Probabilistic Machine learning Variational Inference and Learning

Andrés Masegosa and Thomas Dyhre Nielsen

September 22, 2023

PML - 2023

Stochastic Gradient Ascent

A small side-step: Gradient Ascent

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do Bayesian inference as optimization it will play well with, e.g., deep learning frameworks.

Gradient ascent algorithm for maximizing a function $f(\lambda)$:

- **1** Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho \cdot \nabla_{\boldsymbol{\lambda}} f\left(\boldsymbol{\lambda}^{(t-1)}\right)$$

- $\pmb{\lambda}^{(t)}$ converges to a (local) optimum of $f(\cdot)$ if:
 - f is "sufficiently nice";
 - The learning-rate ρ is "sufficiently small".

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta \mid \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

... and Stochastic Gradient Ascent

"Standard" gradient ascent is not enough for ELBO optimization

We won't be able to calculate $\nabla_{\lambda} \mathcal{L}(q(\theta \mid \lambda))$ exactly for (at least) two reasons:

- We may have to resolve to mini-batching (gradient from "random subset")
- We may not be able to calculate the gradient exactly even for a mini-batch

Stochastic gradient ascent algorithm for maximizing a function $f(\lambda)$:

If we have access to $\mathbf{g}(\lambda)$ – an **unbiased estimate** of the gradient – it still works!

- Initialize $\lambda^{(0)}$ randomly.
- ② For t = 1, ...:

$$\boldsymbol{\lambda}^{(t)} \leftarrow \boldsymbol{\lambda}^{(t-1)} + \rho_t \cdot \mathbf{g} \left(\boldsymbol{\lambda}^{(t-1)} \right)$$

 λ_t converges to a (local) optimum of $f(\cdot)$ if:

- f is "sufficiently nice";
- $\mathbf{g}(\lambda)$ is a random variable with $\mathbb{E}[\mathbf{g}(\lambda)] = \nabla_{\lambda} f(\lambda)$ and $\operatorname{Var}[\mathbf{g}(\lambda)] < \infty$.
- The learning-rates $\{\rho_t\}$ is a Robbins-Monro sequence:

Black Box Variational Inference

Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters λ . If that works, Bayesian inference can be **seamlessly integrated** with building-blocks from other gradient-based machine learning approaches (like deep learning).

Algorithm: Maximize $\mathcal{L}\left(q\right)=\mathbb{E}_{q}\left[\log\frac{p(m{ heta},\mathcal{D})}{q(m{ heta}|m{\lambda})}\right]$ by gradient ascent

- Initialization:
 - $t \leftarrow 0$;
 - $\hat{\lambda}_0 \leftarrow$ random initialization;
 - $\{\rho_t\} \leftarrow$ a Robbins-Monro sequence.
- Repeat until negligible improvement in terms of $\mathcal{L}\left(q\right)$:
 - $t \leftarrow t + 1$;
 - $\hat{\boldsymbol{\lambda}}_t \leftarrow \hat{\boldsymbol{\lambda}}_{t-1} + \rho_t \nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\hat{\boldsymbol{\lambda}}_{t-1}};$

Important issue:

Can we calculate $\nabla_{\lambda} \mathcal{L}(q)$ efficiently without adding new restrictive assumptions?

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Tricky: How can we move the gradient inside the expectation?

• We would typically approximate an expectation by a sample average:

$$\mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}}\left[f(\boldsymbol{\theta}, \boldsymbol{\lambda})\right] \approx \frac{1}{M} \sum_{j=1}^{M} f(\boldsymbol{\theta}_{j}, \boldsymbol{\lambda}), \text{ with } \{\boldsymbol{\theta}_{1}, \dots \boldsymbol{\theta}_{M}\} \text{ sampled from } q_{\boldsymbol{\lambda}}(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}).$$

• This doesn't work when taking a gradient related to the sampling distribution.

BBVI - calculating the gradient

The algorithm requires that we can find

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right].$$

Solution: Use these properties to simplify the equation:

Now it follows that

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \mathbb{E}_{\boldsymbol{\theta} \sim q_{\boldsymbol{\lambda}}} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

This is the so-called **score-function gradient**.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

• We still only need access to the joint distribution $p(\theta, \mathcal{D})$ – not $p(\theta \mid \mathcal{D})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \middle| \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

• $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.

