Data Science in Spark with Sparklyr:: CHEAT SHEET

Intro

sparklyr is an R interface for **Apache Spark**™, it provides a complete **dplyr** backend and the option to query directly using Spark SQL statement. With sparklyr, you can orchestrate distributed machine learning using either Spark's MLlib or H2O Sparkling Water.

Starting with version 1.044, RStudio Desktop, Server and Pro include integrated support for the sparklyr package. You can create and manage connections to Spark clusters and local Spark instances from inside the IDE.

RStudio Integrates with sparklyr

Cluster Deployment

STAND ALONE CLUSTER Worker Nodes

Data Science Toolchain with Spark + sparklyr

Import

- Export an R DataFrame
- Read a file
- Read existing Hive table

R for Data Science, Grolemund & Wickham

LOCAL MODE (No cluster required)

1. Install a local version of Spark:

ON A MESOS MANAGED CLUSTER

sc <- spark connect (master = "local")</pre>

1. Install RStudio Server or Pro on one of the

2. Locate path to the cluster's Spark directory

spark connect(master="[mesos URL]",

version = "1.6.2", spark_home =

1. The Livy REST application should be

sc <- spark_connect(method = "livy",</pre>

spark_install ("2.0.1")

2. Open a connection

existing nodes

3. Open a connection

[Cluster's Spark path])

USING LIVY (Experimental)

running on the cluster

master = "http://host:port")

2. Connect to the cluster

Getting Started

- dplyr verb
- Direct Spark SQL (DBI)

SDF function (Scala API)

Wrangle

R for plotting Model

Transform

Transformer

function

- Spark MLlib
- **H20 Extension**

Understand

Using sparklyr

Communicate

Collect data

Share plots,

documents,

and apps

into R

A brief example of a data analysis using Apache Spark, R and sparklyr in local mode

library(sparklyr); library(dplyr); library(ggplot2); library(tidyr); **Install Spark locally** set.seed(100)

spark install("2.0.1")

Connect to local version

import iris <- copy to(sc, iris, "spark iris", overwrite = TRUE)

sc <- spark connect(master = "local")</pre>

Copy data to Spark memory

partition iris <- sdf partition(</pre> import iris,training=0.5, testing=0.5)

model_iris <- tidy_iris %>%

pred_iris <- sdf_predict(</pre>

test_iris <- tbl(sc,"spark_iris_test")

Partition

Spark table

sdf register(partition iris, c("spark_iris_training","spark_iris_test"))

tidy_iris <- tbl(sc,"spark_iris_training") %>%

select(Species, Petal_Length, Petal_Width)

ml_decision_tree(response="Species",

features=c("Petal Length","Petal Width"))

Create a hive metadata for each partition

ON A SPARK STANDALONE CLUSTER

- 2. Install a local version of Spark: spark_install (version = "2.0.1")
- 3. Open a connection host:port", version = "2.0.1",

ON A YARN MANAGED CLUSTER

Visualize

Collect data into

- 1. Install RStudio Server or RStudio Pro on one of the existing nodes, preferably an edge node
- 2. Locate path to the cluster's Spark Home Directory, it normally is "/usr/lib/spark"
- 3. Open a connection spark connect(master="yarn-client", version = "1.6.2", spark home = [Cluster's Spark path])

- 1. Install RStudio Server or RStudio Pro on one of the existing nodes or a server in the same LAN
 - spark_connect(master="spark:// spark home = spark home dir())

Tuning Spark

EXAMPLE CONFIGURATION

config <- spark config() config\$spark.executor.cores <- 2 config\$spark.executor.memory <- "4G" sc <- spark connect (master="yarn-client", config = config, version = "2.0.1")

IMPORTANT TUNING PARAMETERS with defaults

- spark.yarn.am.cores
- spark.executor.instances
- spark.executor.memory 1g

spark.executor.cores 1

- sparklyr.shell.driver-memory
- spark.yarn.am.memory 512m spark.executor.extraJavaOptions
- spark.network.timeout 120s spark.executor.heartbeatInterval 10s
 - sparklyr.shell.executor-memory

model_iris, test_iris) %>% Bring data back into R memory for plotting

pred iris %>%

collect

inner_join(data.frame(prediction=0:2, lab=model_iris\$model.parameters\$labels)) %>% ggplot(aes(Petal_Length, Petal_Width, col=lab)) + geom_point()

spark disconnect(sc)

Disconnect

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at spark.rstudio.com • sparklyr 0.5 • Updated: 2016-12

Reactivity

COPY A DATA FRAME INTO SPARK

sdf_copy_to(sc, iris, "spark_iris")

sdf_copy_to(sc, x, name, memory, repartition,
overwrite)

IMPORT INTO SPARK FROM A FILE

Arguments that apply to all functions:

sc, name, path, options = list(), repartition = 0, memory = TRUE, overwrite = TRUE

CSV

spark_read_csv(header = TRUE,
columns = NULL, infer_schema = TRUE,
delimiter = ",", quote = "\"", escape = "\\",
charset = "UTF-8", null_value = NULL)

JSON

spark_read_json()

PARQUET spark_read_parquet()

SPARK SQL COMMANDS

DBI::dbWriteTable(sc, "spark_iris", iris)

DBI::dbWriteTable(conn, name, value)

FROM A TABLE IN HIVE

my_var <- tbl_cache(sc, name=
"hive_iris")</pre>

tbl_cache(sc, name, force = TRUE)
Loads the table into memory

my_var <- **dplyr::tbl**(sc, name= "hive_iris")

dplyr::**tbl(**scr, ...)

