Linear representations, symmetric products and the commuting scheme

Francesco Vaccarino¹

DISPEA, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, ITALY

Abstract

We show that the ring of multisymmetric functions over a commutative ring is isomorphic to the ring generated by the coefficients of the characteristic polynomial of polynomials in commuting generic matrices. As a consequence we give a surjection from the ring of invariants of several matrices to the ring of multisymmetric functions generalizing a classical result of H.Weyl and F.Junker. We also find a surjection from the ring of invariants over the commuting scheme to the ring of multisymmetric functions. This surjection is an isomorphism over a characteristic zero field and induces an isomorphism at the level of reduced structures over an infinite field of positive characteristic.

1 Introduction

Let **K** be a commutative ring. For a **K**-algebra B we denote by $\operatorname{Mat}(n, B)$ be the B-module of $n \times n$ matrices with entries in B. We denote by I_n the $n \times n$ identity matrix.

Let $P = \mathbf{K}[y_1, \dots, y_m]$, $D = \mathbf{K}[x_{ik}]$ and $A = \mathbf{K}[\xi_{kij}]$ be the polynomial rings in variables $\{y_1, \dots, y_m\}$, $\{x_{ik} : i = 1, \dots, n, k = 1, \dots, m\}$ and $\{\xi_{kij} : i, j = 1, \dots, n, k = 1, \dots, m\}$ over the base ring \mathbf{K} .

Following C.Procesi [3,10] we introduce the generic matrices. Let $\xi_k = (\xi_{kij})$ be the $n \times n$ matrix whose (i,j) entry is ξ_{kij} for $i,j = 1,\ldots,n$ and $k = 1,\ldots,m$. We call ξ_1,\ldots,ξ_m the generic $n \times n$ matrices. We denote by $A_P = (1,\ldots,m)$

Email address: francesco.vaccarino@polito.it (Francesco Vaccarino).

 $^{^{1}\,}$ The author is partially supported by the Research Grant 199/2004 - Politecnico di Torino

 $\mathbf{K}[\xi'_{111},\ldots,\xi'_{m11},\xi'_{112}\ldots,\xi'_{mnn}]$ the residue algebra of A modulo the ideal generated by the relations obtained from the equation $\xi_k \xi_h = \xi_h \xi_k$ for $k, h = 1,\ldots,m$. Here ξ'_{kij} is the class of ξ_{kij} in A_P . We let $\xi'_k = (\xi'_{kij})$ be the $n \times n$ matrix with entries ξ'_{kij} for $i, j = 1,\ldots,n$ and $h = 1,\ldots,m$. We call ξ'_1,\ldots,ξ'_m the generic commuting $n \times n$ matrices.

There is an n-dimensional linear representation $\pi_P: P \to \operatorname{Mat}(n, A_P)$ given by mapping y_k to ξ'_k for $k = 1, \ldots, m$ (see [3], §1) The composition $\det \cdot \pi_P$ gives a multiplicative polynomial mapping $P \to A_P$ homogeneous of degree n, (see N.Bourbaki [1] A.IV.54).

We denote by $P^{\otimes n}$ the tensor product n times of P with itself. The symmetric group \mathfrak{S}_n acts on $P^{\otimes n}$ as a group of \mathbf{K} -algebra automorphisms by permuting the factors. We denote by $\mathrm{TS}^n P$ the invariants of $P^{\otimes n}$ under \mathfrak{S}_n . By N.Roby [13] there is a unique \mathbf{K} -algebra homomorphism $\alpha:\mathrm{TS}^n P\to A_P$ such that $\alpha(f(y_1,\ldots,y_m)^{\otimes n})=\det(\pi_P(f))=\det(f(\xi_1',\ldots,\xi_m'))$. Write

$$\det(tI_n - f(\xi_1', \dots, \xi_m')) = t^n + \sum_{k=1}^n (-1)^k \psi_k(f) t^{n-k}$$
(1)

to denote the characteristic polynomial of $\pi_P(f) = f(\xi'_1, \dots, \xi'_m)$. Let C_P be the subalgebra of A_P generated by the coefficients of the characteristic polynomial of $f(\xi'_1, \dots, \xi'_m)$ for $f \in P$.

