

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»_	

Лабораторная работа № 1 По курсу «Моделирование»

Тема Критерий оценки случайности последовательности

Студент Громова В.П.

Группа ИУ7-71Б

Преподаватель Рудаков И.В.

Москва. 2020 г.

Задание лабораторной работы

Изучить методы генерирования псевдослучайных чисел, а также критерии оценки случайности последовательности. Реализовать критерий оценки случайности последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях псевдослучайных целых чисел. Последовательности получать алгоритмическим способом и табличным способом.

Теоретическая часть

В качестве оценки случайности последовательности был выбран критерий частот. Пусть дана последовательность из N чисел: $\langle Y_N \rangle = Y_0, Y_1, ..., Y_N$. Преобразуем последовательность $\langle Y_N \rangle$ в последовательность $\langle X_M \rangle$, состоящую из всех цифр, входящих в числа из последовательности $\langle Y_N \rangle$. Например, исходная последовательность $\langle Y_4 \rangle = 45,78,11,35$ преобразуется в последовательность $\langle X_8 \rangle = 4,5,7,8,1,1,3,5$. Далее в полученной последовательности $\langle X_M \rangle$ анализируется частота появления цифр, оценка считается по критерию «хи-квадрат»: $V = \frac{1}{M} \sum_{i=1}^k \left(\frac{n_i^2}{p_i} \right) - M$. Здесь k – количество интервалов, в данном случае k = 10; p_i – теоретическая вероятность выпадения i-ой цифры, то есть $p_i = 0.1$; n_i – количество цифр в последовательности, равных i; M – общее количество цифр. После получения значения V, согласно функции распределения χ^2 находится значение критерия со степенями свободы k-1.

Результаты работы

На рисунках 1 и 2 представлены результаты работы программы для таблично и алгоритмически сгенерированных последовательностей псевдослучайных чисел соответственно.

абличный метод				
N₅	1 разряд	2 разряда	3 разряда	
1	9	19	774	
2	4	74	649	
3	9	30	189	
4	1	95	271	
5	5	89	640	
6	9	95	811	
7	2	26	874	
8	1	55	997	
9	0	88	320	
10	0	14	321	
коэффициент 	0.6495147876766387	0.3975423908603875	0.3975423908603875	

Рисунок 1. Табличный метод

Nº	1 разряд	2 разряда	3 разряда
1	0	18	 717
2	6	52	698
3	6	94	826
4	8	61	719
5	1	73	878
6	4	14	613
7	1	88	658
8	3	52	955
9	6	11	580
10	5	76	902
коэффициент	0.4658537830903085	0.4658537830903085	0.5929091645094122

Рисунок 2. Алгоритмический метод

Как видно из результатов, оба метода соответствуют критерию равномерности, значения коэффициентов находятся в диапазоне от 0.1 до 0.9. Для алгоритмического метода коэффициенты наиболее приближены к значению 0.5, что говорит о равномерном распределении цифр.