
$$\mathbf{x}(t) = (3, -1) + t(2, 3);$$
 $x = 3 + 2t, y = -1 + 3t$

15.
$$\mathbf{x}(t) = (2, -3, 1) + t(1, 0, 0);$$
 $x = 2 + t, y = -3, z = 1$

16.
$$\mathbf{x}(t) = (1-t)(1,2,-1) + t(2,-1,3); \quad x = 1+t, y = 2-3t, z = -1+4t$$

17.
$$\mathbf{x}(t) = (1-t)(2,0,-2) + t(1,4,2);$$
 $x = 2-t, y = 4t, z = -2 + 4t$

18.
$$\mathbf{x}(t) = (1,2,3) + t(2,-1,-2);$$
 $x = 1 + 2t, y = 2 - t, z = 3 - 2t$

19.
$$\mathbf{x}(t) = (2,4,5) + t(5,-5,-10);$$
 $x = 2 + 5t, y = 4 - 5t, z = 5 - 10t$

20.
$$\mathbf{x}(t) = (3, -2) + t(3, -5);$$
 $x = 3 + 3t, y = -2 - 5t$

21.
$$\mathbf{x}(t) = (1, -1) + t(1, -3);$$
 $x = 1 + t, y = -1 - 3t$

25.
$$\frac{3}{\sqrt{6}}$$
 27. $\frac{9}{\sqrt{5}}$ 29. $\left(\frac{13}{5}, 1, -\frac{7}{5}\right)$

Section 2.1

1.
$$(1, 2, 5, 1)$$

$$2. (11, -2, 7, 11)$$

$$3. (12, -6, 14, 40)$$

4.
$$\sqrt{47}$$

6.
$$2\sqrt{11}$$

7.
$$6\sqrt{11}$$

8.
$$\left(\frac{1}{\sqrt{11}}, -\frac{1}{\sqrt{11}}, 0, \frac{3}{\sqrt{11}}\right)$$

9.
$$\sqrt{31}$$

10.
$$(-10, 10, 0, -30)$$

11.
$$2\sqrt{47}$$

13. \mathbf{u}_1 and \mathbf{u}_3 ; \mathbf{u}_2 and \mathbf{u}_3 ; \mathbf{u}_2 and \mathbf{u}_4 ; \mathbf{u}_3 and \mathbf{u}_4 .

16.
$$\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, 0, \frac{5}{6}\right)$$

17.
$$\left(\frac{2}{\sqrt{31}}, \frac{1}{\sqrt{31}}, -\frac{1}{\sqrt{31}}, 0, \frac{3}{\sqrt{31}}, \frac{4}{\sqrt{31}}\right)$$

18.
$$x_1 - x_3 + x_5 = c$$
 for any real c

19.
$$-2x_1 - x_2 + x_4 = c$$
 for any real c

20.
$$\mathbf{x}(t) = (1-t)(2,1,0,3,1) + t(1,-1,3,0,5)$$

and $\mathbf{x}(t) = (2,1,0,3,1) + t(-1,-2,3,-3,4)$
and $x_1 = 2 - t, x_2 = 1 - 2t, x_3 = 3t, x_4 = 3 - 3t, x_5 = 1 + 4t$

21.
$$\mathbf{x}(t) = (1-t)(-1,0,3,2) + t(-1,0,4,5)$$
 and $\mathbf{x}(t) = (-1,0,3,2) + t(0,0,1,3)$ and $x_1 = -1, x_2 = 0, x_3 = 3 + t, x_4 = 2 + 3t$

22.
$$(1,2,-1,3) \bullet (\mathbf{x} - (-2,1,4,0)) = 0$$
 and $x_1 + 2x_2 - x_3 + 3x_4 = -4$.

23.
$$(1,-1,1,-1,1) \bullet (\mathbf{x} - (3,4,5,6,7)) = 0$$
 and $x_1 - x_2 + x_3 - x_4 + x_5 = 5$.

