# Homework 3 Solution

# Yazhen Wang

**Problem 1:** we first show that the put-call parity  $C + K\exp(-rT) = P + S_0$  does not hold. Here

$$LHS = C + K\exp(-rT) = 3 + 22\exp(-0.1 \times 0.5) = 23.93,$$

and

$$RHS = P + S_0 = 4 + 20 = 24.$$

To arbitrage, we need to purchase the cheaper side and sell the more expensive side. That is, we need to take the following actions today:

- borrow 1 share of stock and sell (+\$20)
- sell 1 put option (+\$4)
- buy 1 call option (-\$3)
- deposit the rest money into the bank (-\$21)

Similar to the example discussed in lecture, no matter what happens with the stock price  $S_T$  at expiration, we end up buying one share of stock at the strike price, on the other hand, we receive money from the bank, so the total net profit is

$$21 \exp(rT) - K = 21 \exp(0.1 \times 0.5) - 22 = 0.0767.$$

**Problem 2**:  $S_0 = 10$ ,  $S_u = 11$ ,  $S_d = 9$ , K = 10.5, T = 1/4 = 0.25, r = 0.12.

(a) The risk neutral probability is

$$q = \frac{\exp(0.12 \times 0.25) - 0.9}{1.1 - 0.9} = 0.6523.$$

The fair price of the call option is

$$C_0 = \exp(-0.12 \times 0.25) [(11 - 10.5) \times 0.6523 + 0 \times (1 - 0.6523)] = 0.3165.$$

(b) Consider a portfolio that consists of 1) buy  $\triangle$  shares of stock and 2) sell 1 call option. Portfolio value when the stock price moves up to 11 is  $11\triangle - 0.5$  and when the stock price moves down to 9 is  $9\triangle$ . To make the portfolio risk free, we need

$$11\triangle - 0.5 = 9\triangle$$

which provides  $\triangle = 0.25$ . Value of the risk-free portfolio at expiration is  $11 \times 0.25 - 0.5 = 2.25$  and value of the risk-free portfolio at the time of purchase is  $2.25 \exp(-0.12 \times 0.25) = 2.1835$ .

If the call option can be sold/bought at 0.8, price needs to pay today to set-up the portfolio is  $10 \times 0.25 - 0.8 = 1.7$ . We note that the portfolio is priced cheaper than its value, therefore, we need to purchase the whole portfolio to arbitrage. That is, we need to take the following actions today

- buy 0.25 shares of stock (-\$2.5)
- sell 1 call option (+\$0.8)
- borrow rest money from the bank (+\$1.7)

The net profit at expiration is

$$2.25 - 1.7 \exp(0.12 \times 0.25) = 0.4982,$$

where 2.25 is the payoff of the risk-free portfolio (no matter what the stock price  $S_T$  is at the expiration date, the payoff of the whole portfolio is always 2.25).

### Problem 3:

(a) 
$$1 - q = 1 - \frac{\exp(r\tau) - d}{u - d} = \frac{u - \exp(r\tau)}{u - d}.$$

(b)
$$C_{0}$$

$$=\exp(-r\cdot 3\tau)\sum_{j=0}^{3} \left(S_{0}u^{j}d^{3-j} - K\right)_{+} \cdot {3 \choose j}q^{j}(1-q)^{3-j}$$

$$=\exp(-3r\tau)\left[\left(S_{0}u^{3} - K\right)_{+}q^{3} + \left(S_{0}u^{2}d - K\right)_{+} \cdot 3q^{2}(1-q) + \left(S_{0}ud^{2} - K\right)_{+} \cdot 3q(1-q)^{2} + \left(S_{0}d^{3} - K\right)_{+}(1-q)^{3}\right]$$

(c) 
$$n = 10$$
,  $\tau = 1$ ,  $r = 0.06$ ,  $S_0 = 100$ ,  $u = 1.1$ ,  $d = 0.9$ ,  $K = 110$ . 
$$q = \frac{\exp(r\tau) - d}{u - d} = \frac{\exp(0.06 \times 1) - 0.9}{1.1 - 0.9} = 0.8092.$$

Probability stock price moves up 5 times and down 4 times is

$$\binom{9}{5}(0.8092)^5(1 - 0.8092)^{9-5} = 0.05795$$

and the corresponding price value is  $100 \times 1.1^5 \times 0.9^4 = 105.6656$ .

