Q1) Use the following information to answer the next question.

The given figure shows an isosceles triangle ABC, where AB = AC. D and E

are points on the side AB and AC such that

$$\angle 1 = \frac{5}{2} \angle 3$$
 and $\angle 2 = \frac{5}{2} \angle 4$

If AE = 3 cm, OD = 2 cm, BD = 7 cm, and OC = 6 cm, then find the sum of the perimeters of \triangle ABE and \triangle ACD?

Solution:

From the given figure, it is observed that $\angle 1 = \angle 2$ [Vertically opposite angles]

$$\therefore \frac{5}{2} \angle 3 = \frac{5}{2} \angle 4 \left[\angle 1 = \frac{5}{2} \angle 3 \text{ and } \angle 2 = \frac{5}{2} \angle 4 \right]$$

$$\Rightarrow \angle 3 = \angle 4 \dots (1)$$

∴In ∆OBC,

$$\angle 3 = \angle 4$$

⇒ OB = OC = 6 cm [Sides opposite to equal angles of a triangle are equal]

It is given that $\triangle ABC$ is isosceles with AB = AC.

Subtracting (1) from (2), we obtain

$$\angle ABC - \angle 3 = \angle ACB - \angle 4$$

$$\Rightarrow \angle ABE = \angle ACD$$

Comparing $\triangle ABE$ and $\triangle ACD$,

$$AB = AC [Given]$$

 $\angle ABE = \angle ACD$ [Shown above]

$$\angle A = \angle A$$
 [Common]

∴ ∆ABE ≅ ∆ACD [By ASA congruency criterion]

 \Rightarrow BE = CD [CPCT]

 \Rightarrow BE = CD = OC + OD = 6 cm + 2 cm = 8 cm

AE = AD = 3 cm [CPCT]

Then,

AC = AB = AD + BD = 3 cm + 7 cm = 10 cm

Thus,

Perimeter of ΔABE + Perimeter of ΔACD

= $2 \times Perimeter of \triangle ABE$

 $= 2 \times (AB + BE + AE)$

 $= 2 \times (10 + 8 + 3) \text{ cm}$

= 42 cm

Q2)

In the given figure, \triangle ABC and \triangle DBC are isosceles, where AB = AC and DB = DC. Show that AD is the angle bisector of \angle BAC.

Solution:

Comparing $\triangle ADB$ and $\triangle ADC$,

AB = AC (given)

BD = CD (given)

AD = AD (common)

∴ ΔADB \cong ΔADC [SSS congruence rule]

 $\Rightarrow \angle BAD = \angle CAD$ (corresponding parts of congruent triangles are equal)

Thus, AD is the angle bisector of ∠BAC.

Q3)

 $\frac{30}{14} \label{eq:what is the decimal expansion of } \frac{30}{14} \ ?$

Solution:

The decimal expansion of $\frac{30}{14}$ can be obtained as:

$$\frac{30}{14} = \frac{30 \div 2}{14 \div 2} = \frac{15}{7}$$

$$\begin{array}{r}
2.142857 \\
7)15 \\
\underline{14} \\
10 \\
7 \\
30 \\
\underline{28} \\
20 \\
\underline{14} \\
60 \\
\underline{56} \\
40 \\
\underline{35} \\
50 \\
\underline{49} \\
1
\end{array}$$

$$\therefore \frac{30}{14} = 2.\overline{142857}$$

Q4) If the diagonals of a parallelogram are of lengths 26 cmand 20 cm and one of its sides is 13 cm, then find the area of the parallelogram.

Solution:

Let ABCD be the parallelogram in which diagonal AC = 26 cm, diagonal BD = 20 cm, and BC = 13 cm. Let AC and BD intersect at O.

We know that diagonals of a parallelogram bisect each other.

Therefore,

OC =
$$\frac{AC}{2} = \frac{26 \text{ cm}}{2} = 13 \text{ cm}$$

OB = $\frac{BD}{2} = \frac{20 \text{ cm}}{2} = 10 \text{ cm}$

In \triangle OBC, OB = 10 cm (let a), OC = 13 cm (let b), and BC = 13 cm (let c)

Now,

$$s = \frac{a+b+c}{2} = \frac{10 \text{ cm} + 13 \text{ cm} + 13 \text{ cm}}{2} = 18 \text{ cm}$$

$$\therefore \text{ Area of } \triangle OBC = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{18 \times (18-10) \times (18-13) \times (18-13)} \text{ cm}^2$$

$$= \sqrt{18 \times 8 \times 5 \times 5} \text{ cm}^2$$

$$= 60 \text{ cm}^2$$

We know that the diagonals of a parallelogram divide it into four triangles of equal areas.

