GLA UNIVERSITY

COMPUTER NETWORK

By:

Dr. Ankush Agarwal

APPLICATION LAYER

Name space

- The names assigned to machines must be unique because the addresses are unique
- A name space that maps each address to a unique name can be organized in two ways
 - flat
 - hierarchical

Domain Name Space (DNS)

- The domain name space is hierarchical in design
- The names are defined in an inverted-tree structure with the root at the top
- The tree can have 128 levels: level 0 (root) to level 127

Domain Name Space (DNS)

Domain Name and Labels

Distribution of name space

• The information contained in the domain name space is distributed among many computers called DNS servers

Zones and domains

- A primary server loads all information from the disk file
- The secondary server loads all information from the primary server
- When the secondary downloads information from the primary, it is called zone transfer

DNS in the internet

- The domain name space (tree) is divided into three different sections
 - generic domains
 - country domains
 - inverse domain

DNS used in the Internet

Generic domain

Generic domain labels

Label	Description			
aero	Airlines and aerospace companies			
biz	Businesses or firms (similar to "com")			
com	Commercial organizations			
соор	Cooperative business organizations			
edu	Educational institutions			
gov	Government institutions			
info	Information service providers			

Label	Description		
int	International organizations		
mil	Military groups		
museum	Museums and other non-profit organizations		
name	Personal names (individuals)		
net	Network support centers		
org	Nonprofit organizations		
pro	Professional individual organizations		

Country domain

Inverse domain

Resolution

• Mapping a name to an address or an address to a name is called name-address

Recursive resolution

Iterative resolution

DNS messages

- The DNS query message consists of a
 - Header
 - Question records
- The DNS response message consists of a
 - Header
 - question records
 - answer records
 - authoritative records
 - additional records

DNS messages

Query and response messages

Header format

Identification	Flags
Number of question records	Number of answer records (All 0s in query message)
Number of authoritative records (All 0s in query message)	Number of additional records (All 0s in query message)

Flag fields

Values of rCode

Value	Meaning
0	No error
1	Format error
2	Problem at name server
3	Domain reference problem
4	Query type not supported
5	Administratively prohibited
6–15	Reserved

© ankush agarwal

Types of records

- Two types of records are used in DNS
- The question records are used in the question section of the query and response messages
- The resource records are used in the answer, authoritative, and additional information sections of the response message

Question record format

Query name format

Types

Туре	Mnemonic	Description
1	A	Address. A 32-bit IPv4 address. It is used to convert a domain name to an IPv4 address.
2	NS	Name server. It identifies the authoritative servers for a zone.
5	CNAME	Canonical name. It defines an alias for the official name of a host.
6	SOA	Start of authority. It marks the beginning of a zone. It is usually the first record in a zone file.
11	WKS	Well-known services. It defines the network services that a host provides.
12	PTR	Pointer. It is used to convert an IP address to a domain name.
13	HINFO	Host information. It gives the description of the hardware and the operating system used by a host.
15	MX	Mail exchange. It redirects mail to a mail server.
28	AAAA	Address. An IPv6 address (see Chapter 27).
252	AXFR	A request for the transfer of the entire zone.
255	ANY	A request for all records.

Classes

Class	Mnemonic	Description
1	IN	Internet
2	CSNET	CSNET network (obsolete)
3	CS	The COAS network
4	HS	The Hesiod server developed by MIT

Resource record format

	Domai	n name		
Domain type			Domain class	
	Time	to live		
Resource data length				
	Resour	ce data		
Y				

Compression

- DNS requires that a domain name be replaced by an offset pointer if it is repeated
- DNS defines a 2-byte offset pointer that points to a previous occurrence of the domain name or part of it

Format of an offset pointer

DDNS

• The Dynamic Domain Name System (DDNS) updates the DNS master file dynamically

Encapsulation

- DNS uses UDP as the transport protocol when the size of the response message is less than 512 bytes
- If the size of the response message is more than 512 bytes, a TCP connection is used
- DNS can use the services of UDP or TCP using the well-known port 53

FTP

FTP

• File Transfer Protocol (FTP) is the standard mechanism provided by TCP/IP for copying a file from one host to another

FTP

- FTP uses the services of TCP
- It needs two TCP connections
- The well-known port 21 is used for the control connection and the well-known port 20 for the data connection

Opening the control connection

Creating the data connection

Using the control connection

Using the data connection

Command processing

Access commands

Command	Argument(s)	Description
USER	User id	User information
PASS	User password	Password
ACCT	Account to be charged	Account information
REIN		Reinitialize
QUIT		Log out of the system
ABOR		Abort the previous command