We shall prove the following.

Theorem 1 The map $\alpha : TS^nP \to A_P$ gives an isomorphism

$$TS^n P \cong C_P$$

i.e. the ring of symmetric tensors of order n over a polynomial ring is isomorphic to the ring generated by the coefficients of the characteristic polynomial of polynomials in generic commuting matrices.

The symmetric group \mathfrak{S}_n acts on D by permuting the variables so that for $\sigma \in \mathfrak{S}_n$ we have $\sigma(x_{ik}) = x_{\sigma(i)k}$ for all i and k. We denote by $D^{\mathfrak{S}_n}$ the ring of the invariants for this action. It is called the ring of multisymmetric functions, see [15] for a recent reference. There is an obvious \mathfrak{S}_n —equivariant isomorphism $D \to P^{\otimes n}$ given by mapping x_{ik} to $1^{\otimes i-1} \otimes y_k \otimes 1^{\otimes n-i}$, therefore we have that $D^{\mathfrak{S}_n} \cong TS^n P$.

Remark 2 The proof of Theorem 1 will be based on Th.1 [15] that gives a generating set for the ring of multisymmetric functions over a commutative ring K. It can be also proved by using results due to D.Ziplies [17] and F.Junkers [7].

There is a surjective homomorphism of K-algebra $\Delta: A \to D$ given by

mapping ξ_{kij} to 0 if $i \neq j$ and to x_{ik} otherwise, for i, j = 1, ..., n and k = 1, ..., m. Observe that the (i, i) entry of $\xi_k \xi_h - \xi_h \xi_k$ belongs to $\ker \Delta$ for k, h = 1, ..., m. Thus Δ factors through a surjective algebra homomorphism $\Delta' : A_P \to D$ defined by mapping ξ'_{kij} to 0 if $i \neq j$ and to x_{ik} otherwise.

The general linear group $G = GL(n, \mathbf{K})$ acts on A via the action of simultaneous conjugation on m-tuples of matrices $Mat(n, \mathbf{K})^m$. Namely this action maps ξ_{kij} to the (i, j) entry of $g^{-1}\xi_k g$ for k = 1, ..., m and $g \in G$. Since $\xi_k \xi_h - \xi_h \xi_k = 0$ is invariant by conjugation by elements of G we have that the G acts as a group of automorphism also on A_P . We denote as usual by A_P^G the invariants for this action. We will prove the following Theorem.

Theorem 3 The restriction of Δ to A^{G} is a surjection onto $D^{\mathfrak{S}_{n}}(\cong TS^{n}P)$. The same holds for the restriction of Δ' to A_{P}^{G} .

When **K** is a characteristic zero field the restriction of Δ' to A_P^G gives an isomorphism $A_P^G \cong D^{\mathfrak{S}_n}$.

Let N_P denote the nilradical of A_P . When **K** is an infinite field of arbitrary characteristic Δ' induces an isomorphism between $(A_P/N_P)^G$ and $D^{\mathfrak{S}_n}$.

Remark 4 The proof of Theorem 3 it is based on the observation that $C_P \subset A_P^G$ together with Theorem 1. Over a characteristic zero field we have that $C_P = A_P^G$ following C.Procesi [10], K.Sibirskii [14], D.Mumford [9] and the result follows.

In the next section we prove Theorem 1. The third section contains the proof of Theorem 3, some corollaries and remarks.

Acknowledgements

I would like to thank C.Procesi and M.Brion for their hints and discussions. A special thanks to the referee for his suggestions and patience.

This paper has developed from the notes of the talk I gave at the AMS-Clay Summer Research Institute in Algebraic Geometry in Seattle in July 2005: I would like to thank the organizers for their invitation.

2 Determinant and symmetric tensors

We prove Theorem 1.

