PM 579: Statistical Analysis of High-Dimensional Data | Homework 3

Saket Choudhary skchoudh@usc.edu 6/23/2016

Read Data

```
library(limma)
library(knitr)
load('stallcupdat.Rdata')
```

Volcano Plots

Volcano plot for t-test across time points(time=1 vs time=2)

Based on t-tests, there seem to be enough differentially expressed genes between time points 1 and time points 2 (Across treatments+control)

Moderated t-tests

Volcano plot for moderated t-test

As there are too few replicates (12 here) so the variance estimates can be stabilised using moderated t-tests. Clearly, in this case pooling variance information from similar genes helps as they p-value estimates improve.

Finding DE genes

Control2	X	Control1	Y
1	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
1	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	0	1	0

Control2	X	Control1	Y
0	0	1	0
0	0	1	0
0	0	0	1
0	0	0	1
0	0	0	1
1	0	0	0
1	0	0	0
0	0	1	0
0	0	1	0
0	0	1	0
0	0	0	1
0	0	0	1
0	0	0	1
1	0	0	0
1	0	0	0
0	0	1	0
0	0	1	0
0	0	1	0
0	0	0	1
0	0	0	1
0	0	0	1
1	0	0	0
1	0	0	0
0	0	1	0
0	0	1	0
0	0	1	0
0	0	0	1
0	0	0	1
0	0	0	1
1	0	0	0
1	0	0	0
1	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
1	0	0	0
0	1 1	$0 \\ 0$	$0 \\ 0$
0	1	0	0

We define a more explicit design matrix without intercept.

Differential genes at time point 2

We define an contrast matrix which is more easy to interpret than using vectors

```
fit <- lmFit(stallcupdat$E[,c(time==2)],design[c(time==2),])
contr.matrix <- makeContrasts(XYsC1C2 = (X+Y)/2 - (Control1+Control2)/2,</pre>
```

```
XvsC1C2 = X-(Control1+Control2)/2,
YvsC1C2 = Y-(Control1+Control2)/2,
levels = design)
kable(contr.matrix )
```

	XYsC1C2	XvsC1C2	YvsC1C2
Control2	-0.5	-0.5	-0.5
X	0.5	1.0	0.0
Control1	-0.5	-0.5	-0.5
Y	0.5	0.0	1.0

```
fitgpd=contrasts.fit(fit,contr.matrix)
fitgpd=eBayes(fitgpd)
topTable(fitgpd,n=10)
```

```
##
                  XYsC1C2
                             XvsC1C2
                                        YvsC1C2
                                                    AveExpr
## ILMN_2392261 1.4636316 1.9561086 0.9711547 0.05572692 90.92310
## ILMN_1760103 1.5530846 2.0300292 1.0761400 0.18434020 79.23543
## ILMN_1692223 -1.9220230 -1.8575570 -1.9864891 -0.25493441 54.06754
## ILMN_1688184 0.7892799 0.7565609 0.8219990 0.21793060 53.20783
## ILMN_1721559 1.5286137 1.9785469 1.0786805 0.06988887 51.27430
## ILMN_1678143 1.1178679 1.4761343 0.7596015 0.23695775 50.49902
## ILMN 1767685 1.5999404 1.6852403 1.5146405 0.30349530 49.89704
## ILMN_1765668 1.1264200 1.3279808 0.9248592 -0.12808822 48.10125
## ILMN_1744765 -2.1002668 -2.1216260 -2.0789077 0.22195917 46.93273
## ILMN_1659610 -1.2895246 -1.4403356 -1.1387137 -0.17105952 45.92719
##
                    P.Value
                               adj.P.Val
## ILMN_2392261 6.323691e-09 0.0001550948
## ILMN 1760103 1.583799e-08 0.0001942212
## ILMN_1692223 1.912231e-07 0.0011159689
## ILMN_1688184 2.118156e-07 0.0011159689
## ILMN_1721559 2.680453e-07 0.0011159689
## ILMN_1678143 2.952292e-07 0.0011159689
## ILMN_1767685 3.185103e-07 0.0011159689
## ILMN_1765668 4.013873e-07 0.0012305530
## ILMN_1744765 4.684749e-07 0.0012766462
## ILMN_1659610 5.365566e-07 0.0013159586
```

Here XvsC1C2 implies that differential expression was calculated by averaging over Control1 and Control2 values.

