		solution of th	o oquation	loge	· log - (-	/v + 5 +	$\sqrt{x} = 0$
1/	The	solution of u	ie equation	105	1083(1	ATST	VX)-0
V	is (a)	x=2	(6)	(b)	x=4	ž.	(5)
pe-1		••	anjaje at Heritori		20, 11, 1	ull me !	y (
, and		equation $x^{\frac{3}{4}}$	$\log_2 x)^2 + \log_2 x$	$2 \times -\frac{5}{4}$	<i>[</i> 5]	ullan e	(6)
V.	The	equation x4	al mont	7	$=\sqrt{2}$		
	(a)	at least one re	at 100t roal colution	20	(5	1) 48	(5)
	(b)	exactly three in	estional solu	ition	w 50	Janin 5	102
	(c)	exactly one in	ational son	ınon	- 29	141, 149,141	ō
	(d)	complex roots	-f)	. ,			(E)
3.		equation \sqrt{x}	$+1-\sqrt{x-1}$				(J)
		no solution		(b)	one so		
5/10/21	(c)	two solution	11 - 2) - "	(d)	more th	nan two	solution.
4.	The	number of so	lution of lo	g ₄ (x	-1) = 10	$og_2(x-$	3) is
	(a)	3 - 1- 2	(4)	(b)	1	12.51	5)
	(c)	2	11/1	(d)	0		14)
_	Min	nber of real roo	ts of the eau	ation	$\sqrt{x} + \sqrt{x}$	$x-\sqrt{1-}$	x = 1 is
5.	(a)	0	ni thi /	(b)	7. (50)	itania at	1116
	(a)		2	(d)	31101	gnoled"	Σ*
,		e set of real	values of	2.47			≤3 and
6.				A St	100	+,100	(e)
		-1 ≥1 is					
77:	(a)	[2,4]	t wasens.	(b)	$(-\infty, 1)$	2]∪[4,	+∞)
651	(c)	[-2, 0] \cup [2, 4	ilan pakap	(d)	none o	f these	40
7.	The	set of real val	ues of x sat	isfyi	ng x -	1 -1	≤1 is
		[-1, 3]		(h)	[0,2]	100	(n)
	(a)	[-1, 3]				f these	96A
	(c)	[-1,1] squa	II y a	(u)	none o	.2	*
8.	The	solution set o	$f\left \frac{x+1}{x}\right +1$	(+1	$=\frac{(x+1)}{ x }$) is	101
		$\{x \mid x \ge 0\}$	1	(h)	$\{x \mid x >$	>0}∪{-	·1}
	(c)	<i>{</i> −1.1}	-	(d)	$\{x\}x \ge$	1 or x	≤ −1}
9.	The	system of eq	uation x -	1 +3	y = 4, x	- y-1	= 2 has
		No solution				1.1-2	t.).
	7 (A)	A unique solu				E 11.	(4)
		Two solution					
	(d)						

	The solution set of (a) $(3, +\infty)$		$(-1, 1) \cup (3, +\infty)$
		-5,	none of theses
	(c) $[-1, 1] \cup [3, +\infty]$		
11	The number of inte	aral colutions	of $\frac{x+2}{2} > \frac{1}{2}$ is
11.	The number of the	grai solutions	$x^2 + 1 = 2$
	(a) 4 (c) 3	(b)	5 Calcare
			none of these
12.		roots of the c	quation and only
	2- 1- x =1 is	43	PULL RESTRICTED THE LET
	(a) 1 (c) 5	(d)	3 (d) (d)
13.			The second of th
	x-1 + x+2 -	21 4 :-	
	(a) 0	(b)	and meeter will be
20	(c) 2	- 300	none of these
	x=4.	.51	ETA INTO
14.	The solution set of t	he inequality	$ x+2 - x-1 < x-\frac{3}{2}$ is
10	discer a di line i	3,00,000	100 1 1 ALION
	(a) $\left(\frac{9}{2}, \infty\right)$	(b)	$\left(-\infty, \frac{3}{2}\right)$ 0. The contraction
	(2)		
	(3)[-2]	(4)	1 3
	(c) $\left(-2, -\frac{3}{2}\right)$	(u)	[-1, -]
	-/		$\left(-1, \frac{3}{2}\right)$
15.	-/		
15.	The solution set of		
15.	The solution set of (a) (-2, 0)	the inequality	$\sqrt{5^{x+2}} > \left(\frac{1}{25}\right)^{1/x} $ is
15.	The solution set of	the inequality	$\sqrt{5^{x+2}} > \left(\frac{1}{25}\right)^{1/x} $ is
	The solution set of (a) (-2, 0) (c) (-5, 5)	the inequality (b) (d)	$75^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$
	The solution set of (a) (-2, 0) (c) (-5, 5) The solution set of	the inequality (b) (d)	$75^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$
	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^x - 3^{x+1} - 15 < 2$	the inequality (b) (d) the inequality	$\sqrt{5^{x+2}} > \left(\frac{1}{25}\right)^{1/x}$ is $(-2, 2)$ $(0, \infty)$
	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^x - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$	the inequality (b) (d) the inequality $0.9^{x} - 3^{x}$ is	$7 \cdot 5^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^{x} - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$	the inequality (d) (d) the inequality $3.9^{x} - 3^{x}$ is (b)	$7 \cdot 5^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$ $(1, \infty)$ 0none of these
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^{x} - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$	the inequality (d) (d) the inequality $3.9^{x} - 3^{x}$ is (b)	$7 \cdot 5^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$ $(1, \infty)$ 0none of these
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^{x} - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$ If $\left \frac{12x}{4x^{2} + 9}\right \ge 1$ for	the inequality (b) (d) the inequality $0.9^{x} - 3^{x}$ is (b) (d) all real values	$7 \cdot 5^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$ $(1, \infty)$ 0none of these
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^{x} - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$ If $\left \frac{12x}{4x^{2} + 9}\right \ge 1$ for	the inequality (b) (d) the inequality $0.9^{x} - 3^{x}$ is (b) (d) all real values	$7 \cdot 5^{x+2} > \left(\frac{1}{25}\right)^{1/x} \text{ is}$ $(-2, 2)$ $(0, \infty)$
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^x - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$ If $\left \frac{12x}{4x^2 + 9}\right \ge 1$ for satisfied only if $ x $	the inequality (b) (d) the inequality $2.9^{x} - 3^{x}$ is (b) (d) all real values is equal to	$(5^{x+2}) > \left(\frac{1}{25}\right)^{1/x}$ is (-2, 2) $(0, \infty)$ $(1, \infty)$ In one of these is of x, the inequality being
16.	The solution set of (a) $(-2, 0)$ (c) $(-5, 5)$ The solution set of $ 9^{x} - 3^{x+1} - 15 < 2$ (a) $(-\infty, 1)$ (c) $(-\infty, 1]$ If $\left \frac{12x}{4x^{2} + 9}\right \ge 1$ for	the inequality (b) (d) the inequality $2.9^{x} - 3^{x}$ is (b) (d) all real values is equal to	$(5^{x+2}) > \left(\frac{1}{25}\right)^{1/x}$ is (-2, 2) $(0, \infty)$ $(1, \infty)$ $(1, \infty)$ $(1, \infty)$ $(1, \infty)$ $(1, \infty)$ $(1, \infty)$ $(1, \infty)$

