Wasserstein gradient flow of two-layers ReLU networks

Victor Mercklé June 5, 2024

Contents

1	Implemented descents	2
	1.1 Gradient descent	2
	1.2 Proximal point	2
	1.2.1 dist = L2 sq	2
	1.2.2 dist = wasserstein2 sq	2
2	Small vs Big initialization in ReLU	2
3	direct result	2
4	simple result	2
5	Math introduction	3
	5.1 Gradient Flow	3
6	Gradient Flow vs Wasserstein GF	3
7	3 points example	4
8	Simple example 2D setting, grid jko	5
	8.1 JKO stepping with Dykstra's algorithm	6
9	Classic setup	6
10	Infinite width, using a measure: mean-field	7
	10.1 Algorithm, discretize the measure's space	7
	10.2 JKO	7
	10.3 Papers	8
	10.3.1 Grid problems	8

1 Implemented descents

- 1.1 Gradient descent
- 1.2 Proximal point
- 1.2.1 DIST = L2 so
- 1.2.2 dist = wasserstein2 sq

2 Small vs Big initialization in ReLU

Why is it that as the scale gets smaller, the training dynamic consist of an alignment phase and then a convergence phase?

Notation: Take a neuron $w \in \mathbb{R}^d$. The norm of the neuron is $||w||_2 = \sqrt{\sum_{i=1}^d w_i^2}$, the direction of a neuron is a vector of norm 1: $\frac{w}{||w||_2}$.

A training step is approximately $w^{(t+1)} = w^{(t)} + \gamma \mathbf{v}$ with γ a coefficient correlated with the current (t) output, labels, error and step size. However, it is not directly correlated to the norm of the neuron.

 $\mathbf{v} \in \mathbb{R}^d$ is a partial sum of training examples. It has its own norm and direction.

If $||w^{(0)}||$ is large, $w^{(1)}$ will be close to $w^{(0)} + \gamma \mathbf{v}$.

If $||w^{(0)}||$ is close to 0, $w^{(1)}$ will be close to equal to γ **v** as every coefficient of w is negligible compared to the update. Therefore, its direction will (after some updates) be dominated by **v**. The same for every neuron that activate the same data points. (Since activation pattern is entirely decided by direction, activation pattern will all converge to extremal vectors..)

Refs: (expés, some results) (Maennel et al., 2018), (the orthogonal paper) (Boursier et al., 2022). (incremental learning) (Berthier, 2022), (scaling path) (Neumayer et al., 2023).

3 direct result

Minimization of a linear combination of ('neurons' $\{\phi(\theta)\}_{\theta\in\Theta}$) through an unknown measure μ : $J^* = \min_{\mu \in \mathcal{M}(\Theta)} J(\mu) = R(\int \phi d\mu) + G(\mu)$

With *R* a convex loss function and *G* a convex regularizer, $\mathcal{M}(\Theta)$ the set of signed measures on the parameter space Θ .

Discretize the measure into m particles: $\min_{w \in \mathbb{R}^m} \int_{\theta \in \Theta^m} J_m(w, \theta) = J(\frac{1}{m} \sum_{i=1}^m w_i \delta_{\theta_i})$

Proved: if WGF cvg, it cvg to global minimizer. If $(w^{(m)}(t), \theta^{(m)}(t))_{t>0}$ are gradient flows for J_m then, with the corresponding measure $\mu_{m,t} = \frac{1}{m} \sum_{i=1}^m w_i^{(m)}(t) \sigma_{\theta_i^{(m)}(t)}$ (a WGF), $J(\mu_{m,t})$ cvg (with $m, t \to \inf$) to global minimizer of J.

p-Wasserstein distance between two measures $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$: $W_p(\mu, \nu)^p = \min_{\gamma \in \Pi(\mu, \nu)} \int |y - x|^p \mathrm{d}\gamma(x, y)$

4 SIMPLE RESULT

Cast the parameters $w \in \mathcal{W}^{d+1}$ into $r \in \mathbb{R}$, $\eta \in \mathcal{S}^d = w \in \mathbb{R}^{d+1}$, $||w||_2 = 1$ with $w = r \eta$. The two flows will have exactly the same dynamics.

