МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Лабораторная работа 2.1

Опыт Франка-Герца

Авторы: Ирина Веретененко Б06-804

1 Введение

Цель работы: измерить энергии первого уровня атома гелия методом электронного возбуждения в динамическом и статическом режимах

В работе используются: трёхэлектродная лампа, заполненная гелием; блок источников питания; амперметр; выпрямитель; потенциометры; вольтметры; источник задерживающего напряжения - батарея 4,5 В; микроамперметр; ключ; осциллограф

1.1 Теория

В отличие от классической механики, в квантовой механике энергия, которой может обладать частица, находящаяся в потенциальной яме в связанном состоянии, принимает не непрерывные, а дискретные значения, причем наинизший (основной) уровень лежит выше дна ямы. Одним из простых опытов, подтверждающих существование дискретных уровней энергии атомов, является опыт Франка-Герца.

Опыт Франка-Герца

Принципиальная схема опыта изображена на рис. 1.

Рис. 1: Принципиальная схема опыта Франка-Герца

Ключевой элемент схемы - трёхэлектродная схема, заполненная одноатомным газом (в нашем случае гелием). Электроды выступают в качетсве катода, анода и коллектора соответственно. Принцип работы схемы:

- Катод нагревается, возникает термоэлектронная эмиссия и из катода 'вылетают' электроны;
- Анод задаёт разницу потенциалов между катодом и анодом, из-за которой между ними возникает постоянное электрическое поле. Электроны, вылетающие из катода, ускоряются в этом поле. При перемещении от катода к аноду электроны сталкиваются с атомами гелия. Если энергия электрона, налетающего на атом, недостаточна для того, чтобы перевести его в возбуждённое состояние (или ионизировать), то возможны только упругие соударения, при которых электроны почти не теряют энергии, потому что их масса много меньше массы атомов;

- При увеличении разности потенциалов между катодом и анодом энергия налетающих на атомы электронов также растёт и, в конце концов, оказывается достаточной для возбуждения атомов. При таких (неупругих) столкновениях кинетическая энергия налетающего электрона передаётся одному из электронов в атоме. Это вызывает переход электрона на свободный энергетический уровень (возбуждение) или отрыв этого электрона от атома (ионизация);
- После прохождения участка между катодом и анодом электроны оказываются между анодом и коллектором. Потенциал коллектора немного ниже, чем потенциал электрона создаётся небольшое задерживающее напряжение (около 1 В), и электроны, потерявшие большую часть своей энергии за счёт неупругих столкновений, не могут преодолеть его, в результате чего остаются на аноде. Те же электроны, которые сохранили свою кинетическую энергию, преодолевают задерживающий потенциал и попадают на коллектор. Ток коллектора, пропорциональный числу попадающих на него за секунду электронов, измеряется микроамперметром. При достижении разности потенциалов, при которой электроны начнут неупруго соударяться с атомами гелия, ток, регистрируемый на коллекторе, уменьшится на коллектор будет попадать меньшее количество электронов;
- При дальнейшем увеличении разности потенциалов между катодом и анодом (путём увеличения потенциала анода) электроны будут обладать энергией, достаточной для неупругого соударения с атомом и последующего попадания на коллектор. В какой-то момент электроны будут обладать достаточной энергией, чтобы дважды неупруго соударяться с атомами гелия при этом на коллекторе снова будет зарегистрировано уменьшение тока;
- Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния ΔV . Эти расстояния равны **энергии первого возбуждённого состояния**.

При определении энергии электронов по разности потенциалов следует иметь в виду, что из-за контактной разности потенциалов между катодом и анодом первый максимум не соответствует потенциалу первого возбуждённого уровня. Однако контактная разность потенциалов сдвигает все максимумы одинаково, так что расстояние между ними не меняется.

1.2 Экспериментальная установка и методики измерения

Рис. 2: Схема экспериментальной установки

В качестве трёхэлектродной лампы используется серийная лампа ионизационного манометра ЛМ-2, заполненная гелием до давления порядка 1 Торр, которая содержит:

- катод из вольфрама, нагреваемый переменным током. Напряжение ко всем электродам подводится от источников питания в блоке источников питания (БИП, расположение относительно лампы показано на рис. 3);
- **анод** двойную спираль, окружающую катод. На анод подаётся ускоряющее напряжение через выпрямитель, величина напряжения регулируется потенциометром и измеряется вольтметром;
- коллектор полый металлический цилиндр, соосный с катодом и анодом. Источник задерживающего напряжения батарея 4,5 В, величина напряжения также регулируется потенциометром и измеряется вольтметром.