A total of 193 genes are upregulated and 158 downregulated when comparing average X+Y over average C1+C2 at time point 2 alone (i.e. not accounting for common genes with X vs C1C2 or YvsC1C2)

Also, around 735 genes are up and 582 genes are downregulated in the common region of XvsC1C2, XYvsC1C2, YvsC1C2 indicating that X,Y are similar expression wise.

```
results <- decideTests(fitgpd,adjust.method="none")
a <- vennCounts(results)
print(a)</pre>
```

```
XYsC1C2 XvsC1C2 YvsC1C2 Counts
##
## 1
          0
                0
                         0 18148
          0
                 0
## 2
                         1
                              283
## 3
          0
                1
                         0
                            1376
## 4
         0
                1
                         1
                               2
## 5
          1
                 0
                         0
                              351
## 6
          1
                 0
                         1
                             419
## 7
          1
                 1
                             2530
                         0
## 8
          1
                             1417
## attr(,"class")
## [1] "VennCounts"
```

head(results, n=10)

```
##
                 Contrasts
##
                  XYsC1C2 XvsC1C2 YvsC1C2
     ILMN_1762337
##
                        0
                                0
##
     ILMN_2055271
                        0
                                 0
                                         0
     ILMN 2383229
                                 0
##
                        0
                                         0
     ILMN 1806310
                                 0
##
                        0
                                         0
     ILMN_1779670
                                 0
##
                        0
##
     ILMN_2321282
                        0
                                 0
                                         0
##
     ILMN_1772582
                        0
                                 0
                                         0
                                 0
                                         0
##
     ILMN_1717783
                        0
##
     ILMN_1814316
                        0
                                 0
                                         0
     ILMN_2359168
                                         0
```

```
vennDiagram(results,include=c("up","down"),counts.col=c("red","green"), main="Time point = 2")
```

Time point = 2

Let's compare XvsY and XvsC1 and YvsC1

```
contr.matrix <- makeContrasts(XYvsC1 = (X+Y)/2 - (Control1), XvsY = X-Y, XvsC1= X-Control1, levels = de
fitgpd <- contrasts.fit(fit,contr.matrix)
fitgpd <- eBayes(fitgpd)
results <- decideTests(fitgpd, adjust.method="none")
cs <- vennCounts(results)
vennDiagram(results, include=c("up", "down"), counts.col=c("red", "green"), main="Time point = 2")</pre>
```

Time point = 2

head(results,n=10)

```
##
                 Contrasts
##
                  XYvsC1 XvsY XvsC1
##
     ILMN_1762337
                        0
                             0
##
     ILMN 2055271
     ILMN_2383229
                        0
                             0
                                   0
##
##
     ILMN_1806310
                        0
                                   0
     ILMN_1779670
##
##
     ILMN_2321282
     ILMN_1772582
                        0
##
                                   0
##
     ILMN_1717783
                                   0
##
     ILMN_1814316
                                   0
##
     ILMN_2359168
                                   0
```

print(vennCounts(results,include=c("up")))

```
XYvsC1 XvsY XvsC1 Counts
##
## 1
          0
             0
                     0 21724
               0
                          497
## 2
          0
                     1
## 3
          0
               1
                     0
                          308
                          233
## 4
          0
               1
                     1
## 5
         1
               0
                     0
                          212
## 6
          1
               0
                     1
                         1234
## 7
               1
                     0
                            0
          1
                          318
## 8
          1
## attr(,"class")
## [1] "VennCounts"
```

```
print(vennCounts(results,include=c("down")))
```

```
##
     XYvsC1 XvsY XvsC1 Counts
## 1
          0
               0
                     0 21812
## 2
               0
                          458
                          245
## 3
          0
                     0
               1
## 4
          0
               1
                          205
                     1
               0
                          205
## 5
          1
## 6
                     1
                         1192
                            0
## 7
                     0
          1
               1
                          409
          1
## attr(,"class")
## [1] "VennCounts"
```

A striking number that stands out is 0 up and downregulated genes between XYvsC1 and XvsY, thus indicating that there are no such genes which are diff expressed in (X+Y)vsC1C2 or XvsY or XvsC1 however there are genes which are in common up or down regulated in all these groups.