PML - 2023 Black Box Variational Inference

• We still only need access to the joint distribution $p(\theta, \mathcal{D})$ – not $p(\theta \mid \mathcal{D})$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \cdot \middle| \nabla_{\lambda} \log q(\theta \mid \lambda) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- We must calculate $\nabla_{\lambda_i} \log q(\theta_i | \lambda_i)$, which is also known as the "score function".

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \middle| \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- We must calculate $\nabla_{m{\lambda}_i} \log q\left(heta_i \, | \, m{\lambda}_i
 ight)$, which is also known as the "score function" .
- The expectation will be approximated using a sample $\{\theta_1, \dots, \theta_M\}$ generated from $q(\theta \mid \lambda)$. Hence we require that we can **sample from** each $q(\theta_i \mid \lambda_i)$.

• We still only need access to the joint distribution $p(\theta, D)$ – not $p(\theta \mid D)$.

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \cdot \middle| \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \mid \boldsymbol{\lambda}) \right].$$

- $q(\theta \mid \lambda)$ factorizes under MF, s.t. we can optimize per variable: $q(\theta_i \mid \lambda_i)$.
- We must calculate $\nabla_{\lambda_i} \log q\left(\theta_i \, | \, \lambda_i \right)$, which is also known as the "score function" .
- The expectation will be approximated using a sample $\{\theta_1,\ldots,\theta_M\}$ generated from $q(\theta\,|\,\lambda)$. Hence we require that we can **sample from** each $q(\theta_i\,|\,\lambda_i)$.

Calculating the gradient - in summary

We have observed the data \mathcal{D} , and our current estimate for λ is $\hat{\lambda}$. Then

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q)|_{\boldsymbol{\lambda} = \hat{\boldsymbol{\lambda}}} \approx \frac{1}{M} \sum_{j=1}^{M} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_{j} \mid \hat{\boldsymbol{\lambda}}),$$

where $\{\boldsymbol{\theta}_1,\dots\boldsymbol{\theta}_M\}$ are samples from $q(\cdot\,|\,\hat{\boldsymbol{\lambda}})$. Typically M is small.

Does it work?

$$\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{i=1}^m \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Does it work?

Different samples, each with M=5.

$$\nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda}); \quad \frac{1}{M} \sum_{i=1}^m \log \frac{p(\boldsymbol{\theta}_i, \mathcal{D})}{q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})} \cdot \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta}_i \,|\, \boldsymbol{\lambda})$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

PML - 2023 Black Box Variational Inference

Does it work?

Different values of M (M=3, 5, 10,and 25)

$$\nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda); \quad \frac{1}{M} \sum_{i=1}^{m} \log \frac{p(\theta_i, \mathcal{D})}{q(\theta_i \mid \lambda)} \cdot \nabla_{\lambda} \log q(\theta_i \mid \lambda)$$

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

PML - 2023 Black Box Variational Inference

Code-task: Score-function gradient for linear regression

Code Task: Score-function gradient for linear regression

- \bullet $\theta = \{w_0, w_1\}, \theta \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$
- $Y_i \mid \{\boldsymbol{\theta}, x_i, \sigma_u\} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_u^2)$
- We choose $q_i(\theta_i | \lambda_i) = \mathcal{N}(\theta_i | \mu_i, \sigma_i^2)$, so $\lambda_i = \{\mu_i, \sigma_i\}$

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})} \,\cdot\, \nabla_{\boldsymbol{\lambda}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right].$$

- Look at Exercise 1 in the notebook
 - Day2-AfterLunch/students_BBVI.ipynb.
- Calculate $\nabla_{\lambda} \log q(\theta \mid \lambda)$, i.e., $\frac{\partial}{\partial \mu} \log \mathcal{N}(\mu, \sigma^2)$ and $\frac{\partial}{\partial \sigma} \log \mathcal{N}(\mu, \sigma^2)$ by hand.
- Implement your results in the function score_function_gradient.

Let's try to find another trick to compute:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) = \nabla_{\boldsymbol{\lambda}} \, \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \, | \, \boldsymbol{\lambda})} \right].$$

Let's try to find another trick to compute:

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p_{\theta}(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

Let's try to find another trick to compute:

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p_{\theta}(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right].$$

Let's assume $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

where $\phi(\epsilon)$ is some simple distribution that does not depend on λ and $f(\epsilon, \lambda)$ is a deterministic transformation.

