1. Uvod

U uvodu trebaš objasniti šta ćeš razmatrati u svom radu, tj. koje ćeš aspekte DHCP protokola analizirati. Takođe, trebaš definisati problem koji rešavaš. Na primer:

- Problem: Kako se DHCP koristi za dinamičku dodelu IP adresa u mreži, i kako se DHCP može implementirati i analizirati pomoću Cisco Packet Tracer-a.
- Kako ćeš rešiti problem: U radu ćeš koristiti DHCP protokol u simulaciji Cisco Packet Tracer-a, analizirati razmenu poruka između DHCP servera i klijenata, i konfiguraciju DHCP-a za dodelu IP adresa.

Navedi strukturu rada, kao što je to definisano u zadatku:

- Poglavlje 1: Uvod u DHCP protokol, istorija i osnovne funkcionalnosti.
- Poglavlje 2: Detaljna analiza DHCP protokola, uključujući vrste poruka, zaglavlja, i razmenu poruka.
- Poglavlje 3: Praktičan primer konfiguracije i razmena poruka u Cisco Packet Tracer-u.
- Poglavlje 4: Zaključak, diskusija i mogući pravci za dalje istraživanje.

2. Poglavlje koje detaljnije predstavlja protokol

U ovom poglavlju trebaš objasniti osnovne karakteristike DHCP protokola:

- Namena: DHCP je protokol za automatsku dodelu IP adresa i drugih mrežnih konfiguracija (kao što su gateway, DNS serveri) klijentima u mreži.
- **Standard**: Navedi standarde kao što su RFC 2131 i RFC 2132, koji definišu kako DHCP funkcioniše.
- **Struktura poruka**: Objasni osnovnu strukturu DHCP poruka (kao što su DHCPDISCOVER, DHCPOFFER, DHCPREQUEST, DHCPACK, itd.).

- Primer: U prvoj fazi (DISCOVER), klijent šalje broadcast poruku DHCP serverima u mreži. U odgovoru, server šalje DHCPOFFER sa predlogom IP adrese.
- U fazi REQUEST, klijent bira jedan od ponuđenih servera i traži dodelu IP adrese.
- Vrste poruka: Detaljno objasni svaku od poruka u procesu dodele IP adrese:
 - DHCPDISCOVER
 - DHCPOFFER
 - DHCPREQUEST
 - DHCPACK
 - o DHCPDECLINE
 - o DHCPRELEASE
- **Upotreba poruka**: Opiši kako svaka od ovih poruka funkcioniše i kako se koristi tokom dodele IP adresa. Takođe, možeš spomenuti slične protokole kao što je BOOTP, koji je prethodnik DHCP-a.

3. Poglavlje o konfiguraciji u Cisco Packet Tracer-u

Ovde trebaš prikazati konkretan primer konfiguracije DHCP-a u Packet Tracer-u:

- **Kako se postavlja DHCP server**: Objavi korake kako konfigurišeš DHCP server u Packet Tracer-u (kako dodeliti pool IP adresa, postaviti lease time, default gateway, DNS, itd.).
 - o Primer: Konfiguracija DHCP servera može izgledati ovako:
 - Izaberi uređaj za server (npr. PC ili router u Packet Tracer-u).
 - U CLI (Command Line Interface) možeš postaviti DHCP server sa komandama kao što su:

Router> enable

Router# configure terminal

Router(config)# ip dhcp pool ExamplePool

Router(config-dhcp)# network 192.168.1.0 255.255.255.0

Router(config-dhcp)# default-router 192.168.1.1

Router(config-dhcp)# dns-server 8.8.8.8 Router(config-dhcp)# lease 7

- **Kreiranje DHCP klijenata**: Postavi nekoliko klijenata na mreži, konfiguriraj ih tako da automatski dobiju IP adresu putem DHCP-a.
 - Primer: Na klijentima postaviš opciju za automatsku dodelu IP adrese (DHCP) kroz GUI (Graphical User Interface) ili CLI.

• **Simulacija i analiza poruka**: Prikazivanje razmene poruka između DHCP servera i klijenata. Možeš koristiti Packet Tracer-ovu opciju "Simulation Mode" da vidiš razmenu poruka (DHCPDISCOVER, DHCPOFFER, itd.).

