

AGRICULTURAL RESEARCH INSTITUTE
PUSA

BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

VIERTE AUFLAGE

DIE LITERATUR BIS 1. JANUAR 1910 UMFASSEND

HERAUSGEGEBEN VON DER

DEUTSCHEN CHEMISCHEN GESELLSCHAFT

BEARBEITET VON

BERNHARD PRAGER · PAUL JACOBSON †
PAUL SCHMIDT UND DORA STERN

DREIZEHNTER BAND

ISOCYCLISCHE REIHE POLYAMINE. OXY-AMINE

Published and distributed in the Public Interest by Authority of the Alien Property Custodian under License No. A-149

Photo-Lithoprint Reproduction

EDWARDS BROTHERS, INC.

PUBLISHERS
ANN ARBOR, MICHIGAN

1943

BERLIN

VERLAG VON JULIUS SPRINGER.
1930

Mitarbeiter:

GÜNTHER AMMERLAHN
GREGOR BRILLANT
GEORG COHN
GUSTAV HAAS
FRITZ HÖHN
KONRAD ILBERG
KORNELIA LORIA
ELISABETH MATERNE
KARL OTT
OTTO SACHTLEBEN
MARIE STOJANOVÁ

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Copyright 1930 by Julius Springer in Berlin.

Copyright vested in the Alien Property Custodian, 1942, pursuant to law.

ŧ

Inhalt.

Zweite Abteilung.

Isocyclische Verbindungen. (Fortsetzung.)

IX. Amine. (Fortsetzung.)

	4	Seite	1	Seite
	B. Diamine.		Substitutionsprodukte des Pheny-	
1.	Diamine C _n H _{2n+2} N ₂ (z. B. Di-		lendiamins-(1.4) [z. B. 2-Chlor-	
••	aminocyclohexane, Diamino-		phenylendiamin - (1.4), 2-Nitro-	
	menthane)	1	phenylendiamin-(1.4)]	117
_		•	2.3-Diamino-toluol C ₇ H ₁₀ N ₂	123
Z.	Diamine C _n H _{2n} N ₂ (z. B. Diamino-	_	2.4-Diamino-toluol	124
	menthene)	5	2.5-Diamino-toluol	144
8.	Diamine $C_nH_{2n-4}N_2$	6	2.6-Diamino-toluol	148
	Phenylendiamin-(1.2) C ₆ H ₈ N ₂	6	3.4-Diamino-toluol	148
	Funktionelle Derivate des Phe-		3.5-Diamino-toluol	164
	nylendiamins-(1.2) (z. B. N-Me-		2-Amino-benzylamin	165
	thyl-o-phenylendiamin, 2-Amino-		3-Amino-benzylamin	174
	diphenylamin, N-Benzal-o-phe-		4-Amino-benzylamin	474
	nylendiamin, N-Acetyl-o-pheny-		Diamine C ₈ H ₁₈ N ₂ (z. B. Diamino-	
	lendiamin, [2-Amino-phenyl]-		xylole)	176
	urethan)	15	Diamine C.H.N.	189
	Substitutionsprodukte des Pheny-		Diamine C ₁₀ H ₁₆ N ₂ usw	191
	lendiamins-(1.2) [z. B. 4-Chlor-		1 20 20 2	
	phenylendiamin-(1.2), 4-Nitro-		4. Diamine C _n H _{2n} —6N ₂ (z. B. Tetra-	194
	phenylendiamin-(1.2)]	25	hydronaphthylendiamine)	-
	Phenylendiamin-(1.3)	33	5. Diamine $C_nH_{2n-10}N_2$	196
	Funktionelle Derivate des Pheny-		Diamine $C_{10}H_{10}N_2$ (Naphthylendi-	
	lendiamina-(1.3) (z. B. N-Methyl-		amine)	196
	m - phenylendiamin, N - Benzyl-		Diamine $C_{11}H_{12}N_2$ usw	209
	m-phenylendiamin, N.N'-Diben-		6. Diamine $C_nH_{2n-12}N_2$	210
	zal-m-phenylendiamin, N-Ace-		Diamine C ₁₂ H ₁₂ N ₂ (z. B. Diamino- diphenyle wie Diphenylin und	
	tyl-m-phenylendiamin, [3-Amino-		diphenyle wie Diphenylin und	
	phonyl]-harnstoff)	39	Benzidin)	210
	Substitutionsprodukte des Pheny-		Diamine C ₁₈ H ₁₄ N ₈ (z. B. Diamino-	
	lendiamins-(1.3) [z. B. 4-Chlor-		diphenylmethane)	237
	phenylendiamin - (1.3), 2.4 - Di-		Diamine C ₁₄ H ₁₄ N ₂ (z. B. Diamino-	
	nitro-phenylendiamin-(1.3)]	53	dibenzyle, Tolidine)	248
	Phenylendiamin-(1.4)	61	Diamine C ₁₈ H ₁₈ N ₂ usw	261
	Funktionelle Derivate des Pheny-		7. Diamine C _n H _{2n-14} N ₂ (z. B. Di-	
	lendiamins-(1.4) (z. B. N-Methyl-		aminofluorene, Diaminostilbene)	266
	p-phenylendiamin, 4-Amino-di-			_0
	phenylamin, N.N'-Dibenzal-p-phe-		8. Diamine C _n H _{2n} —16N ₂ (z. B. 1.4-Di-	269
	nylendiamin, Phenolblau, N-Ace-		amino-anthracen)	409
	tyl-p-phenylendiamin, [4-Amino-		9. Diamine C _n H _{2n-18} N ₂ (z. B. Di-	
	phenyl]-urethan, 4.4'-Diamino-		aminophenylnaphthaline)	270
	diphenylamin, N-Thionyl-p-phe-		10. Diamine C _n H _{2n-20} N ₂ (z. B. Di-	
	nylendiamin)	71	aminotriphenylmethane)	273

	,			leite
11.	Diamine CnH2n-22N2	Seite 288	E. Pentamine.	96100
			1. Pentaamin C _n H _{2n+1} N ₅	345
	Diamine C _n H _{2n—24} N ₂ (z. B. Diaminodinaphthyle)	288	2. Pentaamine C _n H _{2n-1} N ₅ (z. B.	
18.	Diamine C _n H _{2n-28} N ₂ (z. B. 3.3'-Di- phenyl-benzidin	291		346 346
14	• •	292		347
	Diamin C _n H _{2n} —80N ₂		2. Feminamin Chitzn—38115	JT 1
	Diamine C _n H _{2n} —32N ₂	292	F. Hexaamine.	
	Diamine C _n H _{2n} —86N ₂	292	1. Hexaamin C _n H _{2n} —8N ₆	347
	Diamine $C_nH_{2n-46}N_2 \dots$	293	2. Hexaamin C _n H _{2n-16} N ₆	347
18.	Diamine $C_nH_{2n-52}N_2 \dots$	293	8. Hexamin $C_nH_{2n-40}N_6$	348
	C. Triamine.		G. Oxy-amine.	
1.	Triamine C _n H _{2n-8} N ₃	294	1. Aminoderivate der Monooxy-	
	Triamine C.H.N. (Triaminobenzole) Triamine C.H.1.N. (Triaminotoluole)	294 301	Verbindungen.	
	Triamine $C_2H_{12}N_3$ (Triaminotofucle)	303	a) Aminoderivate der Monooxy-Ver-	
•	Triamine C _n H _{2n} —9N ₈ (Triamino-		bindungen C _n H _{2n} O (z. B. Amino-	
200	naphthaline)	304	cyclohexanole, Aminomentha-	348
8.	Triamine C _n H _{2n-11} N ₈ (z. B. Tri-		b) Aminoderivate der Monoexy-Ver-	~=O
	aminodiphenylmethane)	306	bindungen $C_nH_{2n-2}O$ (z. B.	
4.	Triamine C _n H _{2n-18} N ₈ (Triamino-	940		351
_	stilbene)	310	c) Aminoderivate der Monooxy-Ver-	
	Triamin $C_nH_{2n-15}N_8$	310		354
6.	Triamine C _n H _{2n} —19N ₈	311	d) Aminoderivate der Monooxy-Ver-	0 E 4
	Triamine C ₁₉ H ₁₉ N ₃ (z. B. Triamino- triphenylmethane wie Paraleuk-			354 354
	anilin). Triamine C ₂₀ H ₂₁ N ₃ (z. B. Leuk-	311	Derivate des 2-Amino-phenols, die	~~~
	Triamine C ₂₀ H ₂₁ N ₃ (z. B. Leuk-	318	lediglich durch Veränderung der	
	anilin)	325	Hydroxylgruppe entstanden sind (z. B. o-Anisidin, 2-Amino-di-	
	Triamine C ₂₂ H ₂₀ N ₂ usw	327	phenyläther, 2-Amino-phenoxy-	
7.	Triamin C _n H _{2n-21} N ₈	332	essigsäure)	358
	Triamine C _n H _{2n-25} N ₈	333	N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit	
	Triamine CnH2n-27N8	334	Oxy-, Oxo- und Oxy-oxo-Ver-	
	Triamin CnH2n-29N8	335	bindungen (z. B. 2-Methylamino-	
	Triamin C _n H _{2n} —81N ₈	335	phenol, 2-Oxy-diphenylamin, 2-Benzalamino-phenol, 2-Anisal-	
	Triamin C _n H _{2n-87} N ₈	336		362
		-	N-Derivate des 2-Amino-phenols,	
	D. Tetraamine.		entstanden durch Kuppelung mit Mono- und Polycarbonsäuren (z.	
1.	Tetraamine C _n H _{2n} —2N ₄ (z. B.	994	B. 2-Acetamino-phenol, N-[2-	
_	Tetraaminobenzole)	336		3 70
z.	Tetraamine $C_nH_{2n-8}N_4$ (Tetraaminonaphthaline)	338	N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit	
2.	Tetraamine $C_nH_{2n-10}N_4$ (z. B.	• .	Kohlensäure (z. B. [2-Oxy-phe-	
	Tetraaminodiphenyle)	33 8	nyi]-urethan, N-Cyan-o-phene-	Am
4.	Tetraamin C _n H _{2n-12} N ₄	342	tidin, 2-Methoxy-phenylsenföl)	375
	Tetraamine C _n H _{2n-18} N ₄	342	entstanden durch Kuppelung mit	
	Tetraamine C _n H _{2n} —22N ₄	344	weiteren Oxy-carbonsäuren, mit	
•	Tetraamin C _n H _{2n-24} N ₄	344	Oxo- und Oxy-oxo-carbonsauren (z. B. 2-Oxy-anilinoessigsaure)	379
	Tetraamine C _n H _{2n-26} N ₄	344	N-Derivate des 2-Amino-phenola.	-, -
	Tetraamin CnH2n-28N4	345	entstanden durch Kuppelung mit	
	Tetrasmin CnH2n-84 N4	345	Oxy-aminen (z. B. N-[2-Oxy-phenyl]-äthylendiamin)	880

	Seite	1	Seite
N-Derivate des 2-Amino-phenols,		N-Derivate des 4-Amino-phenols,	
entstanden durch Kuppelung mit		entstanden durch Kuppelung mit	
Aminoessigsäure (z. B. Glycin-		weiteren Oxy-carbonsäuren, mit	
o-anisidid)	382	Oxo- und Oxy-oxo-carbonsauren	
N-Derivate des 2-Amino-phenols,		(z. B. 4-Oxy-anilinoessigsaure,	400
entstanden durch Kuppelung mit		4-Lactylamino-phenol)	488
anorganischen Säuren (z. B.		N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit	
2-Benzolsulfamino-phenol,		Oxo-sulfonsäuren, Sulfo-carbon-	
[2-Oxy-phenyl]-methyl-nitros- amin)	382	säuren, Oxy-aminen, Amino-	
Substitutionsprodukte des 2-Amino-	902	carbonsäuren usw. (z. B. Sulfo-	
phenois (z. B. 4-Brom-2-amino-		essigsäure-p-anisidid, 4-Oxy-	
phenol, 4-Nitro-2-amino-phenol,	1	4'-amino-diphenylamin, Glycin-	
Pikraminsäure)	383	p-phenetidid)	499
2-Amino-thiophenol	397	N-Derivate des 4-Amino-phenols,	
Funktionelle Derivate des 2-Amino-		entstanden durch Kuppelung mit	
thiophenols (z. B. Methyl-[2-ami-		anorganischen Säuren (z. B.	
no-phenyl]-sulfid, 2.2'-Diamino-		4-Benzolsulfamino-phenol,	
diphenylsulfid, 2.2'-Diamino-di-		[4-Oxy-phenyl]-phenyl-nitros-	
phenylsulfon, 2-Acetamino-di-		amin, Phosphorsäure-tri-p-phene-	507
phenylsulfid)	399	tidid)	501
Substitutionsprodukte des 2-Amino-		phenols (z. B. 2-Brom-4-amino-	
thiophenols (z. B. 5-Nitro-	404	phenol, 2-Nitro-4-amino-phenol)	510
2-amino-thiophenol)	401	4-Âmino-thiophenol	533
3-Amino-phenol	401	Funktionelle Derivate des 4-Amino-	
phenols (z. B. m-Anisidin, 3-Me-		thiophenols (z. B. Methyl-	
thylamino-phenol, 3-Oxy-diphe-		[4-amino-phenyl]-sulfid,	
nylamin, 3-Acetamino-phenol,		4-Amino-diphenylsulfid, 4.4'-Di- amino-diphenylsulfon, Thiodi-	
[3-Oxy-phenyl]-harnstoff,		amino-diphenylsulion, Iniodi-	
Glycin-m-anisidid, [3-Oxy-phe-		methylanilin, 4-Acetamino-thio-	533
nyl]-phonyl-nitrosamin)	404	phenol)	000
Substitutionsprodukte des 3-Amino-		thiophenols (z. B. 2.2'-Dinitro-	
phenols (z. B. 6-Brom-3-amino-		4.4'-diamino-diphenyldisulfid) .	547
phenol, 4-Nitro-3-amino-phenol)	420	Derivate des Selenanalogons des	
3-Amino-thiophenol	425	4-Amino-phenols (z. B. 4.4'-Bis-	
4-Amino-phenol	427	dimethylamino-diphenylselenid)	547
Derivate des 4-Amino-phenols, die		Aminophenol-Derivate, von denen	
lediglich durch Veränderung der		es unbestimmt ist, ob sie von	
Hydroxyigruppe entstanden sind		2-, 3- oder 4-Amino-phenol abzu-	F40
(z. B. p-Anisidin, 4-Amino-di- phenyläther, [4-Amino-phenyl]-		leiten sind	548
benzoat, 4-Amino-phenoxyessig-		Derivat des 2.3-Diamino-phenols 2.4-Diamino-phenol	549 549
saure)	435	2.5-Diamino-phenol	553
N-Derivate des 4-Amino-phenols.		2.6-Diamino-phenol	563
entstanden durch Kuppelung mit		3.4-Diamino-phenol	564
Oxy-, Oxo- und Oxy-oxo-Ver-		3.5-Diamino-phenol	567
bindungen (z. B: 4-Methylamino-		Triaminophenole usw	569
phenol, 4-Oxy-diphenylamin,		3-Amino-2-oxy-1-methyl-benzol .	572
4-Benzalamino-phenol, 4-Anisal-		4-Amino-2-oxy-1-methyl-benzol	574
amino-phenol)	441	5-Amino-2-oxy-1-methyl-benzol	576
N-Derivate des 4-Amino-phenois,		6-Amino-2-oxy-1-methyl-benzol	579
entstanden durch Kuppelung mit		2-Oxy-benzylamin	579
Mono- und Polycarbonsäuren (z.		Diaminoderivate des 2-Oxy- 1-methyl-benzols	588
B. 4-Acetamino-phenol, Phen- acetin, N-[4-Oxy-phenyl]-phthal-		2-Amino-3-oxy-1-methyl-benzol	589
amidsaure)	459	4-Amino-3-oxy-1-methyl-benzol .	590
N-Derivate des 4-Amino-phenols,		Derivat des 5-Amino-3-oxy-1-me-	
entstanden durch Kuppelung mit		thyl-benzols	592
Kohlensaure (z. B. [4-Oxy-		6-Amino-3-oxy-1-methyl-benzol .	593
phenyl]-urethan, Dulcin, N-Cyan-		3-Oxy-benzylamin.	597
p-phenetidin, 4-Methoxy-phenyl-	4-0	Diaminoderivate des 3-0xy-1-me-	KOP
senföl)	478	thyl-benzols	597

		Seite	1 '	Selte
	2-Amino-4-oxy-1-methyl-benzol 3-Amino-4-oxy-1-methyl-benzol	598 601	l) Aminoderivate der Moneoxy-Ver- bindungen C _n H _{2n} —22O. Allge-	;
•	4-Oxy-benzylamin	606	meines über die basischen Tri- phenylmethanfarbstoffe	732
	thyl-benzols	611 615	Aminoderivate der Monooxy-Ver- bindungen C ₁₈ H ₁₄ O	735
	3-Amino-benzylalkohol 4-Amino-benzylalkohol	619 620	Aminoderivate des 2-Oxy-triphenylmethans C ₁₀ H ₁₆ O	735
	Aminoderivate der Monooxy-Verbindungen $C_8H_{10}O$ (z. B. β -[2-		Aminoderivate des 3-Oxy-triphe-	
	Oxy-phenyl]-äthylamin, Horde- nin, Aminomethyl-phenyl-car-		Aminoderivate des 4-Oxy-triphe-	736
	binol, Aminoxylenole)	624	nylmethans	737
	Aminoderivate der Monooxy-Verbindungen C ₉ H ₁₂ O (z. B. Ephe-		Monoaminoderivate des Triphenyl- carbinols (z. B. 2-Amino-tri-	
	drin und Pseudoephedrin) Aminoderivate der Monooxy-Ver-	636	phenylcarbinol, 4-Anilino-tri- phenylcarbinol)	738
	bindungen C ₁₀ H ₁₄ O (z. B. Aminocarvacrole, Aminothymole)	651	Diaminoderivate des Triphenyl- carbinols (z. B. Doebnersches	
	Aminoderivate der Monooxy-Ver-		Violett, Malachitgrün, Brillant-	741
۵)	bindungen C ₁₁ H ₁₆ O usw	660	grun) Triaminoderivate des Triphenyl-	124
•)	Aminoderivate der Monooxy-Verbindungen C _n H _{2n} —8O (z. B.		carbinols (z. B. Pararosanilin, Krystallviolett, Diphenylamin-	
	Aminooxyhydrindene, Amino- tetrahydronaphthole)	662	blau)	749
1)	Aminoderivate der Monooxy-Ver-	005	carbinols C ₂₀ H ₁₉ O	762
	bindungen C _n H _{2n-12} O Aminoderivate des 1-Oxy-naphtha-	665	Aminoderivate des 5-Oxy-2-me- thyl-triphenylmethans	762
	lins C ₁₀ H ₈ O	665	Aminoderivat des 6-Oxy-3-methyl- triphenylmethans	763
	lins	676	Aminoderivate des 3-Methyl-tri- phenylcarbinols (z. B. Fuchsin,	
	bindungen $C_{11}H_{10}O$ und $C_{15}H_{18}O$.	688	Jodgrün, Anilinblau)	763
g)	Aminoderivate der Monooxy-Ver-	690	Aminoderivate des 2-Benzyl-benz- hydrols	770
	bindungen C _n H _{2n-14} O Aminoderivate der Oxydiphenyle		Aminoderivate des 3.3'-Dimethyltriphenylcarbinols $C_{21}H_{20}O$	770
	C ₁₂ H ₁₆ O (z. B. 2-Oxy-benzidin) Aminoderivate der Monooxy-Ver-	690	Aminoderivate des 3.3'.3''-Tri- methyl-triphenylcarbinols	
	bindungen C ₁₂ H ₁₂ O (z. B. 2-Oxy- benzhydrylamin, Aminobens-		C ₂₂ H ₂₂ O	771
	hydrole, Michlers Hydrol)	693	Aminoderivate des Phenyl- $[\alpha.\alpha$ -dimethyl- β -phenyl- β -thyl]-	
	Aminoderivate der Monooxy-Verbindungen C ₁₄ H ₁₄ O (z. B. Di-		carbinols C ₂₃ H ₂₄ O	772
	phenyloxäthylamin, Isodiphenyloxäthylamin, Aminomethyl-di-		m) Aminoderivate einer Monooxy-Ver- bindung C _n H _{2n} —24O	773
	phenyl-carbinol)	706	n) Aminoderivate Jer Monooxy-Ver-	
	bindungen $C_{18}H_{16}O$	715	bindungen $C_nH_{2n-28}O$ (z. B. Naphthoblau, Virtoriableu B.	
P)	Aminoderivate der Monooxy-Verbindungen C _n H _{2n-16} O (z. B.		Viktoriablau B)	773
	Aminooxyfluorene)	721	 Aminoderivate der Monooxy-Ver- bindungen C_nH_{2n}—800 	778
1)	Aminoderivate der Monoexy-Verbindungen C _n H _{2n-18} O (z. B.		p) Aminoderivate einer Moneoxy-Ver-	776
,	2-Amino-1-oxy-anthracen, Aminooxyphenanthrene)	723	bindung C _n H _{2n—34} O	777
k)	Aminoderivate der Moneoxy-Ver-		q) Aminoderivat einer Monooxy-Verbindung C _n H _{2n-86} O	770
	bindungen $C_nH_{2n-20}O$ {z. B. Aminooxyphenylnaphthaline.	1	r) Aminoderivate der Moneoxy-Ver-	778
	1-[a-Amino-bonzyl]-naphthol-(2)]	726	bindungen C _n H _{2n} —40O	778

		Seite	<u>.</u>	Seite
	2. Aminoderivate der Dioxy- Verbindungen.		Aminoderivate der Dioxytriphe- nylmethane und Oxytriphenyl- carbinole C ₁₉ H ₁₆ O ₂ (z. B. Leuko-	
a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	779	protoblau)	819
b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	779	dungen C ₂₀ H ₁₈ O ₂	822
	Aminoderivate des Brenzcatechins C _a H _a O ₃ (z. B. 4-Amino-brenz-		k) Aminoderivate einer Dioxy-Verbindung $C_nH_{2n-26}O_2$	823
	catechin, Aminoguajacole, 4.5-Diamino-veratrol)	779	l) Aminoderivate der Dioxy-Verbindungen $C_nH_{2n-28}O_2$	823
	Aminoderivate des Resorcins (z. B. 2-Amino-resorcin, 4.6-Diamino-resorcin)	782	m) Aminoderivate der Dioxy-Verbindungen C_nH_{2n} - $_{30}O_2$ (z. B. Tetrakis-[4-dimethylamino-	
	Aminoderivate des Hydrochinons [z. B. Acetaminohydrochinon,		phenyl]-äthylenglykol)	824
	4.4'-Dioxy-3.3'-diamino-diphenylsulfon, 2.5-Bis-phenylsulfon-phenylendiamin-(1.4)]	788	n) Aminoderivat einer Dioxy-Verbindung C _n H _{2n—34} O ₂	825
	Aminoderivate der Dioxy-Verbindungen C ₇ H ₈ O ₂ (z. B. Diamino-		3. Aminoderivate der Trioxy- Verbindungen.	
	toluhydrochinon, Veratrylamin, Aminoorcine, Diaminoorcine, Aminooxybenzylalkohole wie		a) Aminoderivate der Trioxy-Verbin- dungen C _n H _{2n} —6O ₃	825
	Aminosaligenin)	793 800	Aminoderivate der Trioxybenzole $C_6H_6O_3$ (z. B. Aminopyrogallole, Triaminophloroglucin)	825
c)	Aminoderivat einer Dioxy-Ver-		Aminoderivate der Trioxymethylbenzole C ₇ H ₈ O ₃	828
d)	bindung $C_nH_{2n-8}O_2$ Aminoderivate der Dioxy-Verbin-	803	Aminoderivate der Trioxy-Verbindungen C ₆ H ₁₀ O ₃ (z. B. Adrenalin)	830
·	$\begin{array}{ll} \textbf{dungen} & C_nH_{2n-12}O_2 & (z. & B. \\ \textbf{Aminodioxynaphthaline}) & . & . & . \end{array}$	803	Aminoderivate der Trioxy-Verbindungen C ₉ H ₁₂ O ₂	834
e)	$\begin{array}{cccc} \textbf{Aminoderivate} & \textbf{der} & \textbf{Dioxy-Verbin-} \\ \textbf{dungen} & C_nH_{2n14}O_2 & . & . & . & . \\ \textbf{Aminoderivate} & \textbf{der} & \textbf{Dioxydiphenyle} \end{array}$	807	b) Aminoderivate der Trioxy-Verbindungen C _n H _{2n-12} O ₃ (z.B. Amino.	
	C ₁₂ H ₁₀ O ₂ (z. B. 4.4'-Diamino- 2.2'-dioxy-diphenyl, o-Dianisidin,		trioxynaphthaline)	835
	o-Diphenetidin)	807	dungen C _n H _{2n-14} O ₃ (z. B. 4.4'- Diamino-3.3'-dimethoxy-benz- hydrol)	836
	methane C ₁₂ H ₁₂ O ₂ (z. B. 4.4'-Di- methoxy-benzhydrylamin) Aminoderivate der Dioxy-Verbin-	811	d) Aminoderivat einer Trioxy-Verbin- dung C _n H _{2n} —16O ₈	837
	dungen C ₁₄ H ₁₄ O ₂ (z. B. a.a'-Bis- [2-oxy-phenyl]-āthylendiamin) Aminoderivate der Dioxy-Verbin-	813	e) Aminoderivate der Trioxy-Verbindungen C _n H _{2n-18} O ₃ (z. B.	
	dungen $C_{15}H_{16}O_8$ und $C_{16}H_{18}O_8$	815	"Tribenzoylmorphothebain", Thebenin)	837
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	816	f) Aminoderivate der Trioxy-Verbin- dungen C _n H _{2n} —22O ₃ (z. B. Pro-	
g)	Aminoderivate der Dioxy-Verbin- dungen C _n H _{2n-18} O ₂ (z. B. Aminodimethoxyphenanthrene,		g) Aminoderivat einer Trioxy-Verbin-	840
	Diaminodioxyphenanthrene, "Tribenzoylapomorphin")	816	dung C _n H _{2n-24} O ₈	841
h)	Aminoderivate der Dioxy-Verbindungen CnH2n-20O2	818	Verbindungen.	
I)	Aminoderivate der Dioxy-Verbin- dungen Co-Hon-22 Oz	819	a) Aminoderivate einer Tetraoxy-Ver- bindung C _n H _{2n} —6 O ₄ (z. B. 3.6-Di. amino-1.2.4.5-tetraoxy-benzol)	841

		Seite		Seite
b)	Aminoderivate der Tetraoxy-Verbinbindungen $C_nH_{2n-14}O_4$ (z. B. 2.5.2'.5'-Tetramethoxy-benzidin)	843	5. Aminoderivat einer Pentaoxy- Verbindung.	
	2.0.2 .0 -16Wamethoxy-benzicin)	070	Protorot	845
e)	Aminoderivat einer Tetraoxy-Verbindung $C_nH_{2n-16}O_4$	843	6. Aminoderivate der Hexaoxy- Verbindungen.	
d)	Aminoderivat einer Tetraoxy-Verbindung $C_nH_{2n-18}O_4$	844	Aminoderivate der Hexaoxy-Verbindungen C ₁₀ H ₁₀ O ₆ (z. B. 3.5.3'-	
e)	Aminoderivate der Tetraoxy-Verbindungen $C_nH_{2n-22}O_4$ (z. B. Leukoprotorot)	844	5'.3".5"-Hexaoxy-paraleukanilin) 7. Aminoderivate einer Heptaoxy-	845
	Leukopiototot)	022	Verbindung.	
I)	Aminoderivat einer Tetraoxy-Verbindung $C_nH_{2n-28}O_4$	844	Aminoderivate des 3.5.3'.5''.5''- Hexaoxy-triphenylcarbinols (z.	•
g)	Aminoderivat einer Tetraoxy-Ver-		B. 3.5.3'.5'.3".5"-Hexamethoxy-	
•	bindung $C_nH_{2n-30}O_4$	845	pararosanilin)	846
Ali	phabetisches Register für Bd. N	· · · · · ·		847
•				
Dt	richtigungen, Verbesserungen, 7	2 USBLZE		988

ŧ

Verzeichnis der Abkürzungen für Literatur-Quellen.

Abkürzung	Titel	Vollständig bearbeitet bis
A	LIEBIGS Annalen der Chemie	871 , 124
A. ch.	Annales de Chimie et de Physique	[8] 18 , 574
Am.	American Chemical Journal	42 , 541
Am. Soc.	Journal of the American Chemical Society	31 , 1374
Ann.d. Physik	Annalen der Physik und Chemie (Poggendorff-Wiede-	[4] 00 4004
1 7041	MANN-DRUDE-WIEN und PLANCK)	[4] 30, 1024
A. Pth. Ar.	Archiv für Experimentelle Pathologie und Pharmakologie Archiv der Pharmazie	62 , 92
B.	Berichte der Deutschen Chemischen Gesellschaft	247 , 657 42 , 4918
Bio. Z.	Biochemische Zeitschrift	23 , 328
Bl.	Bulletin de la Société Chimique de France	[4] 5 , 1158
B. Ph. P.	Beiträge zur Chemischen Physiologie und Pathologie	11. 514
Bulet.	Buletinul Societatii de Sciinte din Bucuresci	,
C.	Chemisches Zentralblatt	1909 II, 2216
Chem. N.	Chemical News	100, 328
Ch. I.	Chemische Industrie	32 , 840
Ch. Z.	Chemiker-Zeitung	33 , 1364
C. r.	Comptes rendus de l'Académie des Sciences	149, 1422
Crells Annalen	Chemische Annalen für die Freunde der Naturlehre, Arznei-	-
ł	gelahrtheit, Haushaltungskunst und Manufakturen	
	von Lorenz Crell	
D .	Dinglers Polytechnisches Journal	
D. R. P.	Patentschrift des Deutschen Reiches	Soweit im Chemisch. Zentralbl. bis 1. I.
		1910 referiert
El. Ch. Z.	Elektrochemische Zeitschrift	16, 280
Fr.	Zeitschrift für Analytische Chemie (FRESENIUS)	48 , 762
Frdl.	FRIEDLÄNDERS Fortschritte der Teerfarbenfabrikation.	
~	Berlin. Von 1888 an	00 TT 770
G.	Gazzetta Chimica Italiana	39 II, 556
GildemHoffm.	E. GILDEMEISTER, FR. HOFFMANN, Die ätherischen Öle,	Í
	2. Aufl. von E. GILDEMEISTER. 3 Bände. Miltitz	
Gm.	bei Leipzig (1910—1916)	
um.	L. GMELINS Handbuch der Organischen Chemie, 4. Aufl. 5 Bände und 1 Supplementband. Heidelberg (1848)	
	bis 1868)	
GmelKraut	GMELIN-KRAUTS Handbuch der Anorganischen Chemie.	
J. 1000 217 WW	Herausgegeben von C. FRIEDHEIM† und FR. PETERS.	
	7. Aufl. Heidelberg. Von 1907 an	İ
Groth, Ch. Kr.	P. Groth, Chemische Krystallographie. 5 Teile. Leipzig	
,	(1906—1919)	
Н.	Zeitschrift für Physiologische Chemie (HOPPE-SEYLER)	
J.		63, 484
	Jahresbericht über die Fortschritte der Chemie	63 , 484
	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie	63, 484 [2] 81, 96
J. pr. J. Th.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie	
	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie	
J. Th. L. V. St. M.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie	[2] 81, 96
J. Th. L. V. St. M. Oj. Fi.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar	[2] 81 , 96 71 , 482
J. Th. L. V. St. M.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskape-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens	[2] 81 , 96 71 , 482
J. Th. L. V. St. M. Öf. Fi. Öf. Sv.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskape-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar	[2] 81 , 96 71 , 482 80 , 758
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Ofversigt af Finska Vetenskaps-Societetens Förhandlingar Ofversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle	[2] 81 , 96 71 , 482
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society	[2] 81 , 96 71 , 482 30 , 758
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie	[2] 81 , 96 71 , 482 80 , 758 50 , 1100 69 , 685
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas	[2] 81 , 96 71 , 482 80 , 758 50 , 1100 69 , 685 28 , 456
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti)	[2] 81 , 96 71 , 482 80 , 758 50 , 1100 69 , 685
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. R. A. L. Schultz, Tab.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920)	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London	[2] 81 , 96 71 , 482 80 , 758 50 , 1100 69 , 685 28 , 456
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc. Z.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Sc. Z. a. Ch.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie Zeitschrift für Anorganische Chemie	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219 65, 232
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc. Z. a. Ch. Z. Ang.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie Zeitschrift für Anorganische Chemie Zeitschrift für Angewandte Chemie	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219 65, 232 22, 2592
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc. Z. Z. a. Ch. Z. Ang. Z. B.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Ofversigt af Finaka Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie Zeitschrift für Anorganische Chemie Zeitschrift für Angewandte Chemie Zeitschrift für Biologie	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219 65, 232 22, 2592 53, 318
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc. Z. Z. a. Ch. Z. Ang. Z. B. C. El. Ch.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Öfversigt af Finska Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. Schultz, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie Zeitschrift für Angewandte Chemie Zeitschrift für Biologie Zeitschrift für Elektrochemie	[2] 81, 96 71, 482 80, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219 65, 232 22, 2592 53, 318 15, 988
J. Th. L. V. St. M. Of. Fi. Of. Sv. P. C. H. P. Ch. S. Ph. Ch. R. R. A. L. Schultz, Tab. Soc. Z. Z. a. Ch. Z. Ang. Z. B.	Jahresbericht über die Fortschritte der Chemie Journal für Praktische Chemie Jahresbericht über die Fortschritte der Tierchemie Landwirtschaftliche Versuchsstationen Monatshefte für Chemie Ofversigt af Finaka Vetenskaps-Societetens Förhandlingar Öfversigt af Kongl. (Svenska) Vetenskaps-Akademiens Förhandlingar Pharmazeutische Zentralhalle Proceedings of the Chemical Society Zeitschrift für Physikalische Chemie Recueil des travaux chimiques des Pays-Bas Atti della Reale Accademia dei Lincei (Rendiconti) G. SCHULTZ, Farbstofftabellen. Berlin (1920) Journal of the Chemical Society of London Zeitschrift für Chemie Zeitschrift für Anorganische Chemie Zeitschrift für Angewandte Chemie Zeitschrift für Biologie	[2] 81, 96 71, 482 30, 758 50, 1100 69, 685 28, 456 [5] 18 II, 667 95, 2219 65, 232 22, 2592 53, 318

į

Weitere Abkürzungen.

	• • •	•	== meta-
absol.	= absolut	m-	
ac.	= alicyclisch	MolGew.	= Molekulargewicht
äther.	= ätherisch	MolRefr.	= Molekularrefraktion
akt.	= aktiv	ms-	= meso-
alkal.	= alkalisch	n (in Verbindung	ζ
alkoh.	= alkoholisch	mit Zahlen)	= Brechungsindex
ang.	= angular	n- (in Verbindung	7
Anm.	= Anmerkung	mit Namen)	= normal
ar.	= aromatisch	0-	= ortho-
asymm.	= asymmetrisch	optakt.	= optisch aktiv
Atm.	= Atmosphäre	p-	= para-
В.	= Bildung	prim.	= primār
bezw.	= beziehungsweise	6/0	= Prozent
D	= Dichte	Prod.	= Produkt
D16	= Dichte bei 16°, bezogen auf	racem.	= racemisch
D	Wasser von 4º	8.	= siehe
Darst.	= Darstellung	s.	= Seite
Darst. Dielektr	= Darstellung	sek.	= sekundär
	To:-1-1-4-:-:4#4- 7/44-		= siehe oben
Konst.	= Dielektrizitäts-Konstante	8. 0. C-1	
Einw.	= Einwirkung	Spl.	= Supplement
\mathbf{F}	= Schmelzpunkt	Stde., Stdn.	= Stunde, Stunden
gem.	= geminal	stdg.	= stündig
inakt.	= inaktiv	8. u.	= siehe unten
K bezw. k		symm.	= symmetrisch
	konstante	Syst. No.	$=$ System-Nummer 1)
konz.	= konzentriert	Temp.	= Temperatur
korr.	= korrigiert	tert.	= tertiär
Kp	= Siedepunkt	Tl., Tle., Tln.	Teil, Teile, Teilen
$\mathbf{K}_{\mathbf{p}_{750}}^{\mathbf{-}}$	= Siedepunkt unter 750 mm	V.	= Vorkommen
	Druck	verd.	= verdünnt
lin.	= linear	vgl. a.	= vergleiche auch
linang.	= linear-angular	vic	= vicinal-
	5	Vol.	= Volumen
		wäßr.	= wässerig
		Zers.	= Zersetzung
•			

¹⁾ Vgl. dazu dieses Handbuch, Bd. I, S. XXIV.

Erläuterungen für den Gebrauch des Handbuchs s. Bd. I, S. XIX. Zeittafel der wichtigsten Literatur-Quellen s. Bd. I, S. XXVI. Kurze Übersicht über die Gliederung des Handbuchs s. Bd. I, S. XXXI. Leitsätze für die systematische Anordnung s. Bd. I, S. 1.

ZWEITE ABTEILUNG.

ISOCYCLISCHE VERBINDUNGEN.

(FORTSETZUNG.)

IX. Amine. (FORTSETZUNG.)

B. Diamine.

1. Diamine $C_n H_{2n+2} N_2$.

1. Diamin $C_5H_{12}N_2=C_5H_8(NH_2)_2$ von ungewisser Konstitution. B. Bei der Behandlung von "Vinyltrimethylen" (Bd. V, S. 62) in äther. Lösung mit nitrosen Gasen bilden sich ein festes Pseudonitrosit $C_5H_8O_3N_2$ (Bd. V, S. 63) und ein flüssiges Produkt; aus beiden wurde bei der Reduktion mit Zinn und Salzsäure (neben Cyclobutanon und anderen Produkten) ein und dasselbe Diamin $C_5H_{12}N_2$ erhalten (Demjanow, B. 41, 917). — Kp: 180° bis 185°. — $C_5H_{12}N_2+2HCl$. Prismen (aus wenig heißem Wasser durch Alkohol gefällt). — Pikrat $C_5H_{12}N_2+2C_6H_3O_7N_3$. Nadeln. Schwer löslich in Wasser, Alkohol, kaum in Äther, Aceton, Benzol. — $C_5H_{12}N_2+2HCl+2AuCl_3+H_2O$. Gelbe Blättchen. — $C_5H_{12}N_2+2HCl+2AuCl_3+H_2O$. Gelbe Blättchen. — $C_5H_{12}N_2+2HCl+2AuCl_3+H_2O$. Orangerote Prismen; verwittert an der Luft.

2. Diamine C₆H₁₄N₂.

1. 1.2 - Diamino - cyclohexan, Hexahydro - o - phenylendiamin C₆H₁₄N₂ = H₂C < CH₂·CH(NH₃) CH·NH₂. B. Das Bishydrochlorid entsteht beim Erwärmen der aus Hexahydroanthranilsäureamid (Syst. No. 1884) und Kaliumhypobromit entstehenden Verbindung C₇H₁₃ON₂ mit konz. Salzsäure; es liefert mit KOH die freie Base (EINHORN, BULL, A. 295, 211). — Ammoniakalisch riechendes Öl. Erstarrt im Kältegemisch. Kp₇₂₀: 183—185°. Mit Wasser mischbar. Zieht CO₂ an. — C₆H₁₄N₂ + 2 HCl. Kryställchen (aus verd. Alkohol mit Essigester). Schmilzt nicht bei 280°. Kaum löslich in absol. Alkohol. — C₆H₁₄N₂ + HBr. Täfelchen (aus absol. Alkohol). F: 209—214°. — Pikrat C₆H₁₄N₂ + 2C₆H₃O₇N₃. Gelbe Nadeln (aus Wasser). Schwärzt sich allmählich bei 210—250°. Sehr schwer löslich in kochendem Alkohol und Wasser, praktisch unlöslich in kaltem Wasser. — C₆H₁₄N₂ + 2 HCl + PtCl₄. Blaßgelbe Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser.

1.2-Bis-acetamino-cyclohexan $C_{10}H_{18}O_2N_2 = C_6H_{10}(NH\cdot CO\cdot CH_3)_2$. B. Aus dem Bishydrochlorid des 1.2-Diamino-cyclohexans durch Erhitzen mit Essigsäureanhydrid und Natriumacetat (Einhorn, Bull, A. 295, 214). Beim Kochen der aus Hexahydroanthranilsäureamid und Kaliumhypobromit entstehenden Verbindung $C_7H_{12}ON_3$ mit Essigsäureanhydrid (Ei., B.). — Nadeln (aus Alkohol + Essigester). F: 260—261°. Sublimiert unzersetzt. Schwer löslich in kaltem, leicht in heißem Wasser.

- [3-Amino-cyclohexyl]-carbamidsäure $C_7H_{14}O_2N_2 = H_2N \cdot C_6H_{10} \cdot NH \cdot CO_2H$ besw. deren inneres Salz $C_6H_{10} \cdot NH \cdot CO_2$. B. Beim Einleiten von CO_2 in die äther. Lösung von 1.2-Diamino-cyclohexan (E., B., A. 295, 214). Amorph. Sublimiert bei 170—178° (Zers.).
- 1.2-Bis-benzolsulfamino-cyclohexan $C_{19}H_{29}O_4N_9S_2=C_6H_{10}(NH\cdot SO_2\cdot C_6H_8)_2$. B. Aus 1.2-Diamino-cyclohexan mit Benzolsulfochlorid und Natronlauge (E., B., A. 295, 215). Nadeln (aus verd. Essigsäure). F: 155°. Löslich in Alkohol, Methylalkohol und in Natronlauge.
- 2. 1.3-Diamino-cyclohexan, Hexahydro-m-phenylendiamin C₆H₁₄N₂ = H₂CC(H(NH₂)·CH₂>CH·NH₂. B. Man fügt möglichst rasch 50 g Natrium und allmählich noch 250 ccm Alkohol zu einer siedenden Lösung von 10 g Cyclohexandioxim-(1.3) (Bd. VII, S. 555) in 250 ccm absol. Alkohol (Merling, A. 278, 36). Aus dem Oxim des 3-Hydroxylamino-cyclohexanons-(1) (Syst. No. 1938) mit Natrium in siedendem Alkohol (Kötz, Grethe, J. pr. [2] 80, 503). Öl. Kp₇₅₂: 193°; D¹⁵: 0,956; mischbar mit Wasser, leicht löslich in absol. Ather (M.). Das Nitrit zerfällt beim Kochen seiner wäßr. Lösung in Stickstoff, Wasser und Cyclohexadien (M.). Bei der trocknen Destillation des Phosphats entsteht ein Gemisch von Cyclohexadien-(1.3) und -(1.4) (Bd. V, S. 113), in welchem das letztere vorwaltet (Crossley, Soc. 85, 1409; vgl. Harries, Antoni, A. 328, 105). Hydrochlorid. Nadeln (aus Wasser); unlöslich in Alkohol (M.). C₆H₁₄N₂ + 2 HCl + 2 AuCl₂ + 2 H₂O. Goldgelbe Prismen und Nadeln (aus Wasser) (M.). C₆H₁₄N₂ + 2 HCl + PtCl₄ + 2 H₂O. Orangegelbe Prismen (aus Wasser); F: 255° (Zers.) (M.), 256° (Zers.) (K., G.).
- 1.3-Bis-acetamino-cyclohexan $C_{10}H_{18}O_2N_2=C_8H_{10}(NH\cdot CO\cdot CH_2)_2$. B. Durch kurzes Kochen von 1.3-Diamino-cyclohexan mit Essigsäureanhydrid (Merling, A. 278, 38). Nadeln (aus Alkohol + Essigester). F: 256°. Leicht löslich in Wasser und Alkohol, sehr wenig in Äther und Essigester.
- 3. 1.4 Diamino cyclohexan, Hexahydro p phenylendiamin C₆H₁₄N₂ = H₂N·HC CH₂·CH₂·CH·NH₂. Das Prāparat ist nach Curtus, Stangassinger (J. pr. [2] 91 [1915], 35) ein Gemisch der cis- und der trans-Form. B. Beim Versetzen einer Lösung von 2 g Cyclohexandioxim-(1.4) (Bd. VII, S. 556) in 30 com Alkohol mit 6 g Natrium und 70 ccm Alkohol in gelinder Wärme (Baeyer, N. yes, B. 22, 2171; Noyes, Ballard, Am. 16, 450). Schwach ammoniakalisch riechendes Öl. Schwer flüchtig mit Wasserdampf (Bae, N.). Das salzsaure Salz gibt in wäßr. Lösung mit Natriumnitrit auf dem Wasserbade 4-Amino-cyclohexen-(1) (Bd. XII, S. 33), 4-Amino-cyclohexanol-(1) (Syst. No. 1823) und Cyclohexadien (N., Bal., B. 27, 1449; Am. 16, 450). Bei der trocknen Destillation des Phosphats entsteht ein Gemisch von Cyclohexadien-(1.3) und -(1.4) (Bd. V, S. 114) (Harries, Antoni, A. 328, 108; Crossley, Soc. 85, 1409). C₆H₁₄N₂ + 2 HCl (N., Bal., Am. 16, 450). Krystallmasse. Verslüchtigt sich beim Erhitzen teilweise unzersetzt, ohne zu schmelzen; leicht löslich in Wasser, sehr wenig in Alkohol (Bae., N.). C₆H₁₄N₂ + H₂PO₄. Weiße, beim Trocknen im Vakuum verwitternde Krystalle; unlöslich in organischen Lösungsmitteln (H., A.). C₆H₁₄N₂ + 2 HCl + PtCl₄. Gelbe Blättchen (aus Wasser). Zersetzt sich in der Hitze, ohne zu schmelzen; schwer löslich in Wasser (Bae., N.).
- 1.4-Bis-acetamino-cyclohexan $C_{10}H_{18}O_2N_3 = C_6H_{10}(NH\cdot CO\cdot CH_3)_2$. B. Durch Kochen von salzsaurem 1.4-Diamino-cyclohexan mit Essigsäureanhydrid und Natriumacetat (BAEYER, Noyes, B. 22, 2172). Nadeln (aus Wasser). Schmilzt oberhalb 310°. Sehr schwer löslich in kaltem, leichter in heißem Wasser.
- 3. 1.3-Diamino-1-methyl-cyclohexan $C_7H_{16}N_2=H_2C$ CH_2 CH_3 CH_2 CH_3 CH_3 CH_4 CH_3 CH_4 CH_3 CH_4 CH_4 CH_5
- 1.3-Bis-benzamino-1-methyl-cyclohexan $C_{21}H_{24}O_9N_2 = CH_3 \cdot C_2H_9(NH \cdot CO \cdot C_0H_5)_2$. B. Aus 1.3-Diamino-1-methyl-cyclohexan und Benzoylchlorid nach SCHOTTEN-BAUMANN (H., B. 35, 1172) Schmilzt unscharf zwischen 247° und 270°. Leicht löslich in Warmem Alkohol, unlöslich in Wasser.

1.3-Bis-[ω -phenyl-ureido]-1-methyl-cyclohexan $C_{21}H_{26}O_2N_4=CH_3\cdot C_6H_9(NH\cdot CO\cdot NH\cdot C_6H_5)_2$. B. Aus 1.3-Diamino-1-methyl-cyclohexan und Phenylisocyanat in gekühltem Äther (H., B. 35, 1172). — Säulen (aus verd. Alkohol). Schmilzt unscharf zwischen 210° und 240°.

4. Diamine C₈H₁₈N₂.

1. 3.5-Diamino-1.1-dimethyl-cyclohexan $C_9H_{18}N_2 =$

 $H_1C \subset CH(NH_2) \cdot CH_2 \subset C(CH_3)_2$. B. Aus dem 1.1-Dimethyl-cyclohexandioxim-(3.5) (Bd. VII, S. 561) durch Reduktion mit Natrium und Alkohol (HARRIES, ANTONI, A. 328, 109). — Wasserhelles Öl. Kp_{9-10} : 103—105°; zieht begierig CO_2 aus der Luft an (H., A.). — Bei der trocknen Destillation des Phosphats entsteht ein Gemisch von 1.2- und 1.3-Dimethyl-cyclohexadienen (Crossley, Renouf, Soc. 95, 930; vgl. H., A.). — $C_8H_{18}N_2 + 2$ HCl. Schneeweiße Krystallmasse (aus Alkohol + Äther); leicht löslich in Wasser und Alkohol (H., A.). — $C_8H_{18}N_2 + 2$ HNO₃. Weiße Krystallmasse. F: 225° (Zers.); löslich in Wasser, Alkohol und Benzol, unlöslich in Ather, Essigester und Chloroform (H., A.). — $C_8H_{18}N_2 + H_3PO_4$. Weißes undeutlich krystallmissches Pulver (aus Wasser); löslich in Wasser und verd. Alkohol, unlöslich in absol. Alkohol (H., A.). — Oxalat $C_8H_{18}N_2 + C_2H_2O_4$. Weiße Krystallmasse (aus Äther). F: 250° (Zers.); leicht.löslich in Wasser und verd. Alkohol, unlöslich in absol. Alkohol, Åther, Essigester, Chloroform und Benzol (H., A.).

3.5 - Bis - bensamino - l.1 - dimethyl - cyclohexan $C_{22}H_{26}O_2N_2 = (CH_3)_2C_6H_6(NH\cdot CO\cdot C_6H_5)_2$. F: 263—264° (H., A., A. 328, 110).

3.5-Bis-[ω -phenyl-ureido]-l.l-dimethyl-cyclohexan $C_{22}H_{28}O_2N_4 = (CH_3)_2C_6H_8(NH \cdot CO \cdot NH \cdot C_6H_5)_2$. F: 248° (H., A., A. 328, 110).

2. 1.5-Diamino-1.3-dimethyl-cyclohexan $C_8H_{18}N_2 =$

 $H_2C < CH(CH_3) \cdot CH_2 > C < NH_2 \cdot B$. Aus dem Oxim des 1-Hydroxylamino-1.3-dimethylcyclohexanons-(5) (Syst. No. 1938) mit Natrium und Alkohol (HARRIES, B. 35, 1174). — Elüssigkeit. Kp₂₇: 103—105°. Zieht aus der Luft Kohlensäure an. — $C_8H_{16}N_2 + 2HCl$. Hochschmelzende Prismen (aus Alkohol + Äther).

1.5-Bis-[ω -phenyl-ureido]-1.3-dimethyl-cyclohexan $C_{22}H_{28}O_2N_4=(CH_3)_2C_6H_8(NH\cdot CO\cdot NH\cdot C_8H_5)_2$. B. Aus 1.5-Diamino-1.3-dimethyl-cyclohexan und Phenylisocyanat in absol. Ather (H., B. 35, 1175). — Nadeln (aus Alkohol). F: 247°.

3. 3.1¹-Diamino-1-methoāthyl-cyclopentan $C_8H_{18}N_2 = H_2N \cdot HC \cdot CH_2 CH \cdot C(CH_3)_2 \cdot NH_2$.

3.1¹ - Bis - [carbomethoxy - amino] - 1 - methoäthyl - cyclopentan¹) $C_{12}H_{22}O_4N_6=C_8H_{14}(NH\cdot CO_2\cdot CH_3)_2$. B. Aus dem Diamid der inakt. Camphencamphersäure (Bd. IX, S. 765) mit Brom und Natriummethylat (Моусно, ZIENKOWSKI, A. 340, 49). — Tafeln. F: 114°.

5. Diamine C10H22N2.

- 1. 1.5 Diamino 1 methyl 3 methoāthyl cyclohexan, 1.5 Diaminom-m-menthan $C_{10}H_{22}N_2 = H_2C < CH(NH_2) CH_2 > CH \cdot CH(CH_3)_2$. B. Aus dem Oxim des 1-Hydroxylamino-m-menthanons-(5) (Syst. No. 1938) durch Reduktion mit Natrium + Alkohol (Harries, Antoni, A. 328, 116). Schwach basisch riechende Flüssigkeit. Kp₁₃: 115—117°. Zieht begierig aus der Luft CO_2 an. Bei der trocknen Destillation des Phosphats erhält man ein m-Menthadien-(x.x) (Bd. V, S. 124). Oxalat $C_{10}H_{22}N_2 + 2C_2H_2O_4$. Weiße undeutlich krystallinische Masse. F: 90°. Löslich in Wasser, Alkohol und Chloroform, schwerer löslich in Benzol, unlöslich in Äther.
- 2. 1.3 Diamino 1 methyl 4 methoäthyl cyclohexan, 1.3 Diamino-p-menthan, "Aminotetrahydroumbellulylamin" $C_{10}H_{12}N_2 = H_1N CH_2 CH_2 CH_2 CH(CH_3)_2$. B. Aus 35 g Hydroxylaminodihydroumbellulon-

¹⁾ Zur Konstitution vgl. Bd. IX, S. 764 Anm.

oxim (Syst. No. 1938) in 600 ccm Alkohol mit 62 g Natrium ohne Kühlung (Tutin, Soc. 91, 276; vgl. Semmler, B. 40, 5022). — Farblose Flüssigkeit. Kp₅₀: 136—138°; löst sich in etwa der gleichen Menge Wasser unter Wärmeerzeugung; bei weiterem Zusatz von Wasser scheidet sich ein Öl wieder aus, das in viel Wasser löslich ist (T.). — $C_{10}H_{22}N_2+2$ HCl. Farblose Prismen (aus Alkohol); zersetzt sich bei 305°, ohne zu schmelzen; $[a]_{\rm b}$: —21,41° (0,4086 g in 25 ccm Alkohol), —18,8° (0,4086 g in 25 ccm Wasser) (T.). — Benzoat $C_{10}H_{22}N_2+2C_7H_6O_2$. Farblose Prismen (aus Alkohol); F: 212—213°; $[a]_{\rm b}$: —8,83° (0,4244 g in 25 ccm Alkohol), —7,36° (0,4244 g in 25 ccm Wasser) (T.).

N.N'-Dibensoylderivat $C_{24}H_{30}O_3N_3 = [(CH_3)_2CH](CH_3)C_6H_8(NH\cdot CO\cdot C_6H_5)_2$. B. Aus der Base und Benzoylchlorid nach Schotten-Baumann (Tutin, Soc. 91, 278). — Prismen (aus Alkohol). F: 194°; leicht löslich in Chloroform, sehr wenig in Wasser. $[\alpha]_D$: +117,3° (0,5379 g in 25 ccm Chloroform).

- 3. 2.4 Diamino 1 methyl 4 methoäthyl cyclohexan, 2.4 Diamino-p-menthan $C_{10}H_{22}N_2 = CH_3 \cdot HC < \frac{CH_2}{CH(NH_2) \cdot CH_2} > C < \frac{NH_2}{CH(CH_3)_2}$. B. Aus dem Oxim des 4-Hydroxylamino-p-menthanons-(2) (Syst. No. 1938) mit Natrium und siedendem Alkohol (Harries, Majima, B. 41, 2528). Kp₁₂: 121,5°. D₁°: 0,9192. n₁°: 1,4848. Das Phosphat liefert bei der trocknen Destillation unter vermindertem Druck Terpinen (Bd. V, S. 126).
- 2.4-Bis-[ω -phenyl-ureido]-p-menthan $C_{24}H_{32}O_{2}N_{4}=[(CH_{3})_{2}CH](CH_{3})C_{6}H_{6}(NH\cdot CO\cdot NH\cdot C_{6}H_{5})_{2}$. B. Aus 2.4-Diamino-p-menthan und Phenylisocyanat in Äther (H., M., B. 41, 2528). Krystalle (aus Alkohol durch Wasser). F: 220—222°.
- 4. 3.4 Diamino 1 methyl 4 methoāthyl cyclohexan, 3.4 Diamino-p-menthan $C_{10}H_{22}N_2 = CH_3 \cdot HC \cdot CH_2 \cdot CH(NH_2) \cdot CH(CH_3) \cdot CH(CH_3)_2$. B. Durch Reduktion von 4 Amino menthon-oxim (Syst. No. 1873) mit Natrium und Alkohol (Konowalow, Ishewski, B. 31, 1480). Flüssig. Kp: 240—243°. Löslich in Wasser.
- 5. 1.4¹- Diamino 1 methyl 4 methoāthyl cyclohexan, 1.8 Diamino-p-menthan $C_{10}H_{12}N_2 = \frac{H_2N}{CH_3} > C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot C(CH_3)_2 \cdot NH_2$. B. Aus 1.8-Dinitro-p-menthan (Bd. V, S. 55) mit Zinkstaub und Eisessig (Konowalow, \mathcal{H} . 38, 449; C. 1906 II, 344). Kp: 231—233°. D_0° : 0,9263; $D_0^{\circ,\circ}$: 0,9108. $n_D^{\circ,\circ}$: 1,47955.

N.N' - Dibenzoylderivat $C_{24}H_{30}O_2N_2 = (C_6H_5\cdot CO\cdot NH)(CH_3)C_6H_9\cdot C(CH_3)_2\cdot NH\cdot CO\cdot C_6H_5$. B. Aus der Base und Benzoylchlorid nach Schotten-Baumann (K., \mathcal{R} . 38, 451; C. 1906 II, 344). — Nädelchen (aus Alkohol). F: 232,5—233,5°. Sehr wenig löslich in Äther und Benzol.

6. 3.4¹- Diamino - 1 - methyl - 4 - methoäthyl - cyclohexan, 3.8 - Diamino-p-menthan $C_{10}H_{22}N_2 = CH_3 \cdot HC < CH_2 \cdot CH_{(NH_2)} > CH \cdot C(CH_3)_2 \cdot NH_2$. B. Durch Reduktion von a-[Pulegonhydroxylamin-oxim] (Syst. No. 1938) mit Natrium und Alkohol (Semmler, B. 38, 147). — Kp₁₀: 118—121°. D³0: 0,956. n_D: 1,489. — Das schwefelsaure Salz liefert in wäßr. Lösung mit salpetriger Säure p-Menthandiol-(3.8) (vgl. Bd. VI, S. 748). Das salzsaure Salz liefert bei der Destillation die Base $C_{10}H_{19}N$ (s. u.).

Base C₁₀H₁₀N. B. Neben Kohlenwasserstoffen bei der Destillation des salzsauren Salzes des 3.8-Diamino-p-menthans (S., B. 38, 148). — Kp₁₅: 65°. — Das Pikrat schmilzt bei 130° und ist schwer löslich in Äther.

3.8 - Bis - [ω - phenyl - thioureido] - p - menthan $C_{24}H_{25}N_4S_2 = (C_6H_5 \cdot NH \cdot CS \cdot NH)(CH_3)C_6H_5 \cdot C(CH_2)_2 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. F: 1570 (S., B. 38, 148).

7. $1^1.3^2$ - Diamino - 1 - methyl - 3 - dimethoāthyl - cyclopentan 1) $C_{10}H_{22}N_2 = H_2N \cdot CH_2 \cdot C(CH_3)_3 \cdot HC - CH_2 \cdot CH \cdot CH_2 \cdot NH_2$. B. Aus dem Dinitril der inakt. Camphen-camphersäure (Bd. IX, S. 765) durch Reduktion mit Natrium und Alkohol (Moycho, Zien-kowski, A. 340, 49). — $C_{10}H_{12}N_2 + 2 HCl + PtCl_4$.

¹⁾ Zur Konstitution vgl. Bd. IX, S. 764 Anm.

2. Diamine $C_nH_{2n}N_2$.

- $\text{1. 3.7-Diamino-cyclohepten-(1)} \quad \mathrm{C_7H_{14}N_2} = \frac{\mathrm{H_2C\cdot CH\,(NH_2)\cdot CH}}{\mathrm{H_2C\cdot CH_2\cdot CH(NH_2)}} \text{CH.}$
- 3.7 Bis dimethylamino cyclohepten (1) $C_{11}H_{22}N_2 = C_7H_{10}[N(CH_3)_2]_2$. B. Aus 3.7-Dibrom-cyclohepten (1) (Bd. V, S. 65) und Dimethylamin in Methylalkohol oder Benzol (WILLSTÄTTER, A. 317, 258). — Ammoniakalisch riechende Flüssigkeit. Siedet bei 225—235°. — Vereinigt sich mit Methyljodid; das aus dem Jodmethylat durch Einw. von Ag₂O dargestellte Hydroxyd liefert bei der trocknen Destillation Cycloheptatrien-(1.3.5) (Bd. V, S. 280).

2. Diamine $C_{10}H_{20}N_2$.

- 1. 5.6-Diamino-1-methyl-4-methoäthyl-cyclohexen-(1), 5.6-Diamino-
- $\begin{array}{lll} \textbf{p-menthen-(1), a-Phellandrendiamin} & C_{10}H_{20}N_2 = \\ \text{CH}_3 \cdot \text{C} & \overset{\text{CH}(\text{NH}_2) \cdot \text{CH}(\text{NH}_2)}{\text{CH}} & \text{CH}_2 & \text{CH} \cdot \text{CH}(\text{CH}_3)_2. \end{array} \\ \text{Sterisch dem 1-a-Phellandren (Bd. V, or example of the context of the cont$ S. 130) entsprechende Form. Zur Konstitution vgl. Wallach, A. 336, 42. — B. Das aus l-a-Phellandren dargestellte Gemisch von a- und β -Nitrosit (Bd. V, S. 131) wird unter Kühlung ind β-Nitrosit (Bd. V, S. 131) wird unter Kunlung mit Eisessig und Zinkstaub reduziert (W., Böcker, C. 1902 I, 1295; A. 324, 271). — Wasserhelle Flüssigkeit; Kp: 251—255° (geringe Zersetzung); Kp_{17,5}: 132—134°; ziemlich schwerflüchtig mit Wasserdampf; linksdrehend (W., Bö.). — Die Base reagiert mit CS₂ in äther. Lösung unter Abscheidung eines weißen, bei 130° sich zersetzenden Pulvers (W., Bö.). Bei der trocknen Destillation des Monohydrochlorids erhält man p-Cymol (W., Bö.). — $C_{10}H_{20}N_2 + HCl$. Farblose luftbeständige Krystalle (aus Alkohol); F: 209—210°; schwer löslich in Alkohol, leicht in Wasser und verd. Salzsäure (W., Bö.). — $C_{10}H_{20}N_2 + 2 HCl + PtCl$. Hellgelb: leicht löslich in Wasser (W., Bö.) PtCl₄. Hellgelb; leicht löslich in Wasser (W., Bö.).
- N. N. N'. N'. N'. Hexamethyl a phellandren bis ammoniumhydroxyd $C_{16}H_{36}O_2N_2=[(CH_3)_2CH](CH_3)C_6H_6[N(CH_3)_3\cdot OH]_2$. B. Das Jodid entsteht aus a-Phellandrendiamin in Äther mit überschüssigem Methyljodid und Natronlauge (Wallach, Böcker, A. 324, 275). — Chlorid. Nadeln. Ziemlich beständig gegen verd. Permanganatlösung. — Jodid $C_{16}H_{24}N_2I_2$. Krystalle (aus ca. $75^{\circ}/_{\circ}$ igem Alkohol). F: 192° (Zers.). Verwittert an der Luft. — Chloroplatinat $C_{16}H_{34}N_2Cl_2 + PtCl_4$. Hellgelb.
- N.N'-Dibenzoyl- α -phellandrendiamin $C_{24}H_{28}O_2N_2=[(CH_3)_2CH](CH_3)C_6H_6(NH\cdot CO\cdot C_6H_5)_2$. B. Aus der Base und Benzoylchlorid nach Schotten-Baumanns Methode (Wallach, BÖCKER, A. 324, 275). — Krystalle (aus verd. Alkohol). F: 194-195°. Schwach rechtsdrehend.
- 2. 1.1¹-Diamino-1-methyl-4-methoäthyl-cyclohexen-(2), 1.7-Diamino-p-menthen-(2), β -Phellandrendiamin $C_{10}H_{20}N_2=$
- H₂N CH₂ CC_{CH=CH} CH·CH(CH₃)₂. Zur Konstitution vgl. Wallach, A. **340**, 12. B. Das aus β -Phellandren (Bd. V, S. 131) dargestellte Gemisch von α - und β -Nitrosit (Bd. V, S. 132) (vgl. W., BESCHKE, A. 336, 43) wird mit Alkohol angerührt und unter Kühlung mit Zinkstaub und Eisessig reduziert (PESCI, G. 16, 229; W., BÖCKER, C. 1902 I, 1295; A. 324, 278). — Farb- und geruchlose Flüssigkeit. Kp: 260° (Zers.); Kp₁₁: 133—135° (W., Bö.). Schr leicht löslich in Wasser und Alkohol, schwer in Ligroin (P.). Linksdrehend (W., Bö.). — C₁₀H₂₀N₂+2HCl+PtCl₄. Zu Warzen vereinigte Prismen; schwer löslich in Wasser (P.).
- N.N.N.N'.N'.N'-Hexamethyl- β -phellandren-bis-ammoniumjodid $C_{16}H_{34}N_2I_2=(CH_3)_2CH\cdot C_6H_7[N(CH_3)_3I]\cdot CH_2\cdot N(CH_3)_3I$. B. Aus β -Phellandrendiamin in äther. Lösung mit Methyljodid und Natronlauge (Wallach, Böcker, A. 324, 280). Nadeln (aus Methylalkohol). E: 91—94°. Leicht löslich in Alkohol.
- $N.N'-Dibenzoyl-\beta-phellandrendiamin C₂₄H₂₈O₂N₂ = (CH₃)₂CH·C₆H₇(NH·CO·C₆H₅)·$ CH. NH·CO·C. H. B. Aus der Base und Benzoylchlorid nach Schotten-Baumann (W., B., A. 324, 279). — Undeutlich krystallinisches Pulver (aus Chloroform + Äther). F: 1980 bis 199°. Sehr leicht löslich in Alkohol.
- 3. 2.6 Diamino 1 methyl 4 methoäthenyl cyclohexan, 2.6 Diamino p-menthen. (8(9)), "Dihydrocarvyldiamin" $C_{10}H_{20}N_2 =$ $CH_3 \cdot HC < \frac{CH(NH_2) \cdot CH_2}{CH(NH_3) \cdot CH_2} > CH \cdot C < \frac{CH_3}{CH_3}$. B. Durch Reduktion von Hydroxylaminodihydrocarvonoxim (Oxaminocarvoxim, Syst. No. 1938) mit Natrium + Alkohol, neben einer isomeren Verbindung (HARRIES, MAYRHOFER, B. 32, 1350). — Flüssig. Riecht basisch.

 $\rm Kp_{10}\colon 122-123^\circ;\; Kp_{760}\colon 258-260^\circ\; (korr.).$ Löslich in Wasser. Optisch inaktiv. Zieht aus der Luft CO₂ an unter Bildung eines ätherlöslichen festen Carbamates. — $\rm C_{10}H_{30}N_2+2HCl.$ Hygroskopisches Pulver. — Oxalat $\rm C_{10}H_{20}N_2+2C_2H_2O_4.$ F: $135-140^\circ.$ — Pikrat $\rm C_{10}H_{20}N_2+2C_6H_3O_7N_3.$ Pulver, das von 229° ab sich zersetzt und bei 250° aufschäumt. Leicht löslich in Alkohol. Wird von heißem Wasser zersetzt.

- 2.6 Bis benzamino p menthen (8(9)) $C_{24}H_{28}O_2N_2 = [(CH_2:)(CH_3)C](CH_3)C_6H_8(NH-CO\cdot C_6H_8)_2$. B. Aus "Dihydrocarvyldiamin" und Benzoylchlorid + NaOH, neben einer bei 123° schmelzenden Verbindung (H., M., B. 32, 1351). Pulver (aus Alkohol). F: 275—276°.
- 2.6 Bis [ω phenyl ureido] p menthen (8(9)) $C_{34}H_{30}O_{3}N_{4}=[(CH_{2}:)(CH_{3})C](CH_{3})C_{6}H_{8}(NH\cdot CO\cdot NH\cdot C_{6}H_{5})_{2}$. B. Aus "Dihydrocarvyldiamin" und Phenylisocyanat in Äther (H., M., B. 32, 1351). Krystalle (aus verd. Alkohol). F: 214—216°.
- 2.6 Bis [ω phenyl thioureido] p menthen (8(9)) $C_{24}H_{30}N_4S_2 = [(CH_2:)(CH_3)C](CH_3)C_6H_6(NH\cdot CS\cdot NH\cdot C_6H_5)_2$. B. Aus "Dihydrocarvyldiamin" und Phenylsenföl in Methylalkohol (H., M., B. 32, 1351). F: 179—180°. Schwer löslich in Alkohol und Benzol.
- 4. 2.3 Diamino 1.7.7 trimethyl bicyclo [1.2.2] heptan, 2.3 Diamino-camphan, Bornylendiamin $C_{10}H_{20}N_2$, s. nebenstehende Formel. B. Aus a-Amino-campheroxim (Syst. No. 1873) oder aus Campher-chinondioxim (Bd. VII, S. 588) durch Reduktion (DUDEN, D. R. P. 160103; C. 1905 II, 178). Wachsartige Masse. Kp. 246°; sehr leicht löslich in Wasser. Wirkt antipyretisch. Das Diacetylderivat schmilzt bei 246°.

3. Diamine $C_nH_{2n-4}N_2$.

1. Diamine $C_6H_8N_2$.

1. 1.2 - Diamino - benzol, Phenylendiamin - (1.2), o - Phenylendiamin $C_6H_8N_2=H_2N\cdot C_6H_4\cdot NH_2$.

Bildung.

B. Bei der Reduktion von o-Dinitro-benzol (Bd. V, S. 257) mit Zinn und Salzsäure (RINNE, ZINCKE, B. 7, 1374). Aus o-Nitranilin (Bd. XII, S. 687) mit Zinn und Salzsäure (ZINCKE, SINTENIS, B. 6, 123; KÖRNER, G. 4, 320; J. 1875, 345; HÜBNER, A. 209, 361), mit Zinnchlorür und Salzsäure (Goldschmidt, Ingebrechtsen, Ph. Ch. 48, 449; Goldschmidt, Sunde, Ph. Ch. 56, 23), mit alkal. Zinnoxydullösung (Goldschmidt, Eckardt, Ph. Ch. 56, 400, 424), beim Kochen mit Zinkstaub und Wasser (Bamberger, B. 28, 250), beim Behandeln mit Zinkstaub in alkoholisch-alkalischer Lösung (HINSBERG, KÖNIG, B. 28, 2947), beim Behandeln mit hydroschwefligsaurem Natrium Na₂S₂O₄ und NaOH in Alkohol (Borsche, C. 1909 II, 1550), bei elektrolytischer Reduktion in wäßr. Alkohol in Gegenwart von Natriumacetat (Rohde, Z. El. Ch. 7, 339), beim Erhitzen mit Phenylhydrazin (Walther, J. pr. [2] 53, 446). Aus 4-Brom-phenylendiamin-(1.2) bei Behandlung mit Natriumamalgam in Wasser (V. Meyer, Wurster, A. 171, 63; Hübner, A. 209, 360) oder beim Kochen mit Zinkstaub und verd. Natronlauge (Sandmeyer, B. 19, 2654). Bei der trocknen Destillation der 2.3-Diamino-benzoesäure (Syst. No. 1905) (Griess, J. pr. [2] 3, 143; B. 5, 202) oder der 3.4-Diamino-benzoesäure (Syst. No. 1905) (Griess, J. pr. [2] 3, 143; B. 5, 201; Salkowski, A. 173, 58).

Darstellung.

Man löst 50 g o-Nitranilin in 100—150 ccm siedendem Alkohol, gießt 40 ccm 20% jege Natronlauge hinzu und versetzt allmählich unter Umschütteln mit Zinkstaub; nach einiger Zeit, wenn auf Zusatz von Zinkstaub kein Aufwallen mehr erfolgt, gießt man 10 ccm Natronlauge hinzu, erhitzt zum Sieden, gibt Zinkstaub hinzu und wiederholt dies noch ein- oder zweimal, bis die rotgelbe Lösung hellbraun geworden ist; man filtriert, kocht den Filterinhalt zweimal mit Alkohol aus, entfernt aus den vereinigten alkoh. Lösungen den Alkohol durch Erhitzen im Wasserstoffstrom auf dem Wasserbade, zerschlägt das nach dem Erkalten auskrystallisierte o-Phenylendiamin, trocknet es und destilliert (HINSBERG, KÖNIG, B. 28, 2947).

Gewinnung von reinem o-Phenylendiamin aus seinem salzsauren Salz: R. MEYER, J. MAIER, A. 327, 28.

Physikalische Eigenschaften.

Blättchen (aus Wasser), quadratische Tafeln (aus Chloroform). F: 102—103° (HÜBNEB, A. 209, 361). Kp₇₈₀: 256—258° (korr.) (PERKIN, Soc. 69, 1214). Sublimierbar (ZINCEE,

Sintenis, B. 6, 123). Leicht löslich in heißem Wasser, schwer in kaltem, sehr leicht in kaltem Alkohol, Äther (Griess, J. pr. [2] 8, 143) und in Chloroform (Hübner, A. 209, 361). Rotiert auf fettfreiem Wasser (Gattermann, B. 18, 1484). Magnetisches Drehungsvermögen: Prekin, Soc. 69, 1215, 1245. Zur Hydrolyse des Hydrochlorids vgl.: Farmer, Warte, Soc. 85, 1726; Veley, Soc. 93, 2133. Elektrolytische Dissosiationskonstante k bei 25° (berechnet aus dem Grad der Hydrolyse des Hydrochlorids, der durch Verteilung zwischen Wasser und Benzol bestimmt wurde): 3,3×10⁻¹⁰ (Farmer, Warte, Soc. 85, 1726). Wärmetönung bei der Neutralisation von o-Phenylendiamin mit HCl: Vignon, Bl. [3] 2, 675.

Chemisches Verhalten.

Einwirkung anorganischer Reagenzien. o-Phenylendiamin gibt bei der Oxydation mit Silberoxyd oder Bleidioxyd in äther. Lösung unter Ausschluß von Feuchtigkeit und unter Kühlung eine hellgelbe Lösung von o-Chinondiimid C_eH₄(:NH)₂, welches sich beim Erwärmen der äther. Lösung oder beim Schütteln mit Salzsäure in 2.2'-Diamino-azobenzol (o-Azoanilin) $H_sN \cdot C_sH_s$ $N : N \cdot C_sH_s$ NH_s (Syst. No. 2172) und 2.3-Diamino-phenazin (s. nebenstehende Formel) (Syst. No. 3745) umwandelt (WILLSTÄTTER, PFANNENSTIEL, B. 38, 2348). Bei der Bei der ·NH. Oxydation von salzsaurem o-Phenylendiamin mit FeCl₃ in wäßr. Losung entsteht vorwiegend 2.3-Diamino-phenazin neben etwas 2-Oxy-3-amino-phenazin (Syst. No. 3770); auch bei der Oxydation von o-Phenylendiamin mit FeCl, in essigsaurer Lösung erhält man als Hauptprodukt 2.3-Diamino-phenazin neben geringen Mengen 2-Oxy-3-amino-phenazin; arbeitet man in stark salzsaurer Lösung, so entsteht in überwiegender Menge 2-Oxy-3-amino-phenazin und nur wenig 2.3-Diamino-phenazin (Ullmann, Mauthber, B. 35, 4302; vgl. Griess, J. pr. [2] 3, 144; Salkowski, A. 173, 60; Rudolph, B. 12, 2212; Wiesinger, A. 224, 353; O. Fischer, Heff, B. 22, 356). Beim Erwärmen der konzentrierten wäßrigen Lösung von o-Phenylendiamin mit überschüssiger 10% iger Natriumperoxydlösung entsteht etwas o-Nitranilin; oxydiert man vorsichtig in schwach salzsaurer Lösung, so erhält man 2.3-Diamino-phemazin (O. Fischer, Trost, B. 26, 3084). Oxydation durch Jodeyan s. S. 11, durch 4-Amino-azobenzol s. S. 12. Bei der Einw. von Chlor auf salzsaures o-Phenylendiamin wird Hexachlor-cyclohexen-(1)-dion-(3.4 oder 4.5) (Bd. VII, S. 575) gebildet (Zincke, A. 296, 136; vgl. B. 27, 561). o-Phenylendiamin liefert mit wäßriger schwefliger Saure bei 180—200° Benzopiazthiol $C_0H_0 \stackrel{N}{\underset{N}{\triangleright}} S$ (Syst. No. 4491) (Hinsberg, B. 22, 2899; BAYER & Co., D.R.P. 49191; Frdl. 2, 534). Dieselbe Verbindung erhält man auch beim Erhitzen von salzzaurem o-Phenylendiamin mit Thionylchlorid in Benzol (MICHAELIS, A. 274, 262). Mit SeO, in wäßr. Lösung erfolgt schon bei gewöhnlicher Temperatur Bildung von Benzopiaselenol C_eH₆ N Se (Syst. No. 4491) (HINSBERG, B. 22, 2897). Beim Erhitsen von salssaurem o-Phenylendiamin mit 71/2 Tln. rauchender Schwefelsäure auf dem Wasserbade entsteht 3.4-Diamino-benzol-sulfonsaure-(1) (Syst. No. 1923) (Post, Hardtung, A. 205, 100). Bei der Einw. von Kaliumnitrit auf o-Phenylendiamin in verdünnt-schwefelsaurer Lösung entsteht Benstriazol C. H. NH N (Syst. No. 3803) (LADENBURG, B. 9, 222). Beim Erhitzen von o-Phenylendiamin mit Thiophosphorsaure - O - phenylester - dichlorid (Bd. VI, S. 181) entsteht die Verbindung C.H. C.H. PS·O·C.H. (Syst. No. 4720) (AUTENBIETH, HILDE-BRAND, B. 81, 1112).

Beis piele für die Einwirkung von Halogen- und Nitroderivaten der Kohlenwasserstoffe. o-Phenylendiamin wird durch 10-stdg. Erhitzen mit Methyljodid und Methylalkohol im geschlossenen Rohr auf 180° in Tetramethyl-o-phenylendiamin (S. 16) übergeführt (O. Fischers, B. 25, 2839). Gibt beim Erhitzen mit o-Chlor-nitrobenzol (Bd. V, S. 241') in Gegenwart von Natriumacetat im CO₂-Strom auf 150—160° [neben 2.3-Diamino-phenazinund Fluorindin C₁₈H₁₉N₄ (Syst. No. 4030)] 2'-Nitro-2-amino-diphenylamin (S. 17) (Keremann, Breiner, B. 34, 3091). Beim Kochen von o-Phenylendiamin mit 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) bei Gegenwart von Natriumacetat in alkoh. Lösung entsteht 5'-Chlor-2'.4'-dinitro-2-amino-diphenylamin (S. 17); kocht man in amylalkoholischer Lösung (bei 120—125°), so erhält man N.N'-Bis-[2-amino-phenyl]-4.6-dinitro-phenylendiamin (1.3) (Syst. No. 1765) (Nieter, Slaboszewicz, B. 34, 3728). o-Phenylendiamin liefert bei der Einw. von Chloroform und alkoh. Kali Benzimidazol C₇H₄N₂ (Syst. No. 3473) (Grassi, Cristald), Lambard, G. 25 I, 225).

Beispiele für die Einwirkung von Oxy-Verbindungen. Bei 3-stdg. Erhitzen von salzzeurem o-Phenylendiamin mit 4 Mol.-Gew. Methylalkohol im geschlossenen Rohr auf 180° entsteht ein Gemisch verschiedener Methylierungsstufen des o-Phenylendiamins,

in dem Methyl-o-phenylendiamin und Tetramethyl-o-phenylendiamin nachgewiesen wurden (O. FISCHER, B. 25, 2838). Durch wiederholte Einw. von Methylalkohol und Salzsaure auf o-Phenylendiamin im geschlossenen Rohr bei 175—185° erhält man fast ausschließlich das Tetramethylderivat (PINNOW, B. 32, 1402). Durch Oxydation eines Gemisches von o-Phenylendiamin und Phenol in wäßr. Lösung mit MnO₂ erhält man eine indophenolähnliche Substanz, welche bei der Reduktion mit Schwefelnatrium in 4'-Oxy-2-aminodiphenylamin (Syst. No. 1850) übergeht (ULLMANN, FUKUI, B. 41, 624). Einw. von Thiophosphorsäure-O-phenylester-dichlorid s. S. 7. Bei der Oxydation eines Gemisches von o-Phenylendiamin und β -Naphthol durch alkal. Ferrioyankaliumlösung bildet sich ang. Naphthophenazin (Formel I) (Syst. No. 3490) (Witt, B. 20, 576). Bei anhaltendem Erhitzen von o-Phenylendiamin mit Brenzeatechin im geschlossenen Rohr auf 200—210° entsteht Phenazin (Syst. No. 3487) (Ris, B. 19, 2206). Beim Erhitzen mit 2.3-Dioxy-naphthalin

(Bd. VI, S. 982) auf 180° erhält man das lin. Naphthophenazindihydrid (Formel II) (Syst. No. 3489) (Hinsberg, A. 319, 260). o-Phenylendiamin liefert bei der in üblicher Weise ausgeführten Kondensation mit Glycerin o-Phenanthrolin (Formel III) (Syst. No. 3487) (Blau, M. 19, 666).

Beispiele für die Einwirkung von Oxo-Verbindungen, Oxy-oxo-Verbindungen und ihren Derivaten. o-Phenylendiamin liefert mit Formaldehyd in schwach salzsaurer Lösung 1-Methyl-benzimidazol (Syst. No. 3473), in neutraler (wäßrig-alkoholischer) Lösung eine Verbindung CieHieN (S. 14) (O. FISCHER, WRESZINSKI, B. 25, 2711; O. FI., B. 32, 245). Bei der Reaktion zwischen 1 Mol. Gew. o-Phenylendiamin und 2 Mol. Gew. Acetaldehyd in verd. Essigsaure entstehen 2-Methyl-benzimidazol (Syst. No. 3474) und 1-Athyl-2-methyl-benzimidazol (Syst. No. 3474) (HINSBERG, FUNCKE, B. 27, 2187); erwärmt man 1 Mol.-Gew. o-Phenylendiamin mit 2 Mol.-Gew. Acetaldehyd in alkoh. Lösung, so entsteht eine oberhalb 300° siedende Verbindung (Hr., Koller, B. 29, 1503). o-Phenylendiamin verbindet sich mit der äquimolekularen Menge Chloral in äther. Lösung zu Chloral-o-phenylendiamin H₂N·C₆H₄·NH·CH(OH)·CCl₃ (S. 19) (RÜGHEIMER, B. 39, 1660). Beim Einleiten von HCl in eine Lösung von o-Phenylendiamin in Aceton oder beim Erhitzen von o-Phenylendiamin mit Mesityloxyd (Bd. I, S. 736) in Benzol erfolgt Bildung von 2-Methyl-3-isopropyl-chinoxalindihydrid (Syst. No. 3478) (EKELEY, WELLS, B. 38, 2260). Beim Versetzen der alkoh. Suspension von o-Phenylendiamin mit 1 Mol.-Gew. Benzaldehyd unter Kühlung entsteht N-Benzal-o-phenylendiamin (S. 19); mit 2 Mol.-Gew. Benzaldehyd erhält man auf diese Weise ein öliges Reaktionsprodukt, welches nach mehrtägigem Stehen in N.N'-Dibenzal-o-phenylendiamin übergeht (Hr., Ko., B. 29, 1498, 1499). Schüttelt man die wäßr. Lösung von salzsaurem o-Phenylendiamin mit 2 Mol.-Gew. Benzaldehyd, so erhält man 1-Benzyl-2-phenyl-benzimidazol (Syst. No. 3487) (Ladenburg, Engelbrecht, B. 11, 1653). Beim Erhitzen von o-Phenylendiamin mit ω-Brom-acetophenon in alkoh. Lösung entsteht 2-Phenyl-chinoxalin (Syst. No. 3488) (Hr., A. 292, 246). — o-Phenylendiamin liefert mit Glyoxal (Bd. I, S. 759) oder dessen Natriumdisulfitverbindung in warmer wäßr. Lösung Chinoxalin (Syst. No. 3480) (HL, A. 287, 333). Gibt mit aquimolekularen Mengen Succindialdehyd (Bd. I, S. 767) in wast. Lösung in Gegenwart von Kaliumacetat die Verbindung C₁₀H₁₀N₂ (S. 14) (Harries, Krützfeld, B. 39, 3673). Bei der Einw. von Diacetyl (Bd. I, S. 769) auf o-Phenylendiamin in wast. Lösung oder von Diacetylmonoxim (Bd. I, S. 772) auf essignation. saures o-Phenylendiamin in wißr. Losung entsteht 2.3-Dimethyl-chinoxalin (Syst. No. 3482) (Gabriel, Sonn, B. 40, 4852, 4853). o-Phenylendiamin gibt mit Acetylaceton (Bd. I, S. 777) in alkoholisch-essigsaurer Lösung intensiv violette Färbung; auf Zusatz von Salzsäure scheidet sich das Hydrochlorid der Verbindung $C_0H_0 < N:C(CH_2) > CH_2$ (Syst. No. 3483) ab (Thible, STERRING, B. 40, 955). Versetzt man eine alkoh. Lösung von 1.1.3.3-Tetramethyl-cyclo-butandion-(2.4) (Bd. VII, S. 563) mit einer alkal. Lösung von o-Phenylendiamin, so entsteht eine Verbindung C₁₄H₁₆ON₂ (S. 14) (Wederlind, Weisswange, B. 39, 1643). Mit 4.5-Dimethyl-benzochinon-(1.2) (Bd. VII, S. 656) reagiert o-Phenylendiamin in Eisessig unter Bildung von 2.3-Dimethyl-phenazin (Syst. No. 3487) und 4.5-Dimethyl-brenzeatechin (Bd. VI, S. 908) (Diepolder, B. 43, 2922). Beim Kochen von o-Phenylendiamin mit Isonitrosoccetophenon (Bd. VII, S. 671) in alkoh. Lösung entsteht 2-Phenyl-chinoxalin (Syst. No. 3488) (O. FISCHER, RÖMER, B. 41, 2350). Erhitzt man salzsaures o-Phenylendiamin mit Phthal-C.H. N.CH. dialdehyd (Bd. VII, S. 674) in wäßr. Lösung, so entsteht o-Benzylen-benzimidasol (Syst. No. 3488) (Thible, Falk, A: 347, 125). Mit β-Naphthochinon (Bd. VII, S. 709) kondensiert sich o-Phanylendiamin in 50% iger Essignaure bei 0° su ang. Naphthophenasin (Syst. No.

3490) (Wrrr, B. 20, 575). Mit Naphthochinon-(1.2)-oxim-(1) (α-Nitroso-β-naphthol; Bd. VII.

8. 712) in kalter essigsaurer Lösung in Gegenwart von Salzsäure werden ang. Naphthophenazin und etwas 2.3-Diamino-phenazin gebildet (ULLMANN, HEISLER, B. 42, 4263). Bei der Kondensation von o-Phenylendiamin mit 2.3-Dibrom-naphthochinon-(1.4) (Bd. VII, S. 731) in Gegenwart alkoh. Natriumäthylatlösung bildet sich das Bromoxynaphthophenazin der

I.
$$HO \cdot N$$

$$Br$$
II.

Formel I (Syst. No. 3516) (LINDENBAUM, B. 34, 1053). Beim Zusammenbringen einer alkoh. Lösung von o-Phenylendiamin mit einer wäßr. Lösung von Phenanthrenchinon in Eisessig entsteht Phenanthrophenazin (Syst. No. 3493) (Formel II) (HINSBERG, A. 237, 340).

o-Phenylendiamin liefert mit Benzoin (Bd. VIII, S. 167) in offenem Gefäß bei 160—170° 2.3-Diphenyl-chinoxalin (Syst. No. 3492) als Hauptprodukt, neben geringen Mengen 2.3-Diphenyl-chinoxalindihydrid (Syst. No. 3491); erhitzt man im geschlossenen Rohr auf 170° so erhält man in überwiegender Menge 2.3-Diphenyl-chinoxalindihydrid neben wenig 2.3-Diphenyl-chinoxalin (O. EISCHER, B. 24, 720). Beim Erhitzen von salzsaurem o-Phenylendiamin mit Benzoin bildet sich 2-Phenyl-benzimidazol (Syst. No. 3487) (JAFF, MELDRUM, Soc. 75, 1043). Beim Erwärmen von salzsaurem o-Phenylendiamin mit 2-Oxy-naphthochinon-(1.4) bezw. 4-Oxy-naphthochinon-(1.2) (Bd. VIII, S. 300) in Wasser unter Zusatz von etwas Essigsäure erhält man das Oxy-naphthophenazin der Formel III (Syst. No. 3516) (Kehrmann, B. 23, 2451, 2453). Beim Kochen von salzsaurem o-Phenylendiamin mit 2-Oxy-naphthochinon-(1.4)-imid-(4) bezw. 4-Amino-naphthochinon-(1.2) (Bd. VIII, S. 302) in Alkohol entsteht das entsprechende Amino-naphthophenazin (Formel IV) (Syst. No. 3722)

(KE., B. 28, 2453). Erhitzt man 2 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. ω-Chlor-3.4-dioxy-acetophenon (Bd. VIII, S. 273) auf 100°, so erhält man die Verbindung C₁₄H₁₉O₂N₂ (S. 14) (Dzierzgowski, B. 27, 1984). Mit ω-Chlor-gallacetophenon (Bd. VIII, S. 394) entsteht auf diese Weise die Verbindung C₁₄H₁₂O₂N₂ (S. 15) (Dz., B. 27, 1985). o-Phenylendiamin liefert mit 2 Mol.-Gew. Arabinose (Bd. I, S. 860) in neutraler oder mit etwas Essigsäure versetzter Lösung neben einer gummiartigen Substanz ein 2-Tetraoxybutyl-benzimidazol C₂H₄ N₁ C· [CH(OH)]₃·CH₂·OH (Syst. No. 3554) (Griess, Harrow, B. 20, 3111; vgl. Schilling, B. 34, 905); in analoger Weise verläuft die Reaktion mit Galaktose (Bd. I, S. 909) unter Bildung eines 2-Pentaoxyamyl-benzimidazols C₁₂H₁₆O₂N₂ (Syst. No. 3554) (Gr., Ha., B. 20, 3116). Aus 1 Mol.-Gew. o-Phenylendiamin und 2 Mol.-Gew. Glykose (Bd. I, S. 879) entsteht in wäßr. Lösung o-Phenylen-bis-glykosimin C₆H₄(N·CH-[CH-(OH)]₄·CH₂·OH)₃ (Syst. No. 3554) (Gr., Ha., B. 20, 2206); bei der Einw. von 1 Mol.-Gew. essigsaurem o-Phenylendiamin auf 2 Mol.-Gew. Glykose in wäßr. Lösung erhält man ein 2-Tetraoxybutyl-chinoxalin C₆H₄ N·CH (CH(OH)]₃·CH₂·OH (Syst. No. 3554) (Gr., Ha., B. 20, 2207;

benzimidazol C_eH₄<NH C·[CH(OH)]₄·CH₁·OH (Syst. No. 3554) (Gr., Ha., B. 20, 2207; vgl. Schilling, B. 34, 905). Das gleiche 2-Tetraoxybutyl-chinoxalin entsteht glatt aus o-Phenylendiamin und Glykoson (Bd. I, S. 932) in heißem Wasser ohne Saurezusatz (E. Fischer, B. 22, 93).

Beispiele für die Einwirkung von Carbonsäuren, Oxycarbonsäuren, Oxocarbonsäuren und ihren Derivaten. o-Phenylendiamin gibt beim Kochen mit Ameisensäure Benzimidasol (Syst. No. 3473) (Wundt, B. 11, 826; Pauly, Gundermann, B. 41, 4011). Benzimidasol entsteht auch bei der Einw. von salzsaurem Dichlormethyl-formamidin (Bd. II, S. 90) auf o-Phenylendiamin in heißem Benzol (Dains, B. 35, 2503). Beim Kochen von o-Phenylendiamin mit Eisessig wird 2-Methyl-benzimidazol (Syst. No. 3474) gebildet (Ladenburg, B. 8, 677). Bei kurzem Kochen von o-Phenylendiamin mit 3 Mol.-Gew. Essigsäureanhydrid entsteht N.N'-Diacetyl-o-phenylendiamin (Bistrzycki, Uleffers, B. 23, 1877). o-Phenylendiamin gibt mit 1 Mol.-Gew. Chloressigsäure in Gegenwart von Zinkstaub 2-Oxo-chinoxalintetrahydrid (Syst. No. 3567) (Motylewski, B. 41, 800). Beim Erwärmen von o-Phenylendiamin mit Chloressigsäureäthylester im Wasserbade erhält man 2-Oxo-chinoxalintetrahydrid-essigsäure-(1)-äthylester(?) (Syst. No. 3667) (Hinsburg, A. 292, 252). Aus o-Phenylendiamin und a-Brom-isobuttersäure-äthylester

bei 100° bildet sich 3-Oxo-2.2-dimethyl-chinoxalintetrahydrid (Syst. No. 3567) (Hr., A. 292, 250). Beim Erhitzen von o-Phenylendiamin mit Benzoessure auf 180° entsteht 2-Phenyl-benzimidazol (Syst. No. 3487) (WALTHER, v. PULAWSKI, J. pr. [2] 59, 251). 2-Phenylbenzimidazol wird auch beim Erhitzen von salzsaurem o-Phenylendiamin mit Thiobenzamid im geschlossenen Rohr auf 240—250° gebildet (PAWLEWSKI, C. 1908 II, 204). Aus o-Phenylendiamin und überschüssigem Benzoesaureanhydrid in siedendem Benzol entsteht N.N'-Dibenzoyl-o-phenylendiamin (BISTEZYCKI, ULFFERS, B. 23, 1877, 1878). Dieses entsteht auch beim Behandeln von o-Phenylendiamin mit Benzoylchlorid in Gegenwart von Natronlauge (HINSBERG, UDRÁNSZKY, A. 254, 254) oder beim Behandeln von salzsaurem o-Phenylendiamin in waßr. Lösung mit 2 Mol.-Gew. Benzoylchlorid (Wa., v. Pu., J. pr. [2] 59, 250). Aus o-Phenylendiamin und p-Toluylsäurechlorid in Benzol entstehen N.N. Di-p-toluyl-o-Aus o-Franchiendiamin und p-Toluylsaurechiorid in Benzoi einsteinen N.N. -Di-p-toluylophenylendiamin und 2-p-Tolyl-benzimidazol (Syst. No. 3487) (Betturer, A. 205, 114;
HÜBNER, HANEMANN, A. 210, 329). — o-Phenylendiamin gibt beim Erhitzen mit überschüssiger Oxalsäure auf 160° (HINSBERG, POLLAR, B. 29, 784; vgl. HI., B. 41, 2031) oder
beim Kochen mit Oxalester (R. MEYER, SEELIGER, B. 29, 2641) 2.3-Dioxo-chinoxalintetrahydrid (o-Phenylendiamin mit 1 Mol.-Gew. Oxalsäure auf
2 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. Oxalsäure auf 240°, so entsteht Fluoflavin (s. nebenstehende Formel) (Syst. No. 4027) (H1., Po., B. 29, 785). Beim Einleiten von Dicyan in die alkoh. Lösung von o-Phenylendiamin entsteht 2.3-Diimino-chinoxalintetrahydrid (Syst. No. 3591) (BLADIN, B. 18, 672). Beim Erhitzen von o-Phenylendiamin mit Malonsaure (R. MEYER, J. MAIER, A. 327, 26) oder mit Malonester (R. MEYER, v. LUTZAU, A. 347, 25) erhält man Phenylen-malonamid C₄H₄ $< NH \cdot CO > CH₂$ (Syst. No. 3591) (vgl. R. MEYER, LÜDERS, A. 415 [1918], 33). Erhitzt man äquimolekulare Mengen von salzsaurem o-Phenylendiamin, Bernsteinsäure und Soda auf 180°, so entsteht neben geringen Mengen $N.N'-Bis-[2-amino-phenyl]-succinamid [H₂N·C₆H₄·NH·CO·CH₂—]₂ (S. 22) die <math>\beta$ -[Benzimidazolyl-(2)]-propionsāure $C_6H_4 < N > C \cdot CH_2 \cdot CH_2 \cdot CO_2H$ (Syst. No. 3646) (R. MEYER, J. MAIER, A. 327, 21; vgl. R. MEYER, LÜDERS, A. 415 [1918], 31). Beim Mischen der kalten benzolischen Lösungen von o-Phenylendiamin und Bernsteinsäureanhydrid (Syst. No. 2475) entsteht N-[2-Amino-phenyl]-succinamidsäure (S. 21) (Anderlini, G. 24 I, 142; vgl. R. Meyer, J. Maier, A. 327, 11, 35); kocht man o-Phenylendiamin mit Bernsteinsäureanhydrid in Benzol (An., G. 24 I, 142) oder in Alkohol (R. Meyer, J. Maier, A. 327, 29), so wird β -[Benzimidzolyl-(2)]-propionsäure (Syst. No. 3646) gebildet (vgl. R. Meyer, LÜDERS, A. 415 [1918], 31). Erhitzt man o-Phenylendiamin mit überschüssigem Bernsteinsaureanhydrid auf 180°, so entsteht Äthylen-bis-benzimidazol $C_0H_4 < \stackrel{NH}{N} > C \cdot CH_3 \cdot CH_3 \cdot C < \stackrel{NH}{N} > C_0H_4 \quad (Syst. \ No. \ 4027) \quad (Waltheb, \ v. \ Pulawski, \ \textit{J. pr.}$ [2] 59, 257). Beim Erhitzen von o-Phenylendiamin mit Succinylchlorid (Bd. II, S. 613) erhalt man N.N'-Bis-[2-amino-phenyl]-succinamid (R. MEYER, v. LUTZAU, A. 347, 47). Beim Kochen von o-Phenylendiamin mit Methylmalonsaurediathylester entstehen Methylmalonsaure-bis-[2-amino-anilid] (S. 22) und o-Phenylen-methylmalonsaurediamid C₆H₄ NH·CO CH·CH₃ (Syst. No. 3591) (R. MEYER, JÄGER, A. 347, 34; vgl. R. MEYER, LÜDERS, A. 415 [1918], 33, 42). Beim Erhitzen von Sebacinsäureester mit o-Phenylendiamin erhält man je nach den Versuchsbedingungen Sebacinsäure-bis-[2-amino-anilid] (S. 22) und o-Phenylen-sebacinsäurediamid $C_eH_4 < \frac{NH \cdot CO}{NH \cdot CO} > C_eH_{1e}$ (Syst. No. 3591) (R. MEYER, J. MAIER, A. 347, 42). Aus o-Phenylendiamin und Maleinsäureanhydrid (Syst. No. 2476) in kaltem Benzol entsteht N-[2-Amino-phenyl]-maleinamidsäure (S. 22) (ANDERLINI, G. 24 I, 143; vgl. R. MEYER, A. 327, 11; R. MEYER, J. MAIER, A. 327, 35). Bei der Einw. von o-Phenylendiamin auf die äquimolekulare Menge Pyrocinchonsäureanhydrid (Syst. No. 2476) erhält man eine Verbindung $C_{13}H_{13}O_{2}N_{3}$ (s. bei Pyrocinchonsäureanhydrid); mit 2 Mol. Pyrocinchonsäureanhydrid entsteht o-Phenylen-bis-pyrocinchonsäureimid C_0H_4 $N \leftarrow CO \cdot C \cdot CH_3$ (Syst. No. 3202) (Rossi, G. 84 II, 444, 446, 449). Mit Acetylendicarbonsäure-diäthylester (Bd. II, S. 803) erfolgt in Gegenwart von alkoh. Natriumäthylatlösung Bildung von 3-Oxo-chinoxalindihydrid-essigsäure-(2)-athylester NH · CO C₆H₄ N=C·CH₂·CO₂·C₂H₅ (Syst. No. 3696) (Ruhemann, Stapleton, Soc. 77, 248). c-Phenylendiamin liefert mit 1 Mol. Gew. Phthalsäureanhydrid (Syst. No. 2479) in Benzollösung

in der Kälte N-[2-Amino-phenyl]-phthalamidsäure (S. 22) (Anderling, G. 24 I, 144; vgl. R. Meyer, J. Maier, A. 327, 11, 35). Beim Erhitzen äquimolekularer Mengen o-Phenylen-

diamin und Phthalsäureanhydrid in absolut-alkoholischer Lösung entstehen 2-[Benzimidasolyl-(2)]-benzoesäure (Syst. No. 3650) und o-Phenylen-bis-phthalimid (Syst. No. 3218) (R. MEYER, J. MAIER, A. 327, 41; vgl. Thiele, Falk, A. 347, 116). Erhitzt man o-Phenylendiamin mit etwas überschüssigem Phthalsäureanhydrid auf 180°, so erhält man o-Phenylen-bis-benzimidazol [C₆H₄ (NH) C] C₆H₄ (Syst. No. 4031) (Walther, v. Pulawski, J. pr. [2] 59, 255). Beim Erwärmen von o-Phenylendiamin mit Phthalylchlorid (Bd. IX, S. 805) entstehen N.N'-Bis-[2-amino-phenyl]-phthalamid (S. 22), 2-[Benzimidazolyl-(2)]-benzoesäure (Syst. No. 3650) und als Hauptprodukt o-Phenylen-bis-phthalimid C₆H₄ [N CO C₆H₄] (Syst. No. 3218) (R. MEYER, Jäger, A. 347, 51; vgl. Thiele, Falk,

 C_6H_4 $N < C_0 > C_6H_4$ S_2 (Syst. No. 3218) (R. Meyer, Jäger, A. 347, 51; vgl. Thiele, Falk, A. 347, 116). Mit a.y-Dicarboxy-glutaconsăure-tetraăthylester (Bd. II, S. 876) bei 100° bildet sich neben Malonsăure-diathylester β -[2-Amino-phenylimino]-methylmalonsăure-diathylester bezw. β -[2-Amino-anilino]-methylenmalonsăure-diathylester (S. 24) (Ruhemann, Hemmy, B. 30, 2026).

o-Phenylendiamin reagiert mit Chlorameisensäureäthylester (Bd. III, S. 10) bei 130° unter Bildung von o-Phenylendiurethan C₆H₄(NH·CO₂·C₂H₅)₂ (SNAPE, Soc. 49, 259). Die Reaktion zwischen o-Phenylendiamin und Phosgen (Bd. III, S. 13) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. III, S. 14) führt zu o-Phenylendiamin und Phosgen (Bd. harnstoff C₆H₄<NH>CO (Syst. No. 3567) (HARTMANN, B. 28, 1047). o-Phenylenharnstoff entsteht auch beim Erhitzen von salzsaurem o-Phenylendiamin mit Urethan (Bd. III, S. 22) in Gegenwart von geschmolzenem Natriumscetat auf 150-160° (Manuelli, Recchi, R.A.L. [5] 9 II, 269). Bei der Einw. von Kaliumcyanat (Bd. III, S. 34) auf salzsaures o-Phenylendiamin in wäßr. Lösung entsteht o-Phenylendiharnstoff C₆H₄(NH·CO·NH₂)₂ (S. 23) (Lellmann, A. 221, 13; B. 16, 592). Bei der Einw. von Kohlensäure-diäthylester-imid (Bd. III, S. 37) auf die wäßr. Lösung eines Gemisches von o-Phenylendiamin und dessen Hydrochlorid erhalt man 2-Athoxy-benzimidazol (Syst. No. 3509) (SANDMEYER, B. 19, 2654). o-Phenylendiamin liefert bei der Einw. von 1 Mol.-Gew. Bromcyan (Bd. III, S. 39) in Gegenwart von Wasser bei gewöhnlicher Temperatur als Hauptprodukt o-Phenylenguanidin $C_0H_4 < NH > C:NH$ (Syst. No. 3567), bei der Einw. von mindestens je 3 Mol. Bromeyan und Kaliumdicarbonat in Gegenwart von Wasser als Hauptprodukt die Verbindung $C_0H_4 < NH_C = N \\ CO = NH$ (Syst. No. 4141) (PIERRON, A. ch. [8] 15, 189, 193, 201). Jodeyan (Bd. III, S. 41) wirkt auf o-Phenylendiamin oxydierend und erzeugt 2.3-Diamino-phenazin (Syst. No. 3745) (O. FISCHER, HEPP, B. 23, 844; vgl. HÜBNER, FRERICHS, B. 9, 778; 10, 1715). Beim Erhitzen von salzsaurem o-Phenylendiamin mit Harnstoff (Bd. III, S. 42) auf 140° entsteht o-Phenylenharnstoff (KYM, J. pr. [2] 75, 323). Beim Erhitzen von salzsaurem o-Phenylendiamin mit Dicyandiamid (Bd. III, S. 91) (und Alkohol) entsteht o-Phenylenbiguanid $C_0H_4 < NH > C:N\cdot C(:NH)\cdot NH_2$ (Syst. No. 3567) (Ziegelbauer, M. 17, 653; vgl. Pellizzari, G. 51 I [1921], 93, 98). o-Phenylendiamin liefert mit Thiophosgen (Bd. III, S. 134) in Chloroformlösung als Hauptprodukt o-Phenylenthioharnstoff (Syst. No. 3567) neben geringen Mengen o-Phenylendisenföl C.H. (N:CS), (S. 23) (BILLETER, STEINER, B. 20, 231). Rhodanwasserstoffsaures o-Phenylendiamin (erhalten durch Eindampfen einer wäßr. Lösung von salzsaurem o-Phenylendiamin mit 2 Mol.-Gew. Ammoniumrhodanid im Wasserbade) gibt beim Erhitzen auf 120-130° o-Phenylenthioharnstoff und Thioharnstoff (LELLMANN, A. 221, 9; vgl. auch Lz., A. 228, 248). Erhitzt man eine wäßr. Lösung von 1 Mol.-Gew. salzsaurem o-Phenylendiamin mit 1 Mol.-Gew. Kaliumrhodanid, so entsteht neben o-Phenylenthioharnstoff [2-Amino-phenyl]-thioharnstoff H₂N·C₄H₄·NH·CS·NH₂ (S. 23) (FRERICHS, HUPKA, Ar. 241, 165). o-Phenylenthioharnstoff erhält man auch beim Erhitzen von salzsaurem o-Phenylendiamin mit Thioharnstoff auf 180° (KYM, J. pr. [2] 75, 324). Dieselbe Verbindung entsteht ferner beim Erhitzen von o-Phenylendiamin mit CS₂ und etwas absol. Alkohol im geschlossenen Rohr auf 100° (Gucci, G. 23 I, 295). Läßt man auf die alkoh. Lösung von o-Phenylendiamin die äquimolekulare Menge CS₂ und überschüssiges wäßr. Ammoniak einwirken, so bildet sich das Ammoniumsalz der [2-Amino-phenyl]-dithiocarbamidsaure H.N.C.H. WH.CS.H. (S. 23) (LOSANITSCH, B. 40, 2973). Beim Erhitzen von salssaurem o-Phenylendiamin mit Milchsäure in wäßr. Lösung im geschlossenen Rohr auf 130° entsteht 2-[a-Oxy-āthyl]-benzimidazol $C_0H_4 < N > C \cdot CH(OH) \cdot CH_3$ (Syst. No. 3509) (GEORGESCU, B. 25, 957; vgl. HINSBERG, B. 25, 2417).

o-Phenylendiamin kondensiert sich mit Brenztraubensäure in wäßr. Lösung zu 3-Oxo-2-methyl-chinoxalindihydrid (Syst. No. 3568) (HINSBERG, A. 292, 249). Beim Schütteln von 1 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. Acetessigester entsteht β -[2-Amino-

phenylimino]-buttersäure-äthylester $H_2N \cdot C_0H_4 \cdot N : C(CH_3) \cdot CH_2 \cdot CO_3 \cdot C_2H_5$ (S. 23) (Hinsberg, Koller, B. 29, 1500). Aus o-Phenylendiamin und β -Imino-butyronitril (Diacetonitril, Bd. III, S. 660) in essigsaurer Lösung entsteht o-Phenylen-bis- $[\beta$ -imino-buttersäure-nitril] $C_0H_4[N : C(CH_4) \cdot CH_2 \cdot CN]_2$ (S. 24) (v. Meyer, C. 1908 II, 591; J. pr. [2] 78, 502). Beim Kochen von y-Brom-a.a-dimethyl-acetessigsäure-methylester (Bd. III, S. 696) mit o-Phenylendiamin in methylalkoholischer Lösung erhält man als Hauptprodukt eine ölige Verbindung, die beim Erhitzen mit Salzsäure in 2-Isopropyl-chinoxalin (Syst. No. 3483) übergeht (Conrad, Hock, B. 32, 1208). Aus o-Phenylendiamin und Phthalaldehydsäure (Bd. X, S. 666) bildet sich 2-[Benzieladazolyl-(2)]-benzoesäure $C_0H_4 \cdot N + CO_2H_4 \cdot CO_2H$ (Syst. No.

3650) (Bistrzycki, B. 23, 1044). Beim Erhitzen von salzsaurem o-Phenylendiamin mit β -Benzoyl-propionsäure (Bd. X, S. 696) in wäßr. Lösung im geschlossenen Rohr auf 130° bis 140° wird die Verbindung $C_{16}H_{14}ON_2$ (S. 15) gebildet (Georgescu, B. 25, 954). Beim Erwärmen von salzsaurem o-Phenylendiamin mit Mesoxalsäure in wäßr. Lösung entsteht 3-Oxo-chinoxalindihydrid-carbonsäure-(2) (Syst. No. 3696) (Kühling, B. 24, 2368). Aus o-Phenylendiamin und Phthalonsäure (Bd. X, S. 857) wird 3-Oxo-2-[2-carboxy-phenyl]

chinoxalindihydrid C_6H_4 $N=C \cdot C_6H_4 \cdot CO_3H$ (Syst. No. 3696) gebildet (Manuelli, Su-

Vestri, G. 34 I, 494). Erwärmt man o-Phenylendiamin mit dem Natriumsalz der Dioxyweinsäure (Bd. III, S. 830) in wäßr. Lösung auf 60—80°, so entsteht Chinoxalin-dicarbonsäure-(2.3) (Syst. No. 3671) (Hinsberg, König, B. 27, 2185). Mit Ketipinsäurediäthylester (Bd. III, S. 835) in siedender alkoholischer Lösung erhält man Chinoxalin-diessigsäure-(2.3)-diäthylester (Syst. No. 3671) (Thomas-Mamert, Striebel, Bl. [3] 25, 712).

Einwirkung von Benzolsulfochlorid. Beim Schütteln von 1 Mol.-Gew. o-Phenylendiamin mit 3—4 Mol.-Gew. Benzolsulfochlorid und überschüssiger Kalilauge entsteht, neben N-Benzolsulfonyl-o-phenylendiamin (S. 24), N.N'-Dibenzolsulfonyl-o-phenylendiamin (S. 25) (HINSBERG, STRUPLER, A. 287, 223).

Beispiele für die Einwirkung von Aminen, Amino-oxy-Verbindungen, Amino-carbonsäuren, Diazoverbindungen, Amino-azo-Verbindungen und ihren Derivaten. Beim Erhitzen von o-Phenylendiamin mit Carbodiphenylimid (Bd. XII, 8. 449) auf 210—220° entsteht 2-Phenylimino-benzimidazoldihydrid (Phenylphenylenguanidin) C₆H₄ < NH C:N·C₆H₅ (Syst. No. 3567) (Keller, B. 24, 2499). o-Phenylendiamin liefert beim Erhitzen mit alkyliertem oder aryliertem o-Phenylendiamin bei Gegenwart von Luft oder oxydierend wirkenden organischen Verbindungen Fluorindinfarbstoffe (Marquart & Schulz, D. R. P. 78601, 78852; Frdl. 4, 452, 454). Beim Erhitzen von o-Phenylendiamin mit p-Amino-phenol und Schwefel auf 200° erhält man einen substantiven Schwefelfarbstoff (Soc. St. Denis, D. R. P. 125135; Frdl. 6, 721; C. 1901 II, 1190). Salzsaures o-Phenylendiamin liefert beim Erhitzen mit 2-Amino-benzamid 2-[2-Amino-phenyl]-benzimidazol (Syst. No. 3719) (v. Niementowski, B. 30, 3066). Einw. von Benzoldiazoniumchlorid auf o-Phenylendiamin: VIGNON, C. r. 142, 160; Bl. [3] 35, 127. Bei der Einw. von p-Diazobenzolsulfonsäure (Syst. No. 2202) auf die währ. Lösung von salzsaurem o-Phenylendiamin bildet sich neben Sulfanilsäure Benzotriazol (Syst. No. 3803) (Griess, B. 15, 2195). Beim Koohen des salzsauren o-Phenylendiamins mit 4-Amino-azobenzol und 75°/eiger Essignäure entsteht 2.3-Diamino-phenazin (Syst. No. 3745) (O. FISCHER, HEFF, B. 23, 2788). Beim Erhitzen von o-Phenylendiamin mit dem Hydro-chlorid des Benzolazo-a-naphthylamins (Syst. No. 2180) in absol. Alkohol unter Druck auf 160° entsteht das Amino-naphthophenazin der nebenstehenden Formel (Syst. No. 3722) (O. FISCHER, HEFF, B. 28, 845).

Beispiele für die Einwirkung von heterocyclischen Verbindungen. Einw. von Bernsteinsäureanhydrid s. S. 10, von Maleinsäureanhydrid s. S. 10, von Pyrocinchonsäureanhydrid s. S. 10, von Pyrocinchonsäureanhydrid s. S. 10, von Pyrocinchonsäureanhydrid s. S. 10. Bei der Einw. von o-Phenylendiamin auf Isatin (Syst. No. 3206) in essigsaurer Lösung entsteht Indophenazin (s. nebenstehende Formel) (Syst. No. 3814) (Schunck, Marchlewski, B. 28, 2528) und unter geeigneten Bedingungen daneben auch 3-Oxo-2-[2-amino-phenyl]-chinoxalindihydrid (Syst. No. 3774) (Ma., J. pr. [2] 60, 408; vgl. Ma., Sosnowski, B. 34, 1108; Buraczewski, Ma., B. 34, 4008). Beim Erwärmen einer Lösung von salzsaurem o-Phenylendiamin in wenig Natriumacetat enthaltendem Wasser mit einer absolut-alkoholischen Lösung von N-Acetyl-isatin entsteht 3-Oxo-2-[2-acetamino-phenyl]-chinoxalindihydrid (Syst. No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

No. 3774) (Sch., Ma., B. 29, 197; vgl. Ma., So.; Bu., Ma.).

(Gabriel, B. 37, 4316). Erhitzt man 2 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. 2.3-Dichlor-chinoxalin (Syst. No. 3480) in Gegenwart von etwas NaCl auf 120—130°, so entsteht Fluoflavin $C_{14}H_{10}N_4$ (Syst. No. 4027) (Hinsberg, Pollak, B. 29, 784). Fluoflavin entsteht auch beim Erhitzen von o-Phenylendiamin mit 2.3-Dioxo-chinoxalintetrahydrid (Syst. No. 3591) auf 240° (Hi., Po., B. 29, 785). Beim Erhitzen eines Gemisches von

I.
$$N$$
 C_0H_5

III. N
 C_0H_5

III. C_0H_5
 C_0H_5

o-Phenylendiamin, dessen salzsaurem Salz und salzsaurem Isorosindon (Formel I) (Syst. No. 3516) in Alkohol unter Druck auf 150° erhält man das N-Phenyl-benzofluorindin (Formel II) (Syst. No. 4033) (O. Fischer, Römer, B. 40, 3410). Beim Erhitzen von salzsaurem o-Phenylendiamin mit Oxyaposafranon (Formel III) (Syst. No. 3538) und Benzoesäure erfolgt Kondensation zu N-Phenyl-fluorindin (Formel IV) (Syst. No. 4030) (Kehrmann, Bürgin, B. 29, 1249). o-Phenylendiamin liefert mit Alloxan (Syst. No. 3627) in wäßr. Lösung 3-Oxochinoxalin-dihydrid-carbonsäure-(2)-ureid (Syst. No. 3696) (Hinsberg, A. 292, 247). Beim Erwärmen äquimolekularer Mengen von salzsaurem o-Phenylendiamin und Alloxan in wäßriger oder alkoholischer Lösung entsteht Alloxasin (Formel V) (Syst. No. 4142) (Kühling, B. 24, 2364). Beim Kochen eines Gemisches aus o-Phenylendiamin, dessen salzsaurem Salze und salzsaurem Aposafranin (Formel VI) (Syst. No. 3719) erhält man N-Phenyl-fluorin

din (Formel IV) (O. Fl., Hepp, B. 29, 367). Beim Erhitzen von o-Phenylendiamin mit salzsaurem Isorosindulin (Formel VII) (Syst. No. 3722) in Alkohol unter Druck auf 120—130° wird das N-Phenyl-benzofluorindin (Formel II) (Syst. No. 4033) gebildet (O. Fl., Rö., B. 40,

VI.
$$(C_0H_5)$$
 VII. (C_0H_5) VIII. (C_0H_5)

3410). Beim Erhitzen von o-Phenylendiamin mit salzsaurem 2.3-Diamino-phenazin (Syst. No. 3745) auf 200—210° entsteht Fluorindin (Syst. No. 4030) (O. Fl., Hepp. B. 23, 2791). Dieselbe Verbindung erhält man auch beim Behandeln von o-Phenylendiamin mit 2-Oxy-3-amino-phenazin (Syst. No. 3770) in Gegenwart von Benzoesäure (Ullmann, Mauthner, B. 35, 4306).

Biochemisches Verhalten.

Über das biochemische Verhalten des o-Phenylendiamins s. Fränkel, Die Arzneimittelsynthese, 5. Aufl. [Berlin 1921], S. 77, 115, 256, 257, 258.

Verwendung.

Verwendung zur Erzeugung von Färbungen auf Pelz, Haaren und Federn: Höchster Farbw., D. R. P. 213581; Frdl. 9, 855; C. 1909 II, 1392.

Analytisches.

Versetzt man eine nicht zu verdünnte salzsaure Lösung von o-Phenylendiamin mit einer konz. Lösung von FeCl₃, so scheiden sich in kurzer Zeit rubinrote Nadeln von salzsaurem 2.3-Diamino-phenazin aus (Griess, J. pr. [2] 3, 144; vgl. Wiesinger, A. 224, 353; Ullmann, Mauthner, B. 35, 4302). o-Phenylendiamin gibt in saurer Lösung auf Zusatz von Acetylaceton momentan eine intensiv violette Färbung (Thiele, Steinmig, B. 40, 955). Versetzt man die alkoh. Lösung der zu prüfenden Substanz mit 1 Tropfen einer heißen konzentrierten Lösung von Phenanthrenchinon in Eisessig und kocht kurze Zeit auf, so scheidet sich bei Anwesenheit von o-Phenylendiamin schon während des Kochens ein aus hellgelben Nadeln bestehender Niederschlag von Phenanthrophenazin aus; letzteres färbt sich beim Befeuchten mit kons. Salssäure tiefrot (Hinsberg, B. 18, 1228; A. 237, 342).

Erwärmt man salzsaures o-Phenylendiamin mit einigen Tropfen Benzaldehyd, so tritt schon unterhalb 100° deutliche Entwicklung von Chlorwasserstoff ein, während die salzsauren

Salze von m- und p-Phenylendiamin selbst bei 120° keinen Chlorwasserstoff abgeben (Ladenburg, B. 11, 600). Zur Unterscheidung eines o-Diamins von seinen Stellungsisomeren eignet sich auch folgendes Verfahren: Man versetzt das salzsaure Salz des zu untersuchenden Diamins in wäßr. Lösung mit Ammoniumrhodanid, dampft zur Trockne, erhitzt 1 Stde. auf 120° und behandelt das mit Wasser ausgewaschene Produkt mit alkal. Bleilösung; bei Vorliegen von o-Diamin bleibt selbst die siedende Lösung wasserhell, während m- und p-Diamine momentan Schwärzung erzeugen (Lellmann, A. 228, 248; vgl. A. 221, 9). Unterscheidung des o-Phenylendiamins von m- und p-Phenylendiamin durch das verschiedene Verhalten der Phenylen-bis-[ω-allyl-thioharnstoffe] C₆H₄(NH·CS·NH·C₃H₅)₂ beim Schmelzen: Lellmann, A. 228, 201, 249.

Additionelle Verbindung des o-Phenylendiamins.

Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{12}H_{11}O_6N_5=C_6H_8N_2+C_6H_8O_6N_3$. Braune Nadeln. F: 175° (Noelting, Sommerhoff, B. 39, 77).

Salze des o-Phenylendiamins.

 $C_6H_8N_2+2$ HCl. Nadeln. Leicht löslich in Wasser (Hübner, A. 209, 362). Magnetisches Drehungsvermögen: Perkin, Soc. 69, 1246. — $2C_6H_8N_2+H_2SO_4$ (Hüb., A. 209, 362). — $C_6H_8N_2+H_2SO_4+1^{1}/_2H_3O$. Blättchen. In Wasser und Alkohol in der Kälte schwer, in der Wärme leicht löslich (Hü., A. 209, 361).

C₆H₆N₂ + AgNO₃. Nadeln. Schwer löslich in Wasser (Willstätter, Pfannenstiel, B. 38, 2352). — C₆H₆N₂ + Fe₄(NO), S₃H. B. Aus Fe₄(NO), S₃Na und überschüssigem salzsaurem o-Phenylendiamin (Bellucci, Carnevali, R. A. L. [5] 16 I, 661; G. 37 II, 31). Krystalle. Fast unlöslich in Benzol und Chloroform. Sehr wenig löslich in kaltem, leichter in warmem Wasser, löslich in Alkohol, Äther und Aceton. — C₆H₈N₂ + PdCl₂. Gelbgrüne Nadeln (aus verd. Salzsäure) (Gutbier, Krell, Janssen, Z. a. Ch. 47, 38). — C₆H₆N₃ + PdBr₂. Gelbbraune Nadeln (aus verd. Bromwasserstoffsäure) (Gu., Kr., Ja.). — C₆H₈N₂ + 2HCl + PtCl₄. Braunrote Nädelchen (Hü., A. 209, 362).

Umwandlungsprodukte von ungewisser Konstitution aus o-Phenylendiamin.

Verbindung C₁₆H₁₆N₄, vielleicht C₆H₄ N CH₂ N C₆H₄, vgl. O. FISCHER,

B. 32, 246. Das Molekulargewicht wurde kryoskopisch in Benzollösung bestimmt (O. FISCHER, WRESZINSKI, B. 25, 2713). — B. Man vermischt die heiße Lösung von 2 g o-Phenylendiamin in 15 g Alkohol mit 3 g einer 50% igen Formaldehydlösung und kocht 1 Minute lang: man filtriert und fällt das Filtrat mit wenig Wasser (O. F., W., B. 25, 2712). — Tafeln (aus Ather). F: 144°; sublimiert unzersetzt; leicht gwisch in Alkohol, Äther, Chloroform und Benzol, unlöslich in Ligroin (O. F., W.). Die Salze spalten an der Luft und beim Kochen mit verd. Schwefelsäure leicht Formaldehyd ab (O. F.). — C16 H16 N4 + 2 HCl. Nädelchen (O. F., W.). — Chloroplatinat. Gelbe Nadeln (aus alkoh. Salzsäure). F: 240° (O. F., W.).

Verbindung $C_{10}H_{10}N_2$. Das Molekulargewicht ist kryoskopisch bestimmt (Habries, Krützfeld, B. 39, 3674). — B. Das Hydrat $C_{10}H_{10}N_2+H_2O$ entsteht aus äquimolekularen Mengen Succindialdehyd (Bd. I, S. 767) und o-Phenylendiamin in wäßr. Lösung auf Zusatz von Kaliumacetat; die wasserfreie Verbindung erhält man durch Zusatz von salzsaurem o-Phenylendiamin zu einer wäßrigen, mit Kaliumacetat versetzten Lösung von Succindialdehyd oder durch Trocknen des Hydrats bei 100° (H., K., B. 39, 3673). — Amorph, gelb. Schmelzpunkt der wasserfreien Verbindung: ca. 177°, des Hydrates: ca. 150°. Das Hydrat ist leicht löslich in Benzol und Chloroform, sehwer in absol. Alkohol, Petroläther und Ligroin. Besitzt schwach basische Eigenschaften.

gewicht ist kryoskopisch in Phenollösung bestimmt (Wederind, Weisswange, B. 39, 1643). — B. Bei der Einw. einer mit Kalilauge versetzten wäßr. Lösung von salzsaurem o-Phenylendiamin auf die alkoh. Lösung von 1.1.3.3-Tetramethyl-cyclobutandion-(2.4) (Bd. VII, S. 563) (Wed., Wed., B. 39, 1634, 1637, 1643). — Blättchen (aus Essigester). F: 248—249°. Leicht löslich in Alkohol, Benzol, Chloroform, schwer in Ather, CS₃, unlöslich in Wasser. Verliert selbst bei mehrstündigem Erhitzen auf 150—160° kein Wasser; ist nicht diazotierbar; reagiert nicht mit Phenylhydrazin. — Liefert mit Essigsäureanhydrid ein Acetylderivat vom Schmelzpunkt 150—151°.

Verbindung $C_{14}H_{12}O_2N_2$. B. Bei 2-stdg. Erhitzen (auf 100°) von 2 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. ω -Chlor-3.4-dioxy-acetophenon (Chloracetylbrenzcatechin,

Bd. VIII, S. 273) (DZIERZGOWSKI, B. 27, 1984). — Gelbe Nadeln (aus Alkohol). Zersetzt sich gegen 245°, ohne zu schmelzen. Fast unlöslich in Wasser, Äther, Benzol, Chloroform und CS₂, ziemlich löslich in Essigeäure, unverändert löslich in konz. Schwefelsäure.

Acetylderivat $C_{16}H_{14}O_3N_2 = C_{14}H_{11}O_3N_2 \cdot CO \cdot CH_3$. B. Durch Acetylierung der Verbindung $C_{14}H_{12}O_3N_2$ (S. 14) (Dz., B. 27, 1984). — Nadeln (aus Essigsäure). F: 141°. Leicht löslich in Alkohol. Gibt keine Farbreaktion mit FeCl₃.

Verbindung C₁₄H₁₂O₃N₂. B. Aus 1 Mol.-Gew. ω -Chlor-gallacetophenon (Bd. VIII, S. 394) und 2 Mol.-Gew. σ -Phenylendiamin bei 100° (Dzierzowski, B. 27, 1985). — Rote Nadeln (aus verd. Schwefelsäure). Zersetzt sich bei 290°, ohne zu schmelzen. Die alkoh. Lösung wird durch FeCl_s grün gefärbt.

Diacetylderivat $C_{13}H_{16}O_5N_2=C_{14}H_{10}O_3N_2(CO\cdot CH_3)_2$. B. Aus der Verbindung $C_{14}H_{12}O_3N_2$ (s. o.) durch Erhitzen mit Essigsäureanhydrid und entwässertem Natriumacetat

(Dz., B. 27, 1985). — Nadeln (aus Alkohol). F: 143°.

Verbindung $C_{16}H_{14}ON_2$. B. Bei 14-stdg. Erhitzen von β -Benzoyl-propionsäure (Bd. X, S. 696) mit einer wäßr. Lösung von salzsaurem o-Phenylendiamin auf 130—140° (Georgescu, B. 25, 954). — Nadeln (aus Alkohol). F: 223—224°.

Funktionelle Derivate des o-Phenylendiamins.

N-Metbyl-o-phenylendiamin $C_7H_{10}N_2=H_2N\cdot C_6H_4\cdot NH\cdot CH_3$. B. Aus N-Methyl-2-nitro-anilin (Bd. XII, S. 689) durch Reduktion mit Zinn und Salzsäure; man destilliert die Base im Dampfstrom über (O. FISCHER, B. 24, 2682 Anm. 1; 25, 2841). — Ol. Kp736: 245° bis 248° (O. F., B. 25, 2841). — Bei der Oxydation mit Eisenchlorid in alkoholisch-salzsaurer Lösung entsteht das Azoniumsalz C_0H_4 $\stackrel{N}{\underset{N}{N}}$ $C_0H_2(NH_2)(NH\cdot CH_3) + HCl$ (Syst. No.

3745) (O. Fischer, Heiler, B. 26, 380). Bei der Einw. von Benzil (Bd. VII, S. 747) in alkoh. Lösung in Gegenwart von Salzsäure entsteht 1-Methyl-2.3-diphenyl-chinoxaliniumchlorid (Syst. No. 3492), das durch Ammoniak in die Pseudobase C₆H₄/N C·C₆H₅

 $N(CH_2)-C(OH)\cdot C_6H_5$ übergeführt wird (Kehrmann, Messinger, B. 25, 1632; vgl. Ke., Woulfson, B. 32, 1042; Hantzsch, Kalb, B. 32, 3127). Beim Kochen mit krystallisierter Ameisensäure wird 1-Methyl-benzimidazol (Syst. No. 3473) gebildet (O. F., B. 38, 321). Beim Kochen mit Essigsäureanhydrid entsteht 1.2-Dimethyl-benzimidazol (Syst. No. 3474) O. F., B. 25,

2838). Brenztraubensäure liefert mit salzsaurem N-Methyl-o-phenylendiamin in konzentrierter wäßriger Lösung das Chinoxalinderivat C₆H₄ NC(CH₃)·CO (Syst. No. 3568) (KE., ME., N(CH₃)·CO

B. 25, 1629). Aus N-Methyl-o-phenylendiamin und Alloxan entsteht Alloxan-[2-methylamino-anil] $CH_{\bullet} \cdot NH \cdot C_{\bullet}H_{\bullet} \cdot N : C < \begin{array}{c} CO \cdot NH \\ CO \cdot NH \\ \end{array} > CO;$ mit Methylalloxan und mit Dimethyl-

 $N = -C \cdot CO \cdot NH \cdot CH_3$ (Syst. No. alloxan entsteht dagegen das Chinoxalinderivat C_0H_4 $N(CH_2) \cdot CO$

3696) (KÜHLING, KASELITZ, B. 39, 1324). — Verwendung zur Darstellung von Farbstoffen der Fluorindinreihe: MABQUART, SCHULZ, D. R. P. 78601, 78852; Frdi. 4, 452, 454. — $C_7H_{10}N_1+2HCl.$ Krystalle (aus Alkohol). F: 191° (O. F., B. 25, 2842).

N.N'-Dimethyl-o-phenylendiamin $C_8H_{19}N_9=C_6H_4(NH\cdot CH_3)_2$. B. Durch Erhitzen von 1-Methyl-benzimidazol-jodmethylat-(3) (Syst. No. 3473) oder von dessen Pseudobase, dem 1.3-Dimethyl-2-oxy-benzimidazoldihydrid, mit verd. Natronlauge (O. FISCHER, FUSSENEGGER, B. 34, 937). — Prismen (aus Ligroin). F: 34—35°; Kp: 245—255° (O FI., Fu.). — FeCl, färbt die konzentrierte salzsaure Lösung rot und scheidet nach kurzer Zeit grünmetallisch schimmernde Blättehen eines Azoniumsalzes $C_{16}H_{20}N_4Cl_2 + 2H_4O$ (Syst. No. 3745) ab (O. Fi., Fu.; O. Fi., B. 37, 553). Beim Erhitzen von N.N'-Dimethyl-o-phenylendiamin mit Ameisensäure auf 140° entsteht 1.3-Dimethyl-2-oxy-benzimidazoldihydrid (O. F1., Fv.).

N.N-Dimethyl-o-phenylendiamin, o-Amino-dimethylanilin $C_8H_{12}N_2=H_2N\cdot C_8H_4\cdot N(CH_3)_2$. B. Durch Reduktion von N.N-Dimethyl-2-nitro-anilin (Bd. XII, S. 690), neben 1-Methyl-benzimidazol und einer chlorhaltigen Base (PINNOW, B. 32, 1668; vgl. Bam-BERGER, TSCHIRNER, B. 32, 1905). — Öl von angenehmem, an Campher erinnerndem Geruch. Kp. 217,5° (P.); Kp. 29,5—101° (B., Tsch.). Schwer löslich in Wasser, leicht in organischen Solvenzien (B., Tsch.). Gibt in wäßr. Suspension mit Chlorkalk rotbraune,

mit Dichromat und Schwefelsäure bräunlich grünschwarze Färbung (B., Tsch.). FeCl. färbt die wäßr. Lösung gelbbraun, dann violett, schließlich intensiv blau; beim längeren Stehen sowie momentan beim Kochen der Flüssigkeit geht dieses Blau in Rot über (B., Tsch.). Die alkoh. Lösung wird von FeCl, tiefrot gefärbt (B., Tson.). Bei der Einw. von salpetriger Saure entstehen Formaldehyd, Monomethylanilin, Stickstoff und andere Produkte (B., Tson.). C₂H₁₂N₂+2HCl. Prismen, die sich bald röten und bei 184—186° unter Aufschäumen schmelsen (P.). — Pikrat C₂H₁₂N₂ + C₄H₂O₇N₃. Hochgelbe Tafeln (aus Alkohol). F: 138° bis 140° (Zers.) (P.).

N.N.N'.N'-Tetramethyl-o-phenylendiamin $C_{10}H_{10}N_3=C_0H_4[N(CH_0)_3]_s$. B. Durch 10-stdg. Erhitzen von freiem o-Phenylendiamin mit CH_3I und Methylalkohol auf 180° (O. FISCHER, B. 25, 2839) oder durch 6-stdg. Erhitzen des salzsauren o-Phenylendiamins mit Methylalkohol auf 175—185° (PINNOW, B. 32, 1402). — Öl, in trecknem Zustande gut haltbar (P.). Riecht campherähnlich (P.). Kp₇₃₅: 215—218° (O. F.); Kp₇₅₆: 215—216° (P.). — Wird von FeCl₃ in der Hitze rot gefärbt (P.). — C₁₀H₁₆N₂+2HCl. Prismen. F: 180°. Äußerst löslich in Wasser, etwas schwerer in absol. Alkohol (O. F.). — 2C₁₀H₁₆N₃+ 2 HCl + PtCl₄. Rotbraune Prismen (O. F.).

N-Äthyl-o-phenylendiamin $C_8H_{18}N_8=H_8N\cdot C_8H_4\cdot NH\cdot C_8H_5$. B. Durch Reduktion von N-Äthyl-2-nitro-anilin (Bd. XII, S. 690) mit Zinn und Salzsäure (Hempel, J. pr. [2] 39, 199; 41, 164). — Flüssig. Kp: $248-249^{\circ}$ (He., J. pr. [2] 41, 164). — Beim Versetzen der stark verdünnten schwefelsauren Lösung mit NaNO, unter Kühlung entsteht 1-Athyl-benztriazol (Syst. No. 3803) (Hz., J. pr. [2] 41, 165). Beim Erhitzen mit Eisessig im geschlossenen Rohr auf 170° (HINSBERG, FUNCKE, B. 27, 2188) oder bei der Einw. von Essigsäureanhydrid oder von Acetylchlorid in Äther (HE., J. pr. [2] 41, 166) entsteht 1-Äthyl-2-methyl-benzimidazol (Syst. No. 3474).

N-Phenyl-o-phenylendiamin, 2-Amino-diphenylamin $C_{12}H_{12}N_2=H_2N\cdot C_4H_4\cdot NH\cdot C_4H_5$. B. Bei der Reduktion von 2-Nitro-diphenylamin (Bd. XII, 8. 890) mit alkoh. Schwefelammonium im geschlossenen Rohr bei 120° (Schöfff, B. 22, 3287; 23, 1842). Beim Erhitzen von 3-Amino-4-anilino-benzoesäure (Syst. No. 1905) über ihren Schmelzpunkt (SCHÖFFF, B. 22, 3287; 23, 1842). Beim Erhitzen von Phenylhydroxylamin (Syst. No. 1932) mit Anilin und salzsaurem Anilin, neben 4-Amino-diphenylamin und anderen Produkten (BAMBERGER, LAGUTT, B. 31, 1506). — Nadeln (aus Wasser). F: 79—80°; leicht löslich in CHCl₃, Aceton und Benzol, schwerer in Ligroin (Schöfff). — Liefert in verd. Salzsäure mit NaNO₃ 1-Phenyl-benztriazol (Syst. No. 3803) (Schöfff). Bei der Destillation von 2-Aminodiphenylamin mit PbO entsteht Phenazin (Syst. No. 3487) (O. FISCHER, HEILER, B. 26, 383). Beim Eintröpfeln von FeCla-Lösung in die Lösung von 2 Amino-diphenylamin in salz-

saurehaltigem 50% igem Alkohol werden salzsaures Anilinoaposafranin (Formel I) (Syst. No. 3745) und in geringer Menge das Farbsalz der Formel II (Syst. No. 3745) gebildet (O. F., Heil, B. 26, 381; O. F., Dischinger, B. 29, 1603, 1606). 2-Amino-diphenylamin liefert mit der äquimolekularen Menge Diacetyl (Bd. I, S. 769) in konz. alkoh. Lösung die Anhydro-C·CH,

base C_0H_4 $N(C_0H_5)$ $C:CH_3$ der 1-Phenyl-2.3-dimethyl-chinoxaliniumsalze (Syst. No. 3482) (Kehrmann, Messinger, B. 25, 1627; vgl. Droker, Hock, B. 37, 1568). Liefert mit Benzil (Bd. VII, S. 747) in alkoh. Lösung bei Gegenwart von Salzsäure 1.2.3-Triphenyl-chinoxaliniumchlorid (Syst. No. 3492), das durch Ammoniak in die Pseudobase

C. C. H. übergeführt wird (KE., ME., B. 24, 1240; vgl. KE., Woulfson, B. 32, 1042; Hantzsch, Kalb, B. 32, 3128). 2-Amino-diphenylamin kondensiert sich min Phenanthrenchinon (Bd. VII, S. 796) in Eisessig zum Farbstoff Flavindulin (N-Phenylamin kondensiert sich min Phenanthrenchinon (Bd. VII, S. 796) in Eisessig zum Farbstoff Flavindulin (N-Phenylamin kondensiert sich min Phenanthrenchinon (Bd. VII, S. 796) in Eisessig zum Farbstoff Flavindulin (N-Phenylamin kondensiert sich min Phenanthrenchinon (Bd. VII, S. 796) in Eisessig zum Farbstoff Flavindulin (N-Phenylamin kondensiert sich min Phenanthrenchinon (Bd. VII) (Bd. VII) (Bd. VII) (Bd. VIII) phenanthrophenazoniumsalz, Syst. No. 3493) (Bad. Anilin- u. Sodaf., D. R. P. 79570; Frid. 4, 399; Hinsberg, Garfunkel, A. 292, 266; vgl. Schulz, Tab. No. 668). Das salzaure Salz des 2-Amino-diphenylamins reagiert mit 6-Oxy-naphthochinon-(1.2) CI C.H. (Bd. VIII, S. 299) unter Bildung des Oxy-naphthophenazin-chlor- HO-

phenylats der nebenstehenden Formel (Syst. No. 3516) (KRHEMANN, B. 40, 1963). Beim Kochen von 2-Amino-diphenylamin mit Ameisensäure entsteht 1-Phenyl-benzimidazol (Syst. No. 3473) (O. FISCHER, BIGAUD, B. 34, 4204; vgl. BARDERGER, LAGUTT, B. 31, 1506). Beim Er-hitzen mit 2 Mol.-Gew. Benzoylchlerid auf dem Wasserbade entsteht 1.2-Diphenyl-benzimidazol

(Syst. No. 3487) (Bieheringer, Busch, B. 35, 1970; vgl. Wolff, A. 394 [1912], 67 Anm.). Das salzsaure Salz des 2-Amino-diphenylamins gibt mit Brenztraubensäure in wäßr. Lösung

das Oxo-methyl-phenyl-chinoxalindihydrid C_6H_4 $N = C \cdot CH_3$ (Syst. No. 3568) (Kz.,

ME., B. 25, 1628). — Beim Kochen von 2-Amino-diphenylamin mit 2-Oxy-naphthochinon-(1.4)-anil-(4) bezw. 4-Anilino-naphthochinon-(1.2) (Bd. XII, S. 223) in alkoh. Lösung entsteht Phenylrosindulin (s. nebenstehende Formel) (Syst. No. 3722) (Bad. Anilinous Sodaf., D. R. P. 79564; Frdl. 4, 439). Verwendung zur Darstellung von Farbstoffen der Fluorindinreihe: MARQUART, SCHULZ, D. R. P. 78601; Frdl. 4, 452. Gibt mit Alloxan in absolut-alko-

holischer Lösung Alloxan-[2-anilino-anil] C_eH₅·NH·C_eH₄·N:C<CO·NH CO (Syst. No. 3627) (KÜHLING, KASELITZ, B. 39, 1319).

Verbindung C₂₂H₁₄O₂N₂, vielleicht Oxyrosindon der Formel I. B. Durch Kondensation von Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) mit salzsaurem 2-Aminodiphenylamin in schwefelsaurer Lösung, daneben erhält man (in Form ihrer inneren Salze)

die Sulfo-naphthophenazin-hydroxyphenylate der Formeln II und III (Syst. No. 3707) (Kehrmann, Locher, B. 29, 2072; 31, 2428, 2436). — Schwarzviolette Nadeln (aus Alkohol). F: 212°. Leicht löslich in Eisessig.

4'-Chlor-2-amino-diphenylamin $C_{12}H_{11}N_3Cl = H_2N\cdot C_eH_4\cdot NH\cdot C_eH_4Cl$. B. Beim Erhitzen von salzsaurem 5.4'-Dichlor-2-amino-diphenylamin mit Wasser auf 200° bezw. für sich auf 230—235°, neben anderen Produkten (WILBERG, B. 35, 957). Durch Reduktion von 4'-Chlor-2-nitro-diphenylamin (Bd. XII, S. 690) mit salzsaurer Zinnchlorürlösung (W.). — Nadeln. F: 119°; leicht löslich in Benzol, Chloroform und heißem Alkohol, schwer in kaltem Alkohol und Petroläther (W.).

2'-Nitro-2-amino-diphenylamin $C_{19}H_{11}O_{2}N_{3}=H_{2}N\cdot C_{6}H_{4}\cdot NH\cdot C_{6}H_{4}\cdot NO_{3}$. B. Durch 5-stdg. Erhitzen von 15 g o-Chlor-nitrobenzol, 5 g o-Phenylendiamin und 15 g wasserfreiem Natriumacetat im Kohlendioxydstrome auf 150—160°, neben 2.3-Diamino-phenazin (Syst. No. 3745) und N.N'-Diphenyl-fluorindin (Syst. No. 4030) (Kehrmann, Steiner, B. 34, 3091). — Gelbrote Nadeln (aus viel Wasser). F: 103°.

4'-Nitro-2-amino-diphenylamin C₁₉H₁₁O₂N₃ = H₂N·C₆H₄·NH·C₆H₄·NO₃. B. Aus 2.4'-Dinitro-diphenylamin (Bd. XII, S. 715) durch Reduktion mit alkoh. Schwefelammonium oder mit alkoh. Zinnehlorürlösung (Nівтzкі, Валь, B. 28, 2977). In geringer Menge, neben viel 4-Nitro-phenol-sulfonsäure-(2) (Bd. XI, S. 237), beim Erwärmen von 4-Nitro-2'-amino-diphenylamin - sulfonsäure-(2) (Syst. No. 1923) mit 70-volumprozentiger Schwefelsäure auf dem Wasserbade (Ullmann, Dahmen, B. 41, 3755). — Rotbraune Nadeln mit blauem Oberflächenschimmer (aus verd. Alkohol). F: 143° (U., D.), 144° (N., B.). Löslich in Alkohol, schwer löslich in Benzol und Ather (U., D.). — Salpetrige Säure liefert 1-[4-Nitro-phenyl]-benztriazol (Syst. No. 3803) (N., B.).

5'- Chlor - 2'.4'- dinitro - 2'- amino - diphenylamin $C_{12}H_0O_2N_3Cl = H_2N\cdot C_0H_4\cdot NH\cdot C_0H_3Cl(NO_2)_3$. B. Man kooht o-Phenylendiamin und 4.6-Diehlor-1.3-dinitro-benzol in alkeh. Lösung bei Gegenwart von Natriumacetat am Rückflußkühler (Nietzei, Slaboszewicz, B. 34, 3729). — Orangegelbe Krystalle. F: 232°. Ziemlich schwer löslich in Alkohol.

N-Pikryl-o-phenylendiamin, 2'.4'.6'-Trinitro-2-amino-diphenylamin C₁₈H₂O₆N₅= H₂N·C₆H₄·NH·C₆H₅(NO₂)₃. B. Aus o-Phenylendiamin und Pikrylchlorid (Bd. V, S. 273) in Alkohol in Gegenwart von Kaliumacetat bei 50° (Leemann, Grandmougin, B. 41, 1308). — Zinnoberrote Kryställchen (aus siedendem Xylol). Schmilzt bei 177–178° unter Schäumen. Schwer löslich in Ather und Alkohol, leichter in Aceton, Xylol, Nitrobenzol. Gibt bei 200° bis 205° 1.3-Dinitro-phenazindihydrid (Syst. No. 3486).

N-Methyl-N'-phenyl-o-phenylendiamin, 2-Methylamino-diphenylamin $C_{12}H_{14}N_2=CH_2\cdot NH\cdot C_4H_4\cdot NH\cdot C_6H_5$. B. Durch längeres Kochen der Pseudobase des 1-Phenyl-benzimidazol-jodmethylats-(3) (Syst. No. 3473) mit alkoh. Kali (O. FISCHER, RIGAUD, B. 34, 4205; O. F., B. 37, 552). — Dickflüssiges hochsiedendes Öl. Schwer löslich (O. F., R.). Oxydationsmittel färben die Lösungen violett (O. F., R.). FeCl₃, H_2 PtCl₄ und salpetrige

Saure erzeugen einen tief violettroten Farbstoff (O. F., R.). — $C_{13}H_{14}N_3 + HCl$. Nadeln (aus verd. Salzsaure) (O. F., R.).

2'.4'-Dinitro-2-dimethylamino-diphenylamin $C_{14}H_{14}O_4N_4=(CH_3)_2N\cdot C_0H_4\cdot NH\cdot C_0H_2(NO_3)_2$. B. Aus 2-Amino-dimethylanilin und 4-Chlor-1.3-dinitro-benzol (Bayer & Co., D. R. P. 117066; C. 1901 I, 211). — Blättchen (aus Alkohol oder Eisessig). F: 120°. — Gibt mit Schwefel und Schwefelalkali einen olivgrünen Baumwollfarbstoff.

N-Phenyl-N'-[2.4-dinitro-phenyl]-o-phenylendiamin $C_{12}H_{14}O_4N_4=C_4H_5\cdot NH\cdot C_4H_4\cdot NH\cdot C_4H_5(NO_4)_3$. B. Beim Erhitzen äquimolekularer Mengen von N-Phenyl-o-phenylendiamin, 4-Brom-1.3-dinitro-benzol und Natriumacetat (Kehemann, Messinger, J. pr. [2] 46, 572). — Rote Krystalle (aus Eisessig). F: 170—171°; fast unlöslich in Alkohol und Ather (K., M.). Beim Aufkochen mit Benzoesäure entsteht Aposafranon (Syst. No. 3513) (K., Bürgin, B. 29, 1819).

N-Phenyl-N'-[2.4.6-trinitro-phenyl]-o-phenylendiamin, N-Phenyl-N'-pikryl-o-phenylendiamin $C_{18}H_{13}O_4N_5 = C_6H_5 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_2(NO_2)_3$. B. Aus Pikrylchlorid (Bd. V, S. 273) und N-Phenyl-o-phenylendiamin (Kehrmann, Kramer, B. 33, 3074). — Granatrote Blätter (aus Alkohol). — Zersetzt sich beim Erhitzen für sich auf 120° oder beim Erhitzen mit alkoh. Natron auf 100° unter Bildung von 10-Phenyl-1.3-dinitro-phenzindihydrid (Syst. No. 3486) (Ke., Messinger, B. 26, 2375; Ke., Keamer, B. 33, 3075). Liefert bei der Reduktion in alkoholischer salzsaurer Lösung mit der berechneten Menge SnCl₂ 1.3-Diamino-phenazin-ohlorphenylat (Syst. No. 3745), bei Anwendung von überschüssigem SnCl₃ das Chlorphenylat des 1.3-Diamino-phenazindihydrids (Syst. No. 3742) (Ke., Ke.).

N-p-Tolyl-o-phenylendiamin, 2'-Amino-4-methyl-diphenylamin $C_{13}H_{14}N_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus [2-Nitro-phenyl]-p-toluidin (Bd. XII, S. 906) durch Exhitzen mit alkoh. Schwefelammonium unter Druck auf 120° (O. Fischer, Lewy, B. 29, 1874). Durch Reduktion von [2-Nitro-phenyl]-p-toluidin mit Zinn und Salzsäure (JACOBSON, LIBOHKE, A. 303, 378; Borsche, Feise, B. 40, 383). Entsteht in geringer Menge bei der Destillation von 3-Amino-4-p-toluidino-benzoesäure (Syst. No. 1905) im Vakuum (Heidens-Leben, B. 23, 3455). — Blättchen (aus Wasser), Tafeln (aus Ligroin). F: 74° (H.), 76—77° (O. F., Le.), 77° (J., Li.). Leicht löslich in Alkohol, Äther, Chloroform und Benzol (H.), schwer in siedendem Wasser (J., Li.). — Rötet sich rasch an der Luft (B., Fei.). Gibt in verdünnter salzsaurer Lösung mit FeCl₂ rotviolette Färbung, später einen rotvioletten, kupferglänzenden Niederschlag, der auf Zusatz von konz. Salzsäure sich wieder löst (J., Li.). Bei der Destillation über PbO entsteht 2-Methyl-phenazin (Syst. No. 3487) (O. F., Le.). Gibt beim Diazotieren 1-p-Tolyl-benztriazol (Syst. No. 3803) (B., Fei.).

N-Bensyl-o-phenylendiamin $C_{13}H_{14}N_3=H_2N\cdot C_4H_4\cdot NH\cdot CH_3\cdot C_6H_5$. B. Durch Reduktion von N-Benzyl-2-nitro-anilin mit Zinnehlorür und Salzsäure (Kehrmann, Tichwinski, A. 290, 293; vgl. Kehrmann, Messinger, J. pr. [2] 46, 565; Tichwinski, M. 27, 582). — Beim Erwärmen des (nicht näher beschriebenen) Hydrochlorids des N-Benzyl-o-phenylendiamins mit 2-Oxy-naphthochinon-(1.4) bezw. 4-Oxy-naphthochinon-(1.2) (Bd. VIII, S. 300) und Alkohol entsteht neben dem Oxy-naphthophenazin der Formel I (a-Naphtheurhodol, Syst. No. 3516), Benzylrosindon (Formel II) (Syst. No. 3516) (T., \mathcal{K} .

27, 580; K., T., A. 290, 297). Bei der Kondensation des Hydrochlorids mit 2-Oxy-naphthochinon-(1.4)-acetimid-(4) bezw. 4-Acetamino-naphthochinon-(1.2) (Bd. VIII, S. 303) in alkoh. Lösung erhält man das Acetamino-naphthophenazin der Formel III (Syst. No. 3722) und das Acetaminonaphthophenazin-chlorbenzylat der Formel IV, aus denen man durch Kochen mit verd. Schwefelsäure die Acetylgruppen abspalten kann (T., 38. 27, 578; T., K., A. 290,

294). N-Benzyl-o-phenylendiamin liefert mit 3-Chlor-2.5-dioxy-benzochinon-(1.4) (Bd. VIII, S. 378) in schwach salzsaurer Lösung ein Benzylchloroxyphenazon der Formel V oder VI (Syst. No. 3538) (T., 36. 27, 583; K., T., A. 290, 306). Beim Erhitzen von N-Benzyl-o-phenylendiamin mit überschüssiger Oxalsaure auf 160° wird 1-Benzyl-2.3-dioxo-chinoxalintetrahydrid (Syst. No. 3591) gebildet (Hinsberg, A. 292, 256).

N-[2-Nitro-bensyl]-o-phenylendiamin $C_{13}H_{13}O_{2}N_{3}=H_{2}N\cdot C_{6}H_{4}\cdot NH\cdot CH_{3}\cdot C_{6}H_{4}\cdot NO_{3}$. Be 2-stdg. Kochen von o-Phenylendiamin mit 2-Nitro-benzylchlorid und Alkohol (Paal, Kromschröder, J. pr. [2] 54, 266). — Rote Nadeln (aus verd. Alkohol). F: 115°. Mäßig löslich in Alkohol und Äther. — $C_{13}H_{13}O_2N_3 + HCl$. Nadeln (aus Alkohol). F: 202°.

 $\textbf{N.N'-Dibensyl-o-phenylendiamin} \quad C_{80}\textbf{H}_{80}\textbf{N}_{2} = C_{6}\textbf{H}_{4}(\textbf{NH} \cdot \textbf{CH}_{2} \cdot \textbf{C}_{6}\textbf{H}_{5})_{2}.$ 2-stdg. Kochen von 1.3-Dibenzyl-2-oxy-benzimidazoldihydrid (Pseudobase des 1-Benzylbenzimidazol-chlorbenzylats-(3), Syst. No. 3473) mit konz. alkoh. Kali (O. FISCHER, VEIEL, B. 38, 323). — Krystalle (aus Benzol + Petrolather). F: 71°. Wird durch FeCl₂ zu einem Azoniumsalz $C_{40}H_{34}N_4Cl_2 + 2H_2O$ (Syst. No. 3745) oxydiert. Mit Salicylaldehyd entsteht 1.3-Dibenzyl-2-[2-oxy-phenyl]-benzimidazoldihydrid (Syst. No. 3512). Beim Kochen mit Eisessig und Essigsäureanhydrid entsteht 1.3-Dibenzyl-2-oxy-2-methyl-benzimidazoldihydrid (Syst. No. 3474). — $C_{20}H_{20}N_2 + HCl$. Nadeln (aus verd. Alkohol + etwas Salzsäure). F: 149°. Wird von Wasser partiell dissoziiert.

N-[β , β , β -Trichlor- α -oxy-äthyl]-o-phenylendiamin, Chloral-o-phenylendiamin $C_aH_0ON_2Cl_3=H_2N\cdot C_aH_4\cdot NH\cdot CH(OH)\cdot CCl_3$. B. Aus Chloral in trocknem Ligroin und o-Phenylendiamin in trocknem Äther (Rügheimer, B. 39, 1660). — Feinkrystallinischer Niederschlag. F: ca. 72°. Spaltet beim Erwärmen, auch in äther. Lösung, kein Wasser ab. sondern zersetzt sich andersartig. Zerfällt bei —6° in konz. Schwefelsäure unter Chloralabspaltung. Gibt mit Acetanhydrid in Ather N.N'-Diacetyl-o-phenylendiamin.

N-Bensal-o-phenylendiamin $C_{13}H_{12}N_2 = H_2N \cdot C_0H_4 \cdot N : CH \cdot C_0H_5$. B. Beim Eintragen von 1 Mol.-Gew. Benzaldehyd in gepulvertes, in wenig Alkohol suspendiertes o-Phenylendiamin (HINSBERG, KOLLER, B. 29, 1498). — Gelbe Krystalle (aus Petroläther). F: 60—61°. Löslich in Alkohol, Äther und Ligroin. Geht bei längerem Erhitzen auf 100°, wie auch beim Kochen mit Alkohol oder Äther oder beim Erwärmen mit Säuren in 2-Phenyl-benzimidazol (Syst. No. 3487) über.

 $N-[4-Nitro-benzal]-o-phenylendiamin <math>C_{13}H_{11}O_2N_3 = H_2N \cdot C_6H_4 \cdot N : CH \cdot C_6H_4 \cdot NO_2$. B. Aus 1 Mol.-Gew. o-Phenylendiamin und 1 Mol.-Gew. 4-Nitro-benzaldehyd in Alkohol (HINSBERG, FUNCKE, B. 27, 2190). — Rote, metallglänzende Blättchen (aus Chloroform). Beginnt bei 134° (Zers.) zu schmelzen. Ziemlich schwer löslich in Alkohol und Benzol.

N - Methyl - N' - [2 - nitro - bensal] - o - phenylendiamin $C_{14}H_{13}O_2N_3 = CH_2 \cdot NH \cdot C_6H_4 \cdot C_6H_4$ N:CH·CeHa·NO, oder vielleicht auch 1-Methyl-2-[2-nitro-phenyl]-benzimidazol- $\textbf{dihydrid} \ C_{14}H_{13}O_2N_3 = C_6H_4 < \begin{matrix} NH \\ N(CH_3) \end{matrix} \\ CH \cdot C_6H_4 \cdot NO_2. \ \ Zur \ \ Konstitution \ \ vgl. \ O. \ Fischer,$ B. 25, 2826. — B. Beim Kochen von N-Methyl-o-phenylendiamin mit 2-Nitro-benzaldehyd und etwas Alkohol (O. Fischer, B. 25, 2842). — Gelbe Blättchen (aus Äther). F: 144°.

N.N'-Dibensal-o-phenylendiamin $C_{50}H_{16}N_3=C_6H_4(N:CH\cdot C_6H_5)_2$. B. Bei mehrtägigem Stehen des aus o-Phenylendiamin, suspendiert in Alkohol, und 2 Mol.-Gew. Benzaldehyd bei —20° erhaltenen Produkts (HINSBERG, KOLLER, B. 29, 1499). — Prismen (aus Ligroin). F: 106°. Bei längerem Stehen mit Alkohol, wie auch bei längerem Erhitzen für sich oder mit Salzsäure entsteht 1-Benzyl-2-phenyl-benzimidazol (Syst. No. 3487).

N.N'-Bis-[4-nitro-benzal]-o-phenylendiamin $C_{30}H_{14}O_4N_4 = C_6H_4(N:CH\cdot C_8H_4\cdot NO_8)_8$. Aus 1 Mol.-Gew. o-Phenylendiamin und 2 Mol.-Gew. 4-Nitro-benzaldehyd, gelöst in Alkohol (Hinsberg, Funcke, B. 27, 2191). — Hellgelbe Nadeln (aus Chloroform). F: 222°. Schwer löslich in Alkohol, Ather und Benzol. — Wird von verd. Mineralssuren in die Komponenten gespalten. Beim Kochen mit Eisessig entsteht 1-[4-Nitro-benzyl]-2-[4-nitro-phenyl]benzimidazol (Syst. No. 3487) als Hauptprodukt neben 2-[4-Nitro-phenyl]-benzimidazol (Syst. No. 3487).

N-Methyl-N'-salicylal-o-phenylendiamin C₁₄H₁₄ON₂ = CH₃·NH·C₄H₄·N:CH·CeH4 OH oder vielleicht auch 1-Methyl-2-[2-oxy-phenyl]-benzimidasoldihydrid $C_{14}H_{14}ON_3 = C_0H_4 < NH_{N(CH_3)} CH \cdot C_0H_4 \cdot OH$. Zur Konstitution vgl. O. Fischer, B. 25, 2826. - B. Aus N-Methyl-o-phenylendiamin, Salicylaldehyd und Alkohol (O. Fischer, B. 25, 2843). — Gelbe Krystalle. F: 110—111°.

 $\beta.\beta$ -Diäthoxy-a oder γ -oxo- γ oder a-[2-amino-phenylimino]-a-[2.4-dimethoxy-phenyl]-butan $C_{12}H_{23}O_2N_2=H_2N\cdot C_0H_4\cdot N:C(CH_3)\cdot C(O\cdot C_2H_5)_2\cdot CO\cdot C_0H_3(O\cdot CH_2)_2$ oder $H_2N\cdot C_0H_4\cdot N:C[C_0H_3(O\cdot CH_2)_2]\cdot C(O\cdot C_2H_5)_2\cdot CO\cdot CH_3$. Man löst $a.\beta.\gamma$ -Trioxo-a-[2.4-dimethoxy-phenyl]-butan (Bd. VIII, S. 493) in alkoh. Salzsäure, läßt 24 Stdn. stehen und setzt

das hierbei erhaltene rotbraune Öl mit salzsaurem o-Phenylendiamin und Natriumacetat um (Sachs, Herold, B. 40, 2727). — Hellgelbe Blättchen (aus Alkohol). F: 181°. Löslich in verdünnten Säuren.

o-Phenylen-bis-glykosimin $C_{18}H_{28}O_{10}N_2 = C_8H_4[N:CH[CH(OH)]_4\cdot CH_2\cdot OH]_8$. B. Beim Verdampfen einer wäßr. Lösung von 1 Mol.-Gew. o-Phenylendiamin und 2 Mol.-Gew. d-Glykose (Griess, Harrow, B. 20, 2207). — Nadeln (aus Wasser) mit $2H_2O$. Verkohlt beim Erhitzen. Leicht löslich in Wasser, unlöslich in starkem Alkohol und Äther. Schmeckt sehr bitter. Linksdrehend. Wird durch Erhitzen mit Alkalien und Säuren leicht zersetzt. Die wäßr. Lösung wird durch Eisenchlorid stark gelbrot gefärbt.

N-[2-Nitro-bensyl]-N-formyl-o-phenylendiamin $C_{19}H_{13}O_3N_3 = H_2N \cdot C_6H_4 \cdot N(CH_3 \cdot C_9H_4 \cdot NO_3) \cdot CHO$. B. Bei 2-stdg. Kochen von 1 Tl. N-[2-Nitro-benzyl]-o-phenylendiamin mit 4 Tln. Ameisensäure (Paal, Kromschröder, J. pr. [2] 54, 267). — Dicktafelförmige Kryställchen (aus verd. Alkohol). F: 158°. Mit Sn + HCl entsteht 3-[2-Amino-phenyl]-chinazolindihydrid $C_6H_4 \cdot NH_2 \cdot N = CH_3 \cdot N \cdot C_6H_4 \cdot NH_2$ (Syst. No. 3474).

N-Acetyl-o-phenylendiamin $C_0H_{10}ON_2=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot CH_2$. B. Beim Erhitzen des N.N'-Diacetyl-o-phenylendiamins auf $185-190^\circ$ in Gegenwart von wasserfreier Oxalsäure (Manuelli, Galloni, G. 31 I, 22). Durch Reduktion von 2-Nitro-acetanilid (Bd. XII, S. 691) mit Zinn und konz. Salzsäure bei 5-10° (Leuchs, B. 40, 1085). — Nadelförmige Prismen (aus Äther). F: 132° (L.), 145° (M., G.). Leicht löslich in Wasser, Alkohol und heißem Benzol, weniger in Äther (L.). — Gibt mit Caroscher Säure 2-Nitroso-acetanilid (Bd. VII, S. 600) (L.).

N.N - Dimethyl - N' - acetyl - o - phenylendiamin $C_{10}H_{14}ON_2 = (CH_3)_2N \cdot C_0H_4 \cdot NH \cdot CO \cdot CH_2$. B. Aus N.N-Dimethyl-o-phenylendiamin und Essigsäureanhydrid (PINNOW, B. 32, 1668). — Nadeln (aus Ligroin). F: 72—73°.

N-Äthyl-N'-acetyl-o-phenylendiamin $C_{10}H_{14}ON_2 = C_2H_5 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Vermischen der äther. Lösungen von N-Äthyl-o-phenylendiamin und 1 Mol.-Gew. Essigsäureanhydrid (Hempel, J. pr. [2] 41, 164). — Krystallinisch. F: 104°. Sehr schwer löslich in kaltem Wasser, Äther und Benzol, leicht in Alkohol.

4'-Nitro-2-acetamino-diphenylamin $C_{16}H_{18}O_3N_3=O_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus 4'-Nitro-2-amino-diphenylamin (S. 17) und Acetanhydrid (NIETZKI, BAUR, B. 28, 2977). — Gelbe Blättchen. F: 178°.

N-Bensal-N'-acetyl 2-phenylendiamin $C_{15}H_{14}ON_2 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2$. B. Bei der Einw. von Benzaldehyd auf das (bei der elektrolytischen Reduktion des 2-Nitro-acetanilids gewonnene) N-Acetyl-o-phenylendiamin (Brand, Stohe, B. 39, 4067). — Goldgelbe Blättchen (aus Alkohol). F: 125°. Leicht löslich in heißem Alkohol und Benzol, unlöslich in Äther.

N.N'-Diacetyl-o-phenylendiamin $C_{19}H_{12}O_2N_2 = C_0H_4(NH\cdot CO\cdot CH_3)_2$. B. Beim Erhitzen von 1 Mol.-Gew. o-Phenylendiamin mit 3 Mol.-Gew. Essigsäureanhydrid (Bistrzycki, Ulffers, B. 23, 1878). Aus Chloral-o-phenylendiamin und Essigsäureanhydrid in Äther (Rügheimer, B. 39, 1661). — Darst. Man reduziert 2-Nitro-anilin mit Zink und alkoh. Natronlauge, filtriert vom Zinkschlamm, versetzt mit Natriumdisulfitlösung und destilliert den Alkohol ab; die abfiltrierte und auf Ton getrocknete Disulfitverbindung wird mit 4 Mol.-Gew. Essigsäureanhydrid übergossen; man kühlt die ins Sieden geratende Flüssigkeit rasch ab und fällt durch Zusatz von Wasser die Acetylverbindung aus (Ruff, Poral-Koschitz, C. 1904 I, 102). — Nadeln (aus Wasser). F: 185—186°; leicht löslich in siedendem Wasser, Alkohol, Chloroform, Aceton und in Eisessig, sehr schwer in Äther, Ligroin und Benzol (B., U.). — Liefert beim Destillieren quantitativ 2-Methyl-benzimidazol (Syst. No. 3474) (Ru., P.-K.). Beim Erhitzen in Gegenwart von wasserfreier Oxalsäure können N-Acetyl-o-phenylendiamin, 2-Methyl-benzimidazol oder 1-Acetyl-2.3-dioxo-chinoxalintetrahydrid (Syst. No. 3591) erhalten werden (Manuelli, Galloni, G. 31 I, 18).

N.N'-Bis-trichloracetyl-o-phenylendiamin $C_{10}H_4O_2N_4Cl_6=C_6H_4(NH\cdot CO\cdot CCl_9)_2$. B. Aus o-Phenylendiamin und Trichloracetylchlorid in siedendem Benzol (L. Spiegel, P. Spiegel, B. 40, 1736). — Nadeln (aus Alkohol). F: 233—234° (Zers.). Sublimiert teilweise unzersetzt. Leicht löslich in heißem Alkohol, schwer in Chloroform, Äther, Benzol, unlöslich in Wasser.

N-Benzoyl-o-phenylendiamin $C_{12}H_{12}ON_q = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Behandeln von Benzoesäure-[2-nitro-anilid] (Bd. XII, S. 692) mit Schwefelammonium (MIXTER, Am. 6, 27). — Krystelle (aus Wasser). F: 140°. Leicht löslich in Alkohol.

- N-[4-Nitro-benzoyl]-o-phenylendiamin $C_{13}H_{11}O_3N_3=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot NO_3$. B. Aus je 1 Mol.-Gew. o-Phenylendiamin und 4-Nitro-benzoylchlorid in warmer konz. wäßr. Lösung, neben dem in heißem Wasser unlöslichen N.N'-Bis-[4-nitro-benzoyl]-o-phenylendiamin (Walther, v. Pulawski, J. pr. [2] 59, 262). Gelbe Nadeln (aus Wasser). F: 200°. Leicht löslich in Alkohol und Eisessig, schwer in Wasser, unlöslich in heißem Benzol.
- N.N-Dimethyl-N'-benzoyl-o-phenylendiamin $C_{15}H_{16}ON_2=(CH_3)_2N\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_5$. B. Aus N.N-Dimethyl-o-phenylendiamin mit Benzoylchlorid und Natronlauge (Bamberger, Tschirner, B. 32, 1905). Nadeln (aus verd. Methylalkohol). F: 51°(?). Fast unlöslich in Wasser, sonst leicht löslich.
- N-Phenyl-N'-benzoyl-o-phenylendiamin, 2-Benzamino-diphenylamin $C_{19}H_{16}ON_2=C_6H_5\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_5$. Die mit dieser Formel von BIEHRINGER, Busch, B. 35, 1970, beschriebene Verbindung ist von Wolff, A. 394 [1912], 67 Anm., als 1.2-Diphenyl-benzimidazol $C_{19}H_{14}N_2=C_6H_4\underbrace{N(C_9H_5)}_{N}C\cdot C_6H_5$ (Syst. No. 3487) erkannt worden.
- N-p-Tolyl-N'-benzoyl-o-phenylendiamin, 2'-Benzamino-4-methyl-diphenylamin $C_{20}H_{18}ON_2=CH_3\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_5$. B. Aus 2'-Amino-4-methyl-diphenylamin und Benzoylchlorid in Pyridin (Borsche, Frise, B. 40, 383). Nadeln (aus verd. Alkohol). F: 143—144°.
- N.N'-Dibensoyl-o-phenylendiamin $C_{20}H_{16}O_2N_2 = C_6H_4(NH\cdot CO\cdot C_6H_5)_2$. B. Aus o-Phenylendiamin mit Benzoylchlorid und verd. Natronlauge (HINSBERG, UDRANSKY, A. 254, 254) oder mit überschüssigem Benzoesäureanhydrid in siedender Benzollösung (BISTRZYCKI, ULFFERS, B. 23, 1878). Aus salzsaurem o-Phenylendiamin und Benzoylchlorid in wäßt. Lösung (Walther, v. Pullawski, J. pr. [2] 59, 250). Aus Benzimidazol (Syst. No. 3473), Benzoylchlorid und verd. Natronlauge (Bamberger, Berlé, A. 273, 346). Prismen (aus Eisessig). F: 301° (Ba., Be.), ca. 300° (Zers.) (BI., Ul.). Ziemlich leicht löslich in siedendem Athylbenzoat (BI., Ul.), sonst kaum löslich in den meisten organischen Solvenzien (Ba., Be.). Liefert beim Erhitzen über den Schmelzpunkt (Ba., Be.) oder beim Erhitzen mit konz. Salzsäure auf 200° (W., v. P.) 2-Phenyl-benzimidazol (Syst. No. 3487).
- N.N'-Bis-[2-nitro-benzoyl]-o-phenylendiamin $C_{20}H_{14}O_{6}N_{4}=C_{6}H_{4}(NH\cdot CO\cdot C_{6}H_{4}\cdot NO_{2})_{2}$. B. Aus salzsaurem o-Phenylendiamin und 2-Nitro-benzoylehlorid in Pyridinlösung (Walther, v. Pulawski, J. pr. [2] 59, 260). Schwach gelbe Nadeln (aus Eisessig). F: 265°. Löslich in heißem Alkohol.
- N.N'-Bis-[3-nitro-benzoyl]-o-phenylendiamin $C_{20}H_{14}O_6N_4 = C_6H_4(NH\cdot CO\cdot C_6H_4\cdot NO_2)_2$. B. Aus der wäßr. Lösung des salzsauren o-Phenylendiamins und 3-Nitrobenzoylchlorid (W., v. P., J. pr. [2] 59, 259). Nadeln (aus Eisessig). F: 240°. Ziemlich löslich in heißem Alkohol und Eisessig, schwer in heißem Benzol.
- N.N'-Bis-[4-nitro-benzoyl]-o-phenylendiamin $C_{20}H_{14}O_{0}N_{4}=C_{0}H_{4}(NH\cdot CO\cdot C_{0}H_{4}\cdot NO_{2})_{2}$. B. Durch Einw. von 4-Nitro-benzoylchlorid auf freies o-Phenylendiamin in Benzollösung (O. FISCHER, LIMMER, J. pr. [2] 74, 72) oder auf salzsaures o-Phenylendiamin in heißer wäßriger Lösung (WALTHER, v. PULAWSKI, J. pr. [2] 59, 263). Fast farblose Prismen (aus Eisessig). F: 267° (O. F., L.; W., v. P.). Löslich in heißem Alkohol, unlöslich in Äther und Benzol (W., v. P.). Liefert beim Erhitzen mit 70°/0iger Schwefelsäure 2-[4-Nitro-phenyl]-benzimidazol (Syst. No. 3487) (O. F., L.).
- N.N'-Di-p-toluyl-o-phenylendiamin $C_{22}H_{20}O_2N_2=C_8H_4(NH\cdot CO\cdot C_6H_4\cdot CH_3)_2$. B. Entsteht neben 2-p-Tolyl-benzimidazol (Syst. No. 3487) bei der Einw. von p-Toluylsäurechlorid auf o-Phenylendiamin in Gegenwart von Benzol; man löst das Gemenge in Eisessig und fügt Wasser hinzu, wodurch nur N.N'-Di-p-toluyl-o-phenylendiamin gefällt wird (Brückner, A. 205, 114; Hübner, A. 210, 330). Nadeln. F: 228°; schwer löslich in Alkohol, ziemlich leicht in heißem Eisessig, unlöslich in Wasser (B.). Zerfällt beim Erhitzen mit konz. Salzsäure auf 170° in p-Toluylsäure und 2-p-Tolyl-benzimidazol (B.).
- N.N'-Diphenacetyl-o-phenylendiamin $C_{22}H_{20}O_2N_2=C_8H_4(NH\cdot CO\cdot CH_2\cdot C_8H_5)_2$. B. Aus o-Phenylendiaminsalz und Phenylessigsäurechlorid in wäßr. Lösung (Walther, v. Pulawski, J. pr. [2] 59, 252). Nadeln (aus Benzol). F: 168°. Ziemlich leicht löslich in heißem Alkohol, Benzol und Eisessig. Rauchende Salzsäure liefert bei 140° 2-Benzyl-benzimidazol (Syst. No. 3487).
- N-[2-Amino-phenyl]-succinamidsäure $C_{10}H_{12}O_3N_2=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot CH_2\cdot CH_2\cdot CO_2H$. Zur Konstitution vgl. R. Meyer, J. Maier, A. 327, 11, 35. B. Beim Vermischen der kalten Lösungen von o-Phenylendiamin und Bernsteinsäureanhydrid (Syst. No. 2475)

in Benzol (Anderlini, G. 24 I, 142). — Amorph. Sehr leicht löslich in Wasser und Alkohol (A.). — Geht durch Erwärmen in β -[Benzimidazolyl-(2)]-propionsäure $C_0H_4 < N > C \cdot CH_2 \cdot CH_2 \cdot CO_2H$ (Syst. No. 3646) über (A.; vgl. R. Meyer, Lüders, A. 415 [1918], 31, 32).

N.N' - Bis - [2 - amino - phenyl] - succinamid $C_{16}H_{18}O_3N_4 = [H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_5 -]_2$. B. Das Hydrochlorid entsteht beim Erhitzen molekularer Mengen von salzzaurem o-Phenylendiamin, Soda und Bernsteinsäure auf 150—180° (R. Meyer, J. Marer, A. 327, 21) oder beim Erhitzen von 5,4 g o-Phenylendiamin mit 8 g Succinylchlorid (R. Meyer, Jaeger, A. 347, 47). — Nädelchen (aus Salzsäure durch NH_2). — $C_{16}H_{16}O_2N_4 + 2HCl$ (R. M., J. M.; R. M., Jae.). Nadeln (aus Wasser).

Methylmalonsäure-bis-[2-amino-anilid], Isobernsteinsäure-bis-[2-amino-anilid] $C_{16}H_{18}O_2N_4=(H_8N\cdot C_6H_4\cdot NH\cdot CO)_2CH\cdot CH_3$. B. Neben o-Phenylen-methylmalonsäure-diamid C_6H_4 $\stackrel{\cdot}{NH}\cdot \stackrel{\cdot}{CO}$ $\stackrel{\cdot}{CCH}\cdot CH_3$ (Syst. No. 3591) bei 10-stdg. Kochen von 5 g o-Phenylen-diamin mit 25 g Methylmalonsäure-diāthylester (R. MEYER, JAEGER, A. 347, 34). — Verfilzte Nadeln (aus Salzsäure durch Na_sCO_3). — Pikrat $C_{16}H_{18}O_3N_4+2C_6H_3O_7N_3$. Täfelohen (aus Nitrobenzol). Färbt sich oberhalb 220° dunkel, schmilzt zwischen 245° und 250°. Kaum löslich in den gewöhnlichen Lösungsmitteln.

Adipinsäure-bis-[2-amino-anilid] $C_{18}H_{22}O_2N_4 = [H_2N \cdot C_4H_4 \cdot NH \cdot CO \cdot CH_2 \cdot CH_8-]_2$. B. Das salzsaure Salz entsteht beim Erwärmen von 4 g o-Phenylendiamin mit 7 g Adipinsäurechlorid (R. Meyer, Jaeger, A. 347, 50). — $C_{18}H_{22}O_2N_4 + 2HCl$. Nadeln (aus Wasser). Wird aus der wäßr. Lösung durch konz. Salzsäure gefällt und löst sich wieder beim Verdünnen mit Wasser.

Sebacinsäure - bis - [2 - amino - antiid] $C_{22}H_{20}O_2N_4 = [H_2N \cdot C_0H_4 \cdot NH \cdot CO \cdot CH_1 \cdot CH_2 \cdot CH_2 \cdot CH_2 -]_2$. B. Bei 5—6-stdg. Kochen von 5 g o-Phenylendiamin mit 15 g Sebacinsäure-ester (R. Meyer, J. Maier, A. 347, 43). — Fast farblose Nadeln (aus Alkohol oder aus Salzsäure durch NaOH). Unlöslich in Benzol, sehr wenig löslich in Äther, schwer in Alkohol.

N-[2-Amino-phenyl]-maleinamidsäure $C_{10}H_{10}O_9N_8=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot CH: CH\cdot CO_9H$. Zur Konstitution vgl. R. Meyer, J. Maier, A. 827, 11, 35. — B. Durch Vermischen der Lösungen von o-Phenylendiamin und Maleinsäureanhydrid in Benzol (Anderlini, G. 24 I, 143). — Hellgelbe Kryställchen (aus Alkohol). Schmilst bei 124—125° unter Zersetzung; unlöslich in Benzol; wird durch Kochen mit Benzol nicht verändert (A.).

N - [2 - Amino - phenyl] - phthalamidsäure $C_{16}H_{12}O_{5}N_{5} = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot CO \cdot C_{6}H_{4}$ CO₂H. Zur Konstitution vgl. R. Meyer, J. Maier, A. 327, 11, 35. — B. Beim Vermischen der Lösungen von o-Phenylendiamin und Phthalsäureanhydrid in Benzol (Anderlini, G. 24 I, 145). — Hellgelbe Nadeln (aus Alkohol). Schmilzt bei 144—145° unter Zersetzung (A.).

N.N'-Bis-[2-amino-phenyl]-phthalamid $C_{20}H_{16}O_2N_4 = (H_2N\cdot C_6H_4\cdot NH\cdot OC)_2C_6H_4$. B. Bei gelindem Erwärmen von o-Phenylendiamin mit Phthalylchlorid, neben o-Phenylendiphthalimid $C_6H_4(CO)_2N\cdot C_6H_4\cdot N(CO)_2C_6H_4$ (Syst. No. 3218) und 2-[Benzimidazolyl-(2)]-benzoesäure $C_6H_4 < N_1 > C \cdot C_6H_4 \cdot CO_2H$ (Syst. No. 3650) (R. MEYEE, JAEGEE. A. 347, 51). — Nadeln (aus Alkohol).

[2-Amino-phenyl]-urethan $C_9H_{18}O_2N_2=H_2N\cdot C_9H_4\cdot NH\cdot CO_2\cdot C_2H_3$. B. Aus 2-Nitro-carbanilsāure-āthylester (Bd. XII, S. 694) mit Zinnehlorür und Salzsāure (Rudolph, B. 12, 1295). — Asbestāhnliche Nadeln (aus Äther + Ligroin). F: 86°. — Zerfällt beim Erhitzen in Alkohol und o-Phenylenharnstoff (Syst. No. 3567). Das salzsaure Salz gibt mit Kaliumnitrit (in wäßr. Lösungen) Benztriazol-carbonsāure-(1)-āthylester C_9H_4 $N(CO_2\cdot C_2H_8)$ N (Syst. No. 3803). — $C_9H_{19}O_2N_2+HCl$. Tafeln. In Wasser ungemein löslich.

N-Phenyl-N'-[2-amino-phenyl]-harnstoff $C_{12}H_{12}ON_2 = H_1N \cdot C_2H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Eintragen einer Benzollösung von Phenylisocyanat (Bd. XII, S. 437) in die Benzollösung von etwas über 1 Mol.-Gew. o-Phenylendiamin (Leelmann, Würthner, A. 228, 220). — Nädelchen (aus Alkohol). Unlöslich in Äther, sehr schwer löslich in Benzol, ziemlich schwer in Alkohol, leicht in Eisessig. — Zersetzt sich bei etwa 183°, ohne zu schmelzen, in Anilin und o-Phenylenharnstoff (Syst. No. 3567).

N.N'-Bis-[2-amino-phenyl]-harnstoff $C_{19}H_{14}ON_4 = (H_2N \cdot C_9H_4 \cdot NH)_2CO$. B. Entsteht in Form seines Zinndoppelsalzes bei der Reduktion von N.N'-Bis-[2-nitro-phenyl]-harnstoff (Bd. XII, S. 695) mit Zinn und Salzsäure (VITTEMET, Bl. [3] 21, 157). — Nadeln.

Schmilst bei 243—245° unter Sublimation. Löslich in siedendem Wasser und siedendem Alkohol. — $C_{19}H_{14}ON_4 + 2HCl + 2SnCl_2$.

- [2-Amino-phenyl]-thioharnstoff $C_7H_9N_9S=H_9N\cdot C_9H_4\cdot NH\cdot CS\cdot NH_9$. B. Beim Krhitzen der wäßr. Lösung des Hydrochlorids des o-Phenylendiamins mit Rhodankalium (Frenchs, Hupka, Ar. 241, 165). Prismen (aus Alkohol). F: 167°. $C_7H_9N_9S+HCl$. Krystalle. $2C_7H_9N_3S+H_2SO_4$. Krystalle.
- N-Phenyl-N'-[2-amino-phenyl]-thioharnstoff C₁₂H₁₃N₃S = H₂N·C₄H₄·NH·CS·NH·C₅H₅. B. Beim Eintragen von 1 Mol.-Gew. Phenylsenföl (Bd. XII, S. 453) in die warme Benzollösung von etwas mehr als 1 Mol.-Gew. o-Phenylendiamin (Lellmann, Würtenber, A. 228, 212). Prismen (aus Benzol). Leicht löslich in Alkohol und Eisessig, schwer in Benzol, unlöslich in Ather. Schmilzt teilweise gegen 141° und zerfällt bei stärkerem Erhitzen in Anilin und o-Phenylenthioharnstoff (Syst. No. 3567).
- [2-Amino-phenyl]-dithiocarbamidsäure $C_rH_sN_sS_s=H_sN\cdot C_cH_4\cdot NH\cdot CS_sH$. B. Das Ammoniumsalz entsteht aus o-Phenylendiamin in alkoh. Lösung mit Schwefelkohlenstoff (Bd. III, S. 197) und überschüssigem wäßr. Ammoniak (Losanitsch, B. 40, 2973). NH $_4$ C $_7$ H $_7$ N $_2$ S $_3$. Gelbliche Krystalle. F: 260° (Zers.). Sehr leicht löslich in Wasser, sehr wenig in Alkohol, Ather.
- o-Phenylendiurethan $C_{12}H_{14}O_4N_3=C_0H_4(NH\cdot CO_4\cdot C_2H_5)_8$. B. Aus o-Phenylendiamin und Chlorameisensäuresthylester (Bd. III, S. 10) bei 130° (SNAPE, Soc. 49, 259). Nadeln (aus Alkohol). F: 88°.
- o-Phenylendiharnstoff $C_0H_{10}O_2N_4 = C_0H_4(NH\cdot CO\cdot NH_2)_2$. B. Man vermischt die wäßr. Lösungen gleicher Gewichtsteile salzsauren o-Phenylendiamins und KCNO und krystallisiert die nach 1 Stde. ausgeschiedenen Krystalle aus verd. Alkohol um (Lellmann, B. 16, 592; A. 221, 13). Nadeln. F: 290°. Sublimiert in Blättchen, Leicht löslich in Wasser, Alkohol und Eisessig, schwer in Äther, Chloroform und Benzol.
- o-Phenylen-bis- $[\omega$ -benzoyl-harnstoff] $C_{22}H_{18}O_4N_4 = C_6H_4(NH\cdot CO\cdot NH\cdot CO\cdot C_6H_4)_2$. B. Aus N-Benzoyl-monothiocarbamidsaure-O-athylester (Bd. IX, S. 218) und o-Phenylen-diamin in Ather (Wheeler, Johnson, Am. 24, 212). F: 235°.
- o-Phenylen-bis- $[\omega$ -allyl-thioharnstoff] $C_{1d}H_{1p}N_dS_3 = C_0H_4(NH \cdot CS \cdot NH \cdot CH_2 \cdot CH : CH_2)_a$. B. Beim Erwärmen einer alkoh. Lösung von o-Phenylendiamin mit Allylsenföl (Bd. IV, S. 214) (Lellmann, Würthner, A. 228, 201). Nadeln (aus Alkohol). F: 158,5°. Schwer löslich in Äther und Bensol, leicht in Eisessig. Zerfällt bei längerem Schmelzen unter Abspaltung von o-Phenylenthioharnstoff (Syst. No. 3567).
- o-Phenylen-bis- $[\omega$ -phenyl-thioharnstoff] $C_{20}H_{12}N_4S_2=C_4H_4(NH\cdot CS\cdot NH\cdot C_4H_4)_8$. Beim Erwärmen von 2,16 g o-Phenylendiamin mit 5,4 g Phenylenföl (Bd. XII, S. 453) und 20 ccm Alkohol (L., W., A. 228, 200). Blättchen (aus Alkohol). Schmilzt gegen 290°, dabei in Thiocarbanilid und o-Phenylenthioharnstoff (Syst. No. 3567) zerfallend.
- o-Fhenylendiisothiocyanat, o-Phenylendisenföl $C_0H_4N_9S_3=C_0H_4(N:CS)_2$. B. Entsteht in sehr kleiner Menge neben viel o-Phenylenthioharnstoff (Syst. No. 3567) aus o-Phenylendiamin und Thiophosgen (Bd. III, S. 434); zur Trennung von o-Phenylenthioharnstoff behandelt man das Produkt mit Chloroform oder mit Petroläther, in welchen sich nur das Senföl löst (Billeter, Steiner, B. 20, 229, 231). Nadeln oder Blättohen. F: 59°. Sehr leicht löslich.
- β -[2-Amino-phenylimino]-buttersäure-methylester besw. β -[2-Amino-anilino]-crotonsäure-methylester $C_{11}H_{14}O_{2}N_{2}=H_{2}N\cdot C_{4}H_{4}\cdot N:C(CH_{3})\cdot CH_{2}\cdot CO_{2}\cdot CH_{3}$ besw. $H_{2}N\cdot C_{4}H_{4}\cdot NH\cdot C(CH_{3}):CH\cdot CO_{3}\cdot CH_{2}$. B. Bei der Einw. von Acetessigsäuremethylester auf o-Phenylendiamin (HINSBERG, KOLLER, B. 29, 1502). Nadeln (aus Ligroin). F: 87°.
- $\begin{array}{lll} \beta\text{-}[2\text{-}Amino\text{-}phenylimino]\text{-}buttersäure\text{-}äthylester & bezw. & \beta\text{-}[2\text{-}Amino\text{-}anilino]\text{-}crotonsäure\text{-}äthylester & C_{12}H_{16}O_2N_3 = H_2N\cdot C_0H_4\cdot N:C(CH_2)\cdot CH_2\cdot CO_2\cdot C_2H_5 & bezw. & H_2N\cdot C_0H_4\cdot NH\cdot C(CH_2):CH\cdot CO_2\cdot C_2H_5. \end{array}$
- a) Höherschmelsende Form. B. Beim Schütteln von 1 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. Acetessigester (HINSBERG, KOLLER, B. 29, 1500). Blättehen (aus Petroläther). F: 85°. Leicht löslich in Alkohol. Beim Erwärmen mit Mineralsäure wird Acetessigester abgespalten. Zerfällt bei längerem Erhitzen oberhalb 85° in Essigester und 2-Methylbenzimidasol (Syst. No. 3474).
- b) Niedrigerschmelzende Form. B. Wurde einmal beim Schütteln von 1 Mol.-Gew. o-Phenylendiamin mit 1 Mol.-Gew. Acetessigester erhalten (H., K.). Nadeln (aus Petroläther). F: 59°. Geht schon bei öfterem Umkrystallisieren aus Ligroin in die höher schmelsende Form über. Verhält sich beim Erhitzen für sich oder beim Erwärmen mit Mineralsäure wie die höher schmelsende Form.

- β -[2-(4-Nitro-benzalamino)-phenylimino]-buttersäure-äthylester $C_{19}H_{19}O_4N_8=O_4N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot N:C(CH_3)\cdot CH_2\cdot CO_3\cdot C_2H_5.$ B. Entsteht neben wenig 2-[4-Nitro-phenyl]-benzimidazol (Syst. No. 3487) bei mehrstündigem Stehen (im Kältegemisch) von 1 Mol.-Gew. β -[2-Amino-phenylimino]-buttersäure-äthylester, gelöst in wenig kaltem Alkohol, mit der kalten konzentrierten Lösung von 1 Mol.-Gew. 4-Nitro-benzaldehyd (HINSBERG, KOLLER, B. 29, 1501). Scharlachrote Nadeln. F: 99°. Mäßig löslich in Alkohol. Beim Erwärmen mit Mineralsäuren wird Acetessigester abgespalten.
- o-Phenylen-bis- $[\beta$ -imino-buttersäure-nitril] bezw. o-Phenylen-bis- $[\beta$ -amino-crotonsäure-nitril] $C_{14}H_{14}N_4 = C_8H_4[N:C(CH_3)\cdot CH_2\cdot CN]_2$ bezw. $C_8H_4[NH\cdot C(CH_3)\cdot CH\cdot CN]_2$. B. Aus β -Imino-butyronitril (Diacetonitril, Bd. III, S. 660) und o-Phenylendiamin in verd. Essigsäure (E. v. Meyer, C. 1908 II, 591; J. pr. [2] 78, 502). Prismatische Blättchen. F: 136°. Unlöslich in kaltem Wasser, leicht löslich in Alkohol und Eisessig.
- [2-Methylamino-phenylimino]-malonsäure-monoureid $C_{11}H_{12}O_4N_4=CH_3\cdot NH\cdot C_6H_4\cdot N:C(CO_2H)\cdot CO\cdot NH\cdot CO\cdot NH_2.$ B. Man schüttelt Alloxan-[2-methylamino-anjl] $CH_3\cdot NH\cdot C_6H_4\cdot N:C<\frac{CO\cdot NH}{CO\cdot NH}>CO$ (Syst. No. 3627) mit 3% iger Sodalösung bis zur Lösung und säuert an (Kühlling, Kaselitz, B. 39, 1324). Weiße Nadeln (aus Aceton durch Ligroin). Sehr unbeständig. Spaltet bereits beim Trocknen im Exsiccator Wasser ab und ist bei längerem Erhitzen auf 110° völlig in das Ausgangsprodukt zurückverwandelt. Löslich in warmera Wasser, Alkohol, Äther, Aceton, Benzol und Essigsäure, unlöslich in Ligroin.
- [2-Anilino-phenylimino]-malonsäure-monoureid $C_{16}H_{16}O_4N_4 = C_6H_5 \cdot NH \cdot C_6H_4 \cdot N:C(CO_2H) \cdot CO \cdot NH \cdot CO \cdot NH_2$. B. Man schüttelt Alloxan-[2-anilino-anil] $C_6H_5 \cdot NH \cdot C_6H_4 \cdot N:C \cdot CO \cdot NH \cdot CO$ (Syst. No. 3627) mit stark verd. Natronlauge bis zur Lösung und säuert die Lösung in der Kälte an (Kü., Ka., B. 39, 1319). Blättchen (aus Aceton durch Ligroin). Sehr unbeständig. Spaltet schon beim Trocknen im Exsiccator Wasser ab. Schmilzt teilweise bei 170°, erstarrt bei weiterem Erhitzen und schmilzt vollständig bei 228°. Leicht löslich in Eisessig, Alkohol, Aceton, Chloroform, Äther, Benzol, unlöslich in kaltem Wasser und Ligroin.
- [2-(Acetylmethylamino)-phenylimino]-malonsäure-monoureid $C_{12}H_{14}O_4N_4=CH_3\cdot CO\cdot N(CH_3)\cdot C_6H_4\cdot N:C(CO_2H)\cdot CO\cdot NH\cdot CO\cdot NH_2$. B. Beim Kochen von Alloxan-[2-methylamino-anil] $CH_3\cdot NH\cdot C_6H_4\cdot N:C< {CO\cdot NH \atop CO\cdot NH}>CO$ (Syst. No. 3627) mit Acetanhydrid und Acetylchlorid (KÜHLING, KASELITZ, B. 39, 1324). Nadeln (aus Aceton-Ligroin). Zersetzt sich zwischen 265° und 270°. Leicht löslich in Alkohol, Aceton, Eisessig, schwer löslich in Benzol, unlöslich in Ligroin. Löslich in Soda.
- β -[2-Amino-phenylimino]-methylmalonsäure-diäthylester bezw. β -[2-Amino-anilino]-methylenmalonsäure-diäthylester $C_{14}H_{18}O_4N_2=H_2N\cdot C_6H_4\cdot N:CH\cdot CH\cdot CCO_2\cdot C_2H_5)_2$ bezw. $H_2N\cdot C_6H_4\cdot NH\cdot CH:CCO_2\cdot C_2H_5)_2$. B. Entsteht neben Diäthylmalonat bei 1-stdg. Erwärmen auf 100° von 1 Tl. $\alpha.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester mit 1 Tl. o-Phenylendiamin (Ruhemann, Hemmy, B. 30, 2026). Prismen (aus Alkohol). F: 92—93°. Sehr leicht löslich in Alkohol, schwerer in Äther.
- N.N'-Dichlor-N.N'-diacetyl-o-phenylendiamin $C_{10}H_{10}O_2N_3Cl_2=C_6H_4(NCl\cdot CO\cdot CH_2)_2$. B. Durch Schütteln von in Chloroform suspendiertem N.N'-Diacetyl-o-phenylendiamin (S. 20) mit einer mit Kaliumdicarbonat versetzten Lösung von unterchloriger Säure (Chattaway, Orton, B. 34, 162). Vierseitige Prismen. Schmilzt bei 94° unter leichter Explosion. Isomerisiert sich in Eisessig zu N.N'-Diacetyl-4.5(?)-dichlor-phenylendiamin-(1.2) (S. 27).
- N.N'-Dibrom-N.N'-diacetyl-o-phenylendiamin $C_{10}H_{10}O_2N_2Br_2=C_0H_4(NBr\cdot CO\cdot CH_3)_2$. B. Durch Einw. einer kaliumdicarbonathaltigen Lösung von unterbromiger Säure auf in Chloroform suspendiertes N.N'-Diacetyl-o-phenylendiamin (CH., O., B. 84, 163). Hellgelbe Prismen (aus Chloroform + Petroläther). Verpufft bei 76—80°. Lagert sich in Eisessig zu einer Substanz vom Zersetzungspunkt 286° um.
- N-Benzolsulfonyl-o-phenylendiamin $C_{12}H_{12}O_2N_2S=H_2N\cdot C_6H_4\cdot NH\cdot SO_2\cdot C_6H_5$. B. Bei der Reduktion von Benzolsulfonsäure-[2-nitro-anilid] (Bd. XII, S. 696) mit Zinn und Salzsäure (Lellmann, A. 221, 17) oder mit Eisen und verd. Essigsäure (Morgan, Micklethwart, Soc. 87, 80). Nadeln (aus 50% igem Alkohol). F: 165—167% (Mo., Mi.), 168% (L.).

Schwer löslich in Wasser, leicht in Alkohol, Chloroform und Eisessig (L.). — Gibt bei der Diazotierung in salzsaurer oder essigsaurer Lösung 1-Benzolsulfonyl-benztriazol (Syst. No. 3803) (Mo., Mr.). — C₁₈H₁₈O₂N₂S+HCl. Krystalle (L.).

N.N'-Dibensolsulfonyl-o-phenylendiamin $C_{18}H_{16}O_4N_2S_2 = C_6H_4(NH\cdot SO_3\cdot C_6H_5)_3$. B. Beim Schütteln von 1 Mol.-Gew. o-Phenylendiamin mit 3—4 Mol.-Gew. Benzolsulfochlorid (Bd. XI, S. 34) und überschüssiger Kalilauge bei 65° (HINSBERG, STRUPLER, A. 287, 223). — Nadeln (aus Eisessig). F: 186°.

N.N'-Di-p-toluolsulfonyl-o-phenylendiamin $C_{20}H_{20}O_4N_2S_2=C_6H_4(NH\cdot SO_2\cdot C_6H_4\cdot CH_2)_2$. B. Aus p-Toluolsulfochlorid und o-Phenylendiamin in siedendem Alkohol (Reverdin, Crefteux; B. 35, 314). — Nadeln. F: 201—202°. Leicht löslich in verd. Alkohol und Eisessig, schwer in Ligroin.

N.N'-Bis-[2-nitro-toluol-sulfonyl-(4)]-o-phenylendiamin $C_{50}H_{16}O_8N_4S_2=C_6H_4[NH\cdot SO_8\cdot C_6H_5(NO_9)\cdot CH_3]_2$. B. Aus 2-Nitro-toluol-sulfonsäure-(4)-chlorid und o-Phenylendiamin (R., C., B. 35, 314). — Nadeln (aus verd. Essigsäure). F: 162—163°. Schwer löslich in Ligroin, sonst leicht löslich.

N - Benzolsulfonyl - N - methyl - o - phenylendiamin $C_{18}H_{14}O_2N_2S = H_2N \cdot C_0H_4 \cdot N(CH_2) \cdot SO_2 \cdot C_0H_5$. B. Aus Benzolsulfonsäure-[N-methyl-2-nitro-anilid] (Bd. XII, S. 697) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwait, Soc. 87, 85). — Nadeln (aus verd. Alkohol). F: 116°. — Liefert bei der Diazotierung ein Diazoniumsalz.

N.N.N'.N'-Tetrabenzolsulfonyl-o-phenylendiamin $C_{20}H_{24}O_{8}N_{2}S_{4} = C_{4}H_{4}[N(SO_{2}\cdot C_{6}H_{5})_{2}]_{2}$. B. Bei längerem Erwärmen von N.N'-Dibenzolsulfonyl-o-phenylendiamin mit überschüssigem Benzolsulfochlorid und Sodalösung (Hinsberg, Steupler, A. 287, 224). — Krystalle. F: 150—151°. Schwer löslich in den üblichen organischen Solvenzien. — Zerfällt mit konz. Salzsäure in o-Phenylendiamin und Benzolsulfonsäure.

Substitutions produkte des o-Phenylendiamins.

4-Chlor-1.2-diamino-benzol, 4-Chlor-phenylendiamin-(1.2) $C_0H_7N_2Cl = H_2N$ · $C_0H_2Cl\cdot NH_2$. B. Bei der Reduktion von 4-Chlor-1.2-dinitro-benzol (Bd. V, S. 262) mit Zinn und Salzsäure (Laubenhemer, B. 9, 773). Durch Reduktion von 4-Chlor-2-nitro-anilin (Bd. XII, S. 729) mit Zinnchlorür in konz. Salzsäure (Ullmann, Mauthner, B. 36, 4027).— Blättchen (aus Benzol-Ligroin). F: 72° (L.; U., M.), 76° (O. Fischer, B. 37, 555). Mit Wasserdampf etwas flüchtig (L.). Ziemlich schwer löslich in kaltem Wasser, leicht in Alkohol und Äther (L.).— Reduziert Silbernitratlösung in der Hitze (L.). Liefert bei der Oxydation mit Ferrichlorid in salzsaurer Lösung vorwiegend 6-Chlor-2-oxy-3-amino-phenazin (Syst. No. 3770) neben etwas 6-Chlor-2.3-diamino-phenazin (Syst. No. 3745), in verd. Essigsäure vorwiegend die letztere Verbindung (U., M.). Gibt bei mehrstündigem Kochen mit konz. Ameisensäure 5-Chlor-benzimidazol (Syst. No. 3473) (O. F.).— $C_0H_7N_2Cl+H_2SO_4$. Blättchen. Schwer löslich in kaltem Wasser (U., M.).

N³-Methyl-4-chlor-phenylendiamin-(1.2) C,H₂N₂Cl = H₂N·C₆H₃Cl·NH·CH₃. B. Durch Reduktion von 6 g N·Methyl-5-ehlor-2-nitro-anilin (Bd. XII, S. 730) mit 22 g Zinn-chlorür in konz. Salzsäure (Kehrmann, Müller, B. 34, 1096). — Hydrochlorid. Blättrige Krystalle (aus Äther + HCl). Sehr leicht löslich in Wasser, schwer in verdünnter, leicht in konzentrierter Salzsäure. — Oxydiert sich an der Luft sowie mit FeCl₃ zu einem rotbraunen Farbstoff.

N.N'-Dimethyl-4-chlor-phenylendiamin-(1.2) $C_8H_{11}N_4Cl = C_6H_3Cl(NH\cdot CH_3)_8$. Beim Kochen von 1-Methyl-5 oder 6-chlor-benzimidazol-jodmethylat-(3) (Syst. No. 3473) oder der entsprechenden Pseudobase (Syst. No. 3473) mit Natronlauge (O. Fischer, B. 37, 557). — Prismen oder Säulen (aus Ligroin). F: 61°. Ziemlich leicht löslich in Wasser. — Wird durch FeCl₂ zu dem Phenazoniumsalz $C_{18}H_{19}N_4Cl_3$ (Syst. No. 3745) oxydiert.

N¹.N¹-Dimethyl-4-chlor-phenylendiamin-(1.2) C₅H₁₁N₃Cl = H₂N·C₅H₃Cl·N(CH₃)₂.

B. Neben 1-Methyl-5-chlor-benzimidazol (Syst. No. 3473) durch Reduktion von N.N-Dimethyl-4-chlor-2-nitro-anilin (Bd. XII, S. 729) mit Zinn und Salzsäure (Pinnow, B. 31, 2984).

— Flüssig. Kp₇₈₃: 266,5—267,5°. Wird von FeCl₃ braun, dann braunviolett, schließlich kirschrot gefärbt. — Beim Erhitzen mit Essigsäureanhydrid entsteht 5-Chlor-1.2-dimethylbenzimidazol (Syst. No. 3474). — Pikrat C₅H₁₁N₂Cl+C₅H₃O₇N₃. Hellgelbe, sechseckige Blättchen (aus Alkohol). F: 190—191°. Leicht löslich in heißem Aceton, Eisessig und Essigester, schwer in kaltem Alkohol.

N¹-Phenyl-4-chlor-phenylendiamin-(L2), 4-Chlor-2-amino-diphenylamin C₁₂H₁₁N₂Cl = H₂N·C₂H₃Cl·NH·C₂H₃. B. Durch Einw. von Zinnchlorür und Salzsäure in Alkohol auf 4-Chlor-2-nitro-diphenylamin (Bd. XII, S. 729) (Ullmann, Kogan, A. 332, 94). — Farblose Nadeln (aus Alkohol). F: 82°. Leicht löslich in Eisessig und Äther, schwer in Ligroin. — Gibt mit Natriumnitrit in verd. Schwefelsäure 1-Phenyl-5-chlor-benztriazol

C.H.

(Syst. No. 3803). — Hydrochlorid. Löslich in Alkohol und Eisessig, leicht löslich in siedendem Wasser.

 $N^3\text{-Phenyl-4-chlor-phenylendiamin-(1.2), 5-Chlor-2-amino-diphenylamin } C_{18}H_{11}N_{2}Cl = H_{2}N \cdot C_{6}H_{3}Cl \cdot NH \cdot C_{6}H_{5}. \quad B. \quad \text{Durch Reduktion von 5-Chlor-2-nitro-diphenyl-diphenylendiamin-(1.2)}$ amin (Bd. XII, S. 731) mit Zinnchlorur und Salzsaure unter Zusatz von Alkohol (Ernst, B. 23, 3423). Aus 4-Chlor-azobenzol (Syst. No. 2092) durch Behandlung der alkoh. Suspension B. 23, 3423). Aus 4-Chlor-azobenzol (Syst. No. 2092) durch behandling der sikoh. Suspension mit Zinnehlorür und Salzsäure unter Kühlung (Jacobson, Strübe, A. 303, 307, 309). Aus 4-Chlor-hydrazobenzol (Syst. No. 2068) in Methylalkohol mit HCl (J., A. 367, 322.) — Nadeln (aus verd. Alkohol). F: 102° (J., Sr.), 99° (E.).

Leicht löslich in Äther, Chloroform und Benzol (E.).

Wird von FeCl₃ zum Chlor-amino-anilino-phenazin-chlorphenylat der nebenstehenden Formel (Syst. No. 3745) oxyonative (Syst. No. 37 phenylat der hebensteinenden Formei (Syst. No. 3745) Oxydiert (Kehrmann, Guggenheim, B. 34, 1218). Das salzsaure Salz liefert mit 2-Oxy-naphthochinon-(1.4)-anil-(4) bezw. 4-Anilino-naphthochinon-(1.2) (Bd. XII, S. 223) das salzsaure Chlor-phenylrosindulin der nebenstehenden Formel (Syst. No. 3722) (K., Hiby, B. 34, 1091; K., D. R. P. 116631; Frdl. 5, 938; C. 1901 I, 153). — Pikrat C₁₂H₁₁N₂Cl+C₂H₃O₇N₃. Gelbbraune Blättchen (E.). C.H. CeH5 · NH ·

5.4'-Dichlor-2-amino-diphenylamin $C_{12}H_{10}N_2Cl_2 = H_2N\cdot C_0H_2Cl\cdot NH\cdot C_0H_4Cl.$ B. Das Hydrochlorid entsteht beim Behandeln von 4.4'-Dichlor-hydrazobenzol (Syst. No. 2068) in alkoh. Suspension bei 0° mit Zinnehlorür und HCl; man zerlegt das Salz mit Ammoniak (WILBERG, B. 35, 955; vgl. G. SCHULTZ, B. 17, 464). — Weiße Nadeln (aus Benzol und Petroläther). F: 91°; leicht löslich in Alkohol und Benzol, schwer in Petroläther und Äther (W.). Das salzsaure Salz liefert beim Schmelzen bezw. beim Erhitzen seiner wäßr. Lösung im Druckrohr auf 200° neben anderen Produkten Cl. das Fluorindin der nebenstehenden Formel (Syst. No. 4176) (W.). Die Base gibt mit salpetriger Säure ein Benztriazolderivat vom Schmelzpunkt 204°, mit Benzil eine Stilbazoniumverbindung vom

 C_6H_4Cl \cdot NH \cdot C_aH_aCl C.H.Cl

Schmelzpunkt 213°, mit Schwefelkohlenstoff ein Thiobenzimidazolderivat vom Schmelzpunkt 273° (W.).

 N^2 -p-Tolyl-4-chlor-phenylendiamin-(1.2), 5'-Chlor-2'-amino-4-methyl-diphenylamin $C_{13}H_{13}N_3Cl=H_4N\cdot C_6H_3Cl\cdot NH\cdot C_6H_4\cdot CH_3$. B. Durch Reduktion von [5-Chlor-2-nitro-phenyl]-p-toluidin (Bd. XII, S. 906) mit Zinnchlorür und Salzsäure bei Gegenwart von Alkohol (Kehrmann, Krazler, B. 34, 1103). — Hydrochlorid. Blätter (aus Wasser + konz. Salzsäure). Färbt sich am Licht langsam rot.

N.N'-Dibensal-4-chlor-phenylendiamin-(1.2) $C_{20}H_{15}N_2Cl = C_0H_2Cl(N:CH\cdot C_0H_5)_2$. B. Aus 4-Chlor-phenylendiamin-(1.2) mit Benzaldebyd bei 150—170° (O. FISCHER, LIMMER, J. pr. [2] 74, 58). — Farblose Krystalle. F: ca. 168°. — Gibt beim Erhitzen über den Schmelzpunkt oder beim Kochen mit Säuren das 1-Benzyl-5 oder 6-chlor-2-phenyl-benzimidazol (Syst. No. 3487).

N.N' - Bis - [4 - nitro - bensal] - 4 - chlor - phenylendiamin - (1.2) $C_{20}H_{13}O_4N_4Cl =$ C₆H₃Cl(N:CH·C₆H₄·NO₂)₂. B. Aus 4-Chlor-phenylendiamin-(1.2) und 4-Nitro-benzaldehyd (O. F., L., J. pr. [2] 74, 59). — Rote Blättchen (aus Alkohol + Benzol). Schmilzt bei ca. 150° unter Umlagerung in das entsprechende Benzimidazolderivat (Syst. No. 3487).

Nº-Phenyl - Nº-acetyl - 4 - chlor - phenylendiamin - (1.2), 5 - Chlor - 2 - acetaminodiphenylamin $C_{14}H_{13}ON_3Cl = C_4H_5 \cdot NH \cdot C_2H_3Cl \cdot NH \cdot CO \cdot CH_3$. B. Aus N*-Phenyl-chlor-phenylendiamin-(1.2) und Essigsäureanhydrid unterhalb 100° (Ennst, B. 23, 3424). — Nadeln (aus siedendem Alkohol). F: 150°. Sehr leicht löslich in Ather und Chloroform, löslich in siedendem Alkohol und siedendem Benzol.

N.N'-Diacetyl-4-chlor-phenylendiamin-(1.2) $C_{10}H_{11}O_2N_3Cl = C_6H_3Cl(NH\cdot CO\cdot CH_3)_3$. B. Durch kurzes Kochen einer essigsauren Lösung von 4-Chlor-phenylendiamin-(1.2) mit Essigsaureanhydrid (Ullmann, Mauthner, B. 36, 4028). — Farblose Blättchen (aus Toluol). F: 201° (Zers.), 208° (O. FISCHER, LIMMER, J. pr. [2] 74, 61 Anm.). — Liefert beim Destillieren 5-Chlor-2-methyl-benzimidazol (Syst. No. 3474) (U., M.).

N.N'- Dibensoyl - 4 - chlor - phenylendiamin - (1.2) $C_{20}H_{18}O_2N_2Cl = C_0H_3Cl(NH \cdot CO \cdot C_0H_3)_2$. B. Aus 4-Chlor-phenylendiamin-(1.2) und Benzoesäureanhydrid (O. Fischer, Limmer, J. pr. [2] 74, 62). — Nadeln (aus Alkohol). F: 230°. Leicht löslich in heißem Eisesig, sonst schwer löslich. — Liefert mit roter rauchender Salpetersäure ein N.N'-Dibenzoyl-4-chlor-x-nitro-phenylendiamin-(1.2) (S. 32).

- β-[4 oder 5-Chlor-2-amino-phenylimino]-buttersäure-äthylester bezw. β-[4 oder 5-Chlor-2-amino-anilino]- crotonsäure-äthylester $C_{19}H_{18}O_1N_1Cl = H_2N \cdot C_2H_3Cl \cdot N$: $C(CH_2) \cdot CH_2 \cdot CO_2 \cdot C_2H_3$ bezw. $H_2N \cdot C_2H_3Cl \cdot NH \cdot C(CH_3) \cdot CH \cdot CO_2 \cdot C_2H_3$. B. Aus āquimolekularen Mengen von 4-Chlor-phenylendiamin-(1.2) und Acetessigester in Alkohol (O. FISOHER, LIMMER, J. pr. [2] 74, 59). Nadeln (aus verd. Alkohol). F: 140°. Liefert beim Erhitzen 5-Chlor-2-methyl-benzimidazol (Syst. No. 3474).
- **3.5-Dichlor-1.2-diamino-benzol**, **3.5-Dichlor-phenylendiamin-(1.2)** $C_0H_0N_3Cl_2=H_2N\cdot C_0H_2Cl_2\cdot NH_2$. B. Durch Reduktion von 4.6-Dichlor-2-nitro-anilin (Bd. XII, S. 734) mit Zinn und Salzsäure (Wrrr, B. 7, 1604). Nadeln (aus Alkohol). F: 60,5°.
- 8.6-Dichlor-1.2-diamino-bensol, 8.6-Dichlor-phenylendiamin-(1.2) $C_2H_0N_1Cl_2=H_2N\cdot C_0H_2Cl_2\cdot NH_2$. B. Aus 3.6-Dichlor-2-nitro-anilin (Bd. XII, S. 734) mit Zinnchlorür und Salzsäure oder mit Zinkstaub und Natronlauge (Norlting, Kopp, B. 38, 3515). Nadeln (durch Sublimation). F: 100°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln, etwas schwerer in Ligroin und Wasser.
- N.N'-Diacetyl-4.5 (P)-dichlor-phenylendiamin-(L2) $C_{10}H_{10}O_2N_2Cl_2 = C_6H_1Cl_2(NH\cdot CO\cdot CH_2)_2$. B. Durch längere Einw. von Eisessig auf N.N'-Dichlor-N.N'-diacetyl-o-phenylendiamin (S. 24) (Chattaway, Obton, B. 34, 163). Nadeln (aus viel Alkohol). F: 290° (Zers.).
- N¹- Formyl 3.4.6 trichlor phenylendiamin (1.2) $C_7H_5ON_2Cl_5 = H_5N \cdot C_6HCl_5$. NH·CHO. B. Durch Reduktion von 3.4.6-Trichlor-2-nitro-formanilid (Bd. XII, S. 736) mit Eisen und Salzsäure (Bad. Anilin- u. Sodaf., D. R. P. 178299; Frdl. 8, 99; C. 1907 I, 197). F: 303—304°. Beim Schmelzen extsteht 4.5.7-Trichlor-benzimidazol (Syst. No. 3473).
- N¹-Methyl-N¹-formyl-8.4.6-trichlor-phenylendiamin-(1.2) $C_0H_7ON_9Cl_3 = H_2N \cdot C_0HCl_3 \cdot N(CH_3) \cdot CHO$. B. Aus N-Methyl-3.4.6-trichlor-2-nitro-formanilid (Bd. XII, S. 736) durch Reduktion mit Eisen und Essignäure (B. A. S. F., D. R. P. 178299; Frdl. 8, 99; O, 1907 I, 197). F: 159—160°. Schwer löslich in Xylol.
- N¹-Acetyl-8.4.6-trichlor-phenylendiamin-(l.2) $C_0H_7ON_2Cl_2 = H_2N \cdot C_0HCl_2 \cdot NH \cdot CO \cdot CH_2$. B. Neben 4.5.7-Trichlor-2-methyl-benzimidazol (Syst. No. 3474) aus 3.4.6-Trichlor-2-nitro-acetanilid (Bd. XII, S. 736) durch Erhitzen mit Eisen und Essigsäure (B. A. S. F., D. R. P. 178299; Frdl. 8, 99; C. 1907 I, 197). F: 200°.
- N-Acetyl-3.4.5.6-tetrachlor-phenylendiamin-(1.2) $C_2H_4ON_2Cl_4=H_2N\cdot C_4Cl_4\cdot NH\cdot CO\cdot CH_3\cdot B$. Aus 3.4.5.6-Tetrachlor-2-nitro-acetanilid (Bd. XII, S. 737) durch Reduktion mit Eisen und Essignaure (B. A. S. F., D. R. P. 178299; Frdl. 8, 100; C. 1907 I, 197). F: 223—224°. Beim Erhitzen auf 300° entsteht 4.5.6.7-Tetrachlor-2-methyl-benzimidazol (Syst. No. 3474).
- N-Åthyl-N-scetyl-3.4.5.6-tetrachlor-phenylendiamin-(1.2) $C_{10}H_{10}ON_{2}Cl_{4} = H_{2}N \cdot C_{0}Cl_{4} \cdot N(C_{2}H_{3}) \cdot CO \cdot CH_{2}$. B. Aus dem nicht näher beschriebenen N-Åthyl-3.4.5.6-tetrachlor-2-nitro-acetanilid durch Reduktion mit Eisen und Essigsäure (B. A. S. F., D. R. P. 178299; Frdl. 8, 100; C. 1907 I, 197). F: 203—204°.
- N-Bensyl-N-acetyl-3.4.5.6-tetrachlor-phenylendiamin-(1.2) $C_{12}H_{12}ON_2Cl_4 = H_2N \cdot C_6Cl_4 \cdot N(CH_2 \cdot C_6H_3) \cdot CO \cdot CH_3$. B. Bei der Reduktion von Essigsäure-[(3.4.5.6-tetrachlor-2-nitro-phenyl)-bensylamid] (Bd. XII, S. 1044) mit Eisen und Essigsäure (B. A. S. F., D. R. P. 178299; Frdl. 8, 100; C. 1907 I, 197). F: 135—137.
- 4-Brom-1.2-diamino-beneol, 4-Brom-phenylendiamin-(1.2) $C_0H_7N_2Br = H_2N \cdot C_0H_2Br \cdot NH_2$. B. Bei der Reduktion von 4-Brom-2-nitro-anilin (Bd. XII, S. 737) (HÜBNER, A. 209, 359) oder von 5-Brom-2-nitro-anilin (Bd. XII, S. 737) (WURSTER, B. 6, 1544) mit Zinn und Salzsäure. Nadeln. F: 63° (H.). Leicht löslich in Wasser, Alkohol, Chloroform (H.) und Äther (REMMERS, B. 7, 347). Liefert bei der Oxydation mit FeCl₃-Lösung 6-Brom-2-3-diamino-phenazin (Syst. No. 3745) und 6-Brom-2-oxy-3-amino-phenazin (Syst. No. 3770) (ULLMANN, MAUTHNER, B. 36, 4031). Beim Behandeln mit Natriumamalgam entsteht o-Phenylendiamin (W.). Salze: HÜRNER. $C_2H_7N_2Br + HCl$. Nadeln. Äußerst löslich in Wasser, schwer in kons. Salzsäure. $C_6H_7N_2Br + H_2SO_4$. Blättehen. Wenig löslich in kaltem Wasser, leicht in kochendem und in Alkohol.

N.N'-Dimethyl-4-brom-phenylendiamin-(1.2) $C_8H_{II}N_8Br = C_6H_8Br(NH\cdot CH_8)_{II}$ B. Beim Kochen des 1-Methyl-5 oder 6-brom-benzimidazol-jodmethylats-(3) (Syst. No. 3473) oder der entsprechenden Pseudobase (Syst. No. 3473) mit Natronlauge (O. FISCHER, MOUSON, B. 38, 326). — Nadeln (aus verd. Alkohol). F: 78°. Wird durch Eisenchlorid in salzsaurer Lösung zu einem roten Farbstoff oxydiert, der sich in bronzeglänzenden Blättchen abscheidet.

N³-Phenyl-4-brom-phenylendiamin-(l.2), 5-Brom-2-amino-diphenylamin C₁₂H₁₁N₂Br = H₂N·C₆H₃Br·NH·C₆H₅. B. Beim Behandeln von 4-Brom-azobenzol (Syst. No. 2092) in Alkohol mit salzsurer Zinnehlorürlösung oder durch Reduktion von 5-Brom-2-nitro-diphenylamin (Bd. XII, S. 738) in alkoh. Lösung mit Zinnchlorür in Salzsäure (Jacobson, Grosse, A. 303, 322). — Farblose, an der Luft sich grauviolett färbende Nadeln. F: 106°. — Gibt in verdünnter salzsaurer Lösung mit Eisenchlorid erst schwach rote, später violette Färbung und schließlich einen aus mikroskopischen Nädelchen bestehenden indigblauen, kupferglänzenden Niederschlag.

5.4'-Dibrom-2-amino-diphenylamin $C_{12}H_{10}N_2Br_2 = H_2N \cdot C_6H_3Br \cdot NH \cdot C_6H_4Br$. B. Bei mehrtägigem Stehen von 4.4'-Dibrom-azobenzol (Syst. No. 2092) mit Alkohol, Zinnehlorur und etwas Schwefelsäure (G. SCHULTZ, B. 17, 465). — Schuppen (aus Alkohol). F: 108°. Leicht löslich in absol. Alkohol. — Liefert mit nitrosen Gasen in alkoh. Lösung 1-[4-Brom-

 N^{s} -Phenyl- N^{1} -salicylal-4-brom-phenylendiamin-(1.2) $C_{10}H_{15}ON_{2}Br = C_{6}H_{5}\cdot NH$ $C_0H_3Br \cdot N : CH \cdot C_0H_4 \cdot OH$ oder vielleicht auch 6-Brom-1-phenyl-2-[2-oxy-phenyl]-benz $imidesoldihydrid \quad C_{10}H_{15}ON_{2}Br \\ = C_{0}H_{3}Br \\ < \underset{N(C_{0}H_{5})}{NH} \\ CH \cdot C_{0}H_{4} \cdot OH. \quad Zur \quad Konstitution \\ \\ = C_{0}H_{15}ON_{2}Br \\ = C_{0}H_{15}ON_{$ vgl. O. Fischer, B. 25, 2826. — B. Durch Kochen einer alkoh. Lösung von 5-Brom-2-aminodiphenylamin mit etwas mehr als der molekularen Menge Salicylaldehyd (Jacobson, Grosse, A. 303, 325). — Schwefelgelbe Nadeln (aus Alkohol). F: 155° (J., G.). — Wird beim Erhitzen mit verd. Schwefelsäure nur sehr allmählich gespalten (J., G.).

- 8.5-Dibrom-1.2-diamino-benzol, 8.5-Dibrom-phenylendiamin-(1.2) $C_6H_6N_2Br_2=H_2N\cdot C_8H_2Br_2\cdot NH_2$. B. Durch Reduktion von 4.6-Dibrom-2-nitro-anilin (Bd. XII, S. 741) mit Zinn und Salzsäure (Jackson, Russe, Am. 35, 150). Prismen (aus verd. Alkohol). Platten (aus Wasser). F: 83°. Mit Wasserdampf unzersetzt destillierbar. Leicht löslich in Alkohol, löslich in Äther, Benzol, Chloroform, Eisessig, schwer löslich in Wasser. $C_6H_6N_2Br_2+HCl$. Rötlich gefärbte Nadeln. Wird durch Wasser dissoziiert. $C_6H_6N_2Br_2+HBr$. Ist sehr unbeständig und gibt auch in einer HBr-Atmosphäre HBr ab.
- N.N'-Diacetylderivat $C_{10}H_{10}O_2N_2Br_2 = C_0H_2Br_2(NH\cdot CO\cdot CH_3)_2$. B. Aus 3.5-Dibromphenylendiamin-(1.2) beim Kochen mit Essigsäureanhydrid (JACKSON, RUSSE, Am. 35, 152). Nadeln (aus Essigsäure beim Stehen der Lösung über Ammoniak). F: 227—228°. Löslich in Alkohol, Aceton, Chloroform, Eisessig, schwer löslich in Benzol, Ligroin; löslich in konz. Mineralsäuren sowie in heißer Natronlauge.
- 3.6-Dibrom-1.2-diamino-benzol, 3.6-Dibrom-phenylendiamin-(1.2) $C_0H_0N_0Br_0=H_2N\cdot C_0H_2Br_0$ NH₂. B. Durch Reduktion von 3.6-Dibrom-1.2-dinitro-benzol (Bd. V, S. 267) mit Zinkstaub und Essigsäure bei $60-70^\circ$ (Calhane, Wheeler, Am. 22, 452). Nadeln (aus Wasser). F: 94-95°. Sehr leicht löslich in Alkohol, Ather und Benzol, schwer in kaltem Wasser. Löst sich in starker Salpetersäure mit tiefroter Farbe. — C₆H₆N₂Br₂+HCl. Weiße Nadeln.
- N.N'-Diacetylderivat $C_{10}H_{10}O_2N_2Br_2 = C_0H_2Br_2(NH\cdot CO\cdot CH_3)_2$. B. Durch kurzes Kochen von 3.6-Dibrom-phenylendiamin-(1.2) mit Essigsäureanhydrid (C., Wh., Am. 22, 455). - Krystalle (aus Alkohol). F: 265—269° (Zers.). Löslich in Salzsäure, Alkohol und Eisessig, unlöslich in heißem Wasser.
- 4.5-Dibrom-1.2-diamino-benzol, 4.5-Dibrom-phenylendiamin-(1.2) $C_6H_6N_2Br_4 =$ H₂N·C₆H₂Br₂·NH₂. B. Durch Reduktion von 4.5-Dibrom-1.2-dinitro-benzol (Bd. V, S. 267) (SCHIFF, M. 11, 338). — Nadeln (aus verd. Alkohol). Schmilzt bei 137° unter plötzlicher Zersetzung. Unlöslich in Wasser, leicht löslich in Alkohol, Ather und Chloroform. — Liefert mit Phenanthrenchinon das entsprechende Azin (Syst. No. 3493).
- 3.4.5 Tribrom 1.2 diamino benzol, 3.4.5 Tribrom phenylendiamin (1.2) $C_0H_5N_2Br_3 = H_2N \cdot C_0HBr_3 \cdot NH_2$. B. Durch Reduktion von 3.4.5-Tribrom-1.2-dinitro-benzol (Bd. V, S. 268) mit Zinn und Salzsäure (Jackson, Fiske, Am. 30, 78). Krystalle (aus Alkohol). F: 91°(?). Leicht löslich in Alkohol, Benzol, Eisessig, unlöslich in Lignoin und Wasser, Bright sich sephroll an der Leith unlöslich in Ligroin und Wasser. Bräunt sich schnell an der Luft. — C. H. N. Br. + HCI.

N³-Phenyl-4-jod-phenylendiamin-(1.2), 5-Jod-2-amino-diphenylamin $C_{12}H_{11}N_1I = H_2N \cdot C_6H_3I \cdot NH \cdot C_6H_5$. B. Beim Behandeln von 4-Jod-azobenzol (Syst. No. 2092) in Alkohol mit salzsaurer Zinnchlorürlösung oder durch Reduktion von 5-Jod-2-nitro-diphenylamin (Bd. XII, S. 746) mit salzsaurer Zinnchlorürlösung (Jacobson, Fertsch, Heubach, A. 303, 331, 335, 340). — Die freie Base krystallisiert nicht. Liefert durch Kondensation mit Benzil eine Stilbazoniumbase als gelben flockigen Niederschlag, deren Hydrochlorid und Nitrat krystallisieren. — $C_{12}H_{11}N_2I + HCl$. Farblose Nadeln.

4-Nitro-1.2-diamino-bensol, 4-Nitro-phenylendiamin-(1.2) $C_6H_7O_2N_3 = H_2N \cdot C_6H_8(NO_2) \cdot NH_2$. B. Bei der Reduktion von 2.4-Dinitro-anilin (Bd. XII, S. 747) mit alkoh. Schwefelammonium (Gottlier, A. 85, 27; Heim, B. 21, 2305; vgl. Pinnow, Wiskott, B. 32, 900), neben 2-Nitro-phenylendiamin-(1.4) (Kehrmann, B. 28, 1707). Aus 2.4-Dinitro-anilin in siedendem Alkohol mit wäßr. Natriumhydrosulfidlösung, neben 2-Nitro-phenylendiamin-(1.4) (Brand, J. pr. [2] 74, 470). — Dunkelrote Nadeln. F: 195° (G.), 196—198° (Br.), 198° (Heim). — Liefert mit Natriumnitrit in verd. Salzsäure 5-Nitro-benzuriazol O2N·C6H3 NH N (Syst. No. 3473) (Zincke, A. 311, 290). Darstellung schwarzer Baumwollfarbstoffe durch Verschmelzen von 4-Nitro-phenylendiamin-(1.2) mit Schwefel und Schwefelalkali: Höchster Farbw., D. R. P. 105390; C. 1900 I, 379. Mit Glyoxal-natrium-disulfit (Bd. I, S. 761) entsteht 6-Nitro-chinoxalin (Syst. No. 3480) und mit Benzil (Bd. VII, S. 747) 6-Nitro-2.3-diphenyl-chinoxalin (Syst. No. 3492) (Hinsberg, A. 292, 253). Verbindet sich mit Phenanthrenchinon zum entsprechenden Nitro-phenanthrophenazin (Syst. No. 3493) (Heim). — $C_6H_7O_2N_3 + HCl + H_2O$. Gelbbraune Nadeln oder Prismen (G.). — $2C_6H_7O_2N_3 + H_3SO_4$. Schuppen (G.). — $C_6H_7O_2N_3 + HNO_3$. Blättchen (G.). — Oxalat $2C_6H_7O_2N_3 + C_3H_2O_4$. Gelbe Nadeln. Schwer löslich in Wasser (G.). — $2C_6H_7O_2N_3 + 2HCl + 2C_6H_7O_2N_3 + 2HCl + 2C_$

N¹-Methyl-4-nitro-phenylendiamin-(1.2) $C_7H_9O_2N_8=H_2N\cdot C_6H_3(NO_2)\cdot NH\cdot CH_3$. B. Entsteht neben N¹-Methyl-2-nitro-phenylendiamin-(1.4) (S. 120) (Kehrmann, B. 28, 1708) aus N-Methyl-2.4-dinitro-anilin (Bd. XII, S. 749) und alkoh. Schwefelammonium bei höchstens 50° (Kehrmann, Messinger, J. pr. [2] 46, 573). — Rotbraune Nadeln mit blauem Reflex. F: 177—178° (K., M.). — Beim Versetzen des Hydrochlorids mit Brenztraubensäure entsteht 7-Nitro-3-oxo-2.4-dimethyl-chinoxalindihydrid (Syst. No. 3568) (K., M.).

N.N'-Dimethyl-4-nitro-phenylendiamin-(1.2) $C_8H_{11}O_2N_3 = O_2N\cdot C_6H_3(NH\cdot CH_3)_2$. B. Beim Behandeln von 1-Methyl-5 oder 6-nitro-benzimidazol-jodmethylat-(3) (Syst. No. 3473) oder der zugehörigen Pseudobase (1.3-Dimethyl-5-nitro-2-oxy-benzimidazoldihydrid, Syst. No. 3473) mit wäßr. Alkalien (O. Fucher, Hess, B. 36, 3969). Beim Kochen von 5 oder 6-Nitro-1.2-dimethyl-benzimidazol-jodmethylat-(3) (Syst. No. 3474) oder der zugehörigen Pseudobase (Syst. No. 3474) mit alkoh. Kali (O. Fi., H., B. 36, 3970). — Rote Prismen. F: 172°. Leicht löslich in Alkohol, schwer in Wasser. — Durch Kochen mit krystallisierter Ameisensäure erhält man wieder 1.3-Dimethyl-5-nitro-2-oxy-benzimidazoldihydrid. — Hydrochlorid. Gelbes, durch Wasser dissoziierendes Salz. — Chloroplatinat. Gelbe Nadeln. Leicht zersetzlich.

 N^1 -Dimethyl-4-nitro-phenylendiamin-(1.2) $C_8H_{11}O_2N_3=H_5N\cdot C_6H_3(NO_4)\cdot N(CH_3)_4$. B. Bei 2-stdg. Kochen von 10 g N.N-Dimethyl-2.4-dinitro-anilin (Bd. XII, S. 749) mit 300 ccm Alkohol und 100 ccm gelbem Schwefelammonium (Heim, B. 21, 2308). — Orangegelbe Nadeln (aus Wasser). F: 63°. Leicht löslich in Alkohol, Äther und CS2, sehr leicht in Chloroform und Benzol. Unzersetzt löslich in heißem alkoholischem Kali. — Beim Erwärmen mit Äthylnitrit und Salzsäure entsteht N.N-Dimethyl-4-nitro-anilin (Bd. XII, S. 714).

N¹-Phenyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-amino-diphenylamin C₁₂H₁₁O₂N₃ = H₂N·C₆H₃(NO₂)·NH·C₆H₅. B. Beim Einleiten von H₂S in das erwärmte Gemisch aus 50 g 2.4-Dinitro-diphenylamin (Bd. XII, S. 751), 500 g Alkohol und 50 g wäßr. Ammoniak (Nietzei, Almeneider, B. 28, 2971). Durch Einw. von Na₂S auf 2.4-Dinitro-diphenylamin in Alkohol (Delétea, Ullmann, C. 1904 I, 1570; U., A. 332, 98; Reissert, Goll, B. 38, 93). Aus 2.4-Dinitro-diphenylamin mit Zinnchlorür und alkoh. Salzsäure (N. A.).—Krystallisiert mit 1 H₂O in roten Nadeln, die im Wasserbade wasserfrei und gelb werden (v. Walther, Kesslek, J. pr. [2] 74, 190). F: 125° (N., A.), 130—131° (v. W., K., J. pr. [2] 69, 41; 74, 189), 134° (D., U.; U.). Leicht löslich in Alkohol und Eisessig (N., A.), ziemlich leicht in Benzol (Zincze, A. 313, 261). — Liefert in verd. Salzsäure mit Natriumnitrit 1-Phenyl-5-nitro-benztriazol (s. nebenstehende Formel) (Syst. No. 3803) (N., A.; D., U.; U.). Gibt beim Stehende Formel) (Syst. No. 3803) (N., A.; D., U.; U.). Gibt beim Erwärmen mit Formaldehyd und Cyankalium in wäßr. Alkohol

- N-[5-Nitro-2-anilino-phenyl]-glycin (S...32) (R., G.). Gibt beim Kochen mit Ameisensäure 1-Phenyl-5-nitro-benzimidazol (Syst. No. 3473) (R., G.), beim Erhitzen mit Essigsäure-anhydrid 1-Phenyl-5-nitro-2-methyl-benzimidazol (Syst. No. 3474) (v. W., K., J. pr. [2] 69, 41; 74, 193). Liefert bei mehrstündigem Erhitzen mit Bromessigsäure und Natriumacetat (in absol. Alkohol) 1-Phenyl-6-nitro-2-oxo-chinoxalintetrahydrid (Syst. No. 3567) (R., G.). Mit Oxalester (Bd. II, S. 535) entsteht 1-Phenyl-6-nitro-2.3-dioxo-chinoxalintetrahydrid (Syst. No. 3591) neben 1-Phenyl-5-nitro-benzimidazol-carbonsäure-(2)-äthylester (Syst. No. 3646) (R., G.). C₁₈H₁₁O₂N₃ + HCl. Gelbe Nadeln. F: 198° (v. W., K., J. pr. [2] 74, 191).
- N³-Methyl-N¹-phenyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-methylamino-diphenylamin $C_{13}H_{13}O_2N_3=CH_3\cdot NH\cdot C_8H_8(NO_2)\cdot NH\cdot C_8H_5$. B. Aus 1-Phenyl-5-nitro-benzimidazol-jodmethylat-(3) (Syst. No. 3473) in alkoh. Lösung mit Ätzkali (v. Walther, Kessler, J. pr. [2] 74, 242). Rote Blättchen (aus verd. Alkohol). F: 155—156°. Leicht löslich in Eisessig und Benzol. Geht durch Erhitzen mit Essigsäureanhydrid in die Verbindung $O_2N\cdot C_6H_3 < N(CH_3) > C(CH_2)\cdot OH$ (Syst. No. 3474) über.
- N¹-Methyl-N¹-phenyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-amino-N-methyldiphenylamin $C_{13}H_{13}O_2N_3=H_2N\cdot C_0H_3(NO_2)\cdot N(CH_3)\cdot C_0H_5$. Elektrolytische Dissoziationskonstante k bei 25°, bestimmt aus der Hydrolyse des Hydrochlorids: 5.0×10^{-18} (FLÜRSCHEIM, Soc. 95, 733).
- 4.2'.4'-Trinitro-2-amino-N-methyl-diphenylamin $C_{13}H_{11}O_6N_5=(O_3N)_2C_6H_3$. $N(CH_3)\cdot C_6H_3(NO_2)\cdot NH_2$. B. Durch Einleiten von Schwefelwasserstoff in eine Suspension von 2.4.2'.4'-Tetranitro-N-methyl-diphenylamin (Bd. XII, S. 753) in Alkohol und wäßr. Ammoniak (NIETZKI, RAILLARD, B. 31, 1461). Krystalle (aus Eisessig). F: 190°. Das Hydrochlorid wird durch Wasser zerlegt. Wird von salpetriger Säure in 1-[2.4-Di-N(CH_3)(OH) $\cdot C_6H_3(NO_2)_2$ nitro-phenyl]-5-nitro-benztriazol-hydroxymethylat-(1) $O_2N\cdot C_6H_3$
- (Syst. No. 3803) übergeführt. Durch Kochen mit Essigsäureanhydrid und darauffolgendes Erwärmen des Reaktionsproduktes mit verd. Schwefelsäure wird 1-[2.4-Dinitro-phenyl]-5-nitro-2-methyl-benzimidazol-hydroxymethylat-(1) (Syst. No. 3474) erhalten.
- N¹-Äthyl-N¹-phenyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-amino-N-äthyldiphenylamin $C_{14}H_{18}O_{2}N_{3}=H_{2}N\cdot C_{6}H_{3}(NO_{2})\cdot N(C_{2}H_{5})\cdot C_{6}H_{5}$. B. Durch Einw. von alkoh. Schwefelammonium auf 2.4-Dinitro-N-äthyl-diphenylamin (Bd. XII, S. 753) (Delétra, Ullmann, C. 1904 I, 1570). Dunkelrote Krystalle (aus Ligroin + Benzol). F: 86,5°. Unlöslich in Wasser, schwer löslich in Ligroin, leicht in Eisessig, Äther, Alkohol und Benzol; färbt $H_{2}SO_{4}$ rot. Durch Diazotieren und Erhitzen des Produktes mit Kupferpulver entsteht 3-Nitro-9-äthyl-carbazol (Syst. No. 3086). Sulfat. Gelbbraune Platten. F: 98°.
- N¹-o-Tolyl-4-nitro-phenylendiamin-(l.2), 4'-Nitro-2'-amino-2-methyl-diphenylamin $C_{13}H_{13}O_{3}N_{3}=H_{2}N\cdot C_{2}H_{3}(NO_{3})\cdot NH\cdot C_{6}H_{4}\cdot CH_{3}$. B. Durch Reduktion von [2.4-Dinitrophenyl]-o-toluidin (Bd. XII, S. 787) mit Schwefelnatrium in Alkohol (Höchster Farbw., D. R. P. 85388; Frdl. 4, 77) oder mit Schwefelnatrium in Alkohol (Hö. Fa.; MUTTELET, A. ch. [7] 14, 401). Dunkelrote Nadeln oder Platten (aus verd. Alkohol). F: 121° (Hö. Fa.), 118—120° (Mu.). Schwach basisch (Hö. Fa.).
- N^1 -p-Tolyl-4-nitro-phenylendiamin-(1.2), 4'-Nitro-2'-amino-4-methyl-diphenylamin $C_{12}H_{13}O_2N_3 = H_2N\cdot C_4H_3(NO_2)\cdot NH\cdot C_4H_4\cdot CH_2$. B. Durch Einleiten von H_2S in eine ammoniakalisch-alkoholische Lösung von [2.4-Dinitro-phenyl]-p-toluidin (Bd. XII, S. 906) (MUTTELET, A. ch. [7] 14, 401). F: 155—156°.
- N^1 - α -Naphthyl-4-nitro-phenylendiamin-(1.2) $C_{16}H_{18}O_{5}N_{3}=H_{5}N\cdot C_{6}H_{3}(NO_{5})\cdot NH\cdot C_{10}H_{7}$. B. Aus [2.4-Dinitro-phenyl]- α -naphthylamin (Bd. XII, S. 1224) in Alkohol mit Schwefelammonium beim Erhitzen (Heng, B. 21, 2302). Dunkelgelbe Nadeln (aus Essigsäure). F: 145—147°. Sehr leicht löslich in Alkohol, Chloroform, Eisessig und Aceton, mäßig in Ather. Liefert mit Athylnitrit in alkoh. Lösung bei Gegenwart von Salzsäure 1- α -Naphthyl-5-nitro-benztriazol (Syst. No. 3803).
- $N^1-\beta$ -Naphthyl-4-nitro-phenylendiamin-(1.2) $C_{16}H_{12}O_4N_2=H_4N\cdot C_6H_3(NO_4)\cdot NH\cdot C_{10}H_7$. B. Man läßt 3 g [2.4-Dinitro-phenyl]- β -naphthylamin (Bd. XII, S. 1276) mit 450 ccm Alkohol und 50 ccm gelbem Schwefelammonium 24 Stdn. stehen und erwärmt dann 3 Stdn. auf 70—75° (Heim, B. 21, 590). Braune, kantharidenglänzende Nadeln (aus verd. alkoh. Lösung), ziegelrote Prismen (aus konz. alkoh. Lösung). Die braune Form geht bei 150° in die rote über. F: 195°. Ziemlich leicht löslich in Alkohol und Benzol, sehr leicht in Äther, Chloroform, Eisessig und Aceton, unlöslich in Ligroin. Färbt Seide goldgelb.

und 4-Nitro-2-amino-diphenylamin beim Erwärmen in alkoh. Lösung (Kehrmann, Natcheff, B. 31, 2427). — Hellgelbe Nadeln (aus viel Alkohol). Schmilzt unscharf gegen 200°. Unlöslich in Wasser. Nicht basisch. — Löst sich in konz. Schwefelsäure mit dunkelroter Farbe und geht in dieser Lösung innerhalb 24 Stunden in das Sulfat des 6-Nitro-2.3-diphenyl-chinoxalinhydroxyphenylats-(1) (Syst. No. 3492) über.

 N^1 -Phenyl- N^2 -formyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-formamino-diphenylamin $C_{12}H_{11}O_2N_3 = C_6H_5 \cdot NH \cdot C_6H_3(NO_2) \cdot NH \cdot CHO$. B. Durch Behandeln von 4-Nitro-2-amino-diphenylamin mit wasserfreier Ameisensäure bei gewöhnlicher Temperatur (v. Walther, Kessler, J. pr. [2] 74, 203). — Goldgelbe Nadeln (aus Alkohol). F: 182°.

N¹-Phenyl-N³-acetyl-4-nitro-phenylendiamin-(L2), 4-Nitro-2-acetamino-diphenylamin $C_{14}H_{12}O_2N_3=C_4H_5\cdot NH\cdot C_4H_2(NO_2)\cdot NH\cdot CO\cdot CH_2$. B. Aus 4-Nitro-2-amino-diphenylamin und Essigsäureanhydrid (NIETZKI, ALMENRÄDER, B. 28, 2971; ZINOKE, A. 313, 262). — Gelbe Nadeln. F: 163—164° (N., A.), 164° (v. WALTHER, KESSLER, J. pr. [2] 69, 41; 74, 192), 173—174° (Z.). Ziemlich löslich in Alkohol, Eisessig und heißem Benzol (Z.). Löslich in konz. Schwefelsäure mit tief violetter Farbe (v. W., K.). Wird durch Behandlung mit verd. Salzsäure in der Wärme in 1-Phenyl-5-nitro-2-methyl-benzimidazol (Syst. No. 3474) übergeführt (v. W., K.).

N¹- β -Naphthyl-N³-acetyl-4-nitro-phenylendiamin-(1.2) $C_{13}H_{15}O_3N_3 = C_{16}H_7\cdot NH \cdot C_4H_5(NO_2)\cdot NH \cdot CO \cdot CH_2$. B. Beim Erwärmen von 1 g N¹- β -Naphthyl-4-nitro-phenylendiamin-(1.2) (S. 30) mit 15 g Essigsäureanhydrid (Heim, B. 21, 591). — Orangerote Nadeln (aus siedendem Alkohol). F: 200° (Zers.). Leicht löslich in heißem Alkohol, in Chloroform, Aceton und Eisessig, schwerer in Benzol, unlöslich in Ligroin. — Verliert beim Schmelzen sowie bei längerem Erhitzen auf 170° Wasser und bildet 1- β -Naphthyl-5-nitro-2-methylbenzimidazol (Syst. No. 3474).

N.N'-Diacetyl-4-nitro-phenylendiamin-(1.2) $C_{10}H_{11}O_4N_5 = O_2N \cdot C_6H_3(NH \cdot CO \cdot CH_3)_1$.

B. Aus 4-Nitro-phenylendiamin-(1.2) und Essigsäureanhydrid (Ladenburg, B. 17, 150).

— Nadeln (aus Eisessig). F: 227° 1). Fast unlöslich in kaltem Alkohol. — Beim Erhitzen mit Schwefel und Benzidin entsteht ein gelber Schwefelfarbstoff (Akt.-Ges. f. Anilinf., D. R. P. 147403; C. 1904 I, 234).

N¹-Phenyl-N²-benzoyl-4-nitro-phenylendiamin-(1.2), 4-Nitro-2-benzamino-diphenylamin $C_{19}H_{15}O_3N_3=C_6H_6\cdot NH\cdot C_6H_8(NO_2)\cdot NH\cdot CO\cdot C_6H_6$. B. Aus 5 g 4-Nitro-2-amino-diphenylamin (S. 29), gelöst in 100 ccm Benzol, und 5 g Benzoylchlorid in der Kälte (MUTTELET, Bl. [3] 17, 866). Aus 4-Nitro-2-amino-diphenylamin und Benzoesäure-anhydrid in alkoh. Lösung (v. Walther, Kessler, J. pr. [2] 74, 243). — Gelbe Nadeln (aus Alkohol). F: 201—202° (M.), 202° (v. W., K.). Sehr schwer löslich in Benzol (M.). Löslich in konz. Schwefelsäure mit violetter Farbe (v. W., K.). — Liefert durch Erhitzen mit konz. Salzsäure auf 150° salzsaures 5-Nitro-1.2-diphenyl-benzimidazol (Syst. No. 3487) (v. W., K.).

N¹-o-Tolyl-N³-benzoyl-4-nitro-phenylendiamin-(1.2), 4′-Nitro-2′-benzamino-2-methyl-diphenylamin $C_{20}H_{17}O_3N_3=CH_3\cdot C_6H_4\cdot NH\cdot C_6H_2(NO_3)\cdot NH\cdot CO\cdot C_6H_5$. B. Aus 4′-Nitro-2′-amino-2-methyl-diphenylamin (8. 30) und Benzoylchlorid in Benzol (MUTTELET, Bl. [3] 17, 867). — Goldgelbe Nadeln (aus Alkohol). F: 164—165°.

 N^1 -p-Tolyl- N^2 -bensoyl-4-nitro-phenylendiamin-(1.2), 4'-Nitro-2'-bensamino-4-methyl-diphenylamin $C_{20}H_{17}O_2N_3=CH_3\cdot C_0H_4\cdot NH\cdot C_0H_3(NO_2)\cdot NH\cdot CO\cdot C_0H_5$. B. Aus 4'-Nitro-2'-amino-4-methyl-diphenylamin (8. 30) und Benzoylchlorid in Benzol (M., Bl. [3] 17, 866). — Gelbe Nadeln (aus Alkohol). F: 210—211°. Kaum löslich in Benzol, löslich in warmem Alkohol.

N¹- β -Naphthyl-N³-bensoyl-4-nitro-phenylendiamin-(1.2) C₂₅H₁₇O₅N₅ = C₁₀H₇·NH·C₀-H₂(NO₅)·NH·CO·C₆H₅. B. Aus N¹- β -Naphthyl-4-nitro-phenylendiamin-(1.2) (8.30) und Bensoylehlorid in Benzol (M., Bl. [3] 17, 867). — Orangegelbe Nadeln. F: 217—218°. Kaum löslich in Alkohol, Bensol, Ligroin und Chloroform.

N.N'-Dibensoyl-4-nitro-phenylendiamin-(1.2) $C_{20}H_{12}O_4N_3 = O_2N \cdot C_6H_2(NH \cdot CO \cdot C_6H_2)_3$. Zur Konstitution vgl. O. Fincher, Hess, B. 36, 3970. — B. Beim Schütteln von 5-Nitro-benzimidazol (Syst. No. 3473) mit Benzoylchlorid und Natronlauge (Bamberger, Berlé, A. 273, 351). — Nadeln (aus Alkohol). F: 235—236°; leicht löslich in Alkohol und Chloroform, kaum in Äther und Ligroin (Ba., Be.).

[4-Nitro-2-amino-phenyl]-urethan $C_0H_{11}O_4N_3 = H_2N \cdot C_0H_3(NO_2) \cdot NH \cdot CO_2 \cdot C_2H_3$. B. Beim Lösen von [2.4-Dinitro-phenyl]-urethan (Bd. XII, S. 755) in heißer dünner Schwefel-ammoniumlösung (Hager, B. 17, 2630). — Orangerote Nadeln oder Prismen (aus Alkohol). F: 162°. Leicht löslich in Alkohol. — Zerfällt beim Erhitzen über den Schmelspunkt oder beim

¹⁾ In der nach dem Literatur-Schlußtermin der 4. Auflage dieses Handbuches [1. I. 1910] erschienenen Arbeit von Phillips (Soc. 1928, 175) wird der Schmelspunkt zu 2556 angegeben.

Erwärmen mit verd. Säuren in Alkohol und 5-Nitro-benzimidazolon-(2) O₃N·C₆H₃<NH>CO (Syst. No. 3567).

N-[5-Nitro-2-anilino-phenyl]-glycin $C_{14}H_{13}O_4N_3=C_6H_5\cdot NH\cdot C_6H_3(NO_2)\cdot NH\cdot CH_2\cdot CO_2H$. B. Durch Einw. von Formaldehyd und KCN auf 4-Nitro-2-amino-diphenylamin in wäßrig-alkoholischer Lösung auf dem Wasserbade (Reissert, Goll, B. 38, 94). — Wird aus der Lösung in Soda durch Salzsäure als ziemlich hygroskopischer Niederschlag gefällt. F: 96°. Leicht löslich in Eisessig, Alkohol, schwer in Äther, Benzol und Benzin. — Wird beim Erhitzen teilweise anhydrisiert. Wird in alkoh. Lösung durch konz. Schwefelsäure in 1-Phenyl-6-nitro-2-oxo-chinoxalintetrahydrid (Syst. No. 3567) übergeführt.

 $\textbf{4.4'-Dinitro-2.2'-diamino-N-methyl-diphenylamin} \quad C_{13}H_{13}O_{4}N_{5} = H_{2}N \cdot C_{6}H_{3}(NO_{2}) \cdot C_{13}H_{13}O_{4}N_{5} = H_{2}N \cdot C_{13}H_{13}O_{13} \cdot C_{13}H_{13}$ N(CH₃)·C₆H₃(NO₂)·NH₂. B. Durch Einleiten von H₂S in die erwärmte Suspension von 2.4.2'.4'-Tetranitro-N-methyl-diphenylamin (Bd. XII, S. 753) in Alkohol und wäßr. Ammoniak (NIETZKI, RAILLARD, B. 31, 1462). - Wird von salpetriger Säure in die Verbindung der nebenstehenden Formel (Syst. No. 3803) übergeführt.

N.N'-Dimethyl-4-chlor-x-nitro-phenylendiamin-(1.2) $C_8H_{10}O_2N_8Cl = O_9N \cdot C_8H_{2}Cl(NH \cdot CH_3)_9$. B. Man führt 5-Chlor-benzimidazol (Syst. No. 3473) durch Nitrieren in das bei 180—181° schmelzende 5-Chlor-x-nitro-benzimidazol über, behandelt dieses mit Methyljodid, stellt aus dem so gebildeten N-Methyl-5-chlor-x-nitro-benzimidszol-N'-jod-Methyljodid, stellt aus dem so geblueten in Brounds 200 \cdot C₆H₂Cl \cdot N(CH₃) CH · OH methylat durch Erwärmen mit wäßr. Kalilauge die Pseudobase O₂N·C₆H₂Cl \cdot N(CH₃) CH·OH dar und kocht diese ¹/₂ Stde. mit alkoh. Kalilauge (O. FISCHER, LIMMER, J. pr. [2] 74, 64).

— Rote Prismen (aus Wasser). F: 220°. Leicht löslich in heißem Alkohol, löslich in heißem Wasser. — Liefert beim Erhitzen mit konz. Ameisensäure wieder die Verbindung $O_2N \cdot C_0H_2Cl < \frac{N(CH_3)}{N(CH_3)} > CH \cdot OH_0$

N.N' - Diacetyl - 4 - chlor - x - nitro - phenylendiamin - (1.2) $C_{10}H_{10}O_4N_3Cl = O_2N$ C₆H₂Cl(NH·CO·CH₃)₂. B. Durch Behandeln von N.N'-Diacetyl-4-chlor-phenylendiamin-(1.2) mit roter rauchender Salpetersäure (O. F., L., J. pr. [2] 74, 61). — Schwachgelbe Nadeln (aus Alkohol). F: 245° (Zers.). Leicht löslich in Eisessig und heißem Alkohol, sonst schwer löslich. Färbt sich mit konz. Alkali tiefrot. — Liefert durch Erhitzen mit konz. Salzsäure 5-Chlor-x-nitro-2-methyl-benzimidazol (Syst. No. 3474).

N.N'-Dibenzoyl-4-chlor-x-nitro-phenylendiamin-(1.2) $C_{20}H_{14}O_4N_3Cl=O_3N\cdot C_6H_2Cl(NH\cdot CO\cdot C_6H_5)_2$. B. Durch Eintragen von N.N'-Dibenzoyl-4-chlor-phenylendiamin-(1.2) in rote rauchende Salpetersäure (O. F., L., J. pr. [2] 74, 62). — Nadeln (aus verd. Alkohol). F: 209—210°. Löslich in konz. Salzsäure und Schwefelsäure. Liefert mit konz. Kalilauge ein rotes, unbeständiges Kaliumsalz.

3.5-Dinitro-1.2-diamino-benzol, 3.5-Dinitro-phenylendiamin-(1.2) $C_6H_6O_4N_4=$ $H_2N \cdot C_0H_2(NO_2)_2 \cdot NH_2$. B. Entsteht neben 5-Nitro-1.2.3-triamino-benzol (Syst. No. 1800) (NIETZKI, НаGENBACH, B. 30, 543) beim Behandeln von Pikramid (Bd. XII, S. 763) mit wäßr. (NILTZKI, HAGENBACH, B. 30, 643) beim Behandein von Pikramid (Bd. XII, S. 763) mit waßr. Schwefelammonium (Norton, Elliot, B. 11, 327; vgl. CLEMM, J. pr. [2] 1, 158; Ni., Dietschy, B. 34, 58 1). Aus dem 2-Brom-3.5-dinitro-anilin (Bd. XII, S. 762) mit alkoh. Ammoniak im Einschlußrohr bei 150° (Körner, Contard), R. A. L. [5] 17 I, 479). — Rote Nadeln (aus Alkohol). F: 215° (Ni., Ha.; K., Co.), 210—211° (No., E.). Fast unlöslich in kaltem Wasser, wenig löslich in heißem Wasser, ziemlich in Eisessig, sehr leicht in Alkohol (No., E.). Zersetzt sich beim Kochen mit alkoh. Kalilauge unter Ammoniakentwicklung (No., E.). — $C_6H_6O_4N_4 + HCl$. Gelbe Nadeln. Wird durch Wasser in HCl und die freie Base gesnalten (No. E.) gespalten (No., E.).

N.N'-Diacetylderivat $C_{10}H_{10}O_6N_4=(O_6N)_2C_9H_2(NH\cdot CO\cdot CH_3)_2$. B. Aus 3.5-Dinitro-phenylendiamin-(1.2) und Acetylchlorid (Norton, Elliot, B. 11, 328). — Gelbe Nadeln (aus Alkohol). F: 245—246° (No., E.). Sehr leicht löslich in Alkohol und Essigester (No., E.). Wird von kochender Kalilauge nicht angegriffen; mit alkoh. Ammoniak entsteht bei 130° 3.5-Dinitro-phenylendiamin-(1.2) (No., E.). Beim Kochen mit verd. Schwefelsäure entsteht 4.6-Dinitro-2-methyl-benzimidazol (Syst. No. 3474) (Ni., Ha.).

¹⁾ Das von Nietzki, Dietschy benutzte, für 2.4.6-Trinitro-phenylhydroxylamin gehaltene Ausgangsmaterial ist von Borsche, B. 56 [1923], 1939, als Pikramid erkannt worden.

- 1.3 Diamino benzol, Phenylendiamin (1.3), m Phenylendiamin $C_0H_0N_0 = H_0N \cdot C_0H_1 \cdot NH_0$ Bildung.
- B. Aus m-Dinitro-benzol (Bd. V, S. 258) durch Reduktion mit Eisen und Essignäure (A. W. HOFMANN, Proc. Royal Soc. London 11, 521; 12, 639; C. r. 58, 893; 56, 992; J. 1861, 512; 1863, 421), mit Zinn und Salzsäure (GERDEMANN, Z. 1865, 51; vgl. KEKULÉ, Z. 1866, 698), mit Kupfer und Salzsaure (Borneninger & Söhne, D. R. P. 127815; Frdl. 6, 73), mit hydroschwefligsaurem Natrium Na₂S₂O₄ in Wasser in Gegenwart von Na₂PO₄ (SEYEWETZ, NOEL, Bl. [4] 3, 498), ferner durch elektrolytische Reduktion in wäßrig-alkoholischer Salzsäure entweder unter Anwendung von Zinnkathoden oder von indifferenten Kathoden bei Anwesenheit eines Zinnsalzes (Bon. & Söhne, D. R. P. 116942; Frdl. 6, 67; C. 1901 I, 150). Bei der Reduktion von 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) mit hydroschwefligsaurem Natrium Na, S₂O₄ in Wasser in Gegenwart von Na, PO₄ bei 80—85°, neben wenig 4 oder 6-chlor-3-amino-phenylsulfamidsaurem Natrium (S. 54) (SEY., No., Bl. [4] 3, 499). Bei der Reduktion von 4-Brom-1.3-dinitro-benzol (ZINCKE, SINTENIS, B. 5, 792) oder von 2.4.6-Tribrom-1.3-dinitro-benzol (Jackson, Calvert, Am. 18, 476) mit Zinn und Salzsaure. Aus 2.4-Dinitro-benzoesaure (Bd. IX, S. 411) (Wurster, B. 7, 149; Griess, B. 7, 1225) oder aus 2.6-Dinitro-benzoesāure (GRIESS, B. 7, 1226) durch Behandeln mit Zinn und Salzsāure. Aus 2.4-Dinitro-benzol-sulfonsāure-(1) (Bd. XI, S. 78) mit Zinn und Salzsāure (Blanksma, R. 24, 322). Aus 3-Nitro-anilin durch Reduktion mit Eisen und Essigsäure (A. W. Hor.), mit Zinnehlorür und Salzsäure (Goldschmidt, Ingebrechtsen, Ph. Ch. 48, 435, 447), durch elektrolytische Reduktion in Kochsalzlösung unter Verwendung von Kupferkathoden und unter Zusatz von Kupferpulver (Bob. & Söhne, D. R. P. 130742; Frdl. 6, 72; C. 1902 I, 960; vgl. Elbs, Brand, Z. El. Ch. 8, 788). Beim Destillieren von 3.5-Diamino-benzoesäure (Syst. No. 1905) mit Baryt (Wurster, Ambühl, B. 7, 214). Aus Resorcin (Bd. VI, S. 796) durch Erhitzen mit Ammoniumsulfit und wäßr. Ammoniak auf 125—150° (Bad. Anilinu. Sodaf., D. R. P. 117471; Frdl. 6, 190; C. 1901 I, 350) oder mit 4 Tln. Calciumchlorid-Ammoniak auf 280-300° (SEY., Bl. [3] 3, 810; C. r. 109, 814). Aus Isophthalsäure-diazid (Bd. IX, S. 837) durch Erwärmen mit absol. Alkohol und Erhitzen des entstandenen m-Phenylendiurethans (S. 49) mit konz. Salzsäure im Druckrohr auf 120° (Davidis, J. pr. [2] 54, 85). In geringer Menge beim Erhitzen des Kaliumsalzes der m-Benzoldisulfonsäure (Bd. XI, S. 199) mit Natriumamid (Jackson, Wing, Am. 9, 77).

Darstellung.

Zur Darstellung des m-Phenylendiamins im kleinen reduziert man m-Dinitro-benzol mit Zinn und Salzsäure, fällt das Zinn mit Schwefelwasserstoff aus (Gerdemann, Z. 1865, 51), übersättigt die Lösung des salzsauren Salzes mit Kaliumcarbonat, schüttelt mit Äther aus und reinigt die Base durch fraktioniertes Destillieren (ZINCKE, SINTENIS, B. 5, 792). Zur Gewinnung von freiem m-Phenylendiamin aus seinem salzsauren Salz s. auch R. MEYER, J. MAIER, A. 327, 28.

Technisch wird salzsaures m-Phenylendiamin durch Reduktion von m-Dinitro-benzol mit Eisen und Salzsaure gewonnen (vgl. Schultz, Die Chemie des Steinkohlenteers, 4. Aufl.,

Bd. I [Braunschweig 1926], S. 198).

Physikalische Eigenschaften.

Hemimorphe, rhombische Krystalle, die manchmal Krystallwasser enthalten (LEHMANN, Hemimorphe, rhombische Krystalle, die manchmal Krystallwasser enthalten (LEHMANN, Z. Kr. 6, 586; J. 1882, 369). F: 61—62° (Zincke, Sintenis, B. 5, 792), 63° (A. W. Hopmann, Proc. Royal Soc. London 11, 522; 12, 641), 63—64° (Wuester, B. 7, 150). Kp: 276° bis 277° (korr.) (Zi., Si.), 287° (korr.) (A. W. Hop.); Kp., 282—284° (korr.) (Perein, Soc. 69, 1214). D., 1,10696; D., 1,1421; D., 1,1389; D., 1,1387; D., 1,1283; D., 1,1257; D., 1,1250; D., 1,1240 (Per., Soc. 69, 1214, 1232). Sehr leicht löslich in Wasser (A. W. Hop.; Le.) und Alkohol, weniger in Äther (A. W. Hop.). Rotiert auf fettfreiem Wasser (Gattermann, B. 18, 1484). n., 1,62558; n., 1,63390; n., 1,67617 (Per., Soc. 69, 1232). Molekularrefraktion und dispersion: Per., Soc. 69, 1232. Magnetisches Drehungsvermögen: Per., Soc. 69, 1109, 1245. Die Dämpfe des m-Phenylendiamins zeigen unter dem Einfluß von Teslaströmen hai atmosphärischem Druck violette Luminescenz (Kauffenn), Ph. Ch. 26, 26, 724; R. 33. bei atmosphärischem Druck violette Luminescenz (KAUFFMANN, Ph. Ch. 26, 724; B. 38, 1730). Die Lösungen des m-Phenylendiamins reagioren stark alkalisch (A. W. Hop.). Wärmetönung bei der Neutralisation mit Salzsaure: Vignon, Bl. [3] 2, 675. Zur Hydrolyse des Hydrochlorids vgl. VELEY, Soc. 98, 2133.

Chemisches Verhalten.

Einwirkung von Elektrizität. Einwirkung der dunklen elektrischen Entladung auf m-Phenylendiamin in Gegenwart von Stickstoff: BERTHELOT, C. r. 126, 784. Einw. von Teslaströmen s. oben.

Einwirkung anorganischer Reagenzien. m-Phenylendiamin wird in alkal. Lösung von Ozon burgunderrot, vom Sauerstoff der Luft fast gar nicht, von Hydroperoxyd nicht gefärbt (Erlwein, Weyl, B. 31, 3158). Beim Erwärmen einer konzentrierten wäßrigen Lösung von m-Phenylendiamin mit überschüssiger Natriumperoxydlösung entsteht etwas 3-Nitro-anilin (O. Fischer, Trost, B. 26, 3084). m-Phenylendiamin reduziert ammoniakalische Silbernitratlösung bei gelindem Erwärmen unter Spiegelbildung (MORGAN, MICKLETHWAIT, Journ. Soc. Chem. Ind. 21, 1374). Beim Einleiten von bromhaltiger Luft in eine wäßr. Lösung des m-Phenylendiamins oder eines seiner Salze entsteht 2.4.6-Tribrom-phenylendiamin-(1.3) (S. 56) (JACKSON, CALVERT, Am. 18, 470). Bei der Einw. einer Lösung von 4 At.-Gew. Jod in heißem Alkohol auf 1 Mol.-Gew. salzsaures m-Phenylendiamin in Wasser in Gegenwart von Natriumacetat entsteht 4.6-Dijod-phenylendiamin-(1.3) (S. 56) (MORGAN, WOOTTON, Soc. 87, 938). Uber Produkte, welche durch Erhitzen des m-Phenylendiamins mit Schwefel entstehen, vgl. Kalle & Co., D.R.P. 86096; Frdl. 4, 1055; Clayton Aniline Co., D.R.P. 120504; Frdl. 6, 89; C. 1901 I, 1128. Überführung der aus m-Phenylendiamin durch Schwefelung erhaltenen Produkte mittels schwefliger Säure in "Thiosulfonsäuren" R·S·SO₃H: Clayton Aniline Co. Beim Einleiten von trocknem Schwefeldioxyd in eine äther. Lösung von m-Phenylendiamin entsteht die Verbindung $C_0H_4(NH_2)_2 + SO_2$ (?) (S. 38) (MICHAELIS, A. 274, 260). Einw. wäßr. Disulfitlösung auf m-Phenylendiamin: Bad. Anilin- u. Sodaf., D. R. P. 126136; Frdl. 6, 190; C. 1901 II, 1138. Beim Hinzufügen von Thionylchlorid zu einer Lösung von m-Phenylendiamin in wasserfreiem Benzol oder beim Erhitzen von salzsaurem m-Phenylendiamin mit Thionylchlorid in Benzol am Rückflußkühler wird N.N'-Dithionyl-mphenylendiamin $C_0H_4(N:SO)_2$ (S. 52) gebildet (MI., A. 274, 259, 260). Trägt man 1 Tl. salzsaures m-Phenylendiamin in 5 Tle. rauchende Schwefelsäure ein und erhitzt nach Entfernung des Chlorwasserstoffs mehrere Tage im geschlossenen Rohr auf 170°, so entsteht Phenylendiamin-(1.3)-sulfonsaure-(4) (Syst. No. 1923) (Post, Hardtung, A. 205, 107). Erhitzt man m-Phenylendiamin mit so viel rauchender Schwefelsäure auf 70-130°, daß auf 1 Mol. Gew. der Base mindestens 2 Mol. Gew. SO₃ kommen, so erhält man Phenylendiamin-(1.3)-disulfonsäure-(4.6) (Syst. No. 1924) (Bad. Anilin- u. Sodaf., D. R. P. 78834; Frill. 3, 43; Akt.-Ges. f. Anilinf., D. R. P. 202016; Frdl. 9, 309; C. 1908 II, 1223). Bei der Einw. von salpetriger Säure auf m-Phenylendiamin in Gegenwart von Salzsäure entsteht der im Handel unter dem Namen Phenylenbraun, Vesuvin, Bismarckbraun, Manchesterbraun vorkommende Farbstoff (S. 39) (vgl. Hollemann, Z. 1865, 557; Caro, Griess, Z. 1867, 278; Täuber, Walder, B. 30, 2111, 2897); der Farbstoff ist stets ein Gemisch der Salze verschiedener Verbindungen; in der aus dem Farbstoff erhältlichen Rohbase bildet Benzol-1.3-bis-[azo-m-phenylendiamin] $C_6H_4[N:N\cdot C_6H_3(NH_2)_2]_2$ (Syst. No. 2183) den Hauptbestandteil, daneben finden sich wechselnde Mengen von 2.4.3'-Triamino-azobenzol (Syst. No. 2183), eine benzolunlösliche Farbbase und säureunlösliche, teerartige Produkte (Täv., Wal., B. 33, 2898). Wendet man auf 3 Mol.-Gew. m-Phenylendiamin 4 Mol.-Gew. HCl und 2 Mol.-Gew. Natriumnitrit an, so findet sich im Reaktionsprodukt ziemlich reichlich Triaminoazobenzol; geht man von zweifach salzsauren Salzen aus, so verläuft die Farbstoffbildung stets unter Stickstoffentwicklung und es entsteht kein Triaminoazobenzol (Täu., Wal., B. 30, 2112; 33, 2898; vgl. auch Möhlau, L. Meyer, B. 30, 2205). Über die Geschwindigkeit der Bildung von Bismarckbraun aus salzsaurem m-Phenylendiamin C₆H₈N₂ + 2HCl und Natriumnitrit vgl. Veley, Soc. 95, 1189. Die Bildung von Bismarckbraun aus m-Phenylendiamin und salpetriger Säure kann zur Erkennung und quantitativen Bestimmung sehr geringer Mengen von salpetriger Säure dienen (GRIESS, B. 11, 625; TIEMANN, PREUSSE, B. 11, 628). Bei raschem Eingießen einer Lösung von 2 Mol.-Gew. Nitrit in eine Lösung von 3 Mol.-Gew. m-Phenylendiamin und 4 Mol.-Gew. Salzsäure bildet sich neben Bismarckbraun 4-Nitroso-phenylendiamin-(1.3) (bezw. desmotrope Formen) (Syst. No. 1874) (Täu., Wal., B. 33, 2116; D. R. P. 123375; C. 1901 II, 670; vgl. Bertels, B. 37, 2276). Bei der Einw. eines großen Überschusses an salpetriger Säure in Gegenwart von sehr viel Salzsäure (D: 1,15) erhält man m-Phenylenbis-diazoniumchlorid ClN₂·C₆H₄·N₂Cl (Syst. No. 2197) (GRIESS, B. 19, 317; vgl. HANTZSCH, BORGHAUS, B. 30, 93). Versetzt man salzsaures m-Phenylendiamin mit salzsaurer Kupferchlorürlösung und dann bei Siedetemperatur mit Natriumnitrit, so entsteht m-Dichlor-benzol (SANDMEYER, B. 17, 2652). Salpetersaures m-Phenylendiamin liefert in alkoh. Lösung in Gegenwart von AlCl, in der Wärme in geringer Menge N.N'-Dinitro-m-phenylendiamin (?) (Syst. No. 2220) (Gabutti, C. 1902 I, 716). Beim Erhitzen von m-Phenylendiamin mit 10% iger Salzsäure im Druckrohr auf 180% entsteht Resorcin, neben etwas Diresorcin und Spuren von 3-Amino-phenol (J. MEYER, B. 30, 2569).

Beispiele für die Einwirkung von Halogen- und Nitroderivaten der Kohlen-wasserstoffe. Durch erschöpfende Behandlung von m-Phenylendiamin mit Methyljodid und Silberoxyd wird Hexamethyl-m-phenylen-bis-ammoniumjodid (S. 41) erhalten (A. W. Hofmann, Proc. Royal Soc. London 12, 642; C. r. 56, 994; J. 1863, 422). Beim Erhitzen von m-Phenylendiamin mit o-Chlor-nitrobenzol (Bd. V, S. 241) in Gegenwart von wasserfreiem Natriumacetat im Kohlendioxydstrom auf 170—180° bildet sich 2'-Nitro-3-amino-diphenyl-

amin (S. 41) (Kehrmann, Steiner, B. 34, 3090). Bei gelindem Erwärmen eines mit etwas Alkohol versetzten Gemenges gleicher Teile m-Phenylendiamin und 4-Chlor-1.2-dinitrobenzol (Bd. V, S. 262) bildet sich 5'-Chlor-2'-nitro-3-amino-diphenylamin (S. 41) (Lauben-Heimer, B. 11, 1158). Beim Erhitzen einer alkoh. Lösung von m-Phenylendiamin mit 4-Chlor-1.3-dinitro-benzol entsteht 2'.4'-Dinitro-3-amino-diphenylamin (S. 41) (Leymann, B. 15, 1237). Beim Kochen von m-Phenylendiamin mit 4 Mol.-Gew. Benzylchlorid unter Zusatz von Natronlauge wird N.N.N'.N'-Tetrabenzyl-m-phenylendiamin (S. 43) erhalten (Meldola, Coste, Soc. 55, 602). Beim Erhitzen alkoh. Lösungen von 1 Mol.-Gew. salzsaurem m-Phenylendiamin und 2 Mol.-Gew. o-Nitro-benzylchlorid in Gegenwart von 4 Mol.-Gew. Natriumscotat auf dem Wasserbade entsteht N.N'-Bis-[2-nitro-benzyl]-m-phenylendiamin (S. 43) (Leilmann, Mayer, B. 25, 3583).

Bei mehrstündigem Erhitzen von m-Phenylendiamin mit einem Überschuß von Chloroform unter Druck auf 190—200° entsteht als Hauptprodukt ein brauner Farbstoff (Weinschenk, Ch. Z. 27, 13). Kocht man m-Phenylendiamin mit einem bedeutenden Überschuß an Chloroform in Gegenwart von konzentrierter, mit 10—20°/₀ Alkohol versetzter Kalilauge 2—5 Stdn., so gewinnt man m-Phenylendiisocyanid (S. 44) (Kaufler, B. 34, 1578, 1579).

Beispiele für die Einwirkung von Oxy-Verbindungen. Bei 8-stdg. Erhitzen von 10 g m-Phenylendiamin mit 20 g Methylalkohol und 16 g Salzsäure im geschlossenen Rohr auf 180—190° entsteht N.N.N'.N'-Tetramethyl-m-phenylendiamin (S. 40) (Wurster, Morley, B. 12, 1814; vgl. van Romburgh, R. 7, 1). Durch Erhitzen von 4 Mol.-Gew. m-Phenylendiamin mit 3 Mol.-Gew. α-Naphthol im Kohlendioxydstrom zunächst auf 270° bis 280°, dann auf 300° erhält man als Hauptprodukt N.α-Naphthyl-m-phenylendiamin (S. 43), während beim Erhitzen von 1 Mol.-Gew. m-Phenylendiamin mit 4 Mol.-Gew. α-Naphthol im Kohlendioxydstrom erst auf 270°, schließlich auf 290° als Hauptprodukt N.N'-Di-α-naphthyl-m-phenylendiamin (S. 43) entsteht (Merz, Strasser, J. pr. [2] 60, 545, 550). Mit 1 Mol.-Gew. β-Naphthol entsteht bei 250—260° hauptsächlich N.-β-Naphthyl-m-phenylendiamin (S. 43), neben N.N'-Di-β-naphthyl-m-phenylendiamin (Garss, Elsarsser, B. 26, 976; vgl. Ruhemann, B. 14, 2655), mit 2 Mol.-Gew. β-Naphthol bei ca. 300° vorwiegend N.N'-Di-β-naphthyl-m-phenylendiamin (Dahl. & Co., D. R. P. 74782; Frdl. 3, 518; Gaess, Els.; O. Fischer, Schütte, B. 26, 3086). Über einen Schwefelfarbstoff, der beim Erhitzen von m-Phenylendiamin mit Hydrochinon und Schwefel entsteht, a. Deutsche Vidal-Farbstoff-Akt.-Ges., D. R. P. 114802; Frdl. 6, 723; C. 1900 II, 932. Über farbstoffartige Produkte, welche beim Erhitzen von salzsaurem m-Phenylendiamin mit Resorcin oder Glycerin entstehen, vgl. Paul., Ch. Z. 28, 703. Beim Erhitzen von m-Phenylendiamin mit Glycerin, m-Dinitro-benzol und konz. Schwefelsäure (Knueppel, B. 29, 707) entsteht m-Phen-

anthrolin (s. nebenstehende Formel) (Syst. No. 3487).

