Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Matemática Discreta Período: 2025/1

Professor: Anderson José de Oliveira

Lista de Exercícios 8 - Funções

1. Utilizando a definição de função, explique o diagrama de flechas que é utilizado para ilustrar o conceito de função no Ensino Médio.

2. Consideremos os conjuntos $A=\{0,1,2\}$ e $B=\{-2,-1,0,1,2\}$ e as relações binárias de A em B:

(a)
$$f_1 = \{(x, y) \in A \times B | y = x^2 \};$$

(b)
$$f_2 = \{(x, y) \in A \times B | y^2 = x^2 \};$$

(c)
$$f_3 = \{(x, y) \in A \times B | y = x - 2\};$$

(d)
$$f_4 = \{(x, y) \in A \times B | y = x^2 - 2x + 1\}$$

Construa o diagrama de flechas de cada uma, verifique se é ou não uma função de A em B e, em caso afirmativo, escreva o domínio, o contradomínio e o conjunto imagem.

3. Sejam f, g e h três relações binárias de A em \mathbb{R} , com $A = \{x \in \mathbb{R} | 1 \le x \le 6\}$, cujos gráficos cartesianos são apresentados a seguir:

Verifique, em cada caso, se a relação é ou não função de A em \mathbb{R} e, em caso afirmativo, escreva o domínio, o contradomínio e o conjunto imagem.

- **4.** Sejam $f:A\to B$ e $g:B\to A$ funções dadas a seguir. Verifique se as funções f e g são iguais.
 - (a) $f: (-\infty, 1] \to \mathbb{R}, f(x) = x 1 \text{ e } g: [-1, +\infty) \to \mathbb{R}, g(x) = x 1.$
 - (b) $f: A \to \mathbb{R}, f(x) = 3x \text{ e } g: B \to \mathbb{R}, g(x) = x^2, \text{ onde } A = \{x \in \mathbb{R} : x^2 3x = 0\} \text{ e } B = \{0, 3\}.$
- **5.** Sejam $f:A\to B$ e $g:A\to B$ funções. Então f=g, se e somente se, f(x)=g(x), para todo $x\in A$.
- **6.** Seja $A = \{1, 2, 3, 4, 5, 6\}$ e sejam $f : A \to A$ e $g : A \to A$ definidas por: $f = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)\}$, $g = \{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)\}$. Encontre $g \circ f$ e $f \circ g$.
- 7. Dadas as funções f(x) = 2x + a e g(x) = 3x 1, determine o valor de a para que se tenha $(f \circ g)(x) = (g \circ f)(x)$.
- 8. Sejam $f \in g$ funções de \mathbb{R} em \mathbb{R} definidas, por f(x) = x + 1 e $g(x) = x^2 + x + 1$.
 - (a) Calcule as funções compostas $f \circ f$, $g \circ f$ e $f \circ g$.
 - (b) Demonstre que f é bijetora e encontre a sua inversa.
 - (c) Mostre que g não é injetora nem sobrejetora.
- **9.** Sejam $f \in g$ funções de \mathbb{R} em \mathbb{R} definidas, por $f(x) = x^2 \in g(x) = x 2$.
 - (a) Calcule f(0) e g(0) e pré-imagens de 1 por f e g.
 - (b) Encontre $g \circ f$ e $f \circ g$ e verifique se são iguais.
 - (c) Calcule as pré-imagens de 4 por $g \circ f$ e $f \circ g$.
 - (d) Verifique se as funções f e g são injetoras e/ou sobrejetoras, justificando sua resposta.
- **10.** Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas por f(x) = 2 3x e $g(x) = x^2 5x + 3$. Determine $f \circ g$, $g \circ g$ e os seus respectivos domínios.
- 11. Prove o teorema a seguir:

Teorema 0.0.1 Sejam $f:A\to B$ e $g:C\to D$ funções tais que $\mathrm{Im}(f)\subset C$ e a relação:

$$g \circ f = \{(x, z) \in A \times D : \exists y \in B \operatorname{com} y = f(x) \land z = g(y)\},\$$

então a terna $(g \circ f, A, D)$ é uma função.

12. Prove o teorema a seguir:

Teorema 0.0.2 Sejam $f:A\to B$ e $g:C\to D$ duas funções tais que

$$f(x) = g(x),$$

para todo $x \in A \cap C$, e considere a relação em $(A \cup C) \times (B \cup D)$: $f \cup g = \{(x,y) \in (A \cup C) \times (B \cup D) : y = f(x), \text{ se } x \in A \text{ e } y = g(x), \text{ se } x \in C\}$. Então, $(f \cup g, A \cup C, B \cup D)$ é uma função.

- 13. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por f(x) = 2x + 1. Obtenha $f \circ f \circ f$.
- 14. Sejam f e g duas funções de \mathbb{R} em \mathbb{R} , definidas por:

$$f(x) = x + 3$$
, se $x \le 3$ e $x - 4$, se $x > 3$,

$$g(x) = 2x - 7, \forall x \in \mathbb{R}.$$

Determine $f \circ g \in g \circ f$.

15. Seja $f: \mathbb{R}_+ \to [-4; +\infty[$ a função definida por $f(x) = x^2 - 4$. Determine a inversa de f e esboce os gráficos de f e f^{-1} .

Bom trabalho!