# Welcome to Safran Lab 2

Every day, more than 80,000 commercial flights take place around the world, operated by hundreds of airlines. For all aircraft take-off weight exceeding 27 tons, a regulatory constraint requires companies to systematically record and analyse all flight data, for the purpose of improving the safety of flights. Flight Data Monitoring strives to detect and prioritize deviations from standards set by the aircraft manufacturers, the authorities of civil aviation in the country, or even companies themselves. Such deviations, called events, are used to populate a database that enables companies to identify and monitor the risks inherent to these operations.

This notebook is designed to let you manipulate real aeronautical data, provided by the Safran Group. It is divided in two parts: the first part deals with data exploration, data visualization, the use case, analysis of distributions and simple linear models to predict the fuel consumption of a flight. The second part deals with more complex models, optimization of parameters, interpretation of the results, and models to predict the fuel consumption of each flight phase and finally conclude by the objective of giving pieces of advice to the pilot so that he optimizes the consumption of fuel the next time.

#### Load the cell below for overall set up

```
In [2]: # set up
        BASE_DIR = "/mnt/safran/TP2/data/"
        import time
        import glob
        import matplotlib as mpl
        import matplotlib.pylab as plt
        %matplotlib inline
        import matplotlib.dates as mdates
        mpl.rcParams['axes.grid'] = True
        import numpy as np
        import scipy as sp
        import pandas as pd
        pd.options.display.max_columns = 23
        from datetime import datetime
        from sklearn import tree, linear_model, model_selection, preprocessing,
        decomposition
        from sklearn.metrics import mean_squared_error
        # read_pickle
        dfs = []
        files = glob.glob(BASE DIR + "flights/*.pkl")
        p = 0
```

```
for idx, file in enumerate(files):
    if idx % int(len(files) / 10) == 0:
       print(str(p * 10) + "%: [" + "#" * p + " " * (10 - p) + "]", end
="\r")
        p += 1
   dfs.append(pd.read_pickle(file))
# load global values data, Summarising global values in a dataframe
file_features_df = BASE_DIR + "features_df.pkl"
file_output_df = BASE_DIR + "output_df.pkl"
features_df = pd.read_pickle(file_features_df)
output_df = pd.read_pickle(file_output_df)
# flight phases
flight_phases = ['APPROACH', 'CLIMB', 'CRUISE', 'DESCENT', 'ENG START',
'FINAL APP',
                 'FLARE', 'INIT CLIMB', 'LANDING', 'TAKE OFF', 'TAXI IN'
, 'TAXI OUT', 'TOUCH N GO',
                 'LVL CHANGE', 'GO AROUND']
```

100%: [########]

# 1 Know & understand the data

#### Context

You are provided with nearly 3000 flights operating different routes.

Each flight data is a collection of time series resumed in a dataframe, the sample rate is 1Hz, the columns variables are described in the schema below:

## Schema

| VAR          | DESCRIPTION                                    | UNIT           |
|--------------|------------------------------------------------|----------------|
| ORIGIN       | Flight departure airport                       | NA             |
| RUNWAY_TO    | Flight origin runway                           | NA             |
| DESTINATION  | Flight arrival airport                         | NA             |
| RUNWAY_LD    | Flight destination runway                      | NA             |
| DATE_HF      | High rate date computation                     | %d/%m/%y (UTC) |
| TIME_HF      | High rate time computation                     | %H:%M:%S (UTC) |
| FLIGHT_PHASE | Current flight-phase                           | NA             |
| ALT_STD_C    | Standard altitude corrected                    | feet           |
| HEAD_MAG     | Magnetic heading                               | deg            |
| IAS_C        | Indicated air speed corrected                  | knot           |
| RALTC        | Radio altitude computed from different sources | feet           |
|              |                                                |                |

| PITCH_C | Pitch attitude corrected            | deg |
|---------|-------------------------------------|-----|
| ROLL_C  | Bank angle corrected                | deg |
| FOB     | Fuel on board                       | kg  |
| TORQ1_C | Torque corrected (engine 1)         | %   |
| TORQ2_C | Torque corrected (engine 2)         | %   |
| NH1_C   | NH corrected (engine 1)             | %   |
| NH2_C   | NH corrected (engine 2)             | %   |
| NL1     | NL Left from frequency input        | %   |
| NL2     | NL Right from frequency input (NL2) | %   |
| GW_C    | Gross weight corrected              | kg  |

Here are some links to get expertise on some variables:

- torque
- aicraft fuel consumption
- about FOB and fuel flow

# **Question 1.1**

- What variables are categorical?
- What variables are numerical?