Beispiele für die Einwirkung von Oxo-Verbindungen und von Oxy-oxo-Verbindungen. m-Phenylendiamin liefert beim Erhitzen mit \(\beta\text{-Naphthol}\) und Formaldehyd bezw. Polyoxymethylen das Amino-benzoacridin der Formel I (Syst. No. 3401) (ULLMANN, BÜHLER, Zeitschrift für Farben- und Textil-Industrie 4, 522; C. 1906 I, 58). Beim Erhitzen von salzsaurem m-Phenylendiamin mit Paraldehyd und konz. Salzsäure auf 150—160° bildet sich das Dimethyl-m-phenanthrolin der Formel II (Syst. No. 3487) (v. MILLER, NIEDERLÄNDER, B. 24, 1740). Aus salzsaurem m-Phenylendiamin und Onanthol

I.
$$CH_a$$
 II. C_bH_{11} C_bH_{12} C_bH_{13} C_bH_{14}

(Bd. I, S. 695) in Alkohol entsteht beim Erwärmen auf dem Wasserbade als Hauptprodukt

das Di-n-amyl-dihexyl-m-phenanthrolin der Formel III (Syst. No. 3487) (v. Miller, Gerdenssen, B. 24, 1731). m-Phenylendiamin reagiert mit Benzaldehyd unter Bildung von N.N'-Dibenzal-m-phenylendiamin (S. 44) (R. Mever, Gross, B. 32, 2366). Reaktion mit Benzaldehyd und Brenztraubensäure s. S. 37. Versetzt man eine Lösung von 1 Mol.-Gew. m-Phenylendiamin in 2 Mol.-Gew. Acetylaceton (Bd. I, S. 777) mit einigen Tropfen Eisessig, so erhält man N.N'-Bis-[methyl-acetonyl-methylen]-m-phenylendiamin (S. 44) (Marokwald, A. 274, 368). m-Phenylendiamin kondensiert sich mit der äquimolekularen Menge Dimethyldihydroresorein (Bd. VII, S. 559) zu 1.1-Dimethyl-cyclohexandion-(3.5)-mono-[3-amino-anil] (S. 44), das mit 1 Mol.-Gew. Dimethyldihydroresorein unter Bildung von m-Phenylen-bis-[dimethyl-dihydroresorein-monoimid] (S. 44) reagiert (Haas, Soc. 89, 389, 392). Bei der Einw. von 2.3-Dibrom-naphthochinon-(1.4) (Bd. VII, S. 731) auf m-Phenylendiamin in Gegenwart von alkoh. Natriumäthylatlösung entsteht 3-Brom-2-[3-amino-anilino-]-naphthochinon-(1.4) (Syst. No. 1874) (Lindenbaum, B. 34, 1052).

Erhitzt man m-Phenylendiamin in Gegenwart von etwas salzsaurem m-Phenylendiamin mit Benzoin (Bd. VIII, S. 167) auf 180°, so entsteht Tetraphenyl-benzodipyrrol (Syst. No.

3501) (JAPP, MELDRUM, Soc. 75, 1044).

Beispiele für die Einwirkung von Carbonsauren, Oxycarbonsauren, Oxocarbonsauren und ihren Derivaten. Beim Kochen von m-Phenylendiamin mit etwas mehr als 2 Mol.-Gew. Ameisensäure in verdünnter wäßriger Lösung am Rückflußkühler entsteht N.N'-Diformyl-m-phenylendiamin (S. 45) (Tobias, B. 15, 2447). Beim Kochen von 1 Mol.-Gew. m-Phenylendiamin mit 2 Mol.-Gew. Eisessig ent teht N-Acetyl-m-phenylendiamin (S. 45) (Wallach, Schulze, B. 15, 3020), bei längerem Kochen mit 2¹/₂, Mol.-Gew. Eisessig wird N.N'-Diacetyl-m-phenylendiamin (S. 46) erhalten (Barbaglia, B. 7, 1257). N.N'-Diacetyl-m-phenylendiamin entsteht auch beim Erhitzen von m-Phenylendiamin mit 2 Mol.-Gew. Acetamid (Kelbe, B. 16, 1200). Beim Erwärmen von m-Phenylendiamin mit Chloressigsäureäthylester entsteht m-Phenylendiglycin-diathylester (S. 51) (ZIMMERMANN, B. 15, 518). Beim Schmelzen von Benzoesäure mit überschüssigem m-Phenylendiamin (H. Schiff. Ostrogovich, A. 293, 385) oder beim Erwärmen von salzsaurem m-Phenylendiamin mit Benzoylchlorid (Ruhemann, B. 14, 2652) wird N.N'-Dibenzoyl-m-phenylendiamin (S. 47) gebildet. Bei allmählichem Eintragen einer Lösung von m-Phenylendiamin in eine siedende Oxalsäurelösung entsteht [3-Amino-phenyl]-oxamidsäure (8. 47) (Klusemann, B. 7, 1262). Bei 1—2-stdg. Kochen von 1 Tl. m-Phenylendiamin mit 10 Tln. Oxalsäurediäthylester erhält man m-Phenylen-bis-[oxamidsäure-äthylester] (S. 47) (R. MEYER, SEELIGER, B. 29, 2642, 2645 Anm. 1). Beim Schmelzen eines Gemisches von m-Phenylendiamin und Bernsteinsäure bei etwa 200° (BIEDERMANN, B. 9, 1669) oder beim Erhitzen äquimolekularer Mengen von salzsaurem m-Phenylendiamin, Bernsteinsäure und Soda auf 150-180° (R. MEY., J. MAIER, A. 327, 18, 24) bildet sich m-Phenylen-Lis-succinimid C₆H₄ N CO·CH₂ (Syst. No. 3201). Aus salzsaurem m-Phenylendiamin und Bernsteinsäure erhielt Griess (B. 18, 2410 Anm. 1) unter nicht näher angegebenen Bedingungen N-[3-Amino-Phenylendiamin mit überschüßen. phenyl]-succinamidsäure (S. 48). Beim Erwärmen von m-Phenylendiamin mit überschüssigem Bernsteinsäureanhydrid (Syst. No. 2475) in absolut-alkoholischer Lösung entsteht m-Phenylen-bis-succinamidsäure C₆H₄(NH·CO·CH₂·CH₂·CO₂H)₂ (S. 48); arbeitet man dagegen mit Bernsteinsäureanhydrid in Essigesterlösung bei 40°, so erhält man N-[3-Aminophenyl]-succinamidsäure (R. Mey., J. Mai., A. 327, 27, 31, 36, 38). Zur Reaktion zwischen m-Phenylendiamin und Bernsteinsäurediäthylester vgl. R. Meyer, v. Lutzau, A. 347, 31). Beim Kochen von m-Phenylendiamin mit einem großen Überschuß von Sebacinsäureester entsteht neben beträchtlichen Mengen eines gelben Pulvers m-Phenylen-bis-[sebacinamidsäure-äthylester] (S. 48) (R. MEYER, J. MAIER, A. 347, 44). m-Phenylendiamin liefert mit der äquimolekularen Menge Pyrocinchonsäureanhydrid (Syst. No. 2476)

N-[3-Amino-phenyl]-pyrocinchonsäureimid $H_2N\cdot C_6H_4\cdot N \stackrel{CO\cdot C\cdot CH_3}{\subset O\cdot C\cdot CH_3}$ (Syst. No. 3202); mit 2 Mol.-Gew. Pyrocinchonsäureanhydrid erhält man m-Phenylen-bis-pyrocinchonsäureimid (Syst. No. 3202) (Rossi, G. 34 II, 446, 447, 449). Beim Erhitzen äquimolekularer Mengen m-Phenylendiamin und Phthalsäureanhydrid (Syst. No. 2479) in absolut-alkoholischer Lösung in Gegenwart von wasserfreiem Natriumacetat entstehen N-[3-Amino-phenyl]-phthalimid (Syst. No. 3218) und m-Phenylen-bis-phthalimid (Syst. No. 3218) (R. Mex.,

J. Mai., A. 327, 42; vgl. BIEDERMANN, B. 10, 1164).

m-Phenylendiamin reagiert mit Chlorameisensäureäthylester (Bd. III, S. 10) unter Bildung von m-Phenylendiurethan (S. 49) (Bender, Dissertation [Berlin 1880], S. 32). Beim Sättigen einer Lösung von m-Phenylendiamin in Chloroform mit Phosgen (Bd. III, S. 13) (Michler, Zimmermann, B. 14, 2177; vgl. R. Meyer, A. 327, 6) oder bei der Einw. von Phosgen auf m-Phenylendiamin in wäßr. Lösung in Gegenwart von Natriumacetat (Kalle & Co., D. R. P. 146914; Frdl. 7, 548; C. 1903 II, 1486) entsteht polymerer (?) m-Phenylenharnstoff (C,HeON,)x (S. 39). Dieser wird auch beim Erhitzen äquimolekularer Mengen von salzsaurem m-Phenylendiamin, Urethan (Bd. III, S. 22) und geschmolzenem Natriumacetat im Ölbade auf 150—160° erhalten (Manuelli, Recchi, R. A. L. [5] 9 II, 270). Salzsaures m-Phenylendiamin liefert beim Digerieren mit Kaliumcyanat (Bd. III, S. 34) m-Phenylendiharnstoff (C,H₄(NH·CO·NH₂)₂ (S. 49) (Warder, B. 8, 1180). Bei der Einw. von Bromcyan (Bd. III, S. 39) auf m-Phenylendiamin in Gegenwart von Kaliumdicarbonat und Wasser bei gewöhnlicher Temperatur entsteht m-Phenylen-bis-cyanamid (S. 50) (Pierron, A. ch. [8] 15, 182). m-Phenylendiamin liefert .mit Thiophosgen in Chloroformlösung m-Phenylendisenföl (S. 50) (Billeter, Steiner, B. 20, 230). Beim Erhitzen äquimolekularer Mengen von salzsaurem m-Phenylendiamin mit Rhodankalium wird [3-Amino-phenyl]-thioharnstoff (S. 49), neben m-Phenylendiamin mit Rhodankalium wird [Frerichs, Hupka, Ar. 241, 164). Beim Erhitzen von rhodanwasserstoffsaurem m-Phenylendiamin (erhalten aus salzsaurem m-Phenylendiamin mit 2 Mol.-Gew. Ammoniumrhodanid in wäßr. Lösung) auf 120°

bis 130° entsteht m-Phenylen-bis-thioharnstoff (LELLMANN, A. 221, 11; vgl. auch LELL. A. 228, 248). Bei 6-stdg. Erhitzen von 5 g m-Phenylendiamin mit 3,52 g Schwefelkohlenstoff und etwas Alkohol im geschlossenen Gefäß auf 150° bildet sich polymerer (?) m-Phenylenthioharnstoff (S. 39) ($C_7H_6N_2S$)_x (Gucci, G. 17, 524). Über Produkte, die beim Erhitzen von m-Phenylendiamin mit Schwefelkohlenstoff und Alkohol im offenen Gefäße erhalten wurden, vgl. Gucci, B. 17, 2656; G. 15, 206; 16, 185. Versetzt man eine alkoholische Lösung von äquimolekularen Mengen m-Phenylendiamin und Schwefelkohlenstoff mit überschüssigem wäßrigem Ammoniak, so erhält man das Ammoniumsalz der [3-Amino-phenyl]-dithiocarbamidsäure (S. 49) (Losanitsch, B. 40, 2973).

Beim Erwärmen von m-Phenylendiamin mit Brenztraubensäure und Benzaldehyd in Alkohol im Wasserbade entsteht N.N'-Bis-[α -carboxy-cinnamal]-m-phenylendiamin (S. 51) (DOEBNER, FERBER, A. 281, 16; vgl. Bodforss, A. 455 [1927], 49, 58). m-Phenylendiamin liefert beim Erhitzen mit der äquimolekularen Menge Acetessigester (Bd. III, S. 632) auf 130° 2-Oxy-7(?)-amino-4-methyl-chinolin (Syst. No. 3423) (Besthorn, Byvanck, B. 31, 796, 798); mit der äquimolekularen Menge a-Äthyl-acetessigester entsteht bei mehrstündigem Erhitzen im Einschmelzrohr 2-Oxy-7(?)-amino-4-methyl-3-äthyl-chinolin (Syst. No. 3423) (Byv., B. 31, 2143, 2145). Bei längerem Stehen von 1 Mol.-Gew. m-Phenylendiamin mit 2 Mol.-Gew. a-Phenacyl-acetessigester (Bd. X, S. 820) in Eisessig bildet sich m-Phenylen- C_0H_4 $N \subset C(CH_3) : C \cdot CO_3 \cdot C_2H_5$

 $C(C_6H_5):CH$ (Syst. No. 3259) (Paal, Schneider, B. 19, 3161). Bei der Einw. der äquimolekularen Menge Acetondicarbonsaureester (Bd. III, S. 791) auf m-Phenylendiamin im geschlossenen Rohr bei 100° entsteht 2-Oxy-7(?)-amino-chinolin-essigsäure-(4)-äthylester (Syst. No. 3441) (Best-HORN, GARBEN, B. 33, 3448, 3450).

bis-[2-methyl-5-phenyl-pyrrol-carbonsaure-(3)-athylester]

Einwirkung von Benzolsulfochlorid. Beim Schütteln von 1 Mol.-Gew. m-Phenylendiamin mit 11/2 Mol. Gew. Benzolsulfochlorid und überschüssiger Natronlauge entsteht N.N'-Dibenzolsulfonyl-m-phenylendiamin (S. 52) (HINSBERG, STRUPLER, A. 287, 229).

Beispiele für die Einwirkung von Aminen, Amino-oxy-Verbindungen, Amino-oxo-Verbindungen, Diazo-Verbindungen sowie ihren Derivaten. Beim Erhitzen von salzsaurem m-Phenylendiamin mit Anilin auf 260-270° entsteht N.N'-Diphenyl-m-phenylendiamin (S. 42) (BAYER & Co., D. R. P. 80977; Frdl. 4, 83). m-Phenylendiamin liefert mit salzsaurem p-Nitroso-dimethylanilin (Bd. XII, S. 677) 2-Amino-7-dimethylamino-phenazin (Syst. No. 3745) (Bad. Anilin- u. Sodaf., D. R. P. 147990; Frdl. 7, 555). Beim Erhitzen von m-Phenylendiamin mit Ameisensäure-o-toluidid (Bd. XII, S. 791) und Salmiak auf 210—215° entsteht ein brauner Acridinfarbstoff (GEIGY & Co., D. R. P. 149410; Frdl. 7, 316; C. 1904 I, 847). Durch Kondensation von m-Phenylendiamin mit der äquimolekularen Menge Formaldehyd und Behandlung des Produktes mit p-Toluidin und salzsaurem p-Toluidin läßt sich ein gelber Acridinfarbstoff herstellen (Terrisse, Darier, D. R. P. 107517; Frdl. 5, 381; C. 1900 I, 1054; vgl. Te., Ch. Z. 23, 86). m-Phenylendiamin reagiert mit [4-Amino-benzyl]-anilin (Syst. No. 1778) oder [4-Amino-benzyl]-p-toluidin (Syst. No. 1778) in Gegenwart von Salzsäure unter Bildung von 2.4.4'-Triamino-diphenylmethan (Syst. No. 1804) (Höchster Farbw., D. R. P. 107718; Frdl. 5, 82; C. 1900 I, 1110). Darstellung eines braunen Schwefelfarbstoffes durch Verschmelzen von m-Phenylendiamin mit m-Toluylendiamin (Syst. No. 1778) und Schwefel und Nachbehandeln mit Schwefelnatrium: Akt.-Ges. f. Anilinf., D. R. P. 170475; Frdl. 8, 819; C. 1906 I, 1856. Herstellung von schwarzen Schwefelfarbstoffen durch Erhitzen von m-Phenylendiamin mit Schwefel und p-Amino-phenol: Deutsche Vidal-Farbstoff-Akt.-Ges., D. R. P. 114802; Frdl. 6, 723; C. 1900 II, 932; durch Erhitzen mit Schwefel, Schwefelalkalien und 2'.4'-Dinitro-4-oxy-diphenylamin (Syst. No. 1846): Cassella & Co., D. R. P. 135738; Frdl. 6, 693; C. 1902 II, 1287. Überführung von m-Phenylendiamin durch gemeinsame Oxydation mit gechlorten p-Amino-phenolen und Behandeln der dabei entstandenen Azinfarbstoffe mit Natriumsulfid und Schwefel bezw. Natriumsulfid allein in Schwefelfarbstoffe: Höchster Farbw., D. R. P. 181327, 187868; Frdl. 8, 792, 793; C. 1907 I, 1716; II, 1667). Beim Erhitzen von 1 Mol.-Gew. m-Phenylendiamin mit 2 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol (Michlers Hydrol; Syst. No. 1859) in alkoh. Lösung auf dem Wasserbade entsteht m-Phenylen-dileukauramin [(CH₃)₂N·C₆H₄]₂CH· NH·C₆H₄·NH·CH[C₆H₄·N(CH₃)₂]₂ (Syst. No. 1804) (MÖHLAU, HEINZE, B. 35, 370). Bei der Kondensation äquimolekularer Mengen von Michlers Hydrol mit m-Phenylendiamin in essigsaurer oder verdünnt mineralsaurer Lösung entsteht das — nicht näher beschriebene — 2.4-Diamino-4'.4"-bis-dimethylamino-triphenylmethan (BAYER & Co., D. R. P. 82634; Frdl. 4, 207). Durch Erhitzen von 4.4'-Bis-dimethylamino-benzophenon (MICHLERS Keton; Syst. No. 1873) mit der äquimolekularen Menge salzsauren m-Phenylendiamins auf 130-140° erhält man 4.4'- Bis - dimethylamino - benzophenon - [3 - amino - anil] (Aminophenyl-auramin, Syst. No. 1873) (Bad. Anilin- u. Sodaf., D. R. P. 82989; Frdl. 4, 173). Dieselbe Verbindung bildet sich beim Erhitzen von Auraminbase (Syst. No. 1873) mit m-Phenylendiamin auf 140° (Grandmougin, Lang, B. 42, 3632).

m-Phenylendiamin liefert mit einer Lösung von Benzoldiazoniumnitrat salpetersaures 2.4-Diamino-azobenzol (Chrysoidin, Syst. No. 2183) (A. W. Hofmann, B. 10, 217). Durch Hinzufügen einer Lösung von 1 Mol.-Gew. m-Phenylendiamin und überschüssiger Soda zu 2 Mol.-Gew. diazotiertem N-Acetyl-m-phenylendiamin und Erhitzen des Produktes mit 2º/oiger Salzsäure erhält man 4.6-Bis-[3-amino-benzolazo]-phenylendiamin-(1.3) (Syst. No. 2183) (ETERMANN, B. 31, 190). Bei der Einw. von p-Diazobenzolsulfonsäure (Syst. No. 2202) auf m-Phenylendiamin bildet sich 2.4-Diamino-azobenzol-sulfonsäure-(4') (Syst. No. 2183) (GRIESS, B. 15, 2196).

Beispiele für die Einwirkung von heterocyclischen Verbindungen. Einwirkung von Bernsteinsäureanhydrid s. S. 36, von Pyrocinchonsäureanhydrid s. S. 36, von Phthalsäureanhydrid s. S. 36. Einw. von Paraldehyd s. S. 35. m-Phenylendiamin reagiert mit Violursäure OC NH·CO C:N·OH (Syst. No. 3627) unter Bildung der Verbindung der nebenstehenden Formel (Syst. No. 4179); analog verläuft die Reaktion mit Dimethylviolursäure (Piloty, Finckh, A. 333, 44).

Biochemisches Verhalten.

m-Phenylendiamin wirkt auf den tierischen Organismus giftig: DUBOIS, VIGNON, C. r. 107, 533. Weiteres über das physiologische Verhalten des m-Phenylendiamins s. in Fränkel, Die Arzneimittelsynthese, 6. Aufl. [Berlin 1927], S. 35, 89, 90, 133, 772.

Verwendung.

m-Phenylendiamin findet Verwendung als Zwischenprodukt der Farbstoffabrikation. Es dient als Komponente von Azofarbstoffen, z. B. von Chrysoidin (Syst. No. 2183) (Schultz, Tab. No. 33), Metachrombraun (Schultz, Tab. No. 89), Säurealizarinbraun (Schultz, Tab. No. 154), Bismarckbraun (S. 39) (Schultz, Tab. No. 283), Dianilschwarz (Schultz, Tab. No. 491). Weiteres über Azofarbstoffe aus m-Phenylendiamin s. Schultz, Tab. No. 190, 208, 209, 285, 329, 435, 436, 437, 448, 449, 454, 457, 462, 469, 476, 479, 485, 486, 487, 488, 490, 492; vgl. ferner Oehler, D. R. P. 51662; Frdl. 2, 369; D. R. P. 58657, 65515, 70147; Frdl. 3, 738, 739, 741; D. R. P. 121438; Frdl. 6, 1011; C. 1901 II, 76; Höchster Farbw., D. R. P. 84292, 84658; Frdl. 4, 914, 917; D. R. P. 113931; Frdl. 5, 577; C. 1900 II, 751; Cassella & Co., D. R. P. 112218; Frdl. 6, 991; C. 1900 II, 653; Kalle & Co., D. R. P. 135015; Frdl. 6, 870; C. 1902 II, 1230. — Zur Verwendung von m-Phenylendiamin für die Herstellung von Triphenylmethanfarbstoffen vgl. Bayer & Co., D. R. P. 82634; Frdl. 4, 207; Bad. Anilin- u. Sodaf., D. R. P. 85199; Frdl. 4, 1043. — m-Phenylendiamin dient ferner zur Darstellung des Acridinfarbstoffes Rheonin (Syst. No. 3415) (Schultz, Tab. No. 667). Zur Verwendung für Acridinfarbstoffe vgl. ferner: Oehler, D. R. P. 43714; Frdl. 2, 104; Terrisser, Darier, D. R. P. 107517; Frdl. 5, 381; Geigy & Co., D. R. P. 149410; Frdl. 7, 316. Zur Verwendung von m-Phenylendiamin für die Herstellung von Azinfarbstoffen s. Schultz, Tab. No. 669. — Verwendung zur Darstellung von Schwefelfarbstoffen s. S. 37.

Verwendung von m-Phenylendiamin in der Photographie bei Herstellung von Platinton-

bädern: Valenta, C. 1899 I, 761.

Salzsaures m-Phenylendiamin findet unter dem Namen "Lentin" therapeutische Verwendung als Antidiarrhoicum (UNVERRICHT, Münch. med. Wochschr. 1904, 1225; vgl. Pharm. Ztg. 50, 190; C. 1905 I, 1180).

Analytisches.

Erwärmt man eine wäßr. Lösung von salzsaurem m-Phenylendiamin mit einigen Tropfen einer durch Essigsäure angesäuerten 1% igen Lösung von Acetaldehyd in 50% igem Alkohol und läßt wieder erkalten, so tritt Gelbfärbung mit grüner Fluorescenz auf; salzsaures p-Phenylendiamin gibt bei gleicher Behandlung eine Orangerotfärbung ohne jede Fluorescenz (Cuntasse, C. 1899 I, 1297). Unterscheidung des m-Phenylendiamins von o- und p-Phenylendiamin s. auch S. 14.

Additionelle Verbindung des m-Phenylendiamins.

Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{19}H_{11}O_6N_5=C_6H_6N_9+C_6H_3O_6N_3$. Braune Nadeln (Noelting, Sommerhoff, B. 39, 77).

Salze des m-Phenylendiamins.

 $C_8H_8N_2+2$ HCl. Nadeln; leicht löslich in Wasser (A. W. Hofmann, *Proc. Royal Soc. London* 11, 522; *C. r.* 53, 893; *J.* 1861, 512). Magnetisches Drehungsvermögen: Perkin, *Soc.* 69, 1222. — $C_6H_8N_2+SO_2(?)$. *B.* Beim Einleiten von trocknem Schwefeldioxyd in eine äther. Lösung von m-Phenylendiamin (Michaelis, *A.* 274, 260). Krystallpulver.

Leicht löslich in Wasser und Alkohol, schwer in Äther. Äußerst unbeständig. — $C_6H_8N_2$ + H₂SO₄. Krystalle. In heißem Wasser leicht löslich, weniger in kaltem (A. W. Hor., Č. r. 53, 893; J. 1861, 512). $-C_6H_8N_2 + 2 HNO_3$. Farblose, am Licht sich verändernde Krystalle; leicht löslich in Wasser und Alkohol (GABUTTI, C. 1902 I, 716). $-C_6H_8N_2 + 2 H_3PO_3$. Krystalle. Löst sich unverändert in kochendem Wasser (RAIKOW, SCHTARBANOW, Ch. Z. 25, 262).

Salz der p-Toluolthiosulfonsäure (Bd. XI, S. 113) C₆H₈N₂ + 2C₇H₈O₂S₂. Blättchen

TROEGER, LINDE, Ar. 239, 140). — Salz der Naphthalin-thiosulfonsäure-(2) (Bd. XI, S. 190) C₆H₈N₂ + 2C₇H₈O₅O₅. Blattenen (Bd. Al, S. 190) C₆H₈N₂ + 2C₁₀H₈O₅O₅. Krystalle (Troe., Lin., Ar. 239, 140). C₆H₈N₂ + 2 HCl + 2 SnCl₂ (bei 100°). B. Aus m-Dinitro-benzol mit Zinn und Salzsäure (Gerdemann, Z. 1865, 51). Nadeln. — C₆H₈N₂ + 2 HCl + SnCl₄. B. Aus 4-Brom-1.3-dinitro-benzol mit Zinn und Salzsäure (Zinoke, Sintenis, B. 5, 792). Gebliche Prismen. — $C_6H_8N_2+2HCl+PdCl_2$. Kupferfarbene Blättchen (aus verd. Salzsäure) (Gutbier, Kreil, Janssen, Z.a.Ch. 47, 29). — $C_6H_8N_2+2HCl+PtCl_4$. Gelbe Nadeln (A. W. Hofmann, C.r. 53, 893; J. 1861, 512; Wurster, B. 7, 151).

Umwandlungsprodukte von ungewisser Konstitution aus m-Phenylendiamin.

Phenylenbraun, Vesuvin, Bismarckbraun, Manchesterbraun. Bildung und Zusammensetzung s. im Artikel m-Phenylendiamin, S. 34. — Absorptionsspektrum: Hartley, Soc. 51, 180. Tinktorielles Verhalten der einzelnen Bestandteile des Bismarckbrauns: Täuber, Walder, B. 33, 2899. Uber Verwendung des Bismarckbrauns als Komponente 364, 365; D. R. P. 84079; Frdl. 4, 925; KUPFERBERG, D. R. P. 46375; Frdl. 2, 370; Ges. f. chem. Ind., D. R. P. 76127; Frdl. 3, 746; CASSELLA & Co., D. R. P. 128049; C. 1902 I, 446. — Über Sulfonsäuren des Bismarckbrauns vgl. OEHLEB, D. R. P. 51662, 58657, 83015; Frdl. 2, 369; 3, 738; 4, 991.

Verbindung (C₇H₆ON₂)_x (polymerer (?) m-Phenylenharnstoff). Zur Zusammensetzung vgl. R. Meyer, A. 327, 7; Hinsberg, Kessler, A. 340, 111, 112; Wilson, Adams, Olympia (Carlotte and Carlotte and Am. Soc. 45 [1923], 531. — B. Beim Sättigen einer Lösung von m-Phenylendiamin in Chloroform mit Phosgen (Bd. III, S. 13) (MICHLER, ZIMMERMANN, B. 14, 2177). Aus m-Phenylendiamin, Natriumacetat und Phosgen in Wasser (Kalle & Co., D. R. P. 146914; Frdl. 7, 548; C. 1903 II, 1486). Beim Erhitzen äquimolekularer Mengen von salzsaurem m-Phenylendiamin, Urethan (Bd. III, S. 22) und geschmolzenem Natriumacetat auf 150—160° (MANUELLI, RECCHI, R. A. L. [5] 9 II, 270). Neben [3-Acetamino-phenyl]-harnstoff bei der Einw. von Kaliumcyanat auf salzsaures N-Acetyl-m-phenylendiamin in ziemlich konzentrierter wäßriger Lösung (H. Schiff, Ostbogovich, A. 293, 383). Beim Erhitzen von N-Phenyl-N'-[3-aminophenyl]-harnstoff (S. 48) (Lellmann, Würthner, A. 228, 222) oder von N-Methyl-N-phenyl-N'[3-amino-phenyl]-harnstoff (Lellmann, Benz, B. 24, 2113). Beim Kochen des Kaliumsalzes des Isophthaldihydroxamsäuredibenzoats (Bd. IX, S. 836) mit Wasser (Lossen, A. 281, 228). Bei längerem Kochen von Isophthalsäure-diazid (Bd. IX, S. 837) mit Wasser (DAVIDIS, J. pr. [2] 54, 86). — Weißes amorphes (MI., ZI.) grauweißes krystallinisches (KA. & Co.) Pulver. Bräunt sich bei 300° (MI., ZI.), 320° (MA., RE.), ohne zu schmelzen; schmilzt noch nicht bei 360° (LELL., BENZ). Fast ganz unlöslich in den gewöhnlichen Lösungsmitteln (MI., ZI.), löslich nur in heißem Eisessig (H. SOH., O.). Unlöslich in verd. Säuren und in verd. Alkalien (KA. & Co.). — Beim Erhitzen mit rauchender Salzsäure im geschlossenen Rohr auf 160° (R. MEYER, v. LUTZAU, A. 327, 6; vgl. MI., ZI.; Lo.) sowie beim Erhitzen mit alkoh. Ammoniak im geschlossenen Rohr auf 120° (R. MEY., v. Lu.) tritt Zerlegung in CO. und m-Phenylendiamin ein. Einw. von PCls: Ma., RE.

Verbindung (C.H.N.S)x (polymerer (?) m-Phenylenthioharnstoff). Zur Zusammensetzung vgl.: R. Meyer, A. 327, 7; Hinsberg, Kessler, A. 340, 111, 112; Wilson, Adams, Am. Soc. 45 [1923], 531. — B. Bei 6-stdg. Erhitzen von 5 g m-Phenylendiamin mit 3,52 g CS₂ und etwas Alkohol im geschlossenen Rohr auf 150° (Gucci, G. 17, 524). — Gelbliche Prismen. Bräunt sich gegen 300°; unlöslich in Wasser, Ather, Benzol, CS, und

CHCl₂, wenig löslich in Alkohol (G.).

Funktionelle Derivate des m-Phenylendiamins.

N-Methyl-m-phenylendiamin $C_1H_{10}N_2 = H_2N \cdot C_0H_4 \cdot NH \cdot CH_3$. Be der Reduktion von N-Methyl-3-nitro-anilin (Bd. XII, S. 700) mit Zinn oder Zinnehlortir und Salzsäure (NOMLTING, STRICKER, B. 19, 546, 549). — Flüssig. Kp: 265—270° (N., St.); Kp10: 160—163° (O. Fischer, A. 286, 173).

N.N'-Dimethyl-m-phenylendiamin $C_0H_{12}N_2=C_0H_4(NH\cdot CH_2)_2$. B. Man stellt aus N-Methyl-m-phenylendiamin durch Kochen mit konz. Ameisensäure das Formylderivat dar, behandelt dieses, in Methylalkohol gelöst, mit Natriummethylat und Methyljodid und

zerlegt das Dimethylformylderivat durch Kochen mit verd. Schwefelsäure (O. FISCHER, A. 286, 173). — Öl. Kp₇₃₈: 275—280°; Kp₁₀: 165—170°.

N.N-Dimethyl-m-phenylendiamin, m-Amino-dimethylanilin $C_9H_{12}N_2 = H_2N \cdot C_6H_4 \cdot N(CH_3)_2$. B. Durch Behandeln von N.N-Dimethyl-3-nitro-anilin (Bd. XII, S. 701) mit Eisenfeile und Salzsäure (Groll, B. 19, 200) oder mit Zinn und Salzsäure (Staedel, Bauer, B. 19, 1945). — Darst. Man mischt 100 g N.N-Dimethyl-3-nitro-anilin, 100 g Zinn und 400 ccm konz. Salzsäure, gibt, nachdem eine klare Lösung entstanden ist, 400 ccm konz. Salzsäure hinzu und läßt 24 Stdn. stehen (Jaubert, Bl. [3] 21, 20). — Erstart nicht bei —20° (St., B.). Kp₇₄₀: 268—270° (Gr.); Kp: 258° (St., B.). D²⁵: 0,995 (Gr.). — Liefert beim Erhitzen mit Glycerin, Zinkchlorid und Oxalsäure auf ca. 150° oder mit Ameisensäure (D: 1,2) und Zinkchlorid auf 150—160° 3.6-Bis-dimethylamino-acridin (Acridinorange, Syst. No. 3412) (Leonhardt & Co., D. R. P. 67126; Frdl. 3, 297). Gibt beim Erhitzen mit Phthalsäureanhydrid, Zinkchlorid und Salzsäure im Druckrohr auf 170—175° ein Rhodamin (Majert, D. R. P. 61867; Frdl. 3, 187). — $C_8H_{12}N_3+2$ HCl. Prismen (St., B.). Schmilzt unter starker Färbung bei 218° (J.).

N.N.N'-Trimethyl-m-phenylendiamin $C_9H_{14}N_2 = CH_3 \cdot NH \cdot C_9H_4 \cdot N(CH_3)_2$. B. Bei 5-stdg. Kochen von N.N.N'-Trimethyl-N'-acetyl-m-phenylendiamin (S. 46) mit 1 Mol.-Gew. alkoh. Kali (O. Fischer, A. 286, 167). — Flüssig. Kp: 270° (O. Fl.), 280° (Jaubert, Bl. [3] 21, 23). Leicht löslich in Alkohol, Benzol (J.). — Liefert, in $10^9/_0$ iger Schwefelsäure gelöst, beim Versetzen mit Natriumnitritlösung N'-Nitrosò-N.N.N'-trimethyl-m-phenylendiamin (S. 53), N.N'-Dinitroso-N.N'-dimethyl-m-phenylendiamin (S. 53), N¹-N³-N³-Trimethyl-4-nitroso-m-phenylendiamin-(1.3) [bezw. 2-Dimethylamino-benzochinon-(1.4)-methylimid-(4)-oxim-(1), Syst. No. 1874] und ein Dimethyl-4-nitroso-m-phenylendiamin-(1.3) (Syst. No. 1874) (O. Fl.).

N.N.N'.N'-Tetramethyl-m-phenylendiamin C₁₀H₁₆N₂ = C₆H₄[N(CH₃)₂]₃. B. Beim Erhitzen von m-Phenylendiamin mit Salzsäure und Methylalkohol im geschlossenen Rohr auf 180—190° (Wurster, Morley, B. 12, 1814). — Darst. Man erhitzt 30 g bromwasserstoffsaures m-Phenylendiamin mit 31 ccm Methylalkohol 6—10 Stdn. im geschlossenen Rohr auf 140—145°, versetzt nach Entweichen des Methylbromids das Reaktionsprodukt mit 12,5 ccm Bromwasserstoffsäure (D: 1,49) und 15,5 ccm Methylalkohol und erhitzt nochmals 10 Stdn. auf die gleiche Temperatur; nach neuem Öffnen des Rohres und Entweichen des Methylbromids wird die Masse 5 Stdn. mit 33 ccm Ammoniak (D: 0,91) bei 180° behandelt (Pinnow, Wegner, B. 30, 3110; vgl. Pinnow, B. 32, 1404). — Flüssig. Erstarrt im Kältegemisch und schmilzt dann bei —2° (van Romburgh, R. 7, 3). Kp₇₄₈: 266,7° (korr.) (Pi., We.); Kp₇₄₈: 266—267° (korr.) (van R.). D^{15,8}: 0,9849; D^{28,8}: 0,9661; D¹⁴: 0,9624 (Pi., We.); This o,992 (van R.). — Gibt bei Einw. von Salpetersäure N'-Nitroso-N.N.N'-trimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (Wu., Mo.). Gießt man eine Lösung von Tetramethyl-m-phenylendiamin in konz. Schwefelsäure langsam in Salpetersäure und kocht das Gemisch, so entsteht N.N'-Dimethyl-N.N'.2.4.6-pentanitro-phenylendiamin-(1.3) (van R.). Liefert beim mehrstündigen Erhitzen mit 10°/oiger Salzsäure im geschlossenen Rohr auf 180° bis zu 30°/o Resorcin und Spuren von 3-Dimethylamino-phenol (Syst. No. 1840) (J. Meyer, B. 30, 2569). Gibt beim Erhitzen mit Phthalsäureanhydrid in Gegenwart von Salzsäure und ZnCl₂ auf 170—175° unter Druck ein Rhodamin (Majert, D. R. P. 61867; Frdl. 3, 187). — C₁₀H₁₆N₂ + 2 HCl + 2 H₂O. Zerfließliche Krystalle (Wu., Mo.).

 $C_6H_4O_4N_8$. Dunkelgranatrote Nadeln. F: 58° (van R.). Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{10}H_{10}O_6N_5=C_{10}H_{10}N_3+C_6H_3O_6N_3$. Dunkle Nadeln. F: 121° (van R.).

N.N-Dimethyl-m-phenylendiamin-chlormethylat, Trimethyl-[3-amino-phenyl]-ammoniumchlorid $C_9H_{15}N_1Cl = H_2N \cdot C_6H_4 \cdot N(CH_2)_3Cl$. B. Bei der Reduktion von Trimethyl-[3-nitro-phenyl]-ammoniumchlorid (Bd. XII, S. 701) mit Zink und Salzsäure (Höchster Farbw., D. R. P. 87997; Frdl. 4, 68). Durch Erwärmen von Trimethyl-[3-nitro-phenyl]-ammoniumchlorid mit Disulfitlösung auf ca. 80° und Kochen des ausgeschiedenen Produktes mit Salzsäure (H. F., D. R. P. 87997). Beim Kochen von Trimethyl-[3-acetamino-phenyl]-ammoniumchlorid mit verd. Salzsäure oder beim Erhitzen von Trimethyl-[3-benz-amino-phenyl]-ammoniumchlorid mit konz. Salzsäure auf 100° (H. F., D. R. P. 88557; Frdl. 4, 70). Bei der Reduktion von 3.3′-Bis-dimethylamino-azobenzol-bis-chlormethylat (Syst. No. 2172) mit Zink und Salzsäure (H. F., D. R. P. 88557). — Tafeln. Sehr leicht löslich in Wasser und heißem Alkohol (H. F., D. R. P. 87997). Findet Verwendung zur Darstellung der Azofarbstoffe Janusrot (Schultz, Tab. No. 240) und Janusbraun (Schultz, Tab. No. 435). Über Verwendung zur Darstellung von Azofarbstoffen vgl. ferner Schultz, Tab. No. 60; H. F., D. R. P. 87584, 87585, 98585, 98586; Frdl. 4, 810, 811; 5, 545, 546. — Hydro-chlorid des Chlorids. Prismen. Sehr leicht löslich in Wasser (H. F., D. R. P. 87997). — Zinkchlorid-Doppelsalz. Prismen. Leicht löslich in Wasser (H. F., D. R. P. 87997).

- N.N.N'.N'-Tetramethyl-m-phenylendiamin-mono-jodmethylat, Trimethyl-[3-dimethylamino-phenyl]-ammoniumjodid $C_1H_{10}N_2I=(CH_3)_2N\cdot C_0H_4\cdot N(CH_3)_3I$. B. Aus N.N.N'.N'-Tetramethyl-m-phenylendiamin und Methyljodid (Wurster, Morley, B. 12, 1814). Krystalle mit $1H_2O$ (aus Wasser). Schmilzt bei 192° und zerfällt dabei in seine Komponenten. Leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther. Verbindet sich direkt mit Säuren (W., M.).
- N.N.N.N'.N'.N'-Hexamethyl-m-phenylen-bis-ammoniumjodid, m-Phenylen-bis-trimethylammoniumjodid, N.N.N'.N'-Tetramethyl-m-phenylendiamin-bis-jod-methylat $C_{12}H_{22}N_2I_2 = C_6H_4[N(CH_2)_3I]_2$. B. Aus m-Phenylendiamin durch erschöpfende Behandlung mit Methyljodid und Silberoxyd (A. W. Hofmann, Proc. Royal Soc. London 12, 642; C. r. 56, 994; J. 1863, 422). Blättchen.
- N-Äthyl-m-phenylendiamin $C_8H_{18}N_2=H_2N\cdot C_8H_4\cdot NH\cdot C_2H_5$. B. Bei der Reduktion von N-Äthyl-3-nitro-anilin (Bd. XII, S. 702) mit Zinn oder Zinnchlorür und Salzsäure (Noelting, Stricker, B. 19, 547). Man erhitzt [3-amino-phenyl]-oxamidsaures Natrium mit Äthylbromid und Alkohol unter Druck auf 120—150° oder mit äthylschwefelsaurem Natrium, Alkohol und Soda unter Druck auf 180° und vorseift das Reaktionsprodukt durch Kochen mit verd. Schwefelsäure (Bad. Anilin- u. Sodaf., D. R. P. 76419; Frdl. 4, 107). Flüssig. Kp: 276° (N., St.). $C_8H_{18}N_2+2HCl$ (N., St.).
- N.N'-Diäthyl-m-phenylendiamin $C_{10}H_{10}N_2 = C_6H_4(NH\cdot C_2H_5)_2$. Liefert in verdünnter essigsaurer Lösung beim Kochen mit salzsaurem p-Nitroso-dimethylanilin 2-Dimethylamino-7-äthylamino-phenazin-9-chloräthylat (Echtneutralviolett; Syst. No. 3745) (Cassella & Co., D. R. P. 59063; Frdl. 3, 396; Schultz, Tab. No. 678).
- N.N-Diäthyl-m-phenylendiamin, m-Amino-diäthylanilin $C_{10}H_{16}N_2=H_2N\cdot C_6H_4\cdot N(C_2H_5)_2$. B. Bei der Reduktion von N.N-Diäthyl-3-nitro-anilin (Bd. XII, S. 702) mit Eisen und Salzsäure (Groll, B. 19, 200) oder mit Zinn oder Zinnchlorür und Salzsäure (Noelting, Steicker, B. 19, 550). Flüssig. Kp: 276—278° (G.). $C_{10}H_{16}N_2+2$ HCl. Blättchen (N., St.).
- 2'-Nitro-3-amino-diphenylamin $C_{12}H_{11}O_2N_3=H_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NO_2$. B. Durch 6—7-stdg. Erhitzen eines Gemisches von je 25 g o-Chlor-nitrobenzol und wasserfreiem Natriumacetat in einer Kohlensäureatmosphäre auf 170—180°, unter allmählichem Zufügen von m-Phenylendiamin (Kehrmann, Steiner, B. 34, 3090). Rote Nadeln (aus Alkohol). F: 112°. Leicht löslich in Alkohol, Eisessig, Äther und Benzol, in viel Wasser mit orangegelber Farbe löslich. Sulfat. Gelbbraune Prismen oder gelbe Nadeln (aus Alkohol). Leicht löslich in siedendem Wasser und Alkohol.
- 4'-Nitro-3-amino-diphenylamin $C_{12}H_{11}O_2N_3=H_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NO_2$. B. Beim Erwärmen von 4-Nitro-3'-amino-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) mit $70^{\circ}/_{\circ}$ iger Schwefelsäure auf dem Wasserbade (Ullmann, Dahmen, B. 41, 3754). Gelbbraune, messingglänzende Blättchen (aus verd. Alkohol). F: 156°. Leicht löslich in Alkohol und Aceton mit gelber Farbe, schwer in Benzol, unlöslich in Ligroin. $C_{12}H_{11}O_2N_3+HCl$. Dunkelgelbe Nadeln mit blauem Oberflächenglanz; löslich in Wasser mit gelber Farbe.
- 5'-Chlor-2'-nitro-3-amino-diphenylamin, $C_{12}H_{10}O_2N_3Cl = H_2N\cdot C_6H_4\cdot NH\cdot C_6H_3Cl\cdot NO_2$. B. Beim gelinden Erwärmen eines mit etwas Alkohol versetzten Gemenges gleicher Teile m-Phenylendiamin und 4-Chlor-1.2-dinitro-benzol (Bd. V, S. 262) (LAUBENHEIMER, B. 11, 1158). Carminrote Nädelchen (aus Alkohol). F: 150—151°. Fast unlöslich in Wasser, sehwer löslich in kaltem Alkohol, leicht in heißem und in Äther.
- 2'.4'-Dinitro-8-amino-diphenylamin $C_{12}H_{10}O_4N_4=H_2N\cdot C_8H_4\cdot NH\cdot C_8H_3(NO_2)_2$. B. Beim Erhitzen einer alkoh. Lösung von m-Phenylendiamin mit 4-Chlor-1.3-dinitro-benzol (Leymann, B. 15, 1237). F: 172° (L.). Verwendung zur Darstellung von Azofarbstoffen: Nietzel, D. R. P. 59157; Frdl. 3, 567.
- N-Pikryl-m-phenylendiamin, 2'.4'.6'-Trinitro-3-amino-diphenylamin $C_{12}H_{9}O_{8}N_{5} = H_{8}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{2}(NO_{2})_{3}$. B. Bei 2-stdg. Kochen von Pikrylchlorid (Bd. V, S. 273) mit gleichen Mengen salzsauren m-Phenylendiamins und entwässerten Natriumacetats in alkoh. Lösung (Jaubert, B. 31, 1181). Orangerote Krystalle (aus Aceton). F: 206—207°. Kochwer löslich in Alkohol und Eisessig, leicht in Aceton. Bei der gemeinsamen Oxydation mit salzsaurem p-Phenylendiamin entsteht ein blaugrünes Indamin, das durch Erhitzen in alkoh. Lösung in ein wenig lösliches Trinitro-phenosafranin übergeht.
- **2'.4'-Dinitro-8-dimethylamino-diphenylamin** $C_{14}H_{14}O_4N_4=(CH_3)_2N\cdot C_4H_4\cdot NH\cdot C_6H_5(NO_3)_2$. B. Bei 3—4-stdg. Kochen von 21 g salzsaurem N.N-Dimethyl-m-phenylendiamin mit 20 g 4-Chlor-1.3-dinitro-benzol, 10 g geschmolzenem Natriumacetat und 200 ccm Alkohol (JAUBERT, B. 28, 511; vgl. Soc. St. Denis, D. R. P. 54157; Frdl. 2, 183). Granatrote Blättchen (aus Alkohol). F: 136—137° (J.). Gibt mit Schwefel und Schwefelalkali

einen olivgrünen Baumwollfarbstoff (BAYER & Co., D. R. P. 117066; Frdl. 6, 704; C. 1901 I, 211).

N.N-Dimethyl-N'-pikryl-m-phenylendiamin, 2'.4'.6'-Trinitro-3-dimethylamino-diphenylamin $C_{16}H_{13}O_6N_5=(CH_2)_2N\cdot C_6H_4\cdot NH\cdot C_6H_2(NO_2)_3$. B. Bei 5—6-stdg. Kochen von salzsaurem N.N-Dimethyl-m-phenylendiamin mit Pikrylchlorid und entwässertem Natriumacetat in alkoh. Lösung (Jaubert, B. 31, 1182). — Rotbraune Krystallmasse.

N.N'-Diphenyl-m-phenylendiamin $C_{15}H_{16}N_2 = C_6H_4(NH \cdot C_6H_5)_2$. B. Bei 30—40-stdg. Erhitzen von 1 Mol. Gew. Resorcin mit 4 Mol. Gew. Anilin, 3—4 Mol. Gew. Calcium-chlorid und $^{1}/_{2}$ Mol. Gew. Zinkchlorid auf 210°; man kocht das Produkt erst mit mäßig verdünnter Salzsäure, dann mit überschüssiger Natronlauge aus und krystallisiert es aus Alkohol um (Calm, B. 16, 2794). Beim Erhitzen von salzsaurem m-Phenylendiamin mit Anilin auf 260—270° (Bayeb & Co., D. R. P. 80977; Frdl. 4, 83). — Nadeln (aus Alkohol oder aus Benzol + Ligroin). F: 95° (Ca.). Leicht löslich in Ather und in heißem Benzol, shr wenig in kaltem Alkohol und warmem Ligroin, unlöslich in Wasser (Ca.). Unlöslich in Alkalien und in verd. Säuren (Ca.). Wärmetönung beim Lösen in Eisessig: Świetosławski, Ж. 41, 943. — Gibt mit überschüssiger Ameisensäure in Gegenwart von ZnCl. im geschlossenen Rohr bei 250° 3-Anilino-acridin (Syst. No. 3399) (Besthorn, Curtman, B. 24, 2042). Kondensiert sich mit salzsaurem p-Nitroso-dimethylanilin in Alkohol zu 2-Dimethylamino-7-anilino-phenazin-chlorphenylat-(9) (Indazin, Syst. No. 3745) (Durand, Huguenin & Co., D. R. P. 47549; Frdl. 2, 181; O. Fischer, Heff, A. 262, 263). Verwendung zur Darstellung schwarzfärbender Polyazofarbstoffe: Poirrier, Rosenstiehl, D. R. P. 52616; Frdl. 2, 322; Cassella & Co., D. R. P. 61202; Frdl. 3, 549. Verwendung zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw., D. R. P. 162625; C. 1905 II, 1058; Frdl. 8, 855. — $C_{18}H_{16}N_2 + 2$ HCl. Nadeln (Ca.).

N.N.N'.N'-Tetraphenyl-m-phenylendiamin $C_{30}H_{24}N_2=C_6H_4[N(C_6H_5)_2]_2$. B. Beim Erhitzen von o- oder m- oder p-Dichlor-benzol und Diphenylaminkalium (Bd. XII, S. 179), neben anderen Produkten (Haeussermann, Bauer, B. 32, 1914; H., B. 33, 939; H., B. 34, 38). — Nadeln (aus Aceton). F: 137,5—138° (H., B. 33, 939). Löslich in ca. 800 Tln. Methylalkohol von 15° (H., B. 33, 941 Anm. 1); leicht löslich in Benzol und Aceton, etwas weniger in Eisessig und kaltem Alkohol (H., B.). Die Lösung in konz. Schwefelsäure wird durch Nitrite oder Nitrate intensiv blau gefärbt (H., B.). Die Lösung in Eisessig wird durch Natriumnitrit grün; nach 24-stdg. Stehen scheidet sich aus ihr N.N.N'.N'-Tetraphenyl-x-nitrophenylendiamin-(1.3) (S. 58) aus (H., B.; H., B. 33, 939).

N.N'-Di-o-tolyl-m-phenylendiamin $C_{20}H_{20}N_3 = C_6H_4(NH\cdot C_6H_4\cdot CH_3)_2$. Verwendung zur Darstellung von Safraninfarbstoffen: DURAND, HUGUENIN & Co., D. R. P. 47549; Frdl. 2, 181; vgl. Schultz, Tab. No. 691.

N-p-Tolyl-m-phenylendiamin, 3'-Amino-4-methyl-diphenylamin $C_{13}H_{14}N_2=H_3N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot CH_3$. Verwendung zur Erzeugung von Farbstoffen auf der Faser; Höchster Farbw., D. R. P. 162625; Frdl. 8, 855; C. 1905 II, 1058.

2.6 - Dinitro - 3'- amino - 4 - methyl - diphenylamin $C_{13}H_{12}O_4N_4 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4(NO_3)_2 \cdot CH_3$. Beim Erwärmen von m-Phenylendiamin und 4-Brom-3.5-dinitrotoluol (Bd. V, S. 346) in alkoh. Lösung (Jackson, Ittner, Am. 19, 26). — Rötlichbraune Prismen (aus Benzol + Alkohol). F: 185°; sehr leicht löslich in Aceton, mäßig in kaltem Alkohol, Äther und CS_2 , unlöslich in Ligroin (J., I., Am. 19, 26). Gibt mit Natriumäthylat eine sehr unbeständige grüne Färbung (J., I., Am. 19, 199, 206).

N N'-Di-p-tolyl-m-phenylendiamin $C_{20}H_{20}N_2 = C_0H_4(NH \cdot C_0H_4 \cdot CH_3)_2$. B. Bei 9-stdg. Erhitzen von 5 g p-Dibrom-benzol mit 15 g p-Toluidin und 40 g Natronkalk im geschlossenen Rohr auf 350—360° (KYM, J. pr. [2] 51, 333). Bei 20—24-stdg. Erhitzen von 1 Tl. Resorcin mit 4 Tln. p-Toluidin und 2 Tln. eines Gemisches aus 1 Tl. ZnCl₂ und 5 Tln. CaCl₂ im geschlossenen Rohr auf 240°; man behandelt das Produkt mit warmer Salzsäure und kocht das Ungelöste wiederholt mit konz. Kalilauge (HATSCHEK, ZEGA, J. pr. [2] 33, 218, 220). — Beschreibung der Darstellung aus Resorcin, p-Toluidin und salzsaurem p-Toluidin: PAUL, Z. Ang. 10, 22. — Nadeln (aus Alkohol). F: 137° (H., Z.), 138—139° (K.). Nicht unzersetzt destillierbar (H., Z.). Schwer löslich in kaltem Alkohol, Äther, Benzol und Eisessig (H., Z.). — $C_{20}H_{20}N_2 + 2$ HCl. Krystallpulver. Wird durch Wasser leicht zersetzt (H., Z.).

N.N'-Dimethyl-N.N'-di-p-tolyl-m-phenylendiamin $C_{22}H_{24}N_2 = C_6H_4[N(CH_5)\cdot C_6H_4\cdot CH_3]_2$. B. Beim Erhitzen von N.N'-Di-p-tolyl-m-phenylendiamin mit CH₃I und festem Kali im geschlossenen Rohr auf 150° (HATSCHEK, ZEGA, J. pr. [2] 83, 223). — Flüssig. Siedet gegen 400°. Riecht nach Geranien.

N-Benzyl-m-phenylendiamin $C_{13}H_{14}N_2 = H_2N \cdot C_6H_4 \cdot NH \cdot CH_2 \cdot C_6H_5$. B. Beim Kochen von N-Benzyl-3-nitro-anilin (Bd. XII, S. 1024) in alkoh. Lösung mit Zinn und Salzsäure (Meldola, Coste, Soc. 55, 597). — Flüssig. — $C_{13}H_{14}N_2 + 2HCl$. Krystalle.

 \cdot NH \cdot C₁₀H₇

N.N'-Bis-[2-nitro-benzyl]-m-phenylendiamin $C_{20}H_{18}O_4N_4 = C_6H_4(NH \cdot CH_2 \cdot C_6H_4 \cdot NO_9)_2$. B. Man erhitzt 1 Mol.-Gew. salzsaures m-Phenylendiamin mit 2 Mol.-Gew. 2-Nitro-benzylchlorid (Bd. V, S. 327) und 4 Mol.-Gew. Natriumacetat in Alkohol auf dem Wasserbade (Lellmann, Mayer, B. 25, 3583). — Krystalle (aus Benzol). F: 134°. Leicht löslich in Eisessig, schwerer in Alkohol und Benzol.

N.N.N'.N'-Tetrabenzyl-m-phenylendiamin $C_{24}H_{32}N_3 = C_0H_4[N(CH_2 \cdot C_0H_5)_2]_2$. B. Beim Kochen von m-Phenylendiamin mit Benzylchlorid und Natronlauge (Meldola, Coste, Soc. 55, 602). — Ockerfarbenes, amorphes Pulver. F: 80—81°.

N-a-Naphthyl-m-phenylendiamin $C_{16}H_{14}N_2=H_2N\cdot C_6H_4\cdot NH\cdot C_{10}H_7$. B. Beim Erhitzen gleicher Gewichtsteile m-Phenylendiamin und a-Naphthol im CO_2 -Strome zunächst auf 270—280° und schließlich auf 300° (Merz, Strasser, J. pr. [2] 60, 546). — Prismen. F: 94,5—95°. Kp₁₂: 275—280°. Etwas löslich in heißem Wasser, leicht in heißem Akher, sehr leicht in heißem Alkohol und heißem Benzol. Die Lösung in konz. Schwefelsäure wird durch NaNO₂ erst grün, dann grau, mit KNO₃ erst gelbgrün, dann dunkelgrün, zuletzt braun. — $C_{16}H_{16}N_2+HCl$. Nadeln. Leicht löslich in heißem Alkohol; fast unlsölich in starker Salzsäure. Wird durch siedendes Wasser zersetzt. — $2C_{16}H_{14}N_2+H_2SO_4$. Blättchen.

N.N'-Di-a-naphthyl-m-phenylendiamin $C_{26}H_{20}N_3=C_6H_4(NH\cdot C_{10}H_7)_3$. B. Beim Erhitzen von m-Phenylendiamin mit überschüssigem a-Naphthol im CO_2 -Strome auf 270° und schließlich auf 290° (M., Sr., J. pr. [2] 60, 550). — Prismen. F: 137,5—138°. (Die frisch destillierte Masse krystallisiert aus Alkohol in Nadeln vom Schmelzpunkt 100° und geht beim Erhitzen etwas über den Schmelzpunkt in die höher schmelzende Form über.) Schwer löslich in heißem Alkohol und Äther. Bei 19° löslich in 19,3 Tln. Benzol zu blau fluorescierender Lösung. NaNO₂ und KNO₃ in H_2SO_4 färben ähnlich wie bei der Mono-a-naphthylverbindung (s. o.).

N-β-Naphthyl-m-phenylendiamin $C_{16}H_{14}N_2=H_2N\cdot C_6H_4\cdot NH\cdot C_{10}H_7$. B. Neben N.N'-Di-β-naphthyl-m-phenylendiamin beim 6-stdg. Erhitzen von 110 g m-Phenylendiamin mit 150 g β-Naphthol auf 250—260°; man kocht das Produkt mit verd. Natronlauge und dann mit Wasser aus; heißer Alkohol entzieht dem Rückstande fast nur das Mononaphthylderivat (Gaess, Elsaesser, B. 26, 976; vgl. Ruhemann, B. 14, 2655). — Asbestähnliche Nadeln (aus Alkohol). F: 128°; Kp₄₀: ca. 320° (G., E.). Sehr leicht löslich in Äther und CHCl₃, äußerst leicht in Aceton (G., E.). — $C_{16}H_{14}N_2+H$ Cl (bei 110°). Nädelchen. F: 210°; schwer löslich in siedendem Wasser (G., E.). — $C_{16}H_{14}N_2+2$ HCl. F: 210°; leicht löslich in Alkohol, unlöslich in Äther (G., E.). — $2C_{16}H_{14}N_2+H_3SO_4$. Täfelchen (G., E.). — Pikrat $C_{16}H_{14}N_2+C_6H_3O_7N_3$. Blättchen. F: 180° (Zers.) (G., E.).

N.N.-Dimethyl-N'- β -naphthyl-m-phenylendiamin $C_{18}H_{18}N_2=(CH_2)_2N\cdot C_0H_4\cdot NH\cdot C_{10}H_7$. B. Beim Erhitzen von N.N-Dimethyl-m-phenylendiamin mit β -Naphthol im geschlossenen Rohr auf 230° (Sandoz & Co., D. R. P. 73378; Frdl. 3, 519). — Nädelchen (aus Alkohol). F: 110°. Unlöslich in Wasser.

N-a-Naphthyl-N'- β -naphthyl-m-phenylendiamin $C_{28}H_{20}N_2 = C_0H_4(NH \cdot C_{10}H_7)_2$. B. Man kocht N-a-Naphthyl-m-phenylendiamin und β -Naphthyl bei Luftabschluß (Merz, Strasser, J. pr. [2] 60, 562). — Nädelchen (aus Gasolin-Benzol). F: 140°. Kp₆₋₇: 355° bis 358°; Kp₂₂: ca. 395°. Leicht löslich in siedendem Benzol, schwer in siedendem Akohol und Äther. 1 Tl. löst sich in 34,9 Teilen Benzol von 25° mit blauvioletter Fluorescenz. Die Lösung in konz. Schwefelsäure wird durch Natriumnitrit grün, dann grünblau gefärbt.

N.N'-Di-β-naphthyl-m-phenylendiamin C₂₆H₂₀N₂ = C₆H₄(NH·C₁₀H₇)₃. B. Neben N-β-Naphthyl-m-phenylendiamin beim Erhitzen von 108 g m-Phenylendiamin mit 320 g β-Naphthol erst rasch auf 280°, dann 5—6 Stunden bis auf 330° (Gaess, Eleaesse, B. 26, 977, 980; O. Fischer, Schütte, B. 26, 3086; Dahl & Co., D. R. P. 74782; Frdl. 8, 518).

Nadeln (aus Anilin-Benzol). F: 192° (G., E.). Siedet bei 45 mm unter partieller Zersetzung oberhalb 460° (G., E.). Fast unlöslich in Alkohol und kaltem Benzol, ziemlich leicht löslich in Aceton (G., E.). Die Lösungen fluorescieren rotblau (G., E.). — Darstellung von Sulfonsäuren aus N.N'-Di-β-naphthyl-m-phenylendiamin: Dahl & Co., D. R. P. 77227, 77522; Frdl. 3, 324; 4, 621. Benzoylehlorid erzeugt bei 120° N.N'-Di-β-naphthyl-M.N'-dibenzoyl-m-phenylendiamin (G., E.) und C₆H₅

das β-Naphthylamino-phenyl-benzoacridin der nebenstehenden Formel (Syst. No. 3401) (O. F., Sch.). Darstellung von Säurefarbstoffen der Triphenylmethan- bezw. Diphenylnaphthylmethanreihe durch Kondensation mit 4.4'-Bis-dialkyl-

thylmethanreihe durch Kondensation mit 4.4°-Bis-dialkylamino-benzophenon und Sulfurierung des Reaktionsproduktes: Höchster Farbw., D. R. P. 125577; Frdl. 6, 250; C. 1901 II, 1188. Darstellung von Farbstoffen durch Kondensation der Sulfonsäuren des N.N'-Di-β-naphthyl-m-phenylendiamins mit p-Nitroso-dimethylanilin (bezw. Aminoazokörpern), sowie durch gemeinschaftliche Oxydation mit Paradiaminen

in Gegenwart von Thiosulfat: D. & Co., D. R. P. 77227, 79815, 79858, 90275; Frdl. 3, 324; 4, 422, 467. — $C_{26}H_{20}N_2 + 2$ HCl. Schmilzt unter Rötung bei 210° (G., E.).

m-Phenylendiisocyanid, m-Phenylendicarbylamin $C_8H_4N_2=C_6H_4(N:C<)_2$. FB. Aus m-Phenylendiamin, überschüssigem Chloroform und konz. Kalilauge, der $10-20^{\circ}/_{\circ}$ Alkohol zugesetzt sind (KAUFLER, B. 34, 1579). — Widerlich riechende Nadeln, die sich innerhalb 24 Stdn. zersetzen, sich bei 75° schwärzen und bei 90—95° unter Gasentwicklung schmelzen. — Geht durch Erhitzen in Isophthalsäuredinitril (Bd. IX, S. 836) über.

N.N'-Dibenzal-m-phenylendiamin $C_{20}H_{16}N_2 = C_6H_4(N:CH\cdot C_6H_5)_2$. B. Beim Schütteln von m-Phenylendiamin mit Benzaldehyd bei Gegenwart von Wasser (R. Meyer, Gross, B. 32, 2366). — Gelbliche Nadeln (aus Äther). F: 104—105°. Unlöslich in Wasser, schwer löslich in Ligroin und Benzin, sonst leicht löslich.

N.N'-Bis-[methyl-acetonyl-methylen]-m-phenylendiamin, m-Phenylen-bis-[acetylaceton-monoimid] $C_{18}H_{20}O_2N_2=C_8H_4[N:C(CH_3)\cdot CH_2\cdot CO\cdot CH_3]_3$ bezw. desmotrope Formen. B. Man löst 1 Mol.-Gew. m-Phenylendiamin in 2 Mol.-Gew. Acetylaceton (L.I., S. 777) bei gelinder Wärme, versetzt nach dem Erkalten mit einigen Tropfen Eisessig und läßt mehrere Stunden stehen (MARCKWALD, A. 274, 368). — Spieße. F: 135°. Leicht löslich in Alkohol, Äther und Eisessig, unlöslich in Ligroin. — Beim Erhitzen mit konz. Schwefelsäure oder Eisessig entsteht 7(?)-Amino-2.4-dimethyl-chinolin (Syst. No. 3396).

N-[5-Oxo-3-methyl-cyclohexyliden]-m-phenylendiamin, 1-Methyl-cyclohexandion-(3.5)-mono-[3-amino-anil], Methyldihydroresorcin-mono-[3-amino-anil] $C_{13}H_{16}ON_3=H_2N\cdot C_6H_4\cdot N\cdot C\cdot CH_2\cdot CH_2(CH_3)$ CH₂ bezw. desmotrope Formen. B. Bei 3-stdg. Erhitzen von 3,5 g Methyldihydroresorcin (Bd. VII, S. 558) mit 3 g m-Phenylendiamin in alkoh. Lösung auf dem Wasserbade (HAAS, Soc. 89, 577). — Prismen (aus Alkohol + Petroläther). F: 178,5—179,5°. Leicht löslich in Alkohol, schwer in Benzol, unlöslich in Chloroform und Petroläther.

- N-[5-Oxo-8.3-dimethyl-cyclohexyliden]-m-phenylendiamin, 1.1-Dimethyl-cyclohexandion-(3.5)-mono-[3-amino-anil], Dimethyldihydroresorcin-mono-[3-amino-anil] $C_{14}H_{18}ON_2 = H_2N \cdot C_6H_4 \cdot N \cdot C \cdot \frac{CH_2}{C(CH_3)_2} \cdot CH_2$ bezw. desmotrope Formen. B. Bei 3-stdg. Kochen von 14 g Dimethyldihydroresorcin (Bd. VII, S. 559) mit 10 g m-Phenylendiamin in Alkohol auf dem Wasserbade (HAAS, Soc. 89, 389, 570). Gelbe Nadeln oder harte Krystallaggregate (aus Alkohol). F: 234—234,5°. Ziemlich schwer löslich in heißem Alkohol, unlöslich in Chloroform, Ather, Benzol. Liefert beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 180° β . β -Dimethyl-glutarsäure (Bd. II, S. 684). $C_{14}H_{18}ON_2 + 2HCl$. Blaßroter Niederschlag. $C_{14}H_{18}ON_2 + 2HCl$. Nadeln (aus alkoh. Lösung).
- 1.1-Dimethyl-cyclohexandion-(3.5)-bis-[3-amino-anil], Dimethyldihydroresorcin-bis-[3-amino-anil] $C_{20}H_{24}N_4 = H_2N \cdot C_6H_4 \cdot N : C \cdot CH_2 \cdot C(:N \cdot C_6H_4 \cdot NH_2) \cdot CH_2$ bezw. desmotrope Formen. B. Das Hydrochlorid entsteht beim Erhitzen von 7 g 3-Chlor-1.1-dimethyl-cyclohexen-(3)-on-(5) (Bd. VII, S. 58) mit 9 g m-Phenylendiamin in alkoh. Lösung auf dem Wasserbade (HAAS, Soc. 89, 392). Nadeln (aus verd. Alkohol). Schmilzt wasserhaltig bei 118—120° (Zers.), nach dem Trocknen (bei 105°) bei 148—150°. Leicht löslich in Alkohol, schwer in Äther, Chloroform, Benzol, unlöslich in Wasser. Reagiert stark alkalisch. $C_{20}H_{24}N_4 + HCl$. Längliche Platten (aus viel Alkohol). Schwer löslich in Wasser. Verbindung mit Dimethyldihydroresorcin $C_{20}H_{24}N_4 + C_8H_{12}O_2$. Gelbe Nadeln. Färb sich bei 258° dunkel und schmilzt bei 260—261° (unter Zers.). Leicht löslich in Eisessig, schwer in Alkohol unter Zersetzung, unlöslich in Chloroform, Benzol, Petroläther.

N.N'-Bis-[5-oxo-3.3-dimethyl-cyclohexyliden]-m-phenylendiamin, m-Phenylendis-[dimethyldihydroresoroin-monoimid] $C_{22}H_{28}O_2N_2 = C_6H_4\left[N:C<\frac{CH_2}{CH_2\cdot C(CH_3)_2}>CH_2\right]_2$ bezw. desmotrope Formen. B. Beim Kochen von Dimethyldihydroresoroin-mono-[3-amino-anil] mit Salzsäure oder mit Dimethyldihydroresoroin in Alkohol (HAAS, Soc. 89, 392, 570). — Platten (aus verd. Alkohol). F: 268—269,5°. Leicht löslich in kaltem Eisessig, unlöslich in den meisten anderen Lösungsmitteln. — $C_{22}H_{25}O_2N_2+2$ HCl. Läßt sich nicht umkrystallisieren. Wird sehr leicht dissoziiert.

N-Formyl-m-phenylendiamin $C_7H_8ON_2=H_2N\cdot C_6H_4\cdot NH\cdot CHO$. Gibt beim Erhitzen mit 2.4-Diamino-toluol (S. 124) und Salmiak auf 230—240° einen orangegelben Acridinfarbstoff (GEIGY & Co., D. R. P. 149409; C. 1904 I, 770).

N.N'-Diformyl-m-phenylendiamin $C_8H_8O_2N_3=C_6H_4(NH\cdot CHO)_a$. B. Bei $1^1/_2$ -stdg. Kochen von 4,2 g m-Phenylendiamin mit 30 g $16,3^0/_0$ iger Ameisensäure (Tobias, B. 15, 2447). — Stark lichtbrechende Krystalle (aus Alkohol). F: 155^0 ; leicht löslich in heißem, ziemlich schwer in kaltem Wasser, schwer in kaltem Alkohol (T.). — Verwendung zur Darstellung olivgrüner Baumwollfarbstoffe durch Erhitzen mit Schwefel und Schwefelnatrium mit oder ohne Zusatz von Chlorzink: OEHLER, D. R. P. 146064; C. 1903 II, 1153.

N-Acetyl-m-phenylendiamin $C_gH_{10}ON_2=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Das Hydrochlorid entsteht beim Kochen von 1 Mol.-Gew. salzsaurem m-Phenylendiamin mit 1 Mol.-Gew. Natriumacetat und Wasser (Schiff, Ostrogovich, A. 293, 382). — Darst. Man kocht 2 Stdn. lang 1 Mol.-Gew. m-Phenylendiamin mit 2 Mol.-Gew. Eisessig, gießt die heiße Masse in eine Schale und fügt nach dem Erkalten 1 Mol.-Gew. Salzsäure (D: 1,12) hinzu; man rührt gut durch und saugt nach einer Stunde das gebildete Hydrochlorid ab; man löst es in Wasser, gibt 1 Mol.-Gew. Kaliumdicarbonat hinzu und schüttelt mit Ather aus (WALLACH, SCHULZE, B. 15, 3020). — Sirup, der im Exsiccator blättrig erstarrt. Erweicht gegen 70° und zersetzt sich allmählich gegen 100°; leicht löslich in Alkohol, etwas weniger in Wasser und Ather, unlöslich in Ligroin (SCHL., O.). — Gibt mit CAROSCHER Säure neben 3-Nitroso-acetanilid — das nicht isoliert wurde — dimeres 3-Nitroso-acetanilid (Bd. XII, S. 676) (CAIN, Soc. 93, 683). Liefert bei der Einw. von Bromeyan in Gegenwart von NaHCO₃ und Wasser N-Acetyl-N'-cyan-m-phenylendiamin (S. 49) (PIERRON, A. ch. [8] 15, 212). Verwendung für Triphenylmethanfarbstoffe: BAYER & Co., D. R. P. 82634; Frdl. 4, 207. Verwendung für Polyazofarbstoffe: Farbw. Friedrichsfeld, D. R. P. 96667, 96769; C. 1898 II, 319, 528. — $C_8H_{10}ON_2+HCl$. Rötliche Krystalle. Erweicht gegen 1940 (Schi., O.) und schmilzt bei ca. 2800 (W., Schu.). Löslich in Wasser, ziemlich löslich in Alkohol, unlöslich in Äther, Benzol und Ligroin (Schi., O.).

N.N - Dimethyl - N' - acetyl - m - phenylendiamin $C_{10}H_{14}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot$ $CO \cdot CH_3$. B. Aus N.N-Dimethyl-m-phenylendiamin mit Essigsäureanhydrid (STAEDEL, BAUER, B. 19, 1945) oder mit Eisessig und Chlorzink (JAUBERT, Bl. [3] 21, 22). — Nadeln (aus verd. Alkohol). F: 87° (St., B.). Leicht löslich in Alkohol und verd. Säuren (J.).

N.N-Dimethyl-N'-acetyl-m-phenylendiamin-hydroxymethylat, Trimethyl-[8-acetamino-phenyl]-ammoniumhydroxyd $C_{11}H_{18}O_2N_2 = (CH_3)_3N(OH) \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Das Jodid entsteht durch Kochen von N-Acetyl-m-phenylendiamin mit CH_3I und Natriumhydroxyd in Methylalkohol oder durch Kochen von N.N-Dimethyl-N'-acetylm-phenylendiamin (s. o.) mit CH₂I in Benzol (Höchster Farbw., D. R. P. 88557; Frdl. 4, 70). — Chlorid. Prismen. Sehr leicht löslich in Wasser. — Jodid. Prismen. Zersetzt sich bei 210-215°.

N.N-Diäthyl-N'-acetyl-m-phenylendiamin $C_{12}H_{18}ON_2 = (C_2H_5)_2N \cdot C_6H_4 \cdot NH \cdot CO$ CH₂. B. Durch Erhitzen von N.N-Diäthyl-m-phenylendiamin mit Eisessig und etwas Acetanhydrid (Grandmougin, Lang, B. 42, 4014). — Krystalle (aus wäßr. Alkohol). F: 73° (G., L.). — Gibt mit Phthalsäureanhydrid in Gegenwart von Acetanhydrid bei 150° 3.3-Bis-[4-diathylamino-2-acetamino-phenyl]-phthalid $[(C_2H_5)_2N \cdot C_6H_3(NH \cdot CO \cdot CH_3)]_2C C_6H_3$ (Syst. No. 2643) (Höchster Farbw., D. R. P. 49850; Frdl. 2, 110; G., L.). Gibt beim Erhitzen mit 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) und verd. Essigsäure eine Leukoverbindung, die mit Bleidioxyd oxydiert einen blauen Farbstoff liefert (BAYER & Co., D. R. P. 81374; Frdl. 4, 204).

N.N-Dibensyl-N'-acetyl-m-phenylendiamin $C_{22}H_{22}ON_2 = (C_6H_5 \cdot CH_2)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_4$. B. Durch Benzylierung von m-Nitranilin (Bd. XII, S. 698) und darauffolgende Reduktion und Acetylierung (BAYER & Co., D. R. P. 81374; Frdl. 4, 204). — Nadeln. F: 144° bis 145°.

N- β -Naphthyl-N'-acetyl-m-phenylendiamin $C_{18}H_{16}ON_2 = C_{10}H_7 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Durch Kochen von N- β -Naphthyl-m-phenylendiamin Eisessig und etwas Natriumacetat (Gaess, Elsaesser, B. 26, 979). — Nädelchen (aus Alkohol). F: 135°. Leicht löslich in kaltem Alkohol. Die alkoh. Lösung fluoresciert leuchtend rotblau.

N - [5 - Oxo - 3.3 - dimethyl - cyclohexyliden] - N' - acetyl - m - phenylendiamin,1.1 - Dimethyl - cyclohexandion - (3.5) - mono - [8 - acetamino-anil], Dimethyldihydro-resordin-mono-[8-acetamino-anil] $C_{1e}H_{20}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot N : C \cdot CH_3 \cdot C(CH_3)_2 \cdot CH_3$ bezw. desmotrope Formen. B. Durch Erhitzen

von 1 g 1.1-Dimethyl-cyclohexandion-(3.5)-mono-[3-amino-anil] (S. 44) mit 3 g Essigsäureanhydrid und 2 g Eisessig (HAAS, Soc. 89, 390, 570). — Gelbe Platten (aus Alkohol + Essigester). F: 210,5—211,5°. Leicht löslich in Alkohol, unlöslich in Chloroform, Äther, Petroläther und Benzol. Die alkoh. Lösung gibt mit FeCl_3 rotbraune Färbung.

N.N'-Diacetyl-m-phenylendiamin $C_{10}H_{19}O_2N_2=C_6H_4(NH\cdot CO\cdot CH_3)_2$. B. Bei längerem Kochen von 1 Mol.-Gew. m-Phenylendiamin mit $2^1/_2$ Mol.-Gew. Eisessig (Barbaglia, B. 7, 1257). Beim Erhitzen von m-Phenylendiamin mit 2 Mol.-Gew. Acetamid (Kelbe, B. 16, 1200). — Prismen (aus wäßr. Alkohol). F: 191° (B.), 189° (K.). Wenig löslich in kaltem Wasser, leichter in warmem und in Alkohol (B.).

N.N.N'-Trimethyl-N'-acetyl-m-phenylendiamin $C_{11}H_{16}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot N(CH_3) \cdot CO \cdot CH_3$. B. Durch Kochen von N.N-Dimethyl-N'-acetyl-m-phenylendiamin, gelöst in Xylol, mit Natrium und Umsetzen der gebildeten Natriumverbindung mit CH_3I in der Hitze (O. FISCHER, A. 286, 166). Das Hydrojodid bildet sich bei 5-stdg. Erhitzen von 100 g N.N-Dimethyl-N'-acetyl-m-phenylendiamin mit 100 g CH_3I und 40 g Methylalkohol auf 100° (JAUBERT, Bl. [3] 21, 24). — Krystalle (aus Alkohol). F: 68° (O. FI.). Kp: 280° (J.). — $C_{11}H_{16}ON_2 + HI$. Durchsichtige Krystalle (J.).

N.N'-Diphenyl-N.N'-diacetyl-m-phenylendiamin $C_{22}H_{20}O_2N_2 = C_0H_4[N(C_6H_5)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Diphenyl-m-phenylendiamin mit Essigsäureanhydrid bei 130° bis 140° (Calm, B. 16, 2797) oder mit Åcetylchlorid in Benzol (C.). — Krystallkörner (aus Alkohol). F: 163°. Sehr wenig löslich in Wasser und Ligroin, ziemlich schwer in Alkohol und Äther, leichter in Benzol und CHCl₃.

N.N'-Di-p-tolyl-N.N'-diacetyl-m-phenylendiamin $C_{24}H_{24}O_2N_2 = C_0H_4[N(C_0H_4\cdot CH_3)\cdot CO\cdot CH_3]_2$. B. Durch Kochen von N.N'-Di-p-tolyl-m-phenylendiamin mit überschüssigem Essigsäureanhydrid und etwas Natriumacetat (Hatschek, Zega, J. pr. [2] 33, 221). — Körner (aus Alkohol). F: 176°. Mäßig löslich in kaltem Alkohol und Benzol, leicht in Äther, sehr wenig in Petroläther.

N- β -Naphthyl-N.N'-diacetyl-m-phenylendiamin $C_{20}H_{18}O_2N_2=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot N(C_{10}H_7)\cdot CO\cdot CH_3$. B. Durch Kochen von β -Naphthyl-m-phenylendiamin mit Essigsäureanhydrid und etwas entwässertem Natriumacetat (GAESS, ELSAESSER, B. 26, 979). — Nädelchen (aus Alkohol). F: 147—148°.

N.N'-Di- β -naphthyl-N.N'-diacetyl-m-phenylendiamin $C_{30}H_{24}O_2N_2=C_6H_4[N(C_{10}H_7)\cdot CO\cdot CH_3]_2$. B. Durch Erhitzen von N.N'-Di- β -naphthyl-m-phenylendiamin mit Essigsäureanhydrid und entwässertem Natriumacetat (GAESS, ELSAESSER, B. 26, 981). — Täfelchen (aus Alkohol). F: 175°. Sehr schwer löslich in kaltem Alkohol, ziemlich leicht in heißem.

N.N.-Dimethyl-N'.N'-diacetyl-m-phenylendiamin $C_{12}H_{16}O_2N_2 = (CH_3)_2N\cdot C_6H_4\cdot N(CO\cdot CH_3)_2$. B. Durch Kochen von N.N-Dimethyl-m-phenylendiamin mit Essigsäure-anhydrid (Grandmougin, Lang, B. 42, 4017 Anm.). — Krystalle (aus Alkohol). F: 69°.

N-Benzoyl-m-phenylendiamin $C_{13}H_{19}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Man reduziert Benzoesäure-[3-nitro-anilid] (Bd. XII, S. 704) mit Schwefelammonium (Bell, B. 7, 498) oder mit Eisen und Essigsäure (Sachs, Goldmann, B. 35, 3342). — Krystalle. F: 125° (B.; S., G.). — Verwendung für Azofarbstoffe: Soc. St. Denis, D. R. P. 65080; Frdl. 3, 731.

N-[3-Nitro-benzoyl]-m-phenylendiamin $C_{18}H_{11}O_3N_3=H_4N\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot NO_2$. B. Man behandelt N-Formyl-m-phenylendiamin mit 3-Nitro-benzoylchlorid (Bd. IX, S. 381) und verseift das Kondensationsprodukt mit verd. Mineralsäure (Höchster Farbw., D. R. P. 208968; Frdl. 9, 392; C. 1909 I, 1623). — Gelbes Pulver. F: 142°.

N-[4-Nitro-bensoyl]-m-phenylendiamin $C_{13}H_{11}O_3N_3 = H_3N\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot NO_2$. B. Man behandelt N-Formyl-m-phenylendiamin mit 4-Nitro-benzoylchlorid (Bd. IX, S. 394) und verseift das Kondensationsprodukt mit verd. Mineralsäure (Höchster Farbw., D. R. P. 208968; Frdl. 9, 392; C. 1909 I, 1623). — Hellbraune Nadeln. F: 212°.

N.N - Dimethyl - N'- benzoyl - m - phenylendiamin $C_{15}H_{16}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Durch Benzoylieren des N.N-Dimethyl-m-phenylendiamins (BAYER & Co., D. R. P. 81374; Frdl. 4, 204). — Prismen (aus Alkohol). F: 163—164°.

N.N-Dimethyl-N'-benzoyl-m-phenylendiamin-hydroxymethylat, Trimethyl-[3-benzamino-phenyl]-ammoniumhydroxyd $C_{16}H_{20}O_2N_2=(CH_3)_8N(OH)\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_5$. B. Das Jodid entsteht durch Erhitzen von N.N-Dimethyl-N'-benzoyl-m-phenylendiamin mit CH_3I auf 100^0 (Höchster Farbw., D. R. P. 88557; Frdl. 4, 70). — Chlorid. Sehr leicht löslich in Wasser. — Jodid. Blättchen (aus Alkohol), Spieße (aus Wasser). F: 170°. Löslich in heißem Wasser.

N- β -Naphthyl-N'-benzoyl-m-phenylendiamin $C_{23}H_{18}ON_2 = C_{10}H_7 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Durch Schütteln von N- β -Naphthyl-m-phenylendiamin mit Natronlauge und Benzoylehlorid (GAESS, ELSAESSER, B. 26, 979). — Blättchen (aus Alkohol). F: 173°. Sehr schwer löslich in kaltem Alkohol, unlöslich in Wasser.

N.N'-Dibenzoyl-m-phenylendiamin $C_{20}H_{16}O_2N_2 = C_6H_4(NH\cdot CO\cdot C_6H_5)_2$. B. Aus salzsaurem m-Phenylendiamin und Benzoylchlorid (RUHEMANN, B.14, 2652). Beim Schmelzen von m-Phenylendiamin mit Benzoesäure (Schiff, Ostrogovich, A. 293, 385). — Verfilzte Nadeln (aus Eisessig). F: 240° (R.). Schwer löslich in Alkohol, leichter in Eisessig (R.).

N.N'-Diphenyl-N.N'-dibenzoyl-m-phenylendiamin $C_{22}H_{24}O_2N_3=C_6H_4[N(C_6H_5)\cdot CO\cdot C_6H_5]_2$. B. Durch Erhitzen von N.N'-Diphenyl-m-phenylendiamin mit Benzoylchlorid auf 140—150° (Calm, B. 16, 2797). — Blätter (aus Benzol-Ligroin). F: 184°. Leicht löslich in heißem Benzol und in CHCl₃, weniger leicht in Ather, schwer in kaltem Alkohol und Ligroin.

N.N'-Di-p-tolyl-N.N'-dibenzoyl-m-phenylendiamin $C_{34}H_{28}O_3N_2 = C_6H_4[N(C_6H_4\cdot CH_3)\cdot CO\cdot C_6H_5]_2$. B. Aus N.N'-Di-p-tolyl-m-phenylendiamin und Benzoylchlorid oberhalb 100^0 (Hatscher, Zega, J. pr. [2] 33, 222). — Nadeln und Prismen (aus Alkohol). F: 152°. Unlöslich in Petroläther, wenig löslich in Äther, reichlich in Benzol.

N-Benzyl-N.N'-dibenzoyl-m-phenylendiamin $C_{27}H_{22}O_3N_2 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot N(CH_2 \cdot C_6H_5) \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von salzsaurem N-Benzyl-m-phenylendiamin (S. 42) mit Benzoylchlorid und trocknem Natriumbenzoat auf 100° (Meldola, Coste, Soc. 55, 598). — Tafeln (aus verd. Alkohol). F: 178°.

N- β -Naphthyl-N.N'-dibenzoyl-m-phenylendiamin $C_{30}H_{22}O_2N_2=C_4H_5\cdot CO\cdot NH\cdot C_6H_4\cdot N(C_{10}H_7)\cdot CO\cdot C_6H_5$. B. Durch Erhitzen von N- β -Naphthyl-m-phenylendiamin mit einem Überschuß von Benzoylchlorid auf 140—160° (Gaess, Elsaesser, B. 26, 979). — Tafeln. F: 213°. Schwer löslich in Alkohol, leichter in Aceton, unlöslich in Wasser.

N.N' - Di - β - naphthyl - N.N' - dibenzoyl - m - phenylendiamin $C_{40}H_{28}O_2N_2 = C_6H_4[N(C_{10}H_7)\cdot CO\cdot C_6H_5]_2$. B. Durch Erhitzen von N.N'-Di- β -naphthyl-m-phenylendiamin mit überschüssigem Benzoylchlorid auf 140—160° (G., E., B. 26, 981). — Prismen (aus Aceton + Alkohol). F: 215°. Schwer löslich in Alkohol, ziemlich leicht in Aceton, leicht in Benzol.

[3-Amino-phenyl]-oxamidsäure C₈H₈O₃N₂ = H₂N·C₆H₄·NH·CO·CO₂H. B. Beim Eintragen von m-Phenylendiamin in eine siedende Oxalsäurelösung (KLUSEMANN, B. 7, 1262). — Mikroskopische Nadeln. F: 225° (Zers.) (SCHIFF, OSTROGOVICH, A. 293, 385). Wenig löslich in siedendem Wasser; sehr leicht löslich in Alkalien (K.). — Verwendung zur Darstellung von Polyazofarbstoffen: Farbw. Friedrichsfeld, D. R. P. 86791, 86792; Frdl. 4, 961, 958; D. R. P. 94635, 99126; C. 1898 I, 358; 1899 I, 156. — Hydrochlorid. Zersetzt sich oberhalb 300°; wenig löslich in kaltem Wasser (SCH., O.). — Kaliumsalz. Gelbe Schuppen (aus Alkohol). Zersetzt sich gegen 270° (SCH., O.). — AgC₈H₇O₃N₂. Nadeln (aus heißem Wasser). Entwickelt bei 170° ein Gemenge von CO und CO₂ (K.).

[3 - Dimethylamino - phenyl] - oxamidsäure - hydroxymethylat $C_{11}H_{16}O_4N_2 = (CH_3)_8N(OH)\cdot C_6H_4\cdot NH\cdot CO\cdot CO_2H$. B. Das Jodid erhält man, indem man 1 Tl. [3-Aminophenyl]-oxamidsäure (s. o.) mittels wäßr. Kalilauge in Methylalkohol löst, 2 Tle. Methylodid hinzufügt, die Mischung, die stets alkalisch zu halten ist, 8 Tage stehen läßt, dann mit Jodwasserstoffsäure ansäuert und den Methylalkohol abdestilliert (GRIESS, B. 18, 2408). — Jodid $C_{11}H_{18}O_3N_2\cdot I + H_2O$. Nadeln. Ziemlich schwer löslich in kaltem Wasser. — Chloroplatinat $2C_{11}H_{18}O_3N_2\cdot Cl + PtCl_4$. Hellgelbe Nadeln oder Prismen. Schwer löslich in kaltem Wasser.

[3-Acetamino-phenyl]-oxamidsäure $C_{10}H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CO_2H$. B. Aus [3-Amino-phenyl]-oxamidsäure und Essigsäureanhydrid bei gewöhnlicher Temperatur in Gegenwart von Soda (Koller, B. 36, 413). — Nadeln (aus essigsäurehaltigem Wasser). F: 209° (Zers.). Leicht löslich in Wasser und Alkohol, schwer in Äther.

m-Phenylen-bis-oxamidsäure $C_{10}H_8O_6N_2=C_6H_4(NH\cdot CO\cdot CO_2H)_2$. B. Durch 1- bis 2-stdg. Kochen von 1 Tl. m-Phenylen liamin mit 10 Tln. Diäthyloxalat und Verseifung des entstandenen Diäthylesters mit wäßr. Alkalien (R. Meyer, Seeliger, B. 29, 2642). Bei 1-tägigem Kochen von 1 Mol.-Gew. feuchtem N-Acetyl-m-phenylendiamin mit 2 Mol.-Gew. Diäthyloxalat und Alkohol (Schiff, Ostrogovich, A. 293, 387). — Warzen (aus verd. Alkohol). Schmilzt unter teilweiser Zersetzung bei 225—230° (R. M., Se.), gegen 240° (Sch., O.). Wenig löslich in Äther, Aceton, Chloroform, Benzol und Ligroin, leicht in Alkohol (R. M., Se.).

Diäthylester $C_{14}H_{16}O_6N_3=C_6H_4(NH\cdot CO\cdot CO_3\cdot C_3H_6)_3$. B. s. im vorangehenden Artikel. — Nädelchen (aus kochendem wäßrigem Alkohol). F: 154°; leicht löslich im

kochendem Wasser und den meisten organischen Mitteln, am schwersten löslich in Ligroin und Petroläther (R. M., SE., B. 29, 2642). — Wird durch verd. Alkalien in der Kälte sofort verseift (R. M., SE.).

Diamid, m-Phenylen-bis-oxamid $C_{10}H_{10}O_4N_4=C_6H_4(NH\cdot CO\cdot CO\cdot NH_2)_2$. B. Aus m-Phenylen-bis-[oxamidsäure-äthylester] und NH_3 (R. M., SE., B. 29, 2642). — Nädelchen (aus Alkohol). F: 290°. Unlöslich in den gewöhnlichen Lösungsmitteln.

N-[3-Amino-phenyl]-succinamidsäure $C_{10}H_{19}O_3N_2 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO_2H$. B. Aus Bernsteinsäure und salzsaurem m-Phenylendiamin (Griess, B. 18, 2410 Anm. 1). Aus äquimolekularen Mengen m-Phenylendiamin und Bernsteinsäureanhydrid (Syst. No. 2475) in Essigesterlösung bei 40° (R. Meyer, J. Maier, A. 327, 38). — Weiße Nadeln. Leicht löslich in Wasser (R. M., J. M.). Der Schmelzpunkt erhöht sich ziemlich schnell von selbst; er wurde zwischen 156° und 171° beobachtet; ein bei 166° schmelzendes Präparat wurde bei 172° unter Aufschäumen undurchsichtig und schmolz dann bei 183° von neuem (R. M., J. M.). Das frisch dargestellte Produkt ist in konz. Salzsäure löslich, wird aber allmählich unlöslich; geht leicht, z. B. beim Kochen mit Wasser, in m-Phenylenbis-succinamidsäure (s. u.) über (R. M., J. M.).

m-Phenylen-bis-succinamidsäure $C_{14}H_{16}O_6N_2=C_6H_4(NH\cdot CO\cdot CH_2\cdot CH_2\cdot CO_2H)_2$. B. Beim Erwärmen von m-Phenylendiamin und überschüssigem Bernsteinsäureanhydrid in absolut-alkoholischer Lösung (R. Meyer, J. Maier, A. 327, 31). Aus N-[3-Amino-phenyl]succinamidsäure (s. o.) durch Kochen mit Wasser (R. M., J. M., A. 327, 38). — Krystalle (aus Wasser). Sintert bei 180°, schmilzt gegen 215° und schäumt bei 220—221° auf. Ziemlich schwer löslich in kaltem Wasser, etwas leichter in Alkohol und Äther. Wird durch konz. Salzsäure momentan, durch Erhitzen mit Wasser allmählich verseift.

m-Phenylen-bis-[sebacinamidsäure-äthylester] $C_{30}H_{48}O_6N_2 = C_6H_4(NH \cdot CO \cdot [CH_2]_8 \cdot CO_2 \cdot C_2H_5)_2$. B. Beim Kochen von m-Phenylendiamin mit einem großen Überschuß von Sebacinsäure-diäthylester, neben beträchtlichen Mengen eines in Äther unlöslichen weißlich-gelben Pulvers (R. Meyer, J. Mater, A. 347, 44). — Nädelchen (aus Alkohol). F: 97°. Leicht löslich in Äther, Alkohol, Chloroform, schwer löslich in Benzol. Schmilzt in siedendem Wasser und geht dann anscheinend in Lösung. Wird von verd. Alkalien nicht angegriffen und beim Erwärmen mit konzentrierten zersetzt.

[3-Amino-phenyl]-harnstoff $C_7H_9ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot NH_2$. B. Das Hydrochlorid entsteht bei 10 Minuten langem Kochen von [3-Acetamino-phenyl]-harnstoff, gelöst in sehr wenig Wasser, mit Salzsäure (Schiff, Ostrogovich, A. 293, 384). — Sehr leicht löslich in Wasser und Alkohol, wenig in Äther und Benzol (Sch., O.). — Liefert bei der Einw. von Bromcyan (Bd. III, S. 39) in Gegenwart von NaHCO₃ und Wasser [3-Cyanamino-phenyl]-harnstoff (S. 49) (Pierron, A. ch. [8] 15, 210). — $C_7H_9ON_3 + HCl$. Schuppen (aus wäßr. Alkohol). F: 281—282°; reichlich löslich in Wasser, schwer in Alkohol, unlöslich in Äther, Benzol und Ligroin (Sch., O.).

N-Phenyl-N'-[3-amino-phenyl]-harnstoff $C_{13}H_{13}ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Aus Phenylisocyanat (Bd. XII, S. 437) und etwas überschüssigem m-Phenylendiamin in Benzol (Lellmann, Würthner, A. 228, 222). Durch Reduktion von Phenyl-[3-nitro-phenyl]-harnstoff (Bd. XII, S. 706) mit Zinn und Salzsäure (Leuckart, J. pr. [2] 41, 322). — Nadeln (aus verd. Alkohol). F: 187°; leicht löslich in Alkohol und Eisessig, schwer in Äther und Benzol (Lel., W.). — Zersetzt sich bei 190° unter Bildung von Anilin und polymerem (?) m-Phenylenharnstoff (S. 39) (Lel., W.).

N-Methyl-N-phenyl-N'-[3-amino-phenyl]-harnstoff $C_{14}H_{16}ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot N(CH_3) \cdot C_6H_5 \cdot B$. Aus N-Methyl-N-phenyl-N'[3-nitro-phenyl]-harnstoff (Bd. XII, S. 707), gelöst in Alkohol, mit Zinnchlorür und Salzsäure (Lellmann, Benz, B. 24, 2112).—Nadeln (aus Alkohol). Zersetzt sich bei 190—200° unter Zerfall in Methylanilin und polymeren (?) m-Phenylenharnstoff (S. 39).

N.N'-Bis-[3-amino-phenyl]-harnstoff $C_{13}H_{14}ON_4=(H_2N\cdot C_8H_4\cdot NH)_2CO$. B. Durch Reduktion von N.N'-Bis-[3-nitro-phenyl]-harnstoff (Bd. XII, S. 706) mit Zinn und kochender Salzsäure (VITTENET, Bl. [3] 21, 154). — Nadeln. F: 208—209° (V.). Löslich in siedendem Wasser und Alkohol (V.). — Verwendung zur Darstellung von Disazofarbstoffen: BAYER & Co.,

- D. R. P. 134932; C. 1902 II, 1023. $C_{13}H_{14}ON_4 + 2HCl$. Weißer krystallinischer Niederschlag. Löslich in Wasser (V.). $C_{13}H_{24}ON_4 + 2HCl + 2SnCl_2 + 2^1/2H_3O$. Nadeln (V.).
- Orthokohlensäure-tetrakis-[8-amino-anilid] $C_{28}H_{28}N_8 = [H_2N \cdot C_6H_4 \cdot NH]_4C$. Über ein unter dieser Formel beschriebenes Produkt vgl. Hübner, B. 10, 1719.
- [3-Amino-phenyl]-thioharnstoff $C_7H_9N_3S = H_2N \cdot C_6H_4 \cdot NH \cdot CS \cdot NH_2$. B. Durch Erhitzen von 9 g salzsaurem m-Phenylendiamin mit 5 g Rhodankalium in wäßr. Lösung (Frerichs, Hupka, Ar. 241, 164). Schwach gelblich gefärbte Krystalle. F: 170°. Wenig löslich in kaltem Wasser und kaltem Alkohol, leichter in heißem Alkohol und Wasser. $C_7H_9N_3S + HCl$. Farblose Krystalle. Leicht löslich in Wasser. $2C_7H_9N_3S + H_2SO_4$. Weiße Nadeln. Ziemlich leicht löslich in Wasser, sehr wenig in Alkohol.
- N-Phenyl-N'-[3-amino-phenyl]-thioharnstoff $C_{13}H_{13}N_3S = H_2N \cdot C_6H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Aus 1 Mol.-Gew. m-Phenylendiamin und 1 Mol.-Gew. Phenylsenföl (Bd. XII, S. 453) in Benzollösung (Lelimann, Würthner, A. 228, 214). Prismen (aus Alkohol). F: 148°. Unlöslich in Ather und Benzol, ziemlich leicht löslich in Alkohol, sehr leicht in Eisessig. Zersetzt sich bei 148—153° nur zu einem kleinen Teile unter Abspaltung von Anilin.
- [3-Amino-phenyl]-dithiocarbamidsäure $C_7H_8N_2S_2=H_2N\cdot C_6H_4\cdot NH\cdot CS_2H$. B. Das Ammoniumsalz entsteht aus m-Phenylendiamin in alkoh. Lösung mit Schwefelkohlenstoff (Bd. III, S. 197) und überschüssigem wäßr. Ammoniak (Losanitsch, B. 40, 2973). $NH_4C_7H_7N_2S_2$. Gelblich, krystallinisch. F: 90°. Sehr leicht löslich in Wasser, sehr wenig in Alkohol und Äther.
- [3-Acetamino-phenyl]-harnstoff $C_0H_{11}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot NH_2$. B. Entsteht neben polymerem(?) m-Phenylenharnstoff (S. 39) aus 15 g salzsaurem N-Acetyl-m-phenylendiamin (S. 45) und 12 g KCNO in ziemlich konzentrierter, abgekühlter Lösung (SCHIFF, OSTROGOVICH, A. 293, 383). Durch Einw. siedender wäßrig-alkoholischer Salzsäure auf N-Acetyl-N'-cyan-m-phenylendiamin (s. u.) (PIERRON, A. ch. [8] 15, 212). Rötliche Nadeln (aus salzsäurehaltigem Wasser). F: 225° (SCH., O.; P.). Unlöslich in Äther, Benzol und Ligroin, gut löslich in Wasser und Alkohol (SCH., O.).
- N-Acetyl-N'-cyan-m-phenylendiamin, 3-Acetamino-phenylcyanamid $C_9H_9ON_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CN$. B. Aus N-Acetyl-m-phenylendiamin und Bromcyan (Bd. III, S. 39) in Gegenwart von NaHCO₃ und Wasser (PIERRON, A. ch. [8] 15, 212). Farblose Nadeln (aus verd. Alkohol). F: $205-207^{\circ}$; leicht löslich in Alkohol und Aceton, ziemlich löslich in Wasser, schwer in Äther; löslich in den Alkalien (P., A. ch. [8] 15, 212). Das Alkalisalz reagiert mit Benzoldiazoniumchlorid unter Bildung von 2-Acetamino-4-[cyanamino]-azobenzol (Syst. No. 2183) (P., A. ch. [8] 15, 256).
- [3-Ureido-phenyl]-oxamidsäure $C_9H_9O_4N_3=HO_2C\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot NH_2$. B. Bei 3-stdg. Erhitzen von [3-amino-phenyl]-oxamidsaurem Kalium mit etwas überschüssigem Harnstoff auf 130° und schließlich auf 145° (Schiff, Ostrogovich, A. 293, 386). In geringerer Ausbeute aus [3-Amino-phenyl]-oxamidsäure und KCNO (Sch., O.). Nadeln (aus heißem Wasser). F: 230°. Ziemlich leicht löslich in warmem Wasser und Alkohol.

Polymerer (?) m-Phenylenharnstoff $(C_7H_6ON_2)_x$ s. S. 39.

Polymerer (?) m-Phenylenthioharnstoff $(C_7H_6N_2S)_x$ s. S. 39.

- m-Phenylendiurethan $C_{12}H_{16}O_4N_3 = C_6H_4(NH\cdot CO_2\cdot C_2H_5)_2$. B. Aus m-Phenylendiamin und Chlorameisensäureäthylester (Bender, Dissertation [Berlin 1880], S. 32). Beim Erwärmen von Isophthalsäure-diazid (Bd. IX, S. 837) mit über geglühtem Kupfervitriol entwässertem Alkohol (Davidis, J. pr. [2] 54, 85). Täfelchen (aus Ligroin). F: 145° (B.), 143—145° (D.). Unlöslich in Wasser (B.), sehr leicht löslich in Alkohol, Äther, Benzol, Chloroform und Ligroin (D.). Zerfällt beim Erhitzen mit Salzsäure im Druckrohr auf 120° in m-Phenylendiamin, CO₂ und Alkohol (D.).
- m-Phenylendiharnstoff $C_8H_{10}O_2N_4 = C_8H_4(NH\cdot CO\cdot NH_2)_2$. B. Aus salzsaurem m-Phenylendiamin mit Kaliumcyanat in wäßr. Lösung (Warder, B. 8, 1180). Durch Einw. von siedender konz. Salzsäure auf m-Phenylen-bis-cyanamid (S. 50) oder auf [3-Cyanaminophenyl]-harnstoff (s. u.) (Pierron, A. ch. [8] 15, 183, 211). Krystalle. Schmilzt über 300° (W.; P.). Sublimiert unter teilweiser Zersetzung; schwer löslich in heißem Wasser und noch weniger in Alkohol (W.; P.); fast unlöslich in siedendem Benzol und Äther; löslich in konz. Salzsäure (P.).
- m-Phenylen-bis-[ω -phenyl-harnstoff] $C_{20}H_{18}O_2N_4=C_6H_4(NH\cdot CO\cdot NH\cdot C_6H_5)_2$. B. Aus m-Phenylendiamin und 2 Mol.-Gew. Phenylisocyanat (Bd. XII, S. 437) in Ather (Kühn, B. 18, 1478). Amorph. Unlöslich in den gewöhnlichen Lösungsmitteln.
- [8-Cyanamino-phenyl]-harnstoff, [8-Ureido-phenyl]-cyanamid $C_8H_8ON_4=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CN$. B. Aus [3-Amino-phenyl]-harnstoff und Bromcyan in Gegen-

wart von NaHCO₃ und Wasser (PIERRON, A. ch. [8] 15, 210). — Farblose Prismen (aus Alkohol oder siedendem Wasser). Schmeckt ausgeprägt süß. F: 210° (Zers.). Löslich in Alkohol, schwer löslich in Benzol, ziemlich in heißem Wasser; löslich in Alkalien und konz. Säuren. — Das Alkalisalz liefert bei der Einw. von Benzoldiazoniumchlorid das Benzotriazinderivat nebenst. Konstitution (Syst. No. 3990) (P., A.ch. [8] 15, 262).

N.N'-Dicyan-m-phenylendiamin, m-Phenylen-bis-cyanamid $C_8H_6N_4=C_6H_4(NH\cdot CN)_3$. B. Aus 10,8 g m-Phenylendiamin und 22 g Bromcyan in Gegenwart von 21 g KHCO₃ und 350 ccm Wasser bei gewöhnlicher Temperatur oder aus 11,5 g m-Phenylen-bis-thioharn-stoff, gelöst in 500 ccm siedender $5^0/_0$ iger Kalilauge, und 30 g Kupfersulfat (Pierron, A. ch. [8] 15, 182). — Prismen. Schmilzt, auf eine heiße Fläche geworfen, bei 205—207°, um fast sofort wieder zu erstarren, schmilzt bei langsamem Erhitzen oberhalb 325° noch nicht; fast unlöslich in Wasser, schwer löslich in Alkohol, sehr wenig in Benzol, Äther und Chloroform;

schwer löslich in Säuren, leicht in den ätzenden und kohlensauren Alkalien. — Geht unter der Einwirkung von siedender konzentrierter Salzsäure in m-Phenylendiharnstoff über. Das Alkalisalz liefert bei der Einw. von 2 Mol.-Gew. Benzoldiazoniumchlorid 1.3-Bis-cyanamino-4.6-bis-benzolazo-benzol (Syst. No. 2183), die Verbindung der Formel I (Syst. No. 3990) und die Verbindung der Formel II (Syst. No. 4187) (P., A. ch. [8] 15, 268).

m-Phenylen-bis-[thiocarbamidsäure-O-äthylester], m-Phenylen-bis-monothiourethan $C_{12}H_{16}O_2N_2S_2=C_6H_4(NH\cdot CS\cdot O\cdot C_2H_5)_2$. B. Bei längerem Kochen von m-Phenylendisenföl (s. u.) mit Alkohol (BILLETER, STEINER, B. 20, 230). — Krystalle (aus Alkohol). F: 116°.

m-Phenylen-bis-thioharnstoff $C_8H_{10}N_4S_2=C_6H_4(NH\cdot CS\cdot NH_2)_2$. B. Bei 1-stdg. Erhitzen von rhodanwasserstoffsaurem m-Phenylendiamin (erhalten durch Eindampfen der wäßr. Lösung von 1 Mol.-Gew. salzsaurem m-Phenylendiamin und etwas mehr als 2 Mol.-Gew. Ammoniumrhodanid) auf $120-130^{\circ}$ (Lellmann, A. 221, 11). Aus m-Phenylendisenföl und Ammoniak (Billetter, Steiner, B. 20, 230). — Blättchen (aus dünner Sodalösung). F: 215° (L., A. 221, 11; B., St.). Leicht löslich in Alkalen und daraus durch Säuren fällbar (L., A. 221, 11). — Geht, in alkal. Lösung mit Kupferoxyd behandelt, in m-Phenylen-biscyanamid über (Pierron, A. ch. [8] 15, 182). Wird durch alkoh. Bleilösung geschwärzt (L., A. 228, 248). Beim Erhitzen mit Schwefel und Schwefelnatrium auf 200° entsteht ein olivgrüner Schwefelfarbstoff (Kalle & Co., D. R. P. 139429; C. 1903 I, 904).

m-Phenylen-bis- $[\omega$ -allyl-thioharnstoff] $C_{14}H_{18}N_4S_8 = C_6H_4(NH\cdot CS\cdot NH\cdot CH_2\cdot CH: CH_2)_8$. B. Beim Versetzen einer alkoh. Lösung von m-Phenylendiamin mit Allylsenföl (Lellmann, A. 221, 26). — Warzen. Sintert bei 95° und schmilzt unzersetzt bei 105°. Wenig löslich in Wasser, sehr leicht in Alkohol, Chloroform und Eisessig.

m-Phenylen-bis- $[\omega$ -phenyl-thioharnstoff] $C_{20}H_{18}N_4S_2 = C_6H_4(NH\cdot CS\cdot NH\cdot C_6H_5)_2$. B. Beim Erhitzen von 2,16 g m-Phenylendiamin mit 5,4 g Phenylsenföl und Alkohol (Lellmann, Wübthner, A. 228, 203). — Pulver. F: 160—161°. Unlöslich in Äther und Benzol, fast unlöslich in Alkohol, sehr schwer löslich in Chloroform, ziemlich leicht in Eisessig. — Spaltet in der Wärme Thiocarbanilid ab.

m-Phenylendiisocyanat, m-Phenylendicarbonimid $C_8H_4O_2N_2 = C_6H_4(N:CO)_2$. B. Bei der Destillation on m-Phenylendiurethan (S.49) mit viel P_2O_5 (Bender, Dissertation [Berlin.1880], S. 33). Beim Erhitzen von Isophthalsäure-diazid (Bd. IX, S. 837) in Benzol (Stoermer, B. 42, 3133). — Strahlige Krystalle. F: 51° (B.; St.).

m-Phenylendiisothiocyanat, m-Phenylendisenföl $C_8H_4N_2S_2=C_6H_4(N:CS)_2$. B. Aus m-Phenylendiamin und Thiophosgen (Bd. III, S. 134), beide gelöst in Chloroform (BILLETER, STEINER, B. 20, 230). — Nadeln. F: 53°. Siedet nicht unzersetzt oberhalb 250°. Leicht löslich in den gebräuchlichen Lösungsmitteln. — Beim Glühen mit Kupferpulver entsteht eine kleine Menge Isophthalsäure-dinitril (Bd. IX, S. 836). Verbindet sich mit NH_3 zu m-Phenylen-bis-thioharnstoff. Beim Kochen mit Alkohol entsteht m-Phenylen-bis-monothiourethan.

N-[3-Amino-phenyl]-glycin¹) $C_8H_{10}O_2N_8=H_2N\cdot C_8H_4\cdot NH\cdot CH_2\cdot CO_2H$. Verwendung als Komponente von Azofarbstoffen: Höchster Farbw., D. R. P. 96857; C. 1898 II, 320; BAYER & Co., D. R. P. 205251, 206954; C. 1909 I, 481, 1209.

Genauer beschrieben erst nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches
 I. 1910] von JACOBS, HEIDELBERGER, Am. Soc. 39 [1917], 1450.

m-Phenylendiglyoin $C_{10}H_{12}O_4N_2=C_8H_4(NH\cdot CH_2\cdot CO_2H)_2$. B. Das salzsaure Salz entsteht beim Digerieren des Diäthylesters (s. u.) mit starker Salzsäure (ZIMMERMANN, KNYRIM, B. 16, 514). — $C_{10}H_{12}O_4N_2+2HCl$. Krystalle (aus konz. Salzsäure). Leicht löslich in Wasser.

Diäthylester $C_{14}H_{20}O_4N_2 = C_6H_4(NH\cdot CH_2\cdot CO_2\cdot C_2H_5)_2$. B. Beim Erwärmen von m-Phenylendiamin mit Chloressigsäureäthylester (ZIMMERMANN, B. 15, 518). — Nadeln (aus Wasser). F: 73°. Sehr schwer löslich in Wasser, leicht in Alkohol und Äther.

Diamid $C_{10}H_{14}O_2N_4 = C_6H_4(NH\cdot CH_2\cdot CO\cdot NH_2)_2$. B. Aus m-Phenylendiamin und Chloracetamid (LUMIÈRE, PERRIN, Bl. [3] 29, 967). — F: 196—197°.

N-Salicoyl-m-phenylendiamin $C_{13}H_{12}O_2N_2 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_4 \cdot OH$. B. Beim Behandeln von Salicylsäure-[3-nitro-anilid] (Bd. XII, S. 709) mit alkoh. Schwefelammonium (Bell, Chem. N. 31, 244). — Krystalle. F: 143°.

N.N'-Bis-[4-methoxy-thiobenzoyl]-m-phenylendiamin $C_{22}H_{20}O_2N_2S_2=C_6H_4(NH\cdot CS\cdot C_6H_4\cdot O\cdot CH_3)_2$. B. Aus m-Phenylendisenföl (S. 50), Anisol und AlCl₃ (Gattermann, J. pr. [2] 59, 592). — Gelbe Nadeln (aus Xylol). F: 218—219°. Schwer löslich in Alkohol und CS_2 .

N.N'-Bis-[4-äthoxy-thiobenzoyl]-m-phenylendiamin $C_{24}H_{24}O_{2}N_{2}S_{2}=C_{4}H_{4}(NH\cdot CS\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5})_{2}$. B. Aus m-Phenylendisenföl, Phenetol und AlCl₃ (G., J. pr. [2] 59, 592). — Gelbe Nadeln (aus Xylol). F: 233°.

m-Phenylen-bis- $[\beta$ -imino-buttersäure-nitril] bezw. m-Phenylen-bis- $[\beta$ -amino-crotonsäure-nitril] $C_{14}H_{14}N_4 = C_6H_4[N:C(CH_3)\cdot CH_3\cdot CN]_2$ bezw. $C_6H_4[NH\cdot C(CH_3):CH\cdot CN]_2$. B. Aus β -Imino-butyronitril (Diacetonitril, Bd. III, S. 660) und m-Phenylendiamin in verd. Essigsäure (E. v. Meyer, C. 1908 II, 592; J. pr. [2] 78, 502). — Stäbchen. F: 185°. Unlöslich in heißem Wasser, leicht löslich in Alkohol und Eisessig.

N-[α -Cyan-bensal]-N'-bensoyl-m-phenylendiamin, [3-Bensamino-phenyl]-[μ -cyan-asomethin]-phenyl $C_{21}H_{15}ON_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_5\cdot B$. Durch Oxydation des bei der Kondensation von N-Benzoyl-m-phenylendiamin (S. 46) mit Benzaldehydcyanhydrin (Bd. X, S. 206) erhaltenen Harzes mit KMnO₄ in Aceton (Sachs, Goldmann, B. 35, 3343). — Hellgelbe Nadeln (aus verd. Alkohol). F: 139°. Unlöslich in Wasser, sonst leicht löslich.

N.N' - Bis - [a - carboxy - cinnamal] - m - phenylendiamin, m - Phenylen - bis - [cinnamoylameisensäureimid] $C_{26}H_{20}O_4N_3 = C_5H_4[N:C(CO_2H)\cdot CH:CH\cdot C_6H_5]_3^{-1})$. B. Man tröpfelt eine alkoh. Lösung von 20 g m-Phenylendiamin in ein Gemisch aus 40 g Benzaldehyd, 32 g Brenztraubensäure und absol. Alkohol und erwärmt 3 Stdn. im Wasserbade (Doebner, Ferber, A. 281, 16). — Braunrote Nadeln (aus Alkohol). F: 235°. Sehr leicht löslich in Eisessig, wenig in CHCl₃, CS₂ und Benzol, unlöslich in Ather und Wasser; leicht löslich in Ammoniak mit gelber Farbe.

m-Phenylen-bis-[iminomethyl-malonsäure-diäthylester] bezw. m-Phenylen-bis-[aminomethylen-malonsäure-diäthylester] $C_{32}H_{28}O_8N_2=C_8H_4[N:CH\cdot CH(CO_3\cdot C_4H_8)_2]_2$ bezw. $C_8H_4[NH\cdot CH:C(CO_2\cdot C_2H_5)_2]_2$. B. Entsteht neben Malonsäureester bei 1-stdg. Erhitzen von m-Phenylendiamin mit $a.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester (Bd. II, S. 876) auf 100° (Ruhemann, Sedgwick, B. 28, 824). — Nadeln (aus Alkohol). F: 110°.

N.N'-Bis-[8-amino-phenyl]-äthylendiamin $C_{14}H_{18}N_4 = [H_2N\cdot C_8H_4\cdot NH\cdot CH_2-]_2$. B. Beim Behandeln von N.N'-Bis-[3-nitro-phenyl]-äthylendiamin (Bd. XII, S. 710) mit Zinn und Salzsäure (Gattermann, Hager, B. 17, 779) oder Zinnchlorür und Salzsäure (Borsche, Titsingh, B. 40, 5013). — Tafeln oder Nadeln mit 1 H_2O (aus Wasser); schmilzt bei 107° unter Abgabe von Krystallwasser und teilweiser Zersetzung (G., H.). Fast unlöslich in kaltem Wasser, in der Wärme leicht löslich in den gewöhnlichen Lösungsmitteln (G., H.). Färbt sich an der Luft violett (B., T.). Die Salze werden durch Spuren von salpetriger Säure intensiv braun gefärbt (G., H.). — $C_{14}H_{18}N_4 + 4$ HCl. Blättchen. Leicht löslich in Wasser (G., H.).

4*

¹) Zu dieser Formulierung vgl. nach dem Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] BODFORSS, A. 455 [1927], 49, 58.

und Acetanhydrid beim Kochen (Borsche, Titsingh, B. 40, 5014). — Nadeln (aus verd. Alkohol). F: 272°.

- 2.3'-Diamino-diphenylamin $C_{12}H_{13}N_3 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot NH_2$. B. Durch Reduktion von 2'-Nitro-3-amino-diphenylamin (S. 41) mit konz. salzsaurer Zinnchlorürlösung (Kehrmann, Steiner, B. 34, 3091). Hydrochlorid. Nadeln. Sehr leicht löslich in Wasser und Alkohol. Färbt sich langsam rosenrot.
- N.N'-Dichlor-N.N'-diacetyl-m-phenylendiamin $C_{10}H_{10}O_2N_2Cl_2 = C_6H_4(NCl\cdot CO\cdot CH_3)_2$. B. Aus N.N'-Diacetyl-m-phenylendiamin (S. 46) in wäßr. Kaliumdicarbonaticsung mit Natriumhypochloritlösung (Morgan, Soc. 77, 1207). Darst. Durch Zufügen einer alkoh. Lösung von N.N'-Diacetyl-m-phenylendiamin zu 0,3-fach normaler kaliumdicarbonathaltiger Kaliumhypochloritlösung (Chattaway, Orton, B. 34, 163). Prismen (aus Chloroform + Petroläther). Schmilzt, rasch erhitzt, bei 160—161° und verpufft bald darauf (Ch., O.). F: 150—151° (M.). Leicht löslich in Chloroform und Benzol (M.). Geht beim Kochen mit Eisessig in N.N'-Diacetyl-4.6-dichlor-phenylendiamin-(1.3) (S. 54) über (M.).
- [3-Amino-phenyl]-thionamidsäure $C_0H_0O_2N_2S=H_2N\cdot C_0H_4\cdot NH\cdot SO_2H$. Als solche ist vielleicht die Verbindung $C_0H_3N_2+SO_2$ (S. 38) aufzufassen.
- N-Benzolsulfonyl-m-phenylendiamin $C_{12}H_{12}O_2N_2S = H_2N \cdot C_6H_4 \cdot NH \cdot SO_2 \cdot C_6H_5$. B. Aus Benzolsulfonsäure-[3-nitro-anilid] (Bd. XII, S. 710) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwait, Soc. 87, 80). Platten (aus verd. Alkohol). F: 98° bis 99°. Sehr leicht löslich in Aceton und Alkohol.
- N-p-Toluolsulfonyl-m-phenylendiamin C₁₃H₁₄O₃N₅S = H₂N·C₆H₄·NH·SO₃·C₆H₄·CH₃. B. Aus p-Toluolsulfonsäure-[3-nitro-anilid] (Bd. XII, S. 710) durch Reduktion mit Eisen und sehr verd. Essigsäure (Morgan, Micklethwait, Soc. 89, 1292). Farblose Nadeln (aus Wasser oder verd. Alkohol). F: 143°.
- N.N'-Dibenzolsulfonyl-m-phenylendiamin $C_{18}H_{16}O_4N_1S_2 = C_6H_4(NH\cdot SO_2\cdot C_6H_5)_2$ B. Beim Schütteln von m-Phenylendiamin mit dem Anderthalbfachen der theoretischen Menge Benzolsulfochlorid (Bd. XI, S. 34) und überschüssiger Natronlauge (HINSBERG, STRUPLER, A. 287, 229). Kryställchen (aus Alkohol oder starker Essigsäure). F: 194° (H., St.). Gibt beim Erhitzen mit Äthyljodid und alkoh. Natriumäthylatlösung im Druckrohr auf 110° N.N'-Dibenzolsulfonyl-N.N'-diäthyl-m-phenylendiamin (H., Kessler, A. 340, 120). Beim Erhitzen mit Methylenchlorid und methylalkoholischer Natriummethylatlösung entsteht die Verbindung $C_6H_4 < N(SO_2\cdot C_6H_5)\cdot CH_2\cdot N(SO_2\cdot C_6H_5) > C_6H_4$ (Syst. No. 4024); analog verläuft die Reaktion mit Athylenbromid und mit Trimethylenbromid (H., K.).
- N.N'-Di-p-toluolsulfonyl-m-phenylendiamin C₂₆H₂₀O₄N₂S₂ = C₆H₄(NH·SO₂·C₆H₄·CH₃)₂. B. Aus p-Toluolsulfochlorid (Bd. XI, S. 103) und m-Phenylendiamin in Pyridin (Reverdin, Crépieux, B. 35, 315) oder bei Gegenwart von Soda (Akt.-Ges. f. Anllinf., D. R. P. 166600; C. 1906 I, 517). Weiße Nadeln. F: 172° (R., C.; A.-G. f. A.). Leicht löslich in Alkohol und Eisessig (R., C.). Wird durch kalte konz. Schwefelsäure verseift (R., C.).
- N.N'-Bis-[2-nitro-toluol-sulfonyl-(4)]-m-phenylendiamin $C_{20}H_{18}O_8N_4S_2=C_6H_4[NH\cdot SO_2\cdot C_6H_3(NO_2)\cdot CH_3]_2$. B. Durch Zufügen einer äther. Lösung von 2 Mol.-Gew. 2-Nitro-toluol-sulfonsäure-(4)-chlorid (Bd. XI, S. 111) zu einer Lösung von 1 Mol.-Gew. salzsaurem m-Phenylendiamin in Natriumcarbonat (R., C., B. 34, 3002). Krystalle (aus verd. Alkohol). F: 197° (R., C., B. 35, 314). Leicht löslich in Alkohol und Aceton, ziemlich in heißem Benzol, schwer in Chloroform, unlöslich in Wasser und Ligroin (R., C., B. 34, 3002).
- N-Benzolsulfonyl-N-methyl-m-phenylendiamin $C_{13}H_{14}O_2N_3S = H_4N \cdot C_6H_4 \cdot N(CH_3) \cdot SO_2 \cdot C_6H_5$. B. Aus Benzolsulfonsäure-[N-methyl-3-nitro-anilid] (Bd. XII, S. 710) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwait, Soc. 87, 85). Farblose Nadeln (aus Wasser und Alkohol). F: 96°.
- N.N' Dibenzolsulfonyl N.N' diäthyl m phenylendiamin $C_{22}H_{24}O_4N_2S_2 = C_6H_4[N(C_2H_5)\cdot SO_2\cdot C_6H_5]_2$. B. Aus N.N'-Dibenzolsulfonyl-m-phenylendiamin, Athyljodid und Natriumäthylat in Alkohol bei 110° (HINSBERG, KESSLER, A. 340, 120). Krystalle. F: 105°. Leicht löslich in organischen Mitteln.
- N.N'-Dithionyl-m-phenylendiamin $C_6H_4O_2N_2S_2=C_6H_4(N:SO)_2$. B. Beim Kochen von 12 g m-Phenylendiamin, gelöst in Benzol, mit 22 g SOCl₂ (MICHAELIS, A. 274, 259). Gelbe Nadeln (aus Petroläther). F: 44°.

- N.N.N'.N'-Tetrabenzolsulfonyl-m-phenylendiamin $C_{30}H_{34}O_8N_2S_4 = C_6H_4[N(SO_2 \cdot C_6H_5)_2]_2$. B. Durch längeres Schütteln des N.N'-Dibenzolsulfonyl-m-phenylendiamins mit wenig KOH und viel Benzolsulfochlorid (HINSBERG, KESSLER, B. 38, 911). Blättchen (aus Aceton). F: 217°. Leicht löslich in Aceton, Chloroform, ziemlich schwer löslich in Alkohol, Ather, Eisessig.
- N'-Nitroso-N.N.N'-trimethyl-m-phenylendiamin, [3-Dimethylamino-phenyl]-methyl-nitrosamin $C_9H_{13}ON_3=(CH_3)_2N\cdot C_6H_4\cdot N(NO)\cdot CH_3$. B. Entsteht neben anderen Verbindungen beim Eintröpfeln einer Lösung von 5 Tln. NaNO₂ in die eiskalte Lösung von 10 Tln. N.N.N'-Trimethyl-m-phenylendiamin in 100 Tln. $10^0/_0$ iger Schwefelsäure (O. FISCHER, A. 286, 168). Hellgelbes Öl. Wandelt sich beim Erhitzen des salzsauren Salzes mit Alkohol in das isomere 2-Dimethylamino-chinon-methylimid-(4)-oxim-(1) bezw. N¹.N³.N³-Trimethyl-4-nitroso-phenylendiamin-(1.3) (Syst. No. 1874) um. $C_9H_{13}ON_3 + HCl$. Blättchen.
- N.N'-Dinitroso-N.N'-dimethyl-m-phenylendiamin, m-Phenylen-bis-[methyl-nitrosamin] $C_8H_{10}O_2N_4=C_8H_4[N(NO)\cdot CH_8]_2$. B. Entsteht neben anderen Produkten in geringer Ausbeute beim Eintröpfeln einer Lösung von 5 Tln. NaNO₂ in die eiskalte Lösung von N.N.N'-Trimethyl-m-phenylendiamin in 100 Tln. $10^9/_0$ iger Schwefelsäure (O. FISCHER, A. 286, 168). Aus N.N'-Dimethyl-m-phenylendiamin und HNO₂ (O. F.). Blättchen (aus Alkohol). F: $109-110^9$.
- N.N'-Dinitroso-N.N'-diphenyl-m-phenylendiamin, m-Phenylen-bis-[phenyl-nitrosamin] $C_{18}H_{14}O_2N_4=C_6H_4[N(NO)\cdot \hat{C}_6H_5]_2$. B. Man versetzt eine alkoh. Lösung von N.N'-Diphenyl-m-phenylendiamin mit 2 Mol.-Gew. Salzsäure und dann mit etwas mehr als 2 Mol.-Gew. Natriumnitrit und mit wenig Äther (CALM, B. 16, 2798). Gelbe Nadeln (aus Äther-Alkohol). F: 102°. Leicht löslich in Alkohol, Äther, Benzol und Eisessig, kaum in Ligroin. Löslich in konz. Schwefelsäure mit violettblauer Farbe.
- N.N'-Dinitroso-N.N'-di-p-tolyl-m-phenylendiamin, m-Phenylen-bis-[p-tolyl-nitrosamin] $C_{20}H_{18}O_2N_4=C_6H_4[N(NO)\cdot C_6H_4\cdot CH_3]_2$. B. Beim Versetzen einer eisessigsauren Lösung von N.N'-Di-p-tolyl-m-phenylendiamin mit 2 Mol.-Gew. NaNO₂ (HATSCHEK, ZEGA, J. pr. [2] 33, 223). Gelbe Nadeln (aus Benzol + Alkohol). Zersetzt sich unter Aufschäumen gegen 150°. Ziemlich wenig löslich in kaltem Alkohol und Benzol.
- N.N'-Dinitro-m-phenylendiamin (?), m-Phenylen-bis-nitramin (?) $C_6H_6O_4N_4=C_6H_4(NH\cdot NO_2)_2$ (?) s. Syst. No. 2220.

Substitutions produkte des m-Phenylendiamins.

- 4-Chlor-1.3-diamino-benzol, 4-Chlor-phenylendiamin-(1.3) C₆H₇N₂Cl = H₂N·C₆H₃Cl·NH₂. B. Aus 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) mit Zinnehlorür und Salzsäure (Beilstein, Kurbatow, ж. 11, 370; A. 197, 76; Cohn, Fischer, M. 21, 268) oder mit Eisen und Salzsäure (Morgan, Soc. 77, 1206). Platten oder Nadeln (aus Chloroform). Rhombisch bipyramidal (v. Lang, Sitzungsber. K. Akad. Wiss. Wien [math.-naturw. Kl.] 111 IIa, 1172; Z. Kr. 40, 624; vgl. Groth, Ch. Kr. 4, 277). F: 91° (C., F.). Leicht löslich in Alkohol, schwer in Wasser, sehr schwer in Ligroin (B., K.). Die heiße wäßr. Lösung reduziert Silbernitrat und wird, angesäuert, durch FeCl₃ oder K₂Cr₂O₇ orange-, kirsch- und schließlich dunkelrot gefärbt (C., F.). Durch Austausch der NH₂-Gruppen gegen Chlor nach dem Sandmeyerschen Verfahren entsteht 1.2.4-Trichlor-benzol (Bd. V, S. 204) (C., F.). Salze: C., F. C₆H₇N₂Cl + HCl. Nädelchen. Zersetzt sich gegen 205°. Leicht löslich in Wasser. C₆H₇N₂Cl + H₂SO₄. Nadeln (aus heißem Wasser). Zersetzt sich gegen 155°. Tartrat C₆H₇N₂Cl + C₄H₆O₆. Nadeln (aus heißem Alkohol). 2C₆H₇N₂Cl + 2 HCl + PtCl₄. Krystalle.
- Monoacetylderivat $C_8H_9ON_2Cl = H_2N \cdot C_8H_3Cl \cdot NH \cdot CO \cdot CH_3$. B. Aus 4-Chlorphenylendiamin-(1.3) mit Essigsäureanhydrid und Natronlauge (Cohn, Fischer, M. 21, 273). Nadeln (aus heißem Wasser). F: 170°. Schwer löslich in kaltem Wasser, leicht in heißem Wasser und Alkohol.
- N.N'-Diacetylderivat $C_{10}H_{11}O_2N_2Cl = C_6H_3Cl(NH\cdot CO\cdot CH_3)_2$. B. Man fügt 28 g 4-Chlor-phenylendiamin-(1.3) zu der Mischung von 15 g Eisessig und 50 g Essigsäureanhydrid (Morgan, Soc. 77, 1206). Krystalle (aus Wasser). F: 242—243°.
- N.N'-Dibenzoylderivat $C_{20}H_{15}O_2N_2Cl = C_0H_3Cl(NH\cdot CO\cdot C_0H_5)_2$. B. Aus 4-Chlorphenylendiamin-(1.3) mit Benzoylchlorid und Natronlauge (Cohn, Fischer, M. 21, 274; Morgan, Soc. 77, 1206). Nadeln (aus Chloroform oder Benzol). F: 178° (C., F.; M.). Leicht löslich in Benzol, Alkohol und Chloroform, schwer in Ather, unlöslich in Wasser (C., F.).

- N^1 -p-Toluolsulfonyl-4-chlor-phenylen diamin-(1.3) $C_{13}H_{13}O_1N_2ClS = H_2N\cdot C_6H_3Cl\cdot NH\cdot SO_3\cdot C_6H_4\cdot CH_3$. B. Aus p-Toluolsulfonsäure-[4-chlor-3-nitro-anilid] (Bd. XII, S. 732) durch Reduktion (Akt.-Ges. f. Anilinf., D. R. P. 135016; C. 1902 II, 1166). F: 128°.
- N.N'-Di-p-toluolsulfonyl-4-chlor-phenylendiamin-(1.3) $C_{20}H_{19}O_4N_2ClS_9 = C_6H_3Cl(NH\cdot SO_2\cdot C_6H_4\cdot CH_3)_2$. B. Aus 1 Mol.-Gew. 4-Chlor-phenylendiamin-(1.3) und 2 Mol.-Gew. p-Toluolsulfochlorid in Gegenwart der entsprechenden Menge Soda (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517). Weiße Prismen. F: 215°.
- 4 oder 6-Chlor-3-amino-phenylsulfamidsäure $C_6H_7O_3N_2ClS = H_2N \cdot C_6H_3Cl \cdot NH \cdot SO_3H$. B. Aus 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) durch Reduktion mit hydroschwefligsaurem Natrium $Na_2S_2O_4$ in Wasser bei $80-85^\circ$ in Gegenwart von Na_3PO_4 in geringer Menge, neben viel m-Phenylendiamin (Seyewetz, Noel, Bl. [4] 3, 499). $NaC_6H_6O_3N_2ClS$. Weiße Blättchen. Sehr leicht löslich in Wasser und absol. Alkohol, unlöslich in Äther, Benzol Chloroform und Ligroin.
- 5-Chlor-1.3-diamino-benzol, 5-Chlor-phenylendiamin-(1.3) $C_0H_7N_2Cl = H_1N \cdot C_0H_3Cl \cdot NH_2$. B. Durch Reduktion des 5-Chlor-1.3-dinitro-benzols (Bd. V, S. 264) mit Zinnchlorür und Salzsäure unter Zusatz von etwas metallischem Zink (Cohn, M. 22, 119). Krystalle (aus Alkohol). Rhombisch (v. Lang, Sitzungsber. K. Akad. Wiss. Wien [mathem.naturw. Kl.] 111 Ha, 1173; Z. Kr. 40, 625). F: 105—106°; leicht löslich in Alkohol, Äther und Benzol, schwer in kaltem, leichter in heißem Wasser (C.). Gibt, diazotiert und mit CuCl+HCl behandelt, 1.3.5-Trichlor-benzol (Bd. V, S. 204) (C.). Hydrochlorid. Nädelchen. Sehr leicht löslich in Alkohol und Wasser, unlöslich in Äther und Benzol (C.). Sulfat. Hellbraune Nädelchen (C.). Chloroplatinat. Dunkelgelbe Nädelchen (C.).
- N.N'-Diacetylderivat $C_{10}H_{11}O_2N_2Cl = C_6H_3Cl(NH\cdot CO\cdot CH_3)_2$. B. Durch Erwärmen des 5-Chlor-phenylendiamins-(1.3) mit *überschüssigem Essigsäureanhydrid (Cohn, M. 22, 121). Krystalle (aus Nitrobenzol). Ist bei 300° noch nicht geschmolzen.
- N.N'-Dibenzoylderivat $C_{20}H_{15}O_2N_2Cl=C_6H_3Cl(NH\cdot CO\cdot C_6H_5)_2$. B. Durch Auflösen des 5-Chlor-phenylendiamins-(1.3) in überschüssigem Benzoylchlorid (Cohn, M. 22, 121). Krystalle (aus Nitrobenzol). F: $254-255^{\circ}$.
- 2.5-Dichlor-1.3-diamino-benzol, 2.5-Dichlor-phenylendiamin-(1.3) $C_8H_8N_8Cl_8=H_2N\cdot C_6H_2Cl_2\cdot NH_2$. B. Aus 2.5-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) durch Reduktion mit Eisen und Salzsäure (Morgan, Soc. 81, 1382) oder mit Zinn und Salzsäure (Hartley, Cohen, Soc. 85, 868). Farblose Nadeln (aus Wasser). F: 99—100° (M.). Leicht löslich in heißem Wasser (M.), löslich in Alkohol (H., C.). Verwendung zur Darstellung von Monoazofarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 177623; C. 1908 II, 1793.
- N.N'-Diacetylderivat $C_{10}H_{10}O_2N_2Cl_2 = C_6H_2Cl_2(NH\cdot CO\cdot CH_3)_2$. B. Aus 2.5-Dichlorphenylendiamin-(1.3) und überschüssigem Essigsäureanhydrid (Morgan, Soc. 81, 1383). Weiße Nadeln (aus Alkohol). Schmilzt oberhalb 260°.
- N.N'-Dibenzoylderivat $C_{20}H_{14}O_2N_2Cl_2 = C_6H_2Cl_2(NH\cdot CO\cdot C_6H_5)_2$. B. Aus 2.5-Dichlor-phenylendiamin-(1.3) und Benzoylchlorid nach Schotten-Baumann (Morgan, Soc. 81, 1383). Prismen (aus Essigester). F: 220°.
- 4.6-Dichlor-1.3-diamino-benzol, 4.6-Dichlor-phenylendiamin-(1.3) $C_0H_0N_2Cl_2 = H_2N \cdot C_0H_2Cl_2 \cdot NH_2$. B. Das Diacetylderivat (s. u.) entsteht aus N.N'-Diacetyl-m-phenylendiamin (S. 46) durch Chlorieren in Eisessig (Morgan, Soc. 77, 1207), aus N.N'-Diacetyl-chlor-phenylendiamin-(1.3) (S. 53) durch Chlorieren in Eisessig (M., Soc. 77, 1206), ferner aus N.N'-Dichlor-N.N'-diacetyl-m-phenylendiamin (S. 52) durch Kochen mit Eisessig (M., Soc. 77, 1208). Aus dem Diacetylderivat erhält man das 4.6-Dichlor-phenylendiamin-(1.3) durch Kochen mit Natronlauge oder durch Einw. von heißer alkoh. Salzsäure (M., Soc. 77, 1206). Farblose Nadeln (aus verd. Alkohol). F: 136—137° (M., Soc. 77, 1207). Gibt beim Austausch von NH₂ durch Cl nach dem Sandmeyerschen Verfahren 1.2.4.5-Tetrachlorbenzol (Bd. V, S. 205) (M., Soc. 77, 1208). Verhalten zu Diazoverbindungen: M., Soc. 81, 97.
- N.N'-Diacetylderivat $C_{10}H_{10}O_2N_2Cl_2 = C_6H_2Cl_2(NH\cdot CO\cdot CH_3)_2$. B. s. im vorangehenden Artikel. Krystalle (aus Benzol). F: oberhalb 260° (Morgan, Soc. 77, 1206).
- N.N'-Dibenzoylderivat $C_{20}H_{14}O_2N_2Cl_2 = C_6H_2Cl_2(NH\cdot CO\cdot C_6H_5)_2$. Nadeln (aus Benzol oder Chloroform). F: 187° (M., Soc. 77, 1208).
- N.N'-Dichlor-N.N'-diacetyl-4.6-dichlor-phenylendiamin-(1.3), N.N'-Diacetyl-N.N'.4.6-tetrachlor-phenylendiamin-(1.3) $C_{10}H_8O_2N_2Cl_4 = C_6H_2Cl_2(NCl\cdot CO\cdot CH_3)_2$. B.

¹⁾ Vgl. hierzu nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] MACLEOD, PFUND, KILPATRICK, Am. Soc. 44 [1922], 2260, 2270.

Man suspendiert N.N'-Diacetyl-4.6-dichlor-phenylendiamin-(1.3) (S. 54) in Chloroform und schüttelt mit einer Losung von unterchloriger Säure, die mit KHCO₃ versetzt ist (CHATTAWAY, ORTON, B. 34, 162, 164). — Prismen. F: 127°. Zersetzt sich bei ca. 240°. — Beim Erhitzen mit Eisessig entsteht N.N'-Diacetyl-4.6-dichlor-phenylendiamin-(1.3).

4-Brom-1.3-diamino-benzol, 4-Brom-phenylendiamin-(1.3) $C_6H_7N_2Br=H_2N\cdot C_6H_3Br\cdot NH_2$. B. Durch Reduktion von 4-Brom-1.3-dinitro-benzol (Bd. V, S. 266) mit Eisenfeilspänen, Wasser und sehr wenig Salzsäure (MORGAN, Soc. 77, 1204). — Prismatische Krystalle (aus Benzol). F: 111—112°. Leicht löslich in heißem, schwer in kaltem Wasser. — Wird an der Luft leicht oxydiert.

N.N'-Diacetylderivat $C_{10}H_{11}O_2N_2Br = C_0H_3Br(NH\cdot CO\cdot CH_3)_2$. B. Aus 4-Bromphenylendiamin-(1.3) und einem Gemisch gleicher Gewichtsteile Eisessig und Essigsäureanhydrid (M., Soc. 77, 1205). — Nadeln (aus Chloroform oder aus Benzol). F: 197—198°.

N.N'-Dibenzoylderivat $C_{20}H_{15}O_2N_2Br = C_6H_2Br(NH\cdot CO\cdot C_6H_5)_2$. B. Aus 4-Bromphenylendiamin-(1.3) und Benzoylchlorid nach Schotten-Baumann (M., Soc. 77, 1205).

— Nadeln (aus Benzol oder aus Chloroform). F: 178,5°.

[d-Camphersäure]-a-[4-brom-3-amino-anilid], N-[4-Brom-3-amino-phenyl]-a-campheramidsäure $C_{16}H_{21}O_3N_2Br = H_2C - C(CH_3)(CO_2H) - C(CH_3)(CO_2H) - C(CH_3)_2$. B. Aus N-[4-Brom-3-nitro-phenyl]-a-campheramidsäure (Bd. XII, S. 739) in wäßr. Ammoniak mit FeSO₄ (Wootton, Soc. 91, 1896). — Farblose Nadeln (aus verd. Alkohol). F: 207—208°. [a]₀: $+40,7^{\circ}$ (0,4878 g in 25 ccm absol. Alkohol). Leicht löslich in wäßr. Alkalien und Alkalicarbonaten, weniger in konz. Salzsäure. — Gibt ein Acetylderivat vom Schmelzpunkt 217° his 210°

5-Brom-1.8-diamino-benzol, 5-Brom-phenylendiamin-(1.3) $C_6H_7N_2Br=H_2N\cdot C_6H_3Br\cdot NH_2$. B. Beim Behandeln von 2.4.5-Tribrom-1.3-dinitro-benzol (Bd. V, S. 269) oder von 2.4.5-Tetrabrom-1.3-dinitro-benzol (Bd. V, S. 269) mit Zinn und Salzsäure (Jackson, Gallivan, B. 28, 190; Am. 18, 242; Jackson, Calvert, Am. 18, 486). — Prismen (aus Alkohol). F: 93—94° (J., G.; J., C.). Unlöslich in Ligroin, schwer löslich in CS₂ und Benzol, leicht in Alkohol, Ather, Chloroform und Aceton (J., C.). — $C_6H_7N_2Br+2HBr$. Mikroskopische Würfel. Leicht löslich in Wasser (J., C.).

4.6-Dibrom-1.3-diamino-benzol, 4.6-Dibrom-phenylendiamin-(1.3) C₆H₆N₂Br₂ = H₂N·C₆H₂Br₂·NH₂. B. Durch Reduktion von 4.6-Dibrom-1.3-dinitro-benzol (Bd. V, S. 268) mit Zinkstaub und 85°/ciger Essigsäure (Jackson, Cohoe, Am. 26, 3, 9). Das Diacetylderivat entsteht aus m-Phenylendiamin durch Versetzen mit Essigsäureanhydrid in Äther und Schütteln des Reaktionsproduktes mit Bromwasser (Jackson, Calvert, Am. 18, 481) oder aus N.N'-Diacetyl-m-phenylendiamin durch Bromierung in warmem Eisessig (Morgan, Wootton, Soc. 87, 937) oder aus N.N'-Diacetyl-4-brom-phenylendiamin-(1.3) durch Bromieren in Eisessig (Morgan, Soc. 77, 1208); man verseift das Diacetylderivat durch Kochen mit konz. Salzsäure (J., Ca.; M.) oder mit alkoh. Kali (M., W.). — Nadeln (aus verd. Alkohol). F: 135° (J., Ca.; M., W.). Sehr schwer löslich in Ligroin, schwer in CS₂, leicht in Ather und Alkohol, sehr leicht in Aceton (J., Ca.). — Nach Austausch von NH₂ gegen Brom nach dem Sandmeyerschen Verfahren resultiert 1.2.4.5-Tetrabrom-benzol (Bd. V, S. 214) (M.). — C₂H₆N₂Br₂ + HCl. B. Durch Einleiten von HCl in eine Lösung von 4.6-Dibrom-phenylendiamin-(1.3) in Benzol (J., Ca.). Niederschlag. Verliert bei 100° nur allmählich HCl. — C₆H₆N₂Br₂ + HBr. Nadeln. Beständiger als das Hydrochlorid (J., Ca.).

N.N.N.N.N. Tetramethyl - 4.6 (P) - dibrom - phenylendiamin - (1.3) $C_{10}H_{14}N_1Br_2 = C_0H_2Br_2[N(CH_3)_2]_2$. B. Beim Versetzen einer salzsauren Lösung von N.N.N.N. Tetramethyl-m-phenylendiamin (S. 40) mit Brom (Wuester, Morley, B. 12, 1815). — Nicht unzersetzt siedendes Öl. — $C_{10}H_{14}N_2Br_2 + 2HCl$.

N.N'-Diacetyl-4.6-dibrom-phenylendiamin-(1.3) $C_{10}H_{10}O_2N_2Br_3=C_0H_2Br_3(NH\cdot CO\cdot CH_3)_2$. B. s. in Artikel 4.6-Dibrom-phenylendiamin-(1.3). — Prismen (aus kalten Alkohol). Schmilzt bei 259—260° unter Zersetzung; unlöslich in Äther und Ligroin, sehr schwer löslich in kalten Alkohol, sehr leicht in Chloroform, Schwefelkohlenstoff und Benzol (Jackson, Calvert, Am. 18. 481).

N.N'-Dichlor-N.N'-diacetyl-4.6-dibrom-phenylendiamin-(1.3) $C_{10}H_3O_2N_2Cl_2Br_2 = C_6H_2Br_4(NCl\cdot CO\cdot CH_2)_2$. B. Man suspendiert N.N'-Diacetyl-4.6-dibrom-phenylendiamin-(1.3) (s. o.) in Chloroform und schüttelt mit einer Lösung von unterchloriger Säure, die mit KHCO₂

versetzt ist (Chattaway, Orton, B. 34, 164). — Prismen. F: 181⁶. Zersetzt sich bei 220⁶ bis 230⁶.

N-Brom-N.N'-diacetyl-4.6-dibrom-phenylendiamin-(1.3), N.N'-Diacetyl-N.4.6-tribrom-phenylendiamin-(1.3) $C_{10}H_{9}O_{2}N_{2}Br_{3}=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{2}Br_{2}\cdot NBr\cdot CO\cdot CH_{3}$. B. Durch Zufügen einer alkoh. Lösung von N.N'-Diacetyl-m-phenylendiamin (S. 46) zu einer eiskalten, nur wenig KHCO₃ enthaltenden Lösung von unterbromiger Säure (CH., O., B. 34, 165). — Hellgelber Niederschlag. Schmilzt bei 60—70° unter teilweiser Zersetzung. Wird von Wasser oder Eisessig rasch hydrolysiert.

N.N'-Dibrom-N.N'-diacetyl-4.6-dibrom-phenylendiamin-(1.3), N.N'-Diacetyl-N.N'.4.6-tetrabrom-phenylendiamin-(1.3) $C_{10}H_8O_2N_3Br_4=C_6H_3Br_2(NBr\cdot CO\cdot CH_3)_2$. B. Durch Schütteln von in Chloroform suspendiertem N.N'-Diacetyl-m-phenylendiamin mit einer überschüssiges Kaliumdicarbonat enthaltenden Lösung von unterbromiger Saure (Ch., O., B. 34, 165). — Schwefelgelbe Prismen. F: 172° (Zers.).

2.4.6-Tribrom-1.3-diamino-benzol, 2.4.6-Tribrom-phenylendiamin-(1.3) $C_8H_8N_1Br_3=H_2N\cdot C_6HBr_3\cdot NH_2$. B. Beim Einleiten von bromhaltiger Luft in eine wäßr. Lösung von m-Phenylendiamin oder eines Salzes desselben (Jackson, Calvert, Am. 18, 470). Entsteht neben m-Phenylendiamin beim Behandeln von 2.4.6-Tribrom-1.3-dinitro-benzol (Bd. V, S. 269) mit Zinkstaub und $80^{\circ}/_{\circ}$ iger Essigsäure (J., C.). — Nadeln (aus Alkohol). F: 158°. Sehr schwer löslich in Ligroin, leicht in Äther, Chloroform und Benzol. — Wird von Zinn und Salzsäure in m-Phenylendiamin übergeführt. Wird von Natriumäthylat nicht angegriffen. — $C_6H_5N_2Br_3+HCl$. B. Entsteht durch Einleiten von HCl in eine Benzollösung von 2.4.6-Tribrom-phenylendiamin-(1.3) (J., C.). Verliert schon an der Luft HCl.

2'.4'.6' (?)-Tribrom-2.6-dinitro-3'-amino-4-methyl-diphenylamin $C_{13}H_9O_4N_4Br_3=H_2N\cdot C_6HBr_3\cdot NH\cdot C_6H_2(NO_2)_2\cdot CH_3$ (?) B. Aus 2.6-Dinitro-3'-amino-4-methyl-diphenylamin (S. 42) und Bromwasser (Jackson, Ittner, Am. 19, 27). — Bräunlichgelbe Tafeln (aus Benzol). F: 222°; fast unlöslich in Alkohol und Ligroin, mäßig löslich in Benzol, Chloroform, CS_2 und Äther (J., I., Am. 19, 28). Leicht löslich in Aceton. Gibt mit Natriumäthylat eine unbeständige purpurblaue Färbung (J., I., Am. 19, 199, 206).

N.N.-Diacetyl-2.4.6-tribrom-phenylendiamin-(1.3) $C_{10}H_0O_2N_0Br_3=C_6HBr_3(NH\cdot CO\cdot CH_3)_2$. B. Aus 2.4.6-Tribrom-phenylendiamin-(1.3) und Acetylchlorid in Benzol (Jackson, Calvert, Am. 18, 473). — Täfelchen (aus Eisessig). Schmilzt nicht bei 330°. Sehr schwer löslich.

[2.4.6-Tribrom-phenylen-(1.3)]-di-urethan $C_{12}H_{13}O_4N_2Br_3 = C_6HBr_3(NH\cdot CO_2\cdot C_2H_5)_2$. B. Bei 3-stdg. Kochen von 2.4.6-Tribrom-phenylendiamin-(1.3) mit dem Doppelten der berechneten Menge von Chlorameisensäureester (Jackson, Calvert, Am. 18, 474). — Nadeln (aus verd. Alkohol). F: 212°. Unlöslich in Ligroin, schwer löslich in CS_2 , leicht in Chloroform und Aceton.

2.4.5.6-Tetrabrom-1.3-diamino-bensol, 2.4.5.6-Tetrabrom-phenylendiamin-(1.3) $C_6H_4N_2Br_4=H_2N\cdot C_6Br_4\cdot NH_2$. B. Aus 5-Brom-phenylendiamin-(1.3) (S. 55), gelöst in Äther, und Brom (Jackson, Gallivan, Am. 18, 242; Jackson, Calvert, Am. 18, 489). — Nådelchen (aus Chloroform + Ligroin). F: 212—213°; unlöslich in kaltem Ligroin, wenig löslich in kaltem Alkohol, leicht in Äther, Chloroform und Benzol (J., C.).

4.6-Dijod-l.3-diamino-benzol, 4.6-Dijod-phenylendiamin-(1.3) $C_6H_6N_2I_2=H_2N\cdot C_6H_2I_2\cdot NH_2$. B. Aus 18 g salzsaurem m-Phenylendiamin in 40 ccm Wasser mit 50 g Natriumacetat und einer Lösung von 51 g Jod in 210 ccm heißem Alkohol (Morgan, Wootton, Soc. 87, 938). — Gelbe Nadeln (aus Benzol). F: 81°. Zersetzt sich bei 83°. Löslich in Alkohol und Äther. — Pikrat. Nadeln (aus Alkohol).

[4.6-Dijod-phenylen-(1.3)]-bis-[ω -phenyl-harnstoff] $C_{20}H_{10}O_{2}N_{4}I_{2}=C_{6}H_{2}I_{2}(NH-CO\cdot NH\cdot C_{6}H_{2})_{2}$. B. Aus 4.6-Dijod-phenylendiamin-(1.3) und Phenylisocyanat in heißem Behzol (M., W., Soc. 87, 939). — Amorph. Zersetzt sich bei 200—203°. Schwer löslich in den meisten Lösungsmitteln.

4-Nitroso-1.8-diamino-bensol, 4-Nitroso-phenylendiamin-(1.8) $C_6H_7ON_2=ON\cdot C_6H_3(NH_2)_2$ ist desmotrop mit 2-Amino-p-chinon-imid-(4)-oxim-(1) $HO\cdot N:C_6H_3(NH_2):NH$, Syst. No. 1874.

N.N'-Dimethyl-4-nitroso-phenylendiamin-(1.3) $C_8H_{11}ON_3 = ON \cdot C_9H_3(NH \cdot CH_3)_2$ ist desmotrop mit 2-Methylamino-p-chinon-methylimid-(4)-oxim-(1) $HO \cdot N : C_9H_3(NH \cdot CH_3) : N \cdot CH_3$, Syst. No. 1874.

 $N^1.N^3.N^3-Trimethyl-4-nitroso-phenylendiamin-(1.8)$ $C_9H_{13}ON_3 = ON \cdot C_6H_3(NH \cdot CH_3) \cdot N(CH_3)_3$ ist desmotrop mit 2-Dimethylamino-p-chinon-methylimid-(4)-oxim-(1) $HO \cdot N$:

 $C_6H_3(:N\cdot CH_3)\cdot N(CH_3)_2$, Syst. No. 1874.

N.N.N.N.N.N. Tetramethyl - 4 - nitroso - phenylendiamin - (1.3) $C_{10}H_{15}ON_3 = ON \cdot C_6H_3[N(CH_3)_2]_2$. B. Das Hydrochlorid scheidet sich aus beim Eintröpfeln einer mäßig verdünnten Lösung von Natriumnitrit in eine abgekühlte Lösung von N.N.N. Tetramethylm-phenylendiamin (S. 40) in verd. Salzsäure (Witt, B. 18, 877). Man erhält die freie Base, indem man das Hydrochlorid in eiskaltem Wasser aufschwemmt, abwechselnd Natronlauge hinzufügt und mit Essigester ausschüttelt (Sachs, Appenzeller, B. 41, 111). — Grünschwarze, in der Durchsicht grüngelbe Krystalle (aus Essigester). F: 99°; in der Wärme meist leicht löslich mit grüngelber Farbe, schwer löslich in Äther, unlöslich in Petroläther und Ligroin; die wäßrige und die alkoholische Lösung sind gelbrot (S., A.). — Wird durch Reduktion mit Zinnchlorür und Salzsäure in 1-Amino-2.4-bis-dimethylamino-benzol (Syst. No. 1800) übergeführt (Pinnow, Wegner, B. 30, 3111). Reagiert auf Verbindungen mit reaktionsfähigen Methyloder Methylengruppen unter Bildung von Azomethinen (S., A.). — $C_{10}H_{15}ON_3 + HCl$. Tiefgranatrote Naclen. Löslich in Wasser mit weinroter Farbe (Witt). — Pikrat. $C_{10}H_{15}ON_3 + C_6H_3O_7N_3$. Dunkelviolette Krystalle (aus Alkohol). F: 169° (S., A.).

N.N'-Diphenyl-4-nitroso-phenylendiamin-(1.3) $C_{18}H_{15}ON_3 = ON \cdot C_6H_3(NH \cdot C_6H_5)_2$ ist desmotrop mit 2-Anilino-p-chinon-anil-(4)-oxim-(1) $HO \cdot N : C_6H_3(NH \cdot C_6H_5) : N \cdot C_6H_5$, Syst. No. 1874.

N.N'-Dibensal-4-nitroso-phenylendiamin-(1.3) $C_{20}H_{15}ON_3 = ON \cdot C_6H_3(N:CH\cdot C_6H_5)_2$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Syst. No. 1874, bei 2-Amino-p-chinon-imid-(4)-oxim-(1).

4-Nitro-1.3-diamino-bensol, 4-Nitro-phenylendiamin-(1.3) $C_6H_7O_2N_3 = H_2N \cdot C_6H_3(NO_2) \cdot NH_2$. B. Man trägt N.N'-Diacetyl-m-phenylendiamin (S. 46), gelöst in Eisessig, in rauchende Salpetersäure (Barbaglia, B. 7, 1259) oder in fester Form in kalte abgeblasene Salpetersäure (Borgan, Wootton, Soc. 87, 941); das entstandene N.N'-Diacetyl-4-nitro-phenylendiamin-(1.3) verseift man mit konz. Natronlauge (Bar.; M., W.). Man nitriert N.N'-Di-p-toluolsulfonyl-m-phenylendiamin (S. 52) mit verd. Salpetersäure mit oder ohne Zusatz eines Lösungsmittels in der Wärme und verseift das entstandene N.N'-Di-p-toluolsulfonyl-4-nitro-phenylendiamin-(1.3) mit konz. Schwefelsäure (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517). Aus 4-Nitroso-1.3-diamino-benzol (bezw. Amino-chinon-imid-oxim, Syst. No. 1874) und H₂O₂ unter Zusatz von etwas Ammoniak (Bertels, B. 37, 2277). Aus 4-Nitro-anilin-sulfonsäure-(3) (Syst. No. 1923) durch Erhitzen mit wäßr. Ammoniak unter Druck auf 170—180° (Akt.-Ges. f. Anilinf., D. R. P. 130438; C. 1902 I, 1083). — Gelbrote, blauglänzende Prismen aus Wasser. F. 161° (Bar.), 159° (M., W.), 157° (Br.). Löslich in Wasser, viel leichter in Alkohol und Äther (Bar.). — Zerfällt bei anhaltendem Kochen mit Natronlauge unter Abspaltung von Ammoniak (Bar.). — 4-Nitro-phenylendiamin-(1.3) dient zur Darstellung von Pyraminorange (Schultz, Tab. No. 306, 314). Über weitere Verwendung zur Herstellung von Azofarbstoffen vgl. Schultz, Tab. No. 191, 286, 360; vgl. salver & Co., D. R. P. 97714, 164990; C. 1898 II, 692; 1905 II, 1760; Höchster Farbw., D. R. P. 126607; C. 1902 I, 84.

N¹-N¹-Dimethyl-4-nitro-phenylendiamin-(1.3) $C_8H_{11}O_9N_3=H_2N\cdot C_6H_3(NO_9)\cdot N(CH_3)_2$. B. Bei der Einw. von NH₃ auf N.N-Dimethyl-3.4-dinitro-anilin (Bd. XII, S. 758) (VAN ROMBURGH, R. 14, 69). — Verbindung mit 1.3.5-Trinitro-benzol $C_8H_{11}O_2N_3+C_6H_3O_6N_3$. Ziegelrote Nadeln (aus Alkohol). F: 130° (v. R., R. 14, 69).

N.N'-Diacetyl-4-nitro-phenylendiamin-(1.3) $C_{10}H_{11}O_4N_3 = O_5N \cdot C_6H_3(NH \cdot CO \cdot CH_3)_3$. B. s. im Artikel 4-Nitro-phenylendiamin-(1.3) (s. o.). — Nadeln (aus Alkohol). F: 246°; in kaltem Wasser fast unlöslich, ziemlich löslich in Äther und besonders in Eisessig (Barbaglia, B. 7, 1258); 10 g lösen sich in cs. 1000 ccm Alkohol (Galliner, B. 30, 1912). — Gibt bei der Reduktion mit SnCl₂ und der berechneten Menge Salssäure in alkoh. Lösung 5-Amino-2-methyl-benzimidasol (Syst. No. 3715) (G.). Beim Erhitzen mit Schwefel entsteht ein gelber Schwefelfarbstoff (Akt.-Ges. f. Anilinf., D. R. P. 147729; C. 1904 I, 235).

N.N'-Dibensoyl-4-nitro-phenylendiamin-(1.3) $C_{20}H_{15}O_4N_3 = O_2N \cdot C_6H_2(NH \cdot CO \cdot C_6H_5)_2$. B. Durch allmähliches Eintragen einer kalten eisessigsauren Lösung von N.N'-Dibensoyl-m-phenylendiamin (S. 47) in rauchende Salpetersäure (Ruhemann, B. 14, 2653). —

Gelbe, rosettenförmig vereinigte Nadeln (aus Eisessig). F: 222°. Schwer löslich in Alkohol. — Liefert beim Kochen in essigsaurer Lösung mit Zinn und Salzsäure 5-Benzamino-2-phenylbenzimidazol (Syst. No. 3719).

N.N'-Di-p-toluolsulfonyl-4-nitro-phenylendiamin-(1.3) $C_{20}H_{19}O_4N_2S_2=O_2N\cdot C_4H_3(NH\cdot SO_2\cdot C_4H_4\cdot CH_3)_2$. B. s. im Artikel 4-Nitro-phenylendiamin-(1.3) (S. 57). — Braungelbe Krystalle. F: 169°; schwer löslich in Wasser; leicht löslich in Alkali und kohlensauren Alkalien (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517).

 N^1 -Nitroso - N^1 -N 3 -N 3 -trimethyl - 4 - nitro - phenylendiamin - (1.3), [4-Nitro-3-dimethylamino-phenyl]-methyl-nitrosamin $C_0H_{12}O_3N_4=(CH_3)_2N\cdot C_0H_3(NO_2)\cdot N(NO)\cdot CH_3$. Beim Versetzen einer Lösung von N^1 -N 3 -N 3 -Trimethyl-4-nitroso-phenylendiamin-(1.3) (bezw. 2-Dimethylamino-p-chinon-methylimid-(4)-oxim-(1), Syst. No. 1874) in verd. Schwefelsäure mit Natriumnitritlösung (O. FISCHER, DIEPOLDER, A. 286, 172). — Gelbe Nadeln (aus Äther). F: 157°. Leicht löslich in Alkohol, Äther und Benzol.

5-Nitro-1.3-diamino-benzol, 5-Nitro-phenylendiamin-(1.3) $C_6H_7O_2N_3=H_2N\cdot C_6H_3(NO_2)\cdot NH_2$. B. Durch 3-stdg. Kochen von 3.5-Dinitro-anilin (Bd. XII, 8. 759) oder von symm. Trinitrobenzol (Bd. V, S. 271) mit alkoh. Schwefelammoniumlösung (Flürscheim, J. pr. [2] 71, 538). — Purpurrote Krystalle (aus Wasser). F: 140—141°.

N.N'-Diacetylderivat $C_{10}H_{11}O_4N_3=O_2N\cdot C_0H_{3}(NH\cdot CO\cdot CH_3)_2$. B. Aus 5-Nitrophenylendiamin-(1.3) und Essigsäureanhydrid (FLÜRSCHEIM, J. pr. [2] 71, 539). — Gelbliche Nadeln. Schmilzt oberhalb 270° unter Zersetzung. Löslich in Nitrobenzol, sonst unlöslich.

N.N.N'.N'-Tetraphenyl-x-nitro-phenylendiamin-(1.3) $C_{30}H_{23}O_2N_3=O_2N\cdot C_6H_3[N(C_6H_5)_2]_2$. B. Durch Einw. von Natriumnitrit auf in Eisessig gelöstes N.N.N'.N'-Tetraphenyl-m-phenylendiamin (S. 42) (Haeussermann, Bauer, B. 32, 1914; Haeussermann, B. 38, 939). — Bräunlichgelbe Nadeln (aus Eisessig). F: 186—187°; leicht löslich in Benzol, schwerer in Eisessig und Aceton, ziemlich schwer in Alkohol (H.).

- 5-Chlor-2-nitro-1.8-diamino-benzol, 5-Chlor-2-nitro-phenylendiamin-(1.3) $C_6H_6O_2N_3Cl = H_2N\cdot C_6H_2Cl(NO_2)\cdot NH_2$. B. Bei mehrtägigem Erhitzen von 2.4.6-Trichlor-1-nitro-benzol (Bd. V, S. 247) mit alkoh. Ammoniak auf 200° (Beilstein, Kurbatow, \mathcal{H} . 10, 331; A. 192, 233). Rote Nadeln (aus Ligroin). F: 192—194°. Leicht löslich in Alkohol, weniger in $50^\circ/_0$ iger Essigsäure oder Benzol, sehr schwer in Ligroin.
- 6-Chlor-4-nitro-1.3-diamino-benzol, 6-Chlor-4-nitro-phenylendiamin-(1.3) $C_6H_6O_2N_3Cl=H_2N\cdot C_6H_2Cl(NO_2)\cdot NH_2$. B. Aus dem Diacetylderivat (s. den folgenden Artikel) durch Verseifung mit n/2-Natronlauge (Morgan, Wootton, Soc. 87, 943). Goldgelbe Nadeln (aus Alkohol). F: 189—191°. Schwer löslich in kaltem Wasser.

N.N'-Diacetylderivat $C_{10}H_{10}O_4N_3Cl = O_2N\cdot C_8H_4Cl(NH\cdot CO\cdot CH_3)_2$. B. Aus N.N'-Diacetyl-4-nitro-phenylendiamin-(1.3) in Eisessig beim Einleiten von Chlor (M., W., Soc. 87, 943). Durch Nitrieren von N.N'-Diacetyl-4-chlor-phenylendiamin-(1.3) in Eisessig (M., W.). — Farblose Nadeln (aus Wasser). F: ca. 222°. Schwer löslich in den gebräuchlichen Lösungsmitteln.

N.N'-Di-p-toluolsulfonyl-6-chlor-4-nitro-phenylendiamin-(1.3) $C_{20}H_{18}O_6N_3ClS_2 = O_2N\cdot C_6H_2Cl(NH\cdot SO_2\cdot C_6H_4\cdot CH_3)_2$. B. Durch Nitrieren von N.N'-Di-p-toluolsulfonyl-4-chlor-phenylendiamin-(1.3) (S. 54) (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517). — Gelbe Prismen. F: 196°. Schwer löslich in Wasser; leicht in Alkalien und kohlensauren Alkalien.

- 5-Brom-2-nitro-1.8-diamino-benzol, 5-Brom-2-nitro-phenylendiamin-(1.3) $C_6H_6O_2N_3Br=H_2N\cdot C_6H_2Br(NO_2)\cdot NH_2$. B. Beim Erhitzen von 2.4.6-Tribrom-1-nitro-benzol (Bd. V, S. 251) mit alkoh. Ammoniak auf 170—180° (Körner, G. 4, 423; J. 1875, 353). Orangerote Nadeln. Erweicht und zersetzt sich bei ca. 163°. Gibt beim Erwärmen mit Athylnitrit p-Brom-nitrobenzol.
- 6-Brom-4-nitro-1.3-diamino-benzol, 6-Brom-4-nitro-phenylendiamin-(1.3) $C_6H_6O_2N_3Br=H_2N\cdot C_6H_2Br(NO_2)\cdot NH_2$. B. Aus dem Diacetylderivat (s. u.) durch Verseifung mit alkoh. Salzsäure (Morgan, Wootton, Soc. 87, 942). Goldgelbe Nadeln (aus Alkohol). F: 190—191°. Schwer löslich in kaltem Wasser, leicht in Alkohol.
- N.N'-Diacetylderivat $C_{10}H_{10}O_4N_3Br=O_2N\cdot C_6H_2Br(NH\cdot CO\cdot CH_3)_2$. B. Aus N.N'-Diacetyl-4-nitro-phenylendiamin-(1.3) in wenig Eisessig mit Brom (M., W., Soc. 87, 941). Aus N.N'-Diacetyl-4-brom-phenylendiamin-(1.3) mit Salpeterschwefelsäure bei —5° (M., W.). Prismen (aus Wasser). F: ca. 212°. Schwer löslich in den üblichen Lösungsmitteln.

- 2.6-Dibrom-4-nitro-1.3-diamino-bensol, 2.6-Dibrom-4-nitro-phenylendiamin-(1.3) $C_0H_5O_2N_3Br_2=H_2N\cdot C_0HBr_2(NO_2)\cdot NH_2$. B. Aus 3.4.5-Tribrom-1.2-dinitro-benzol (Bd. V, 8. 268) durch Erhitzen mit alkoh. Ammoniak im geschlossenen Rohr auf 100° (Jackson, Fiske, Am. 30, 76). Aus 4-Nitro-phenylendiamin-(1.3) in Eisessig mit Brom (Mogran, Wootton, Soc. 87, 942). Gelbe Nadeln (aus Alkohol). F: 190—191° (M., W.), 189—190° (J., F.). Sehr leicht löslich in Aceton, löslich in Athylalkohol, Methylalkohol, Chloroform, Eisessig, schwer löslich in Benzol, sehr wenig in Ligroin (J., F.).
- 2.4-Dinitro-1.3-diamino-benzol, 2.4-Dinitro-phenylendiamin-(1.3) $C_6H_6O_4N_4=H_2N\cdot C_6H_2(NO_2)_2\cdot NH_2$. B. Aus 2.4-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) durch alkoh. Ammoniak bei Zimmertemperatur (Körner, Contardi, R. A. L. [5] 18 I, 101). Aus 2.4-Dibrom-1.3-dinitro-benzol beim Erhitzen mit alkoh. Ammoniak bei 145° (K., C., R. A. L. [5] 17 I, 472). Bei 2-stdg. Erhitzen von 2.3.4-Trinitro-phenetol (Bd. VI, S. 264) mit überschüssigem alkoh. Ammoniak auf 170° (Blanksma, R. 27, 52). Bei 20-stdg. Erhitzen von 4 g 2.4-Dinitro-resorcin (Bd. VI, S. 827) und 15 ccm 27°/ $_{\rm o}$ igem Ammoniak auf 115° (Barr, B. 21, 1545). Aus m-Dinitro-benzol, Natriumäthylat und Hydroxylamin in Alkohol erhält man eine Verbindung $C_6H_6O_6N_4Na_2$ (Bd. V, S. 261), die beim Stehen in wäßrig-alkoholischer Lösung 2.4-Dinitro-phenylendiamin-(1.3) abscheidet (MEISENHEIMER, PATZIG, B. 39, 2538). Letzteres entsteht in analoger Weise auch aus 2.4-Dinitro-anilin (Bd. XII, S. 747) mit Hydroxylamin und Natriumäthylat in Alkohol (M., P.). Orangegelbe Nadeln (aus Alkohol), hellgelbbraune Nadeln (aus Eisessig). Schmilzt bei 260° (K., C., R. A. L. [5] 18 I, 101), 253—254° (M., P.), 250° (K., C., R. A. L. [5] 17 I, 472; Bl.), gegen 250° unter teilweiser Zersetzung (Barr). Schwer löslich in Alkohol, Äther, Benzol (Barr, M., P.).
- N.N'-Dimethyl-2.4-dinitro-phenylendiamin-(1.3) $C_0H_{10}O_4N_4 = (O_2N)_2C_0H_{10}(NH-CH_3)_2$. B. Aus 2.4-Dinitro-3-methylamino-phenetol (Syst. No. 1840) oder 2.3.4-Trinitro-phenetol (Bd. VI, S. 264) mit Methylamin in alkoh. Lösung bei 165° (Blanksma, R. 27, 54). Gelbe Krystalle. F: 170°. Bei der Nitrierung entsteht N.N'-Dinitro-N.N'-dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (S. 61).
- 4.6-Dinitro-l.3-diamino-benzol, 4.6-Dinitro-phenylendiamin-(l.3) $C_6H_6O_4N_4 = H_2N \cdot C_6H_2(NO_3)_2 \cdot NH_2$. B. Beim Erhitzen von N.N'-Diacetyl-4.6-dinitro-phenylendiamin-(l.3) (s. u.) mit Schwefelsäure (2 Vol. H_2SO_4 , 1 Vol. H_2O) auf dem Wasserbade (Nietzki, Hagenbach, B. 20, 334). Aus 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) und alkoh. Ammoniak bei 150° (Nietzki, Schedler, B. 30, 1667). Aus 4.6-Dinitro-resorcin-dimethyl-äther (Bd. VI, S. 828) durch 4-stdg. Erhitzen mit alkoh. Ammoniak im geschlossenen Rohre auf 160° (Blanksma, Meerum Terwogt, R. 21, 288). Neben dem Hydrochlorid des Glutacon-aldehyd-dianils (Bd. XII, S. 204), aus [4.6-Dinitro-phenylen-(1.3)]-bis-pyridiniumchlorid $C_8H_5N(Cl)\cdot C_6H_5(NO_2)_2\cdot N(Cl)C_6H_5$ (Syst. No. 3051) in Alkohol mit Anilin auf dem Wasserbade (Reitzenstein, Rotschild), J. pr. [2] 73, 273). Orangegelbe kugelige Aggregate (aus Eisessig). Schmilzt gegen 300°; wenig löslich in Alkohol, etwas leichter in Eisessig (N., H.). Wird durch Zinn und Salzsäure zu 1.2.4.5-Tetraamino-benzol (Syst. No. 1819) reduziert (N., H.).
- N.N'-Dimethyl-4.6-dinitro-phenylendiamin-(1.3) $C_8H_{10}O_4N_4=(O_2N)_2C_6H_2(NH\cdot CH_3)_2$. B. Durch Erhitzen von 4.6-Dichlor-1.3-dinitro-benzol mit 4 Mol.-Gew. Methylamin in alkoh. Lösung auf 150° (Blanksma, Meerum Terwogt, R. 21, 290). Gelbe Krystelle, die bei 280° noch nicht schmelzen. Schwer löslich in Alkohol und Eisessig. Wird durch Salpetersäure (D: 1,52) in N.N'-Dinitro-N.N'-dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (S. 61) verwandelt.
- N.N'-Diphenyl-4.6-dinitro-phenylendiamin-(1.3) $C_{10}H_{14}O_4N_4 = (O_2N)_0C_0H_{14}(NH\cdot C_0H_0)_0$. B. Durch Erhitzen von 4.6-Dichlor-1.3-dinitro-benzol (Nietzki, Schedler, B. 30, 1668) oder von 4.6-Dibrom-1.3-dinitro-benzol (Jackson, Cohoe, Am. 26, 4) mit Anilin. Rote Prismen (aus Alkohol). F: 186° (N., Sch.).
- N.N'-Di-a-naphthyl-4.6-dinitro-phenylendiamin-(1.3) $C_{16}H_{18}O_4N_4 = (O_2N)_aC_6H_2(NH\cdot C_{10}H_7)_a$. B. Beim Kochen von 4.6-Dichlor-1.3-dinitro-benzol mit 4 Mol.-Gew. a-Naphthylamin in alkoh. Lösung (Sudborough, Pioron, Soc. 89, 594). Gelbes Krystallpulver. F: 202—203°. Geht beim Umkrystallisieren aus Benzol in eine rote Modifikation über, die bei 180° oder beim Kochen mit Alkohol wieder in die gelbe zurückverwandelt wird.
- N.N'-Diacetyl-4.6-dinitro-phenylendiamin-(1.3) $C_{10}H_{10}O_{\circ}N_{4} = (O_{2}N)_{2}C_{6}H_{2}(NH\cdot CO\cdot CH_{2})_{2}$. B. Beim Eintragen von 1 Tl. N.N'-Diacetyl-m-phenylendiamin, gemengt mit $^{1}/_{5}$ Tl. Harnstoffnitrat (NIETZKI, B. 20, 2114), in 6 Tle. Salpetersäure (D¹⁵: 1,533) bei —1° bis —2° (NIETZKI, HAGENBACH, B. 20, 334). Nadeln (aus Eisessig). F: 228° (N., H.). Wird von

Zinn und Salzsäure in das Dimethyl-[benzodiimidazol] $CH_3 \cdot C \stackrel{NH}{\rightleftharpoons} C_6H_2 \stackrel{N}{\rightleftharpoons} C \cdot CH_3$ (Syst. No. 4023) umgewandelt (N. H.).

N.N'-Bis-[2-amino-phenyl]-4.6-dinitro-phenylendiamin-(1.8) $C_{18}H_{16}O_4N_6$ — $(O_2N)_2C_6H_2(NH\cdot C_6H_4\cdot NH_2)_2$. B. Man suspendiert das Gemisch von o-Phenylendiamin und 4.6-Dichlor-1.3-dinitro-benzol in der sieben- bis achtfachen Menge Amylalkohol, fügt die berechnete Menge Natriumacetat in konzentrierter wäßriger Lösung hinzu und kocht 8 Stdn. am Rückflußkühler (NIETZKI, SLABOSZEWICZ, B. 34, 3729). — Gelbe Blättchen (aus Xylol). F: 253°. Schwer löslich in Eisessig und Xylol, fast unlöslich in Alkohol und Benzol. — Läßt sich durch Zinnchlorür und Salzsäure in Gegenwart von metallischem Zinn zu 1.5-Diamino-2.4-bis-[2-amino-anilino]-benzol (Syst. No. 1819) reduzieren.

N.N.N'.N'-Tetramethyl-x.x-dinitro-phenylendiamin-(1.3) $C_{10}H_{14}O_4N_4 = (O_2N)_2C_6H_2[N(CH_3)_2]_2$. B. Aus N.N.N'.N'-Tetramethyl-m-phenylendiamin (S. 40) in verd. Schwefelsäure durch Salpetersäure (Pinnow, Wegner, B. 30, 3119). — Krystalle (aus verd. Alkohol oder Essigsäure).

6-Brom-2.4-dinitro-1.3-diamino-bengol, 6-Brom-2.4-dinitro-phenylendiamin-(1.3) $C_6H_5O_4N_4Br=H_2N\cdot C_6HBr(NO_2)_2\cdot NH_2$. Zur Konstitution vgl. Jackson, Gallivan, B. 28, 190; Am. 18, 239. — B. Bei längerem Stehen von 2.4.5-Tribrom-1.3-dinitro-benzol (Bd. V, S. 269) mit alkoh. Ammoniak (Körner, G. 4, 416; J. 1875, 354). — Sehr hell chamoisfarbene Flitter. Fast unlöslich in Alkohol und Äther (K.). — Wird durch Äthylnitrit nicht verändert (K.). Zerfällt mit Kalilauge in der Kälte in NH_3 und ein nicht näher beschriebenes Bromdinitroaminophenol; beim Erwärmen mit Kalilauge wird 6-Brom-2.4-dinitro-resorein (Bd. VI, S. 829) gebildet (K.).

N.N'-Diphenyl-6-brom-2.4-dinitro-phenylendiamin-(1.3) $C_{18}H_{13}O_4N_4Br=(O_2N)_2C_6HBr(NH\cdot C_6H_5)_2$. Zur Konstitution vgl. Jackson, Gallivan, B. 28, 190; Am. 18, 239. — B. Aus 2.4.5-Tribrom-1.3-dinitro-benzol und Anilin (J., G., Am. 18, 243). — Orangefarbene Nadeln (aus Benzol + Alkohol). F: 191—192°. Schwer löslich in kaltem Alkohol.

N³-Nitro-N¹.N³-dimethyl-6-brom-2.4-dinitro-phenylendiamin-(1.3), N¹.N³-Dimethyl-6-brom-N³.2.4-trinitro-phenylendiamin-(1.3), [4-Brom-2.6-dinitro-3-(methylamino)-phenyl]-methyl-nitramin $C_8H_8O_8N_5Br=CH_3\cdot NH\cdot C_8HBr(NO_2)_2\cdot N(NO_2)\cdot CH_3$. B. Aus [3.4-Dibrom-2.6-dinitro-phenyl]-methyl-nitramin (Bd. XII, S. 762) und Methylamin in Alkohol (Blanksma, R. 21, 415). — Gelbe Krystalle. F: 179°. — Liefert beim Nitrieren [6-Brom-2.4-dinitro-phenylen-(1.3)]-bis-methylnitramin (s. u.).

N.N'-Dinitro-N.N'-dimethyl-6-brom-2.4-dinitro-phenylendiamin-(1.3), N.N'-Dimethyl-6-brom-N.N'.2.4-tetranitro-phenylendiamin-(1.3), [6-Brom-2.4-dinitro-phenylen-(1.3)]-bis-methylnitramin $C_8H_7O_8N_6Br=(O_2N)_2C_6HBr[N(NO_2)\cdot CH_3]_2$. B. Durch Nitrleren von [4-Brom-2.6-dinitro-3-methylamino-phenyl]-methyl-nitramin (s. o.) mit Salpetersäure (D: 1,52) (BL., R. 21, 415). — Farblose Krystalle. F: 173° (Zers.).

2.4.6-Trinitro-1.3-diamino-benzol, 2.4.6-Trinitro-phenylendiamin-(1.3) $C_0H_0O_0N_0=H_2N\cdot C_0H(NO_0)_3\cdot NH_2$. B. Aus 2.4-Dichlor-1.3.5-trinitro-benzol (Bd. V, S. 275) mit alkoh. Ammoniak (KÖRNER, CONTARDI, R. A. L. [5] 18 I, 101). Aus 2.4-Dibrom-1.3.5-trinitro-benzol durch alkoh. Ammoniak bei gewöhnlicher Temperatur oder besser bei 100° (K., CON., R. A. L. [5] 17 I, 473). Aus 3-Chlor-2.4.6-trinitro-anisol oder 3-Chlor-2.4.6-trinitro-phenetol (Bd. VI, S. 292) und alkoh. Ammoniak (Blanksma, R. 21, 324). Bei mehrtägigem Stehen von 2.4.6-Trinitro-resorcin-diäthyläther (Bd. VI, S. 833) (NORLITING, COLLIN, B. 17, 260; BARR, B. 21, 1546) oder aus 2.4.6-Trinitro-resorcin-methyläthyläther mit alkoh. Ammoniak (BL., R. 27, 56). Aus 1.3.5-Trinitro-benzol (Bd. V, S. 271), Hydroxylamin und Natriummethylat in Methylalkohol (Meisenheimer, Patzig, B. 39, 2540). — Gelbe Nadeln oder Tafeln (aus Alkohol). F: 275° (M., P.), 280° (BL., R. 27, 56). Etwas löslich in Eisessig, sonst sehr schwer löslich (BARR; M., P.). — Zerfällt beim Kochen mit verd. Natronlauge oder Kalilauge in NH3 und 2.4.6-Trinitro-resorcin (N., Col.; BARR; K., CON.).

N.N'-Dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) C₈H₉O₆N₅ = (O₂N)₂C₆H(NH·CH₃)₂. B. Aus 3-Chlor-2.4.6-trinitro-anisol oder 3-Chlor-2.4.6-trinitro-phenetol (Bd. VI, S. 292) und Methylamin in Alkohol (Blanksma, R. 21, 324). Aus 2.4.6-Trinitro-resorcin-diathylather (Bd. VI, S. 833) (van Romburgh, R. 7, 5) oder 2.4.6-Trinitro-resorcin-methylathylather (B., R. 27, 56) mit Methylamin. Beim Erhitzen von N-Nitro-N-N'-dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (S. 61) mit Methylamin (v. R., R. 8, 280). Beim Kochen

von N.N'-Dinitro-N.N'-dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (s. u.) mit Phenol (van Romburgh, R. 7, 5). — Gelbe Krystalle (aus Phenol). Schmilzt unter Zersetzung bei 235° (v. R., R. 7, 5), 240° (B.). — Zerfällt beim Kochen mit verd. Kalilauge in Methylamin und 2.4.6-Trinitro-resorcin (v. R., R. 7, 5).

N.N'-Diäthyl-2.4.6-trinitro-phenylendiamin-(1.3) $C_{10}H_{13}O_{6}N_{5}=(O_{2}N)_{3}C_{6}H(NH-C_{2}H_{5})_{2}$. B. Aus 3-Chlor-2.4.6-trinitro-phenol (Bd. VI, S. 292) und Athylamin in Alkohol (Blanksma, R. 21, 325). — Gelbe Krystalle. F: 144°. — Liefert beim Nitrieren N.N'-Dinitro-N.N'-diäthyl-2.4.6-trinitro-phenylendiamin-(1.3) (s. u.).

N-Phenyl-2.4.6-trinitro-phenylendiamin-(1.8), 2.4.6-Trinitro-3-amino-diphenylamin $C_{18}H_9O_6N_5=H_8N\cdot C_6H(NO_2)_3\cdot NH\cdot C_6H_5$. B. Aus 2.4.6-Trinitro-3-methoxy-diphenylamin (Syst. No. 1840) und Ammoniak in Alkohol (Blanksma, R. 21, 325). — Gelbe Krystalle. F: 186°.

N-Methyl-N'-phenyl-2.4.6-trinitro-phenylendiamin-(1.3), 2.4.6-Trinitro-3-[methylamino]-diphenylamin $C_{13}H_{11}O_6N_5=CH_3\cdot NH\cdot C_6H(NO_2)_3\cdot NH\cdot C_6H_5$. B. Aus 2.4.6-Trinitro-3-methoxy-diphenylamin und Methylamin in Alkohol (BL., R. 21, 325). — Gelbe Krystalle. F: 174°.

N.N'-Diacetyl-2.4.6-trinitro-phenylendiamin-(1.3) $C_{10}H_0O_8N_5 = (O_2N)_3C_6H(NH\cdot CO\cdot CH_2)_2$. B. Durch Acetylierung von 2.4.6-Trinitro-phenylendiamin-(1.3) (S. 60) mit Essigsäureanhydrid und etwas konz. Schwefelsäure (Blanksma, C. 1909 II, 1219). — Farblos. Schmilzt bei 300° noch nicht. Sehr wenig löslich in den gebräuchlichen Lösungsmitteln.

N'-Nitroso-N.N.N'-trimethyl-2.4.6-trinitro-phenylendiamin-(1.3), [2.4.6-Trinitro-8-dimethylamino-phenyl]-methyl-nitrosamin $C_9H_{10}O_7N_6=(CH_3)_2N\cdot C_6H(NO_2)_3\cdot N(NO)\cdot CH_3$. B. Beim Erwärmen einer eisessigsauren Lösung von N.N.N'.N'-Tetramethyl-m-phenylendiamin (S. 40) mit Salpetersäure (Wurster, Morley, B. 12, 1815). — Gelb, krystallinisch. F: 132°.

N-Nitro - N.N'- dimethyl - 2.4.6 - trinitro - phenylendiamin - (1.3), N.N'-Dimethyl-N.2.4.6 - tetranitro - phenylendiamin - (1.3), [2.4.6-Trinitro-3-methylamino-phenyl]-methyl-nitramin C₈H₈O₈ = CH₃·NH·C₆H(NO₂)₃·N(NO₃)·CH₃. B. Aus [3-Chlor-2.4.6-trinitro-phenyl]-methyl-nitramin (Bd. XII, S. 771) oder aus [3-Brom-2.4.6-trinitro-phenyl]-methyl-nitramin (Bd. XII, S. 771) und Methylamin in Alkohol (Blanksma, R. 21, 277). Beim Schütteln von [2.3.4.6-Tetranitro-phenyl]-methyl-nitramin (Bd. XII, S. 771) mit Methylamin-lösung (van Romburgh, R. 8, 279). Aus [2.4.6-Trinitro-3-āthoxy-phenyl]-methyl-nitramin (Syst. No. 1840) und Methylamin (v. R.). — Goldgelbe Krystalle (aus Essigsäure). F: 192° (v. R.), 190° (Bl.). — Gibt beim Nitrieren [2.4.6-Trinitro-phenylen-(1.3)]-bis-methylnitramin (s. u.) (Bl.). Beim Erhitzen mit Methylamin entsteht N.N'-Dimethyl-2.4.6-trinitro-phenylen-diamin-(1.3) (S. 60) (v. R.).

N.N'-Dinitro-N.N'-dimethyl-2.4.6-trinitro-phenylendiamin-(1.3), N.N'-Dimethyl-N.N'.2.4.6-pentanitro-phenylendiamin-(1.3), [2.4.6-Trinitro-phenylen-(1.3)]-bis-methylnitramin $C_8H_7O_{10}N_7=(O_8N)_8C_8H[N(NO_8)\cdot CH_3]_8$. B. Beim Kochen von N.N'-Dimethyl-m-phenylendiamin mit rauchender Salpetersäure (van Romburgh, R. 6, 251). Durch Eingießen einer Lösung von Tetramethyl-m-phenylendiamin in konz. Schwefelsäure in Salpetersäure (D: 1,48) und Kochen der Mischung (v. R., R. 7, 3). Bei der Nitrierung von N.N'-Dimethyl-2.4-dinitro-phenylendiamin-(1.3) (S. 59) mit Salpetersäure (D: 1,52) (Blanksma, R. 27, 54). Aus N.N'-Dimethyl-4.6-dinitro-phenylendiamin-(1.3) (S. 59) und Salpetersäure (D: 1,52) (Blanksma, Meerum Terwogt, R. 21, 291). Beim Auflösen von [2.4.6-Trinitro-3-methylamino-phenyl]-methyl-nitramin (s. o.) in Salpetersäure (D: 1,5) (v. R., R. 8, 280; Blanksma, R. 21, 277). — Krystalle (aus Aceton + Alkohol). F: 203° (Zers.) (Bl., R. 27, 54; vgl. v. R., R. 7, 4). Fast unlöslich in den gewöhnlichen Lösungsmitteln, etwas löslich in siedendem Toluol, leicht in siedendem Eisessig (v. R., R. 7, 4). — Beim Kochen mit Kalilauge entweicht Methylamin; beim Kochen mit Phenol entsteht N.N'-Dimethyl-2.4.6-trinitro-phenylendiamin-(1.3) (S. 60) (v. R., R. 7, 5).

N.N'-Dinitro-N.N'-diäthyl-2.4.6-trinitro-phenylendiamin-(1.3), N.N'-Diäthyl-N.N'.2.4.6-pentanitro-phenylendiamin-(1.3), [2.4.6-Trinitro-phenylen-(1.3)]-bis-äthylnitramin $C_{10}H_{11}O_{10}N_7=(O_2N)_3C_6H[N(NO_2)\cdot C_2H_5]_2$. B. Durch Nitrieren von N.N'-Diäthyl-2.4.6-trinitro-phenylendiamin-(1.3) (s. o.) (Blanksma, R., 21, 326). — Farblose Krystalle. F: 1656.

8. 1.4 - Diamino - benzol, Phenylendiamin - (1.4), p - Phenylendiamin $C_0H_0N_0=H_0N\cdot C_0H_0\cdot NH_0$.

Bildung.

Durch Erhitzen von p-Dichlor-benzol (Bd. V, S. 203) mit 25% iger Ammoniaklösung in Gegenwart von Kupferverbindungen, z. B. Kupfersulfat, unter Druck (Akt.-Ges. f. Anilinf., D. R. P. 202170; C. 1908 II, 1221). Durch Reduktion von p-Dinitro-benzol (Bd. V, S. 261)

mit Zinn und Salzsäure (ZINCKE, RINNE, B. 7, 871). Aus 4-Nitro-1-azido-benzol (Bd. V. S. 278) durch Reduktion mit Zinn und Salzsäure (Culmann, Gasiorowski, J. pr. [2] 40, 118; Noelting, Grandmougin, Michel, B. 25, 3330). Aus Chinondiimid (Bd. VII, S. 620) mit salzsaurer Zinnchlorürlösung oder mit schwefliger Säure (WILLSTÄTTER, E. MAYER, B. 37, 1505). Aus Chinon-bis-chlorimid (Bd. VII, S. 621) durch Reduktion mit Zinnchlorür, schwefliger Säure, Schwefelwasserstoff oder Natriumamalgam (KRAUSE, B. 12, 50). Aus Chinon-imid-oxim (p-Nitroso-anilin, Bd. VII, S. 625) durch Reduktion mit Zinn und Salzsäure (O. FISCHER, HEPF, B. 21, 684), mit Zinkstaub und Wasser oder mit Natriumamalgam (O. FISCHER, A. 286, 154). Aus p-Nitroso-anilin durch Reduktion mit Phenylhydrazin in Ather (O. FISCHER, WACKER, B. 21, 2610). Aus Chiondioxim (Bd. VII, S. 627) durch Reduktion mit Zinnchlorür und Salzsäure (Nietzki, Kehrmann, B. 20, 615). Noben 4.4'-Diamino-diphenylamin beim Kochen von Anilinschwarz (Bd. XII, S. 130) mit Zinn und Salzsäure oder mit Jodwasserstoffsäure und Phosphor (Nietzki, B. 11, 1097). Durch Erhitzen von p-Chlor-anilin (Bd. XII, S. 607) mit 25°/0 iger Ammoniaklösung in Gegenwart von Kupferverbindungen, z. B. Kupfersulfat, unter Druck (Akt.-Ges. f. Anilinf., D. R. P. 204848; C. 1909 I, 474). Aus p-Nitranilin (Bd. XII, S. 711) durch elektrolytische Reduktion in alkoh. Lösung in Gegenwart von Natriumacetat (RHODE, Z. El. Ch. 7, 339), durch Reduktion mit Eisen und Essigsäure (A. W. HOFMANN, Proc. Royal Soc. London 12, 640; C. r. 56, 992; J. 1863, 422), beim Kochen der wäßr. Lösung mit Zinkstaub (BAMBERGER, B. 28, 250), beim Behandeln mit Zinkstaub in Disulfitlösung (Goldberger, C. 1900 II, 1014). Aus 4-Nitro-acetanilid (Bd. XII, S. 719) durch elektrolytische Reduktion in mineralsaurer Lösung (Вканд, Stohr, B. 42, 2479), durch Behandlung mit Zinn und Salzsäure (Hobrecker, B. 5, 920; Biedermann, LEDOUX, B. 7, 1531). Beim Erhitzen von salzsaurem N.N-Dimethyl-p-phenylendiamin (S. 72) im Chlorwasserstoffstrome auf 180° (Merz, Weith, B. 10, 762). Beim Kochen von N-Acetyl-p-phenylendiamin (S. 94) mit konz. Salzsäure oder mit verd. Schwefelsäure (NIETZKI, B. 17, 344). Beim Behandeln von N-Benzoyl-p-phenylendiamin (S. 98) mit verd. Kalilauge (HÜBNER, A. 208, 296). Beim Erhitzen von p-Phenylendiurethan (S. 104) mit konz. Salzsäure im Druckrohr auf 150° (DAVIDIS, J. pr. [2] 54, 87). Bei der trocknen Destillation von 2.5-Diamino-benzoesäure (Syst. No. 1905) (Griess, B. 5, 201). Bei 2-stdg. Erhitzen von 1 Tl. salzsaurem Phenylhydrazin (Syst. No. 1947) mit 3 Tln. rauchender Salzsäure auf 200° (Thiele, Wheeler, B. 28, 1539). Bei der Reduktion von N-[4-nitro-phenyl]-hydrazin-N. M-disulfonsaurem Kalium (Syst. No. 2068) mit Zinn und Salzsäure (HANTZSCH, BORGHAUS, B. 30, 91). Beim Erhitzen von 4.4'-Dinitro-hydrazobenzol (Syst. No. 2068) oder von 4.4'-Diamino-hydrazobenzol (Syst. No. 2083) mit alkoh. Schwefelammonium im geschlossenen Rohr auf 100° (LERMONTOW, B. 5, 235). Aus 4.4'-Dinitro-azobenzol (Syst. No. 2092) mit alkoh. Schwefelammonium im geschlossenen Rohr bei 100° (LERMONTOW). Durch Kochen von salzsaurem 4-Amino-azobenzol (Syst. No. 2172) mit 10 Tln. Salzsäure (D: 1,12), neben anderen Produkten (Wallach, Kölliker, B. 17, 396). Aus 4-Amino-azobenzol durch Reduktion mit Zinkstaub in wäßr. Lösung (PAUL, Z. Ang. 10, 149), mit Zinn und Salzsäure (Martius, Griess, Z. 1866, 136), mit Zinnchlorür in Alkohol ohne Zusatz von Salzsäure (Witt, D. R. P. 80323; Frdl. 4, 67) sowie durch elektrolytische Reduktion der mit etwas elektrolytischem Zinn versetzten salzsauren Lösung (Boehringer & Söhne, D. R. P. 121835; C. 1901 II, 152). Aus 4-Amino-azobenzol beim Erwärmen mit Phenylhydrazin (+ Xylol) (Walther, J. pr. [2] 52, 142). Neben Sulfanilsäure beim Erwärmen von 47-Amino-azobenzolsulfonsaure (4) (Syst. No. 2172) mit Zinn und Salzsaure (Griess, B. 15, 2186). Aus 4-Aminoazoxybenzol (Syst. No. 2216) mit Zinn und Salzsäure (Schmidt, Z. 1869, 420). Aus 4.4'-Diamino-azoxybenzol (Syst. No. 2216) mit Zinn und Salzsäure (MIXTER, Am. 5, 5).

Darstellung.

Zu einem auf 60° erwärmten Gemenge von 6,7 kg feuchtem, ca. 70°/oigem salzsaurem 4-Amino-azobenzol, 13 l Wasser und 2 kg denaturiertem Spiritus werden unter stetem, kräftigem Umrühren portionsweise 3,5 kg Zinkstaub gegeben. Die Temperatur darf dabei nicht über 70° steigen; sie wird nach dem Eintragen des Zinkstaubs bis auf 90° erhöht und während etwa einer halben Stunde so erhalten. Dann werden 1,5 kg calcinierte Soda zugesetzt, wonach unter fortgesetztem Umrühren die Temperatur für eine weitere halbe Stunde auf 90° gehalten wird. Hierzuf wird durch das Gemisch ein kräftiger Dampfstrom geblasen, wobei zunächst der Alkohol, dann alles Anilin entfernt wird. Nunmehr wird filtriert und der Rückstand (Zinkhydroxyd) mit heißem Wasser gewaschen. Die vereinigten Filtrate dampft man bis auf 7 bis 6 l ein und läßt erkalten, wobei das p-Phenylendiamin auskrystallisiert. Aus der Mutterlauge kann man mit Salzsäure noch etwas salzsaures p-Phenylendiamin abscheiden (Paul, Z. Ang. 10, 149). Über die technische Darstellung aus 4-Amino-azobenzol oder aus p-Nitranilin mit Eisen und Salzsäure s. Jansen, Ztschr. f. Farbenindustrie 12 [1913], 198.

Zur Gewinnung von freiem p-Phenylendiamin aus seinem salzsauren Salz vgl. R. Meyer, J. Maies, A. 327, 28.

Physikalische Eigenschaften.

Tafeln (aus Äther). Monoklin prismatisch (Lehmann, Z. Kr. 6, 585; J. 1882, 369; Hintze, B. 17, 397; Z. Kr. 9, 552; J. 1884, 462; vgl. Groth, Ch. Kr. 4, 277). Wenn man eine gesättigte, siedende wäßrige Lösung von p-Phenylendiamin sich abkühlen läßt, so scheiden sich durchsichtige Blättchen ab, die lufttrocken die Zusammensetzung C₆H₈N₂+2H₂O haben, bei 80° im Krystallwasser schmelzen und bei 95° krystallwasserfrei sind (Vignon, Bl. [2] 50, 153; vgl. dazu Lehmann, Z. Kr. 6, 585; J. 1882, 369; vgl. auch Groth, Ch. Kr. 4, 277). p-Phenylendiamin sublimiert, namentlich im Wasserstoffstrom, schon unterhalb des Schmelzpunktes (A. W. Hofmann, Proc. Royal Soc. London 12, 641; C. r. 56, 993; J. 1863, 422). F: 140° (A. W. Ho.; Zincke, Rinne, B. 7, 871; Hübner, A. 208, 296), 147° (Biedermann, Ledoux, B. 7, 1531; Troeger, Westerkamp, Ar. 247, 663). Kp: 267° (A. W. Ho.). Leicht löslich in Alkohol und Äther (Hübner, A. 208, 296). Löst sich zu etwa 1°/0 in kaltem Wasser (E. Erdmann, Vahlen, A. Pth. 53, 404). Gerät beim Aufösen in Wasser in äußerst lebhafte Rotation. Bringt man eine Spur Fett auf das Wasser, so hört die Reaktion sofort auf (Gattermann, B. 18, 1484). Molekulare Verbrennungswärme bei konstantem Volumen: 843,3 Cal., bei konstantem Druck: 843,9 Cal. (Berthelot, André, A. ch. [7] 17, 444; C. r. 128, 966). Die Dämpfe des p-Phenylendiamins zeigen unter dem Einfluß von Teslaströmen bei atmosphärischem Druck starke Luminescenz (Kauffmann, B. 40, 840). p-Phenylendiamin reagiert bei der Titration gegen Phenolphthalein neutral, gegen Helianthin als einsäurige Base (Astruc, C. r. 129, 1023). Wärmetönung bei der Neutralisation von p-Phenylendiamin mit HCl: Vignon, Bl. [2] 50, 154; [3] 2, 675. Zur Hydrolyse des Hydrochlorids vgl. Veley, Soc. 93, 2134. p-Phenylendiamin löst sich in Phosphorsäure, liefert aber kein festes Phosphat (Raikow, Schtarbanow, Ch. Z. 25, 262).

Chemisches Verhalten.

Einwirkung von Elektrizität. Einw. der dunklen elektrischen Entladung auf p-Phenylendiamin in Gegenwart von Stickstoff: BERTHELOT, C. r. 126, 784. Einw. von Teslaströmen s. oben.

Einwirkung anorganischer Reagenzien. Beim Einleiten von Sauerstoff in die wäßrig-ammoniakalische Lösung von p-Phenylendiamin oder beim Versetzen dieser Lösung mit Kaliumferricyanid erhält man Chinon-bis-[2.5-diamino-anil] ("BANDROWSKISCHE Base", Syst. No. 1800) (v. BANDROWSKI, M. 10, 124; B. 27, 480; vgl. WILLSTÄTTER, E. MAYER, B. 37, 1494). Dieselbe Verbindung erhält man bei der Oxydation von p-Phenylendiamin in waßr. Lösung mit neutraler Wasserstoffsuperoxydlösung (E. Erdmann, B. 37, 2906). Bei dieser Reaktion läßt sich als Zwischenprodukt Chinondiimid (Bd. VII, S. 620) nachweisen (E. ERD., B. 37, 2909; vgl. dazu WI., E. MA., B. 37, 1505). Durch Behandlung von p-Phenylendiamin in atherischer Lösung mit Wasserstoffsuperoxyd kann man Chinondiimid isolieren (WI., PFANNENSTIEL, B. 37, 4607). Auch bei der Oxydation von p-Phenylendiamin mit trocknem Silberoxyd in äther. Lösung erhält man Chinondiimid (WI., Pr., B. 37, 4606) Desgleichen bildet es sich bei Behandlung von p-Phenylendiamin in wäßr. Lösung mit Bleidioxyd (E. Erd., B. 37, 2910). p-Phenylendiamin gibt mit Mangandioxyd und verd. Schwefelsäure (A. W. Hofmann, J. 1863, 422) oder mit Dichromatmischung (WI., Dorogi, B. 42, 2166) Chinon (Bd. VII, S. 609). Bei der Oxydation von p-Phenylendiamin mit kalter 1% jeer Kaliumpermanganatlösung entstehen in der Hauptsache NH₃ und CO₃ neben geringen Mengen (0,9%) Blausäure und Oxalsäure (E. Erd., B. 37, 2776). Beim Erwärmen der konzentrierten wäßrigen Lösung von p-Phenylendiamin mit überschüssiger Natriumsuperoxydlösung entsteht etwas p-Nitranilin (Bd. XII, S. 711) (O. FISCHER, TROST, B. 26, 3084). Bei der Oxydation mit Sulfomonopersäure erhält man als Hauptprodukt p-Nitranilin; ein geringer Teil wird weiter oxydiert, und zwar in wäßr. Lösung zu 4.4'-Dinitro-azoxybenzol (Syst. No. 2207) und p-Dinitro-benzol (Bd. V, S. 261), in äther. Lösung nur zu letzterem (Bamberger, Hübner, B. 36, 3827). p-Phenylendiamin wird in schwach essigsaurer Lösung durch Ammoniumpersulfat rasch schwarzbraun, durch Perborat in kalter Lösung dunkeloliv, in heißer Lösung dunkelbraun gefällt (Erban, Ch. Z. 32, 830). Über die Einw. organischer Oxydationsmittel auf p-Phenylendiamin s. S. 68.

Beim Behandeln von p-Phenylendiamin in Eisessiglösung mit Chlor erhält man Chloranil (Bd. VII, S. 636) (Krause, B. 12, 52). p-Phenylendiamin liefert bei der Einw. von Kaliumchlorat und Salzsäure Chloranil und Trichlorchinon (Bd. VII, S. 634) (Grafbe, A. 263, 19). Versetzt man eine wäßr. Lösung von salzsaurem Phenylendiamin mit einigen Tropfen Salzsäure und dann mit überschüssiger Chlorkalklösung unter Kühlung (Krause, B. 12, 47; Hirsch, B. 13, 1909; vgl. Schaposchnikow, Ж. 29, 555; С. 1907 II, 1504) oder läßt man zu einer eisgekühlten Natriumhypochloritlösung (aus 75 g Chlor und 90 g NaOH) eine Lösung von (54 g) salzsaurem p-Phenylendiamin in (120 ccm) konz. Salzsäure und (ca. 600 g) Wasser zufließen (Willstätter, E. Mayer, B. 37, 1498), so erhält man Chinon-bischlorimid (Bd. VII, S. 621). Wärmetönung bei der Bildung von Chinon-bis-chlorimid aus

salzsaurem p-Phenylendiamin und Hypochlorit: Świętoslawski, Ж. 41, 839; C. 1909 II, 2143. p-Phenylendiamin liefert mit Brom in Äther ein dunkelblaues chinhydronartiges Hydrobromid, das von Alkalien in eine bräunlichrote bromfreie Base umgewandelt wird (Jackson, Calhane, B. 35, 2496; Am. 31, 217; vgl. Willstätter, Pfannenstiel, B. 38, 2246 Anm.; Kehemann, B. 38, 3777)¹). Die Einw. von 40 ccm Brom auf 10 g p-Phenylendiamin in 40 ccm Eisessig führt zu Bromanil (Bd. VII, S. 642) (Graebe, Weltner, A. 263, 32). p-Phenylendiamin gibt mit Natriumhypobromit einen weißen krystallinischen Niederschlag, der sich bei 105° zersetzt (Dehn, Scott, Am. Soc. 30, 1423). p-Phenylendiamin liefert beim Diazotieren in salzsaurer Lösung mit Natriumnitrit p-Amino-benzoldiazoniumchlorid (Syst. No. 2203) und wechselnde Mengen p-Phenylen-bis-diazoniumchlorid (Syst. No. 2197); wendet man einen großen Überschuß an salpstriger Säure in Gegenwart von viel sehr verdünnter Salzsäure an, so erhält man ausschließlich letztere Verbindung (Griebs, B. 17, 607; 19, 319; Nietzki, B. 17, 1352; Hantzsch, Borghaus, B. 30, 92). Vermischt man salzsaures p-Phenylendiamin mit verd. Salzsäure und Kupferchlorürlösung, erhitzt zum Sieden und setzt allmählich eine Natriumnitritlösung hinzu, so erfolgt sofortige Abscheidung von p-Dichlor-benzol (Sandmeyer, B. 17, 2652).

scheidung von p-Dichlor-benzol (SANDMEYER, B. 17, 2652).
Wird p-Phenylendiamin mit Schwefel auf 150—180° erhitzt, so entsteht eine schwefel-

haltige Base, die in salzsaurer Lösung durch Oxydationsmittel in Lauthsches Violett C₁₂H₁₀N₃ClS (s. bei der Leukoverbindung, dem Diamino-thiodiphenylamin der nebenstehenden Formel, H₂N·SS (s. bei der Leukoverbindung, dem Diamino-thiodiphenylamin der nebenstehenden Formel, H₂N·NH₂ Syst. No. 4367) übergeht (Lauth, C.r. 82, 1441; B. 9, 1035; vgl.

Bernthsen, A. 230, 108). Lauthsches Violett wird auch erhalten, wenn man salzsaures p-Phenylendiamin in viel Schwefelwasserstoffwasser löst und nach und nach Eisenchlorid hinzugibt (Lauth, C.r. 82, 1442; B. 9, 1035; Koch, B. 12, 2069). Salzsaures p-Phenylendiamin liefert beim Erhitzen mit Thionylchlorid SOCl₂ und Benzol N-Thionyl-p-phenylendiamin H₂N·C₆H₄·N:SO (MICHAELIS, PETOW, B. 31, 995) und N.N'-Dithionyl-p-phenylendiamin (S. 146) (MICHAELIS, BUNTROCK, A. 274, 261). Vermischt man salzsaures p-Phenylendiamin mit Natriumthiosulfatlösung, so erhält man einen voluminösen, weißen Niederschlag des Salzes C₆H₃N₂+H₂S₂O₃ (S. 70) (Bernthsen, A. 251, 62). Trägt man 58 g Aluminiumsulfat in die wäßr. Lösung von 20 g salzsaurem p-Phenylendiamin ein, fügt 44,4 g Natriumthiosulfat, gelöst in Wasser, und dann allmählich eine wäßr. Lösung von 11 g Kaliumdichromat hinzu, so erhält man "p-Phenylendiaminthiosulfonsäure" (H₂N)₂C₆H₃·S·SO₃H (Syst. No. 1854) (Beenthsen, A. 251, 63). Verwendet man entsprechend mehr Thiosulfat und Oxydationsmittel, so entstehen "p-Phenylendiaminbisthiosulfonsäure" der nebenstehenden Formel (Syst. No. 1869) (Clayton Aniline Co., D. R. P. 120560; C. 1901 I, HO₃S·S·SO₃H (Syst. No. 1871) (Cl. An. Co., D. R. P. 127856; C. 1902 I, 386; Gr., Pe., Soc. 83, 1210).

Erhitzt man ein Gemisch äquimolekularer Mengen von p-Phenylendiamin und seinem

Erhitzt man ein Gemisch äquimolekularer Mengen von p-Phenylendiamin und seinem salzsauren Salz mit der 3—4-fachen Menge Wasser im Druckrohr ca. 4 Stdn. auf 200°, so erhält man 4.4′-Diamino-diphenylamin (VIDAL, Moniteur scient. [4] 16 II, 870; C. 1903 I, 85). Bei 8-stdg. Erhitzen von p-Phenylendiamin mit der fünffachen Menge 10°/oiger Salzsäure im Druckrohr auf 180° entstehen Hydrochinon, Spuren von Phenol, Anilin und p-Aminophenol (J. Meyer, B. 30, 2569). Über die Zersetzung von p-Phenylendiamin unter Einw.

von verd. Salzsäure vgl. auch PAUL, Z. Ang. 17, 589.

Beispiele für die Einwirkung von Halogen- und Nitroderivaten der Kohlenwasserstoffe. Bei abwechselndem Behandeln von p-Phenylendiamin mit Methyljodid und Silberoxyd entsteht Hexamethyl-p-phenylen-bis-ammoniumjodid; als Zwischenprodukt kann man Tetramethyl-p-phenylendiamin isolieren (A. W. Hofmann, C. r. 56, 994; J. 1863, 422). o-Brom-nitrobenzol (Bd. V, S. 247) reagiert mit p-Phenylendiamin in Gegenwart von Natriumacetat nur schwierig unter Bildung von 2'-Nitro-4-amino-diphenylamin (S. 78) (Bandrowski, C. 1900 II, 852). Kocht man 2 Mol.-Gew. p-Phenylendiamin mit 1 Mol.-Gew. Pikrylchlorid (Bd. V, S. 273) in alkoh. Lösung 1 Stde. unter Rückfluß (Weddekind, B. 33, 429, 430, 435) oder einige Stunden unter Zusatz von wasserfreiem Natriumacetat in Toluol (Morgan, Micklethwait, Soc. 93, 608), so erhält man N-Pikryl-p-phenylendiamin (S. 79). Beim Erhitzen von je 1 Mol.-Gew. p-Phenylendiamin und Pikrylchlorid in Gegenwart von Natriumacetat in Toluol werden N-Pikryl-p-phenylendiamin und N.N'-Dipikryl-p-phenylendiamin (S. 80) gewonnen (Mor., Mic., Soc. 93, 609). Beim Kochen von p-Phenylendiamin mit der berechneten Menge Benzylchlorid unter Zusatz von Natronlauge erhält man Tetrabenzyl-p-phenylendiamin (S. 82) (Meldola, Coste, Soc. 55, 600). Bei mehrstündigem Kochen von p-Phenylendiamin mit viel Chloroform und konz. Kalilauge, der 10—20%

¹⁾ Vgl. auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von RICHTER, B. 44, 3466.

Alkohol hinsugefügt sind, bildet sich p-Phenylendiisocyanid (S. 84) (KAUFLER, B. 34, 1578; M. 22, 1074).

Beispiele für die Einwirkung von Oxy-Verbindungen. Beim Erhitzen von salzsaurem p-Phenylendiamin mit Methylalkohol auf 170-200° erhält man Tetramethyl-pphenylendiamin (R. MEYER, B. 36, 2979). Bei Behandlung von p-Phenylendiamin mit Natrium und Isoamylalkohol wurde in einem Falle N.N'-Di-isoamyl-p-phenylendiamin (S. 76) erhalten (Barter, Noyes, B. 22, 2173). Durch gemeinsame Oxydation von p-Phenylendiamin und Phenol (Bd. VI, S. 110) in wäßr. Lösung mit MnO₂ oder PbO₃ läßt sich das Indophenol HN:C₆H₄:N·C₆H₄·OH (bezw. H₂N·C₆H₄·N:C₆H₄·O; S. 70) gewinnen (Akt.-Ges. f. Anilinf., D. R. P. 179294, 179295; C. 1907 I, 437); dieses entsteht auch bei der Oxydation with Hympollogic Reservatives (Reservatives) (C. 1907 II, 437); dieses entsteht auch bei der Oxydation with Hympollogic Reservatives (Reservatives) (C. 1907 II, 437); dieses entsteht auch bei der Oxydation with Hympollogic Reservatives (Reservatives) (Reservat dation mit Hypochloritlösung in Gegenwart von Kupfersalzen (A.-G. f. A., D. R. P. 204596; C. 1909 I, 115). p-Phenylendiamin gibt beim Verschmelzen mit o-Nitro-phenol (Bd. VI, S. 213) und Schwefel + Schwefelnatrium schwarze Schwefelfarbstoffe (Kalle & Co., D. R. P. 150834; C. 1904 I, 1236). Erhitzt man gleiche Gewichtsteile von p-Phenylendiamin und a-Naphthol im CO₃-Strom auf 260—310°, so erhält man als Hauptprodukt N-a-Naphthylp-phenylendiamin; durch Erhitzen von p-Phenylendiamin mit 2—4 Mol.-Gew. a-Naphthol läßt sich N.N'-Di-a-naphthyl-p-phenylendiamin erhalten (MERZ, STEASSER, J. pr. [2] 60, 555, 559). Durch Erhitzen von p-Phenylendiamin mit überschüssigem β -Naphthol auf 200° gelangt man zum N.N'-Di- β -naphthyl-p-phenylendiamin (Rueff, B. 22, 1080). Durch Erhitzen von p-Phenylendiamin mit β -Naphthol und Disulfitlösung erhielten Bucherer, Seyde (J. pr. [2] 75, 279) β -Naphthyl-p-phenylendiamin. p-Phenylendiamin bildet mit Hydrochinon das Salz $C_6H_6N_3+C_6H_6O_2$ (S. 70) (Lumière, Seyewetz, C. 1899 I, 909). Durch Erhitzen von Hydrochinon mit p-Phenylendiamin in Gegenwart wasserentziehender Mittel (Schneider, B. 32, 690) oder durch Erhitzen in phenolischem oder alkohum in Gegenwart von Ziehender mit 1802 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1805 H. 1807) persteht d. C. 1807 (Vyrage C. 1807) persteht d. C Medium in Gegenwart von Zinkspänen auf 180° (VIDAL, C. 1905 II, 1397) entsteht 4-Oxy-4'amino-diphenylamin (Syst. No. 1850). Durch Einw. Schwefel auf gleiche Teile von Hydrochinon und p-Phenylen-diamin bei ca. 200° entsteht das Oxy-amino-thiodiphenyl- $HO \cdot$ ·NH. amin der nebenstehenden Formel (Syst. No. 4382) (VIDAL-Ges., D. R. P. 103301; C. 1899 II, 548). Beim Erhitzen von p-Phenylendiamin mit der gleichmolekularen Menge Saligenin (Bd. VI, S. 891) wird N-[2-Oxy-benzyl]-p-phenylendiamin (Syst. No. 1855) gebildet (PAAL, RECKLEBEN, B. 28, 936). Beim Erhitzen von p-Phenylendiamin mit Glycerin und konz. Schwefelsäure in Gegenwart von Nitrobenzol erhält man p-Phenanthrolin (Pseudophenanthrolin, Syst. No. 3487) (s. nebenstehende Formel) und wenig Chinolin (SKRAUP, VORT-MANN, M. 4, 570).

Beispiele für die Einwirkung von Oxo-Verbindungen, von Oxy-oxo-Verbindungen und von ihren Derivaten. p-Phenylendiamin läßt sich durch Einw. von Formaldehyd-Natriumdisulfit je nach den angewandten Mengen in die Verbindung C₈H₄[NH·CH₄(SO₃Na)]₃ (S. 83) bezw. die Verbindung H₂N·C₈H₄·NH·CH₄(SO₃Na) (S. 83) überführen (Bucherer, Schwalbe, B. 39, 2804). p-Phenylendiamin gibt mit der äquimolekularen Menge Chloral in Chloroform Chloral-p-phenylendiamin (N·[β,β,β-Trichlor-α-oxy-āthyl]-p-phenylendiamin, S. 84) (Rüchermer, B. 39, 1661). p-Phenylendiamin liefert beim Erhitzen mit 2 Mol.-Gew. Benzaldehyd auf 110—120° N.N'-Dibenzal-p-phenylendiamin (S. 85) (Ladenburg, B. 11, 599). Gibt mit 2 Mol.-Gew. Benzaldehyd-Natriumdisulfit (Bd. VII, S. 211) in Gegenwart von Wasser bei 40° das Dinatriumsalz der Verbindung C₈H₄[NH·CH(C₈H₄(SO₃H)]₃ (S. 84) (Bucherer, Schwalbe, B. 39, 2812). In äther. Lösung gibt p-Phenylendiamin mit Benzaldehyd-Natriumdisulfit N.N'-Dibenzal-p-phenylendiamin (Bucherer, Schwalbe, B. 39, 2813). Beim Erhitzen von Mol.-Gew. p-Phenylendiamin (Bucherer, Schwalbe, B. 39, 2813). Beim Erhitzen von Mol.-Gew. p-Phenylendiamin kondensiert sich mit der äquimolekularen Menge Dimethyldihydroresorcin (Bd. VII, S. 559) zu 1.1-Dimethyl-cyclohexandion-(3.5)-mono-(4-amino-anil] (S. 88), das mit 1 Mol.-Gew. Dimethyldihydroresorcin unter Bildung von p-Phenylendiamin liefert mit Chinon-bischlorimid (Bd. VII, S. 621) einen schwarzvioletten Farbstoff (Akt.-Ges. f. Anilinf., D. R. P. 68875; Frdl. 8, 399). Reagiert mit 2 Mol.-Gew. ms-Benzal-acetylaceton (Bd. VII, S. 706) in Alkohol unter Bildung von N.N'-Dibenzal-p-phenylendiamin (Ruhemann, Watson, Soc. 85, 1175). Gibt mit der äquimolekularen Menge 2.3-Dibrom-naphthochinon-(1.4) (Bd. VII, S. 731) in heißer alkoholischer Lösung bei Gegenwart von Natriumäthylat 3-Brom-2-[4-amino-anilino]-naphthochinon-(1.4) (Syst. No. 1874) (Lindenbaum, B. 34, 1052).

Erhitzt man p-Phenylendiamin unter Zusatz einer geringen Menge seines salzsauren Salzes mit Benzoin (Bd. VIII, S. 167), so erhält man N.N.-Didesyl-p-phenylendiamin $C_8H_4[NH\cdot CH(C_8H_8)\cdot CO\cdot C_8H_5]_2$ (Syst. No. 1873) (JAPP, MELDRUM, Soc. 75, 1045).

Beispiele für die Einwirkung von Carbonsäuren, Oxy-carbonsäuren, Oxo-carbonsäuren, Oxy-oxo-carbonsäuren und ihren Derivaten. Beim Kochen UNO-CAPDONSAUREN, OXY-OXO-CAPDONSAUREN UND Ihren Derivaten. Beim Kochen von p-Phenylendiamin mit überschüssiger Ameisensaure erhält man N.N'-Diformyl-p-phenylendiamin (S. 94) (WUNDT, B. 11, 828). Diese Verbindung entsteht auch aus 1 Mol-Gew. p-Phenylendiamin mit 2 Mol-Gew. Formamid in Eisessig (Hrss., Cohen, Soc. 67, 831). Das Hydrochlorid des p-Phenylendiamins C₆H₈N₂ + 2HCl gibt mit Cyankalium und Aceton in Benzol eine sehr zersetzliche Verbindung vom Schmelzpunkt 157—158°, mit Cyankalium und Benzaldehyd in Benzol N.N'-Bis-[a-cyan-benzyl]-p-phenylendiamin (Syst. No. 1905) (Bucherer, Grolée, B. 39, 1000). Kocht man p-Phenylendiamin länger Zeit mit Eisessig, so entsteht N.N'-Diacetyl-p-phenylendiamin (S. 97) (Biedermann, Ledoux, B. 7, 1531). Beim Kochen von 1 Mol-Gew. des salzsauren p-Phenylendiamins mit 1 oder B. 7, 1531). Beim Kochen von 1 Mol.-Gew. des salzsauren p-Phenylendiamins mit 1 oder B. 7, 1531). Beim Kochen von 1 Mol.-Gew. des saizsaufen p-Fnenylendiamins mit 1 oder auch 2 Mol.-Gew. wasserfreiem Natriumacetat und der zur Lösung gerade hinreichenden Menge Wasser entsteht N-Acetyl-p-phenylendiamin (S. 94) (H. Schiff, Ostrogovich, A. 293, 373). Beim Erwärmen von p-Phenylendiamin mit Chloressigester entsteht p-Phenylen-bis-glycinäthylester (S. 106) (Zimmermann, Knyrm, B. 16, 515). Erhitzt man 2 g p-Phenylendiamin mit 4 g Stearinsäure 15—20 Minuten auf 200°, so wird N-Stearoyl-p-phenylendiamin (S. 97) gebildet (Sulzberger, D. R. P. 193451; C. 1908 I, 1011). Beim Behandeln von p-Phenylendiamin mit Benzoylchlorid in Gegenwart von Natronlauge entsteht N. N. Dibergyll, p-phenylendiamin (S. 98) (Hinsperger, V. Ling (NSC) 4, 254). steht N.N. Dibenzoyl-p-phenylendiamin (S. 98) (HINSBERG, v. UDRÁNSKY, A. 254, 254). Beim Kochen von p-Phenylendiamin mit der vierfachen Menge krystallisierter Oxalsaure in wäßr. Lösung erhält man [4-Amino-phenyl]-oxamidsäure (Š. 99) (Koller, B. 86, 413). Bei 1—2-stdg. Kochen von 1 Tl. p-Phenylendiamin mit 10 Tln. Oxalsäurediäthylester entsteht p-Phenylen-bis-oxamidsaureäthylester (S. 100) (R. Meyer, Seeliger, B. 29, 2642). Uber die Einw. von Dicyan auf p-Phenylendiamin vgl. Mever, J. pr. [2] 61, 473 l). p-Phenylendiamin gibt beim Kochen mit der 5—10-fachen Menge Malonester (Bd. II, S. 573) p-Phenylen-bis-malonamidsäureäthylester C₆H₄(NH·CO·CH₂·CO₃·C₂H₅)₂ (S. 100) (R. Meyer, v. Lutzau, A. 347, 28). Beim Erhitzen äquimolekularer Mengen von salzsaurem p-Phenylendiamin Soda und Bornetsinsäure auf 4500 ertsteht en Phenylen bis quaniminid diamin, Soda und Bernsteinsäure auf 150° entsteht p-Phenylen-bis-succinimid C₆H₄ N CO·CH₂ (Syst. No. 3201) neben wenig N-[4-Amino-phenyl]-succinimid

H₂N·C₆H₄·N CO·CH₂ (Syst. No. 3201) (R. MEYER, J. MAIER, A. 327, 18, 24). Beim Erwärmen von p-Phenylendiamin in absolut-alkoholischer Lösung mit überschüssigem Bernsteinsäureanhydrid (Syst. No. 2475) wird p-Phenylen-bis-succinamidsäure C₆H₄(NH·CO·CH₂·CH₃·CO₂H)₃ (S. 100) gebildet, arbeitet man dagegen mit Bernsteinsäureanhydrid in Essigesterlösung bei 40°, so entsteht [4-Amino-phenyl]-succinamidsäure (S. 100) (R. Meyer, J. Maier, A. 327, 33, 39). Bei 2-stdg. Kochen von p-Phenylendiamin mit der 5—10-fachen Menge Bernsteinsäurediäthylester am Rückflußkühler erhält man N-[4-Amino-phenyl]succinimid (R. MEYER, v. LUTZAU, A. 347, 33). Bei 10-stdg. Kochen von p-Phenylendiamin mit 6 Tln. Isobernsteinsäurediäthylester erhält man p-Phenylen-bis-isosuccinamidsäureäthylester (S. 100) (R. MEYER, JAEGER, A. 347, 37). Aus p-Phenylendiamin und Sebacinsäureester wurde ein Gemisch von Produkten erhalten, aus dem nur N-[4-Amino-phenyl]-sebacinsäureimid H₂N·C₆H₄·N<^{CO}_{CO}>C₈H₁₆ (Syst. No. 3201) rein erhalten werden konnte (R. MEYER, J. MAIER, A. 347, 46). p-Phenylendiamin liefert mit der äquimolekularen Menge Pyrocinchonsäureanhydrid (Syst. No. 2476) beim Schmelzen im CO₂-Strom oder beim CO·C·CH, Mischen der alkoh. Lösungen N-[4-Amino-phenyl]-pyrocinchonimid $H_2N \cdot C_6H_4 \cdot N$ CO·C·CH, (Syst. No. 3202), mit 2 Mol.-Gew. Pyrocinchonsäureanhydrid p-Phenylen-bis-pyrocinchon-imid (Syst. No. 3202) (Rossi, G. 34 II, 446, 448, 450). Beim Verschmelzen äquimolekularer

(Syst. No. 3202), mit 2 Mol.-Gew. Pyrocinchonsäureanhydrid p-Phenylen-bis-pyrocinchonimid (Syst. No. 3202) (Rossi, G. 34 II, 446, 448, 450). Beim Verschmelzen äquimolekularer Mengen p-Phenylendiamin und Phthalsäureanhydrid (Syst. No. 2479) (Biedermann, B. 10, 1163) oder beim Erhitzen der Komponenten in absolut-alkoholischer Lösung in Gegenwart von wasserfreiem Natriumacetat (R. Meyer, J. Maier, A. 327, 43) erhält man N-[4-Aminophenyl]-phthalimid (Syst. No. 3218) und p-Phenylen-bis-phthalimid (Syst. No. 3218). Dieselben Verbindungen entstehen auch beim Erhitzen äquimolekularer Mengen von Phthalylchlorid (Bd. IX, S. 805) mit p-Phenylendiamin in Eisessig (R. Meyer, Jarger, A. 347, 53, 54). Bei 1-stdg. Erwärmen von 1 Tl. p-Phenylendiamin mit 1 Tl. α.γ-Dicarboxy-glutaconsäure-tetraäthylester (Bd. II, S. 876) auf 100° entsteht neben Malonsäurediäthylester

¹⁾ Vgl. auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschlenene Arbeit von M. M. RICHTER, B. 44, 3468; die dort gegebene Auffassung wird von M. M. RICHTER in einer Privatmitteilung für unzutreffend erklärt, die Existenz der von MEVES angenommenen Verbindung C₁₄H₁₆N₆ aber für fraglich gehalten.

p-Phenylen-bis-[iminomethyl-malonsäure-diāthylester] bezw. p-Phenylen-bis-[aminomethylen-malonsäure-diāthylester] (S. 109) (RUHEMANN, HEMMY, B. 30, 2026).

p-Phenylendiamin liefert mit Chlorameisensäureester (Bd. III, S. 9) als Hauptprodukt p-Phenylendiurethan (S. 104), neben wenig [4-Amino-phenyl]-urethan (S. 101) (H. Schiff, Ostrogovich, A. 293, 374). Beim Überleiten von Phosgen (Bd. III, S. 13) über auf 200—250° erhitztes salzsaures p-Phenylendiamin entsteht p-Phenylendiisocyanat (S. 105) neben einem nicht näher untersuchten, in den gewöhnlichen Lösungsmitteln unlöslichen Produkt (GATTER-MANN, WRAMPELMEYER, B. 18, 2604). Beim Erhitzen der Lösung von p-Phenylendiamin in Chloroform mit überschüssiger Phosgen-Toluollösung auf 110° erhält man den in allen gebräuchlichen Lösungsmitteln unlöslichen polymeren (?) p-Phenylenharnstoff (S. 71) (R. MEYER, A. 327, 6). Ebendieser bildet sich beim Erhitzen äquimolekularer Mengen von salzsaurem p-Phenylendiamin und Urethan (Bd. III, S. 22) in Gegenwart von geschmolzenem Natriumacetat auf 150° (MANUELLI, RECCHI, R. A. L. [5] 9 II, 270). Bei der Einw. von 2 Mol.-Gew. Kaliumcyanat (Bd. III, S. 34) auf 1 Mol.-Gew. salzsaures p-Phenylendiamin in wäßr. Lösung entsteht p-Phenylendiaminstoff C₆H₄(NH·CO·NH₂)₂ (S. 104) (Lellmann, A. 221, 14; B. 16, 593). p-Phenylendiamin liefert bei der Einw. von 2 Mol.-Gew. Bromcyan (Bd. III, S. 39) in Gegenwart von KHCO₃ und Wasser [4-Cyanamino-phenyl]-harnstoff (S. 104), bei der Einw. von 1 Mol.-Gew. Bromcyan [4-Amino-phenyl]-cyanamid (S. 101) (PIERBON, A. ch. [8] 15, 185, 207). Gibt mit Thiophosgen (Bd. III, S. 134) in Chloroformlösung p-Phenylendiaser. C₆H₄(N:CS)₃ (S. 105) (BILLETER, STEINER, B. 20, 230). Beim Erhitzen von rhodanwasserstoffsaurem p-Phenylendiamin (erhalten aus salzsaurem p-Phenylendiamin und Ammoniumrhodanid in waßr. Lösung) auf 120° entsteht p-Phenylen-bis-thioharnstoff C₆H₄(NH·CS·NH₂)₂ (S. 105) (Lellmann, A. 221, 11; 228, 248). Beim Erhitzen einer wäßr. Lösung von 1 Mol.-Gew. salzsaurem p-Phenylendiamin mit 1 Mol.-Gew. Kaliumrhodanid bildet sich neben p-Phenylen-bis-thioharnstoff [4-Amino-phenyl]-thioharnstoff (S. 102) (Frerichs, Huffa, Ar. 241, 162). Beim Kochen von 2 Mol.-Gew. p-Phenylendiamin mit 1 Mol.-Gew. Schwefel-kohlenstoff in Alkohol oder in einem anderen indifferenten Lösungsmittel bis zum Aufhören der H₂S-Entwicklung werden N.N'-Bis-[4-amino-phenyl]-thioharnstoff (H₂N·C₆H₄·NH)₂CS (S. 102) und polymerer p-Phenylenthioharnstoff (C₇H₆N₂S)_x (S. 71) erhalten (Farbwerk Griesheim, D. R. P. 58204, 60152; Frdl. 3, 31; vgl. Gucci, G. 23 I, 298). Läßt man unf die ellech Lösung von z. Benylenthiominischen die Einstellen Manne CS. auf die alkoh. Lösung von p-Phenylendiamin die äquimolekulare Menge CS, und überschüssiges wäßriges Ammoniak einwirken, so bildet sich das Ammoniumsalz der [4-Aminophenyl]-dithiocarbamidsaure H₂N·C₆H₄·NH·CS₂H (S. 102) (Losanitsch, B. 40, 2973). p-Phenylendiamin gibt mit Glykolsaurenitril (Bd. III, S. 242) bezw. mit Formaldehyd und Blausaure p-Phenylen-bis-glycinnitril (S. 106) (Höchster Farbw., D. R. P. 145062; C. 1903 II, Beim Erhitzen von 1 Mol.-Gew. p-Phenylendiamin mit ca. 2 Mol.-Gew. Mandelsäurenitril (Bd. X, S. 206) und wenig Alkohol im Druckrohr auf 100° entsteht N.N'-Bis-[a-cyan-benzyl]-p-phenylendiamin (Syst. No. 1905) (Sachs, Goldmann, B. 35, 3339). Beim Erhitzen von p-Phenylendiamin mit 3-Oxy-naphthoesaure-(2) (Bd. X, S. 333), gelöst in Alkali, in Gegenwart von Disulfitlösung entsteht N-β-Naphthyl-p-phenylendiamin (S. 83) (Bucheree, Seyde, J. pr. [2] 75, 276). Beim Erhitzen von 1 Mol.-Gew. salzsaurem p-Phenylendiamin mit 2 Mol.-Gew. Gallamid (Bd. X, S. 487) auf 220° entsteht N.N'-Digalloylp-phenylendiamin (S. 106) (GNEHM, GANSSER, J. pr. [2] 63, 82).

Beim Erhitzen von p-Phenylendiamin mit 2 Mol.-Gew. Acetessigester im Druckrohr auf

Beim Erhitzen von p-Phenylendiamin mit 2 Mol.-Gew. Acetessigester im Druckrohr auf 170° entsteht N.N'-Bis-acetoacetyl-p-phenylendiamin (S. 106) (KNORE, B. 17, 545; 19, 3303). p-Phenylendiamin liefert mit 2 Mol.-Gew. β-Imino-buttersäure-nitril (Diacetonitril, Bd. III, S. 660) in verd. Essigsäure p-Phenylen-bis-[β-imino-buttersäure-nitril] C₆H₄(N:C(CH₃)·CH₃·CN]₂ (S. 106) (E. v. MEYER, C. 1908 II, 592; J. pr. [2] 78, 502). Beim Kochen von p-Phenylendiamin mit Diacetbernsteinsäure-diäthylester (Bd. III, S. 840) in essigsaurer Lösung entsteht p-Phenylen-bis-[2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester]

 $\begin{array}{l} C_{6}H_{4} \begin{bmatrix} N & C(CH_{3}): C \cdot CO_{2} \cdot C_{2}H_{5} \\ N & C(CH_{3}): C \cdot CO_{2} \cdot C_{2}H_{5} \end{bmatrix} \\ \text{(Syst. No. 3276) (B\"{u}Low, \textit{B. 33, 2365, 2367)}. Aus p-Phenylendiamin und Phenacyl-benzoyl-essigester (Bd. X, S. 832) in Eisessig bildet sich p-Phenylendiamin und Phenacyl-benzoyl-essigester (Bd. X, S. 832) in Eisessig bildet sich p-Phenylendiamin und Phenacyl-pyrrol-carbonsäure-(3)-äthylester] \\ C_{6}H_{4} \begin{bmatrix} N & C(C_{6}H_{5}): C \cdot CO_{2} \cdot C_{2}H_{5} \\ N & C(C_{6}H_{5}): C \cdot CO_{3} \cdot C_{3}H_{5} \end{bmatrix}_{2} \\ \text{(Syst. No. 3276)} \\ \text{(Syst. No.$

No. 3265) (PAAL, BRAIKOW, B. 22, 3095).

Beispiele für die Einwirkung von Sulfinsäuren, Sulfonsäuren und ihren Derivaten. Läßt man zu einer Lösung von 1 g p.Phenylendiamin, 5 g Benzolsulfinsäure (Bd. XI, S. 2) und 2 g Eisessig in 100 bis 200 ccm Wasser überschüssige Kaliumdichromatlösung unter Kühlung fließen, so erhält man 2.5-Bis-phenylsulfon-phenylendiamin-(1.4) (Syst. No. 1869) (Hinsberg, Himmelschein, B. 29, 2027). p-Phenylendiamin gibt beim Schütteln mit Benzolsulfochlorid (Bd. XI, S. 34) und Natronlauge N.N'-Dibenzolsulfonyl-p-phenylendiamin (S. 115) (Hinsberg, A. 265, 179, 188). p-Phenylendiamin kondensiert sich mit 4-Nitro-toluol-sulfonsäure-(2) (Bd. XI, S. 90) bei Gegenwart von Alkali zu einem braunen

Stilbenfarbstoff (Direktbraun) (Geigy & Co., D. R. P. 59290; Frdl. 3, 811), der diazotierbar ist und zur Herstellung von Disazofarbstoffen der Stilbenreihe dienen kann (Geigy & Co., D. R. P. 117729; C. 1901 I, 486). Löst man 44 g p-Phenylendiamin in 1 l Wasser und fügt allmählich 212 g p-Toluolsulfochlorid (Bd. XI, S. 103) und 1120 com 10% iger Natronlauge hinzu, so erhält man als Hauptprodukt N.N'-Di-p-toluolsulfonyl-p-phenylendiamin (S. 115), daneben treten in geringer Menge N-p-Toluolsulfonyl-p-phenylendiamin und dessen p-toluolsulfonsaures Salz (S. 114) auf (Willstätter, Pfannenstiel, B. 38, 2247; vgl. Reverdin, Crépieux, B. 34, 3003). Beim Kochen von p-Phenylendiamin mit Naphthol-(2)-disulfonsaure-(6.8) (Bd. XI, S. 290) und Disulfitlösung entsteht N-[4-Amino-phenyl]-naphthylamin-(2)-disulfonsäure-(6.8) (Syst. No. 1924) (Buoheree, Seyde, J. pr. [2] 75, 265).

Beispiele für die Einwirkung von Aminen, Amino-oxy-Verbindungen, Amino-oxo-Verbindungen sowie ihren Derivaten. Oxydiert man ein Gemisch von Anilin und p-Phenylendiamin in eiskalter neutraler Lösung mit Kaliumdichromat und behandelt das hierbei entstandene blaue Reaktionsprodukt (Indamin) mit Zinkstaub und Salzsäure, so entsteht 4.4'-Diamino-diphenylamin (S. 110) (NIETZKI, B. 16, 474). Versetzt man die neutrale Lösung eines Gemisches von 1 Mol.-Gew. p-Phenylendiamin und 2 Mol.-Gew. Anilin mit Kaliumdichromat und erhitzt die das zunächst entstandene Indamin enthaltende Lösung, so erhält man Phenosafranin (Syst. No. 3745) (WITT, Journ. Soc. Chem. Ind. 1, 255; NIE., B. 16, 466; BINDSCHEDLER, B. 16, 871). Safraninartige Farbstoffe werden auch erhalten, wenn man bei letzterer Reaktion Anilin durch o- oder m-Toluidin ersetzt; ferner können solche entstehen bei Oxydation eines Gemisches von 1 Mol.-Gew. p-Phenylendiamin mit 1 Mol.-Gew. p-Toluidin und 1 Mol.-Gew. Anilin, o-Toluidin oder m-Toluidin, sowie endlich eines Gemisches von 1 Mol.-Gew. P-Phenylendiamin, 1 Mol.-Gew. Mono- oder Dimethylanilin und 1 Mol.-Gew. eines beliebigen primären aromatischen Amins (NIE., B. 16, 464, 465). Beim Verschmelzen von p-Phenylendiamin mit salzsaurem p-Nitroso-dimethylanilin (Bd. XII, S. 677) entsteht ein blauer Azinfarbstoff (Bad. Anilin- u. Sodaf., D. R. P. 59185; Frdl. 3, 398). Beim Erhitzen von p-Phenylendiamin mit o-, m- oder p-Toluidin und Schwefel entstehen Schwefelfarbstoffe (Akt.-Ges. f. Anilinf., D. R. P. 208560; C. 1909 I, 1369). Bei der gemeinsamen Oxydation von p-Phenylen-

1369). Bei der gemeinsamen Oxydation von p-Phenylendiamin und N.N'-Diphenyl-m-phenylendiamin (S. 42) bildet sich das einfachste Mauvein (Pseudomauvein von Perken, Phenomauvein) (s. nebenstehende Formel) (Syst. No. 3745) (NIETZEI, B. 29, 1444). Erhitzt man p-Phenylendiamin mit salzsaurem p-Phenylendiamin in Gegenwart schwacher

Oxydationsmittel, z. B. Nitrobenzol (in Gegenwart von FeCl₃) (Dahl & Co., D. R. P. 44406; Frdl. 2, 191), Chinon, Chloranil (Bayer & Co., D. R. P. 49969; Frdl. 2, 191), Azoverbindungen, Aminoazoverbindungen usw. mit oder ohne Zusatz von Kondensationsmitteln auf höhere Temperaturen (Dahl & Co., D. R. P. 36899, 39763, 45803; Frdl. 1, 294, 296; 2, 209; Cassella & Co., D. R. P. 50820; Frdl. 2, 193; Bayer & Co. D. R. P. 53198; Frdl. 2, 192), so erhält man wasserlösliche Farbstoffe der Indulingruppe. Wasserlösliche Indulinfarbstoffe werden auch gebildet, wenn man spirituslösliche (wasserunlösliche) Induline oder Zwischenprodukte der Indulinschmelze direkt mit p-Phenylendiamin, evtl. unter Zusatz von Kondensationsmitteln auf höhere Temperaturen erhitzt (Dahl & Co., D. R. P. 57346, 69096, 73115; Frdl. 3, 313, 314, 315; Höchster Farbw., D. R. P. 50819, 54617, 55184; Frdl. 2, 197, 199, 200; 3, 316; Oehler, D. R. P. 53357; Frdl. 2, 201). Beim Behandeln von 2.4-Diamino-toluol (S. 124) und salzsaurem p-Phenylendiamin in währ. Natriumacetatlösung mit einer Lösung von Eisenchlorid bildet sich salzsaures Aminomethylindamin (S. 129), das in siedender wäßriger Lösung durch Luftsauerstoff in 3.6-Di-

amino-2-methyl-phenazin (s. nebenstehende Formel) (Syst. No. H₂N-1 NH₃ 3747) übergeführt wird (Bernthsen, Schweitzer, A. 236, 343, 344). Beim Erhitzen von p-Phenylendiamin mit 2.4-Diamino-toluol und Schwefel oder beim Erhitzen von p-Phenylendiamin mit dem Produkt der Verschmelzung von 2.4-Diamino-toluol und Schwefel entstehen Produkte, die durch Erhitzen mit konz. Lösungen von Schwefelalkalien oder Ätzalkalien in olivgelbe Schwefelfarbstoffe übergeführt werdem können (Cansaula & Co. D. R. P. 196753, 198026; C. 1908 I. 4427, 4845). Prim Parkelale

können (Cassella & Co., D. R. P. 196753, 198026; C. 1908 I, 1437, 1815). Beim Behandeln eines Gemisches von je 1 Mol.-Gew. salzsaurem p-Phenylendiamin und 2-Amino-4-äthylamino-toluol (S. 130) mit K₂Cr₂O₇ (entsprechend 2 At.-Gew. Sauerstoff) erst in der Kälte, dann in der Hitze entsteht das 3.6-Diamino-

2-methyl-phenazin-chlorathylat-(10) (s. nebenstehende Formel) (Syst. No. 3747) (Jaubert, B. 31, 1180). p-Phenylendiamin gibt mit arylierten 1.3-Diamino-naphthalinen bei der Einw. von Sauerstoff oder Luft in Gegenwart von Kupferoxydammoniak violette

H₂N· NH₃

bis blaue Azinfarbstoffe (BAYER & Co., D. R. P. 206646; C. 1909 I, 1059).

Beim Erhitzen von p-Phenylendiamin mit salzsaurem p-Amino-phenol (Syst. No. 1841) auf 160—180° (Vidal-Ges., D. R. P. 116337; Frdl. 6, 628; C. 1901 I, 76) oder in Gegenwart

von Wasser im geschlossenen Rohr auf 200° (VIDAL, C. 1903 I, 85) entsteht 4-Oxy-4'-amino-diphenylamin (Syst. No. 1850).

Beim Erhitzen von p-Phenylendiamin mit Azophenin (Syst. No. 1874) in alkoh. Lösung im Druckrohr auf 165° entstehen Anilinophenylsafranin nebenstehender Formel H₂N·(Syst. No. 3767) und Anilin (Barbier, Sisley, C.r. 145, 1186; Bl. [4] 3, 148; vgl. Dahl. & Co., D.R.P. 43008; Frdl. 1, 297).

$$\mathbf{H_{s}N} \cdot \underbrace{\begin{matrix} \mathbf{N} \\ \mathbf{N} \end{matrix} \cdot \mathbf{NH} \cdot \mathbf{C_{o}H_{s}}}_{\mathbf{N} \cdot \mathbf{C_{o}H_{s}}}$$

Beispiele für die Einwirkung heterocyclischer Verbindungen. Einw. von Bernsteinsäureanhydrid s. S. 66, von Pyrocinchonsäureanhydrid s. S. 66, von Phthalsäureanhydrid s. S. 66. Salzsaures p-Phenylendiamin liefert mit Alloxan (Syst. No. 3627) in siedender wäßriger Lösung die Verbindung

OC<NH·CO>CH·NH·C₆H₄·NH·CH<CO·NH>CO (Syst. No. 3774) (Mö., Li., J. pr. [2] 73, 483). Bei längerem Kochen einer wäßr. Lösung von p-Phenylendiamin mit 4-Oxochinazolindihydrid-carbonsäure-(2)-nitril C₆H₄·NH (Syst. No. 3696) erhält man neben

Blausäure 4-Oxo-2-[4-amino-phenylimino]-chinazolintetrahydrid C₆H₄ CO · NH

(Syst. No. 3591) (Griess, B. 18, 2421). Beim Kochen
von 10 g salzsaurem Aposafranin (Syst. No. 3719) mit
8 g p-Phenylendiamin, 4 g salzsaurem p-Phenylendiamin
und 200 g Alkohol entsteht die Verbindung nebenstehender
Formel (Syst. No. 3745) (O. FISCHER, HEPP, B. 29, 366).

Biochemisches Verhalten.

p-Phenylendiamin wirkt auf den tierischen Organismus giftig (Dubois, Vignon, C. r. 107, 533; E. Erdmann, Z. Ang. 18, 1378; E. Er., Vahlen, A. Pth. 53, 402). Es ruft beim Menschen außer Ekzemen Vergiftungserscheinungen hervor (E. Er., Z. Ang. 8, 428; 18, 1378; E. Er., V.), die zum Teil auf Oxydationsprodukte des p-Phenylendiamins, entweder das Chinondiimid (E. Er., V.) oder die Bandrowskische Base (Syst. No. 1800) (Blau, C. 1906 I, 381; vgl. dagegen E. Er., Z. Ang. 19, 1053) zurückzuführen sind. — Über die fäulniswidrige Kraft des salzsauren p-Phenylendiamins vgl. Bokorny, Z. Ang. 10, 338.

Verwendung.

p-Phenylendiamin findet Verwendung als Zwischenprodukt der Farbstoffabrikation. So dient es zur Darstellung des Stilbenfarbstoffes Direktbraun (Schultz, Tab. No. 13), zahlreicher Azofarbstoffe (Schultz, Tab. No. 205, 206, 207, 208, 243, 244, 290, 291, 292, 436, 437; s. auch Bad. Anilin- u. Sodaf., D. R. P. 42011, 42815; Frdl. 1, 522—524; Höchster Farbw., D. R. P. 73321; Frdl. 3, 601; Akt.-Ges. f. Anilinf., D. R. P. 84145, 84390, 84461, 84659, 86199, 86814, 86915, 87023, 87024, 88848, 91141: Frdl. 4, 1002—1015), des Indulinfarbstoffes Paraphenylenblau (Schultz, Tab. No. 701), von Schwefelfarbstoffen (Schultz, Tab. No. 713, 714, 718; s. auch Soc. St. Denis, Vidal., D. R. P. 85330; Frdl. 4, 1049; Soc. St. Denis, D. R. P. 131999; Frdl. 6, 673; Vidal-Ges., D. R. P. 114802; Frdl. 6, 723; C. 1900 II, 932; Clayton Aniline Co., D. R. P. 130440; C. 1902 I, 1140). Über die Verwendung von p-Phenylendiamin zum Färben von Haaren, Federn, Pelzwerk (Ursolfärberei) siehe H. Erdmann, D. R. P. 47349, 51073; Frdl. 2, 498, 499; Schultz, Tab. No. 923; E. Erdmann, Z. Ang. 8, 424; 18, 1377; vgl. dazu Paully, Binz, C. 1904 II, 1583). — Verwendung von p-Phenylendiamin in der Photographie als Entwickler: Andressen, D. R. P. 46915; B. 22 Ref., 282. — Verwendung von salpetersaurem p-Phenylendiamin zum Nachweis von ultravioletten Strahlen: Schall, C. 1907 II, 1442; J. pr. [2] 77, 262.

Analytisches.

Streicht man eine p-Phenylendiaminlösung auf Holz, so entsteht eine wochenlang beständige ziegelrote Färbung; durch Zusatz von Essigsäure tritt die Färbung rascher und greller auf, durch Alkali wird sie zerstört (BLAU, C. 1906 I, 381; vgl. dazu E. ERDMANN, Z. Ang. 19, 1053; C. 1906 II, 264). Über Farbreaktionen mit Natriumhypobromit s. DEHN, Scott, Am. Soc. 39, 1421. Unterscheidung des p-Phenylendiamins von o- und m-Phenylendiamin s. bei o-Phenylendiamin, S. 14.

Additionelle Verbindungen des p-Phenylendiamins.

Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{12}H_{11}O_6N_5 = C_6H_8N_2 + C_6H_3O_4N_3$. Schwarzbraune Nadeln (Noelting, Sommerhoff, B. 39, 77). — Verbindung mit Fluorenon (Bd. VII, S. 567) $C_{22}H_{24}O_2N_2 = C_6H_6N_2 + 2C_{13}H_8O$. Ziegelrote Nädelchen. Wird von organischen Lösungsmitteln sofort gespalten (Schlenk, A. 368, 286). — Verbindung mit Chinon (Bd. VII, S. 609) $C_{42}H_{36}O_{10}N_4 = 2C_6H_6N_2 + 5C_6H_4O_2$. Tiefblaue Krystalle. Schmilzt unscharf bei 83°; wird schon von kaltem Benzol dissoziiert (Sch., A. 368, 283). — Verbindung mit Chloranil (Bd. VII, S. 636) $C_{12}H_8O_2N_2Cl_4 = C_6H_6N_2 + C_6O_2Cl_4$. Blauschwarze Nadeln (Sch., A. 368, 282).

Salze des p-Phenylendiamins.

C₆H₈N₂ + 2 HCl + 2 SnCl₂. Nadeln (Hübner, A. 209, 366). — C₆H₈N₂ + 2 HCl + PdCl₂. Rotbraune Blättchen (aus Wasser) (Gutbier, Krell, Janssen, Z. a. Ch. 47, 29). — C₆H₈N₂ + 2 HBr + PdBr₂. Rotbraune Blättchen (aus verd. Bromwasserstoffsäure) (G., K., J., Z. a. Ch. 47, 30). — C₆H₈N₂ + 2 HCl + PtCl₄. Hellgelbe Blätter. In Wasser leicht löslich; leicht zersetzlich (A. W. Hofmann, Proc. Royal Soc. London 12, 641; C. r. 56, 993; J. 1863, 422).

Umwandlungsprodukte von ungewisser Konstitution aus p-Phenylendiamin.

Indophenol $C_{12}H_{10}ON_2 = H_1N \cdot C_0H_4 \cdot N : C_0H_4 \cdot O$ bezw. $HN : C_0H_4 \cdot N \cdot C_0H_4 \cdot OH$. B. Durch Oxydation von p-Phenylendiamin und Phenol in wäßr. Lösung mit Bleidioxyd oder Mangandioxyd mit oder ohne Zusatz von Dinatriumphosphat und Alkalidicarbonat (Akt.-Ges. f. Anilinf., D. R. P. 179294, 179295; Frdl. 8, 497, 498; C. 1907 I, 437) oder mit Hypochloritlösung in Gegenwart von Kupfersalzen (Akt.-Ges. f. Anilinf., D. R. P. 204596; C. 1909 I, 115). — Messingglänzende Blättchen.

Indamin $C_{18}H_{14}O_4N_6=$ Formel I oder II. B. Man kocht $^1/_8$ Stde. lang 27 g 2'.4'-Dinitro-3-amino-diphenylamin (S. 41) mit 18 g salzsaurem p-Phenylamin, 20 g geschmolzenem Natriumacetat und 1195% iger Essigsäure, versetzt nach dem Erkalten unterhalb 10° mit 20 g

$$H_2N \cdot \bigcirc \cdot N : \bigcirc : NH$$
 NH
 $O_2N \cdot \bigcirc \cdot \bigcirc$
 NO_2
 NO_3
 NO_3
 NO_4
 NO_4
 NO_4
 NO_5
 K,Cr,O,, gelöst zu 666 ccm, rührt noch 2 Stdn. und fällt mit 2 l Wasser (JAUBERT, B. 28, 512). — Blaues, kupferglänzendes Krystallpulver. Verpufft beim Erhitzen. Fast unlöslich in Wasser. Geht beim Erhitzen mit Alkohol in das Safranin der Formel III (Syst. No. 3745) über.

Verbindung $(C_7H_0ON_2)_x$ (polymerer (?) p-Phenylenharnstoff). Zur Zusammensetzung vgl. R. Meyer, v. Lutzau, A. 327, 7; Hinsberg, Krssler, A. 340, 111, 112; Wilson, Adams, Am. Soc. 45 [1923], 531. — B. Bei mehrstündigem Erhitzen der Lösung von p-Phenylendiamin in Chloroform mit überschüssiger Phosgen-Toluollösung auf 110 (R. MEYER, v. LUTZAU, A. 327, 6). Beim Erhitzen aquimolekularer Mengen von salssaurem p-Phenylendiamin, Urethan und geschmolzenem Natriumacetat auf 150—160° (MANUELLI, RECCHI, R. A. L. [5] 9 II, 270). Neben Anilin beim Erhitzen von N-Phenyl-N'-[4-aminophenyl]-harnstoff (S. 101) auf 220° (LELLMANN, WÜETHNER, A. 228, 224). Bei längerem Kochen von Terephthalsäurediazid (Bd. IX, S. 847) mit Wasser (DAVIDIS, J. pr. [2] 54, 71, 87). — In allen gebräuchlichen Lösungsmitteln unlösliches Krystallpulver (D.). Löslich in konz. Schwefelsäure, wird aus dieser Lösung durch Wasser wieder gefällt (Ma., Rz.). Verkohlt beim Erhitzen, ohne vorher zu schmelzen (Lz., Wü.). Wird sowohl von alkoh. Ammoniak bei 120°, als, auch von rauchender Salzsäure bei 160° in CO₂ und p-Phenylendiamin zerlegt (R. MEYER, v. Lu.).

Verbindung (C₇H₂N₂S)_x (polymerer p-Phenylenthioharnstoff) 1). B. Neben N.N'-Bis-[4-amino-phenyl]-thioharnstoff (S. 102) beim Kochen von 2 Mol.-Gew.p-Phenylendiamin mit 1 Mol.-Gew. Schwefelkohlenstoff in Alkohol oder in einem anderen indifferenten Lösungsmittel bis zum Aufhören der H.S-Entwicklung (Farbwerk Griesheim, D. R. P. 58204, 60152; Frdl. 3, 31; vgl. Gucci, G. 23 I, 298). Durch Erhitzen von N-[4-Amino-phenyl]-thioharnstoff über seinen Schmelzpunkt (Frenches, Huffe, Ar. 241, 163). Beim Schmelzen von p-Phenylen-bis-[ω-phenyl-thioharnstoff] (S. 105) (Leilmann, A. 221, 29). — Blättchen.

F: 279°; unlöslich in allen gewöhnlichen Lösungsmitteln (L.).

Funktionelle Derivate des p-Phenylendiamins.

N-Methyl-p-phenylendiamin $C_1H_{10}N_2=H_2N\cdot C_0H_4\cdot NH\cdot CH_2$. B. Beim Erwärmen des Natriumsalzes der 4'-Methylamino-azobenzol-sulfonsäure-(4) (Syst. No. 2172) mit Schwefelammonium (Bernthsen, Goske, B. 20, 929). Bei 2-stdg. Erhitzen von 1 Tl. N-Methyl-N-phenyl-hydrasin C₂H₃·N(CH₃)·NH₂ mit 1 Tl. rauchender Salssaure auf 200° (Thiele, Wheeler, B. 28, 1639). Entsteht neben N.N-Dimethyl-p-phenylendiamin (S. 72) bei der Reduktion von 4-Methylamino-4'-dimethylamino-asoxybensol (Syst. No. 2216) mit Zinn und Salssaure (Börnstein, B. 29, 1482). Durch Reduktion von N-Methyl4-nitroso-anilin (Chinon-methylimid-oxim, Bd. VII, S. 626) mit Zinn und Salssaure (O. Fischer, Heff, B. 19, 2992; Whlstatter, Prannenstel, B. 38, 2249). — Weiße Blättchen. F: 35,5° (WI., P.). Kp: 267—259,5° (Be., G.); Kps: 152° (WI., P.). Leicht löslich in Wasser, Alkohol und Ather (Be., G.). — Writin in siedendem Petroläther durch Oxydation mit PbO₂ in Gegen-vert von coeleithern Nationality of Chinon-inid methylimid (Pd. VII. S. 620) oxydiset wart von geglühtem Natriumsulfat zu Chinon-imid-methylimid (Bd. VII, S. 620) oxydiert (WILLSTÄTTER, MOORE, B. 40, 2671). Die neutrale, verdünnte Lösung der Salze wird durch eine Spur Eisenchlorid intensiv rot gefärbt; diese rote Lösung wird durch Zusatz von Salzsaure farblos und dann bei sofortigem Zufügen von Schwefelwasserstoff blau (Bz., G.). Läßt sich in eine Diazoniumverbindung überführen, die als Komponente von Azofarbstoffen verwendbar ist (Bad. Anilin- u. Sodaf., D. R. P. 154336; C. 1904 II, 1014). — 2C₇H₁₀N₂+ H₂SO₄. Nadeln (aus Wasser) (Br., G.).

M.M'-Dimethyl-p-phenylendiamin $C_0H_{12}N_1=C_0H_4(NH\cdot CH_2)_2$. B. Beim kursen Kochen von N.N'-Di-p-toluolsulfonyl-N.N'-dimethyl-p-phenylendiamin (S. 115) mit starker

¹⁾ Vgl. dazu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Bolsen, Hartshorn, Am. Soc. 45 [1923], 2351.

Schwefelsäure (WILLSTÄTTER, PFANNENSTIEL, B. 38, 2248). — Krystalle (aus Gasolin). F: 53°. Kp₁₇: 149—150°. Sehr leicht löslich in organischen Mitteln, schwer in Wasser. Ziemlich schwer flüchtig mit Wasserdampf. Die Lösungen erzeugen auf der Haut Brennen. — Bei der Oxydation in Gasolin mit PbO₃ entsteht Chinon-bis-methylimid (Bd. VII, S. 621). — $C_3H_{12}N_2 + 2$ HCl. Nadeln. Schwer löslich in kaltem Alkohol, sehr leicht in Wasser und heißem Alkohol. — Pikrat $C_2H_{12}N_2 + 2C_2H_3O_7N_3$. Grünlichgelbe Prismen. F: 186°. In Wasser und Alkohol in der Kälte ziemlich schwer, in der Wärme leicht löslich.

N.N.-Dimethyl-p-phenylendiamin, p-Amino-dimethylanilin C₈H₁₈N₈ = H₂N·C₄H₄·N(CH₃)₂. B. Aus N.N-Dimethyl-4-nitroso-anilin (p-Nitroso-dimethylanilin, Bd. XII, S. 677) durch Reduktion mit Zinn und Salzsäure (Schrauber, B. 8, 619), mit Zinkstaub urd Salzsäure (Köchlin, Witt, D. R. P. 15915; Frdl. 1, 283), mit Zinkstaub in Alkohol (Paul, Z. Ang. 10, 23), mit Schwefelwasserstoff in salzsaurer Lösung (Bad. Anilin- u. Sodaf., D. R. P. 1886; Frdl. 1, 247) oder durch elektrolytische Reduktion in Gegenwart von Titanverbindungen (Höchster Farbw., D. R. P. 168273; C. 1906 I, 1198). Aus N.N-Dimethyl-4-nitro-anilin (Bd. XII, S. 714) mit Zinn und Salzsäure (Merz, Weith, Weber, B. 10, 762; Wubster, B. 12, 530). Neben N-Methyl-p-phenylendiamin (S. 71) bei der Reduktion von 4-Methylamino-4'-dimethylamino-azoxybenzol (Syst. No. 2216) mit Zinn und Salzsäure (Börnstein, B. 29, 1481). — Darst. Man behandelt p-Nitroso-dimethylanilin mit Zinn und Salzsäure, fällt aus der Lösung durch Einleiten von Chlorwasserstoff das Zinndoppelsalz des N.N-Dimethyl-p-phenylendiamins vollständig aus und trägt es in Natronlauge ein; die abgeschiedene Base nimmt man in Benzol auf (Wu., B. 12, 523). Man erwärmt 4'-Dimethylamino-azobenzol-sulfonsäure-(4) (Helianthin, Syst. No. 2172) mit wäßr. Schwefelammonium und schüttelt mit Bleiweiß und etwas Wasser befreit und dann genau mit äther. Lösung von Schwefelsäure neutralisiert; es scheidet sich das neutrale Sulfat des N.N-Dimethyl-p-phenylendiamins aus (E. Fischer, B. 16, 2235).

N.N-Dimethyl-p-phenylendiamin scheidet sich aus Benzol auf Zusatz von Ligroin in weißen asbestähnlichen Nadeln aus; F: 41° (Wu., B. 12, 524). Kp, 262,3° (korr.) (Perkin, Soc. 69, 1215); Kp: 257° (korr.) (Wu., B. 12, 524); Kp₁₁: 158—159° (Auwers, Wehr, A. 334, 311). Verflüchtigt sich schwer mit Wasserdämpfen (Wu., B. 12, 525). Di.: 1,0414; Dz: 1,0357; Dz: 1,0168 (Per., Soc. 69, 1216). Leicht löslich in kaltem Wasser, sehr leicht in Alkohol, Benzol, Chloroform, etwas weniger in Äther, schwerer in Ligroin (Wu., B. 12, 525). Magnetisches Drehungsvermögen: Per., Soc. 69, 1246. Die Dämpfe des N.N-Dimethyl-p-phenylendiamins zeigen unter dem Einfluß von Teslaströmen bei Atmosphärendruck violette Luminescenz (Kauffmann, Ph. Ch. 26, 724; B. 33, 1730; 34, 689).

N.N-Dimethyl-p-phenylendiamin liefert beim Behandeln mit Braunstein und Schwefelsäure Chinon (ME., Weil., We.). Bei der Einw. von Brom in Eisessig entsteht eine merichinoide Verbindung von N.N-Dimethyl-p-phenylendiamin mit dem Hydrobromid des Chinon-imid-dimethylimoniumbromids (bromwasserstoffsaures Salz des Wurstereachen Rots) (S. 73) C₃H₁₈N₂ + BrH₂N:C₆H₄:N(CH₂)₂Br (Willstätter, Piccard, B. 41, 1468; vgl. Wurster, Sendtner, B. 12, 1803). N.N-Dimethyl-p-phenylendiamin läßt sich diazotieren und daher als Komponente zur Herstellung von Azofarbstoffen verwenden (Bayer & Co., D. R. P. 77169; Frdl. 3, 1008). N.N-Dimethyl-p-phenylendiamin gibt bei Behandlung mit Schwefel-wasserstoff und Eisenchlorid in saurer Lösung Methylenblau (s. bei Leukomethylenblau, Syst. No. 4367) (Bad. Anilin- u. Sodaf., D. R. P. 1886; Frdl. 1, 248), nebem Methylenblau kann zum Nachweis von Schwefelwasserstoff dienen (E. Fi., B. 16, 2235). Oxydiert man 1 Mol.-Gew. N.N-Dimethyl-p-phenylendiaminsulfat in wäßr. Lösung mit Kaliundichromatlösung unter Zusatz von Essigsäure und fügt zu der Mischung eine mit Aluminiumsulfat versetzte Lösung von 1 Mol.-Gew. Natriumthiosulfat, so erhält man S-[2-Amino-5-dimethyl-amino-phenyl]-thioschwefelsäure ("Dimethyl-p-phenylendiamin-thiosulfonsäure", Syst. No. 1854) (Bernthesen, A. 251, 14, 50). Verwendet man statt 1 Mol.-Gew. 2 Mol.-Gew. Natriumthiosulfat und entsprechend mehr Oxydationsmittel, so läßt sich "N.N-Dimethyl-phenylendiamin mit rauchender Schwefelsäure bei 170—180°: Kauttraane, B. 18, 537). Auch durch Erhitzen von salvsaure M.N-Dimethyl-p-phenylendiamin mit methyl-phenylendiamin liefert beim Erhitzen mit Methylalkohol und Salzsaure im Druckrobr auf 170—480°, suletst auf 200° N.N.N'.N'-Tetramethyl-p-phenylendiamin im Methylalkohol im Druckrohr auf ca. 180—190° erhält man N.N.N'.N'-Tetramethyl-p-phenylendiamin im Methylalkohol im Druckrohr auf ca. 180—190° erhält man N.N.N'. Tetramethyl-p-phenylendiamin im Methylalkohol im Druckrohr auf ca. 180—190° erhält man N.N.N'. Tetramethyl-p-phen

werden (Prinow, B. 32, 1405). Durch gemeinsame Oxydation äquimolekularer Mengen von N.N-Dimethyl-p-phenylendiamin und a-Naphthol in alkalischer Lösung entsteht Naphthochinon-(1.4)-mono-[4-dimethylamino-anil] (a-Naphtholblau) (S. 91) (Korchlin, Witt, D. R. P. 15915; Frdl. 1, 284; Möhlau, B. 16, 2851). N.N-Dimethyl-p-phenylendiamin verbindet sich sehr leicht mit Benzaldehyd zu N.N-Dimethyl-N'-benzal-p-phenylendiamin (S. 84) (CALM, B. 17, 2938; MOORE, GALE, Am. Soc. 30, 399). Liefert mit Blausaure und Formaldehyd das Nitril des N-[4-Dimethylamino-phenyl]-glycins (S. 105) (FREUND, WIRSING, B. 40, 204). Mit Bensolsulfinsäure und Kaliumdichromat entsteht 2.5-Bis-phenylsulfon-N.N-204). Mit Bensolsulinsaure und Kallumdichromat entetent 2.5-Bis-phenylsulion-N.N-dimethyl-phenylendiamin-(1.4) (Syst. No. 1869) (HINSBERG, HIMMELSCHEIN, B. 29 2028). Bei gemeinsamer Oxydation von N.N-Dimethyl-p-phenylendiamin und 2 Mol.-Gew. salzsaurem Anilin in siedender wäßriger Lösung entsteht 2-Amino-7-dimethylamino-phenazin-chlor-phenylat-(9) (Dimethylphenosafranin, Syst. No. 3745) (BINDSCHEDLER, B. 13, 208; 16, 869; vgl. NIETZKI, B. 28, 1356). Bei der Oxydation eines Gemisches äquimolekularer Mengen von salzsaurem Dimethylanilin und salzsaurem N.N-Dimethyl-p-phenylendiamin mit einer wäßr. Lösung von Kaliumdichromat in der Kälte bildet sich BINDSCHEDLERsches Grün (S. 20) (BINDSCHEDLERSches Grün (S. 89) (BINDSCHEDLER, B. 13, 208; 16, 865; NIETZKI, B. 16, 473). N.N-Dimethyl-p-phenyldiamin liefert mit Bromcyan und Pyridin das bromwasserstoffsaure Salz des Glutacondialdehyd-bis-[4-dimethylamino-anils] (S. 88) (König, J. pr. [2] 70, 49; D. R. P. 155782; Frdl. 7, 330; ZINCKE, HEUSER, MÖLLER, A. 333, 340). Reagiert mit Alloxan unter Bildung der Verbindung CO<NH·CO>C:N·C4H4·N(CH3)3 (Syst. No. 3627) (PILOTY, FINCKH, A.

838, 37, 41).
N.N-Dimethyl-p-phenylendiamin findet Verwendung zur Herstellung von Farbstoffen,
z. B. des Indophenolfarbstoffs a Naphtholblau, S. 91 (Schultz, Tab. No. 619), des Thiazinfarbstoffs stoffs Methylenblau (Schultz, Tab. No. 659), von Azinfarbstoffen, z. B. Diphenblau (Schultz, Tab. No. 690); vgl. ferner Schultz, Tab. No. 669, 680, 681, 683; Hirsch, D. R. P. 61504; Frdl. 8, 400; Akt.-Ges. f. Anilinf., D. R. P. 84337; Frdl. 4, 447; BAYER & Co., D. R. P. 86224; Frdl. 4, 436; sowie von Azofarbstoffen; vgl. z. B. Schultz, Tab. No. 62, 63.

Nachweis von N.N-Dimethyl-p-phenylendiamin: Möhlau, B. 19, 2011 Anm. 1. C. H. N. + 2 HCl. Sehr zerfließliche Blättehen (Merz, Weith, Weber, B. 10, 762). — C. H. N. + 8 O. B. Aus N'-Thionyl-N.N-dimethyl-p-phenylendiamin (S. 116) beim Liegen C₂H₁₂N₂ + SO₂. B. Aus N°-Inionyi-N.N-dimethyl-p-pnenyiendiamin (S. 170) bein laegen an der Luft (Francer, B. 31, 2180). Durch Einleiten von SO₂ in die ätherische Lösung von N.N-Dimethyl-p-phenylendiamin (F.). Krystallpulver. F: 90°. Gibt leicht SO₂ ab. Vereinigt sich mit Benzaldehyd in alkoh. Lösung zu der Verbindung C₁₂H₁₂O₂N₂S (S. 84). — Sulfat. Blättchen. In Wasser sehr leicht löslich (SCHRAUBE, B. 8, 619). — Thiosulfat C₂H₁₂N₂ + H₂S₂O₂. Krystalle. Ziemlich löslich in Wasser (Wahl, C. r. 183, 1215). — Nitrat. Blättchen. In Wasser sehr leicht löslich (SCHR.). — C₂H₁₂N₂ + 2 HCl + SnCl₂. Würfel (aus Alkohol) (Mz., Wz.). — C₂H₁₂N₃ + 2 HCl + PtCl₄ (SCHR.).

Verbindung von 2 Mol. N.N-Dimethyl-p-phenylendiamin mit 1 Mol. Chinon-imid-dimethylimoniumferriovanid. merichinoides. Ferricvanid aus

Chinon-imid-dimethylimoniumferricyanid, merichinoides Ferricyanid

Chinon-imid-dimethylimoniumferricyanid, merichinoides Ferricyanid aus N.N-Dimethyl-p-phenylendiamin C₂₀H₂N₁₂Fe = 2 H₂N · C₂H₄ · N(CH₃)₃ + HN:C₂H₄: N(CH₃)₄ H₄Fe(CN₃]. B. Man läßt 6,58 g Ferricyankalium, gelöst in 50 ccm Wasser, in 2,72 g N.N-Dimethyl-p-phenylendiamin, gelöst in 3,4 g Eisessig und 250 ccm Wasser, in tropfen (Willstitte, Piccard, B. 41, 3246). — Grüne Täfelchen. Schwer löslich mit roter Farbe in Wasser und Alkohol, leicht in verd. Salzsäure mit hellbrauner Farbe.

Verbindung von 1 Mol. N.N-Dimethyl-p-phenylendiamin mit 1 Mol. Chinon-imoniumbromid dimethylimoniumbromid, asymm. meri-Chinondimethyl-diimoniumbromid, bromwasserstoffsaures Salz des Wursterschen Rots C₁₆H₄₈N₆Br₃ = H₄N·C₆H₄·N(CH₃)₃ + BrH₂N·C₆H₄·N(CH₃)₃Br. Zur Zusammensetzung und Konstitution vgl. Willstitte, Piccard, B. 41, 1460 l. — B. Beim Versetzen einer Lösung von N.N-Dimethyl-p-phenylendiamin in Eisessig mit einer eisessigsauren Lösung von 1½ At.-Gew. Brom (Wurster, Sendtrer, B. 12, 1803; Wu., B. 12, 2071), besser von nur 1At.-Gew. Brom (Wullstitte, Piccard, B. 41, 1469). — Metallglänzende, grüne Krystall-1 Åt.-Gew. Brom (WILLSTITTER, PICCARD, B. 41, 1469). — Metallglänzende, grüne Krystall-flimmer (aus Alkohol). F: 146° (Wu., S.), 146—147° (korr.) (Wi., P.). Lözlich in Wasser und Alkohol mit intensiv roter Farbe (Wu., S.; Wi., P.). Über die Lichtebsorption der wäßr. Lösung vgl. P., B. 42, 4341. — Die Lösung wird durch SO₂ entfärbt; schwache Oxydationsmittel stellen die rote Farbe wieder her (Wu., S.). Auch durch verdünnte Salzsäure wird die rote Lösung entfärbt (Wi., P.). Beim Behandeln mit Alkalien, Essigsäureanhydrid oder Reduktionsmitteln entsteht N.N-Dimethyl-p-phenylendiamin (Wu., S.). Bläut, in verd. Salssäure gelöst, Jodkaliumstärkepapier; in konz. Lösung fällt durch KI ein schwarzes Jodid aus (Wi., P.). Bildet mit Thiosulfat unter Abspaltung von N.N-Dimethyl-p-phenylendiamin 8-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure ("Dimethyl-p-phenylendiamin-thiosulfonsäure", Syst. No. 1854) (Wi., P.; vgl. Berntheen, A. 251, 14, 49).

¹) Zur Konstitution vgl. ferner PIOCARD, A. 381 [1911], 360; B. 59 [1926], 1440.

Verbindung von 1 Mol. N.N-Dimethyl-p-phenylendiamin mit 1 Mol. Chinon-imoniumnitrat-dimethylimoniumnitrat, asymm. meri-Chinondimethyldiimoniumnitrat, salpetersaures Salz des Wursterschen Rots $C_{10}H_{24}O_{4}N_{6}=H_{1}N\cdot C_{6}H_{4}\cdot N(CH_{3})_{5}+O_{2}N\cdot H_{2}N\cdot C_{6}H_{4}\cdot N(CH_{3})_{5}\cdot NO_{3}$. B. Man leitet in die Lösung von 2 g N.N-Dimethyl-p-phenylendiamin in 75 ccm 969% alkohol und 5 ccm kons. Salpetersaure unter Kühlung nitrose Gase, bis eine Probe, mit Wasser verdünnt, durch Brom keine Verstärkung der Farbe mehr zeigt (Willstätter, Piccard, B. 41, 3245). — Grüne Blättchen mit Kupferglanz (aus Methylalkohol); die Lösungen sind rot.

Methylenrot C₈H₉N₂ClS₂, vielleicht Cl(CH₃)₂N S. Zur Konstitution

vgl. Berthsen, A. 251, 19. — B. Entsteht neben Methylenblau (Syst. No. 4367) beim Behandeln von N.N-Dimethyl-p-phenylendiamin mit Eisenchlorid und Schwefelwasserstoff (Koch, B. 12, 593; B., A. 230, 137, 165); man fällt aus der Lösung das Methylenblau mit Zinkohlorid und Kochsalz aus (Bad. Anilin- u. Sodaf., D. R. P. 1886; Frdl. 1, 247; K.; B., A. 230, 137), schüttelt die Mutterlauge mit roher Carbolsäure aus und fällt aus der carbolsauren Lösung das Methylenrot mit Äther-Alkohol aus (B., A. 230, 165; 251, 5). Entsteht auch aus 2-Amino-5-dimethylamino-thiophenol (Syst. No. 1854) durch Behandlung in sehr verdünnter salzsaurer Lösung mit Eisenchlorid bei Gegenwart von Schwefelwasserstoff (B., A. 251, 25). — Grüne Prismen (aus Alkohol). Leicht löslich in Wasser und Alkohol (K.; B., A. 230, 165). unlöslich in Äther (B., A. 230, 165). Die wäßrige und alkoholische Lösung ist purpurfarben (B., A. 230, 165). Kleine Mengen Natron bewirken Spaltung in Kochsalz, Natriumsulfit und 2-Amino-5-dimethylamino-thiophenol, das sich aber an der Luft rasch zu dem Disulfid [(CH₂)₂N·C₄H₃(NH₃)·S—]₂ oxydiert (B., A. 251, 40). Als Nebenprodukt entsteht bei der Einw. von Natronlauge auf Methylenrot S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure ("Dimethyl-p-phenylendiamin-thiosulfonsäure", Syst. No. 1854) (B., A. 251, 45). Schwefelwasserstoff und andere Reduktionsmittel wirken auf Methylenrot unter Bildung von 2-Amino-5-dimethylamino-thiophenol (B., A. 251, 23). — 2C₂H₂N₂ClS₂ + ZnCl₂ + 2H₂O (K.).

