2020

(0)

www.elmaths.com

www.fb.com/elmaths1

تصحيم الامتحار الولهنبر 2019 العورة الإستعراكية مأدة الرياضيات

الثانية باك علوم رياضية المدة: 4 ساعات المعامل: 9

2BAC-SM

www.fb.com/elmaths1 :f

www.elmaths.com : ③

تمرين 1 (3.5 نقط)

ليكن α عددا عقديا غير منعدم.

المجاول :
$$\mathbb C$$
 نعتبر في مجموعة الأعداد العقدية $\mathbb C$ المعادلة ذات E_{lpha} : $z^2-ilpha\sqrt{3}z-lpha^2=0$: المجهول

$$-i\alpha\sqrt{3}z - \alpha = 0$$
 : z المجهول : E_{α} مميز المعادلة E_{α} هو :

$$\Delta = \left(i\alpha\sqrt{3}\right)^2 - 4\times1\times\left(-\alpha^2\right) = -3\alpha^2 + 4\alpha^2 = \boxed{\alpha^2}$$

بما أن مميز المعدلة هو
$$\alpha^2 \neq 0$$
 فإن للمعادلة Δ حلين مختلفين هما :

$$z_1 = \frac{i\alpha\sqrt{3} + \alpha}{2} = \boxed{\frac{1 + i\sqrt{3}}{2}\alpha}$$

$$z_2 = \frac{i\alpha\sqrt{3} - \alpha}{2} = \boxed{\frac{-1 + i\sqrt{3}}{2}\alpha}$$

علما أن |lpha|=|lpha| علما أن علما أن lpha=|lpha| علما أن علما على الشكل الاسى التالى : E_{α}

$$z_1 = |\alpha| e^{i\lambda} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} i \right) = |\alpha| e^{i\lambda} e^{i\frac{\pi}{3}} = |\alpha| e^{i\left(\frac{\pi}{3} + \lambda\right)}$$

$$z_2 = |\alpha| e^{i\lambda} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right) = |\alpha| e^{i\lambda} e^{i\frac{2\pi}{3}} = |\alpha| e^{i\left(\frac{2\pi}{3} + \lambda\right)}$$

لجزء الثاني: نفترض أن المستوى العقدي منسوب الى معلم متعامد منظم مباشر M_2 و M_1 و M_2 و الألحاق ($O; \overrightarrow{u}; \overrightarrow{v}$ دات الألحاق $\frac{\pi}{2}$ الدوران الذي مركزه O وزاويته R

$$R\left(M_{1}
ight)=M_{2}$$
 وأن $R(\Omega)=M_{1}$ لنبين أن لبين أن $R\left(\Omega\right)=M_{1}$

$$R(z) = e^{i\frac{\pi}{3}}(z - z_O) + z_O$$
 الدينا

$$R\left(z
ight)=ze^{irac{\pi}{3}}$$
 : ومنه
اذن

$$R(z_{\Omega}) = z_{\Omega} e^{i\frac{\pi}{3}}$$

$$= \alpha e^{i\frac{\pi}{3}}$$

$$= \alpha \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$$

$$=z_1$$

 $R\left(\Omega\right) = M_1$

$$R(z_{M_1}) = z_{M_1} e^{i\frac{\pi}{3}}$$

$$= \alpha e^{i\frac{\pi}{3}} e^{i\frac{\pi}{3}}$$

$$= \alpha e^{i\frac{2\pi}{3}}$$

$$= z_2$$

 $R\left(M_{1}\right)=M_{2}$

$$R(M_1)=M_2$$
 و $R(\Omega)=M_1$: ب

$$\left\{\begin{array}{l} \overline{\left(\overrightarrow{OM_1};\overrightarrow{OM_2}\right)}\equiv\frac{\pi}{3}\left[2\pi\right]\\ OM_1=OM_2 \end{array}\right.$$
و أن :

يعني أن:

$$\left\{ \begin{array}{ll} \widehat{\Omega OM_1} = 60^\circ \\ O\Omega = OM_1 \end{array} \right. \ \, \text{g} \left\{ \begin{array}{ll} \widehat{M_1 OM_2} = 60^\circ \\ OM_1 = OM_2 \end{array} \right.$$

يعنى أن المثلثين ΩOM_1 و $\Omega M_1 M_2$ متساوبا السّاقين ولهما زاوية قياسها °60. وهذا يعني أن :

المثلثين ΩOM_1 و $\Omega M_1 M_2$ متساوبا الأضلاع.

$$z_1-z_2=lpha$$
 : لنتحقق أن

$$z_1 - z_2 = \frac{1 + i\sqrt{3}}{2}\alpha - \frac{-1 + i\sqrt{3}}{2}\alpha$$
$$= \frac{1}{2}\alpha + \frac{i\sqrt{3}}{2}\alpha + \frac{1}{2}\alpha - \frac{i\sqrt{3}}{2}\alpha$$
$$= \boxed{\alpha}$$

(ب) لدينا:

$$\frac{z_{M_2} - z_{\Omega}}{z_{M_1} - z_{O}} = \frac{z_2 - \alpha}{z_1}$$

$$= \frac{z_1 - 2\alpha}{z_1}$$

$$= 1 - \frac{2\alpha}{z_1}$$

$$= 1 - 2\alpha \frac{2}{\alpha (1 + i\sqrt{3})}$$

$$= 1 - 4\frac{1 - i\sqrt{3}}{4}$$

$$= i\sqrt{3}$$

$$rac{z_{M_2}-z_{\Omega}}{z_{M_1}-z_O}\in i\mathbb{R}$$
 : ومنه

وبالتالي:
$$(\Omega M_2) \perp (OM_1)$$

2020

0

لدينا
$$\Omega\Omega M_1$$
 مثلث متساوي الأضلاع، $\Omega\Omega = \Omega M_1 = \Omega M_1$