4. Zaključak

U zaključku trebaš sumirati šta si postigao u radu:

- Koji problem je rešen korišćenjem DHCP protokola.
- Koji je pristup korišćen za rešavanje problema (analiza protokola u Packet Tracer-u).
- Kako je DHCP implementiran u simulaciji.
- Na kraju možeš pomenuti moguća dalja istraživanja, kao što su implementacija DHCP-a u različitim mrežnim okruženjima, sigurnosni aspekti (npr. DHCP snooping), ili testiranje u većim mrežama.

Literatura

Za literaturu možeš navesti sledeće izvore:

- RFC 2131 Dynamic Host Configuration Protocol (DHCP)
- RFC 2132 DHCP Options and BOOTP Vendor Extensions
- Packet Tracer korisnički priručnik i zvanična dokumentacija Cisco-a
- "Networking Fundamentals" od Cisco Press-a
- "TCP/IP Illustrated" od W. Richard Stevens (ako je relevantno za dublje razumevanje TCP/IP protokola)
- William Stallings Data and Computer Communications

Ova struktura ti može pomoći da detaljno obuhvatiš sve aspekte DHCP protokola i njegovu primenu u mreži koristeći Cisco Packet Tracer.

Beleske

DHCP (Dynamic Host Configuration Protocol) omogućava automatsku dodelu IP adresa uređajima u mreži. Kada se klijent (računar, telefon, ruter) poveže na mrežu, on prolazi kroz sledeći proces kako bi dobio IP adresu od DHCP servera:

- 1. DHCP Discover (Otkrivanje servera):
 - Klijent, koji nema IP adresu, šalje broadcast poruku (paket) na adresu
 255.255.255 ili unicast na specifični DHCP server ako zna njegovu adresu.
 - Ova poruka traži dostupne DHCP servere.
- 2. DHCP Offer (Ponuda adrese)
 - DHCP server odgovara **DHCP Offer** porukom, u kojoj nudi IP adresu, masku podmreže, gateway, DNS servere i druge parametre.
 - Ako postoji više DHCP servera, klijent bira jednu ponudu.
- 3. DHCP Request (Zahtjev za adresom):
 - Klijent šalje DHCP Request poruku izabranom DHCP serveru da potvrdi prihvatanje ponude.
 - Ovaj paket je opet **broadcast**, kako bi i drugi serveri znali da njihova ponuda nije prihvaćena.
- 4. DHCP Acknowledgment (Potvrda i dodela adrese):
 - DHCP server šalje DHCP Acknowledgment (ACK) poruku sa potvrdom dodeljene IP adrese i dodatnim konfiguracionim parametrima.
 - Klijent sada može koristiti dodeljenu IP adresu.

Dodatni koraci:

- **DHCP Lease Time**: IP adresa nije dodeljena trajno, već na određeni period (npr. 24 sata). Nakon isteka ovog perioda, klijent može zatražiti produženje korišćenja iste adrese.
- **DHCP Renewal**: Klijent pokušava da obnovi zakup (lease) pre nego što istekne, kako bi zadržao istu IP adresu.
- **DHCP Release**: Ako klijent više ne treba IP adresu (npr. gasi se ili se isključuje iz mreže), može poslati **DHCP Release** poruku, oslobađajući adresu za druge uređaje.

U Cisco Packet Traceru, konfiguracija DHCP servera se obavlja komandama poput:

Router(config)# ip dhcp excluded-address 192.168.1.1 192.168.1.10
Router(config)# ip dhcp pool MOJA_MREZA
Router(dhcp-config)# network 192.168.1.0 255.255.255.0
Router(dhcp-config)# default-router 192.168.1.1
Router(dhcp-config)# dns-server 8.8.8.8

Ovim se podešava DHCP server koji dodeljuje IP adrese iz opsega **192.168.1.11 - 192.168.1.254**.

Poglavlje 1: Uvod u DHCP protokol, istorija i osnovne funkcionalnosti

1.1 Uvod u DHCP protokol

Dynamic Host Configuration Protocol (DHCP) je mrežni protokol koji omogućava automatsku dodelu IP adresa i drugih mrežnih parametara uređajima (kao što su gateway, DNS serveri) u IP mrežama. Njegova glavna svrha je eliminacija potrebe za ručnim konfigurisanjem IP adresa, čime se smanjuje mogućnost grešaka i povećava efikasnost

upravljanja mrežnim resursima. DHCP se najčešće koristi u lokalnim mrežama (LAN) i bežičnim mrežama (WLAN), ali je takođe prisutan i u širokopojasnim internet servisima.

