Moderation

$Adam\ Garber$

N	orwegian	University	of Science	and	Technology	- A	Course in	MnlusAi	ıtomation
Τ.	or wegian	CILIVEISIUY	or percue	and	1 Commonday	- 11	Course III	пртиол	i coma citon

	June 01, 2021
Lab preparation	
Data source for exam	ple 1:
	Vocabulary and Education dataset from the National Opinion Research Center Cumulative Datafile 1972-2016 (Fox, 2008) See documentation here
This dataset is available via	the R-package {carData} and can be directly loaded into the R environment.
Note: All models specified is justified or valid.	in the following exercise are for demonstration only and are ${f not}$ theoretically
-	t on CRAN. Install the development version from GitHub with "datalorax/equatiomatic", force = TRUE)
<pre>library(tidyverse) library(MplusAutomation) library(rhdf5) library(here) library(gt) library(gtsummary) library(carData) library(Ecdat)</pre>	
Begin lab 2 exercise — Read the detaframe into you	r R-environment from package {carData}

```
data(Vocab)
vocab <- as.data.frame(Vocab)</pre>
```

Take a look at focal variables, make a tribble table

Name	Labels
year	Year of the survey
sex	Sex of the respondent (Female or Male)
education	Education, in years
vocabulary	Vocabulary test score: number correct on a 10-word test

check some basic descriptives with the {gtsummary} package

Characteristic	N = 30351
year	1995 (13)
sex	
Female	17148 (56%)
Male	13203 (44%)
education	13.0 (3.0)
vocabulary	6.00(2.12)

Estimate moderation example 1

- 1. covariate: Years of education (education)
- 2. moderator: Year of the survey with 2-levels 1974 and 2016 (year)
- 3. outcome: Vocabulary test score number correct on a 10-word test (vocabulary)


```
m1_model <- mplusObject(</pre>
  TITLE = "m1 model moderation",
  VARIABLE =
  "usevar =
                    ! covariate/moderator
   year
   education
vocabulary
                    ! covariate
                    ! outcome
   int_yred;
                    ! interaction of year and education",
  DEFINE =
    "center education (grandmean);
    int_yred = year*education; ! create interaction term ",
  ANALYSIS =
    "estimator = MLR" ,
  MODEL =
   "[vocabulary](b0);
   vocabulary on
   year(b1)
    education(b2)
    int_yred(b3); " ,
  MODELCONSTRAINT =
  "LOOP(x,-1,1,0.01);
```

```
PLOT(y1974 y2016);
   new(hi_y1974 lo_y1974 hi_y2016 lo_y2016 diff_hi);
  y1974 = b0 + b2*x;
  y2016 = b0 + b1 + (b2+b3)*x;
  hi_y1974 = b0 + b2*(6.28); !!! education 2SD = 2*sqrt(9.85) = 6.28 !!!
  lo_y1974 = b0 + b2*(-6.28);
  hi y2016 = b0 + b1 + (b2 + b3)*(6.28);
  lo_y2016 = b0 + b1 + (b2 + b3)*(-6.28);
   diff_hi = hi_y2016 - hi_y1974; ",
  OUTPUT = "sampstat standardized modindices (3.84)",
  PLOT = "type=plot3;",
 usevariables = colnames(vocab2),
  rdata = vocab2)
m1_model_fit <- mplusModeler(m1_model,</pre>
                    dataout=here("14-moderation", "mplus_files", "vocab.dat"),
                    modelout=here("14-moderation", "mplus_files", "model1_vocab.inp"),
                    check=TRUE, run = TRUE, hashfilename = FALSE)
```

Create the simple slope plot from Mplus model output

Extract the output parameters generated using the model constraint

```
simp_slope <- data.frame(m1_model_fit[["results"]][["parameters"]][["unstandardized"]]) %>%
  filter(paramHeader == "New.Additional.Parameters") %>%
  filter(param!= "DIFF_HI") %>%
  select(param, est, se) %>%
  mutate(year = case_when(
    param %in% c("HI_Y1974", "LO_Y1974") ~ "1974",
    param %in% c("HI_Y2016", "LO_Y2016") ~ "2016")) %>%
  mutate(education = case_when(
    param %in% c("HI_Y1974", "HI_Y2016") ~ 6.28,
    param %in% c("LO_Y1974", "LO_Y2016") ~ -6.28))
```

Plot the interaction effect with ggplot using theme from {hrbrthemes} package

```
# un-center 'education' so values on x-axis are on the original scale
plot_data <- simp_slope %>% mutate(education = education + 12.9)

ggplot(plot_data, aes(x=education, y=est, color=year, group=year)) +
    geom_point(size=0) +
    geom_line() +
    geom_errorbar(aes(ymin=est-se, ymax=est+se),
```

```
ggsave(here("14-moderation", "figures", "m1_simple_slope.png"), height = 6, width = 8)
```

Simple Slopes Graph

Vocabulary test score predicted by years of education in 1974 & 2016

Data source for example 2:

The next example utilizes the **Effects on Learning of Small Class Sizes (Star)** dataset from the *Introduction to Econometrics* textbook. (Stock et al., 2003) See documentation here

This dataset is available via the R-package {Ecdat} and can be directly loaded into the R environment.

