概率论笔记

目录

1	1 基本概念	2
	1.1 运算	2
	1.2 关系	2
	1.3 频率和概率	2
	1.4 条件概率	3
	1.5 全概率与贝叶斯公式	3
	1.6 事件的独立性	4
	1.7 伯努利概型	4
2	2 随机变量及其分布	4
	2.1 R.V. 和 分布函数	4
	2.2 分布函数	
	2.3 离散型随机变量及其分布	
	2.4 连续型 <i>R.V</i>	
	2.5 随机变量的分布	
3	3 多维 R.V.	7
Ü	3.1 二维随机变量和联合分布函数	7
	3.2 连续型随机变量	
	3.3 边缘分布	
	3.4 条件分布	
	3.5 独立性	
	3.6 二维连续型随机变量的分布	10
4	1 随机变量的数字特征	11
	4.1 数学期望	11
	4.2 方差	
	4.3 常见形式	12
	4.4 协方差	13
5	5 大数定律和中心极限定理	14
	5.1 大数定律	14
	5.2 中心极限定理	
6	5 样本与抽样分布	15
U	- 6.1 基本概念	
	6.2 抽样分布	
7	7 参数估计	18
	7.1 点估计	
	7.2 评选标准	
	7.3 区间估计	18
8	3 附录 1: 常见的分布类型的期望与方差及证明	19

1 基本概念

1.1 运算

若 A 代表事件 A 发生, \overline{A} 代表事件没有发生, 我们定义如下在随机事件上的关系运算:

包含

 $A \subset B \Leftrightarrow A \to B$ 另外有 $A = B \Leftrightarrow A \subset B \land B \subset A$ 交集

 $A \cap B \Leftrightarrow A \wedge B$

并集

 $A \cup B \Leftrightarrow A \vee B$

差集

 $A-B \Leftrightarrow A \wedge \overline{B}$ 另外有 $A-B=A-AB=A\overline{B}$

对于交集和并集运算,符合以下四种运算律:

交换律

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

结合律

 $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

分配律

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

对偶律 (德摩根定律)

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

1.2 关系

在事件间, 存在如下两种关系:

互斥事件 $A \cap B = \emptyset$

对立事件 $A\cap B=\varnothing\wedge A\cup B=\Omega.$

1.3 频率和概率

定义:

频率

 $f_n(A) = \frac{n_A}{n}$

概率

 $P(A) = \lim_{n \to \infty} f_n(A) \to P$

性质:

非负性 标准性
$$0 \le P(A) \le 1 \qquad \qquad P(\Omega) = 1, P(\varnothing) = 0$$
 无限可加性 互补性
$$\text{If } A \cap B = \varnothing \text{ then } \qquad P(\overline{A}) = 1 - P(A)$$
 $P(A \cup B) = P(A) + P(B)$

概率之间存在如下运算:

1. 减法
$$P(A-B) = P(A) - P(AB)$$
 If $B \subset A, P(A-B) = P(A) - P(B)$.

2. 加法 3. 乘法
$$P(A \cup B) = P(A) + P(B) - P(AB) \qquad \qquad P(AB) = P(A)P(B \mid A)$$

1.4 条件概率

定义: 如果 P(A) > 0, 则条件概率为 $P(B \mid A) = \frac{P(AB)}{P(A)}$ 。

依此, 我们有两条推广式:

1.
$$P(B \cup C \mid A) = P(B \mid A) + P(C \mid A) - P(BC \mid A)$$

2.
$$P(B-C \mid A) = P(B \mid A) - P(BC \mid A)$$

1.5 全概率与贝叶斯公式

定义 (完备事件组): $S \coloneqq \{A_1, A_2, A_3, ..., A_n\}$ 是一个属于 Ω 的事件组,并且满足 $\forall A_1, A_2 \subset S, A_1 \cap A_2 = \emptyset, \land A_1 \cup A_2 \cup A_3 \cup ... \cup A_n = \Omega$,则 S 为一个完备事件组。

由定义,我们可以设B是一个随机事件, $\{A_1,A_2,...,A_i\}$ 是一个完备事件组,我们有:

公式 (全概率公式):

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B \mid A_i)$$
$$= \sum_{i=1}^{n} P(BA_i)$$

公式 (贝叶斯公式):

$$P(A_i \mid B) = \frac{P(A_i B)}{P(B)} = \frac{P(A_i)P(B \mid A_i)}{\sum_{i=1}^{n} P(A_i)P(B \mid A_i)}$$

