Topology Qualifying Exam Workshop

$\mathrm{May}\ 2020$

Worksheet 3A

Theme: Fundamental groups: Fundamental group, induced homomorphism; free group, group presentation, Tietze's theorem, amalgamated product of groups, Seifert - van Kampen Theorem; cell complex, presentation complex, Classification of surfaces.

Part 1 - 5-10 minutes

Warm-up:

- 1. Create a cell complex for S^2 and a cell complex for $T = S^1 \times S^1$.
- 2. State the Seifert-van Kampen Theorem.
- 3. Briefly describe the classification of compact surfaces without boundary.

Part 2 - 1 hour and 40 minutes

Try these problems:

- 1. (June 2012) Let X be the space obtained from the torus $T = S^1 \times S^1$ by gluing in a disk D^2 along its boundary $\partial D^2 = S^1$ using the map $\alpha: S^1 \to T$ given by $z \mapsto (z, (1, 0))$ for $z \in S^1$.
 - (a) Find $\pi_1(X)$.
 - (b) Give a CW complex for X.
- 2. (May 2017) If $H: X \times [0,1] \to X$ is a homotopy with $H_0 = H_1$ = the identity map, show that the map $\gamma: I \to X$ given by $\gamma(t) = H(x_0,t)$ is a loop in X representing an element $g = [\gamma] \in \pi_1(X,x_0)$ which lies in the center of $\pi_1(X,x_0)$, i.e. gh = hg for all $h \in \pi_1(X,x_0)$.
- 3. (January 2019) Let $U=\{(x,y,0)\in\mathbb{R}^3: x^2+y^2=1\}$, and let $W=\mathbb{R}^3-U$. Let $V=\{(x,y,z):\mathbb{R}^3: x^2+y^2+z^2=4\}\cup\{(0,0,z)\in\mathbb{R}^3: -2\leq z\leq 2\}$.
 - (a) Describe a deformation retraction of W onto V.
 - (b) Use (a) and the Seifert-van Kampen Theorem to compute $\pi_1(W)$.
- 4. (May 2019) Let A be the annulus $\{re^{i\theta} \in \mathbb{C} : 1 \leq r \leq 2\}$, and let B be the quotient space obtained from A by identifying each point $e^{i\theta}$ on the circle r=1 with the point $2e^{i(\theta+\pi)}$ on the circle r=2. Determine $\pi_1(B)$.

Part 3 - 5-10 minutes

Wrap-up discussion with everyone:

- 1. Which of these problems did you find easy? Hard?
- 2. Which topics in the theme do you need to review more?