Colle 3 : Réduction (1) exercices groupe C MPI(*) Faidherbe

 $\begin{array}{c} {\rm BURGHGRAEVE~Marc} \\ {\rm GERY~Julien} \end{array}$

 $27\ {\rm Octobre}\ 2024$

Exercices de référence, groupe C uniquement (souvent non faits en classe, à chercher seuls)

Exercice 14: (Mines MP 2023)

On considère ϕ telle que pour $P \in \mathbb{R}_n[X]$, $\phi(P) = X^n P\left(\frac{1}{X}\right)$.

- 1. Montrer que ϕ est un endomorphisme. **réponse :** exo. N'oubliez juste pas de vérifier que l'image est aussi dans $\mathbb{R}_n[X]$.
- 2. Montrer de plusieurs manières que ϕ est diagonalisable. **reponse :** : Donnons la matrice canoniquement associée à ϕ : soit k $\in [0; n]$.

$$\phi(X^k) = X^n \frac{1}{X^k} = X^{n-k}$$

Ainsi, la matrice de ϕ est:

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix} = A$$

Cette matrice est diagonalisable car :

- elle est symétrique réelle,
- son polynôme annulateur $X^2 1 = (X+1)(X-1)$ est scindé simple.
- 3. Expliciter une base de vecteurs propres.

Réponse: On va donner une base des sous espace propres:

$$A - I_n = \begin{pmatrix} -1 & 0 & \cdots & 0 & 1\\ 0 & -1 & \cdots & 1 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 1 & \cdots & -1 & 0\\ 1 & 0 & \cdots & 0 & -1 \end{pmatrix}$$

On pose $m = \lfloor \frac{(n+1)}{2} \rfloor$. On vois que pour tout $k \in [1; m]$, $e_k + e_{n+1-k} \in ker(A - I_n)$

en particulier, si n est impair alors $e_{\frac{n+1}{2}} \in Ker(A-I_n)$

Ainsi, $Vect(e_1+e_n, e_2+e_{n-1}, \cdots, e_m+e_{n+1-m})$ est une base de $E_1(\phi)$.

$$A + I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 0 & 1 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

On pose $m = \lfloor \frac{n}{2} \rfloor$. On remarque que pour tout $k \in [1, m]$, $e_k - e_{n+1-k} \in ker(A + I_n)$

Ainsi, $Vect(e_1-e_n, e_2-e_{n-1}, \dots, e_m-e_{n+1-m})$ est une base de $E_{-1}(A)$ La matrice de ϕ dans une telle base est:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & -1 \end{pmatrix}$$

Exercice 15: (Mines MP 2022)

Un endomorphisme f est dit cyclique dans E tel que dim E=n, si :

$$\exists x_0 \in E : \text{Vect}(x_0, f(x_0), \dots, f^{n-1}(x_0)) = E.$$

1. Soit q un endomorphisme tel que sa matrice dans \mathbb{R}^3 soit :

$$G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -11 & 10 & 6 \end{pmatrix}$$

Montrer que g est cyclique et diagonalisable.

Réponse : En prenant $x_0 = (1,0,0)^T$, on a bien $f(x_0) = (0,1,0)^T$, $f^2(x_0) = (0,0,1)^T$, donc G est cyclique. G est de plus diagonalisable car son polynôme caractéristique $(X_3)(X-2)(X-1)$ est scindé simple.

2. Un endomorphisme f cyclique est-il toujours diagonalisable?

 ${\bf R\'eponse}$: Il suffit de prendre la matrice :

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

avec $x_0 = (1,0,\dots,0)^T$ l'endomorphisme associé est bien cyclique mais non diagonalisable.

3. Soit f un endomorphisme diagonalisable de valeurs propres distinctes deux à deux. Est-il cyclique ?

Réponse : Considérons donc (e_1,\ldots,e_n) (pas forcément la base canonique) tels qu'on ai $u(e_i)=\lambda_i e_i$ et les λ_i distincts deux à deux. Considérons .

$$x = e_1 + \dots + e_n \text{ alors}$$

$$u(x) = \lambda_1 e_1 + \dots + \lambda_n e_n$$

$$\vdots$$

$$u^{n-1}(x) = \lambda_1^{n-1} e_1 + \dots + \lambda_n^{n-1} e_n$$

Montrons que ces n vecteurs sont libres (et donc qu'ils forment une base) : La matrice associée à ces n vecteurs colonnes est la suivante :

$$\begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-2} & \lambda_1^{n-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{n-2} & \lambda_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \lambda_{n-1} & \cdots & \lambda_{n-1}^{n-2} & \lambda_{n-1}^{n-1} \\ 1 & \lambda_n & \cdots & \lambda_n^{n-2} & \lambda_n^{n-1} \end{pmatrix}$$

Le déterminant de cette matrice est non nul car on a une matrice de vandermonde et les λ_i sont deux à deux distincts : la famille est donc libre, c'est une base.