Рис. 3: Блочная схема экспериментальной установки

Методики измерения зависимости тока коллектора от напряжения между катодом и анодом:

- Динамический режим режим, при котором ускоряющий потенциал подаётся с понижающего трансформатора Т (220/50~B), а ток коллектора регистрируется осциллографом, подключённым к нагрузочному резистору R;
- Статический режим режим, при котором напряжение V_a между катодом и анодом измеряется цифровым вольтметром B7-22A, а ток коллектора I_k измеряется микроамперметром, вся шкала которого соответствует току 100 мкA.

Схему можно переключать из статического режима в динамический режим с помощью сдвоенного ключа К3.

1.3 Ожидаемые результаты

Ожидаем получить двумя методами график, похожий на тот, который приведён ниже на рисунке.

Рис. 4: Схематический вид зависимости тока коллектора от напряжения на аноде

Расстояние ΔV , на которое соседние максимумы и минимумы отстоят друг от друга, и есть искомая энергия первого возбуждённого состояния.

2 Результаты эксперимента и обработка данных

2.1 Получение BAX на экране осциллографа (динамический режим измерений)

• Настроим установку и получим BAX на экране осциллографа для задерживающих напряжений между анодом и коллектором 4, 6 и 8В. На осциллограмме по оси х откладывается напряжение между катодом и анодом (цена деления - 5В/дел), по оси у - напряжение, пропорциональное току коллектора лампы (цена деления - 5мВ/дел).

Развертка осциллограммы производится справа налево. На осциллограммах видим прямой и обратный ход характеристик. Можно заметить, что при увеличении задерживающего потенциала ВАХ "сжимается"по оси тока, потому что меньшее число электронов проходит через задерживающую разность потенциалов и попадает на коллектор при том же ускоряющем напряжении между катодом и анодом. Это не должно помешать определить расстояние между пиками, которое, как и следовало ожидать, не меняется при изменении задерживающего потенциала.

• Найдем среднее расстояние между соседними максимумами V_1 и V_2 и по результатам расчета определим энергию возбуждения первого уровня атома Не. Для увеличения числа измерений проведем расчет по кривым прямого и обратного хода при всех значениях задерживающего напряжения.

U_3, B	V_1 , дел	${ m V}_2,$ дел	ΔV , дел
1	1,8	-1,2	3
4	2	-1,4	3,4
6	1,6	-1,4	3
	2	-1,6	3,6
8	1,6	-1,4	3
	2	-1,6	3,6

$$\Delta \bar{V} = \frac{\sum_{k=1}^{6} \Delta V_k}{6}$$

В погрешность вносит вклад неточность определения пика ($\sigma_1 V = 0.4$ дел - берем 2 маленьких деления) и погрешность среднего σ_2 :

$$\sigma \Delta V = \sqrt{\sigma_1^2 + \sigma_2^2}, \, \sigma_2 \Delta V = \sqrt{\frac{1}{6} \sum_{k=1}^{6} (\Delta V_k - \bar{\Delta V})^2}$$

$$\Delta V = (3.3 \pm 0.5)$$
дел $\Rightarrow \Delta V = (17 \pm 3)B$

• 1 эВ - это энергия, необходимая для переноса элементарного заряда (электрона) между точками с разностью потенциалов 1В. Поэтому искомая энергия возбуждения 1 уровня атома Не численно равна найденной ΔV

$$E_{\rm дин} = (17 \pm 3)$$
эВ

• Согласно табличным данным энергия возбуждения 1 уровня атома He E = 19.77эB. Таким образом, полученное значение совпадает с табличным в пределах погрешности.

2.2 Получение ВАХ в статическом режиме измерений

- Проведем измерение ВАХ лампы в статическом режиме для задерживающих напряжений $U_3=4,6,8$ В (аналогично динамическому режиму). Для измерения ускоряющего напряжения V между катодом и анодом будем использовать цифровой вольтметр GDM-8145 в режиме 200В (при этом погрешность измерений $\sigma V=0.04B$ (4 ед.мл.разряда)). Силу коллекторного тока I будем измерять с помощью аналогового микроамперметра с диапазоном измерений 100мкА (погрешность измерений $\sigma I=1$ мкА- цена деления прибора).
- Результаты измерений

4B		(ŝВ	8B		
V, A	І, мкА	V, A	І, мкА	V, A	І, мкА	
0,00	0	0,00	0,0	0,00	0,0	
1,84	2	2,10	0,5	4,28	0,5	
2,61	3	3,59	2	5,76	2	
3,64	4	5,04	4	7,85	5	
5,08	6	5,95	5	9,41	7	
6,32	8	7,41	7	10,40	9	
8,62	11	8,80	10	11,87	11	
9,88	13	10,43	12	12,63	12	
10,23	13	12,93	14	13,43	13	
11,14	15	13,70	15	14,24	14	
13,80	17	15,78	18	15,78	16	
14,45	18	16,90	20	16,90	17	
16,25	20	17,35	20	17,35	18	
17,90	22	18,86	22	19,25	20	
19,80	23	19,26	22	20,15	20	
20,20	23	19,85	22	21,21	20	
21,57	21	20,24	21	21,81	19	
22,31	20	21,02	21	22,65	18	
23,82	11	21,45	20	23,23	10	
24,50	11	23,82	8	24,24	5	
25,40	12	24,70	7	25,18	3	
26,30	13	25,41	8	25,70	3	
27,26	16	26,18	9	26,35	3	
27,87	17	27,04	11	26,82	4	
28,20	18	27,57	12	27,64	5	
29,20	22	28,16	14	27,75	5	