N.N.N'-Trimethyl-p-phenylendiamin $C_0H_{14}N_2=CH_3\cdot NH\cdot C_0H_4\cdot N(CH_3)_2$. B. Durch Behandeln des N.N.N'.N'-Tetramethyl-p-phenylendiamins (s. u.) in eisessigsaurer Lösung mit Natriumnitrit und Zersetzen des hierbei entstandenen Nitrosamins (S. 116) mit konz. Salzsäure oder mit Zinn und Salzsäure (Wurster, Schobio, B. 12, 1810). — Erstarrt nicht im Kältegemisch. Kp. 265°. Wenig löslich in Wasser. Die Lösungen der Salze geben mit achwachen Oxydationsmitteln eine prachtvoll rotviolette Färbung. — Liefert ein bei 95° schmelzendes Acetylderivat.

N.N.N'.N'-Tetramethyl-p-phenylendiamin C₁₀H₁₆N₂ = C₆H₄[N(CH₂)₂]₂. B. Aus p-Phenylendiamin bei abweehselndem Behandeln mit Methylgidid und Silberoxyd (Hof-Mann, C. 7. 56, 994; J. 1863, 422). Durch Erhitzen von salzsaurem p-Phenylendiamin mit Methylalkohol im Druckrohr auf 170—200° (R. Meyer, B. 36, 2978). Durch Erhitzen von 10 g N.N-Dimethyl-p-phenylendiamin mit 8 g Salzsäure und 8 g Methylalkohol im Druckrohr auf 170—180° und zuletzt auf 200° (Wurster, B. 12, 526). Durch 6-stdg. Erhitzen von 12 g salzsaurem N.N-Dimethyl-p-phenylendiamin mit 9,5 com Methylalkohol im Druckrohr auf ca. 180—190°, Abscheiden des Tetramethyl-p-phenylendiamins mit Ammoniak und erneutes Erhitzen der wäßr. Lösung mit Ammoniak im geschlossenen Rohr auf ca. 180—190°, wodurch eine weitere Menge der Base entsteht (Pinnow, B. 32, 1405). — Blättchen (aus verd. Alkohol oder Ligroin). F: 51°, Kp: 260° (korr.) (Wu.). Schwer löslich in kaltem Wasser, leicht in Ligroin, sehr leicht in Alkohol, Äther, Chloroform (Wu.). — Die wäßrige Lösung der Base färbt sich an der Luft nach kurzem Stehen tief violettblau; ebenso unter dem Einfluß von Oxydationsmitteln (Wu.). Gibt beim Behandeln mit Natriumnitrit in Eisessiglösung N'.Nitroso-N.N.N'-trimethyl-p-phenylendiamin (S. 116), ein bei 87° schmelzendes Nitrosotrimethyl-2-nitro-phenylendiamin-(1.4) (S. 122) und eine hellgelbe, bei 66° schmelzende nicht näher untersuchte Verbindung (Wu., Schorge, B. 12, 1809). Beim Einleiten von nitrosen Gasen in die alkoholisch-schwefelsaure Lösung von Etramethyl-p-phenylendiamin entsteht zunächst die Verbindung 2C₆H₄(N(CH₂)₂]₃ + C₆H₄(:N(CH₂)₂, SO₄H]₃ + H₃SO₄ (S. 75) (WILLETITTER, PICCARD, B. 41, 1602, 1473). Tetramethyl-p-phenylendiamin gibt mit Ferrioyanwasserstoff in schwefelsaurer Lösung eine blaue merichinoide Verbindung, in essigsaurer Lösung eine violette merichinoide Verbindung (Wr., P., B. 41, 3247; vgl. Wu., Scho., B. 12, 1808). — Verursacht auf der Haut Brennen (R. M.). — Salze: Wu., B. 528. C₁₀H₁₆N₂ + 2 HCl. Krystal

Verbindung von 2 Mol. Tetramethyl-p-phenylendiamin mit 1 Mol. Chinon-bis-dimethylimoniumsulfat und 1 Mol. Schwefelsäure, schwefelsaures Salz des Wursterschen Blaus $C_{20}H_{42}O_{12}N_1 \cdot S_2 = 2(CH_2)_2N \cdot C_2H_4 \cdot N(CH_2)_2 + HO_4S \cdot (CH_2)_2N \cdot C_4H_4 \cdot N(CH_2)_2 \cdot SO_4H + H_2SO_4$. B. Beim Einleiten von nitrosen Gasen (unter Kühlung) in die Lösung von 1 g Tetramethyl-p-phenylendiamin in 10 com 30% jeger Schwefelsäure und 50 com Alkohol bis zur Bildung eines reichlichen Niederschlages (Willstätter, Piccard, B. 41, 1473; vgl. Wurster, Schobig, B. 12, 1808, 2071). — Dunkle, grünlich metallglänsende, in der Durchsicht graue Prismen. Riecht an der Luft nach Formaldehyd; löslich in verd. Salzsäure mit schwacher, in Wasser mit intensiver Farbe, blau in verdünntem, violett in konzentriertem Zustand. — Gibt in alkoholisch-schwefelsaurer Lösung beim Einleiten nitroser Gase die Verbindung $C_4H_4[N(CH_3)_2]_2 + 2C_6H_4[N(CH_3)_3 \cdot SO_4H]_3 + H_4SO_4$.

violett in konzentriertem Zustand. — Gibt in akkonolisch-schwereisaurer Losung beim Einleiten nitroser Gase die Verbindung $C_4H_4[N(CH_3)_3]_3 + 2C_4H_4[:N(CH_2)_2 \cdot SO_4H]_2 + H_2SO_4$. Verbindung von 1 Mol. Tetramethyl-p-phenylendiamin mit 2 Mol. Chinon-bis-dimethylimoniumsulfat und 1 Mol. Schwefelsäure $C_{20}H_{24}O_{20}N_4S_5 = (CH_2)_2N \cdot C_4H_4 \cdot N(CH_3)_2 + 2HO_4S \cdot (CH_3)_2N \cdot C_4H_4 \cdot N(CH_3)_2 \cdot SO_4H + H_2SO_4$. B. Man leitet in eine Lösung von 1 g Tetramethyl-p-phenylendiamin in 3 ccm 50% jiger Schwefelsäure und 50 ccm Alkohol unter guter Kühlung nitrose Gase ein, bis sich der anfangs gebildete schwarze Niederschlag in eine fast farblose Krystallisation umgewandelt hat (W., P., B. 41, 1474). — Fast farblose Krystalle. Leichter löslich als die blaue Verbindung (s. o.). Löslich in Wasser

mit schwach blauer Farbe. Entwickelt an der Luft Formaldehyd.

N.N.-Dimethyl-p-phenylendiamin-hydroxymethylat, Trimethyl-[4-aminophenyl]-ammoniumhydroxyd $C_0H_{16}ON_2 = H_2N \cdot C_0H_4 \cdot N(CH_3)_3 \cdot OH$. B. Das Jodid bildet sich beim Erhitzen äquimolekularer Mengen von N.N-Dimethyl-N'-formyl-p-phenylendiamin (S. 94) und Methyljodid in methylalkoholischer Lösung im Druckrohr auf 100° (Pinnow, Pistor, B. 27, 603; Pis., Dissertation [Berlin 1894], S. 22). Salze des Trimethyl-[4-amino-phenyl]-ammoniumhydroxyds werden auch erhalten, wenn man an N.N-Dimethyl-N'-acetyl-p-phenylendiamin oder an N.N-Dimethyl-N'-benzal-p-phenylendiamin CH₂I anlagert und die Reaktionsprodukte mit Salzsäure erhitzt, wobei Essigsäure bezw. Benzaldehyd abgespalten werden (Pinnow, Koch, B. 30, 2860; vgl. Höchster Farbw., D. R. P. 88557; Frdl. 4, 70). — Verwendung als Komponente von Azofarbstoffen: H. F., D. R. P. 87584, 87585, 93499; Frdl. 4, 810, 811, 819; D. R. P. 105319; C. 1900 I, 379. — Chlorid-hydrochlorid $C_2H_{12}N_2$ Cl + HCl. Prismen (aus absol. Alkohol). F. 219° (Pin., K.). In Wasser außerst leicht löslich (H. F., D. R. P. 88557), weniger in Methylalkohol, noch weniger in Ather (Pin., K.). — Jodid. Nadeln. F: 168° (Pin., Pis.). — Zinkchlorid-Doppelsalz. Prismen. Sehr leicht löslich in Wasser, sehr wenig in absol. Alkohol (H. F., D. R. P. 88557).

N.N.N'.N'-Tetramethyl-p-phenylendiamin-mono-jodmethylat, Trimethyl-[4-dimethylamino-phenyl]-ammoniumjodid $C_{11}H_{12}N_2I = (CH_2)_2N \cdot C_2H_4 \cdot N(CH_2)_2I$.

B. Entsteht leicht aus Tetramethyl-p-phenylendiamin und Methyljodid (WURSTER, B. 12, 526). Aus N.N-Dimethyl-N'-formyl-p-phenylendiamin mit überschüssigem Methyljodid im Druckrohr bei 100° (PINNOW, PISTOR, B. 27, 603). — Blättchen. F: 265° (PIN., PIS.).

N.N.N.N.N.N.'.N'-Hexamethyl-p-phenylen-bis-ammoniumjodid, p-Phenylen-bistrimethylammoniumjodid, N.N.N'.N'-Tetramethyl-p-phenylendiamin-bis-jod-methylat $C_{12}H_{22}N_2I_2=C_2H_2[N(CH_2)_2I]_2$. B. Entsteht bei abwechselndem Behandeln von p-Phenylendiamin mit Methyljodid und Silberoxyd (Hofmann, C. r. 56, 994; J. 1863, 422). — Blättchen. Äußerst löslich in Wasser, weniger in Alkohol.

N-Äthyl-p-phenylendiamin $C_8H_{10}N_8 = H_4N \cdot C_8H_4 \cdot NH \cdot C_2H_5$. B. Aus N-Äthyl-4-nitroso-anilin (Chinon-āthylimid-oxim, Bd. VII, S. 626) durch Reduktion mit Zinnehlortir oder Zinn und Salzsäure (O. Fischer, Heff, B. 19, 2994). Beim Behandeln von N-Äthyl-4-nitro-anilin (Bd. XII, S. 714) mit Zinn und Salzsäure (Norlting, Collin, B. 17, 267; Schweitzer, B. 19, 149). Aus N-Nitroso-N-āthyl-4-nitro-anilin (Bd. XII, S. 728) durch Reduktion (Orhler, D. R. P. 12932; Frdl. 1, 259). Beim Erwärmen des Natriumsalzes der 4-Äthylamino-asobensol-sulfonsäure-(4) (Syst. No. 2172) mit Schwefelammonium (Berntesen, Goske, B. 20, 930; Or.). — Flüssig. Kp,44: 261—262° (Schw.). Leicht löslich in Alkohol, Äther und Benzol, weniger leicht in Wasser (Schw.). — $C_8H_{12}N_3 + 2$ HCl. Blättchen. Löslich in Wasser und Alkohol (N., C.). — $C_9H_{13}N_3 + H_3$ SO₄. Nadeln oder Prismen (B., G.). — $C_8H_{12}N_3 + 2$ HCl + PtCl₄. Gelbe Nädelchen (Schw.).

N.N-Diäthyl-p-phenylendiamin, p-Amino-diäthylanilin $C_{10}H_{10}N_3 = H_2N \cdot C_6H_4 \cdot N(C_2H_4)_2$. B. Aus p-Nitroso-diāthylanilin (Bd. XII, S. 684) oder 4.4'-Bis-diāthylamino-asobenzol (Syst. No. 2172) und salssaurem Zinnehlorür (Lippmann, Fleissner, M. 4, 297). — Flüssig. Kp: 260—262° (L., Fl.). Braunt sich schnell an der Luft; gibt mit Kaliumehromat eine violette Färbung; mit Eisenehlorid entsteht erst Rotfärbung und dann eine Fällung (L., Fl.). Gibt bei gemeinsamer Oxydation mit je 1 Mol.-Gew. salssaurem Diāthylanilin und salssaurem Anilin 2.7-Bis-diāthylamino-phenazin-chlorphenylat-(9) (Diāthylphenosafranin, Amethystviolett, Syst. No. 3745) (Nierzki, B. 16, 472). — $C_{10}H_{16}N_2 + SO_3$. B. Aus N'-Thionyl-N.N-diāthyl-p-phenylendiamin (S. 116) beim Liegen an der Luft (France, B. 31, 2182).

Durch Einleiten von Schwefeldioxyd in die äther. Lösung von N.N-Diäthyl-p-phenylendiamin (Fa.). F: 122—124°. — C₁₀H₁₆N₂ + ZnCl₂ + 2 H₂O. Krystelle (Bernthern, A. 251, 54). — 2C₁₀H₁₆N₂ + 4HCl + PtCl₄. Rote oder gelbe Tafeln. Triklin pinakoidal (SCHRAUF, M. 4, 298; vgl. Groth, Ch. Kr. 4, 278).

N.N - Dimethyl - N'.N' - diäthyl - p - phenylendiamin $C_{12}H_{20}N_2 = (CH_2)_2N \cdot C_6H_4 \cdot N(C_2H_2)_2$. B. Man erhitzt 10 g N.N-Diāthyl-p-phenylendiamin mit 8 g Methylalkohol und 10 g Salzsaure im Druckrohr auf 200° (Lippmann, Fleissner, M. 4, 791). — Flüssig. Kp: 263—265°. — Wird durch Chlorkalk, Jod, Kaiiumdichromat und andere Oxydationsmittel tiefblau gefärbt.

N.N.N'.N'-Tetraäthyl-p-phenylendiamin $C_{14}H_{24}N_3 = C_6H_4[N(C_4H_5)_2]_2$. B. Aus N.N-Diāthyl-p-phenylendiamin und 2 Mol.-Gew. Athyljodid im Druckrohr bei 100° oder aus 4.4'-Bis-diāthylamino-azobenzol (Syst. No. 2172) und 4 Mol.-Gew. Athyljodid und etwas Alkohol im Druckrohr bei 100° (Lippmann, Fleisner, M. 4, 300, 306). — Tafeln (aus wäßr. Alkohol). Monoklin prismatisch (Schrauf, M. 4, 301; vgl. Groth, Ch. Kr. 4, 280). F: 52°; Kp: 280°. Sehr leicht Isalich in Alkohol, Ather, Chloroform, Ligroin und Benzol. — $C_{14}H_{24}N_3 + 31$. Schwarze, undurchsichtige Prismen. Schwer löslich in Alkohol. — $C_{14}H_{24}N_3 + 2HI$. Krystalle. Leicht löslich in Wasser, schwer in Alkohol. — $C_{14}H_{24}N_3 + 2HCl + 2HGCl_3$. Prismen. Monoklin prismatisch (Sch.; vgl. Groth, Ch. Kr. 4, 281). — $C_{14}H_{24}N_3 + 2HCl + PtCl_4$. Braune Würfel (aus heißem, salzsäurehaltigem Wasser). Tetragonal (Sch.).

N.N - Diäthyl - p - phenylendiamin - chlormethylat, Methyl - diäthyl - [4 - aminophenyl]-ammoniumchlorid $C_{11}H_{12}N_1Cl = H_2N \cdot C_6H_4 \cdot N(CH_3)(C_2H_5)_2Cl$. B. Durch Kochen von N.N-Diäthyl-N'-acetyl-p-phenylendiamin-chlormethylat (S. 95) mit Salzsäure (Höchster Farbw., D. R. P. 88557; Frdl. 4, 70). — Äußerst leicht löslich in Wasser und Alkohol. — Zinkchlorid-Doppelsalz. Prismen. Sehr leicht löslich in Wasser und verd. Alkohol.

N.N.N.N'-Tetramethyl-N'.N'-diäthyl-p-phenylendiamin-bis-hydroxymethylat $C_{14}H_{22}O_2N_4=(HO)(CH_{2})_2N\cdot C_2H_4\cdot N(CH_2)(C_2H_2)_2(OH)$. B. Das Jodid entsteht aus N.N-Dimethyl-N'.N'-diāthyl-p-phenylendiamin durch Erwärmen mit Methyljodid (Lippmann, Fleissner, M. 4, 792) sowie aus 4.4'-Bis-diāthylamino-azobenzol (Syst. No. 2172) durch Erhitzen mit Methyljodid und Methylalkohol im Druckrohr auf 100° (L., F., M. 4, 788). Das Jodid gibt mit Silberoxyd in wäßr. Lösung die freie Base (L., F., M. 4, 790). — Öl. Sehr hygroskopisch. Reagiert stark alkalisch. Zieht Kohlensäure aus der Luft an. — Jodid $C_{14}H_{26}N_2I_2$. Nadeln. F: 218°. Sehr leicht löslich in Wasser, schwer in Alkohol, unlöslich in Ather. — Pikrat $C_{14}H_{26}N_3[O\cdot C_6H_2(NO_2)_2]_2$. Hellgelbe Nädelchen. Schmilzt unter Zersetzung bei 235°. Schwer löslich in Wasser. — $C_{14}H_{26}N_2Cl_2 + 2$ AuCl₃. Gelbe Blättchen (aus heißem Wasser). Schwer löslich in Wasser. — $C_{14}H_{26}N_2Cl_2 + C$ AuCl₃. Nadeln. — $C_{14}H_{26}N_2Cl_2 + P$ tCl₄. Orangerote Kryställohen.

N-Propyl-p-phenylendiamin $C_9H_{14}N_9=H_9N\cdot C_8H_4\cdot NH\cdot CH_2\cdot CH_3\cdot CH_3\cdot B$. Beim Behandeln von N-Propyl-4-nitroso-anilin (Chinon-propylimid-oxim, Bd. VII, S. 627) mit Zinnehlorür und Salzsäure (Wacker, A. 243, 295). — Blättchen. Siedet unzersetzt bei 281°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin. — Hydrochlorid. Blättchen.

N-Isobutyl-p-phenylendiamin $C_{10}H_{16}N_3 = H_2N \cdot C_0H_4 \cdot NH \cdot CH_2 \cdot CH(CH_3)_2$. B. Bei der Reduktion von N-Isobutyl-4-nitroso-anilin (Chinon-isobutylimid-oxim, Bd. VII, S. 627) (Wacker, A. 243, 299). — Blättehen (aus Benzol + Ligroin). F: 39°.

N.N'-Diisoamyl-p-phenylendiamin $C_{16}H_{26}N_2 = C_6H_4(NH \cdot C_6H_{11})_2$. B. Beim Behandeln einer Lösung von p-Phenylendiamin in Isoamylalkohol mit Natrium (BASYER, Noyes, B. 22, 2173). — Krystalle. F: 49°.

N-Phenyl-p-phenylendiamin, 4-Amino-diphenylamin $C_{12}H_{12}N_2 = H_2N \cdot C_4H_4$ · NH· C_4H_4 . B. Aus Anilin mit unterchloriger Säure in geringer Menge neben anderen Produkten (Bamberger, Tschirner, B. 31, 1526; A. 311, 83, 84). Aus 4-Nitroso-diphenylamin (Bd. XII, S. 207) beim Erhitzen mit alkoh. Kali im Druckrohr auf 120—150°, besser durch Reduktion mit Zinchlorür und Salzsäure (Ikuta, A. 243, 280). Aus 4-Nitroso-diphenylamin durch Reduktion mit alkoholischem Schwefelammonium (Heucke, A. 255, 189). Bei der Reduktion von 4-Nitroso-diphenylamin mit Phenylhydrazin in äther. Lösung neben 4.4'-Dianilino-azoxybenzol (Syst. No. 2216) (O. Fischer, Wacker, B. 21, 2614). Aus 4-Nitrodiphenylamin (Bd. XII, S. 715) durch Reduktion mit Zinkstaub und Eisessig (Nietzei, Witt, B. 12, 1401). Aus 4-Nitro-diphenylamin beim Kochen in 50°/sigem Alkohol mit Zinkstaub und etwas Salmiak (Ullmann, Dahmen, B. 41, 3747). Durch elektrolytische Reduktion von 4-Nitro-diphenylamin (Rohde, Z. El. Ch. 7, 339). Beim Erwärmen von 4-Aminodiphenylamin-sulfonsäure-(2) (Syst. No. 1923) mit 60°/siger Schwefelsäure (Ullmann, D. R. P.

193351; C. 1908 I, 429) oder beim Kochen mit Salzsäure (D: 1,12) unter Zusatz von etwas Zinnehlorür (U., D., B. 41, 3748). Aus Phenylhydroxylamin (Syst. No. 1932) durch Einw. von 20% iger Aluminiumsulfatlösung bei gewöhnlicher Temperatur (BAMBERGER, BRADY, A. 311, 84 Anm.). Bei der Einw. von Anilin auf Phenylhydroxylamin in Gegenwart von salzsaurem Anilin bei 130° sowie beim Kochen von Phenylhydroxylamin mit Anilinsulfat in WAST. Lösung, neben Azobenzol (Syst. No. 2092), Azoxybenzol (Syst. No. 2207), 2-Amino-diphenylamin (S. 16), Benzidin (Syst. No. 1786) und anderen Produkten (BAMBERGER, LAGUTT, B. 31, 1505). Durch Reduktion von N-Phenyl-N-[4-nitroso-phenyl]-hydroxylamin ON·CaHa·N(OH)·CaHa (Syst. No. 1932) mit Zinkstaub und Wasser (BAMBERGER, Büs-DORF, SAND, B. 31, 1514). Aus 4-Anilino-azobenzol (Syst. No. 2172) durch Reduktion mit Zinkstaub und Eisessig (Nietzki, Witt, B. 12, 1402). Aus 4'-Anilino-azobenzol-sulfonsäure-(4) (Syst. No. 2172) durch Reduktion mit Zinkstaub und verd. Essigsäure (NI., WITT, B. 12,

1402; HESS, BEENTHSEN, B. 18, 692).

Blattchen oder Nadeln (aus verd. Alkohol). 4-Amino-diphenylamin schmilzt, aus verd. Alkohol krystallisiert, bei 66—67°; nach dem Schmelzen wieder erstarrt oder aus siedendem Petroläther umkrystallisiert, bei 75° (O. Fl., Wa., B. 21, 2614 Anm.). Siedet im Wasserstoffstrome bei 354° (Hess, Be.). Kp_{0,024}: 155° (Erdmann, B. 36, 3461). Wenig löslich in Wasser, leicht in Äther und in absol. Alkohol (Ik.). — Versetzt man die Lösung eines Salzes des 4-Amino-diphenylamins mit FeCl₂, so entsteht eine rote Färbung, die bald in Grün umschlägt; bei größerer Konzentration entsteht ein grüner Niederschlag, der sich mit carminroter Farbe in konz. Schwefelsäure löst (NI., WITT; IK.). Der mit FeCl₂ erhaltene Niederschlag enthält im wesentlichen Chinon-anil-[4-(4-amino-anilno)-anil] C₂H₄·N·C₂H₄·N·C₄H₄·N·H·C₄H₄·NH. (S. 112) (NOVER, B. 40, 293; WILLSTÄTTER, MOORE, B. 40, 2677). Ebendieses entsteht bei der Oxydation von 4-Amino-diphenylamin in salzsaurer Lösung mit Wasserstoffsuperoxyd in Gegenwart eines Katalysators, am besten Eisenvitriol (WIL., Mo., B. 40, 2877), ferner bei der Einw. von Dichromatmischung auf 4-Amino-diphenylamin in der Kalte (WILL-STÄTTER, DOROGI, B. 42, 2151). Bei energischer Einw. von Dichromatmischung resultiert Chinon (WIL., Do.; vgl. NI., WITT, B. 12, 1402). Durch Einw. von Chlorkalklösung auf salzsaures 4-Amino-diphenylamin in wäßr. Lösung erhält man Chinon-anil-chlorimid (Bd. XII, S. 207) (No., B. 40, 295). Silberoxyd oxydiert 4-Amino-diphenylamin in trocknem Ather bei Gegenwart von geglühtem Natriumsulfat zu Chinon-imid-anil (Bd. XII, S. 207) (WIL., Mo., B. 40, 2672). Bleidioxyd liefert mit 4-Amino-diphenylamin in äther. Lösung (No., B. 40, 293) oder in wäßr. Suspension (Caro, Verhandlungen der Gesellschaft deutscher Naturforscher und Arzte, Bd. 68, Tl. II, Abt. 1 [Leipzig 1896], S. 119; Wil., Mo., B. 40, 2673) Chinon-imid-anil, in letzterem Falle daneben Chinonmonoanil (WIL., Mo., B. 40, 2673). Die Bromierung des 4-Amino-diphenylamins liefert je nach den Versuchsbedingungen Tribrom- oder Pentabrom-4-amino-diphenylamin (S. 78) (Jacobson, A. 367, 335). Die verdünnte salzsaure Lösung des 4-Amino-diphenylamins gibt mit 1 Tropfen Natriumnitritlösung intensive Rotfärbung (Ja., A. 287, 131). Mit der berechneten Menge Alkalinitrit gibt 4-Aminodiphenylamin in verd. Schwefelsäure das gelb gefärbte 4-Anilino-benzoldiazoniumsulfat (Syst. No. 2203) (IK.; JA., A. 287, 131). 4-Amino-diphenylamin liefert beim Erhitzen mit Schwefel

No. 2203) (R.; Ja., A. 257; 151). Falling-diphenylamin letter being landscape in the scale of the landscape in the landscape in the scale of the landscape in the scale of the landscape in the land

schüssiges 4-Amino-diphenylamin in methylalkoholischer Salzsäure erhält man 2.5-Bis-

[4-anilino-anilino]-chinon-imid-anil (siehe nebenstehende Formel) (Syst. No. 1874) (WILLSTÄTTER, KUBLI, B. 42, 4136, 4144). $C_8H_8 \cdot NH \cdot C_8H_4 \cdot NH \cdot C_8H_8 \cdot NH \cdot C_8H$ Beim Erwarmen von 4-Amino-diphenylamin mit Essigsäureanhydrid erhält man 4-Acet-

NH·C.H.·NH·C.H.

amino-diphenylamin (S. 95) (NI., WITT, B. 12, 1401). Bei der Einw. von Schwefelkohlenstoff auf 4-Amino-diphenylamin in Äther Dildet sich das 4-Amino-diphenylaminsals der [4-Anilino-phenyl]-dithiocarbamidsäure (S. 103) (JA., A. 367, 334 Anm.). Bei längerem Koohen von 4-Amino-diphenylamin mit Schwefelkohlenstoff in alkoh. Lösung entsteht N.N'-Bis-[4-anilino-phenyl]-thioharnstoff (S. 103) (ΗΕυσκε, A. 255, 192). 4-Amino-diphenylamin gibt, mit 4-Oxy-diphenylamin (Syst. No. 1846) zusammenoxydiest (mittels H₂O₂ und etwas FeSO₂), die Verbindung C₂₄H₁₅ON₂ (s. bei 4-Oxy-diphenylamin, Syst. No. 1846) (Will., Mo., B. 40, 2686). Über Farbstoffe der Safranin-reihe, welche durch gemeinsen Oxydetion, von 4 Mol. Clew A-Amino-diphenylamin, mit reihe, welche durch gemeinsame Oxydation von 1 Mol.-Gew. 4-Amino-diphenylamin mit 2 Mol.-Gew. eines aromatischen Monoamins entstehen, vgl. Hüchster Farbwerke, D. R. P. 49853; Frdl. 2, 161. 4-Amino-diphenylamin läßt sich auf der Faser zu einem schwarzen Farbstoff oxydieren (ULLEIGE, FUSSGÄNGER, C. 1908 I, 103) und kann auch sum Färben von Haaren dienen (Erdmann, D. R. P. 92006; C. 1897 II, 511; Akt.-Ges. f. Anilinf., D. R. P.

187681; C. 1907 II, 1199). Erzeugung von blauen, violetten und schwarzen Farbstoffen auf der pflanzlichen oder tierischen Faser durch gemeinsame Oxydation von 4-Amino-diphenylamin mit m-Amino-phenolen, m-Diaminen, Phenolen, Phenolearbonsäuren: Höchster Farbw., D. R. P. 162625; C. 1905 II, 1058. Verwendung von 4-Amino-diphenylamin zur Erzeugung echter Farbstoffe auf der mit diazotierbaren Tetrazofarbstoffen gefärbten Baumwollfaser: Cassella & Co., D. R. P. 73460; Frdl. 3, 787.

 $2C_{12}H_{12}N_2 + H_2SO_4$. Blättchen. Sehr schwer löslich in Wasser (NIETZKI, WITT, B. 12, 1401; IKUTA, A. 243, 280).

4-Amino-diphenylamin-sulfonsäure-(x) C₁₂H₁₂O₃N₂S. B. Durch Sulfurieren von 4-Amino-diphenylamin mit Schwefelsäure, welche mindestens 100% Monohydrat, höchstens 20% Anhydrid enthält, bei Temperaturen von 110-1300 (ERDMANN, D. R. P. 181179; C. 1907 I, 1649). — Nadeln (aus Wasser). Schwer löslich in heißem Wasser. Die waßr. Lösung färbt sich mit Eisenchlorid rotgelb, ebenso mit Dichromat und Essigsäure.

x.x.x-Tribrom-4-amino-diphenylamin C₁₂H₂N₁Br₃. B. Beim Hinzufügen einer Lösung von 6 At.-Gew. Brom in der 10-fachen Menge Eisessig zu einer Lösung von 1 Tl. 4-Amino-diphenylamin in 10 Tln. Eisessig unter Eiskühlung (JACOBSON, A. 367, 335). — Blaßviolette Nadeln (aus Alkohol). F: 137—138°. Leicht löslich in Äther, Chloroform, Benzol, CS₂, warmem Alkohol, schwer in warmem Petroläther.

x.x.x.x-Pentabrom-4-amino-diphenylamin C₁₂H₇N₂Br₈. B. Beim Hinzufügen einer Lösung von 2 g 4-Amino-diphenylamin in 20 ccm Eisessig zu einer etwa 80° warmen Lösung von 14 g Brom in 70 ccm Eisessig (Ja., A. 367, 336). — Hellrötliche Nadeln (aus Xylol). F: 229—230°. — Liefert, in viel starker Schwefelsäure gelöst, bei der Behandlung mit Natriumnitrit Pentabromanilinobenzoldiazoniumnitrat (s. u.).

x.x.x.x-Pentabrom-[4-anilino-benzoldiazoniumnitrat] $C_{12}H_5O_2N_4Br_5$. B. Man verreibt 1 g Pentabromaminodiphenylamin (s. o.) mit 20 g konz. Schwefelsäure, gibt 20 g Wasser hinzu und versetzt nach dem Erkalten langsam mit einer Lösung von 2 g Natriumnitrit in 20 g Wasser; nach kurzem Stehen versetzt man mit 200 g heißem Wasser, erhitzt zum Sieden und filtriert; aus dem Filtrat krystallisiert beim Erkalten das Pentabromanilinobenzoldiazoniumnitrat aus (Ja., A. 367, 340). — Gelbe Nadeln mit 1 Mol. Wasser (aus konz. Salpetersaure). Wird gegen 130° heller, schmilzt zwischen 140° und 160° unter Zersetzung; zersetzt sich langsam bei 100°; färbt sich am Licht braunrot. Löslich in konz. Schwefelsäure mit dunkelroter Farbe; leicht löslich in warmem Eisessig. Gibt beim Kochen mit absol. Alkohol x.x.x.x. Pentabrom diphenylamin (s. u.). Gibt mit einer alkoh. α-Naphthollösung auf Zusatz von Alkali eine tiefrote Lösung.

x.x.x.x.-Pentabrom-[4-anilino-benzoldiazoniumbromid] C₁₂H₅N₂Br₆. B. Aus dem entsprechenden Diazoniumnitrat (s. o.) mittels wäßr. Bromwasserstoffsäure (Ja., A. 367, 342). — Gelbes Pulver; enthält 1 Mol. Krystallwasser. Gibt mit Salpetersäure wieder das entsprechende Diazoniumnitrat.

x.x.x.x-Pentabrom-diphenylamin C₁₃H₆NBr₅. B. Aus Pentabromanilinobenzol-diazoniumnitrat (s. o.) durch Kochen mit absol. Alkohol (Ja., A. 367, 344). — Weiße Nadeln (aus Eisessig). F: 194—195°. Sehr leicht löslich in CS₂, leicht in Chloroform, Alkohol, ziemlich leicht in Eisessig, Benzol, ziemlich schwer in Alkohol, schwer in Ligroin.

- 4'-Chlor-4-amino-diphenylamin $C_{12}H_{11}N_1Cl = H_2N\cdot C_2H_4\cdot NH\cdot C_2H_4Cl$. B. Aus 4-Chlor-hydrazobenzol (Syst. No. 2068) in Methylalkohol mit methylalkoholischer Salzsaure oder Schwefelsäure, neben anderen Produkten (JACOBSON, A. 867, 321). In kleiner Menge aus 4-Chlor-azobenzol (Syst. No. 2092) durch Einw. von Zinnehlorür und Salzsaure (Jacobson, STEÜBE, A. 303, 312). Aus 4-Chlor-4'-nitroso-diphenylamin (Bd. XII, S. 610) durch Reduktion in alkoh. Lösung mit Schwefelammonium (Ja., Sr.). — Farblose Blättchen (aus Ligroin). F: 71° (Ja., Sr.). Gibt in verdünnter salzsaurer Lösung mit NaNO₂ violettrote, auf weiteren Nitritzusatz verschwindende Färbung, mit Eisenchlorid Rotfärbung mit schwach violettem Stich, die auf Zusatz von konz. Salzsäure in Hellgelb übergeht (Ja., Sr.). — Sulfat. Sehr wenig lösliche Blättchen (JA., Sr.).
- 4'-Brom-4-amino-diphenylamin ') $C_{13}H_{11}N_{3}Br = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4}Br$. B. In kleiner Menge neben 5-Brom-2-amino-diphenylamin (S. 28) und 5-Brom-2.4'-diaminodiphenyl (Syst. No. 1785) bei der Umlagerung des 4-Brom-hydrazobenzols (Syst. No. 2068) mittels salzsaurer Zinnehlorürlösung (Jacobson, Grosse, A. 308, 329). — Weiße Blättchen. F: 79°.
- 2'-Nitro-4-amino-diphenylamin $C_{12}H_{11}O_2N_3=H_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NO_2$. B. Durch 8—10-stdg. Erhitzen von p-Phenylendiamin mit o-Brom-nitrobenzol (Bd. V, S. 247) und

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4 Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von JACOBSON, A. 427 [1922], 184; die reine Verbindung schmilzt bei 93,50.

Natriumacetat in Alkohol im Druckrohr auf 160—170° (Bandrowski, C. 1900 II, 852).

— Fast schwarze Spieße. F: 105—106°. Ziemlich leicht löslich in heißem Alkohol.

- 4'-Nitro-4-amino-diphenylamin $C_{18}H_{11}O_{2}N_{3} = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4} \cdot NO_{2}$. B. Durch 8—10-stdg. Erhitzen äquimolekularer Mengen von p-Phenylendiamin, p-Brom-nitrobenzol (Bd. V, S. 248) und Natriumacetat in Alkohol im Druckrohr auf 160—170° (Bandrowski, C. 1900 II, 852; Morgan, Micklethwalt, Soc. 93, 611). Beim Erwärmen von 4-Nitro-4'-amino-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) mit 68-volumprozentiger Schwefelsäure, neben p-Nitranilin (Ullmann, Dahmen, B. 41, 3753; U., D.R. P. 193448; C. 1908 I, 1003). Rotbraune Nadeln (aus Alkohol). F: 205° (Mo., Mi.), 207° (U., D.), 211—212° (B.). Löslich in Alkohol und Aceton, schwer löslich in Benzol und Äther, unlöslich in Ligroin (U., D.). $C_{12}H_{11}O_{2}N_{3} + HCl$. Stahlblau glänzende, dunkle Nadeln. Löslich in heißem Wasser mit gelber Farbe (U., D.), schwer löslich in den meisten Lösungsmitteln (B.).
- 2'.4'-Dinitro-4-amino-diphenylamin C₁₉H₁₀O₄N₄ = H₂N·C₂H₄·NH·C₄H₃(NO₂)₂. B. Beim Versetzen einer alkoh. Lösung von 1 Mol.-Gew. 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und 1 Mol.-Gew. Natriumacetat mit 1 Mol.-Gew. p-Phenylendiamin (Nietzki, Ernst, B. 23, 1852; vgl. Morgan, Micklethwart, Soc. 93, 610). Braunrote, metallglänzende Blättchen (aus Chloroform). F: 190° (Mo., Mi.). Schwer löslich in heißem Alkohol, leichter in Chloroform und Benzol (N., E.). Läßt sich mit Natriumchlorat und Salzsäure in Essigsäure je nach den Versuchsbedingungen in 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4) (Bd. XII, S. 754), 2.6-Dichlor-2'.4'-dinitro-4-oxy-diphenylamin (Syst. No. 1852) und bei Verwendung eines großen Überschusses von Natriumchlorat und Salzsäure in 2.3.5-Trichlor-chinon-mono-[2.4-dinitro-anil] (Bd. XII, S. 754) überführen (Reverdin, Crepteux, B. 36, 3262). 2'.4'-Dinitro-4-amino-diphenylamin findet Verwendung zur Herstellung von Schwefelfarbstoffen (Höchster Farbwerke, D. R. P. 105632; C. 1900 I, 381; Kalle & Co., D. R. P. 125584, 134704, 141970; C. 1901 II, 1191; 1902 II, 776; 1903 I, 1383; Lauch, D. R. P. 140610, 144119, 147635; C. 1903 I, 1010; II, 923; 1904 I, 235. Verwendung von 2'.4'-Dinitro-4-amino-diphenylamin als Komponente von Azofarbstoffen: Nietzki, D. R. P. 59137; Fril. 3, 567. Pikrat C₁₂H₁₀O₄N₄ + C₄H₃O₇N₃. Braune Nadeln. Sehr wenig löslich (N., E.).
- N-Pikryl-p-phenylendiamin, 2'.4'.6'-Trinitro-4-amino-diphenylamin $C_{13}H_{9}O_{9}N_{5}=H_{2}N\cdot C_{9}H_{4}\cdot NH\cdot C_{6}H_{2}(NO_{2})_{2}$. B. Aus dem 2.4.6-Trinitro-hydrazobenzol (Syst. No. 2068) beim Kochen mit 90°/ $_{6}$ iger Essigsäure (Ciusa, Agostinelli, R. A. L. [5] 15 II, 240; G. 37 I, 216). Aus Pikrylchlorid (Bd. V, S. 273) und p-Phenylendiamin in Alkohol (Wederind, B. 33, 435). Bei mehrstündigem Erhitzen von 9 g p-Phenylendiamin mit 13 g Pikrylchlorid und 6 g Natriumacetat in trocknem Toluol (Morgan, Micklethwait, Soc. 93, 608). Schwarze Prismen (aus Essigester). F: 185—187° (Mo., Mi.), 186° (C., A.). Löslich in Eisessig und Amylalkohol (Mo., Mi.).
- 2'.4'-Dinitro-4-methylamino-diphenylamin C₁₂H₁₁O₄N₄ = CH₂·NH·C₆H₄·NH·C₆H₅(NO₂)₂. B. Aus 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und N-Methyl-p-phenylendiamin (S. 71) in Alkohol bei Gegenwart von konzentriert-wäßriger Sodalösung (BAYER & Co., D. R. P. 117066; C. 1901 I, 211) oder von Kaliumacetat (GNEHM, SCHRÖTER, J. pr. [2] 78, 14). F: 152° (B. & Co.), 153° (korr.) (G., SCH.). Sehr leicht löslich in Aceton, Chloroform, Eisessig, löslich in Benzol, ziemlich schwer in Alkohol, wenig in Petroläther und Ligroin (G., SCH.). Gibt mit Schwefel und Schwefelalkali einen olivgrünen Baumwollfarbstoff (B. & Co.).
- N-Methyl-N'-pikryl-p-phenylendiamin, 2'.4'.8'-Trinitro-4-methylamino-diphenylamin $C_{12}H_{11}O_{2}N_{5}=CH_{3}\cdot NH\cdot C_{2}H_{4}\cdot NH\cdot C_{6}H_{5}(NO_{2})_{3}$. B. Aus N-Methyl-p-phenylendiamin, Pikrylchlorid und Kaliumscetat in Alkohol (GNEHM, SCHBÖTEE, J. pr. [2] 73, 13). Dunkelbraunrote, metallisch glänzende Blättchen (aus Alkohol). F: 188° (korr.). Sehr leicht löslich in Aceton, Chloroform, Amylalkohol, Eisessig, Nitrobenzol, leicht in Benzol und Toluol, schwer in Alkohol, Ligroin, Petroläther, unlöslich in Wasser.
- N.N-Dimethyl-N'-phenyl-p-phenylendiamin, 4-Dimethylamino-diphenylamin $C_{14}H_{16}N_2=(CH_2)_2N\cdot C_6H_4\cdot NH\cdot C_6H_5$. B. Entsteht neben anderen Produkten beim Versetzen einer Lösung von 35 g 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in 500 ccm Alkohol mit 31 g Phenylhydrazin und 250 ccm Ather (Ö. Fischer, Wacker, B. 21, 2612). Nadeln (aus Ligroin). F: 130°. Sublimiert unter 100°. Leicht löslich in verd. Salzsäure. Die Salze werden durch FeCl₂ blau gefärbt.
- 2'.4' Dinitro 4 dimethylamino diphenylamin $C_{14}H_{16}O_4N_4=(CH_3)_2N\cdot C_6H_4\cdot NH\cdot C_6H_3(NO_2)_2.$ B. Aus ăquimolekularen Mengen 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und salzsaurem N.N-Dimethyl-p-phenylendiamin (S. 72) bei Gegenwart von 1¹/2 Mol.-Gew. Soda in wäßr. Alkohol beim Erwärmen (Leelmann, Mack, B. 23, 2739). Bronzeglänzende Schuppen (aus Alkohol). F: 168° (L., M.). Gibt mit Schwefel und Schwefelalkali einen olivgrünen Baumwollfarbetoff (Bayer & Co., D. R. P. 117066; C. 1901 I, 211). $C_{14}H_{14}O_4N_4$ + HCl. Gelbe Krystalle (L., M.).

4'-Nitro-4-äthylamino-diphenylamin $C_{14}H_{15}O_2N_3=C_2H_5\cdot NH\cdot C_6H_4\cdot NH\cdot C_4H_4\cdot NO_2$. B. Aus 4'-Nitro-4-amino-diphenylamin (S. 79) mit C_2H_5 I und alkoh. Kalilauge (BANDEOWSKI, C. 1900 II, 852). — Dunkelrote Krystalle. F: 146—149°.

N.N'-Diphenyl-p-phenylendiamin $C_{18}H_{16}N_{3} = C_{6}H_{4}(NH \cdot C_{6}H_{5})_{3}$. B. Bei 18-stdg. Erhitzen von 1 Mol.-Gew. Hydrochinon (Bd. VI, S. 836) mit 4 Mol.-Gew. Anilin, 3—4 Mol.-Gew. Calciumchlorid und $^{1}/_{3}$ Mol.-Gew. Zinkchlorid auf 200—210° (Calm, B. 16, 2805). Durch Behandeln einer alkoholisch-alkalischen Lösung von Chinon-dianil (Bd. XII, S. 207) mit Zinkstaub (Bandrowski, M. 7, 378). Entsteht neben Azophenin (Syst. No. 1874) beim Erwärmen von Chinon-dianil mit Anilin (Bandrowski, M. 9, 418). Beim Versetzen einer alkoholischen Lösung von Chinon-anil-oxim (p-Nitroso-diphenylamin, Bd. XII, S. 207) mit Phenylhydrazin (O. Fischer, Wacker, B. 21, 2615). Entsteht neben 4-Oxydiphenylamin beim Erhitzen von salzsaurer 2-Oxy-5-amino-benzoesäure (Syst. No. 1911) mit Anilin und salzsaurem Anilin auf 210° (Limpricht, B. 23, 2911). Durch Erhitzen von Anthranilsäure mit p-Dibrom-benzol auf über 150° (Ullmann, Maag, B. 39, 1694 Anm. 1).—Blättchen. F: 146° (Brunck, B. 25, 2717; U., M.), 145° (O. Fi., Wa.). Leicht löslich in warmem Benzol, Eisessig, Ather und Chloroform, weniger leicht in warmem Alkohol, sehr wenig in Ligroin; fast unlöslich in verdünnten Säuren; wird durch wenig rauchende Salpetersäure blutrot gefärbt; die Lösung in konz. Schwefelsäure wird durch etwas KNO₃ oder KNO₃ kirschrot bis fuchsinrot gefärbt (C.). — Wird durch 1 Gla., M. 8, 478) oder Quecksilberoxyd (Ba., M. 9, 418) zu Chinon-dianil oxydiert. Gibt in Chloroform mit Brom eine Verbindung 1 Cla., M. 9, 418) zu Chinon-dianil oxydiert. Gibt in Chloroform mit Brom eine Verbindung 1 Cla., M. 9, 418) zu Chinon-dianil oxydiert. Gibt in Chloroform mit Brom eine Verbindung 1 Gla., M. 9, 418) zu Chinon-dianil oxydiert. Gibt in Chloroform mit Brom eine Verbindung 1 Gla., M. 9, 418) zu Chinon-dianil oxydiert. Gibt in Chloroform mit Brom eine Verbindung Callana gerlegt (C.).

N.N'-Bis-[2.4.6-trinitro-phenyl]-p-phenylendiamin, N.N'-Dipikryl-p-phenylendiamin $C_{12}H_{10}O_{12}N_8 = C_8H_4[\text{NH}\cdot C_6H_2(\text{NO}_2)_3]_2$. B. Beim Erhitzen von je 1 Mol.-Gew. p-Phenylendiamin und Pikrylchlorid in Gegenwart von Natriumacetat in siedendem Toluol (MOBGAN, MICKLETHWAIT, Soc. 93, 609). — Rotes Krystallpulver (aus Nitrobenzol). Schmilzt noch nicht bei 260°. Meist unlöslich. Löslich in wäßr. Alkalilauge.

N.N-Diphenyl-p-phenylendiamin, 4-Amino-triphenylamin $C_{18}H_{16}N_2=H_8N\cdot C_6H_4\cdot N(C_6H_5)_8$. B. Durch Reduktion von 4-Nitro-triphenylamin (Bd. XII, S. 716) mit Zinn und Salssäure (Herz, B. 23, 2537; Haeussermann, B. 39, 2763) oder in Alkohol mit Zinkstaub und Eisessig unter Kühlung (Gambarjan, B. 41, 3511). Aus Triphenylhydrazin (Syst. No. 1950) mit konz. Salzsäure bei Gegenwart von Zinnchlorür (Ehrenfreis, C. 1907 I, 1789). — Fast farblose Nadeln (aus Alkohol). F: 146—147,5° (Hae.), 145—148° (G.). Siedet oberhalb 360° größtenteils ohne Zersetzung (Hae.). Sehr leicht löslich in Benzol, leicht in Ather und Alkohol, ziemlich schwer in Benzin (Hae.). — $C_{18}H_{16}N_2+HCl$. Nadeln. Sehr schwer löslich in Wasser (Herz; G.).

N.N.N'-Triphenyl-p-phenylendiamin, 4-Anilino-triphenylamin $C_{24}H_{20}N_2=C_{4}H_{5}\cdot NH\cdot C_{4}H_{4}\cdot N(C_{4}H_{5})_2$. B. Durch Behandlung von 4-[4-Chlor-anilino]-triphenylamin (s. u.) mit Natrium und Alkohol (Gambarjan, B. 41, 3509). — Kugelige Aggregate (aus Gasolin). F: 134°.

4-[4-Chlor-anilino]-triphenylamin $C_{24}H_{19}N_2Cl = C_8H_4Cl\cdot NH\cdot C_8H_4\cdot N(C_6H_5)_8$. B. Aus Tetraphenylhydrazin bei der Einw. von überschüssigem ätherischem Chlorwasserstoff auf die Lösung in trocknem Benzol in einer CO_3 -Atmosphäre, neben Diphenylamin und sehr wenig N.N'-Diphenyl-benzidin (Syst. No. 1786) (Gambarjan, B. 41, 3508). — Krystalle (aus Methylalkohol, Petroläther oder Alkohol + Ather). F: 77—81°; $Kp_{0.01}$: 205—215°. Sehr leicht löslich in Aceton, Benzol, Essigester und Schwefelkohlenstoff. — Gibt bei der Behandlung mit Natrium und Alkohol N.N.N'-Triphenyl-p-phenylendiamin (s. o.).

N.N.N'.N'-Tetraphenyl-p-phenylendiamin $C_{80}H_{24}N_5=C_0H_4[N(C_0H_5)_3]_3$. Zur Konstitution vgl. Haeussermann, B. 34, 38. — B. Neben N.N.N'.N'-Tetraphenyl-m-phenylendiamin (S. 42) bei 2-stdg. Erhitzen von p-Dichlor-benzol mit Diphenylaminkalium auf 240° bis 250° (H., Bauer, B. 32, 1912). — Täfelchen (aus Aceton). F: 199—200°; leicht löslich in Benzol, schwer in Äther, Alkohol und Petroläther, löslich in ca. 90 Tln. siedendem Aceton (H., B.).

N-o-Tolyl-p-phenylendiamin, 4'-Amino-2-methyl-diphenylamin $C_{18}H_{14}N_8=H_2N\cdot C_8H_4\cdot NH\cdot C_6H_4\cdot CH_3$. B. Bei der Reduktion von 4'-Nitro-2-methyl-diphenylamin (Bd. XII, S. 787) in 50% igem Alkohol mit Zinkstaub in Gegenwart von Salmiak (ULLMANN, DAHMEN, B. 41, 3750). — Beim Kochen von 4'-Amino-2-methyl-diphenylamin-sulfonsäure-(2') (Syst. No. 1923) mit Salzsäure und Zinnchlorür (U., D.). — Blättchen (aus Ligroin). F: 58,5°. Sehr leicht löslich in Alkohol, Äther, Benzol, schwer in Ligroin, kaum löslich in Wasser. — $2C_{19}H_{14}N_2+H_2SO_4$. Nadeln. Löslich in heißem Wasser, Alkohol und Essigsäure. Färbt sich an der Luft rot.

- 4.6 Dinitro 4' amino 2 methyl diphenylamin $C_{19}H_{19}O_4N_4=H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4(NO_2)_3 \cdot CH_4$. B. Entsteht neben N.N'-Bis-[4.6-dinitro-2-methyl-phenyl]-p-phenylendiamin (s. u.) aus 2-Chlor-3.5-dinitro-toluol (Bd. V, S. 345) und p-Phenylendiamin (NIETZEI, REHE, B. 25, 3007). Fast schwarze Nadeln. F: 170°. Schwer löslich in Alkohol.
- 4.6 Dinitro 4' dimethylamino 2 methyl diphenylamin $C_{15}H_{16}O_4N_4 = (CH_3)_8N \cdot C_6H_4 \cdot NH \cdot C_6H_2(NO_4)_3 \cdot CH_2$. B. Aus N.N-Dimethyl-p-phenylendiamin (S. 72) und 2-Chlor-3.5-dinitro-toluol (Bd. V, S. 345) (Nietzei, Rehe, B. 25, 3008). Braunschwarze Nadeln.
- N.N'-Di-o-tolyl-p-phenylendiamin $C_{20}H_{20}N_2 = C_4H_4(NH \cdot C_6H_4 \cdot CH_2)_3$. B. Bei ca. 11-stdg. Erhitzen von 1 Mol.-Gew. Hydrochinon. (Bd. VI, S. 836) mit etwas mehr als 2 Mol.-Gew. o-Toluidin und 2 Mol.-Gew. Calciumchlorid auf 280—290° (Philip, J. pr. [2] 34, 65). Blättohen (aus Eisessig). F: 135°. Siedet im Wasserstoffstrome gegen 420°. Wenig löslich in kaltem Eisessig, etwas mehr in kaltem Alkohol und Äther, leicht in Benzol. Spurenweise löslich in verd. Säuren. Die Lösung in konz. Schwefelsäure wird auf Zusatz von etwas Salpeter intensiv violettblau und dann bald rot. $C_{20}H_{20}N_2 + 2$ HCl. Nädelchen. Wasser entzieht dem Salze sofort alle Salzsäure.
- N.N'-Bis-[4.6-dinitro-2-methyl-phenyl]-p-phenylendiamin $C_{ab}H_{16}O_{a}N_{6}=C_{0}H_{4}[NH\cdot C_{0}H_{2}(NO_{2})_{2}\cdot CH_{2}]_{2}$. B. Neben 4.6-Dinitro-4'-amino-2-methyl-diphenylamin (s. o.) aus 2-Chlor-3.5-dinitro-toluol und p-Phenylendiamin (Nietzei, Rehe, B. 25, 3007). Braunrote Nadeln (aus Nitrobenzol). Schmilzt oberhalb 300°. Unlöslich in heißer verdünnter Salzsäure.
- N.N'-Dimethyl-N.N'-di-o-tolyl-p-phenylendiamin $C_{22}H_{24}N_2 = C_0H_4[N(CH_2)\cdot C_0H_4\cdot CH_3]$. B. Aus N.N'-Di-o-tolyl-p-phenylendiamin, Methyljodid, Atzkali und Methylalkohol bei mehrstündigem Erhitzen im Druckrohr bis über 150° (Philip, J. pr. [2] 34, 67). Flüssig. Siedet im Wasserstoffstrome bei 385—390° (korr.). Leicht löslich in Alkohol, Ather und Benzol.
- 4.6 Dinitro 4' amino 3 methyl diphenylamin $C_{19}H_{18}O_4N_4 = H_4N \cdot C_6H_4 \cdot NH \cdot C_6H_2(NO_2)_2 \cdot CH_3$. B. Durch Kondensation von 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344) mit p-Phenylendiamin in alkoh. Lösung bei Gegenwart von Natriumacetat (Reverdin, Dresel, Delétra, B. 37, 2094; Bl. [3] 31, 633). Purpurrote Nadeln (aus wäßr. Aceton). F: 166°. Schwer löslich in Ligroin, leicht in den anderen Lösungsmitteln.
- 2.4.6 Trinitro 4' amino 8 methyl' diphenylamin $C_{12}H_{11}O_{2}N_{5} = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H(NO_{2})_{3} \cdot CH_{3}$. B. Durch Kondensation von 3-Chlor-2.4.6-trinitro-toluol (Bd. V, S. 349) mit p-Phenylendiamin in alkoh. Lösung bei Gegenwart von Natriumacetat (R., Dr., Dr., B. 37, 2096; Bl. [3] 31, 635). Dunkelrote Blättchen (aus wäßr. Aceton). F: 198,5°. Leicht löelich in Aceton und Essignäure, ziemlich in Benzol und Alkohol, schwer in Ligroin und Wasser.
- N-p-Tolyl-p-phenylendiamin, 4'-Amino-4-methyl-diphenylamin $C_{19}H_{14}N_8 = H_2N \cdot C_4H_4 \cdot NH \cdot C_5H_4 \cdot CH_2$. B. Durch Reduktion von Chinon-p-tolylimid-oxim (4'-Nitroso-4-methyl-diphenylamin, Bd. XII, S. 913) mit alkoh. Schwefelammonium (REICHOLD, A. 255, 166). Aus 4'-Nitro-4-methyl-diphenylamin (Bd. XII, S. 906) mit Zinkstaub und 50% igem Alkohol in der Siedehitze bei Gegenwart von Salmiak (ULIMANN, DAHMEN, B. 41, 3751). Beim Kochen von 4'-Amino-4-methyl-diphenylamin-sulfonsäure-(2') mit Salzsäure (D: 1,14) bei Gegenwart von etwas Zinnehlorür (U., D.). Blättchen (aus Ather). F: 1186 (R.), 1196 (U., D.). Leicht löslich in Alkohol, Ather, Benzol (R.) und Eisessig (U., D.), schwer in Ligroin (R.). Bei der Einw. von Chinon-imid-p-tolylimid (Bd. XII, S. 913) auf 4'Amino-4-methyl-diphenylamin in Gegenwart von Chlorwasserstoff entsteht die Verbindung $C_{20}H_{20}N_6$ (s. u.) (Willstattere. Kurll. B. 42, 4136, 4146).
- (Willstatter, Kurli, B. 42, 4136, 4146).

 Verbindung Chen, B. Aus Chinon-imid-p-tolylimid (Bd. XII, S. 913) und 4'-Amino-4-methyl-diphenylamin in Ather-Methylalkohol in Gegenwart von Chlorwasserstoff (Willstatter, Kurli, B. 43, 4146). Kupferig glänsende, hellrotbraune Prismen (aus Chloroform + Petroläther oder Bensol). F: 187° (korr.). Gibt carminrote Lösungen; leicht löslich in kaltem Bensol, Chloroform und Aceton, siemlich schwer in heißem Ather und Alkohol, fast unlöslich in Petroläther. Die Lösung in Eisessig ist blau, in heißem m-Kresol rot, in kons. Schwefelsäure braunviolett, nach Erwärmen blau. Gibt mit PbO₂ Chinon in einer Ausbeute, welche etwa der Bildung von 1 Mol. C.H.O. aus 1 Mol. C.B.H.O. aus 1 Mo
- N.N'-Di-p-tolyl-p-phenylendiamin C₂₀H₂₆N₂ = C₂H₄(NH·C₂H₄·CH₂)₂. B. Bei 10-stdg. Erhitzen von 1 Tl. Hydrochinon (Bd. VI, S. 836) mit 4 Tln. p-Toluidin und 2 Tln. Zinkehlorid auf 220° (HATSCHEK, ZEGA, J. pr. [2] 33, 230). Entsteht auch beim Erhitzen von 4-Oxy-diphenylamin (Syst. No. 1846) mit p-Toluidin und Zinkehlorid auf 210° (CALM, B. 16, 2810). Blätter oder Tafeln. F: 182° (H., Z.; C.). Siedet nicht gans unzersetzt (H., Z.). Sehr wenig löslich in kaltem Alkohol oder Petroläther, wenig in Benzol oder Eisessig (H., Z.). Die Lösung in kons. Schwefelsäure wird durch eine Spur von Nitrat oder Nitrit

tiefblau gefärbt (H., Z.). — $C_{20}H_{20}N_2 + 2HCl$. Krystallpulver. Wird durch H_2O rasch'zersetzt (H., Z.).

N.N'-Dimethyl-N.N'-di-p-tolyl-p-phenylendiamin $C_{22}H_{34}N_2 = C_0H_4[N(CH_2)\cdot C_0H_4\cdot CH_3]_2$. B. Aus N.N'-Di-p-tolyl-p-phenylendiamin durch Erhitzen mit Methyljodid und Atzkali im Druckrohr auf 150° (Hatscher, Zega, J. pr. [2] 33, 235). — Nadeln (aus Benzol + Alkohol). F: 153°.

N-Bensyl-p-phenylendiamin C₁₃H₁₄N₂ = H₂N·C₂H₄·NH·CH₂·C₂H₅. B. Beim Einleiten von H₂S in eine Lösung von 4 g N-Benzyl-4-nitroso-anilin (Bd. XII, S. 1042) in 100 g Alkohol und 15 ccm wäßr. Ammoniak (Boeddinghaus, A. 263, 302). Durch Reduktion von N-Benzyl-4-nitro-anilin (Bd. XII, S. 1024) mit Zinn und Salzsäure in alkoh. Lösung (Meldola, Coste, Soc. 55, 591). — Wird aus den Salzen durch Alkalien als ockerfarbener Niederschlag gefällt. F: 30° (M., C.; B.). — C₁₃H₁₄N₂ + 2 HCl. Schuppen. Leicht löslich in Wasser, unlöslich in Alkohol (M., C.).

N.N-Dimethyl-N'-benzyl-p-phenylendiamin $C_{18}H_{18}N_8 = (CH_8)_8N\cdot C_8H_4\cdot NH\cdot CH_8\cdot C_8H_5$. B. Beim Erwärmen einer alkoh. Lösung von N.N-Dimethyl-N'-benzal-p-phenylendiamin (S. 84) mit Natriumamalgam (Kohler, A. 241, 361). — Blätter (aus Alkohol). F: 48°. Destilliert unzersetzt. Leicht löslich in Alkohol, Äther, Ligroin und in verd. Mineralsäuren.

N-Phenyl-N'-bensyl-p-phenylendiamin $C_{10}H_{18}N_2=C_0H_5\cdot NH\cdot C_0H_4\cdot NH\cdot CH_2\cdot C_0H_5$. B. Durch Reduktion einer alkoh. Lösung von 1 Tl. N-Phenyl-N'-benzal-p-phenylendiamin (S. 85) mit 4 Tln. Natrium (Heucke, A. 255, 190). — Blättchen (aus Alkohol). F: 124°.

N-Methyl-N-bensyl-p-phenylendiamin $C_{14}H_{10}N_{3} = H_{2}N \cdot C_{4}H_{4} \cdot N(CH_{3}) \cdot CH_{3} \cdot C_{4}H_{4}$. B. Durch Reduktion von N-Methyl-N-bensyl-4-nitroso-anilin (Bd. XII, S. 1025) (Francer, B. 31, 2182). — Gelbliches Öl. Kp: 290—295°. Bräunt sich leicht. Verwendung als Komponente von Azofarbstoffen: Bayer & Co., D. R. P. 77169; Frdl. 3, 1008.

N-Äthyl-N-bensyl-p-phenylendiamin $C_{15}H_{18}N_2=H_2N\cdot C_6H_4\cdot N(C_9H_5)\cdot CH_2\cdot C_6H_6\cdot B$. Durch Reduktion von N-Äthyl-N-ben yl-4-nitroso-anilin (Bd. XII, S. 1026) mit Zink und verdünnter Schwefelsäure unter Eiskühlung (SCHULTZ, BOSCH, B. 35, 1295; SCHU., ROHDE, BOSCH, A. 334, 262). — Dickes Öl. Kp₂₁: 225° (SCHU., B.; SCHU., R., B.); Kp₂₅: 227° (GNEHM, SCHÖNHOLZER, J. pr. [2] 76, 490). — Oxydiert sich an der Luft unter Braunfärbung; das Hydrochlorid gibt mit Schwefelwasserstoffwasser und Eisenchlorid eine blaue Lösung unter Bildung eines Thiazinfarbstoffes (SCHU., R., B.). — Hydrochlorid. Weißer, sehr hygroskopischer Niederschlag (SCHU., B.; SCHU., R., B.). — $C_{15}H_{18}N_2 + H_2SO_4$. Wasserheile Kryställchen (aus heißem Wasser oder Alkohol). F: 146—148° (Zers.) (G., SCHÖ.). — Oxalat $C_{15}H_{18}N_2 + C_4H_2O_4$. Nadelbüschel (aus siedendem Wasser). F: 168—169°; löslich in Alkohol (SCHU., B.; SCHU., R., B.).

N.N-Dibensyl-p-phenylendiamin $C_{20}H_{20}N_2=H_2N\cdot C_6H_4\cdot N(CH_2\cdot C_6H_5)_2$. B. Beim Behandeln von N.N-Dibensyl-4-nitroso-anilin oder von N.N-Dibensyl-4-nitro-anilin (Bd. XII, S. 1037) mit Zinn und Salzsäure (Matzudaira, B. 20, 1614). — Nadeln (aus Alkohol). F: 89° bis 90°. Wenig löslich in kaltem Alkohol, leicht in Äther. Wird von Eisenchlorid intensiv rot gefärbt. — Wird von konz. Salzsäure bei 170—175° in Benzylchlorid und p-Phenylendiamin gespalten. Verbindet sich mit Benzaldehyd zu N.N-Dibenzyl-N'-[a-oxy-benzyl]-p-phenylendiamin (S. 84).

N.N.N'.N'-Tetrabensyl-p-phenylendiamin $C_{34}H_{35}N_2 = C_6H_4[N(CH_3 \cdot C_6H_5)_3]_3$. B. Beim Kochen von p-Phenylendiamin mit Benzylchlorid und Natronlauge (MELDOLA, COSTE, Soc. 55, 600). — Nadeln (aus Eisessig). F: 149°. Schwer löslich in kochendem Alkohol, leicht in Chloroform, Schwefelkohlenstoff und Benzol. Verbindet sich nicht mit Säuren.

N.N.-Dimethyl-N'-[4-isopropyl-bensyl]-p-phenylendiamin, N.N.-Dimethyl-N'-cuminyl-p-phenylendiamin $C_{18}H_{24}N_3 = (CH_3)_2N\cdot C_6H_4\cdot NH\cdot CH_3\cdot C_8H_4\cdot CH(CH_3)_3$. B. Beim Eintragen von Natriumamalgam in die Lösung von N.N.-Dimethyl-N'-cuminal-phenylendiamin (S. 86) in absol. Alkohol (UEBEL, A. 245, 300). — Tafeln. F: 39°. Sehr leicht löslich in Alkohol und Äther. — $C_{18}H_{24}N_3 + HCl$. Nadeln. Leicht löslich in Wasser, sehr leicht in Alkohol.

N-a-Naphthyl-p-phenylendiamin $C_{1e}H_{14}N_2 = H_2N \cdot C_eH_4 \cdot NH \cdot C_{1e}H_7$. B. Aus gleichen Teilen p-Phenylendiamin und a-Naphthol bei $260-310^\circ$ (Merz, Strasser, J. pr. [2] 60, 555). — Farblose Blätter. F: $80.5-81^\circ$; Kp_{13} : $275-280^\circ$. Leicht löslich in heißem Benzol und Alkohol, etwas löslich in siedendem Wasser. Die wäßr. Lösung oxydiert sieh schnell. Natriumnitrit oder Kaliumnitrat färben die konzentrierte schwefelsaure Lösung gelblichgrün, dann dunkelgrün, schließlich graublau. Die Salze werden durch Wasser zersetzt. — $C_{1e}H_{14}N_2 + HCl$. Blättchen. — $2C_{1e}H_{14}N_2 + H_2SO_4$. Blättchen.

N.N-Dimethyl-N'- α -naphthyl-p-phenylendiamin $C_{10}H_{10}N_0 = (CH_0)_2N \cdot C_2H_4 \cdot NH \cdot C_{10}H_7$. B. Aus N.N-Dimethyl-p-phenylendiamin (8. 72) und α -Naphthol bei 230° unter

Luftabschluß (Sandoz & Co., D. R. P. 73378; Frdl. 3, 519). — Nädelchen (aus Alkohol). F: 129°. Gibt mit FeCla intensive Blaufärbung.

N.N - Dišthyl - N'-a - naphthyl - p - phenylendiamin $C_{20}H_{22}N_{3} = (C_{2}H_{5})_{2}N \cdot C_{2}H_{4} \cdot NH \cdot C_{10}H_{1}$. B. Aus N.N-Dišthyl-p-phenylendiamin (S. 75) und a-Naphthol bei 230° unter Luftabschluß (Sandoz & Co., D. R. P. 73378; Frdl. 8, 519). — Nädelchen (aus Alkohol). F: 73°.

N.N.-Di-a-naphthyl-p-phenylendiamin $C_{26}H_{26}N_3=C_6H_4(NH\cdot C_{10}H_{7})_2$. B. Aus 1 Mol.-Gew. p-Phenylendiamin mit 4 Mol.-Gew. a-Naphthol bei längerem Erhitzen bis auf 295° (MERZ, STRASSER, J. pr. [2] 60, 559). — Farblose Nadeln (aus Benzol). F: 205,5°; Kp₅: 355°. Leicht löslich in heißem Anilin, schwer in anderen Mitteln. Bei 19° in 319 Tln. Benzol löslich. Sehr sohwache Base.

N-β-Naphthyl-p-phenylendiamin $C_{j_e}H_{j_e}N_g=H_{z}N\cdot C_{e}H_{4}\cdot NH\cdot C_{j_e}H_{7}$. B. Durch Kochen von 3-Oxy-naphthoesäure-(2) (Bd. X, S. 333) oder — weniger zweckmäßig — von β-Naphthol mit p-Phenylendiamin und Disulfitlösung (Bucherre, Seyde, J. pr. [2] 75, 276). — Nädelchen (aus Ligroin oder Benzol-Ligroin). F: 94°. Sehr leicht löslich in Benzol, Aceton, Äther, Alkohol, in letzterem mit blauer Fluorescenz; sehr wenig löslich in kaltem, besser löslich in heißem Ligroin, etwas löslich in heißem Wasser. — $C_{1e}H_{1e}N_g+HCl$, Farblose Nädelchen (aus Wasser). F: gegen 240° (Zers.). Etwas löslich in siedendem Wasser. Färbt sich beim Aufbewahren grün. — $C_{1e}H_{1e}N_2+2HCl$. F: 240° (Zers.). Leicht löslich in warmem Wasser; beim Erkalten scheidet sich das Monohydrochlorid ab. Leicht löslich in Alkohol mit blauer Fluorescenz.

N.N.-Dimethyl-N'- β -naphthyl-p-phenylendiamin C₁₈H₁₈N₂ = (CH₃)₂N·C₄H₄·NH·C₁₀H₄. B. Aus N.N-Dimethyl-p-phenylendiamin (S. 72) und β -Naphthol bei 230° unter Luftabechluß (Sandoz & Co., D. R. P. 73378; Frdl. 8, 519). — Nädelchen (aus Alkohol). F: 131°.

N.N.-Diäthyl-N'- β -naphthyl-p-phenylendiamin $C_{30}H_{32}N_2=(C_0H_4)_2N\cdot C_0H_4\cdot NH\cdot C_{10}H_7$. B. Aus N.N-Diäthyl-p-phenylendiamin (S. 75) und β -Naphthol bei 230° unter Luftabschluß (Sandoz & Co., D. R. P. 73378; Frdl. 3, 519). — Nädelchen (aus Alkohol). F: 74°.

N-a-Naphthyl-N'- β -naphthyl-p-phenylendiamin $C_{20}H_{20}N_2=C_0H_4(NH\cdot C_{10}H_7)_2$. B. Aus N-a-Naphthyl-p-phenylendiamin (S. 82) und siedendem β -Naphthol unter Luftabschluß (Merz, Strasser, J. pr. [2] 60, 563). — Blättchen (aus Benzol). F: 204°; Kp_{8,5}: 360°. Leicht löslich in heißem Anilin, schwer in siedendem Alkohol, Äther und Benzol. 1 Tl. löst sich in 388 Tln. Benzol von 25°. Die benzolfeuchte Verbindung fluoresciert blauviolett. Wird durch Salzsäure bei 200° gespalten.

N.N'-Di- β -naphthyl-p-phenylendiamin $C_{2e}H_{20}N_3=C_4H_4(NH\cdot C_{10}H_7)_3$. B. Aus p-Phenylendiamin und überschüssigem β -Naphthol bei 200° (Rufff, B. 22, 1080). — Blättchen (aus heißem Anilin). F: 235°. Siedet nicht unzersetzt oberhalb 400°. Fast unlöslich in kochendem Alkohol, Äther oder Benzol. Ziemlich reichlich löslich in siedendem Eisesaig und Cumol, leicht in heißem Anilin oder Nitrobenzol. — Pikrat $C_{2e}H_{20}N_2 + 2C_2H_3O_2N_2$. Schwarze Nädelchen (aus Benzol). Schmilst unter Zersetzung bei 217°. Wenig löslich in kochendem Alkohol und Äther, reichlich in warmem Benzol. Verwendung zur Darstellung einer Sulfonsäure und Kondensation derselben mit 4-Nitroso-dimethylanilin zu einem violetten Farbstoff: Dahl & Co., D. R. P. 77227; Frdl. 3, 324; vgl. auch D. R. P. 78317; Frdl. 4, 622.

N.N'-Dimethyl-N.N'-di- β -naphthyl-p-phenylendiamin $C_{23}H_{24}N_2 = C_0H_4[N(CH_3)\cdot C_{10}H_{7]2}$. B. Aus N.N'-Di- β -naphthyl-p-phenylendiamin, Methyljodid und Methylalkohol im Druckrohr bei 140° (Ruff, B. 22, 1081). — Blättchen (aus Benzol). F: 180°. Kaum löslich in Alkohol und Äther, leicht in heißem Benzol.

Verbindung aus 1 Mol. p-Phenylendiamin, 1 Mol. Formaldehyd und 1 Mol. schwefliger Säure $C_7H_{16}O_2N_2S=H_2N\cdot C_6H_4\cdot NH\cdot CH_2(SO_2H)$. B. Das Natriumsalz entsteht aus 1 Mol.-Gew. p-Phenylendiamin, gelöst in 50%-jegem Alkohol, und 1 Mol.-Gew. Formaldehydnatriumdisulfitlösung (Bucherer, Schwalbe, B. 39, 2805). — Ist diazotierbar. Das Natriumsalz gibt beim Kochen mit KCN und Wasser N-[4-Amino-phenyl]-glycimitril (S. 105). — NaC₇H₉O₂N₂S (,,monomethyl-p-phenylendiamin- ω -sulfonsaures Natrium"). Nädelchen.

Verbindung aus 1 Mol. p-Phenylendiamin, 2 Mol. Formaldehyd und 2 Mol. schwefliger Säure $C_0H_{12}O_2N_2S_2=C_0H_4[NH\cdot CH_2(SO_2H)]_2$. B. Das Natriumsals entsteht aus 1 Mol.-Gew. p-Phenylendiamin in Wasser und 2 Mol.-Gew. Formaldehydnatriumdisulfitlösung (B., Sch., B. 39, 2804). — Ist nicht diazotierbar. Das Natriumsals gibt mit Cyankalium bei 100° N-[4-Amino-phenyl]-glycinnitril. — $Na_2C_3H_{10}O_2N_2S_2$ ("dimethyl-p-

phenylendiamin-di- ω -sulfonsaures Natrium"). Tafeln (aus Wasser). Wird aus der wäßr. Lösung durch Alkohol gefällt.

 $N-[\beta,\beta,\beta-Trichlor-a-oxy-äthyl]-p-phenylendiamin, Chloral-p-phenylendiamin <math>C_sH_sON_sCl_s=H_sN\cdot C_sH_s\cdot NH\cdot CH(OH)\cdot CCl_s$. B. Aus p-Phenylendiamin und Chloral in Chloroform (RÜGHEIMER, B. 89, 1661). — Fein krystallinischer Niederschlag. Beginnt bei ca. 80° sich unter Dunkelfärbung zu zersetzen. Leicht löslich in Äther und Chloroform.

p-Phenylendiisocyanid, p-Phenylendicarbylamin $C_8H_4N_2=C_8H_4(N:C<)_8$. B. Durch mehrstündiges Kochen von p-Phenylendiamin mit viel Chloroform und konz. Kalilauge, der $10-20^{\circ}/_{0}$ Alkohol hinzugefügt sind; nach beendigter Reaktion wird die Chloroformschicht abgehoben, mit Ather versetzt, mit Schwefelsäure (1:10), dann mit Wasser gewaschen, mit CaCl₂ getrocknet und verdunstet (KAUFLER, B. 34, 1578; M. 22, 1074). — Tafeln (aus heißem Benzol). Triklin pinakoidal (v. Lang, M. 22, 1075; Z. Kr. 40, 625; vgl. Groth, Ch. Kr. 4, 281). Schwärzt sich bei 130—140° unter teilweiser Umlagerung in Terephthalsäuredinitril (Bd. IX, S. 846) (K.). Riecht widerlich (K.). Leicht löslich in Ather und Chloroform, sehr wenig in Ligroin und heißem Wasser (K.). — Addiert in Äther 4 Atome Brom unter Bildung des p-Phenylendiisocyanid-tetrabromids (S. 105) (K.).

Verbindung aus 1 Mol. N.N-Dimethyl-p-phenylendiamin, 1 Mol. Benzaldehyd und 1 Mol. schweftiger Säure $C_{15}H_{18}O_3N_2S = (CH_2)_2N \cdot C_6H_4 \cdot NH \cdot CH(C_2H_5)(SO_2H)$ (vgl. Knoeveragel, B. 37, 4076). B. Man leitet in eine äther. Lösung von N.N-Dimethyl-phenylendiamin Schwefeldioxyd, löst das sich ausscheidende Produkt in Alkohol und versetzt mit Benzaldehyd (Francke, B. 31, 2180). — F: 150° (F.). Löslich in Wasser (F.). Liefert beim Erhitzen oder bei der Einw. von Alkali N.N-Dimethyl-N'-benzal-p-phenylendiamin (s. u.) (F.).

N.N-Dibenzyl-N'-[a-oxy-benzyl]-p-phenylendiamin $C_{27}H_{26}ON_3 = (C_6H_3 \cdot CH_2)_2N \cdot C_6H_4 \cdot NH \cdot CH(OH) \cdot C_6H_5$. B. Aus N.N-Dibenzyl-p-phenylendiamin (S. 82) und Benzaldehyd (Matzudaira, B. 20, 1615). — Gelbe, fein krystallinische Masse (aus Benzol). F: 130°. Unlöslich in Alkohol, schwer löslich in Äther, leicht in heißem Benzol. — Wird von verdünnter Salzsäure in seine Komponenten zerlegt.

Verbindung aus 1 Mol. p-Phenylendiamin, 2 Mol. Bensaldehyd und 2 Mol. schwefiger Säure $C_{20}H_{20}O_5N_2S_2=C_6H_4[NH\cdot CH(C_6H_5)(SO_2H)]_2$. B. Das Natriumsalz entsteht aus p-Phenylendiamin, Benzaldehydnatriumdisulfitlösung und Wasser bei 40° (Bucherer, Schwalbe, B. 39, 2812). — Das Natriumsalz liefert mit Cyankalium bei 80° N.N'-Bis-[α -cyan-benzyl]-p-phenylendiamin (Syst. No. 1905). — Na $_2C_{20}H_{10}O_6N_2S_2$. Schwach gelbe Nadeln. Leicht löslich in Wasser.

N.N-Dimethyl-N'-benzal-p-phenylendiamin $C_{15}H_{16}N_5=(CH_3)_5N\cdot C_9H_4\cdot N:CH\cdot C_9H_5$. B. Durch Zusammenbringen von Benzaldehyd und N.N-Dimethyl-p-phenylendiamin (Calm, B. 17, 2940). Aus der Verbindung $(CH_3)_2N\cdot C_6H_4\cdot NH\cdot CH(C_9H_5)(SO_3H)$ (s. o.) durch Erhitzen oder Einw. von Alkali (Francke, B. 31, 2181). Beim Erhitzen einer mit einigen Tropfen Natron versetzten alkoholischen Lösung äquimolekularer Mengen von N.N-Dimethyl-p-phenylendiamin und Benzoin (Bd. VIII, S. 167) (VOCTHERB, B. 25, 636). — Gelbliche Blätter oder Nadeln (aus Alkohol), gelbe Nadeln (aus Petroläther). F: 93° (C.), 99° (MÖHLAU, ADAM, Zeitschrift f. Farbenindustrie 5, 402; C. 1907 I, 107), 101° (Kohler, A. 241, 361). Wenig löslich in kaltem Alkohol, leichter in Äther und Benzol (C.). Farblos löslich in kons. Schwefelsäure (M., A.). Starke wäßrige Säuren scheiden Benzaldehyd ab (C.). — $C_{15}H_{16}N_5 + HCl$. Rot (Moore, Gale, Am. Soc. 30, 399). — $C_{15}H_{16}N_5 + 2HCl$. Gelb (M., G.).

N.N-Dimethyl-N'-[2-nitro-bensal]-p-phenylendiamin C₁₈H₁₈O₂N₃=(CH₃),N·C₄H₄·N·C₄H₄·NO₂. B. Man läßt eine alkoh. Lösung von 2-Nitro-benzaldehyd (Bd. VII, S. 243) in die alkoh. Lösung von schwefelsaurem N.N-Dimethyl-p-phenylendiamin und Natriumacetat fließen (Möhlau, Adam, Zeitechr. f. Farbenindustrie 5, 404; C. 1907 I, 107).

— Dunkelrote Krystalle (aus Petroläther). F: 90°. Löslich in allen organischen Mitteln. Farblos löslich in konz. Schwefelsäure.

N.N-Dimethyl-N'-[3-nitro-benzal]-p-phenylendiamin $C_{15}H_{15}O_5N_3=(CH_3)_5N\cdot C_6H_4\cdot N:CH\cdot C_4H_4\cdot NO_5$. B. Beim Vereinigen einer Lösung von 3-Nitro-benzaldehyd in Alkohol mit einer Lösung von schwefelsaurem N.N-Dimethyl-p-phenylendiamin und Natriumacetat in Wasser (M., A., Zeitschrift f. Farbenindustrie 5, 406; C. 1907 I, 108). — Orangegelbe Tafeln (aus CCl_4). F: 156°. Farblos löslich in konz. Schwefelsäure.

N.N-Dimethyl-N'-[4-nitro-benzal]-p-phenylendiamin $C_{18}H_{18}O_{2}N_{3}=(CH_{2})_{2}N\cdot C_{6}H_{4}\cdot N\cdot C_{6}H_{4}\cdot NO_{2}$. B. Aus 4-Nitro-benzaldehyd und N.N-Dimethyl-p-phenylendiamin in Alkohol (Sachs, Barschall, B. 35, 1239). — Rote Nadeln (aus CCl₄ oder Toluol). F: 217° (S., B.). Leicht löslich in Chloroform, schwer in Alkohol und Benzol (S., B.). Farblos löslich in konz. Schwefelsäure (Möhlau, Adam, Zeitschrift f. Farbenindustrie 5, 408; C. 1907 I, 108).

N.N-Dimethyl-N'-[2.4-dinitro-bengal]-p-phenylendiamin $C_{12}H_{14}O_4N_4+H_2O=(CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot C_4H_3(NO_2)_2+H_2O.$ B. Aus 2.4-Dinitro-toluol (Bd. V, S. 339) und 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in Alkohol bei Gegenwart von Krystallsoda oder calcinierter Soda oder Trinatriumphosphat (Sachs, Kemp, B. 35, 1226; S., D. R. P. 121745; C. 1901 II, 69). — Grün metallisch glänzende Nadeln (aus Aceton). Schmilzt beim schnellen Erhitzen bei 193°. Unlöslich in Wasser und Petroläther, schwer köslich in Alkohol, Ather und Benzol (S., K.). — Liefert durch Spaltung mit verdünnten Säuren in der Kälte 2.4-Dinitro-benzaldehyd und N.N-Dimethyl-p-phenylendiamin (S., K.; S.).

N.N-Dimethyl-N'-[2.4.6-trinitro-benzal]-p-phenylendiamin $C_{18}H_{18}O_4N_5=(CH_2)_2N\cdot C_4H_4\cdot N:CH\cdot C_6H_2(NO_2)_3$. B. Durch Kondensation von 2.4.6-Trinitro-toluol mit 4-Nitroso-dimethylanilin in Aceton bei Gegenwart von Soda unter Rückfluß (Sachs, Everding, B. 36, 960). — Schwarzgrüne, metallglänzende Blättchen aus Benzoesäureester, Nadeln aus Nitrobenzol mit 1 Mol. Krystallnitrobenzol. Zersetzt sich explosionsartig bei 268°. Schwer löslich in Benzol, Toluol, Aceton, Chlorotorm, Eisessig und Essigester mit rötlich-violetter Farbe.

N.N-Diäthyl-N'-[4-nitro-benzal]-p-phenylendiamin $C_{17}H_{18}O_2N_3 = (C_2H_5)_2N \cdot C_5H_4 \cdot N \cdot CH \cdot C_6H_4 \cdot NO_3$. B. Beim Kochen von 4-Nitro-benzylchlorid (Bd. V, S. 329) und 4-Nitroso-diāthylanilin (Bd. XII, S. 684) in alkoh. Lösung bei Gegenwart von Natronlauge (Sachs, Kemff, Barschall, B. 35, 1238). Aus 4-Nitro-benzaldehyd (Bd. VII, S. 256) und N.N-Diäthyl-p-phenylendiamin in alkoh. Lösung (S., B.). — Rote Blätter (aus Alkohol). F: 142,5°. — Liefert durch Säurespaltung 4-Nitro-benzaldehyd und N.N-Diäthyl-p-phenylendiamin.

N.N - Diäthyl - N' - [2.4 - dinitro - bensal] - p - phenylendiamin $C_{17}H_{16}O_4N_4 + H_2O = (C_2H_5)_2N \cdot C_4H_4 \cdot N : CH \cdot C_6H_3(NO_5)_2 + H_2O$. B. Aus 2.4-Dinitro-toluol und 4-Nitroso-diāthylanilin in Alkohol bei Gegenwart von Krystallsoda auf dem Wasserbade (Sachs, Kempf, B. 35, 1227). — Grünglänzend. F: ca. 173° (Zers.).

N-Phenyl-N'-bənzal-p-phenylendiamin, 4-Benzalamino-diphenylamin $C_{19}H_{16}N_{8}=C_{8}H_{5}\cdot NH\cdot C_{6}H_{4}\cdot N:CH\cdot C_{6}H_{5}$. B. Aus 4-Amino-diphenylamin (S. 76) und Benzaldehyd (Heucre, A. 255, 189). — Grünliche Blättchen (aus absol. Alkohol). F: 107—109° (H.). — Wird durch verd. Säuren und Alkalien sowie durch längeres Behandeln mit Wasser in die Komponenten gespalten (H.). — $C_{19}H_{16}N_{9}+HCl$. Blutrot (Moore, Woodbridge, Am. Soc. 30, 1003). — $C_{19}H_{16}N_{9}+2$ HCl. Ist, frisch gefällt, fast farblos; wird beim Stehen im Exsiccator über Soda rötlich (M., W.).

4'-Chlor-4-bensalamino-diphenylamin $C_{10}H_{15}N_2Cl = C_0H_4Cl\cdot NH\cdot C_0H_4\cdot N:CH\cdot C_0H_5$. B. Aus 4'-Chlor-4-amino-diphenylamin (S. 78) und Benzaldehyd in alkoh. Lösung (Jacobson, Strübe, A. 303, 315). — Gelbe Blätter (aus Alkohol). F: 144°. Sehr leicht löslich in Alkohol, Äther, Benzol und Ligroin.

2'-Nitro-4-benzalamino-diphenylamin $C_{10}H_{15}O_2N_3=O_2N\cdot C_0H_4\cdot NH\cdot C_0H_4\cdot N:CH\cdot C_0H_5$. B. Aus 2'-Nitro-4-amino-diphenylamin (S. 78) und Benzaldehyd (Bandbowski, C. 1900 II, 852). — Dunkelrote Krystalle. F: 98—99°.

4'-Nitro-4-benzalamino-diphenylamin $C_{19}H_{15}O_{2}N_{3} = O_{2}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4} \cdot N: CH \cdot C_{6}H_{5}$. B. Aus 4'-Nitro-4-amino-diphenylamin und Benzaldehyd (Ban., C. 1900 II, 852). — Goldgelbe Nadeln (aus Alkohol). F: 219°. Ziemlich schwer löslich in Alkohol.

4-[3-Nitro-benzalamino]-diphenylamin $C_{10}H_{15}O_{2}N_{2}=C_{0}H_{5}\cdot NH\cdot C_{0}H_{4}\cdot N:CH\cdot C_{0}H_{4}\cdot NO_{2}$. B. Aus 4-Amino-diphenylamin und 3-Nitro-benzaldehyd (Heucke, A. 255, 190). — Gelbe Blättchen. F: 123°.

4-[4-Nitro-benzalamino]-diphenylamin $C_{10}H_{15}O_{2}N_{3}=C_{0}H_{5}\cdot NH\cdot C_{0}H_{4}\cdot N:CH\cdot C_{0}H_{4}\cdot NO_{2}$. B. Aus 4-Amino-diphenylamin und 4-Nitro-benzaldehyd (Heucke, A. 255, 190). — Rote Nadeln (aus Benzol). F: 172°. Wenig löslich in Alkohol, Äther und Ligroin.

N-p-Tolyl-N'-bensal-p-phenylendiamin, 4'-Bensalamino -4-methyl-diphenylamin $C_{50}H_{18}N_2=CH_2\cdot C_4H_4\cdot NH\cdot C_6H_4\cdot N:CH\cdot C_6H_5$. B. Aus 4'-Amino-4-methyl-diphenylamin (S. 81) und Bensaldehyd (Reignolde, A. 255, 167). — Gelbe Blättchen (aus absol. Alkohol). F: 139°. — Wird durch Kochen mit Säuren in die Komponenten gespalten.

4'-[4-Nitro-bensalamino]-4-methyl-diphenylamin $C_{50}H_{17}O_{5}N_{5}=CH_{5}\cdot C_{6}H_{4}\cdot NH\cdot C_{6}H_{4}\cdot N:CH\cdot C_{6}H_{4}\cdot NO_{2}$. B. Beim Kochen von 4'-Amino-4-methyl-diphenylamin mit 4-Nitro-benzaldehyd in absolut-alkoholischer Lösung (Reichold, A. 255, 168). — Rote, goldglänzende Nadeln (aus Alkohol). F: 130°.

N.N. Dibensal-p-phenylendiamin $C_{50}H_{16}N_{3} = C_{6}H_{4}[N:C_{6}H_{5}]_{3}$. B. Beim Erhitzen von 1 Mol.-Gew. p Phenylendiamin mit 2 Mol.-Gew. Benzaldehyd auf 110—120° (LADENBURG, B. 11, 599). Aus 1 Mol.-Gew. p-Phenylendiamin und 2 Mol.-Gew. Benzaldehydnatriumdisulfit (Bd. VII, S. 11) in åther. Lösung (BUCHEREE, SCHWALBE, B. 39, 2813). Aus 1 Mol.-Gew. p-Phenylendiamin und 2 Mol.-Gew. ms-Benzal-acetylaceton (Bd. VII, S. 706) in Alkohol (Ruhemann, Watson, Soc. 85, 1175). — Blåtter (aus Alkohol). F: 138° bis 140° (L.; R., W.). — Zerfällt beim Erwärmen mit verd. Salssäure in seine Komponenten (L.).

N.N'-Bis-[4-chlor-benzal]-p-phenylendiamin $C_{30}H_{14}N_3Cl_2 = C_0H_4(N:CH\cdot C_4H_4Cl)_8$. Beim Erhitzen einer alkoh. Lösung von 1 Mol.-Gew. p-Phenylendiamin mit 2 Mol.-Gew. 4-Chlor-benzaldehyd (v. Walther, Raetze, J. pr. [2] 65, 266). — Blättchen (aus Benzol). F: 200°.

N.N'-Bis-[2-nitro-bensal]-p-phenylendiamin $C_{20}H_{14}O_4N_4 = C_6H_4(N:CH\cdot C_6H_4\cdot NO_2)_2$. B. Aus 2 Mol.-Gew. 2-Nitro-benzaldehyd in Eisessig und 1 Mol.-Gew. salzsaurem p-Phenylendiamin in $50^{\circ}/_{\circ}$ iger Essigsäure bei Gegenwart von Natriumacetat (Sachs, Sichel, B. 37, 1871). — Nadeln (aus Aceton). F: 208°. Zeigt im trocknen Zustand stark elektrische Eigenschaften und ist äußerst lichtempfindlich.

N.N'-Bis-[4-chlor-2-nitro-benzal]-p-phenylendiamin $C_{50}H_{15}O_4N_4Cl_2 = C_6H_4(N:CH-C_6H_5Cl\cdot NO_5)_3$. B. Analog N.N'-Bis-[2-nitro-benzal]-p-phenylendiamin aus 4-Chlor-2-nitro-benzaldehyd und p-Phenylendiamin (Sa., Si., B. 37, 1871). — Hellgelbe Krystalle (aus 50%/eiger Essigsäure). F: 230%. Färbt sich am Licht goldbronze, dann grün bis braunschwarz.

N.N'- Bis - [2.4 - dinitro - bensal] - p - phenylendiamin $C_{20}H_{12}O_8N_6 = C_6H_4[N:CH-C_6H_3(NO_2)_2]_2$. B. Analog N.N'- Bis - [2 - nitro-benzal] -p-phenylendiamin (SA., Sr., B. 37, 1871). — Goldgelbe Nadeln (aus Toluol). F: 252°. Sehr wenig löslich in Alkohol, Äther, Aceton, Benzol und CS_2 .

N.N-Dimethyl-N'-cuminal-p-phenylendiamin $C_{18}H_{12}N_2=(CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot C_6H_4\cdot CH(CH_3)_2$. B. Beim Vermischen der alkoh. Lösungen von Cuminol (Bd. VII, S. 318) und N.N-Dimethyl-p-phenylendiamin (NUTH, B. 18, 573; UEBEL, A. 245, 299). — Hellgelbe Nadeln (aus Alkohol). F: 99° (N.), 100,5° (UE.). Leicht löslich in Alkohol und Äther (N.).

N-Phenyl-N'-cuminal-p-phenylendiamin, 4-Cuminalamino-diphenylamin $C_{32}H_{22}N_3=C_6H_5\cdot NH\cdot C_6H_4\cdot N:CH\cdot C_6H_4\cdot CH(CH_3)_2$. B. Beim Erhitzen von 4-Amino-diphenylamin (S. 76) mit Cuminol und etwas Alkohol (Heucke, A. 255, 191). — Dunkelbraune Prismen (aus Alkohol). F: 132°.

N.N-Dimethyl-N'-cinnamal-p-phenylendiamin $C_{17}H_{18}N_2=(CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot C_6H_5$. B. Aus Zimtaldehyd (Bd. VII, S. 348) und N.N-Dimethyl-p-phenylendiamin in Alkohol (NUTH, B. 18, 574). — Gelbe Nadeln. F: 141° (N.). Ziemlich löslich in Alkohol, schwieriger in Äther (N.); löst sich in konz. Schwefelsäure mit hellgelber Farbe (Möhlau, Adam, Zeitschrift f. Farbenindustrie 5, 403; C. 1907 I, 107). — $C_{17}H_{18}N_2 + H.Cl.$ Rot (Moore, Gale, Am. Soc. 30, 401). — $C_{17}H_{18}N_2 + 2.H.Cl.$ Gelb (M., G.).

N.N-Dimethyl-N'- $[\beta$ -chlor-y-phenyl-allyliden]-p-phenylendiamin $C_{17}H_{17}N_{12}Cl=(CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot CCl:CH\cdot C_6H_5$. B. Aus a-Chlor-zimtaldehyd (Bd. VII, S. 357) und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 247). — Orangegelbe Nadeln (aus Alkohol). F: 122—124°.

N.N-Dimethyl-N'-[β -brom- γ -phenyl-allyliden]-p-phenylendiamin $C_{17}H_{17}N_2Br = (CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot CBr:CH\cdot C_6H_5$. B. Aus a-Brom-zimtaldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 247). — Gelbe Schuppen. F: 253—255°. Schwer löslich in Alkohol und Benzol.

N.N-Dimethyl-N'-[2-nitro-cinnamal]-p-phenylendiamin $C_{17}H_{17}O_2N_3=(CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot C_6H_4\cdot NO_2$. B. Beim Zugeben einer heißen alkoholischen Lösung von 2-Nitro-zimtaldehyd zu einer heißen alkoholischen Lösung von schwefelsaurem N.N-Dimethyl-p-phenylendiamin (Möhlau, Adam, Zeitschrift f. Farbenindustrie, 5, 405; C. 1907 I, 108). — Dunkelrote Nadeln. F: 90°. Schwer löslich in Alkohol, löslich in konz. Schwefelsäure mit gelber Farbe.

N.N-Dimethyl-N'-[3-nitro-cinnamal]-p-phenylendiamin $C_{17}H_{17}O_4N_8 = (CH_3)_4N \cdot C_6H_4 \cdot N : CH \cdot CH \cdot CH \cdot C_6H_4 \cdot NO_2$. B. Beim Einfließenlassen einer heißen Lösung von 3-Nitro-zimtaldehyd und Natriumacetat in verd. Alkohol in die heiße wäßrige Lösung von schwefelsaurem N.N-Dimethyl-p-phenylendiamin (M., A., Zeitschrift f. Farbenindustrie 5, 407; C. 1907, 108). — Hellrote Blättchen (aus Äther). F: 192°. Löslich in konz. Schwefelsäure mit hellgelber Farbe.

N.N.-Dimethyl-N'-[4-nitro-cinnamal]-p-phenylendiamin $C_{17}H_{17}O_2N_3 = (CH_3)_2N \cdot C_8H_4 \cdot N \cdot CH \cdot CH \cdot CH \cdot C_6H_4 \cdot NO_2$. B. Beim Vermischen einer heißen verdünnt-alkoholischen Lösung von 4-Nitro-zimtaldehyd mit einer heißen wäßrigen Lösung von schwefelsaurem N.N-Dimethyl-p-phenylendiamin und Natriumacetat (M., A., Zeitschrift f. Farbenindustrie 5, 408; C. 1907 I, 108). — Sechsseitige rote Blättchen (aus Toluol). F: 227°. Schwer löslich in Alkohol, Ligroin, Petroläther, Ather; löslich in konz. Schwefelsäure mit gelber Farbe.

N.N.-Dimethyl-N'- $[\beta$ -chlor-y-(2-nitro-phenyl)-allyliden]-p-phenylendiamin $C_{17}H_{16}O_2N_2Cl = (CH_3)_2N\cdot C_6H_4\cdot N:CH\cdot CCl:CH\cdot C_6H_4\cdot NO_3$. B. Aus a-Chlor-2-nitro-simtaldehyd (Bd. VII, S. 358) und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 248). — Rotbraue Prismen (aus Ather). F: 128—130°.

N.N - Dimethyl - N' - $[\beta$ - chlor - γ - (3-nitro-phenyl) - allyliden] - p-phenylendiamin $C_{17}H_{16}O_2N_3Cl = (CH_3)_2N\cdot C_6H_4\cdot N\cdot CH\cdot CCl: CH\cdot C_6H_4\cdot NO_2$. B. Aus a-Chlor-3-nitro-zimtaldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 251). — Braune, stumpfe Nädelchen (aus Alkohol). F: $225-227^{\circ}$.

N.N - Dimethyl - N' - $[\beta$ - chlor - γ - (4-nitro-phenyl) - allyliden] - p - phenylendiamin $C_{17}H_{16}O_2N_3Cl = (CH_3)_2N \cdot C_6H_4 \cdot N : CH \cdot CCl : CH \cdot C_6H_4 \cdot NO_2$. B. Aus a-Chlor-4-nitro-zimt-aldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 248). — Dunkelbraune Nadeln (aus Benzol). F: 185°.

N.N.-Dimethyl-N'- $[\beta$ -brom- γ -(2-nitro-phenyl)-allyliden]-p-phenylendiamin $C_{17}H_{16}O_2N_3Br=(CH_3)_2N\cdot C_4H_4\cdot N:CH\cdot CBr:CH\cdot C_6H_4\cdot NO_2$. B. Aus a-Brom-2-nitro-zimtaldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 248). — Bronzefarbige Nadeln (aus Alkohol). F: 172—173°.

N.N - Dimethyl - N'- [β - brom - γ - (3-nitro-phenyl) - allyliden] - p-phenylendiamin $C_{17}H_{16}O_2N_3Br = (CH_3)_2N\cdot C_0H_4\cdot N: CH\cdot CBr: CH\cdot C_0H_4\cdot NO_2$. B. Aus a-Brom-3-nitro-zimt-aldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 252). — Rotbraune Prismen (aus Alkohol). F: 145—147°.

N.N - Dimethyl - N'- [β - brom - γ - (4-nitro-phenyl) - allyliden] - p-phenylendiamin $C_{17}H_{16}O_2N_3Br = (CH_3)_2N\cdot C_6H_4\cdot N: CH\cdot CBr: CH\cdot C_6H_4\cdot NO_2$. B. Aus a-Brom-4-nitro-zimtaldehyd und N.N-Dimethyl-p-phenylendiamin (NAAR, B. 24, 248). — Bronzefarbige Nadeln (aus Alkohol). F: 172—173°.

N-Phenyl-N'-cinnamal-p-phenylendiamin, 4-Cinnamalamino-diphenylamin $C_{21}H_{18}N_2 = C_6H_5\cdot NH\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot C_6H_5$. B. Aus 4-Amino-diphenylamin (S. 76) und Zimtaldehyd (Moore, Woodbridge, Am. Soc. 30, 1004). — Gelbe Schuppen (aus Alkohol). F: 145°. — $C_{21}H_{18}N_2 + HCl$. Fast schwarz.

N.N'-Dicinnamal-p-phenylendiamin $C_{34}H_{30}N_3=C_0H_4[N:CH:CH:CH:C_0H_5]_2$. B. Man erhitzt eine Lösung von 5 g p-Phenylendiamin in 25 ccm Wasser mit einer solchen von 12,5 g Zimtaldehyd in 25 g 96% alkohol oder eine Lösung von 2,5 g salzsaurem p-Phenylendiamin und 5 g Natriumacetat in 50 ccm Wasser mit einer solchen von 3,5 g Zimtaldehyd in 75 ccm 96% igem Alkohol auf dem Wasserbade (Rothenfusser, Ar. 245, 361; vgl. Vorländer, B. 40, 4536). — Gelbe Nädelchen (aus Alkohol), gelbe Blättchen (aus Benzol). F: 220—221° (V.), 223—224° (R.). Monotrop-krystallinisch-flüssig (V.). Leicht löslich in heißem Benzol, Toluol, Chloroform, schwer in Essigester, Alkohol, Aceton, Ather, sehr wenig in Ligroin und Petroläther; 100 ccm des letzteren lösen bei 16—17° 0,0048 g (R.). — Bildet ein scharlachrotes Monohydrochlorid und ein orangefarbenes Bishydrochlorid (V.).

N.N - Dimethyl - N' - [diphenylmethylen] - p - phenylendiamin, Bensophenon-[4-dimethylamino-anil] $C_{21}H_{20}N_3=(CH_3)_2N\cdot C_4H_4\cdot N:C(C_4H_5)_3$. B. Aus N.N-Dimethylp-phenylendiamin, Benzophenon (Bd. VII, S. 410) und ZnCl₃ bei 160° (Reddellen, B. 42, 4762). — Orangegelbe Krystalle (aus Alkohol oder Äther). Schmilzt bei 85° zu einer trüben braunen Flüssigkeit, die sich bei 93° klärt. Leicht löslich in Benzol, Chloroform, Äther, warmem Petroläther, schwer in Alkohol. — Wird durch kalte Salzsäure in Benzophenon und Dimethyl-p-phenylendiamin gespalten.

N.N-Dimethyl-N'-[phenyl-bensyl-methylen]-p-phenylendiamin, Desoxybensoin-[4-dimethylamino-anil] $C_{23}H_{22}N_2=(CH_3)_3N\cdot C_6H_6\cdot N\cdot C(C_6H_6)\cdot CH_2\cdot C_6H_6$. B. Man erhitzt N.N-Dimethyl-p-phenylendiamin mit 1 Mol.-Gew. Desoxybenzoin (Bd. VII, S. 431) 1 Stde. zum beginnenden Sieden (Vocthere, B. 25, 639). — Gelbe Nadeln (aus Alkohol). F: 138—139°. Leicht löslich in Alkohol und Äther. — Wird von verdünnter Salzsäure in die Komponenten gespalten.

Glyoxal-bis-[4-dimethylamino-anil] $C_{18}H_{22}N_4 = [(CH_2)_2N \cdot C_8H_4 \cdot N \cdot CH -]_2$. B. Aus Glyoxal (Bd. I, S. 759) und N.N-Dimethyl-p-phenylendiamin in neutraler Lösung oder in Sodalösung (v. Pechmann, Schmitz, B. 31, 294; vgl. Torrey, Am. 34, 477). — Gelbbraune Blättchen (aus Xylol). F: 256–257° (v. P., Sch.; T.). Leicht löslich in CHCl₂, schwer in Alkohol, unlöslich in Wasser (v. P., Sch.). Die gelbgrüne Lösung in konz. Schwefelsäure wird durch einen Tropfen Salpetersäure tiefrot (v. P., Sch.). — Beim Erwärmen mit Phenylhydrazin entsteht Glyoxal-bis-phenylhydrazon (Syst. No. 1966) (v. P., Sch.).

N.N'-Bis-[4-amino-phenyl]-glyoxaldiisoxim $C_{14}H_{14}O_2N_4 = [H_2N \cdot C_4H_4 \cdot N(:0):CH-]_3$ bezw. $\begin{bmatrix} H_2N \cdot C_6H_4 \cdot N & CH- \\ 0 & \end{bmatrix}_2 \quad \text{und} \quad \text{N.N'-Bis-[4-dialkylamino-phenyl]-glyoxal-diisoxime s. Syst. No. 4620.}$

N.N'-Bis-[methyl-acetonyl-methylen]-p-phenylendiamin, p-Phenylen-bis-[acetylaceton-monoimid] $C_{16}H_{20}O_2N_2 = C_6H_4[N:C(CH_2)\cdot CH_2\cdot CO\cdot CH_3]_2$ bezw. desmo-

ein grauer Farbstoff.

trope Formen. B. Beim Erhitzen von 1 Mol.-Gew. p-Phenylendiamin mit 2 Mol.-Gew. Acetylaceton auf 120° (MARCKWALD, A. 274, 367). — Blättchen (aus verd. Alkohol). F: 175°. Leicht löslich in Alkohol, Äther und Eisessig, unlöslich in Ligroin. — Wird von kons. Schwefelsäure in Acetylaceton und p-Phenylendiamin gespalten.

Glutacondialdehyd - bis - [4 - dimethylamino - anil] bezw. 1 - [4 - Dimethylamino - anil] or constant of the
N-[5-Oxo-3.3-dimethyl-cyclohexyliden]-p-phenylendiamin, 1.1-Dimethyl-cyclohexandion-(3.5)-mono-[4-amino-anil], Dimethyldihydroresorcin-mono-[4-amino-anil] $C_{14}H_{18}ON_2 = H_2N \cdot C_6H_4 \cdot N \cdot C \cdot CH_3 \cdot C(CH_3)_2 \cdot CH_2$ bezw. desmotrope Formen. B. Beim 3-stdg. Kochen von 10 g Dimethyldihydroresorcin (Bd. VII, S. 559) und 7 g p-Phenylendiamin in alkoh. Lösung (HAAS, Soc. 89, 394, 570). — Nadeln (aus verd. Alkohol). F: 209° bis 210°. Leicht löslich in Alkohol, ziemlich leicht in Chloroform, sohwer in Wasser. Die alkoh. Lösung gibt mit FeCl₂ rotbraune Färbung. — $C_{14}H_{18}ON_2 + 2$ HCl. Weißer krystallnischer Niederschlag (aus Alkohol). — $C_{14}H_{18}ON_2 + 2$ HCl + PtCl₄. Goldgelbe Platten (aus Alkohol).

N.N'-Bis-[5-oxo-3.8-dimethyl-cyclohexyliden]-p-phenylendiamin, p-Phenylenbis-[dimethyldihydroresorcin-monoimid] $C_{22}H_{28}O_2N_2 = C_6H_4\left[N:C<\frac{CH_3}{CH_3}\cdot\frac{CO}{C(H_3)_2}>CH_3\right]_2 \text{ bezw. demotrope Formen. } B. \text{ Beim Kochen von Dimethyldihydroresorcin-mono-[4-amino-anil] mit Salzsäure oder mit Dimethyldihydro-$

von Dimethyldihydroresorcin-mono-[4-amino-anil] mit Salzsäure oder mit Dimethyldihydroresorcin in Alkohol (HAAS, Soc. 89, 396, 570). — Gelber krystallinischer Niederschlag (aus Eisessig + Wasser). Schmilzt oberhalb 300°. Unlöslich in den meisten Lösungsmitteln, sohwer löslich in Eisessig. — $C_{22}H_{28}O_2N_2 + 2$ HCl. Wird sehr leicht hydrolysiert.

p-Phenylen-bis-[(d-campher)-chinon-monoimid-(3)], p-Phenylen-bis-[a-iminod-campher] $C_{28}H_{23}O_{2}N_{3}$, s. nebenstehende Formel. B. Man erwärmt 2 Mol.-Gew. Campherchinon (Bd. VII, S. 581) in Alkohol mit 1 Mol.-Gew. salzsaurem p-Phenylendiamin und Natriumacetat in Wasser auf dem Wasserbade (Forster, Thornelt, Soc. 95, 955). — Goldbraune Nadeln (aus Alkohol). F: 259°. Leicht löslich in Chloroform, Pyridin, weniger in Aceton, Essigester, Benzol; 1 g löst sich in etwa 50 ccm siedendem Alkohol. [a]_D: +1528° (0,0840 g in 20 ccm Pyridin).

4 - Chlor - o - chinon - [4 - dimethylamino - anil] - (2) (?)

C₁₄H₁₂ON₂Cl(?), s. nebenstehende Formel. B. Durch gemeinsame Oxydation von N.N-Dimethyl-p-phenylendiamin und 4-Chlor-(CH₃)₂N·C₆H₄·N:

phenol (Höchster Farbw., D. R. P. 158091; C. 1995 I, 478). — Die

Lösung in Alkohol ist blau; sie wird auf Zusatz von Säuren rot.

— Schwefelnatrium erzeugt eine Leukoverbindung. Beim Erhitzen mit Alkalipolysulfid entsteht ein blauer Farbstoff, in Gegenwart von Kupfersalz

p-Chinon-mono-[4-amino-anil], Chinon-mono-[4-amino-anil] $C_{12}H_{10}ON_2 = H_2N \cdot C_0H_4 \cdot N :$:0. Vgl. das Indophenol $C_{12}H_{10}ON_2$ S. 70.

Chinon-mono-[4-dimethylamino-anil], Phenolblau $C_{14}H_{14}ON_2 = (CH_4)_2N \cdot C_4H_4$. N: C_4H_4 :O. B. Man trägt 30 g Chinon-mono-chlorimid (Bd. VII, S. 619) (mit wenig Wasser angerieben) in die Lösung von 50 g Dimethylanilin in 50 g Oxalsäure ein, schüttelt durch, bis Lösung erfolgt ist, läßt stehen, bis sich das Oxalat des Phenolblaus abgeschieden hat, filtriert es dann ab und zerlegt es durch Natronlauge (Fogh, B. 21, 889). Phenolblau entsteht ferner bei der Oxydation eines Gemisches von salzsaurem 4-Amino-phenol (Syst. No. 1841) und salzsaurem Dimethylanilin mit Kaliumdichromat (Cassimla & Co., D. R. P. 19231; Frill. 1, 286). Beim Behandeln einer alkal. Lösung von Phenol und 4-Nitroso-dimethylanilin (Bd. XII, S. 677) mit Zinkstaub oder Traubenzucker (Korcellin, Witt, D. R. P.

15915; Frdl. 1, 283; Möhlau, B. 16, 2851). Bei der Oxydation einer neutralen, sohwach alkalischen oder schwach sauren (am besten essigsauren) Mischung von N.N-Dimethylp-phenylendiamin und Phenol mit Chromaten, Permanganaten, Kaliumferricyanid oder Hypochloriten (Koe., W.; vgl. Mö., B. 16, 2851; Bayrac, Bl. [3] 11, 1133; A. ch. [7] 10, 55; Gnehm Bors, J. pr. [2] 69, 162). Durch Einw. der Luft auf alkalische Lösungen von 4-Oxy-4'-dimethylamino-diphenylamin (Syst. No. 1850) (Gnehm, B. 35, 3085). Durch Einw. von Natronlauge auf Dimethylphenylengrün (s. u.) (Mö., B. 18, 2914). — Stahlblaue, nadelförmige Prismen (aus Wasser). Ist, bei 100° getrocknet, wasserfrei (Mö., B. 18, 2914). F: 133—134° (Bay.), 160° (Gnehm, Bors, J. pr. [2] 69, 162). Löslich in verd. Salzsäure mit blauer Farbe (Mö., B. 18, 2915). Absorptionsspektrum: Möhlau, Uhlmann, A. 289, 129; Camichel, Bayrac, C. r. 132, 485, 882. — Liefert bei der Reduktion 4-Oxy-4'-dimethylamino-diphenylamin (Gn., B. 35, 3085; vgl. Mö., B. 18, 2914; Fo.). Wird in gesättigter, siedender, wäßriger Lösung durch Natronlauge in Dimethylamin und Chinon-mono-[4-oxy-anil] HO·C₆H₄·N: C₆H₄·O (Syst. No. 1846) gespalten (Mö., B. 18, 2916). Beim Erwärmen mit Salzsäure oder Schwefelsäure erfolgt Spaltung in Chinon und N.N-Dimethyl-p-phenylendiamin (Mö., B. 18, 2915; Bay.). Phenolblau liefert bei der Einw. von schwefliger Säure oder von sauren Sulfiten 4-Oxy-4'-dimethylamino-diphenylamin-sulfonsäure-(2) (CH₃)₂N·C₆H₄·NH·C₆H₃(OH)·SO₃H (Syst. No. 1926) (Geigy & Co., D. R. P. 132221; C. 1902 II, 81; Frdl. 6, 104); bei der Einw. von neutralen Sulfiten wird dagegen eine Sulfonsäure (CH₃)₄N·C₆H₄·SO₃H)·NH·C₆H₄·OH (Syst. No. 1923) gebildet (Geigy & Co., D. R. P. 129024, 129325; C. 1902 I, 549, 690; Frdl. 6, 103, 642). Verwendung von Phenolblau zur Darstellung von Schwefelfarbstoffen Ges. f. ohem. Ind., D. R. P. 132212; C. 1902 II, 172; Akt.-Ges. f. Anilinf., D. R. P. 141752; C. 1903 I, 1383; Bad. Anilin- u. Sodaf., D. R. P. 150546; C. 1904 I, 1185.

Chinon - [4 - dimethylamino - anil] - dimethylimoniumhydroxyd, Tetramethylindammoniumhydroxyd, Base des Bindschedlergrüns, Base des Dimethylphenylengrüns $C_{16}H_{21}$ ON₃ = (CH₃)₂N·C₆H₄·N·C₆H₄·N·(CH₃)₂·OH. B. Das Chlorid (Bindschedlergrün, Dimethylphenylengrün) entsteht, wenn man eine kalte salzsaure Lösung von N.N-Dimethyl-p-phenylendiamin und Dimethylanilin mit einer wäßrigen Lösung von Kaliumdichromat versetzt; bei Gegenwart von Zinkchlorid scheidet sich das Zinkchlorid-doppelsalz ab (Bindschedler, B. 13, 208; 16, 865; Nietzei, B. 16, 473). — Die freie Base ist nicht bekannt. Die grüne Farbe der wäßr. Lösung des Chlorids bleibt auch nach Zusatz von überschüssigem Natriumacetat bestehen (Hantzsch, B. 39, 157). Behandelt man das Chlorid mit saurer Zinnchlorürlösung, so entsteht 4.4′-Bis-dimethylamin-diphenylamin (S. 112) (N., B. 16, 474; B., B. 16, 866). Liefert mit Natronlauge Dimethylamin und Phenolblau (S. 88) (Möhlau, B. 16, 2855; 18, 2914). Beim Erhitzen der sauren Lösung entsteht Chinon (N., B. 16, 473). Wird die Lösung des Chlorids mit Schwefelwasserstoff und Eisenchlorid behandelt, so bildet sich Methylenblau (s. bei Leukomethylenblau, Syst. No. 4367) (M., B. 16, 2729). Oxydiert man ein Gemenge von Bindschedlergrün und essigsaurem Anilin mit Kaliumdichromat, so entsteht ein Salz des Tetramethylphenosafranins (Syst. No. 3745) (B., B. 16, 867). — Jodid C₁₆H₂₀N₃·I. Grüne Nadeln. Ziemlich leicht löslich in reinem Wasser, schwer in Jodkaliumlösung (N., B. 16, 473). — 2C₁₆H₂₀N₃·Cl + ZnCl₂. Kupferglänzende Krystalle. Unlöslich in Alkohol, Äther, leicht löslich in Wasser mit grüner Farbe (B., B. 16, 865). — 2C₁₆H₂₀N₃·Cl + HgCl₂. Krystalle (B., B. 16, 866). — C₁₆H₂₀N₃·Cl + HCl + PtCl₄ (N., B. 16, 473).

2.3.5-Trichlor-chinon-mono-[4-dimethylamino-anil] $C_{14}H_{11}ON_{3}Cl_{3} = (CH_{3})_{2}N \cdot C_{6}H_{4} \cdot N : C_{6}HCl_{2}: O. B.$ Beim Vermischen der alkoh. Lösungen von Trichlorchinon-monochlorimid (Bd. VII, S. 636) und 2 Mol.-Gew. Dimethylanilin (SCHMITT, ANDRESEN, J. pr. [2] 24, 435). — Goldgrün schimmernde Nadeln (aus Alkohol), die zu einer voluminösen, filzigen Masse eintrocknen. Fast unlöslich in kaltem Wasser, schwer löslich in kaltem Alkohol, leicht in Äther, Chloroform und Benzol. Die Lösungen sind tief grünblau gefärbt. Löst sich in ganz verdünnter Salpetersäure mit tief violetter Farbe, die bald verschwindet. — Wird von alkoh. Schwefelammonium zu 2.3.5- oder 2.3.6-Trichlor-4-oxy-4'-dimethylamino-diphenylamin (Syst. No. 1852) reduziert. Dieses entsteht auch neben einer Sulfonsäure (CH₃)₂N·C₆H₄·NH·C₆Cl₈(OH)·SO₂H (Syst. No. 1926) bei der Reduktion von 2.3.5-Trichlor-chinon-mono-[4-dimethylamino-anil] in wäßr. Suspension mit SO₂.

2.6 - Dibrom - chinon - [4 - dimethylamino - anil] - (4) $C_{14}H_{12}ON_2Br_2 = (CH_3)_2N \cdot C_6H_4$. N: $C_6H_2Br_2$: O. B. Beim Eintragen von 2 Mol.-Gew. Dimethylanilin in die bei 30° gesättigte alkoh. Lösung von 1 Mol.-Gew. 2.6-Dibrom-chinon-chlorimid-(4) (Bd. VII, S. 640); man läßt 1 Tag stehen (Möhlau, Uhlmann, A. 269, 96). — Zersetzliche, blaue Nadeln (aus Pyridin). Absorptionsspektrum: M., U., A. 269, 129. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Unlöslich in Wasser, schwer löslich in kaltem Alkohol und Äther; löslich in konz. Schwefelsäure mit blauer Farbe. — Zerfällt bei mehrstündigem Kochen mit verd. Salzsäure in NH₃, Dimethylamin, 2.6-Dibrom-4-amino-phenol (Syst. No. 1852), 2.6-Dibrom-chinon und Chinon. Beim Kochen mit Natronlauge wird Dimethylamin abgespalten.

Chinon-mono-[4-anilino-anil] $C_{19}H_{14}ON_2 = C_9H_3 \cdot NH \cdot C_9H_4 \cdot N : C_9H_4 : 0$. Vgl. das Indophenol $C_{19}H_{14}ON_2$, Bd. XII, S. 180.

Verbindung C₃₆H₁₇ON₃ = O: :N· :N·C₆H₅. Zur Konstitution vgl. Willetatter, Kubli, B. 42, 4149. — B. Aus Chinon-anil-[4-(4-amino-anilino)-anil] H₂N· :N·H· :N: :N·C₆H₅ (S. 112), sowie aus der durch gemeinschaftliche Oxydation von 4-Oxy-diphenylamin und 4-Amino-diphenylamin entstehenden Verbindung C₃₆H₁₉ON₅ (s. bei 4-Oxy-diphenylamin, Syst. No. 1846) bei der Oxydation mit PbO₄ (Willetatter, Moore, B. 40, 2685, 2687). — Rote Kryställchen. F: ca. 220°; sehr leicht löslich in Chloroform, sehr wenig in Äther (W., M.).

Verbindung $C_{28}H_{19}ON_3 = O$: $N \cdot N$: $N \cdot CH_3$. B. Aus der Verbindung $HO \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot CH_3$ (Syst. No. 1850) durch PbO₂ in Benzollösung (WILLSTÄTTER, KUBLI, B. 42, 4150). — Ziegelrote Krystalle (aus Benzol und Hexan). F: 205—206°. Ziemlich leicht löslich in heißem Alkohol, Benzol und Chloroform, sehr wenig in Äther; die Lösungen sind carminrot. Löst sich in konz. Schwefelssure mit dunkelblauer Farbe.

Verbindung C₂₄H₁₅N₄ = HN: :N· :N·: :N·C₂H₅. Zur Konstitution vgl. Willstituter, Dorogi, B. 42, 2152; vgl. dagegen Buchereb, B. 42, 2933. — B. Aus Chinon-anil-[4-(4-amino-anilino)-anil] (S. 112) oder N-[4-Amino-phenyl]-N'-[4-anilino-phenyl]-p-phenylendiamin (S. 113) bei der Oxydation mit PbO₂ in kaltem Benzol bei Gegenwart von Na₅SO₄; daneben entsteht die Verbindung C₂₄H₁₇ON₂ (s. o.) (Willstituter, Moore, B. 40, 2680, 2681). — Dunkelrote Krystallblättchen (aus Benzol). Schmilzt bei 195—196°; leicht löslich mit tief gelbstichig-roter Farbe in heißem Benzol und kaltem Chloroform; schwer löslich in heißem Alkohol und Aceton, sehr wenig in Äther und siedendem Hexan; die Lösung in konz. Schwefelsäure ist rötlichviolett (W., M., B. 40, 2682). — Wird beim Erhitzen mit Wasser im Druckrohr auf 150—170° zu "Polymerisationsschwarz"

(vgl. Bd. XII, S. 131) polymerisiert und oxydiert (W., M., B. 40, 2682; W., D., B. 42, 4121). Kochende doppelt-normale Schwefelsäure zersetzt unter Bildung von Chinon (W., M., B. 40, 2682). Alkoholische Salzsäure gibt ein dunkelblaues Hydrochlorid, das einen Teil des Chlors aromatisch gebunden enthält (W., M., B. 40, 2682).

2-Methyl-chinon-[4-dimethylamino-anil]-(4), Toluchinon - [4-dimethylamino-anil]-(4) 1) 1 C_{1k}H_{1e}ON₂ = (CH₃)₂N·C_eH₄·N·C_eH₄(CH₃): O. B. Beim Behandeln eines Gemenges aus salzsaurem N.N-Dimethyl-p-phenylendiamin und o-Kresol mit K₂Cr₂O₇ und Essignaure (BAYRAC, Bl. [3] 11, 1133; A. ch. [7] 10, 55). — Tafeln mit grünem Reflex. F: 123°.

2-Methyl-chinon-[4-dimethylamino-anil]-(1), Toluchinon-[4-dimethylamino-anil]-(1)) C₁₂H₁₆ON₂ = (CH₂)₂N·C₂H₂·N·C₄H₃·CH₃): O. B. Aus salzsauren N.N.-Dimethylp-phenylendiamin, m-Kresol, K₂Cr₂O₂ und Essigasure (BAYRAC, Bl. [3] 11, 1133; A. ch. [7] 10, 56). — Goldgelbe Prismen. Monoklin prismatisch (DUFET, A. ch. [7] 10, 57; Z. Kr. 27, 631; vgl. Groth, Ch. Kr. 5, 57). F: 117—118° (B.).

2 - Athyl - chinon - [4 - dimethylamino - anii] - (4) $C_{16}H_{16}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot N$: $C_9H_5(C_9H_5) \cdot O$. B. Beim Eintragen von $K_2Cr_3O_7$ in eine essignaure Lösung von salzsaurem N.N-Dimethyl-p-phenylendiamin und o-Athyl-phenol (Bd. VI, S. 470) (Bayrao, Bl. [3] 11, 1130; A. ch. [7] 10, 60). — Goldgelbe Tafeln. F: 83—84°.

2.5 - Dimethyl - chinon - [4 - dimethylamino - anil] - (1), p - Xylochinon - mono[4-dimethylamino-anil] C₁₆H₁₆ON₂ = (CH₂)₂N·C₆H₄·N:C₆H₅(CH₂)₂: O. B. Beim Eintragen von K₂Cr₂O₇ in eine essignaure Lösung von 2.5-Dimethyl-phenol (Bd. VI, S. 494) und salssaurem N.N-Dimethyl-p-phenylendiamin (BAYRAC, Bl. [3] 11, 1134; A. ch. [7] 10, 58). — Rotbraune Tafeln. Monoklin prismatisch (DUFET, A. ch. [7] 10, 58; Z. Kr. 27, 631; vgl. Groth, Ch. Kr. 5, 58). F: 125—126° (B.).

2-Isopropyl-chinon-[4-dimethylamino-snil]-(1) $C_{17}H_{20}ON_2 = (CH_{2})_2N \cdot C_2H_4 \cdot N$: $C_{2}H_{3}[CH(CH_{2})_2] \cdot O$. B. Durch Hintragen von $K_2Cr_2O_2$ in ein Gemisch aus saltsaurem N.N-Dimethyl-phenylendiamin, m-Isopropyl-phenol (Bd. VI, S. 505) und EssigaSure (BAYRAC, Bl. [3] 18, 983; A. ch. [7] 10, 64). — Goldglänsende Krystalle. F: 72—74°.

2-Methyl-5-Sthyl-chinon-[4-dimethylamino-anil]-(4) $C_{17}H_{20}ON_8 = (CH_8)_8N \cdot C_8H_4$. $N:C_9H_9(CH_9)(C_2H_8):O.$ B. Bei der Oxydation eines Gemenges von salssaurem N.N-Dimethyl-

³) Besifferung in den vom Namen "Toluchinon" abgeleiteten Namen in diesem Handbuch s. Bd. VII, S. 645.

p-phenylendiamin und 2-Methyl-5-äthyl-phenol (Bd. VI, S. 508), gelöst in Essigsäure, mit K₂Cr₂O₇ (BAYRAC, Bl. [3] 13, 897; A. ch. [7] 10, 65). — Cantharidengrüne Nadeln. F: 77°.

- 2-Methyl-5-isopropyl-chinon-[4-dimethylamino-anil]-(4), Thymochinon-[4-dimethylamino-anil]-(4)\(^1\)) $C_{18}H_{22}ON_2 = (CH_2)_2N \cdot C_6H_4 \cdot N : C_6H_6(CH_3)[CH(CH_3)_2] : O. B.$ Beim Eintragen von $K_2Cr_2O_7$ in eine essigsaure Lösung von salzsaurem N.N-Dimethylp-phenylendiamin und Carvacrol (Bd. VI, S. 527) (BAYRAC, Bl. [3] 11, 1135; A. ch. [7] 10, 63). Undurchsichtige Prismen, auf zwei Flächen metallisch blau, auf den übrigen cantharidengrün. Monoklin prismatisch (Dufet, A. ch. [7] 10, 63; Z. Kr. 27, 631; vgl. Groth, Ch. Kr. 5, 58). F: 87—88° (B.).
- 2-Methyl-5-isopropyl-chinon-[4-dimethylamino-anil]-(1), Thymochinon-[4-dimethylamino-anil]-(1) 1) $C_{18}H_{32}ON_2 = (CH_3)_2N\cdot C_6H_4\cdot N\cdot C_6H_3(CH_3)[CH(CH_3)_2]\cdot O.$ B. Beim Eintragen von $K_2Cr_2O_7$ in eine essigsaure Lösung von salzsaurem N.N-Dimethylp-phenylendiamin und Thymol (Bd. VI, S. 532) (BAYRAC, Bl. [3] 7, 97; 11, 1129; A. ch. [7] 10, 61). Violettgrüne Nadeln oder Prismen (aus Alkohol). Monoklin (DUFET, A. ch. [7] 10, 62; Z. Kr. 27, 631). F: 69,5°; beständig gegen Alkalien; Mineralsäuren scheiden sofort Thymochinon aus (B.).

Benzoylaceton - mono - [4 - dimethylamino - anil] $C_{16}H_{30}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot N$: $C(C_6H_5) \cdot CH_2 \cdot CO \cdot CH_3$ oder $(CH_3)_2N \cdot C_6H_4 \cdot N$: $C(CH_3) \cdot CH_2 \cdot CO \cdot C_6H_5$. B. Beim Versetzen einer alkoh. Lösung von N.N-Dimethyl-p-phenylendiamin und Benzoylaceton (Bd. VII, S. 680) mit einigen Tropfen Natronlauge (Voctherr, B. 25, 636). — Citronengelbe Nadeln (aus Alkohol). F: 135—136°. Leicht löslich in Alkohol und Äther. — Verdünnte Salzsäure spaltet in Benzoylaceton und Dimethyl-p-phenylendiamin.

Naphthochinon-(1.4)-mono-[4-dimethylamino-anil], α-Naphtholblau C₁₈H₁₆ON₂ = (CH₃)₂N·C₆H₄·N·C₁₀H₆: O. B. Beim Behandeln einer alkal. Lösung von 4-Nitroso-dimethylanilin und α-Naphthol mit Zinkstaub oder Traubenzucker (Koechlin, Witt, D. R. P. 15915; Frdl. 1, 283; Möhlau, B. 16, 2851; Cassella & Co., D. R. P. 18903, 19231; Frdl. 1, 285). Bei der Oxydation einer neutralen, schwach alkalischen oder schwach sauren (am besten essigsauren) Mischung von N.N-Dimethyl-p-phenylendiamin und α-Naphthol (Koe., W.; Mö., B. 16, 2851). Nachweis von Oxydasen durch Bildung von α-Naphtholblau aus Dimethyl-p-phenylendiamin und α-Naphthol: Röhmann, Sfitzer, B. 28, 569. Beim Erwärmen von 2.4-Dibrom-naphthol·(1) (Bd. VI, S. 614) mit einer wäßr. Lösung von N.N-Dimethyl-p-phenylendiamin, unter zeitweiligem Zusstz von Soda oder Natron (Mö., B. 16, 2854; Ca. & Co., D. R. P. 20850; Frdl. 1, 286). Aus N.N-Dimethyl-p-phenylendiamin und α-Naphthochinon (Bd. VII, S. 724) in ammoniakalisch-acetonischer Lösung (Euler, B. 39, 1038).

— Darst. Man reduziert die Lösung von 32,5 Tin. salzsaurem 4-Nitroso-dimethylanilin in 2500 Tin. Wasser mit Zinkstaub, säuert die filtrierte Lösung mit HCl an, gießt die Lösung von 31 Tin. salzsaurem α-Naphthylamin in 500 Tin. Wasser hinzu und dann eine Lösung von 30 Tin. K₂Cr₂O₇ in 500 Tin. Wasser; den entstandenen Niederschlag filtriert man ab und mischt ihn mit 500 Tin. Wasser; den entstandenen Niederschlag filtriert Lösung Luft (Mö., B. 18, 2917). — Blauviolette, bronzeglänzende Krystalle (aus Alkohol). F: ca. 190° (Eu.). Unlöslich in Wasser, in Alkohol leichter als in Åther löslich (Mö., B. 18, 2917). Leicht löslich in Bensol mit bæner Farbe (Eu.). Löst sich in Säuren mit gelber Farbe; die mineralsaure Lösung enthält alsbald α-Naphthochinon und Dimethyl-p-phenylendiamin (Mö., B. 18, 2917). Absorptionaspektrum: Möhlau, Uhlmann, A. 289, 129. Verwendung zur Darstellung von Schwefelfarbstoffen: Ris, D. R. P. 179839; C. 1907 I, 1369.

Bensil-mono-[4-dimethylamino-anil] $C_{12}H_{20}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot N : C(C_6H_6) \cdot CO \cdot C_6H_5$. B. Beim Versetzen einer Lösung äquimolekularer Mengen von N.N-Dimethyl-phenylendiamin und Bensil in Alkohol mit einigen Tropfen Kalilauge (Vogtherr, B. 25, 635). — Rubinrote Krystalle (aus Alkohol). F: 138—139°. Leicht löslich in Alkohol und Äther. — Verdünnte Salzsäure spaltet in Benzil und Dimethyl-p-phenylendiamin.

Anthrachinon - mono - [4 - dimethylamino - anil] $C_{22}H_{18}ON_2 = C_0H_4 \sim C[:N \cdot C_0H_4 \cdot N(CH_3)_2] \sim C_0H_4$. B. Aus Anthranol (Bd. VII, S. 473) in Alkohol durch 4-Nitroso-dimethylanilin in Gegenwart von wenig Pyridin (KAUFLER, SUCHANNEK, B. 40, 525). Beim Erwärmen von Anthrachinon-imid-[4-dimethylamino-phenylimid] (S. 92) mit $1^0/_0$ iger alkoh. Essigsäure (K., S.). — Schwarzblaue Nadeln (aus hochsiedendem Ligroin). F: 138° bis 139°. Unlöslich in Wasser; in der Wärme leicht löslich in Ligroin und Alkohol, in der

¹⁾ Bezifferung in den vom Namen "Thymochinon" abgeleiteten Namen in diesem Handbuch a. Bd. VII, S. 662

Kälte schwer löslich in Benzol, Aceton und Chloroform. — Wird durch 1% ige alkoh. Salzsäure in Anthrachinon und Dimethyl-p-phenylendiamin gespalten.

Anthrachinon-imid-[4-dimethylamino-phenylimid], Anthrachinon-imid-[4-dimethylamino-anil] $C_{22}H_{19}N_3 = C_4H_4$ $C(:N \cdot C_6H_4 \cdot N(CH_3)_2)$ C_6H_4 . B. Beim Kochen von Mesoanthramin (Bd. VII, S. 474) mit 4-Nitroso-dimethylanilin in Alkohol (K., S., B. 40, 528). — Schwarze Blätter oder Prismen (aus Alkohol). F: 118—124°. Unlöslich in Wasser, siemlich löslich in heißem Ligroin, sehr leicht löslich in Alkohol, Benzol, Aceton. — Wird durch 1°/ $_6$ ige alkoh. Salzsäure in Anthrachinon, Dimethyl-p-phenylendiamin und Ammoniak gespalten. Gibt beim Erwärmen mit cs. 1°/ $_6$ iger alkoholischer Essigsäure Anthrachinon-mono-[4-dimethylamino-anil] (S. 91).

β.δ-Dioxo-γ-[4-dimethylamino-phenylimino]-pentan, ms-[4-Dimethylamino-phenylimino]-acetylaceton $C_{13}H_{16}O_2N_2=(CH_3)_2N\cdot C_2H_4\cdot N:C(CO\cdot CH_2)_3$. B. Aus Acetylaceton (Bd. I, S. 777) und 4-Nitroso-dimethylanilin in alkoholisch-alkalischer Lösung (Sachs, Barschall, B. 34, 3051; S., Röhmer, B. 35, 3310). — Orangegelbe Krystalle (aus Petrolather). F: 73°; sehr leicht löslich in den gebräuchlichen Lösungsmitteln (S., B.). — Wird durch Schwefelsäure in N.N-Dimethyl-p-phenylendiamin und Pentantrion (Bd. I, S. 806) serlegt (S., B.). Färbt sich nach etwa 6 Monaten dunkler unter Bildung von Pentantrion (S., R.).

α.γ-Dioxo- β -[4-dimethylamino-phenylimino]-a-phenyl-butan, ms-[4-Dimethylamino-phenylimino]-benzoylaceton $C_{18}H_{18}O_{8}N_{3}=(CH_{3})_{8}N\cdot C_{6}H_{4}\cdot N:C(CO\cdot CH_{3})\cdot CO\cdot C_{6}H_{5}$. B. Aus Benzoylaceton (Bd. VII, S. 680) und 4-Nitroso-dimethylanilin in alkoh. Lösung bei Gegenwart von Natronlauge (D: 1,36) in der Kälte (Sachs, Röhmer, B. 85, 3314). — Braunrote Nadeln (aus Alkohol). F: 99°. Sehr leicht löslich in Alkohol, leicht in Aceton, Benzol und Chloroform, schwer in Ligroin, unlöslich in Wasser. — Liefert durch Spaltung mit verd. Schwefelsäure Methyl-phenyl-triketon (Bd. VII, S. 864).

N.N-Dimethyl-N'-salicylal-p-phenylendiamin $C_{15}H_{16}ON_9 = (CH_2)_2N \cdot C_6H_4 \cdot N \cdot CH \cdot C_6H_4 \cdot OH$. B. Aus Salicylaldehyd (Bd. VIII, S. 31) und N.N-Dimethyl-p-phenylendiamin in alkoh. Lösung (NUTH, B. 18, 573). Beim Kochen von Glyoxal-bis-[4-dimethylamino-anil] mit Salicylaldehyd in Alkohol (Torrey, Am. 34, 478). — Orangefarbige Platten (aus Alkohol). F: 134° (N.), 134—135° (T.). Leicht löslich in Alkohol und Äther (N.). — $C_{18}H_{16}ON_2 + HCl$. Rot. Verblaßt beim Stehen an der Luft (Moore, Galle, Am. Soc. 30, 399). — $C_{18}H_{16}ON_2 + 2$ HCl. Ist, frisch gefällt, fast farblos, wird aber beim Stehen an der Luft bedeutend dunkler (M., G.).

N-Phenyl-M'-salicylal-p-phenylendiamin, 4-Salicylalamino-diphenylamin C₁₀H₁₆ON₂ = C₂H₅·NH·C₂H₄·N:CH·C₄H₄·OH. B. Aus 4-Amino-diphenylamin (S. 76) und Salicylaldehyd (Heuore, A. 255, 190). — Braune Prismen (aus Benzol). F: 120° (H.). — Setst sich beim Kochen mit Phenylhydrasin in alkoh. Lösung in Salicylaldehydphenylhydrason (Syst. No. 1985) und 4-Amino-diphenylamin um (Bamberger, Büsdorf, Sand, B. 31, 1521). — C₁₂H₁₆ON₂ + HCl. Roter Niederschlag (Moore, Woodberdge jr., Am. Soc. 30, 1003). — C₁₂H₁₆ON₂ + 2 HCl. Hellgelber Niederschlag (M., W.).

4'-Chlor-4-salicylalamino-diphenylamin C₁₀H₁₅ON₂Cl = C₆H₄Cl·NH·C₆H₄·N:CH·C₆H₄·OH. B. Beim Erwätmen einer alkoh. Lösung des 4'-Chlor-4-amino-diphenylamins (S. 78) mit Salicylaldehyd (Jacobson, Strübe, A. 303, 315). — Gelbe Blättchen (aus Bensol). F: 170°. Leicht löslich in Alkohol, Äther, Chloroform und Ligroin.

N-p-Tolyl-N'-salicylal-p-phenylendiamin, 4'-Salicylalamino-4-methyldiphenylamin $C_{26}H_{16}ON_3=CH_3\cdot C_4H_4\cdot NH\cdot C_5H_4\cdot N:CH\cdot C_6H_4\cdot OH$. B. Aus 4'-Amino-4-methyl-diphenylamin (S. 81) und Salicylaldehyd (Retohold, A. 255, 167). — Rotgelbe Krystalle. F: 142°. Ziemlich leicht löslich in Alkohol, Äther, Benzol.

N.N. Disalicylal-p-phenylendiamin C₂₀H₁₆O₂N₂ = C₆H₄(N:CH·C₆H₄·OH)₂. B. Aus Salicylaldehyd und p-Phenylendiamin in Alkohol (Senier, Shepheard, Soc. 95, 1950).

— Scheidet sich, wenn die Darstellung unterhalb 50° erfolgt, in gelblichen Tafeln aus; bei Temperaturen oberhalb 50° entsteht ein Gemisch von gelblichen und orangeroten Tafeln. Die gelbliche Form geht bei 115° in die rote Form über, ebenso in Berührung mit Lösungsmittelm. Die rote Form schmilst bei 212—213° (korr.). Beide Formen sind thermotrop, aber nicht phototrop.

N.N'-Bis-[2-methoxy-bensal]-p-phenylendiamin $C_{2}H_{20}O_{2}N_{2}=C_{2}H_{4}(N:CH\cdot C_{4}H_{4}\cdot O\cdot CH_{4})_{2}$. B. Aus 2-Methoxy-bensaldehyd (Bd. VIII, S. 43) und p-Phenylendiamin in Alkohol (Sz., Sz., Soc. 95, 1951). — Gelbliche Nadeln (aus Alkohol). F: 152° (korr.). Leicht löslich, außer in Ather; die Lösung in Eisessig ist dunkelrot. Ist schwach thermotrop.

N.N'-Bis-[5-brom-2-oxy-benzal]-p-phenylendiamin $C_{20}H_{14}O_2N_2Br_2=C_0H_4(N:CH\cdot C_0H_3Br\cdot OH)_2$. B. Aus 5-Brom-2-oxy-benzaldehyd und p-Phenylendiamin (Sr., Sr., Soc. 95, 1953). — Dunkelgelbe Blättchen (aus Nitrobenzol). F: 306° (korr.). Fast unlöslich in niedrig siedenden Flüssigkeiten. Ist thermotrop.

N.N-Dimethyl-N'-[4-oxy-benzal]-p-phenylendiamin $C_{15}H_{16}ON_5 = (CH_5)_2N \cdot C_6H_4 \cdot N \cdot CH \cdot C_5H_4 \cdot OH$. B. Aus 4-Oxy-benzaldehyd (Bd. VIII, S. 64) und N.N-Dimethyl-p-phenylendiamin (NUTH, B. 18, 574). — Gelbliche Blättchen (aus Isobutylalkohol). Zersetzungspunkt: 240°. Sehr schwer löslich in Alkohol, Äther, Chloroform, Benzol und Ligroin.

N.N-Dimethyl-N'-anisal-p-phenylendiamin $C_{16}H_{18}ON_2=(CH_2)_2N\cdot C_6H_4\cdot N:CH\cdot C_6H_4\cdot O\cdot CH_8$. B. Aus Anisaldehyd (Bd. VIII, S. 67) und N.N-Dimethyl-p-phenylendiamin (NUTH, B. 18, 574; STEINHART, A. 241, 343). — Grüngelbe Nadeln (aus Alkohol). F: 139° (N.), 148° (St.). — $C_{16}H_{18}ON_2+HCl$. Rot (Moore, Gale, Am. Soc. 30, 401).

N-Phenyl-N'-anisal-p-phenylendiamin, 4-Anisalamino-diphenylamin $C_{20}H_{18}ON_2 = C_8H_5 \cdot NH \cdot C_8H_4 \cdot N : CH \cdot C_8H_4 \cdot O \cdot CH_2$. B. Aus 4-Amino-diphenylamin (S. 76) and Anisaldehyd (Moore, Woodbridge, Am. Soc. 30, 1004). — Silbergraue Schuppen (aus Alkohol). F: 105°. — $C_{20}H_{18}ON_2 + HCl$. Roter Niederschlag. — $C_{20}H_{18}ON_2 + 2HCl$. Hellrosa gefärbter Niederschlag.

N.N'-Dianisal-p-phenylendiamin $C_{22}H_{20}O_2N_2=C_6H_4(N:CH\cdot C_6H_4\cdot O\cdot CH_3)_2$. B. Aus Anisaldehyd und p-Phenylendiamin (Vorlânder, Ph. Ch. 57, 358, 361). — Bildet eine dunkel-anisotrope Phase beim Erstarren der unterkühlten Schmelze.

N.N'-Bis-[6-oxy-3-methyl-benzal]-p-phenylendiamin $C_{22}H_{20}O_2N_2 = C_6H_4[N:CH-C_6H_3(CH_3)\cdot OH]_2$. B. Aus 6-Oxy-3-methyl-benzaldehyd (Bd. VIII, S. 100) und p-Phenylendiamin (Senter, Shepheard, Soc. 95, 1945, 1953). — Gelbe Blättchen (aus Benzol) vom Schmelzpunkt 256° (korr.) oder gelbbraune Krystalle (aus Eisessig), die ca. 0,5° niedriger schmelzen. Schwer löslich in Benzol, Chloroform, Eisessig, sehr wenig in Alkohol, Petroläther. Beide Formen sind thermotrop.

N.N'-Bis-{[2-oxy-naphthyl-(1)]-methylen}-p-phenylendiamin $C_{29}H_{20}O_2N_3=C_0H_4(N:CH\cdot C_{10}H_6\cdot OH)_2$. B. Aus 2-Oxy-naphthaldehyd-(1) (Bd. VIII, S. 143) und p-Phenylendiamin (Se., Sh., Soc. 95, 1945, 1955). — Rote Krystalle. F: 307° (korr.). Schwer löslich in organischen Flüssigkeiten. Ist thermotrop.

N.N-Dimethyl-N'-[phenyl-(4-methoxy-phenyl) - methylen] - p - phenylendiamin, 4-Methoxy - benzophenon - [4-dimethylamino - anil] $C_{22}H_{23}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot N : C(C_6H_4) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Versetzen von 1 Mol.-Gew. 4-Methoxy-benzophenonchlorid (Bd. VI, S. 677) mit 3 Mol.-Gew. N.N-Dimethyl-p-phenylendiamin, gelöst in Chloroform (Hantzsoh, B. 26, 927). — Gelbe Krystalle (aus Ather). F: 116°. Ziemlich schwer löslich in Alkohol und Äther, leicht in Chloroform; die Lösung in Eisessig ist rot.

2-Oxy-p-chinon-[4-dimethylamino-anil]-(4)-oxim-(1) bezw. 4-[4-Dimethylamino-anilino]-o-chinon-oxim-(1) bezw. 4-Nitroso-3-oxy-4'-dimethylamino-diphenylamin $C_{14}H_{15}O_2N_3=$

B. Aus N-Nitroso-3-oxy-4'-dimethylamino-diphenylamin (Syst. No. 1840) und alkoh. Salzsäure unterhalb 0° (GNEHM, WEBER, J. pr. [2] 69, 238). — Rotbraune Nadeln (aus Toluol). F: 164°. Leicht löslich in Alkohol, Aceton, Chloroform, Petroläther, schwer in Benzol, Ather, unlöslich in Ligroin.

 $a.\gamma$ -Dioxo- β -[4-dimethylamino-phenylimino]-a-[2-methoxy-phenyl]-butan, 2-Methoxy-ms-[4-dimethylamino-phenylimino]-benzoylaceton $C_{19}H_{20}O_3N_3=(CH_{3}N\cdot C_0H_4\cdot N:C(CO\cdot CH_3)\cdot CO\cdot C_0H_4\cdot O\cdot CH_3$. B. Man erhitzt 2-Methoxy-benzoylaceton (Bd. VIII, S. 291) und 4-Nitroso-dimethylanilin in Alkohol und fügt Natronlauge hinzu (SACHE, HEROLD, B. 40, 2720). — Rote Nadeln (aus Alkohol). Sintert bei 120° und schmilzt bei 125°. Leicht löslich in allen organischen Lösungsmitteln, außer in Ligroin und Petroläther, fast unlöslich in Wasser. — Gibt beim Schütteln der äther. Lösung mit verd. Schwefelsäure $a.\beta.\gamma$ -Trioxo-a-[2-methoxy-phenyl]-butan (Bd. VIII, S. 409).

a.y-Dioxo- β -[4-dimethylamino-phenylimino]-a-[2.4-dimethoxy-phenyl]-butan, 2.4-Dimethoxy-ms-[4-dimethylamino-phenylimino]-bensoylaceton $C_{20}H_{23}O_4N_2=(CH_3)_2N\cdot C_6H_4\cdot N:C(CO\cdot CH_3)\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$. B. Aus 2.4-Dimethoxy-benzoylaceton

(Bd. VIII, S. 404) und 4-Nitroso-dimethylanilin in Alkohol auf Zusatz von NaOH, neben 2.4-Dimethoxy-benzoesäure (Sachs, Herold, B. 40, 2726). — Rubinrote Prismen (aus Alkohol). F: 1836.

N-Formyl-p-phenylendiamin $C_7H_8ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot CHO$. B. Durch Reduktion von 4-Nitro-formanilid (Bd. XII, 8, 718) mit Eisen und Essigsäure (MORGAN, MICKLE-THWAIT, Soc. 87, 931). — Bräunliche Nadeln (aus Wasser). F: 125—127°.

N.N-Dimethyl-N'-formyl-p-phenylendiamin $C_pH_{12}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CHO$. B. Beim Kochen von 4-Nitroso-dimethylanilin (Bd. XII, S. 677) mit Formaldehydlösung (Pinnow, Pistor, B. 26, 1313). — Blättchen (aus Wasser). F: 108°; leicht löslich in Alkohol, Ather, Chloroform und Benzol, unlöslich in Ligroin (Pin., Pist., B. 26, 1314). — Beim Kochen mit HCl entstehen Ameisensäure und Dimethyl-p-phenylendiamin (Pin., Pist., B. 26, 1315). Mit HNO₂ entsteht $N^1.N^1$ -Dimethyl- N^4 -formyl-2-nitro-phenylendiamin-(1.4); CH₂ erzeugt bei 100° N.N-Dimethyl-p-phenylendiamin-jodmethylat und N.N.N'.N'-Tetramethyl-p-phenylendiamin-monojodmethylat (Pin., Pist., B. 27, 603). — Salze: Pin., Pist., B. 26, 1315. Pikrat $C_2H_{12}ON_2 + C_6H_2O_7N_3$. F: 188°. — $C_9H_{12}ON_2 + HCl + HgCl_2$. Nadeln. F: 171°.

N.N'-Diformyl-p-phenylendiamin C₃H₆O₂N₃ = C₆H₄(NH·CHO)₃. B. Beim Kochen von p-Phenylendiamin mit konz. Ameisensäure (WUNDT, B. 11, 828). Beim Stehen von 1 Mol.-Gew. p-Phenylendiamin mit 2 Mol.-Gew. Formamid in Eisessig (Hirst, Cohen, Soc. 67, 831). — Unkrystallinische Masse. F: 203,5—204° (W.), 205—207° (H., C.). — Verwendung zur Darstellung gelber Schwefelfarbstoffe: Akt.-Ges. f. Anilinf., D. R. P. 159097; C. 1905 I, 909. — Na₂C₈H₆O₂N₃ (H., C.).

N-[4-Chlor-phenyl]-N.N'-diformyl-p-phenylendiamin, 4'-Chlor-4-formamino-N-formyl-diphenylamin $C_{14}H_{11}O_2N_3Cl=OHC\cdot NH\cdot C_6H_4\cdot N(C_6H_4Cl)\cdot CHO$. B. Durch 6-stdg. Kochen von 4'-Chlor-4-amino-diphenylamin (S. 78) mit der zehnfachen Menge wasserfreier Ameisensäure (JACOBSON, STRÜBE, 4. 303, 316). — Nadeln (aus Alkohol). F: 103° . Leicht löslich in Alkohol und Benzol, schwer in Ligroin und Äther.

N.N'-Diphenyl-N.N'-diformyl-p-phenylendiamin $C_{20}H_{16}O_2N_2 = C_6H_4[N(C_6H_5)\cdot CHO]_2$. B. Durch Kochen von N.N'-Diphenyl-p-phenylendiamin mit der zehnfachen Gewichtsmenge Ameisensäure (D: 1,2) (Brunck, B. 25, 2722). — Nadeln (aus Alkohol). F. 1680

x.x-Dinitro-[N.N'-diphenyl-N.N'-diformyl-p-phenylendiamin] $C_{30}H_{14}O_{4}N_{4} = C_{30}H_{14}O_{4}N_{4}(NO_{2})_{2}$. B. Aus N.N'-Diphenyl-N.N'-diformyl-p-phenylendiamin und konz. Salpetersäure (Brunck, B. 25, 2722). — Blaßgelbe Krystalle. F: 215°.

N.N'-Di-o-tolyl-N.N'-diformyl-p-phenylendiamin $C_{22}H_{20}O_2N_2 = C_0H_4[N(C_0H_4\cdot CH_2)\cdot CHO]_2$. B. Durch Kochen von N.N'-Di-o-tolyl-p-phenylendiamin mit Ameisensäure (Philip, J. pr. [2] 34, 67). — Nädelchen (aus verdünntem Alkohol). F: 165°. Wenig löslich in kaltem Alkohol.

N-Acetyl-p-phenylendiamin $C_8H_{10}ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Bei 4—5-stdg. Kochen von 100 g salzsaurem p-Phenylendiamin mit 45—46 g wasserfreiem Natriumacetat, gelöt in wenig heißem Wasser; man zersetzt das beim Erkalten sich ausscheidende Hydrochlorid des N-Acetyl-p-phenylendiamins durch Zusammenreiben mit konz. Scdalösung (H. Schiff, Ostrogovich, A. 293, 373). Beim Behandeln von 4-Nitro-acetanilid (Bd. XII, S. 719) mit Eisen und wenig Essigsäure (Nietzki, B. 17, 343). Bei der elektrolytischen Reduktion von 4-Nitro-acetanilid (Sonneborn, Z. El. Ch. 6, 509). — Darst. Durch Reduktion von 4-Nitro-acetanilid mit Eisenfeile und 10% der theoretisch nötigen Menge Essigsäure in gußeisernen Schalen (Bülow, B. 33, 191). Zur Darstellung vgl. auch Sache, Goldmann, B. 35, 3341. — Nadeln (aus Wasser). F: 162—162,5% (korr.) (H. Sch.; O.). Schwer lößlich in kaltem Wasser, ziemlich leicht in heißem, sehr leicht in Alkohol und Ather (N.). — Einsäurige Base (N.). Wird durch Kochen mit konz. Salzsäure oder mit verdünnter Schwefelsäure in Essigsäure und p-Phenylendiamin serlegt (N.). Läßt sich durch Cabosche Säure zu 4-Nitroso-acetanilid (Bd. VII, S. 627) oxydieren; bei geringerer Menge des Oxydationsmittels entsteht 4.4-Bis-acetamino-acobenzol (Syst. No. 2172), bei Überschuß desselben eine geringe Menge 4-Nitro-acetanilid (Can, Soc. 93, 682). Durch Verschmelsen mit Schwefel und Schwefel-alkalien läßt sich N-Acetyl-p-phenylendiamin in Schwefelfarbstoffe überführen (Soc. St. Denis, D. R. P. 82748, 91720; Frdl. 4, 1062, 1054). N-Acetyl-p-phenylendiamin läßt sich durch Diasoterung mit 1 Mol.-Gew. Natriumnitrit in p-Acetamino-besenklässoniumaslatüberführen (Bad. Anliin- u. Sodaf., D. R. P. 42814; Frdl. 2, 446; Bülow, Bussa, B. 39, 3863). Diese Diasoverbindung findet Verwendung zur Herstellung von Asofarbstoffen, z. B. von Azogrenadin (Schwitz, Tab. No. 64), Chromotrop 6 B (Schwitz, Tab. No. 67). Über Verwendung von N-Acetyl-p-phenylendiamin bei der Herstellung von Asofarbstoffen vgl. auch Omhler, D. R. P. 57429, 6651

131986, 131987; C. 1902 II, 84; BAYER & Co., D. R. P. 116348; C. 1901 I, 72; KALLE & Co., D. R. P. 193293; C. 1908 I, 504. N-Acetyl-p-phenylendiamin läßt sich durch gemeinsame Oxydation mit Phenolen mit guter Ausbeute in acetylierte Indophenole überführen: Akt.-Ges. f. Anilinf., D. R. P. 168229; C. 1906 I, 1121. Ğibt beim Erhitzen mit Phenolen und Schwefel auf 200—250° braune Schwefelfarbstoffe (Dahl. & Co., D. R. P. 123612, 125585; C. 1901 II, 798, 1191). Aus N-Acetyl-p-phenylendiamin und Formaldehyd in Wasser entstehen nach Ullmann (D. R. P. 123260; C. 1901 II, 568) weiße Krystalle vom Schmelzpunkt 195—200°. Aus N-Acetyl-p-phenylendiamin und Formaldehyd in Gegenwart von Salzsäure entsteht das Hydrochlorid des Bis-[(4-acetamino-anilino)-methyl]-äthers (S. 96) (C. Goldschmidt, Ch. Z. 25, 564). Beim Erhitzen von N-Acetyl-p-phenylendiamin mit Schwefelkohlenstoff entsteht ein acetylierter Thioharnstoff (F: 240°), der bei der Verseifung unter Druck neben N.N'-Bis-[4-amino-phenyl]-thioharnstoff (S. 102) eine zweite Base (F: ca. 130°) liefert (Koetzle, D. R. P. 127466; C. 1902 I, 154). — C₈H₁₀ON₂ + H₂SO₄. Nadeln (aus Ather-Alkohol). Schmilzt gegen 285° unter Zersetzung; sehr löslich in Wasser und Alkohol (H. Sch., O.). — 2C₈H₁₀ON₂ + 2 HCl + PtCl₄. Gelbe, schwer lösliche Nadeln (N.).

N.N.-Dimethyl-N.-acetyl-p-phenylendiamin $C_{10}H_{14}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von N.N-Dimethyl-p-phenylendiamin mit Eisessig (Wurster, B. 12, 525). Aus N.N-Dimethyl-p-phenylendiamin durch Essigsäureanhydrid oder in äther. Lösung durch Acetylchlorid (Auwers, Wehr, A. 334, 311). Aus N.N-Dimethyl-N'.N'-diacetyl-p-phenylendiamin durch heiße Alkalien (Au., We., A. 334, 313). — Nadeln (aus heißem Chloroform + Ligroin). F: 130° (Wu.), 129° (Au., We.). Siedet unter geringer Zersetzung bei 355° (Wu.). Unlöslich in Ligroin (Au., We.), schwer löslich in kaltem Wasser, leicht in kochendem Wasser (Wu.), leicht in Äther, Benzol und Eisessig, sehr leicht in Alkohol und Chloroform (Au., We.). — Die Dämpfe zeigen bei atmosphärischem Druck unter dem Einfluß von Teslaströmen blaue Luminescenz (Kauffmann, Ph. Ch. 28, 695; B. 33, 1732). — Liefert beim Erhitzen mit Methyljodid Trimethyl-[4-acetamino-phenyl]-ammoniumjodid (s. u.) (Pinnow, Koch, B. 30, 2860; Höchster Farbw., D. R. P. 88557; Frdl. 4, 70).

N.N-Dimethyl-N'-chloracetyl-p-phenylendiamin $C_{10}H_{13}ON_2Cl = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2Cl$. B. Aus N.N-Dimethyl-p-phenylendiamin und Chloracetylchlorid in Ather unter starker Kühlung (Rupe, Véetecka, A. 301, 75). — Nadeln (aus Alkohol). F: 146° bis 147°. Unlöslich in Wasser, schwer löslich in kaltem Alkohol und Äther.

N.N - Dimethyl - N'- acetyl - p - phenylendiamin - hydroxymethylat, Trimethyl-[4-acetamino-phenyl]-ammoniumhydroxyd $C_{11}H_{18}O_2N_2=(CH_3)_3N(OH)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Das Jodid entsteht durch 10-stdg. Erhitzen von N.N-Dimethyl-N'-acetyl-p-phenylendiamin (s. o.) mit Methyljodid in Benzollösung auf 100° (Pinnow, Koch, B. 30, 2860; Höchster Farbw., D. R. P. 88557; Frdl. 4, 70). — Chlorid-Hydrochlorid $C_{11}H_{17}ON_2\cdot Cl+CH$. Krystalle (aus Methylalkohol + Äther). F: 219° (P., K.), Zersetzungspunkt: 215° (H. F.). Sehr leicht löslich in Wasser, weniger in Methylalkohol und Äthylalkohol, ulöslich in Äther und Benzol (P., K.). — Jodid $C_{11}H_{17}ON_3\cdot I$. Prismen (aus Methylalkohol). F: 226° (P., K.), 225° (H. F.). Leicht löslich in Wasser und heißem Methylalkohol, mäßig in heißem Äthylalkohol (P., K.).

N.N-Diäthyl-N'-acetyl-p-phenylendiamin-hydroxymethylat, Methyl-diäthyl-[4-acetamino-phenyl]-ammoniumhydroxyd $C_{13}H_{22}O_2N_2 = (CH_3)(C_2H_5)_2N(OH)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Das Jodid entsteht durch Kochen von nicht näher beschriebenem N.N-Diäthyl-N'-acetyl-p-phenylendiamin (F: 104°) mit CH₃I (H. F., D. R. P. 88557; Frdl. 4, 70). — Chlorid. Zersetzt sich bei ca. 170°. — Jodid. Zersetzt sich bei 195°.

N-Phenyl-N'-acetyl-p-phenylendiamin, 4-Acetamino-diphenylamin $C_{14}H_{14}ON_2 = C_6H_5 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Erwärmen von 4-Amino-diphenylamin (S. 76) mit Essigsäureanhydrid (NIETZKI, WITT, B. 12, 1401). — Blättchen oder Nadeln. F: 158°.

4'-Chlor-4-acetamino-diphenylamin $C_{14}H_{18}ON_{4}Cl = C_{6}H_{4}Cl\cdot NH\cdot C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3}$. B. Durch 6—8-stdg. Kochen von 4'-Chlor-4-amino-diphenylamin (S. 78) mit der zehnfachen Menge Eisessig (Jacobson, Strübe, A. 303, 316). — Nadeln (aus verd. Alkohol). F: 207°. Sehr leicht löslich in Alkohol, schwer in Benzol und Äther.

2'-Nitro-4-acetamino-diphenylamin $C_{14}H_{13}O_3N_3=O_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus 2'-Nitro-4-amino-diphenylamin (S. 78) mit Essigsäureanhydrid bei 100° (Bandrowski, C. 1900 II, 852). Beim Erhitzen eines äquimolekularen Gemenges von N-Acetyl-p-phenylendiamin, o-Brom-nitrobenzol und Natriumacetat auf 160—170° (Kehrmann, Messinger, J. pr. [2] 46, 572). — Rotgelbe oder dunkelrote Blättchen (aus Alkohol). F: 147—148° (K., M.), 135—136° (B.).

4'-Nitro-4-acetamino-diphenylamin $C_{14}H_{13}O_3N_3=O_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$.

B. Beim Erwärmen von 4'-Nitro-4-amino-diphenylamin (S. 79) mit Essigsäureanhydrid im Wasserbad (Bandrowski, Anzeiger d. Akademie d. Wissenschaften in Krakau 1900, 189; C. 1900 II, 852). — Gelbe Krystalle (aus Alkohol).

5'-Chlor-2'-nitro-4-acetamino-diphenylamin $C_{16}H_{13}O_3N_3Cl=O_2N\cdot C_6H_3Cl\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Durch Erwärmen von 4-Chlor-1.2-dinitro-benzol mit N-Acetyl-p-phenylendiamin und Natriumacetat in Alkohol (Kehrmann, Krazler, B. 34, 1103). — Gelbrote Nadeln (aus Alkohol). F: 221°. Unlöslich in Wasser, gut löslich in siedendem Alkohol und Eisessig.

2'.4'-Dinitro-4-acetamino-diphenylamin $C_{14}H_{12}O_5N_4=(O_5N)_2C_6H_3\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_2$. B. Durch Erwärmen von 2'.4'-Dinitro-4-amino-diphenylamin (S. 79) mit Essigsäureanhydrid (Nietzei, Ernst, B. 23, 1853). Durch Einw. von 4-Chlor-1.3-dinitro-benzol auf N-Acetyl-p-phenylendiamin (N., E.). — Rubinrote Nadeln. F: 238°.

N-Pikryl-N'-acetyl-p-phenylendiamin, 2'.4'.6'-Trinitro-4-acetamino-diphenylamin $C_{14}H_{11}O_{7}N_{5}=(O_{2}N)_{3}O_{6}H_{2}\cdot NH\cdot C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3}$. B. Aus Pikrylchlorid (Bd. V, S. 273) und N-Acetyl-p-phenylendiamin in Alkohol (Wedekind, B. 33, 434). — Schwarze Kryställchen (aus Alkohol). F: 240—242°.

N.N - Diphenyl - N' - acetyl - p - phenylendiamin, 4 - Acetamino - triphenylamin $C_{20}H_{10}ON_3 = (C_0H_0)_2N \cdot C_0H_4 \cdot NH \cdot CO \cdot CH_2$. B. Aus dem salzsauren 4-Amino-triphenylamin (S. 80) durch Kochen mit einem Überschuß von Essigsäureanhydrid und Natriumacetat (Herz, B. 23, 2538). Durch Erhitzen von 4-Amino-triphenylamin mit Eisessig (Haeussermann, B. 39, 2763). Aus 4-Amino-triphenylamin und Essigsäureanhydrid (Gambarjan, B. 41, 3511). — Nadeln (aus verd. Essigsäure), Blättchen (aus Alkohol). F: 197° (Herz; Haeu.), 195° (G.). — Gibt mit Jodbenzol in Gegenwart von K_2CO_3 und Kupferpulver beim Kochen in Nitrobenzol 4-Acetylanilino-triphenylamin (S. 97) (G.).

N-Äthyl-N-benzyl-N'-acetyl-p-phenylendiamin $C_{77}H_{20}ON_2 = C_6H_5 \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von N-Äthyl-N-benzyl-p-phenylendiamin (S. 82) mit Rasigsäureanhydrid (Schultz, Rohde, Bosch, A. 334, 263). — Nadeln (aus Alkohol). F: 111°.

N-a-Naphthyl-N'-acetyl-p-phenylendiamin $C_{18}H_{16}ON_2 = C_{10}H_7\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Durch mehrstündiges Sieden von N-a-Naphthyl-p-phenylendiamin mit dem 3—4-fachen Gewicht Eisessig in CO₂-Atmosphäre am Rückflußkühler (Merz, Strasser, J. pr. [2] 60, 557 Anm.). — Nadeln (aus Alkohol). F: 162,5°.

N- β -Naphthyl-N'-acetyl-p-phenylendiamin $C_{18}H_{16}ON_2 = C_{10}H_7 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2$. B. Aus N- β -Naphthyl-p-phenylendiamin und Essigsäureanhydrid in wäßr. Alkohol bei 50° (Bucherer, Seyde, J. pr. [2] 75, 278). — Strahlige Stäbchen (aus Benzol). F: 160°. Löslich in Alkohol.

Bis - [(4 - acetamino - anilino) - methyl] - äther $C_{18}H_{29}O_3N_4 = O(CH_4 \cdot NH \cdot C_8H_4 \cdot NH \cdot CO \cdot CH_3)_4$. B. Aus N-Acetyl-p-phenylendiamin und Formaldehyd in Gegenwart von Salzsäure (C. Goldschmidt, Ch. Z. 25, 564). — Krystallinisches Pulver (aus Alkohol).

N-Benzal-N'-acetyl-p-phenylendiamin $C_{15}H_{14}ON_5=C_6H_5\cdot CH:N\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Man elektrolysiert 4-Nitro-acetanilid (Bd. XII, S. 719) in fast neutraler Lösung durch einen sehr großen Stromüberschuß und gibt zu der erhaltenen Lösung des N-Acetyl-p-phenylendiamins Benzaldehyd (Brand, Stohe, B. 42, 2481). Aus N-Acetyl-p-phenylendiamin und Benzaldehyd in wäßrig-alkoh. Lösung (B., St.). — Schwach gefärbte Blättchen (aus Alkohol). F: 165—166°. Leicht löslich in Alkohol und Benzol.

N-[4-Acetamino-phenyl]-isobensaldoxim $C_{15}H_{14}O_2N_2=C_0H_5\cdot CH:N(:O)\cdot C_0H_4\cdot NH\cdot CO\cdot CH_3$ bezw. $C_0H_5\cdot HC$ N· $C_0H_4\cdot NH\cdot CO\cdot CH_3$ s. Syst. No. 4194.

N - [5 - Oxo - 3.3 - dimethyl - cyclohexyliden] - N' - acetyl - p - phenylendiamin, l.1 - Dimethyl - cyclohexandion - (3.5) - mono - [4 - acetamino - anil], Dimethyldihydroresorcin-mono-[4-acetamino-anil] $C_{16}H_{20}O_{2}N_{3}=$

H₂C C(CH₃)₂·CH₃ C:N·C₃H₄·NH·CO·CH₃ bezw. desmotrope Formen. B. Aus Dimethyl-dihydroresorcin-mono-[4-amino-anil] (S. 88) beim Kochen mit Eisessig und Essigsäure-anhydrid (HAAS, Soc. 89, 395, 570). Aus Dimethyldihydroresorcin (Bd. VII, S. 559) und N-Acetyl-p-phenylendiamin (H.). — Platten (aus Alkohol + Aceton). F: 255—256°. Löslich in Alkohol, Chloroform, unlöslich in Benzol und Alkohol.

Chinon-[4-acetamino-anii]-oxim bezw. 4'-Nitroso-4-acetamino-diphenylamin $G_{14}H_{12}O_2N_3 = H0 \cdot N : C_eH_4 \cdot N \cdot C_eH_4 \cdot N \cdot C \cdot CH_2$ bezw. $ON \cdot C_eH_4 \cdot NH \cdot CO \cdot CH_3$. B. Man erhitzt 4-Amino-diphenylamin (S. 76) mit Eisessig und behandelt die Monoacetylverbindung mit salpetriger Säure in Gegenwart von starken Mineralsäuren (Cassella & Co., D. R. P. 176046; C. 1906 II, 1788). — Braun. Schmilst nicht ohne Zersetzung. Die Lösung in Alkohol ist rotbraun; die Lösung in Alkalien ist durch Säuren fällbar (C. & Co., D. R. P. 176046). — Kondensstion mit Sulfonsäuren von Diaryl-naphthylendiaminen-(1.3) zu blauen Wollfarbstoffen: C. & Co., D. R. P. 185986; Frdl. 8, 526; C. 1907 II, 865.

- N.N'-Diacetyl-p-phenylendiamin $C_{10}H_{12}O_2N_2=C_6H_4(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen von p-Phenylendiamin mit Eisessig (Biedermann, Ledoux, B. 7, 1531). Krystalle (aus heißem Eisessig). Schmilzt oberhalb 295° (B., L.), bei 303° (Troeger, Westerkamp, Ar. 247, 663). Sehr wenig löslich in allen Lösungsmitteln, außer in Eisessig (B., L.).
- N.N'-Bis-trichloracetyl-p-phenylendiamin $C_{10}H_6O_2N_2Cl_6 = C_6H_4(NH\cdot CO\cdot CCl_3)_2$. B. Durch 8-stdg. Kochen von p-Phenylendiamin und Trichloracetylchlorid in Benzol (L. Spiecel, P. Spiecel, B. 40, 1736). Blättchen (aus Eisessig). F: 264° (Zers.). Unlöslich in Wasser, Äther und Chloroform, schwer löslich in Benzol und Alkohol.
- N.N'-Diäthyl-N.N'-diacetyl-p-phenylendiamin $C_{14}H_{20}O_2N_2=C_6H_4[N(C_2H_5)\cdot CO\cdot CH_3]_2$. B. Man verseift N.N'-Dibenzolsulfonyl-N.N'-diäthyl-p-phenylendiamin (S. 116) mit Alkali, entzieht das nicht näher untersuchte N.N'-Diäthyl-p-phenylendiamin mit Äther und behandelt es nach dem Verdunsten des Äthers mit Essigsäureanhydrid (HINSBERG, A. 265, 189). Nadeln (aus Wasser). F: 186—187°.
- N.N.N'-Triphenyl-N'-acetyl-p-phenylendiamin, 4-Acetylanilino-triphenylamin $C_{26}H_{25}ON_2 = (C_6H_5)_9N\cdot C_6H_4\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Aus 4-Acetamino-triphenylamin (S. 96) durch Kochen mit Jodbenzol, K_5CO_3 und Kupferpulver in Nitrobenzol (Gambarjan, B. 41, 3509, 3512). Hellgraue Blättchen (aus Alkohol). F: 184°. Läßt sich mit methylalkoholischem Kali auf dem Wasserbade verseifen.
- N.N-Diphenyl-N'-[4-chlor-phenyl]-N'-acetyl-p-phenylendiamin, 4-[N-Acetyl-q-chlor-anilino]-triphenylamin $C_{ss}H_{s1}ON_sCl=(C_6H_5)_sN\cdot C_8H_4\cdot N(C_6H_4Cl)\cdot CO\cdot CH_3$. B. Durch Kochen von 4-[4-Chlor-anilino]-triphenylamin (S. 80) mit Essigsäureanhydrid (Gambarjan, B. 41, 3509). Krystalle (aus Alkohol). F: 199—200°.
- N.N'-Diphenyl-N.N'-diacetyl-p-phenylendiamin $C_{22}H_{20}O_2N_2=C_6H_4[N(C_6H_5)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Diphenyl-p-phenylendiamin (S. 80), Essigsäureanhydrid und Natriumacetat bei ca. 130° (CALM, B. 16, 2807). Tafeln oder Prismen (aus Alkohol). F: 191,7°. Leicht löslich in warmem Benzol und in Chloroform, weniger leicht in heißem Alkohol, ziemlich schwer in kaltem Benzol oder Alkohol, schwer in Ligroin.
- N.N'-Di-o-tolyl-N.N'-diacetyl-p-phenylendiamin $C_{24}H_{24}O_2N_2=C_6H_4[N(C_6H_4\cdot CH_3)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Di-o-tolyl-p-phenylendiamin und Essigsäureanhydrid (Phillip, J. pr. [2] **34**, 68). Nädelchen (aus verd. Alkohol). F: 189°. Schwer löslich in kaltem Alkohol, Äther und Benzol.
- N.N'-Di-p-tolyl-N.N'-diacetyl-p-phenylendiamin $C_{24}H_{24}O_3N_2=C_6H_4[N(C_6H_4\cdot CH_3)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Di-p-tolyl-p-phenylendiamin, Essigsäureanhydrid und Natriumacetat (HATSCHEK, Zega, J. pr. [2] 33, 233). Krystalle (aus Alkohol). F: 172° bis 173°. Wenig löslich in kaltem Alkohol und Eisessig, leichter in Benzol.
- N-Bensyl-N.N'-diacetyl-p-phenylendiamin $C_{17}H_{18}O_3N_3 = CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot N(CH_3\cdot C_6H_6)\cdot CO\cdot CH_3$. B. Man kocht salzsaures N-Bensyl-p-phenylendiamin in Eisessig mit Natriumacetat und Easigsäureanhydrid (Meldola, Coste, Soc. 55, 592). Prismen (aus verd. Alkohol). F: 116,5—117°.
- N.N'-Di- β -naphthyl-N.N'-diacetyl-p-phenylendiamin $C_{20}H_{24}O_2N_2 = C_0H_4[N(C_{10}H_7)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Di- β -naphthyl-p-phenylendiamin und Acetylchlorid (RUEFF, B. 22, 1082). Blättchen (aus Benzol). F: 210°. Sehr schwer löslich in kaltem Benzol.
- **N.N'-Bis-[4-amino-phenyl]-acetamidin** $C_{14}H_{16}N_4 = H_2N \cdot C_6H_4 \cdot N : C(CH_3) \cdot NH \cdot C_6H_4 \cdot NH_2$. B. Durch Reduktion von N.N'-Bis-[4-nitro-phenyl]-acetamidin (Bd. XII, S. 720) in schwach essignaurer oder alkalischer Flüssigkeit (Aubert, Täuber, D. R. P. 95987; C. 1898 I, 968). Krystalle, in reinem Zustande farblos, Krystallwasser enthaltend. F: 145°. Löslich in Alkohol. Zersetzt sich bei höherer Temperatur unter Entwicklung von Acetamidgeruch und Bildung von p-Phenylendiamin.
- N.N.-Dimethyl-N'.N'-diacetyl-p-phenylendiamin $C_{12}H_{16}O_2N_2 = (CH_2)_2N \cdot C_4H_4 \cdot N(CO \cdot CH_3)_2$. B. Beim Kochen von N.N-Dimethyl-p-phenylendiamin oder von N.N-Dimethyl-N'-acetyl-p-phenylendiamin mit überschüssigem Essigsäureanhydrid (Auwers, Wehr, A. 334, 312). Nadelbüschel (aus heißem Petroläther). F: 68—69°. In der Wärme leicht löslich in Eisessig, Wasser, Ligroin, Petroläther, sehr leicht in Alkohol, Äther, Benzol und Chloroform. Wird durch Sodalösung nicht verändert. Geht mit kalter 10°/0 iger Natronlauge teilweise, beim Kochen mit Alkalien vollständig in N.N-Dimethyl-N'-acetyl-p-phenylendiamin über.
- N-Stearoyl-p-phenylendiamin $C_{24}H_{42}ON_2 = H_2N \cdot C_4H_4 \cdot NH \cdot CO \cdot [CH_2]_{16} \cdot CH_3$. B. Aus Stearinsäure-[4-nitro-anilid] (Bd. XII, S. 720) durch Reduktion (SULLEBERGER, D. R. P. 188909; C. 1907 II, 1668). Aus Stearinsäure und p-Phenylendiamin (S., D. R. P. 193451; C. 1908 I, 1011). Krystalle (aus Alkohol). F: 118—1196; unlöslich in Äther, Petroläther und Wasser, leicht löslich in Alkohol und Chloroform (S., D. R. P. 188909).

N-Bensoyl-p-phenylendiamin $C_{12}H_{12}ON_2 = H_2N \cdot C_0H_4 \cdot NH \cdot CO \cdot C_0H_5$. B. Beim Erhitzen von Bensoessure-[4-nitro-anilid] (Bd. XII, S. 720) mit Zinn und Salsssure (Hübner, A. 208, 295). — Blättchen. F: 128°; schwer löslich in Wasser, leicht in Chloroform und Alkohol (H.). — Verwendung für Azofarbstoffe: Soc. St. Denis, D. R. P. 65080; Frdl. 3, 731. — $C_{13}H_{12}ON_2 + HCl$. Nadeln (H.). Unlöslich in Ather, leicht löslich in Alkohol (MOBGAN, ALCOCK, 8oc. 95, 1323). — $2C_{13}H_{12}ON_2 + H_2SO_4$. Nadeln. Schwer löslich in kaltem Wasser (H.).

N-[8-Nitro-bensoyl]-p-phenylendiamin $C_{12}H_{11}O_2N_2 = H_2N \cdot C_4H_4 \cdot NH \cdot CO \cdot C_4H_4 \cdot NO_2$. B. Durch Behandeln von N-Formyl-p-phenylendiamin (S. 94) mit 3-Nitro-bensoyl-chlorid (Bd. IX, S. 381) und nachträgliche Verseifung durch Kochen mit verd. Säuren (Höchster Farbw., D. R. P. 208968; C. 1909 I, 1623). — Goldglänzende braune Schüppchen (aus Alkohol). F: 217—218°.

N-[4-Nitro-bensoyl]-p-phenylendiamin $C_{13}H_{11}O_3N_3=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot NO_3$. B. Man behandelt N-Formyl-p-phenylendiamin mit 4-Nitro-benzoylehlorid und kocht das Kondensationsprodukt mit verd. Salzsäure oder Schwefelsäure (Höchster Farbw., D. R. P. 208968; C. 1909 I, 1623). — Goldglänzende braune Schüppchen (aus Alkohol). F: 228°.

N.N.-Dimethyl-N'-benzoyl-p-phenylendiamin $C_{18}H_{16}ON_2 = (CH_2)_2N\cdot C_2H_4\cdot NH\cdot CO\cdot C_4H_5$. B. Aus N.N-Dimethyl-p-phenylendiamin durch Benzoylierung (BÖENSTEIN, B. 29, 1482). Durch Einw. von Benzoylchlorid und Natronlauge auf Glyoxal-bis-[4-dimethylamino-anil] (S. 87) (TORREY, Am. 34, 479). — Nadeln (aus Benzol). F: 228° (B.), 223—224° (T.). Schwer löslich in Alkohol (B.).

N-Phenyl-N'-bensoyl-p-phenylendiamin, 4-Bensamino-diphenylamin $C_{16}H_{16}ON_3 = C_6H_5 \cdot NH \cdot C_5H_6 \cdot NH \cdot CO \cdot C_5H_5 \cdot B$. Aus 4-Amino-diphenylamin mit Bensoylehlorid und Natronlauge (Kehrmann, Stéranoff, B. 41, 4135). — Liefert beim Erhitzen mit Bensoesäure und ZnCl₂ 2-Amino-9-phenyl-acridin, dessen Bensoylderivat, 2-Oxy-9-phenyl-acridin und eine Verbindung $C_{26}H_{36}N_3$ (?) (s. u.).

und eine Verbindung C₃₈H₂₆N₄(?) (s. u.).

Verbindung C₃₈H₂₆N₄(?). B. Beim Erhitzen von 4-Benzamino-diphenylamin, Benzoesäure und ZnCl₂ auf 215—220° (neben anderen Produkten) (Kehrmann, Stepanoff, B. 41, 4140). — Orangegelbe Kryställchen (aus der alkoh. Lösung des salzsauren Salzes durch wäßr. Ammoniak). F: 308°. Schwer löslich in siedendem Alkohol, unlöslich in Wasser. Die gelbe Lösung in H₂SO₄ fluoresciert grün. — C₂₆H₂₆N₄ + 2 HCl.

N-Äthyl-N-bensyl-N'-bensoyl-p-phenylendiamin $C_{22}H_{22}ON_2=C_0H_6\cdot CH_2\cdot N(C_2H_6)\cdot C_0H_4\cdot NH\cdot CO\cdot C_0H_6$. B. Aus N-Äthyl-N-benzyl-p-phenylendiamin, Benzoylchlorid und Natronlauge (SCHULTZ, ROHDE, BOSCH, A. 334, 263). — Nadeln. F: 131,5° (SCH., R., B.), 124° (SCHULTZ, BOSCH, B. 35, 1296).

N.N'-Dibensoyl-p-phenylendiamin $C_{50}H_{16}O_{2}N_{2}=C_{6}H_{4}(NH\cdot CO\cdot C_{6}H_{5})_{2}$. B. Aus p-Phenylendiamin, Benzoylchlorid und Natronlauge (HINSBERG, v. UDBÁNSZKY, A. 254, 254). — Blättchen. Schmilzt oberhalb 300°. Schwer löslich in Alkohol, Äther und Eisessig.

N-Methyl-N-bensoyl-p-phenylendiamin $C_{14}H_{14}ON_2 = H_2N \cdot C_4H_4 \cdot N(CH_3) \cdot CO \cdot C_4H_5$.

B. Aus Bensoessure-[N-methyl-4-nitro-anilid] (Bd. XII, S. 720) durch Reduktion mit Eisen und sehr verdünnter Salssaure (Mobgan, Alcock, Soc. 95, 1322). — Farblose Nadeln (aus Petroläther). F: 153—154°. Sehr wenig löslich in Petroläther. — Sehr unbeständig in Gegenwart von Feuchtigkeit und Alkalien. Läßt sich durch Diazotierung in ein p-[Bensoylmethylamino]-bensoldiazoniumsalz überführen.

N-Methyl-N.N'-dibensoyl-p-phenylendiamin $C_{21}H_{18}O_2N_8=C_6H_5\cdot CO\cdot NH\cdot C_9H_4\cdot N(CH_2)\cdot CO\cdot C_6H_5$. B. Aus N-Methyl-p-phenylendiamin durch Benzoylierung (Börnstein, B. 29, 1482). — Prismen. F: 164,6°. Leicht löslich in verd. Alkohol.

N-Äthyl-N-bensoyl-p-phenylendiamin $C_{12}H_{14}ON_2 = H_2N \cdot C_0H_4 \cdot N(C_2H_4) \cdot CO \cdot C_0H_4$. B. Aus Bensoesäure-[N-äthyl-4-nitro-anilid] (Bd. XII, S. 721) durch Reduktion mit Eisen und sehr verdünnter Salzsäure (Morgan, Aloock, Soc. 95, 1322). — Farblose Nadeln (aus Petroläther). F: 117°. Löslich in Wasser, Benzol, Petroläther. — Sehr unbeständig in Gegenwart von Feuchtigkeit und Alkalien.

N-Phenyl-N-bensoyl-p-phenylendiamin, 4-Amino-N-bensoyl-diphenylamin $C_{19}H_{14}ON_2=H_2N\cdot C_9H_4\cdot N(C_9H_5)\cdot CO\cdot C_9H_4$. B. Aus 4-Nitro-N-bensoyl-diphenylamin (Bd. XII, S. 721) mit Zinn und Eisessig (Lellmann, B. 15, 826). — Rötliche Nadeln (aus Alkohol).

N-Phenyl-N.N'-dibenzoyl-p-phenylendiamin, 4-Benzamino-N-benzoyl-diphenylamin $C_{14}H_{20}O_2N_3=C_4H_5\cdot CO\cdot NH\cdot C_4H_4\cdot N(C_4H_5)\cdot CO\cdot C_4H_5\cdot B$. Aus 2,5 g N-Phenyl-p-phenylendiamin (S. 76) und 5 g Benzoylchlorid (BIEHRINGER, BUSCH, B. 35, 1971). — Rechteckige Tafeln. F: 203° (unkorr.).

N.N'-Diphenyl-N.N'-dibensoyl-p-phenylendiamin $C_{32}H_{34}O_3N_2 = C_0H_4[N(C_0H_5)\cdot CO\cdot C_0H_5]_3$. B. Aus N.N'-Diphenyl-p-phenylendiamin (S. 80) und überschüssigem Bensoylchlorid (CALM, B. 16, 2808). — Nadeln (aus Bensol + Ligroin). F: 218,5°. Sehr wenig löslich in Alkohol, Ather und Ligroin, ziemlich leicht in heißem Bensol und Chloroform.

x.x.x-Trinitro-[N.N'-diphenyl-N.N'-dibenzoyl-p-phenylendiamin] $C_{33}H_{31}O_{3}N_{5}$ = $C_{33}H_{31}O_{3}N_{3}(NO_{3})_{3}$. B. Durch Nitrieren von N.N'-Diphenyl-N.N'-dibenzoyl-p-phenylendiamin (Brunck, B. 25, 2722). — Nädelchen. F: 248°.

N.N'-Di-o-tolyl-N.N'-dibensoyl-p-phenylendiamin $C_{34}H_{38}O_3N_2=C_6H_4[N(C_6H_4\cdot CH_3)\cdot CO\cdot C_6H_5]_3$. B. Aus N.N'-Di-o-tolyl-p-phenylendiamin und Benzoylehlorid bei 160° (Philip, J. pr. [2] 34, 68). — Nädelchen (aus Eisessig). F: 235°. Schwer löslich in warmem Alkohol und Ather.

N.N'-Di-p-tolyl-N.N'-dibenzoyl-p-phenylendiamin $C_{34}H_{18}O_2N_2 = C_4H_4[N(C_4H_4\cdot CH_3)\cdot CO\cdot C_4H_4]_2$. B. Aus N.N'-Di-p-tolyl-p-phenylendiamin und Benzoylchlorid (HATSCHEK, ZEGA, J. pr. [2] 33, 233). — Schuppen (aus Benzol). F: 222°. Wenig löslich in kaltem Alkohol und Benzol.

N-Bensyl-N.N'-dibensoyl-p-phenylendiamin $C_2, H_{22}O_2N_2 = C_4H_5 \cdot CO \cdot NH \cdot C_4H_4 \cdot N(CH_2 \cdot C_6H_5) \cdot CO \cdot C_4H_5 \cdot B$. Man kocht salzsaures N-Benzyl-p-phenylendiamin mit Benzoyl-chlorid und wasserfreiem Natriumbenzoat (Meldola, Coste, Soc. 55, 592). — Nadeln. F: 124°.

N.N' - Di - β - naphthyl - N.N' - dibensoyl - p - phenylendiamin $C_{40}H_{20}O_2N_2 = C_6H_4[N(C_{10}H_7)\cdot CO\cdot C_6H_5]_2$. B. Aus N.N'-Di- β -naphthyl-p-phenylendiamin und Benzoylchlorid bei 140° (RUEFF, B. 22, 1082). — Blättchen (aus Benzol). F: 220°. Fast unlöslich in Alkohol und Äther, wenig löslich in kaltem Benzol.

[4-Amino-phenyl]-oxamidsäure $C_8H_8O_9N_2=H_2N\cdot C_6H_4\cdot NH\cdot CO\cdot CO_2H$. B. Aus p-Phenylendiamin (Koller, B. 36, 413) oder salzsaurem p-Phenylendiamin (Griess, B. 18, 2409 Anm.) und Oxalsäure in wäßr. Lösung unter Rückfluß. — Farblose Nadeln. Schmilzt oberhalb 280°; schwer löslich in Alkohol und Wasser (K.). — $Ba(C_8H_7O_9N_2)_2$. Weiße Nadeln (K.).

[4-Dimethylamino-phenyl]-oxamidsäure C₁₀H₁₂O₃N₂ = (CH₂)₂N·C₆H₄·NH·CO·CO₃H. B. Beim Kochen von N.N-Dimethyl-p-phenylendiamin mit überschüssigem Oxalsäurediäthylester entstehen [4-Dimethylamino-phenyl]-oxamidsäure-äthylester (s. u.) und N.N'-Bis-[4-dimethylamino-phenyl]-oxamid (s. u.); aus dem Produkt entfernt man durch Äther den freien Oxalsäurediäthylester und trennt dann durch Behandlung mit wäßr. Alkohol den [4-Dimethylamino-phenyl]-oxamidsäure-äthylester von dem in Alkohol schwer löslichen N.N'-Bis-[4-dimethylamino-phenyl]-oxamid; die freie Säure gewinnt man durch Verseifen des Esters mit alkoh. Kalilauge, Fällen des Kaliumsalzes mit BaCl₂ und Zerlegen des Bariumsalzes durch Schwefelsäure (SENDTNER, B. 12, 530). — Nadeln (aus Wasser), Blätter (aus Alkohol). Schmilzt bei 192° unter Gasentwicklung. Leicht löslich in Wasser, schwer in kochendem Alkohol, kaum löslich in kaltem Alkohol und Ligroin. — Kaliumsalz. Unlöslich in kaltem Alkohol. — Bariumsalz. Schwer löslich in Wasser.

Äthylester $C_{12}H_{16}O_3N_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Gelbe Blättchen oder Nadeln. F: 117°; schwer löslich in Äther und kaltem Alkohol, leicht in warmem Alkohol (S., B. 12, 531).

Amid, [4-Dimethylamino-phenyl]-oxamid $C_{10}H_{13}O_2N_3 := (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CO \cdot NH_2$. B. Aus [4-Dimethylamino-phenyl]-oxamidsāure-āthylester und alkoh. Ammoniak (S., B. 12, 532). — Warzen (aus Alkohol). F: 257—259°. Unlöslich in Äther und kaltem Alkohol, schwer löslich in kochendem Alkohol, leichter in kochendem Benzol. Verbindet sich mit Säuren; die Salze sind in kaltem Wasser schwer, in kochendem leicht löslich. — $2 C_{10}H_{13}O_2N_3 + H_2SO_4$. Krystalle.

N.N'-Bis-[4-dimethylamino-phenyl]-oxamid $C_{18}H_{12}O_2N_4 = (CH_3)_2N \cdot C_8H_4 \cdot NH \cdot CO \cdot CO \cdot NH \cdot C_6H_4 \cdot N(CH_3)_2$. B. Beim Kochen von Oxalsäurediäthylester mit N.N-Dimethylp-phenylendiamin (S., B. 12, 533). — Gelbes Krystallpulver. Schmilzt noch nicht bei 270°. Unlöslich in Wasser. Wenig löslich in kochendem Alkohol, leichter in kochendem Benzol oder Chloroform. — Zweisäurige Base; die Salze lösen sich leicht in Wasser.

Inneres Anhydrid des [4-Dimethylamino-phenyl]-oxamidsäure-hydroxy-methylats $C_{11}H_{14}O_3N_3= \frac{(CH_3)_5N\cdot C_6H_4\cdot NH\cdot CO}{CO}$. B. Man löst 1 Tl. [4-Amino-phenyl]-oxamidsäure (s. o.) mittels wäßr. Kalilauge in Methylalkohol, fügt 2 Tle. Methyljodid hinsu, läßt die Mischung, die stets alkalisch zu halten ist, 8 Tage stehen, säuert dann mit Jodwasserstoffsäure an und destilliert den Methylalkohol ab; die wäßr. Lösung des so erhaltenen Jodids behandelt man mit Silbercarbonat (Griess, B. 18, 2409). — Nadeln oder Blätter mit $2I_3$ H_3O . Ziemlich schwer löslich in kaltem Wasser, noch schwerer in (kochendem)

[4-Acetamino-phenyl]-oxamidsäure $C_{10}H_{10}O_4N_3=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot NH\cdot CO\cdot CO_4H$. B. Aus [4-Amino-phenyl]-oxamidsäure (s. o.) und Essigsäureanhydrid bei ca. 10° in Gegenwart von Soda (Koller, B. 36, 414). — Farblose Nadeln (aus verdünntem Alkohol).

Alkohol, unlöslich in Äther.

Schmilzt oberhalb 270°. Schwer löslich in Wasser, leicht in Alkohol. — Liefert durch Behandlung mit Salpeterschwefelsäure [2-Nitro-4-acetamino-phenyl]-oxamidsäure (S. 122), durch Behandlung mit rauchender Salpetersäure [3-Nitro-4-acetamino-phenyl]-oxamidsäure (S. 122).

Äthylester $C_{19}H_{14}O_4N_8 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CO_2 \cdot C_8H_6$. B. Aus N-Acetylp-phenylendiamin (S. 94) und Oxalsäurediäthylester in warmem absol. Alkohol (K., B. 36, 414). — Nadeln. F: 193° (Zers.).

p-Phenylen-bis-oxamidsäure $C_{10}H_8O_8N_2=C_8H_4(NH\cdot CO\cdot CO_2H)_8$. B. Der Diāthylester entsteht bei 1—2-stdg. Kochen von 1 Tl. p-Phenylendiamin mit 10 Tln. Oxalsäure-diāthylester; man verseift den Ester durch verd. Natronlauge (R. MEYER, SEELIGER, B. 29, 2643). — $Na_2C_{10}H_6O_6N_2$. Nādelchen (aus alkoholhaltigem Wasser). Fast unlöslich in kaltem Wasser.

Diäthylester $C_{14}H_{16}O_8N_9 = C_6H_4(NH\cdot CO\cdot CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Krystalle (aus siedendem Alkohol). F: 215° (R. M., S., B. 29, 2642).

Diamid, p-Phenylen-bis-oxamid $C_{10}H_{10}O_4N_4=C_6H_4(NH\cdot CO\cdot CO\cdot NH_2)_3$. B. Man versetzt die heiße alkoh. Lösung des p-Phenylen-bis-oxamidsäureäthylesters mit wäßr. Ammoniak (R. M., S., B. 29, 2643). — Krystallpulver. Schmilzt noch nicht bei 310°. Nicht merklich löslich in den gewöhnlichen Lösungsmitteln.

p-Phenylen-bis-[malonamidsäure-äthylester] $C_{18}H_{20}O_4N_2 = C_6H_4(NH\cdot CO\cdot CH_2\cdot CO_3\cdot C_3H_3)_2$. B. Bei 2-stdg. Kochen von p-Phenylendiamin mit der 5- oder 10-fachen Menge Malonsäurediäthylester (R. Meyer, v. Lutzau, A. 347, 28). — Nadeln (aus heißem Alkohol). F: 164°. Leicht löslich in Methylalkohol, Äthylalkohol und Benzol, etwas schwerer in Wasser, unlöslich in Äther und Ligroin.

[4-Amino-phenyl]-succinamidsäure $C_{10}H_{12}O_3N_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2 \cdot CH_2 \cdot CO_2H$. B. Aus p-Phenylendiamin und Bernsteinsäureanhydrid (Syst. No. 2475) in Essigesterlösung (R. Meyer, J. Maier, A. 327, 39). Man suspendiert 4,4 g N-[4-Nitro-phenyl]-succinimid $H_2C \cdot CO$ $N \cdot C_0H_4 \cdot NO_2$ (Syst. No. 3201) in 100 ccm Wasser, versetzt mit 1 g Eisessig und allmählich mit 4 g Eisenfeilspänen und kocht 15 Minuten, macht durch Zusatz von 2 g Na₂CO₃ alkalisch, kocht 8 Minuten, filtriert und neutralisiert das Filtrat durch Zugabe von Essigsäure und gepulvertem Calciumoarbonat (Morgan, Micklethwart, Soc. 87, 932), — Schmilzt bei 183°, erstartt bei weiterem Erhitzen wieder und sublimiert gegen 300° (R. M.). Beim Erhitzen über den Schmelzpunkt bildet sich p-Phenylen-bis-succinimid (Syst. No. 3201); beim Kochen mit Wasser entsteht p-Phenylen-bis-succinamidsäure (s. u.) (R. M., J. M.).

p-Phenylen-bis-succinamidsäure $C_{16}H_{16}O_8N_3=C_9H_4(NH\cdot CO\cdot CH_3\cdot CH_3\cdot CO_3H)_8$. B. Aus p-Phenylendiamin und Bernsteinsäureanhydrid (Syst. No. 2475) beim Kochen in alkoh. Lösung (R. Meyer, J. Maier, A. 327, 33). — Nadeln. F: 262°. Spaltet etwas oberhalb des Schmelzpunktes Wasser ab unter Bildung von p-Phenylen-bis-succinimid (Syst. No. 3201) und N-[4-Amino-phenyl]-succinimid (Syst. No. 3201).

p-Phenylen-bis-[isosuccinamidsäure-äthylester] $C_{18}H_{24}O_{e}N_{2}=C_{e}H_{4}[NH\cdot CO\cdot CH(CH_{2})\cdot CO_{2}\cdot C_{2}H_{5}]_{e}$. B. Bei 10-stdg. Kochen von p-Phenylendiamin mit 6 Tln. Isobernsteinsäurediäthylester (Bd. II, S. 629) (R. MEYEB, JAEGER, A. 347, 37). — Nadeln (aus Chloroform). F: 180—181°. Unlöslich in Äther, löslich in Alkohol, Aceton und Chloroform.

[d-Camphersäure]-a-[4-amino-anilid], N - [4 - Amino - phenyl] -a - campheramidsäure $C_{16}H_{22}O_3N_2=\frac{H_2C-C(CH_3)(CO_2H)}{H_2C\cdot CH(CO\cdot NH\cdot C_6H_4\cdot NH_2)}C(CH_3)_3$. B. Aus N-[4-Benzolazophenyl]-a-campheramidsäure (Syst. No. 2172) in alkoh. Lösung durch Reduktion mit Zinnchlorür (Wootton, Soc. 91, 1897). — Weißes amorphes Pulver. Leicht löslich in Alkohol, Aceton, Chloroform, unlöslich in Petroläther. Wenig beständig. Löslich in wäßr. Alkalien.

 $[d\text{-Camphersäure}]\text{-}a\text{-}[4\text{-acetamino-anilid}], N\text{-}[4\text{-Acetamino-phenyl}]\text{-}a\text{-camphersamidsäure} C_{18}H_{36}O_{4}N_{3} = \frac{H_{3}C}{H_{3}C\cdot CH(CO\cdot NH\cdot C_{3}H_{4}\cdot NH\cdot CO\cdot CH_{3})} \cdot C(CH_{3})_{2}. \ B. \ Aus \ Camphersäureanhydrid (Syst. No. 2476) und N-Acetyl-p-phenylendiamin beim Erhitzen (Wootron, Soc. 91, 1897). — Blättchen (aus verd. Easigsäure). F: 233—234°.$

N-[4-Acetamino-phenyl]-phthalamidsäure $C_{18}H_{14}O_4N_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot CO_3H$. B. Neben N-[4-Acetamino-phenyl]-phthalimid (Syst. No. 3218) beim Kochen von N-Acetyl-p-phenylendiamin und Phthalsäureanhydrid (Syst. No. 2479) in Wasser (CHAZEL, B. 40, 3179, 3183). — Weiße, krystallinische Substanz. Schmilst ober-

halb 270°. Unlöslich in Wasser, Alkohol, Äther, Benzol und Pyridin, löslich in Ätzalkalien und Alkalicarbonaten. Liefert, in konz. Schwefelsäure bei -5° mit KNO₃ behandelt, N-[2-Nitro-4-acetamino-phenyl]-phthalamidsäure (S. 122), bei der Nitrierung mit rauchender Salpetersäure ein Dinitroderivat $C_{16}H_{12}O_8N_4$ (s. u.). — $Ba(C_{16}H_{13}O_4N_2)_2$. Rötlich-weiße Nädelchen (aus Wasser).

x.x-Dinitro-[N-(4-acetamino-phenyl)-phthalamidsäure] $C_{16}H_{12}O_8N_4 = C_{16}H_{12}O_4N_2(NO_2)_2$. B. Bei der Nitrierung der N-[4-Acetamino-phenyl]-phthalamidsäure (S. 100) in rauchender Salpetersäure (D: 1,5) bei —5° bis —10° (Chazel, B. 40, 3184). — Gelbe Nadeln (aus Alkohol). Zersetzt sich bei 180°. Löslich in Wasser und Alkohol, schwer löslich in Benzol.

[4-Amino-phenyl]-urethan $C_9H_{12}O_2N_3=H_2N\cdot C_9H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von 4-Nitro-carbanilsäure-äthylester (Bd. XII, S. 723) mit Zinn und Salzsäure (HAGER, B. 17, 2626; Behrend, A. 233, 10). Das Hydrochlorid entsteht bei einstündigem Kochen von [4-Acetamino-phenyl]-urethan (S. 103) mit einem Gemisch aus 3 Vol. konz. Salzsäure und 1 Vol. Wasser (H. Schiff, Ostrogovich, B. 27, 399; A. 293, 374). — Nadeln (aus Wasser). F: 73—74° (B.). Ziemlich schwer löslich in Wasser, leicht in Benzol (Ha.). — $C_9H_{12}O_2N_2+H$ Cl. Nadeln. Schmilzt bei 242—244° unter Zersetzung (H. Sch., O.). Leicht löslich in Wasser (Ha.). — $C_9H_{12}O_2N_2+H_2SO_4$. Leicht löslich in Wasser (Ha.). — Oxalat $C_9H_{12}O_2N_2+C_2H_2O_4$. Violette Nadeln. Schwer löslich in kaltem Wasser (Ha.). — $4C_9H_{12}O_2N_2+4H$ Cl+HgCl₂. Nadeln (Ha.). — $2C_9H_{12}O_2N_3+S$ nCl₂+ H_2O . Nadeln (B.). — $3C_9H_{12}O_2N_2+3$ HCl+HsCl₄. Blättchen (Ha.). — $2C_9H_{12}O_2N_2+2$ HCl+HtCl₄. Hellbraun (Ha.).

Verbindung C₂₉H₂₅O₄N₃. B. Aus salzsaurem [4-Amino-phenyl]-urethan und Benzoylchlorid bei 150° (HAGER, B. 17, 2628; vgl. B. 18, 2577). — Nadeln (aus Eisessig). Schmilzt nicht bei 360°. Fast unlöslich in Alkohol, sehr schwer löslich in Eisessig.

- [4-Amino-phenyl]-harnstoff $C_7H_9ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot NH_2$. B. Das Hydrochlorid entsteht bei $^1/_2$ -stdg. Kochen von [4-Acetamino-phenyl]-harnstoff (S. 103) mit einem Gemisch aus 3 Vol. konz. Salzsäure und 1 Vol. Wasser (H. Schiff, Ostrogovich, A. 293, 375). Durch Einw. siedender $5^0/_0$ iger Salzsäure auf [4-Amino-phenyl]-cyanamid (s. u.) (Pierron, A. ch. [8] 15, 188). Blättchen oder Schuppen (aus Äther). F: 129 0 (P.), 129—130 0 (H. Sch., O.). Sehr löslich in Wasser und Alkohol (H. Sch., O.). Liefert bei der Einw. von Bromcyan [4-Cyanamino-phenyl]-harnstoff (S. 104) (P.). Mit Oxalsäurediäthylester entsteht [4-Ureido-phenyl]-oxamidsäure-äthylester (S. 104) (H. Sch., O.). $C_7H_9ON_3 + HCl$. Blättchen. Verkohlt beim Erhitzen, ohne zu schmelzen. Leicht löslich in Wasser, schwerer in Alkohol (H. Sch., O.).
- N-Phenyl-N'-[4-amino-phenyl]-harnstoff $C_{13}H_{13}ON_3 = H_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Man vereinigt die Benzollösungen von Phenylisocyanat und von p-Phenylendiamin (Lellmann, Würthner, A. 228, 223). Nädelchen (aus Alkohol). Ziemlich schwer löslich in Alkohol, leicht in Eisessig, unlöslich in Äther und Benzol. Zeigt keinen scharfen Schmelzpunkt und zersetzt sich beim Erhitzen in Anilin und polymeren (?) p-Phenylenharnstoff (S. 71).
- N.N'-Bis-[4-amino-phenyl]-harnstoff $C_{13}H_{14}ON_4 = (H_2N \cdot C_6H_4 \cdot NH)_2CO$. B. Durch Reduktion des N.N'-Bis-[4-nitro-phenyl]-harnstoffs (Bd. XII, S. 723) mit Zinn und Salzsäure (Vittenet, Bl. [3] 21, 150). Aus N.N'-Bis-[4-acetamino-phenyl]-harnstoff durch wäßr. Salzsäure (H. Schiff, Ostrogovich, A. 293, 377). Beim Behandeln des Nitrierungsproduktes von N.N'-Diphenyl-harnstoff (N.N'.4.4'-Tetranitro-carbanilids?) mit Zinn und Salzsäure (Fleischer, Nemes, B. 10, 1296; vgl. H. Sch., O.). Nadeln oder Blättchen (aus Alkohol). Sublimiert beim Erhitzen, ohne zu schmelzen (F., N.; H. Sch., O.). Schwer löslich in kaltem Wasser, leicht in heißem (F., N.), mäßig in kaltem Alkohol (H. Sch., O.). Über Disazofarbstoffe, die sich vom N.N'-Bis-[4-amino-phenyl]-harnstoff ableiten, vgl. Bad. Anilin- u. Sodaf., D. R. P. 46737, 47902, 50852; Frdl. 2, 450—453. $C_{13}H_{14}ON_4 + 2$ HCl. Krystalle (V.). $C_{13}H_{14}ON_4 + 2$ HCl. + SnCl₂. Krystalle (F., N.).
- N-Cyan-p-phenylendiamin, [4-Amino-phenyl]-oyanamid C₇H₂N₃ = H₂N·C₆H₄·NH·CN. B. Durch allmählichen Zusatz von 1 Mol.-Gew. Bromcyan in verd. Lösung zu einer konzentrierten wäßrigen, 40° warmen Lösung von 1 Mol.-Gew. p-Phenylendiamin (Pierron, A. ch. [8] 15, 186). Farblose Nadeln (aus Alkohol). F: 158°. Leicht löslich in Alkohol und Aceton, weniger in Benzol, Äther und CCl₄. Löslich in verd. Säuren und Alkalien. Wird durch siedende 5°/vige Salzsäure in [4-Amino-phenyl]-harnstoff (s. o.) verwandelt.
- N-[4-Amino-phenyl]-N'-guanyl-guanidin, ω -[4-Amino-phenyl]-biguanid $C_8H_{12}N_6=H_2N\cdot C_6H_4\cdot NH\cdot C(:NH)\cdot NH\cdot C(:NH)\cdot NH_2$ bezw. desmotrope Formen. B. Das Sulfat entsteht bei der elektrolytischen Reduktion des schwefelsauren ω -[4-Nitro-phenyl]-

biguanids (Bd. XII, S. 724) in alkoholisch-schwefelsaurer Lösung an Bleikathode bei $50-60^{\circ}$ (Hermann, M. 26, 1035). — $2C_8H_{12}N_6+H_2SO_4$. Weiße Nädelchen oder prismatische Blättchen. Leicht löslich in Wasser und Alkohol.

Orthokohlensäure - tetrakis - [4 - amino - anilid] $C_{25}H_{28}N_8 = (H_2N \cdot C_0H_4 \cdot NH)_4C$. Über ein unter dieser Formel beschriebenes Produkt vgl. HÜBNER, B. 10, 1718.

[4-Amino-phenyl]-thioharnstoff $C_7H_9N_3S=H_9N\cdot C_6H_4\cdot NH\cdot CS\cdot NH_2$. B. Man kocht eine Lösung von 9 g salzsaurem p-Phenylendiamin und 5 g Kaliumrhodanid in 200 ccm Wasser etwa 1 Stde., filtriert von dem sich gleichzeitig in geringer Menge bildenden p-Phenylen-bis-thioharnstoff (S. 105) ab und macht das Filtrat mit Natronlauge alkalisch (Frenchs, Hupka, Ar. 241, 162). — Farblose Nadeln (aus Wasser). F: 190°. Sehr wenig löslich in Alkohol und kaltem Wasser, ziemlich in siedendem Wasser. Geht beim Erhitzen über den Schmelzpunkt unter NH₃-Verlust in polymeren p-Phenylenthioharnstoff (S. 71) über. Liefert beim Erhitzen der wäßr. Lösung des salzsauren Salzes mit Kaliumrhodanid p-Phenylen-bis-thioharnstoff. — $C_7H_9N_3S+HCl$. Farblose Krystalle. Leicht löslich in Wasser. — $2C_7H_9N_3S+H_2SO_4$. Farblose Krystalle. Ziemlich schwer löslich in Wasser.

N-Phenyl-N'-[4-amino-phenyl]-thioharnstoff $C_{13}H_{13}N_3S = H_2N \cdot C_6H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Beim Eintragen von Phenylsenföl (gelöst in Benzol) in die Benzollösung von (etwas über 1 Mol.-Gew.) p-Phenylendiamin (Lellmann, Würthner, A. 228, 218). — Prismen (aus Alkohol). Leicht löslich in Eisessig, etwas schwerer in Alkohol, unlöslich in Äther und Benzol. Zerfällt oberhalb 163° in Anilin und polymeren p-Phenylenthioharnstoff (S. 71).

N.N'- Bis - [4-amino-phenyl] - thioharnstoff $C_{13}H_{14}N_4S = (H_2N\cdot C_4H_4\cdot NH)_2CS$. B. Beim Kochen von 432 Tln. p-Phenylendiamin mit 76 Tln. Schwefelkohlenstoff bis zum Aufhören der H_2S -Entwicklung in alkoh. Lösung (neben dem polymeren p-Phenylenthioharnstoff, S. 71) (Farbw. Griesheim, D. R. P. 58204, 60152; Frdl. 3, 31, 32). Aus dem Kondensationsprodukt von N-Acetyl-p-phenylendiamin (S. 94) mit Schwefelkohlenstoff (F: 240°) durch Verseifen unter Druck, neben einer zweiten Base (Koetzle, D. R. P. 127466; C. 1902 I, 154). — Farblose Nadeln. F: 195°; schwer löslich in siedendem Alkohol und Wasser; leicht böslich in Essigsäure und verdünnten Mineralsäuren (F. G.). — Überführung in indulinartige Farbstoffe durch Erhitzen mit aromatischen Diaminen wie Benzidin, p-Phenylendiamin: Rohner, D. R. P. 69785; Frdl. 3, 320.

[4-Amino-phenyl]-dithiocarbamidsäure $C_7H_8N_2S_2=H_2N\cdot C_6H_4\cdot NH\cdot CS_2H$. B. Das Ammoniumsalz entsteht aus p-Phenylendiamin in alkoh. Lösung mit Schwefelkohlenstoff und überschüssigem wäßr. Ammoniak (Losanffsch, B. 40, 2973). — $NH_4C_7H_7N_2S_2$. Gelbliche Krystalle. F: 250° (Zers.). Sehr leicht löslich in Wasser, sehr wenig in Alkohol und Äther.

[4-Dimethylamino-phenyl]-harnstoff $C_9H_{13}ON_3=(CH_3)_2N\cdot C_6H_4\cdot NH\cdot CO\cdot NH_4$. B. Aus schwefelsaurem N.N-Dimethyl-p-phenylendiamin und Kaliumcyanat (BINDER, B. 12, 536). — Nadeln (aus Wasser). F:179°. Schwer löslich in kaltem Wasser, leichter in kochendem. Einsäurige Base. — Das salzsaure und schwefelsaure Salz sind in Wasser sehr leicht löslich. — $2C_9H_{13}ON_3+2HCl+PtCl_4$. Gelbe Blättchen.

N.N' - Bis - [4 - dimethylamino - phenyl] - harnstoff $C_{17}H_{22}ON_4 = [(CH_3)_2N \cdot C_6H_4 \cdot NH]_cCO$. B. Beim Erhitzen von 1 Tl. Harnstoff mit 4 Tln. N.N-Dimethyl-p-phenylendiamin auf 130—150°; man behandelt das Produkt mit warmem Alkohol, stellt das schwefelsaure Salz dar und zerlegt es durch Soda (BINDER, B. 12, 536). Beim Einleiten von Phosgen in eine Lösung von N.N-Dimethyl-p-phenylendiamin in Chloroform (MICHLER, ZIMMERMANN, B. 14, 2179). — Nadeln (aus Aceton), Tafeln (aus Alkohol). Schmilzt unter Zersetzung bei 262° (B.), F: 246° (M., Z.), 258—259° (Zers.) (STAUDINGER, ENDLE, B. 50 [1917], 1046). Unlöslich in Wasser, schwer löslich in Alkohol (B.; M., Z.), leichter in kochendem Aceton (B.). — $C_{17}H_{22}ON_4 + 2$ HCl. Sehr leicht löslich in Wasser (B.). — $C_{17}H_{22}ON_4 + 2$ HCl. PtCl₄. Orangefarben (M., Z.).

[4-Dimethylamino-phenyl]-thioharnstoff C₂H₁₃N₃S = (CH₃)₂N·C₂H₄·NH·CS·NH₂.

B. Durch Einw. von Ammoniumrhodanid auf N.N-Dimethyl-p-phenylendiamin-hydrochlorid (Wheeler, Jamieson, Am. Soc. 25, 370). — Blaßgelbes Pulver (aus Alkohol). F: 180—181° (Zerş.).

N.N'-Bis-[4-dimethylamino-phenyl]-thioharnstoff $C_{17}H_{22}N_4S = [(CH_3)_2N \cdot C_6H_4 \cdot NH]_2CS$. B. Beim Kochen von N.N-Dimethyl-p-phenylendiamin mit Schwefelkohlenstoff und Alkohol (BAUE, B. 12, 534). — Nadeln (aus Benzol). F: 186,5°. Unlöslich in Wasser, kaum löslich in kaltem Alkohol, ziemlich in heißem Benzol, leicht in verdünnten Säuren. Sehr beständig. Beim Erwärmen mit Essigsäureanhydrid entsteht ein in Blättchen krystallisierendes, bei 71° schmelzendes Derivat. — Die Salze sind in Wasser leicht löslich. $C_{17}H_{22}N_4S + 2$ HCl.

- ω [4 Dimethylamino phenyl] dithiobiuret $C_{10}H_{14}N_4S_2 = (CH_3)_2N \cdot C_0H_4 \cdot NH \cdot CS \cdot$ NH CS NH₂. B. Beim Erhitzen von N.N-Dimethyl-p-phenylendiamin mit Xanthanwasser-8stoff ("Persulfocyansaure") SC-NH-C:NH (Syst. No. 4445) (Fromm, Weller, A. 361, 346). — Gelbe Nadeln (aus Wasser). F: 168—169°. — Gibt mit Jod in Alkohol das Dihydrojodid des [4-Dimethylamino-phenyl]-thiurets (CH₃)₂N·C₆H₄·N·C—NH—C:NH 4445). — $C_{10}H_{14}N_4S_2 + HCl$. Weiße Nadeln (aus verd. Salzsäure). F: 205°.
- N-[4-Dimethylamino-phenyl]-S-benzyl-N'-cyan-isothioharnstoff $C_{17}H_{18}N_4S=(CH_3)_8N\cdot C_6H_4\cdot NH\cdot C(S\cdot CH_2\cdot C_6H_5):N\cdot CN$ bezw. $(CH_3)_8N\cdot C_6H_4\cdot NH\cdot C(S\cdot CH_2\cdot C_6H_5)\cdot NH\cdot CN$.

 B. Aus 1 Mol.-Gew. ω -[4-Dimethylamino-phenyl]-dithiobiuret, 3 Mol.-Gew. Benzylchlorid and 3 Mol.-Gew. NaOH in Alkohol (Fromm, Weller, A. 361, 350). Weiße Nadeln (aus verd. Alkohol). F: 193°.
- N.N'-Bis-[4-anilino-phenyl]-thioharnstoff $C_{25}H_{22}N_4S = (C_6H_5 \cdot NH \cdot C_6H_4 \cdot NH)_2CS$. B. Bei anhaltendem Kochen von 4-Amino-diphenylamin mit Schwefelkohlenstoff (HEUCKE, A. 255, 192). — Nadeln (aus verd. Alkohol). F: 180°. — HgO erzeugt die Verbindung $C_{25}H_{18}N_4S$ (s. u.).
- Verbindung C₃₅H₁₈N₄S. B. Beim Kochen einer alkoh. Lösung von N.N'-Bis-[4-anilino-phenyl]-thioharnstoff (s. o.) mit überschüssigem HgO (Heucke, A. 255, 192). Blaßgrüne Täfelchen (aus Alkohol). F: 117°.
- $N.N'-Bis-[4-(4-chlor-anilino)-phenyl]-thioharnstoff <math>C_{45}H_{90}N_4Cl_2S = (C_6H_4Cl\cdot NH\cdot M)$ C₈H₄·NH)₂CS. B. Scheidet sich beim 3-stdg. Kochen einer Lösung von 1 Tl. 4'-Chlor-4-amino-diphenylamin (S. 78) in 5 Tln. Schwefelkohlenstoff und 10 Tln. Alkohol aus (Jacobson, Strübe, A. 303, 316). — Blättchen (aus Alkohol). F: 176°. Sehr wenig löslich in Ligroin und CS₂, unlöslich in verdünnten Alkalien.
- [4-Anilino-phenyl]-dithiocarbamidsäure $C_{13}H_{12}N_2S_2=C_4H_5\cdot NH\cdot C_5H_4\cdot NH\cdot CS_2H$. B. Das 4-Amino-diphenylamin-Salz entsteht aus 4-Amino-diphenylamin (S. 76) in Ather mit Schwefelkohlenstoff (Jacobson, A. 367, 334 Anm.). — Salz des 4-Amino-diphenylamins $C_{12}H_{12}N_2+C_{13}H_{12}N_2S_2$. Krystalle, schmilzt zum Teil, aber nicht vollständig bei 70° bis 71° unter Gasentwicklung. Entwickelt beim Aufbewahren Geruch nach H_2S .
- N-Phenyl-N'-[4-äthylbensylamino-phenyl]-thioharnstoff $C_{89}H_{50}N_3S=C_4H_5\cdot CH_4\cdot N(C_2H_5)\cdot C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. Aus N-Äthyl-N-benzyl-p-phenylendiamin und Phenylsenföl (Schultz, Rohde, Bosch, A. 334, 264). Krystelle. F: 149°.
- [4-Acetamino-phenyl]-urethan $C_{11}H_{14}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Man suspendiert 2 Mol.-Gew. trocknes gepulvertes N-Acetyl-p-phenylendiamin in Ather, fügt 1 Mol.-Gew. Chlorameisensäureester (Bd. III, S. 10) zu, läßt 1—2 Stdn. in der Kälte unter Umschütteln stehen, erhitzt 1 Stde. auf dem Wasserbad, verjagt den Äther und entfernt aus dem Rückstand salzsaures N-Acetyl-p-phenylendiamin durch wenig heißes Wasser (H. Schiff, Ostrogovich, B. 27, 398; A. 293, 374). — Prismen (aus Alkohol). F: 202,5°.
- $\textbf{[4-Acetamino-phenyl]-harnstoff } \textbf{C}_{9}\textbf{H}_{11}\textbf{O}_{9}\textbf{N}_{3} = \textbf{CH}_{3} \cdot \textbf{CO} \cdot \textbf{NH} \cdot \textbf{C}_{9}\textbf{H}_{4} \cdot \textbf{NH} \cdot \textbf{CO} \cdot \textbf{NH}_{3}. \quad B.$ Aus 3 Tln. N-Acetyl-p-phenylendiamin-hydrochlorid, gelöst in Wasser, mit 2 Tln. Kaliumcyanat (H. Schiff, Ostrogovich, B. 27, 400; A. 293, 375). — Prismen oder Nadeln. F: 354° (korr.). Ziemlich löslich in Wasser und Alkohol, unlöslich in Äther und Benzol.
- N.N' Bis [4 acetamino phenyl] harnstoff $C_{17}H_{18}O_2N_4 = (CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot NH)_2CO$. B. Entsteht neben [4 Acetamino phenyl] harnstoff, wenn man 1 Mol.-Gew. N-Acetyl-p-phenylendiamin mit 1 Mol.-Gew. Harnstoff auf 120°, dann bis gegen 135°, schließlich allmählich bis 150° fast bis zum Aufhören der NH₃-Entwicklung erhitzt; man kocht das Produkt mit sehr verd. Salzsäure aus und wäscht den Rückstand mit Wasser und Alkohol (H. Sch., O., B. 27, 399; A. 298, 376). — Schüppehen. F: 344⁶ (korr.). Fast unlöslich in den gebräuchlichen Lösungsmitteln.
- N-Phenyl-N'-[4-diacetylamino-phenyl]-thioharnstoff $C_{17}H_{17}O_2N_3S = (CH_3\cdot CO)_2N\cdot C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus [4-Diacetylamino-phenyl]-senfol und Anilin (FINCKH, SCHWIMMER, J. pr. [2] 50, 410). Schüppchen (aus Alkohol). F: 220—221°. Leicht löslich in heißem Alkohol, sohwer in Benzol.
- [4-Bensamino-phenyl]-urethan $C_{16}H_{16}O_{3}N_{3}=C_{6}H_{5}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot NH\cdot CO_{5}\cdot C_{2}H_{5}\cdot B$. Beim Versetzen einer Lösung von [4-Amino-phenyl]-urethan in viel kaltem Bensol mit einer Lösung von 1 Mol.-Gew. Bensoylchlorid in Bensol (Hager, B. 17, 2627). Nadeln (aus Alkohol). F: 230°. Ziemlich sohwer löslich in Alkohol. Liefert mit Salpetersaure (spez. Control of the control Gew. = 1,53) ein bei 210° schmelzendes Trinitroderivat $C_{16}H_{13}O_9N_5 = C_{16}H_{13}O_3N_2(NO_2)_3$, das in gelben Nadeln krystallisiert und schwer löslich ist.

- [4-Carbäthoxyamino-phenyl]-oxamidsäure-äthylester $C_{13}H_{16}O_5N_2 = C_2H_5 \cdot O_2C \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Entsteht neben einer bei 180° schmelzenden Verbindung bei 2-stdg. Kochen von 1 Mol.-Gew. [4-Amino-phenyl]-urethan, gelöst in Alkohol, mit etwas mehr als 1 Mol.-Gew. Oxaksäurediäthylester; man verdunstet die nach dem Erkalten abfiltrierte Lösung im Vakuum und extrahiert den abgepreßten Rückstand mit Benzol (H. Schiff, Ostrogovich, B. 27, 961; A. 293, 378). Nadeln (aus Alkohol + Wasser). F: 131—132° Schr löslich in Alkohol. Mit alkoh. Ammoniak entsteht [4-Carbāthoxyamino-phenyl]-oxamid (s. u.).
- [4-Carbäthoxyamino-phenyl]-oxamid $C_{11}H_{13}O_4N_3=H_2N\cdot CO\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Beim Versetzen der alkoh. Lösung von [4-Carbäthoxyamino-phenyl]-oxamidsäure-äthylester mit alkoh. Ammoniak (H. Sch., O., B. 27, 962; A. 293, 379). Nadeln. Schmilzt nicht unzersetzt bei 301—302°. Unlöslich in Äther und Benzol, schwer löslich in siedendem Alkohol.
- N-Phenyl-N'-[4-carbäthoxyamino-phenyl]-oxamid $C_{17}H_{17}O_4N_3 = C_6H_5\cdot NH\cdot CO\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Bei $^1/_2$ -stdg. Kochen von 1 Mol.-Gew. [4-Carbäthoxyamino-phenyl]-oxamidsäure-äthylester mit 1 Mol.-Gew. Anilin (H. Sch., O., B. 27, 962; A. 293, 379). Nadeln (aus kochendem Alkohol). F: 351° (korr.). Schwer löslich in kochendem Alkohol, kaum in Wasser und Benzol.
- [4-Ureido-phenyl]-oxamidsäure-äthylester $C_{11}H_{13}O_4N_3=C_2H_5\cdot O_4C\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot NH_2$. B. Bei 1-stdg. Erhitzen von [4-Amino-phenyl]-harnstoff mit Oxalsäure-diäthylester; man extrahiert das Produkt mit Benzol (H. Soh., O., B. 27, 962; A. 293, 380). Nadeln (aus wäßr. Alkohol). F: 210—211°. Sehr löslich in Alkohol, unlöslich in Ather. Alkoholisches Ammoniak erzeugt [4-Ureido-phenyl]-oxamid (s. u.).
- [4-Ureido-phenyl]-oxamid $C_9H_{10}O_3N_4 = H_2N \cdot CO \cdot CO \cdot NH \cdot C_9H_4 \cdot NH \cdot CO \cdot NH_9$. B. Aus [4-Ureido-phenyl]-oxamidsāure-āthylester und alkoh. Ammoniak (H. Sch., O., B. 27, 963; A. 293, 380). Pulver. Unlöslich in siedendem Alkohol.
 - Polymerer (?) p-Phenylenharnstoff (C₇H₆ON₂)_x. Vgl. darüber S. 71.
 - Polymerer p-Phenylenthioharnstoff (C₇H₆N₂S)_x. Vgl. darüber S. 71.
- p-Phenylendiurethan $C_{12}H_{16}O_4N_2=C_6H_4(NH\cdot CO_2\cdot C_2H_5)_2$. B. Aus p-Phenylendiisocyanat (S. 105) und Alkohol (Gattermann, Wrampelmeyer, B. 18, 2605). Beim Erwärmen von Terephthalsäurediazid (Bd. IX, S. 847) mit absol. Alkohol (Davidis, J. pr. [2] 54, 87). Aus p-Phenylendiamin und Chlorameisensäureäthylester (Bd. III, S. 10) (H. Schiff, Ostrogovich, A. 293, 375). Tafeln (aus Ligroin), Prismen (aus Alkohol). F: 196° bis 196,5° (korr.) (H. Sch., O.), 195° (D.). Äußerst leicht löslich in Alkohol, Äther, Benzol, Chloroform und Ligroin (D.).
- [4-Ureido-phenyl]-urethan, [4-Carbäthoxyamino-phenyl]-harnstoff $C_{10}H_{13}O_3N_3=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot NH_2$. B. Beim Vermischen der stark abgekühlten konzentrierten wäßrigen Lösung von 1 Mol.-Gew. salzsaurem [4-Amino-phenyl]-urethan und 1 Mol.-Gew. Kaliumcyanat (H. Schiff, Ostrogovich, B. 27, 399; A. 293, 377). Prismen (aus Alkohol). F: 197—198°. Schwer löslich in Wasser, sehr leicht in Alkohol, unlöslich in Äther.
- p-Phenylendiharnstoff $C_8H_{10}O_2N_4=C_8H_4(NH\cdot CO\cdot NH_2)_3$. B. Aus 1 Mol.-Gew. salzsaurem p-Phenylendiamin mit 2 Mol.-Gew. Kaliumcyanat (Lellmann, A. 221, 14). Aus p-Phenylendiisocyanat und Ammoniak (Gattermann, Wrampelmeyer, B. 18, 2605). Durch Einw. von heißer Salzsäure auf [4-Cyanamino-phenyl]-harnstoff (s. u.) (Pierron, A. ch. [8] 15, 210). Blättchen. Verkohlt beim Erhitzen, ohne zu schmelzen; äußerst schwer löslich in allen gebräuchlichen Lösungsmitteln (L.).
- [4-Cyanamino-phenyl]-harnstoff, [4-Ureido-phenyl]-cyanamid $C_8H_8ON_4=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot CN.$ B. Aus p-Phenylendiamin und 2 Mol.-Gew. Bromcyan in Gegenwart von wäßr. KHCO3 (PIERRON, A. ch. [8] 15, 185, 207). Aus p-Phenylen-bis-thioharnstoff und Kupferoxyd in siedender alkalischer Lösung (P.). Aus [4-Amino-phenyl]-harnstoff und Bromcyan (P.). Farblose, an der Luft sich allmählich schwach blau färbende Nadeln. Schmilzt beim raschen Erhitzen teilweise bei 255° unter Zersetzung und erstarrt dabei sofort wieder zu einer braunen Masse, die bis 320° noch nicht schmilzt. Färbt sich beim langsamen Erhitzen zwischen 225° und 230° hellgrün und schmilzt dann erst oberhalb 310°. Unlöslich in kaltem Wasser, schwer löslich in siedendem Wasser, Benzol und Äther, leichter in Alkohol; löslich in Alkalien zu einer gelblichen, an der Luft sich violett färbenden Flüssigkeit; siemlich löslich in kalter konz. Salzsäure.
- p-Phenylen-bis-[thiocarbamidsäure-O-äthylester], p-Phenylen-bis-monothiourethan $C_{19}H_{16}O_2N_9S_3=C_9H_9(NH\cdot CS\cdot O\cdot C_2H_9)_2$. B. Bei längerem Kochen von p-Phenylen-disenföl (S. 105) mit Alkohol (BILLETER, STEINER, B. 20, 230). Krystallpulver. F: 197°.

- p-Phenylen-bis-thioharnstoff $C_8H_{10}N_4S_8=C_6H_4(NH\cdot CS\cdot NH_8)_9$. B. Bei 1-stdg. Erhitzen des aus salzsaurem p-Phenylendiamin und Ammoniumrhodanid erhaltenen rhodanwasserstoffsauren p-Phenylendiamins auf 120° (Lellmann, A. 221, 11). Aus p-Phenylendisenföl (s. u.) und NH $_8$ (BILLETER, STEINER, B. 20, 230). Durch Erhitzen der wäßr. Lösung des salzsauren [4-Amino-phenyl]-thioharnstoffs mit Kaliumrhodanid (Frerichs, Hupka, $A\tau$. 241, 163). Nadeln (aus wäßr. Ammoniak). F: 220° (B., Sr.), 218°; schwer löslich in Alkohol (L., A. 221, 11). Wird durch alkal. Bleilösung geschwärzt (L., A. 228, 248). Liefert in alkal. Lösung bei der Einw. von Kupferoxyd [4-Cyanamino-phenyl]-harnstoff (Pierron, A. ch. [8] 15, 185, 207).
- p Phenylen bis $[\omega$ allyl thioharnstoff] $C_{14}H_{18}N_4S_2 = C_6H_4(NH\cdot CS\cdot NH\cdot CH_2\cdot CH: CH_2)_2$. B. Aus p-Phenylendiamin und Allylsenfol (Bd. IV, S. 214) (Lellmann, A. 221, 31). F: 200° (Zers.). Unlöslich in Wasser, sehr schwer löslich in Alkohol und Chloroform, etwas leichter in Eisessig.
- p-Phenylen-bis- $[\omega$ -phenyl-thioharnstoff] $C_{10}H_{18}N_4S_2=C_6H_4(NH\cdot CS\cdot NH\cdot C_6H_5)_2$. B. Aus p-Phenylendiamin und Phenylsenföl (Bd. XII, S. 453) (Lellmann, A. 221, 28). Blättchen. Außerst schwer löslich in den gebräuchlichen Lösungsmitteln. Zerfällt beim Schmelzen in Thiocarbanilid und polymeren p-Phenylenthioharnstoff (S. 71).
- 4-Diacetylamino-phenylsenföl $C_{11}H_{10}O_2N_2S = (CH_3\cdot CO)_2N\cdot C_6H_4\cdot N:CS$. B. Entsteht neben 4.4'-Bis-dimethylamino-thiobenzophenon bei 4-stdg. Erhitzen von 4—5 g N-[4-Diacetylamino]-phenylauramin $(CH_3\cdot CO)_2N\cdot C_6H_4\cdot N:C[C_6H_4\cdot N(CH_3)_2]_3$ (Syst. No. 1873) mit 12—15 g CS₂ auf 180° (Finckh, Schwimmer, J. pr. [2] 50, 409). Schüppchen (aus Benzol). F: 195°. Unlöslich in CS₂, sehr schwer löslich in Alkohol.
- p-Phenylendiisocyanat, p-Phenylendicarbonimid $C_8H_4O_2N_2 = C_6H_4(N:CO)_2$. B. Beim Überleiten von Phosgen über auf 200—250° erhitztes salzsaures p-Phenylendiamin (Gattermann, Wrampelmeyer, B. 18, 2604). Sublimiert in Nadeln. F: 91°. Liefert mit NH₂ p-Phenylendiharnstoff (S. 104) und mit Alkohol p-Phenylendiurethan (S. 104).
- p-Phenylendiisocyanidtetrabromid, p-Phenylendicarbylamintetrabromid $C_8H_4N_2Br_4=C_6H_4(N:CBr_2)_2$. B. Aus p-Phenylendicarbylamin (S. 84) und Brom in Äther (KAUFLER, B. 84, 1578). Nadeln. F: 137—138° (K., B. 34, 1578). Spaltet beim Kochen mit Methylalkohol Brom ab (K., M. 22, 1077).
- p-Phenylendiisothiocyanat, p-Phenylendiisenföl $C_8H_4N_2S_2=C_6H_4(N:CS)_2$. B. Aus p-Phenylendiamin und Thiophosgen CSCl₂, beide gelöst in Chloroform (BILLETER, STEINER, B. 20, 230). Nadeln (aus Eisessig). F: 130° (korr.). Verbindet sich mit NH_3 zu p-Phenylenbis-thioharnstoff (s. o.) und mit Alkohol zu p-Phenylen-bis-monothiourethan (S. 104).
- N-[4-Amino-phenyl]-glycin $C_8H_{10}O_3N_2=H_2N\cdot C_8H_4\cdot NH\cdot CH_2\cdot CO_2H$. B. Durch Reduktion des N-[4-Nitro-phenyl]-glycins (Bd. XII, S. 725) mit Zinn und Salzsäure (Höchster Farbw., D. R. P. 88433; Frdl. 4, 1156). Blättchen (aus Wasser), die sich bei etwa 180° gelb färben und bei 208° unter Zersetzung schmelzen. Die farblosen Lösungen in verdünnten Säuren oder Alkalien färben sich an der Luft violett. FeCl, färbt die wäßr. Lösung grün, dann violett. Gold- und Silbersalze rufen zunächst eine Violettfärbung hervor und werden dann zu Metall reduziert; mit Kaliumferricyanid entsteht Orange-, beim Erwärmen Grünfärbung.
- N-[4-Amino-phenyl]-glycin-nitril, N-Cyanmethyl-p-phenylendiamin C₈H₂N₃ = H₂N·C₆H₄·NH·CH₃·CN. B. Beim Kochen der aus p-Phenylendiamin und Formaldehyd-Natriumdisulfit erhältlichen Verbindungen H₂N·C₆H₄·NH·CH₂(SO₃Na) (S. 83) bezw. C₆H₄[NH·CH₂(SO₃Na)]₈ (S. 83) mit KCN in wäßr. Lösung (Bucherer, Schwalber, B. 39, 2804). Tafeln. F: 168°. Ziemlich löslich in verd. Salzsäure; wird aus dieser Lösung durch Natronlauge gefällt. Entwickelt beim Kochen mit Natronlauge Ammoniak. Läßt sich diazotieren.
- N-[4-Dimethylamino-phenyl]-glycin $C_{10}H_{14}O_2N_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CH_2 \cdot CO_2H$. B. Durch Kochen des N-[4-Dimethylamino-phenyl]-glycinnitrils mit Kalilauge (FREUND, WIBSING, B. 40, 204). F: 182—183°. Sehr leicht löslich in Wasser und Alkohol. KC₁₀H₁₂O₂N₂. Schüppchen (aus verd. Kalilauge + Alkohol). Beginnt gegen 280° sich zu zersetzen; ist bei 308° geschmolzen. Durch Schmelzen mit Natriumamid und darauffolgendes Behandeln des wäßr. Auszugs der Schmelze mit Luft entsteht 5.5'-Bis-[dimethylamino]-indigo.
- [N-(4-Dimethylamino-phenyl)-glycin]-amid $C_{10}H_{15}ON_3 = (CH_3)_8N \cdot C_6H_4 \cdot NH \cdot CH_2 \cdot CO \cdot NH_2$. B. Aus N.N-Dimethyl-p-phenylendiamin und Chloracetamid (LUMIÈRE, PERRIN, Bl. [3] 29, 968). F: 159—160°.
- N-[4-Dimethylamino-phenyl]-glycin-nitril, N.N-Dimethyl-N'-cyanmethyl-p-phenylendiamin $C_{10}H_{12}N_1 = (CH_2)_2N \cdot C_6H_4 \cdot NH \cdot CH_2 \cdot CN$. B. Durch 2-stdg. Erhitzen von N.N-Dimethyl-p-phenylendiamin mit Blausäure und Formaldehydlösung auf 1000 (FREUND, WIRSING, B. 40, 204). Nadeln. F: 80—81°. Unlöslich in Wasser, sonst leicht löslich. Durch Kochen mit Kalilauge entsteht N-[4-Dimethylamino-phenyl]-glycin.

p-Phenylendiglycin $C_{10}H_{12}O_4N_2 = C_4H_4(NH\cdot CH_2\cdot CO_2H)_2$. B. Beim Digerieren des p-Phenylen-bis-glycinäthylesters mit starker Salzsäure (ZIMMERMANN, KNYEIM, B. 16, 615). Aus p-Phenylen-bis-glycinnitril oder aus p-Phenylen-bis-glycinamid durch Verseifen mit verd. Alkalien oder Mineralsäuren (Höchster Farbw., D. R. P. 145062; C. 1903 II, 1036). — Krystalle (aus viel siedendem Wasser). F: 233—235° (Zers.); fast unlöslich in kaltem Wasser und in Alkohol; leicht löslich in verd. Mineralsäuren und Alkalien (H. F.). — $C_{10}H_{12}O_4N_2 + 2$ HCl. Blättchen (aus Salzsäure). Leicht löslich in Wasser (Z., K.).

Diäthylester $C_{14}H_{30}O_4N_2 = C_6H_4(NH\cdot CH_3\cdot CO_3\cdot C_2H_5)_2$. B. Aus p-Phenylendiamin und Chloresigester (Zimmermann, Knyrim, B. 16, 515). — Nadeln. F: 83°. Leicht löslich in den gebräuchlichen Lösungsmitteln.

Diamid $C_{10}H_{14}O_2N_4 = C_4H_4(NH\cdot CH_2\cdot CO\cdot NH_2)_2$. B. Aus p-Phenylen-bis-glycinnitril durch Eintragen in gekühlte konz. Schwefelsäure (Höchster Farbw., D. R. P. 145062; C. 1903 II, 1036). Aus p-Phenylendiamin und Chloressigsäure-amid (Lumire, Perrin, Bl. [3] 29, 967). — Krystallinisch. Schmilzt unter Zersetzung bei 250—2520 (L., P.), 270—2750 (H. F.). Unlöslich in Wasser und Alkohol; unlöslich in kalten Alkalien; löslich in verdünnter heißer Salzsäure (H. F.). Bei der Verseifung mit verdünnten Alkalien entsteht p-Phenylendiglycin (H. F.).

Dinitril, N.N'-Bis-cyanmethyl-p-phenylendiamin $C_{10}H_{10}N_4 = C_6H_4(NH\cdot CH_2\cdot CN)_2$. B. Aus p-Phenylendiamin und Glykolsäurenitril (Bd. III, S. 242) bezw. Formaldehyd und Blausäure (Höchster Farbw., D. R. P. 145062; C. 1903 II, 1036). — Blättchen (aus Alkohol). F: 170—171°. In Wasser unlöslich. Beim Verseifen mit verd. Alkalien oder Mineralsäuren entsteht p-Phenylendiglycin. Mit kalter konz. Schwefelsäure entsteht p-Phenylen-bisglycinamid.

N-[4-Amino-phenyl]-N-formyl-glycin $C_0H_{10}O_2N_2=H_2N\cdot C_0H_4\cdot N(CHO)\cdot CH_2\cdot CO_2H$. B. Aus N-[4-Nitro-phenyl]-N-formyl-glycin (Bd. XII, S. 725) durch Reduktion (Bad. Anilinu. Sodaf., D. R. P. 154556; C. 1904 II, 1012). — In Wasser sehr leicht löslich. — Kann Verwendung zur Darstellung von Azofarbstoffen finden.

N-Methyl-N-[a-aminoformyl-äthyl] - N'- [2.4-dinitro-bensal]-p-phenylendiamin, {N-Methyl-N-[4-(3.4-dinitro-bensalamino)-phenyl]-alanin}-amid $C_{17}H_{17}O_8N_5=(O_2N)_2C_6H_3\cdot CH:N\cdot C_6H_4\cdot N(CH_3)\cdot CH(CH_3)\cdot CO\cdot NH_2$. B. Das aus N-Methyl-N-[a-aminoformyl-āthyl]-N'-[a-cyan-benzal]-p-phenylendiamin (S. 108) durch verd. Salzsāure entstehende, nicht rein isolierte N-Methyl-N-[a-aminoformyl-āthyl]-p-phenylendiamin wird mit 2.4-Dinitro-benzaldehyd kondensiert (Sachs, Kraft, B. 36, 763). — Braune Nadeln. F: 235—238°.

N-Salicoyl-p-phenylendiamin $C_{13}H_{12}O_3N_3=H_4N\cdot C_0H_4\cdot NH\cdot CO\cdot C_0H_4\cdot OH$. B. Beim Behandeln von Salicylsäure-[4-nitro-anilid] (Bd. XII, S. 726) mit Zinn und Salzsäure (Bell, Chem. N. 31, 245; J. 1875, 747). — Nadeln. F: 158°. — $2C_{13}H_{12}O_3N_2+2HCl+PtCl_4$.

N.N'-Bis-[4-methoxy-thiobensoyl]-p-phenylendiamin $C_{22}H_{20}O_2N_2S_2 = C_0H_4(NH\cdot CS\cdot C_0H_4\cdot O\cdot CH_3)_2$. B. Aus p-Phenylendisenföl (S. 105) und Anisol (Bd. VI, S. 138) durch AlCl₂ (Gattermann, J. pr. [2] 59, 59?). — Gelbe Nädelchen (aus Nitrobenzol). F: 281°. — Bei der Verseifung entsteht Anissäure (Bd. X, S. 154).

N.N'-Bis - [4-äthoxy-thiobensoyl] - p-phenylendiamin $C_{34}H_{24}O_2N_3S_3 = C_6H_4(NH\cdot CS\cdot C_6H_4\cdot O\cdot C_3H_5)_3$. B. Aus p-Phenylendisenföl und Phenetol durch AlCl₃ (G., J. pr. [2] 59, 592). — F: 293°. — Liefert bei der Verseifung 4-Äthoxy-benzoesäure.

N.N'-Digalloyl-p-phenylendiamin $C_{20}H_{16}O_8N_2=C_6H_4[NH\cdot CO\cdot C_6H_2(OH)_8]_2$. B. Aus Gallamid (Bd. X S. 487) und salzsaurem p-Phenylendiamin bei 220° (GNEHM, GANSSER, J. pr. [2] 63, 82). — Kryställchen (aus Alkohol), die sich oberhalb 250° noch nicht verändern.

p-Phenylen-bis- $[\beta$ -imino-buttersäure-nitril] bezw. p-Phenylen-bis- $[\beta$ -amino-crotonsäure-nitril] $C_{14}H_{14}N_4=C_6H_4[N:C(CH_2):CH_2:CN]_2$ bezw. $C_4H_4[NH\cdot C(CH_2):CH\cdot CN]_2$. B. Aus Diacetonitril (Bd. III, S. 660) und p-Phenylendiamin in verd. Essignäure (E. v. Meyer, C. 1908 II, 592; J. pr. [2] 78, 502). — Quadratische Blättchen. F: 222°. Unlöslich in kaltem Wasser, leicht löslich in Alkohol und Eisessig.

N.N'-Bis-acetoacetyl-p-phenylendiamin $C_{14}H_{16}O_4N_9=C_0H_4(NH\cdot CO\cdot CH_2\cdot CO\cdot CH_3)_9$. Beim Erhitzen von 1 Mol.-Gew. p-Phenylendiamin mit 2 Mol.-Gew. Acetessigester auf 170° (Knore, B. 17, 545; vgl. dazu K., B. 19, 3303). — Blättchen (aus verd. Alkohol). F: 176°. Wird durch Eisenchlorid nicht gefärbt. Beim Erhitzen mit $30^9/_9$ iger Salzsäure auf 120° wird p-Phenylendiamin regeneriert.

- N-Methyl-N'-[a-cyan-bensal]-p-phenylendiamin, 4-Methylamino-anil des Bensoyleyanids, [4-Methylamino-phenyl]-[μ -cyan-asomethin]-phenyl $C_{15}H_{15}N_3=CH_3\cdot NH\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_5$. B. Aus 4-Nitroso-N-methyl-anilin (Bd. VII, S. 626) und Bensyleyanid (Bd. IX, S. 441) in Alkohol in Gegenwart von Soda (Sachs, Bry, B. 34, 120). Carminrote Nadeln. F: 126°.
- N-Methyl-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin, [4-Methylamino-phenyl]-[μ -cyan-asomethin]-[4'-nitro-phenyl] $C_{15}H_{11}O_{2}N_{4}=CH_{3}\cdot NH\cdot C_{6}H_{4}\cdot N:C(CN)\cdot C_{6}H_{4}\cdot NO_{2}$. B. Aus 4-Nitroso-N-methyl-anilin und p-Nitro-benzylcyanid (Bd. IX, S. 456) in heißem Alkohol in Gegenwart von Alkali oder Soda (Ehrlich, Sachs, B. 32, 2346; Sachs, Bry, B. 34, 120). Nadeln, die im auffallenden Lichte violett, im durchfallenden Lichte dunkelrot erscheinen. F: 188°.
- N.N.-Dimethyl-N'-[a-aminoformyl-bensal]-p-phenylendiamin, 4-Dimethylamino-anil des Phenylglyoxylsäureamids, [4-Dimethylamino-phenyl]-[\mu-carbaminyl-asomethin]-phenyl C₁₆H₁₇ON₃ = (CH₃)₂N·C₆H₄·N·C(CO·NH₂)·C₆H₅. B. Durch Oxydation von a-[4-Dimethylamino-anilino]-phenylessigsäure-amid (CH₃)₂N·C₆H₄·NH·CH (CO·NH₂)·C₆H₅ (Syst. No. 1905) mit KMnO₄ in Aceton (Saches, Goldmann, B. 35, 3344). Orangegelbe Nadeln (aus Benzol-Ligroin). F: 170° (Zers.). Unlöslich in Wasser, schwer löslich in Ligroin, sonst leicht löslich. Krystallisiert man aus verdünntem Alkohol und erwärmt die alkoholfeuchte gelbe Masse auf 75—82°, so färbt sie sich zinnoberrot; bei ca. 152° wird sie wieder gelb. Wird von Säuren, auch Eisessig, schon in der Kälte leicht gespalten. Löslich in verdünnter kalter Essigsäure ohne Zersetzung. Gibt in dieser Lösung mit FeCl₃ und Natriumacetat rotviolette Färbung.
- N.N Dimethyl N'- [a-cyan benzal] p-phenylendiamin, [4-Dimethylamino-phenyl] [µ cyan azomethin] phenyl C₁₀H₁₅N₃ = (CH₃)₂N·C₆H₄·N:C(CN)·C₆H₅. B. Durch Zufügen von geringen Mengen 33% ger Natronlauge zur siedenden alkoh. Lösung von 4-Nitroso-dimethylanilin (Bd. XII, S. 677) und Benzylcyanid (Ehrlich, Sachs, B. 32, 2344; Sachs, D. R. P. 109486; C. 1900 II, 407). Aus a-[4-Dimethylamino-anilino]-phenylessigsäure-nitril (CH₃)₂N·C₆H₄·NH·CH(CN)·C₆H₅ (Syst. No. 1905) durch Oxydation mit Permanganat in Acetonlösung (Sachs, B. 34, 503). Orangerote, bläulich schimmernde Nadeln (aus Alkohol). F: 90°; schwer löslich in kalten Lösungsmitteln, unlöslich in Wasser (E., S.). Wird von Säuren in Benzoylcyanid und N.N-Dimethyl-p-phenylendiamin (S. 72) gespalten (E., S.).
- N.N Dimethyl N' [4 nitro a aminoformyl bensal] p phenylendiamin, [4-Dimethylamino-phenyl]-[μ -carbaminyl-asomethin]-[4'-nitro-phenyl] $C_{1e}H_{1e}O_{3}N_{4}$ —(CH₃)₂N·C₆H₄·N:C(CO·NH₂)·C₆H₄·NO₂. B. Aus 4-Nitroso-dimethylanilin und 4-Nitrophenylacetamid (Bd. IX, S. 456) (Sachs, D. R. P. 116089; C. 1900 II, 1224). Rotbraune Blättchen. F: 197°. Leicht zersetzlich durch Mineralsäuren.
- N.N-Dimethyl-N'-[4-nitro-a-cyan-bengal]-p-phenylendiamin, [4-Dimethyl-amino-phenyl]-[μ -cyan-agomethin]-[4'-nitro-phenyl] $C_{16}H_{14}O_2N_4=(CH_5)_2N\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_4\cdot NO_5$. B. Aus 4-Nitroso-dimethylanilin und 4-Nitro-benzyleyanid (Bd. IX, 8. 456) in Alkohol in Gegenwart von etwas Alkali (Ehrlich, Sachs, B. 32, 2346; Sachs, D. R. P. 109486; C. 1900 II, 407). Dunkelbraune Krystalle, die bei 168° sintern und bei 176° schmelzen.
- N-Äthyl-N'-[a-cyan-bengal]-p-phenylendiamin, [4-Äthylamino-phenyl]-[μ -cyan-asomethin]-phenyl $C_{16}H_{15}N_3=C_2H_5\cdot NH\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_5$. B. Aus 4-Nitroso-N-Athyl-anilin (Bd. VII, S. 626) und Benzyleyanid in Alkohol in Gegenwart von etwas Sodalösung (SacHs, Bry, B. 84, 119). Dunkeirote Nadeln (aus Alkohol). F: 112°. Unlöslich in Wasser, löslich in heißem Alkohol, Benzol, Äther und Eisessig. Wird durch Erhitzen mit verdünnten Säuren in Benzoyleyanid (Bd. X, S. 659) und N-Äthyl-p-phenylendiamin (S. 75) gespalten.
- N-Äthyl-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin, [4-Äthylamino-phenyl]- $[\mu$ -cyan-asomethin]-[4'-nitro-phenyl] $C_{16}H_{14}O_{2}N_{4}=C_{2}H_{5}\cdot NH\cdot C_{6}H_{4}\cdot N:C(CN)\cdot C_{6}H_{4}\cdot NO_{5}$. B. Aus 4-Nitroso-N-āthyl-anilin (Bd. VII, S. 626) und 4-Nitro-benzyleyanid in Alkohol in Gegenwart von etwas Sodalösung (Sachs, Bry, B. 34, 119). Nadeln, die im auffallenden Lichte tiefgrün, im durchfallenden Lichte tiefrot erscheinen. F: 164°. Unlöslich in kaltem Wasser, schwer löslich in kaltem Alkohol.
- N.N-Diäthyl-N'-[a-cyan-bensal]-p-phenylendiamin, [4-Diäthylamino-phenyl]-[μ -cyan-asomethin]-phenyl $C_{12}H_{12}N_3 = (C_2H_4)_2N \cdot C_6H_4 \cdot N \cdot C(CN) \cdot C_6H_5$. B. Aus 4-Nitrosodiäthylanilin (Bd. XII, S. 684) und Bensyleyanid (Bd. IX, S. 441) in Alkohol in Gegenwart von etwas NaOH (Employe, Sacres, B. 82, 2345; Sacres, D. R. P. 109486; C. 1900 II, 407).— Scharlachrote, goldglänsende Nädelchen (aus Alkohol), granatähnliche Krystalle mit grüngoldenem Reflex (aus Essigester). F: 112°; siemlich leicht löslich, außer in Petroläther, unlöslich in Wasser (E., S.). Bildet mit gasförmigem Chlorwasserstoff in Benzol ein zersetz-

liches Additionsprodukt (gelblich-weißer Niederschlag; F: 172°) (S., B. 33, 963). Beim Schütteln mit Salzsäure tritt Spaltung unter Bildung von Benzoylchlorid ein (E., S.). Durch längeres Kochen mit alkoh. Kalilauge wird die tiefrote Lösung orangefarben und scheidet beim Abkühlen farblose, in Säuren leicht lösliche Krystalle vom Schmelzpunkt 172° ab (E., S.). Beim Kochen mit salzsaurem Hydroxylamin und wenig Wasser entsteht a-Isonitrosobenzylcyanid (Bd. X, S. 660) (S., B. 33, 963). Liefert beim Kochen mit salzsaurem Phenylhydrazin in wäßrig-alkoholischer Lösung N.N-Diäthyl-p-phenylendiamin (S. 75) und das Phenylhydrazon des Benzoylcyanids (Syst. No. 2048); bei der Spaltung mit salzsaurem Anilin entsteht N.N'-Diphenyl-benzamidin (Bd. XII, S. 273) (S., Bry, B. 34, 121).

N.N-Diäthyl-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin, [4-Diäthylamino-phenyl]-[μ -cyan-asomethin]-[4'-nitro-phenyl] $C_{18}H_{18}O_{2}N_{4}=(C_{2}H_{5})_{2}N\cdot C_{6}H_{4}\cdot N$:C(CN)- $C_{4}H_{4}\cdot NO_{2}$. B. Aus 4-Nitroso-diäthylanilin und 4-Nitro-benzyleyanid in Alkohol in Gegenwart geringer Mengen Alkali (Ehrlich, Sachs, B. 32, 2346; Sachs, D. R. P. 109486; C. 1900 II, 407). — Stahlblauglänzende Nädelchen (aus Alkohol), die in dünnen Schichten violettrot erscheinen; F: 152°; unzersetzlich flüchtig; der Dampf ist braungelb; ziemlich leicht löslich in Chloroform, schwer in Äther, löslich in heißem Alkohol, Eisessig und Ligroin; die Lösungen sind tief kirschrot gefärbt; Seide und Wolle werden von verdünnter alkoholischer oder essigsaurer Lösung violettrosa gefärbt (E., S.). Zerfällt durch Kochen mit salzsaurem Hydrazin in Alkohol in p-Nitro-benzoesäure-äthylester, Blausäure und N.N-Diäthyl-p-phenylendiamin; bei Anwendung von salzsaurem Anilin bildet sich N.N'-Diphenyl-[4-nitro-benzamidin] (S., Bry, B. 34, 121). — $C_{18}H_{18}O_{2}N_{4} + \text{HCl.}$ Citronengelbes Pulver (aus Chloroform + Ligroin). F: 194°; wird von Wasser leicht zerlegt (S., B.).

N-[a-Cyan-bensal]-N'-acetyl-p-phenylendiamin, 4-Acetamino-anil des Bensoylcyanids, [4-Acetamino-phenyl]-[μ -cyan-asomethin]-phenyl $C_{16}H_{18}ON_3=CH_3\cdot CO\cdot NH\cdot C_0H_4\cdot N:C(CN)\cdot C_0H_5$. B. Durch Oxydation von a-[4-Acetamino-anilino]-phenylessigsäurenitril (Syst. No. 1905) mit KMnO4 (Sachs, Goldmann, B. 35, 3341).—Orangerote Nadeln (aus Alkohol). F: 146°. Wird in Lösung durch Alkalien vollkommen entfärbt.

N-Methyl-N-[aminoformyl-methyl]-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin $C_{17}H_{15}O_8N_5=H_2N\cdot CO\cdot CH_2\cdot N(CH_2)\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_4\cdot NO_2$. B. Aus N-Methyl-4-nitroso-anilinoessigsäure-amid (Bd. XII, S. 685) und 4-Nitro-benzyleyanid in Gegenwart von Sodalösung (Warunis, Sachs, B. 37, 2638). — Braune Krystalle (aus Alkohol). F: 229°.

N-Methyl-N-cyanmethyl-N'-[4-nitro-a-cyan-benzal]-p-phenylendiamin $C_{17}H_{13}O_{2}N_{5}=NC\cdot CH_{2}\cdot N(CH_{3})\cdot C_{6}H_{4}\cdot N:C(CN)\cdot C_{6}H_{4}\cdot NO_{3}.$ B. Aus N-Methyl-4-nitroso-anilinoessigsäure-nitril (Bd. XII, S. 686) und 4-Nitro-benzylcyanid in Gegenwart eines alkalisch reagierenden Salzes (Sachs, Warunis, B. 37, 2638). — Krystalle (aus Alkohol). F: 195°.

N-Methyl-N-[a-aminoformyl-äthyl]-N'-[a-cyan-bensal]-p-phenylendiamin $C_{18}H_{18}ON_4=H_2N\cdot CO\cdot CH(CH_3)\cdot N(CH_3)\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_5$. B. Aus a-[N-Methyl-4-nitroso-anilino]-propionsäure-smid (Bd. XII, S. 686) und Benzyleysnid in alkoh. Lösung in Gegenwart von 33% iger Kalilauge (Sachs, Kraff, B. 36, 761). — Ziegelrote Nadeln. F: 154°. Leicht löslich in heißem Alkohol und Benzol.

N-Methyl-N-[a-aminoformyl-äthyl]-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin $C_{18}H_{17}O_2N_5=H_2N\cdot CO\cdot CH(CH_3)\cdot N(CH_3)\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_4\cdot NO_8.$ B. Aus a-[N-Methyl-4-nitroco-anilino]-propionsäure-amid (Bd. XII, S. 686) und 4-Nitro-benzyl-cyanid in Alkohol in Gegenwart von Ammoniak (Sachs, Kraft, B. 36, 762). — Dunkelviolette Blättchen. F: 205—210°. Leicht löslich in heißem Alkohol.

N-Methyl-N-[a-cyan-äthyl]-N'-[4-nitro-a-cyan-bensal]-p-phenylendiamin $C_{18}H_{18}O_2N_5=NC\cdot CH(CH_2)\cdot N(CH_2)\cdot C_6H_4\cdot N:C(CN)\cdot C_6H_4\cdot NO_2$. B. Durch Kondensation von a-[N-Methyl-4-nitroso-anilino]-propionsäure-nitril (Bd. XII, S. 686) mit 4-Nitro-benzylevanid in alkoholischer Lösung in Gegenwart einiger Tropfen Ammoniak (Sachs, Kraff, B. 36, 759). — Bronzeglänzende Prismen (aus Alkohol). F: 142°. Leicht löslich in heißem Alkohol und Äther.

N.N'-Bis-[a-cyan-bensal]-p-phenylendiamin, p-Phenylen-bis-[$(\mu$ -cyan-asomethin)-phenyl] $C_{sp}H_{14}N_4=C_{b}H_{4}[N:C(CN)\cdot C_{b}H_{5}]_s$. B. Durch Oxydation von N.N'-Bis-[a-cyan-benzyl]-p-phenylendiamin (Syst. No. 1905) mit KMnO₄ in Aceton (Sachs, Goldmann, B. 35, 3340). — Orangegelbe Prismen (aus Essigester und Alkohol). F: 233°. Liefert durch Kochen mit verd. Schwefelsäure in Aceton-Alkohol neben Benzoesäureester p-Phenylendiamin.

N.N-Dimethyl-N'-[acetyl-carbäthoxy-methylen]-p-phenylendiamin, a-[(4-Di-methylamino-phenyl)-imino]-acetessigsäure-äthylester $C_{14}H_{18}O_3N_2=(CH_3)_2N\cdot C_0H_4\cdot N:C(CO\cdot CH_3)\cdot CO_2\cdot C_2H_3$. B. Aus 4-Nitroso-dimethylanilin und Acetessigsäure-äthylester in alkoh. Lösung in Gegenwart von Soda bei ca. 45° (Saces, Kraft, B. 36, 3234). —

Braunrote vierseitige Prismen (aus Petroläther). F: $63,5^{\circ}$; leicht löslich in Alkohol, Äther und Benzol, schwer in Petroläther (S., K.). — Liefert durch Spaltung mit verd. Schwefelsäure $a.\beta$ -Dioxo-buttersäure-äthylester (Bd. III, S. 744) (BOUVEAULT, WAHL, Bl. [3] 33, 479).

N-Methyl-N'-[carbāthoxy-cyan-methylen]-p-phenylendiamin, 4-Methylamino-anil des Mesoxalsäure-äthylester-nitrils, [4-Methylamino-phenyl]-[μ -cyan-azomethin]-carbonsäure-äthylester $C_{12}H_{13}O_2N_3=CH_3\cdot NH\cdot C_6H_4\cdot N\cdot C(CN)\cdot CO_3\cdot C_2H_5$. B. Aus 4-Nitroso-N-methyl-anilin (Bd. VII, S. 626) und Cyanessigsäure-äthylester (Bd. II, S. 585) in Alkohol in Gegenwart von Soda (Sachs, Bry, B. 34, 120). — Würfelförmige, im reflektierten Lichte blaugrün, im durchfallenden Lichte gelbrot erscheinende Krystalle. F: 136°. Unlöslich in Wasser, löslich in Alkohol.

N.N - Dimethyl - N'- [aminoformyl - cyan - methylen] - p - phenylendiamin, [4-Dimethylamino-phenyl]-[μ -cyan-asomethin]-carbonsäureamid $C_{11}H_{12}ON_4=(CH_3)_2N\cdot C_0H_4\cdot N:C(CN)\cdot CO\cdot NH_2$. B. Durch 1 /₄-stdg. Kochen von 1,7 g Cyanacetamid und 3 g 4-Nitroso-dimethylanilin in 100 g Alkohol und 9 ccm 12 0 /₀iger Sodalöung (Saches, B. 38, 964; D. R. P. 116089; C. 1900 II, 1224). — Rosenrote, blauschimmernde Nädelchen bezw. dunkel himbeerrote Prismen (aus Alkohol). F: 220—221 0 . Sehr wenig löslich in Äther, unlöslich in Ligroin.

N.N-Dimethyl-N'-[dicyan-methylen]-p-phenylendiamin, [4-Dimethylamino-phenyl]-[μ -cyan-asomethin]-carbonsäurenitril $C_{11}H_{10}N_4=(CH_3)_2N\cdot C_4H_4\cdot N\cdot C(CN)_2$. B. Aus Malonitril und 4-Nitroso-dimethylanilin in Alkohol in Gegenwart von etwas Sodalösung (Sachs, B. 33, 963). — Dunkelrote bronzeglänzende Krystalle (aus viel Alkohol). F: 167°. Löslich in Essigester, Chloroform und Aceton. — Bei längerem Kochen mit $20^{0}/_{0}$ iger Schwefelsäure tritt Zerfall in N.N-Dimethyl-p-phenylendiamin, CO_2 und HCN ein. Die alkoh. Lösung färbt Wolle und Seide rosa.

N.N-Diäthyl-N'-[aminoformyl-cyan-methylen]-p-phenylendiamin, [4-Diäthyl-amino-phenyl]-[μ -cyan-azomethin]-carbonsäureamid $C_{13}H_{16}ON_4 = (C_2H_5)_2N\cdot C_6H_4\cdot N$: $C(CN)\cdot CO\cdot NH_2$. B. Aus 4-Nitroso-diäthylanilin und Cyanacetamid (Bd. II, S. 589) in Alkohol in Gegenwart von Soda (Sachs, B. 33, 965). — Violettrosafarbene, blauschimmernde Krystalle. F: 165—166°. Schwer löslich in kaltem Alkohol. — Färbt Wolle und Seide lachsrot.

N.N - Diäthyl - N'- [dicyan - methylen] - p - phenylendiamin, [4 - Diäthylamino - phenyl]-[μ -cyan-azomethin]-carbonsäurenitril $C_{13}H_{14}N_4=(C_2H_5)_2N\cdot C_4H_4\cdot N:C(CN)_2$. B. Aus Malonitril und 4-Nitroso-diāthylanilin in Alkohol in Gegenwart von etwas Sodalösung (Sachs, B. 33, 964). — Braunviolette, blau reflektierende Nadeln bezw. vjolettrote Blättchen (aus Alkohol). F: 114°. Färbt Wolle und Seide rosaviolett.

N-Methyl-N-[aminoformyl-methyl]-N'-[dicyan-methylen]-p-phenylendiamin $C_{12}H_{11}ON_5 = H_2N\cdot CO\cdot CH_2\cdot N(CH_3)\cdot C_0H_4\cdot N\cdot C(CN)_2$. B. Aus N-Methyl-4-nitroso-anilino-essigsäure-amid (Bd. XII, S. 685) und Malonitril in Gegenwart von NH₃ (Sachs, Warunis, B. 37, 2638). — Rote Krystalle (aus Alkohol). F: 211°.

N-Methyl - N - [a-aminoformyl-äthyl] - N' - [dicyan-methylen] -p-phenylendiamin $C_{13}H_{13}ON_5 = H_4N\cdot CO\cdot CH(CH_3)\cdot N(CH_3)\cdot C_5H_4\cdot N:C(CN)_2$. B. Aus a-[N-Methyl-4-nitroso-anilino]-propionsäure-amid (Bd. XII, S. 686) und Malonitril in alkoh. Lösung unter Zugabe von 33%/giger Kalilauge (Sachs, Kraft, B. 36, 762). — Rotbraune Tafeln. F: 244,5%. Leicht löslich in heißem Alkohol und Chloroform.

p-Phenylen-bis-[iminomethyl-malonsäure-diäthylester] bezw. p-Phenylen-bis-[aminomethylen-malonsäure-diäthylester] $C_{22}H_{26}O_8N_3=C_6H_4[N:CH:CH:CH:CO_3\cdot C_2H_5)_3]_2$ bezw. $C_6H_4[NH:CH:C(CO_3\cdot C_2H_5)_3]_2$. B. Entsteht neben Malonsäurediäthylester bei 1-stdg. Erwärmen von 1 Tl. $a.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester mit 1 Tl. p-Phenylen-diamin auf 100°; man verjagt den Malonsäurediäthylester durch Wasserdampf und krystallisiert den mit verd. Salzsäure gewaschenen Rückstand aus Alkohol um (RUHEMANN, HEMMY, B. 30, 2026). — Gelbgrüne Nadeln. F: 164—165°.

N.N'-Bis-[3-sulfo-bensal]-p-phenylendiamin $C_{20}H_{16}O_{6}N_{2}S_{2}=C_{6}H_{4}(N:CH\cdot C_{6}H_{4}\cdot SO_{3}H)_{2}$. B. Aus 1 Mol.-Gew. p-Phenylendiamin, gelöst in Alkohol, und 2 Mol.-Gew. des Natriumsalzes der Benzaldehyd-sulfonsäure-(3) (Bd. XI, S. 324) gelöst in Wasser (Kafka, B. 24, 793). — Na₂C₂₀H₁₄O₆N₂S₂. Gelbe Nadeln. Leicht löslich in Wasser, schwer in Alkohol.

Chinon-sulfonsäure-(2)-[4-dimethylamino-anil]-(4) $C_{14}H_{14}O_4N_2S = (CH_3)_2N\cdot C_6H_4\cdot N\cdot C_6H_3(:0)\cdot SO_3H$. B. Man reibt 4-Amino-phenol-sulfonsäure-(2) (Syst. No. 1926) mit Wasser zum dünnen Brei an, leitet Chlor ein, bis Lösung erfolgt, entfernt das überschüssige Chlor durch 4-Amino-phenol-sulfonsäure-(2) und versetzt mit Dimethylanilin; den erhaltenen

Niederschlag löst man in Natronlauge und fällt die Lösung durch HCl (FOCH, B. 21, 888).

— Bronzeglänzende Nadeln mit ½, H₂O. Unlöslich in kaltem Wasser, Alkohol, Ather und Benzol. Löst sich in konz. Schwefelsäure mit kirschroter und in Natronlauge mit intensiv blauer Farbe.

N.N'-Bis-[4-amino-phenyl]-äthylendiamin $C_{14}H_{18}N_4=[H_2N\cdot C_4H_4\cdot NH\cdot CH_2-]_2$. B. Beim Behandeln von N.N'-Bis-[4-nitroso-phenyl]-äthylendiamin (Bd. VII, S. 627) mit Zinnchlorür und konz. Salzsäure (Francis, Soc. 71, 423). — Tafeln (aus Wasser). F: 150°. Schwer löslich in den gewöhnlichen Lösungsmitteln. — $C_{14}H_{18}N_4+4$ HCl. Tafeln. Sehr leicht löslich in Wasser; die Lösung wird durch FeCl₃ intensiv blutrot gefärbt.

N.N'-Bis-[4-bensalamino-phenyl]-äthylendiamin $C_{28}H_{26}N_4 = [C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot NH \cdot CH_3-]_3$. B. Beim Erwärmen einer alkoh. Lösung von N.N'-Bis-[4-amino-phenyl]-äthylendiamin mit Benzaldehyd (Bd. VII, S. 174) (Francis, Soc. 71, 424). — Hellgelbe Nadeln (aus Benzol). F: 226—227°. Unlöslich in Äther, sehr leicht löslich in Chloroform, wenig in kochendem Alkohol.

N.N'-Bis-[4-salicylalamino-phenyl]-äthylendiamin $C_{28}H_{36}O_{2}N_{4}=[HO\cdot C_{6}H_{4}\cdot CH:N\cdot C_{6}H_{4}\cdot NH\cdot CH_{2}-]_{3}$. B. Beim Erwärmen von N.N'-Bis-[4-amino-phenyl]-äthylendiamin und Salicylaldehyd (Bd. VIII, S. 31) in alkoh. Lösung (Francis, Soc. 71, 424). — Orangegelbe Täfelchen (aus Nitrobenzol). F: 224°. Unlöslich in Äther, schwer löslich in Alkohol, Chloroform und Benzol.

N.N'-Bis-[4-acetamino-phenyl]-N.N'-diacetyl-äthylendiamin $C_{22}H_{36}O_4N_4 = [CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot N(CO\cdot CH_3)\cdot CH_2-]_2$. B. Beim Kochen von N.N'-Bis-[4-amino-phenyl]-āthylendiamin mit Essigsäureanhydrid (Francis, Soc. 71, 424). — Krystallpulver (aus Nitrobenzol). Schmilzt oberhalb 290°. Unlöslich in den gewöhnlichen Lösungsmitteln.

2.4'-Diamino-diphenylamin $C_{12}H_{13}N_3 = H_2N \cdot C_4H_4 \cdot NH \cdot C_4H_4 \cdot NH_3$. B. Bei der Reduktion von 2.4'-Dinitro-diphenylamin (Bd. XII, S. 715) mit Zinkstaub und Essignäure (Nietzki, Witt, B. 12, 1402) oder mit Zinnchlorür und alkoh. Salzsäure (Bernthsen, B. 19, 424; Kehemann, Ott, B. 34, 3093). — Flüssig. Die Salze sind leicht löslich und schwierig umzukrystallisieren (Ni., Witt). — Bei der Oxydation mit Braunstein (Ni., Baur, B. 28, 2979) oder mit Kaliumdichromat (Hewritt, Newman, Winmill, Soc. 95, 583) entsteht 2-Amino-phenazin (Syst. No. 3719). Das salzsaure Salz liefert beim Kochen mit 2-Oxy-naphthochinon-(1.4)-imid-(4) (Bd. VIII, 8. 302) in Alkohol die Azoniumverbindung der nebenstehenden Formel H₂N. (Syst. No. 3722) (K., O.). — $C_{12}H_{12}N_3 + 2HCl$. Prismen (B.; K., O.). — $C_{12}H_{12}N_3 + 2HCl + PtCl_4$. Gelbe Nadeln (aus Wasser) (Ni., Witt).

5-Chlor-2.4'-diamino-diphenylamin $C_{12}H_{12}N_3Cl = H_2N\cdot C_4H_4\cdot NH\cdot C_4H_3Cl\cdot NH_2$. B. Durch Reduktion von 5'-Chlor-2'-nitro-4-acetamino-diphenylamin (S. 96) mit $SnCl_2+$ alkoh. Salzaäure (Kehemann, Kraeler, B. 34, 1103). — Hydrochlorid. Prismen.

4-Nitro-2.4'-diamino-diphenylamin $C_{12}H_{13}O_{2}N_{4} = H_{2}N \cdot C_{2}H_{4} \cdot NH \cdot C_{4}H_{6}(NO_{2}) \cdot NH_{2}$. B. Bei der Reduktion von 2'.4'-Dinitro-4-amino-diphenylamin (S. 79) mit Schwefelnatrium (KYM, B. 87, 1072). — Schwarzrote Krystalle (aus Alkohol + Wasser). F: 188—189°. Leicht löslich in siedendem Alkohol, schwer in Benzol und Toluol, ziemlich in Xylol.

2.4'-Bis-acetamino-diphenylamin $C_{16}H_{17}O_{2}N_{3} = CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{4} \cdot NH \cdot C_{4}H_{4} \cdot NH \cdot C_{5}H_{4} \cdot NH \cdot C_{5}H_{5} \cdot B$. Beim Erwärmen von 2.4'-Diamino-diphenylamin mit Essigsäureanhydrid (Nietzei, Witt, B. 12, 1402). — Nadeln (aus verd. Alkohol). F: 203° (Ni., Witt). — Gibt beim Erhitzen mit rauchender Salzsäure auf 120° 1-[4-Amino-phenyl]-2-methyl-benzimidazol (Syst. No. 3474) (Ni., Baur, B. 28, 2978).

4-Nitro-2-amino-4'-acetamino-diphenylamin $C_{16}H_{14}O_2N_4 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4(NO_2) \cdot NH_2$. B. Durch Reduktion von 2'.4'-Dinitro-4-acetamino-diphenylamin (S. 96) mit alkoholischem Schwefelammonium (Kehrmann, Rademacher, Feder, B. 31, 3084; vgl. Höchster Farbw., D. R. P. 87337; Frdl. 4, 79). — Goldglänzende Krystalle (aus Alkohol). F: 254—255° (Ke., R., Fe.), 228° (H. Fa.). Schwer löslich in Alkohol und Eisessig (H. Fa.).

