Лекция 22. Эйлерова характеристика

Жукова Н. И.

09.03.2023

Пусть X - замкнутая поверхность (связное компактное двумерное многообразие без края). Рассмотрим конечное представление $\Pi = \{M_i \mid i \in I\}$ поверхности X.

Определение 1 Эйлеровой характеристикой представления Π поверхности X называется число

$$\chi(\Pi) = \alpha_0 - \alpha_1 + \alpha_2$$

где α_0 - число классов склеиваемых вершин, α_1 - число пар склеиваемых сторон, α_2 - число многоугольников в представлении.

Теорема 1 Эйлерова характеристика не меняется при элеемнтарных преобразованиях поверхности.

Доказательство. Рассмотрим преобразование первого типа (1-укрупнение, т.е. удаление вершины). Что произошло: $\alpha_2' = \alpha_2, \, \alpha_1' = \alpha_1 - 1, \, \alpha_0' = \alpha_0 - 1.$ Тогда

$$\chi(\Pi) = \alpha_0 - \alpha_1 + \alpha_2 = (\alpha_0 - 1) - (\alpha_1 - 1) + \alpha_2 = \alpha'_0 - \alpha'_1 + \alpha'_2 = \chi(\Pi')$$

То же верно и для обратной операции.

Теперь рассмотрим 2-разбиение (разъединение сторон). Тогда из $\Pi = \{M_i\}_{i\in I}$ получается $\Pi' = \{M_i'\} = \{M_j \mid j \in I \setminus \{i\}\} \cup \{M_{i1}, M_{i2}\}$. Имеем $\alpha'_2 = \alpha_2 + 1, \ \alpha'_1 = \alpha_1 + 1, \ \alpha'_0 = \alpha_0$. Получаем

$$\chi(\Pi) = \alpha_0 - \alpha_1 + \alpha_2 = \alpha'_0 - \alpha'_1 + \alpha'_2 = \chi(\Pi')$$

Аналогично проверяется для обратной операции. \square

Замечание 1 При элементарных преобразованиях поверхность заменятся гомеоморфной, то естьне меняется с точки зрения топологии.

Теорема 2 Любое представление любой замкнутой поверхности можно привести к каноническому виду с помощью элеемнтарных преобразований.

План доказательства.

- 1. Склейка многоугольников представления в один;
- 2. Уничтожение рядом стоящих сторон вида ... aa^{-1} ...;
- 3. Склейка всех вершин в одну;
- 4. Выделение плёнок;
- 5. Выделение ручек;
- 6. Приведение к каноническому многоугольнику;

Доказательство.

- 1. Пусть X любая замкнутая поверхность и $\Pi = \{M_i \mid i = \overline{1,k}\}$ её представление. Выберем M_1 . Выберем сторону $a \subset M_1$, которая склеивается со стороной из другого многоугольника $M_i, i \neq 1$. В противном случае, если M_1 склеивалась бы только с собой, Π не являлось бы связным правильным семейством многоугольников, разбивающееся на компоненты связности $\{M_1\}$ и $\{M_i \mid i = \overline{2,k}\}$. Итак, проведем склейку по a, получим новое семейство $\Pi' = \{M'_i \mid i = \overline{1,k-1}\}$. Мы снова получили представление поверхности. Повторяя эту процедуру конечное число (k-1) раз, мы придем к представлению поверхности единственным многоугольником M.
- $2.1~\Pi$ усть других сторон нет, и мы имеем M двуугольник со схемой aa^{-1} . Это канонический многоугольник (сфера).
- $2.2~\Pi$ усть остался M со схемой ... aa^{-1} Тогда найдется вершина D, не принадлежащая сторонам $a=AB,\,a^{-1}=CB$. Проведем 2-разбиение, создав сторону $b=BD,\,$ а потом 2-укрупнение, склеив вершины A и C, при этом вершина B уйдет вглубь.
- 3. Докажем, что всегда можно уменьшить число вершин, с которыми не склеивается конкретная вершина. Пусть A не склеивается с B, елси там одна картинка, то укрупнение. Если другая картинка: $\overline{AB} = x$, $\overline{BC} = y$. Тогда $y \neq x, y \neq x^{-1}$. Найдется такая сторона, что $\overline{EF} = y$ (склеивается с AB). Отрежем треугольник ABC и приклеим его к FE, поличим треугольник FEA'. Значит, число вершин многоугольника не изменилось, а число вершин, которые склеиваются с A, увеличилось. Мы придем к тому, что все вершины будут лежат в одном классе склеивания.
- 4. Пусть в схеме $\Pi = \{M\}$ имеется выражение ..с...с... Тогда говорят, что есть невыделенная плёнка Мёбиуса. Соединим начала сторон c стороной x, произведем картинку. Получили ...xx... Это и будет выделенная пленка. Заметим, что ранее выделенные пленки не разрушаются.

