4/8/2019 Exam 3: Thursday! Solubility equilibria and the solubility product constant, Ksp Ch 4: sol. rules SOL OR INSOL.

in reality, everything dissolves (maybe a little/lot) let's be more specific! Let's meet our final equi constant: Ksp: solubility product $rxn: ionic compound (s) <math>\rightleftharpoons dissolved ions (ag)$ ex: calcium fluoride: CaF2(s) = Ca(aq) + 2F(aq) $K_{sp} = [C_a^{2+}][F_{eq}]^2$ chap/appendix II = 1.46x10-10 (25°c, textbook) let's calculate molar solubility of CaF2 in water. $ICE-chart \qquad CaF_{2}(s) \stackrel{?}{=} Ca^{2}(ag) + 2F\overline{cog}$ $I \stackrel{}{=} 0 \quad 0$ $let s \stackrel{mol}{=} dissolve \qquad C \stackrel{"-s"}{=} +s \quad +2s$ $E \stackrel{}{=} (s) \quad (2s)$ Ksp = [(a2+)[F-]ea => 1.46x10"=(5)(2s)=453

TABLE 17.2 Selected Solubility Product Constants (K _{sp}) at 25 °C					
Compound	Formula	K _{sp}	Compound	Formula	К _{sp}
Barium fluoride	BaF ₂	2.45×10^{-5}	Lead(II) chloride	PbCl ₂	1.17×10^{-5}
Barium sulfate	BaSO ₄	1.07×10^{-10}	Lead(II) bromide	PbBr ₂	4.67×10^{-6}
Calcium carbonate	CaCO ₃	4.96×10^{-9}	Lead(II) sulfate	PbSO ₄	1.82×10^{-8}
Calcium fluoride	CaF ₂	1.46×10^{-10}	Lead(II) sulfide*	PbS	9.04×10^{-29}
Calcium hydroxide	Ca(OH) ₂	4.68×10^{-6}	Magnesium carbonate	MgCO ₃	6.82×10^{-6}
Calcium sulfate	CaSO ₄	7.10×10^{-5}	Magnesium hydroxide	Mg(OH) ₂	2.06×10^{-13}
Copper(II) sulfide*	CuS	1.27×10^{-36}	Silver chloride	AgCl	1.77×10^{-10}
Iron(II) carbonate	FeCO ₃	3.07×10^{-11}	Silver chromate	Ag ₂ CrO ₄	1.12×10^{-12}
Iron(II) hydroxide	Fe(OH) ₂	4.87×10^{-17}	Silver bromide	AgBr	5.35×10^{-13}
Iron(II) sulfide*	FeS	3.72×10^{-19}	Silver iodide	AgI	8.51×10^{-17}

^{*}Sulfide equilibrium is of the type: MS(s) + $H_2O(I) \Longrightarrow M^{2+}(aq) + HS^-(aq) + OH^-(aq)$

^{© 2017} Pearson Education, Inc.

in common. CaF2(5) = Ca2+(ag) + 2 F (ag) / (s) (0.100+2s) Ksp = [(a2+)[F-]ea => 1.46x10-10 = (s)(0.100+2s) let's assume 25<0.100 then: 1.46 x 10-10 % (5) (0.100) $S \stackrel{?}{=} 1.46 \times 10^{-10} = 1.46 \times 10^{-8} \text{ safe!}$ What's molar sol of Cafz in pure water? 3.32×10-4M 20,000× in pur Heol CaF2(s) = (a2+(ag) + 2F(ag) LHS shift & less dissolved when it's dissolved in NoFrago. ([F-]1) less sol. ex: In which sol is Baso4 most soluble? a) 0.10M Ba(NO3)2 (ag) - Ba in common 6) 0.10 M Nazso4 (ag) - So42- in romman c) 0.10 M Na NOz (ag) no common ion! ? Basou(s) = Ba2+(ag) + SO4(ag)

The common ion effect can be qualitatively understood by application of Le Chatelier's principle! The presence of a common ion increases the concentration of one of the RHS species (stress), causing a shift to the LHS (relief) that represents a decrease in solubility (formation of dissolved ions).

$$CaF_2(s) \Longrightarrow Ca^{2+}(aq) + 2F^{-}(aq)$$

Equilibrium shifts left

© 2017 Pearson Education, Inc.

Precipi lation	Pph's_
	Ksp Mn: 1'onic cpd (1) = 1 ions (ag)
	dissolving
	saturated soly
Qsp vs. K (unsaturated)	sp shift to RHS shift to LHS (supersaturated) more can ppt will (supersaturated) airsolve occur
Q	sp <ksp ksp="" qsp="">Ksp</ksp>
ex: Ksp	(CaF2) = 1.46x10-10 CaF2(5) = Ca2t (2) + 2Fa)
	A
if we mix	Ca(NO3)2 (ag) + NaF (ag) so that
	[G24] = 2.5 x 10-3M
	[F-] = 2.0 x 10-3 M
what will ha	ippen?
	Qsp = [(a2+][f-]
	$= (2.5 \times 10^{-3}) (2.0 \times 10^{-3})^{\frac{1}{2}}$
	= 1.0 × 10-8
Qsp>	Sp => shift to LHS
	⇒ PPT /