In [6]: df.describe()

Out[6]:

|       | ALT_STD_C    | IAS_C       | RALTC       | HEAD_MAG    | PITCH_C     | ROLL_C     |                 |
|-------|--------------|-------------|-------------|-------------|-------------|------------|-----------------|
| count | 5300.000000  | 5300.000000 | 5300.000000 | 5300.000000 | 5300.000000 | 5300.00000 | 530             |
| mean  | 9380.041698  | 143.439434  | 2805.375472 | 244.704509  | 1.589113    | -0.12283   | 27              |
| std   | 7313.233291  | 83.138209   | 1767.863233 | 63.837697   | 3.019048    | 1.62885    | 26              |
| min   | -169.000000  | 0.000000    | -4.300000   | 0.000000    | -5.200000   | -24.70000  | 239             |
| 25%   | 42.750000    | 104.500000  | 0.000000    | 253.900000  | -0.600000   | -0.30000   | 254             |
| 50%   | 10406.000000 | 170.000000  | 4000.000000 | 259.800000  | 1.700000    | -0.10000   | 270             |
| 75%   | 17722.250000 | 191.000000  | 4000.000000 | 264.500000  | 3.200000    | 0.10000    | 299             |
| max   | 17962.000000 | 238.000000  | 4000.000000 | 358.900000  | 14.800000   | 25.60000   | 32 <sup>-</sup> |

#### COMMENT

- \*CATEGORICAL\*: ORIGIN, RUNWAY\_TO, DESTINATION, RUNWAY\_LD, FLIGHT\_PHASE, DATE\_HF, TIME\_HF
- \*NUMBERICAL\*: , ALT\_STD\_C, HEAD\_MAG, IAS\_C, RALTC, PITCH\_C, ROLL\_C, FOB, TORQ1\_C, TORQ2\_C, NH1\_C, NH2\_C, NL1, NL2, GW\_C

# Visualize all time series for one flight

Let's visualize all the numerical time series for one flight, for example dfs[0], to have a sense of how the time series vary.



# **Question 1.2**

Comment this visualization of FOB for several flights.

- Is there a pattern?
- Do you notice anything strange?

```
In [10]: # Create a figure and one subplot
fig, ax = plt.subplots(figsize=(20, 6))

for df in dfs[:500]:
          df.FOB.plot(use_index=False, color="C0", ax=ax, title="FOB for sever al flights", alpha=0.5)
```



#### **COMMENT**

The linear decay of most of the flights seem to have a similar shape for all of them. Also, it seems like there are two separate parts on this data: flights starting with up to 2500kg and those starting with fuel above that value. Out guess is that the planes are refilled once every two flights (maybe go and return?), since the ending of the top part of the graph matches the beginning of the lower part of the graph. This would make sense considering that the flights take in average less tha 2h, meaning that they are short distance flights

It's also worth noting that all flights seem to start with a fixed value of fuel that resembles a scale (because of the steps at the beginning of the graph).

# About FLIGHT\_PHASE column

Observe how ALT\_STD\_C varies for each phase

```
In [9]: # Create a figure and one subplot
fig, ax = plt.subplots(figsize=(15, 4))

# Give an alias to dfs[0]
df = dfs[0]

df.groupby("FLIGHT_PHASE").ALT_STD_C.plot(title="ALT_STD_C grouped by FL
IGHT_PHASE", ax=ax);
ax.legend()
```

Out[9]: <matplotlib.legend.Legend at 0x2294de048>



#### Typical chronology of cruise phases:

- ENG START

- TAXI OUT
- TAKE OFF
- INIT CLIMB
- CLIMB
- CRUISE
- DESCENT
- APPROACH
- FINAL APP
- FLARE
- LANDING
- TAXI IN

## Phases that exist only for some flights:

- LVL CHANGE
- GO AROUND
- TOUCH N GO

# About DELTA\_FOB

- MAX\_FOB: FOB at the beginning of the flight
- MIN\_FOB: FOB at the end of the flight
- DELTA\_FOB: MAX\_FOB MIN\_FOB the amount of fuel consumed during the whole flight

```
In [8]: # Create a figure and one subplot
fig, ax = plt.subplots(figsize=(15, 4))

# Give an alias to dfs[0]
df = dfs[0]

df.FOB.plot(title="FOB")
plt.axhline(df.FOB.max(), color="C1")
plt.axhline(df.FOB.min(), color="C1")
plt.axvline(df.FOB.index[-200], linestyle=":", color="C3")
plt.text(df.FOB.index[-550], 2500, "DELTA_FOB", color="C3")
```

Out[8]: <matplotlib.text.Text at 0x2294de5c0>



From this FOB signal we will only be interested in deltas, that is the amount of fuel consumed over a certain time period. The first approach will focus on predicting the delta of all the flight, the second approach will be predicting the deltas of each flight phase

# 2 Use case

#### The story

A company asks you to help them optimize the fuel consumption of their fleet. They've been collecting data from their flights for 2 years, operating on four different routes. They do not understand why sometimes the pilots consume 800 kilograms of fuel and sometimes 600 kg for the same route. The company provided you with all their flights.