(d) R script attached below. Fair price of the call option is 39.90502.

```
S0=100; K=110; r=0.06; u=1.1; d=0.9
n=10; tau=1; T=n*tau
q=(exp(r*tau)-d)/(u-d)
C=0
   for (j in 0:n){
        C=C+max(c(S0*u^j*d^(n-j)-K,0))*dbinom(j, n, q)
   }
C*exp(-r*T)
```

## [1] 39.90502

#### Problem 4:

(a) Let X be the number of steps where stock price moves up during te first total k steps, then

$$S_k = S_0 u^X d^{k-X}$$

$$= S_0 \exp\left(\frac{\sigma}{\sqrt{n}}X\right) \left(-\frac{\sigma}{\sqrt{n}}(k-X)\right)$$

$$= S_0 \exp\left(\frac{\sigma}{\sqrt{n}}(2X-k)\right)$$

Let  $W_j$ ,  $j=1,\dots,k$  be a bernoulli trial where  $W_j=1$  when stock price moves up and  $W_j=0$  when stock price moves down. Let  $Y_j$ ,  $j=1,\dots,k$  be a bernoulli trial where  $Y_j=1$  when stock price moves up and  $Y_j=-1$  when stock price moves down. Then we have

$$Y_j = 2W_j - 1$$

and

$$2X - k = 2\sum_{j=1}^{k} W_j - \sum_{j=1}^{k} 1 = \sum_{j=1}^{k} (2W_j - 1) = \sum_{j=1}^{k} Y_j$$

Therefore,

$$S_k = S_0 \exp\left(\frac{\sigma}{\sqrt{n}}(2X - k)\right) = S_0 \exp\left(\frac{\sigma}{\sqrt{n}}\sum_{j=1}^k Y_j\right) = S_0 \exp\left(\frac{\sigma}{\sqrt{n}}Y\right)$$

where  $Y = \sum_{j=1}^{k} Y_j$  and takes values  $-k, -k+2, \cdots, k+2, k$ .

(b) Since 2X - k = Y, then we have  $X = \frac{Y+k}{2}$  which is a sum of k iid bernoulli trials  $W_j$ , therefore,  $X \sim \text{Binomial}(k, q)$ . For the risk-neutral probability, we have

$$q = \frac{\exp(r\tau) - d}{u - d} = \frac{1 - \exp\left(-\frac{\sigma}{\sqrt{n}}\right)}{\exp\left(\frac{\sigma}{\sqrt{n}}\right) - \exp\left(-\frac{\sigma}{\sqrt{n}}\right)} \approx \frac{1 - \left(1 - \frac{\sigma}{\sqrt{n}} + \frac{\sigma^2}{2n}\right)}{\left(1 + \frac{\sigma}{\sqrt{n}} + \frac{\sigma^2}{2n}\right) - \left(1 - \frac{\sigma}{\sqrt{n}} + \frac{\sigma^2}{2n}\right)} = \frac{1}{2}\left(1 - \frac{\sigma}{2\sqrt{n}}\right).$$

where the approximation is by Taylor expansion  $\exp(x) \approx 1 + x + \frac{x^2}{2}$ .

### Problem 5:

(a) Let  $\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$  be the pdf function for a standard normal distribution.

$$\begin{split} &e^x \phi \left( \frac{x - (r - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \\ &= \exp(x) \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{[x - (r - \sigma^2/2)T]^2}{2\sigma^2 T} \right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{-2\sigma^2 Tx + x^2 - 2x(r - \sigma^2/2)T + (r - \sigma^2/2)^2 T^2}{2\sigma^2 T} \right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{x^2 - 2(r + \sigma^2/2)Tx + (r - \sigma^2/2)^2 T^2}{2\sigma^2 T} \right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{x^2 - 2(r + \sigma^2/2)Tx + (r + \sigma^2/2)^2 T^2 - 2r\sigma^2 T^2}{2\sigma^2 T} \right) \\ &= \frac{1}{\sqrt{2\pi}} \exp\left( -\frac{[x - (r + \sigma^2/2)T]^2}{2\sigma^2 T} + rT \right) \\ &= \exp(rT) \frac{1}{\sqrt{2\pi}} \left( -\frac{[x - (r + \sigma^2/2)T]^2}{2\sigma^2 T} \right) \\ &= \exp(rT) \phi \left( \frac{x - (r + \sigma^2/2)T}{\sigma \sqrt{T}} \right) \end{split}$$

(b) Put-call parity suggests that

$$P_0 = C_0 + K \exp(-rT) - S_0$$

$$= S_0 \Phi(d_1) - K \exp(-rT) \Phi(d_2) + K \exp(-rT) - S_0$$

$$= K \exp(-rT) [1 - \Phi(d_2)] - S_0 [1 - \Phi(d_1)]$$

$$= K \exp(-rT) \Phi(-d_2) - S_0 \Phi(-d_1)$$

where the last equality is due to the fact that

$$1 - \Phi(d_2) = 1 - P(Z \le d_2) = P(Z > d_2) = P(Z < -d_2) = P(Z \le -d_2) = \Phi(-d_2);$$
  
$$1 - \Phi(d_1) = 1 - P(Z \le d_1) = P(Z > d_1) = P(Z < -d_1) = P(Z \le -d_1) = \Phi(-d_1).$$

