Exercise 3.7. Suppose vector space V and W are finite $(2 \le \dim V \le \dim W)$, show that $\{T \in \mathcal{L}(V, W) \mid T \text{ is not injective }\}$ is not a subspace.

Proof. Consider the basis $v_0 + \cdots + v_{(\dim V - 1)} \in V$, and $T(v_0 + \cdots + v_{(\dim V - 1)}) = (0 + 1_0 + \cdots + 1_{(\dim V - 1)})$ and $T'(v_0 + \cdots + v_{(\dim V - 1)}) = (v_0 + 0 + \cdots + v_{(\dim V - 1)})$. Then $(T + T')(\lambda_0 v_0 + \lambda_1 v_1 + \cdots + \lambda_{(\dim V - 1)} v_{(\dim V - 1)}) = \lambda_0 v_0 + \lambda_1 v_1 + \cdots + 2\lambda_{(\dim V - 1)} v_{(\dim V - 1)}$, which is obviously injective.

Exercise 3.11. Suppose V is finite and $T \in \mathcal{L}(V, W)$, show that there is a subspace $U \subset V$ such that:

$$U \cap \text{null } T = \{0\} \quad and \quad \text{range } T = \{ Tu \mid u \in U \}$$

Proof. This is similar to the *isomorphism theorems* about groups! This can be done by the similar way we used in proving dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

The next two exercises remind me the categorical injective and surjective, let try them first!

Exercise. For any $F \in \mathcal{L}(V, W)$, F is injective \iff for any $S, T \in \mathcal{L}(U, V)$, FS = FT implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(V, W)$ that FS = FT, then for any $u \in U$, we have F(Su) = F(Tu), since F is injective, we know Su = Tu, so S = T.
- (\Leftarrow) For any $v, w \in V$ such that Fv = Fw. Consider

$$S(\lambda) = \lambda v$$

$$T(\lambda) = \lambda w$$

in $\mathcal{L}(\mathbb{R}, V)$. Then for any $\lambda \in \mathbb{R}$, we have $FS\lambda = \lambda FS1 = \lambda Fv = \lambda Fw = \lambda FT1 = FT\lambda$. so FS = FT then S = T, which means v = S1 = T1 = w.

Exercise. Suppose W is finite, then for any $F \in \mathcal{L}(V, W)$, F is surjective \iff for any $S, T \in \mathcal{L}(W, U)$, SF = TF implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(W, U)$ such that SF = TF. For any $w \in W$, there is $v \in V$ such that Fv = w since F is surjective. Then we have SFv = TFv so Sw = S(Fv) = T(Fv) = Tw then S = T.
- (\Leftarrow) Consider

$$S = I$$
 and $T(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_k w_k$

where w_0, \dots, w_k is the basis of range F and w_0, \dots, w_n is the basis of W that expand from w_0, \dots, w_k .

It is easy to show that T is a linear transformation. Then for any $v \in V$, we have TFv = Fv (since T acts like identity transformation on range F) and SFv = Fv, so S = T by the property of F. Since range S = W, so is range T, that means w_0, \dots, w_k spans W, so k = n, which means range F = W, therefore F is surjective.

Exercise 3.19. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is injective \iff there is $S \in \mathcal{L}(W, V)$ such that ST = I.

Proof.

- (\Rightarrow) Consider the basis v_0, \dots, v_n of V, then Tv_0, \dots, Tv_n is a basis of range T since T is injective. We denote Tv_i as w_i and w_0, \dots, w_m as the basis of W which expand from w_0, \dots, w_n . Define $S(\lambda_0 w_0 + \dots + \lambda_m w_m) = \lambda_0 w_0 + \dots + \lambda_n w_n$, and then for any $v \in V$, $ST(\lambda_0 v_0 + \dots + \lambda_n v_n) = S(\lambda_0 w_0 + \dots + \lambda_n w_n) = \lambda_0 v_0 + \dots + \lambda_n v_n$, so ST = I.
- (\Leftarrow) Suppose $A, B \in \mathcal{L}(U, V)$, such that TA = TB, we will show that A = B. STA = IA = A and STB = IB = B and STA = STB since TA = TB. Then we know T is a monomorphism, and then T is injective.

Exercise 3.20. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is surjective \iff there is $S \in \mathcal{L}(W, V)$ such that TS = I.

Proof.