Your objective is two-fold:

- Create a model of the quantity of fuel consumed
- Tell the company how their pilots should fly the aircraft to optimize their fuel consumption

In this part we will only use some summarised features of each flight, not the whole time series. Here are the features we will be using:

#### features\_df

| VAR             | DESCRIPTION            |
|-----------------|------------------------|
| DATE_HF         | date                   |
| DESTINATION     | destination airport    |
| ORIGIN          | origin airport         |
| RUNWAY_LD       | runway landing         |
| RUNWAY_TO       | runway take-off        |
| MAX_FOB         | FOB at origin          |
| MAX_GW          | Gross weigth at origin |
| TIME_APPROACH   | Approach length        |
| TIME_CLIMB      | Climb length           |
| TIME_CRUISE     | Cruise length          |
| TIME_DESCENT    | Descent length         |
| TIME_ENG START  | Eng start length       |
| TIME_FINAL APP  | Final app length       |
| TIME_FLARE      | Flare length           |
| TIME_GO AROUND  | Go around length       |
| TIME_INIT CLIMB | Init climb length      |
| TIME_LANDING    | Landing length         |
| TIME_LVL CHANGE | Lvl change length      |
| TIME_TAKE OFF   | Take off length        |
| TIME_TAXI IN    | Taxi in length         |
| TIME_TAXI OUT   | Taxi out length        |
|                 |                        |

| TIME_TOUCH N GO | Touch n go length |
|-----------------|-------------------|
| TIME_TOTAL      | Total length      |

From these features we want to predict the amount of fuel consumed during the whole flight, that is <code>DELTA\_FOB</code>. Imagine that at the end of flight the sensor that measures FOB broke and that we cannot know how much fuel we have left.

## output\_df

| VAR       | DESCRIPTION |
|-----------|-------------|
| DELTA_FOB | FOB conso   |

The features\_df containing all the features described above has been computed for you, as well as output\_df.

```
In [13]: features_df = pd.read_pickle(file_features_df)
    features_df.head()
```

### Out[13]:

|   | DATE_HF  | ORIGIN | DESTINATION | RUNWAY_TO | RUNWAY_LD | MAX_FOB | MAX_GW  | т  |
|---|----------|--------|-------------|-----------|-----------|---------|---------|----|
| 0 | 03/12/15 | ARPT0  | ARPT1       | 08        | 26        | 2820    | 20620.0 | 1  |
| 1 | 03/12/15 | ARPT0  | ARPT1       | 08        | 26        | 2752    | 18480.0 | 2  |
| 2 | 22/06/15 | ARPT0  | ARPT3       | 24        | 28        | 2026    | 17780.0 | 1: |
| 3 | 10/08/15 | ARPT0  | ARPT3       | 08        | 28        | 1930    | 18300.0 | 3: |
| 4 | 21/08/16 | ARPT0  | ARPT4       | 20        | 33        | 2054    | 21540.0 | 6: |

```
In [14]: output_df = pd.read_pickle(file_output_df)
    output_df.head()
```

#### Out[14]:

|   | DELTA_FOB |
|---|-----------|
| 0 | 668       |
| 1 | 630       |
| 2 | 1072      |
| 3 | 1000      |
| 4 | 926       |

## **Question 2.1**

In this question we compute some statistics about the population of flights:

- How many different origin airports?
- How many different destination airports?
- How many routes? How many flights per route?

```
In [14]: features_df['ORIGIN'].value_counts()
```

Out[14]: ARPTO 2742

Name: ORIGIN, dtype: int64

In [13]: features\_df['DESTINATION'].value\_counts()

Out[13]: ARPT2 956

ARPT3 929 ARPT4 442 ARPT1 415

Name: DESTINATION, dtype: int64

#### COMMENT

- There is one single origin airport.
- There are 4 different destination airports.
- There are 4 different routes (one for each pair [ORIGIN, DESTINATION]) and the following flights per route: [956, 929, 442, 415].

