A factor is a special character vector where the elements have pre-defined groups or 'levels'. You can think of these as qualitative or categorical variables:

```
x <- c("yellow", "red", "red", "blue", "yellow", "blue")
class(x)

## [1] "character"

x_fact <- factor(x) # factor() is a function
class(x_fact)

## [1] "factor"</pre>
```

Factors have **levels** (character types do not).

```
x
## [1] "yellow" "red" "red" "blue" "yellow" "blue"
x_fact
## [1] yellow red red blue yellow blue
## Levels: blue red yellow
```

Note that levels are, by default, in alphanumerical order.

Extract the levels of a factor vector using levels():

```
levels(x_fact)
## [1] "blue" "red" "yellow"
```

forcats package

A package called forcats is really helpful for working with factors.

factor() vs as_factor()

factor() is from base R and as_factor() is from forcats

Both can change a variable to be of class factor.

- factor() will order alphanumerically unless told otherwise.
- as_factor() will order by first appearance unless told otherwise.

If you are assigning your levels manually either function is fine!

as_factor() function

```
x <- c("yellow", "red", "red", "blue", "yellow", "blue")
x_fact_2 <- as_factor(x)
x_fact_2

## [1] yellow red red blue yellow blue
## Levels: yellow red blue

## Compare to factor() method:
x_fact

## [1] yellow red red blue yellow blue
## Levels: blue red yellow</pre>
```

A Factor Example

We will use a slightly different version of the data on heat-related visits to the ER from the State of Colorado.

For today, we are looking at data that reports ER visits by age category.

```
er_visits_age <- read_csv("https://daseh.org/data/CO_ER_heat_visits_by_age.csv")

## Rows: 60 Columns: 6

## — Column specification —

## belimiter: ","

## chr (1): age

## dbl (5): year, rate, lower95cl, upper95cl, visits

##

## Duse `spec()` to retrieve the full column specification for this data.

## Decify the column types or set `show_col_types = FALSE` to quiet this message.</pre>
```

The data

head(er_visits_age)

```
## # A tibble: 6 × 6
                     rate lower95cl upper95cl visits
##
     year age
##
    <db1> <chr>
                    <dbl>
                             <fdb>>
                                      <fdb>>
                                            <dbl>
## 1 2011 0-4 years
                     3.52
                              1.82
                                       6.16
                                               12
## 2 2011 15-34 years 7.34
                              5.95
                                       8.74
                                              106
## 3 2011 35-64 years 5.84
                              4.80
                                       6.88
                                              121
## 4 2011 5-14 years 5.20
                              3.50
                                       6.90
                                               36
## 5 2011 65+ years 8.34
                              5.98
                                      10.7
                                               48
## 6 2012 0-4 years
                     3.58
                              1.85
                                       6.25
                                               12
```

Notice that age is a chr variable. This indicates that the values are **character** strings.

R does not realize that there is any order related to the AGE values. It will assume that it is **alphanumeric** (for numbers, this means ascending order).

However, we know that the order is: 0-4 years old, 5-14 years old, 15-34 years old, 35-64 years old, and 65+ years old.

For the next steps, let's take a subset of data.

Use set.seed() to take the same random sample each time.

```
set.seed(123)
er_visits_age_subset <- slice_sample(er_visits_age, n = 32)</pre>
```

Plot the data

Let's make a plot first.

```
er_visits_age_subset %>%
  ggplot(mapping = aes(x = age, y = rate)) +
  geom_boxplot() +
  theme_bw(base_size = 12) # make all labels size 12
```


OK this is very useful, but it is a bit difficult to read. We expect the values to be plotted by the order that we know, not by alphabetical order.

