Predicción del comportamiento de actividades terroristas basado en Redes Neuronales Profundas Proyecto de Tesis I

Ingrid F. Ipanaqué C.1

¹Facultad de Ciencias Universidad Nacional de Ingeniería

Asesor: Juan Carlos Espejo Delzo

March 3, 2021

Tabla de Contenido

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

Introducción Motivación

- Estudio de las actividades terroristas.
- Interés por el aprendizaje profundo.
- Interés por el el manejo de macrodatos.

Introducción Objetivos

- Entender el funcionamiento de las arquitecturas de red para aprendizaje profundo.
- Implementar un modelo de red neuronal profunda.
- Utilizar la técnica sintética de sobremuestreo de minorías para el prepocesamiento de datos.
- Evaluar el rendimiento del modelo implementado.

Tabla de Contenido

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

Estado del Arte

Conceptos previos

- Redes Neuronales Artificiales
- Redes Neuronales Profundas
- Funciones de Activación
 - Rectified Linear Unit (ReLu)
 - Sigmoidea
 - Softmax
- Algoritmos de Optimización
 - Estimación del momento adaptativo (Adam)
- Métricas de evaluación

Estado del Arte

Trabajos relacionados

- Comparación de enfoques de aprendizaje automático en la predicción de ataques terroristas. Palak Agarwal, et al. (2019).
- Arquitectura de red neuronal artificial con N capas ocultas: ejemplo de aplicación geofísica. Jide Nosakare Ogunboa, et al. (2020).
- Una red neuronal profunda mejorada para predecir el absentismo laboral. Syed Atif Ali Shah, et al. (2020).

Tabla de Contenido

- Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

Recursos y Herramientas

Lenguaje y librerías

Para el desarrollo de este proyecto se utilizó el lenguaje de programación Python.

Librerias principales usadas:

- Keras
- Scikit-learn (sklearn)

Recursos y Herramientas

Recursos y Herramientas Global Terrorism Database (GTD)

Se hizo uso de la fuente desarrollada por el Consorcio Nacional para el Estudio del Terrorismo y las Respuestas al Terrorismo (START). GTD es la base de datos más completa de ataques terroristas del mundo. Es de código abierto y proporciona información sobre ataques terroristas nacionales e internacionales desde 1970 y a la fecha incluye más de 190,000 eventos.

Tabla de Contenido

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

- Metodología de desarrollo
 - Preprocesamiento de datos

Preprocesamiento de datos

Orden seguido para el preprocesamiento de los datos.

- Selección de atributos: 181,857 instancias y 34 atributos.
- Codificación de etiquetas:
 Uso de la clase LabelEncoder de la librería sklearn.
- Manejo de datos faltantes: Uso de la clase SimpleImputer de la librería sklearn. Reemplaza los datos con la media.
- 4 Normalización: Uso de la clase MinMaxScalar de la librería sklearn.
- Tratamiento de clases desbalanceadas: Técnica sintética de sobremuestreo de minorías (SMOTE).

- Metodología de desarrollo
 - └─Preprocesamiento de datos

Preprocesamiento de datos

Selección de atributos

- **Suicidio**: Indica si la actividad terrorista será un suicidio o no. Clasificación binaria.
- Éxito: Indica si la actividad terrorista tendrá éxito o no. Clasificación binaria.
- **Tipo de arma**: Clasifica el tipo de arma utilizado. Clasificación multiclase: 13 clases. *No existen datos de clase 4 En blanco.*
- Región: Clasifica la región que será blanco de la actividad terrorista.
 - Clasificación multiclase: 12 clases.
- **Tipo de ataque**: Clasifica el tipo de ataque realizado. Clasificación multiclase: 8 clases.

- Metodología de desarrollo
 - Entrenamiento del modelo

Arquitectura de la Red Neuronal

Figure: Arquitectura de la Red Neuronal.

