2. Mothematical Foundamentals.

2.1 Probability.

1.
$$E[|x||_{L^{2}}^{2} = \sum_{i=1}^{d} E(X_{i}^{2})]$$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

2. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

3. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

4. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

4. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

5. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

6. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

6. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

6. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

6. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

6. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

7. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

8. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

9. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

9. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

9. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

9. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{\epsilon})$

1. $P(Z \le \hat{\epsilon}) = P(\alpha_{i}X_{i} + \alpha_{i}X_{j} \le \hat{$

$$= \iint_{W \in Y} f_{R}(Y) dw dY$$

$$= \frac{1}{2\pi \sigma_{1} \sigma_{2}} \iint_{W \in Y} e^{2\pi \rho} \left\{ -\left[\frac{\left[w - u_{1} \right]^{2} + \left[w - u_{2} \right]^{2} \right]}{2\sigma_{2}^{2}} \right\} dw dY$$

$$= \frac{1}{2\pi \sigma_{1} \sigma_{2}} \iint_{W \in Y \leq 2 - u_{1} - u_{1}} e^{2\pi \rho} \left[-\left(\frac{w^{2}}{2\sigma_{1}^{2}} + \frac{Y^{2}}{2\sigma_{2}^{2}} \right) \right] dw dY$$

$$= \frac{1}{2\pi \sigma_{1} \sigma_{2}} \iint_{W \in Y \leq 2 - u_{1} - u_{1}} e^{2\pi \rho} e^{-\left[\left[\frac{(2 - Y)^{2}}{\sigma_{1}^{2}} + \frac{Y^{2}}{\sigma_{2}^{2}} \right] / 2 dy} dx$$

$$= \frac{1}{2\pi \sigma_{1} \sigma_{2}} \int_{-\infty}^{2\pi u_{1} - u_{1}} e^{2\pi \rho} e^{-\left[\left[\frac{(2 - Y)^{2}}{\sigma_{1}^{2}} + \frac{Y^{2}}{\sigma_{2}^{2}} \right] / 2 dy} dx$$

$$= (v_{i}, \dots, v_{k}) \begin{pmatrix} v_{i}^{T}/v_{i}^{T} \cdot v_{i} \\ \vdots \\ v_{k}^{T}/v_{k}^{T} \cdot v_{i} \end{pmatrix} \cdot \omega$$

$$= \sum_{i=1}^{K} v_{i} \cdot v_{i}^{T}/(v_{i}^{T} \cdot v_{i}) \cdot \omega$$

$$S_{D} M = \sum_{i=1}^{K} \frac{v_{i} \cdot v_{i}^{T}}{v_{i}^{T} \cdot v_{i}}$$

- 3. Linear Regression
- 3.1 Feature Normalization.

The modified code is in the workspace directory.

- 3.2 Gradient Descent Setup.
- 1. $J(\theta) = \frac{1}{m}(X \cdot \theta y)^{T}(X\theta y)$
- 2. POJ(0) = 2 (X7X0 X7y)/m
- 3. The first-order approximization of TG+7h1-J(0) should be $\nabla_{\theta}^{T}J(\theta)\cdot\eta h$
- 4. For GD algorithm, $h = -\nabla_{\theta}J(\theta)$. $\theta \leftarrow \theta 2\eta(X^{T}X\theta X^{T}y)/m$
- 5.6 The modified code is in the workspace directory.
- 3.3 (Optional) Gradient Checker
- 3.4 Batch Gradient Descent.
- Ps: Both these two above sections are code completion
- 3.5 Ridge Regression

1.
$$\nabla O_{S}(O) = \frac{2}{m} J_{O}(h) \cdot [h_{O}(x) \cdot y] + 2\lambda O$$
, $h_{O}(x) = \frac{h_{O}(h)}{h_{O}(x)}$

$$J(O) = \frac{1}{m} (h_{O}(x) - y^{-1}(h_{O}(x) - y) + \lambda O^{-1}O$$

Known that $dh_{O}(x) = J_{O}(h) \cdot dO$,

 $dJ(O) = \frac{1}{m} (h_{O}^{-1} J_{O}^{-1}(h) + h_{O}^{-1}(h_{O}^{-1} J_{O}^{-1}) + \lambda O^{-1}dO^{-1}(O^{-1}dO))$

$$= \frac{2}{m} dO^{-1} J_{O}^{-1}(h) (h_{O}(x) - y) + 2\lambda dO^{-1}O$$

Hence $\nabla O_{O}(O) = \frac{2}{m} J_{O}^{-1}(h) (h_{O}(x) - y) + 2\lambda O$

2. 3: Code completion.

4. If bias term B is large enough, the parameter with respect to B, OB, can be small enough to be omitted in regularization. When $\partial_{O}^{-1}(h_{O}^{-1}O) = h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O)) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O)) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O))) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O))) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O))) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O))) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}O)))) + h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}(h_{O}^{-1}$

When $B \rightarrow \infty$, if $\theta_B \neq 0$, $J(\theta) = +\infty$. Hence $\lim_{n \to \infty} \theta_B = 0$.

6. Coptional). Not finished yet.	
7.8 Not finished yee	
3.6 Stochastic Gradient Descent	
$ f(\theta) = (h \theta (\chi i) - y i)^{2} + \lambda \theta^{7} \theta$	
2. This conclusion has been proved in SGD's concept check questions.	
3. $\theta \leftarrow \theta - 2\eta [(h_{\theta}(\chi_i) - y_i) \nabla_{\theta} h_{\theta}(\chi_i) + \lambda \theta]$, η is step size.	
4.5.6: Not finished yet.	
4. Risk Minimization.	
4.1 Square Loss.	
1. This has been proved in ESR's concept check question 2(b).	
2.(a) $f^*(x) = \operatorname{argmin} E[(a-Y)^2 X=x]$	(b) E[(f(X)-Y)^]=E{E[(f(X)-Y)^{2} X]}
$E[(\alpha-Y)^{2} X] = \alpha^{2}-2\alpha E(Y X) + E(Y^{2} X)$	Known that: $E[(f^*(x)-Y)^2 X] \leq E[(f(x)-Y)^2 X]$
$= a^2 - 2aE(Y(X) + E^2(Y(X) + Var(Y(X))$	So EfE[(f*(x)-Y) = [X]} < EfE[(f(x)-Y) = [X]}
= (a-E(Y X)) ² Var(Y X)	
So $f^*(x) = E(Y(X=x))$	
30 J WI- CCI (N-X)	ı

4.2. (Optional) Median Loss.	
1. This has been proved in Intro's concept check questions.	
, , , , , , , , , , , , , , , , , , ,	