 $O\Omega = OM_1 = \Omega M_1$: يعنى أن

ولدينا OM_1M_2 مثلث متساوى الأضلاع، $OM_1 = OM_1 = M_1M_2$: يعنى أن

 $O\Omega = \Omega M_1 = M_1 M_2 = OM_2$: ومنه

وبالتالى : $\Omega M_1 M_2$ معين

(د) طريقة 1: لدينا:

$$\overline{z_1} = \frac{1 - i\sqrt{3}}{2}\overline{\alpha} = -\frac{-1 + i\sqrt{3}}{2}\overline{\alpha} = -\frac{z_2}{\alpha}\overline{\alpha}$$
 وبالتالي :
$$\frac{\overline{z_2}}{\overline{\alpha}} = -\frac{z_1}{\alpha} : \text{ وكذلك : } \frac{\overline{z_1}}{\overline{\alpha}} = -\frac{z_2}{\alpha} : \text{ etc.}$$
 ولدينا :
$$|z_2|^2 = z_2\overline{z_2} = |\alpha|^2 \text{ etc.}$$

$$|z_2|^2 = z_1\overline{z_1} = |\alpha|^2 : \text{ etc.}$$
 وبالتالي :
$$\overline{z_2} = \frac{|\alpha|^2}{z_2} \text{ etc.}$$

 $z_1z_2=-lpha:$ و $z_2=-eta$ حلي المعادلة في $\widetilde{E_lpha}$ فإن

$$\overline{Z} = \overline{\left(\frac{z_2 - \alpha}{z_1 - \alpha} \div \frac{z_2 - |\alpha| e^{i\theta}}{z_1 - |\alpha| e^{i\theta}}\right)}$$

$$= \overline{\frac{z_2 - \overline{\alpha}}{\overline{z_1} - \overline{\alpha}} \div \overline{\frac{z_2}{z_1} - |\alpha| e^{-i\theta}}$$

$$= \overline{\frac{\overline{\alpha}\left(\frac{\overline{z_2}}{\overline{\alpha}} - 1\right)}{\overline{\alpha}\left(\frac{\overline{z_1}}{\overline{\alpha}} - 1\right)} \div \frac{e^{-i\theta}\left(\overline{z_2}e^{i\theta} - |\alpha|\right)}{e^{-i\theta}\left(\overline{z_1}e^{i\theta} - |\alpha|\right)}$$

$$= \frac{-\frac{z_1}{\alpha} - 1}{-\frac{z_2}{\alpha} - 1} \div \frac{\frac{|\alpha|^2}{z_2}e^{i\theta} - |\alpha|}{\frac{|\alpha|^2}{z_1}e^{i\theta} - |\alpha|}$$

$$= \frac{z_1 + 1}{z_2 + 1} \div \frac{\frac{|\alpha|}{z_2}e^{i\theta} - 1}{\frac{|\alpha|}{z_1}e^{i\theta} - 1}$$

$$\begin{split} \overline{Z} &= \frac{z_1 + 1}{z_2 + 1} \div \frac{\left(\frac{|\alpha|e^{i\theta} - z_2}{z_2}\right)}{\left(\frac{|\alpha|e^{i\theta} - z_1}{z_1}\right)} \\ &= \frac{z_1 + 1}{z_2 + 1} \div \frac{z_1 \left(|\alpha|e^{i\theta} - z_2\right)}{z_2 \left(|\alpha|e^{i\theta} - z_1\right)} \\ &= \frac{z_2 \left(z_1 + 1\right)}{z_1 \left(z_2 + 1\right)} \div \frac{|\alpha|e^{i\theta} - z_2}{|\alpha|e^{i\theta} - z_1} \\ &= \frac{z_2 + z_2 z_1}{z_1 + z_2 z_1} \div \frac{z_2 - |\alpha|e^{i\theta}}{z_1 - |\alpha|e^{i\theta}} \\ &= \frac{z_2 - \alpha}{z_1 - \alpha} \div \frac{z_2 - |\alpha|e^{i\theta}}{z_1 - |\alpha|e^{i\theta}} \\ &= Z \end{split}$$

اذن $\overline{Z}=Z$ يعني أن : \overline{Z} عددحقيقي

 $z_M = |lpha|\,e^{i heta}\,$ طريقة 2 : ما نعتبر النقطة M ذات اللحق ان: ان دينا $|\alpha| = |\alpha|$ دسب ما سبق نستنتج أن

$$O\Omega = OM_1 = OM_2 = OM = |\alpha|$$

يعنى أن النقط Ω و M_1 و M_2 و M تنمتمى الى نفس الدائرة التي مركزها |lpha| وشعاعها O

$$egin{array}{l} \left(rac{z_{M_2}-z_\Omega}{z_{M_1}-z_\Omega}
ight) imes \left(rac{z_{M_1}-z_M}{z_{M_2}-z_M}
ight)\in\mathbb{R}\ :$$
يعني أن : $\left(rac{z_{M_2}-z_\Omega}{z_{M_1}-z_\Omega}
ight)\div\left(rac{z_{M_2}-z_M}{z_{M_1}-z_M}
ight)\in\mathbb{R}\ :$ يعني أن : $\left(rac{z_2-lpha}{z_1-lpha}
ight)\div\left(rac{z_2-|lpha|e^{i heta}}{z_1-|lpha|e^{i heta}}
ight)\in\mathbb{R}\ :$ يعني أن :

تمرين 2 (3 نقط)

