2. 设 $C: x(s) = (0, \varphi(s), \psi(s))$ 是以弧长 $s \in [0, l]$ 为参数的正则平面曲线, 这里 $\varphi(0) = \varphi(l) = 0, \varphi'(0) = 1, \varphi'(l) = -1$ 且 $\varphi(s) > 0.M$ 是 C 绕 z 轴旋转一周而得的曲面, 试证:

(I)
$$M$$
 的 Gauss 曲率 $K = -\frac{\varphi''(s)}{\varphi(s)}$;

$$(\mathbb{I}) \int_0^l K' \varphi^2 \, \mathrm{d} \, s = 0;$$

(Ⅲ) **E**³ 中不存在曲率是单调增加的上述旋转曲面.

3. 详细证明推论 2.4.

推论 2.4 设 M 是 \mathbf{E}^3 中紧致连通的椭圆型 W 曲面, 它的 Gauss 曲率为正, 则 M 必是球面.

3. 设
$$M^2$$
 是 ${\bf E}^3$ 中紧致连通闭曲面,它的全绝对曲率满足 $\int\limits_{M^2} |K|\,{\rm d}\,A\geqslant 2m\pi$. 试证:
$$\int\limits_{M^2} H^2\,{\rm d}\,A\geqslant \pi(m+\chi(M^2)),$$
 其中 $\chi(M^2)$ 是 M^2 的 Euler 示性数.

 $^{M^2}$ 4. 设 zy 平面上给定一个椭圆: $y=r+a\cos u, z=b\sin u (r>a>b>0)$. 该椭圆绕 z 轴旋转—周得环面 T^2 . 试计算 T^2 的全平均曲率, 并估计它的下界.

5. 设 Γ 是空间打结的简单正则闭曲线, 试证 Γ 的管状曲面的全平均曲率不小于 $4\pi^2$.