1.2 Istorija razvoja DHCP protokola

Pre nego što je DHCP postao standard, IP adrese su se dodeljivale statički ili pomoću prethodnih metoda poput **Bootstrap Protocol (BOOTP)**. BOOTP je uveden 1985. godine, ali je imao ograničenja, jer nije podržavao dinamičku dodelu IP adresa.

DHCP je razvijen kao unapređenje BOOTP-a i prvi put standardizovan u dokumentu **RFC 1531** 1993. godine. Kasnije verzije protokola uključene su u **RFC 2131** (1997) i još neka dodatna unapređenja u RFC-ima koji su sledili. Danas je DHCP ključan deo modernih mreža i široko se koristi u svim vrstama mrežnih okruženja – od malih kućnih mreža do velikih korporativnih sistema.

1.3 Osnovne funkcionalnosti DHCP protokola

DHCP protokol omogućava:

- **Dinamičku dodelu IP adresa** uređaji automatski dobijaju slobodne IP adrese iz definisanog opsega.
- **Centralizovanu administraciju** IP adrese i mrežni parametri se konfigurišu na jednom mestu, smanjujući potrebu za ručnim podešavanjem svakog uređaja.
- Dodelu dodatnih mrežnih parametara osim IP adrese, DHCP može dodeliti i masku podmreže, podrazumevani gateway (default gateway), DNS servere, kao i druge postavke.
- **Podršku za statičke rezervacije** moguće je rezervisati određenu IP adresu za određeni uređaj (na osnovu MAC adrese).
- Ponovno korišćenje IP adresa nakon isteka lease time-a (vremena zakupa), IP adrese se mogu dodeliti novim uređajima.

1.4 Osnovna konfiguracija DHCP servera u Cisco okruženju

Cisco uređaji, poput rutera i L3 svičeva, mogu funkcionisati kao DHCP serveri, omogućavajući automatsku dodelu IP adresa klijentima u mreži.

Primer osnovne DHCP konfiguracije na Cisco ruteru:

1. Isključivanje statičkih IP adresa iz DHCP opsega

Router(config)# ip dhcp excluded-address 192.168.1.1 192.168.1.10

Ovim se sprečava dodela IP adresa iz opsega **192.168.1.1 – 192.168.1.10**, koje mogu biti rezervisane za statičke uređaje poput servera, rutera ili štampača.

2. Kreiranje DHCP pool-a (opsega IP adresa za dodelu)

Router(config)# ip dhcp pool MOJA_MREZA

Router(dhcp-config)# network 192.168.1.0 255.255.255.0

Router(dhcp-config)# default-router 192.168.1.1

Router(dhcp-config)# dns-server 8.8.8.8

Ovim se postavlja DHCP opseg u mreži **192.168.1.0/24**, gde će klijenti dobiti IP adrese iz raspoloživog opsega. Takođe, postavlja se podrazumevani gateway **192.168.1.1** i Google DNS server **8.8.8.8**.

3. Provera DHCP konfiguracije

Nakon podešavanja, možemo koristiti sledeće komande za provere:

• Prikaz trenutnih DHCP binding-a (klijenata koji su dobili IP adrese)

Router# show ip dhcp binding

Provera DHCP statistike i aktivnosti

Router# show ip dhcp server statistics

Ovim osnovnim podešavanjem, Cisco ruter može služiti kao DHCP server i automatski dodeljivati IP adrese klijentima u mreži.

Poglavlje 2: Detaljna analiza DHCP protokola, uključujući vrste poruka, zaglavlja, i razmenu poruka.

U ovom poglavlju analiziraćemo strukturu DHCP protokola, vrste poruka koje se koriste u komunikaciji između klijenata i servera, kao i format DHCP zaglavlja. Takođe ćemo detaljno objasniti proces razmene poruka tokom dodele IP adresa i upravljanja njima.