Then measure $v = \frac{1}{m} \sum_{j=1}^{m} r_j^2 \sigma_v$ satisfy this PDE : $\partial_t v_t(\eta) = -4J(\eta|v_t) + \text{div}(v_t(\eta)\nabla J(\eta|v_t))$ (so it's a WGF)

Prediction functions : $h = \frac{1}{m} \sum_{j=1}^{m} \psi(w_j) = \frac{1}{m} \sum_{j=1}^{m} r_j^2 \psi(v_j)$

Theorem 1: if by taking $m \leftarrow \inf$ at t = 0, ν converges to ν_0 , then for any t, $\nu_{m,t}$ cvg to the unique WGF ν_t .

Theorem 2: Take a v_0 with a support that includes all directions at initialization, if WGF v_t cvg, it's to a global optimum.

5 Math introduction

5.1 Gradient Flow

Given a smooth function $a \rightarrow F(a)$, the gradient flow is gradient descent algorithm

$$a^{l+1} = a^l - \gamma \nabla F(a^l)$$

with a small enough γ . If F is not smooth, the gradient flow is the proximal-point algorithm

$$a^{l+1} = \text{Prox}_{\gamma F}^{\|\cdot\|}(a^{(l)} = \arg\min_{a} \frac{1}{2} \|a - a^{(l)}\|^2 + \gamma F(a)$$

with a small enough γ .

If F is defined on histograms, it makes sense to use the wasserstein distance W^p

6 Gradient Flow vs Wasserstein GF

Take a two layer ReLU network with m neurons. Each neuron has a trainable parameter $w_i \in \mathbb{R}^d$ and and a fixed output sign $\alpha_i \in \{-1,1\}$. Each of the n data points of dimension d-1 are augmented with a 1, so each sample is of dimension n. Each sample x_j is stored as a row $X \in \mathbb{R}^{n \times d}$ and is associated with a scalar label $y_i \in \mathbb{R}$.

The output of one neuron is: $x \in \mathbb{R}^d \to \max(0, \langle w_i, x \rangle) \alpha_i$, shorthand $\langle w_i, x \rangle_+ \alpha_i$.

The output of a network of m neurons on one data point is $f(x) = \sum_{i=1}^{m} \max(0, \langle w_i, x \rangle) \alpha_i$

We store the neuron trainable parameter w_i as the columns of $W \in \mathbb{R}^{d \times m}$. The loss for n data points

$$F(W) = \frac{1}{n} \sum_{j=1}^{n} (f(x_j) - y_j)^2$$

Discretized, unregularized gradient descent with $\lambda \in \mathbb{R}^+$ stepsize: (resolving the non differentiable points max(0,0) with 0 as gradient)

$$W^{t+1} = W^t - \lambda \nabla F(W^t)$$

Taking $\lambda \to 0$, we get the gradient flow.

Explicit discret gradient:

$$\frac{\partial F}{\partial w_i^t} = \frac{\alpha_i^t}{n} \sum_{j=1}^n e_j^t \ s_{i,j}^t \ x_j$$

With real $e_j^t = f(W^t) - y_j$ the "signed error on input j"

With boolean $s_{i,j}^t = \mathbb{1}_{\langle w_i^t, x_j \rangle > 0}$ the "is neuron *i* activating on datapoint *j*. The vector $s_i^t \in \{0,1\}^n$ would be the activation pattern of neuron *i* at time *t*.

