AUBURN UNIV ALA ENGINEERING EXPERIMENT STATION CORRELATION ALGORITHM DEVELOPMENT. (U) APR 79 J S BOLAND, H S RANGANATH AD-A069 208 F/6 9/3 DAAK40-79-M-0016 UNCLASSIFIED NL OF AD A069208 END DATE FILMED 7 - 79 DDC





#### CORRELATION ALGORITHM DEVELOPMENT

by

J. S. Boland, III and H. S. Ranganath

Electrical Engineering Department
Auburn University
Auburn, Alabama 36830

Final Technical Report For the Period 1 December 1978 - 30 April 1979

This research work was supported by U.S. Army Missile Research and Development Command Redstone Arsenal, Alabama 35809 under Contract DAAK40-79-M-0016

ENGINEERING EXPERIMENT STATION
Auburn University
Auburn, Alabama 36830

30 April 1979



Cleared for Public Release; Distribution Unlimited

05 10 V40

| RÉPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | READ INSTRUCTIONS BEFORE COMPLETING FOR                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MI NO 2 DEGICATION SINGE                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | final technical re                                                                                                                                         |
| . TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |
| CORRELATION ALGORITHM DEVELOPMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 December 78-30 April                                                                                                                                     |
| The state of the s | 6. PERFORMING ORG. REPORT NUMB                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |
| . AUTHOR(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8. CONTRACT OR GRANT NUMBER(*)                                                                                                                             |
| J. S./Boland, III 🕶 H. S./Ranganath /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 DAAK48-79-M-8816 ne                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                            |
| Engineering Experiment Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10. PROGRAM ELEMENT PROJECT, T                                                                                                                             |
| Auburn University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (12)7000.                                                                                                                                                  |
| Auburn, AL 36830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |
| 1. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-7-07                                                                                                                                                    |
| Commander, US Army Missile R & D Command ATTN: DRDMI-TGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40 Apr 19 /                                                                                                                                                |
| Redstone Arsenal, AL 35809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13. MOMBER OF PAGES                                                                                                                                        |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UNCLASSIFIED                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154. DECLASSIFICATION/DOWNGRAD                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCHEDILE                                                                                                                                                   |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                            |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited                                                                                                                                                     |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imited rent from Report)                                                                                                                                   |
| Cleared for Public Release; Distribution Unl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | imited rent from Report)                                                                                                                                   |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different and the supplementary notes  8. Supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imited  rent from Report)                                                                                                                                  |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imited  rent from Report)                                                                                                                                  |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different and the supplementary notes  8. Supplementary notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imited  rent from Report)                                                                                                                                  |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20, if difference of the abetract entered in Block 20 | imited  rent from Report)  number)                                                                                                                         |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different supplementary notes  19. KEY WORDS (Continue on reverse side if necessary and identify by block correlation, Target Hand-Off, Image Correlation, Target Hand-Of | imited  rent from Report)  Ation                                                                                                                           |
| Cleared for Public Release; Distribution Unl  17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 20, if difference of the abstract entered in Block 2 | imited  rent from Report)  number)  stion  ssions derived from simulation                                                                                  |
| Cleared for Public Release; Distribution Unl  17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference in B | imited  rent from Report)  Ation  Assigns derived from simulation sors sensitive in the visual by of spatial frequency conten                              |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference in the state of the stat | imited  rent from Report)  Ation  Assions derived from simulation sors sensitive in the visual ty of spatial frequency contenning a threshold for bi-level |
| Cleared for Public Release; Distribution Unl  77. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference in B | imited  rent from Report)  ation  sors sensitive in the visual ty of spatial frequency contents a threshold for bi-level f the shapes of the correlation   |
| Cleared for Public Release; Distribution Unl  7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difference in the state of the abetract entered in Block 20, if difference in the supplementary notes  9. KEY WORDS (Continue on reverse side if necessary and identify by block in the control of the supplementary and identify by block in the supplementary in the supp | imited  rent from Report)  ation  sors sensitive in the visual ty of spatial frequency contents a threshold for bi-level f the shapes of the correlation   |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
402 958 Elw

# TABLE OF CONTENTS

|      |          |                |                              |     |     |            |     |      |          |           |            |     |     |            |            |     |     |     |     |     |    |   |   |   |   | Page   |
|------|----------|----------------|------------------------------|-----|-----|------------|-----|------|----------|-----------|------------|-----|-----|------------|------------|-----|-----|-----|-----|-----|----|---|---|---|---|--------|
| LIST | OF       | FIGU           | RES.                         | •   |     |            | •   |      |          | ٠         | •          | •   | •   | •          |            | •   | ٠   |     |     | •   | •  | ٠ |   |   |   | 2      |
| LIST | OF       | TABL           | ES.                          |     |     | •          |     |      |          | ٠         | •          | •   |     | ٠          | ٠          | •   | •   |     | •   |     | ٠  | ٠ |   |   |   | 4      |
| 1.   | INT      | RODUC          | LION                         |     |     | •          | •   |      | •        | ٠         | ٠          |     | •   |            | •          |     |     | •   |     |     | •  | ٠ |   | • |   | 5      |
|      | A.<br>B. | Scope<br>Organ |                              |     |     |            |     |      |          |           |            |     |     |            |            |     |     |     |     |     |    |   |   |   |   | 5<br>6 |
| 2.   | CORI     | RELAT          | ION T                        | HR  | ESH | OLD        | т ( | EC   | INI      | QUI       | ES         | AN  | ID  | S          | [ML        | JLA | AT! | 101 | ١.  |     |    |   |   |   |   | 7      |
|      | Α.       | Corr           | elati                        | on  | Us  | ing        | L   | ine  | 2 A      | ve        | raç        | je  | Qu  | ıar        | nti        | ize | er  |     |     |     |    |   |   |   |   | . 7    |
| N.   |          |                | High<br>Low R<br>Corre<br>EE | les | olu | tio<br>n A | n   | Vic  | leo<br>E | P1<br>ED2 | rep<br>28. | CC  | )R  | 255<br>13/ | 132<br>132 | ng  |     |     |     |     |    |   |   |   |   | 14     |
|      | В.       | Corr           | elati<br>Quant               |     |     |            |     |      |          |           |            |     |     |            |            |     |     | 111 | ter |     | as |   |   | • | • | 16     |
|      |          |                | Quant<br>Quant<br>Corre      | iz  | ati | on<br>n A  | of  | Ulay | _RV      | EEI       |            |     |     |            |            |     | 32  |     |     |     |    |   |   |   |   |        |
|      | c.       | Corr           | elati                        | on  | Us  | ing        | A   | rra  | ay       | Av        | era        | ge  | 2 ( | Qua        | ant        | ti  | zei | r.  |     |     | •  |   | • |   |   | 30     |
|      | D.       | Cros           | s Sec                        | ti  | ona | 1 F        | 10  | ts   | of       | C         | orı        | rei | lat | tic        | on         | Si  | ır  | fac | ces | s . |    |   |   |   |   | 38     |
| 3.   | CON      | CLUSI          | ONS.                         |     |     | •          |     |      |          |           |            |     |     | •          |            |     |     |     |     |     | •  |   |   | • |   | 64     |

| NTIS          | White Section      |
|---------------|--------------------|
| DDC           | Buff Section       |
| UNANNOUNCED   |                    |
| JUSTIFICATION |                    |
|               |                    |
| BY            |                    |
|               | AVAILABILITY COBES |
|               |                    |
|               | . and or SPECIAL   |
|               | and/or SPECIAL     |
|               | and or SPECIAL     |

# LIST OF FIGURES

|     |                                                                        | Page |
|-----|------------------------------------------------------------------------|------|
| 1.  | Layout for quantization based on a line average                        | . 8  |
| 2.  | 32 x 32 REFV in RHRV                                                   | 10   |
| 3.  | ULRV of dimension 120 x 120 in LR-Video                                | . 11 |
| 4.  | Correlation peak in CORJ3A32                                           | 14   |
| 5.  | Arrays and expected peak in (32 x 32) autocorrelation                  | 15   |
| 6.  | 16 x 16 reference array in processed high resolution video             | 17   |
| 7.  | Expected correlation peak in CORJ3A16 array                            | 18   |
| 8.  | 16 x 16 autocorrelation arrays and expected peaks                      | 19   |
| 9.  | 8 x 8, 16 x 16 and 32 x 32 reference arrays in RHRV and PHRV           | . 24 |
| 10. | Expected peak in CORJ3D32 array                                        | . 26 |
| 11. | 32 x 32 autocorrelation arrays and expected peaks                      | 27   |
| 12. | Expected correlation peak in CORJ3D16 array                            | . 28 |
| 13. | 16 x 16 autocorrelation arrays and expected peaks                      | . 29 |
| 14. | Layout of the input array for quantization based on an array quantizer | . 31 |
| 15. | 8 x 8, 16 x 16 and 32 x 32 reference arrays in RHRV and PHRV           | . 32 |
| 16. | Expected peak in CORJ3G32 array                                        | . 33 |
| 17. | 32 x 32 autocorrelation array and expected peaks                       | . 34 |
| 18. | Expected peak in CORJ3G16 array                                        | . 35 |
| 19. | 16 x 16 autocorrelation array and expected peak                        | . 36 |
| 20. | Cross sectional plots through (IMAX, JMAX)                             | . 39 |

