CS156 (Introduction to AI), Fall 2022

Homework 2 submission

Roster Name: Preet LNU

Student ID: 014755741

Email address: preet.lnu@sjsu.edu

References and sources

https://www.askpython.com/python/examples/k-nearest-neighbors-from-scratch
https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/

Also took reference from knn.synthetic.data and from the examples

▼ Solution

Load libraries and set random number generator seed

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from scipy.spatial import distance
import statistics

np.random.seed(42)
```

Code the solution

KNN implementation

```
def knn(newObservation, referenceData, k=3):
    distances = []
    for i in range(len(referenceData.index)):
        d = distance.euclidean(newObservation.iloc[0,:], referenceData.iloc[i,:-1])
        distances.append((d, i))

sortedDistances = sorted(distances)
    kNearestDistances = sortedDistances[:3]

kNearestLabels = [referenceData.iloc[i, -1] for d, i in kNearestDistances]

return statistics.mode(kNearestLabels)
```

2D Data

```
n = 100

Class0Dim1 = np.random.normal(loc=-2.0, scale=2.0, size=int(n/2))
Class0Dim2 = np.random.normal(loc=0.0, scale=1.0, size=int(n/2))

Class1Dim1 = np.random.normal(loc=2.0, scale=2.0, size=int(n/2))
Class1Dim2 = np.random.normal(loc=0.0, scale=1.0, size=int(n/2))

Dim1 = np.concatenate((Class0Dim1, Class1Dim1), axis=0)
Dim2 = np.concatenate((Class0Dim2, Class1Dim2), axis=0)

s1 = [0]*int(n/2)
s2 = [1]*int(n/2)
labels = s1+s2

dt = pd.DataFrame({'Dim1':Dim1, 'Dim2':Dim2}, columns=['Dim1', 'Dim2'])
dt.head(100)
```

1	Dim2	Dim1	
	0.324084	-1.006572	0
	-0.385082	-2.276529	1

X_train, X_test, Y_train, Y_test = train_test_split(dt,labels, test_size=0.2, random_s

referenceData = pd.DataFrame({'Dim1':X_train.Dim1, 'Dim2':X_train.Dim2, 'Label':Y_traireferenceData.head(100)

	Dim1	Dim2	Label	1
43	-2.602207	-0.327662	0	
62	2.120460	1.158596	1	
3	1.046060	0.611676	0	
71	0.181225	-0.815810	1	
45	-3.439688	-1.463515	0	
96	-0.473901	-0.883857	1	
67	-0.337356	1.896793	1	
64	1.615278	0.963376	1	
47	0.114244	0.261055	0	
44	-4.957044	-0.392108	0	

80 rows × 3 columns

newObservations = pd.DataFrame({'Dim1':X_test.Dim1, 'Dim2':X_test.Dim2}, columns=['Dim newObservations.head(100)

```
1
             Dim1
                      Dim2
        -4.301987
     26
                   0.087047
     86
         0.433493
                   0.473238
      2
         -0.704623
                  -0.676922
         2.808102 -0.714351
     55
     75 6.380911
                   0.827183
     93
        2.369268 -1.245739
     16 -4.025662
                  -0.072010
     73 -0.803702
                   0.341152
     54 1.677429
                   0.293072
     95 3.563646
                   0.385317
     53
         0.395445
                   0.232254
     00
        4 04 4066
                   0 04 400 4
pred results = []
for row in newObservations.itertuples():
    newObservation = pd.DataFrame({'Dim1':[row.Dim1], 'Dim2':[row.Dim2]}, columns=['Di
    pred results.append((knn(newObservation, referenceData)))
print(pred_results)
    [0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
     22 -1.864944 -0.035826
num = 0
for i in range(len(pred results)):
    if pred_results[i] == Y_test[i]:
        num += 1
precision = num / len(Y test)
print('Precision: %f'% precision)
    Precision: 0.900000
plt.subplot(1, 2, 1)
plt.scatter(X_train.iloc[:,0],X_train.iloc[:,1], s=25, c=Y_train, marker=".")
plt.scatter(X test.iloc[:,0],X test.iloc[:,1], s=50, c=Y test, marker="v")
plt.title("Actual labels")
plt.subplot(1, 2, 2)
plt.scatter(X_train.iloc[:,0],X_train.iloc[:,1], s=25, c=Y_train, marker=".")
plt.scatter(X test.iloc[:,0],X test.iloc[:,1], s=50, c=pred results, marker="v")
plt.title("Predicted labels")
plt.tight layout()
plt.show()
```


3D data

