Module 4 Upper and Lower Bounds

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
USA-73019
Varahan@ou.edu

- Consider $T(n) = \frac{3}{4}n^2 3n \rightarrow 1$
- Since T(n) is defined only for n ≥ 0, it follows that

$$T(n) = \frac{3}{4}n^2 - 3n \le \frac{3}{4}n^2 \to 2$$

• That is, $\frac{3}{4}n^2$ is an <u>upper bound</u> on T(n), for all $n \ge 0$

The question is, does there exist a constant c₁ > 0 and n₀ > 0 such that

$$c_1 n^2 \le T(n) \rightarrow \bigcirc$$

for all $n \ge n_0$?

To answer this, consider

$$c_1 n^2 \le \frac{3}{4} n^2 - 3n$$

Dividing both sides by n²

$$c_1 n^2 \le \frac{3}{4} n^2 - 3n$$

Notice that the right hand side is not positive for 0 < n ≤ 4.
 Hence, the least value of n = 2 when used,

$$c_1 \le \frac{3}{4} - \frac{3}{5} = \frac{3}{20}$$

• Thus, for all $n \ge n_0 = 5$, there is a constant $c_1 = \frac{3}{20}$ such that

$$\frac{3}{20}n^2 \le \frac{3}{4}n^2 - 3n \to 4$$

• Combining ② and ④:

$$\frac{3}{20}n^2 \le T(n) = \frac{3}{4}n^2 - 3n \le \frac{3}{4}n^2 \longrightarrow 5$$

- where the left inequality holds for all $n \ge n_0 = 5$ and the right inequality holds for all $n \ge 0$
- In other words, both inequalities are true for all $n \ge n_0 = 5$

- Generalizing, let $T(n) = an^2 + bn + c$ with a>0
- Then there exists constants $c_1 > 0$, $c_2 > 0$ such that

$$c_1 n^2 \le T(n) = an^2 + bn + c \le c_2 n^2$$

for all $n \ge n_0$

Consider

$$an^2 + bn + c \le c_2 n^2$$

Dividing by n²

$$a + \frac{b}{n} + \frac{c}{n^2} \le c_2 \longrightarrow 6$$

 Since a > 0, there exists at least a value of n₁ such that for all n ≥ n₁, inequality 6 would be true. Then,

$$c_2 = a + \frac{b}{n_1} + \frac{c}{n_1^2} > 0$$

Similarly, from

$$c_1 \le a + \frac{b}{n} + \frac{c}{n^2}$$

It follows that there exists a least value n=n₂ such that

$$0 < c_1 = a + \frac{b}{n_2} + \frac{c}{n_2^2}$$

• Now let $n_0=\max\{n_1,n_2\}$. Then, combining we get $c_1n^1 \leq an^2 + bn + c \leq c_2n^2$ for all $n \geq n_0$

• Stated in other words: For all $n \ge n_0$, T(n) is simultaneously bounded above by quadratic function c_2n^2 and bounded below by a quadratic function c_1n^2 .

- Let g:N → R⁺ be the set of all functions from non-negative integers to the positive real numbers
- Thus, g(n) could be a complexity function of an algorithm

- Given g(n), we define
- $O(g(n)) = \{f(n): \text{there exists a real constant}$ $c > 0 \text{ and an integer } n_0 \text{ such that}$ $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- Thus, O(g(n)) denotes the set of all functions f(n) that are upper bounded by a constant multiple of g(n) for all n≥n₀
- This set is said to be asymptotically upper bounded by g(n)
- Consequently, if $T(n) = \frac{3}{4}n^2 3n$, then

$$T(n) \in O(n^2)$$
 where g(n) = n²

By abuse of notation, we generally say

$$T(n) = O(n^2)$$

when in fact we mean the inclusion

Big- Ω Notation Asymptotic Lower Bound

- Let g(n) be as defined before.
- Define $\Omega(g(n)) = \{f(n): \text{there exists a real constant}$ $c>0 \text{ and an integer } n_0 \text{ such that}$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

Big- Ω Notation Asymptotic Lower Bound

- Ω(g(n)) denotes the set of all functions f(n) that are lower bounded by a constant multiple of g(n) for all n≥n₀
- This set is asymptotically lower bounded by g(n)
- Consequently, if $T(n) = \frac{3}{4}n^2 3n$, then

$$T(n) \in \Omega(n^2)$$
 where g(n) = n²

Big- Ω Notation Asymptotic Lower Bound

We say that T(n) is lower bounded by n² by writing

$$T(n) = \Omega(n^2)$$

when in fact we mean the inclusion

•
$$\Theta(g(n)) = \{ f(n) | c_1 g(n) \le f(n) \le c_2 g(n) \}$$

for all $n \ge n_0$, a positive integer
and positive constants c_1 and c_2 $\}$

 It is a class of functions that are upper and lower bounded by g(n)

Thus,

$$T(n) = \frac{3}{4}n^2 - 3n$$

is such that $T(n) \in \theta(n^2)$

- Let $p(n) = \sum_{i=0}^k a_i n^i = a_0 + a_1 n + a_2 n^2 + \dots + a_k n^k$ be a kth degree polynomial with $a_k > 0$
- · Then, it can be verified

$$p(n) = O(n^k) p(n) = \Omega(n^k)$$

$$p(n) = \theta(n^k)$$

- By convention: O(1) represents an arbitrary positive and finite constant
- If $f(n) = O(n^{O(1)})$, then f(n) is said to be polynomially bounded

1. Show that

- a) $\log_2 n = O(n)$
- $b) \quad n \log_2 n = O(n^2)$
- 2. Find an upper and lower bound on

$$T(n) = n \log_2 n - n + 1$$

3.
$$T(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{n^2}{2} + \frac{n}{2} = \theta(n^2)$$

4.
$$T(n) = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \theta(n^3)$$

5.
$$T(n) = \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2 = \theta(n^4)$$

6.
$$T(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1 = \theta(2^n)$$

```
7. Let T(n) = n! Then,
        \left(\frac{n}{2}\right)^n \le n! = 1 * 2 * 3 * \dots * n \le n^n
    Taking logarithm →
        n[\log_2 n - 1] \le \log_2 n! \le n \log_2 n
    Verify that \log_2 n! = O(n \log n)
                  \log_2 n! = \Omega(n \log n)
```

7.
$$T(n) = \sum_{i=0}^{n} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$$

$$\leq \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{1}{1-\frac{1}{2}} = 2 = O(1)$$