1.6 事件的独立性

若 A, B 是相互独立事件,则有

$$\begin{split} P(A \mid B) &= P(A) \Leftrightarrow P(AB) = P(A)P(B) \\ &\Leftrightarrow P(B \mid A) = P\Big(B \mid \overline{A}\Big) \\ &\Leftrightarrow P\Big(B \mid \overline{A}\Big) = P(B) \end{split}$$

且 $A, \overline{A}, B, \overline{B}$ 也相互独立, 此外有

1.7 伯努利概型

定义 (伯努利实验): 实验只有两种可能结果 A, \overline{A} 的实验叫做伯努利实验。

公式 (二项概率公式):

$$\binom{n}{k} p^k (1-p)^{n-k}$$

2 随机变量及其分布

2.1 R.V. 和 分布函数

R.V. 是一个从随机试验 E 的样本空间 Ω 到 \mathbb{R} 的一个映射。

2.2 分布函数

定义: 设 X 是一个 R.V., r 是任意实数,则称事件 $\{X \le r\}$ 的概率为 R.V. X 的分布函数,计作 F(r)。

分布函数有如下性质:

性质:

- 1. $P\{x_1 < X \le x_2\} = P\{X \le x_2\} P\{X \le x_1\} = F(x_2) F(x_1)$.
- 2. F(x) 是一个不减函数
- 3. $F(-\infty) = 0, F(+\infty) = 1.$

2.3 离散型随机变量及其分布

定义:

超几何分布

$$\begin{split} P\{X=k\} \coloneqq \frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}, \ k \in \{1,2,3,\dots \min(M,N)\} \end{split}$$

$$\text{if if } X \sim H(N,M,n)$$

定理 (泊松定理): 当 $X \sim B(n,p)$ 且 n 充分大, p 充分小时

$$\binom{n}{k}p^k(1-p)^{n-k}\approx\frac{\lambda^ke^{-\lambda}}{k!},\lambda=np$$

2.4 连续型 R.V.

定义 (分布函数): 若 f(t) 是概率密度函数,则分布函数 F(x) 为

$$F(X) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

公式 (区间概率公式) : $F\{a < X < b\} = \int_a^b f(x) dx$

2.4.1 常见形式

定义 (均匀分布):

$$f(x) = \begin{cases} \frac{1}{b-a}, & b < x < a \\ 0, & \text{otherwise} \end{cases}$$

定义(指数分布):

$$f(x) = \begin{cases} \frac{1}{\lambda} e^{-\frac{x}{\lambda}}, & x > 0\\ 0, & \text{otherwize} \end{cases}$$

指数分布具有无记忆性, 即 $P\{x > t + T \mid x > t\} = P\{x > T\}$ 。

2.4.2 正态分布

定义 (正态分布): 计作 $X \sim N(\mu, \sigma^2), \sigma > 0$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

公式: $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{A}} dx = \sqrt{A\pi}, A > 0$

证明: 设 $X\sim N\left(0,\frac{A}{2}\right)$,因为概率分布函数具有规范性 $F(+\infty)=1$ 即 $\int_{-\infty}^{+\infty}f(x)=1$. 带入得

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{A\pi}} e^{-\frac{x^2}{A}} dx = 1$$
$$\frac{1}{\sqrt{A\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{A}} dx = 1$$
$$\int_{-\infty}^{+\infty} e^{-\frac{x^2}{A}} dx = \sqrt{A\pi}$$

定义 (标准正态分布): 当 $\mu=0,\sigma^2=1,X\sim N(0,1),x\in\mathbb{R}$ 时,其为标准正态分布。

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} - e^{\frac{x^2}{2}}$$

$$\Phi(x) = F(x) = \int_{-\infty}^{x} \varphi(t) dt$$

定义 (标准化): 若 $X \sim N(\mu, \sigma^2)$ 不满足标准正态分布,则 $\frac{X-\mu}{\sigma} \sim N(0,1)$

根据标准化,如果我们想要计算一个满足非标准化的正态分布的随机变量在范围 (a,b]上的概率,我们可以 X 先将其标准化为 $\frac{X-\mu}{\sigma}$ 并计算 $\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ 即可。

定义 (分位点): μ_{α} 表示 $P\{x > \mu_{\alpha}\} = \alpha$. 并且有 $\mu_{1-\alpha} = \mu(-\alpha)$.