Let $\mathbf{K}[x_1,\ldots,x_n]$ be the polynomial ring in variables x_1,\ldots,x_n over \mathbf{K} . The symmetric group \mathfrak{S}_n acts on $\mathbf{K}[x_1,\ldots,x_n]$ by permuting the variables. The ring $\mathbf{K}[x_1,\ldots,x_n]^{\mathfrak{S}_n}$ of invariants for this action is called the ring of symmetric functions and it is generated by the elementary symmetric functions e_1,\ldots,e_n given by the generating function

$$\prod_{i=1}^{n} (t - x_i) = t^n + \sum_{k=1}^{n} (-1)^k e_k t^{n-k}$$

where the equality is calculated in $\mathbf{K}[t, x_1, \dots, x_n]$ with t an extra variable (see [8]).

Consider now an element $f \in P$, it gives a homomorphism $\rho_f : \mathbf{K}[x_1, \dots, x_n] \to D$ by mapping x_i to $f(x_{i1}, \dots, x_{im})$. We write $e_k(f)$ to denote $\rho_f(e_k)$ for $k = 1, \dots, n$.

Lemma 5 $D^{\mathfrak{S}_n}$ is generated by $e_1(f), \ldots, e_n(f)$ with f varying in the set of those monomials in P that are not a proper power of another one.

PROOF. Th.1[15]. □

Remark 6 Let δ_k be the $n \times n$ diagonal matrices with x_{1k}, \ldots, x_{nk} on the diagonal, for $k = 1, \ldots, m$. Consider $f(\delta_1, \ldots, \delta_m) \in \operatorname{Mat}(n, D)$, it is a diagonal matrix having diagonal entries $\rho_f(x_1), \ldots, \rho_f(x_n)$. Hence its characteristic polynomial has i-th coefficient $(-1)^i e_i(f)$ as observed in [15].

Lemma 7 There is a unique algebra homomorphism

$$\alpha: TS^nP \to C_P$$

such that $\alpha(f \otimes \cdots \otimes f) = \det(f(\xi'_1, \dots, \xi'_m))$ for all $f \in P$. The homomorphism α is surjective.

PROOF. The homomorphism α is the unique **K**-algebra homomorphism corresponding to $\det \cdot \pi_P$ which has been introduced in the paragraph just before Theorem 1. It remains only to prove that the image of α is C_P .

Let $\alpha^*: D^{\mathfrak{S}_n} \to A_P$ be the composition of the isomorphism $D^{\mathfrak{S}_n} \cong TS^nP$ with α . Let t be an extra variable we have the homomorphism

$$\beta = id_{\mathbf{K}[t]} \otimes \alpha^* : \mathbf{K}[t] \otimes D^{\mathfrak{S}_n} \to \mathbf{K}[t] \otimes A_P$$

such that (recall Remark 6)

$$\beta(\det(t \otimes 1 - 1 \otimes f(\delta_1, \dots, \delta_m))) = \beta(\prod_{i=1}^n (t \otimes 1 - 1 \otimes \rho_f(x_i)))$$

$$= t^n \otimes 1 + \sum_{k=1}^n (-1)^k t^{n-k} \otimes \alpha^*(e_k(f))$$

$$= t^n \otimes 1 + \sum_{k=1}^n (-1)^k t^{n-k} \otimes \psi_k(\pi_P(f))$$

therefore $\alpha(TS^nP) = C$ by Lemma 5. \square

Remark 8 The generating set recalled in Lemma 5 was also known, in essence, to D.Ziplies [17] and F.Junkers [7].

Lemma 9 Let $\Delta': A_P \to D$ be given by mapping ξ'_{kij} to 0 if $i \neq j$ and to x_{ik} otherwise. Then $\Delta'(C_P) = D^{\mathfrak{S}_n}$.

PROOF. The homomorphism $\Delta'_n : \operatorname{Mat}(n, A_P) \to \operatorname{Mat}(n, D)$ induced by Δ' is such that $\Delta'_n(\xi'_k) = \delta_k$ for $k = 1, \ldots, m$. Thus for $f(\xi'_1, \ldots, \xi'_m) \in \pi_P(P) \subset \operatorname{Mat}(n, A_P)$ we have that $\Delta'_n(f) = f(\delta_1, \ldots, \delta_m)$. Hence

$$\det(tI_n - \Delta'_n(f)) = \prod_{i=1}^n (t - \rho_f(x_i)) = t^n + \sum_{k=1}^n (-1)^k e_k(f) t^{n-k}$$
$$= t^n + \sum_{k=1}^n (-1)^k \Delta'(\psi_k(\pi_P(f))) t^{n-k}$$