عدد الامكانيات لسحب n كرة بالتتباع وبدون احلال من اصل n كرة هو: $card(\Omega) = A_n^n = n!$

ليكن الحدث A: " الحصول على الكرات 1 و 2 و 3 بالتتابع (1)

لكي يتحقق الحدث A يجب ان تظهر الكرة 1 في السحبات 1 الى

card(A) = n - 2 : اذن لدينا

$$P(A) = rac{card(A)}{card(\Omega)} = rac{n-2}{n!}$$
 : ومنه

ليكن الحدث B: " الحصول على الكرات 1 و 2 و 3 في هذا 2

n	n-1	n-2	 2	1
0	\circ	0	 \bigcirc	\bigcirc

عدد امكانيات اختيار ثلاث خانات لوضع الكرات 1 و 2 و 3 في C_n^3 : هذا الترتيب من اصل n خانة هو

$$card(B) = C_n^3 = \frac{n!}{3!(n-3)!}$$
 : اذن لدينا

$$P(B) = \frac{card(B)}{card(\Omega)} = \frac{n!}{3!(n-3)!n!} = \frac{1}{6(n-3)!}$$
:

نعتبر المتغير العشوائي X_n الذي يساوي العدد الضلروري من 33 و 2 و السحبات للحصول على الكرات 1

اذن نحتاج 3 سحبات على الأقل للحصول على الكرات الثلاث $X_n(\Omega) = \{3, 4, ..., n\}$ ومنه

n) خانة	-k		- k خانة - k خانة	- 1)	
n		k		1	رقم السحبة
0	0	0	0	0	الكرات

3 في السحبة رقم k يجب ان تكون الكرة تحمل الرقم 1 او يعنى لدينا 3 امكانيات،

وعدد امكانيات اختيار خانتين لوضع الكرتين المتبقيتين في خانة هو (k-1)

$$A_{k-1}^2 = \frac{(k-1)!}{(k-3)!} = (k-2)(k-1)$$

وعدد امکانیات ترتیب (n-3) کرة علی (n-3) خانة متبقة هو (n-3)! وحسب المبدأ العام للتعداد لدينا :

$$card(X_n = k) = 3 \times A_{k-1}^2 \times (n-3)!$$

ومنه:

تمرین 3 (3.5 نقط) (1) لدینا :

$$\sum_{k=3}^{n} P(X_n = k) = \frac{3\left(\sum_{k=3}^{n} (k-1)^2 - (k-1)\right)}{n(n-1)(n-2)}$$

$$= \frac{3\left(\frac{(n-1)n(2(n-1)+1)}{6} - \frac{(n-1)n}{2}\right)}{n(n-1)(n-2)}$$

$$= \frac{3\left(\frac{n(n-1)(2n-1)}{6} - \frac{3n(n-1)}{6}\right)}{n(n-1)(n-2)}$$

$$= \frac{3n(n-1)(2n-1-3)}{6n(n-1)(n-2)}$$

$$= \frac{n(n-1)(2n-4)}{2n(n-1)(n-2)}$$

$$= \frac{2n(n-1)(n-2)}{2n(n-1)(n-2)}$$

$$= 1$$

$$P\left(X_{n}=k
ight)=rac{card\left(X_{n}=k
ight)}{card\left(\Omega
ight)}$$

$$=rac{3A_{k-1}^{2}\left(n-3
ight)!}{n!}$$

$$=rac{3\left(k-2
ight)\left(k-1
ight)\left(n-3
ight)!}{n!}$$

$$=rac{3\left(k-2
ight)\left(k-1
ight)\left(n-3
ight)!}{\left(n-3
ight)!\left(n-2
ight)\left(n-1
ight)n}$$

$$=\left[rac{3\left(k-1
ight)\left(k-2
ight)}{n\left(n-1
ight)\left(n-2
ight)}
ight]$$

$$\sum_{k=3}^{n}P(X_{n}=k)=1: \text{ if }i$$

$$\sum_{k=3}^{n}P(X_{n}=k)=1: \text{ if }i$$

$$\sum_{k=3}^{n}\left(k-1
ight)\left(k-2
ight)$$

$$=rac{3\sum_{k=3}^{n}\left(k-1
ight)^{2}-\left(k-1
ight)}{n\left(n-1
ight)\left(n-2
ight)}$$

$$=rac{3\sum_{k=3}^{n}\left(k-1
ight)^{2}-\left(k-1
ight)}{n\left(n-1
ight)\left(n-2
ight)}$$

