# Calderón's problem for quasilinear conductivities

Karthik Iyer

University of Washington

4th April 2016

1/21

- Let  $\sigma(x)$  be a symmetric uniformly elliptic matrix function in  $L^{\infty}(\Omega)$ .
- Consider the BVP

$$\nabla \cdot (\sigma \nabla u) = 0 \quad \text{on} \quad \Omega \quad \text{with} \quad u = f \quad \text{on} \quad \partial \Omega$$

Define the Dirichlet to Neumann map  $\Lambda_{\sigma}$ 

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \to \sigma \nabla u \cdot \nu\big|_{\partial\Omega}$$

• The inverse conductivity problem is to get information about  $\sigma$  from  $\Lambda_\sigma$ 



#### Different aspects of the inverse problem:

- Uniqueness
- Stability
- Reconstruction
- Numerical Implementation
- Partial Data

- We can extend the definition of Dirichlet-to-Neumann (DN) map  $\Lambda_{\sigma}: H^{\frac{1}{2}}(\partial\Omega) \to H^{-\frac{1}{2}}(\partial\Omega)$
- $\langle \Lambda_{\sigma}(f), g \rangle = \int_{\Omega} \sigma(x) \nabla u \cdot \nabla v^g \, dx$  where u is the unique solution to conductivity equation with boundary data f and  $v^g \big|_{\partial \Omega} = g$
- Does  $\Lambda_{\sigma_1} = \Lambda_{\sigma_2} \implies \sigma_1 = \sigma_2$  on  $\Omega$  ?
- Yes if  $\sigma_I$  are scalar valued. No if  $\sigma_I$  are matrix valued for I=1,2

#### Non-uniqueness in the anisotropic case

• Let y=F(x) be smooth diffeomorphism  $F:\bar\Omega\to\bar\Omega$  with F(x)=x on  $\partial\Omega$ . Then

$$\int\limits_{\Omega} \sum \sigma_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \, dx = \int\limits_{\Omega} \sum \sigma_{ij} \frac{\partial u}{\partial y_k} \frac{\partial y_k}{\partial x_i} \frac{\partial u}{\partial y_l} \frac{\partial y_l}{\partial x_j} \det(\frac{\partial x}{\partial y}) \, dy$$

More compactly,

$$\int_{\Omega} (\sigma(x) \nabla_x u \cdot \nabla_x u) \, dx = \int_{\Omega} (F_* \sigma(y) \nabla_y u \cdot \nabla_y u) \, dy$$

where 
$$F_*\sigma(y)=\frac{1}{\det DF(x)}DF(x)^T\sigma(x)(DF(x))$$
 with  $DF_{ij}=\frac{\partial y_i}{\partial x_j}$ 

•  $\Lambda_{\sigma} = \Lambda_{F_*\sigma}$ 



5/21

### Anisotropic uniqueness results for n = 2

Let 
$$\Lambda_{\sigma_1} = \Lambda_{\sigma_2}$$
. Then

- $\sigma_2 = \Phi_* \sigma_1$ ,  $\sigma_i \in C^{2,\alpha}(\bar{\Omega})$ , Sylvester 1993 (with a smallness assumption)
- $\sigma_2 = \Phi_* \sigma_1$ ,  $\sigma_i \in W^{1,p}(\Omega)$ , p > 2 Sun and Uhlmann 2003
- $\sigma_2 = \Phi_* \sigma_1$ ,  $\sigma_i \in L^\infty(\Omega)$  Astala, Päivärinta, Lassas 2006

## Sun and Uhlmann anisotropic 2003 result

#### Theorem 1

Let  $\Omega \subset \mathbb{R}^2$  be a bounded domain with  $C^1$  boundary. Let  $\sigma_1$  and  $\sigma_2$  be two anisotropic conductivities in  $W^{1,p}(\Omega)$  for p>2 with  $\sigma_1-\sigma_2\in W^{1,p}_0(\Omega)$  and  $\Lambda_{\sigma_1}=\Lambda_{\sigma_2}$ . Then  $\exists$  a diffeomorphism  $\Phi:\Omega\to\Omega$  in  $W^{2,p}$  class with  $\Phi|_{\partial\Omega}=I$  such that  $\sigma_2=\Phi_*\sigma_1$ .

## Conjecture

#### Conjecture 1

Let  $\Omega \subset \mathbb{R}^2$  be a bounded domain with  $C^1$  boundary. Let  $\sigma_1(x,t)$  and  $\sigma_2(x,t)$  be two anisotropic conductivities. Assume that  $\sigma_1 - \sigma_2 \in W_0^{1,p}(\Omega)$  for each t with p > 2 and  $\Lambda_{\sigma_1} = \Lambda_{\sigma_2}$ . Then  $\exists$  a diffeomorphism  $\Phi : \Omega \to \Omega$  in  $W^{2,p}$  class with  $\Phi\big|_{\partial\Omega} = I$  such that  $\sigma_2 = \Phi_*\sigma_1$ .