∴ Area of parallelogram ABCD = 4 ×Area of \triangle OBC = 4 ×60 cm² = 240 cm²

Q5)

 Δ PQR is an isosceles triangle with PR = PQ. An exterior angle is drawn by extending the side PR of Δ PQR.

A line XY is drawn such that it passes through R and bisects the exterior angle QRS.

Prove that XY || PQ.

Solution:

It is given that $\triangle PQR$ is an isosceles triangle with PR = RQ.

We know that angles opposite to equal sides are equal.

$$\therefore \angle PQR = \angle RPQ \dots (1)$$

Also, it is given that XY bisects ∠QRS.

$$\therefore \angle QRY = \angle YRS \dots (2)$$

We know that the measure of an exterior angle of a triangle is equal to the sum of the measures of its two opposite interior angles.

$$\therefore$$
 QRS = \angle RPQ + \angle PQR

$$\Rightarrow \angle QRS = 2\angle PQR [Using (1)]$$

$$\Rightarrow \angle QRY + \angle YRS = 2\angle PQR (\cdot \cdot \angle QRS = \angle QRY + \angle YRS)$$

$$\Rightarrow 2 \angle QRY = 2 \angle PQR$$

$$\Rightarrow \angle QRY = \angle PQR$$

Thus, the alternate interior angles made by the lines XY and PQ, when cut by the transversal RQ, are equal.

Therefore, XY||PQ

Hence, proved

Q6) Evaluate the following products using algebraic identities.

$$_{\text{(a) }993^3}\left(1\frac{1}{2}\text{ marks}\right)$$

(b)
$$1002^3 \left(1\frac{1}{2} \text{ marks}\right)$$

Solution:

(a)
$$993^3 = (1000 - 7)^3$$

We know that $(a-b)^3 = a^3 - b^3 - 3ab(a-b)$

$$\therefore 993^3 = (1000)^3 - (7)^3 - 3(1000)(7)(1000 - 7)$$

$$= 1000000000 - 343 - 21000(993)$$

= 979146657

(b)
$$(1002)^3 = (1000 + 2)^3$$

We know that $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$

$$1002^{3} = (1000)^{3} + (2)^{3} + 3(1000)(2) (1000 + 2)$$

$$= 10000000000 + 8 + 6000 (1002)$$

= 1006012008

Q7Use the following information to answer the next question.

In the given figure, AD is the bisector of $\angle BAC$ and AX is parallel to BC

What is the measure of ∠ABC?

Solution:

In the given figure, AX is parallel to BC.

$$\therefore \angle XAC = \angle ACD$$
 (Alternate interior angles)

$$\Rightarrow \angle ACD = 72^{\circ}$$

Similarly, $\angle XAD = \angle ADB$

$$\Rightarrow \angle XAD = 104^{\circ}$$

$$\Rightarrow \angle XAC + \angle CAD = 104^{\circ}$$

$$\Rightarrow$$
 \angle CAD = 104 $^{\circ}$ - 72 $^{\circ}$ = 32 $^{\circ}$

$$\therefore \angle BAC = 2 \times 32^{\circ} = 64^{\circ}$$

$$\Rightarrow$$
 \angle ABC = 180 $^{\circ}$ - 72 $^{\circ}$ - 64 $^{\circ}$ = 44 $^{\circ}$

Thus, the measure of ∠ABC is 44°.

Q8)

$$x = \frac{-1}{3}$$
 Check whether is the zero of the polynomial $p(x) = 3x + 1$.

Solution:

The point,
$$x = \frac{-1}{3}$$
, will be the zero of the polynomial $p(x) = 3x + 1$, if $p\left(\frac{-1}{3}\right) = 0$

$$p(x) = 3x + 1$$

For
$$x = \frac{-1}{3}$$

$$p\left(\frac{-1}{3}\right) = 3\left(\frac{-1}{3}\right) + 1 = 0$$

Thus,
$$x = \frac{-1}{3}$$
 is a zero of polynomial $p(x)$.

Q9) Use the following information to answer the next question.

Determine the measure of ∠ABC.

Solution:

In \triangle OFC, \angle EOC = \angle OCF + \angle OFC

$$\therefore \angle OFC = 130^{\circ} - 50^{\circ} = 80^{\circ}$$

BC is parallel to EF.

$$\therefore \angle ABC = \angle OFC$$
 (Corresponding angles)

$$\Rightarrow \angle ABC = 80^{\circ}$$

Thus, the measure of ∠ABC is 80°.

Q10) Represent $\sqrt{6.5}$ on the number line.

Solution:

Draw a line segment PQ = 6.5 units and extend it to R such that QR = 1 unit.

M is the midpoint of PR.

With M as the centre and MR as the radius, draw a semicircle.

Draw NQ \(\pm \PR \), intersecting the semicircle at N.