The common example is $q(\theta|\lambda) = \mathcal{N}(\mu, \sigma)$ reparametrized using

$$\epsilon \sim \mathcal{N}(0,1)$$

$$\theta = \mu + \sigma \epsilon$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$egin{array}{lll} oldsymbol{\epsilon} & \sim & \phi(oldsymbol{\epsilon}) \ oldsymbol{ heta} & = & f(oldsymbol{\epsilon}, oldsymbol{\lambda}) \end{array}$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$oldsymbol{\epsilon} \sim \phi(oldsymbol{\epsilon}) \ oldsymbol{ heta} = f(oldsymbol{\epsilon}, oldsymbol{\lambda})$$

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) \quad = \quad \nabla_{\boldsymbol{\lambda}} \mathbb{E}_{\boldsymbol{\theta} \sim q} \left[\log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\begin{array}{ccc} \boldsymbol{\epsilon} & \sim & \phi(\boldsymbol{\epsilon}) \\ \boldsymbol{\theta} & = & f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \end{array}$$

$$\nabla_{\lambda} \mathcal{L}(q) = \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right]$$
$$= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right]$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \nabla_{\pmb{\lambda}} \mathbb{E}_{\pmb{\theta} \sim q} \left[\log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \right] \\ &= \nabla_{\pmb{\lambda}} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\pmb{\epsilon}, \pmb{\lambda}), \mathcal{D})}{q(f(\pmb{\epsilon}, \pmb{\lambda}) \mid \pmb{\lambda})} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\pmb{\lambda}} \log \frac{p(f(\pmb{\epsilon}, \pmb{\lambda}), \mathcal{D})}{q(f(\pmb{\epsilon}, \pmb{\lambda}) \mid \pmb{\lambda})} \right] \end{split}$$

If $q(\theta|\lambda)$ can be *reparametrized*:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

Now we can do something different:

$$\begin{split} \nabla_{\lambda} \mathcal{L} \left(q \right) &= \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right] \\ &= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\lambda} \log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) + \nabla_{\lambda} \log q(f(\epsilon, \lambda) \mid \lambda) \right] \quad \text{(slide 5 - point 3)} \end{split}$$

PML - 2023 Black Box Variational Inference 1

If $q(\theta|\lambda)$ can be reparametrized:

$$\epsilon \sim \phi(\epsilon)$$
 $\theta = f(\epsilon, \lambda)$

$$\begin{split} \nabla_{\lambda} \mathcal{L} \left(q \right) &= \nabla_{\lambda} \mathbb{E}_{\theta \sim q} \left[\log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \right] \\ &= \nabla_{\lambda} \mathbb{E}_{\epsilon \sim \phi} \left[\log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\lambda} \log \frac{p(f(\epsilon, \lambda), \mathcal{D})}{q(f(\epsilon, \lambda) \mid \lambda)} \right] \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) + \nabla_{\lambda} \log q(f(\epsilon, \lambda) \mid \lambda) \right] \quad \text{(slide 5 - point 3)} \\ &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right] \end{split}$$

Monte-Carlo Estimation:

$$\nabla_{\lambda} \mathcal{L}(q) = \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\theta} \log \frac{p(\theta, \mathcal{D})}{q(\theta \mid \lambda)} \nabla_{\lambda} f(\epsilon, \lambda) \right]$$

11

Monte-Carlo Estimation:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda})$$

Monte-Carlo Estimation:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(q) = \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda})$$

$$= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Models Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda})$$

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\boldsymbol{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}, \mathcal{D})}{q(\boldsymbol{\theta} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\boldsymbol{\theta}} \log \frac{p(\boldsymbol{\theta}_{j}, \mathcal{D})}{q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda})} \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) : \boldsymbol{\epsilon}_{j} \sim \boldsymbol{\phi}(\boldsymbol{\epsilon}), \ \boldsymbol{\theta}_{j} = f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta}_{j} \mid \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}_{j}, \boldsymbol{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}_{j}, \mathcal{D})}{q(\pmb{\theta}_{j} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_{j}, \pmb{\lambda}) : \pmb{\epsilon}_{j} \sim \phi(\pmb{\epsilon}), \ \pmb{\theta}_{j} = f(\pmb{\epsilon}_{j}, \pmb{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\pmb{\theta}} \log p(\pmb{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\pmb{\theta}} \log q(\pmb{\theta}_{j} \mid \pmb{\lambda}) \right) \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_{j}, \pmb{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

• While the score function estimator does not.