## **Assumptions**

- $\sigma(x,t)$  is a symmetric matrix function defined on  $\bar{\Omega} \times \mathbb{R}$  where  $\Omega$  is a bounded domain in  $\mathbb{R}^2$  with  $C^1$  boundary
- [Ellipticity]  $\exists \lambda > 0$  so that  $\frac{1}{\lambda}I \preceq \sigma(x,t) \preceq \lambda I$  for any  $(x,t) \in \overline{\Omega} \times \mathbb{R}$
- [Smoothness in t]  $\sigma(x,t)$  is  $C^1$  w.r.t t such that  $\frac{\partial \sigma^{ij}(x,t)}{\partial t}$  is in  $L^{\infty}(\Omega)$  for any t with an L>0 so that  $||\frac{\partial \sigma^{ij}(x,t)}{\partial t}||_{L^{\infty}(\Omega)} \leq L$  for any t.
- [Smoothness in x] For each fixed t,  $\sigma(x,t) \in W^{1,p}(\Omega)$  with p>2



### Known results for quasi-linear case

Let 
$$\Lambda_{\sigma_1}=\Lambda_{\sigma_2}.$$
 Then

- $\sigma_2 = \sigma_1$ ,  $\sigma_i = \gamma_i I$ ,  $\gamma_i \in C^{1,\alpha}(\bar{\Omega} \times \mathbb{R})$ , Sun 1991
- $\sigma_2 = \Phi_* \sigma_1$ ,  $\sigma_i \in C^{2,\alpha}(\bar{\Omega} \times \mathbb{R})$ , Sun and Uhlmann 1997



- Conjecture makes sense as  $\Phi$  preserves class.
- Strategy: Define the quasi-linear inverse problem, reduce to the case of linear inverse problem, use results from linear inverse problems, make reductions.
- Technique adapted from Sun and Uhlmann, 1997 who get uniqueness for anisotropic  $\sigma \in C^{2,\alpha}(\bar{\Omega} \times \mathbb{R})$

# DN map

Consider

$$\nabla \cdot (\sigma(x,u)\nabla u) = 0 \quad \text{in } \Omega \quad \textit{with } u\big|_{\partial\Omega} = f$$
 where  $f \in H^{1/2}(\partial\Omega)$ .  $\exists !$  solution  $u \in H^1(\Omega)$ .

- Define the DN map  $\Lambda_{\sigma}: H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega)$  as  $\langle \Lambda_{\sigma}(f), g \rangle = \int\limits_{\Omega} \sigma(x, u) \nabla u \cdot \nabla v^g \ dx$
- If  $\Phi$  is a  $W^{2,p}$  diffeomorphism of  $\Omega$  which is identity on the boundary, we still have  $\Lambda_{\sigma}=\Lambda_{\Phi^*\sigma}$



#### First Linearization

• Fix  $t \in \mathbb{R}$  and  $f \in H^{1/2}(\partial\Omega)$ . Denote  $\sigma^t(x)$  as the linear anisotropic conductivity obtained from  $\sigma(x,t)$  by freezing t.

$$\bullet \lim_{s\to 0} \left| \left| \frac{1}{s} \Lambda_{\sigma}(t+sf) - \Lambda_{\sigma^t}(f) \right| \right|_{H^{-1/2}(\partial\Omega)} = 0$$

- $\bullet \ \Lambda_{\sigma_1} = \Lambda_{\sigma_2} \implies \Lambda_{\sigma_1^t} = \Lambda_{\sigma_2^t} \ \forall t \in \mathbb{R}.$
- Obtain family of diffeomorphhisms  $\phi^t \in W^{2,p}(\Omega)$  and  $\phi^t|_{\partial\Omega} = Id$  so that  $\phi_*^t \sigma_1^t = \sigma_2^t$  for all  $t \in \mathbb{R}$ .



Karthik Iyer Ger

- Define  $\Phi(x, t) = \phi^t(x)$ .  $\Phi$  is well defined.
- Need to show that for any  $t_0$ ,  $\frac{\partial \Phi}{\partial t}\Big|_{t=t_0} = 0$  in  $\bar{\Omega}$ .
- First show smoothness of  $\Phi$  with respect to t.

14/21

# Construction and properties of Φ

- For each t, construct a unique  $W^{2,p}$  diffeomorphism of the plane so that  $F_l^t:\Omega\to\Omega_l^t$  so that  $(F_l^t)_*\sigma_l^t$  is isotropic for l=1,2.
- $F_l^t$  is constructed solving a homogeneous Beltrami equation with a compactly supported dilation factor  $\mu_l^t \in W^{1,p}(\mathbb{C})$ .
- Since  $\mu_I^t$  is  $C^1$  in t,  $F_I^t$  will be  $C^1$  in t
- $F_1^t = F_2^t$  on  $\mathbb{R}^2 \setminus \Omega$ .  $\phi^t = (F_2^t)^{-1} \circ F_1^t$  is a  $W^{2,p}$  diffeomorphism which is identity on the boundary.