Change to factor

Currently age is class character but let's change that to class factor which allows us to specify the levels or order of the values.

```
er_visits_age_fct <-
    er_visits_age_subset %>%
    mutate(age = factor(age,
        levels = c("0-4 years", "5-14 years", "15-34 years", "35-64 years", "65+ yea
    ))
er_visits_age_fct %>%
    pull(age) %>%
    levels()
## [1] "0-4 years" "5-14 years" "15-34 years" "35-64 years" "65+ years"
```

Change to a factor

head(er_visits_age_fct)

```
## # A tibble: 6 × 6
##
                      rate lower95cl upper95cl visits
     year age
    <dbl> <fct>
                               <dbl>
##
                      <dbl>
                                         <dbl> <dbl>
## 1 2017 0-4 years
                     3.29
                                1.64
                                          5.89
                                                   11
                                                   29
## 2 2013 65+ years 4.50
                                2.86
                                          6.14
## 3 2021 0-4 years
                                         NA
                                                  NA
                      NA
                               NA
## 4 2013 5-14 years
                     5.51
                                3.78
                                          7.23
                                                  39
## 5 2011 35-64 years 5.84
                                4.80
                                          6.88
                                                 121
## 6 2019 15-34 years 8.34
                                                  137
                                6.94
                                          9.73
```

Plot again

Now let's make our plot again:

```
er_visits_age_fct %>%
  ggplot(mapping = aes(x = age, y = rate)) +
  geom_boxplot() +
  theme_bw(base_size = 12)
```


Now that's more like it! Notice how the data is automatically plotted in the order we would like.

What about if we arrange() the data by age?

Character data is arranged alphabetically (if letters) or by ascending first number (if numbers).

```
er_visits_age_subset %>%
 arrange(age)
## # A tibble: 32 × 6
                      rate lower95cl upper95cl visits
      year age
     <dbl> <chr>
                     <dbl>
                               <dbl>
                                         <dbl> <dbl>
##
                     3.29
## 1 2017 0-4 years
                                1.64
                                          5.89
                                                  11
## 2 2021 0-4 years
                               NA
                                         NA
                                                  NA
## 3 2016 0-4 years
                     4.19
                            2.29
                                       7.03
                                                  14
                                       6.68
## 4 2018 0-4 years
                       3.91
                                2.08
                                                  13
## 5 2019 15-34 years 8.34
                                6.94
                                        9.73
                                                 137
## 6 2018 15-34 years 10.1
                                8.60
                                         11.7
                                                 165
## 7 2022 15-34 years 10.0
                                8.52
                                         11.6
                                                 167
## 8 2016 15-34 years 10.9
                                9.23
                                         12.5
                                                 171
## 9 2012 15-34 years 8.88
                                7.36
                                         10.4
                                                 130
      2014 15-34 years 6.28
## 10
                                 5.02
                                         7.54
                                                  95
## # 🛘 22 more rows
```

Notice that the order is not what we would hope for!

Arranging Factors

Factor data is arranged by level.

```
er_visits_age_fct %>%
   arrange(age)
```

```
## # A tibble: 32 × 6
                       rate lower95cl upper95cl visits
##
      year age
     <dbl> <fct>
                      <dbl>
                                <dbl>
                                         <dbl> <dbl>
##
  1 2017 0-4 years
                                 1.64
                                           5.89
                       3.29
                                                   11
   2 2021 0-4 years
                      NA
                                NA
                                         NA
                                                   NA
   3 2016 0-4 years
                                 2.29
                                          7.03
##
                      4.19
                                                   14
  4 2018 0-4 years
                       3.91
                                 2.08
                                          6.68
##
                                                   13
      2013 5-14 years 5.51
                                3.78
                                          7.23
## 5
                                                   39
                                          5.64
      2012 5-14 years 4.14
                                2.63
## 6
                                                   29
## 7 2016 5-14 years 6.41
                                4.56
                                          8.26
                                                   46
## 8 2020 5-14 years NA
                                NA
                                         NA
                                                   NA
      2019 5-14 years 3.80
                                          5.23
                                 2.36
                                                   27
## 9
      2014 5-14 years 2.53
                                 1.50
                                           3.99
## 10
                                                   18
## # 0 22 more rows
```

Nice! Now this is what we would want!

