Математический Анализ 3 семестр

Данил Заблоцкий

15 сентября 2023 г.

Оглавление

1	Название		
	1.1	Название	2
	1.2	Производные высших порядков	3

Глава 1

Название

1.1 Название

Следствие. D - область в $\mathbb{R}^n,\ f:D\to\mathbb{R}$ дифференцируема на D и $\forall x\in D\ df(x)=0,$ то есть $\forall i\ \frac{\delta f}{\delta x_i}=0.$ Тогда f-const.

Доказательство. $x_0 \in D, \ B(x_0, \rho) \subset D, \ \forall x \in B(x_0, \rho), \ [x_0, x] \subset B(x_0, \rho) \subset D.$ $f(x) - f(x_0) = f'(\xi)(x - x_0).$ $f(x) - f(x_0) = 0 \Longrightarrow f(x) = f(x_0).$ Построим путь из точки x_0 к некоторой точке $x \in D, \ \gamma : [0;1] \to D, \ \gamma(0) = x_0, \ \gamma(1) = x.$ По определению пути, γ - непрерывна. Тогда $\exists \delta$:

$$\forall 0 \leqslant t \leqslant \delta \implies \forall x \in B(x_0, \rho), \quad \gamma(t) \in B(x_0, \rho) \implies f(\gamma(t)) = f(x_0), \ t \in [0, \delta]$$

Пусть $\Delta=\sup\delta\implies f(\gamma(\Delta))=f(x_0)$. Покажем, что $\Delta=1$. Пусть $\Delta<1(0+1)$. Построим шар $B(\gamma(\Delta),\rho_\Delta)\subset D$. Тогда $\exists\epsilon>0$:

$$\Delta - \epsilon < t < \Delta + \epsilon$$

Но тогда $f(\gamma(\Delta + \epsilon)) = f(x_0)$ (так как точка $\gamma(\Delta + \epsilon) \in B(\gamma(\Delta), \rho_{\Delta})$). Это противоречит с тем, что $\Delta = \sup \delta \implies \Delta = 1 \implies \gamma(1) = x, \ f(x) = f(x_0) \implies$ так как $x \in D$ - произвольная точка, то имеем, что $\forall x \in D$:

$$f(x) = f(x_0) \implies f(x) - const$$

Теорема 1.1.1 (Достаточное условие дифференцируемости функции). Пусть D - область в $\mathbb{R}^n,\ f:D\to\mathbb{R},\ f$ имеет непрерывную часть произведения в каждой окрестности точки $x\in D$.

Тогда f - дифференцируема в точке x.

Доказательство. Без ограничения общности, что окрестность точки $x_0 \in D$ является шаром $B(x_0,\rho) \subset D$.

Пусть $h: x_0 + h \in B(x_0, \rho)$. Здесь $x_0 = (x^1, x^2, \dots, x^n)$, $x_0 + h = (x^1 + h^1, x^2 + h^2, \dots, x^n + h^n)$. Заметим, что точки $x_1 = (x^1, x^2 + h^2, \dots, x^n + h^n)$, $x^2 = (x^1, x^2, \dots, x^n + h^n)$, \dots , $x_{n-1} = (x^1, x^2, \dots, x^{n-1}, x^n + h^n) \in B(x_0, \rho)$.

 $f(x_0, \rho).$ $f(x_0+h)-f(x_0) = f(x_0+h)-f(x_1)+f(x_1)-f(x_2)+f(x_2)-\ldots-f(x_{n-1})+f(x_{n-1})-f(x_0) = f(x^1+h^1, \ldots, x^n+h^n)-f(x^1, x^2+h^2, \ldots, x^n+h^n)+f(x^1, x^2+h^2, \ldots, x^n+h^n)-f(x^1, x^2, \ldots, x^n+h^n)+f(x^1, x^2, \ldots, x^n+h^n)+f(x^1, x^2, \ldots, x^n+h^n)-f(x^1, x^2, \ldots, x^n+h^n)+f(x^1, x^2, \ldots, x^n+h^n)-f(x^1, x^2, \ldots, x^n)=|Lagranj\ theorem\ for\ 1\ variable|=\frac{\delta f}{\delta x_1}(x^1+\theta^1h^1, x^2+h^2, \ldots, x^n+h^n)\cdot h^1+\frac{\delta f}{\delta x^2}(x^1, x^2+\theta^2h^2, \ldots, x^n+h^n)\cdot h^2+\ldots+\frac{\delta f}{\delta x^n}(x^1, x^2, \ldots, x^n+h^n)\cdot h^n.$