Then, QN =
$$\sqrt{6.5}$$
 units

Now, with Q as the centre and QN as the radius, draw an arc, meeting PR at S (when PR is extended).

Thus, QS = QN =
$$\sqrt{6.5}$$
 units

Q11) The polynomials $P(t) = 4t^3 - st^2 + 7$ and $Q(t) = t^2 + st + 8$ leave the same remainder when divided by (t-1). Find the value of s.

Solution:

When the polynomials P(t) and Q(t) are divided by (t-1), then the remainders are given by P(1) and Q(1) respectively (from the remainder theorem).

$$:: P(1) = Q(1)$$

$$4(1)^3 - s(1)^2 + 7 = (1)^2 + s(1) + 8$$

$$4 - s + 7 = 1 + s + 8$$

$$-s+11 = s+9$$

$$2s = 2$$

Thus, the value of sis 1.

Solution:

According to factor theorem, since $f(y) = 3y^3 - \frac{3}{2}y^2 + ky + 5$ is exactly divisible by $\left(y - \frac{1}{2}\right)_{,} f\left(\frac{1}{2}\right)_{,} = 0$

$$\therefore 3\left(\frac{1}{2}\right)^3 - \frac{3}{2}\left(\frac{1}{2}\right)^2 + k\left(\frac{1}{2}\right) + 5 = 0$$

$$\Rightarrow 3 \times \frac{1}{8} - \frac{3}{2} \times \frac{1}{4} + \frac{k}{2} + 5 = 0$$

$$\Rightarrow \frac{3}{8} - \frac{3}{8} + \frac{k}{2} + 5 = 0$$

$$\Rightarrow k = -10$$

Thus, the required value of k is -10.

Q13) If the sides containing the right angle of a right triangle are 2 units and 4 units long, then is the length of the hypotenuse a rational or an irrational number?

Solution:

On applying Pythagoras theorem, we obtain

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow$$
 AC² = (2 units)² + (4 units)²

$$\Rightarrow$$
 AC² = 4 units + 16 units

$$\Rightarrow$$
 AC² = 20 units

$$\Rightarrow$$
 AC = $\sqrt{20}$ units

$$\Rightarrow$$
 AC = $2\sqrt{5}$ units

Since 2 is a rational number and $\sqrt{5}$ is an irrational number, $2\sqrt{5}$ is an irrational number.

Thus, the length of the hypotenuse is an irrational number.

Q14)

In the given figure, an isosceles triangle PQR with PQ = QR is shown. S is a point on side PR. Prove that QR > QS.

Solution:

It is given that in $\triangle PQR$, PQ = QR

$$\Rightarrow \angle RPQ = \angle QRP \dots (1)$$

Now, \angle QSR is an exterior angle of \triangle PQS.

$$\therefore \angle QSR = \angle SPQ + \angle PQS$$

i.e.,
$$\angle$$
QSR > \angle RPQ

$$\Rightarrow \angle QSR > \angle QRP [Using (1)]$$

We know that in a triangle, the side opposite to the larger angle is longer.

Hence, proved

Q15) Are real numbers closed under multiplication and division? Justify your answer with examples.

Solution:

Real numbers comprise rational numbers and irrational numbers.

Multiplication of two rational numbers results in a rational number, which is a real number.

For example:
$$\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$$

Multiplication of two irrational numbers can result in either a rational or an irrational number, but in both the cases, it will be a real number.

For example:
$$\sqrt{3} \times \sqrt{3} = 3$$
 and $\sqrt{2} \times \sqrt{3} = \sqrt{6}$

Multiplication of a rational number and an irrational number results in either a rational or an irrational number, but in both the cases it will be a real number.

For example:
$$0 \times \sqrt{5} = 0$$
 and $\sqrt{2} \times \sqrt{5} = \sqrt{10}$

Thus, real numbers are closed under multiplication.

Since division of any number by 0 is not defined, real numbers are not closed under division.

Q16)

In the given figure, a = b and c = d.

Show that AB ||CD.

Solution:

It is given that a = b i.e., $\angle GLD = \angle LMN$

Here, ∠GLD are ∠LMN are the corresponding angles with respect to lines CD and EF.

If the corresponding angles formed by a transversal with two lines are equal, then the lines are parallel.

∴ CD || EF ... (1)

 \angle MNK = \angle FNJ (Vertically opposite angles)

 $\Rightarrow \angle MNK = c$

It is given that c = d.

 $\therefore \angle \mathsf{IKA} = \angle \mathsf{MNK}$

Here, ∠IKA and ∠MNK are corresponding angles with respect to lines AB and EF.

∴ AB || EF ... (2)

It is known that the lines parallel to the same line are parallel to each other.

Therefore, from (1) and (2), AB || CD.

Thus, AB and CD are parallel lines.