2.5 随机变量的分布

对于离散型随机变量,我们可以先求出取值,在分别对对应的取值求出概率。而对于连续性随机变量,重点是求其密度函数:即已知 $X \sim f_X(x), Y = g(X)$,求 R.V.Y 的分布函数 $f_Y(y)$ 。 首先介绍根据分布函数求 R.V.Y 的 密度函数的方法:

公式 (根据分布函数法):

- 1. 首先,找到密度函数 $f_Y(y)$ 的分段点,一般有如下两种情况
 - 1. $f_X(x)$ 的分段点,带入 g(x) 后得到的 g 的值,和
 - 2. y = g(x) 的最值
- 2. 其次,根据以上分段点,求出区间 (l,r] 的 $F_V(y)$:

$$F_Y(y) = P\{Y \le y\} = P\{g(x) \le y\} = \int_1^r f_X(x) \, \mathrm{d}x$$

3. 最后,对求出的分布函数求导即可得到随机变量 y 的密度函数 $f_Y(y) = F_{Y}'(y)$ 。除此之外,还可以用下方的定理中的公式来进行求解:

公式: 设 $f_X(x)$ 随机变量 X 的密度函数,对于随机变量 Y 有 Y = g(X),且 g(X) 为单调函数,令 x = h(y) 是 y = g(x) 的反函数, α ,分别是 g(x) 的最小值和最大值。则 Y = g(X) 的密度函数 $f_Y(y)$ 为:

$$f_Y(y) = \begin{cases} f_X(h(y))|h'(y)|, & \alpha < y < \beta \\ 0 & , & \not \exists \text{ } \text{ } \text{ } \not \text{ } \text{ } \end{cases}$$

3 多维 R.V.

3.1 二维随机变量和联合分布函数

定义 (二维随机变量): 设随机试验 E 的样本空间 $\Omega = \{e\}$, X = X(e), Y = Y(e) 的定义在 Ω 上的随机变量,则 (X,Y) 为定义在 Ω 上的二维随机变量。

定义(联合分布函数): 设 $x, y \in \mathbb{R}$,则 x, y 的联合分布函数为事件 $\{X \le x\}$ 与事件 $\{Y \le y\}$ 同时发生的概率为二维随机变量的联合分布函数

$$F(x,y) = P\{(X \le x) \cup (Y \le y)\} \stackrel{\text{iff}}{=} P\{X \le x, Y \le y\}$$

随机变量的分布函数的几何意义为在二维坐标轴中, F(x,y) 为 $X \le x$ 与 $Y \le y$ 所围成的矩形 区域的面积。 易得,点 (X,Y) 落在 $\{(x,y) \mid x_1 < x \le x_2, y_1 < y \le y_2\}$ 区域的概率为 $F(x_2,y_2) - F(x_2,y_1) - F(x_1,y_2) + F(x_1,y_1)$ 。

3.2 连续型随机变量

定义(密度函数): 联合概率密度指的是对于二维随机变量 (X,Y),其概率分布函数为

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, \mathrm{d}u \, \mathrm{d}v$$

其中的非负函数 f(x,y) 即为联合概率密度。

二维随机变量的联合密度函数有如下性质:

性质:

3. 设G是平面xOy上的闭区域,则点(X,Y)落在G区域上的概率为

$$F\{(X,Y)\in G\}=\iint\limits_{C}f(x,y)\,\mathrm{d}x\,\mathrm{d}y$$

3.2.1 常见形式

定义 (均匀分布):

$$f(u,v) = \begin{cases} \frac{1}{S_G}, (u,v) \in G \\ 0, 其他 \end{cases}$$

定义 (二维正态分布):

3.3 边缘分布

定义 (分布函数): 设二维随机变量 (X,Y) 的联合分布函数为 F(X,Y), Ω 为完备事件组,则 $F_X(x) = P\{X \le x, \Omega\}$, $F_Y(y) = P\{\Omega, Y \le y\}$ 分别为 二维随机变量关于 X 或 Y 的边缘分布函数。

定义 (分布律 / 质量函数) : 已知 二维随机变量 (X,Y) 的分布律为 $P\{X,Y\} = P\{X = x_i \cap Y = y_i\}$ 则关于 X 的边缘分布律为

$$P_X(x) = \sum^i P(x,y_i)$$

定义(密度函数): 设 (X,Y) 的密度函数为 f(x,y) 则关于 X 的边缘密度函数和关于 Y 的边缘密度函数为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y, \qquad f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x$$

3.4 条件分布

定义 (分布律): 有二维随机变量 (X,Y)

$$P\big\{X=x_i\mid Y=y_j\big\}=\frac{P\big\{X=x_i,Y=y_j\big\}}{P_Y\big\{Y=y_j\big\}}$$