 $\det(\overrightarrow{e_1}, \overrightarrow{e_2}) = \begin{vmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{vmatrix} = \frac{1}{2} \times \frac{-1}{2} - \frac{1}{2} \times \frac{1}{2} = \frac{-1}{2} \neq 0$ $\overline{V_2}$ ومنه : فريد $(\overline{e_1},\overline{e_2})$ أساس للفضاء $\overrightarrow{e_1} * \overrightarrow{e_1} = \left(\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}\right) * \left(\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}\right) = \left(\frac{1}{4} + \frac{1}{4}\right)\overrightarrow{i} + \left(\frac{1}{4} + \frac{1}{4}\right)\overrightarrow{j} = \frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j} = \overrightarrow{e_1}$ $\overrightarrow{e_2} * \overrightarrow{e_2} = \left(\frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}\right) * \left(\frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}\right) = \left(\frac{1}{4} + \frac{1}{4}\right)\overrightarrow{i} + \left(\frac{-1}{4} + \frac{-1}{4}\right)\overrightarrow{j} = \frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j} = \overrightarrow{e_2}$ $\overrightarrow{e_1} * \overrightarrow{e_2} = \left(\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}\right) * \left(\frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}\right) = \left(\frac{1}{4} - \frac{1}{4}\right)\overrightarrow{i} + \left(\frac{-1}{4} + \frac{1}{4}\right)\overrightarrow{j} = 0\overrightarrow{i} + 0\overrightarrow{j} = \overrightarrow{0}$ $\overrightarrow{e_2} * \overrightarrow{e_1} = \left(\frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}\right) * \left(\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}\right) = \left(\frac{1}{4} - \frac{1}{4}\right)\overrightarrow{i} + \left(\frac{1}{4} + \frac{-1}{4}\right)\overrightarrow{j} = 0\overrightarrow{i} + 0\overrightarrow{j} = \overrightarrow{0}$ $\left(\stackrel{\longrightarrow}{x} + y \stackrel{\longrightarrow}{j} = \left(\stackrel{X}{y} \right)$ لكل X و Y و Y' من $\mathbb R$ لدينا : $\left(\stackrel{\longrightarrow}{\text{UTP}} \right)$ لكل X $(X\overrightarrow{e_1} + Y\overrightarrow{e_2}) * (X'\overrightarrow{e_1} + Y'\overrightarrow{e_2}) = \left(X\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} + Y\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}\right) * \left(X'\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} + Y'\begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}\right)$ $= \left(\begin{array}{c} \frac{X+Y}{2} \\ \frac{X-Y}{2} \end{array}\right) * \left(\begin{array}{c} \frac{X'+Y'}{2} \\ \frac{X'-Y'}{2} \end{array}\right)$ $= \left(\frac{(X+Y)(X'+Y') + (X-Y)(X'-Y')}{(X+Y)(X'-Y') + (X-Y)(X'+Y')} \right)$ $= \left(\frac{2XX' + 2YY'}{2XX' - 2YY'} \right) = \left(\frac{XX' + YY'}{2XX' - YY'} \right)$ $=\frac{XX'+YY'}{2}\overrightarrow{i}+\frac{XX'-YY'}{2}\overrightarrow{j}$

$$(X\overrightarrow{e_1} + Y\overrightarrow{e_2}) * (X'\overrightarrow{e_1} + Y'\overrightarrow{e_2}) = XX'\left(\frac{1}{2}\overrightarrow{i} + \frac{1}{2}\overrightarrow{j}\right) + YY'\left(\frac{1}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}\right)$$
$$= XX'\overrightarrow{e_1} + YY'\overrightarrow{e_2}$$

: عنصربن من V_2 لدينا (x',y') و الكن (x',y') عنصربن من (x,y) لدينا

$$(x\overrightarrow{i} + y\overrightarrow{j}) * (x'\overrightarrow{i} + y'\overrightarrow{j}) = (xx' + yy') \overrightarrow{i} + (xy' + yx') \overrightarrow{j}$$

$$= (x'x + y'y) \overrightarrow{i} + (x'y + y'x) \overrightarrow{j}$$

$$= (x'\overrightarrow{i} + y'\overrightarrow{j}) * (x\overrightarrow{i} + y\overrightarrow{j})$$

ومنه : القانون * تبادل<mark>ي</mark>

: ندينا
$$V_2$$
 من من V_2 و $\left(egin{array}{c} a \\ b \end{array}
ight)$ و $\left(egin{array}{c} x' \\ y' \end{array}
ight)$ و $\left(egin{array}{c} x \\ y \end{array}
ight)$

$$\begin{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} * \begin{pmatrix} x' \\ y' \end{pmatrix} \end{pmatrix} * \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} xx' + yy' \\ xy' + yx' \end{pmatrix} * \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a(xx' + yy') + b(xy' + yx') \\ b(xx' + yy') + a(xy' + yx') \end{pmatrix}$$

$$= \begin{pmatrix} axx' + ayy' + bxy' + byx' \\ bxx' + byy' + axy' + ayx' \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} * \begin{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} * \begin{pmatrix} a \\ b \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} * \begin{pmatrix} ax' + by' \\ bx' + ay' \end{pmatrix} = \begin{pmatrix} x (ax' + by') + y (bx' + ay') \\ x (bx' + ay') + y (ax' + by') \end{pmatrix}$$

$$= \begin{pmatrix} axx' + ayy' + bxy' + byx' \\ bxx' + byy' + axy' + ayx' \end{pmatrix}$$

ومنه : القانون * تجميعي

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 : نلاحظ أن: $*$ تبادلي فإن: $*$ وبما أن $*$ تبادلي فإن: $*$ ومنه: $e = \overrightarrow{i}$ عنصرا محايدا هو $e = \overrightarrow{i}$ عند محايدا هو $e = \overrightarrow{i}$

د لدینا
$$+$$
 قانون ترکیب داخلی فی V_2 وتجمیعی، وتبادلی، وله عنصر محاید $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ وکل عنصر $\begin{pmatrix} a \\ b \end{pmatrix}$ من V_2 یقبل عنصرا محایدا V_2 وحیدا هو $\begin{pmatrix} e \\ f \end{pmatrix}$ و منه V_2 زمرة تبادلیة. ولکل V_3 و لکل V_4 و V_4 من V_5 من V_5 ادینا V_5

$$\begin{pmatrix} a \\ b \end{pmatrix} * \begin{bmatrix} \begin{pmatrix} c \\ d \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} \end{bmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} * \begin{pmatrix} c+e \\ d+f \end{pmatrix} = \begin{pmatrix} a(c+e)+b(d+f) \\ a(d+f)+b(c+e) \end{pmatrix} = \begin{pmatrix} ac+ae+bd+bf \\ ad+af+bc+be \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} * \begin{pmatrix} c \\ d \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} * \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} ac+bd \\ ad+bc \end{pmatrix} + \begin{pmatrix} ae+bf \\ af+be \end{pmatrix} = \begin{pmatrix} ac+bd+ae+bf \\ ad+bc+af+be \end{pmatrix}$$

