Notation

```
GF(q)
                        Galois field with q elements
\mathbb{R}
                        field of real numbers
\mathbb{C}
                        field of complex numbers
M
                        set of natural numbers (\mathbb{N}^* excludes 0)
\mathcal{X}
                        alphabet or set
|\mathcal{X}|
                        cardinality of X
                        closure of set \mathcal{X}
cl(\mathcal{X})
co(\mathcal{X})
                        convex hull of set X
                        indicator function
11
                        ensemble with n elements \{x_1, \ldots, x_n\}
\{x_i\}_n
                        generic element of alphabet \mathcal{X}
X.
                        absolute value of x
|x|
\lceil x \rceil
                        unique integer n such that x \le n < x + 1
|x|
                        unique integer n such that x - 1 \le n \le x
                        sequence of integers between |x| and |y|
\llbracket x, y \rrbracket
x^+
                        positive part of x, that is x^+ = \max(x, 0)
                        +1 if x \ge 0, -1 otherwise
sign(x)
x^n
                        sequence x_1, \ldots, x_n
\bar{x}^n
                        sequence with n repetitions of the same element x
                        usually, a "small" positive real number
                        a function of \epsilon such that \lim_{\epsilon \to 0} \delta(\epsilon) = 0
\delta(\epsilon)
                        a function of \epsilon and n such that \lim_{n\to\infty} \delta_{\epsilon}(n) = 0
\delta_{\epsilon}(n)
                        a function of n such that \lim_{n\to\infty} \delta(n) = 0
\delta(n)
                        column vector containing the n elements x_1, x_2, \ldots, x_n
                        transpose of x
\mathbf{x}^{\dagger}
                        Hermitian transpose of x
Н
                        matrix
(h_{ij})_{m,n}
                        m \times n matrix whose elements are h_{ii}, with i \in [1, m] and
                        j \in [1, n]
|\mathbf{H}|
                        determinant of matrix H
                        trace of matrix H
tr(H)
                        rank of matrix H
rk(H)
                        kernel of matrix H
Ker(H)
```

X	random variable implicitly defined on alphabet ${\mathcal X}$
p_{X}	probability distribution of random variable X
$X \sim p_X$	random variable X with distribution p_X
$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution with mean μ and variance σ^2
$\mathcal{B}(p)$	Bernoulli distribution with parameter <i>p</i>
$p_{X Y}$	conditional probability distribution of X given Y
$\mathcal{T}_{\epsilon}^{n}(X)$	strong typical set with respect to p_X
$\mathcal{T}_{\epsilon}^{n}(XY)$	strong joint-typical set with respect to p_{XY}
$\mathcal{T}_{\epsilon}^{n}(XY x^{n})$	conditional strong typical set with respect to p_{XY} and x^n
$\mathcal{A}_{\epsilon}^{n}(X)$	weak typical set with respect to p_X
$\mathcal{A}_{\epsilon}^{n}(XY)$	joint weak typical set with respect to p_{XY}
\mathbb{E}_{X}	expected value over random variable X
Var(X)	variance of random variable X
\mathbb{P}_{X}	probability of an event over X
$\mathbb{H}(X)$	Shannon entropy of discrete random variable X
\mathbb{H}_{b}	binary entropy function
$\mathbb{H}_{c}(X)$	collision entropy of discrete random variable X
$\mathbb{H}_{\infty}(X)$	min-entropy of discrete random variable X
h(X)	differential entropy of continuous random variable X
$\mathbb{I}(X;Y)$	mutual information between random variables X and Y
$\mathbf{P}_{\!\mathrm{e}}(\mathcal{C})$	probability of error of a code \mathcal{C}
$\mathbf{E}(\mathcal{C})$	equivocation of a code C
$\mathbf{L}(\mathcal{C})$	information leakage of a code $\mathcal C$
$\mathrm{U}(\mathcal{S})$	uniformity of keys guaranteed by key-distillation strategy ${\cal S}$
$\underline{\underline{\lim}}_{x\to c} f(x)$	limit inferior of $f(x)$ as x goes to c
$\overline{\lim}_{x\to c} f(x)$	limit superior of $f(x)$ as x goes to c
f(x) = O(g(x))	If g is non-zero for large enough values of x ,
	$f(x) = O(g(x))$ as $x \to a$ if and only if
	$\overline{\lim}_{x\to\infty} f(x)/g(x) <\infty.$