Cette épreuve est constituée de deux problèmes indépendants.

Problème n $^{\circ}$ 1 : VRAI - FAUX

Pour chacune des assertions suivantes, préciser si elle est vraie ou fausse puis justifier la réponse donnée.

I. Ensembles de nombres

- 1. Tout entier relatif non nul possède un inverse dans \mathbb{Z} pour la multiplication.
- 2. La somme de deux nombres décimaux est un nombre décimal.
- 3. $\frac{1}{3}$ est un nombre décimal.
- 4. $\sqrt{5}$ est un nombre irrationnel.
- **5.** Pour tout n dans \mathbb{N} , \sqrt{n} est un nombre irrationnel.
- 6. La somme de deux nombres irrationnels est un nombre irrationnel.
- 7. La somme d'un nombre rationnel et d'un nombre irrationnel est un nombre irrationnel.

II. Géométrie dans le plan

- 8. Dans un plan muni d'un repère cartésien, 2x = 3 est l'équation d'une droite.
- 9. Dans un plan euclidien muni d'un repère orthonomé, on considère les points A(1,1), B(-1,2), C(1,-1), D(4,5). Les droites (AB) et (CD) sont perpendiculaires.
- **10.** Dans un plan euclidien, on considère un triangle \overrightarrow{ABC} rectangle en A tel que $\overrightarrow{AB} = 3$ et $\overrightarrow{AC} = 4$. Soit le point D tel que $\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AC} + \overrightarrow{AB}$. Alors $\overrightarrow{AD}.\overrightarrow{AC} = 20$.

III. Géométrie dans l'espace

On se place dans l'espace, muni d'un repère cartésien.

- 11. Si deux droites D et D' sont parallèles à un même plan P, alors D est parallèle à D'.
- 12. 2x + 3y = 3 est l'équation d'une droite.
- 13. La droite Δ définie par le système d'équations $\begin{cases} x+2y+z=2\\ x+y-z=0 \end{cases}$
 - a. passe par le point A de coordonnées (1,0,1),
 - **b.** a comme vecteur directeur le vecteur \overrightarrow{u} de coordonnées $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.
 - **c.** est contenue dans le plan P d'équation 3x + 4y z = 2.

IV. Matrices

14. Les matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ ont le même rang.

15. Les matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ sont semblables.

16. La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ est diagonalisable.

17. La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ est diagonalisable.

V. Suites

Soit $(u_n)_n$ une suite de nombres réels.

18. Si elle est décroissante et minorée par 0 alors elle converge vers 0.

19. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent alors $(u_n)_n$ converge.

VI. Probabilités

Un élève répond au hasard aux cinq questions d'un questionnaire de type «VRAI - FAUX».

20. La probabilité qu'il ait cinq réponses correctes est égale à $\frac{1}{32}$.

21. La probabilité qu'il ait exactement trois réponses correctes est égale à $\frac{10}{32}$.

22. Chaque bonne réponse rapporte un point, chaque mauvaise réponse aucun. La note moyenne à laquelle il peut prétendre est 2,5 sur 5.

VII. Arithmétique

23. Si trois nombres entiers relatifs a, b, c sont tels que a et b divisent c, alors ab divise c.

24. Si trois nombres entiers relatifs a, b, c sont tels que a divise b et c, alors bc est un multiple de a

2

25. $19 x \equiv 3 [53]$ admet des solutions dans \mathbb{Z} .

Problème n° 2 : convexité

Notations

N désigne l'ensemble des entiers naturels.

 \mathbb{N}^* désigne l'ensemble des entiers naturels non nuls.

Q désigne l'ensemble des nombres rationnels.

 \mathbb{R} désigne l'ensemble des nombres réels.

 \mathbb{R}_+ désigne l'ensemble des nombres réels positifs.

 \mathbb{R}_{+}^{*} désigne l'ensemble des nombres réels strictement positifs.

Dans ce sujet, I et J désignent des intervalles de \mathbb{R} , non vides et non réduits à un point.

Soit f une fonction, à valeurs dans \mathbb{R} , définie sur I.

On rappelle que f est dite convexe sur I si

$$\forall (x,y) \in I^2, \forall \lambda \in [0;1], \ f\left(\lambda x + (1-\lambda)y\right) \leqslant \lambda f(x) + (1-\lambda)f(y). \quad In \'egalit\'e \ de \ convexit\'e \ \ (\star).$$

On dit que f est concave sur I si -f est convexe sur I.

I. Préliminaires

Soit f une fonction, à valeurs dans \mathbb{R} , définie sur I.