 V_2 و 2)ج) القانون * تجميعي وتبادلي وله عنصرا محايدا في و V_2 القانون * تجميعي وتبادلي وله عنصرا محايدا في

وبالتالي : $(V_2,+,*)$ حلقة تبادلية واحدية

$$\overrightarrow{x}\in V_2:$$
 لان $\overrightarrow{x}=\lambda$ لان $E_{\overrightarrow{u}}$ واذا کان $\overrightarrow{x}\in E_{\overrightarrow{u}}$ فرن $E_{\overrightarrow{u}}$ لان $E_{\overrightarrow{u}}\neq\emptyset$ لان $E_{\overrightarrow{u}}\neq\emptyset$ واذا کان $E_{\overrightarrow{u}}\subset V_2:$ فرن $E_{\overrightarrow{u}}\subset V_2:$ فرن فراء متجهی، یعنی أن

 $(V_2,+)$ ومنه : ($E_{\overrightarrow{u}},+)$ زمرة جزئية للزمرة

 $\overrightarrow{y}=\lambda'\overrightarrow{u}$ و $\overrightarrow{x}=\lambda\overrightarrow{u}$: نيکن \overrightarrow{x} و λ بحيث λ و نصران من $E_{\overrightarrow{u}}$ يعني انه يوجد عددين حقيقيين λ و نصران من $E_{\overrightarrow{u}}$ عنصران من $E_{\overrightarrow{u}}$ و نصران من نصران

$$\alpha \overrightarrow{x} + \overrightarrow{y} = \alpha \lambda \overrightarrow{u} + \lambda' \overrightarrow{u} = (\alpha \lambda + \lambda') \overrightarrow{u} \in E_{\overrightarrow{u}}$$

 $(V_2,+,.)$ ومنه : $(lpha\lambda+\lambda')\in\mathbb{R}$ فضاء متجهي جزئي للفضاء $(lpha\lambda+\lambda')\in\mathbb{R}$: لأن

$$(a;b)\in\mathbb{R}^2$$
 ليكن $\overrightarrow{u}=\left(egin{array}{c}a\\b\end{array}
ight)\in V_2ackslash\left(\overrightarrow{0}
ight)$ ليكن $\overrightarrow{x}=\alpha\overrightarrow{u}$ وليكن $\overrightarrow{x}=\alpha\overrightarrow{u}$ وليكن $\overrightarrow{x}=\alpha\overrightarrow{u}$ عنصران من $\overrightarrow{x}=\alpha\overrightarrow{u}$ بحيث $\overrightarrow{x}=\alpha\overrightarrow{u}$

$$\overrightarrow{u}*\overrightarrow{u}=\left(egin{array}{c} a \ b \end{array}
ight)*\left(egin{array}{c} a \ b \end{array}
ight)=\left(egin{array}{c} a^2+b^2 \ 2ab \end{array}
ight)$$
: لدينا

 $\overrightarrow{x}*\overrightarrow{y}\in E_{\overrightarrow{u}}$: اذا کان $E_{\overrightarrow{u}}$ مستقر بالنسبة للقانون * یعنی أن لکل \overrightarrow{x} و \overrightarrow{x} عنصران من $E_{\overrightarrow{u}}$ لدینا

$$\left(egin{array}{c} lpha a \ lpha b \end{array}
ight)st\left(egin{array}{c} eta a \ eta b \end{array}
ight)=\lambda\overrightarrow{u}:$$
يعني انه يوجد λ λ بحيث λ بحيث λ بحيث λ بحيث λ

$$lphaeta\left(\overrightarrow{u}*\overrightarrow{u}
ight)=\lambda\overrightarrow{u}$$
: يعني $lphaeta\left(egin{array}{c} a^2+b^2 \\ 2ab \end{array}
ight)=\lambda\overrightarrow{u}:$ يعني يعني $\left(egin{array}{c} lphaeta^2+lphaeta b^2 \\ lphaeta ab+lphaeta ab \end{array}
ight)=\lambda\overrightarrow{u}:$ يعني يعني المراجعة ال

يعني:
$$\alphaeta\left(\overrightarrow{u}*\overrightarrow{u},\overrightarrow{u}
ight)$$
 عني: وهذا يعني أن : $lphaeta\left(\overrightarrow{u}*\overrightarrow{u}
ight)-\lambda\overrightarrow{u}=\overrightarrow{0}$ مقيدة

$$(lpha_1,lpha_2)
eq (0,0)$$
 اذا كانت الأسرة $(\overrightarrow{u}*\overrightarrow{u})+lpha_1$ مقيدة يعني انه يوجد $\lambda\in\mathbb{R}$ بحيث $\lambda\in\mathbb{R}$ بحيث $\lambda\in\mathbb{R}$ بحين انه يوجد $(\overrightarrow{u}*\overrightarrow{u},\overrightarrow{u})$ مقيدة $(\overrightarrow{u}*\overrightarrow{u},\overrightarrow{u})$ مقيدة يعني $lpha_1$ (a^2+b^2) عني $lpha_1$ (a^2+b^2)

$$\overrightarrow{x}*\overrightarrow{y}=lphaeta\left(-rac{lpha_2}{lpha_1}\overrightarrow{u}
ight):$$
يعني: $\overrightarrow{x}*\overrightarrow{y}=lphaeta\left(egin{array}{c} a^2+b^2\\ 2ab \end{array}
ight):E_{\overrightarrow{u}}$ من $\overrightarrow{x}*\overrightarrow{y}=-rac{lphaetalpha_2}{lpha_1}$ يعني: $\overrightarrow{x}*\overrightarrow{y}=-rac{lphaetalpha_2}{lpha_1}$ مع $\overrightarrow{x}*\overrightarrow{y}=-rac{lphaetalpha_2}{lpha_1}$ مع $\overrightarrow{x}*\overrightarrow{y}=-rac{lphaetalpha_2}{lpha_1}$

