Titre: Théorème de Fourier Plancherel

Recasages: 207,234,250

Thème: Intégration, transformée de Fourier, convolution.

Références : Rudin - Analyse réelle et complexe (p. 225)

On prend la convention suivante pour Fourier (attention : légèrement différente de celle de Rudin) : $\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-ix\xi}dx$.

<u>Théorème</u> 1. (Fourier Plancherel)

Pour tout $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, on a $\widehat{f} \in L^2(\mathbb{R})$, avec $\|\widehat{f}\|_2 = 2\pi \|f\|_2$. L'opérateur \mathcal{F} se prolonge de manière unique à L^2 en une quasi-isométrie linéaire bijective.

On considère $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, on pose

$$g(x) := f * \overline{\check{f}}(x) = \int_{\mathbb{R}} f(y) \overline{f(y-x)} dy = (f, \tau_x f)$$

où τ_x est l'opérateur de translation par x, on rappelle qu'il induit une isométrie $L^p(\mathbb{R}) \to L^p(\mathbb{R})$ pour tout $p \in [1, \infty]$.

La fonction g est bien définie, comme produit scalaire de deux fonctions de $L^2(\mathbb{R})$, avec de plus $|g(x)| \leq ||f||_2^2$ par l'inégalité de Cauchy-Schwarz. De plus, on sait que l'application

$$\tau: \mathbb{R} \longrightarrow \mathcal{L}(L^p(\mathbb{R}))$$
$$x \longmapsto \tau_x$$

est continue, donc $x \mapsto \tau_x f$ l'est également. Comme g est définie comme la composée de cette dernière application par le produit scalaire contre f, il s'agit d'une application continue. Enfin, l'inégalité de Young nous donne que $\|g\|_1 \leqslant \|f\|_1 \|\overline{f}\|_1 = \|f\|_1^2$, donc $g \in L^1(\mathbb{R})$. Ensuite, pour $\lambda > 0$, on introduit la fonction $H_{\lambda} : x \mapsto \frac{1}{2\pi} e^{-\lambda |x|}$, il s'agit d'une fonction de $L^1(\mathbb{R})$, dont on peut calculer la transformée de Fourier :

$$h_{\lambda}(\xi) := \widehat{H_{\lambda}}(\xi) = \int_{\mathbb{R}} H_{\lambda}(x)e^{-ix\xi}dx$$

$$= \frac{1}{2\pi} \int_{R} e^{-\lambda|x|}e^{-ix\xi}dx$$

$$= \frac{1}{2\pi} \left(\int_{R_{-}} e^{x(\lambda - i\xi)}dx + \int_{R_{+}} e^{x(-\lambda - i\xi)}dx \right)$$

$$= \frac{1}{2\pi} \left(\left[\frac{e^{x(\lambda - i\xi)}}{\lambda - i\xi} \right]_{-\infty}^{0} + \left[\frac{e^{x(\lambda - i\xi)}}{-(\lambda + i\xi)} \right]_{0}^{+\infty} \right)$$

$$= \frac{1}{2\pi} \left(\frac{1}{\lambda - i\xi} + \frac{1}{\lambda + i\xi} \right)$$

$$= \frac{1}{2\pi} \frac{2\lambda}{\lambda^{2} + \xi^{2}} = \frac{\lambda}{\pi} \frac{1}{\lambda^{2} + \xi^{2}}$$

¹Nous montrons que la fonction h_λ est une approximation de l'unité sur $\mathbb R$: il s'agit d'une

^{1.} NDLR: Évidemment, toute ressemblance avec une loi de Cauchy serait purement fortuite

fonction paire et positive, ensuite, pour a > 0, on a

$$\int_{a}^{+\infty} h_{\lambda}(x)dx = \frac{\lambda}{\pi} \int_{a}^{+\infty} \frac{1}{\lambda^{2} + \xi^{2}} d\xi$$

$$= \frac{1}{\lambda \pi} \int_{a}^{+\infty} \frac{1}{1 + \left(\frac{\xi}{\lambda}\right)^{2}} d\xi$$

$$= \frac{\lambda}{\lambda \pi} \int_{\frac{a}{\lambda}}^{+\infty} \frac{1}{1 + y^{2}} dy$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} - \arctan\left(\frac{a}{\lambda}\right)\right)$$

Donc

$$\int_{\mathbb{R}} h_{\lambda}(x) dx = 2 \int_{0}^{\infty} h_{\lambda}(x) dx = 1 \text{ et } \lim_{\lambda \to 0} \int_{|x| > a} h_{\lambda}(x) dx = 0$$

Donc $(h_{\lambda})_{\lambda}$ est bien une approximation de l'unité (quand $\lambda \to 0$).