# LIST OF FIGURES (Con't)

|     |             |            |         |                     |   |   |   |   |   | Page |
|-----|-------------|------------|---------|---------------------|---|---|---|---|---|------|
| 21. | Cross secti | onal plots | through | (IMAX-2, JMAX-2)    |   | • |   | • |   | 40   |
| 22. | Cross secti | onal plots | through | (IMAX+2, JMAX+2)    | • |   |   | • |   | 41   |
| 23. | Cross secti | onal plots | through | (IMAX1, JMAX1)      | ٠ | • | • | • | ٠ | 42   |
| 24. | Cross secti | onal plots | through | (IMAX1-2, JMAX1-2). |   | ٠ |   | ٠ | • | 43   |
| 25. | Cross secti | onal plots | through | (IMAX1+2, JMAX1+2). |   |   |   |   |   | 44   |

# LIST OF TABLES

|     |                                                               | Page |
|-----|---------------------------------------------------------------|------|
| 1.  | Scene 3 - Jeep in front of the fence, 32 x 32 reference array | 45   |
| 2.  | Scene 3 - Jeep in front of the fence, 16 x 16 reference array | 46   |
| 3.  | Scene 4 - Jeep behind the fence, 32 x 32 reference array      | 47   |
| 4.  | Scene 4 - Jeep behind the fence, 16 x 16 reference array      | 48   |
| 5.  | Scene 2 - Jeep in the parking lot, 32 x 32 reference array    | 49   |
| 6.  | Scene 2 - Jeep in the parking lot, 16 x 16 reference array    | 50   |
| 7.  | NASA tower, 32 x 32 reference array                           | 51   |
| 8.  | NASA tower, 16 x 16 reference array                           | 52   |
| 9.  | Woods scene, 32 x 32 reference array                          | 53   |
| 10. | Woods scene, 16 x 16 reference array                          | 54   |
| 11. | Water tower, 32 x 32 reference array                          | 55   |
| 12. | Water tower, 16 x 16 reference array                          | 56   |
| 13. | Rock quarry, 32 x 32 reference array                          | 57   |
| 14. | Rock quarry, 16 x 16 reference array                          | 58   |
| 15. | Parking lot, 32 x 32 reference array                          | 59   |
| 16. | Parking lot, 16 x 16 reference array                          | 60   |
| 17. | Description of scenes                                         | 61   |
| 18. | Description of correlation surfaces                           | 62   |
| 19. | Ratio of correlation peak to second highest peak              | 68   |

#### 1. INTRODUCTION

Currently the U.S. Army is developing a system for the acquisition and tracking of military targets from helicopters. The Army is also developing missiles which are capable of locking on to the target prior to launch and then of homing in on the target during flight. To accomplish this task some means must be provided for "handing off" the target from the precision pointing and tracking system (PTS) to the missile seeker in minimum time. The PTS can either be a high resolution day TV system or a forward looking infrared (FLIR) system. The missile, which is usually lower resolution because of size and costs constraints. can be a day TV or an infrared imaging seeker (IRIS) system. Therefore target hand-off must be accomplished between two similar sensors (e.g., between the PTS high resolution day TV and the missile low resolution day TV system) or between two dissimilar sensors (e.g., the PTS high resolution TV and an IRIS). In order to study the sensitive parameters in existing techniques to accomplish target hand-off in the above two cases, the U.S. Army Research and Development Command, Huntsville, Alabama, let a contract with the Engineering Experiment Station, Auburn University, Auburn, Alabama. This report presents the results of that effort.

#### A. Scope of Work

The purpose of this study was to determine the optimal gradient matrix thresholds for bi-level and tri-level correlation between two TV systems and between a TV and IRIS system. This analysis required

- 1) Establishing 3 x 3 gradient matrices utilizing the SOBEL edge detection concept for eight (8) IR and TV scenes. The digitized images were supplied by the government on standard nine track magnetic tape.
- 2) Performing an analysis to determine optimal threshold values for generation of bi-level and tri-level correlation matrices which maximize the image correlation.
- Performing simulations to verify the results in paragraph
   above.

#### B. Organization of Report

All of the work outlined in the Scope of Work has been completed and is documented in this final report. Task 1 in the Scope of Work was completed and the results are stored in computer memory on Disk and in computer print-outs. The data is too voluminous for inclusion in this final report. Tasks 2 and 3 are documented in Chapter 2. The optimal threshold problem for bi-level and tri-level correlation matrices is similar for both the TV-to-TV and the TV-to-IR correlation. Because of the large amount of data generated and the limited amount of computer time available on this contract, the TV-to-TV correlation only was simulated and results extrapolated to the TV-to-IR case. Simulations using reference sizes of 32 x 32, 16 x 16 and 8 x 8 were run for all cases. However, because the 8 x 8 references did not lead to correct correlation, only the 32 x 32 and 16 x 16 reference array results are presented in this report.

Chapter 3 summarizes the results and conclusions of the work.

## 2. CORRELATION THRESHOLD TECHNIQUES AND SIMULATION

In this chapter, three preprocessing algorithms used to transform digital images to a binary form are presented. The spatial resolution of High Resolution (HR) Video is reduced to that of Low Resolution (LR) Video, before the HR-Video is transformed to the binary form. The difference in resolution is caused by the differing fields of view, number of TV lines per frame, frame rate, aspect ratio and sampling rate of the two TV systems. The vertical scale factor,  $W_V$ , and horizontal scale factor,  $W_H$ , were previously calculated to be 3.32 and 6.64, respectively. Preprocessed HR and LR videos in binary form are input to the correlation process and the results are tabulated. The algorithms discussed in this chapter are applicable to a correlator system in which both images are acquired with sensors sensitive in the visual spectrum.

For Scene 3 (jeep in front of the fence), the method of choosing the reference array from preprocessed HR-Video, the technique for generating various correlation surfaces and the technique for calculating the expected peak locations in the correlation surfaces are illustrated. Final results are tabulated for all scenes.

## A. Correlation Using Line Average Quantizer

Consider a single line of video as shown in Figure 1. The pixel to be quantized is X(i,j). The line average quantizer quantizes the points of the selected input array by calculating the average value of a specified number of previous pixels of the same line. The

quantization threshold is then this average value. Equation 1 describes the average value calculation where L is the average Value Sample Length.

$$\overline{X}(i,j) = \frac{1}{L} \sum_{J=1}^{L} X(i, j - J + 1)$$
 (1)

Equation 2 gives the quantization process

$$X_{q}(i, j) = \{ \begin{cases} 1 & ; & X(i, j) \geq \overline{X}(i, j) \\ 0 & ; & X(i, j) \leq \overline{X}(i, j) \end{cases}$$
 (2)

where  $X_q(i, j)$  is the quantized pixel. This process continues until all pixels in the input array are quantized. As can be seen from Figure 1, the first (L-1) pixels of each line will be quantized incorrectly and



Figure 1. Layout for quantization based on a line average.

must be ignored in the correlation process. If the original input array is of size N  $\times$  M, then the quantized array will contain N  $\times$  (M-L+l) valid points.

## 1. High Resolution Video Preprocessing

As mentioned earlier, Scene 3 (jeep in front of the fence) is used to illustrate the preprocessing and correlation process. The size

of the unprocessed high resolution video (UHRV) is 240 x 512. When the resolution of HR-Video is reduced to that of LR-Video by using the  $W_H$  and  $W_V$  scale factors, the size of the reduced high resolution video (RHRV) is 72 x 77. The RHRV is then quantized line by line using a line average quantizer of length 11, to obtain the processed high resolution video (PHRV). A reference array (REFV) of size 32 x 32, which includes the jeep, is selected from PHRV. Figure 2 shows the position of PHRV and REFV in RHRV.

For better correlation results, it is necessary to have an equal number of 'ones' and 'zeros' in REFV. If, in the REFV, the number of ones is not equal to the number of zeros  $\pm 5\%$ , the quantization threshold is changed, and RHRV is requantized. This process is repeated until the number of 'ones' in REFV is equal to the number of 'zeros' within the limit of  $\pm 5\%$  error. The modified quantization process is described by Equation 3.

$$X_{q}(i, j) = \{ \begin{cases} 1 & ; & X(i, j) \ge \overline{X}(i, j) + DELTA \\ 0 & ; & X(i, j) < \overline{X}(i, j) + DELTA \end{cases}$$
 (3)

Obviously DELTA can be positive or negative depending on whether the number of ones is greater than or less than the number of zeros in REFV, respectively.

## 2. Low Resolution Video Preprocessing

The size of the unprocessed low resolution video is  $240 \times 512$ . In order to save computation time and memory requirements, only that portion of the LR Video as described below is preprocessed and used as input to the correlation process. A segment of size  $120 \times 240$  including the jeep is chosen from the LR Video as shown in Figure 3. The sampling frequency



Figure 2. 32 x 32 REFV in RHRV.



Figure 3. ULRV of dimension 120 x 120 in LR-Video.

used while forming the original digital image was 10 MHz. Since it is desired to use a sampling frequency of 5 MHz, every other column is deleted from the  $120 \times 240$  segment and the resulting  $120 \times 120$  video will henceforth be called ULRV. ULRV is then quantized using a line average quantizer described by Equations 1 and 2. The processed binary form of ULRV, PLRV, is of size  $120 \times 110$ . PLRV and PHRV in binary form are input to the correlation process to generate the correlation surfaces to be discussed in the following sections.