## Question 2.2

In this question we focus on the output we want to predict: DELTA\_FOB in dataframe output\_df

- Plot the DELTA FOB distribution and comment.
- What influences the most DELTA\_FOB according to you? There is no right or wrong answer.

```
In [16]: output_df.DELTA_FOB.plot.hist(bins=30)
```

Out[16]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f1048fc3668>



#### **COMMENT**

The minimum values are arround 600kg, the mean in arround 900kg and the maximum arroung 1300kg. Standard deviation is arround 100kg.

In our oppinion, the features affecting the most to the fuel consumption are: DESTINATION (further airports demand more consumption), MAX\_GW (heavier planes consume more),

TIME\_CLIMB and TIME\_INIT\_CLIMB (because it's when the fule is consumed at a higher rate) and TIME\_TOTAL (the longer the flight, the more consumption)

# **Question 2.3**

In this question we work on the distributions of <code>DELTA\_FOB</code> conditionned on <code>DESTINATION</code> and (optional) <code>RUNWAY\_LD</code>

- Plot DELTA\_FOB distribution conditionned on DESTINATION airport and comment.
- (optional) Plot DELTA\_FOB distribution conditionned on DESTINATION airport and RUNWAY LD and comment.

```
In [42]: df2 = pd.concat([output_df.DELTA_FOB, features_df.DESTINATION], axis=1)
    df2.groupby('DESTINATION').plot.hist(bins=30)
```

#### Out[42]: DESTINATION

ARPT1 Axes(0.125,0.125;0.775x0.755)
ARPT2 Axes(0.125,0.125;0.775x0.755)
ARPT3 Axes(0.125,0.125;0.775x0.755)
ARPT4 Axes(0.125,0.125;0.775x0.755)

dtype: object







#### **COMMENT**

The DELTA\_FOB changes greatly depending on the DESTINATION. The consumption is: ARPT1 < ARPT2 < ARPT3 (distances whould behave accordingly)

# **Question 2.4**

Finally let's work with two important features: the total duration of the flight  ${\tt TOTAL\_TIME}$  and the quantity of fuel at the beginning of the flight  ${\tt MAX\_FOB}$ .

- Plot the distributions of the following variables:
  - MAX\_FOB
  - TIME\_TOTAL
- · Comment these distributions

```
In [48]: features_df.MAX_FOB.plot.hist(bins=50)
features_df.MAX_FOB.quantile([0.1, 0.25, 0.5, 0.75, 0.9])
```

Out[48]: 0.10 1926.0 0.25 2028.0 0.50 2243.0 0.75 2922.0 0.90 3218.0

Name: MAX\_FOB, dtype: float64



```
In [46]: features_df.TIME_TOTAL.plot.hist(bins=30)
    features_df.TIME_TOTAL.quantile([0.1, 0.25, 0.5, 0.75, 0.9])
```

Out[46]: 0.10 4189.10 0.25 4741.25 0.50 5119.00 0.75 5467.75 0.90 5827.90

Name: TIME\_TOTAL, dtype: float64



#### **COMMENT**

The histogram of MAX\_FOB It matches the previous plot in question 1.2. Its shape is full of

steps, as expected from the previous figure since the initial value of FOB was full of steps/gaps. The mean is 2243, and it has a high standard deviation.

The histogram of TIME\_TOTAL shows a gaussian distribution, with mean in 5100 and a standard deviation of 800.

# 3 Model DELTA\_FOB

We use sklearn for models.

## **Question 3.1**

- Scatter plot TIME\_TOTAL against DELTA\_FOB.
- Is there any relationship?

```
In [51]: df3 = pd.concat([output_df.DELTA_FOB, features_df.TIME_TOTAL], axis=1)
    df3.plot.scatter('TIME_TOTAL', 'DELTA_FOB')
```

Out[51]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f104593efd0>



#### COMMENT

There is a clear linear correlation between total time and delta fob, as expected. We can also see some outliers on this plot, as well as the main cluster of points.

Let's explore the predictive power of TIME\_TOTAL on DELTA\_FOB. Our first model is the following linear regression:

- algorithm: LinearRegression from sklearn package linear\_model (reference)
- input: TIME\_TOTAL
- output: DELTA\_FOB

Follow the code below, in the following questions you will extensively use this template code and adapt it.

## **Question 3.2**

Comment briefly the results, the following questions can help you:

- · What is the score method implemented by sklearn?
- How do you relate it to the mse?
- What is best to interprete the quality of the estimator?

```
In [103]: modelTraining()
```

score (R2) 0.606144364551

#### COMMENT

The score method used is R^2, which is a normalized version of Mean Squared Error \$\$MSE = (y-yPred)\*\*2.sum()\$\$ \$\$R2 = 1-MSE/((y-mean(y))\*\*2.sum())\$\$ The R2 is a better way to interpret the performance of an estimator because it has a relative value up to 1 (where a value above 0 is considered as better than constant values), whereas MSE doesn't hold any information by itself (you need information about the data in order to understand it).