Monte-Carlo Estimation:

$$\begin{split} \nabla_{\pmb{\lambda}} \mathcal{L} \left(q \right) &= \mathbb{E}_{\epsilon \sim \phi} \left[\nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}, \mathcal{D})}{q(\pmb{\theta} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}, \pmb{\lambda}) \right] \\ &\approx \frac{1}{M} \sum_{j=1}^{M} \nabla_{\pmb{\theta}} \log \frac{p(\pmb{\theta}_{j}, \mathcal{D})}{q(\pmb{\theta}_{j} \mid \pmb{\lambda})} \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_{j}, \pmb{\lambda}) : \pmb{\epsilon}_{j} \sim \phi(\pmb{\epsilon}), \ \pmb{\theta}_{j} = f(\pmb{\epsilon}_{j}, \pmb{\lambda}) \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(\underbrace{\nabla_{\pmb{\theta}} \log p(\pmb{\theta}_{j}, \mathcal{D})}_{\text{Model's Gradient}} - \nabla_{\pmb{\theta}} \log q(\pmb{\theta}_{j} \mid \pmb{\lambda}) \right) \nabla_{\pmb{\lambda}} f(\pmb{\epsilon}_{j}, \pmb{\lambda}) \end{split}$$

This gradient estimator directly uses model's gradients

- While the score function estimator does not.
- $\log p(\theta, \mathcal{D})$ needs to be differentiable wrt θ (i.e. **no discrete variables**).
- $q(\theta|\lambda)$ needs to be differentiable and reparametrizable

Reparametrizable Distributions

Reparameterization can be done for a (growing) set of distributions:

Target	$p(z; \theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0; 1]$	$ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$\tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0;1) = \exp(- x)$	$\epsilon \sim [0;1]$	$\ln(\frac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	$\mathcal{N}(0;1)$	$\epsilon \sim [0;1]$	$\sqrt{\ln(\frac{1}{\epsilon_1})} \cos (2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^{\top})$	$\epsilon \sim \mathcal{N}(0;1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim Bern(\frac{1}{2})$	2e-1
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{\epsilon}$

Table from http://blog.shakirm.com/2015/10/ machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Reparametrizable Distributions

Reparameterization can be done for a **(growing) set of distributions**:

Target	$p(z; \theta)$	Base $p(\epsilon)$	One-liner $g(\epsilon; \theta)$
Exponential	$\exp(-x); x > 0$	$\epsilon \sim [0; 1]$	$ln(1/\epsilon)$
Cauchy	$\frac{1}{\pi(1+x^2)}$	$\epsilon \sim [0;1]$	$\tan(\pi\epsilon)$
Laplace	$\mathcal{L}(0; 1) = \exp(- x)$	$\epsilon \sim [0;1]$	$\ln(\frac{\epsilon_1}{\epsilon_2})$
Laplace	$\mathcal{L}(\mu;b)$	$\epsilon \sim [0;1]$	$\mu - bsgn(\epsilon) \ln (1 - 2 \epsilon)$
Std Gaussian	N(0; 1)	$\epsilon \sim [0;1]$	$\sqrt{\ln(\frac{1}{\epsilon_1})}\cos(2\pi\epsilon_2)$
Gaussian	$\mathcal{N}(\mu; RR^{\top})$	$\epsilon \sim \mathcal{N}(0; 1)$	$\mu + R\epsilon$
Rademacher	$Rad(\frac{1}{2})$	$\epsilon \sim \textit{Bern}(\frac{1}{2})$	$2\epsilon - 1$
Log-Normal	$\ln \mathcal{N}(\mu; \sigma)$	$\epsilon \sim \mathcal{N}(\mu;\sigma^2)$	$\exp(\epsilon)$
Inv Gamma	$i\mathcal{G}(k;\theta)$	$\epsilon \sim \mathcal{G}(k;\theta^{-1})$	$\frac{1}{\epsilon}$

 $Table\ from\ http://blog.shakirm.com/2015/10/\ machine-learning-trick-of-the-day-4-reparameter is at ion-tricks/learning-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter in the ion-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter is at ion-trick-of-the-day-4-reparameter in th$

A nice survey (very active area of research)

Zhang, Cheng, et al. "Advances in variational inference." IEEE transactions on pattern analysis and machine intelligence 41.8 (2018): 2008-2026.