Remark: the gradient of a neuron is a linear combination of the data points it activates. Discretized wasserstein prox step:

$$W^{t+1} = \operatorname*{arg\,min}_{W \in \mathbb{R}^{d \times m}} F(W) + \frac{1}{2\gamma} W_p(W; W^t))$$

EMD(POT library), d=squareeuclidian

$$W_2^2(W; W^t) = \min_{\gamma} \langle \gamma, M \rangle_F$$
s.t. $\gamma \mathbf{1} = W$

$$\gamma^\top \mathbf{1} = W^t$$

$$\gamma \ge 0$$

$$M_{i,j} = \|w_i - w_j\|_2^2$$

3 POINTS EXAMPLE

• Data: slope : a = 2

• Data:
$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} ax_1^1 \\ ax_2^1 \\ ax_3^1 \end{pmatrix}$

- Loss: $F(W) = \frac{1}{2n} \sum_{j=1}^{n} \left(\max(0, \langle w_1, X_j \rangle \alpha_1 y_j)^2 \right)$ Gradient: $\nabla F(W) = \left(\frac{\partial F}{\partial w_1} \right) = \frac{\alpha_1}{n} \sum_{j=1}^{n} e_j s_{1,j} X_j$ Algo: $W^{t+1} = W^t \nabla F(W^t)$

- Initialization: $W^0 = (w_1) = (1 \ 0), \alpha = (\alpha_1) = (1)$

Run gradient descent:

• Iteration 0:

$$-W^{0} = (1 \quad 0)$$

$$-s_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$-e = \begin{pmatrix} \langle w_{1}, x_{1} \rangle \alpha_{1} - y_{1} \\ \langle w_{1}, x_{2} \rangle \alpha_{1} - y_{2} \\ \langle w_{1}, x_{3} \rangle \alpha_{1} - y_{3} \end{pmatrix} = \begin{pmatrix} \langle (1 \quad 0), (1 \quad 1) \rangle - 2 \\ \langle (1 \quad 0), (2 \quad 1) \rangle - 4 \\ \langle (1 \quad 0), (4 \quad 1) \rangle - 8 \end{pmatrix} = \begin{pmatrix} 1 - 2 \\ 2 - 4 \\ 4 - 8 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -4 \end{pmatrix}$$

$$-e_{j} = \langle w_{1}, X_{j} \rangle \alpha_{1} - y_{j} = w_{1}^{1} x_{j} + w_{1}^{2} - a x_{j} = x_{j} (w_{1}^{1} - a) + w_{1}^{2}$$

$$-W^{1} = \begin{pmatrix} w_{1}^{1} & w_{1}^{2} \end{pmatrix} - \frac{1}{n} \sum_{j=1}^{3} (x_{j} (w_{1}^{1} - a) + w_{1}^{2}) X_{j}$$

$$-W^{1} = \begin{pmatrix} w_{1}^{1} & w_{1}^{2} \end{pmatrix} - \frac{1}{n} \sum_{j=1}^{3} (x_{j}^{2} (w_{1}^{1} - a) + x_{j} w_{1}^{2} - x_{j} (w_{1}^{1} - a) + w_{1}^{2})$$

$$-W^{1} = \begin{pmatrix} w_{1}^{1} - \frac{w_{1}^{2}}{n} (x_{1} + x_{2} + x_{3}) - \frac{(w_{1}^{1} - a)}{n} (x_{1}^{2} + x_{2}^{2} + x_{3}^{2}) & ok \end{pmatrix}$$

$$-b = \frac{x_{1} + x_{2} + x_{3}}{n} = 7/3, c = \frac{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}{n} = 21/3 = 7$$

$$-W^{1} = \begin{pmatrix} w_{1}^{1} - w_{1}^{2} b - (w_{1}^{1} - a)c & w_{1}^{2} - (w_{1}^{1} - a)b + w_{1}^{2} \end{pmatrix}$$

$$-W^{1} = \begin{pmatrix} w_{1}^{1} - w_{1}^{2} b - w_{1}^{1} c + ac & w_{1}^{2} - w_{1}^{1} b + w_{1}^{2} + ab \end{pmatrix}$$

$$-W^{1} = (1 - 0 - 7 + 14 & 0 - 7/3 + 0 + 14/3) = (8 \quad 7/3)$$

$$-W^{1} = W^{0} + 7 \begin{pmatrix} 1 & \frac{1}{3} \end{pmatrix}$$

$$-X_{1} + 2X_{2} + 4X_{3} = (1 + 4 + 16 \quad 1 + 2 + 4) = (21 \quad 7) = 7 \times 3 \begin{pmatrix} 1 & \frac{1}{2} \end{pmatrix}$$