- 1. Traduire à l'aide de quantificateurs que f est croissante sur I.
- 2. Traduire à l'aide de quantificateurs que f n'est pas croissante sur I.
- 3. Traduire à l'aide de quantificateurs que f est une fonction affine sur I.
- 4. Traduire à l'aide de quantificateurs que f est continue en un point a de I.

II. Quelques propriétés et exemples

- 5. Écrire une inégalité, analogue à (\star) , caractérisant une fonction concave sur I.
- 6. Caractérisation graphique de la convexité.
 - **a.** Soit $(x,y) \in I^2$ tel que x < y. Démontrer que $z \in [x;y]$ si et seulement si il existe $\lambda \in [0;1]$ tel que $z = \lambda x + (1-\lambda)y$.
 - **b.** Sans démonstration, illustrer l'inégalité de convexité (\star) par une figure.

7. Opérations et convexité.

- a. Soient f et g des fonctions convexes sur I. Démontrer que f+g est convexe sur I.
- **b.** Soient f une fonction convexe sur I à valeurs dans J et g une fonction convexe et croissante sur J. Démontrer que $g \circ f$ est convexe sur I.
- c. Sans démonstration, énoncer une propriété du même type qui permettrait de conclure que $g \circ f$ est concave.

8. Quelques exemples.

L'étude des exemples qui suivent prendra appui sur la définition de la convexité et sur les résultats précédemment démontrés.

- a. Démontrer que la fonction valeur absolue est convexe sur \mathbb{R} .
- **b.** Démontrer que la fonction $f: x \longmapsto x^2$ est convexe sur \mathbb{R} .
- **c.** On cherche à démontrer que la fonction ln est concave sur \mathbb{R}_+^* . Soit $(x,y) \in (\mathbb{R}_+^*)^2$ tel que x < y. On considère la fonction g définie sur [0;1] par

$$\forall t \in [0; 1], \ g(t) = \ln(tx + (1 - t)y) - t\ln(x) - (1 - t)\ln(y).$$

- i. Étudier la monotonie de la fonction g', dérivée de g, sur [0;1].
- ii. Démontrer que :

$$\frac{1}{y} \leqslant \frac{\ln(x) - \ln(y)}{x - y} \leqslant \frac{1}{x}.$$

- iii. En déduire le signe de g'(0) et de g'(1).
- iv. Déduire des questions précédentes que g' s'annule une unique fois sur [0;1].
- v. Déterminer le signe de g sur [0; 1] et conclure.

9. Généralisation de l'inégalité de convexité.

Soit f une fonction convexe sur I.

Démontrer que pour tous $n \in \mathbb{N}^*$, $(x_1, x_2, \dots, x_n) \in I^n$ et $(\lambda_1, \lambda_2, \dots, \lambda_n) \in (\mathbb{R}_+)^n$ tels que $\sum_{k=1}^n \lambda_k = 1$, on a

$$\sum_{k=1}^{n} \lambda_k x_k \in I$$

et

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f(x_k).$$

10. Deux applications.

a. À l'aide de la concavité de ln, démontrer que pour tout $(a,b,c) \in (\mathbb{R}_+^*)^3$, on a

$$\sqrt[3]{abc} \leqslant \frac{a+b+c}{3}$$
.

b. Démontrer que $\ln \circ \ln$ est concave sur $]1, +\infty[$. En déduire que pour tout $(x, y) \in (]1, +\infty[)^2$, on a

$$\ln\left(\frac{x+y}{2}\right) \geqslant \sqrt{\ln(x)\ln(y)}.$$

4

III. Inégalités des trois pentes et conséquences

Soit f une fonction, à valeurs dans \mathbb{R} , définie sur I.

Pour tout $a \in I$, on considère la fonction $\Delta_a : \begin{cases} I \setminus \{a\} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{f(t) - f(a)}{t - a} \end{cases}$

- **11. a.** On suppose dans cette question que la fonction f est convexe sur I. Soient $a \in I$ et $(t, u) \in (I \setminus \{a\})^2$ tel que t < u.
 - i. On suppose que t < u < a. D'après la question **6.a.**, on sait qu'il existe $\lambda \in]0;1[$ tel que $u = \lambda t + (1 \lambda)a$. Démontrer que $f(u) f(a) \le \lambda(f(t) f(a))$ puis que $\Delta_a(t) \le \Delta_a(u)$.
 - ii. On admet que cette dernière inégalité reste vraie pour a < t < u et pour t < a < u. Que peut-on en déduire pour Δ_a ?
 - **b.** On suppose dans cette question que, pour tout $a \in I$, Δ_a est croissante sur $I \setminus \{a\}$. Soient $(x,y) \in I^2$ tel que x < y et $\lambda \in [0;1[$.
 - i. Démontrer que $\Delta_x(\lambda x + (1 \lambda)y) \leqslant \Delta_x(y)$.
 - ii. En déduire que f est convexe sur I.
 - c. Donner une condition nécessaire et suffisante sur Δ_a pour que f soit convexe sur I.