Differential genes at time point 3

	XYsC1C2	XvsC1C2	YvsC1C2
Control2	-0.5	-0.5	-0.5
X	0.5	1.0	0.0
Control1	-0.5	-0.5	-0.5
Y	0.5	0.0	1.0

```
fitgpd=contrasts.fit(fit,contr.matrix)
fitgpd=eBayes(fitgpd)
kable(topTable(fitgpd,n=10))
```

	XYsC1C2	XvsC1C2	YvsC1C2	AveExpr	F	P.Value	adj.P.Val
ILMN_1692223	-1.8940198	-1.9449983	-1.8430414	-0.4530204	82.71110	0e+00	0.0001927
ILMN_1721559	1.4268679	1.6331010	1.2206347	0.1593326	71.53020	0e + 00	0.0002601
$ILMN_1701424$	1.0294645	1.2389639	0.8199651	0.2988811	65.88971	0e + 00	0.0003023
ILMN_2382290	0.8318677	0.8472919	0.8164435	0.2804587	52.94152	2e-07	0.0009729
$ILMN_2096985$	-0.8602917	-1.0186670	-0.7019164	-0.1337231	50.87320	2e-07	0.0010107
ILMN_1755811	-0.7159714	-0.8606184	-0.5713244	-0.0355728	48.77121	3e-07	0.0011091
ILMN_1792679	0.6616360	0.7118095	0.6114625	0.2222735	45.79061	4e-07	0.0014301
ILMN_2072622	0.7368801	1.0632469	0.4105133	0.3582748	43.31539	6e-07	0.0015061

	XYsC1C2	XvsC1C2	YvsC1C2	AveExpr	F	P.Value	adj.P.Val
ILMN_1702301	0.4475621	0.4663214	0.4288029	-0.0008716	41.71393	7e-07	0.0015061
$ILMN_1775829$	-0.7633448	-0.9708421	-0.5558475	-0.0260578	41.60169	8e-07	0.0015061

Lots of common genes between XYvsC1C2 and XvsC1C2

```
results <- decideTests(fitgpd,adjust.method="none")
a <- vennCounts(results)
head(results,n=10)</pre>
```

##	Contrasts						
##		XYsC1C2	XvsC1C2	YvsC1C2			
##	ILMN_1762337	0	0	0			
##	ILMN_2055271	0	0	0			
##	ILMN_2383229	0	0	0			
##	ILMN_1806310	0	0	0			
##	ILMN_1779670	0	0	0			
##	ILMN_2321282	0	0	0			
##	ILMN_1772582	-1	-1	0			
##	ILMN_1717783	0	1	0			
##	ILMN_1814316	0	0	0			
##	ILMN_2359168	0	0	0			

vennDiagram(results,include=c("up","down"),counts.col=c("red","green"), main="Time point = 3")

Time point = 3


```
contr.matrix <- makeContrasts(XYvsC1 = (X+Y)/2 - (Control1), XvsY = X-Y, XvsC1= X-Control1, levels = de
fitgpd <- contrasts.fit(fit,contr.matrix)
fitgpd <- eBayes(fitgpd)
results <- decideTests(fitgpd, adjust.method="none")
cs <- vennCounts(results)
vennDiagram(results, include=c("up","down"),counts.col=c("red","green"), main="Time point = 3")</pre>
```