2.1 Vrste DHCP poruka

DHCP koristi osam osnovnih tipova poruka koje omogućavaju dinamičku konfiguraciju mrežnih uređaja:

Poruka	Opis		
DHCPDISCOVER	Klijent traži DHCP server koji može dodeliti IP adresu.		
DHCPOFFER	DHCP server odgovara klijentu sa predlogom IP adrese.		
DHCPREQUEST	Klijent potvrđuje izbor IP adrese koju želi da koristi.		
DHCPACK	DHCP server potvrđuje dodelu IP adrese i drugih parametara.		
DHCPNAK	DHCP server odbija zahtev (npr. ako adresa više nije dostupna).		
DHCPDECLINE	Klijent odbija dodeljenu IP adresu (npr. ako otkrije konflikt).		
DHCPRELEASE	Klijent vraća IP adresu nazad serveru kada mu više nije potrebna.		
DHCPINFORM	Klijent traži dodatne informacije od DHCP servera, ali ne i IP adresu.		

2.2 Struktura DHCP paketa

DHCP poruke koriste UDP protokol i obično se šalju na **port 67** (server) i **port 68** (klijent). Format DHCP paketa zasnovan je na BOOTP protokolu i izgleda ovako:

Polje	Veličina (Bajta)	Opis
Op (Operation)	1	Tip poruke (1 = Request, 2 = Reply)
Htype	1	Tip hardvera (npr. Ethernet = 1)
Hlen	1	Dužina hardverske adrese (npr. MAC =
		6 bajtova)
Hops	1	Broj hopova (obično 0)
Xid	4	Identifikacioni broj transakcije
Secs	2	Sekunde od pokretanja DHCP zahteva
Elogo	2	Polje za broadcast/unicast
Flags		podešavanje
Ciaddr	4	Klijentova trenutna IP adresa (ako
		postoji)
Yiaddr	4	IP adresa koju server dodeljuje klijentu
Siaddr	4	IP adresa sledećeg servera (npr. TFTP
Oldddi	7	server)
Giaddr	4	IP adresa DHCP relej agenta
Chaddr	16	MAC adresa klijenta
Sname	64	Ime servera (opciono)
File	128	Putanja do boot fajla (opciono)

Options	Varijabilno	DHCP opcije (npr. Lease Time, DNS, Gateway)
---------	-------------	--

2.3 Proces razmene DHCP poruka

Dodela IP adrese u DHCP mreži odvija se u četiri ključna koraka, poznata kao **DORA proces** (Discover - Offer - Request - Acknowledge).

2.3.1 DHCP Discover (Otkrivanje servera)

- Klijent, koji nema IP adresu, šalje broadcast poruku DHCPDISCOVER na 255.255.255 ili lokalni subnet.
- Poruka sadrži MAC adresu klijenta i traži dostupne DHCP servere.

2.3.2 DHCP Offer (Ponuda IP adrese)

- DHCP server koji primi **DHCPDISCOVER** odgovara **DHCPOFFER** porukom.
- Poruka sadrži predloženu IP adresu, masku podmreže, gateway, lease time i DNS servere.

2.3.3 DHCP Request (Zahtjev za adresom)

- Klijent prima ponudu i bira jedan server.
- Šalje **DHCPREQUEST** poruku da potvrdi prihvatanje određene IP adrese.

2.3.4 DHCP Acknowledgment (Potvrda dodele adrese)

- DHCP server šalje **DHCPACK** poruku sa potvrdom dodeljene IP adrese i dodatnim mrežnim parametrima.
- Klijent sada može koristiti IP adresu.

2.4 Obnavljanje (Renew) i vraćanje (Release) IP adrese

- Renewal (T1 Timer 50% lease time)
- Klijent pokušava da obnovi zakup IP adrese kontaktirajući isti DHCP server putem unicast poruke DHCPREQUEST.

• Rebinding (T2 Timer - 87.5% lease time)

Ako prethodni server ne odgovori, klijent kontaktira bilo koji dostupni DHCP server putem **broadcast** zahteva.

• DHCP Release

Ako uređaj više ne treba IP adresu (npr. isključuje se), šalje **DHCPRELEASE** kako bi oslobodio adresu.

2.5 DHCP Relay Agent (Prosleđivanje DHCP poruka)

U velikim mrežama, DHCP server se često ne nalazi u istom mrežnom segmentu kao klijenti. Zato se koristi **DHCP Relay Agent**, koji prosleđuje DHCP poruke između klijenata i servera.

Na Cisco ruteru, DHCP Relay Agent se konfiguriše komandom:

Router(config)# interface GigabitEthernet0/0 Router(config-if)# ip helper-address 192.168.1.100

Ovim se omogućava prosleđivanje DHCP zahteva na udaljeni DHCP server sa IP adresom **192.168.1.100**.