Топологически инъективные C^* -алгебры

Н. Т. Немеш

Аннотация: В данной заметке дан критерий топологической инъективности AW^* -алгебры как правого банахова модуля над собой. Также дано необходимое условие топологической инъективности произвольной C^* -алгебры.

Ключевые слова: топологическая инъективность, метрическая инъективность, AW^* -алгебра, C^* -алгебра, свойство l.u.st.

Abstract: In this short note a criterion of topological injectivity of an AW^* -algebra as a right Banach module over itself is given. A necessary condition for a C^* -algebra to be topologically injective is obtained.

Keywords: topological injectivity, metric injectivity, AW^* -algebra, C^* -algebra, the l.u.st. property.

Во многих категориях функционального анализа инъективные объекты часто оказываются тесно связанными с C^* -алгебрами. Например, 1-инъективные банаховы пространства являются C^* -алгебрами [1], [2], [3], [4], инъективные операторные пространства являются углами инъективных C^* -алгебр [[5], теорема 6.1.6]. Среди различных типов инъективности нам понадобятся два: метрический и топологический. Первый требует существования продолжения морфизма с сохранением нормы, а второй требует существования какого-нибудь ограниченного продолжения. В этой заметке исследуется вопрос метрической и топологической инъективности C^* -алгебр как правых модулей над собой C^* -алгефр как правых модулей C^* -алг

В дальнейшем A обозначает необязательно унитальную банахову алгебру. Через A_+ мы обозначим унитизацию A как банаховой алгебры. Если $A-C^*$ -алгебра, то ее унитизацию как C^* -алгебры будем обозначать $A_\#$. A-морфизмом будем называть непрерывный морфизм правых банаховых A-модулей. Сформулируем два определения инъективности, которые упоминались ранее для категории банаховых модулей:

Определение 1. ([7], определение 4.3) Правый A-модуль J называется метрически интективным, если для любого изометрического A-морфизма $\xi: Y \to X$ и любого A-морфизма $\phi: Y \to J$ существует A-морфизм $\psi: X \to J$ такой, что $\psi \xi = \phi$ и $\|\psi\| = \|\phi\|$.

Определение 2. ([7], определение 4.3) Правый A-модуль J называется топологически инъективным, если для любого топологически инъективного A-морфизма $\xi: Y \to X$ и любого A-морфизма $\phi: Y \to J$ существует A-морфизм $\psi: X \to J$ такой, что $\psi \xi = \phi$.

Далее символ \bigoplus_{∞} означает ℓ_{∞} -сумму банаховых пространств. Стандартный пример метрически и топологически инъективного A-модуля — это $\bigoplus_{\infty} \{A_+^* : \lambda \in \Lambda\}$, то есть ℓ_{∞} -сумма копий банахова пространства A_+^* в количестве равном мощности множества Λ . В терминологии Хелемского такие модули называются метрически косвободными [7]. Простейший способ проверки топологической инъективности некоего модуля — это доказательство того, что он дополняем как подмодуль в некотором метрически косвободном A-модуле. В случае метрической инъективности требуется 1-дополняемость, то есть существование проектора нормы 1

 $^{^{1}}$ Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант номер 15—01—08392).

являющегося морфизмом правых А-модулей. Любой банахов модуль можно изометрически вложить как подмодуль в некоторый метрически косвободный модуль.

Необходимым условием инъективности C^* -алгебры является унитальность. Действительно, так как A инъективна, то она дополняема как подмодуль в своей унитизации $A_\#$ посредством некоторого проектора $P:A_\#\to A_\#$. Более того, P является морфизмом правых A-модулей, поэтому образ единицы алгебры $A_\#$ под действием P есть левая единица в A. Так как $A-C^*$ -алгебра, то она имеет и двустороннюю единицу. Теперь из работ Хаманы [8] и Такесаки [9] следует:

Предложение 3. (Хамана, Такесаки) C^* -алгебра метрически инъективна как правый модуль над собой тогда и только тогда, когда она является коммутативной AW^* -алгеброй.