## Question 3.3

- · Adapt the code above for the following model
  - algorithm: LinearRegression
  - input: TIME\_TOTAL, MAX\_FOB
  - output: DELTA\_FOB
- Compare the score with the results of the previous regression
  - is it getting better?

which variable has the most predictive power among  ${\tt TIME\_TOTAL}$  and  ${\tt MAX\_FOB}$ ?

```
In [105]: modelTraining(featureMtrx=['TIME_TOTAL', 'MAX_FOB'])
modelTraining(featureMtrx=['MAX_FOB'])

score (R2) 0.708710764451
score (R2) 0.0797671623189
```

#### **COMMENT**

It's clearly getting better (0.1 more in R2). When comparing TIME\_TOTAL with MAX\_FOB, we find TIME\_TOTAL to be much more powerfull towards prediction of DELTA\_FOB.

Before moving on and adding more features to our models, let's compare our linear regressions to a simple non-linear model:

- algorithm: DecisionTreeRegressor from sklearn package tree (reference)
- input: TIME\_TOTAL, MAX\_FOB
- output: DELTA\_FOB

## Question 3.4

- · Adapt the code for the model described above.
- What is the default behavior for max\_depth parameter?
- With a default behavior, is the score better than with linear regression?
- Split in 10 validation sets and optimize max\_depth parameter (you can use the template code below)
  - plot max\_depth parameters against the score
  - why is it not OK to optimize parameters only with train and test sets?
- What attributes can you use to you interprete the tree?

### **COMMENT**

- the default max\_depth is None, meaning there is no restriction to the maximum depth of the tree. This could lead to overfitting.
- The score with the default behavior is worse than the linear regression model with those two parameters (and very close to the linear regression only with TIME\_TOTAL)

```
In [80]: max_depths = range(2,20)

kFold = model_selection.KFold(n_splits=10)
    scores = []
```

```
for max_depth in max_depths:
    estimator=tree.DecisionTreeRegressor()
    estimator.set_params(max_depth=max_depth)
    score = []
    folds = kFold.split(X)
    for fold in folds:
        # Unpack train and test indices
        train, test = fold
        # Split in train and test sets
        X_train, X_test, y_train, y_test = X[train], X[test], y[train],
y[test]
        estimator.fit(X_train, y_train)
        score.append(estimator.score(X_test, y_test))
    scores.append(np.mean(score))
    print("NodeCount for tree %d: %d"%(max_depth, estimator.tree_.node_c
ount))
plt.plot(max_depths, scores, marker="*")
plt.title("score against max_depth \n validated with 10-fold CV")
```

NodeCount for tree 2: 7 NodeCount for tree 3: 15 NodeCount for tree 4: 31 NodeCount for tree 5: 61 NodeCount for tree 6: 119 NodeCount for tree 7: 221 NodeCount for tree 8: 369 NodeCount for tree 9: 569 NodeCount for tree 10: 817 NodeCount for tree 11: 1081 NodeCount for tree 12: 1381 NodeCount for tree 13: 1661 NodeCount for tree 14: 1903 NodeCount for tree 15: 2127 NodeCount for tree 16: 2327 NodeCount for tree 17: 2479 NodeCount for tree 18: 2581 NodeCount for tree 19: 2659

#### Out[80]: <matplotlib.text.Text at 0x7f1044011358>



#### **COMMENT**

- the default max\_depth is None, meaning there is no restriction to the maximum depth of the tree. This could lead to overfitting.
- The score with the default behavior is worse than the linear regression model with those two parameters (and very close to the linear regression only with TIME\_TOTAL)
- We should use a \*\*validation set\*\* because when tuning the hyperparameters we
  are fitting those hyperparameters to the test set, without knowing how it would
  behave with other datasets. Fitting a hyperparameter such as max\_depth should be
  done using a validation set always.
- We have the estimator.tree\_, which can be used to obtain data from the tree suchas node\_counts(how populated the tree is), or thresholds (what decissions is the tree making). There is also apackage to print the tree.

