פונקציות ממשיות - חורף תשס"א - פתרון חלקי לגליון תרגילים מס' 2

m .IR -לm IR ל-m IR ל- m IR ל- m IR ל- m IR

פתרון: העוצמה היא (בהגדרה) $|\mathbb{R}|^{|\mathbb{R}|}$, וזה, ע"פ חוקי חשבון עוצמות: פתרון: $\mathcal{C}^{\mathcal{C}}=(2^{\aleph_0})^{\mathcal{C}}=2^{\aleph_0\cdot\mathcal{C}}=2^{\mathcal{C}}$

 \mathbb{R} -ל \mathbb{R} ל- \mathbb{R} ל- \mathbb{R} ל-את עוצמת אוסף הפונקציות הרציפות מ

פתרון: העוצמה המבוקשת היא עוצמת הרצף $\mathcal C$. היא לפחות $\mathcal C$ כי זוהי עוצמת אוסף הפונקציות f העוצמה המבוקשת היג עוצמת הרצף $\mathcal C$. לכל פונקציה f רציפה נתאים את f - הצמצום של הקבועות. נראה שהעוצמה אינה גדולה מ- $\mathcal C$. לכל פונקציה f על הרציונליים. התאמה זו היא חח"ע (כיוון ש- $\mathbb Q$ צפופה ב- $\mathbb R$, שתי פונקציות מ- $\mathbb Q$ ל- $\mathbb R$ שהיא הרציונליים הן שוות), ולכן העוצמה המבוקשת אינה גדולה מעוצמת כל הפונקציות מ- $\mathbb Q$ ל- $\mathbb R$ שהיא . $|\mathbb R|^{|\mathbb Q|} = \mathcal C^{\aleph_0} = \mathcal C$

 \mathbb{R} -ל \mathbb{R} ל- \mathbb{R} ל- מדידות בורל מ- ול \mathbb{R} ל-

פתרון: העוצמה המבוקשת היא עוצמת הרצף $\mathcal C$. ברור שהיא לפחות $\mathcal C$ (זו עוצמת הרציפות, הקבועות). נראה את האי-שוויון השני בשתי דרכים.

דרך $\{s_n\}$ מדידה בורל ניתן להתאים סדרה $\{s_n\}$ של פונקציות פשוטות ומדידות בורל כך בוך לכל $\{s_n\}$ לכל $\{s_n\}$ לכל $\{s_n\}$ ההתאמה היא בודאי חח"ע (מיחידות הגבול), ולכן העוצמה המבוקשת אינה גדולה מעוצמת אוסף כל הסדרות של פונקציות פשוטות ומדידות בורל. עוצמת אוסף קבוצות בורל היא $\{s_n\}$ (מדוע?). עוצמת אוסף כל הסדרות של פונקציות כאלה היא, אם-כן, $\{s_n\}$ בורל היא $\{s_n\}$ מדוע?). עוצמת אוסף כל הסדרות של פונקציות כאלה היא, אם-כן, $\{s_n\}$

דרך II: בהנתן f מדידה בורל נתאים לכל $g \in \mathbb{Q}$ את הקבוצה $f^{-1}([y,\infty))$. זוהי קבוצת בורל $y \in \mathbb{Q}$ מדידה בורל נתאים לכל $g(x) = x \in \mathbb{R}$ שי f(x) < g(x) שי f(x) < g(x) או יש f(x) < g(x) שי f(x) < y < g(x) או להפך). לכן העוצמה המבוקשת אינה גדולה מעוצמת כל הפונקציות מודעל בורל שהיא $f(x) = \mathcal{C}^{\aleph_0} = \mathcal{C}$ שי $g(x) = \mathcal{C}^{\aleph_0}$ בורל שהיא $g(x) = \mathcal{C}^{\aleph_0}$

. גזירה אז f' מדידה בורל. $f: \mathbb{R} \to \mathbb{R}$ מדידה בורל. 4

הוכחה: f גזירה, ולכן רציפה - ולכן לכל $n\in\mathbb{N}$ הפונקציה $f(x)=n[f(x+\frac{1}{n})-f(x)]$ היא הוכחה: f גזירה, ולכן רציפה - ולכן לכל $f'(x)=\lim_{n\to\infty}f_n(x)$ של פונקציות מדידות הוא פונקציה מדידה). \square

- . $A \cup B = X$ עם $A, B \subset X$ ו- f: X o Y נתונים פונקציה. 5
- אט צ"ל: אם $f|_B$ מדידות אז f מדידה. -נכון, כי איחוד של שתי קבוצות מדידות הוא קבוצה $f|_B$, $f|_A$ מדידה: $f^{-1}(G)=(f^{-1}(G)\cap A)\cup (f^{-1}(G)\cap B)$
- קבועה $f \equiv 0$ אם מדידות). דוגמא: f = A אם הכרח מדידות (אם A,B לא מדידות). דוגמא: f = A קבועה (ב) אם f = A אם מדידה וA = A לא מדידה וA = A
 - היא מדידה בורל. r(x) ב"ל: פונקציית רימן r(x) היא מדידה בורל.

הוכחה: נזכור שמכיוון שכל יחידון הוא קבוצת בורל, כל קבוצה טופית או בת-מנייה היא קבוצת בורל. לכל הוכחה: נזכור שמכיוון שכל יחידון הוא קבוצת בורל, כל קבוצה טופית או בת-מנייה לכל $f^{-1}(A)$ הקבוצה $f^{-1}(A)$ מכילה רק מספרים רציונליים ולכן היא (סופית או בת-מנייה לכל היותר $f^{-1}(A)$ מדידה בורל. אם $f^{-1}(A)$ מדידה בורל. בורל $f^{-1}(A)$ מדידה בורל.