Отметим, что в оригинальной статье утверждение было доказано для левых модулей, но его легко модифицировать и для правых модулей.

Таким образом, вопрос о метрической инъективности C^* -алгебр решен полностью. Перейдем к топологической инъективности. Здесь нам понадобится банахово-геометрическое свойство l.u.st [[10], параграф 17]. Самое короткое его определение звучит так: банахово пространство E обладает свойством l.u.st. если E^{**} изоморфно дополняемому подпространству некоторой банаховой решетки.

Будем считать, что C^* -алгебра A реализована как конкретная C^* -алгебра на некотором гильбертовом пространстве H. Тогда A можно считать подмодулем в правом A-модуле $F:=\bigoplus_{\infty}\{H^*: f\in H^*, \|f\|\leq 1\}$ посредством вложения

$$I:A \rightarrow \bigoplus_{\infty} \{H^*: f \in H^*, \|f\| \leq 1\}: a \mapsto \bigoplus_{\infty} \{a^*(f): f \in H^*, \|f\| \leq 1\}.$$

Отметим, что F является банаховой решеткой, а значит имеет свойство l.u.st [[10], теорема 17.1]. Если A — топологически инъективная C^* -алгебра, то она дополняема в F. Как легко видеть, свойство l.u.st. наследуется дополняемыми подпространствами. Отсюда получается следующее необходимое условие топологической инъективности.

Предложение 4. Пусть $A-C^*$ -алгебра, топологически инъективная как правый A-модуль. Тогда A обладает свойством l.u.st.

Известно, что всякая полная матричная алгебра $M_n(\mathbb{C})$ 1-дополняема как банахово пространство в любой объемлющей C^* -алгебре [11]. Отсюда и из результатов Гордона и Льюиса [12] следует, что C^* -алгебры со свойством l.u.st не могут содержать полную матричную алгебру $M_n(\mathbb{C})$ как *-подалгебру для произвольного $n \in \mathbb{N}$. Как следствие, A^{**} не может содержать $M_\infty := \bigoplus_\infty \{M_n(\mathbb{C}) : n \in \mathbb{N}\}$ как *-подалгебру. Теперь, из [[11], теорема 2.5] следует, что все неприводимые представления A конечномерны и их размерность не превосходит общей константы. C^* -алгебры с таким свойством называют субоднородными. Для них есть своя теорема представления: они являются замкнутыми *-подалгебрами матричных алгебр $M_n(C(K))$ для некоторого компактного хаусдорфова пространства K и некоторого натурального числа n [[13], предложение IV.1.4.3]. Из этой теоремы представления, нестрого говоря, следует, что топологически инъективные C^* -алгебры почти коммутативны. Отметим, что по предложению 3 все метрически инъективные C^* -алгебры коммутативны.

Теперь приведем несколько примеров топологически инъективных C^* -алгебр.

Предложение 5. Пусть H — конечномерное гильбертово пространство. Тогда $\mathcal{B}(H)$ топологически инъективен как правый $\mathcal{B}(H)$ -модуль.

Из сказанного ранее следует, что для бесконечномерного H предложение 5 неверно.

Предложение 6. Пусть K — стоуново пространство. Тогда C(K) топологически интективен как правый C(K)-модуль.

Этот предложение легко следует из того факта, что всякий метрически инъективный модуль топологически инъективен. Оба эти примера обобщает следующее предложение:

Предложение 7. Пусть K — стоуново пространство и $n \in \mathbb{N}$, тогда $M_n(C(K))$ топологически инъективен как правый $M_n(C(K))$ -модуль.

Доказательство состоит из трех шагов. На первом шаге для каждой точки $s \in K$ рассматривается правый $M_n(C(K))$ -модуль $M_n(\mathbb{C}_s)$ с внешним умножением определенным по формуле $(x \cdot a)_{i,j} = \sum_{k=1}^n x_{i,k} a_{k,j}(s)$ для всех $x \in M_n(\mathbb{C}_s)$, $a \in M_n(C(K))$. Из аменабельности $M_n(C(K))$ легко вывести, что $M_n(C(K))$ -модуль $M_n(\mathbb{C}_s)$ топологически инъективен. На втором шаге доказывается, что произведение $\bigoplus_{\infty} \{M_n(\mathbb{C}_s) : s \in K\}$ топологически инъективно как $M_n(C(K))$ -модуль. На третьем шаге остается показать, что $M_n(C(K))$ является дополняемым подмодулем в $\bigoplus_{\infty} \{M_n(\mathbb{C}_s) : s \in K\}$.