即为随机变量 X 在 $Y = y_i$ 下的条件分布律

定义(密度函数): 有二维随机变量 (X,Y) 及其联合概率密度 f(x,y),固定 Y=y,则随机变量 X 在 Y=y 条件下的概率密度函数为 $f_{X\mid Y}=\frac{f(x,y)}{f_{Y}(y)}$

3.5 独立性

定义: 有二维随机变量 (X,Y), $F(x,y)=F_X(y)F_Y(x)$ 满足独立。对于离散型随机变量,独立性在于是否满足 $P(x,y)=P_X(x)P_Y(y)$ 。对于连续性随机变量,在于其密度函数是否满足 $f(x,y)=f_X(x)f_Y(y)$ 。

3.6 二维连续型随机变量的分布

对于离散型随机变量,依旧是先求取值,再求概率。而对于两个连续型随机变量,我们有如下方法:

公式 (分布函数法): 有二维随机变量 (X,Y) 及其联合概率分布 f(x,y),已知 Z=g(X,Y),则 Z 的概率分布为

$$F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\} = P\{(X,Y) \mid g(X,Y) \le z\} = \iint\limits_G f(x,y) \,\mathrm{d}x \,\mathrm{d}y$$

或使用卷积公式:

公式 (卷积公式): 若随机变量 X, Z, Y 存在 Z = X + Y 关系,则

$$X,Y$$
 不独立
$$X,Y$$
 独立
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) \,\mathrm{d}x \qquad \qquad f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) \,\mathrm{d}x$$

证明: 对于 Z = X + Y

$$F_Z(z) = \int_{-\infty}^{+\infty} \mathrm{d}x \int_{-\infty}^{z-x} f(x,y) \, \mathrm{d}y$$

令 y + x = t 将二重积分中对 y 的积分换为对 t 的积分得

$$\int_{-\infty}^{+\infty} \mathrm{d}x \int_{-\infty}^{z} f(x, t - x) \, \mathrm{d}t$$

改变积分次序后得

$$\int_{-\infty}^{z} \left[\int_{-\infty}^{+\infty} f(x, t - x) \, \mathrm{d}x \right] \, \mathrm{d}t$$

要求 Z 的密度函数, 对变上限积分求导可得

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) \, \mathrm{d}x$$

若 (X,Y) 独立, 又有

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) \, \mathrm{d}x$$

4 随机变量的数字特征

4.1 数学期望

定义 (离散型): 对于离散型随机变量 X, 设 x_i 为其分布律的第 i 个取值,相应概率为 p_i ,则其数学期望(均值)为:

$$E(X) = \sum^i x_i p_i$$

定义(连续型): 若连续型随机变量 X 的密度函数为 $f_X(x)$ 则它的均值为

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) \, \mathrm{d}x$$

若要求 Y = g(X) 的均值,则

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x) f_X(x) \, \mathrm{d}x$$

若 Z = g(X,Y) 且二维随机变量 (X,Y) 有联合概率密度 f(x,y) 则

$$E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \,\mathrm{d}x\,\mathrm{d}y$$

性质: 有常数 C, 随机变量 X 与 Y:

- 1. E(C) = C
- 2. E(C+X) = C + E(X)
- 3. E(CX) = CE(X)
- 4. E(X + Y) = E(X) + E(Y)
- 5. 若 X, Y 独立,则 E(XY) = E(X)E(Y)

4.2 方差

定义: 方差为随机变量与其均值的距离的平方的均值即 $D(X) = E\left[(X - E(X))^2 \right]$, 其 用来表示 X 偏离其均值 E(X) 的程度大小。且方差 $D(X) \ge 0$ 。

公式 (方差计算公式): $D(X) = E(X^2) - E^2(X)$

性质: C 为常数

- 1. D(C) = 0
- 2. D(X + C) + D(X)
- 3. $D(CX) = C^2 D(X)$
- 4. D(X + Y) = D(X) + D(Y) 2[E(XY) E(X)E(Y)]

4.3 常见形式

定理 (0-1 分布): 若随机变量 X 服从 0-1 分布,则

$$E(X) = p, D(X) = p(1-p)$$

定理 (二项分布): 若随机变量 X 服从二项分布即 $X \sim B(n,p)$ 则

$$E(X) = np, \\ D(X) = np(1-p)$$

证明: 若随机变量 $X \sim B(n,p)$ 则其含义为 n 重伯努利实验中成功的次数即 $X = X_1 + X_2 + \ldots + X_n$,其中 X_i 表示第 i 次伯努利实验,每次伯努利实验独立且都有相同的 p,即 $E(X_i) = p$,则

$$\begin{split} E(X) &= E(X_1 + X_2 + \ldots + X_n) = np \\ D(X) &= D(X_1 + X_2 + \ldots + X_n) = np(1-p) \end{split}$$

