REGRESSION AND CORRELATION METHODS

What is a Math/Stats Model?

 Often Describe Relationship between Variables

2. Types

Deterministic Models (no randomness)

- Probabilistic Models (with randomness)

Deterministic Models

- 1. Hypothesize Exact Relationships
- Suitable When Prediction Error is Negligible
- 3. Example: Body mass index (BMI) is measure of body fat based
 - Metric Formula: BMI = <u>Weight in Kilograms</u> (Height in Meters)²
 - Non-metric Formula: BMI = Weight(pounds)x703 (Height in inches)²

Probabilistic Models

- 1. Hypothesize 2 Components
 - Deterministic
 - Random Error
- Example: Systolic blood pressure of newborns Is 6 Times the Age in days + Random Error
 - ► $SBP = 6xage(d) + \epsilon$
 - Random Error May Be Due to Factors Other Than age in days (e.g. Birthweight)

Types of Probabilistic Models

Regression Models

Regression Models

- Relationship between one dependent variable and explanatory variable(s)
- Use equation to set up relationship
 - ▶ <u>Numerical</u> Dependent (Response) Variable
 - ▶1 or More Numerical or Categorical Independent (Explanatory) Variables
- ▶ Used Mainly for Prediction & Estimation

Regression Modeling Steps

- ▶ 1. Hypothesize Deterministic Component
 - ▶ Estimate Unknown Parameters
- 2. Specify Probability Distribution of Random Error Term
 - ▶ Estimate Standard Deviation of Error
- ▶ 3. Evaluate the fitted Model
- ▶ 4. Use Model for Prediction & Estimation

Specifying the deterministic component

▶ 1. Define the dependent variable and independent variable

- ▶ 2. Hypothesize Nature of Relationship
 - Expected Effects (i.e., Coefficients' Signs)
 - Functional Form (Linear or Non-Linear)
 - ▶ Interactions

Types of Regression Models

Linear Regression Model

Linear Equations

▶ 1. Relationship Between Variables Is a Linear Function

Population Y-Intercept

Population Slope

Random Error

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

Dependent (Response) Variable (e.g., CD+ c.)

Independent (Explanatory) Variable (e.g., Years s. serocon.)

Population Linear Regression Model

Observed value

Sample Linear Regression Model

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\varepsilon}_i$$

Observed value

Estimating Parameters: Least Squares Method

Scatter plot

- ▶ 1. Plot of All (X_i, Y_i) Pairs
- ▶ 2. Suggests How Well Model Will Fit

Least Squares

▶ 1. 'Best Fit' Means Difference Between Actual Y Values & Predicted Y Values Are a Minimum. But Positive Differences Off-Set Negative. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

▶ 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Computation Table

Xi	Yi	X_i^2	Y_i^2	X_iY_i
<i>X</i> ₁	Y ₁	X_1^2	Y ₁ ²	$X_1 Y_1$
X ₂	Y ₂	X_2^2	Y ₂ ²	X_2Y_2
	:	:	:	:
X _n	Y _n	X_n^2	Y_n^2	X_nY_n
ΣX_i	ΣY_i	$\sum X_i^2$	$\sum Y_i^2$	$\Sigma X_i Y_i$

Interpretation of Coefficients

- ▶ 1. Slope (β_1)
 - ► Estimated Y Changes by β_1 for Each 1 Unit Increase in X
 - If $\beta_1 = 2$, then Y is Expected to Increase by 2 for Each 1 Unit Increase in X
- \triangleright 2. Y-Intercept (β_0)
 - \blacktriangleright Average Value of Y When X = 0
 - If $\beta_0 = 4$, then Average Y Is Expected to Be 4 When X Is 0