Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2004-2005. Seconda prova intercorso 22/06/2005

Nome	Cognome	
Matricola /		

1. (6 punti) Dato il grafo in figura, applicare l'algoritmo di Dijkstra per determinare l'albero dei cammini minimi radicato nel nodo 1. Scrivere il procedimento e l'albero finale risultante.

2. Considerare il seguente problema di programmazione lineare:

$$\max 5x_1 + 3x_2$$

$$x_1 + x_2 \le 10$$

$$-x_1 + x_2 \le 5$$

$$x_1 \ge 0$$

$$x_2 \text{ n.v}$$

- a) (3 punti) Determinare graficamente la soluzione ottima.
- b) (4 punti) Determinare la soluzione duale corrispondente al vertice ottimo
- c) (5 punti) Individuare due qualsiasi soluzioni ammissibili del problema dato e del suo duale e scrivere le condizioni agli scarti complementari
- d) (4 punti) Determinare gli intervalli di variabilità di ognuno dei coefficienti di costo della funzione obiettivo del problema dato affinché il punto di ottimo (trovato al punto a) non cambi.

3.	(Punti 6) Si consideri il grafo in figura 1 nella sua versione non orientata. Calcolare l'albero di peso minimo
	applicando l'algoritmo di Prim. Scrivere il procedimento e l'albero risultante.
	•

4. (3 punti) Scrivere il duale del seguente problema di programmazione lineare:

min
$$x_1 + 8 x_2 - 10 x_{3+} x_4$$

$$\begin{array}{l} x_1 + \ x_2 - \ x_4 = 32 \\ 3 \ x_1 + x_3 - 10 \ x_4 \geq 12 \\ 23 \ x_2 + \ x_3 - 14 \ x_4 \geq 27 \\ 3 \ x_1 + 8 \ x_3 + 10 \ x_4 \leq 27 \end{array}$$

$$x_1 \ge 0$$

$$x_2 \le 0$$

$$x_3 \le 0$$

$$x_2 \leq 0$$

$$x_3 \leq 0$$

 x_4 n.v.

5. (4 punti) Scrivere la formulazione matematica del problema dell'albero dei cammini minimi descritto nell'esercizio 1 e definire un assegnamento di variabili ammissibile.