File management commands

Command	Argument(s)	Description				
CWD	Directory name	Change to another directory				
CDUP		Change to the parent directory				
DELE	File name	Delete a file				
LIST	Directory name	List subdirectories or files				
NLIST	Directory name	List the names of subdirectories or files without other attributes				
MKD	Directory name	Create a new directory				
PWD		Display name of current directory				
RMD	Directory name	Delete a directory				
RNFR	File name (old file name)	Identify a file to be renamed				
RNTO	File name (new file name)	Rename the file				
SMNT	File system name	Mount a file system				

File transfer

Example

WWW

- The WWW is a distributed client-server service, in which a client using a browser can access a service using a server
- The service provided is distributed over many locations called sites

Architecture of WWW

Browser

URL

WWW

- The Hypertext Transfer Protocol (HTTP) is a protocol used mainly to access data on the World Wide Web
- HTTP functions like a combination of FTP and SMTP
- HTTP uses the services of TCP on well-known port 80

HTTP transaction

Request and response messages

Request message

Response message

Request and status lines

Methods

Method	Action
GET	Requests a document from the server
HEAD	Requests information about a document but not the document itself
POST	Sends some information from the client to the server
PUT	Sends a document from the server to the client
TRACE	Echoes the incoming request
CONNECT	Reserved
OPTION	Enquires about available options

Header format

Example

• HTTP version 1.1 specifies a persistent connection by default

Example

SMTP

- To explain the architecture of email, we give few scenarios
- We begin with the simplest situation and add complexity as we proceed
- The fourth scenario is the most common in the exchange of email

First scenario

• When the sender and the receiver of an email are on the same system, we need only two user agents

Second scenario

• When the sender and the receiver of an email are on different systems, we need two UAs and a pair of MTAs (client and server)

Third scenario

• When the sender is connected to the mail server via a LAN or a WAN, we need two UAs and two pairs of MTAs (client and server)

Fourth scenario

• When both sender and receiver are connected to the mail server via a LAN or a WAN, we need two UAs, two pairs of MTAs (client and server), and a pair of

MAAs (client and server) MTA MAA client UA Alice client Bob UA UA: user agent • This is the most common situation MTA: message transfer agent MAA: message access agent MTA MTA client server LAN or WAN AN or WAN Client pushes messages server MAA MAA client server Client pulls messages MTA client Internet System System

User Agent

- The user agent (UA) provides service to the user to make the process of sending and receiving a message easier
- Some examples of command-driven user agents are mail, pine, and elm
- Some examples of GUI-based user agents are Eudora, Outlook, and Netscape

Format of an email

Behrouz Forouzan De Anza College Cupertino, CA 96014

> Sophia Fegan Com-Net Cupertino, CA 95014

Sophia Fegan Com-Net Cupertino, CA 95014 Jan. 5, 2005

Subject: Network

Dear Ms. Fegan: We want to inform you that our network is working properly after the last repair.

Yours truly, Behrouz Forouzan

Envelope Mail From: forouzan@deanza.edu RCPT To: fegan@comnet.com From: Behrouz Forouzan To: Sophia Fegan Date: 1/5/05 Subject: Network Message Dear Ms. Fegan: We want to inform you that Body our network is working properly after the last repair. Yours truly,

Behrouz Forouzan

Email address

MIME

MIME

Data types in sub types in MIME

Туре	Subtype	Description				
Text	Plain	Unformatted				
	HTML	HTML format (see Chapter 22)				
Multipart	Mixed	Body contains ordered parts of different data types				
	Parallel	Same as above, but no order				
	Digest	Similar to Mixed, but the default is message/RFC822				
	Alternative	Parts are different versions of the same message				

Туре	Subtype	Description				
	RFC822	Body is an encapsulated message				
Message	Partial	Body is a fragment of a bigger message				
	External-Body	Body is a reference to another message				
Image	JPEG Image is in JPEG format					
	GIF	Image is in GIF format				
Video	MPEG	Video is in MPEG format				
Audio	Basic	Single channel encoding of voice at 8 KHz				
Application	PostScript Adobe PostScript					
	Octet-stream	General binary data (eight-bit bytes)				

Content transfer encoding

Туре	Description
7bit	NVT ASCII characters and short lines
8bit	Non-ASCII characters and short lines
Binary	Non-ASCII characters with unlimited-length lines
Base64	6-bit blocks of data are encoded into 8-bit ASCII characters
Quoted-printable	Non-ASCII characters are encoded as an equal sign followed by an ASCII code