18. The number of solutions of the equation $4^{x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1}, x \in \mathbb{R}$ is (a) 0 (d) none of these (c) 2 19. The number of ordered pairs (x, y) satisfying $3^x \cdot 5^y = 75$ and $3^{y} \cdot 5^{x} = 45$ is (b) (d) none of these (c) 3 of the equation 20. Number of real solutions $(2+\sqrt{3})^{x^2-2x+1} + (2-\sqrt{3})^{x^2-2x-1} = \frac{2}{2-\sqrt{3}}$ is (a) 0 (b) (d) none of these (c) 2 21. The equation $|x+1|^{\log(x+1)(3+2x-x^2)} = (x-3)|x|$ has (a) unique solution (b) two solution (c) no solution (d) More than two solutions 22. The equation $log_3(3^x - 8) = 2 - x$ has the solution (a) x=1(b) x=2(c) x=3The number of real values of parameter k for which $(\log_{16} x)^2 - \log_{16} x + \log_{16} k = 0$ will have exactly one solution is (a) 0 (b) (c) 1 (d) 4 24. The set of real values of x for which $\log_{0.2} \frac{x+2}{x} \le 1$ is (a) $\left(-\infty, -\frac{5}{2}\right] \cup (0, \infty)$ (b) $\left[\frac{5}{2}, \infty\right)$ (c) $(-\infty, -2) \cup [0, \infty)$ (d) none of these 25. If $\log_{1/2} \frac{x^2 + 6x + 9}{2(x+1)} < -\log_2(x+1)$, then x lies in the interval (a) $(-1,-1+2\sqrt{2})$ (b) $(1-2\sqrt{2}, 2)$ (c) $(-1, \infty)$ (d) none of these

- 31. The equation ||x-1|+a|=4 can have real solutions for x if 'a' belongs to the interval

 - (a) $(-\infty, +\infty)$ (b) $(-\infty, 4]$
 - (c) $(4, +\infty)$

- (d) [-4, 4]
- The solution set of the equation $4\{x\} = x + [x]$, where $\{x\}$ and [x] denote the fractional and integral parts of a real number 'x' respectively, is
 - (a) {0}
- (b) $\left\{0, \frac{5}{3}\right\}$
- (c) [0, ∞)
- (d) none of these
- 33. For $x \in R$, $\langle x \rangle$ is defined as follows:

$$\langle x \rangle = \begin{cases} x+1, & 0 \le x < 2 \\ |x-4|, & x \ge 2 \end{cases}$$

- Then the solution set of the equation $\langle x \rangle^2 + x = \langle x \rangle + x^2$ is
- (a) {-1,1}

(c) [0, 2)

The state of the state of

			į.	
	•	Y		
		٩	7	

0

The least integer a, for which

 $1 + \log_5(x^2 + 1) \le \log_5(ax^2 + 4x + a)$ is true for all $x \in \mathbb{R}$ is

(a) 6

(c) 10 (d)

The integral value(s) of a for which the equation

$$(x^{2} + x + 2)^{2} - (a - 3)(x^{2} + x + 2)(x^{2} + x + 1)$$
$$+ (a - 4)(x^{2} + x + 1)^{2} = 0$$

has at least one real root is /are

(a) 5

(b)

(c) 4

(d) none of these

The set of all real numbers x for which $x^2 - [x+2] + x > 0$, is

(a)
$$(-\infty,-2)\cup(2,\infty)$$

(a)
$$\left(-\infty,-2\right)\cup\left(2,\infty\right)$$
 (b) $\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},\infty\right)$

(c)
$$(-\infty,-1)\cup(1,\infty)$$
 (d) $(\sqrt{2},\infty)$

(d)
$$\left(\sqrt{2},\infty\right)$$

Product of real roots of the equation $t^2x^2 + |x| + 9 = 0$

- (a) is always positive
- (b) is always negative

0

- (c) does not exist
- (d) none of these