4.4'-Diamino-diphenylamin C₁₂H₁₂N₅ = H₂N·C₆H₄·NH·C₅H₄·NH₂. B. Beim Versetzen einer eiskalten neutralen Lösung von salzsaurem p-Phenylendiamin und salzsaurem Anilin mit K₂Cr₂O₇ entsteht ein blaues Oxydationsprodukt (Indamin), welches von Zinkstaub und Salzsaure in der Wärme zu 4.4'-Diamino-diphenylamin reduziert wird (NIETZKI, B. 16, 474; vgl. Barbier, Vignon, Bl. [2] 48, 339). Durch ca. 4-stdg. Erhitzen von p-Phenylendiamin mit p-Phenylendiaminhydrochlorid und Wasser im Druckrohr auf 200° (VIDAL, C. 1903 I, 85). Man trägt 23,5 g fein pulverisiertes 4-Amino-azobenzol-hydrochlorid in 350 ccm

bis 400 ccm gesättigter wäßr. SO₂-Lösung ein, setzt nach und nach unter Umrühren 15 g Zinkstaub hinzu, gießt die Masse nach eingetretener vollständiger Entfärbung in 100 g 50%, iger Schwefelsaure, kocht auf und läßt einen Tag stehen (BARBIER, SISLEY, Bl. [3] 33, 1233). Aus 4-Acetamino-azobenzol (Syst. No. 2172) durch längere Einw. von salzsaurer Zinnchlorürlösung (JACOBSON, KUNZ, A. 303, 365). Entsteht auch bei der Reduktion von 4.4. Dinitro-diphenylamin (Bd. XII, S. 716) mit Essigsaure und Zinkstaub (NIETZKI, Witt, B. 12, 1402) oder mit Zinn und Salzsäure (HAGER, B. 18, 2576). Man trägt 50 g 4.4'-Dinitro-diphenylamin in 100 g bei 90° geschmolzenes wasserhaltiges Natriumsulfid ein und erhitzt sodann im geschlossenen Gefäß ca. ½ Stde. auf 140—150° (Wirth, D. R. P. 139568; C. 1903 I, 746; Frdl. 7, 71). Man reduziert 4.4′-Dinitro-N-formyl-diphenylamin (Bd. XII, S. 718) oder 4.4′-Dinitro-N-acetyl-diphenylamin (Bd. XII, S. 720) mit Eisen und wenig Säure, übersättigt nach beendeter Reduktion mit Schwefelsäure und kocht auf; beim Erkalten krystallisiert das Sulfat des 4.4'-Diamino-diphenylamins aus (Höchster Farbw., D. R. P. 156388; Frdl. 7, 773; C. 1905 I, 54). Neben p-Phenylendiamin, beim Kochen von Anilinschwarz (Bd. XII, S. 130) mit Zinn und Salzsäure oder mit Jodwasserstoffsäure (D: 1,7) und Phosphor; man übersättigt die Lösung mit Alkali, schüttelt mit Äther aus und bindet die Basen an Schwefelsäure; erst krystallisiert schwer lösliches 4.4'-Diamino-diphenylaminsulfat (NIETZKI, B. 11, 1097). — Blättchen (aus Wasser). F: 158° (NIE., WITT, B. 12, 1402), 157-158 (BAB., SI.). Nicht unzersetzt flüchtig (NIE., B. 11, 1098). Die wäßr. Lösung des Sulfats wird durch Eisenchlorid, Chromsäure usw. intensiv dunkelgrün gefärbt (NIE., B. 11, 1098). — 4.4'-Diamino-diphenylamin wird durch Oxydationsmittel schließlich in Chinon übergeführt (NIE., B. 11, 1098, 1100). Das Sulfat wird beim Behandeln mit salpetriger Säure in Diphenylamin-bis-diazoniumsulfat-(4.4') (Syst. No. 2203) übergeführt (Nie., B. 11, 1099). Oxydiert man aquimolekulare Mengen der salzsauren Salze von 4.4'-Diamino-diphenylamin und Anilin in heißer neutraler Lösung mit Kaliumdichromat, so erhält man Phenosafranin (Syst. No. 3745) (Nie., B. 16, 466; vgl. Bar., Si., Bl. [3] 33, 1193; 35, 860; A. ch. [8] 13, 106, 114; Hewitt, Newman, Winmill, Soc. 95, 583). Verwendung von 4.4'-Diamino-diphenylamin zur Herstellung von Azofarbstoffen: Dahl. & Co., D. R. P. 40748; Frdl. 1, 522; Cassella & Co., D. R. P. 40748; Frdl. 1 D. R. P. 82694, 86110, 86828, 94115, 94144, 95415, 95989; Frdl. 4, 876, 878, 880, 881, 883; D. R. P. 105201; Frdl. 5, 573; C. 1900 I, 320; D. R. P. 113785, 116638; Frdl. 5, 950, 951; C. 1900 II, 703; C. 1901 I, 152. Verwendung zur Erzeugung eines unvergrünlichen Schwarz durch Oxydation auf der Faser: Ullrich, Fussgänger, C. 1903 I, 103. Verwendung zum Färben von Haaren: Erdmann, D. R. P. 98431; Frdl. 5, 681; C. 1898 II, 1110; Akt.-Ges. f. Anilinf. D. R. P. 187322; Frdl. 9, 852; C. 1907 II, 1199. — Verwendung zur Erzeugung von blauen, violetten und schwarzen Farbstoffen durch gemeinsame Oxydation mit Aminen oder mit Phenolen auf der Faser: Hö. Fa., D. R. P. 162625; Frdl. 8, 855; C. 1905 II, 1058. Verwendung zur Darstellung von Schwefelfarbstoffen durch gemeinsame Oxydation mit Aminen oder mit Phenolen in Gegenwart von Natriumthiosulfat: Clayton Aniline Co., D. R. P. 130440; Frdl. 6, 775; C. 1902 I, 1140.

 $C_{12}H_{13}N_3 + H_2SO_4$. Nadeln (aus Wasser). Sehr schwer löslich in kaltem Wasser (Nie., B. 11, 1098; vgl. Hö. Fa., D. R. P. 156388). — $C_{12}H_{13}N_3 + 2$ HCl + PtCl₄. Nadeln (Nie., B. 11, 1099).

4.4'-Bis-methylamino-diphenylamin $C_{14}H_{17}N_3 = (CH_3 \cdot NH \cdot C_6H_4)_2NH$. B. Man oxydiert ein Gemisch von N-Methyl-p-phenylendiamin und Methylanilin in Eisessig + Wasser mit alkal. Natriumhypochloritlösung und reduziert die erhaltene Indaminlösung durch Zinkstaub oder Schwefelwasserstoff (GNEHM, SCHRÖTER, J. pr. [2] 78, 5). — Blättehen oder Nadeln. F: 115° (korr.). Leicht löslich in Chloroform und Aceton, weniger in Ather, Alkohol, Benzol, Toluol und heißem Ligroin, unlöslich in kaltem Petroläther. Oxydiert sich feucht rasch an der Luft und wird gelblich bis braunblau. — C₁₄H₁₇N₃ + 2 HCl. Bräunlich schillernde Blättchen (aus Alkohol-Ligroin). Schmilzt bei 225—227° (korr.) nach vorherigem Aufschäumen.

4-Amino-4'-dimethylamino-diphenylamin $C_{14}H_{17}N_3 = (CH_3)_2N \cdot C_4H_4 \cdot NH \cdot C_6H_4 \cdot NH_3$. B. Man oxydiert aquimolekulare Mengen von N.N-Dimethyl-p-phenylendiamin und salzsaurem Anilin bei 0^6 mit Natriumdichromat und reduziert das hierbei entstandene Indamin mit Zink und Salzsäure oder Essigsäure (GNEHM, WEBER, B. 35, 3088; J. pr. [2] 69, 223). Beim Erwärmen von 4-Amino-phenol (Syst. No. 1841) mit N.N-Dimethyl-p-phenylendiamin in Gegenwart von Zinkchlorid im Kohlensäurestrom auf 150° (GNEHM, WEBER, J. pr. [2] 69, 226). — Nadeln (aus Wasser). F: 116°. Sehr leicht löslich in Alkohol, Benzol, Petrol-Wasser). F: 110. Self telefit tosher in Akohol, fellot, fellot

Benzol, Aceton, Essigester, schwer in Alkohol, Ather, Petroläther, Ligroin.

- **4.4'-Bis-dimethylamino-diphenylamin**, Leukobase des Bindschedlergrüns, Leukodimethylphenylengrün $C_{18}H_{21}N_3 = [(CH_3)_2N\cdot C_4H_4]_2NH$. B. Beim Behandeln des Zinkdoppelsalzes des Dimethylphenylengrüns (S. 89) mit stark saurer Zinnchlorürlösung (NIETZKI, B. 16, 473; BINDSCHEDLER, B. 16, 866). Quadratische Tafeln (aus CS₂). F: 119° (B.). Wird durch Oxydationsmittel leicht in Dimethylphenylengrün zurückverwandelt (B.). Wird Land (B.). verwandelt (B.). — $C_{16}H_{21}N_3 + 2HCl + ZnCl_2$. Farblose Nadeln (N.).
- **4.4'-Bis-äthylamino-diphenylamin** $C_{16}H_{21}N_3=(C_2H_5\cdot NH\cdot C_6H_4)_8NH$. B. Durch Oxydation von N-Athyl-p-phenylendiamin und Monoäthylanilin in essigsaurer Lösung mit Natriumhypochlorit und Reduktion des entstandenen Indamins mit Schwefelwasserstoff (GNEHM, SCHRÖTER, J. pr. [2] 78, 6). — Krystalle. F: 95° (korr.). — C₁₆H₂₁N₃ + 2 HCl. Krystalle (aus Alkohol + Ligroin). F: 217—218° (korr.).
- **4.4'-Bis-bensalamino-diphenylamin** $C_{20}H_{31}N_{3} = (C_{6}H_{5}\cdot CH:N\cdot C_{6}H_{4})_{2}NH$. B. Aus **4.4'-Diamino-diphenylamin** und Benzaldehyd in alkoh. Lösung (Jacobson, Kunz, A. **303**, 366). Hellgelbe Blättchen (aus Benzol + Ligroin). F: 182°. Fast unlöslich in Alkohol, löslich in Benzol. Wird durch kalte verdünnte Schwefelsäure in die Komponenten gespalten.

Chinon-anil-[4-(4-amino-anilino)-anil] (von Willstätter, Moore, B. 40, 2666, als

vgl. indessen Bucherer, B. 42, 2933.

B. Aus Chinon-imid-anil (Bd. XII, S. 207) durch Polymerisation mit verd. Mineralsäuren oder besser aus dem Hydrochlorid des Chinon-imid-anils beim Aufbewahren; daneben entstehen schwächer basische Beimengungen (W., M., B. 40, 2676; vgl. auch Nover, B. 40, 288). Aus N-[4-Amino-phenyl]-N'-[4-anilino-phenyl]-p-phenylendiamin (S. 113) in Aceton durch trocknes Ag₂O oder PbO₂ (W., M., B. 40, 2679). Aus 4-Amino-diphenylamin (S. 76) in salzsaurer Lösung durch Oxydation mit FeCl₃ oder mit H₂O₂ in Gegenwart von etwas FeSO₄ (W., M., B. 40, 2677). — Tiefblaue Prismen (aus Hexan); krystallisiert aus Benzol mit ¹/₂ Mol. Krystallbenzol das beim Erhitzen auf 80° und dann auf 120° entweicht (W., M., B. 40, 2678). F: ca. 165° (W., M., B. 40, 2679). Leicht löslich in Aceton und Chloroform; löslich in ca. 150 Tln. heißem Alkohol mit blauer Farbe; sehr wenig löslich in Äther (W., M., B. 40, 2679). Die Lösungen in Benzol und Hexan sind kirschrot; Anilin löst mit blauer Farbe, die beim Erhitzen in Violett übergeht und beim Erkalten wiederkehrt; konzentrierte Schwefelsäure löst mit carminroter Farbe (W., M., B. 40, 2679). — Wird beim Erhitzen mit Wasser im geschlossenen Rohr auf 150—170° teils zu N-[4-Amino-phenyl]-N'-[4-anilinophenyl]-p-phenylendiamin reduziert, teils zu der vierfach chinoiden Verbindung ("Polymerisationsschwarz")

(vgl. Bd. XII, S. 131) oxydiert (W., M., B. 40, 2680; W., D., B. 42, 4121). Phenylhydrazin reduziert glatt zu N-[4-Amino-phenyl]-N'-[4-anilino-phenyl]-p-phenylendiamin (W., M., B. 40, 2680). Bleidioxyd in Benzol oxydiert zu der Verbindung C₂₄H₁₈N₄ (S. 90) (W., M., B. 40, 2680). Schwefelsäure (D: 1,12) spaltet beim Kochen rasch unter Bildung von Chinon (W., M., B. 40, 2679). Mit Bleidioxyd in Schwefelsäure erfolgt Bildung von Chinon (W., M., B. 40, 2679). in einer Ausbeute von 94% der Theorie (berechnet auf Bildung von 4C₆H₄O₂ aus C₂₄H₂₀N₄) (W., Kubli, B. 42, 4137, 4148).

 $C_{24}H_{20}N_4 + 2$ HCl. Blaugrüne Flocken. Schwer löslich in Wasser mit grüner Farbe (W., M., B. 40, 2679).

 $\textbf{4-Amino-4'-acetamino-diphenylamin} \quad C_{14}H_{15}ON_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot$ NH₂. B. Entsteht neben Anilin und p-Phenylendiamin beim Behandeln von 4-Acetamino-azo- oder -hydrazober og (Syst. No. 2172 bezw. 2083) mit salzsaurer Zinnchlorürlösung (Jacobson, Kunz, A. 303, 364). — Blättchen (aus heißem Wasser), die sich nach einiger Zeit rötlich färben. F: 178°. Fast unlöslich in Ather, sehr wenig löslich in kaltem Wasser, leicht in heißem Wasser und Alkohol sowie in verdünnten Mineralsäuren. Gibt in salzsaurer Lösung mit FeCl₃ intensiv rotviolette, mit NaNO₂ dunkelrotbraune Färbung, die durch Braun in Hellbraun und schließlich in Hellgelb übergeht. — Wird durch konz. Salzsäure zum 4.4'-Diamino-diphenylamin verseift.

4.4'-Bis-acetamino-diphenylamin $C_{16}H_{17}O_2N_3 = (CH_3 \cdot CO \cdot NH \cdot C_6H_4)_2NH$. B. Beim Erwärmen von 4.4'-Diamino-diphenylamin mit Essigsäureanhydrid (NIETZKI, B. 11, 1098). - Nadeln. F: 239°. Leicht löslich in Alkohol und Eisessig.

4.4'-Bis - [thiocarbonyl - amino] - diphenylamin, 4.4'- Imino - bis - phenylsenföl $C_{14}H_0N_3S_2 = (SC: N \cdot C_6H_4)_2NH$. B. Aus 4.4'-Diamino-diphenylamin und Thiophosgen

- (JACOBSON, KUNZ, A. 303, 366). Gelbe Krystallwärzchen (aus Ligroin). F: 170°. Sehr leicht löslich in Chloroform, schwer in Benzol, Alkohol und Äther.
- N-[4-Amino-phenyl]-N'-[4-anilino-phenyl]-p-phenylendiamin C₂₄H₂₅N₄ = H₂N· NH· NH· NH· C₆H₅. B. Aus Chinon-anil-[4-(4-amino-anilino)-anil] (S. 112) durch Reduktion mit Sn oder SnCl₂ in HCl, auch beim Erhitzen mit Wasser, am glattesten durch Verreiben mit Phenylhydrazin (WILLSTÄTTER, MOORE, B. 40, 2680). Krystellisiert aus siedendem Alkohol unter Zusatz einer Spur Phenylhydrazin in farblosen Prismen. Schmilzt unscharf bei 185°. Sehr leicht löslich in kaltem Aceton, fast unlöslich in Äther. Oxydiert sich in wäßr. Suspension bei Gegenwart von etwas NaOH rasch wieder zu Chinon-anil-[4-(4-amino-anilino)-anil]. Stark basisch.
- **4.4'-Diamino-triphenylamin** $C_{18}H_{17}N_3 = (H_2N \cdot C_6H_4)_2N \cdot C_6H_5^{-1}$). B. Aus 4.4'-Dinitro-triphenylamin (Bd. XII, S. 716) mit Zinn und Salzsäure (Heez, B. 23, 2538). Nadeln. Schmilzt unter Zersetzung bei 187°. $C_{18}H_{17}N_3 + 2$ HCl. Blättchen.
- 4.4'-Bis-acetamino-triphenylamin $C_{22}H_{31}O_2N_3 = (CH_3 \cdot CO \cdot NH \cdot C_4H_4)_2N \cdot C_4H_5$. B. Beim Kochen von salzsaurem 4.4'-Diamino-triphenylamin mit einem Überschuß von Essigsäureanhydrid und Natriumacetat (Herz, B. 23, 2539). Täfelchen (aus verd. Essigsäure). Schmilzt unter Zersetzung bei 268—269°.
- 4.4'-Diamino-N-formyl-diphenylamin $C_{13}H_{13}ON_3 = (H_2N \cdot C_8H_4)_2N \cdot CHO$. B. Bei der Reduktion von 4.4'-Dinitro-N-formyl-diphenylamin (Bd. XII, S. 718) mit Eisen unter Zusatz von wenig Säure (Höchster Farbw., D. R. P. 156388; Frdl. 7, 773; C. 1905 I, 54). Kryställchen (aus Alkohol). F: 193°. Sehr wenig löslich in Wesser, etwas leichter in Alkohol.
- 4.4'-Diamino-N-acetyl-diphenylamin $C_{14}H_{15}ON_2 = (H_2N \cdot C_0H_4)_2N \cdot CO \cdot CH_3$. B. Man nitriert Acetyldiphenylamin (Bd. XII, S. 247) mit Salpeterschwefelsäure und reduziert die Dinitroverbindung mit Eisen und wenig Säure (Höchster Farbw., D. R. P. 156388; C. 1905 I, 54). Krystalle (aus Alkohol). F: 195°. Sehr wenig löslich in Wasser.
- **4.4'-Bis-[acetylmethylamino]-N-acetyl-diphenylamin** $C_{30}H_{23}O_2N_3 = [CH_3\cdot CO\cdot N(CH_2)\cdot C_0H_4]_2N\cdot CO\cdot CH_3$. B. Beim Kochen von **4.4'-Bis-methylamino-diphenylamin** (S. 111) mit überschüssigem Essigsäureanhydrid (GNEHM, SCHRÖTER, J. pr. [2] **73**, 7). Blättchen (aus Alkohol + Wasser). F: 245° (korr.). Unlöslich in Wasser, ziemlich leicht löslich in Alkohol, Methylalkohol, Eisessig und Essigester.
- 4.4'-Bis-[acetyläthylamino]-N-acetyl-diphenylamin $C_{99}H_{27}O_9N_3=[CH_3\cdot CO\cdot N(C_2H_5)\cdot C_6H_4]_2N\cdot CO\cdot CH_3$. B. Beim Kochen von 4.4'-Bis-āthylamino-diphenylamin mit überschüssigem Essigsäureanhydrid (GNEHM, SCHRÖTER, J. pr. [2] 73, 7). Blättchen (aus Alkohol + Wasser). F: 207° (korr.). Unlöslich in Wasser, ziemlich leicht löslich in Alkohol, Methylalkohol, Eisessig und Essigester.
- 4-Dimethylamino 4'-diacetylamino N acetyl diphenylamin $C_{20}H_{23}O_3N_3 = (CH_3)_2N \cdot C_6H_4 \cdot N(CO \cdot CH_3) \cdot C_6H_4 \cdot N(CO \cdot CH_3)_3$. B. Aus 4-Amino-4'-dimethylamino-diphenylamin (S. 111) und Acetylchlorid in Äther bei Gegenwart von Pottasche (GNEHM, WEBER, J. pr. [2] 69, 229). Nadeln (aus Alkohol). F: 142°. Leicht löelich in Alkohol, Benzol, Essigester, Chloroform, unlöelich in Äther, Ligroin.
- Bis-[4-amino-phenyl]-urethan $C_{18}H_{17}O_2N_3=(H_2N\cdot C_0H_4)_2N\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von Bis-[4-nitro-phenyl]-urethan (Bd. XII, S. 724) mit Sn und HCl (Hager, B. 18, 2576). Violette Nadeln (aus Wasser) mit 1 H_2O . Schmilzt bei 101° unter Gasentwicklung.
- Bis-[4-bensamino-phenyl]-urethan $C_{23}H_{35}O_4N_3=(C_0H_5\cdot CO\cdot NH\cdot C_0H_4)_2N\cdot CO_3\cdot C_2H_5$. B. Man versetzt eine Lösung von Bis-[4-amino-phenyl]-urethan in alkoholhaltigem Benzol mit Benzoylchlorid und erwärmt kurz auf dem Wasserbade (Hager, B. 18, 2577). Amorph. F: 235°. Sehr leicht löslich in Eisessig, etwas schwerer in Alkohol.
- 4.4'.4"-Triamino-triphenylamin $C_{18}H_{18}N_4=(H_2N\cdot C_8H_4)_3N^{-1}$). B. Beim Behandeln von 4.4'.4"-Trinitro-triphenylamin (Bd. XII, S. 717) mit salzsaurem Zinnchlorür (Heydelch, B. 18, 2157; 19, 759). Nadeln. F: 230° (Hey., B. 18, 2158). Die Lösung des salzsauren Salzes wird durch Eisenchlorid blau gefärbt, durch Chloranil blaugrün (Hey., B. 18, 2157; vgl. Herz, B. 23, 2539). K₂Cr₂O₇ erzeugt einen blaugrünen Niederschlag (Hey., B. 18, 2157). $C_{18}H_{12}N_4+3HCl$. Nadeln (Hey., B. 18, 2157). Pikrat $C_{18}H_{18}N_4+3C_8H_3O_7N_3$. Grünlichgelbe Nadeln (Hey., B. 19, 759). $2C_{18}H_{18}N_4+6HCl+3PtCl_4$. Nadeln. Löslich in Wasser und Alkohol mit grüner Farbe (Hey., B. 19, 759).
- **4.4'.4"-Tris-[dimethylamino]-triphenylamin-tris-chlormethylat** $C_{27}H_{32}N_4Cl_3 = [(CH_3)_3NCl\cdot C_6H_4]_3N$. *B.* Aus salzsaurem **4.4'.4"-Triamino-triphenylamin** und überschüssigem

¹⁾ So formuliert auf Grund einer Privatmitteilung von J. PICCARD.

Methylsikohol bei 180—200° (Heydrich, B. 19, 760). — $2C_{27}H_{29}N_4Cl_3 + 3$ PtCl₄. Grünliches Pulver.

- 4.4'.4"-Tris-acetamino-triphenylamin $C_{24}H_{24}O_3N_4 = (CH_3 \cdot CO \cdot NH \cdot C_6H_4)_3N$. Nadeln (aus Eisessig). Schmilzt noch nicht bei 240° (HEYDRICH, B. 18, 2157).
- N.N-Dimethyl-N'-phenylglycyl-p-phenylendiamin, Anilinoessigsäure-[4-dimethylamino-anilid] $C_{16}H_{19}ON_3 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot C_6H_5$. B. Aus Anilin und N.N-Dimethyl-N'-chloracetyl-p-phenylendiamin (S. 95) bei vorsichtigem Erhitzen (Rupe, Véetecka, A. 301, 78). Undeutliche weiße Krystalle (aus Alkohol). F: 122—134°. Unlöslich in Wasser, leicht löslich in heißem Alkohol.
- N.N Dimethyl N' [(4 dimethylamino phenyl) glycyl] p phenylendiamin, [4 Dimethylamino anilino] essigsäure [4 dimethylamino anilid] $C_{18}H_{14}ON_4 = (CH_3)_8N \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot N(CH_3)_2$. B. Durch Erwärmen von Glyoxal-natrium-disulfit (Bd. I, S. 761) mit N.N-Dimethyl-p-phenylendiamin in Wasser (HINSBERG, B. 41, 1370). Blättchen (aus verd. Alkohol). F: 173°. Leicht löslich in Alkohol, schwer in Wasser. Färbt sich an der Luft bräunlich.
- N.N Dimethyl N'- [phenylnitrosamino acetyl] p phenylendiamin, Phenylnitrosaminoessigsäure-[4-dimethylamino-anilid] $C_{10}H_{10}O_2N_4 = (CH_2)_2N \cdot C_0H_4 \cdot NH \cdot CO \cdot CH_2 \cdot N(NO) \cdot C_2H_5$. B. Aus N.N Dimethyl N'- phenylglycyl p phenylendiamin (s. o.) in verd. Salzsäure durch NaNO₂ (Ruffe, Véstecka, A. 301, 78). Nadeln (aus Alkohol). F: 165°. Ziemlich schwer löslich in Alkohol. Zeigt keine Nitrosoreaktion und verschmiert beim Reduktionsversuch.
- N.N'-Dichlor-N.N'-diacetyl-p-phenylendiamin $C_{10}H_{10}O_2N_2Cl_2 = C_6H_4(NCl\cdot CO\cdot CH_3)_2$. B. Beim Behandeln von N.N'-Diacetyl-p-phenylendiamin (S. 97) mit unterchloriger Säure (Chattaway, Orton, B. 34, 161, 166). Prismen. Verpufft bei etwa 103°. Lagert sich beim längeren Stehen mit Eisessig in N.N'-Diacetyl-2.5-dichlor-phenylendiamin-(1.4) (S. 118) um.
- N-Brom-N.N'-diacetyl-p-phenylendiamin $C_{10}H_{11}O_2N_2$ Br = $CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NBr \cdot CO \cdot CH_2$. B. Durch mehrstündiges Schütteln von in Chloroform suspendiertem N.N'-Diacetyl-p-phenylendiamin mit einer Lösung von unterbromiger Säure, die kleine Mengen Kalium-dicarbonst enthält (CH., O., B. 34, 166). Gelbe amorphe Masse. Zersetzt sich bei ca. 60°. Fast unlöslich in Chloroform und Ligroin.
- N-Methansulfonyl-p-phenylendiamin $C_7H_{10}O_2N_2S=H_2N\cdot C_6H_4\cdot NH\cdot SO_2\cdot CH_3$. B. Aus Methansulfonsäure-[4-nitro-anilid] (Bd. XII, S. 726) in $50^9/_{0}$ igem Alkohol durch Reduktion mit Zinkstaub und NH₄Cl (MORGAN, PICKARD, MICKLETHWAIT, Soc. 97 [1910], 61). Farblose Nadeln (aus Benzol). F: 122^9 . $C_7H_{10}O_2N_2S+HCl$. Farblose Blättchen. F: 223^9 . Leicht löslich in Wasser und Alkohol.
- N-Bensolsulfonyl-p-phenylendiamin $C_{15}H_{12}O_5N_5S=H_4N\cdot C_6H_4\cdot NH\cdot SO_3\cdot C_6H_5$. B. Aus Benzolsulfonsäure-[4-nitro-anilid] (Bd. XII, S. 726) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwaft, Soc. 87, 80). Krystalle (aus Alkohol). F: 173°. Liefert bei der Diazotierung in salzsaurer Lösung p-Benzolsulfamino-benzoldiazoniumchlorid $C_6H_5\cdot SO_2\cdot NH\cdot C_6H_4\cdot N_3Cl$ (Syst. No. 2203); in essigsaurer Lösung wird dagegen Anhydro-p-benzolsulfamino-diazobenzol $C_6H_5\cdot SO_2\cdot N_3C_6H_4$ (Syst. No. 2203) gebildet.
- N-p-Toluolsulfonyl-p-phenylendiamin C₁₈H₁₄O₂N₂S = H₂N·C₂H₄·NH·SO₃·C₄H₄·CH₃. B. Bei der Reduktion von p-Toluolsulfonsäure-[4-nitro-anilid] (Bd. XII, S. 726) mit Eisen und Essigsäure (Morgan, Micklethwaft, Soc. 87, 1303; vgl. Akt.-Ges. f. Anilinf., D. R. P. 160710; Frdl. 8, 494; C. 1905 I, 1677). Eine weitere Bildung s. im Artikel N.N'-Di-p-toluolsulfonyl-p-phenylendiamin. Nadeln (aus Alkohol). F: 183° (WILLSTÄTTER, PFANNENSTIEL, B. 38, 2247), 185—186° (Mo., Mi.). Beim Zusammenoxydieren mit Phenolen entstehen arylsulfonierte Indophenole (A.-G. f. A.). Salz der p-Toluolsulfonsäure C₁₈H₁₄O₂N₂S + C₇H₈O₃S. Prismen. Ziemlich löslich in heißem Wasser (Wi., PF.).
- N-[Toluol- ω -sulfonyl]-p-phenylendiamin $C_{13}H_{14}O_2N_2S=H_2N\cdot C_6H_4\cdot NH\cdot SO_4\cdot CH_2\cdot C_6H_5$. B. Bei der Reduktion von Toluol- ω -sulfonsäure-[4-nitro-anilid] (Bd. XII, S. 727) mit Eisenspänen und 4% giger Essigsäure (MORGAN, PICKARD, Soc. 97, 56). Prismen (aus Alkohol). F: 121—122°.
- N-[m-Xylol-sulfonyl-(4)]-p-phenylendiamin $C_{14}H_{16}O_{2}N_{2}S = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot SO_{2} \cdot C_{6}H_{3}(CH_{3})_{2}$. Bei der Reduktion von m-Xylol-sulfonsäure-(4)-[4-nitro-anilid] (Bd. XII,

S. 727) mit Eisen und Essigsäure (Morgan, Micklethwatt, Soc. 87, 1307). — Nadeln (aus verd. Alkohol). F: 156—157°.

N-a-Naphthalinsulfonyl-p-phenylendiamin $C_{16}H_{14}O_5N_2S=H_2N\cdot C_6H_4\cdot NH\cdot SO_5\cdot C_{10}H_7$. B. Bei der Reduktion von 12 g a-Naphthalinsulfonsäure-[4-nitro-anilid] (Bd. XII, S. 727) mit 10 g Eisen, 300 g Wasser und 400 ccm Eisessig (Mo., Mr., Soc. 87, 924). — Braune Nadeln (aus Benzol). F: 175°.

N- β -Naphthalinsulfonyl-p-phenylendiamin $C_{10}H_{14}O_2N_2S=H_2N\cdot C_0H_4\cdot NH\cdot SO_2\cdot C_{10}H_7$. B. Bei der Reduktion von β -Naphthalinsulfonsäure-[4-nitro-anilid] (Bd. XII, S. 727) mit Eisen und Essigsäure (Mo., Mi., Soc. 87, 925). — Rötliche Nadeln (aus Essigester). F: 231° bis 232°.

Methandisulfonyl-bis-p-phenylendiamin, Methionsäure-bis-[4-amino-anilid] $C_{19}H_{16}O_4N_4S_2=(H_2N\cdot C_6H_4\cdot NH\cdot SO_2)_2CH_2$. B. Aus Methandisulfonsäure-bis-[4-nitro-anilid] (Bd. XII, S. 727) durch Reduktion mit Eisenspänen und Essigsäure (Morgan, Pickard, Micklethwart, Soc. 97, 58). — Nadeln (aus Essigsster). F: 227°. Ist amphoter.

N-[(d-Campher)- β -sulfonyl]-p-phenylendiamin $C_{16}H_{22}O_3N_3S = H_2N \cdot C_0H_4 \cdot NH \cdot SO_2 \cdot C_{10}H_{15} \cdot O$. B. Aus [d-Campher]- β -sulfonsäure-[4-nitro-anilid] (Bd. XII, S. 727) durch Reduktion mit Eisenspänen und Essigsäure (Morgan, Micklethwait, Soc. 87, 78). — Fast farblose Prismen (aus Alkohol). F: 186°. Löslich in Wasser, Benzol, unlöslich in Petroläther. [a]_p: $+45.8^{\circ}$ (0,4084 g in 25 ccm Aceton).

m-Bengoldisulfonyl-bis-p-phenylendiamin $C_{18}H_{18}O_4N_4S_3 = (H_2N\cdot C_0H_4\cdot NH\cdot SO_2)_2C_0H_4$. B. Bei der Reduktion von m-Benzoldisulfonsäure-bis-[4-nitro-anilid] (Bd. XII, S. 727) mit Eisen und verd. Essigsäure (Morgan, Micklethwait, Soc. 87, 1308). — Nadeln (aus verd. Alkohol). F: 212—213°.

[Benzol-trisulfonyl-(1.3.5)]-tris-p-phenylendiamin $C_{24}H_{24}O_6N_6S_2 = (H_2N \cdot C_6H_4 \cdot NH \cdot SO_2)_3C_6H_3$. B. Bei der Reduktion von Benzol-trisulfonsäure-(1.3.5)-tris-[4-nitro-anilid] (Bd. XII, S. 727) mit Eisenspänen und Eisessig (MORGAN, PICKARD, Soc. 97, 55). — Krystalle (aus Wasser oder Aceton). F: 256°.

[4-Dialkylamino-phenyl]-thionamidsäuren $R_2N\cdot C_6H_4\cdot NH\cdot SO_2H$. Als solche sind vielleicht die Verbindungen $R_2N\cdot C_6H_4\cdot NH_2+SO_2$ (S. 73 u. 75) sufzufassen.

N.N'-Dibengolsulfonyl-p-phenylendiamin

Beim Schütteln von p-Phenylendiamin mit
Benzolsulfochlorid und überschüssiger mäßig konz.

Alkalilauge (HINSBERG, A. 265, 179, 188). —

Blättchen. F: 247°; mäßig löslich in heißem Alkohol, fast unlöslich in Wasser (H.). — Gibt mit

Trimethylenbromid und Natriummethylet die Verbindung der nebenstehenden Formel (Syst. No. 4024) (HINSBERG, KESSLER, A. 340, 119).

N.N'-Di-p-toluolsulfonyl-p-phenylendiamin $C_{50}H_{50}O_4N_5S_8=C_6H_4(NH\cdot SO_3\cdot C_6H_4\cdot CH_3)_5$. B. Beim Erwärmen von 1 Mol.-Gew. salzsaurem p-Phenylendiamin, 2 Mol.-Gew. Natriumacetat und 2 Mol.-Gew. p-Toluolsulfochlorid (Bd. XI, S. 103) (Reverdin, Crépteux, Bl. [3] 25, 1051; B. 34, 3003). Man löst 44 g p-Phenylendiamin in 1 l Wasser und fügt allmählich 212 g p-Toluolsulfochlorid und 1120 ccm 10 9 -giger Natronlauge hinzu; Ausbeute fast quantitativ; als Nebenprodukte treten auf N-p-Toluolsulfonyl-p-phenylendiamin (S. 114) und dessen p-toluolsulfonsaures Salz (Willstätter, Prannenstiel, B. 38, 2247). — Nadeln (aus Alkohol). Schmilzt oberhalb 250° (R., C.), bei 266,5° (W., Pr.). Löslich in Aceton und Essigsäure, schwer löslich in Alkohol und Äther, unlöslich in Wasser (R., C.).

N.N'-Bis-[2-nitro-teluol-sulfonyl-(4)]-p-phenylendiamin $C_{20}H_{18}O_{8}N_{4}S_{2}=C_{0}H_{4}[NH\cdot SO_{2}\cdot C_{6}H_{3}(NO_{2})\cdot CH_{3}]_{2}$. B. Beim Kochen von p-Phenylendiamin mit 2-Nitro-teluol sulfon-säure-(4)-chlorid (Bd. XI, S. 111) in Alkohol (Reverdin, Crépieux, Bl. [3] 27, 271; B. 35, 315). — Gelbe Prismen (aus verd. Aceton). F: oberhalb 250°. Ziemlich löslich in heißem Aceton, fast unlöslich in Benzol, Ligroin, Chloroform und Eisessig.

N-Bensolsulfonyl-N-methyl-p-phenylendismin $C_{13}H_{14}O_2N_2S = H_2N \cdot C_6H_4 \cdot N(CH_5) \cdot SO_2 \cdot C_6H_5$. B. Bei der Reduktion von Benzolsulfonsäure-[N-methyl-4-nitro-anilid] (Bd. XII, S. 727) mit Eisen und Essigsäure (Morgan, Micklethwaff, Soc. 87, 85). — Nadeln oder Platten (aus verd. Alkohol). F: 119°.

N.N'-Di-p-toluolsulfonyl-N.N'-dimethyl-p-phenylendiamin $C_{22}H_{94}O_4N_2S_2 = C_6H_4[N(CH_3)\cdot SO_2\cdot C_6H_4\cdot CH_3]_3$. B. Aus N.N'-Di-p-toluolsulfonyl-p-phenylendiamin (s. o.) und Dimethylsulfat in alkalischer acetonisch-wäßriger Lösung (Willstätter, Prannenstiel, B. 88, 2247). — Prismen (aus Aceton). F: 216°. Leicht löslich in Aceton, schwer in Alkohol, Äther. — Liefert bei kurzem Erwärmen mit starker Schwefelsäure N.N'-Dimethyl-p-phenylendiamin (S. 71).

- N.N'- Dibenzolsulfonyl N.N'- diäthyl p phenylendiamin $C_{23}H_{24}O_4N_5S_2 = C_6H_4[N(C_4H_5)\cdot SO_2\cdot C_6H_5]_2$. B. Beim Erwärmen von N.N'-Dibenzolsulfonyl-p-phenylendiamin. C_2H_5I und alkoh. Kalilauge (HINSBERG, A. 265, 188). Nädelchen (aus verd. Alkohol). F: 197°.
- N.N' Dibenzolsulfonyl N.N' bis $[\beta$ brom äthyl] p phenylendiamin $C_{s_2}H_{s_2}O_4N_sBr_sS_2 = C_sH_4[N(CH_s\cdot CH_sBr)\cdot SO_2\cdot C_sH_5]_s$. B. Beim Erwärmen von N.N'-Dibenzolsulfonyl-p-phenylendiamin mit 2 Mol.-Gew. Äthylenbromid, KOH und Alkohol (HINSBERG, A. 272, 232). Prismen (aus Äthylenbromid). F: 192°. Schwer löslich in den gebräuchlichen Lösungsmitteln.
- N-Thionyl-p-phenylendiamin $C_6H_6ON_2S = H_6N \cdot C_6H_4 \cdot N : SO$. B. Durch Erhitzen von salzsaurem p-Phenylendiamin mit Thionylchlorid und Benzol, neben N.N'-Dithionyl-p-phenylendiamin (MICHAELIS, PETOW, B. 31, 995). Dunkelrote Nadeln (aus Benzol). F: 67°. Wird von Wasser allmählich, von verdünnten Säuren sofort zersetzt.
- N'-Thionyl-N.N-dimethyl-p-phenylendiamin $C_8H_{10}ON_2S=(CH_3)_8N\cdot C_6H_4\cdot N:SO.$ B. Aus N.N-Dimethyl-p-phenylendiamin und SOCl₂ in Benzol (Francke, B. 31, 2180). Dunkelrote Krystalle mit grünlichem Oberflächenschimmer (aus Benzol + Petroläther). F: 72°. Riecht angenehm aromatisch. Wird von siedendem Wasser, Säuren und Alkalien zersetzt. Geht beim Liegen an der Luft allmählich in die Verbindung $C_8H_{12}N_3 + SO_2$ (S. 73) über. Kondensiert sich mit Dimethylanilin bei Gegenwart von ZnCl₂ in geringem Betrage zur Leukoverbindung des Methylenblaus (Syst. No. 4367).
- N'-Thionyl-N.N-diäthyl-p-phenylendiamin $C_{10}H_{14}ON_1S = (C_2H_5)_2N\cdot C_6H_4\cdot N:SO.$ B. Aus N.N-Diäthyl-p-phenylendiamin und SOCl₂ in Benzol (Francke, B. 31, 2181). Dunkelrote Krystalle (aus Benzol + Petroläther). F: 36°. Etwas löslich in Wasser mit gelber Farbe. $C_{10}H_{14}ON_2S + HCl$. Gelblichweißer Niederschlag. F: 170°. Wird durch Wasser zersetzt.
- N'-Thionyl-N-phenyl-p-phenylendiamin, 4-Thionylamino-diphenylamin $C_{12}H_{10}ON_2S = C_6H_5 \cdot NH \cdot C_6H_4 \cdot N: SO.$ B. Aus 4-Amino-diphenylamin (S. 76) und SOCl₂ in Benzol (F., B. 31, 2182). Rote Krystalle. F: 142°.
- N'-Thionyl-N-methyl-N-bensyl-p-phenylendiamin $C_{14}H_{14}ON_3S = C_4H_5 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_4 \cdot N:SO$. B. Aus Methylphenylbenzylamin und Thiorylchlorid in Benzol (F., B. 31, 2182). Rote Krystalle. F: 94°.
- N.N'-Dithionyl-p-phenylendiamin $C_0H_4O_2N_2S_2=C_6H_4(N:SO)_2$. B. Beim Kochen von 10 g salzsaurem p-Phenylendiamin mit 22 g SOCl₂ und Benzol (Michaelis, A. 274, 261) neben Monothionyl-p-phenylendiamin (M., Petow, B. 31, 995). Gelbe Säulen (aus Benzol). F: 115—116°. Leicht löslich in heißem Benzol, ziemlich schwer in Alkohol, Äther und Ligroin.
- N.N.N'.N'-Tetrabenzolsulfonyl-p-phenylendiamin $C_{30}H_{24}O_3N_3S_4 = C_6H_4[N(SO_3 \cdot C_6H_5)_3]_3$. B. Durch längeres Schütteln von N.N'-Dibenzolsulfonyl-p-phenylendiamin (S. 115) mit wenig Kalilauge und viel Benzolsulfochlorid (HINSBERG, KESSLER, B. 38, 911). Nadeln (aus wäßr. Aceton). F: 235—236°. Beständig gegen siedende 12°/0 ige Kalilauge, wird aber durch heiße Natriumäthylatlösung verseift.
- N'-Nitroso-N.N.N'-trimethyl-p-phenylendiamin, [4-Dimethylamino-phenyl]-methyl-nitrosamin $C_0H_{13}ON_3=(CH_3)_2N\cdot C_4H_4\cdot N(NO)\cdot CH_3$. B. Beim Versetzen einer eisessigsauren Lösung von N.N.N'.N'-Tetramethyl-p-phenylendiamin mit 3 Mol.-Gew. einer verd. Natriumnitritlösung (Wurster, Schobig, B. 12, 1899). Grünlichgelbe Blättchen (aus Wasser). F: 98—99°. Leicht löslich in Benzol, Äther, schwer in Ligroin und in kaltem Wasser. Leicht löslich in Säuren. Gibt die Liebermannsche Nitrosoreaktion. Liefert beim Lösen in kons. Salzsäure N.N.N'-Trimethyl-p-phenylendiamin.
- N.N'-Dinitroso-N.N'-dimethyl-p-phenylendiamin, p-Phenylen-bis-[methyl-nitrosamin] $C_8H_{10}O_2N_4=C_8H_4[N(N0)\cdot CH_3]_3$. Prismen. F: 148°; ziemlich schwer löelich in kaltem Wasser, kaltem Alkohol, fast unlöslich in Äther (WILLSTÄTTER, PFANNENSTIEL, B. 38, 2249).
- N.N' Dinitroso N.N' diäthyl p-phenylendiamin, p-Phenylen bis [äthyl-nitrosamin] $C_{10}H_{14}O_2N_4=C_0H_4[N(NO)\cdot C_2H_5]_2$. B. Man versetzt eine saure Lösung von N.N'-Diāthyl-p-phenylendiamin (aus p-Phenylendiamin und 2 Mol. Gew. C_2H_5 Br bereitet) mit überschüssigem Natriumnitrit und schüttelt die saure Lösung mit Äther aus (NIETZKI, B. 16, 465). Graugelbe Blättchen (aus Benzol + Ligroin). F: 90°. Wird von saurer Zinn-chlorürlösung in N.N'-Diāthyl-p-phenylendiamin zurückverwandelt.
- N'-Nitroso-N.N-dimethyl-n'-phenyl-p-phenylendiamin, N-Nitroso-4-dimethyl-amino-diphenylamin, [4-Dimethylamino-phenyl]-phenyl-nitrosamin $C_{14}H_{18}ON_2 =$

(CH₃)₂N·C₆H₄·N(NO)·C₆H₅. B. Beim Versetzen von 4-Dimethylamino-diphenylamin (S. 79) in verdünnter saurer Lösung mit etwas mehr als der berechneten Menge NaNO₂ (FISCHER, WACKER, B. 21, 2613). — Hellgelbe Nadeln (aus Alkohol). Schmilzt bei 116⁶ unter Zersetzung. Die verdünnte alkoholische Lösung wird durch wenig Säure blau gefärbt.

N.N'- Dinitroso - N.N'- diphenyl - p - phenylendiamin, p-Phenylen-bis-[phenyl-nitrosamin] $C_{15}H_{14}O_2N_4 = C_6H_4[N(NO)\cdot C_6H_5]_2$. B. Man versetzt eine essigsaure Lösung von N.N'-Diphenyl-p-phenylendiamin (S. 80) mit der konz. Lösung von 2 Mol.-Gew. NaNO₃ (Calm, B. 16, 2808). Beim Einleiten von nitrosen Gasen (aus Stärkemehl und Salpetersäure) in eine alkoholische Lösung von Chinon-dianil ("Diphenyl-p-azophenylen", Bd. XII, S. 207) (Bandrowski, M. 8, 479). — Goldgelbe Blättchen. Beginnt bei 120° unter Bräunung zu schmelzen (B.). Schwer löslich in Alkohol, Äther, Eisessig und Ligroin (C.). Löst sich in konz. Schwefelsäure mit kirschroter bis fuchsinroter Farbe (C.). — Beim Kochen mit Alkohol entsteht Chinon-dianil (B.).

N.N'- Dinitroso - N.N'- di - o - tolyl - p - phenylendiamin, p-Phenylen-bis-[o-tolyl-nitrosamin] $C_{20}H_{18}O_2N_4 = C_0H_4[N(NO)\cdot C_0H_4\cdot CH_3]_3$. B. Beim Vermischen einer kaltgehaltenen eisessigsauren Lösung von N.N'- Di-o-tolyl-p-phenylendiamin (S. 81) mit 2 Mol.-Gew. NaNO3 (Philip, J. pr. [2] 34, 69). — Bräunlichgelbe Nadeln (aus Alkohol). F: 140°. Wenig löslich in kaltem Alkohol und Eisessig, leicht in Äther.

N.N'-Dinitroso-N.N'-di-p-tolyl-p-phenylendiamin, p-Phenylen-bis-[p-tolyl-nitrosamin] $C_{90}H_{18}O_{2}N_{4} = C_{6}H_{4}[N(NO)\cdot C_{6}H_{4}\cdot CH_{3}]_{2}$. B. Beim Versetzen einer Eisessiglösung von N.N'-Di-p-tolyl-p-phenylendiamin (S. 81) mit 2 Mol.-Gew. NaNO₃ (HATSCHER, Zega, J. pr. [2] 33, 234). — Citronengelbe Blättchen (aus Benzol + Petroläther). Schmilzt unter Zersetzung bei 152°. Wenig löslich in kaltem Alkohol und Benzol.

N'-Nitroso-N.N-dimethyl-N'-benzyl-p-phenylendiamin, [4-Dimethylamino-phenyl]-benzyl-nitrosamin $C_{15}H_{17}ON_3 = (CH_3)_{\bullet}N\cdot C_6H_4\cdot N(NO)\cdot CH_3\cdot C_6H_5$. B. Beim Zugeben von NaNO₂ zu der schwefelsauren Lösung von N.N-Dimethyl-N'-benzyl-p-phenylendiamin (S. 82) (Kohler, A. 241, 362). — Gelbe Nadeln (aus Alkohol). F: 127—128°.

N'-Nitroso-N.N-dimethyl-N'-[4-isopropyl-benzyl]-p-phenylendiamin, [4-Dimethylaminophenyl]-cuminyl-nitrosamin $C_{18}H_{23}ON_3=(CH_3)_2N\cdot C_4H_4\cdot N(NO)\cdot CH_1\cdot C_4H_4\cdot CH(CH_3)_2$. B. Beim Behandeln der wäßr. Lösung von salzsaurem N.N-Dimethyl-N'-cuminyl-p-phenylendiamin (S. 82) mit NaNO₂ in der Kälte (UEBEL, A. 245, 302). — Goldgelbe Nadeln (aus Äther). F: 87°. Sehr leicht löslich in Alkohol und Äther.

Substitutions produkte des p-Phenylendiamins.

2-Chlor-1.4-diamino-benzol, 2-Chlor-phenylendiamin-(1.4) $C_6H_7N_2Cl = H_2N \cdot C_6H_3Cl \cdot NH_2$. B. Aus 2-Chlor-4-nitro-anilin (Bd. XII, S. 732) durch Reduktion mit Zinn und Salzsäure (P. Cohn, C. 1902 I, 752). Aus 2-Chlor-1.4-dinitro-benzol (Bd. V, S. 264) oder aus Chlorchinon-dioxim (Bd. VII, S. 632) durch Zinnchlorür und Salzsäure (Kehrmann, Grab, A. 303, 11). — Nadeln (aus Benzol-Ligroin). F: 63—64° (C.), 64° (K., G.). Leicht löslich in Wasser (K., G.). — Wird durch K₂Cr₂O₇ und H₂SO₄ zu Chlorchinon oxydiert (C.). Mit konz. Salzsäure und Chlorkalk entsteht Chlorchinon-bis-chlorimid (Bd. VII, S. 631) (C.). Liefert mit H₂S und FeCl₂ ein violettrotes Chlorphenthiazin, mit Anilin und Kalium-dichromat ein grünstichig blaues Chlorindamin, mit Phenol und Kaliumdichromat in alkal. Lösung das analoge Chlorindophenol (C.). — C₆H₇N₂Cl+2HCl (K., G.). Nadeln (C.). — C₆H₇N₂Cl+2HCl (K., G.). Nadeln (C.).

 $N^4.N^4-Dimethyl-2-chlor-phenylendiamin-(1.4)$ $C_2H_{11}N_2Cl=H_1N-C_2H_3Cl\cdot N(CH_3)_2$. B. Aus N.N-Dimethyl-3-chlor-4-nitroso-anilin (Bd. XII, S. 687) durch Zinkstaub und Salzsäure (Bayer & Co., D.R. P. 197035; C. 1908 I, 1507). — Weiße Krystalle, die an der Luft bald grau werden. F: 42°. Kp_{18} : 158°. Schwer löslich in Wasser, leicht in organischen Lösungsmitteln. — Durch Diazotieren und Kuppeln der erhaltenen Diazoverbindung mit Chromotropsäure (Bd. XI, S. 307) erhält man einen blauen Monoazofarbstoff.

N⁴.N⁴-Diäthyl-2-chlor-phenylendiamin-(1.4) $C_{10}H_{18}N_{2}Cl = H_{2}N \cdot C_{6}H_{3}Cl \cdot N(C_{2}H_{5})_{2}$. B. Aus N.N-Diäthyl-3-chlor-4-nitroso-anilin durch Reduktion mit Zinkstaub und Salzsäure (B. & Co., D. R. P. 197035; C. 1908 I, 1507). — Wasserhelle Flüssigkeit, die beim Stehen braun wird. Kp_{760} : 285°. Schwer löslich in Wasser, leicht in organischen Lösungsmitteln.

N¹-Acetyl-2-chlor-phenylendiamin-(1.4) C₈H₅ON₂Cl=H₅N·C₆H₃Cl·NH·CO·CH₃. B. Aus 2-Chlor-4-nitro-acetanilid (Bd. XII, S. 733) durch Reduktion (BAYER & Co., D. R. P. 146654; C. 1903 II, 1485) mit Eisenpulver und Essigsäure (Cain, Soc. 95, 716; vgl. Niyogy, C. 1927 II, 411). — F: 133° (BAYER & Co.), 134—135° (N.). — Carosche Säure gibt 2-Chlor-4-nitroso-acetanilid (Bd. VII, S. 632) und wenig 3.3'-Dichlor-4.4'-bis-acetamino-azobenzol (Syst. No. 2172) (C.). Verwendung zur Darstellung eines violetten Monoazofarbstoffs: BAYER & Co.

N.N'-Diacetyl-2-chlor-phenylendiamin-(1.4) $C_{10}H_{11}O_2N_3Cl = C_6H_3Cl(NH\cdot CO\cdot CH_3)_2$. B. Aus salzsaurem 2-Chlor-phenylendiamin-(1.4) mit Essigsäureanhydrid und Natriumacetat (Кенгманн, Grab, A. 303, 11). — Nadeln (aus Toluol-Alkohol). F: 196° (К., С.), 197° (Р. Сонн, С. 1902 I, 752). Leicht löslich in Alkohol, sehr wenig in Benzol (С.).

N.N'-Dibensoyl-2-chlor-phenylendiamin-(1.4) $C_{20}H_{15}O_2N_2Cl = C_6H_3Cl(NH\cdot CO\cdot C_6H_5)_2$. Nadeln (aus Chloroform). F: 228° (P. COHN, C. 1902 I, 752).

 N^1 -p-Toluolsulfonyl-2-chlor-phenylendiamin-(1.4) $C_{13}H_{13}O_1N_2ClS = H_3N \cdot C_6H_3Cl \cdot NH \cdot SO_3 \cdot C_6H_4 \cdot CH_3$. B. Aus p-Toluolsulfonsäure-[2-chlor-anilid] (Bd. XII, S. 602) durch Nitrieren und Reduzieren der Nitroverbindung (Akt.-Ges. f. Anilinf., D. R. P. 160710; C. 1905 I, 1677). — F: 167°. — Beim Zusammenoxydieren mit Phenolen entstehen p-toluolsulfonierte Indophenole.

2.5-Dichlor-1.4-diamino-benzol, 2.5-Dichlor-phenylendiamin-(1.4) $C_6H_6N_3Cl_2 = H_2N_1Cl_4\cdot NH_2$. B. Durch Reduktion von 2.5-Dichlor-1.4-dinitro-benzol (Bd. V, S. 265) mit Eisen und Salzsäure (Morgan, Soc. 81, 1382) oder Zinn und Salzsäure (Hartley, Cohen, Soc. 85, 868). Bei der Reduktion von 2.5-Dichlor-chinon-dioxim (Bd. VII, S. 633) mit Zinn und Salzsäure (Kehrmann, B. 21, 3320). Entsteht neben N.N-Dimethyl-p-phenylendiamin (S. 72) bei etwa ½-stdg. Erhitzen von 200 g salzsaurem p-Nitroso-dimethylanilin (Bd. XII, S. 677) mit 1000 g Salzsäure (D: 1,2) auf 100—105°; man filtriert nach 24-stdg. Stehen das ausgeschiedene salzsaure 2.5-Dichlor-phenylendiamin-(1.4) ab und zersetzt es in wäßr. Lösung mit Ammoniak (Möhlau, B. 19, 2010). Bei der Reduktion von 2.5-Dichlor-4-nitro-anilin (Bd. XII, S. 735) (NOELTING, KOPP, B. 38, 3515). Durch Hydrolyse von N.N'- Diacetyl-2.5-dichlor-phenylendiamin-(1.4) (s. u.) (Chattaway, Orton, B. 34, 166).

— Prismen (aus Wasser). F: 164° (Mö.), 170° (Ch., O.; N., Kopp). Sehr wenig löslich in Wasser (Mor.) und Alkohol (H., Co.). — Liefert bei der Oxydation mit Chromsäuregemisch 2.5-Dichlor-chinon (Bd. VII, S. 632) (Mö.). Gibt in verdünnter salzsaurer Lösung mit Chlor-kalklösung 2.5-Dichlor-chinon-bis-chlorimid (Bd. VII, S. 633) (Mö.).

N.N'-Diphenyl-2.5-dichlor-phenylendiamin-(1.4) $C_{18}H_{14}N_2Cl_2 = C_0H_2Cl_2(NH \cdot C_0H_5)_2$.

B. Aus Chinon-dianil (Bd. XII, S. 207) in Benzol durch trocknen Chlorwasserstoff, neben N.N'-Diphenyl-p-phenylendiamin (S. 80) und N.N'-Diphenyl-2.3- oder 2.6-dichlor-phenylendiamin-(1.4) (s. u.) (Bandrowski, Prokopeczko, C. 1902 I, 527). — Krystalle (aus verd. Alkohol). F: 157°. Läßt sich in 2.5-Dichlor-chinon-dianil (Bd. XII, S. 208) überführen.

N.N'-Diacetyl-2.5-dichlor-phenylendiamin-(1.4) C₁₀H₁₀O₂N₃Cl₃ = C₆H₂Cl₅(NH·CO-CH₃)₂. B. Durch Einw. von Eisessig auf N.N'-Dichlor-N.N'-diacetyl-p-phenylendiamin (S. 114) unter Kühlung (Chattaway, Orton, B. 34, 166). Aus 2.5-Dichlor-phenylendiamin (-1.4) durch Acetylierung (Noelting, Kopp, B. 38, 3515). — F: 301° (Ch., O.), 294—296° (N., K.).

N.N'-Dichlor-N.N'-diacetyl-2.5-dichlor-phenylendiamin-(1.4), N.N'-Diacetyl-N.N'.2.5-tetrachlor-phenylendiamin-(1.4) $C_{10}H_{8}O_{2}N_{3}Cl_{4} = C_{6}H_{2}Cl_{2}(NCl\cdot CO\cdot CH_{2})_{2}$. B. Aus N.N'-Diacetyl-2.5-dichlor-phenylendiamin-(1.4) in Chloroform durch eine mit KHCO, versetzte Lösung von HOCl (Chattaway, Obton, B. 34, 162, 166). — Prismen. F: 163° (Zers.).

2.6-Dichlor-1.4-diamino-bensol, 2.6-Dichlor-phenylendiamin-(1.4) $C_6H_6N_9Cl_9$ =

2.6-Dichlor-1.4-diamino-benzol, 2.6-Dichlor-phenylendiamin-(1.4) $C_eH_eN_eCl_2 = H_1N \cdot C_eH_2Cl_2 \cdot NH_2$. B. Aus 2.6-Dichlor-4-nitro-anilin (Bd. XII, S. 735) mit Zinn und Salzsäure (Witt, B. 8, 145). — Nadeln. F: 123,5°.

Indophenol $C_{12}H_2ON_2Cl_2 = H_2N \cdot C_eH_2Cl_2 \cdot N \cdot C_eH_4 \cdot O$ bezw. $HO \cdot C_eH_4 \cdot N \cdot C_eH_2Cl_2 \cdot NH$. B. Aus salzsaurem 2.6-Dichlor-phenylendiamin-(1.4) und Phenol durch gemeinsame Oxydation mit Kaliumdichromat in wäßr. Lösung unter Eiskühlung (Bad. Anilin- u. Sodaf., D. R. P. 152689; C. 1904 II, 274). — Kupferrotes Pulver, das beim Reiben bronzefarbenen Metallglanz annimmt. Löst sich in Chloroform, Aceton und Äther carminrot, in Alkohol violettrot. — Wird erst bei längerem Stehen mit 30°/0 iger Essigsäure zerstört. Beim Erhitzen mit Schwefel und Schwefelalkali entsteht ein violetter substantiver Farbstoff.

N.N' - Diphenyl - 2.3 - oder 2.6 - dichlor - phenylendiamin - (1.4) $C_{10}H_{14}N_{2}Cl_{2}$ = C₅H₂Cl₂(NH·C₅H₅)₃. B. Entsteht neben N.N'-Diphenyl-2.5-dichlor-phenylendiamin-(1.4) (s. o.) aus Chinon-dianil (Bd. XII, S. 207) in Benzol durch trocknen Chlorwasserstoff (BAN-DROWSKI, PROKOPECZKO, C. 1902 I, 527). — Krystalle (aus verd. Alkohol). F: 106°. Last sich in 2.3- oder 2.6-Dichlor-chinon-dianil (Bd. XII, S. 208) verwandeln.

2.3.5.4'-Tetrachlor-4-amino-diphenylamin $C_{12}H_8N_2Cl_4=C_9H_4Cl\cdot NH\cdot C_6HCl_2\cdot NH_2$. Zur Konstitution vgl. Jacobson, A. 367, 306. — B. Entsteht in geringer Menge aus Azobenzol (Syst. No. 2092) in Methylalkohol durch HCl neben Benzidin, Anilin und 4-Chlor-

anilin (Jacobson, C. 1898 II, 36; A. 367, 313). Aus 4-Chlor-azobenzol in Methylalkohol mit HCl neben anderen Produkten (J., A. 367, 317). Aus 2-Methyl-azobenzol (Syst. No. 2094) in Methylalkohol mit HCl neben anderen Produkten (J., A. 367, 324). — Nadeln (aus Alkohol oder Benzol). F: 150—151°; schwer löslich in Petroläther, kaltem Alkohol, Benzol, Ather, Eisessig, leicht in warmem Alkohol, Äther, Eisessig, sehr leicht in Aceton, warmem Benzol, Chloroform (J., A. 367, 314). — Gibt mit Chromsäure und verd. Schwefelsäure 2.3.5-Tri-chlor-chinon-[4-chlor-anil]-(1) (Bd. XII, S. 611) (J., C. 1898 II, 36; A. 367, 315). Gibt in H₂SO₄ mit NaNO₂ bei Siedetemperatur Chloranilinotrichlorbenzoldiazoniumnitrat (J., A. 367, 337).

2.3.5.4'-Tetrachlor-4-salicylalamino-diphenylamin $C_{19}H_{12}ON_2Cl_4 = C_6H_4Cl\cdot NH\cdot C_6HCl_5\cdot N:CH\cdot C_6H_4\cdot OH.$ B. Aus 2.3.5.4'-Tetrachlor-4-amino-diphenylamin in Alkohol mit Salicylaldehyd auf dem Wasserbade (Jacobson, A. 367, 314). — Gelbe Krystalle (aus Benzol + Ligroin). F: 153—154°. Leicht löslich in Ligroin, Alkohol und Äther.

2.3.5.6-Tetrachlor-1.4-diamino-benzol, 2.3.5.6-Tetrachlor-phenylendiamin-(1.4) $C_6H_4N_3Cl_4=H_2N\cdot C_6Cl_4\cdot NH_2$. B. Beim Kochen von Chinondichlordiimid (Bd. VII, S. 621) mit Salzsäure (D: 1,2), am besten in Gegenwart von SnCl₂ (Krause, B. 12, 51). — Hellrötliche Nadeln (aus wäßr. Alkohol). Schwärzt sich bei 200° und schmilzt bei 218°. Fast unlöslich in Wasser und kalter Salzsäure, wenig löslich in kochender Salzsäure (D: 1,2), leicht in Alkohol, Ather, Benzol, Eisessig. — Wird von Salpetersäure zu Chloranil oxydiert. Zersetzt sich nicht beim Erwärmen mit Schwefelsäure. Wird von SnCl₂ nicht angegriffen.

N.N'-Diphenyl-2.3.5.6-tetrachlor-phenylendiamin-(1.4) $C_{18}H_{19}N_2CI_4 = C_6CI_4(NH\cdot C_6H_5)_8$. B. Aus 2.5-Dichlor-chinon-dianil (Bd. XII, S. 208) sowie aus 2.3- oder 2.6-Dichlor-chinon-dianil (Bd. XII, S. 208) durch trocknen Chlorwasserstoff (Bandrowski, Prokopeczko, C. 1902 I, 527). — Krystalle. Schwer löslich in den gewöhnlichen Mitteln. Sehr schwache Base.

3.2'-Dibrom-4-amino-diphenylamin $C_{12}H_{10}N_2Br_2 = C_6H_4Br\cdot NH\cdot C_6H_2Br\cdot NH_2$. B. Durch Reduktion von 3.2'-Dibrom-4-nitroso-diphenylhydroxylamin (Syst. No. 1932) (Bamberg, Büsdorf, Sand, B. 31, 1520). — Nadeln (aus Ligroin). F: 70°. — Ist sehr luftempfindlen, falls nicht völlig rein und trocken. FeCl₃ ruft in der sauren Lösung ein intensives Fuchsinrot hervor, das beim Kochen verschwindet; gleichzeitig tritt Chinongeruch auf. — $2C_{12}H_{10}N_3Br_2 + H_3SO_4$. Schwer löslich in kaltem Wasser.

N¹-Bensoyl-2-brom-phenylendiamin-(1.4) $C_{18}H_{11}ON_2Br = NH_2\cdot C_4H_4Br\cdot NH\cdot CO\cdot C_4H_5$. B. Bei der Reduktion von Benzoesäure-[2-brom-4-nitro-anilid] (Bd. XII, S. 739) (HÜBNER, JOHNSON, B. 10, 1709). — Blätter (aus Alkohol). F: 205°.

2.5-Dibrom-1.4-diamino-benzol, 2.5-Dibrom-phenylendiamin-(1.4) C_eH_eN₂Br₂ = H₂N·C_eH₂Br₂·NH₂. B. Aus 2.5-Dibrom-1.4-dinitro-benzol (Bd. V, S. 268) durch Reduktion mit Zinn und Salzsäure (Jackson, Calhane, Am. 28, 458). — Weiße Platten (aus Chloroform), die sich im Licht bräunen. F: 183—184°; geht beim Schmelzen in eine dunkelblaue Masse über. Löslich in Äther und Aceton, schwer löslich in Alkohol, Benzol, Chloroform und Eisessig in der Kälte, leichter in der Wärme. — Gibt mit FcCl₃ und H₂S in verdünnter saurer Lösung ein purpurrotes Produkt. Konzentrierte Salpetersäure bildet eine gelbe, chinonartig riechende Verbindung, rauchende Salpetersäure wirkt heftig ein unter Bildung eines schwarzen Teers. Bei Oxydation mit Chromaäuregemisch entsteht 2.5-Dibrom-chinon (Bd. VII, S. 640). — C_eH_eN₂Br₂+2HCl. Weiße Nadeln (aus verd. Salzsäure). Färbt sich an der Luft grün. Zersetzt sich beim Erhitzen in HCl und die Base. Ohne Zersetzung löslich in siedendem Wasser.

2.6-Dibrom-1.4-diamino-bensol, 2.6-Dibrom-phenylendiamin-(1.4) C₀H₆N₁Br₂ = H₂N·C₀H₆Br₂·NH₃. B. Durch Reduktion von 2.6-Dibrom-4-nitro-anilin (Bd. XII, S. 743) mit 3¹/₂ Tin. Zinnchlorür und 8 Tin. konz. Salzsäure (Hewitt, Walker, Soc. 91, 1141). Durch Reduktion von 3.5-Dibrom-4-amino-azobenzol (Syst. No. 2172) in verdünnter alkoholischer Suspension mit hydroschwefligsaurem Natrium Na₂S₂O₄ (H., W., Soc. 91, 1140). Bei der Reduktion von 2.6-Dibrom-4-nitro-diazobenzolimid (Bd. V, S. 279) mit Zinn und Salzsäure in der Wärme (Nobliting, Grandbuugelin, Michell, B. 25, 3334). — Nadeln (aus Wasser). F: 138° (N., G., M.), 137,5° (H., W.). — Wird von Brom in Äther in die chinhydronartige Verbindung C₂H₂N₃Br₂ + C₄H₄N₃Br₃ + 2+BBr (S. 120) übergeführt (Jackbon, Calhane, B. 35, 2495; Am. 31, 212; Pringsheim, B. 38, 3354; Kehrmann, B. 38, 3778). — C₄H₄N₂Br₂ + 2 HCl. Nadeln (N., G., M.).

Verbindung von 2.6-Dibrom-phenylendiamin-(1.4) mit 2.6-Dibrom-chinon-diimid und Bromwasserstoff $C_0H_0N_2Br_3+C_0H_4N_2Br_2+2HBr$. Zur Zusammensetzung und Konstitution vgl. Pringsheim, B. 38, 3354; Kehrmann, B. 38, 3778. — B. Durch Einw. von Brom auf in Äther gelöstes 2.6-Dibrom-phenylendiamin-(1.4) (Jackson, Calmane, B. 35, 2495; Am. 31, 212). — Grüner Niederschlag. Wird durch Wasser oder Alkohol zersetzt (J., C.). Gibt in äther. Suspension mit Alkali eine rote, sehr unbeständige Lösung (J., C.). Läßt sich leicht zu 2.6-Dibrom-phenylendiamin-(1.4) reduzieren (J., C.).

N.N'-Diacetyl-2.6-dibrom-phenylendiamin-(1.4) $C_{10}H_{10}O_2N_2Br_2=C_0H_2Br_2(NH\cdot CO\cdot CH_3)_2$. B. Durch Erhitzen von 2.6-Dibrom-phenylendiamin-(1.4) mit Essigsäureanhydrid (NOELTING, GRANDMOUGIN, MICHEL, B. 25, 3334). — Blätter (aus verd. Alkohol). F: 108° (Zers.).

 N^4 (?)-Benzoyl-2.6-dibrom-phenylendiamin-(1.4) $C_{13}H_{10}ON_3Br_2 = H_2N \cdot C_9H_3Br_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Durch Einw. der berechneten Menge Benzoylchlorid auf 2.6-Dibrom-phenylendiamin-(1.4) in Äther (Jackson, Calhane, Am. 31, 219). — Gelblichweiße Prismen (aus verd. Alkohol). F: 194°. Löslich in Alkohol, Eisessig, Aceton, schwer löslich in Benzol, Chloroform, Ligroin, unlöslich in Äther.

2.6-Dijod-1.4-diamino-benzol, 2.6-Dijod-phenylendiamin-(1.4) $C_6H_6N_2I_2 = H_2N \cdot C_6H_2I_2 \cdot NH_2$. B. Durch Reduktion von 2.6-Dijod-4-nitro-anilin (Bd. XII, S. 747) mit SnCl₂ und konz. Salzsāure (Willerropt, Arnold, B. 34, 3351). — Nadeln (aus Wasser). F: 108°. Leicht löslich in Alkohol und Äther. Sehr lichtempfindlich. — Durch Oxydation mit CrO₃ in der Kälte entsteht 2.6-Dijod-chinon (Bd. VII, S. 643).

2.3.5.6 - Tetrajod - 1.4 - diamino - bensol, 2.3.5.6 - Tetrajod - phenylendiamin - (1.4) $C_6H_4N_2I_4=H_2N\cdot C_6I_4\cdot NH_2$. B. Durch Eintragen einer Lösung von 18 g Chlorjod in 50 com Eisessig in eine 60° warme Lösung von 20 g 2.6-Dijod-phenylendiamin-(1.4) (s. o.) in 100 com Eisessig, Erhitzen zum Sieden, Zufügen von 50 ccm Wasser, mehrstündiges Erwärmen auf dem Wasserbade und Eingießen in durch Eisstücke gekühlte Natronlauge (W., A., B. 34, 3351). — Krystalle (aus Äther-Alkohol). Schmilzt gegen 152°. Leicht löslich in Alkohol und Äther, schwer in heißem Wasser. Ist sehr lichtempfindlich.

2-Nitro-1.4-diamino-benzol, 2-Nitro-phenylendiamin-(1.4) $C_aH_7O_2N_3 = H_2N \cdot C_aH_3(NO_2) \cdot NH_2$. B. Neben 4-Nitro-phenylendiamin-(1.2) (S. 29) bei der Reduktion von 2.4-Dinitro-anilin (Bd. XII, S. 747) mit alkoh. Schwefelammonium (Kehrmann, B. 28, 1707). Aus 2.4-Dinitro-anilin in siedendem Alkohol mit wäßr. Natriumhydrosulfidlösung NaSH, neben 4-Nitro-phenylendiamin-(1.2) (Brand, J. pr. [2] 74, 470). Beim Kochen von N⁴. Acetyl-2-nitro-phenylendiamin-(1.4) (S. 121) mit konz. Salzsäure (Ladenburg, B. 17, 149; Bülow, Mann, B. 30, 984) oder mit Kalilauge (Chazel, B. 40, 3183). Beim Kochen von N¹-Acetyl-2-nitro-phenylendiamin-(1.4) (S. 121) mit konz. Salzsäure (L.; Bü., M.). Beim Kochen von N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) (S. 121) mit konz. Salzsäure (L.; Bü., M.). Beim Kochen von 2-Nitro-4-amino-benzazid (Syst. No. 1905) mit Wasser, neben N.N'-Bis-[2-nitro-4-amino-benzazid (Cultius, Bollenbach, J. pr. [2] 76, 298). Man kocht 2-Nitro-4-amino-benzazid mit Alkohol und verseift das sirupõse Reaktionsprodukt (vielleicht [2-Nitro-4-amino-phenyl]-urethan) mit verd. Natronlauge (Cu., Bo.). — Fast schwarze Nadeln mit stark grünem Glanz (aus Wasser). F: 137° (L.; Br.), 134—135° (K.). — Bildet mit verd. Salzsäure ein beständiges einsäuriges, mit konz. Salzsäure ein unbeständiges zweisäuriges Salz (Bü., M.). Liefert mit salpetriger Säure nur eine Diazo- (nicht eine Tetrazo-)Verbindung (Bü., B. 29, 2284; Bü., M.). Beim Acetylieren oder Bensoylieren in alkal. Lösung tritt nur ein Säurerest ein (Bü., M.). Anwendung zur Erzeugung von Färbungen auf Pelz, Haaren und Federn: Höchster Farbw., D. R. P. 211567; C. 1909 II, 663. — C₆H₇O₂N₂ + HCl. Tafeln (Bü., M.). — C₅H₇O₂N₃ + 2 HCl. Krystallmehl. Verliert bei 110—120° oder beim Umkrystallieieren aus Wasser 1 HCl (Bü., M.).

N¹-Methyl-2-nitro-phenylendiamin-(1.4) $C_7H_9O_2N_8=H_9N\cdot C_6H_8(NO_2)\cdot NH\cdot CH_8$. B. Neben N¹-Methyl-4-nitro-phenylendiamin-(1.2) (S. 29) bei der Reduktion von N-Methyl-2.4-dinitro-anilin (Bd. XII, S. 749) mit alkoh. Schwefelammonium (Kehrmann, B. 28, 1708). — Fast schwarze, messingglänzende Prismen (aus Wasser). F: 109—110°. Leicht löslich in verd. Säuren mit gelbroter Farbe. Die wäßr. Lösung ist fuchsinrot.

 $N^1.N^1.N^4$ - oder $N^1.N^4$ -Trimethyl-2-nitro-phenylendiamin-(1.4) $C_2H_{13}O_2N_3 = CH_3 \cdot NH \cdot C_2H_3(NO_3) \cdot N(CH_3)_3$. B. Beim Erhitzen seines N-Nitroso-derivates (S. 122) mit

Salzsäure (Wurster, Schobig, B. 12, 1812). — $2 C_0 H_{12} O_2 N_2 + 2 HCl + PtCl_4$. Orangegelbe Krystalle.

3.2'.4'-Trinitro-4-amino-diphenylamin $C_{12}H_2O_4N_5=H_4N\cdot C_4H_2(NO_2)\cdot NH\cdot C_4H_2(NO_2)_2$.

B. Aus 2-Nitro-phenylendiamin-(1.4) und 4-Chlor-1.3-dinitro-benzol (Höchster Farbw., D. R. P. 110360; C. 1900 II, 301; REVERDIN, DELÉTRA, B. 37, 1727; Bl. [3] 31, 635). — Rotbraune Nadeln (aus Eisessig). F: 226° (R., D.). — Bei der Einw. von NaClO₂ und HCl auf die essigsaure Lösung entsteht 2.3.5-Trichlor-chinon-mono-[2.4-dinitro-anil] (Bd. XII, S. 754) (R., D.). Liefert beim Erhitzen mit Schwefel und Schwefelnatrium auf 150—180° einen rotbraunen Baumwollfarbstoff (H. F.).

N.N.N'.N'- Tetraphenyl - 2 - nitro - phenylendiamin - (1.4) $C_{20}H_{22}O_2N_3 = O_2N \cdot C_4H_3[N(C_4H_5)_2]_2$. B. Durch Einw. von NaNO₂ auf in Eisessig gelöstes N.N.N'.N'-Tetraphenyl-p-phenylendiamin (S. 80) (Haeussermann, Bauer, B. 32, 1913). — Ziegelrote Nadeln (aus Eisessig). F: 167—168°. Schwer löslich in kaltem Alkohol und Benzol, leicht in siedendem Aceton und Eisessig.

N⁴-Formyl-2-nitro-phenylendiamin-(1.4) $C_7H_7O_3N_3 = H_2N \cdot C_6H_3(NO_2) \cdot NH \cdot CHO$. B. Aus N-Formyl-phenylendiamin-(1.4) durch Nitrieren (BAYER & Co., D. R. P. 211966; C. 1909 II, 395). — Findet Verwendung zur Darstellung von Monoazofarbstoffen.

 N^1 -Dimethyl- N^4 -formyl-2-nitro-phenylendiamin-(1.4) $C_0H_{11}O_3N_3=(CH_2)N^1$ - $C_0H_{31}(NO_2)\cdot NH\cdot CHO$. B. Beim Eintragen von 2 Tln. NaNO₂ in eine gut gekühlte Lösung von 1 Tl. N.N.-Dimethyl-N'-formyl-p-phenylendiamin (8. 94) in 20 Tln. 20^0 /giger Essigsäure (PINNOW, PISTOG, B. 27, 604). — Nadeln (aus Wasser). F: 86°. Leicht löslich in Alkohol und Chloroform, schwer in kaltem Wasser, Äther und Benzol. — Bei der Reduktion mit Zinn und Salzsäure entsteht 2.4-Diamino-1-dimethylamino-benzol (Syst. No. 1800).

N¹-Acetyl-2-nitro-phenylendiamin-(1.4) $C_9H_9O_3N_3=H_2N\cdot C_4H_3(NO_2)\cdot NH\cdot CO\cdot CH_3$. B. Man trägt N-[4-Acetamino-phenyl]-phthalimid (Syst. No. 3218) bei -5° bis -10° in rauchende Salpetersäure (D: 1,5) ein und verseift das dabei entstehende N-[3-Nitro-4-acetamino-phenyl]-phthalimid durch mehrtägiges Stehenlassen mit Ammoniak oder schneller durch Erhitzen mit Ammoniak (CHAZEL, B. 40, 3181, 3182). — Dunkelrote Nadeln (aus Wasser). F: 162,5°. Löslich in Wasser, Alkohol und Benzol. — Liefert beim Kochen mit Kalilauge 2-Nitro-phenylendiamin-(1.4).

N⁴-Acetyl-2-nitro-phenylendiamin-(1.4) C₈H₉O₂N₃ = H₂N·C₈H₃(NO₈)·NH·CO·CH₃.

B. Bei 2-stdg. Kochen von 1 Tl. 2-Nitro-phenylendiamin-(1.4) mit 10 Tln. Eisessig (BÜLOW, MANN, B. 30, 981). Aus 1 Tl. 2-Nitro-phenylendiamin-(1.4), gelöst, in 50 Tln. Wasser, beim Schütteln mit überschüssigem Essigsäureanhydrid in der Kälte (BÜ., M.). Aus N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) durch Stehenlassen mit der 20-fachen Menge Ammoniak bei 10—15° (BÜ., M.), durch Lösen in konz. Kalilauge (1:2) in der Kälte (KLEEMANN, B. 19, 339), durch gelindes Erwärmen mit verd. Natronlauge (LADENBURG, B. 17, 148; vgl. BIEDERMANN, LEDOUX, B. 7, 1533), durch 15 Minuten langes Kochen mit 2 Tln. Atzbaryt und 30 Tln. Wasser (BÜ., M.). Durch Verseifung von [2-Nitro-4-acetamino-phenyl]-oxamidsäure (S. 122) oder ihrem Athylester mit überschüssigem Ammoniak bei gewöhnlicher Temperatur (KOLLER, B. 36, 415). Man nitriert N-[4-Acetamino-phenyl]-phthalimid (Syst. No. 3218) in konz. Schwefelsäure mit einer Lösung von Kaliumnitrat in konz. Schwefelsäure bei —5° bis —10° und verseift das dabei entstehende N-[2-Nitro-4-acetamino-phenyl]-phthalimid durch mehrtägiges Stehenlassen mit Ammoniak oder schneller durch wiederholtes Abdampfen mit Ammoniak (CHAZEL, B. 40, 3180, 3181). Entsteht in analoger Weise aus N-[4-Acetamino-phenyl]-phthalamidsäure (S. 100) (Ch.). — Dunkelrote Nadeln oder rote Blättchen (aus Wasser). F: 189° (BÜ., M.), 188,6° (Ch.), 188° (KO.). Leicht löslich in Alkohol (BÜ., M.). — Wird beim Kochen mit konz. Salzsäure (LA.; BÜ., M.) oder mit Kalilauge zu 2-Nitro-phenylendiamin-(1.4) verseift (Ch.). — Verwendung zur Darstellung von Monoazofarbstoffen: Bayers & Co., D. R. P. 172168; C. 1906 II, 643).

N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) $C_{10}H_{11}O_4N_3 = O_3N \cdot C_6H_2(NH \cdot CO \cdot CH_3)_2$.

B. Man trägt 1 Tl. N.N'-Diacetyl-phenylendiamin-(1.4) allmählich in ein Gemisch aus $2^1/_2$. Tln. Salpetersäure (D: 1,48) und 25 Tln. Eisessig ein (Ladenburg, B. 17, 148; vgl. Biedermann, Ledoux, B. 7, 1633). Beim langsamen Eintragen eines abgekühlten Gemisches von 0,5 Tln. Salpetersäure (D: 1,4) und 1 Tl. konz. Schwefelsäure in eine auf —5° abgekühlten Comisches von 1 Tl. N.N'-Diacetyl-phenylendiamin-(1.4) in 10 Tln. konz. Schwefelsäure (Bülow, Mann, B. 30, 979). Beim Kochen von 1 Tl. 2-Nitro-phenylendiamin-(1.4) mit 5 Tln. Essigsäureanhydrid (Bü., M.). — Gelbe Nadeln (aus Wasser). F: 186° (La.), 185° (Bü., M.), 184° (Bie., Le.). Läßt sich durch Ammoniak (Bü., M.), Kalilauge (Kleemann, B. 19, 339), Natronlauge (La.), Barytwasser (Bü., M.) zu N⁴-Acetyl-2-nitro-phenylendiamin-(1.4) verseifen. Bei 15 Minuten langem Kochen mit kons. Salssäure wird 2-Nitro-phenylendiamin-(1.4) gebildet (Bü., M.). — Verwendung zur Darstellung von gelben Schwefelfarbstoffen (Akt.-Ges. f. Anilinf., D. R. P. 146916, 150915, 152717, 154108; C. 1904 I, 234, 1236; II, 799, 966).

Verbindung von N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) mit N⁴-Acetyl-2-nitro-phenylendiamin-(1.4) $C_{10}H_{20}O_{7}N_{6}=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{6}(NO_{3})\cdot NH\cdot CO\cdot CH_{2}+H_{2}N\cdot C_{6}H_{3}(NO_{3})\cdot NH\cdot CO\cdot CH_{3}$. B. Bildet sich als Zwischenprodukt bei der Verseifung von N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) durch Salzsäure (Bülow, Mann, B. 30, 985). — Rot, krystallinisch. F: 161°. — Aus der wäßrigen Lösung fällt Natronlauge sofort N⁴-Acetyl-2-nitro-phenylendiamin-(1.4) aus.

N.N'-Diphenyl-N.N'-diacetyl-2-nitro-phenylendiamin-(1.4) $C_{22}H_{19}O_4N_3 = O_2N \cdot C_4H_3[N(C_6H_5)(CO \cdot CH_3)]_2$. B. Man erwärmt N.N'-Diphenyl-N.N'-diacetyl-phenylendiamin-(1.4) mit Salpetersäure (D: 1,40) bis zur Lösung und gießt in Eiswasser (Brunck, B. 25, 2717). — Blaßgelbe Nadeln (aus Alkohol). F: 160°. Leicht löslich in Alkohol, Äther, Eisessig und Benzol, unlöslich in Ligroin. — Beim Kochen mit alkoh. Kali entsteht eine Substanz, die aus Alkohol in violetten, metallglänzenden Blättchen krystallisiert.

N⁴-Bensoyl-2-nitro-phenylendiamin-(1.4) $C_{13}H_{11}O_3N_3 = H_2N \cdot C_6H_3(NO_2) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 2-Nitro-phenylendiamin-(1.4) und Benzoylchlorid in Gegenwart von Natronlauge (Bülow, Mann, B. 30, 984). — Gelbrote Nadeln. F: 236°. Unlöslich in siedendem Wasser, löslich in Alkohol, Äther, Chloroform.

[3-Nitro-4-amino-phenyl]-oxamidsäure $C_8H_7O_5N_3=H_2N\cdot C_6H_3(NO_2)\cdot NH\cdot CO\cdot CO_2H$. B. Durch Behandlung von [3-Nitro-4-acetamino-phenyl]-oxamidsäure (s. u.) mit überschüssigem Ammoniak auf dem Wasserbade (Koller, B. 36, 416). Beim Kochen von [3-Nitro-4-acetamino-phenyl]-oxamidsäure-äthylester (s. u.) mit verd. Sodalösung (K.). — F: 215°.

[3-Nitro-4-dimethylamino-phenyl]-oxamidsäure-äthylester C₁₂H₁₅U₅N₃=(CH₃)₃N·C₆H₃(NO₃)·NH·CO·CO₂·C₂H₅. Zur Konstitution vgl. Mertens, B. 19, 2125; Pinnow, Pistor, B. 27, 604, 605, 606. — B. Beim Versetzen einer Lösung von [4-Dimethylamino-phenyl]-oxamidsäure-äthylester in verd. Salzsäure mit übersetüssigem Natriumnitrit (Wurster, Sendtner, B. 12, 1805). — Rote Nadeln (aus Eisessig). F: 152°; leicht löelich in warmem Benzol, weniger in Ather und kochendem Wasser (W., S.). — Liefert beim Behandeln mit Zinn und Salzsäure 2.4-Diamino-1-dimethylamino-benzol (Syst. No. 1800) (W., S.).

[3-Nitro-4-acetamino-phenyl]-oxamidsäure $C_{10}H_{9}O_{6}N_{3}=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{2}(NO_{9})\cdot NH\cdot CO\cdot CO_{2}H$. B. Eine Lösung von KNO₃ in konz. Schwefelsäure wird in eine konzentrierte schwefelsaure Lösung von [4-Acetamino-phenyl]-oxamidsäure (S. 99) bei —5° bis —10° eingerührt (Koller, B. 36, 414). — Rotgelbe Blättchen (aus verd. Essigsäure). F: 228° (Zers.). — Liefert durch Verseifung mit stark verd. Säuren, Ammoniak oder stark verd. Sodalösung, auch durch anhaltendes Kochen mit Wasser N⁴-Acetyl-2-nitro-phenylendiamin-(1.4). — Ba($C_{10}H_{8}O_{6}N_{3})_{2}$. Gelbe Nadeln (aus Wasser)

Äthylester $C_{12}H_{13}O_6N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(NO_2) \cdot NH \cdot CO \cdot CO_2 \cdot C_2H_5$. B. Man nitriert [4-Acetamino-phenyl]-oxamidsäure-äthylester in konz. Schwefelsäure mit KNO₃ bei -5° bis -10° (Koller, B. 36, 416). — Gelbe Nadeln (aus verd. Alkohol). F: 174°. Sehr wenig löslich in Wasser, leichter in Alkohol.

[3-Nitro-4-acetamino-phenyl]-oxamidsäure $C_{10}H_9O_6N_3=CH_3\cdot CO\cdot NH\cdot C_6H_3(NO_2)\cdot NH\cdot CO\cdot CO_2H$. B. Durch Eintragen von [4-Acetamino-phenyl]-oxamidsäure (S. 99) in rauchende Salpetersäure bei —5° bis —10° (Koller, B. 36, 415). — Hellgelbe Nadeln (aus Alkohol). F: 209°. Schwer löslich in Alkohol, etwas löslich in Wasser.

Äthylester $C_{12}H_{13}O_4N_3 = CH_3 \cdot CO \cdot NH \cdot C_4H_2(NO_2) \cdot NH \cdot CO \cdot CO_2 \cdot C_3H_4$. B. Durch Eintragen von [4-Acetamino-phenyl]-oxamidsäure-äthylester (8. 100) in rauchende Salpetersäure bei -5° (Koller, B. 36, 417). — Rotgelbe Nadeln (aus verd. Alkohol). F: 179°. Leicht löslich in Alkohol, weniger in Wasser.

N-[2-Nitro-4-acetamino-phenyl]-phthalamidsäure $C_{10}H_{12}O_0N_3 = CH_3 \cdot CO \cdot NH \cdot C_0H_3 \cdot NO_3 \cdot NH \cdot CO \cdot C_0H_4 \cdot CO_2H$. B. Beim Nitrieren der N-[4-Acetamino-phenyl]-phthalamidsäure in konz. Schwefelsäure mittels KNO₃ bei —5° (CHAZEL, B. 40, 3184). — Orangegelbe Nadeln (aus Alkohol). F: 177°. Leicht löslich in Wasser, Alkohol und Benzol, sehr wenig in Äther, leicht in Alkalien. — Bei partieller Verseifung mit NH₃ entsteht N⁴-Acetyl-2-nitro-phenylendiamin-(1.4) (S. 121).

N¹-Nitroso-N¹.N⁴-N¹-trimethyl-2-nitro-phenylendiamin-(1.4) oder N⁴-Nitroso-N¹.N¹-N⁴-trimethyl-2-nitro-phenylendiamin-(1.4) $C_9H_{12}O_9N_4=(CH_2)_2N\cdot C_6H_6(NO_2)\cdot N(NO)\cdot CH_3$. B. Beim Versetzen einer Lösung von N.N.N'.N'.Tetramethyl-p-phenylendiamin oder von N'-Nitroso-N.N.N'-trimethyl-p-phenylendiamin in Sauren mit überschüssigem Natriumnitrit (Wurster, Schobig, B. 12, 1811). — Orangerote Nadeln. F: 87°. Unlöslich in Wasser, leicht löslich in Benzol, schwer in Äther und Ligroin. — Entwickelt beim Kochen mit Salzsaure Stickoxyd und liefert Trimethyl-2-nitro-phenylendiamin-(1.4) (S. 120). — $2C_9H_{19}O_9N_4 + 2HCl + PtCl_4$.

 $\begin{array}{lll} \textbf{5-Brom-2-nitro-1.4-diamino-bensol}, & \textbf{5-Brom-2-nitro-phenylendiamin-(1.4)} \\ C_0H_0O_2N_3Br &= H_2N\cdot C_0H_2Br(NO_2)\cdot NH_2. & B. & Beim & Erhitzen & von & 2.4.5-Tribrom-1-nitro-phenylendiamin-(1.4) & B. & Beim & Erhitzen & von & 2.4.5-Tribrom-1-nitro-phenylendiamin-(1.4) & B. & Beim & Erhitzen & von & 2.4.5-Tribrom-1-nitro-phenylendiamin-(1.4) & B. & Beim & B$

benzol (Bd. V, S. 251) mit alkoh. Ammoniak auf 100—120° (KÖENEE, G. 4, 414; J. 1875, 353). — Orangefarbene Nadeln. Schmilzt nicht bei 156°. Wenig löslich in Alkohol. — Wird beim Erhitzen mit Kalilauge nicht verändert. Gibt mit Äthylnitrit p-Brom-nitrobenzol.

N.N'-Diacetyl-2.3 (?)-dinitro-phenylendiamin-(1.4) $C_{10}H_{10}O_{4}N_{4} = (O_{2}N)_{2}C_{4}H_{2}(NH\cdot CO\cdot CH_{3})_{2}$. B. Beim Eintragen einer eisessigsauren Lösung von N.N'-Diacetyl-p-phenylendiamin in ein Gemisch von rauchender Salpetersäure und Eisessig (Biedermann, Ledoux, B. 7, 1531). Man trägt bei 0° 1 Tl. N.N'-Diacetyl-p-phenylendiamin in 5 Tle. Salpetersäure (D: 1,53) ein, läßt die Temperatur auf 15° steigen, gießt dann auf Eis, wäscht den Niederschlag mit kaltem Alkohol und krystallisiert ihn aus Eisessig um (Nietzki, Hagenbach, B. 20, 328). — Gelb. F: 258°; schwer löslich in Alkohol und Essigsäure (B., L.). — Wird von Kalilauge oder Barytwasser unter Ammoniakentwicklung zersetzt (B., L.). Beim Erhitzen mit alkoh. Ammoniak auf 150° entsteht ein zwischen 295° und 300° schmelzendes Nitroaminomethylbensimidazol (Äthenylnitrotriaminobenzol) (Syst. No. 3715) (B., L.; N., H.). Wird von Zinn und HCl zu dem bei 210° schmelzenden Diäthenyltetraminobenzol (?) $C_{10}H_{10}N_{4} + H_{2}O$ (Syst. No. 4023) reduziert (N., H.).

 $\begin{array}{lll} \textbf{N.N'-Diphenyl-5.6-dinitroso-2.8-dinitro-phenylendiamin-(l.4)} & C_{18}H_{18}O_{e}N_{6} = \\ (O_{2}N)_{2}C_{6}(NO)_{3}(NH\cdot C_{6}H_{5})_{2}. & \text{Vgl. hierzu die Verbindung } C_{18}H_{19}O_{e}N_{6} & \text{Bd. VII, S. 609.} \end{array}$

2. Diamine $C_7H_{10}N_2$.

1. 2.3-Diamino-1-methyl-benzol, 2.3-Diamino-toluol, 3-Methyl-phenylendiamin-(1.2), vic.-o-Toluylendiamin C,H₁₀N₂, s. nebenstehende Formel. B. Beim Behandeln von 3-Nitro-2-amino-toluol (Bd. XII, S. 843) mit Zinn und Salzsäure (Lellmann, A. 228, 243). Durch Reduktion von 2-Nitro-3-amino-toluol (Bd. XII, S. 876) (Noelting, Stoecklin, B. 24, 565). — Krystalle. F: 61—62°; Kp: 255°; leicht löslich in den meisten Lösungsmitteln (L.). — Läßt sich durch Digerieren des Hydrochlorids mit überschüssigem Ammoniumrhodanid auf dem Wasserbade und nachfolgendes Erhitzen des getrockneten Rückstandes auf 120° in [vic.-o-Toluylen]-thioharnstoff CH₂·C₂H₃</br>
NH>CS (Syst. No. 3567) überführen (L.). — Anwendung zur Erzeugung von Färbungen auf Pelz, Haaren und Federn: Höchster Farbw., D. R. P. 213581; C. 1909 II, 1392. — C, H₁₀N₂ + 2 HCl. Blätter. Leicht löslich in Wasser, schwerer in konz. Salzsäure (L.).

[vic.-o-Toluylen]-bis-[ω -allyl-thioharnstoff] $C_{18}H_{80}N_4S_3=CH_3\cdot C_8H_3(NH\cdot CS\cdot NH\cdot CH_3\cdot CH:CH_2)_3$. B. Man vermischt die konzentrierten alkoholischen Lösungen von 1 Mol.-Gew. vic.-o-Toluylendiamin und etwas mehr als 2 Mol.-Gew. Allylsenföl (Bd. IV, S. 214) und erwärmt auf dem Wasserbade (Lellmann, A. 228, 246). — Nädelchen (aus Alkohol). Schmilzt bei 152°, serfällt aber schon bei 153° in N.N'-Diallyl-thioharnstoff (Bd. IV, S. 212) und [vic.-o-Toluylen]-thioharnstoff $CH_3\cdot C_8H_3< NH$ —CS (Syst. No. 3567). Schwer löslich in Wasser, leicht in den meisten organischen Lösungsmitteln.

- 6-Chlor-2.3-diamino-toluol $C_vH_0N_1Cl=CH_3\cdot C_0H_1Cl(NH_1)_0$. B. Durch allmähliches Erwärmen von 6-Chlor-2.3-dinitzo-toluol (Bd. V, S. 344) mit Zinnchlorür und Salzsäure unter Zusatz von metallischem Zinn (P. Cohn, M. 22, 477). Krystalle (aus Ligroin + Benzol). F: 46—47°. Gibt mit Dioxyweinsäure (Bd. III, S. 830) beim Erwärmen in Eisessiglösung ein in weißen Nädelchen krystallisierendes, bei 201—203° schmelzendes Azin.
- 4.5.6-Trichlor-2.3-diamino-toluol $C_7H_7N_2Cl_3=CH_2\cdot C_8Cl_8(NH_2)_2$. B. Man tragt 100 g 4.5.6-Trichlor-2.3-dinitro-toluol (Bd. V, S. 345) in ein heißes Gemisch aus Zinnehlorür (aus 260 g Zinn, gelöst in 600 g kons. Salzsäure) und 600 g 50% igem Alkohol, gibt noch etwes Zinn und Salzsäure hinzu, erhitzt $^1/_2$ Stde. lang und fällt aus der klaren Lösung durch Wasser die freie Base (Seelig, A. 237, 144; Prenntzell, A. 296, 182). Nadeln (aus verd. Alkohol). Sohmilst nicht unzersetzt bei 197—203° (P.; vgl. S.). Beim Einleiten von Chlor in die eisessig-salzsaure Lösung bei 5—10° entsteht eso-Pentachlor-1-methyl-cyclohexen-(1 oder 2 oder 3)-dion-(5.6) (Bd. VII, S. 578) (P.).
- 5-Brom-2.3-diamino-toluol C₇H₂N₂Br = CH₂·C₂H₂Br(NH₂)₂. B. Durch Reduktion von 5-Brom-3-nitro-2-amino-toluol (Bd. XII, S. 850) (HÜBNER, SCHÜPPHAUS, B. 17, 776).

 Nadeln. F: 59°. Leicht löslich in Wasser, noch leichter in Alkohol, Chloroform und Benzol. Liefert beim Behandeln mit Ameisensäure 6-Brom-4-methyl-benzimidazol (Syst.

No. 3474). — $C_7H_9N_9Br+HCl$. Sehr leicht lösliche, farblose Nadeln. — $2C_7H_9N_9Br+H_9SO_4$. Farblose Tafeln (aus Wasser).

2. 2.4 - Diamino - 1 - methyl - benzol, 2.4 - Diamino - toluol, 4 - Methyl - phenylendiamin - (1.3), asymm. m - Toluylendiamin C,H₁₀N₂, s. nebenstehende Formel.

Bildung und Darstellung.

Aus 2.4-Dinitro-toluol (Bd. V, S. 339) durch Reduktion mit Eisen und Essigsäure (A. W. Hofmann, Proc. Royal Soc. London 11, 521; C. r. 53, 892; J. 1861, 513) oder mit Zinn und Salzsäure (Beilstein, A. 130, 243; Ladenburg, B. 8, 1210). Beim Behandeln von 2.4-Dinitro-benzylchlorid (Bd. V, S. 344) (Keassuski, Ж. 27, 337) oder von 3.5-Dibrom-2.4-dinitro-toluol (Bd. V, S. 346) (Blanksma, R. 23, 126; 24, 324) mit Zinn und Salzsäure. Aus 4-Nitro-2-amino-toluol (Bd. XII, S. 844) durch Reduktion mit Zinn und Salzsäure (Nobelting, Collin, B. 17, 268) oder mit Zinkstaub und Kalilauge (Graeff, A. 229, 352). Aus 2-Nitro-4-amino-toluol (Bd. XII, S. 996) durch Reduktion mit Natriumamalgam in schwach alkoh. Lösung (Buckney, B. 11, 1452) oder durch elektrolytische Reduktion in schwach alkoh. Lösung in Gegenwart von Natriumacetat, neben 5.5'-Diamino-2.2'-dimethyl-hydrazobenzol (Syst. No. 2083) und anderen Produkten (Elbs, Schwabz, Z. El. Ch. 5, 114; C. 1898 II, 776; J. pr. [2] 63, 567, 568). Technisch erfolgt die Darstellung des 2.4-Diamino-toluols durch Reduktion des 2.4-Dinitro-toluols mit Eisen und Salzsäure (vgl. Schulltz, Die Chemie des Steinkohlenteers, 4. Aufl., Bd. I [Braunschweig 1926], S. 203).

Physikalische Eigenschaften.

Nadeln (aus Wasser), Prismen (aus Alkohol). Rhombisch (Lehmann, Z. Kr. 6, 583; J. 1882, 369). F: 99° (A. W. Hofmann, Proc. Royal Soc. London 11, 523; C. r. 53, 894; J. 1861, 513). Kp: 280° (A. W. Hof.), 283—285° (Hell, Schoop, B. 12, 723). Leicht löslich akkohol, Äther und siedendem Wasser (A. W. Hof.). Zur Hydrolyse des Hydrochlorids vgl. Bredig, Ph. Ch. 13, 316; Velley, Soc. 93, 2135. Die Dämpfe des 2.4-Diamino-toluols zeigen unter dem Einfluß von Teslaströmen bei Atmosphärendruck violette Luminescenz (Kauffmann, Ph. Ch. 26, 724; B. 33, 1730).

Chemisches Verhalten.

Die wäßr. Lösung des 2.4-Diamino-toluols schwärzt sich rasch an der Luft (A. W. Hofmann, Proc. Royal Soc. London 11, 523; C. r. 53, 894; J. 1861, 513). 2.4-Diamino-toluol liefert bei mäßigem Erwärmen mit wäßr. Natriumperoxydlösung 4-Nitro-2-amino-toluol (Bd. XII, S. 844), bei Siedehitze dagegen entsteht 2.4-Dinitro-toluol (Bd. V, S. 339) (O. Fischer. Trost, B. 26, 3084). Reduziert ammoniakalische Silbernitratlösung bei gelindem Erwärmen unter Spiegelbildung (Morgan, Micklethwart, Journ. Soc. Chem. Ind. 21, 1374).

2.4-Diamino-toluol reagiert mit salpetriger Säure analog dem m-Phenylendiamin unter

2.4-Diamino-toluol reagiert mit salpetriger Säure analog dem m-Phenylendiamin unter Bildung eines dem Bismarckbraun ähnlichen Farbstoffes (Griess, B. 11, 627). Über die Geschwindigkeit der Bildung dieses Farbstoffes vgl. Veley, Soc. 95, 1197. Bei raschem Eingießen von Nitritlösung in eine säurehaltige wäßrige Lösung von 2.4-Diamino-toluol wird neben dem erwähnten Farbstoff 5-Nitroso-2.4-diamino-toluol bezw. 5-Amino-toluchinon-imid-(1)-oxim-(4) (Syst. No. 1874) erhalten (Täuber, Walder, D. R. P. 123375; C. 1901 II, 670; vgl. Bertels, B. 37, 2276). Bei der Behandlung einer mit Kupferchlortürlösung versetzten Lösung des salzsauren 2.4-Diamino-toluols mit Natriumnitritlösung in der Wärme entsteht 2.4-Dichlor-toluol (H. Erdmann, B. 24, 2769). Bei der Einw. von Schwefel in siedender alkoh. Lösung auf 2.4-Diamino-toluol entsteht 4.6.4.6'-Tetraamino-3.3'-dimethyl-diphenyldisulfid (Syst. No. 1855), das in reinem Zustande gegen 215° schmilzt; daneben entstehen höher geschwefelte Produkte (Schultz, Bryschlag, B. 42, 743, 753). Kalle & Co. (D. R. P. 86096; Frdl. 4, 1055) erhielten beim Kochen von 2.4-Diamino-toluol mit Schwefel in Alkohol am Rückflußkühler eine in Warzen krystallisierende Schwefelverbindung vom Schmelspunkt 145°. Überführung der durch Schwefelung von 2.4-Diamino-toluol bei 60—120° entstehenden Produkte durch Behandlung mit schwefeliger Säure in "Thiosulfonsäuren" R·S·SO₄H: Clayton Aniline Co., D. R. P. 120504; Frdl. 6, 88; C. 1901 I, 1127. Erhitzt man 2.4-Diamino-toluol mit Schwefel bis auf etwa 190°, so erhält man ein unlösliches Produkt, das beim Erhitzen mit Schwefel auf mehr als 220° entsteht ein unlösliches Produkt, das beim Erhitzen mit Schwefel auf mehr als 220° entsteht ein unlösliches Produkt, das beim Erhitzen mit Atzalkalien oder Sulfiden auf mehr als 110° einen orangebraunen Schwefelfarbstoff (Immedialorange) liefert (Ca. & Co.,

D. R. P. 152595; Frdl. 7, 535; C. 1904 II, 274). Beim Erhitzen von 2.4-Diamino-toluol mit Thiosulfat und Alkali wird ein brauner Schwefelfarbstoff erhalten (LANDSHOFF & MEYER, D. R. P. 144104; Frdl. 7, 496; C. 1903 II, 859). Beim Hinzufügen von Thionylchlorid zu einer Lösung von 2.4-Diamino-toluol in wasserfreiem Benzol oder beim Erhitzen von salzsaurem 2.4-Diamino-toluol mit Thionylchlorid in Benzol am Rückflußkühler wird 2.4-Bis-[thionylamino]-toluol (S. 139) erhalten (MICHAELIS, A. 274, 263). Bei der Einw. von rauchender Schwefelsäure auf 2.4-Diamino-toluol (WIESINGER, B. 7, 464) oder sein Sulfat bei Wasserbadwärme (Bückel, C. 1904 I, 1410) entsteht 4.6-Diamino-toluol-sulfonsäure-(3) (Syst. No. 1923).

Aus 2.4-Diamino-toluol und 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) entsteht beim Zusammenschmelzen (REITZENSTEIN, J. pr. [2] 68, 258) oder beim Kochen in alkoh. Lösung unter Zusatz von Chlorzink (LEYMANN, B. 15, 1237) 2'.4'-Dinitro-3-amino-4-methyl-diphenylamin (S. 131). Beim Erhitzen von bromwasserstoffsaurem 2.4-Diamino-toluol mit überschüssigem Methylalkohol im geschlossenen Rohr auf 180° entsteht ein Gemisch von 2.4-Bisdimethylamino-toluol (S. 130) und 2.4-Bis-dimethylamino-toluol-brommethylat-(4) (S. 130) (MORGAN, Soc. 81, 653). Beim Erhitzen von salzsaurem 2.4-Di-

amino-toluol mit β-Naphthol und Schwefel entsteht das Aminobenzoacridin der nebenstehenden Formel (Syst. No. 3401) (GEIGY & Co., D. R. P. 130360; Frdl. 6, 482; C. 1902 I, 1032; Ullmann, BÜHLER, Zeitschr. f. Farben- u. Textil-Industrie 4, 521; C. 1906 I, 58).

Durch 12-stdg. Erhitzen gleicher Teile 2.4-Diamino-toluol und Resorein auf 200-220° bildet sich 3'-Oxy-3-amino-4-methyl-diphenylamin (Syst. No. 1840) (BAYER & Co., D. R. P. 82640;

Frdl. 4, 86). Beim Erhitzen eines Gemisches von 1 Tl. 2.4-Diamino-toluol, 1 Tl. salzsaurem 2.4-Diamino-toluol und 2 Tln. 2.2'-Dioxy-[di-naphthyl-(1)-methan]
(Bd. VI, S. 1053) zuerst auf 160°, schließlich kurze Zeit auf 200° entsteht neben dem Amino-methyl-benzoacridindihydrid der nebenstehenden Formel (Syst. No. 3401) das entsprechende Aminomethyl-benzoacridin (Syst. No. 3401) (Ullmann, Naef, B. 38,

 $^{
m CH_{ullet}}$ CH, NH,

912; ULL., D. R. P. 104748; Frdl. 5, 385; C. 1899 II, 1008). Kochen von salzsaurem 2.4-Diamino-toluol mit Nitrobenzol, Glycerin und konz. Schwefelsäure am Rückflußkühler erhält man das Methylm-phenanthrolin der nebenstehenden Formel (Syst. No. 3487) (SKRAUP,

CH₃

O. W. Fischer, M. 5, 524).

2.4-Diamino-toluol liefert mit der äquimolekularen Menge Formaldehyd in neutraler wäßriger oder alkoholischer Lösung polymeres (?) Methylen-m-toluylendiamin (C₂H₁₀N₂)₂ (S. 132) (ULL., NAEF, B. 33, 913; ULL., D. R. P. 130943; Frdl. 6, 468; C. 1902 I, 1184). Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 2 Mol.-Gew. 2.4-Diamino-toluol in Gegenwart von Schwefelsäure bildet sich 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan (Syst. No. 1819) (LEONHARDT & Co., D. R. P. 52324; Frdl. 2, 109; Ull., NARF, B. 33, 915), das durch Erhitzen mit Salzsäure unter Druck und darauffolgende Oxydation in 3.6-Diamino-2.7-dimethyl-acridin (Acridingelb, Syst. No. 3412) übergeht (Leo. & Co., D. R. P. 52324; Ull., Marić, B. 34, 4308; Haase, B. 36, 589). Kondensiert man 2.4-Diamino-toluol mit Formaldehyd in alkalisch-alkoholischer Lösung, trägt das Kondensationsprodukt in auf 150° erhitztes β -Naphthol ein und erhitzt kurze Zeit auf 200°, so entsteht das obengenannte Aminomethyl-benzoscridin neben seinem Dihydrid (ULL., D. R. P. 130721; Frdl. 6, 469; C. 1902 I, 1139). Amino-methyl-benzoacridin erhält man auch beim Eintragen von 1 Tl. Polyoxymethylen (Bd. I, S. 566) in eine auf 150° erhitzte Mischung von je 5 Tln. 2.4-Diamino-toluol und \hat{p} -Naphthol und kurzes Erhitzen des Gemisches auf 2000 (ULL., NAEF, B. 33, 912). Bei der Einw. von 1 Mol.-Gew. Formaldehyd-Natriumdisulfit (Bd. I, S. 578) auf etwas mehr als 1 Mol.-Gew. 2.4-Diamino-toluol in 50° gigem Alkohol entsteht vorwiegend die Verbindung (CH₂)·C₂H₂(NH₂)²[NH·CH₂(SO₂Na)]⁴ (S. 132) neben geringen Mengen der Verbindung CH₂·C₂H₃[NH·CH₃(SO₃Na)], (S. 132), letztere wird Hauptprodukt bei Anwendung von 2 Mol.-Gew. Formaldehyd-Natriumdisulfit (Bucherer, Schwalbe, B. 39, 2803, 2804). 2.4-Diamino-toluol gibt mit Acetaldehyd ein harzartiges — nicht näher beschriebenes — Tetraaminoditolyläthan, das sich in einen in Wasser leicht löelichen Acridinfarbstoff überführen läßt (Ges. f. chem. Ind., D. R. P. 143893; Frdl. 7, 313; C. 1903 II, 476). 2.4-Diaminotoluol reagiert mit Chloral in Chloroform unter Anlagerung von 1 Mol. Chloral und Bildung von CH₃·C₄H₄(NH₄)·NH·CH(OH)·CCl₃ (S. 132) (Rüchenaue, B. 39, 1661). Beim Schütteln von in Wasser suspendiertem 2.4-Diamino-toluol mit der aquimolekularen Menge Benzaldehyd wird 2-Amino-4-benzalamino-toluol (S. 132) erhalten (OEHLER, D. R. P. 43714; Frdl. 2, 104; R. MEYER, GROSS, B. 32, 2358). Mit 2 Molekülen Benzaldehyd verbindet sich 2.4-Diamino-toluol bei 100° su 2.4-Bis-bensalamino-toluol (S. 132) (H. SCHIFF, A. 140, 97, 98). Bei der Einw. von 1 Mol.-Gew. Benzaldehyd auf ein Gemisch von 1 Mol.-Gew. 2.4-Diaminotoluol und 1 Mol.-Gew. salzsaurem 2.4-Diamino-toluol in Alkohol bei 70-80° entsteht 4.6.4'.6'-Tetraamino-3.3'-dimethyl-triphenylmethan (Syst. No. 1819), das sich durch Erhitzen mit Salzsäure und Oxydation des so entstandenen 3.6-Diamino-2.7-dimethyl-9-phenyl-acridindihydrid (Syst. No. 3414) in Benzoflavin (s. nebenstehende Formel) (Syst. No. 3414) über führen läßt (Oehler, D. R. P. 43714; Frdl. 2, 104; vgl. auch Oe., D. R. P. 43720; Frdl. 2, 106; R. Mev., Gross, B. 32, 2357). Durch Hinzufügen von 1^{l} , Mol.-Gew. β -Naphthol zu einem auf 110° erhitzten Gemisch von 1 Mol.-Gew. 2.4-Diamino-toluol und 1 Mol.-Gew. Benzaldehyd und Erhitzen der Schmelze auf $200-205^{\circ}$ erhält man das Amino-methyl-phenyl-benzoacridindihydrid der nebenstehenden Formel (Syst. No. 3401) (Ullmann, Racouttza, Rozenband, B. 35, 319).

C₆H₅
CH₃ CH₃
NH₂
C₆H₅
CH₃
NH₂
C₆H₅
CH₃
NH₃
CH₃
NH₃
CH₃
CH

Beim Erhitzen von 1 Mol.-Gew. 2.4-Diamino-toluol mit 1 Mol.-Gew. Ameisensäure am Rückflußkühler entsteht 2-Amino-4-formamino-toluol (S. 133), mit 2 Mol.-Gew. Ameisensaure wird 2.4-Bis-formamino-toluol (S. 133) erhalten (Geigy & Co., D. R. P. 138839; Frdl. 7, 540; C. 1903 I, 427). 2.4-Diamino-toluol liefert beim Kochen mit verd. Essigsäure (H. Schiff, Ostrogovich, A. 293, 371 Anm. 1; vgl. Tiemann, B. 3, 221) oder beim Erhitzen mit ¹/₂ Tl. Acetamid auf 160—170° (H. Schiff, Ost.) 2-Amino-4-acetamino-toluol (S. 133). mit ¹/₂ Tl. Acetamid auf 160—170° (H. Schiff, UST.) Z-Amino-4-acetamino-voluci (S. 180). Beim Erhitzen von 2.4-Diamino-toluci mit etwas mehr als 2 Mol.-Gew. Eisessig (Trz., B. 3, 8; Beim Erhitzen von 2.4-Diamino-toluci mit etwas mehr als 2 Mol.-Gew. 4 183, 132) oder mit. vgl. Trz., B. 3, 219), mit 2 Mol.-Gew. Essigsäureanhydrid (Kocn, A. 153, 132) oder mit 2 Mol.-Gew. Acetamid (Kelbe, B. 16, 1200) wird 2.4-Bis-acetamino-toluol (S. 133) erhalten. Beim Digerieren mit Chloressigsäureäthylester bildet sich [asymm.-m-Toluylen]-bis-glycinathylester (S. 138) (ZIMMERMANN, KNYRIM, B. 16, 516). Beim Erwärmen von 2.4-Diaminotoluol mit Benzoylchlorid entsteht 2.4-Bis-benzamino-toluol (S. 134) (RUHEMANN, B. 14, 2656). Beim Erhitzen von einfach salzsaurem 2.4-Diamino-toluol mit Benzonitril auf 1806 bis 190° entsteht [asymm.-m-Toluylen]-bis-benzamidin (S. 134), bei Verwendung des zweifach Salzsauren Salzes wird N-[3-Amino-4-methyl-phenyl]-benzamidin (S. 134) gebildet (Bernthsen, Trompetter, B. 11, 1758, 1759). Beim Erhitzen von 2 Mol.-Gew. 2.4-Diamino-toluol mit 1 Mol.-Gew. Oxalsaure auf Temperaturen von 100° bis ungefähr 225° entsteht N.N'-Bis-[3-amino-4-methyl-phenyl]-oxamid (S. 135) (Höchster Farbw., D. R. P. 156177; Frdl. 8, 809; C. 1904 II, 1675). Erhitzt man oxalsaures 2.4-Diamino-toluol einige Zeit im Olbade auf 160°, so bildet sich polymeres (?) [asymm.-m-Toluylen]-oxamid (S. 129) (H. Schiff, VANNI, A. 268, 313). Bei mehrstündigem Erhitzen von 2.4-Diamino-toluol mit Oxalsäuredisthylester in 93—95% igem Alkohol entstehen [3-Amino-4-methyl-phenyl]-oxamidsäure-athylester (S. 134), [asymm.-m-Toluylen]-bis-oxamidsäureäthylester (S. 135) und [3-Amino-4-methyl-phenyl]-oxamidsäure (S. 134) (H. SCHIFF, V., A. 268, 307, 329, 340; vgl. Tie., B. 8, 222). 2.4-Diamino-toluol gibt beim Kochen mit Malonsäurediäthylester [asymm.-m-Toluylen]bis-malonamidsäureäthylester (S. 135) (R. MEYER, v. LUTZAU, A. 347, 27). Beim Erhitzen von 2 Mol.-Gew. 2.4-Diamino-toluol mit 1 Mol.-Gew. Bernsteinsäure in Gegenwart von Alkalipolysulfiden entsteht ein brauner, schwefelhaltiger Baumwollfarbstoff (Grigy & Co., D. R. P. 125587; Frdl. 6, 758; C. 1901 II, 1243). Beim Erhitzen von 2.4-Diamino-toluol mit der 5-6-fachen Menge Bernsteinsäurediäthylester entsteht N-[3-Amino-4-methyl-phenyl]succinimid (Syst. No. 3201) (R. Mey., v. Lutzau, A. 347, 32). Beim Zusammenschmelzen äquimolekularer Mengen 2.4-Diamino-toluol und Phthalsäureanhydrid (Syst. No. 2479) entsteht N-[3-Amino-4-methyl-phenyl]-phthalimid (Syst. No. 3218) neben [asymm.-m-Toluylendiamin]-di-phthalimid CH₃·C₆H₃ N<CO>C₆H₄] (Syst. No. 3218) (BIEDERMANN, B. 10, 1160, 1161; GEIGY & Co., D. R. P. 126964; Frdl. 6, 756; C. 1902 I, 152). Einwirkung des 2.4-Diamino-toluols auf Aconitature: Schneider, B. 21, 668.

Bei allmählichem Hinzufügen von Chlorameisensäureäthylester. (Bd. III, S. 10) zu einer alkoh. Lösung von 2.4-Diamino-toluol entstehen [3-Amino-4-methyl-phenyl]-urethan (S. 136) (H. SCHIFF, VANNI, A. 268, 315; B. 23, 1817) und [asymm.-m-Toluylen]-di-urethan (S. 137) (LUSSY, B. 7, 1263). Beim Erhitzen von 2.4-Diamino-toluol in einem Strome von Phosgen bildet sich [asymm.-m-Toluylen]-di-isocyanat (S. 138) (SNAPE, Soc. 49, 257). Beim Einleiten von Phosgen in eine wäßr. Lösung von 2.4-Diamino-toluol und Natriumacetat entsteht polymerer (?) [asymm.-m-Toluylen]-harnstoff (S. 129) (KALLE & Co., D. R. P. 146914; Frdl. 7, 548; C. 1903 II, 1486). Bei der Umsetzung von schwefelsaurem 2.4-Diamino-toluol mit 2 Mol.-Gew. Kaliumcyanat entsteht [asymm.-m-Toluylen]-di-harnstoff (S. 137) neben geringen Mengen [3-Amino-4-methyl-phenyl]-harnstoff (S. 136) (STEAUSS, A. 148, 157, 159). Mit Thiophosgen in Chloroformlösung wird [asymm.-m-Toluylen]-di-senföl (S. 138) erhalten (BILLETER, STEINER, B. 20, 230). Aus salzsaurem 2.4-Diamino-toluol und 1 Mol.-Gew. Rhodankalium entsteht das — nicht näher beschriebene — einfach rhodanwasserstoffsaure 2.4-Diamino-toluol, das beim Erhitzen auf 120° (Höchster Farbw., D. R. P. 152027; Frdl. 7, 546; C. 1904 II, 274) oder beim Erhitzen auf dem Wasserbade (Bad. Anilin- u. Sodaf., D. R. P. 160041; Frdl. 8, 815; C. 1905 I, 1449) in [3-Amino-4-methyl-phenyl]-thioharnstoff (S. 136) übergeht. Zweifach rhodanwasserstoffsaures 2.4-Diamino-toluol (S. 129) geht bei

mehrstündigem Erhitzen auf dem Wasserbade in [asymm.-m-Toluylen]-bis-thioharnstoff (S. 137) über (Bil., Steil, B. 18, 3293; vgl. Lussy, B. 7, 1265). Bei mehrtägigem Stehen einer alkoh. Lösung von 2.4-Diamino-toluol mit Schwefelkohlenstoff bei gewöhnlicher Temp. wird 3-Amino-4-methyl-phenylsenföl (?) (S. 138) gebildet (Lussy, B. 8, 293; vgl. Le Fàvre, Turner, Soc. 1926, 2478). Bei der Einw. von 2 Mol.-Gew. Schwefelkohlenstoff auf 1 Mol.-Gew. 2.4-Diamino-toluol in siedender alkoholischer Lösung entsteht ein in Alkohol, Salzsäure und Benzol unlösliches Produkt, das beim Verschmelzen mit Schwefel einen gelben Schwefelfarbstoff liefert (Akt.-Ges. f. Anilinf., D. R. P. 171871; Frdl. 8, 806; C. 1906 II, 648). Beim Behandeln von 2.4-Diamino-toluol in alkoh. Lösung mit 1 Mol.-Gew. Schwefelkohlenstoff und überschüssigem wäßrigem Ammoniak wird das Ammoniumsalz der [3-Amino-4-methylphenyl]-dithiocarbamidsäure (S. 136) erhalten (Losanitsch, B. 40, 2973). Beim Erhitzen von 2 Mol.-Gew. 2.4-Diamino-toluol mit 1 Mol.-Gew. des Natriumsalzes der Thiodiglykolsäure 2 Mol.-Gew. 2.3-Dishino-bottol in it is allowed as state that the state of the control of the co MULDER, R. 26, 181). Durch Erhitzen von 2.4-Diamino-toluol mit in Alkali gelöster 3-Oxynaphthoesaure (2) (Bd. X, S. 333) unter Zusatz von 33% jiger Disulfitlösung im Wasserbade erhält man 2-Amino-4-β-naphthylamino-toluol (S. 131) (Bucherer, Seyde, J. pr. [2] 75, 275). Beim Erhitzen von 2.4-Diamino-toluol mit 1 Mol.-Gew. Citronensaure (Bd. III, S. 556) auf 120—130° unter Zusatz von geschmolzenem Natriumacetat entsteht die Verbindung C₁₃H₁₂O₄N₂ der nebenstehenden Formel (Syst. No. 3637) (SCHNEI- $CH_3 \cdot C_6H_3 \xrightarrow{N \cdot CO \cdot C \cdot CH_2} NH \cdot CO \cdot CH_2$ DER, B. 21, 665). Beim Erhitzen von 2.4-Diamino-toluol mit der aquimolekularen Menge Acetessigsaureathylester (Bd. III, CH₃·C₆H₃ CO·C·OH S. 632) auf 130⁶ entsteht 2-Oxy-7(?)-amino-4.6(?)-dimethylchinolin (Syst. No. 3423) (Besthorn, Byvanck, B. 31, 798).

Diacetbernsteinsaureester (Bd. III, S. 840) verbindet sich beim Kochen mit 1 Mol.-Gew. 2.4-Diamino-toluol in Eisessig zu 2.5-Dimethyl-1-[3-amino-4-methyl-phenyl]-pyrrol-dicarbonsäure-(3.4)-diäthylester (Syst. No. 3276); erhitzt man überschüssigen Diacetbernsteinsäureester mit 2.4-Diamino-toluol in Eisessig im geschlossenen Rohr auf 150-160°, so entsteht [asymm.-m-Toluylen]-bis-[2.5-dimethyl-pyrrol-dicarbonsaure-(3.4)-diathylester] (Syst. No. 3276) (Knorr, A. 236, 311, 313; vgl. Bülow, B. 38, 2364).

Bei der Einw. von 2 Mol.-Gew. Benzolsulfochlorid auf 1 Mol.-Gew. 2.4-Diamino-toluol in Gegenwart von Soda entsteht 2.4-Bis-benzolsulfamino-toluol (S. 139) (Akt.-Ges. f. Anilinf., D. R. P. 166600; Frdl. 8, 110; C. 1906 I, 517). Durch Kondensation von 6-Chlor-3-nitro-benzol-sulfonsäure-(1) (Bd. XI, S. 73) und von 4-Chlor-3-nitro-benzol-sulfonsäure-(1) (Bd. XI, S. 72) mit 2.4-Diamino-toluol entstehen Produkte, welche durch Erhitzen mit Schwefel + Schwefelnatrium braune Farbstoffe liefern (Akt.-Ges. f. Anilinf., D. R. P. 107061, 107521;

Frdl. 5, 436; C. 1900 I, 880, 1055).

Durch 10-stdg. Erhitzen von 1 Tl. 2.4-Diamino-toluol mit 3 Tln. Anilin und 11/2 Tln. salzsaurem Anilin im Autoklaven auf 240—250° entsteht salzsaures 2-Amino-4-anilino-toluol (S. 130) (BAYER & Co., D. R. P. 80977; Frdl. 4, 83). 2.4-Diamino-toluol liefert beim Erhitzen mit Formanilid und salzsaurem Anilin auf 210—215° einen goldgelben Acridinfarbstoff (GEIGY & Co., D. R. P. 149410; Frdl. 7, 315; C. 1904 I, 847). Beim Vermischen äquimolekularer Mengen von 2.4-Diamino-toluol und salzsaurem p-Nitroso-dimethylanilin (Ed. XII, S. 677) in wäßr. Lösung entsteht Toluylenblau C₁₅H₁₈N₄ + HCl (Syst. No. 1874) (Witt, B. 12, 933; D. R. P. 15272; Frdl. 1, 274), das beim Kochen der Lösung in salzsaures 3-Amino-6-dimethylamino-2-methyl-phenazin (Toluylenrot, Syst. No. 3747) übergeht (Witt; vgl. Bernthsen, Schweitzer, B. 19, 2605; A. 236, 336) und beim Erwärmen mit 2.4-Diamino-thylamino-1-met toluol in schwach essigsaurer Lösung ein dem Toluylenrot ähnliches Produkt "Toluylenviolett" erzeugt (Wrrt, B. 12, 938). Erhitzt man 1 Tl. salzsaures 2.4-Diamino-toluol mit 4 Tln. p-Toluidin ca. 20 Stdn. im Autoklaven auf 260—270°, so erhält man salzsaures 2-Amino-4-p-toluidino-toluol (S. 131) neben p.p-Ditolylamin (Bd. XII, S. 907) (Bayer & Co., D. R. P. 80977; Frdl. 4, 83). Durch Kondensation von 2.4-Diamino-toluol mit der aquimolekularen Menge Formaldehyd in Gegenwart von Wasser und Erhitzen des Produktes mit p-Toluidin und salzsaurem p-Toluidin auf 120—160° entsteht 3-Amino-2.7-dimethyl-acridin (Syst. No. 3399) (Terrisse, Darier, D. R. P. 107517; Frdl. 5, 380; C. 1900 I, 1054; Ch. Z. 23, 86; vgl. Ullmann, B. 36, 1018; Bad. Anilin- u. Sodaf., D. R. P. 118076; Frdl. 6, 480; C. 1901 I, 602). Beim Behandeln von salzsaurem 2.4-Diamino-toluol und salzsaurem p-Phenylendiamin in waßr. Natriumacetatlösung mit einer Lösung von Eisenchlorid bildet sich salzsaures Aminomethylindamin (S. 129), das durch Oxydation mit Luft in siedender schwach salzsaurer Losung in 3.6-Diamino-2-methyl-phenazin (Syst. No. 3747) übergeht (BERNTHSEN, SCHWEITZER, A. 236, 343, 344). Beim Erhitzen von 2.4-Diamino-toluol mit p-Phenylendiamin und Schwefel entsteht ein Produkt, welches durch Erhitzen mit konz. Lösungen von Schwefelalkalien oder Ätzalkalien in einen olivgelben Schwefelfarbstoff übergeführt werden kann (Cassella & Co., D. R. P. 196753, 198026; C. 1908 I, 1437, 1815). Beim Verschmelzen von 2.4-Diaminotoluol mit N.N'-Diformyl-p-phenylendiamin (S. 94) und Schwefel bei 200—220° entsteht ein gelber Schwefelfarbstoff (Akt.-Ges. f. Anilinf., D. R. P. 159097; Frdl. 8, 801; C. 1905 I, 909). 2.4-Diamino-toluol reagiert mit [4-Amino-benzyl]-anilin (S. 175) in Gegenwart von Salzsäure beim Erwärmen auf dem Wasserbade unter Bildung von 4.6.4'-Triamino-3-methyl-diphenylmethan (Syst. No. 1804) (Höchster Farbw., D. R. P. 107718; Frdl. 5, 82; C. 1900 I, 1110; P. COHN, A. FISCHER, B. 38, 2588). Durch Erhitzen von 2.4-Diamino-toluol mit Benzidin und Schwefel auf 170—240° und Verschmelzen des Reaktionsproduktes mit Schwefelnatrium entsteht ein gelber Baumwollfarbstoff (Hö. Fa., D. R. P. 163143; Frdl. 8, 807; C. 1905 II, 999). Ein solcher entsteht auch durch Erhitzen des aus 1 Mol.-Gew. 2.4-Diamino-toluol und 1 Mol.-Gew. Schwefelkohlenstoff entstehenden Produktes mit Schwefel und Benzidin und Verschmelzen des Reaktionsproduktes mit Schwefel und Benzidin und Verschmelzen des Reaktionsproduktes mit Schwefelnstrium (Hö. Fa., D. R. P. 166864; Frdl. 8, 808; C. 1906 I, 723). Beim Erhitzen von 2.4-Diamino-toluol mit 0- oder p-Amino-phenol und Schwefel werden braune Schwefelfarbstoffe erhalten (Akt.-Ges. f. Anilinf., D. R. P. 215547, 215548; C. 1909 II, 1781). Läßt sich mit gechlorten p-Amino-phenolen durch gemeinsame Oxydation in Azine überführen, die zur Darstellung von Schwefelfarbstoffen Verwendung finden können (Höchster Farbw., D. R. P. 181327, 187868; Frdl. 8, 792, 793; C. 1907 I, 1716; II, 1667). Beim Erhitzen von 2.4-Diamino-toluol mit 1 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol (Michlers Hydrol, Syst. No. 1859) in alkoh. Lösung entsteht N-[3-Amino-4-methyl-phenyl]-leukauramin H₂N·C₆H₃(CH₃)·NH·CH[C₆H₄·N(CH₃)₂] (Syst. No. 1804) (Möhlau, Heinze, B. 35, 371). 2.4-Diamino-toluol liefert mit einer Lösung von Benzoldiazoniumnitrat 4.6-Diami

Beim Versetzen von 10 g 2.4-Diamino-toluol in 100 ccm Alkohol mit 15 ccm Furfurol (Syst. No. 2461) entsteht 2.4-Bis-furfuralamino-toluol $CH_3 \cdot C_0H_3(N:CH \cdot C_4H_3O)_2$ (Syst. No. 2461) (H. Schiff, A. 201, 360). Beim Verdunsten einer alkoh. Lösung von 1 Mol.-Gew. 2.4-Diamino-toluol, 2 Mol.-Gew. salzsaurem Anilin und 2 Mol.-Gew. Furfurol bildet sich das salzsaure Salz der Verbindung $CH_3 \cdot C_6H_3(N:CH \cdot CH_2 \cdot CH:N \cdot C_6H_5)_2$ oder $CH_3 \cdot C_6H_3(N:CH \cdot CO \cdot CH:N \cdot C_6H_5)_2$ oder $CH_3 \cdot C_6H_3(N:CH \cdot CO \cdot CH:N \cdot C_6H_5)_2$ (bezw. desmotroper Formen) (S. 132) (H. Schiff, A. 239, 358; vgl. Zincke, Mühlhausen, B. 38, 3824; Dieckmann, Beck, B. 38, 4123; König, J. pr. [2] 72, 555). Einw. von Phthalsäureanhydrid auf 2.4-Diamino-toluol s. S. 126. Cyanurchlorid (Syst. No. 3799) gibt mit 2 Mol.-Gew. 2.4-Diamino-toluol in Alkohol-Äther 4.6-Dichlor-2-[3-amino-4-methyl-anilino]-triazin (bezw. desmotrope Form) (Syst. No. 3873), mit 4 Mol.-Gew. 2.4-Diamino-toluol 6-Chlor-2-4-bis-[3-amino-4-methyl-anilino]-triazin (bezw. desmotrope Form) (Syst. No. 3888), mit 6 Mol.-Gew. 2.4-Diamino-toluol entsteht beim Erhitzen im Einschlußrohr auf 100° 2.4-6-Tris-[3-amino-4-methyl-anilino]-triazin (bezw. desmotrope Form) (Syst. No. 3889) (Fries, B. 19, 2058, 2059).

Biochemisches Verhalten.

Zur Giftwirkung des 2.4-Diamino-toluols vgl. Kobert, Lehrbuch der Intoxikationen, 2. Aufl., Bd. II [Stuttgart 1906], S. 785; Fränkel, Die Arzneimittelsynthese, 6. Aufl. [Berlin 1927], S. 53, 89.

Verwendung.

2.4-Diamino-toluol findet Verwendung als Zwischenprodukt der Farbstoffabrikation. Es dient als Komponente von Azofarbstoffen, z. B. von Chrysoidin R (Syst. No. 2183) (Schultz, Tab. No. 34), Metachrombraun (Schultz, Tab. No. 89), Columbiaschwarz R (Schultz, Tab. No. 65); vgl. ferner Schultz, Tab. No. 69, 284, 295, 352, 413, 455, 463; vgl. auch Akt.-Ges. f. Anilinf., D. R. P. 77625, 90010; Frdl. 4, 943, 1015; Höchster Farbw., D. R. P. 113931; Frdl. 5, 577; C. 1900 II, 751; Oehleb, D. R. P. 121438; Frdl. 6, 1011; C. 1901 II, 76. Es findet ferner Verwendung zur Herstellung von Acridinfarbstoffen, z. B. Acridingelb (Syst. No. 3412) (Schultz, Tab. No. 602) und Benzoflavin (Syst. No. 3414) (Schultz, Tab. No. 605), von Azinfarbstoffen (vgl. Schultz, Tab. No. 670) und von Schwefelfarbstoffen, wie Immedialgelb (Schultz, Tab. No. 710) und Immedialorange (Schultz, Tab. No. 711).

Analytisches.

Eine verdünnt salzsaure Lösung von 2.4-Diamino-toluol gibt bei schwachem Erwärmen mit einer sehr verdünnten Lösung von Kaliumchlorat eine hellviolettrote Färbung (H. Schupp, Vanni, A. 268, 312 Anm.). Farbreaktionen mit Kaliumdichromat, Bromwasser, Chlorkalklösung, Platinchlorid, Goldchlorid: Janovski, M. 10, 588.

Additionelle Verbindung des 2.4-Diamino-toluols.

Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{13}H_{13}O_6N_5 = C_7H_{10}N_2 + C_6H_3O_6N_3$. Braune Nadeln (Noellting, Sommerhoff, B. 39, 77).

Salze des 2.4-Diamino-toluols.

 $C_7H_{10}N_2+HCl.$ B. Bei der Einw. der berechneten Menge Salzsäure auf 2.4-Diaminotoluol (Bernthsen, Trompetter, B. 11, 1759 Anm. 1). Krystallinisch. — $C_7H_{10}N_2+2HCl.$ B. Beim Einleiten von Chlorwasserstoff in die äther. Lösung der Base (Ber., Tr., B. 11, 1758). Nadeln (Hell, Schoop, B. 12, 723). Leicht löslich in Wasser (A. W. Hofmann, B. 11, 1758). Nadeln (Hell, Schoof, B. 12, 723). Leicht löslich in Wasser (A. W. Hofmann, Proc. Royal Soc. London 11, 524; C.r. 53, 895; J. 1861, 513). — $C_7H_{10}N_2+2$ HBr. Nadeln. Löslich in Wasser und Alkohol (A. W. Ho.). — $C_7H_{10}N_2+H_2SO_4$ (A. W. Ho.; Hell, Schoof). Prismen. — $C_7H_{10}N_2+H_2SO_4+2$ H $_2O$ (Strauss, A. 148, 157; Beilstein, Kuhlberg, A. 158, 350; Graeff, A. 229, 348). Prismen (aus Wasser). Monoklin prismatisch (v. Lang, Sitzungsber, K. Akad. Wiss. Wien 61 II, 195; vgl. Groth, Ch. Kr. 4, 403). Verliert das Krystallwasser bei 130° (Bei., K.). 100 Tle. Wasser von 19,5° lösen 5,58 Tle. Salz (Bei., K.). — $C_7H_{10}N_2+2$ HNO2. Nadeln. Leicht löslich in Wasser und Alkohol (A. W. Ho.). — Rhodanwasserstoffsaures Salz $C_7H_{10}N_2+2$ HCNS. Prismen. Löslich in Alkohol, sehr leicht in Wasser (Lussy, B. 7, 1265). $C_7H_{10}N_2+2$ HCl + PtCl4. Goldgelbe Blättchen. Leicht löslich in Wasser (A. W. Ho., Proc. Royal Soc. London 11, 524; C.r. 53, 895; J. 1861, 513; Hell, Schoof, B. 12, 723).

Umwandlungsprodukte von ungewisser Konstitution aus 2.4-Diamino-toluol.

Verbindung (C₂H₂O₂N₂)_x (polymeres (?) [asymm.-m-Toluylen]-oxamid). Zur Zusammensetzung vgl. Hinsberg, Kessler, A. 340, 111, 112; Wilson, Adams, Am. Soc. 45 [1923], 531. — B. Beim Erhitzen von oxalsaurem 2.4-Diamino-toluol im Ölbade auf 160° (Schiff, Vanni, A. 268, 313). — Zeigt keinen deutlichen Schmelzpunkt; unlöslich. — Zerfällt beim Kochen mit KOH in Oxalsäure und 2.4-Diamino-toluol. Beim Erhitzen mit 2.4-Diamino-toluol und Alkalipolysulfiden auf 300° entsteht ein brauner Schwefelfarbstoff (GEIGY & Col., D. R. P. 125586; Frdl. 6, 755; C. 1901 II, 1242).

Verbindung (C₈H₈ON₂)x (polymerer (?) [asymm.-m-Toluylen]-harnstoff). Zur Zusammensetzung vgl. R. MEYER, A. 327, 7; HINSBERG, KESSLER, A. 340, 111, 112; WILSON, ADAMS, Am. Soc. 45 [1923], 513. — B. Aus 2.4-Diamino-toluol mit Phosgen und Natriumacetat in waßr. Lösung (Kalle & Co., D. R. P. 146914; Frdl. 7, 548; C. 1903 II, 1486). — Weißes krystallinisches Pulver. Schmilzt über 300°; in Wasser, verd. Säuren, Alkalien und den gebräuchlichen Lösungsmitteln unlöslich (KA. & Co.). — Verwendung zur Darstellung von Schwefelfarbstoffen: Ka. & Co.

Aminomethylindamin $C_{13}H_{14}N_4 =$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{HN}: & \begin{array}{c} \text{CH}_3 \\ \\ \text{NH}_2 \end{array} \\ \text{NH}_2 & \begin{array}{c} \text{Oder } \text{H}_2 \text{N} \cdot \\ \\ \text{NH}_3 \end{array} \\ \text{NH}_3 \end{array} : \text{NH}.$$

B. Das salzsaure Salz entsteht, wenn man eine Lösung von 54,3 g salzsaurem p-Phenylendiamin und 58,2 g salzsaurem 2.4-Diamino-toluol in 18 l Wasser mit 600 g Natriumacetat versetzt und dann allmählich 750 g (der offizinellen) Eisenchloridlösung hinzugießt (Bernthsen, Schweitzer, A. 236, 343). — Hydrochlorid. Schwarze Blättchen mit grünem Oberflächenglanze. Löst sich leicht in Wasser mit blauvielter Farbe, beim Kochen färbt sich die Lösung rot, indem durch Oxydation an der Luft 3.6-Diamino-2-methyl-phenazin (Syst. No. 3747) enteteht.

Funktionelle Derivate des 2.4-Diamino-toluols.

- 4-Amino-2-methylamino-toluol $C_9H_{19}N_9=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CH_3$. B. 4-Nitro-2-methylamino-toluol (Bd. XII, S. 844) wird mit Zinn oder Zinkstaub reduziert (GNEHM, Blumer, A. 304, 106). — Farbloses Ol. Kp: 273°.
- 2-Amino-4-methylamino-toluol C₈H₁₂N₂ = CH₂·C₆H₂(NH₂)·NH·CH₃. B. Durch Reduktion von 2-Nitro-4-methylamino-toluol (Bd. XII, S. 997) (BAYER & Co., D. R. P. 92014; Frill. 4, 424). Aus 2.4-Diamino-toluol und 1 Mol.-Gew. Methyljodid (B. & Co.). Verwendung 2015 Verwendung zur Darstellung von Azinfarbstoffen: B. & Co.; Bad. Anilin- u. Sodaf., D. R. P. 77228; Frdl. 4, 385.
- 4-Amino-2-dimethylamino-toluol $C_2H_{14}N_2 = CH_3 \cdot C_4H_3(NH_2) \cdot N(CH_3)_2$. B. Durch Reduktion von 4-Nitro-2-dimethylamino-toluol (Bd. XII, S. 845) mit Zinnehlorür und Salzsaure (Ullmann, Mühlhauser, B. 35, 332) oder mit Zinn und Salzsaure (Möhlau, Klimmer, KAHL, C. 1902 II, 377). — Gelbliches Öl, das an der Luft braun wird. Kp: 2480 (Mö., Kl., KA.); Kp728: 257-2590 (unter schwacher Zersetzung) (U., MÜ.). Löslich in Alkohol und

Ather, unlöslich in Wasser (U., Mü.). — Gibt beim Erhitzen mit Benzaldehyd und β -Naphthol das Dimethylamino-methylphenyl-benzoacridindihydrid der nebenstehenden Formel (Syst. No. 3401) (U., Mü.; vgl. U., D. R. P. 128754; C. 1902 I, 610).

— C.H. N. + 2 HCl. Säulen (aus Alkohol). F: 208°; leicht löslich in Wasser und Alkohol, unlöslich in Aceton (Mö., KL., Ka.). — C₂H₁₄N₂+H₂SO₄. Krystalle (aus Alkohol). F: 209° (Mö., KL., Ka.).

2-Amino-4-dimethylamino-toluol C₂H₁₄N₂ = CH₃·C₆H₃(NH₂)·N(CH₃)₂. B. Durch Reduktion von 2-Nitro-4-dimethylamino-toluol (Bd. XII, S. 997) (Höchster Farbw., D. R. P. 60488, Fed. 2 208) and Zing and Solventia (Montana Contana Contan

69188; Frdl. 3, 398) mit Zinn und Salzsäure (MORGAN, CLAYTON, Soc. 87, 948). — Prismen (aus Ligroin). F: 54°; schwer löslich in Wasser, leicht in Alkohol, Ather und Benzol (H. F., D. R. P. 69188). — Liefert durch Kondensation mit salzsaurem 4-Nitroso-dimethylanilin 3 - Amino - 6 - dimethylamino - 2 - methyl - phenazin - chlormethylat-(10) (s. nebenstehende Formel) (Syst. No. 3747); dieselbe Verbindung entsteht auch durch gemeinschaftliche Oxydation von 2-Amino-4-dimethylamino-toluol mit N.N-Dimethyl-p-phenylendiamin (S. 72) bei Gegenwart von Salzsäure und Kochen der Lösung (H. F., D. R. P. 69188). Bei Ver-

$$(CH_3)_2N \cdot \underbrace{\begin{array}{c} N \\ N \\ CH_3 \end{array}} \cdot CH_3$$

wendung anderer p-Diamine entstehen Produkte analoger Konstitution (H. F., D. R. P. 85231, 85232, 87560; Frdl. 4, 376, 377, 378). Kondensation von 2-Amino-4-dimethylamino-toluol mit Aminoazobenzol und anderen Aminoazokörpern zu scharlachroten Safraninen: Farbw. Mühlheim, D. R. P. 86608; Frdl. 4, 380. Verwendung zur Darstellung von Azofarbstoffen: Akt. Ges. f. Anilinf., D. R. P. 118392; C. 1901 I, 653.

- 2.4 Bis dimethylamino toluol, N.N.N'.N'-Tetramethyl-asymm.-m-toluylendiamin $C_{11}H_{18}N_2=CH_3\cdot C_0H_3[N(CH_3)_2]_2$. B. Aus dem Hydrobromid des 2.4-Diaminotoluols und Methylalkohol durch Erhitzen im Einschlußrohr auf 180° (Megan, Soc. 81, N.N.N'.N'-Tetramethyl-asymm.-m-toluylen-653). — Braunlichgelbes Öl. Wird bei —10° nicht fest. $Kp_{24_26}:148$ —150° $Kp_{75}:255$ —256°. $D^{24}:0.9661$. — Kondensiert sich leicht mit Formaldehyd zu 4.6.4′.6′. Tetrakis-dimethylamino-3.3′-dimethyl-diphenylmethan (Syst. No. 1819). — Pikrat $C_{11}H_{18}N_2 + C_6H_3O_7N_3$. Prismen (aus Essigester). F: 162—163°. — $C_{11}H_{18}N_3 + 2$ HCl+ PtCl₄. Prismen. Wird durch heißes Wasser zersetzt unter Formaldehydentwicklung und. Bildung einer dunkelroten Lösung.
- 2.4-Bis-dimethylamino-toluol-hydroxymethylat-(4), Trimethyl-[3-(dimethylamino)-4-methyl-phenyl]-ammoniumhydroxyd $C_{12}H_{23}ON_2 = CH_3 \cdot C_4H_3[N(CH_2)_2] \cdot N(CH_2)_3 \cdot OH$. B. Das Bromid entsteht beim Erhitzen des Hydrobromids des 2.4-Diaminotoluols mit Methylalkohol im Druckrohr auf 180° neben 2.4-Bis-dimethylamino-toluol (s. o.) (Morgan, Soc. 81, 654). — Bromid. Krystalle. — Chloroplatinat C12H21N2Cl+HCl+ PtCl4. Bräunlichgelbe Prismen (aus heißem Wasser).
- **4-Amino-2-athylamino-toluol** $C_9H_{14}N_2 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot C_2H_5$. B. Aus 4-Nitro-2-āthylamino-toluol (Bd. XII, S. 845) mit Zinkstaub und Salzsaure (Mac Call um, Soc. 67, 247). - Flüssig. Kp: 274-275°. Leicht löslich in Alkohol, Äther und Benzol.
- 2-Amino-4-äthylamino-toluol $C_bH_{14}N_2=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot C_2H_6$. B. Durch Reduktion von 2-Nitro-4-äthylamino-toluol (Bd. XII, S. 997) (Noelting, Stricker, B. 19, 549). — Flüssig. Kp: 280—283° (N., St.), 289—291° (JAUBERT, Bl. [3] 21, 20).
- 4-Amino-2-diäthylamino-toluol $C_{11}H_{18}N_2=CH_3\cdot C_6H_3(NH_2)\cdot N(C_2H_8)_2$. B. Durch Reduktion von 4-Nitro-2-diäthylamino-toluol (Bd. XII, S. 845) mit Zinnchlorür und Salzsăure (ULLMANN, MÜHLHAUSER, B. 35, 335; MÖHLAU, KLIMMER, KAHL, C. 1902 II, 377). — Gelbliches Öl. Kp: 259° (MÖ., Kl., KA.); Kp₇₃₀: 265—266° (U., MÜ.). Flüchtig mit Wasserdampf (MÖ., Kl., KA.). Leicht löslich in Alkohol und Äther (U., MÜ.). — $C_{11}H_{18}N_3+2$ HCl +H₂O. F: 213—215°; leicht löslich in Wasser und Alkohol, unlöslich in Äther und Aceton (Mö., Kl., KA.).
- 2-Amino-4-anilino-toluol, 3-Amino-4-methyl-diphenylamin $C_{13}H_{14}N_2 = CH_3$ C₆H₅(NH₅)·NH·C₆H₅. B. Durch 10-stdg. Erhitzen von 1 Teil 2.4-Diamino-toluol mit 1¹/₈ Tl. Anilinhydrochlorid und 3 Tln. Anilin auf 240—250° (BAYER & Co., D.R.P. 80977; Frdl. 4, 83). — Prismen (aus Ligroin). F: 76—77° (B. & Co.). — Dient zur Darstellung von Farbstoffen der Safraninreihe, z. B. der Rhoduline (Schultz, Tab. No. 684).
- 4'-Nitro-3-amino-4-methyl-diphenylamin $C_{13}H_{13}O_2N_3 = CH_3 \cdot C_eH_3(NH_2) \cdot NH \cdot C_eH_4$ NO₂. B. Man erwärmt die aus 6-Chlor-3-nitro-benzol-sulfonsäure-(1) (Bd. XI, S. 73) und 2.4-Diamino-toluol erhältliche 4'-Nitro-3-amino-4-methyl-diphenylamin-sulfonsäure-(2') (Akt.-Ges. f. Anilinf., D.R.P. 107061; Frdl. 5, 436; C. 1900 I, 880) mit 80% iger Schwefelsäure auf 80—90° (Ullmann, D.R.P. 193448; C. 1908 I, 1003). — Gelbrote Nadeln (aus Toluol). F: 168°; löslich in Alkohol; die alkoh. Lösung wird auf Zusatz von Kalilauge blutrot; mit trüb roter Farbe löslich in konz. Schwefelsäure (U.).

J·NH·CH_•·C_•H_•

- 2'.4'-Dinitro-8-amino-4-methyl-diphenylamin $C_{19}H_{12}O_4N_4 = CH_3 \cdot C_4H_3(NH_2) \cdot NH \cdot C_4H_5(NO_2)_2$. B. Durch Kochen von 2.4-Diamino-toluol mit 4-Chlor-1.3-dinitro-benzol und Alkohol (LEYMANN, B. 15, 1237) oder beim Zusammenschmelzen von 2.4-Diamino-toluol mit 4-Chlor-1.3-dinitro-benzol (Reitzenstein, J. pr. [2] 68, 258). Rote Täfelchen (aus Eisessig). F: 183—184° (R.), 184° (L.).
- 2-Äthylamino-4-anilino-toluol, 3-Äthylamino-4-methyl-diphenylamin $C_{15}H_{18}N_5 = CH_2 \cdot C_6H_5(NH \cdot C_2H_5) \cdot NH \cdot C_6H_5$. B. Durch 10-stdg. Erhitzen von 2-Amino-4-anilino-toluol (S. 130) mit der äquimolekularen Menge Äthylbromid und Alkohol im Druckrohr auf 150° bis 175° (BAYER & Co., D.R.P. 87667; Frdl. 4, 85). Krystalle (aus Ligroin). F: 59—60°. Verwendung sur Darstellung von Azinfarbstoffen: B. & Co., D.R.P. 87975; Frdl. 4, 418.
- 2-Amino-4-p-toluidino-toluol, 3-Amino-4.4'-dimethyl-diphenylamin $C_{14}H_{14}N_2 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot C_6H_4 \cdot CH_2$. B. Neben p.p-Ditolylamin (Bd. XII, S. 907), durch 20-stdg. Erhitzen von 1 Tl. salzsaurem 2.4-Diamino-toluol mit 4 Tln. p-Toluidin auf 260—270° (Bayer & Co., D.R.P. 80977; Frdl. 4, 83). Man löst 100 Tle. p.p-Ditolylamin in 1000 Tln. konz. Schwefelsäure, trägt in diese Lösung bei —5° ein Gemisch von 38 Tln. konz. Salpetersäure (50° Bé) und 78 Tln. konz. Schwefelsäure ein und reduziert das hierbei entstandene und durch Aufgießen auf Eis isolierte rohe Nitroprodukt mit Zinn und Salzsäure oder mit Zinkstaub und Eisessig (JAUBERT, B. 28, 1649). Prismen (aus Ligroin). F: 69—70° (B. & Co.), 71° (korr.) (J.). Sehr leicht löslich in Alkohol, Äther und Benzol, wenig in Ligroin (J.). Dient zur Herstellung von Farbstoffen der Safraninreihe (Rhoduline) (Schultz, Tab. No. 684).
- 4-Amino-2-bensylamino-toluol $C_{14}H_{16}N_3=CH_3\cdot C_6H_5(NH_4)\cdot NH\cdot CH_2\cdot C_6H_5$. B. Durch Reduktion von 4-Nitro-2-benzylamino-toluol (Bd. XII, S. 1033) in Eisessig mit Zinn-chlorür und Salzsäure (Ullmann, Grether, B. 35, 339; U., D.R.P. 128754; C. 1902 I, 610; BAYER & Co., D.R.P. 141297; C. 1903 I. 1163). Farblose Nadeln. F: 81° (U., G.), 80° (B. & Co.). Leicht löslich in Alkohol und Åther, unlöslich in kaltem Wasser (U., G.). Gibt durch Verschmelzen mit Benzaldehyd und β-Naphthol und Behandlung des Reaktionsproduktes mit Eisenchlorid das Benzylamino-

methyl-phenyl-benzoacridin der nebenstehenden Formel

(Syst. No. 3401) (U., G.; U.).

- 2-Amino-4-bensylamino-toluol $C_{14}H_{16}N_2 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CH_2 \cdot C_6H_5$. Durch Reaktion mit den p-Nitrosoverbindungen der sekundären oder tertiären aromatischen Amine entstehen wasserlösliche basische Azinfarbstoffe (Bayer & Co., D.R.P. 97594; C. 1898 II, 689).
- 4-Anilino-2-bensylamino-toluol, 3-Bensylamino-4-methyl-diphenylamin $C_{20}H_{20}N_2 = CH_2 \cdot C_8H_3 (NH \cdot C_8H_5) \cdot NH \cdot CH_2 \cdot C_8H_3$. B. Durch Erwärmen von 2-Amino-4-anilino-toluol (S. 130) mit Bensylchlorid (Bayer & Co., D.R.P. 87667; Frdl. 4, 85). Blättchen (aus Alkohol). F: 120°; leicht löslich in Benzol und heißem Alkohol, ziemlich leicht in Äther und heißem Ligroin (B. & Co., D.R.P. 87667). Dient zur Darstellung von Farbstoffen der Safraninreihe (Rhoduline) (Schultz, Tab. No. 684).
- 4-p-Toluidino-2-a-naphthylamino-toluol, 3-a-Naphthylamino-4.4'-dimethyl-diphenylamin $C_{24}H_{22}N_2=CH_2\cdot C_4H_3(NH\cdot C_6H_4\cdot CH_3)\cdot NH\cdot C_{10}H_7$. B. Durch Erhitzen von 1 Tl. salzsaurem 2-Amino-4-p-toluidino-toluol (s. o.) mit 2 Tln. a-Naphthol auf 240° bis 250° (Bayer & Co., D.R.P. 83159; Frdl. 4, 84). Blättchen (aus Alkohol). F: 121°. Leicht löslich in Äther, Benzol, Chloroform und heißem Alkohol.
- 2-Amino-4- β -naphthylamino-toluol $C_{17}H_{16}N_2=CH_3\cdot C_6H_2(NH_2)\cdot NH\cdot C_{10}H_7$. B. Aus 3-Oxy-naphthoesaure-(2) (Bd. X, S. 333) und 2.4-Diamino-toluol durch Erwärmen mit Natrium-disulfitlösung (Bucherer, Seyde, J. pr. [2] 75, 275). Krystallpulver (aus viel heißem Ligroin). F: 95°. Sehr leicht löslich in Benzol, Alkohol, Ather, Aceton, sehr wenig in kaltem, besser löslich in heißem Ligroin. $C_{17}H_{16}N_2+HCl$. Nädelchen (aus heißer verd. Salzaäure). F: 205° (Zers.).
- 4-Dimethylamino-2- β -naphthylamino-toluol $C_{19}H_{20}N_{2}=CH_{3}\cdot C_{6}H_{2}[(N(CH_{3})_{2}]\cdot NH\cdot C_{10}H_{2}$. B. Aus 2-Amino-4-dimethylamino-toluol (S. 130) durch Erhitzen mit β -Naphthol (Höchster Farbwerke, D.R.P. 89659; Frdl. 4, 379). Krystalle (aus Toluol + Ligroin). F: 95—96°.
- 4-Anilino-2- β -naphthylamino-toluol, 3- β -Naphthylamino-4-methyl-diphenylamin $C_{23}H_{20}N_3=CH_3\cdot C_6H_3(NH\cdot C_6H_5)\cdot NH\cdot C_{10}H_7$. B. Durch 20-stdg. Erhitzen von 1 Tl. 2-Amino-4-anilino-toluol (S. 130) mit 2 Tln. β -Naphthol auf 230—240° im CO₃-Strome (BAYER & Co., D.R. P. 83159; Frdl. 4, 84). Blättchen (aus Alkohol). F: 119—120°. Leicht löslich in Äther und Benzol, wenig in kaltem Alkohol, sehr wenig in Ligroin.
- 4-p-Toluidino-2- β -naphthylamino-toluol, $8-\beta$ -Naphthylamino-4.4'-dimethyldiphenylamin $C_{24}H_{22}N_2=CH_2\cdot C_0H_3(NH\cdot C_0H_4\cdot CH_3)\cdot NH\cdot C_{10}H_7$. B. Durch Eintragen

von 1 Tl. salzsaurem 2-Amino-4-p-toluidino-toluol (S. 131) in 2 Tle. auf $240-250^{\circ}$ erhitztes β -Naphthol (BAYER & Co., D.R.P. 83159; Frdl. 4, 84). — Kugelförmige Aggregate (aus Benzol-Ligroin). F: 82-83°. Leicht löslich in Äther, Alkohol, Benzol.

Verbindung aus 1 Mol. 2.4-Diamino-toluol, 1 Mol. Formaldehyd und 1 Mol. schwefliger Säure $C_8H_{11}O_3N_2S=CH_3^{1\cdot}C_6H_8(NH_2)^2\cdot[NH\cdot CH_2(SO_3H)]^4$. B. Das Natriumsalz entsteht als Hauptprodukt aus 1 Mol.-Gew. 2.4-Diamino-toluol und 1 Mol.-Gew. Formaldehyd-Natriumdisulfit-Lösung in 50%eigem Alkohol (Bucherer, Schwalbe, B. 39, 2804). — Läßt sich diazotieren. — Na $C_8H_{11}O_3N_2S$. Nadeln (aus 80%eigem Alkohol).

Verbindung aus 1 Mol. 2.4-Diamino-toluol, 2 Mol. Formaldehyd und 2 Mol. schwefliger Säure $C_9H_{14}O_9N_9S_2=CH_3\cdot C_6H_2[NH\cdot CH_3(SO_9H)]_3$. B. Das Natriumsalz entsteht als Hauptprodukt aus 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-Gew. Formaldehyd-Natriumdisulfit-Lösung (B., Sch., B. 39, 2803). — Natriumsalz. Nadeln (aus Wasser durch Alkohol).

Polymeres (P) Methylen-m-toluylendiamin $(C_2H_{10}N_2)_x = [CH_3 \cdot C_4H_2(NH_2) \cdot N : CH_2]_x$. B. Aus 2.4-Diamino-toluol und Formaldehyd in neutraler, wäßriger oder alkoholischer Lösung (Ullmann, Naef, B. 33, 913; U., D.R.P. 130943; C. 1902 I, 1184). — Schwach gefärbtes Pulver, das unschaft zwischen 150° und 180° schmilzt (U., N.). Unlöslich in Wasser, Alkohol und Benzol, sehr leicht löslich in Chloroform und verd. Säuren (U., N.; U.). — Durch Erwärmen der sauren wäßr. Lösung entsteht ein Acridinfarbstoff (Ges. f. chem. Ind., D.R.P. 136617; C. 1902 II, 1352). Beim Erhitzen mit β -Naphthol und Natriumacetat auf 160—180° entsteht das Amino-methyl-benzoacridindihydrid der nebenstehenden Formel (Syst. No. 3401), neben sehr geringen Mengen einer in Alkohol schwer löslichen Verbindung

2 - Amino - 4 - $[\beta.\beta.\beta$ - trichlor - a - oxy - äthylamino] - toluol, Chloral - asymm.m-toluylendiamin $C_0H_{11}ON_3Cl_3 = CH_3 \cdot C_0H_3(NH_2) \cdot NH \cdot CH(OH) \cdot CCl_3$. B. Aus squimolekularen Mengen 2.4-Diamino-toluol und Chloral in Chloroform (Rüchelmer, B. 39, 1661). — Feinkrystallinisches Pulver. F: ca. 86°.

vom Schmelzpunkt 210° (U., N.; vgl. U.).

- 2.4-Bis-önanthylidenamino-toluol, N.N'-Diönanthyliden-asynım.-m-toluylendiamin $C_{11}H_{24}N_{2} = CH_{3} \cdot C_{4}H_{3}(N:CH \cdot [CH_{2}]_{5} \cdot CH_{3})_{2}$. B. Aus 2 Mol.-Gew. Önanthol (Bd. I, S. 695) und 1 Mol.-Gew. 2.4-Diamino-toluol bei 100° (SCHIFF, A. 140, 97; SCHIFF, VANNI, A. 253, 319). Sehr dicke Flüssigkeit. Unlöslich in Wasser, wenig löslich in Alkohol.
- 2-Amino-4-benzalamino-toluol $C_{14}H_{14}N_2=CH_3\cdot C_eH_3(NH_2)\cdot N:CH\cdot C_eH_5$. B. Durch Schütteln von in Wasser suspendiertem 2.4-Diamino-toluol mit der äquimolekularen Menge Benzaldehyd (R. Meyer, Gross, B. 32, 2358). Hellgelbe Tafeln (aus Äther). F: 90—91°; leicht löslich in Äther und Alkohol, schwerer in Ligroin, unlöslich in Petroläther (R. M., G.). Gibt beim Erhitzen mit p-Toluidin und salzsaurem p. 1602). Geht beim Digerieren mit salzsaurem 2.4-Diamino-toluol in 4.6.4'.6'-Tetraamino-3.3'-dimethyl-triphenylmethan (Syst. No. 1819) über.
- 2.4-Bis-bensalamino-toluol, N.N'-Dibensal-asymm.-m-toluylendiamin $C_{al}H_{1e}N_a = CH_3 \cdot C_eH_s(N:CH\cdot C_eH_s)_a$. B. Aus 2.4-Diamino-toluol und Bensaldehyd bei 100° (SCHIFF, A. 140, 98). Gelbliche krystallinische Masse. Schmilzt bei 122—128°. Indifferent. Wird von Säuren in der Wärme nur wenig angegriffen.
- **2.4** Bis cuminalamino toluol, N.N' Dicuminal asymm. m toluylendiamin $C_{27}H_{26}N_3 = CH_3 \cdot C_6H_3[N:CH \cdot C_6H_4 \cdot CH(CH_3)_3]_2$. B. Beim Vermischen der sehr verdünnten alkoholischen Lösungen von 2 Mol.-Gew. Cuminaldehyd (Bd. VII, S. 318) und 1 Mol.-Gew. 2.4-Diamino-toluol (SCHIFF, VANNI, A. 253, 331). Gelbes Pulver. Schmilzt etwas oberhalb 99° unter Zersetzung.
- **2.4** Bis cinnamalamino toluol, N.N' Dicinnamal asymm.- m toluylendiamin $C_{28}H_{28}N_2 = CH_3 \cdot C_6H_2(N:CH\cdot CH:CH\cdot C_6H_5)_2$. B. Aus Zimtaldehyd (Bd. VII, S. 348) und 2.4-Diamino-toluol (Schiff, A. 239, 384; Sch., Vanni, A. 253, 332). Gelbes Pulver. Schwer löslich in Alkohol (Sch., V.).

Verbindung $C_{19}H_{28}O_8N_4=CH_8\cdot C_8H_3(N:CH\cdot CH_8\cdot CH_2\cdot CO\cdot CH:N\cdot C_6H_5)_8$ oder $CH_2\cdot C_6H_3(N:CH\cdot CO\cdot CH_3\cdot CH_3\cdot CH:N\cdot C_6H_4)_2$ bezw. desmotrope Formen. Zur Konstitution vgl. ZINGKE, MÜHLHAUSEN, B. 38, 3824; DIECKMANN, BECK, B. 38, 4123; KÖNIG, J. pr. [2] 72, 555. — B. Das salzsaure Salz entsteht beim Verdunsten einer alkoh. Lösung von 2 Mol.-Gew. Furfurol (Syst. No. 2461), 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-Gew. salzsaurem Anilin (SCHIFF, A. 239, 358). — $C_{19}H_{28}O_2N_4 + 2HCl + 2H_3O$. Fuchsinähnliche Masse. Löst sich in Alkohol mit rotvioletter Farbe; wird durch Wasser zersetzt (SCH.).

- 2.4 Bis salicylalamino toluol, N.N'- Disalicylal asymm. m toluylendiamin $C_{21}H_{18}O_2N_2 = CH_3 \cdot C_6H_3(N:CH \cdot C_6H_4 \cdot OH)_2$. B. Beim Vermischen der alkoh. Lösungen von 2 Mol.-Gew. Salicylaldehyd (Bd. VIII, S. 31) und 1 Mol.-Gew. 2.4-Diamino-toluol (SCHIFF, VANNI, A. 253, 330). Nadeln (aus benzolhaltigem Alkohol). F: 109°; wenig löslich in Alkohol, leicht in Ather und Benzol (SCH., V.). $CuC_{21}H_{16}O_2N_2$. B. Aus 2.4-Diaminotoluol und dem Kupfersalz des Salicylaldehyds (SCH., A. 150, 198). Dunkelgrünes Krystallpulver.
- 2 Amino 4 formamino toluol $C_8H_{10}ON_2=CH_3\cdot C_8H_3(NH_2)\cdot NH\cdot CHO$. B. Beim Erhitzen von 1 Mol.-Gew. 2.4-Diamino-toluol mit 1 Mol.-Gew. Ameisensäure am Rückflußkühler (Geigy & Co., D.R.P. 138839; Frdl. 7, 540; C. 1903 I, 427). Pyramiden (aus heißem Wasser). F: 113—114°; in kaltem Wasser schwer löslich (G. & Co., D.R.P. 138839). Verwendung zur Darstellung von Schwefelfarbstoffen: G. & Co., D.R.P. 138839, 145762, 145763; C. 1903 I, 427; II, 1039.
- 4-[2.4-Dinitro-anilino]-2-formamino-toluol, 2'.4'-Dinitro-3-formamino-4-methyl-diphenylamin $C_{14}H_{12}O_5N_4=CH_3\cdot C_6H_3[NH\cdot C_6H_3(NO_2)_2]\cdot NH\cdot CHO$. B. Aus 2'.4'-Dinitro-3-amino-4-methyl-diphenylamin (S. 131) und Ameisensäure (Leymann, B. 15, 1237). F: 157°.
- **2.4-Bis-formamino-toluol,** N.N'-Diformyl-asymm.-m-toluylendiamin $C_9H_{10}O_9N_3=CH_3\cdot C_6H_3(NH\cdot CHO)_2$. B. Aus 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-Gew. Ameisensäure (GEIGY & Co., D.R. P. 138839; Frdl. 7, 540; C. 1903 I, 427). Weiße Nadeln (aus heißem Wasser). F: 176—177° (G. & Co., D.R. P. 138839). Verwendung zur Darstellung von Schwefelfarbstoffen: G. & Co., D.R. P. 138839, 145762, 145763, 146917; C. 1903 I, 427; II, 1039, 1403; Akt.-Ges. f. Anilinf., D.R. P. 167820; C. 1906 I, 1127. Verwendung zur Darstellung von Acridinfarbstoffen: G. & Co., D.R. P. 149409, 161699; C. 1904 I, 770; 1905 II. 730.
- 4-Amino-2-acetamino-toluol $C_9H_{12}ON_2=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot CH_3$. B. Man schüttet 10 g Eisenpulver in die Lösung von 4-Nitro-2-acetamino-toluol (Bd. XII, S. 845) in 50 ccm Alkohol und 100 g Wasser ein, erhitzt zum Kochen und läßt langsam ein Gemisch aus 24 ccm Eisessig und 40 ccm Wasser einfließen; nach beendeter Reaktion verdunstet man den Alkohol, fällt das gelöste Eisen durch K_2CO_3 und verdunstet die Lösung bis auf 100 ccm (Wallach, A. 234, 360). Nadeln. F: 140° . $2C_9H_{12}ON_2 + 2HCl + PtCl_4$. Gelbe Nadeln. Schwer löslich in Wasser.
- 2-Amino-4-acetamino-toluol C₉H₁₂ON₂ = CH₃·C₉H₃(NH₂)·NH·CO·CH₃. B. Neben geringen Mengen des Diacetylderivates bei längerem Kochen von 2.4-Diamino-toluol mit verd. Essigsäure (Schiff, Ostrogovich, A. 293, 371 Anm. 1; vgl. Tiemann, B. 3, 221). Beim Eintragen von 20 g Eisenpulver in die heiße Lösung von 20 g 2-Nitro-4-acetamino-toluol (Bd. XII, S. 998) in 50 ccm Eisessig und 200 ccm Wasser (Wallach, A. 284, 354). Durch Erhitzen von 1 Tl. 2.4-Diamino-toluol mit ½ Tl. Acetamid auf 160—170° (Sch., Ost.). Prismen oder Nadeln. F: 161,5° (korr.) (Sch., Ost.), 159° (W.), 158—159° (T.). Schwieriger löslich in Alkohol, aber leichter löslich in siedendem Wasser als das Diacetylderivat (s. u.) (T.). Carosche Säure oxydiert zu 2-Nitroso-4-acetamino-toluol (Bd. XII, S. 996) (Cain, Soc. 95, 715). Durch Diazotierung und Kochen der entstandenen Diazoverbindung mit Wasser bildet sich 2-Oxy-4-acetamino-toluol (Syst. No. 1855) (W.). Verwendung zur Darstellung von Azofarbstoffen: Bayer & Co., D.R.P. 214352; C. 1909 II, 1397, zur Darstellung von Schwefelfarbstoffen: Oehler, D.R.P. 160109; C. 1905 I, 1449.
- 4-Dimethylamino-2-acetamino-toluol $C_{11}H_{16}ON_2 = CH_3 \cdot C_6H_3[N(CH_3)_2] \cdot NH \cdot CO \cdot CH_3$. B. Aus 2-Amino-4-dimethylamino-toluol (S. 130) und Essigsäureanhydrid (Morgan, Clayton, Soc. 87, 948). Nadeln (aus Wasser). F: 135°.
- 2 Dimethylamino 4 acetamino toluol $C_{11}H_{16}ON_2 = CH_3 \cdot C_6H_3[N(CH_3)_2] \cdot NH \cdot CO \cdot CH_3$. B. Aus 4-Amino-2-dimethylamino-toluol und Essigsäureanhydrid (Möhlau, Klimmer, Kahl, C. 1902 II, 377). Nadeln (aus Petroläther). F: 103°. Leicht löslich.
- Dimethyl äthyl [3 acetamino 4 methyl phenyl] ammoniumbromid $C_{12}H_{21}ON_2Br = CH_3\cdot C_6H_3[N(CH_3)_8(C_2H_5)Br]\cdot NH\cdot CO\cdot CH_3$. B. Man erhitzt 3,1 g 4-Dimethylamino 2 acetamino toluol (s. o.) mit 1,8 g Åthylbromid in 5 ccm Benzol 8\frac{1}{2},5 stdn. auf 1150 bis 1250 (Pinnow, B. 34, 1137). F: 187—187,5°. Sehr leicht löslich in Wasser, waßr. Aceton und Alkohol.
- 2'.4'-Dinitro-3-acetamino-4-methyl-diphenylamin $C_{15}H_{14}O_5N_4 = CH_3 \cdot C_6H_3[NH \cdot C_6H_3(NO_2)_2] \cdot NH \cdot CO \cdot CH_3$. B. Aus 2'.4'-Dinitro-3-amino-4-methyl-diphenylamin (S. 131) und Essigsäureanhydrid (Leymann, B. 15, 1237). F: 163—164°.
- 2.4-Bis-acetamino-toluol, N.N'-Diacetyl-asymm.-m-toluylendiamin $C_{11}H_{14}O_{2}N_{2}=CH_{3}\cdot C_{6}H_{3}(NH\cdot CO\cdot CH_{3})_{2}$. B. Aus 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-Gew. Essig-

- säureanhydrid (Koch, A. 153, 132). Bei längerem Kochen von 1 Mol.-Gew. 2.4-Diaminotoluol mit etwas mehr als 2 Mol.-Gew. Eisessig (Tiemann, B. 3, 8, 219). Beim Erhitzen von 2.4-Diamino-toluol mit 2 Mol.-Gew. Acetamid (Kelbe, B. 16, 1200). Nadeln. F: 221° (T.), 223° (Ke.), 224° (Ladenburg, B. 8, 1211). Löslich in heißem Wasser, Alkohol und Äther (T.).
- 4-Amino-2-[3-nitro-benzamino]-toluol $C_{14}H_{13}O_8N_8 = CH_2 \cdot C_6H_8(NH_8) \cdot NH \cdot CO \cdot C_6H_4 \cdot NO_8$. B. Man erwärmt 2-Amino-4-formamino-toluol (S. 133) in wäßr. Suspension mit 3-Nitro-benzoylchlorid (Bd. IX, S. 381) bei Gegenwart von Soda, Kreide usw. und verseift das Kondensationsprodukt durch Kochen mit verd. Mineralsäure (Höchster Farbw., D. R. P. 208968; C. 1909 I, 1623). Hellgelbe Krystalle. F: 177°.
- 4-Amino-2-[4-nitro-benzamino]-toluol $C_{14}H_{18}O_{3}N_{8}=CH_{2}\cdot C_{6}H_{3}(NH_{2})\cdot NH\cdot CO\cdot C_{6}H_{4}\cdot NO_{2}$. B. Man erwärmt 2-Amino-4-formamino-toluol (S. 133) in wäßr. Suspension mit 4-Nitro-benzoylchlorid (Bd. IX, S. 394) bei Gegenwart von Soda, Kreide usw. und verseift das Kondensationsprodukt mit verd. Mineralsäure (Höchster Farbw., D. R. P. 208968; C. 1909 I, 1623). Hellbraune Nadeln. F: 196°.
- 2-Amino-4-benzamino-toluol $C_{14}H_{14}ON_2 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot C_6H_5$. B. Bei der Reduktion von 2-Nitro-4-benzamino-toluol (Bd. XII, S. 998) mit Zinn und Salzsäure (Bell, B. 7, 1505). Prismen. F: 142°. Leicht löslich in Äther und in verd. Säuren.
- N-[3-Amino-4-methyl-phenyl]-benzamidin $C_{19}H_{15}N_{8}=CH_{3}\cdot C_{6}H_{3}(NH_{2})\cdot NH\cdot C(:NH)\cdot C_{6}H_{5}$. B. Bei 2-tägigem Erhitzen von 2.4-Diamino-toluol-bis-hydrochlorid mit Benzonitril auf 180—190° (Bernthsen, Teompetter, B. 11, 1758). Nadeln. F: 211,5° bis 212°. Sehr leicht löslich in Alkohol und Äther. $C_{14}H_{15}N_{3}+HCl$. Tafeln. Chromat. In Wasser sehr schwer löslich. $2C_{14}H_{15}N_{3}+2HCl+PtCl_{4}$.
- 2-Amino-4-[3-nitro-benzamino]-toluol C₁₄H₁₅O₃N₃ = CH₃·C₆H₃(NH₃)·NH·CO·C₆H₄·NO₂. B. Man erwärmt das (nicht näher beschriebene) 4-Amino-2-formamino-toluol in wäßr. Suspension mit 3-Nitro-benzoylchlorid (Bd. IX, S. 381) in Gegenwart von Soda, Kreide usw. und verseift das Kondensationsprodukt mit verd. Mineralsäure (Höchster Farbw., D. R. P. 208968; C. 1909 I, 1623). Citronengelbe Krystalle. F: 154°.
- 2-Amino-4-[4-nitro-benzamino]-toluol $C_{14}H_{12}O_3N_3 = CH_3 \cdot C_6H_4(NH_2) \cdot NH \cdot CO \cdot C_6H_4 \cdot NO_2$. B. Man erwärmt das (nicht näher beschriebene) 4-Amino-2-formamino-toluol in wäßr. Suspension mit 4-Nitro-benzoylchlorid (Bd. IX, S. 394) und verseift das Kondensationsprodukt mit verd. Mineralsäure (H. F., D. R. P. 208968; C. 1909 I, 1623). Rotgelbe Nädelchen. F: 211°.
- 2-Amino-4-thiobenzamino-toluol $C_{14}H_{14}N_2S = CH_3 \cdot C_6H_3 \cdot NH \cdot CS \cdot C_6H_5$. B. Beim Erhitzen von N-[3-Amino-4-methyl-phenyl]-benzamidin (s. o.) mit CS_2 auf 100° (Bernthsen, Trompetter, B. 11, 1760). Gelbe, undeutliche Blättchen. F: 197°.
- 2.4 Bis benzamino toluol, N.N' Dibenzoyl asymm. m toluylendiamin $C_{21}H_{18}O_2N_2 = CH_3 \cdot C_6H_3(NH \cdot CO \cdot C_5H_5)_2$. B. Aus 2.4 Diamino toluol und Benzoylchlorid (Ruhemann, B. 14, 2656). Täfelchen (aus Eisessig). F: 224°. Schwer löslich in Alkohol, leichter in Eisessig.
- [asymm.-m-Toluylen]-bis-benzamidin $C_{21}H_{20}N_4 = CH_3 \cdot C_6H_3[NH \cdot C(:NH) \cdot C_6H_5]_9$. B. Beim Erhitzen von einfach salzsaurem 2.4-Diamino-toluol mit Benzonitril auf 180—1900 (Bernthsen, Trompetter, B. 11, 1759). Scheidet sich aus den Lösungen ölig aus und erstarrt langsam amorph. Ungemein löslich in Alkohol. Das salzsaure Salz krystallisiert nicht. Es löst sich wenig in kaltem Wasser. $C_{21}H_{20}N_4 + 2 HCl + PtCl_4$.
- [3-Amino-4-methyl-phenyl]-oxamidsäure $C_9H_{10}O_9N_2=CH_2\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot CO_2H$. B. Entsteht neben dem entsprechenden Äthylester und [asymm.-m-Toluylen]-bisoxamidsäureäthylester bei mehrtägigem Kochen von 2.4-Diamino-toluol mit Oxalsäurediäthylester und 92—95%/oigem Alkohol (Schiff, Vanni, A. 268, 307, 329). Bei eintägigem Kochen von 15 g 2.4-Diamino-toluol mit 11 g entwässerter Oxalsäure in absol. Alkohol (Schi, V., A. 269, 331). Krystalle. Schmilzt unter Zersetzung bei 223°; sehr schwer löslich in Alkohol (Schi, V.). Beim Kochen mit Anilin entstehen 2.4-Diamino-toluol und Oxanilid (Schi, V.). Verwendung zur Darstellung von Polyazofarbstoffen: Farbwerk Friedrichsfeld, D. R. P. 94635, 99126; C. 1898 I, 358; 1899 I, 156. Kaliumsalz. Schuppen. Leicht löslich in Wasser (Schi, V.). Ba($C_9H_9O_2N_2$) $_2$ + $2H_2O$. Pulvriger Niederschlag (Schi, V.).
- Äthylester $C_{11}H_{14}O_3N_2 = CH_2 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot CO_2 \cdot C_2H_5$. B. Bei längerem Kochen von 40 Tln. 2.4-Diamino-toluol mit 50 Tln. Oxalsäurediäthylester und 170—200 Tln. 93—95% igem Alkohol (Tiemann, B. 3, 222; Schiff, Vanni, A. 268, 307). Bei 1-tägigem Kochen äquimolekularer Mengen von 2.4-Diamino-toluol und Oxamāthan (Bd. II, S. 544) in konzentrierter absolut-alkoholischer Lösung (Sch., V., A. 268, 308). Blättchen (aus Alkohol). F: 168—170° (Sch., V.). Sublimiert nicht unzersetzt; wenig löslich in kaltem

Alkohol, leicht in siedendem (T.), schwer in CS₂ (Sch., V.). — Gibt mit Anilin bei kurzem Kochen N-Phenyl-N'-[3-amino-4-methyl-phenyl]-oxamid, bei längerem Kochen viel Oxanilid (Sch., V.). Liefert mit Phenylsenföl neben anderen Produkten [3-(ω-Phenyl-thioureido)-4-methyl-phenyl]-oxamidsäure-äthylester (S. 136) (Sch., V.).

[3-Amino-4-methyl-phenyl]-oxamid C_bH₁₁O₂N₃=CH₃·C_bH₂(NH₂)·NH·CO·CO·NH₃.

B. Aus [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester (S. 134) und alkoh. Ammoniak (SCHIFF, VANNI, A. 268, 332). Aus 2.4-Diamino-toluol und Oxamäthan (Bd. II, S. 544) bei 110—115° (SCH., V.). — Schuppen (aus Alkohol). F: 203°. — Gibt mit Anilin bei kurzem Kochen N-Phenyl-N'-[3-amino-4-methyl-phenyl]-oxamid, bei längerem Kochen viel Oxanilid.

N-Phenyl-N'-[3-amino-4-methyl-phenyl]-oxamid $C_{18}H_{18}O_2N_3=CH_3\cdot C_8H_3\cdot NH_3\cdot NH\cdot CO\cdot CO\cdot NH\cdot C_6H_5$. B. Bei kurzem Kochen von [3-Amino-4-methyl-phenyl]-oxamid-säure-āthylester oder dessen Amid mit Anilin (SCH., V., A. 268, 333). Beim Schmelzen von 2.4-Diamino-toluol mit Oxanilsäureāthylester (Bd. XII, S. 282) (SCH., V.). — F: 185—186°.

N.N'-Bis-[3-amino-4-methyl-phenyl]-oxamid $C_{16}H_{18}O_{2}N_{4}=[CH_{2}\cdot C_{6}H_{3}(NH_{2})\cdot NH\cdot CO-]_{2}$. B. Man erhitzt 2.4-Diamino-toluol mit der berechneten Menge Oxalsäure (Höchster-Farbw., D. R. P. 156177; C. 1904 II, 1675). — Gelbliches Pulver. Sehr wenig Isslich. Beim Erhitzen mit Schwefel auf mehr als 170° entsteht ein gelber schwefelhaltiger Baumwollfarbstoff (Hö. Fa., D. R. P. 156177; vgl. D. R. P. 157103; C. 1905 I, 484).

Polymeres (?) [asymm.-m-Toluylen]-oxamid $(C_0H_0O_2N_2)_x$ s. S. 129.

[3-Acetamino-4-methyl-phenyl]-oxamidsäure-äthylester $C_{12}H_{16}O_4N_2 = CH_3 \cdot C_4H_3(NH \cdot CO \cdot CH_2) \cdot NH \cdot CO \cdot CO_3 \cdot C_2H_5$. B. Durch Auflösen von [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester in heißem Essigsäureanhydrid (SCHIFF, Vanni, A. 268, 310). — Blättehen (aus Alkohol). F: 192°. Kaum löslich in kaltem Alkohol.

[asymm.-m-Toluylen]-bis-oxamidsäure $C_{11}H_{10}O_{e}N_{2}=CH_{3}\cdot C_{6}H_{5}(NH\cdot CO\cdot CO_{2}H)_{2}$. B. Das Ammoniumsalz entsteht neben [asymm.-m-Toluylen]-bis-oxamid (s. u.) aus dem Diāthylester (s. u.) und alkoh. Ammoniak (SCH., V., A. 268, 345). — Die freie Säure ist nicht existenzfähig; die Lösung des Ammoniumsalzes schmeckt stark süß. — $Ag_{2}C_{11}H_{6}O_{e}N_{2}$. — $BaC_{11}H_{6}O_{e}N_{2}+2H_{2}O$. — $PbC_{11}H_{8}O_{e}N_{2}$.

Diäthylester, N.N´-Diäthoxalyl-asymm.-m-toluylendiamin $C_{12}H_{13}O_4N_2 = CH_3 \cdot C_4H_3(NH \cdot CO \cdot CO_3 \cdot C_4H_3)_3$. B. Aus [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester (S. 134) und Oxalsäurediäthylester in absol. Alkohol (Sch., V., A. 268, 340). Neben [3-Amino-4-methyl-phenyl]-oxamidsäure und ihrem Athylester beim längeren Kochen von 40 Tln. 2.4-Diamino-toluol mit 50 Tln. Oxalsäurediäthylester und 170—200 Tln. 93—95°/eigem Alkohol (Sch., V., A. 268, 307, 340). — Nädelchen (aus Ather). F: 130°. Sehr löslich in Alkohol, schwer in Ather. Die alkoh. Lösung fluoresciert.

[5-Äthoxalylamino-2-methyl-phenyl]-oxamid $C_{12}H_{12}O_{2}N_{3}=CH_{2}\cdot C_{6}H_{2}\cdot NH\cdot CO\cdot CO_{2}\cdot C_{2}H_{2}\cdot NH\cdot CO\cdot CO\cdot NH_{2}$. B. Aus [3-Amino-4-methyl-phenyl]-oxamidsaure-athylester (S. 134) und Oxamidsaure-athylester bei 160—170° (SCH., V., A. 268, 343). — Nädelchen (aus Alkohol). Zersetzt sich gegen 220°.

[8-Äthoxalylamino-4-methyl-phenyl]-oxamid $C_{12}H_{15}O_{2}N_{3} = CH_{3}\cdot C_{6}H_{5}(NH\cdot CO\cdot CO_{2}\cdot C_{2}H_{5})\cdot NH\cdot CO\cdot CO\cdot NH_{3}$. B. Beim Kochen von [3-Amino-4-methyl-phenyl]-oxamid (8. 0.) mit Oxalsäurediäthylester und Alkohol (Soh., V., A. 268, 341). — Nadeln (aus verd. Alkohol). Schmilst unter Zersetzung gegen 210°.

[asymm.-m-Toluylen]-bis-oxamid $C_{11}H_{12}O_4N_4=CH_3\cdot C_6H_6(NH\cdot CO\cdot CO\cdot NH_6)_2$. B. Aus dem [asymm.-m-Toluylen]-bis-oxamidsaureathylester, dem [5-Athoxalylamino-2-methyl-phenyl]-oxamid oder dem [3-Athoxalylamino-4-methyl-phenyl]-oxamid durch Behandeln mit alkoh. Ammoniak (SCE., V., A. 268, 343). — Krystallpulver (aus Alkohol). Zersetzt sich oberhalb 220°, ohne zu schmelzen.

[asymm.-m-Toluylen]-bis-malonamidsäureäthylester $C_{12}H_{22}O_{2}N_{2}=CH_{2}\cdot C_{4}H_{6}(NH\cdot CO\cdot CH_{2}\cdot CO_{2}\cdot C_{2}H_{6})_{2}$. B. Bei 1-stdg. Kochen von 2.4-Diamino-toluol mit Malonsaurediäthylester (R. Meyers, v. Lutzav, A. 847, 27). — Amorphes Pulver (aus Alkohol durch Wasser). Schmilzt zwischen 110° und 113°. Schwer löslich in Alkohol, Chloroform und Methylalkohol, leichter in Eisessig, unlöslich in Wasser und Äther,

[5-Amino-2-methyl-phenyl]-urethan $C_{10}H_{14}O_2N_3=CH_3\cdot C_4H_4(NH_3)\cdot NH\cdot CO_3\cdot C_2H_5$. B. Beim Behandeln von [5-Nitro-2-methyl-phenyl]-urethan (Bd. XII, S. 846) mit salssaurer Zinnehlorürlösung (Schiff, Varei, A. 268, 325). Beim Eintragen von [5-Acetamino-2-methyl-phenyl]-urethan (S. 136) in heiße Salssaure (Schiff, B. 25, 2211). — Prismen (aus Chloroform). F: 95° (Sch.).

N.N'-Bis-[5-amino-2-methyl-phenyl]-harnstoff $C_{16}H_{18}ON_4 = [CH_2 \cdot C_4H_4(NH_2) \cdot NH]_2CO$. B. Durch Reduktion von N.N'-Bis-[5-nitro-2-methyl-phenyl]-harnstoff (Bd. XII,

- S. 846) mit Zinn und Salzsaure (VITTENET, Bl. [3] 21, 662). Nadeln (aus sehr viel Alkohol). Zersetzt sich beim Erhitzen. Unlöslich in Wasser, Benzol und Äther.
- [3-Amino-4-methyl-phenyl]-urethan $C_{10}H_{14}O_2N_2 = CH_3 \cdot C_4H_4(NH_2) \cdot NH \cdot CO_3 \cdot C_2H_6$. Entsteht neben [asymm.-m-Toluylen]-di-urethan (S. 137) bei tropfenweisem Versetzen einer alkoh. Lösung von 2.4-Diamino-toluol mit Chlorameisensäureester (SCRIFF, VANNI, B. 23, 1817; A. 268, 315). Nadeln (aus verd. Alkohol). F: 90—91°. Sehr leicht löslich in Alkohol und verd. Salzsäure. Liefert mit Phenylsenföl [3-(ω -Phenyl-thioureido)-4-methyl-phenyl]-urethan (S. 137).
- [3-Amino-4-methyl-phenyl]-harnstoff C₅H₁₁ON₅ = CH₅·C₆H₅(NH₅)·NH·CO·NH₆. B. Entsteht in kleiner Menge neben [asymm.-m-Toluylen]-di-harnstoff (S. 137) bei der Umsetzung von schwefelsaurem 2.4-Diamino-toluol mit Kaliumcyanat in wäßr. Lösung (STRAUSS, A. 148, 159). Krystalle. Leicht löslich in Alkohol.
- [3-Amino-4-methyl-phenyl]-thioharnstoffC₈H₁₁N₃S=CH₃·C₆H₅(NH₂)·NH·CS·NH₂. B. Man erhitzt das aus 1 Mol.-Gew. 2.4-Diamino-toluol-monohydrochlorid und 1 Mol.-Gew. Rhodankalium erhältliche Monorhodanid des 2.4-Diamino-toluols auf 120° (Höchster Farbw., D. R. P. 152027; C. 1904 II, 274) oder auf dem Wasserbade (Bad. Anilin- u. Sodaf., D. R. P. 160041; C. 1905 I, 1449). Grauweißes Pulver. F: 170° (Hö. Fa.; B. A. S. F.). Schwer löslich in Wasser und Alkohol, leicht in Eisessig; löslich in heißen Säuren (Hö. Fa.; B. A. S. F.). Beim Erhitzen mit Schwefel auf 200—250° entsteht ein orangegelber Schwefelfarbstoff (Hö. Fa.). Beim Erhitzen mit Benzidin und Schwefel entsteht ein gelber Schwefelfarbstoff (B. A. S. F.).
- [3-Amino-4-methyl-phenyl]-dithiocarbamidsäure $C_8H_{10}N_8S_8=CH_8\cdot C_6H_8(NH_8)\cdot NH\cdot CS_2H$. B. Das Ammoniumsalz entsteht aus 2.4-Diamino-toluol in alkoh. Lösung mit Schwefelkohlenstoff und überschüssigem wäßr. Ammoniak (Losanitsch, B. 40, 2973). $NH_4C_8H_9N_2S_2$. Gelbliche Krystalle. F: 100°. Löslich in Wasser.
- [5-Acetamino-2-methyl-phenyl]-urethan $C_{12}H_{16}O_3N_3 = CH_3 \cdot C_6H_3(NH \cdot CO \cdot CH_3) \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Aus 2-Amino-4-acetamino-toluol und Chlorameisensäureäthylester (Bd. III, S. 10) in wasserfreiem Äther (Schiff, B. 25, 2211). Nadeln (aus verd. Alkohol). F: 181°. Sehr leicht löslich in Alkohol.
- [3-Carbäthoxyamino-4-methyl-phenyl]-oxamidsäure $C_{12}H_{14}O_5N_2=CH_2\cdot C_6H_4(NH\cdot CO\cdot CO_2H)\cdot NH\cdot CO_2\cdot C_2H_5$. B. Aus dem Kaliumsalz der [3-Amino-4-methyl-phenyl]-oxamidsäure (S. 134) und Chlorameisensäureäthylester in Äther bei mehrstündigem Kochen (SCHIFF, VANNI, A. 268, 336). Blättchen (aus verd. Alkohol). Krystallisiert mit ½ Mol. Wasser, das bei 90—100° entweicht. F: 168—170°. Sehr leicht löslich in Alkohol, schwer in Wasser. Die wäßr. Lösung schmeckt schwach süß.
- [3-Carbäthoxyamino-4-methyl-phenyl]-oxamidsäure-äthylester $C_{14}H_{18}O_5N_2=CH_3\cdot C_6H_3(NH\cdot CO\cdot CO_2\cdot C_2H_3)\cdot NH\cdot CO_2\cdot C_2H_5$. B. Aus dem [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester (Sch., V., A. 268, 320). Aus [5-Amino-2-methyl-phenyl]-urethan (S. 135) und Oxalsäurediäthylester (Sch., V., A. 268, 326). Nadeln (aus verd. Alkohol). F: 131°.
- [3-Carbāthoxyamino-4-methyl-phenyl]-oxamid $C_{18}H_{15}O_4N_8 = CH_8 \cdot C_0H_8 (NH \cdot CO \cdot CO \cdot NH_3) \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Aus dem [3-Carbāthoxyamino-4-methyl-phenyl]-oxamid-säure-āthylester (s. o.) und alkoh. Ammoniak (SCH., V., A. 268, 320). Prismen. F: 209°.
- [3-Ureido-4-methyl-phenyl]-oxamidsäure $C_{10}H_{11}O_4N_3=CH_3\cdot C_5H_3(NH\cdot CO\cdot CO_3H)\cdot NH\cdot CO\cdot NH_3$. B. Man übergießt [3-Amino-4-methyl-phenyl]-oxamidsäure mit Wasser, fügt etwas über 1 Mol.-Gew. Kaliumcyanat hinzu und fällt dann durch Salzsäure (Sch., V., A. 268, 338). Krystallpulver (aus Alkohol). F: 203°.
- Äthylester $C_{13}H_{16}O_4N_3 = CH_3 \cdot C_6H_3(NH \cdot CO \cdot CO_2 \cdot C_2H_5) \cdot NH \cdot CO \cdot NH_2$. B. Aus schwefelsaurem [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester und Kaliumcyanat in wäßr. Lösung (Son., V., A. 268, 339). Krystalle (aus Alkohol). F: 218°. Schwer löslich in kochendem Alkohol.
- [3-Ureido-4-methyl-phenyl]-oxamid $C_{10}H_{12}O_2N_4 = CH_3 \cdot C_6H_3(NH \cdot CO \cdot CO \cdot NH_3) \cdot NH \cdot CO \cdot NH_3$. B. Aus [3-Ureido-4-methyl-phenyl]-oxamidsäure-äthylester (s. o.) und alkoh. Ammoniak im Druckrohr bei $80-100^\circ$ oder besser aus schwefelsaurem [3-Amino-4-methyl-phenyl]-oxamid und Kaliumcyanat in wäßr. Lösung (Sch., V., A. 268, 339). F: 239°. In siedendem Alkohol kaum löslich.
- [3-(ω -Phenyl-thioureido)-4-methyl-phenyl]-oxamidsäure-äthylester, N-Phenyl-N'-[5-äthoxalylamino-2-methyl-phenyl]-thioharnstoff $C_{18}H_{19}O_2N_3S=CH_2\cdot C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_5\cdot NH\cdot CO\cdot CO_2\cdot C_2H_5$. E. Entsteht neben einem höher sohmelzenden, in Alkohol weniger löslichen Produkt beim Erwärmen von [3-Amino-4-methyl-phenyl]-oxamidsäure-äthylester, gelöst in absol. Alkol.ol, mit Phenylsenföl (Sch., V., A. 268, 310). Krystalle (aus heißem Alkohol). F: 154—155°.

[5-Carbāthoxyamino-2-methyl-phenyl]-oxamidsäure-āthylester $C_{14}H_{18}O_5N_2 = CH_2 \cdot C_4H_6(NH \cdot CO \cdot CO_2 \cdot C_2H_3) \cdot NH \cdot CO_3 \cdot C_2H_6$. B. Beim Kochen von [3-Amino-4-methyl-phenyl]-urethan (S. 136) mit Oxalsāurediāthylester und etwas Alkohol (Sch., V., A. 268, 318). — Prismen (aus verd. Alkohol). F: 128°. Alkoholisches Ammoniak erzeugt [5-Carbāthoxyamino-2-methyl-phenyl]-oxamid (s. u.).

[5-Carbāthoxyamino-2-methyl-phenyl]-cxamid $C_{18}H_{18}O_4N_8 = CH_8 \cdot C_4H_8 (NH \cdot CO \cdot CO \cdot NH_8) \cdot NH \cdot CO_2 \cdot C_2H_8$. B. Aus [5-Carbāthoxyamino-2-methyl-phenyl]-oxamidsāure-āthylester und alkoh. Ammoniak (Sch., V., A. 268, 319). — Prismen (aus Alkohol). F: 223°.

Polymerer (?) [asymm.-m-Toluylen]-harnstoff ($C_8H_8ON_2$)_x s. S. 129.

[asymm.-m-Toluylen]-bis-carbamidsäureäthylester, [asymm.-m-Toluylen]-diurethan C₁₂H₁₈O₄N₂ = CH₂·C₂H₃(NH·CO₂·C₂H₃), B. Entsteht, neben [3-Amino-4-methylphenyl]-urethan (8. 136) (SCHLFF, VANNI, B. 23, 1817; A. 268, 315), aus Chlorameisensäureäthylester und 2.4-Diamino-toluol (Lussy, B. 7, 1263). Aus [asymm.-m-Toluylen]-di-carbon, imid (8. 138) und Alkohol (SNAPE, Soc. 49, 257). — Nadeln (aus Alkohol). F: 137° (L.; SCH., V.). Destilliert größtenteils unzersetzt; ein Teil zerfällt in Alkohol und [asymm.-m-Toluylen]-di-carbonimid (L.). Löslich in Äther und Alkohol (L.), leicht löslich in warmem Anilin (SCH., V.).

[asymm.-m-Toluylen]-bis-carbamidsäurephenylester $C_{21}H_{12}O_4N_2 = CH_2 \cdot C_4H_3(NH \cdot CO_2 \cdot C_4H_3)_2$. B. Aus [asymm.-m-Toluylen]-di-carbonimid und Phenol bei 130—150° (SNAPE, Soc. 49, 257). — Nadeln (aus Eisessig). F: 147,5°.

[asymm.-m-Toluylen]-di-harnstoff $C_9H_{12}O_2N_4=CH_3\cdot C_6H_3\cdot (NH\cdot CO\cdot NH_2)_2$. B. Aus 2 Mol.-Gew. Kaliumcyanat und 1 Mol.-Gew. 2.4-Diamino-toluol-sulfat (STRAUSS, A. 148, 157). Aus [asymm.-m-Toluylen]-di-carbonimid und Ammoniak (Lussy, B. 8, 292; SNAPE, Chem. N. 78, 13). — Nadeln. F: 252° (Sn.). Sehr schwer löslich in Wasser, wenig löslich in kochendem Alkohol (St.). — Zerfällt beim Erhitzen in NH₃, Cyanursäure und 2.4-Diaminotoluol (Sr.). Beim Erhitzen mit Schwefel entsteht ein orangefarbener Baumwollfarbstoff (Höchster Farbw., D. R. P. 153916; C. 1904 II, 966). — $C_9H_{12}O_2N_4 + 2HCl$ (St.).

[asymm.-m-Toluylen]-bis-[ω -äthyl-harnstoff] $C_{19}H_{20}O_{2}N_{4}=CH_{2}\cdot C_{6}H_{3}(NH\cdot CO\cdot NH\cdot C_{2}H_{3})_{2}$. B. Aus [asymm.-m-Toluylen]-di-harnstoff und Äthyljodid bei 110° (Lussy, B. 8, 292). — Gelbliche Krystalle. F: 175°. Leicht loelich in Alkohol und Äther.

[asymm.-m-Toluylen]-bis-[ω -phenyl-harnstoff] $C_mH_{20}O_2N_4=CH_3\cdot C_6H_2(NH\cdot CO\cdot NH\cdot C_6H_6)_2$. B. Beim Versetzen einer äther. Lösung von 2.4-Diamino-toluol mit Phenylisooyanat (Kühn, B. 18, 1477). Aus [asymm.-m-Toluylen]-di-carbonimid und Anilin in Ather (Snape, Chem. N. 78, 13). — Nadeln (aus Alkohol). F: 261° (Zers.) (Sn.). Schwer Kelich in Alkohol (Sn.); leicht Kelich in heißem Anilin, zerfällt aber dabei unter Bildung von Carbanilid (K.).

 $\begin{array}{lll} & [\textbf{asymm.-m-Toluylen}] - \textbf{bis-diphenylguanidin} \ C_{33}H_{30}N_6 = CH_3 \cdot C_6H_3[NH \cdot C(:N \cdot C_6H_5) \cdot NH \cdot C_6H_6]_2 & B. & Durch Kochen eines Gemisches von N.N'-Diphenyl-thioharnstoff und 2.4-Diamino-toluol mit Alkohol und Bleioxyd (Tiemann, B. 3, 8). — Helles Harz. F: 76°. Löslich in Alkohol, Ather, Chloroform, Benzol. — Nitrat. Sehr schwer löslich. — <math>C_{32}H_{30}N_6 + 2HCl + PtCl_4. \end{array}$

[3-(ω -Phenyl-thioureido)-4-methyl-phenyl]-urethan, N-Phenyl-N'-[5-carb-sthoxyamino-2-methyl-phenyl]-thioharnstoff $C_{17}H_{19}O_2N_3S=CH_3\cdot C_4H_4(NH\cdot CS\cdot NH\cdot C_4H_4)\cdot NH\cdot CO_2\cdot C_2H_4$. B. Beim Erhitzen von [3-Amino-4-methyl-phenyl]-urethan (S. 136) mit Phenylsenföl und Alkohol (Schiff, Vanni, A. 268, 316). — Prismen (aus Alkohol). F: 154° bis 155°.

[asymm.-m-Toluylen]-bis-[monothiocarbamidsäure-O-äthylester], [asymm.-m-Toluylen]-bis-monothiourethan $C_{12}H_{12}O_2N_2S_3=CH_3\cdot C_4H_4[NH\cdot CS\cdot O\cdot C_2H_5]_2$. B. Bei längerem Kochen von [asymm.-m-Toluylen]-di-senföl (S. 138) mit Alkohol (BILLETER, STEINER, B. 20, 230). — Blättchen (aus Benzol). F: 119—120°.

[asymm.-m-Toluylen]-bis-thioharnstoff $C_9H_{12}N_4S_3 = CH_2 \cdot C_8H_3(NH \cdot CS \cdot NH_2)_3$. B. Durch mehrstündiges Erhitzen von rhodanwasserstoffsaurem 2.4-Diamino-toluol auf dem Wasserbade (Lussy, B. 7, 1265; Billeter, Steiner, B. 18, 3293). Aus [asymm.-m-Toluylen]-di-senföl und Ammoniak (B., St., B. 20, 230). — Krystallpuver (aus Eisessig durch Wasser). F: 218° (L.; vgl. auch Gebhardt, B. 17, 3046), 206° (B., St., B. 18, 3293; 20, 228). Unlöslich in Wasser und Ather, spurenweise löslich in siedendem Alkohol, ziemlich leicht in siedendem Eisessig (L.). — Zerfällt beim Kochen mit Anilin in NH₂, 2.4-Diamino-toluol und Thiocarbanilid (Bd. XII, S. 394) (G.). Gibt beim Verschmelzen mit Schwefel und Schwefelnatrium gelbe und braune Schwefelfarbstoffe (Kalle & Co., D.R.P. 139429; C. 1903 I, 904; Bad. Anilin- u. Sodaf., D.R.P. 144762; C. 1903 II, 814), z. B. Kryogengelb R (Schultz, Tab. No. 716). Beim Erhitzen mit Benzidin und Schwefel auf 130—140° entsteht der gelbe Schwefelfarbstoff Kryogengelb G (B. A. S. F., D.R.P. 153518; C. 1904 II, 800; Schultz, Tab. No. 712).

[asymm.-m-Toluylen]-bis-[ω -allyl-thioharnstoff] $C_{15}H_{20}N_4S_3=CH_2\cdot C_6H_2\cdot NH\cdot CS\cdot NH\cdot CH_2\cdot CH: CH_2)_3$. Be leim Erwärmen von 1 Mol.-Gew. 2.4-Diamino-toluol mit 2 Mol.-Gew. Allylsenföl (Bd. IV, S. 214) und Alkohol (Lellmann, Würthner, A. 228, 205). — Krystallkörner (aus Alkohol). F: 150,5°. Fast unlöslich in Ather und Benzol, leicht löslich in Alkohol und Eisessig. Zersetzt sich nicht beim Schmelzen.

[asymm.-m-Toluylen]-bis-[ω -phenyl-thioharnstoff] $C_{21}H_{20}N_4S_2 = CH_2 \cdot C_6H_2(NH \cdot CS \cdot NH \cdot C_6H_5)_2$. B. Aus 2.4-Diamino-toluol und Phenylsenföl (Bd. XII, S. 453) (Lussy, B. 8, 670). — Krystallpulver. F: 173° (Gebhardt, B. 17, 3046), 168° (Billetter, Steiner, B. 18, 3293; 20, 228). Fast unlöslich in den gewöhnlichen Lösungsmitteln (B., St., B. 18, 3293). — Zerfällt beim Kochen mit Anilin in 2.4-Diamino-toluol und Thiocarbanilid (G.). Zerfällt beim Kochen mit konz. Salzsäure in [asymm.-m-Toluylen]-di-senföl, Anilin, 2.4-Diamino-toluol, Phenylsenföl und andere Produkte (B., St., B. 18, 3294; vgl. L.).

[asymm.-m-Toluylen]-bis-[ω -acetyl-thioharnstoff] $C_{12}H_{16}O_2N_4S_2=CH_2\cdot C_0H_3(NH\cdot CS\cdot NH\cdot CO\cdot CH_3)_2$. B. Aus [asymm.-m-Toluylen]-bis-thioharnstoff (S. 137) und Acetyl-chlorid im Druckrohr bei 105° (Lussy, B. 8, 668). — Nadeln. F: 232°. Schwer löslich in heißem Wasser, Alkohol und Äther, ziemlich leicht in heißem Eisessig.

[asymm.-m-Toluylen]-bis-[S-äthyl-isothioharnstoff] $C_{13}H_{20}N_4S_2 = CH_2 \cdot C_6H_3[NH \cdot C(:NH) \cdot S \cdot C_3H_5]_2$ bezw. $CH_2 \cdot C_6H_3[N:C(NH_2) \cdot S \cdot C_2H_5]_2$. B. Aus [asymm.-m-Toluylen]-bis-thioharnstoff und Athyljodid im Druckrohr bei 105° (Lussy, B. 8, 668). — Undeutliche Krystalle. F: 225°.

3-Amino-4-methyl-phenylisothiocyanat (?), 3-Amino-4-methyl-phenylsenföl (?) $C_8H_8N_2S=CH_3\cdot C_8H_3(NH_2)\cdot N\cdot CS(?)^{-1}$). B. Bei mehrtägigem Stehen von 2.4-Diaminotoluol mit Schwefelkohlenstoff und Alkohol (Lussy, B. 8, 293). — Gelbliches krystallinisches Pulver. F: 149°. Löslich in Äther, Eisessig, leicht in Alkohol, unlöslich in Benzol. — Gibt mit alkoh. Kali und Chloroform die Isonitril-Reaktion. Äthyljodid und Acetylchlorid wirken nicht ein.

[asymm.-m-Toluylen]-di-isocyanat, [asymm.-m-Toluylen]-di-carbonimid $C_2H_6O_2N_2=CH_3\cdot C_6H_3(N:CO)_2$. B. Aus [asymm.-m-Toluylen]-di-urethan (S. 137) und Phosphorpentoxyd (LUSSY, B. 8, 291). Beim Erhitzen von 2.4-Diamino-toluol in einem Strome von Phosgen (SNAPE, Soc. 49, 257). — Gelbe, heftig riechende Krystalle (L.). F: 95° (L.), 94° (SN.). — Verbindet sich mit Alkohol zu [asymm.-m-Toluylen]-di-urethan, mit Ammoniak zu [asymm.-m-Toluylen]-di-harnstoff (L.).

[asymm.-m-Toluylen]-di-isothiooyanat, [asymm.-m-Toluylen]-di-senföl $C_0H_0N_2S_2=CH_3\cdot C_0H_3(N:CS)_2$. B. Beim Kochen von [asymm.-m-Toluylen]-bis-[ω -phenyl-thioharn-stoff] (s. o.) mit konz. Salzsäure (BILLETER, STEINER, B. 18, 3294; vgl. Lussy, B. 8, 669). Aus 2.4-Diamino-toluol und Thiophosgen (B., St., B. 20, 230). — Nadeln (aus Petroläther). F: 56° (B., St., B. 18, 3294; 20, 230). Siedet nicht unzersetzt bei etwa 300° (B., St., B. 20, 230). — Verbindet sich mit NH₃ zu [asymm.-m-Toluylen]-bis-thioharnstoff und mit Anilin zu [asymm.-m-Toluylen]-bis-[ω -phenyl-thioharnstoff] (B., St., B. 20, 230).

[asymm.-m-Toluylen]-bis-glycinäthylester $C_{18}H_{28}O_4N_2 = CH_2 \cdot C_6H_3 \cdot NH \cdot CH_2 \cdot CO_2 \cdot C_2H_5 \cdot B$. Aus 2.4-Diamino-toluol und Chloressigsäureester (ZIMMERMANN, KNYRIM, B. 16, 516). — Hellgelbe Nadeln (aus Wasser). F: 70°.

[asymm.-m-Toluylen]-bis-glycinnitril, N.N'-Bis-cyanmethyl-asymm.-m-toluylendiamin $C_{11}H_{18}N_4 = CH_3 \cdot C_6H_3(NH \cdot CH_2 \cdot CN)_2$. B. Bei 5 Minuten langem Kochen der aus 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-Gew. Formaldehyd-Natriumdisulfit erhaltenen Verbindung (S. 132) mit Cyankalium in wäßr. Lösung (Bucherer, Schwalbe, B. 39, 2804). — Schwach gelbe Nadeln (aus Pyridin und Methylalkohol). F: 207°. Leicht löslich in Benzol und Tetrachlorkohlenstoff. — Wird durch heiße konzentrierte Kalilauge unter Aufbrausen und Ammoniakentwicklung verseift.

a-[3-Amino-4-methyl-anilino]-isobuttersäure-nitril $C_{11}H_{15}N_8 = CH_3 \cdot C_6H_3(NH_4) \cdot NH \cdot C(CH_3)_2 \cdot CN$. Zur Konstitution vgl. Mulder, R. 26, 181. — B. Aus 1 Mol.-Gew. 2.4-Diamino-toluol und 1 Mol.-Gew. Acetoncyanhydrin (Bd. III, S. 316) in Ather (Bucherer, Groler, B. 39, 1002). — Nadeln. F: 90—91°, sehr zersetzlich, bräunt sich an der Luft; leicht löslich in Alkohol, Äther, Benzol und Aceton, schwerer in Ligroin; sehr leicht löslich in verd. Salzsäure (B., G.). Ist gegen verd. Salzsäure sehr empfindlich (B., G.).

[asymm.-m-Toluylen]-bis-[a-amino-isobuttersäure-nitril], N.N'-Bis-[a-cyan-isopropyl]-asymm.-m-toluylendiamin $C_{1g}H_{20}N_4=CH_3\cdot C_gH_3[NH\cdot C(CH_2)_2\cdot CN]_2$. Zur Konstitution vgl. MULDEB, R. 26, 181. — B. Aus 1 Mol.-Gew. 2.4-Diamino-toluol und 2 Mol.-

¹⁾ So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von LE FRVRE, TURNER (Soc. 1926, 2478) und von Privatmitteilungen von TURNER und von KUHN.

Gew. Acetoncyanhydrin (Bd. III, S. 316) in Äther (B., G., B. 39, 1001). — Nadeln. F: 85—86°; leicht löslich in Alkohol, Äther, Benzol, Aceton, weniger in Ligroin, unlöslich in Wasser (B., G.). Färbt sich an der Luft rosa und wird trübe (B., G.).

- 2-Amino-4-[anilinoformylglycylamino]-toluol $C_{16}H_{16}O_8N_4 = CH_3 \cdot C_6H_3(NH_3) \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot CO \cdot NH \cdot C_6H_3$. Aus Anilinoformyl-glycin-azid (Bd. XII, S. 361) und 2.4-Diamino-toluol (Curtus, Lenhard, J. pr. [2] 70, 251). Nådelchen (aus heißem absolutem Alkohol). F: 193°. Leicht löslich in kaltem Aceton und heißem absolutem Alkohol, fast unlöslich in Wasser, Benzol, Chloroform.
- 4-Amino-2-bensolsulfamino-toluol $C_{12}H_{14}O_2N_2S = CH_2 \cdot C_2H_3(NH_2) \cdot NH \cdot SO_2 \cdot C_2H_5$. B. Aus 4-Nitro-2-bensolsulfamino-toluol (Bd. XII, S. 846) durch Reduktion mit Eisen und verd. Essigsäure (Morgan, Micklethwait, Soc. 89, 1294). Blättchen (aus Alkohol). F: 138°.
- **2-A**mino-4-benzolsulfamino-toluol $C_{12}H_{14}O_2N_2S = CH_2 \cdot C_0H_3 \cdot NH \cdot SO_2 \cdot C_0H_5$. B. Aus 2-Nitro-4-benzolsulfamino-toluol (Bd. XII, S. 999) durch Reduktion (Akt.-Ges. f. Anilinf., D.R.P. 135016; C. 1902 II, 1165). F: 138°.
- 2-Amino-4-[4-chlor-benzol-sulfonyl-(1)-amino]-toluol $C_{19}H_{12}O_2N_2ClS = CH_3 \cdot C_0H_3(NH_2)\cdot NH \cdot SO_4 \cdot C_0H_4Cl$. B. Durch Reduktion von 2-Nitro-4-[4-chlor-benzol-sulfonyl-(1)-amino]-toluol (Bd. XII, S. 1000) mit Zinkstaub und Salzsäure (A.-G. f. A., D.R. P. 135016; C. 1902 II, 1165). F: 121°.
- 2-Amino-4-p-toluolsulfamino-toluol $C_{14}H_{16}O_2N_2S=CH_2\cdot C_6H_2\cdot (NH_2)\cdot NH\cdot SO_2\cdot C_6H_4\cdot CH_3$. B. Aus dem 2-Nitro-4-p-toluolsulfamino-toluol (Bd. XII, S. 1000) durch Zinkstaub und Salzsäure (A.-G. f. A., D.R.P. 135016; C. 1902 II, 1165). Krystallinisches Pulver. F: 160°. Löslich in verd. Natronlauge und Mineralsäuren. Fällbar durch Essigsäure bezw. Natriumacetat. Verwendung zur Darstellung von Azofarbstoffen: A.-G. f. A.
- 4 [6 Chlor 3 nitro benzol sulfonyl (1) amino] 2 dimethylamino toluol $C_{18}H_{16}O_4N_3ClS = CH_3 \cdot C_6H_3[N(CH_3)_2] \cdot NH \cdot SO_4 \cdot C_6H_3Cl \cdot NO_2$. B. Aus 4-Amino-2-[dimethylamino]-toluol (S. 129) und 6-Chlor-3-nitro-benzolsulfonsaure-(1)-chlorid (Bd. XI, S. 73) (A.-G. f. A., D.R.P. 135016; C. 1902 II, 1165). F: 144°.
- 4-p-Toluolsulfamino-2-dimethylamino-toluol $C_{16}H_{20}O_2N_2S = CH_2 \cdot C_6H_3[N(CH_2)_3] \cdot NH \cdot SO_4 \cdot C_6H_4 \cdot CH_3$. B. Aus 4-Amiso-2-dimethylamino-toluol (S. 129) und p-Toluolsulfo-chlorid (Bd. XI, S. 103) (A.-G. f. A., D. R. P. 135016; C. 1902 II, 1165). F: 124°. Verwendung zur Darstellung von Azofarbstoffen: A.-G. f. A.
- 2.4 Bis benzolsulfamino toluol, N.N'-Dibenzolsulfonyl-asymm.-m-toluylendiamin $C_{10}H_{10}O_4N_2S_3 = CH_3 \cdot C_0H_3(NH \cdot SO_3 \cdot C_0H_4)_3$. B. Aus 1 Mol.-Gew. 2.4-Diaminotoluol und 2 Mol.-Gew. Benzolsulfochlorid bei Gegenwart der entsprechenden Menge Soda (A.-G. f. A., D.R.P. 166600; C. 1906 I, 517). Weiße Nadeln. F: 191°. Gibt bei der Nitrierung 5-Nitro-2.4-bis-benzolsulfamino-toluol (S. 142).
- 2.4-Bis-p-toluolsulfamino-toluol, N.N'-Di-p-toluolsulfonyl-asymm.-m-toluylendiamin $C_{11}H_{23}O_4N_3S_3 = CH_2 \cdot C_4H_3 \cdot (NH \cdot SO_4 \cdot C_4H_4 \cdot CH_2)_3$. B. Aus 2.4-Diamino-toluol und p-Toluolsulfochlorid (Oehler, D.R. P. 158 662; C. 1905 I, 786) bei Gegenwart der entsprechenden Menge Soda (Akt.-Ges. f. Anilinf., D.R.P. 166 600; C. 1906 I, 517). Nadeln. F: 192° bis 193° (Oz.), 192° (A.-G. f. A.). Bei der Nitrierung entsteht 5-Nitro-2.4-bis-p-toluolsulfamino-toluol (S. 142) (A.-G. f. A.). Verwendung zur Darstellung gelber Schwefelfarbstoffe: Oz.
- 2.4 Bis thionylamino toluol, N.N' Dithionyl asymm. m toluylendiamin $C_7H_6O_2N_2S_5=CH_5\cdot C_4H_5(N:SO)_2$. B. Beim Kochen von salzsaurem 2.4-Diamino-toluol mit Thionylchlorid und Benzol (MICHAELIS, A. 274, 263). Gelbe Krystalldrusen (aus Petrolather). F: 72—73°.
- 2 Amino 4 methylnitrosamino toluol, [3-Amino-4-methyl-phenyl]-methylnitrosamin $C_0H_{11}ON_2 = CH_2 \cdot C_0H_3(NH_2) \cdot N(NO) \cdot CH_2$. B. Aus dem 2-Nitro-4-[methylnitrosamino]-toluol (Bd. XII, S. 1000) durch 1-stdg. Erhitzen mit alkoh. Schwefelammonium auf 100° (Pinnow, Oesterreion, B. 81, 2928). Gelbe Nadeln (aus Bensol). F: 83°. Leicht löslich in den meisten Solvenzien, ziemlich schwer in kaltem Bensol und Alkohol. Pikrat $C_0H_{11}ON_2 + C_0H_2O_7N_3$. Nadeln. F: 103—105°.
- **2** Acetamino 4 methylnitrosamino toluol, [8-Acetamino 4-methyl-phenyl] methyl-nitrosamin $C_{10}H_{12}O_2N_3 = CH_3 \cdot C_0H_2[N(NO) \cdot CH_2] \cdot NH \cdot CO \cdot CH_2$. B. Aus 2-Amino-4-methylnitrosamino toluol (s. o.) durch Essigsaureanhydrid in ather. Lösung (P., Oz., B. 31, 2929). Schwachgelbe Prismen (aus Methylalkohol). F: 142°. Leicht löslich in Chloroform, Eisessig und heißem Alkohol, schwer in Ather, Ligroin und kaltem Benzol.

- N-Phenyl-N'-[5-methylnitrosamino-2-methyl-phenyl]-thioharnstoff $C_{15}H_{16}ON_4S = CH_2 \cdot C_6H_5[N(NO) \cdot CH_3] \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Bildet sich bei mehrtägigem Stehen der alkoh. Lösung von 2-Amino-4-methylnitrosamino-toluol (S. 139) und Phenylsenföl (P., OE., B. 31, 2929). F: 158°. Löslich in Chloroform, unlöslich in Ather.
- 2-Amino-4-methylnitramino-toluol, [3-Amino-4-methyl-phenyl]-methyl-nitramin C₂H₁₁O₂N₃ = CH₃·C₆H₃(NH₂)·N(NO₂)·CH₃. B. Durch 1-stdg. Erhitzen von 2-Nitro-4-methylnitramino-toluol (Bd. XII, S. 1000) mit alkoh. Schwefelammonium auf 100° (P., OE., B. 31, 2927). Mattrote Prismen. F: 83,5°. Unlöslich in Schwefelkohlenstoff, schwer löslich in Ligroin, löslich in Methylalkohol, leicht löslich in den übrigen organischen Solvenzien.

Substitutions produkte des 2.4-Diamino-toluols.

- 5-Chlor-2.4-diamino-toluol C₇H₈N₂Cl = CH₃·C₈H₄Cl(NH₂)₂. B. Durch Reduktion von 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344) mit Zinn und Salzsäure (Reverdin, Crépieux, B. 33, 2507). Aus 5-Chlor-2.4-bis-acetamino-toluol (s. u.) durch Verseifung mit alkoh. Salzsäure (Morgan, Soc. 77, 1209). Blättchen oder rechtwinklige Platten (aus Benzol). F: 120—121° (M., Soc. 77, 1209), 123° (R., C.). Sehr leicht löslich in Wasser (R., C.). Nach Ersatz der Aminogruppen durch Chlor resultiert 2.4.5-Trichlor-toluol (Bd. V, S. 299) (M., Soc. 77, 1209). Liefert mit Benzoldiazoniumchlorid und Natriumacetat 5-Chlor-2.6-diamino-3-methyl-azobenzol (Syst. No. 2183) (M., Soc. 81, 96).
- N.N'-Diformylderivat $C_9H_9O_2N_9Cl = CH_3 \cdot C_9H_2Cl(NH \cdot CHO)_2$. B. Aus 5-Chlor-2.4-diamino-toluol (s. o.) durch Erhitzen mit konz. Ameisensäure (Morgan, Soc. 81, 95). Farblose Nadeln (aus Wasser). F: 166°.
- N.N'-Diacetylderivat $C_{11}H_{13}O_2N_2Cl = CH_3 \cdot C_6H_2Cl(NH \cdot CO \cdot CH_3)_2$. B. Aus 2.4-Bisacetamino-toluol (S. 133) durch Einw. der äquimolekularen Menge Chlor in Eisessiglösung (Morgan, Soc. 77, 1209). Aus 5-Chlor-2.4-diamino-toluol (s. o.) und Essigsäureanhydrid (Reverdin, Crépieux, B. 33, 2507). Prismen (aus Essigsäure oder Pyridin). F: über 260°; schwer löslich in Methylalkohol (M., Soc. 81, 95).
- N.N'-Dibensoylderivat $C_{11}H_{17}O_2N_2Cl = CH_3 \cdot C_6H_2Cl(NH \cdot CO \cdot C_6H_5)_3$. B. Aus 5-Chlor-2.4-diamino-toluol (s. o.) durch Benzoylchlorid und Alkali (Morgan, Soc. 81, 96). Blättchen (aus Alkohol). F: 205°.
- 5-Brom-2.4-diamino-toluol C₇H₉N₂Br = CH₃·C₆H₂Br(NH₂)₂. B. Beim Kochen von 5-Brom-2.4-dinitro-toluol (Bd. V, S. 346) mit Zinn und Salzsäure (Grete, A. 177, 262). Aus 5-Brom-2.4-bis-acetamino-toluol (S. 141) durch Erhitzen mit alkoh. Salzsäure im Druckrohr auf 140° (Morgan, Clayton, Soc. 87, 950). Aus 5-Brom-2.4-bis-benzamino-toluol (S. 141) durch Erhitzen mit alkoh. Kali im Druckrohr auf 100° (Ruhemann, B. 14, 2659) oder durch Erhitzen mit alkoh. Salzsäure im Druckrohr auf 140° (M., C., Soc. 87, 950). Man nitriert 5-Brom-2-amino-toluol (Bd. XII, S. 838) in konz. Schwefelsäure mit Salpetersäure (D: 1,42) und reduziert das bei 118° schmelzende Nitroprodukt mit Eisen und verd. Salzsäure (M., C., Soc. 87, 949). Täfelchen (aus Alkohol), Nadeln (aus Petroläther). F: 107° (G.), 104—107° (M., C.), 104° (R.). Fast unlöslich in Wasser (G.; R.), leicht löslich in Alkohol, Ather und Schwefelkohlenstoff (R.). Mit Wasserdampf nicht flüchtig (G.). C₇H₂N₂Br + 2 HCl. Nadeln (G.). C₇H₂N₂Br + 2 HNO₃ (G.). C₇H₂N₂Br + H₂SO₄. Sechsseitige Säulen (G.). Oxalat C₇H₂N₃Br + C₂H₃O₄. Nadeln (G.).
- 5-Brom-2-amino-4-dimethylamino-toluol C₉H₁₈N₂Br = CH₃·C₆H₄Br(NH₃)·N(CH₄)₃.

 B. Beim Kochen von 5-Brom-4-dimethylamino-2-acetamino-toluol (s. u.) mit konz. Salzsäure (Mobgan, Clayton, Soc. 87, 948). Aus 5-Brom-2-nitro-4-dimethylamino-toluol (Bd. XII, S. 1007) mit Zinn und Salzsäure (M., C., Soc. 87, 949). Blättchen (aus Petroläther). F: 40° (M., C., Soc. 87, 948). Gibt mit 4-Nitro-benzoldiazoniumchlorid und Natriumacetat 5-Brom-4'-nitro-2-amino-6-dimethylamino-3-methyl-azobenzol (Syst. No. 2183), neben geringen Mengen der Diazoaminoverbindung (M., C., Soc. 89, 1058).
- 5-Brom-2 oder 4-amino-4 oder 2-acetamino-toluol $C_vH_{11}ON_2Br = CH_3 \cdot C_0H_3Br(NH_3)\cdot NH\cdot CO\cdot CH_3$. B. Bei mehrstündigem Erhitzen von 5-Brom-2.4-bis-acetamino-toluol (S. 141) mit Kalilauge auf 120° (Koch, A. 153, 134). Blättchen. Schmilzt unter 100°. In heißem Wasser ziemlich löslich.
- 5-Brom-4-dimethylamino-2-acetamino-toluol $C_{11}H_{15}ON_3Br = CH_3 \cdot C_6H_2Br[N(CH_3)_2] \cdot NH \cdot CO \cdot CH_3$. B. Aus 5 g 4-Dimethylamino-2-acetamino-toluol (S. 133) in 50 ccm Eisessig mit 4,2 g Brom in 5 ccm Eisessig (Morgan, Clayton, Soc. 87, 948). Krystalle (aus Alkohol). F: 163°.

- **5-Brom-2.4-bis-acetamino-toluol** $C_{11}H_{12}O_2N_2Br = CH_3 \cdot C_2H_2Br(NH \cdot CO \cdot CH_3)_2$. B. Aus 2.4-Bis-acetamino-toluol (S. 133) und Bromwasser (Kooh, A. 153, 133). Nadeln. Schmilzt noch nicht bei 240° (Tiemann, B. 3, 220). Sehr wenig löslich in heißem Wasser (T.).
- 5 Brom 4 dimethylamino 2 benzamino toluol $C_{1e}H_{17}ON_2Br = CH_3 \cdot C_eH_2Br[N(CH_3)_2]\cdot NH\cdot CO\cdot C_eH_5$. B. Durch Benzoylierung von 5-Brom-2-amino-4-[dimethylamino]-toluol (Morgan, Clayton, Soc. 87, 949). F: 177—178°.
- 5-Brom-2.4-bis-bensamino-toluol $C_{21}H_{17}O_2N_3Br = CH_3 \cdot C_6H_2Br(NH \cdot CO \cdot C_8H_5)_3$. B. Durch Versetzen einer eisessigsauren Lösung von 2.4-Bis-benzamino-toluol (S. 134) mit Brom (Ruhemann, B. 14, 2658). Nadeln (aus Alkohol). F: 214°. Löslich in Eisessig und Schwefelkohlenstoff. Wird von alkoh. Kali erst beim Erhitzen im Druckrohr auf 100° in Benzoesäure und 5-Brom-2.4-diamino-toluol (S. 140) zerlegt.
- 5 Brom 2 benzolsulfamino 4 dimethylamino toluol $C_{15}H_{17}O_2N_3BrS = CH_3 \cdot C_5H_3Br[N(CH_3)_3] \cdot NH \cdot SO_3 \cdot C_6H_5$. B. Aus 5 Brom 2 amino 4 dimethylamino toluol in tiblicher Weise (Morgan, Clayton, Soc. 87, 949). Krystalle (aus verd. Alkohol). F: 178° bis 179°.
- x.x-Dibrom-2-amino-4-acetamino-toluol $C_2H_{10}ON_2Br_2=CH_3\cdot C_6HBr_6(NH_2)\cdot NH\cdot CO\cdot CH_3$. B. Beim Eingießen von Bromwasser in mit Wasser angerührtes 2-Amino-4-acetamino-toluol (Tiemann, B. 3, 221). Nadeln (aus Wasser). Schmilzt bei 208° unter Schwärzung.
- 5-Nitroso-2.4-diamino-toluol C₇H₉ON₃ (Formel I) ist desmotrop mit 5-Amino-2-methyl-p-chinon-imid-(1)-oxim-(4) (Formel II), Syst. No. 1874.

- 5-Nitro-2.4-diamino-toluol¹) C₇H₂O₂N₂ = CH₃·C₄H₂(NO₂)(NH₂)₂. Zur Konstitution vgl. Staedel. A. 217, 155. B. Beim Kochen von 5-Nitro-2.4-bis-acetamino-toluol (s. u.) mit Natronlauge (Tiemann, B. 3, 219) oder mit konz. Salzsäure (Ladenburg, B. 8, 1211). Gelbe Nadeln mit violettem Glanze (aus Wasser). F: 154° (T.). Ziemlich schwer löslich in heißem Wasser, etwas leichter in heißem Alkohol (L.). Schwache Base; die Salze werden durch Wasser zerlegt (T.). Bei der Einw. von salpetriger Säure entsteht eine amorphe Verbindung C₁₄H₁₈O₄N, und eine Verbindung, welche beim Kochen mit Alkohol unter Stickstoffentwicklung 5-Nitro-2-äthoxy-1-methyl-tenzol (Bd. VI, S. 366) liefert (L.). Verwendung für Azofarbstoffe: Bad. Anilin- u. Sodaf., D. R. P. 83534; Frdl. 4, 856; D. R. P. 105349; C. 1900 I, 380; D. R. P. 111453; C. 1900 II, 548; BAYER & Co., D. R. P. 98843; Frdl. 5, 619.
- 5-Nitro-2-amino-4-methylamino-toluol $C_9H_{11}O_2N_3=CH_2\cdot C_0H_2(NO_2)(NH_2)\cdot NH\cdot CH_2$. B. Aus 2.5-Dinitro-4-methylamino-toluol (Bd. XII, S. 1008) durch alkoh. Schwefelammonium (PINNOW, J. pr. [2] 62, 508). Braune, bronzeglänzende Blättchen (aus Alkohol). F: 168°. Leicht löslich in Eisessig, Chloroform und heißem Benzol, schwer in Ligroin.
- 5-Nitro-4-methylamino-2-acetamino-toluol $C_{10}H_{10}O_2N_3=CH_3\cdot C_2H_3(NO_3)(NH\cdot CH_3)\cdot NH\cdot CO\cdot CH_3$. B. Beim Kochen von 5-Nitro-2-amino-4-methylamino-toluol in Eisessig mit Essigsäureanhydrid (Pinnow, J. pr. [2] 62, 509). Gelbbraune Nadeln (aus Wasser). F: 205,5° bis 207°. Sehr leicht löslich in heißem Eisessig, sohwer in heißem Wasser.
- 5-Nitro-2.4-bis-acetamino-toluol °) $C_{11}H_{12}O_2N_3=CH_3\cdot C_2H_2(NO_2)(NH\cdot CO\cdot CH_2)_3$. B. Beim Eintragen von 2.4-Bis-acetamino-toluol (S. 133) in rauchende Salpetersaure (Tiemann, B. 8, 9) vom spez. Gew. 1,47 (Ladenburg, B. 8, 1211). Nadeln (aus Aceton). F: 253° (L.). Löslich in ca. 300 Tln. heißem Aceton, nur spurenweise in den übrigen organischen Lösungsmitteln (L.). Beim Erhitzen mit Schwefel und Benzidin entsteht ein gelber Schwefelfarbstoff (Akt.-Ges. f. Anilinf., D. R. P. 147403; C. 1904 I, 234).
- 5-Nitro-2.4-bis-benzamino-toluol³) $C_{n1}H_{17}O_4N_3 = CH_3 \cdot C_4H_2(NO_2)(NH \cdot CO \cdot C_4H_2)_2$.

 B. Durch Versetzen einer eisessigsauren Lösung von 2.4-Bis-benzamino-toluol (S. 134) mit rauchender Salpetersäure (Ruhemann, B. 14, 2656). Citronengelbe Nadeln (aus Eis-

2) Vgl. die Anmerkung 1.

¹) Die schon von STAEDEL angenommene Konstitution wird nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1, I, 1910] von MARON, SALZBERG (B. 44, 2999) bestätigt.

- casig). F: 245°. Zerfällt beim Kochen mit alkoh. Kali in Benzoesäure und 5-Nitro-2.4-diamino-toluol. Liefert beim Kochen mit Zinn und Salzsäure 6-Benzamino-5-methyl-2-phenyl-benzimidazol (Syst. No. 3719).
- 5-Nitro-2.4-bis-benzolsulfamino-toluol $C_{19}H_{17}O_6N_5S_3=CH_2\cdot C_6H_6(NO_2)(NH\cdot SO_3\cdot C_6H_5)_3$. B. Durch Nitrieren des 2.4-Bis-benzolsulfamino-toluols (S. 139) mit verd. Salpetersäure mit oder ohne Zusatz eines Lösungsmittels in der Wärme (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517). Gelbe Prismen. F: 185°. Leicht löslich in Alkalien und in Alkalicarbonaten.
- 5-Nitro-2.4-bis-p-toluolsulfamino-toluol $C_{21}H_{21}O_6N_3S_3 = CH_3 \cdot C_6H_2(NO_2)(NH \cdot SO_3 \cdot C_6H_4 \cdot CH_3)_2$. B. Durch Nitrieren des 2.4-Bis-p-toluolsulfamino-toluols (S. 139) mit verd. Salpetersäure im Dampfbad (Akt.-Ges. f. Anilinf., D. R. P. 166600; C. 1906 I, 517). Gelbe Krystalle (aus Eisessig). F: 210°. In Wasser schwer löslich, leicht löslich in Alkalien und kohlensauren Alkalien.
- 6-Nitro-2.4-diamino-toluol $C_7H_9O_2N_3=CH_3\cdot C_6H_3(NO_3)(NH_9)_3$. B. Bei der Reduktion von 2.4.6-Trinitro-toluol (Bd. V, S. 347) mit alkoh. Schwefelammonium (TIEMANN, B. 3, 218). Rote Prismen (aus Wasser). F: 132°. Sublimiert nicht unzersetzt. Löslich in verd. Salzsäure.
- 3.5-Dinitro-2.4-diamino-toluol $C_7H_8O_4N_4=CH_3\cdot C_6H(NO_3)_2(NH_2)_2$. B. Durch all-mähliches Eintragen von 100 Tln. 2.4-Bis-acetamino-toluol (S. 133), gemischt mit 20 Tln. Harnstoffnitrat, in die 6-fache Menge konzentrierter, auf $+5^\circ$ bis 10° gehaltener Salpetersäure und Verseifen des entstandenen Produktes mit verd. Schwefelsäure (NIETZKI, RÖSEL, B. 23, 3216). Goldgelbe Nadeln. Schmilzt oberhalb 300°. Außerst schwer löslich in den gewöhnlichen organischen Lösungsmitteln, leicht in Natronlauge. Bei der Reduktion mit Zinnchlorür und Salzsäure entsteht 2.3.4.5-Tetraamino-toluol (Syst. No. 1819).
- 3.5-Dinitro-2-amino-4-methylamino-toluol $C_8H_{10}O_4N_4=CH_9\cdot C_6H(NO_9)_8(NH_9)\cdot NH\cdot CH_3$. B. Bei 1-stdg. Erhitzen von 4,2 g 2.3.5-Trinitro-4-methylamino-toluol (Bd. XII, S. 1012) mit 42 com Alkohol und 42 com Ammoniak (D: 0,91) im Druckrohr auf 100° (Sommer, J. pr. [2] 67, 535). Aus [2.6-Dinitro-3-amino-4-methyl-phenyl]-methyl-nitramin (S. 143) bei 2-stdg. Erhitzen mit der doppelten Menge Phenol auf 140—160° (S., J. pr. [2] 67, 536). Aus 3.5-Dinitro-4-methylamino-2-āthoxy-toluol (Syst. No. 1855) beim Erhitzen mit konzentriertem absolut-alkoholischem Ammoniak im Druckrohr auf 100° (S., J. pr. [2] 67, 559). Orangefarbene Nadeln von gelbem Reflex. F: 206—208° (S., J. pr. [2] 67, 536). Gibt bei kurzem Kochen mit Natronlauge 3.5-Dinitro-2-amino-4-oxy-toluol (Syst. No. 1855), bei längerem Kochen 3.5-Dinitro-2-4-dioxy-toluol (Bd. VI, S. 873) (S., J. pr. [2] 67, 559). Bleibt bei 1-stdg. Kochen mit Essigsäureanhydrid unverändert (S., J. pr. [2] 67, 539).
- 3.5-Dinitro-2.4-bis-methylamino-toluol $C_9H_{12}O_4N_4=CH_3\cdot C_8H(NO_9)_8(NH\cdot CH_3)_9$. B. Beim Zutropfen der berechneten Menge 33°/oiger wäßr. Methylaminlösung zur siedenden konzentrierten alkoholischen Lösung des 2.3.5-Trinitro-4-methylamino-toluols (Bd. XII, S. 1012) (S., J. pr. [2] 67, 547). Entsteht in zwei Formen: a) Rote Blätter. F: 169—170°. Wird durch Lösen in viel kaltem Aceton, wobei die Gegenwart von Alkohol zu vermeiden ist, und Fällen der Lösung mit Wasser in die gelbe Form übergeführt. b) Gelbe Nadeln, bei 110—140° allmählich in die rote Form übergehend. Längere Erwärmung in irgendeinem Lösungsmittel führt stets zur Bildung der roten Form. Beide Formen geben mit wäßr. Kalilauge je nach den Versuchsbedingungen 3.5-Dinitro-2-methylamino-4-oxy-toluol (Syst. No. 1856) und 3.5-Dinitro-2.4-dioxy-toluol (Bd. VI, S. 873).
- 3.5 Dinitro 4 methylamino 2 dimethylamino toluol $C_{10}H_{14}O_4N_4 = CH_3 \cdot C_4H(NO_3)_9(NH\cdot CH_3)\cdot N(CH_3)_2$. B. Aus 6,4 g 2.3.5-Trinitro-4-methylamino-toluol (Bd. XII, S. 1012) in heißem Alkohol mit 6 g einer 33% eigen alkoh. Dimethylaminlösung (S., J. pr. [2] 67, 565). Gelbe Nädelchen (aus Alkohol). F: 115°.
- 3.5 Dinitro 4 methylamino 2 anilino toluol, 4.6 Dinitro 5 methylamino 2 methyl-diphenylamin $C_{14}H_{14}O_4N_4 = CH_3 \cdot C_5H(NO_2)_4(NH \cdot CH_2) \cdot NH \cdot C_4H_5$. B. Aus 1 Mol.-Gew. 2.3.5-Trinitro-4-methylamino-toluol (Bd. XII, S. 1012) und 3 Mol.-Gew. Anilin (S., J. pr. [2] 67, 537). Rote Prismen (aus Toluol), dünne Nadeln (aus Aceton und Ather). F: 197°.
- 3.5-Dinitro-4-methylamino-2-p-toluidino-toluol, 4.6-Dinitro-5-methylamino-2.4'-dimethyl-diphenylamin $C_{15}H_{16}O_4N_4=CH_3\cdot C_6H(NO_3)_5(NH\cdot CH_3)\cdot NH\cdot C_6H_4\cdot CH_5$. B. Aus 1 Mol.-Gew. 2.3.5-Trinitro-4-methylamino-toluol (Bd. XII, S. 1012) und 3 Mol.-Gew. p-Toluidin (S., J. pr. [2] 67, 537). Blutrote Nadeln (aus Alkohol). F: 164°.
- 3.5 Dinitro 2 amino 4 methylnitrosamino toluol, [2.6 Dinitro 3 amino 4 methyl-phenyl] methyl-nitrosamin C₂H₂O₂N₅ = CH₃·C₄H(NO₂)₂(NH₂)·N(NO)·CH₃. B. Aus 2.3.5-Trinitro-4-methylnitrosamino-toluol (Bd. XII, S. 1013) und Ammoniak (S., J. pr. [2] 67, 562). Braungelbe Prismen (aus Alkohol). F: 164°.

- 3.5-Dinitro-2-methylamino-4-methylnitrosamino-toluol, [2.6-Dinitro-3-(methylamino)-4-methyl-phenyl]-methyl-nitrosamin $C_9H_{11}O_8N_5=CH_2\cdot C_9H(NO_3)_8(NH\cdot CH_2)\cdot N(NO)\cdot CH_3$. B. Aus 2.3.5-Trinitro-4-methylnitrosamino-toluol und Methylamin (S., J. pr. [2] 67, 561). Hellgelbe Nådelchen (aus Aceton). F: 186—187°. In Eisessig sich etwas zersetzend. Gibt in Eisessiglösung mit Natriumnitrit 3.5-Dinitro-2.4-bis-[methyl-nitrosamino]-toluol (s. u.).
- **3.5-Dinitro-2-anilino-4-methylnitrosamino-toluol, 4.6-Dinitro-5-methylnitrosamino-2-methyl-diphenylamin,** [**2.6-Dinitro-8-anilino-4-methyl-phenyl]-methylnitrosamin** $C_{14}H_{19}O_5N_5 = CH_3 \cdot C_6H(NO_2)_3(NH \cdot C_6H_5) \cdot N(NO) \cdot CH_3$. B. Aus 2.3.5-Trinitro-4-methylnitrosamino-toluol und Anilin (S., J. pr. [2] 67, 563). Orangefarbene Nadeln (aus Alkohol + Benzol). F: 122°.
- 3.5-Dinitro-2.4-bis-methylnitrosamino-toluol $C_9H_{10}O_6N_6=CH_3\cdot C_9H(NO_2)_2[N(NO)\cdot CH_3]_2$. B. Aus 3.5-Dinitro-2.4-bis-methylamino-toluol (S. 142) oder aus 3.5-Dinitro-2-[methylamino]-4-methylnitrosamino-toluol (s. o.) in lauwarmem Eisessig mit Natriumnitrit (S., J. pr. [2] 67, 560, 561). Fast weiße Blättchen (aus Alkohol). F: 132°. Sehr beständig, nur durch Kochen mit Eisessig sich zum Teil zersetzend.
- 3.5-Dinitro-4-methylnitrosamino-2-phenylnitrosamino-toluol $C_{14}H_{19}O_{4}N_{6}=CH_{3}\cdot C_{4}H(NO_{3})_{2}[N(NO)\cdot CH_{3}]\cdot N(NO)\cdot C_{4}H_{5}.$ B. Aus 3.5-Dinitro-4-methylamino-2-anilino-toluol (8. 142) in Eisessig mit Natriumnitrit (8., J. pr. [2] 67, 562). Schwefelgelbe Nadeln, bei 100° sich zersetzend.
- 3.5-Dinitro-2-amino-4-methylnitramino-toluol, [2.6-Dinitro-3-amino-4-methylphenyl]-methyl-nitramin $C_8H_9O_6N_8=CH_3\cdot C_6H(NO_2)_3(NH_2)\cdot N(NO_2)\cdot CH_3$. B. Bei etwa 1-stdg. Erhitzen von 5,8 g 2.3.5-Trinitro-4-methylnitramino-toluol (Bd. XII, S. 1013), 58 com Alkohol und 15 ccm Ammoniak (D: 0,91) im Druckkolben auf 100° (S., J. pr. [2] 67, 522). Braungelbe, rechteckige Tafeln. F: 178—178,5°; sehr leicht löslich in heißem Eisessig und Aceton, ziemlich leicht in den übrigen organischen Solvenzien, unlöslich in Ligroin (S., J. pr. [2] 67, 522). Liefert bei 2-stdg. Erhitzen mit der doppelten Menge Phenol auf 140—160° 3.5-Dinitro-2-amino-4-methylamino-toluol (S. 142) (S., J. pr. [2] 67, 536). Liefert durch Entamidierung 3.5-Dinitro-4-methylnitramino-toluol (Bd. XII, S. 1012) (S., J. pr. [2] 67, 542).
- 3.5-Dinitro-2-dimethylamino-4-methylnitramino-toluol, [2.6-Dinitro-3-dimethylamino-4-methyl-phenyl]-methyl-nitramin $C_{10}H_{12}O_6N_5=CH_3\cdot C_6H(NO_2)_2[N(CH_2)_2]\cdot N(NO_2)\cdot CH_3$. B. Bei 20 Minuten langem Erhitzen von 3 g 2.3.5-Trinitro-4-methylnitramino-toluol (Bd. XII, S. 1013), 15 com Alkohol und 3 g einer 33% jeen alkoh. Lösung von Dimethylamin im Einschlußrohr auf dem Wasserbade (S., J. pr. [2] 67, 528). Bronzegelbe Nadeln (aus Alkohol). F: 126—127°.
- 3.5-Dinitro-8-anilino-4-methylnitramino-toluol, 4.6-Dinitro-5-methylnitramino-2-methyl-diphenylamin, [2.6-Dinitro-3-anilino-4-methyl-phenyl]-methyl-nitramin $C_{14}H_{13}O_{4}N_{5}=CH_{2}\cdot C_{6}H(NO_{2})_{3}(NH\cdot C_{6}H_{5})\cdot N(NO_{2})\cdot CH_{3}$. B. Neben Diazoaminobenzol (Syst. No. 2228) aus 3 g 2.3.5-Trinitro-4-methylnitramino-toluol, 20 ccm Alkohol und 3 g Anilin (S., $J\cdot pr$. [2] 67, 523). Hellbraune Krystalle (aus absol. Alkohol). F: 134°.
- 3.5-Dinitro-2-[4-chlor-anilino]-4-methylnitramino-toluol, 4'-Chlor-4.6-dinitro-5-methylnitramino-2-methyl-diphenylamin, [2.6-Dinitro-3-(4-chlor-anilino)-4-methyl-phenyl]-methyl-nitramin $C_{14}H_{12}O_{4}N_{5}Cl = CH_{3}\cdot C_{6}H(NO_{2})_{5}(NH\cdot C_{6}H_{4}Cl)\cdot N(NO_{3})\cdot CH_{3}$. Neben 4.4'-Dichlor-diazoaminobenzol (Syst. No. 2228) beim Kochen von 3 g 2.3.5-Trinitro-4-methylnitramino-toluol und 5 g 4-Chlor-anilin (Bd. XII, S. 607) in Gegenwart von Alkohol (S., J. pr. [2] 67, 527). Eigelbe Nadeln (aus einem Gemisch gleicher Teile Alkohol + Aceton). F: 193°. Schwer löslich in Alkohol und Benzol, leichter in warmem Aceton.
- 3.5-Dinitro-2-p-toluidino-4-methylnitramino-toluol, 4.6-Dinitro-5-[methylnitramino]-2.4'-dimethyl-diphenylamin, [2.6-Dinitro-3-p-toluidino-4-methyl-phenyl]-methyl-nitramin $C_{15}H_{15}O_5N_5=CH_3\cdot C_6H(NO_3)_3(NH\cdot C_6H_4\cdot CH_3)\cdot N(NO_3)\cdot CH_3$. Reben p-Diazoaminotoluol (Syst. No. 2228) beim Kochen von 2.3.5-Trinitro-4-[methyl-nitramino]-toluol mit p-Toluidin in Gegenwart von Alkohol (S., J. pr. [2] 67, 525). Dunkelorangerote Nadeln (aus Alkohol und Aceton). F: 184°.
- 3.5 Dinitro 2 β naphthylamino 4 methyl nitramino toluol, [2.6 Dinitro 3 β naphthylamino 4 methyl phenyl] methyl nitramin $C_{10}H_{15}O_6N_5=CH_3\cdot C_6H(NO_9)_9(NH\cdot C_{10}H_7)\cdot N(NO_9)\cdot CH_2$. B. Aus 2.3.5-Trinitro-4-methylnitramino-toluol und β -Naphthylamin in Gegenwart von Alkohol (S., J. pr. [2] 67, 526). Goldgelbe Blättchen (aus Alkohol). F: 131°.
- 3.5-Dinitro-2-phenylnitrosamino-4-methylnitramino-toluol $C_{16}H_{12}O_7N_6 = CH_8 \cdot C_6H(NO_3)_2[N(NO) \cdot C_6H_5] \cdot N(NO_3) \cdot CH_3$. B. Aus 3.5-Dinitro-2-anilino-4-methylnitramino-

toluol (S. 143) in warmem Eisessig mit Natriumnitrit (S., J. pr. [2] 67, 563). — Gelbe Nadeln (aus Benzol + Alkohol). Bräunt sich von ca. 110° an und schmilzt bei 141° unter Zersetzung.

3. 2.5 - Diamino - 1 - methyl - benzol, 2.5 - Diamino - toluol, 2-Methyl-phenylendiamin-(1.4), p-Toluylendiamin C₇H₁₀N₁, s. nebenstehende Formel. B. Bei der Reduktion von 2.5-Dinitro-toluol (Bd. V, S. 341) (ROZAŃSKI, B. 22, 2679), von 5-Nitro-2-amino-toluol H₂N. CH, NH, (Bd. XII, S. 846) (Beilstein, Kuhlberg, A. 158, 352; vgl. Ladenburg, B. 11, 1652; Nietzki, B. 12, 2236; BERNTHSEN, B. 25, 3131), von 6-Nitro-3-amino-toluol (Bd. XII, S. 877) (FILETI, Crosa, G. 18, 306), von 4'-Amino-2.3'-dimethyl-azobenzol (Syst. No. 2173) (Nietzki, B. 10, 832; vgl. ZINCKE, LAWSON, B. 20, 1182) oder von 4-Amino-2.3'-dimethyl-azobenzol (Syst. No. 2173) (NIETZKI, B. 10, 1158) mit Zinn und Salzsäure. Entsteht ferner bei der Reduktion von 5-Nitro-2-amino-toluol auf elektrolytischem Wege in schwach alkal. Lösung (ELBS, Z. El. Ch. 7, 145). — Tafeln (aus Benzol). F: 64° (NI., B. 10, 832). Kp: 273—274° (NI., B. 10, 1157). Leicht löslich in Wasser, Alkohol, Ather und heißem Benzol, schwierig in kaltem Benzol (NI., B. 10, 832). Zur Hydrolyse des Hydrochlorids vgl. Veley, Soc. 93, 2135. 2.5-Diamino-toluol gibt beim Kochen mit Braunstein und Schwefelsäure Toluchinon (Bd. VII, S. 645) (NI., B. 10, 833). Bei der Einw. von Eisenchlorid auf salzsaures 2.5-Diamino-toluol entsteht salzsaures Toluchinon-monoimid (Bd. VII, S. 647) (J. SCHMIDT, SAAGER, B. 37, 1680; vgl. indessen Willstätter, Peannenstiel, B. 37, 4608 Anm.). Mit Eisenchlorid und Schwefelwasserstoff entsteht ein violetter Thioninfarbstoff (BERNTISEN, B. 25, 3131). 2.5-Diamino-toluol liefert bei der Einw. von Natriumthiosulfat + Chromsäuregemisch eine "Toluylendiamin-bis-thiosulfonsäure" (Clayton Aniline Co., D. R. P. 128916; Frdl. 6, 772; C. 1902 I, 689). 2.5-Diamino-toluol liefert beim Erwärmen mit Essigsäureanhydrid 2.5-Bisacetamino-toluol (NI., B. 10, 1157). Liefert beim Erhitzen mit Glykolsäurenitril (Bd. III, S. 242) bezw. mit Formaldehyd und Blausäure p-Toluylen-bis-glycinnitril (S. 147) (Höchster Farbw., D. R. P. 145062; Frdl. 7, 76; C. 1908 II, 1036). Liefert durch Kondensation mit Diacetbernsteinsäurediäthylester (Bd. III, S. 840) je nach den Bedingungen entweder p-Toluylen-bis-[2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diathylester] $CH_3 \cdot C_6H_3 N C(CH_3) \cdot C \cdot CO_2 \cdot C_2H_5$ (Syst. No. 3276) oder 1-[4-Amino-2-methyl-phenyl]-

CH₃·C₆H₃ N·C_{(CH₃)·C·C₂·C₂H₅ (Syst. No. 3276) oder 1-[4-Amino-2-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (Syst. No. 3276) (Bülow, List, B. 35, 683). Liefert beim Erwärmen mit Allylsenföl (Bd. IV, S. 214) in alkoh. Lösung p-Toluylenbis-[ω -allyl-thioharnstoff] (S. 146) (Lellmann, Würthner, A. 228, 209). Versetzt man}

bis-[ω -allyl-thioharnstoff] (S. 146) (Lellmann, Wurthner, A. die Lösung eines Salzes des 2.5-Diamino-toluols mit wenig o-Toluidin und dann mit Eisenchlorid, so entsteht eine intensiv grüne Färbung (NI., B. 10, 1157). Oxydiert man 1 Mol.-Gew. salzsaures 2.5-Diamino-toluol und 2 Mol.-Gew. salzsaures o-Toluidin in siedender verdünnter Lösung mit $K_1Cr_2O_7$, so entsteht der Safraninfarbstoff nebenztehender Formel (Syst. No. 3748) (Bindschedler, B. 13, 207; vgl. Witt, B. 12, 939).

C.H.₁₀N₂ + 2 HCl. Blättchen. Leicht löslich in Wasser (NI., B. 10, 833). — C.H.₁₀N₂ + H.₂SO₄. Pulverig. 100 Tle. Wasser von 11,5° lösen 0,84 Tle. Salz (Bei., K.). — C. $_7$ H.₁₀N₂ + 2 HCl + SnCl₄. Tafeln und Blätter (Bei., K.).

Funktionelle Derivate des 2.5-Diamino-toluols.

5-Amino-2-methylamino-toluol $C_8H_{12}N_2=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CH_3$. B. Bei der Reduktion von Toluchinon-methylimid-(1)-oxim-(4) bezw. 5-Nitroso-2-methylamino-toluol (Bd. VII, S. 648) mit Zink und Salzsäure (GNEHM, SCHRÖTER, J. pr. [2] 73, 3). — Dickes Öl. Erstarrt noch nicht bei —20°. Kp: 276—276,5° (korr.). — Oxydiert sich mit der Luft rasch unter Braunfärbung. Mischt man die wäßr. Lösung des Sulfats mit einer konz. Lösung von Aluminiumsulfat, fügt festes Natriumthiosulfat und dann unter Kühlung eine mit Essigsäure versetzte Lösung von Kaliumdichromat hinzu, so erhält man die S-[2-Amino-5-methylamino-4-methyl-phenyl]-thioschwefelsäure $(CH_3\cdot NH)(H_2N)\cdot C_6H_2(CH_3)\cdot S\cdot SO_3H$ (Syst. No. 1855). — $2C_8H_{12}N_3+H_2SO_4$. Nadeln (aus verd. Alkohol).

5-Amino-2-dimethylamino-toluol $C_9H_{14}N_9 = CH_3 \cdot C_9H_8(NH_2) \cdot N(CH_3)_2$. B. Bei der Reduktion von 5-Nitro-2-dimethylamino-toluol (Bd. XII, S. 847), gelöst in Salzsäure (D: 1,15), mit Zinkstaub bei 0° (Bernthsen, B. 25, 3134). — Im Kältegemisch erstarrendes Ol. F: 47°; Kp: 253—254° (korr.) (B., B. 25, 3134). — Das schwefelsaure Salz liefert mit einer schwach essigsauren Lösung von Dichromat und einer konzentrierten, mit Aluminiumsulfat versetzten Lösung von Natriumthiosulfat S-[2-Amino-5-dimethylamino-4-methyl-phenyl]-thioschwefelsäure ("Amino-dimethyl-o-toluidin-thiosulfonsäure") (Syst. No. 1855) (B., B. 25, 3135; vgl. dazu B., A. 251, 50). — 2 C₉H₁₄N₂ + H₂SO₄. Nädelchen. Sehr leicht löslich in Wasser, schwer in kaltem Alkohol.

- **2-Amino-5-dimethylamino-toluol** $C_0H_{14}N_2 = CH_2 \cdot C_0H_2(NH_2) \cdot N(CH_2)_2$. B. Bei der Reduktion von salzaaurem 6-Nitroso-3-dimethylamino-toluol (Bd. XII, S. 876) mit Zinn und Salzaaure (Wurster, Riedel, B. 12, 1801). Nadeln (aus Ligroin), Prismen (aus Benzol). F: 28°; leicht löslich in Wasser, Alkohol und Äther, schwerer in Ligroin (W., R.). Liefert beim Kochen mit Braunstein und verd. Schwefelsäure Toluchinon (R., B. 13, 126).
- 2.5 Bis dimethylamino toluol, N.N.N'.N' Tetramethyl p toluylendiamin $C_{11}H_{12}N_2 = CH_2 \cdot C_4H_2[N(CH_2)_2]_2$. B. Beim Erhitzen von 2-Amino-5-dimethylamino-toluol mit Salzsäure und Methylalkohol im geschlossenen Rohr auf 180° (WURSTER, RIEDEL, B. 12, 1802). Öl. Kp: 260°. Die freie Base gibt in wäßr. Lösung mit Eisenchlorid eine intensiv blaue Färbung, die mit Salzsäure verschwindet.
- Monojodmethylat $C_{12}H_{11}N_{2}I = CH_{2} \cdot C_{6}H_{2}[N(CH_{2})_{2}] \cdot N(CH_{2})_{2}I$. B. Aus 2.5-Bis-dimethylamino-toluol und Methyljodid in der Kälte (W., R., B. 12, 1802). Nadeln (aus Wasser). F: 160°. Zerfällt bei der Destillation in Methyljodid und 2.5-Bis-dimethylamino-toluol.
- 5-Amino-2-āthylamino-toluol C₂H₁₄N₂ = CH₃·C₂H₃(NH₄)·NH·C₂H₅. B. Bei der Reduktion von Toluchinon-āthylimid-(1)-oxim-(4) bezw. 5-Nitroso-2-āthylamino-toluol (Bd. VII, S. 648) (Kock, A. 243, 307; Weinberg, B. 25, 1611) mit Zinnchlorür in salzsaurer Lösung (O. Fischer, Diepolder, A. 286, 164); zur Reinigung stellt man das Sulfat dar (W.). Dickflüssig. Erstarrt nicht in einem Kältegemisch (K.). Siedet im Wasserstoffstrome bei 264° (korr.) (K.), 272° (W.). Leicht löslich in Äther (K.). Das schwefelsaure Salz liefert mit einer schwach essigsauren Lösung von Dichromat und einer konzentrierten, mit Aluminiumsulfat versetzten Lösung von Natriumthiosulfat S-[2-Amino-5-āthylamino-4-methyl-phenyl]-thioschwefelsäure ("Amino-āthyl-o-toluidin-thiosulfonsäure") (Syst. No. 1855) (W., B. 25, 1614; vgl. dazu Bernyhsen, A. 251, 50). Findet Verwendung zur Herstellung des Thiazinfarbstoffs Neumethylenblau (Schultz, Tab. No. 663). C₂H₁₄N₃ + 2 HCl. Krystalle. Schmilzt unter Zersetzung bei 124° (K.). C₂H₁₄N₃ + H₂SO₄. Krystalle. Fast unlöslich in Alkohol (W.).
- 5-Amino-2-diäthylamino-toluol $C_{11}H_{18}N_3=CH_3\cdot C_4H_3(NH_2)\cdot N(C_2H_5)_2$. B. Man kuppelt Diäthyl-o-toluidin (Bd. XII, S. 786) mit diazotiertem 2.5-Dichlor-anilin und reduziert den entstandenen Azofarbstoff (Rohner, D.R.P. 193211; Frdl. 9, 336; C. 1908 I, 503). Man führt 5-Amino-2-äthylamino-toluol durch Erhitzen mit Eisessig in 2-[Äthylamino]-5-acetamino-toluol über, behandelt dieses im geschlossenen Rohr mit Äthylbromid in alkoh. Lösung und verseift das entstandene 2-Diäthylamino-5-acetamino-toluol durch kurzes Erwärmen mit alkoh. Kali (Weinberg, B. 25, 1611; vgl. Bernthsen, B. 25, 3367). Bei der Reduktion von 5-Nitro-2-diäthylamino-toluol (Bd. XII, S. 847) mit Zinkstaub und Salzsäure (B., B. 25, 3134, 3138). F: 24° (W., B. 26, 308). Kp: 266—267° (korr.) (B., B. 25, 3138). Das Sulfat liefert mit einer schwach essigsauren Lösung von Dichromat und einer konzentrierten, mit Aluminiumsulfat versetzten Lösung von Natriumthiosulfat S-[2-Amino-5-diäthylamino-4-methyl-phenyl]-thioschwefelsäure (,,Amino-diäthyl-o-toluidin-thiosulfon-säure") (Syst. No. 1855) (B., B. 25, 3139; vgl. dazu B., A. 251, 50). $C_{11}H_{18}N_2 + HCl$. (Blättchen) (W.). $C_{11}H_{18}N_2 + H_2$ S O₄ (W.).
- 2-Amino-5-o-toluidino-toluol, 4'-Amino-2.3'-dimethyl-diphenylamin $C_{14}H_{16}N_3=CH_2\cdot C_6H_2(NH_2)\cdot NH\cdot C_6H_4\cdot CH_3$. B. Bei der Reduktion von N-o-Tolyl-N-[4-nitroso-3-methyl-phenyl]-hydroxylamin (Syst. No. 1933) mit Zinkstaub und Wasser (Banderger, Büsdorf, Sand, B. 31, 1518). Prismen. F: 63—64°. Sehr luftempfindlich, falls nicht völlig rein und trocken. Nitrit ruft in der Lösung eine intensive, bald zu Gelb verblassende Rötung hervor. FeCl₃ färbt zuerst granatrot und scheidet dann einen Brei grüner Flocken aus; durch Erwärmen erhält man eine klare gelbe, intensiv nach Chinon riechende Flüssigkeit. In verd. Lösung entsteht durch FeCl₃ nur eine violettrote Färbung, die beim Erwärmen in Gelb umschlägt. Chlorkalk liefert eine ziegelrote, durch Säuren gelb werdende Fällung. Hydrochlorid und Sulfat. In kaltem Wasser schwer lösliche Krystalle.
- 2.5-Di-p-toluidino-toluol, N.N'-Di-p-tolyl-p-toluylendiamin $C_{21}H_{22}N_2=CH_3 \cdot C_6H_6(NH\cdot C_6H_4\cdot CH_3)_2$. B. Man erhitzt 40 g Hydrotoluchinon (Bd. VI, S. 874) mit 160 g p-Toluidin und 80 g ZnCl₂ 4 Stdn. allmählich von 200° auf 280° (Green, B. 26, 2781). Platten (aus Eisessig). F: 112—113°. Wird in alkoh. Lösung durch ammoniakalisches Kupfernitzat zu Toluchinon-bis-p-tolylimid (Bd. XII, S. 913) oxydiert. Die Lösung in konz. Schwefelsäure wird durch etwas KNO₂ leuchtend blau gefärbt.
- 5-Amino-2-bensylamino-toluol $C_{14}H_{16}N_3=CH_3\cdot C_6H_5(NH_2)\cdot NH\cdot CH_3\cdot C_6H_5$. B. Beim Einleiten von H_2S in die Lösung von 5-Nitroso-2-benzylamino-toluol (Bd. XII, S. 1042) in alkoh. Ammoniak (Böddinghaus, A. 263, 309). $C_{14}H_{16}N_3+2HCl$. Nadeln (aus absol. Alkohol). Schwer löslich in absol. Alkohol.

- 2-Äthylamino-5-[2-nitro-benzalamino]-toluol $C_{16}H_{17}O_{2}N_{3} = CH_{3} \cdot C_{6}H_{8}(NH \cdot C_{2}H_{5}) \cdot N \cdot CH \cdot C_{6}H_{4} \cdot NO_{2}$. B. Aus 5-Amino-2-ăthylamino-toluol und 2-Nitro-benzaldehyd in Gegenwart von Alkohol auf dem Wasserbade (O. Fischer, Diepolder, A. 286, 164). Rotbraune Blättchen (aus absol. Alkohol). F: 80°. Leicht löslich in Äther, Chloroform und Benzol.
- 2-Äthylamino-5-[3-nitro-bensalamino]-toluol $C_{16}H_{17}O_{2}N_{3} = CH_{2} \cdot C_{6}H_{3}(NH \cdot C_{2}H_{5}) \cdot N : CH \cdot C_{6}H_{4} \cdot NO_{2}$. B. Aus 5-Amino-2-åthylamino-toluol und 3-Nitro-benzaldehyd in Gegenwart von Alkohol auf dem Wasserbade (O. F., D., A. 286, 165). Gelbe Nadeln (aus Alkohol). F: 118°. Schwer löslich in Alkohol, Åther und Ligroin.
- 2-Åthylamino-5-[4-nitro-bensalamino]-toluol $C_{16}H_{17}O_{2}N_{2} = CH_{2} \cdot C_{6}H_{3}(NH \cdot C_{2}H_{5}) \cdot N: CH \cdot C_{6}H_{4} \cdot NO_{2}$. B. Aus 5-Amino-2-åthylamino-toluol und 4-Nitro-benzaldehyd in Gegenwart von Alkohol auf dem Wasserbade (O. F., D., A. 286, 165). Nadeln (aus Alkohol). F: 143°. Leicht löslich in Benzol und Chloroform, schwerer in Alkohol, Äther und Ligroin.
- Indophenol $C_{13}H_{13}ON_3=CH_3\cdot C_6H_3(NH_2)\cdot N:C_6H_4:0$ bezw. $CH_3\cdot C_6H_3(:NH):N\cdot C_6H_4\cdot OH$ s. bei pamino-phenol, Syst. No. 1841.
- 2-Äthylamino-5-salicylalamino-toluol $C_{16}H_{16}ON_2 = CH_3 \cdot C_6H_5(NH \cdot C_2H_6) \cdot N \cdot CH \cdot C_6H_4 \cdot OH$. B. Aus 5-Amino-2-āthylamino-toluol und Salicylaldehyd in Gegenwart von Alkohol auf dem Wasserbade (O. FISCHEB, DIEPOLDEB, A. 286, 165). Prismen (aus Ligroin). F: 62°. Leicht löslich in allen gebräuchlichen Lösungsmitteln, außer in Ligroin.
- 5-o-Toluidino-2-salicylalamino-toluol, 4'-Salicylalamino-2.3'-dimethyl-diphenylamin $C_{31}H_{30}ON_3 = CH_3 \cdot C_6H_3 \cdot NH \cdot C_6H_4 \cdot CH_3 \cdot N : CH \cdot C_6H_4 \cdot OH$. Goldgelbe Blättchen. F: 112°; sehr leicht löslich in Benzol, Alkohol und Äther, ziemlich leicht in Ligroin (Bamberger, Büsdorf, Sand, B. 31, 1519).
- 5-Amino-2-acetamino-toluol $C_9H_{12}ON_2=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot CH_3$. B. Entsteht neben 2-Amino-5-acetamino-toluol, wenn man 2.5-Diamino-toluol in waßr. Lösung mit Essigsäureanhydrid acetyliert und das entstandene Diacetylderivat durch mehrstündiges Kochen mit Natronlauge verseift (CAIN, Soc. 95, 715). Liefert mit Caboscher Säure das Toluchinon-acetimid-(1)-oxim-(4) bezw. 5-Nitroso-2-acetamino-1-methyl-benzol (Bd. VII, S. 649).
- 2-Amino-5-acetamino-toluol $C_9H_{12}ON_2 = CH_3 \cdot C_9H_9(NH_2) \cdot NH \cdot CO \cdot CH_3$. B. s. im vorangehenden Artikel. Liefert mit Caroscher Säure das Toluchinon-acetimid-(4)-oxim-(1) bezw. 6-Nitroso-3-acetamino-1-methyl-benzol (Bd. VII, S. 649) (Cain, Soc. 95, 715).
- 5-Dimethylamino-2-acetamino-toluol $C_{11}H_{16}ON_{2}=CH_{2}\cdot C_{6}H_{2}[N(CH_{2})_{2}]\cdot NH\cdot CO\cdot CH_{2}$. B. Aus 2-Amino-5-dimethylamino-toluol und Essignaureanhydrid (WURSTER, RIEDEL, B. 12, 1801). Krystalle (aus Benzol und Ligroin). F: 158° . $2C_{11}H_{16}ON_{2}+2HCl+PtCl_{4}+4H_{*}O$.
- 5-o-Toluidino-2-acetamino-toluol, 4'-Acetamino-2.3'-dimethyl-diphenylamin $C_{16}H_{16}ON_3=CH_3\cdot C_6H_3(NH\cdot C_6H_4\cdot CH_3)\cdot NH\cdot CO\cdot CH_3$. Blattchen. F: 122,5°; leicht löslich in Benzol, weniger in Ligroin (Bamberger, Büsdorf, Sand, B. 81, 1519).
- 2.5-Bis-acetamino-toluol, N.N'-Diacetyl-p-toluylendiamin $C_{11}H_{14}O_2N_2=CH_3\cdot C_4H_4(NH\cdot CO\cdot CH_2)_2$. B. Beim Erwärmen von 2.5-Diamino-toluol mit Essigsäure-anhydrid (Nietzel, B. 10, 1157). Prismen (aus verd. Alkohol). F: 220° (N., B. 12, 2237).
- 2-Äthylamino-5-bensamino-toluol $C_{16}H_{16}ON_3 = CH_3 \cdot C_6H_3(NH \cdot C_2H_3) \cdot NH \cdot CO \cdot C_6H_5$.

 B. Aus 5-Amino-2-äthylamino-toluol nach Schotten-Baumann (O. Fischer, Diepolder, A. 286, 166). Nadeln (aus Benzol + etwas Ligroin). F: 174°. Leicht löslich in Alkohol, Benzol und Eisessig, schwer in Ligroin.
- N.N'-Bis-[4-amino-2-methyl-phenyl]-harnstoff $C_{18}H_{18}ON_4 = [CH_2 \cdot C_2H_2(NH_2) \cdot NH]_2CO$. B. Bei der Reduktion von N.N'-Bis-[4-nitro-2-methyl-phenyl]-harnstoff (Bd. XII, S. 847) mit Zinn und Salzsäure (Vittenet, Bl. [3] 21, 660). Nädelchen (aus Alkohol). F: $264-265^{\circ}$. $C_{18}H_{18}ON_4 + 2$ HCl.
- N.N'-Bis-[4-āthylamino-3-methyl-phenyl]-thioharnstoff $C_{18}H_{28}N_4S=[CH_8\cdot C_8H_8(NH\cdot C_8H_8)\cdot NH]_8CS$. B. Bei 10—12-stdg. Kochen von 5-Amino-2-āthylamino-toluol mit überschüssigem CS, und etwas Alkohol (O. FISCHER, DIEFOLDER, A. 286, 165). Nadeln (aus verd. Alkohol). F: 163°.
- p-Toluylen-bis- $[\omega$ -allyl-thioharnstoff] $C_{12}H_{22}N_4S_2 = CH_2 \cdot C_2H_3(NH \cdot CS \cdot NH \cdot CH_2 \cdot CH : CH_2)_2$. B. Beim Erwärmen von 2.5-Diamino-toluol und Allylsenföl (Bd. IV, S. 214) in alkoh. Lösung (LELLMANN, WÜRTHNER, A. 228, 209). Blättohen oder Prismen (aus

- Alkohol). F: 175,5°. Ziemlich leicht löslich in Alkohol und Eisessig, schwer in Benzol, fast unlöslich in Äther.
- p-Toluylen-bis- $[\omega$ -phenyl-thioharnstoff] $C_HH_{20}N_4S_9=CH_3\cdot C_9H_3(NH\cdot CS\cdot NH\cdot C_9H_5)_2$. B. Beim Erwärmen von 2.5-Diamino-toluol und Phenylsenföl (Bd. XII, S. 453) in alkoh. Lösung auf dem Wasserbade (Lellmann, Würthner, A. 228, 206). Blättchen. F: 181°. Fast unlöslich in den gewöhnlichen Lösungsmitteln. Spaltet bei 190° Thiocarbanilid ab.
- p-Toluylendiglycin $C_{11}H_{16}O_4N_3 = CH_3 \cdot C_6H_3 (NH \cdot CH_3 \cdot CO_2H)_3$. B. Beim Kochen des entsprechenden Dinitrils (s. u.) mit Kalilauge (Höchster Farbw., D.R.P. 145062; Frdl. 7, 76; C. 1903 Π , 1036). F: 150—160°.
- p-Toluylen-bis-glycinnitril, N.N'-Bis-cyanmethyl-p-toluylendiamin $C_{11}H_{12}N_4=CH_3\cdot C_4H_3(NH\cdot CH_3\cdot CN)_2$. B. Aus 2.5-Diamino-toluol und Glykolsäurenitril bezw. Formaldehyd und Blausäure in heißer wäßriger Lösung (Höchster Farbw., D.R.P. 145062; Frdl. 7, 76; C. 1903 II, 1036). F: 100—103°.
- N.N'-Bis-[4-amino-2-methyl-phenyl]-äthylendiamin $C_{16}H_{26}N_4 = [CH_3 \cdot C_4H_5(NH_3) \cdot NH \cdot CH_2-]_2$. B. Bei der Reduktion von Äthylen-bis-[toluchinon-imid-(1)-oxim-(4)] bezw. N.N'-Bis-[4-nitroso-2-methyl-phenyl]-äthylendiamin (Bd. VII, S. 649) mit Zinnohlorür und Salzaäure (Francis, Soc. 71, 425). $C_{16}H_{12}N_4 + 4HCl$. Nadeln. Sehr leicht löslich in Wasser. Die wäßr. Lösung wird an der Luft blau, durch Ferrichlorid blutrot, durch Kaliumnitrit rot unter Zersetzung.
- N.N'-Bis-[4-amino-3-methyl-phenyl]-äthylendiamin $C_{18}H_{22}N_4=[CH_2\cdot C_4H_4(NH_2)\cdot NH\cdot CH_2-]_3$. B. Aus N.N'-Dinitroso-N.N'-di-m-tolyl-āthylendiamin (Bd. XII, 8. 870) durch Umlagerung mit Eisessig-Chlorwasserstoff und darauffolgende Reduktion mit SnCl₂ und HCl (Feancis, Soc. 71, 427). Tafeln (aus Wasser). F: 143°. Sehr leicht löslich in Alkohol und heißem Benzol, ziemlich in heißem Wasser, fast unlöslich in Äther und CS₂. Gibt mit Ferrichlorid carminrote, mit Kaliumnitrit dunkelrote Färbung.
- N.N'-Bis-[4-bensalamino-2-methyl-phenyl]-äthylendiamin $C_{s0}H_{s0}N_4 = [CH_3 \cdot C_8H_3(N:CH \cdot C_8H_8) \cdot NH \cdot CH_2 -]_2$. B. Beim kurzen Erwärmen einer alkoh. Lösung von N.N'-Bis-[4-amino-2-methyl-phenyl]-äthylendiamin mit Benzaldehyd (Francus, Soc. 71, 426). Gelbe Tafeln. F: 175—176°. Sehr leicht löslich in Chloroform, mäßig löslich in Alkohol und Äther.
- 4.4'-Bis-methylamino-3.3'-dimethyl-diphenylamin $C_{16}H_{21}N_3 = [CH_2 \cdot C_0H_3(NH \cdot CH_2)]_2NH$. B. Das Hydrojodid wird erhalten, wenn man ein Gemisch von 5-Amino-2-[methylamino]-toluol und Methyl-o-toluidin (Bd. XII, S. 784) in essigsaurer Lösung mit NaOCl oxydiert, die erhaltene Indaminlösung mit einer salzsauren Zinnchlorürlösung reduziert und die entzinnte und konzentrierte Lösung mit KI versetzt (GNEHM, SCHRÖTER, J. pr. [2] 73, 11). $C_{16}H_{21}N_3 + 2HI$. Fast weiße Nadeln (aus Alkohol-Ligroin). F: 242°.
- 4.4'-Bis-āthylamino-3.3'-dimethyl-diphenylamin $C_{18}H_{28}N_{8}=[CH_{8}\cdot C_{6}H_{8}(NH\cdot C_{8}H_{8})]_{9}NH$. B. Das Hydrojodid wird erhalten, wenn man ein Gemisch von 5-Amino-2-āthylamino-toluol und Athyl-o-toluidin (Bd. XII, S. 786) in Eisessig mit NaOCl oxydiert, die erhaltene Lösung des Indamins mit einer salzsauren Zinnehlorürlösung reduziert, die Lösung mit $H_{2}S$ entzinnt und nach dem Einengen mit KI versetzt (G., Sch., J. pr. [2] 73, 9). $C_{18}H_{28}N_{3}+3HI+2H_{2}O$. Orangegelbe Blättchen. F: 120—122° (korr.). Sehr wenig löslich in HI-haltigem Wasser. Wird durch Wasser dissoziiert.
- 4.4'- Bis [bensoylmethylamino] 3.3'- dimethyl N bensoyl diphenylamin $C_{37}H_{32}O_3N_3 = [C_4H_3\cdot CO\cdot N(CH_3)\cdot C_4H_4(CH_3)]_2N\cdot CO\cdot C_6H_5$. B. Durch Reduktion des aus 5-Amino-2-methylamino-toluol und Methyl-o-toluidin in Eisessig durch NaOCl erhaltenen Indamins mit salzsaurer Zinnehlorürlösung, Entzinnung mit H_3S und Behandeln der alkalisch gemachten Lösung mit Bensoylchlorid (G., Sch., J. pr. [2] 73, 12). Weißes klebriges Pulver (aus verd. Alkohol). Erweicht bei ca. 60° und schmilzt oberhalb 90° vollständig. Leicht löslich in Methylalkohol, Alkohol, Essigester, Aceton, Pyridin, weniger in Chloroform; unlöslich in kaltem Wasser.
- 4.4'-Bis-[bensoyläthylamino]-3.8'-dimethyl-N-bensoyl-diphenylamin $C_{22}H_{27}O_2N_3=[C_6H_5\cdot CO\cdot N(C_2H_3)\cdot C_4H_5(CH_3)]_2N\cdot CO\cdot C_6H_5$. B. Durch Reduktion des aus 5-Amino-2-āthylamino-toluol und Āthyl-o-toluidin in Eisessig durch NaOCl erhaltenen Indamins mit salzsaurer Zinnehlorürlösung, Entzinnung mit H_2S und Behandeln der alkalisch gemachten Lösung mit Benzoylchlorid (G., Sch., J. pr. [2] 73, 13). Ähnelt der vorangehenden Verbindung.
- Monohippuryl-p-toluylendiamin $C_{16}H_{17}O_{8}N_{9} = CH_{2} \cdot C_{6}H_{3}(NH_{2}) \cdot NH \cdot CO \cdot CH_{2} \cdot NH \cdot CO \cdot C_{6}H_{3}$. Aus Hippurazid (Bd. IX, S. 247) und 2.5-Diamino-toluol in äther. Lösung (Cubtus, J. pr. [2] 52, 259). Blätter (aus heißem Alkohol). F: 205°.