Making tables with characters

Tables grouped by a character are arranged alphabetically (if letters) or by ascending first number (if numbers).

```
er_visits_age_subset %>%
 group_by(age) %>%
 summarize(total_visits = sum(visits, na.rm = T))
## # A tibble: 5 × 2
## age
       total visits
## <chr>
                      <dbl>
## 1 0-4 years
                        38
## 2 15-34 years
                     986
## 3 35-64 years
                983
## 4 5-14 years
                     215
                       296
## 5 65+ years
```

Making tables with factors

Tables grouped by a factor are arranged by level.

```
er_visits_age_fct %>%
 group_by(age) %>%
 summarize(total_visits = sum(visits, na.rm = T))
## # A tibble: 5 × 2
        total_visits
## age
## <fct>
                      <dbl>
## 1 0-4 years
                         38
## 2 5-14 years
                      215
                      986
## 3 15-34 years
## 4 35-64 years
                      983
## 5 65+ years
                       296
```

forcats for ordering

What if we wanted to order age by increasing rate?

```
library(forcats)

er_visits_age_fct %>%
   ggplot(mapping = aes(x = age, y = rate)) +
   geom_boxplot() +
   theme_bw(base_size = 12)
```


This would be useful for identifying easily which age group to focus on.

forcats for ordering

We can order a factor by another variable by using the fct_reorder() function of the forcats package.

fct_reorder({column getting changed}, {guiding column}, {summarizing function})

forcats for ordering

We can order a factor by another variable by using the fct_reorder() function of the forcats package.

```
library(forcats)

er_visits_age_fct %>%
    ggplot(mapping = aes(x = fct_reorder(age, rate, mean), y = rate)) +
    geom_boxplot() +
    labs(x = "Age Category") +
    theme_bw(base_size = 12)
```


forcats for ordering.. with .desc = argument

```
library(forcats)

er_visits_age_fct %>%
    ggplot(mapping = aes(x = fct_reorder(age, rate, mean, .desc = TRUE), y = rate)) +
    geom_boxplot() +
    labs(x = "Age Category") +
    theme_bw(base_size = 12)
```


forcats for ordering... can be used to sort datasets

```
er_visits_age_fct %>% pull(age) %>% levels() # By year order

## [1] "0-4 years" "5-14 years" "15-34 years" "35-64 years" "65+ years"

er_visits_age_fct <- er_visits_age_fct %>%
    mutate(
        age = fct_reorder(age, rate, mean)
    )

er_visits_age_fct %>% pull(age) %>% levels() # by increasing mean visits

## [1] "0-4 years" "5-14 years" "35-64 years" "65+ years" "15-34 years"
```

Checking Proportions with fct_count()

The fct_count() function of the forcats package is helpful for checking that the proportions of each level for a factor are similar. Need the prop = TRUE argument otherwise just counts are reported.

GUT CHECK: Why is it useful to have the factor class as an option?

- A. It helps us check the factual accuracy of our datasets.
- B. It helps us change the order of variables in case the order has meaning.

GUT CHECK: What does the fct_reorder() function do?

- A. It helps us reorder a factor based on the values of another variable.
- B. It helps us reorder a factor based on a random change in the order.

Summary

- the factor class allows us to have a different order from alphanumeric for categorical data
- we can change data to be a factor variable using mutate and a factor creating function like factor() or as_factor
- the as_factor() is from the forcats package (first appearance order by default)
- the factor() base R function (alphanumeric order by default)
- with factor() we can specify the levels with the levels argument if we want a specific order
- the fct_reorder({variable_to_reorder}, {variable_to_order_by}, {summary function}) helps us reorder a variable by the values of another variable
- · arranging, tabulating, and plotting the data will reflect the new order

Lab

- Class Website
- Lab. Day 6 Cheatsheet Posit's forcats cheatsheet

Image by Gerd Altmann from Pixabay