- Metodología de desarrollo
 - Entrenamiento del modelo

Arquitectura de la Red Neuronal Profunda

Figure: Arquitectura de la Red Neuronal Profunda

- └ Metodología de desarrollo
 - Entrenamiento del modelo

Proceso de aprendizaje de la Red Neuronal

Figure: Atributos de la red neuronal de clasificación binaria.

- └ Metodología de desarrollo
 - Entrenamiento del modelo

Proceso de aprendizaje de la Red Neuronal Profunda

Figure: Atributos de la red neuronal profunda de clasificación binaria.

Tabla de Contenido

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

Resultados

Rendimiento de la Red Neuronal Profunda

Figure: Gráfica de *Accuracy* vs. *Épocas* del modelo DNN para el suicidio y éxito.

Rendimiento de la Red Neuronal Profunda

Figure: Gráfica de *Accuracy* vs. *Épocas* del modelo DNN para el tipo de arma, región y tipo de ataque.

Matriz de Confusión de la Red Neuronal Profunda

Figure: Matriz de confusión del modelo DNN para el suicidio y éxito.

Matriz de Confusión de la Red Neuronal Profunda

Figure: Matriz de confusión del modelo DNN para el tipo de arma, región y tipo de ataque.

Curva ROC de la Red Neuronal Profunda

Figure: Curva ROC del modelo DNN para el suicidio y éxito.

Curva ROC de la Red Neuronal Profunda

Figure: Curva ROC del modelo DNN para el tipo de arma, región y tipo de ataque.

(Fuente: Elaboración propia)

Comparación en las distintas métricas

Figure: Accuracy y Precisión obtenido para la red neuronal y red neuronal profunda.

Comparación en las distintas métricas

Figure: Recall y F1-Score obtenido para la red neuronal y red neuronal profunda.

Comparación con algoritmos tradicionales

Table: Comparación del rendimiento de la red neuronal y red neuronal profunda con los algoritmos: Naive Bayes, Regresión Logística y MVS

Algoritmo	Accuracy	Precisión	Recall	F1-Score
	(%)	promedio	promedio	promedio
		(%)	(%)	(%)
Naive Bayes	68.5	67.8	64.8	64.2
Región Logística	77.4	75.0	81.6	77.1
MVS	79.9	75.6	79.8	76.7
ANN	87.0	90.8	82.5	86.0
DNN	95.3	95.0	95.0	95.3

Tabla de Contenido

- 1 Introducción
- 2 Estado del Arte
- 3 Recursos y Herramientas
- 4 Metodología de desarrollo
 - Preprocesamiento de datos
 - Entrenamiento del modelo
- 5 Resultados
- 6 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo a Futuro

Conclusiones y Trabajo Futuro

Conclusiones

Conclusiones

- El uso de Aprendizaje profundo es conveniente para desarrollar un modelo de DNN para la predicción de cinco factores de las actividades terroristas.
- El GTD contiene clases desbalanceadas por lo que es favorable y mejora el rendimiento de la DNN utilizar la técnica de sobremuestreo, como parte del preprocesamiento de datos.
- En comparación con los métodos tradicionales de aprendizaje automático y el modelo de ANN, el modelo desarrollado de DNN resulta ser el más adecuado para el GTD.
- El GTD es un ejemplo para macrodatos, por esta razón se demuestra que el uso de DNN es adecuado, y su rendimiento mejora para procesar macrodatos.

Conclusiones y Trabajo Futuro

└─Trabajo a Futuro

Trabajo Futuro

- Optimizar el modelo de predicción, mediante la evaluación y análisis de algoritmos de selección de características.
- Mejorar el aprendizaje de la red neuronal profunda mediante distintas técnicas para lidear con clases desbalanceadas en el conjunto de datos de entrada.
- Posible aplicación en otros campos.

Predicción del comportamiento de actividades terroristas basado en Redes Neuronales Profundas

Conclusiones y Trabajo Futuro

Gracias