4. Soit f un endomorphisme diagonalisable et cyclique. Ses valeurs propres sont-elles distinctes deux à deux ?

Réponse : Soit (e_1, \ldots, e_n) une base de vecteurs propres tels qu'on ait $u(e_1) = \lambda_i e_i$ et on souhaite donc montrer que les λ_i sont distincts deux à deux. Puisque f est cyclique, il existe $\alpha_1, \ldots, \alpha_n$ tel qu'on ait $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$ et que $(x, u(x), \ldots, u^{n-1}(x))$ soit une base de E. Cela signifie que le déterminant de la matrice associée à cette base est non nul : ie

$$\begin{vmatrix} \alpha_1 & \alpha_1\lambda_1 & \cdots & \alpha_1\lambda_1^{n-2} & \alpha_1\lambda_1^{n-1} \\ \alpha_2 & \alpha_2\lambda_2 & \cdots & \alpha_2\lambda_2^{n-2} & \alpha_2\lambda_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{n-1} & \alpha_{n-1}\lambda_{n-1} & \cdots & \alpha_{n-1}\lambda_{n-1}^{n-2} & \alpha_{n-1}\lambda_{n-1}^{n-1} \\ \alpha_n & \alpha_n\lambda_n & \cdots & \alpha_n\lambda_n^{n-2} & \alpha_n\lambda_n^{n-1} \end{vmatrix} \neq 0 = \alpha_1 \dots \alpha_n VDM(\lambda_1, \dots, \lambda_{n-1})$$

Ce qui signifie que les λ_i sont deux à deux distincts.

Exercice 16: (Mines MP 2022)

Soit E un C-espace vectoriel, et f un endomorphisme de E. On suppose qu'il existe P polynôme annulateur de f vérifiant : P(0) = 0 et $P'(0) \neq 0$.

1. Montrer que $\ker f$ et $\operatorname{Im} f$ sont supplémentaires.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve : Après avoir écrit P = XQ, remarquer que X et Q sont premiers entre eux.

Réponse : On note donc P=XQ, où X et Q sont premiers entre eux. P est l'annulateur de f, donc d'après le lemme des noyaux : $E=Ker(P(f))=Ker(X(f))\bigoplus ker(Q(f))=ker(f)\bigoplus ker(Q(f))$ Posons $F=\ker(Q(f))$. Il s'agit donc de montrer que F=Im(f). Notons $Q(X)=\sum_{k=0}^n a_k X^k$. Ainsi $a_0\neq 0$ car 0 n'est pas racine de Q. Soit $y\in F$.

$$Q(f)(y) = 0.$$

$$\iff a_0 y + \sum_{k=1}^n a_k f^k(y) = 0$$

$$\iff y = -\sum_{k=1}^n \frac{a_k}{a_0} f^k(y).$$

$$\iff y = f\left(-\frac{a_1}{a_0} y - \frac{a_2}{a_0} f(y) - \dots - \frac{a_n}{a_0} f^{n-1}(y)\right).$$

Ainsi, y s'écrit f(quelque chose), donc $y \in \text{Im}(f)$, d'où $F = \ker(Q(f)) \subset \text{Im}(f)$.

Réciproquement Soit $y \in Im(f)$. $\exists x \in E$ tel que f(x) = y. Donc

$$Q(y) = Q(f(x)) = \sum_{k=0}^{n} a_k f^k(f(x)) = \sum_{k=0}^{n} a_k f^{k+1}(x)$$

Notons $x = x_1 + x_2$ ou $x_1 \in ker(f)$ et $x_2 \in F$. Ainsin

$$Q(y) = \sum_{k=0}^{n} a_k f^{k+1}(x_1 + x_2)$$

$$= \sum_{k=0}^{n} a_k f^{k+1}(x_1) + \sum_{k=0}^{n} a_k f^{k+1}(x_2)$$

$$= 0 + \sum_{k=0}^{n} a_k f^{k+1}(x_2)$$

$$= f(\sum_{k=0}^{n} a_k f^k(x_2))$$

$$= f(Q(x_2))$$

$$= 0$$

Donc $y \in ker(Q(f))$ D'où F = Ker(Q(f)) = Im(f) donc finalement on a bien $E = ker(f) \bigoplus Im(f)$.

Exercice 17 : (Mines MP 2022) (15 min de préparation, 15 min de passage)

Soit $a \in]0,1]$ et $b \in \mathbb{R}$. On définit une suite $(u_n)_{n \in \mathbb{N}}$ par récurrence par :

$$\begin{cases} u_0 \in \mathbb{R}, \\ \forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b \end{cases}$$

1. Étudier la convergence de la suite.

Réponse : On a (étude de point fixe r puis étude de $u_n - r$), $\forall n \in \mathbb{N}, u_n = a^n u_0 + b \frac{1-a^n}{1-a}$ donc $u_n \underset{n \to +\infty}{\longrightarrow} \frac{b}{1-a}$

2. On considère E le $\mathbb R$ espace vectoriel des fonctions C^∞ de $\mathbb R$ dans $\mathbb R$ et ϕ l'application telle que :

$$\forall f \in E, \, \forall x \in \mathbb{R}, \quad \phi(f)(x) = f(ax + b)$$

(a) Montrer que ϕ est un endomorphisme de E. **Réponse :** exo.