Thus $\Delta'(C_P) = D^{\mathfrak{S}_n}$ by Lemma 5 and the Lemma follows. \square

Proof of Theorem 1 We have $\alpha^*\Delta' = id_{C_P}$ and $\Delta'\alpha^* = id_{D^{\mathfrak{S}_n}}$, thus the result follows thanks to the isomorphism $D^{\mathfrak{S}_n} \cong TS^nP$. \square

3 Invariants

We denote by $M = \operatorname{Mat}(n, \mathbf{K})^m$ the \mathbf{K} -module of m-tuples of $n \times n$ matrices. The general linear group G acts on M by simultaneous conjugation, so that an element $g \in G$ maps $(M_1, \ldots, M_m) \in M$ to $(gM_1g^{-1}, \ldots, gM_mg^{-1})$. This action induces another on A given by mapping ξ_{kij} to the (i, j) entry of $g^{-1}\xi_k g$ for $i, j = 1, \ldots, n, k = 1, \ldots, m$ and for all $g \in G$. We denote by A^G

the ring of invariants for this action. Let $F = \mathbf{K}\{z_1, \ldots, z_m\}$ be the free associative non commutative algebra on z_1, \ldots, z_m over the base ring \mathbf{K} . There is a linear representation $\pi_F : F \to \mathrm{Mat}(n,A)$ given by mapping z_k to ξ_k for $k = 1, \ldots, m$. Consider $\pi_F(f) = f(\xi_1, \ldots, \xi_m) \in \mathrm{Mat}(n,A)$ and let t be an extra variable, we write

$$\det(tI_n - f) = t^n + \sum_{i=1}^n (-1)^i \theta_i(f) t^{n-i}$$
(2)

We denote by C the subring of A generated by the coefficients $\theta_i(f)$ for $f \in F$. It is clear that $C \subset A^G$.

Remark 10 The previous paragraph is borrowed from [3].

Consider now the surjective homomorphism $\gamma: A \to A_P$. The kernel of γ is the ideal of A generated by the relations obtained from the equation $\xi_k \xi_h = \xi_h \xi_k$ for k, h = 1, ..., m and these are invariant. Thus A_P is a G-module and γ is G-equivariant and we have a homomorphism $\gamma: A^G \to A_P^G$. Furthermore one can check that $\gamma(\theta_k(\pi_F(f))) = \psi_k(f(\xi'_1, ..., \xi'_m))$ for all $f \in F$ and k = 1, ..., m so that $\gamma(C) = C_P \subset A_P^G$.

The symmetric group \mathfrak{S}_n is embedded in G via the permutation representation. Its image acts on A by restriction of the previous action by permuting the variables. Thus the ring of invariants for this action $A^{\mathfrak{S}_n}$ contains $A^{\mathfrak{G}}$. The kernel of $\Delta: A \to D$ is generated by the x_{kij} 's with $i \neq j$, therefore Δ is \mathfrak{S}_n —equivariant and we have a homomorphism $\Delta: A^G \to D^{\mathfrak{S}_n}$.

Clearly A_P is an \mathfrak{S}_n -module since it is a G-module and the homomorphism γ is \mathfrak{S}_n -equivariant because it is G-equivariant. Therefore Δ' is \mathfrak{S}_n -equivariant so that $\Delta'(A_P^G) \subset D^{\mathfrak{S}_n}$.

Lemma 11 Let **K** be a characteristic zero field. The general linear group G is linear reductive thus $A^{G} \to A_{P}^{G}$ is surjective.

PROOF. [9], Chapter 1, pag.26. \square

Lemma 12 Let **K** be a characteristic zero field. In this case $C = A^{G}$ hence $A_{P}^{G} = C_{P}$.

PROOF. C.Procesi and K.Sibirskiĭ[10,14] proved that $C = A^{G}$. The result follows from Lemma 11.