Comme g est continue et bornée, la convolée $g*h_{\lambda}$ est bien définie et en particulier, $g*h_{\lambda}(0)$ converge vers $g(0) = ||f||_2^2$. Mais par ailleurs, comme H_{λ} et g sont intégrables, on peut appliquer le théorème de Fubini pour avoir

$$g * h_{\lambda}(0) = \int_{\mathbb{R}} g(x)h_{\lambda}(x)dx = \int_{\mathbb{R}} g(x)\int_{\mathbb{R}} H_{\lambda}(y)e^{-ixy}dydx$$
$$= \int_{\mathbb{R}} H_{\lambda}(y)\int_{\mathbb{R}} g(x)e^{-ixy}dxdy$$
$$= \int_{\mathbb{R}} H_{\lambda}(y)\widehat{g}(y)dy$$

Mais la relation entre transformée de Fourier et convolution donne

$$\widehat{g}(x) = \widehat{f}(x)\widehat{\widetilde{f}}(x) = \widehat{f}(x)\overline{\widehat{f}}(x) = |\widehat{f}(x)|^2$$

Comme la suite H_{λ} converge simplement vers $\frac{1}{2\pi}$ en croissant, le théorème de convergence dominée nous donne que $g*h_{\lambda}(0)$ converge vers $\frac{1}{2\pi}\|\widehat{f}\|_2^2$, ainsi \widehat{f} est dans $L^2(\mathbb{R})$ avec $\sqrt{2\pi}\|f\|_2 = \|\widehat{f}\|_2$: la transformée de Fourier $L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \to L^2(\mathbb{R})$ est bien une quasi-isométrie.

Pour le deuxième point, comme \mathcal{F} est linéaire, il s'agit d'une application uniformément continue $L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \to L^2(\mathbb{R})$, comme $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ est dense dans $L^2(\mathbb{R})^2$, et $L^2(\mathbb{R})$ est complet, la transformée de Fourier se prolonge de manière unique en une application linéaire $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ (également notée \mathcal{F}), qui est également une quasi-isométrie (théorème de prolongement des applications uniformément continues sur une partie dense).

Comme une quasi-isométrie est injective, il reste seulement à montrer que $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ est surjective, on montre pour cela que son image est fermée est dense. Soit $\mathcal{F}(f_n) \in \mathcal{F}(L^2(\mathbb{R}))$ une suite convergeant dans $L^2(\mathbb{R})$ vers une fonction g. On a

$$\forall n, m \in \mathbb{N}, \|\mathcal{F}(f_n) - \mathcal{F}(f_m)\|_2 = \|\mathcal{F}(f_n - f_m)\|_2 = \sqrt{2\pi} \|f_n - f_m\|_2$$

Comme la suite $(\mathcal{F}(f_n))$ converge, elle est de Cauchy, c'est donc aussi le cas de (f_n) . Comme $L^2(\mathbb{R})$ est complet, (f_n) admet une limite f, et par continuité de \mathcal{F} , on a bien $\mathcal{F}(f) = g$, qui

^{2.} Ça peut se voire en tronquant les fonctions, ou en remarquant que $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ contient les fonctions \mathcal{C}^{∞} à support compact

appartient donc à $\mathcal{F}(L^2(\mathbb{R}))$.

Enfin, on montre que $Y := \mathcal{F}(L^1(\mathbb{R}) \cap L^2(\mathbb{R})) \subset \mathcal{F}(L^2)$ est dense dans $L^2(\mathbb{R})$, soit $f \in Y^{\perp}$, pour $\alpha \in \mathbb{R}$, on considère la fonction $x \mapsto e^{i\alpha x} H_{\lambda}(x)$, dont la transformée de Fourier est $\xi \mapsto h_{\lambda}(\xi - \alpha) = h_{\lambda}(\alpha - \xi) \in Y$, on a alors

$$\forall \alpha \in \mathbb{R}, 0 = \int_{R} f(\xi) h_{\lambda}(\alpha - \xi) d\xi = f * h_{\lambda}(\alpha)$$

or, comme h_{λ} définit une approximation de l'unité, la suite $f * h_{\lambda}$ converge vers f dans $L^2(\mathbb{R})$, on a donc f = 0 et $Y^{\perp} = \{0\}$, ce qui termine la preuve.