- 5-Amino-2-bensolsulfamino-toluol $C_{13}H_{14}O_2N_2S = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot SO_2 \cdot C_6H_5$. Bei der Reduktion von 5-Nitro-2-benzolsulfamino-toluol (Bd. XII, S. 848) mit Eisen und Essigsäure (Mobgan, Micklethwait, Soc. 87, 926). Nadeln (aus Wasser). F: 147°. Gibt mit salpetriger Säure in Wasser eine Lösung, aus der sich beim Eintragen in Natrium-acetatlösung Anhydro-2-benzolsulfamino-5-diazo-toluol $C_6H_5 \cdot SO_2 \cdot N_3C_6H_3 \cdot CH_3$ (Syst. No. 2203) ausscheidet.
- 5-Amino-2-p-toluolsulfamino-toluol $C_{14}H_{16}O_2N_2S = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot SO_2 \cdot C_6H_4 \cdot CH_3$. B. Beim Erhitzen von 5-Nitro-2-p-toluolsulfamino-toluol (Bd. XII, S. 848) mit Eisenfeile und Essig.āure (Mo., Mr., B. 39, 2872; Akt.-Ges. f. Anilinf., D.R.P. 160710; Frdl. 8, 494; C. 1905 I, 1677). Prismen (aus verd. Alkohol). F: 150° (Mo., Mr.; A.-G. f. A.). Gibt beim Zusammenoxydieren mit Phenolen arylsulfonierte Indophenole (A.-G. f. A.).
- **5-Amino-2-**[p-toluolsulfonylmethylamino]-toluol $C_{18}H_{18}O_{2}N_{2}S=CH_{3}\cdot C_{6}H_{3}\cdot NH_{3}\cdot N(CH_{3})\cdot SO_{3}\cdot C_{6}H_{4}\cdot CH_{3}$. B. Bei der Reduktion von 5-Nitro-2-[p-toluolsulfonylmethylamino]-toluol (Bd. XII, S. 848) mit Eisenfeile und sehr verd. Essigsäure (Mo., Mi., B. 39, 2874). Blättehen (aus verd. Alkohol). F: 118—119°.

Substitutions produkte des 2.5-Diamino-toluols.

- 4-Chlor-2.5-diamino-toluol C₇H₀N₂Cl = CH₃·C₆H₂Cl(NH₂)₂. B. Das Hydrochlorid entsteht beim Sättigen einer Alkohol-, Äther- oder Eisessig-Lösung von N-Nitroso-N-otolyl-glycin (Bd. XII, S. 831) mit kaltem trocknem Chlorwasserstoff (Vorländer, Schrödter, B. 34, 1651). Weiße Krystallschuppen, an der Luft sich violett färbend. F: 146°. Reduziert in alkoholischer oder wäßriger Lösung ammoniakalische Silberlösung in der Kälte. Wird von FeCl₃, Chlorwasser, Chlorsäure usw. grün gefärbt. Gibt in salzsaurer Lösung mit H₂S und FeCl₃ die Lauthsche Reaktion. Liefert beim Erwärmen mit K₂Cr₂O₇ + H₂SO₄ 5-Chlor-toluchinon (Bd. VII, S. 650). C₇H₆N₂Cl+2 HCl. In Wasser leicht lösliche Krystalle. C₇H₆N₃Cl+H₂SO₄. Krystalle. Schwer löslich in kaltem Wasser.
- 4-Chlor-5 (?)-amino-2-methylamino-toluol $C_8H_{11}N_2Cl = CH_3 \cdot C_6H_2Cl(NH_2) \cdot NH \cdot CH_3$. B. Bei der Reduktion von Methyl-[5-chlor-4(?)-nitro-2-methyl-phenyl]-nitrosamin (Bd. XII, S. 850) mit Zinn und Salzsäure (Stoermer, Hoffmann, B. 31, 2533). Nadeln. F: 85°. Gibt in salzsaurer Lösung mit H_2S und $FeCl_3$ Violettfärbung.
- 4-Chlor-2.5-bis-acetamino-toluol $C_{11}H_{13}O_2N_2Cl=CH_3\cdot C_6H_2Cl(NH\cdot CO\cdot CH_3)_2$. B. Bei kurzem Erhitzen von 3 g 4-Chlor-2.5-diamino-toluol mit 18 g Essigsäureanhydrid im Wasserbade (Vorländer, Schrödter, B. 34, 1653). Nadeln (aus siedendem Alkohol). Schmilzt über 300°.
- **3.4.6-Trichlor-2.5-diamino-toluol** $C_7H_7N_3Cl_3=CH_3\cdot C_6Cl_3(NH_8)_3$. *E.* Man trägt eine möglichst konz. Eisessiglösung von 1 Tl. 3.4.6-Trichlor-2.5-dinitro-toluol (Bd. V, S. 346) in ein heißes Gemisch aus 20 Tln. SnCl $_2+2H_3O$, 10 Tln. Wasser und 20 Tln. Salzsäure (D: 1,19) ein, kocht kurze Zeit, läßt erkalten, wäscht das auskrystallisierte Salz mit Wasser und zerlegt es durch Natronlauge (Seelig, A. 237, 143). Nadeln (aus Alkohol). F: 196°. Liefert beim Kochen mit verd. Chromsäuremischung 3.5.6-Trichlor-toluchinon (Bd. VII, S. 651). Liefert beim Kochen mit Essigsäureanhydrid ein Tetraacetylderivat.
- Tetraacetylderivat $C_{15}H_{15}O_4N_3Cl_5 = CH_3 \cdot C_6Cl_5[N(CO \cdot CH_3)_3]_3$. B. Beim Kochen von 3.4.6-Trichlor-2.5-diamino-toluol mit Essigsäureanhydrid (Seelig, A. 237, 144). Nadeln (aus Methylalkohol). F: 220°.
- 4. 2.6-Diamino-1-methyl-benzol, 2.6-Diamino-toluol, 2-Methyl-phenylendiamin-(1.3), vic.-m-Toluylendiamin C₇H₁₆N₁, s. nebenstehende Formel. B. Bei der Reduktion von 2.6-Dinitrotoluol (Bd. V, S. 341) mit Zinn und Salzsäure (CUNERTH, A. 172, 227). Bei der Reduktion von 6-Nitro-2-amino-toluol (Bd. XII, S. 848) mit Zinn und Salzsäure unter Zusatz von Zinnchlorür auf dem Wasserbade (Ullmann, B. 17, 1959). Prismen (aus Wasser). F: 103,5° (U.), 105° (Green, Lawson, Soc. 59, 1017). Wird durch Eisenchlorid tiefbraun gefärbt (U.). Gibt mit salzsaurem 4-Nitroso-dimethylanilin erst eine grüne und dann eine dunkelblaue Färbung (U.). Bildet ein bei 202—203° schmelzendes Diacetylderivat (C., L.). C₇H₁₆N₂ + HCl. Krystalle. Ungemein löslich in Wasser (U.). C₇H₁₀N₂ + H₂SO₄ + 1¹/₃H₂O. Nadeln. 100 Tle. der gesättigten wäßr. Lösung enthalten bei gewöhnlicher Temperatur 18,29 Tle. Salz (C.).
- 5. 3.4-Diamino-1-methyl-benzol, 3.4-Diamino-toluol, 4-Methyl-phenylendiamin-(1.2), asymm. o-Toluylendiamin $C_7H_{10}N_2$, s. nebenstehende Formel.

Bildung.

Aus 3-Nitro-4-amino-toluol (Bd. XII, S. 1000) bei der Reduktion mit Zinn und Salzsäure (Beilstein, Kuhlberg, A. 158, 351) oder mit Natriumamalgam oder Zinkstaub und alkoh. Kali (Limpricht, B. 18, 1404) oder bei der elektrolytischen Reduktion in schwach alkal. Lösung (Elbs. Z. El. Ch. 7, 144). Bei der Reduktion von 4-Nitro-3-amino-toluol (Bd. XII, S. 876) mit Zinn und Salzsäure (Noelting, Stoecklin, B. 24, 565). Beim mehrstündigen Erhitzen des 3-Nitro-4-amino-benzylalkohols (Syst. No. 1855) bezw. des Anhydro-[3-nitro-4-amino-benzylalkohols] (O₂N·C₆H₃ NH (Syst. No. 1855) mit Zinn und konz. Salzsäure auf dem Wasserbade (J. MEYER, ROHMEB, B. 33, 254). Bei der Reduktion von 2-Nitro-4-dimethalenden auf dem Wasserbade (J. MEYER, ROHMEB, B. 33, 254). Bei der Reduktion von 2-Nitro-4-dimethalenden auf dem Wasserbade (J. MEYER, ROHMEB, B. 33, 254).

auf dem Wasserbade (J. MEYER, ROHMER, B. 33, 254). Bei der Reduktion von 2-Nitro-4.4'-dimethyl-azobenzol oder 2.2'-Dinitro-4.4'-dimethyl-azobenzol (Syst. No. 2096) mit Zinn und Salzsäure (JANOVEKY, M. 10, 586, 590). Bei der Reduktion von 6-Amino-3.4'-dimethyl-azobenzol (Syst. No. 2173) (NOELTING, WITT, B. 17, 80).

Physikalische Eigenschaften.

Blättchen (aus Ligroin). F: 88,5° (Beilstein, Kuhlberg, A. 158, 351), 89—90° (Ladenburg, B. 8, 1210). Kp: 265°; sublimierbar; ziemlich leicht löslich in kaltem Wasser (Bei., Ku.). Zur Hydrolyse des Hydrochlorids vgl. Veley, Soc. 98, 2135.

Chemisches Verhalten.

3.4-Diamino-toluol und seine Salze oxydieren sich in wäßr. Lösung an der Luft weit leichter als 2.4-Diamino-toluol und seine Salze (BEI., Ku.). Die wäßr. Lösung des 3.4-Diamino-toluols färbt sich an der Luft sehr bald schwarz (BEI., KU.). Einwirkung von FeCl; auf 3.4-Diamino-toluol in alkoholisch-salzsaurer Lösung: O. FISCHER, SIEDER, B. 23, 3802; vgl. O. Fl., Jonas, B. 27, 2783. Bei der Einw. von Chlor auf salzsaures 3.4-Diamino-toluol, in Eisessig und Salzsäure suspendiert, entsteht eso-Pentachlor-1-methyl-cyclohexen-(x)-dion-(3.4) (Bd. VII, S. 578) (Bergmann, Francke, A. 296, 159). Leitet man in geschmolzenes 3.4-Diamino-toluol bei etwa 140° trocknes SO₂ ein oder läßt man bei 160—200° Natziumdisulfit oder eine wäßr. Lösung von SO, bei 180° auf das Diamin einwirken, so entsteht Methylbenzopiazthiol CH₃·C₆H₃ N (Syst. No. 4491) (BAYER & Co., D. R. P. 49191; Frdl. 2, 534; HINSBERG, B. 22, 2900). Salzsaures 3.4-Diamino-toluol liefert beim Erhitzen mit Thionylchlorid in Benzol ebenfalls Methylbenzopiazthiol (MICHAELIS, A. 274, 263). 3.4-Diaminotoluol reagiert mit SeO, in wäßr. Lösung unter Bildung von Methylbenzopiaselenol $CH_3 \cdot C_6H_3 \stackrel{\sim}{\underset{N}{\longrightarrow}} Se$ (Syst. No. 4491) (HINSBERG, B. 22, 863); erwärmt man salzsaures 3.4-Diamino-toluol mit SeO₂ in konz. Salzsäure, so entsteht ein Monochlorderivat des Methylbenzopiaselenols $CH_3 \cdot C_6H_2Cl {N \choose N}$ Se (Syst. No. 4491) (Hrw., B. 23, 1395). Beim Behandeln von schwefelsaurem (Ladenburg, B. 9, 220) oder salzsaurem (Noelting, Abt, B. 20, 3001) 3.4-Diamino-toluol mit Natriumnitritlösung entsteht 5-Methyl-benztriazol (Syst. No. 3804). Behandelt man 3.4-Diamino-toluol mit PCls in Benzol in der Kälte und trägt das entstandene Produkt in Sodalösung ein, so entsteht die Verbindung ${\rm CH_3 \cdot C_6H_3} {<}_{\rm NH}^{\rm NH} {>} {\rm PO \cdot NH \cdot C_6H_3(CH_3) \cdot NH_2} \ ({\rm Syst. \ No.\ 4720}) \ ({\rm Him.,} \ \textit{B.\ 27,\ 2178}).$

Beim Erhitzen von 3.4-Diamino-toluol mit Methyljodid und Methylalkohol im geschlossenen Rohr entsteht 3.4-Bis-dimethylamino-toluol (v. Niementowski, B. 20, 1888). Bei mehrstündigem Erwärmen in alkoh. Lösung mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und Natriumacetat entsteht Mono-[2.4-dinitro-phenyl]-asymm.-o-toluylendiamin (3-Amino-4-[2.4-dinitro-anilino-toluol(?) (S. 155) (Ernst, B. 23, 3428).

Bei gemeinsamer Oxydation aquimolekularer Mengen 3.4-Diamino-toluol und β -Naphthol in verdünnter schwach alkalischer Lösung mit Kaliumferricyanid entsteht das Methyl-naphthophenazin der nebenstehenden Formel (Syst. No. 3490) (Wrrr, B. 19, 917; 20. 580). Beim Erhitzen aquimolekularer Mengen 3.4-Diamino-toluol

N. CH.

und Brenzcatechin im geschlossenen Rohr unterhalb 200° entsteht die Verbindung $C_7H_{10}N_2 + C_6H_6O_2$ (S. 153); erhitzt man jedoch 50 Stdn. auf 200—220°, so wird 2-Methyl-phenazin C_6H_4 $\stackrel{N}{\sim}$ $C_6H_3 \cdot CH_2$ (Syst. No. 3487) gebildet (Merz, B. 19, 726). Liefert beim $^{1}/_{2}$ -stdg.

Erhitzen mit 2-Oxy-benzylalkohol (Bd. VI, S. 891) auf 140° oder 1-stdg. Erhitzen in alkoh. Lösung im geschlossenen Rohr auf 170—180° Mono-[2-oxy-benzyl]-asymm.-o-toluylendiamin (Syst. No. 1855) (Paal, Reckleben, B. 28, 935).

3.4-Diamino-toluol liefert in schwach salzsaurer Lösung mit Formaldehyd 1.6-Dimethyl-NCH (Syst. No. 3474); beim Erhitzen von 3.4-Disminotoluol mit Formaldehyd in alkoh. Lösung entsteht die Verbindung $C_{19}H_{20}N_4$ (S. 153) (O. FISCHER, WEESZINSKI, B. 25, 2711; O. FI., B. 26, 195); mit Acetaldehyd in stark verd. Essigsāure entsteht das Dimethyl-benzimidazol $CH_3 \cdot C_6H_3 < N > C \cdot CH_3$ (Syst. No. 3475) und als Hauptprodukt 1-Äthyl-2.6-dimethyl-benzimidazol (Syst. No. 3475) (Hin., B. 20, 1588; O. FISCHER, B. 26, 201). 3.4-Diamino-toluol liefert mit Chloral je nach den angewandten Mengen die Verbindungen $CH_3 \cdot C_6H_3(NH_4) \cdot NH \cdot CH(OH) \cdot CCl_3$ bezw. $CH_3 \cdot C_6H_3[NH \cdot CH(OH) \cdot CCl_3]_2$ (Rüghemee, B. 39, 1662). Beim Eintröpfeln von 2 Mol.-Gew. Chloraceton (Bd. I, S. 653) in eine auf 60° erwärmte wäßr. Lösung von 3 Mol.-Gew. 3.4-Diamino-N = CHN=C·CH₃ (Syst. No. 3482) (HINSBERG, toluol entsteht das Dimethyl-chinoxalin CH3 · C6H3 · C6H3 A. 237, 368). Beim Erhitzen von 1 Mol.-Gew. 3.4-Diamino-toluol mit 2 Mol.-Gew. Benzaldehyd auf 140° oder von 1 Mol.-Gew. des salzsauren 3.4-Diamino-toluols mit 2 Mol.-Gew. Benzaldehyd zunächst auf 100° und dann bis zur Beendigung der HCl-Entwicklung auf 120—130° entsteht ${\rm das}\ 1\ -\ {\rm Benzyl}\ -\ 5\ {\rm oder}\ 6\ -\ {\rm methyl}\ -\ 2\ -\ {\rm phenyl}\ -\ {\rm benzimidazol}\ {\rm CH_3\cdot C_6H_3} \\ {\sim} {\rm N(CH_3\cdot C_6H_5)} \\ {\sim} {\rm C\cdot C_6H_5}$ (Syst. No. 3487) (Ladenburg, B. 11, 591, 594). Beim Erhitzen äquimolekularer Mengen 3.4-Diamino-toluol und Acetophenon auf 180° entsteht das Methyl-phenyl-benzimidazol CH₃·C₆H₃·C_NH C·C₆H₅ (Syst. No. 3487) (LADE., RÜGHEIMER, B. 12, 951). Beim Kochen von 3.4-Diamino-toluol mit ω -Brom-acetophenon (Bd. VII, S. 283) in alkoh. Lösung entstehen 6-Methyl-2-phenyl-chinoxalin und 7-Methyl-2-phenyl-chinoxalin (Syst. No. 3488) (Hins-BERG, A. 237, 370; LELLMANN, DONNER, B. 23, 166). 3.4-Diamino-toluol liefert mit Glyoxal (Bd. I, S. 759) oder seiner Natriumdisulfitverbindung in warmer wäßriger Lösung 6-Methylchinoxalin (Syst. No. 3481) (Hin., A. 237, 336). Essignaures 3.4-Diamino-toluol gibt in wäßr. Lösung mit Diacetyl (Bd. I, S. 769) 2.3.6-Trimethyl-chinoxalin (Syst. No. 3483) (v. Pech-MANN, B. 21, 1414). Erhitzt man salzsaures 3.4-Diamino-voluol mit o-Phthaldialdehyd CH₃·C₈H₃·N·CH₂ (Syst. No. (Bd. VII, S. 674) in wäßr. Lösung, so erhält man die Verbindung 3488) (THIELE, FALK, A. 347, 130). 3.4-Diamino-toluol gibt mit Phenanthrenchinon (Bd. VII, S. 796) in alkoh.-essigsaurer Lösung Methylphenanthrophenazin (Syst. No. 3493) (Hin., A. 237, 341). Das salzsaure Salz des 3.4-Diamino-toluols liefert mit Leukonsäure (Bd. VII, S. 905) in wäßr. Lösung die Verbindung $CH_3 \cdot C_6H_3 = C - C_6H_3 \cdot C_6H_3 \cdot CH_3 Erhitzt man 1 Tl. 3.4-Diamino-toluol mit 1½ bis 2 Tln. Salicylaldehyd (Bd. VIII, S. 31) 18 Stdn. auf 135°, zieht das Reaktionsprodukt mit verd. Salzsäure aus und versetzt die Lösung mit konz. Salzsäure, so erhält man (neben anderen Produkten) das salzsaure Salz einer farblosen, in Lösung schön blau fluorescierenden Verbindung der Zusammensetzung C₃₅H₃₂O₃N₄(?) (Azurin, S. 153) (LADENBURG, B. 11, 597). Erhitzt man 1 Mol.-Gew. 3.4-Diamino-toluol und 1 Mol.-Gew. Benzoin 21/2 Stdn. unter Druck auf 180°, so erhält man das NH—CH·C₆H₅ (Syst. No. 3491) (O. FISCHER, $\label{eq:methyldiphenylchinoxalindihydrid} \begin{picture}(t) CH_{\bf 3} \cdot C_{\bf 6}H_{\bf 3} \\ N = C \cdot C_{\bf 6}H_{\bf 5} \\ \end{picture}$ B. 26, 192). Salzsaures 3.4-Diamino-toluol reagiert mit Krokonsäure (Bd. VIII, S. 488) -0H in wäßr. Lösung unter Bildung der Verbindung CH3·C6H3· CO (Syst. No. 3636) C∠OH (NIE., BENCKISER, B. 19, 776). 3.4-Diamino-toluol gibt mit 2 Mol.-Gew. Arabinose in wäßriger oder schwach essigsaurer Lösung ein Methyl-tetraoxybutyl-benzimidazol $\begin{array}{c} \mathrm{CH_3 \cdot C_6H_3} \underset{N}{\overset{NH}{>}} \mathrm{C \cdot [CH(OH)]_3 \cdot CH_3 \cdot OH} & \mathrm{(Syst.\ No.\ 3554)} & \mathrm{(Griess,\ Harrow,\ } \textit{B.\ 20,\ 3114;} \\ \end{array}$ Schilling, B. 34, 905). Beim Erwärmen von 1 Mol.-Gew. 3.4-Diamino-toluol mit 2 Mol.-Gew. Glykose in alkoh. Lösung auf dem Wasserbade entsteht [asymm.-o-Toluylen]-bis-glykosimin $CH_3 \cdot C_0H_3[N:CH \cdot [CH(OH)]_4 \cdot CH_2 \cdot OH]$ (S. 157) (HINSBERG, B. 20, 495); last man 1 Mol.-Gew. essigsaures 3.4-Diamino-toluol auf 2 Mol.-Gew. Glykose in wenig Wasser einwirken, so erhält $\label{eq:continuous_entropy} \text{man ein Methyl-pentaoxyamyl-benzimidazol } \text{CH}_3 \cdot \text{C}_0 \\ \text{H}_3 < \text{NH} \\ \text{N} > \text{C} \cdot [\text{CH}(\text{OH})]_4 \cdot \text{CH}_2 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{Syst. Continuous} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot \text{OH} \text{ (Syst. Continuous)} \\ \text{OH}_3 \cdot \text{CH}_3 \cdot$ No. 3554) (Gr., Ha., B. 20, 2209; Sch., B. 34, 905). 3.4-Diamino-toluol gibt mit Glykoson

(Bd. I, S. 932) in heißem Wasser ohne Säurezusatz ein Methyl-tetraoxybutyl-chinoxalin CH₃·C₆H₃ N=CH (Syst. No. 3554) (E. FISCHER, B. 22, 93).

(Syst. No. 3554) (E. FISCHER, B. 22, 93).

Bei längerem Kochen von 3.4-Diamino-toluol mit Ameisensäure entsteht 5-Methylbenzimidazol (Syst. No. 3474) (Ladenburg, B. 10, 1123; Bamberger, Berlé, A. 273, 321). Dieses wird auch beim Erhitzen von salzsaurem 3.4-Diamino-toluol mit Ameisensäureäthylester oder mit Formamid erhalten (v. Niementowski, B. 30, 3064, 3070). Beim Kochen von 3.4-Diamino-toluol mit Eisessig (Ladenburg, B. 8, 677, 1210) oder beim Erhitzen von salzsaurem 3.4-Diamino-toluol mit Eisesigseter auf 225° oder mit Acetamid auf 180° (v. Nie., B. 30, 3064, 3070) erhält man 2.5-Dimethyl-benzimidazol (Syst. No. 3475). Beim kurzen Kochen von 3.4-Diamino-toluol mit einem Überschuß von Essigsäureanhydrid (Bistreyoki, Ulffers, B. 23, 1877) oder beim Schütteln des Diamins mit überschüssigem Essigsäureanhydrid und Eiswasser (Hin., B. 23, 2962) erhält man 3.4-Bis-acetamino-toluol (S. 157). Bei der Einw. von Acetylchlorid auf 3.4-Diamino-toluol ohne Kühlung entsteht salzsaures 2.5-Dimethyl-benzimidazol (Syst. No. 3475), während bei guter Eiskühlung viel 3.4-Bis-acetamino-toluol gebildet wird (Bistreyoki, Cybulski, B. 24, 633). Beim Erwärmen von 3 Mol.-Gew. 3.4-Diamino-toluol mit 2 Mol.-Gew. Chloressigsäureäthylester im Wasserbade

entsteht 3-0xo-6-methyl-chinoxalin-tetrahydrid-(1.2.3.4) CH_3 CH_3 CH_3 (Syst. No. No.

3567) (HINSBERG, A. 287, 361; vgl. HIN., A. 248, 76); wendet man bei dieser Reaktion äquimolekulare Mengen der beiden Komponenten an, so entsteht ein Oxo-methyl-chinoxalintetrahydrid-N-essigsäure-äthylester CH₃·C₆H₃·N(CH₂·CO₂·C₂H₅)·CO (Syst. No. 3567) (HIN.,

A. 237, 365). Beim kurzen Kochen von 1 Mol.-Gew. 3.4-Diamino-toluol mit 3 oder 4 Mol.-Gew. Benzoesäureanhydrid in Benzol entsteht 3.4-Bis-benzamino-toluol (BISTEZYCKI, ULFFERS, B. 23, 1877, 1879). Dieses entsteht auch beim Schütteln von 3.4-Diamino-toluol mit Benzoylchlorid und überschüssiger 10% iger Natronlauge unter Kühlung (HINSBERG, V. UDRANSZKI, A. 254, 252, 255). Beim ½-stündigen Erwärmen äquimolekularer Mengen 3.4-Diamino-toluol und Benzoylchlorid in trocknem Benzol entsteht 3-Amino-4-benzamino-toluol und als Hauptprodukt 3.4-Bis-benzamino-toluol (BIST., CY., B. 24, 631). Beim Erhitzen von salzsaurem 3.4-Diamino-toluol mit Benzamid auf 180° entsteht 5-Methyl-2-phenyl-benzimidazol (Syst. No. 3487) (v. NIE., B. 30, 3064). 3.4-Diamino-toluol reagiert beim Zusammenschmelzen mit überschüssiger Oxalsäure bei 140—160° (Hinsberg, A. 237, 348) oder beim Kochen mit Oxalsäurediäthylester unter Bildung von 2.3-Dioxo-6-methyl-chinoxalintetrahydrid (Syst. No. 3591) (R. MEYER, B. 29, 2641; R. MEYER, B. 30, 768). Beim Einleiten von Dioyan (Bd. II, S. 549) in die alkoholische Lösung von 3.4-Diamino-toluol entsteht 2.3-Diimino-6-methyl-chinoxalintetrahydrid (Syst. No. 3591) (Bladin, B. 18, 667). 3.4-Diamino-toluol gibt beim Kochen mit Malonester [asymm.-o-Toluylen]-malonamid CH₃·C₆H₃</br/>
NH—CO
CH₂ (Syst. No. 3591) (R. MEYER, V. LUTZAU, A. 347, 26;

vgl. R. Meyer, Lüders, A. 415 [1918], 33). Mischt man die kalten benzolischen Lösungen äquimolekularer Mengen von 3.4-Diamino-toluol und Bernsteinsäureanhydrid (Syst. No. 2475), so entsteht die N-[2-Amino-4-methyl-phenyl]-succinamidsäure (?) (S. 159) (Anderlini, G. 24 I, 146; R. Meyer, J. Maier, A. 327, 11, 35); destilliert man das Benzol ab, erwärmt den Rückstand kurze Zeit auf dem Wasserbade und kocht ihn schließlich mit Alkohol, so erhält man β -[5-Methyl-benzimidazolyl-(2)]-propionsäure (Syst. No. 3646) (Anderlini, G. 24 I, 147; R. Meyer, Lüders, A. 415, [1918], 31). 3.4-Diamino-toluol liefert beim Erwärmen mit Succinylohlorid (Bd. II, S. 613) N.N'-Bis-[2-amino-4-methyl-phenyl]-succinamid (?) (S. 159) (R. Meyer, Jaeger, A. 347, 48). Beim Kochen von 3.4-Diamino-toluol mit Methylmalonsäure-diäthylester entstehen [asymm.-o-Toluylen]-methylmalonsäure-diamid

CH₃·C₆H₃ NH·CO CH·CH₂ (Syst. No. 3591) und Methylmalonsäure-diamid anilid] (?) (R. MEYER, Jae., A. 347, 38; vgl. R. MEYER, LÜDERS, A. 415 [1918], 33). 3.4-Diamino-toluol gibt mit 1 Mol.-Gew. Phthalsäureanhydrid in Benzol in der Kälte N-[2-Amino-4-methyl-phenyl]-phthalamidsäure (?) (S. 160) (ANDERLINI, G. 24 I, 148; vgl. R. MEYER, A. 327, 11); kocht man diese in Benzollösung, destilliert das Lösungsmittel ab und nimmt den Rückstand mit heißem Alkohol auf, so erhält man 2-[5-Methyl-benzimid-azolyl-(2)]-benzoesäure CH₃·C₆H₃ NH C·C₆H₄·CO₂H (Syst. No. 3650) (ANDERLINI, G. 24 I, 148; vgl. Thiele, Falk, A. 347, 116). Beim Erhitzen von 1 Tl. 3.4-Diamino-toluol mit 2 Tln. Phthalsäureanhydrid, bis kein Wasser mehr entweicht, entsteht [asymm.-o-Toluylen]-bis-phthalimid CH₃·C₆H₃ N

1125). Dieselbe Verbindung wird beim Erwärmen von 3.4-Diamino-toluol mit Phthalylchlorid erhalten (R. Meyer, Jaeger, A. 347, 52). Beim Erhitzen gleicher Gewichtsmengen
3.4-Diamino-toluol und α.γ-Dicarboxy-glutaconsäure-tetraäthylester (Bd. II, S. 876) auf dem
Wasserbade entsteht neben Malonsäurediäthylester β-[2-Amino-4-methyl-phenylimino]-methylmalonsäure-diäthylester (?) CH₃ · C₈H₃(NH₃) · N : CH · CH(CO₂ · C₂H₅)₃ (S. 161) (Ruhemann,
Hemmy, B. 30, 2027). Versetzt man eine Lösung von 3.4-Diamino-toluol in Benzol mit einer Lösung von Phosgen in Toluol und erhitzt im geschlossenen Rohr auf 100°, so erhält man 5-Methyl-benzimidazolon $CH_3 \cdot C_6H_3 < \frac{NH}{NH} > CO$ (Syst. No. 3567) (Habtmann, B. 23, 1048; vgl. R. Meyer, v. Lutzau, A. 327, 6). Bei der Einw. von Kaliumoyanat auf salzsaures 3.4-Diamino-toluol in wäßr. Lösung entsteht [asymm.-o-Toluylen]-di-harnstoff (S. 160) (Lellmann, A. 221, 14). Beim Zusammenschmelzen äquimolekularer Mengen von 3.4-Diamino-toluol und Harnstoff entsteht 5-Methyl-benzimidazolon (Syst. No. 3567) (SAND-MEYER, B. 19, 2652). Beim Schütteln von salzsaurem 3.4-Diamino-toluol in verd. wäßr. Lösung mit Thiophosgen, gelöst in Chloroform, entsteht als Hauptprodukt 5-Methyl-benzimidazolthion CH₃·C₆H₃<NH>CS (Syst. No. 3567), neben [asymm.-o-Toluylen]-di-senföl (S. 160) (BILLETER, STEINER, \overline{B} . 20, 229, 231). 5-Methyl-benzimidazolthion entsteht auch beim Erhitzen von rhodenwasserstoffsaurem 3.4-Diamino-toluol (erhalten aus salzsaurem 3.4-Diamino-toluol). amino-toluol und Ammoniumrhodanid in wäßr. Lösung) auf 120-1300 (LELLMANN, A. 221, 10). Erwärmt man salzsaures 3.4-Diamino-toluol mit der äquimolekularen Menge Mandelsäure (Bd. XI, S. 197) in konzentrierter wäßriger Lösung am Rückflußkühler, so entsteht 5-Methyl-2-[α -oxybenzyl]-benzimidazol $CH_3 \cdot C_6H_3 \stackrel{\mathbf{N}}{\sim} C \cdot CH(OH) \cdot C_6H_5$ (Syst. No. 3513) (Georgescu, B. 25, 952; Hinsberg, B. 25, 2417). 3.4-Diamino-toluol liefert mit glyoxylsaurem Calcium in siedender wäßriger Lösung 5-Methyl-benzimidazol-carbonsäure-(2) CH₃·C₆H₃<N_H>C·CO₂H (Syst. No. 3646) (HINSBERG, B. 18, 1234; A. 237, 358). Beim Erwärmen von 3.4-Diamino-toluol mit Brenztraubensäure in wäßr. Lösung wird ein bei ca. warmen von 3.4-Diamino-tolio into 2.55 NH·CO NH·CO $NH \cdot CO$ NH·CO $NH \cdot CO$ (Syst. No. 3568) erhalten (Hin., A. 287, 351). Läßt man äquimolekulare Mengen 3.4-Diamino-toluol und Acetessigester aufeinander einwirken, so erhält man β -[2-Amino-4-methyl-phenylimino]-buttersäure-äthylester(?) CH₃·C₆H₃(NH₃)·N·C(CH₃·C₆H₃·C₆H₃(S. 161) (LADENBURG, RÜGHEIMER, B. 12, 953; HINSBERG, KOLLER, B. 29, 1497). 3.4-Diamino-toluol liefert mit Benzoylameisensäure (Bd. X, S. 654) in warmer wäßriger Lösung Oxo-methyl-phenyl-chinoxalindihydrid CH₃·C₆H₃ NH—CO
CH₃·C₆H₅ (Syst. No. 3572) (Hin., A. 237, 352). Beim Erhitzen von salzsaurem 3.4-Diamino-toluol in wäßr. Lösung mit β -Benzoyl-propionsäure (Bd. X, S. 696) im geschlossenen Rohr auf 130—140° entsteht die Verbindung C₁₇H₁₄ON₂ (S. 153) (Georgescu, B. 25, 954). Beim Kochen einer wäßr. Lösung von 3.4-Diamino-toluol mit dem Natriumsalz der Dioxyweinsäure (Bd. III, S. 830) entsteht 6-Methyl-chinoxalin-dicarbonsäure-(2.3) (Syst. No. 3671) (Hin., A. 287, 353). Aus 3.4-Diamino-toluol und Discetbernsteinsäure-diathylester (Bd. III, S. 840) entsteht je nach dem angewandten Mengenverhältnis 1-[2-Amino-4-methylphenyl]-2.5-dimethyl-pyrrol-dicarbonsāure-(3.4)-diāthylester $\begin{array}{c} \text{CH}_3\cdot \text{C}_6\text{H}_3(\text{NH}_2)\cdot \text{N} \\ \text{C(CH}_3): \text{C}\cdot \text{CO}_2\cdot \text{C}_2\text{H}_5 \\ \text{C(CH}_3): \text{C}\cdot \text{CO}_2\cdot \text{C}_2\text{H}_5 \\ \end{array} \\ \text{(Syst. No. 3276) oder [asymm.-o-Toluylen]-N.N'-bis-phenyl]}$

[2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester] CH₃·C₆H₃ N C(CH₃):C·CO₃·C₂H₅ (Syst. No. 3276) (Bülow, List, B. 35, 188, 190). Aus 1 Mol.-Gew. 3.4-Diamino-toluol und 2 Mol.-Gew. glykuronsaurem Kalium (Bd. III, S. 884) bildet sich das Kaliumsals des [asymm.-o-Toluylen]-bis-[glykuronsäureimids] (S. 161) (Thierfelder, H. 13, 278).

3.4-Diamino-toluol gibt mit der äquimolekularen Menge Benzolsulfosblosid (D. S. 34) in Benzol 3-Amino-toluol-mino-toluol sich des [asymm.-o-Toluylen]-bis-glykuronsäureimids] (S. 34) in Benzol 3-Amino-toluol gibt mit der äquimolekularen Menge Benzolsulfosblosid (D. S. 34) in Benzol 3-Amino-toluol sich des [asymm.-o-Toluylen]-bis-glykuronsäureimids] (B. 34) in Benzol 3-Amino-toluol gibt mit der äquimolekularen Menge Benzolsulfosblosid (D. S. 34) in Benzol 3-Amino-toluol sich des [asymm.-o-Toluylen]-bis-glykuronsäureimids] (B. 34) in Benzol 3-Amino-toluol gibt mit der äquimolekularen Menge Benzolsulfosblosid (D. S. 34) in Benzol 3-Amino-toluol sich des [asymm.-o-Toluylen]-bis-glykuronsäureimids] (B. 34) in Benzol sich des [asymm.-o-Toluylen]-

3.4-Diamino-toluol gibt mit der äquimolekularen Menge Benzolsulfochlorid (Bd. XI, S. 34) in Benzol 3-Amino-4-benzolsulfamino-toluol (S. 162) (Bistrytori, Cybulski, B. 24, 633). Beim Schütteln von 3.4-Diamino-toluol mit überschüssigem Benzolsulfochlorid und Kalilauge wird 3.4-Bis-benzolsulfamino-toluol erhalten (Hinsberg, A. 265, 179, 190). Beim Erwärmen äquimolekularer Mengen salzsauren 3.4-Diamino-toluols und des Natriumsalzes der Benzaldehyd-sulfonsäure-(3) (Bd. XI, S. 324) in wäßrig-alkoholischer Lösung in Gegenwart von Natriumacetat entsteht das Natriumsalz des Mono-[3-sulfo-benzal]-asymm.-o-toluylendiamins (S. 161) (Kafka, B. 24, 793; vgl. O. Fischer, B. 25, 2826).

Umsetzung von 3.4-Diamino-toluol mit Bernsteinsäureanhydrid s. S. 151, mit Phthalsäureanhydrid s. S. 151.

Beim längeren Kochen einer wäßr. Lösung von salzsaurem 3.4-Diamino-toluol mit Parabansäure (Syst. No. 3614) entsteht 2.3-Dioxo-6-methyl-chinoxalin-tetrahydrid-(1.2.3.4) (Syst. No. 3591) (KÜHLING, B. 24, 3032). Aus 3.4-Diamino-toluol und Alloxan (Syst. No. 3627) in wäßr. Lösung bildet sich Oxo-methyl-chinoxalindihydrid-carbonsäureureid $\text{CH}_3 \cdot \text{C}_6\text{H}_3$ (Syst. No. 3696) (HINSBERG, A. 237, 355). Beim Zusammenschmelzen von 3.4-Diamino-toluol mit Isatin (Syst. No. 3206) entsteht die Verbindung $\text{CH}_3 \cdot \text{C}_6\text{H}_3$ (Syst. No. 3814) (HINS., A. 237, 344).

Verwendung.

Anwendung von 3.4-Diamino-toluol zur Erzeugung von Färbungen auf Pelz, Haaren und Federn: Höchster Farbw., D. R. P. 213581; C. 1909 II, 1392.

Analytisches.

Farbreaktionen mit Kaliumferricyanid, Kaliumdichromat, Bromwasser, Chlorkalklösung: Janovski, M. 10, 588.

Salze des 3.4-Diamino-toluols.

 $C_7H_{10}N_2+2$ HCl (HÜBNER, A. 209, 364). Nadeln. Sehr leicht löslich in Wasser (BEILSTEIN, KUHLBERG, A. 158, 351). — $C_7H_{10}N_2+H_2SO_4$. Prismen (HÜBNER, A. 209, 364). — $C_7H_{10}N_2+H_2SO_4+1^1/2H_2O$. Schuppen (aus Wasser durch Alkohol). 100 Tle. Wasser von 19,5° lösen 9,29 Tle. Salz. — Salz des Brenzcatechins $C_7H_{10}N_2+C_6H_6O_2$. Nadeln (aus Ligroin). F: 78° (MERZ, B. 19, 726).

Umwandlungsprodukte ungewisser Konstitution aus 3.4-Diamino-toluol.

Verbindung C₁₈H₂₉N₄. B. Man kocht eine Lösung von 4 g 3.4-Diamino-toluol in 30 g absol. Alkohol mit 6 g einer 40% igen Formaldehydlösung (O. FISCHER, WRESZINSKI, B. 25, 2713). — Blättchen (aus Benzol). F: 222°; schwer löslich in Alkohol, Ligroin und kaltem Benzol (O. FI., W.). — Die Salze spalten an der Luft und beim Kochen mit verd. Schwefelsäure leicht Formaldehyd ab (O. FI., B. 32, 24°). — C₁₈H₂₀N₄ + 2 HCl. Nädelchen (O. FI., W.). — Sulfat. Nädeln (O. FI., W.). Azurin C₂₈H₂₂O₂N₄ (?). B. Man erhitzt 1 Tl. 3.4-Diamino-toluol mit 1,5—2 Tln. Salicylaldehyd 18 Stdn. auf 135°, zieht die Masse mit sehr verdünnter heißer Salzsäure aus und fällt

Azurin C₃₂H₃₂O₃N₄ (?). B. Man erhitzt 1 Tl. 3.4-Diamino-toluol mit 1,5—2 Tln. Salicylaldehyd 18 Stdn. auf 135°, zieht die Masse mit sehr verdünnter heißer Salzsäure aus und fällt die Lösung mit konz. Salzsäure; das ausgefällte salzsaure Salz bindet man an Goldchlorid, krystallisiert das Doppelsalz wiederholt aus wäßr. Alkohol um und zersetzt es in alkoh. Lösung durch Schwefelwasserstoff (Ladenburg, B. 11, 597). — Farblose Täfelchen (aus Isoamylalkohol). F: 250,5°. Leicht löslich in Isoamylalkohol und Aceton, ziemlich leicht in Alkohol, schwer in Chloroform, CS₃, fast gar nicht in Ligroin; sehr leicht löslich in Kalilauge und daraus durch CO₂ fällbar. Die Lösungen, namentlich die alkalische, zeigen eine blaue Fluorescenz. — Verbindet sich mit Säuren. — Pikrat. Gelbe Nadeln. — Chloroaurat. Gelbe Nadeln.

Verbindung C₁₇H₁₆ON₂. B. Beim Erhitzen einer wäßr. Lösung von salzsaurem 3.4-Diamino-toluol mit β-Benzoyl-propionsäure (Bd. X, S. 696) im geschlossenen Rohr auf 130° bis 140° (Georgescu, B. 25, 954). — Krystalle (aus Alkohol). F: 185—186°.

Funktionelle Derivate des 3.4-Diamino-toluols.

3-Amino-4-methylamino-toluol C₈H₁₂N₂ = CH₃·C₈H₃(NH₂)·NH·CH₃. B. Beim Behandeln von 3-Nitro-4-methylamino-toluol (Bd. XII, S. 1001) mit Zinn und Salzsäure (GATTERMANN, B. 18, 1487; O. FISCHER, B. 26, 194). Durch Reduktion von 6-Methylamino-3-methyl-azobenzol-sulfonsäure-(4') (Syst. No. 2173) mit Zinnchlorür und Salzsäure (BAMBERGER, WULZ, B. 24, 2082). — Tafeln (aus Äther). F: 43° (B., W.), 43—44° (G.). Kp₇₅₃: 260° (Pinnow, B. 30, 3122). — Liefert beim Kochen mit Ameisensäure 1.5-Dimethyl-benzimidazol (Syst. No. 3474) (O. F.). — C₆H₁₂N₂ + HCl. Blättchen (aus Alkohol). Schmilzt unschaff bei 175—180°; leicht löslich in Wasser und Alkohol (O. F.). — C₈H₁₂N₂ + 2 HCl. Prismen (aus Alkohol). Beginnt bei 175° zu schmelzen und zersetzt sich bei 180—186° (B., W.). — Oxalat C₈H₁₂N₂ + C₄H₂O₄. Nädelchen. F: 124° (O. F.). — Pikrat C₈H₁₂N₂ + C₄H₂O₄N₈. Gelbe Krystalle. F: 164° (O. F.).

3.4 - Bis - methylamino - toluol, N.N' - Dimethyl - asymm. - o - toluylendiamin $C_9H_{14}N_2 = CH_2 \cdot C_9H_9(NH \cdot CH_8)_2$. B. Durch Kochen des Dimethylbenzimidazol-jodmethylats $CH_3 \cdot C_9H_8 < N(CH_9)$ CH (Syst. No. 3474) oder von dessen Pseudobase, dem 2-Oxy-1.3.5-

- trimethyl-benzimidazoldihydrid $CH_2 \cdot C_6H_3 < N(CH_3) > CH \cdot OH$ (Syst. No. 3474) mit Natronlauge und Übertreiben der entstandenen Base mit überhitztem Wasserdampf (O. FISCHER, RIGAUD, B. 35, 1263). Beim Erhitzen von 2-Oxy-1.2.3.5-tetramethyl-benzimidazoldihydrid (Syst. No. 3475) mit alkoh. Natron auf 150° oder durch Reduktion mit Natrium oder Zinkstaub und absol. Alkohol (O. F., RÖMER, J. pr. [2] 73, 429). Öl. Kp₇₄₀: 259—260°; färbt sich mit FeCl₃ rot, bezw. scheidet rote Blättchen eines Oxydationsprodukts ab (O. F., Rl.). Liefert beim mehrstündigen Kochen mit Ameisensäure 2-Oxy-1.3.5-trimethylbenzimidazoldihydrid (Syst. No. 3474) (O. F., Rl.). $C_9H_{14}N_9+2HCl$ (O. F., Rö., J. pr. [2] 73, 430 Anm. 1). Nadeln. F: 125° (O. F., Rl.).
- 3-Amino-4-dimethylamino-toluol $C_9H_{14}N_2=CH_3\cdot C_6H_3(NH_2)\cdot N(CH_3)_3$. B. Neben anderen Verbindungen bei allmählichem Eintragen von 55 g Zinn in die Lösung von 30 g 3-Nitro-4-dimethylamino-toluol (Bd. XII, S. 1001) in 130 ccm roher Salzsäure (Pinnow, B. 28, 3042). Aus 3-Nitro-4-dimethylamino-toluol durch Zinn und Salzsäure in Gegenwart von etwas Graphit unter Steigerung der Temperatur von 17° auf 42° (P., J. pr. [2] 63, 354; vgl. auch P., J. pr. [2] 65, 579). Öl. Kp₇₅₅: 234° (P., B. 28, 3042). Beim Kochen mit Essigsäureanhydrid entstehen 4-Dimethylamino-3-acetamino-toluol und 1.2.5-Trimethylbenzimidazol (Syst. No. 3475) (P., B. 28, 3042). Wird durch FeCl₃ rot gefärbt (P., B. 28, 3042). $C_9H_{14}N_2+2$ HCl. Krystalle. F: 192—193°; äußerst leicht löslich in Wasser und Alkohol (P., B. 28, 3042). $C_9H_{14}N_2+2$ HCl + HgCl₂. Krystalle (aus 10°/ojege Salzsäure). F: 205—206° (P., B. 28, 3042). Pikrat $C_9H_{14}N_2+C_9H_2O_7N_3$. Gelbbraune Prismen (aus Alkohol). F: 150,5° (P., B. 28, 3042).
- 3.4-Bis-dimethylamino-toluol, N.N.N'.N'-Tetramethyl-asymm.-o-toluylendiamin $C_{11}H_{18}N_3 = CH_3 \cdot C_6H_3[N(CH_3)_2]_2$. B. Beim Erhitzen von 3.4-Diamino-toluol mit Methyljodid und Methylalkohol im geschlossenen Rohr auf 120—130° (v. Niementowski, B. 20, 1888). Flüssig. Kp_{717} : 224,5—225,5°. Sehr wenig löslich in Wasser, leicht mischbar mit organischen Lösungsmitteln. Die wäßr. Lösung färbt sich beim Erwärmen mit Eisenchlorid auf etwa $40-50^\circ$ rot und schließlich braun; die Lösung in konz. Schwefelsäure färbt sich auf Zusatz einiger Tropfen konz. Salpetersäure intensiv rot.
- 4-Amino-3-äthylamino-toluol C₂H₁₄N₂ = CH₂·C₂H₃(NH₂)·NH·C₂H₅. B. Bei der Reduktion von 4-Nitro-3-äthylamino-toluol (Bd. XII, S. 876) mit Zinn und Salzsäure (O. Fischer, Rigaud, B. 34, 4208). Nadeln (aus Petroläther). F: 59°. Färbt sich in feuchtem Zustande an der Luft violett. Gibt mit FeCl₃ ein tiefrotes Oxydationsprodukt. Liefert beim längeren Kochen mit Eisessig 1-Athyl-2.6-dimethyl-benzimidazol (Syst. No. 3475).
- 3-Amino-4-äthylamino-toluol C₅H₁₄N₂ = CH₃·C₆H₂(NH₂)·NH·C₂H₅. B. Beim Behandeln von 3-Nitro-4-äthylamino-toluol (Bd. XII, S. 1001) mit Zinn und Salzsäure (Gattemann, B. 18, 1484). Man behandelt 3-Nitro-4-äthylamino-toluol mit salpetriger Säure und reduziert das hierbei erhaltene Nitrosamin mit Zinn und Salzsäure (O. Fischer, B. 26, 199). Tafeln (aus Schwefelwasserstoffwasser). F: 54—55° (G.), 55° (O. F.). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln (G.) Wenig beständig (G.). Das salzsaure Salz liefert in konz. Lösung durch Zugabe von NaNO₂ bei 0° 1-Äthyl-5-methyl-benztriazol CH₃·C₆H₃·N_(C₂H₅)N (Syst. No. 3804) (Noelting, Abt, B. 20, 3000). 3-Amino-4-[āthyl-amino]-toluol liefert beim längeren Kochen mit Eisessig 1-Äthyl-2.5-dimethyl-benzimidazol (Syst. No. 3475) (O. F., RIGAUD, B. 34, 4208). C₆H₁₄N₂ + HCl. Krystalle (aus Alkohol). F: 176° (O. F.). Oxalat 2C₆H₁₆N₂ + C₆H₃O₄. Nadeln. F: 151°; schwer löslich in kaltem Wasser, leichter in Alkohol (O. F.).
- 8.4-Bis-šthylamino-toluol, N.N'-Dišthyl-asymm.-o-toluylendiamin $C_{11}H_{12}N_3 = CH_3 \cdot C_6H_5(NH\cdot C_2H_5)_2$. B. Beim Erhitzen von 3.4-Bis-[benzolsulfonyläthylamino]-toluol mit konz. Salzsaure auf 150° (Hinsberg, A. 265, 180, 191). Man erhitzt 5-Methyl-benzimidazol (Syst. No. 3474) mit Äthyljodid auf 150°, führt das Äthylierungsprodukt $CH_3 \cdot C_6H_5 \cdot N(C_2H_5)$ CH durch kalte Alkalilauge in die Pseudobase $CH_3 \cdot C_6H_3 \cdot N(C_2H_5)$ CH·OH (Syst. No. 3474) über und kocht diese mit Kalilauge (O. Fischer, Rigaud, B. 35, 1265). Gelbes dickes Öļ. Kp: 265° (H.). $C_{11}H_{12}N_2 + 2$ HCl. Nädelchen (aus Alkohol). Färbt sich mit FeCl₃ rot (O. F., R.).
- 4-Amino-3-anilino-toluol, 6-Amino-3-methyl-diphenylamin $C_{12}H_{14}N_2 = CH_3 \cdot C_4H_3(NH_4) \cdot NH \cdot C_6H_5$. B. Bei der Reduktion von 6-Nitro-3-methyl-diphenylamin (Bd. XII, S. 876) in alkoh. Lösung durch Zinkstaub und Ammoniak (Sohraube, Rome, B. 26, 581). Entsteht als hauptsächliches Umlagerungsprodukt beim Behandeln von 4-Methyl-hydrazobenzol (Syst. No. 2070) mit salzsaurer Zinnchlorürlösung (Jacobson, Liechtyl-hydrazobenzol (Syst. No. 2070

schwer in kaltem Ligroin (SCHR., R.). — Liefert beim Kochen mit wasserfreier Ameisensäure 1-Phenyl-6-methyl-benzimidazol (Syst. No. 3474) (J., L.).

- 3-Amino-4-anilino-toluol, 2-Amino-4-methyl-diphenylamin $C_{18}H_{14}N_2 = CH_3 \cdot C_6H_8(NH_8) \cdot NH \cdot C_6H_8$. B. Man kocht 3-Nitro-4-amino-toluol (Bd. XII, S. 1000) mit Brombenzol, Nitrobenzol und Kaliumcarbonat bei Gegenwart von etwas Kupferbronze, destilliert das Nitrobenzol mit Wasserdampf ab und reduziert den Rückstand mit Zinn und Salzsäure (Borsoffe, Feise, B. 40, 384). Nädelchen (aus $20^{\circ}/_{\circ}$ igem Methylalkohol). Schmilzt nach voraufgehendem Sintern bei 140°. Liefert in salzsaurer Lösung beim Versetzen mit einer wäßrigen NaNO₃-Lösung bei 0° 1-Phenyl-5-methyl-benztriazol $CH_3 \cdot C_6H_3 \underbrace{N}_{N(C_6H_3)} N$ (Syst. No. 3804). Hydrochlorid. Nadeln. F: 200—201°.
- 3-Amino-4-[2.4-dinitro-anilino]-toluol (?), 2'.4'-Dinitro-2-amino-4-methyldiphenylamin (?) $C_{13}H_{12}O_4N_4=CH_2\cdot C_6H_3(NH_2)\cdot NH\cdot C_6H_3(NO_2)_2$. Zur Frage der Konstitution vgl. Bülow, List, B. 35, 185. B. Man erwärmt äquimolekulare Mengen von 3.4-Diamino-toluol und 4-Chlor-1.3-dinitro-benzol in alkoholischer Lösung in Gegenwart von Natriumacetat (Ernst, B. 23, 3428). Braungelbe Nadeln (aus Alkohol). F: 147°. Leicht löslich in Chloroform und Benzol. Liefert in verd. schwefelsaurer Lösung mit NaNO₂ die Verbindung $CH_3\cdot C_6H_3$ NO_2 NO_2 NO_3 (Syst. No. 3804).
- 4-Amino-3-p-toluidino-toluol, 6-Amino-8.4'-dimethyl-diphenylamin C₁₄H₁₆N₂ = CH₃·C₄H₃(NH₃)·NH·C₂H₄·CH₃. B. Durch Behandeln einer alkoh. Lösung von 4.4'-Dimethylhydrazobenzol (Syst. No. 2070) mit schwefliger Säure (Melms, B. 3, 554) oder mit verd. Schwefelsäure (Goldschmidt, B. 11, 1625). Entsteht ferner aus 4.4'-Dimethyl-hydrazobenzol unter dem Einfluß konz. Säuren (Barsilowski, Ж. 11, 60; A. 207, 104). Man übergießt 50 g 4.4'-Dimethyl-hydrazobenzol mit 500 ccm Alkohol, gibt eine Lösung von 60 g SnCl₂ in 150 ccm 25°/oiger Salzsäure unter Kühlung hinzu und läßt 24 Stunden stehen (Täuber, B. 25, 1022; Höchster Farbw., D. R. P. 69250; Frdl. 3, 37; vgl. Schultz, B. 17, 472). Darst. Man löst 8 g 4.4'-Dimethyl-azobenzol in 250 ccm Alkohol und 20 ccm Eisessig und versetzt allmählich mit Zinkstaub bis zur Entfärbung; man filtriert nun heiß in ein 60—80° warmes Gemisch von 50 ccm Salzsäure (D: 1,19) und 200 ccm Wasser; beim Erkalten scheidet sich 4.4'-Dimethyl-azobenzol ab; man filtriert dieses ab und fällt aus dem Filtrat mit Wasser und wenig Kochsalzlösung salzsaures 4-Amino-3-p-toluidino-toluol (Biehringer, Busch, B. 36, 341). Blättchen (aus verd. Alkohol). F: 103° (M.), 107° (T.). Äußerst leicht löslich in Alkohol, Ather und Benzol, etwas schwerer in Ligroin (T.). Die Lösung in konz. Schwefelsäure wird auf Zusatz von festem Natriumnitrit tiefblau (T.). Liefert in alkoh. Lösung mit konz. Schwefelsäure und einer alkoh. Äthylnitrilösung auf dem Wasserbade 1-p-Tolyl-6-methyl-benztriazol CH₃·C₄H₃·Ni·C₄H₄·CH₃)·Ni·C</br>
 CO·NH
 CO·N
- überschüssiger rauchender Salzsäure versetzten absolut-alkoholischen Lösung die Verbindung CH₃·C₆H₅[N:C<CO·NH>CO NH+CO]·N(C₆H₄·CH₃)·(HO)C<CO·NH+CO (Syst. No. 3627) (KÜHLING, B. 26, 542). Hydrochlorid. Tafeln (M.). Sulfat. Nadeln (M.). Pikrat. Goldgelbe Nadeln (M.).
- 8-Amino-4-p-toluidino-toluol, 2-Amino-4.4'-dimethyl-diphenylamin C₁₄H₁₆N₂ = CH₃· C₆H₃(NH₃)·NH·C₆H₄·CH₃. B. Bei der Reduktion von 2-Nitro-4.4'-dimethyl-diphenylamin (Bd. XII, S. 1001) mit Sn und Salzsäure (O. FISCHER, SIEDER, B. 23, 3798). Prismen (aus Ligroin). F: 109°; die Lösung in konz. Schwefelsäure ist blau (O. F., S.). Wird in alkoh. Lösung durch FeCl₃ zu der bei 188° schmelzenden Verbindung C₂₆H₂₅ON₃ (s. u.) oxydiert (O. F., S.); O. F., Jonas, B. 27, 2782). Liefert bei der vorsichtigen Destillation mit der 25-fachen Menge Bleioxyd 2.7-Dimethyl-phenazin (Syst. No. 3487) (O. F., B. 27, 2781). Liefert beim mehrstündigen Kochen mit überschüssigem Essigsäureanhydrid 4-p-Toluidino-3-acetamino-toluol (S. 157) (O. F., S.); beim ½-stdg. Kochen mit einem Gemenge gleicher Teile Eisessig und Essigsäureanhydrid entsteht 1-p-Tolyl-2.5-dimethyl-benzimidazol (Syst. No. 3475) (O. F., B. 26, 187). Gibt mit Alloxan in absolut-alkoholischer Lösung die Verbindung CH₃·C₆H₃(NH·C₆H₄·CH₃)·N:C-CO·NH-CO (Syst. No. 3627) (Kühling, Kaselitz, B. 39, 1320). Hydrochlorid. Nadeln (O. F., S.). Oxalat C₁₆H₁₆N₂ + C₂H₂O₄. Fast unlöslich in kaltem Wasser (O. F., S.). Pikrat C₁₄H₁₆N₂ + C₆H₃O₇N₃. Braunrote Krystalle (O. F., S.).

Krystalle (O. F., S.).

Verbindung C₂₃H₂₅ON₃ vom Schmelzpunkt 188°. B. Bei der Oxydation von 3-Amino-4-p-toluidino-toluol, gelöst in Alkohol, mit FeCl₃ (O. FISCHER, STEDER, B. 23,

- 3801; O. FISCHER, JONAS, B. 27, 2782). Granatrote Spieße oder Blättchen (aus Benzol durch Ligroin). F: 188°; ziemlich leicht löslich in siedendem Alkohol und in Benzol, schwer in Ligroin (O. F., S.). Geht beim Kochen mit Kalilauge in eine isomere Verbindung (s. u.) über (O. F., J.). 2C₃₈H₂₅ON₃+2HCl+PtCl₄. Rote, bronzeglänzende Nadeln (O. F., S.). Verbindung C₂₈H₂₅ON₃ vom Schmelzpunkt 260°. B. Bei 30-stdg. Kochen der bei 188° schmelzenden Verbindung C₂₈H₂₅ON₃ (S. 155) mit 10°/oiger alkoh. Kalilauge (O. FISCHER, JONAS, B. 27, 2783). Hochrote Nadeln (aus Alkohol). F: 260°. Löslich in konz. Schwefelgürge mit Violettfärbung
- säure mit Violettfärbung.
- 3.4 Bis [2 nitro benzylamino] toluol, N.N'- Bis [2 nitro benzyl] asymm.o-toluylendiamin $C_{11}H_{20}O_4N_4=CH_3\cdot C_6H_3(NH\cdot CH_2\cdot C_6H_4\cdot NO_2)_2$. B. Man lost 1 Mol.-Gew. salzsaures 3.4-Diamino-toluol, 2 Mol.-Gew. 2-Nitro-benzylchlorid und 4 Mol.-Gew. Natriumacetat jedes für sich in Alkohol, vereinigt die Lösungen und erhitzt sodann auf dem Wasserbade (Lellmann, Mayer, B. 25, 3583). — Rote Krystalle (aus Benzol). F: 129°. Löslich in Alkohol, Benzol und Eisessig.
- 3 Amino 4 $[\beta.\beta.\beta$ trichlor α α 1 Mol.-Gew. Chloral in Chloroform (RÜGHEIMER, B. 39, 1662). — F: 67—68°; leicht löslich in Ather, Chloroform, Alkohol (R.). — C₉H₁₁ON₂Cl₂ + HgCl₂. Nadeln (aus heißem Chloroform). Zersetzt sich oberhalb ca. 1200; schwer löslich in Chloroform, fast unlöslich in Äther, unlöslich in Ligroin (R.).
- **3.4-Bis-**[$\beta.\beta.\beta$ -trichlor-a-oxy-äthylamino]-toluol, N.N'-Bis-[$\beta.\beta.\beta$ -trichlor-a-oxy-äthyl]-asymm.-o-toluylendiamin $C_{11}H_{12}O_2N_2Cl_4=CH_3\cdot C_4H_3[NH\cdot CH(OH)\cdot CCl_3]_3$. B. Aus 1 Mol.-Gew. 3.4-Diamino-toluol in Chloroform und 2 Mol.-Gew. Chloral in Ligroin (R., B. 39, 1662). Rosa gefärbtes, feinkrystallinisches Pulver. F: 56—57°. Leicht löslich in Chloroform und Äther.
- **4-Methylamino-3-[2-nitro-benzalamino]-toluol** $C_{15}H_{15}O_2N_3 = CH_2 \cdot C_6H_5(NH \cdot CH_3) \cdot C_6H_5(NH \cdot CH_3)$ N:CH·C₆H₄·NO₂ oder vielleicht auch 1.5-Dimethyl-2-[2-nitro-phenyl]-benzimidazoi- $\textbf{dihydrid} \quad C_{15}H_{16}O_2N_3 = CH_3 \cdot C_6H_3 \cdot \underbrace{NH}_{N(CH_3)} \cdot CH \cdot C_6H_4 \cdot NO_2. \quad \textit{B. Aus 3-Amino-4-[methyl-m$ amino]-toluol und 2-Nitro-benzaldehyd in wenig Alkohol auf dem Wasserbade (O. FISCHER, B. 26, 197). — Rot. Fängt bei 78° an zu schmelzen. — Geht beim Liegen an der Luft oder beim Umkrystallisieren aus Alkohol in 1.5-Dimethyl-2-[2-nitro-phenyl]-benzimidazol (Syst. No. 3487) über.
- $\begin{array}{l} \textbf{4-\ddot{A}thylamino-8-[4-nitro-benzalamino]-toluol} \ C_{16}H_{17}O_2N_3 = CH_3\cdot C_6H_3(NH\cdot C_2H_5)\cdot \\ N:CH\cdot C_4H_4\cdot NO_3 \ \ oder \ \ vielleicht \ \ \text{auch} \ \ 1-\ddot{A}thyl-5-methyl-2-[4-nitro-phenyl]-benzimid-ben$ -ŇHasoldihydrid $C_{16}H_{17}O_2N_3 = CH_3 \cdot C_6H_3 \cdot NH_{10}CH \cdot C_6H_4 \cdot NO_2$. B. Aus 3-Amino-4-athylamino-toluol und 4-Nitro-benzaldehyd in konzentrierter alkoholischer Lösung auf dem Wasserbade (O. FISCHER, B. 26, 202). — Rote Nadeln. — Geht beim Umkrystallisieren aus Alkohol in 1-Athyl-5-methyl-2-[4-nitro-phenyl]-benzimidazol (Syst. No. 3487) über.
- **4-p-Toluidino-3-bensalamino-toluol, 2-Bensalamino-4.4'-dimethyl-diphenylamin** $C_{21}H_{20}N_2 = CH_3 \cdot C_6H_3(NH \cdot C_6H_4 \cdot CH_3) \cdot N : CH \cdot C_6H_5$ oder vielleicht auch 1-p-Tolyl-5-methyl-2-phenyl-bensimidasoldihydrid $C_{21}H_{20}N_2 =$ CH₃·C₆H₃·N(C₆H₄·CH₃) CH·C₆H₅. Zur Konstitution vgl. O. FISCHER, B. 25, 2826. B. Beim Vermischen von 3-Amino-4-p-toluidino-toluol mit Benzaldehyd (O. FISCHER, STEDER, B. 23, 3800). — Rötlich-gelbe Krystalle (aus Alkohol). F: 156° (O. F., S.). — Wird beim Kochen mit HgO in Benzol oder beim häufigen Umkrystallisieren zu 1-p-Tolyl-5-methyl-2-phenyl-benzimidazol (Syst. No. 3487) oxydiert (O. F., B. 25, 2826, 2827). Liefert bei Einw. heißer Säuren die Salze dieses Imidazols (O. F.).
- $\begin{array}{lll} \textbf{4-p-Toluidino-8-[2-nitro-benzalamino]-toluol,} & \textbf{2-[2-Nitro-benzalamino]-4.4'-dimethyl-diphenylamin} & C_{11}H_{19}O_{2}N_{3} & = CH_{3}\cdot C_{6}H_{3}(NH\cdot C_{6}H_{4}\cdot CH_{3})\cdot N: CH\cdot C_{6}H_{4}\cdot NO_{3} \\ \text{oder} & \text{vielleicht} & \text{auch} & \textbf{1-p-Tolyl-5-methyl-2-[2-nitro-phenyl]-benzimidasoldihydrid} \end{array}$ $C_{21}H_{19}O_2N_3 = CH_3 \cdot C_0H_3 \cdot NH \cdot CH_3 \cdot CH \cdot C_0H_4 \cdot NO_2$. Zur Konstitution vgl. O. Fischer, R_1 95. 9598 R_2 R_3 R_4 R_4 R_5 R_5 9598 R_5 R_5 R_5 9598 R_5 R_5 R_5 9598 R_5 R_5 R_5 R_5 9598 R_5 R_5 R_5 9598 R_5 R_5 R_5 R_5 9598 R_5 R_5 R_5 9598 R_5 R_5 B. 25, 2826. — B. Aus 3-Amino-4-p-toluidino-toluol und 2-Nitro-benzaldehyd (O. FISCHER, SIEDER, B. 23, 3801). — Gelbe Krystalle (aus Alkohol). F: 113° (O. F., S.).
- 4-Athylamino-8-salicylalamino-toluol $C_{16}H_{18}ON_2 = CH_3 \cdot C_6H_3(NH \cdot C_2H_5) \cdot N : CH \cdot C_16H_2 \cdot C_2H_3 \cdot C_3H_3 \cdot C_3H_$ C_eH_e·OH oder vielleicht auch 1-Athyl-5-methyl-2-[2-oxy-phenyl]-benzimidazol-

- dihydrid $C_{16}H_{18}ON_2 = CH_3 \cdot C_6H_3 \cdot NH_{N(C_2H_3)} \cdot CH \cdot C_6H_4 \cdot OH$. B. Aus 3-Amino-4-[äthylamino]-toluol und Salicylaldehyd (O. Fischer, B. 26, 202). Goldgelbe Nadeln (aus Alkohol). F: 78°; leicht löslich in Alkohol und Äther.
- 4-p-Toluidino-3-salicylalamino-toluol, 2-Salicylalamino-4.4'-dimethyldiphenylamin $C_{31}H_{20}ON_2 = CH_3 \cdot C_6H_3(NH \cdot C_6H_4 \cdot CH_3) \cdot N : CH \cdot C_6H_4 \cdot OH$ oder vielleicht auch 1-p-Tolyl-5-methyl-2-[2-oxy-phenyl]-benzimidazoldihydrid $C_{31}H_{20}ON_3 = CH_3 \cdot C_6H_3 \cdot N(C_6H_4 \cdot CH_3) \cdot CH \cdot C_6H_4 \cdot OH$. Zur Konstitution vgl. O. FISCHER, B. 25, 2826.

 B. Aus 3-Amino-4-p-toluidino-toluol und Salicylaldehyd (O. FISCHER, SIEDER, B. 23, 3801). Gelbe Krystalle (aus Alkohol). F: 160°; schwer löslich in Ather und Ligroin, leicht in Benzol (O. F., S.).
- [asymm.-o-Toluylen]-bis-glykosimin $C_{19}H_{20}O_{10}N_2 = CH_3 \cdot C_6H_3(N : CH \cdot [CH(OH)]_4 \cdot CH_3 \cdot OH)_3$. B. Beim Erwärmen einer alkoh. Lösung von 3.4-Diamino-toluol mit 2 Mol.-Gew. Glykose (Bd. I, S. 879) (HINSBERG, B. 20, 495). Nädelchen (aus verd. Alkohol). Bräunt sich bei 100° und schmilzt gegen 160° unter Gasentwicklung. Kaum löslich in Alkohol und Äther; leicht löslich in Wasser, die Lösung wird durch Eisenchlorid rot gefärbt. Wird von verd. Alkalien nicht verändert. Mineralsäuren bewirken Spaltung in Glykose und 3.4-Diamino-toluol.
- 3-Amino-4-acetamino-toluol $C_0H_{12}ON_2=CH_3\cdot C_0H_3(NH_2)\cdot NH\cdot CO\cdot CH_3$. B. Man erwärmt 3-Nitro-4-acetamino-toluol (Bd. XII, S. 1002) mit Wasser und etwas Alkohol und gibt allmählich kleine Mengen Essigsäure und überschüssige Eisenspäne hinzu (Bössneck, B. 19, 1757). Bei der Reduktion von 3-Nitro-4-acetamino-toluol mit Schwefelammonium (Bankiewicz, B. 22, 1399). Blättchen (aus Wasser). F: 130—131°; äußerst löslich in Alkohol, ziemlich leicht in heißem Wasser (Bö.). Geht beim Destillieren in 2.5-Dimethylbenzimidazol (Syst. No. 3475) über (Bö.). Liefert beim Behandeln mit salpetriger Säure 1-Acetyl-5-methyl-benztriazol $CH_3\cdot C_6H_3$ N (Syst. No. 3804) (Bö.; vgl. Zincke, Lawson, A. 240, 119). Pikrat $C_9H_{12}ON_2+C_6H_3O_7N_3$. Blättchen (aus verd. Alkohol) (Ba.).
- 4-Dimethylamino 3-acetamino toluol $C_{11}H_{16}ON_3 = CH_3 \cdot C_0H_3[N(CH_3)_3] \cdot NH \cdot CO \cdot CH_3$. Beim Kochen von 3-Amino-4-dimethylamino-toluol (S. 154) mit Eisessig (Pinnow, B. 28, 3043). Blätter (aus Wasser oder Ligroin). F: 111,5—112,5°. Mäßig löslich in heißem Wasser, leicht in kalten organischen Solvenzien, außer in Ligroin.
- 4-Dimethylamino-3-acetamino-toluol-jodmethylat-(4), Trimethyl-[2-acetamino-4-methyl-phenyl]-ammoniumjodid $C_{12}H_{19}ON_2I = CH_2 \cdot C_6H_3[N(CH_2)_2I] \cdot NH \cdot CO \cdot CH_3$. B. Beim $8^1/_2$ -stdg. Erhitzen von 4,6 g 4-Dimethylamino-3-acetamino-toluol, 5 g CH_3I und 4 ccm Benzol auf 100^0 (Pinnow, B. 34, 1137). Nadeln (aus Alkohol + Äther). F: 193,5°. Sehr leicht löslich in Wasser, schwer in kaltem Alkohol, unlöslich in Äther.
- 4-p-Toluidino-3-acetamino-toluol, 2-Acetamino-4.4'-dimethyl-diphenylamin $C_{16}H_{18}ON_3=CH_3\cdot C_6H_3(NH\cdot C_6H_4\cdot CH_3)\cdot NH\cdot CO\cdot CH_3$. B: Beim mehrstündigen Kochen von 3-Amino-4-p-toluidino-toluol (S. 155) mit überschüssigem Essigsäureanhydrid (O. FISCHER, SIEDER, B. 23, 3799). Prismen (aus Alkohol). F: 126°.
- 8.4-Bis-acetamino-toluol, N.N'-Diacetyl-asymm.-o-toluylendiamin $C_{11}H_{14}O_2N_2=CH_3\cdot C_4H_3(NH\cdot CO\cdot CH_3)_3$. B. Beim kurzen Kochen von 3.4-Diamino-toluol mit überschüssigem Essigsäureanhydrid (BISTRZYCKI, ULFFERS, B. 23, 1877, 1878). Bei der Einw. von Acetylchlorid auf 3.4-Diamino-toluol unter Eiskühlung (B., CYBULSKI, B. 24, 634). Beim Schütteln von 3.4-Diamino-toluol mit Essigsäureanhydrid und Eiswasser (HINSBERG, B. 23, 2962). Nadeln (aus Wasser). F: 210° (B., U.).
- 8-Acetamino-4-[acetylmethylamino]-toluol C₁₂H₁₆O₂N₂ = CH₃·C₆H₃(NH·CO·CH₂)·N(CH₂)·CO·CH₃. B. Man reduziert 3-Nitro-4-methylamino-toluol und behandelt das in Wasser und Eisessig gelöste Reduktionsprodukt mit Essigsäureanhydrid (Pinnow, J. pr. [2] 62, 514). Sechseckige Tafeln (aus Wasser). F: 183—184°. Sehr leicht löslich in Eisessig, sehr wenig in Ligroin. Gibt beim Kochen mit starker Salzsäure 1.2.5-Trimethylbenzimidazol (Syst. No. 3475).
- 8-Acetamino-4-[acetyläthylamino]-toluol $C_{18}H_{16}O_3N_2=CH_3\cdot C_0H_3(NH\cdot CO\cdot CH_3)\cdot N(C_8H_5)\cdot CO\cdot CH_3$. B. Durch Einw. von Essigsäureanhydrid auf 3-Amino-4-äthylamino-toluol (S. 154), neben 1-Äthyl-2.5-dimethyl-benzimidazol (Syst. No. 3475) (O. FISCHER, RIGAUD, B. 34, 4208 Anm.). Kryställchen (aus Alkohol). F: 177°. Unlöslich in verd. Schwefelsäure.

- 3.4 Bis propionylamino toluol, N.N'-Dipropionyl-asymm.-o-toluylendiamin $C_{13}H_{18}O_2N_2 = CH_3 \cdot C_6H_2(NH \cdot CO \cdot CH_3 \cdot CH_3)_2$. B. Beim kurzen Erhitzen von 3.4-Diaminotoluol mit 3 oder 4 Mol.-Gew. Propionsäureanhydrid (Bistrezvori, Uleffers, B. 23, 1878). Nadeln (aus Wasser). F: 133°. Löst sich in der Wärme leicht in Wasser und in den meisten organischen Mitteln, schwer in Äther, unlöslich in Ligroin. Destilliert man unter 84 mm Druck, so steigt die Temperatur allmählich auf 275° und man erhält als Destillat viel 3.4-Bis-propionylamino-toluol und wenig 5-Methyl-2-äthyl-benzimidazol (Syst. No. 3476).
- 3-Amino-4-butyrylamino-toluol $C_{11}H_{16}ON_2=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot CH_2\cdot CH_3\cdot CH_3$. B. Durch Reduktion von 3-Nitro-4-butyrylamino-toluol (Bd. XII, S. 1003) (FICHTER, ROSENBERGER, J. pr. [2] 74, 323). Blättchen. F: 140°. Gibt beim Erhitzen 5-Methyl-2-propylbenzimidazol (Syst. No. 3477). Liefert mit salpetriger Säure 1-Butyryl-5-methyl-benztriazol (Syst. No. 3804).
- 8 Amino 4 isovalerylamino toluol $C_{12}H_{18}ON_2 = CH_3 \cdot C_9H_3(NH_2) \cdot NH \cdot CO \cdot CH_2 \cdot CH(CH_2)_3$. B. Durch Reduktion von 3-Nitro-4-isovalerylamino-toluol (Bd. XII, S. 1003) (F., R., J. pr. [2] 74, 324). Blättchen. F: 154°. Gibt beim Erhitzen 5-Methyl-2-isobutyl-benzimidazol (Syst. No. 3478). Liefert mit salpetriger Säure 1-Isovaleryl-5-methyl-benztriazol (Syst. No. 3804).
- 3-Amino-4-[δ -methyl-n-caproylamino]-toluol $C_{14}H_{22}ON_2 = CH_3 \cdot C_4H_3(NH_2) \cdot NH \cdot CO \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot B$. Durch Reduktion von 3-Nitro-4-[δ -methyl-(n-caproylamino)]-toluol (Bd. XII, S. 1003) (F., R., J. pr. [2] 74, 325). Blättchen (aus Äther + Petroläther). F: 130°. Gibt beim Erhitzen 5-Methyl-2-[δ -methyl-amyl]-benzimidazol (Syst. No. 3478). Liefert mit salpetriger Säure 1-[δ -Methyl-n-caproyl]-5-methyl-benztriazol (Syst. No. 3804).
- 4-Amino-3-crotonoylamino-toluol $C_{11}H_{14}ON_2 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot CH : CH \cdot CH_3$. B. Bei der energischen Reduktion von 3-Nitro-4-crotonoylamino-toluol (Bd. XII, S. 1003) bei gesteigerter Temperatur mit Zinn und Salzsäure, neben 3-Amino-4-crotonoylamino-toluol und 3.4-Diamino-toluol (Fichter, Preiswerk, J. pr. [2] 74, 317, 319). Beim Kochen von 3-Amino-4-crotonoylamino-toluol mit Salzsäure (F., R.). Krystalle (aus Benzol). F: 182°. Leichter löslich als 3-Amino-4-crotonoylamino-toluol.
- **3-A**mino-4-crotonoylamino-toluol $C_{11}H_{14}ON_2 = CH_2 \cdot C_0H_3(NH_2) \cdot NH \cdot CO \cdot CH \cdot CH \cdot CH_3$. B. Aus 3-Nitro-4-crotonoylamino-toluol (Bd. XII, S. 1003) durch Reduktion mit Zinn und Salzsäure unter Kühlung (Fighter, Preiswerk, J. pr. [2] 74, 319). Nadeln (aus Benzol). F: 148°. Schwer löslich in Äther. Liefert mit salpetriger Säure 1-Crotonoyl-5-methyl-benztriazol (Syst. No. 3804).
- 8-Amino-4- $[\beta.\beta$ -dimethyl-acryloylamino]-toluol $C_{12}H_{16}ON_2 = CH_3 \cdot C_8H_8(NH_2) \cdot NH \cdot CO \cdot CH : C(CH_3)_8$. Be der vorsichtigen Reduktion von 3-Nitro-4- $[\beta.\beta$ -dimethyl-acryloylamino]-toluol (Bd. XII, S. 1003) (FIGHTER, ROSENBERGER, J. pr. [2] 74, 325). Blättchen. F: 133°. Liefert mit salpetriger Säure 1- $[\beta.\beta$ -Dimethyl-acryloyl]-5-methyl-benztriazol (Syst. No. 3804).
- 3-Amino-4-benzamino-toluol C₁₄H₁₄ON₂ = CH₂·C₆H₅(NH₂)·NH·CO·C₆H₅. B. Beim schwachen Kochen von 3-Nitro-4-benzamino-toluol (Bd. XII, S. 1003) mit Zinn und Salzsäure (HÜBNER, A. 208, 314). Bei kurzer Einw. von konz. Schwefelsäure auf 3.4-Bis-benzamino-toluol (HINSBERG, v. UDBANSZKI, A. 254, 255). Eine weitere Bildung siehe bei 3.4-Bis-benzamino-toluol. Krystalle. F: 193—194° (BISTEZYCKI, CYBULSKI, B. 24, 632). Zerfällt beim Destillieren in Wasser und 5-Methyl-2-phenyl-benzimidazol (Syst. No. 3487) (HÜ.). Liefert mit salpetriger Säure 1-Benzoyl-5-methyl-benztriazol (Syst. No. 3804) (MIXTER, Am. 17, 452).
- 3-Amino-4-[2-chlor-benzamino]-toluol $C_{14}H_{13}ON_2Cl=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot C_6H_4Cl.$ B. Durch Behandeln von 3-Nitro-4-[2-chlor-benzamino]-toluol (Bd. XII, S. 1003) mit Zinn und Eisessig, welcher mit trocknem HCl gesättigt ist (SCHREIB, B. 13, 467). Krystalle. F: 153°. Leicht löslich in Alkohol. Geht bei der Destillation in 5-Methyl-2-[2-chlor-phenyl]-benzimidazol (Syst. No. 3487) über. $C_{14}H_{13}ON_2Cl+HCl.$ $C_{14}H_{13}ON_2Cl+HNO_3$.
- 4-Anilino-3-benzamino-toluol, 2-Benzamino-4-methyl-diphenylamin $C_{20}H_{18}ON_3 = CH_5 \cdot C_6H_6 \setminus NH \cdot C_6H_5 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Behandeln von 3-Amino-4-anilino-toluol in Pyridinlösung mit der berechneten Menge Benzoylchlorid (Borsche, Frier, B. 40, 385). Nadeln (aus verd. Alkohol). F: 161°.
- 3.4-Bis-benzamino-toluol, N.N'-Dibenzoyl-asymm.-o-toluylendiamin $C_{21}H_{19}O_2N_2 = CH_3 \cdot C_5H_3(NH \cdot CO \cdot C_6H_5)_2$. B. Beim kurzen Kochen von 1 Mol.-Gew. 3.4-Diamino-toluol mit 3—4 Mol.-Gew. Benzoesäureanhydrid in Benzol (Bistrazycki, Ulyfers, B. 23, 1877, 1879). Neben wenig 3-Amino-4-benzamino-toluol bei $^1/_2$ -stdg. Erwärmen äquimolekularer Mengen 3.4-Diaminotoluol und Benzoylchlorid in trocknem Benzol (Bi., Cybulski, B. 24, 631). Beim Schütteln von 3.4-Diamino-toluol mit Benzoylchlorid und überschüssiger $^{10}O_0$ iger Natronlauge unter Kühlung (Hinsberg, v. Udbanszki, A. 254, 252, 255). Bei längerem Erhitzen

- von 3-Amino-4-benzamino-toluol mit 1 Mol.-Gew. Benzoylchlorid (HÜBNER, A. 208, 315). Aus 5-Methyl-benzimidazol (Syst. No. 3474) mit Benzoylchlorid und Natronlauge unter Eiskühlung (BAMBERGER, BERLÉ, A. 273, 349). Nadeln (aus Eisessig). F: 263—264° (HI., v. Ub.; vgl. Ba., Be.). Unlöslich in Wasser, ziemlich leicht löslich in heißem Alkohol und Eisessig (HÜ.). Bei der Destillation und auch beim Erhitzen mit der zehnfachen Menge konz. Salzsäure auf 180—200° entsteht 5-Methyl-2-phenyl-benzimidazol und Benzoesäure (Syst. No. 3487) (Ba., Be.).
- 3-Benzamino-4-[2-chlor-benzamino]-toluol $C_{21}H_{17}O_2N_2Cl = CH_2\cdot C_6H_3(NH\cdot CO\cdot C_6H_5)\cdot NH\cdot CO\cdot C_6H_4Cl$. B. Aus 3-Amino-4-[2-chlor-benzamino]-toluol und Benzoylchlorid (SCHREIB, B. 13, 467). Nadeln. F: 178°. Ziemlich schwer löslich in Alkohol.
- 3-Amino-4-phenacetamino-toluol $C_{15}H_{16}ON_3 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot CH_2 \cdot C_6H_5$. B. Entsteht neben dem Diphenacetyl-Derivat aus 3.4-Diamino-toluol, gelöst in Benzol, und Phenacetylchlorid (BISTRZYCKI, CYBULSKI, B. 24, 633). Nädelchen (aus Alkohol). F: 194—195°. Leicht löslich in heißem Alkohol und Benzol, unlöslich in Ligroin.
- 3.4-Bis-phenacetamino-toluol, N.N'-Diphenacetyl-asymm.-o-toluylendiamin $C_{23}H_{22}O_2N_2=CH_3\cdot C_6H_3(NH\cdot CO\cdot CH_2\cdot C_6^*H_5)_2$. B. s. im vorangehenden Artikel. Nadeln (aus Alkohol). F: 174—176°; ziemlich leicht löslich in heißem Alkohol und Benzol, fast unlöslich in Äther und Ligroin (B., C., B. 24, 633).
- **3-Amino-4-cinnamoylamino-toluol** $C_{16}H_{16}ON_2 = CH_3 \cdot C_6H_3(NH_4) \cdot NH \cdot CO \cdot CH \cdot CH \cdot C_6H_5$. B. Durch Reduktion von 3-Nitro-4-cinnamoylamino-toluol (Bd. XII, S. 1004) (FICHTER, ROSENBERGER, J. pr. [2] 74, 326). Hellgelbe Nadeln. F: 201°. Liefert mit salpetriger Säure 1-Cinnamoyl-5-methyl-benztriazol (Syst. No. 3804).
- 3.4-Bis-cinnamoylamino-toluol, N.N'-Dicinnamoyl-asymm.-o-toluylendiamin $C_{25}H_{22}O_2N_2=CH_3\cdot C_6H_3(NH\cdot CO\cdot CH:CH\cdot C_6H_5)_2$. B. Bei der Einw. von 3—4 Mol.-Gew. Zimtsäureanhydrid in siedendem Benzol auf 1 Mol.-Gew. 3.4-Diamino-toluol (BISTRZYCKI, ULFFERS, B. 23, 1879). Nadeln (aus verd. Alkohol). F: 205—206°. Fast unlöslich in Wasser, Äther und Ligroin, sonst leicht löslich.
- N.N'-Bis-[2-amino-4-methyl-phenyl]-oxamid $C_{16}H_{16}O_2N_4 = CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot CO \cdot NH \cdot C_6H_5(NH_2) \cdot CH_3$. B. Beim Behandeln von N.N'-Bis-[2-nitro-4-methyl-phenyl]-oxamid (Bd. XII, S. 1004) mit Zink und Eisessig (HINSBERG, B. 15, 2691). Nadeln (aus Alkohol + Petroläther). Kaum löslich in Wasser. Schmilzt oberhalb 300° unter Zersetzung. Verliert bei 130° 1 H_2O und beim Schmelzen $2H_2O$, dabei in die Verbindung
- N-[2-Amino-4-methyl-phenyl]-succinamidşäure (?) $C_{11}H_{14}O_3N_3 = CH_3 \cdot C_6H_3 \cdot NH_2 \cdot NH \cdot CO \cdot CH_3 \cdot CH_3 \cdot CO_2H$. Zur Konstitution vgl. R. Meyer, J. Maier, A. 327, 11, 35, sowie auch Bülow, List, B. 35, 185. B. Beim Vermischen der kalten benzolischen Lösungen äquimolekularer Mengen von 3.4-Diamino-toluol und Bernsteinsäureanhydrid (Anderlini, G. 24 I, 146). Amorph; unlöslich in Benzol und Ligroin, äußerst löslich in Wasser und Alkohol (A.).
- N.N'-Bis-[2-amino-4-methyl-phenyl]-succinamid (?) $C_{18}H_{22}O_2N_4 = [CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO \cdot CH_2-]_2$. Zur Frage der Konstitution vgl. Bülow, List, B. 35, 185. B. Das Bishydrochlorid entsteht beim Erwärmen von 6 g 3.4-Diamino-toluol mit 8 g Succinylchlorid; man zerlegt es mit Ammoniak (R. Meyer, Jaeger, A. 347, 48). $C_{18}H_{22}O_2N_4 + 2HCl$. Nadeln (aus Wasser). Verwittert beim Trocknen (R. M., J.).
- Methylmalonsäure bis [2 amino 4 methyl anilid] (?) $C_{18}H_{22}O_2N_4 = [CH_3 \cdot C_6H_3(NH_2) \cdot NH \cdot CO]_2CH \cdot CH_3$. Zur Frage der Konstitution vgl. Bülow, List, B. 35, 185. B. Bei längerem Kochen von 3.4-Diamino-toluol mit Methylmalonsäurediäthylester, neben [asymm.-o-Toluylen]-methylmalonsäure-diamid $CH_3 \cdot C_6H_3 < NH \cdot CO > CH \cdot CH_3$ (Syst. No. 3591) (R. Meyer, Jaeger, A. 347, 38). Nadeln (aus Alkohol). Pikrat $C_{18}H_{22}O_2N_4 + C_6H_3O_7N_3$. Nadeln (aus Alkohol). Schmilzt zwischen 235° und 240° nach vorangehender Dunkelfärbung (R. M., J.).
- N-[2-Amino-4-methyl-phenyl]-maleinamidsäure (?) C₁₁H₁₂O₃N₂ = CH₃·C₆H₃(NH₂)·NH·CO·CH:CH·CO₂H. Zur Konstitution vgl. R. Meyer, J. Maier, A. 327, 11, 35, sowie auch Bülow, List, B. 35, 185. B. Beim Vermischen der kalten benzolischen Lösungen von 3.4-Diamino-toluol und Maleinsäureanhydrid (Syst. No. 2476) (Anderlini, G. 24 I, 147). Hellgelber, amorpher Niederschlag.

N-[2-Ami no-4-methyl-phenyl]-phthalamidsäure (?) $C_{15}H_{14}O_{2}N_{2} = CH_{3} \cdot C_{6}H_{3}(NH_{2}) \cdot NH \cdot CO \cdot C_{6}H_{4} \cdot CO_{2}H$. Zur Konstitution vgl. R. MEYER, J. MAIER, A. 327, 11, 35, sowie auch Bülow, List, B. 35, 185. — B. Aus 3.4-Diamino-toluol und Phthalsäureanhydrid (Syst. No. 2479), beide gelöst in Benzol, in der Kälte (Anderlini, G. 24 I, 148). — Nadeln (aug Alkohol) (aus Alkohol). Zersetzt sich gegen 90°; unlöslich in Benzol (A.).

N-Phenyl-N'-[3-amino-4-methyl-phenyl]-harnstoff(?) $C_{14}H_{15}ON_3 = CH_3 \cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot NH\cdot C_6H_5$. Zur Frage der Konstitution vgl. Bülow, List, B. 35, 185. — B. Bei der Einw. von Phenylisocyanat auf 3.4-Diamino-toluol in Benzol unter Kühlung, neben [asymm.-o-Toluylen]-bis-[\omega-phenyl-harnstoff]; man behandelt mit Alkohol, wobei [asymm.-o-Toluylen]-bis-[\omega-phenyl-harnstoff] ungelöst bleibt (Leuckart, J. pr. [2] 41, 323). — Nadeln (aus Alkohol). F: 197—198° (L.). — Zerfällt oberhalb seines Schmelzpunktes in Anilin und 5-Methyl-benzimidazolon ${\rm CH_3 \cdot C_6 H_3 < }_{\rm NH}^{\rm NH}$ CO (Syst. No. 3567) (L.). Die wäßr.

Lösung des salzsauren Salzes liefert beim Versetzen mit KNO2 die Verbindung

CH₃·C₆H₃ N CO·NH·C₆H₅ (Syst. No. 3804) (L.). — $C_{14}H_{15}ON_3 + HCl$. Nadeln (L.). —

 $C_{14}H_{15}ON_3 + H_2SO_4$. Nadeln (L.). — $2C_{14}H_{15}ON_3 + 2HCl + PtCl_4$. Gelbe Krystalle (L.). N.N.-Diphenyl-N'-[2-amino-4-methyl-phenyl]-harnstoff $C_{20}H_{19}ON_3=CH_3\cdot C_6H_3(NH_2)\cdot NH\cdot CO\cdot N(C_6H_5)_2$. B. Beim Versetzen einer alkoh. Lösung von N.N-Diphenyl-N'-[2-nitro-4-methyl-phenyl]-harnstoff (Bd. XII, S. 1004) abwechselnd mit Salzsäure und mit Zinnehlorür (Lellmann, Bonnöffer, B. 20, 2123). — Nadeln (aus Alkohol). F: 135° bis 137°. — Zerfällt beim Erhitzen in Diphenylamin und 5-Methyl-benzimidazolon (Syst. No. 3567).

N.N'-Bis-[2-amino-4-methyl-phenyl]-harnstoff $C_{15}H_{18}ON_4 = [CH_8 \cdot C_9H_3(NH_2) \cdot C_{15}H_{18}ON_4] = [CH_8 \cdot C_9H_3(NH_2) \cdot C_{15}H_3(NH_2) \cdot C_{15}H_3($ NH] CO. B. Durch Reduktion von N.N'-Bis-[2-nitro-4-methyl-phenyl]-harnstoff (Bd. XII, S. 1004) in Essigsäure mit Zinkpulver (VITTENET, Bl. [3] 21, 661). — Nadeln (aus Alkohol), die beim Erhitzen sublimieren. Unlöslich in Benzol, schwer löslich in siedendem Alkohol.

Über einen mit vorstehender Verbindung vielleicht identischen Bis-[amino-(4-methylphenyl)]-harnstoff vgl. A. G. Perkin, Soc. 37, 700.

N-Phenyl-N'-[6-dimethylamind-3-methyl-phenyl]-thioharnstoff $C_{16}H_{19}N_3S = CH_3 \cdot C_6H_3[N(CH_3)_2] \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Aus 3-Amino-4-dimethylamino-toluol und Phenylsenföl in alkoh. Lösung (PINNOW, B. 28, 3043). — Prismen. F: 153—154°.

[asymm.-o-Toluylen]-di-harnstoff $C_9H_{12}O_2N_4=CH_3\cdot C_9H_3(NH\cdot CO\cdot NH_2)_2$. B. Aus salzsaurem 3.4-Diamino-toluol und Kaliumcyamat in wäßr. Lösung (Lellmann, A. 221, 14). — Nadeln (aus verd. Alkohol). F: 282°. Schwer löslich in Wasser und Chloroform, etwas leichter in Alkohol, sehr leicht in Eisessig; leicht in heißer konzentrierter Salzsäure.

[asymm.-o-Toluylen]-bis-[ω -phenyl-harnstoff] $C_{21}H_{20}O_2N_4=CH_3\cdot C_6H_3(NH\cdot CO\cdot NH\cdot C_6H_5)_2$. B. siehe im Artikel N-Phenyl-N'-[2-amino-4-methyl-phenyl]-harnstoff (?). — Nädelchen (aus Eisessig). F: 208—209°; äußerst schwer löslich in allen Lösungsmitteln (LEUCKART, J. pr. [2] 41, 326).

[asymm.-o-Toluylen]-bis-[ω -äthyl-thioharnstoff] $C_{13}H_{20}N_4S_3=CH_3\cdot C_6H_3(NH\cdot CS\cdot NH\cdot C_2H_5)_3$. B. Beim Versetzen einer warmen Losung von 3 g 3.4-Diamino-toluol in 15 ccm Alkohol mit 5,5 g Athylsenföl (Bd. IV, S. 123) (Lellmann, A. 221, 23). — Krystalle (aus Alkohol). Schmilzt bei 149°, erstarrt wieder bei 153° und zerfällt bei stärkerem Erhitzen in N.N'-Diathyl-thioharnstoff (Bd. IV, S. 118) und 5-Methyl-benzimidazolthion

CH₃·C₆H₃<NH
CS (Syst. No. 3567). Wenig löslich in Wasser, leicht in Alkohol, sehr leicht löslich in Eisessig; leicht löslich in heißer verdünnter Natronlauge.

[asymm.-o-Toluylen]-bis-[ω -allyl-thioharnstoff] $C_{15}H_{20}N_4S_2=CH_3\cdot C_6H_5(NH\cdot CS\cdot NH\cdot CH_2\cdot CH: CH_2)_2$. B. Aus 3.4-Diamino-toluol und Allylsenföl in Alkohol (Lellmann, A. 221, 24). — Krystalle (aus wenig Alkohol). Schmilzt bei 150°, erstarrt wieder bei 153° bis 154°; zerfällt dabei in 5-Methyl-benzimidazolthion (Syst. No. 3567) und ein öliges Produkt, vielleicht N.N'-Diallyl-thioharnstoff. Leicht löslich in Alkohol, Chloroform und Eisessig.

[asymm.-o-Toluylen]-bis-[ω -phenyl-thioharnstoff] $C_{21}H_{30}N_4S_2 = CH_3 \cdot C_4H_3(NH \cdot M)$ CS·NH·C₆H₅)₂. B. Beim Versetzen einer absolut-alkoholischen Lösung von 3.4-Diaminotoluol mit Phenylsenföl (LELLMANN, A. 221, 19). — Blättchen (aus verd. Alkohol). Leicht löslich in Alkohol, Chloroform, Eisessig; leicht löslich in verdünnter warmer Natronlauge. -Zerfällt beim Schmelzen in 5-Methyl-benzimidazolthion (Syst. No. 3567) und N.N'-Diphenylthioharnstoff (Bd. XII, S. 394).

CH₃·C₆H₃(N:CS)₂. B. Entsteht neben viel 5-Methyl-benzimidazolthion (Syst. No. 3567) beim Schütteln der wäßr. Losung von salzsaurem 3.4-Diamino-toluol mit einer Lösung von Thiophosgen (Bd. III, S. 134) in Chloroform (Billeter, Steiner, B. 20, 231). — Blättehen (aus Eisessig). F: 42° (korr.). Sehr leicht löslich. — Wird von Salzsäure bei 200° größtenteils in 5-Methyl-benzimidazolthion übergeführt. Ebenso wirkt alkoh. Ammoniak.

β-[2-Amino-4-methyl-phenylimino]-buttersäure-äthylester (?) bezw. β-[2-Amino-4-methyl-anilino]-crotonsäure-äthylester (?) C₁₂H₁₂O₂N₂ = CH₂·C₄H₃(NH₂)·N:C(CH₃)·CH₂·CO₂·C₄H₅. Eur Konstitution vgl. CH₂·CO₂·C₄H₅ bezw. CH₂·C₄H₆(NH₂)·NH·C(CH₃):CH·CO₂·C₄H₅. Zur Konstitution vgl. Hinsberg, Koller, B. 29, 1497; Bülow, List, B. 35, 186. — B. Bei der Einw. von Acetessigester (Bd. III, S. 632) auf die äquimolekulare Menge 3.4-Diamino-toluol (LADENBURG, Rücheimer, B. 12, 953). — Nadeln (aus Ligroin). F: 82°; unlöslich in Wasser, leicht löslich in Alkohol; sehr leicht löslich in Salzsäure; die Lösungen färben sich auf Zusatz von Eisenchlorid intensiv rot (LA., R.). — Zerfällt beim Erhitzen auf 107—116° in Essigsäureäthylester und 2.5-Dimethyl-benzimidazol (Syst. No. 3475) (LA., R.; Witt, B. 19, 2977).

a-Chlor- β -[2-amino-4-methyl-phenylimino]-buttersäure-äthylester (?) bezw. a-Chlor- β -[3-amino-4-methyl-anilino]-orotonsäure-äthylester (?) $C_{12}H_{17}O_2N_2Cl=CH_3$ · $C_4H_5(NH_2)\cdot N$: $C(CH_3)\cdot CHCl\cdot CO_2\cdot C_2H_5$ bezw. $CH_3\cdot C_4H_5(NH_2)\cdot NH\cdot C(CH_2)\cdot CCl\cdot CO_2\cdot C_2H_5$. Zur Konstitution vgl. HINSBERG, KOLLER, B. 29, 1497; BÜLOW, LIST, B. 35, 186. — B. Beim Stehen einer alkoh. Lösung äquimolekularer Mengen von 3.4-Diamino-toluol und a-Chlor-accetessigsäure-äthylester (Bd. III, S. 662) (Autenrieth, Hinsberg, B. 25, 606). — Nadeln. F: 110°; leicht löslich in heißem Alkohol und in Äther (Au., H.). Zerfällt beim Kochen mit Alkohol in 2.5-Dimethyl-benzimidazol (Syst. No. 3475) und Chloressigsäure-äthylester (Au., H.).

[6-p-Toluidino-3-methyl-phenylimino]-malonsäure-monoureid $C_{16}H_{18}O_4N_4$, s. nebenstehende Formel. B. Man schüttelt die aus 3-Amino-4-p-toluidino-toluol (S. 155) und Alloxan (Syst. NH·CO·NH·C

No. 3627) entstehende Verbindung $CH_3 \cdot C_6H_4 \cdot NH \cdot C_6H_3(CH_3) \cdot N \cdot C \cdot CO \cdot NH \cdot CO$ (Syst. No. 3627) mit kalter verdünnter Natronlauge und säuert die entstandene Lösung an (KÜHLING, KASELITZ, B. 39, 1321). — Gelbe Flocken. Sehr unbeständig. Spaltet schon beim Trocknen im Exsiccator Wasser ab. Schmilzt bei 190° teilweise, erstarrt dann wieder und schmilzt von neuem bei 240°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln, außer in Ligroin.

[2-p-Toluidino-4-methyl-phenylimino]-malon-säure-monoureid C₁₂H₁₈O₄N₄, s. nebenstehende Formel.

B. Man schüttelt die aus 4-Amino-3-p-toluidino-toluol
(S. 155) und Alloxan entstehende Verbindung

CH₃·C₆H₄·NH·C₆H₃(CH₃)·N: C<CO·NH
CO·NH
CO·

3627) mit verd. Natronlauge (Kü., Ka., B. 39, 1322). — Blätter (aus Aceton durch Ligroin). Krystallisiert mit 1 Mol. Wasser, das im Exsiccator entweicht. Schmilzt teilweise bei 180°, erstarrt dann wieder und schmilzt von neuem bei 248°. Leicht löslich in den gebräuchlichen Lösungsmitteln außer Ligroin und kaltem Wasser.

β-[2-Amino-4-methyl-phenylimino]-methylmalonsäure-diäthylester (?) bezw. β-[2-Amino-4-methyl-anilino]-methylenmalonsäure-diäthylester (?) $C_{12}H_{20}O_4N_2 = CH_3\cdot C_6H_2(NH_2)\cdot N:CH\cdot CH(CO_2\cdot C_2H_3)_2$ bezw. $CH_2\cdot C_6H_3(NH_2)\cdot NH\cdot CH:C(CO_2\cdot C_2H_3)_2$. Zur Frage der Konstitution vgl. BüLow, Lsr., B. 35, 186. -B. Beim Erhitzen gleicher Gewichtsmengen 3.4-Diamino-toluol und a.γ-Dicarboxy-glutaconsäure-tetraäthylester (Bd. II, S. 876) auf dem Wasserbade (Ruhemann, Hemay, B. 30, 2027). — Prismen (aus Alkohol). Sintert bei ca. 140° und schmilzt bei 145—146°.

[asymm.-o-Toluylen]-bis-[glykuronsäureimid] $C_{19}H_{18}O_{12}N_2 = CH_3 \cdot C_9H_3[N:CH\cdot [CH(OH)]_4 \cdot CO_9H)_3$. B. Das Kaliumsalz entsteht beim Erwärmen einer wäßr. Lösung von 2 Mol.-Gew. glykuronsaurem Kalium (Bd. III, S. 884) mit etwas mehr als 1 Mol.-Gew. 3.4-Diamino-toluol (Thierfelder, H. 13, 278). — $K_2C_{19}H_{34}O_{12}N_2 + 2H_2O$. Krystallinisch. Linksdrehend. Zersetzt sich bei 130°, ohne zu schmelzen.

Mono-[8-sulfo-bensal]-asymm.-o-toluylendiamin $C_{14}H_{16}O_3N_2S = CH_3 \cdot C_6H_3 \cdot NH_3 \cdot N: CH \cdot C_6H_4 \cdot SO_5H$ oder vielleicht auch 5-Methyl-2-[3-sulfo-phenyl]-bensimidasoldihydrid $C_{14}H_{14}O_3N_2S = CH_3 \cdot C_6H_3 < NH > CH \cdot C_6H_4 \cdot SO_5H$. Zur Konstitution vgl. O. FISCHER, B. 25, 2826. — B. Das Natriumsalz entsteht beim Erwärmen äquimolekularer Mengen von salzsaurem 3.4-Diamino-toluol und dem Natriumsalz der Benzaldehyd-sulfonsäure-(3) mit BEILSTEIN's Handbuch. 4. Aufl. XIII.

Natriumacetat und wenig Wasser auf dem Wasserbade (KAFKA, B. 24, 793). — NaC₁₄H₁₂O₃N₂S. Fleischfarbenes Krystallpulver. Schwer löslich in Wasser, unlöslich in absol. Alkohol (K.).

N.N'-Bis-[2-amino-4-methyl-phenyl]-äthylendiamin $C_{16}H_{22}N_6 = [CH_3 \cdot C_6H_6(NH_5) \cdot NH \cdot CH_6]_2$. B. Beim Behandeln von N.N'-Bis-[2-nitro-4-methyl-phenyl]-äthylendiamin (Bd. XII, S. 1005) mit Zinn und Salzsäure (Gattermann, Hager, B. 17, 780). — Nadeln (aus Alkohol). F: 158—159°. Schwer löslich in Wasser.

- 6-Amino-4'-dimethylamino-3-methyl-diphenylamin C₁₅H₁₆N₃ = CH₃·C₄H₄(NH₂)· NH·C₆H₄·N(CH₃)₃. B. Entsteht neben p-Toluidin und 4-Amino-dimethylanilin beim Eintragen von 4'-Dimethylamino-4-methyl-azobenzol (Syst. No. 2172) in eine Lösung von 40 g Zinnchlorür in 100 ccm konz. Salzsäure; man behandelt nach dem Erkalten mit Natronlauge, extrahiert mit Äther, und verdampft den Äther nach dem Trocknen mit Kaliumcarbonat; das hierbei erhaltene dunkelgefärbte Öl destilliert man im CO₃-Strom bei 25—30 mm Druck in einem 200° heißem Luftbad. Das Destillat besteht aus einem Gemisch von p-Toluidin und 4-Amino-dimethylanilin; aus dem Rückstand erhält man durch Extraktion mit viel Petroläther 6-Amino-4'-dimethylamino-3-methyl-diphenylamin (Boyro, Soc. 65, 831). Nadeln (aus Petroläther). F: 69—70°. Sehr leicht löslich in Alkohol und Benzol. Gibt, in verd. Salzsäure gelöst, mit Ferrichlorid eine violette, rasch in Rot umschlagende Färbung. Liefert mit salpetriger Säure 1-[4-Dimethylamino-phenyl]-6-methyl-benztriazol
- Liefert mit salpetriger Säure 1-[4-Dimethylamino-phenyl]-6-methyl-benztriazol CH₃·C₆H₃·N₁(C₆H₄·N₁(CH₃)₂N (Syst. No. 3804). Zerfällt beim Erhitzen mit Salzsäure im geschlossenen Rohr auf 150—160° in Hydrochinon und 3.4-Diamino-toluol. Liefert beim Erhitzen mit Benzil in Alkohol in Gegenwart von Salzsäure die Stilbazoniumverbindung CH₃·C₆H₃ N₁(C₆H₄·N₁(CH₃)₂|(Cl):C·C₆H₅ (Syst. No. 3492). Liefert beim 5-stdg. Kochen mit 10 Tln. Ameisensäure 1-[4-Dimethylamino-phenyl]-6-methyl-benzimidazol (Syst. No. 3474).
- 4'-Dimethylamino 6 salicylalamino 3 methyl diphenylamin $C_{22}H_{22}ON_3 = CH_3 \cdot C_6H_3(N:CH \cdot C_6H_4 \cdot OH) \cdot NH \cdot C_6H_4 \cdot N(CH_3)_2$ oder vielleicht auch 1-[4-(Dimethylamino) phenyl] 6 methyl 2 [2 oxy phenyl] benzimidazoldihydrid $C_{32}H_{12}ON_3 = CH_3 \cdot C_6H_3 < NH N[C_6H_4 \cdot N(CH_3)_2]$ CH · $C_6H_4 \cdot OH$. Zur Konstitution vgl. O. Fischer, B. 25, 2826. B. Beim Erhitzen einer alkoh. Lösung von 1 Mol.-Gew. 6-Amino-4'-[dimethylamino]-3-methyl-diphenylamin mit 2 Mol.-Gew. Salicylaldehyd auf dem Wasserbade (Boyd, Soc. 65, 883). Rote Prismen. F: 131° (B.). Wird durch Erhitzen mit verd. Salzsäure leicht in die Komponenten gespalten (B.). Liefert beim Kochen mit HgO in alkoh. Lösung 1-[4-Dimethylamino-phenyl]-6-methyl-2-[2-oxy-phenyl]-benzimidazol (Syst. No. 3513) (B.).
- 3-Amino-4-benzolsulfamino-toluol $C_{13}H_{14}O_2N_2S=CH_3\cdot C_6H_8(NH_2)\cdot NH\cdot SO_3\cdot C_6H_5$. B. Durch Kochen von 3-Nitro-4-benzolsulfamino-toluol (Bd. XII, S. 1006) mit Sn und HCl (Lellmann, A. 221, 18). Aus äquimolekularen Mengen 3.4-Diamino-toluol und Benzolsulfochlorid (Bd. XI, S. 34) in Benzol (Bistrzycki, Cybulski, B. 24, 633). Nadeln (aus verd. Alkohol). F: 146,5°; schwer löslich in Wasser, leicht in Alkohol und Eisessig (L.).
- 3.4-Bis-benzolsulfamino-toluol, N.N'-Dibenzolsulfonyl-asymm.-o-toluylendiamin $C_{19}H_{18}O_4N_2S_2=CH_2\cdot C_6H_5(NH\cdot SO_2\cdot C_6H_5)_2$. B. Beim Schütteln von 3.4-Diamino-toluol mit überschüssiger, mäßig konzentrierter Alkalilauge und Benzolsulfochlorid (HINSBERG, A. 265, 190). Blättchen (aus Alkohol). F: 178—179°.
- 3.4-Bis-[benzolsulfonyl-äthylamino]-toluol, N.N'-Dibenzol-sulfonyl-N.N'-diäthyl-asymm.-o-toluylendiamin $C_{13}H_{16}O_4N_2S_2 = CH_3 \cdot C_6H_5[N(C_2H_5) \cdot SO_2 \cdot C_6H_5]_8$. Beim Erwärmen von 3.4-Bis-benzolsulfamino-toluol mit Alkohol, Kalilauge und C_2H_5 l auf dem Wasserbade (HINSBERG, A. 265, 190). Nädelchen (aus Alkohol) mit $^1/_2$ C_2H_6O . Schmilzt krystallalkoholhaltig unter vorherigem Erweichen bei 117°; krystallalkoholfrei tritt die Erweichung bei 62° ein und der Schmelzpunkt liegt bei ca. 70°.
- 3-[Acetylmethylamino]-4-methylnitrosamino-toluol, [2-(Acetylmethylamino)-4-methyl-phenyl]-methyl-nitrosamin $C_{11}H_{15}O_2N_3=CH_2\cdot C_6H_3[N(CH_2)\cdot CO\cdot CH_3]\cdot N(NO)\cdot CH_3$. B. Durch Lösen des 2-Oxy-1.2.3.5-tetramethyl-benzimidazoldihydrids $CH_3\cdot C_6H_3 < N(CH_3) > C(OH)\cdot CH_3$ (Pseudobase der Trimethyl-benzimidazol-halogenmethylate, Syst. No. 3475) in verd. Schwefelsäure von 0° und Versetzen mit NaNO₂ (O. Fischer, Römer, J. pr. [2] 73, 428). Prismen (aus Äther + Petroläther). F: 71°. Leicht löslich in Wasser, Äther, Alkohol und Benzol, schwer in Petroläther. Geht durch Behandlung mit HCl in Trimethyl-benzimidazol-chlormethylat über.

Substitutions produkte des 3.4-Diamino-toluols.

- 5-Brom-3.4-diamino-toluol C₂H₆N₂Br = CH₃·C₆H₂Br(NH₂)₂. B. Bei der Reduktion von 5-Brom-3-nitro-4-amino-toluol (Bd. XII, S. 1007) mit SnCl₂ und HCl (Bistrzycki, B. 23, 1045). Nadeln (aus verd. Alkohol). F: 81—82°. Sehr leicht löslich in Alkohol, Äther, Chloroform, Aceton und Benzol, schwer in Wasser, unlöslich in Ligroin.
- 5-Brom-8-amino-4-acetamino-toluol $C_2H_{11}ON_2Br = CH_2 \cdot C_6H_2Br(NH_2) \cdot NH \cdot CO \cdot CH_3$. B. Man reduziert unter guter Kühlung 5-Brom-3-nitro-4-acetamino-toluol mit SnCl₂ und Salzsäure (Habtmann, B. 23, 1049). Krystalle (aus Benzol). F: 167—168°.
- 5-Brom-3.4-bis-acetamino-toluol $C_{11}H_{13}O_2N_1Br = CH_3 \cdot C_8H_2Br(NH \cdot CO \cdot CH_3)_2$. B. Beim Kochen von 5-Brom-3.4-diamino-toluol mit Essigsäureanhydrid (H., B. 23, 1049). Nadeln (aus Wasser). F: 222—223°. Leicht löslich in Eisessig und Alkohol, schwerer in Wasser und Benzol.
- 5-Brom-8.4-bis-benzamino-toluol $C_{21}H_{17}O_{2}N_{2}Br = CH_{3} \cdot C_{4}H_{2}Br(NH \cdot CO \cdot C_{4}H_{5})_{2}$. Beim Kochen von 5-Brom-3.4-diamino-toluol mit überschüssigem Benzoesaureanhydrid in Benzol (H., B. 23, 1050). Nadeln (aus Benzol). F: 244°. Sehr leicht löslich in Alkohol, schwieriger in Benzol.
- 5-Nitro-3-amino-4-methylamino-toluol $C_9H_{11}O_9N_3=CH_9\cdot C_9H_9(NO_9)(NH_9)\cdot NH\cdot CH_9$. B. Aus 3.5-Dinitro-4-methylamino-toluol (Bd. XII, S. 1010) durch H_2S und NH_3 in Alkohol (PINNOW, J. pr. [2] 63, 359). Blaurote, rechteckige Tafeln und Säulen (aus Benzol). F: 131,5° bis 132,5°. Leicht löslich in Aceton, Chloroform, Eisessig, heißem Alkohol, heißem Benzol, schwer in Äther und Ligroin.
- 5 Nitro 4 dimethylamino 3 acetamino toluol $C_{11}H_{15}O_2N_3 = CH_2 \cdot C_0H_1(NO_2)$ [N(CH₃)₂]·NH·CO·CH₃. B. Durch Stehenlassen der öligen, aus 3.5-Dinitro-4-[dimethylamino]-toluol mit alkoh. Schwefelammonium erhaltenen Base mit Essigsäureanhydrid in Eisessig (Pinnow, Matcovich, B. 31, 2519). Hellgelbe Nadeln oder Prismen (aus CS₂). F: 97°. Schwer löslich in kaltem Ligroin, sonst leicht löslich.
- 5-Nitro-3-amino-4-bensamino-toluol $C_{14}H_{18}O_3N_3=CH_3\cdot C_6H_3(NO_4)(NH_2)\cdot NH\cdot CO\cdot C_6H_5$. B. Beim Behandeln von 3.5-Dinitro-4-benzamino-toluol mit Schwefelammonium (HÜBNER, A. 208, 317). Rote Nadeln (aus Wasser). F: 137—139°. Kaum löslich in Wasser, leicht in Alkohol und Äther.
- 6-Nitro-3.4-bis-methylamino-toluol $C_9H_{13}O_2N_3=CH_2\cdot C_0H_2\cdot (NO_2)\cdot (NH\cdot CH_3)_2$. B. Man nitriert 2.5-Dimethyl-benzimidazol (Syst. No. 3475) zu 6-Nitro-2.5-dimethyl-benzimidazol (vgl. Maron, Salzberg, B. 44 [1911], 2999), stellt daraus mit Methyljodid das Nitro-trimethylbenzimidazoljodmethylat $CH_3\cdot C_0H_2\cdot (N(CH_2))$ $C\cdot CH_3$ und aus diesem durch kalte Natronlauge die Pseudobase, das 6-Nitro-2-oxy-1.2.3.5-tetramethyl-benzimidazoldhydrid (Syst. No. 3475), dar und kocht dieses mit alkoh. Kalilauge (O. Fischer, Hess, B. 36, 3972). Analog läßt sich auch 6-Nitro-2-oxy-1.3.5-trimethyl-benzimidazoldihydrid darstellen und zu 6-Nitro-3.4-bis-methylamino-toluol aufspalten (O. F., H.). Carminrote Nadeln (aus verd. Alkohol). F: 194°. Platinsalz. Gelbe Prismen. Zersetzt sich beim Erwärmen.
- 6 (?)-Nitro-3.4-bis-dimethylamino-toluol $C_{11}H_{17}O_2N_3 = CH_2\cdot C_3H_2(NO_2)[N(CH_2)_2]_2$. B. Beim Eintragen von NaNO₂ in eine essigsaure Lösung von 3.4-Bis-dimethylamino-toluol (v. Niementowski, B. 20, 1890). Säulen (aus Petroläther). Sintert bei 55° und schmilzt bei 63°. Leicht löslich in Alkohol, Äther, Benzol; leicht löslich in Salzsäure.
- 6-Nitro-4-dimethylamino-3-acetamino-toluol $C_{11}H_{15}O_{5}N_{3}=CH_{3}\cdot C_{6}H_{2}(NO_{6})[N(CH_{2})_{3}]\cdot NH\cdot CO\cdot CH_{3}.$ B. Aus 4-Dimethylamino-3-acetamino-toluol durch Nitrieren mit Salpeterschwefelsäure unterhalb 0^{6} (Pinnow, B. 34, 1131). Hochgelbe Tafeln (aus Alkohol + Ather). F: 142,5—143°. Sehr leicht löslich in Chloroform und Essigester, ziemlich löslich in heißem Alkohol und Benzol, sohwer in heißem Ather, Ligroin und Wasser. Verbindet sich nicht mit CH_{3}I. Gibt, mit Zinkstaub und Essigsäure reduziert, beim Behandeln mit Acetanhydrid 4-Dimethylamino-2.5-bis-acetamino-toluol (S. 303).
- 6-Nitro-3.4-bis-acetamino-toluol ¹) $C_{11}H_{13}O_4N_3 = CH_3 \cdot C_6H_3(NO_2)(NH \cdot CO \cdot CH_3)_3$. B. Man versetzt die Lösung von 1 Tl. 3.4-Bis-acetamino-toluol in 7,5 Tln. Eisessig unter Kühlung mit 10 Tln. konz. Schwefelsäure, trägt in das auf 45° erwärmte Gemisch allmählich 0,5 Tle. KNO₃ ein und erwärmt noch 2 Stdn. (BISTRZYCKI, ULFFERS, B. 25, 1993). Nadeln (aus verd. Essigsäure). F: 239°. Leicht löslich in heißem Eisessig, schwerer in heißem Alkohol. Beim Erwärmen mit 70°/ $_0$ iger Schwefelsäure auf ca. 90° entsteht 6-Nitro-2.5-dimethyl-benzimidazol (Syst. No. 3475).

¹⁾ Zur Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von MARON, SALZBERG, B. 44 [1911], 2999, 3004.

- 6-Nitro-3.4-bis-benzamino-toluol $C_{21}H_{17}O_4N_3 = CH_3\cdot C_6H_2(NO_3)(NH\cdot CO\cdot C_6H_5)_8$. Beim Erwärmen von 3.4-Bis-benzamino-toluol mit einem Gemisch aus HNO3 und Eisessig auf 40—45° (BISTRZYCKI, ULFFERS, B. 25, 1994). Prismen oder Nadeln (aus Eisessig). F: 246°. Schwer löslich in Alkohol, leicht in Eisessig. Überschüssiges alkoholisches Kali erzeugt bei 110—130° 6-Nitro-5-methyl-2-phenyl-benzimidazol (Syst. No. 3487).
- 2 (?).6-Dinitro-3.4-bis-acetamino-toluol $C_{11}H_{12}O_6N_4=CH_3\cdot C_6H(NO_2)_2(NH\cdot CO\cdot CH_2)_2$. B. Man trägt ein Gemisch aus 1 Tl. 3.4-Bis-acetamino-toluol und 0,2 Tln. Harnstoffnitrat bei 0° in 9 Tle. höchst konzentrierter Salpetersäure ein, erwärmt $^1/_2$ Stde. auf 40° und gießt dann in Wasser (Bistrzycki, Ulffers, B. 25, 1991). Nadeln (aus Alkohol). F: 251—252°. Ziemlich leicht löslich in heißem Alkohol, leicht in Eisessig; löslich in Natronlauge. Beim Erwärmen mit $70^\circ/_0$ iger Schwefelsäure entsteht 4(?).6-Dinitro-2.5-dimethyl-benzimidazol (Syst. No. 3475).
- 6. Derivat, das entweder dem 2.4-Diamino-toluol (No. 2) oder dem 3.4-Diamino-toluol (No. 5) angehört.
- 3 oder 2-Nitro-2 oder 3-amino-4-methylamino-toluol $C_8H_{11}O_2N_3=CH_3\cdot C_6H_8(NO_8)$ $(NH_2)\cdot NH\cdot CH_3$. B. Aus 2.3-Dinitro-4-methylamino-toluol (Bd. X11, S. 1008) durch alkoh. Schwefelammonium in sehr geringer Ausbeute (Pinnow, J. pr. [2] 62, 516). Fast schwarze, sechseckige Tafeln (aus Benzol und Petroläther). F: 127—128°. Sehr leicht löslich in Methylalkohol, Chloroform, heißem Benzol, löslich in Äther, schwer löslich in Ligroin.
- 7. 3.5 Diamino 1 methyl benzol, 3.5 Diamino toluol, 5-Methyl-phenylendiamin-(1.3), symm. m-Toluylendiamin C₇H₁₀N₉, s. nebenstehende Formel. B. Beim Behandeln von 3.5-Dinitrotoluol (Bd. V, S. 341) mit Zinn und Salzsäure (STAEDEL, A. 217, 200). H₂N·NH₃ Beim Erhitzen von 2.4-Dibrom-3.5-dinitro-toluol mit Zinn und konz. Salzsäure auf dem Wasserbade (Davis, Soc. 81, 873). In der Kältemischung nicht erstarrendes Öl (D.). Kp: 283—285° (St.). Sehr leicht löslich in Wasser (D.). C₇H₁₀N₂ + 2 HCl. Weiße Nadeln. F: 255—260° (Zers.); sehr leicht löslich in Wasser (D.). C₇H₁₀N₂ + 2 HCl + SnCl₂ (über H₂SO₄ getrocknet). Krystalle (aus wenig Wasser). Leicht löslich in Wasser (St.).
- 3.5-Dianilino-toluol, N.N'-Diphenyl-symm.-m-toluylendiamin $C_{19}H_{18}N_2 = CH_3 \cdot C_6H_3(NH \cdot C_6H_5)_2$. B. Bei 20-stdg. Erhitzen von 1 Tl. Orein (Bd. VI, S. 882) mit 4 Tin. Anilin und einer Mischung aus $\frac{1}{2}$ Tl. ZnCl₂ und $\frac{1}{2}$ Tln. CaCl₃ im geschlossenen Rohr auf 220°; man wäscht das Produkt nacheinander mit verdünnter warmer Salzsäure, Natronlauge und wenig kaltem Eisessig (Zega, Buch, J. pr. [2] 33, 542). Undeutliche Krystalle (aus Eisessig). F: 105°. Mäßig löslich in kaltem Alkohol, Äther, CS₂ und Benzol.
- 3.5-Bis-methylanilino loluol, N.N'-Dimethyl-N.N'-diphenyl-symm.-m-toluylendiamin $C_{31}H_{22}N_3 = CH_3 \cdot C_6H_3[N(CH_3) \cdot C_6H_5]_3$. B. Beim Erhitzen von 3.5-Dianilino-toluol, Kali und CH_3 im geschlossenen Rohr auf 140—150° (Zega, Buch, J. pr. [2] 33, 546). Plättchen (aus Eisessig). F: 124°. Erheblich löslich in kaltem Alkohol, Äther, Benzol und Eisessig.
- 3.5-Bis-acetamino-toluol, N.N'-Diacetyl-symm.-m-toluylendiamin $C_{11}H_{14}O_2N_2 = CH_3 \cdot C_6H_3(NH \cdot CO \cdot CH_3)_2$. Beim mäßigen Erwärmen von 3.5-Diamino-toluol mit Essigsäureanhydrid (Davis, Soc. 81, 874). Hemimorphe, stark elektrische Prismen (aus Alkohol). F: 235–236°.
- 3.5-Bis-acetylanilino-toluol, N.N'-Diphenyl-N.N'-diacetyl-symm.-m-toluylendiamin $C_{23}H_{22}O_2N_3 = CH_3 \cdot C_3H_3[N(C_0H_5) \cdot CO \cdot CH_3]_2$. B. Beim Kochen von 3.5-Dianilino-toluol mit überschüssigem Essigsäureanhydrid und Natriumacetat (Zega, Buch, J. pr. [2] 33, 544). Nadeln oder Rhomboeder. F: 160°. Mäßig loslich in kaltem Alkohol, Äther, Aceton und Benzol, sehr schwer in Petroläther.
- 3.5-Bis-benzoylanilino-toluol, N.N'-Diphenyl-N.N'-dibenzoyl-symm.-m-toluylendiamin $C_{33}H_{26}O_2N_2 = CH_2 \cdot C_6H_3[N(C_6H_6) \cdot CO \cdot C_6H_6]_2$. B. Beim Erwärmen von 3.5-Dianilino-toluol mit Benzoylchlorid im geringen Überschuß (Zega, Buch, J. pr. [2] 33, 544). Nadeln (aus Benzol + Ligroin). F: 190—191°.
- 3.5 Bis phenylnitrosamino toluol, N.N'- Dinitroso N.N'- diphenyl symm.-m-toluylendiamin, [symm.-m-Toluylen]-bis-phenylnitrosamin $C_{19}H_{16}O_{8}N_{4}=CH_{3}\cdot C_{6}H_{5}[N(NO)\cdot C_{6}H_{5}]_{3}$. B. Beim Versetzen einer eisessigsauren Lösung von 3.5- Dianilinotoluol mit 2 Mol.-Gew. NaNO₂; man fällt die Lösung mit Wasser und wäscht den Niederschlag mit Aceton (Zega, Buch, J. pr. [2] 33, 545). Gelbe Nadeln (aus Alkohol). Schmilzt gegen 170° unter Zersetzung.
- 2-Chlor-3.5-diamino-toluol $C_7H_9N_2Cl=CH_3\cdot C_0H_9Cl(NH_9)_8$. B. Bei der Reduktion von 2-Chlor-3.5-dinitro-toluol (Bd. V, S. 345) mit Zinnehlorür und Salzsäure (Nietzki, Rehe,

- B. 25, 3006) oder Eisenfeile und Salzsäure (Morgan, Soc. 81, 97). Nadeln (aus Wasser). F: 73° (N., R.), 74° (M.).
- 2.4-Dichlor-3.5-diamino-toluol $C_1H_8N_3Cl_2=CH_3^*C_8HCl_2(NH_8)_2$. B. Beim Eintragen der heißen alkoh. Lösung von 2.4-Dichlor-3.5-dinitro-toluol in überschüssige heiße Zinnehlorürmischung (Seelig, A. 237, 164). Blättehen (aus Ligrein). F: 110° (S.). Liefert bei 25-stdg. Kochen mit Essigsäureanhydrid eine aus Alkohol in Nädelchen Eystallisierende, bei 170° schmelzende Verbindung (S.). Gibt die Chrysoidinreaktion (COHEN, DAKIN, Soc. 81, 1348).
- 2.6-Dichlor-3.5-diamino-toluol C₇H₈N₂Cl₂ = CH₃·C₆HCl₂(NH₂)₂. B. Bei der Reduktion des 2.6-Dichlor-3.5-dinitro-toluols (F: 121—122°) (vgl. Cohen, Dakin, Soc. 79, 1115, 1116) in alkoh. Lösung mit SnCl₂ + Salzsäure (Seelig, A. 237, 164). Nadeln (aus Alkohol). F: 137° (S.). Gibt die Chrysoidinreaktion (C., D., Soc. 81, 1346).
- 2.4-Dinitro-3.5-diamino-toluol $C_2H_3O_4N_4=CH_3\cdot C_6H(NO_9)_2(NH_9)_2$. B. Beim Erhitzen von 3.5-Dibrom-2.4-dinitro-toluol (Bd. V, S. 346) mit alkoh. Ammoniak im geschlossenen Rohr auf 150° (Blanksma, R. 23, 126). Gelbe Krystalle. F: 199°.
- 2.4-Dinitro-3.5-bis-methylamino-toluol $C_0H_{19}O_4N_4=CH_3\cdot C_0H(NO_2)_3(NH\cdot CH_3)_2$. B. Beim Erhitzen von 3.5-Dibrom-2.4-dinitro-toluol mit Methylamin im geschlossenen Rohr auf 150° (B., R. 23, 126). Hellrote Krystalle. F: 140°. Leicht löslich in Alkohol.
- 2.4-Dinitro-3.5-dianilino-toluol $C_{19}H_{16}O_4N_4 = CH_2 \cdot C_6H(NO_2)_2(NH \cdot C_6H_5)_2$. B. Beim Erhitzen von 3.5-Dibrom-2.4-dinitro-toluol mit alkoh. Anilin (B., R. 23, 126). Dunkelrote Krystalle (aus Alkohol). F: 162°.
- 2.4.6-Trinitro-3.5-diamino-toluol $C_7H_7O_6N_5=CH_3\cdot C_6(NO_2)_3(NH_2)_2$. B. Beim 8-stdg. Erhitzen von 3.5-Dibrom-2.4.6-trinitro-toluol mit alkoh. Ammoniak unter Druck auf dem Wasserbade (Palmer, B. 21, 3501). Gelbe Prismen (aus Alkohol). F: 222°.
- 2.4.6-Trinitro-3.5-bis-methylamino-toluol $C_0H_{11}O_0N_0 = CH_3 \cdot C_0(NO_3)_3(NH \cdot CH_3)_3$. B. Beim Behandeln einer alkoh. Lösung von 3.5-Dibrom-2.4.6-trinitro-toluol mit Methylamin im geschlossenen Rohr auf dem Wasserbade (B., R. 23, 127). Rote Krystalle (aus Alkohol). F: 156°.
- **2.4.6-Trinitro-3.5-dianilino-toluol** $C_{19}H_{15}O_{e}N_{5} = CH_{3} \cdot C_{e}(NO_{e})_{3}(NH \cdot C_{e}H_{5})_{2}$. B. Beim Kochen einer alkoh. Lösung von 3.5-Dibrom-2.4.6-trinitro-toluol mit Anilin (B., R. 23, 128). Dunkelrote Krystalle. F: 206°.
- 2.4.6-Trinitro-3.5-di-p-toluidino-toluol $C_{21}H_{19}O_6N_5=CH_3\cdot C_6(NO_9)_8(NH\cdot C_6H_4\cdot CH_3)_9$. B. Beim Kochen einer alkoh. Lösung von 3.5-Dibrom-2.4.6-trinitro-toluol mit p-Toluidin (B., R. 23, 128). Dunkelrote Krystalle. F: 185°.
- 2.4.6-Trinitro-3.5-bis-methylnitramino-toluol $C_9H_9O_{10}N_7 = CH_3 \cdot C_6(NO_2)_3[N(NO_2) \cdot CH_3]_2$. B. Beim Erhitzen von 2.4-Dinitro-3.5-bis-methylamino-toluol (s. o.) oder von 2.4.6-Trinitro-3.5-bis-methylamino-toluol mit Salpetersäure (D: 1,52) (B., R. 23, 127). Krystalle. F: 199—200° (Zers.).
- 8. 2.1¹-Diamino-1-methyl-benzol, 2.1¹-Diamino-toluol, 2-Amino-benzylamin C₇H₁₀N₂ = H₂N·C₆H₄·CH₂·NH₈. B. Beim Behandeln von 2-Nitro-benzylamin (Bd. XII, S. 1076) mit Zinn und Salzsäure (Gabriel, B. 20, 2229). Darst. Durch Eintragen von 2-Nitro-benzylamin in ein bis nahe zum Sieden erhitztes Gemisch von Jodwasserstoffsäure (Kp: 127°) und rotem Phosphor (Gabriel, Colman, B. 37, 3644). Krystallinisch. Zersetzt sich bei der Destillation unter Ammoniakabspaltung (G.). Langsam flüchtig mit Wasserdämpfen (G.). Leicht löslich in Wasser (G.). Zieht CO₂ an (G.). Mit Formaldehyd entsteht ein amorphes Produkt, das beim Behandeln mit alkoholischer Salzsäure salzsaures Chinazolin-tetrahydrid-(1:2.3.4) (Syst. No. 3470) liefert (Busch, Dietz, J. pr. [2] 53, 418). Mit 3-Nitro-benzaldehyd (Bd. VII, S. 250) entsteht 2-[3-Nitro-phenyl]-chinazolin-tetrahydrid-(1:2.3.4) C₆H₄·NH·CH·C₆H₄·NO₂ (Syst. No. 3486) (B., D.). Mit 4-Oxy-benzaldehyd (Bd. VIII, S. 64) entsteht 2-[4-Oxy-phenyl]-chinazolin-tetrahydrid-(1:2.3.4) (Syst. No. 3512) (B., D.). Beim Kochen des Hydrojodids mit Ameisensäure und Natriumformiat entsteht glatt Chinazolindihydrid (Syst. No. 3474) (G., C.). Verwendung von 2-Amino-benzylamin zur Verbesserung der aus 4-Nitro-toluol-sulfonsäure-(2) (Bd. XI, S. 90) durch Einw. von Alkalien entstehenden Farbstoffe: Höchster Farbw., D. R. P. 122353; C. 1901 II, 377. Verwendung zur Darstellung von Farbstoffen durch Einw. auf Oxyazofarbstoffe, Phthaleinfarbstoffe, Azinfarbstoffe usw.: H. F., D. R. P. 123613, 130034, 130035; C. 1901 II, 875; 1902 I, 900, 960. C₇H₁₀N₂ + HCl (bei 100°) (C.). C₇H₁₀N₂ + 2 HCl. Schuppen (aus Alkohol) (G.). Pikrat C₇H₁₀N₂ + C₆H₃O₇N₃. Citronengelbe Nadeln (aus Alkohol) (G.).

— Benzoat $C_7H_{10}N_2+C_7H_8O_8$. Blättchen. F: 167°; leicht löslich in Wasser und Alkohol, schwer in Benzol (Busch, J. pr. [2] 51, 125).

[2-Amino-bensyl]-methylamin C₂H₁₂N₂ = H₂N·C₆H₄·CH₂·NH·CH₃. B. Aus [2-Nitro-benzyl]-methylamin (Bd. XII, S. 1076) mit Zinn und Salzsäure (Busch, J. pr. [2] 51, 131) oder mit Jodwasserstoffsäure und rotem Phosphor (Gabriel, Colman, B. 37, 3646). — Ol. — Beim Kochen mit Ameisensäure und Natriumformiat entsteht 3-Methyl-chinazolindihydrid C₆H₄·N·CH₃ (Syst. No. 3474) (G., C.). — C₈H₁₂N₂+2HCl. Blättchen (aus absol. Alkohol). F: 217°; sehr wenig löslich in absol. Alkohol (B.).

[2-Amino-benzyl]-äthylamin $C_9H_{14}N_9=H_2N\cdot C_8H_4\cdot CH_2\cdot NH\cdot C_2H_5$. B. Aus [2-Nitrobenzyl]-äthylamin (Bd. XII, S. 1076) mit Zinn und Salzsäure (Busch, J. pr. [2] 51, 133). — Öl. — $C_9H_{14}N_9+2$ HCl. Säulen (aus Alkohol). F: 210°. Schwer löslich in Alkohol. — Oxalat $C_9H_{14}N_2+C_2H_2O_4$. Blättchen (aus Alkohol). F: 184°.

[2-Amino-bensyl]-anilin C₁₃H₁₄N₂ = H₂N·C₆H₄·CH₂·NH·C₆H₅. B. Durch Reduktion einer essigsauren Lösung von [2-Nitro-benzyl]-anilin (Bd. XII, S. 1076) mit Zinkstaub (Söderbaum, Widman, B. 23, 2193). Man erhitzt 2-Nitro-benzylchlorid (Bd. V, S. 327) und Anilin 10 Minuten auf dem Wasserbad und behandelt das Reaktionsprodukt in Alkohol mit Natriumamalgam (Baezner, Gardiol., B. 39, 2623). Beim Erwärmen von N-[2-Aminobenzyl]-acetanilid (S. 169) mit rauchender Salzsäure (Widman, J. pr. [2] 47, 353). Entsteht bei der Reduktion von Phenyl-[2-nitro-benzyl]-nitrosamin (Bd. XII, S. 1082) mit Natriumamalgam (+ Alkohol) (Busch, B. 27, 2900). — Darst. Man trägt 2 Tle. Zinkstaub in die Lösung von 1 Tl. [2-Nitro-benzyl]-anilin in 10 Tln. Eisessig bei 15—20° ein, filtriert, fällt das Filtrat mit dem doppelten Vol. Wasser und filtriert vom gefällten öligen 2-Phenyl-indazol C₆H₄ N·C₆H₅ (Syst. No. 3473) sofort ab; das Filtrat wird nahezu neutralisiert (Busch, J. pr. [2] 51, 261). — Nadeln (aus Alkohol). F: 86—87° (Busch, B. 25, 449), 82° (W.), 81—82° (S., W.), 81° (Bae., G.). Leicht löslich in den meisten organischen Lösungsmitteln, schwer löslich in Ligroin (Busch, J. pr. [2] 51, 262). — Salpetrige Säure erzeugt das Phenylbenzotriazindihydrid C₆H₄ N·C₆H₅ (Syst. No. 3804) (Busch, B. 25, 449). Beim Erhitzen mit β-Naphthol in einem Gemisch von konz. Salzsäure und Eisessig entsteht das Benzoacridin der Formel I (Syst. No. 3091); analog entsteht mit 2.7-Dioxy-naphthalin das Oxybenzo-

acridin der Formel II (Syst. No. 3120) (BAE., G.). [2-Amino-benzyl]-anilin gibt mit Formaldehyd und alkoh. Kalilauge 3-Phenyl-chinazolin-tetrahydrid-(1.2.3.4) C_6H_4 C_{H_2} $N+C_6H_5$ (Syst. No. 3470) (Busch, Dietz, J. pr. [2] 53, 420). Mit COCl₂ in Toluol entsteht 3-Phenyl-2-oxo-chinazolin-tetrahydrid-(1.2.3.4) C_6H_4 $N+C_0$ (Syst. No. 3567), mit CS₂ in Gegenwart von alkoh. Kalilauge wird 3-Phenyl-2-thion-chinazolin-tetrahydrid-(1.2.3.4) C_6H_4 $N+C_6$ (Syst. No. 3567) gebildet (Busch, B. 25, 2856). $C_{12}H_{14}N_2 + 2$ HCl. Tafeln oder Prismen. F: 183—1856 (W.).

N-[2-Amino-benzyl]-2-chlor-anilin C₁₃H₁₃N₂Cl = H₂N·C₆H₄·CH₂·NH·C₆H₄Cl. B. Entsteht neben anderen Produkten bei der Reduktion von N-[2-Nitro-benzyl]-2-chlor-anilin (Bd. XII, S. 1077) mit Zinkstaub und Eisessig; man verdünnt mit Wasser und versetzt die filtrierte Lösung mit Natronlauge (Busch, Brunner, J. pr. [2] 52, 375). — Nadeln (aus verd. Alkohol). F: 58°. Leicht löslich in Äther, Benzol und warmem Alkohol. — CS₂ erzeugt 3-[2-Chlor-phenyl]-2-thion-chinazolin-tetrahydrid-(1.2.3.4) C₆H₄·N·C₆H₄Cl (Syst. No. 3567). — C₁₃H₁₃N₂Cl+HCl. Nadeln (aus Äther). F: 152°.

N-[2-Amino-benzyl]-3-chlor-anilin $C_{13}H_{13}N_{12}Cl = H_{1}N\cdot C_{6}H_{4}\cdot CH_{2}\cdot NH\cdot C_{1}\cdot Cl$. Entsteht neben 2-[3-Chlor-phenyl]-indazol (Syst. No. 3473) bei der Reduktion von N-[2-Nitrobenzyl]-3-chlor-anilin (Bd. XII, S. 1077) mit Zinkstaub und Eisessig; man fällt durch Natron-

lauge, löst den entstandenen Niederschlag in Alkohol und versetzt die Lösung mit verd. Salzsäure, wobei sich nur Chlorphenylindazol abscheidet (Busch, Francis, J. pr. [2] 52, 378). — Öl. — Das salzsaure Salz gibt mit Isoamylnitrit das Chlorphenylbenzotriazindihydrid C_6H_4 N = N (Syst. No. 3804). CS_2 erzeugt 3-[3-Chlor-phenyl]-2-thion-chinazolin-

N-[2-Amino-bensyl]-4-chlor-anilin $C_{13}H_{13}N_2Cl = H_2N \cdot C_4H_4 \cdot CH_2 \cdot NH \cdot C_4H_4Cl$. B. Entsteht neben 2-[4-Chlor-phenyl]-indazol (Syst. No. 3473) bei der Reduktion von N-[2-Nitrobenzyl]-4-chlor-anilin (Bd. XII, S. 1077) mit Zinkstaub und Eisessig; man fällt das Chlor-phenylindazol durch Wasser und saugt sofort ab (Busch, Volkening, J. pr. [2] 52, 381). — Nadeln (aus verd. Alkohol). F: 89—90°. Leicht löslich in den meisten organischen Lösungsmitteln. — Salpetrige Säure erzeugt das Chlorphenylbensotriazindihydrid

CH₂·N·C₆H₄Cl (Syst. No. 3804). — C₁₃H₁₅N₂Cl+HCl. Krystalle. — C₁₃H₁₃N₂Cl+ 2HCl. Verliert bei 50—60° 1 Mol.-Gew. HCl.

N-[2-Amino-bensyl]-4-brom-anilin $C_{13}H_{12}N_3Br = H_2N\cdot C_2H_4\cdot CH_2\cdot NH\cdot C_0H_4Br$. B. Durch Reduktion von N-[2-Nitro-benzyl]-4-brom-anilin (Bd. XII, S. 1077) mit Zinkstaub und Eisessig bei höchstens 25—30° (Paal, Koch, J. pr. [2] 48, 550). — Nadeln (aus Alkohol). F: 104°; leicht löslich in Alkohol, Eisessig und Benzol, mäßig in Äther und Ligroin (P., K.). — $C_{13}H_{13}N_3Br + 2$ HCl. Blättchen. F: 93—94° (Busch, Heinen, J. pr. [2] 52, 389). — Oxalat $C_{13}H_{13}N_3Br + C_3H_2O_4$. Krystallinisch. F: 127° (B., H.).

[2-Amino-bensyl]-o-toluidin $C_{14}H_{16}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Bei der Reduktion von [2-Nitro-benzyl]-o-toluidin (Bd. XII, S. 1078), neben anderen Produkten (Busch, Francis, J. pr. [2] 51, 272). — Nadeln (aus Alkohol). F: 94°; leicht löslich in Alkohol, Ather, Chloroform und Benzol (B., F.). — Mit Formaldehydlösung und alkoh. Kali-

Alkohol, Ather, Chloroform und Benzol (B., F.). — Mit Formaldehydlösung und alkoh. Kalilauge entsteht 3-o-Tolyl-chinazolin-tetrahydrid-(1.2.3.4) C_6H_4 CH_3 $N \cdot C_6H_4$ CH_3 (Syst. No. 3470) (Buson, Dietz, J. pr. [2] 58, 421). — $C_{14}H_{16}N_3 + 2HCl$. F: 180—181° (B., F.).

[2-Amino-bensyl]-p-toluidin $C_{12}H_{12}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Man versetzt eine Lösung von 1 Tl. [2-Nitro-bensyl]-p-toluidin (Bd. XII, S. 1078) in Eisessig all-mählich mit 2 Tln. Zinkstaub, so daß die Temperatur nicht über 30° steigt (Söderbaum, Widman, B. 23, 2189; vgl. Lellmann, Stickel, B. 19, 1610). — Blätter oder Tafeln (aus Alkohol) oder Nadeln (aus Ligroin + Bensol). F: 80,5° (S., W.), 84—85° (Busch, B. 25, 450). Unlöslich in Ligroin, leicht löslich in Bensol, Chloroform und Alkohol (S., W.). Essigsäureanhydrid erzeugt stets N-[2-Acetamino-bensyl]-[acet-p-toluidid] (S. 170) (S., W.). — $C_{14}H_{16}N_2 + 2$ HCl. Säulen (Busch).

2-Amino-dibensylamin $C_{14}H_{16}N_2=H_2N\cdot C_0H_4\cdot CH_2\cdot NH\cdot CH_2\cdot C_0H_5$. B. Aus 2-Nitro-dibensylamin (Bd. XII, S. 1078) mit Zinn und Salzsäure (Busch, Dormeir, J. pr. [2] 51, 259). — Öl. — $C_{14}H_{16}N_2+2HCl$. Nädelchen (aus absol. Alkohol). F: 210°. Schwer löslich in absol. Alkohol.

[3-Bensylamino-bensyl]-anilin $C_{20}H_{20}N_3=C_0H_5\cdot CH_2\cdot NH\cdot C_0H_4\cdot CH_2\cdot NH\cdot C_0H_5$. B. Bei der Reduktion von [2-Bensalamino-bensyl]-anilin (S. 168) mit 2 Tln. Natrium (+ absol. Alkohol) (Buson, Rögglen, B. 27, 3239). — Blättehen (aus Alkohol). F: 88°. Leicht löslich in Benzol und Äther. — Liefert mit Benzaldehyd auf dem Wasserbad 1-Benzyl-2.3-diphenyl-chinazolin-tetrahydrid-(1.2.3.4) C_0H_4 CH_2 $N(CH_2\cdot C_0H_3)\cdot CH\cdot C_0H_5$ (Syst. No. 3486). Mit COCl₂ entsteht 1¹-[Chlorformyl-anilino]-2-[chlorformyl-bensylamino]-toluol (S. 172). — $C_{20}H_{20}N_2$ + 2 HCl. Nadeln. Färbt sich gegen 135° rötlich, wird gegen 160° wieder farblos und schmilzt unscharf bei etwa 170° unter Aufschäumen. Sehr leicht löslich in Alkohol. Wird in neutraler wäßr. Lösung dissoziiert.

[S-Amino-bensyl]-a-naphthylamin $C_{17}H_{16}N_2=H_2N\cdot C_6H_4\cdot CH_3\cdot NH\cdot C_{16}H_7$. B. Bei der Reduktion von [2-Nitro-bensyl]-a-naphthylamin (Bd. XII, S. 1226) mit Zinkstaub und Eisessig bei 10—16° (Busch, Brand, J. pr. [2] 52, 406). — Blättchen (aus Alkohol). F: 134°. Leicht löslich in Bensol, schwerer in Alkohol, schwer in Äther und Ligroin. Die Lösungen fluorescieren blaurot. — $C_{17}H_{16}N_2+2HCl$, Sehr zerfließliche Krystalle (aus Alkohol + Ather). Leicht löslich in Alkohol. — $C_{17}H_{16}N_2+2H_2SO_4$ (im Exsiccator getrocknet). Zerfließliche Nadeln (aus Alkohol).

[3-Amino-bensyl]- β -naphthylamin $C_{17}H_{16}N_3=H_2N\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_{16}H_7$. B. Bei der Reduktion von [2-Nitro-bensyl]- β -naphthylamin (Bd. XII, S. 1278) mit Zink und Essig-

säure bei nicht viel oberhalb 10° (Busch, Brand, J. pr. [2] 52, 411). In geringer Menge durch Reduktion von [2-Nitro-benzyl]-β-naphthylamin mit Zinnchlorür und Salzsäure, neben großen Mengen einer zähen, in verd. Säuren fast unlöslichen Masse (Darier, Manassewitch, Bl. [3] 27, 1059). — Blättchen. F: 99° (Bu., Br.). Leicht löslich in Benzol, schwerer in Alkohol, schwer in Äther, Ligroin (Bu., Br.). Die Lösungen fluorescieren blauviolett (Bu., Br.). — Mit Formaldehyd entsteht 3-β-Naphthyl-chinazolin-tetrahydrid-(1.2.3.4) C₀H₄ N·C₁₀H₇ NH·CH₅

(Syst. No. 3470) (Bu., Br.). — $C_{17}H_{16}N_2 + 2HCl$. Hellgelbe Blättchen. Löslich in heißem, schwer löslich in kaltem, unlöslich in angesäuertem Wasser (D., M.).

[2-Bensalamino-bensyl]-anilin $C_{30}H_{18}N_2 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5$. B.: 1—3-stdg. Erwärmen. von 1 Mol.-Gew. [2-Amino-benzyl]-anilin (S. 166) mit wenig mehr als 1 Mol.-Gew. Benzaldehyd auf 100° (Busch, Rögglen, B. 27, 3241). — Spieße (aus Alkohol). F: 107—108°. Leicht löslich in den meisten organischen Lösungsmitteln außer Ligroin. — Liefert mit Natrium (+ Alkohol) [2-Benzylamino-benzyl]-anilin (S. 167).

N-[2-Bengalamino-bengyl]-4-chlor-anilin $C_{50}H_{17}N_{5}Cl = C_{6}H_{5}\cdot CH:N\cdot C_{6}H_{4}\cdot CH_{2}\cdot NH\cdot C_{6}H_{4}Cl.$ B. Bei kurzem Kochen von N-[2-Amino-benzyl]-4-chlor-anilin (S. 167), gelöst in wenig absol. Alkohol, mit wenig überschüssigem Benzaldehyd (Busch, Volkening, J. pr. [2] 52, 332). — Nadeln (aus Ligroin). F: 115—116°. Leicht löslich in heißem Benzol und Alkohol, schwer in Äther und Ligroin.

N-[2-Bensalamino-bensyl]-4-brom-anilin $C_{20}H_{17}N_{2}Br = C_{0}H_{5} \cdot CH : N \cdot C_{0}H_{4} \cdot CH_{2} \cdot NH \cdot C_{0}H_{4}Br$. B. Durch kurzes Erwärmen der konzentrierten alkoholischen Lösung von N-[2-Amino-benzyl]-4-brom-anilin (S. 167) und Benzaldehyd (Busch, Heinen, J. pr. [2] 52, 390). — Nadeln (aus absol. Alkohol). F: 122°. Leicht löslich in Chloroform und CS_{2} , schwer in Alkohol, Benzol und Ligroin.

[2-(2-Nitro-bensalamino)-bensyl]-anilin $C_{20}H_{17}O_{2}N_{3}=O_{2}N\cdot C_{6}H_{4}\cdot CH:N\cdot C_{6}H_{4}\cdot CH_{5}\cdot NH\cdot C_{6}H_{5}\cdot B$. Aus [2-Amino-benzyl]-anilin (S. 166) und 2-Nitro-benzaldehyd (Busch, Rögglen, B. 27, 3246, 3247). — Gelbe Blättchen. F: 132—134°. Leicht löslich in den gebräuchlichen Lösungsmitteln.

N-[2-(3-Nitro-bensalamino)-bensyl]-4-chlor-anilin $C_{20}H_{16}O_2N_3Cl=O_2N\cdot C_6H_4\cdot CH: N\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_6H_4\cdot Cl.$ B. Aus N-[2-Amino-benzyl]-4-chlor-anilin (S. 167) und 3-Nitro-benzaldehyd (Busch, Volkening, J. pr. [2] 52, 383). — Krystalle (aus Alkohol). F: 86°. Schwer löslich in Alkohol, Äther und Chloroform, fast unlöslich in Ligroin.

N-[2-(4-Nitro-bensalamino)-bensyl]-4-brom-anilin $C_{50}H_{16}O_{5}N_{5}Br = O_{5}N \cdot C_{6}H_{4} \cdot CH: N \cdot C_{6}H_{4} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4}Br. B.$ Aus N-[2-Amino-benzyl]-4-brom-anilin (8. 167) und 4-Nitro-benzaldehyd (Busch, Heinen, J. pr. [2] 52, 391). — Krystalle (aus absol. Alkohol). F: 144°. Sehr wenig löslich in den gewöhnlichen Lösungsmitteln, außer in Eisessig und Benzol.

[2-Bensalamino-bensyl]-a-naphthylamin $C_{2a}H_{2e}N_2 = C_{6}H_{5} \cdot CH : N \cdot C_{6}H_{4} \cdot CH_{5} \cdot NH \cdot C_{10}H_{7}$. B. Aus [2-Amino-benzyl]-a-naphthylamin (8. 167) und Benzaldehyd auf dem Wasserbad (Busch, Brand, J. pr. [2] 52, 408). — Nadeln (aus Benzol + Ligroin). F: 107°. Sehr leicht löslich in Benzol und Chloroform, schwer in Äther und Ligroin.

[2-Bensalamino-bensyl]- β -naphthylamin $C_{24}H_{20}N_3 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Aus [2-Amino-benzyl]- β -naphthylamin (8. 167) und Benzaldehyd (Busch, Brand, J. pr. [2] 52, 412). — Nadeln (aus Alkohol). F: 122°. Leicht löslich in Chloroform und Benzol, schwer in Äther und Alkohol.

2.1-Bis-[2-nitro-bensalamino]-toluol, Bis-[2-nitro-bensal]-Derivat des 2-Amino-bensylamins $C_{21}H_{16}O_4N_4=O_2N\cdot C_6H_6\cdot CH:N\cdot C_6H_4\cdot CH_2\cdot N:CH\cdot C_6H_6\cdot NO_2$. B. Bei kurzem Erwärmen von 1 Mol.-Gew. 2-Amino-benzylamin mit 2 Mol.-Gew. 2-Nitro-benzaldehyd und Alkohol (Busch, Dietz, J. pr. [2] 53, 424). — Gelbe Säulen (aus Alkohol). F: 128°. Leicht löslich in Benzol und Chloroform, ziemlich schwer in Äther und Alkohol, fast unlöslich in Ligroin.

[2-Salicylalamino-bensyl]-anilin $C_{20}H_{10}ON_2 = HO \cdot C_4H_4 \cdot CH : N \cdot C_4H_4 \cdot CH_2 \cdot NH \cdot C_4H_3$. B. Aus [2-Amino-benzyl]-anilin und Salicylaldehyd (Busch, Rögglen, B. 27, 3247).—Gelbe Nadeln. F: 124°. Leicht löslich in den gebräuchlichen Lösungsmitteln.

N-[2-Salicylalamino-bensyl]-4-chlor-anilin $C_{p}H_{17}ON_{p}Cl = HO \cdot C_{p}H_{4} \cdot CH : N \cdot C_{p}H_{4} \cdot CH_{4} \cdot NH \cdot NH \cdot CH_{4} \cdot NH \cdot CH_{$

N-[2-Salicylalamino-bensyl]-4-brom-anilin $C_{so}H_{tr}ON_{s}Br = HO \cdot C_{e}H_{d} \cdot CH : N \cdot C_{e}H_{d} \cdot CH_{s} \cdot NH \cdot C_{e}H_{d}Br.$ B. Aus N-[2-Amino-benzyl]-4-brom-anilin (S. 167) und Salicylaldehyd (Busch, Heinen, J. pr. [2] 52, 390). — Gelbe Prismen (aus Alkohol). F: 143—144°. Leicht löslich in den meisten Lösungsmitteln.

- [2-Salicylalamino-bensyl]-a-naphthylamin $C_{24}H_{20}ON_2 = HO \cdot C_4H_4 \cdot CH : N \cdot C_4H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Aus [2-Amino-benzyl]-a-naphthylamin (S. 167) und Salicylaldehyd (Busch, Brand, J. pr. [2] 52, 409). Gelbe Nadeln (aus Alkohol). F: 162°. Leicht lösläch in Benzol und Chloroform, schwer in Alkohol, Äther und Ligroin.
- [2-Salicylalamino-bensyl]- β -naphthylamin $C_{24}H_{20}ON_8=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_{10}H_7$. B. Aus [2-Amino-benzyl]- β -naphthylamin (S. 167) und Salicylaldehyd (Bu., Br., J. pr. [2] 52, 412). Gelbe Blättchen. F:117°. Leicht löslich in Benzol und Chloroform, schwer in Ather und Alkohol.
- 2.1¹-Bis-salicylalamino-toluol, Disalicylalderivat des 2-Amino-benzylamins $C_{s1}H_{16}O_sN_2=HO\cdot C_0H_4\cdot CH:N\cdot C_0H_4\cdot CH_2\cdot N:CH\cdot C_0H_4\cdot OH.$ B. Aus 2-Amino-benzylamin, Salicylaldehyd und Alkohol (Busch, Dietz, J. pr. [2] 53, 426). Gelbe Prismen oder Nädelchen (aus Alkohol). F: 107—108°. Leicht löslich in Alkohol und Benzol. Zerfällt mit Säuren sehon in der Kälte in Salicylaldehyd und 2-Amino-benzylamin.
- 2-Acetamino-bensylamin $C_0H_{12}ON_2 = CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot CH_2 \cdot NH_2$. B. Man trägt in eine gekühlte und durch Zusatz von Eisessig stets sauer gehaltene Lösung von 2-Acetamino-benzaldoxim (Syst. No. 1873) in 800 ccm Alkohol überschüssiges $2^1/2^0/0$ iges Natriumamalgam ein (BISCHLER, B. 26, 1892). Öl. Beim Abdampfen mit Salzsäure oder beim Erhitzen mit ZnCl₂ auf 200° entsteht 2-Methyl-chinazolindihydrid (Syst. No. 3475).
- N-[2-Amino-bensyl]-acetamid C₂H₁₂ON₂ = H₂N·C₂H₄·CH₂·NH·CO·CH₃. B. Durch Reduktion einer mit 50 ccm Salzsäure (D:·1,13) versetzten, gekühlten Lösung von 5 g N-[2-Nitro-benzyl]-acetamid (Bd. XII, S. 1081) mit Zink (Gabriel, Jansen, B. 23, 2812). Nadeln (aus heißem Wasser). F: 112,5—113,5°. Liefert bei der Destillation 2-Methylchinazolindihydrid (Syst. No. 3475).
- [3-Acetamino-bensyl]-anilin $C_{15}H_{16}ON_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5$. B. Entsteht neben 3-Phenyl-2-methyl-chinazolindihydrid (Syst. No. 3475) bei der Reduktion einer alkoh. Lösung von N-[2-Nitro-benzyl]-acetanilid (Bd. XII, S. 1081) mit Zinn und Salzsäure (Paal, Krecke, B. 24, 3051). Bei mehrtägigem Stehen von N-[2-Amino-benzyl]-acetanilid (s. u.) mit sehr verd. Salzsäure (Widman, J. pr. [2] 47, 357). Prismen (aus Alkohol), Blätter (aus heißem Wasser). F: 126—127° (P., K.), 125° (W.). Leicht löslich in Alkohol, CS₃, Eisesaig und Benzol (P., K.). Bei der Destillation entsteht 3-Phenyl-2-methyl-chinazolin-dihydrid (P., K.). KMnO₄ erzeugt in alkal. Lösung 2-Acetamino-benzoesäure (?) und Azobenzol (P., K.; W.). $C_{15}H_{16}ON_2 + HCl$. Nadeln. F: 180° (W.). $C_{15}H_{16}ON_2 + H_2SO_4$. Nadeln. F: 163° (P., K.). $C_{15}H_{16}ON_3 + HCl + SnCl_2$. F: 110—115°. Leicht löslich in Wasser und Alkohol (P., K.).
- N-[2-Acetamino-bensyl]-4-chlor-anilin $C_{15}H_{15}ON_3Cl = CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot CH_3\cdot NH\cdot C_6H_4Cl$. B. Bei 2—3-stdg. Kochen von N-[2-Amino-benzyl]-4-chlor-anilin (S. 167) mit Essigsäureanhydrid (Busch, Volkening, J. pr. [2] 52, 384). Prismen (aus Alkohol). F: 188°. Leicht löslich in heißem Benzol.
- N-[2-Acetamino-bensyl]-4-brom-anilin C₁₅H₁₅ON₂Br = CH₂·CO·NH·C₆H₄·CH₂·NH·C₆H₄Br. B. Bei 5-tägigem Stehen von N-[2-Amino-benzyl]-N-acetyl-4-brom-anilin (S. 170) mit verd. Salzsäure (Widman, J. pr. [2] 47, 359). Beim Kochen des N-[2-Amino-benzyl]-4-brom-anilins (S. 167) mit Essigsäureanhydrid (Busch, Heinen, J. pr. [2] 52, 391). Prismen (aus Alkohol). F: 148—149° (W.), 138° (B., H.). Leicht löslich in Alkohol, Benzol und Chloroform, sehr wenig in Äther und Ligroin (B., H.).
- [2-Acetamino-bensyl]-p-toluidin $C_{16}H_{18}ON_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4$ $CH_4 \cdot B$. Bei 5—6-tägigem Stehen von N-[2-Amino-benzyl]-[acet-p-toluidid] (S. 170) mit verd. Salzsäure (WIDMAN, J. pr. [2] 47, 354). Aus N-[2-Nitro-benzyl]-[acet-p-toluidid] (Bd. XII, S. 1081) mit Zinkstaub und Salzsäure (W.). Nadeln. F: 141°. Sehr schwer löslich in kaltem Alkohol, Äther und Ligroin, leicht in Chloroform. Bei der Destillation oder beim Erwärmen mit rauchender Salzsäure entsteht [2-Amino-benzyl]-p-toluidin (S. 167).
- N-Methyl-N-[2-amino-bensyl]-acetamid $C_{10}H_{14}ON_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot N(CH_2) \cdot CO \cdot CH_2$. B. Man übergießt 1 g N-Methyl-N-[2-nitro-benzyl]-acetamid (Bd. XII, S. 1081) mit je 15 com Wasser und konz. Salzsäure, kühlt mit Wasser und fügt Zinkblech hinzu (Gabriel, Jansen, B. 24, 3096). Krystallpulver (aus Äther). F: 94—95°. Zerfällt beim Erhitzen zum Sieden in 2.3-Dimethyl-chinazolindihydrid (Syst. No. 3475) und H_2O .
- N-[2-Amino-bensyl]-acetanilid C₁₂H₁₀ON₃=H₂N·C₆H₄·CH₂·N(C₆H₃)·CO·CH₃. B. Beim Behandeln von N-[2-Nitro-benzyl]-acetanilid (Bd. XII, S. 1081) mit Zinkstaub und 50% iger Essigsäure (Widman, J. pr. [2] 47, 350). Täfelchen (aus verd. Alkohol). F: 80—81°. Beim Erwärmen mit rauchender Salzsäure entsteht [2-Amino-benzyl]-anilin (S. 166). Wandelt sich bei mehrtägigem Stehen mit verd. Salzsäure in [2-Acetamino-benzyl]-anilin (s. c.) um. Bei kurzem Kochen mit alkoh. Salzsäure entsteht 3-Phenyl-2-methyl-chinazolindihydrid (Syst. No. 3475).

N-[2-Amino-benzyl]-N-acetyl-4-brom-anilin $C_{15}H_{15}ON_2Br = H_2N\cdot C_6H_4\cdot CH_2\cdot N(C_6H_4Br)\cdot CO\cdot CH_3$. B. Beim Eintragen von 4 g Zinkstaub in ein stark gekühltes Gemisch aus 3 g N-[2-Nitro-benzyl]-N-acetyl-4-brom-anilin (Bd. XII, S. 1081), 50 g Eisessig und 20 g Salzsäure (Widman, J. pr. [2] 47, 352). — Tafeln (aus Alkohol). Monoklin-prismatisch (Nordenskjöld, J. pr. [2] 47, 352; vgl. Groth, Ch. Kr. 5, 155). — Geht durch mehrtägiges Stehen mit verd. Salzsäure in N-[2-Acetamino-benzyl]-4-brom-anilin (S. 169) über. Beim Kochen mit alkoholischer Salzsäure resultiert 3 - [4-Brom-phenyl]-2-methyl-chinazolin-dihydrid (Syst. No. 3475).

N-[2-Acetamino-benzyl]-acetanilid C₁₇H₁₈O₂N₃ = CH₃·CO·NH·C₆H₄·CH₂·N(C₆H₅)·CO·CH₃. B. Beim Kochen von N-[2-Amino-benzyl]-acetanilid (S. 169) (PAAL, KRECKE, B. 24, 3053) oder auch von N.N'-Diphenyl-N-[2-amino-benzyl]-harnstoff (S. 171) (PAAL, Weil, B. 27, 42) mit Essigsäureanhydrid. Aus [2-Amino-benzyl]-anilin und Essigsäureanhydrid (Busch, J. pr. [2] 51, 262). — Täfelchen (aus verd. Alkohol). F: 121° (P., K.), 124° (B.).

N-[2-Amino-bensyl]-[acet-p-toluidid] $C_{16}H_{18}ON_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot N(C_6H_4 \cdot CH_2) \cdot CO \cdot CH_3$. B. Bei allmählichem Eintragen von 8 g Zinkstaub in eine gekühlte Lösung von 3 g N-[2-Nitro-benzyl]-[acet-p-toluidid] (Bd. XII, S. 1081) in 20 ccm Alkohol und 30 ccm Salzsäure; die Temperatur darf nicht über 20° steigen (Söderbaum, Widman, B. 23, 2191). — Krystalle (aus Alkohol). Monoklin prismatisch (Nordenskjöld, J. pr. [2] 47, 349; vgl. Groth, Ch. K.: 5, 160). F: 99° (S., W.). Sehr leicht löslich in Benzol, schwerer in kaltem Alkohol und in Ligroin (S., W.). — Wandelt sich beim Stehen mit verd. Salzsäure in [2-Acetamino-benzyl]-p-toluidin (S. 169) um (Widman, J. pr. [2] 47, 354). Beim Kochen mit Alkohol und Salzsäure entsteht 3-p-Tolyl-2-methyl-chinazolindihydrid (Syst. No. 3475) (W., J. pr. [2] 47, 361).

N-[2-Acetamino-benzyl]-[acet-p-toluidid] $C_{18}H_{20}O_{2}N_{2}=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot CH_{2}\cdot N(C_{6}H_{4}\cdot CH_{3})\cdot CO\cdot CH_{3}$. B. Beim Kochen von [2-Amino-benzyl]-p-toluidin (S. 167) mit Essigsäureanhydrid (Söderbaum, Widman, B. 23, 2190). — Tafeln. F: 185—186°. Schwer löslich in heißem Alkohol und Äther.

N-[2-(Acetylbenzylamino)-benzyl]-acetanilid $C_{24}H_{24}O_2N_2=CH_3\cdot CO\cdot N(CH_3\cdot C_4H_5)\cdot C_6H_4\cdot CH_3\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Aus [2-Benzylamino-benzyl]-anilin (S. 167) und Essigsäureanhydrid (Busch, Rögglen, B. 27, 3242). — Nadeln (aus Alkohol). F: 173°.

N-[2-Acetamino-benzyl]-N- β -naphthyl-acetamid $C_{21}H_{20}O_2N_2=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot CH_2\cdot N(C_{10}H_7)\cdot CO\cdot CH_2$. B. Aus [2-Amino-benzyl]- β -naphthylamin (S. 167) und Essigsäureanhydrid durch 6-stdg. Kochen (Busch, Brand, J. pr. [2] 52, 413). — Krystalle (aus verd. Alkohol). F: 116°. Schwer löslich in Äther, Benzol und Eisessig, fast unlöslich in Ligroin.

N-[2-Amino-bensyl]-propionamid $C_{10}H_{14}ON_2 = H_2N \cdot C_0H_4 \cdot CH_2 \cdot NH \cdot CO \cdot CH_3 \cdot CH_3$. B. Aus 10 g N-[2-Nitro-benzyl]-propionamid (Bd. XII, S. 1081) in Alkohol mit 100 ccm Salzsaure (D: 1,13) und Zink (Wolff, B. 25, 3037). — Krystallmasse. F: 68—70°. — Beim Erhitzen entsteht 2-Athyl-chinazolindihydrid (Syst. No. 3476). — $C_{10}H_{14}ON_2 + HCl$. Krystalle. — $2C_{10}H_{14}ON_2 + 2HCl + PtCl_4$. Schmilzt unter Zersetzung bei 184°.

N-[2-Amino-bensyl]-bensamid $C_{14}H_{14}ON_3=H_2N\cdot C_4H_4\cdot CH_3\cdot NH\cdot CO\cdot C_6H_5$. B. Durch Reduktion einer mit 50 ccm Salzsäure (D: 1,13) versetzten, gekühlten Lösung von 5 g N-[2-Nitro-benzyl]-benzamid (Bd. XII, S. 1081) in 96% jegem Alkohol mit Zink (Gabriel, Jansen, B. 23, 2809). — Nadeln (aus Benzol). F: 108—109° (J., Diss. [Berlin 1891], S. 20). Leicht löslich in Alkohol, Äther und Chloroform, schwerer in Benzol, schwer in Ligroin (G., J.). — Liefert beim Erhitzen auf 250° 2-Phenyl-chinazolindihydrid (Syst. No. 3487) (Wolff, B. 25, 3032), während bei der Destillation 2-Phenyl-chinazolin (Syst. No. 3488) o-Toluidin und Benzonitril entstehen (G., J.).

[2-Bensamino-bensyl]-anilin $C_{20}H_{18}ON_2 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5$. B. Bei 2-stg. Erhitzen von 1 Teil 2-Benzamino-benzylchlorid (Bd. XII, S. 837) mit 3 Teilen Anilin auf 100° (Gabriel, Posner, B. 27, 3524). Aus 3-Phenyl-chinazolin-tetrahydrid-(1.2.3.4) $C_6H_4 \cdot CH_2 \cdot N \cdot C_6H_5$ (Syst. No. 3470) und Benzoylchlorid in Pyridin (Heller, Kühn, B. 37, 3118). — Nadeln (aus Alkohol). F: 113—114° (G., P.).

N-[2-Acetamino-bensyl]-bensamid $C_{16}H_{16}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 2-Acetamino-bensylamin (S. 169) und Bensoesäureanhydrid (BISCHLER, B. 26, 1892). — Asbestartige Nädelchen (aus verd. Alkohol). F: 170°. Schwer löslich in kaltem Alkohol, unlöslich in Ligroin.

N-[2-Amino-bensyl]-bensanilid $C_{20}H_{10}ON_2=H_2^*N\cdot C_0^*H_4\cdot CH_2\cdot N(C_0^*H_2)\cdot CO\cdot C_0^*H_3$. B. Durch allmähliche Reduktion von N-[2-Nitro-benzyl]-benzanilid (Bd. XII, S. 1081) mit Zinkstaub und Eisessig (Söderbaum, Widman, B. 28, 2193; vgl. Lellmann, Stickel, B. 19, 1608). Aus N-[2-Nitro-benzyl]-benzanilid, gelöst in Alkohol, mit Salzsäure und Zink-

streifen (Gabriel, Posner, B. 27, 3525). — Vierseitige Nadeln (aus Alkohol). F: 115° (S., W.), 119° (G., P.).

N-[2-Acetamino-bensyl]-bensanilid $C_{22}H_{20}O_2N_3=CH_2\cdot CO\cdot NH\cdot C_2H_4\cdot CH_2\cdot N(C_2H_5)\cdot CO\cdot C_2H_5$. Beim Kochen von N-[2-Amino-bensyl]-bensanilid mit Essigsäureanhydrid (SÖDERBAUM, WIDMAN, B. 23, 2194). — Krystalle (aus Alkohol). F: 164—165°. Leicht löslich in warmem Alkohol.

N-[2-Bensamino-bensyl]-bensanilid $C_{27}H_{22}O_2N_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_4\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot C_6H_5$. B. Aus 3-Phenyl-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3470) und Benzoylchlorid in Pyridin (Heller, Kühn, B. 37, 3118). — Viereckige Platten (aus Toluol). F: 201—203°. Leicht löslich in heißem Ligroin, heißem Toluol, ziemlich schwer in Alkohol.

o-Toluylsäure-[2-amino-bensylamid] $C_{18}H_{16}ON_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_4 \cdot CH_3$. B. Man versetzt eine abgekühlte Lösung von 40 g o-Toluylsäure-[2-nitro-benzylamid] (Bd. XII, S. 1081) in 400 ccm 96 $^{\circ}/_{\circ}$ igem Alkohol mit 400 ccm Salzsäure (D: 1,13) und Zinkspänen (Wolff, B. 25, 3034). — Nadeln (aus Benzol). F: 114—116 $^{\circ}$. Leicht löslich in Alkohol, Ather und Chloroform, schwerer in Ligroin. — $C_{18}H_{16}ON_2 + HCl$. Nadeln. Schmilzt unter Schäumen bei 211—214 $^{\circ}$.

N-Phenyl-N'-[2-anilinomethyl-phenyl]-harnstoff $C_{20}H_{19}ON_3 = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5 \cdot B$. Aus [2-Amino-benzyl]-anilin und Phenylisocyanat, gelöst in Benzol (Paal, Well, B. 27, 45). — Nadeln oder Prismen (aus Alkohol). Schmilzt unscharf bei 102°. — Zerfällt oberhalb seines Schmelzpunktes in 3-Phenyl-2-oxo-chinazolin-tetrahydrid-(1.2.3.4) $C_6H_4 \cdot NH \cdot CO$ (Syst. No. 3567) und Anilin.

N.N'-Diphenyl-N-[2-amino-bensyl]-harnstoff $C_{20}H_{19}ON_3=H_{2}N\cdot C_{6}H_{4}\cdot CH_{3}\cdot N(C_{6}H_{5})\cdot CO\cdot NH\cdot C_{6}H_{5}\cdot B$. Durch Reduktion von N.N'-Diphenyl-N-[2-nitro-benzyl]-harnstoff (Bd. XII, S. 1082) mit Zinn und Salzsäure oder mit Zinkstaub und Eisessig (Paal, Weil, B. 27, 40). — Nadeln (aus Alkohol). F: 177°; wird von KMnO₄ oder CrO₅ + Eisessig völlig verbrannt; zerfällt beim Erhitzen über seinen Schmelzpunkt in 3-Phenyl-2-oxo-chin-azolin-tetrahydrid-(1.2.3.4) (Syst. No. 3567) und Anilin; beim Kochen mit Essigsäureanhydrid entstehen N-[2-Acetamino-benzyl]-acetanilid (S. 170) und Acetanilid (P., W.). — Salze: Paal, Hildenbrand, J. pr. [2] 55, 240. — $C_{20}H_{10}ON_3 + HCl$. Krystallpulver. F: 143—144°. Mäßig löslich in Wasser und Alkohol, unlöslich in Ather. — Oxalat $C_{20}H_{19}ON_3 + C_4H_3O_4$. Nadeln. F: 162°. — Pikrat $C_{20}H_{10}ON_3 + C_6H_3O_7N_3$. Goldgelbe Nädelchen. F: 164°. Fast unlöslich in Wasser, leicht löslich in Alkohol. — 2 $C_{20}H_{19}ON_3 + 2$ HCl + PtCl₄. Gelbe Nadeln. F: 187°.

N.N'-Diphenyl-N-[2-acetamino-bensyl]-harnstoff $C_{33}H_{31}O_{4}N_{5} = CH_{5}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot CH_{2}\cdot N(C_{6}H_{5})\cdot CO\cdot NH\cdot C_{5}H_{5}$. B. Bei kurzem Stehen von 1 Teil N.N'-Diphenyl-N-[2-amino-benzyl]-harnstoff mit 3 Teilen Essigsäureanhydrid (Paal, Hildenbrand, J. pr. [2] 55, 241). — Nadeln (aus verd. Alkohol). F: 145°. Leicht löslich in den meisten organischen Lösungsmitteln.

N.N'-Diphenyl-N-[2-bensamino-bensyl]-harnstoff $C_{27}H_{22}O_2N_3 = C_0H_3\cdot CO\cdot NH\cdot C_0H_4\cdot CH_3\cdot N(C_0H_5)\cdot CO\cdot NH\cdot C_0H_5\cdot

N.N'-Diphenyl-N-[2-(ω -phenyl-ureido)-bensyl]-harnstoff $C_{27}H_{44}O_8N_4=C_8H_8$. NH·Co·NH·C₆H₄·CH₂·N(C₆H₅)·Co·NH·C₆H₅. B. Beim Erwärmen von 1 Mol.-Gew. N.N'-Diphenyl-N-[2-amino-bensyl]-harnstoff mit 1 Mol.-Gew. Phenylisocyanat in Benzol auf dem Wasserbed (PAAL, HILDENBRAND, J. pr. [2] 55, 242). — Nadeln (aus verd. Alkohol). F: 139—140°. Leicht löslich in den meisten organischen Lösungsmitteln. — Zerfällt beim Schmelzen in N.N'-Diphenyl-harnstoff und 3-Phenyl-2-oxo-chinazolin-tetrahydrid-(1.2.3.4) C_6H_4 ·N·Co^H3 (Syst. No. 3567).

N.N'-Diphenyl-N-[2-(e-phenyl-thioureido)-bensyl]-harnstoff $C_{27}H_{24}ON_4S=C_4H_5$. NH·Cs·NH·C $_4H_4$ ·CH $_2$ ·N(C_6H_4)·CO·NH·C $_4H_5$. B. Aus 1 Mol.-Gew. N.N'-Diphenyl-N-[2-amino-bensyl]-harnstoff und 1 Mol.-Gew. Phenylsenföl bei 160° (Paal, Hildenbrand, J. pr. [2] 55, 244). — Nadeln (aus verd. Alkohol). F: 222°. Leicht löslich in Alkohol, Chloroform und Bensol.

N-Phenyl-N'-p-tolyl-N'-[2-amino-bensyl]-harnstoff $C_{11}H_{21}ON_{2} = H_{2}N \cdot C_{2}H_{4} \cdot CH_{3} \cdot N(C_{6}H_{4} \cdot CH_{3}) \cdot CO \cdot NH \cdot C_{6}H_{6}$. B. Durch Reduktion von N-Phenyl-N'-p-tolyl-N'-[2-nitrobensyl]-harnstoff (Bd. XII, S. 1082) mit Zinkstaub und Eisessig (Paal, Well, B. 27, 46) oder mit Zinn und Sakssaure (Paal, Hildenbrand, J. pr. [2] 55, 245). — Nadeln (aus Alkohol).

F: 129° (P., W.). Leicht löslich in Alkohol, Äther und Benzol (P., W.). Zerfällt oberhalb seines Schmelzpunktes in Anilin und 3-p-Tolyl-2-oxo-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3567) (P., W.). — Salze: P., H. $C_{11}H_{11}ON_3 + HCl$. Prismen (aus Alkohol + Äther). F: 156°. — Oxalat $C_{21}H_{11}ON_3 + C_2H_2O_4 + 3^1/2H_2O$. Nadeln. Schmilzt bei 166° unter Zersetzung. — Pikrat $C_{21}H_{21}ON_3 + C_2H_3O_2N_3$. Gelbe Nadeln (aus Alkohol). F: 156°. — 2 $C_{21}H_{21}ON_3 + 2HCl + PtCl_4$. Gelbe Nadeln (aus salzsäurehaltigem Alkohol) + Äther). F: 183°.

N-Phenyl-N'-p-tolyl-N'-[2-acetamino-bensyl]-harnstoff $C_{22}H_{22}O_2N_3=CH_4\cdot CO\cdot NH\cdot C_2H_4\cdot CH_3\cdot N(C_2H_4\cdot CH_3)\cdot CO\cdot NH\cdot C_2H_5$. B. Aus 1 Teil N-Phenyl-N'-p-tolyl-N'-[2-amino-benzyl]-harnstoff und 3 Teilen Essigsäureanhydrid (Paal, Hildenbrand, J. pr. [2] 55, 246). — Nadeln (aus verd. Alkohol). F: 141°. Leicht löslich in den meisten organischen Lösungsmitteln.

N-Phenyl-N'-p-tolyl-N'-[2-bensamino-bensyl]-harnstoff $C_{25}H_{25}O_2N_3 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot N(C_6H_4 \cdot CH_3) \cdot CO \cdot NH \cdot C_6H_5 \cdot B$. Aus 1 Teil N-Phenyl-N'-p-tolyl-N'-[2-amino-benzyl]-harnstoff und 3 Teilen Benzoesäureanhydrid (PALL, HILDENBRAND, J. pr. • [2] 55, 246). — Nadeln (aus verd. Alkohol). F: 192—193°. Leicht löslich in Äther, Alkohol, Chloroform und Benzol.

N-Phenyl-N'-p-tolyl-N'-[2-(ω -phenyl-ureido)-bensyl]-harnstoff $C_{28}H_{24}O_2N_4 = C_0H_5\cdot NH\cdot CO\cdot NH\cdot C_6H_4\cdot CH_3\cdot N(C_6H_4\cdot CH_3)\cdot CO\cdot NH\cdot C_6H_5$. B. Aus N-Phenyl-N'-p-tolyl-N'-[2-amino-benzyl]-harnstoff und Phenylisocyanat in Benzol (Paal, Hildenbrand, J. pr. [2] 55, 247). — Prismen (aus Alkohol). F: 135°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln außer in Ligroin. — Liefert beim Erhitzen über den Schmelzpunkt 3-p-Tolyl-2-oxo-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3567).

N-Phenyl-N'-p-tolyl-N'-[2-(ω -phenyl-thioureido)-bensyl]-harnstoff $C_{sp}H_{sp}ON_{s}S=C_{s}H_{s}\cdot NH\cdot C_{s}\cdot NH\cdot C_{s}H_{s}\cdot CH_{s}\cdot N(C_{s}H_{s}\cdot CH_{s})\cdot CO\cdot NH\cdot C_{s}H_{s}$. B. Aus N-Phenyl-N'-p-tolyl-N'-[2-amino-benzyl]-harnstoff und Phenylsenföl bei 160° (Paal, Hildenbrand, J. pr. [2] 55, 248). — Nadeln (aus Alkohol). F: 230—231°.

1¹-[Chlorformyl-anilino]-2-[chlorformyl-bensylamino]-toluol $C_{g_2}H_{16}O_gN_gCl_g=ClCO\cdot N(CH_2\cdot C_gH_g)\cdot C_gH_4\cdot CH_2\cdot N(C_gH_g)\cdot CoCl.$ B. Aus [2-Benzylamino-benzyl]-anilin (S. 167), gelöst in Äther, und Phosgen, gelöst in 4 Tln. Toluol (Busch, Rögglen, B. 27, 3246). — Prismen (aus verd. Alkohol). F: 113°. Leicht löslich in Äther, Berzol und Ligroin.

N-[2-Amino-bensyl]-p-phenylendiamin $C_{13}H_{14}N_3 = H_*N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NH_8$. B. Aus [4-Nitro-phenyl]-[2-nitro-benzyl]-amin (Bd. XII, S. 1077) mit Zinkstaub und Essigsäure bei höchstens 40° (Paal, Polles, J. pr. [2] 54, 272). — Blättchen (aus Wasser). F: 114°. Leicht löslich in organischen Lösungsmitteln außer in Ligroin.

2.2'-Diamino-dibensylamin $C_{16}H_{17}N_3 = (H_2N \cdot C_6H_4 \cdot CH_3)_2NH$. B. Bei allmählichem Eintragen von 10 g 2.2'-Dinitro-dibenzylamin (Bd. XII, S. 1078) in ein Gemisch aus 50 g Zinn und 50 g konz. Salzsäure (Busch, Birk, Lehrmann, J. pr. [2] 55, 360). — Nadeln (aus Ligroin). F: 71°. Sehr leicht löslich in den gebräuchlichen Lösungsmitteln außer in Ligroin. — $C_{14}H_{17}N_3 + 3HCl$. Prismen. Schmilzt oberhalb 280°.

Bis-[2-amino-bensyl]-methylamin $C_{15}H_{10}N_s=(H_sN\cdot C_0H_4\cdot CH_2)_sN\cdot CH_2$. B. Durch Reduktion von Bis-[2-nitro-bensyl]-methylamin (Bd. XII, 1078) mit Zinkstaub und Natronlauge (Lellmann, Haas, B. 26, 2585). — F: 96°.

Bis-[2-amino-bensyl]-äthylamin $C_{1e}H_{11}N_{3}=(H_{2}N\cdot C_{2}H_{4}\cdot CH_{3})_{2}N\cdot C_{2}H_{5}$. B. Beim Erwärmen von Bis-[2-nitro-bensyl]-äthylamin (Bd. XII, 1078) mit Natronlauge, Zinkstaub und Alkohol (Lellmann, Haas, B. 26, 2584). — Nadeln (aus Ligroin). F: 94°. Leicht löslich in Chloroform, Äther, Bensol, Alkohol, Eisessig, schwer in Ligroin.

Bis-[2-amino-bensyl]-propylamin $C_{17}H_{12}N_3=(H_4N\cdot C_4H_4\cdot CH_2)_2N\cdot CH_2\cdot CH_2\cdot CH_3$. B. Durch Reduktion von Bis-[2-nitro-benzyl]-propylamin (Bd. XII, S. 1079) mit Zinkstaub und Natronlauge (L., H., B. 26, 2586). — F: 112°.

Bis-[2-amino-bensyl]-isobutylamin $C_{18}H_{28}N_3 = (H_2N \cdot C_8H_4 \cdot CH_2)_8N \cdot CH_6 \cdot CH(CH_3)_8$. B. Durch Reduktion von Bis-[2-nitro-benzyl]-isobutylamin (Bd. XII, S. 1079) mit Zinkstaub und Natronlauge (L., H., B. 26, 2586). — F: 132°.

Bis-[2-amino-bensyl]-allylamin $C_{17}H_{81}N_2 = (H_8N \cdot C_6H_4 \cdot CH_3)_8N \cdot CH_2 \cdot CH \cdot CH_3$. Durch Reduktion von Bis-[2-nitro-benzyl]-allylamin (Bd. XII, S. 1079) mit Zinkstaub und Natronlauge (L., H., B. 26, 2587). — Nadeln. F: 104°.

Bis-[2-amino-bensyl]-anilin $C_{20}H_{21}N_3 = (H_2N \cdot C_6H_4 \cdot CH_9)_2N \cdot C_6H_5$. B. Man versetzt ein Gemisch aus 3 g Bis-[2-nitro-benzyl]-anilin (Bd. XII, S. 1079) und 15 g SnCl₂ bei 0° mit Eisessig und dann mit 50 g konz. Salzsäure (Lellmann, Mayer, B. 25, 3584). — Krystalle (aus Benzol). F: 187°. — $2C_{20}H_{21}N_3 + 6HCl + SnCl_4$?).

Bis-[2-amino-bensyl]-p-toluidin $C_{s_1H_{s_2}N_2}=(H_sN\cdot C_cH_4\cdot CH_3)_sN\cdot C_cH_4\cdot CH_3$. B. Man versetzt ein Gemisch aus Bis-[2-nitro-benzyl]-p-toluidin (Bd. XII, S. 1079) und SnCl₂ bei 0°

mit Eisessig und dann mit konz. Salzsäure (L., M., B. 25, 3585). — Nädelchen (aus Benzol). F: 145° . — $C_{21}H_{22}N_3 + 3HCl + 3(?)H_2O$. Nadeln. — $C_{21}H_{23}N_3 + 3H_2SO_4 + 4(?)H_2O$. Nadeln. — $2C_{21}H_{22}N_3 + 6HCl + SnCl_4(?)$.

2.2'-Diamino-tribenzylamin $C_{a1}H_{a2}N_3 = (H_aN \cdot C_0H_a \cdot CH_a)_aN \cdot CH_a \cdot C_0H_5$. *B.* Durch Reduktion von 2.2'-Dinitro-tribenzylamin (Bd. XII, S. 1079) mit Zinkstaub und Natronlauge (Lellmann, Haas, *B.* 26, 2587). — Blättchen (aus Ligroin). F: 143°.

N.N-Bis-[2-benzamino-benzyl]-benzamid $C_{25}H_{29}O_3N_3=(C_6H_5\cdot CO\cdot NH\cdot C_6H_4\cdot CH_2)_2N\cdot CO\cdot C_6H_5$. B. Aus 2.2'-Diamino-dibenzylamin, Benzoylchlorid und Natronlauge (Busch, Birk, Lehrmann, J. pr. [2] 55, 361). — Nadeln oder Prismen (aus Alkohol). F: 218°. Sehr schwer löslich in den meisten Lösungsmitteln.

Benzolsulfonsäure-[2-amino-benzylamid] $C_{12}H_{14}O_3N_3S = H_2N \cdot C_4H_4 \cdot CH_2 \cdot NH \cdot SO_3 \cdot C_6H_5$. B. Aus Benzolsulfonsäure-[2-nitro-benzylamid] (Bd. XII, S. 1082) durch Reduktion mit Eisenfeilspänen und verd. Essigsäure (Morgan, Micklethwart, Soc. 89, 1161). — Farblose Platten (aus Alkohol), Platten mit 1 Mol. C_6H_6 (aus Benzol). Schmilzt benzolhaltig bei 95°, benzolfrei bei 109°.

Benzolsulfonsäure-[(2-amino-benzyl)-methylamid] $C_{14}H_{19}O_3N_3S = H_2N \cdot C_6H_4 \cdot CH_4 \cdot N(CH_2) \cdot SO_3 \cdot C_6H_5$. Aus Benzolsulfonsäure-[(2-nitro-benzyl)-methylamid] (Bd. XII, S. 1082) durch Reduktion mit Eisenfeilspänen und verd. Essigsäure (Mo., Mr., Soc. 89, 1166). — Farblose Blättchen oder Platten (aus verd. Alkohol). F: 108—110°. Sehr leicht löslich in Alkohol, schwer in Wasser.

Benzolsulfonsäure - [(2-amino - benzyl) - anilid] $C_{19}H_{18}O_2N_3S = H_4N \cdot C_8H_4 \cdot CH_3 \cdot N(C_8H_5) \cdot SO_5 \cdot C_6H_8$. B. Bei allmählichem Eintragen von 50 ccm konz. Salzsäure in ein erwärmtes Gemisch aus 10 g Benzolsulfonsäure-[(2-nitro-benzyl)-anilid] (Bd. XII, S. 1082), 200 ccm Alkohol und 30 g Zinkschnitzeln (Buson, J. pr. [2] 51, 263). — Nadeln (aus Alkohol). F: 139—140°. Unlöslich in Ligroin, leicht löslich in Ather und Benzol. — Beim Erhitzen mit alkoh. Salzsäure im geschlossenen Rohr auf 130° wird Benzolsulfanilid (Bd. XII, S. 565) abgespalten.

Benzolsulfonsäure-[(2-amino-benzyl)-p-toluidid] $C_{20}H_{20}O_2N_2S = H_2N \cdot C_0H_4 \cdot CH_2 \cdot N(C_0H_4 \cdot CH_3) \cdot SO_2 \cdot C_0H_3$. B. Bei der Reduktion von Benzolsulfonsäure-[(2-nitro-benzyl)-p-toluidid] (Bd. XII, S. 1082) mit Zink und Salzsäure in Gegenwart von Alkohol auf dem Wasserbad (Busch, J. pr. [2] 51, 269). — Nadeln (aus Alkohol). F: 132°. Leicht löslich in den meisten organischen Lösungsmitteln.

N-Nitroso-N-[2-acetamino-bensyl]-anilin, [2-Acetamino-bensyl]-phenyl-nitrosamin $C_{15}H_{15}O_2N_3=CH_3\cdot CO\cdot NH\cdot C_5H_4\cdot CH_2\cdot N(NO)\cdot C_6H_5$. B. Aus salzsaurem [2-Acetamino-bensyl]-anilin (S. 169) und Natriumnitrit (WIDMAN, J. pr. [2] 47, 358). — Nadeln (aus heißem Wasser). F: 112—113°.

N-Nitroso-N-[2-amino-bensyl]-o-toluidin, [2-Amino-bensyl]-o-tolyl-nitrosamin $C_{14}H_{15}ON_5 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot N(NO) \cdot C_6H_4 \cdot CH_3$. B. Bei der Reduktion von [2-Nitrobensyl]-o-tolyl-nitrosamin (Bd. XII, S. 1083) mit Zinkstaub und Eisessig (Busch, Francis, J. pr. [2] 51, 277). — Krystalle (aus Ligroin). F: 86—87°. Löslich in Alkohol, Äther und Benzol.

N-Nitroso-N-[2-acetamino-bensyl]-p-toluidin, [2-Acetamino-bensyl]-p-tolyl-nitrosamin $C_{10}H_{17}O_5N_3=CH_5\cdot CO\cdot NH\cdot C_6H_4\cdot CH_5\cdot N(NO)\cdot C_6H_4\cdot CH_5$. B. Man löst [2-Acetamino-bensyl]-p-toluidin (S. 169) in Wasser und kleinster Menge Salzsäure und versetzt die Lösung mit berechneter Menge Natriumnitrit (Widman, J. pr. [2] 47, 356). — Schwachgelbe Nadeln (aus Alkohol). F: 115—116. Leicht kölich in Alkohol.

l¹-Phenylnitrosamino-2-bensylnitrosamino-toluol, N.N'-Dinitrosoderivat des [2-Bensylamino-bensyl]-anilins $C_{20}H_{10}O_2N_4 = C_0H_5 \cdot CH_2 \cdot N(NO) \cdot C_0H_4 \cdot CH_2 \cdot N(NO)$. $C_0H_5 \cdot B$. Man tragt in die mit Salssaure versetzte alkoh. Lösung von [2-Bensylamino-bensyl]-anilin (8. 167) die äquimolekulare Menge Natriumnitrit in wäßr. Lösung ein (Busch, Rögglam, B. 27, 3242). — Gelbliche Blättchen (aus Alkohol). F: 124°. Leicht löslich in Bensol und Toluol, schwer in Äther und Ligroin.

N-[5-Nitro-2-amino-bensyl]-4-nitro-anilin $C_{19}H_{18}O_4N_4=H_2N\cdot C_0H_3(NO_2)\cdot CH_4\cdot NH\cdot C_0H_4\cdot NO_3$. B. Entsteht neben anderen Produkten bei der Einw. von Formaldehydlösung auf 4-Nitro-anilin in Eisessig + kons. Schwefelsäure (J. Meyer, Stillich, B. 35, 740. — Gelbe schistwinklige Prismen (aus Eisessig). F: 227—228°; leicht löslich in Aceton, schwer in Eisessig und Alkohol (J. M., Sr.). — Durch Kochen mit $40^9/_{\rm e}$ iger Schwefelsäure wird 4-Nitro-anilin surückgebildet (J. M., Sr.). Beim Kochen mit der vierfachen Menge Essigsäureanhydrid entsteht N-[5-Nitro-2-acetamino-bensyl]-N-acetyl-4-nitro-anilin (S. 174) (J. M., Sr.). Beim Behandeln mit Essigsäureanhydrid und kons. Schwefelsäure entstehen das acetylschwefelsaure und das essigsulfonsaure Sals des 3-[4-Nitro-phenyl]-6-nitro-2-methyl-chinasolindihydrids (Syst. No. 3475) (Sr., B. 36, 3117; 38, 1241).

- N-[5-Nitro-2-methylamino-bensyl]-4-nitro-anilin $C_{14}H_{14}O_4N_4=CH_2\cdot NH\cdot C_4H_3(NO_2)\cdot CH_2\cdot NH\cdot C_4H_4\cdot NO_2$. B. Durch Einw. von Formaldehyd auf 4-Nitro-anilin in Eisessig + konz. Schwefelsäure, neben anderen Verbindungen (J. M., St., B. 35, 742). Krystalle (aus Eisessig und Aceton). F: 243—244°. Leicht löslich in Aceton, schwer in Eisessig, sehr wenig in Alkohol, Äther und Benzol. Wird durch 1-stdg. Kochen mit $40^{\circ}/_{\circ}$ iger Schwefelsäure nur zum Teil gespalten.
- N-[5-Nitro-2-acetamino-bensyl]-N-acetyl-4-nitro-anilin $C_{17}H_{16}O_6N_6 = CH_3 \cdot CO \cdot NH \cdot C_6H_6(NO_2) \cdot CH_7 \cdot N(C_6H_4 \cdot NO_2) \cdot CO \cdot CH_3$. B. Durch Kochen von N-[5-Nitro-2-amino-benzyl]-4-nitro-anilin (S. 173) mit der vierfachen Menge Essigsäureanhydrid (J. M., Sr., B. 35, 741). Krystalle (aus Alkohol). F: 210—211°. Leicht löslich in Aceton, Alkohol und Chloroform.
- N-[5-Nitro-2-acetylmethylamino-benzyl]-N-acetyl-4-nitro-anilin $C_{18}H_{18}O_8N_4 = CH_3\cdot CO\cdot N(CH_3)\cdot C_8H_8(NO_3)\cdot CH_3\cdot N(C_8H_4\cdot NO_3)\cdot CO\cdot CH_3$. B. Aus N-[5-Nitro-2-methylamino-benzyl]-4-nitro-anilin (s. o.) und der vierfachen Menge Essigsäureanhydrid (J. M., St., B. 35, 743). Nadeln. F: 216—218°. Löslich in kaltem Chloroform, Eisessig, Alkohol und Benzol, unlöslich in Äther und Ligroin.
- 9. 3.1-Diamino-1-methyl-benzol, 3.1-Diamino-toluol, 3-Amino-benzylamin $C_7H_{10}N_2=H_2N\cdot C_6H_4\cdot CH_3\cdot NH_2$. B. Aus 3-Nitro-benzylamin (Bd. XII, S. 1083) mit Zinn und Salzsäure (Gabriel, Hendess, B. 20, 2870). Öl. Das Pikrat bildet schwer lösliche Blättchen. $C_7H_{10}N_2+2HCl+PtCl_4$. Gelbe Blättchen.
- [3-Amino-bensyl]-anilin C₁₃H₁₄N₂ = H₂N·C₆H₄·CH₂·NH·C₆H₅. B. Durch Reduktion des [3-Nitro-benzyl]-anilins (Bd. XII, S. 1083) (PURGOTTI, MONTI, G. 30 II, 258). Nadeln. F: 60°. Ziemlich löslich. Hydrochlorid. Krystalle. F: 161°.
- [3-Amino-bensyl]-äthylanilin $C_{15}H_{18}N_2=H_2N\cdot C_8H_4\cdot CH_2\cdot N(C_2H_5)\cdot C_6H_5$. B. Durch Reduktion von [3-Nitro-benzyl]-äthylanilin (Bd. XII, S. 1083) mit Zink und konz. Salzsäure (Schultz, Bosch, B. 35, 1294). Farbloses Öl. Kp₅₁₋₅₈: 261—262°. $C_{15}H_{18}N_2+2$ HCl. Weiße Krystalle (aus Alkohol-Äther). F: 188—190°.
- [3-Acetamino-bensyl]-methylanilin $C_{16}H_{18}ON_2 = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot N(CH_2) \cdot C_6H_6$. B. Durch Reduktion von [3-Nitro-benzyl]-methylanilin (Bd. XII, 8. 1083) mit SnCl₂ und 20% iger Salzsäure und Einw. von Essigsäureanhydrid auf das Reduktionsprodukt (GNEHM, SCHÖNHOLZER, J. pr. [2] 76, 506). Farblose Blättchen (aus heißem wäßrigem Alkohol). F: 88°.
- [3-Acetamino-bensyl]-äthylanilin $C_{17}H_{20}ON_2 = CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_5$. B. Durch Reduktion von [3-Nitro-benzyl]-äthylanilin (Bd. XII, S. 1083) mit SnCl₂ und $20^9/_0$ iger Salzsäure und Einw. von Essigsäureanhydrid auf das Reduktionsprodukt (G., Sch., J. pr. [2] 76, 507). Glimmerartige Blättchen (aus wäßr. Alkohol oder heißem Ligroin). F: 96°.
- Bensolsulfonsäure-[3-amino-bensylamid] $C_{12}H_{14}O_2N_2S = H_2N \cdot C_4H_4 \cdot CH_3 \cdot NH \cdot SO_2 \cdot C_4H_5$. B. Aus Benzolsulfonsäure-[3-nitro-benzylamid] (Bd. XII, S. 1084) durch Reduktion mit Eisenfeilspänen und verd. Essigsäure (Morgan, Micklethwaff, Soc. 89, 1162). Krystallisiert aus Benzol oder sehr verd. Alkohol in lösungsmittelhaltigen gelben Tafeln vom Schmelzpunkt 76—78°; schmilzt nach Vertreibung des Lösungsmittels unscharf bei 80—85°.
- Benzolsulfonsäure-[(3-amino-benzyl)-methylamid] $C_{14}H_{16}O_{5}N_{5}S=H_{5}N\cdot C_{5}H_{4}\cdot CH_{2}\cdot N(CH_{3})\cdot SO_{5}\cdot C_{6}H_{5}$. Aus Benzolsulfonsäure-[(3-nitro-benzyl)-methylamid] (Bd. XII, S. 1084) durch Reduktion mit Eisenfeilspänen und verd. Essigsäure (Mo., Mr., Soc. 89, 1166). Blättchen (aus Alkohol). F: 128—129°.
- 10. 4.1-Diamino-1-methyl-benzol, 4.1-Diamino-toluol, 4-Amino-benzyl-amin C,H₁₀N₂ = H₂N·C₂H₄·CH₂·NH₂. B. N-[4-Nitro-benzyl]-acetamid (Bd. XII, S. 1087) zerfällt beim Behandeln mit Zinn und Salzsäure in salzsaures 4-Amino-benzylamin und Essigsäure (AMSEL, A. W. HOFMANN, B. 19, 1287). Durch Reduktion von 4-Nitro-benzylamin (Bd. XII, S. 1084) mit Zinn und Salzsäure (Salkowski, B. 22, 2142). Aus Chloressigsäure-[4-acetamino-benzylamid] (S. 176) beim Kochen mit verd. Salzsäure (Edheden, Mauer-Mayer, A. 343, 299). Flüssig. Kp: 268—270°; D²⁰: 1,08; ziemlich löslich in Wasser und noch löslicher in Alkohol, unlöslich in Äther; starke Base; zieht rasch CO₂ an (A., A. W. H.). Gibt beim Erwärmen seiner stark salzsauren Losung mit 1 Mol.-Gew. NaNO₂ 4-Oxybenzylamin (Syst. No. 1855) (S.). Ist glatt diazotierbar (BAYER & Co., D. R. P. 82626; Höchster Farbw., D. R. P. 93499; Froll. 4, 819; D. R. P. 99127; C. 1899 I, 398. C,H₁₀N₂ + 2HCl. Nadeln (A., A. W. H.). 2C,H₁₀N₂ + 4HCl + PtCl₄. Nadeln (A. A. W. H.). C,H₁₁N₂ + 2HCl + PtCl₄ + H₂O. Goldgelbe Nadeln (S.).

4 (P)-Dimethylamino-bensylamin $C_0H_{14}N_3=(CH_3)_3N\cdot C_0H_4\cdot CH_3\cdot NH_3$. B. Aus N-[4(?)-Dimethylamino-benzyl]-phthalimid (Syst. No. 3218) durch konz. Salzsäure bei 180° (TSCHERNIAC, D. R. P. 134979; C. 1902 II, 1084). — Flüssigkeit. Nicht ohne Zersetzung destillierbar. — $C_0H_{14}N_3+2HCl$. Farblose Nädelchen (aus Alkohol). F: 212° (Zers.).

[4-Amino-bensyl]-dimethylamin $C_9H_{14}N_9=H_4N\cdot C_9H_4\cdot CH_2\cdot N(CH_3)_2$. B. Bei der Reduktion von [4-Nitro-benzyl]-dimethylamin (Bd. XII, S. 1084) mit SpCl₂ und Salzsäure (FRIEDLÄNDER, MOSCZYC, B. 28, 1141). — Öl. Siedet oberhalb 300° unter geringer Zersetzung (F., M.). Dient zur Herstellung von Azofarbstoffen, z. B. von Tanninorange und Neuphosphin (Cassella & Co., D. R. P. 70678; Frdl. 3, 795; vgl. Schultz, Tab. No. 74, 75). — $C_9H_{14}N_2 + H_2SO_4$. Blättehen (aus verd. Alkohol). Fast unlöslich in absol. Alkohol (F., M.).

[4-Amino-bensyl]-diāthylamin $C_{11}H_{19}N_2 = H_2N \cdot C_eH_4 \cdot CH_2 \cdot N(C_2H_6)_3$. B. Man erhitzt 4-Nitro-bensylchlorid mit 2 Mol.-Gew. Diāthylamin und reduziert das entstandene, nicht näher beschriebene [4-Nitro-bensyl]-diāthylamin mit SnCl₂ und Salssäure (Friedländer, Mosczyc, B. 28, 1141). — Kp₄₀: 212—214° (F., M.). — Findet Verwendung zur Darstellung von Azofarbstoffen (Cassella & Co., D. R. P. 70678; Frdl. 3, 795; Höchster Farbw. D. R. P. 93499; Frdl. 4, 819; D. R. P. 99127; C. 1899 I, 398), z. B. Janusbraun (vgl. Schultz, Tab. No. 435).

[4-Amino-bensyl]-isoamylamin $C_{18}H_{20}N_2 = H_2N \cdot C_8H_4 \cdot CH_2 \cdot NH \cdot CH_2 \cdot CH_3 \cdot CH(CH_3)_2$. B. Bei der Reduktion von [4-Nitro-bensyl]-isoamylamin (Bd. XII, S. 1085) mit Zinkstaub und Salzsäure bei höchstens 30° (Paal, Sprenger, B. 30, 67). — Erstarrt nicht in der Kälte. Siedet auch im Vakuum nicht unzersetzt. Unbeständig.

[4-Amino-benzyl]-anilin C₁₂H₁₄N₂ = H₂N·C₄H₄·CH₃·NH·C₆H₅. B. Durch Reduktion von [4-Nitro-benzyl]-anilin (Bd. XII, S. 1085) raittels Eisenfeile und Essigsäure (PAAL, Sperger, B. 30, 70). Durch Eintragen von salzsaurem Anilin in eine gekühlte Lösung von Anhydroformaldehydanilin (Syst. No. 3796) in Anilin (Höchster Farbw., D. R. P. 87934; Frdl. 4, 66; Coen, Z. Ang. 14, 313). — Schwer krystallisierbar. F: 49—50°; leicht löslich in Ather, Alkohol, Benzol und verd. Mineralsäuren (P., Sp.). — Zersetzt sich beim Destillieren im Vakuum unter fast quantitativer Abspaltung von Anilin (P., Sp.). Wird von verdünnter Salzsäure in 4.4′-Diamino-diphenylmethan (S. 238) umgelagert (H. F., D. R. P. 87934). Gibt beim Erhitzen mit Schwefel 2-[4-Amino-phenyl]-benzthiazol C₆H₄ N C·C₆H₄·NH₂ (Syst. No. 4345) (H. F., D. R. P. 75674; Frdl. 4, 825). Gibt mit Dimethylanilin in wäßriger Salzsäure auf dem Wasserbad 4-Amino-4′-dimethylamino-diphenylmethan (S. 239) (H. F., D. R. P. 107718; Frdl. 5, 81; C. 1900 I, 1110). — Findet unter der Bezeichnung Solidogen (FRIEDLÄNDER, C. 1902 II, 408; Frdl. 6, 1040) Verwendung zur Verbesserung von aus 4-Nitrotoluol-sulfonsäure-(2) (Bd. XI, S. 90) durch Einw. von Alkalien entstehenden Farbstoffen (H. F., D. R. P. 122353; Frdl. 6, 1050; C. 1901 II, 327) sowie von Oxyazofarbstoffen, Phthaleinfarbstoffen, Azinfarbstoffen usw. (H. F., D. R. P. 123613, 130034, 130035; Frdl. 6, 1051, 1055, 1057; C. 1901 II, 875; 1902 I, 900, 960). — C₁₃H₁₆N₃ + 2 HCl. Gelbe amorphe Masse. Schwer löslich in heißen Alkohol, lein Wasser (P., Sp.).

[4-Amino-bensyl]-p-toluidin $C_{14}H_{16}N_{1} = H_{2}N \cdot C_{6}H_{4} \cdot CH_{2} \cdot CH_{4} \cdot CH_{4} \cdot CH_{3}$. B. Durch Einwirkenlassen von Anilin auf Anhydroformaldehyd-p-toluidin (Syst. No. 3796) in Gegenwart von salzsaurem p-Toluidin (H. F., D. R. P. 104230; C. 1899 II, 950). — Gelbes, dickflüssiges, mit Wasserdampf nicht flüchtiges Öl; leicht löslich in Alkohol, Ather und Benzol (H. F.). — Durch Erhitzen mit Schwefel entsteht Dehydrothio-p-toluidin $CH_{3} \cdot C \cdot C_{6}H_{4} \cdot NH_{2}$ (Syst. No. 4345) (H. F.). — Verwendung als Solidogen zur Verbesserung von Farbstoffen: FRIEDLÄNDER, C. 1902 II, 408; Frdl. 6, 1040.

[4-Dimethylamino-bensyl]-p-toluidin $C_{10}H_{20}N_2 = (CH_3)_8N \cdot C_0H_4 \cdot CH_3 \cdot NH \cdot C_0H_4 \cdot CH_3$. B. Man mischt 170 g Dimethylanilin mit 96 g salzsaurem p-Toluidin und fügt dann 40 g Anhydroformaldehyd-p-toluidin hinzu; nach 48 Stdn. wird alkalisch gemacht und das überschüssige Dimethylanilin mit Wasserdampf abgeblasen (Cohn, A. Fibcher, B. 33, 2590; H. F., D. R. P. 108064; C. 1900 I, 1112). — Gelbliche Krystalle (aus Alkohol). F: 103° (H. F.), 105—106° (C., A. F.). Leicht löslich in Benzol, Chloroform und Äther; löst sich in verdünnten Säuren mit goldgelber Farbe, in konz. Säuren farblos (C., A. F.). — Gibt beim Kochen in saurer Lösung mit Methylanilin neben abgespaltenem p-Toluidin 4-Methylamino-4'-dimethylamino-diphenylmethan und ein Produkt komplizierterer Zusammensetzung (v. Braun, B. 41, 2155). — Verwendung als Solidogen zur Verbesserung von Farbstoffen: Friedländer, C. 1902 II, 408; Frdl. 6, 1040. — $C_{10}H_{20}N_2 + 2$ HCl. Nadeln (C., A. F.).

[4-Diāthylamino-bensyl]-p-toluidin $C_{19}H_{24}N_3 = (C_2H_3)_3N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Man löst 286 Tle. salzsaures p-Toluidin in 500 Tln. Diāthylanilin und rührt 120 Tle. Anhydroformaldehyd-p-toluidin bei höchstens 20° ein (Höchster Farbw., D. R. P. 108064; Frd. 5, 86; C. 1900 I, 1112). — Prismen (aus heißem Alkohol). F: 58° (H. F.), 59—60° (Сонк, A. Fischer, B. 33, 2591; C., Z. Ang. 14, 313). Leicht löslich in Äther, Benzol und

heißem Alkohol (H. F.; C., A. F.). — Verwendung als Solidogen zur Verbesserung von Farbstoffen: FRIEDLÄNDER, C. 1902 II, 408; Frdl. 6, 1040.

[4-Amino-bensyl]-a-naphthylamin C₁₇H₁₆N₂ = H₂N·C₆H₄·CH₂·NH·C₁₀H₇. B. Durch Reduktion von [4-Nitro-benzyl]-a-naphthylamin (Bd. XII, S. 1226) mit Zinnchlorür und Salzsäure (Dabier, Mannassewitch, Bl. [3] 27, 1061). — Schwach gelbliches Öl. Siedet nicht unzersetzt im Vakuum. Löslich in den üblichen organischen Lösungsmitteln. Oxydiert sich rasch an der Luft. — C₁₇H₁₆N₂+2HCl. Gelblichweiße Nadeln. Ziemlich löslich in kalten, schwer in angesäuertem Wasser.

[4-Amino-benzyl]- β -naphthylamin $C_{17}H_{18}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Durch Reduktion des [4-Nitro-benzyl]- β -naphthylamins (Bd. XII, S. 1278) mit Zinnehlorür und Salzsäure (D., M., Bl. [3] 27, 1064). — Hellgelbes Öl. Leicht löslich in Äther und Benzol, schwer in Alkohol. Zeigt in äther. Lösung eine schwach blaue Fluorescenz. Oxydiert sich sehr leicht an der Luft. — $C_{17}H_{16}N_2 + 2HCl$. Gelblichweiße Nadeln. Ziemlich löslich in kaltem, schwer in angesäuertem Wasser.

Chloressigsäure-[4-acetamino-benzylamid] $C_{11}H_{12}O_2N_3Cl = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot CH_3Cl$. B. Aus 10 g N-Oxymethyl-chloracetamid (Bd. II, S. 200) und 10,9 g Acetanilid in 50 g konz. Schwefelsäure (Einhorn, Maurrmayer, A. 343, 217, 299; Einhorn, D. R. P. 156398; C. 1905 I, 55). — Nadeln oder Prismen (aus Alkohol). F: 206° (E.), 206° bis 207° (E., M.). Leicht löslich in Alkohol (E., M.). — Liefert beim Kochen mit verd. Salzsäure 4-Amino-benzylamin (E., M.).

N-[4-Diacetylamino-benzyl]-N-a-naphthyl-acetamid $C_{23}H_{32}O_3N_3 = (CH_3 \cdot CO)_3N \cdot C_6H_4 \cdot CH_3 \cdot N(C_{10}H_7) \cdot CO \cdot CH_3$. B. Aus [4-Amino-benzyl]-a-naphthylamin (s. o.) und Essigsaureanhydrid (Darier, Mannassewitch, Bl. [3] 27, 1062). — Weiße Prismen (aus Alkohol). F: 216°.

N-[4-Diacetylamino-bensyl]-N- β -naphthyl-acetamid $C_{23}H_{23}O_3N_2 = (CH_3 \cdot CO)_2N \cdot C_0H_4 \cdot CH_2 \cdot N(C_{10}H_7) \cdot CO \cdot CH_3$. B. Aus [4-Amino-benzyl]- β -naphthylamin (s. o.) und Essig-saureanhydrid (D., M., Bl. [3] 27, 1064). — Nadeln (aus Alkohol oder verd. Essigsaure). F: 250—251°.

p-Bensylendiharnstoff $C_9H_{12}O_2N_4 = H_2N \cdot CO \cdot NH \cdot C_8H_4 \cdot CH_2 \cdot NH \cdot CO \cdot NH_2$. B. Aus salzsaurem 4-Amino-benzylamin und Kaliumcyanat (Amsel, A. W. Hofmann, B. 19, 1289). — Nadeln (aus Wasser). Schmilzt unter Zersetzung bei 197°. Ziemlich schwer löslich in kaltem Wasser.

p-Bensylen-bis-thioharnstoff $C_9H_{12}N_4S_2 = H_2N \cdot CS \cdot NH \cdot C_9H_4 \cdot CH_2 \cdot NH \cdot CS \cdot NH_2$. B. Aus salzsaurem 4-Amino-benzylamin und Kaliumrhodanid (Amsel, A. W. Hofmann, B. 19, 1289). — Nadeln (aus absol. Alkohol). F: 176°.

4.4'-Diamino-dibensylamin $C_{14}H_{17}N_3 = (H_2N \cdot C_0H_4 \cdot CH_2)_2NH$. B. Aus 4.4'-Dinitro-dibenzylamin (Bd. XII, S. 1086) mit Zinn und Salzsäure (STEAKOSCH, B. 6, 1060). — Nadeln oder Blätter. F: 106°. Destilliert unzersetzt. Nicht mit Wasserdämpfen flüchtig. — $C_{14}H_{17}N_3 + 3HCl$. Blättchen. Leicht löslich in Wasser, unlöslich in Alkohol und Äther; in Salzsäure schwerer löslich als in Wasser. — $C_{14}H_{17}N_3 + 3HCl + PtCl_4$. Rotgelbe Spieße.

4.4'.4"-Triamino-tribensylamin $C_{n}H_{24}N_{4}=(H_{2}N\cdot C_{4}H_{4}\cdot CH_{2})_{2}N$. B. Bei kurzer Einw. von Zinn und Salzsäure auf 4.4'.4"-Trinitro-tribenzylamin (Bd. XII, S. 1087) (STRAKOSCH, B. 6, 1061). — Krystalle (aus Alkohol). F: 136°. Destillierbar. Mit Wasserdämpfen nicht flüchtig. Unlöslich in Wasser, leicht löslich in heißem Alkohol und Äther. — Zerfällt bei längerer Behandlung mit Zinn und Salzsäure in p-Toluidin und 4.4'-Diamino-dibenzylamin. — Das salzsaure Salz ist in Wasser, Alkohol und Salzsäure äußerst löslich. — Das Chloroplat in at ist amorph.

Diäthylaminoessigsäure - [4 - acetamino - bensylamid], [N.N - Diäthyl - glycin]- [4-acetamino-bensylamid] $C_{15}H_{25}O_3N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot CH_2 \cdot N(C_3H_6)_3$. B. Aus 10 g Chloressigsäure-[4-acetamino-benzylamid] (s. o.) und 6,1 g Diäthylamin in 50 g absol. Alkohol (Einhorn, Mauermayer, A. 343, 300). — Blättchen (aus Essigester). F: 116—117° Leicht löslich in Alkohol, schwer in Äther.

Benzolsulfonsäure-[4-amino-benzylamid] $C_{13}H_{14}O_2N_2S=H_2N\cdot C_6H_4\cdot CH_2\cdot NH\cdot SO_3\cdot C_6H_5$. B. Aus Benzolsulfonsäure-[4-nitro-benzylamid] (Bd. XII, S. 1088) durch Reduktion mit Eisenfeilspänen und verd. Essigsäure (Morgan, Micklethwait, Soc. 89, 1162). — Farblose Nadeln (aus Benzol). F: 131—133°.

3. Diamine $C_8H_{12}N_2$.

1. 2.4-Diamino-1-athyl-benzol, 4-Athyl-phenylendiamin-(1.3)
C₀H₁₂N₃, s. nebenstehende Formel. B. Durch Reduktion von 2.4-Dinitro-1äthyl-benzol (Bd. V, S. 360) mit Zinn und Salzsäure (Weisweiller, M. 21, 41).
- C₈H₁₂N₂ + 2 HCl. Krystalle (aus alkoh. Salzsäure).

- 2-Amino-4-acetamino-1-äthyl-benzol $C_{10}H_{14}ON_2 = C_2H_3 \cdot C_0H_3(NH_2) \cdot NH \cdot CO \cdot CH_2$. B. s. u. bei dem Diacetylderivat. Nadeln (aus Alkohol). F: 319—320°; schwer löslich in Alkohol (W., M. 21, 43).
- 2.4-Bis-acetamino-1-äthyl-bensol $C_{12}H_{16}O_2N_3=C_2H_5\cdot C_6H_3(NH\cdot CO\cdot CH_3)_3$. B. Entsteht als Hauptprodukt neben dem Monoacetylderivat (s. o.) beim Erhitzen von salzsaurem 2.4-Diamino-1-äthyl-benzol mit der 15—20-fachen Menge Essigsäureanhydrid auf dem Wasserbade (W., M. 21, 42). Nadeln (aus Alkohol). F: 224°. Leicht löslich in Alkohol, schwer in Essigester, unlöslich in Wasser, Äther, Benzol und Ligroin.
- 2. 2.5-Diamino-1-āthyl-benzol, 2-Āthyl-phenylendiamin-(1.4) $C_2H_{12}N_2$, s. nebenstehende Formel. C_2H_5 H_2N
- 2-Amino-5-[2-äthyl-anilino]-1-äthyl-bensol, 4'-Amino-2.3'-diäthyl-diphenylamin $C_{1a}H_{2b}N_a=C_aH_a\cdot C_aH_a\cdot NH\cdot C_aH_3(C_aH_a)\cdot NH_a$. Eine Verbindung, welcher vielleicht diese Konstitution zukommt, s. bei 2-Nitro-1-äthyl-benzol, Bd. V, S. 358.
- 3. 3.4-Diamino-1-dthyl-benzol, 4-Åthyl-phenylendiamin-(1.2) C₂H₁₂N₂, s. nebenstehende NH₂
- 4-Amino-3-[4-äthyl-anilino]-l-äthyl-benzol, 6-Amino-3.4'-diäthyl-diphenylamin $C_{16}H_{20}N_2=C_2H_4\cdot C_4H_4\cdot NH\cdot C_6H_2(C_2H_4)\cdot NH_2$. B. Bei mehrtägigem Stehen einer alkoh. Lösung von 4.4'-Diāthyl-azobenzol (Syst. No. 2098) mit salzsaurer Zinnehlorürlösung und einigen Tropfen konz. Schwefelsäure (Schultz, B. 17, 475; vgl. Täuber, B. 25, 1019). Hydrochlorid. Amorph (Sch.). $C_{16}H_{20}N_2+H_2SO_4$. Krystalle (Sch.).
- 4. 2. I^{1} —Diamino-1-āthyl-bensol, a-/2-Amino-phenyl]-āthylamin $C_{2}H_{12}N_{2}=H_{2}N\cdot C_{4}H_{4}\cdot CH(CH_{2})\cdot NH_{2}$. B. Bei allmählichem Eintragen von 600 g $2^{1}/_{2}^{9}/_{2}$ igem Natriumamalgam in eine 50—60° warme alkoh. Lösung von 10 g 2-Amino-acetophenon-oxim (Syst. No. 1873); man hält die Lösung durch Zusatz von Eisessig sauer (BISCHLER, B. 26, 1899). Öl. Nicht unzersetzt flüchtig. Sehr leicht löslich in Wasser, Alkohol und Äther. $C_{5}H_{12}N_{2}+HCl$. Prismen (aus absol. Alkohol). Erweicht bei 187°. $C_{5}H_{12}N_{2}+2HCl$. Krystallpulver (aus absol. Alkohol). Leicht löslich in Wasser und Alkohol. Pikrat $C_{5}H_{12}N_{2}+C_{6}H_{3}O_{7}N_{3}$. Strohgelbe Nadeln (aus Wasser). Schmilst unter Bräunung bei 160—170°.
- N.N'-Diacetylderivat $C_{12}H_{16}O_2N_2=CH_4\cdot CO\cdot NH\cdot C_0H_4\cdot CH(CH_2)\cdot NH\cdot CO\cdot CH_3$. B. Durch Erhitzen von salzsaurem 2.1¹-Diamino-1-āthyl-benzol mit Essigsaureanhydrid und entwässertem Natriumacetat auf 100° (B., B. 26, 1900). Nadeln (aus Benzol). F: 131°. Löslich in Wasser, Alkohol, Äther, Chloroform und Benzol, unlöslich in Ligroin.
- N.N'-Dibensoylderivat $C_{sb}H_{so}O_{s}N_{s}=C_{s}H_{s}\cdot CO\cdot NH\cdot C_{o}H_{s}\cdot CH(CH_{s})\cdot NH\cdot CO\cdot C_{s}H_{s}$. B. Aus 2.1'-Diamino-1-āthyl-benzol und Benzoylohlorid in Gegenwart von Natronlauge unter Kühlung (B., B. 26, 1900). Nadeln (aus verd. Alkohol). F: 156—157°. Sehr leicht löslich in Chloroform, schwerer in Alkohol und Benzol, schwer in Äther, fast unlöslich in Ligroin.
- 5. 4.1°-Diamino-1-đthyl-bensol, β -[4-Amino-phenyl]-đthylamin $C_0H_{10}N_1=H_2N\cdot C_0H_4\cdot CH_2\cdot CH_3\cdot NH_3$.
- 4-Amino-1a-bensamino-1-āthyl-bensol, N-[β -(4-Amino-phenyl)-āthyl]-bensamid $C_{12}H_{16}ON_2=H_2N\cdot C_0H_4\cdot CH_2\cdot CH_2\cdot NH\cdot CO\cdot C_0H_4$. B. Aus Bensoyl-[β -(4-nitro-phenyl)-āthylamin] (Bd. XII, S. 1101) in Alkohol mit Zinn und kons. Salssaure (Barger, Walfold, Soc. 95, 1722). Krystalle. F: 134°. Laßt sich durch Diazotieren und Verkochen der Diazoverbindung in N-[β -(4-Oxy-phenyl)-āthyl]-bensamid (Syst. No. 1855) überführen. $C_{12}H_{16}ON_3$ + HCl. Krystalle (aus Wasser). Schmilst oberhalb 280° unter Zersetzung. Schr wenig löslich in Wasser
- 6. P.1°-Diamino-1-dthyl-bensol, a-Phenyl-dthylendiamin C₂H₁₂N₂ = C₂H₄· CH(NH₂)·CH₂·NH₃. B. Durch Reduktion einer siedenden absolut.-alkoholischen Lösung von Phenylglyoxim (Bd. VII, S. 674) mit Natrium (Frist, Arnstrum, B. 28, 425, 3172). Durch Reduktion des a-Amino-phenylessigsäure-nitrils (Syst. No. 1905) mit Zink und verd. Salzsäure (Purgotti, G. 24 II, 429). Erstert nicht in der Kälte. Kp: 243—246°; sehr leicht Balich in Wasser, leicht in organischen Mitteln (F., A., B. 28, 425, 426). Gibt mit β-Naphthochinon (Bd. VII, S. 709) ein Gemisch von Verbindungen, aus dem sich nach

dem Kochen mit alkal. Ferricyankaliumlösung in geringer Menge α - und β -Phenylnaphthochinoxalin (Syst. No. 3491) (Formel I bezw. Formel II) gewinnen lassen (O. Fischer,

I.
$$N$$
 CH II. N C C C H $_{5}$

RÖMER, B. 41, 2352). — Pikrat $C_8H_{18}N_2 + C_6H_3O_7N_3$. Gelbe Krystallkörner. F: 160°; unlöslich in Benzol und Ligroin, löslich in Alkohol, Äther und heißem Wasser (F., A., B. 28, 426). — $C_8H_{18}N_2 + 2 HCl + PtCl_4$. Gelbliche Blättchen (aus Wasser) (P.).

N.N'-Diacetylderivat $C_{19}H_{16}O_{2}N_{9}=C_{0}H_{5}\cdot CH(NH\cdot CO\cdot CH_{2})\cdot CH_{2}\cdot NH\cdot CO\cdot CH_{3}$. B. Man leitet in die äther. Lösung des α -Phenyl-äthylendiamins CO₂ und kocht das ausgeschiedene Produkt mit Essigsäureanhydrid (Feist, Arnstein, B. 28, 426, 3172). — Blättehen (aus Benzol). F: 152°; unlöslich in Ligroin (F., A., B. 28, 3172).

N.N'-Dibenzoylderivat $C_{22}H_{20}O_2N_2 = C_6H_5 \cdot CH(NH \cdot CO \cdot C_6H_5) \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus a-Phenyl-āthylendiamin und Benzoylchlorid nach Schotten-Baumann (Feist, Arnstein, B. 28, 426). — Pulver. F: 217°; ziemlich schwer löslich in Äther und kaltem Alkohol, ziemlich leicht in Benzol (F., A., B. 28, 426). — Beim Erhitzen im Chlorwasserstoffstrom auf 240° entsteht 2.4-Diphenyl-glyxalindihydrid (Syst. No. 3487) (F., A., B. 28, 3172). Liefert mit kalter Salpeterschwefelsäure eine Trinitroverbindung $C_{22}H_{17}O_8N_5$ (gelbes Pulver; F: 117°) (F., A., B. 28, 426).

[\$\beta-Amino-a oder \$\beta-phenyl-\text{\text{athyl}}\]-dithiocarbamids\text{\text{sure}} \text{C}_2\text{H}_{12}\text{N}_3\text{S}_2 = \text{C}_6\text{H}_5\text{C}(\text{NH}\cdot\text{CB}_2\text{H}\cdot\text{B}\text{N}\text{H}\cdot\text{C}_2\text{H}\text{B}\text{N}\text{H}\cdot\text{CS}_2\text{H}\cdot\text{B}\text{B}\text{B}\text{B}\text{Eintropfein von Schwefelkohlenstoff in die L\text{\text{d}sung von }a-Phenyl-\text{\text{athylendiamin}}\text{in Chloroform (Frist, Arnstein, \$B\$. 28, 3172). — Krystalle (aus Alkohol). F: 97° (Zers.). Leicht l\text{\text{d}slich in Wasser und Alkohol, kaum in Chloroform und Benzol. — Zerf\text{\text{all}t}\text{ beim Kochen mit Wasser in \$H_2\$S und Phenyl\text{\text{athylenthioharnstoff}}\text{H}\text{C}\text{NH}\text{C}\text{NH}\text{CS (Syst. No. 3567).}

7. 3.4-Diamino-1.2-dimethyl-benzol, 3.4-Diamino-o-xylol, CH₃
3.4-Dimethyl-phenylendiamin-(1.2) C₅H₁₅N₅, s. nebenstehende Formel.

B. Aus 4-Nitro-3-amino-o-xylol (Bd. XII, S. 1102) durch Reduktion mit Zinn und konz. Salzsäure unter Kühlung oder mit Zinkstaub und Wasser in der Siedehitze (Noelting, Braun, Thesmar, B. 34, 2251; N., Th., B. 35, 635, 638).

— Quadratische Tafeln. F: 89° (N., B., Th.; N., Th.). Leicht lölich in Alkohol, Äther und Benzol, schwer in Ligroin (N., Th.). Gibt mit Ferrichlorid starke Rotfärbung; mit Kaliumdichromat Rotfärbung und braunroten Niederschlag, beim Erhitzen Chinongeruch; mit Natriumnitrit in essigsaurer Lösung entsteht vorübergehend eine braune Lösung, dann ein krystallinischer Niederschlag des entsprechenden Azimids; Chlorkalk erzeugt einen gelben flockigen Niederschlag (N., Th.).

N.N'-Diacetylderivat $C_{19}H_{16}O_2N_3 = (CH_3)_2C_6H_2(NH\cdot CO\cdot CH_3)_3$. B. Aus 3.4-Diamino-o-xylol und Essignäureanhydrid in der Kälte (Noelting, Thesmar, B. 35, 638). — Weiße Nadeln. F: 196—197°. Leicht löslich in Alkohol und Wasser, schwer in Benzol und Äther.

8. 3.5-Diamino-1.2-dimethyl-benzol, 3.5-Diamino-o-xylol, 4.5-Dimethyl-phenylendiamin-(1,3) C₂H₁₂N₂, s. nebenstehende Formel. B. Aus 3.5-Dinitro-o-xylol (Bd. V, S. 369) mit Zinn und Salzsäure (Norlting, Thesmar, B. 35, 632). Aus 5-Nitro-3-amino-o-xylol (Bd. XII, H₂N·NH₂ S. 1103) mit Zinn und Salzsäure oder mit Zinkstaub und Wasser (N., Braun, Th., B. 34, 2251; N., Th., B. 35, 635, 638). Aus 6-Nitro-4-amino-o-xylol (Bd. XII, S. 1106) durch Reduktion (N., B., Th., B. 34, 2250). — Nadeln (aus Alkohol). F: 66-67° (N., B., Th.; N., Th.). Sehr leicht löslich in Wasser, Alkohol, Åther und Benzol; gibt mit Ferrichlorid in neutraler Lösung keine Färbung, in warmer schwefelsaurer Lösung kirschrote Färbung, mit Natriumnitrit in essigsaurer Lösung dunkelbraunen Niederschlag (N., Th.).

N.N'-Diacetylderivat $C_{12}H_{16}O_2N_2 = (CH_2)_2C_2H_2(NH\cdot CO\cdot CH_2)_2$. B. Durch Erhitzen von 3.5-Diamino-o-xylol mit Essignäureanhydrid und Eisessig (NOELTING, THESMAR, B. 35, 639). — Weiße Nadeln. F: 240—241°. Leicht löslich in Alkohol, schwer in Wasser und Benzol.

9. 3.6-Diamino-1.2-dimethyl-benzol, 3.6-Diamino-o-xylol, CH₂
2.3-Dimethyl-phenylendiamin-(1.4) C₈H₁₂N₂, s. nebenstehende
Formel. B. Aus dem 6-Nitro-3-amino-o-xylol (Bd. XII, S. 1103) mit
Zinn und Salzsäure oder mit Zinkstaub und Wasser (Noelting, Braun,
Thesmar, B. 34, 2252; N., Th., B. 35, 639). Durch Kuppeln von m-Diazobenzolsulfonsäure
(Syst. No. 2202) mit vic.-o-Xylidin und Spalten der gebildeten Azoverbindung mit Zinn und
Salzsäure (N., B., Th.; N., Th.). — Schwach gelbliche Nadeln oder Prismen (aus Benzol).
F: 116° (N., B., Th.; N. Th.). Sehr leicht löslich in Wasser und Alkohol, schwer in Ather
(N., Th.). — Gibt mit Ferrichlorid und Kaliumdichromat in neutraler oder essigsaurer Lösung
grüne Färbungen, mit Nitrit in essigsaurer Lösung dunkelgrüne, dann hellgelbe Lösung,
beim Erwärmen Chinongeruch, mit Chlorkalk in essigsaurer Lösung o-Xylo-p-chinon-bischlorimid (Bd. VII, S. 656) (N., Th.).

N.N'-Diacetylderivat $C_{12}H_{16}O_2N_3=(CH_3)_2C_6H_2(NH\cdot CO\cdot CH_3)_2$. Nadeln. F: 275° bis 276°; leicht löslich in Alkohol, ziemlich in Wasser, schwer in Benzol und Ligroin (N., Th., B. 35, 639).

- 4.5-Dichlor-8.6-diamino-o-xylol $C_8H_{10}N_2Cl_2 = (CH_3)_2C_6Cl_2(NH_2)_3$. B. Man führt das durch Chlorierung von o-Xylol in Gegenwart von Jod erhaltene flüssige Dichlor-o-xylol (Bd. V, S. 364) in ein Dinitroderivat (F: 155°; Bd. V, S. 369) über und reduziert dieses in sehr verdünnt-alkoholischer Lösung durch längeres Erwärmen mit Zinnchlorür und konz. Salzsäure (Claus, Berkeffeld, J. pr. [2] 43, 583). Sublimiert in Nadeln. F: 176°. Liefert bei der Oxydation mit CrO₂ in Eisessiglösung 5.6-Dichlor-o-xylo-p-chinon (Bd. VII, S. 656).
- 10. 4.5-Diamino-1.2-dimethyl-benzol, 4.5-Diamino-o-xylol, 4.5-Dimethyl-phenylendiamin-(1.2) C₈H₁₂N₂, s. nebenstehende Formel. B. Aus 5-Nitro-4-amino-o-xylol (Bd. XII, S. 1106) durch Reduktion mit Zinn und konz. Salzsāure (Noellting, Braun, Thesmar, B. 34, 2252) oder mit Zinkstaub und Wasser (N., Th., B. 35, 638). Krystallwasserhaltige Blättchen, die bei 90° unter Wasserverlust glanzlos werden (N., Th.). F: 125—126° (N., B., Th.; N., Th.). Die wasserfreie Verbindung ist sehr leicht löslich in Alkohol und Benzol, leicht löslich in siedendem Wasser, schwer in kaltem Wasser, Äther und Ligroin (N., Th.). Gibt mit Ferrichlorid eine blaugrüne Färbung; mit Kaliumdichromat entsteht eine gelbe Färbung, die beim Ansäuern in Braun übergeht; beim Erhitzen wird Chinongeruch entwickelt; mit Chlorkalk in essigsaurer Lösung entsteht 4.5-Dimethylbenzochinon-(1.2)-bis-chlorimid (Bd. VII, S. 656); Nitrit erzeugt in der essigsauren Lösung erst eine gelbe Färbung, dann einen weißen Niederschlag (N., Th.).

N.N'-Diacetylderivat $C_{12}H_{16}O_2N_2=(CH_3)_2C_6H_2(NH\cdot CO\cdot CH_3)_2$. Weiße Nadeln. F: 227—228°; leicht löslich in Alkohol, schwer in Wasser, Äther, Benzol und Ligroin (N., Th., B. 35, 638).

11. 11.21-Diamino-1.2-dimethyl-benzol, w.w'-Diamino-o-xylol, o-Xylylendiamin C₈H₁₂N₂ = H₂N·CH₂·C₆H₄·CH₂·NH₂. B. Bei 2-stdg. Erhitzen von 1 Tl. o-Xylylenbis-phthalimid (Syst. No. 3218), erhalten aus o-Xylylendibromid (Bd. V, S. 366) und Phthalimidkalium bei 200°, mit 4 Tln. roher Salzsäure im Druckrohr auf 200° (Strassmann, B. 21, 579). Bei allmählichem Versetzen einer Lösung von 1 g Phthalazin (Syst. No. 3480) in 15 com Salzsäure (D: 1,19) mit Zinkgranalien (Gabriel, Pinkus, B. 26, 2212). — Stark ammonia-kalisch riechende Flüssigkeit. Reagiert alkalisch; zieht an der Luft CO₂ an; gibt mit Ferrichlorid einen Niederschlag von gelbroten Nadeln (St.). Bei raschem Erhitzen des Hydrochlorids entsteht Dihydroisoindol (Syst. No. 3061) (G., P.). Beim Einleiten von SO₂ in eine Lösung von o-Xylylendiamin in absol. Äther unter Kühlung entsteht o-Xylylen-bis-thion-amidsäure (S. 181) (Düring, B. 28, 608). Eine Lösung von 10 g o-Xylylendiamin in 250 ccm trocknem Äther gibt mit 10 g Thionylanilin (Bd. XII, S. 578) neben NH₃ und Anilin trithion-saures o-Xylylendiamin, schwefelsaures o-Xylylendiamin und Dihydroisoindol (D.). — C₂H₁₂N₂ + 2 H Cl + ½ H₂O. Nadeln (G., P.). — C₃H₁₂N₂ + 8 O₂ s. [2-Aminomethyl-bensyl]-thionamidsäure, S. 181. — C₂H₁₂N₃ + 2 SO₃ s. o-Xylylen-bis-thionamidsäure. — Trithionsaures o-Xylylendiamin C₂H₁₂N₃ + H₂S₂O₄. B. s. o. im Artikel o-Xylylendiamin. Nadeln. Löslich in Wasser (D., B. 28, 606). — Pikrat C₆H₁₂N₂ + 2 C₆H₂O₇N₃. Gelbe Nadeln. Zersetzt sich gegen 170°, ohne zu schmelzen (St.). — C₈H₁₂N₃ + 2 H Cl + 2 Au Cl₂. Gelbe Blättchen (St.).

N.N.N.N'.N'.N'-Hexamethyl-o-xylylen-bis-ammoniumhydroxyd, o-Xylylen-bis-trimethylammoniumhydroxyd, N.N.N'.N'-Tetramethyl-o-xylylendiamin-bis-hydroxymethylat $C_{14}H_{25}O_2N_2 = C_4H_4[CH_2\cdot N(CH_2)_2\cdot OH]_2$. Bromid $C_{14}H_{26}N_1Br_2$. B. Aus o-Xylylenbromid (Bd. V, S. 366) und Trimethylamin in alkoh. Lösung (Parthell, Schumacher, B. 31, 593). Prismen (aus Alkohol + Äther). F: 207—208°. — $C_{14}H_{26}N_2Cl_2 + HgCl_2$. Nadeln (aus Wasser). F: 179—180°. — Chloroaurat. Gelbe Nadeln. F: 249—250°.

— $C_{16}H_{26}N_3Cl_3+PtCl_4+1/3H_3O$. Orangerote Nadeln. Schwärzt sich bei 253° unter Aufschäumen.

N.N.N'.N'-Tetraäthyl-o-xylylendiamin $C_{16}H_{26}N_2 = C_6H_4[CH_2 \cdot N(C_2H_5)_2]_2$. B. Beim Erhitzen von 2-Äthyl-dihydroisoindol-bromäthylat $C_6H_4 < \frac{CH_2}{CH_2} > N(C_2H_5)_2$ Br (Syst. No. 3061) mit Diäthylamin in wäßr. Lösung auf 220° (SCHOLTZ, B. 31, 427). — Kp₂₀: 170—175°.

N.N.N.N.B'.N'-Hexaëthyl-o-xylylen-bis-ammoniumhydroxyd, o-Xylylen-bistriëthylammoniumhydroxyd, N.N.N'.N'-Tetraëthyl-o-xylylendiamin-bis-hydroxy-ëthylat $C_{20}H_{20}O_2N_2=C_4H_4[CH_2\cdot N(C_2H_5)_2\cdot OH]_2$. — Bromid $C_{20}H_{20}N_2Br_2$. B. Aus o-Xylylenbromid und Triëthylamin in alkoh. Lösung beim Erhitzen im geschlossenen Rohr auf 100° (Partheil, Schumacher, B. 31, 593). — $C_{20}H_{22}N_2Cl_2+2$ FeCl₂. B. Man setzt o-Xylylenbromid mit Triëthylamin in Chloroform um, führt das erhaltene Bromid mittels AgCl in das entsprechende Chlorid über und gibt zu einer konz. Lösung des letzteren 50°/oige FeCl₂-Lösung und rauchende Salzseure (Scholtz, Ar. 247, 541). Gelbe Nadeln. F: 80°. — Chloroplatinat. F: 237—238° (Zers.); fast unlöslich in Wasser und Alkohol (P., Schum.).

N.N'-Diisobutyl-o-xylylendiamin $C_{16}H_{28}N_2 = C_6H_4[CH_2\cdot NH\cdot CH_2\cdot CH(CH_2)_2]_2$. B. Durch 10-stdg. Erhitzen von 2-Isobutyl-dihydroisoindol-bromisobutylat (Syst. No. 3061) mit konz. Ammoniak auf 200° (SCHOLTZ, B. 31, 1705). — Öl. Kp₂₀: 188—190°. — Liefert mit Benzolsulfochlorid N.N'-Dibenzolsulfonyl-N.N'-diisobutyl-o-xylylendiamin (S. 181).

N.N.N'.N'.N' - Tetraisobutyl - o - xylylendiamin $C_{24}H_{44}N_2 = C_4H_4(CH_2 \cdot N[CH_3 \cdot CH(CH_2)_3]_3)_3$. B. Beim Erhitzen von 2-Isobutyl-dihydroisoindol-bromisobutylat mit Diisobutylamin in alkoh. Lösung auf 220° (SCROLTZ, B. 31, 427). — Blättchen (aus Alkohol). F: 56°. Sehr leicht löslich in Alkohol und Äther.

N.N'-Diphenyl-o-xylylendiamin $C_{50}H_{50}N_5 = C_5H_4(CH_5\cdot NH\cdot C_6H_5)_5$. B. Entsteht in sehr geringer Menge aus o-Xylylenbromid und stark überschüssigem Anilin, neben viel 2-Phenyl-dihydroisoindol (SCHOLTZ, B. 31, 1708 Anm.). — Blättehen (aus Alkehol). F: 114°; sehr leicht löslich in Eisessig und Benzol, unlöslich in Wasser, Ligroin und konz. Salzsäure (SCH.). — Bei der Einw. von Formaldehyd entsteht die Verbindung $C_5H_4 < \frac{CH_2 \cdot N(C_6H_5)}{CH_2 \cdot N(C_6H_5)} < CH_2$ (Syst. No. 3470) (SCH., Jaross, B. 34, 1508).

N.N'-Bis-[2-chlor-phenyl]-o-xylylendiamin $C_{20}H_{18}N_2Cl_2 = C_0H_4(CH_2 \cdot NH \cdot C_0H_4Cl)_2$. B. Aus o-Xylylenbromid und 2-Chlor-anilin (Bd. XII, S. 597) in Chloroform (Scholtz, B. 31, 1157). — Blättchen (aus Alkohol). F: 79°.

N.N'-Bis-[2-brom-phenyl]-o-xylylendiamin $C_{20}H_{12}N_8Br_2=C_6H_4(CH_2\cdot NH\cdot C_0H_4Br)_2$. B. Durch Koohen von o-Xylylenbromid mit 2-Brom-anilin in Chloroformlösung (Schollz, B. 31, 1157). — Blättchen (aus Aceton + Alkohol). F: 132°. Schwer löslich in heißem Alkohol, leicht in Aceton.

N.N'-Bis-[2-nitro-phenyl]-o-xylylendiamin $C_{so}H_{1s}O_4N_4 = C_4H_4(CH_2\cdot NH\cdot C_5H_4\cdot NO_4)_4$. B. Beim Kochen von o-Xylylenbromid mit 2-Nitro-anilin in Chloroformlösung (Scholtz, B. 31, 630). — Gelbe Nadeln (aus Benzol + Ligroin). F: 211—212°.

N.N'-Dimethyl-N.N'-diphenyl-o-xylylendiamin $C_{12}H_{24}N_3 = C_6H_4[CH_2\cdot N(CH_3)\cdot C_6H_5]_2$. B. Aus o-Xylylenbromid und Methylanilin (Bd. XII, S. 135) in Chloroformlösung (Scholtz, B. 31, 429). — Blättchen (aus Alkohol). F: 110°. Wird aus der Lösung in konz. Salzsäure durch Wasser wieder abgeschieden.

N.N.N'.N'-Tetraphenyl-o-xylylendiamin $C_{22}H_{25}N_3=C_6H_4[CH_6\cdot N(C_6H_5)_2]_2$. B. Aus o-Xylylenbromid und Diphenylamin in Chloroformiësung beim Kochen (Scholtz, B. 31, 429). — Nadeln (aus Aceton + Wasser oder aus Eisessig). F: 179°. Sehr wenig löslich in Alkohol, leichter in Aceton und Chloroform.

N.N'-Di-o-tolyl-o-xylylendiamin $C_{92}H_{24}N_{2}=C_{6}H_{4}(CH_{2}\cdot NH\cdot C_{6}H_{4}\cdot CH_{2})_{9}$. B. Aus o-Xylylenbromid und o-Toluidin in Chloroformiösung (Scholtz, B. 81, 421). — Blättehen (aus Alkohol). F: 148°. Schwer löslich auch in heißem Alkohol; löslich in heißer verdünnter Salzsäure.

N.N'-Di-p-tolyl-o-xylylendiamin $C_{22}H_{24}N_3 = C_0H_4(CH_2 \cdot NH \cdot C_0H_4 \cdot CH_3)_3$. B. Neben wiel 2-p-Tolyl-dihydroisoindol (Syst. No. 3081) durch 1-stdg. Kochen von o-Xylylenbromid mit stark überschüssigem p-Toluidin in alkoh. Lösung (Scholtz, Jaross, B. 34, 1508). — Blättehen (aus Alkohol). F: 112°. — Bei der Einw. von Formaldehyd entsteht die Verbindung $C_0H_4 < CH_3 \cdot N(C_0H_4 \cdot CH_3) > CH_3$ (Syst. No. 3470).

N.N'-Bis-[2.4-dimethyl-phenyl]-o-xylylendiamin $C_{s,H_{2}}N_{s}=C_{s}H_{4}[CH_{2}\cdot NH\cdot C_{s}H_{3}(CH_{2})_{s}]_{s}$. B. Aus o-Xylylenbromid und asymm. m-Xylidin in Chloroform beim Stehen (Scholtz, B. 31, 422). — Blättchen (aus Alkohol). F: 106°.

N.N'-Bis-[2.4.5-trimethyl-phenyl]-o-xylylendiamin $C_{18}H_{12}N_3 = C_6H_4[CH_2 \cdot NH \cdot C_6H_5(CH_2)_3]_5$. B. Aus o-Xylylenbromid und Pseudocumidin in Chloroform (SCHOLTZ, B. 31, 422). — Blättchen (aus Alkohol).

N.N'-Di- α -naphthyl-o-xylylendiamin $C_{30}H_{24}N_2=C_0H_4(CH_2\cdot NH\cdot C_{10}H_7)_3$. B. Durch $^1/_2$ -stdg. Kochen von o-Xylylenbromid mit α -Naphthylamin in alkoh. Lösung (SCHOLTZ, B. 31, 1158). — Krystalle (aus Alkohol). F: 148°.

N.N'-Diacetyl-o-xylylendiamin $C_{12}H_{16}O_2N_2=C_6H_4(CH_2\cdot NH\cdot CO\cdot CH_2)_2$. B. Durch 1-stdg. Erhitzen von 3 g salzsaurem o-Xylylendiamin mit 5 ccm Essigsaureanhydrid und $^{1}/_{2}$ g Natriumacetat auf dem Wasserbade (Strassmann, B. 21, 580). — Krystalle (aus Äther). F: 146°. Löslich in Chloroform.

N.N'-Dibensoyl-o-xylylendiamin $C_{12}H_{20}O_2N_3=C_0H_4(CH_9\cdot NH\cdot CO\cdot C_0H_3)$. B. Durch 2-stdg. Erhitzen von 2 g salzsaurem o-Xylylendiamin mit 3 g Benzoylehlorid auf 200° am Rückflußkühler (Strassmann, B. 21, 580). — Nadeln (aus Alkohol). F: 184° (Gabriel, Pinkus, B. 26, 2213).

[2-Aminomethyl-benzyl]-thionamidsäure $C_2H_{12}O_2N_2S = H_2N \cdot CH_2 \cdot C_2H_4 \cdot CH_2 \cdot NH \cdot SO_2H$. B. Beim Kochen von o-Xylylen-bis-thionamidsäure (s. u.) mit Wasser (DÜRING, B. 28, 608). — Nadeln (aus verd. Alkohol).

Verbindung C₁₅H₁₅O₅N₂S. B. Beim Stehen der konzentrierten wäßrigen Lösung von 1 Mol.-Gew. [2-Aminomethyl-benzyl]-thionamidsäure (s. o.) mit 1 Mol.-Gew. Benzaldehyd (Düring, B. 28, 608). — Krystallinisch.

o-Xylylen-bis-thionamidsäure $C_8H_{12}O_4N_2S_3=C_6H_4(CH_2\cdot NH\cdot SO_2H)_2$. B. Beim Einleiten von SO_2 in die Lösung von o-Xylylendiamin in absol. Äther unter Kühlung (DÜRING, B. 28, 608). — Unschmelzbare gelbliche Blättchen. Sehr leicht löslich in Wasser, unlöslich in Alkohol und Äther. — Zerfällt beim Kochen in wäßr. Lösung in SO_2 und [2-Aminomethylbenzyl]-thionamidsäure (s. o.).

N.N'-Dibenzolsulfonyl-o-xylylendiamin $C_{20}H_{20}O_4N_2S_3 = C_0H_4(CH_2\cdot NH\cdot SO_3\cdot C_0H_5)_2$. B. Durch Schütteln von salzsaurem o-Xylylendiamin mit Benzolsulfochlorid und Natronlauge (Gabriel, Pinkus, B. 26, 2213). — Blättchen (aus Alkohol). F: 127°.

N.N' - Dibenzolsulfonyl - N.N' - diisobutyl - o - xylylendiamin $C_{38}H_{36}O_4N_3S_3 = C_6H_4(CH_2 \cdot N[CH_2 \cdot CH(CH_3)_2] \cdot SO_2 \cdot C_6H_5)_2$. B. Durch Schütteln von N.N'-Diisobutyl-o-xylylendiamin mit Benzolsulfochlorid und verd. Kalilauge (Scholtz, B. 31, 1705). — Prismen. F: 157°.

12. 2.4 - Diamino - 1.3 - dimethyl - benzol. 2.4 - Diamino - m-zylol, 2.4 - Dimethyl - phenylendiamin - (1.3) C₈H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion des 2.4 - Dinitro - m-xylols (Bd. V, S. 379) mit Zinn und Salzsäure (Gerwinger, B. 17, 2426; Noelting, Thermes, B. 35, 636, 640). Durch Reduktion von 2.4 - Dinitro - mesitylensäure (Bd. IX, S. 538) mit Zinn und Salzsäure (Bamberger, Demute, B. 34, 33). Durch Reduktion von 2-Nitro 4-amino - m-xylol (Bd. XII, S. 1127) mit Zinn und Salzsäure (Gr.). — Weiße Nadeln (aus Ligroin). F: 64° (Gr.), 65—66° (N., Th.). Sehr leicht löslich in Alkohol, Äther, Wasser und Benzol, ziemlich in Ligroin; gibt dieselben Reaktionen wie 3.5-Diamino - xylol (S. 178) (N., Th.).

N.N'-Diformylderivat $C_{10}H_{12}O_2N_2=(CH_2)_2C_0H_2(NH\cdot CHO)_2$. Nadeln (aus Wasser oder Alkohol). F: 219—220° (MORGAN, Soc. 81, 93).

N.N'-Diacetylderivat $C_{12}H_{16}O_2N_2=(CH_2)_2C_2H_2(NH\cdot CO\cdot CH_2)_2$. Nadeln (aus Eisessig). Schmilzt oberhalb 260°; schwer löslich in Alkohol (M., Soc. 81, 93).

N.N'-Dibensoylderivat $C_{22}H_{20}O_2N_2=(CH_2)_2C_6H_2(NH\cdot CO\cdot C_6H_5)_2$. B. Aus 2.4-Diamino-m-xylol und Benzoylchlorid in Gegenwart von Natronlauge (BAMBERGER, DEMUTH, B. 34, 33). — Nadeln (aus Alkohol). F: 232° (MORGAN, Soc. 81, 93), 226,5—227,5° (korr.) (B., D.).

- 6-Nitro-2.4-diamino-m-xylol $C_0H_{11}O_0N_3=(CH_3)_2C_0H(NO_3)(NH_2)_2$. B. Durch Reduktion des 4.6-Dinitro-2-amino-m-xylols (Bd. XII, S. 1111) mit Ammoniumhydrosulfid (Nom-ting, Thesmar, B. 35, 630). Orangegelbe Nadeln (aus Wasser). F: 151—152°. Leicht löslich in Alkohol, schwer in Wasser.
- 13. 2.5-Diamino-1.3-dimethyl-benzol, 2.5-Diamino-m-xylol, 2.6-Dimethyl-phenylendiamin-(1.4) C₈H₁₈N₈, s. nebenstehende Formel. B. Man kuppelt vic.-m-Xylidin (Bd. XII, S. 1107) mit m-Diazobenzolsulfonsäure und reduziert die gebildete Azoverbindung mit Zinn H₂N·CH₈ und Salzsäure (Noblythus, Thesmar, B. 35, 637, 640). Blätter (aus Benzol-Ligroin). F: 103—104°. Schwer löslich in Ligroin, leicht in Wasser, Alkohol, Äther und Benzol. Gibt

- mit FeCl₂ in neutraler oder essigsaurer Lösung grüne Färbung, die beim Erhitzen oder durch überschüssiges FeCl₃ in Gelb übergeht, mit K₂Cr₂O₇ einen grünen Niederschlag, der beim Erhitzen violettschwarz wird, unter Entwicklung von Chinongeruch; NaNO₂ in essigsaurer Lösung gibt erst eine dunkelgrüne, dann hellgelbe Lösung, beim Erwärmen Chinongeruch.
- 4.6-Dichlor-2.5-diamino-m-xylol $C_8H_{10}N_2Cl_2=(CH_3)_2C_6Cl_2(NH_2)_3$. B. Aus 1 Mol.-Gew. 4.6-Dichlor-2.5-dinitro-1.3-dimethyl-benzol (Bd. V, S. 380), in Alkohol suspendiert, mit 6 Mol.-Gew. SnCl₂ und der nötigen Menge Salzsäure (Claus, Runschke, J. pr. [2] 42, 122). Prismen oder Nadeln (aus Alkohol). F: 176°. Die Lösung in verd. Eisessig gibt mit Chromsäurelösung 3.5-Dichlor-m-xylochinon (Bd. VII, S. 658). NaNO₂ erzeugt in der salzsauren Lösung des Diamins ebenfalls 3.5-Dichlor-m-xylochinon. $C_8H_{10}N_2Cl_2+HCl$. Nadeln. Ziemlich leicht löslich. $2C_8H_{10}N_2Cl_2+2HCl+PtCl_4$. Gelbrote Schüppchen. Zersetzt sich gegen 230°. Unlöslich in Alkohol.
- 14. 4.5 Diamino 1.3 dimethyl benzol, 4.5 Diamino m-xylol, 3.5 Dimethyl phenylendiamin (1.2) C₈H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion von 2.6 Dibrom 4.5 dinitro-1.3 dimethyl benzol (Bd. V, S. 380) mit Zinn und Salzsäure (Jacobsen, B. 21, 2826). Aus 5 Nitro 4 amino m xylol (Bd. XII, S. 1128) durch Reduktion mit Zinn und Salzsäure (Hofmann, B. 9, 1298; Noeltring, Dien Reduktion of the salzsäure (Hofmann, B. 9, 1298; Noeltring, Dien Reduktion).
- Reduktion mit Zinn und Salzsaure (HOFMANN, B. 9, 1298; NOELTING, THESMAR, B. 35, 640) oder mit Zinkstaub und siedendem Wasser (N., Th.). Beim Behandeln von 2'-Amino-2.4.3'.5'-tetramethyl-azobenzol mit Zinnchlorür und Salzsäure (Noellting, Forel, B. 18, 2683). Nadeln (aus Ligroin), Blättchen (aus Benzol). F: 78,5° (J.), 77—78° (N., F.; N., Th.), 74—75° (H.). Leicht löslich in Alkohol, Äther und in heißem Wasser, schwer in Ligroin und in kaltem Benzol (N., Th.; J.). Gibt mit K₂Cr₂O₇ in der Kälte braunen Niederschlag, in der Wärme rote Lösung und Chinongeruch, mit NaNO₂ in essigsaurer Lösung zuerst gelbe Lösung, dann weißen Niederschlag (N., Th.). Wird durch Eisenchlorid rot gefärbt (N., F.; N., Th.). Beim Leiten von Chlor in eine eisessig-salzsaure Lösung entsteht eso-Tetrachlor-1.3-dimethyl-cyclohexen-(x)-dion-(4.5) (Bd. VII, S. 579) (Francee, A. 296, 202). Gibt mit Mesityloxyd beim Einleiten von trocknem Chlorwasserstoff Trimethyl-isopropyl-chinoxalindihydrid (Syst. No. 3478) (Ekeley, B. 39, 1647). C₈H₁₂N₂ + 2 HCl. Vierseitige Prismen. Sehr leicht löslich in Wasser, ziemlich schwer in verd. Salzsäure (J.).
- 5-Amino-4-methylamino-m-xylol $C_9H_{14}N_2=(CH_3)_2C_8H_8(NH_2)\cdot NH\cdot CH_8$. B. Bei der Reduktion von 5-Nitro-4-methylamino-m-xylol (Bd. XII, S. 1128) oder besser von 5-Nitro-4-methylnitrosamino-m-xylol (Bd. XII, S. 1128) mit Zinn und Salzsäure (Pinnow, Oester-Reich, B. 31, 2932). Öl. Kp: 260—262°. Hydrochlorid. F: 225°.
- 4.5-Bis-methylamino-m-xylol $C_{10}H_{10}N_2 = (CH_3)_2C_8H_2(NH\cdot CH_3)_2$. B. Man erhitzt 4.6-Dimethyl-benzimidazol (Syst. No. 3475) mit Methyljodid auf 130°, führt das entstandene Trimethyl-benzimidazol-jodmethylat $(CH_3)_2C_6H_2 < N(CH_3) < CH$ durch Natronlauge in die
- Pseudobase $(CH_3)_2C_6H_2 < N(CH_3)$ $> CH \cdot OH$ (Syst. No. 3475) über (O. FISCHER, RIGAUD, B. 34, 4206) und behandelt diese in absolut-alkoholischer Lösung mit Natrium (O. F., Römer, J. pr. [2] 73, 430). Zähes Öl. Kp₇₃₀: 245—250° (O. F., Rö.). Gibt in verd. Salzsäure mit FeCl₃ eine braunrote Färbung, mit starker Salzsäure und FeCl₃ ein gelbes Doppelsalz, das auf weiteren Zusatz von FeCl₃ in einen roten Azinfarbstoff übergeht (O. F., Rö.). Läßt sich durch Erhitzen mit Ameisensäure und nachfolgende Behandlung mit KOH wieder in $(CH_3)_2C_6H_2 < N(CH_3)$ $> CH \cdot OH$ überführen (O. F., Rö.). Gibt mit Salicylaldehyd 1.3.4.6-Tetramethyl-2-[2-oxy-phenyl]-benzimidazoldihydrid (Syst. No. 3512) (O. F., Rö.). $C_{10}H_{16}N_2+2HCl$. Prismen (aus Wasser oder Alkohol). Leicht löslich in Wasser (O. F., Rö.).
- 5-Acetamino-4-[acetylmethylamino]-m-xylol $C_{13}H_{16}O_2N_3 = (CH_3)_3C_6H_3(NH\cdot CO\cdot CH_3)\cdot N(CH_3)\cdot CO\cdot CH_3$. B. Durch Erhitzen von 5-Amino-4-methylamino-m-xylol mit Essigsäureanhydrid im geschlossenen Rohr auf 145—150° (Pinnow, Oesterreich, B. 31, 2933).—Nadeln (aus Aceton-Äther). F: 195—196°.
- 5-Amino-4-methylnitrosamino-m-xylol, [6-Amino-2.4-dimethyl-phenyl]-methylnitrosamin $C_9H_{13}ON_3=(CH_3)_2C_9H_2(NH_2)\cdot N(NO)\cdot CH_3$. B. Man sättigt eine alkoholischammoniakalische Lösung von 5-Nitro-4-methylnitrosamino-m-xylol (Bd. XII, S. 1128) mit H_2S und erhitzt dann eine Stunde im verschlossenen Gefäß im Wasserbade (Pinnow, Oester-Reich, B. 31, 2933). Blättchen (aus Ligroin). F: 81°. Sehr leicht löslich in den meisten Mitteln, ziemlich sehwer in Ligroin. Pikrat $C_9H_{13}ON_3 + C_6H_3O_7N_3$. Schwefelgelbe Prismen. F: 128°.
- $\begin{array}{lll} \textbf{5-Acetamino-4-methylnitrosamino-m-xylol} \,, & \textbf{[6-Acetamino-2.4-dimethyl-phenyl]-methyl-nitrosamin} \,\, C_{11}H_{18}O_2N_3 = (CH_3)_2C_6H_3(NH\cdot CO\cdot CH_3)\cdot N(NO)\cdot CH_3. & \textbf{B. Aus} \,\, \textbf{5-Amino-4-methylnitrosamino-m-xylol} \,\, & \textbf{und} \,\, & \textbf{Essigsäureanhydrid} \,\, & \textbf{in} \,\, & \textbf{Ather beim} \,\, & \textbf{Erhitzen} \end{array}$

- (P., OE., B. 31, 2934). Blättchen (aus Äther). F: 135°. Ziemlich schwer löslich in kaltem Äther und Ligroin, sehr leicht in den meisten Mitteln.
- 5 [ω Phenyl thioureido] 4 methylnitrosamino m xylol $C_{16}H_{18}ON_4S = (CH_3)_2C_6H_4(NH\cdot CS\cdot NH\cdot C_6H_5)\cdot N(NO)\cdot CH_3$. B. Aus 5-Amino-4-methylnitrosamino-m-xylol (S. 182) und Phenylsenföl in Alkohol (P., OE., B. 31, 2934). Prismen (aus Alkohol). F: 132° bis 132,5°. Leicht löslich in Chloroform, Aceton und Eisessig, schwer in kaltem Alkohol.
- 6-Chlor-4.5-diamino-m-xylol $C_8H_{11}N_2Cl=(CH_3)_2C_6HCl(NH_2)_2$. Zur Konstitution vgl. Blanksma, R. 28, 94. B. Bei der Reduktion von 6-Chlor-4.5-dinitro-1.3-dimethylbenzol (Bd. V, S. 380), gelöst in Alkohol, mit Zinn und Salzsäure (Klages, B. 29, 313). Öl. Kp: 280—281°; flüchtig mit Wasserdampf (K.). Gibt beim Behandeln mit Eisenchlorid und Salzsäure 6-Chlor-3.5-dimethyl-benzochinon-(1.2) (Bd. VII, S. 657) (K.).
- 4.6-Diamino-1.3-dimethyl-benzol. CH₃ 4.6-Diamino-mxylol, 4.6-Dimethyl-phenylendiamin-(1.3) $C_8H_{12}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 4.6-Dimitro-m-xylol (Bd.V, S. 380) mit Zinn und Salzsäure (LUHMANN, A. 144, 275; FITTIG, AHRENS, MAT-THEIDES, A. 147, 20) oder mit Eisenfeile und stark verd. Salzsäure (Morgan, Soc. 81, 92). Bei der Reduktion von 2.6-Dinitro-mesitylensäure (Bd. IX, S.538) mit Zinn und Salzsäure (Bamberger, Demuth, B. 34, 30). Durch Reduktion von 6-Nitro-4-amino-m-xylol (Bd. XII, S. 1129) mit Zinnehlorür und Salzsäure (Grevingk, B. 17, 2426), mit Zinn und Salzsäure (WITT, B. 21, 2419; NOELTING, THESMAR, B. 35, 635, 640), mit Zinkstaub und siedendem Wasser (NOELTING, THESMAR, B. 35, 635, 640). Aus dem Oxim des 4-Hydroxylamino-1.3-dimethyl-cyclohexen-(1)-ol-(3)-ons-(6) (Syst. No. 1938) mit Zinnchlorür und Salzsaure (Bam., Rudolf, B. 40, 2237, 2250). Aus 4.6-Bis-benzolazo-m-xylol (Syst. No. 2104) mit Aluminiumamalgam in siedendem Alkohol (BAM., REBER, B. 40, 2260, 2272). — Nadeln (aus Ligroin). F: 105—105,5° (korr.) (BAM., DE.), 104—105° (NOE., TH.), 104° (GREVINGK, B. 17, 2426; Mo., Soc. 81, 93). Sublimiert in Nadeln (L.). Leicht löslich in Wasser, Alkohol, Ather und heißem Benzol, ziemlich löslich in heißem Ligroin (BAM., DE.; NOE., TH.). — Gibt mit Eisenchlorid in neutraler oder in schwefelsaurer Lösung keine Färbung, beim Erhitzen orangegelbe Färbung, desgleichen mit Kaliumdichromat, mit Natriumnitrit in essigsaurer Lösung orangegelbe Färbung (NOE., TH.). Reduziert ammoniakalische Silbernitratiösung bei gelindem Erwärmen unter Spiegelbildung (Morgan, Micklethwait, Journ. Soc. Chem. Ind. 21, 1374). Das salzsaure Salz gibt beim Erhitzen mit Methylalkohol im geschlossenen Rohr auf 180° 4.6-Bis-dimethylamino-m-xylol (Mo., Soc. 81, 654). Mit Benzoldiazoniumchlorid in Gegenwart von Natriumacetat entsteht 2.6-Diamino-3.5-dimethyl-azobenzol (Syst. No. 2183) (Mo., Soc. 81, 94). — $C_8H_{19}N_8+2$ HCl (L.; F., A., Ma.). Nadeln (aus Wasser) (Witt). — $C_8H_{12}N_2+H_2SO_4$. Krystallpulver. Leicht löslich in Wasser, schwer in Alkohol (F., A., Ma.). — $C_8H_{12}N_2+2$ HCl + SnCl₂. Prismen (F., A., Ma.).

Verbindung mit 1.3.5-Trinitro-benzol $C_{14}H_{16}O_6N_5=C_6H_{12}N_2+C_6H_3O_6N_3$. Schwarzbraune Nadeln (Noelting, Sommerhoff, B. 39, 77).

- 4-Amino-6-methylamino-m-xylol $C_0H_{14}N_2=(CH_3)_3C_0H_3(NH_3)\cdot NH\cdot CH_3$. B. Aus 4-Amino-6-[p-toluolsulfonyl-methylamino]-m-xylol (S. 184) mit konz. Salzsäure im Druckrohr bei 120—130° (Mobgan, Micklethwait, Soc. 91, 364). Krystalle. F: 57°. Kp_{10} : 166—167°. Oxydiert sich sehr leicht. Das salzsaure Salz liefert mit Natriumnitrit ein Methylnitrosamino-diazoniumchlorid. Gibt mit 4-Nitro-benzoldiazoniumchlorid in Gegenwart von Natriumacetat 4'-Nitro-2-amino-6-methylamino-3.5-dimethyl-azobenzol (Syst. No. 2183).
- **4.6-Bis-methylamino-m-xylol** $C_{10}H_{10}N_3=(CH_2)_3C_0H_2(NH\cdot CH_3)_2$. B. Aus 4.6-Bis-[benzolsulfonyl-methylamino]-m-xylol (8. 184) beim Erhitzen mit konz. Salzsäure im Druckrohr auf 160° (Morgan, Clayton, Soc. 89, 1055). Platten (aus Petroläther) oder rechteckige Prismen (aus Äther). F: 100—101°. Leicht löslich in Äther. Liefert mit 4-Nitro-benzoldiazoniumsalz in Gegenwart von Natriumacetat 4'-Nitro-2.6-bis-methylamino-3.5-dimethylazobenzol und wahrscheinlich die isomere Diazoaminoverbindung.
- 4-Amino-6-dimethylamino-m-xylol $C_{10}H_{10}N_s=(CH_2)_2C_6H_2(NH_2)\cdot N(CH_3)_2$. B. Aus 6-Nitro-4-dimethylamino-m-xylol (Bd. XII, S. 1129) durch Reduktion mit Zinn und Salzsäure (Morgan, Micklethwait, Soc. 91, 365). Dickes Öl. Kp₃₁: 149—150°. Färbt sich an der Luft gelb und schließlich rot. Liefert mit 4-Nitro-benzoldiazoniumchlorid in Gegenwart von Natriumacetat die Diazoaminoverbindung $O_2N\cdot C_6H_4\cdot N:N\cdot NH\cdot C_6H_3(CH_3)_3\cdot N(CH_3)_3$ (Syst. No. 2238).
- 4-Methylamino-6-dimethylamino-m-xylol $C_{11}H_{16}N_2=(CH_2)_3C_4H_2(NH\cdot CH_3)\cdot N(CH_3)_2$. B. Aus 4-[Benzolsulfonyl-methylamino]-6-dimethylamino-m-xylol (S. 184) beim Erhitzen mit konz. Salzsäure im Druckrohr auf 130—150° (Morgan, Micklethwait, Soc. 91, 367). Krystalle. F: 40—42°. Kp₁₅: 145°. Gibt mit 4-Nitro-benzoldiazoniumchlorid in Gegen-

wart von Natriumacetat die Diazoaminoverbindung $O_2N \cdot C_0H_4 \cdot N : N \cdot N(CH_2) \cdot C_0H_2(CH_2)_2 \cdot N(CH_3)_3$ (Syst. No. 2238) neben geringen Mengen einer Azoverbindung.