3. Correlation Arrays EED28.CORJ3A32, EED28.CORJ3B32 and EED28.CORJ3C32

EED28.CORJ3A32 is the correlation array of size 89 x 79 obtained by correlating the 32 x 32 reference array with PLRV of size 120 x 110. The first four highest peaks of the correlation surface and their coordinates in PLRV are tabulated in Table 1. The average value of the correlation surface excluding the 7 x 7 array centered at the peak, the standard deviation of the correlation surface excluding the 7 x 7 array centered at the peak and the signal-to-noise (S/N) ratio are also computed. The S/N ratio is defined as

$$S/N = \frac{Correlation\ Peak\ -\ Correlation\ Surface\ Average}{Correlation\ Surface\ Standard\ Deviation}$$
 (4)

Coordinates of the expected peak in the correlation surface were calculated by visual inspection of overstruck images of RHRV and PLRV. Let  $P_1$  be a pixel in RHRV, preferably on the jeep, and  $P_2$  be the pixel in ULRV corresponding to  $P_1$  in RHRV which was located by inspection. If

$$P_1 = RHRV(I_1, J_1),$$
 $P_2 = ULRV(I_2, J_2),$ 
 $REFV(1, 1) = PHRV(K_2, L_2)$ 

(5)

and

then after quantization

$$P_1 = PHRV(I_1, J_1 - 10)$$
  
 $P_2 = PLRV(I_2, J_2 - 10)$ 
(6)

Since ULRV and RHRV have the same spatial resolution, the relative position of the highest peak with respect to  $(I_2, J_2 - 10)$  in PLRV will be the same as the relative position of REFV (I, I) with respect to  $(I_1, J_1 - 10)$  in PHRV. Therefore, the highest peak is expected at

$$[I_2 - (I_1 - K_2), J_2 - 10 - (J_1 - 10 - L_2)]$$

$$= [I_2 - (I_1 - K_2), J_2 - (J_1 - L_2)]$$
(7)

For the Scene 3,

$$I_1 = 34$$
,  $J_1 = 21$   
 $I_2 = 39$ ,  $J_2 = 34$  (8)  
 $K_2 = 18$ ,  $L_2 = 13$ 

Substituting 8 into 7 reveals that the peak should appear at [23, 26]. This is clearly shown in Figure 4.

EED28.CORJ3B32 is the correlation surface of size 41 x 36 obtained by correlating the 32 x 32 REFV from PHRV with PHRV itself. Therefore the peak will appear at  $(K_2, L_2)$  and its value will be 1024 since autocorrelation yields perfect registration at the peak. Since this correlation surface is used to generate EED28.CORJ3C32 and has no other significance, the results of EED28.CORJ3B32 are not tabulated. However, this correlation surface, its peak and PHRV are shown in Figure 5a.



Figure 4. Correlation peak in CORJ3A32.



Figure 5. Arrays and expected peak in (32 x 32) autocorrelation.

EED28.CORJ3C32 is the correlation surface obtained by correlating the autocorrelation surface EED28.CORJ3B32 with EED28.CORJ3A32. Basically the approach is the same as discussed before. The REFV chosen from the processed CORJ3B32 array is centered about the peak in the correlation surface. Since the array CORJ3B32 contains only 26 columns after line average quantization, a REFV of size 32 x 26 is chosen as shown in Figure 5a. Figure 5b shows the location of the REFV in the processed CORJ3A32 array and the coordinates of the expected peak in the correlation surface EED28.CORJ3C32.

The same result can be achieved by calculation as follows. The relative position of the expected peak in EED28.CORJ3C32 with respect to the peak at (23, 25) in PCORJ3A32 should be the same as that of REFV (1, 1) with respect to (18, 3) in the processed CORJ3B32 array. Therefore the peak in EED28.CORJ3C32 is expected at

$$[23 - (18 - 3), 16 - (3 - 1)] = [8, 14]$$

The results of this simulation are given in Table 1 at end of chapter.

Figures 6 - 8 illustrate the generation of EED28.CORJ3A16, EED28.CORJ3B16 and EED28.CORJ3C16 using a reference array of size  $16 \times 16$ . The results of simulation are tabulated in Table 2.

B. Correlation Using Analog Preprocessing Filter as Quantizer The transfer function G(s) of the analog preprocessing filter is given by Equation 9.

$$G(s) = \frac{2.21 W_2 S^2}{(S + W_1)(S + W_2)(S + W_3)}$$
 (9)



Figure 6. 16 x 16 reference array in processed high resolution video.



Figure 7. Expected correlation peak in CORJ3A16 array.



Figure 8. 16 x 16 autocorrelation arrays and expected peaks.

This filter has zero dc gain and therefore transforms the input video to zero mean video. In order to process a digital image, the analog filter is transformed to a digital filter by bilinear transformation as explained below.

In bilinear transformation, the digital transfer function H(z) is obtained from analog transfer function G(s) by the substitution

$$S = \frac{2}{T} \cdot \frac{Z-1}{Z+1}$$

That is

$$H(Z) = G(s) |_{S = \frac{2}{T} \cdot \frac{Z-1}{Z+1}}$$
 (10)

where T = sampling period.

The price paid for this is the introduction of a distortion in the frequency axis.

Equation 10 can be used if the distortion can be tolerated, which is generally true if the sampling frequency is very high compared to the critical frequencies ( $W_1$ ,  $W_2$  and  $W_3$ ). Otherwise, if the critical frequencies of the analog filter are prewarped as shown by Equations 10a, 10b, 10c, then, when the analog filter is transformed to a digital filter using Equation 10d, the digital filter will meet the desired specifications.

$$W_1' = \tan(\frac{W_1^T}{2}) \tag{10a}$$

$$W_2' = \tan(\frac{W_2T}{2}) \tag{10b}$$

$$W_3' = \tan(\frac{W_3T}{2}) \tag{10c}$$

$$H(Z) = G'(s) |_{S} = \frac{Z-1}{Z+1}$$
 (10d)

Therefore, G(s) in Equation 9 can be written as

$$G(s) = \frac{2.21 \text{ W}_2^1 \text{ S}^2}{\text{s}^3 + (\text{W}_1^1 + \text{W}_2^1 + \text{W}_3^1)\text{S}^2 + (\text{W}_1^1 \text{W}_2^1 + \text{W}_2^1 \text{W}_3^1 + \text{W}_3^1 \text{W}_1^1)\text{S} + \text{W}_1^1 \text{W}_2^1 \text{W}_3^1}}$$
(11)

From Equation 10d,

$$H(Z) = \frac{2.21 \text{ W}_{2}^{1} (\frac{Z-1}{Z+1})^{2}}{(\frac{Z-1}{Z+1})^{3} + (\text{W}_{1}^{1} + \text{W}_{2}^{1} + \text{W}_{3}^{1})(\frac{Z-1}{Z+1})^{2} + (\text{W}_{1}^{1}\text{W}_{2}^{1} + \text{W}_{2}^{1}\text{W}_{3}^{1} + \text{W}_{3}^{1}\text{W}_{1}^{1})(\frac{Z-1}{Z+1})} + \text{W}_{1}^{1}\text{W}_{2}^{1}\text{W}_{3}^{1}}$$

$$+ \text{W}_{1}^{1}\text{W}_{2}^{1}\text{W}_{3}^{1}$$

$$(12)$$

Letting 
$$A = (W_1' + W_2' + W_3')$$
  
 $B = (W_1'W_2' + W_2'W_3' + W_3'W_1')$   
 $C = W_1'W_2'W_3'$   
 $D = 2.21 W_2'$ 
(13)

one obtains

$$H(Z) = \frac{D(\frac{Z-1}{Z+1})^2}{(\frac{Z-1}{Z+1})^3 + A(\frac{Z-1}{Z+1})^2 + B(\frac{Z-1}{Z+1}) + C}$$
(14)

Simplifying the above equation yields

$$H(Z) = \frac{a(Z^3 - Z^2 - Z + 1)}{b_1 Z^3 + b_2 Z^2 + b_3 Z + 1}$$
 (15)

where, 
$$a = D/(A - B + C - 1)$$
  
 $b_1 = (A + B + C + 1)/(A - B + C - 1)$   
 $b_2 = (-A + B + 3C - 3)/(A - B + C - 1)$   
 $b_3 = (-A - B + 3C + 3)/(A - B + C - 1)$ 

But 
$$H(Z) = \frac{Y(Z)}{X(Z)}$$
 (17)

where, Y(Z) is the Z-transform of the output sequence  $\{Y(\eta)\}$  and

X(Z) is the Z-transform of the input sequence  $\{X(\eta)\}$ 

From Equations 15 through 17,

$$\frac{Y(Z)}{X(Z)} = \frac{a(Z^3 - Z^2 - Z + 1)}{b_1 Z^3 + b_2 Z^2 + b_3 Z + 1}$$
(18)

Cross multiplying both sides of Equation 18 yields

$$(b_1 z^3 + b_2 z^2 + b_3 z + 1)Y(z) = a(z^3 - z^2 - z + 1)X(z)$$
 (19)

Taking the inverse Z-transform of Equation 19 yields

$$y(n) = a[x(n) - x(n-1) - x(n-2) + x(n-3)]/b_1$$

$$-[b_2 y(n-1) + b_3 y(n-2) + y(n-3)]/b_1$$
(20)

Equation 20, where the constants are described by Equation 16, describing the digitized analog preprocessing filter and can be easily simulated on digital computers.

