Inteligência Artificial II

Lógica Fuzzy Prof. Tales Bitelo Viegas

Lógica Fuzzy

- Fuzzy: difusa, nebulosa
- Uma extensão da lógica binária
- Criada em 1965 por Lofti Zadeh, estendida em 1972 por Michio Sugeno
- Permite expressar noções de vagueza, imprecisão e incerteza

Princípio da Incompatibilidade

"Conforme a complexidade de um sistema aumenta, a nossa habilidade de fazer afirmações precisas e significativas sobre o seu comportamento diminui, até atingir um limiar além do qual, precisão e significado se tornam características mutuamente exclusivas"

(Lofti Zadeh)

Representação do Conhecimento

- Como expressar incertezas usando Lógica Difusa?
- Qual o significado das expressões:
 - A água está muito fria
 - Maria é jovem
 - Antônio é bem mais alto que André
 - A casa é grande
- O significado depende da pessoa que está fazendo o julgamento

Representação do Conhecimento

- Na lógica difusa, o conhecimento é representado de forma simbólica através de variáveis linguísticas.
- Nas expressões do exemplo, as variáveis linguísticas podem ser:
 - A água está muito fria. (Temperatura)
 - Maria é jovem. (Idade)
 - Antônio é bem mais alto que André. (Altura)
 - A casa é grande. (Tamanho)

Valores Linguísticos

- Cada variável linguística normalmente está associada a um conjunto de valores linguísticos.
- Exemplo: temperatura pode ter como valores linguísticos:
 - frio
 - muito frio
 - morno
 - quente
 - muito quente

Valores Linguísticos

- Cada valor linguístico está associado a um conjunto fuzzy que expressa o seu grau de pertinência (valor-verdade), representando, por exemplo, o quanto a temperatura água está fria, o quanto está morna, etc.
- Os valores são representados por predicados imprecisos:
 - o muito_frio(x)
 - o jovem(x)

Grau de Pertinência

- Ao valor linguístico **frio** poderia ser associado os conjuntos difusos que definem o seu grau de pertinência:
 - {0,1,2,3,4,...,15} grau 1
 - {16,17,18,19,20} grau 0,5
 - {21,22,23,24} grau 0,2
 - § {25,26,...,100} grau 0
- Exemplo: frio(22) = 0,2

- Ao invés de representar explicitamente os conjuntos, podemos trabalhar com funções que mapeiam os valores em graus de pertinência.
- Essas funções são chamadas funções de pertinência.
- $\mu_i(x)$ indica a pertinência do x relativa ao conjunto i, onde x é uma variável do universo do discurso
- Exemplos:
 - $^{\circ}$ µjovem(Maria) = 0,7
 - $^{\circ}$ µfrio(17) = 0,5

- Exemplos de Conjuntos Fuzzy representados por funções de pertinência:
 - Variável linguística: Temperatura
 - Valores (termos) linguísticos: fria, morna, quente
 - Conjuntos Fuzzy: μfria(T), μmorna(T) e μquente(T)

É comum representar as funções no mesmo gráfico

- Decrescente: início do domínio
 - Função L:U → [0;1]
 - $^{\circ}$ L (u; α, β) = 1 se u < α (β-u) / (β- α), se α <= u <= β 0 se u > β

- Função Intermediária
 - Função Λ (lambda ou triangular): U → [0;1]
 - \circ Λ(u; α, β, γ) = 0 se u < α (u- α)/(β- α) se α<=u< β 1 se u = β (γ-u)/(γ- β) se β < u <= γ 0 se u > γ

- Função Intermediária
 - Função Π (trapézio): U → [0;1]
 - \circ Π(u; α , β , γ , δ) = 0 se u < α

$$(u-\alpha)/(\beta-\alpha)$$
 se $\alpha <= u <= \beta$

1 se
$$\beta < u < = \gamma$$

$$(\delta - u)/(\delta - \gamma)$$
 se $\gamma < u <= \delta$

$$0 \text{ se u} > \delta$$

- Crescente: fim do domínio
 - Função Γ (Gama): U → [0;1]
 - \circ Γ (u; α , β) = 0 se u < α (u- α) / (β α), se α <= u <= β 1 se u > β

Aplicação de um Sistema Fuzzy

Se a máquina for um ar condicionado, por exemplo, **x** pode ser a temperatura ambiente e **y**, o valor correspondente à regulagem do ar.

Sistema Fuzzy

Base de Regras obtidas a partir de um especialista ou dados numéricos

Determina como as regras são ativadas e combinadas

Exemplo

- Considere a seguinte base de regras
 - R1 : se Financiamento é adequado OU RecursosHumanos é pequeno então Risco é pequeno
 - R2 : se Financiamento é reduzido E
 RecursosHumanos é grande
 então Risco é normal
 - R3 : se Financiamento é inadequado então Risco é alto

Exemplo

- As variáveis linguísticas são Financiamento, RecursosHumanos e Risco
- Os valores linguísticos de cada variável são definidas pelas funções a seguir
- Financiamento:
 - $^{\circ}$ μ adequado(f) = L(f; 25,40)
 - $^{\circ} \mu_{reduzido}(f) = \Lambda(f; 30,55,80)$
 - $^{\circ}$ μ inadequado(f) = Γ (f; 65,85)

Exemplo

- Recursos Humanos:
 - $^{\circ} \mu_{pequeno}(r) = L(f; 15,65)$
 - $^{\circ}$ $\mu_{grande}(r) = \Gamma(f; 25,75)$
- Risco:
 - $^{\circ} \mu_{pequeno}(u) = L(f; 25,40)$
 - $^{\circ} \mu_{normal}(u) = \Pi(f; 25,45,55,75)$
 - $^{\circ} \mu_{alto}(u) = \Gamma(f; 60,75)$

Fuzzificação

- Consiste em transformar um valor preciso (crisp) em um valor difuso. A fuzzificação é feita para as premissas das regras
- Exemplo: f=70 e r=30
 - $^{\circ}$ μ adequado(70) = 0
 - $^{\circ} \mu_{reduzido}(70) = 10/25 = 0.4$
 - $^{\circ} \mu_{inadequado}(70) = 15/20 = 0.75$
 - $^{\circ} \mu_{pequeno}(30) = 35/50 = 0.7$
 - $^{\circ} \mu_{grande}(30) = 5/50 = 0.1$

Inferência Fuzzy

- Responsável por determinar a força de disparo e ativação das regras
 - R1: μ adequado(70) v μ pequeno(30) = 0 v 0,7 = 0,7
 - R2: μ reduzido(70) $\Lambda \mu$ grande(30) = 0,4 Λ 0,1 = 0,1
 - R3: μinadequado(70) = 0,75
- Somente R1 e R2 foram ativadas
 - \circ NÃO-Fuzzy(x) = 1 x
 - E-Fuzzy(x,y) = Mínimo(x,y)
 - OU-Fuzzy(x,y) = Máximo(x,y)

Inferência Fuzzy

Resultado da inferência: agregação (área) dos resultados das regras ativadas.

Exercício

Refaça o processo de inferência, considerando agora que f=50 e r=50