MTH 201 2024-2025 (1)

Tutorial 4 27/08/2024

- 1. Let V be a finite dimensional vector space over F. Let $T: V \to V$ be linear map with the property that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$. Prove that $R \cap N = \{0\}$, where R and N denote the range space and the null space of T respectively.
- 2. Let V be a finite dimensional vector space over F and let S and T be linear operators on V. Prove that there exist ordered bases B and B' of V such that $[S]_B = [T]_{B'}$ iff there is an invertible operator U on V such that $S = U^{-1}TU$.
- 3. Let F be a field of characteristic zero and let V be a finite dimensional vector space over F. Let $\alpha_1, \ldots, \alpha_n$ are finitely many non zero vectors of V. Prove that there is a linear functional f on V such that $f(\alpha_i) \neq 0$ for $i = 1, \ldots, m$.
- 4. Let A be a $m \times n$ matrix with entries in \mathbb{R} and let $b_0 \in \mathbb{R}^{m \times 1}$. Suppose the system of linear equation $AX = b_0$ has a unique solution. Which of the following statement/s is/are true:
 - (a) AX = b has a solution for every $b \in \mathbb{R}^m$.
 - (b) If AX = b has a solution, then its unique.
 - (c) AX = 0 has a unique solution.
 - (d) A has rank m.
- 5. Let T be a linear operator on \mathbb{R}^3 defined by

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

- (a) What is the matrix of T in the standard basis of \mathbb{R}^3 .
- (b) What is the matrix of T in the ordered basis $\{(1,0,1),(-1,2,1),(2,1,1)\}$?
- (c) Prove that T is invertible and give a rule of T^{-1} like the one which defines T.
- 6. Let V be an n-dimensional vector space over F, and let $\{\alpha_1, \ldots, \alpha_n\}$ be ordered basis for V.
 - (a) There is a unique linear operator T on V such that $T(\alpha_j) = \alpha_{j+1}$ for $j = 1, \ldots, n-1$ and $T(\alpha_n) = 0$. What is the matrix A of T relative the ordered basis $\{\alpha_1, \ldots, \alpha_n\}$.
 - (b) Prove that $T^n = 0$ but $T^{n-1} \neq 0$.

- (c) Let S be any linear operator on V such that $S^n = 0$ but $S^{n-1} \neq 0$. Prove that there exists an ordered basis B' of V such that the matrix of S relative to B' is the matrix A of part (a).
- (d) Prove that if M and N are $n \times n$ matrices over F such that $M^n = N^n = 0$ but $M^{n-1} \neq 0 \neq N^{n-1}$, then M and N are similar.