Reparameterized gradient

Length of gradients increased for visibility. Graphics inspired by Arto Klami @ ProbAl2021.

Notice the direction of each sample's gradient:

- Score-function gradient: Towards the mode of q
- Reparameterization-gradient: (Approximately) towards high density region of the exact posterior $p(\theta|D)$.

Code Task: Reparameterization-gradient for linear regression

- $\bullet \ \theta = \{w_0, w_1\}, \ \theta \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta} \cdot \mathbf{I}_{2 \times 2})$
- $Y_i | \{ \boldsymbol{\theta}, x_i, \sigma_y \} \sim \mathcal{N}(w_0 + w_1 \cdot x_i, \sigma_y^2)$

In this task you will implement the score-function gradient:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(q\right) = \underset{\boldsymbol{\epsilon} \sim \boldsymbol{\phi}}{\mathbb{E}} \left[\left(\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}, \mathcal{D}) - \nabla_{\boldsymbol{\theta}} \log q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda}) \right) \nabla_{\boldsymbol{\lambda}} f(\boldsymbol{\epsilon}, \boldsymbol{\lambda}) \right]$$

- We provide $\nabla_{\theta} \log p(\theta, \mathcal{D})$, $\nabla_{\theta} \log q(\theta \mid \lambda)$ and $\nabla_{\lambda} f(\epsilon, \lambda)$ for this model.
- Go to Exercise 2 in

 Day2-AfterLunch/students_BBVI.ipynb.
- ullet Experiment with the number of Monte-Carlo samples M per iteration, the learning-rate, and the number of iterations. Compare with the output of the Score Function Gradient.

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be differentiable (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

Reparametrization: Gradients align with model's gradient $(\nabla_{\theta} \ln p(\mathcal{D}, \theta))$. But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be **differentiable**.
- No requirements for $\ln p(\mathcal{D}, \boldsymbol{\theta})$ (only to be computable).

Reparametrization: Gradients align with model's gradient ($\nabla_{\theta} \ln p(\mathcal{D}, \theta)$). But:

- Requires $q(\theta|\lambda)$ to be **reparametrizable**.
- Requires $\ln p(\mathcal{D}, \theta)$ and $\ln q(\theta|\lambda)$ be **differentiable** (i.e. no categorical variables).

Score Function: Gradients point towards the mode of the approximation, and the only way the model influences them is through $\log p(\mathcal{D}, \theta)$ in the weights.

- Only requires $\ln q(\theta|\lambda)$ to be **differentiable**.
- No requirements for $\ln p(\mathcal{D}, \theta)$ (only to be computable).

Takeaway Message

Score Function is more general, but Reparametrization is better if applicable.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\boldsymbol{\lambda}_{t+1} = \boldsymbol{\lambda}_t + \rho \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{\lambda}_t)$$

• Using either score-funtion or reparametrization gradients.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.

(Manual) Define your data model and the prior.

$$p(\mathcal{D}, \boldsymbol{\theta}) = p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

(Manual/Automatic) Define the variational distribution

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

(Automatic) Optimize the ELBO:

$$\lambda_{t+1} = \lambda_t + \rho \nabla_{\lambda} \mathcal{L}(\lambda_t)$$

- Using either score-funtion or reparametrization gradients.
- Automatic-Differentiation engines take care of gradients.
- (Automatic) Approximate inference result

$$q(\boldsymbol{\theta}|\boldsymbol{\lambda}^{\star}) = \arg\min_{q} \operatorname{KL}\left(q(\boldsymbol{\theta}|\boldsymbol{\lambda})||p(\boldsymbol{\theta}|\mathcal{D})\right)$$

Probabilistic programming: Variational inference in Pyro

Pyro

Pyro (pyro.ai) is a Python library for probabilistic modeling, inference, and criticism, integrated with PyTorch.