- 4.6-Bis-dimethylamino-m-xylol $C_{12}H_{20}N_{2} = (CH_{2})_{2}C_{2}H_{2}[N(CH_{2})_{2}]_{2}$. B. Aus salz-saurem 4.6-Diamino-m-xylol und Methylalkohol beim Erhitzen im Einschlußrohr auf 180° (Mobgan, Soc. 81, 654). Hellbräunlichgelbes Öl. Kp₇₅₇: 243—245°; Kp₁₂: 124—125°. Dus: 0,9434. Wird bei —10° nicht fest. Reagiert nicht mit 4-Nitro-benzoldiazoniumverbindung. Bleibt bei Behandlung mit Formaldehyd und Essigsäureanhydrid unverändert. Pikrat $C_{12}H_{20}N_{2} + C_{6}H_{2}O_{7}N_{2}$. Prismen (aus Essigester). Schmilzt bei schnellem Erhitzen bei 202° bis 203°; zersetzt sich, langsam erhitzt, schon bei 193—195°. Schwer löslich in Alkoholen, leichter in Aceton. $C_{12}H_{20}N_{2} + 2HCl + PtCl_{4}$. Orangegelbe Prismen (aus Wasser). Schmilzt unbestimmt über 200°. Ziemlich löslich in Wasser.
- 4.6 Bis formamino m xylol $C_{10}H_{12}O_2N_2 = (CH_3)_2C_0H_2(NH\cdot CHO)_2$. Nadeln (aus Wasser). F: 182—183° (Morgan, Soc. 81, 93).
- 4.6-Bis-acetamino-m-xylol $C_{12}H_{16}O_2N_3=(CH_3)_3C_4H_3(NH\cdot CO\cdot CH_3)_3$. B. Durch Erhitzen von salzsaurem 4.6-Diamino-m-xylol mit entwässertem Natriumacetat und Essigsäureanhydrid (Bogert, Krofff, Am. Soc. 31, 843). Krystalle (aus Eisessig), Nadeln. F: 295,2° (korr.) (B., K.). Sehr wenig löslich in Alkohol, besser löslich in Eisessig (Mobgan, Soc. 81, 93). Bei der Oxydation mit KMnO4 entstehen 4.6-Bis-acetamino-iso-phthalsäure (Syst. No. 1908) und 4.6-Bis-acetamino-m-toluylsäure (Syst. No. 1905) (B., K.).
- 4-Dimethylamino-6-bensamino-m-xylol $C_{17}H_{30}ON_3 = (CH_3)_2C_8H_2[N(CH_3)_3]\cdot NH\cdot CO\cdot C_8H_5$. Platten (aus absol. Alkohol + Petroläther). F: 123° (MORGAN, MICKLETHWAIT, Soc. 91, 366).
- 4.6-Bis-bensamino-m-xylol $C_{22}H_{20}O_2N_2=(CH_2)_2C_6H_2(NH\cdot CO\cdot C_0H_5)_2$. B. Aus 4.6-Diamino-m-xylol nach Schotten-Baumann (Bamberger, Demuth, B. 34, 31). Nädelchen (aus Xylol), Platten (aus Alkohol oder Essigester). F: 252—253° (Morgan, Soc. 81, 93), 258—259° (korr.) (B., D.).
- 4-Amino-6-bensolsulfamino-m-xylol $C_{16}H_{16}O_{2}N_{2}S = (CH_{3})_{2}C_{4}H_{4}(NH_{4})\cdot NH\cdot SO_{2}\cdot C_{6}H_{5}$. B. Aus 6-Nitro-4-benzolsulfamino-m-xylol (Bd. XII, S. 1129) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwait, Soc. 89, 1296). Blättchen (aus Alkohol). F: 167°.
- 4-Bengolsulfamino-6-dimethylamino-m-xylol $C_{16}H_{20}O_2N_2S=(CH_3)_2C_6H_3[N(CH_3)_2]\cdot NH\cdot SO_3\cdot C_6H_5$. B. Aus 4-Amino-6-dimethylamino-m-xylol mit Benzolsulfochlorid und Natronlauge (Mo., Mr., Soc. 91, 366). Nadeln (aus Alkohol). F: 112—113°.
- 4.6 Bis benzolsulfamino m xylol $C_{20}H_{20}O_4N_2S_2 = (CH_3)_2C_6H_2(NH \cdot SO_2 \cdot C_6H_3)_2$. B. Aus 4.6 Diamino m xylol nach Schotten-Baumann (Morgan, Clayton, Soc. 89, 1054). Prismatische Nadeln (aus verd. Alkohol oder Aceton). F: 176°. Leicht löslich in wäßr. Alkalien.
- 4-Amino-6-[benzolsulfonyl-methylamino]-m-xylol $C_{18}H_{18}O_2N_2S=(CH_2)_8C_6H_4(NH_2)\cdot N(CH_3)\cdot SO_2\cdot C_6H_5$. B. Aus 6-Nitro-4-[benzolsulfonyl-methylamino]-m-xylol (Bd. XII, S. 1130) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwaff, Soc. 89, 1298). Öl. $C_{18}H_{18}O_2N_3S+HCl$. Blättchen (aus salzsäurehaltigem Wasser). Zersetzt sich bei ca. 160° .
- 4-Amino-6-[p-toluolsulfonyl-methylamino]-m-xylol $C_{18}H_{20}O_2N_2S = (CH_2)_aC_6H_4$ $(NH_2)\cdot N(CH_2)\cdot SO_2\cdot C_6H_4\cdot CH_3$. B. Aus 6-Nitro-4-[p-toluolsulfonyl-methylamino]-m-xylol (Bd. XII, S. 1130) durch Reduktion mit Eisen und Essigsäure (Mo., Mi., Soc. 91, 364). $C_{18}H_{20}O_2N_2S + HCl.$ Prismen. F: 225°. Acetylderivat. Nadeln (aus Benzol). F: 176°.
- 4 [Benzolsulfonyl-methylamino] 6 dimethylamino m xylol $C_{17}H_{28}O_2N_2S = (CH_2)_2C_2H_2[N(CH_2)\cdot SO_2\cdot C_2H_3$. B. Aus 4-Benzolsulfamino-6-dimethylamino-m-xylol (s. o.) durch Kochen mit Methyljodid und alkoh. Kali (Mo., Mr., Soc. 91, 367). Nadeln (aus Alkohol). F: 122 123°.
- 4-Bensolsulfamino -6-[bensolsulfonyl-methylamino] -m-xylol $C_{xt}H_{22}O_4N_2S_3=(CH_3)_2C_4H_4(NH\cdot SO_2\cdot C_6H_5)\cdot N(CH_3)\cdot SO_2\cdot C_6H_5$. B. Aus 4-Amino-6-methylamino-m-xylol mit Benzolsulfochlorid und Natronlauge (Mo., Mr., Soc. 91, 366). Prismen (aus Alkohol). F: 136° bis 138°. Löslich in Alkalien, unlöslich in Säuren.
- 4.6-Bis-[bensolsulfonyl-methylamino]-m-xylol $C_{22}H_{26}O_4N_9S_8=(CH_2)_2C_6H_3[N(CH_2)-SO_3\cdot C_6H_5]_3$. B. Aus 4.6-Bis-benzolsulfamino-m-xylol in alkoh. Lösung beim Kochen mit 2,5 Mol.-Gew. NaOH und 3 Mol.-Gew. Methyljodid (Morgan, Clayton, Soc. 89, 1055). Krystalle (aus Alkohol). F: 196—197°.
- 4-Dimethylamino-6-methylnitrosamino-m-xylol $C_{11}H_{17}ON_3=(CH_3)_2C_0H_2[N(CH_3)_2]\cdot N(NO)\cdot CH_3$. B. Aus 4-Methylamino-6-dimethylamino-m-xylol in kalter verd. Salzaāure mit überschüssigem Natriumnitrit (Mobgan, Micklethwait, Soc. 91, 367). Fast farblose Krystalle. F: 45°.

- 4.6-Bis-[methylnitrosamino]-m-xylol $C_{10}H_{14}O_{2}N_{4}=(CH_{2})_{2}C_{4}H_{2}[N(NO)\cdot CH_{2}]_{2}$. B. Aus 4.6-Bis-methylamino-m-xylol in verd. Salzašure mit 2,5 Mol.-Gew. Natriumnitrit in wäßr. Lösung (Morgan, Clayton, Soc. 89, 1056). Hellgelbe rechteckige Platten (aus Alkohol oder Petroläther). F: 76—77°.
- x-Brom-4.6-diamino-m-xylol $C_8H_{11}N_2Br$. B. Aus 4.6-Diamino-m-xylol und Bromwasser (Hollemann, Z. 1865, 555; Luhmann, A. 144, 276). Nadeln (aus Alkohol).
- 2-Nitro-4.6-diamino-m-xylol C₂H₁₁O₂N₂ = (CH₃)₂C₆H(NO₂)(NH₂)₂. B. Entsteht neben 2.6-Dinitro-4-amino-m-xylol (Bd. XII, S. 1130) beim Behandeln von 2.4.6-Trinitro-m-xylol (Bd. V, S. 381) mit alkoh. Schwefelammonium (Bussenius, Eisenstuck, A. 113, 159, 165). Beim Leiten von Schwefelwasserstoff in eine nahe zum Sieden erhitzte alkoholische, mit konz. Ammoniak versetzte Lösung von 2.4.6-Trinitro-m-xylol (Fittig, Velguth, A. 148, 6). Beim Erhitzen von 2.6-Dinitro-4-amino-m-xylol mit alkoh. Schwefelammonium im geschlossenen Rohr auf 100° (Miolati, Lotti, G. 27 I, 296). Rubinrote Prismen (aus Alkohol oder aus siedendem Wasser). F: 212—213°; sublimiert bei vorsichtigem Erhitzen; wenig löslich in kaltem, ziemlich leicht in siedendem Wasser, leicht in Alkohol (F., V.). Wird durch Diazotierung in siedender alkoh. Lösung in 2-Nitro-m-xylol (Bd. V, S. 378) verwandelt (M., L.). C₂H₁₁O₂N₂ + HCl. Krystalle (B., E.). C₃H₁₁O₃N₃ + 2 HCl. Krystalle (B., E.). C₄H₁₁O₄N₃ + H₄SO₄ + 2 H₅O. Prismen. Zersetzt sich in Berührung mit Wasser (B., E.). C₈H₁₁O₄N₃ + H₄SO₄ + 2 H₂O. Tafeln (B., E.). C₈H₁₁O₂N₃ + 2 HCl. + PtCl₄ + 3 H₂O. Goldgelbe Tafeln (B., E.); rote Krystalle (F., V.).
- 2-Nitro-4-äthylamino-6-diäthylamino-m-xylol $C_{14}H_{23}O_2N_3=(CH_2)_2C_6H(NO_3)(NH-C_2H_5)\cdot N(C_2H_5)_2$. B. Beim Erhitzen von 2-Nitro-4.6-diamino-m-xylol mit Athyljodid auf 105° (Bussenius, Eisenstuck, A. 113, 164). Gelbe Schuppen. Löslich in Alkohol und Ather. $C_{14}H_{23}O_2N_3+HI$. Rote Prismen (aus Wasser). $2C_{14}H_{23}O_2N_3+2HCl+PtCl_4$. Goldgelbe sechsseitige Prismen.
- 16. 4.11-Diamino-1.3-dimethyl-benzol, 4.11-Diamino-m-xylol, 4-Amino-3-methylbenzylamin $C_bH_{1b}N_s$, s. nebenstehende Formel.

[4-Amino-3-methyl-bensyl]-p-toluidin $C_{15}H_{12}N_2 = CH_3 \cdot C_6H_3(NH_2) \cdot CH_3 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Durch Einw. von o-Toluidin auf Anhydroformaldehyd-p-toluidin (Syst. No. 3796) in Gegenwart von salzsaurem p-Toluidin (Höchster Farbw., D.R.P. 104230; C. 1899 II, 950). — Krystalle (aus Alkohol). F: 93° (H. F.), 93—94°; leicht löslich in Äther, Alkohol,

CH₂·NH₂

17. 4.3¹- Diamino - 1.3 - dimethyl - benzol, 4.3¹- Diamino-m-wylol, 6-Amino-3-methylbenzylamin C₂H₁₂N₂, s. nebenstehende Formel.

Benzol und Chloroform (COHN, A. FISCHER, B. 33, 2589; Z. Ang. 14, 312).

[6-Amino-3-methyl-bensyl]-p-toluidin $C_{12}H_{12}N_2 = CH_2 \cdot C_2H_3 (NH_2) \cdot CH_3 \cdot NH \cdot C_4H_4 \cdot CH_3$. B. Durch Kondensation von p-Toluidin, salzsaurem p-Toluidin und Anhydroformaldehyd-p-toluidin (Syst. No. 3796) in Nitrobenzol (Höchster Farbw., D.R. P. 105797; C. 1900 I, 496; v. Walther, Bamberg, J. pr. [2] 71, 154). — Blättchen (aus Alkohol), Prismen (aus 70% igem Alkohol). F: 87% (Cohn, A. Fischer, B. 33, 2591; Z. Ang. 14, 313), 86% (v. W., B.). Leicht löslich in Äther, Benzol und heißem Alkohol (C., A. F.; v. W., B.). — Gibt mit Natriumnitrit in Eisessig oder mit Amylnitrit in Alkohol Methyl-p-tolyl-benzotriazindihal-id.

dihydrid CH₃· N=N·C₆H₄·CH₃ (Syst. No. 3805) (v. W., B.). — C₁₅H₁₈N₃ + 2 HCl. Prismen. Die wäßr. Lösung wird mit FeCl₃ dunkelweinrot (C., A. F.).

[6-Äthylidenamino-3-methyl-bensyl]-p-toluidin $C_{17}H_{20}N_3 = CH_3 \cdot C_2H_3(N:CH\cdot CH_3) \cdot CH_2 \cdot NH \cdot C_2H_4 \cdot CH_3$. Beim Erwärmen von [6-Amino-3-methyl-benzyl]-p-toluidin mit Acetaldehyd (v. Walther, Bamberg, J. pr. [2] 71, 157). — Nadeln (aus Alkohol). F: 114°.

[6-Benzalamino-3-methyl-benzyl]-p-toluidin $C_{12}H_{12}N_{2}=CH_{2}\cdot C_{4}H_{3}(N:CH\cdot C_{4}H_{5})\cdot CH_{2}\cdot NH\cdot C_{4}H_{4}\cdot CH_{3}$. Beim Erwärmen von [6-Amino-3-methyl-benzyl]-p-toluidin mit Benzaldehyd (v. W., B., J. pr. [2] 71, 157). — Nadeln (aus Alkohol). F: 125°.

[6-(2-Nitro-benzalamino)-3-methyl-benzyl]-p-toluidin $C_{12}H_{21}O_{2}N_{3}=CH_{3}\cdot C_{6}H_{3}(N:CH\cdot C_{6}H_{4}\cdot NO_{3})\cdot CH_{2}\cdot NH\cdot C_{2}H_{4}\cdot CH_{3}$. Beim Schmelzen von [6-Amino-3-methyl-benzyl]-p-toluidin mit 2-Nitro-benzaldehyd (v. W., B., J. pr. [2] 71, 158). — Gelbe Nadeln (aus Alkohol).

F: 154,5°. Leicht löslich in Chloroform, Essigester, Benzol, löslich in Äther, Eisessig und heißem Alkohol, unlöslich in Wasser.

[6-(3-Nitro-benzalamino)-3-methyl-benzyl]-p-toluidin $C_{22}H_{21}O_2N_3=CH_3\cdot C_4H_3(N:CH\cdot C_2H_4\cdot NO_2)\cdot CH_2\cdot NH\cdot C_4H_4\cdot CH_3$. B. Analog der vorhergehenden Verbindung. — Gelbe Nadeln. F: 132—133° (v. W., B., J. pr. [2] 71, 158).

[6-(4-Nitro-benzalamino)-3-methyl-benzyl]-p-toluidin $C_{92}H_{31}O_2N_3=CH_3\cdot C_6H_3(N:CH\cdot C_6H_4\cdot NO_9)\cdot CH_2\cdot NH\cdot C_6H_4\cdot CH_3$. B. Analog dem [6-(2-Nitro-benzalamino)-3-methyl-benzyl]-p-toluidin. — Orangegelbe Nadeln. F: 127—128° (v. W., B., J. pr. [2] 71, 158).

[6-Salicylalamino-3-methyl-benzyl]-p-toluidin $C_{29}H_{29}ON_9 = CH_3 \cdot C_6H_5(N:CH\cdot C_6H_4\cdot OH)\cdot CH_3\cdot NH\cdot C_6H_4\cdot CH_3$. B. Aus [6-Amino-3-methyl-benzyl]-p-toluidin und Salicylaldehyd (v. W., B., J. pr. [2] 71, 159). — Gelbe Nadeln. F: 136—137°.

N-[6-Acetamino-3-methyl-bensyl]-[acet-p-toluidid] $C_{19}H_{22}O_2N_3 = CH_3 \cdot C_0H_3(NH \cdot CO \cdot CH_3) \cdot CH_3 \cdot N(CO \cdot CH_3) \cdot C_0H_4 \cdot CH_3$. B. Beim kurzen Erwärmen von [6-Amino-3-methyl-benzyl]-p-toluidin mit Acetanhydrid auf dem Wasserbade (v. Walther, Bamberg, J. pr. [2] 73, 217). — Sechsseitige Blättchen (aus verd. Alkohol). F: 135°. — Spaltet beim Kochen mit verd. Säuren sehr leicht beide Acetylgruppen ab.

N-p-Tolyl-N-[6-ureido-3-methyl-bensyl]-harnstoff $C_{17}H_{20}O_2N_4 = CH_3 \cdot C_6H_5(NH \cdot CO \cdot NH_4) \cdot CH_2 \cdot N(CO \cdot NH_4) \cdot C_6H_4 \cdot CH_3$. B. Bei Einw. von Kaliumcyanat auf [6-Amino-3-methyl-bensyl]-p-toluidin in verd. Salzsäure (v. W., B., J. pr. [2] 73, 224). — Weißes Pulver. F: 219° (Zers.). — Liefert beim Erhitzen 3-p-Tolyl-2-oxo-6-methyl-chinazolintetrahydrid (Syst. No. 3567).

18. $I^1.3^1$ -Diamino-1.3-dimethyl-benzol, $\omega.\omega'$ -Diamino-m-xylol, m-Xylylen-diamin $C_8H_{12}N_2 = H_2N \cdot CH_2 \cdot C_8H_4 \cdot CH_3 \cdot NH_2$. B. Bei 2—3-stdg. Erhitzen von 1 Teil m-Xylylen-bis-phthalimid (Syst. No. 3218) mit 3—4 Teilen konz. Salzsäure im Druckrohr auf 200—220° (Brömme, B. 21, 2705). — Flüssig. Kp: 245—248°; mischt sich mit Alkohol und Äther (B.). — Reagiert mit 1 Mol.-Gew. Thionylanilin (Bd. XII, S. 578) unter Bildung von NH3, Anilin, 3-Aminomethyl-benzaldehyd (Syst. No. 1873), thioschwefelsaurem und trithionsaurem m-Xylylendiamin (s. u.) (Düring, B. 28, 601). Mit SO₂ in äther. Lösung entsteht m-Xylylen-bis-thionamidsäure (S. 187) (D.). — $C_8H_{12}N_2 + 2$ HCl. Nadeln (aus Wasser). Leicht löslich in verd. Alkohol (B.). — $C_8H_{12}N_2 + SO_2$ s. [3-Aminomethyl-benzyl]-thionamidsäure, S. 187. — $C_8H_{12}N_2 + 2$ SO₂ s. m-Xylylen-bis-thionamidsäure. — Thioschwefelsaures m-Xylylendiamin $C_8H_{12}N_2 + H_2S_2O_3$. Silberweiße Blättchen (aus verd. Alkohol). Löslich in Wasser (D.). — Trithionsaures m-Xylylendiamin $C_8H_{12}N_2 + H_2S_2O_3$. Schwerer löslich in Wasser als das thioschwefelsaure Salz (D.). — Pikrat $C_8H_{12}N_2 + 2C_6H_3O_7N_3$. Gelbe Blättchen. Zersetzt sich bei 185—190°, ohne zu schmelzen (B.). — $C_8H_{12}N_2 + 2$ HCl+PtCl4. Bernsteingelbe Blättchen (B.).

N.N.N'.N'.N'-Hexapropyl-m-xylylen-bis-ammoniumhydroxyd, m-Xylylen-bis-tripropylammoniumhydroxyd, N.N.N'.N'-Tetrapropyl-m-xylylendiamin-bis-hydroxypropylat $C_{26}H_{52}O_2N_2 = C_6H_4[CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3]$. Bromid $C_{26}H_{50}N_2Br_2$. B. Entsteht aus m-Xylylendibromid (Bd. V, S. 374) und Tripropylamin in Chloroform (Halfpaap, B. 36, 1677). Prismen (aus Alkohol + Ather). F: 226°. Leicht löslich in Wasser, Alkohol und Chloroform. \rightarrow Perbromid $C_{26}H_{50}N_2Br_4$. Orange-farbene Nadeln (aus Alkohol). F: 160°. Unlöslich in Wasser. \rightarrow Pikrat $C_{26}H_{50}N_2(0 \cdot C_6H_2O_6N_3)_2$. Krystalle (aus wäßr. Aceton). F: 160°. Kaum löslich in Wasser, Alkohol und Ather, sehr leicht löslich in Aceton. \rightarrow C₂₆H₅₀N₂Cl₃+PtCl₄. Rötliche Prismen (aus sehr verd. Salzsäure). F: 217° (Zers.). Schwer löslich in Wasser und Alkohol.

N.N.N'.N' - Tetraisobutyl - m - xylylendiamin $C_{24}H_{44}N_2 = C_4H_4(CH_2 \cdot N[CH_3 \cdot CH(CH_2)_2]_2)_2$. B. Durch Einw. von Diisobutylamin (Bd. IV, S. 166) auf m-Xylylendibromid in Chloroform (Halfpaap, B. 36, 1675). — Gelbes dickes Ol; zersetzt sich bei der Destillation im Vakuum. — Pikrat $C_{24}H_{44}N_3 + 2C_6H_2O_7N_2$. Dunkelgelbe quadratische Platten (aus verd. Alkohol). F: 134°. Sehr leicht löslich in Alkohol, unlöslich in Wasser. — $C_{24}H_{44}N_2 + 2HCl + HgCl_2$. Prismen (aus verd. Alkohol). F: 207°. Leicht löslich in Wasser, schwerer in Alkohol. — $C_{24}H_{44}N_2 + 2HCl + PtCl_4$. Orangefarbene kugelige Körner (aus Alkohol). F: 209°.

N.N.N'.N'-Tetraisoamyl-m-xylylendiamin $C_{26}H_{52}N_3=C_6H_4(CH_3\cdot N[CH_3\cdot CH_3\cdot CH(CH_3)_3]_3)_3$. B. Aus m-Xylylendibromid in Chloroform mit Diisoamylamin (Bd. IV, S. 182) (HALFPAAF, B. 36, 1676). — Dickes rötliches Öl. — Pikrat $C_{26}H_{52}N_3+2C_6H_2O_7N_3$. Hellgelbe Nadeln (aus Alkohol). F: 173°. Löslich in Wasser. — $C_{26}H_{52}N_3+2HCl+PtCl_4$. Orangefarbene Nådelchen (aus absol. Alkohol). F: 149°. Unlöslich in Wasser, verd. Alkohol und Ather.

N.N.N.N'.N'. Hexaisoamyl - m - xylylen - bis - ammoniumhydroxyd, m - Xyly -N.N.N.N'.N'.N'-Hexatsoamyl-m-xylylen-bis-ammoniumhydroxyd, m-xylylen-bis-triisoamylammoniumhydroxyd, N.N.N'.N'.Tetraisoamyl-m-xylylen-bis-hydroxyisoamylat $C_{28}H_{76}O_2N_3 = C_8H_4(CH_2 \cdot N[CH_2 \cdot CH(CH_3)_3]_3 \cdot OH)_2$. Bromid. B. Entsteht durch 2-stdg. Erwärmen von m-Xylylendibromid mit Triisoamylamin (Bd. IV, S. 183) in Chloroform am Rückflußkühler (Halfpaap, B. 36, 1678). Glasartig erstarrende, äußerst hygroskopische Masse. — Perbromid $C_{38}H_{74}N_2Br_6$. Langsam erstarrendes Öl (aus Eisessig). Schmilzt unscharf bei 95—96°. — Pikrat $C_{38}H_{74}N_3(O \cdot C_6H_2O_6N_3)_2$. Krystallwarzen (aus Alkohol). F: 146°. Schwer lösich in Wasser, unlösich in Äther.

N.N.N'.N'-Tetraphenyl-m-xylylendiamin $C_{33}H_{20}N_2 = C_0H_4[CH_2 \cdot N(C_0H_5)_2]_2$. B. Durch Erwärmen von m-Xylylendibromid mit Diphenylamin (Bd. XII, S. 174) in Chloroformlösung auf dem Wasserbade (HALFPAAP, B. 36, 1676). — Hellgrüne Nadeln (aus Alkohol). F: 116°. Leicht löslich in Chloroform, Äther und Benzol, schwer in Alkohol, unlöslich in

Wasser.

N.N'-Diacetyl-m-xylylendiamin $C_{12}H_{16}O_2N_2=C_6H_4(CH_2\cdot NH\cdot CO\cdot CH_3)_2$. B. Durch Erhitzen von salzsaurem m-Xylylendiamin mit wasserfreiem Natriumacetat und Essigsäureanhydrid auf dem Wasserbade (Brömme, B. 21, 2706). — Strahlig-krystallinisch. F: 1180 bis 119°. Leicht löslich in Alkohol, Äther, Benzol und in heißem Wasser.

m-Xylylendiurethan $C_{14}H_{20}O_4N_2=C_6H_4(CH_2\cdot NH\cdot CO_2\cdot C_2H_5)_2$. B. Entsteht in sehr geringer Menge beim 2-stdg. Erhitzen von m-Xylylendibromid mit Kaliumcyanat in Alkohol auf dem Wasserbade (Halfpaap, B. 36, 1682). — Flocken (aus wenig Alkohol + Wasser). F: 160°.

[8-Aminomethyl-bensyl]-thionamidsäure $C_8H_{12}O_2N_2S=H_2N\cdot CH_2\cdot C_6H_4\cdot CH_2\cdot NH\cdot NH\cdot CH_2\cdot SO.H. B. Beim Umkrystallisieren der m-Xylylen-bis-thionamidsäure (s. u.) aus heißem verd. Alkohol (DÜRING, B. 28, 604). — Nädelchen. — Liefert mit Benzaldehyd die Verbindung

Verbindung C₁₈H₁₈O₃N₂S (s. u.).
Verbindung C₁₅H₁₈O₃N₂S. B. Beim Versetzen der konzentrierten wäßrigen Lösung von 1 Mol.-Gew. [3-Aminomethyl-benzyl]-thionamidsäure (s. o.) mit 1 Mol.-Gew. Benzaldehyd (Düring, B. 28, 604). — Krystallinisch. — Zersetzt sich beim Erwärmen mit absol. Alkohol teilweise, in heißem Wasser fast vollständig.

m-Xylylen-bis-thionamidsäure $C_8H_{12}O_4N_8S_3=C_6H_4(CH_2\cdot NH\cdot SO_2H)_3$. B. Beim Sättigen einer Lösung von 4 g m-Xylylendiamin in ca. 200 ccm trocknem Ather mit SO₂ unter Kühlung (DÜRING, B. 28, 604). — Pulver. — Zerfällt beim Umkrystallisieren aus heißem verd. Alkohol in SO₂ und [3-Aminomethyl-benzyl]-thionamidsäure (s. o.).

19. 2.3 - Diamino - 1.4 - dimethyl - benzol, 2.3 - Diamino - p-xylol, 3.6 - Dimethyl - phenylendiamin - (1.2) C₈H₁₈N₂, s. nebenstehende Formel. B. Durch Reduktion des 2.3 - Dinitro - 1.4 - dimethyl - benzol (Bd. V, S. 387) mit Zinn und Salzsaure (Lellmann, A. 228, 251). Durch Reduktion des 3-Nitro-CH_a ·NH. NH2 2-amino-p-xylols (Bd. XII, S. 1140) mit Zinn und Salzsäure oder besser mit Zink-CH, staub in siedendem Wasser (Noellting, Thesmar, B. 35, 635, 640). — Sublimiert in Nädelchen. F: 75° (Noelting, Geissmann, B. 19, 145). Sehr leicht löslich in Wasser, Alkohol, Benzol, weniger in Ligroin (N., Th.). — Gibt mit Ferrichlorid kirschrote Färbung, mit NaNO, in essignaurer Lösung gelbe Lösung, dann weißen Niederschlag (N., G.; N., TH.).

20. 2.5 - Diamino - 1.4 - dimethyl - benzol, 2.5 - Diamino - p-xylol, 2.5 - Dimethyl-phenylendiamin-(1.4) $C_8H_{11}N_1$, 8. neben-NH. stehende Formel. B. Beim Behandeln von p-Xylochinon-dioxim (Bd. VII, H.N S. 659) mit Zinn und Salzsäure (Sutkowski, B. 20, 979). Durch Reduktion des 5-Nitro-2-amino-p-xylols mit Zinn und Salzsäure (MARCKWALD, B. 23, 1020) oder mit Zinkstaub in siedendem Wasser (NOELTING, THESMAR, B. 85, 641). Durch Reduktion von 4-Amino-2.5.2'.5'-tetramethyl-azobenzol (Syst. No. 2174) mit Zink und Salzsäure (NIETZKI, B. 13, 471) oder mit Zinnchlorür und Salzsäure (Noelting, Forel, B. 18, 2685). Durch Reduktion von 4'-Amino-2.4.2'.5'-tetramethyl-azobenzol (Syst. No. 2174) mit Zinnchlorür und Salzsäure (Noe., F., B. 18, 2686). — Nadeln (aus Benzol), Blättchen (aus Wasser). F: 150° (NIE.), 149—150° (Noe., Th.), 142° (S.). Wenig löslich in kaltem, leicht in heißem Wasser und in Alkohol, schwieriger in Benzol und Ather (Niz.; Noz., Th.). — Gibt dieselben Reaktionen wie 2.5-Diamino-m-xylol (S. 181) (Noz., TH.). Wird durch Oxydation in p-Xylochinon übergeführt (NIE.; NoE., F.). — $C_8H_{18}N_8+2$ HCl. Blättchen (aus Wasser). Leicht löslich in Wasser und heißem Alkohol (S.). — $C_8H_{18}N_2 + H_2SO_4$. Krystallmehl. Fast unlöslich in heißem Wasser (Ma.).

2-Amino-5-methylamino-p-xylol $C_0H_{14}N_1=(CH_3)_2C_0H_2(NH_2)\cdot NH\cdot CH_3$. B. Aus p-Xylochinon-methylimid-oxim (bezw. 5-Nitroso-2-methylamino-p-xylol) (Bd. VII, S. 659) mit Zinn und Salzsäure (PFLUG, A. **255**, 173). — Nadeln. F: 83°. Leicht löslich in Alkohol und Ather, schwer in Wasser.

- 2-Amino-5-bensolsulfamino-p-xylol $C_{16}H_{16}O_{2}N_{2}S=(CH_{2})_{2}C_{4}H_{4}(NH_{2})\cdot NH\cdot SO_{2}\cdot C_{4}H_{5}$. B. Durch Reduktion von 5-Nitro-2-benzolsulfamino-p-xylol (Bd. XII, S. 1140) mit Eisen und stark verd. Essigsäure (Morgan, Micklethwart, Soc. 87, 927). Strohgelbe Nadeln (aus Wasser). F: 144—146°. Wird durch Diazotierung in salzsaurer Lösung und Versetzen der Lösung mit überschüssigem Natriumscetat in Anhydro-benzolsulfamino-diazo-xylol $C_{6}H_{5}\cdot SO_{2}\cdot N_{2}C_{6}H_{3}(CH_{2})_{2}$ (Syst. No. 2203) übergeführt.
- 21. 2.6-Diamino-1.4-dimethyl-benzol, 2.6-Diamino-p-xylol, 2.5-Dimethyl-phenylendiamin-(1.3) C₂H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion des 2.6-Dinitro-1.4-dimethyl-benzols (Bd. V, 8. 388) mit Zinn und Salzsäure (Lellmann, A. 228, 251; Noeltting, Geissmann, B. 19, 145; Noeltting, Thesmar, B. 35, 641). Gelbliche Prismen (aus Benzol-Ligroin). F: 102—103° (N., Th.). Sublimiert in Nadeln (N., G.). Sehr leicht löslich in Alkohol, Äther und Benzol, leicht in Wasser, schwerin Ligroin (N., Th.). Gibt mit FeCl₃ und K₂Cr₂O₇ in neutraler Lösung keine Färbung, in schwefelsaurer Lösung in der Wärme kirschrote Färbung und Chinongeruch (N., Th.).
- 2.6-Bis- $[\omega$ -allyl-thioureido]-p-xylol $C_{10}H_{22}N_4S_2=(CH_2)_2C_3H_2(NH\cdot CS\cdot NH\cdot CH_2\cdot CH_2)_2$. B. Aus 2.6-Diamino-p-xylol und 2 Mol.-Gew. Allylsenföl in alkoh. Lösung (Leilmann, A. 228, 252). Nadeln (aus Alkohol). F: 112,5°.
- 22. 2.41-Diamino-1.4-dimethyl-benzol, 2.41-Diamino-p-xylol, 3-Amino-4-methyl-benzylamin C_vH₁₂N₂, s. nebenstehende Formel. B. Das salzsaure Salz entsteht bei 2-stdg. Erhitzen von 2 g N-[3-Amino-4-methyl-benzyl]-benzamid (s. u.) mit 20 ccm rauchender Salzsäure auf 150° (Lustic, B. 28, 2991). C₃H₁₂N₂ + 2 HCl. Nadeln (aus verd. Alkohol). Bräunt sich bei etwa 260° und sohmilzt bei 285° unter Zersetzung. Pikrat. Hellgelbe Nadeln. Schmilzt bei 285° unter Zersetzung.
- N-[8-Amino-4-methyl-bensyl]-bensamid $C_{18}H_{1c}ON_2 = CH_3 \cdot C_6H_8(NH_2) \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Durch Eintragen von Zinkspänen in eine lauwarme, mit 50 com Salzsäure (D: 1,19) versetzte Lösung von 5 g N-[3-Nitro-4-methyl-benzyl]-bensamid (Bd. XII, 8. 1142) in 50 com Alkohol (Lustig, B. 28, 2989). Nadeln (aus Benzol). F: 113—115°. Sehr leicht löslich in Alkohol und Äther. $C_{18}H_{16}ON_2 + HCl$. Nadeln (aus verd. Salzsäure). Schmilzt gegen 237° unter Zersetzung. $2C_{18}H_{16}ON_2 + H_2Cr_2O_7$. Gelbrote Nadeln. Zersetzt sich bei 80°. Pikrat $C_{15}H_{16}ON_2 + C_6H_2O_7N_3$. Hellgelbe Nadeln (aus Wasser). Schmilzt bei 170—171° unter Bräunung.
- 23. I^{2} -Diamino-1.4-dimethyl-benzol, $\omega.\omega'$ -Diamino-p-cylol, p-Xylylendiamin $C_{3}H_{12}N_{2}=H_{2}N\cdot CH_{2}\cdot C_{2}H_{4}\cdot CH_{2}\cdot NH_{2}$. B. Das salzsaure Salz entsteht bei 2-stdg. Erhitzen von 5 g p-Xylylen-bis-phthalimid (Syst. No. 3218) mit 5 com Eisessig und 5 com rauchender Salzsäure auf 155° (Luerig, B. 28, 2992). Krystalle. F: 35°. Mit Thionylalin entsteht 4-Aminomethyl-benzaldehyd (Syst. No. 1873) (Dürnve, B. 28, 604). Beim Einleiten von SO₂ in die äther. Lösung entsteht p-Xylylen-bis-thionamidsäure (S. 189) (D.). $C_{3}H_{12}N_{3}+2HCl+1^{1}/_{3}H_{2}O$. Nadeln (aus verd. Alkohol) (L.). $C_{2}H_{12}N_{2}+SO_{2}$ s. [4-(Aminomethyl)-benzyl]-thionamidsäure, S. 189. $C_{4}H_{13}N_{3}+2SO_{4}$ s. p-Xylylen-bis-thionamidsäure. Pikrat $C_{2}H_{12}N_{2}+2C_{4}H_{2}O_{7}N_{3}$. Orangefarbige Nadeln. Zersetzt sich bei 232° (L.). $C_{5}H_{12}N_{2}+2HCl+PtCl_{4}$. Niederschlag. Zersetzt sich gegen 250° (L.).
- N.N.N.N'.N'.Hexaäthyl-p-xylylen-bis-ammoniumhydroxyd, p-Xylylen-bis-triäthylammoniumhydroxyd, N.N.N'.N'.Tetraäthyl-p-xylylendiamin-bis-hydroxyd-äthylat $C_{20}H_{40}O_2N_2 = C_0H_4[CH_2 \cdot N(C_2H_3)_2 \cdot OH]_3$. Bromid $C_{20}H_{30}N_2Br_2$. B. Aus p-Xylylendibromid (Bd. V, S. 385) und Triäthylamin (Bd. IV, S. 99) in Chloroform (Manourian, B. 84, 2087). Nadeln (aus Alkohol + Äther). F: 230°. Sehr leicht löslich in Wasser und Chloroform, löslich in heißem Alkohol. Perbromid $C_{20}H_{20}N_2Br_2$. Orangegelber Niederschlag. F: 164°. Schwer löslich in heißem Wasser und Alkohol. $C_{20}H_{20}N_2Cl_2 + 2$ AuCl₂. Gelbe Nadeln (aus Wasser). F: 242°. Schwer löslich in heißem Wasser und Alkohol. $C_{20}H_{20}N_2Cl_2 + PtCl_4$. Orangefarbene Prismen (aus Wasser). F: 238°. Schwer löslich in Wasser und Alkohol.
- N.N.N.'.N'.N'.N'.Hexapropyl-p-xylylen-bis-ammoniumhydroxyd, p-Xylylen-bis-tripropylammoniumhydroxyd, N.N.N'.N'-Tetrapropyl-p-xylylendiamin-bis-tripropylammoniumhydroxyd, N.N.N'.N'-Tetrapropyl-p-xylylendiamin-bis-tripropylat C_{10} $C_{$

N.N.N'.N'-Tetraisobutyl-p-xylylendiamin $C_{2a}H_{4a}N_2=C_{e}H_{4}(CH_{2}\cdot N[CH_{2}\cdot CH(CH_{3})_{2}]_{2}\}_{2}$. B. Aus p-Xylylendibromid und Diisobutylamin (Bd. IV, S. 166) in Chloroform (M., B. 34, 2084). — Prismen (aus Alkohol). F: 65°. Sehr leicht löslich in Alkohol und Äther, löslich in heißem Wasser. — Pikrat $C_{24}H_{44}N_3+2C_6H_3O_7N_3$. Nadeln (aus Alkohol). F: 171°. Leicht löslich in Alkohol. — $C_{24}H_{44}N_3+2HCl+2AuCl_3$. Gelbe Nadeln. F: 205°. Leicht löslich in Wasser und Alkohol. — $2C_{24}H_{44}N_3+2HCl+PtCl_4$. Rote Prismen (aus Wasser). F: 220°. Sehr leicht löslich in Wasser, sehr wenig in Alkohol.

N.N.N'.N'-Tetraphenyl-p-xylylendiamin $C_{33}H_{28}N_2=C_9H_4[CH_2\cdot N(C_9H_5)_2]_2$. B. Durch mehrstündiges Kochen von p-Xylylendibromid und Diphenylamin (Bd. XII, S. 174) in Alkohol (M., B. 34, 2085). — Nädelchen (aus Eisessig). F: 186°. Sehr wenig löslich in Alkohol, leichter in Aceton, sehr leicht in Eisessig.

N.N'-Di-a-naphthyl-p-xylylendiamin $C_{28}H_{24}N_2=C_8H_4(CH_2\cdot NH\cdot C_{10}H_7)_2$. B. Aus-p-Xylylendibromid und a-Naphthylamin in Chloroform (M., B. 34, 2083). — Krystallpulver (aus Benzol + Alkohol). F: 165°. Unlöslich in Wasser, Alkohol und Äther.

N.N.N'.N'-Tetraacetyl-p-xylylendiamin $C_{10}H_{20}O_4N_2 = C_0H_4[CH_2\cdot N(CO\cdot CH_3)_2]_3$. B. Durch Kochen des salzsauren p-Xylylendiamins mit Essigsäureanhydrid und wasserfreiem Natriumacetat (Lustig, B. 28, 2993). — Nadeln (aus Alkohol). F: 194°.

N.N'-Dibensoyl-p-xylylendiamin $C_{22}H_{20}O_2N_2 = C_4H_4(CH_2\cdot NH\cdot CO\cdot C_4H_5)_2$. B. Aus salzsaurem p-Xylylendiamin, Benzoylchlorid und Natronlauge (Lustig, B. 28, 2993). — Nadeln. F: 193—194°. Löslich in Alkohol, Eisessig, Benzol.

N.N'-Bis-[2-carboxy-bensoyl]-p-xylylendiamin, p-Xylylen-bis-phthalamidsäure $C_{34}H_{30}O_6N_3=C_6H_4(CH_3\cdot NH\cdot CO\cdot C_6H_4\cdot CO_3H)_3$. B. Beim Kochen von p-Xylylen-bisphthalimid (Syst. No. 3218) mit wenig überschüssiger alkoholischer Kalilauge (Lustra, B. 288, 2992). — Pulver. Unlöslich in den gebräuchlichen Lösungsmitteln. Zerfällt bei 279° in Wasser und p-Xylylen-bis-phthalimid. $-Ag_2C_{24}H_{18}O_6N_2$. Niederschlag. Zersetzt sich bei 266°.

[4-Aminomethyl-benzyl]-thionamidsäure $C_8H_{12}O_2N_3S = H_2N \cdot CH_2 \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CH_3 \cdot CH_4 \cdot CH_4 \cdot CH_5 \cdot$ SO.H. B. Aus p-Xylylen-bis-thionamidsäure (s. u.) durch spontanen Zerfall im Vakuum (DÜRING, B. 28, 605). — Krystallinisches Pulver (aus verd. Alkohol). Unschmelzbar. Sehr leicht löslich in Wasser, unlöslich in Ather. — Liefert mit Benzaldehyd die Verbindung

C₁₈H₁₈O₂N₂S (s. u.). Verbindung C₁₈H₁₈O₂N₂S. B. Bei längerem Stehen von 1 Mol.-Gew. [4-Aminomethylbenzyl]-thionamidsaure (s. o.), gelöst in wenig Wasser, mit 1 Mol.-Gew. Benzaldehyd (DÜRING, B. 28, 606). — Krystallinisch. Unschmelzbar.

p-Xylylen-bis-thionamidsäure $C_8H_{19}O_4N_2S_2 = C_8H_4(CH_2\cdot NH\cdot SO_2H)_2$. B. Beim Einleiten von schwefliger Säure in die absol. äther. Lösung von p-Xylylendiamin (DÜRING, B. 28, 605). — Pulver. Zerfällt im Vakuum in schweflige Säure und [4-Aminomethyl-benzyl]thionamidsaure (s. o.).

2-Nitro-1'.4'-diamino-p-xylol $C_0H_{11}O_2N_3 = O_2N \cdot C_0H_{11}(CH_0 \cdot NH_0)_3$. B. Das salzsaure Salz entsteht bei $2^1/2$ -stdg. Erhitzen von 3 g Nitro-p-xylylen-bis-phthalimid (Syst. No. 3218) mit 3 com Eisessig und 3 com rauchender Salzsäure auf 160° (Lustig, B. 28, 2993). — $C_0H_{11}O_2N_3 + 2HCl+1^1/2H_2O$. Oktaeder (aus verd. Alkohol). Schäumt bei langsamem Erhitzen schaubei 18500 auf gewartst sich aben bei Brognam Frahitzen schaubei 160° hitzen bei 258° auf, zersetzt sich aber bei längerem Erhitzen schon bei 160°. — Pikrat $C_8H_{11}O_2N_3 + C_6H_3O_7N_3$. Hellgelbe Säulen (aus Wasser). Schäumt bei 237° auf. — $C_8H_{11}O_2N_3 +$ 2HCl+PtCl. Zersetst sich bei 295°.

N.N'-Dibenzoylderivat $C_{22}H_{19}O_4N_2 = O_2N \cdot C_4H_3 \cdot NH \cdot CO \cdot C_4H_5)_2$. B. Aus 2-Nitro-1'.4'-diamino-p-xylol, Benzoylchlorid und Natronlauge (Lustic, B. 28, 2994). — Nadeln. F: 210,5—2116. Wenig löslich in Alkohol, Chloroform und Benzol.

4. Diamine C₉H₁₄N₂.

1. 2.4-Diamino-1-isopropyl-benzol (?), 2.4-Diamino-cumol (?) $C_0H_{14}N_0$, s. nebenstehende Formel. B. Aus Cumol durch Nitrieren mit Salpeterschwefelsäure und Destillation der gebildeten Dinitroverbindung mit Eisen und Essignaure (A. W. HOFMANN, C. r. 55, 782 Anm.; J. 1862, 354). CH(CH₂)₂ NH₂(?) Krystalle. F: 47°. NH,

2. 2.6 - oder 3.5 - Diamino - 1 - methyl -4-äthyl-benzol, 2-Methyl-5-äthyl-oder 5-Methyl-2-dthyl-phonylendiamin-(1.3) C₃H₁₄N₃, s. nebenstehende Formeln. B. Beim Destillieren von 2.6- oder 3.5-diamino-4-methyl-

$$\begin{array}{c|c} CH_3 & CH_3 \\ H_2N & NH_2 & oder \\ \hline \\ C_2H_5 & C_2H_5 \end{array}$$

hydratropasaurem Barium (Syst. No. 1905) mit Baryt (Errera, Baldracco, G. 21 II, 470). — Tafeln (aus Wasser). F: 71—72°. Siedet gegen 300°. Ziemlich löslich in Wasser, leicht in Alkohol.

- 3. 3.5 Diamino 1.2.4 trimethyl benzol, 3.5 Diamino pseudocumol 1), 2.4.5 Trimethyl phenylendiamin (1.3) C₂H₁₄N₂, s. nebenstehende Formel. B. Beim Behandeln von 3-Nitro-5-amino-1.2.4-trimethyl-benzol (Bd. XII, S. 1158) oder 3-Nitro-5-amino-1.2.4-trimethyl-benzol-sulfonsäure-(6) (Syst. No. 1923) mit Zinn und Salzsäure (MAYER, B. 20, 970). Nadeln (aus Benzol + Ligroin). F: 84°.

 Leicht löslich in Benzol. Eisenchlorid färbt eine Lösung der freien Base intensiv dunkelrot.
- 4. 3.6 Diamino 1.2.4 trimethyl benzol, 3.6 Diamino pseudocumol 1), 2.3.5 Trimethyl phenylendiamin (1.4) C₄H₁₄N₂, s. nebenstehende Formel. B. Man versetzt 0,5 g 6-Amino-1.2.4-trimethyl-benzol (Bd. XII, S. 1159), gelöst in Alkohol, mit 0,4 g fein zerriebener p-Diazobenzolsulfonsäure, saugt nach einem Tage den ausgeschiedenen Krystallbrei ab, suspendiert denselben in kochendem Wasser und fügt salzsaure SnCl₂-Lösung bis zur Entfärbung hinzu (BAMBERGER, B. 24, 1647). Aus 3.6-Dinitro-pseudocumol (Bd. V, S. 405) mit SnCl₂ und Salzsäure (Nietzki, Schneider, B. 27, 1429). Nadeln (aus Äther + Ligroin). F: 78° (B.). Ziemlich leicht löslich in Wasser, sehr leicht in Alkohol, Äther, Chloroform und Benzol, schwer in siedendem Ligroin (B.). C₂H₁₄N₂ + 2HCl. Nadeln. Schwer löslich in Salzsäure (N., Sqh.).

5-Chlor-3.6-diamino-1.2.4-trimethyl-bengol $C_9H_{19}N_2Cl=(CH_3)_3C_6Cl(NH_2)_3$. B. Aus 5-Chlor-3.6-dinitro-1.2.4-trimethyl-benzol (Bd. V, S. 405) mit Zinnehlorür und Salzsäure (Nietzki, Schneider, B. 27, 1428). — Nädelchen (aus Alkohol). F: 171°. — $C_9H_{13}N_2Cl+2HCl$. Blättehen. Schwer löslich in Salzsäure.

- 5. 5.6 Diamino 1.2.4 trimethyl-benzol, 5.6 Diamino pseudocumol¹), 3.4.6 Trimethyl-phenylendiamin (1.2) C₉H₁₄N₂, s. nebenstehende Formel. B. Durch Reduktion des 6-Nitro-5-amino-1.2.4 trimethyl-benzols (Bd. XII, S. 1158) (EDLER, B. 18, 630). Entsteht neben 5-Amino-1.2.4 trimethyl-benzol beim Behandeln von 6-Amino-2.3.5.2'.4'.5'-hexamethyl-azobenzol (Syst. No. 2175) mit Zinnehlorür und Salzsäure (Noelting, Baumann, B. 18, 1148). Blättchen (aus Wasser). F: ca. 90° (E.), 90—92° (N., B.). Ziemlich leicht löslich in heißem Wasser, sehr leicht in Alkohol und Äther (E.). Die sehr verdünnte Lösung des salzsauren Salzes wird durch Eisenchlorid intensiv rot gefärbt (E.). Die Lösung der Base in verd. Schwefelsäure gibt mit NaNO₂ eine schwach bräunliche Färbung (E.). Beim Einleiten von Chlor in die eisessig -salzsaure Lösung entsteht ein öliges Produkt, das in Eisessig durch Zinnehlorür und Salzsäure zu 3-Chlor-5.6-dioxy-1.2.4-trimethyl-benzol (Bd. VI, S. 931) reduziert wird (ZINCKE, Hodes, A. 296, 217). Das trockne salzsaure Salz entwickelt beim Erwärmen mit Benzaldehyd HCl (E.; N., B.).
- 6. 2.4-Diamino-1.3.5-trimethyl-benzol, eso-Diamino-mesitylen, 2.4.6-Trimethyl-phenylendiamin-(1.3) C.H.₁₄N₂, s. nebenstehende Formel. B. Aus eso-Dinitro-mesitylen (Bd. V, S. 412) (LADEN-BURG, A. 141, 134) oder eso-Trinitro-mesitylen (Bd. V, S. 412) (LADEN-BURG, A. 179, 176) mit Zinn und Salzsäure. Nadeln (aus Wasser). F: 90° (F.). Sublimiert bei vorsichtigem Erhitzen fast unzersetzt (F.). Ziemlich leicht löslich in heißem Wasser, sehr leicht in Alkohol und Äther (F.). Bei der Oxydation mit Chromsäure oder Eisenchlorid entsteht Oxy-m-xylochinon (Bd. VIII, S. 279) (FITTIG, SIEFERMANN, A. 180, 27). Wird beim Erhitzen des Hydrochlorids mit Methylalkohol unter Druck nicht methyliert (Morgan, Soc. 81, 655). C.₉H₁₄N₂ + 2 HCl. Quadratische Tafeln (aus Wasser). Leicht löslich in Wasser und Alkohol, unlöslich in konz. Salzsäure (F.). C.₉H₁₄N₂ + H₂SO₄. Blätter (aus Alkohol). Sehr leicht löslich in Wasser, kaum in kaltem Alkohol (F.). Oxalat C.₉H₁₄N₂ + C.₂H₂O₄. Harte Körner (aus Wasser). Fast unlöslich in kaltem Alkohol, ziemlich leicht löslich in siedendem Wasser (F.).

2.4-Diisocyan-1.3.5-trimethyl-bensol $C_{11}H_{10}N_2 = (CH_2)_2C_2H(N:C<)_2$. B. Durch Einw. von Chloroform und Kali auf eso-Diamino-mesitylen (KAUFLER, M. 22, 1080). — Zerfließliche Nadeln. — Wird durch Erhitzen in Mesitylen-eso-dicarbonsaure-dinitril (Bd. IX, S. 884) umgelagert.

¹⁾ Besifferung der vom Namen "Pseudocumol" abgeleiteten Namen in diesem Handbuch s. Bd. V, S. 400.

- **2.4-Bis-acetamino-1.3.5-trimethyl-benzol** $C_{13}H_{18}O_2N_3=(CH_3)_3C_6H(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen von eso-Diamino-mesitylen mit Eisessig (LADENBURG, A. 179, 177). Nadeln (aus Alkohol). Schmilzt oberhalb 300°. Läßt sich in kleinen Mengen unzersetzt sublimieren. Fast unlöslich in Wasser, sehr schwer löslich in kaltem Alkohol.
- 2-Amino-4-benzolsulfamino-1.3.5-trimethyl-benzol $C_{15}H_{18}O_2N_2S = (CH_3)_2C_6H(NH_3) \cdot NH \cdot SO_3 \cdot C_6H_5$. B. Aus 4-Nitro-2-benzolsulfamino-1.3.5-trimethyl-benzol (Bd. XII, S. 1163) durch Reduktion mit Eisen und Essigsäure (Morgan, Micklethwait, Soc. 89, 1299). Krystalle (aus verd. Methylalkohol). F: 156°. Liefert beim Diazotieren und Behandeln mit Natriumacetat 4-Benzolsulfamino-2-oxy-1.3.5-trimethyl-benzol (Syst. No. 1855).
- **2.4-Bis-benzolsulfamino-1.3.5-trimethyl-benzol** $C_{21}H_{22}O_4N_2S_3=(CH_3)_3C_6H(NH\cdot SO_3\cdot C_6H_5)_3$. *B.* Aus 2.4-Diamino-1.3.5-trimethyl-benzol mit Benzolsulfochlorid in siedendem Toluol oder Pyridin, sowie nach Schotten-Baumann (Mo., Mi., Soc. 89, 1299). Krystalle (aus verd. Alkohol). F: 248°.
- 6-Nitro-2.4-diamino-1.3.5-trimethyl-benzol $C_9H_{13}O_2N_3=(CH_3)_3C_6(NO_2)(NH_2)_2$. B. Bei längerem Behandeln einer alkoholisch-ammoniakalischen Lösung von 4.6-Dinitro-2-amino-1.3.5-trimethyl-benzol (Bd. XII, S. 1163) mit H_2S (Fittig, A. 141, 139). Beim Erhitzen von eso-Trinitro-mesitylen (Bd. V, S. 112) mit alkoh. Schwefelammonium im geschlossenen Rohr auf 100° (Anschütz, A. 235, 183). Rote Krystalle (aus Alkohol). Monoklin prismatisch (v. Lang, A. 141, 140; Hintze, A. 235, 183; vgl. Groth, Ch. Kr. 4, 749). F: 184° (F.). Fast unlöslich in kaltem Wasser, schwer löslich in heißem, leicht in Äther und in heißem Alkohol (F.). $C_9H_{13}O_2N_3+2$ HCl. Quadratische Tafeln. Leicht löslich in Wasser und Alkohol, schwerer in Äther (F.).
- 7. 2.1 Diamino 1.3.5 trimethyl benzol, 2.1 Diamino-mesitylen, 2-Amino-3.5-dimethyl-benzylamin $C_1H_{14}N_2$, s. nebenstehende Formel. CH₃ CH_3 CH_3
- [2-Amino-3.5-dimethyl-bensyl]-asymm.-m-xylidin $C_{17}H_{22}N_2 = (CH_3)_8C_6H_2(NH_2)\cdot CH_3\cdot NH\cdot C_6H_3(CH_3)_8$. B. Durch Kondensation von asymm. m-Xylidin, Formaldehyd und salzsaurem asymm. m-Xylidin (Höchster Farbw., D. R. P. 105797; C. 1900 I, 496). Öl. Liefert mit Essigsäureanhydrid ein Acetylderivat [Blättchen (aus heißem Amylalkohol); F: 278; schwer löslich in den gebräuchlichen Lösungsmitteln].
- 8. 1.3¹-Diamino-1.3.5-trimethyl-benzol, $\omega.\omega'$ -Diamino-mesitylen $C_9H_{14}N_2$, s. nebenstehende Formel. B. Beim Erhitzen von Mesitylen-bis-phthalamidsäure (s. u.) mit konz. Salzsäure im geschlossenen Rohr auf 200—220° (Landau, B. 25, 3017). Öl. CH3· CH2· NH2 Kp: 268°. Pikrat $C_9H_{14}N_2+2C_9H_3O_7N_3$. Hellgelbe Nädelchen. Zersetzt sich bei 235°. $C_9H_{14}N_2+2HCl+PtCl_4$. Gelbe Blättchen. Zersetzt sich bei 258°.
- 1¹.8¹-Bis-acetamino-1.3.5-trimethyl-benzol $C_{13}H_{18}O_2N_3 = CH_3 \cdot C_6H_3(CH_2 \cdot NH \cdot CO \cdot CH_3)_2$. B. Durch Erwärmen von $\omega.\omega'$ -Diamino-mesitylen (s. o.) mit wasserfreiem Natrium-acetat und Essigsäureanhydrid auf dem Wasserbade (Landau, B. 25, 3017). Nadeln (aus Chloroform). F: 165°. Leicht löslich in heißem Wasser, in Chloroform und Benzol.
- 1¹.3¹-Bis-[2-carboxy-bensamino]-1.3.5-trimethyl-bensol, Mesitylen-bis-phthal-amidsäure $C_{28}H_{22}O_6N_2=CH_3\cdot C_6H_3(CH_2\cdot NH\cdot CO\cdot C_6H_4\cdot CO_2H)_2$. B. Beim Kochen von 1¹.3¹-Diphthalimido-mesitylen (Syst. No. 3218) mit alkoh. Kali (Landau, B. 25, 3016). Prismen. F: 187°. Sehr leicht löslich in Alkohol und Eisessig. $Ag_2C_{25}H_{20}O_6N_2$. Schwer lösliche Blättchen.

5. Diamine $C_{10}H_{16}N_2$.

1. 3.4-Diamino-1-tert.-butyl-benzol, 4-tert.-Butyl-phenylen-cliamin-(1.2) $C_{10}H_{16}N_2$, s. nebenstehende Formel. Zur Konstitution der Butylgruppe vgl. Seńkowski, B. 24, 2974. — B. Bei der Reduktion von 4-Nitro-3-amino-1-tert.-butyl-benzol (Bd. XII, S. 1166) mit Zinnchlorür und Salzsäure (Gelzer, B. 21, 2951; Shoesmith, Mackie, Soc. 1929, 477). Aus 3-Nitro-4-NH2 amino-1-tert.-butyl-benzol (Bd. XII, S. 1169) mit SnCl2 und Salzsäure (G., B. 20, 3254). — Glimmerartige Blätter oder Tafeln (aus Wasser). F: 97—98° (Sh., M.), 97,5°; Kp: 280—282°; sublimiert leicht in Blättern; sehr schwer löslich in kaltem Wasser, leicht in kochendem Wasser, in kaltem Alkohol, Äther oder Benzol (G., B. 20, 3255). — $C_{10}H_{16}N_2 + 2HCl$. Blättchen (aus Alkohol). Leicht löslich in Wasser, wenig in kaltem Alkohol, unlöslich in Äther und Benzol (G., B. 20, 3255). — Oxalat $2C_{10}H_{16}N_2 + C_2H_2O_4$. Blättchen (aus verd. Alkohol). Ziemlich leicht löslich in siedendem Wasser, wenig in siedendem Alkohol, unlöslich in Äther (G., B. 20, 3256). — Pikrat $C_{10}H_{16}N_2 + 2C_6H_3O_7N_3$. Hellgelbe Nädelchen

(aus verd. Alkohol). Unlöslich in kaltem Wasser, Äther und Benzol, leicht löslich in Alkohol (G., B. 20, 3255).

- 5-Brom-3.4-diamino-1-tert.-butyl-benzol $C_{10}H_{16}N_2Br = (CH_2)_2C \cdot C_8H_2Br(NH_2)_2$. B. Aus 5-Brom-3-nitro-4-amino-1-tert.-butyl-benzol (Bd. XII, S. 1169) mit Zinnchlorfir und Salzsäure (Gelzer, B. 21, 2954). Nädelchen (aus Äther). F: 85,5°. Sublimiert unter starker Verkohlung. Sehr schwer löslich in siedendem Wasser, leicht in Alkohol, Äther und Benzol. Oxalat $2C_{10}H_{18}N_2Br + C_3H_3O_4$. Nadeln (aus Alkohol). Sehr wenig löslich in Äther und Benzol, ziemlich reichlich in siedendem Alkohol. Pikrat $C_{10}H_{18}N_2Br + 2C_3H_3O_7N_3$. Gelbe Nädelchen. Leicht löslich in warmem Wasser und in Alkohol, sehr leicht in Äther.
- 5-Nitro-3.4-diamino-1-tert.-butyl-benzol $C_{10}H_{18}O_3N_3=(CH_3)_2C\cdot C_6H_2(NO_2)(NH_3)_2$. Beim Einleiten von H_2S in eine alkoholisch-ammoniakalische Suspension von 3.5-Dinitro-4-amino-1-tert.-butyl-benzol (Bd. XII, S. 1169) (JEDLICKA, J. pr. [2] 48, 104). Rote Nädelchen (aus verd. Alkohol). F: 104—105°. Sehr leicht löslich in Alkohol, Äther, Benzol und Eisessig. $C_{10}H_{18}O_2N_3+H$ Cl. Braune Prismen. $2C_{10}H_{18}O_2N_3+H_2SO_4$ (bei 100°). Messinggelbe Blättchen.
- 5 Nitro 8.4 bis bensamino 1 tert. butyl bensol $C_{24}H_{23}O_4N_3 = (CH_3)_3C \cdot C_6H_3(NO_2)(NH \cdot CO \cdot C_6H_5)_2$. B. Aus 5-Nitro-3.4-diamino-1-tert.-butyl-benzol und Benzoyl-chlorid auf dem Wasserbade (Jedlicka, J. pr. [2] 48, 109). Nädelchen (aus Alkohol). F: 245—246°.
- 2. 3.6 Diamino 1 methyl 2 propyl CH_3 benzol, 2 Methyl 3 propyl phenylen H_2N $CH_3 \cdot CH_3 \cdot C$
- 4.5-Dibrom-3.6-diamino-1-methyl-2-propyl-benzol $C_{10}H_{14}N_3^2Br_2=CH_3\cdot CH_3\cdot
- 3. 2.5 Diamino 1 methyl 3 propylbenzol, 2 Methyl 6 propyl phenylen diamin-(1.4) C₁₀H₁₆N₂, s. nebenstehende Formel.
 H₂N. CH₂·CH₃·
- 4.6-Dibrom-2.5-diamino-1-methyl-3-propyl-benzol $C_{10}H_{14}N_1Br_2 = CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$
- 4. 2.5 Diamino 1 methyl 4 propyl benzol, 2 Methyl 5 propyl phenylendiamin-(1.4) H_2N $C_{10}H_{10}N_2$, s. nebenstehende Formel. $C_{10}H_{10}N_2$
- 3.6-Dibrom-2.5-diamino-1-methyl-4-propyl-benzol $C_{10}H_{14}N_sBr_s=CH_s\cdot CH_s\cdot CH$
- 5. 2.5-Diamino-1-methyl-4-isopropyl-benzol, 2.5-Diamino p cymol, 2 Methyl 5 isopropyl p phenylen-diamin-(1.4) C₁₀H₁₆N₂, s. nebenstehende Formel. B. Beim Behandeln von Thymochinondioxim (Bd. VII, S. 665) (Kehrmann, Messinger, B. 23, 3562) oder "Bis-thymochinondioxim" (Bd. VII, S. 663) mit SnCl₂ und alkoh. Salzsäure (Liebermann, Iljinski, B. 18, 3200; K., M.). Aus 2.5-Dinitro-cymol (Bd. V, S. 425) mit Zinn und Salzsäure (K., M.). Bei der Reduktion von 2.5.6-Trinitro-p-menthen-(1) (Bd. V, S. 87) mit Zinn und Salzsäure (Wallace, Beschke, A. 336, 22). Bei der Oxydation mit verd. Chromsäure oder FeCl₂ entsteht Thymochinon (L., I.). C₁₀H₁₂N₂ + 2HCl. Tafeln (aus heißer verdünnter Salzsäure) (K., M.). Löslich in Alkohol, durch Ather fällbar (W., B.).

- 2.5 Bis acetamino 1 methyl 4 isopropyl benzol $C_{14}H_{20}O_2N_2 = (CH_3)_2CH \cdot C_6H_3(CH_3)(NH \cdot CO \cdot CH_3)_3$. B. Durch kurzes Aufkochen des salzsauren 2.5-Diamino-pcymols (S. 192) mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Messinger, B. 28, 3563). Nädelchen (aus Alkohol). F: 260°. Ziemlich schwer löslich in Alkohol und Eisessig.
- 3.6-Dibrom-2.5-diamino-1-methyl-4-isopropyl-benzol $C_{10}H_{14}N_2Br_2=(CH_3)_2CH\cdot C_6Br_6(CH_3)(NH_2)_2$. B. Aus 3.6-Dibrom-2.5-dinitro-1-methyl-4-isopropyl-benzol (Bd. V, S. 426) mit Eisenpulver und Salzsäure (CLAUS, RAPS, J. pr. [2] 43, 565). Nädelchen. F: 105°. Leicht löslich in Alkohol und Äther. $2C_{10}H_{14}N_2Br_2+2HCl+PtCl_4$. Goldgelbe Schüppchen.
- 6. $1^{\circ}.2^{\circ}-Diamino-1.2-diāthyl-benzol$ $C_{10}H_{10}N_{2}=C_{0}H_{4}(CH_{2}\cdot CH_{2}\cdot NH_{2})_{2}$. B. Entsteht neben 2-Amino-2-methyl-hydrinden (Bd. XII, S. 1206) beim Behandeln von o-Phenylendiessigsäure-dinitril (Bd. IX, S. 874) mit Alkohol und Natrium; man neutralisiert die gebildeten Basen durch Oxalsäure; erst fällt das Oxalat des 2-Amino-2-methyl-hydrindens aus (Zanetti, G. 22 II, 511). Nicht unangenehm riechendes Öl. Pikrat $C_{10}H_{10}N_{2}+2C_{6}H_{3}O_{7}N_{3}$. Gelbe Nadeln (aus Wasser). F: ca. 210° (Zers.).
- 7. $1^1.4^1$ -Diamino-1.4-diāthyl-benzol $C_{10}H_{16}N_2 = C_8H_4[CH(CH_3)\cdot NH_2]_2$ (Gemisch von Racem- und Meso-Form). B. Bei der Reduktion des Dioxims des 1.4-Diacetyl-benzols (Bd. VII, S. 686) in alkoholisch-essigsaurer Lösung mit Natriumamalgam (BEREND, HERMS, J. pr. [2] 74, 137). Öl, das bei starkem Abkühlen krystallinisch erstarrt; Kp_{12} : 140°. $n_D^{n,4}$: 1,54126. Läßt sich mittels d-Weinsäure partiell in optisch-aktive Basen spalten. $C_{10}H_{16}N_2 + 2$ HCl. Schmilzt nicht bis 300°. Leicht löslich in Wasser und Alkohol.
- 1¹-Amino-4¹-carboxyamino-1.4-diäthyl-benzol $C_{11}H_{10}O_2N_2=H_2N\cdot CH(CH_3)\cdot C_6H_4\cdot CH(CH_3)\cdot NH\cdot CO_2H$. B. Beim Einleiten von Kohlensäure in die äther. Lösung des 1¹-4¹-Diamino-1.4-diäthyl-benzols (B., H., J. pr. [2] 74, 138). Weiß. Zersetzt sich bei ca. 85°. Geht beim Stehen an der Luft in eine zähe Masse über.
- 8. 5.6 Diamino 1.2.3.4 tetramethyl benzol, 3.4.5.6 Tetramethyl-phenylendiamin-(1.2) $C_{10}H_{10}N_{3}$, s. nebenstehende Formel. B. Durch Reduktion von 6-Nitro-5-amino-1.2.3.4-tetramethyl-benzol (Bd. XII, S. 1175) (Töhn, B. 21, 906). Blätter (aus Wasser); Nadeln (aus Alkohol). H:10. CH3 Eläsung in verd. Schwefelsäure gibt mit HNO3-haltigem Wasser eine namentlich beim Erhitzen rasch schwindende rote Färbung. $C_{10}H_{10}N_{3}$ CH3 + 2HCl+ H_{3} O. Blätter. Leicht löslich in Wasser, sehr schwer in konz. Salzsäure; die verdünnte wäßrige Lösung wird durch FeCl3 dunkelrot gefärbt.
- 9. 3.6 Diamino 1.2.4.5 tetramethyl benzol, eso Diamino durol, 2.3.5.6-Tetramethyl-phenylendiamin-(1.4) C₁₀H₁₀N₂, s. nebenstehende Formel. B. Beim Erhitzen von eso-Dinitro-durol (Bd. V, S. 433) mit Zinkstaub und Eisessig (Nef. A. 237, 4). Beim Erhitzen von 6-Nitro-3-amino-1.2.4.5-tetramethyl-benzol (Bd. XII, S. 1177) mit alkoholischem Schwefelammonium auf 135° (CAIN, B. 28, 968). Nadeln (aus Wasser). F: 149° (C.). Leicht löslich in Alkohol und Chloroform, schwerer in Äther (N.). Wird durch Oxydationsmittel sehr leicht zu Durochinon (Bd. VII, S. 669) oxydiert (N.); in alkal. Flüssigkeit erfolgt die Oxydation schon durch den Luftsauerstoff (WILLSTÄTTER, KUBLI, B. 42, 4163).
- 6. 3.4-Diamino-1-tert.-amyl-benzol, 4-tert.-Amyl-phenylendiamin-(1.2) $C_{11}H_{10}N_2$, s. nebenstehende Formel.
- 5-Nitro-3.4-diamino-1-tert.-amyl-bensol $C_{11}H_{17}O_2N_3=C_2H_3\cdot C(CH_2)_2\cdot C_4H_3(NO_2)(NH_2)_2$.

 B. Durch Einleiten von H_2S in eine alkoh.-ammoniakalische Lösung von 3.5-Dinitro-4-amino-1-tert.-amyl-bensol (Bd. XII, S. 1179) (Anschütz, Rauff, A. 327, 215). Rote Krystalle (aus verd. Alkohol). F: 82—83°. Löslich in Bensol, Äther und Chloroform. Liefert mit Bensil in Eisessig 8-Nitro-6-tert.-amyl-2.3-diphenyl-chinoxalin (Syst. No. 3492).

7. 3.6-Diamino-1.2.4.5-tetraäthyl-benzol, 2.3.5.6-Tetraäthyl-phenylendiamin-(1.4) $C_{14}H_{24}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 3.6-Dinitro-1.2.4.5-tetraäthyl-benzol (Bd. V, S. 456) mit Zinn und Salzsäure (Jannasch, Bartels, B. 31, 1717). — Krystalle. F: 92°. — Sehr leicht löslich in Alkohol und Eisessig, ziemlich schwer in heißem, unlöslich in kaltem Wasser und konz. Salzsäure. Färbt sich mit konz. Salzsäure oder konz. Salpetersäure dunkelgrün. — Beim Kochen mit FeCl₃-Lösung bildet sich eine in gelben Tafeln krystallisierende, chinonartig riechende Verbindung vom Schmelzpunkt 56°.

4. Diamine $C_n H_{2n-6} N_2$.

1. 2.4-Diamino-1-propenyl-benzol, 4-Propenyl-phenylendiamin-(1.3) $C_9H_{12}N_2=CH_3\cdot CH:CH\cdot C_6H_3(NH_2)_2$.

2.4-Bis-dimethylamino-1-propenyl-bensol, N.N.N'.N'-Tetramethyl-4-propenyl-phenylendiamin-(1.3) $C_{13}H_{20}N_2 = CH_3 \cdot CH \cdot CH \cdot C_6H_3[N(CH_3)_2]_2$. B. Man bringt Athylmagnesiumbromid mit 2.4-Bis-dimethylamino-benzaldehyd (Syst. No. 1873) in Ather zur Reaktion und destilliert das erhaltene, ölige Athyl-[2.4-bis-dimethylamino-phenyl]-carbinol unter 15 mm Druck (Sachs, Appenzeller, B. 41, 106). — Krystallmasse, die bei Zimmertemperatur schmilzt; Kp₁₅: 170—172°. — Pikrat $C_{13}H_{20}N_3 + C_6H_3O_7N_3$. Gelbe Krystalle (aus Alkohol). Sintert bei 138°; F: 142°. Meist schwer löslich; sehr wenig löslich in Ather und Petroläther.

2. Diamine $C_{10}H_{14}N_2$.

1. 5.6-Diamino-naphthalin-tetrahydrid-(1.2.3.4), 5.6.7.8-Tetrahydro-naphthylendiamin-(1.2) C₁₀H₁₄N₂, s. nebenstehende Formel.

B. Bei der Reduktion von Naphthylendiamin-(1.2) durch Natrium und Amylalkohol (Bamberger, Schleffelin, B. 22, 1377). — Nadeln.

F: 84°. Kp₈₁: 220°. Leicht löslich in Alkohol, Äther und in heißem Wasser. — Reduziert ammoniakalische Silberlösung mit Spiegelbildung. Bei der Oxydation durch KMnO₄ entstehen Adipinsäure und Oxalsäure. — C₁₀H₁₄N₂ + 2HCl. Tafeln. Schmilzt gegen 260° unter Zersetzung. Leicht löslich in Wasser. — C₁₀H₁₄N₂ + 2HNO₃. Blätter. F: 201°. Ziemlich schwer löslich in Wasser.

N.N.-Diacetylderivat $C_{14}H_{18}O_{2}N_{2} = C_{10}H_{16}(NH\cdot CO\cdot CH_{3})_{2}$. B. Aus dem Bishydrochlorid der Base mit Essigsäureanhydrid und Natriumacetat auf dem Wasserbad (B., Sch., B. 22, 1379). — Nadeln (aus Wasser). F: 245°. Schwer löslich in Äther, Ligroin und kaltem Wasser, sehr leicht in Alkohol und Chloroform.

2. 5.8-Diamino-naphthalin-tetrahydrid-(1.2.3.4), 5.6.7.8-Tetrahydro-naphthylendiamin-(1.4) C₁₀H₁₄N₂, s. nebenstehende Formel. B. NH₂ Beim Behandeln von Naphthylendiamin-(1.4) mit Natrium und Amylalkohol (Bamberger, Schieffelin, B. 22, 1382). B. Aus 4-[4-Sulfobenzolazo]-5.6.7.8-tetrahydro-naphthylamin-(1) (Syst. No. 2177) mit Zinn H₂C CH₂ Ndeln; unter 20 mm Druck unzersetzt destillierbar (B., Sch.). — Verharzt rasch an der Luft; reduziert ammoniakalische Silberlösung; bei der Oxydation durch KMnO₄ entstehen Adipinsäure und Oxalsäure (B., Sch.). — C₁₀H₁₄N₂+2HCl. Krystallpulver; schwärzt sich bei ca. 230°; schmilzt noch nicht bei 360°; leicht löslich in Wasser (B., Sch.).

N.N'-Diacetylderivat $C_{14}H_{18}O_2N_2 = C_{10}H_{10}(NH\cdot CO\cdot CH_2)_2$. B. Aus der Base in Äther mit Essigsäureanhydrid (Mo., Mi., W., Soc. 85, 754). Aus dem salzsauren Salz der Base mit Essigsäureanhydrid und Natriumacetat auf dem Wasserbad (B., Sch., B. 22, 1383). — Nadeln (aus Wasser oder Eisessig). F: 291—292° (Mo., Mi., W.), 285° (B., Sch.). Sehr wenig löslich in warmem Chloroform, Äther und kaltem Wasser, leichter in siedendem Wasser, ziemlich leicht in siedendem Alkohol (B., Sch.).

3. 1.5 - Diamino - naphthalin - tetrahydrid - (1.2.3.4), 1.2.3.4 - Tetrahydro-naphthylendiamin-(1.5) $C_{10}H_{14}N_1 = CH_2$

a) Inakt. 1.2.3.4 - Tetrahydro - naphthylendiamin - (1.5) C₁₀H₁₄N₂ = C₁₀H₁₀(NH₂)₃. B. Beim Eintragen von 18—20 g Natrium (in Portionen zu 4—5 g) in eine kochende Lösung von 14 g Naphthylendiamin-(1.5) in 200 g Amylalkohol (Bamberger, Abrahll, B. 22, 944). — Prismen (aus Äther), Nadeln (aus Ligroin). Riecht ammoniakalisch, piperidinähnlich; F: 77°; Kp₆₀: 264°; schwer flüchtig mit Wasserdampf (Bamb., A.). Schwer löslich in kaltem, ziemlich leicht in heißem Wasser und Ligroin; leicht löslich in den sonstigen gebräuchlichen Mitteln (Bamb., A.). Starke Base (Bamb., A.). Kann durch Krystallisation des Ditartrats in die optisch-aktiven Komponenten gespalten werden (Bamb., B. 23, 291). — Zersetzt sich bei der Destillation an der Luft unter Abspaltung von NH₃ (Bamb., A.). Durch allmählichen Zusatz von konzentrierter wäßriger Natriumnitritlösung zu der Lösung in rauchender Salzsäure erhält man die entsprechende Diazoniumverbindung, die sich durch sukzessive Reduktion mit SnCl₂ und konz. Salzsäure und Oxydation des entstandenen Hydrazinderivats mit CuSO₄ in ac. Tetrahydro-α-naphthylamin (Bd. XII, S. 1200) umwandeln läßt (Bamb., Bammann, B. 22, 964). — C₁₀H₁₄N₂ + 2 HCl. Prismen (aus Wasser). Rhombisch (A., B. 22, 950). Leicht löslich in Wasser, schwer in Alkohol und Amylalkohol (Bamb., A.). — C₁₀H₁₄N₃ + H₂SO₄ + 2 H₂O. Prismen (aus Wasser). Triklin pinakoidal (A., B. 22, 949; vgl. Groth, Ch. Kr. 5, 391). Leicht löslich in Wasser, sehr wenig in Alkohol und in Amylalkohol (Bamb., A.). — 2C₁₀H₁₄N₂ + 2 HCl + PtCl₄ (über H₂SO₄ getrocknet). Ockergelber, krystallinischer Niederschlag; kaum löslich in Wasser, leicht in Mineralsäuren (Bamb., A.). — C₁₀H₁₄N₂ + 2 HCl + PtCl₄. Orangefarbene, krystallwasserhaltige Prismen, die über Schwefelsäure verwittern (Bamb., A.).

Polymerer [1.2.3.4 - Tetrahydro - naphthylen - (1.5)] - thioharnstoff (?) $C_{22}H_{24}N_4S_2(?) = SC < NH \cdot C_{10}H_{10} \cdot NH > CS(?)$. B. Beim Kochen von inakt. 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) mit Alkohol und überschüssigem CS_2 (Bamberger, Bammann, B. 22, 958). — Krystallpulver. Sintert bei 169°. Schmilzt bei 175° unter Zersetzung. Leicht löslich in Alkohol, unlöslich in Säuren.

1.5-Bis-acetamino-naphthalin-tetrahydrid-(1.2.3.4), N.N'-Diacetyl-1.2.3.4-tetrahydro-naphthylendiamin-(1.5) $C_{14}H_{18}O_2N_2 = C_{10}H_{10}(NH\cdot CO\cdot CH_3)_2$. B. Aus inakt. 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) und Essigsäureanhydrid (Bamberger, Bammann, B. 22, 955). — Prismen (aus Alkohol). F: 262° (korr.). Leicht löslich in Alkohol, mäßig in Chloroform, weniger in Äther und Benzol, schwer in Wasser.

N.N'-Bis-[5-amino-1.2.3.4-tetrahydro-naphthyl-(1)]-harnstoff $C_{21}H_{26}ON_4=(H_2N\cdot C_{10}H_{10}\cdot NH)_2CO$. B. Aus dem 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5)-Salz der [5-Amino-1.2.3.4-tetrahydro-naphthyl-(1)]-dithiocarbamidsäure (s. u.) beim Kochen mit Alkohol und PbO (Bamberger, Bammann, B. 22, 957). — Krystallpulver. Erweicht bei 70° und zersetzt sich bei 135°. Leicht löslich in Alkohol.

N.N'-Bis-[5-amino-1.2.3.4-tetrahydro-naphthyl-(1)]-thioharnstoff $C_{21}H_{20}N_4S=(H_2N\cdot C_{10}H_{10}\cdot NH)_2CS$. B. Aus dem 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5)-Salz der [5-Amino-1.2.3.4-tetrahydro-naphthyl-(1)]-dithiocarbamidsäure (s. u.) beim Kochen mit Alkohol (Bamberger, Bammann, B. 22, 956). — Sintert bei 120° zusammen und ist bei 155° flüssig. Leicht löslich in Alkohol. Verharzt beim Umkrystallisieren.

[5-Amino-1.2.3.4-tetrahydro-naphthyl-(1)]-dithiocarbamidsäure $C_{11}H_{14}N_2S_3=H_2N\cdot C_{10}H_{10}\cdot NH\cdot CS_2H$. B. Das 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5)-Salz entsteht beim Vermischen der äther. Lösungen von 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) und CS_2 unter Kühlung (Bamberger, Bambann, B. 22, 955). — 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5)-Salz $C_{11}H_{14}N_2S_2+C_{10}H_{14}N_2$. Krystallpulver. F: 145°. Zerfällt beim Kochen mit Alkohol in H_2S und N.N'-Bis-[5-amino-1.2.3.4-tetrahydro-naphthyl-(1)]-thioharnstoff (s. o.).

- b) Als salzsaures Salz rechtsdrehendes 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) $C_{10}H_{14}N_2 = C_{10}H_{10}(NH_2)_2$. B. Man löst 1 Mol.-Gew. inakt. 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) in einer wäßr. Lösung von 2 Mol.-Gew. d-Weinsäure, dampft die Lösung zur Sirupdicke ein und fügt einen kleinen Krystall von d-weinsaurem Conin hinzu; es scheidet sich sofort das Ditartrat des als salzsaures Salz linksdrehenden Tetrahydronaphthylendiamins aus; das weinsaure Salz des optischen Antipoden befindet sich in dem von den Krystallen abgesaugten Sirup, aus dem es erst nach monatelangem Stehen krystallisiert (Bamberger, B. 23, 291). $C_{10}H_{14}N_2 + 2$ HCl. Krystalle. $[a]_1^{n,b}: +8^0$ (in Wasser; p=2,44).
- c) Als salzsaures Salz linksdrehendes 1.2.3.4-Tetrahydro-naphthylendiamin-(1.5) $C_{10}H_{14}N_2=C_{10}H_{10}(NH_2)_2$. B. Siehe unter b. $C_{10}H_{14}N_2+2$ HCl. Prismen (aus Wasser). [a] $_{1}^{p,t}$: —7,5° (in Wasser; p = 3,96) (Bamberger, B. 23, 292).

5. Diamine $C_n H_{2n-10} N_2$.

1. Diamine $C_{10}H_{10}N_{2}$.

1.2 - Diamino - naphthalin, Naphthylendiamin - (1.2) $C_{10}H_{10}N_1 = H_1N$ CloHe·NHa. B. Aus 2-Nitroso-naphthylamin-(1) [bezw. Naphthochinon-(1.2)-imid-(1)-oxim-(2), Bd. VII, S. 718] durch Behandlung mit Schwefelammonium (HARDEN, A. 255, 155). Aus 2-Nitro-naphthylamin-(1) (Bd. XII, S. 1258) mit salzsaurer Zinnchlorurlösung (LELLMANN, REMY, B. 19, 803). Aus 1-Nitro-naphthylamin-(2) (Bd. XII, S. 1313) in waßr. Alkohol mit Zinnchlorürlösung (Lawson, B. 18, 2427). Aus 1-Benzolazo-naphthylamin-(2) $H_2N \cdot C_{10}H_4 \cdot N : N \cdot C_6H_5$ (Syst. No. 2181) durch Kochen mit Zinnchlorür in wäßr. Alkohol (La., B. 18, 800). Beim Behandeln von 1-[4-Sulfo-benzolazo]-naphthylamin-(2) $H_2N \cdot C_{10}H_4 \cdot N : N \cdot C_6H_4 \cdot SO_2H$ (Syst. No. 2181) mit Zinn und Salzsäure (Geisss, B. 15, 2193). Aus dem durch Kuppelung von diszotiertem β -Naphthylamin mit β -Naphthylamin entstehenden Amino-azonaphthalin (Syst. No. 2181) mit Zinnehlorür in wäßr. Alkohol (La., B. 18, 2425). Aus β -Naphthochinon-dioxim (Bd. VII, S. 718) mit Zinnehlorfir in Alkohol (Koreff, B. 19, 179). Beim Behandeln von Naphthylendiamin-(1.2)-sulfonsäure-(4) (Syst. No. 1923) mit Natriumamalgam (FRIEDLÄNDER, Kielbasinski, B. 29, 1978). Aus Naphthylendiamin-(1.2)-sulfonsäure-(5) in Gegenwart von Schwefliger Säure mit Natriumamalgam (GATTERMAN), SCHULZE, B. 30, 53). — Darst. Eine Benzoldiazoniumchloridlösung, dargestellt aus 93 g Anilin, 245 g 40% ger Salzsäure, 245 g Wasser und 71 g in wenig Wasser gelöstem Natriumnitrit, gießt man in die lauwarme Lösung von 143 g β -Naphthylamin in 1 l 90% gigem Alkohol und fügt dann noch 45 g krystallisiertes Natriumacetat hinzu. Je 10 g des erhaltenen Benzolazo- β -naphthylamins löst man in 300 g kochender Essigsäure (1:5) und setzt allmählich Jinkstaub hinzu, bis die Lösung hellgelb geworden ist. Die kochende fültrierte Läung läßt man in 300 g kochender Essigsäure (1:5) und setzt allmählich verworden ist. Die kochende fültrierte Läung läßt man in vord Schwefelsäure fließen hellgelb geworden ist. Die kochende filtrierte Lösung läßt man in verd. Schwefelsäure fließen und zerlegt das ausgeschiedene Sulfat durch Kochen mit Sodalösung (BAMBERGER, SCHIEFFE-LIN, B. 22, 1376). — Blättchen (aus heißem Wasser). F: 94° (La.), 95° (Gr.), 95—96° (Ba., Sch.), 98,5° (Le., Rr.; Fr., Ki.). Kp_{0,48}: 150—151° (Steighöhe der Dämpte 85 mm) (E. Erdmann, B. 36, 3461). Leicht löslich in Alkohol, Ather, Chloroform, schwerer in heißem Wasser; leicht oxydierbar; die wäßr. Lösung des salzsauren Salzes wird durch Eisenchlorid grün gefärbt (Gr.). — Naphthylendiamin-(1.2) liefert bei der Reduktion durch Natrium und Isoamylalkohol 5.6.7.8-Tetrahydro-naphthylendiamin-(1.2) (S. 194) und äußerst wenig (nur qualitativ nachgewiesenes) 1.2.3.4-Tetrahydro-naphthylendiamin-(1.2) (BA., SCH.). Durch Erhitzen von Naphthylendiamin-(1.2) mit einer konz. Lösung von Natriumdisulfit im Druckrohr auf 180-2006 entsteht das Naphthopiazthiol der nebenstehenden Formel (Syst. No. 4494) (HINSBERG, B. 23, 1393). Liefert, in einer wäßr. Lösung von Natriumacetat gelöst, mit SeO, das entsprechende

Naphthopiaselenol $C_{10}H_6 < N$ Se (Syst. No. 4494) (H1., B. 22, 866). Naph-

thylendiamin (1.2) gibt mit 1 Mol. - Gew. Bensaldehyd Benzal - naphthylendiamin (S. 199) (Hi., KOLLER, B. 29, 1497). Beim Erhitzen von salzsaurem Naphthylendiamin-(1.2) mit 2 Mol.-Gew. Benzaldehyd in starker Essigsäure erhält man Benzyl-phenyl-naphthimidazol C₁₀H₆ N(CH₂·C₆H₅) C·C₆H₅ (Syst. No. 3490) (Hr., Kol., B. 29, 1502). Beim Kochen von Naphthylendiamin-(1.2) mit Benzil in Alkohol auf dem Wasserbade entsteht Diphenylnaphthochinoxalin $C_{10}H_6$ $\stackrel{N-C\cdot C_0H_5}{N-C\cdot C_0H_5}$ bezw. $C_{10}H_6$ $\stackrel{N=C\cdot C_0H_5}{N-C\cdot C_0H_5}$ (Syst. No. 3495) (Kob.). naphthochinoxalin $C_{10}H_{\bullet}$ $\stackrel{\square}{N}$ $\stackrel{\square}{-}$ $\stackrel{\square}{C}$ $\stackrel{\square}{C}_{\bullet}H_{5}$ bezw. $C_{10}H_{\bullet}$ $\stackrel{\square}{N}$ $\stackrel{\square}{=}$ $\stackrel{\square}{C}$ $\stackrel{\square}{C}_{\bullet}H_{5}$ Analog verläuft die Reaktion mit Phenanthrenchinon (Kor.). Naphthylendiamin-(1.2) wird von Oxalsaure-diathylester in Dioxo-naphthochinoxalin-tetrahydrid C₁₀H₀ NH·CO NH CO (Syst. No. 3594) übergeführt (R. MEYER, MÜLLER, B. 30, 772); dieselbe Verbindung bildet sich auch beim Erhitzen von salzsaurem Naphthylendiamin-(1.2) mit Parabansaure (KÜHLING, B. 24, 3031). — Farben von Haaren durch Behandlung mit Naphthylendiamin-(1.2) und Oxydationsmitteln: Akt. Ges. f. Anilinf., D.R.P. 154652; C. 1904 II, 1078. — Salze: Lawson, B. 18, 800. $C_{10}H_{10}N_8+2$ HCl. Prismen. Leicht löslich in Wasser, schwer in Salzsäure. — $2\,C_{10}H_{10}N_8+H_2SO_4$. Blättehen. — Pikrat. Gelbes krystallinisches Pulver. Fast unlöslich in Wasser.

Verbindung C₃₄H₃₀N₄, vielleicht C₁₀H₆, N—CH₂—N
CH₂—N
CH₃—N
CH₄; vgl. O. Fischer,
B. 82, 246.—B. Beim Kochen einer alkoh. Lösung von Naphthylendiamin-(1.2) mit Form-

aldehydlösung (O. Fischer, Wreszinski, B. 25, 2713). — Würfel (aus Alkohol + Benzol). F: 165°; leicht löslich in Eisessig und Benzol, schwerer in Alkohol und Äther (O. F., W.). — $C_{34}H_{20}N_4 + 2HCl.$ Nadeln (O. F., W.).

N²-Äthyl-naphthylendiamin-(1.2) $C_{12}H_{14}N_2 = H_2N \cdot C_{10}H_4 \cdot NH \cdot C_2H_5$. B. Man trägt Zinkstaub allmählich in eine Lösung von 10 g 1-[4-Sulfo-benzolazo]-2-äthylamino-naphthalin (Syst. No. 2181) in 300 g heißem Eisessig ein (O. Fischer, B. 26, 193). In geringer Ausbeute aus 1-Benzolazo-2-äthylamino-naphthalin (Syst. No. 2181) durch Reduktion mit Zinkstaub und Eisessig (Meldola, Lane, Soc. 85, 1601). — Öl. — Liefert beim Kochen mit Essigsäureanhydrid das Äthyl-methyl-naphthimidazol der nebenstehenden Formel (Syst. No. 3486) (M., L.). — $2C_{12}H_{14}N_2 + 2HCl + PtCl_4$ (bei 100°). Gelbes Krystallpulver (O. F.).

 $N^1-Phenyl-naphthylendiamin-(1.2) \ C_{16}H_{14}N_2=H_2N\cdot C_{10}H_6\cdot NH\cdot C_6H_5^{\ 1}).$

a) Präparat von Harden. B. Bei allmählichem Versetzen einer siedenden alkoh. Lösung von 4 g Naphthochinon-(1.2)-imid-(2)-oxim-(1) (α-Nitroso-β-naphthylamin; Bd. VII, S. 717) mit 3,5 g salzsaurem Phenylhydrazin (Harden, A. 255, 161; vgl. Noelting, Grand-mougin, Freimann, B. 42, 1381). — Nadeln (aus Benzol). F: 161°; ziemlich leicht löslich in Wasser (H.).

b) Präparat von Noelting, Grandmougin, Freimann. B. Neben anderen Produkten bei der Reduktion der O-Alkylderivate oder des O-Acetylderivats des 2-Benzolazo-naphthols-(1) (Syst. No. 2119) in alkoh. Lösung mit Zinnchlorür und Salzsäure (Noelting, Grandmougin, Freimann, B. 42, 1380; vgl. Jacobson, A. 369, 5). — Körnige Krystalle (aus Benzol oder Alkohol). F: 170° (N., G., F.). Die Lösungen in organischen Lösungsmitteln fluorescieren schwach blau; die Salze werden von Wasser dissoziiert (N., G., F.). — Bei der Destillation mit Bleioxyd entsteht ang. Naphthophenazin (Formel I) (Syst. No. 3490) (N., G., F.). Mit salpetriger Säure entsteht das I. Phenyl-naphthotriazol der Formel II (Syst. No. 3811) (N., G., F.). Beim Erhitzen mit

Benzil in Eisessiglösung entsteht eine Verbindung vom Schmelzpunkt 215° (N., G., F.). — Beim Kochen mit Benzoylchlorid bildet sich ein Benzoylderivat vom Schmelzpunkt 239° (N., G., F.). — $C_{16}H_{14}N_2 + HCl$ (N., G., F.). — $2C_{16}H_{14}N_2 + H_2SO_4$. Krystalle (N., G., F.).

N²-Phenyl-naphthylendiamin-(1.2) C_{1e}H₁₄N₃ = H₂N·C₁₀H₄·NH·C₂H₅. B. Beim Behandeln einer mit Alkohol versetzten essigsauren Lösung von 1-Benzolazo-2-anilino-naphthalin (Syst. No. 2181) mit Zinnchlorür (ZINCKE, LAWSON, B. 20, 1170). Beim Vermischen von 10 g 1-[4-Sulfo-benzolazo]-2-anilino-naphthalin (Syst. No. 2181), gelöst in 100 ccm Alkohol und 10 ccm Eiessig, mit der Lösung von 12 g Zinnchlorür in 20 ccm Eiessig (Witt, B. 20, 573, 1184). — Nadeln und Blättchen (aus Alkohol). F: 138—140° (Z., L.), 136—137° (W., B. 20, 1184). — Bei der Destillation mit Bleioxyd entsteht ang. Naphthophenazin (Syst. No. 3490) (O. FISCHER, B. 26, 188). Liefert mit Essigsäure und Natriumnitrit das Phenyl-naphthotriazol der Formel I (Syst. No. 3811); dieser Körper entsteht auch bei der

Einw. von Isoamylnitrit auf freies N³-Phenyl-naphthylendiamin-(1.2), während aus Isoamylnitrit und salzsaurem Phenylnaphthylendiamin ein chlorhaltiger Körper entsteht (ZINCRE, CAMPBELL, A. 255, 348). Nitrose Gase (aus Arsentrioxyd und gewöhnlicher Salpetersäure) erzeugen mit salzsaurem N³-Phenyl-naphthylendiamin-(1.2) in Eisessig einen Körper C₁₆H₈O₂N₄(?) (Z., C., A. 255, 351). Beim Erhitzen von salzsaurem N³-Phenyl-naphthylendiamin-(1.2) mit 4.5-Dioxy-benzochinon-(1.2) (Bd. VIII, 8. 377) in Alkohol entsteht das Dioxy-ang,-naphthophenazin-chlorphenylat der Formel II (Syst. No. 3541) (Kehrmann, Prager, B. 40, 1236). — C₁₆H₁₆N₂ + HCl. Nadeln (aus salzsäurehaltigem Eisessig). Unlöslich in Wasser, löslich in Alkohol (Z., L.).

Verbindung C₁₆H₈O₂N₄(?). B. Man übergießt 1 Teil salzsaures N²-Phenyl-naphthylendiamin-(1.2) mit 10—12 Teilen Eisessig, leitet unter Kühlung nitrose Gase (aus Arsentrioxyd und roher Salpetersäure) ein, bis völlige Lösung erfolgt ist, und läßt dann stehen (ZINCKE, CAMPBELL, A. 255, 351). — Goldgelbe Nadeln (aus Eisessig). F: 207—208°. Schwer löslich in heißem Alkohol, leicht in heißem Eisessig oder Benzol. — Zinnchlorür erzeugt eine Base C₁₆H₁₂N₄ (S. 198).

¹⁾ Zur Frage der Identität der beiden unter a) und b) beschriebenen Präparate vgl. auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von MORGAN, GODDEN (Soc. 97, 1721) und von CHARRIER (R. A. L. [6] 4, 314).

Verbindung C₁₆H₁₂N₄. B. Durch Reduktion der Verbindung C₁₆H₈O₃N₄(?) (S. 197) mit Zinnchlorür in Alkohol (Z., C., A. 255, 352). — Nadeln oder Blättchen (aus verd. Alkohol). F: 193—194°. Leicht löslich in Alkohol, Chloroform und Eisessig. — Benzaldehyd erzeugt bei 130° eine Verbindung C₂₈N₁₈N₄. — C₁₆H₁₂N₄ + HCl. Nadeln oder Blättchen.

Monoacetylderivat der Verbindung C₁₆H₁₂N₄ (s. o.), C₁₈H₁₄ON₄. B. Durch Erwärmen der Verbindung C₁₆H₁₂N₄ mit Acetylchlorid (Z., C., A. 255, 353). — Nadeln (aus Alkohol). F: 260—261°. In heißem Alkohol schwerer löslich als das Diacetylderivat. Leicht

löslich in Essigsäure.

Diacetylderivat der Verbindung $C_{16}H_{12}N_4$ (s. o.), $C_{20}H_{16}O_2N_4$. Aus der Verbindung $C_{16}H_{12}N_4$ bei längerem Kochen mit Essigsäureanhydrid und Natriumacetat, neben der Monoacetylverbindung (Z., C., A. 255, 353). — Blättchen (aus verd. Alkohol). F: 176—177°. Leicht löslich in Eisessig.

Verbindung $C_{18}H_{16}N_4$. B. Bei mehrstündigem Erhitzen der Verbindung $C_{18}H_{18}N_4$ mit Benzaldehyd auf 130—140° (Z., C., A. 255, 354). — Gelbe Nadeln. F: 137—139°. Schwer

löslich in Benzin, leicht in Benzol.

 $N^2(P)$ -[5-Chlor-2.4-dinitro-phenyl]-naphthylendiamin-(1.2) $C_{16}H_{11}O_4N_4Cl = H_2N$ -C₁₀H₅ NH·C₆H₅Cl(NO₂)₂. B. Aus Naphthylendiamin-(1.2) und 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) (Nietzki, Vollenbeuck, B. 37, 3888). — Braunrote Blättchen. F: 232°. Schwer löslich in Alkohol, leichter in Amylalkohol und Xylol.

N¹-Methyl-N³-phenyl-naphthylendiamin-(1.2) $C_{17}H_{16}N_2=CH_3\cdot NH\cdot C_{10}H_4\cdot NH\cdot C_{16}H_5$. B. Aus N²-Phenyl-naphthylendiamin-(1.2) mit Methyljodid und Methylalkohol bei 1000 (O. Fischer, B. 26, 189). — Blättchen (aus Alkohol). F: 85°. Leicht löslich in Alkohol, Äther, Ligroin und Benzol.

 N^1 -Athyl- N^2 -phenyl-naphthylendiamin-(1.2) $C_{18}H_{18}N_2 = C_2H_5 \cdot NH \cdot C_{10}H_6 \cdot NH \cdot C_6H_5$. B. Bei 8-stdg. Erhitzen von 40 g N²-Phenyl-naphthylendiamin-(1.2) mit 20 g Athylbromid und 120 ccm absol. Alkohol auf 100° (O. FISCHER, B. 26, 189). — Nadeln (aus Alkohol); Tafeln (aus Äther). F: 71°. Leicht löslich in Äther, Chloroform, Ligroin und Benzol. — $C_{18}H_{18}N_2 + HBr$. Blättchen. F: 221°.

 N^2 -p-Tolyl-naphthylendiamin-(1.2) $C_{17}H_{16}N_2=H_1N\cdot C_{10}H_6\cdot NH\cdot C_6H_4\cdot CH_3$. B. Durch Reduktion von 1-Benzolazo-2-p-toluidino-naphthalin (Syst. No. 2181) mit Zinnchlorür und Eisessig (O. FISCHER, B. 25, 2846). — Nadeln (aus Ligroin). F: 146—147° (O. FI., B. 25, 2846; 27, 2777). Leicht löslich in den meisten organischen Lösungsmitteln (O. FI.,

I.
$$N$$
 CH_3 III. N $C_6H_4 \cdot CH_3$ III. N $C_6H_4 \cdot CH_3$

B. 25, 2846). — Beim Destillieren mit Bleioxyd entsteht das Methyl-ang.-naphthophenazin der Formel I (Syst. No. 3490) (O. Fi., B. 27, 2777). Bei Einw. von Natriumnitrit in Eisessig bildet sich das p-Tolyl-naphthotriazol der Formel II (Syst. No. 3811) (Ullmann, Kogan, A. 332, 103). Mit Formaldehyd entsteht das p-Tolyl-naphthimidazol der Formel III (Syst. No. 3486) (O. Fr., B. 27, 2777).

N¹-Äthyl-N³-p-tolyl-naphthylendiamin-(1.2) $C_{19}H_{50}N_3=C_9H_5\cdot NH\cdot C_{10}H_6\cdot NH\cdot C_{6}H_4\cdot CH_3$. B. Bei 20-stdg. Kochen von 25 g N³-p-Tolyl-naphthylendiamin-(1.2), gelöst in wenig absol. Alkohol, mit 18 g Athylbromid bei 15 cm Uberdruck (O. FISCHER, FRITZWEILER, B. 27, 2778). — Nadeln (aus Alkohol). F: 68°. — Mit Formaldehyd entsteht das $N(C_2H_5)$ Athyl-p-tolyl-naphthimidazoldihydrid der nebenstehenden Formel (Syst. No. 3485).

 N^2 -p-Tolyl- N^1 -benzyl-naphthylendiamin-(1.2) $C_{24}H_{12}N_2 = CH_2 \cdot C_rH_4 \cdot NH \cdot C_{10}H_4 \cdot NH \cdot CH_2 \cdot C_sH_5$. B. Durch Erhitzen von N^2 -p-Tolyl-naphthylendiamin-(1.2) mit Benzyl-chlorid in absol. Alkohol am Rückflußkühler (O. FISCHER, FRITZWEILER, B. 27, 2779). — Prismen (aus Alkohol). F: 157°. Leicht löslich in den meisten üblichen Lösungsmitteln. -C₂₄H₂₂N₂+HCl. Blättchen (aus Alkohol). F: 204°.

 $N^3 - \beta$ - Naphthyl-naphthylendiamin - (1.2), 1 - Amino - [di - naphthyl - (2) - amin] $C_{20}H_{10}N_3 = H_4N \cdot C_{10}H_6 \cdot NH \cdot C_{10}H_7$. B. Aus 1 - Benzolazo - 2 - β - naphthylamino - naphthalin (Syst. No. 2181) in Pyridin und Alkohol mit hydroschwefligsaurem Natrium $Na_2S_2O_4$ und Zinkstaub (O. Fischer, Eilles, J. pr. [2] 79, 567). — Nahezu farblose Prismen (aus Xylol). — Gibt beim Pyridinen (aus Xylol). — Gibt beim Pyridinen (aus Xylol). über Bleioxyd das symm.-diang. Dinaphthazin der nebenstehenden Formel (Syst. No. 3493).

 N^1 oder N^2 -Benzal-naphthylendiamin-(1.2) $C_{17}H_{16}N_2 = H_2N \cdot C_{10}H_6 \cdot N : CH \cdot C_6H_5$. B. Aus 1 Mol.-Gew. Naphthylendiamin-(1.2), gelöst in wenig Alkohol, und 1 Mol.-Gew. Benzaldehyd unter Kühlung (HINSBEEG, KOLLER, B. 29, 1499). — Gelbe Kryställchen (aus Alkohol). F: 156—157°. Schwer löslich in kaltem Alkohol. — Natriumhypobromit erzeugt Phenylnaphthimidazol (Syst. No. 3490).

 N^2 -Phenyl - N^1 - benzal - naphthylendiamin - (1.2) $C_{12}H_{18}N_2 = C_8H_5 \cdot NH \cdot C_{10}H_6 \cdot N: CH \cdot C_8H_5$ oder vielleicht auch **Diphenyl-naphthimidasoldihydrid** $C_{23}H_{18}N_2 = C_{10}H_6 \cdot NH \cdot C_8H_5$. Zur Konstitution vgl. O. Fischer, B. **25**, 2826. — B. Bei 15—20 Minuten langem Erwärmen von N^2 -Phenyl-naphthylendiamin-(1.2) mit Benzaldehyd und einigen Tropfen Alkohol auf 50—70° (O. F., B. **25**, 2828). — Schwefelgelbe prismatische Nadeln (aus Alkohol). F: 138°. Ziemlich leicht löslich in Alkohol, Äther, Chloroform und Benzol. — Wird durch Kochen mit Säuren in Benzaldehyd und N^2 -Phenyl-naphthylendiamin-(1.2) zerlegt.

N³-Phenyl-N¹-salicylal-naphthylendiamin-(1.2) $C_{23}H_{18}ON_2 = C_6H_5 \cdot NH \cdot C_{10}H_6 \cdot N: CH \cdot C_6H_4 \cdot OH$ oder vielleicht auch Phenyl-[2-oxy-phenyl]-naphthimidasoldihydrid $C_{23}H_{18}ON_2 = C_{10}H_6 \underbrace{NH}_{N(C_6H_5)} CH \cdot C_6H_4 \cdot OH$. Zur Konstitution vgl. O. FISCHER, B. 25, 2826. — B. Bei kurzem Erwärmen von N²-Phenyl-naphthylendiamin-(1.2) mit Salicylaldehyd und etwas Alkohol (O. F., B. 25, 2829). — Rote filzige Nadeln (aus Alkohol). F: 139°. Leicht löslich in heißem Alkohol, Äther und Benzol.

 N^{3} (?) - [5 - Chlor - 2.4 - dinitro - phenyl] - N^{1} (?) - acetyl - naphthylendiamin - (1.2) $C_{18}H_{13}O_{5}N_{4}Cl = (O_{4}N)_{2}C_{8}H_{3}Cl \cdot NH \cdot C_{10}H_{4} \cdot NH \cdot CO \cdot CH_{3}$. B. Aus N^{2} (?)-[5-Chlor-2.4-dinitrophenyl]-naphthylendiamin-(1.2) und Acetanhydrid (Nietzki, Vollenbruck, B. 37, 3888). — Gelbe Nadeln. Löslich in Nitrobenzol.

 N^1 -Phenyl- N^2 -acetyl-naphthylendiamin-(1.2) $C_{18}H_{16}ON_2 = C_6H_5 \cdot NH \cdot C_{10}H_6 \cdot NH \cdot CO \cdot CH_3$. B. Aus N^1 -Phenyl-naphthylendiamin-(1.2) (F: 170°) und siedendem Acetanhydrid (Noelting, Grandmougin, Freimann, B. 42, 1381). — Blättchen (aus Alkohol). F: 200°.

 $N^2-\beta$ -Naphthyl- N^1 -acetyl-naphthylendiamin-(1.2), l-Acetamino-[di-naphthyl-(2)-amin] $C_{32}H_{16}ON_3 = C_{10}H_7\cdot NH\cdot C_{10}H_6\cdot NH\cdot CO\cdot CH_3$. B. Bei gelindem Erwärmen von $N^2-\beta$ -Naphthyl-naphthylendiamin-(1.2) mit Essigsäureanhydrid (O. FISCHER, EILLES, J. pr. [2] 79, 568). — Weiße Nadeln (aus Alkohol). F: 214°.

N.N'-Diacetyl-naphthylendiamin-(1.2) $C_{14}H_{14}O_3N_2=C_{10}H_6(NH\cdot CO\cdot CH_3)_2$. B. Aus Naphthylendiamin-(1.2) mit Essigsäureanhydrid und Natriumacetat (Lawson, B. 18, 801). — Nadeln (aus Alkohol). F: 234°.

N³-p-Tolyl-N¹-benzyl-N¹ oder N³-acetyl-naphthylendiamin-(1.2) $C_{ab}H_{ab}ON_{a} = CH_{3} \cdot C_{6}H_{4} \cdot NH \cdot C_{10}H_{4} \cdot N(CH_{3} \cdot C_{6}H_{5}) \cdot CO \cdot CH_{3}$ oder $CH_{3} \cdot C_{6}H_{4} \cdot N(CO \cdot CH_{3}) \cdot C_{10}H_{4} \cdot NH \cdot CH_{3} \cdot C_{6}H_{5}$. B. Aus N³-p-Tolyl-N¹-benzyl-naphthylendiamin-(1.2) (S. 198) und Essigsäureanhydrid in Gegenwart von Natriumacetat (O. FISCHEE, FRITZWEILER, B. 27, 2779). — Tafeln (aus absol. Alkohol). F: 162°.

N.N'-Dipropionyl-naphthylendiamin-(1.2) $C_{10}H_{18}O_2N_2 = C_{10}H_6(NH\cdot CO\cdot CH_2\cdot CH_3)_2$. Prismen (aus Alkohol). F: 191—192°; unlöslich in Äther und Ligroin, leicht löslich in den übrigen warmen Lösungsmitteln (BISTEZYCKI, ULFFERS, B. 23, 1880).

N²-Palmitoyl-naphthylendiamin-(L2) C₂₆H₄₀ON₂ = H₂N·C₁₀H₄·NH·CO·[CH₂]₁₄·CH₃.

B. Durch Reduktion von N-Palmitoyl-1-nitro-naphthylamin-(2) (Bd. XII, S. 1314) (SULZ-BERGER, D. R. P. 188909; C. 1907 II, 1668). — Weißes krystallinisches Pulver; fühlt sich fettig an. In Alkohol, Benzol, Chloroform leicht löslich, unlöslich in warmem Äther und Petroläther. — Die Diazoverbindung gibt mit Aminen und Phenolen fettähnliche Azofarbstoffe.

 N^1 oder N^2 -Bensoyl-naphthylendiamin-(1.2) $C_{12}H_{14}ON_2=H_2N\cdot C_{16}H_4\cdot NH\cdot CO\cdot C_4H_5$. B. Beim Schmelzen von 1 Tl. salzsaurem Naphthylendiamin-(1.2) mit 2 Tln. Benzoesäure-anhydrid (Lawson, B. 18, 801). — Krystallpulver (aus Eisessig). Schmilzt oberhalb 280°.

N.N'-Dibensoyl-naphthylendiamin-(1.2) $C_{24}H_{16}O_2N_2 = C_{10}H_6(NH\cdot CO\cdot C_4H_5)_2$. B. Aus Naphthylendiamin-(1.2) mit Benzoylchlorid und Natronlauge (Hinsberg, Udránszky, A. 254, 256). — Blättchen. F: 291°. Schwer löslich in Alkohol und Eisessig.

N-Phenyl-N'-[2-amino-naphthyl-(1)]-harnstoff $C_{12}H_{13}ON_3 = H_2N \cdot C_{12}H_4 \cdot NH \cdot CO \cdot NH \cdot C_2H_3$. Zur Konstitution vgl. Goldschaft, Rosell, B. 23, 502. — B. Neben [Naphthylen-(1:2)]-bis-[ω -phenyl-harnstoff] (S. 200) aus Naphthylendiamin-(1.2) und Phenyl-isocyanat (Harnebeger, Schurffelin, B. 22, 1377). — Krystallkörner (aus Alkohol). Schmilzt noch nicht bei 335° (B., Sch.).

N-Phenyl-N'-[1-amino-naphthyl-(2)]-harnstoff $C_{17}H_{15}ON_2 = H_2N \cdot C_{16}H_4 \cdot NH \cdot CO \cdot NH \cdot C_4H_5$. B. Beim Behandeln einer alkoh. Lösung von N-Phenyl-N'-[1-benzolazo-naphthyl-(2)]-harnstoff $C_6H_6 \cdot N : N \cdot C_{16}H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$ (Syst. No. 2181) mit salzsaurer Zinn-

chlorurlösung (Goldschmidt, Rosell, B. 23, 502). — Nädelchen (aus Alkohol). Schmilzt noch nicht bei 290°.

[Naphthylen - (1.2)] - bis - [ω - phenyl - harnstoff] $C_{24}H_{26}O_2N_4 = C_{10}H_6(NH\cdot CO\cdot NH\cdot C_6H_5)_3$. B. Neben N-Phenyl-N'-[2-amino-naphthyl-(1)]-harnstoff (S. 199) aus Naphthylendiamin-(1.2) und Phenylisocyanat (Bd. XII, S. 437) (Bamberger, Schleyfelin, B. 22, 1377). — Unlöslich in Alkohol und Schwefelkohlenstoff, sehr schwer löslich in Ather und Benzol.

[Naphthylen-(l.2)]-bis-[ω -allyl-thioharnstoff] $C_{18}H_{20}N_4S_2=C_{10}H_6(NH\cdot CS\cdot NH\cdot CH_1\cdot CH:CH_2)_2$. B. Aus Naphthylendiamin-(1.2) und Allylsenföl (Bd. IV, S. 214) (Lellmann, B. 19, 808). — Nadeln (aus Alkohol).

[Naphthylen-(1.2)]-bis-[ω -phenyl-thioharnstoff] $C_{24}H_{20}N_4S_3=C_{10}H_6(NH\cdot CS\cdot NH\cdot C_6H_5)_2$. B. Aus Naphthylendiamin-(1.2) und Phenylsenföl (Bd. XII, S. 453) (Bamberger, Schieffelin, B. 22, 1377). — Nadeln. Schmilzt bei 355—360° unter Zersetzung.

N-[2-Amino-phenyl]-N'-[1(?)-amino-naphthyl-(2?)]-4.6-dinitro-phenylendiamin-(1.3) $C_{32}H_{18}O_4N_6=H_2N\cdot C_{10}H_6\cdot NH\cdot C_6H_3(NO_2)_2\cdot NH\cdot C_6H_4\cdot NH_2$. B. Aus N*(?)-[5-Chlor-2.4-dinitro*phenyl]-naphthylendiamin-(1.2) (S. 198) und o-Phenylendiamin (Nietzki, Vollenbruck, B. 37, 3890). — Braungelbe Blättchen. F: 259°. Löslich in Xylol.

N.N' - Bis - [1(?) - amino - naphthyl - (2?)] - 4.6 - dinitro - phenylendiamin - (1.3) $C_{26}H_{20}O_4N_6 = (H_2N \cdot C_{10}H_6 \cdot NH)_2C_6H_2(NO_2)_2$. B. Aus Naphthylendiamin-(1.2) und 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) (NIETZKI, VOLLENBRUCK, B. 37, 3888). — Krystalle (aus Pyridin). F: ca. 300°. — Diacetylderivat: sehr wenig löslich.

N¹ oder N²-Nitroso-N¹-äthyl-N²-phenyl-naphthylendiamin-(1.2) $C_{18}H_{17}ON_3 = C_2H_5\cdot N(NO)\cdot C_{10}H_6\cdot NH\cdot C_8H_5$ oder $C_2H_5\cdot NH\cdot C_{10}H_6\cdot N(NO)\cdot C_6H_5$. B. Aus N¹-Äthyl-N²-phenyl-naphthylendiamin-(1.2) und Natriumnitrit in alkoholisch-essigsaurer Lösung (O. FISCHEB, B. 26, 190). — Tafeln (aus Alkohol). F: 145—146°.

2. 1.3 - Diamino - naphthalin, Naphthylendiamin - (1.3) $C_{10}H_{10}N_2 = H_2N \cdot C_{10}H_6 \cdot NH_2$. B. Beim Behandeln von 1.3-Dinitro-naphthalin (Bd. V, S. 557) mit Zinn und Salzsäure (Ueban, B. 20, 973). Bei 3-stdg. Erhitzen von 4-Amino-naphthol-(2) (Syst. No. 1858) mit konz. Ammoniak im Druckrohr auf 150° (Fredländer, B. 28, 1953). Durch Erhitzen der Natriumsalze der Naphthol-(1)-sulfonsäure-(3) (Bd. XI, S. 270) oder der Naphthylamin-(1)-sulfonsäure-(3) (Syst. No. 1923) mit Ammoniak und Salmiak auf 160° is 180° (Kalle & Co., D. R. P. 89061; Frdl. 4, 598). Beim Erhitzen von 1.3-Diamino-naphthalin-carbonsäure-(2) (Syst. No. 1907) auf 100° (Atkinson, Thorpe, Soc. 89, 1922). Aus β -Imino- γ -phenyl-buttersäure-nitril (Bd. X, S. 699) mittels konz. Schwefelsäure (Best, Thorpe, Soc. 95, 14). — Blättchen. F: 96° (Fr.; A., Th.). — $C_{10}H_{10}N_2 + 2$ HCl. Unlöslich in Äther, sehr leicht löslich in Wasser, weniger in Alkohol (U.). — Sulfat. Nädelchen. Ziemlich schwer löslich in Wasser (K. & Co.).

N.N'-Diphenyl-naphthylendiamin-(1.3) C₂₂H₁₀N₂ = C₁₀H₆(NH·C₆H₅)₂. B. Durch Erhitzen von Naphthylamin-(1)-sulfonsäure-(3) (Syst. No. 1923) mit Anilin und salzsaurem Anilin auf 150—170° (BAYEB & Co., D. R. P. 75296; Frdl. 3, 501). Durch Erhitzen von N-Phenyl-naphthylamin-(1)-sulfonsäure-(3) mit Anilin und salzsaurem Anilin auf 150—170° (B. & Co., D. R. P. 78854; Frdl. 4, 597). Durch 4-stdg. Erhitzen von 1 Tl. des Natriumsalzes der Naphthol-(1)-sulfonsäure-(3) (Bd. XI, S. 270) mit 4 Tln. Anilin und 1 Tl. salzsaurem Anilin auf 150—170° (B. & Co., D. R. P. 77866; Frdl. 4, 595). — Unlöslich in Wasser, leicht löslich in Alkohol (B. & Co., D. R. P. 75296). — Verwendung zur Darstellung von Azinfarbstoffen: B. & Co., D. R. P. 78497, 86224; Frdl. 4, 426, 436. — Hydrochlorid. Schwach gelb gefärbte Nadeln oder Blättchen (B. & Co., D. R. P. 75296).

 N^1 -Phenyl- N^3 -p-tolyl-naphthylendiamin-(1.3) $C_{23}H_{20}N_3 = C_4H_5 \cdot NH \cdot C_{10}H_4 \cdot NH \cdot C_{40}H_4 \cdot CH_3$. Beim 4—5-stdg. Erhitzen von N-Phenyl-naphthylamin-(1)-sulfonsäure-(3) mit p-Toluidin und salzsaurem p-Toluidin auf 150—170° (Bayer & Co., D. R. P. 78854; Frdl. 4, 597). — Öl. Sehr leicht löslich in warmem Alkohol mit grüner Fluorescenz. — Bei der Kondensation mit 4-Nitroso-dimethylanilin entsteht ein blauvioletter basischer Farbstoff. — Hydrochlorid. Gelbe Nädelchen oder Blättchen. Fast unlöslich in Wasser, ziemlich löslich in warmem Alkohol und Eisessig.

N.N'-Di-p-tolyl-naphthylendiamin-(1.3) $C_{24}H_{22}N_2 = C_{10}H_6(NH \cdot C_4H_4 \cdot CH_2)_2$. B. Durch Erhitzen von Naphthylamin-(1)-sulfonsäure-(3) (Syst. No. 1923) mit p-Toluidin und salzsaurem p-Toluidin (BAYER & Co., D. R. P. 75296; Frdl. 8, 501). — Unlöslich in Wasser, leicht löslich in Alkohol (B. & Co., D. R. P. 75296). — Verwendung zur Darstellung von Azinfarbstoffen: B. & Co., D. R. P. 78497; Frdl. 4, 426. — Hydrochlorid. Schwach gelb gefärbte Nadeln oder Blättehen (B. & Co., D. R. P. 75296).

N.N'-Diacetyl-naphthylendiamin-(1.3) $C_{14}H_{14}O_2N_2=C_{16}H_6(NH\cdot CO\cdot CH_2)_2$. Nadeln (aus Essignaure). F: 263°; sohwer löslich in Alkohol (FRIEDLINDER, B. 28, 1953).

CI

3. 1.4-Diamino-naphthalin, Naphthylondiamin-(1.4) $C_{10}H_{10}N_2=H_2N\cdot C_{10}H_4\cdot NH_2$. B. Aus 4-Nitro-naphthylamin-(1) (Bd. XII, S. 1259) mit Zinn und Salzsaure (Liebeb-MANN, A. 183, 241). Durch Kochen von 4-Benzolazo-naphthylamin-(1) (Syst. No. 2180) mit Zinkstaub und Wasser (BAMBERGER, SCHIEFFELIN, B. 22, 1381) oder mit hydroschwefligsaurem Natrium Na₂S₂O₄ (Grandmough, B. 39, 3562). Aus 4-[4-Sulfo-benzolazo]-naphthylamin-(1) (Syst. No. 2180) mit Zinn und Salzsäure (Grees, B. 15, 2192). Durch Reduktion von 4-[Naphthalin-(1)-azo]-naphthylamin-(1) (Syst. No. 2180) in alkoh. Lösung mit Zinn und Salssaure (Perkin, A. 137, 359). Beim Erhitzen von Naphthylendiamin-(1.4)-carbonsaure-(2) (Syst. No. 1907) im Wasserstoffstrom auf 200° (Thorre, Soc. 91, 1009). — Nadeln oder Prismen (aus heißem Wasser). F: 120° (Gri.). Siedet fast unzersetzt im Wasserstoffstrome (P.). Ziemlich schwer löslich in heißem Wasser, sehr leicht in Alkohol, Äther, Chloroform (GRI.) und Benzol (P.). — Oxydiert sich rasch an der Luft (P.). Gibt bei der Oxydation gleich dem p-Phenylendiamin ein tiefes und echtes Braun (GRA.). Die wäßr. Lösung des salzsauren Salzes gibt mit Eisenchlorid oder anderen Oxydationsmitteln eine grüne Färbung und in konz. Lösungen einen grünen, flockigen Niederschlag (P.; L.). Versetzt man eine stark salzsaure Lösung der Base mit Eisenchlorid, so scheidet sich sofort a-Naphthochinon (Bd. VII, S. 724) ab (GRI.). Dieses entsteht auch beim Kochen mit Chromsäurelösung (L.). Beim Versetzen der Lösung in überschüssiger Salzsäure mit Chlorkalklösung fällt Naphthochinon-(1.4)-bis-chlorimid (Bd. VII, S. 727) aus (FRIEDLÄNDER, BÖCKMANN, B. 22, 590). Naphthylen-diamin-(1.4) liefert mit Natrium und Isoamylalkohol nur 5.6.7.8-Tetrahydro-naphthylendiamin-(1.4) (S. 194) (Ba., Sch.). Gibt beim Kochen mit Oxalester [Naphthylen-(1.4)]-bis-oxamidsäureäthylester (S. 202) (R. Meyer, Müller, B. 30, 772). Beim Erhitzen von salzsaurem Naphthylendiamin-(1.4) mit p-Amino-phenol und Wasser auf 140° bildet sich N.N'-Bis-[4-oxy-phenyl]-naphthylendiamin-(1.4) (Syst. No. 1850) (KALLE & Co., D. R. P. 168115; C. 1906 I, 1305). Beim Erhitzen von Naphthylendiamin-(1.4) mit p-Amino-phenol und Salzsaure in Gegenwart eines Oxydationsmittels ein Rosindulinfarbstoff nebenstehender entsteht Formel (Syst. No. 3772) (KALLE & Co., D. R. P. HO 158077, 158100; C. 1905 I, 484). — Verwendung des Naphthylendiamins-(1.4) bezw. seiner Acetyl--NH

D. R. P. 79952; Frdl. 4, 729; vgl. auch: H. F., D. R. P. 68022; Frdl. 3, 561; BAYER & Co., D. R. P. 117972; C. 1901 I, 550. Verwendung sur Darstellung von Schwefelfarbstoffen: Soc. St. Denis, VIDAL, D. R. P. 90369; Frdl. 4, 1051.

— C₁₀H₁₀N₂+2HCl. Tafeln (aus Wasser). Mäßig löslich in Wasser, fast unlöslich in Alkohol (P.).

— C₁₀H₁₀N₂+H₂SO₄. Krystallpulver. Fast unlöslich in kaltem Wasser (P.).

verbindung zur Darstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 67426; Frdl. 3, 557;

N.N-Dimethyl-naphthylendiamin-(1.4) $C_{12}H_{14}N_2 = H_2N \cdot C_{10}H_4 \cdot N(CH_2)_2$. B. Bei der Reduktion von N.N-Dimethyl-4-nitroso-naphthylamin-(1) (Bd. XII, S. 1258) durch Zinnehlorür (FRIEDLÄNDER, WELMANS, B. 21, 3125). Beim Erwärmen von N.N-Dimethyl-Flüssig. Ziemlich leicht löslich in heißem Wasser, leicht in den gebräuchlichen Lösungsmitteln (F., W.).

N-Äthyl-naphthylendiamin-(1.4) $C_{13}H_{14}N_3 = H_4N \cdot C_{10}H_4 \cdot NH \cdot C_2H_5$. B. Bei der Reduktion von Naphthochinon-(1.4)-äthylimid-oxim (bezw. N-Äthyl-4-nitroso-naphthyl-amin-(1), Bd. VII, S. 728) (Kook, A. 243, 312). Aus 4-Benzolazo-1-äthylamino-naphthalin $C_8H_5 \cdot N: N \cdot C_{10}H_4 \cdot NH \cdot C_4H_5$ (Syst. No. 2180) mit Zinnehlorfür und Salzsäure (Bamberger, Goldechmut, B. 24, 2471). — Öl. — $C_{13}H_{14}N_3 + 2$ HCl. Blättchen. Schmilzt bei 193° unter Zersetzung (Bamberger, Privatmitteilung; vgl. 3. Auflage dieses Handbuches, Bd. IV, S. 921); F: 152° (Kook). Ziemlich schwer löslich in kaltem Wasser, leicht in Alkohol (K.). — Pikrat $C_{13}H_{14}N_3 + 2C_4H_5O_7N_3$. Rotbraune Nadeln (aus Wasser). F: 180°. Schwer löslich in Wasser und Alkohol (K.).

N-Phenyl-naphthylendiamin-(1.4) $C_{16}H_{14}N_{2}=H_{2}N\cdot C_{16}H_{4}\cdot NH\cdot C_{6}H_{5}$. B. Bei der Reduktion von Naphthochinon-(1.4)-anil-oxim (bezw. N-Phenyl-4-nitroso-naphthylamin-(1), Bd. XII, S. 210) mit Zinnehlorür und Salzsäure oder mit Schwefelammonium (WACKER, A. 243, 305) oder mit Zinkstaub und Eisessig (O. FISCHER, A. 286, 183). — Blätter (aus Benzol). F: 148° (W.; O. F.). — Wird von HgO zu Naphthochinon-(1.4)-imid-anil (Bd. XII, S. 209) oxydiert (O. F.).

N.N'-Diphenyl-naphthylendiamin-(1.4) $C_{21}H_{10}N_2 = C_{10}H_6(NH\cdot C_6H_5)_2$. B. Beim Behandeln von Naphthochinon-(1.4)-dianil (Bd. XII, S. 210) mit alkoh. Eisessig und Zink (O. FISCHER, HEPP, A. 256, 255). — Prismen (aus Alkohol). F: 144°.

- N-a-Naphthyl-naphthylendiamin-(1.4), 4-Amino-[di-naphthyl-(1)-amin] $C_{50}H_{16}N_2=H_2N\cdot C_{10}H_6\cdot NH\cdot C_{10}H_7$. B. Beim Behandeln von 4-Nitroso-[di-naphthyl-(1)-amin] (Bd. XII, S. 1228) mit salzsaurer Zinnchlorürlösung oder mit Schwefelammon (WACKER, A. 243, 303). Krystalle (aus Benzol). Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin und Petroläther.
- N Phenyl N' bensal naphthylendiamin (1.4) $C_{43}H_{18}N_{2} = C_{6}H_{5} \cdot NH \cdot C_{16}H_{6} \cdot N$: $CH \cdot C_{5}H_{5} \cdot B$. Durch 1—2-stdg. Erhitzen von N-Phenyl-naphthylendiamin-(1.4) mit 1 Mol.-Gew. Benzaldehyd auf 100° (O. FISCHER, A. 286, 184). Grünlichgelbe Krystalle (aus absol. Alkohol). F: 109°. Sehr leicht löslich in Äther und Benzol.
- N-Phonyl-N'-[3-nitro-benzal]-naphthylendiamin-(1.4) $C_{23}H_{17}O_2N_3 = C_6H_5 \cdot NH \cdot C_{10}H_6 \cdot N:CH \cdot C_6H_4 \cdot NO_2$. B. Aus N-Phonyl-naphthylendiamin-(1.4) und 3-Nitro-benzaldehyd (O. F., A. 286, 185). Rote Blättchen. F: 169°.
- N-Phenyl-N'-[4-nitro-benzal]-naphthylendiamin-(1.4) $C_{23}H_{17}O_2N_3 = C_eH_5 \cdot NH \cdot C_{16}H_4 \cdot N: CH \cdot C_6H_4 \cdot NO_2$. B. Aus N-Phenyl-naphthylendiamin-(1.4) und 4-Nitro-benzaldehyd (O. F., A. 286, 185). Dunkelrote Blättchen. F: 168°. Löslich in Alkohol, Benzol und Eisessig mit braunroter Farbe.
- Chinon-mono-[4-amino-naphthyl-(1)-imid] $C_{16}H_{12}ON_2 = H_2N \cdot C_{10}H_6 \cdot N : C_6H_4 : 0$. Vgl. das Indophenol $C_{16}H_{12}ON_2$, Bd. XII, S. 1221.
- N-Phenyl-N'-salicylal-naphthylendiamin-(1.4) $C_{23}H_{16}ON_2 = C_6H_5 \cdot NH \cdot C_{10}H_6 \cdot N: CH \cdot C_6H_6 \cdot OH$. B. Aus N-Phenyl-naphthylendiamin-(1.4) und Salicylaldehyd (O. FISCHER, A. 286, 185). Rote Nadeln (aus Alkohol). F: 135°.
- N-Acetyl-naphthylendiamin-(1.4) $C_{12}H_{12}ON_2 = H_2N \cdot C_{10}H_6 \cdot NH \cdot CO \cdot CH_3$. B. Beim Behandeln von N-Acetyl-4-nitro-naphthylamin-(1) (Bd. XII, S. 1260) mit Zinn und Salzsäure (Liebermann, A. 183, 239). Verwendung zur Darstellung von Azofarbstoffen: Leonhardt & Co., D. R. P. 121667; C. 1901 II, 76. Salze: Lie. $C_{12}H_{12}ON_2 + HCl$. Nadeln. $2C_{12}H_{12}ON_2 + H_2Cr_2O_7$. Orangegelbe Nadeln. Wenig löslich in Wasser. Pikrat $C_{12}H_{12}ON_2 + C_6H_3O_7N_2$. Gelbe Nadeln. Schwer löslich in Wasser.
- N.N-Dimethyl-N'-acetyl-naphthylendiamin-(1.4) $C_{14}H_{16}ON_2 = (CH_2)_2N \cdot C_{10}H_6 \cdot NH \cdot CO \cdot CH_3$. B. Aus N.N-Dimethyl-naphthylendiamin-(1.4) und Essigsäureanhydrid (FRIED-LÄNDER, WELMANS, B. 21, 3125). Blättchen. F: 194—195°. Schwer löslich in Wasser, Äther und Ligroin, leicht in Alkohol und Eisessig.
- N-Phenyl-N'-acetyl-naphthylendiamin-(1.4) $C_{18}H_{16}ON_2 = C_9H_5 \cdot NH \cdot C_{16}H_4 \cdot NH \cdot CO \cdot CH_3$. B. Aus N-Phenyl-naphthylendiamin-(1.4) und Essigsäureanhydrid in Benzol (O. Fischer, A. 286, 184). Blättchen. F: 192°. Leicht löslich in Alkohol, fast unlöslich in Ligroin.
- N.N'-Diacetyl-naphthylendiamin-(1.4) $C_{14}H_{14}O_{2}N_{2}=C_{10}H_{5}(NH\cdot CO\cdot CH_{3})_{2}$. B. Bei 20 Minuten langem Erhitzen von salzsaurem N-Acetyl-naphthylendiamin-(1.4) mit der gleichen Menge Natriumacetat und der 4-fachen Menge Essigsäureanhydrid (KLEEMANN, B. 19, 334). Krystalle (aus Eisessig). F: 303—304°. Fast unlöslich in Wasser und Äther, schwer löslich in Alkohol, leicht in heißem Eisessig.
- N-Benzoyl-naphthylendiamin-(1.4) $C_{17}H_{14}ON_2 = H_2N \cdot C_{10}H_6 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Behandeln einer alkoh. Lösung von N-Benzoyl-4-nitro-naphthylamin-(1) (Bd. XII, S. 1260) mit Zinn und Salzsäure (Ebell, A. 208, 326). Nadeln. F: 186°. Schwer löslich in kochendem Wasser, leicht in Alkohol. $C_{17}H_{14}ON_2 + HCl$. Nadeln. Schwer löslich in Wasser und Alkohol. $C_{17}H_{14}ON_2 + H_2SO_4$. Nadeln. Schwer löslich in Wasser und Alkohol. $C_{17}H_{14}ON_2 + HNO_3$. Warzen. In Wasser und Alkohol wenig löslich. Oxalat. Nadeln. Wenig löslich in Wasser und Alkohol.
- N-Benzal-N'-benzoyl-naphthylendiamin-(1.4) $C_{24}H_{18}ON_2 = C_6H_5 \cdot CH:N \cdot C_{10}H_6 \cdot NH \cdot CO \cdot C_6H_5$. Beim Erwärmen äquimolekularer Mengen von N-Benzoyl-naphthylendiamin-(1.4) und Benzaldehyd in alkoh. Lösung (Morgan, Wootton, Soc. 91, 1317). Gelbe Nadeln (aus Alkohol). F: 196—197°.
- N.N'-Dibensoyl-naphthylendiamin-(1.4) $C_{2}H_{18}O_{2}N_{2} = C_{10}H_{6}(NH\cdot CO\cdot C_{6}H_{4})_{2}$. B. Aus Naphthylendiamin-(1.4) und Benzoylchlorid (Wohl, B. 36, 4150). Krystalle (aus Eisessig). F: 280,5°. Leicht löslich in heißem Eisessig, sehr wenig in Alkohol, Äther, Benzol, Aceton, unlöslich in Petroläther.
- [Naphthylen-(1.4)]-bis-oxamidsäureäthylester $C_{18}H_{18}O_6N_2 = C_{16}H_6(NH \cdot CO \cdot CO_2 \cdot C_3H_5)_2$. B. Aus Oxalsäure-diäthylester und reinem Naphthylendiamin-(1.4) (R. MEYER, MÜLLER, B. 30, 773). Nadeln (aus Alkohol). F: 203°. Ziemlich leicht löslich in Benzol.
- [Naphthylen-(1.4)]-bis-oxamid $C_{14}H_{12}O_4N_4 = C_{10}H_6(NH\cdot CO\cdot CO\cdot NH_2)_3$. B. Bei eintägigem Stehen von [Naphthylen-(1.4)]-bis-oxamidsäureäthylester mit NH_3 (R. MEYER, MÜLLER, B. 30, 773). Schmilzt nicht bei 300°. Sehr schwer löslich in den üblichen Lösungsmitteln.

N.N'-Bis-[4-anilino-naphthyl-(1)]-thioharnstoff $C_{29}H_{20}N_4S = [C_2H_5 \cdot NH \cdot C_{10}H_4 \cdot NH]_4CS$. B. Beim Kochen von N-Phenyl-naphthylendiamin-(1.4) mit Schwefelkohlenstoff und Alkohol (O. FISCHER, A. 286, 185). — Sehr schwer lösliche Krystalle. F: 196°.

N-p-Tolyl-N'-[4-nitro-a-cyan-bensal]-naphthylendiamin-(1.4), [4-p-Toluidino-naphthyl-(1)]-[u-cyan-asomethin]-[4'-nitro-phenyl] C₂H₁₈O₂N₄=CH₃·C₆H₄·NH·C₁₆H₅·N:(C(N)·C₆H₄·NO₂. B. Aus Naphthochinon-(1.4)-p-tolylimid-oxim (bezw. N-p-Tolyl-4-nitroso-naphthylamin-(1), Bd. XII, S. 914) und 4-Nitro-benzyloyanid (Bd. IX, S. 456) in Alkohol durch Sodalösung (GNEHM, RÜBEL, J. pr. [2] 64, 505). — Violette Blätter (aus Benzol); braune Blätter (aus Alkohol). F: 218°. Leicht löslich in Äther, weniger in Alkohol, unlöslich in Wasser. — Wird durch verd. Säuren gespalten.

N-Bensolsulfonyl-naphthylendiamin-(1.4) $C_{10}H_{10}O_2N_3S = H_2N \cdot C_{10}H_4 \cdot NH \cdot SO_3 \cdot C_4H_5$.

B. Aus N-Benzolsulfonyl-4-nitro-naphthylamin-(1) (Bd. XII, S. 1260) in Alkohol durch Reduktion mit Zinn und Salzsäure (MORGAN, MICKLETHWAIT, Soc. 87, 929). — Farblose Nadeln (aus Benzol). F: 186—187°. — Gibt mit Salzsäure und Natriumnitrit ein Diazoniumsalz, das bei der Zersetzung mit Kaliumacetat die Anhydroverbindung des 1-Benzolsulfamino-naphthalin-diazoniumhydroxyds-(4) (Syst. No. 2203) liefert.

N'-Thionyl-N-a-naphthyl-naphthylendiamin-(1.4), 4-Thionylamino-[dinaphthyl-(1)-amin] $C_{so}H_{14}ON_{2}S=C_{10}H_{1}\cdot NH\cdot C_{10}H_{2}\cdot N:SO$. B. Aus N-a-Naphthyl-naphthylendiamin-(1.4) und Thionylchlorid in Benzol (Franke, B. 31, 2182). — Rote Krystalle. F: 120°. Sehr beständig.

N.N'-Dithionyl-naphthylendiamin-(1.4) $C_{10}H_6O_2N_3S_3=C_{10}H_6(N:SO)_9$. B. Beim Kochen von 10 g salzsaurem Naphthylendiamin-(1.4) mit 10 g Thionylchlorid und 30 ccm Benzol (MICHAELIS, ERDMANN, B. 28, 2203). — Hellbräunliche Nadeln (aus Ligroin). F: 126°. Ziemlich leicht löslich in Benzol.

N'-Nitroso-N-bensoyl-naphthylendiamin-(1.4) $C_{17}H_{13}O_2N_3=C_0H_5\cdot CO\cdot NH\cdot C_{16}H_4\cdot NH\cdot NO$. Vgl. hierzu 1-Benzamino-naphthalin-diazoniumhydroxyd-(4) $C_{17}H_{12}O_2N_3=C_0H_5\cdot CO\cdot NH\cdot C_{16}H_4\cdot N_3\cdot OH$ nebst Derivaten (Syst. No. 2203).

N.N'-Diacetyl-2-nitro-naphthylendiamin-(1.4) $C_{14}H_{13}O_4N_3=O_4N\cdot C_{10}H_5(NH\cdot CO\cdot CH_4)_3$. B. Man rührt N.N'-Diacetyl-naphthylendiamin-(1.4) mit Eisessig zum dünnen Brei an, gibt so lange abgeblasene Salpetersäure (D: 1,48) hinzu, bis eine tiefblaue Lösung erfolgt, und fällt mit Eisensser (KLEEMANN, B. 19, 335). — Hellgelbe Nadeln (aus Alkohol). Schmilzt unter Zersetzung gegen 295°. Schwer löslich in Alkohol und Eisessig. — Liefert bei der Oxydation mit verd. Salpetersäure Phthalsäure. Löst sich in der Kälte in wäßrigem oder alkoholischem Kali mit gelbroter Farbe; wird aus der Lösung durch Säuren unverändert gefällt. Wird bei längerer Einw. von alkoh. Kali unter Bildung von Ammoniak zersetzt.

4. 1.5 - Diamino - naphthalin, Naphthylendiamin - (1.5) C₁₀H₁₀N₂ = H₂N·C₁₀H₄·NH₂. B. Bei der Reduktion von 1.5-Dinitro-naphthalin (Bd. V, S. 558) mit Schwefelammonium (ZININ, J. pr. [1] 33, 29; A. 52, 361; 85, 329), mit Zinn und Salzsäure (HOLLEMANN, Z. 1865, 556; Erdmann, A. 247, 360), mit Jodphosphor und Wasser (de Aguiar, B. 3, 32; 7, 306). Durch elektrolytische Reduktion von 1.5-Dinitro-naphthalin in eisessigschwefelsaurer Lösung an Bleikathoden (Möller, El. Ch. Z. 10, 201). Beim Erhitzen von 1 Teil 1.5-Dioxy-naphthalin (Bd. VI, S. 980) mit 10 Teilen käuflicher Ammoniaklösung auf 150° bis 180° und schließlich auf 250—300° (Eweb & Pior, D. R. P. 45549; Frdl. 2, 276; vgl. auch Lange, Ch. Z. 12, 856) oder mit Ammoniak und Ammoniumsulfit auf 125° (Bad. Anilinu. Sodaf., D. R. P. 117471; C. 1901 I, 349). Beim Erhitzen von Naphthylendiamin-(1.5)-sulfonsäure-(2) (Syst. No. 1923) mit verd. Säuren auf höhere Temperatur (Friedländer, Kielbasinski, B. 29, 1983). Neben 5-Amino-naphthol-(1) (Syst. No. 1858) beim Erhitzen von α-Naphthol mit Natriumamid und Naphthalin auf Temperaturen oberhalb 190° (Sache, B. 39, 3021; D. R. P. 181333; C. 1907 I, 1651). Bei ½-stdg. Erhitzen von α-Naphthylamin mit Natriumamid und Naphthalin auf 230° (S.). Bei 1-stdg. Erhitzen von Naphthylamin mit Natriumamid und Phenol auf 220° (S.). — Darst. Man erhitzt je 4 g 1.5-Dinitro-naphthalin vorsichtig mit 32 g Zinnehlorfür und 40 cem rauchender alkoh. Salzsäure (R. Meyer, Müller, B. 30, 774). Reinigung des technischem Produktes: Buoherer, Uhlmann, J. pr. [2] 80, 212. — Prismen (aus Äther). F: 189,5°; sublimiert fast unzersetzt; leicht löslich in Äther, Chloroform und heißem Alkohol, siemlich in heißem Wasser, fast gar nicht in kaltem (DE A., B. 7, 307). — Die in Wasser suspendierte Base gibt mit Eisenchlord eine blauviolette Färbung und nach einiger Zeit einen eben solchen Niederschlag (DE A., B. 7, 308). Die verdünnte alkoholische Lösung wird auf Zusatz eines Tropfens Isoamylnitrit und von 1—2 Tropfen Salzsäure bei 100—110° Naphthyl

erhalten (Bu., J. pr. [2] 69, 84; 70, 348). Das salzsaure Salz entwickelt beim Erwärmen mit Benzaldehyd auf 100° keine Salzsäure (Ladenburg, B. 11, 1651). Läßt sich durch Diazotierung und Hinzufügen der Tetrazolösung zu einer heißen salzsauren Kupferchlorürlösung in 1.5-Dichlor-naphthalin überführen (Ez.). — Verwendung zur Darstellung von wasserlöslichen Indulinfarbstoffen: B. A. S. F., D. R. P. 56112; Frdl. 3, 327. Verwendung zur Darstellung von Azofarbstoffen: B. A. S. F., D. R. P. 39954, 75743, 93304; Frdl. 1, 525; 4, 698, 714; D. R. P. 130475, 140955; C. 1902 I, 1139; 1908 I, 1008; Cassella & Co., D. R. P. 71329; Frdl. 3, 551. — C₁₀H₁₀N₂ + 2 HCl. Nadeln (Ho.). — C₁₀H₁₀N₂ + 2 HI. Täfelchen (DE A., B. 3, 33). — C₁₀H₁₀N₂ + H₂SO₄. Nadeln. Fast unlöslich in verd. Schwefelsäure, Alkohol und Ather (DE A., B. 3, 33). — Oxalat C₁₀H₁₀N₂ + C₂H₂O₄. Tafeln (aus Wasser) (DE A., B. 7, 311).

N.N'-Dibensoyl-naphthylendiamin-(1.5) $C_{24}H_{18}O_{5}N_{2} = C_{10}H_{6}(NH\cdot CO\cdot C_{6}H_{5})_{2}$. F: 350° (Sacus, B. 39, 3024).

Naphthylen-(1.5)-bis-oxamidsäure $C_{14}H_{10}O_{4}N_{2}=C_{10}H_{6}(NH\cdot CO\cdot CO_{2}H)_{2}$. B. Aus dem Diäthylester (s. u.) und Natronlauge (R. MEYER, MÜLLER, B. 30, 774). — Schmilzt bei 235° unter Aufschäumen. — $Na_{2}C_{14}H_{8}O_{4}N_{2}$. Sehr schwer löslich.

Diäthylester $C_{18}H_{18}O_{\bullet}N_{8}=C_{10}H_{8}(NH\cdot CO\cdot CO_{9}\cdot C_{2}H_{8})_{9}$. B. Aus Naphthylendiamin-(1.5) und Oxalsäurediäthylester (R. Me., Mü., B. 30, 774). — Nadeln (aus Alkohol). F: 206—208°

Diamid, Naphthylen-(1.5)-bis-oxamid $C_{14}H_{13}O_4N_4=C_{10}H_6(NH\cdot CO\cdot CO\cdot NH_3)_3$. B. Aus dem Diathylester (s. o.) und Ammoniak (R. ME., MÜ., B. 30, 774). — Nadeln (aus kochendem Alkohol). Schmilzt nicht bei 300°.

Naphthylen - (1.5) - bis - $[\beta$ - imino - buttersäure - äthylester] bezw. Naphthylen-(1.5)-bis- $[\beta$ -amino-crotonsäure-äthylester] $C_{12}H_{13}O_4N_2=C_{10}H_4[N:C(CH_3)\cdot CH_3\cdot CO_2\cdot C_2H_4]_2$ bezw. $C_{10}H_4[NH\cdot C(CH_3)\cdot CH\cdot CO_2\cdot C_2H_5]_2$. B. Aus Naphthylendiamin-(1.5) und Acetessigester bei Zimmertemperatur (Finger, Spitz, J. pr. [2] 79, 446). — Blättohen (aus Alkohol). F: 178—179°. — Liefert beim Erhitzen auf 240° die Verbindung der nebenstehenden Formel (Syst. No. 3541).

CH,

N.N'-Bis-[acetoacetyl]-naphthylendiamin-(1.5) $C_{10}H_{10}O_4N_2=C_{10}H_6(NH\cdot CO\cdot CH_2\cdot CO\cdot CH_3)_3$. B. Aus Naphthylendiamin-(1.5) mit Acetessigester bei 160° (FINGER, SPITZ, J. pr. [2] 79, 447). — Krystalle (aus Acetessigester). Zersetzt sich, ohne zu schmelzen. — Gibt beim Erhitzen mit konz. Schwefelsäure auf 160° das Benzochinolinderivat der nebenstehenden Formel (Syst. No. 3425).

N-Bensolsulfonyl-naphthylendiamin-(1.5) $C_{10}H_{14}O_{2}N_{3}S = H_{2}N \cdot C_{16}H_{4} \cdot NH \cdot SO_{3} \cdot C_{6}H_{5}$. B. Aus N-Bensolsulfonyl-5-nitro-naphthylamin-(1) (Bd. XII, S. 1260) durch Reduktion mit Eisen und Eisessig (Morgan, Micklethwait, Soc. 89, 8). — Nadeln (aus Alkohol). F: 161°.

5. 1.6 - Diamisso - naphthalin, Naphthylendiamin - (1.6) $C_{10}H_{10}N_2 = H_2N \cdot C_{10}H_4 \cdot NH_2$. B. Durch Reduktion von 1.6-Dinitro-naphthalin (Bd. V, S. 559) mit Zinnchlorür und Salzsäure in Alkohol (Kehemann, Matis, B. 31, 2419). Durch Reduktion von 5-Nitro-naphthylamin-(2) (Bd. XII, S. 1314) mit Eisenfeilspänen und Essigsäure (Friedländer, Szymanski, B. 25, 2080). Aus Naphthylendiamin-(1.6)-disulfonsäure-(4.8) (Syst. No. 1924) und Natiumamlagam (Friedländer, Kielbasinski, B. 29, 1981). Neben Naphthylendiamin-(2.3) bei 2-stdg. Erhitzen von β -Naphthylendiamin mit Natiumamid und Naphthalin auf 230° (Sachs, B. 39, 3021). — Nadeln (aus Wasser). F: 77,5° (F., Sz.). Schwer löslich in kaltem Wasser und in Äther, leicht in heißem Wasser, Alkohol und Benzol (F., Sz.). Die wäßr. Lösung fluoresciert blau (F., Sz.). — Hydrochlorid. Fast farblose Nädelchen (Ke., M.). — $C_{10}H_{10}N_2 + H_2SO_4$. Schwer lösliche Nadeln (F., Sz.).

N.N'-Diacetylderivat $C_{14}H_{14}O_2N_2=C_{10}H_0(NH\cdot CO\cdot CH_2)_2$. B. Durch Acetylieren von Naphthylendiamin-(1.6) (Sachs, B. 89, 3022). — F: 263,5°.

N.N'-Dibenzoylderivat $C_{a_1}H_{16}O_aN_a = C_{10}H_a(NH\cdot CO\cdot C_aH_5)$. B. Aus Naphthylendiamin-(1.6) durch Benzoylieren (Saohs, B. 39, 3022). — Tafeln (aus Alkohol oder starker Essigsäure). F: 265°. Unlöslich in Äther, Chloroform, Benzol.

6. 1.7 - Diamino - naphthalin, Naphthylendiamin - (1.7) C₁₀H₁₆Ni₂ = H₁N·C₁₀H₂·NH₂. B. Durch Reduktion von 8-Nitro-naphthylamin-(2) (Bd. XII, S. 1315) mit Zinn und Salzaäure (Friedländer, Szymanski, B. 25, 2082). Entsteht neben 7-Amiro-naphthol-(1) (Syst. No. 1858) beim Erhitzen von 1.7-Dioxy-naphthoesäure-(2) (Bd. X, S. 443) mit konz.

Syst. No. 1783.]

Ammoniak auf 200—210° (FRIEDLÄNDER, ZINBERG, B. 29, 41). — Blättchen (aus Benzol); Nadeln (aus Wasser). F: 117,5°; leicht löslich in Alkohol und Benzol, schwerer in Wasser, sehr schwer in Äther und Ligroin (F., Sz.). Eisenchlorid färbt die wäßr. Lösung violett (F., Sz.).

N.N'-Diacetylderivat $C_{14}H_{14}O_2N_2 = C_{10}H_4(NH\cdot CO\cdot CH_3)_2$. Rhomboeder (aus Alkohol). **F**: 213° (F., Sz., B. 25, 2083).

7. 1.8 - Diamino - naphthalin, Naphthylendiamin - (1.8) C₁₀H₁₀N₂ = H₁N·C₁₀H₄·NH₂. B. Bei der Reduktion von 1.8-Dinitro-naphthalin (Bd. V, S. 559) mit Jod-phosphor und Wasser (DE AGUIAB, B. 7, 309; R. MEYER, MÜLLER, B. 30, 775). Durch elektrolytische Reduktion von 1.8-Dinitro-naphthalin in eisessig-schwefelsaurer Lösung an Bleiksthoden (MÖLLER, El. Ch. Z. 10, 222). Aus 4-Brom-1.8-dinitro-naphthalin (Bd. V, S. 562) bei energischer Reduktion mit Zinnchlorür und Salzsäure (ULLMANN, CONSONNO, B. 35, 2806). Beim Behandeln von 4.5-Dinitro-naphthoesäure-(1) (Bd. IX, S. 654) mit Zinn und Salzsäure (EKSTRAND, B. 20, 1353; J. pr. [2] 38, 262). Durch Erhitzen von 1.8-Dioxy-naphthalin (Bd. VI, S. 984) mit Ammoniak auf 150—180° und schließlich auf 250—300° (ERDMANN, A. 247, 363). — Das technische Naphthylendiamin-(1.8) kann durch Umkrystallisieren aus etwa 30°/sigem Alkohol oder durch Destillation im Vakuum gereinigt werden (Sachs, A. 365. 83 Anm.).

Krystalle (aus wäßr. Alkohol). F: 66,5° (DE A., B. 7, 310). Kp₁₂: ca. 205° (Sa., A. 365, 83 Anm.). Sublimierbar (DE A., B. 7, 310). Bräunt sich allmählich auch bei Licht- und Luftabschluß (Sa.). In Wasser leichter, in Chloroform schwerer löslich als Naphthylendiamin-(1.5), in Alkohol und Äther in allen Verhältnissen löslich (DE A., B. 7, 310). Die freie Base gibt mit

Eisenchlorid einen dunkelkastanienbraunen Niederschlag (DE A., B. 7, 311).

(8. 206) mit seleniger Säure in essigsaurer Lösung die Verbindung $C_{10}H_0 \stackrel{N}{\swarrow} Se$ (Syst. No.

4494) (Sa., A. 865, 149).

Aus_Naphthylendiamin-(1.8) und Aceton entsteht Dimethylperimidindihydrid $C_{10}H_0 < \frac{NH}{NH} > C(CH_0)_3$ (Syst. No. 3485) (Bad. Anilin- u. Sodaf., D.R.P. 122475; C. 1901 II, 447; vgl. Sa., A. 365, 61). Salzsaures Naphthylendiamin-(1.8) entwickelt beim Erwärmen mit Benzaldehyd auf 100° Chlorwasserstoff (LADENBURG, B. 11, 1651). Naphthylendiamin-(1.8) liefert mit Diacetyl in Alkohol das Methylacetylperimidindihydrid $C_{10}H_0 < NH > C < CH_3 CO \cdot CH_3$ (Syst. No. 3570) (Sa., A. 365, 151). Acetylaceton gibt mit Naphthylendiamin-(1.8) Methylperimidin $C_{10}H_4 < N > C \cdot CH_3$ unter gleichzeitiger Bildung von Aceton, das bei einem Überschuß von Diamin mit diesem unter Bildung von Dimethylperimidindihydrid reagiert; in analoger Weise entstehen mit Benzoylaceton Methylperimidin und Acetophenon bezw. Methylphenylperimidindihydrid C₁₀H₆<NH>C(CH₂)·C₆H₅ (Syst. No. 3489) (Sa., A. 365, 162). Naphthylendiamin-(1.8) gibt beim Kochen mit Ameisensäure Perimidin $C_{10}H_{4} < N_{H} > CH$ (Syst. No. 3486) (Sa., A. 365, 83), mit Kasigsaureanhydrid Methylperimidin (Sa., B. 39, 3027). Beim Kochen von Naphthylendiamin-(1.8) mit Chloressigsaure unter Zusatz von etwas Alkohol und Wasser bildet sich Oxymethylperimidin $C_{10}H_{4} < \stackrel{N}{NH} > C \cdot CH_{3} \cdot OH$ (Syst. No. 3512) (SA., A. 365, 111). Beim Kochen von Naphthylendiamin-(1.8) mit überschüssiger Oxalsäure in wäßr. Lösung erhält man Perimidincarbonsäure $C_{10}H_0 < N \longrightarrow C \cdot CO_2H$ (Syst. No. 3649), neben etwas Perimidin (SA., A. 365, 71, 102; vgl. DE A., B. 7, 131). Beim Verschmelsen von Naphthylendiamin (1.8) mit überschüssiger entwässerter Oxalsaure bildet sich Perimidincarbonsaure, die bei weiterem Erhitzen der Schmelze auf 180° unter Abspaltung von CO, in Perimidin übergeht (Sa., A. 865, 71, 103). Oxalsaurediathylester liefert beim Erhitzen mit Naphthylendiamin-(1.8) Perimidinearbonsaureathylester (Sa., A. 365, 68, 96; vgl. de A., B. 7, 313; R. Meyer,

MÜLLER, B. 30, 776). Erhitzen von Naphthylendiamin-(1.8) mit Malonsäure liefert Methylperimidin neben einer Verbindung C₁₈H₈ON₂ (S. 207) (SA., A. 365, 72, 112), mit Malonsäurediāthylester Perimidinessigsāureāthylester $C_{10}H_6 < N > C \cdot CH_2 \cdot CO_2 \cdot C_2H_5$ (Syst. No. 3649) (Sa., A. 365, 72, 115). Naphthylendiamin-(1.8) reagiert mit Phthalsäureanhydrid (Syst. No. 2479) in Toluol oder Eisessig unter Bildung der Verbindung C₁₀H₆ NH C·C₆H₄·CO₂H (Syst. No. 3653); beim Zusammenschmelzen der beiden Komponenten entsteht die Verbindung C₁₀H₆ N CO C₆H₆ (Syst. No. 3576) (Sa., A. 365, 117, 124; BAYER & Co., D. R. P. 202354; C. 1908 II, 1396). Naphthylendiamin-(1.8) gibt mit Phosgen (Bd. III, S. 13), Chlorameisensäure-äthylester oder Kohlensäurediäthylester sowie mit Kaliumcyanat und verd. Salzsäure das Oxo-perimidindihydrid $C_{10}H_6 < \stackrel{NH}{NH} > CO$ (Syst. No. 3570) (Sa., A. 365, 135). Beim Erhitzen von Naphthylendiamin-(1.8) mit Orthokohlensäureäthylester (Bd. III, S. 5) auf 120—180° entsteht das Athoxyperimidin C₁₀H₆ NH C·O·C₂H₅ (Syst. No. 3512) (Sa., A. 365, 137). Durch Erhitzen von Naphthylendiamin-(1.8) mit Ammoniumrhodanid (Bd. III, S. 149) erhält man Thion-perimidindihydrid $C_{10}H_6 < \frac{NH}{NH} > CS$ (Syst. No. 3570) und Iminoperimidindihydrid $C_{10}H_0 < \frac{NH}{NH} > C:NH$ (Syst. No. 3570) (Sa., A. 365, 142). Durch Einw. von Schwefelkohlenstoff auf Naphthylendiamin-(1.8) in alkoh. Lösung oder beim Kochen der Base mit xanthogensaurem Kalium in Essigsäure bildet sich Thion-perimidindihydrid (Sa., A. 365, 141). Beim Erhitzen von Naphthylendiamin-(1.8) mit Allylsenföl (Bd. IV, S. 214) erhält man je nach den Versuchsbedingungen N-Allyl-N'-[8-amino-naphthyl-(1)]thioharnstoff (S. 207) oder Thion-perimidindihydrid (Sa., A. 365, 147). Mit Phenylsenföl (Bd. XII, S. 453) entsteht N-Phenyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff (S. 207) oder das Phenyliminoperimidindihydrid $C_{10}H_6 < \frac{NH}{NH} > C: N \cdot C_6H_5$ (Syst. No. 3570) (Sa., A. 365, 144). Naphthylendiamin-(1.8) gibt mit Acetessigester ohne Lösungsmittel bei Siedetemperatur das Acetonylperimidin $C_{10}H_6 < \frac{N}{NH} > C \cdot CH_3 \cdot CO \cdot CH_3$ (Syst. No. 3571), bei gewöhnlicher $\label{eq:constraint} \mbox{Temperatur die Verbindung $C_{10}H_0 < NH$} \mbox{\simC(CH_3)$} \cdot \mbox{$\rm CH_2$} \cdot \mbox{$\rm CO_2$} \cdot \mbox{$\rm C_2H_5$} \mbox{$(Syst. No. 3648)$ und in $(Syst. No. 3648)$ and $$ heißer wäßrig-salzsaurer Lösung Methylperimidin neben Essigsäureäthylester (Sa., A. 365, 156). Der durch Kombination von 1 Mol. Naphthylendiamin-(1.8) mit 2 Mol. diazotierter Sulfanilsäure gebildete Disazofarbstoff läßt sich durch Reduktion mit Zink und Salzsäure und darauffolgende Oxydation an der Luft in Naphthazarin 1) (Bd. VIII, S. 412) überführen (FRIED-LÄNDER, SILBERSTERN, M. 23, 518). Mit Isatin (Syst. No. 3206) reagiert Naphthylendiamin-(1.8) unter Bildung der Verbindung C₁₀H₆<NH>C<CO NH (Syst. No. 3883), mit Alloxan (Syst. No. 3627) unter Bildung der Verbindung $C_{10}H_{\bullet} < \stackrel{NH}{NH} > C < \stackrel{CO \cdot NH}{CO \cdot NH} > CO$ (Syst. No. 4164) (Sa., A. 365, 154, 155). — Verwendung von Naphthylendiamin-(1.8) zur Darstellung von Azofarbstoffen: Cassella & Co., D.R.P. 71329; Frdl. 3, 551; B. A. S. F., D.R.P. 94074, 140955; C. 1898 I, 231; 1903 I, 1008. Verwendung zur Darstellung wasserlöslicher Induline: B. A. S. F., D.R.P. 59247; Frdl. 3, 328.

B. A. S. F., D. R. P. 5924; Frdl. 3, 328.

C₁₉H₁₀N₂ + 2 HCl. Blätter. Schmilzt gegen 280° (Ekstrand, J. pr. [2] 38, 263). —

C₁₀H₁₀N₂ + 2 HCl. Prismen (de Agular, B. 3, 29). Geht bei gelinder Wärme in das Salz C₁₀H₁₀N₂ + HI über. — C₁₀H₁₀N₃ + H₂SO₄. Krystalle (de A., B. 3, 31). Schwer löslich in kaltem Wasser (Erdmann, A. 247, 364). — Basisches Oxalat 2C₁₀H₁₀N₃ + C₂H₃O₄. Krystalle (aus Wasser). F: 205° (Sa., A. 365, 102). — Neutrales Oxalat C₁₀H₁₀N₃ + C₂H₃O₄. Krystalle (aus Wasser oder verd. Alkohol). Verliert das Wasser im Vakuum bei 60°; zersetzt sich bei 270° nach vorheriger Gelbfärbung. Gibt bei längerem Kochen der währ. Lösung Perimidincarbonsäure (Sa., A. 365, 101). — Salz der 3-Nitro-phthalsäure (Bd. IX, S. 823) C₁₀H₁₀N₂ + C₂H₃O₆N. Gelbrote Krystalle. F: 195°; löslich in heißem Wasser (Sa., A. 365, 126).

Verhindung C. H. O. S. R. Beim Fybitzen von 2 g. Norbbyslendiemin (4.8) in 50 c.

Verbindung $C_{10}H_0$ ON, S. B. Beim Erhitzen von 3 g Naphthylendiamin-(1.8) in 50 g Benzol mit 2,5 g Thionylchlorid (Sachs, A. 365, 149). — Flocken (aus Pyridin + Ather). Besitzt keinen Schmelspunkt.

¹⁾ Das Naphthazarin ist von DIMROTH, RUCH (A. 448 [1925], 128) als 5.8-Dioxy-naphtho-chinon-(1.4) erkannt worden.

Verbindung C₁₃H₅ON₂. B. Entsteht neben Methylperimidin C₁₀H₆ NH C·CH₃ (Syst. No. 3486) beim Erhitzen von Naphthylendiamin-(1.8) (S. 205) mit Malonsäure (SACHS, A. 365, 72, 112). — Blättchen (aus Alkohol). F: 210° (Zers.).

N-[2.4-Dinitro-phenyl]-naphthylendiamin-(1.8) $C_{16}H_{12}O_4N_4 = H_2N \cdot C_{10}H_6 \cdot NH \cdot C_6H_3(NO_2)_2$. B. Aus 2 g 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263), 1,6 g Naphthylendiamin-(1.8) und 2 g krystallisiertem Natriumacetat in 40 ccm Alkohol beim Kochen (Sachs, A. 365, 166). — Rote Krystalle (aus Eisessig). F: 203,5—204°. Leicht löslich in Chloroform und Benzol, schwer in Alkohol und Äther, unlöslich in Wasser und Ligroin; löslich in kalter konz. Schwefelsäure mit rötlichgelber, in der Wärme mit bräunlicher Farbe.

N.N'-Dibenzoyl-naphthylendiamin-(1.8) $C_{24}H_{18}O_2N_2=C_{10}H_4(NH\cdot CO\cdot C_6H_5)_2$. Nadeln (aus Eisessig). F: 311—312°; löslich in heißem Alkohol (Sa., B. 39, 3027).

N-Allyl-N'-[8-amino-naphthyl-(1)]-harnstoff $C_{14}H_{15}ON_3 = H_2N \cdot C_{10}H_6 \cdot NH \cdot CO \cdot NH \cdot CH_2 \cdot CH : CH_2.$ B. Aus N-Allyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff (s. u.) mit Quecksilberoxyd in Alkohol (Sa., A. 365, 148). — F: 225°. Verändert sich an der Luft sowie bei längerem Kochen mit Lösungsmitteln.

N-Phenyl-N'-[8-amino-naphthyl-(1)]-harnstoff $C_{17}H_{15}ON_3 = H_2N \cdot \dot{C_{10}}H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Aus 3 g Naphthylendiamin-(1.8) und 2 g Phenylisocyanat (Bd. XII, S. 437) in Benzol bei gewöhnlicher Temperatur (Sa., A. 365, 149). — Rötlichweiße Blättchen (aus Aceton). F: 304°.

N-Allyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff $C_{14}H_{15}N_3S=H_2N\cdot C_{10}H_4\cdot NH\cdot CS\cdot NH\cdot CH_2\cdot CH: CH_2.$ B. Aus 1,5 g Naphthylendiamin-(1.8) und 1 g Allylsenföl (Bd. IV, S. 214) in 50 ccm Benzol (Sa., A. 365, 147). — Gelbweiße Nadeln (aus Alkohol). Verändert sich von 170° an, ist bei 300° geschmolzen. — Spaltet bei längerem Kochen mit Alkohol Schwefelwasserstoff ab.

N-Phenyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff $C_{17}H_{15}N_3S = H_3N \cdot C_{10}H_6 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Aus 1,5 g Naphthylendiamin-(1.8) in 50 ccm Benzol mit 2,5 g Phenylsenföl (Bd. XII, S. 453) bei gewöhnlicher Temperatur (Sa., A. 365, 144). — Gelbweiß. F: 238°. — Verliert sehr leicht Schwefelwasserstoff. Gibt mit Pikrinsäure in Alkohol das Pikrat des Phenyliminoperimidindihydrids $C_{10}H_6 < NH > C:N \cdot C_6H_5$ (Syst. No. 3570).

N-o-Tolyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff $C_{18}H_{17}N_3S = H_2N \cdot C_{10}H_6 \cdot NH \cdot C_8H_6 \cdot CH_5$. B. Aus je 2 g o-Tolylsenföl und Naphthylendiamin-(1.8) in 50 ccm Benzol in der Kälte (Sa., A. 365, 146). — F: 229°.

N-p-Tolyl-N'-[8-amino-naphthyl-(1)]-thioharnstoff $C_{19}H_{17}N_3S = H_2N \cdot C_{10}H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Analog der o-Tolyl-Verbindung (Sa., A. 365, 147). — F: 259°.

N-Benzolsulfonyl-naphthylendiamin-(1.8) $C_{16}H_{14}O_{2}N_{2}S = H_{2}N \cdot C_{10}H_{6} \cdot NH \cdot SO_{3} \cdot C_{6}H_{5}$.

B. Aus N-Benzolsulfonyl-8-nitro-naphthylamin-(1) (Bd. XII, S. 1261) durch Reduktion mit Eisen und Eisessig (Morgan, Micklethwait, Soc. 89, 9). — Hellgraue Nadeln (aus verd. Alkohol). F: 166°.

N.N'-Dibensolsulfonyl-naphthylendiamin-(1.8) $C_{22}H_{18}O_4N_2S_3 = C_{10}H_6(NH \cdot SO_2 \cdot C_6H_8)_9$. B. Aus 15 g Naphthylendiamin-(1.8) in 150 ccm Benzol mit 26,2 g Kaliumcarbonat und 33,6 g Benzolsulfochlorid auf dem Wasserbad (Sachs, A. 365, 164). — Krystalle (aus absol. Alkohol). F: 192,5°.

N-Bensolsulfonyl-N-methyl-naphthylendiamin-(1.8) $C_{17}H_{16}O_2N_2S = H_2N \cdot C_{10}H_6 \cdot N(CH_2) \cdot SO_2 \cdot C_6H_5$. B. Aus 4 g N-Benzolsulfonyl-N-methyl-8-nitro-naphthylamin-(1) (Bd.XII, S. 1261) durch Reduktion mit 16 g Eisen, 2 ccm Eisessig und 200 ccm warmem Wasser (Mobgan, Micklethwait, Soc. 89, 12). — Bräunliche Krystalle (aus Benzol + Petroläther). F: 161—162°.

4-Chlor-1.8-diamino-naphthalin, 4-Chlor-naphthylendiamin-(1.8) $C_{10}H_{\bullet}N_{\bullet}Cl = C_{10}H_{\bullet}Cl(NH_{\bullet})_{\bullet}$. B. Aus 4-Chlor-1.8-dinitro-naphthalin (Bd. V, S. 561) durch Reduktion mit Zinn und Salzsäure (Bad. Anilin- u. Sodaf., D.R.P. 122475; C. 1901 II, 447). — Gibt mit Aceton ein gegen Säuren beständiges Kondensationsprodukt, das mit p-Nitro-benzoldiazoniumchlorid eine olivgrüne Färbung liefert. — Sulfat. Fast unlöslich in Wasser.

8. 2.3 - Diamino - naphthalin, Naphthylendiamin - (2.3) $C_{10}H_{10}N_2 = H_2N \cdot C_{10}H_6 \cdot NH_2$. B. Beim Erhitzen von 2.3-Dioxy-naphthalin (Bd. VI, S. 982) mit konz. Ammoniak auf 240—250° (Friedländer, Zakrzewski, B. 27, 764; Höchster Farbw., D. R. P. 73076; Frdl. 3, 496). Bei 2-stdg. Erhitzen von β -Naphthylamin mit Natriumamid und Naphthalin auf 230° (Sachs, B. 39, 3021). — Blätter (aus Äther). F: 191° (F., Z.; Hö. Fa.), 193° (S.). Leicht löslich in Alkohol, ziemlich leicht in Äther (F., Z.). — Salpetrige Säure erzeugt 2.3-Azimino-naphthalin $C_{10}H_6 \stackrel{NH}{\sim} N$ (Syst. No. 3811) (Hö. Fa.).

N.N'-Diacetylderivat $C_{16}H_{16}O_2N_2=C_{10}H_6(NH\cdot CO\cdot CH_3)_2$. B. Aus 2.3-Diaminonaphthalin und Essigsäureanhydrid (FRIEDLÄNDER, ZAKRZEWSKI, B. 27, 764). — Federförmige Krystalle (aus Essigsäure). F: 247° (Fr., Z.), 262° (Sachs, B. 39, 3022).

9. 2.6 - Diamino - naphthalin, Naphthylendiamin - (2.6) C₁₀H₁₀N₂ = H₂N·C₁₀H₃·NH₂. B. Beim Behandeln von Naphthylendiamin-(2.6)-sulfonsäure-(4) (Syst. No. 1923) mit Natriumamalgam (Friedländer, Lucht, B. 26, 3033). Aus 2.6-Dioxy-naphthalin (Bd. VI, S. 984) durch Erhitzen mit Ammoniak oder Ammoniumsalzen im Druckrohr auf hohe Temperaturen (Eweb & Pick, D.R.P. 45788; Frdl. 2, 277; Langer, Ch. Z. 12, 856) oder durch Erhitzen mit Chloroaleiumammoniak im Druckrohr auf 270° (Jacchia, A. 323, 132). — Nadeln oder Blättchen (aus Wasser). F: 216° (Fr., La.), 216—218° (E. & P.), 217,2° (J.). Schwer löslich in Alkohol und Äther, sehr schwer in heißem Wasser (Fr., Lu.). Die wäßr. Lösung wird von Eisenchlorid in der Kälte grün, in der Wärme blau gefärbt (Fr., Lu.). — Hydrochlorid. In reinem Wasser ziemlich leicht löslich, unlöslich in überschüssiger Salzsäure (Fr., Lu.).

N.N'-Diphenyl-naphthylendiamin-(2.6) $C_{22}H_{18}N_2=C_{10}H_6(NH\cdot C_0H_5)_2$. B. Bei mehrstündigem Erhitzen von 2.6-Dioxy-naphthalin mit salzsaurem Anilin und Anilin auf 170° (Leonhardt & Co., D.R.P. 54087; Frdl. 2, 182). — F: 210° (L. & Co., D.R.P. 54087). — Gibt durch Kondensation mit p-Nitroso-dimethylanilin oder mit Chinonbischlorimid grüne basische Farbstoffe (L. & Co., D.R.P. 54087, 56990, 58576; Frdl. 2, 182; 3, 322, 323).

N.N'-Diacetyl-naphthylendiamin-(2.6) $C_{14}H_{14}O_{2}N_{3}=C_{10}H_{4}(NH\cdot CO\cdot CH_{3})_{2}$. Brāunliche Nädelchen. In Eisessig ziemlich schwer löslich (FRIEDLÄNDER, LUCHT, B. 26, 3034).

10. 2.7 - Diamino - naphthalin, Naphthylendiamin - (2.7) C₁₀H₁₀N₂ = H₂N·C₁₀H₆·NH₂. B. Aus 2.7-Dioxy-naphthalin (Bd. VI, S. 985) bei 8-stdg. Erhitzen mit 4 Teilen Chlorealeiumammoniak auf 260—270° (Bamberger, Schieffelin, B. 22, 1384) oder beim Erhitzen mit Ammoniak oder Ammoniumsalzen auf 150—300° (Ewer & Pick, D. R. P. 45788; Frdl. 2, 277; Lange, Ch. Z. 12, 856; Kaufler, Karrer, B. 40, 3262). Aus 7-Aminonaphthol-(2) (Syst. No. 1858) durch Erhitzen mit Ammonsulfitlösung und Ammoniak (Bucherer, J. pr. [2] 69, 89). — Blätter (aus Wasser). F: 159° (Ba., Soh.). — Das Hydrochlorid wird durch Amylnitrit in Alkohol oder Eisessig nur einseitig diazotiert (Kau., Kar., B. 40, 3262). Naphthylendiamin-(2.7) gibt beim Erhitzen mit Hydrazinhydrat und Hydrazinsulfit auf 140—145° 7-Hydrazino-naphthylamin-(2) (Syst. No. 2083) (Franzen, Deibel, J. pr. [2] 78, 156). Reagiert mit 4-Chlor-1.3-dinitro-benzol oder mit Pikrylchlorid nur mit einer NH₂-Gruppe unter Bildung von N-[2.4-Dinitro-phenyl]-naphthylendiamin-(2.7) bezw. von N-Pikryl-naphthylendiamin-(2.7) (Kau., A. 351, 156). Gibt mit Phthalsäureanhydrid in siedendem Wasser N.N-Phthalyl-naphthylendiamin-(2.7) H₂N·C₁₀H₆·N
CO>C₆H₄ (Syst. No. 3218) (Kau., Kar.; vgl. Kuhn, Jacob, Furter, A. 455 [1927], 256), beim Erhitzen mit Phthalsäureanhydrid auf 250° das N.N.N.N.'-Diphthalyl-naphthylendiamin-(2.7) C₆H₄ (CO>N·C₁₀H₆·N
CO>C₆H₄ (Kau., Kar.). — Verwendung zur Darstellung von Azofarbstoffen: Cassella & Co., D.R.P. 71329; Frdl. 3, 551.

N-[2.4-Dinitro-phenyl]-naphthylendiamin-(2.7) $C_{16}H_{12}O_4N_4 = H_2N \cdot C_{10}H_4 \cdot NH \cdot C_6H_6(NO_9)_2$. B. Durch 6-stdg. Kochen von 2.7-Diamino-naphthalin mit 4-Chlor-1.3-dinitrobenzol (Bd. V, S. 263) und Kaliumacetat in Alkohol (KAUFLER, A. 351, 157). — Dunkelgelbe Nadeln (aus Pyridin + Alkohol oder aus Xylol). F: 227°.

N - [2.4.6 - Trinitro - phenyl] - naphthylendiamin - (2.7), N - Pikryl - naphthylendiamin-(2.7) $C_{16}H_{11}O_{6}N_{5} = H_{2}N \cdot C_{10}H_{6} \cdot NH \cdot C_{6}H_{2}(NO_{2})_{3}$. B. Aus 2.7-Diamino-naphthalin und Pikrylchlorid (Bd. V, S. 273) in siedendem Alkohol mit Kaliumacetat (KAUFLER, A. 351, 156). — Gelbe Nadeln (aus heißem Nitrobenzol + Alkohol oder aus Anisol). F: 212°.

N.N'-Diphenyl-naphthylendiamin-(2.7) C₃₂H₁₈N₂ = C₁₀H₆(NH·C₆H₅)₂. B. Aus 16 g 2.7-Dioxy-naphthalin, 37 g Anilin und 13 g salzsaurem Anilin bei 145—160° (Annahem, B. 20, 1372; Durand, Huguenin & Co., D.R.P. 40886; Frdl. 1, 278). Durch Erhitzen von 2.7-Dioxy-naphthalin mit Chlorealcium und Anilin auf 280—290° (Clausius, B. 28, 528). — Blättchen. F: 163,5° (D., Hu. & Co.), 163—164° (A.), 168° (Cl.). Schwer löslich in kaltem Alkohol, ziemlich leicht in Äther, Chloroform, Schwefelkohlenstoff und Benzol, unlöslich in Ligroin (A.). — Beim Erwärmen mit festem Zinkehlorid entsteht eine fuchsinrote Färbung (A.). — Über Azinfarbstoffe aus N.N'-Diphenyl-naphthylendiamin-(2.7) und p-Nitrosodialkylanilinen vgl.: D., Hu. & Co., D.R.P. 40886, 58363; Frdl. 1, 278; 3, 321; O. Fischer, Heff, A. 272, 328. Über einen violetten Farbstoff aus N.N'-Diphenyl-naphthylendiamin-(2.7) und Chinonbischlorimid vgl. D., Hu. & Co., D. R. P. 58371; Frdl. 3, 322.

N.N'-Di-o-tolyl-naphthylendiamin-(2.7) $C_{24}H_{22}N_2 = C_{10}H_6(NH \cdot C_6H_4 \cdot CH_3)_2$. B. Aus 2.7-Dioxy-naphthalin durch Erhitzen mit o-Toluidin und salzsaurem o-Toluidin auf 140°

bis 180° (DURAND, HUGUERIN & Co., D.R.P. 40886; Frdl. 1, 279). — F: 106°. Leicht löslich in Alkohol, Äther und Eisessig.

N.N'-Di-p-tolyl-naphthylendiamin-(2.7) $C_{24}H_{22}N_2 = C_{10}H_6(NH\cdot C_6H_4\cdot CH_3)_2$. B. Aus 2.7-Dioxy-naphthalin, p-Toluidin und salzsaurem p-Toluidin bei 145—160° (Annahem, B. 20, 1373; Duband, Huguenin & Co., D.R.P. 40886; Frdl. 1, 279). — Nadeln (aus Xylol). F: 236—237° (A.). Fast unlöslich in Alkohol, Ather und Eisessig (A.). — Beim Erwärmen mit festem Zinkchlorid entsteht eine rote Färbung (A.). — Findet Verwendung zur Herstellung des Azinfarbstoffs Basler Blau (Schultz, Tab. No. 677).

N.N'-Bis-[2.4-dimethyl-phenyl]-naphthylendiamin-(2.7) $C_{26}H_{26}N_2 = C_{10}H_4[NH\cdot C_6H_2(CH_3)_2]_2$. B. Aus 2.7-Dioxy-naphthalin durch Erhitzen mit asymm. m-Xylidin (Bd. XII, S. 1111) und seinem salzsauren Salz (D., H. & Co., D.R.P. 40886; Frdl. 1, 279). — F: 130°. Leicht löslich in Alkohol, Äther und Eisessig.

N.N'-Diphenyl-N.N'-diacetyl-naphthylendiamin-(2.7) $C_{26}H_{23}O_2N_2 = C_{16}H_6[N(C_6H_5)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Diphenyl-naphthylendiamin-(2.7) and Essigsaureanhydrid (CLAU-SIUS, B. 23, 528). — Krystalle (aus Alkohol). F: 197,5°.

N.N' - Bis - [4 - dimethylamino - phenyl] - naphthylendiamin - (2.7) $C_{26}H_{28}N_4 = C_{10}H_6[NH\cdot C_6H_4\cdot N(CH_3)_8]_9$. B. Aus 2.7-Dioxy-naphthalin und N.N-Dimethyl-p-phenylendiamin (S. 72) bei 200—220° (Akt.-Ges. f. Anilinf., D.R.P. 75044; Frdl. 8, 520). — Undeutliche Kryställehen (aus Benzel). F: 180°. Unlöslich in Wasser, sehr wenig löslich in Alkohol.

11. Derivat eines Diaminonaphthalins $C_{10}H_{10}N_2=C_{10}H_4(NH_2)_2$ mit unbekannter Stellung der Aminogruppen.

2.6 - Dichlor - x.x - diamino - naphthalin, 2.6 - Dichlor - naphthylendiamin - (x.x) $C_{10}H_aN_aCl_a=C_{10}H_aCl_a(NH_a)_a$. B. Beim Kochen des bei 252—253° schmelzenden 2.6-Dichlor-x.x-dinitro-naphthalins (Bd. V, S. 562) mit Eisessig, Salzsäure und Zinn (ALÉN, Of. Sv. 1881, No. 9, S. 12; Bl. [2] 36, 435). — Nadeln. F: 204—205°.

2. Diamine $C_{11}H_{12}N_2$.

- 1. 2.4 Diamino 1 methyl naphthalin, 4 Methyl naphthylendiamin-(1.3) C₁₁H₁₂N₂, s. nebenstehende Formel. B. Beim Erhitzen von 2.4-Diamino-1-methyl-naphthalin-carbonsäure-(3) (Syst. No. 1907) auf 180° (ATKINSON, THORPE, Soc. 89, 1926). Nadeln (aus verd. Methylalkohol). F: 65°. C₁₁H₁₂N₂ + 2 HCl. Nadeln (aus Salzsäure). Leicht löslich in Wasser. C₁₁H₁₂N₃ + 2 HCl + PtCl₄. Gelbes krystallinisches Pulver.
- 2. 5.7 Diamino 1 methyl naphthalin, 5 Methyl naphthylendiamin-(1.3) $C_{11}H_{12}N_3$, s. nebenstehende Formel. B. Aus 5.7-Diamino 1 methyl naphthalin carbonsäure (6) (Syst. No. 1907) beim Erhitzen H₂N auf einige Grade über den Schmelzpunkt oder beim Kochen mit überschüssiger verd. Salzsäure (Atkinson, Thorpe, Soc. 91, 1702). Blättchen (aus Wasser). F: 123°. Färbt sich an der Luft braun. $C_{11}H_{12}N_2 + 2$ HCl. Farblose Nadeln. $C_{11}H_{12}N_2 + 2$ HCl + PtCl₄. Gelber krystallinischer Niederschlag.

N.N'-Diacetylderivat $C_{15}H_{16}O_2N_3 = CH_3 \cdot C_{10}H_5(NH \cdot CO \cdot CH_2)_3$. B. Beim Kochen von 5.7-Diamino-1-methyl-naphthalin mit überschüssigem Acetylchlorid (A., Th., Soc. 91, 1703). — Nadeln (aus Eisessig). F: 275°.

3. 5.7 - Diamino - 2 - methyl - naphthalin . 6 - Methyl - naphthylendiamin-(1.3) C₁₁H₁₂N₂, s. nebenstehende Formel. B.

Aus 1.3-Diamino-6-methyl-naphthalin-carbonsāure-(2) [6-Methyl-naphthylendiamin-(1.3)-carbonsāure-(2), Syst. No. 1907] beim Kochen mit Salzsāure (A., Th., Soc. 91, 1706). — Platten (aus Wasser). F: 137°. — C₁₁H₁₂N₂ + 2HCl. Farblose Prismen. — C₁₁H₁₂N₂ + 2HCl + PtCl₄. Gelber krystallinischer Niederschlag.

N.N'-Diacetylderivat $C_{12}H_{12}O_2N_2 = CH_2 \cdot C_{10}H_1(NH \cdot CO \cdot CH_2)_2$. B. Beim Kochen von 5.7-Diamino-2-methyl-naphthalin mit Acetylchlorid (A., Th., Soc. 91, 1707). — Nadeln (aus Eisessig). F: 256°.

4. 6.8 - Diamino - 2 - methyl - naphthalin, 7 - Methyl-naphthylendiamin-(1.3) C₁₁H₁₂N₂, s. nebenstehende Formel. B. Aus 1.3-Diamino-7-methyl-naphthalin-carbonsāure-(2) [7-Methyl-naphthylendiamin-(1.3)-carbonsāure-(2), Syst. No. 1907] beim Kochen mit Salzsāure (A., Th., Soc. 91, 1710). — Tafeln (aus Wasser). F: 119°. — C₁₁H₁₂N₂ + 2HCl. Krystallpulver. — C₁₁H₁₂N₂ + 2HCl. Gelbe Krystalle.

N.N'-Diacetylderivat $C_{15}H_{16}O_2N_3=CH_3\cdot C_{10}H_5(NH\cdot CO\cdot CH_2)_3$. B. Beim Kochen von 6.8-Diamino-2-methyl-naphthalin mit Acetylchlorid (A., Th., Soc. 91, 1710). — Prismen (aus Eisessig). F: 263°.

3. 2.4-Diamino-1-āthyl-naphthalin, 4-Āthyl-naphthylen-diamin-(1.3) $C_{12}H_{14}N_2$, s. nebenstehende Formel. B. Aus 2.4-Diamino-1-āthyl-naphthalin-carbonsāure-(3) (Syst. No. 1907) bei 150° (A., Th., Soc. 89, 1929). — Platten (aus verd. Methylalkohol). F: 74°. — $C_{12}H_{14}N_2 + 2HCl$ + PtCl₄. Gelbes krystallinisches Pulver.

6. Diamine $C_n H_{2n-12} N_2$.

1. Diamine $C_{12}H_{12}N_2$.

1. 2.2'-Diamino-diphenyl C₁₂H₁₂N₂ = H₂N·C₆H₄·C₆H₄·NH₂. B. Aus 2.2'-Dinitro-diphenyl (Bd. V, S. 583) mit Zinn und Salzsäure (TÄUBER, B. 24, 198). — Nadeln (aus Alkohol). F: 81°; kann in kleinen Mengen unzersetzt destilliert werden (T., B. 24, 198). — Liefert in verd. Salzsäure mit Natriumhypochloritlösung Diphenochinon-(2.2')-bis-chlorimid (Bd. VII, S. 740) (SCHLENK, A. 368, 272). Verdünnte Schwefelsäure erzeugt bei 200° Carbazol (T., B. 24, 200). Diazotiert man 2.2'-Diamino-diphenyl und erwärmt die Lösung der Bis-diazo-Verbindung auf dem Wasserbade, so entsteht Diphenylenoxyd (T., Halbertand, B. 25, 2746). Gießt man die Lösung der Bis-diazo-Verbindung in Kaliumsulfidlösung, so entsteht Carbazol (T., B. 26, 1703). Die Bis-diazo-Verbindung liefert bei der Zersetzung mit KI neben geringen Mengen 2.2'-Dijod-diphenyl und Carbazol Diphenylenjodoniumjodid C₆H₄ I·I (Syst. No. 4720) (Mascarelli, Benati, R. A. L. [5] 16 II, 565; G. 38 II, 624). 2.2'-Diamino-diphenyl liefert mit Benzil bei 160—170° die Verbindung C₆H₄·N:C·C₆H₅ (Syst. No. 3496) (T., B. 35, 3288). — C₁₂H₁₂N₂+2HCl. Krystalle (aus Alkohol + Ather). Fängt von 220—230° an, sich zu schwärzen, zersetzt sich bei 257° bis 260° zu einer roten Flüssigkeit (M., B.).

Diformylderivat $C_{14}H_{12}O_2N_3 = [-C_4H_4\cdot NH\cdot CHO]_2$. B. Durch Kochen von 2.2'-Diamino-diphenyl mit Ameisensäure (v. Niementowski, B. 34, 3330). — Krystalle (aus Alkohol). F: 137°. Leicht löslich in Alkohol, Aceton und Benzol, schwer in Ather, sehr schwer in siedendem Wasser.

Diacetylderivat $C_{18}H_{16}O_2N_3 = [-C_8H_4\cdot NH\cdot CO\cdot CH_3]_3$. B. Durch Kochen von 2.2'-Diamino-diphenyl mit Eisessig und Essigsäureanhydrid (Täuber, B. 24, 199; 25, 129). — Prismen (aus absol. Alkohol). F: 161°; leicht löslich in Alkohol, Benzol, Eisessig, schwer in Äther, Petroläther und in Wasser (T., B. 24, 199).

Dibensoylderivat $C_{2g}H_{2g}O_{2}N_{2}=[-C_{g}H_{4}\cdot NH\cdot CO\cdot C_{g}H_{g}]_{2}$. B. Durch Schütteln von 2.2'-Diamino-diphenyl mit Benzoylchlorid und Natronlauge unter Kühlung (v. NIEMENTOWSEI, B. 34, 3330). — Krystalle (aus Alkohol). F: 184°. Etwas weniger löslich als das Diformylderivat.

- 5.5'-Dinitro-2.2'-diamino-diphenyl $C_{12}H_{10}O_4N_4=H_2N\cdot C_0H_2(NO_2)\cdot C_0H_3(NO_2)\cdot NH_2$. B. Das Diacetylderivat entsteht beim Versetzen einer Lösung von 1 Mol.-Gew. 2.2'-Bis-acetamino-diphenyl in der 5-fachen Gewichtsmenge konz. Schwefelsäure bei 10° mit 2 Mol.-Gew. Kaliumnitrat; man verseift mit Kalilauge (Täuber, B. 25, 129). Goldgelbe Prismen mit violettem Reflex (aus Phenol + Alkohol). Schmilst nach vorausgehender Bräunung und Sinterung bei 285°. Unlöslich in Äther, Benzol, Ligroin, kaum löslich in Chloroform, sehr schwer in Alkohol, leicht in siedendem Phenol.
- 2. 2.3'-Diamino-diphenyl $C_{12}H_{12}N_2 = H_2N \cdot C_4H_4 \cdot C_6H_4 \cdot NH_2^{-1}$). B. Bei monatlangem Behandeln von 4.4'-Dibrom-2.3'-diamino-diphenyl (S. 211) mit 5% igem Natriumamalgam (STEASSEE, G. SCHULTZ, A. 210, 194). Terpentinartige Masse. Siedet oberhalb 360°; die alkoh. Lösung fluoresciert blau; das Hydrochlorid gibt mit Chlorwasser einen schmutziggrünen mit Bromwasser einen weißen und mit Chlorkalk einen roten Niederschlag; wird durch PtCl₄ nicht gefällt (STE., SCH.).

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von DENNET, TURNER, Soc. 1926, 477.

4.4'-Dibrom-2.3'-diamino-diphenyl $C_{12}H_{10}N_2Br_2=H_2N\cdot C_2H_2Br\cdot C_4H_2Br\cdot NH_2^1$). B. Durch Reduktion von 4.4'-Dibrom-2.3'-dinitro-diphenyl (in Bd. V, S. 585, Zeile 18 v. o. als 4.4'-Dibrom-x.x-dinitro-diphenyl bezeichnet) mit Zinn und Salzzäure (Fittig, A. 182, 207; G. Schultz, A. 174, 218; Strasser, G. Sch., A. 210, 194). — Krystalle (aus Alkohol). F: 89° (F.; Sch.; D., T.). Zersetzt sich bei höherer Temperatur (F.). Unlöslich in Wasser (F.). — Wird durch $5^{\circ}/_{\circ}$ iges Natriumamalgam erst bei sehr langer Einw. entbromt (Str., Sch.). — $C_{12}H_{10}N_2Br_2+2HCl$. Prismen. Wird durch Wasser dissoziiert (F.).

Dibensoylderivat $C_{26}H_{18}O_{2}N_{2}Br_{3} = [-C_{6}H_{2}Br\cdot NH\cdot CO\cdot C_{6}H_{5}]_{3}$. B. Beim Behandeln von 4.4'-Dibrom-2.3'-diamino-diphenyl mit Benzoylchlorid bei 100° (Lellmann, B. 15, 2835, 2838). — Nadeln (aus Alkohol). F: 195°. Kühlt man die geschmolzene Substanz rasch ab, so erstarrt sie glasig und schmilzt jetzt bei erneutem Erhitzen bei 99°. Durch Umlösen der niedrigschmelzenden Form aus Alkohol oder durch Erhitzen auf 130°, wobei die Substanz

krystallinisch erstarrt, erhöht sich der Schmelzpunkt wieder auf 195°.

3. 2.4'-Diamino-diphenyl, Diphenylin $C_{12}H_{12}N_2$, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten vom Namen "Diphenylin" abgeleiteten Namen. B. Beim Behandeln von

Ž'-Nitro-4-amino-diphenyl (Bd. XII, S. 1321) mit Zinn und Salzsäure (G. Schultz, B. 9, 548; G. SCHULTZ, H. SCHMIDT, STRASSER, A. 207, 354). Entsteht neben Benzidin (S. 214) beim Behandeln einer alkoh. Lösung von Azobenzol (Syst. No. 2092) mit Zinn und Salzsäure oder durch Erwärmen von Hydrazobenzol (Syst. No. 1950) mit Salzsäure (Schm., Schu., A. 207, 330). Zur Bildung aus Hydrazobenzol vgl.: van Loon, C. 1904 I, 792; R. 23, 62; Holleman, v. L., C. 1904 I, 793. Man reduziert 2.4'-Dinitro-diphenyl-carbonsäure-(4) (Bd. IX, S. 672) durch Kochen mit Zinnchlorür und Salzsäure zu 2.4 Diamino-diphenyl-carbonsäure-(4) und destilliert deren Hydrochlorid mit Kalk (STR., SCHU., A. 210, 193). — Darst. Man versetzt die heiße alkoh. Lösung von 70 g Azobenzol allmählich mit einer Lösung von 53 g Zinn in konz. Salzsäure, destilliert den Alkohol ab und versetzt den Rückstand mit Schwefelsäure; hierdurch wird Benzidinsulfat gefällt, während Diphenylin nebst Anilin in Lösung geht (SCHM., SCHU.); das Filtrat vom Benzidinsulfat macht man alkalisch und schüttelt mit Benzol aus; die Benzollösung schüttelt man mit Salzsäure und verdampft die saure Lösung; es krystallisiert zunächst salzsaures Diphenylin aus (O. W. FISCHER, M. 6, 547). Darstellung aus Hydrazobenzol durch Einw. von Salzsäure: Ebdmann, Z. Ang. 6, 164; vgl. van Loon, R. 23, 68, 84. — Nadeln (aus verd. Alkohol oder sehr viel Wasser). F: 45°; Kp: 363° (Schu., Schm., Str.). Kaum löslich in Wasser, leicht in Alkohol und Ather (SCHU., SCHM., STE.). Molekulare Verbrennungswärme bei konstantem Volumen: 1561,6 Cal., bei konstantem Druck: 1562,7 Cal. (Petter, A. ch. [6] 18, 171). — Wird von Oxydationsmitteln leicht angegriffen (SCHU., B. 9, 548). Die wäßr. Lösung gibt mit Chromsaure einen schwarzen, in Gegenwart von Schwefelsaure einen braunschwarzen Niederschlag (Schu., B. 9, 548; O. W. F., M. 6, 548 Anm.). Liefert in verd. Salzsaure mit Hypochlorit-Lösung Diphenochinon-(2.4')-bis-chlorimid (Bd. VII, S. 740) (Schlenk, A. 868, 273). Beim Überleiten über erhitzten Kalk entsteht 2-Amino-carbazol (Syst. No. 3398) (Blank, B. 24, 306). Last sich durch Behandeln mit Äthylnitrit in Diphenyl und durch Behandeln des Sulfats mit salpetriger Säure und Kochen des Reaktionsproduktes mit Wasser in 2.4'-Dioxy-diphenyl (Bd. VI, S. 990) überführen (Schu., Schm., Str.). Beim Kochen mit überschüss. Schwefelkohlenstoff in absol. Alkohol entsteht N oder N'-Thiocarbonyl-diphenylin (S. 212) (REULAND, B. 22, 3014; LE Fèvre, Turner, Soc. 1926, 2478 Anm.). Mit Thiophosgen entsteht N.N'-Bis-thiocarbonyl-diphenylin (S. 212) (JACOBSON, KUNZ, B. 36, 4092). — Verwendung für Azofarbstoffe: Farbwerk Griesheim, D.R.P. 90070; Frdl. 4, 788. — C₁₂H₁₂N₂ + HCl. Blättchen (SCHU., B. 9, 548; SCHU., SCHM., STE., A. 207, 356). — C₁₂H₁₂N₃ + 2 HCl. (O. W. F.). Sehr leicht löslich in Wasser; gibt mit Platinchlorid selbst nach Zusatz von Alkohol und Äther keinen Niederschlag (SCHU., SCHM., STE., A. 207, 356). — 2 C. H. N. + H. S.O. Ziemlich leicht löslich in Wasser; sehr leicht in Sturen (SCHU.) $-2 C_{12}H_{12}N_2 + H_2SO_4$. Ziemlich leicht löslich in Wasser, sehr leicht in Säuren (SCHU., SCHM., STR., A. 207, 356). $-C_{12}H_{12}N_2 + H_2SO_4$. Prismen. Triklin pinakoidal (FOCK, Z. Kr. 7, 38; vgl. Groth, Ch. Kr. 5, 20). In Wasser überaus leicht löslich (Unterschied von Benzidin) (SCHU., SCHM., STB., A. 207, 356).

N.N.N.'.N'-Tetramethyl-diphenylin $C_{10}H_{30}N_3=[-C_0H_4\cdot N(CH_2)_2]_2$. B. Bei 2-stdg. Erhitzen von 1 Mol.-Gew. salzsaurem Diphenylin mit 4 Mol.-Gew. Methylalkohol im zugeschmolzenen Rohr auf 180°; man gießt in salzsäurehaltiges Wasser, übersättigt mit Kali, schüttelt mit Äther und kocht die in den Äther übergegangenen Basen mit Essigsäureanhydrid; man destilliert das Essigsäureanhydrid ab und fraktioniert den Rückstand (REULAND, B. 22, 3016). — Prismatische Krystalle (aus absol. Alkohol). Riecht fischartig. F: 51—52°. Kp: 333—345°. Phosphoresciert beim Reiben mit bläulichem Licht. — Pikrat $C_{10}H_{20}N_3+C_0H_2O_7N_3$. Rote Nadeln (aus Alkohol). F: 199—200°.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von DENNET, TURNER, Soc. 1926, 477.

N.N.N'.N'-Tetramethyl-diphenylin-monojodmethylat $C_{17}H_{22}N_2I = (CH_3)_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N(CH_3)_2I$. B. Aus 1 Mol.-Gew. N.N.N'.N'-Tetramethyl-diphenylin, gelöst in Alkohol, und 2 Mol.-Gew. Methyljodid (Reuland, B. 22, 3017). — Nadeln (aus Alkohol). F: 184°. Leicht löslich in Wasser und Alkohol, fast unlöslich in Ather.

N.N.N'.N'-Tetramethyl-diphenylin-bis-jodmethylat, [Diphenylen - (3.4')] - bistrimethylammoniumjodid $C_{1g}H_{2g}N_{2}I_{2}=[-C_{6}H_{4}\cdot N(CH_{2})_{2}I]_{2}$. B. Bei 6-stdg. Erhitzen von 1 Mol.-Gew. N.N.N'.N'-Tetramethyl-diphenylin mit 4 Mol.-Gew. Methyljodid und Methylalkohol im geschlossenen Rohr auf 100° (Reuland, B. 22, 3017). — Gelbe Krystalle (aus Alkohol). F: 196°. Leicht löslich in Wasser und Alkohol.

N.N'-Bis-[3-nitro-benzal]-diphenylin $C_{26}H_{16}O_4N_4=[-C_6H_4\cdot N:CH\cdot C_6H_4\cdot NO_2]_4$. B. Beim Erwärmen einer alkoh. Lösung von 1 Mol.-Gew. Diphenylin mit 2 Mol.-Gew. 3-Nitro-benzaldehyd (Reuland, B. 22, 3011). — Gelbes Krystallpulver (aus Benzol + Alkohol). F: 184—185°. Leicht löslich in Benzol, schwerer in Alkohol.

N.N'-Bis-[4-nitro-bensal]-diphenylin $C_{26}H_{18}O_4N_4 = [-C_6H_4\cdot N:CH\cdot C_6H_4\cdot NO_3]_5$. B. Aus Diphenylin in Alkohol und 4-Nitro-benzaldehyd (Reuland, B. 22, 3012). — Rotgelbes Krystallpulver. F: 208°.

N.N'-Disalicylal-diphenylin $C_{26}H_{20}O_2N_2=[-C_6H_4\cdot N:CH\cdot C_6H_4\cdot OH]_2$. B. Beim Erhitzen von 1 Mol.-Gew. Diphenylin mit 2 Mol.-Gew. Salicylaldehyd (Reuland, B. 22, 3012). — Gelbe Blätter (aus Alkohol). F: 151—152° (Jacobson, Loeb, B. 36, 4090).

N.N'-Discotyl-diphenylin $C_{16}H_{16}O_{2}N_{2}=[-C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3}]_{3}$. Beim Behandeln von Diphenylin mit Essigsäure (G. SCHULTZ, H. SCHMIDT, STRASSER, A. 207, 355). — Nadeln (aus Alkohol). F: 202°.

N.N'-Dibensoyl-diphenylin $C_{26}H_{20}O_2N_2 = [-C_6H_4\cdot NH\cdot CO\cdot C_6H_5]_2$. B. Aus Diphenylin und Benzoylchlorid, zuletzt bei 140—150° (BIEHRINGER, BUSCH, B. 35, 1969). — Krystalle (aus siedendem Nitrobenzol). F: 276—278°. In den meisten Lösungsmitteln selbst beim Sieden schwer löslich oder unlöslich, nur in siedendem Nitrobenzol leichter löslich.

Diphenylin-N.N'-bis-thiocarbonsäureamid, [Diphenylen-(2.4')]-bis-thioharn-stoff $C_{14}H_{14}N_4S_2=[-C_6H_4\cdot NH\cdot CS\cdot NH_2]_2$. B. Durch gelindes Erwarmen einer alkoh. Lösung von Diphenylen-(2.4')-disenföl (s. u.) mit alkoh. Ammoniak (Jacobson, Kunz, B. 36, 4092). — Tafeln. F: 201°. Unlöslich in Alkohol, Benzol, Chloroform usw.

[Diphenylen-(2.4')]-bis-[ω -phenyl-thioharnstoff] $C_{2e}H_{12}N_4S_2 = [-C_eH_4\cdot NH\cdot CS\cdot NH\cdot C_4H_5]_2$. B. Durch Erwärmen von Diphenylen-(2.4')-disenföl mit Anilin und Alkohol (Jacobson, Kunz, B. 36, 4093). — F: 164°.

N oder N'-Thiocarbonyl-diphenylin $C_{18}H_{10}N_2S=H_2N\cdot C_6H_4\cdot C_6H_4\cdot N:CS$. Zur Konstitution vgl. Le Fèvee, Turner, Soc. 1926, 2478 Anm. — B. Bei 18—20-stdg. Kochen von 5 g Diphenylin mit 15 g Schwefelkohlenstoff und 15 g absol. Alkohol (Reuland, B. 22, 3014). — F: 238° (R.). Unlöslich in den gewöhnlichen Lösungsmitteln (R.).

N.N' - Bis - thiocarbonyl - diphenylin, Diphenylen - (2.4') - di-isothiocyanat, Diphenylen-(2.4')-di-senföl $C_{14}H_{2}N_{1}S_{3}=[-C_{6}H_{4}\cdot N:CS]_{1}$. B. Aus Diphenylin in verdünnter salzsaurer Lösung und Thiophosgen in Chloroform-Lösung (JACOBSON, KUNZ, B. 36, 4092). — Nadeln (aus Ligroin). F: 94°. Leicht löslich in Alkohol, Äther und Chloroform. — Liefert mit alkoh. Ammoniak Diphenylen-(2.4')-bis-thioharnstoff (s. o.).

5-Chlor-2.4'-diamino-diphenyl, 5-Chlor-diphenylin $C_{12}H_{11}N_{1}Cl = H_{2}N \cdot C_{2}H_{2}Cl \cdot C_{3}H_{4} \cdot NH_{2}$. Zur Konstitution vgl. Jacobson, Loeb, B. 36, 4089. — B. Entsteht neben Anilin, 4-Chlor-anilin, Benzidin, 5-Chlor-2-amino-diphenylamin (S. 26) und 4'-Chlor-4-amino-diphenylamin (S. 78), wenn 4-Chlor-azobenzol (Syst. No. 2092) mit gekühlter alkoholisch-salzsaurer Zinnchlorürlösung behandelt wird, und kann durch Überführung in das Disalicylalderivat (s. u.) rein erhalten werden (Jacobson, Strübe, A. 303, 307, 317). Entsteht in gleicher Weise, wenn 4-Chlor-hydrazobenzol (Syst. No. 2068) in Methylalkohol mit Chlorwasserstoff oder Schwefelsäure behandelt wird (J., Loeb, A. 367, 321). — Schwach gefärbte, harzige, zur Krystallisation nicht neigende Masse (J., S.). — Liefert beim Erhitzen mit metallischem Natrium in alkoh. Lösung Diphenylin (J., L., B. 36, 4089).

N.N'-Dibensalderivat $C_{20}H_{12}N_{12}Cl = C_{21}H_{22}\cdot CH:N\cdot C_{21}H_{21}\cdot Cl\cdot C_{21}H_{21}\cdot N:CH\cdot C_{21}H_{22}\cdot R)$. Aus 5-Chlor-diphenylin (s. o.) und Benzaldehyd in alkoh. Lösung beim Kochen (Jacobson, Steübe, A. 303, 319). — Gelbe Nadeln (aus Ligroin). F: 104°. Leicht löslich in Alkohol, Benzol, Ligroin und Äther.

Disalicylalderivat $C_{26}H_{19}O_2N_3Cl = HO \cdot C_4H_4 \cdot CH : N \cdot C_4H_4 \cdot Cl \cdot C_6H_4 \cdot N : CH \cdot C_5H_4 \cdot OH \cdot B$. Durch Kochen von 5-Chlor-diphenylin in alkoh. Lösung mit Salicylaldehyd (J., St., A. 303, 317). — Gelbe Nadeln (aus Benzol). F: 169° (J., LOEB, B. 86, 4090 Anm.). Leicht löslich in Benzol, schwer in Alkohol, sehr wenig in Ather und Chloroform (J., St.). — Wird beim Kochen mit 12°/siger Schwefelsäure in Salicylaldehyd und 5-Chlor-diphenylin gespalten (J., St.).

Diformylderivat $C_{14}H_{11}O_{2}N_{2}Cl = OHC \cdot NH \cdot C_{4}H_{3}Cl \cdot C_{4}H_{4} \cdot NH \cdot CHO$. B. Aus 5-Chlordiphenylin und der 10-fachen Menge wasserfreier Ameisensäure bei 6-stdg. Kochen (J., St., A. 303, 319). — Weiße Nadeln (aus verdünntem Alkohol). F: 194°. Leicht löslich in Alkohol, fast unlöslich in Ather und Benzol.

Diacetylderivat $C_{16}H_{15}O_2N_2Cl = CH_3\cdot CO\cdot NH\cdot C_6H_3Cl\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-Chlor-diphenylin und der 10-fachen Menge Eisessig bei 10—15-stdg. Kochen (J., St., A. 303, 318). — Weiße Nadeln (aus verd. Alkohol). F: 204°. Leicht löslich in Alkohol und Äther, schwer in Benzol.

5-Brom-2.4'-diamino-diphenyl, 5-Brom-diphenylin $C_{12}H_{11}N_2Br = H_2N \cdot C_6H_3Br \cdot C_6H_4 \cdot NH_2$. B. Entsteht neben 5-Brom-2-amino-diphenylamin (S. 28), Benzidin und weiteren Produkten bei der Einw. von alkoholisch-salzsaurer Zinnchlorürlösung auf 4-Brom-azobenzol (Syst. No. 2092) unter Kühlung (Jacobson, Grosse, A. 303, 326). — Dickflüssige, durchsichtige, nicht krystallisierende Masse. — $2C_{12}H_{11}N_2Br + H_2SO_4$. Schwer löslich in heißem, leicht in kaltem, mit einigen Tropfen Schwefelsäure versetztem Wasser.

Disalicylalderivat $C_{26}H_{19}O_2N_2Br = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_3Br \cdot C_6H_4 \cdot N : CH \cdot C_6H_4 \cdot OH \cdot B$. Durch Kochen des 5-Brom-diphenylins (s. o.) mit Salicylaldehyd in Methylalkohol (J., G., A. 303, 327). — Gelbe Krystalle (aus Benzol + Ligroin). F: 154—156°. Sehr wenig löslich in Alkohol.

Diformylderivat $C_{14}H_{11}O_2N_2Br = OHC\cdot NH\cdot C_6H_3Br\cdot C_6H_4\cdot NH\cdot CHO$. B. Durch Kochen des 5-Brom-diphenylins mit wasserfreier Ameisensäure (J., G., A. 303, 328). — Nädelchen (aus Alkohol + Wasser). F: 191°. Unlöslich in Äther, Benzol, sowie in verd. Alkalien.

Diacetylderivat $C_{16}H_{15}O_{2}N_{2}Br=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{3}Br\cdot C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3}$. B. Durch Kochen des 5-Brom-diphenylins mit Eisessig (J., G., A. 303, 328). — Farbloses, allmählich sich bläulich färbendes Krystallpulver (aus Alkohol + Wasser). F: 223°. Leicht löslich in Alkohol, sehr wenig in Äther und Benzol.

5-Jod-2.4'-diamino-diphenyl, 5-Jod-diphenylin $C_{12}H_{11}N_{1}I = H_{2}N \cdot C_{6}H_{3}I \cdot C_{6}H_{4} \cdot NH_{2}$. B. Bei der Einw. einer alkoholisch-salzsauren Zinnchlorürlösung auf 4-Jod-azobenzol (Syst. No. 2092) (Jacobson, Fertsch, Heubach, A. 303, 332). — Harzige Masse. — $C_{12}H_{11}N_{2}I + 2$ HCl. Nadeln. Sehr leicht löslich in kaltem Wasser. Durch überschüssige Salzsäure fällbar.

Bis-[4-nitro-bengal]-derivat $C_{26}H_{17}O_4N_4I = O_2N \cdot C_6H_4 \cdot CH : N \cdot C_6H_3I \cdot C_6H_4 \cdot N : CH \cdot C_6H_4 \cdot NO_2$. Gelbe Nadeln (aus Benzol). F: 213° (J., F., H., A. 303, 333).

Disalicylalderivat $C_{26}H_{19}O_3N_2I = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_3I \cdot C_6H_4 \cdot N : CH \cdot C_6H_4 \cdot OH$. B. Aus rohem 5-Jod-diphenylin in Alkohol mit Salicylaldehyd (J., F., H., A. **303**, 333). — Gelbe Krystalle (aus Benzol durch Ligroin). F: 151°. Schwer löslich in Alkohol, leicht in Benzol.

4. 3.4 - Diamino - diphenyl, 4 - Phenyl - phenylendiamin - (1.2) $C_{12}H_{12}N_2 = C_0H_5 \cdot C_0H_3(NH_2)_2$.

4-Amino-8-anilino-diphenyl $C_{18}H_{16}N_8=C_6H_5\cdot C_6H_3(NH_8)\cdot NH\cdot C_6H_5$. B. Aus N-Phenyl-N'-p-diphenylyl-hydrazin (Syst. No. 2075) in Benzol mit Chlorwasserstoff (Dziurzyński, C. 1908 II, 948). — Schuppen (aus verd. Alkohol). F: 141°. Sehr leicht löslich in Benzol, leicht in Alkohol, schwer in Ligroin. — Gibt mit salpetriger Säure 1.6-Diphenyl-benztriazol (Formel I) (Syst. No. 3812). Gibt mit Benzil und Salzsäure 2.3.6-Triphenyl-chinoxalin-

$$I. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} N = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}} C = C \cdot C_0 H_5 \qquad III. \underset{C_0 H_5}{\overset{N}{\longleftarrow}}$$

chlorphenylat-(4) (Formel II) (Syst. No. 3496). Mit Schwefelkohlenstoff entsteht 1.6-Diphenyl-benzimidazolthion (Formel III) (Syst. No. 3571). — $C_{18}H_{16}N_3 + HCl$. Nadeln. Löslich in Alkohol, Benzol und Ligroin, unlöslich in Wasser. — $2C_{18}H_{16}N_3 + H_2SO_4$. Löslich in Alkohol, unlöslich in Wasser.

Acetylderivat $C_{30}H_{16}ON_3 = C_{18}H_{15}N_2 \cdot CO \cdot CH_3$. Nadeln. F: 165° (D., C. 1908 II, 948).

5. 3.3'-Diamino-diphenyl $C_{12}H_{12}N_3=H_2N\cdot C_2H_4\cdot C_4H_4\cdot NH_2$. B. Beim Behandeln von 3.3'-Dinitro-diphenyl (Bd. V, S. 584) mit Zinn und Salzsäure (Brunner, Witt, B. 20, 1028). — Wird aus den Salzen durch Alkali als langsam erstarrendes Öl gefällt. Schwer löslich in Wasser, leicht in Äther. — $C_{12}H_{12}N_2+H_2SO_4$. Nadeln. Unlöslich in kaltem Wasser; wenig löslich in heißem Wasser und in Alkohol. — $C_{12}H_{12}N_2+2HCl+PtCl_4$. Strohgelbe Körner. Schmilzt nicht bei 270°.

Diacetylderivat $C_{16}H_{16}O_2N_3 = [-C_8H_4\cdot NH\cdot CO\cdot CH_3]_3$. B. Aus 3.3'-Diamino-diphenyl, Essigsäureanhydrid und Natriumacete't (Brunner, Witt, B. 20, 1028). — Unlöslich in Wasser, schwer löslich in Alkohol und Benzol, leichter in Phenol und Eisessig. — Wird durch Kochen mit Schwefelsäure leicht verseift.

3.3'- Bis - [p - toluolsulfonyl - methylamino] - diphenyl $C_{28}H_{28}O_4N_5S_5 = [-C_6H_4 \cdot N(CH_3) \cdot SO_2 \cdot C_6H_4 \cdot CH_3]_2$. B. Beim Erhitzen von p-Toluolsulfonsäure-[N-methyl-3-jod-anilid] (Bd. XII, S. 670) mit Kupfer auf 212—230° (Ullmann, Gill, A. 332, 61). — Krystalle. F: 150°. Unlöslich in Äther und Ligroin; löslich in siedendem Alkohol und Benzol.

6. 4.4'-Diamino-diphenyl, Benzidin C12H12N2 = H2N·C4H4·C4H4·NH2.

Bildung.

Aus Hydrazobenzol (Syst. No. 1950) bei der Einw. starker Mineralsäuren (Salzsäure, Schwefelsäure) (ZININ, J. pr. [1] 36, 93; A. W. HOFMANN, Proc. Roy. Soc. London 12, 577; J. 1863, 424), neben Diphenylin (H. SCHMIDT, G. SCHULTZ, A. 207, 330). Über die Umlagerung von Hydrazobenzol (Syst. No. 1950) in Benzidin und Diphenylin unter verschiedenen Reaktionsbedingungen vgl.: van Loon, C. 1904 I, 792; R. 28, 62; HOLLEMAN, VAN LOON, C. 1904 I, 793. Zum Mechanismus der Benzidinbildung aus Hydrazobenzol und Mineralsäure vgl. Tichwinski, K. 35, 667; C. 1908 II, 1270. Benzidin entsteht auch durch Einw. von Eisessig oder 50% iger Essigsäure auf Hydrazobenzol (Rassow, Rülke, J. pr. [2] 65, 103; Sachs, Whittaker, B. 35, 1435). Bei längerem Kochen von Hydrazobenzol mit Natrium-disulfitlösung (Bucherer, Seyde, J. pr. [2] 77, 408, 412). In geringer Menge, neben anderen Produkten, aus 4-Chlor-hydrazobenzol (Syst. No. 2068) bei der Einw. von Chlorwasserstoff in methylalkoholischer Lösung (JACOBSON, A. 367, 320). Bei der Einw. von Salzsäure auf das Bariumsalz der Hydrazobenzol-sulfonsäure-(4) (Syst. No. 2082) entsteht schwefelsaures Benzidin (NORLTING, WERNER, B. 23, 3256; vgl. GRIESS, A. 154, 213). Aus Azobenzol (Syst. No. 2092) entsteht bei Behandlung seiner alkoh. Lösung mit schwefliger Saure schwefelsaures Benzidin (ZININ, A. 85, 328). Durch Reduktion von Azobenzol, in waßr. Salzsäure suspendiert, mit gasförmiger schweftiger Säure bei Gegenwart von wenig Kaliumjodid (Bodenstein, D. R. P. 172569; C. 1906 II, 479). Aus Azobenzol in heißem Alkohol
mit Zinn und konz. Salzsäure (H. Schmidt, G. Schultz, A. 207, 330). Aus Azobenzol durch
elektrolytische Reduktion (Löb, B. 33, 2331) in Gegenwart von Schwefelsäure und Titanverbindungen (Höchster Farbw., D. R. P. 168273; A. 1906 I, 1198) oder Vanadiumverbindungen (Hö. Fa., D. R. P. 172654; C. 1906 II, 724). Aus Azobenzol beim Erhitzen mit rauchender Salzsäure im geschlossenen Rohr auf 115° (Zi., A. 137, 376) oder mit Chlorwasserstoff in Eisessig auf 100° (Tich.) oder bei Behandlung mit Chlorwasserstoff in Methylalkohol (Ja., A. 867, 313). Aus Azobenzol beim Aufkochen mit Bromwasserstoffsäure (Werigo, A. 165, 202) oder bei Behandlung mit Bromwasserstoff in Eisessig in der Kälte (Tich.). Aus Azobenzol mit Jodwasserstoffsäure (Wr., A. 165, 202). Beim Erhitzen von Azobenzol mit Zinkchlorid auf 135° (BARSILOWSKI, Ж. 23, 52) oder mit Aceton und Zinkchlorid (ENGLER, SCHESTOPAL, B. 20, 482). Beim Erhitzen von Azobenzol und a-Naphthylamin mit 70—80% iger Schwefelsäure auf 70—90°, neben anderen Produkten (Weinschenk, C. 1905 II, 584). Aus Azoxybenzol durch elektrolytische Reduktion (Löb, B. 33, 2333) in Gegenwart von Säuren und Titanverbindungen (Hö. Fa., D. R. P. 168273; C. 1906 I, 1198) oder Vanadiumverbindungen (Hö. Fa., D. R. P. 172654; C. 1906 II, 724). Beim Erhitzen von Azoxybenzol mit Jodwasserstoffsäure in offenem Gefäß (SENDZIUK, Z. 1870, 267; WE., A. 165, 202). Entsteht neben Azoxybenzol, 2- und 4-Amino-diphenylamin und anderen Produkten beim Erhitzen von N-Phenyl-hydroxylamin (Syst. No. 1932) mit Anilin und salzsaurem Anilin auf 130° (BAMBERGER, LAGUTT, B. 31, 1506). Entsteht neben anderen Verbindungen bei elektrolytischer Reduktion von Nitrobenzol in saurer Lösung (Habussermann, Ch. Z. 17, 129, 209; Löb, B. 29, 1899; Z. El. Ch. 3, 472; 7, 322). Über Bildung von Benzidin als Nebenprodukt bei der Reduktion von Nitrobenzol durch Metalle in saurem Medium vgl. Gentl. Z. Ang. 15, 1329. Aus dem Kupfersalz der 4-Amino-benzoesäure (Syst. No. 1905) durch Elektrolyse in waßr. Lösung (Lillenfeld, D. R. P. 147943; C. 1904 I, 133). Aus 4.4'-Dinitro-diphenyl (Bd. V, S. 584) durch Reduktion mit Schwefelammonium und Schwefelwasserstoff in der Wärme (Fittig, A. 124, 280) oder mit Zinn und Salzsäure (G. Schultz, A. 174, 222). Aus 4'-Nitro-4-amino-diphenyl (Bd. XII, S. 1321) durch Reduktion mit Schwefelammonium und H₂S in der Wärme (F1., A. 124, 280; SCHU., A. 174, 223). Aus Diphenochinon-(4.4')-bis-chlorimid (Bd. VII, S. 741) durch Zinnehlorür und Salzsäure (Schlenk, A. 363, 319). Beim Destillieren des Bariumsalzes der Benzidin-dicarbonsäure-(2.2') (Syst. No. 1908) mit Atzbaryt (GRIESS, B. 7, 1611; G. SCHULTZ, A. 196, 29). Aus Benzidin-dicarbonsäure-(3.3') beim Kochen in Glycerinlösung oder bei der Destillation des Bariumsalzes (Gr., B. 21, 983; Bülow, v. Reden, B. 31, 2582). Aus Benzidin-disulfonsäure-(2.2') (Syst. No. 1924) durch 12—15-stdg. Erhitzen mit verd. Salzsäure auf 230° (Brunnemann, A. 202, 347; vgl. G. Schultz, A. 207, 314; Limpeicht, B. 23, 1053; A. 261, 310). Bei der Reduktion von 4.4'-Dinitro-aroxydiphenyl $O_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N_2O \cdot C_6H_4 \cdot N_2O \cdot C_6H_4 \cdot N_0$ (Syst. No. 2210) mit alkoh. Schwefelammonium bei 115° oder mit Zinn und Salzsäure (WALD, B. 10, 139).

Darstellung.

Darstellung im kleinen. Man schüttelt 5 g fein gepulvertes Hydrazobenzol mit 125 com 3% jeger Salzsäure 15—30 Minuten bei 20—30% und erwärmt zum Schluß kurze Zeit auf 45—50%; dann versetzt man die Lösung mit Schwefelsäure und zersetzt das auskrystallisierende Benzidinsulfat mit Natronlauge (E. Fischer, Anleitung zur Darstellung organischer Präparate, 9. Aufl. [Braunschweig 1920], S. 15). Man trägt innerhalb 6—8 Stdn. 160 g Zinkstaub in ein auf dem Wasserbade erhitztes Gemisch aus 100 g Nitrobenzol, 80 g Natronlauge (D: 1,4) und 500 com Wasser unter ständigem Rühren ein und gießt nach dem Erkalten in 1,5 l arsenfreie abgekühlte Salzsäure (D: 1,2); man leitet nun Wasserdampf in die Flüssigkeit und fällt aus der heiß filtrierten Lösung mit konz. Glaubersalzlösung das Benzidinsulfat aus (Teichmann, Z. Ang. 6, 67; vgl. auch Eedmann, Z. Ang. 6, 163). — Darstellung im großen (vgl. Ullmann, Enzyklopädie der technischen Chemie, Bd. II [Berlin-Wien 1928], S. 221). Man lagert entweder fertiges Hydrazobenzol mit Salzsäure um oder man reduziert direkt Nitrobenzol elektrochemisch erst in alkalischer, dann in saurer Lösung. Zur elektrochemischen Darstellung vgl. Löß, B. 33, 2331; Ph. Ch. 34, 660; Z. El. Ch. 7, 320, 333, 597; D. R. P. 116467, 122046; C. 1901 I, 149; II, 249; vgl. Chem. Fabr. Weiler-Tee Meer, D. R. P. 116871; C. 1901 I, 149).

Physikalische Eigenschaften.

Benzidin krystallisiert aus Ather mit ½ Mol. Krystalläther (Willstätter, Kalb, B. 38, 1239). Aus Wasser krystallisiert Benzidin oberhalb 80° wasserfrei, unterhalb 60° mit 1 Mol. H₂O; die krystallwasserhaltige Base schmilzt bei langsamem Erhitzen unscharf zwischen 115° und 120°, bei raschem Erhitzen ist sie bei 105° völlig geschmolzen, schäumt bei 107° auf, wird dann wieder fest und schmilzt nun wasserfrei bei 127° (Le Fèvre, Tubner, C. 1927 II, 818; vgl. auch Zinin, J. pr. [1] 36, 94). F: 127,5—128° (Merz, Strasser, J. pr. [2] 60, 186). Kp₁₄₀: 400—401° (M., Str.). Benzidin ist in flüssigem Schwefeldioxyd mit Orangefarbe leicht löslich (Walden, B. 32, 2864). 1 Tl. Benzidin löst sich nach Erdmann (Z. Ang. 6, 164) in ca. 91 Tln. siedendem Wasser, nach Schiff, Vanni (A. 258, 379) in 106,5 Tln. siedendem Wasser. Für die Löslichkeit in Wasser bei gewöhnlicher Temperatur wurde angegeben: bei 12° 1 Tl. in 2447 Tln. (Sch., V.), bei 14° 1 Tl. in 5000 Tln. (Petit, A. cš. [6] 18, 176). 1 Tl. Benzidin löst sich in 45 Tln. fast absol. Äthers (Sch., V., A. 258, 368 Anm.). Die Dämpfe des Benzidins zeigen unter dem Einfluß von Teslaströmen bei atmosphärischem Druck violette Fluorescenz (Kauffmann, Ph. Ch. 26, 724; B. 23, 1730). Molekulare Verbrennungswärme bei konstantem Volumen: 1559,8 Cal., bei konstantem Druck: 1560,9 Cal. (Petit), 1564,1 Cal. (Lemoult, C. r. 143, 774). Salzbildung mit Fluorwasserstoff: Ehrenfeld, Ch. Z. 29, 422. Wärmetönung bei der Bindung von Chlorwasserstoff: Petit. Geschwindigkeit der Absorption von Chlorwasserstoff bei gewöhnlicher Temperatur durch Benzidin: Hannzsch, Ph. Ch. 48, 325. Hydrolysenkonstante des salzsauren Salzes: Veley, Soc. 93, 2136.

Chemisches Verhalten.

Einwirkung von Elektrizität; Einwirkung der dunklen elektrischen Entladung in Gegenwart von Stickstoff: Bebthelot, C.r. 126, 784. Einw. von Teslaströmen s. oben. Einwirkung anorganischer Reagensien. Benzidin gibt in siedendem Chloroform mit Bleidioxyd, wahrscheinlich unter intermediärer Bildung des nicht isolierten Diphenochinon-(4.4')-diimids HN:C₆H₄:C₆H₄:NH, das Diamino-azodiphenyl H₂N·C₆H₄·C₈H₄·N: N·C₆H₄·C₈H₄·NH, Gyst. No. 2182) (Willstätter, Kalb, B. 38, 1239; 39, 3474). Bei der Einw. von Natriumhypochlorit auf eine sehr verdünnte salzsaure Lösung von Bensidin entsteht nach vorübergehender blaugrüner Färbung der Lösung (Bildung von meri-Diphenochinon-diimoniumchlorid) Diphenochinon-(4.4')-bis-ohlorimid (Bd. VII, S. 741) (SCHLENK, A. 363, 317; vgl. auch Claus, Risler, B. 14, 82). Als meri-Diphenochinondiimoniumverbindungen dürften auch aufsufassen sein: der tiefblaue Niederschlag, der beim Versetzen einer wäßt. Bensidinlösung mit einer Kaliumdichromatiösung entsteht (Julius, M. 5, 193; vgl.: Kotsohubel, K. 37, 349; O. 1905 I, 1705; Mois, O. 1907 I, 344; Willstätter, Piocaed, B. 41, 3248; 42, 4341), der dunkelblaue Niederschlag, der in einer wäßrigen Benzidinlösung durch Kaliumferricyanid entsteht (Barsilowski, K. 17, 366 Anm. 2; 37, 337; C. 1905 I, 1706; vgl. Wi., Pi., B. 41, 3248; SCHLENK, A. 363, 330), der blaue Niederschlag, den Kaliumpermanganat in der kalten wäßrigen Lösung von salzsaurem Benzidin erzeugt (SAGET, C. 1902 II, 897). Benzidin gibt in alkoholischer Lösung mit Silbernitrat einem weißen Niederschlag, der sich allmählich rötlich und dann bläulich färbt (VAUBEL, Ok. Z. 26, 739). Beim Kochen von Benzidin mit Braunstein und verdünnter Schwedelsäure entsteht viel Chinon (A. W. Hoffank, Ok. N. 8, 63; O.r. 56, 1144; J. 1863, 415). Beim Einleiten von Chlor in eine

Suspension von salzsaurem Benzidin in konz. Salzsäure entsteht 3.5.3'.5'-Tetrachlorbenzidin (S. 234) (Schlenk, A. 363, 334). Über die Einw. von Chlorwasser auf Benzidinlösungen s. S. 218, unter Farbreaktionen. Einw. von Natriumhypochlorit auf Benzidin s. S. 215. Beim Erhitzen von Benzidin mit überschüssigem Antimonpentachlorid im geschlossenen Rohr auf 160°, dann bis auf 360° entsteht Perchlorbenzol, neben wenig Perchlordiphenyl (Merz, Weith, Wojcik, B. 16, 2874). Läßt man Brom auf Benzidin in viel Salzsäure oder Bromwasserstoffsäure einwirken, so entsteht 3.5.3'.5'-Tetrabrom-benzidin (Claus, Risler, B. 14, 86; Schlenk, A. 363, 335). Über die mit Bromwasser entstehenden Farbreaktionen s. S. 218. Beim Einleiten von salpetriger Säure in eine kalte Lösung von Benzidinnitrat entsteht Diphenyl-bis-diazoniumnitrat-(4.4') (Griess, Proc. Roy. Soc. London 12, 418; 13, 382; Soc. 20, 92). Zweckmäßiger nimmt man die beiderseitige Diazotierung des Benzidins vor, indem man das salzsaure oder schwefelsaure Salz in verd. Salzsäure mit 2 Mol.-Gew. Natriumnitrit behandelt (Böttiger, D. R. P. 28753; Frdl. 1, 471). Die beiderseitige Diazotierung des Benzidins läßt sich viel leichter durchführen als die der Phenylendiamine (Vignon, C. r. 142, 161). Löst man aber 1 Mol.-Gew. salzsaures Benzidin in Wasser und gibt 1 Mol.-Gew. Eisessig und dann bei 10—15° etwas weniger als 1 Mol.-Gew. NaNO₂ hinzu, so setzt sich ein rostbrauner Niederschlag (-44° NH) N (?) ab, der beim Stehen mit

Salzsäure das salzsaure Salz des 4-Amino-diphenyl-diazoniumchlorids-(4') liefert (BAYER & Co., D. R. P. 51576; Frdl. 2, 469; VAUBEL, SCHEUER, C. 1906 I, 936; vgl. Bad. Anilinu. Sodaf., D. R. P. 52661; Frdl. 2, 470). Die einseitige Diazotierung des Benzidins wird auch erreicht, indem man beiderseitig diazotiertes Benzidin mit der aquimolekularen Menge eines Benzidinsalzes in wäßr. Lösung 2-3 Tage bei 10-20° stehen läßt (Täuber, B. 27, 2627). Löst man 1 Mol.-Gew. Benzidinsulfat in konz. Schwefelsäure und versetzt mit 1 Mol.-Gew. Kaliumnitrat, so entsteht 2-Nitro-benzidin; mit der doppelten Menge Kaliumnitrat entsteht 2.2'-Dinitro-benzidin (Täuber, B. 23, 795). Einw. von Schwefel auf Benzidin bei 180—200°: Dahl & Co., D. R. P. 38795; Frdl. 1, 503; vgl. Courtot, Pomonis, C. r. 182 [1926], 931. Thionylchlorid liefert mit Benzidin (Michaelis, Herz, B. 24, 753) oder salzsaurem Benzidin (Mi., A. 274, 264) in siedendem Benzol N.N'-Dithionyl-benzidin. Erhitzt man saures Benzidinsulfat im Backofen bis auf 220°, so erhält man Benzidin-sulfonsäure-(3) (Syst. No. 1923) (vgl. Zehra, B. 23, 3459), sowie je nach der Dauer des Erhitzens und der Höhe der Temperatur gewisse Mengen von Benzidin-disulfonsäure-(3.3') (Syst. No. 1924) (BAYER & Co., D. R. P. 44779; Frdl. 2, 405; GRIESS, DUISBERG, B. 23, 2462). Benzidin-sulfonsäure-(3) entsteht ferner als Hauptprodukt, wenn man Benzidinsulfat mit ca. 6 Tln. Schwefelsäuremonohydrat 1½-2 Stdn. auf ca. 470° erhitzt (BAYER & Co., D. R. P. 38664; Frdl. 1, 500; GB., Du., B. 22, 2461) oder wenn man zu einer Lösung von Benzidinsulfat in nur 1½-2 Tln. Schwefelsäuremonohydrat bei ca. 160—170° rauchende Schwefelsäure fügt, bis die Sulfurierung beendet ist (GR., Du., B. 22, 2461). Durch 36—48-stdg. Erhitzen von Benzidinsulfat mit ca. 2 Tln. Schwefelsäuremonohydrat auf 210° erhält man bis zu 90% Benzidin-disulfonsaure-(3.3') neben etwas Benzidin-sulfonsaure-(3) (Gr., Du., B. 22, 2464). Erhitzt man schließlich Benzidinsulfat mit viel Schwefelsäuremonohydrat längere Zeit auf 180—190° oder gibt man zu einer Lösung von Benzidinsulfat in wenig Schwefelsäuremonohydrat bei 160-170° rauchende Schwefelsäure und erhitzt weiter, bis sich auf Zusatz von Wasser nur noch wenig Benzidin-disulfonsäure (3.3') ausscheidet, so entstehen neben dieser als Hauptprodukt Benzidintrisulfonsäure und Benzidintetrasulfonsäure (Syst. No. 1924) (Gr., Du., B. 22, 2465). Beim Erhitzen von Benzidinsulfat mit überschüssiger rauchender Schwefelsäure (20% SO₃) auf dem Wasserbade bildet sich Benzidinsulfon (Syst. No. 2641) (Gr., Du., B. 22, 2467). Ebendieses erhält man auch mit rauchender Schwefelsäure von 40% SO₃ bei 100%, während bei 120% bis höchstens 160% Benzidinsulfonmonosulfonsäure und Benzidinsulfondisulfonsäure gebildet werden (BAYER & Co., D. R. P. 33088; Frdl. 1, 498; vgl. Gr., Dv., B. 22, 2468). Beim Erhitzen von Benzidin mit salzsaurem Benzidin entsteht unter Ammoniakabspaltung Bis-[4'-amino-diphenylyl-(4)]-amin (S. 232) (Merz, STRASSER, J. pr. [2] 61, 103).

Einwirkung organischer Reagenzien. Benzidin verbindet sich mit dem aus 4.4'-Dijod-diphenyl und Chlor in Chloroform sich bildenden gelblichen Jodidchlorid C₁₂H₄Cl₄I₄ (Bd. V, S. 581) zu einer violettblauen Verbindung C₂₄H₂₀N₂Cl₄I₄ (S. 220) (FECHT, B. 41, 2986). Beim Erhitzen von Benzidin mit Methyljodid und Methylalkohol im Druckrohr auf 120° bildet sich N.N.N'.N'-Tetramethyl-benzidin-monojodmethylat (MICHLEB, PATTINSON, B. 14, 2163; 17, 116). Bei andauerndem Erhitzen von Benzidin-hydrochlorid mit Methylalkohol auf 170° bis 180° entsteht N.N.N'.N'-Tetramethyl-benzidin-monochlormethylat (S. 222) und in geringerer Menge N.N.N'.N'-Tetramethyl-benzidin (S. 221) (PINNOW, B. 32, 1403). Beim Erhitzen von Benzidin mit α-Naphthol im Kohlendioxydstrom auf tiber 300° erhält man N-α-Naphthyl-benzidin und N.N'-Di-α-naphthyl-benzidin, beim Erhitzen mit β-Naphthol die analogen Verbindungen (MERZ, STRASSER, J. pr. [2] 60, 159). Über eine diazotierbare Base, die beim Erhitzen von salzsaurem Benzidin mit Glycerin entsteht, vgl. PAUL, Ch. Z.

28, 703. Beim Erhitzen eines Gemenges aus Benzidin, Nitrobenzol (oder besser o- oder p-Nitrophenol), Glycerin und konz. Schwefelsäure entsteht Dichinolyl-(6.6') C₁₈H₁₈N₂ (Syst. No. 3491) (Roser, B. 17, 1817, 2767; O. Fischer, M. 5, 418; Ostermayer, Henrichsen, B. 17, 2444). Zur Einw. von Formaldehyd auf Benzidin vgl.: Durand, Huguenin & Co., D.R.P. 68920; Frdl. 3, 28; SCHIFF, B. 25, 1936. Verwendung der Kondensationsprodukte aus Formaldehyd und Benzidin zur Darstellung von Polyazofarbstoffen: Du., Hu. & Co., D.R.P. 71377, 73123; Frdl. 3, 722, 723. Mit 1 Mol.-Gew. Formaldehyd-Natriumdisulfit (Bd. I, S. 578) liefert Benzidin die Verbindung $H_aN \cdot C_aH_a \cdot C_aH_a \cdot NH \cdot CH_a(SO_3Na)$, mit 2 Mol.-Gew. Formaldehyd-Natriumdisulfit die Verbindung $[-C_aH_a \cdot NH \cdot CH_a(SO_3Na)]_a$ (Bucherer, Schwalbe, B. 39, 2805). Über die Einw. von Acetaldehyd auf Benzidin vgl.: Schiff, B. 11, 832; Sch., Vanni, A. 258, 375. Beim Erwärmen von Paraldehyd (Syst. No. 2952) mit Benzidin und rauchender Salzsäure bildet sich 2.2'-Dimethyl-dichinolyl-(6.6') (Syst. No. 3491) (Hinz, A. 242, 326). Aus Benzidin und Glyoxal (Bd. I, S. 759) in Alkohol entsteht eine Verbindung C₁₄H₁₄O₂N₂ (S. 220) (Sch., B. 11, 832). Beim Erhitzen von Benzidin mit Dithio-bis-acetylaceton (Bd. I, S. 852) auf dem Wasserbade entsteht die Verbindung C₂₂H₂₂O₂N₂S₂(?) (S. 220) (VAILLANT, Bl. [3] 19, 694). Benzidin gibt mit Chinon eine blauschwarze unbeständige Verbindung C₃₀H₄₈O₃N₄ (S. 220) (Brass, B. 46 [1913], 2903; vgl. Fecht, B. 41, 2986). Durch Kochen von 1 Mol.-Gew. Resodiacetophenon (Bd. VIII, S. 404) mit 2 Mol.-Gew. Benzidin in Alkohol erhalt man die Verbindung C44H2604N4(?) (S. 220), neben dem Additionsprodukt $C_{12}H_{12}N_2+4C_{10}H_{10}O_4$ (S. 219) (TORREY, KIPPER, Am. Soc. 30, 855). Beim Kochen von Benzidin mit viel Eisessig entsteht N.N'-Diacetyl-benzidin (STRAKOSCH, B. 5, 236; SCHMIDT, G. Schultz, B. 12, 489; A. 207, 332), sowie etwas N-Acetyl-benzidin (Schuldt, G. Schultz). N.N'-Diacetyl-benzidin bildet sich auch beim Erwärmen von Benzidin mit 2 Mol.-Gew. Thioessigsäure (PAWLEWSKI, B. 31, 662). Benzidin liefert beim Erhitzen mit 2-Chlor-benzo esäure (Bd. IX, S. 334), Kaliumcarbonat und Kupferpulver in Amylalkohol N.N'-Bis-[2-car boxyphenyl]-benzidin (Syst. No. 1901) (KADIERA, B. 38, 3577). Durch Erhitzen von oxalsa urem Benzidin auf 200—210° entsteht eine Verbindung C₁₄H₁₀O₂N₂ (S. 220) (BORDDIN, Z. 1860, 641; J. 1860, 356; vgl. dazu Le Fèvre, Turner, Soc. 1926, 2479). Über die Einw. von Dicyan (Bd. II, S. 549) auf Benzidin vgl.: WITTENSTEIN, B. 8, 723; MEVES, J. pr. [2] 61, 469. Benzidin gibt bei mehrstündigem Kochen mit Phthalsaureanhydrid (Syst. No. 2479) in wäßr. Suspension am Rückflußkühler N.N-Phthalyl-benzidin $C_6H_4 < \stackrel{CO}{CO} > N \cdot C_6H_4 \cdot C_6H_4 \cdot NH_2$ (Syst. No. 3218) (KOLLER, B. 87, 2882; vgl. LE Fèvre, Turner, Soc. 1926, 2476; Kuhn, Jacob, Furter, A. 455 [1927], 255; Sircar, Sen-Gupta, C. 1928 II, 2247). Beim Schmelzen von 1 Mol.-Gew. Benzidin mit 2 Mol.-Gew. Phthalsaureanhydrid entsteht N.N.N'.N'-Diphthalyl-benzidin (Syst. No. 3218) (Gabriel, B. 11, 2262; Bandrowski, B. 17, 1182). Mit Chlorameisensäure-äthylester (Bd. III, S. 10) reagiert Benzidin in äther. Lösung unter Bildung von Benzidin-N-carbonsäure-äthylester und Benzidin-N.N'-dicarbonsaure-diathylester (SCHIFF, Vanni, A. 258, 370). Die Einw. von Phosgen (Bd. III, S. 13) auf salzsaures Benzidin bei 230—250°, zuletzt bei 310°, führt zu N.N'-Dicarbonyl-benzidin (S. 230) (Smape, Soc. 49, 255). Sättigt man eine Lösung von Benzidin in Chloroform mit Phosgen, so erhält man eine Verbindung C₁₃H₁₀ON₂ (N-Carbonyl-benzidin) oder C₂₅H₂₂ON₄ Carbonyldibenzidin (S. 220) (MICHLER, ZIDMERMANN, B. 14, 2178; vgl. LE Fèvre, Turner, Soc. 1926, 2478; 2483; 1928, 249). Durch Verschmelzen von Benzidin mit Harnstoff (S. 220) kei 440, 420°, carbit van (Dishenzidia (A. 40) dishermetet (S. 220°) (Southern (Bd. III, S. 42) bei 110—120° erhält man [Diphenylen-(4.4')]-diharnstoff (S. 229) (Schiff, B. 11, 833; vgl. SNAPE, Chem. N. 78, 37). Beim Stehen einer alkoh. Benzidinlösung mit Schwefelkohlenstoff (Bd. III, S. 197) entsteht N-Thiocarbonyl-benzidin (S. 230) (BOBODIN, STRAKOSCH, B. 5, 239; LE FÈVBE, TURNER, Soc. 1926, 2478). Beim Stehen von Benzidin mit Schwefelkohlenstoff und Ammoniak in alkoh. Lösung bildet sich das Ammoniumsalz der Benzidin-N.N'-bis-dithiocarbonsäure (Losanitsch, B. 40, 2974). Mit Thiophosgen gibt Benzidin sowohl beim Erhitzen auf 180° (JAFFA, B. 27, 1557), als auch bei der Einw. in Chloroformlösung unter Zusatz von Natronlauge (GATTERMANN, J. pr. [2] 59, 593) N.N'-Bis-thiocarbonyl-benzidin (S. 230). Benzidin gibt mit Acetoneyanhydrin (Bd. III, S. 316) Benzidin N.N'-di-[a-isobuttersaure]-dinitril (S. 231) (Buoherrer, Groller, B. 39, 1005; vgl. Mulder, R. 26, 181). Beim Erhitzen von Benzidin mit Citronensaure (Bd. III, S. 556) entsteht die Verbindung C₁₈H₁₈O₂N₂ (S. 220) (Schneider, B. 21, 663). Beim Erhitzen von Benzidin mit Acetosigester (Bd. III, S. 632) auf dem Wasserbade entsteht ein Additionsprodukt 2C₁₈H₁₈N₂ + C₆H₁₆O₃; beim Erhitzen der Komponenten auf 110—120° bilden sich N-Acetosetztlengidin und N. N' Ris acetosestel benzidin (Hunder). scetyl-benzidin und N.N'-Bis-acetoacetyl-benzidin (HEIDRICH, M. 19, 691, 692, 700). Beim Schütteln von Benzidin mit 2 Mol.-Gew. Benzolsulfochlorid (Bd. XI, S. 34) in Gegenwart von Natronlauge erhält man N-Benzolsulfonyl-benzidin und N.N'-Dibenzolsulfonyl-benzidin (HIMEBERG, A. 272, 231). Die Kondensstion von Benzidin mit 4-Nitro-toluol-sulfonsäure-(2) (Bd. XI, S. 90) in Gegenwart von Natronlauge führt zu einem Stilbenfarbstoff (Chicago-orange) (Gzigy & Co., D.R.P. 75326; Frdl. 3, 812; vgl. Schults, Tab. No. 15). Beim Ver-schmelsen von Bensidin mit Schwefel und p-Toluidin entstehen Basen der Thiazolgruppe

(Akt.-Ges. f. Anilinf., D. R. P. 78162; Frill. 4, 832), die man durch Diazotierung und Kupplung mit Farbstoffkomponenten in Azofarbstoffe überführen kann (Akt.-Ges. f. Anilinf., D.R.P. 79206, 79207; Frill. 4, 833, 835). Überführung einer dieser Basen durch Methylierung in einen gelben Farbstoff: Akt.-Ges. f. Anilinf., D.R.P. 81509; Frill. 4, 836. Darstellung indulinartiger Farbstoffe aus Benzidin durch Erhitzen mit 4-Amino-azobenzol bei Gegenwart von Chlorwasserstoff: Hibsch, D.R.P. 60748; Frill. 3, 317, sowie aus Benzidin durch Erhitzen mit Amino-azo-Verbindungen der Naphthalinreihe: Gassmann und Société française de couleurs d'aniline Ruch & Co., D. R. P. 97212; C. 1898 II, 568; Frill. 5, 371. Einw. von Phthalsäureanhydrid auf Benzidin s. S. 217. Einw. von Paraldehyd auf Benzidin s. S. 217. Bei der Einw. von [2.4-Dinitro-phenyl]-pyridiniumchlorid auf Benzidin enben 2.4-Dinitro-anilin das chlorwasserstoffsaure Salz des Glutacondialdehyd-bis-{[4'-amino-diphenylyl-(4)]-imids} (S. 226) (Reitzenstein, J. pr. [2] 68, 261; Reil., Rothschill, J. pr. [2] 73, 259).

Biochemisches Verhalten.

Nach Verfütterung von Benzidin an Kaninchen tritt im Harn ein x.x-Dioxy-4.4'-diamino-diphenyl (Syst. No. 1869) auf (ADLER, A. Pth. 58, 190).

Verwendung.

Benzidin findet ausgedehnte Verwendung zur Darstellung von Azofarbstoffen wie Kongorot (Schultz, Tab. No. 307), Pyraminorange (Schultz, Tab. No. 306, 314), Diaminscharlach (Schultz, Tab. No. 319), Diaminschwarz (Schultz, Tab. No. 323, 333), Diaminblau (Schultz, Tab. No. 337), Benzoorange (Schultz, Tab. No. 340), Chrysamin (Schultz, Tab. No. 342), Diaminschtot (Schultz, Tab. No. 343), Chloramingrün (Schultz, Tab. No. 476), Diamingrün (Schultz, Tab. No. 476), Kolumbiagrün (Schultz, Tab. No. 478); zur Verwendung für die Herstellung von Azofarbstoffen vgl. ferner Schultz, Tab. No. 102, 103, 308—354, 438—449, 462—480, 489 und die betreffende Patent-Literatur bei Friedländer, Fortschritte der Teerfarbenfabrikation [Berlin]. Benzidin findet ferner Verwendung zur Darstellung des Stilbenfarbstoffes Chicagoorange (Schultz, Tab. No. 15), von indulinartigen Farbstoffen (Hirsch, D.R.P. 60748; Frdl. 3, 317; Dehnst, D.R.P. 66886; Frdl. 3, 318; Gassmann und Société française de couleurs d'aniline Ruch & Co., D.R.P. 97212; C. 1898 II, 568), von Schwefelfarbstoffen, z. B. Kryogengelb (Schultz, Tab. No. 712); zur Verwendung für die Herstellung weiterer Schwefelfarbstoffe vgl.: Schultz, Tab. No. 714; Chem. Fabr. Weiller-ter Meer, D.R.P. 163001; C. 1905 II, 999; Höchster Farbw., D.R.P. 163143; C. 1905 II, 999; BAYER & Co., D.R.P. 208805; C. 1909 I, 1369; vgl. ferner S. 217, Zeile 1 v. u. die Angaben über Verschmelzen des Benzidins mit Schwefel und p-Toluidin.

Verwendung von Benzidin zur Titration von Schwefelsäure s. unten.

Analytisches.

Farbreaktionen und Nachweis. Lösungen von Benzidin oder seinen Salzen färben sich bei der Einw. von Chlorwasser vorübergehend blau, dann grün und setzen dann einen amorphen roten Niederschlag [Diphenochinon-(4.4')-bis-chlorimid, Bd. VII, S. 741] ab (sehr empfindliche Reaktion) (ZININ, J. pr. [1] 36, 98; CLAUS, RISLER, B. 14, 82; SCHLERK, A. 363, 315). Versetzt man eine Lösung von Benzidin in Schwefelkohlenstoff mit ganz verd. Bromwasser, so färbt sich das Bromwasser intensiv blau, dann intensiv dunkelgrün und durch mehr Bromwasser wird dann die wäßr. Schicht farblos, während der Schwefelkohlenstoff sich tief dunkelrot färbt (sehr empfindliche Reaktion, noch bei einer Verdünnung von 1:500000 anwendbar) (C., R.). Selbst stark verdünnte wäßrige Benzidinlösungen (ca. 1:50000) geben mit Kaliumdichromat einen tiefblauen Niederschlag (JULIUS, M. 5, 193). Eine sehr empfindliche Reaktion ist auch die Bildung eines dunkelblauen Niederschlags beim Versetzen einer wäßr. Benzidinlösung mit rotem Blutlaugensalz (Barsilowski, K. 17, 366 Anm. 2; 37, 337; C. 1905 I, 1706). Zum Nachweis eignet sich außer den angeführten Farbreaktionen auch die Fällung des Benzidins als fast unlösliches Sulfat (ZININ, J. pr. [1] 36, 95).

Quantitative Bestimmung. Bestimmung des Benzidins durch Titrieren seiner salzsauren Lösung mit Natriumnitritlösung unter Benutzung von Kaliumjodid-Stärke-Papier als Indicator: Eedmann, Z. Ang. 6, 164. Über die hierbei notwendige Korrektur s. Vaubel, Fr. 35, 163. Jodometrische Bestimmung des Benzidins: Robsler, Glasmann, Ch. Z. 27, 986; vgl. Vaubel, Z. f. Farben- u. Textilchemie 3, 115. Quantitative Bestimmung des Benzidins durch Wägung oder Titrierung des Sulfats: van Loon, R. 23, 64; vgl. Bieheinger, Borsum, Ch. Z. 30, 722.

Wegen der Schwerlöslichkeit des Benzidinsulfats kann Benzidin auch zur titrimetrischen Bestimmung der Schwefelsäure verwendet werden. Vgl. hierzu: W. J. MÜLLER, B. 85, 1587; Z. Ang. 16, 653, 1017; W. J. MÜLLER, DÜRKES, Fr. 42, 477; RASCHIG, Z. Ang. 16, 617,

818; 19, 331, 334; v. Knorre, Ch. I. 28, 2; Huber, Ch. Z. 29, 1227; Vaubel, Ch. Z. 29, 1254; FRIEDHEIM, NYDEGGER, Z. Ang. 20, 9; LEFFMANN, C. 1907 I, 372.

Verwendung des Benzidins zur quantitativen Bestimmung der Wolframsäure: v. Knorre, *B*. **38**, 783.

Additionelle Verbindungen des Benzidins.

Verbindung mit Acetessigester (Bd. III, S. 632) $C_{20}H_{24}O_3N_4=2C_{12}H_{12}N_2+C_6H_{10}O_3$. B. Aus den Komponenten bei 100° (Heidrich, M. 19, 691). — Gelbe Blättchen. Schmilzt bei 128° unter Aufbrausen. Leicht löslich in heißem Alkohol und Ather, sohwerer Sommist bel 128° unter Auforausen. Leicht fosich in heibem Alkohof und Ather, schwerer in Benzol, Chloroform, Wasser. Eisenchlorid färbt intensiv grün. Säuren spalten wieder in die Komponenten. — Verbindung mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{13}H_{15}O_{6}N_{5} = C_{13}H_{13}N_{5} + C_{6}H_{3}O_{6}N_{5}$. Schwarze Nadeln (Noelting, Sommerhoff, B. 39, 77). — Verbindung mit 2.4.6-Trinitro-1-āthyl-benzol (Bd. V, S. 360) $C_{20}H_{15}O_{6}N_{5} = C_{13}H_{12}N_{5} + C_{6}H_{10}O_{6}N_{5}$. Schwarze Prismen (aus Alkohol). F: 736 (G. Schultz, B. 42, 2635).

Verbindung mit Fluorenon (Bd. VII, S. 485) C₃₈H₂₈O₃N₂ = C₁₂H₁₂N₃ + 2C₁₂H₈O. Gelbe Prismen oder Blätter. F: 126—127°; ziemlich beständig (Schlenk, A. 368, 286). — Verbindung mit Chinondiimid (Bd. VII, S. 620) C₁₈H₁₈N₄ = C₁₂H₁₂N₃ + C₅H₄N₃. Rubinrote Nadeln oder Blättchen (aus Benzol), die beim Zerreiben hellziegelrot werden. Beginnt bei ca. 128°, sich zu zersetzen, und ist bei 145° völlig geschmolzen. Schwer löslich in Ather. Hellgelb löslich in konz. Schwerfelsäure, violett löslich in verd. Salzsäure. Liefert bei der Paristrien Benzich und an Phenzylendiannia (Schw. A. 262, 270).

Nedektion Benzidin und p-Phenylendiamin (Sch., A. 368, 279).

Verbindung mit Resodiacetophenon (Bd. VIII, S. 404) C₁₂H₁₂O₁₆N₂ = C₁₂H₁₂N₂ +

4C₁₀H₁₀O₄. B. Aus Resodiacetophenon und Benzidin in heißer alkoh. Lösung, neben der

Verbindung C₄₄H₂₆O₄N₃(?) (S. 220) (TORREY, KIPPER, Am. Soc. 30, 856). Gelbe Nadeln.

F: 182—185° (Zers.). Zersetzt sich beim Stehen mit Ammoniak oder Eisesaig in die Komponenten. Bei mehrstündigem Kochen der alkoh. Lösung entsteht die Verbindung C₄₄H₂₆O₄N₄(?) (8. 220).

Salze des Benzidins.

 $C_{12}H_{12}N_2 + HCl.$ Nadeln. Schwer löslich in Wasser, leicht in verd. Salzsäure (H.Schmidt, C12 H12 N2 + H.Cl. Nadeln. Schwer lostich in Wasser, leicht in verd. Salzsäure (H. Schmidt, G. Schultz, A. 207, 331). — C12 H12 N2 + 2 H Cl. Blätchen. Fast unfölich in Äther, leicht löslich in Wasser, noch leichter in Alkohol (ZININ, J. pr. [1] 36, 96). Zerfällt durch viel Wasser in Salzsäure und das Salz C12 H12 N2 + HCl (H. SCHM., G. SCHU., A. 207, 331). — C12 H12 N2 + 2 H I + I4. B. Man löst 1,84 g Benzidin und 2,66 g Jodwasserstoff in 20 com Wasser, gibt 5,08 g Jod, gelöst in Kaliumjodidlösung hinzu, erwärmt die Flüssigkeit auf 50° unter Zusatz von so viel Kaliumjodid, daß der anfangs entstandene Niederschlag wieder gelöst ist, und läßt die Lösung langsam erkalten (LINARIX, C. 1909 II, 1729). Schwarze, metallisch reflektierende Krystalle. F: 298°; sehr wenig löslich in Alkohol und wäßr. KI-Lösung, löslich in verdünntalkoholischer KI-Lösung. — $C_{12}H_{12}N_2 + H_2SO_4$. Mikroskopische Schuppen. Fast unlöslich
in siedendem Wasser und Alkohol (ZININ, J. pr. [1] 36, 95). 1 l Wasser löst eine 0,0076 g
Benzidin entsprechende Menge Sulfat (VAUBEL, Fr. 35, 163). — $C_{12}H_{12}N_2 + 2H_2SO_4$. B. Benzidin entsprechende Menge Sulfat (VAUBEL, Fr. 35, 163). — C₁₂H₁₂N₃ + 2 H₂SO₄. B. Aus dem neutralen Sulfat und der berechneten Menge Schwefelsäure (BAYER & Co., D.R.P. 44779; Frdl. 2, 405). Verhalten beim Erhitzen s. S. 216. — C₁₂H₁₂N₂ + H₂SO₃. Krystallpulver. Kaum löslich in Wasser (WABL, Bl. [3] 27, 1221). — 2C₁₂H₁₂N₂ + 5 WO₃ + 5 H₂O (TSCHLIKIN, B. 42, 1304). — C₁₂H₁₂N₃ + H₂PO₄. Blättchen (RAIKOW, SCHTARBANOW, Oh. Z. 25, 280). — C₁₂H₁₂N₂ + 2 H₃PO₄. Säulen. Zersetzt sich mit siedendem Wasser zu dem Salz C₁₂H₁₂N₃ + H₃PO₄ und freier Phosphorsäure (R., SCHT.).

Oxalat C₁₂H₁₂N₃ + C₂H₃O₄. Nadeln. Ziemlich schwer löslich in Wasser und Alkohol (ZININ, J. pr. [1] 36, 97). — Citrat 3C₁₂H₁₂N₃ + 2C₄H₄O₇. Amorphes Pulver. Löslich in heißem Wasser, Alkohol und Eisessig; unlöslich in Ather, Chloroform und Benzol (SCHNEIDER, B. 21, 664). — Pikrat C₁₂H₁₂N₃ + 2C₄H₄O₇N₃. Gelblichgrüne Krystalle (aus absol. Alkohol). Wird beim Stehen mit wasserhaltigem Alkohol in Benzidin und Pikrinsäure zerlegt; zersetzt sich bei 190° ohne zu schmelzen; leicht löslich in Wasser, sehr wenig in Ather (G. SCHULTZ,

sich bei 190° ohne zu schmelzen; leicht löslich in Wasser, sehr wenig in Äther (G. SCHULTZ, FLACHSLÄNDER, J. pr. [2] 66, 166). — Salz der Benzolthiosulfonsäure (Bd. XI, S. 81) $C_{12}H_{12}N_3 + 2C_4H_4O_2S_2$. Krystalle (Troeger, Linde, Ar. 239, 142). — Salz der 4-Jodbenzol-thiosulfonsäure-(1) (Bd. XI, S. 83) $C_{12}H_{12}N_3 + C_4H_5O_2S_2$. Kryställehen (aus Wasser). F: 204—206° (Zers.) (Troeger, Hurdellerink, J. pr. [2] 65, 85). — Salz der p-Toluolthiosulfonsäure (Bd. XI, S. 143) $C_{12}H_{12}N_3 + C_4H_4O_2S_2$. Blätter (Tr., Li.). — Salz der a-Naphthalinthiosulfonsäure (Bd. XI, S. 171) $C_{12}H_{12}N_3 + 2C_{10}H_4O_2S_2$. Kryställehen (Tr., Li.). — Salz der 2.4-Dinitro-stilben-disulfonsäure-(x.x) (Bd. XI, S. 223) $C_{12}H_{12}N_3 + C_{14}H_{10}O_{12}N_3S_2$. Hellgelbe Nadeln (aus Wasser), die bei 280° noch nicht schmelzen (Escales, B. 35, 4149). $C_{12}H_{12}N_3 + 2H + SiF_4$. Silbergraue Krystalle (Ehrenyeld, Ch. Z. 29, 423). — $C_{12}H_{12}N_3 + 2HCl_4$ Gelber Niederschlag (Guyener, Krell, Janssen, Z. a. Ch. 47, 36). — $C_{12}H_{12}N_3 + 2HCl_4$ PdCl₂. Braune Blättohen (aus verd. Salzsäure) (Gu., Kr., Ja.). sich bei 190° ohne zu schmelzen; leicht löslich in Wasser, sehr wenig in Äther (G. SCHULTZ,

 $C_{12}H_{12}N_2 + PdBr_2$. Gelbbrauner Niederschlag (Gu., Kr., Ja.). — $C_{12}H_{12}N_2 + 2HBr + PdBr_2$. Rotbraune Blättchen (aus verd. Bromwasserstoffsäure) (Gu., Kr., Ja.). — $C_{12}H_{12}N_2 + 2HBr_3$. 2 HCl + PtCl. Gelber krystallinischer Niederschlag. Schwer löslich in Wasser, fast unlöslich in Alkohol und Ather; zersetzt sich leicht beim Kochen mit Wasser (ZININ, J. pr. [1] 36, 97).

Umwandlungsprodukte unbekannter Konstitution aus Benzidin.

Verbindung C₂₄H₂₀N₂Cl₂I₂. B. Aus dem gelblichen Jodidchlorid C₁₂H₂Cl₂I₂ (Bd. V, S. 581), das sich aus 4.4'-Dijod-diphenyl und Chlor in Chloroform bildet, und Benzidin in siedendem Chloroform oder Schwefelkohlenstoff (FECHT, B. 41, 2987). — Violettblaues Pulver. Sublimiert gegen 300° unter Zersetzung. Ziemlich leicht löslich in Wasser und Methylalkohol unter Abscheidung von 4.4'-Dijod-diphenyl.

Verbindung C₁₄H₁₄O₂N₂. B. Aus Benzidin und Glyoxal in Alkohol (Schiff, B. 11, 832). — Gelbliches Krystallmehl. In gewöhnlichen Lösungsmitteln wenig löslich. Löst

sich in konz. Schwefelsäure mit indigoblauer Farbe.

Verbindung C₂₀H₂₈O₂N₄. B. Aus Chinon und Benzidin in Chloroform oder Toluol (FECHT, B. 41, 2986; Brass, B. 46 [1913], 2903). — Blauschwarze Blättchen. Schmilzt gegen 118°, wird dann wieder fest, zersetzt sich oberhalb 200° (F.; B.). Zersetzt sich an der Luft (F.; B.).

Verbindung $C_{12}H_{22}O_2N_2S_2(?) = \frac{CH_3 \cdot CO \cdot HC - S \cdot S - CH \cdot CO \cdot CH_3}{CH_3 \cdot CH_3}$ (?). Das

verbindung $U_{32}H_{22}U_{2}N_{2}S_{3}(?) = CH_{3} \cdot C : N \cdot C_{6}H_{4} \cdot C_{6}H_{4} \cdot N : C \cdot CH_{3}$ Mol.-Gew. ist kryoskopisch bestimmt. — B. Aus Benzidin und Dithio-bis-acetylaceton (Bd. I, S. 852) auf dem Wasserbade (Vallant, Bl. [3] 19, 694). — Goldgelbes krystallinisches Pulver. Unlöslich in Wasser, leicht löslich in Chloroform und in siedendem Alkohol.

Verbindung C₄₄H₃₆O₄N₄(?). B. Beim Kochen einer alkoh. Lösung von 1 Mol.-Gew. Resodiacetophenon (Bd. VIII, S. 404) mit 2 Mol.-Gew. Benzidin, neben dem Additionsprodukt C₁₂H₁₉N₁ + 4C₁₀H₁₀O₄ (S. 219) (Torrey, Kipper, Am. Soc. 30, 855). — Gelbe Krystalle (aus Anilin). Schmelzpunkt oberhalb 300°. Unlöslich in den gebräuchlichen Lösungsmitteln, löslich in heißem Anilin, Brombenzol, Nitrobenzol. Wird durch Ammoniak nicht zersetzt. Wird langsam durch heißen Eisessig und beim Kochen mit 10°/oiger Natronlauge zersetzt. Konzentrierte Salzsäure verseift schnell.

Verbindung C₁₄H₁₀O₂N₁ ("Oxalylbenzidin". Vgl. dazu Le Fèvre, Turner, Soc. 1926, 2479). — B. Durch Erhitzen von oxalsaurem Benzidin auf 200—210° (Borodin, Z. 1860, 641; J. 1860, 356). — Pulver. Unlöslich in Wasser, Alkohol, Äther, verd. Säuren und Alkalien (B.). — Zersetzt sich oberhalb 225—230° (B.). Zerfällt beim Kochen mit konz. Kalilauge in Oxalsaure und Benzidin (B.).

Kalilauge in Oxalsaure und Benzidin (B.).

N-Carbonyl-benzidin, [4'-Amino-diphenylyl-(4)]-isocyanat, [4'-Amino-diphenylyl-(4)]-carbonimid C₁₃H₁₀ON₂ = H₂N·C₆H₄·C₄H₄·N:CO oder Carbonyl-dibenzidin, N.N'-Bis-[4'-amino-diphenylyl-(4)]-harnstoff C₂₅H₂₅ON₄ = (H₂N·C₆H₄·C₆H₄·NH)₂CO oder höhermolekulare Verbindung. Zur Frage der Konstitution vgl. Le Fèvre, Turner, Soc. 1926, 2478. — B. Beim Einleiten von Phosgen in eine Lösung von Benzidin in Chloroform (Michler, Zimmermann, B. 14, 2178). — Amorph. Beginnt bei 250° sich zu bräunen. Sublimiert oberhalb 300° teilweise unter Verkohlung (M., Z.).

Verbindung C. H. O.N. (Citrohanzidylagure) R. Reim Erhitzen von Citronen.

Verbindung C₁₈H₁₆O₅N₂ (Citrobenzidylsaure). B. Beim Erhitzen von Citronensaure mit Benzidin auf 140—150° mit oder ohne wasserentziehende Mittel; nach dem Erkalten extrahiert man das evtl. vorhandene überschüssige Benzidin mit siedendem Wasser und löst den Rückstand durch anhaltendes Kochen mit alkoholhaltigem Wasser (SCHNEIDER, B. 21, 663). — Krystallinisches Pulver. Verkohlt oberhalb 300°, ohne zu schmelzen. Leicht löslich in warmem Eisessig, sehr schwer in heißem Alkohol, unlöslich in Äther, Chloroform, Schwefel-kohlenstoff, Benzol und Ligroin. Leicht löslich in Alkalien. — AgC₁₈H₁₆O₅N₃. Amorph.

Funktionelle Derivate des Benzidins.

N.N'-Dimethyl-benzidin $C_{14}H_{16}N_2=[-C_6H_4\cdot NH\cdot CH_3]_3$. B. Bei mehrstündigem Erwärmen von N.N'-Di-p-toluolsulfonyl-N.N'-dimethyl-benzidin (S. 233) mit verd. Schwefelsäure auf dem Wasserbade (WILLSTÄTTER, KALE, B. 37, 3773). — Nadeln (aus stark verd. (Alkohol). F: 74—76°; sehr leicht löslich in Alkohol, Äther, Chloroform, Benzol, sehr wenig in kaltem Ligroin, reichlicher beim Erwärmen (W., K.). — Gibt in schwach salzsaurer Lösung mit FeCl₂ meri-Diphenochinon-(4.4')-bis-methylimoniumchlorid (S. 221) (W., K.). Gibt mit Bromacetonitril oder Jodacetonitril N.N'-Dimethyl-N.N'-bis-cyanmethyl-benzidin (S. 231) (v. Braun, B. 41, 2106). — $C_{14}H_{16}N_1 + 2HCl$. Nadeln. F: 249° (Kuhn, Jacob, Furter, A. 455 [1927], 264). Sehr leicht löslich in Wasser. Verliert im Vakuum HCl (W., K.). — Sulfat. Leicht löslich (W., K.). — Chromat. Rotbraune Krystalle (W., K.). — Chloroplatinat. Hellgelber, schwer löslicher, krystallinischer Niederschlag (W., K.).

Verbindung von N.N'-Dimethyl-benzidin mit Diphenochinon-(4.4')-bismethylimoniumchlorid, meri-Diphenochinon-(4.4')-bis-methylimoniumchlorid $C_{28}H_{28}N_4Cl_2=CH_3\cdot NH\cdot C_6H_4\cdot C_6H_4\cdot NH\cdot CH_2+Cl(CH_3)HN\cdot C_6H_4\cdot C_6H_4\cdot NH(CH_2)Cl.$ Zur Zusammensetzung und Konstitution vgl. WILLSTÄTTER, PICCARD, B. 41, 3245¹). — B. Aus N.N'-Dimethyl-benzidin in schwach salzsaurer, essigsaurer oder neutraler Lösung durch Eisenchlorid (WILLSTÄTTER, KALB, B. 37, 3774). — Wird aus neutraler oder essigsaurer Lösung als dunkelrotbraunes Pulver der Zusammensetzung $C_{23}H_{23}N_4Cl_2+2H_2O$ erhalten. Löslich in Wasser mit grüner Farbe; verhält sich wie das meri-Diphenochinon-(4.4')-bisdimethylimoniumchlorid (S. 222). Geht beim Lösen in 20% giger Salzsäure in Diphenochinon-(4.4')-bis-methylimoniumchlorid (Bd. VII, S. 741) über.

N.N.N'.N'-Tetramethyl-benzidin $C_{16}H_{20}N_2=[-C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erhitzen von Dimethylanilin mit 3—4 Tln. konz. Schwefelsäure auf 180—210° (MICHLER, Pattinson, B. 14, 2161). Aus Dimethylanilin mit Bleidioxyd und verd. Schwefelsäure auf dem Wasserbad (M., Pa., B. 14, 2163; 17, 115) oder mit Bleidioxyd und verd. Essigsäure bei höchstens 30-35° (LAUTH, Bl. [3] 5, 59). Entsteht auch beim Erhitzen von Dimethylbei höchstens 30—35° (Lauth, Bl. [3] 5, 59). Entsteht auch beim Erhitzen von Dimethylanilin mit AlCl, an der Luft (Giraud), Bl. [3] 1, 692). Man oxydiert Dimethylanilin in verdünnt schwefelsaurer Lösung mit Kaliumpermanganat und entfärbt die Lösung mit schwefliger Säure (Willstätter, Kalb, B. 37, 3765). Durch elektrolytische Oxydation von Dimethylanilin in schwefelsaurer Lösung bei Gegenwart einer geringen Menge Chromsäure ²) (Löb, Z. El. Ch. 7, 603). Aus Dimethylanilin durch Erhitzen mit konz. Schwefelsäure auf 180—200° bei Gegenwart von Benzaldehyd, Traubenzucker, Terpentinöl, Nitroderivaten des Benzols, Phenols usw., sowie von Quecksilber oder dessen Salzen (Rosenthal, D. P. 2, 127479, 427480, Endl. 2, 94, 98. C. 1909 I. 32, vol. Illemann Dessen R. 27 D. R. P. 127179, 127180; Frdl. 6, 94, 95; C. 1902 I, 83; vgl. Ullmann, Dieteble, B. 37, 29). In geringer Menge bei der Einw. von salpetriger Säure auf Dimethylanilinoxyd (Bd. XII, S. 156), neben anderen Produkten (BAMBERGER, TSCHIRNER, B. 32, 1898). Man erhitzt Benzidin mit Methyljodid und Methylalkohol im geschlossenen Rohr auf 120° und destilliert das erhaltene Tetramethyl-benzidin-jodmethylat (S. 222) mit Natronkalk (M., Pa., B. 14, 2163; 17, 116). Entsteht neben dem Monochlormethylat durch Erhitzen von salzsaurem Benzidin mit Methylalkohol auf 180—190° (PINNOW, B. 32, 1403, 1406). Aus dem Perbromid des Diphenochinon-(4.4')-bis-dimethylimoniumbromids (Bd. VII, S. 741) durch Behandeln mit Aceton oder Disulfit (FRIES, A. 346, 197). Beim Behandeln von 4.4'-Bis-dimethylaminobenzhydrol (Syst. No. 1859) mit Bleidioxyd und Essigsäure (Rosenstiehl, Bl. [3] 13, 273). — Nadeln (aus Amylalkohol oder aus Benzol + Ligroin). F: 193,5° (B., Tsch.; W., K.), 195° (M., Pa., B. 14, 2162), 197° (U., D.), 198° (F.). Siedet oberhalb 360° (M., Pa., B. 14, 2162). Nicht flüchtig mit Wasserdämpfen (M., Pa., B. 14, 2163). Sehr wenig löslich in Methylalkohol und Athylalkohol, schwer in Ather (M., Pa., B. 14, 2161) und siedendem Ligroin, leicht in heißem Benzol (B., Tsch.), leicht in heißem Essigester, sehr leicht in Chloroform (W., K.). — Nitrit färbt die salzsaure Lösung gelbrot, und auf Zusatz von Natronlauge fallen grüne Flocken, deren Farbe sehr bald in Braungelb umschlägt (B., Tsch.). Beim Versetzen einer salzsauren Lösung von Tetramethylbenzidin mit einer Eisenchloridlösung scheidet sich das grüne meri-Diphenochinon-(4.4')-bis-dimethylimoniumchlorid (S. 222) aus (LAUTH, Bl. [3] 5, 59; W., K., B. 37, 3766; W., PICCARD, B. 41, 3252), das sich in verd. Salzsäure unter Bildung des gelben Diphenochinon-(4.4')-bis-dimethylimoniumchlorids löst (W., K., B. 37, 3769). Bei der Einw. von 3 Mol.-Gew. Brom in Chloroform entsteht das Perbromid des Diphenochinon-(4.4')-bis-dimethylimoniumbromids (Bd. VII, S. 741) (FRIES, A. 846, 198, 215). Tetramethylbenzidin gibt mit rauchender Schwefelsäure von ca. 12% Anhydridgehalt bei 160—170° Tetramethyl-benzidin-sulfonsäure-(3) (Syst. No. 1923) (W., K.). Bei der Einw. von Salpeterschwefelsäure entsteht N.N.N'.N'-Tetramethyl-2.2'-dinitrobenzidin (S. 235) (U., D.). Geschwindigkeit der Abspaltung der Methylgruppen beim Kochen benzidin (S. 230) (U., D.). Geschwindigkeit der Abspaltung der Methylgruppen beim Kochen von Tetramethylbenzidin mit Jodwasserstoffsäure: Goldschmiedt, M. 28, 1068. Tetramethylbenzidin gibt mit Jodacetonitril auf dem Wasserbade N.N'-Dimethyl-N.N'-bis-(cyanmethyl)-benzidin (S. 231) (V. Braun, B. 41, 2143). — $C_{16}H_{20}N_3 + 2$ HCl. Nadeln. Schwer löslich in Wasser (M., Pa., B. 14, 2162). — $C_{16}H_{20}N_3 + 2$ HBr. Nadeln (M., Pa., B. 14, 2162). — $C_{16}H_{20}N_3 + 2$ HCl. PtCl₄ (M., Pa., B. 17, 115).

Verbindung von Tetramethylbenzidin mit Chloranil $C_{22}H_{20}O_2N_3Cl_4 = [-C_6H_4 \cdot N(CH.).] + C.O.Cl. R. Aus Chloranil (Rd. VII. S. 636) und Tetramethylbenzidin in heißem$

N(CH₂)₂]₃ + C₄O₂Cl₄. B. Aus Chloranil (Bd. VII, S. 636) und Tetramethylbenzidin in heißem Toluol (SCHLENK, A. 368, 285). — Violettschwarze Blättchen.

Verbindung von Tetramethylbenzidin mit Bromanil $C_{22}H_{20}O_2N_2Br_4 = [-C_2H_4]$ N(CH₂)₂]₃ + C₆O₂Br₄. B. Aus Bromanil (Bd. VII, S. 642) und Tetramethylbenzidin in heißem Toluol (SCHLENK, A. 368, 285). — Violettschwarze Blättchen.

¹⁾ Zur Konstitution vgl. ferner PICCARD, B. 59 [1926], 1440.

³) Vgl. hierzu die nach dem Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von FICHTER, ROTHERBERGER, Helv. chim. Acta 5, 166.

Verbindung von Tetramethylbenzidin mit Diphenochinon - (4.4') - bis - dimethylimoniumchlorid, meri - Diphenochinon - (4.4') - bis - dimethylimoniumchlorid, meri - Diphenochinon - (4.4') - bis - dimethylimoniumchlorid C₃₂H₄₀N₄Cl₂ = (CH₃)₂N·C₆H₄·N(CH₃)₂+Cl(CH₃)₂N·C₆H₄·N(CH₃)₂Cl. Zur Zusammensetzung und Konstitution vgl. Willstätter, Piccard, B. 41, 3252 ¹). — B. Aus Tetramethylbenzidin in verd. Salzsäure durch eine wäßr. Eisenchloridlösung (Willstätter, Kalb, B. 37, 3766; vgl. Lauth, Bl. [3] 5, 59). — Scheidet sich in dunkelgrünen Nadeln der Zusammensetzung C₃₂H₄₀N₄Cl₂+6H₂O aus. Löst sich in Wasser mit intensiv grüner Farbe, 5 g lösen sich in ca. 1 l Wasser; löslich in Essigsäure mit grüner Farbe, in Mineralsäuren mit tief orangegelber Farbe; alle Lösungen werden allmählich mißfarben (W., K.). — Zersetzt sich beim Liegen oder beim Erwärmen auf 100° unter Bildung von Trimethyl- und Tetramethyl- benzidin und unter Entwicklung von Formaldehydgeruch (W., K.). Scheidet in Gegenwart von konz. Salzsäure Jod aus Kaliumjodid ab (W., K.). Wird von Zinnchlorür und Salzsäure zu Tetramethylbenzidin reduziert (W., K.).

