Homework set #9

- 1. Assume that X_1, \ldots, X_n are i.i.d. Uniform $(a_1, b_1), Y_1, \ldots, Y_m$ are i.i.d. Uniform (a_2, b_2) , and the X's are independent of the Y's. We will be testing $\mathcal{H}_0: a_1 = a_2, b_1 = b_2$.
 - (a) Find the likelihood ratio $\lambda(X)$.
 - (b) Prove that under the null hypothesis the distribution of $\lambda(\mathbb{X})$ does not depend on the parameters.
 - (c) Describe the likelihood ratio test of size α .
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\mu, 1)$. Consider a hypothesis $\mathcal{H}: 1 < \mu < 2$, and a test {Reject \mathcal{H} if either $\bar{X}_n < 1 2/\sqrt{n}$ or $\bar{X}_n > 2 + 2/\sqrt{n}$ }.
 - (a) What is the function $\delta(X)$?
 - (b) Find the power $\beta(\mu)$ and sketch it.
 - (c) What is the size of this test?
- 3. Assume X_1, \ldots, X_{20} are i.i.d. Bernoulli(p). We want to test $\mathcal{H}_0: p = .8$ versus $\mathcal{H}_1: p = .6$. Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size $\alpha = .1$.
- 4. Assume that X_1, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$ and consider testing the hypotheses $\mathcal{H}_0: \mu = \mu_0, \sigma^2 = \sigma_0^2$ versus $\mathcal{H}_1: \mu = \mu_1, \sigma^2 = \sigma_1^2$.
 - (a) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 < \mu_1$ and $\sigma_0^2 = \sigma_1^2$.
 - (b) For the previous part, find the rejection region if n=25, $\mu_0=0$, $\mu_1=10$, $\sigma_0^2=\sigma_1^2=25$, and $\alpha=.05$. (Hint: You will need to use normal tables.)
 - (c) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 = \mu_1$ and $\sigma_0^2 < \sigma_1^2$.
 - (d) For the previous part, find the rejection region if n=25, $\mu_0=\mu_1=10$, $\sigma_0^2=9$, $\sigma_1^2=25$, and $\alpha=.05$. (Hint: You will need to use chi-squared tables.)
 - (e) Find the most powerful test of \mathcal{H}_0 vs. \mathcal{H}_1 of size α if $\mu_0 < \mu_1$ and $\sigma_0^2 < \sigma_1^2$.

- (f) For the previous part, find the rejection region if n=25, $\mu_0=0$, $\mu_1=10$, $\sigma_0^2=9$, $\sigma_1^2=25$, and $\alpha=.05$. (Hint: You may need to use non-central chi-square tables.)
- 5. In what follows $\theta > 0$ is an unknown parameter.
 - (a) Find the LRT for testing \mathcal{H}_0 : a = 1 versus \mathcal{H}_1 : $a \neq 1$ based on a sample X_1, \ldots, X_n from $N(\theta, a\theta)$.
 - (b) Find the LRT for testing $\mathcal{H}_0: a=1$ versus $\mathcal{H}_1: a\neq 1$ based on a sample X_1, \ldots, X_n from $N(\theta, a\theta^2)$.
- 6. Let X_1, \ldots, X_n be iid Beta $(\mu, 1)$ and Y_1, \ldots, Y_m be iid Beta $(\eta, 1)$; the X_s are independent of the Y_s .
 - (a) Find an LRT for testing $\mathcal{H}_0: \mu = \eta$ versus $\mathcal{H}_1: \mu \neq \eta$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} \log X_i}{\sum_{i=1}^{n} \log X_i + \sum_{j=1}^{m} \log Y_j}.$$

- (c) Find the distribution of T under \mathcal{H}_0 and show how to find a test size $\alpha = 0.1$.
- 7. Consider a sequence of test statistics $\delta_a(X) \in \{0,1\}$, $a \in [0,1]$ such that the size $\sup_{\theta \in \Theta_0} E_{\theta} \delta_a(X) = a$; for $a_1 < a_2$ the tests $\delta_{a_1}(X) \leq \delta_{a_2}(X)$; and $\delta_0(X) = 0$, $\delta_1(X) = 1$. Set $p(X) = \inf\{a : \delta_a(X) = 1\}$. Prove or disprove $\sup_{\theta \in \Theta_0} P(p(X) \leq a) = a$.
- 8. Let X be Geometric(p) and consider testing \mathcal{H}_0 : $p \geq p_0$ versus \mathcal{H}_1 : $p < p_0$. Propose a p-value. Do you reject the null hypothesis for or $p_0 = 0.1$ and x = 28 at the $\alpha = 0.05$ level?