Xử lý truy vấn

Vu Tuyet Trinh

trinhvt@soict.hust.edu.vn

Department of Information Systems SoICT-HUST

Xử lý câu hỏi truy vấn

Tối ưu hoá

- Biến đổi biểu thức ĐSQH để tìm 1 biểu thức hiệu quả
- □ Tối ưu dựa trên cấu trúc và nội dung của dữ liêu
- Nâng cao hiệu quả thực hiện câu hỏi trên 1 hay nhiều tiêu chí: thời gian, sử dụng bộ nhớ, ...
- □ Lưu ý:
 - Không nhất thiết phải tìm biểu thức tối ưu nhất
 - Chú ý tới tài nguyên sử dụng cho tối ưu

Kỹ thuật tối ưu hoá

- 2 kỹ thuật chính
 - Tối ưu logic (rewriting)
 - Tối ưu vật lý (access methods)
- Mục đích của các kỹ thuật tối ưu
 - Giảm số bản ghi
 - Giảm kích thước bản ghi
- Ví dụWAGON (NW, TYPE, COND, STATION, CAPACITY, WEIGHT)TRAIN (NT, NW)

Nội dung

- ✓ Giới thiệu chung
- □ Tối ưu logic
- □ Tối ưu vật lý
- Mô hình chi phí

Tối ưu hoá logic

- □ Sử dụng các phép biến đổi tương đương để tìm ra biểu thức ĐSQH tốt
- □ Gồm 2 giai đoạn
 - Biến đổi dựa trên ngữ nghĩa
 - Biến đổi dựa trên tính chất của các phép toán ĐSQH

Tối ưu dựa trên ngữ nghĩa

- Muc đích:
 - Dựa trên các ràng buộc dữ liệu để xác định các biểu thức tương đương
 - Viết lại câu hỏi trên khung nhìn dựa trên các định nghĩa của khung nhìn
- □ Ví dụ

EMPLOYEE (FirstName, LastName, <u>SSN</u>, Birthday, Adrresse, NoDept)

DEPARTEMENT (<u>DNO</u>, DName, SSNManager) PROJECT (<u>PNO</u>, PName, PLocation, DNo)

WORK-IN (ESSN, PNO, Heures)

EMPLOYEE (Name, SSN, Birthday, Adrresse, NoDe

DEPARTEMENT (<u>DNO</u>, DName, SSNManager)
PROJECT (<u>PNO</u>, PName, PLocation, DNo)
WORK-IN (<u>ESSN</u>, NoProj, Heures)

Tên của các nhân viên sinh sau ngày 30/01/70 và làm việc cho dự án

Đồ thị kết nối các quan hệ

Đồ thị kết nối các thuộc tính

Tối ưu dựa trên ngữ nghĩa (2)

- Loại bỏ các đồ thị con không liên kết trong đồ thị kết nối các quan hệ
- Kiểm tra mâu thuẫn trong đồ thị kết nối các thuộc tính
- □ Biến đổi câu hỏi tương đương

Tính chất của phép toán ĐSQH

A ~ tập các thuộc tính, C ~ biểu thức điều kiện

1. Phép chiếu và phép chọn $\Pi_{A}(R) \Rightarrow \Pi_{A}(\Pi_{A1}(R) \text{ nếu A} \subseteq A1$ $\sigma_{C}(R) \Rightarrow \sigma_{C1}(\sigma_{C2}(R)) \text{ nếu C} = C1^{C2}$

2. Tính giao hoán đối với phép chọn và chiếu

$$\begin{array}{lll} \sigma_{\text{C1}}(\sigma_{\text{C2}}^{}(R)) \Rightarrow & \sigma_{\text{C2}}(\sigma_{\text{C1}}^{}(R)) & & \Pi_{\text{A1}}(\sigma_{\text{C2}}^{}(R)) \Rightarrow & \sigma_{\text{C2}}(\Pi_{\text{A1}}^{}(R)) \\ & & & \Pi_{\text{A1}}(\sigma_{\text{C2}}^{}(R)) \Rightarrow & \sigma_{\text{C2}}(\Pi_{\text{A1}}^{}(R)) \\ & & & & & \Pi_{\text{A2}}(\Pi_{\text{A2}}^{}(R)) \Rightarrow & \Pi_{\text{A1}}(\Pi_{\text{A2}}^{}(R)) \Rightarrow & \Pi_{\text{A2}}(\Pi_{\text{A2}}^{}(R)) \Rightarrow & \Pi_{\text{A2}}$$

Tính chất của phép toán ĐSQH (2)

3. Tính giao hoán và kết hợp của các phép toán *,

Tính chất của phép toán ĐSQH (3)