8 Simple example 2D setting, grid jko

From one dimensional data, we add a dimension filled with ones to act as a bias for the first layer. The output of one ReLU neuron for one data point $(x, 1) \in \mathbb{R}^2$:

$$w, b, \alpha \in \mathbb{R} \to \max(0, wx + b)\alpha$$

The loss against labels $y_j \in \mathbb{R}$ using squared loss of the whole network of neurons is the double sum:

$$\mathcal{L} = \sum_{j=1}^{n} \left(\left(\sum_{i=1}^{m} \max(0, w_i x_j + b_i) \alpha_i \right) - y_j \right)^2$$

The mean-field limit of this network requires taking an infinite-width ReLU network where parameters are described by a measure μ , and its output by an integral:

$$\int_{\mathbb{R}^2} m((w,b);x) \, \mathrm{d}\mu((w,b))$$

To simplify things, we restrict α_i to $\{-1,1\}$ and to not be a trainable parameter anymore. We keep the same expressivity(as long as we provide both a positive($\alpha_i = 1$) and negative($\alpha_i = -1$) version of the neuron) but this change will slightly alter the training dynamic in some cases. For example , we can match the output of one neuron (of the original network) by simply scaling the first layer by the seconder layer (α):

$$\max(0, w_i x + b_i)\alpha_i = \max(0, |\alpha_i|(w_i x + b_i)) \operatorname{sign}(\alpha_i)$$

Our network with restricted α_i would describe this neuron using only two trainable parameters: $(|alpha_i|w_i, |\alpha_i|b_i)$ and fix its sign in the output.

The measure is on the parameter space. In order to do simulations we discretize the parameter space, by taking a uniform grid in \mathbb{R}^2 centered on (0,0): $(w_i,b_i)_{i=1,...m}$

We can see that we have the same output and expressivity as the regular ReLU network by taking a measure $\mu = \sum_{i=1}^{m} p_i \delta_{\theta_i = w_i}$ with $(\sum_i p_i = 1)$ and $m((w_i, b_i); x) = \max(0, w_i x + b_i) \alpha_i$, we have this equality:

$$\int_{\mathbb{R}^2} m((w,b);x) \mathrm{d}\mu((w,b)) = \sum_{i=1}^m \max(0,w_i x_j + b_i) \alpha_i p_i$$

In this case, the first layer is fixed: the change of direction $(\frac{-b_i}{w_i})$ and slope (w_i) of a neuron is described by a mass displacement from point A to point B.

The movemement is described by a PDE and simulated on a grid. Each point i of the grid has a weight $p_i \in \mathbb{R}$, and as a whole $p \in \mathbb{R}^m$ is the discretized distribution.

The same wasserstein gradient flow can be computed by this step:

$$\mu(t+1) = \underset{\mu \in \mathcal{M}(\Theta)}{\arg\min} F(\mu) + \frac{1}{2\gamma} W_2(\mu; \mu(t))$$

We tried different ways of computing the Wasserstein Gradient Flow.

• JKO stepping: entropic approximation on a fixed grid. Pros: not very dependant on dimension *d*. Cons: add another loop and more parameters to fine tune, introduce diffusion.

- Sliced Wasserstein: Pros: midly dependant on *d* without diffusion. Differentiable with pytorch. Cons: Parameters to tune, distance to true WS distance has to be studied
- Direct EMD distance from POT library. Pros: differentiable with pytorch. Cons: Might be slow with $\it d$

Preliminary results using the EMD distance indicate no particular differences between the gradient flow and the wasserstein gradient flow.