Time point = 3

head(results,n=10)

```
##
                 Contrasts
##
                  XYvsC1 XvsY XvsC1
##
     ILMN_1762337
                       0
                            0
     ILMN_2055271
                            0
                                  0
##
                       0
##
     ILMN_2383229
     ILMN_1806310
                       0
                            0
                                  0
##
##
     ILMN_1779670
                       0
                            0
                                  0
                       0
                                  0
##
     ILMN_2321282
                            0
     ILMN_1772582
                           0
                                 -1
##
                      -1
     ILMN_1717783
                       0
                                  0
##
                            0
##
     ILMN_1814316
                       0
                            0
                                  0
##
     ILMN_2359168
```

print(vennCounts(results,include=c("up")))

```
## XYvsC1 XvsY XvsC1 Counts
## 1 0 0 0 0 21222
## 2 0 0 1 483
```

```
## 3
                           286
          0
               1
## 4
          0
               1
                           248
                      1
## 5
                           312
               0
## 6
               0
                          1633
                      1
          1
## 7
          1
               1
                      0
                             0
## 8
               1
                      1
                           342
          1
## attr(,"class")
## [1] "VennCounts"
```

```
print(vennCounts(results,include=c("down")))
```

```
XYvsC1 XvsY XvsC1 Counts
##
## 1
                     0 21485
          0
               0
## 2
          0
               0
                     1
                           340
## 3
          0
               1
                     0
                          273
## 4
          0
               1
                     1
                          127
## 5
          1
               0
                     0
                          314
## 6
          1
               0
                     1
                         1494
## 7
                     0
                            0
          1
               1
## 8
               1
                          493
          1
## attr(,"class")
## [1] "VennCounts"
```

Again no common genes between XYvsC1 and XvsY which are not in XvsC1.

DE genes associated with time

 $Reference: \ https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf Section 9.6$

	XYvsC1C2	X3Y3vsX2Y2	X3vsX2
Control2	-0.5	0.0	0
X	0.5	0.0	0
Control1	-0.5	0.0	0
Y	0.5	0.0	0
time2	0.0	0.0	0
time3	0.0	0.0	0
X.time2	0.0	-0.5	-1

	XYvsC1C2	X3Y3vsX2Y2	X3vsX2
Control1.time2	0.0	0.0	0
Y.time2	0.0	-0.5	0
X.time3	0.0	0.5	1
Control1.time3	0.0	0.0	0
Y.time3	0.0	0.5	0

```
fitgpd=contrasts.fit(fit,contr.matrix)
fitgpd=eBayes(fitgpd)
kable(topTable(fitgpd,n=10))
```

	XYvsC1C2	X3Y3vsX2Y2	X3vsX2	AveExpr	F	P.Value	adj.P.Val
ILMN_2167758	-1.3896028	-0.0688103	-0.1023459	0	44.19823	0	0.00e+00
$ILMN_1692223$	-2.1329445	0.0127492	-0.1026954	0	41.95023	0	0.00e+00
$ILMN_1655595$	1.0482834	0.0033124	0.0069149	0	40.00381	0	0.00e+00
$ILMN_1767685$	1.7273583	-0.1139329	0.0082781	0	35.23824	0	2.00e-07
ILMN_1716658	-0.9511261	0.0106308	-0.0062736	0	34.50571	0	2.00e-07
ILMN_1755796	-1.3112695	-0.6494273	-0.5966956	0	32.94084	0	4.00e-07
$ILMN_1765668$	1.3044230	-0.2756104	-0.3990895	0	32.56274	0	4.00e-07
$ILMN_1768577$	-1.0893185	-0.2411923	-0.2485188	0	28.40039	0	2.10e-06
$ILMN_1652407$	0.6911198	-0.1529714	-0.1781824	0	25.46233	0	7.60e-06
$ILMN_2388547$	0.7136707	0.3246403	0.6653724	0	24.63418	0	1.04 e-05

```
results <- decideTests(fitgpd,adjust.method="none") # doesn't subset of F<0.05'
a <- vennCounts(results)
print(a)</pre>
```

```
XYvsC1C2 X3Y3vsX2Y2 X3vsX2 Counts
## 1
         0
                    0
                          0 20073
## 2
                               366
          0
                    0
                          1
## 3
          0
                    1
                          0
                              447
## 4
          0
                             520
                    1
## 5
          1
                    0
                          0 2897
## 6
          1
                    0
                               51
## 7
          1
                              67
                    1
                         0
## 8
                         1 105
## attr(,"class")
## [1] "VennCounts"
```

vennDiagram(results, include=c("up","down"),counts.col=c("red","green"))

The number of up or down regulated genes are more affected by the treatment type than by time as these numbers are less

when comparing based on time points.