Base64

Base64 encoding table

Value	Code										
0	A	11	L	22	W	33	h	44	s	55	3
1	В	12	M	23	X	34	i	45	t	56	4
2	C	13	N	24	Y	35	j	46	u	57	5
3	D	14	О	25	Z	36	k	47	v	58	6
4	E	15	P	26	a	37	l	48	W	59	7
5	F	16	Q	27	b	38	m	49	X	60	8
6	G	17	R	28	c	39	n	50	y	61	9
7	Н	18	S	29	d	40	0	51	Z	62	+
8	I	19	T	30	e	41	p	52	0	63	/
9	J	20	U	31	f	42	q	53	1		
10	K	21	V	32	g	43	r	54	2		

Quoted-printable

MTA

- The actual mail transfer requires message transfer agents (MTAs)
- The protocol that defines the MTA client and server in the Internet is called Simple Mail Transfer Protocol (SMTP)

Commands and responses

Command format

Commands

Keyword	Argument(s)
HELO	Sender's host name
MAIL FROM	Sender of the message
RCPT TO	Intended recipient of the message
DATA	Body of the mail
QUIT	
RSET	
VRFY	Name of recipient to be verified
NOOP	
TURN	
EXPN	Mailing list to be expanded
HELP	Command name
SEND FROM	Intended recipient of the message
SMOL FROM	Intended recipient of the message
SMAL FROM	Intended recipient of the message

Responses

Code	Description		
	Positive Completion Reply		
211	System status or help reply		
214	Help message		
220	Service ready		
221	Service closing transmission channel		
250	Request command completed		
251	User not local; the message will be forwarded		
	Positive Intermediate Reply		
354	Start mail input		
	Transient Negative Completion Reply		
421	Service not available		
450	Mailbox not available		
451	Command aborted: local error		
452	Command aborted; insufficient storage		
Permanent Negative Completion Reply			

Permanent Negative Completion Reply			
500	Syntax error; unrecognized command		
501	Syntax error in parameters or arguments		
502	Command not implemented		
503	Bad sequence of commands		
504	Command temporarily not implemented		
550	Command is not executed; mailbox unavailable		
551	User not local		
552	Requested action aborted; exceeded storage location		
553	Requested action not taken; mailbox name not allowed		
554	Transaction failed		

Connection establishment

Message transfer

Connection termination

Message Access Agent: POP and IMAP

- The third stage of mail delivery uses a message access agent; the client must pull messages from the server
- Currently two message access protocols are available
 - Post Office Protocol, version 3 (POP3)
 - Internet Mail Access Protocol, version 4

POP3 and IMAP4

POP3

Telnet

- TELNET enables the establishment of a connection to a remote system in such a way that the local terminal appears to be a terminal at the remote system
- TELNET is a general-purpose client-server application program

Local login

Remote login

Network Virtual Terminal (NVT)

- Via a universal interface called the Network Virtual Terminal (NVT) character set, the TELNET client translates characters (data or commands) that come from the local terminal into NVT form and delivers them to the network
- TELNET server translates data and commands from NVT form into the form acceptable by the remote computer.

Concept of NVT

NVT character set

• NVT uses two sets of characters, one for data and one for control. Both are 8-bit bytes

Format of data characters

Format of control characters

NVT control characters

Character	Decimal	Binary	Meaning
EOF	236	11101100	End of file
EOR	239	11101111	End of record
SE	240	11110000	Suboption end
NOP	241	11110001	No operation
DM	242	11110010	Data mark
BRK	243	11110011	Break
IP	244	11110100	Interrupt process
AO	245	11110101	Abort output
AYT	246	11110110	Are you there?
EC	247	11110111	Erase character
EL	248	11111000	Erase line
GA	249	11111001	Go ahead
SB	250	11111010	Suboption begin
WILL	251	11111011	Agreement to enable option
WONT	252	111111100	Refusal to enable option
DO	253	11111101	Approval to option request
DONT	254	11111110	Denial of option request
IAC	255	11111111	Interpret (the next character) as control

Embedding

- The same connection is used by TELNET for sending both data and control characters
- TELNET accomplishes this by embedding the control characters in the data stream

Options

- TELNET lets the client and server negotiate options before or during the use of the service
- Options are extra features available to a user with a more sophisticated terminal

Code	Option	Meaning
0	Binary	Interpret as 8-bit binary transmission
1	Echo	Echo the data received on one side to the other
3	Suppress go ahead	Suppress go-ahead signals after data
5	Status	Request the status of TELNET
6	Timing mark	Define the timing marks
24	Terminal type	Set the terminal type
32	Terminal speed	Set the terminal speed
34	Line mode	Change to line mode