On suppose dans la suite de cette partie III que la fonction f est convexe sur I.

- **12.** Soit $(a, b, c) \in I^3$ tel que a < b < c.
 - a. En utilisant la question 11, démontrer l'inégalité des trois pentes :

$$\frac{f(b)-f(a)}{b-a}\leqslant \frac{f(c)-f(a)}{c-a}\leqslant \frac{f(c)-f(b)}{c-b}.$$

- b. Illustrer cette inégalité par une figure.
- 13. a. Théorème de la limite monotone.

Soit φ une fonction croissante sur l'intervalle $a; b \in \mathbb{R}^2$ et a < b.

- i. Démontrer que si φ est majorée alors elle admet une limite finie à gauche en b, égale à la borne supérieure de l'ensemble $\{\varphi(x) \; ; \; x \in]a,b[\}$.
- ii. Sans démonstration, que peut-on dire si φ est minorée?
- **b.** Soit $(a, b, c) \in I^3$ tel que a < b < c.
 - i. En appliquant le théorème de la limite monotone à Δ_b , démontrer que f est dérivable à gauche et à droite en b et que

$$\frac{f(b) - f(a)}{b - a} \leqslant f'_g(b) \leqslant f'_d(b) \leqslant \frac{f(c) - f(b)}{c - b}$$

- ii. Montrer que f est continue en b.
- ${f c.}$ Donner un exemple d'une fonction convexe et non continue sur un intervalle.

5

IV. Caractérisation des fonctions convexes dérivables

Soit f une fonction dérivable sur I. On note f' sa fonction dérivée sur I.

- **14.** Dans cette question, on suppose f convexe sur I.
 - **a.** Montrer que pour tout $(a,b) \in I^2$ tel que a < b, on a

$$f'(a) \leqslant \frac{f(b) - f(a)}{b - a} \leqslant f'(b),$$

et en déduire que f' est croissante.

- **b.** Justifier que la courbe représentative de f est au-dessus de toutes ses tangentes.
- **15.** Dans cette question, on suppose f' croissante sur I.

Soit $(x,y) \in I$ tel que x < y. On considère la fonction ϕ définie sur [0;1] par

$$\forall t \in [0, 1], \ \phi(t) = tf(x) + (1 - t)f(y) - f(tx + (1 - t)y).$$

- **a.** Démontrer que ϕ est dérivable sur I et déterminer sa dérivée ϕ '.
- **b.** En utilisant le théorème des accroissements finis pour f entre x et y, démontrer qu'il existe $\gamma \in]0;1[$ tel que pour tout $t \in [0;1]$,

$$\phi'(t) = (x - y) (f'(\gamma x + (1 - \gamma)y) - f'(tx + (1 - t)y)).$$

- c. En déduire les variations de ϕ .
- **d.** En déduire que la fonction f est convexe sur I.
- **16.** Démontrer qu'une fonction f deux fois dérivable sur I est convexe sur I si et seulement si f" est positive sur I.

V. Différentes inégalités

17. Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ une fonction concave.

On définit la fonction $\psi: \begin{cases} (\mathbb{R}_+^*)^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & yf\left(\frac{x}{y}\right) \end{cases}$

a. Démontrer que pour tout $(x_1, x_2, y_1, y_2) \in (\mathbb{R}^*_+)^4$, on a

$$\psi(x_1, y_1) + \psi(x_2, y_2) \leqslant \psi(x_1 + x_2, y_1 + y_2).$$

b. En déduire que pour tout $n \in \mathbb{N}^*$ et tout $(x_1, \ldots, x_n, y_1, \ldots, y_n) \in (\mathbb{R}_+^*)^{2n}$, on a

$$\sum_{k=1}^{n} \psi(x_k, y_k) \leqslant \psi\left(\sum_{k=1}^{n} x_k, \sum_{k=1}^{n} y_k\right) \qquad (\star\star).$$

18. Application.

Soient $p, q \in]1; +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1.$

Dans cette question, $f: t \longmapsto t^{\frac{1}{p}}$

- **a.** Démontrer que f est concave sur \mathbb{R}_{+}^{*} .
- **b.** Soient $n \in \mathbb{N}^*$ et $(a_1, \ldots, a_n, b_1, \ldots, b_n) \in (\mathbb{R}_+^*)^{2n}$. En utilisant $(\star\star)$, démontrer l'<u>inégalité de Hölder</u>:

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}.$$

6