24.
$$(2, -3, 0, 1, -1) \bullet (\mathbf{x} - (1, 0, 0, 0, 0)) = 0$$

25.
$$(2, -3, 0, 1, -1, 0) \bullet (\mathbf{x} - (1, 0, 0, 0, 0, 0)) = 0$$

Section 2.2

Problems assigned as 2.2 homework:

- 1. Linear
- 3. Not linear
- 5. Not linear

- 15. x = 1 + 4t, y = t, for any real t

- 2. Not linear
- 4. Linear
- 6. Not linear

See Section 2.3 Answers for answers to 2.2 problems assigned as 2.3 homework

Section 2.3

Problems assigned from 2.3:

1.
$$\begin{bmatrix} 2 & -3 & 1 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & -4 & 1 & -1 \end{bmatrix}$$

1.
$$\begin{bmatrix} 2 & -3 & 1 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & -4 & 1 & -1 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 1 & 1 & -1 & 0 & 3 \\ 0 & 1 & 1 & -1 & 0 \\ -1 & 0 & 1 & -1 & 1 \end{bmatrix}$$
 3.
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$

$$3. \quad \left[\begin{array}{ccc|c} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{array} \right]$$

$$4. \quad \left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

$$\begin{array}{c}
 x_1 = -s \\
 x_2 = s \\
 x_3 = s \\
 \text{for any real } s
 \end{array}$$

15.
$$x_2 = s$$

$$x_3 = t$$
for any real s and t

 $x_1 = 4 - 2s - 3t$

$$\begin{array}{c}
 x_1 = 0 \\
 x_2 = 1 \\
 x_3 = t \\
 \text{for any real } t
 \end{array}$$

$$x_1 = 1 + 2s$$
17.
$$x_2 = s$$
for any real s

19.
$$x_1 = -\frac{3}{4} \\ x_2 = -\frac{5}{4} \\ x_3 = \frac{13}{4}$$

21.
$$x_1 = 2s$$

$$x_2 = \frac{5s-1}{3}$$

$$x_3 = s$$
for any real s

$$x_1 = \frac{5s}{7}$$

$$x_2 = \frac{s}{7}$$

$$24. \quad x_3 = -\frac{10s}{7}$$

$$x_4 = s$$
for any real s

$$u = \frac{1}{2} + s$$

$$v = 1 + 2s - t$$
25.
$$w = s$$

$$z = t$$
for any real s and t

$$x_1 = -1 + s$$

$$x_2 = -\frac{1}{3}$$
26.
$$x_3 = \frac{4}{3} - s$$

$$x_4 = s$$
for any real s

37. infinite: no value of
$$k$$
 no solution: $k = 2$

Problems assigned from 2.2:

19. point

20. no intersection

21. line

22. plane

23. When c = -1 the solutions are x = t, y = 2t, z = t for any real t.

24. No solution when $k \neq 1$.

Section 3.1

1.
$$\begin{bmatrix} -1 & 4 & -1 \\ 5 & 0 & 5 \\ -1 & 1 & -1 \end{bmatrix}$$

$$2. \quad \begin{bmatrix} -1 & -4 & 3 \\ -1 & -2 & 1 \\ 1 & 1 & -3 \end{bmatrix}$$

$$3. \quad \left[\begin{array}{rrr} -2 & -12 & 8 \\ -5 & -5 & 0 \\ 3 & 2 & -7 \end{array} \right]$$

$$4. \quad \left[\begin{array}{ccc} 0 & 0 & 1 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{array} \right]$$

5.
$$\begin{bmatrix} -1 - \lambda & 0 & 1 \\ 2 & -1 - \lambda & 3 \\ 0 & 1 & -2 - \lambda \end{bmatrix}$$
 6.
$$\begin{bmatrix} -1 & 4\lambda & 1 - 2\lambda \\ 2 + 3\lambda & -1 + \lambda & 3 + 2\lambda \\ -\lambda & 1 & -2 + \lambda \end{bmatrix}$$

6.
$$\begin{bmatrix} -1 & 4\lambda & 1 - 2\lambda \\ 2 + 3\lambda & -1 + \lambda & 3 + 2\lambda \\ -\lambda & 1 & -2 + \lambda \end{bmatrix}$$

$$7. \quad \left[\begin{array}{rrr} -1 & 2 & 0 \\ 0 & -1 & 1 \\ 1 & 3 & -2 \end{array} \right]$$

$$8. \quad \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$9. \quad \begin{bmatrix} -1 & -4 & 3 \\ -6 & 7 & -3 \\ 5 & 1 & 0 \end{bmatrix}$$