Let's add all the other numeric features.

```
In [81]: numeric_features = ['MAX_FOB',
                               'MAX_GW',
                               'TIME_APPROACH',
                               'TIME CLIMB',
                               'TIME_CRUISE',
                               'TIME DESCENT',
                               'TIME_ENG START',
                               'TIME FINAL APP',
                               'TIME_FLARE',
                               'TIME_GO AROUND',
                               'TIME_INIT CLIMB',
                               'TIME_LANDING',
                               'TIME_LVL CHANGE',
                               'TIME_TAKE OFF',
                               'TIME TAXI IN',
                               'TIME_TAXI OUT',
                               'TIME TOUCH N GO',
                               'TIME_TOTAL']
```

## **Question 3.5**

In Question 3.5 we will use regularized regression. In this question we take a preliminary step and rescale the features.

We use the StandardScaler from sklearn preprocessing package (reference).

- Give one reason for rescaling the features before doing regularized regression
- Fill in the blanks in the code below and observe the results printed out
- Why the first feature of X\_test\_transformed does not have a std of 1?

```
In [182]: def regularize(num_features=numeric_features, out_features=["DELTA_FOB"]
   , dataframex=features_df, dataframey=output_df):
        X = dataframex[num_features].as_matrix()
        y = dataframey[out_features].as_matrix()

        test_size = 0.2
        random_state = 42
```

```
X_train, X_test, y_train, y_test = model_selection.train_test_split(
X, y, test_size=test_size, random_state=random_state)

scaler = preprocessing.StandardScaler()

scaler.fit(X_train, y_train)

X_train_transformed = scaler.transform(X_train)

X_test_transformed = scaler.transform(X_test)

print("X_train_transformed first feature,", "mean:", X_train_transformed[:, 0].mean(), "std:", X_train_transformed[:, 0].std())

print("X_test_transformed first feature,", "mean:", X_test_transformed[:, 0].mean(), "std:", X_test_transformed[:, 0].std())

return X_train_transformed, X_test_transformed
```

```
In [89]: X_train_transformed, X_test_transformed = regularize(numeric_features)
```

X\_train\_transformed first feature, mean: -1.36892068335e-16 std: 1.0
X\_test\_transformed first feature, mean: 0.0510960710978 std: 1.038384287
34

#### **COMMENT**

Regularization is important to ensure the model weights all feature values equally (specially useful for representation), obtaining a normalized scale for all the features and avoiding numerical problems that may happen due to different ranges.

The X\_test is regularized using the standard deviation and mean from the training data, which is why we obtain a std different from 1.

The last question of this part focus on regularized linear regression.

- algorithm: Ridge for sklearn package linear\_model (reference)
- input: numeric\_features of features\_df
- output: DELTA\_FOB

## **Question 3.6**

- Use the previous template codes and adapt it to set up the models described above and rescale the features
- Split in validation sets and optimize alpha parameter
- · Interprete the coefficients of your best estimator

```
In [100]: # INPUT
X_train_transformed, X_test_transformed = regularize(numeric_features)

# HYPERPARAMETER
alphas = [0.001, 0.01, 0.1, 1, 10, 20, 50, 100]

kFold = model_selection.KFold(n_splits=10)
scores = []
```

```
for alpha in alphas:
    estimator=linear_model.Ridge(alpha=alpha)
    score = []
    folds = kFold.split(X_train_transformed)
    for fold in folds:
        # Unpack train and validation indices
            train, val = fold
            # Split in train and validation sets
            X_train, X_val, y_train, y_val = X[train], X[val], y[train], y[val]
            estimator.fit(X_train, y_train)
            score.append(estimator.score(X_val, y_val))
            scores.append(np.mean(score))
plt.plot(alphas, scores, marker="*")
plt.title("score against alphas \n validated with 10-fold CV")
```

X\_train\_transformed first feature, mean: -1.36892068335e-16 std: 1.0
X\_test\_transformed first feature, mean: 0.0510960710978 std: 1.038384287
34

Out[100]: <matplotlib.text.Text at 0x7f103caadba8>



X\_train\_transformed first feature, mean: -1.36892068335e-16 std: 1.0
X\_test\_transformed first feature, mean: 0.0510960710978 std: 1.038384287
34
score (R2) 0.919968073452

#### **COMMENT**

Alpha has almost no impact on the performance of the estimator, since we always get almost the same score. We have decided to use alpha=1, the default value. Our final score in the Test set is \*\*R2=0.92\*\*

# 4 Feature engineering & model delta\_fob for each phase

We will add a lot of information with engine-related time series:

- TORQ1\_C, TORQ2\_C
- NL1, NL2
- NH1\_C, NH2\_C

# Visualization of engine-related time series for one flight

```
In [110]: # Five an alias to dfs[0]
               df = dfs[0]
               engine_features = ['TORQ1_C', 'TORQ2_C',
                                         'NL1', 'NL2',
                                         'NH1_C', 'NH2_C']
               df[engine_features].plot(subplots=True, layout=(3, 2), figsize=(15, 12))
                 100
                                                           TORQ1_C
                                                                                                                  TORQ2_C
                  80
                  40
                                                                        40
                  20
                                                                        20
                                                                               NL2
                  80
                  60
                                                                        60
                 40
                                                                        40
                  20
                                                                        20
                  0
                 100
                                                                        100
                  80
                  60
                                                                        60
                 40
                                                                        40
                  20
                                                                        20
                                          NH1_C
                                                                              NH2_C
                         05 20:45
                              05 20:55
                                        05 11:15
                                                                                    05 10:55
                                                                                          05 21 05
                                                                                               0511:15
                                                                           0510:35 0510:45
                                                                                                    5 05 21.25 05 21.35 05 21.45
                                              5 05 11:25 05 11:35
                                                                                             DATETIME HF
                                      DATETIME HE
```

# **Question 4.1**

We will extract few numbers out of each phase for all engine variables ( $TORQ1_C$ ,  $TORQ2_C$ , NL1, NL2,  $NH1_C$ ,  $NH2_C$ )

- · Feature engineering
  - get TORQ1\_C of one phase of one flight, do a linear regression by index and plot the result
  - is it OK to resume the signal by a straight line? what other features would you

add?

score (R2) 0.2926616323

```
In [158]: pred = estimator.predict(X)
   plt.plot(X, y, 'r')
   plt.plot(X, pred, 'b')
   plt.show()
```



#### **COMMENT**

Clearly a linear estimation is not the best we could do for this phase (DESCENT). I would probably add the NL1, NL2, NH1\_C, NH2\_C information (due to the high correlation between engine related features).

These features have been created for you in the features2\_df dataframe.

# Recap features2\_df

```
In [159]: file_features2 = BASE_DIR + "features2_df.pkl"

features2_df = pd.read_pickle(file_features2)

numeric_features2 = list(features2_df.columns.values)
numeric_features2.remove("DATE_HF")
numeric_features2.remove("ORIGIN")
numeric_features2.remove("DESTINATION")
numeric_features2.remove("RUNWAY_TO")
numeric_features2.remove("RUNWAY_LD")

features2_df.describe()
```

#### Out[159]:

|       | MAX_FOB     | MAX_GW       | TIME_APPROACH | TIME_CLIMB  | TIME_CRUISE | TIME_  |
|-------|-------------|--------------|---------------|-------------|-------------|--------|
| count | 2742.000000 | 2742.000000  | 2742.000000   | 2742.000000 | 2742.000000 | 2742.0 |
| mean  | 2439.663020 | 20495.557987 | 143.109044    | 1190.589351 | 1568.312181 | 745.98 |
| std   | 482.857964  | 1161.616565  | 94.942888     | 258.253887  | 581.133001  | 182.28 |
| min   | 1616.000000 | 17300.000000 | 1.000000      | 85.000000   | 9.000000    | 230.00 |
| 25%   | 2028.000000 | 19640.000000 | 83.000000     | 1012.000000 | 1102.250000 | 613.00 |
| 50%   | 2243.000000 | 20540.000000 | 126.000000    | 1160.000000 | 1687.500000 | 715.00 |
| 75%   | 2922.000000 | 21400.000000 | 187.000000    | 1340.000000 | 1995.750000 | 854.00 |
| max   | 3732.000000 | 23440.000000 | 1560.000000   | 2445.000000 | 3467.000000 | 1892.0 |

8 rows x 468 columns

Let's be more ambitious and predict the fuel consumed by each phase. It would help a lot more to model the fuel consumption behavior for each phase when it will come to interpretation. The dataframe output2\_df containing the fuel consumed by each phase for each flight has been created for you.

```
In [180]: file_output2 = BASE_DIR + "output2_df.pkl"
  output2_df = pd.read_pickle(file_output2)
  output2_df.describe()
```

#### Out[180]:

|       | APPROACH    | CLIMB       | CRUISE      | DESCENT     | ENG START   | FINAL APP   |     |
|-------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| count | 2742.000000 | 2742.000000 | 2742.000000 | 2742.000000 | 2742.000000 | 2742.000000 | 27، |
| mean  | 44.630197   | 245.240700  | 293.458789  | 148.687819  | 21.590810   | 43.513494   | 3.2 |
| std   | 31.565958   | 57.213462   | 115.312441  | 50.315759   | 24.553695   | 24.024636   | 2.8 |
| min   | 0.000000    | 54.000000   | 2.000000    | 16.000000   | 4.000000    | 4.000000    | 0.0 |
| 25%   | 22.000000   | 202.000000  | 204.000000  | 116.000000  | 14.000000   | 28.000000   | 2.0 |
|       |             |             |             |             |             |             |     |

| 50% | 42.000000  | 240.000000 | 306.000000 | 154.000000 | 18.000000   | 42.000000  | 2.0 |
|-----|------------|------------|------------|------------|-------------|------------|-----|
| 75% | 62.000000  | 282.000000 | 376.000000 | 180.000000 | 26.000000   | 56.000000  | 4.0 |
| max | 712.000000 | 512.000000 | 754.000000 | 416.000000 | 1170.000000 | 410.000000 | 24. |