定理 (泊松分布): 若随机变量 X 服从参数为 λ 的泊松分布即 $X \sim P(\lambda)$ 则

$$E(X) = D(X) = \lambda$$

定理 (均匀分布): 若 $X \sim U(a,b)$ 则

$$E(X) = \frac{a+b}{2}, D(X) = \frac{(b-a)^2}{12}$$

定理 (指数分布): 若 $X \sim e(\lambda)$ 则

$$E(X) = \frac{1}{\lambda}, D(X) = \frac{1}{\lambda^2}$$

定理 (正态分布): 若 $X \sim N(\mu, \sigma^2)$ 则

$$E(X)=\mu, D(X)=\sigma^2$$

4.4 协方差

定义 (协方差): 有二维随机变量 (X,Y), 称 E[(X-E(X))(Y-E(Y))] 为随机变量 (X,Y) 的协方差,通常计作 cov(X,Y) 即

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$
$$= E(XY) - E(X)E(Y)$$

特别的,相同变量的协方差为其方差 cov(X,X) = D(X)。

已知方差的性质 3: D(X+Y) = D(X) + D(Y) - 2[E(XY) - E(X)E(Y)], 我们将协方差的计算公式带入可得到 D(X+Y) = D(X) + D(Y) - 2cov(X,Y)。 协方差有以下性质

性质:

1.
$$cov(X,Y) = cov(Y,X)$$
 2. $cov(aX,bY) = ab cov(X,Y)$ a, b 为常数

3.
$$cov(X+Y,Z)=cov(X,Z)+cov(Y,Z)$$
 4. 若 X,Y 相互独立,则
$$cov(X,Y)=0$$

定义 (相关系数): 有随机变量 X,Y,则其相关系数为:

$$\rho_{XY} = \frac{\mathrm{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

相关系数有以下性质

性质:

- 1. $-1 \le \rho_{XY} \le 1$
- 2. 相关性
 - 1. 若相关系数 $\rho_{XY}=0$ 则称 X,Y 不相关
 - 2. 若 $\rho_{XY}=1$, 则称 X,Y 为正相关, y=ax+b,a>0
 - 3. 若 $\rho_{XY} = -1$, 则称 X, Y 为负相关, y = ax + b, a < 0

5 大数定律和中心极限定理

5.1 大数定律

定理 (切比雪夫不等式): 有随机变量 X 及其均值 E(X) 方差 D(X),存在任意正数 ε

$$P\{\mid X - E(X)\mid \geq \varepsilon\} \leq \frac{D(X)}{\varepsilon^2}$$

另有

$$P\{\mid X-E(X)\mid <\varepsilon\}\geq 1-\frac{D(X)}{\varepsilon^2}$$

定理 (切比雪夫大数定律): 设 $X_1,X_2,...,X_n$ 是相互独立的随机变量序列,且 $E(X_i),D(X_i)$ 均存在,且 $D(X_i)\leq C$,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ 则对于任意正数 ε ,有

$$\lim_{n\to +\infty} P \Big\{ |\ \overline{X} - E \Big(\overline{X} \Big) \ | < \varepsilon \Big\} = 1$$

$$\Leftrightarrow \overline{X}$$
 依概率收敛到 $E(\overline{X})$ 即: $\overline{X} \stackrel{P}{\longrightarrow} E(\overline{X})$

定理 (伯努利大数定律): 设 n_A 为 n 次独立重复试验中事件 A 发生的次数,且 P(A)=p,则对于任意正数 ε ,有

$$\begin{split} &\lim_{n \to +\infty} P \bigg\{ \mid \frac{n_A}{n} - p \mid < \varepsilon \bigg\} = 1 \\ \Leftrightarrow &\frac{n_A}{n} \stackrel{P}{\longrightarrow} p \end{split}$$

定理 (辛钦大数定律): 有随机变量序列 $X_1, X_2, ..., X_n$,随机变量间相互独立且服从 同一分布, $E(X_i)$ 存在,则对于任意正数 ε 有

$$\lim_{n \to +\infty} P \Big\{ | \ \overline{X} - E \Big(\overline{X} \Big) \ | < \varepsilon \Big\} = 1$$

$$\Leftrightarrow \overline{X} \stackrel{P}{\longrightarrow} E \Big(\overline{X} \Big)$$