Option negotiation

- To use any of the options first requires option negotiation between the client and the server
- Four control characters are used for this purpose

NVT character set for option negotiation

Character	Decimal	Binary	Meaning
WILL	251	11111011	1. Offering to enable
			2. Accepting a request to enable
WONT	252	11111100	1. Rejecting a request to enable
			2. Offering to disable
			3. Accepting a request to disable
DO	253	11111101	1. Approving an offer to enable
			2. Requesting to enable
DONT	254	11111110	1. Disapproving an offer to enable
			2. Approving an offer to disable
			3. Requesting to disable

Offer to enable an option

Request to enable an option

Offer to disable an option

Request to disable an option

Cryptography

- Information needs to be secured from attacks
- To be secured, information needs to be hidden from
 - unauthorized access (confidentiality)
 - protected from unauthorized change (integrity)
 - available to an authorized entity when it is needed (availability)

Traditional Ciphers

- We now look at the first goal of security, confidentiality
- Confidentiality can be achieved using ciphers
- Traditional ciphers are called symmetric-key ciphers (or secret-key ciphers) because the same key is used for encryption and decryption and the key can be used for bidirectional communication

- Encryption:
 - plain text (original data) to cipher text
- Decryption
 - cipher text to plain text

General idea of traditional cipher

• A substitution cipher replaces one symbol with another

Representation of characters in modulo 26

• In additive cipher, the plaintext, ciphertext, and key are integers in modulo 26

Example

• Use the additive cipher with key = 15 to encrypt the message "hello"

Solution

• The cipher is mono-alphabetic because two instances of the same plaintext character (ls) are encrypted as the same character (A). The result is "WTAAD"

Plaintext: $h \rightarrow 07$	Encryption: $(07 + 15) \mod 26$	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: $(04 + 15) \mod 26$	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: $(11 + 15) \mod 26$	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: $(14 + 15) \mod 26$	Ciphertext: $03 \rightarrow D$

Example

• Use the additive cipher with key = 15 to decrypt the message "WTAAD".

Solution

• We apply the decryption algorithm to the plaintext character by character. The result is "hello". Note that the operation is in modulo 26, which means that we need to add 26 to a negative result (for example -15 becomes 11).

Ciphertext: W \rightarrow 22	Decryption: $(22-15) \mod 26$	Plaintext: $07 \rightarrow h$
Ciphertext: $T \rightarrow 19$	Decryption: $(19-15) \mod 26$	Plaintext: $04 \rightarrow e$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: A \rightarrow 00	Decryption: $(00-15) \mod 26$	Plaintext: $11 \rightarrow 1$
Ciphertext: D \rightarrow 03	Decryption: $(03 - 15) \mod 26$	Plaintext: $14 \rightarrow 0$

Transposition cipher

• A transposition cipher reorders symbols

Modern ciphers

- The traditional symmetric-key ciphers that we have studied so far are characteroriented ciphers
- With the advent of the computer, we need bit-oriented ciphers
- This is because the information to be encrypted is not just text; it can also consist of numbers, graphics, audio, and video data
- It is convenient to convert these types of data into a stream of bits, to encrypt the stream, and then to send the encrypted stream
- A modern block cipher can be either a block cipher or a stream cipher

Modern ciphers

Components of Modern ciphers

Asymmetric key ciphers

- Symmetric-key and asymmetric-key ciphers will exist in parallel and continue to serve the community
- We actually believe that they are complements of each other
- The advantages of one can compensate for the disadvantages of the other
- Symmetric-key cryptography is based on sharing secrecy
- Asymmetric-key cryptography is based on personal secrecy
- In symmetric-key cryptography, symbols are permuted or substituted
- in asymmetric-key cryptography, numbers are manipulated

Asymmetric key ciphers

• Asymmetric-key ciphers are sometimes called public-key ciphers

General idea of asymmetric key ciphers

Encryption, decryption and key in RSA

Example

- For the sake of demonstration, let Bob choose 7 and 11 as p and q and calculate $n = 7 \times 11 = 77$
- The value of $\varphi(n) = (7-1)(11-1)$, or 60. If he chooses e to be 13, then d is 37. Note that $e \times d \mod 60 = 1$
- Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5. This system is not safe because p and q are small

Plaintext: 5

 $C = 5^{13} = 26 \mod 77$

Ciphertext: 26

Ciphertext: 26

 $P = 26^{37} = 5 \mod 77$

Plaintext: 5