- 5. Предположим, что в схеме есть выражение ..a.. a^{-1} .. и существует b такое, что ..a..b.. a^{-1} .. b^{-1} ... Пусть x соединяет начала ребер b. Разрежем по b И склеим по x. После этого разрежем по y, соединяющему начала x, и снова склем по y. Получили выделенную ручку: ... $yx^{-1}y^{-1}x$... = $yzy^{-1}z^{-1}$.
- 6. Если в многоугольнике содержатся только выделенные пленки $a_1a_1...a_qa_q$, то $X\cong \mathbb{N}_q^2$ поверхность гомеоморфна сфере с q пленками. Если $a_1b_1a_1^{-1}b_1^{-1}...a_pb_pa_p^{-1}b_p^{-1}$, то \mathbb{S}_p^2 сфера с ручками. Что будет, если у нас будут пленки и ручки? Покажем, что плёнку + ручку можно перевести в 3 плёнки. Пусть ... $aba^{-1}b^{-1}...cc.$. схема поверхноти. Разрежем по x, соединяющей середины этих комбинаций букв. Скле-

Таким образом, любое представление замкнутой поверхности элементарными преобразованиями приводится к некоторому каноническому многоугольнику, так как при элементарных преобразованиях поверхность остается гомеоморфной самой себе.

□

ив по c, мы получим 3 невыделенные пленки. Снова применим шаг 4.

Следствие. Каждая поверхность гомеоморфна сфере с n ручками или k пленками Мёбиуса.

Теперь покажем, что любое преобразование может привести только к одной канонической поверхности.

Пемма 1 От любого представления замкнутой поверхности можно перейти к любому другому представлению поверхности с помощью конечного числа элементарных преобразований.

Доказательство. Пусть $\Pi = \{M_i\}_{i \in \overline{1,k}}, \Pi' = \{M_j\}_{j \in \overline{1,m}}$ — два представления замкнутой поверхности X. Говорят, что эти представления находятся в общем положении, если каждая вершина каждого многоугольника из Π лежит внутри многоугольника из Π' , и наоборот, и всякая сторона каждого многоугольника из Π пересекает каждую сторону каждого многоугольника из Π' по конечному множеству, возможно пустому (то есть стороны разных представлений не лежат друг на друге).

Малой деформацией любые два представления можно привести к общему положению. Не нарушая общности, считаем, что Π , Π' находятся в общем положении. Назовем измельчением представления Π любое представление Π^* , которое можно двумерными укрупнениями привести к Π . Для представлений, находящихся в общем положении, существует общее измельчение, чьи вершины - вершины исходных представлений + точки пересечения сторон. Очевидно, от этого нового представления можно перейти к любому из исходных с помощью укрупнений. Поэтому можно переходить и от Π к Π' , так как все обратимо. \square

Определение 2 Эйлерова характеристика поверхности X называется эйлерова характеристика любого представления этой поверхности.

Корректность определения: для каждой поверхности существует некоторое представление Π (например, триангуляция). Тогда положим $\chi(X) := \chi(\Pi) = \alpha_0 - \alpha_1 + \alpha_2$. По лемме 1, между любыми представлениями можно переходить за конечное число элементарных преобразований, по теореме 1 эйлерова харатеристика на меняется. Значит, эйлерова характеристика не зависит от представления.

Теорема 3 Пусть $X - \kappa$ аноническая поверхность. Тогда

Доказательство. 1. $\chi(\mathbb{S}^2) = 2$ (так как две вершины).

- 2. $\chi(\mathbb{S}_p^2), p\geqslant 1$ сфера с ручками: $a_1b_1a_1^{-1}b_1^{-1}...a_pb_pa_p^{-1}b_p^{-1}$. Значит, $\chi=2-2p$
- 3. $\chi(\mathbb{N}_q), q \geqslant 1$ сфера с плёнками. Тогда $\chi = 2 q$. \square

Следствие. Эйлеровы хаарктеристикы сферы с p ручками и сферы с q пленками совпадают тогда и только тогда, когда q=2p.

Теорема 4 Эйлерова характеристика — топологический инвариант.

Доказательство. Пусть $f\colon X\to Y$ — гомеоморфизм замкнутых поверхностей, и пусть Π - представление для X. Тогда под действием f представление Π перейдет в представление для Y (поскольку топологические многоугольники переходят в в топологические многоугольники). Значит, гомеоморфные поверхности имеют общее представление, то есть у них одинаковая эйлерова характеристика. Итак, эйлерова характеристика — топологический инвариант. \square

Замечание 2 Эйлеровая характеристика— не полный инвариант, так как она может не различать ориентируемые и неориентируемые поверхности.

1 Ориентрируемые поверхности

Определение 3 Замкнутая поверхность X называется ориентируемой, если существует такое представление поверхности $\Pi = \{M_i \mid i = \overline{1,k}\}$, в котором можно задать ориентацию каждого многоугольника так, чтобы склеиваемые стороны проходились в противоположеных направлениях, то есть в направлениях а и a^{-1} . В противном случае поверхность называется неориентируемой.