30,50	26	29,10	16	28,37	6
33,01	32	30,56	19	29,43	9
34,29	35	32,90	25	29,77	10
35,74	37	33,79	27	30,38	11
36,86	38	35,21	29	32,08	15
37,25	38	36,26	31	33,50	19
38,35	38	37,38	31	35,01	22
38,93	38	38,11	31	37,29	25
39,45	37	39,04	31	38,79	25
40,07	36	40,44	29	39,30	25
40,58	35	40,95	28	40,41	25
40,93	35	41,99	27	41,99	23
41,55	34	43,19	26	43,19	22
42,06	34	44,08	25	44,08	21
42,56	33	45,06	24		
43,47	33	46,02	24		
44,29	33	47,27	24		
44,98	33	48,32	24		
45,33	33	49,02	25		
46,17	33	50,50	26		
46,99	34	52,05	27		
48,05	34	54,21	29		
49,23	35	55,84	32		
50,92	37	57,91	34		
51,86	38	60,17	36		
54,28	41	62,81	36		
56,41	44	64,00	36		
58,76	47				

• Построим ВАХ для всех задерживающих потенциалов

Рис. 5: ВАХ при различных задерживающих потенциалах

Вид графиков согласуется с осциллограммами, полученными в динамическом режиме: видны 2 максимума (соответствующие одному и двум возбуждениям атома Не электроном), при увеличении задерживающего потенциала I уменьшается (при том же значении V).

• Для каждого задерживающего потенциала найдем ускоряющие напряжения V, соотвествующие пикам. Для этого в окрестности пиков фитируем BAX полиномом 2 степени $y = ax^2 + bx + c$ с учетом погрешностей по оси I (т.к. относительная погрешность по этой оси больше, чем по V).

• Значения V, отвечающие пикам, находятся следующим образом

$$V_{max} = -\frac{b}{2a}, \sigma V_{max} = V_{max} \sqrt{(\frac{\sigma a}{a})^2 + (\frac{\sigma b}{b})^2}$$

Тогда расстояние между пиками V_1 и V_2

$$\Delta V = V_2 - V_1, \sigma V = \sqrt{\sigma^2 V_1 + \sigma^2 V_2}$$

Результаты расчета:

U_3, B	V_1, B	$\sigma V_1, B$	V_2, B	$\sigma V_2, B$	$\Delta V, B$	$\sigma \Delta V, B$
0.4	19,51	0,45	37,60	3,38	18,08	3,41
0.6	19,24	2,91	37,67	3,89	18,43	4,86
0.8	19,88	1,18	38,85	0,46	18,97	1,27

• Рассчитаем среднее расстояние между пиками

$$\Delta \bar{V} = \frac{1}{3}(\Delta V_1 + \Delta V_2 + \Delta V_3), \sigma \Delta \bar{V} = \sqrt{\sigma_1^2 + \sigma_2^2}$$

где погрешности метода и среднего соотвественно:

$$\sigma_1^2 = \frac{\sigma^2 \Delta V_1 + \sigma^2 \Delta V_2 + \sigma^2 \Delta V_3}{3}, \sigma_2^2 = \frac{1}{3} \sum (\Delta V - \Delta \bar{V})^2$$

Rem: В результате расчета погрешность среднего оказалась на порядок меньше погрешности метода.

Итог:

$$\Delta V = (19 \pm 2)B \Rightarrow \boxed{E_{\text{ctat}} = (19 \pm 2)9B}$$

Данный результат согласуется с табличным значением.

3 Выводы

- В ходе работы с помощью измеренной ВАХ трехэлектродной лампы, заполненной гелием, экспериментально определено значение энергии первого уровня атома Не в динамическом и статическом режиме.
- Полученные результаты $E_{\text{дин}} = (17 \pm 3)$ эВ и $E_{\text{стат}} = (19 \pm 2)$ эВ хорошо согласуются друг с другом и с табличным значением E = 19.77эВ
- Статический метод измерения оказался более точным. В погрешность динамического метода основной вклад вносит погрешность определения пиков на экране осциллографа. В статическом методе неточность определяется, в первую очередь, погрешностью фитирования ВАХ для нахождения координат пиков (что точнее, чем определение по клеточкам на осциллограмме).