8.1 JKO STEPPING WITH DYKSTRA'S ALGORITHM

$$\begin{split} p_{t+1} &:= \operatorname{Prox}_{\tau f}^{W_{\gamma}}(p_t) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \ W_{\gamma}(p,q) + \tau f(p) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \left(\underset{\pi \in \Pi(p,q)}{\operatorname{min}} \langle c, \pi \rangle + \gamma E(\pi) \right) + \tau f(p) \end{split}$$

Where π is a mapping, c the ground cost for every point on the grid. When the ground cost between two points in the euclidian space is $c_{i,j} = ||x_i - x_j||^2$, (and $\gamma = 0$, f smooth...), this scheme formally discretize the above mentionned PDE.

To do the step above, we'll use a bregman splitting approach that replace the single implicit W_{γ} proximal step by many iterative KL implicit proximal steps. Specifically(?) Dykstra's algorithm for JKO stepping. This involve using the gibbs kernel: $\xi = e^{-\frac{\xi}{\gamma}} \in \mathbb{R}^{N \times N}_{+,*}$

Algorithm 1 JKOstep

```
1: p \leftarrow p_0 \in \mathbb{R}^m
 2: q_{\text{norm}} \leftarrow ||p||^2
3: a, b \leftarrow 1, 1 \in \mathbb{R}^m
                                                                                                                     ▶ Initialize vectors with ones
 4: for i \leftarrow 1 to T do
            p \leftarrow \operatorname{prox}_{\tau/\gamma}^{\mathrm{KL}}(\xi b)
             a \leftarrow p/(\xi b)
            ConstrEven \leftarrow \frac{\|b \cdot (\xi a) - q\|}{2}
 8:
             b \leftarrow q/(\xi a)
             ConstrOdd \leftarrow \frac{\|a \cdot (\xi b) - p\|}{2}
 9:
             if ConstrOdd < tol and ConstrEven < tol then
10:
                    break
11:
             end if
12:
13: end for
```

9 Classic setup

Data $x_j \in \mathbb{R}^d$ and labels $y_j \in \mathbb{R}$, j = 1,...,nFirst layer $w_i \in \mathbb{R}^d$, second layer $\alpha_i \in \mathbb{R}$, i = 1,...,m $\gamma > 0$ step-size, β regularization

$$\mathcal{L}(W,\alpha) = \sum_{j=1}^{n} \left(\underbrace{\sum_{i=1}^{m} \max(0, w_i^{\top} x_j) \alpha_i - y_j}^{2} + \lambda \underbrace{\sum_{i=1}^{m} ||w_i||_{2}^{2} + \alpha_i^{2}}_{\text{Weight Decay}} \right)$$

Discret time.

Full-batch gradient descent

$$(W, \alpha)_{t+1} = (W, \alpha)_t - \gamma \nabla \mathcal{L}((W, \alpha)_t)$$

Implicit

$$\theta_{t+1} = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}(\theta) + \frac{1}{2\gamma} \|\theta - \theta_t\|$$

Continuous time.

Taking $\gamma \to 0$, we get the gradient flow: $\frac{d\theta_t}{dt} = -\nabla \mathcal{L}(\theta_t)$. We make ReLU differentiable with $\sigma'(0) = 0$ as justified in (Boursier et al., 2022).

Infinite width, using a measure: mean-field

Mean-field limit(Chizat & Bach): For a sufficiently large width, the training dynamics of a NN can be coupled with the evolution of a probability distribution described by a PDE.