10.
$$\begin{bmatrix} -1 & -6 & 5 \\ -4 & 7 & 1 \\ 3 & -3 & 0 \end{bmatrix}$$

11.
$$\begin{bmatrix} -1 & -6 & 5 \\ -4 & 7 & 1 \\ 3 & -3 & 0 \end{bmatrix}$$

12.
$$\begin{bmatrix} 8 & -1 & 1 \\ -6 & 1 & 1 \\ 16 & 2 & -3 \end{bmatrix}$$

13.
$$\left[\begin{array}{cc} 2 & 1 \\ -1 & 0 \\ \frac{1}{2} & -2 \end{array} \right]$$

$$14. \quad (A^T)^T = A$$

17.
$$AB = \begin{bmatrix} 7 & -1 & 1 \\ 0 & -4 & -2 \\ 6 & -6 & 0 \end{bmatrix}$$
 and $BA = \begin{bmatrix} -1 & 2 & 4 \\ 5 & 6 & -1 \\ 6 & 4 & -2 \end{bmatrix}$

and
$$BA = \begin{bmatrix} -1 & 2 & 4 \\ 5 & 6 & -1 \\ 6 & 4 & -2 \end{bmatrix}$$

18.
$$AB = \begin{bmatrix} -3 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and
$$BA = [-3]$$

19. AB and BA are not defined

20.
$$AB = \begin{bmatrix} 3 & 2 & 1 \\ 14 & 36 & -22 \end{bmatrix}$$

BA is not defined

21.
$$AB = A$$

but BA is not defined

$$22.$$
 AB is not defined

and BA is the 4×3 zero matrix

23.
$$\begin{bmatrix} -9 & 1 & 8 \\ -2 & -3 & -10 \end{bmatrix}$$
 24. $\begin{bmatrix} \frac{15}{2} & 6 \\ 15 & \frac{27}{4} \end{bmatrix}$

25.
$$A^2 = \begin{bmatrix} 2 & -3 \\ -3 & 5 \end{bmatrix}$$
 and $A^3 = \begin{bmatrix} 5 & -8 \\ -8 & 13 \end{bmatrix}$

26.
$$A^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$
 and $A^3 = \begin{bmatrix} 37 & 54 \\ 81 & 118 \end{bmatrix}$

27.
$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 10 & 4 & 1 \end{bmatrix}$$
 and $A^3 = \begin{bmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 21 & 6 & 1 \end{bmatrix}$

35.
$$A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
 36. $A^n = 2^{n-1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

37. Any 2×2 matrix A, which is not the 2×2 identity matrix I, and which does have the property that $A^2 = I$, is a correct answer. The easiest one to find is A = -I. All of the others have the main diagonal entries summing to 0. Here are some other possible answers:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{or } A = \begin{bmatrix} -1 & 0 \\ 4 & 1 \end{bmatrix} \quad \text{or } A = \begin{bmatrix} -5 & -8 \\ 3 & 5 \end{bmatrix}$$

38. Any 2×2 matrix A, which is not the 2×2 identity matrix I and also not the 2×2 zero matrix, and which does have the property that $A^2 = A$, is a correct answer. All of the possibilities have the main diagonal entries summing to 1. Here are a few of the possibilities:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{or } A = \begin{bmatrix} 2/5 & 1/5 \\ 6/5 & 3/5 \end{bmatrix} \quad \text{or } A = \begin{bmatrix} 5 & 40 \\ -1/2 & -4 \end{bmatrix}$$

Section 3.2

1.
$$\begin{bmatrix} 1 & -1 & 3 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 2.
$$\begin{bmatrix} 2 & -3 & 0 & 1 \\ 0 & 1 & -1 & 3 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$$

5 through 7: In each case, AB = I, so A and B are inverses of one another.

