SDSC 5001: Statistical Machine Learning I

Topic 5. Model Selection and Regularization

Sparse Regression

Figure 6. Given training set $(\mathbf{x}_i, y_i)_{i=1}^n$, with $y_i \in R$ and $\mathbf{x}_i \in R^p$, it is assumed that

$$y_i = \beta_0 + \sum_{j=1}^{p_0} \beta_j x_{ij} + \epsilon_i$$

where $p_0 \ll p$ (sparsity).

- $A^* = \{1, ..., p_0\}$ indexes the informative predictors, and $\{p_0 + 1, ..., p\}$ indexes the redundant predictors.
- The goal of variable selection is to correctly detect A^* from $\{1, ..., p\}$.
- >We focus on linear regression models, while detecting nonlinear relationship is possible and largely open.

Why Do We Care?

- > Multicollinearity: masked significance, inflated variance,...
- Prediction accuracy can be deteriorated due to overfitting when p is large (curse of dimensionality).
- > Interpretability can be unnecessarily complicated when irrelevant variables are included.

Popular Techniques

- Best subset selection
 - Various information criteria, cross validation
- Sequential variable selection
 - Forward/backward selection
- > Shrinkage methods
 - Lasso and its variants
- Dimension reduction
 - > Principal component analysis, sufficient dimension reduction

Best Subset Selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .
- Popular selection criteria
 - Validation set
 - Cross validation
 - "Estimate" test error by making an adjustment to the training error to account for overfitting

Adjustment to Training Error

Model Selection Criteria

- \triangleright For a linear model with d predictors, denote its SSE as SSE_d ,
- \succ Mallow's C_p :

$$C_p = \frac{1}{n} (SSE_d + 2d\hat{\sigma}^2)$$

> Akaike information criterion (AIC)

$$AIC = \frac{1}{n\hat{\sigma}^2} (SSE_d + 2d\hat{\sigma}^2)$$

> Bayesian information criterion (BIC)

$$BIC = \frac{1}{n\hat{\sigma}^2} (SSE_d + \log(n)d\hat{\sigma}^2)$$

 \triangleright Other criteria: Other IC's, adjusted R^2

An Illustrative Example

Forward/Backward Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .
- \succ Backward selection starts with M_p and iteratively deletes predictors until the best model is found.
- Stagewise selection mixes forward addition and backward deletion in each iteration.

Some Remarks

- Forward/backward selection is computationally more efficient than subset selection.
- > It has no guarantee of the best possible model.
- > It usually performs well in practice.
- > Forward versus backward selection

Shrinkage Methods

Shrinkage methods are formulated as

$$(\hat{\beta}_0, \hat{\beta}) = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n (y_i - \beta_0 - \mathbf{x}_i^T \beta)^2 + \lambda J(\beta)$$

- \triangleright Various choices of $J(\beta)$ lead to different shrinkage methods and possess different properties.
- > After centralization, it becomes

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda J(\beta)$$

Ridge Regression

> Ridge regression uses an L_2 -norm penalty, $\|\beta\|_2^2 = \sum_{j=1}^p \beta_j^2 = \beta^T \beta$,

$$\hat{\beta}_{\lambda}^{ridge} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta) + \lambda \|\beta\|_{2}^{2}$$

- > The second term $\lambda \|\beta\|_2^2$ is a shrinkage penalty, which shrinks the estimates of β towards zero.
- > The tuning parameter $\lambda > 0$ controls the trade-off between regression fitting and coefficient shrinkage.
- \triangleright If λ = 0, ridge regression produces LSE; if λ → ∞, the estimates of β will approach zero.

Ridge Regression (Cont.)

> Solution of the ridge regression is

$$\hat{\beta}_{\lambda}^{ridge} = \left(\mathbf{X}^T \mathbf{X} + \lambda I_p\right)^{-1} \mathbf{X}^T \mathbf{y}$$

> An equivalent formulation

$$\hat{\beta}_{\lambda}^{ridge} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta)$$

subject to
$$\|\beta\|^2 \le s$$

Example

> In general, $\hat{\beta}_{\lambda}$ is a biased estimator that may have smaller MSE than the LSE estimator.

An Example (Cont.)