If [...] converges, with $m \to \infty$ (many-particle limit), our particles of interest converges to a Wasserstein gradient flow of F:

$$\partial \mu_t = -\operatorname{div}(v_t \mu_t)$$
 where $v_t \in -\partial F'(\mu_t)$

$$\int_{\Theta} m(\theta; x) \mathrm{d}\mu(\theta) = \frac{1}{m} \sum_{i=1}^{m} \langle w_i, x_j \rangle_+ \alpha_i$$

Different ways to use a measure to represent the neurons of a two layer network:

- $\Theta = \mathbb{R}^d \times \mathbb{R}$, measure $\mu = \frac{1}{m} \sum_{i=1}^m \delta_{\theta_i = (w_i, \alpha_i)}$, output of one neuron $m(\theta = (w, \alpha); x) = \langle x, w \rangle_+ \alpha$: (works, output matches discrete) $\Theta = \mathbb{R}^d$, measure $\mu = \frac{1}{m} \sum_{i=1}^m \alpha_i \delta_{\theta_i = w_i}$ output of one neuron $m(\theta = w; x) = \langle x, w \rangle_+$
- $\Theta = \mathbb{R}^d \times \mathbb{R}^d$, output of one neuron $m(\tilde{w}_+, \tilde{w}_-, x) = \langle \tilde{w}_+, x \rangle \langle \tilde{w}_-, x \rangle$ (works, separate
- $\Theta = (S^{d-1} \times \mathbb{R})$, output of one neuron $m((d, \tilde{\alpha}); x) = \tilde{\alpha} \langle d, x \rangle = \tilde{\alpha} \mathbb{1}_{\langle d, x \rangle > 0}$ (works), mapping: $d = \frac{w}{\|w\|}$ and $\tilde{\alpha} = \|w\|\alpha$. Gradient are not equal to discrete.

10.1 Algorithm, discretize the measure's space

Take a grid of N points in Θ , we can match the notation above by taking a neuron for each point of the grid m = N.

$$\mu(t+1) = \underset{\mu \in \mathcal{M}(\Theta)}{\arg\min} F(\mu) + \frac{1}{2\gamma} W_2(\mu; \mu(t))$$

10.2 JKO

What we compute by using the entropic JKO flow iterations.

$$\begin{split} \forall t > 0, p_{t+1} := & \operatorname{Prox}_{\tau f}^{W_{\gamma}}(p_t) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \ W_{\gamma}(p,q) + \tau f(p) \\ &= \underset{p \in \operatorname{simplex}}{\operatorname{arg\,min}} \left(\underset{\pi \in \Pi(p,q)}{\min} \langle c, \pi \rangle + \gamma E(\pi) \right) + \tau f(p) \end{split}$$

- Meta Optimal Transport (paper) and (code git): InputConvexNN to predict solution of OT problem
- JKOnet (paper) and (code git):
 - /models -> sinkhorn loss defined in loss.py, differentiable loop in fixed point.py
 - next step: trying to create the right Geometry object from OTT library, which is what's used for sinkhorn

10.3 Papers

The algo we try to implement

Paper with a specific case that doesn't match ours:

In the future, large-scale waserstein gradient flows

10.3.1 Grid Problems

The grid currently dictate the neuron's scale, giving multiple choices. One solution: duplicate each neuron, make one with a small scale and one with a very big scale.

References

Raphael Berthier. Incremental learning in diagonal linear networks. 2022. URL https://jmlr.org/papers/volume24/22-1395/22-1395.pdf.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of shallow relu networks for square loss and orthogonal inputs, 2022. URL http://arxiv.org/abs/2206.00939.

Lénaïc Chizat and Francis R. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Adv. Neural Inf. Process. Syst. 31 Annu. Conf. Neural Inf. Process. Syst. 2018 NeurIPS 2018 Dec. 3-8 2018 Montr. Can., pp. 3040–3050. URL https://proceedings.neurips.cc/paper/2018/hash/a1afc58c6ca9540d057299ec3016d726-Abstract.html.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relunetwork features. *arXiv preprint arXiv:1803.08367*, 2018.

Sebastian Neumayer, Lénaïc Chizat, and Michael Unser. On the effect of initialization: The scaling path of 2-layer neural networks, 2023. URL http://arxiv.org/abs/2303. 17805.