#### 1. Quantization of RHRV

The coefficients a,  $b_1$ ,  $b_2$  and  $b_3$  of the difference equation described by Equation 16 are computed, assuming

$$W_1 = 984\pi$$
 $W_2 = 1100278\pi$ 
 $W_3 = 58062\pi$ 
 $W_3 = 0.2 \times 10^{-6} \text{ sec.}$ 

(21)

NR = Number of rows in RHRV

NC = Number of columns in RHRV

An input sequence  $\{x(\eta)\}$  of length NR · NC is formed by joining the successive rows of RHRV. The first three elements of the output sequence  $\{y(\eta)\}$  are initialized to zero. Then, all other elements of  $\{y(\eta)\}$  are computed using Equation 20. The first NC elements of the output sequence  $\{y(\eta)\}$  form the first row of the zero mean video (ZMV), and the second NC elements of  $\{y(\eta)\}$  form the second row of ZMV, etc. Equation 22 describes the quantization process of the zero mean video to obtain PHRV, the binary form of RHRV.

$$PHRV(I,J) = \begin{cases} 1, & \text{If } ZMV(I,J) \ge DELTA \\ 0, & \text{If } ZMV(I,J) < DELTA \end{cases}$$
 (22)

where, DELTA is the quantization threshold which yields approximately an equal number of zeros and ones in REFV. Its value is determined by simulation.

The method of choosing the reference array from RHRW was discussed in a previous section. For Scene 3, RHRV, PHRV and reference arrays of size 32  $\times$  32, 16  $\times$  16 and 8  $\times$  8 are shown in Figure 9.

#### Quantization of ULRV

The quantization process of ULRV is identical to that of RHRV with the following two changes.

a. The coefficients a,  $b_1$ ,  $b_2$  and  $b_3$  are computed, assuming  $W_1 = 984\pi$   $W_2 = 1100278\pi$   $W_3 = 174052\pi$  and  $T = 0.2 \times 10^{-6} \text{ sec.}$  (23)



Figure 9. 8 x 8, 16 x 16 and 32 x 32 reference arrays in RHRV and PHRV.

b. The quantization process of zero mean video to obtain PLRV, the binary form of ULRV, is modified as in Equation 24.

$$PLRV(I,J) = \{ \begin{cases} 1 & \text{if } ZMV(I,J) > 0 \\ 0 & \text{if } ZMV(I,J) < 0 \end{cases}$$
 (24)

3. Correlation Array's EED28.CORJ3D32, EED28.CORJ3E32 and EED28.CORJ3F32

EED28.CORJ3D32 is the correlation array of size 89 x 89 obtained

by correlating a REFV of size 32 x 32 with PLRV of size 120 x 120. The

first four highest peaks and their coordinates are tabulated in Table

1. The average value of the correlation surface excluding the 7 x 7

array centered at the peak, the standard deviation of the correlation

surface excluding the 7 x 7 array centered at the peak and the signal
to-noise ratio are also computed.

The methods of calculating the coordinates of the expected peak is similar to that discussed in Section A and the expected peak is shown in Figure 10. EED28.CORJ3E32 is the correlation surface of size 41 x 46 obtained by correlating a 32 x 32 REFV with PHRV. This correlation surface and its peak in PHRV are shown in Figure 11(a).

EED28.CORJ3F32 is the correlation surface obtained by correlating the correlation surface EED28.CORJ3D32 with the reference array from the correlation surface EED28.CORJ3E32. The method of choosing the REFV from EED28.CORJ3E32 is the same as that discussed in Section A and is clearly indicated in Figures 11(a) and 11(b). Figures 12 and 13 illustrate the generation of EED28.CORJ3D16, EED28.CORJ3E16 and EED28.CORJ3F16. Simulation results are tabulated in Table 2.



Figure 10. Expected peak in CORJ3032 array.



Figure 11. 32 x 32 autocorrelation arrays and expected peaks.



Figure 12. Expected correlation peak in CORJ3016 array.



27

32

. PCORJ3E16 (1,1)

Figure 13. 16x16 autocorrelation arrays and expected peaks.

## C. Correlation Using Array Average Quantizer

Consider the layout of the input video array as given in Figure 14. The pixel to be quantized is located in the center of a K x L subarray of pixel values. The average value used for the threshold is based on the average value of the K x L pixel subarray. Equation (25) details the average value calculation.

$$\overline{X}(i, j) = \frac{1}{KL} \sum_{I=1}^{K} \sum_{J=1}^{L} X(i - k - 1 + I, j - \ell - 1 + J)$$
 (25)

where  $k = largest integer \leq K/2$ 

 $\ell$  = largest integer  $\leq L/2$ 

Equation (26) gives the quantization process

$$X_{q}(i, j) = \{ \begin{cases} 1 & ; & X(i, j) > \overline{X}(i, j) \\ 0 & ; & X(i, j) < \overline{X}(i, j) \end{cases}$$
 (26)

Because there is a border region of the input array which will be quantized incorrectly, the resulting quantized array has  $(N-K+1) \times (M-L+1)$  pixels. The rest of the procedure is similar to that using the line average quantizer. EED28.CORJ3G32 is the correlation array of size 79 x 79 obtained by correlating REFV of size 32 x 32 with PLRV of size 110 x 110.

EED28.CORJ3H32 is the correlation surface obtained by correlating the 32 x 32 REFV from PHRV with PHRV itself. EED28.CORJ3I32 is the correlation surface obtained by correlating the correlation surface EED28.CORJ3G32 with EED28.CORJ3H32. A similar analysis is done for a reference array of size  $16 \times 16$ . Details are clearly shown in Figures 15 - 19.



Figure 14. Layout of the input array for quantization based on an array quantizer.



Figure 15. 8x8, 16x16 and 32x32 reference arrays in RHRV and PHRV.



Figure 16. Expected peak in CORJ3G32 array.



Figure 17. 32x32 autocorrelation array and expected peaks.



Figure 18. Expected peak in CORJ3G16 array.



Figure 19. 16x16 autocorrelation array and expected peak.

Tables 3 through 16 give the results of simulations for seven additional scenes. A total of eight scenes was used in order to obtain data for a variety of different backgrounds. In obtaining the original eight scenes, an effort was made to include backgrounds with high spatial frequency content and with low spatial frequency content and to include scenes with both high and low contrast ratios.

Table 17 is a description of all scenes used and Table 18 is a listing of all correlation surfaces with their description.

## D. Cross Sectional Plots of Correlation Surfaces

In order to examine qualitatively the size and shape of the correlation surfaces around the true peaks and false peaks, the following cross sectional plots were obtained for two scenes (parking lot and jeep in front of the fence). Figures included in this section are the cross sectional plots of the correlation surface EED28.CORJ3G32 for the jeep in front of the fence scene. In the figures (IMAX, JMAX) is the location of the first peak in the correlation surface and (IMAX1, JMAX1) is the location of the second highest peak in the correlation surface.

Figure 20 shows the cross-sectional plots through (IMAX, JMAX) of the correlation surface. Figures 21 and 22 are the cross sectional plots through (IMAX-2, JMAX-2) and (IMAX+2, JMAX+2). Similarly, Figures 23 - 26 show the cross sectional plots through (IMAX1, JMAX1) (IMAX1-2, JMAX1-2) and (IMAX1+2, JMAX1+2), respectively. Plots of third and fourth highest peaks are not included. Similar plots for other correlation surfaces listed in Table 1 and Table 2 of the previous section were obtained but are not included in this report.







Figure 20. Cross sectional plots through (IMAX, JMAX).





Figure 21. Cross sectional plots through (IMAX-2, JMAX-2).





Figure 22. Cross sectional plots through (IMAX+2, JMAX+2).





Figure 23. Cross sectional plots through (IMAX1, JMAX1).





Cross sectional plots through (IMAX1-2, JMAX1-2). Figure 24.





Figure 25. Cross sectional plots through (IMAX1+2, JMAX1+2).