N.N.N'.N'-Tetramethyl-benzidin-monohydroxymethylat $C_{17}H_{24}ON_3 = (CH_3)_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N(CH_3)_3 \cdot OH$. B. Das Jodid entsteht aus Benzidin, Methyljodid und Methylalkohol im geschlossenen Rohr bei 120° (MICHLER, PATTINSON, B. 14, 2163; 17, 116). — Das Jodid gibt mit FeCl₃ oder $K_2Cr_2O_7$ keine Färbung. Erhitzt man das Jodid mit Natronkalk, so entsteht Tetramethylbenzidin. — Chlorid. Krystalle. F: 228°; leicht löslich in Wasser und Alkohol. — Jodid $C_{17}H_{23}N_2 \cdot I$. Nadeln (aus Wasser). F: 263°; ziemlich schwer löslich in heißem Wasser; löst sich leicht in Salzsäure. — $C_{17}H_{23}N_2 \cdot Cl + HCl + PtCl_4$.

N.N'-Diäthyl-benzidin $C_{16}H_{20}N_2 = [-C_6H_4\cdot NH\cdot C_2H_5]_2$. B. Durch mehrtägige Einw. von Zinkäthyl in Äther auf ätherfeuchtes Benzoldiazoniumchlorid bei —15° bis —18°, Extraktion der von den ausgeschiedenen Krystallen abgetrennten Lösung mit 2°/ojger Salzsäure, Alkalisieren der salzsauren Schicht und Ausäthern (Bamberger, Tichwissel, B. 35, 4182). Durch Einw. von Äthyljodid und Alkohol auf Benzidin im Druckrohr im Wasserbad (B., Ti., B. 35, 4190; vgl. P. W. Hofmann, A. 115, 365; Tichwinsel, Ж. 35, 676; C. 1903 II, 1271). — Tafeln oder Nadeln (aus Alkohol). Schmilzt bei 115,5—116° (korr.) (B., Ti.), 115,5° (Rotarsel, B. 41, 1997) zu einer trüben, bei 120,5° (korr.) sich klärenden Flüssigkeit (B., Ti.; R.). Leicht löslich in Benzol, siedendem Alkohol und Äther, sehr wenig in kaltem Ligroin (B., Ti.). Gibt in alkoh. Lösung mit FeCl, eine grüne, beim Erwärmen gelbbraun werdende Färbung, in essigsaurer Lösung mit CrO, eine intensiv grüne, beim Kochen rotbraune Färbung; gibt in salzsaurer Lösung mit Chlorwasser eine intensiv gelbe bis bordeauxrote Färbung (B., Ti.). — Spaltet durch Erhitzen mit konz. Salzsäure auf 250—260° im geschlossenen Rohr Äthylchlorid ab unter Bildung von Benzidin (B., Ti.). Zur Einw. von Phthalsäureanhydrid auf N.N'-Diäthyl-benzidin vgl.: Schiff, Vanni, A. 258, 363; Le Fèvre, Turner, Noc. 1926, 2479; Kuhn, Jacob, Furter, A. 455 [1927], 257.

N.N.N.N.N. M'-Tetraäthyl-benzidin $C_{20}H_{32}N_2 = [-C_6H_4 \cdot N(C_2H_5)_2]_2$. B. Durch Behandeln von N.N'-Diäthyl-benzidin mit Athyljodid (P. W. Hofmann, A. 115, 366). Entsteht auch beim Behandeln von Diäthylanilin (Bd. XII, S. 159) mit verd. Schwefelsäure und Bleidioxyd oder beim Erhitzen mit 4 Tln. konz. Schwefelsäure auf 180—200° (MICHLER, PATTINSON, B. 18, 2166). Aus Diäthylanilin, konz. Schwefelsäure und etwas Terpentinöl bei 200—210° (ULMANN, Dieterle, B. 37, 33). — Gekrümmte Nadeln (aus Alkohol). F: 85° (P. W. H.; M., Pa.). Unlöslich in Wasser, leicht löslich in Alkohol und Ather (M., Pa.). Gibt mit Eisenehlorid oder Kaliumehromat eine grüne Färbung, die auf Zusatz von Wasser sofort in Gelb übergeht (M., Pa.). — Eine salzsaure Lösung der Base gibt mit Natriumnitrit eine bei 88° schmelzende Verbindung, die aus Alkohol in roten Nadeln krystallisiert (M., Pa.). Verbindet sich nur sehr langsam mit Athyljodid, sehr leicht mit Methyljodid (P. W. H.). — $C_{20}H_{22}N_2 + 2$ HCl + PtCl₄ (P. W. H.).

N.N.N'.N'-Tetraäthyl-bensidin-bis-hydroxymethylat, [Diphenylen-(4.4')]-bis-[methyldiäthylammoniumhydroxyd] $C_{22}H_{26}O_2N_3 = [-C_6H_4\cdot N(CH_2)(C_2H_5)_2\cdot OH]_2$. B. Das Dijodid entsteht aus Tetrašthylbenzidin und Methyljodid (P. W. HOFMANN, A. 115, 367). — Die Lösung des Dijodids liefert mit Silberoxyd eine stark alkalische Flüssigkeit, welche die freie Base enthält. — Dijodid $C_{22}H_{24}N_2I_2$. Nadeln (aus Wasser). Sehr schwer löslich in absol. Alkohol, leicht in siedendem Wasser. Wird von NH_3 nicht angegriffen. — Chloroplatinat $C_{22}H_{24}N_2Cl_2 + PtCl_4$. Nadeln (aus konz. Salzsäure). Fast unlöslich in Wasser.

N-Phenyl-benzidin $C_{18}H_{16}N_2=H_2N\cdot C_6H_4\cdot C_6H_4\cdot NH\cdot C_6H_5$. B. Aus Triphenyl-hydrazin (Syst. No. 1950) beim Erwärmen mit alkoh. Salzsäure (Busch, Hoben, B. 40, 2101). — Bräunliches Krystallpulver (aus Alkohol). F: 136—137° (unscharf). — Die schwach violette Lösung in konz. Schwefelsäure färbt sich mit einer Spur Nitrit oder Nitrat tief violettrot.

¹⁾ Zur Konstitution vgl. ferner PICCARD, B. 59 [1926], 1440.

N-[2.4-Dinitro-phenyl]-bensidin $C_{10}H_{14}O_4N_4=H_4N\cdot C_0H_4\cdot C_0H_4\cdot C_0H_3\cdot C_0$

N.N'-Diphenyl-benzidin C₂₄H₂₀N₂ = [-C₆H₄·NH·C₆H₅]₃. B. Durch 12—15-stdg. Erwärmen von 20 g Diphenylamin (Bd. XII, S. 174) mit 20 g konz. Schwefelsäure und 60 g rauchender Schwefelsäure (20% SO₂) auf 80° (Kadiera, B. 38, 3576). Man behandelt Diphenylamin in schwefelsäurer Lösung mit Wasserstoffsuperoxyd und erhitzt das in Alkali unlösliche Reaktionsprodukt mit Zinkstaub (Uschakow, Ж. 37, 913; 38, 959; C. 1906 I, 342; 1907 I, 406). Man unterwirft Diphenylamin in schwefelsaurer Lösung der Einw. des elektrischen Stroms und erhitzt das in Alkali unlösliche Reaktionsprodukt mit Zinkstaub (U., Ж. 38, 961; C. 1907 I, 406). Aus N.N'-Bis-[2-carboxy-phenyl]-benzidin (Syst. No. 1901) durch Erhitzen auf 285° (K.). Durch 36-stdg. Einw. von kalter konzentrierter Schwefelsäure auf Tetraphenylhydrazin (Syst. No. 1950) (Wielland, Gambarjan, B. 39, 1503). In geringer Menge bei der Einw. von überschüssiger äther. Salzsäure auf Tetraphenylhydrazin (Gambarjan, B. 41, 3508). — Blättchen (aus Toluol), Tafeln (aus Essigester). F: 242° (korr.) (K.), 232—234° (unkorr.) (W., G.). Leicht löslich in siedendem Toluol und Essigsäure, schwer in Alkohol, Aceton und Benzol (K.). Die Lösung in kalter konzentrierter Schwefelsäure ist farblos, sie wird beim Erhitzen blau, dann schmutzig rotviolett, beim Erkalten wieder blau (K.). Die Lösung in konz. Schwefelsäure färbt sich mit etwas Salpeter (K.) oder Nitrit (W., G.) blau. Die hellgelbe Lösung in Essigsäure wird mit Kaliumdichromat tiefblau, mit Eisenchlorid grünlichgelb (K.).

N.N'-Bis-[2-nitro-phenyl]-benzidin $C_{24}H_{18}O_4N_4 = [-C_5H_4\cdot NH\cdot C_9H_4\cdot NO_3]_2$. B. Beim Kochen einer alkoh. Benzidinlösung mit o-Chlor-nitrobenzol (Bd. V, S. 241) (SCHÖFFF, B. 22, 904). — Nadeln (aus verd. Essigsäure). F: 240°.

N.N'-Bis-[2.4-dinitro-phenyi]-benzidin $C_{24}H_{16}O_8N_6=[-C_8H_4\cdot NH\cdot C_9H_3(NO_9)_2]_9$. B. Aus Benzidin, 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und Alkohol bei 100—150° (Willgebodt, B. 9, 982). — Gelbes Pulver. Schmilzt oberhalb 330°. Schwer löslich in allen gewöhnlichen Lösungsmitteln. Leicht löslich in konz. Schwefelsäure mit violetter Farbe.

N.N'-Bis-[2-nitro-bensyl]-bensidin $C_{20}H_{22}O_4N_4=[-C_0H_4\cdot NH\cdot CH_2\cdot C_0H_4\cdot NO_2]_2$. B. Beim Erhitzen von 2 Mol.-Gew. Benzidin mit 2 Mol.-Gew. 2-Nitro-benzylchlorid (Bd. V, 8. 327) und Alkohol (Francis, B. 29, 1451). — Ziegelrotes Pulver (aus Nitrobenzol). Schmilzt bei 226—227° unter Zersetzung. Unlöslich in den gewöhnlichen Lösungsmitteln. — Die Reduktion mit Zinkstaub und Eisessig bei 20° liefert N.N'-Bis-[2-amino-benzyl]-benzidin (8. 232), diejenige mit Zinn und Salzsäure bei 90—100° sowie mit Zink und Salzsäure oder mit Zinnchlorür in der Wärme, Benzidin und o-Toluidin. — $C_{22}H_{22}O_4N_4+2H_2SO_4$. Krystall-pulver (aus konz. Schwefelsäure). Schmilzt bei 215° unter Zersetzung.

N-a-Naphthyl-benzidin $C_{22}H_{18}N_3 = H_2N \cdot C_2H_4 \cdot C_4H_4 \cdot NH \cdot C_{10}H_7$. B. Aus Benzidin und a-Naphthol in Gegenwart von Calciumehlorid bei 250—310° im indifferenten Gasstrom (Merz, Strasser, J. pr. [2] 60, 159). — Prismen (aus heißem Benzol). F: 154—155°; Kp_{2-3} : 300—305°; Kp_{11-12} : 355—360°; Kp_{20-32} : 380—390°; Kp_{76} : 500—505° (geringe Zers.); sehr wenig löslich in Alkohol und Äther, leicht in siedendem Benzol; die verdünnte Lösung in konz. Schwefelsäure färbt sich mit NaNO₂ grün, dann dunkelgrau, mit KNO₂ rotbraun; die Salze sind in Wasser so gut wie unlöslich und werden durch heißes Wasser dissoziiert (M., St.). — Verwendung der Sulfonsäure des N-a-Naphthyl-benzidins zur Darstellung von Monoazofarbstoffen: Nuth, Hold, Ruber, D. R. P. 198908; C. 1908 II, 213. — $C_{22}H_{12}N_2 + HCl$. Weiße Masse. Schwer löslich in Alkohol (M., St.). — $2C_{22}H_{18}N_2 + H_2SO_4$. Weiße Bröckehen (M., St.).

N.N'-Di- α -naphthyl-benzidin $C_{23}H_{24}N_3=[-C_6H_4\cdot NH\cdot C_{10}H_7]_3$. B. Aus Benzidin mit $2^1/_2$ —5 Mol.-Gew. a-Naphthol im indifferenten Gasstrome bei 230—330° (M., Sr., J. pr. [2] 60, 168). — Blättchen (aus Anilin). F: 244,5—245°; Kp_{2-2,5}: 365—366°; sehr wenig löslich in siedendem Alkohol und Äther, schwer in Benzol, leicht in heißem Anilin und Nitrobenzol; sehr schwach basisch; die Lösung in konz. Sowefelsäure gibt mit NaNO₂ und KNO₂ grüne Färbungen (M., Sr., J. pr. [2] 60, 172). — Reagiert mit 4.4'-Bis-dimethylaminobenzophenon (Syst. No. 1873) in Gegenwart von POCl₃ unter Bildung einer blauen Verbindung (M., Sr., J. pr. [2] 61, 107).

N- β -Naphthyl-bensidin $C_{22}H_{12}N_2 = H_2N \cdot C_4H_4 \cdot C_4H_4 \cdot NH \cdot C_{10}H_7$. B. Aus Benzidin und β -Naphthol bei 260—310° im indifferenten Gasstrom (M., Sr., J. pr. [2] 60, 173). — Täfelchen (aus Benzol). F: 150—151°; $Kp_{3-2,5}$: 300—310°; Kp_{13-12} : 370—373°; Kp_{740} : 504—510° (teilweise Zersetzung); ziemlich sohwer löslich in siedendem Alkohol und Äther, leicht in siedendem Benzol; die Lösung in konz. Schwefelsäure wird durch NaNO₂ grün, dann schwarz, dann braun, durch KNO₂ rotbraun (M., Sr.). — Verwendung der Sulfonsäure

des N- β -Naphthyl-benzidins zur Darstellung von Monoazofarbstoffen: Nuth, Hold, Ruegg, D. R. P. 198908; C. 1908 II, 213. — $C_{22}H_{18}N_2+HCl$. Nädelchen (aus salzsäurehaltigem Alkohol). Wird durch Wasser dissoziiert (M., St.). — $2C_{22}H_{18}N_2+H_2SO_4$. Kreideweißes Pulver (M., St.).

N-a-Naphthyl-N'-β-naphthyl-bensidin C₃₂H₂₄N₃ = [-C₆H₄·NH·C₁₀H₇]₃. B. Aus N-a-Naphthyl-benzidin und β-Naphthol oder aus N-β-Naphthyl-benzidin und α-Naphthol in Kohlendioxydatmosphäre bei 270—300° (M., Sr., J. pr. [2] 60, 181). — Nädelchen (aus Benzol). F: 200,5—201°. Kp₃: 370°. Ist leichter löslich als N.N'-Di-α-naphthyl-benzidin und N.N'-Di-β-naphthyl-benzidin. Schwer löslich in heißem Alkohol und Ather, ziemlich löslich in heißem Benzol, sehr leicht in heißem Anilin. Die Benzollösung rötet sich an der Luft. Die Lösung in konz. Schwefelsäure wird durch NaNO₃ und KNO₃ erst grün, dann stahlblau. 20°/0 ige Salzsäure spaltet bei 200°.

N.N'-Di- β -naphthyl-benzidin $C_{33}H_{24}N_2=[-C_6H_4\cdot NH\cdot C_{10}H_7]_2$. B. Aus Benzidin und β -Naphthol in Kohlendioxydatmosphäre bei $230-330^\circ$ (M., St., J. pr. [2] 60, 179). — Blättchen (aus Benzol oder Anilin). F: $238,5-230^\circ$; $Kp_{2-2,5}$: $375-376^\circ$; fast unlöslich in Alkohol und Äther, ziemlich schwer löslich in Benzol, leicht in siedendem Anilin; die Lösung in konz. Schwefelsäure wird durch NaNO₂ stahl- bis intensivblau, durch KNO₃ intensivblau (M., St.). — Liefert beim Erhitzen mit konz. Schwefelsäure auf $80-90^\circ$ eine Disulfonsäure (Dahl. & Co., D. R. P. 78317; Frdl. 4, 622).

Verbindung aus 1 Mol. Benzidin, 1 Mol. Formaldehyd und 1 Mol. schwefliger Säure $C_{13}H_{14}O_3N_4S = H_2N\cdot C_6H_4\cdot C_6H_4\cdot NH\cdot CH_3(SO_3H)$. B. Das Natriumsalz entsteht aus etwas mehr als 1 Mol.-Gew. Benzidin in $70^{\circ}/_{\circ}$ igem Alkohol und 1 Mol.-Gew. Formaldehyddisulfitlösung (Bucherer, Schwalber, B. 39, 2806). — Das Natriumsalz läßt sich diazotieren, die Diazolösung gibt mit R-Salz einen roten Farbstoff. — Na $C_{13}H_{13}O_3N_2S$ ("methylbenzidin- ω -sulfonsaures Natrium"). Nadelbüschel (aus verd. Alkohol). Schwer löslich in Wasser, leicht in verd. Alkohol. Oxydiert sich an der Luft.

Verbindung aus 1 Mol. Benzidin, 2 Mol. Formaldehyd und 2 Mol. schwefliger Säure $C_{14}H_{16}O_{6}N_{2}S_{2}=[-C_{6}H_{4}\cdot NH\cdot CH_{9}(SO_{3}H)]_{2}$. B. Das Natriumsalz entsteht aus 1 Mol.-Gew. Benzidin und 2 Mol.-Gew. Formaldehyddisulfitlösung in Wasser bei $80-90^{\circ}$ (B., Schw., B. 39, 2805). — $Na_{2}C_{14}H_{14}O_{6}N_{2}S_{2}$ ("dimethylbenzidin-di- ω -sulfonsaures Natrium"). Nadeln (aus Wasser). Wird beim Kochen mit Wasser nicht verändert.

N.N'-Diönanthyliden-benzidin $C_{26}H_{36}N_2 = \{-C_6H_4\cdot N: CH\cdot [CH_2]_5\cdot CH_3\}_2$. B. Man gibt 4 g Önanthol (Bd. I, S. 695) zu einer Lösung von 3 g Benzidin in 150 g Alkohol (SCHIFF, Vanni, A. 258, 377). — Warzen. F: 113—115°. Sehr leicht löslich in Benzol und Äther.

N-[4-Nitro-benzal]-benzidin $C_{19}H_{15}O_2N_3=H_2N\cdot C_9H_4\cdot C_9H_4\cdot N: CH\cdot C_9H_4\cdot NO_2^{-1}).$ B. Durch Kochen von 3 g Benzidin mit 1,8 g 4-Nitro-benzaldehyd (Bd. VII, S. 256) und Alkohol (Barsilowski, \mathcal{H} . 23, 69; J. 1891, 1043). Aus N.N'-Bis-[4-nitro-benzal]-benzidin und Benzidin (B.). — Braunrote Blättehen (aus Benzol). F: 221—222° (B.).

N-[3.4-Dinitro-bensal]-bensidin $C_{19}H_{14}O_4N_4 = H_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N : CH \cdot C_6H_3(NO_3)_3$. B. Durch Erhitzen der alkoh. Lösungen von 1 g 2.4-Dinitro-benzaldehyd (Bd. VII, S. 264) und 1,5 g Benzidin (Sachs, Kempf, B. 35, 2709). — Braune Tafeln (aus Xylol). F: 1860 (unkorr.). Leicht löslich in Aceton, schwer in Benzol, fast unlöslich in Ligroin und Alkohol.

 $N-[2.4.6-Trinitro-bensal]-bensidin <math>C_{19}H_{13}O_6N_5=H_2N\cdot C_6H_4\cdot C_6H_4\cdot N:CH\cdot C_6H_2\cdot (NO_2)_3$. B. Beim Erwärmen von 1,2 g 2.4.6-Trinitro-benzaldehyd (Bd. VII, S. 265) und 1,5 g Benzidin in Alkohol auf dem Wasserbade (Sachs, Kantorowicz, B. 39, 2760). — Blutrote Täfelchen (aus Amylalkohol oder Xylol). F: 223°. Unlöslich in Wasser, Essigsäure, schwer löslich in Ligroin, Alkohol und Benzol, leicht in Aceton und Nitrobenzol.

N.N'-Dibensal-bensidin C₂₆H₂₀N₂ = [-C₆H₄·N:CH·C₆H₅]₂. B. Aus Benzidin und Benzaldehyd (Bd. VII, S. 174) in Alkohol (SCHIFF, B. 11, 832; SCHIFF, VANNI, A. 255, 375). Durch Erhitzen eines Gemenges von Hydrazobenzol (Syst. No. 1950), Benzaldehyd und ZnCl₂ (CLEVE, Bl. [2] 45, 188). Beim Kochen von Hydrazobenzol mit Eisessig und Benzaldehyd (Rassow, BÜLKE, J. pr. [2] 65, 102). Beim Erhitzen von Azobenzol (Syst. No. 2092) mit etwas weniger sls 1 Mol.-Gew. Benzaldehyd und ZnCl₂ suf 130—135° (Barsilowski, Ж. 17, 366; 23, 48; J. 1891, 1042). Aus 2 Mol.-Gew. ms-Benzal-acetylaceton (Bd. VII, S. 706) und 1 Mol.-Gew. Benzidin in Alkohol (RUHEMANN, WATSON, Soc. 85, 1175). — Blättchen (aus Benzol). Schmilzt bei 234° zu einer trüben Flüssigkeit, welche bei 260° plötzlich klar wird (Gattermann, A.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von DENNETT, TURNER, Soc. 1926, 478.

347, 352); die trübe Schmelze wird durch elektrische Kataphorese nicht geklärt (Beedig, Schukowsky, B. 37, 3423). Fast unlöslich in Ligroin (B.), wenig löslich in Alkohol und Äther, leicht in Chloroform und Benzol (Sch., V.).

N.N'-Bis-[4-chlor-benzal]-benzidin $C_{26}H_{18}N_{2}Cl_{2}=[-C_{6}H_{4}\cdot N:CH\cdot C_{6}H_{4}Cl]_{2}$. B. Aus 2 Mol.-Gew. 4-Chlor-benzaldehyd (Bd. VII, S. 235) und 1 Mol.-Gew. Benzidin in warmem Alkohol (v. Walther, Rätze, J. pr. [2] 65, 265). — Gelbe Blättchen (aus Benzol). F: 264°. Sehr wenig löslich in siedendem Alkohol.

N.N'-Bis-[2-jod-benzal]-benzidin $C_{st}H_{1s}N_{2}I_{s}=[-C_{t}H_{4}\cdot N:CH\cdot C_{t}H_{4}I]_{s}$. B. Aus 2-Jodbenzaldehyd (Bd. VII, S. 240) und Benzidin in viel Alkohol (Willerout, Rieke, B. 38, 1480). — Goldgelbe Blättchen (aus Benzol, Xylol oder Nitrobenzol). F: 252—253°. Fast unlöslich in Wasser, Alkohol, Ather, Ligroin.

N.N'-Bis-[3-jod-benzal]-benzidin $C_{26}H_{18}N_{2}I_{3} = [-C_{6}H_{4}\cdot N:CH\cdot C_{6}H_{4}I]_{3}$. B. Aus 3-Jod-benzaldehyd (Bd. VII, S. 240) und Benzidin in viel Alkohol (W., R., B. 38, 1480). — Goldgelbe Blättchen. F: 235°.

Benzidinderivat des Phenyl-[3-formyl-phenyl]-jodoniumjodids $C_{88}H_{28}N_2I_4 = [-C_6H_4\cdot N:CH\cdot C_6H_4\cdot I(I)\cdot C_6H_5]_2$. B. Aus Phenyl-[3-formyl-phenyl]-jodoniumjodid (Bd. VII, S. 240) und Benzidin in heißem Alkohol oder Wasser (W., R., B. 38, 1485). — Goldgelbe Blättchen (aus Nitrobenzol). F: 228—229°. Unlöslich in Wasser, Alkohol, Äther, Chloroform, Benzol.

N.N'-Bis-[4-jod-benzal]-benzidin $C_{se}H_{18}N_sI_s = [-C_eH_4\cdot N:CH\cdot C_eH_4I]_s$. B. Aus 4-Jod-benzaldehyd (Bd. VII, S. 241) und Benzidin in viel Alkohol (W., R., B. 38, 1480). — Goldgelbe Blättchen. Schmilzt oberhalb 360°.

Benzidinderivat des Phenyl - [4 - formyl - phenyl] - jodoniumjodids $C_{28}H_{28}N_2I_4 = [-C_6H_4\cdot N:CH\cdot C_6H_4\cdot I(I)\cdot C_6H_6]_2$. B. Aus Phenyl-[4-formyl-phenyl]-jodoniumjodid (Bd. VII, S. 241) und Benzidin in heißem Alkohol oder Wasser (W., R., B. 38, 1485). — Gelbliche Blättchen (aus wenig Nitrobenzol). Schmilzt oberhalb 360°. Unlöslich in den meisten Lösungsmitteln.

N.N'-Bis-[2-nitro-benzal]-benzidin $C_{26}H_{18}O_4N_4=[-C_5H_4\cdot N:CH\cdot C_5H_4\cdot NO_2]_a.$ B. Bei eintägigem Erhitzen von Azobenzol (Syst. No. 2092) mit 2-Nitro-benzaldehyd (Bd. VII, S. 243) und etwas ZnCl₂ auf 130—135° (Barsilowski, \mathcal{H} . 23, 77; J. 1891, 1044). — Gelbe Prismen (aus Benzol). F: 221—222°. Löslich in Benzol.

N.N'-Bis-[3-nitro-benzal]-benzidin $C_{28}H_{18}O_4N_4=[-C_6H_4\cdot N:CH\cdot C_6H_4\cdot NO_2]_2$. B. Bei eintägigem Erhitzen von Azobenzol mit 3-Nitro-benzaldehyd (Bd. VII, S. 250) und etwas ZnCl₂ auf 130—135° (Barsilowski, \mathcal{H} . 23, 76; J. 1891, 1044). — Hellorangegelbe Stäbchen (aus Benzol). F: 237°. Sehr schwer löslich in Alkohol und Äther, leicht in siedendem Benzol, unlöslich in Ligroin.

N.N'-Bis-[4-nitro-benzal]-benzidin $C_{36}H_{18}O_4N_4 = [-C_6H_4\cdot N:CH\cdot C_6H_4\cdot NO_3]_s$. B. Durch Kochen von 1,8 g Benzidin mit 2,32 g 4-Nitro-benzaldehyd (Bd. VII, S. 256) und Alkohol (Barsilowski, \mathcal{H} . 23, 68; J. 1891, 1043). Bei eintägigem Erhitzen von Azobenzol mit 4-Nitrobenzaldehyd und etwas ZnCl₂ auf 130—135° (B.). — Gelbe Täfelchen (aus Benzol). F: 242°. Unlöslich in Ligroin, sehr schwer löslich in heißem Alkohol, Äther und in kaltem Benzol.

N.N'-Bis-[2.4-dinitro-benzal]-benzidin $C_{26}H_{16}O_8N_6=[-C_6H_4\cdot N:CH\cdot C_6H_5(NO_8)_8]_2$. B. Aus 1 g 2.4-Dinitro-benzaldehyd (Bd. VII, S. 264) und 0,46 g Benzidin in Alkohol (Sachs, Kempf, B. 35, 2709). — Hellgelbe Nadeln (aus Xylol). F: 246° (korr.). Löslich in Aceton, schwer löslich in Amylalkohol, Toluol und Chloroform, fast unlöslich in Ligroin. Krystallisiert aus Benzol mit 1 Mol. Benzol, aus Nitrobenzol mit 1 Mol. Nitrobenzol.

N.N'-Bis-[4-methyl-bensal]-bensidin $C_{26}H_{24}N_3 = [-C_6H_4\cdot N:CH\cdot C_6H_4\cdot CH_3]_2$. B. Aus p-Toluylaldehyd (Bd. VII, S. 297) und Benzidin (GATTERMANN, A. 347, 353). — Gelbe Blätter. Schmilzt bei 230° zu einer trüben Flüssigkeit, die erst oberhalb des Siedepunkts der Schwefelsäure plötzlich klar wird (G.); die trübe Schmelze wird durch elektrische Kataphorese nicht geklärt (Bredig, Schukowsky, B. 37, 3423).

N.N'-Bis-[2.4-dimethyl-bensal]-bensidin $C_{20}H_{28}N_1 = [-C_0H_4\cdot N: CH\cdot C_0H_3(CH_3)_3]_3$. B. Durch Erwärmen alkoh. Lösungen von Benzidin und 2.4-Dimethyl-benzaldehyd (Bd. VII, S. 310) (Harding, Cohen, Am. Soc. 23, 600; vgl. Francesconi, Mundici, G. 32 II, 471). — Schwefelgelbe Krystalle (aus Toluol). F: 187,5°. Löslich in Benzol und Chloroform, schwer löslich in Aceton und Petroläther.

N.N'-Bis-[3.4-dimethyl-bensal]-bensidin $C_{50}H_{25}N_2 = [-C_6H_4\cdot N: CH\cdot C_8H_3(CH_3)_2]_2$. B. Aus 3.4-Dimethyl-benzaldehyd (Bd. VII, S. 312) und Benzidin (Gattermann, A. 347, 369). — Gelbe Blätter (aus Toluol). Schmilzt bei 158° zu einer trüben Flüssigkeit, die oberhalb 250° plötzlich klar wird.

N.N'-Dicinnamal-bensidin $C_{20}H_{24}N_3=[-C_0H_4\cdot N:CH\cdot CH:CH:CH:C_0H_5]_3$. B. Aus Zimtaldehyd (Bd. VII, S. 348) und Benzidin (SCRIFF, A. 239, 385). — Blätter (aus Benzol). F: 260—261°. — $C_{20}H_{24}N_3+2HCl$. Rote Prismen (aus Alkohol).

Verbindung C₁₄H₁₄O₅N₂ aus Benzidin und Glyoxal s. S. 220.

Glutacondialdehyd-bis-{[4'-amino-diphenylyl-(4)]-imid} bezw. 1-{[4'-Amino-diphenylyl-(4)]-imid} bezw. 1-{[4'-Amino-diphenylyl-(4)]-imid} chenylyl-(4)]-imid} chenylyll

N.N'-Bis- $[\beta \text{ oder } \delta - \text{oxo} - \varepsilon - \text{phenylimino} - \text{n-amyliden}]$ -bensidin $C_{24}H_{20}O_2N_4 = [-C_4H_4\cdot N:\text{CH}\cdot\text{CO}\cdot\text{CH}_2\cdot\text{CH}_3\cdot\text{CH}\cdot\text{CH}_3\cdot\text{CH}_4\cdot\text{N}:\text{CH}\cdot\text{CH}_2\cdot\text{CH}_3\cdot\text{CO}\cdot\text{CH}_3\cdot\text{N}\cdot\text{C}_4H_5]_2}$ bezw. tautomere Formen (vgl. die ähnliche Verbindung in Bd. XII, S. 211 Zeile 14 von unten). Zur Konstitution vgl. Zincke, Mühlhausen, B. 38, 3824; Dieckmann, Beck, B. 38, 4123; König, J. pr. [2] 72, 559. — B. Das salzsaure Salz entsteht beim Verdunsten einer alkoh. Lösung von 2 Mol.-Gew. Furfurol (Syst. No. 2461), 1 Mol.-Gew. Benzidin und 2 Mol.-Gew. salzsaurem Anilin (Schiff, A. 239, 357). — $C_{34}H_{30}O_2N_4 + 2H\text{Cl} + 2H_2O$. Dunkelbronzefarbene Krystalle. Löst sich in Alkohol mit violetter Farbe (Sch.).

N.N'-Disalicylal-benzidin $C_{26}H_{20}O_2N_2=[-C_6H_4\cdot N:CH\cdot C_6H_4\cdot OH]_2$. B. Aus 3 g Benzidin in 100 ccm Alkohol mit 4 ccm Salicylaldehyd (Bd. VIII, S. 31), in wenig Alkohol gelöst (Schiff, Vanni, A. 258, 374). — Nadeln (aus Benzol). F: 260°.

N.N'-Bis-[4-äthoxy-bensal]-bensidin $C_{20}H_{24}O_2N_3 = [-C_0H_4\cdot N:CH\cdot C_0H_4\cdot O\cdot C_2H_3]_3$. B. Durch Kondensation von Benzidin mit 4-Äthoxy-benzaldehyd (Bd. VIII, S. 73) (GATTER-MANN, A. 357, 348). — Gelbe Blätter (aus Toluol). Schmilzt bei 2480 zu einer trüben Flüssigkeit, die erst oberhalb 360° klar wird.

 $N.N'-Bis-[4-methoxy-2-methyl-bensal]-bensidin <math>C_{30}H_{14}O_{2}N_{2} = [-C_{0}H_{4}\cdot N:CH\cdot N:$ C₆H₃(CH₃)·O·CH₃]₂. B. Durch Kondensation von Benzidin mit 4-Methoxy-2-methyl-benz-aldehyd (Bd. VIII, S. 96) (G., A. 357, 359). — Gelbe Blätter (aus Xylol). Schmilzt bei 171° zu einer trüben Flüssigkeit, die erst oberhalb 360° klar wird.

N.N'-Bis-[4-āthoxy-2-methyl-bensal]-bensidin $C_{32}H_{32}O_3N_2=[-C_0H_4\cdot N:CH\cdot C_0H_3(CH_3)\cdot O\cdot C_2H_5]_2$. B. Durch Kondensation von Benzidin mit 4-Åthoxy-2-methyl-benzaldehyd (Bd. VIII, S. 96) (G., A. 357, 360). — Goldgelbe Blätter (aus Xylol). Schmilzt bei 167° zu einer trüben Flüssigkeit, die oberhalb 300° klar wird.

N.N'-Bis - [4-äthoxy-3-methyl-bensal] - bensidin $C_{32}H_{32}O_2N_2 = [-C_0H_4\cdot N:CH\cdot C_0H_3(CH_3)\cdot O\cdot C_1H_3]_2$. B. Durch Kondensation von Benzidin mit 4-Åthoxy-3-methyl-benzaldehyd (Bd. VIII, S. 98) (G., A. 357, 356). — Gelbe Blätter (aus Benzol). Schmilzt bei 238° zu einer trüben Flüssigkeit.

Verbindung C₂₂H₂₂O₂N₂S₂ aus Benzidin und Dithio-bis-acetylaceton s. S. 220.

N-[4-Oxy-8-methoxy-bensal]-bensidin, N-Vanillal-bensidin $C_0H_1O_2N_3=H_2N\cdot C_0H_4\cdot C_0H_4\cdot N:CH\cdot C_0H_4(OH)\cdot O\cdot CH_3$. B. Man fügt zu einer Lösung von 2 g Vanillin (Bd. VIII, S. 247) in einem heißen Gemisch aus 25 ccm Alkohol und 50 ccm Wasser eine Lösung von 1 Mol.-Gew. Benzidin in 58% sigem Alkohol (Torrey, Clarke, Am. Soc. 31, 583).—Gelbe Krystalle (aus Benzol). Beginnt bei ca. 170° zu sintern, schmilzt bei 181° susammen und ist bei 184—185° klar geschmolzen. Löst sich in Eisessig mit roter Farbe. Aus der Lösung scheiden sich karmesinrote Krystalle ab, die beim Waschen mit verd. Alkohol gelb werden.

N.N'-Bis - [4 - oxy - 8 - methoxy - bensal] - bensidin, N.N' - Divanillal - bensidin $C_{23}H_{24}O_4N_2 = [-C_6H_4\cdot N:CH\cdot C_6H_3(OH)\cdot O\cdot CH_3]_3$. B. Durch Einw. von 2 Mol.-Gew. Vanillin auf 1 Mol.-Gew. Benzidin in Alkohol (T., C., Am. Soc. 31, 584). — Gelbe Krystalle (aus Alkohol). F: 220-221,5°.

N.N'-Bis-[5-brom-4-oxy-3-methoxy-bensal]-bensidin $C_{50}H_{25}O_4N_2Br_5=[-C_6H_4\cdot N:CH\cdot C_6H_2Br(OH)\cdot O\cdot CH_3]_2$. B. Durch Einw. von 2 Mol.-Gew. 5-Brom-vanillin (Bd. VIII, S. 260) auf Benzidin in Alkohol (T., C., Am. Soc. 31, 584). — Gelbe Krystalle (aus Benzol). Zersetzt sich bei 232°. Löslich in Säuren mit hellroter, in Natronlauge mit gelber Farbe. N.N'-Bis - [2.4.5 - trimethoxy - bensal] - bensidin $C_{22}H_{23}O_6N_2 = [-C_6H_4 \cdot N : CH \cdot C_6H_5(O \cdot CH_9)_2]_2$. B. Aus Asarylaldehyd (Bd. VIII, S. 389) und Benzidin in siedendem Alkohol (FABINYI, SZÉKI, B. 39, 1213). — Nådelchem. Schwer löslich in Alkohol, Äther, besser in Benzol, leicht in Chloroform. — $C_{22}H_{32}O_6N_2 + 2HCl$. Bordeauxrote Nadeln (aus verd. Salzsäure).

N.N'-Bis - [8.4.5 - trimethoxy - bensal] - bensidin $C_{22}H_{22}O_6N_5 = [-C_0H_4 \cdot N : CH \cdot C_0H_2(0 \cdot CH_9)_2]_2$. B. Durch Erwärmen von 3.4.5-Trimethoxy-benzaldehyd (Bd. VIII, S. 391) mit Benzidin in 90°/oiger Essigsäure (MAUTHNER, B. 41, 2531). — Gelbe Nadeln (aus Benzol und Ligroin). F: 210—211°. Leicht löslich in heißem Alkohol und Benzol, unlöslich in Ligroin.

Benzidinderivat der Arabinose $C_{32}H_{30}O_6N_3=\{-C_6H_4\cdot N:CH\cdot [CH(OH)]_3\cdot CH_3\cdot OH\}_8$. B. Aus Benzidin und Arabinose (Bd. I, S. 860) in siedender alkoholischer Lösung (ADLER, B. 42, 1744). — Leichtes, gelblich verfärbtes Krystallpulver. Schmilzt unscharf bei ungefähr 86° unter Bräunung. Unlöslich in Äther, schwer löslich in kaltem Wasser, kaltem absolutem Alkohol, löslich in verd. Alkohol. — Schwefelsäure spaltet in Benzidin und Arabinose.

Benzidinderivat der Glykose $C_{24}H_{25}O_{10}N_2 = \{-C_4H_4\cdot N: CH\cdot [CH(OH)]_4\cdot CH_2\cdot OH\}_2$. B. Aus 1 Mol.-Gew. Benzidin und 2 Mol.-Gew. Glykose (Bd. I, S. 879) in siedender alkoholischer Lösung (Adler, A. Pth. 58, 193; B. 42, 1743). — Weiße Nadeln (aus Alkohol). Schmilzt nach vorheriger Zersetzung unscharf bei 127°. Unlöslich in Ather und Petroläther, schwer löslich in kaltem Wasser und kaltem absolutem Alkohol, löslich in Pyridin und heißem Alkohol. Die Lösung in verd. Alkohol ist stark linkadrehend. Schwefelsäure spaltet in Benzidin und Glykose. Wird durch Hefe vergoren.

N.N'-Diformyl-bensidin $C_{14}H_{12}O_2N_8=[-C_4H_4\cdot NH\cdot CHO]_8$. B: Beim Behandeln von Benzidin mit Ameisensäure (STERN, B. 17, 380). Aus Benzidin und Formamid in Eisessig (HIRST, COHEN, Soc. 67, 831). Aus Hydrazobenzol (Syst. No. 1950) und Ameisensäure (ST., B. 17, 379). — Krystallpulver (aus Nitrobenzol). Sublimiert unzersetzt; unlöslich in den gewöhnlichen Lösungsmitteln (ST.). — Verwendung zur Darstellung gelber bis orangefarbener Schwefelfarbstoffe: Akt.-Ges. f. Anilinf., D. R. P. 170476; C. 1906 I, 1856. — Na₂C₁₄H₁₀O₂N₂ (H., C.).

N.N'- Bis - [2 - nitro - bensyl] - N.N'- diformyl - bensidin $C_{22}H_{22}O_4N_4 = [-C_4H_4 \cdot N(CH_2 \cdot C_4H_4 \cdot NO_2) \cdot CHO]_2$. B. Beim Erhitzen von N.N'-Bis-[2-nitro-benzyl]-benzidin (S. 223) mit 10 Gew.-Tin. Ameisensäure (Francis, B. 29, 1452). — Krystalle (aus Eisessig). F: 205°. Unlöslich in heißem Alkohol, Benzol, Ather und CS₂. — Bei der Reduktion mit Zink und Eisessig entsteht Diphenylen - bis - dihydrochinazolin

und Eisessig entsteht Diphenylen - bis - dihydrochinazolin C₆H₄·N·C₆H₄·C₆H₄·N-CH₃·C₆H₄ (Syst. No. 3474).

N-Acetyl-benzidin C₁₄H₁₄ON₂ = H₂N·C₆H₄·C₆H₄·NH·CO·CH₃. B. Entsteht neben N.N'-Diacetyl-benzidin bei längerem Kochen von 50 g Benzidin mit 500 com Eisessig (SCHMIDT, SCHULTZ, B. 12, 489; A. 207, 332). Aus 9,2 g Benzidin und 5,2 g Essigsäureanhydrid in verd. Alkohol (CAIN, Soc. 95, 717). — Nadeln (aus verd. Alkohol). F: 199°; leicht löslich in Alkohol, unlöslich in Äther; gibt mit Säuren sehr schwer lösliche, gelatinöse Niederschläge (SCHM., SCHU.). — Carosche Säure oxydiert zu 4'-Nitroso-4-acetamino-diphenyl (Bd. XII, S. 1820) (C.).

N.N'-Diacetyl-bensidin $C_{16}H_{16}O_2N_3=[-C_6H_4\cdot NH\cdot CO\cdot CH_2]_2$. B. Beim mehrstündigen Kochen von Benzidin mit Eisessig (Strakosch, B. 5, 236; Schmidt, Schultz, A. 207, 332). Man erwärmt Benzidin mit etwas mehr als 2 Mol.-Gew. Thioessigsäure (Pawlewski, B. 31, 662). Beim Kochen von Hydrazobenzol (Syst. No. 1950) mit der 10-fachen Menge Eisessig (Sachs, Whittaker, B. 35, 1435). — Nadeln (aus Eisessig). F: 317° (Schm., Schu.), 330—331° (kort.) (Sa., Wh.); sintert bei 317—320°, ohne deutlich zu schmelzen (P.). Sublimiert nicht unzersetzt (St.). Sehr schwer löslich (Schm., Schu.).

N.N'-Diäthyl-N.N'-diacetyl-bensidin $C_{20}H_{24}O_2N_2 = [-C_6H_4\cdot N(C_2H_4)\cdot CO\cdot CH_3]_2$. B. Aus N.N'-Diäthyl-benzidin (8. 222) und Essigsäureanhydrid (Bamberger, Tichwinski, B. 35, 4184). — Prismen. F: 166,5—167,5°. Leicht löslich in Benzol, Alkohol und Äther, schwer in Petroläther.

N.N.N'.N'-Tetraacetyl-bensidin $C_{20}H_{20}O_4N_2 = [-C_3H_4\cdot N(CO\cdot CH_2)_3]_2$. B. Aus Benzidin und überschüssigem Essigsäureanhydrid, neben N.N'-Diacetyl-benzidin (MILLS, Soc. 65, 55). — Nadeln (aus Alkohol + Benzol). F: 214—215° (MILLS; vgl. indessen PAW-LEWSEI, B. 31, 663).

N.N'-Bis-thiopropionyl-bensidin $C_{18}H_{20}N_3S_3 = [-C_0H_4\cdot NH\cdot CS\cdot CH_3\cdot CH_3]_s$. B. Durch mehrstündiges Erhitzen von [Diphenylen-(4.4')]-di-senföl (S. 230) und Äthylmagnesiumbromid in Kohlenstofftetrachlorid (SAOHS, LOEVY, B. 37, 876). — Gelblichweiße Nadeln (aus Eisessig). F: 228—229°. Löslich in heißem Alkohol und siedendem Eisessig, unlöslich in Äther, Benzol und Wasser; leicht löslich in warmen Alkalien.

N-Benzoyl-benzidin $C_{19}H_{16}ON_3=H_3N\cdot C_6H_4\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_5$. B. Beim Kochen von Benzidin mit Benzoylchlorid in Toluollösung (Soc. St. Denis, D. R. P. 60332; Frdl. 3, 24). — Krystalle (aus Alkohol). F: 203—205°; schwer löslich in Alkohol, Benzin und CS₃, unlöslich in Wasser und Äther (Soc. St. D., D. R. P. 60332). Verwendung zur Darstellung von Azofarbstoffen: Soc. St. Denis, D. R. P. 65080; Frdl. 3, 732.

N.N'-Dibensoyl-benzidin $C_{26}H_{20}O_2N_2 = [-C_6H_4\cdot NH\cdot CO\cdot C_6H_5]_2$. B. Beim Erwärmen von Benzidin oder von Hydrazobenzol (Syst. No. 1950) mit Benzoylchlorid (STEEN, B. 17, 379). — Nadeln (aus heißem Nitrobenzol), abgeschrägte Prismen (aus heißem Phenol). F: 352° (BIEHRINGER, BUSCH, B. 35, 1969). Sublimiert unzersetzt (ST.). Sehr wenig löslich (ST.; BIE., BU.).

N.N'-Diäthyl-N.N'-dibenzoyl-benzidin $C_{30}H_{28}O_2N_3 = [-C_6H_4\cdot N(C_2H_5)\cdot CO\cdot C_6H_5]_s$. B. Aus N.N'-Diäthyl-benzidin (S. 222) und Benzoylchlorid nach Schotten-Baumann (Bamberger, Tichwinski, B. 35, 4184). — Prismen. F: 184,5—185,5°. Leicht löslich in Benzol und Alkohol, schwer in Äther und Ligroin.

Benzidin-N-oxalylsäure, [4'-Amino-diphenylyl-(4)]-oxamidsäure $C_{14}H_{12}O_2N_2 = H_2N \cdot C_6H_4 \cdot C_8H_4 \cdot NH \cdot CO \cdot CO_2H$. B. Durch Erhitzen von Benzidin mit Oxalsäure in wäßr. Lösung am Rückflußkühler (BAYER & Co., D. R. P. 95060; C. 1898 I, 541). — Unlöslich in kaltem und heißem Wasser (B. & Co.). — Nitrierung: Neumüller, J. pr. [2] 77, 359; vgl. dazu Le Fèvre, Turner, Soc. 1926, 2046; 1928, 245, 246. Liefert eine rein gelb gefärbte, in Wasser fast unlösliche Diazoverbindung, die mit Naphthol-(1)-sulfonsäure-(4) (Bd. XI, S. 271) einen roten Farbstoff gibt (B. & Co.). — Salze: B. & Co. Ammoniumsalz. Blättchen. In warmem Wasser verhältnismäßig leicht löslich. — Natriumsalz. Sehr wenig löslich in kaltem und heißem Wasser.

N-Acetyl-benzidin-N'-oxalylsäure, [4'-Acetamino-diphenylyl-(4)]-oxamidsäure $C_{16}H_{16}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6E_4\cdot C_6H_4\cdot NH\cdot CO\cdot CO_2H$. B. Aus [4'-Amino-diphenylyl-(4)]-oxamidsäure, Essigsäureanhydrid und Eisessig beim Kochen (Neumüller, J. pr. [2] 77, 361). — Nädelchen (aus verd. Essigsäure). F: oberhalb 250°; leicht löslich in heißer verdünnter Essigsäure, schwer in Alkohol, unlöslich in Äther (N.). — Nitrierung: N.; vgl. dazu Le Fèvre, Turner, Soc. 1926, 2046; 1928, 245, 246. — $Ca(C_{16}H_{13}O_4N_2)_2$. Nädelchen (N.).

Bensidin - N - carbonsäureäthylester, [4'- Amino - diphenylyl - (4)] - urethan $C_{15}H_{16}O_2N_2 = H_2N \cdot C_0H_4 \cdot C_0H_4 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Das Hydrochlorid entsteht neben [Diphenylen-(4.4')]-di-urethan (s. u.) aus Benzidin und Chlorameisensäureäthylester (Bd. III, S. 10) in Åther (Schiff, Vanni, A. 258, 370). — Nädelchen (aus Åther). F: 90—91°. Sehr leicht löslich in Alkohol. — $C_{15}H_{16}O_2N_2 + HCl$. Sehr leicht löslich in Alkohol. — $2C_{15}H_{16}O_2N_2 + 2HCl + PtCl_4$. Orangefarbenes Pulver.

Carbonyldibensidin, N.N'-Bis-[4'-amino-diphenylyl-(4)]-harnstoff $C_{25}H_{22}ON_4 = (H_2N \cdot C_5H_4 \cdot C_6H_4 \cdot NH)_2CO$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 220.

S-Bensyl-N-[4'-amino-diphenylyl-(4)]-N'-cyan-isothioharnstoff $C_{s1}H_{18}N_4S = H_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N + C(S \cdot CH_2 \cdot C_6H_4) : N \cdot CN$ bezw. $H_2N \cdot C_6H_4 \cdot C_6H_4 \cdot N : C(S \cdot CH_2 \cdot C_6H_5) \cdot N + CN$. B. Aus Dithiokohlensäure-dibenzylester-cyanimid (Bd. VI, S. 462) und Benzidin in alkoh. Lösung (Fromm, v. Goencz, A. 355, 204). — Schwach gelbe Krystelle (aus Alkohol). Beginnt bei 190°, sich zu zersetzen, ist bei 280° noch nicht geschmolzen. Schwer löslich in heißem Alkohol.

Verbindung $C_{22}H_{24}O_6N_4 = [-CH(OH)\cdot NH\cdot C_6H_4\cdot C_6H_4\cdot C_8H_4\cdot NH\cdot CO_2\cdot C_2H_5]_2$. B. Aus Glyoxal (Bd. I, S. 759) und Benzidin-N-carbonsaureathylester (Schiff, Vanni, A. 258, 373). — Gelbes Pulver.

N - Salicylal - bensidin - N' - carbonsäureäthylester, [4' - Salicylalamino - diphenylyl-(4)]-urethan $C_{22}H_{20}O_2N_2 = HO \cdot C_0H_4 \cdot CH : N \cdot C_0H_4 \cdot C_0H_4 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Aus Salicylaldehyd (Bd. VIII, S. 31) und Benzidin-N-carbonsäureäthylester (s. o.) (Schiff, Vanni, A. 258, 373). — F: 170°. Reichlich löslich in Benzol, weniger in Ather.

 $\begin{array}{ll} \operatorname{Bensidin} \text{-} \operatorname{N.N'} \text{-} \operatorname{dicarbons} \text{aure-diathylester,} & [\operatorname{Diphenylen-(4.4')}] \text{-} \operatorname{di-urethan} \\ \operatorname{C}_{18}\operatorname{H}_{20}\operatorname{O}_4\operatorname{N}_2 &= [-\operatorname{C}_6\operatorname{H}_4\cdot\operatorname{NH}\cdot\operatorname{CO}_2\cdot\operatorname{C}_2\operatorname{H}_5]_2. & B. & \operatorname{Beim} & \operatorname{Kochen} & \operatorname{von} & [\operatorname{Diphenylen-(4.4')}] \text{-} \operatorname{di-urethan} \\ \end{array}$

isocyanat (S. 230) mit Alkohol (SNAPE, Soc. 49, 256). Aus Benzidin und Chlorameisensäureäthylester (S.N.) in Äther, neben Benzidin-N-carbonsäureäthylester (S. 228) (SCHIFF, VANNI, A. 258, 368). — Federförmige Krystalle (aus Alkohol). F: ca. 230° (Zers.) (Sr.); sehr wenig jöslich in Äther, Benzol und in kaltem Alkohol (Sch., V.).

Benzidin-N.N'-dicarbonsäure-diphenylester, [Diphenylen-(4.4')]-bis-carbamidsäurephenylester $C_{26}H_{20}O_4N_2=[-C_6H_4\cdot NH\cdot CO_2\cdot C_6H_5]_2$. B. Aus [Diphenylen-(4.4')]-di-isocyanat (S. 230) und Phenol (SNAPE, Soc. 49, 256). — Tafeln (aus Eisessig). F: 240°. Schwer löslich in den gewöhnlichen Lösungsmitteln.

Benzidin-N.N'-dicarbonsäure-diamid, [Diphenylen-(4.4')]-diharnstoff $C_{14}H_{14}O_{9}N_{4}=$ $[-C_6H_4\cdot NH\cdot CO\cdot NH_2]_2$. B. Aus Benzidin und Harnstoff bei 110—120° unter Entwicklung von Ammoniak (Schiff, B. 11, 833). Aus [Diphenylen-(4.4')]-di-isocyanat (S. 230) und NH₃ in Ather (SNAPE, Chem. N. 73, 37). — Krystalle. Fast in allen Lösungsmitteln unlöslich (SCH.).

[Diphenylen - (4.4')] - bis - [ω - phenyl - harnstoff] $C_{26}H_{22}O_2N_4 = [-C_6H_4\cdot NH\cdot CO\cdot NH\cdot C_6H_5]_2$. B. Durch Zusammengießen einer äther. Lösung von Benzidin mit 2 Mol.-Gew. Phenylisocyanat (Bd. XII, S. 437) (KÜHN, B. 18, 1478). Aus [Diphenylen-(4.4')]-di-isocyanat (S. 230) und Anilin in Äther (SNAPE, Chem. N. 73, 37). — Nadeln (aus Anilin). Schmilzt oberhalb 300°; in den gewöhnlichen Mitteln unlöslich (K.).

Benzidin-N.N'-bis-thiocarbonsäureamid, [Diphenylen-(4.4')]-bis-thioharnstoff $C_{14}H_{14}N_4S_2=[-C_6H_4\cdot NH\cdot CS\cdot NH_2]_2$. B. Beim Erhitzen von [Diphenylen-(4.4')]-di-senföl (S. 230) mit überschüssigem alkoholischem Ammoniak auf 120° (JAFFÉ, B. 27, 1559). — Löslich nur in heißem Nitrobenzol.

[Diphenylen-(4.4')]-bis-[ω -isopropyl-thioharnstoff] $C_{20}H_{20}N_4S_2 = [-C_6H_4\cdot NH\cdot CS\cdot$ $NH \cdot CH(CH_3)_2]_2$

a) Krystallinische Form. B. Aus [Diphenylen-(4A')]-di-senföl und Isopropylamin (Bd. IV, S. 152) in Benzol bei gewöhnlicher Temperatur (JAFFÉ, B. 27, 1559). — Nadeln. F: 170°

b) Amorphe Form. B. Aus [Diphenylen-(4.4')]-di-senföl und Isopropylamin in Benzol auf dem Wasserbade (JAFFÉ, B. 27, 1559). — Amorphes Pulver. Ist bei 300° noch nicht schmelzbar. Löst sich nur in viel heißem Eisessig.

[Diphenylen-(4.4')]-bis-[ω . ω -diisobutyl-thioharnstoff] $C_{30}H_{40}N_4S_3 = \{-C_0H_4\cdot NH\cdot CS\cdot N[CH_2\cdot CH(CH_3)_2]_2\}_2$. B. Aus [Diphenylen-(4.4')]-di-senföl und Diisobutylamin (Bd. IV, S. 166) beim Erwärmen in Benzollösung (Jaffé, B. 27, 1560). — Nädelchen (aus Alkohol). F: 185°.

[Diphenylen-(4.4')]- bis-[ω -isoamyl-thioharnstoff] $C_{24}H_{34}N_4S_2=[-C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_5H_{11}]_2$. B. Aus [Diphenylen-(4.4')]-di-senföl (S. 230) und Isoamylamin in Benzol (Jaffé, B. 27, 1559). — Pulver. Schmilzt noch nicht bei 300°. Unlöslich in Alkohol, Äther und Benzol.

[Diphenylen-(4.4')]-bis-[ω . ω -diisoamyl-thioharnstoff] $C_{34}H_{54}N_4S_3 = [-C_6H_4 \cdot NH \cdot M]$

CS·N(C₅H₁₁)₂]₂.
a) Höherschmelzende Form. B. Aus 3 g [Diphenylen-(4.4')]-di-senföl (S. 230) und 3,5 g Dissomylamin (JAFFÉ, B. 27, 1560; Dissertation [Basel 1894], S. 25). — Nadeln. F: 162°. Leicht löslich in heißem Benzol und in Alkohol.

b) Niedrigerschmelzende Form. B. Eine bei 123-124° schmelzende Form des [Diphenylen-(4.4')]-bis- $[\omega.\omega$ -diisoamyl-thioharnstoffs] wird nach JAFFE (B. 27, 1560; Dissertation [Basel 1894], S. 26) erhalten, wenn man 2 g [Diphenylen-(4.4')]-di-senföl und 1,2 g Diisoamylamin in wenig Benzol zusammenbringt und den nach dem Verdampfen des Benzols hinterbleibenden gummiartigen Rückstand mit Alkohol auszieht. — Krystallinisch. F: 123° bis 124°.

[Diphenylen - (4.4')] - bis - $[\omega$ - allyl - thioharnstoff] $C_{30}H_{33}N_4S_2 = [-C_8H_4\cdot NH\cdot CS\cdot NH\cdot CH_2\cdot CH:CH_3]_3$. B. Aus Benzidin und Allylsenföl (Bd. IV, S. 214) in Alkohol (SCHIFF, B. 11, 833). — Nadeln (aus Alkohol).

[Diphenylen-(4.4')]-bis-[ω -phenyl-thioharnstoff] $C_{se}H_{ss}N_{s}S_{s}=[-C_{s}H_{s}\cdot NH\cdot CS\cdot NH\cdot C_{s}H_{s}]_{s}$. B. Aus Benzidin und Phenylsenföl (Bd. XII, S. 453) in Alkohol (Schiff, B. 11, 833; vgl. Jaffé, B. 27, 1560). — Nadeln (aus einer Mischung von Anilin und Alkohol). Sehr wenig löslich in siedendem Alkohol (Sch.).

[Diphenylen-(4.4')]-bis-[ω -methyl- ω -phenyl-thioharnstoff] $C_{23}H_{26}N_4S_3=[-C_6H_4\cdot$ $NH \cdot CS \cdot N(CH_a) \cdot C_aH_a]_a$. B. Aus [Diphenylen-(4.4')]-di-senfol und Methylanilin (Bd. XII, S. 135) (Jaffé, B. 27, 1561). — Nadeln (aus Benzol + Ligroin).

[Diphenylen-(4.4')]-bis-[ω -o-tolyl-thioharnstoff] $C_{26}H_{40}N_4S_2 = [-C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot CH_2]_2$. B. Aus [Diphenylen-(4.4')]-di-senföl und o-Toluidin in Benzol (Jafff, B. 27, 1559). — Schmilzt noch nicht bei 300°. Löslich in viel Benzol.

[Diphenylen - (4.4')] - bis - [8 - āthyl - N - benzoyl - isothioharnstoff] $C_{22}H_{20}O_2N_4S_3 = [-C_6H_4\cdot NH\cdot C(S\cdot C_2H_5):N\cdot CO\cdot C_6H_5]_s$. B. Aus Dithiokohlensäure-diāthylester-benzoylimid (Bd. IX, S. 224) und Benzidin (Wheeler, Johnson, Am. 26, 415). — Nadeln (aus Alkohol + Benzol). F: 179° (schwache Zersetzung). Schwer löslich in Alkohol.

Bensidin-N.N'-bis-dithiocarbonsäure, [Diphenylen-(4.4')]-bis-dithiocarbamidsäure $C_{14}H_{12}N_2S_4=[-C_4H_4\cdot NH\cdot CS_2H]_2$. B. Das Ammoniumsalz entsteht aus Benzidin in alkoh. Lösung mit Schwefelkohlenstoff (Bd. III, S. 197) und Ammoniak (Losantsch, B. 40, 2974). — $(NH_4)_2C_{14}H_{10}N_2S_4$. Gelbliche Krystalle. Zersetzt sich beim Erhitzen, wird dann wieder fest und schmilzt darauf gegen 240°. — Gibt beim Kochen der wäßr. Lösung H_2S , CS_2 , NH_3 , Diphenylen-bis-thioharnstoff und etwas Benzidin.

N - Carbonyl - benzidin, [4'-Amino - diphenylyl - (4)] - isocyanat, [4'-Amino-diphenylyl-(4)]-carbonimid $C_{13}H_{10}ON_2=H_2N\cdot C_6H_4\cdot C_6H_4\cdot N\cdot CO$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 220.

N-Thiocarbonyl-benzidin, [4'-Amino-diphenylyl-(4)]-isothiocyanat, [4'-Amino-diphenylyl-(4)]-senföl $C_{19}H_{10}N_2S=H_2N\cdot C_6H_4\cdot C_6H_4\cdot N\cdot CS\cdot$. Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1926, 2478. — B. Aus Benzidin und CS₂ in Alkohol (Borodin, Z. 1860, 642; J. 1860, 356; Strakosch, B. 5, 239). — Krystallpulver. Unlöslich in den gewöhnlichen Lösungsmitteln (B.; St.). Unzersetzt löslich in konz. Schwefelsäure (St.).

N.N'-Dicarbonyl-benzidin, [Diphenylen-(4.4')]-di-isocyanat, [Diphenylen-(4.4')]-di-carbonimid $C_{14}H_8O_2N_2=[-C_8H_4\cdot N:CO]_2$. B. Beim Erhitzen von salzsaurem Benzidin bei 230—250° in einem Strome von Phosgen (Bd. III, S. 13); man destilliert das Produkt in einem Strome von Phosgen bei 310° ab (SNAPE, Soc. 49, 255). — Nadeln. F: 122°. Löslich in Äther. — Verbindet sich direkt mit Alkoholen.

N.N'-Bis-thiocarbonyl-benzidin, [Diphenylen-(4.4')]-di-isothiocyanat, [Diphenylen-(4.4')]-di-senföl $C_{14}H_8N_2S_2=[-C_6H_4\cdot N:CS]_2$. B. Bei 2-stdg. Erhitzen von 13 g trocknem Benzidin mit 8 g Thiophosgen auf 180° (Jaffé, B. 27, 1557). Durch Eintragen von Benzidin in die Chloroformlösung von Thiophosgen unter Zusatz von Natronlauge (Gattermann, J. pr. [2] 59, 593). — Nadeln (aus Benzol). F: 203°; leicht löslich in warmem Benzol, schwer in Ather, unlöslich in Alkohol (J.). — Gibt mit Phenylhydrazin die Verbindung $C_{20}H_{16}N_4S_2^{-1}$) (s. bei Phenylhydrazin, Syst. No. 1947) (J.). Läßt sich durch Erhitzen mit Athylmagnesiumbromid in Kohlenstofftetrachlorid und Zersetzen des Reaktionsproduktes mit verd. Schwefelsäure in N.N'-Bis-thiopropionyl-benzidin (S. 228) überführen (Sachs, Loevy, B. 37, 876).

Verbindung $C_{14}H_{11}N_3S_2^{\ 2}$). B. Entsteht neben [Diphenylen-(4.4')]-bis-thioharnstoff beim Einleiten von NH_3 in [Diphenylen-(4.4')]-di-senföl, gelöst in Benzol (Jaffé, B. 27, 1558). — Schuppen (aus Benzol). Schmilzt noch nicht bei 300° .

Verbindung C₁₀H₃₁N₃S₃³). B. Entsteht neben [Diphenylen-(4.4')]-bis-[ω-isoamylthioharnstoff] (S. 229) bei der Einw. von Isoamylamin auf [Diphenylen-(4.4')]-di-senföl in Benzol (JAFFÉ, B. 27, 1559). — F: 148⁶ (unscharf).

Benzidin-N-essigsäurenitril, N-Cyanmethyl-benzidin $C_{14}H_{13}N_3 = H_3N \cdot C_4H_4 \cdot C_4H_4 \cdot NH \cdot CH_3 \cdot CN$. B. Man gibt zu einer Lösung von 1 Mol.-Gew. Benzidin in $70^{\circ}/_{\circ}$ igem Alkohol 1 Mol.-Gew. Formaldehyddisulfitlösung, fügt zu der erhaltenen Lösung der Verbindung $NaC_{13}H_{13}O_3N_2S$ (S. 224) eine wäßr. Lösung von Kaliumcyanid und erwärmt auf 80° (Bucherer, Schwalbe, B. 39, 2806). — Blättchen. F: 142—144°. Sehr leicht löslich in Pyridin, leicht in Alkohol, Methylalkohol und Benzol. — Ist diazotierbar.

Benzidin-N.N'-diessigsäure-dinitril, N.N'-Bis-cyanmethyl-benzidin $C_{1e}H_{1e}N_4 = [-C_eH_4\cdot NH\cdot CH_2\cdot CN]_a$. B. Man setzt 1 Mol.-Gew. Benzidin in Wasser mit 2 Mol.-Gew. Formaldehyddisulfitlösung bei 80—90° um und erwärmt die dabei erhaltene Lösung der Verbindung Na₂C₁₄H₁₄O₆N₂S₂ (S. 224) mit einer wäßr. Lösung von Kaliumcyanid auf 100° (B., Soh., B.

¹⁾ Zur Frage der Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von LE FEVRE, TURNER (Soc. 1926, 2476).

BN·C₆H₄·NH ist sufolge von JAFFÉ für diese Verbindung aufgestellte Formel SC—N(C₅H₁₁)—CS ist sufolge einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von LE FEVRE, TURNER (Soc. 1926, 2476) und nach Privatmitteilungen von TURNER und von KUHN unwahrscheinlich geworden.

39, 2806). — Blättchen. F: 241—242°. Leicht löslich in Pyridin, schwer in Alkohol, Methylalkohol, Aceton, Chloroform und Benzol; wird aus der Pyridinlösung durch warmes Wasser gefällt. — Entwickelt erst nach längerem Kochen mit konz. Natronlauge Ammoniak.

N.N'-Dimethyl-bensidin-N.N'-diessigsäure-dinitril, N.N'-Dimethyl-N.N'-biscyanmethyl-bensidin $C_{18}H_{18}N_4=[-C_6H_4\cdot N(CH_3)\cdot CH_2\cdot CN]_2\cdot B$. Aus N.N'-Dimethylbenzidin (S. 220) und Bromacetonitril (Bd. II, S. 216) oder besser Jodacetonitril (v. Braun, B. 41, 2106). Aus N.N.N'.N'-Tetramethyl-benzidin (S. 221) und Jodacetonitril auf dem Wasserbade (v. B., B. 41, 2143). — Blättchen (aus Chloroform + Alkohol). F: 203°; fast unlöslich in Alkohol (v. B., B. 41, 2106), löslich in Chloroform (v. B., B. 41, 2143).

Benzidin-N.N'-di-[a oder β -isobuttersäure]-diamid $C_{20}H_{20}O_2N_4 = [-C_6H_4 \cdot NH \cdot C(CH_3)_2 \cdot CO \cdot NH_2]_2$ oder $[-C_6H_4 \cdot NH \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH_2]_2$. Zur Konstitution vgl. MULDER, R. 26, 181. — B. Durch Verseifen des Benzidin-N.N'-di-[a-isobuttersäure]-dinitrils (s. u.) (Bucherer, Grolée, B. 39, 1005). — Blättchen (aus Pyridin durch Ligroin + Ather). Schmilzt oberhalb 255° (B., G.).

Benzidin-N.N'-di-[a-isobuttersäure]-dinitril $C_{20}H_{22}N_4=[-C_6H_4\cdot NH\cdot C(CH_3)_2\cdot CN]_2$. Zur Konstitution vgl. MULDER, R. 26, 181. — B. Aus Benzidin und Acetoncyanhydrin (Bd. III, S. 316) (Bucherer, Grolée, B. 39, 1005). — Krystalle (aus Pyridin + Wasser). Unlöslich in kaltem Alkohol, Äther, Benzol und Ligroin; unlöslich in verd. Salzsäure (B., G.).

N-Salicoyl-benzidin $C_{19}H_{16}O_2N_2 = H_2N \cdot C_6H_4 \cdot C_9H_4 \cdot NH \cdot CO \cdot C_6H_4 \cdot OH$. B. Aus Salol (Bd. X, S. 76) und etwas mehr als 1 Mol.-Gew. Benzidin bei 230° (G. COHN, J. pr. [2] 61, 548). — F: oberhalb 250°. — Gibt eine unlösliche Diazoverbindung, die sich mit Phenolen leicht zu Farbstoffen vereinigt.

N.N'-Bis-[4-methoxy-thiobenzoyl]-benzidin, N.N'-Bis-thioanisoyl-benzidin $C_{28}H_{24}O_2N_2S_3 = [-C_6H_4\cdot NH\cdot CS\cdot C_6H_4\cdot O\cdot CH_3]_2$. B. Aus [Diphenylen-(4.4')]-di-senföl (S. 230), Anisol (Bd. VI, S. 138) und AlCl₃ (GATTERMANN, J. pr. [2] **59**, 593). — Gelbe Nadeln (aus Nitrobenzol). F: 302-303°. — Liefert bei der Verseifung Anissäure (Bd. X, S. 154).

N.N'-Bis-[4-äthoxy-thiobenzoyl]-benzidin $C_{30}H_{28}O_2N_3S_4=[-C_6H_4\cdot NH\cdot CS\cdot C_6H_4\cdot O\cdot C_2H_5]_2$. B. Aus [Diphenylen-(4.4')]-di-senföl, Phenetol (Bd. VI, S. 140) und AlCl₃ (Ga., J. pr. [2] 59, 593). — Gelbe Nädelchen (aus Nitrobenzol). F: cs. 293°. — Liefert bei der Verseifung 4-Athoxy-benzoesäure (Bd. X, S. 156).

Benzidin-N.N'-dimalonsäure-tetraäthylester $C_{26}H_{32}O_3N_3=[-C_6H_4\cdot NH\cdot CH(CO_2\cdot C_2H_5)_2]_3$. B. Durch Erhitzen von Bronnalonsäurediäthylester (Bd. II, S. 594) mit Benzidin in wenig Alkohol (Blank, D. R. P. 95268; Frdl. 5, 405; vgl. auch Moir, Chem. N. 86, 278).

Nadeln. F: 137° (B.), 138° (M.). Unlöslich in Wasser, ziemlich schwer löslich in Alkohol und Äther, sehr wenig in Ligroin (B.), leicht in heißem Benzol (M.).

N-Acetoacetyl-benzidin $C_{1e}H_{16}O_2N_2 = H_2N \cdot C_6H_4 \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2 \cdot CO \cdot CH_3 \cdot B$. Durch Einw. von Acetessigester (Bd. III, S. 632) auf Benzidin bei 110—120°, neben N.N'-Bis-acetoacetyl-benzidin (s. u.) (HEIDBICH, M. 19, 700). — Körnige Krystalle. Zersetzt sich gegen 300°. Sehr wenig löslich in Alkohol und Äther; löslich in Säuren und Lauge. FeCl₃ färbt zuerst grünlich, dann violett. — Reduziert Silberlösung. Geht durch Einw. von konz. Schwefelsäure in 2-Oxy-4-methyl-6-[4-amino-phenyl]-chinolin (Syst. No. 3425) über. - C₁₆H₁₆O₂N₂ + HCl. Nädelchen. Sehr wenig löslich in Wasser, leicht in sehr verd. Alkohol. - 2C₁₆H₁₆O₂N₂ + H₂SO₄. Nädelchen. Fast unlöslich in Wasser. - C₁₆H₁₆O₂N₂ + HNO₃. Nadeln.

N.N'-Bis-acetoacetyl-benzidin $C_{30}H_{30}O_4N_5 = [-C_6H_4\cdot NH\cdot CO\cdot CH_3\cdot CO\cdot CH_3]_2$. B. 30 g Benzidin werden im Paraffinbade mit 60—70 g Acetessigester auf 110—120° erwärmt (H., M. 19, 692). — Nadeln. F: 233—235° (Zers.). Sehr wenig löslich in den gewöhnlichen Lösungsmitteln. FeCl₃ färbt bei Gegenwart von Alkohol violett. — Hydroxylamin spaltet unter Rückbildung von Benzidin. Einw. von Phenylhydrazin führt zu dem Monophenylhydrazon CH₃·C(:N·NH·C₆H₅)·CH₂·CO·NH·C₆H₄·C₆H₄·NH·CO·CH₃·CO·CH₃ (Syst. No. 2048). — Na₃C₃₀H₁₈O₄N₃. Nadeln.

Diäthylderivat C₂₄H₂₈O₄N₂ = C₃₀H₁₈O₄N₃(C₃H₅)₃. B. Beim Erhitzen der alkoh. Lösung der Natriumverbindung des N.N. Bis-accetoacctyl-benzidins mit etwas überschüssigem

Athyljodid im Einschmelzrohre auf 100° (H., M. 19, 697). — Nädelchen. Schmilzt oberhalb 300⁸ unter Zersetzung. Sehr wenig löslich in den gewöhnlichen Lösungsmitteln. FeCl₂ färbt

violett.

Dibromderivat $C_{50}H_{18}O_4N_2Br_3$. B. Durch Bromieren des N.N'-Bis-acetoacetylbenzidins in Eisessig (H., M. 19, 696). — Nädelchen. Zersetzt sich gegen 250°.

N.N'-Bis-[a-cyan-bensal]-bensidin, [Diphenylen-(4.4')]-bis-[(μ -cyan-asomethin)-phenyl] $C_{28}H_{18}N_4 = [-C_6H_4\cdot N:C(CN)\cdot C_6H_5]_2$. B. Durch Oxydation von N.N'-Bis-[a-cyan-

benzyl]-benzidin (Syst. No. 1905) mit KMnO₄ (Sachs, Goldmann, Lewin, B. 35, 3349). — Gelbe Nadeln. F: 252° .

N.N'-Bis-[2-carboxy-bensal]-bensidin bezw. N.N'-Di-[phthalidyl-(3)]-bensidin $C_{28}H_{20}O_4N_2=[-C_6H_4\cdot N:CH\cdot C_6H_4\cdot CO_2H]_2$ bezw. $\begin{bmatrix} -C_6H_4\cdot NH & HC \\ O & CO \end{bmatrix}_2$ (vgl. Glogauer, B. 29, 2036). B. Bei kurzem Kochen einer wäßr. Lösung von 1 Mol.-Gew. Benzidin mit 2 Mol.-Gew. Phthalaldehydsäure (Bd. X, S. 666) (Allendorff, B. 24, 2351). — Pulveriger Niederschlag. Zersetzt sich bei 290°; unlöslich in den gewöhnlichen Lösungsmitteln, löslich in heißem Nitrobenzol; löslich in kalter Sodalösung (A.). Das Calciumsalz spaltet beim Kochen mit Wasser Benzidin ab (A.).

Benzidinderivat der Campheroxalsäure $C_{24}H_{16}O_3N_3=C_0$ C_8H_{14} $C_1C_2C_3H_1:N\cdot C_8H_4\cdot C_8H_4\cdot NH_3$ bezw. desmotrope Formen. B. Durch Einw. von Benzidin auf Campheroxalsäure (Bd. X, S. 796) in heißem Alkohol (J. B. TINGLE, HOFFMAN, Am. 34, 250). — Krystallpulver. F: 190°.

N.N'-Bis-[3.4-dimethoxy-2-carboxy-bensal]-bensidin bezw. N.N'-Bis-[6.7-dimethoxy-phthalidyl-(3)]-bensidin $C_{23}H_{26}O_8N_3=[-C_6H_4\cdot N:CH\cdot C_6H_2(0\cdot CH_3)_2\cdot CO_3H]_3$ bezw. $\begin{bmatrix} -C_6H_4\cdot NH \cdot CH \\ O & CO \end{bmatrix} C_6H_3(0\cdot CH_3)_2 \end{bmatrix}_3$. B. Bei kurzem Kochen von 2 Mol.-Gew. Opiansäure (Bd. X, S. 990) mit 1 Mol.-Gew. Benzidin und Wasser (Bistreyori, B. 21, 2522). — Nadeln. Schmilzt noch nicht bei 320°; unlöslich in den gewöhnlichen Lösungsmitteln (B., B. 21, 2522). Langsam löslich in verdünnter kalter Alkalicarbonatlösung (B., B. 24, 2351 Anm.).

N.N'-Bis-[6-brom-3.4-dimethoxy-2-carboxy-bensal]-bensidin bezw. N.N'-Bis-[4-brom-6.7-dimethoxy-phthalidyl-(3)]-bensidin $C_{22}H_{26}O_{9}N_{2}Br_{2}=[-C_{6}H_{4}\cdot N:CH\cdot C_{6}HBr(O\cdot CH_{3})_{2}\cdot CO_{2}H]_{2}$ bezw. $\begin{bmatrix} -C_{6}H_{4}\cdot NH\cdot CH \\ O & CO \end{bmatrix} C_{6}HBr(O\cdot CH_{3})_{2} \cdot B.$ Beim Kochen der konzentrierten wäßrigen Lösungen von 2 Mol.-Gew. Bromopiansäure (Bd. X, S. 995) und 1 Mol.-Gew. Benzidin (Tust, B. 25, 2001). — Nadeln. Unlöslich. Schmilzt noch nicht bei 300°. Leicht löslich in Sodalösung.

N.N'-Bis-[2-amino-bensyl]-bensidin $C_{20}H_{20}N_4 = [-C_0H_4\cdot NH\cdot CH_3\cdot C_0H_4\cdot NH_2]_3$. B. Bei der Reduktion von N.N'-Bis-[2-nitro-benzyl]-benzidin (S. 223) mit Zinkstaub und Eisessig bei 20° (Francis, B. 29, 1451). — Krystalle (aus Chloroform). F: 185°. Schwer löslich in Alkohol und Benzol.

N.N'-Bis-[4-amino-bensyl]-bensidin $C_{10}H_{10}N_4 = [-C_0H_4\cdot NH\cdot CH_4\cdot C_0H_4\cdot NH_2]_3$. B. Bei der Reduktion des aus Benzidin und 4-Nitro-benzylchlorid entstehenden, nicht näher beschriebenen Bis-[4-nitro-benzyl]-benzidins mit Zinn und Salzsäure (Dahl & Co., D. R. P. 50783, 53282; Frdl. 2, 463, 465). — Amorph. Ziemlich leicht löslich in Alkohol, sehwer in Wasser. — Hydrochlorid und Sulfat sind in Wasser leicht löslich.

Bis - [4' - amino - diphenylyl - (4)] - amin $C_{24}H_{51}N_3 = (H_2N \cdot C_2H_4 \cdot C_6H_4)_5NH$. B. Beim Erhitzen von Benzidin mit seinem Hydrochlorid auf 280—300° unter gutem Rühren in einer Leuchtgasatmosphäre (Merz, Strasser, J. pr. [2] 61, 103). — Blättchen. Schmilzt im zugeschmolzenen Röhrchen bei 220—221°. Kp₃: 370—390°. Ist mit überhitztem Wasserdampf flüchtig. Leicht löslich in heißem Anlin, schwer in heißem Benzol und Alkohol. Färbt sich an der Luft, besonders beim Erwärmen braun. Die Salze sind in Wasser sehr wenig löslich. — $C_{24}H_{51}N_2 + 2HCl$. B. Aus der heißen Benzollösung der Base durch verdünnte Salzsäure. Flockiger, dann körnig werdender gelblicher Niederschlag.

N-Bensolsulfonyl-bensidin $C_{18}H_{16}O_2N_1S=H_1N\cdot C_2H_4\cdot C_3H_4\cdot C_4H_4\cdot NH\cdot SO_2\cdot C_2H_3$. B. Entsteht neben N.N'-Dibenzolsulfonyl-benzidin (S. 233) beim Schütteln von 1 Mol.-Gew. Bensidin mit 2 Mol.-Gew. Benzolsulfochlorid (Bd. XI, S. 34) und mäßig konzentrierter Natronlauge; man übersättigt schwach mit Salzsäure und behandelt den gewaschenen Niederschlag mit mäßig konzentrierter heißer Salzsäure, welche Benzolsulfonyl-benzidin (neben unverändertem Benzidin) aufnimmt (Hussaure, A. 272, 231). Durch 1-stdg. Erhitzen von 4'-Nitro-4-benzol-

sulfamino-diphenyl (Bd. XII, S. 1321) mit Eisenfeile und stark verdünnter Essigsäure (Morgan, Hird, Soc. 91, 1508). — Nadeln (aus verd. Alkohol). F: 160—161° (Hin.), 165° (M., Hird). Leicht löslich in Alkohol (Hin.; M., Hird); leicht löslich in Natronlauge (Hin.).

N-β-Naphthalinsulfonyl-bensidin $C_{99}H_{18}O_{9}N_{9}S = H_{2}N \cdot C_{6}H_{4} \cdot C_{6}H_{4} \cdot NH \cdot SO_{6} \cdot C_{10}H_{7}$. B. Man kocht 4'-Nitro-4-[β-naphthalinsulfamino]-diphenyl (Bd. XII, S. 1321) mehrere Stunden mit Eisen und verd. Salzsäure (Morgan, Micklethwait, Soc. 93, 618. Aus Benzidin und β-Naphthalinsulfochlorid (Bd. XI, S. 173) in Pyridin (Mo., Mi.). — Nadeln (aus Benzol). F: 185—186°.

N.N'-Dibenzolsulfonyl-benzidin $C_{24}H_{30}O_4N_2S_2=[-C_6H_4\cdot NH\cdot SO_2\cdot C_6H_5]_2$. B. s. im Artikel N-Benzolsulfonyl-benzidin (S. 232). — Krystallinisch. F: 2326 (HINSBERG, A. 272, 231), 234,56 (WILLSTÄTTER, KALB, B. 37, 3772, Anm. 3). Sehr schwer löslich in dem üblichen Lösungsmitteln, löslich in heißem Eisessig (H.). Die Lösung in konz. Schwefelsäure gibt mit Oxydationsmitteln eine carminrote Färbung, die beim Verdünnen verschwindet (W., K., B. 37, 3772).

N.N'-Di-p-toluolsulfonyl-benzidin $C_{36}H_{24}O_4N_2S_3 = [-C_6H_4\cdot NH\cdot SO_3\cdot C_6H_4\cdot CH_3]_3$. B. Aus Benzidin, p-Toluolsulfochlorid und Natronlauge auf dem Wasserbade (WILLSTÄTTER, KALB, B. 37, 3772). — Krystallblätter (aus Aceton durch Wasser). F: 243°. Sehr leicht löslich in Aceton. Die konzentrierte schwefelsaure Lösung gibt mit Oxydationsmitteln eine tiefbraunrote Färbung.

N-Bensolsulfonyl-N-methyl-bensidin $C_{10}H_{10}O_3N_2S = H_2N \cdot C_4H_4 \cdot C_4H_4 \cdot N(CH_2) \cdot SO_4 \cdot C_4H_5$. B. Man reduziert 4'-Nitro-4-[benzolsulfonyl-methyl-amino]-diphenyl (Bd. XII, S. 1321) durch $\frac{1}{2}$ -stdg. Erwärmen mit Eisenfeile und sehr verd. Essigsäure (Morgan, Hird, Soc. 91, 1508). — Nadeln (aus verd. Alkohol). F: 134—135°.

N.N'-Dibensolsulfonyl-N.N'-dimethyl-bensidin $C_{36}H_{34}O_4N_5S_5 = [-C_6H_4 \cdot N(CH_5) \cdot SO_4 \cdot C_6H_5]_2$. B. Durch Erhitzen von N.N'-Dibenzolsulfonyl-benzidin (s. o.) mit Methyljodid, Natronlauge und Methylalkohol im geschlossenen Rohr auf 100° (HINSBERG, A. 272, 232; B. 38, 554). — Krystalle (aus Alkohol). F: 189—190° (H., B. 38, 554; WILLSTÄTTER, KALB, B. 37, 3772 Anm. 3). Die Lösung in konz. Schwefelsäure gibt mit Oxydationsmitteln eine carminrote Färbung, die beim Verdünnen verschwindet (W., K., B. 37, 3772).

N.N'-Di-p-toluolsulfonyl-N.N'-dimethyl-benzidin $C_{28}H_{28}O_4N_8S_2 = [-C_6H_4 \cdot N(CH_3) \cdot SO_2 \cdot C_6H_4 \cdot CH_3]_2$. B. Aus N.N'-Di-p-toluolsulfonyl-benzidin (8. 0.) in waßr. Aceton durch Dimethylsulfat und Natronlauge (W., K., B. 37, 3772). — Blättchen (aus Eisessig). F: 235° (unscharf). Unlöslich in den gewöhnlichen Lösungsmitteln, ziemlich schwer löslich in heißem Eisessig.

 $N-\beta-Naphthalinsulfonyl-N-äthyl-benzidin <math>C_{24}H_{39}O_3N_2S=H_4N\cdot C_6H_4\cdot C$

N.N'-Dithionyl-benzidin $C_{18}H_8O_2N_8S_8=[-C_6H_4\cdot N:SO]_2$. B. Durch Kochen von Benzidin oder salzsaurem Benzidin mit Thionylchlorid und Benzol (MICHARLIS, HERZ, B. 24, 753; A. 274, 264). — Rote Nadeln. F: 82° (M.). Schwer löslich in kaltem Benzol, leicht in Chloroform. — Wird von Wasser rasch zersetzt.

Benzidin-N-sulfonsäure $C_{12}H_{12}O_3N_2S=H_2N\cdot C_6H_4\cdot C_6H_4\cdot NH\cdot SO_3H$. B. Beim Erhitzen von Azobenzol (Syst. No. 2092) mit Alkohol und viel (NH₄)HSO₃ im geschlossenen Rohr auf 100° (A. SPIEGEL, B. 18, 1481). Aus Azobenzol und (NH₄)₂SO₃ bei 100—110° im Autoklaven unter 2 Atmosphären (Bucheber, Sonnenburg, J. pr. [2] 81, 8, 33). — Gelatinöse Masse. — Konz. Schwefelsäure erzeugt Benzidinsulfat (A. Sr.). — Ammoniumsalz. Blättohen (B., So.). — NaC₁₂H₁₁O₅N₂S + H₂O. Krystalle (aus verd. Natronlauge). Ziemlich schwer löslich in Wasser (B., So.).

N.N'-Dinitroso-N.N'-diäthyl-bensidin $C_{16}H_{18}O_2N_4=[-C_6H_4\cdot N(N0)\cdot C_9H_5]_2$. B. Durch Einw. von Natriumnitrit auf die Lösung von N.N'-Diäthyl-benzidin (S. 222) in der fünffschen Menge verdünnter Salzsäure (Bamberger, Tichwinski, B. 35, 4184). — Gelbe Blättchen. F: 162,5—163,5°. Ziemlich leicht löslich in siedendem Eisessig, sehwer in siedendem Ligroin.

N.N'-Dinitroso-N.N'-bis-[2-nitro-bensyl]-benzidin $C_{26}H_{80}O_6N_6=[-C_6H_4\cdot N(NO)\cdot CH_4\cdot C_6H_4\cdot NO_2]_2$. B. Man behandelt N.N'-Bis-[2-nitro-benzyl]-benzidin (S. 223) mit konz. Salzsaure, suspendiert das salzsaure Salz in eiskaltem Wasser und versetzt mit der wäßr. Lösung der berechneten Menge Kaliumnitrit (Francis, B. 29, 1452). — Gelbes Krystall-pulver (aus Nitrobenzol + Alkohol). F: 204°. Wenig löslich in heißem Eisessig.

Substitutionsprodukte des Benzidins.

- 2.2'-Dichlor-bensidin C₁₂H₁₆N₂Cl₂ = H₂N·C₆H₂Cl·C₆H₂Cl·NH₂. B. Beim Erwärmen von 3.3'-Dichlor-hydrazobenzol (Syst. No. 2068) mit Salzsäure (Laubenheimer, B. 8, 1625). Beim Behandeln von 3.3'-Dichlor-azobenzol (Syst. No. 2092) mit SnCl₂ in der Kälte (G. SCHULTZ, B. 17, 465). Prismen (aus Alkohol). F: 166,8° (korr.); ziemlich leicht löslich in Alkohol, sehr leicht in Äther, fast unlöslich in Wasser (L.). Verwendung zur Darstellung eines roten Diazofarbstoffs: Bayer & Co., D. R. P. 196989; Frdl. 9, 313; C. 1908 I, 1507. C₁₂H₁₀N₂Cl₂ + 2 HCl. Blättchen (aus Wasser). Ziemlich löslich in Wasser (L.). C₁₂H₁₀N₂Cl₂ + 2 HCl. Niederschlag. Sehr schwer löslich in Wasser, zersetzt sich beim Kochen (L.).
- 3.3'-Dichlor-benzidin C₁₃H₁₀N₂Cl₂ = H₂N·C₆H₃Cl·C₆H₂Cl·NH₂. B. Man chloriert N.N'-Diacetyl-benzidin, in verd. Schwefelsäure fein verteilt, durch Zugabe von Chlorkalk oder anderen Hypochloriten und verseift das Reaktionsprodukt durch Kochen mit Salzäure (Levinstein, D. R. P. 94410; C. 1898 I. 295). Man chloriert N.N'-Diacetyl-benzidin, in Wasser oder Salzlösung fein verteilt, durch Einleiten von Chlor und verseift das Reaktionsprodukt durch Kochen mit 50°/piger Schwefelsäure (Le., D. R. P. 97101; C. 1898 II, 522). Man reduziert o-Chlor-nitrobenzol (Bd. V, S. 241) in alkoh. Lösung mit Zinkstaub und Natronlauge zur Hydrazoverbindung (Syst. No. 2068) und behandelt diese mit heißer konsentzierter Salzsäure (P. Cohn, B. 33, 3552). Nadeln (aus Alkohol oder Benzol). F: 132—133° (P. Co.), 133° (Le., D. R. P. 94410). Fast unlöslich in Wasser, leicht löslich in Alkohol, Benzol und Eisessig (Le., D. R. P. 94410). Läßt sich durch Diazotierung in schwefelsaurer Lösung und Erwärmen des Produktes mit konz. Schwefelsäure mit geringer Ausbeute in 3.3'-Dichlor-4.4'-dioxy-diphenyl (Bd. VI, S. 992) überführen; diazotiert man hingegen in salzsaurer Lösung und zersetzt die Diazoverbindung durch Erhitzen oder durch Eintragen in siedende verdünnte Schwefelsäure, so entsteht die Verbindung CalH₁₂O₂Cl₄ (s. u.) (CAIN, Soc. 83, 690, 691). Verwendung zur Darstellung von Azofarbstoffen: Schwitz, Tab. No. 356, 357, 358. C₁₈H₁₆N₂Cl₂ + 2 HCl. Nädelohen. Schwer löslich in Seidendem Wasser (P. Co.).

Verbindung $C_{24}H_{14}O_3Cl_4$. B. Man diazotiert 3.3'-Dichlor-benzidin in salzsaurer Lösung und zersetzt durch Erhitzen oder durch Eintragen in siedende verdünnte Schwefelsäure (CAIN, Soc. 83, 690). — Rotbraunes, amorphes, unschmelzbares Pulver. Unlöslich in den gebräuchlichen Lösungsmitteln; unlöslich in Säuren und Alkalien. — Wird durch die gebräuchlichen Reduktionsmittel nicht angegriffen.

N.N°-Dibensoyl-8.3′-dichlor-bensidin $C_{26}H_{16}O_{2}N_{2}Cl_{2} = [-C_{6}H_{5}Cl\cdot NH\cdot CO\cdot C_{6}H_{5}]_{2}$. Nadeln (aus Xylol). F: 265° (P. COHN, B. 33, 3554).

- 3.5.8'.5'-Tetrachlor-bensidin $C_{12}H_2N_1Cl_4 = H_2N \cdot C_4H_2Cl_2 \cdot C_4H_2Cl_2 \cdot NH_2$. B. Beim Leiten von Chlor in eine Suspension von 50 g salzsaurem Benzidin in 1 l konz. Salzsaure (Schlenk, A. 368, 334). Nädelchen aus (Toluol + Alkohol). F: 226—227,5°. Ziemlich leicht löslich in heißem Benzol, schwer in Alkohol, fast unlöslich in Äther und Ligroin.
- N.N.N'.N'-Tetraacetyl-3.5.3'.5'-tetrachlor-bensidin $C_{sp}H_{1e}O_{s}N_{2}Cl_{e} = [-C_{s}H_{1}Cl_{2}\cdot N(CO\cdot CH_{2})_{2}]_{2}$. B. Beim Kochen von 3.5.3'.5'-Tetrachlor-benzidin mit Eisessig und Essigsaureanhydrid (SCHLENK, A. 363, 335). Nadeln (aus Eisessig). F: 265—266°.
- 2.2'-Dibrom-bensidin $C_{13}H_{10}N_3Br_3=H_2N\cdot C_4H_3Br\cdot C_4H_3Br\cdot NH_3$. B. Beim Kochen von 3.3'-Dibrom-hydrazobenzol (Syst. No. 2068) mit konz. Salzsäure (Gabriel, B. 9, 1407). Kryställchen. F: 151,5—152°. Leicht löslich in Äther, Benzol, heißem Alkohol, mäßig löslich in kaltem Alkohol, schwer in CS_2 . $C_{12}H_{10}N_3Br_3+2HCl$. Schuppen. $C_{12}H_{10}N_3Br_3+2HCl$. + $2HCl+PtCl_4$.
- 3.3'-Dibrom-bensidin $C_{12}H_{10}N_2Br_2 = H_2N\cdot C_6H_2Br\cdot C_6H_2Br\cdot NH_2$. B. Das Diacetylderivat entsteht beim Durchleiten eines Brom-Luftgemisches durch eine kalte wäßr. Suspension von N.N'-Diacetyl-benzidin in Gegenwart von Eisen oder beim Zufügen von NaOBr-Lösung zu einer Suspension von N.N'-Diacetyl-benzidin in verd. Schwefelsäure; man verseift mit siedender $50^{\circ}/_{\circ}$ iger Schwefelsäure (Levinstein, D. R. P. 97101; C. 1898 II, 522). F: 103° bis 104°. Unlöslich in Wasser, leicht löslich in Alkohol und Benzol. Färbt sich an der Luft stark dunkel.
- 8.5.8'.5'-Tetrabrom-bensidin $C_{12}H_2N_3Br_4 = H_2N \cdot C_2H_2Br_2 \cdot C_3H_2Br_2 \cdot NH_2$. B. Man trägt Brom in eine Lösung von 1 Tl. Bensidin in 25 Tln. Bromwasserstoffsäure ein (CLAUS, RISLER, B. 14, 86). Man löst 50 g salzsaures Bensidin in 1 Liter konz. Salzsäure, versetzt

mit der berechneten Menge (8 At.-Gew.) Brom, läßt 2 Tage stehen, gibt noch 10 ccm Brom hinzu und läßt noch 24 Stdn. stehen (Schlenk, A. 363, 335). Beim Behandeln einer heißen alkoh. Lösung von Azobenzol mit Brom (Mills, Soc. 65, 54; vgl. Werigo, A. 165, 200). — Nädelchen (aus Xylol). Sublimierbar (Cl., Ri.). F: 284—286° (Cl., Ri.), 288° (Sch.). Unlöslich in Atter, sehr wenig löslich in Alkohol; ziemlich leicht löslich in heißem Benzol (Sch.); unlöslich in Wasser und Säuren (CL., RI.). — Behandelt man 3.5.3'.5'-Tetrabrom-benzidin, suspendiert in verd. Schwefelsäure, mit gasförmiger salpetriger Säure unter Kühlung, bis Lösung erfolgt, so entsteht das saure Tetrabromdiphenylbisdiazoniumsulfat (Syst. No. 2197) (Jacobson, A. 367, 346). Über ein durch einseitige Diazotierung erhaltenes Produkt der Zusammensetzung C₁₂H₅N₃Br₄ vgl.: Vaubel, Scheuer, C. 1906 I, 936.

N.N.N'.N'-Tetraacetyl-3.5.3'.5'-tetrabrom-benzidin $C_{20}H_{16}O_4N_2Br_4 = [-C_6H_2Br_2\cdot N(CO\cdot CH_3)_2]_3$. B. Beim Kochen von 3.5.3'.5'-Tetrabrom-benzidin mit 6 Tln. Essigsäureanhydrid (Mills, Soc. 65, 55). — Nadeln (aus Benzol). Schmilzt gegen 306°. Unlöslich in Äther und Petroläther, leicht löslich in Chloroform und CS.

2-Nitro-benzidin $C_{12}H_{11}O_2N_3 = H_2N\cdot C_0H_4\cdot C_0H_3(NO_2)\cdot NH_2$. B. Beim Versetzen einer auf 10—20° gehaltenen Lösung von 28,2 g Benzidinsulfat in 300 g konz. Schwefelsäure mit 10,1 g Kaliumnitrat (Täuber, B. 23, 796). Man nitriert 16 g N.N-Phthalyl-benzidin C₆H₄<CO>N·C₆H₄·C₆H₄·NH₃ (Syst. No. 3218) in 160 ccm konz. Schwefelsäure mit einer Lösung von 5 g Kaliumnitrat in konz. Schwefelsäure bei —10° und verseift dann das hierbei erhaltene N.N-Phthalyl-2-nitro-benzidin (Syst. No. 3218) durch mehrtägiges Stehenlassen mit überschüssigem Ammoniak im geschlossenen Gefäß bei Zimmertemperatur; daneben entsteht eine Substanz vom Schwefelskingen der Schwefelskingen Gemisch aus 2-Nitro-, sehr wenig, wenn überhaupt 3-Nitro- und 2.3'-Dinitro-benzidin) (LE Fèvre, Turner, Soc. 1926, 2046; 1928, 245, 246; vgl. dazu Koller, B. 87, 2882). — Chromsāureāhnliche, rote Nadeln. F: 140—141° (Le F., Tu., Soc. 1928, 250), 143° (Tău.). — Verwendung zur Darstellung von Disazofarbstoffen: Ges. f. chem. Ind., D. R. P. 72867, 77160; Frdl. 8, 643; 4, 709; Kalle & Co., D. R. P. 87484, 92311, 166980; Frdl. 4, 710, 711; 8, 628. — C₁₂H₁₁O₂N₃+ $H_2SO_4 + \frac{1}{2}H_2O$. Gelbliche Krystalle (aus Wasser) (Täu.).

N-[2-Nitro-4'-amino-diphenylyl-(4)]-phthalamidsäure $C_{30}H_{18}O_5N_3 = H_2N \cdot C_6H_4 \cdot C_6H_3(NO_2) \cdot NH \cdot CO \cdot C_6H_4 \cdot CO_2H$. B. Beim Kochen von N.N-Phthalyl-2-nitro-benzidin (Syst. No. 3218) mit verd. Sodalösung (Koller, B. 37, 2883; vgl. dazu Le Fèvee, Turner, Soc. 1928, 246). — Orangegelbe Nadeln (aus verd. Alkohol). F: 140°. Sehr leicht löslich in kalter Soda.

N.N'-Di-p-toluolsulfonyl-2-nitro-bensidin $C_{2e}H_{32}O_{e}N_{3}S_{2}=CH_{2}\cdot C_{e}H_{4}\cdot SO_{2}\cdot NH\cdot C_{e}H_{4}\cdot C_{e}H_{4}\cdot NO_{2}\cdot NH\cdot SO_{2}\cdot C_{e}H_{4}\cdot CH_{3}$. B. Aus 2-Nitro-benzidin und p-Toluolsulfochlorid (Akt.-Ges. f. Anilinf., D. R. P. 135016; C. 1902 II, 1165). — F: 164°.

3-Nitro-bensidin $C_{12}H_{11}O_2N_3=H_2N\cdot C_2H_4\cdot C_4H_2(NO_2)\cdot NH_2$. B. Bei der Reduktion einer Suspension von 3.4'-Dinitro-4-amino-diphenyl (Bd. XII, S. 1321) in alkoholisch-Wäßrigem Ammoniak durch Einleiten von Schwefelwasserstoff unter Kochen (LE FRVRE, TURNER, Soc. 1928, 246, 253). — Rote Krystalle (aus Alkohol). F: 208—210°. In Alkohol fast unlöslich.

2.2'-Dinitro-benzidin $C_{12}H_{10}O_4N_4=H_2N\cdot C_6H_3(NO_2)\cdot C_6H_3(NO_2)\cdot NH_2$. B. Man versetzt eine auf 10—20° gehaltene Lösung von 28,2 g Benzidinsulfat in 300 g konz. Schwefelsäure allmählich mit 20,2 g Kaliumnitrat; nach mehrstündigem Rühren gießt man das Reaktionsprodukt in die 3-fache Menge Wasser, filtriert und übersättigt das Filtrat mit Soda oder Ammoniak (Täuber, B. 23, 795). Eine weitere Bildung s. im Artikel 2.3 'Dinitro-benzidin.

— Gelbe Blättchen (aus Alkohol). F: 214° (T., B. 23, 795). — Liefert bei der Reduktion mit 3°/oigem Natriumamalgam in Methylalkohol (T., B. 24, 3087) oder bei der elektrolytischen Reduktion in fast siedender, alkoholischer, Natriumacetat enthaltender Lösung (ULLMANN, DIETERLE, B. 37, 28) Diaminophenazon (s. nebenstehende Formel) (Syst. No. 3744). Bei der Reduktion mit Zinn und Salzsäure entsteht

2.4.2'.4'-Tetraamino-diphenyl (S. 338) (T., B. 23, 797). Verwendung zur Darstellung von schwarzen Schwefelfarbstoffen: Epstein, D. R. P. 125699; C. 1901 II, 1030.

N.N.N'.N'-Tetramethyl-2.2'-dinitro-bensidin $C_{16}H_{18}O_4N_4 = [-C_6H_8(NO_2)\cdot N(CH_3)_2]_2$.

B. Beim allmählichen Versetzen einer Lösung von 1 Mol.-Gew. N.N.N'.N'-Tetramethylbenzidin (S. 221) in konz. Schwefelsäure mit 2 Mol.-Gew. Kaliumnitrat (Epstein, D. R. P. 126165; C. 1901 II, 1375). Beim Behandeln einer Lösung von N.N.N'.N'-Tetramethylbenzidin in konz. Schwefelsäure mit einem Gemisch aus konz. Salpetersäure und konz. Schwefelsäure bei 0° (ULIMANN, DIETERLE, B. 37, 29). — Granatrote Nadeln (aus Xylol). F: 229,5° (U., D.), 231° (E., D. R. P. 126165). Leicht löslich in Chloroform und Pyridin, schwer in Alkohol und Benzol, unlöslich in Wasser, Ather und Ligroin (U., D.). — Läst sich durch allmähliches Zugeben zu einer wäßr. Lösung von SnCl₂ in rauchender Salzsäure in 2.2'-Diamino-4.4'-bis-dimethylamino-diphenyl (S. 339) überführen (U., D.). Bei der elektrolytischen Reduktion in siedender, alkoholischer, Natriumacetat enthaltender Lösung entsteht Bis - dimethylamino - phenazon (s. nebenstehende Formel) (Syst. No. 3744) (U., D.). Durch (CH₂)₂N° N(CH₃)₂ Erhitzen mit einer wäßrig-alkoholischen Schwefelnatriumlösung entsteht Bis-dimethylamino-phenazon) (U., D.). Verwendung zur Darstellung von Schwefelfarbstoffen: E., D. R. P. 126165. Nitrierung und Verwendung des hierbei entstandenen höher nitrierten Produktes zur Darstellung von Schwefelfarbstoffen: E., D. R. P. 131874; O. 1902 II, 172.

N.N.N'.N'-Tetraäthyl-2.2'-dinitro-bensidin $C_{20}H_{20}O_4N_6=[-C_5H_2(NO_2)\cdot N(C_2H_5)_2]_2$. B. Beim Versetzen einer Lösung von 1 Mol.-Gew. N.N.N'.N'-Tetraäthyl-benzidin (S. 222) in konz. Schwefelsäure mit 2 Mol.-Gew. Kaliumnitrat (Erstein, D. R. P. 126165; C. 1901 II, 1375). Beim Behandeln einer Lösung von N.N.N'.N'-Tetraäthyl-benzidin in konz. Schwefelsäure mit einem Gemisch aus konz. Salpetersäure und konz. Schwefelsäure bei 0° (ULIMANN, DIETRELE, B. 37, 34). — Rote Nadeln (aus Alkohol). F: 114° (E.), 132° (U., D.). Leicht löslich in heißem Alkohol, Benzol und Eisessig, sehr wenig in Äther und Ligroin (U., D.). Liedert bei der elektrolytischen Reduktion in siedender, alkoholischer, Natriumacetat enthaltender $(C_2H_5)_2N^*$. $N(C_2H_5)_2$ Lösung Bis-diäthylamino-phenazon (s. nebenstehende Formel) (Syst. No. 3744) (U., D.).

2.3'-Dinitro-bensidin C₁₂H₁₀O₄N₄ = H₂N·C₂H₃(NO₂)·C₂H₃(NO₃)·NH₂. Zur Formulierung vgl. Le Fèvee, Turner, Soc. 1926, 1760. — B. Man nitriert N.N.N'.N'-Diphthalylbensidin (Syst. No. 3218) mit roter rauchender Salpetersäure, fällt das Reaktionsprodukt durch Verdünnen mit Wasser und verseift es nun durch 20 Minuten währendes Erwärmen mit kons. Schwefelsäure auf 130°; nach dem Erkalten gießt man in Wasser (v. Bamdrowski, B. 17, 1182; M. 8, 471); das ausgefällte Produkt ist unreines 2.3'-Dinitro-bensidin (Le Fèvee, Moie, Turner, Soc. 1927, 2331); das schwefelsaure Filtrat wird mit überschüssigem Ammoniak versetzt und der entstandene Niederschlag in verd. Salzsäure gelöst (v. B.); läßt man die salzsaure Lösung über Nacht stehen, so scheidet sich abermals unreines 2.3'-Dinitro-bensidin ab (Cain, Coulthard, Micklethwait, Soc. 101 [1912], 2303; Le F., M., T.); wird dieses abfiltriert und nunmehr das salzsaure Filtrat mit Ammoniak neutralisiert, so entsteht eine Fällung, die fast nur aus 2.2'-Dinitro-bensidin besteht (Ca., Cou., M.). Das unreine 2.3'-Dinitro-benzidin enthält noch 2—3°/, 3.3'-Dinitro-bensidin; sur völligen Reinigung krystallisiert man es aus Phenol-Alkohol um (Le F., M., T.). — Tiefrote Nadeln (aus Phenol-Alkohol). F: 236—237° (unkorr.) bezw. 243—244° (korr.) (Le F., M., T.). Löslich in heißem Alkohol (v. B.; Le F., T.).

3.8'-Dinitro-bensidin $C_{12}H_{10}O_4N_4=H_2N\cdot C_0H_0(NO_4)\cdot C_0H_0(NO_4)\cdot NH_4$. B. Beim Kochen von N.N'-Diacetyl-3.3'-dinitro-benzidin mit kons. Kalilauge (Strakosch, B. 5, 237; Bruhher, Witt, B. 20, 1024; vgl. Le Fèvre, Turner, Soc. 1926, 1759). — Rote Nadeln (aus Phenol). F: 275° (Cain, Coulthard, Micklethwait, Soc. 101 [1912], 2301), 281—282° (korr.) (Le Fèvre, Moir, Turner, Soc. 1927, 2334). Unlöslich in Wasser, sehr schwer löslich in Alkohol, leichter in Phenol (B., W.), löslich in Åther (Sr.). — Liefert bei der Reduktion mit Zinnehlorür und Salzsäure auf dem Wasserbade 3.4.3'.4'-Tetraamino-diphenyl (S. 340) (B., W.). Läßt sich durch Diazotierung und Verkochen der Diazoverbindung mit Alkohol in 3.3'-Dinitro-diphenyl (Bd. V, S. 584) überführen (B., W.). Verwendung zur Darstellung von Schwefelfarbstoffen: Soc. St. Denis, D. R. P. 82748, 91720; Frdl. 4, 1052, 1054; Bayer & Co., D. R. P. 201834; C. 1908 II, 1141. — $C_{12}H_{12}O_4N_4 + HCl$. Dunkelgelbe Blättchen. Verliert beim Erwärmen oder beim Behandeln mit Wasser alle Salzsäure (St.).

N.N.N'.N'-Tetramethyl - 8.8' - dinitro - bensidin ') $C_{16}H_{19}O_4N_4 = [-C_6H_6(NO_2)\cdot N(CH_2)_2]_2$. B. Bei der Einw. von verd. Salpetersäure (1 Tl. HNO_2+9 Tle. H_2O) auf N.N.N'.N'-Tetramethyl-bensidin bei wenig erhöhter Temperatur (Rosenstiehl, Bourgeois, Poirrier, Bull. Soc. Ind. Rouen 1882, 503; Ro., Bl. [3] 18, 274). Beim allmählichen Versetzen einer

¹⁾ Diese bereits von LAUTH (Bl. [3] 7, 469) angenommene Konstitution wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches (1. I. 1910) von Bell, Kenyon (Soc. 1926, 2706, 2712) und von Clemo, Smith (Soc. 1928, 2418, 2421) bestätigt.

salzsauren Lösung von N.N.N'.N'-Tetramethyl-benzidin mit einer konz. Natriumnitritlösung in der Kälte (MICHLER, PATTINSON, B. 14, 2164; 17, 118). — Gelbrote Nadeln (aus Alkohol). F: 188° (M., Pa.). — Liefert bei der Reduktion mit Zinn und Salzsäure 3.3'-Diamino-4.4'-bis-dimethylamino-diphenyl (S. 340) (M., Pa.).

N.N'-Diacetyl-3.3'-dinitro-bengidin $C_{16}H_{14}O_6N_4 = [-C_6H_3(NO_2)\cdot NH\cdot CO\cdot CH_3]_2$. B. Beim Eintragen von 10 g N.N'-Diacetyl-benzidin in 100 g rauchende Salpetersäure (D: 1,48) unter Eiskühlung (Strakosch, B. 5, 237; Brunner, Witt, B. 20, 1024). — Gelbe Krystalle (aus Alkohol). Schmilzt oberhalb 300° (St.), bei 310° (Cain, Coulthard, Micklethwait, Soc. 101 [1912], 2302). Ziemlich löslich in heißem Alkohol und Äther, unlöslich in Wasser (St.).

N.N'-Dimethyl-3.5.3'.5'-tetranitro-benzidin $C_{16}H_{12}O_5N_6=[-C_6H_2(NO_2)_2\cdot NH\cdot CH_3]_2$. B. Beim Kochen von N.N'-Dimethyl-N.N'.3.5.3'.5'-hexanitro-benzidin (s. u.) mit wenig Phenol (Mertens, B. 19, 2127; vgl. P. van Romburgh, R. 5, 244). — Rote Nadeln (aus Phenol). Zersetzt sich oberhalb 200°; löslich in kochendem Phenol (M.). — Beim Kochen mit konz. Salpetersäure entsteht N.N'-Dimethyl-N.N'.3.5.3'.5'-hexanitro-benzidin (M.).

N.N.N'.N'-Tetramethyl-3.5.3'.5'-tetranitro-benzidin¹) $C_{16}H_{16}O_{2}N_{6} = [-C_{6}H_{2}(NO_{3})_{2}\cdot N(CH_{3})_{3}]_{2}$. B. Man trägt Dimethylanilin in Salpetersäure (1 Tl. rohe Salpetersäure + 1 Tl. Wasser) ein ohne zu kühlen; man kocht den Niederschlag mit Alkohol aus und krystallisiert ihn dann aus Phenol um (Mertens, B. 19, 2125; vgl. P. van Romburgh, R. 5, 243). — Goldbraune Blättchen (aus Phenol). Schwärzt sieh oberhalb 250° und ist bei 272° völlig zersetzt (M.). — Beim Kochen mit Salpeterschwefelsäure entsteht N.N'-Dimethyl-N.N'.3.5.3'.5'-hexanitro-benzidin (M.).

N.N'-Dinitro - N.N'-dimethyl-3.5.3'.5'-tetranitro - benzidin, N.N'-Dimethyl-N.N'.3.5.3'.5'-hexanitro-benzidin $C_{14}H_{10}O_{12}N_8 = [-C_6H_2(NO_2)_2\cdot N(NO_2)\cdot CH_3]_2$. B. Beim Kochen einer Lösung von N.N.N'.1'etramethyl-3.5.3'.5'-tetranitro-benzidin in konz. Schwefelsäure mit rauchender Salpetersäure (Meetens, B. 19, 2126; vgl. P. van Romburgh, R. 5, 244). — Lamellen (aus rauchender Salpetersäure durch vorsichtigen Wasserzusatz). Explodiert oberhalb 220° ; unlöslich in Alkohol, löslich in Phenol und Anilin (M.). — Beim Kochen mit wenig Phenol entstehen NO und N.N'-Dimethyl-3.5.3'.5'-tetranitro-benzidin (M.).

- 7. Isobenzidin C12H12N2 8. Bd. XII, S. 129.
- 8. **5.6-Diamino-acenaphthen**²) $C_{12}H_{12}N_2$, s. nebenstehende Formel. B. Aus Dinitro-acenaphthen (Bd. V, S. 588) mit Zinn und Salzsäure (QUINCEE, B. 21, 1459). Nädelchen. $C_{12}H_{12}N_2+2HCl.$ $C_{12}H_{12}N_2+2HI$.

2. Diamine $C_{13}H_{14}N_{3}$.

- 1. 2.2'-Diamino-diphenylmethan, 2.2'-Diamino-ditan $C_{13}H_{14}N_2=H_3N\cdot C_6H_4\cdot C_6H_4\cdot C_6H_4\cdot NH_1$. B. Bei der Behandlung von 2.2'-Dinitro-diphenylmethan (Bd. V, S. 595) mit Zinnchlorür und konz. Salzsäure in möglichst heftig geleiteter Reaktion, neben Spuren von 2.2'-Diamino-benzophenon (Syst. No. 1873) (Bertram, J. pr. [2] 65, 333). Nädelchen (aus werd. Alkohol), Blättchen (aus Wasser). F: 160° (B.). Leicht löslich in Alkohol, weniger leicht in Äther und Benzol, schwer in Wasser (B.). Zur Rinw. von salpetriger Säure vgl. Duval, Bl. [4] 7, 854. Hydrochlorid. Nadeln (B.).
- 2. 2.4'-Diamino-diphenylmethan, 2.4'-Diamino-ditan $C_{12}H_{14}N_2 = H_2N \cdot C_4H_4 \cdot C_4H_4 \cdot N_1 \cdot B$. Bei der Reduktion von 2.4'-Dinitro-diphenylmethan (Bd. V, S. 595) mit Zinnchlortir und Salzsäure (STAEDEL, HAASE, A. 283, 161, 162). Durch Erhitzen von 5-Chlor-2-amino-4'-dimethylamino-benzophenon (Syst. No. 1873) oder von 5-Chlor-3-[4-dimethylamino-phenyl]-anthranil (s. nebenstehende Formel) (Syst. No. 4345) mit Jodwasserstoff und rotem Phosphor auf 190—200° (ZINCKE, PRENNTZELL, B. 38, 4121). Blättchen (aus Wasser), Blättchen oder Tafeln (aus Äther). F: 88° (St., H.), 88—89° (Z., P.); leicht löslich in Alkohol und Äther (Z., P.). $C_{13}H_{14}N_2 + 2HCl$. Nadeln. Leicht löslich in Wasser, schwer in Salzsäure (Z., P.).

¹) So formuliert auf Grund der nach dem Literatur-Sohlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von G. van ROMBURGH, R. 41 [1922], 39.

²) So formuliert auf Grund der nach dem Literatur Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von SACHS, MOSEBACH, B. 44, 2853.

N.N'-Diacetylderivat $C_{17}H_{18}O_3N_3=CH_3(C_6H_4\cdot NH\cdot CO\cdot CH_3)_3$. B. Beim Kochen von 2.4'-Diamino-diphenylmethan mit Essigsäureanhydrid (ZINCKE, PRENNTZELL, B. 38, 4121; vgl. STAEDEL, HAASE, A. 283, 162). — Krystallisiert aus Alkohol in zwei Formen: in weißen Tafeln vom Schmelzpunkt 208° oder in Nadeln vom Schmelzpunkt 218°. Die erstere Form geht beim Schmelzen in die zweite Form über 1) (Z., P.).

- 3. 3.3'-Diamino-diphenylmethan, 3.3'-Diamino-ditan $C_{13}H_{14}N_2=H_4N\cdot C_6H_4\cdot C_6H_4\cdot C_6H_4\cdot NH_2$. B. Durch Reduktion von 3.3'-Dinitro-diphenylmethan (Bd. V, S. 595) mit Zinnehlorür und Salzsäure (SCHÖPFF, B. 27, 2322). Krystallinisch. F: 47—48°. 2 $C_{13}H_{14}N_2+2HCl+PtCl_4$. Schwachgelbliche Nadeln.
- 4. 3.4'-Diamino-diphenylmethan, 3.4'-Diamino-ditan C₁₃H₁₄N₂ = H₂N·C₆H₄·CH₂·C₆H₄·NH₂. B. Bei der Reduktion von 3.4'-Dinitro-diphenylmethan (Bd. V, 8. 595) mit der theoretischen Menge Zinnchlorür in salzsaurer Lösung (GATTERMANN, RÜDT, B. 27, 2294). Blättchen (aus verd. Alkohol). F: 89—90°.
- 5. 4.4'-Diamino-diphenylmethan, 4.4'-Diamino-ditan C₁₃H₁₄N₂ = H₂N·C₄H₄·CH₄·C₄H₄·NH₂. B. Bei der Reduktion von 4.4'-Dinitro-diphenylmethan (Bd. V. S. 595) mit Zinnehlorür und Salzsäure (Doer, B. 5, 796; Staedel, Haase, A. 283, 161). Aus Methylendianilin (Bd. XII, S. 184) (Eberhardt, Welter, B. 27, 1810) oder Anhydroformaldehydanilin (Syst. No. 3796) (Höchster Farbw., D. R. P. 53937; Frdl. 2, 53) durch Erwärmen mit Anilin und salzsaurem Anilin. Aus [4-Amino-benzyl]-anilin (S. 175) durch Einw. von verdünnter Salzsäure oder beim Erwärmen mit Anilin und salzsaurem Anilin (Höchster Farbw., D. R. P. 87934; Frdl. 4, 66). Beim Erwärmen äquimolekularer Mengen von 4-Amino-benzylalkohol (Syst. No. 1855) und salzsaurem Anilin in wäßr. Lösung auf 80° (Kalle & Co., D. R. P. 96762; Frdl. 5, 77). Beim Erwärmen von Anhydro-[4-amino-benzylalkohol] (s. bei 4-Amino-benzylalkohol, Syst. No. 1855) mit einer Lösung von salzsaurem Anilin (Kalle & Co., D. R. P. 83544; Frdl. 4, 52). Bei 2-stdg. Erhitzen von 1 Tl. Bis-[4-amino-benzyl-sulfid (Syst. No. 1855) mit 2 Tln. Anilin und 2 Tln. Zinkchlorid auf 150—160° (O. Fischer, B. 28, 1341). Beim Erhitzen von 4.4'-Diamino-diphenylmethan-dicarbonsäure-(3.3') (Syst. No. 1908) mit verd. Salzsäure auf 200° (Heller, Fiesselmann, A. 324, 136). Die Reinigung des technischen Rohprodukts kann durch fraktionierte Fällung des Hydrochlorids und Destillation im Vakuum oder durch Darstellung der Dibenzalverbindung (S. 243) erfolgen (Schnitzspahn, J. pr. [2] 65, 316, 317 Anm. 3).

Blattchen oder Nadeln (aus Wasser), Prismen (aus Benzol). F: 85° (Doer; Stae., Haa.; Gram, B. 25, 302), 87° (Schi.), 88° (Hel., Fie.; O. Fisch.), 88—89° (Eb., Wel.), 93° (Kalle & Co., D. R. P. 96762), 94° (Kalle & Co., D. R. P. 83544). Kp₁₅: 249—253° (Kaufler, Borel, B. 40, 3254). Schwer löslich in kaltem Wasser (Stae., Haa.), leicht in Alkohol, Benzol (Gram.; Stae., Haa.) und Äther (Stae., Haa.). — Die unter Luftdruck stehenden Dämpfe des 4.4'-Diamino-diphenylmethans zeigen unter dem Einfluß von Teslaströmen blaue Luminescens (Kauffmann, Ph. Ch. 28, 696; B. 33, 1730).

Bei der Einw. von Kaliumnitrat und konz. Schwefelsäure auf einen Überschuß von 4.4'-Diamino-diphenylmethan entsteht 2-Nitro-4.4'-diamino-diphenylmethan (S. 245) (EPSTEIN, D. R. P. 139989; C. 1903 I, 798), bei der Behandlung von 1 Mol.-Gew. 4.4'-Diamino-diphenylmethan mit 2 Mol.-Gew. Kaliumnitrat in viel konz. Schwefelsäure erhält man 2.2'-Dinitro-4.4'-diamino-diphenylmethan (S. 245) (GRAM, B. 25, 304; vgl. DUVAL, Bl. [4] 7, 529; SCHNITZ-SPAHH, J. pr. [2] 65, 317). 4.4'-Diamino-diphenylmethan gibt beim Verschmelzen mit Schwefel eine diazotierbare schwefelhaltige Base (Thauss, D. R. P. 80223; Frdl. 4, 825). Beim Behandeln mit Schwefelsesquioxyd (Lösung von Schwefel in rauchender Schwefelsäure) bei höchstens 40° entsteht ein Schwefelfarbstoff (Rassow, D. R. P. 205216; C. 1909 I, 604). Durch Eintragen von 4.4'-Diamino-diphenylmethan in rauchende Schwefelsäure von 20°/₀ Anhydridgehalt unter Kühlung und nachfolgendes Erwärmen auf 100° entsteht das Sulfon (CH₃)₂N·C₆H₃·N(CH₃)₂(Syst. No. 2641) (STEIN, B. 27, 2806). Über Formaldehydderivate des 4.4'-Diamino-diphenylmethans vgl. Orlow, Ж. 37, 1259; C. 1906 I, 1414. Beim Erhitzen von 1 Mol.-Gew. 4.4'-Diamino-diphenylmethan mit 2 Mol.-Gew. Benzaldehyd auf 120° (SCHN.) oder beim Versetzen der alkoh. Lösung des 4.4'-Diamino-diphenylmethan (S. 243). Bei der Einw. von Eisessig oder Acetanhydrid entsteht 4.4'-Bis-acetamino-diphenylmethan (S. 243). Bei der Einw. von Eisessig oder Acetanhydrid entsteht 4.4'-Bis-acetamino-diphenylmethan (S. 243).

¹⁾ Vgl. hierzu die nach dem Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von KING, Soc. 117 [1920], 991.

essigsäure und krystallisiertem Natriumacetat auf dem Wasserbade bildet sich 4.4'-Bis[carboxymethyl-amino]-diphenylmethan (S. 244) (Neumüller, J. pr. [2] 77, 357). Beim
Erhitzen mit Phthalsäureester im Einschmelzrohr oder beim Kechen mit Phthalsäureanhydrid und Wasser entsteht 4.4'-Diphthalimido-diphenylmethan CH₂[C₆H₄·N(CO)₂C₆H₄]₂
(Syst. No. 3218) (Kaufler, Borel, B. 40, 3254). Beim Erhitzen mit Schwefelkohlenstoff
in siedendem Alkohol entsteht 4-Amino-4'-thiocarbonylamino-diphenylmethan (?) (S. 243)
(Kaufler, Bo.; vgl. Le Fèvre, Turner, Soc. 1926, 2478). Beim Erhitzen von 4.4'-Diaminodiphenylmethan mit Anilin und salzsaurem Anilin in Gegenwart eines Oxydationsmittels
(Arsensäure, Azobenzol) erhält man salzsaures Pararosanilin (Syst. No. 1865) (Höchster
Farbw., D. R. P. 61146; Frdl. 3, 112). Beim Erhitzen mit überschüssigem o-Toluidin und
salzsaurem o-Toluidin auf 170° entsteht 4.4'-Diamino-3-methyl-diphenylmethan (S. 254)
(Vongerichten, Book, C. 1903 II, 441). Läßt sich durch Erhitzen mit o-Toluidin, überschüssigem salzsaurem o-Toluidin und einem Oxydationsmittel in salzsaures 4.4'-4''-Triamino3.3'.3''-trimethyl-triphenylcarbinol (Syst. No. 1867) überführen (Höchster Farbw., D. R. P.
59775; Frdl. 3, 113). Durch gemeinsame Oxydation des 4.4'-Diamino-diphenylmethans
mit Indaminen entstehen safraninartige Farbstoffe (Höchster Farbw., D. R. P.
89001;
Frdl. 4, 409). Zur Verwendung des 4.4'-Diamino-diphenylmethans als Komponente von
Azofarbstoffen vgl. Beyer & Kegel, D. R. P. 67649; Frdl. 3, 800; Schultz, Tab. No. 298.
Uber Verwendung zur Darstellung von Triphenylmethanfarbstoffen vgl. Schultz, Tab. No. 511.

Hydrochlorid. Blättchen oder Nadeln. Schmilzt oberhalb 285° unter Braunfärbung (EBERHARDT, WELTER, B. 27, 1811); F: 288° (OSTROMYSSLENSKI, B. 41, 3024). Sehr leicht löslich in Wasser und Alkohol (DOER, B. 5, 796; EB., WEL.). Die wäßr. Lösung zeigt gelbgrüne Fluorescenz (EB., WEL.; OSTR.). — Sulfat. Blättchen (aus Wasser). Sehr schwer

löslich in Alkohol (DOER; EB., WEL.).

- 4.4'-Bis-methylamino-diphenylmethan $C_{16}H_{18}N_2 = CH_2(C_6H_4\cdot NH\cdot CH_3)_2$. B. Man erwärmt eine Mischung von 2 Mol.-Gew. Methylanilin, 1 Mol.-Gew. Formaldehyd und 1 Mol.-Gew. HCl enthaltender, nicht zu konzentrierter wäßriger Salzsäure 10 Stdn. auf 100°, macht alkalisch, bläst Wasserdampf hindurch und fraktioniert den Rückstand im Vakuum (v. Braun, B. 41, 2148; vgl. Bad. Anilin- u. Sodaf., D. R. P. 68011; Frdl. 3, 92). Entsteht auch bei der Einw. von Säuren auf Methylen-bis-methylanilin (Bd. XII, S. 185), neben anderen Produkten (v. Br., B. 41, 2150). Beim Kochen von 4.4'-Bis-[methyl-cyan-amino]-diphenylmethan (S. 243) mit verd. Salzsäure oder Schwefelsäure (v. Br., B. 37, 2675). Tafeln (aus Ligroin). F: 56° (v. Br., B. 41, 2148), 56—57° (B. A. S. F.). Kp₀: um 250° (v. Br., B. 41, 2148). Beim Behandeln mit Natriumnitrit in salzsaurer Lösung entsteht 4.4'-Bis-[methyl-nitrosamino]-diphenylmethan (S. 244) (v. Br., B. 37, 2675; 41, 2148). Durch Erhitzen mit Ammoniumchlorid, Natriumchlorid und Schwefel im trocknen Ammoniakstrom entsteht 4.4'-Bis-methylamino-benzophenon-imid (Syst. No. 1873) (B. A. S. F.). Bei der Reaktion mit Methyljodid wird 4.4'-Bis-dimethylamino-diphenylmethan (s. u.) erhalten (v. Br., B. 37, 2676; 41, 2148). Mit Bromcyan entsteht 4.4'-Bis-[methyl-cyan-amino]-diphenylmethan (v. Br., B. 41, 2148). Gibt mit Jodacetonitril 4.4'-Bis-[methyl-cyan-mino]-diphenylmethan (S. 244) (v. Br., B. 41, 2142).
- 4-Amino-4'-dimethylamino-diphenylmethan C₁₅H₁₈N₂ = H₂N·C₆H₄·CH₂·C₆H₄·N(CH₃)₃. B. Beim Erwärmen von Dimethylanilin mit [4-Amino-benzyl]-anilin (S. 175) in wäßr. Salzsäure auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). Beim Erwärmen von 41 g [4-Dimethylamino-benzyl]-p-toluidin (S. 175) mit 15,5 g Anilin, 50 g konz. Salzsäure und 300 g Wasser auf dem Wasserbade (Hö. Fa., D. R. P. 107718; P. COHN, A. FISCHER, B. 33, 2590). Beim Digerieren von Anhydro-[4-amino-benzylalkohol] (s. bei 4-Amino-benzylalkohol, Syst. No. 1855) mit Dimethylanilin in salzsaurer Lösung bei Wasserbadtemperatur (Kalle & Co., D. R. P. 96762; C. 1898 II, 158). Aus 4'-Nitro-4-dimethylamino-benzhydrol (Syst. No. 1859) oder aus 4-Amino-4'-dimethylamino-benzhydrol (Syst. No. 1859) durch Kochen mit Zinkstaub und Salzsäure (Albrecht, B. 21, 3296). Krystalle (aus Alkohol). F: 84° (Hö. Fa.), 90—91° (P. C., A. Fr.), 93° (K. & Co.). Leicht löslich in Äther, Chloroform und Benzol, schwer in Ligroin (Hö. Fa.).
- **4-Methylamino-4'-dimethylamino-diphenylmethan** $C_{16}H_{20}N_2 = CH_3 \cdot NH \cdot C_6H_4 \cdot C_6H_4 \cdot N(CH_2)_2$. B. Beim Kochen von Methylanilin mit [4-Dimethylamino-benzyl]-p-toluidin (S. 175) in saurer Lösung, neben anderen Produkten (v. Braun, B. 41, 2155). F: 57°. Kp_a: 245—246°.
- 4.4'-Bis-dimethylamino-diphenylmethan, Tetramethyl-[4.4'-diamino-diphenylmethan] $C_{17}H_{25}N_3=CH_3[C_6H_4\cdot N(CH_3)_3]_3$. B. Durch Überleiten von Dimethylanilin über eine erhitzte Platin- oder Kupferspirale in Gegenwart von Wasserdampf (TRILLAT, $C.\,r.$ 137, 138; Bl. [3] 29, 941). Durch Behandeln von Dimethylanilin mit Phosphorpentachlorid, erst unter Kühlung, dann auf dem Wasserbad und Zersetzen des Reaktionsproduktes mit Wasser (MICHLER, WALDER, B. 14, 2475; LEMOULT, $C.\,r.$ 140, 248); nebenher entstehen andere Verbindungen (LEMOULT). 4.4'-Bis-dimethylamino-diphenylmethan entsteht ferner

aus Dimethylanilin beim Erhitzen mit Methylenjodid im geschlossenen Rohr auf 100° (DOEBNER, B. 12, 812; vgl. Hameart, B. 12, 681). Aus Dimethylanilin und Chloroform bei 230° (Hanimarn, B. 10, 1235; vgl. dazu Haneart, B. 12, 680). Aus Dimethylanilin und Tetrachlor-kohlenstoff bei 180° (Hani.; vgl. Hane.). Bei längerem Erwärmen von Dimethylanilin mit Acetylentetrabromid auf dem Wasserbade (Schoof, B. 13, 2199; vgl. Fischi., M. 35 [1914], 522, 529). Bei anhaltendem Kochen von Dimethylanilin mit Tetrachloräthylen oder Hexachlorathan in Gegenwart von ZnCl₂ (Heumann, Wiernik, B. 20, 2426). Bei Einw. von Formaldehyd in essigsaurer (Pinnow, B. 27, 3166), alkoholisch-salzsaurer (Biehringer, J. pr. [2] 54, 240) oder wäßriger, schwach salzsaurer Lösung (G. Cohn, Ch. Z. 24, 564) auf Dimethylanilin. Beim Erhitzen von Dimethylanilin mit 1/2 Mol. Gew. Methylal unter Zusatz von ZnCl, im geschlossenen Rohr auf 100—120° (O. Fischer, B. 12, 1689; A. 206, 117). Beim Einleiten von Chlorwasserstoff in ein Gemisch von Dimethylanilin, Methylal und konz. Salzsaure (TRORGER, J. pr. [2] 36, 237; vgl. aber van ROMBURGH, R. 7, 228 Anm.). Neben anderen Produkten beim Erhitzen von Dimethylanilin mit Methyl-n-hexyl-keton (Bd. I, S. 704) oder Diäthylketon (Bd. I, S. 679) in Gegenwart von ZnCl₂ im geschlossenen Rohr auf ca. 1900 (Doebner, Personow, A. 242, 342, 346). Durch Einw. von Knallquecksilber (Bd. I, S. 722) auf Dimethylanilin bei 160—170°, neben anderen Verbindungen (Scholl, BERTSOH, B. 34, 2036). Durch 12-stdg. Erhitzen von Ameisensäure und Dimethylanilin in Gegenwart von ZnCl. oder konz. Salzsäure auf 120° (VOTOCEK, KRAUZ, B. 42, 1694). Entsteht in geringer Menge bei mehrstündigem Erwärmen von Dimethylanilin mit überschüssigem Eisessig (Reverdin, de La Harpe, Ch. Z. 18, 407; B. 22, 1006). Bei mehrstündigem Erhitzen von Dimethylanilin mit ½ Mol.-Gew. Chlormethylacetat (Bd. II, S. 152) in Gegenwart von ZnCl, auf 110-120° (CENSI, C. 1900 I, 594). Durch Erwärmen von Trichlormethansulfochlorid (Bd. III, S. 19) mit Dimethylanilin auf 100° und Zersetzen des Reaktionsproduktes mit Wasser, neben anderen Produkten (MICHLER, MORO, B. 12, 1168). Bildet sich auch, neben trimerem Thioformaldehyd (Syst. No. 2952), bei der Einw. von Schwefelkohlenstoff auf Dimethylanilin in etwas Alkohol in Gegenwart nascenten Wasserstoffs (Zinkstaub + HCl) (WIERNIK, B. 21, 3204; vgl. TROBORE, J. pr. [2] 36, 241). Neben einer schwach basischen schwefelhaltigen, bei 178° schmelzenden Verbindung, bei mehrstündigem Erhitzen von Dimethylanilin mit Schwefelkohlenstoff und ZnCl, auf 130—140° (WEINMANN, C. 1898 I, 1029). Beim Erwärmen von 2 Mol.-Gew. Dimethylanilin mit 1 Mol.-Gew. a- bezw. β -Naphthalinsulfochlorid, neben α - bezw. β -Naphthalinsulfonsäure-methylanilid (Bd. XII, S. 575) und einem blauen Farbstoff (MICHLER, SALATHÉ, B.12, 1789, 1790; vgl. BERGEL, DÖRING, B.61, [1928], 844). Entsteht neben anderen Verbindungen bei der Zersetzung des Dimethylanilinoxyd-hydrochlorids (Bd. XII, S. 157) durch Erwärmen in einer Kohlendioxydatmosphäre (BAMBERGER, LEYDEN, B. 34, 19). Aus [4-Dimethylamino-benzyl]-p-toluidin (S. 175) und Dimethylanilin durch Erhitzen mit wäßr. Salzsäure auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). Bei der Einw. von Methyljodid auf 4.4'-Bis-methylamino-diphenylmethan (S. 239) (v. Braun, B. 37, 2676; 41, 2148) oder auf 4-Methylamino-4'-dimethylamino-diphenylmethan (S. 239) (v. B., B. 41, 2156). Beim Erhitzen von 4.4'-Bis-dimethylamino-benzophenon (Syst. No. 1873) mit Zinkstaub (Nathanson, P. Müller, B. 22, 1882).

Darstellung. Man erhitzt 16 Tle. Dimethylanilin mit 6 Tln. 40% iger Formaldehydlösung und 20 Tln. 25% iger Salzsaure einige Stunden auf dem Wasserbade (G. Cohn, Ch. Z. 24, 564). Blattchen oder Tafeln (aus Alkohol oder Ligroin). F: 90° (DOEBNER, B. 12, 810), 90° bis 91 (BIEHRINGER, J. pr. [2] 54, 240), 91 (MICHLER, MORO, B. 12, 1170). Kp: 390 (NATHANson, P. Müller, B. 22, 1882). Destilliert unzersetzt und ist mit Wasserdampf nicht flüchtig (O. FISCHER, A. 206, 117). Schwer löslich in kaltem Alkohol, leichter in heißem, leicht in Ather, Benzol und Schwefelkohlenstoff (Dor., B. 12, 810). Löslich in Säuren (Dor.). Wärmetönung bei der Neutralisation mit Salzsäure: Vignon, Bl. [3] 7, 657. Bindungsvermögen für Chlorwasserstoff: KAUFLEB, KUNZ, B. 42, 390, für Bromwasserstoff: KAU., KUNZ, B.

Die unter atmosphärischem Druck stehenden Dämpfe des 4.4'-Bis-dimethylaminodiphenylmethans zeigen unter dem Einfluß von Teslaströmen blaue Luminescenz (KAUFFMANN.

Ph. Ch. 26, 724; 28, 703; B. 33, 1730, 1738).

Die alkoholische Lösung von 4.4'-Bis-dimethylamino-diphenylmethan wird von Ozon violett, von Stickoxyden strongelb gefärbt; mit Hydroperoxyd tritt keine Farbreaktion ein (Armold, Mentzel, B. 35, 1329). Ein mit einer alkoh. Lösung von 4.4'-Bis-dimethylaminodiphenylmethan getränktes, noch feuchtes (vgl. F. Fischer, Marx, B. 39, 2555) Papier kann daher zum Nachweis von Ozon sowie zur Unterscheidung von Ozon, Hydroperoxyd und Stickoxyden dienen (Arnold, Menterl, B. 35, 1329, 2902; F. Fischer, Braehmer, B. 39, 943; Armold, B. 39, 1528). Bei der Oxydation von 4.4'-Bis-dimethylamino-diphenylmethan mit Sulfomonopersäure oder 5,5% iger Hydroperoxydlösung entsteht 4.4'-Bis-dimethylaminodiphenylmethan-dioxyd (S. 242) (BAHBERGER, RUDOLF, B. 41, 3295). 4.4'-Bis-dimethylamino-diphenylmethan liefert in essignaurer Lösung bei Zusatz von Bleidioxyd (Heumann, Wiennik, B. 20, 2427; Möhlau, Heinze, B. 35, 359) oder von Mangandioxyd (Tbillat,

C. r. 136, 1205) die intensiv blaue Lösung des Farbsalzes des 4.4'-Bis-dimethylamino-benzhydrols (Syst. No. 1859). Bei stärkerem Erhitzen mit Mangandioxyd und Schwefelsäure (DOEBNER, B. 12, 811; O. FISCHER, A. 206, 118), ferner durch Erwärmen mit Kaliumdichromat und Schwefelsäure (Hanhart, B. 12, 681; Heumann, Wiernik, B. 20, 2427) sowie bei der Behandlung mit Eisenchlorid (HANHART, B. 12, 681) entsteht Chinon. 4.4'-Bisdimethylamino-diphenylmethan gibt in der Kälte mit Chloranil ein indigoblaues, unbeständiges Additionsprodukt (Kliegl, B. 39, 1274; vgl. O. Fischer, A. 206, 118), in der Wärme führt die Reaktion zu 4.4'-Bis-dimethylamino-benzophenon (Michlers Keton; Syst. No. 1873) (Kliegl). 4.4'-Bis-dimethylamino-diphenylmethan läßt sich durch elektrolytische Oxydation in 4.4'-Bis-dimethylamino-benzhydrol überführen (Escherich, Moest, Z. El. Ch. 8, 851; vgl. D. R. P. 133896; C. 1902 II, 834). Mit Chlor und Brom gibt die alkoh. Lösung des 4.4'-Bis-dimethylamino-diphenylmethans eine tiefblaue Färbung (Arnold, Mentzel, B. 35, 1329); von Spuren von Jod wird die Lösung in Alkohol oder Nitrobenzol smaragdgrün B. 35, 1329; VOI Spuren VOI Jod wird die Losung in Alkohol oder Nitrobenzol smaragdgrun gefärbt (Doebner, B. 12, 811; Doebner, Petschow, A. 242, 343). Bei anhaltendem Chlorieren entsteht als Hauptprodukt Hexachlorbenzol (Bd. V, S. 205) (Hanhart, B. 12, 681). Bei der Einw. Von Natriumnitrit und Salzsäure auf 4.4'-Bis-dimethylamino-diphenylmethan können entstehen 3.3'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 246) (Pinnow, B. 27, 3162), N.N-Dimethyl-4-nitro-anilin (Bd. XII, S. 714) (Herzberg, Polonowsky, B. 24, 3201; Pl., B. 27, 3162) und 4.4'-Bis-methylmitrosamino-diphenylmethan (S. 244) (Pl., B. 27, 3165). Beim Nitrieren mit Salpeterschwefelskure bei 0° entstehen 2-Nitro-4.4'-bis-dimethylamino-diphenylmethan (S. 245) und 2.2' Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 245) und 3.2' Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 345) und 3.2' Dinitro-4.4'-bis-dimet bis-dimethylamino-diphenylmethan (S. 245) und 2.2'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 245) (PINNOW, B. 27, 3162; ULLMANN, MARIC, B. 34, 4314, 4315; vgl. BAYER & Co., D. R. P. 79250; Frdl. 4, 202; EPSTEIN, D. R. P. 139989; C. 1903 I, 798). Lost man 4.4'-Bis-dimethylamino-diphenylmethan in Essigsaure, gießt diese Lösung in abgekühlte Salpetersaure (D: 1,5) und kocht auf, so erhält man 3.5.3'.5'-Tetranitro-4.4'-bis-methylnitramino-diphenylmethan (S. 246) (van Romburgh, R. 7, 228). Beim Erhitzen von 4.4'-Bis-dimethylamino-diphenylmethan mit Schwefel auf 230° entsteht 4.4'-Bis-dimethylamino-thiobenzophenon (Syst. No. 1873) (Wallach, A. 259, 303; Höchster Farbw., D. R. P. 57963; Frdl. 3, 86). Beim Erhitzen einer Lösung von 4.4'-Bis-dimethylamino-diphenylmethan in rauchender Schwefelsäure von 20% Anhydridgehalt auf 150° entsteht das Sulfon

(CH₃)₂N·C₆H₃< C_6 H₃·N(CH₃)₂ (Syst. No. 2641) (Höchster Farbw., D. R. P. 54621; Frdl. 2, 59). Erfolgt die Einw. bei 110°, so entsteht eine 4.4′-Bis-dimethylamino-diphenylmethansulfonsäure (CH₃)₂N·C₆H₄·CH₂·C₆H₃(SO₃H)·N(CH₃)₂ (Syst. No. 1923) (Gzigy & Co., D. R. P. 65017, 88085; Frdl. 3, 116; 4, 219). Mit Schwefelsesquioxyd S₂O₃ (erhalten durch Auflösen von Schwefelblumen in rauchender, $20^{\circ}/_{0}$ SO₃ enthaltender Schwefelsäure) gibt 4.4′-Bis-dimethylamino-diphenylmethan bei 30—35° Thiopyronin [s. bei

(CH₃)₂N·C₆H₃ CH(OH) C₆H₃·N(CH₃)₂, Syst. No. 2642] (GEIGY & Co., D. R. P. 65739; Frdl. 3, 97; BIEHEINGER, TOPALOFF, J.pr. [2] 65, 500). Über die Geschwindigkeit der Abspaltung von Methylgruppen aus 4.4-Bis-dimethylamino-diphenylmethan beim Kochen mit Jodwasserstoffsäure vgl. Goldschmiedt, M. 27, 860, 870. Beim Leiten von Ammoniak durch eine auf 180° erhitzte Schmelze von 4.4'-Bis-dimethylamino-diphenylmethan und Schwefel wird 4.4'-Bis-dimethylamino-benzophenon-imid (Auramin; Syst. No. 1873) erhalten (FEER, D. R. P. 53614; Frdl. 2, 60). Auramin wird auch gebildet, wenn man 4.4'-Bis-dimethylamino-diphenylmethan im Ammoniakstrome bei Gegenwart von Chinonen, Nitrobenzol, Chloranii oder ähnlichen Oxydationsmitteln auf 150° erhitzt (Bad. Anilin- u. Sodaf., D. R. P. 70908; Frdl. 3, 88). Ersetzt man das Ammoniak durch Amine, so erhält man substituierte Auramine; so entsteht beim Erhitzen mit Anilin und Schwefel auf 200° 4.4'-Bis-dimethylamino-benzophenon-anil (Phenylauramin; Syst. No. 1873) (FEER). Die Einw. von Methyljodid auf 4.4'-Bis-dimethylamino-diphenylmethan führt zur Bildung des Bis-jodmethylats (S. 242) (MICHLER, MOBO, B. 12, 1170). Zur Einw. von Formaldehyd auf 4.4'-Bis-dimethylamino-diphenylmethan vgl. Pinnow, B. 27, 3165. Beim Erwärmen mit der äquimolekularen Menge Jodacetonitril auf dem Wasserbade werden 4.4'-Bis-dimethylamino-diphenylmethanbis-jodmethylat (S. 242), 4-Dimethylamino-4'-[methyl-cyanmethyl-amino]-diphenylmethan-mono-jodmethylat (S. 244) und 4.4'-Bis-[methyl-cyanmethyl-amino]-diphenylmethan (S. 244) erhalten (v. Braun, B. 41, 2141, 2142). Bei allmählichem Eintragen von 21/2 Mol.-Gew. Bromoyan in bis zum beginnenden Schmelzen auf dem Wasserbade erwärmtes 4.4'-Bis-dimethylamino-diphenylmethan entsteht 4.4'-Bis-[methyl-cyan-amino]-diphenylmethan (S. 243) (v. Braun, B. 37, 2673). Bei der Einw. von 2 Mol.-Gew. diazotierter Sulfanilsäure auf 1 Mol.-Gew. 4.4'-Bis-dimethylamino-diphenylmethan bilden sich Helianthin (Syst. No. 2172) und Formaldehyd; analog entsteht mit diazotiertem 4-Nitro-anilin 4'-Nitro-4-dimethylamino-azobenzol (Syst. No. 2172) (Schabwin, Kaljanow, B. 41, 2058). Kondensation mit Oxazinfarbstoffen, z. B. Meldolas Blau (Syst. No. 4347): Bayer & Co., D. R. P. 81516; Frdl. 4, 218.

4.4'-Bis-dimethylamino-diphenylmethan dient zur Herstellung von Farbstoffen wie Auramin (Syst. No. 1873) (Schultz, Tab. No. 493) und Acridinorange (Syst. No. 3412) (Schultz,

Tab. No. 603). Es dient ferner als Resgens auf Ozon, s. S. 240.

C₁₇H₂₂N₂ + 2 HI. Tafeln (aus Wasser). Ziemlich schwer löslich in kaltem Wasser (Doebner, B. 12, 811). — C₁₇H₂₂N₂ + 2 HCl + PtCl₄ (MICHLER, MORO, B. 12, 1170). Hellgelber Niederschlag; wird beim Kochen mit Wasser oder beim Erhitzen auf 100° zersetzt

(Doebner, Personow, A. 242, 346; Schoop, B. 13, 2200).

Verbindung mit 1.3-Dinitro-benzol (Bd. V, S. 258) 2C₁₇H₂₂N₂ + C₄H₄O₄N₂.

Granatrote Krystalle. F: 74° (Van Romburgh, R. 7, 228). — Verbindung mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) C₁₇H₂₂N₂ + C₄H₃O₄N₂Cl. Rotbraune Nadeln. F: 72° (Lemoult, C. r. 135, 346; Bl. [3] 27, 966), 73—74° (Rehtzerstein, J. pr. [2] 68, 254). Wird leicht in die Komponenten gespalten (L.). Anilin zerlegt in 2.4-Dinitro-diphenylamin und 4.4'-Bis-dimethylamino-diphenylmethan (L.). — Verbindung mit 1.3.5-Trinitro-benzol (Bd. (V, S. 271) C₁₇H₂₂N₂+C₆H₂O₆N₃. Dunkelviolette Nadeln. F: 114° (VAN ROMBURGH, R. 7, 228). — Verbindung mit 2-Chlor-1.3.5-trinitro-benzol (Bd. V, S. 273) C₁₇H₂₂N₂. +C.H.O.N.Cl. Tiefschwarze Plättchen, die allmählich grün werden. F: 71° (LEMOULT, C. r. 185, 347; Bl. [3] 27, 968). — Verbindung mit 2.4-Dinitro-phenol (Bd. VI, S. 251) C. 7. 130, 347; B. [3] XI, 908). — Verbindung mit 2.4-Dinitro-phenol (Bd. VI, S. 261) C₁₇H₂₂N₂ + C₆H₄O₆N₃. Brāunlichschwarze Krystalle. F: 72° (Lemoult, C. r. 135, 346; Bl. [3] 27, 969). — Verbindung mit 1 Mol. Pikrinsäure (Bd. VI, S. 265) C₁₇H₂₂N₂ + C₆H₅O₇N₃. Strohgelbe Plāttchen. F: 185° (Lemoult, C. r. 135, 347; Bl. [3] 27, 969). — Verbindung mit 2 Mol. Pikrinsäure C₁₇H₂₂N₂ + 2C₆H₂O₇N₃. Krystallinisch. F: 178° (Troeger, J. pr. [2] 36, 239). — Verbindung mit Pikramid (Bd. XII, S. 763) C₁₇H₂₂N₂ + C₆H₄O₆N₄. B. Durch langes Kochen der Komponenten in alkoh. Lösung (Lemoult, C. r. 135, 347; Bl. [3] 27, 970). Tiefschwarze Plättchen. F: 106°.

4.4'-Bis-dimethylamino-diphenylmethan-N.N'-dioxyd $C_{17}H_{22}O_2N_2 = CH_2[C_0H_4]$ N(:0)(CH₃)₂]₂. B. Bei der Oxydation von 4.4'-Bis-dimethylamino-diphenylmethan mit Sulfomonopersäure oder 5,5% jeger Wasserstoffperoxydlösung (BAMBERGER, RUDOLF, B. 41, 3295). — Nadeln (aus Alkohol + Äther) mit 2 H₂O. Das Wasser entweicht bei mehrmonatigem Stehen über konz. Schwefelsäure unter 12—15 mm Druck. Schmilzt wasserhaltig bei 147° (korr.), wasserfrei bei 156°. Äußerst leicht löslich in Wasser; zerfließt an der Luft; sehr leicht löslich in Alkohol, kaum in Äther. Reagiert in Lösung alkalisch. — Die Base entwickelt beim Erhitzen Formaldehyd. Wird von Zinkstaub und Salzsäure, Eisenstaub und Salzsäure sowie von Schwefelnatrium zu 4.4'-Bis-dimethylamino-diphenylmethan reduziert. Liefert bei der Einw. von salpetriger Säure 3.3'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 246), beim Erwärmen mit Acetanhydrid und konz. Schwefelsäure 3.3'-Dioxy-4.4'-bisdimethylamino-diphenylmethan (Syst. No. 1869) und 3-Oxy-4.4'-bis-dimethylamino-diphenylmethan (Syst. No. 1859). Gibt mit Schwefeldioxyd in Wasser bei 0° 4.4'-Bis-dimethylaminodiphenylmethan-disulfonsaure-(3.3') (Syst. No. 1924). — $C_{17}H_{22}O_2N_2+2HCl$. Nadeln. Braunt sich gegen 150° und schmilzt bei 165,5-166° (korr.) unter Zersetzung. Sehr leicht löslich in Wasser mit saurer Reaktion; sehr leicht löslich in heißem, leicht in kaltem Alkohol, unlöslich in Äther. Zersetzt sich bei mehrmonatigem Stehen oder bei längerem Kochen mit Wasser unter Bildung von 4.4'-Bis-dimethylamino-diphenylmethan. — Pikrat C₁₇H₂₂O₂N₂+ 2C₆H₃O₇N₃. Hellgelbe Nadeln (aus Alkohol). Schwärzt sich von 130° ab, sintert gegen 145° und schmilzt bei 150,5—151° (korr.) unter Aufschäumen. Leicht löslich in siedendem Alkohol, ziemlich leicht in siedendem Wasser, schwer in kaltem Alkohol, sehr wenig in kaltem Wasser, Chloroform und Benzol. — $C_{17}H_{22}O_2N_2 + 2 HCl + 2 AuCl_3$. Gelber voluminöser Niederschlag. — $C_{17}H_{23}O_2N_3 + H_4Fe(CN)_4$. Krystallinisch. Ziemlich leicht löslich in heißem Wasser. — $C_{17}H_{22}O_2N_3 + 2 HCl + PtCl_4$. Orangegelber flockiger Niederschlag.

4.4'-Bis-dimethylamino-diphenylmethan-bis-hydroxymethylat $C_{10}H_{20}O_2N_2 =$ CH₂[C₂H₄·N(CH₂)₂·OH]₃. B. Das Jodid entsteht aus 4.4'-Bis-dimethylamino-diphenylmethan und Methyljodid (MICHLER, MORO, B. 12, 1170). Es entsteht auch beim Erwärmen äquimolekularer Mengen 4.4'-Bis-dimethylamino-diphenylmethan und Jodacetonitril auf dem Wasserbade, neben 4-Dimethylamino-4'-[methyl-cyanmethyl-amino]-diphenylmethan-monojodmethylat (S. 244) und 4.4'-Bis-[methyl-cyanmethyl-amino]-diphenylmethan (S. 244) (v. Braun, B. 41, 2142). — Chlorid C₁₀H₃₆N₂Cl₂. Nadeln. Leicht löslich in Wasser (Mr., Mo.). — Jodid C₁₀H₃₆N₂I₂. Gelbe Blättchen. Färbt sich bei 193° grünlich und schmilzt bei 214° unter Zersetzung; unlöslich in Äther, leicht löslich in heißem Wasser und Alkohol (Doebner, Petschow, A. 242, 344).

4.4'-Bis-athylamino-diphenylmethan $C_{17}H_{22}N_3 = CH_2(C_6H_4 \cdot NH \cdot C_2H_5)_3$. der Einw. von Formaldehyd auf Äthylanilin in salzsaurer Lösung bei 100° oder bei der Einw. von Säuren auf Methylen-bis-äthylanilin (Bd. XII, S. 186), neben anderen Produkten (v. Braun, B. 41, 2151). — Gelbliche Flüssigkeit. Kp₁₀: 255°.

4.4'- Bis - diathylamino - diphenylmethan, Tetraäthyl - 4.4' - diamino - diphenyl methan $C_{21}H_{30}N_2 = CH_2[C_2H_4 \cdot N(C_2H_5)_2]_2$. Nitrierung mit kalter Salpeterschwefelsäure führt zu 2-Nitro-4.4'-bis-diāthylamino-diphenylmethan (BAYER & Co., D. R. P. 79250; Frdl. 4, 202) und zu 2.2'-Dinitro-4.4'-bis-diāthylamino-diphenylmethan (EPSTEIN, D. R. P. 139989; Frdl. 7, 553). Findet Verwendung zur Darstellung des Triphenylmethanfarbstoffes Äthylviolett (Schultz, Tab. No. 518). — Pikrat C₂₁H₃₀N₂ + C₄H₃O₇N₂. Plättchen. F: 190° (LEMOULT, C. r. 135, 347; Bl. [3] 27, 969). — Verbindung mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) C₂₁H₃₀N₂ + C₆H₃O₄N₂Cl. Braunrote Nadeln. F: 42,5° (LEM.).

4-Dimethylamino-4'-anilino-diphenylmethan $C_{21}H_{22}N_3 = (CH_3)_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot NH \cdot C_6H_5$. B. Beim Erwärmen von [4-Dimethylamino-benzyl]-p-toluidin (S. 175) und Diphenylamin in alkoholisch-salzsaurer Lösung auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). — Dickflüssiges Öl. Löslich in konz. Säuren; durch Wasser wieder fällbar.

4.4'-Bis-methylbenzylamino-diphenylmethan $C_{29}H_{20}N_2 = CH_2[C_6H_4\cdot N(CH_3)\cdot CH_2\cdot C_6H_5]_2$. B. Bei der Einw. von 2 Mol.-Gew. Benzylbromid auf 4.4'-Bis-methylamino-diphenylmethan (v. Braun, B. 37, 2676). — Krystalle (aus Alkohol). F: 50°. Schwer löslich in Äther, leichter in Alkohol. — Pikrat $C_{29}H_{30}N_3 + C_6H_3O_7N_3$. Grüngelb. F: 93°.

Verbindung aus 4.4'-Diamino-diphenylmethan, Formaldehyd und schwefliger Säure $C_{14}H_{16}O_3N_2S=H_2N\cdot C_6H_4\cdot CH_2\cdot C_6H_4\cdot NH\cdot CH_2(SO_3H)$. B. Man versetzt eine Lösung von 37,2 kg Anilin in 60 kg Salzsäure (20° Bé) und 250 l Wasser mit 140 kg Natriumdisulfitlösung von 38° Bé, fügt 36,4 kg 33°/ojee Formaldehyllösting hinzu und erwärmt auf 70° (Geigy & Co., D. R. P. 148760; Frdl. 7, 82; C. 1904 I, 554). — Krystallinisches Pulver. Schmilzt unter Aufschäumen bei 168°. Schwer löslich in Wasser; löslich in konz. Salzsäure. — Ammoniumsalz. Blättchen. In Wasser leicht löslich.

- 4.4'-Bis-bengalamino-diphenylmethan $C_{37}H_{32}N_2=CH_3(C_0H_4\cdot N:CH\cdot C_0H_5)_2$. B. Beim Versetzen der alkoh. Lösung von 4.4'-Diamino-diphenylmethan mit Benzaldehyd (Gram, B. 25, 303) oder beim Erhitzen des 4.4'-Diamino-diphenylmethans mit 2 Mol.-Gew. Benzaldehyd auf 120° (Schnitzspahn, J. pr. [2] 65, 317 Anm.). Blättchen (aus Alkohol). F: 125° (G.), 130° (Sch.).
- 4.4'-Bis-acetamino-diphenylmethan $C_{17}H_{18}O_2N_2 = CH_2(C_2H_4\cdot NH\cdot CO\cdot CH_3)_3$. B. Aus 4.4'-Diamino-diphenylmethan beim Versetzen mit Acetanhydrid (STAEDEL, HAASE, A. 283, 161) oder beim Kochen mit Eisessig (GRAM, B. 25, 303). Täfelchen (aus Alkohol). F: 228° (G.; St., H.; EBERHARDT, WELTER, B. 27, 1811). Äußerst schwer löslich in Wasser (E., W.), fast unlöslich in Benzol, ziemlich leicht löslich in Eisessig (St., H.). Gibt beim Eintragen in die 5-fache Menge Salpetersäure (D: 1,48) 3.3'-Dinitro-4.4'-bis-acetamino-diphenylmethan (S. 246) (G.).
- 4.4'-Bis-[anilinoformyl-methylamino]-diphenylmethan $C_{29}H_{28}O_2N_4 = CH_2[C_6H_4\cdot N(CH_3)\cdot CO\cdot NH\cdot C_6H_5]_2$. B. Aus 4.4'-Bis-methylamino-diphenylmethan und Phenyliso-cyanat (v. Braun, B. 37, 2675). F: 186—187°. Sehr wenig löslich in Alkohol.
- 4.4'-Bis-[methyl-cyan-amino]-diphenylmethan $C_{17}H_{16}N_4 = CH_2[C_6H_4\cdot N(CH_3)\cdot CN]_2$. B. Durch allmähliches Eintragen von $2^1/_2$ Mol.-Gew. Bromcyan in bis zum beginnenden Schmelzen erwärmtes 4.4'-Bis-dimethylamino-diphenylmethan (v. Braun, B. 37, 2673). Aus 4.4'-Bis-methylamino-diphenylmethan und Bromcyan (v. B., B. 41, 2148). Krystalle (aus Eisessig). F: 155°; ziemlich löslich in heißem, schwer in kaltem Alkohol, unlöslich in Äther und in Säuren (v. B., B. 37, 2673). Wird durch Chromsäure in Eisessig zu 4.4'-Bis-[methyl-cyan-amino]-benzophenon (Syst. No. 1873) oxydiert (v. B., B. 37, 2673). Beim Kochen mit verd. Salzsäure oder Schwefelsäure wird 4.4'-Bis-methylamino-diphenylmethan gebildet (v. B., B. 37, 2675).
- **4.4'-Bis-[anilinothioformyl-methylamino]**-diphenylmethan $C_{29}H_{28}N_4S_3 = CH_2[C_6H_4\cdot N(CH_3)\cdot CS\cdot NH\cdot C_6H_5]_2$. B. Aus 4.4'-Bis-methylamino-diphenylmethan und Phenylsenföl (v. Braun, B. 37, 2676). Krystalle (aus Chloroform + Alkohol). F: 153°.
- 4.4'-Bis-[anilinothioformyl-äthylamino]-diphenylmethan $C_{31}H_{32}N_4S_2 = CH_2[C_0H_4\cdot N(C_2H_5)\cdot CS\cdot NH\cdot C_0H_5]_2$. B. Bei der Einw. von Phenylsenföl auf 4.4'-Bis-äthylamino-diphenylmethan (v. Braun, B. 41, 2151). Blättchen (aus Chloroform + Alkohol). F: 153°. Sehr wenig löslich in Alkohol, leicht in Chloroform.
- 4-Amino-4'-thiocarbonylamino-diphenylmethan (?) $C_{14}H_{12}N_2S = H_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot N \cdot CS(?)$ 1). Das Molekulargewicht ist ebullioskopisch bestimmt (KAUFLER, BOREL, B. 40, 3255). B. Aus 4.4'-Diamino-diphenylmethan und Schwefelkohlenstoff in siedendem Alkohol (K., B., B. 40, 3255). Gelbgraue Körner (aus siedendem Dimethylanilin). Schmilzt bei ca. 205° unter Schwärzung. Löslich in Pyridin und Anilin, unlöslich in den übrigen Lösungsmitteln. Unlöslich in Alkalien.

¹) So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von LE FEVRE, TURNER (Soc. 1926, 2478) und einer Privatmitteilung von TURNER.

4.4'-Bis-[carboxymethyl-amino]-diphenylmethan, [4.4'-Diamino-diphenylmethan]-N.N'-diessigsäure $C_{12}H_{12}O_{2}N_{3}=CH_{3}(C_{2}H_{4}\cdot NH\cdot CH_{2}\cdot CO_{2}H)_{3}$. B. Beim Schmeizen von 4.4'-Diamino-diphenylmethan, Chloressigsäure und krystallisiertem Natriumacetat auf dem Wasserbade (Neumülle, J. pr. [2] 77, 357). — Gelbe krystallinische Flocken (aus Wasser oder verd. Alkohol). Schmitzt unscharf bei 175°. Sehr wenig löslich in Äther, schwer in kaltem Wasser, ziemlich leicht in heißem Wasser, leicht in Alkohol.

4 - Dimethylamino - 4' - [methyl - cyanmethyl-amino] - diphenylmethan-mono-jodmethylat $C_{19}H_{34}N_{3}I = (CH_{2})_{3}NI \cdot C_{6}H_{4} \cdot CH_{3} \cdot C_{6}H_{4} \cdot N(CH_{3}) \cdot CH_{3} \cdot CN$. B. Beim Erwärmen äquimolekularer Mengen 4.4'-Bis-dimethylamino-diphenylmethan und Jodacetonitril auf dem Wasserbade, neben 4.4'-Bis-dimethylamino-diphenylmethan-bis-jodmethylat (S. 242) und 4.4'-Bis-[methyl-cyanmethyl-amino]-diphenylmethan (s. u.) (v. Braun, B. 41, 2142).

— Krystalle (aus Alkohol + Ather). F: 172—173°. Leicht löslich in heißem Wasser, in der

Kälte schwer löslich in Wasser, Chloroform, Aceton, Alkohol, unlöslich in Äther.

4.4'-Bis-[methyl-carboxymethyl-amino]-diphenylmethan, [4.4'-Bis-methyl-amino-diphenylmethan]-N.N'-diessigsäure $C_{10}H_{12}O_4N_2=CH_2[C_6H_4\cdot N(CH_2)\cdot CH_2\cdot CO_4H]_2$. B. Bei 3-stdg. Erwärmen von 4.4'-Bis-[methyl-cyanmethyl-amino]-diphenylmethan (s. u.) mit konz. Salzsäure im geschlossenen Rohr auf 120° (v. B., B. 41, 2142). — Sintert bei 122° und schmilzt bei 126° zu einer roten Flüssigkeit. Schwer löslich in kaltem, leicht in warmem Alkohol; leicht löslich in Säuren und Alkalien.

Dinitril, 4.4'-Bis-[methyl-oyanmethyl-amino]-diphenylmethan $C_{19}H_{20}N_4=CH_2[C_2H_4\cdot N(CH_2)\cdot CH_2\cdot CN]_2$. Beim Erwärmen äquimolekularer Mengen 4.4'-Bis-dimethylamino-diphenylmethan mit Jodacetonitril auf dem Wasserbade, neben 4.4'-Bisdimethylamino-diphenylmethan-bis-jodmethylat (S. 242) und 4-Dimethylamino-4'-[methylcyanmethyl-amino]-diphenylmethan-mono-jodmethylat (s. o.) (v. B., B. 41, 2142). Aus 4.4'-Bis-methylamino-diphenylmethan und Jodacetonitril (v. B.). — Krystalle (aus Alkohol). F: 107°. — Gibt bei 3-stdg. Erwärmen mit konz. Salzsäure auf 120° die entsprechende Dicarbonsăure (s. o.).

4-Dimethylamino-4'-methylnitrosamino-diphenylmethan $C_{16}H_{19}ON_3 = (CH_2)_2N$. $C_6H_4\cdot CH_2\cdot C_6H_4\cdot N(NO)\cdot CH_4$. B. Aus 4-Methylamino-4'-dimethylamino-diphenylmethan (S. 239) und Natriumnitrit in salzsaurer Lösung (v. B., B. 41, 2155). — Gelbe Kryställchen

(aus Alkohol). F: 96-97°. Löslich in Säuren.

4.4'-Bis-methylnitrosamino-diphenylmethan $C_{15}H_{16}O_{5}N_{4} = CH_{2}[C_{6}H_{4}\cdot N(NO)\cdot CH_{2}]_{3}$. Neben 3.3'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (8. 246) aus 4.4'-Bis-dimethylamino-diphenylmethan, Natriumnitrit und Salzsaure (D: 1,19) (PINNOW, B. 27, 3165). Aus 4.4'-Bis-methylamino-diphenylmethan und Natriumnitrit in salzsaurer Lösung (v. Braun, B. 37, 2675; 41, 2148). — Strohgelbe Nadeln (aus Alkohol). F: 98° (v. B., B. 41, 2148), 101,5° (P.). Leicht löslich in Chloroform, Eisessig, heißem Methyl- und Athylalkohol und Benzol, mäßig löslich in Äther und kaltem Alkohol (P.).

4.4'-Bis-äthylnitrosamino-diphenylmethan $C_{17}H_{20}O_2N_4 = CH_2[C_6H_4\cdot N(NO)\cdot C_2H_5]_2$. Aus **4.4'**-Bis-äthylamino-diphenylmethan und Natriumnitrit in salzsaurer Lösung (v. Braun, B. 41, 2151). — F: 830. Schwer löslich in kaltem Alkohol.

8.8'- Dichlor - 4.4'- diamino - diphenylmethan $C_{13}H_{13}N_{1}Cl_{2} = H_{2}N \cdot C_{6}H_{3}Cl \cdot CH_{2} \cdot C_{6}H_{3}Cl \cdot NH_{2}$. B. Aus N.N'-Methylen-bis-[2-chlor-anilin] (Bd. XII, S. 599), 2-Chlor-anilin und salzsaurem 2-Chlor-anilin in siedender alkoholischer Lösung (Finger, J. pr. [2] 79, 493). — Krystalle (aus verd. Alkohol). F: 105°; schwer löslich in kaltem Wasser, leicht in Ather und Alkohol; leicht löslich in Säuren (F.). — Läßt sich durch Schwefelsesquioxyd (Lösung von Schwefel in rauchender Schwefelsäure) in einen Schwefelfarbstoff überführen (Rassow, D. R. P. 205216; C. 1909 I, 604). — $C_{13}H_{12}N_2Cl_2 + 2 HCl$. F: 2010 (F.).

Verbindung aus 3.3'-Dichlor-4.4'-diamino-diphenylmethan, Formaldehyd und schwefliger Säure C₁₄H₁₄O₂N₂Cl₂S = H₂N·C₆H₃Cl·CH₃·C₆H₃Cl·NH·CH₄(SO₂H). B. Man übergießt 25,5 kg 2-Chlor-anilin mit 260 kg 5% Schwefeldioxyd enthaltender wäßriger schwefliger Säure, setzt 18,2 kg 33% ge Formaldehydlösung hinzu und erwärmt auf 80—85% (Gxicy & Co., D. R. P. 148760; Frdl. 7, 82; C. 1904 I, 554). — F: 168—169%. Schwer löslich in Wasser, löslich in konz. Salzsäure.

a.a-Dichlor-4.4'-bis-dimethylamino-diphenylmethan, Tetramethyldiaminobenso-

phenonchlorid $C_{17}H_{20}N_2Cl_2$. Existiert in einer benzoiden und einer chinoiden Form.

a) Benzoide Form $C_{17}H_{20}N_2Cl_2 = (CH_2)_2N\cdot C_6H_4 \cdot CCl_2\cdot C_6H_4 \cdot N(CH_2)_2$. B. Das salzsaure Salz entsteht beim Leiten von trocknem Chlorwasserstoff in eine Lösung der chinoiden Form (S. 245) in Dichlorathylen oder beim Erhitzen von salzsaurem 4.4'-Bis-dimethylaminobenzophenon (Syst. No. 1873) mit Oxalylchlorid im Druckrohr auf 100° oder in siedendem Benzol (STAUDINGER, B. 42, 3983). — Nur als Salz bekannt (St.). — C₁₇H₂₀N₂Cl₂ + 2 HCl. Weiß. Färbt sich beim Erhitzen bei 150° dunkelblau, zersetzt sich bei 185°; färbt sich an feuchter Luft zunächst grün, dann blau infolge Übergangs in die chinoide Form; löst sich aus diesem Grunde in Wasser mit tiefblauer Farbe (St.). — Verbindung mit Chloroform C₁₇H₂₀N₂Cl₂ + CHCl₃. B. Man behandelt 4.4'-Bis-dimethylamino-thiobenzophenon (Syst. No. 1873) in Chloroform-Lösung mit Thiophosgen und läßt die filtrierte Lösung einige Tage stehen (Baither, B. 20, 1739). Weiße Krystallkrusten. Liefert bei der Destillation mit Wasserdampf Chloroform, HCl und 4.4'-Bis-dimethylamino-benzophenon (B.).

- b) Chinoide Form $C_{17}H_{20}N_2Cl_2 = (CH_3)_2N\cdot C_6H_4\cdot CCl:C < \frac{CH:CH}{CH:CH} < C:N(CH_3)_2Cl. B.$ Aus 4.4'-Bis-dimethylamino-benzophenon bei der Einw. von Oxalylchlorid in Benzol, Dichloräthylen oder Chloroform oder beim Erhitzen mit Phosgen in Toluol im geschlossenen Rohr auf 100° (STAUDINGER, B. 42, 3981). Beim Erhitzen von 4.4'-Bis-dimethylamino-thiobenzophenon mit Benzylchlorid im Wasserbade (Baither, B. 20, 3291). Schwarzblaue, grünschillernde Blättchen; zersetzt sich bei 150° nach vorherigem Sintern; unlöslich in Äther und Benzol, löslich in Dichloräthylen und Chloroform (St.). Die tiefblau gefärbten Lösungen in Wasser und Alkohol entfärben sich beim Stehen oder Kochen unter Ausscheidung des 4.4'-Bis-dimethylamino-benzophenons (St.; vgl. B.). Die wäßr. Lösung färbt sich mit Salzsäure grün, bei genügendem Wasserzusatz wieder blau (St.). Leitet man Chlorwasserstoff in die Lösung der chinoiden Form in Dichloräthylen, so tritt Entfärbung ein, und es scheidet sich das salzsaure Salz der benzoiden Form als weißer Niederschlag aus (St.). Reagiert mit Dimethylanilin in Dichloräthylen unter Bildung von Krystallviolett (Syst. No. 1865) (St.).
- 2-Nitro-4.4'-diamino-diphenylmethan $C_{13}H_{13}O_2N_3 = H_2N \cdot C_6H_3(NO_2) \cdot CH_2 \cdot C_6H_4$. NH₂. B. Bei der Einw. von Kaliumnitrat und Schwefelsäure auf einen Überschuß von 4.4'-Diamino-diphenylmethan (Epstein, D. R. P. 139989; Frdl. 7, 552; C. 1903 I, 798). Schwefelgelbe Nadeln (aus Alkohol). F: 100—101°.
- 2-Nitro-4.4'-bis-dimethylamino-diphenylmethan $C_{17}H_{21}O_2N_3 = (CH_3)_2N \cdot C_6H_3(NO_2) \cdot C_6H_4 \cdot N(CH_3)_2$. B. Durch Nitrieren von 4.4'-Bis-dimethylamino-diphenylmethan mit Salpeterschwefelsäure bei 0°, neben 2.2'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (ULIMANN, MARIĆ, B. 34, 4314; vgl. BAYER & Co., D. R. P. 79250; Frdl. 4, 202; EPSTEIN, D. R. P. 139989; Frdl. 7, 552; C. 1903 I, 798). Ziegelrote Nadeln (aus Alkohol). F: 95° (U., M.), 96—96,5° (E.). Leicht löslich in warmem Benzol, Alkohol und Eisessig, schwer in Ligroin (U., M.).
- 2-Nitro-4.4'-bis-diäthylamino-diphenylmethan $C_{21}H_{29}O_2N_3 = (C_2H_5)_3N \cdot C_6H_3(NO_2) \cdot CH_2 \cdot C_6H_4 \cdot N(C_2H_5)_2$. B. Beim Nitrieren von 4.4'-Bis-diäthylamino-diphenylmethan mit Salpeterschwefelsäure in der Kälte (Bayer & Co., D. R. P. 79250; Frdl. 4, 203). Rubinrote Prismen. F: 79—80°.
- 2.2'-Dinitro-4.4'-diamino-diphenylmethan $C_{13}H_{12}O_4N_4 = H_2N \cdot C_6H_3(NO_2) \cdot CH_2 \cdot C_6H_3(NO_2) \cdot NH_2$. B. Beim Behandeln von 4.4'-Diamino-diphenylmethan mit 2 Mol.-Gew. Kaliumnitrat in viel konz. Schwefelsäure (Gram, B. 25, 304). Darst. Man fügt allmählich 50 g 4.4'-Diamino-diphenylmethan zu 500 g 60—80° heißer Schwefelsäure und nach erfolgter Abkühlung der Lösung auf 0° zu dieser im Laufe von 2—3 Stdn. ein Gemisch aus 51 g Kaliumnitrat und 200 g Schwefelsäure, gießt nach halbstündigem Rühren auf Eis und übersättigt mit Ammoniak (Duval, Bl. [4] 7, 529; vgl. Schnitzspahn, J. pr. [2] 65, 317). Hellorangefarbene goldglänzende Blättchen (aus Alkohol). F: 202° (G.), 205° (Sch.), 205—206° (Maquennescher Block) (D., Bl. [4] 7, 530). Leicht löslich in heißem Alkohol, Reduktion mit Zinkstaub und Ammoniumchlorid und Oxydation der entstandenen Hydroxylaminverbindung in alkol. Lösung durch einen Luftstrom in 4.4'-Diamino-2.2'-azoxydiphenylmethan (Syst. No. 3747) überführen (D., C. r. 141, 200; Bl. [4] 7, 527, 531). Durch Diazotierung und Verkochen der Diazoverbindung mit Alkohol erhält man 2.2'-Dinitrodiphenylmethan (Bd. V, S. 595) (Sch.). $C_{13}H_{12}O_4N_4 + 2 HCl + 2^1/2H_2O$. Blaßgelbe Nadeln. Wird durch Wasser dissoziiert (Sch.). Sulfat. Weiße Nadeln. Leicht löslich in Alkohol und verd. Schwefelsäure. Wird durch Wasser dissoziiert (Sch.).
- 2.2'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan $C_{17}H_{29}O_4N_4=CH_2[C_6H_3(NO_2)\cdot N(CH_3)_2]_2$. B. Man löst 4.4'-Bis-dimethylamino-diphenylmethan in konz. Schwefelsäure und setzt bei 0° eine Lösung von Kaliumnitrat in konz. Schwefelsäure hinzu (Ullmann, Marić, B. 34, 4315; vgl. Duval, Bl. [4] 7, 535) oder man trägt 30 g 4.4'-Bis-dimethylamino-diphenylmethan, gelöst in 250 g konz. Schwefelsäure, in ein Gemisch aus 23,6 g Salpetersäure (D: 1,4) und 23,6 g konz. Schwefelsäure unterhalb 0° ein (Pinnow, B. 27, 3162). Rote Prismen (aus Eisessig). F: 190—191° (Biehringer, J. pr. [2] 54, 241), 191,5° (P.), 195° (U., M.). Leicht löslich in Chloroform, schwer in kaltem Alkohol, Äther und Eisessig (P.). Beim Behandeln mit Zinn und Salzsäure entsteht 2.2'-Diamino-4.4'-bis-dimethylamino-diphenylmethan (S. 340) (P.). Läßt sich durch gemäßigte Reduktion in 4.4'-Bis-dimethylamino-2.2'-azo-diphenylmethan (CH₃)₂N·C₆H₃·N(CH₃)₂ (Syst. No. 3747) überführen (Duval).

- 2.2'-Dinitro-4.4'-bis-diäthylamino-diphenylmethan $C_{21}H_{20}O_4N_4 = CH_2[C_8H_2(NO_2)\cdot N(C_2H_5)_2]_2$. B. Beim Nitrieren von 4.4'-Bis-diäthylamino-diphenylmethan in schwefelsaurer Lösung (EPSTEIN, D. R. P. 139989; Frdl. 7, 553; C. 1903 I, 798). Gelbrote Blättchen (aus Alkohol). F: 121—121,5°.
- 2.2'- Dinitro 4.4'- bis acetamino diphenylmethan $C_{17}H_{16}O_6N_4 = CH_2[C_6H_3(NO_2)\cdot NH\cdot CO\cdot CH_3]_2$. B. Aus 2.2'- Dinitro-4.4'-diamino-diphenylmethan und Essigsäureanhydrid (DUVAL, C. r. 146, 1325; Bl. [4] 7, 530). Gelbe Krystalle (aus Alkohol). F: 229°. Löslich in Alkohol und Eisessig, unlöslich in Ather, Benzol und Chloroform. Liefert bei der Reduktion mit Zinnchlorür und Salzsäure in alkoh. Lösung 2.2'- Diamino-4.4'-bis-acetamino-diphenylmethan (S. 341).
- $\bf 3.3'$ Dinitro $\bf 4.4'$ diamino diphenylmethan $\rm C_{13}H_{18}O_4N_4=H_2N\cdot C_6H_6(NO_2)\cdot CH_2\cdot C_6H_3(NO_2)\cdot NH_2.$ B. Durch gelindes Erwärmen von 3.3'-Dinitro $\bf 4.4'$ bis-acetamino-diphenylmethan (s. u.) mit 2 Mol.-Gew. Kalilauge und etwas Alkohol (Gram, B. 25, 303). Durch Erwärmen von N.N'-Methylen-bis-[2-nitro-anilin] (Bd. XII, S. 690) bezw. Anhydro-[3-nitro-4-amino-benzylalkohol] (s. bei 3-Nitro-4-amino-benzylalkohol; Syst. No. 1855) mit 2-Nitro-anilin und konz. Salzsäure (J. Meyer, Rohmer, B. 33, 255). Rote Nadeln (aus Eisessig oder Phenol + Alkohol). F: 224° (G.), 228—230° (J. M., R.). Unlöslich in Alkohol, Benzol und Chloroform, ziemlich schwer löslich in heißem Eisessig, ziemlich löslich in heißem Nitrobenzol; unlöslich in 20°/piger Salzsäure (J. M., R.). Liefert bei der Behandlung mit Zinn und Salzsäure 3.4.3'.4'-Tetraamino-diphenylmethan (S. 341) (J. M., R.). Durch Entamidierung entsteht 3.3'-Dinitro-diphenylmethan (Bd. V, S. 595) (J. M., R.).
- 3.3'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan $C_{17}H_{20}O_4N_4 = CH_2[C_6H_3(NO_5)\cdot N(CH_3)_2]_2$. B. Bei langsamem Eintragen von 85 g Natriumnitrit, gelöst in 150 ccm Wasser, in 50 g 4.4'-Bis-dimethylamino-diphenylmethan, gelöst in 360 g $20^9/_0$ iger Salzsäure, unterhalb 0^9 , neben N.N-Dimethyl-4-nitro-anilin (Bd. XII, S. 714) (Pinnow, B. 27, 3162). Bei der Einw. von salpetriger Säure auf salzsaures 4.4'-Bis-dimethylamino-diphenylmethan-N.N'-dioxyd (S. 242) (Bamberger, Rudolf, B. 41, 3300). Rote Nadeln (aus Eisessig). F: 123—124° (P.; B., R.). Sehr leicht löslich in Chloroform, Benzol und heißem Eisessig, mäßig in kaltem, schwer in Alkohol, Äther und Ligroin (P.).
- 8.3'-Dinitro-4.4'-bis-acetamino-diphenylmethan $C_{17}H_{18}O_4N_4 = CH_2[C_6H_3(NO_2)\cdot NH\cdot CO\cdot CH_3]_3$. Beim Eintragen von 4.4'-Bis-acetamino-diphenylmethan in die 5-fache Menge Salpetersäure (D: 1,48) (Geam, B. 25, 303). Beim Kochen von 3.3'-Dinitro-4.4'-diamino-diphenylmethan mit Essigsäureanhydrid (J. MEYER, ROHMER, B. 33, 257). Citronengelbe Nadeln (aus Eisessig). F: 259—260° (J. M., R.). Leicht löslich in Phenol, schwer in Alkohol, Eisessig und Benzol, unlöslich in Äther (G.).
- 3.3'- Dinitro -4.4'- bis [carboxymethyl-amino] diphenylmethan, 3.8'- Dinitro -[4.4'-diamino-diphenylmethan]-N.N'-diessigsäure $C_{17}H_{16}O_8N_4 = CH_2[C_8H_8(NO_3)\cdot NH\cdot CH_2\cdot CO_2H]_3$. B. Beim Erwärmen von 3.3'-Dinitro-4.4'-diamino-diphenylmethan mit Chloressigsäure und krystallisiertem Natriumacetat auf 150—160° (NEUMÜLLEB, J. pr. [2] 77, 358). Citronengelbe Nädelchen (aus verd. Alkohol). Bräunt sich bei 130° und schmilzt unscharf bei 164° unter Zersetzung. Sehr wenig löslich in Äther, schwer in kaltem Wasser, leicht in heißem Wasser und in Alkohol.
- 8.5.3'.5' Tetranitro 4.4' bis methylamino diphenylmethan $C_{15}H_{14}O_8N_6 = CH_2[C_6H_3(NO_3)_2 \cdot NH \cdot CH_3]_2$. B. Beim Kochen des 3.5.3'.5'-Tetranitro-4.4'-bis-methylnitramino-diphenylmethans (s. u.) mit Phenol (van Romburgh, R. 7, 231). Orangefarbene Krystalle. Schmilzt gegen 250° unter Zersetzung. Wenig löslich in Alkohol, Petroläther und Benzol, leicht in heißem Essigester, Aceton, Essigsäure und Chloroform. Bei der Oxydation durch CrO₃ und Essigsäure entsteht 3.5.3'.5'-Tetranitro-4.4'-diamino-benzophenon (Syst. No. 1873). Liefert mit rauchender Salpetersäure 3.5.3'.5'-Tetranitro-4.4'-bis-methylnitramino-diphenylmethan zurück.
- 3.5.3′.5′-Tetranitro-4.4′-bis-methylnitramino-diphenylmethan $C_{1s}H_{1s}O_{1s}N_s = CH_s[C_6H_s(NO_s)_s\cdot N(NO_s)\cdot CH_s]_s$. B. Man löst 4.4′-Bis-dimethylamino-diphenylmethan in Essigsäure, gießt diese Lösung in abgekühlte Salpetersäure (D: 1,5) und kocht schließlich auf (van Romburgh, R. 7, 228). Gelbe Krystalle. Bräunt sich bei 210° und zersetzt sich bei 217—220°. Fast unlöslich in siedendem Alkohol, Äther, Petroläther, Chloroform und CS_s; ziemlich löslich in warmem Aceton. Wird von CrO_s in Essigsäure zu 3.5.3′.5′-Tetranitro-4.4′-bis-methylnitramino-benzophenon (Syst. No. 1873) oxydiert. Beim Kochen mit konz. Kälilauge entweicht Methylamin. Beim Kochen mit Phenol entsteht 3.5.3′.5′-Tetranitro-4.4′-bis-methylamino-diphenylmethan (s. o.).
- 6. 4.a-Diamino-diphenylmethan, 4.a-Diamino-ditan, 4-Amino-benzhydrylamin $C_{13}H_{14}N_2=C_0H_5\cdot CH(NH_2)\cdot C_0H_4\cdot NH_2$.
- a-Amino-4-dimethylamino-diphenylmethan, 4-Dimethylamino-benshydrylamin $C_{18}H_{18}N_2 = C_6H_5 \cdot CH(NH_2) \cdot C_6H_4 \cdot N(CH_2)_4$. B. Durch Erhitzen von a-Brom-4-dimethyl-

- amino-diphenylmethan [erhalten aus 4-Dimethylamino-benzhydrol (Syst. No. 1859) und Eisessig-Bromwasserstoff] mit Phthalimidkalium (Syst. No. 3207) auf 180° und Abspaltung des Phthalsäurerestes durch wäßrig-alkoholisches Ammoniak bei 140° (MERCK, D. R. P. 167463; C. 1906 I, 1068). Durch Erhitzen des 4-Dimethylamino-benzhydrols oder seines Äthyläthers mit Ammoniak unter Druck (M., D. R. P. 167462; C. 1906 I, 1068). Man reduziert 4-Dimethylamino-benzophenon-oxim (Syst. No. 1873) mit Natrium und Alkohol oder elektrolytisch an einer Bleikathode (M., D. R. P. 167053; C. 1906 I, 720). Spieße. F: 82,5°; leicht löslich in kaltem Alkohol und Benzol, schwer in Ligroin (M., D. R. P. 167053). Monohydrochlorid. Blättchen. F: 180—187°; in Wasser ziemlich schwer löslich (M., D. R. P. 167053).
- a-Amino-4-diäthylamino-diphenylmethan, 4-Diäthylamino-benzhydrylamin $C_{17}H_{22}N_2 = C_6H_8 \cdot CH(NH_2) \cdot C_6H_4 \cdot N(C_2H_5)_2$. B. Durch Erhitzen von a-Brom-4-diäthylamino-diphenylmethan (durch Einw. von Eisessig-Bromwasserstoff auf 4-Diäthylamino-benzhydrol in sirupöser Form erhalten) mit methylalkoholischem Ammoniak unter Druck (MERCK, D. R. P. 167462; C. 1906 I, 1068). Durch Reduktion von 4-Diäthylamino-benzohenon-phenylhydrazon (Syst. No. 2064) mit Natriumamalgam (M., D. R. P. 167053; C. 1906 I, 720). Blättohen. F: 120—121°; schwer löslich in Ligroin (M., D. R. P. 167053). Monohydrochlorid. Nadeln. Schwer löslich in kaltem Wasser (M., D. R. P. 167053).
- 4-Amino-α-anilino-diphenylmethan $C_{19}H_{16}N_2 = C_6H_5 \cdot CH(NH \cdot C_6H_5) \cdot C_6H_4 \cdot NH_2$. B. Beim Einrühren von 90 Tln. Benzalanilin (Bd. XII, S. 195) in eine Lösung von 130 Tln. salzsaurem Anilin in 400 Tln. Anilin bei 15—20° (Höchster Farbw., D. R. P. 106497; C. 1900 I, 740). Dickflüssiges Öl. Leicht löslich in Alkohol, Äther und Benzol (H. F., D. R. P. 106497). Gibt bei der Oxydation in alkoholischer mit Essigsäure angesäuerter Lösung mit PbO₂ Gelb- und dann Braunfärbung (H. F., D. R. P. 106497). Geht beim Erwärmen mit Mineralsäure glatt in 4.4′-Diamino-triphenylmethan (S. 274) über (H. F., D. R. P. 106497). Wird durch Erhitzen mit Schwefel unter Schwefelwasserstoffentwicklung in ein gelbrotes Produkt übergeführt, das durch verd. Mineralsäure in Anilin und 4-Amino-benzophenon (Syst. No. 1873) gespalten wird (H. F., D. R. P. 106497). Bei der Einw. von Salzen aromatischer Amine entstehen unter Abspaltung von Anilin Amine der Triphenylmethanreihe (H. F., D. R. P. 111041; C. 1900 II, 548).
- 4'-Nitro-4-amino-a-anilino-diphenylmethan $C_{19}H_{17}O_2N_3=O_2N\cdot C_9H_4\cdot CH(NH\cdot C_8H_5)\cdot C_8H_4\cdot NH_2$. B. Beim Hinzufügen von [4-Nitro-benzal]-anilin (Bd. XII, Š. 198) zu einer Lösung von salzsaurem Anilin in Anilin bei 15—20° (Höchster Farbw., D. R. P. 106497; C. 1900 I, 740). Schwefelgelbe Krystalle. F: 148°; schwer löslich in Äther, mäßig in Alkohol, leicht in heißem Benzol.
- 7. 4.4'-Diamino-2-methyl-diphenyl, 2-Methyl-benzidin $C_{13}H_{14}N_3 = H_1N \cdot C_6H_4 \cdot C_6H_3(CH_3) \cdot NH_2$. B. Beim Eintragen von 10 g 3-Methyl-azobenzol (Syst. No. 2095), gelöst in 50 g Alkohol, in 160 g Zinnehlorürlösung (40 g Zinnehlorür auf 100 ccm 38% ige Salzsäure) (Jacobson, Nanninga, B. 28, 2549; vgl. Bad. Anilin- u. Sodaf., D. R. P. 54599; Frdl. 2, 435). Zähe Masse. Leicht löslich in Methylalkohol, Äther und Benzol, schwerer in Äthylalkohol und Ligroin (J., N.). Diazotieren und Eintragen der Diazoniumsalzlösung in wäßr. Kaliumjodidlösung führt zu 4.4'-Dijod-2-methyl-diphenyl (J., N.). Verwendung als Komponente für Baumwollazofarbstoffe: B. A. S. F. $C_{13}H_{14}N_2 + 2$ HCl. Nadeln. Sehr leicht löslich in Wasser (J., N.).
- N.N'-Dibensalderivat $C_{27}H_{22}N_3 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot C_6H_5 \cdot CH : O \cdot C_6H_5
- N.N'-Disalicylalderivat $C_{27}H_{22}O_{2}N_{2} = HO \cdot C_{2}H_{4} \cdot CH : N \cdot C_{2}H_{4} \cdot Ct_{2} \cdot N \cdot CH \cdot C_{5}H_{4} \cdot CH$. Be Beim Kochen von 1,55 g 2-Methyl-benzidin mit 2 g Salicylaldehyd in Alkohol (J., N., B. 28, 2550). Stäbchen (aus Benzol + Ligroin). Beginnt bei 155° zu sintern und sehmilzt bei 160—165°. Leicht löslich in Benzol, schwer in Alkohol, Äther und Ligroin.
- N.N'-Diacetylderivat $C_{17}H_{18}O_3N_4 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot C_6H_3 \cdot CH_3 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von 2-Methyl-benzidin mit Eisessig (J., N., B. 28, 2550). Säulen (aus Eisessig). Schmilzt noch nicht bei 300°; beginnt bei 310° zu sintern. Sehr schwer löslich in heißem Ligroin, Benzol und Alkohol, ziemlich löslich in heißem Eisessig.
- 8. 4.4'-Diamino-3-methyl-diphenyl, 3-Methyl-benzidin $C_{12}H_{14}N_2 = H_2N \cdot C_6H_4 \cdot C_6H_5 \cdot C_8H_2 \cdot C_8H_3 \cdot C_8H$

— Amorph. — Läßt sich durch Diazotieren und Behandeln der Diazoverbindung mit KI in 4.4'-Dijod-3-methyl-diphenyl (Bd. V, S. 597) überführen (J., L.). — Über Verwendung zur Herstellung von Disazofarbstoffen vgl. B. & Co., D. R. P. 50983, 51361, 53494, 53986; Frdl. 2, 424, 426, 429, 431. Eintragen des Sulfats in rauchende Schwefelsäure mit 40% SO₃-Gehalt und Erhitzen auf 80° führt zum nicht näher beschriebenen Sulfon H₂N·C₆H₃ SO₂ C₆H₂(CH₃)·NH₂ (B. & Co., D. R. P. 53436; Frdl. 2, 423). — Hydrochlorid. Krystalle. In Wasser leicht löslich (B. & Co., D. R. P. 52839). — Sulfat. Krystallinisch (J., L.). Fast unlöslich in Wasser, ziemlich leicht löslich in heißer Salzsäure (B. & Co., D. R. P. 52839). — Nitrat. Krystalle. In Wasser leicht löslich (B. & Co., D. R. P. 52839).

N.N'-Dibenzalderivat $C_{37}H_{39}N_3 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot C_6H_3 \cdot N : CH \cdot C_6H_6$. Bei mehrstündigem Kochen von 1,3 g 3-Methyl-benzidin mit 1,4 g Benzaldehyd und 7 g Alkohol auf dem Wasserbade (J., L., B. 28, 2545). — Täfelchen (aus Alkohol). F: 134°. Leicht löslich in warmem Alkohol und CS₁, schwer in Ligroin.

3. Diamine $C_{14}H_{16}N_{2}$

1. 2.2'-Diamino-dibenzyl, $a.\beta$ -Bis-[2-amino-phenyl]-dihan $C_{14}H_{12}N_2 = H_2N$. C.H. CH. CH. C.H. NH. B. Durch Reduktion einer alkoh. Lösung von 2.2-Dinitro-dibenzyl (Bd. V, S. 603) mit Zinn und konz. Salzsaure (Busch, Weiss, B. 33, 2709). Eine kochende Lösung von 8 g 2.2'-Diamino-stilben (S. 267) in 400 ccm Isoamylalkohol wird allmählich mit 20 g Natrium versetzt (THIELE, HOLZINGER, A. 305, 97). Durch Reduktion von 2.2'-Azo-dibenzyl $C_6H_4 < \underbrace{CH_3 \cdot CH_3}_{N = N} > C_6H_4$ (Syst. No. 3487) mit Zinnehlorür und Salzsäure (Duval, Bl. [4] 7, 732). — Nädelchen (aus Wasser oder verd. Alkohol). F: 68°; schwer löslich in Wasser, leicht in organischen Lösungsmitteln (TH., Ho.). — Liefert beim Erhitzen mit seinem salzsauren Salz 2.2'-Imino-dibenzyl C_0H_4 CH_2 CH_3 C_0H_4 (Syst. No. 3087) (Th., Ho.). — $C_{14}H_{16}N_1 + 2HCl + 2H_2O$. Nadeln. Schmilzt noch nicht bei 270° (Th., Ho.). Sublimiert bei 280° ; ziemlich schwer löslich in Wasser (B., W.). — Pikrat $C_{14}H_{16}N_1 + 2C_6H_2O_7N_3$. Gelbe Nadeln. Schmilzt unscharf unter Zersetzung bei $225-230^{\circ}$; schwer löslich in Wasser, Benzol und Äther, leicht in Alkohol (TH., Ho.).

N.N'-Diacetylderivat $C_{18}H_{20}O_2N_3 = [-CH_3 \cdot C_0H_4 \cdot NH \cdot CO \cdot CH_3]_3$. B. Aus 2.2'-Diamino-dibenzyl in ather. Lösung mit Accetylchlorid (Thirle, Holzinger, A. 305, 99). — Nadeln (aus verd. Alkohol). F: 249-250°.

N.N'-Dibenzoylderiwat $C_{2b}H_{24}O_2N_2=[-CH_2\cdot C_0H_4\cdot NH\cdot CO\cdot C_0H_5]_2$. B. Aus 2.2'-Diamino-dibenzyl in ather. Lösung mit Benzoylchlorid (Tx., Ho., A. 305, 99). — Nadelchen (aus Alkohol). F: 255°. Unlöslich in Wasser, sehr wenig löslich in Benzol und Äther, ziemlich löslich in Chloroform.

2. 4.4'-Diamino-dibenzyl, $a.\beta$ -Bis-[4-amino-phenyl]-dihan $C_{14}H_{16}N_{2}=H_{2}N\cdot C_{6}H_{4}\cdot CH_{2}\cdot CH_{2}\cdot CH_{4}\cdot NH_{2}$. B. Aus 4.4'-Dinitro-dibenzyl (Bd. V, S. 604) mit Zinn und konz. Salzsäure (Stelling, Fittig, A. 187, 262; Kaufleb, Borel, B. 40, 3255). — Schuppen (aus Wasser). F: 134—135° (K., B.), 132° (St., Fl.); sublimiert fast unzersetzt; fast unlöslich in kalten in halten i in kaltem, leichter in heißem Wasser, sehr leicht in Alkohol (St., Fi.). — Beim Erwärmen mit Nitrophenol, Glycerin und Schwefelsäure entsteht ·CH₂·CH₂· Dichinolyläthan von nebenstehender Formel (Syst. No. 3491) (COMEY, B. 28, 1115). Gibt beim Kochen mit Phthalsaureanhydrid und Wasser $a.\beta$ -Bis-[4-phthal-

imido-phenyl]-āthan $[-CH_{\underline{a}}\cdot C_{\underline{a}}H_{\underline{a}}\cdot N < CO > C_{\underline{a}}H_{\underline{a}}]_{\underline{a}}$ (Syst. No. 3218) (K., B.), beim Kochen mit Schwefelkohlenstoff und Alkohol 4-Amino-4'-thiocarbonylamino-dibensyl (S. 249) (K., B.; vgl. Le Fèver, Turner, Soc. 1926, 2478). — $C_{14}H_{16}N_3 + 2$ HCl. Krystalle, Leicht löslich in Wasser und Alkohol (Sr., Fi.). — $C_{14}H_{14}N_3 + H_2$ SO₄. Krystallpulver. Schwer löslich in Wasser (Sr., Fi.). — Oxalate: $C_{14}H_{16}N_3 + C_2H_3O_4$. Krystallpulver. Ziemlich schwer löslich in Wasser (Sr., Fi.). — $C_{14}H_{16}N_3 + 2C_2H_3O_4$. Krystallpulver. Ziemlich schwer löslich in Wasser (Sr., Fi.). — $C_{14}H_{16}N_3 + 2C_2H_3O_4 + 3H_3O$. Prismatische Krystalle. Fast unlöslich in keltem Wasser, Goldelispsende Nedelin Sehr unbeständig (Sr., Fi.). — Chloroplatinat $C_{14}H_1N_1 + 2HCl.$ Coldelispsende Nedelin Sehr unbeständig (Sr., Fi.). $C_{14}H_{16}N_2 + 2HCl + PtCl_4$. Goldglänzende Nadeln. Sehr unbeständig (Sr., Fr.).

4.4'-Bis-dimethylamino-dibensyl, α.β-Bis-[4-dimethylamino-phenyl]-šthan C₁₂H₂₄N₃ = [-CH₂·C₂H₄·N(CH₂)₂]₂. B. Aus dem Bis-[4-dimethylamino-bensyl]-disulfid (Syst. No. 1855) beim Erhitzen mit Kupferpulver (ΜΑΝΌΗΟΤ, ΖΑΗΝ, ΚΕΙΝΣΙΑΙΝ, Α. 845, 330). — Kp₃₅: 103°. — C₁₂H₂₄N₃ + 2 HCl + PtCl₄.

Als 4.4'-Bis-dimethylamino-dibensyl fabte SCHOOF (B. 18, 2196) eine Verbindung auf, die jetzt als N.N'-Dimethyl-N.N'-diphenyl-šthylendiamin C₄H₅·N(CH₂)·CH₂·CH₂·CH₃·N(CH₃)·CH₃·CH₃·N(CH₃)·CH₃·N(CH₃·N(CH₃)·CH₃·N(CH₃·

CH₂·N(CH₃)·C₆H₅ (Bd. XII, S. 544) erkannt ist.

- 4.4'-Bis dimethylamino dibensyl mono jodmethylat $C_{10}H_{27}N_1I = (CH_2)_2N \cdot C_0H_4 \cdot CH_2 \cdot CH_3 \cdot C_0H_4 \cdot N(CH_2)_2I$. B. Aus 5.5 g 4.4'-Diamino-dibenzyl, 14 g Methyljodid, etwas KOH und Methylalkohol durch mehrstündiges Erhitzen auf 150—180° (HEUMANN, WIERNIK, B. 20, 912). — Gelblichbraune Nadeln (aus siedendem Alkohol). Schwer löslich in Alkohol.
- 4 Amino 4' thiocarbonylamino dibensyl (P), a-[4-Amino-phenyl]- β -[4-thiocarbonylamino phenyl] äthan (P) $C_{18}H_{14}N_2S = H_2N\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot C_6H_4\cdot N\cdot CS(?)^1$). Das Molekulargewicht ist ebullioskopisch bestimmt (KAUFLEB, BOREL, B. 40, 3256). B. Durch 3-tägiges Kochen von 4.4'-Diamino-dibenzyl mit Schwefelkohlenstoff in Alkohol (K., B., B. 40, 3256). — F: 272—273°. Leicht löslich in Chinolin, schwer in Nitrobenzol und Pyridin; unlöslich in Säuren.
- 3. a.a'-Diamino-dibenzyl, $a.\beta$ -Diamino- $a.\beta$ -diphenyl- \ddot{a} than, a.a'-Diphenyläthylendiamin $C_{14}H_{16}N_2 = C_6H_5 \cdot CH(NH_2) \cdot CH(NH_2) \cdot C_6H_5$.
- a) Rechtsdrehendes a.a'- Diphenyl äthylendiamin, rechtsdrehendes Stilbendiamin $C_{14}H_{16}N_3=C_6H_5$ · $CH(NH_2)\cdot CH(NH_2)\cdot C_6H_5$. B. Man unterwirft das Ditartrat des bei $90-92^{\circ}$ schmelzenden inakt. a.a'-Diphenyl-äthylendiamins (s. u.) der fraktionierten Krystallisation aus mäßig warmem Wasser; das Salz des rechtsdrehenden Diphenyläthylendiamins ist leichter löelich und bleibt in den Mutterlaugen (FEIST, ARNSTEIN, B. **28,** 3169). — $[\alpha]_D$: +134,8° bei ca. 15°.
- b) Linksdrehendes a.a'-Diphenyl-dihylendiamin, linksdrehendes Stilbendiamin $C_{14}H_{16}N_2 = C_6H_5 \cdot CH(NH_2) \cdot CH(NH_2) \cdot C_6H_5$. B. s. o. bei der rechtsdrehenden Form. [a]_b: —128° bei ca. 15° (Feist, Arnstein, B. 28, 3169). Das Ditartrat ist in Wasser schwerer löslich, als das des rechtsdrehenden Diphenyläthylendiamins.
- c) Inaktives spaltbares a.a' Diphenyl äthylendiamin, racemisches Stilbendiamin $C_{14}H_{16}N_3=C_4H_5\cdot CH(NH_2)\cdot CH(NH_2)\cdot C_6H_5$. B. Entsteht bei der Reduktion von a- oder β -Benzildioxim (Bd. VII, S. 760, 761) mit Natrium und absol. Alkohol (Feist, B. 27, 214), neben dem bei 161° schmelzenden Diphenyloxathylamin (Syst. No. 1859) und Tetraphenylpyrazin (Syst. No. 3497) (FEIST, ARNSTEIN, B. 28, 3167). Beim Behandeln von Isoamarin (Syst. No. 3491) mit Natrium in Alkohol (Japp, Moir, Soc. 77, 638). — Federförmige Aggregate (aus Ligroin). F: 90—92°; ziemlich schwer flüchtig mit Wasserdampf; riecht schwach alkalisch (F.). - Bei der Destillation des Hydrochlorids mit Natriumacetat C.H.CH-NH
- C·CH₃ (Syst. No. entsteht 2-Methyl-4.5-diphenyl-glyoxalin-dihydrid-(4.5) entsteht 2-Methyl-4.5-diphenyl-glyoxalin-dihydrid-(4.5) C₆H₅·CH—N C·CH₈ (Syst. No. 3487) (F., A.). Mit Oxalsāurediāthylester und Alkohol entsteht in der Kälte die Verbindung C₁₆H₁₆N₅+2C₆H₁₀O₄ (s. u.), beim Erhitzen dagegen die Verbindung C₂₆H₂₆O₃N₂ (s. u.) (F., A.). Liefert bei der Einwirkung von salpetriger Säure Isodiphenyloxathylamin (Syst. No. 1859), Isohydrobenzoin (Bd. VI, S. 1004) und Diphenylacetaldehyd (Bd. VII, S. 438) (F., A.). Läßt sich durch fraktionierte Krystallisation des Directors aktive Formen Läßt sich durch fraktionierte Krystallisation des Ditartrats in zwei optisch aktive Formen (s. o.) zerlegen (F., A.). — $C_{14}H_{16}N_3 + 2$ HCl + 2 H₂O. F: 248° (Zers.) (F.; F., A.), 253—254° (J., M.). Leicht löslich in Wasser (F.). Verliert über H₂SO₄ 1 Mol. H₂O (F., A.). — Diacetat $C_{14}H_{16}N_3 + 2C_2H_4O_3$. Krystalle (aus Wasser). F: 256°; löslich in Alkohol und Äther (F., A.). — Ditartrat $C_{14}H_{16}N_3 + 2C_2H_4O_4$. Nadeln. F: 165—166° (Zers.); leicht löslich in Wasser (F., A.). — Pikrat $C_{14}H_{16}N_3 + C_2H_3O_7N_3$. F: 220° (F.; F., A.). Schwer löslich in Alkohol und Äther (F.). — $C_{14}H_{16}N_3 + 2HCl + PtCl_4 + 2H_3O$. Blaßgelbe Nadeln. F: 222—225° (F., A.). Leicht löslich in heißem Wasser (F.). Additionelle Verbindung aus a.a'-Diphenyläthylendiamin und Oxalsäurediäthylester $C_{14}H_{16}N_3 + 2C_6H_{10}O_4$. B. Aus dem bei 90—92° schmelzenden inakt. a.a'-Diphenyl-äthylendiamin in alkoh. Lösung beim tropfenweisen Zusatz von Oxalsäurediäthylester in der Kälte (Feist, Arnstein, B. 28, 3179). — Blättchen (aus Alkohol). F: 164° (Zers.). Unlöslich in Wasser und Äther.

R. Durch Erhitzen des bei 90—92° schmelzenden inakt. a.a'-Diphenyl-äthylendiamins mit Oxalsäurediäthylester am Rückflußkühler (F., A., B. 28, 3179). — Flocken (aus Alkohol). F: 242° (Zers.). Löslich in Alkohol, Äther und Chloroform.

N.N'-Dibensal - aa'- diphenyl - äthylendiamin $C_{28}H_{24}N_2 = C_6H_5 \cdot CH(N:CH \cdot C_6H_5) \cdot CH(N:CH \cdot C_6H_6) \cdot C_2H_5 \cdot C_2H_5 \cdot C_2H_5 \cdot C_3H_5 \cdot C_3$ diamin und Benzaldehyd in Alkohol oder Benzol beim Kochen (Frist, Arnstrin, B. 28,

¹) So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von LE FRVRE, TURNER (Soc. 1926, 2478) und einer Privatmitteilung von TURNER.

3179). — Blättchen (aus Alkohol). F: 152°. Löslich, außer in Wasser. — Zerfällt beim Kochen mit verd. Salzsaure wieder in Benzaldehyd und Diphenylathylendiamin.

N.N'-Diacetyl-a.a'-diphenyl-äthylendiamin $C_{12}H_{20}O_2N_1 = C_2H_5 \cdot CH(NH \cdot CO \cdot CH_3) \cdot CH(NH \cdot CO \cdot CH_3) \cdot C_2H_5$. Sublimiert in Nadeln. Schmilzt oberhalb 360°; leicht löslich in Berzol und Chloroform (F., A., B. 28, 3176). — Liefert beim Erhitzen im HCl-Strome auf 260° sehr wenig 2-Methyl-4.5-diphenyl-glyoxalin-dihydrid-(4.5) (F., A.).

Das diastereoisomere N.N'-Diacetyl-a.a'-diphenyl-athylendiamin C₁₈H₂₀O₂N₂

 $= C_a H_s \cdot CH(NH \cdot CO \cdot CH_s) \cdot CH(NH \cdot CO \cdot CH_s) \cdot C_a H_s \quad \text{s. } 8. \quad 251.$

N.N'-Dibensoyl-aa'-diphenyl-äthylendiamin $C_{12}H_{24}O_2N_3 = C_4H_5 \cdot CH(NH \cdot CO \cdot C_6H_5) \cdot CH(NH \cdot CO \cdot C_6H_5) \cdot C_6H_5 Äther, unlöslich in Wasser, Alkohol und Ligroin. — Liefert mit Salpeterschwefelsäure eine Trinitroverbindung C₂₈H₁₁O₈N₅ (gelbes Pulver, F: 137°). Liefert beim Erhitzen im HCl-Strome auf 260° Isoamarin (Syst. No. 3491).

Das diastereoisomere N.N'-Dibenzoyl-a.a'-diphenyl-āthylendiamin

 $C_{\mathbf{56}}H_{\mathbf{54}}O_{\mathbf{5}}N_{\mathbf{5}} = C_{\mathbf{6}}H_{\mathbf{5}} \cdot CH(NH \cdot CO \cdot C_{\mathbf{6}}H_{\mathbf{5}}) \cdot CH(NH \cdot CO \cdot C_{\mathbf{6}}H_{\mathbf{5}}) \cdot C_{\mathbf{6}}H_{\mathbf{5}} \text{ s. S. } 251.$

N-Dithiocarboxy-a.a'-diphenyl-äthylendiamin $C_{15}H_{16}N_2S_3=C_6H_5\cdot CH(NH_2)\cdot CH(NH\cdot CS_2H)\cdot C_6H_5$. B. Beim Eintröpfeln von CS_2 in die Lösung des bei 90—92° schmelzenden inakt. a.a'-Diphenyl-äthylendiamins in Äther (F., A., B. 28, 3178). — Krystalle (aus Aceton + Wasser). F: 132°. Löslich in Alkohol und Aceton, unlöslich in Wasser und Ather. Zerfällt beim Erhitzen in H₂S und Diphenyläthylenthioharnstoff (Syst. No. 3571).

[a.a'-Diphenyl-äthylen]-di-harnstoff $C_{16}H_{16}O_3N_4=C_6H_5\cdot CH(NH\cdot CO\cdot NH_4)\cdot CH(NH\cdot CO\cdot NH_5)\cdot C_8H_6$. B. Aus dem salzsauren Salz des bei 90—92° schmelzenden inakt. a.a'-Diphenyl-äthylendiamins und Kaliumcyanat in Wasser (F., A., B. 38, 3178). — Nadeln (aus absol. Alkohol). Schmilzt oberhalb 360°. Leicht löslich in heißem Wasser, Alkohol und Äther.

[a.a'-Diphenyl-äthylen] - bis-thioharnstoff $C_{16}H_{18}N_4S_8 = C_6H_5 \cdot CH(NH \cdot CS \cdot NH_5) \cdot C_6H_5$. Aus dem salzsauren Salz des bei 90—92° schmelzenden inakt. a.a'-Diphenyl-athylendiamins und Kaliumrhodanid in wäßr. Lösung (F., A., B. 28, 3178). - Nadeln (aus Alkohol). F: 192º (Zers.). Leicht löslich in Alkohol, Äther und in heißem Wasser.

- d) Inaktives nicht spaltbares a.a'-Diphenyl-äthylendiamin, Mesostilbendiamin $C_{14}H_{16}N_3=C_6H_5\cdot CH(NH_2)\cdot CH(NH_2)\cdot C_6H_6$. B. Durch Reduktion von Amarin (Syst. No. 3491) mit dem halben Gewicht Natrium in siedender alkoholischer Lösung erhält man N.N'-Dibenzal- $\alpha.\alpha'$ -diphenyl-athylendiamin (S. 251), das beim Kochen mit verd. Schwefelsaure in Benzaldehyd und bei 120—121° schmelzendes a.a'-Diphenyl-athylendiamin gespalten wird (Grossmann, B. 22, 2298; vgl. Zaunschirm, A. 245, 285). — Blättchen (aus Ather oder heißem Wasser). F: 120—121°; siedet nicht ganz unzersetzt (G.). — Durch Einw. von salpetriger Säure entsteht Isodiphenyloxäthylamin (F: 129—130°) (Syst. No. 1859) (JAPP, MOIB, Soc. 77, 643). Beim Mischen gleicher Teile a.a'-Diphenyl-athylendiamin und Benzaldehyd entsteht N.N'-Dibenzal-a.a'-diphenyl-athylendiamin (S. 251) (G.). Beim Erhitzen mit überschüssigem Benzaldehyd in Gegenwart von etwas Alkohol im Druckrohr auf 180° bis 200° entsteht Tetraphenylpyrazin (Syst. No. 3497) (G.). Beim Kochen mit Phthalsäureanhydrid in alkoh. Lösung entsteht eine Verbindung C₂₂H₁₆O₂N₂ (s. bei Phthalsäureanhydrid, Syst. No. 2479) (G.). — C₁₄H₁₆N₂ + 2HCl. Schwer löslich in kaltem Wasser und Alkohol (G.). — C₁₄H₁₆N₂ + H₂SO₄. Nadeln (Limpricht, Müller, A. 111, 141). — Pikrat C₁₄H₁₆N₂ + 2C₆H₂O₇N₂. Hellgelbe Krystalle (aus Alkohol). F: 239° (O. FISCHER, PRAUSE, J. pr. [2] 77, 128). — C₁₄H₁₆N₂ + 2HCl + PtCl₄. Dunkelgelbe Krystalle (G.).
- N.N'-Dimethyl-a.a'-diphenyl-äthylendiamin $C_{16}H_{26}N_3=C_6H_5$ · CH(NH·CH₃)· CH(NH·CH₃)· C₄H₅. B. Durch Erhitzen von Methyllophinjodmethylat (Syst. No. 3492) mit Natrium und absol. Alkohol (O. FISCHER, RÖMER, J. pr. [2] 73, 442ff.). Durch Erhitzen des N.N'-Dimethyl-N-benzoyl-a.a'-diphenyl-äthylendiamins (S. 252) mit konz. Salzsäure auf 170—180° (O. F., R.). Prismen (aus Ligroin). F: 135—136°. $C_{16}H_{26}N_3+2$ HCl.
- N-Bensyl-a.a'-diphenyl-äthylendiamin $C_mH_{as}N_s = C_sH_s \cdot CH(NH_s) \cdot CH(NH \cdot CH_s \cdot C_sH_s \cdot C_$ athylendiamin (S. 251) überführen.

N.N'-Dibensyl-a.a'-diphenyl-äthylendiamin $C_{28}H_{29}N_8 = C_9H_8 \cdot CH(NH \cdot CH_8 \cdot C_6H_8) \cdot C_6H_8 B. 22, 2301). Beim Behandeln des N.N'-Dibenzyl-N-benzoyl-a.a'-diphenyl-athylendiamins (S. 252) mit Natrium und siedendem Amylalkohol oder mit schmelzendem Kali (Japp, Moir, Soc. 77, 623, 624). — Nadeln (aus Benzol). F: 153° (GE.), 150,5° (J., M.). Schwer löslich in kaltem Alkohol, ziemlich schwer in Äther und Ligroin (GE.). — Das Hydrochlorid schmilzt bei 242° (J., M.).

N.N'-Dibensal-a.a'-diphenyl-äthylendiamin C₃₂H₃₄N₂ = C₆H₅·CH(N:CH·C₆H₅)·CH(N:CH·C₆H₅)·C₆H₅. B. Aus a.a'-Diphenyl-āthylendiamin (F: 120—121°) und Benzaldehyd auf dem Wasserbade (Grossmann, B. 22, 2301). Beim Eintragen von Natrium in die siedende alkoholische Lösung von Amarin (Zaunschiem, A. 245, 285; G.). Man erwärmt 10 g wasserfreies Amarin, 2 g Hydrobenzamid und 80 g absolutem Alkonol und versetzt langsam mit 2 g Natrium, dann mit 30 g absol. Alkohol und wieder mit 2 g Natrium (O. Fischer, Prause, J. pr. [2] 77, 128). — Prismen oder Nadeln (aus Alkohol). F: 164° (G.). Ziemlich schwer lösich in Alkohol, Äther und Ligroin, leicht in Benzol und Schwefelschlenstoff (Z.; G.). — Wird von Natrium und Alkohol zu N.N'-Dibenzyl-a.a'-diphenyl-āthylendiamin (S. 250) reduziert (G.). Zerfällt beim Kochen mit Schwefelsäure in Benzaldehyd und das bei 120—121° schmelzende a.a'-Diphenyl-āthylendiamin (Z.; G.).

N.N'- Bis - [8 - nitro - bengal] - a.a' - diphenyl - äthylendiamin $C_{28}H_{22}O_4N_4 = C_6H_5$. CH(N:CH·C₆H₄·NO₂)·CH(N:CH·C₆H₄·NO₂)·C₆H₅. B. Beim Kochen von a.a'-Diphenylathylendiamin (F: 120—121°) mit 3-Nitro-benzaldehyd und Alkohol (Grossmann, B. 22, 2303). — Prismen (aus Benzol + Alkohol). F: 159—161°. Schwer löslich in kaltem Alkohol und Äther.

N.N'-Dicuminal -a.a'-diphenyl-äthylendiamin $C_{24}H_{36}N_3 = C_6H_5 \cdot CH[N:CH \cdot C_6H_4 \cdot CH(CH_8)_3] \cdot C_6H_5 \cdot CH[N:CH \cdot C_6H_4 \cdot CH(CH_8)_3] \cdot C_6H_5$. B. Durch kurzes Erwärmen von 1 Mol.-Gew. a.a'-Diphenyl-äthylendiamin (F: 120—121°) mit 2 Mol.-Gew. Cuminaldehyd in Gegenwart von Alkohol (Grossmann, B. 22, 2303). — Viereckige Blättchen (aus Alkohol). F: 168°. Schwer löslich in kaltem Alkohol, leicht in Ather und Benzol.

N.N'-Disalicylal-a.a'-diphenyl-äthylendiamin $C_{28}H_{24}O_2N_3 = C_6H_5 \cdot CH(N:CH \cdot C_6H_4 \cdot OH) \cdot CH(N:CH \cdot C_6H_4 \cdot OH) \cdot C_6H_5 \cdot B$. Aus a.a'-Diphenyl-äthylendiamin (F: 120—121°) und Salicylaldehyd beim Erwärmen (G., B. 22, 2303). — Gelbe Blättchen oder Tafeln (aus Alkohol). F: 205°. Schwer löslich.

N.N'-Diformyl-a.a'-diphenyl-äthylendiamin $C_{16}H_{16}O_2N_2 = C_6H_5 \cdot CH(NH \cdot CHO) \cdot CH(NH \cdot CHO) \cdot C_6H_8$. B. Durch mehrstündiges Kochen von a.a'-Diphenyl-äthylendiamin (F: 120—421°) mit 3—4 Tln. reiner Ameisensäure (O. FISCHER, PRAUSE, J. pr. [2] 77, 128). — Säulen (aus Ameisensäure). F: 294°.

N.N'-Diacetyl-a.a'-diphenyl-äthylendiamin $C_{18}H_{20}O_2N_2 = C_8H_5 \cdot CH(NH \cdot CO \cdot CH_3) \cdot CH(NH \cdot CO \cdot CH_3) \cdot C_8H_5 \cdot B$. Durch Kochen von a.a'-Diphenyl-äthylendiamin (F: 120—121°) mit Essigsäureanhydrid (Grossmann, B. 22, 2300). — Krystalle (aus Eisessig). Schwer löslich in Alkohol, unlöslich in Wasser, Benzol, Äther und Ligroin.

loalich in Alkohol, unloslich in Wasser, Benzol, Ather und Ligroin.

Das diastereoisomere N.N'-Diacetyl-a.a'-diphenyl-athylendiamin C₁₈H₂₀O₂N₂

C.H.: CH(NH:CO:CH.): CH(NH:CO:CH.): C.H., g. 8, 250

= C₆H₅·CH(NH·CO·CH₃)·CH(NH·CO·CH₃)·C₆H₅ s. S. 250.

N.N'-Dimethyl-N.N'-diacetyl-a.a'-diphenyl-äthylendiamin $C_{50}H_{24}O_{5}N_{5}=C_{6}H_{5}$ · CH[N(CH₂)·CO·CH₃]·CH[N(CH₃)·CO·CH₃]·C₆H₅. Krystalle (aus Wasser). F: 250—251° (O. Fischer, Römer, J. pr. [2] 78, 443).

N-Bensyl-N'-bensoyl-a.a'-diphenyl-äthylendiamin $C_{22}H_{36}ON_3=C_6H_5\cdot CH(NH\cdot CH_5\cdot C_6H_5)\cdot C_6H_5\cdot C_6H_5\cdot C_6H_5$. As N-Bensyl-a.a'-diphenyl-äthylendiamin (8. 250) und Benzoylchlorid beim 1-stdg. Erhitzen auf 100° (JAPP, Mong, Soc. 77, 622). Aus N.N'-Dibenzyl-N-benzoyl-a.a'-diphenyl-äthylendiamin (8. 252) beim Kochen mit Jodwasserstoffsäure und amorphem Phosphor, sowie beim Kochen mit CrO₃, Eisessig und konz. Salzsäure (J., M., Soc. 77, 620, 626). — Nadeln (aus Alkohol oder aus Chloroform). F: 218,5°. Im Vakuum zum Teil unzersetzt destillierbar. Ziemlich schwer löelich in Alkohol. — Hydrochlorid. Mikrokrystallinisches Pulver. F: 256—258°. — $C_{28}H_{26}ON_2 + HI$. F: 217°.

N-Acetyl-N'-bengoyl-a.a'-diphenyl-äthylendiamin $C_{23}H_{22}O_4N_2 = C_6H_5 \cdot CH(NH \cdot CO \cdot CH_3) \cdot CH(NH \cdot CO \cdot C_6H_5) \cdot C_6H_5$. B. Beim Erwärmen des aus äquimolekularen Mengen Amarin (Syst. No. 3491) und Acetylchlorid entstehenden Produktes mit Alkohol (JAPP, MOIR, Soc. 77, 635; vgl. Bahrmann, J. pr. [2] 27, 297). — Nädelchen (aus Phenol + Alkohol). F: 316° (J., M.). Fast unlöslich in Alkohol und anderen üblichen Lösungsmitteln (J., M.).

N.N'-Dibensoyl-a.a'-diphenyl-äthylendiamin $C_{25}H_{24}O_2N_2=C_6H_5 \cdot CH(NH\cdot CO\cdot C_6H_5)$ - $CH(NH\cdot CO\cdot C_6H_5)\cdot C_6H_5 \cdot CH(NH\cdot CO\cdot C_6H_5)\cdot

Das diastereoisomere N.N'- Dibenzoyl-a.a'- diphenyl- $a.thylendiamin <math>C_{2a}H_{2a}O_2N_a = C_aH_a \cdot CH(NH \cdot CO \cdot C_aH_a) \cdot CH(NH \cdot CO \cdot C_aH_a) \cdot C_aH_a$ s. S. 250.

N.N'-Dimethyl-N-bensoyl-a.a'-diphenyl-äthylendiamin (von Claus, Elbs, B. 18, 1419, als "Dimethylamarin" beschrieben) $C_{22}H_{24}ON_3=C_6H_6$. CH(NH·CH₃)·CH[N(CH₃)·CO·C₆H₈]·C₆H₅. B. Durch Erwärmen von Methylamarin-jodmethylat (Syst. No. 3491) mit alkoh. Kali (Claus, Elbs, B. 18, 1419; Japp, Moir, Soc. 77, 610, 629). — Prismen (aus Alkohol). F: 145° (J., M.), 146° (Cl., E.). — Beim Erhitzen des Hydrojodids entsteht Methylamarin-jodmethylat (J., M.). — $C_{23}H_{24}ON_3 + HI$. Prismen. Schmilzt, schäumt und erstarrt wieder bei 200° (J., M.). — $2C_{23}H_{24}ON_3 + 2HCl + PtCl_4$. Gelb, mikrokrystallinisch. F: ca. 183° (J., M.).

Verbindung $C_{19}H_{28}ON_2$. B. Entsteht neben der Verbindung $C_{24}H_{27}ON_2Cl$ (s. u.) durch 12—14-stdg. Kochen einer alkoh. Lösung von N.N'-Dimethyl-N-benzoyl-a.a'-diphenyl-äthylendiamin (s. o.) und Benzylchlorid am Rückflußkühler; man verdampft zur Trockne und behandelt den Rückstand mit Wasser, in dem die Verbindung $C_{24}H_{27}ON_2Cl$ leicht löslich ist (CLAUS, B. 15, 2326). — Krystalle (aus Alkohol). F: 208°; ziemlich schwer löslich in Alkohol und Ather, leicht in Chloroform. — $C_{23}H_{23}ON_2$ + $HCl + xH_2O$. Krystalle. Schmilzt bei 102°, verliert bei 105° das Krystallwasser und schmilzt dann wieder (wasserfrei) bei 205°; Ammoniak scheidet aus dem Salz die freie Base ab. — $2C_{22}H_{22}ON_2$ + 2HCl + 2HCl + $2H_2O$. Orangegelbe Nadeln (aus Alkohol). Verliert bei 125° das Krystallwasser und schmilzt bei 168°; wenig löslich in Wasser, ziemlich leicht in Alkohol.

Verbindung $C_{24}H_{27}ON_2Cl$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 168°; unlöslich in Ather, leicht löslich in Alkohol, fast in jedem Verhältnis löslich in Wasser und Chloroform (CLAUS, B. 15, 2328). — Wird von Ammoniak nicht verändert, durch Kalilauge wird aber die Verbindung $C_{24}H_{26}ON_3$ (s. u.) abgeschieden. — $2C_{24}H_{27}ON_3Cl + PtCl_4 + H_2O$. Hochgelber Niederschlag. Schmilzt bei 244°, ohne sich aufzublähen; leicht löslich in angesäuertem Wasser und in Alkohol.

Verbindung $C_{24}H_{26}ON_2$. B. Durch Zersetzung der Verbindung $C_{24}H_{27}ON_3Cl$ (s. o.) mit kalter Kalilauge (Clavs, B. 15, 2328). — Prismen (aus Alkohol). F: 158°. Unlöslich in Wasser, leicht löslich in verd. Essigsäure, Alkohol, Äther und Chloroform. — $C_{24}H_{26}ON_2 + HCl$. Krystalle. F: 204°. Fast unlöslich in Chloroform, ziemlich schwer löslich in Wasser. Scheidet mit NH₂ die Verbindung $C_{24}H_{26}ON_2$ ab. — $2 C_{24}H_{26}ON_2 + 2 HCl + PtCl_4 + 2 H_2O$. Gelber Niederschlag. Schmilzt unter Aufblähen bei 195°. Kaum löslich in Wasser, ziemlich leicht in Alkohol.

N.N'-Dimethyl-N.N'-dibensoyl-a.a'-diphenyl-äthylendiamin $C_{30}H_{26}O_2N_2 = C_6H_5 \cdot CH[N(CH_3) \cdot CO \cdot C_6H_5] \cdot CH[N(CH_3) \cdot CO \cdot C_6H_5] \cdot C_6H_5$. B. Aus N.N'-Dimethyl-a.a'-diphenyl-äthylendiamin oder N.N'-Dimethyl-N-benzoyl-a.a'-diphenyl-äthylendiamin durch Benzoyl-chlorid in Pyridinlösung unter Kühlung (O. Fischer, Römer, J. pr. [2] 78, 445). — Krystalle (aus Alkohol). F: 248—250°.

N.N'-Diäthyl-N-bensoyl-a.a'-diphenyl-äthylendiamin $C_{28}H_{32}ON_2 = C_8H_8 \cdot CH(NH \cdot C_2H_8) \cdot CH[N(C_2H_8) \cdot CO \cdot C_8H_8] \cdot C_8H_8$. B. Durch Erwärmen von Äthylamarin-jodäthylat (Syst. No. 3491) mit alkoh. Kalilauge (JAPP, MOIB, Soc. 77, 610, 631; vgl. Borodin, A. 110, 83). — Nadeln (aus verd. Alkohol). F: 125° (J., M.).

N-Äthyl-N'-bensyl-N oder N'-bensoyl-a.a'-diphenyl-äthylendiamin $C_{20}H_{20}ON_2 = C_0H_5 \cdot CH(NH \cdot CH_2 \cdot C_0H_5) \cdot CH[N(C_2H_5) \cdot CO \cdot C_0H_5] \cdot C_0H_5 \cdot CH(NH \cdot C_2H_5) \cdot CH[N(CH_2 \cdot C_0H_5) \cdot CO \cdot C_0H_5] \cdot C_0H_5

N.N'- Dibensyl - N - bensoyl - a.a' - diphenyl - äthylendiamin (von Claus, Elbs, B. 13, 1420, als "Dibenzylamarin" beschrieben) C₃₅H₃₂ON₂ = C₆H₅·CH(NH·CH₂·C₆H₅)·CH[N(CH₂·C₆H₅)·CO·C₆H₅]·C₆H₅. B. Aus Bensylamarin-chlorbensylat (Syst. No. 3491) durch Erwärmen mit alkoh. Kali (JAPP, Moir, Soc. 77, 609, 617; vgl. Cl., E., B. 13, 1420). Aus N.N'-Dibenzyl-a.a'-diphenyl-āthylendiamin (S. 250) und Bensoylehlorid in Bensol auf dem Wasserbade (J., M., Soc. 77, 628). — Nadeln (aus Alkohol). F: 139,5° (J., M., Soc. 77, 628). — Das Hydrochlorid geht beim Erhitzen auf 220° unter Wasserbagbe in Benzylamarin-chlorbensylat über (J., M., Soc. 77, 618). Durch Kochen mit CrO₃, Eisessig und konz. Salzsäure entsteht N-Benzyl-N'-bensoyl-a.a'-diphenyl-āthylendiamin (S. 251) (J., M., Soc. 77, 626). Beim Behandeln mit Jodwasserstoffsäure und rotem Phosphor entstehen N-Benzyl-a.a'-diphenyl-āthylendiamin (S. 250), N-Benzyl-N'-benzoyl-a.a'-diphenyl-āthylendiamin (S. 250), N-Benzyl-N'-benzoyl-a.a'-diphenyl-āthylendiamin, Benzyl-jodid, Dibenzyl und Benzoesäure (J., M., Soc. 77, 620). Durch Behandlung mit Natrium und siedendem Amylalkohol, sowie durch Schmelzen mit Kali entsteht N.N'-Dibenzyl-a.a'-diphenyl-āthylendiamin (J., M., Soc. 77, 624). — C₃₅H₃₂ON₂ + HCl. Prismen. F: 188°;

leicht löslich in Alkohol, schwer in Wasser (J., M.). — Nitrat. Prismen (aus Alkohol + Äther). F: 174° (Zers.) (J., M.). — $2C_{35}H_{32}ON_2 + 2HCl + PtCl_4$. Orangefarbene Nadeln. F: 195,5° (J., M.).

N.N'-Dibenzyl-N.N'-dibenzoyl-a.a'-diphenyl-äthylendiamin $C_{42}H_{86}O_2N_2 = C_8H_5$: $CH[N(CH_2 \cdot C_6H_5) \cdot CO \cdot C_8H_5] \cdot C_8H_5 \cdot CO \cdot C_8H_5] \cdot C_8H_5$. B. Aus N.N'-Dibenzyl-a.a'-diphenyl-äthylendiamin (S. 250) oder N.N'-Dibenzyl-N-benzoyl-a.a'-diphenyl-äthylendiamin (S. 252) und Benzoylchlorid (JAPP, MOB, Soc. 77, 620, 628). — Sechsseitige Platten (aus Benzol). F: 268°. Fast unlöslich in Alkohol.

N - Benzoyl - N' - carbäthoxy - a.a' - diphenyl - äthylendiamin $C_{24}H_{24}O_3N_2 = C_6H_5$ · $CH(NH \cdot CO \cdot C_6H_5) \cdot CH(NH \cdot CO_2 \cdot C_2H_5) \cdot C_6H_5$. Zur Konstitution vgl. Japp, Moir, Soc. 77, 612. — B. Fällt neben salzsaurem Amarin aus beim Eintragen von 2 Mol.-Gew. Chlorameisenester in eine Lösung von 3 Mol.-Gew. Amarin (Syst. No. 3491) in absol. Äther (Bahrmann, J. pr. [2] 27, 303). — Krystalle. Unlöslich in Wasser, sehr wenig löslich in Äther, leicht in siedendem Alkohol (B.). — Liefert beim Erhitzen mit alkoh. Ammoniak eine aus Alkohol in Nadeln krystallisierende basische Verbindung, deren Hydrochlorid in Prismen krystallisiert und in heißem Wasser und heißem Alkohol leicht löslich ist (B.).

N'-Nitroso-N.N'-dimethyl-N-benzoyl-a.a'-diphenyl-äthylendiamin $C_{23}H_{23}O_2N_3=C_eH_5\cdot CH[N(CH_3)\cdot CO\cdot C_eH_5]\cdot CH[N(NO)\cdot CH_3]\cdot C_eH_5$. B. Aus N.N'-Dimethyl-N-benzoyl-a.a'-diphenyl-äthylendiamin durch Nitrosierung (Ö. Fischer, Römer, J. pr. [2] 73, 444). — Krystalle (aus Aceton). F: 213—215°.

N.N'-Dinitroso-N.N'-dimethyl-a.a'-diphenyl-äthylendiamin $C_{16}H_{16}O_2N_4 = C_6H_5$ · $CH[N(NO) \cdot CH_3] \cdot CH[N(NO) \cdot CH_3] \cdot C_6H_5$. B. Durch Behandeln von N.N'-Dimethyl-a.a'-diphenyl-äthylendiamin mit Nitrit und verd. Schwefelsäure (O. FISCHER, RÖMER, J. pr. [2] 73, 443). — Prismen (aus Aceton). F: 266—267°.

N-Nitroso-N-benzyl-N'-benzoyl-a.a'-diphenyl-äthylendiamin $C_{28}H_{25}O_2N_3 = C_6H_5$. $CH(NH\cdot CO\cdot C_6H_5)\cdot CH[N(NO)\cdot CH_2\cdot C_6H_5]\cdot C_6H_5$. B. Aus N-Benzyl-N'-benzoyl-a.a'-diphenyl-äthylendiamin mit Natriumnitrit in Eisessig (JAPP, Moir, Soc. 77, 621). — F: 246°.

N'-Nitroso-N.N'-dibenzyl-N-benzoyl-a.a'-diphenyl-äthylendiamin $C_{35}H_{31}O_{2}N_{3}=C_{6}H_{5}\cdot CH[N(CH_{2}\cdot C_{6}H_{5})\cdot CO\cdot C_{6}H_{5}]\cdot CH[N(NO)\cdot CH_{2}\cdot C_{6}H_{5}]\cdot C_{6}H_{5}.$ B. Aus N.N'-Dibenzyl-N-benzoyl-a.a'-diphenyl-äthylendiamin in Eisessiglösung und Natriumnitrit (J., M., Soc. 77, 619). — Rechtwinklige Blättchen (aus Alkohol), Nadeln (aus Chloroform + Ather). F: 168°. Leicht löslich in Chloroform. — Gibt beim Erhitzen Lophin (Syst. No. 3492).

N.N'-Dinitroso-N.N'-dibenzyl-a.a'-diphenyl-äthylendiamin $C_{28}H_{26}O_2N_4=C_8H_5$: $CH[N(NO)\cdot CH_2\cdot C_8H_5]\cdot CH_5[\cdot C_6H_5]\cdot C_6H_5$. B. Aus dem N.N'-Dibenzyl-a.a'-diphenyl-äthylendiamin in Eisessig und Natriumnitrit (J., M., Soc. 77, 627). — Nadeln. F: 233°. Unlöslich in siedendem Alkohol.

e) Inaktive Derivate des a.a'-Diphenyl-äthylendiamins $C_{14}H_{16}N_2 = C_4H_5 \cdot CH(NH_2) \cdot CH(NH_2) \cdot C_4H_5$, deren sterische Konfiguration nicht bekannt ist.

N.N'.a.a'-Tetraphenyl-äthylendiamin $C_{26}H_{24}N_2 = C_4H_5 \cdot CH(NH \cdot C_6H_5) \cdot CH(NH \cdot C_6H_5) \cdot CH(NH \cdot C_6H_5) \cdot C_6H_5$. (Möglicherweise Gemisch von Diastereoisomeren.) B. Durch Reduktion von Benzalanilin (Bd. XII, S. 195) mit Aluminiumamalgam in Ather (Anselmino, B. 41, 623). — Blättchen (aus Methylalkohol). F:139°. Sehr leicht löslich in Benzol, sehr wenig in Ligroin.

N.N'.a.a'-Tetraphenyl-N.N'-diacetyl-äthylendiamin $C_{30}H_{20}O_3N_5=C_6H_5\cdot CH[N(C_6H_5)\cdot CO\cdot CH_3]\cdot CH[N(C_6H_5)\cdot CO\cdot CH_3]\cdot C_6H_5$. Aus N.N'.a.a'-Tetraphenyl-āthylendiamin und Acetylchlorid (A.). — Nicht krystallisierbar. Zersetzt sich oberhalb 300°. Leicht löslich in Chloroform, Eisessig, Alkohol; unlöslich in Benzol.

N.N'.a.a'-Tetraphenyl-N.N'-dibenzoyl-äthylendiamin $C_{40}H_{32}O_5N_2 = C_6H_5 \cdot CH[N(C_6H_5)\cdot CO\cdot C_6H_5]\cdot C_6H_5 \cdot CO\cdot C_6H_5]\cdot C_6H_5 \cdot B$. Aus N.N'.a.a'-Tetraphenyl-äthylendiamin und Benzoylchlorid (A.). — Nädelchen (aus Chloroform und Benzol). Sublimiert weit über 300°.

4. a.a-Bis-[4-amino-phenyl]-āthan $C_{14}H_{16}N_2 = CH_3 \cdot CH(C_6H_4 \cdot NH_2)_2$.

a.a-Bis-[4-dimethylamino-phenyl]-āthan $C_{18}H_{26}N_3 = CH_3 \cdot CH[C_8H_4 \cdot N(CH_3)_2]_3$. B. Man läßt verd. Äthylalkohol mit Chromsäuregemisch 5—6 Stdn. stehen und erhitzt das durch Destillation gewonnene Gemisch von Acetaldehyd, Acetal, Alkohol und Wasser mit Dimethylanilin (Bd. XII, S. 144) und 20 $^{\circ}$ /oiger Schwefelsäure 5 Tage lang auf 50 $^{\circ}$ (TRILLAT, C. r. 128, 1113; Busignies, C. r. 149, 350). Durch Kochen von a.a-Bis-[4-dimethylamino-phenyl]-āthylen (S. 268) mit konz. Jodwasserstoffsäure und rotem Phosphor (Freund, Mayrer, B. 39, 1118; vgl. B.). — Blättchen (aus Alkohol). F: 68—69 $^{\circ}$ (Tri., C. r. 128, 1114), 67—68 $^{\circ}$ (Fr., Ma.), 67 $^{\circ}$ (B.). Unlöslich in Wasser, löslich in Alkohol, Äther, Ligroin und Chloroform

(Tri., C. r. 128, 1114). — Färbt sich an der Luft rot (Tri., C. r. 128, 1114). Durch Oxydation der Lösung in Eisessig mit PbO₂ entsteht eine beim Erwärmen verschwindende Blaufärbung (Tri., C. r. 128, 1114). Wird in Eisessig-Lösung durch NaNO₂ unter Bildung von N.N-Dimethyl-4-nitro-anilin (Bd. XII, S. 714) gespalten (Tri., C. r. 128, 1404; 129, 1242). — C₁₂H₂₄N₂ + 2 HCl. Krystallpulver. F: 225° (Zers.); löslich in Wasser und Alkohol, fast unlöslich in Aceton (Tri., C. r. 128, 1404). — C₁₈H₂₄N₂ + 2 H₂SO₄. Hygroskopische Krystalle. F: 188—189° (Tri., C. r. 128, 1404). — Diacetat C₁₈H₂₄N₂ + 2C₂H₄O₂. Nadeln, die an der Luft schnell rot werden (Tri.). — C₁₈H₂₄N₂ + 2 HCl + PtCl₄. Orangerote Prismen. Wird bei 210° schwarz und ist bei 215° völlig zersetzt (Fr., Ma.); schmilzt gegen 210—211° unter Zersetzung; schwer löslich in Wasser und verd. Salzsäure (Tri., C. r. 128, 1114).

Bisbromäthylat $C_{22}H_{34}N_2Br_3=CH_3\cdot CH[C_6H_4\cdot N(CH_3)_2(C_2H_5)Br]_2$. Krystalle. F: 224° bis 225°. Löslich in Alkohol und Wasser (Trillat, C. r. 128, 1405).

Biajodāthylat $C_{32}H_{34}N_2I_3 = CH_3 \cdot CH[C_6H_4 \cdot N(CH_3)_2(C_2H_5)I]_2$. F: 228—230° (Zers.) (Teillat, C.r. 128, 1405).

a.a-Bis-[4-diäthylamino-phenyl]-äthan $C_{22}H_{32}N_3=CH_3\cdot CH[C_0H_4\cdot N(C_2H_5)_3]_2$. B. Durch Anlagerung von Wasserstoff an a.a-Bis-[4-diāthylamino-phenyl]-äthylen (S. 268) (Busignies, C. r. 149, 350). Aus Acetaldehyd oder Acetal und Diāthylanilin (Bd. XII, S. 164) (B.). — F: 45°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln.

x.x-Dinitro-[a.a-bis-(4-dimethylamino-phenyl)-äthan] $C_{18}H_{12}O_4N_4 = (O_2N)_2C_{14}H_{10}$ [N(CH₂)₂]₂. B. Durch Nitrieren von a.a-Bis-[4-dimethylamino-phenyl]-äthan in Eisessig mit rauchender Salpetersäure in der Kälte (Trillat, $C.\tau$. 128, 1405). — Gelbliche Prismen. F: 195—196°. Löslich in Eisessig, unlöslich in Wasser.

5. 5.4'- Diamino - 2 - methyl - diphenylmethan $C_{14}H_{16}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot C_6H_$

N.N'-Diacetylderivat $C_{18}H_{20}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot C_6H_3 \cdot CH_3 \cdot NH \cdot CO \cdot CH_2$. B. Durch Erwärmen von 5.4'-Diamino-2-methyl-diphenylmethan mit Essigsäureanhydrid (G., B. 26, 1855). — F: 220°.

- 6. 4.4'- Diamino 3 methyl diphenylmethan C₁₄H₁₆N₂ = H₂N·C₆H₄·CH₂·C₆+₃(CH₃)·NH₂. B. Bei mehrstündigem Erhitzen von 1 Mol.-Gew. Methylen-di-o-toluidin (Bd. XII, S. 788) mit 1 Mol.-Gew. Anilin und 1 Mol.-Gew. salzsaurem Anilin auf dem Wasserbade (EBERHABDT, WELTER, B. 27, 1812). Beim Erhitzen von Anhydroformaldehyd-o-toluidin CH₃·C₆H₄·N-C(H₂·N(C₆H₄·CH₃))—CH₂ (Syst. No. 3796) mit Anilin und salzsaurem Anilin auf 100° (Höchster Farbw., D. R. P. 55565; Frdl. 2, 55; 3, 68). Aus 4.4'-Diamino-diphenylmethan (S. 238) beim Erhitzen mit o-Toluidin und salzsaurem o-Toluidin auf 170° (Vongerichten, Book, Z. f. Farben- u. Textilchemie 2, 250; C. 1903 II, 441). Aus 4.4'-Diamino-3.3'-dimethyl-diphenylmethan (S. 262) beim Erhitzen mit Anilin und salzsaurem Anilin auf 170° (V., B.). Durch Erwärmen von polymerem Anhydro-[4-amino-benzylalkohol] (C₂H₂N)_x (s. bei 4-Amino-benzylalkohol, Syst. No. 1855) mit salzsaurem o-Toluidin (KALLE & Co., D. R. P. 83544; Frdl. 4, 52). Durch Digerieren von polymerem Anhydro-[4-amino-3-methyl-benzylalkohol] (C₈H₂N)_x (s. bei 4-Amino-3-methyl-benzylalkohol, Syst. No. 1855) mit salzsaurem Anilin in Anilinlösung bei Wasserbadtemperatur (K. & Co., D. R. P. 96762; C. 1898 II, 168). Durst. Man erwärmt 75 g [4-Amino-benzyl]-anilin (S. 175) mit 38 g o-Toluidin, 105 g Salzsaure (D: 1,19) und 1400 g Wasser 6 Stdn. auf dem Wasserbade (P. Cohn, A. Fischer, B. 83, 2588; vgl. H. F., D. R. P. 107718; C. 1900 I, 1110). Blätter und Tafeln (aus Alkohol). F: 129° (E., W.), 127—128° (P. C., A. F.). Leicht löslich in Alkohol, Äther, Benzol und Chloroform (P. C., A. F.). C14 H16 N₂ + 2 HCl. Die wäßr. Lösung färbt sich mit FeCl₂ himbeerrot (P. C., A. F.).
- 4-Amino-4'-dimethylamino-8-methyl-diphenylmethan $C_{16}H_{26}N_{1}=(CH_{2})_{1}N\cdot C_{6}H_{4}\cdot CH_{3}\cdot C_{6}H_{4}\cdot CH_{5}\cdot CH$
- 4-Methylamino-4'-dimethylamino-8-methyl-diphenylmethan $C_1, H_{22}N_3 = (CH_2)_2N \cdot C_0H_4 \cdot CH_2 \cdot C_0H_3 \cdot CH_3 \cdot NH(CH_2)$. B. Aus [4-Dimethylamino-benzyl]-p-toluidin (S. 175)

und Methyl-o-toluidin (Bd. XII, S. 784) beim Erhitzen mit Salzsäure und Wasser auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; Frdl. 5, 81, 82; C. 1900 I, 1111). — F: 85° (H. F.). Kp₀: 258° (v. Braun, B. 41, 2155).

- 4-Amino-4'-diäthylamino-3-methyl-diphenylmethan $C_{18}H_{24}N_2 = (C_2H_5)_2N \cdot C_6H_4$. CH₂·C₆H₃(CH₃)·NH₂. B. Aus [4-Diäthylamino-benzyl]-p-toluidin (S. 175) und o-Toluidin beim Erhitzen mit Salzsäure und Wasser auf dem Wasserbade (H. F., D. R. P. 107718; Frdl. 5, 82; C. 1900 I, 1112). F: 60° .
- 7. 6.4' Diamino 3 methyl diphenylmethan $C_{14}H_{16}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_3 \cdot NH_2$. B. Aus [6-Amino-3-methyl-benzyl]-p-toluidin (S. 185) und Anilin beim Erhitzen mit Salzsäure und Wasser auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; Frdl. 5, 82; C. 1900 I, 1112). F: 68°.
- 8. 4.a-Diamino-3-methyl-diphenylmethan, 4-Amino-3-methyl-benzhydrylamin $C_{14}H_{16}N_2 = C_6H_8 \cdot CH(NH_2) \cdot C_6H_8(CH_3) \cdot NH_2$.
- 2'-Nítro 4 amino a o toluidino 3 methyl diphenylmethan $C_{21}H_{21}O_2N_3 = O_2N \cdot C_6H_4 \cdot CH(NH \cdot C_6H_4 \cdot CH_3) \cdot C_6H_3(CH_3) \cdot NH_2$. B. Aus [2-Nitro-benzal]-o-toluidin durch Addition von o-Toluidin (Höchster Farbw., D. R. P. 106497; Frdl. 5, 86; C. 1900 I, 740). Schwefelgelb. F: 153°; leicht löslich in Benzol, mäßig in Alkohol, schwer löslich in Ather (H. F., D. R. P. 106497). Einwirkung von Salzen aromatischer Amine: H. F., D. R. P. 11041; C. 1900 II, 548.
- 9. 2.4' Diamino 4 meinyl diphenylmethan $C_{14}H_{16}N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_3(CH_3) \cdot NH_2$. B. Aus [4-Nitro-phenyl]-[2-nitro-4-methyl-phenyl]-methan (Bd. V, S. 608) mit Zinn und Salzsäure (ZINCKE, B. 5, 684). Krystallpulver. Leicht löslich in Alkohol und Äther. Die Lösungen färben sich an der Luft dunkel. $C_{14}H_{16}N_2 + 2$ HCl. Nadeln oder Blättchen (aus verd. Salzsäure). Leicht löslich in Alkohol und Wasser. $C_{14}H_{16}N_2 + H_2SO_4$. Nadeln (aus Alkohol). Leicht löslich.
- 10. 4.4' Diamino 2.2' dimethyl diphenyl, 2.2' Dimethyl benzidin, m Tolidin C₁₄H₁₆N₃, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "m Tolidin" abgeleiteten Namen. B. Beim Versetzen einer Lösung von 3.3'-Dimethyl-hydrazobenzol (Syst. No. 2070) in verdünntem Alkohol mit einigen Tropfen verd. Schwefelsäure (Goldschmidt, B. 11, 1626). Durch Einleiten von Schwefelwasserstoff in eine Lösung von 3.3'-Dimethyl-azobenzol in alkoh. Ammoniak und Ansäuern des Reaktionsproduktes mit Salzsäure (Buchka, Schachtebeck, B. 22, 838). Beim Eintragen einer alkoh. Lösung von 3.3'-Dimethyl-azobenzol (Syst. No. 2095) in eine mäßig erwärmte Lösung von Zinnchlorür in Salzsäure (Jacobson, Fablan, B. 28, 2553). Durch Behandlung von 3.3'-Dimethyl-azobenzol, suspendiert in wäßr. Salzsäure, mit Schwefeldioxyd bei Gegenwart von etwas Kaliumjodid (Bodenstein, D. R. P. 172569; C. 1906 II, 479). Darst. Man löst 200 g 3-Nitro-toluol (Bd. V, S. 321) in 200 g Alkohol, erhitzt am Rückflußkühler und trägt 150 g Zinkstaub sowie eine Mischung von 30 g 35°/ojegr Natronlauge und 30 g Alkohol ein; im Verlaufe einiger Stunden gibt man weitere 150 g Zinkstaub hinzu und kocht dann mit Salzsäure bis zur Lösung des Zinks; das ausgeschied ne Tolidinhydrochlorid bringt man durch Wasser in Lösung und fällt es durch konz. Salzsäure wieder aus (G. Schultz, Rohde, C. 1902 II, 1447). Prismen (aus heißem Wasser). F: 106° bis 107° (J., F.), 108—109° (Bu., Scha.), 87—88° (G. Schu., R.). Sehr leicht löslich in Alkohol und Äther (J., F.). Wird durch Eisenchlorid nicht gefärbt (J., F.). C₁₄H₁₆N₂ + 2 HCl. Blättehen (aus Alkohol) (Bu., Scha.). C₁₄H₁₆N₂ + H₂SO₄. Blättchen. Unlöslich in Alkohol (G.). Sehr schwer löslich in kaltem Wasser, leichter in heißem (J., F.). Pikrat. F: 225° (G., Schu., R.).

N.N'-Dibenzal-m-tolidin $C_{28}H_{24}N_8=[-C_6H_3(CH_3)\cdot N:CH\cdot C_6H_5]_2$. B. Aus m-Tolidin und Benzaldehyd (Jacobson, Fabran, B. 28, 2554). — Hellgelbe Tafeln (aus Ligroin). F: 172—173°. Leicht löslich in Benzol, mäßig in Äther.

N.N'-Disalicylal-m-tolidin $C_{28}H_{24}O_2N_2 = [-C_6H_3(CH_3)\cdot N:CH\cdot C_6H_4\cdot OH]_2$. B. Aus m-Tolidin und Salicylaldehyd (J., F., B. 28, 2554). — Orangefarbene Stäbchen (aus Benzol + Ligroin). F: 198—199°. Leicht löslich in warmem Benzol und Chloroform, kaum in Äther und kaltem Alkohol.

N.N'-Diacetyl-m-tolidin $C_{18}H_{20}O_3N_2=[-C_6H_3(CH_3)\cdot NH\cdot CO\cdot CH_3]_3$. B. Aus m-Tolidin und Essigsäureanhydrid (Buchka, Schachtebeck, B. 22, 839) oder Eisessig (Jacobson, Fabian, B. 28, 2554). — Hellgelbe Krystalle. F: 274—275° (B., Sch.), 281° (J., F.). Leicht löelich in Benzol und heißem Alkohol, kaum in Ligroin und Chloroform (J., F.).

3.5.3'.5' - Tetrabrom - 2.2' - dimethyl - benzidin, 3.5.3'.5' - Tetrabrom - m - tolidin $C_{14}H_{12}N_3Br_4 = H_2N \cdot C_4HBr_3(CH_3) \cdot C_5HBr_3(CH_3) \cdot NH_2$. B. Bei der Einw. von Brom auf die Suspension von salzsaurem m-Tolidin in konz. Salzsäure (Schlenk, A. 363, 338). — Weißes Krystallpulver. F: 229—230°. Rötet sich beim Stehen. Schwer löslich in den meisten organischen Lösungsmitteln.

N.N.N'.N'-Tetraacetylderivat $C_{22}H_{20}O_4N_2Br_4=[-C_6HBr_3(CH_3)\cdot N(CO\cdot CH_3)_2]_2$. Tafelförmige Blättchen. F: 259—263° (SCHL., A. 363, 339).

- 11. 4.4' Diamino 2.3' dimethyl diphenyl.
 2.3' Dimethyl benzidin, o.m Tolidin C₁₄H₁₆N₃, s.
 nebenstehende Formel. B. Beim Behandeln einer alkoh.
 Lösung von 2.3'-Dimethyl-azobenzol (Syst. No. 2095) mit
 Zinnehlorür (G. Schultz, B. 17, 471). Verwendung zur Darstellung von Azofarbstoffen:
 Bad. Anilin- u. Sodaf., D. R. P. 54599; Frdl. 2, 434. C₁₄H₁₆N₂ + 2 HCl. Nadeln. Leicht löslich in Wasser. Sulfat. Blättchen. In Wasser schwer löslich.
- 12. 2.4'- Diamino 3.3'- dimethyl- diphenyl, 3.3'- Dimethyl- diphenylin¹)

 C₁₄H₁₆N₂, s. nebenstehende Formel. B. Man trägt allmählich

 1 Tl. o-Hydrazotoluol in 4 Tle. heiße konzentrierte Salzsäure
 ein und erhitzt zum Sieden; beim Erkalten scheidet sich salzsaures o-Tolidin (S. 257) neben wenig o-Azotoluol aus; man filtriert,
 engt das Filtrat ein, wobei sich weitere Mengen von salzsaurem o-Tolidin ausscheiden; die
 letzten Mutterlaugen übersättigt man mit Natron, extrahiert die alkal. Lösung mit Äther,
 erhitzt die in den Äther übergegangenen Basen auf 250° (um anwesendes o-Toluidin zu
 vertreiben) und löst sie dann in verd. Salzsäure; die filtrierte saure Lösung übersättigt
 man mit Alkali, schüttelt die alkal. Lösung mit Äther und fällt aus der äther. Lösung
 das Hydrochlorid durch Chlorwasserstoff (Noelting, Werner, B. 23, 3253). Flocken.
 Die wäßr. Lösung des Hydrochlorids nimmt, auf Zusatz eines Tropfens Bromwasser eine
 schmutziggrüne Färbung an, die in Violettrot übergeht. Die aus der Verbindung hergestellten Azofarbstoffe zeigen keine Affinität zur Baumwollfaser. C₁₄H₁₆N₂+2HCl.
 Nadeln. Sehr leicht löslich in Wasser.
- 13. 4.4'- Diamino 3.3'- dimethyl diphenyl, o-Tolidin C₁₄H₁₈N₂, s. nebenstehende Formel; die Stellungsbezeichnung gilt auch für die in diesem Handbuch gebrauchten, vom Namen "o-Tolidin" abgeleiteten Namen. Zur Konstitution vgl. G. Schultz, Rohde, Vioari, B. 37, 1401; A. 352, 111. B. Durch Einleiten von Chlormonoxyd Cl₂O in eine ather. Lösung von o-Hydrazotoluol (Syst. No. 2070), neben anderen Produkten (Peteljew, B. 6, 557). Aus o-Hydrazotoluol und Salzsäure (Pet., Z. 1870, 265; G. Schultz, B. 17, 467; van Loon, C. 1908 II, 1169), neben 2.4'-Diamino-3.3'-dimethyl-diphenyl (Noelting, Werner, B. 23, 3253). Aus o-Azotoluol (Syst. No. 2094) mit Zinnchlorür in alkoh. Lösung (G. Sch.). Durch Behandlung von in wäßr. Salzsäure suspendiertem o-Azotoluol mit gasförmiger schwefliger Säure in Gegenwart von wenig Jodkalium bei etwa 40—50° (Bodenstein, D. R. P. 172569; C. 1906 II, 479).

Blåttchen. F: 129° (Guitermann, B. 20, 2017), 128—129° (Pet., Z. 1870, 265), 126,5° (Hirsch, B. 23, 3225). Schwer löslich in Wasser, leicht in Alkohol und Äther (G. Sch.). o-Tolidin wird durch Chlor- oder Bromdämpfe intensiv blau gefärbt (Hobbs, B. 21, 1065). Bei der Einw. von Chlor auf eine Suspension von salzsaurem o-Tolidin in konz. Salzsäure entsteht 5.5'-Dichlor-o-tolidin (Schlenk, A. 363, 336). Analog liefert Brom 5.5'-Dibromo-tolidin (Schlenk, A. 363, 336). Analog liefert Brom 5.5'-Dibromo-tolidin (Schlenk, A. 363, 337). o-Tolidin liefert in salzsaurer Lösung mit Natriumhypo-chloritlösung 3.3'-Dimethyl-diphenochinon-(4.4')-bis-chlorimid (Bd. VII, S. 743) (Schlen, A. 363, 320). Läßt sich durch Behandlung der alkoh. Lösung mit wäßr. Eisenchloridlösung in meri-3.3'-Dimethyl-diphenochinon-(4.4')-diimoniumchlorid (S. 258) überführen (Schlenk, A. 363, 328). Gibt mit Silbernitrat eine blauschwarze, in Wasser mit blauer Farbe lösliche Substanz (Vaubel, Ch.Z. 25, 739). Zum beiderseitigen Diazotieren des o-Tolidins versetzt man eine wäßr. Suspension von 1 Mol.-Gew. schwefelsaurem o-Tolidin mit überschüssiger Salzsäure und gibt eine wäßr. Lösung von 2 Mol.-Gew. Natriumnitrit hinzu (Oehler, D. R. P. 40905; Frdl. 1, 467) oder man löst o-Tolidin in überschüssiger verdünnter Salzsäure und gibt 2 Mol.-Gew. Natriumnitrit hinzu (Akt.-Ges. f. Anilinf., D. R. P. 4096; Frdl. 1, 483). Löst man aber 1 Mol.-Gew. Salzsaures o-Tolidin in Wasser, gibt 1 Mol.-Gew. Eisessig und dann bei 10—15° 1 Mol.-Gew. Natriumnitrit hinzu, so setzt sich ein Niederschlag ab, der bei der Einw. von Salzsaure das salzsaure 4-Amino-3.3'-dimethyl-diphenyl-diazoniumchlorid-(4') liefert (Bayer & Co., D. R. P. 51576; Frdl. 2, 469; Vaubel, Scheuer, C. 1906 I, 936). Bei Behandlung

¹⁾ Bezifferung von "Diphenylin" in diesem Handbuch s. S. 211.

des o-Tolidins in alkoh. Lösung mit salpetriger Säure entstehen 4.4'-Diäthoxy-3.3'-dimethyldiphenyl (Bd. VI, S. 1010) und m.m-Ditolyl (Bd. V, S. 609) (G. SCHULTZ, B. 17, 468; vgl. G. SCHULTZ, B. 17, 408; vgl. G. SCHULTZ, B. 110, C. Gew. Kaliumnitrat, so erhält man 6-Nitro-o-tolidin und 6.6'-Dinitro-o-tolidin (Löurgherez, B. 28, 1032). Mit 2 Mol.-Gew. Kaliumnitrat entsteht ausschließlich 6.6'-Dinitro-o-tolidin (Lö.; vgl. Gerber, Dissertation [Basel 1889], S. 28). Zur Einw. von Schwefel auf o-Tolidin bei 180—200° vgl. Dahl. & Co., D. R. P. 38795; Frdl. 1, 503. Das saure Tolidinsulfat verwandelt sich beim Erhitzen auf 220° in ein Gemisch von o-Tolidin-monosulfonsäure (Syst. No. 1923) und o-Tolidin-disulfonsäure (Syst. No. 1924) (Bayer & Co., D. R. P. 44779; Frdl. 2, 405; Gerbes, Duisberg, B. 22, 2473). Dieselben Sulfonsäuren entstehen auch beim Erhitzen von o-Tolidin mit konz. Schwefelsäure oder Schwefelsäure auf Temperaturen unter 100° bildet sich das Sulfon H₂N·C₆H₃(CH₃)·NH₂ (Syst. No. 2641), auf 100—170° aber dessen (nicht näher beschriebene) Mono- und Disulfonsäure (B. & Co., D. R. P. 44784; Frdl. 2, 406; Ge., Du.).

Beim Erhitzen von o-Tolidin mit Methylalkohol und Salzsäure im Druckrohr auf 180° beim Erintzen von 0-101din int methylsikoliol und Seizestto in Brussella in Brussel Anilin, m- oder p-Phenylendiamin, o-Aminophenol s. D., H. & Co., D. R. P. 72431, 74386, 74642; Frdl. 3, 28, 29, 30. Uber die Verwendung der Kondensationsprodukte aus o-Tolidin, Formaldehyd und Anilin bezw. o-Amino-phenol als Azokomponenten s. D., H. & Co., D. R. P. 80625, 80626; Frdl. 4, 977, 978. Bei längerem Kochen von o-Tolidin mit überschüssigem Eisessig entsteht N.N'-Diacetyl-o-tolidin (Geber, B. 21, 746). Mit Essigsäureanhydrid erhält man je nach den Versuchsbedingungen N-Acetyl-o-tolidin (Cain, Soc. 95, 717) oder N.N'-Diacetyl-o-tolidin (Hobbs, B. 21, 1065; Ca.). Beim Erhitzen von o-Tolidin mit Acetamid im Druckrohr auf 170—190° entsteht N.N'-Diacetyl-o-tolidin (Biehringer, Borsum, B. 39, 3355). Beim Erhitzen von o-Tolidin mit Oxalsäure diäthylester entsteht N.N'-Diäthoxalyl-o-tolidin (S. 259) (Taussig, M. 25, 385; Le Fèvre, Soc. 1929, 733). Durch Verschmelzen von o-Tolidin mit Harnstoff bei 125—130° (Taussig, M. 25, 386) oder durch Einw. von Kaliumcyanat auf salzsaures o-Tolidin (LE Fèvre, Soc. 1929, 733) erhält man o-Tolidin-N.N'-dicarbonsaure-diamid (S. 259) (LE Fa.). Thiophosgen reagiert mit o-Tolidin in Gegenwart von Natronlauge unter Bildung von N.N'-Bis-thiocarbonyl-o-tolidin (S. 259) (GATTERMANN, J. pr. [2] 50, 593). Dieses entsteht auch durch Behandlung von o-Tolidin mit Schwefelkohlenstoff und Einw. von Schwefelsäure auf das Reaktionsprodukt (Hobbs, B. 21, 1066). Bei der Einw. von Schwefelkohlenstoff und Ammoniak auf o-Tolidin in alkoh. Lösung bildet sich das Ammoniumsalz der o-Tolidin-N.N'-bis-dithiocarbonsaure (S. 259) (LOSANITSCH, B. 40, 2974).

o-Tolidin findet Verwendung zur Darstellung von Azofarbstoffen wie Toluylenorange R (Schultz, Tab. No. 362), Benzopurpurin (Schultz, Tab. No. 363, 364, 365), Deltapurpurin (Schultz, Tab. No. 366, 367), Rosazurin (Schultz, Tab. No. 371, 372), Columbiaschwarz R (Schultz, Tab. No. 453). Zur Verwendung für die Herstellung von Azofarbstoffen vgl. ferner Schultz, Tab. No. 370, 373—399, 450—452, 454, 481 und die betreffende Patentliteratur bei FRIEDLÄNDER, Fortschritte der Teerfarbenfabrikation [Berlin].

Jodometrische Bestimmung des o-Tolidins: Roesleb, Glasmann, Ch. Z. 27, 986; vgl. Vaubel, Z. f. Farben- u. Textilchemie 3, 115.

VAUBEL, Z. f. Farben- u. Textilchemie 3, 115.

C₁₄H₁₆N₃ + HCl. Schuppen. Färbt sich gegen 210° und zersetzt sich, ohne zu schmelzen, oberhalb 300°; 1 Tl. löst sich bei 12° in 112,4 Tln. Wasser (Schiff, Ostrogovioh, A. 278, 376, 378). — C₁₄H₁₆N₃ + 2 HCl. Zersetzt sich, ohne zu schmelzen, oberhalb 340°; 1 Tl. löst sich bei 12° in 17,34 Tln. Wasser (Schi., O.). — C₁₄H₁₆N₃ + H₃SO₄. Nadeln oder Blättchen (Bieheniger, Borsum, Ch. Z. 30, 721). 0,12 g lösen sich in 100 com kaltem Wasser (van Loon, C. 1908 II, 1169); leichter löslich in Gegenwart von Salzsäure, spurenweise löslich in Alkohol; wird durch Wasser hydrolytisch gespalten (Bie., Bo.). — C₁₄H₁₆N₂ + 2 H₂SO₄. Bräunliches Krystallpulver; sehr wenig löslich in Wasser; wird durch Wasser oder Alkohol hydrolytisch gespalten (Bie., Bo.). — Oxalat C₁₄H₁₆N₃ + C₂H₃O₄. Blättchen (aus kochendem Wasser). F: 215° (Zers.) (Taussig, M. 25, 383). — Pikrat C₁₄H₁₆N₃ + 2C₂H₃O₇N₃. Hellgelber krystallinischer Niederschlag. Zersetzt sich bei 215°; wird beim Stehen mit verd. Alkohol nur partiell zerlegt unter Bildung einer hellroten Verbindung (G. SCHULTZ, FLACHSLÄNDER, J. pr. [2] 66, 166). — Salz der Benzolthiosulfonsäure (Bd. XI, S. 81) C₁₄H₁₆N₃ + 2 C₂H₃O₃S₃. Weißer Niederschlag (Teoeger, Linde, Ar. 239, 144). — Salz der p-Toluolthiosulfonsäure (Bd. XI, S. 171) C₁₄H₁₆N₂ +

 $2C_{10}H_sO_2S_2$. Weißer flockiger Niederschlag (T., L.). — Salz der β -Naphthalinthiosulfonsäure (Bd. XI, S. 190) $C_{14}H_{16}N_2+2C_{10}H_sO_2S_3$. Schleimiger Niederschlag (T., L.). — Salze der 5-Nitro-naphthalin-sulfonsäure-(2) (Bd. XI, S. 186). $C_{14}H_{16}N_2+C_{10}H_rO_2NS$. Goldglänzende Blätter; färbt sich bei 250° dunkel und zersetzt sich oberhalb 280°; 1 l Wasser löst bei 21° 0,31 und bei 100° 2,23 g Salz (Erdmann, Süvern, A. 275, 301). — $C_{14}H_{16}N_3+2\,C_{10}H_rO_5NS$. Hellgelbe Blättchen; 1 l Wasser löst bei 20° 0,54 g und bei 100° 2,48 g Salz (E., Sü.).

Verbindung von o-Tolidin mit 1.3.5-Trinitro-benzol (Bd. V, S. 271) $C_{20}H_{19}O_{6}N_{6}$ = $C_{14}H_{19}N_{5}+C_{6}H_{2}O_{6}N_{5}$. Schwarze Nadeln. F: 178° (Noelting, Sommerhoff, B. 39, 77). Verbindung von o-Tolidin mit 2.4.6-Trinitro-1-äthyl-benzol (Bd. V, S. 360) $C_{23}H_{23}O_{6}N_{5}=C_{14}H_{16}N_{5}+C_{6}H_{7}O_{6}N_{3}$. Schwarzviolette Prismen (aus Alkohol). F: 85° (Schultz, B. 42, 2636).

Verbindung von 1 Mol. o-Tolidin mit 1 Mol. 3.3'-Dimethyl-diphenochinon-(4.4')-diimoniumchlorid, meri-3.3'-Dimethyl-diphenochinon-(4.4')-diimoniumchlorid $C_{28}H_{32}N_cCl_2 = H_2N \cdot C_4H_3(CH_3) \cdot C_6H_3(CH_3) \cdot NH_2 + ClH_2N \cdot C_6H_3(CH_3) \cdot C_6H_3(CH_3) \cdot NH_2Cl.$ B. Aus 15 g o-Tolidin in 500 ccm Alkohol mit $10^0/o$ iger wäßr. Eisenchloridlösung (Schlenk, A. 363, 328). — Undeutlich krystallimisch, blauschwarz (in durchfallendem Licht blauviolett). — Wird von Säuren und Basen leicht zersetzt.

Verbindung $C_{15}H_{18}ON_2 = C_{16}H_{14}O(NH_8)_2$. B. Durch Einw. von mehr als 1 Mol.-Gew. Formaldehydlösung auf 1 Mol.-Gew. o-Tolidin in konzentrierter schwefelsaurer Lösung (Kinzlberger & Co., D. R. P. 96104; Frdl. 5, 77). — Weiße Nädelchen. F: 216°. Schwer löslich in heißem Alkohol und Benzol. — Die Salze lassen sich leicht tetrazotieren und geben leicht und glatt Baumwollfarbstoffe. — Hydrocklorid. In Wasser leicht löslich, in Salzsäure und in Alkohol so gut wie unlöslich. — Sulfat. Krystalle. Schwer löslich in Wasser und verdünnter Schwefelsäure.

N.N.N'.N'-Tetramethyl-o-tolidin $C_{18}H_{24}N_2 = [-C_8H_3(CH_8)\cdot N(CH_8)_2]_8$. Beim Behandeln von Dimethyl-o-toluidin (Bd. XII, S. 785) mit Braunstein und verdünnter Schwefelsäure (MICHLER, SAMPAIO, B. 14, 2170). Beim Erhitzen von o-Tolidin mit konz. Salzsäure und Methylalkohol im Druckrohr auf 180—200° (M., S.). Entsteht auch beim Behandeln von 5-Brom-2-dimethylamino-toluol (Bd. XII, S. 838) mit Braunstein und verd. Schwefelsäure, in der Kälte (M., S.). — Blättchen (aus Alkohol). F: 80°. Unlöslich in Wasser, leicht löslich in Äther und in heißem Alkohol, ziemlich schwer in kaltem. — $C_{18}H_{24}N_8+2$ HCl (bei 110°). Nadeln. — $C_{18}H_{24}N_8+2$ HI. Krystalle. Schwer löslich in kaltem Wasser. — $C_{18}H_{24}N_8+2$ HCl + PtCl4. Gelber feinkrystallinischer Niederschlag.

N.N'-Dicuminal-o-tolidin $C_{24}H_{24}N_3=[-C_2H_3(CH_2)\cdot N:CH\cdot C_6H_4\cdot CH(CH_2)_2]_2$. B. Aus Cuminol (Bd. VII, S. 318) und o-Tolidin (Schiff, Vanni, A. 258, 377). — Nadeln (aus Benzol + Alkohol). F: 152°.

N.N'-Dicinnamal-o-tolidin $C_{39}H_{29}N_3 = [-C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot C_6H_5]_3$. B. Aus Zimtaldehyd (Bd. VII, S. 348) und o-Tolidin (Sch., V., A. 258, 378). — Krystalle (aus Benzol). F: 213—214°.

N.N'-Disalicylal-o-tolidin $C_{28}H_{24}O_2N_3=[-C_4H_3(CH_3)\cdot N:CH\cdot C_2H_4\cdot OH]_3$. B. Aus Salicylaldehyd (Bd. VIII, S. 31) und o-Tolidin (Sch., V., A. 258, 377). — Nadeln (aus Benzol). F: 202°.

N.N'-Diformyl-o-tolidin $C_{10}H_{10}O_{2}N_{2} = [-C_{0}H_{3}(CH_{2})\cdot NH\cdot CHO]_{2}$. Nadeln. F: 254^o (Hobbs, B. 21, 1066).

N-Acetyl-o-tolidin C₁₈H₁₈ON₂ = H₂N·C₂H₃(CH₃)·C₂H₃(CH₃)·NH·CO·CH₃. B. Aus o-Tolidin in verd. Alkohol mittels Essigaāureanhydrid (C_{AIN}, Soc. 95, 717; C., MAY, Soc. 97 [1910], 722). — Tafeln mit 1 Mol. Wasser (aus Wasser). F: 103° (C.). — Carosche Säure gibt 4'-Nitroso-4-acetamino-3.3'-dimethyl-diphenyl (Bd. XII, S. 1329) (C.).

N.N'-Diacetyl-o-tolidin $C_{18}H_{20}O_{2}N_{3} = [-C_{2}H_{3}(CH_{3})\cdot NH\cdot CO\cdot CH_{3}]_{3}$. B. Bei 5—6-stdg. Kochen von 1 Tl. o-Tolidin mit 10 Tln. Eisessig (Gerber, B. 21, 746). Aus o-Tolidin und Essigsäureanhydrid (Hobbs, B. 21, 1065). — Nädelchen. F: 315° (korr.) (G. SCHULTZ, B. 17, 468), 314° (G.). Sublimiert unter teilweiser Zersetzung; kaum löslich in Alkohol, Äther und Benzol, wenig in kaltem Eisessig, etwas leichter in heißem, leicht in Phenol (G.). — Gibt beim Erhitzen mit o-Tolidin im Druckrohr auf 240° eine bei 1334—135° schmelzende Verbindung (Biehringer, Borsum, B. 39, 3355; vgl. Cain, May, Soc. 97 [1910], 722).

N.N.N'.N'-Tetrascetyl-o-tolidin $C_{22}H_{24}O_4N_2 = [-C_4H_{2}(CH_2)\cdot N(CO\cdot CH_2^*)_2]_2$. B. Bei 6-stdg. Erhitzen von 10 g N.N'-Diacetyl-o-tolidin mit 50 g Essigsäureanhydrid auf 160° bis 170° (Gerrer, B. 21, 747). — Nadeln (aus Alkohol). F: 211°. Unlöslich in Wasser, sehr leicht löslich in anderen Lösungsmitteln. — Zerfällt beim Erwärmen mit konz. Salzsäure zunächst in Essigsäure und N.N'-Diacetyl-o-tolidin.