```
n = 1000
ClassODim1 = np.random.normal(loc=0.0, scale=3.0, size=int(n/4))
ClassODim2 = np.random.normal(loc=-3.0, scale=1.0, size=int(n/4))
Class0Dim3 = np.random.normal(loc=-1.0, scale=1.0, size=int(n/4))
Class1Dim1 = np.random.normal(loc=0.0, scale=3.0, size=int(n/4))
Class1Dim2 = np.random.normal(loc=1.0, scale=2.0, size=int(n/4))
Class1Dim3 = np.random.normal(loc=1.0, scale=1.0, size=int(n/4))
Class2Dim1 = np.random.normal(loc=0.0, scale=3.0, size=int(n/4))
Class2Dim2 = np.random.normal(loc=3.0, scale=1.0, size=int(n/4))
Class2Dim3 = np.random.normal(loc=4.0, scale=1.0, size=int(n/4))
Class3Dim1 = np.random.normal(loc=0.0, scale=3.0, size=int(n/4))
Class3Dim2 = np.random.normal(loc=5.0, scale=3.0, size=int(n/4))
Class3Dim3 = np.random.normal(loc=-3.0, scale=1.0, size=int(n/4))
Dim1 = np.concatenate((Class0Dim1, Class1Dim1, Class2Dim1, Class3Dim1), axis=0)
Dim2 = np.concatenate((Class0Dim2, Class1Dim2, Class2Dim2, Class3Dim2), axis=0)
Dim3 = np.concatenate((Class0Dim3, Class1Dim3, Class2Dim3, Class3Dim3), axis=0)
s1 = [0]*int(n/4)
s2 = [1]*int(n/4)
s3 = [2]*int(n/4)
s4 = [3]*int(n/4)
labels = s1+s2+s3+s4
dt = pd.DataFrame({'Dim1':Dim1, 'Dim2':Dim2, 'Dim3':Dim3}, columns=['Dim1', 'Dim2', 'I
dt.head(1000)
```


1000 rows × 3 columns

3.986800

999

X_train, X_test, Y_train, Y_test = train_test_split(dt,labels, test_size=0.2, random_s
referenceData = pd.DataFrame({'Dim1':X_train.Dim1, 'Dim2':X_train.Dim2, 'Dim3':X_train
referenceData.head(1000)

	Dim1	Dim2	Dim3	Label
687	1.272183	4.549020	3.075767	2
500	1.051890	1.226968	5.804348	2
332	1.197669	2.416217	1.323168	1
979	-0.790345	7.956349	-2.484372	3
817	-6.657901	6.364223	-5.832156	3
835	-0.885270	3.944236	-2.553127	3
192	-3.960700	-3.259591	0.066675	0
629	0.056549	2.549811	4.849102	2
559	3.944743	3.937570	4.198948	2
684	-0.079217	2.645959	4.032797	2

0.108580 -2.562687

800 rows × 4 columns

newObservations.head(1000)

	Dim1	Dim2	Dim3	
993	-0.403490	4.428491	-3.617642	
859	2.772810	3.351379	-3.395681	
298	-1.713537	1.467572	2.024063	
553	-5.491899	2.692038	3.987911	
672	-0.924103	2.980740	4.160018	
679	-2.417610	3.718186	4.260281	
722	-3.218229	2.680152	3.770609	
215	-2.245460	-2.893570	-0.720978	
653	2.757463	4.125435	2.634044	
150	0.932723	-2.243011	-1.623141	

200 rows × 3 columns

```
pred_results = []
for row in newObservations.itertuples():
    newObservation = pd.DataFrame({'Dim1':[row.Dim1], 'Dim2':[row.Dim2], 'Dim3':[row.I pred_results.append((knn(newObservation, referenceData)))
print(pred_results)
    [3, 3, 1, 2, 2, 3, 0, 0, 2, 2, 1, 1, 3, 0, 2, 1, 3, 0, 0, 0, 0, 1, 1, 1, 3, 3, 0]
num = 0
for j in range(len(pred_results)):
    if pred_results[j] == Y_test[j]:
        num += 1
precision = num / len(Y_test)
print('precision: %f'% precision)
    precision: 0.915000
```

Colab paid products - Cancel contracts here

✓ 0s completed at 10:52 AM

×