Recitation 1

By Jiachen Guo

jiachenguo2020@u.northwestern.edu

• Units

Table.1: Systems of Units

Name	Length	Time	Mass	Force
International System of Units SI	meter	second	kilogram	newton*
Office Si	m	s	kg	N
				$\left(\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^2}\right)$
U.S. Customary FPS	foot	second	slug*	pound
	ft	s	$\left(\frac{\mathrm{lb}\cdot\mathrm{s}^2}{\mathrm{ft}}\right)$	lb

distance	"m" meter	"ft" foot.	
	1m = 100 cm 1m = 1000 mm	1 ft = 12 in 1 ft = 0.3048 m	
time	1 hr =	"g" seconds 60 seconds 60 min	
		: 24 hrs	
ma ss	"Kg" Kilogram slug. 1 slug = 14.59 Kg		
angle	"rad" rodian degrees X 180	"rad" radian = rad.	
Force	$N = \frac{kg}{g^2}$		
	11b = 4.448 nano- "n" ×107 micro- "H" ×106 milli- "m" ×103 Kilo- "K" × 10	Mega- "H" X10 ⁶ 919a- "G" X10 ⁹	

US'

• Units

Table.2: Units Conversion

Time 1 minute 60 seconds 1 hour 60 minutes =1 day 24 hours Length 1 foot 12 inches 1 mile 5280 feet 1 inch 25.4 millimeters 1 foot = 0.3048 metersAngle 2π radians = 360 degrees 1 slug 14.59 kilograms Mass 1 pound Force 4.448 newtons

o Problem 1

The cross-sectional area of the C12×30 Aı Standard Channel steel beam is $A = 8.81 \text{ in}^2$. WI cross-sectional area in mm²?

 \uparrow 1 inch = 25.4 millimeters

o Problem 2

Suppose that in Einstein's equation

$$E = mc^2$$

the mass m is in kilograms and the velocity of light c is in meters per second.

- (a) What are the SI units of E?
- (b) If the value of E in SI units is 20, what is its value in U.S. Customary base units?

Problem 3

The force of gravity that acts on an object on the surface of Mars is 20 N. What force of gravity
will act on the same object on the surface of the Earth? (use gravitational field strength g = 9.8
N/Kg on the surface of the Earth).

M_mars (= 6.39×10^{23} kg) is the mass of Mars, R_mars (= 3.39×10^6 m)

$$F_{mar} = G \frac{m_0 m_{mar}}{7m} = \frac{F_{mar} r_m}{G_{mmar}} = 5.3926 kg$$

$$F_{mar} = G \frac{m_0 m_{mar}}{G_{mmar}} = 5.3926 kg$$

$$F_{mar} = G \frac{m_0 m_{mar}}{G_{mmar}} = 5.3926 kg$$