Lecture 14: Shrinkage

Reading: Section 6.2

STATS 202: Data mining and analysis

Jonathan Taylor, 10/29 Slide credits: Sergio Bacallado

The idea is to perform a linear regression, while *regularizing* or *shrinking* the coefficients $\hat{\beta}$ toward 0.

The idea is to perform a linear regression, while *regularizing* or *shrinking* the coefficients $\hat{\beta}$ toward 0.

Why would shrunk coefficients be better?

The idea is to perform a linear regression, while *regularizing* or *shrinking* the coefficients $\hat{\beta}$ toward 0.

Why would shrunk coefficients be better?

➤ This introduces *bias*, but may significantly decrease the *variance* of the estimates. If the latter effect is larger, this would decrease the test error.

The idea is to perform a linear regression, while *regularizing* or *shrinking* the coefficients $\hat{\beta}$ toward 0.

Why would shrunk coefficients be better?

- ➤ This introduces *bias*, but may significantly decrease the *variance* of the estimates. If the latter effect is larger, this would decrease the test error.
- ► There are Bayesian motivations to do this: the prior tends to shrink the parameters.

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

In blue, we have the RSS of the model.

In red, we have the squared ℓ_2 norm of β , or $\|\beta\|_2^2$.

The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage.

We find an estimate $\hat{\beta}^R_{\lambda}$ for many values of λ and then choose it by cross-validation.

Bias-variance tradeoff

In a simulation study, we compute bias, variance, and test error as a function of λ .

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In ridge regression, this is not true.

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In ridge regression, this is not true.

In practice, what do we do?

- ► Scale each variable such that it has sample variance 1 before running the regression.
- ▶ This prevents penalizing some coefficients more than others.

Example. Ridge regression

Ridge regression of default in the Credit dataset.

Selecting λ by cross-validation

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of β , or $\|\beta\|_1$.

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of β , or $\|\beta\|_1$.

Why would we use the Lasso instead of Ridge regression?

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of β , or $\|\beta\|_1$.

Why would we use the Lasso instead of Ridge regression?

▶ Ridge regression shrinks all the coefficients to a non-zero value.

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of β , or $\|\beta\|_1$.

Why would we use the Lasso instead of Ridge regression?

- ▶ Ridge regression shrinks all the coefficients to a non-zero value.
- ► The Lasso shrinks some of the coefficients all the way to zero. Alternative convex to best subset selection or stepwise selection!

Example. Ridge regression

Ridge regression of default in the Credit dataset.

A lot of pesky small coefficients throughout the regularization path.

Example. The Lasso

Lasso regression of default in the Credit dataset.

Those coefficients are shrunk to zero.

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{R}$ solves:

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{R}$ solves:

Lasso: for every λ , there is an s such that $\hat{\beta}_{\lambda}^{L}$ solves:

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}^R_{\lambda}$ solves:

▶ **Lasso:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{L}$ solves:

Best subset:

Visualizing Ridge and the Lasso with 2 predictors

The Lasso

 $\bullet: \quad \sum_{j=1}^{p} |\beta_j| < s$

Ridge Regression

 $\sum_{j=1}^{p} |\beta_j| < s$ • : $\sum_{j=1}^{p} \beta_j^2 < s$ Best subset with s=1 is union of the axes...

Example 1. Most of the coefficients are non-zero.

Example 1. Most of the coefficients are non-zero.

► Bias, Variance, MSE.

Example 1. Most of the coefficients are non-zero.

▶ Bias, Variance, MSE. The Lasso (—), Ridge (· · ·).

Example 1. Most of the coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias is about the same for both methods.

Example 1. Most of the coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias is about the same for both methods.
- ▶ The variance of Ridge regression is smaller, so is the MSE.

Example 2. Only 2 coefficients are non-zero.

Example 2. Only 2 coefficients are non-zero.

► Bias, Variance, MSE.

Example 2. Only 2 coefficients are non-zero.

▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).

Example 2. Only 2 coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias, variance, and MSE are lower for the Lasso.

Choosing λ by cross-validation

Suppose n=p and our matrix of predictors is $\mathbf{X}=I.$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

and we can minimize the terms that involve each β_j separately:

$$(y_j - \beta_j)^2 + \lambda \beta_j^2.$$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda \beta_j^2.$$

It is easy to show that

$$\hat{\beta}_j^R = \frac{y_j}{1+\lambda}.$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda |\beta_j|.$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda |\beta_j|.$$

It is easy to show that

$$\hat{\beta}_j^L = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2; \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2; \\ 0 & \text{if } |y_j| < \lambda/2. \end{cases}$$

Lasso and Ridge coefficients as a function of λ

Bayesian interpretations

Ridge: $\hat{\beta}^R$ is the posterior mean, with a Normal prior on β .

Lasso: $\hat{\beta}^L$ is the posterior mode, with a Laplace prior on β .