 Tính phân phối σ và Π trên các phép toán *, ∩, ∪, -, X

Nếu C = (CR $^{\circ}$ CS) và nếu Attr(CR) \subseteq R và Attr(CS) \subseteq S thì :

$$\sigma_{C}^{(R *_{JC} S)} \Rightarrow \sigma_{CR}^{(R) *_{JC}} \sigma_{CS}^{(S)}$$

$$\sigma_{C}^{(R X S) \Rightarrow \sigma_{CR}^{(R) X \sigma_{CS}^{(S)}}$$

Biến đổi biểu thức ĐSQH

T1	R: F1 \(F2 \) Fn	((_(R:F1):F2):_):Fn
T2	(R[Y]) [Z]	$R[Z]$ nếu $Z \subseteq Y$
T3	(R[Y]):F(X)	$(R:F(X))[Y]$ nếu $X \subseteq Y$
	(R: F(X))[Y]	$(R[X \cup Y]) : F(X)) [Y] \ \text{n\'eu} X \not\subset Y$
T4	$(R(X) \times S(Y)) : F(Z)$	$(R(X):F) \times S(Y)$ nếu $Z \subseteq X$
(R(X)	$(x S(Y)) : F(Z1) \wedge F(Z2)$	$ \begin{array}{ll} (R(X) \hbox{:} F(Z1)) & x \ (S(Y) \hbox{:} \ F(Z2)) \\ \text{n\'eu} \ Z1 \subseteq X \ v\`{a} & Z2 \subseteq Y \end{array} $
T5	$(R \cup S)$: F	$(R:F) \cup (S:F)$
T6	(R - S): F	(R:F) - S
T7	$(R(X) \times S(Y))[Z]$	$R[X\cap Z] \times S[Y\cap Z]$
T8	$(R \cup S)$ [Z]	$(R[Z]) \cup (S[Z])$

Trình tự áp dụng

- Khai triển phép lựa chọn dựa trên nhiều điều kiện: T1
- □ Hoán vị phép chọn với tích đề-các, hợp, trừ: T3, T4, T5, T6
- □ Hoán vị phép chiếu với tích đề-các, hợp : T2, T7, T8
- Nhóm các điều kiện chọn bởi T1 và áp dụng T2 để loại các phép chiếu dư thừa

Bài tập

Lựa chọn cách truy nhập dữ liệu

- □ Giả thiết
 - TRAIN : có chỉ số trên NT
 - WAGON : có chỉ số trên NW
- Thực hiện phép kết nối
 - Lựa chọn 1 giải thuật.
 - Lựa chọn cách truy nhập các quan hệ

Thực hiện như thế nào?

Thông tin về các quan hệ

□ Kích thước của các quan hệ và bản ghi

	Relation	Cardinality	Record size		
ı	WAGON	200000	60		
1	TRAIN	60000	30		
	TRAFFIC	80000	20		

□Thông tin về các thuộc tính

1	Attribute	 Cardinality 	Size	min -max
	NW	200000	20	
	TYPE	200	5	
	COND	5	15	
	CAPACITY	400	15	5-45
	NT	2000	10	
	DATE	800	6	

□Thông tin về các chỉ số

_							
Relation	Attributes	Unique	. Т	уре	Num of	pages	
WAGON	NW	Yes	Pri	Principal		45	
WAGON	TYPE	YPE No		Secondary		25	
WAGON	COND	No	No Secondary		30		
WAGON	CAPACITY	No	Sec	Secondary		25	
TRAIN	NT	No	No Prir		18		
TRAFFIC	NT	No	No Prir		20		
TRAFFIC	DATE	no	Pri	ncipal	40		
Relation	Cardinality	Re	cord size	size Num. of			
	-	(num	(num of rec./page)		(NP')		
WAGON	200000	(50(100)	1500((375)		

Mô hình giá

- □ Chí phí thực hiện câu hỏi phụ thuộc:
 - đọc/ghi bộ nhớ ngoài (số trang nhớ)
 - ■Kích thước dữ liệu phải xử lý
- □Chi phí truy nhập dữ liệu
 - ■Đọc ghi dữ liệu
 - ■xử lý
 - ■Truyền thông giữa các trạm làm việc

CTA = σ * NBPAGES + τ * NBNUPLETS (+ μ * NBMESSAGES)

□Trọng số

 $_{\Box}\sigma$ = trọng số đọc/ghi dữ liệu (ví dụ = 1)

 $_{\Box\tau}$ = trọng số xử lý của CPU (ví dụ = 1/3)

-u = trong số truyền dữ liêu

Tối ưu hoá dựa trên mô hình giá

- Mục đích: Chọn phương án thực hiện câu hỏi với chi phí thấp nhất
- □ Nhận xét:
 - Chi phí cho liệt kê các phương án trả lời câu hỏi
 - Chi phí cho lượng hoá các phương án theo mô hình giá
 - Có thể sử dụng các « mẹo » (heuristics) để giảm không gian tìm kiếm của câu hỏi

Sử dụng chỉ mục?

Kết luận

- □ Tối ưu hoá nhằm tìm phương án tốt nhất để thực hiện một câu hỏi
 - Cần lưu ý: chí phí thực hiện tối ưu hoá và chi phí thực hiện câu hỏi
- Các kỹ thuật tối ưu
 - Logic : kiểm tra điều kiện ràng buộc của các thuộc tính/quan hệ và điều kiện lựa chọn trong câu hỏi, biến đổi tương đương các biểu thức ĐSQH
 - Vật lý: tổ chức vật lý của dữ liệu trên đĩa, mô hình giá
 - Không nhất thiết phải áp dụng tất cả các kỹ thuật trên khi thực hiện tối ưu hoá 1 câu hỏi

24