- **Modeling:** Directed graphical models
 - Neural networks (via nn.Module)
 - ...
- Inference: Variational inference including BBVI, SVI
 - Monte Carlo including Importance sampling and Hamiltonian Monte Carlo
 - ...
- Criticism:

 Point-based evaluations
 - Posterior predictive checks
 - ...

... and there are also many other possibilities

Tensorflow is integrating probabilistic thinking into its core, InferPy is a local alternative, etc.

Pyro models

Simple example

$$\begin{array}{ll} \mathsf{temp} & \sim \mathcal{N}(15,2) \\ \mathsf{sensor} & \sim \mathcal{N}(\mathsf{temp},1) \\ \\ p(\mathsf{sensor} = 18,\mathsf{temp}) \end{array}$$

Pyro models

Simple example

$$\begin{array}{ll} \mathsf{temp} & \sim \mathcal{N}(15,2) \\ \mathsf{sensor} & \sim \mathcal{N}(\mathsf{temp},1) \\ \\ p(\mathsf{sensor} = 18,\mathsf{temp}) \end{array}$$

Pyro models:

- random variables ⇔ pyro.sample
- observations ⇔ pyro.sample with the obs argument

Pyro models

Simple example

```
\begin{aligned} & \text{temp} & \sim \mathcal{N}(15, 2) \\ & \text{sensor} & \sim \mathcal{N}(\text{temp}, 1) \\ & p(\text{sensor} = 18, \text{temp}) \end{aligned}
```

Pyro models:

- random variables ⇔ pyro.sample
- \bullet observations $\Leftrightarrow {\tt pyro.sample}$ with the obs argument

```
#The observations
obs = {'sensor': torch.tensor(18.0)}

def model(obs):
    temp = pyro.sample('temp', dist.Normal(15.0, 2.0))
    sensor = pyro.sample('sensor', dist.Normal(temp, 1.0), obs=obs['sensor'])
```

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor}=18)$$

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

$$\min_{\mathbf{q}} \mathrm{KL}\left(\mathbf{q}(\mathsf{temp}) || p(\mathsf{temp}|\mathsf{sensor} = 18)\right)$$

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

$$\min_{q} \operatorname{KL}\left({q(\mathsf{temp})} || p(\mathsf{temp}|\mathsf{sensor} = 18) \right)$$

Pyro Guides:

• Define the *q* **distributions** in variational settings.

Inference Problem

$$p(\mathsf{temp}|\mathsf{sensor} = 18)$$

Variational Solution

```
\min_{q} \mathrm{KL}\left(\frac{q(\mathsf{temp})}{||p(\mathsf{temp}|\mathsf{sensor}=18))}\right)
```

Pyro Guides:

- Define the *q* **distributions** in variational settings.
- Build proposal distributions in importance sampling, MCMC.
- ...

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Pyro Guides:

- Guides are arbitrary stochastic functions.
- Guides produces samples for those variables of the model which are not observed.

Guide requirements

- the guide has the same input signature as the model
- ② all unobserved sample statements that appear in the model appear in the guide.

Example

```
#The guide
def guide(obs):
    a = pyro.param("mean", torch.tensor(0.0))
    b = pyro.param("scale", torch.tensor(1.), constraint=constraints.positive)
    temp = pyro.sample('temp', dist.Normal(a, b))
```

Code-task: VB for a simple Gaussian model

Exercise: Pyro implementation for a simple Gaussian model

Day2-AfterLunch/student_simple_gaussian_model_pyro.ipynb

- $X_i \mid \{\mu, \gamma\} \sim \mathcal{N}(\mu, 1/\gamma)$
- $\bullet \ \mu \sim \mathcal{N}(0,\tau)$
- $\gamma \sim \text{Gamma}(\alpha, \beta)$
- Implement a pyro **guide** for the graphical model above.
- Specify suitable variational approximation in the form of a Pyro guide.

$$q(\mu, \gamma) = \dots$$

• Check the differences with the following notebook (no Pyro implementation).

Day2-BeforeLunch/student_simple_model.ipynb

Deep Bayesian Learning - VAE

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\omega}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

The Variational Auto Encoder (VAE)

Model of interest

- $p(\mathbf{z}_i)$ is (usually) an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i | g_{\omega}(\mathbf{z}_i))$, where g is a deep neural network.

$$p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \mathsf{Bernoulli}(\mathsf{logits} = g_{\omega}(\mathbf{z}_i))$$

- $g_{\omega}(\mathbf{z}_i)$ plays the role of a **DECODER NETWORK**.
- Learn ω to maximize the model's fit to \mathcal{D} .
 - We will cheat and find a **point estimate** for ω .