Proof of Theorem 3 Under the induced homomorphisms $\Delta_n : \operatorname{Mat}(n, A) \to \operatorname{Mat}(n, D)$ and $\Delta'_n : \operatorname{Mat}(n, A_P) \to \operatorname{Mat}(n, D)$ we have that $\delta_k = \Delta_n(\xi_k) = \operatorname{Mat}(n, D)$

 $\Delta'_n(\xi'_k)$ for $k=1,\ldots,m$. This implies $\Delta(C)=\Delta'(C_P)=D^{\mathfrak{S}_n}$. Since $C\subset A^{\mathrm{G}}$ and $C_P\subset A_P^{\mathrm{G}}$ we have that $\Delta(A^{\mathrm{G}})=\Delta'(A_P^{\mathrm{G}})=D^{\mathfrak{S}_n}$ as claimed in the statement.

Suppose now **K** is a characteristic zero field. We have $\Delta': A_P^{\mathbb{G}} \xrightarrow{\cong} D^{\mathfrak{S}_n}$ by Theorem 1, Lemma 11 and Lemma 12.

Recall that we denoted by N_P the nilradical of A_P , it is a G-module. Hence the action of G on A_P induces another on A_P/N_P so that the natural homomorphism $A_P \to A_P/N_P$ is G-equivariant. The homomorphism Δ' factors through a homomorphism $\Delta'': A_P/N_P \to D$ because D is reduced. Clearly $\Delta''((A_P/N_P)^G) = \Delta'(A_P^G) = D^{\mathfrak{S}_n}$.

We show now that $\Delta''(A_P/N_P)^G \xrightarrow{\cong} D^{\mathfrak{S}_n}$ when **K** is an infinite field of arbitrary characteristic. Let **k** be the algebraic closure of **K**. Recall that the rational points of $GL(n, \mathbf{K})$ are dense in the group GL(n, k) thus we can suppose **K** algebraically closed without any loss of generality (see [11], §6.1). Given a m-tuple (Z_1, \ldots, Z_m) of pairwise commuting matrices there is $g \in G$ such that $gZ_1 g^{-1}, \ldots, gZ_m g^{-1}$ are all in upper triangular form. Let then (M_1, \ldots, M_m) be a tuple of pairwise commuting matrices in upper triangular form. Consider now a 1-parameter subgroup λ of G. We choose λ such that

$$\lambda(t) = \begin{pmatrix} t^{a_1} & 0 & \dots & 0 \\ 0 & t^{a_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & t^{a_n} \end{pmatrix}$$

for some positive integers $a_1 > a_2 > \cdots > a_n$. For $i = 1, \ldots, m$ the map

$$\lambda_i : \mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^{n^2}, \ t \mapsto \lambda(t) M_i \lambda(t)^{-1}$$

can be extended to a regular map

$$\overline{\lambda}_i: \mathbb{A}^1 \to \mathbb{A}^{n^2}$$

which sends the origin of \mathbb{A}^1 to the diagonal matrix having the same diagonal elements as M_i . It is clear that the latter belongs to the closure of the orbit of M_i for $i=1,\ldots,n$. Thus we have that in the closure of the orbit of (M_1,\ldots,M_m) there is the (closed) orbit of the m-tuple of diagonal matrices obtained as above. Let now $f \in (A_P/N_P)^G$ be an invariant regular function such that $\Delta''(f) = 0$. Suppose f is not identically zero on the orbits of tuples of commuting matrices, then there is an orbit of a tuple of diagonal matrices over which $f \neq 0$ by continuity i.e. $\Delta''(f) \neq 0$. \square

Remark 13 A classical result due to F.Junker [7] and restated by H.Weyl [16] says that $D^{\mathfrak{S}_n}$ is generated by the restriction of traces to the diagonal matrices i.e. $A^{\mathfrak{G}} \to D^{\mathfrak{S}_n}$ is surjective over a characteristic zero field **K**. Theorem 3 generalizes Junker - Weyl's result to any commutative base ring.

Corollary 14 Let $R \cong P/I$ be a \mathbf{K} -algebra which is a flat \mathbf{K} -module. There are two surjective homomorphisms $A_P^G \to TS^nR$ and $A_P^G \to TS^nR$. are

PROOF. Since R is flat it is an inverse limit of free **K**-modules, then by Roby [12] IV, 5. Proposition IV. 5, and Bourbaki [1] Exercise 8(a), AIV. p.89, we have a surjective homomorphism $TS^nP \to TS^nR$. The result then follows from Theorem 3. \square

3.1 Characteristic zero

From now on K will be a characteristic zero field.