Table 1. Scene 3 - Jeep in front of the fence, 32 x 32 reference array.

| Correlation<br>Surface                | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |   |
|---------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|---|
| EED28.CORJ3A32                        | (23, 26)                     | (23, 28)                      | 514.428                              | 40.224                                    | 6.528        | 667<br>(20, 23)                      | 631<br>(77, 66)                     | 625<br>( 3, 5)                       |   |
| EED28.CORJ3832                        | (8, 14)                      | (8, 14) (8, 15)               | 416.629                              | 107.196                                   | 3.007        | 660<br>(12, 20)                      | 633<br>(44, 32)                     | 629<br>( 5, 10)                      |   |
| EED28.CORJ3D32                        | (23, 29)                     | 714 (24, 28)                  | 545.880                              | 58.313                                    | 2.883        | 689<br>(16, 59)                      | 687<br>( 1, 70)                     | 677<br>(59, A1)                      |   |
| EED28.CORJ3F32                        | (8, 14)                      | 873<br>(58, 54)               | 588.257                              | 88.902                                    | 3.203        | 825<br>( 7, 10)                      | 790<br>(53, 56)                     | ( 6, 55)                             |   |
| EED28.CORJ3G32                        | (23, 26)                     | 790<br>(23, 28)               | 514.545                              | 40.655                                    | 6.775        | 682<br>(25, 33)                      | 673<br>(23, 23)                     | 650<br>(13, 55)                      |   |
| 496<br>EED28.CORJ3I32 (6, 14) (6, 15) | (6, 14)                      | 496 ( 6, 15)                  | 270.156                              | 89.917                                    | 2.512        | (18, 7)                              | 466 (25, 27)                        | 459                                  | 1 |
|                                       |                              |                               |                                      |                                           |              |                                      |                                     |                                      |   |

Table 2. Scene 3 - Jeep in front of the fence, 16 x 16 reference array.

|                                         |                              |                                     |                                      |                                           |              |                                      |                                     |                                      | 1  |
|-----------------------------------------|------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|----|
| Correlation<br>Surface                  | Expected<br>Peak<br>Location | ed Highest<br>Peak &<br>on Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |    |
| EED28.CORJ3A16 (37, 27)                 | (37, 2                       | 7) (38, 30)                         | 127.655                              | 21.088                                    | 3.763        | 193                                  | 192<br>(14, 40)                     | 189 (94, 73)                         |    |
| EED28.CORJ3C16 (30, 14)                 | (30, 1                       | 226<br>4) (30, 15)                  | 127.192                              | 37.22                                     | 2.655        | 219                                  | 219<br>(25, 19)                     | 213 (20, 31)                         |    |
| 191<br>EED28.CORJ3D16 (37, 37) (14, 78) | (37, 3                       | 191 (7) (14, 78)                    | 125.853                              | 20.012                                    | 3.255        | 188<br>(38, 38)                      | 186<br>(43, 44)                     | 185 (29, 60)                         | 46 |
| EED28.CORJ3F16 (30, 30)                 | (30, 3                       | 232<br>0) (21, 46)                  | 127.243                              | 38.312                                    | 2.734        | 230<br>(32, 81)                      | 226<br>(76, 85)                     | 224 (22, 51)                         |    |
| EED28.CORJ3G16 (32, 32)                 | (32, 3                       | 2) (33, 35)                         | 127.150                              | 20.294                                    | 4.723        | 205<br>(23, 61)                      | 196<br>(34, 40)                     | 195<br>(23, 45)                      |    |
| EED28.CORJ3116 (15, 15)                 | (15, 1                       | 5) (16, 18)                         | 128.414                              | 30.203                                    | 2.867        | 205<br>(63, 13)                      | 196<br>(18, 24)                     | 193                                  |    |
|                                         |                              |                                     |                                      |                                           |              |                                      |                                     |                                      |    |

Table 3. Scene 4 - Jeep behind the fence,  $32 \times 32$  reference array.

|                 | Expected                 | Highest                  | Average                   | Standard      | 3            | Second Highest  | Third Highest   | Fourth Highest  |
|-----------------|--------------------------|--------------------------|---------------------------|---------------|--------------|-----------------|-----------------|-----------------|
| Surface         | Peak<br>Location         | Peak & Location          | Value of<br>Corr. Surface | Corr. Surface | S/N<br>Ratio | Location        | Location        | Location        |
| EED28. CORJ4A32 | (39, 37)                 | (39, 37) (39, 37)        | 505.658                   | 42.346        | 5.605        | 650<br>(27, 59) | 648<br>(8,56)   | 640<br>(13, 30) |
| EED28. CORJ4C32 |                          | 712<br>(26, 15) (26, 14) | 410.996                   | 81.325        | 3.701        | 599<br>( 1, 9)  | 594<br>(13, 36) | 589<br>(42, 38) |
| EED28. CORJ4D32 | (39, 37)                 | 763<br>(39, 37) (19, 84) | 545.685                   | 72.044        | 3.016        | 747 (39, 37)    | 725             | 724 27          |
| EED28.CORJ4F32  | 788<br>(26, 22) (27, 20) | 788 (27, 20)             | 536.186                   | 109.147       | 2.307        | 776             | 770<br>(56, 55) | 763<br>(26, 15) |
| EED28. CORJ4G32 | 800<br>(44, 42) (45, 42) | 800 (45, 42)             | 506.467                   | 40.542        | 7.240        | 701             | 689<br>(45, 37) | 686<br>(46, 8)  |
| EED28. CORJ4132 | (26, 15)                 | 507 (28, 2)              | 271.310                   | 93.639        | 2.517        | 492<br>(27, 15) | 486<br>(27, 20) | 481 (28, 7)     |
|                 |                          |                          |                           |               |              |                 |                 |                 |

Table 4. Scene 4 - Jeep behind the fence, 16 x 16 reference array.

| Correlation<br>Surface                  | Expected<br>Peak &<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|--------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| EED28.CORJ4A16                          | (47, 48)                       | 191<br>(47, 49)               | 128.652                              | 14.568                                    | 4.280        | 180<br>(63, 33)                      | 175 (21, 43)                        | 172<br>( 6, 69)                      |
| 209<br>EED28.CORJ4C16 (40, 31) (40, 31) | (40, 31)                       | 209<br>(40, 31)               | 127.609                              | 24.857                                    | 3.274        | 198<br>(49, 48)                      | 198<br>(25, 12)                     | 193<br>(45, 40)                      |
| EED28.CORJ4D16 (47, 48)                 | (47, 48)                       | 215 (47, 49)                  | 133.035                              | 21.292                                    | 3.850        | 206 (61, 16)                         | 197 (94, 101)                       | (08, '6E)<br>48 961                  |
| EED28.CORJ4F16 (40, 41)                 | (40, 41)                       | 227<br>(87, 89)               | 126.876                              | 36.667                                    | 2.731        | 217<br>(30, 62)                      | 214<br>(33, 69)                     | 213 (37, 17)                         |
| EED28.CORJ4G16                          | (52, 53)                       | 201<br>(53, 54)               | 127.023                              | 17.162                                    | 4.311        | 192<br>(40, 43)                      | 179<br>(28, 8)                      | 178<br>(54, 26)                      |
| EED28.CORJ4116                          | (40, 38)                       | 219<br>(52, 20)               | 129.057                              | 38.421                                    | 2.341        | 215<br>(25, 67)                      | 215<br>(25, 52)                     | 211 (42, 21)                         |
|                                         |                                |                               |                                      |                                           |              |                                      |                                     |                                      |

Scene 2 - Jeep in the parking lot, 32 x 32 reference array. Table 5.

| st                                        |                 |                 | 49              |                   |                 |                         |
|-------------------------------------------|-----------------|-----------------|-----------------|-------------------|-----------------|-------------------------|
| Fourth Highest<br>Peak &<br>Location      | 625<br>(60, 79) | 609<br>(11, 18) | 730, (45, 75)   | (21, 36)          | 653<br>(10, 6)  | 483 (23, 32)            |
| Third Highest<br>Peak &<br>Location       | 627<br>(43, 11) | 609<br>(58, 35) | 736<br>(29, 48) | 741 (50, 14)      | 664<br>(25, 27) | 485 (24, 39)            |
| Second Highest<br>Peak &<br>Location      | 636<br>(36, 46) | 626<br>(21, 21) | 754<br>(44, 18) | 746<br>(55, 17)   | 671<br>(24, 44) | 486 (12, 35)            |
| S/N<br>Ratio                              | 5.486           | 3.191           | 4.620           | 2.097             | 5.053           | 2.115                   |
| Standard<br>Deviation of<br>Corr. Surface | 43.644          | 88.954          | 71.226          | 158.807           | 48.062          | 106.149                 |
| Average<br>Value of<br>Corr. Surface      | 511.581         | 411.338         | 509.992         | 433.998           | 511.150         | 273.488                 |
| Highest<br>Peak &<br>Location             | (30, 44)        | 694<br>(16, 20) | 839<br>(30, 53) | 767<br>(21, 31)   | 754<br>(24, 49) | 498                     |
| Expected<br>Peak<br>Location              | (30, 44)        | (15, 19)        | (30, 54)        | (15, 30) (21, 31) | (25, 49)        | (11, 19)                |
| Correlation<br>Surface                    | EED28.CORJ2A32  | EED28.CORJ2C32  | EED28. CORJ2D32 | EED28. CORJ2F32   | EED28. CORJ2G32 | EED28.CORJ2132 (11, 19) |

Table 6. Scene 2 - Jeep in the parking lot, 16 x 16 reference array.