9.
$$\begin{bmatrix} \frac{1}{2} & 0 \\ \frac{3}{2} & 1 \end{bmatrix}$$
 10.
$$\begin{bmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
 11.
$$\begin{bmatrix} 1 & -2 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

12. Not invertible 13.
$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$
 14.
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{5}{2} & \frac{1}{2} & 1 \end{bmatrix}$$

19.
$$\begin{bmatrix} -3 \\ -8 \end{bmatrix}$$
 21. $\frac{1}{2} \begin{bmatrix} 7 \\ -3 \\ -3 \end{bmatrix}$ 23. $\begin{bmatrix} 12 \\ 7 \end{bmatrix}$ 25. $\begin{bmatrix} 4 \\ -4 \\ -3 \end{bmatrix}$

30.
$$\begin{bmatrix} \frac{2}{7} & \frac{1}{7} \\ -\frac{1}{14} & \frac{3}{14} \end{bmatrix}$$
 31.
$$\begin{bmatrix} 1 & \frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix}$$

Section 3.3

- 1. Homogeneous
- 2. Nonhomogeneous
- 3. 2 4. 2 5. 3 6. 3
- 9. False 10. False 11. True
- 12. True 13. False 14. True
- 15. Infinitely many solutions.
- 16. No solutions, or infinitely many solutions.
- 17. One solution, or infinitely many solutions.
- 18. No solutions, one solution or infinitely many solutions.
- 21. (a) No solutions when x = 0 and $y \neq 0$.
 - (b) If $x \neq 0$, there is a unique solution for any real value of y.
 - (c) If x = y = 0, there are infinitely many solutions.

Section 4.1

- 1. 3,1-minor is -7; 3,1-cofactor is -7; 3,2-minor is -1; 3,2-cofactor is 1.
- 2. 2,2-minor is -8; 2,2-cofactor is -8; 2,3-minor is -6; 2,3-cofactor is 6.

3. 3

4. -5

5. -5

6. 0

7. 15

8. 10

9. 0

10. 51

11. 120

12. 0

13. a^3

14. k(ad - bc)

15. $k^2(ad - bc)$

16. $\lambda^2 - 3\lambda - 10$ 17. $t^2 - 3t + 3$

18. 24

19. -8

20. -15

21. 0

22. 0

27.
$$x = -1$$
 or 3

28. x = 0 or 2 or 3

- $29.\ a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}$
- 34. 24

Section 4.2

1. 2

2. 6

3. -24

4. 0

5. $-\frac{1}{720}$ 6. $\frac{(.02)(.03)(.01)[(1)(7)(27)]}{=.001134}$

7. -x(x+1)(2x-1) 8. $(t-3)(t^2-t-8)$ 9. $-(\lambda-1)(\lambda-2)(\lambda+1)(\lambda+2)$

- 10. Only the matrix in question 4 is not invertible; the matrices in 1, 2, 3, 5 and 6 are all invertible.
- 11. The matrix in 7 is invertible for any $x \neq -1, 0, \frac{1}{2}$. The matrix in 8 is invertible for any $t \neq 3$ and $t \neq \frac{1 \pm \sqrt{33}}{2}$. The matrix in 9 is invertible for any $\lambda \neq \pm 1, \pm 2$.

13. Has a unique solution

14. Does not have a unique solution

Does not have a unique solution

16. Has a unique solution

17.
$$\det(A^T) = 4$$
; $\det(2A) = 32$

19. Appropriate row-reduction produces a matrix with a row of only 0's.

Section 4.3

1.
$$x = 1, y = -1$$

3. Cramer's Rule cannot be used.

5.
$$x = \frac{3}{5}, y = \frac{3}{2}, z = \frac{17}{10}$$

7.
$$w = 0, x = 2, y = 1, z = -1$$

9. Adj
$$A = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$$
;

9. Adj
$$A = \begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$$
;
$$A^{-1} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ \frac{3}{10} & \frac{1}{10} \end{bmatrix}$$

11. Adj
$$A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$
; $A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

13. Adj
$$A = \begin{bmatrix} -27 & 9 & 9 \\ 18 & -6 & -6 \\ 9 & -3 & -3 \end{bmatrix}$$
; A has no inverse