وهذا يعني أن $E_{\overrightarrow{u}}$ مستقر بالنسبة للقانون *. وبالتالي : $E_{\overrightarrow{u}}$ مستقر بالنسبة للقانون * الأسرة \overline{u} ، وبالتالي التالي يعني أن عن الأسرة $E_{\overrightarrow{u}}$ الأسرة القانون $E_{\overrightarrow{u}}$ والتالي التالي يعني أن التالي الأسرة القانون $E_{\overrightarrow{u}}$ والتالي التالي ال

$$arphi$$
 : $\left\{ egin{array}{l} R
ightarrow E_{\overrightarrow{u}} \ x
ightarrow rac{x}{lpha} \overrightarrow{u} \end{array}
ight.$ نعتبر النطبيق : $(\exists lpha \in \mathbb{R}^*) \ ; \ \overrightarrow{u} * \overrightarrow{u} = lpha \overrightarrow{u} : ec{u}
ight.$ (4)

$$\varphi(x) * \varphi(y) = \frac{x}{\alpha} \overrightarrow{u} * \frac{y}{\alpha} \overrightarrow{u}$$

$$= \frac{xy}{\alpha^2} (\overrightarrow{u} * \overrightarrow{u})$$

$$= \frac{xy}{\alpha^2} . \alpha \overrightarrow{u}$$

$$= \frac{xy}{\alpha^2} \overrightarrow{u}$$

$$= \frac{xy}{\alpha} \overrightarrow{u}$$

$$= \varphi(xy)$$

 $(E_{\overrightarrow{A}},*)$ نحوی (\mathbb{R}^*,\times) من تشاکل من

$$arphi\left(x
ight)=arphi\left(y
ight)\Rightarrow\dfrac{x}{lpha}\overrightarrow{u}=\dfrac{y}{lpha}\overrightarrow{u}\Rightarrow\dfrac{x}{lpha}=\dfrac{y}{lpha}\Rightarrow x=y:$$
ولدينا $arphi$ تبايني لأن $arphi\left(x
ight)=\lambda\overrightarrow{u}:$ اذن $arphi\left(x
ight)=\lambda\alpha\in\mathbb{R}^{*}$. اذن $arphi\left(x
ight)=\lambda\alpha\in\mathbb{R}^{*}$. اذن $arphi\left(x
ight)=\lambda\alpha$

 $(E_{\overrightarrow{u}},*)$ وبالتالي : $(\mathbb{R}^*, imes)$ من تشاكل تقابلي من نحوى

$$(V_2,+)$$
 زمرة جزئية للزمرة ($E_{\overrightarrow{u}},+)$: (أ(3) السؤال \bullet

• نعلم أن : (\mathbb{R}^*, \times) زمرة، اذن (R^*, \times) هي كذلك زمرة، لأن φ تشاكل تقابلي،

ولدينا
$$\left(E_{\overrightarrow{u}}\setminus\left\{\overrightarrow{0}
ight\},st
ight)$$
 يعني أن $\left(E_{\overrightarrow{u}}\setminus\left\{\overrightarrow{0}
ight\},st
ight)$ زمرة ولدينا $\left(E_{\overrightarrow{u}}\setminus\left\{\overrightarrow{0}
ight\},st
ight)$

- لدينا القانون * توزيعي على +
 - $E_{\overrightarrow{n}}$ ولدينا * تبادلي في

 \mathbb{R}^* الدينا لكل x و y من

وبالتالى : $(E_{\overrightarrow{u}},+,*)$ جسم تبادلى.

(10 نقط) $I =]-1, +\infty$ الجزء الأول: نعبر الدالة العددية g المعرفة على

$$g(x) = 1 + x^2 - 2x(1+x)\ln(1+x)$$
 بما یلي

(۱) لدينا:

 $\lim_{x \to -1+} (1+x) \ln (1+x) = \lim_{x \to -1+} u \ln u = 0$

 $\lim_{x \to -1^{+}} g(x) = \lim_{x \to -1^{+}} 1 + x^{2} - 2x(1+x)\ln(1+x)$ $= 1 + (-1)^2 - 2 \times (-1) \times 0$

 $\lim_{x \to -1^+} g(x) = 2$: ومنه

 $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (1 + x^2 - 2x(1+x)\ln(1+x))$ $= \lim_{x \to +\infty} x^2 \left(\frac{1+x^2}{x^2} - 2 \frac{1+x}{x} \ln(1+x) \right)$

 $\lim_{x \to +\infty} \frac{1+x}{x} = 1$ و $\lim_{x \to +\infty} \frac{1+x^2}{x^2} = 1$ لدينا $\lim_{x \to +\infty} \ln (1+x) = +\infty$ و و

 $\lim_{x \to +\infty} \frac{1+x^2}{x^2} - 2\frac{1+x}{x} \ln(1+x) = -\infty$ $\lim_{x \to +\infty} x^2 = +\infty$: وبما أن