Используя непрерывность частных производных, запишем: $f(x_0+h)-f(x_0)=\frac{\delta f}{\delta x_1}(x^1,\,x^2,\,\ldots,\,x^n)\cdot h^1+\alpha^1(h^1)+\ldots+\frac{\delta f}{\delta x_n}(x^1,\,x^2,\,\ldots,\,x^n)\cdot h^2+\alpha^n(h^n),$ где $\alpha^1,\alpha^2,\ldots,\alpha^n$ стремятся к нулю при $h\to 0$. Это означает, что $f(x_0+h)-f(x_0)=L(x_0)\cdot h+\underset{h\to 0}{o}(h),$ где $L(x_0)=$

Это означает, что $f(x_0+h)-f(x_0)=L(x_0)\cdot h+\underset{h\to 0}{o}(h)$, где $L(x_0)=\frac{\delta f}{\delta x_1}(x_0)h^1+\ldots+\frac{\delta f}{\delta x^n}(x_0)\cdot h^n=df(x_0)$ \Longrightarrow по определению f(x) дифференцируема в точке x_0 .

1.2 Производные высших порядков

Определение 1.2.1 (Вторая производная по двум переменным). Пусть $f: D \to \mathbb{R}, \ D$ - область в \mathbb{R}^n . Производная по переменной x^i от производной по переменной x^j называется **второй производной** функции f по переменным x^i, x^j и обозначается:

$$\frac{\delta^2 f}{\delta x^i \delta x^j}(x), \quad f_{x^i x^j}''(x)$$

Теорема 1.2.1 (О смешанных производных). Пусть D - область в \mathbb{R}^n , $f: D \to \mathbb{R}, x \in D$, f имеет в D непрерывно смешанные производные (2-го порядка).

Тогда эти производные не зависят от порядка дифференцирования.

Доказательство. Пусть $\frac{\delta^2 f}{\delta x^i \delta x^j}$ и $\frac{\delta^2 f}{\delta x^j \delta x^i}$ - непрерывны в точке $x \in D$. Так как остальные переменные фиксированы, то можно считать, что f зависит только от двух переменных.

Тогда $D\subset\mathbb{R}^2,\ f:D\to\mathbb{R}$ и $\frac{\delta^2 f}{\delta x\delta y}$ и $\frac{\delta^2 f}{\delta y\delta x}$ - непрерывны в точке $x_0=(x,y)\in D.$

Покажем, что $\frac{\delta^2 f}{\delta x \delta y} = \frac{\delta^2 f}{\delta y \delta x}$.

Рассмотрим функции $\phi(t)=f(x+t\cdot\Delta x,\ y+\Delta y)-f(x+t\cdot\Delta x,\ y),\ \psi(t)=f(x+\Delta x,\ y+t\cdot\Delta y)-f(x,\ y+t\cdot\Delta y),\ t\in[0;1].$

Имеем, что $\phi(1) - \phi(0) = f(x + \Delta x, \ y + \Delta y) = f(x + \Delta x, \ y) - f(x, \ y + \Delta y) + f(x, \ y).$

$$\psi(1) - \psi(0) = f(x + \Delta x, \ y + \Delta y) - f(x, \ y + \Delta y) - f(x + \Delta x, \ y) + f(x, \ y).$$
 Тогда $\phi(1) - \phi(0) = \psi(1) - \psi(0).$