| Correlation<br>Surface                  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| 218<br>EED28.CORJ2A16 (41, 50) (40, 50) | (41, 50)                     | 218<br>(40, 50)               | 127.932                              | 23.532                                    | 3.827        | 202<br>(75, 35)                      | 197 (64, 30)                        | 194 (53, 19)                         |
| EED28.CORJ2C16                          | (34, 33)                     | 235<br>(68, 18)               | 126.998                              | 41.833                                    | 2.582        | 230<br>(38, 35)                      | 225<br>( 9, 25)                     | 224<br>(46, 54)                      |
| EED28.CORJ2D16                          | (41, 60)                     | 215<br>(41, 60)               | 127.853                              | 22.367                                    | 3.896        | 209<br>(76, 45)                      | 192<br>(17, 24)                     | 189 (25, 30) S                       |
| EED28.CORJ2F16 (34, 53)                 | (34, 53)                     | 223<br>(31, 28)               | 127.679                              | 36.593                                    | 2.605        | 220<br>(43, 56)                      | 220<br>(11, 17)                     | 214<br>( 2, 35)                      |
| EED28. CORJ2G16                         | (36, 55) (36, 55)            | 213<br>(36, 55)               | 127.451                              | 20.182                                    | 4.239        | 193<br>(13, 67)                      | 189<br>(12, 59)                     | 187 (13, 75)                         |
| 228<br>EED28.CORJ2116 (24, 43) (37, 13) | (24, 43)                     | 228 (37, 13)                  | 127.323                              | 44.345                                    | 2.270        | 227.<br>(24, 43)                     | 218<br>(48, 9)                      | 216<br>(10, 43)                      |
|                                         |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 7. NASA tower, 32 x 32 reference array.

|                        |                              |                               |                                      |                                           |              |                                      |                                     | *                                    |
|------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| Correlation<br>Surface | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
| EED28.CORNTA32         | (30, 22)                     | (30, 22) (31, 22)             | 507.304                              | 42.950                                    | 4.091        | 648<br>(9,41)                        | 642<br>(16, 37)                     | 630<br>(22, 29)                      |
| EED28.CORNTC32         | (16, 10)                     | (16, 10) (12, 12)             | 427.342                              | 116.950                                   | 2.306        | 674<br>(17, 10)                      | 668<br>( 7, 15)                     | 654<br>(13, 41)                      |
| EED28.CORNTD32         | (30, 32)                     | 776<br>(76, 89)               | 532.111                              | 78.615                                    | 3.102        | 765<br>(76, 82)                      | 757<br>(81, 85)                     | 756 (71, 83)                         |
| EED28.CORNTF32         | (16, 17)                     | 750                           | 509.409                              | 91.515                                    | 2.626        | 721                                  | 717<br>(35, 34)                     | 696<br>(25, 36)                      |
| EED28.CORNTG32         | (25, 27)                     | 662<br>(26, 28)               | 511.282                              | 55,609                                    | 5.885        | 592<br>(8,30)                        | 589<br>(78, 75)                     | 589<br>(26, 66)                      |
| EED28. CORNTI32        |                              | 378<br>(16, 10) (16, 10)      | 272.812                              | 33.345                                    | 3.184        | 378 ( 5, 37)                         | 372 (39, 36)                        | 351                                  |
|                        |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 8. NASA tower, 16 x 16 reference array.

| Correlation<br>Surface                  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| EED28.CORNTA16                          | (33, 21)                     | 208 (105, -77)                | 128.565                              | 21.873                                    | 3.632        | 206<br>(34, 22)                      | 205<br>(12, 43)                     | 199<br>(19, 38)                      |
| EED28.CORNTC16 (26, 9) (7, 29)          | (56, 9)                      | 242<br>( 7, 29)               | 129.079                              | 47.989                                    | 2.353        | 233<br>( 6, 8)                       | 231<br>(12, 26)                     | 230<br>(31, 40)                      |
| EED28.CORNTD16                          | (33, 32)                     | 239<br>(102, 86)              | 132.494                              | 28.372                                    | 3.754        | 232<br>(97, 88)                      | 232<br>(71, 89)                     | 220<br>(28, 34) %                    |
| EED28.CORNTF16                          | (26, 25)                     | 222<br>(61, 35)               | 127.053                              | 32.465                                    | 2.925        | 214<br>(87, 30)                      | 209<br>(28, 7)                      | 207<br>(66, 33)                      |
| 189<br>EED28.CORNTG16 (28, 27) (29, 28) | (28, 27)                     | 189<br>(29, 28)               | 127.600                              | 13.398                                    | 4.583        | 175<br>(92, 62)                      | 171<br>(27, 91)                     | 170 (27, 42)                         |
| 202<br>EED28.CORNTI16 (16, 15) (17, 15) | (16, 15)                     | 202<br>(17, 15)               | 127.062                              | 25.204                                    | 2.973        | 197 (42, 64)                         | 193 (70, 62)                        | 192 (25, 62)                         |
|                                         |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 9. Woods scene, 32 x 32 reference array.

| Correlation<br>Surface                  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| EED28.CORMDA32                          | (28, 21) (28, 21)            | (28, 21)                      | 508.721                              | 53.167                                    | 4.914        | 682<br>(22, 23)                      | 657<br>(55, 47)                     | 656<br>(49, 51)                      |
| EED28. CORMDC32                         | (13, 8) (13, 8)              | 733                           | 420.701                              | 87.457                                    | 3.571        | 631<br>(8,8)                         | 630<br>(34, 36)                     | 629<br>(18, 9)                       |
| 753<br>EED28.CORWDD32 (28, 31) (27, 30) | (28, 31)                     | 753<br>(27, 30)               | 522.385                              | 69.483                                    | 3.319        | 697<br>(38, 28)                      | 693<br>(31, 25)                     | 53 (68, 1)                           |
| EED28.CORWDF32                          | 820<br>(13, 16) (58, 48)     | 820<br>(58, 48)               | 547.774                              | 113.147                                   | 2.406        | 803<br>(1,10)                        | 749<br>(53, 49)                     | 740 ( 6, 12)                         |
| EED28.CORWDG32                          | (23, 26)                     | 745<br>(23, 27)               | 510.797                              | 30.741                                    | 7.619        | 609<br>(39, 41)                      | 606<br>(22, 10)                     | 604<br>(58, 19)                      |
| 443<br>EED28.CORWDI32 (11, 8) (11, 8)   | (11, 8)                      | 443 (11, 8)                   | 273.578                              | 53.965                                    | 3.141        | 406                                  | 395 (22, 1)                         | 386 (45, 10)                         |

Table 10. Woods scene, 16 x 16 reference array.

| Correlation<br>Surface                  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| EED28.CORWDA16                          | (36, 29)                     | 196<br>(58, 55)               | 126.534                              | 23.391                                    | 2.970        | 193                                  | 192 (79, 2)                         | 190                                  |
| 242<br>EED28.CORWDC16 (29, 12) (81, 16) | (29, 12)                     | 242<br>(81, 16)               | 128.340                              | 57.105                                    | 2.224        | 241<br>(33, 47)                      | 237<br>(28, 48)                     | 237<br>(21, 13)                      |
| EED28.CORMDD16                          | (36, 39)                     | 188<br>(63, 76)               | 126.967                              | 18.460                                    | 3.306        | 183<br>(21, 88)                      | 182 (34, 72)                        | 54 (1, 69)                           |
| EED28.CORWDF16                          | (29, 24)                     | 227<br>(29, 8)                | 124.107                              | 37.595                                    | 2.737        | 226<br>(50, 90)                      | 222<br>(55, 15)                     | 219<br>(48, 85)                      |
| 195<br>EED28.CORWDG16 (31, 34) (31, 35) | (31, 34)                     | 195<br>(31, 35)               | 711.721                              | 15.832                                    | 4.288        | 186<br>(45, 39)                      | 176<br>(65, 39)                     | 176<br>(65, 29)                      |
| 216<br>EED28.CORWDI16 (19, 22) (18, 4)  | (19, 22)                     | 216<br>(18, 4)                | 127.088                              | 30.066                                    | 2.957        | 214<br>( 9, 42)                      | 208<br>(51, 29)                     | 206 (18, 21)                         |
|                                         |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 11. Water tower, 32 x 32 reference array.

| Correlation<br>Surface                  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|-----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| 703<br>EED28.CORWTA32 (33, 23) (32, 23) | (33, 23)                     | 703 (32, 23)                  | 506.882                              | 31.545                                    | 6.217        | 640<br>(37, 25)                      | 615<br>(27, 26)                     | 599<br>(49, 24)                      |
| 706<br>EED28.CORWTC32 (18, 10) (18, 9)  | (18, 10)                     | 706 (18, 9)                   | 425.563                              | 129.364                                   | 2.168        | 674<br>(26, 4)                       | (13, 9)                             | 661<br>(24, 9)                       |
| EED28.CORWTD32                          | (33, 33)                     | (33, 33) (33, 30)             | 521.356                              | 56.491                                    | 3.698        | 712 (47, 24)                         | 664 (55, 24)                        | (11, 86)                             |
| EED28.CORWTF32                          | (18, 18)                     | 905                           | 542.783                              | 137.553                                   | 2.633        | 899<br>(13, 13)                      | 857<br>(23, 10)                     | 828<br>( 8, 14)                      |
| EED28.CORWTG32 (28, 28)                 | (28, 28)                     | 683<br>(28, 27)               | 510.261                              | 24.077                                    | 7.175        | 594<br>(50, 56)                      | 589<br>(66, 59)                     | 535<br>( 2, 50)                      |
| EED28.CORWT132                          | (11, 10)                     | 384 (11, 10) (11, 9)          | 272.315                              | 44.369                                    | 2.517        | 380<br>(19, 9)                       | 379                                 | 377                                  |
|                                         |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 12. Water tower, 16 x 16 reference array.