> Black: Bias

> Green: Variance

Purple: Test MSE

 \triangleright Increase in λ increases bias but decreases variance

LASSO

 \succ The lasso uses an L_1 -norm penalty, $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$,

$$\hat{\beta}_{\lambda}^{lasso} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta) + \lambda \|\beta\|_{1}$$

Or equivalently,

$$\hat{\beta}_{\lambda}^{lasso} = \underset{\beta}{\operatorname{argmin}} (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta)$$
subject to $\|\beta\|_{1} \leq s$

> No explicit solution in general, and a quadratic programming (QP) algorithm can be used to solve the optimization problem.

Sparse Solution

Some coefficients of the lasso solution will become exactly zero, and thus it does some kind of continuous variable selection.

Example: Prostate Cancer

> Data

```
Clinical
Predictors (columns 1--8)
                              measures
lcavol
lweight
age
1bph
svi
1cp
gleason
pgg45
outcome (column 9)
                              Level of
                              prostate-
                              specific
1psa
                               antigen
```

Example: Prostate Cancer (Cont.)

Left: ridge regression; Right: lasso

Ridge vs. Lasso

- Both lasso and ridge regression will shrink estimated coefficients while introducing some bias.
- The lasso produces simpler and more interpretable models that involve only a subset of predictors.
- It is unclear which one leads to better prediction accuracy in general though.

A Special Simple Case

- > Consider a simple case with n=p and $\mathbf{X}=\mathbf{I}_p$, then $\hat{\beta}_j^{ols}=y_j$,
 - \triangleright Ridge regression multiplies $\hat{\beta}_j^{ols}$ by a constant, $\hat{\beta}_j^{ridge} = y_j/(1+\lambda)$.
 - Lasso truncates $\hat{\beta}_{j}^{ols}$ towards zero by a constant, $\hat{\beta}_{j}^{lasso} = sign(y_{j})(|y_{j}| \lambda/2)_{\perp}$.

Bridge Estimators

With
$$L_r(\beta) = \sum_{j=1}^p \left| \beta_j \right|^r$$
,
$$\hat{\beta}_{\lambda}^{bridge} = \underset{\beta}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda L_r(\beta)$$

$$> L_0(\beta) = \sum_{j=1}^p I(\beta_j \neq 0)$$
 (Hard thresholding)

$$> L_2(\beta) = \sum_{j=1}^p \beta_j^2$$
 (Ridge regression)

$$> L_{\infty}(\beta) = max_j \beta_j$$

Constrained Areas of Bridge Regressions

Nonnegative Garrote

$$\min_{c} \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} c_j \hat{\beta}_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} c_j$$

subject to $c_j \ge 0$, and then $\hat{\beta}_j^{ng} = \hat{c}_j \hat{\beta}_j$.

> The resulting estimator is

$$\hat{\beta}_j^{ng} = \left(1 - \frac{\lambda}{2\hat{\beta}_j^2}\right)_+ \hat{\beta}_j$$

- \triangleright It is almost unbiased for large $|\hat{\beta}_i|$.
- > It shrinks small $|\hat{\beta}_j|$ to zero.

Other Extensions

Group lasso: if the p variables are partitioned into J groups, and then it is desirable to include or exclude the whole group

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \sum_{j=1}^{p} \|\vec{\beta}_j\|_2$$

where $\vec{\beta}_i$ is a coefficient vector for the *j*th group.

> Elastic net:

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$$

> Fused lasso:

$$\min_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \sum_{j=2}^{p} \|\beta_j - \beta_{j-1}\|_{1}$$

Principal Component Analysis (PCA)

- Figure $Y = (X_1, ..., X_p)^T$ and $\Sigma = \text{cov}(X)$, find $\{a_1, ..., a_p\}$ with $\|a_j\| = 1, j = 1, ..., p$ such that
 - $> var(a_j^T X) = a_j^T \Sigma a_j$ is as large as possible, and
 - $\succ \operatorname{cov}(a_j^T X, a_l^T X) = a_j^T \Sigma a_l = 0 \text{ when } j \neq l.$
- > In general,
 - First, find $a_1 = \operatorname*{argmax} a^T \Sigma a$ subject to ||a|| = 1,
 - Then find $a_k = \operatorname*{argmax} a^T \Sigma a$ subject to ||a|| = 1 and $a^T \Sigma a_j = 0$ for $j = 1, \dots, k-1$

