Исследование функций. Построение графиков.

- 1. Найти интервалы возрастания и убывания функции $y = (x+1)\sqrt{x^2-1}$.
- 2. Найти максимум и минимум функции $y = (x^3 + 3x^2 + 6x + 6)e^{-x}$.
- 3. Найти интервалы выпуклости и точки перегиба функции $y=\arctan\frac{1}{x}$

4.

$$f(x) = \begin{cases} |x| \left(2 + \cos\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases} \quad g(x) = \begin{cases} e^{-\frac{1}{|x|}} \left(\frac{6}{5} + \cos\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Доказать:

- (a) f'(0) не существует, $g^{(n)}(0) = 0$ для всех натуральных n;
- (b) f(x) и g(x) имеют в точке $x_0 = 0$ строгий минимум;
- (c) f(x) и g(x) ни в каком интервале $(-\delta;0),\ \delta>0$ не являются убывающими и ни в каком интервале $(0;\delta),\ \delta>0$ не являются возрастающими.
- 5. Построить графики функций

a)
$$y = \frac{\sqrt{x^2 - 4x}}{2 - x}$$
, b) $y = \frac{x^2 + 2x - 3}{x}e^{1/x}$

Домашнее задание

- 1. Найти интервалы возрастания и убывания функции $y = \operatorname{arctg} x \ln x$.
- 2. Найти максимумы и минимумы функций

a)
$$y = (x^2 + 1) \arctan x - \frac{\pi}{4}x^2 - x$$
, b) $y = (x + 2)e^{1/x}$.

3.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases} \qquad g(x) = \begin{cases} xe^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Доказать:

- (a) $f^{(n)}(0) = g^{(n)}(0) = 0$ для всех натуральных n;
- (b) f(x) имеет в точке $x_0 = 0$ строгий минимум, g(x) в точке $x_0 = 0$ не имеет экстремума.
- 4. Найти наибольшее и наименьшее значение функции $y=|x^2+2x-3|+1, 5\ln x$ на отрезке [0,5;2].
- 5. Найти интервалы выпуклости и точки перегиба функции $y = \sqrt[3]{4x^3 12x}$.