5.2 中心极限定理

独立随机变量的和的分布当随机变量的个数足够大的时候,近似的服从正态分布。

定理 (独立同分布 (列维 – 林德伯格) 中心极限定理):

若一随机变量序列 $X_1,X_2,...,X_n$ 服从同一分布且具有相同的期望 $E(X_i)=\mu$,相同的方差 $D(X_i)=\sigma^2$,将 $\sum_{i=1}^n X_i$ 计作 η_n 则当 n 充分大的时候,有

$$\eta_n$$
 近似服从 $N(E(\eta_n),D(\eta_n))$
$$= N(n\mu,n\sigma^2)$$

又由正态分布的标准化可得

$$\frac{\sum_{i=1}^{n}X_{i}-n\mu}{\sqrt{n}\sigma}=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$$
 近似服从 $N(0,1)$

定理 (棣莫弗一拉普拉斯(De Moivre - Laplace)定理): 若随机变量 $X_n, n=1,2,...$ 服从参数为 n,p 的二项分布,也即随机变量 X 可以分为 n 的相互独立的随机变量 X_i 服从 0-1 分布,对于任意的 x 有

$$\lim_{n\to +\infty} P\bigg\{\frac{X_n-np}{\sqrt{np(1-p)}}\leq x\bigg\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2}}\,\mathrm{d}t = \Phi(x).$$

也即:当 n 充分大时, $\sum_{i=1}^n X_i$ 近似服从参数为 np 与 np(1-p) 的正态分布,进而 $\frac{\sum_{i=1}^n X_i - np}{\sqrt{np(1-p)}}$ 近似服从标准正态分布。

6 样本与抽样分布

6.1 基本概念

定义(样本): 设随机变量 X 服从分布 F,若随机变量序列 $X_1, X_2, ..., X_n$ 具有同一分布 F 且相互独立,则称这一随机变量序列为从总体 F 或总体 X 得到的容量为 n 的样本, $x_1, x_2, ..., x_n$ 为 X 的 n 个独立观测值。

反之,若一随机变量序列是总体 F 的一个样本,则序列中的随机变量同分布为 F,且相 万独立。

定义(经验分布函数): 有 样本 $x_1,x_2,...,x_n$,用 $S(x),-\infty < z < \infty$ 表示 $x_1,x_2,...,x_n$ 中不大于 x 的随机变量的个数,定义经验分布函数 F(z) 为

$$F_{n(x)} = \frac{1}{n}S(x), \quad -\infty < x < \infty$$

6.1.1 统计量

定义(统计量与统计量的观测值): 若有一随机变量序列 $X_1, X_2, ..., X_n$ 是总体 F 的一个容量为 n 的样本,则称不含有位置参数的函数函数 $g(X_1, X_2, ..., X_n)$ 为统计量。 由定义可知, $g(X_1, X_2, ..., X_n)$ 也是一个随机变量,若有 $x_1, x_2, ..., x_n$ 是样本的观测值,则 $g(x_1, x_2, ..., x_n)$ 是随机变量 $g(X_1, X_2, ..., X_n)$ 的观测值。

有总体 $X, E(X) = \mu, D(X) = \sigma^2$,下方为常见的统计量:

定义 (样本平均值):
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
. 根据定义可得 $E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n}$

定义 (样本方差):
$$S^2 = \frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 = \frac{1}{n-1}\left(\sum_{i=1}^n X_i^2 - n\overline{X}^2\right)$$
根据定义可得, $E(S^2) = D(X) = \sigma^2$

定义 (样本标准差):
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}$$

定义 (样本 k 阶原点矩):
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
, $k = 1, 2, 3, ...$

定义 (样本 k 阶中心矩) :
$$B_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^k, \quad k = 2, 3, \dots$$

6.2 抽样分布

抽样分布即为统计量为 $g(X_1,X_2,...,X_n)$ 的分布,在做题时题目一般会给出提示数据,可以查表求解。

6.2.1 χ^2 分布, t 分布和 F 分布

定义 (χ^2 分布): 设样本 $X_1, X_2, ..., X_n$ 相互独立,且均服从 N(0,1) 分布,则有 $X = X_1^2 + X_2^2 + ... + X_n^2$ 服从自由度为 n 的 χ^2 分布,即 $X \sim \chi^2(n)$ 。

 χ^2 分布有如下几条性质:

性质:

1. 可加性

2. 均值与方差

 $X+Y\sim\chi^2(n_1+n_2).$

若 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$ 则 若 $X \sim \chi^2(n)$, 则 E(X) = n, D(X) = 2n.