Ориентируемость — свойство поверхности быть ориентируемой.

Теорема 5 (свойства ориентируемости)

- 1. Ориентируемость поверхности не зависит от выбора представления.
- 2. Ориентируемость топологический инвариант поверхности.

Доказательство. 1. Заметим, что ориентрируемость совхраняется при элементарных преобразованиях. Сначала рассмотрим одномерное укрупнение. Когда мы склеим две стороны, то при правильной склейке направление обхода должно совпадать. Также и при разбиении.

По лемме 1, от любого представления к любому представлению можно перейти с помощью конечного числа элементарных преобразований, значит ориентируемость не зависит от представления.

2. Пусть две поверхности гомеоморфны, и $f\colon X\to Y$ — гомеоморфизм замкнутых поверхностей. Согласно доказательству теоремы 4, у гомеоморфных поверхностей существует общее представление. Значит, ориентируемость — топологический инвариант. \square

Теорема 6 (ориентируемость канонических поверхностей)

- 1. Сфера ориентриуема;
- 2. Сфера $c p \geqslant 1$ ручками ориентируема;
- 3. Сфера $c \neq 1$ пленками неориентируема.

Доказательство. 1. У сферы существует ориентируемое представление: aa^{-1} .

- 2. У сферы с ручками существует ориентируемое представление $a_1b_1a_1^{-1}b_1^{-1}...a_pb_pa_p^{-1}b_p^{-1}$.
- 3. У сферы с пленками каноническое представление $a_1a_1...a_qa_q$ неориентируемое. По теореме об инвариантности ориентируемости, из этого следует неориентируемость поверхности. \square

Следствие. $\mathbb{S}_p^2 \ncong \mathbb{N}_q^2$

Теорема 7 (о классификации замкнутых поверхностей)

Полная система топологических инвариантов для замкнутой поверхности — эйлерова характеристика и ориентируемость. Иначе говоря: $X \cong Y \iff \chi(X) = \chi(Y) \land y$ них совпадает ориентируемость.

Доказательство. Необходимость. Так как эйлерова характеристика и ориентируемость являются топологическими инвариантами, то они совпадают. Достаточность. Каждая замкнутая поверхность гомеоморфна

одной из канонических, которые мы различаем по эйлеровой характеристике и ориентируемости.

Замечание 3 Нечетная эйлерова характеристика однозначно указывает на неориентируемость, т.е. она полный инвариант.

Замечание 4 Максимальная эйлерова характеристика, равная 2, соответствует сфере. Эйлерова характеристика, равная 1, соответствует проективной плоскости. Эйлерова характеристика, равная 0, соответствует тору либо бутылке Клейна. Эйлерова характеристика, равная -1, соответствует кренделю (сфере с двумя ручками).

2 Классификация двумерных компактных многообраззий с краем

Пусть M — связное двумерное компактное многообразие с непустоым краем $\partial M \neq \emptyset$. Из компактности следует, что край имеет конечное число компонент связности. Обозначим $\mathbb{S}^2_{p,n}$ сферу с n "дырами"
и p ручками, $\mathbb{N}^2_{q,n}$ сферу с n "дырами" и q пленками.

Определение 4 Многообразия $\mathbb{S}^2_{p\geqslant 0,n\in\mathbb{N}}$, $\mathbb{N}^2_{q\geqslant 0,n\in\mathbb{N}}$ называются каноническими поверхностями с непустым краем.

Теорема 8 Любая связная компактная поверхность с непустым краем гомеоморфна одной из следующих канонических поверхностей:

- 1. $\mathbb{S}_{0,n}^2$; 2. $\mathbb{S}_{p,n}^2$; 3. $\mathbb{N}_{q,n}^2$;

Доказательство. Заклеим "дыры тогда мы получим одну из канонических замкнутых поверхностей, для которых получена классификационная теорема.

3 Теорема Эйлера о многогранниках

Определение 5 Многогранник называется выпуклым, если он лежит по одну сторону от плоскости, содержащей любую его грань, в противном случае называется невыпуклым.

Теорема 9 (Эйлер)

$$B - P + \Gamma = 2$$

 $z \partial e \ B - число вершин, \ P - число ребер, \ \Gamma - число граней.$

Доказательство. Выпуклый многогранник гомеоморфен сфере, значит, его эйлерова характеристика как замкнутой поверхности равна 2. С другой стороны, у многогранника есть представление в виде виде его граней. \square

Историческая справка. Декарт в 1620 г. доказал, что сумма всех углов граней выпуклого многоугольника равна $360^0(P-\Gamma)=360^0(B-2)$. 1750: Эйлер. 1811 — Коши предложил более строгое доказательство. 1812 Симон Люилье: при рассмотрении кристаллов обнаружил эйлерову характеристику, отличную от 2.20 век: при рассмотрении симплициальных комплексов также возникает отличная от 2 эйлерова характеристика.