Université Paris 12 Licences d'Informatique et de Mathématiques 2007-08

TD de Mathématiques Discrètes TD 2 - Graphes, connexité, arbres

Février 2008

Exercice 1: Arbres

Trouver tous les arbres ayant 6 sommets.

Exercice 2 : Connexité

- 1. Montrer que si un graphe, non supposé connexe, a exactement deux sommets de degrés impairs, alors ceux-ci sont reliés par une chaîne.
- 2. Montrer qu'un graphe est connexe si et seulement s'il n'existe pas de partition de l'ensemble des sommets en deux sous-ensembles telle qu'aucune arête n'a une extrémité dans chaque classe de cette bipartition.

Exercice 3: Isthmes

Définition 1 Un isthme d'un graphe connexe G est une arête e de G telle que G-e n'est pas connexe.

Démontrez le lemme du cours : Une arête d'un graphe connexe est un isthme si et seulement si elle n'appartient pas à un cycle de G.

Exercice 4: Arbres couvrants

Définition 2 Un arbre couvrant d'un graphe G est un graphe partiel de G qui est un arbre.

Montrez que:

- 1. Un graphe partiel d'un graphe connexe G est un arbre couvrant de G si et seulement si il est connexe et minimal avec cette propriété relativement à la suppression d'arêtes.
- 2. Un graphe partiel d'un graphe connexe G est un arbre couvrant de G si et seulement si il est acyclique et maximal avec cette propriété relativement à l'ajout d'arêtes.

Exercice 5: Graphe cyclique

Soit C_k un graphe (non orienté) à k sommets constitué d'un seul cycle, c'est à dire :

$$X = \{x_1, x_2, \dots, x_k\}$$
$$E = \{x_1 x_2, \dots, x_{k-1} x_k, x_k x_1\}$$

- 1. Montrer que chaque sommet de C_n est de degré 2.
- 2. Montrer que si G est un graphe (non orienté) connexe à k sommets dont tous les sommets sont de degré 2, alors G est isomorphe à C_k .
- 3. Montrer que si G est un graphe (non orienté) à k sommets dont tous les sommets sont de degré 2, alors G est une union disjointe de graphes G_{k_1}, \ldots, G_{k_l} où G_{k_i} est isomorphe à C_{k_i} avec $k_1 + \ldots + k_l = k$.

Exercice 6 : Caractérisation des arbres

Montrer qu'un graphe G est un arbre si et seulement si deux des trois conditions suivantes sont vérifiées :

- 1. G est connexe,
- 2. G est acyclique,
- 3. On a m = n 1.