第一章

第八节

函数的连续性与间断点

- 一、函数连续性的定义
- 二、函数的间断点

一、函数连续性的定义

定义: 设函数 y = f(x) 在 x_0 的某邻域内有定义,且

 $\lim_{x \to x_0} f(x) = f(x_0)$,则称函数 f(x) 在 x_0 连续.

可见,函数 f(x) 在点 x_0 连续必须具备下列条件:

- (1) f(x)在点 x_0 有定义,即 $f(x_0)$ 存在;
- (2) 极限 $\lim_{x\to x_0} f(x)$ 存在;
- (3) $\lim_{x \to x_0} f(x) = f(x_0).$

若 f(x) 在某区间上每一点都连续,则称它在该区间上连续,或称它为该区间上的连续函数。

在闭区间 [a,b] 上的连续函数的集合记作 C[a,b].

例如,
$$P(x) = a_0 + a_1 x + \dots + a_n x^n$$
 (有理整函数)
在 $(-\infty, +\infty)$ 上连续.

又如,有理分式函数
$$R(x) = \frac{P(x)}{Q(x)}$$

在其定义域内连续.

只要 $Q(x_0) \neq 0$,都有 $\lim_{x \to x_0} R(x) = R(x_0)$

对自变量的增量 $\Delta x = x - x_0$,有函数的增量

$$\Delta y = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$$

函数 f(x) 在点 x_0 连续有下列等价命题:

$$\lim_{x \to x_0} f(x) = f(x_0) \longrightarrow \lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$$

$$\lim_{\Delta x \to 0} \Delta y = 0$$

$$f(x_0^-) = f(x_0) = f(x_0^+)$$

左连续 右连续

例. 证明函数 $y = \sin x$ 在($-\infty$, $+\infty$)内连续.

$$\mathbf{i}\mathbf{E} \colon \forall x \in (-\infty, +\infty)$$

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2}\cos(x + \frac{\Delta x}{2})$$

$$|Dy| = 2\left|\sin\frac{Dx}{2}\right| \cos(x + \frac{Dx}{2})$$

$$\leq 2\left|\frac{\Delta x}{2}\right| \cdot 1 = |\Delta x| \xrightarrow{\Delta x \to 0} 0$$

即
$$\lim_{\Delta x \to 0} \Delta y = 0$$

这说明 $y = \sin x$ 在 $(-\infty, +\infty)$ 内连续.

同样可证: 函数 $y = \cos x$ 在($-\infty$, $+\infty$)内连续.

二、函数的间断点

设 f(x) 在点 x_0 的某去心邻域内有定义,则下列情形之一,函数 f(x) 在点 x_0 不连续:

- (1) 函数f(x)在 x_0 无定义;
- (2) 函数 f(x) 在 x_0 虽有定义,但 $\lim_{x\to x_0} f(x)$ 不存在;
- (3) 函数 f(x)在 x_0 虽有定义,且 $\lim_{x \to x_0} f(x)$ 存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$

这样的点 x_0 称为间断点.

间断点分类:

第一类间断点:

第二类间断点:

 $f(x_0^-)$ 及 $f(x_0^+)$ 中至少一个不存在,若其中有一个为 ∞ ,称 x_0 为无穷间断点.若其中有一个为振荡,称 x_0 为振荡间断点.

例如:

(1)
$$y = \tan x$$

 $x = \frac{\pi}{2}$ 为其无穷间断点.

$$(2) \quad y = \sin\frac{1}{x}$$

x=0 为其振荡间断点.

x=1为可去间断点.

(4)
$$y = f(x) = \begin{cases} x, & x \neq 1 \\ \frac{1}{2}, & x = 1 \end{cases}$$

显然
$$\lim_{x\to 1} f(x) = 1 \neq f(1)$$

x=1为其可去间断点.

(5)
$$y = f(x) = \begin{cases} x-1, & x < 0 \\ 0, & x = 0 \\ x+1, & x > 0 \end{cases}$$

$$f(0^-) = -1,$$
 $f(0^+) = 1$

x=0 为其跳跃间断点.

内容小结

1. f(x) 在点 x_0 连续的等价形式

$$\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$$

$$\iff f(x_0^-) = f(x_0) = f(x_0^+)$$

$$\text{ £ 连续} \qquad \text{ £ 连续}$$

2. f(x) 在点 x_0 间断的类型

第一类间断点 {可去间断点} 跳跃间断点 左右极限都存在

第二类间断点{无穷间断点}

左右极限至少有一 个不存在

思考与练习

1. 讨论函数 $f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$ 间断点的类型.

答案: x=1 是第一类可去间断点, x=2 是第二类无穷间断点.

2. 设
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x < 0 \\ a + x^2, & x \ge 0 \end{cases}$$
, $a = 0$ 时 $f(x)$ 为

连续函数.

提示:
$$f(0^-) = 0$$
, $f(0^+) = f(0) = a$

3. P65 题 3,*8

P65 题*8 提示:

$$f(x) = \frac{1}{\sin \pi x} + \frac{1}{\sin \frac{\pi}{x}}$$

作业 P65 4;5 备用题 确定函数 $f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$ 间断点的类型.

解: 间断点 x = 0, x = 1

Q
$$\lim_{x\to 0} f(x) = \infty$$
, ∴ $x = 0$ 为无穷间断点;

故 x=1 为跳跃间断点.

在 $x \neq 0,1$ 处, f(x)连续.

