linear combination $\alpha = \sum \lambda_{i_1,\dots,i_n} (e^1_{i_1})^* \otimes \cdots \otimes (e^n_{i_n})^*$, for some unique $\lambda_{i_1,\dots,i_n} \in K$. If we choose $\beta = e^1_{i_1} \otimes \cdots \otimes e^n_{i_n}$, then we get

$$0 = \langle \alpha, e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n \rangle = \left\langle \sum_{i_1, \dots, i_n} (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n \right\rangle$$
$$= \sum_{i_1, \dots, i_n} \langle (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n \rangle$$
$$= \lambda_{i_1, \dots, i_n}.$$

Therefore, $\alpha = 0$,

Conversely, given any $\beta \in E_1 \otimes \cdots \otimes E_n$, assume that $\langle \alpha, \beta \rangle = 0$, for all $\alpha \in E_1^* \otimes \cdots \otimes E_n^*$. The vector β is a finite linear combination $\beta = \sum \lambda_{i_1, \dots, i_n} e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n$, for some unique $\lambda_{i_1, \dots, i_n} \in K$. If we choose $\alpha = (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*$, then we get

$$0 = \langle (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, \beta \rangle = \langle (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, \sum_{i_1, \dots, i_n} \lambda_{i_1, \dots, i_n} e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n \rangle$$
$$= \sum_{i_1, \dots, i_n} \lambda_{i_1, \dots, i_n} \langle (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, e_{i_1}^1 \otimes \cdots \otimes e_{i_n}^n \rangle$$
$$= \lambda_{i_1, \dots, i_n}.$$

Therefore, $\beta = 0$.

By Proposition 33.1,¹ we have a canonical isomorphism

$$(E_1 \otimes \cdots \otimes E_n)^* \cong E_1^* \otimes \cdots \otimes E_n^*$$

Here is our main proposition about duality of tensor products.

Proposition 33.16. We have canonical isomorphisms

$$(E_1 \otimes \cdots \otimes E_n)^* \cong E_1^* \otimes \cdots \otimes E_n^*$$

and

$$\mu \colon E_1^* \otimes \cdots \otimes E_n^* \cong \operatorname{Hom}(E_1, \dots, E_n; K).$$

Proof. The second isomorphism follows from the isomorphism $(E_1 \otimes \cdots \otimes E_n)^* \cong E_1^* \otimes \cdots \otimes E_n^*$ together with the isomorphism $\text{Hom}(E_1, \ldots, E_n; K) \cong (E_1 \otimes \cdots \otimes E_n)^*$ given by Proposition 33.8.

Remarks:

1. The isomorphism $\mu: E_1^* \otimes \cdots \otimes E_n^* \cong \operatorname{Hom}(E_1, \ldots, E_n; K)$ can be described explicitly as the linear extension to $E_1^* \otimes \cdots \otimes E_n^*$ of the map given by

$$\mu(v_1^* \otimes \cdots \otimes v_n^*)(u_1 \ldots, u_n) = v_1^*(u_1) \cdots v_n^*(u_n).$$

¹This is where the assumption that our spaces are finite-dimensional is used.