## Question 4.3

In this question we make use of output2\_df to determine the phase that consumes the most fuel per second in average.

- What flight phase consumes the most in average?
- What flight phase consumes the most per second in average?

```
In [162]: # This is template code to extract the phases durations out of features_
    df and rename the columns to make them identical to output2_df

phases_durations_df = features2_df[["TIME_" + fp for fp in flight_phases
]]
phases_durations_df.columns = flight_phases
phases_durations_df.head()
```

#### Out[162]:

|   | APPROACH | CLIMB | CRUISE | DESCENT | ENG<br>START | FINAL<br>APP | FLARE | INIT<br>CLIMB | LANDING | TAI<br>O |
|---|----------|-------|--------|---------|--------------|--------------|-------|---------------|---------|----------|
| 0 | 106      | 857   | 1123   | 762     | 705          | 203          | 12    | 49            | 36      | 26       |
| 1 | 219      | 1129  | 649    | 933     | 174          | 151          | 7     | 39            | 53      | 22       |
| 2 | 152      | 1139  | 2418   | 366     | 354          | 188          | 10    | 47            | 36      | 23       |
| 3 | 32       | 749   | 2676   | 619     | 249          | 243          | 9     | 34            | 32      | 21       |
| 4 | 62       | 1038  | 1040   | 1210    | 302          | 161          | 5     | 34            | 24      | 27       |

```
In [172]: # FLIGHT CONSUMPTION PER PHASE
          output2_df.mean()
                       44.630197
Out[172]: APPROACH
                       245.240700
         CLIMB
                      293.458789
         CRUISE
         DESCENT
                       148.687819
         ENG START
                       21.590810
         FINAL APP
                       43.513494
         FLARE
                         3.267688
         GO AROUND
                         0.868709
         INIT CLIMB
                       42.369803
                       48.817651
         LANDING
                         2.668855
         LVL CHANGE
         TAKE OFF
                        24.814004
         TAXI IN
                       55.407002
                        37.649161
         TAXI OUT
                         0.024799
         TOUCH N GO
         dtype: float64
```

In [173]: # FLIGHT CONSUMPTION RATE PER PHASE

```
output2_df.mean()/phases_durations_df.mean()
Out[173]: APPROACH
                       0.311861
                       0.205983
         CLIMB
         CRUISE
                       0.187118
         DESCENT
                       0.199317
         ENG START
                     0.043524
         FINAL APP
                     0.224860
         FLARE
                       0.378730
                     0.250552
         GO AROUND
         INIT CLIMB 0.881011
                     0.991254
         LANDING
         LVL CHANGE 0.357185
         TAKE OFF
                     0.975064
         TAXI IN
                      0.200860
         TAXI OUT
                       0.110724
         TOUCH N GO
                      0.601770
         dtype: float64
```

#### **COMMENT**

CRUISE consumes the most on average: 293.458789

LANDING consumes the most fuel on average per second: 0.991254

## **Question 4.4**

This last question aims to let you work with features2\_df and output2\_df. You can make use of any pieces of code we have worked with so far: especially to set up your models, rescale the features, optimize and validate your models... The expected outcome is to explain to the company what parameters influence the most the fuel consumption of their fleet and give them advice to consume less.

- The algorithm:
  - algorithm: you choose
  - input: features2\_df, output: output2\_df
- Interprete the coefficients, explain the causes of fuel consumption for each phase, give adive to the company to consume less in their following flights

```
# Train the model using the training sets
estimator.fit(X_train, y_train)

# Test the model on tests sets
# print("score (R2)", estimator.score(X_test, y_test))
return estimator.score(X_test, y_test)
```

#### **Answer**

Your answer goes here

#### **COMMENT**

For each phase we analyzed each attribute by itself in order to modelize with a ridge the fuel consumption. The final idea would be to plot/tablize the mtrx and filter out all the low values. The rest of the values would help us decide which attributes are more important for which phase. In short, whe're missing some filtering and some plotting.