Predstavitev 1. domače naloge

Matija Mačus

Fakulteta za strojništvo

23. oktober 2023

Kazalo

Uvod

Oblikovanje programa

Grafični prikaz in komentar

Uvod

Uporaba generatorja naključnih števil v Matlabu:

- Naloga od nas zahteva, da s pomočjo metode Monte Carlo izračunamo pribljižno vrednost števila s pomočjo primerjave ploščine kroga in njemu očrtanega kvadrata. Ploščino ocenimo tako, da generiramo točke in preverimo ali se nahajajo znotraj kroga ali znotra očrtanega kvadrata.
- Kasneje pa z variacijo št. generiranih točk opazujemo numerično napako od točne vrednosti števila π .

Funckija calcpi()

Najprej oblikujemo funkcijo calcpi(), kateri predhodno določimo št. točk in radij izbranega kroga.

Nato v funkcijo vplejemo podfunkcijo areapi(nabor tock, R) in s pomočjo le te določimo ocenjeno vrednost π , napako in koordinate točk znotraj kroga.

Rezultat funkcije calcpi()

Funkcija nam vrne sledeč rezultat:

```
>> calc pi
Ocena m: 3.24
Napaka: 0.098407
Koordinate točk znotraj kroga:
   -0.1691
              0.2434
   -0.5277
              0.1854
   -0.2367
             -0.6517
   -0.0409
              0.5328
   -0.5451
              0.4318
   -0.1935
             -0.7803
   0.6316
             -0.5702
   0.1314
              0.5150
   0.0580
             -0.6649
   -0.4096
             -0.0265
   -0.7878
             -0.2198
   -0.3269
             -0.6357
   -0.6067
             -0.3261
   -0.0546
             -0.1625
   -0.0153
             -0.5800
   -0.5981
             -0.5055
   -0.0847
            -0.4814
```

Slika: Rezultat funkcije calcpi()

Anonimna funkcija

Navodilo od nas zahteva tudi, da oblikujemo anonimno funkcijo, ki ob klicu ovrednoti, ali predhodno naključno izbrani koordinati ležita na krožnici izbranega kroga. Funkcijo definiramo znotraj funkcije areapi():

Slika: Prikaz anonimne funkcije znotraj kode

Rezultat anonimne funkcije

Funkcija nam vrne sledeč rezultat:

```
x = 0.5; % Določite vrednost za x
y = 0.5; % Določite vrednost za y
% Uporaba funkcije za preverjanje
rezultat = na_loku(x, y);
if rezultat
disp(''Točka (', num2str(x), ', ', num2str(y), ') leži na loku krožnice z radijem R.']);
else
disp('Točka (', num2str(x), ', ', num2str(y), ') ne leži na loku krožnice z radijem R.']);
end
Točka (0.5, 0.5) leži na loku krožnice z radijem R.
```

Slika: Rezultat anonimne funkcije

Grafična predstavitev

Navodilo od nas zahteva tudi, da oblikujemo funkcijo, ki omogoča izris in grafično vizualizacijo obravnavanih naključno generiranih točk s pomočjo orodja scatter.

```
%Zapišemo funkcijo za izris grafa:
function izris_grafa(St_Tock, R)
    x = 2 * rand(St Tock. 1) - 1:
    y = 2 * rand(St Tock, 1) - 1;
    razdalia = sgrt(x.^2 + v.^2):
    tocke v = razdalia <= R:
    tocke_izven = razdalja > R;
    % Določimo barvo in obliko točk na grafu
    scatter(x(tocke_v), y(tocke_v), 50, 'blue', 'o', 'filled');
    hold on:
    scatter(x(tocke izven), y(tocke izven), 50, 'r', 'o');
    Plot_kroznice(R);
    axis equal;
    title('Razporeditev naključno generiranih točk');
    xlabel('X-os');
    vlabel('Y-os'):
    legend('Znotraj krožnice', 'Zunaj krožnice', 'Krožnica');
end
```

Slika: Prikaz kode za grafični izris

Grafi

Kot pričakovano, z večajem števila naključno generiranih točk izboljšujemo odstopanje rezultata od točne vrednosti števila π . Kodo areapi() lahko nadgradimo tudi tako, da določimo sprejemljivo mejo odstopanja in število generiranih točk iterativno povečujemo, dokler ne dosežemo želene natančnosti.

Grafični prikaz za 100 točk

Slika: Grafični prikaz za 100 točk

Grafični prikaz za 10000 točk

Slika: Grafični prikaz za 10000 točk