#### Problem 6:

(a)  $S_0 = 60$ , T = 1, K = 68, r = 0.06 and  $\sigma = 0.1$ . Recall that in the risk-neutral world,

$$S_T = S_0 \exp \left[ (r - \frac{\sigma^2}{2})t + \sigma W_T \right].$$

That is,

$$S_1 = 60 \exp \left[ (0.06 - \frac{0.1^2}{2})1 + 0.1W_1 \right] = 60 \exp(0.055 + 0.1W_1).$$

where  $W_1 \sim N(0,1)$ . Let  $X = 0.055 + 0.1W_1$ , then  $X \sim N(0.055, 0.1^2 \times 1) = N(0.0055, 0.01)$ . Now

$$P(S_1 > 68) = P\left(\frac{S_1}{60} > \frac{68}{60}\right) = P\left(log(\frac{S_1}{60}) > log(\frac{68}{60})\right) = P\left(X > log(\frac{68}{60})\right) = 0.2415.$$

(b) 95% confidence interval for X defined in part (a) is

$$(0.055 - 1.96 \times \sqrt{0.01}, 0.055 + 1.96 \times \sqrt{0.01}) = (-0.141, 0.251).$$

Since  $S_1 = 60\exp(X)$ , 95% confidence interval for  $S_1$  is

$$(60\exp(-0.141), 60\exp(0.251)) = (52.109, 77.119).$$

(c) 
$$d_1 = \frac{\log(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}} = \frac{\log(60/68) + (0.06 + 0.1^2/2)T}{0.1\sqrt{1}} = -0.6016$$
 and 
$$d_2 = d_1 - \sigma\sqrt{T} = -0.6016 - 0.1\sqrt{1} = -0.7016.$$

$$C_0 = S_0 \Phi(d_1) - K \exp(-rT)\Phi(d_2) = 60\Phi(-0.6016) - 68 \exp(-0.06 \cdot 1)\Phi(-0.7016) = 0.9598.$$

(d) 
$$P_0 = C_0 + K\exp(-rT) - S_0 = 0.9598 + 68\exp(-0.06 \cdot 1) - 60 = 4.9998.$$

## Problem 7:

```
#######(a)#######
##################################
# Call Option Price Function #
######################################
call.price <- function(x = 1, t = 0, T = 1, r = 1, sigma = 1, K=1){
  d2 < -(\log(x/K) + (r-0.5*sigma^2)*(T-t))/(sigma*sqrt(T-t))
  d1<-d2+sigma*sqrt(T-t)</pre>
  x*pnorm(d1)-K*exp(-r*(T-t))*pnorm(d2)
}
# Put Option Price Function #
###############################
put.price <- function(x = 1 ,t = 0, T =1 , r = 1, sigma=1, K=1){
  d2 < -(log(x/K) + (r-0.5*sigma^2)*(T-t))/(sigma* sqrt(T-t))
  d1<-d2+sigma*sqrt(T-t)
  K*exp(-r*(T-t))*pnorm(-d2)-x*pnorm(-d1)
# specify parameters
SO <- 60; K <- 68; r <- 0.06; T <- 1; sigma <- 0.1
# Call option price
C <- call.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
## [1] 0.9598403
# Put option price
P <- put.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
## [1] 4.999829
#######(b)#######
# specify parameters
S0 \leftarrow 60; K \leftarrow 50:80; r \leftarrow 0.06; T \leftarrow 1; sigma \leftarrow 0.1
# Call option price
C <- call.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
P <- put.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
par(mfrow=c(1,2))
plot(K,C,type="l", xlab="strike price K", ylab="fair premium for call option")
plot(K,P,type="1", xlab="strike price K", ylab="fair premium for put option")
```





```
#######(c)#######
# specify parameters
S0 <- 60; K <- 68; r <- seq(0.01,0.1,length.out = 100); T <- 1; sigma <- 0.1
# Call option price
C <- call.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
P <- put.price(x=S0, t=0, T=T , r=r, K=K, sigma=sigma)
par(mfrow=c(1,2))
plot(r,C,type="l", xlab="interest rate r", ylab="fair premium for call option")
plot(r,P,type="l", xlab="interest rate r", ylab="fair premium for put option")</pre>
```





```
########(d)#######
# specify parameters
S0 <- 60; K <- 68; r <- 0.06; T <- 1; sigma <- seq(0.1,0.3,length.out = 100)
# Call option price
C <- call.price(x=S0, t=0, T=T, r=r, K=K, sigma=sigma)
P <- put.price(x=S0, t=0, T=T , r=r, K=K, sigma=sigma)
par(mfrow=c(1,2))
plot(sigma,C,type="l", xlab="volatility sigma", ylab="fair premium for call option")</pre>
```