Variational Inference

• We will need $p_{\omega}(\mathbf{z}_i | \mathbf{x}_i)$ for each data-point \mathbf{x}_i :

$$p_{\boldsymbol{\omega}}(\mathbf{z}_i \mid \mathbf{x}_i) = \frac{p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i))}{\int_{\mathbf{z}_i} p_{\boldsymbol{\omega}}(\mathbf{z}_i) \cdot p_{\boldsymbol{\omega}}(\mathbf{x}_i \mid g_{\boldsymbol{\omega}}(\mathbf{z}_i)) \, d\mathbf{z}_i}.$$

• Initial plan: Fit $q(\mathbf{z}_i | \boldsymbol{\lambda}_i)$ to $p_{\boldsymbol{\omega}}(\mathbf{z}_i | \mathbf{x}_i)$ using variational inference.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal $\mathbf{\Sigma}_i$, this still gives 2Nd variational parameters to learn.

Variational inference and the VAE

Initial plan:

Optimize the ELBO

$$\mathcal{L}(\boldsymbol{\omega}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N) = -\mathbb{E}_q \left[\log rac{\prod_{i=1}^N q(\mathbf{z}_i \, | \, \boldsymbol{\lambda}_i)}{\prod_{i=1}^N p_{\boldsymbol{\omega}}(\mathbf{z}_i, \mathbf{x}_i)}
ight].$$

- A natural model for $q(\mathbf{z}_i | \lambda_i)$ is a Gaussian with parameters $\lambda_i = \{\mu_i, \Sigma_i\}$.
- If \mathbf{Z}_i is d-dim and we for simplicity assume diagonal $\mathbf{\Sigma}_i$, this still gives 2Nd variational parameters to learn.

A better plan

• Assume $g_{\omega}(\mathbf{z})$ is "smooth": if \mathbf{z}_i and \mathbf{z}_j are "close", then so are \mathbf{x}_i and \mathbf{x}_j .

 $\rightsquigarrow \lambda_i$ and λ_j should be "close" if \mathbf{x}_i and \mathbf{x}_j are "close".

- Therefore: Let's assume there exists a (smooth) function $h(\mathbf{x})$ so that $h(\mathbf{x}_i) = \lambda_i$.
- \bullet $h(\cdot)$ is unavailable, so represent it using a deep neural net and learn the weights.
- $h(\mathbf{x}_i)$ plays the role of an **ENCODER NETWORK**.

Amortized inference

Amortized inference:

To learn a model $h(\cdot)$, typically a deep neural network, so that $h(\mathbf{x}_i) = \lambda_i$. $h(\cdot)$ is parameterized with weights, often (abusing notation) denoted by λ .

Note! Amortized inference is useful also outside VAEs!

Benefits:

- The 2Nd parameters $\{\lambda_i\}_{i=1}^N$ are replaced by the fixed-sized vector λ .
 - $\bullet\,$ If N is large we may get a simpler learning problem.
- Smoothness of $h(\cdot)$ implies regularization.
- We only change the **parameterization**, not the model itself!

VAE: Full setup

The full VAE approach:

- $p(\mathbf{z}_i)$ is an isotropic Gaussian distribution.
- $p_{\omega}(\mathbf{x}_i|\mathbf{z}_i) \sim \text{Bernoulli}(\text{logits} = g_{\omega}(\mathbf{z}_i)),$ where g_{ω} is a DNN with weights ω .
- $q(\mathbf{z}_i \mid \mathbf{x}_i, \boldsymbol{\lambda}) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$ where $\{\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\}$ is given by $h_{\boldsymbol{\lambda}}(\mathbf{x}_i).$ $h_{\boldsymbol{\lambda}}$ is a DNN with weights $\boldsymbol{\lambda}.$

Goal:

Learn **both** ω and λ by maximizing the ELBO:

$$\mathcal{L}(\boldsymbol{\lambda}, \boldsymbol{\omega}) = -\mathbb{E}_q \left[\log \frac{q(\mathbf{z} \mid \mathbf{x}, \boldsymbol{\lambda})}{p_{\boldsymbol{\omega}}(\mathbf{z}, \mathbf{x} \mid \boldsymbol{\omega})} \right].$$

- For each \mathbf{x}_i , sample M (typically 1) ϵ -values.
- ② Calculate $\nabla_{\lambda,\omega} \mathcal{L}(\lambda,\omega)$ using the reparameterization-trick.
- Update parameters using a standard DL optimizer (like Adam).