| Correlation<br>Surface                 | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|----------------------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| ED28.CORWTA16                          | (37, 30)                     | 194 (37, 30)                  | 127.716                              | 13.446                                    | 4.930        | 181 (32, 37)                         | 180<br>(103, 48)                    | 178 (28, 58)                         |
| 217<br>ED28.CORNTC16 (30, 13) (69, 23) | (30, 13)                     | 217 (69, 23)                  | 127.289                              | 30.934                                    | 2.900        | 217                                  | 211<br>(90, 32)                     | 209<br>(72, 47)                      |
| ED28. CORNTD16                         | (37, 40)                     | (37, 40) (37, 35)             | 127.306                              | 16.092                                    | 4.331        | 192<br>(37, 40)                      | 183                                 | 175 G<br>(28, 64)                    |
| ED28.CORWTF16                          | (30, 33)                     | 224 (14, 71)                  | 132.475                              | 34.288                                    | 2.669        | 219 ( 6, 57)                         | 217 (37, 10)                        | 215<br>(8, 52)                       |
| ED28.CORWTG16                          | (32, 35)                     | 179<br>(32, 35) (32, 34)      | 128.712                              | 14.318                                    | 3.512        | ( 8, 23)                             | 173 (54, 83)                        | 170 (53, 68)                         |
| ED28. CORWT 116                        | (20, 23)                     | 235 (50, 60)                  | 126.837                              | 43.361                                    | 2.494        | (20, 22)                             | 226<br>(51, 51)                     | 224<br>(28, 21)                      |
| AFFOJE                                 |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

THIS PAGE IS BEST QUALITY PRACTICATION FROM COPY FURNISHED TO DDG

Table 13. Rock quarry, 32 x 32 reference array.

| Expected Peak B Location         Highest Peak B Value of Location         Standard Location of Peak B Location         Second Highest Peak B Location         Third Highest Peak B Location         Third Highest Peak B Location         Location Location <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> |                        |                              |                               |                                      |                                           |              |                                      |                                     |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| (36, 57)         (36, 57)         512.088         42.173         5.878         (61, 36)         (10, 59)           (21, 33)         (21, 33)         420.782         72.514         3.754         (15, 1)         (16, 36)           (36, 67)         (21, 33)         420.782         72.514         3.754         (15, 1)         (16, 36)           (36, 67)         (36, 66)         503.699         57.752         3.815         (82, 42)         (59, 89)           (20, 35)         (2, 24)         522.656         117.345         2.014         (47, 25)         (54, 24)           (31, 62)         (31, 62)         512.722         25.654         8.197         (64, 75)         (6, 66)           (12, 33)         (12, 33)         (12, 33)         272.379         34.640         3.222         (19, 20)         (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correlation<br>Surface | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
| (21, 33)       (21, 33)       420.782       72.514       3.754       (15, 1)       (16, 36)         (36, 67)       724       503.699       57.752       3.815       688       671         (20, 35)       (2, 24)       522.656       117.345       2.014       (47, 25)       (59, 89)         (31, 62)       (31, 62)       512.722       25.654       8.197       (64, 75)       (6, 66)         (12, 33)       (12, 33)       272.379       34.640       3.222       (19, 20)       (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EED28. CORRQA32        | (36, 57)                     | (36, 57)                      | 512.088                              | 42.173                                    | 5.878        | 669<br>(81, 36)                      | 636<br>(10, 59)                     | 626<br>(61, 57)                      |
| (36, 67)     (36, 66)     503.699     57.752     3.815     688     671       (20, 35)     (2, 24)     522.656     117.345     2.014     (47, 25)     (54, 24)       (31, 62)     (31, 62)     512.722     25.654     8.197     (64, 75)     (6, 66)       (12, 33)     (12, 33)     272.379     34.640     3.222     (19, 20)     (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EED28. CORRQC32        | (21, 33)                     | 693<br>(21, 33)               | 420.782                              | 72.514                                    | 3.754        | . 597<br>(15, 1)                     | 584<br>(16, 36)                     | 578<br>(10, 35)                      |
| (20, 35)       (2, 24)       522.656       117.345       2.014       (47, 25)       (54, 24)         (31, 62)       (31, 62)       512.722       25.654       8.197       (64, 75)       (6, 66)         (12, 33)       (12, 33)       (12, 33)       272.379       34.640       3.222       (19, 20)       (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EED28.CORRQD32         | (36, 67)                     | 724<br>(36, 66)               | 503.699                              | 57.752                                    | 3.815        | 688<br>(82, 42)                      | 671<br>(59, 89)                     | 669<br>(81, 47)                      |
| 723<br>(31, 62) 512.722 25.654 8.197 (64, 75) (6, 66)<br>(12, 33) 272.379 34.640 3.222 (19, 20) (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EED28. CORRQF32        | (20, 35)                     | 759                           | 522.656                              | 117.345                                   | 2.014        | 740<br>(47, 25)                      | 735<br>(54, 24)                     | 731                                  |
| 362 361 (12, 33) 272.379 34.640 3.222 (19, 20) (30, 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EED28.CORRQG32         | (31, 62)                     | 723                           | 512.722                              | 25.654                                    | 8.197        | 607<br>(64, 75)                      | 596<br>( 6, 66)                     | 595<br>(63, 1)                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED28.CORRQ132          |                              | 384 (12, 33)                  | 272.379                              | 34.640                                    | 3.222        | 362<br>(19, 20)                      | 361<br>(30, 40)                     | 355<br>(25, 32)                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                              |                               |                                      |                                           |              |                                      |                                     |                                      |

Table 14. Rock quarry, 16 x 16 reference array.

| Correlatión<br>Surface | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EED28. CORRQA16        | (40, 72) (40, 71)            | (40, 71)                      | 128.360                              | 11.744                                    | 3.631        | (31, 6)                              | 164 (76, 50)                        | 164 (60, 22)                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EED28.CORRQC16         | (33, 55)                     | 215<br>(56, 2)                | 727.721                              | 32.064                                    | 2.722        | 213<br>(33, 55)                      | 209<br>(64, 24)                     | 206<br>(60, 13)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ED28.CORRQD16          | (40, 82) (29, 20)            | 171<br>(29, 20)               | 128.109                              | 11.334                                    | 3.784        | 169<br>(99, 50)                      | 166<br>(65, 26)                     | 165<br>(37, 62)                      | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ED28.CORRQF16          | (33, 72) (47, 14)            | 197 (47, 14)                  | 127.637                              | 21.467                                    | 3.231        | 192<br>(50, 80)                      | 188<br>(35, 12)                     | 186<br>(63, 41)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EED28.CORRQG16         | 180<br>(35, 77) (35, 77)     | 180<br>(35, 77)               | 128.388                              | . 12.399                                  | 4.163        | 172<br>(89, 18)                      | 170<br>(9,81)                       | 169<br>(68, 90)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EED28.CORRQ116         | 152<br>(23, 65) (22, 65)     | 152<br>(22, 65)               | 94.840                               | 19.845                                    | 2.880        | 149<br>(45, 13)                      | 144 (38, 7)                         | 142<br>(63, 52)                      | A state of the sta |
|                        |                              |                               |                                      |                                           |              |                                      |                                     |                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 15. Parking lot, 32 x 32 reference array.

| Correlation<br>Surface | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| ED28. CORR4A32         | (28, 35)                     | 785 (28, 35)                  | 512.512                              | 42.310                                    | 6.440        | 655<br>(60, 45)                      | Not<br>Obtained                     | Not<br>Obtained                      |
| ED28.CORR4C32 (13, 8)  | (13, 8)                      | (12, 9)                       | 410.505                              | 88.998                                    | 3.073        | 613 (54, 22)                         | Not<br>Obtained                     | Not<br>Obtained                      |
| :D28.CORR4D32          | (28, 35)                     | 742 (28, 34)                  | 525.466                              | 45.39                                     | 4.771        | (32, 5)                              | 643<br>(28, 39)                     | 642<br>(63, 71) G                    |
| ED28.CORR4F32          | 710<br>(13, 20) (55, 1)      | 710 (55, 1)                   | 514.696                              | 69.794                                    | 2.798        | (50, 1)                              | 702 (35, 32)                        | 687<br>(29, 28)                      |
| ED28. CORR4G32         | (28, 35)                     | 860<br>(28, 36)               | 510.164                              | 57.723                                    | 6.061        | 743 (28, 31)                         | 696<br>(27, 41)                     | 693<br>(28, 24)                      |
| ED28.CORR4132 ( 9, 8)  | (8, 8)                       | 514<br>(10, 1)                | 226.335                              | 116.324                                   | 2.129        | 512<br>( 9, 16)                      | 507                                 | 505 ( 9, 22)                         |

Table 16. Parking lot, 16 x 16 reference array.