(b) Montrer que ϕ est bijective.

Réponse : injectivité : Soit f telle que $\phi(f) = \tilde{0}$. Alors $\forall y \in \mathbb{R}$, $f(a(\frac{y-b}{a})+b)=0=f(y)$. donc f est nulle, d'où l'injectivité de ϕ . Surjectivité : soit g, posons $\tilde{g}: x \to g(\frac{x-b}{a})$. alors $\forall x \in \mathbb{R}$, $\phi(\tilde{g})(x) = \tilde{g}(ax+b)=g(x)$ d'où la bijectivité de ϕ .

- (c) Soit λ une valeur propre de ϕ différente de 1 et f_λ un vecteur propre associé.
 - (i) Montrer que $f_{\lambda}\left(\frac{b}{1-a}\right) = 0$ et que $\lambda \in]-1,1[\setminus \{0\}]$. **Réponse :** En évaluant $\phi(f_{\lambda})$ en $x = \frac{b}{1-a}$ on trouve que $f_{\lambda}(\frac{b}{1-a}) = \lambda f_{\lambda}(\frac{b}{1-a})$ d'où $f_{\lambda}(\frac{b}{1-a}) = 0$ car $\lambda \neq 1$. Alors $\forall n, f_{\lambda}(u_{n+1}) = \lambda f_{\lambda}(u_n)$ donc par récurrence immédiate $f_{\lambda}(u_n) = \lambda^n f(u_0)$. Puisque f est continue, on en déduit que $\lambda^n f(u_0) \xrightarrow[n \to +\infty]{} 0$ donc $|\lambda| < 1$ et

lambda non nul car f est injective.

- (ii) Montrer que f'_{λ} est aussi un vecteur propre. **Réponse :** il suffit de dériver. la valeur propre associée est $\frac{\lambda}{a}$.
- (d) Déterminer les vecteurs propres de ϕ .

Réponse : On a donc, par une récurrence immédiate, que pour tout $n \in \mathbb{N}$, $f_{\lambda}^{(n)}$ est un vecteur propre de valeur propre $\frac{\lambda}{a^n}$. Or, une valeur propre doit appartenir à $]-1,1]\setminus\{0\}$. Or, $\frac{\lambda}{a^n}\to\infty$, donc $f_{\lambda}^{(n)}$ doit être nulle pour n assez grand.

Notons $r \in \mathbb{N}$ tel que $\frac{\lambda}{a^r} \in]-1,1] \setminus \{0\}$ et que $\frac{\lambda}{a^{r+1}} \notin]-1,1] \setminus \{0\}$. Ainsi, $f^{(r+1)}$ est la fonction nulle. En utilisant la formule de Taylor avec reste intégral :

$$f_{\lambda}(x) = f_{\lambda}(\frac{b}{1-a}) + f_{\lambda}'(\frac{b}{1-a})(x - \frac{b}{1-a}) + \frac{f_{\lambda}''(\frac{b}{1-a})}{2!}(x - \frac{b}{1-a})^2 + \dots$$
$$+ \frac{f_{\lambda}^{(r)}(\frac{b}{1-a})}{r!}(x - \frac{b}{1-a})^r + \int_{\frac{b}{1-a}}^x \frac{f_{\lambda}^{(r+1)}(t)}{r!}(x - t)^r dt$$
$$= \frac{f_{\lambda}^{(r)}(\frac{b}{1-a})}{r!}(x - \frac{b}{1-a})^r$$

Posons $c=\frac{f_{\lambda}^{(r)}\left(\frac{b}{1-a}\right)}{r!}$. Si $f_{\lambda}^{(r)}$ est un vecteur propre d'une valeur propre différente de 1, alors c=0 (ce qui est exclu, car sinon f_{λ} serait la fonction nulle). Donc, $f_{\lambda}^{(r)}$ est un vecteur propre de valeur propre 1. Donc, $\frac{\lambda}{a^r}=1$, d'où $\lambda=a^r$. Ainsi, $f_{\lambda}=c\left(x-\frac{b}{1-a}\right)^r$.

(e) Synthèse : Soit
$$c \neq 0$$
. Posons $f(x) = c\left(x - \frac{b}{1-a}\right)^r$. Ainsi,
$$f(ax+b) = c\left(ax + b - \frac{b}{1-a}\right)^r = c\left(ax - \frac{ab}{1-a}\right)^r = ca^r\left(x - \frac{b}{1-a}\right)^r = a^r f(x)$$

Donc f est un vecteur propre de valeur propre a^r .

Pour le dernier exercice, voir programme de colle précédent (qui sera ré-écrit prochainement du a certaines fautes/non-réponses).