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each x_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.

Fun with MNIST – The model

- The model is learned from N=55.000 training examples.
- Each x_i is a binary vector of 784 pixel values.
- When seen as a 28×28 array, each \mathbf{x}_i is a picture of a handwritten digit ("0" "9").

- Encoding is done in **two** dimensions. $p(\mathbf{z}_i) = \mathcal{N}(\mathbf{0}_2, \mathbf{I}_2)$.
- The encoder network $X \rightsquigarrow Z$.
- The **decoder network Z** \leadsto X is a 64 + 256 neural net with ReLU units.
 - $\mathbf{z}_i: 2 \text{ dim} \xrightarrow{\mathsf{ReLU}} \mathsf{Hidden}, 64\text{-d} \xrightarrow{\mathsf{ReLU}} \mathsf{Hidden}, 256\text{-d} \xrightarrow{\mathsf{Linear}} \mathsf{logit}(\mathbf{p}_i), 784\text{-d} \xrightarrow{} p_{\omega}(\mathbf{x}_i \mid \mathbf{z}_i, \omega) = \mathsf{Bernoulli}(\mathbf{p}_i), 784\text{-d}$

Code Task: VAEs in Pyro

Code Task: VAEs in Pyro

- Learn how a VAE is coded in Pryo.
- We provide a VAE with a linear decoder.
- Exercise (summary):
 - Define a Non-Linear Decoder, e.g., an MLP with a hidden layer and non-linearities (e.g. Relu).
 - Explore the latent space when moving from linear to non-linear decoders with different capacity.
- Notebook:

Day2-AfterLunch/students_VAE.ipynb.

Conclusions

- Bayesian Machine Learning
 - Represents unobserved quantities using distributions
 - \bullet Models **epistemic** uncertainty using $p(\boldsymbol{\theta}\,|\,\mathcal{D})$

- Bayesian Machine Learning
- Variational inference
 - **Provides** $q(\theta \mid \lambda)$: A distributional approximation to $p(\theta \mid \mathcal{D})$
 - Objective: $\arg\min_{\lambda} \mathrm{KL}\left(q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})||p(\boldsymbol{\theta} \,|\, \mathcal{D})\right) \Leftrightarrow \arg\max_{\lambda} \mathcal{L}\left(q(\boldsymbol{\theta} \,|\, \boldsymbol{\lambda})\right)$
 - Mean-field: Divide and conquer strategy for high-dimensional posteriors
 - Main caveat: $q(\theta \,|\, \pmb{\lambda})$ underestimates the uncertainty of $p(\theta \,|\, \mathcal{D})$

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
 - Analytic expressions for some models (i.e., conjugate exponential family)
 - CAVI is very efficient and stable if it can be used
 - In principle requires manual derivation of updating equations
 - There are tools to help (using variational message passing)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
 - Provides the tools for VI over arbitrary probabilistic models
 - Directly integrates with the tools of deep learning
 - Automatic differentiation, sampling from standard distributions, and SGD
 - Sampling to approximate expectations: Beware of the variance!

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
 - PPLs fuel the "build compute critique repeat" cycle through
 - ease and flexibility of modelling
 - powerful inference engines
 - efficient model evaluations
 - Many available tools (Pyro, TF Probability, Infer.net, Turing.jl, . . .)

- Bayesian Machine Learning
- Variational inference
- Coordinate Ascent Variational Inference
- Gradient-based Variational Inference
- Probabilistic programming languages
- What's next?
 - The "VI toolbox" is reaching maturity
 - From only a research area to almost a prerequisite for Probabilistic Al
 - ... yet there are still things to explore further!
 - Today's material should suffice to read (and write!) Prob-Al papers

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there w

unprocessed data that should have been added to the final page this extra

If you rerun the document (without altering it) this surplus page will go aw

LATEX now knows how many pages to expect for this document.

been added to receive it.