Отметим, что все упомянутые примеры принадлежат к более узкому классу C^* -алгебр, а именно к классу AW^* -алгебр. И если ограничиться рассмотрением только AW^* -алгебр, то можно доказать следующий критерий.

Теорема 8. Пусть $A - C^*$ -алгебра. Тогда следующие условия эквивалентны:

- $(i) \ A AW^*$ -алгебра, топологически инъективная как правый A-модуль;
- (ii) А изоморфна как C^* -алгебра алгебре $\bigoplus_{\infty} \{ M_{n_i}(C(K_i)) : i = 1, ..., n \}$ для некоторого конечного набора стоуновых пространств $(K_i)_{i=1,...,n}$ и натуральных чисел $(n_i)_{i=1,...,n}$.

Идея доказательства основывается на предложениях 4, 7 и дихотомии Смита-Уильямса [14]. Они показали, что AW^* -алгебра либо изоморфна как C^* -алгебра алгебре $\bigoplus_{\infty} \{M_{n_i}(C(K_i)): i=1,\ldots,n\}$ для некоторого конечного набора стоуновых пространств $(K_i)_{i=1,\ldots,n}$ и натуральных чисел $(n_i)_{i=1,\ldots,n}$, либо содержит M_∞ как *-подалгебру.

Для полного описания топологически инъективных C^* -алгебр теперь хотелось бы показать, что все они являются AW^* -алгебрами. Но похоже, что это — сложная задача даже в коммутативном случае. Пока ни в одной стандартной категории функционального анализа, начиная с категории банаховых пространств, не получено полного описания топологически инъективных объектов.

Список литературы

- [1] L. Nachbin. A theorem of the Hahn-Banach type for linear transformations, Transactions of the American Mathematical Society, (1950), 28–46
- [2] D. Goodner. Projections in normed linear spaces, Transactions of the American Mathematical Society, (1950), 89–108
- [3] J. L. Kelley. Banach spaces with the extension property, Transactions of the American Mathematical Society, (1952), 323–326
- [4] M. Hasumi. The extension property of complex Banach spaces, Tohoku Mathematical Journal, Second Series, 10:2 (1958), 135–142

- [5] E. G. Effros, Z.-J. Ruan. Operator spaces, Oxford University Press, (2000)
- [6] А. Я. Хелемский. Плоские банаховы модули и аменабельные алгебры, Труды Московского математического общества, 47:0 (1984), 179–218
- [7] А. Я. Хелемский. Метрическая свобода и проективность для классических и квантовых нормированных модулей, Матем. сб., 204:7 (2013), 127—158
- [8] M. Hamana. Injective envelopes of Banach modules, Tôhoku Mathematical Journal, 30:3 (1978), 439–453
- [9] M. Takesaki. On the Hahn-Banach type theorem and the Jordan decomposition of module linear mapping over some operator algebras, Kodai Mathematical Seminar Reports, 12:1 (1960), 1–10
- [10] J. Diestel, H. Jarchow, A. Tonge. Absolutely summing operators, Cambridge University Press, 43 (1995)
- [11] A.T.-M. Lau, R. J. Loy, G. A. Willis. Amenability of Banach and C*-algebras on locally compact groups, Studia Mathematica, 119:2, (1996), 161–178
- [12] Y. Gordon, D. R. Lewis. Absolutely summing operators and local unconditional structures, Acta Mathematica, 133:1 (1974), 27–48
- [13] B. Blackadar. Operator algebras, Springer, 122 (2006)
- [14] R. R. Smith, D. P. Williams. The decomposition property for C^* -algebras, J. Operator Theory, 16 (1986), 51–74