Seminari 9

Matematika za ekonomiste 2

Damir Horvat

FOI, Varaždin

Prebrojimo koliko ima dana između datuma

Prvi dan brojimo, zadnji ne brojimo. To je ukupno 38 dana.

12.5.2009.
ightarrow 101 - 38 = 63 dana zakašnjenja

$$C_{63} = C_0 \left(1 + \frac{p \cdot 63}{36500} \right)$$

$$C_{63} = 7300 \cdot \left(1 + \frac{7 \cdot 63}{36500} \right)$$

$$C_{63} = 7388.20$$

Julija bi platila 7388.20 kn ako bi dug podmirila 12.5.2009.

2/22

Zadatak 1

Julija je 19.6.2009. podmirila dug sa zakašnjenjem od 101 dana plativši ukupno 7441.40 kn uz godišnju kamatnu stopu 7%. Odredite iznos kojim se taj dug mogao podmiriti 12.5.2009. Obračun kamata je jednostavni i dekurzivni.

Rješenje

$$C_{101} = 7441.40, \quad n = 101, \quad p = 7\%$$

Iz
$$C_n = C_0 \left(1 + rac{pn}{36500}
ight)$$
 slijedi

$$C_0 = \frac{C_n}{1 + \frac{pn}{36500}} = \frac{7441.40}{1 + \frac{7 \cdot 101}{36500}} = 7300$$

Početni dug bez kamata iznosi 7300 kn.

Zadatak 2

Uz koju je mjesečnu kamatnu stopu posuđeno 8000 kn ako nakon 32 mjeseca dužnik treba vratiti 9500 kn? Kolika je ekvivalentna godišnja kamatna stopa? Obračun kamata je složeni i dekurzivni.

Rješenje

- $C_0 = 8000$, n = 32, $C_{32} = 9500$
- Koristimo formulu $C_n = C_0 r^n$.

	$r_{ m mj}=1+rac{ ho_{ m mj}}{100}$
$C_{32}=C_0\cdot r_{\rm mj}^{32}$	$ ho_{ m mj}=100(r_{ m mj}-1)$
$r_{\rm mj}^{32} = \frac{C_{32}}{C_0}$	$p_{\rm mj} = 0.5384767\%$
$r_{\rm mj} = \sqrt[32]{\frac{C_{32}}{C_0}}$	$egin{aligned} r_{ m god} &= r_{ m mj}^{12} \ r_{ m god} &= 1.066565685 \cdots \end{aligned}$
$r_{\rm mj} = \sqrt[32]{\frac{9500}{8000}}$	$r_{ m god} = 1 + rac{p_{ m god}}{100}$
$r_{\rm mj} = 1.0053847665\cdots$	$ ho_{ m god} = 100 (r_{ m god} - 1)$

4/22

5/22

Zadatak 3

Zadana je glavnica od 1200 kn i godišnja kamatna stopa 5%.

- a) Odredite vrijednost glavnice nakon 8 mjeseci uz konformno ukamaćivanje.
- b) Odredite vrijednost glavnice nakon 8 mjeseci uz relativno mjesečno ukamaćivanje.

Obračuna kamata je složeni i dekurzivni.

6/22

Nekoliko napomena

• kvartalni dekurzivni kamatni faktor

$$r_{\rm kv} = r_{\rm mi}^3$$
 ili $r_{\rm kv} = \sqrt[4]{r_{\rm god}}$ ili $r_{\rm kv} = \sqrt{r_{\rm pgod}}$

 $p_{\rm god} = 6.65657\%$

• polugodišnji dekurzivni kamatni faktor

$$r_{
m pgod} = r_{
m mi}^6$$
 ili $r_{
m pgod} = \sqrt{r_{
m god}}$ ili $r_{
m pgod} = r_{
m kv}^2$

mjesečni dekurzivni kamatni faktor

$$r_{
m mj} = \frac{12}{\sqrt{r_{
m god}}}$$
 ili $r_{
m mj} = \sqrt[3]{r_{
m kv}}$ ili $r_{
m mj} = \sqrt[6]{r_{
m pgod}}$

• godišnji dekurzivni kamatni faktor

$$r_{
m god} = r_{
m mj}^{12}$$
 ili $r_{
m god} = r_{
m pgod}^2$ ili $r_{
m god} = r_{
m kv}^4$

Rješenje

a) Mjesečni dekurzivni kamatni faktor je $r=\sqrt[12]{1.05}$ pa korištenjem formule $C_n=C_0r^n$ dobivamo

$$C_8 = 1200 \cdot \sqrt[12]{1.05}^8 = 1239.67$$

b) Relativna mjesečna kamatna stopa: $p_r=rac{5}{12}$

Mjesečni dekurzivni kamatni faktor:

$$r = 1 + \frac{p_r}{100} = 1 + \frac{\frac{5}{12}}{100} = 1 + \frac{5}{1200} = \frac{241}{240}$$

Korištenjem formule $C_n = C_0 r^n$ dobivamo

$$C_8 = 1200 \cdot \left(\frac{241}{240}\right)^8 = 1240.59$$

3

Zadatak 4

Stipe uplati 10 000 kn, a nakon 15 mjeseci podigne 3800 kn.

