Math 55a, Assignment #8, November 7, 2003

Notations. \mathbb{R} is the field of all real numbers. \mathbb{C} is the field of all complex numbers. \mathbb{N} denotes the set of all natural numbers (i.e., all positive integers). For a field \mathbb{F} and \mathbb{F} -vector spaces V and W, $\operatorname{Hom}_{\mathbb{F}}(V, W)$ denotes the set of all \mathbb{F} -linear maps from V to W and $\operatorname{End}_{\mathbb{F}}(V)$ denotes the set of all \mathbb{F} -linear maps from V to itself. For $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$, $\operatorname{Ker} T$ denotes the null space (i.e. the kernel) of T and $\operatorname{Im} T$ denotes the range (i.e. the image) of T. The identity map of A is denoted by id_A . The ring of all polynomials in a single variable X with coefficients in \mathbb{F} is denoted by $\mathbb{F}[X]$.

Problem 1. (Problems 5 and 6 on Page 94 of Axler's book) Let $S \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}^2)$ be defined by S(w,z)=(z,w) for $z,w\in\mathbb{C}$. Let $T\in\operatorname{End}_{\mathbb{C}}(\mathbb{C}^3)$ be defined by $T(z_1,z_2,z_3)=(2z_2,0,5z_3)$ for $z_1,z_2,z_3\in\mathbb{C}$. Find all the eigenvalues and eigenvectors of S and T.

Problem 2. (Problem 4 on Page 158 of Axler's book) Let \mathbb{F} be either \mathbb{R} or \mathbb{C} . Let V be an \mathbb{F} -vector space of positive finite dimension with an inner product. Suppose $P \in \operatorname{End}_{\mathbb{F}}(V)$ such that $P^2 = P$. Show that P is an orthogonal projection if and only if P is self-adjoint.

Problem 3. (Problem 14 on Page 159 of Axler's book) Let \mathbb{F} be either \mathbb{R} or \mathbb{C} . Let V be an \mathbb{F} -vector space of positive finite dimension with an inner product. Suppose $T \in \operatorname{End}_{\mathbb{F}}(V)$ is self-adjoint. Let $\lambda \in \mathbb{F}$ and $\varepsilon > 0$. Prove that if there exists $v \in V$ such that ||v|| = 1 and $||Tv - \lambda v|| < \varepsilon$, then T has an eigenvalue λ' such that $||\lambda - \lambda'|| < \varepsilon$.

Problem 4. (Inner product of the underlying \mathbb{R} -vector space structure of a \mathbb{C} -vector space) Let V be an \mathbb{R} -vector space of finite positive dimension with an \mathbb{R} -basis e_1, \dots, e_n so that $V = \mathbb{R}e_1 \oplus \dots \oplus \mathbb{R}e_n$. Let $\tilde{V} = V \otimes_{\mathbb{R}} \mathbb{C}$ and we identify \tilde{V} with $\mathbb{C}e_1 \oplus \dots \oplus \mathbb{C}e_n$. For $v = \sum_{j=1}^n a_j e_j \in \tilde{V}$ use \bar{v} to denote $\sum_{j=1}^n \bar{a}_j e_j$, where \bar{a}_j is the complex-conjugate of a_j . For a subset A of \tilde{V} let \bar{A} denote the set of all \bar{v} for $v \in A$.

Let g(u,v) be an \mathbb{R} -bilinear function on $V \times V$ which defines an inner product of the \mathbb{R} -vector space V. Let $\tilde{g}(u,v)$ be the \mathbb{C} -bilinear function on $\tilde{V} \times \tilde{V}$ which is the extension of g(u,v). In other words, $\tilde{g}(u,v)$ is \mathbb{C} -linear in $u \in \tilde{V}$ for fixed $v \in \tilde{V}$ and is \mathbb{C} -linear in $v \in \tilde{V}$ for fixed $u \in \tilde{V}$ and $\tilde{g}(u,v) = g(u,v)$ when both u and v are in the subset $V = \mathbb{R}e_1 \oplus \cdots \oplus \mathbb{R}e_n$ of $\tilde{V} = \mathbb{C}e_1 \oplus \cdots \oplus \mathbb{C}e_n$.

Now assume that there exists some $J \in \operatorname{End}_{\mathbb{R}}(V)$ with $J^2 = -\operatorname{id}_V$ so that V can be regarded as a \mathbb{C} -vector space where multiplication of an element v of V by $\sqrt{-1}$ yields Jv. Let $\tilde{J} \in \operatorname{End}_{\mathbb{C}}\left(\tilde{V}\right)$ be the \mathbb{C} -linear extension of J. Denote the \mathbb{C} -vector subspace

$$\operatorname{Ker}\left(\tilde{J}-\sqrt{-1}\operatorname{id}_{\tilde{V}}\right)=\left(J+\sqrt{-1}\operatorname{id}_{\tilde{V}}\right)\tilde{V}$$

by W_1 and denote the \mathbb{C} -vector subspace

$$\operatorname{Ker}\left(\tilde{J} + \sqrt{-1}\operatorname{id}_{\tilde{V}}\right) = \left(J - \sqrt{-1}\operatorname{id}_{\tilde{V}}\right)\tilde{V}$$

by W_2 so that $\tilde{V} = W_1 \oplus W_2$ and $\overline{W_1} = W_2$. Let $\tilde{g}_{jk} : W_j \times W_k \to \mathbb{C}$ for $1 \leq j, k \leq 2$ be the restriction of $\tilde{g} : \tilde{V} \times \tilde{V} \to \mathbb{C}$. Let $h_1 : W_1 \times W_1 \to \mathbb{C}$ be defined by $h_1(u,v) = \tilde{g}_{12}(u,\bar{v})$ for $u,v \in W_1$. Let $h_2 : W_2 \times W_2 \to \mathbb{C}$ be defined by $h_1(u,v) = \tilde{g}_{21}(u,\bar{v})$ for $u,v \in W_2$.