 $\lim_{x \to +\infty} g(x) = -\infty$: فإن

 \mathbb{R} لدينا الدالة: $x\mapsto 1+x^2$ قابلة للاشتقاق على 2

 \mathbb{R} والدالة: $x \mapsto 2x(1+x)$ قابلة للاشتقاق على I والدالة : $\ln(1+x)$ قابلة للاشتقاق على $x\mapsto \ln(1+x)$

ومنه الدالة : g قابلة للاشتقاق على I ولدينا لكل x من

 $g'(x) = 2x - 2(1+2x)\ln(x+1) - \frac{2x(1+x)}{(1+x)}$ $=2x-2(1+2x)\ln(x+1)-2x$ $= -2(1+2x)\ln(x+1)$

 $(\forall x \in I) \; ; \; g'(x) = -2(1+2x) \ln(x+1)$ ومنه :

متصلة وتناقصية g لدينا g متصلة وتناقصية g $[0,+\infty]$ قطعا على المجال

 $[-\infty,1]$ اذن g تقابل من $[0,+\infty[$ نحو $\lim_{x \to \infty} g(x) = -\infty$ وبما أن g(0) = 1 > 0 وبما f(A) < 0 بعنی أنه یوجد عدد حقیقی A > 0 بعنی أنه یوجد $f(0) \times f(A) < 0$: يعنى أن اذن حسب مبرهنة القيم الوسيطية:

 $g(\alpha) = 0$: يوجد عدد وحيد α موجب قطعا بحيث

g(0) = 1: ب $g(1) = 2 - 4 \ln 2 \approx -0.77 < 0$ $f(0) \times f(1) < 0$: اذن

0 < lpha < 1 : اذن حسب مبرهنة القيم الوسيطية

ج انطلاقا من جدول تغيرات الدالة لدينا:

$$\min_{x \in]-1,0]} g(x) = \frac{5}{4} - \frac{\ln 2}{2} \approx 0.9 > 0$$

اذن لكل x من [-1,0] لدينا

$$\min_{x \in]-1,0]} g\left(x\right) < g\left(x\right)$$

[-1,0] اذن x = 0 < g(x) اذن $g(0) > g(x) > g(\alpha)$: فإن $0 < x < \alpha$ $[0, \alpha]$ لأن الدالة g تناقصية على المجال $g(\alpha) = 0$ لأن 1 > g(x) > 0 ومنه $[-1, \alpha]$ وبالتالى: 0 < g(x) لكل x من $g(\alpha) > g(x)$: فإن $\alpha < x$ $[\alpha, +\infty]$ لأن الدالة g تناقصية على المجال $g(\alpha) = 0$: لأن 0 > g(x) : ومنه $[\alpha, +\infty[$ وبالتالى : g(x) < 0 لكل x من

زء الثانى: نعتبر الدالة المعرفة على $I=]-1,+\infty$ بما يلى وليكن $f(x)=rac{\ln(1+x)}{1+x^2}$ وليكن وليكن وليكن المثل للدالة المثل في معلم $.(O; \overrightarrow{i}; \overrightarrow{j})$ متعامد ممنظم

 $\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \frac{\ln(1+x)}{1+x^{2}}$ $= \lim_{x \to -1^+} \frac{\ln\left(1+x\right)}{2}$

اذن: المستقيم x=-1 مقارب عمودي للمنحني (C)

(ب) لدينا:

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1+x}{1+x^2} \frac{\ln(1+x)}{1+x}$ $= 0 \times 0$ $= \boxed{0}$

اذن: محور الأفاصيل مقارب مقارب افقى للمنحنى (C) بجوار $+\infty$

 \mathbb{R} لدينا الدالة: $x\mapsto 1+x^2$ قابلة للاشتقاق على $1+x^2 \neq 0$: ولكل x من \mathbb{R} لدينا I والدالة $x\mapsto \ln{(1+x)}$ قابلة للاشتقاق على (مركب دالتين) اذن الدالة f قابلة للاشتقاق على I

ولكل x من I لدينا:

$$f'(x) = \frac{1}{(1+x^2)^2} \left(\frac{1+x^2}{1+x} - 2x \ln(1+x) \right)$$

$$= \frac{1}{(1+x^2)^2} \left(\frac{1+x^2-2x(1+x)\ln(1+x)}{1+x} \right)$$

$$= \frac{1+x^2-2x(1+x)\ln(1+x)}{(1+x)(1+x^2)^2}$$

$$= \frac{g(x)}{(1+x)(1+x^2)^2}$$

$$\forall x \in I \; ; \; f'(x) = \frac{g(x)}{(1+x)(1+x^2)^2}$$
 : and

$$(1+x^2)^2>0$$
 : \mathbb{R} من x لدينا لكل x من $x+1>0$: I ولكل x من $x+1>0$: I ومنه لكل x من x من x ومنه لكل x من x من x اذن اشارة x هي اشارة الدلة x ايعني أن: x x الكل x من x من x الكل x من x