- $F_1^t$  and  $F_2^t$  are  $C^1$  w.r.t t,  $\phi^t = (F_2^t)^{-1} \circ F_1^t$  also inherits the same smoothness w.r.t to t.
- In fact it is possible to show that  $\frac{\partial \Phi}{\partial t}\big|_{t=t_0} \in W^{1,p}(\Omega)$  for any  $t_0 \in \mathbb{R}$
- The task is thus reduced to showing  $\frac{\partial \Phi}{\partial t}\big|_{t=0}=0$ . The same argument works for  $t\neq 0$ .
- By a transformation one may assume that  $\Phi^0 = Id$  so that  $\sigma_1(x,0) = \sigma_2(x,0) = \sigma(x)$



16/21

#### Some reductions

• Fix  $f \in W^{2-\frac{1}{p},p}(\partial\Omega)$ . For I=1,2 and each t, solve

$$\nabla \cdot \sigma_I^t \nabla u_I^t = 0$$
 in  $\Omega$  with  $u_I^t \big|_{\partial \Omega} = f$ 

• Consider the unique  $H_0^1(\Omega)$  solution  $v_l^t$  to

$$\nabla \cdot \sigma_I^t \nabla v_I^t = -\nabla \cdot \left[ \frac{\partial \sigma_I^t}{\partial t} \nabla u_I^t \right]$$

•  $t \to u_l(x,t)$  is differentiable in the  $H^1$  topology with derivative  $v_l^t$ .



$$\nabla \cdot \left[ \left( \frac{\partial \sigma_1}{\partial t} - \frac{\partial \sigma_2}{\partial t} \right) \bigg|_{t=0} \nabla u \right] + \nabla \cdot \sigma \nabla (v_1^0 - v_2^0) = 0$$
where  $u = u_1(x, 0) = u_2(x, 0)$ 

• Let  $X = \frac{\partial \Phi^t}{\partial t}\Big|_{t=0}$ . For each  $t \in \mathbb{R}$ 

•

$$u_1^t(x) = u_2^t(\Phi^t(x))$$

• Differentiating in t at t = 0 gives

$$v_1^0 - v_2^0 - X \cdot \nabla u = 0$$
 in  $\Omega$ 



18/21

#### Need for second linearization

#### Lemma 2

For every f in  $H^{1/2}(\partial\Omega)\cap L^{\infty}(\partial\Omega)$  and  $t\in\mathbb{R}$ 

$$\lim_{s\to 0}\left|\left|\frac{1}{s}\left[\frac{\Lambda_{\sigma}(t+sf)}{s}-\Lambda_{\sigma^t}(f)\right]-K_{\sigma,t}(f)\right|\right|_{H^{-1/2}(\partial\Omega)}=0$$

 $K_{\sigma,t}:H^{1/2}(\partial\Omega)\cap L^\infty(\partial\Omega) o H^{-1/2}(\partial\Omega)$  is defined implicitly as

$$\langle K_{\sigma,t}(f), g \rangle = \int_{\Omega} \nabla v^g \cdot \sigma_t(x,t) v^0 \nabla(v^0) dx$$

where  $v^g$ ,  $v^0$  are unique solutions to  $\nabla \cdot \sigma(x,t) \nabla u = 0$  with trace g and f respectively.



Second linearization implies

$$\int\limits_{\Omega} \left. \nabla u_1 \cdot \frac{\partial \sigma_1}{\partial t} \right|_{t=0} \nabla u_2^2 \ dx = \int\limits_{\Omega} \left. \nabla u_1 \cdot \frac{\partial \sigma_2}{\partial t} \right|_{t=0} \nabla u_2^2 \ dx$$

where  $u, u_1, u_2$  are  $W^{2,p}$  solutions to the linear equation  $\nabla \cdot \sigma(x) \nabla u = 0$  in  $\Omega$ 

• Let  $B(x) = \left(\frac{\partial \sigma_1}{\partial t} - \frac{\partial \sigma_2}{\partial t}\right)\Big|_{t=0}$ . Above can be re-written as

$$\int\limits_{\Omega} B(x)\nabla u \cdot \nabla(u_1u_2) dx = 0$$



20/21

#### What needs to be done

- Need to show  $\nabla \cdot B(x)\nabla u = 0$  for any  $u \in W^{2,p}$  solution to  $\nabla \cdot \sigma \nabla u = 0$ .
- Need to show that  $X \cdot \nabla u = 0$  for any  $u \in W^{2,p}$  solution to  $\nabla \cdot \sigma \nabla u = 0$  implies X = 0 in  $\bar{\Omega}$ .
- Can we improve the result even further to get the quasi-linear analog of the optimal regularity for the conductivities i.e remove the smoothness assumption in x?
- Stability issues for the quasi-linear case?