Show that $g: V \times V \to \mathbb{R}$ satisfies g(Jv, Jv) = g(v, v) for all $v \in V$ if and only if the following four conditions hold.

- (i) $g_{11}: W_1 \times W_1 \to \mathbb{C}$ is the zero map.
- (ii) $g_{22}: W_2 \times W_2 \to \mathbb{C}$ is the zero map.
- (iii) $h_1: W_1 \times W_1 \to \mathbb{C}$ defines an inner product of the \mathbb{C} -vector space W_1 .
- (iv) $h_2: W_2 \times W_2 \to \mathbb{C}$ defines an inner product of the \mathbb{C} -vector space W_2 .

Moreover, show that in such a case

$$g(w + \bar{w}, w + \bar{w}) = 2h_1(w, w) = 2h_2(\bar{w}, \bar{w})$$
 for $w \in W_1$.

(*Hint*: consider the action of \tilde{J} on W_j from the definition of W_j for j=1,2 and express g(u,v) as a linear combination of $g(w_k,w_k)$ for some suitable elements w_k of V with some universal constants as coefficients.)

Problem 5. (Minimal polynomials and direct sum decompositions) Let V be a vector space over a field \mathbb{F} of positive finite dimension n. Let $T \in \operatorname{End}_{\mathbb{F}}(V)$ be non identically zero. For a subset A of V a polynomial $P(X) \in \mathbb{F}[X]$ is called an annihilating polynomial for T on A if P(T)v = 0 for every $v \in A$. When A consists of a single nonzero $v \in V$, we say that P(X) is an annihilating polynomial for T at v if P(T)v = 0.

- (a) Show that there is a nonzero annihilating polynomial for T on all of V. (i.e., there exists a nonzero polynomial $P(X) \in \mathbb{F}[X]$ such that P(T)V = 0). (Hint: for some nonzero element v of V consider the infinite sequence T^kv for $k \in \mathbb{N}$. Use the finite dimensionality of V and induction on the dimension of V and quotient vector spaces.)
- (b) Let \mathcal{P} be the set of all annihilating polynomials for T on A. Show that there is, uniquely up to multiplication by a nonzero element of \mathbb{F} , an element Q(X) of \mathcal{P} which divides every element of \mathcal{P} . We call Q(X) a minimal annihilating polynomial for T on A.
- (c) For a nonzero $v \in V$, let W be the smallest \mathbb{F} -vector subspace of V such that $v \in W$ and $TW \subset W$. Let Q(X) be a minimal annihilating polynomial for T at v. Show that the degree of Q(X) is no more than the dimension of W over \mathbb{F} . (*Hint:* apply the linear dependence lemma to $v, Tv, T^2v, T^3v \cdots$.)
- (d) Show that the degree of a minimal annihilating polynomial for T on all of V is no more than n. (*Hint*: use Part (c) and quotient vector spaces.)
- (e) Let $P(X) \in \mathbb{F}[X]$ be a minimal annihilating polynomial for T on all of V. Let

$$P(X) = (P_1(X))^{k_1} (P_2(X))^{k_2} \cdots (P_{\ell}(X))^{k_{\ell}}$$

be a factorization into products of irreducible polynomials

$$P_1(X), P_2(X), \cdots, P_{\ell}(X) \in \mathbb{F}[X]$$

with $k_j \in \mathbb{N}$ for $1 \leq j \leq \ell$. For $1 \leq j \leq \ell$ let W_j be the set of all $v \in V$ such that $(P_j(T))^{k_j} v = 0$. Show that

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_\ell$$

and each W_j is nonzero for $1 \leq j \leq \ell$ and, as a matter of fact, $(P_j(T))^k W_j \neq \{0\}$ for $0 \leq k < k_j$.

Problem 6. (Finite dimensional analogue of Hodge decomposition) Let U, V, and W be three \mathbb{C} -vector spaces of positive finite dimension with inner products $\langle \cdot, \cdot \rangle_U$, $\langle \cdot, \cdot \rangle_V$, and $\langle \cdot, \cdot \rangle_W$ respectively. Let $T \in \operatorname{Hom}_{\mathbb{C}}(U, V)$ and

 $S \in \operatorname{Hom}_{\mathbb{C}}(V,W)$ such that ST=0 as an element of $\operatorname{Hom}_{\mathbb{C}}(U,W)$. Consider the element SS^*+T^*T of $\operatorname{End}_{\mathbb{C}}(V)$, where $S^*\in \operatorname{Hom}_{\mathbb{C}}(V,U)$ and $T^*\in \operatorname{Hom}_{\mathbb{C}}(W,V)$ are respectively the adjoints of S and T with respect to the inner products $\langle\cdot,\cdot\rangle_U,\,\langle\cdot,\cdot\rangle_V,$ and $\langle\cdot,\cdot\rangle_W$. Let $H=\operatorname{Ker}(SS^*+T^*T)$ be the \mathbb{C} -vector subspace of V which is the null space of SS^*+T^*T .

- (a) Show that the inclusion map $H\to V$ induces a well-defined $\mathbb C$ -linear map from H to $\operatorname{Ker} T/\operatorname{Im} S$ which is an isomorphism.
- (b) Show that $V = H \oplus \operatorname{Im} S \oplus \operatorname{Im} T^*$ and that the three \mathbb{C} -vector subspaces H, $\operatorname{Im} S$, and $\operatorname{Im} T^*$ of V are mutually orthogonal with respect the inner product $\langle \cdot, \cdot \rangle_V$ of V.