Creates a reference to the table without loading it into memory

Visualize & Communicate

DOWNLOAD DATA TO R MEMORY

r_table <- **collect**(my_table) plot(Petal_Width~Petal_Length, data=r_table)

dplyr::**collect(**x**)**

Download a Spark DataFrame to an R DataFrame

sdf_read_column(x, column)

Returns contents of a single column to R

SAVE FROM SPARK TO FILE SYSTEM

Arguments that apply to all functions: x, path

CSV

spark_read_csv(header = TRUE,
delimiter = ",", quote = "\"", escape = "\\",
charset = "UTF-8", null_value = NULL)

JSON

spark_read_json(mode = NULL)

PARQUET spark_read_parquet(mode = NULL)

Wrangle

SPARK SOL VIA DPLYR VERBS

Translates into Spark SQL statements

my_table <- my_var %>%
 filter(Species=="setosa") %>%
 sample_n(10)

DIRECT SPARK SQL COMMANDS

my_table <- DBI::**dbGetQuery**(sc , "SELECT * FROM iris LIMIT 10")

DBI::dbGetQuery(conn, statement)

SCALA API VIA SDF FUNCTIONS

sdf mutate(.data)

Works like dplyr mutate function

sdf_partition(x, ..., weights = NULL, seed =
sample (.Machine\$integer.max, 1))
sdf_partition(x, training = 0.5, test = 0.5)

sdf_register(x, name = NULL)

Gives a Spark DataFrame a table name

sdf_sample(x, fraction = 1, replacement =
TRUE, seed = NULL)

sdf_sort(x, columns)

Sorts by >=1 columns in ascending order

sdf_with_unique_id(x, id = "id")

sdf_predict(object, newdata)

Spark DataFrame with predicted values

ML TRANSFORMERS

ft_binarizer(my_table,input.col="Petal_Le ngth", output.col="petal_large", threshold=1.2)

Arguments that apply to all functions: x, input.col = NULL, output.col = NULL

ft_binarizer(threshold = 0.5)
Assigned values based on threshold

ft_bucketizer(splits)

Numeric column to discretized column

ft_discrete_cosine_transform(inverse
= FALSE)

Time domain to frequency domain

ft_elementwise_product(scaling.col)
Element-wise product between 2 cols

 $ft_index_to_string()$

Index labels back to label as strings

ft_one_hot_encoder()

Continuous to binary vectors

ft_quantile_discretizer(n.buckets=5L**)**Continuous to binned categorical
values

ft_sql_transformer(sql)

ft_string_indexer(params = NULL)
 Column of labels into a column of label
 indices.

ft vector assembler()

Combine vectors into single row-vector

Reading & Writing from Apache Spark

Extensions

Create an R package that calls the full Spark API & provide interfaces to Spark packages.

CORE TYPES

spark_connection() Connection between R and the
Spark shell process

spark_jobj() Instance of a remote Spark object
spark_dataframe() Instance of a remote Spark
DataFrame object

CALL SPARK FROM R

invoke() Call a method on a Java object
invoke_new() Create a new object by invoking a
constructor

invoke_static() Call a static method on an object

MACHINE LEARNING EXTENSIONS

ml_create_dummy_variables() ml_options()
ml_prepare_dataframe() ml_model()
ml_prepare response features intercept()

Model (MLlib)

ml_decision_tree(my_table,
 response = "Species", features =
 c("Petal_Length", "Petal_Width"))

ml_als_factorization(x, user.column = "user",
 rating.column = "rating", item.column = "item",
 rank = 10L, regularization.parameter = 0.1, iter.max = 10L,
 ml.options = ml_options())

ml_generalized_linear_regression(x, response, features,
 intercept = TRUE, family = gaussian(link = "identity"), iter.max =
 100L, ml.options = ml_options())

ml_kmeans(x, centers, iter.max = 100, features = dplyr::tbl_vars(x),
 compute.cost = TRUE, tolerance = 1e-04, ml.options = ml_options())

 $ml_lda(x, features = dplyr::tbl_vars(x), k = length(features), alpha = (50/k) + 1, beta = 0.1 + 1, ml.options = ml_options())$

ml_linear_regression(x, response, features, intercept = TRUE, alpha = 0, lambda = 0, iter.max = 100L, ml.options = ml_options()) Same options for: ml_logistic_regression

ml_multilayer_perceptron(x, response, features, layers, iter.max =
 100, seed = sample(.Machine\$integer.max, 1), ml.options =
 ml_options())

ml_naive_bayes(x, response, features, lambda = 0, ml.options =
 ml_options())

ml_one_vs_rest(x, classifier, response, features, ml.options =
 ml_options())

ml_pca(x, features = dplyr::tbl_vars(x), ml.options = ml_options())

ml_random_forest(x, response, features, max.bins = 32L,
 max.depth = 5L, num.trees = 20L, type = c("auto", "regression",
 "classification"), ml.options = ml_options())

ml_survival_regression(x, response, features, intercept =
 TRUE,censor = "censor", iter.max = 100L, ml.options = ml_options())

ml_binary_classification_eval(predicted_tbl_spark, label, score,
 metric = "areaUnderROC")

ml_classification_eval(predicted_tbl_spark, label, predicted_lbl,
 metric = "f1")

ml_tree_feature_importance(sc, model)