ج لدينا:

$$g(\alpha) = 0 \Leftrightarrow 1 + \alpha^2 - 2\alpha (1 + \alpha) \ln (1 + \alpha) = 0$$
$$\Leftrightarrow \ln (1 + \alpha) = \frac{1 + \alpha^2}{2\alpha (1 + \alpha)}$$
$$\Leftrightarrow \frac{\ln (1 + \alpha)}{1 + \alpha^2} = \frac{1}{2\alpha (1 + \alpha)}$$

$$f(lpha) = rac{\ln{(1+lpha)}}{1+lpha^2} = rac{1}{2lpha\,(1+lpha)}$$
 : وبالتالي

: انطلاقا من جدول تغيرات الدالة f لدينا

$$\max_{x \in I} f(x) = f(\alpha)$$

$$f\left(x
ight) \leq \max_{x \in I} f\left(x
ight)$$
: ومنه لكل x من I لدينا $f\left(x
ight) \leq f\left(lpha
ight)$ يعني أن :

$$f(x) \le \frac{1}{2\alpha(1+\alpha)}$$
: يعني أن

$$x_0 = 0$$
 ليكن (T) مماس للمنعنى (C) في $(T): y = (x - 0) f'(0) + f(0):$ اذن $(T): y = x$

$$h\left(x
ight)=:$$
 نعتبر الدالة h المعرفة على \mathbb{R}^+ بما يلي الدالة $\ln\left(1+x\right)-x$ على \mathbb{R}^+ ولدينا الدالة h متصلة وقابلة للاشتقاق على \mathbb{R}^+

$$(\forall x \in \mathbb{R}^+) \ h'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} \le 0$$

$$\mathbb{R}^+$$
 اذن الدالة h تناقصية على $h(x) < h(0):$ ومنه اذا كان $x>0$ فإن $(\forall x>0):$ اذن $\ln(1+x)-\ln(x)<0:$ ومنه :

$$1+x^2 > 0$$
 لدينا لكل x من \mathbb{R}_+^* من $\ln{(1+x)} < x:\mathbb{R}_+^*$ لدينا لكل x

: ولدينا
$$\frac{\ln{(1+x)}}{1+x^2} < \frac{x}{1+x^2}$$

$$x > 0 \Rightarrow x^2 \ge 0 \Rightarrow 1 + x^2 > 1$$
$$\Rightarrow \frac{1}{1 + x^2} < 1 \Rightarrow \frac{x}{1 + x^2} < x$$

$$\frac{\ln{(1+x)}}{1+x^2} < x$$
 : ومنه

$$(\forall x > 0)$$
 ; $f(x) < x$: وبالتالي

د الشكل:

$$J = \int_{0}^{1} f(x) dx$$
 : نضع

اذن
$$x=rac{1-t}{1+t}$$
 : ومنه $t=rac{1-x}{1+x}$

$$\left(\begin{array}{c} x \to 0 \Leftrightarrow t \to 1 \\ x \to 1 \Leftrightarrow t \to 0 \end{array}\right)$$

ولدينا :

$$dx = \frac{-(1+t) - (1-t)}{(1+t)^2} dt$$
$$dx = \frac{-2}{(1+t)^2} dt$$

$$J = \int_0^1 f(x) dx = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$$
: ومنه

Ö

2020

$$(C)$$
 مساحة الحيز المستوي المحصور بين المنحنى في : $x=0$ و (T) و المستقيمات (T)

$$\mathcal{A} = \int_0^1 \left| f(x) - x \right| dx \, \left\| \overrightarrow{i} \right\| \times \left\| \overrightarrow{j} \right\|$$
$$= 4 \int_0^1 \left(x - f(x) \right) dx$$

$$\begin{split} f(x) & \leq x & : \text{لدينا} \ x \leq 0 \ \text{لأن لكل} \\ \left\|\overrightarrow{j}\right\| \times \left\|\overrightarrow{j}\right\| = 2 \times 2 = 4cm^2 \ : \text{ولدينا} : \end{split}$$
 ولدينا :

$$\mathcal{A} = 4\left(\int_0^1 x dx - \int_0^1 f(x) dx\right)$$
$$= 4\left(\left[\frac{x^2}{2}\right]_0^1 - \frac{\pi \ln 2}{8}\right)$$
$$= 4\left(\frac{1}{2} - \frac{\pi \ln 2}{8}\right)$$
$$= \left(2 - \frac{\pi \ln 2}{2}\right)$$

$$\mathcal{A} = \left(2 - rac{\pi \ln 2}{2}
ight) cm^2$$
 : وبالتالي

باستعمال المكاملة بالأجزاء لدينا:

$$K = \int_0^1 \frac{\arctan x}{1+x} dx$$

$$= \int_0^1 \ln'(1+x) \arctan x dx$$

$$= \left[\ln(1+x) \arctan x\right]_0^1 - \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$$

$$= \ln 2 \arctan 1 - J$$

$$= \frac{\pi \ln 2}{4} - \frac{\pi \ln 2}{8}$$

$$= \frac{\pi \ln 2}{8}$$

$$K = \frac{\pi \ln 2}{2}$$
 : ومنه

$$J = \int_0^1 f(x) dx = \int_0^1 \frac{\ln(1+x)}{1+x^2} dx$$

$$= \int_1^0 \frac{\ln\left(1+\frac{1-t}{1+t}\right)}{1+\left(\frac{1-t}{1+t}\right)^2} \frac{-2}{(1+t)^2} dt$$

$$= 2\int_0^1 \frac{\ln\left(\frac{2}{1+t}\right)}{(1+t)^2 + (1-t)^2} dt$$

$$= 2\int_0^1 \frac{\ln 2 - \ln(1+t)}{2+2t^2} dt$$

$$= \int_0^1 \frac{\ln 2 - \ln(1+t)}{1+t^2} dt$$

$$= \int_0^1 \frac{\ln 2}{1+t^2} dt - \int_0^1 \frac{\ln(1+t)}{1+t^2} dt$$

$$= \ln 2\left[\arctan t\right]_0^1 - J$$

$$= \ln 2\left(\frac{\pi}{4} - 0\right) - J$$

$$= \frac{\pi \ln 2}{4} - J$$

 $J = \frac{\pi \ln 2}{4} - J$ $2J = \frac{\pi \ln 2}{4}$ $J = \frac{\pi \ln 2}{\circ}$

$$J = \frac{\pi \ln 2}{8}$$
 وبالتالي :