- a) Koliko novaca ima Stipe tri i pol godine nakon prve uplate?
- b) Nakon koliko će mjeseci, u odnosu na zadnje stanje, Stipe ponovo raspolagati s 10 000 kn?
- c) Koliko bi novaca morao podići četiri godine nakon prve uplate tako da bi pet godina nakon prve uplate imao polovicu iznosa kojeg je uplatio?

Godišnja kamatna stopa je 11.1%.

8/22

b)
$$C_{42}r^n = 10\,000$$

$$r^n = \frac{10\,000}{C_{42}} / \log$$

$$n \log r = \log \frac{10\,000}{C_{42}}$$

$$n = \frac{\log \frac{10\,000}{C_{42}}}{\log r}$$

$$n = \frac{\log \frac{10\,000}{9638.88}}{\log \sqrt[12]{1.111}}$$

$$n = 4.19$$

Stipe će ponovo raspolagati s 10 000 kn nakon 5 mjeseci od zadnjeg stanja.

10/22

Rješenje

a)
$$0 15 42$$
 $10\,000 -3800$
 $-3800r^{27}$
 $10\,000r^{42}$

$$C_{42} = 10\,000r^{42} - 3800r^{27}$$

$$C_{42} = 10\,000 \cdot \sqrt[12]{1.111}^{42} - 3800 \cdot \sqrt[12]{1.111}^{27}$$

$$C_{42} = 9638.88$$

Tri i pol godine nakon prve uplate Stipe ima 9638.88 kn.

9/22

Drugi način razmišljanja

12/22

Rješenje

Zadatak 5

Martina uplati nepoznati iznos. Nakon 8 mjeseci podigne polovinu tog iznosa, a 5 kvartala nakon toga uplati još $\frac{1}{5}$ tog nepoznatog iznosa.

- a) Koliki je iznos uplaćen ako četiri godine nakon prve uplate Martina ima 8000 kn? Skicirajte tijek novca!
- b) Nakon koliko će kvartala u odnosu na prvu uplatu Martina raspolagati s dvostruko većim iznosom od prve uplate?

Godišnja dekurzivna kamatna stopa je 7.25%.

b) U prvih 8 mjeseci uplaćeni iznos se neće udvostručiti.

$$Xr^8 = 8666.44 \cdot \sqrt[12]{1.0725}^8 = 9080.41, \qquad 2X = 17332.88$$

Stoga gledamo od zadnjeg stanja.

$$8000 \cdot \sqrt[4]{1.0725}^{n} = 2X$$

$$n = \frac{\log \frac{X}{4000}}{\log \sqrt[4]{1.0725}}$$

$$n = \frac{2X}{8000} / \log$$

$$n = \frac{\log \frac{8666.44}{4000}}{\log \sqrt[4]{1.0725}}$$

$$n = \frac{\log \sqrt[4]{1.0725}}{\log \sqrt[4]{1.0725}}$$

$$n = 44.19$$

Martina će raspolagati s dvostruko većim iznosom od uplaćenog nakon 45+16=61 kvartala od prve uplate.

Zadatak 6

Viktorija uplati nepoznati iznos. Nakon pola godine uloži još šestinu tog iznosa, a četiri mjeseca nakon toga podigne dvije devetine svote s kojom raspolaže u tom trenutku.

- a) Koliki je početni ulog ako na kraju godine Viktorija na računu ima 2950 kn, a godišnja kamatna stopa je 8.25%?
- b) Nakon koliko će polugodišta, u odnosu na zadnje stanje, Viktorija raspolagati s 4500 kn?

16/22

17/22

18/22

Rješenje

Drugi način razmišljanja

Viktorija će raspolagati s 4500 kn nakon 11 polugodišta od zadnjeg stanja.

n = 10.65

20/22

Zadatak 7

Netko uloži 17 000 kn uz mjesečnu kamatnu stopu 1.02%. Nakon četiri mjeseca uloži još 3000 kn, a tri mjeseca poslije podigne četvrtinu iznosa s kojim raspolaže u tom trenutku. S kojom svotom raspolaže dvije godine nakon prve uplate?

Rješenje

$$C_{24} = \frac{3}{4} (17000r^7 + 3000r^3)r^{17}$$
 $C_{24} = \frac{3}{4} (17000 \cdot 1.0102^7 + 3000 \cdot 1.0102^3) \cdot 1.0102^{17}$
 $C_{24} = 19022.55$

22/22