Corollary 15 The ideal N_P^G is the zero ideal and $A_P^G \cong (A_P/N_P)^G$.

PROOF. In characteristic zero we have $(A_P/N_P)^G \cong A_P^G/N_P^G$ since G is linear reductive. We also have $A_P^G = C_P$ and $C_P \cong D^{\mathfrak{S}_n} \cong (A_P/N_P)^G$ by Theorem 3. Hence $N_P^G = \{0\}$ and $A_P^G \cong (A_P/N_P)^G$. \square

Remark 16 Corollary 15 implies Theorem 3.3 [4] where $\mathbf{K} = \mathbb{C}$ and was also proved for $\mathbf{K} = \mathbb{C}$ and m = 2 by Gan and Ginzburg [6].

Remark 17 The affine scheme Spec A_P is called the commuting scheme. It is conjectured that it is reduced i.e. $N_P = 0$. Corollary 15 gives some support to this conjecture.

Remark 18 The ring D^{S_n} is Cohen-Macauley by the Eagon-Hochster theorem[5]. It is also Gorenstein by Lemma 7.1.7 [2]. Then also A_P^G is Cohen-Macauley and Gorenstein by Theorem 3.

Remark 19 C.Procesi told me that he has independently proved the part of Theorem 3 relative to the characteristic zero case in this way: from H. Weyl [16] one knows that $A^{G} \to D^{\mathfrak{S}_{n}}$ is onto. Characteristic zero implies $A^{G} \to A_{P}^{G}$ is onto and its kernel contains the traces of commutators of generic matrices. Theorem 1 and Theorem 2 in [15] jointly say that the kernel of $A^{G} \to D^{\mathfrak{S}_{n}}$ is generated by the traces of commutators of generic matrices hence $A_{P}^{G} \cong D^{\mathfrak{S}_{n}}$.

References

- [1] N.Bourbaki, Elements of mathematics Algebra II Chapters 4-7, Springer-Verlag, Berlin (1988)
- [2] M.Brion, S.Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics 231, Birhäuser
- [3] De Concini, C., Procesi, C., Reshetikhin, N., Rosso, M., Hopf algebras with trace and representations, Invent. Math. **161**, (2005) 1–44
- [4] M.Domokos, Multisymmetric syzygies, math.RT/0602303
- [5] J. A. Eagon, M. Hochster, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.
- [6] W.L.Gan, V.Ginzburg, Almost-commuting variety, D-modules, and Cherednik Algebras, IMRP Int. Math. Res. Pap. (2006), 1–54
- [7] F.Junker, Über symmetrische Functionen von mehreren Reihen von Veränderlichen, Math. Ann. 43 (1893), 225–270
- I.G.Macdonald, Symmetric Functions and Hall Polynomials second edition, Oxford mathematical monograph, Oxford 1995
- [9] D.Mumford, J.Fogarty, F.Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer-Verlag, Berlin, 1994
- [10] C.Procesi, The invariant theory of $n \times n$ matrices, Adv.Math. 19 (1976), 306–381
- [11] C.Procesi, Lie groups. An approach through invariants and representations, Universitext, Springer, New York, 2007
- [12] N.Roby, Lois polynômes et lois formelles en théorie des modules, Ann.Ecole Norm. Sup. 80 (1963), 213–348
- [13] N.Roby, Lois polynômes multiplicatives universelles, C. R. Math. Acad. Sci. Paris, 290 (1980), 869–871
- [14] Sibirskii, K. S.: Unitary and orthogonal invariants of matrices, Dokl. Akad. Nauk SSSR 172 (1967), 40–43
- [15] F.Vaccarino, The ring of multisymmetric functions, Ann. Inst. Fourier 55 (2005), 717–731
- [16] H.Weyl, The classical groups, Princeton University Press, Princeton N.J., 1946
- [17] D.Ziplies, Generators for the divided powers algebra of an algebra and trace identities, Beiträge Algebra Geom, 24 (1987) 9–27