בותל, אז f מדידה בורל. $f:\mathbb{R}\to\mathbb{R}$ בנות מנייה, לכל היותר, אז f מדידה בורל. $f:\mathbb{R}\to\mathbb{R}$ מדידה בורל. $f:\mathbb{R}\to\mathbb{R}$ אוסף נקודות האי-רציפות של $f:\mathbb{R}\to\mathbb{R}$ ותהי $f:\mathbb{R}\to\mathbb{R}$, אוסף נקודות האי-רציפות של $f:\mathbb{R}\to\mathbb{R}$ ותהי $g=f|_{A^c}$, כלומר - יש קבוצה פתוחה ולכן לכל קבוצה פתוחה $g^{-1}(U)$, הקבוצה $g^{-1}(U)=V\cap A^c$ כל ער ביש הייב קיבלנו: $g^{-1}(U)=V\cap A^c$

$$f^{-1}(U) = [f^{-1}(U) \cap A^c] \cup [f^{-1}(U) \cap A] = [V \cap A^c] \cap [f^{-1}(U) \cap A]$$

הקבוצות V (-פתוחה), A^c (- משלימתה בת-מנייה לכל היותר) ו- A^c (- בת-מנייה לכל היותר) כולן מדידות בורל, והטענה נובעת.

בו. f שאם f חסומה ומקיימת את תנאי הסעיף הקודם בקטע f אז f אינטגרבילית רימן בו. f פוכת ב"כ f באים לכל f באים לכל f באים הוכחה: קבוצה בא באיחוד בן מנייה f בעלת מידה (לבג) f אם לכל f אם לכל f מוכלת באיחוד בן מנייה של קטעים (סגורים/פתוחים) שסכום אורכיהם אינו עולה על f בעלה בע מנייה היא כזו (כסו את של קטעים f בעטעים f בעטעים שסכום אורכיהם אינו עולה על f בעטעים f

0 מידה בעל הוא בעל שאם פונקציה חסומה בקטע [a,b] ואוסף נקודות האי-רציפות שלה בקטע הוא בעל מידה אז אינטגרבילית רימן בקטע.

arepsilon>0 יהי $A\subset [a,b]$ אוסף נקודות האי-רציפות של $A\subset [a,b]$, ויהי $A\subset [a,b]$ חסם של $A\subset [a,b]$ אוסף נקודות האי-רציפות של $A\subset [a,b]$ מתקיים: $A\subset [a,b]$ יש קטע פתוח $A\subset [a,b]$ בן שלכל זוג נקודות $A\subset [a,b]$ מתקיים: $A\subset [a,b]$ בעלת מידה $A\subset [a,b]$ נוכל לקחת סדרת קטעים סגורים $A\subset [a,b]$ כן כיוון שהנחנו ש- $A\subset [a,b]$ בעלת מידה $A\subset [a,b]$ וולה על $A\subset [a,b]$ שכוברת ע"י הקצוות של הקטע הקומפקטי) ($A\subset [a,b]$ וולכן נוכל למצוא לו תת-כיסוי סופי. תהי $A\subset [a,b]$ שנוצרת ע"י הקצוות של קטעים אלו ויהיו $A\subset [a,b]$ סכומי דרבו התחתונים והעליונים המתקבלים מ- $A\subset [a,b]$ הם $A\subset [a,b]$ הם תת-קטעים של קטעים מהצורה $A\subset [a,b]$ את אורך הקטע $A\subset [a,b]$ הייו $A\subset [a,b]$ אורך הקטע $A\subset [a,b]$ בקטעים מהצורה $A\subset [a,b]$ אורך הקטע $A\subset [a,b]$ בקטעים מהצורה $A\subset [a,b]$ אורך הקטע $A\subset [a,b]$ בחנדת $A\subset [a,b]$ בחנדת חלוקה ובהג"כ $A\subset [a,b]$ בחנדת חלוקה ובחנדת חלים ובחנדת חלוקה ובחנדת חלוקה ובחנדת חלוקה ובחנדת חלוקה ובחנדת חלוקה וב

$$U - L = \sum_{i=1}^{n} \left[\sup_{K_{i}} f(x) - \inf_{K_{i}} f(x) \right] |K_{i}|$$

$$= \sum_{i=1}^{m} \left[\sup_{K_{i}} f(x) - \inf_{K_{i}} f(x) \right] |K_{i}| + \sum_{i=m+1}^{n} \left[\sup_{K_{i}} f(x) - \inf_{K_{i}} f(x) \right] |K_{i}|$$

$$\leq \sum_{i=1}^{m} 2\varepsilon |K_{i}| + \sum_{i=m+1}^{n} 2M |K_{i}| \leq 2\varepsilon |[a, b]| + 2M \sum_{i=1}^{\infty} |J_{n}| \leq 2\varepsilon (b - a) + 2\varepsilon.$$

.לומר - נוכל למצוא Π לוקה עם U-L קטן כרצוננו. מש"ל

- הערה: גם הכיוון ההפוך של טענה זו נכון, ההוכחה לא קשה והשיקולים דומים לאלה שעשינו כאן (הערה: גם הכיוון ההפוך. שתי הטענות ביחד – שפונקציה החסומה בקטע [a,b] אינטגרבילית רימן הם עובדים גם בכיוון ההפוך. שתי הטענות ביחד – שפונקציה החסומה בקטע [a,b] אינטגרבילית ר' בספר של בו אם"ם אוסף נקודות האי-רציפות שלה הוא בעל מידה [a,b] בו אם"ם אוסף נקודות האי-רציפות שלה הוא בעל מידה [a,b] לינדנשטראוס ע' [a,b] בספר של [a,b]