3. 上α分位点

在 χ^2 分布的密度图形中,当 $x=x_\alpha$ 时, $x>x_\alpha$ 的面积为 α , 称此点为上 α 分位点。 此时有 $P\{X > x_{\alpha}\} = \alpha$.

定义 (t 分布): 若有 $X \sim N(0,1), Y \sim \chi^2(n)$ 且相互独立,则

$$\frac{X}{\sqrt{\frac{Y}{n}}} = t \sim t(n)$$

定义 (F 分布): 若有 $X_1 \sim \chi^2(n_1), X_2 \sim \chi^2(n_2)$ 且相互独立,则

$$\frac{\frac{X_1}{n_1}}{\frac{X_2}{n_2}} = F \sim F(n_1,n_2)$$

与 χ^2 分布类似的, t 分布及 F 分布都具有上 α 分位点。

定义 (正态总体的样本均值与样本方差的分布): 设总体 $X \sim N(\mu, \sigma^2)$, $X_1, X_2, ..., X_n$ 为总体的一个样本,则

1. $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

2. $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$

3. \overline{X} 与 S^2 独立.

4. $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$

7 参数估计

7.1 点估计

定义: 已知总体 X 的分布,含有未知参数 θ ,用样本做参数来构造统计量 $\hat{\theta}(X_1, X_2, ..., X_n)$ 来估计 θ 。

由一阶矩估计(点估计)推广到 k 阶矩估计,由大数定理可得,当数量足够大时,样本矩趋近于总体矩,根据矩估计中用样本矩代替总体矩的思想,由总体的分布可以得到总体矩,接着用样本矩代替总体矩,也即构造未知参数 θ 与样本矩的等价关系。最后解得 $\hat{\theta}$ 即为矩估计量。

7.1.1 最大似然估计

基本思想是使得样本发生的概率最大的 $\hat{\theta}$ 即为最大似然估计。

在最大似然估计中,用似然函数去刻画样本出现的概率大小,对于离散型随机变量,其最大似 然函数即为样本间质量函数的积 Π^1 基本思想是使得样本发生的概率最大的 $\hat{\theta}$ 即为最大似然估计。

在最大似然估计中,用似然函数去刻画样本出现的概率大小,其形式如下:

$$L(\theta) = \prod_{i=0}^n P\{X = X_i\} \quad (离散型随机变量)$$

$$\prod_{i=0}^n f(x_i) \qquad (连续型随机变量)$$

在求解最大似然估计时,一般通过求导求其导数的驻点来得到 $\hat{\theta}$,对于连乘函数形式的似然函数而言,可以先等式两边同时取 **对数** 使连乘变为连加,再求导求驻点即 $\frac{\mathrm{d} \ln \mathrm{Li}(\theta)}{\mathrm{d} \theta} \triangleq 0$ 。

7.2 评选标准

- 1. 无偏性, 若 $E(\hat{\theta}) = \theta$ 则称 $\hat{\theta}$ 为无偏估计, 若 $\lim_{n \to \infty} E(\hat{\theta}) = \theta$ 则称为渐进无偏估计。
- 2. 有效性,若对于未知参数 θ 有两个估计量 $\hat{\theta}_1$ 与 $\hat{\theta}_2$,两者当中方差较小的估计量更有效。
- 3. 一致性, 若 n 趋于无穷时, 估计量以概率趋紧于未知参数, 则称估计量与为质量一致, 一般的, 若估计量的均值等于未知参数及具有无偏性, 估计量的方差趋近于零, 即具有有效性, 则满足估计量与未知参数具有一致性。

7.3 区间估计

定义(置信区间): 对于总体的一个未知参数
$$\theta$$
,存在一个 α ,使得 $P\left\{\hat{\theta}_1 < \theta < \hat{\theta}_2\right\} = 1 - \alpha$,则称 $\left(\hat{\theta}_1, \hat{\theta}_2\right)$ 为置信区间。

在求解置信区间时,通常先构造一个确定分布的含有参数 θ 的样本统计量,也称作枢轴量 J,根据其分布求出 $P\{a < J < b\} = 1 - \alpha$,的左右端点 a,b(一般是由其分布的函数图像总结而来,用上分位点表示),进而解出 θ 的置信区间。