Read the dataframe into your R-environment from package {Ecdat}

```
data(Star)
star_data <- as.data.frame(Star)</pre>
```

Take a look at the variables in the Star dataset

Name	Labels
tmathssk	total math scaled score
treadssk	total reading scaled score
classk	type of class (small, regular, regular with aide)
totexpk	years of total teaching experience

Subset and recode variables to use in moderation model with select, mutate, and case_when

Estimate moderation example 2

- 1. covariate: Years of education (totexpk)
- 2. moderator: type of class (small, regular) (classk)
- 3. outcome 1: total math scaled score (tmathssk)
- 4. outcome 2: total reading scaled score (treadssk)

```
m2_model <- mplusObject(</pre>
  TITLE = "m2 model indirect - Lab 3",
  VARIABLE =
   "usevar =
   totexpk classk
   tmathssk, treadssk
   tchXclas; ",
  DEFINE =
    "center totexpk (grandmean);
    tchXclas = totexpk*classk; ! create interaction term" ,
  ANALYSIS =
    "estimator = mlr; ",
  MODEL =
   "treadssk on classk totexpk tchXclas;
    [tmathssk](b0);
   tmathssk on
    classk (b1)
   totexpk (b2)
   tchXclas (b3); ",
  MODELCONSTRAINT =
  "LOOP(x,-1,1,0.01);
  PLOT(small regular);
  new(hi_small lo_small hi_regular lo_regular diff_hi);
    small = b0 + b2*x;
   regular = b0 + b1 + (b2+b3)*x;
    hi_small = b0 + b2*(9.3);
    lo_small = b0 + b2*(-9.3);
  hi_regular = b0 + b1 + (b2 + b3)*(9.3);
   lo_regular = b0 + b1 + (b2 + b3)*(-9.3);
      diff_hi = hi_small - hi_regular; ",
  OUTPUT = "sampstat standardized modindices (3.84)",
  PLOT = "type=plot3;",
  usevariables = colnames(mod_data),
 rdata = mod data)
m2_model_fit <- mplusModeler(m2_model,</pre>
                    dataout=here("14-moderation", "mplus_files", "caschools.dat"),
                    modelout=here("14-moderation", "mplus_files", "model2_caschools.inp"),
                    check=TRUE, run = TRUE, hashfilename = FALSE)
```

Create the simple slope plot from Mplus model output

```
simp_slope2 <- data.frame(m2_model_fit[["results"]][["parameters"]][["unstandardized"]]) %>%
  filter(paramHeader == "New.Additional.Parameters") %>%
  filter(param!= "DIFF_HI") %>%
   select(param, est, se) %>%
  mutate(size = case_when(
     param %in% c("HI_SMALL", "LO_SMALL") ~ "Small",
     param %in% c("HI_REGUL", "LO_REGUL") ~ "Regular")) %>%
  mutate(experience = case_when(
     param %in% c("HI_SMALL", "HI_REGUL") ~ 9.3,
     param %in% c("LO_SMALL", "LO_REGUL") ~ -9.3))
\# un-center 'experience' so values on x-axis are on the original scale
mean_exp <- mean(mod_data$totexpk)</pre>
plot_data2 <- simp_slope2 %>% mutate(experience = experience + mean_exp)
ggplot(plot_data2, aes(x=experience, y=est, color=size, group=size)) +
 geom_point(size=0) +
  geom line() +
  geom_errorbar(aes(ymin=est-se, ymax=est+se), width=.25) +
  scale_x_continuous(breaks = c(seq(0,18,2))) +
  labs(title = "Simple Slopes Graph",
       subtitle = "Math test score predicted by years of teaching experience in small & regular classro
           x = "Teaching Experience (years)",
           y = "Math test score") +
  theme_minimal()
ggsave(here("14-moderation", "figures", "m2_simple_slope.png"), height = 6, width = 8)
```

Simple Slopes Graph

Math test score predicted by years of teaching experience in small & regular classrooms

_		-
٠,١		_
н,	m	"

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Horst, A. (2020). Course & Workshop Materials. GitHub Repositories, https://https://allisonhorst.github.io/Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidy verse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686