| Orrelation<br>Surface  | Expected<br>Peak<br>Location | Highest<br>Peak &<br>Location | Average<br>Value of<br>Corr. Surface | Standard<br>Deviation of<br>Corr. Surface | S/N<br>Ratio | Second Highest<br>Peak &<br>Location | Third Highest<br>Peak &<br>Location | Fourth Highest<br>Peak &<br>Location |
|------------------------|------------------------------|-------------------------------|--------------------------------------|-------------------------------------------|--------------|--------------------------------------|-------------------------------------|--------------------------------------|
| D28.CORR4A16           | (48, 47)                     | 206 (48, 48)                  | 128.138                              | 18.343                                    | 4.245        | 196 (46, 22)                         | Not<br>Obtained                     | Not<br>Obtained                      |
| D28. CORR4C16          | (40, 29)                     | 213 (40, 3)                   | 127.698                              | 31.277                                    | 2.727        | 211 (40, 31)                         | Not<br>Obtained                     | Not<br>Obtained                      |
| D28. CORR4D16          | (28, 35)                     | 201                           | 132.123                              | 20.943                                    | 3.298        | 197<br>(47, 85)                      | 193<br>(12, 23)                     | 192<br>(47, 90)                      |
| D28.CORR4F16 (40, 39)  | (40, 39)                     | 160 (40, 41)                  | 89.121                               | 23.766                                    | 2.982        | 150 (42, 12)                         | Not<br>Obtained                     | Not<br>Obtained                      |
| :D28.CORR4G16          | (28, 35)                     | 216<br>(28, 36)               | 717.721                              | 23.715                                    | 3.680        | 203                                  | 200 (28, 31)                        | 198<br>(47, 85)                      |
| :D28.CORR4116 (16, 23) | (16, 23)                     | 226 (17, 4)                   | 128.379                              | 50.234                                    | 1.943        | 225<br>( 4, 51)                      | 224<br>(45, 67)                     | 224<br>(16, 23)                      |

Table 17. Description of scenes.

EED28.CORNTXXX - NASA tower.

CORWTXXX - Water tower.

CORWDXXX - Woods.

CORR4XXX - Parking lot.

CORRQXXX - Rock quarry.

CORJ2XXX - Jeep in the parking lot.

CORJ3XXX - Jeep in front of the fence.

CORJ4XXX - Jeep behind the fence.

- Table 18. Description of correlation surfaces.
- EED28.CORXXA32 Cross correlation of PLRV with REFV of size 32 x 32 from PHRV using digital line average quantizer.
  - B32 Autocorrelation of PHRV with REFV of size 32 x 32 from PHRV itself using digital line average quantizer.
  - C32 Correlation of the correlation surface A with REFV of size 32 x 26 from correlation surface B using digital line average quantizer.
  - D32 Cross Correlation of PLRV with REFV of size 32 x 32 from PHRV using analog filter quantizer.
  - E32 Autocorrelation of PHRV with REFV of size 32 x 32 from PHRV itself using analog filter quantizer.
  - F32 Correlation of correlation surface D with REFV of size 32 x 32 from correlation surface E using analog filter quantizer.
  - G32 Cross correlation of PLRV with REFV of size 32 x 32 from PHRV using area average quantizer.
  - H32 Autocorrelation of PHRV with REFV of size 32 x 32 from PHRV itself using area average quantizer.
  - I32 Correlation of correlation surface G with REFV of size 21 x 26 from correlation surface H using area average quantizer.

- Table 18. Description of correlation surfaces.
- A16 Cross correlation of PLRV with REFV of size 16 x 16 from PHRV using digital line average quantizer.
- B16 Autocorrelation of PHRV with REFV of size 16 x 16 from PHRV itself using digital line average quantizer.
- C16 Correlation of the correlation surface A with REFV of size 16 x 16 from correlation surface B using digital line average quantizer.
- D16 Cross correlation of PLRV with REFV of size
  16 x 16 from PHRV using analog filter quantizer.
- E16 Autocorrelation of PHRV with REFV of size 16 x 16 from PHRV itself using analog filter quantizer.
- F16 Correlation of correlation surface D with REFV of size 16 x 16 from correlation surface E using analog filter quantizer.
- G16 Cross correlation of PLRV with REFV of size
  16 x 16 from PHRV using area average quantizer.
- H16 Autocorrelation of PHRV with REFV of size 16  $\times$  16 from PHRV itself using area average quantizer.
- Il6 Correlation of correlation surface G with REFV of size 16 x 16 from correlation surface H using area average quantizer.

## 3. CONCLUSIONS

In this chapter, the relative performance of the three quantizers based on the simulation results of the eight different scenes listed in the previous chapter are presented.

- 1. It was mentioned earlier that an equal number of 'zeros' and 'ones' in the REFV is essential for better correlation results. It was found that the area average quantizer needs fewer iterations to yield an equal number of zeros and ones in REFV when compared to the line average quantizer and the analog filter quantizer for a given scene. The analog filter quantizer needs a significantly larger number of iterations when compared to the other two quantizers.
- 2. The area average quantizer identifies the true location of the target in all eight scenes for a REFV of size 32 x 32 as well as 16 x 16. The line average quantizer identifies the true location of the target in all eight scenes for REFV of size 32 x 32; but when REFV of size 16 x 16 is used it identifies the target for only six of the eight scenes. However, the true peak appears as the second highest peak in the correlation surfaces for the other two scenes. When the analog filter quantizer is used with REFV of size 32 x 32, the true location of the target is identified in six scenes and the true peak appears as the second highest peak in the correlation surface for one of the other scenes. When a REFV of size 16 x 16 is used, the target was correctly identified in only two of the eight scenes. In two more scenes the true peak

appears as the second highest peak in the correlation surfaces. The target was not found in the remaining four scenes. This clearly shows the superiority of the area average quantizer over the other two quantizers.

3. In most of the correlation surfaces.

4. The correlation surfaces labeled C in Tables 1 - 16 were obtained by correlating a reference array obtained from the B surface with the A surface. The B surfaces, which are not included in Tables 1 - 16, were obtained by correlating a 32 x 32 or 16 x 16 reference from the processed high resolution video (PHRV) with the PHRV, yielding a quasi-autocorrelation surface. The idea being that if the processed HR video and processed LR video are close to being identical (i.e., the ideal case) then autocorrelation of a reference taken out of PHRV with the PHRV should yield a correlation surface very close to the cross-correlation of the PHRV with PLRV. Then by choosing a reference from surface B centered about the autocorrelation peak and correlating with surface A, one should obtain the location of the true peak in A even if it is not the highest peak in the surface.

The above approach was motivated by the need to establish some criterion, based on the shape of the correlation surface about the peak, for picking out the true correlation peak in a correlation surface even though it may not be the highest peak. Upon observing many correlation surfaces, this author came to the conclusion that the shape of the

correlation surface about the true peak is quite different for various scenes and therefore cannot be characterized very well by one or more surface shape criteria.

Similarly, surfaces F and I in Tables 1 - 16 were obtained by taking the reference from surfaces E and H and correlating with surfaces D and G, respectively.

From Tables 1 - 16 it is clear that this approach did not yield very good results. Examination of the correlation surfaces in Figure 20 through 25 and numerous others which were generated, revealed that quite often the correlation surface about a false peak is quite similar to the shape of the surface about the true peak when quantized to only two levels. In these cases, correlation of the correlation surfaces does not yield meaningful results. Techniques such as normalization of the correlation surfaces, offsetting the value used in the two-level quantization, non-equal number of ones and zeros, etc., were tried, none of which improved the results significantly.

From the above it was concluded that correlation of the correlation surfaces is not useful in determining the true correlation peak. From the results obtained in the simulations, it is questionable whether any set of criteria, based on the expected shape of the correlation surface about a true peak, can be specified which will yield good results for all scenes.

5. Table 19 was obtained by computing the ratio of the correlation peak to the second highest peak for the A, D and G correlation surfaces in Tables 1 - 16. The astericks indicate the cases where false

correlation occurred. The digital area average (G) correlated correctly in all sixteen cases; the digital line average (A) correlated correctly in all but two cases (both were using 16 x 16 reference arrays); and the analog line averager (D) correlated correctly in 9 or the 16 cases. The digital area average had the highest peak to second peak ratio in 10 of the 16 cases and the digital line average in 6 of the 16 cases.

6. The average values of the correlation surfaces were fairly close to being the same in all cases. It is noted that the digital line and digital area average were usually the closest in value. The same is true of the correlation surface standard deviation.

Table 19. Ratio of correlation peak to second highest peak.

| Table<br>Number | A      | D      | G     |
|-----------------|--------|--------|-------|
| 1               | 1.165  | 1.036  | 1.158 |
| 2               | 1.073  | 1.016* | 1.088 |
| 3               | 1.143  | 1.021* | 1.141 |
| 4               | 1.061  | 1.043  | 1.047 |
| 5               | 1.181  | 1.113  | 1.124 |
| 6               | 1.079  | 1.029  | 1.104 |
| 7               | 1.054  | 1.014* | 1.118 |
| 8               | 1.010* | 1.030* | 1.08  |
| 9               | 1.130  | 1.080  | 1.223 |
| 10              | 1.016* | 1.027* | 1.048 |
| 11,             | 1.098  | 1.025  | 1.150 |
| 12              | 1.072  | 1.026  | 1.011 |
| 13              | 1.136  | 1.052  | 1.191 |
| 14              | 1.018  | 1.012* | 1.046 |
| 15              | 1.198  | 1.143  | 1.157 |
| 16              | 1.051  | 1.020* | 1.064 |