在构造枢轴量时,可以根据正态总体的样本均值与样本方差的分布来进行构造。

8 附录 1: 常见的分布类型的期望与方差及证明

$$\frac{\lambda}{2} = \frac{\lambda}{2} = \frac{\lambda$$

4. 均匀分析
$$\dot{\mathcal{U}} \times \sim U(a, b) , \mathcal{M} = \underbrace{F(x) = \frac{a+b}{2}}_{p}, \quad D(x) = \underbrace{\frac{(b-a)^2}{12}}_{p}$$

$$\exists f \neq \hat{\mathcal{U}} : 0 \quad E(x) = \int_{-\infty}^{+\infty} \widehat{\mathcal{U}} f(x) \, dx = \int_{0}^{b} x \cdot \frac{1}{b \cdot u} \, dx = \frac{a+b}{2}$$

$$D(x) = \underbrace{E(x)}_{b} - E(x) = \int_{a}^{b} \underbrace{x^{2}}_{b-a} \frac{1}{b-a} dx - \underbrace{(a+b)^{2}}_{4}$$

$$= \underbrace{\frac{b^{2}-a^{2}}{3}}_{12} \cdot \underbrace{\frac{1}{b-a}}_{12} - \underbrace{\frac{(a+b)^{2}}{4}}_{12}$$

$$= \underbrace{\frac{(b-a)^{2}}{12}}_{12}$$

5 指数分布

设x~e(x), 则 E(x)=大,
$$D(x)=\frac{1}{\sqrt{2}}$$

$$\int_{0}^{\sqrt{2}} (x) = \int_{0}^{\sqrt{2}} x \cdot \int_{0}^{\sqrt{2}} (x) dx = \int_{0}^{\sqrt{2}}$$

$$\underbrace{E(X^{\lambda})}_{0} = \int_{0}^{+\infty} x^{\lambda} \cdot \lambda e^{-\lambda x} dx = -\int_{0}^{+\infty} x^{\lambda} de^{-\lambda x}$$

$$= -\left[(X^{\lambda}) e^{-\lambda x} \right]_{0}^{+\infty} - \int_{0}^{+\infty} e^{-\lambda x} dx^{\lambda}$$

$$= 2 \int_{0}^{+\infty} x \cdot e^{-\lambda x} dx$$

$$= 2 \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx$$

$$= 2 \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx$$

$$= 2 \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda^{2}}$$

:.
$$D(x) = E(x^2) - E(x) = \frac{\lambda}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

6. 正态分布

$$X \sim N(u, r^2)$$
 , 例 $E(x) = u$ $D(x) = \sigma^2$ $\int_{-\infty}^{(x)} (u + \sigma t) \int_{-\infty}^{\infty} (u + \sigma t) \int_$

$$= u \int_{-\infty}^{+\infty} \frac{1}{|x|} e^{-\frac{x^2}{2}} dt + \int_{-\infty}^{+\infty} \nabla t \cdot \frac{1}{|x|} e^{-\frac{x^2}{2}} dt = u + 0 = u$$

$$2 E(x^{2}) = \int_{-\infty}^{+\infty} x^{2} \frac{1}{[2\pi\sigma} e^{-\frac{(x-u)^{2}}{2}} dx \qquad 2 \frac{x^{2}-t}{\sigma^{2}-t} \int_{-\infty}^{+\infty} \frac{(u+\sigma t)^{2}}{[2\pi\sigma]} \frac{1}{[2\pi\sigma]} e^{-\frac{t^{2}}{2}} dx dt$$

$$= \int_{-\infty}^{+\infty} \frac{(u^{2}+2u\sigma t)}{[2\pi\sigma]} dt + \sigma^{2} \int_{-\infty}^{+\infty} t^{2} \frac{1}{[2\pi\sigma]} dt dt dt$$

$$= u^{2} \int_{-\infty}^{+\infty} \frac{1}{[2\pi\sigma]} e^{-\frac{t^{2}}{2}} dt + \sigma^{2} \int_{-\infty}^{+\infty} t^{2} \frac{1}{[2\pi\sigma]} e^{-\frac{t^{2}}{2}} dt dt dt$$

$$= u^{2} \int_{-\infty}^{+\infty} \frac{1}{[2\pi\sigma]} e^{-\frac{t^{2}}{2}} dt + \sigma^{2} \int_{-\infty}^{+\infty} t^{2} \frac{1}{[2\pi\sigma]} e^{-\frac{t^{2}}{2}} dt dt dt$$