Example

PCA and Eigen-decomposition

- \succ Assume the eigenvalues of Σ is $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$, and the associated eigenvectors are e_1, \dots, e_p , then
 - $> a_j = e_j$ and the j-th PC is $U_j = e_j^T X$
 - $> \operatorname{var}(U_j) = e_j^T \Sigma e_j = \lambda_j$
 - $> \operatorname{cov}(U_j, U_l) = e_j^T \Sigma e_l = 0$
- \succ To reduce dimension, set $0 < \alpha < 1$ and choose $k \ll p$ such that

$$\frac{\lambda_1 + \dots + \lambda_k}{\lambda_1 + \dots + \lambda_p} \ge \alpha$$

and then work on the feature space spanned by the first k PC's.

Projection Pursuit (PP)

- > Imagine an example with $X_1 \sim N(0,100)$, and $X_2 \sim N(Z,1/100)$ with $Z = \pm 1(\pm \frac{1}{2})$. PCA will find X_1 as the first PC, but it is less informative.
- > The key idea of PP is to find direction which is non-normal.
 - \triangleright Let $I(\cdot)$ be a measure of non-normality,

$$\hat{a} = \operatorname*{argmax}_{a} I(a^{T}X)$$

- \triangleright Popularly used $I(\cdot)$:
 - $> I_1(z) = |k_m(z)|/k_2(z)^{m/2}$
 - $I_2(z) = k_3^2(z) + k_4^2(z)/4$ where $k_m(z)$ is the m-th order cumulant of z.

Projection Pursuit (PP)

Principal Component Regression (PCR)

- > Let S be the sample covariance matrix and \mathbf{q}_j , j=1,...,J, be the PC loadings of S.
- > PCR computes the derived input columns $\mathbf{z}_j = \mathbf{X}\mathbf{q}_j$ (sample principal components), and then regresses \mathbf{y} on $\mathbf{z}_1, \dots, \mathbf{z}_J$.
- \triangleright Since the \mathbf{z}_j 's are orthogonal, this regression is just a sum of univariate regressions,

$$\hat{\mathbf{y}}^{pcr} = \bar{\mathbf{y}} + \sum_{j=1}^{J} \tilde{\gamma}_j \, \mathbf{z}_j$$

where $\tilde{\gamma}_j$ is the correlation coefficient of y on \mathbf{z}_j .

Some Simulated Examples with PCR

Some Remarks on PCR

- > PCR works well when the first few principal components are sufficient to capture most of the variation in the predictors and the relationship with the response.
- > PCR does not produce variable selection, as all predictors are included in each principal component.
- > The number of principal components is typically chosen by cross-validation.
- > When performing PCR, it is generally recommended to first standardize each predictor.

Partial Least Squares (PLS)

- > PLS also constructs a set of linear combinations of predictors for regression, but unlike PCR, it uses y (and X) for this construction.
 - \triangleright Assume y is centered, and we begin by computing the univariate regression coefficient γ_i of Y on X_i .
 - From this we construct the derived input $Z_1 = \sum_{j=1}^p \gamma_j \mathbf{x}_j$, which is the first PLS direction.
 - Then Y is regressed on Z_1 , giving coefficient $\hat{\beta}_1$. Next we orthogonalize X_1, \ldots, X_p with respect to Z_1 : $R_1 = Y \hat{\beta}_1 Z_1$, and $X_j^* = X_j \hat{\theta}_j Z_1$, $j = 1, \ldots, p$, where $\hat{\theta}_j$ is the coefficient when X_j is regressed on Z_1 . Then find the univariate regression coefficient of R_1 on X_j^* .

Partial Least Squares (Cont.)

- > We continue this process, until *J* directions are obtained.
- > In this manner, PLS produces a sequence of derived inputs or directions $Z_1, ..., Z_I$.
- \gt As with PCR, if we continue on to construct J=p directions, we get back the OLS estimates; the use of J< p directions produces a reduced-dim regression.
- \triangleright Notice that in the construction of each Z_j , the inputs are weighted by the strength of their univariate effect on Y.

PCR vs PLS