N-Bensoyl-o-tolidin $C_{31}H_{20}ON_2 = H_2N \cdot C_6H_3(CH_3) \cdot C_6H_3(CH_3) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus o-Tolidin und Benzoylchlorid in Toluollösung (Soc. St. Denis, D. R. P. 60 332; Frdl. 3, 24). — F: 198—200°.

N.N'-Dibenzoyl-o-tolidin $C_{28}H_{24}O_{2}N_{2} = [-C_{6}H_{3}(CH_{3})\cdot NH\cdot CO\cdot C_{6}H_{5}]_{2}$. B. Beim Kochen von o-Tolidin mit Benzoylchlorid (Hobbs, B. 21, 1065). — Nadeln (aus Eisessig). F: 259° (H.), 265° (Beehringer, Busch, B. 35, 1974, 2537). Unlöslich in den gewöhnlichen Lösungsmitteln (H.), leicht löslich in Pyridin, Chinolin und Picolin (BI., BU.).

N.N'-Diäthoxalyl-o-tolidin, [3.3'-Dimethyl-diphenylen-(4.4')]-bis-oxamidsäure-äthylester $C_{22}H_{4}O_6N_3=[-C_6H_3(CH_3)\cdot NH\cdot CO\cdot CO_2\cdot C_2H_5]_2$. Zur Zusammensetzung und Konstitution vgl. Le Fèvre, Soc. 1929, 733. — B. Durch Erhitzen von o-Tolidin mit Oxalsäure-diäthylester (Taussig, M. 25, 384). — Flocken (aus Alkohol, Aceton oder Eisessig). F: 335°; wird von verd. Alkali nicht angegriffen, durch konz. Alkalien verseift; löst sich in kalter konzentrierter Schwefelsäure und wird aus dieser Lösung durch Wasser wieder ausgefällt (T.).

o-Tolidin-N.N'-dicarbonsäure-diäthylester, [3.3'-Dimethyl-diphenylen-(4.4')]-di-urethan $C_{20}H_{24}O_4N_3=[-C_0H_3(CH_3)\cdot NH\cdot CO_2\cdot C_2H_5]_2$. Nadeln (aus Alkohol). F: 187° (Hobbs, B. 21, 1066).

o-Tolidin-N.N'-dicarbonsäure-diamid, [3.3'-Dimethyl-diphenylen-(4.4')]-di-harn-stoff $C_{16}H_{18}O_2N_4 = [-C_6H_3(CH_3)\cdot NH\cdot CO\cdot NH_2]_2$. Zur Zusammensetzung und Konstitution vgl. Le Fèvre, Soc. 1929, 733. — B. Aus o-Tolidin und Harnstoff bei 125—130° (Taussig, M. 25, 386). Aus salzsaurem o-Tolidin und Kaliumcyanat (Le F.). — Nadeln (aus Eisessig). F: 370—373° (korr.); zum Teil unzersetzt sublimierbar; schwer löslich in siedendem Eisessig, unlöslich in den organischen Lösungsmitteln; löslich in konz. Schwefelsäure, wird durch Wasser aus dieser Lösung gefällt (T.).

o-Tolidin-N.N'-bis-dithiocarbonsäure $C_{16}H_{16}N_2S_4 = [-C_6H_3(CH_3)\cdot NH\cdot CS_2H]_2$. B. Das Ammoniumsalz entsteht aus o-Tolidin in alkoh. Lösung mit Schwefelkohlenstoff und Ammoniak (Losanitsch, B. 40, 2974). — $(NH_4)_2C_{16}H_{14}N_2S_4$. Fast farblose Krystalle. F: 116° (Zers.). Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther.

N.N'-Bis-thiocarbonyl-o-tolidin, [3.3'-Dimethyl-diphenylen-(4.4')]-di-isothiocyanat, [3.3'-Dimethyl-diphenylen-(4.4')]-di-senföl $C_{16}H_{12}N_2S_3 = [-C_8H_3(CH_8)\cdot N:CS]_2$. B. Man läßt auf o-Tolidin Schwefelkohlenstoff einwirken und behandelt das Reaktionsprodukt mit Schwefelsäure (Hobbs, B. 21, 1066). Aus o-Tolidin und Thiophosgen (Bd. III, S. 134) bei Gegenwart von Natronlauge (Gattermann, J. pr. [2] 59, 593). — Durchsichtige Tafeln (aus Benzol). F: 157° (H.).

N.N'-Bis-[4-methoxy-thiobenzoyl]-o-tolidin, N.N'-Bis-thioanisoyl-o-tolidin $C_{30}H_{36}O_2N_2S_2=[-C_6H_3(CH_3)\cdot NH\cdot CS\cdot C_6H_4\cdot O\cdot CH_3]_2$. B. Aus N.N'-Bis-thiocarbonylo-tolidin (s. o.), Anisol und AlCl₃ (Gattermann, J. pr. [2] 59, 593). — Gelbe Nädelchen (aus Nitrobenzol). F: 250—252°.

N.N'-Bis-[4-äthoxy-thiobenzoyl]-o-tolidin $C_{32}H_{32}O_3N_2S_2 = [-C_6H_3(CH_3)\cdot NH\cdot CS\cdot C_6H_4\cdot O\cdot C_2H_5]_2$. B. Aus N.N'-Bis-thiocarbonyl-o-tolidin, Phenetol und AlCl₃ (G., J. pr. [2] 59, 594). — Gelbe Nädelchen (aus Nitrobenzol). F: 235—236°.

N.N'-Dithionyl-o-tolidin $C_{14}H_{12}O_2N_2S_2=[-C_0H_2(CH_3)\cdot N:SO]_2$. B. Bei 8-stdg. Kochen von 10 g o-Tolidin mit 100 g Benzol und 4 g Thionylchlorid (MICHAELIS, A. 274, 264). — Rotviolette Nadeln. F: 90°. Leicht löslich in Benzol, schwer in Petroläther.

2.2'-Dichlor-3.3'-dimethyl-bensidin, 2.2'-Dichlor-o-tolidin $C_{14}H_{14}N_5Cl_2 = H_2N \cdot C_4H_3Cl(CH_3) \cdot C_4H_2Cl(CH_3) \cdot NH_4$. B. Durch Reduzieren von 6-Chlor-2-nitro-toluol (Bd. V, S. 327) mit Zinkstaub und Natronlauge in Gegenwart von etwas Alkohol und Behandeln der entstandenen Hydrazoverbindung mit Salzsäure (Akt.-Ges. f. Anilinf., D. R. P. 82140; Frdl. 4, 74; P. COHN, M. 22, 490). — Krystalle (aus Benzol). F: 202° (A.-G. f. A., D. R. P. 82140). Erweicht bei 192°, schmilzt bei 197° (P. C.). Fast unlöslich in Wasser, leicht löslich in Alkohol, Benzol und Äther (A.-G. f. A., D. R. P. 82140). Das Sulfat gibt mit Chlorkalk und Bromwasser gelbbraunen, mit Kaliumdichromat schmutziggrünen Niederschlag, mit FeCl₃ rotviolette Färbung (P. C.). Verwendung für Azofarbstoffe: A.-G. f. A., D. R. P. 81915; Frdl. 4, 712. — Sulfat. Weiße, sich schwach bräunende Krystalle. Schwer löslich in Wasser, unlöslich in Alkohol (P. C.).

5.5'-Dichlor-3.3'-dimethyl-benzidin, 5.5'-Dichlor-o-tolidin $C_{14}H_{14}N_{1}Cl_{2} = H_{1}N \cdot C_{6}H_{12}Cl(CH_{3}) \cdot C_{6}H_{14}Cl(CH_{3}) \cdot NH_{2}$. B. Durch Chlorierung von N.N'-Discetyl-o-tolidin (8. 258) und Verseifung des Reaktionsprodukts (Levinstein Chem. Works, D. R. P. 97101; C. 1898 II, 522). Beim Einleiten von Chlor in eine Suspension von salzsaurem o-Tolidin in konzentrierter Salzsäure (SCHLENK, A. 363, 336). — Nädelchen (aus Alkohol). F: 160—161°; wird an der Luft schwach blau; ziemlich leicht löslich in allen organischen Lösungsmitteln,

sehr wenig löslich in Wasser; löslich in verd. Säuren (Son., A. 363, 337). — Liefert mit Ferrichlorid meri-5.5'-Dichlor-3.3'-dimethyl-diphenochinon-(4.4')-diimoniumchlorid (s. u.) (SCH.,

A. 363, 325). — $C_{14}H_{14}N_{3}Cl_{3} + 2H_{2}SO_{4}$. Nadeln (Son., A. 363, 337).

Verbindung mit Chloranil (Bd. VII, S. 636) $C_{30}H_{14}O_{3}N_{3}Cl_{4} = C_{14}H_{14}N_{3}Cl_{3} + C_{6}O_{3}Cl_{4}$.

B. Aus Chloranil und 5.5'-Dichlor-o-tolidin in heißem Toluol (Sohlenk, A. 363, 284). · Schwarze Nadeln. — Hydrochlorid. In heißem Wasser leicht löslich (Lev. Ch. W.).

Verbindung von 1 Mol. 5.5'-Dichlor-o-tolidin mit 1 Mol. 5.5'-Dichlor-3.3'verbindung von 1 moi. 5.5-Dichlor-6-tollul mit 1 moi. 5.5-Dichlor-3.3'-di-dimethyl-diphenochinon-(4.4')-diimoniumchlorid, meri-5.5'-Dichlor-3.3'-di-methyl-diphenochinon-(4.4')-diimoniumchlorid C₂₂H₂₈N₄Cl₂ = H₂N·C₂H₂Cl(CH₂)· C₄H₂Cl(CH₂)·NH₂ + ClH₄N·C₆H₂Cl(CH₂):C₄H₂Cl(CH₂):NH₂Cl. B. Man löst 5 g salzsaures 5.5'-Dichlor-0-tolidin in 200 ccm 96% igem Alkohol und filtriert in ca. 300 ccm 10% iger Ferrichloridlösung (Sch., A. 863, 325). — Blaue Nädelchen. Enthält lufttrocken 3H₂O, nach dem Trocknen im Vakuum 2H₂O. Sehr wenig löslich in Wasser, löslich in Alkohol mit blaugrings Ferbe, bei Zusatz von viel Alkohol wird die Ferbe gelb. Löslich in bans mit blaugrüner Farbe; bei Zusatz von viel Alkohol wird die Farbe gelb. Löslich in konz. Schwefelsaure mit rotgelber Farbe; beim Verdünnen fällt ein blaues Sulfat aus. Alkalien zersetzen die Verbindung.

N.N'-Diacetyl-5.5'-dichlor-o-tolidin $C_{18}H_{18}O_8N_9Cl_2 = [-C_8H_9Cl(CH_9)\cdot NH\cdot CO\cdot CH_9]_s$. B. Durch Chlorierung von N.N'-Diacetyl-o-tolidin (Levinstein Chem. Works, D. R. P. 97101; C. 1898 II, 522). — Krystallinisches Pulver. F: ca. 290°.

5.5'-Dibrom-3.8'-dimethyl-bensidin, 5.5'-Dibrom-o-tolidin $C_{14}H_{16}N_2Br_2 = H_2N \cdot C_4H_2Br(CH_2) \cdot C_4H_2Br(CH_3) \cdot NH_2$. B. Durch Bromieren von o-Tolidin in saurer Lösung (More, Soc. 91, 1310). Bei der Einw. von Brom auf eine Suspension von salzsaurem o-Tolidin in konz. Salzsaure (Schlenk, A. 363, 337). — Nadeln (aus Toluol). F: 195° (M.), 197—197,5° (SCHL.). Ziemlich leicht löslich in heißem Benzol, sehr wenig in Wasser (SCHL.). — Über ein durch einseitige Diazotierung erhaltenes Produkt der Zusammensetzung C₁₄H₁₁N₂Br₂ vgl.: VAUBEL, SCHEUER, C. 1906 I, 936. — Hydrochlorid. Wird durch Wasser dissoziiert (SOHL.).

Verbindung mit Chloranil (Bd. VII, S. 636) C₂₀H₁₄O₂N₂Cl₄Br₅ = C₁₄H₁₄N₂Br₅ + C₄O₂Cl₄. B. Aus Chloranil und 5.5'-Dibrom-o-tolidin in heißem Toluol (SCHL., A. 368, 283). Blauschwarze oder grünschwarze Nadeln. F: 225—228°. Löslich in warmem Benzol mit dunkelgrüner Farbe. Bei Erwärmung der benzolischen Lösung tritt vollkommene Dissoziation und Entfärbung ein, während beim Erkalten ohne vorherige Färbung der Lösung wieder die dunklen Krystalle der additionellen Verbindung abgeschieden werden. — Verbindung mit Bromanil (Bd. VII, S. 642) $C_{20}H_{14}O_2N_2Br_6 = C_{14}H_{14}N_2Br_2 + C_6O_2Br_4$. B. Aus Bromanil und 5.5'-Dibrom-o-tolidin (SCHL., A. 368, 283). Blauschwarze oder grünschwarze Nadeln. F: gegen 190°. Löslich in warmem Benzol mit dunkelgrüner Farbe. Bei Erwärmung der benzolischen Lösung tritt vollkommene Dissoziation und Entfärbung ein, während beim Erkalten ohne vorherige Färbung der Lösung wieder die dunklen Krystalle der additionellen Verbindung abgeschieden werden.

6-Nitro-8.8'-dimethyl-bensidin, 6-Nitro-o-tolidin $C_{14}H_{15}O_{2}N_{2} = H_{2}N \cdot C_{6}H_{2}(CH_{2}) \cdot C_{9}H_{2}(NO_{2}) \cdot (CH_{2}) \cdot NH_{2}$. B. Neben 6.6'-Dinitro-o-tolidin beim Eintragen von 20,2 g Kaliumor Tollidin in 636 g konz. Schwefelsäure bei 0° (LÖWENHERZ, B. 25, 1032). — Rote Nadeln (aus Alkohol). F: 156°; unlöslich in Ligroin, schwer löslich in Ather, ziemlich schwer löslich in kaltem Alkohol, leichter in Benzol, leicht in Eisessig (L.). — Verwendung zur Darstellung von Azofarbstoffen: BAYER & Co., D. R. P. 81036; Frdl. 4, 709. Verwendung zur Herstellung von Azofarben auf der Faser: Höchster Farbw., D. R. P. 82456; Frdl. 4, 688.

N.N'-Dibensalderivat $C_{28}H_{22}O_{9}N_{8}=C_{9}H_{5}\cdot CH:N\cdot C_{6}H_{2}(CH_{3})\cdot C_{6}H_{2}(NO_{9})(CH_{9})\cdot N:CH\cdot C_{6}H_{5}$. B. Durch Kochen von 6-Nitro-o-tolidin, gelöst in Alkohol, mit 2 Mol.-Gew. Benzaldehyd (Löwenherz, B. 25, 1034). — Musivgoldgelbe Blättchen (aus Alkohol). F: 147°. Fast unlöslich in Petroläther, schwer löslich in Alkohol und Äther, leicht in kaltem Benzol.

N.N'-Diacetylderivat $C_{10}H_{19}O_4N_8 = CH_3 \cdot CO \cdot NH \cdot C_6H_6(CH_9) \cdot C_6H_8(NO_9)(CH_9) \cdot NH \cdot CO \cdot CH_9$. B. Durch 10-stdg. Kochen von 3 g 6-Nitro-o-tolidin mit 40 g Eisessig (L., B. 25, 1033). — Nadeln. F: 290°. Sehr schwer löslich in Äther und Benzol.

5.5'-Dinitro-8.3'-dimethyl-bensidin, 5.5'-Dinitro-o-tolidin $C_{14}H_{14}O_4N_4 = H_2N \cdot C_6H_3(NO_3)(CH_3) \cdot C_6H_3(NO_3)(CH_3) \cdot NH_2$. B. Aus N.N'-Diacetyl-5.5'-dinitro-o-tolidin (s. u.) mit mäßig verdünnter Schwefelsäure (Gebeur, B. 21, 749). — Granatrote flache Nadeln (aus Alkohol). F: 266—267°. Kaum löslich in Wasser, wenig in Alkohol und Eisessig.

N.N'-Diacetylderivat $C_{10}H_{10}O_0N_4 = [-C_0H_0(NO_0)(CH_0)\cdot NH\cdot CO\cdot CH_0]_0$. B. Durch allmähliches Eintragen von 10 g N.N'-Diacetyl-o-tolidin in 100 g Salpetersäure (D: 1,52) (Gebber, B. 21, 748). — Kryställchen (aus Phenol). Zersetzt sich bei 320°, ohne zu schmelzen. Löslich in Phenol, Anilin und Nitrobenzol. Außerst sehwer löslich in anderen Lösungsmitteln.

6.6'-Dinitro-3.3'-dimethyl-benzidin, 6.6'-Dinitro-o-tolidin $C_{16}H_{16}O_4N_4 = H_2N \cdot C_6H_2(NO_2)(CH_3) \cdot C_6H_2(NO_2)(CH_3) \cdot NH_2$. B. Man löst 63,6 g o-Tolidin in 1275 g konz. Schwefelsäure und fügt bei 0° ein Gemisch von 38 g Salpetersäure (D: 1,52) und 120 g konz. Schwefelsäure hinzu; zur Reinigung führt man die Rohbase in das Diacetylderivat über (Gerber, Dissertation [Basel 1889], S. 28; vgl. Löwenherz, B. 25, 1033). — Orangerote Spieße (aus Cumol). F: 215—217° (G.). Fast unlöslich in Wasser und Petroläther, schwer löslich in Benzol, sehr leicht in Alkohol und Eisessig (G.). — Liefert beim Erwärmen mit Isoamylnitrit und Schwefelsäure 6.6'-Dinitro-3.3'-dimethyl-diphenyl (Bd. V, S. 610) (G.; Täuber, L., B. 24, 2597). — Das Hydrochlorid wird durch viel Wasser dissoziiert (G.). — Sulfat. Schwer löslich in Wasser (G.).

N.N'-Diacetylderivat $C_{18}H_{18}O_6N_4=[-C_6H_2(NO_2)(CH_3)\cdot NH\cdot CO\cdot CH_3]_2$. B. Durch Kochen von 6.6'-Dinitro-o-tolidin mit Essigsäureanhydrid (Gerber, Dissertation [Basel 1889], S. 35). — Gekreuzte weiße Krystalle. F: 275° (Zers.). Schwer löslich in Benzol, leicht in Alkohol und Eisessig.

14. 2.2'-Diamino-4.4'-dimethyl-diphenyl C₁₄H₁₆N₂, s. nebenstehende Formel. B. Durch Reduktion von 2.2'-Dinitro-4.4'-dimethyl-diphenyl (Bd. V, S. 610) mit Zinn und Salzsäure (v. Niementowski, B. 34, 3332). — Stäbchen und Nadeln (aus Alkohol). F: 120°; leicht löslich in organischen Mitteln außer Ligroin, sehr wenig in Wasser; die Salze mit Mineralsäuren sind leicht löslich (v. N.). — Die Tetrazoverbindung liefert bei der Behandlung mit Kaliumjodid die Verbindung CH₃·C₆H₃·CH₃·CH₃ (Syst. No. 4720) und etwas nicht rein isoliertes 2.2'-Dijod-4.4'-dimethyl-diphenyl (?) (Mascarelli, R. A. L. [5] 18 II, 193).

N.N'-Diformylderivat $C_{16}H_{16}O_2N_2 = [-C_6H_3(CH_3)\cdot NH\cdot CHO]_2$. Nadeln. F: 185° bis 187°; sehr wenig löslich in Äther, löslich in Alkohol (v. Niementowski, B. 34, 3333).

N.N'-Diacetylderivat $C_{18}H_{20}O_2N_2=[-C_6H_3(CH_3)\cdot NH\cdot CO\cdot CH_3]_3$. B. Aus 2.2'-Diamino-4.4'-dimethyl-diphenyl und Essigsäureanhydrid (v. N., B. 34, 3333). — Derbe Krystalle oder Nadeln (aus Alkohol). F: 189°. In Wasser sehr wenig löslich, in organischen Solvenzien in der Hitze leicht löslich.

N.N'-Dibensoylderivat $C_{38}H_{24}O_2N_3=[-C_6H_3(CH_3)\cdot NH\cdot CO\cdot C_6H_5]_2$. B. Aus 2.2'-Diamino-4.4'-dimethyl-diphenyl, Benzoylchlorid und Natronlauge (v. N., B. 34, 3333). — Nadeln (aus Alkohol). F: 170°.

- 15. Derivate von Diaminodimethyldiphenylen $C_{14}H_{16}N_2 = H_2N \cdot C_6H_3(CH_3) \cdot C_6H_3(CH_3) \cdot NH_3$ mit unbekannter Stellung der Gruppen.
- x.x'-Bis-dimethylamino-x.x'-dimethyl-diphenyl vom Schmelspunkt 57° $C_{18}H_{24}N_2 = [-C_6H_3(CH_3)\cdot N(CH_3)_3]_2$. B. Beim Erhitzen von Dimethyl-p-toluidin (Bd. XII, S. 902) mit konz. Schwefelssure auf 180—210° (MICHLER, PATTINSON, B. 14, 2167). Nadeln (aus Alkohol). F: 57°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther. $C_{18}H_{24}N_3 + 2HCl + PtCl_4$.
- X.X'-Bis-dimethylamino-X.X'-dimethyl-diphenyl vom Schmelspunkt 190° $C_{18}H_{24}N_2 = [-C_6H_3(CH_3)\cdot N(CH_3)_2]_2$. B. Entsteht in geringer Menge beim Erhitzen von Dimethyl-o-toluidin (Bd. XII, S. 785) mit 3—4 Tln. konz. Schwefelsäure auf 180—210° (MICHLER, SAMPAIO, B. 14, 2169). Nadeln (aus Alkohol). F: 190°. Unlöslich in Wasser, leicht löslich in Alkohol, Ligroin und Äther. Die freie Base gibt mit Eisenchlorid eine grüne und mit Kaliumchromat eine gelbe Färbung.

4. Diamine $C_{15}H_{18}N_2$.

- 1. $a.\gamma$ -Bis-[2-amino-phenyl]-propan $C_{15}H_{18}N_2 = H_2N \cdot C_6H_4 \cdot [CH_2]_3 \cdot C_6H_4 \cdot NH_2$. $a.\gamma$ -Bis-[2-dimethylamino-phenyl]-propan $C_{19}H_{26}N_3 = (CH_3)_2N \cdot C_6H_4 \cdot [CH_2]_3 \cdot C_6H_6 \cdot N(CH_3)_2$. Eine Verbindung, der früher diese Konstitution zugeschrieben wurde, ist als 4.4 · Bisdimethylamino-3.3 · dimethyl-diphenylmethan erkannt und als solches auf S. 263 aufgeführt.
- 2. a.a-Bis-[4-amino-phenyl]-propan $C_{15}H_{18}N_3 = CH_3 \cdot CH_2 \cdot CH[C_0H_4 \cdot NH_5]_2$.
 a.a-Bis-[4-dimethylamino-phenyl]-propan $C_{15}H_{26}N_3 = CH_3 \cdot CH_2 \cdot CH[C_0H_4 \cdot N(CH_3)_3]_2 \cdot B$. Durch mehrstündiges Kochen von a.a-Bis-[4-dimethylamino-phenyl]-a-propylen (S. 268) mit konz. Jodwasserstoffsäure und rotem Phosphor (Freund, Mayer, B. 39, 1119; vgl. Busignies, C. r. 149, 350). Nadeln (aus Alkohol). F: 50—51° (F., M.), 50° (B.).

3. $\beta.\beta-Bis-[4-amino-phonyl]-propan C_{15}H_{18}N_2 = (CH_3)_2C[C_9H_4\cdot NH_2]_3$.

ββ-Bis-[4-dimethylamino-phenyl]-propan C₁₉H₂₆N₂ = (CH₂)₂C[C₆H₄·N(CH₂)₂]₃. B. Beim Erhitzen von 1 Mol.-Gew. Aceton mit 2 Mol.-Gew. Dimethylanilin (Bd. XII, S. 141) und 1 Mol.-Gew. Zinkchlorid auf 150° (Doebner, B. 12, 813; vgl. auch Soc. St. Denis, D. R. P. 32008; Frdl. 1, 69). Entsteht als Nebenprodukt bei der Darstellung von Dimethylanilin aus salzsaurem Anilin und acetonhaltigem (vgl. D., B. 12, 814) Methylalkohol bei 280—300° (A. W. Hofmann, Martius, B. 4, 743; 6, 345). — Nadeln (aus wäßr. Alkohol). F: 83°; nicht flüchtig mit Wasserdampf; unlöslich in siedendem Wasser; schwer löslich in kaltem Alkohol, leicht in siedendem, in Äther und Schwefelkohlenstoff; gibt mit Jod eine smaragdgrüne Färbung (A. W. H., M.). Die meisten Salze sind äußerst löslich und schwer krystallisierbar (A. W. H., M.). — Salze: A. W. H., M. C₁₉H₂₆N₂+2HCl. Sehr löslich in Alkohol. — C₁₉H₂₆N₂+2HBr. Blättchen. — C₁₉H₂₆N₂+2HI. Blätter. In Wasser und in Alkohol weniger löslich als das Hydrobromid. — 2C₁₉H₂₆N₄+4HCl+3HgCl₂. Nadeln (aus Wasser). — C₁₉H₂₆N₃+2HCl+PtCl₄.

 $\beta.\beta$ -Bis-[4-dimethylamino-phenyl]-propan-mono-hydroxymethylat $C_{20}H_{20}ON_2 = (CH_3)_2 N \cdot C_6H_4 \cdot C(CH_3)_2 \cdot C_6H_4 \cdot N(CH_3)_2 \cdot OH$. B. Das Jodid entsteht, wenn man $\beta.\beta$ -Bis-[4-dimethylamino-phenyl]-propan mit Methyljodid im geschlossenen Rohr auf 100^0 erhitzt und das hierbei entstehende (nicht näher untersuchte) $\beta.\beta$ -Bis-[4-dimethylamino-phenyl]-propan-bis-jodmethylat mit Wasser kocht (A. W. HOFMANN, MARTIUS, B. 6, 349). Man erhält die freie Base durch Zerlegen des Jodids in wäßr. Lösung mit Silberoxyd und Eindampfen der alkal. Lösung. — Sirup. Zieht an der Luft kohlensäure an und zerfällt bei der Destillation in $\beta.\beta$ -Bis-[4-dimethylamino-phenyl]-propan und Methylalkohol. — Chlorid. $C_{20}H_{20}N_2 \cdot Cl + HCl$. Krystallinisch. Äußerst leicht löslich in Wasser und Alkohol. — Jodid $C_{20}H_{20}N_2 \cdot Cl + HCl$. Krystallinisch. Schwer löslich in Wasser, etwas leichter in Alkohol. Wird von Kalilauge nicht angegriffen. — Chloroplatinat $C_{20}H_{20}N \cdot Cl + HCl + PtCl_4$.

 $\beta.\beta$ -Bis-[4-diäthylamino-phenyl]-propan $C_{23}H_{34}N_2 = (CH_3)_3C[C_6H_4\cdot N(C_2H_5)_3]_3$. B. Bei 12-stdg. Erhitzen von 10 Tln. Aceton mit 50 Tln. Diäthylanilin (Bd. XII, S. 164) und 30 Tln. ZnCl₂ auf 170° (Doebner, Petschow, A. 242, 334). — Nadeln (aus Alkohol). F: 76°. Destilliert fast unzersetzt. Schwer löslich in kaltem Alkohol. Verhält sich ganz wie β.β-Bis-[4-dimethylamino-phenyl]-propan (s. o.). — $C_{23}H_{24}N_2 + 2HI$. Strohgelbe Blättchen (aus Wasser). Leicht löslich in Alkohol und in heißem Wasser.

4. 4.4'- Diamino - 2.2'- dimethyldiphenylmethan C₁₅H₁₈N₂, s. nebenstehende Formel. CH₂N· NH₂

4.4'-Bis-dimethylamino-2.2'-dimethyl-diphenylmethan $C_{10}H_{20}N_1 = CH_2[C_0H_3(CH_3)\cdot N(CH_3)_2]_2$. B. Aus Dimethyl-m-toluidin (Bd. XII, S. 857) und Formaldehyd in salzsaurer Lösung (Reitzenstein, Runge, J. pr. [2] 71, 112). — Blättchen. F: 82°. — Läßt sich mit Bleidioxyd oder elektrolytisch zu 4.4'-Bis-dimethylamino-2.2'-dimethyl-benzhydrol (Syst. No. 1859) oxydieren.

Verbindung $C_{18}H_{20}O_3N_1S = H_2N \cdot C_8H_3(CH_3) \cdot CH_2 \cdot C_8H_3(CH_3) \cdot NH \cdot CH_2(SO_3H)$. B. Beim Stehen von m-Toluidin in wäßriger schwefliger Säure mit wäßr. Formaldehydlösung (Geigy & Co., D. R. P. 148760; C. 1904 I, 554). — F: 178—180°.

5. 5.5'- Diamino - 2.2'- dimethyl - diphenylmethan CH₃ CH₃ CH₄ C_{1s}H_{1s}N₂, s. nebenstehende Formel. B. Bei der Reduktion von 5.5'-Dinitro-2.2'-dimethyl-diphenylmethan (Bd. V, S. 615) mit Zinn und Salzsäure (Well, B. 27, 3315). — F: 98—100°. NH₂ NH₃

5.5'-Bis-acetamino-2.2'-dimethyl-diphenylmethan $C_{10}H_{20}O_2N_3=CH_2[C_0H_2(CH_3)\cdot NH\cdot CO\cdot CH_3]_2$. B. Aus 5.5'-Diamino-2.2'-dimethyl-diphenylmethan und Essigsäureanhydrid (Well, B. 27, 3315). — F: 270°.

6. 4.4' - Diamino - 3.3' - dimethyl - diphenyl-methan C₁₅H₁₈N₂, s. nebenstehende Formel. B. Bei mehrstindigem Erwärmen von 1 Mol.-Gew. Methylen-di-H₂N. CH₂ NH₂ o-toluidin (Bd. XII, S. 788) mit etwas mehr als 2 Mol.-Gew. CH₂ NH₂ o-toluidin auf 100° (EBERHARDT, WELTER, B. 27, 1811). Das Hydrochlorid entsteht beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von Methylen-di-o-toluidin bei 0° (E., W.). Aus [4-Amino-3-methyl-benzyl]-p-toluidin (S. 185) und o-Toluidin durch Erwärmen mit wäßr. Salzsäure (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). — Beim Erhitzen von Anhydroformaldehydanilin (Syst. No. 3796) mit o-Toluidin und salzsaurem o-Toluidin auf 100° (H. F., D. R. P. 55565; Frdl. 2, 55; 3, 68). — Blättchen (aus Wasser oder Alkohol). F: 149° (H. F., D. R. P. 55565), 155° (Vongerichten, Book, Z. f. Farben-u. Textilchemie 2, 250). — Liefert beim Erhitzen mit überschüssigem Anilin und salzsaurem

- Anilin 4.4'-Diamino-3-methyl-diphenylmethan (S. 254) (V., B., Z. f. Farben- u. Textilchemie 2, 250; O. 1908 II, 441). Liefert beim Erhitzen mit o-Toluidin und salzsaurem o-Toluidin in Gegenwart von Oxydationsmitteln das salzsaure Farbsalz des 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylcarbinols (Neufuchsin, Syst. No. 1867) (E., W., B. 27, 1814; H. F., D. R. P. 59775; Frdl. 8, 113; vgl. Schultz, Tab. No. 513).
- 4.4'-Bis-methylamino-3.3'-dimethyl-diphenylmethan $C_{17}H_{22}N_2 = CH_2[C_6H_2(CH_2)\cdot NH\cdot CH_2]_2$. B. Man leitet Chlorwasserstoff in das Gemisch von 1 Mol.-Gew. Formaldehyd und 2 Mol.-Gew. Methyl-o-toluidin (Bd. XII, S. 784) (GNEHM, BLUMER, A. 304, 114; Badische Anilin- u. Sodaf., D. R. P. 67478; Frdl. 3, 90; vgl. v. Braun, B. 41, 2153). Durch Umlagerung von Methylen-bis-[methyl-o-toluidin] (Bd. XII, S. 788) beim 12-stdg. Erwärmen mit Säuren (v. Br., B. 41, 2153). Als Nebenprodukt bei der Verseifung von N-Methyl-N-cyan-o-toluidin (Bd. XII, S. 811), neben Methyl-o-toluidin (v. Br., B. 41, 2152). Krystallblättchen (aus verd. Alkohol). F: 87° (Gw., Bl.). Kps. 255° (v. Br.). Durch Erhitzen mit Schwefel, Kochsalz und Salmiak in einem Strom trocknen Ammoniaks auf 175° entsteht ein Auramin (Syst. No. 1873) (B. A. S. F.; GNEHM, WRIGHT, B. 35, 913; vgl. Schultz, Tab. No. 494).
- 4.4'-Bis-dimethylamino-3.3'-dimethyl-diphenylmethan $C_{10}H_{16}N_3=CH_2[C_6H_3(CH_3)-N(CH_3)_2]_2$. B. Bei 18-stdg. Erhitzen von 9 g Dimethyl-o-toluidin (Bd. XII, 8. 785) mit 2 g Polyozymethylen und 6 g $^{1}/_{2}$ °/ $_{0}$ iger wäßr. ZnCl $_{2}$ -Lösung auf 170—180° (ALEXANDER, B. 25, 2408; vgl. v. Braun, Heider, B. 49 [1916], 2609). Öl. Kp $_{40}$: 227—229°; leicht löslich in Alkohol, Äther, Chloroform und den anderen üblichen Lösungsmitteln; nicht flüchtig mit Wasserdampf (A.). $C_{10}H_{26}N_3+2$ HCl+PtCl $_{4}$. Schmilzt oberhalb 200° unter Zersetzung (A.).
- 4-Amino-4'-äthylamino-8.8'-dimethyl-diphenylmethan $C_{17}H_{12}N_2=H_2N\cdot C_8H_3(CH_3)\cdot CH_1\cdot C_8H_3(CH_2)\cdot NH\cdot C_2H_4$. B. Aus [4-Amino-3-methyl-benzyl]-p-toluidin (S. 185) und Athyl-o-toluidin (Bd. XII, S. 786) (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). Dickflüssiges Öl. Nicht flüchtig mit Wasserdampf.
- 4.4'-Bis-äthylamino-3.3'-dimethyl-diphenylmethan $C_{10}H_{20}N_3 = CH_2[C_6H_3(CH_3)^2]$ NH· $C_2H_5]_3$. B. Bei 3-stdg. Erhitzen von 30 g Äthyl-o-toluidin mit 10 g $40^9/_0$ iger Formaldehydlösung und überschüssiger konzentrierter Salzsäure auf 90—110° (Friedländer, Dinesmann, M. 19, 632). Tafeln. F: 92—93° (Bad. Anilin- u. Sodaf., D. R. P. 68004; Frdl. 3, 91), 96° (F., D.). Kp₂₀: ca. 300° (F., D.). Leicht löslich in Benzol und Aceton (F., D.), leicht löslich in heißem Alkohol (B. A. S. F.), schwer in kaltem Alkohol und Äther (F., D.). Die alkoh. Lösung wird von Jodwasser schwach grün, von Brom anfangs violett, dann grünlich gefärbt (F., D.). Platinsalz. Rote Kryställehem. F: 220° (Zers.) (F., D.).
- 4.4'-Bis-diāthylamino-8.3'-dimethyl-diphenylmethan $C_{23}H_{34}N_2 = CH_3[C_8H_3(CH_3)\cdot N(C_2H_3)_2]_2$. B. Beim mehrstündigen Erhitzen von 4.4'-Bis-āthylamino-3.3'-dimethyl-diphenylmethan (s. o.) mit 2 Mol.-Gew: Äthyljodid und Ätzkali am Rückflußkühler (F., D., M. 19, 633). Schwach gelb gefärbtes Öl. Kp₂₆: ca. 235—245°.

Verbindung $C_{16}H_{20}O_{2}N_{3}S = H_{2}N \cdot C_{6}H_{3}(CH_{2}) \cdot CH_{2} \cdot C_{6}H_{3}(CH_{3}) \cdot NH \cdot CH_{3}(SO_{3}H)$. B. Aus o-Toluidin, schwefliger Säure und Formaldehyd in wäßr. Lösung (Geigy & Co., D. R. P. 148760; C. 1904 I, 554). — F: 172°.

- 7. 4.6 Diamino 3.3 dimethyl diphenylmethan C₁₂H₁₂N₂, s. nebenstehende Formel. B. Aus [6-Amino-3-methylbenzy]]-p-toluidin (S. 185) und salzsaurem o-Toluidin (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). F: 89°.
- 8. 6.6' Diamino 3.3' dimethyl diphenylmethan CH₃ CH₃ C_{1p}H_{1e}N₂, s. nebenstehende Formel. B. Bei 12-stdg. Erhitzen von · ... Methylen-di-p-toluidin (Bd. XII, S. 908) mit p-Toluidin und salzsaurem p-Toluidin auf dem Wasserbad (EBERHARDT, WELTER, B. 27, NH₂ NH₂ NH₂
- 6.6'-Bis-methylamino-8.8'-dimethyl-diphenylmethan $C_{17}H_{22}N_e = CH_2[C_eH_2(CH_e): NH \cdot CH_2]_e$. B. Aus Methyl-p-toluidin (Bd. XII, S. 902) und Formaldehyd in saurer Lösung (v. Braur, B. 41, 2154). Zäh, gummiartig. Kp₁₀: 227—228°. Löslich in Säuren.
- Verbindung $C_{10}H_{20}O_3N_3S=H_2N\cdot C_4H_3(CH_2)\cdot CH_3\cdot C_6H_4(CH_3)\cdot NH\cdot CH_3(SO_3H)$. B. Aus p-Toluidin, schwefliger Saure und Formaldehydlösung in wäßr. Lösung (Geigy & Co., D. R. P. 146760; C. 1904 I, 554). F: 159—160°.
- 6.6' Bis methylnitrosemino 8.8' dimethyl diphenylmethan $C_{17}H_{20}O_2N_4 = CH_2[C_0H_2(OH_2)\cdot N(NO)\cdot CH_2]_3$. B. Aus 6.6'-Bis-methylamino-3.3'-dimethyl-diphenylmethan (s. o.) durch Nitrosierung (v. Baauw, B. 41, 2154). Hellgelbes Krystallpulver (aus Äther). F: 123°.

5. Diamine $C_{16}H_{20}N_2$.

- 1. a.5-Diamino-a.5-diphenyl-butan, a.a'-Diphenyl-tetramethylendiamin $C_{16}H_{20}N_2=C_6H_5\cdot CH(NH_2)\cdot CH_2\cdot CH_2\cdot CH(NH_2)\cdot C_6H_5$.
- a) Feste Form. B. Durch Kochen des Diphenacyldioxims (Bd. VII, S. 774) mit Natrium in Amylalkohol, neben der stereoisomeren öligen Form und einer mit Wasserdampf flüchtigen Base $C_{10}H_{16}N_{1}$?) (Wesenberg, Dissertation [Leipzig 1898], S. 30). Strahlige Masse: F: 46° bis 47°. $C_{16}H_{20}N_{2}+2$ HCl. Krystalle. F: ca. 315°. In Alkohol schwerer löslich als das stereoisomere Salz; 100 Tle. der gesättigten alkoholischen Lösung enthalten bei 18° 1,16 Tle. Salz. $C_{16}H_{30}N_{2}+CO_{3}$. Schmilzt, schnell erhitzt, bei 80—82°. Saures Salz der Traubensäure $C_{16}H_{30}N_{2}+2$ $C_{4}H_{6}O_{6}$. Krystallpulver. F: 225° (Zers.). $C_{16}H_{30}N_{2}+2$ $C_{16}H_{30}N_{2}+3$ $C_{16}H_{$
- b) Ölige Form. B. s. bei der festen Form. Salze: W., Dissertation [Leipzig 1898], S. 37. $C_{16}H_{20}N_2+2$ HCl. Nadeln oder Blättchen (aus Alkohol durch Ather). F: ca. 300°. Leichter löslich in Alkohol als das stereoisomere Salz; 100 Tle. der gesättigten alkoholischen Lösung enthalten bei 18° 8,59 Tle. Salz. Das Carbonat schmilzt bei 72—74°. $C_{16}H_{20}N_2+2$ HCl + PtCl₄. Krystalle (aus Wasser).
- 2. 4.4'-Diamino-3.3'-diäthyl-diphenyl, 3.3'-Diäthyl-benzidin C₁₈H₂₀N₂, s. nebenstehende Formel. B. Beim
 Erwärmen einer alkoh. Lösung von 2.2'-Diäthyl-azobenzol (Syst. H₂N· No. 2098) mit stark saurer Zinnchlorürlösung; die gelbgewordene
 Lösung wird durch Destillation vom Alkohol und durch Schwefelwasserstoff vom Zinn befreit; man übersättigt dann mit Natronlauge und entfernt das gleichzeitig entstandene 2-Amino1-äthyl-benzol (Bd. XII, S. 1089) durch Destillation mit Wasser; der Rückstand wird mit Ather ausgeschüttelt und die in den Äther übergegangene Base an verd. Schwefelsäure gebunden (G. Schultz, B. 17, 473). Aus 2-Nitro-1-äthyl-benzol (Bd. V, S. 358) durch Reduktion mit Zinkstaub und alkoh. Natronlauge und Einfließenlassen der erhaltenen Lösung in verd. Salzsäure (G. Sch., Flachsländer, J. pr. [2] 66, 163). Die Base wurde nur als braune schmierige Masse erhalten. Liefert mit salpetriger Säure und Alkohol 4.4'-Diäthoxy-3.3'-diäthyl-diphenyl (Bd. VI, S. 1015) neben anderen Produkten (G. Sch.). C₁₆H₂₀N₂ + 2 HCl. Blättchen. Leicht löslich in Wasser und heißem Alkohol (G. Sch., F.). C₁₆H₂₀N₂ + H₂SO₄ (bei 130°). Nadeln (aus Wasser). Schwer löslich in kaltem Wasser, etwas leichter in kaltem Alkohol (G. Sch.). Monopikrat C₁₆H₂₀N₂ + C₆H₃O₇N₃. Nädelchen. Zersetzt sich bei 225—230°; sehr schwer löslich in Wasser und Alkohol (G., Sch., F.). Dipikrat C₁₆H₂₀N₂ + 2C₆H₃O₇N₃. Blättchen (aus pikrinsäurehaltigem Alkohol). Zersetzt sich gegen die den die Monopikrat über (G. Sch., F.).

N.N'-Dibenzalderivat $C_{20}H_{28}N_2 = [-C_0H_3(C_2H_5)\cdot N:CH\cdot C_0H_5]_2$. B. Aus 3.3'-Diāthyl-benzidin und Benzaldehyd in siedendem Alkohol (G. SCHULTZ, FLACHSLÄNDEB, J. pr. [2] 66, 164). — Gelbe Nädelchen (aus Alkohol). F: 124—125°. Unlöslich in Wasser, schwer löslich in kaltem Alkohol.

N.N'-Diacetylderivat $C_{30}H_{34}O_3N_3=[-C_0H_3(C_3H_5)\cdot NH\cdot CO\cdot CH_3]_2$. B. Beim Erwärmen von trocknem 3.3'-Diāthyl-benzidin mit Essigsäureanhydrid (G. Sch., B. 17, 474). — Nadeln (aus Eisessig). Schmilzt bei 307° unter fast gleichzeitiger Sublimation. Schwer löslich selbst in heißem Alkohol, leichter in Eisessig.

3. 2.2' - Diamino - 3.5.3'.5' - tetramethyl - diphenyl CH₂ NH₂ NH₃ CH₃ C₁₆H₂₀N₂, s. nebenstehende Formel. B. Bei allmählichem Eintragen von 27 g Chlorjod in 10 g asymm. m-Xylidin (Bd. XII, S. 1111), gelöst in 8 g konz. Salzsäure und 70 g Wasser, bei 20—25° (Kerschbaum, CH₃ CH₄ B. 28, 2801). — Tafeln (aus Alkohol). F: 180°. Destilliert in kleinen CH₃ CH₄ Mengen unzersetzt. — Diazotiert man 2.2'-Diamino-3.5.3'.5'-tetramethyl-diphenyl, setzt die Bisdiazoniumsalzlösung zu einer mit Eis gekühlten überschüssigen Kaliumsulfidlösung und erwärmt nach dem Aufhören der Gasentwicklung auf dem Wasserbad, so entsteht 1.3.6.8-Tetramethyl-carbazol (Syst. No. 3087). — C₁₆H₂₀N₂ + 2 HNO₂. Prismen. — C₁₆H₂₀N₂ + 2 HCl + PtCl₄. Gelb, krystallinisch. Unlöslich in Wasser und Alkohol.

N.N'-Diacetylderivat $C_{sp}H_{24}O_{s}N_{2}=[-C_{s}H_{2}(CH_{3})_{2}\cdot NH\cdot CO\cdot CH_{3}]_{2}$. B. Durch $^{1}/_{3}\cdot stdg$. Kochen von 2.2'-Diamino-3.5.3'.5'-tetramethyl-diphenyl mit Essigsäureanhydrid (K., B. 28, 2802). — Blättchen (aus verd. Alkohol). F: 210°. Sehr leicht löslich in Alkohol, Äther und Eisessig.

6. Diamine C17H22N2.

1. 4.4'- Diamino - 2.5.2'.5'- tetramethyl - diphenylmethan C₁₇H₁₂N₂, s. nebenstehende Formel. B.

Aus salzsaurem p-Xylidin (Bd. XII, S. 1135) und Formaldehyd in wäßr. Lösung bei 70—100° (Höchster Farbw.,
D. R. P. 87615; Frdl. 4, 65). Aus p-Xylidin und Methylenchlorid im geschlossenen Rohr bei 160—170° (Senier, Compton, Soc. 91, 1931). Aus
Methylen-di-p-xylidin (Bd. XII, S. 1137) beim Erwärmen mit p-Xylidin und salzsaurem
p-Xylidin auf dem Wasserbad (Auwers, B. 37, 1472; A. 356, 131). — Nadeln (aus Petroläther).
Schmilzt bei 140—141° (H. F., D. R. P. 87615), 138—139° (Au.), 138° (nach Erweichen bei
135°) (S., C.). Leicht löslich in Chloroform (S., C.), in Eisessig und Alkohol (Au.; S., C.).
Verwendung zur Darstellung eines zur Bereitung von Farblacken geeigneten Diazofarbstoffes:
H. F., D. R. P. 169086; C. 1906 I, 1721. — C₁₇H₂₂N₂ + 2 HCl + PtCl₄ + H₂O. Gelb,
krystallinisch (S., C.).

Verbindung $C_{12}H_{24}O_{2}N_{2}S = H_{2}N \cdot C_{2}H_{2}(CH_{2})_{2} \cdot CH_{2} \cdot C_{2}H_{2}(CH_{3})_{2} \cdot NH \cdot CH_{2}(SO_{2}H)$. B. Man versetzt eine 80° warme Lösung von p-Xylidin in verd. Salzsäure mit Disulfit und gleich darauf mit Formaldehyd (Geigy & Co., D. R. P. 148760; C. 1904 I, 554). — F: 170°.

- 4.4' Bis acetamino 2.5.2'.5' tetramethyl diphenylmethan $C_{31}H_{30}O_3N_3 = CH_3[C_0H_3(CH_2)_2 \cdot NH \cdot CO \cdot CH_3]_2$. B. Aus 4.4'-Diamino-2.5.2'.5'-tetramethyl-diphenylmethan und kochendem Essigsäureanhydrid (Auwers, A. 356, 131 Anm.). Hochschmelzende weiße Substanz. Liefert mit Brom in Eisessig ein bei 212—218° schmelzendes Produkt der Zusammensetzung $C_{33}H_{34}O_4N_3Br_4(?)$.
- 2. 4.4'- Diamino 2.6.2'.6'- tetramethyl diphenylmethan C₁₇H₂₂N₃, s. nebenstehende Formel. B.

 Man schüttelt symm. m-Xylidin (Bd. XII, S. 1131) mit
 40% igem Formaldehyd und Wasser und erhitzt das entstandene, nicht näher beschriebene Methylen-di-symm.

 ——xylidin mit symm. m-Xylidin und salzsaurem symm. m-Xylidin auf dem Wasserbad
 (ÄUWERS, RIETZ, A. 356, 156). Krystallpulver (aus Benzol). F: 205—208°. Schwer
 löslich in Äther, Ligroin, ziemlich leicht in heißem Alkohol und Benzol, leicht in heißem
 Eisessig.
- 3. 4.4'- Diamino 3.5.3'.5'- tetramethyl diphenylmethan C₁₇H₂₂N₂, s. nebenstehende Formel. B.
 Entsteht in Form seines salzsauren Salzes beim Erwärmen
 von vic.-m-Xylidin (Bd. XII, S. 1107) mit der berechneten
 Menge Formaldehyd und dem gleichen Gewicht konz.
 Salzsäure (mit 3 Tln. Wasser verdünnt) (FRIEDLÄNDER, BRAND, M. 19, 640). Nadeln,
 die sich an der Luft violettrot färben. F: 126°. Leicht löslich in den gebräuchlichen
 Lösungsmitteln, sehr wenig in Wasser und Ligroin. Bleidioxyd färbt die essigsaure Lösung
 violett.

N.N'-Diacetylderivat $C_{21}H_{26}O_2N_2 = CH_2[C_6H_2(CH_3)_2\cdot NH\cdot CO\cdot CH_2]_3$. B. Beim Erwärmen von 4.4'-Diamino-3.5.3'.5'-tetramethyl-diphenylmethan mit Essigsäureanhydrid (Fr., Br., M. 19, 640). — Blättchen (aus Eisessig). F: über 280°. Fast unlöslich in Alkohol, Ather und Xylol. Am Licht sich rötend.

7. $\alpha.\alpha$ -Bis-[4-amino-phenyl]-heptan $C_{19}H_{20}N_{2}=CH_{2}\cdot[CH_{2}]_{5}\cdot CH(C_{2}H_{4}\cdot NH_{2})_{2}$. B. Beim Behandeln von $\alpha.\alpha$ -Bis-[4-nitro-phenyl]-heptan (Bd. V, S. 623) in Alkohol mit Zinn und Salzsaure (Auger, Bl. [2] 47, 49). — Flüssig. — Nitrat. Tafeln.

a.a - Bis - [4 - dimethylamino - phenyl] - heptan $C_{29}H_{24}N_9 = CH_3 \cdot [CH_4]_5 \cdot CH[C_4H_4 \cdot N(CH_2)_2]_3$. B. Bei 1—2-stdg. Erwärmen von 100 g Önanthol (Bd. I, S. 695) mit 240 g Dimethylanilin (Bd. XII, S. 141) und 240 g ZnCl₂ auf dem Wasserbade; man gießt das Produkt in Wasser, behandelt das ausgeschiedene Öl mit verdünnter Salzsäure und fällt die saure Lösung durch Natronlauge; von der freien Base destilliert man das Dimethylanilin ab und fraktioniert den Rückstand unter einem Druck von 15 mm; den hierbei swischen 270° und 280° übergehenden Anteil bringt man in der Kälte zum Krystallisieren, preßt die ausgeschiedenen Krystalle ab und krystallisiert wiederholt aus Alkohol um (Auger, Bl. [2] 47, 43). Entsteht auch aus a.a-Bis-[4-amino-phenyl]-heptan, Methyljodid und Methylalkohol im geschlossenen Rohr bei 100° (Au.). — Nadeln. F: 59,5°. Kp₁: 275°. Unlöslich in Wasser, wenig löslich in kaltem Alkohol. — $C_{23}H_{24}N_2 + 2HCl + PtCl_4$. Wenig löslich in Wasser, unlöslich in Alkohol und Äther.

7. Diamine $C_nH_{2n-14}N_2$.

1. Diamine $C_{13}H_{12}N_2$.

1. 1.9 - Diamino - fluoren $C_{13}H_{13}N_2$, s. nebenstehende Formel. B. Bei allmählichem Eintragen von 80 g Zinkstaub in eine am Rückflußkühler siedende Lösung von 15 g 1.8-Dinitro-fluorenon-oxim (Bd. VII, S. 470) in 400 ccm Eisessig + 40 ccm Wasser (J. Schmidt, Stützel, A. 370, 36). — Kryställchen (aus Äther), die sich an der Luft braun färben. F: ca. 120°. Leicht löslich in Alkohol, schwer in Benzol und Ligroin. — Diazotieren und Verkochen der Diazoniumsalzlösung führt zu 1.9-Dioxy-fluoren (Bd. VI, S. 1021). — Pikrat $C_{13}H_{12}N_2 + 2C_6H_3O_7N_3$. Grünlichgelbe Blättchen (aus Alkohol). F: 205° (Zers.).

N.N'-Diacetylderivat $C_{17}H_{16}O_2N_2=C_{13}H_8(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen von 1.9-Diamino-fluoren mit Essigsäureanhydrid (J. Sch., St., A. 370, 38). — Blättchen (aus Alkohol). F: 293°.

N.N'-Dibenzoylderivat $C_{27}H_{20}O_2N_2=C_{13}H_8(NH\cdot CO\cdot C_6H_5)_2$. B. Durch Benzoylieren von 1.9-Diamino-fluoren nach Schotten-Baumann (J. Sch., St., A. 370, 39). — Nädelchen. F: ca. 310°.

- 1.9 Bis [ω phenyl ureido] fluoren $C_{27}H_{22}O_2N_4 = C_{18}H_8(NH\cdot CO\cdot NH\cdot C_6H_8)_2$. B. Beim Versetzen einer äther. Lösung von 1.9-Diamino-fluoren mit 2 Mol.-Gew. Phenyliso-cyanat (J. Sch., St., A. 370, 39). Weiße Kryställchen. F: 258—260°.
- 2. 2.3-Diamino-fluoren C₁₃H₁₂N₂, s. nebenstehende Formel ¹).

 B. Das Hydrochlorid entsteht bei 6—7-stdg. Erwärmen einer Suspension von 4 g 3-Nitro-2-amino-fluoren (Bd. XII, S. 1331) in 80 com Alkohol mit 8 g Zinn und 20 g Salzsäure (D: 1,19) am Rückflußkühler; man zersetzt es mit wäßr. Methylaminlösung in der Wärme (DIELS, Schill, Tolson, B. 35, 3287). Krystalle. F: 193° (korr.). Löslich in heißem Wasser, warmem Benzol und Alkohol, kaum löslich in kaltem Wasser. FeCl₃ färbt die alkoholische Lösung grün. Oxydiert sich in feuchtem Zustand an der Luft. Beim Versetzen der warmen essigsauren Lösung mit Diacetyl entsteht das Chinoxalin CH₃·C:N C₁₃H₈ (Syst. No. 3489). C₁₃H₁₂N₂ + HCl. Blättchen (aus sehr verd. Salzsäure).
- 3. 2.7-Diamino-fluoren C₁₂H₁₂N₂, s. nebenstehende Formel. B. Beim Behandeln von 2.7-Dinitro-fluoren (Bd. V, S. 629) (G. Schultz, A. 203, 100) oder von 7-Nitro-2-amino-fluoren (Bd. XII, S. 1331) (Diels, Schill, Tolson, B. 35, 3289) mit Zinn und Salzsäure. Beim Erhitzen des aus 2.7-Dinitro-phenanthrenchinon (Bd. VII, S. 807) mit Schwefelammonium erhaltenen Reduktionsproduktes mit Natronkalk (G. Schultz, B. 9, 548; Anschütz, G. Schultz, B. 10, 325). Bei der Destillation von 4.4'-Diamino-diphenyl-dicarbonsäure (2.2') (Syst. No. 1908) mit gelöschtem Kalk, neben Benzidin (G. Schultz, A. 203, 99). Nadeln (aus Wasser). F: 157° (G. Sch., B. 9, 548; A. 203, 100), 164° (korr.) (Diels, Schill, Tol.). Sehr schwer löslich in kaltem Wasser, leichter in heißem, leicht in Alkohol (G. Sch., A. 203, 101). Wird von Oxydationsmitteln leicht verändert (G. Sch., A. 203, 101). Liefert mit Äthylnitrit Fluoren (G. Sch., A. 203, 100). Über Verwendung zur Darstellung von Azofarbstoffen vgl. Akt. Ges. f. Anilinf., D. R. P. 39756; Frill. 1, 513. C₁₃H₁₂N₂ + 2 HCl. Nadeln. Leicht löslich in heißem Wasser (Diels, Schill, Tol.). Sulfat. Blättchen. Schwer löslich in Wasser (G. Sch., A. 203, 101).

N.N'-Diacetylderivat $C_{17}H_{16}O_2N_2 = C_{13}H_5(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen von 2.7-Diamino-fluoren mit Essigsäureanhydrid (G. SCHULTZ, A. 203, 101). — Blättchen. Bräunt sich oberhalb 250°.

2. Diamine $C_{14}H_{14}N_2$.

1. 2.4 – Diamino – stilben, a – Phenyl – β – [2.4 – diamino – phenyl] – äthylen $C_{14}H_{14}N_3=C_6H_5\cdot CH\cdot C_6H_5(NH_4)_3$. B. Durch Einw. von überschüssiger salzsaurer Zinnehlorür-Eisessig-Lösung auf 2.4-Dinitro-stilben (Bd. V, S. 636) unter Eiskühlung (Thiele, Escales, B. 34, 2843). — Hellgelbe Nadeln (aus Benzol). F: 119—120°. In Lösung gegen Luft

¹⁾ So formuliert auf Grund der Arbeit von ECKERT, LANGECKER, J. pr. [2] 118, 263, die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienen ist.

und Licht sehr empfindlich. — $C_{14}H_{14}N_2+2HCl+2H_2O$. Nadeln (aus salzsäurehaltigem Wasser). Leicht löslich in Wasser. Natriumnitrit färbt die Lösung braun.

2. 2.2'- Diamino - stilben, a. β - Bis - [2 - amino - phenyl] - āthylen $C_{14}H_{14}N_1 =$

- H.N.C.H.CH:CH:CH.NH.

 a) Hochschmelzende Form. B. Man trägt 15 g gepulvertes hochschmelzendes
 2.2'-Dinitro-stilben (Bd. V, S. 637) in die mit Chlorwasserstoff gesättigte Lösung von 120 g SnCl₂ in 250 com Eisessig ein, läßt 12 Stdn. stehen, erwärmt dann 1 Stde. auf 100° und zersetzt das Zinndoppelsälz durch Natronlauge (Thiele, Dimeoth, B. 28, 1412; vgl. Bischoff, B. 21, 2078). — Goldglänzende Prismen (aus Alkohol, Äther oder Benzol). F: 176° (B.), 168° (Th., D.). Die alkoh. Lösung fluoresciert stark violettblau, die ätherische in stärkster Verdünnung himmelblau (B.). — Beim Erhitzen der Base mit ihrem Hydrochlorid auf 170—180° werden Anilin und Indol erhalten (TH., D.). Liefert bei der Reduktion mit Natrium in Amylalkohol 2.2'-Diamino-dibenzyl (S. 248) (Thiele, Holzinger, A. 305, 97). — C₁₄H₁₄N₂ + 2 HCl+2H₂O. Krystalle. Verliert das Krystallwasser bei 100°; das wasserfreie Salz erweicht bei ca. 2606 und schmilzt bei ca. 2670 unter Zersetzung; ziemlich schwer löslich in Wasser (TH., D.).
- b) Niedrigschmelzende Form. B. Durch Reduktion von niedrigschmelzendem 2.2'-Dinitro-stilben (Bd. V, S. 637) mit Zinnchlorür in Chlorwasserstoff-Eisessig (THIELE, DIMBOTH, B. 28, 1413). — Rote Nädelchen (aus Wasser). F: 123°. — Hydrochlorid. F: 230°.
- senen Rohr auf 100° (STRAKOSCH, B. 6, 330), durch Kochen mit währ. Schwefelnatriumoder Schwefelkaliumlösung (FREUND, NIEDERHOFHEIM, D. R. P. 115287; Frdl. 6, 96; C. 1900 II, 1167), durch Kochen mit Zinn und Salzsäure (Ben., G. Schultz; Akt.-Ges. C. 1900 II, 1167), durch Kochen mit Zinn und Salzsaure (BEN., G. SCHULTZ; Akt.-Ges. f. Anilinf., D. R. P. 39756; Frdl. 1, 514) sowie durch elektrolytische Reduktion in saurer Lösung (Elbs, Kremann, Z. El. Ch. 9, 419). — Darst. Man erwärmt 10 g hochschmelzendes 4.4'-Dinitro-stilben mit 100 g Alkohol auf dem Wasserbade und setzt nach einiger Zeit 20 g Salzsäure (D: 1,18) und 15 g Zinn hinzu; nach 2-stdg. Kochen fügt man noch 20 g Salzsäure und 15 g Zinn hinzu und erhitzt nochmals 1—1½ Stdn. (Elbs, Hoermann, J. pr. [2] 39, 502; vgl. Elbs, J. pr. [2] 47, 66). — Gelbe Blättchen oder Nadeln (aus Alkohol). F: 226° bis 227° (Akt.-Ges. f. Anilinf.), 227° (Ben., G. Schultz), 227—228° (Kl.); sublimiert bei vorsichtigem Erhitzen im Blättchen; destilliert einlysies unversetzt (Kr.). Schwer löglich in sichtigem Erhitzen in Blättchen; destilliert teilweise unzersetzt (Kl.). Schwer löslich in Schwefelkohlenstoff, Benzol und heißem Wasser, ziemlich leicht in Methylalkohol (Kl.). Die alkoh. Lösung wird durch Eisenchlorid vorübergehend blaugrün gefärbt (KL.). — Bei erschöpfender Chlorierung in Eisessig unter Zusatz von Salzsäure entstehen die Verbindungen $C_{14}H_4O_2Cl_{11}$ und $C_{14}H_4O_2Cl_{14}$ (s. u.) (ZINOKE, FRIES, MECHLENBURG, A. 325, 46 Anm.). Durch kurze Behandlung mit Chlor ohne Zusatz von Salzsäure und Zersetzen der zunächst entstehenden weißen amorphen Verbindung mit Wasser erhält man ein braunes Produkt, das beim Kochen mit Methylalkohol 4.4'-Diamino-a.a'-dimethoxy-dibenzyl (Syst. No. 1869) liefert (ZI., Fr., Mr.). Bei der Behandlung mit Athylnitrit wird Stilben erhalten (BEN., G. SCHULTZ). Bei geeigneter Einw. von salpetriger Säure in neutraler oder saurer (am besten essigsaurer) Lösung läßt sich die Diazotierung des 4.4'-Diamino-stilbens auf eine Aminogruppe beschränken (BAYER & Co., D. R. P. 51576; Frdl. 2, 469). Über Azofarbstoffe aus beiderseits diazotiertem 4.4'-Diamino-stilben vgl. Akt.-Ges. f. Anilinf., D. R. P. 39756, 43142, 43197, 46971, 47026; Frdl. 1, 513, 516, 517; 2, 379, 387. — $C_{14}H_{14}N_2 + 2$ HCl. Gelbe Nadeln oder gelbe, braun fluorescierende Tafeln (aus verd. Salzsäure). Zersetzt sich gegen 234°; wird von Wasser teilweise zersetzt (KL.). — $C_{14}H_{14}N_2 + 2$ HCl + PtCl₄ (bei 100—110°). Gelbe Nadeln (KL.).

Verbindung C₁₄H₅O₅Cl₁₁. B. Neben der Verbindung C₁₄H₄O₅Cl₁₄ (s. u.) bei erschöpfender Chlorierung von 4.4'-Diamino-stilben in Eisessig unter Zusatz von Salzsäure (ZINCEE, FRIES, MECHLENEURG, A. 825, 46 Anm.). — Farblose Krystalle (aus Alkohol + Benzol oder Nitrobenzol). F: 217º (Zers.). Ziemlich leicht löslich in Nitrobenzol, schwer in anderen Lösungsmitteln. — Macht aus Kaliumjodid Jod frei. Liefert beim Reduzieren 3.5.3'.5'-Tetra-

chlor-4.4'-dioxy-stilben (Bd. VI, S. 1024).

Verbindung C₁₄H₄O₂Cl₁₄. B. Neben der Verbindung C₁₄H₅O₂Cl₁₁ (s. o.) bei der erschöpfenden Chlorierung des 4.4'-Diamino-stilbens in Eisessig unter Zusatz von Salzsäure (Z., F., M., A. 325, 46 Anm.). — Weißes amorphes Pulver (aus Essignaure + Wasser). F: 150°

- (Zers.). Leicht löslich in Essigsäure, schwer in kaltem Benzin. Macht aus Kaliumjodid Jod frei und liefert beim Reduzieren 3.5.3'.5'-Tetrachlor-4.4'-dioxy-stilben (Bd. VI, S. 1024).
- 4.4'-Bis-acetamino-stilben $C_{18}H_{18}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH \cdot CH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. Beim Erhitzen von 4.4'-Diamino-stilben mit Essigsäureanhydrid (KLINGER, B. 16, 945). Blättchen (aus Alkohol). F: 312° (Zers.) (Bender, G. Schultz, B. 19, 3237).
- 4.4'-Bis-thionylamino-stilben $C_{14}H_{10}O_4N_4S_2 = OS:N\cdot C_6H_4\cdot CH:CH\cdot C_6H_4\cdot N:SO.$ B. Bei 8-stdg. Kochen von 15 g 4.4'-Diamino-stilben mit 100 g trocknem Benzol und 15 g Thionylchlorid (MICHAELIS, A. 274, 265). Rote Nadeln (aus Benzol). F: 201—202°. Fast unlöslich in Petroläther, wenig in Benzol und Chloroform.

4. a.a-Bis-[4-amino-phenyl]-āthylen $C_{14}H_{14}N_2 = CH_3:C(C_6H_4\cdot NH_2)_2$.

- a.a-Bis-[4-dimethylamino-phenyl]-äthylen C₁₈H₂₈N₂ = CH₂:C[C₆H₄·N(CH₃)₂]₂·B. Durch Erhitzen von 4.4'-Bis-dimethylamino-benzophenon (MICHLERS Keton; Syst. No-1873) mit Methylmagnesiumjodid in Ather und Zersetzung des Produktes mit Wasser (Freund, F. Mayer, B. 39, 1118; Busignies, C. r. 149, 349; vgl. Freht, B. 40, 3902; vgl. dazu auch Lemoult, C. r. 157 [1913], 724; Madelung, Völker, J. pr. [2] 115 [1927], 29, 41). Nadeln oder Blättchen (aus Alkohol). F: 115° (Bu.), 115—117° (unscharf) (Fr., F. May.), 124° (Freht). Kp₁₂: 250° (Freht). Unlöslich in Wasser, löslich in organischen Lösungsmitteln (Bu.). Löst sich in Essigsäure mit blauer, in Mineralsäuren mit gelblicher Farbe (Freht). Bildet bei der Oxydation in schwach essigsaurer Lösung einen tannierte Baumwolle grün färbenden Farbstoff (Lemoult, C. r. 149, 606). Wird beim Kochen mit Jodwasserstoffsäure und rotem Phosphor zu a.a-Bis-[4-dimethylamino-phenyl]-äthan reduziert (Fr., F. May.; vgl. Bu.).
- a.a-Bis-[4-diäthylamino-phenyl]-äthylen $C_{32}H_{30}N_3 = CH_2:C[C_8H_4\cdot N(C_2H_5)_2]_3$. B. Durch Erhitzen von 4.4'-Diäthylamino-benzophenon mit Methylmagnesiumjodid in Ather und Zersetzen des Produktes mit Wasser (Busignies, C. r. 149, 349). F: 102° (Bu.). Unlöslich in Wasser, löslich in organischen Lösungsmitteln (Bu.). Bildet bei der Oxydation in schwach essigsaurer Lösung einen tannierte Baumwolle grün färbenden Farbstoff (Lemoult, C. r. 149, 606). Geht durch Wasserstoffanlagerung in a.a-Bis-[4-diäthylamino-phenyl]-äthan über (Bu.).
- 3. a.a-Bis-[4-amino-phenyl]-a-propylen $C_{16}H_{16}N_2 = CH_3 \cdot CH : C(C_6H_4 \cdot NH_2)_2$. a.a-Bis-[4-dimethylamino-phenyl]-a-propylen $C_{16}H_{14}N_3 = CH_3 \cdot CH : C[C_6H_4 \cdot N(CH_3)_3]_2$. B. Durch Erhitzen von Michlers Keton mit Athylmagnesiumjodid in Ather und Zersetzung des Produktes mit Wasser (Freund, F. Mayer, B. 39, 1118; Busignies, C. r. 149, 349). Grüngelbe Nädelchen (aus Alkohol). F: 99° (Bu.), 99—100° (Fr., F. May.). Unlöslich in Wasser, löslich in organischen Lösungsmitteln (Bu.). Bildet bei der Oxydation in schwach essignauer Lösung einen tannierte Baumwolle rein blau färbenden Farbstoff (Lemoully, C. r. 149, 606). Wird beim Kochem mit Jodwasserstoffsäure und rotem Phosphor zu a.a-Bis-[4-dimethylamino-phenyl]-propan reduziert (Fr., F. May.; vgl. Bu.).
- a.a. Bis. [4 diāthylamino phenyl] -a. propylen $C_{33}H_{34}N_3 = CH_3 \cdot CH : C[C_4H_4 \cdot N(C_2H_3)_3]_s$. B. Durch Erhitzen von 4.4°-Bis-diāthylamino-benzophenon mit Athylmagnesium-jodid in Ather und Zersetzen des Produktes mit Wasser (Busionies, C. r. 149, 349). F: 56°; unlöslich in Wasser, löslich in organischen Lösungsmitteln (Bu.). Bildet bei der Oxydation in sohwach essigsaurer Lösung einen tannierte Baumwolle rein blau färbenden Farbstoff (Lemoully, C. r. 149, 606).

4. Diamine C₁₆H₁₈N₂.

- 1. y.5-Diamino-a.5-diphenyl-a-butylen $C_{16}H_{18}N_2 = C_{6}H_{5} \cdot CH(NH_2) \cdot CH(NH_2) \cdot CH: CH \cdot C_{8}H_{8}$.
- y.δ-Dianilino-a.δ-diphenyl-a-butylen C₂₈H₂₆N₃=C₆H₅·CH(NH·C₆H₅)·CH(NH·C₆H₅)·CH:CH·C₆H₅. B. Entsteht in schlechter und wechselnder Ausbeute beim Verreiben von festem γ.δ-Dibrom-a.δ-diphenyl-a-butylen (Bd. V, S. 645) mit Anilin bei 40—45° (THIELE, RÖSSNER, A. 306, 224). Gelbliche, fast weiße Spieße (aus Alkohol). F: 138—139°.
- 2. $a.s-Diamino-a.s-diphenyl-\beta-butylen$ $C_{1e}H_{1e}N_{2}=C_{e}H_{5} \cdot CH(NH_{2}) \cdot CH: CH-CH(NH_{2}) \cdot C_{e}H_{5}$. B. Entsteht in sehr geringer Menge neben viel a.s-Diphenyl- $a.\gamma$ -butadien beim Erwärmen einer Suspension von a.s-Dinitro-a.s-diphenyl- β -butylen (Bd. V, S. 646) in Alkohol mit Zink und alkoh. Salzsäure bei 50° (WIELAND, STENZI, A. 360, 310). Nädelchen (aus Benzol). F: 149° (Zers.). Schwer löslich in Wasser, mäßig in kaltem Benzol, leicht in Alkohol und in verd. Säuren. Pikrat $C_{1e}H_{1s}N_{2}+2C_{e}H_{3}O_{7}N_{3}$. Gelbe Nädelchen. Verkohlt bei cs. 220°.

5. δ -Methyl-a.a-bis-[4-amino-phenyl]-a-amylen $C_{18}H_{28}N_2=(CH_3)_2CH\cdot CH_2\cdot CH:C(C_4H_4\cdot NH_2)_2.$

δ-Methyl-a.a-bis-[4-dimethylamino-phenyl]-a-amylen $C_{22}H_{30}N_2 = (CH_3)_2CH \cdot CH_2 \cdot CH : C[C_6H_4 \cdot N(CH_3)_2]_2$. B. Durch Erhitzen von Michlers Keton mit Isoamylmagnesiumjodid in Äther und Zersetzen des Produktes mit Wasser (Busignies, C. r. 149, 349). — F: 61°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln.

6. Cyclohexyl-bis-[4-amino-phenyl]-methan ${ m C_{10}H_{24}N_2}=$

$$\mathbf{H_2C} \underbrace{\mathbf{CH_2} \cdot \mathbf{CH_2}}_{\mathbf{CH_2}} \underbrace{\mathbf{CH} \cdot \mathbf{CH}}_{\mathbf{2}} \underbrace{\mathbf{CH} \cdot \mathbf{CH}}_{\mathbf{1}} (\mathbf{C_0H_4} \cdot \mathbf{NH_2})_{\mathbf{2}}.$$

Cyclohexyl-bis-[4-dimethylamino-phenyl]-methan $C_{22}H_{32}N_2=C_6H_{11}\cdot CH[C_6H_4\cdot N(CH_3)_8]_8$. B. Bei 3—4-stdg. Erhitzen von Hexahydrobenzaldehyd (Bd. VII, S. 19) mit Dimethylanilin bei Gegenwart von ZnCl₂ auf dem Wasserbade (Zelinsky, Gutt, B. 40, 3052). — Weiße Nadeln (aus Alkohol). F: 148—149°.

8. Diamine $C_nH_{2n-16}N_2$.

1. Diamine $C_{14}H_{12}N_2$.

1. 4.4'-Diamino-tolan, Bis-[4-amino-phenyl]-acetylen C₁₄H₁₂N₂=H₂N·C₆H₄·C:C·C₆H₄·NH₂. B. Durch Reduktion von 4.4'-Dinitro-tolan (Bd. V, S. 657) (Kalle & Co., D. R. P. 45371; Frdl. 2, 457). — Schwach gelbliche Nadeln (aus heißem absol. Alkohol). F: 236° (K. & Co.), 235° (Zincke, Fries, A. 325, 72). Schwer löslich in den gebräuchlichen Lösungsmitteln, ausgenommen Aceton (Z., F.). — Liefert bei erschöpfender Chlorierung zwei Verbindungen C₁₄H₅O₃Cl₁₃ (s. u.) und eine Verbindung C₁₄H₄O₃Cl₁₃ (s. u.), welche bei der Reduktion 3.5.3'.5'.a.a'-Hexachlor-4.4'-dioxy-stilben (Bd. VI, S. 1024) geben (Z., F., A. 325, 79; vgl. auch Z., J. pr. [2] 59, 230). Geht mit verd. Säuren behandelt glatt in 4.4'-Diamino-desoxybenzoin (Syst. No. 1873) über (K. & Co.; Z., F.). Liefert bei andauerndem Kochen mit Alkohol hauptsächlich 4.4'-Diamino-desoxybenzoin, beim Kochen mit Essigsäureanhydrid 4.4'-Bis-acetamino-tolan (Z., F.). Über Disazofarbstoffe aus diazotiertem 4.4'-Diamino-desoxybenzoins (Z., F.). Gibt beim Kochen mit Essigsäureanhydrid 4.4'-Bis-acetamino-tolan (Z., F.). Uber Disazofarbstoffe aus diazotiertem 4.4'-Diamino-tolan vgl. K. & Co. — C₁₄H₁₂N₂ + 2HCl. Krystalle (aus verdünnter Salzsäure). Leicht löslich in Wasser, schwer in Salzsäure (Z., F.). — C₁₄H₁₂N₂ + H₂SO₄. Weißer krystallinischer Niederschlag. Sehr wenig löslich (Z., F.). Verbindung C₁₄H₅O₃Cl₁₃ vom Schmelzpunkt 258°. B. Entsteht :eben der isomeren Verbindung vom Schmelzpunkt 212° (s. u.) und einer Verbindung C₁₄H₄O₃Cl₁₃ (s. u.) bei mehrmaliger Sättigung einer salzsäurehaltigen Mischung von 4.4'-Diamino-tolan und Eisessig mit Chlor; man trennt die Verbindungen durch Aceton (Z., F., A. 325, 79). Entsteht neben der isomeren Verbindung vom Schmelzpunkt 212° (s. u.) auch aus 3.53'.5'.a.aa'.a'-Oktachlor-4.4'-dioxy-dibenzyl (Bd. VI, S. 1001) beim Chlorieren (Z., F., A. 325, 84). — Weißes krystallinisches Pulver. F: 258°. Schwer löslich in den gebräuchlichen Lösungsmitteln, unlöslich in chlorwasserstoffhaltigem

Verbindung $C_{14}H_5O_3Cl_{12}$ vom Schmelzpunkt 212°. Bildungen s. im vorangehenden Artikel. — Krystalle (aus Aceton). F: 212°; viel leichter löslich als die isomere Verbindung vom Schmelzpunkt 228°; liefert bei der Reduktion 3.5.3′.5′. α . α ′-Hexachlor-4.4′-dioxy-

stilben (Z., F., A. 325, 79).

Verbindung C₁₄H₄O₂Cl₁₂. B. Entsteht neben zwei Verbindungen C₁₄H₅O₂Cl₁₂ (s. o.) bei mehrmaliger Sättigung einer salzsäurehaltigen Mischung von 4.4'-Diamino-tolan und Eisessig mit Chlor (Z., F., A. 325, 79). — Krystalle (aus Eisessig + Salzsäure). F: 191°. — Liefert bei der Reduktion 3.5.3'.5'.a.a'-Hexachlor-4.4'-dioxy-stilben.

4.4'-Bis-acetamino-tolan, Bis-[4-acetamino-phenyl]-acetylen $C_{18}H_{14}O_2N_2=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot C:C\cdot C_6H_4\cdot NH\cdot CO\cdot CH_5$. B. Aus 4.4'-Diamino-tolan beim Kochen mit Acetanhydrid (Z., F., A. 325, 73). — Weiße, beim Liegen am Lichte sich allmählich blau färbende Nadeln (aus Eisessig). Schmilzt oberhalb 270°.

2. 1.4-Diamino-anthracen, Anthradiamin-(1.4) C₁₄H₁₂N₂, s. nebenstehende Formel. B. Durch Kochen von salzsaurem 4-Benzolazo-anthramin-(1) (Syst. No. 2182) in verd. Salzsaure mit Zinkstaub (Pisovschi, B. 41, 1435). — Die freie Base ist sehr unbeständig. — Bei der Oxydation der sauren wäßrigen Lösung des salzsauren Salzes mit Eisenchlorid entsteht

Anthrachinon-(1.4) (Bd. VII, S. 781). — $C_{14}H_{12}N_2 + H_2SO_4$. Weiße, schwer lösliche Nädelchen, die sich bald gelblich färben. Löst sich in reiner konzentrierter Schwefelsäure farblos, in nitrosehaltiger mit blauer Farbe, die beim Erhitzen rot wird.

N.N'-Diacetylderivat $C_{18}H_{16}O_{2}N_{8}=C_{14}H_{8}(NH\cdot CO\cdot CH_{9})_{2}$. Grünliche Nädelchen. F: 322°; fast unlöslich in Alkohol und Essigester, löslich in siedendem Eisessig mit blauer Fluorescenz (Pr., B. 41, 1435).

3. 9.10 - Diamino - phenanthren C₁₄H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion von Phenanthrenchinon-dioxim (Bd. VII, S. 804) in alkoh. Lösung mit Zinnchlorür und Salzsäure (Pschorr, B. 35, 2738; J. Schmidt, Söll, B. 41, 3684). — Schwachgelbe Blättchen. F: 160° bis 166° (P.). — Geht in feuchtem Zustand an der Luft unter Ammoniakabgabe in Phenanthrazin C₂₈H₁₆N₂ (Syst. No. 3499) über (P.). Acetyliert man das 9.10-Diaminophenanthren durch Kochen des salzsauren Salzes mit Acetanhydrid und Eisessig in Gegenwart von Natriumacetat und etwas Kupfer und fügt zu der erhaltenen siedenden Lösung Salpetersäure (D: 1,35), in der etwas Kupfer gelöst ist, so entsteht 3-Nitro-phenanthrenchinon (Bd. VII, S. 806) neben einer bei 305—307° schmelzenden Verbindung und anderen Produkten (J. Soh., Sö., B. 41, 3684, 3702). — C₁₄H₁₂N₂ + 2 HCl. Nadeln (P.).

N.N'-Diacetylderivat $C_{18}H_{18}O_2N_2 = C_{14}H_8(NH\cdot CO\cdot CH_3)_2$. B. Durch kurzes Erwärmen von salzsaurem 9.10-Diamino-phenanthren mit 20 Tln. Essigsäureanhydrid und mit Natriumacetat auf dem Wasserbad (P., B. 35, 2739). — Farblose sechsseitige Tafeln (aus Eisessig und Wasser). F: 330° (korr.) (Zers.).

- 2. 4.4'-Diamino-2.2'-divinyl-diphenyl, 2.2'-Divinyl-benzidin $C_{16}H_{16}N_2=H_2N\cdot C_6H_3(CH:CH_2)\cdot C_6H_3(CH:CH_2)\cdot NH_2$. B. Durch saure Reduktion von m-Azostyrol (Syst. No. 2100) (Komppa, B. 26 Ref., 677). F: 124°.
- 3. $\gamma.\delta$ -Diamino- $\alpha.\zeta$ -diphenyl- $\alpha.\epsilon$ -hexadien, $\alpha.\alpha'$ -Distyryl-äthylendiamin $C_{18}H_{20}N_2 = [C_6H_5 \cdot CH : CH \cdot CH(NH_2) -]_2$.

N.N'-Dibenzoylderivat $C_{32}H_{28}O_2N_3=[C_6H_5\cdot CH:CH\cdot CH(NH\cdot CO\cdot C_6H_5)-]_4$. B. Neben Cinnimabenzil (Bd. VII, S. 756) beim Sättigen einer 40° warmen alkoholischen Lösung von 100 g Benzil und 63 g Zimtaldehyd mit Ammoniakgas (JAPP, WYNNE, Soc. 49, 468). — Mikroekopische Prismen. F: 264°. Unlöslich in Alkohol, leicht löslich in heißem Phenol. — Liefert beim Erhitzen mit methylalkoholischem Kali im Druckrohr auf 150° Benzoesäure und 2-Phenyl-4.5-distyryl-glyoxalin (Syst. No. 3493).

9. Diamine $C_nH_{2n-18}N_2$.

1. Diamine $C_{16}H_{14}N_2$.

1. 2-Amino-1-[2-amino-phenyl]-naphthalin $C_{16}H_{14}N_{5}$, s. Formel I. B. Beim Kochen von 3-Oxy-naphthoesäure-(2) (Bd. X, S. 333), gelöst in Alkali, oder von β -Naphthol mit Phenylhydrazin und Natriumdisulfit, neben anderen Produkten (Bucherer,

SEYDE, J. pr. [2] 77, 409, 412). — Nädelchen (aus Alkohol). Leicht löslich in den organischen Lösungsmitteln. Die alkoh. Lösung fluoresciert blau. Gibt mit Mineralsäuren in Wasser leicht lösliche Salze. — Beim Erhitzen der Base oder besser ihres Hydrochlorids auf 160—2006 entsteht das Benzocarbazol der Formel II (Syst. No. 3090).

2. 4-Amino-1-[4-amino-phenyl]-naphthalin C₁₆H₁₆N₂, s. nebenstehende Formel. B. Beim Erwärmen von N-Phenyl-N'-a-naphthylhydrazin (Syst. No. 2074) mit Säuren (NIETZKI, ZEHNTMER, B. 26, 144).

— Blättchen (aus Ligroin). F: 64°. — C₁₆H₁₆N₂+2HCl (bei 100°).

Krystalle. — Sulfat. Sehr sohwer löslich.

N.N'-Diacetylderivat $C_{20}H_{18}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. Nadeln. F: 285° (N., Z., B. 26, 144).

- 3. 1.3-Diamino-2-phenyl-naphthalin, 2-Phenyl-naphthylen-diamin-(1.3) C₁₆H₁₆N₂, s. nebenstehende Formel. B. Aus β-Imino-α·γ-di-phenyl-buttersäure-nitril (Bd. X, S. 762) und konz. Schwefelsäure unter Kühlung (ΑΤΚΙΝΚΟΝ, ΤΗΟΒΡΕ, Soc. 89, 1934). Aus β-Imino-α-phenyl-β-ο-tolyl-propionsäure-nitril (Bd. X, S. 765) beim Lösen in konz. Schwefelsäure unter Eiskühlung (ΑΤΚΙΝΚΟΝ, ΙΝGΗΑΜ, ΤΗΟΒΡΕ, Soc. 91, 589). Farblose Platten (aus Methylalkohol). F: 116° (A., ΤΗ.). Färbt sich an der Luft rot (A., ΤΗ.). Gibt beim Erhitzen des Monohydrochlorids mit Wasser im Druckrohr auf 140° 1-Amino-3-oxy-2-phenyl-naphthalin (Syst. No. 1862) (LEES, ΤΗ., Soc. 91, 1304). Liefert beim Erhitzen mit 10°/øjer Salzsäure im Druckrohr auf 180° 1.3-Dioxy-2-phenyl-naphthalin (Bd. VI, S. 1040) (L., ΤΗ.). C₁₆H₁₄N₂ + HCl. Nadeln (aus Salzsäure) (A., ΤΗ.).
- 1.3 Bis methylamino 2 phenyl naphthalin, N.N' Dimethyl 2 phenyl naphthylendiamin-(1.3) $C_{18}H_{18}N_2=C_8H_5\cdot C_{10}H_5(NH\cdot CH_8)_2$.
- a-Form¹). B. Man löst 20 g 1.3-Diamino-2-phenyl-naphthalin in Methylalkohol, fügt 200 g Dimethylsulfat hinzu und versetzt dann unter Umschütteln und Kühlen mit 25% jeer Kalilauge bis zur dauernden starken Alkalinität der Lösung (Lees, Тнокре, Soc. 91, 1296). Dimorph. Scheidet sich aus der konzentrierten heißen Petroläther-Lösung oberhalb 80° in gelblichen Prismen vom Schmelzpunkt 170° aus. Kühlt man die heiße Petroläther-Lösung schnell ab, so erhält man farblose Nadeln vom Schmelzpunkt 164—165°, die zwischen 20° und 80° beständig sind und sich beim Stehen mit der Lösung bei 17° in die Prismen umwandeln. Die Prismen stellen die unterhalb 20° und oberhalb 80° beständige Form dar. Das Dinitrosamin²) entsteht nur langsam durch salpetrige Säure. C₁₈H₁₈N₂ + 2 HCl. Weiße Nadeln (aus konz. Salzsäure). Leicht löslich in Wasser.
- β -Form ¹). B. Beim Erhitzen von 10 g 1.3-Diamino-2-phenyl-naphthalin mit 65 g Dimethylsulfat auf 100° neben dem trimethylierten Diaminophenylnaphthalin (s. u.) (L., Th., Soc. 91, 1298). Farblose Blättchen (aus Petroläther). F: 158—159°. Salpetrige Säure erzeugt sehr schnell das Dinitrosamin ²). $C_{18}H_{18}N_2+2$ HCl. Mikrokrystallinischer Niederschlag (aus heißer konzentrierter Salzsäure). Leicht löslich in Wasser.
- 3 oder 1 Methylamino 1 oder 3 dimethylamino 2 phenyl naphthalin, $N^1.N^3.N^3.N^3.N^3.N^3.Trimethyl-2$ -phenyl-naphthylendiamin-(1.3) $C_{19}H_{20}N_3=C_6H_5$: $C_{10}H_6(NH\cdot CH_2)\cdot N(CH_3)_2$. B. Entsteht in geringer Menge neben der β -Form des 1.3-Bismethylamino-2-phenyl-naphthalins aus 1.3-Diamino-2-phenyl-naphthalin und Dimethylsulfat bei 100° (Lees, Thorpe, Soc. 91, 1299). Farblose Nadeln (aus Methylalkohol). F: 98° bis 99°. $C_{19}H_{20}N_3+2HCl$. Weiße Nadeln.
- 1.3-Bis-dimethylamino-2-phenyl-naphthalin, N.N.N'.N'-Tetramethyl-2-phenyl-naphthylendiamin-(1.3) $C_{20}H_{22}N_2=C_6H_5\cdot C_{10}H_5[N(CH_2)_2]_3$. B. Aus 10 g 1.3-Diamino-2-phenyl-naphthalin in Methylalkohol mit 150 g Dimethylsulfat und 25% (giger Kalilauge (L., Th., Soc. 91, 1300). Farblose Prismen (aus Petrolather). F: 120%. $C_{20}H_{22}N_2+2$ HCl. Farblose Prismen. Löslich in Wasser.
- 1-Amino-3-acetamino-2-phenyl-naphthalin, N³-Acetyl-2-phenyl-naphthylendiamin-(1.3) $C_{18}H_{16}ON_2=C_6H_5\cdot C_{10}H_5(NH_2)\cdot NH\cdot CO\cdot CH_3$. B. Das essigsaure Salz entsteht beim Kochen von 1.3-Diamino-2-phenyl-naphthalin mit Essigsäureanhydrid (ATRINSON, THORFE, Soc. 89, 1935; LEES, Th., Soc. 91, 1292). Platten (aus Alkohol oder Benzol). F: 220° (L., Th.). $C_{18}H_{16}ON_2+HCl$. Krystalle (aus heißer verdünnter Salzsäure). Löslich in kaltem Wasser, unlöslich in verdünnter Salzsäure (L., Th.). Essigsaures Salz $C_{18}H_{16}ON_2+C_2H_4O_2$. Prismen (aus absol. Alkohol). F: 185° (A., Th.).
- 1-Bensalamino-3-acetamino-2-phenyl-naphthalin, N¹-Bensal-N³-acetyl-2-phenyl-naphthylendiamin-(1.3) $C_{85}H_{80}ON_5=C_6H_5\cdot C_{10}H_5(N:CH\cdot C_6H_5)\cdot NH\cdot CO\cdot CH_2$. B. Man erwärmt das 1-Amino-3-acetamino-2-phenyl-naphthalin mit Benzaldehyd in Benzol (Lees, Thorfe, Soc. 91, 1293). Gelbliche Nadeln (aus Benzol). F: 188—189°.
- 1.8-Bis-acetamino-2-phenyl-naphthalin, N.N'-Discetyl-2-phenyl-naphthylendiamin-(1.8) $C_{20}H_{18}O_2N_3=C_0H_5\cdot C_{10}H_5(NH\cdot CO\cdot CH_2)_2$. B. Beim Kochen von 1.3-Diamino-2-phenyl-naphthalin mit Acetylchlorid (ATKINSON, THORFE, Soc. 89, 1934). Nadeln. F: 267°.

Zur Erklärung der Isomerie vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von GIBSON, KENTISH, SIMOMSEN, Soc. 1928, 2131.
 Die Dinitrosamine aus α-Form und aus β-Form sind entgegen der Ansicht von LEES, THORFE identisch (GIBSON, KENTISH, SIMOMSEN, Soc. 1928, 2134).

 CH_3

3 oder 1 - Dimethylamino - 1 oder 3 - methylnitrosamino - 2 - phenyl - naphthalin, o oder 1-Dimethylamino - 1 oder 3-methylmtrosamino - 2-phenyl-naphthalin, N^1 oder N^3 -Nitroso - N^1 . N^3 . N^3 - oder N^1 . N^3 . N^3 - trimethyl - 2-phenyl-naphthylendiamin-(1.3) $C_{19}H_{19}ON_3 = C_{6}H_{5} \cdot C_{10}H_{5}[N(CH_{3})_{2}] \cdot N(NO) \cdot CH_{3}$. B. Aus der Lösung des 3 oder 1-Methylamino-1 oder 3-dimethylamino-2-phenyl-naphthalins (S. 271) in Salzsäure und der berechneten Menge Natriumnitrit (Lees, Thorpe, Soc. 91, 1299). — Bräunliche Nadeln (aus Alkohol). F: 151°. — $C_{19}H_{19}ON_3 + HCl$. Weiße Nadeln.

nitrit (Lees, Thorre, Soc. 91, 1297, 1299; vgl. Gibson, Kentish, Simonsen, Soc. 1928, 2134). — Gelbliche Nadeln (aus Alkohol). F: 179° (L., Th.).

4-Nitroso-1.8-bis-dimethylamino-2-phenyl-naphthalin, N.N.N'.N'-Tetramethyl-4-nitroso-2-phenyl-naphthylendiamin-(1.3) $C_{20}H_{11}ON_3=C_0H_5\cdot C_{10}H_4(NO)[N(CH_3)_2]_2$. B. Aus 1.3-Bis-dimethylamino-2-phenyl-naphthalin in Salzsaure mit Natriumnitrit bei 5º (Lees, Thorpe, Soc. 91, 1300). — Bräunliche Nadeln (aus Petroläther). F: 135°.

2. 4-Amino-1-[4-amino-3-methyl-phenyl]-naphthalin $C_{17}H_{16}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von CH_{\bullet} N-o-Tolyl-N'a-naphthyl-hydrazin (Syst. No. 2074) mit Salzsaure (Nietzki, Zehntnes, B. 26, 145). Aus 1-o-Toluolazo-naphthalin mit NH, salzsaurer Zinnehlorürlösung (N., Z.). — F: 76°. — C₁₇H₁₆N₂+2HCl.

 $\begin{array}{lll} \textbf{N.N'-Diacetylderivat} & \textbf{C}_{11}\textbf{H}_{20}\textbf{O}_{2}\textbf{N}_{2} = \textbf{CH}_{3}\cdot\textbf{CO}\cdot\textbf{NH}\cdot\textbf{C}_{6}\textbf{H}_{3}(\textbf{CH}_{3})\cdot\textbf{C}_{10}\textbf{H}_{6}\cdot\textbf{NH}\cdot\textbf{CO}\cdot\textbf{CH}_{3}. & B. \\ \textbf{Aus} & \textbf{4-Amino-1-[4-amino-3-methyl-phenyl]-naphthalin} & \textbf{und} & \textbf{Essigsaureanhydrid} & (\textbf{N.,} & \textbf{Z.,} \\ \end{array}$ B. 26, 145). — Schmilzt unter partieller Zersetzung bei 261°.

3. Diamine $C_{18}H_{18}N_2$.

1. 5.7 - Diamino - 1 - methyl - 6 - o - tolyl - naphthalinCH₃ 5-Methyl-2-o-tolyl-naphthylendiamin-(1.3) $\tilde{C}_{18}H_{18}N_2$, s. nebenstehende Formel. B. Aus β -Imino-a. γ -di-o-tolyl-buttersäurenitril (Bd. X, S. 771) mittels kalter konzentrierter Schwefelsäure H,N (BEST, THORPE, Soc. 95, 266). — Farblose Tafeln (aus Methylalkohol). F: 136°. Leicht löslich in Alkohol, Benzol, Chloroform, schwer in NH₂ Petroläther. Färbt sich an der Luft rot. — $C_{18}H_{18}N_2 + 2$ HCl. Farblose Tafeln.

N.N'-Diacetylderivat $C_{22}H_{22}O_2N_2 = CH_3 \cdot C_4H_4 \cdot C_{10}H_4(CH_2)(NH \cdot CO \cdot CH_3)_2$. B. Aus 5.7-Diamino-1-methyl-6-o-tolyl-naphthalin beim Kochen mit Acetylchlorid (B., Th., Soc. 95, 267). — Nadeln (aus Alkohol). F: 245°.

5.7 - Diamino - 2 - methyl - 6 - m - tolyl-naphthalin, 6-Methyl-2-m-tolyl-naphthylendiamin-(1.3) C₁₂H₁₆N₃, s. nebenstehende Formel. B. Aus β-Imino-CH₃.

a.y-di-m-tolyl-buttersäure-nitril (Bd. X, S. 771) mittels

konz. Schwefelsäure (B., Th., Soc. 95, 269). — Fast farblose

Tafeln (aus Methylalkohol). F: 143°. Leicht löslich in Methylalkohol. Wird an der Luft rot.

Chromeaure oxydiert zu 4-Methyl-phthalsaure (Bd. IX, S. 862). — C₁₈H₁₈N₂ + 2 HCl. Nadeln (aus konz. Salzsäure).

N.N'-Diacetylderivat $C_{22}H_{22}O_2N_2 = CH_2 \cdot C_0H_4 \cdot C_{10}H_4 (CH_3)(NH \cdot CO \cdot CH_3)_2$. B. Aus 5.7-Diamino-2-methyl-6-m-tolyl-naphthalin beim Erhitzen mit Acetylchlorid (B., Th., Soc. 95, 269). — Farblose Nadeln (aus verd. Alkohol). F: 235°.

3. 6.8-Diamino-2-methyl-7-p-tolyl-naphthalin, 7-Methyl-2-p-tolyl-naphthylendiamin-(1.3) NH₂ $C_{12}H_{18}N_2$, s. nebenstehende Formel. B. Aus β -Imino-a.y-dilp-tolyl-buttersäure-nitril (Bd. X, S. 772) mittels kalter konzentrierter Schwefelsäure (B., Th., Soc. 95, 272). — Farblose Tafeln (aus Methylalkohol). F: 160°. Wird an der Luft rot. — $C_{18}H_{18}N_2 + 2$ HCl. Eachlose Tafeln

N.N'-Diacetylderivat $C_{22}H_{22}O_2N_2 = CH_2 \cdot C_2H_4 \cdot C_{10}H_4 (CH_2)(NH \cdot CO \cdot CH_2)_2$. B. Aus 6.8-Diamino-2-methyl-7-p-tolyl-naphthalin und Acetylchlorid beim Erhitzen (B., Th., Soc. 95, 272). — Nadeln (aus verd. Alkohol). F: 176°.

10. Diamine $C_nH_{2n-20}N_2$.

1. Diamine C₁₆H₁₂N₂.

1. Bis-[2-amino-phenyl]-butadiin, Bis-[2-amino-phenyl]-diacetylen $C_{16}H_{19}N_2 = H_2N \cdot C_6H_4 \cdot C \cdot C \cdot C \cdot C_6H_4 \cdot NH_2$. B. Beim Kochen des N.N'-Diacetylderivates (s. u.) mit gleichen Teilen Wasser, Alkohol und Schwefelsäure (BAEYER, LANDSBERG, B. 15, 61). — Gelbliche Nadeln (aus verd. Alkohol). F: 128°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Säuren. — $C_{16}H_{12}N_3 + 2$ HCl. Undeutliche farblose Krystalle. In Wasser leicht löslich.

N.N'-Diacetylderivat $C_{20}H_{16}O_2N_2 = [-C:C\cdot C_6H_4\cdot NH\cdot CO\cdot CH_2]_2$. B. Beim Behandeln der Kupferverbindung des 2-Acetamino-phenylacetylens (Bd. XII, S. 1210) mit Kali und Kaliumferricyanid (B., L., B. 15, 60). Beim Behandeln von Bis-[2-amino-phenyl]-diacetylen mit Essigsäureanhydrid (B., L.). — Farblose Nadeln. F: 231°. Färbt sich am Lichte schnell rosenrot.

- 2. **Diaminopyren** $C_{16}H_{12}N_2 = C_{16}H_3(NH_2)_2$. B. Beim Behandeln von Dinitropyren (Bd. V, S. 694) mit Zinn und Salzsäure (Jahoda, M. 8, 449). Die freie Base ist sehr unbeständig. Die verdünnte alkoholische oder ätherische Lösung fluoresciert blau. $C_{16}H_{12}N_2 + 2$ HCl. Nadeln. Löslich in Wasser. $C_{16}H_{12}N_2 + H_2$ SO₄. Unlöslich in Wasser und Alkohol.
- 2. 6.4'-Diamino-3-phenyl-diphenyl, 5-Phenyl-diphenyl, 10-phenylin' C₁₈H₁₆N₂, s. nebenstehende Formel. B. Neben anderen Produkten beim Sättigen einer Lösung von 4-Phenylhydrazobenzol (Syst. No. 2075) in kaltem, trocknem Benzol mit Chlorwasserstoff (Dziurzyński, C. 1908 II, 948). C₁₈H₁₆N₃ + 2 HCl. C₁₆H₁₆N₃ + H₃SO₄. Nadeln (aus Alkohol). Leicht löslich in Wasser.

N.N'-Diacetylderivat C₂₂H₂₀O₂N₃ = CH₃·CO·NH·C₆H₂(C₆H₄)·C₆H₄·NH·CO·CH₃. B. Beim Behandeln von 5-Phenyl-diphenylin mit Essigeäureanhydrid (Dz., C. 1908 II, 948). — Harte Kryställehen. F: 223°.

3. Diamine C19H18N2.

1. 2.4 - Diamino - triphenylmethan, 2.4 - Diamino-tritan, 4-Benzhydryl-phenylendiamin-(1.3) C₁₀H₁₀N₂, s. nebenstehende Formel. NH₂

2.4-Bis-dimethylamino-triphenylmethan, Tetramethyl-2.4-diamino-triphenylmethan $C_{22}H_{26}N_2=(C_0H_5)_2(\text{CH}\cdot C_0H_2[N(\text{CH}_3)_2]_3$. B. Man bringt 4 Mol.-Gew. Phenylmagnesiumbromid mit 1 Mol.-Gew. 2.4-Bis-dimethylamino-benzaldehyd (Syst. No. 1873) in Ather zur Reaktion, erhitzt nach dem Abdestillieren des Äthers auf 110—120° und zersetzt das Produkt mit Eis und Schwefelsäure (Saches, Appenzelle, B. 41, 108). — Tafeln (aus Petroläther). F: 122—123°. Unlöslich in Wasser, schwer löslich in Alkohol, sonst leicht löslich.

2. 2.4'-Diamino - triphenylmethan, 2.4'-Diamino-tritan $C_{19}H_{19}N_3$, s. neben-stehende Formel. H_2N^* $CH(C_0H_5)$

a-Chlor-2.4'-bis-dimethylamino-triphenylmethan $C_{22}H_{25}N_2Cl = C_4H_5 \cdot CCl[C_6H_4 \cdot N(CH_5)_2]_2$. B. Das salzsaure Salz entsteht beim Einleiten von trocknem Chlorwasserstoff in eine ätherische Lösung von 2.4'-Bis-dimethylamino-triphenyloarbinol (Syst. No. 1865) (BAEYER, A. 354, 195). — $C_{22}H_{25}N_5Cl + 2 HCl$. Schwach gelbliche Nadeln. Färbt sich bei 140° dunkel und zersetzt sich bei 227°. Zerfließlich; leicht löslich in Wasser; die farblose Lösung wird beim Erhitzen gelb. — Gibt mit SnCl₄ ein rotes, in Wasser leicht lösliches Doppelsalz.

3. 3.4-Diamino-triphenylmethan, 3.4-Diamino-tritan, 4-Benshydryl-phenylendiamin-(1.2) C₁₂H₁₂N₂, s. nebenstehende Formel. B. Beim Kochen einer alkoh. Lösung von 3-Nitro-4-amino-triphenylmethan (Bd. XII, S. 1343) mit Zinn

¹⁾ Bezifferung von "Diphenylin" in diesem Handbuch s. S. 211.

und Salzsäure am Rückflußkühler (Thomae, J. pr. [2] 71, 569). — Krystalle (aus Benzol) mit 1 Mol. Benzol. Schmiltt benzolhaltig bei 71—72°, verliert das Krystallbenzol bei 100°. Leicht löslich in Alkohol, Äther, Benzol, Eisessig, sehr wenig in Ligroin, leicht in verd. Säuren, unlöslich in konz. Salzsäure. — Chlorwasser färbt die alkoh. Lösung der Base vorübergehend rötlich bis violett, dann grünlich. Jod verhält sich ähnlich, Brom bewirkt in einer Schwefelkohlenstofflösung eine rötliche Fällung. Natriumnitritlösung fällt aus der angesäuerten wäßrigen Lösung einen weißen Niederschlag. Eine konzentrierte wäßrige Lösung von Eisenchlorid gibt mit einer angesäuerten wäßrigen Lösung der Base einen rotbraunen Niederschlag, mit einer alkoh. Lösung nur eine rotbraune Färbung.

N.N'-Diacetylderivat $C_{23}H_{23}Q_3N_3 = (C_6H_5)_2CH \cdot C_6H_3(NH \cdot CO \cdot CH_3)_2$. B. Beim Eintragen von fein zerriebenem 3.4-Diamino-triphenylmethan in Essigsäureanhydrid (Th., J. pr. [2] 71, 573). — Krystalle (aus Alkohol). F: 226°. Löslich in Eisessig, schwer löslich in Alkohol, sehr wenig in Äther und Benzol.

N.N'-Dibensoylderivat $C_{23}H_{26}O_3N_3=(C_6H_5)_3CH\cdot C_6H_3(NH\cdot CO\cdot C_6H_5)_3$. B. Beim Eintragen von Benzoylchlorid in ein heißes Gemisch von 3.4-Diamino-triphenylmethan und wäßr. Natronlauge (Th., J. pr. [2] 71, 571). — Krystalle (aus Alkohol + Benzol). F: 243°. Löslich in Benzol, schwerer löslich in Eisessig, sehr wenig in Alkohol und Äther. — Beim Erwärmen mit Chromsäure in Eisessig werden 5-Benzamino-2-benzhydryl-p-chinon (Syst. No. 1874) und Benzamid erhalten.

- 4. 3.4'-Diamino-triphenylmethan,
 3.4'-Diamino-tritan C₁₀H₁₀N₂, s. nebenstehende Formel.

 NH₂

 -CH(C₆H₈)
- 3.4'-Bis-dimethylamino-triphenylmethan, Tetramethyl-3.4'-diamino-triphenylmethan $C_{22}H_{23}N_2 = C_6H_5 \cdot \text{CH}[C_6H_4 \cdot \text{N}(\text{CH}_3)_2]_3$. B. Beim Erwärmen von 3.4'-Bis-dimethylamino-triphenylcarbinol (Syst. No. 1865) in salzsaurer Lösung mit Zinkstaub und etwas Jodwasserstoffsäure auf dem Wasserbade (BAEYER, A. 354, 197). Krystalle (aus absol. Alkohol). F: 83—84°. Fast unlöslich in kaltem Alkohol, etwas leichter in heißem absolutem Alkohol und Ather.
- 5. 4.4' Diamino triphenylmethan, 4.4' Diamino tritan $C_{19}H_{12}N_2 =$ $H_2N \cdot \bigcirc CH(C_0H_5) - \bigcirc NH_2$. B. Beim Behandeln von Benzalchlorid (Bd. V, S. 297) mit Anilin in Gegenwart von etwas Zinkstaub (BÖTTINGER, B. 12, 975; vgl. Bö., B. 11, 276, 841; O. FISCHER, B. 13. 669; A. 206, 154). Beim Kochen von 1 Mol.-Gew. Benzaldehyd mit 2 Mol.-Gew. Anilin in Gegenwart von rauchender Salzsäure am Rückflußkühler (MAZZARA, G. 15, 51; PAUL, Z. Ang. 10, 20). Beim Erhitzen äquimolekularer Mengen von Benzaldehyd, Anilin und salzsaurem Anilin auf 110—120° (C. ULLMANN, J. pr. [2] 36, 249; vgl. BABYER, VILLIGER, B. 37, 2860). Durch Erwärmen von salzsaurem Anilin mit Benzaldehyd und Chlorzink und Kochen des Reaktionsproduktes (Dibenzalverbindung des 4.4'-Diamino-triphenylmethans) mit verd. Schwefelsaure (O. Fischer, B. 13, 667; A. 206, 147). Beim Erhitzen aquimolekularer Mengen von Benzalanilin (Bd. XII, S. 195) und salzsaurem Anilin im geschlossenen Rohr auf 110—120° (C. Ullmann, J. pr. [2] 36, 247). Beim Erhitzen von 4.4'-Diamino-3.3'-dimethyl-triphenylmethan (S. 284) mit überschüssigem Anilin und salzsaurem Anilin (Vongerichten, Weilinger, C. 1904 II, 226). Beim Erhitzen des Farbsalzes des 4.4'-Diamino-triphenylcarbinols (Doebners Violett; Syst. No. 1865) mit Zinkstaub und Salssäure (DOEBNEB, A. 217, 246). — Darstellung. Man reibt 10 Tle. Benzaldehyd mit 28 Tln. schwefelsaurem Anilin, 20 Tln. Chlorzink und etwas Wasser oder verd. Schwefelsaure zu einem Brei an, den man einige Stunden auf dem Wasserbade erwärmt; dann kocht man mit verdünnter Schwefelsäure aus, fällt die erkaltete und verdünnte Lösung durch Natronlauge, löst den Niederschlag in verdünnter heißer Schwefelsäure, verdünnt nach dem Erkalten mit Wasser und fällt mit Ammoniak (O. Fr., B. 15, 676).

Priamen oder kugelige Aggregate (aus Benzol) mit 1 Mol. Benzol, die bei 104—105° unter Aufschäumen (Bö., B. 12, 977), 105—106° (Dor.), 105,5—106° (C. U.), ca. 106° (O. Fl., B. 13, 668; A. 206, 149) sohmelzen, in Ligroin sehr schwer löslich sind (O. Fl.), bei 110° (O. Fl.; MA.); C. U.), 120° (Dor.) das Krystallbenzol verlieren und sodann bei 139° (Dor.; MA.) schmelzen. Krystallisiert aus wasserfreiem Ather in Aggregaten vom Schmelzpunkt 138,5—139° (C. U.), 139° (O. Fl.), 139—140° (Bö., zit. bei O. Fl., A. 206, 154 Anm.; Vo., Wei.). Kaum löslich in Wasser (Dor.), leicht löslich in Ather, Alkohol, Chloroform, Ligroin (O. Fl., A. 206, 150). — Durch Erhitzen des salzsauren Salzes auf 150° oder durch Behandeln der Base in alkoh. Lösung mit Chloranil entsteht Dorbners Violett (Syst. No. 1865) (O. Fl., A. 206, 151). Läßt sich durch Versetzen der schwefelsauren Lösung mit Natriumnitrit und Verkochen der Diazoniumsalziösung in 4.4'-Dioxy-triphenylmethan (Bd. VI, S. 1042), durch Behandeln der schwefelsauren Lösung mit salpetriger Säure und Alkohol in Triphenylmethan (Bd. V, S. 698) überführen (O. Fl., B. 13, 668; A. 206, 152, 153). Läßt sich durch

Diazotierung und Kuppelung mit Phenolen (MAZZARA, G. 14, 510; 15, 44), mit Naphthol-(2)disulfonsaure-(3.6) (BAYER & KEGEL, O. HOFFMANN, D. R. P. 43644; Frdl. 1, 528) oder mit Anilin (DEHUST, D. R. P. 66886; Frdl. 8, 318) in Azoverbindungen überführen. Bei mehrstündigem Erhitzen von 4.4'-Diamino-triphenylmethan mit überschüssigem Methyljodid in Methylalkohol auf 1100 entsteht 4.4'-Bis-dimethylamino-triphenylmethan-bis-jodmethylat (S. 276) (O. Fi., A. 206, 151). Bei der Einw. von kaltem Resignaureanhydrid entsteht 4.4'-Bis-acetamino-triphenylmethan (S. 277) (BAEYER, VI.; Vo., WEL); bei Einw. von überschüssigem Essigsaureanhydrid in Gegenwart von Natriumacetat in der Hitze wird 4.4 Bisdiacetylamino-triphenylmethan (S. 277) erhalten (Vo., Wel.). Beim Erhitzen mit überschüssigem o-Toluidin und salzsaurem o-Toluidin entsteht 4.4'-Diamino-3.3'-dimethyl-triphenylmethan (S. 284) (Vo., WEI.).

Sulfat. Nadeln (aus verd. Alkohol). Schwer löslich in absol. Alkohol (O. Fischer, B. 13, 668; A. 206, 150). — $C_{19}H_{18}N_2 + 2 HCl + PtCl_4$ (bei 100°). Sehr leicht löslich in Wasser und Alkohol, schwer in Ather (O. Fi.).

4.4'-Bis-methylamino-triphenylmethan $C_{21}H_{22}N_2 = C_0H_5 \cdot CH(C_0H_4 \cdot NH \cdot CH_2)_2$. Beim Kochen von 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan (S. 277) mit etwa der 5-fachen Menge $20^{\circ}/_{\circ}$ iger Salzsäure am Rückflußkühler (v. Braun, Röver, B. 37, 639). — F: 104° . Löslich in Alkohol und Ather. — Mit Oxydationsmitteln in saurer Lösung tritt Grünfärbung auf. Beim Zusatz von Natriumnitrit zur sauren Lösung der Base entsteht 4.4'-Bis-methylnitrosamino-triphenylmethan (S. 277). Mit 2 Mol.-Gew. Methyljodid entsteht 4.4'-Bis-dimethylamino-triphenylmethan. Gibt mit 1 Mol.-Gew. Bromeyan in ather. Lösung 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan. — Pikrat $C_{21}H_{22}N_2+C_4H_2O_7N_3$. Grüne Nadeln. F: 150°.

4-Amino-4'-dimethylamino-triphenylmethan $C_{11}H_{12}N_{2}=H_{2}N\cdot C_{6}H_{4}\cdot CH(C_{6}H_{4})\cdot C_{6}H_{4}\cdot N(CH_{3})_{2}$. B. Beim Erhitzen von 4-Amino-benzhydrol (Syst. No. 1859) mit Dimethylanilin in Gegenwart von wasserfreiem Zinkchlorid (KIPPENBERG, B. 30, 1140). — Würfel oder Prismen (aus Alkohol). F: 117—118°. Schwer löslich in Ligroin, sonst leicht löslich. — Färbt sich an der Luft bräunlich oder grünlich. — Pikrat C₂₁H₂₂N₂ + 2C₆H₃O₇N₃. Grüngelb. Amorph. gelb. Amorph.

-Methylamino-4'-dimethylamino-triphenylmethan $C_{22}H_{24}N_3 = CH_3 \cdot NH \cdot C_4H_4$ $CH(C_0H_5)\cdot C_0H_4\cdot N(CH_3)_3$. Über eine Verbindung $C_{22}H_{24}N_3$, der möglicherweise diese Konstitution zukommt, s. bei 4.4'-Bis-dimethylamino-triphenylcarbinol (Syst. No. 1865).

4.4'-Bis-dimethylamino-triphenylmethan, Tetramethyl-4.4'-diamino-triphenylmethan, Leukomalachitgrün $C_{22}H_{26}N_2=C_2H_3\cdot CH[C_6H_4\cdot N(CH_2)_2]_2$. B. Bei längerem Erwärmen eines Gemisches von 2 Mol. Gew. Dimethylanilin und 1 Mol. Gew. Benzalchlorid (Bd. V, S. 297) mit ZnCl, auf dem Wasserbade (O. FISCHER, A. 206, 136). Aus 2 Mol.-Gew. Dimethylanilin und 1 Mol.-Gew. Benzaldehyd beim Erwärmen mit ZnCl, bis auf 100° (O. Fl., B. 10, 1624; 11, 950; 12, 1685; A. 206, 122; MÜHLHÄUSER, D. 268, 296), beim Erhitzen mit Alkalidisulfat auf 120-150° (Wallace, Wüsten, B. 16, 150; Akt.-Ges. f. Anilinf., D. R. P. 23775; Frdl. 1, 43), beim Behandeln mit konz. Schwefelsäure (60—66° Bé) (FRIEDLÄNDER, Frdl. 1, 38, 44), beim Erhitzen mit Phosphoroxychlorid in 93°/oigem Alkohol (Nencei, M. 9, 1148) oder mit (nicht überschüssiger) Salzsäure auf 100° (vgl. Schultz, Farbstofftabellen, 5. Aufl. [Berlin 1920], S. 155) oder beim Erhitzen mit entwässerter Oxalsaure auf 110° (Anschürz, B. 17, 1078). Beim Erhitzen von Dimethylanilin mit Phenylglyoxylsäure (Bd. X, S. 654) und ZnCl, unter Zusatz von etwas Wasser (Peter, B. 18, 539; Homolka, B. 18, 988). Bei kurzem Erwärmen von Dimethylanilin mit 4-Dimethylamino-benzhydrol (Syst. No. 1859) und ZnCl₂ (Albrecht, B. 21, 3293). Bei der Einw. von 2 Mol.-Gew. Methyljodid auf 4.4'-Bis-methylamino-triphenylmethan (s. o.) (v. Braun, Röver, B. 37, 640). Beim Erhitzen von 4.4'-Bis-dimethylamino-triphenylmethan-bis-jodmethylat (S. 276) auf den Schmelzpunkt (O. Fl., B. 12, 1694; A. 206, 128, 151). Beim Erwärmen der wäßr. Lösung von Malachitgrun (Syst. No. 1865) mit Zinkstaub und Salzsäure (Doebner, A. 217, 255). Beim Erhitzen von 4'.4"-Bis-dimethylamino-triphenylmethan-carbonsäure-(2) (Syst. No. 1907) mit gepulvertem Barythydrat (O. Fr., A. 206, 102). — Darstellung im kleinen. Man erwärmt 40 g Benzaldehyd mit 100 g Dimethylanilin und 40 g 93% gigem Alkohol in einem Kolben von ca. 2 l Inhalt und läßt allmählich 65 g Phosphoroxychlorid hinzufließen; zuletzt erwärmt man ca. ½ Stde. am Rückflußkühler auf dem Wasserbade, löst die Masse in warmem Wasser, filtriert und übersättigt das Filtrat mit Natronlauge (NENCKI, M. 9, 1148). — Die Darstellung im großen geschieht durch Kondensation von Benzaldehyd mit Dimethylanilin in

Gegenwart von Salzsäure oder Schwefelsäure (s. o.).

Krystallisiert in drei Formen: in Nadeln vom Schmelzpunkt 102°, in Blättern vom Schmelzpunkt 93—94° (beide wahrscheinlich monoklin; vgl. Groth, Ch. Kr. 5, 285) oder in Schmelzpunkt (E. Franker. sphärolithischen Krystallen von noch niedrigerem unschartem Schmelspunkt (E. FISCHER, O. FI., O. LREMANN, B. 12, 798; O. LEHMANN, Z. Kr. 4, 609; 6, 64); die erste Form wird am leichtesten durch Umkrystallisieren aus Benzol, die zweite durch Umkrystallisieren aus Alkohol

im reinen Zustande erhalten; alle drei Formen entstehen bei langsamem Erstarren der geschmolzenen Substanz bei 70—80° (E. Fi., O. Fi., O. Leh., B. 12, 798). Destilliert in kleinen Mengen unzersetzt (O. Fi., B. 12, 1685; A. 206, 125). Leicht löslich in Ather, Benzol und Toluol, ziemlich leicht in Alkohol, ziemlich schwer in Ligroin, unlöslich in Wasser (O. Fr., A. 206, 123). Die unter Luftdruck stehenden Dämpfe des 4.4'-Bis-dimethylamino-triphenylmethans zeigen unter dem Einfluß von Teslaströmen blaue Luminescenz (KAUFFMANN, Ph. Ch. 26, 724; 28,703; B. 33, 1730, 1738). Beim Sättigen einer absolut-alkoholischen Suspension der Base mit trocknem Chlorwasserstoff werden 3 Mol. HCl gebunden (O. FISCHER, G. SCHMIDT, C. 1904 I, 460). — Lichtempfindlichkeit: Gros, Ph. Ch. 37, 161, 191. Färbt sich an der Luft infolge oberflächlicher Oxydation blaugrün (O. Fl., B. 10, 1625). Bei der Behandlung mit Braunstein in verdünnter, schwach schwefelsaurer Lösung in der Kälte (E. Fl., O. Fl., B. 12, 796), mit Bleidioxyd oder mit Chloranil in alkoh. Lösung entsteht Malachitgrün (O. Fr., A. 206, 130). Bei der Einw. von Sulfomonopersäurelösung in der Kälte bildet sich 4.4'-Bis-dimethylaminotriphenylmethan-N.N'-dioxyd (s. u.) (BAMBERGER, RUDOLF, B. 41, 3293, 3305). Beim Eintragen in rote Salpetersäure (D: 1,4) entsteht Hexanitro-4.4'-bis-dimethylamino-triphenylmethan (S. 280) (O. Fi., A. 206, 125, 128). Über die Geschwindigkeit der Abspaltung der Methylgruppen beim Kochen mit Jodwasserstoffsäure vgl. Goldschmiedt, M. 27, 860, 870. Bei mehrstündigem Erhitzen mit überschüssigem Methyljodid in methylalkoholischer Lösung auf ca. 100° wird 4.4'-Bis-dimethylamino-triphenylmethan-bis-jodmethylat erhalten (O. Fr., A. 206, 127; Dos., A. 217, 256). Reagiert mit 2 Mol.-Gew. Bromeyan unter Bildung von 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan (S. 277) (v. Braun, Röver, B. 37, 637).

C₂₃H₂₆N₂ + 2 HCl. Nadeln. Verliert bei 100° 1 Mol. HCl; äußerst löslich in Wasser und stark hygroskopisch (O. Fischer, A. 206, 125, 126). — C₂₃H₂₆N₂ + 3 HCl. Weiße Warzen (O. Fi., G. Schmidt, O. 1904 I, 460). — Pikrat C₂₃H₂₆N₃ + 2C₆H₃O₇N₃. Gelblichgrüne Nadelchen (aus Alkohol). Fast unlöslich in Wasser, sohwer löslich in kaltem Alkohol

(O. FI., A. 206, 127). — $C_{23}H_{34}N_3 + 2$ HCl + PtCl₄. Weißer Niederschlag. Färbt sich an der Luft etwas grün (O. FI., A. 206, 126; Doebner, A. 217, 256).

4.4' - Bis - dimethylamino - triphenylmethan - N.N' - dioxyd $C_{22}H_{26}O_{2}N_{2} = C_{6}H_{6}$ $CH[C_6H_4\cdot N(:O)(CH_3)_3]_3$. B. Bei der Einw. von Sulfomonopersäurelösung auf 4.4'-Bisdimethylamino-triphenylmethan in der Kälte (Bamberger, Rudolf, B. 41, 3305). — Nadeln (aus Chloroform) mit 2 oder 4 Mol. H₂O. Schmilzt wasserhaltig bei 131,5—132,5° (korr.). Wird über H₂SO₄ bei 12 mm Druck wasserfrei und schmilzt dann bei 188—189° (korr.; Bad 175°). Ist wasserfrei sehr hygroskopisch. Das Hydrat wird im Licht bläulichgrün; es ist sehr leicht löslich in Wasser und Alkohol, sehr wenig in Äther und Ligroin, schwer in heißem, sehr wenig in kaltem Chloroform. Reagiert alkalisch. — Entwickelt beim Erhitzen Formaldehyd. Läßt sich durch Reduktionsmittel wie Zink und Salzsäure leicht in 4.4'-Bis-dimethylamino-triphenylmethan überführen. Gibt mit Natriumnitrit in wäßrig-salzsaurer Lösung in der Kälte 3.3'-Dinitro-4.4'-bis-dimethylamino-triphenylmethan (S. 280). Durch Eintragen in eine eisgekühlte Mischung von Essigsäureanhydrid und konz. Schwefelsäure und folgendes Erwärmen auf 50° erhält man 3.3'-Dioxy-4.4'-bis-dimethylamino-triphenylmethan (Syst. No. 1869). — Pikrat $C_{23}H_{26}O_2N_2 + 2C_0H_3O_7N_3$. Gelbe Flocken. Sehr wenig löslich in Ather, Ligroin und kaltem Wasser, schwer in kaltem Alkohol und warmem Wasser, sehr leicht in Aceton. Färbt sich mit warmem Alkohol unter Verharzung grün. — $C_{23}H_{26}O_{2}N_{2}+H_{4}Fe(CN)_{6}$. Weiße Flocken. Schwer löslich in kaltem, ziemlich leicht in heißem Wasser. — $C_{23}H_{26}O_{2}N_{2}+2$ HCl + PtCl $_{4}$. Orangerote Flocken.

4.4'-Bis - dimethylamino - triphenylmethan - bis - jodmethylat $C_{25}H_{22}N_2I_2=C_6H_5$. CH[C₆H₄·N(CH₈)₈I]₂. B. Durch mehrstündiges Erhitzen von 4.4'-Diamino-triphenylmethan (O. Fischier, A. 206, 151) oder 4.4'-Bis-dimethylamino-triphenylmethan (O. Fi., A. 206, 127; Doebner, A. 217, 256) mit überschüssigem Methyljodid in Methylalkohol auf ca. 100°.—Tafeln oder Nadeln (aus Wasser). Schmilzt bei 218—222° (O. Fi.), bei 231° (Doe.) unter Zerfall in Methyljodid und 4.4'-Bis-dimethylamino-triphenylmethan (O. Fi.; Doe.). Ziemlich leicht löslich in Wasser (O. Fr.).

4.4'-Bis-diäthylamino-triphenylmethan, Tetraäthyl-4.4'-diamino-triphenylmethan $C_{27}H_{24}N_2=C_0H_3\cdot CH[C_0H_4\cdot N(C_2H_3)_2]_3$. B. Aus Benzaldehyd und Diāthylanilin in Gegenwart von ZnCl₂ (DOEBNER, A. 217, 265), Alkalidisulfat (Akt.-Ges. f. Anilinf., D. R. P. 23775; Frdl. 1, 43), konz. Schwefelsäure (FRIEDLÄNDER, Frdl. 1, 44) oder entwässerter Oxalsaure (O. Fischer, C. Schmidt, B. 17, 1893 Anm.). Beim Kochen von Brillantgrün (Syst. No. 1865) mit Zinkstaub und Salzsäure in wäßr. Lösung (D., A. 217, 263). — Farblose Nadeln (aus wäßr. Alkohol). F: 62° ; sehr schwer löslich selbst in heißem Wasser, leicht in Alkohol, Ather und Benzol (D.). — $C_{27}H_{24}N_2 + 2 HCl + PtCl_4 + 3 H_2O$. Farblose Krystalle (D.).

4.4'-Dianilino-triphenylmethan $C_{11}H_{12}N_{2}=C_{4}H_{5}\cdot CH(C_{6}H_{4}\cdot NH\cdot C_{4}H_{5})_{1}$. B. Beim Erhitzen eines Gemenges von Diphenylamin (Bd. XII, S. 174) und Benzalchlorid oder Benzaldehyd in Gegenwart von ZnCl₂ (Meldola, Soc. 41, 192). — Nicht krystallinisches, körniges Pulver. Schmilzt nach vorherigem Erweichen gegen 170°. Leicht löslich in Äther, Chloroform,

Schwefelkohlenstoff und Benzol, sehr wenig in kochendem Alkohol, Eisessig oder Aceton. — Färbt sich beim Liegen an der Luft allmählich grün und geht bei Behandlung mit Oxydationsmitteln in Diphenylamingrün (Syst. No. 1865) über.

- 4.4'-Bis-diphenylamino-triphenylmethan, Tetraphenyl-4.4'-diamino-triphenylmethan $C_{43}H_{24}N_2=C_6H_5\cdot CH[C_6H_4\cdot N(C_6H_5)_3]_3$. B. Bei der Einw. von Benzaldehyd auf Triphenylamin (Bd. XII, S. 181) in Gegenwart von 50% iger Schwefelsäure (Habussermann, B. 39, 2764). Fast weißes Pulver. Unschmelzbar. In allen Lösungsmitteln unlöslich. Außerordentlich schwer verbrennlich. Wird in Berührung mit konz. Salzsäure oder Schwefelsäure allmählich schwarz.
- 4.4'-Bis-äthylbengylamino-triphenylmethan $C_{37}H_{38}N_2 = C_6H_5 \cdot CH[C_6H_4 \cdot N(C_2H_5) \cdot CH_3 \cdot C_6H_5]_2$. B. Bei mehrstündigem Erhitzen von Äthylbenzylanilin (Bd. XII, S. 1026) mit Benzaldehyd in Gegenwart von wasserentziehenden Mitteln wie ZnCl₂, konz. Schwefelsäure oder entwässerter Öxalsäure auf 100—110° (Friedländer, B. 22, 588; vgl. Mühlhäuser, D. 263, 251). Nädelchen (aus Aceton). F: 115—116°. Unlöslich in Wasser, schwer löslich in Alkohol und Ligroin, leicht in Aceton, Benzol und Eisessig (F.). Beim Erwärmen mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein malachitgrünähnlicher, aber gelbstichigerer Farbstoff (F.). Sulfurierung mit rauchender Schwefelsäure liefert ein Gemisch von Di- und Trisulfonsäuren (M.).
- 4.4'-Bis-acetamino-triphenylmethan $C_{33}H_{32}O_3N_2=C_0H_5\cdot CH(C_0H_4\cdot NH\cdot CO\cdot CH_2)_2$. B. Bei der Einw. von kaltem Essigsäureanhydrid auf 4.4'-Diamino-triphenylmethan (BAEYEB, VILIGER, B. 37, 2860; VONGERICHTEN, WEILINGER, C. 1904 II, 227). Nadeln (aus Essigsäureanhydrid), die bei 233—234° schmelzen (B., VI.), Krystalle (aus Benzol) mit 1 Mol. Benzol, die bei 160° benzolfrei werden und dann bei 234—235° schmelzen (Vo., W.). Liefert bei der Behandlung mit Braunstein in essigsaurer-schwefelsaurer Lösung das Farbsalz des 4.4'-Bis-acetamino-triphenylcarbinols (Syst. No. 1865) (B., VI.).
- 4.4'-Bis diacetylamino triphenylmethan $C_{27}H_{26}O_4N_2 = C_6H_5 \cdot CH_{[C_6H_4 \cdot N(CO\cdot CH_3)_2]_2}$. B. Beim Kochen von 4.4'-Diamino-triphenylmethan mit der 5-fachen Menge Essigsäureanhydrid in Gegenwart von etwas geschmolzenem Natriumacetat (Vongerichten, Weilinger, C. 1904 II, 227). F: 172—173°. Wird von kalter alkoholischer Natriummethylatlösung zu 4.4'-Bis-acetamino-triphenylmethan verseift.
- 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan $C_{22}H_{20}N_4 = C_8H_5 \cdot CH[C_8H_4 \cdot N(CH_2) \cdot CN]_8$. Bei der Einw. von Bromcyan (Bd. III, S. 39) in Äther auf 4.4'-Bis-methylamino-triphenylmethan (S. 275) (v. Braun, Röver, B. 37, 640). Bei allmählichem Eintragen von etwas mehr als 2 Mol.-Gew. Bromcyan in bis zum beginnenden Schmelzen erwärmtes 4.4'-Bis-dimethylamino-triphenylmethan (S. 275) (v. B., R., B. 37, 637). Bei kurzem Erwärmen von 4.4'-Bis-[methyl-cyan-amino]-triphenylcarbinol (Syst. No. 1865) mit Zinkstaub in Eisessig (v. B., R., B. 37, 643). Weißes Krystallpulver. F: 163°. Unlöslich in Wasser und Ligroin, schwer löslich in kaltem Alkohol, leichter in heißem Alkohol und Eisessig, ziemlich leicht in Benzol und Chloroform. Ist in wäßr. Säuren unlöslich. Wird beim Erwärmen mit Kaliumpermanganat in Acetonlösung auf dem Wasserbade zu 4.4'-Bis-[methyl-cyan-amino]-triphenylcarbinol oxydiert. Kochende 20°/oige Salzsäure verseift zu 4.4'-Bis-[aminothioformyl-methylamino]-triphenylmethan (s. u.).
- 4.4'-Bis-[aminothioformyl-methylamino]-triphenylmethan $C_{22}H_{24}N_4S_2 = C_6H_5$ · CH[C_6H_4 ·N(CH₂)·CS·NH₂]₃. B. Beim Sättigen einer Lösung von 4.4'-Bis-[methyl-oyan-amino]-triphenylmethan (s. o.) in einem Gemisch von Chloroform und Alkohol mit Ammoniak und Schwefelwasserstoff (v. Braun, Röver, B. 37, 639). F: 200°. Sehr wenig löslich in organischen Lösungsmitteln.
- 4.4'-Bis-[anilinothioformyl-methylamino]-triphenylmethan $C_{32}H_{23}N_4S_2 = C_4H_4$. CH[C_4H_4 ·N(CH₂)·CS·NH·C₆H₅]₈. B. Bei schwachem Erwärmen von 4.4'-Bis-[methylamino]-triphenylmethan (S. 275) mit Phenylsenföl (v. Braun, Röver, B. 37, 641). Krystalle (aus Chloroform + Alkohol). F: 124°.
- 4.4'-Bis-methylnitrosamino-triphenylmethan $C_{11}H_{20}O_{2}N_{4}=C_{6}H_{4}\cdot CH[C_{6}H_{4}\cdot N(NO)\cdot CH_{3]_{2}}$. B. Beim Zusatz von Natriumnitrit zu einer sauren Lösung von 4.4'-Bis-methylamino-triphenylmethan (S. 275) (v. Braun, Röver, B. 37, 641). Gelbe Krystalle (aus Alkohol). F: ca. 149° (Zers.).
- 2"-Chlor-4.4'-bis-dimethylamino-triphenylmethan C₂₂H₄₂N₂Cl = C₄H₄Cl·CH[C₄H₄·N(CH₃)₂]₂. B. Bei längerem Kochen von 2-Chlor-benzaldehyd (Bd. VII, S. 233) mit Dimethylanilin in Gegenwart von alkoh. Chlorzink (GEIGY & Co., D. R. P. 94126; Frdl. 4, 189) oder konz. Salzsäure in Alkohol (NOELTING, GEBLINGER, B. 39, 2047) am Rückflußkühler. Nädelchen (aus Toluol). F: 145—146°; ziemlich schwer löslich in Alkohol und Äther, leicht löslich in den meisten übrigen Solvenzien (N., GER.). Durch Oxydation mit Bleidioxyd

in saurer Lösung wird der Farbstoff Setoglaucin (Syst. No. 1865) erhalten (Gei. & Co.; N., Gee.; vgl. N., Philipp, B. 41, 3911; vgl. auch Schultz, Tab. No. 496). Überführung von 2"-Chlor-4.4'-bis-dimethylamino-triphenylmethan in eine Sulfonsäure: N., Gee.

3"-Chlor-4.4'-bis-dimethylamino-triphenylmethan $C_{23}H_{25}N_3Cl = C_6H_4Cl \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Bei 12-stdg. Kochen von 3-Chlor-benzaldehyd (Bd. VII, S. 234) und Dimethylanilin mit konz. Salzsäure und wenig Alkohol (Noelting, Gerlinger, B. 39, 2048). Durch Diazotieren von 3-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 312) und Behandeln der Diazoniumsalzlösung mit Kupfer und Kupferchlorür (Höchster Farbw., D. R. P. 55621; Frdl. 2, 44; 3, 68). — Nädelchen (aus Alkohol). F: 112°; leicht löslich in Äther, Benzol, Ligroin, Aceton und Chloroform, weniger in Alkohol (N., G.). — Der durch Oxydation der Base erhaltene Farbstoff erzeugt auf der Faser eine dem Malachitgrün ähnliche Nuance (N., G.).

4"-Chlor-4.4'-bis-dimethylamino-triphenylmethan C₂₂H₂₄N₃Cl = C₆H₄Cl·CH[C₆H₄·N(CH₃)₃]₂. B. Bei 5-stdg. Kochen von 4-Chlor-benzaldehyd (Bd. VII, S. 235) und Dimethylanilin in konz. Salzsäure mit einer Lösung von Chlorzink in absol. Alkohol (Noelting, Gerlinger, B. 39, 2049; vgl. Kaeswurm, B. 19, 743). — Krystalle (aus Alkohol). F: 98—99° (N., G.; vgl. dagegen K.). Leicht löslich in Benzol (K.; N., G.), Chloroform und Aceton (N., G.), weniger in Alkohol und Äther (K.; N., G.), schwer in Ligroin, unlöslich in Wasser (K.). — Gibt bei der Oxydation mit frisch gefälltem Mangandioxydhydrat und verd. Schwefelsäure bei 40—60° das Farbsalz des 4"-Chlor-4.4'-bis-dimethylamino-triphenyl-carbinols (Syst. No. 1865) (K.; vgl. N., G.).

4"-Chlor-4.4'-bis-diäthylamino-triphenylmethan $C_{a7}H_{33}N_3Cl = C_6H_4Cl\cdot CH[C_6H_4\cdot N(C_2H_5)_2]_2$. B. Beim Erhitzen von 4-Chlor-benzaldehyd (Bd. VII, S. 235) mit Diāthylanilin und wasserfreier Oxalsäure im Ölbade auf 110—115° (Karswurm, B. 19, 744). — Nadeln (aus Alkohol). Sehr leicht löslich in Benzol, weniger in Äther und Alkohol, schwer in Ligroin, unlöslich in Wasser. F: 110°. — Gibt bei der Oxydation mit frisch gefälltem Mangandioxydhydrat und verd. Schwefelsäure bei 40—60° das Farbsalz des 4"-Chlor-4.4'-bis-[diāthylamino]-triphenylcarbinols (Syst. No. 1865).

2'.5"-Dichlor-4.4'-diamino-triphenylmethan C₁₉H₁₆N₂Cl₂=C₆H₂Cl₂·CH(C₆H₄·NH₂)₂.

В. Man erwärmt 5 g 2.5-Dichlor-benzaldehyd (Bd. VII, S. 237) mit 10 ccm Anilin und 12 ccm konz. Schwefelsäure zuerst auf 60° bis 70°, dann auf 100° (GNEHM, SCHÜLE, A. 299, 351).

— Warzen (aus Ligroin). F: 107°. Schwer löslich in Ligroin. — Wird von konz. Salzsäure zersetzt. — Hydrochlorid. Nadeln (aus konz. wäßr. Lösung). — Sulfat. Schwer löslich in Wasser und Alkohol.

2".5"-Dichlor-4.4'-bis-dimethylamino-triphenylmethan $C_{33}H_{14}N_3Cl_3=C_4H_2Cl_3\cdot CH[C_8H_4\cdot N(CH_3)_2]_2$. B. Bei 10-stdg. Erhitzen von 5 g 2.5-Dichlor-benzaldehyd mit 10 g Dimethylanilin, 10 g ZnCl_3 und 10 g Alkohol auf dem Wasserbade (Gneim, Bānzīger, A. 296, 71). — Blättchen (aus Benzol). F: 179° (G., B.). — Färbt sich beim Liegen an der Luft blaugrün (G., B.). Bei der Einw. der berechneten Menge Bleidioxyd in salzsaurer-essigsaurer Lösung bildet sich der Farbstoff Neusolidgrün (Syst. No. 1865) (G., B.; vgl. Schülz, Tab. No. 497). Einw. von Schwefelsäuremonohydrat: G., Schülz, A. 299, 362.

2".5"- Dichlor - 4.4'- bis - acetamino - triphenylmethan $C_{23}H_{30}O_{2}N_{3}Cl_{2} = C_{6}H_{3}Cl_{3}$ · $CH(C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3})_{2}$. B. Bei gelindem Erwärmen von 10 g 2".5"-Dichlor-4.4'-diaminotriphenylmethan mit 20 g Essigsäureanhydrid (GNEHM, SCHÜLE, A. 299, 353). — Nadeln (aus Essigester). F: 212°. Leicht löslich in Alkohol und warmem Eisessig.

2".4".5"-Trichlor-4.4'-bis-dimethylamino-triphenylmethan $C_{23}H_{23}N_3Cl_3=C_6H_2Cl_3$: $CH[C_6H_4\cdot N(CH_3)_2]_3$. B. Beim Erhitzen von 1 Tl. 2.4.5-Trichlor-benzaldehyd (Bd. VII, S. 238) mit 2—3 Tln. Dimethylanilin in Gegenwart von ZnCl₃ auf dem Wasserbade (O. Fischer, D. R. P. 25827; Frdl. 1, 42). — Nadeln (aus Alkohol oder Benzol). F: 128—129°. Schwer löslich in Wasser und kaltem Alkohol. — Bei der Oxydation mit Bleidioxyd in saurer Lösung entsteht das Farbsalz des 2".4".5"-Trichlor-4.4'-bis-[dimethylamino]-triphenylcarbinols (Syst. No. 1865).

2"-Nitro-4.4'-diamino-triphenylmethan $C_{19}H_{17}O_{3}N_{2} = O_{2}N \cdot C_{6}H_{4} \cdot CH(C_{6}H_{4} \cdot NH_{2})_{3}$. B. Beim Erhitzen von 2-Nitro-benzaldehyd (Bd. VII, S. 243) mit schwefelsaurem Anilin in Gegenwart von ZnCl₂ auf dem Wasserbade (Renouf, B. 16, 1304). — Gelbrote Krystallmasse (aus Benzol-Ligroin). — Bei der Reduktion mit Zinkstaub in salzsaurer Lösung bildet sich das entsprechende Triamiho-triphenylmethan (S. 311).

2"- Nitro - 4.4' - bis - dimethylamino - triphenylmethan C₂₃H₂₅O₂N₃ = O₂N·C₆H₄·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Erwärmen von 1 Tl. 2-Nitro-benzaldehyd (Bd. VII, 8. 243) mit 3—4 Tln. Dimethylanilin unter allmählichem Zusatz von 1 Tl. ZnCl₂ auf dem Wasserbade (O. Fischer, C. Schmidt, B. 17, 1889). — Goldgelbe Prismen (aus Alkohol + Benzol). Monoklin-prismatisch (Haushofer, B. 17, 1890; Z. Kr. 9, 531; vgl. Groth, Ch. Kr. 5, 297). F: 159—160°; sehr schwer löslich in Alkohol (O. Fi., C. Sch.), wenig löslich in Wasser und

niedrig siedendem Ligroin, leicht in Benzol (O. Fl., B. 15, 682). — Bei der Behandlung mit der berechneten Menge Bleidioxyd in schwefelsaurer Lösung entsteht das Farbsalz des 2"-Nitro-4.4'-bis-dimethylamino-triphenylcarbinols (Syst. No. 1865) (O. Fl., C. Sch.). Die Reduktion mit Zinkstaub und Salzsäure führt zu 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 311) (O. Fl., C. Sch.).

2"-Nitro-4.4'-bis-diāthylamino-triphenylmethan $C_{rr}H_{23}O_2N_3=O_2N\cdot C_6H_4\cdot CH[C_6H_4\cdot N(C_2H_5)_3]_2$. B. Bei mehrstündigem Erhitzen von 1 Tl. 2-Nitro-benzaldehyd mit 3—4 Tln. Diāthylanilin und 1½ Tln. entwässerter Oxalsäure auf dem Wasserbade (O. Fischer, C. Schmidt, B. 17, 1893). — Gelblichrote Krystalle (aus Benzol + Alkohol). Triklin pinakoidal (Haushofer, B. 17, 1894; Z. Kr. 9, 532; vgl. Groth, Ch. Kr. 5, 297). F: 109—110° (O. Fi., C. Sch.). — Bei der Reduktion mit Zinkstaub und Salzsäure erhält man 2-Amino-4'.4"-bisdiäthylamino-triphenylmethan (S. 311) (O. Fi., C. Sch.).

3"-Nitro-4.4'-diamino-triphenylmethan $C_{19}H_{17}O_2N_3 = O_2N \cdot C_6H_4 \cdot CH(C_6H_4 \cdot NH_2)_2$. B. Beim Erhitzen von 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit salzsaurem Anilin und Chlorzink auf 100° (O. Fischer, Ziegler, B. 18, 671). — Hellgelbe Krystalldrusen (aus wasserfreiem Äther + Ligroin) vom Schmelzpunkt 136°. Citronengelbe Krystalle (aus Benzol) mit 1 Mol. Benzol. Schmilzt benzolhaltig bei 81°; löst sich sehr leicht in Äther und Alkohol, schwerer in Benzol, sehr schwer in Ligroin, fast unlöslich in Wasser. Verliert bei $100-120^{\circ}$ alles Benzol. — Gibt beim Behandeln mit Zinkstaub und konz. Salzsäure das entsprechende Triamino-triphenylmethan (S. 312). Beim Erhitzen mit überschüssigem Methyljodid und Methylalkohol auf $110-115^{\circ}$ entsteht 3"-Nitro-4.4'-bis-dimethylamino-triphenylmethan-bis-jodmethylat (s. u.).

3"- Nitro - 4.4' - bis - dimethylamino - triphenylmethan $C_{23}H_{25}O_{2}N_{3} = O_{2}N \cdot C_{6}H_{4} \cdot CH[C_{6}H_{4} \cdot N(CH_{3})_{3}]_{2}$. B. Beim Erwärmen von 3-Nitro-benzaldehyd mit Dimethylanilin und Chlorzink auf dem Wasserbade (E. Fischer, O. Fischer, B. 12, 802). Bei längerem Erhitzen von 3"-Nitro-4.4'-bis-dimethylamino-triphenylmethan-bis-jodmethylat auf 200° (O. Fi., Ziegler, B. 13, 672). — Gelbe Prismen (aus Alkohol), goldgelbe Nadeln (aus Benzol). F: 152°; ziemlich schwer löslich in Alkohol, Äther und Ligroin, leicht in Benzol (E. Fi., O. Fi.). Bildet mit Säuren farblose Salze (E. Fi., O. Fi.). — Gibt bei der Oxydation mit Braunstein und verdünnter Schwefelsäure oder mit Chloranil ein Farbsalz des 3"-Nitro-4.4'-bis-dimethylamino-triphenylcarbinols (Syst. No. 1865) (E. Fi., O. Fi.; vgl. O. Fi., Z.). Durch Reduktion mit Zink und Salzsäure entsteht 3-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 312) (E. Fi., O. Fi.).

3"-Nitro-4.4'-bis-dimethylamino-triphenylmethan-bis-jodmethylat $C_{25}H_{31}O_{2}N_{3}I_{3}=O_{3}N\cdot C_{6}H_{4}\cdot CH[C_{6}H_{4}\cdot N(CH_{3})_{3}I]_{2}$. B. Beim Erhitzen von 3"-Nitro-4.4'-diamino-triphenylmethan oder von 3"-Nitro-4.4'-bis-dimethylamino-triphenylmethan mit überschüssigem Methyljodid und Methylalkohol auf 110—115° (O. FISCHER, ZIEGLER, B. 13, 672). — Nadeln (aus Alkohol). Schmilzt unter Zersetzung und Grünfärbung bei 225°. — Verliert bei längerem Erhitzen auf 200° alles Methyljodid und geht in 3"-Nitro-4.4'-bis-dimethylamino-triphenylmethan über.

3"-Nitro-4.4'-bis-diāthylamino-triphenylmethan $C_{27}H_{23}O_2N_3=O_2N\cdot C_6H_4\cdot CH[C_8H_4\cdot N(C_2H_5)_2]_2$. B. Beim Zusammenschmelzen von 3-Nitro-benzaldehyd, Diāthylanilin und entwässerter Oxalsäure auf dem Wasserbade (E. Erdmann, H. Erdmann, A. 294, 379). — Gelbe Nadeln mit gelbgrüner Fluorescenz (aus Alkohol). F: 95—96°.

4"-Nitro-4.4'-diamino-triphenylmethan $C_{19}H_{17}O_{2}N_{3} = O_{2}N \cdot C_{6}H_{4} \cdot CH(C_{6}H_{4} \cdot NH_{2})_{2}$. B. Beim Erwärmen von 19 Tln. Anilin mit 20 Tln. 4-Nitro-benzalchlorid (Bd. V, S. 332), gelöst in 30—40 Tln. Ligroin, Benzol oder Alkohol auf dem Wasserbade (Höchster Farbw., D. R. P. 23784; Frdl. 1, 62). Beim Erwärmen von 15 Tln. 4-Nitro-benzaldehyd (Bd. VII, S. 256), 30 Tln. schwefelsaurem Anilin und 20 bis 30 Tln. ZnCl₂ auf dem Wasserbade (O. Fischer, B. 15, 677; D. R. P. 16766; Frdl. 1, 54).—Citronengelbe Flocken, die in Benzol, Aceton und Chloroform leicht löslich sind, schwerer in Alkohol und Äther, sehr schwer in Ligroin, fast unlöslich in Wasser (O. Fi., B. 15, 677). Gelbrote Krystalle (aus Toluol) mit 1 Mol. Toluol, die bei längerem Liegen an der Luft etwas Toluol verlieren, das beim Schmelzen vollständig entweicht (O. Fi., B. 15, 677). Schmilzt beim Kochen mit Wasser zu einem braungelben Harz (O. Fi., B. 15, 677). —Wird von Zink und Salzsäure zu 4.4'.4"-Triamino-triphenylmethan (Paraleukanilin, S. 313) reduziert (O. Fi., Greiff, B. 13, 670; O. Fi., B. 15, 678; vgl. Rekour, B. 16, 1301). Beim Erhitzen mit 2 Tln. festem Eisenchlorür auf 160—180° entsteht Parafuchsin (Syst. No. 1865) (O. Fi., B. 15, 678; D. R. P. 16750; Frdl. 1, 57). Die Überführung in 4.4'.4"-Triamino-triphenylearbinol (Pararosanilin) bezw. dessen Farbsalze gelingt auch durch elektrolytische Reduktion in konz. Schwerelsäure (Ges. f. chem. Ind., D. R. P. 84607; Frdl. 4, 182), sowie durch Kochen von 4"-Nitro-4.4'-diamino-triphenylmethan mit Natronlauge und verd. Alkohol und vorsichtige Reduktion des Reaktionsproduktes in alkalischer oder in saurer Lösung (Prud'romes, Bl. [3] 17, 654). — C₁₉ H₁₇ O₂ N₂ + 2 H Cl.

Rosettenförmige Krystallaggregate oder Nadeln (aus wäßr. Alkohol). Leicht löslich in Wasser, wenig in absol. Alkohol (O. Fr., B. 15, 678). — Sulfat. Nadeln (aus alkoh. Lösung). Sehr leicht löslich in Wasser und Alkohol, schwer in Äther (O. Fr., B. 15, 678). — Chloroplatinat. Undeutliche Krystalle. Löst sich leicht in Wasser, schwer in konz. Salzsäure (O. Fr., B. 15, 678).

4"- Nitro - 4.4' - bis - dimethylamino - triphenylmethan C₂₃H₂₅O₂N₂ = O₂N·C₄H₄·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Erwärmen von 4-Nitro-benzaldehyd (Bd. VII, S. 256), Dimethylanilin und ZnCl₅ auf dem Wasserbade (O. Fischer, B. 14, 2526). Bei kurzem Erwärmen von 4'-Nitro-4-dimethylamino-benzhydrol (Syst. No. 1859) mit Dimethylanilin und ZnCl₂ (Alberght, B. 21, 3295). — Goldgelbe Blätter (aus Toluol + Alkohol). F: 176—177°; unlösich in Wasser, schwer löslich in Alkohol und Ligroin; leicht löslich in Säuren unter Bildung farbloser Salze (O. Fi.). — Beim Erwärmen mit Braunstein und verd. Schwefelsäure auf 40° bis 50° entsteht das Farbsalz des 4"-Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 314) (O. Fi.). Bei der elektrolytischen Reduktion in konz. Schwefelsäure oder 50°/ojeer Essigsäure entsteht das Farbsalz des 4-Amino-4'.4"-bis-dimethylamino-triphenylcarbinols (Syst. No. 1865) (Ges. f. chem. Ind., D. R. P. 84607; Frdl. 4, 183). Bei der Einw. von Natronlauge und verd. Alkohol entstehen eine gelbe krystallinische Verbindung vom Schmelzpunkt 142—143° und eine rote krystallinische Verbindung vom Schmelzpunkt 142—143° und eine rote krystallinische Verbindung vom Schmelzpunkt 142—143° und eine rote krystallinische Verbindung vom Schmelzpunkt 100—105°, welche beide bei vorsichtiger Reduktion in alkalischer oder saurer Lösung 4-Amino-4'.4"-bis-dimethylamino-triphenylcarbinol (Syst. No. 1865) bezw. dessen Farbsalze liefern (Prud'homme, Bl. [3] 17, 657). Beim Erhitzen mit überschüssigem Methyljodid und Methylalkohol auf 100° bildet sich 4"-Nitro-4.4'-bis-[dimethylamino]-triphenylmethan-bis-jodmethyla (s. u.) (O. Fi.).

4"-Nitro-4.4'-bis-dimethylamino-triphenylmethan-bis-jodmethylat $C_{18}H_{21}O_2N_3I_2=O_2N\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_3)_2I]_2$. B. Beim Erhitzen von 4"-Nitro-4.4'-bis-[dimethylamino]-triphenylmethan mit überschüssigem Methyljodid und Methylalkohol auf 100° (O. FISCHER, B. 14, 2526). — Gelbliche Nadeln (aus Wasser) mit H_2O . Verliert sohon bei 100° etwas Methyljodid und schmilzt unter Zersetzung und Bildung eines grünen Harzes gegen 220°. Schwer löslich in absol. Alkohol.

4"-Nitro-4.4'-bis-diäthylamino-triphenylmethan $C_{27}H_{23}O_{2}N_{3}=O_{2}N\cdot C_{8}H_{4}\cdot CH[C_{8}H_{4}\cdot N(C_{8}H_{5})_{8}]_{8}$. Beim Erwärmen von 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit Diäthylanilin in Gegenwart von entwässerter Oxalsäure im Wasserbade (Kaeswuem, B. 19, 746). — Rotbraune Tafeln (aus verdünnter alkoholischer Lösung). Monoklin (Haushoffer, B. 19, 746). F: 113° (K.). — Ist an der Luft sehr beständig (K.). Bei der Oxydation mit Chloranil in alkoh. Lösung entsteht ein gelbgrüner Farbstoff (K.). Beim Erwärmen mit Zinkstaub und verd. Salzsäure bei 60—70° entsteht 4-Amino-4'.4"-bis-diäthylamino-triphenylmethan (S. 316) (K.).

4"-Chlor-3"-nitro-4.4'-bis-dimethylamino-triphenylmethan $C_{23}H_{24}O_2N_3Cl=O_2N^{-1}C_6H_3Cl^{-1}CH_3[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 5 Tln. 4-Chlor-3-nitro-benzaldehyd (Bd. VII, S. 262) mit 20 Tln. Dimethylanilin und 5 Tln. Chlorzink auf 100° (Ε. ΕΕΦΜΑΝΝ, H. ΕΡΟΜΑΝΝ, D. R. P. 64736; Frdl. 3, 156; A. 294, 382). — Goldgelbe Nadeln (aus Alkohol). F: 133—134°. Unlöslich in Wasser, schwer löslich in kaltem Alkohol. — Liefert mit Bleidioxyd in schwefelsaurer Lösung einen grünen Farbstoff. Bei der Reduktion mit Zinnehlorür und Salzsäure entsteht 4-Chlor-3-amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 312). Beim Erhitzen mit 30°/aiger Kaliumsulfitlösung und Alkohol im Einschmelzrohr auf 140° bildet sich 3-Nitro-4'.4"-bis-dimethylamino-triphenylmethan-sulfonsäure-(4) (Syst. No. 1923).

2.3'-Dichlor-4"-nitro-4.4'-bis-dimethylamino-triphenylmethan $C_{22}H_{23}O_2N_1Cl_2=O_2N\cdot C_6H_4\cdot CH[C_6H_2Cl\cdot N(CH_3)_3]_2$. B. Beim Erhitzen von 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit N.N-Dimethyl-3-chlor-anilin (Bd. XII, S. 603) in Gegenwart von ZnCl₂ und Sals-azure auf 110° (Koox, B. 20, 1564). — Citronengelbe Blättchen (aus Bensol). F: 208°. — Gibt bei der Reduktion mit Zinkstaub und Essigszure 2.2'-Dichlor-4"-amino-4.4'-bis-dimethyl-amino-triphenylmethan (S. 317). — Pikrat $C_{22}H_{22}O_2N_3Cl_3 + 2C_6H_3O_7N_3$. Dunkelgelb. F: 189°.

3.3'- Dinitro - 4.4'- bis - dimethylamino - triphenylmethan $C_{23}H_{24}O_4N_4=C_6H_5$ $CH[C_6H_8(NO_2)\cdot N(CH_2)_3]_2$. B. Bei der Einw. einer wäßr. Natriumnitritösung auf eine Lösung von 4.4'-Bis-dimethylamino-triphenylmethan-N.N'-dioxyd (S. 276) in kons. Salssäure in der Kälte (Bambebger, Rudolf, B. 41, 3308). — Orangegelber Niederschlag. Sehr wenig löslich in Wasser, Ligroin und Petroläther, leicht in siedendem Alkohol, sehr leicht in Aoeton. — Wird von Zinnohlorfir und Salssäure zu 3.3'-Diamino-4.4'-bis-dimethylamino-triphenylmethan (S. 343) reduziert.

Hexanitro-4.4'-bis-dimethylamino-triphenylmethan $C_{10}H_{10}O_{10}N_0 = C_{10}H_{4}(NO_{2})_0$ [N(CH₂)₂]₂. B. Beim Eintragen von 4.4'-Bis-dimethylamino-triphenylmethan (S. 275)

in rote Salpetersäure (D: 1,4) (O. FISCHEB, B: 11, 950; A. 206, 128). — Goldgelbe Nadeln (aus Eisessig). F: 200° (Zers.). Ziemlich leicht löslich in Alkohol, Aceton und Eisessig, besonders beim Erwärmen.

6. 4.4'-Diamino-3-benzyl-diphenyl, 3-Benzyl-benzidin $C_{12}H_{12}N_{2}$, s. nebenstehende Formel. B. Entsteht neben Benzaldehyd beim Behandeln des bei der H_2N . NH₂ Reduktion des 2-Nitro-benzophenons (Bd. VII, S. 425) durch alkoh. Natronlauge und Zinkstaub neben anderen Produkten entstehenden, nicht isolierten 2-Benzyl-2'-[\alpha-cxy-benzyl]-hydrazobenzols mit heißer verdünnter Salzsaure (Carré, C. \tau. 148, 492, 672; Bl. [4] 5, 277, 279; A. ch. [8] 19, 225). — Prismen (aus Alkohol). F: 209°. Ziemlich löslich in Chloroform und Aceton, schwer in Alkohol. — Die Salze werden durch Wasser dissoziiert. — $C_{19}H_{18}N_3 + 2$ HCl. Krystalle. Schmilzt gegen 200° unter Zersetzung. — $C_{19}H_{18}N_3 + H_2SO_4$. Krystalle. Beginnt bei 250° sich zu schwärzen und zersetzt sich oberhalb 300°, ohne zu schmelzen.

4. Diamine $C_{20}H_{20}N_2$.

1. β -Phenyl-a.a-bis-[4-amino-phenyl]-āthan $C_{30}H_{30}N_2=C_6H_5\cdot CH_2\cdot CH(C_6H_4\cdot NH_2)_2$.

β-Phenyl-a.a-bis-[4-dimethylamino-phenyl]-äthan $C_{24}H_{28}N_2 = C_6H_5 \cdot CH_2 \cdot CH[C_6H_4 \cdot N(CH_2)_2]_2$. B. Durch Reduktion von β-Phenyl-a.a-bis-[4-dimethylamino-phenyl]-äthylen (erhalten aus MICHLERschem Keton und Benzylmagnesiumchlorid; nicht näher beschrieben) (Busignies, C. r. 149, 350). Durch Kondensation von Phenylacetaldehyd und Dimethylanilin (B.). — F: 127°. Unlöslich in Wasser, löslich in organischen Lösungsmitteln.

2. a-Phenyl-a.a-bis-[4-amino-phenyl]-āthan $C_{20}H_{20}N_3 = CH_3 \cdot C(C_6H_6)(C_6H_4 \cdot NH_2)_2$.

a-Phenyl-a.a-bis-[4-dimethylamino-phenyl]-äthan C₂₄H₂₈N₂ = CH₂·C(C₄H₄)[C₄H₄·N(CH₃)₂]₂. B. Entsteht als Hauptprodukt neben wenig 1.3.5-Triphenyl-benzol (Bd. V, S. 737) und 4.4'-Bis-dimethylamino-diphenylmethan (S. 239), bei 10-stdg. Erhitzen von 45 g Acetophenon (Bd. VII, S. 271) mit 90 g Dimethylanilin und 45 g ZnCl₂ im geschlossenen Rohr auf 170° (Doebner, Perschow, A. 242, 337). — Hellgelbes Öl, das sich an der Luft allmählich dunkelrot färbt. Siedet nicht unzersetzt oberhalb 360°; destilliert im Vakuum unzersetzt. Nicht flüchtig mit Wasserdampf. Unlöslich in Wasser, leicht löslich in Äther, Benzol, Petroläther und in warmem Alkohol. — Beim Erwärmen mit PhO₂ oder MnO₃ in Eisessig entsteht ein beständiger blauer Farbstoff. Gibt in äther. Lösung mit Brom eine Grünfärbung. Beim Vermischen mit freies Jod enthaltender Jodwasserstoffsäure entsteht eine Grünfärbung, die beim Erwärmen in Dunkelblau übergeht.

3. 4.4'-Diamino-2-methyl-triphenylmethan $C_{20}H_{20}N_2$, s. nebenstehende Formel.

CH₂ $H_2N \cdot \bigcirc CH(C_0H_0) - \bigcirc NH_2$

4"-Nitro-4-amino-4'-dimethylamino-2-methyl-triphenylmethan $C_{22}H_{23}O_2N_3=H_4N\cdot C_6H_5(CH_3)\cdot CH(C_6H_4\cdot NO_2)\cdot C_6H_5\cdot N(CH_3)_3$. B. Bei mehrstündigem Erwärmen von 26 g 4'-Nitro-4-dimethylamino-benzhydrol (Syst. No. 1859) mit 20 g m-Toluidin, 40 g konz. Salzsäure und 40 g Wasser auf dem Wasserbade (Norlting, v. Skawinski, B. 24, 553). — Gelbe Nadeln (aus Alkohol). F: 169°. Unlöslich in Wasser, schwer löslich in Alkohol, leichter in Benzol. — Läßt sich durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung in der Hitze oder mit Bleidioxyd in wäßrig-essigsaurer Lösung in der Kälte zu einem gelbstichig grünen Farbstoff oxydieren. Durch Reduktion mit Zinn und Salzsäure oder Zinkstaub und Essigsäure entsteht 4.4'-Diamino-4"-dimethylamino-2-methyl-triphenylmethan (S. 318).

4"-Nitro-4.4'-bis-dimethylamino-2-methyl-triphenylmethan $C_{24}H_{27}O_2N_3 = (CH_2)_2N \cdot C_2H_3(CH_3) \cdot CH_4 \cdot NO_2 \cdot C_4H_4 \cdot N(CH_3)_2$. B. Bei 10-stdg. Erhitzen von 6 g 4'-Nitro-4-dimethylamino-benzhydrol (Syst. No. 1859) mit 15 g Dimethyl-m-toluidin, 10 g konz. Salzzäure und 10 g Wasser auf dem Wasserbade (NOELTING, v. SKAWINSKI, B. 24, 556). — Gelbe Blättchen (aus Äther). F: 193°. Leicht löslich in Alkohol und Benzol. — Durch Oxydation mit Bleidioxyd oder Chloranil entsteht ein gelbstichig grüner Farbstoff.

4"- Nitro - 4'- dimethylamino - 4 - diåthylamino - 2 - methyl - triphenylmethan $C_2H_{41}O_2N_3 = (C_2H_4)_N \cdot C_2H_4(CH_4) \cdot CH(C_2H_4 \cdot NO_2) \cdot C_2H_4 \cdot N(CH_3)_3$. B. Bei eintägigem Erhitzen von 6 g 4'-Nitro-4-dimethylamino-benzhydrol, 15 g Diåthyl-m-toluidin, 10 g konz.

Salzsäure und 10 g Wasser auf dem Wasserbade (Noelting, v. Skawinski, B. 24, 556). - Gelbe Nadeln (aus Alkohol). F: 165-166°. - Läßt sich zu einem grünen Farbstoff oxydieren.

5.4'-Diamino-2-methyl-triphenylmethan C₂₀H₂₀N₂, s. nebenstehende Formel.

CH(CaHa

4"- Nitro-5-amino-4'- dimethylamino-2-methyltriphenylmethan $C_{13}H_{23}O_{4}N_{3} = H_{2}N \cdot C_{4}H_{3}(CH_{3}) \cdot C(G_{4}H_{4} \cdot NO_{3}) \cdot C_{4}H_{4} \cdot N(CH_{3})_{3}$. B. Bei 12-ste $CH(C_0H_4\cdot NO_2)\cdot C_0H_4\cdot N(CH_3)_2$. B. Bei 12-stdg. Erwärmen einer Lösung von 27 g 4'-Nitro-4-dimethylamino-benzhydrol (Syst. No. 1859) in 300 g konz. Schwefelsäure mit 20 g p-Toluidin auf 60—70° (NOELTING, v. SKAWINSKI, B. 24, 3136). — Gelbe Nadeln (aus Alkohol + Benzol). F: 202°. Sehr schwer löslich in Alkohol, leichter in Ather, Ligroin und Benzol. — Liefert bei der Oxydation mit Bleidioxyd oder mit Chloranil einen braunen Farbstoff. Die Reduktion mit Zinn und Salzsäure führt zu 5.4'-Diamino-4"-dimethylamino-2-methyl-triphenylmethan (S. 319).

5. 4'.4"-Diamino-2-methyl-triphenylmethan, Bis- $[4-amino-phenyl]-o-tolyl-methan <math>\tilde{C}_{20}H_{20}N_2$, s. nebenstehende Formel.

4'.4" - Bis - dimethylamino - 2 - methyl - triphenylmethan

C₂₄H₂₆N₂ = CH₃·C₄H₄·CH[C₄H₄·N(CH₃)₅]₃. B. Bei 24-stdg.

Kochen von 5 g o-Toluylaldehyd (Bd. VII, S. 295), 11 g Dimethylanilin und 9 ccm konz. Salzsäure mit einer Lösung von 10 g

wasserfreiem Zinkchlorid in absol. Alkohol im Leuchtgasstrom (NOELTING, GERLINGER, B. 89. 2042). — Nadelchen (aus Alkohol). F: 102—103° (N., G.; REITZENSTEIN, RUNGE, J. pr. [2] 71, 84). Ziemlich leicht löslich in heißem Alkohol, leicht in Benzol, Toluol, Äther, Aceton, Ligroin, Chloroform und CS₂ (N., G.). — Gibt bei der Oxydation mit PbO₂ einen grünblauen Farbstoff (N., G.; REI., RU.). Bei der Einw. von rauchender Schwefelsäure entsteht 4'.4"-Bisdimethylamino-2-methyl-triphenylmethan-sulfonsäure-(4) (Syst. No. 1923) (N., G.).

6. 4'.4" - Diamino - 3 - methyl - triphenylmethan, Bis-[4-amino-phenyl]-m-tolyl-methan $C_{20}H_{20}N_2$, s. nebenstehende Formel.

CH₃ H.N·

4'.4"-Bis-dimethylamino-8-methyl-triphenylmethan **Lag Ng* = CH₂·Ct₃·Ct₄·Ct[C₆H₄·N(CH₃)₂]₂. B. Bei mehrstündigem Erhitzen von 20 g m-Toluylaldehyd (Bd. VII, S. 296)
mit 50 g Dimethylanilin, 36 ccm konz. Salzsäure und der zur
Lösung nötigen Menge Alkohol auf 120—130° (Noelling, Gerlinger, B. 39, 2044). —
Nädelchen (aus Alkohol). F: 84—85° (N., G.; Reitzenstein, Runge, J. pr. [2] 71, 86).
Ziemlich sehwer löslich in kaltem Alkohol, reichlicher beim Erwärmen, sehr leicht in Ather.

Aceton, Benzol, Toluol, Ligroin, CS, und Chloroform; die Lösungen in Mineralsauren sind farblos (N., G.). — Gibt bei der Oxydation mit PbO, einen grünen Farbstoff (N., G.; Rei., Ru.). Gibt mit rauchender Schwefelsäure ein Gemenge von Mono- und Disulfonsäure (N., G.).

7. 4'.4"- Diamino-4-methyl-triphenylmethan, Bis-[4-amino-phenyl]-p-totyl-methan $C_{80}H_{80}N_{2}$, s. nebenstehende Formel.

·CH-

4'.4" - Bis - dimethylamino - 4 - methyl - triphenyl methan $C_{24}H_{28}N_{2} = CH_{2} \cdot C_{6}H_{4} \cdot CH[C_{6}H_{4} \cdot N(CH_{3})_{2}]_{2}$. Beim Erhitzen von p-Toluylaldehyd (Bd. VII, S. 297) mit überschüssigem Dimethylanilin bei Gegenwart von wasserfreiem ZnCl₂ auf dem Wasserbade (Hanzlik, Bianchi, B. 32, 1287). — Nadeln (aus Alkohol). F: 93—94°; leicht löslich in den gewöhnlichen organischen Lösungsmitteln (H., B.). — Liefert bei der Oxydation einen gelbstichig grünen Farbstoff (Noelting, Geelinger, B. 39, 2045). Liefert mit rauchender Schwefelsaure 4'.4"-Bis-dimethylamino-4-methyl-triphenylmethan-sulfonsaure-(3) (Syst. No. 1923) (N., G.).

8. 1.2-Bis-[4-amino-benzyl]-benzol $C_{20}H_{20}N_2 = H_2N \cdot C_4H_4 \cdot CH_2 \cdot C_4H_4 \cdot CH_2$ C.H. NH.

1.2-Bis-[4-dimethylamino-bensyl]-bensol $C_{24}H_{28}N_3 = (CH_2)_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot CH_3 \cdot C_6H_4 \cdot CH_4 \cdot CH_3 \cdot C_6H_4 \cdot CH_4 \cdot$ 985; GUYOT, HALLER, A. ch. [8] 19, 332). — Nadeln. F: 90°.

1-[4-Dimethylamino-bensyl]-2-[4-diäthylamino-bensyl]-bensol $C_{26}H_{32}N_2=(CH_3)_2N\cdot C_6H_4\cdot CH_3\cdot C_6H_4\cdot CH_4\cdot C_6H_4\cdot N(C_2H_5)_2$. B. Bei der Reduktion von 1-[4-Dimethylamino-benzyl]-2-[a-oxy-4-diāthylamino-benzyl]-bensol (Syst. No. 1867) mit Zink und Salzsaure (Guyot, Pignet, C. r. 146, 986; Guyot, Haller, A. ch. [8] 19, 333). — F: 57°.

5. Diamine $C_{21}H_{22}N_{2}$.

einen grünen Farbstoff.

- 1. a Phenyl a.a bis /4 amino phenyl $propan C_{31}H_{32}N_2 = CH_3 \cdot CH_2 \cdot$ $C(C_6H_5)(C_6H_4\cdot NH_2)_2$.
- a Phenyl a.a bis [4 diäthylamino phenyl] propan $C_{22}H_{36}N_2 = CH_3 \cdot CH_2 \cdot C(C_6H_5)[C_6H_4 \cdot N(C_2H_5)_2]_3$. B. Aus Brillantgrün (Syst. No. 1865) und Athylmagnesiumbromid in Ather; man zersetzt das Produkt mit Wasser (FREUND, RICHARD, B. 42, 1120). Zähe Masse. Hydrojodid. Krystalle. F: 220—223°. Löslich in Wasser und Alkohol mit grüner Farbe. $C_{29}H_{38}N_3 + 2H_3SO_4$. Krystalle (aus Wasser + Aceton). F: 205°. Wird durch Wasser digeographer. durch Wasser dissoziiert.
- 2. 4'.4'' Diamino 2.4 dimethyl triphenyl methan C₂₁H₂₂N₂, s. nebenstehende Formel.
- 4'.4''-Bis-dimethylamino-2.4-dimethyl-triphenylmethan $C_{21}H_{20}N_3 = (CH_3)_2C_2H_3 \cdot CH[C_2H_4 \cdot N(CH_3)_2]_3$. B. Bei der Kondensation von äquimolekularen Mengen m-Xylol mit MICHLERSchem Hydrol in Gegenwart von konz. Schwefelsäure bei 0-10° oder in Gegenwart von 65% iger Schwefelsäure bei Wasserbadtemperatur (GEIGY & Co., D. R. P. 178769; Frdl. 8, 189, 198; C. 1907 I, 776). — Prismen (sus Aceton). F: 198—199°. Leicht löslich in Benzol
- und Aceton, schwer in Alkohol. Gibt bei der Oxydation mit Bleidioxyd in salzsaurer Lösung
- 4.4' Diamino 2.2' dimethyltriphenylmethan C21H22N2, s. neben- $-\mathbf{CH}(\mathbf{C_aH_a})$ stehende Formel.
- 4.4'- Bis dimethylamino 2.2'- dimethyl triphenylmethan $C_{25}H_{30}N_8 = C_6H_5$. CH[$C_6H_3(CH_2)\cdot N(CH_3)_2$]. Zur Konstitution vgl. Noelting, v. Skawinski, B. 24, 557. B. Man rührt zu einem Gemenge von 5 Tln. Dimethyl-m-toluidin und 2 Tln. Benzaldehyd so viel ZnCl₃, daß eine breiartige Masse entsetht und erhitzt diese einige Stunden auf dem Wasserbade (O. FISCHER, RIEDEL, B. 13, 808; vgl. N., v. Sk., B. 24, 557). — Prismen (aus Alkohol). F: 109° (O. F., R.), 123° (N., v. Sk.). Leicht löslich in Benzol, heißem Alkohol und Äther, schwerer in Ligroin, fast unlöslich in Wasser; leicht löslich in Mineralsäuren (O. F., R.). — Liefert bei der Oxydation mit PbO₃ in wäßrig-essigsaurer Lösung in der Kälte oder mit Chloranil in alkoholisch-essigsaurer Lösung in der Hitze einen grünen Farbstoff (N., v. Sk.). — $C_{25}H_{20}N_2 + 2HCl + PtCl_4 + 2H_2O$. Goldgelbe Krystalle (aus Wasser) (O. F., R.).
- 2"-Nitro-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan $C_{25}H_{29}O_2N_3=O_2N\cdot C_6H_4\cdot CH[C_6H_4(CH_3)\cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 6 g 2-Nitro-benzaldehyd (Bd. VII, S. 243) mit 15 g Dimethyl-m-toluidin, 50 g absol. Alkohol und 9 g konz. Schwefelsäure (NORLTING, v. SKAWINSKI, B. 24, 560). Gelbe Nadeln (aus Benzol + Ligroin). F: 1460 (N., v. Sk.). — Liefert mit Oxydationsmitteln einen bläulichgrünen Farbstoff (N., v. Sk.). Bei der Reduktion entsteht 2"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan (S. 326) (Reitzenstein, Runge, J. pr. [2] 71, 89).
- 8"-Nitro-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan $C_{24}H_{29}O_2N_2=O_2N\cdot C_2H_4\cdot CH[C_4H_4(CH_2)\cdot N(CH_2)_2]_2$. B. Beim Erhitzen von 6 g 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit 15 g Dimethyl-m-toluidin, 50 g absol. Alkohol und 9 g konz. Schwefelsaure (Nobliting, v. Skawinski, B. 24, 560). — Gelbe Nadeln (aus Alkohol). F: 170°. Leicht löslich in Alkohol, Ather und Benzol. — Liefert bei der Oxydation einen grünen Farbstoff. Durch Reduktion entsteht 3"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan (8. 326).
- 4"-Nitro-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan $C_8N_1C_9H_4$ ·CH $[C_9H_9(CH_3)\cdot N(CH_3)_2]_8$. Be i 4-stdg. Erhitzen von 5 g 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit 8 g Dimethyl-m-toluidin unter Zusatz von Zinkehlorid und Salzsäure auf 110° (Kock, B. 20, 1563) oder bei 20-stdg. Erhitzen von 12 g 4-Nitro-benzaldehyd mit 25 g Dimethyl-m-toluidin, 100 g absol. Alkohol und 15 g konz. Schwefelsäure auf dem Wasserbade (Noelting, v. Skawinski, B. 24, 558). — Goldgelbe Blättehen (aus Alkohol

+ Benzol). F: 224° (K.; N., v. Sk.). Schwer löslich in Alkohol, leichter in den übrigen organischen Lösungsmitteln (N., v. Sk.). — Liefert bei der Oxydation einen grünen Farbstoff (N., v. Sk.; vgl. Reitzenstein, Runge, J. pr. [2] 71, 87). Bei der Reduktion mit Zinnehlorür entsteht 4"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan (S. 326) (K.). — Pikrat $C_{25}H_{25}O_{2}N_{3}+2C_{2}H_{2}O_{7}N_{3}$. Gelbe Krystalle. F: 199°; schwer löslich in Alkohol, Äther, Benzol und Ligroin (K.).

4"-Nitro-4.4'-bis-diäthylamino-2.2'-dimethyl-triphenylmethan $C_{20}H_{27}O_2N_3=O_2N\cdot C_0H_4\cdot CH[C_0H_5(CH_2)\cdot N(C_2H_5)_2]_s$. B. Bei 20-stdg. Erhitzen von 6 g 4-Nitro-benzaldehyd mit 16 g Diathyl-m-toluidin, 50 g absol. Alkohol und 9 g konz. Schwefelsäure auf dem Wasserbade (NOELTING, v. SKAWINSKI, B. 24, 559). — Gelbe Nadeln (aus Alkohol). F: 155°. — Liefert bei der Oxydation einen grünen Farbstoff.

4. 4.4'-Diamino-3.3'-dimethyl-triphenyl-methan $C_{11}H_{22}N_{2}$, s. nebenstehende Formel. B. Bei 8-stdg. Erhitzen von Benzaldehyd, o-Toluidin und salzsaurem o-Toluidin in äquimolekularen Mengen im geschlossenen Rohr auf 110—120° (C. Ullmann, J. pr. [2] 36, 252). Beim Erhitzen von 1 Tl. salzsaurem 4.4'-Diamino-triphenylmethan mit 2,5 Tln. o-Toluidin und 5 Tln. salzsaurem o-Toluidin auf 170° (Vongerichten, Weilinger, Zeitschrift für Farben- und Textil-Chemie 8, 217; C. 1904 II, 226). — Krystalle. Sintert unter 100° zu einer klebrigen Masse zusammen (C. U.). F: 121—122° (V., W.). Unlöslich in Wasser, wenig löslich in Äther und Ligroin, leicht in Alkohol und Benzol; leicht löslich in verd. Mineralsäuren (C. U.). — Bei der Oxydation mit Chloranil in alkoh. Lösung entsteht ein blauvioletter Farbstoff (C. U.). Geht beim Erhitzen mit überschüßesigem Anilin und salzsaurem Anilin in 4.4'-Diamino-triphenylmethan über (V., W.). — 2C₂₁H₂₂N₂ + 2HCl + PtCl₄. Krystallpulver. Färbt sich an der Luft rasch dunkelgrün; kaum löslich in Wasser, wenig in Äther, ziemlich leicht in Alkohol (C. U.).

N.N'-Diacetylderivat $C_{25}H_{26}O_2N_2 = C_6H_5 \cdot CH[C_6H_3(CH_2) \cdot NH \cdot CO \cdot CH_3]_2$. B. Beim Behandeln von 4.4'-Diamino-3.3'-dimethyl-triphenylmethan mit Essigsäureanhydrid in alkoh. Lösung in der Kälte (Vongerichten, Weillinger, Zeitschrift für Farben- und Textil-Chemie 3, 217; C. 1904 II, 227). — Warzenförmige Krystalle. F: 265—266°.

N.N.N'.N'- Tetraacetylderivat $C_{sp}H_{30}O_4N_3=C_0H_5\cdot CH[C_0H_3(CH_5)\cdot N(CO\cdot CH_3)_3]_s$. B. Beim Kochen von 4.4'-Diamino-3.3'-dimethyl-triphenylmethan mit der 5-fachen Menge Essigsäureanhydrid in Gegenwart von geschmolzenem Natriumacetat (V., W., Zeitschrift für Farben- und Textil-Chemie 3, 217; C. 1904 II, 227). — Krystalle (aus Alkohol). F: 165° bis 166°. — Wird von kalter methylalkoholischer Natriummethylatlösung in die Diacetylverbindung übergeführt.

4"-Nitro-4.4'-diamino-8.3'-dimethyl-triphenylmethan $C_{21}H_{21}O_2N_3=O_2N\cdot C_4H_4\cdot CH[C_6H_3(CH_2)\cdot NH_2]_3$. B. Beim Erhitzen von 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit schwefelsaurem o-Toluidin und ZnCl₂ auf dem Wasserbade (O. Fischer, B. 15, 679). Beim Erhitzen von 23 Tln. [4-Nitro-benzal]-anilin (Bd. XII, S. 198) mit 14,5 Tln. salzsaurem o-Toluidin in Alkohol am Rückflußkühler (Höchster Farbw., D. R. P. 23784; Frdl. 1, 62). — Gelbe Krystalle (aus Benzol oder Toluol). — Gibt bei der Reduktion mit Zinkstaub und Salzsaure 4.4'.4"-Triamino-3.3'-dimethyl-triphenylmethan (S. 327) (O. Fr.).

5. 6.6'-Diamino-3.3'-dimethyl-triphenylmethan CH₂ CH₂

C₂₁H₂₂N₂, s. nebenstehende Formel. B. Man erhitzt āquimole-kulare Mengen von Benzaldehyd, p-Toluidin und salzsaurem p-Toluidin ca. 8 Stdn. im geschlossenen Rohr auf 110—120°

(C. ULIMANN, J. pr. [2] 36, 255, 270). Entsteht auch bei 6-stdg. NH₂ NH₂

Kochen von 20 g Benzaldehyd mit 40 g p-Toluidin und 48 g konz. Salzsäure am Rückflußkühler und in kleinerer Menge beim Erhitzen von Benzaldehyd und salzsaurem p-Toluidin in Gegenwart von ZnCl₂ auf 110—120° (C. U., J. pr. [2] 36, 263, 264, 271). — Prismen (aus Benzol) mit ½ Mol. Benzol. Wird bei 120° benzolfrei und krystallisiert dann aus Alkohol in Nädelehen. F: 185—186°. Kp: 427—433° (korr.) (geringe Zersetzung). Kaum löslich in Ligroin, mäßig in Äther und warmem Alkohol, ziemlich leicht in warmem Benzol, leicht in Chloroform. — Zerfällt beim Glühen mit Zinkstaub in p-Toluidin und 2-Methyl-acridin (Syst. No. 3088). — C₁₁H₂₂N₂ + 2 HCl. Prismen. Wenig löslich in kaltem Wasser und Äther, ziemlich leicht in warmem Alkohol. — C₂₁H₂₂N₃ + H₂SO₄. Nadeln. Unlöslich in Äther, sehwer löslich in kaltem Alkohol und Äther, wenig in kaltem Benzol, mäßig leicht in heißem Benzol. Wird durch Wasser zersetzt. — C₂₁H₂₂N₂ + 2 HCl + PtCl₄ (bei 100°). Gelbes Krystallpulver. Schwer löslich in kaltem, wenig in heißem Wasser, leicht in Alkohol.

N.N'-Diacetylderivat $C_{25}H_{26}O_2N_3 = C_3H_5 \cdot CH[C_9H_3(CH_3) \cdot NH \cdot CO \cdot CH_3]_3$. B. Beim Krhitzen von 6.6'-Diamino-3.3'-dimethyl-triphenylmethan mit überschüssigem Acetylchlorid auf dem Wasserbade (C. U., J. pr. [2] 36, 260). — Blättchen (aus wäßr. Alkohol). F: 217—218°. Leicht löslich in warmen, ziemlich leicht in kaltem Alkohol, schwer in Äther.

N.N'-Dibensoylderivat $C_{25}H_{20}O_2N_2 = C_0H_5 \cdot CH[C_0H_3(CH_2) \cdot NH \cdot CO \cdot C_0H_5]_2$. B. Beim Erhitzen von 6.6'-Diamino-3.3'-dimethyl-triphenylmethan mit überschüssigem Benzoylchlorid bis auf 120° (C. U., J. pr. [2] 36, 261). — Prismen (aus Alkohol). F: 196°. Schwer löslich in kaltem Alkohol und Äther.

3"-Nitro-6.6'-diamino-3.3'-dimethyl-triphenylmethan $C_{21}H_{31}O_2N_3=O_2N\cdot C_6H_4\cdot CH[C_6H_3(CH_3)\cdot NH_2]_4$. B. Beim Erhitzen von 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit p-Toluidin und alkoh. Salzsäure (Bischler, B. 21, 3212). Beim Erhitzen gleicher Teile [3-Nitro-benzal]-p-toluidin (Bd. XII, S. 910) und salzsaurem p-Toluidin auf 150—160° (F. Ullmann, B. 36, 1024). — Gelbliche Nadeln (aus Alkohol). F: 183° (F. U.). Wenig löslich in kaltem Alkohol, besser in Benzol und Äther; leicht löslich in verd. Mineralsäuren (F. U.). — Liefert beim Erhitzen mit p-Toluidin und salzsaurem p-Toluidin 2.7-Dimethyl-9-[3-nitro-phenyl]-acridin (Syst. No. 3092) und 2.7-Dimethyl-9-[3-amino-phenyl]-acridin (Syst. No. 3401) (F. U.).

4"-Nitro-6.6'-diamino-3.3'-dimethyl-triphenylmethan $C_{11}H_{11}O_{2}N_{3}=O_{2}N\cdot C_{6}H_{4}\cdot CH[C_{6}H_{2}(CH_{3})\cdot NH_{2}]_{2}$. B. Bei 6-stdg. Kochen von 10 Tln. 4-Nitro-benzaldehyd mit 14 Tln. p-Toluidin, 16 Tln. konz. Salzsäure und genügend Alkohol, um in der Wärme alles zu lösen (Bischler, B. 20, 3302). Beim Erhitzen gleicher Teile von [4-Nitro-benzal]-p-toluidin (Bd. XII, S. 910) und salzsaurem p-Toluidin auf 150—160° (F. Ullmann, B. 36, 1022). — Nadeln (aus Alkohol) oder Nadeln (aus Benzol) mit $^{1}_{2}$ Mol. Benzol. Wird bei 110—120° benzolfrei und schmilzt dann bei cs. 170—172° (B.). F: 172° (F. U.). Kaum löslich in kaltem Alkohol und Äther, schwer in kaltem, leicht in siedendem Benzol (B.). Schwache Base; die Salze werden durch Wasser zerlegt (B.). — Beim Erhitzen mit p-Toluidin und salzsaurem p-Toluidin entstehen 2.7-Dimethyl-9-[4-nitro-phenyl]-acridin (Syst. No. 3092) und 2.7-Dimethyl-9-[4-amino-phenyl]-acridin (Syst. No. 3401) (F. U.). — $2C_{21}H_{21}O_{2}N_{3}+2$ HCl + PtCl4. Gelbliche Krystallkörner. Unlöslich in Äther, kaum löslich in kaltem, reichlich in warmem Alkohol (B.).

6. Diamine C.H.A.N.

1. a-Phenyl-a.a-bis-[4-amino-phenyl]-butan $C_{22}H_{24}N_2 = CH_3 \cdot CH_2 \cdot CH_2 \cdot C(C_0H_0)(C_0H_4 \cdot NH_2)_2$.

a-Phenyl-a.a-bis-[4-diāthylamino-phenyl]-butan $C_{20}H_{40}N_2 = CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CG_2H_3)[C_4H_4 \cdot N(C_2H_3)_3]_3$. B. Aus Brillantgrün (Syst. No. 1865) und Propylmagnesiumjodid in Ather; man zersetzt das Produkt mit Wasser (Febund, Richard, B. 42, 1121). — Konnte nicht krystallinisch erhalten werden. — $C_{20}H_{40}N_2 + 2H_2SO_4$. Krystalle. F: 230°.

2. 4'.4"-Diamino-4-isopropyl-triphenyl-methan C₂₁H₂₄N₂, s. nebenstehende Formel.

4'.4"-Bis - dimethylamino - 4 - isopropyl - triphenylmethan $C_{2}H_{22}N_{3} = (CH_{4})_{2}CH \cdot C_{4}H_{4} \cdot CH[C_{4}H_{4} \cdot N(CH_{3})_{2}]_{2}$. B. Bei mehrtägigem Digerieren von Cuminol (Bd. VII, S. 318) mit Dimethylanilin, Chlorzink und wenig Wasser bei 120° (O. FISCHER, B. 12, 16786). — Nadeln (aus Alkohol). F: 118—119° (O. FI.). Läßt.

sink und wenig Wasser bei 120° (O. FISCHER, B. 12, 1688; A. 206, 139; ZIEGLER, B. 18, 786). — Nadeln (aus Alkohol). F: 118—119° (O. FI.). LABt sich durch Braunstein in easigsaurer oder schwefelsaurer Lösung zu einem blaugrünen Farbstoff oxydieren (O. FI.). Bei der Einw. von konz. Salpetersäure scheint Hexanitro-4.4'-bis-dimethylamino-triphenylmethan (F: 206°) zu entstehen (Z.). Beim Erhitzen mit Methyljodid und Methylalkohol unter Druck bei 115° entsteht das Bis-jodmethylat (s. u.) (Z.). — C₂₆ H₂₂N₂ + 2 HCl. Zerfließliches Krystall-pulver (Z.). — Pikrat C₂₆H₂₆N₂ + 2 C₆H₆O₇N₂. Zeisiggrüne Krystalle (aus Alkohol). F: 156°; explodiert bei 200° (Z.). — C₂₆ H₂₂N₂ + 2 HCl + PtCl₄ (bei 100°). Gelbe Krystalle. Wenig löslich in Wasser, sehr wenig in Alkohol (Z.).

4'.4" - Bis - dimethylamino - 4 - isopropyl - triphenylmethan - bis - jodmethylat $C_{28}H_{28}N_8I_2=(CH_6)_8CH\cdot C_8H_4\cdot CH[C_6H_4\cdot N(CH_5)_8I]_3$. B. Beim Erhitzen von 4'.4"-Bisdimethylamino-4-isopropyl-triphenylmethan mit Methyljodid und Methylalkohol unter Druck auf 115° (ZIEGLEE, B. 13, 787). — Nadeln (aus Wasser). F: 200°. Schwer löslich in kaltem Wasser, sehr leicht in heißem.

3. 4'.4" - Diamino - 2.3.6 - trimethyl - triphenylmethan C. H. N. s. nebenstehende Formel.

4'.4"-Bis-dimethylamino-2.3.6-trimethyl-triphenylmethan $C_{36}H_{35}N_3 = (CH_3)_3C_6H_3 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Man diazotiert das durch Kondensation von 4.4'-Bis-[dimethylamino]-benzhydrol (MICHLERS Hydrol; Syst. No. 1859) mit Pseudocumidin (Bd. XII, S. 1150) in konz. Schwefelsäure er-

haltene 5-Amino-4'.4"-bis-dimethylamino-2.3.6-trimethyl-triphenylmethan (S. 327) Natriumnitrit in verd. Schwefelsäure und erwärmt die Diazoniumsalzlösung mit Zinnoxydulnatron auf 80° (Noelting, Gerlinger, B. 39, 2046). — Weiße Flocken, die sich an der Luft allmählich schmutzig grau färben. — Durch Oxydation mit Bleidioxyd entsteht ein blauer Farbstoff, dessen Chlorzinkdoppelsalz ein dunkelrotes Pulver bildet.

7. Diamine $C_{22}H_{26}N_2$.

1. 4.4' - Diamino - 2.5.2'.5' - tetramethyltriphenylmethan C23H26N2, s. nebenstehende Formel. B. Durch 6-stdg. Koohen von 50 g p. Xylidin (Bd. XII, S. 1135) mit 20 g Benzaldehyd in alkoh. Salzsäure auf dem Wasserbade (G. Schultz, Petrany, J. pr. [2] 76, 331). — Blaßgelbe Prismen (aus Alkohol). F: 208° (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Sch., P.). Unlößlich in Schultz, P. D. William (G. Schultz), P. D

$$\begin{array}{c} CH_3 & CH_3 \\ H_2N \cdot \overbrace{\hspace{1cm}} -CH(C_0H_5) - \overbrace{\hspace{1cm}} \cdot NH_2 \\ CH_3 & CH_3 \end{array}$$

Wasser, schwer löslich in Ather und kaltem Alkohol, leicht in heißem Alkohol und Benzol (G. Scn., P.). — Läßt sich durch Diazotieren und Verkochen der Diazoverbindung und Acetylieren des entstandenen, bei 162° schmelzenden Phenols in 4.4'-Diacetoxy-2.5.2'.5'-tetramethyltriphenylmethan (Bd. VI, S. 1049) überführen (G. Sch., P.). Verwendung zur Herstellung von Azofarbstoffen: Beyer & Kegel, O. Hoffmann, D. R. P. 43644; Frdl. 1, 528; Schultz, Tab. No. 300. — C₃₂H₃₆N₃ + 2 HCl. Unlöslich in Äther, kaum löslich in Wasser, leicht in Alkohol; leicht löslich in verd. Salzsäure, schwer in konz. Salzsäure. Wird beim Kochen mit Wasser dissoziiert (G. Sch., P.).

N.N'-Diacetylderivat $C_{17}H_{20}O_2N_2 = C_0H_5 \cdot CH[C_0H_2(CH_3)_2 \cdot NH \cdot CO \cdot CH_3]_2$. B. Beim Kochen von 4.4'-Diamino-2.5.2'.5'-tetramethyl-triphenylmethan mit Essigsäureanhydrid (G., Sch., P., J. pr. [2] 76, 332). — Nadeln (aus Alkohol). F: 217°.

N.N'-Dibensoylderivat $C_{37}H_{24}O_2N_2 = C_6H_5 \cdot CH[C_6H_3(CH_3)_2 \cdot NH \cdot CO \cdot C_6H_5]_2$. B. Beim Erhitzen von 4.4'-Diamino-2.5.2'.5'-tetramethyl-triphenylmethan mit Benzoesäureanhydrid auf 140° (G. Sch., P., J. pr. [2] 76, 332). — Krystalle (aus Alkohol). F: 249—250°.

3"-Nitro-4.4'-diamino-2.5.2'.5'-tetramethyl-triphenylmethan $C_{23}H_{25}O_{3}N_{3}=O_{2}N\cdot C_{2}H_{4}\cdot CH[C_{4}H_{2}(CH_{2})_{2}\cdot NH_{2}]_{3}$. Bei 6-stdg. Kochen von 1 Mol.-Gew. 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit 2 Mol.-Gew. p-Xylidin (Bd. XII, S. 1135) in alkoholisch-salzsaurer Lösung auf dem Wasserbade (G. SCHULTZ, PETENY, J. pr. [2] 76, 333). — Gelbliche Nadeln (aus Benzol) mit $\frac{1}{2}$ Mol. Benzol, die bei 120° das Benzol verlieren und bei 216° schmelzen. Krystallisiert aus Alkohol in orangegelben Nadeln, die bei 227° schmelzen. Die benzolfreie Base löst sich schwer in kaltem, leicht in siedendem Alkohol. — $C_{23}H_{25}O_{2}N_{3}+2$ HCl.

N.N'-Diacetylderivat $C_{27}H_{29}O_4N_3=O_2N\cdot C_4H_4\cdot CH[C_4H_2(CH_3)_2\cdot NH\cdot CO\cdot CH_3]_2$. B. Beim Kochen von 3"-Nitro-4.4'-diamino-2.5.2'.5'-tetramethyl-triphenylmethan mit Essigsäureanhydrid (G. Sch., P., J. pr. [2] 76, 334). — Gelbliche Nadeln (aus Alkohol). F: 232°. Unlöslich in Wasser, schwer löslich in kaltem, leicht in siedendem Alkohol.

N.N'-Dibensoylderivat $C_{37}H_{28}O_4N_3=O_4N\cdot C_6H_4\cdot CH[C_6H_3(CH_2)_4\cdot NH\cdot CO\cdot C_6H_5]_2$. B. Beim Erhitzen von 3"-Nitro-4.4 -diamino-2.5.2'.5'-tetramethyl-triphenylmethan mit Benzoesäureanhydrid auf 140° (G. Sch., P., J. pr. [2] 76, 334). — Nadeln (aus Alkohol). F: 261° bis 262°. Unlöslich in Wasser, schwer löslich in kaltem, leicht in heißem Alkohol.

4"-Nitro-4.4'-diamino-2.5.2'.5'-tetramethyl-triphenylmethan $C_{22}H_{25}O_{2}N_{3}=O_{2}N\cdot C_{6}H_{4}\cdot CH[C_{6}H_{5}(CH_{5})_{2}\cdot NH_{2}]_{5}$. Bei mehrstündigem Kochen von p-Xylidin mit 4-Nitro-benzaldehyd in alkoholisch-salzsaurer Lösung (G. Schultz, Petény, J. pr. [2] 76, 335). — Krystalle (aus Alkohol) vom Schmelzpunkt 237°. Krystallisiert aus Benzol in benzolhaltigen Prismen vom Schmelzpunkt 162°. — $C_{23}H_{25}O_{2}N_{3}+2$ HCl. Gelbliche Blättchen.

N.N'-Diacetylderivat $C_{27}H_{29}O_4N_3=O_2N\cdot C_8H_4\cdot CH[C_9H_2(CH_2)_2\cdot NH\cdot CO\cdot CH_3]_2$. Nadeln (aus Alkohol). F: 192° (G. SCH., P., J. pr. [2] 76, 335).

N.N' - Dibensoylderivat $C_{27}H_{22}O_4N_3 = O_2N \cdot C_6H_4 \cdot CH[C_6H_2(CH_3)_2 \cdot NH \cdot CO \cdot C_6H_5]_2$. Nadeln (aus Alkohol). F: 258—259° (G. Sch., P., J. pr. [2] 76, 335).

2. 4.4' - Diamino - 3.5.3'.5' - tetramethyltriphenylmethan $C_{23}H_{26}N_{3}$, s. nebenstehende Formel.

A"Nitro 4.4' diamina - 2.5.2'.5' tetramethyl

4"-Nitro-4.4'-diamino-3.5.3'.5'-tetramethyl-CH₃ CH₃ triphenylmethan $C_{23}H_{25}O_2N_3=O_2N\cdot C_8H_4$ CH $_{[CH_3]_2}\cdot NH_{2]_2}$. B. Bei mehrstündigem Erwärmen einer Mischung von schwefelsaurem vic.-m-Xylidin (Bd. XII, S. 1107), 4-Nitro-benzaldehyd (Bd. VII, S. 256) und Chlorzink auf dem Wasserbade (Friedländer, Brand, M. 19, 641). — Gelbe Prismen (aus Benzol + Ligroin). F: 136°. — Färbt sich an der Luft oberflächlich grün. Die Oxydation mit Bleidioxyd führt zu einem blauen Farbstoff.

N.N'-Diacetylderivat C_2 , $H_{29}O_4N_3 = O_2N \cdot C_4H_4 \cdot CH[C_4H_2(CH_3)_2 \cdot NH \cdot CO \cdot CH_3]_2$. Nadeln. Zersetzt sich bei ca. 260° unter Bräunung (Fr., B., M. 19, 641).

3. x.x'-Diamino-x.x.x'.x'-tetramethyl-triphenylmethan $C_{23}H_{26}N_2 = C_6H_5 \cdot CH[C_6H_3(CH_3)_2 \cdot NH_3]_2$.

3"-Nitro-x.x'-diamino-x.x.x'.x'-tetramethyl-triphenylmethan (?) $C_{23}H_{25}O_2N_3 = O_2N \cdot C_0H_4 \cdot CH[C_0H_4(CH_3)_2 \cdot NH_2]_2$ (?). B. Bei der Kondensation von 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit schwefelsaurem asymm. m-Xylidin (Bd. XII, S. 1114) in Gegenwart von konz. Schwefelsaure (BISCHLER, B. 21, 3216). — Blättchen (aus Alkohol). F: 91—92°. — $C_{23}H_{25}O_2N_3 + 2$ HCl. Blättchen. — $C_{23}H_{25}O_2N_3 + 2$ HCl + PtCl₄. Graugelbe Krystalle.

N.N' - Diacetylderivat $C_{27}H_{29}O_4N_3 = O_2N \cdot C_6H_4 \cdot CH[C_6H_2(CH_3)_2 \cdot NH \cdot CO \cdot CH_3]_2$ (?). Nadeln (aus Ather). F: 131—132° (B., B. 21, 3217).

N.N'-Dibenzoylderivat $C_{37}H_{33}O_4N_3 = O_2N \cdot C_6H_4 \cdot CH[C_6H_2(CH_3)_2 \cdot NH \cdot CO \cdot C_6H_5]_2$ (?). Nadeln (aus verd. Alkohol). F: 185—186° (B., B. 21, 3217).

4"-Nitro-x.x'-diamino-x.x.x'.x'-tetramethyl-triphenylmethan (?) $C_{23}H_{25}O_2N_3 = O_2N \cdot C_6H_4 \cdot CH[C_6H_3(CH_3)_3 \cdot NH_3]_3$ (?). B. Bei der Kondensation von 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit schwefelsaurem asymm. m-Xylidin (Bd. XII, S. 1114) in Gegenwart von konz. Schwefelsäure (BISCHLER, B. 21, 3215). — Hellgelbe Nadeln (aus Alkohol). F: 89° bis 90°. Sehr wenig löslich in kaltem Alkohol, reichlich in Äther, leicht in Chloroform und Benzol. — $C_{23}H_{25}O_2N_3 + 2$ HCl. Nadeln. Wenig löslich in kaltem Alkohol, unlöslich in Äther.

N.N'-Diacetylderivat $C_{27}H_{29}O_4N_3 = O_2N \cdot C_8H_4 \cdot CH[C_8H_2(CH_3)_2 \cdot NH \cdot CO \cdot CH_3]_2$ (?). B. Aus 4".Nitro-x.x'-diamino-x.x.x'.x'-tetramethyl-triphenylmethan (?) und Essigsäureanhydrid (B., B. 21, 3216). — Hellgelbe Krystallkörner (aus verd. Alkohol). F: 88°. Wenig löslich in kaltem, leicht in heißem Alkohol, weniger in Äther.

N.N'-Dibenzoylderivat $C_{37}H_{33}O_4\bar{N}_3=O_2N\cdot C_6H_4\cdot CH[C_6H_2(CH_3)_2\cdot NH\cdot CO\cdot C_6H_5]_2$ (?). B. Aus 4"-Nitro-x.x'-diamino-x.x.x'.x'-tetramethyl-triphenylmethan (?) und Benzoesäureanhydrid (B., B. 21, 3216). — Gelbliche Nadeln (aus verd. Alkohol). F: 191—192°.

8. x.x'-Diamino-x.x'-di-tert.-butyl-triphenylmethan $C_{27}H_{34}N_2=C_6H_5\cdot CH[C_6H_3(NH_2)\cdot C(CH_3)_3]_2$.

3"-Nitro-x.x'-diamino-x.x'-di-tert.-butyl-triphenylmethan (?) $C_{27}H_{33}O_{2}N_{3} = O_{2}N \cdot C_{6}H_{4} \cdot CH[C_{6}H_{3}(NH_{2}) \cdot C(CH_{3})_{3}]_{3}$ (?). B. Bei der Kondensation von 3-Nitro-benzaldehyd (Bd. VII, S. 250) mit schwefelsaurem 4-Amino-1-tert.-butyl-benzol (Bd. XII, S. 1167) in Gegenwart von konz. Schwefelsaure (BISCHLER, B. 21, 3214; vgl. Senkowski, B. 24, 2974). — Blättchen (aus Alkohol). F: 64—65° (B.).

N.N'-Dibenzoylderivat $C_{41}H_{41}O_4N_3 = O_2N \cdot C_6H_4 \cdot CH[C_9H_3(NH \cdot CO \cdot C_6H_5) \cdot C(CH_3)_3]_2(?)$. B. Aus 3"-Nitro-x.x'-diamino-x.x'-di-tert.-butyl-triphenylmethan(?) und Benzoesäureanhydrid (B., B. 21, 3215). — Blättchen (aus verd. Alkohol). F: 113—114°. Schwer löslich in kaltem, leicht in heißem Alkohol.

4"-Nitro-x.x'-diamino-x.x'-di-tert.-butyl-triphenylmethan (?) $C_{27}H_{33}O_2N_3 = O_2N \cdot C_6H_4 \cdot CH[C_6H_3(NH_2) \cdot C(CH_3)_3]_2$ (?). B. Bei der Kondensation von 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit überschüssigem schwefelsaurem 4-Amino-1-tert.-butyl-benzol (Bd. XII, S. 1167) in Gegenwart von konz. Schwefelsäure (Bischler, B. 21, 3213; vgl. Senkowski, B. 24, 2974). — Gelbe Nadeln (aus Alkohol). F: 125—126° (B.). Wenig löslich in kaltem Alkohol und Äther, leicht in heißem Alkohol, Chloroform und Benzol (B.). — $C_{27}H_{33}O_2N_3 + 2 + Cl$. Hellgelbe Blättchen. Unlöslich in Äther, wenig löslich in kaltem Alkohol, leicht in heißem (B.). — $C_{27}H_{33}O_2N_3 + 2 + Cl$. Gelbe Blättchen. Reichlich löslich in kochendem Alkohol, nicht in Äther (B.).

N.N'-Diacetylderivat $C_{31}H_{37}O_4N_3 = O_2N \cdot C_0H_4 \cdot CH[C_0H_3(NH \cdot CO \cdot CH_2) \cdot C(CH_3)_3]_2$ (?). B. Aus 4"-Nitro-x.x'-diamino-x.x'-di-tert.-butyl-triphenylmethan (?) und Essigsäureanhydrid (B., B. 21, 3214). — Gelbe Körner (aus Alkohol). F: 114°.

N.N'-Dibenzoylderivat $C_{41}H_{41}O_4N_3=O_2N\cdot C_6H_4\cdot CH[C_6H_5(NH\cdot CO\cdot C_6H_5)\cdot C(CH_2)_2]_2(?)$. B. Aus 4"-Nitro-x.x'-diamino-x.x'-di-tert.-butyl-triphenylmethan(?) und Benzoesaure-anhydrid (B., B. 21, 3214). — Nadeln (aus verd. Alkohol). F: 125—126°. Leicht löslich in Ather, Benzol, Chloroform und heißem Alkohol.

11. Diamine $C_nH_{2n-22}N_2$.

1. 3 - Amino - 9 - [4 - amino - phenyl] - fluoren $C_{19}H_{16}N_2$, $C_{6}H_4 \cdot NH_2$ s. nebenstehende Formel.

3-Dimethylamino - 9 - [4-dimethylamino - phenyl] - fluoren

C₃₂H₂₄N₂=(CH₂)₂N·C₆H₄·C₁₃H₈·N(CH₂)₂. B. Durch Einw. von Natriumnitrit auf eine schwefelsaure Lösung des 2-Amino-4'.4"-bis-dimethylamino-triphenylmethans
(S. 311) und Verkochen der hierbei entstehenden Diazoniumsalzlösung (Guyot, Geanderfe, C. \(\tau\). 137, 413; Bl. [3] 33, 199). — Weiße Krystalle (aus Benzol + Alkohol). F: 158°. Leicht löslich in Benzol, sehr wenig in Alkohol. — Gibt bei der Oxydation mit Bleidioxyd in verdünnter salzsaurer Lösung das Farbsalz des 9-Oxy-3-dimethylamino-9-[4-dimethylamino-phenyl]-fluorens (Syst. No. 1868).

7-Nitro-3-dimethylamino-9-[4-dimethylamino-phenyl]-fluoren $C_{13}H_{12}O_2N_3 = (CH_3)_2N \cdot C_3H_2 \cdot C_{13}H_2(NO_3) \cdot N(CH_3)_2$. B. Durch Zersetzung der Diazoniumsalzlösung des 5-Nitro-2-amino-4'.4"-bis-dimethylamino-triphenylmethans (S. 312) (Gu., Gr., Bl. [3] 33, 203). — Orangegelbe Nadeln. F: 170°. Sehr wenig löslich in Alkohol und Äther, ziemlich in Benzol. Gibt durch Oxydation einen blauen Farbstoff.

2. Diamine C₂₀H₁₈N₂.

- 1. 2-Amino-9-[4-amino-phenyl]-anthracendihydrid (9.10), 2 Amino 9 [4 amino phenyl] 9.10 dihydro anthracen $C_{20}H_{18}N_2$, s. nebenstehende Formel.
- 2-Dimethylamino 9 [4-dimethylamino phenyl] anthracen dihydrid (9.10) $C_{34}H_{35}N_3 = C_6H_4 \underbrace{\begin{array}{c} CH[C_6H_4 \cdot N(CH_3)_3] \\ CH_2 \end{array}}_{C_6H_3 \cdot N(CH_3)_3} \cdot B$. Aus 1-[4-Dimethylamino-benzyl]-2-[a-oxy-4-dimethylamino-benzyl]-benzol (Syst. No. 1867) und kalter konz. Schwefelsäure (Guyor, Pigner, C. r. 146, 985; G., Haller, A. ch. [8] 19, 334). Weiße Nadeln. F: 168°. Wird von Chloranil in Benzollösung zum 2-Dimethylamino-9-[4-dimethylamino-phenyl]-anthracen (s. u.) oxydiert.
- 2 Dimethylamino 9 [4 diäthylamino phenyl] anthracen dihydrid (9.10 $C_{20}H_{20}N_2 = C_0H_4 \underbrace{CH[C_0H_4 \cdot N(C_1H_5)_2]}_{CH_2} C_0H_3 \cdot N(CH_3)_2$. B. Aus 1 [4 Dimethylamino-benzyl]-2-[a-oxy-4-diāthylamino-benzyl]-benzol (Syst. No. 1867) und kalter konzentrierter Schwefelsäure (G., P., C. r. 146, 987; G., Haller, A. ch. [8] 19, 335). F: 113° (G., P.; G., H.).
- 2. 6 Amino 2 methyl 9 /4 amino phenyl] fluoren $C_{20}H_{10}N_{2}$, s. nebenstehende Formel. $C_{0}H_{4}\cdot NH_{2}$

6 - Dimethylamino - 2 - methyl - 9 - [4 - dimethylamino - phenyl]-fluoren C₂₄H₂₄N₂= (CH₃)₂N·C₄H₄·C₁₃H₇(CH₃)·N(CH₃)₂·H₂N·D₄B. Durch Zersetzung der Diazoniumsalzlösung aus 6 - Amino - 4'.4"-bis-dimethylamino-3-methyl-triphenylmethan (S. 323) (GUYOT, GRANDEBYE, Bl. [3] 38, 202). — Weiße Krystalle. F: 142°. Sehr wenig löslich in Alkohol und Äther, ziemlich in Benzol, aus dem sich benzolhaltige Krystalle abscheiden. — Liefert durch Oxydation einen violetten Farbstoff.

12. Diamine $C_n H_{2n-24} N_2$.

1. Diamine $C_{20}H_{16}N_2$. $C_0H_4\cdot NH_2$ 1. 2-Amino-9-[4-amino-phonyl]-anthracen $C_{20}H_{16}N_2$, NH_2 s. nebenstehende Formel.

2-Dimethylamino-9-[4-dimethylamino-phenyl]-anthracen $C_{24}H_{24}N_3=(CH_3)_2N\cdot C_3H_4\cdot C_{74}H_3\cdot N(CH_2)_3$. B. Durch Oxydation von 2-Dimethylamino-9-[4-dimethylamino-phenyl]-anthracen-dihydrid-(9.10) (s. o.) mit Chloranil in Benzollösung (Guyot, Pignet,

- C. r. 146, 985; G., HALLER, A. ch. [8] 19, 335). Gelbe Nadeln. F: 184°. Leicht löslich in Benzol und Äther, schwer in den übrigen Lösungsmitteln mit grüner Fluorescenz.
- 2-Dimethylamino-9-[4-diāthylamino-phenyl]-anthraoen $C_{26}H_{49}N_3=(C_4H_5)_2N\cdot C_4H_4\cdot C_{14}H_5\cdot N(CH_3)_2$. B. Durch Oxydation von 2-Dimethylamino-9-[4-diāthylamino-phenyl]-anthraoen-dihydrid-(9.10) (S. 288) mit Chloranil in Benzollösung (G., P., C. r. 146, 987). F: 132°.
- 2. 2.2'- Diamino dinaphthyl (1.1') $C_{20}H_{16}N_2$, s. Formel I. B. Reduziert man 2-Nitro-naphthalin (Bd. V, S. 555) mit Zinkstaub und siedender alkoholischer Natronlauge und leitet Luft in die Lösung, so erhält man 2.2'-Diamino-dinaphthyl-(1.1'), β , β -Azonaphthalin (Syst. No. 2102), Dinaphthopyridazin (Formel II) (Syst. No. 3493) und β -Naphthylamin (Meisenheimer, Witte, B. 36, 4158). 2.2'-Diamino-dinaphthyl-(1.1') wird auch erhalten bei der Reduktion des β , β -Azonaphthalins mit Zinkstaub und Eisessig (M., W., B. 36, 4159; vgl. Hantzsch, Schmiedel, B. 30, 82). Aus β , β -Azonaphthalin beim Kochen mit Phenylhydrazin und Natriumdisulfitlösung (Bucherer, Schmidt, J. pr. [2] 79, 385, 411). Aus

β.β-Hydrazonaphthalin (Syst. No. 2074) beim Versetzen der alkoh. Lösung mit Salzsäure oder bei 3—4-stdg. Kochen mit verd. Natronlauge (M., W., B. 36, 4161). Aus β-Naphthylhydrazin beim Kochen mit Natriumdisulfitlösung (B., Sch., J. pr. [2] 79, 377, 399). Bei der Reduktion des Dinaphthopyridazins mit Zinkstaub und siedendem Eisessig (M., W., B. 36, 4162). — Nadeln (aus Benzol durch Gasolin). F: 191° (M., W.), 189° (B., Sch.). Leicht löslich in den meisten organischen Lösungsmitteln, ziemlich schwer in Methylalkohol und Alkohol mit blauer Fluorescenz, unlöslich in Wasser; sehr leicht löslich in verd. Salzsäure (M., W.). — Beim Erhitzen des Hydrochlorids auf 240—250° entsteht das Dibenzocarbazol der Formel III (Syst. No. 3093). — $C_{20}H_{16}N_2+2$ HCl. Nadeln (aus Salzsäure) (M., W.).

2.2'-Di-p-toluidino-dinaphthyl-(1.1') C₂₄H₂₂N₂ = C₂₀H₁₂(NH·C₄H₄·CH₂)₂. B. Bei kurzem Kochen von p-Tolyl-β-naphthylamin mit Eisenchlorid und Eisessig (Witt, B. 21, 728). Aus p-Tolyl-β-naphthylamin in heißer alkoholisch-schwefelsaurer Lösung und wäßr. Natriumnitrilösung (Bucherer, Seyde, B. 40, 864). Beim Erwärmen von 10 g Drolyl-β-naphthylamin mit 4 g salzsaurem p-Nitroso-dimethylanilin und der Lösung von 10 g Zink-chlorid in 100 com Eisessig (W., B. 21, 727). — Farblose Krystalle (aus Xylol). F: 224—225° (W.), 223—224° (B., S.). Destilliert nicht unzersetzt (W.). Schwer löslich in fast allen Lösungsmitteln; die Lösungen fluorescieren blau (W.). Die Lösung in reiner konz. Schwefelsäure wird durch eine Spur salpetriger Säure grasgrün (W.). Rauchende Salzsäure wirkt erst bei 220° ein und spaltet dann p-Toluidin ab (W.). — Hydrochlorid. Weiß, krystallinisch (B., W.).

N.N'-Diacetylderivat $C_{38}H_{33}O_2N_2 = C_{20}H_{12}[N(C_0H_4\cdot CH_3)\cdot CO\cdot CH_3]_2$. B. Aus 2.2'-Dip-toluidino-dinaphthyl-(1.1') beim Kochen mit Acetylchlorid (Bucherer, Seyde, B. 40, 864). — Nadeln (aus Alkohol). F: 231—232°. Leicht löslich in Benzol und Eisessig, schwer in Ligroin, Äther und kaltem Alkohol.

3. 4.4'-Diamino-dinaphthyl-(1.1'), Naphthidia C₃₀H₁₆N₂, s. nebenstehende Formel. B. In geringer Menge aus a.a-Hydrazonaphthalin (Syst. No. 2074) mit verd. Salzsäure bei 70—80°, neben Dinaphthylin (S. 290) als Hauptprodukt (Nietzki, Goll, B. 18, 3254). Durch Versetzen einer heißen Lösung von 1 Tl. a.a-Azonaphthalin (Syst. No. 2102) in 45 Tln. Eisessig mit einer Zinnehlorürlösung (aus 1 Tl. Zinnsalz, 2 Tln. Salzsäure, 2—3 Tln. Wasser), bis die Lösung farblos geworden ist (N., G.). Beim Erhitzen von a-Naphthylamin, gelöst in 88°/qiger Schwefelsäure, mit Eisenoxyd auf 100° (Reverdin, DE La Harpe, Ch. Z. 16, 1687). — Blättchen (aus verd. Alkohol). F: 198° (N., G.). — Oxydationsmittel wie Eisenchlorid, Chromsäure oder Chlor erzeugen in der Lösung der Salze eine karmoisinrote Färbung und bei größerer Konzentration einen roten Niederschlag (N., G.). Naphthidin liefert beim Erwärmen mit Chromsäure erst a-Naphthochinon und dann Phthalsäure (N., G.). Das Diazoniumsulfat gibt beim Kochen mit Alkohol a.a-Dinaphthyl (Bd. V, S. 725) (N., G.). — C₂₀H₁₆N₂ + 2HCl. Blättchen. Unlöslich in Salzsäure (N., G.). — C₂₀H₁₆N₂ + 2HCl + PtCl₄. Gelbe Nadeln (N., G.).

N.N'-Diacetylderivat $C_{24}H_{20}O_2N_2=C_{20}H_{12}(NH\cdot CO\cdot CH_2)_2$. B. Durch Erwärmen von Naphthidin mit Essigsäureanhydrid (N., G., B. 18, 3256). — Schmilzt oberhalb 300°. Unlöslich in den gewöhnlichen Lösungsmitteln.

4. x.x-Diamino-dinaphthyl-(1.1') $C_{20}H_{10}N_2 = C_{20}H_{12}(NH_2)_2$. Eine von Julius (B. 19, 2551) unter dieser Formel beschriebene Verbindung ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] von Schoeffle (Am. Soc. 45, 1568 Anm. 5) als Diamino-dinaphthylenoxyd $C_{20}H_{10}ON_2$ (Syst. No. 2641) erkannt worden.

5. 1.1'- Diamino - dinaphthyl(2.2'), Dinaphthylin C₂₀H₁₀N₂, s.

Formel I. ZurKonstitution vgl. Veselt, I.

B. 38, 137. — B. Entsteht geben etwas
Naphthidin beim Erwärmen von 1 Mol.

Gew. a.a.-Hydrazonaphthalin (Syst. No. 2074) mit 2 Mol.-Gew. verd. Salzsäure (Nietzki, Goll., B. 18, 3257). — Blätchen (aus Benzol). F: 273° (N., G.). — Die Salze werden durch Oxydationsmittel braun gefärbt (N., G.). Dinaphthylin liefert beim Erwärmen mit Chromsäure Phthalsäure (N., G.). Zerfällt beim Kochen mit Salzsäure in Ammoniak und das Dibenzocarbazol der Formel II (Syst. No. 3093) (N., G.). — C₂₀H₁₆N₂+2HCl+PtCl₄. Goldgelbe, schwer lösliche Blättchen (N., G.).

6. Derivat eines a.a'- Diamino - dinaphthyls - (x.x') $C_{20}H_{10}N_2 = H_2N \cdot C_{10}H_6 \cdot C_{10}H_6 \cdot NH_2$.

a.a'-Bis-diäthylamino-dinaphthyl-(x.x') $C_{23}H_{32}N_3 = (C_2H_5)_2N \cdot C_{10}H_6 \cdot C_{10}H_6 \cdot N(C_2H_5)_2$. B. Entsteht neben einer 1-Diäthylamino-naphthalin-sulfonsäure-(x) (Syst. No. 1923) beim Erhitzen von gleichen Teilen Diäthyl-a-naphthylamin (Bd. XII, S. 1223) und konz. Schwefelsäure auf 190—210° (SMITH, Soc. 41, 182). — Nadeln. F: 190°. Siedet unzersetzt weit über 360°. Sehr leicht löslich in Chloroform, Benzol und heißem Alkohol, weniger in kaltem Alkohol, nicht sehr leicht in Äther. Löst sich in Salzsäure oder Salpetersäure mit roter Farbe. — $C_{23}H_{32}N_2 + 2$ HCl. Platten.

2. Diamine $C_{21}H_{18}N_2$.

1. 2.2' - Diamino - [di - naphthyl - (1) - methan], Bis - [2 - amino - naphthyl - (1)] - methan $C_{21}H_{12}N_{2}$, s. nebenstehende Formel.

Bis-[2-dimethylamino-naphthyl-(1)]-methan $C_{25}H_{26}N_2=CH_2[C_{10}H_4\cdot N(CH_2)_2]_2$. B. Aus Dimethyl- β -naphthylamin (Bd. XII, S. 1273) in Eisessig und Formaldehydlösung beim Stehen mit Essigsäureanhydrid (Morgan, Soc. 77, 823). — Farblose Prismen (aus Alkohol). F: 144°. Leicht löslich in Alkohol. — Pikrat. Gelbe Blätter (aus Alkohol). F: 193—194°.

Bis-[2-äthylamino-naphthyl-(1)]-methan $C_{25}H_{26}N_3=CH_2(C_{10}H_6\cdot NH\cdot C_2H_5)_2$. B. Aus Äthyl-β-naphthylamin (Bd. XII, S. 1274) in Eisessig und Formaldehydlösung bei gewöhnlicher Temperatur (M., Soc. 77, 827). Beim Erwärmen einer alkoh. Lösung von salzsaurem Äthyl-β-naphthylamin und Formaldehyd, neben einer Verbindung $C_{22}H_{12}ON$ (Bd. XII, S. 1274) und Äthylamin (M.). — Platten (aus Essigester). F: 197—198°.

Bis-[2-diäthylamino-naphthyl-(1)]-methan $C_{20}H_{24}N_3=CH_2[C_{10}H_4\cdot N(C_2H_5)_2]$. B. Durch kurzes Erwärmen einer Lösung von Diäthyl- β -naphthylamin (Bd. XII, S. 1275) in Eisessig mit Essigsäureanhydrid und 35% jeger Formaldehydlösung (M., Soc. 77, 824). — Tafelförmige Prismen (aus Essigester). F: 114°.

Bis-[2-anilino-naphthyl-(1)]-methan C₃₃H₃₆N₂ = CH₂(C₁₀H₆·NH·C₆H₅)₂. B. Durch Erhitzen von Bis-[2-oxy-naphthyl-(1)]-methan (Bd. VI, S. 1053) mit Anilin und dessen Hydrochlorid auf 180—200° (Dahl & Co., D.R. P. 75755; Frdl. 3, 519; vgl. auch Ullmann, När, B. 33, 905). — Säulen. F: 107° (D. & Co.).

Über eine Verbindung C₂₂H₂₆N₂, für die dieselbe Konstitution in Betracht gezogen wurde, vgl. Bd. XII, S. 1276.

Bis-[2-dibensylamino-naphthyl-(1)]-methan $C_{40}H_{43}N_3 = CH_3[C_{10}H_4\cdot N(CH_4\cdot C_6H_5)_2]_2$. B. Durch kurzes Erhitzen von Dibenzyl- β -naphthylamin (Bd. XII, S. 1278) in Eisessig mit Essigsäureanhydrid und 35% jeger Formaldehydlösung (Morgan, Soc. 77, 825). — Platten (aus Essigester). F: 164—165%. Schwer löslich in Alkohol.

Bis-[2-(bensoyläthylamino)-naphthyl-(1)]-methan $C_{29}H_{24}O_2N_2 = CH_2[C_{10}H_4 \cdot N(C_2H_5) \cdot CO \cdot C_6H_6]_2$. B. Aus Bis-[2-āthylamino-naphthyl-(1)]-methan (s. o.) und Benzoylchlorid in Gegenwart von Alkali (MOBGAN, Soc. 77, 828). — Prismen (aus Alkohol). F: 196°.

2. 4.4'-Diamino-[di-naphthyl-(1)-methan], Bis-[4-amino-naphthyl-(1)]-methan $C_{21}H_{16}N_2$, s. nebenstehende Formel.

Bis-[4-dimethylamino-naphthyl-(1)]-methan $C_{12}H_{22}N_2 = CH_2[C_{10}H_4 \cdot N(CH_2)_2]_2$. B. Aus Dimethyl- α -naphthylamin (Bd. XII,

NH,

S. 1221) in Eisessig und Formaldehydlösung beim Stehen mit etwas konz. Salzsäure (Moegan, Soc. 77, 826). — Durchsichtige Prismen (aus Essigester). F: 177°. Wird durch PbO₂ nicht zu einem Farbstoff oxydiert.

Bis - [4-p-toluidino-naphthyl-(1)] - methan $C_{35}H_{30}N_2 = CH_2(C_{10}H_4 \cdot NH \cdot C_4H_4 \cdot CH_2)_2$. B. Aus p-Tolyl-a-naphthylamin (Bd. XII, S. 1225) und Formaldehyd in heißem Alkohol in Gegenwart von konz. Salzsäure (Bucherer, Seyde, B. 40, 863). — Wurde nicht rein erhalten. Leicht löslich in Benzol, Chloroform, Aceton und Äther mit blauer Fluorescenz; schwer löslich in Alkohol und Ligroin.

Verbindung $C_{22}H_{20}O_3N_2S=H_2N\cdot C_{10}H_4\cdot CH_2\cdot C_{10}H_4\cdot NH\cdot CH_2(SO_3H)$. B. Man versetzt eine Lösung von a-Naphthylamin in verd. Salzsäure mit Natriumdisulfitlösung und dann mit verdünnter Formaldehydlösung (GEIGY & Co., D. R. P. 148760; Frdl. 7, 81; C. 1904 I, 554). — Gelbliche krystallinische Flocken. F: 193—195°. In Ammoniak leicht löslich.

13. Diamine $C_n H_{2n-28} N_2$.

1. 6-Amino-9-[4-amino-phenyl]-1.2-benzo-fluoren $C_{23}H_{18}N_{2}$, s. nebenstehende Formel.

6-Dimethylamino-9-[4-dimethylamino-phenyl]-1.2-benso-fluoren $C_{27}H_{26}N_3=(CH_3)_2N\cdot C_6H_4\cdot CH < C_6H_3\cdot N(CH_3)_2$. B. Durch Zersetzung der Diazoniumsalzlösung aus Bis-[4-dimethylamino-phenyl]-1.2-benso-fluoren Carlon Control Contr

Zersetzung der Diazoniumsalzlösung aus Bis-[4-dimethylamino-phenyl]-[2-amino-naphthyl-(1)]-methan (S. 333) (Guyot, Granderye, Bl. [3] 38, 204). — Weiße Nadeln. F: 225—226°. Sehr wenig löslich in Alkohol und Äther, ziemlich in Benzol und Chloroform.

2. 4.4'-Diamino-3.3'-diphenyl-diphenyl, 3.3'-Diphenyl-benzidin $\rm C_{24}H_{20}N_2=C_0H_8$

H₂N—NH₂. B. Aus 2.2'-Diphenyl-hydrazobenzol (Syst. No. 2075) durch 2-stdg. Behandeln mit heißer Salzsäure (Friedle, Rassow, J. pr. [2] 63, 460). Aus 2.2'-Diphenyl-azoxybenzol (Syst. No. 2210) mit Zinnchlorür in siedendem Alkohol (F., R.). — Blätter (aus Alkohol durch Wasser). F: 151—152°. Leicht löslich in den meisten organischen Mitteln. — Gibt mit Schwefelkohlenstoff und Natronlauge eine gelbe unlösliche Verbindung vom Schmelzpunkt 195—196°. — $C_{24}H_{20}N_3+2$ HCl. Nadeln (aus Salzsäure). Schwer löslich in Wasser. — $C_{24}H_{20}N_3+2$ HCl+PtCl₄. Blättehen.

N.N'-Diacetylderivat $C_{28}H_{24}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(C_6H_5) \cdot C_6H_3(C_6H_5) \cdot NH \cdot CO \cdot CH_3$. B. Durch Erhitzen von 3.3'-Diphenyl-benzidin mit Thioessigsaure im Wasserbade (F., R., J. pr. [2] 68, 462). — Nadeln (aus Alkohol). F: 245—246°.

3. Diamine $C_{26}H_{24}N_2$.

1. $a.\beta$ - Diphenyl - a.a - bis - [4 - amino - phenyl] - $\ddot{a}than$ $C_{26}H_{24}N_2 = C_6H_5 \cdot CH_2 \cdot C(C_6H_5)(C_6H_4 \cdot NH_2)_2$.

 $a.\beta$ - Diphenyl - a.a - bis - [4 - diäthylamino - phenyl] - äthan $C_{24}H_{40}N_2 = C_8H_5 \cdot CH_2 \cdot C(C_4H_5)[C_8H_4 \cdot N(C_4H_5)_2]_3$. B. Aus Brillantgrün (Syst. No. 1865) und Benzylmagnesium-chlorid in absol. Äther (Freund, Richard, B. 42, 1119). — Weiße Krystalle (aus Chloroform). F: 151°. Leicht löslich in heißem Chloroform. — Hydrojodid. Weiße Krystalle (aus Alkohol). F: 260°. — Sulfat. Sehr leicht löslich in Alkohol und Wasser.

2. 4.4' - Diamino - 3.3' - dibenzyl - diphenyl, 3.3' - Dibenzyl - benzidin $C_4H_5 \cdot CH_2 \cdot C_4H_5$

 $C_{26}H_{24}N_2 = H_2N \cdot$ NH₂. B. Durch Umlagerung des 2.2'-Dibenzyl-hydrazobenzols (Syst. No. 2075) mittels verdünnter Säuren (Carré, C. r. 148, 102, 672; Bl. [4] 5, 120, 277 Anm.; A. ch. [8] 19, 217). — Weiße Nadeln (aus Alkohol). F: 136°. Ziemlich löslich in Alkohol und Aceton. — $C_{26}H_{24}N_2 + 2 HCl + H_2O$. Weiße Nadeln (aus 5°/oiger Salzsäure). F: 214° (Zers.). Fast unlöslich in kaltem Wasser, schwer löslich in siedendem salzsäurehaltigem Wasser, ziemlich in salzsäurehaltigem Alkohol; wird durch Wasser dissoziiert. — $C_{26}H_{34}N_2 + H_2SO_4$. Weiße Nadeln (aus 5°/oiger Schwefelsäure). F: 255° (Zers.). Unlöslich in kaltem Wasser, löslich zu 0,01°/o in siedender 5°/oiger Schwefelsäure. Wird durch kaltes Wasser sehr langsam, durch siedendes Wasser rasch dissoziiert.

14. Diamin C_nH_{2n-30}N₂.

 $\alpha.\beta$ -Diphenyl- $\alpha.\beta$ -bis-[4-amino-phenyl]-āthylen $C_{2e}H_{2e}N_{3}=H_{2}N\cdot C_{e}H_{4}\cdot C(C_{e}H_{5})\cdot C(C_{e}H_{5})\cdot C_{e}H_{4}\cdot NH_{2}$.

 $a.\beta$ -Diphenyl- $a.\beta$ -bis-[4-dimethylamino-phenyl]-äthylen $C_{20}H_{20}N_3=(CH_2)_2N$ - $C_4H_4\cdot C(C_4H_5)\cdot C_4C_4\cdot N(CH_3)\cdot B$. Durch Reduktion von 15 g 4-Dimethylamino-benzophenon (Syst. No. 1873), gelöst in 150 ccm konz. Salzsäure und 50 ccm Alkohol, mit 30 g Zinn (Willstatter, Goldmann, B. 39, 3768). Neben [4-Dimethylamino-phenyl]-4-dimethylamino-triphenylmethyl]-ke ton 1) aus a.a'-Diphenyl-a.a'-bis-[4-dimethylamino-phenyl]-āthylenglykol (Syst. No. 1869) mit Zinn, Salzsäure und Alkohol (W., G.). — Citronengelbe Nadeln (aus Benzol oder Chloroform + Äther oder Petroläther). F: 224—225°; zersetzt sich über 300°. Leicht löslich in Chloroform, heißem Benzol, heißem Amylalkohol und heißem Anilin; sehr wenig löslich in Alkohol, Äther, Petroläther. Leicht löslich in Mineralsäuren. Gibt in saurer Lösung mit Oxydationsmitteln wie Eisenchlorid prächtige tiefrote Färbung. — Quecksilberchlorid-Doppelsalz. Dunkelrotbraun. Unlöslich. — $C_{30}H_{30}N_2+2HCl+PtCl_4+2H_2O$. Dunkelrotbraun. Unlöslich.

15. Diamine $C_n H_{2n-32} N_2$.

1. Phenyl-bis-[4-amino-naphthyl-(1)]-methan $C_{27}H_{22}N_2=C_6H_5\cdot CH(C_{10}H_6\cdot NH_6)_6$.

Phenyl-bis-[4-dimethylamino-naphthyl-(1)]-methan $C_{31}H_{30}N_2 = C_6H_5 \cdot CH[C_{10}H_6 \cdot N(CH_2)_3]_2$. B. Bei mehrstündigem Erhitzen von 1 Mol.-Gew. Benzaldehyd mit 2 Mol.-Gew. Dimethyl-a-naphthylamin (Bd. XII, S. 1221) in Gegenwart von Zinkchlorid oder wasserfreier Oxalsaure auf 110—120° (FRIEDLÄNDER, WELMANS, B. 21, 3129). — Krystalle (aus Benzol + Äther). F: 188—189°. Schwer löslich in Alkohol und Äther, leicht in Eisessig, Schwefelkohlenstoff und Benzol. — $C_{31}H_{20}N_2 + 2HCl + PtCl_4$. Schwer löslich.

2. 9.10-Bis-[\$\alpha\$-amino-benzyl]-anthracen \$C_{25}H_{24}N_2=C_6H_4\$ \bigcolumn{C[CH(NH_2) \cdot C_6H_5]}{C[CH(NH_2) \cdot C_6H_5]} C_6H_4. \end{C}

9.10-Bis-[a-anilino-bensyl]-anthracen $C_{40}H_{32}N_2=C_{28}H_{20}(NH\cdot C_6H_5)_2$. B. Durch 10—12-stdg. Erhitzen von 9.10-Bis-[a-brom-benzyl]-anthracen (Bd. V, S. 751) mit Anilin in Benzol (LIPPMANN, FRITSCH, A. 851, 57). — Kanariengelbe Krystalle (mit Chloroform). Schmilzt bei 263° unter Rotfärbung. Sehr wenig löslich in den gebräuchlichen Lösungsmitteln.

16. Diamine $C_n H_{2n-36} N_2$.

1. 10.10'-Diamino-dianthranyl-(9.9') $C_{28}H_{20}N_2 =$

 $C_0H_4\binom{\dot{C}}{C(NH_2)}C_0H_4 \quad C_0H_4\binom{\dot{C}}{C(NH_2)}C_0H_4. \quad \text{Vgl. hierzu Bd. VII, S. 847 Anm.}$

2. $\omega.\omega'$ -Diamino- $\omega.\omega.\omega'.\omega'$ -tetraphenyl-p-xylol, $\omega.\omega.\omega'.\omega'$ -Tetraphenyl-p-xylylendiamin $C_{2a}H_{2a}N_2 = C_0H_4[C(C_0H_5)_2 \cdot NH_2]_2$.

ω.ω'- Dianilino - ω.ω.ω'.ω'- tetraphenyl - p - xylol, N.N'.ω.ω.ω'.ω'- Hexaphenyl - p-xylylendiamin $C_{\omega}H_{\omega}N_2 = C_{\varepsilon}H_{\varepsilon}[C(C_{\varepsilon}H_{\varepsilon})_2\cdot NH\cdot C_{\varepsilon}H_{\varepsilon}]_2$. B. Aus ω.ω.ω'.ω'-Tetraphenyl-p-xylylendichlorid (Bd. V, S. 756) und Anilin in Benzol in der Siedehitze (Ulimans, Schlaepfer, B. 37, 2004). — Weiße Blättchen (aus Benzol). F: 225°. Löslich in Äther, siedendem Benzol und siedendem Eisessig, unlöslich in Wasser.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von MADELUNG, OBERWEGNER, B. 60 [1927], 2484.

17. Diamine $C_n H_{2n-46} N_2$.

 9.10-Diphenyl-9.10-bis-[4-amino-phenyl]-anthracen-dihydrid-(9.10), 9.10 - Diphenyl - 9.10 - bis - [4 - amino - phenyl] - 9.10 - dihydro - anthracen $C_{38}H_{30}N_2 = C_6H_4 \langle \frac{C(C_6H_5)(C_6H_4 \cdot NH_2)}{C(C_6H_5)(C_6H_4 \cdot NH_2)} \rangle C_6H_4.$

9.10 - Diphenyl - 9.10 - bis - [4 - dimethylamino - phenyl]-anthracen-dihydrid-(9.10) $C_{42}H_{36}N_2 = C_{38}H_{36}[N(CH_3)_3]_2$. B. Durch Erhitzen von 9.10-Dioxy-9.10-diphenyl-anthracen-dihydrid-(9.10) (Bd. VI, S. 1061) und Dimethylanilin in Eisessiglösung (HALLEE, GUYOT, C. r. 140, 344; Bl. [3] 33, 380). — Es entstehen zu je 45% Ausbeute zwei diastereoisomere

Prismen. F: oberhalb 360°. Fast unlöslich in allen Lösungsmitteln, löslich in salzsäurehaltigem Alkohol. — C₄₂H₃₈N₂ + 2HCl + PtCl₄. Gelbe Nadeln.

Krystalle. F: 275°; bedeutend leichter löslich als das Isomere. — C₄₂H₃₈N₂ + 2HCl +

PtCl₄. Goldgelbe Blättchen.

9.10 - Diphenyl - 9.10 - bis - [4 - diäthylamino - phenyl] - anthracen - dihydrid - (9.10) $C_{46}H_{46}N_2 = C_{38}H_{36}[N(C_2H_5)_2]_2$. B. Durch Erhitzen von 9.10-Dioxy-9.10-diphenyl-anthracendihydrid - (9.10) (Bd. VI, S. 1061) und Diäthylanilin in Eisessiglösung (H., G., C. r. 140, 344; Bl. [3] 33, 381). — Es entstehen zu je 45% Ausbeute zwei diastereoisomere Formen: Krystalle. F: 250°; sehr wenig löslich.

Krystalle. F: 230°; bedeutend leichter löslich als das Isomere.

- 2. 2 Methyl 9.10 diphenyl 9.10 bis [4 amino phenyl] anthracen di hydrid - (9.10), 2 - Methyl - 9.10 - diphenyl - 9.10 - bis - [4 - amino - phenyl] - $9.10 - \text{dihydro-anthracen } C_{39}H_{32}N_2 = C_6H_4 < \begin{matrix} C(C_6H_5)(C_6H_4 \cdot NH_2) \\ C(C_6H_5)(C_6H_4 \cdot NH_2) \end{matrix} > C_6H_3 \cdot CH_3.$
- 2 Methyl 9.10 diphenyl 9.10 bis [4 dimethylamino phenyl] anthracen di hydrid-(9.10) $C_{43}H_{40}N_2 = C_{39}H_{28}[N(CH_3)_2]_2$. B. Als Gemisch gleicher Teile von Diastereoisomeren durch Kondensation von 1 Mol.-Gew. 9.10-Dioxy-2-methyl-9.10-diphenyl-anthracendihydrid-(9.10) (Bd. VI, S. 1062) mit 2 Mol.-Gew. Dimethylanilin in siedender Eisessiglösung; die Isomeren lassen sich auf Grund ihrer verschiedenen Löslichkeit leicht trennen (Guyor, STAEHLING, Bl. [3] 33, 1113).

Weißes Krystallpulver. F: 312°. Sehr wenig löslich in den meisten organischen Lösungsmitteln, vor allem in Ather. Bildet mit Mineralsäuren Salze, die durch Wasser zersetzt werden.

Pikrat. Krystalle. — $C_{43}H_{40}N_2 + 2HCl + PtCl_4$. Krystalle. Weißes Krystallpulver. F: 147°. Leicht löslich in den meisten organischen Lösungsmitteln, vor allem in Åther. Bildet mit Mineralsäuren Salze, die durch Wasser zersetzt werden. - Chloroplatinat. Krystallinisch.

18. Diamine $C_n H_{2n-52} N_2$.

- 1. 9 Phenyl 9.10 bis [4 amino phenyl] 10α naphthyl anthracen dihydrid-(9.10), 9-Phenyl-9.10-bis-[4-amino-phenyl]-10-\$\alpha\$-naphthyl-9.10-dihydro-anthracen $C_{42}H_{32}N_2 = C_6H_4 < \frac{C(C_{10}H_7)(C_6H_4 \cdot NH_9)}{C(C_6H_5)(C_6H_4 \cdot NH_9)} > C_6H_4.$
- 9-Phenyl-9.10-bis-[4-dimethylamino-phenyl]-10-a-naphthyl-anthracen-dihydrid-(9.10) $C_{4a}H_{40}N_3=C_{42}H_{28}[N(CH_3)_3]_2$. B. Durch Kondensation von 9.10-Dioxy-9-phenyl-10-a-naphthyl-anthracen-dihydrid-(9.10) (Bd. VI, S. 1066) mit Dimethylanilin in siedender Eisessiglösung (Guyot, Staehling, Bl. [3] 33, 1121). Farbloses Krystallpulver.
- 2. $\omega.\omega.\omega'.\omega'$ -Tetraphenyl- $\omega.\omega'$ -bis-[4-amino-phenyl]-p-xylol $C_{44}H_{36}N_2 =$ $C_6H_4[C(C_6H_5)_2 \cdot C_6H_4 \cdot NH_2]_2$. B. Beim Kochen von $\omega.\omega.\omega'.\omega'$. Tetraphenyl-p-xylylenglykol (Bd. VI, S. 1067) mit salzsaurem Anilin in Eisessig unter Rückfluß (ULLMANN, Schlaepfer, B. 37, 2004). — Weißes Krystallpulver. F: 358°. Löslich in Xylol, schwer löslich in Alkohol und Benzol, unlöslich in Ather. — Hydrochlorid $C_{44}H_{36}N_2 + 2HCl$. Schmilzt gegen 355°. Unlöslich in Wasser.

N.N'-Diacetylderivat $C_{48}H_{40}O_2N_2=C_6H_4[C(C_6H_5)_3\cdot C_6H_4\cdot NH\cdot CO\cdot CH_2]_8$. B. Aus dem salzsauren Salz der Base beim Kochen mit Essigsäureanhydrid und Natriumaoetat (U., Sch., B. 37, 2005). — Krystalle (aus Xylol). F: 231°. Löslich in siedendem Eisessig und Xylol, sonst sehr wenig löslich.

3. $\omega.\omega.\omega'.\omega'$ -Tetraphenyl- $\omega.\omega'$ -bis-[4-amino-3-methyl-phenyl]-p-xylol $C_{46}H_{40}N_2=C_6H_4[C(C_6H_5)_2\cdot C_6H_3(CH_3)\cdot NH_2]_2$. B. Beim Kochen von $\omega.\omega.\omega'.\omega'$ -Tetraphenyl-p-xylylenglykol (Bd. VI, S. 1067) mit salzsaurem o-Toluidin in Eisessig (ULIMANN, Schlaepfer, B. 37, 2005). — Nadeln (aus Xylol). F: 277°. Schwer löslich in siedendem Alkohol, ziemlich in heißem Benzol, Xylol. — $C_{46}H_{40}N_2+2$ HCl. Nadeln (aus Alkohol). F: 259°. Unlöslich in Wasser.

ω.ω.ω'.ω'-Tetraphenyl-ω.ω'-bis-[4-methylamino-3-methyl-phenyl]-p-xylol $C_{48}H_{44}N_3=C_6H_4[C(C_6H_5)_2\cdot C_6H_3(CH_3)\cdot NH\cdot CH_3]_2$. B. Beim Erhitzen von ω.ω.ω'.ω'-Tetraphenyl-p-xylylenglykol (Bd. VI, S. 1067) mit Methyl-o-toluidin in Eisessig und konz. Salzsäure (U., Sch., B. 37, 2006). — Weißes Pulver. F: 287°. Unlöslich in Alkohol und Ather, löslich in Benzol.

C. Triamine.

1. Triamine $C_n H_{2n-3} N_3$.

1. Triamine CaHoN3.

- 1. 1.2.3-Triamino-benzol $C_6H_9N_3=C_6H_3(NH_9)_3$. B. Bei der Destillation von 3.4.5-Triamino-benzoesäure (Syst. No. 1905) (Salkowski, A. 163, 23). Krystallinisch. Erweicht beim Erhitzen und schmilzt völlig bei ca. 103°; siedet unzersetzt bei 336° (korr.); sehr leicht löslich in Wasser, Alkohol, Äther; reagiert stark alkalisch; gibt mit Eisenchlorid anfangs einen violetten, dann braunen Niederschlag (Sa.). Löst sich in konz. Schwefelsäure, welcher eine Spur Salpetersäure zugesetzt ist, mit dunkelblauer Farbe (Sa.). Reduziert Silbernitratlösung schon in der Kälte (Sa.). Gibt beim Kochen mit Eisessig 4-Acetamino-2-methyl-benzimidazol (Syst. No. 3715) (Sa., Rudolph, B. 10, 1693). $C_6H_9N_3+2$ HCl. Nadeln. Sehr leicht löslich in Wasser (Sa.). $C_6H_9N_3+2$ HCl. Shatter (Sa.).
- 5-Nitro-1.2.3-triamino-benzol $C_6H_8O_3N_4=O_2N\cdot C_6H_9(NH_2)_3$. B. Beim Behandeln von 2.4.6-Trinitro-anilin (Bd. XII, S. 763) mit wäßr. Schwefelammonium (NIETZKI, HAGENBACH, B. 30, 543). Rote, goldschimmernde Schuppen (aus Alkohol). Zersetzt sich bei 260°, ohne zu schmelzen. Gibt in Eisessig mit wenig Essigsäure-anhydrid ein (nicht näher beschriebenes) Monoacetylderivat, das sich durch Behandeln mit salpetriger Säure und nachfolgende Verseifung in 6-Nitro-4-amino-benztriazol nebenstehender Formel (Syst. No. 3955) O₂N·NH
- 5-Nitro-1.2.3-tris-acetamino-benzol $C_{12}H_{14}O_5N_4=O_2N\cdot C_6H_8(NH\cdot CO\cdot CH_3)_3$. B. Aus 5-Nitro-1.2.3-trismino-benzol mit Essigsäureanhydrid und Natriumscetat (NIETZKI, HAGENBACH, B. 30, 544). F: 243°. Liefert mit verd. Schwefelsäure 6-Nitro-4-amino-2-methyl-benzimidazol (Syst. No. 3715).
- 2. 1.2.4-Triamino-benzol C₆H₈N₃ = C₆H₈(NH₂)₃. B. Bei der Reduktion von 2.4-Dinitro-anilin (Bd. XII, S. 747) mit Zinn und Salzsäure (Salkowski, A. 174, 265). Durch Reduktion von 4-Nitroso-phenylendiamin-(1.3) bezw. 2-Amino-p-chinon-imid-(4)-oxim-(1) (Syst. No. 1874) mit Zinn und Salzsäure (Bertels, B. 37, 2277; vgl. Täuber, Walder, B. 38, 2117). Aus 2.4-Diamino-azobenzol (Chrysoidin; Syst. No. 2183) durch reduktive Spaltung (Griess bei A. W. Hofmann, B. 10, 390; vgl. Witt, B. 10, 658; Bertels). Darst. Man reduziert 2.4-Dinitro-anilin mit Zinn und Salzsäure (2 Vol. konz. Salzsäure, 1 Vol. Wasser) auf dem Wasserbade, dampft die erhaltene Lösung bis zur Krystallbildung ein und fällt mit etwas konz. Salzsäure und dem gleichen Volum Alkohol; man reinigt das sich ausscheidende salzsaure Salz durch wiederholtes Lösen in wenig Wasser und Fällen mit Alkohol und etwas Salzsäure; das trockne salzsaure Salz übergießt man mit konz. Kalilauge und schüttelt die noch warme Lösung mit einem Gemisch aus Äther und Chloroform aus (Hinsberg, B. 19, 1253). Beim Behandeln von 2.4-Diamino-azobenzol-sulfonsäure-(4') (Syst. No. 2183) mit Zinn und Salzsäure (Griess, B. 15, 2196). Blättchen (aus Chloroform). Schmilzt unterhalb 100° (Hi., B. 19, 1254). Siedet gegen 340° (S.). Sehr leicht löslich in Wasser und Alkohol, schwer

in Chloroform, sehr schwer in Äther (G., B. 15, 2197). 1.2.4-Triamino-benzol bräunt sich, besonders in feuchtem Zustande, rasch an der Luft (G., B. 15, 2197). Die wäßr. Lösung wird durch Eisenchlorid weinrot gefärbt (G., B. 15, 2197). — Beim Leiten von Sauerstoff in die wäßr. Lösung von essigsaurem 1.2.4-Triamino-benzol erfolgt Bildung von Triamino-phenazin (Syst. No. 3766) (E. MÜLLER, B. 22, 857). Läßt man salzsaures 1.2.4-Triamino-benzol mit Benzaldehyd in Alkohol mehrere Tage stehen, so bildet sich 1-Benzyl-5 oder 6-amino-2-phenylbenzimidazol H₂N·C₆H₃ N(CH₈·C₆H₅) C·C₆H₅ (Syst. No. 3719) (HINSBERG, KOLLER, B. 29, 1502). 1.2.4-Triamino-benzol liefert mit Glyoxal oder dessen Natriumdisulfitverbindung in wäßr. Lösung 6-Amino-chinoxalin (Syst. No. 3716) (HI., A. 237, 345). Beim Erwärmen von salzsaurem 1.2.4-Triamino-benzol mit Benzil in verd. Alkohol entsteht 6-Amino-2.3-diphenyl-chinoxalin (Syst. No. 3724) (HI., A. 292, 254). 1.2.4-Triamino-benzol liefert mit Phenanthrenchinon (Bd. VII, S. 796) Amino-phenanthrophenazin (Syst. No. 3725) (WITT, B. 19, 445). Läßt sich durch Kochen mit Ameisensäure und Verseifen der entstandenen Formylverbindung mit verd. Schwefelsäure in 5-Amino-benzimidazol (Syst. No. 3715) überführen (Bayer & Co., D. R. P. 181783; C. 1907 I, 1715). 1.2.4-Triamino-benzol gibt mit Alloxan (Syst. No. 3627) das 6 oder 7-Amino-3-oxo-chinoxalindihydrid-carbonsäure-(2)-ureid (Syst. No. 3778) (HI., A. 292, 256). — C₆H₆N₃ + 2 HCl (S.; HI., B. 19, 1253). Nädelohen; leicht löslich in Wasser, schwer in Alkohol und in konz. Salzsäure (HI.). — C₆H₆N₃ + H₂SO₄ (S.). Nadeln oder Prismen; schwer löslich in kaltem Wasser (G., B. 15, 2197).

- 2.4 Diamino 1 dimethylamino benzol C₈H₁₃N₃ = (H₂N)₂C₈H₃·N(CH₃)₂. B. Aus N.N-Dimethyl-2.4-dinitro-anilin (Bd. XII, S. 749) mit Zinn und Salzsäure (Wurster, Sendtner, B. 12, 1806). Aus N¹.N¹-Dimethyl-N⁴-formyl-2-nitro-phenylendiamin-(1.4) (S. 121) mit Zinn und Salzsäure (Pinnow, Pistor, B. 27, 605). Aus [3-Nitro-4-dimethylamino-phenyl]-oxamid-säure-äthylester (S. 122) mit Zinn und Salzsäure (Wu., Se., B. 12, 1805). Nadeln (aus Ligroin). F: 44° (Wu., Se.). Zersetzt sich zum größten Teil beim Destillieren unter gewöhnlichem Druck (Schuster, Pinnow, B. 29, 1054). Kp₂₀: 218,9°; Kp₃₀: 207,1°; Kp₄₃: 199°; Kp₃₅: 188° (korr.) (Pinnow, Wegner, B. 30, 3116); Kp₂₂: 178° (Sch., Pin., B. 29, 1053). Sehr leicht löslich in Wasser (Wu., Se.). Färbt sich an der Luft sehr bald dunkelblau (Wu., Se.). Die wäßr. Lösung wird durch Oxydationsmittel rot (Wu., Se.). Beim Kochen mit Easigsäureanhydrid entstehen 1-Dimethylamino-2.4-bis-acetamino-benzol (S. 297) und 5-Acetamino-1.2-dimethyl-benzimidazol (Syst. No. 3715) (Pin., Pist.; Sch., Pin.; ygl. Wu., Se.). C₈H₁₃N₃ + 2 HCl. Kryställchen. F: 225° (Pin., We.). C₈H₁₃N₃ + 2 HBr. Schmilzt bei 207° unter Zersetzung (Pin., We.). C₈H₁₃N₃ + 2 HI + ½C₂H₄O. Blätter (aus absol. Alkohol). Schmilzt bei 190° unter Zersetzung (Pin., We.).
- 2-Amino-4 oder 1-methylamino-1 oder 4-dimethylamino-benzol $C_9H_{16}N_3=CH_3$: $NH\cdot C_8H_2(NH_2)\cdot N(CH_3)_3$. B. Aus dem N^1 oder N^4 -Nitroso- N^1 - N^4 -Ni-oder N^1 - N^4 -trimethyl-2-nitro-phenylendiamin-(1.4) (S. 122) mit Zinn und Salzsäure (Wurster, Schobig, B. 12, 1813). Nadeln (aus Ligroin). F: 90°. Kp: 294°. Löslich in Wasser. Gibt mit NaNO₂ in essigsaurer Lösung eine tiefolaue Färbung. $C_9H_{18}N_3+2HCl+2SnCl_2$. Krystalle.
- 1-Amino-2.4-bis-dimethylamino-benzol $C_{10}H_{17}N_3=H_2N\cdot C_0H_2[N(CH_3)_2]_2$. B. Das Zinndoppelsalz entsteht bei allmählichem Eintragen von 50 g salzsaurem N.N.N'.N'-Tetramethyl-4-nitroso-phenylendiamin-(1.3) (S. 57) in die Lösung von 196 g SnCl₂ in 110 g Salzsäure (D: 1,15) (Pinnow, Wegner, B. 30, 3111). Erstarrt nicht bei —18°. Kp₁₁₃: 209,4°; Kp₂₆: 198,5°; Kp₄₅: 180,5°. D*: 1,0203. Atzt die Haut stark. $C_{10}H_{17}N_3+2$ HCl. Krystallpulver. F: 164°. $C_{10}H_{17}N_3+2$ HBr. F: 179°. $C_{10}H_{17}N_3+2$ H. Sechsseitige Prismen. Schmilzt bei 175° unter Zersetzung. Pikrat $C_{10}H_{17}N_3+2$ $C_{6}H_{2}O_{7}N_3$. Hochgelbe Prismen. Schmilzt bei 169° unter Zersetzung. Leicht löslich in Benzol. $C_{10}H_{17}N_3+2$ HCl + 28 nCl₂. Krystalle. F: 171°.
- 1.2.4-Tris-dimethylamino-bensol $C_{12}H_{21}N_3 = C_6H_3[N(CH_3)_2]_3$. B. Man erhitzt 30 g bromwasserstoffsaures 2.4-Diamino-1-dimethylamino-bensol (s. o.) mit 18 g Methylalkohol im geschlossenen Rohr 5 Stdn. auf 130—140° und dann mit 2 g bei 0° gesättigter Bromwasserstoffsäure und 7-g Methylalkohol 10 Stdn. auf 130—140°; hierauf erhitzt man mit Ammoniak (D: 0,91) 4 Stdn. auf 190—195° (PINNOW, WEGNER, B. 30, 3117). Flüssig. Kp_{126} : 210°; Kp_{26} : 204° (korr.); Kp_{40} : 184° (korr.).
- 1.2.4-Tris-dimethylamino-benzol-tris-jodmethylat $C_{15}H_{20}N_3I_3=C_6H_3[N(CH_8)_3I]_3$. B. Man erhitzt 1.2.4-Tris-dimethylamino-benzol in Methylalkohol oder Benzol mit etwas mehr als der berechneten Menge Methyljodid 7 Stdn. auf 100° (PINNOW, WEGNER, B. 30, 3117). Nadeln mit 2 Mol. Methylalkohol (aus Methylalkohol). F: 164,5° (Zers.). Leicht löslich in Wasser und Alkohol. Verliert bei 100° den Krystallmethylalkohol und 1 Mol.-Gew. Methyljodid.
- 2.4-Diamino-l-anilino-bensol, 2.4-Diamino-diphenylamin $C_{12}H_{12}N_3 = (H_2N)_1C_6H_3$. NH·C₆H₅. B. Bei allmählichem Eintragen von 2.4-Dinitro-diphenylamin (Bd. XII, S. 751)

in mit 2°/oiger Salzsäure angerührte Eisenspäne; man fällt mit überschüssiger Soda und kocht den Niederschlag mit Wasser aus (Nietzki, Almenbäder, B. 28, 2969). Durch Reduktion des 2.4-Dinitro-diphenylamins mit Zinn und Salzsäure (Kehrmann, Messinger, B. 25, 1633). Durch Reduktion von 2.4-Dinitro-diphenylhydroxylamin (Syst. No. 1932) in Methylalkohol mit Zinkstaub und Eisessig (Wielland, Gambarjan, B. 39, 3042). — Nadeln. F: 130° (N., A.). — Wird beim Kochen mit wäßr. Ammoniak und Braunstein zu einer Verbindung C₁₂H₁₀ON₂ (s. u.) oxydiert (Nietzki, Simon, B. 28, 2973). Beim Erhitzen mit Bleidioxyd entsteht 2-Amino-phenazin (Syst. No. 3719) (Besthorn bei O. Fischer, B. 29, 1875). Läßt man die wäßr. Lösung des salzsauren 2.4-Diamino-diphenylamins mit der alkoh. Lösung von 1 Mol.-Gew. Benzil einen Tag stehen, so entsteht 6-Amino-1.2.3-triphenyl-chinoxalinium-chlorid H₂N·C₆H₃ (Syst. No. 3724) (K., M.).

chlorid $H_2N \cdot C_6H_3$ $N(C_6H_5)(Cl) = C \cdot C_6H_5$ (Syst. No. 3724) (K., M.). Verbindung $C_{12}H_{10}ON_2$. B. Beim Kochen von 2.4-Diamino-diphenylamin mit Ammoniak und Braunstein (Nietzki, Simon, B. 28, 2973). — Gelbbraune Blätter (aus Benzol). F: 152°. Unlöslich in Alkalien. Wird durch Essigsäureanhydrid nicht verändert.

- 1-Amino-4-dimethylamino-2-anilino-benzol, 2-Amino-5-dimethylamino-diphenylamin $C_{14}H_{17}N_3=(CH_3)_*N\cdot C_6H_3(NH_2)\cdot NH\cdot C_6H_5$. B. Scheint in geringer Menge neben 2.4'-Diamino-5-dimethylamino-diphenyl (S. 306) zu entstehen, wenn man 4-Dimethylamino-azobenzol (Syst. No. 2172) mit salzsaurer Zinnehlorürlösung erwärmt (infolge Umlagerung des nicht isolierten 4-Dimethylamino-hydrazobenzols) und konnte durch Behandlung mit Salicylaldehyd unter Mitwirkung des Luftsauerstoffs als 1-Phenyl-6-dimethylamino-2-[2-oxy-phenyl]-benzimidazol (Syst. No. 3770) isoliert werden (Jacobson, Boyd, A. 303, 360).
- 1-Amino-2.4-dianilino-beneol $C_{18}H_{17}N_3 = H_2N \cdot C_6H_3(NH \cdot C_6H_5)_2$. B. Man trägt salzsaures N.N'-Diphenyl-4-nitroso-phenylendiamin-(1.3) bezw. 2-Anilino-chinon-anil-(4)-oxim-(1) (Syst. No. 1874) in einen Überschuß von Zinkstaub und Essigsäure ein (O. FISCHER, GMELIN, A. 286, 177). Nadeln (aus Benzol + Ligroin). F: 107° (O. F., Hepp, A. 255, 146). Sehr schwer löslich in Wasser und Ligroin, leicht in Äther und Benzol (O. F., Gm.). Gibt in Äther mit Bleidioxyd 2-Anilino-chinon-imid-(1)-anil-(4) (Syst. No. 1874) (O. F., Heller, B. 26, 384). Wird von salpetriger Säure in 2-Anilino-chinon-anil-(4) (Syst. No. 1874) übergeführt (O. F., Heller). Liefert mit Benzoin bei 160° 7-Anilino-1.2.3-triphenyl-chinoxalindihydrid (Syst. No. 3723) (O. F., B. 24, 722). Beim Kochen mit Ameisensäure entsteht 1-Phenyl-6-formylanilino-benzimidazol (Syst. No. 3715) (O. F., Gm.). Beim Kochen mit CS₂ und Alkohol wird 1-Phenyl-6-anilino-benzimidazolthion (Syst. No. 3774) erhalten (O. F., Gm.).
- 2.4 Bis dimethylamino 1 [2.4 dinitro benzalamino] benzol $C_{17}H_{12}O_4N_5 = [(CH_3)_2N]_3C_6H_3\cdot N:CH\cdot C_6H_3(NO_3)_2$. B. Aus N.N.N'.N'.Tetramethyl-4-nitroso-phenylendiamin-(1.3) (S. 57) und 2.4-Dinitro-toluol (Bd. V, S. 339) in siedendem Alkohol in Gegenwart von calcinierter Soda (Sachs, Appenzeller, B. 41, 112). Violettrote Nadeln mit grünem Bronzeglanz (aus Benzol). F: 209°. Unlöslich in Wasser, fast unlöslich in Ather, Petroläther, Ligroin, schwer löslich in Alkohol, löslich in siedendem Benzol und Eisessig mit violetter Farbe. Spaltet beim Erhitzen mit Säuren 2.4-Dinitro-benzaldehyd ab.

Chinon-mono-[2.4-diamino-anil] $C_{12}H_{11}ON_3 = H_2N \cdot \bigcirc N : \bigcirc O$. Vgl. das

bei 4'-Oxy-2.4-diamino-diphenylamin (Syst. No. 1850) angeordnete Indophenol C₁₂H₁₁ON₃.

Chinon-bis-[2.5-diamino-anil], Bandrowskische Base C₁₈H₁₈Ne = C₈H₄[:N-C₈H₃(NH₈)₈]₃ ¹). B. Beim Durchleiten von Sauerstoff durch eine Lösung von p-Phenylendiamin in wäßr. Ammoniak oder beim Versetzen einer solchen Lösung mit Kaliumferricyanid (Bandrowski, M. 10, 124; B. 27, 480). Durch Oxydation von p-Phenylendiamin in wäßr. Lösung mit Wasserstoffperoxyd bei 30° (E. Erdmann, B. 37, 2907). — Krystallisiert mit 1 Mol. Wasser in dunkelgranatroten Krystallen mit grünem Reflex oder in bronzefarbenen Blättern; wird bei 100° wasserfrei und schmilzt dann bei 230—231° (Zers.) (B.). Scheidet sich aus Nitrobenzol oder Anilin wasserfrei in grün metallisch glänzenden Krystallen aus (Willstätter, Mayer, B. 37, 1506). Die wasserfreien Krystalle schmelzen bei 238—238,5° (Zers.) (W., M.), 242—243° (E. Erd.). Schwer löslich in Wasser und den gewöhnlichen organischen Lösungsmitteln (B.). Löst sich in verd. Salzsäure mit gelbbrauner Farbe, die beim Kochen in Kirschrot umschlägt (E. Erd.). — Wird von Schwefelammonium zu N.N'-Bis-[2.5-diamino-phenyl]-p-phenylendiamin (B.). Beim Erhitzen mit Schwefel entsteht ein schwarzer Farbstoff (Cassella & Co., D. R. P. 167769; C. 1906 I, 1127). Verwendung zur Darstellung indulinartiger Farbstoffe: Akt.-Ges. f. Anilinf., D. R. P. 79410; Frdl. 4, 446.

¹⁾ Zur Frage der Konstitution vgl. auch die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von A. G. Green, Soc. 103, 933; Heiduschka, Goldstein, Ar. 254, 584; Ritter, Schmitz, Am. Soc. 51, 1587.

Chinon - imid - (1) - [4 - amino - $\frac{1}{2}$ - (2.4 - dinitro - anilino) - anil] - (4) $C_{18}H_{14}O_4N_6$, s. nebenstehende Formel. Vgl. das Indamin $C_{18}H_{14}O_4N_6$ (8. 71).

2.4 - Dianilino - 1 - salicylalamino - benzol $C_{25}H_{21}ON_3$ (Formel I), vielleicht auch 1-Phenyl-6-anilino-2-[2-oxy-phenyl]-benzimidasoldihydrid $C_{25}H_{21}ON_3$ (Formel II). Zur Konstitution vgl. O. FISCHER, B. 25, 2826. — B. Aus 1-Amino-2.4-dianilino-benzol

 $I. \ \ \overset{C_0H_5 \cdot NH \cdot C_0H_5}{ \\ \hspace{0.5cm} \cdot N : CH \cdot C_0H_4 \cdot OH} \qquad \qquad II. \ \ \overset{C_0H_5 \cdot NH \cdot }{ \\ \hspace{0.5cm} \cdot NH \cdot C_0H_4 \cdot OH}$

und Salicylaldehyd auf dem Wasserbade (O. FISCHEB, GMELIN, A. 286, 180). — Dunkelgelbe Prismen (aus Benzol + Ligroin). — Geht beim wiederholten Umkrystallisieren aus einem Gemisch von absol. Alkohol und etwas Benzol in 1-Phenyl-6-anilino-2-[2-oxy-phenyl]-benzimidazol (Syst. No. 3770) über.

- 2.4-Diamino-1-acetamino-bensol $C_0H_{11}ON_3 = (H_2N)_2C_0H_3 \cdot NH \cdot CO \cdot CH_3$. B. Aus 2.4-Dinitro-acetanilid (Bd. XII, S. 754) durch Eisen und verd. Essigsäure (BAYER & Co., D. R. P. 151204, 183843; C. 1904 I, 1382; 1907 I, 1607). Prismatische Krystalle. F: 158° bis 159°; sehr leicht löslich in heißem Wasser, schwer in kaltem Wasser, Alkohol und Benzol (B. & Co., D. R. P. 151204, 183843). Beim Erhitzen über den Schmelzpunkt oder beim Kochen mit Eisessig entsteht 5-Amino-2-methyl-benzimidazol (Syst. No. 3715) (B. & Co., D. R. P. 183843). Verwendung zur Darstellung gelber Schwefelfarbstoffe: Höchster Farbw., D. R. P. 161615; C. 1905 II, 367; B. & Co., D. R. P. 201836; C. 1908 II, 1142. Verwendung zur Darstellung von Azofarbstoffen: B. & Co., D. R. P. 151204.
- **2.4-Bis-dimethylamino-1-acetamino-bensol** $C_{18}H_{19}ON_3=[(CH_3)_2N]_2C_9H_3\cdot NH\cdot CO\cdot CH_3$. B. Bei 10-stdg. Kochen von 2,5 g 1-Amino-2.4-bis-dimethylamino-benzol (S. 295) mit 10 g Eisessig (Pinnow, Wegner, B. 30, 3113). Tafeln (aus Ligroin). F: 85°. Leicht löslich in allen organischen Lösungsmitteln, ausgenommen Ligroin. Die kalt gesättigte wäßr. Lösung trübt sich beim Erwärmen.
- 2-Amino-1.4-bis-acetamino-bensol $C_{10}H_{13}O_2N_3=H_2N\cdot C_4H_3(NH\cdot CO\cdot CH_3)_2$. B. Beim allmählichen Eintragen von 5 Tln. N.N'-Diacetyl-2-nitro-phenylendiamin-(1.4) (S. 121) in ein siedendes Gemisch aus 2 Tln. $60^{\circ}/_{\circ}$ iger Essigsäure, 50 Tln. Wasser und 10 Tln. Eisenpulver (Bülow, Mann, B. 30, 986). Kryställchen. F: 231—232°. Leicht löslich in den gewöhnlichen Mitteln.
- 1-Dimethylamino 2.4 bis acetamino bensol $C_{12}H_{17}O_2N_3 = (CH_2)_2N \cdot C_2H_2(NH \cdot CO \cdot CH_2)_2$. B. Entsteht neben 5-Acetamino 1.2-dimethyl-benzimidazol (Syst. No. 3715) bei 4-stdg. Kochen von 2.4-Diamino 1-dimethylamino benzol mit 4—5 Th. Essigsäureanhydrid (Schuster, Pinnow, B. 29, 1054; vgl. Wurster, Sendther, B. 12, 1806). Durch Einw. von Essigsäureanhydrid auf die mit Natriumacetat versetzte Lösung, welche bei der Reduktion des N.N-Dimethyl-2.4-dinitro-anilins (Bd. XII, S. 749) mit Zinn und Salzsäure entsteht (Pinnow, B. 33, 418). Krystallisiert aus Wasser mit 1½, H_2O (Sch., P.). Schmilzt wasserhaltig bei 82° (W., Sz.). Krystallisiert wasserfrei aus Benzol (W., Sz.) oder aus Essigester (Sch., P.). Schmilzt wasserfrei bei 153° (W., Sz.), 151,5—152,5° (Sch., P.).
- 1-Anilino-2.4-bis-acetamino-benzol, 2.4-Bis-acetamino-diphenylamin $C_{1e}H_{17}O_{e}N_{3}=C_{e}H_{5}\cdot NH\cdot C_{e}H_{2}(NH\cdot CO\cdot CH_{3})_{2}$. B. Aus 2.4-Diamino-diphenylamin (8. 295) und Essignäure-anhydrid (Nietzei, Almenräder, B. 28, 2970). Nadeln. F: 188°.
- Chinon bis [3.5 bis acetamino anil]. Cath $_{36}$ Da $_{4}$ N $_{6}$ = CaHa[:N·CaH3(NH·CO·CH3)2]2. B. Aus Chinon-bis-[2.5-diamino-anil] (S. 296) und Essigsäureanhydrid (Bandeowski, B. 27, 483). Ziegelrote Krystalle (aus Nitrobenzol), dunkelrote Krystalle mit 2 H2O (aus viel 75°/cigem Alkohol). F: 294°. Schwer löslich in Alkohol, ziemlich leicht in warmen Eisessig und Nitrobenzol. Beim Erwärmen mit salzsaurem Phenylhydrazin in Alkohol entsteht N.N'-Bis-[2.5-bis-acetamino-phenyl]-p-phenylendiamin (S. 299). Beim Kochen mit Zink und Essignäure bildet sich 1.4-Bis-[6-acetamino-2-methyl-benzimidazolyl-(1)]-benzol (Syst. No. 3715).
- 4 oder 1 Dimethylamino 2 acetamino 1 oder 4 [acetylmethylamino] bensol $C_{12}H_{12}O_2N_3 = (CH_2)_2N \cdot C_2H_2(NH \cdot CO \cdot CH_2) \cdot N(CH_2) \cdot CO \cdot CH_2$. B. Aus 2-Amino-4 oder 1-methylamino-1 oder 4-dimethylamino-benzol (S. 295) und Essigsäureanhydrid (WURSTER, SCHOBIG, B. 12, 1813). Blättchen (aus Wasser). F: 184°.

¹⁾ Zur Frage der Konstitution vgl. die Anmerkung auf S. 296.

- 2.4 Bis dimethylamino 1 benzamino benzol $C_{17}H_{21}ON_3 = [(CH_3)_2N]_2C_0H_3 \cdot NH \cdot CO \cdot C_0H_5$. B. Aus 1,8 g 1-Amino-2.4-bis-dimethylamino-benzol und 1,4 g Benzoylchlorid in Äther in Gegenwart von Kaliumcarbonat (PINNOW, WEGNEB, B. 80, 3113). Öl. Pikrat $C_{17}H_{21}ON_3 + C_6H_3O_7N_3$. Hellgelbes Krystallpulver. F: 128°. Leicht löslich in Aceton, Chloroform und Methylalkohol, schwer in kaltem Äthylalkohol, Äther, Ligroin.
- 1.2.4-Tris-benzamino-benzol $C_{27}H_{21}O_3N_3 = C_6H_3(NH\cdot CO\cdot C_5H_5)_3$. B. Aus 1.2.4-Triamino-benzol mit Benzoylchlorid und Natronlauge (Hinsberg, v. Udránszky, A. 254, 256). Schwer lösliche Nädelchen (aus Eisessig). F: 260°.
- [2.4 Bis dimethylamino phenyl] carbamidsäure methylester $C_{12}H_{19}O_2N_3 = [(CH_3)_2N]_2C_6H_3 \cdot NH \cdot CO_2 \cdot CH_3$. B. Aus 1 g 1-Amino-2.4-bis-dimethylamino-benzol, 0,6 g Chlorameisensäuremethylester in Äther in Gegenwart von 1 g Na₂CO₃ (Pinnow, Wegner, B. 30, 3114). Pikrat $C_{12}H_{19}O_2N_3 + 2C_6H_3O_7N_3$. Hellgelbe Blättchen (aus Alkohol-Ather). F: 167°. Leicht löslich in Aceton, schwer in Äther, kaltem Chloroform und Alkohol.
- [2.4-Bis-dimethylamino-phenyl]-harnstoff $C_{11}H_{18}ON_4=[(CH_3)_8N]_2C_8H_3\cdot NH\cdot CO\cdot NH_2$. B. Aus schwefelsaurem 1-Amino-2.4-bis-dimethylamino-benzol und Kaliumcyanat (Pinnow, Wegner, B. 30, 3114). Nadeln (aus Benzol). F: 173°. Unlöslich in Ligroin, schwer löslich in warmem Äther, Tetrachlorkohlenstoff und kaltem Benzol, leicht in heißem Aceton, Benzol und Chloroform.
- N Phenyl N' [2.4 bis dimethylamino phenyl] harnstoff $C_{17}H_{12}ON_4 = [(CH_9)_8N]_2CH_3 \cdot NH \cdot CO \cdot NH \cdot C_8H_5$. B. Aus 1 g 1-Amino-2.4-bis-dimethylamino-benzol und 0,7 g Phenylisocyanat in Äther (P., W., B. 30, 3114). Prismen (aus Äther). F: 175°. Leicht löslich in allen organischen Lösungsmitteln, außer in Ligroin, Tetrachlorkohlenstoff und kaltem Äther
- N•Phenyl•N'•[2.4 bis dimethylamino phenyl] thioharnstoff $C_{17}H_{22}N_4S = [(CH_3)_2N]_2C_6H_3\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus 0,7 g 1-Amino-2.4-bis-dimethylamino-benzol und 0,6 g Phenylsenföl in Alkohol (P., W., B. 30, 3114). Krystalle (aus Petroläther). F: 143°. Leicht löslich in Schwefelkohlenstoff und warmem Chloroform, schwer in Ligroin, Aceton und Methylalkohol, unlöslich in Äther.
- N.N'-Bis-[3-amino-4-acetamino-phenyl]-harnstoff $C_{17}H_{20}O_3N_6=[CH_3\cdot CO\cdot NH\cdot C_8H_3(NH_2)\cdot NH]_2CO$. B. Aus 2.4-Diamino-1-acetamino-benzol (S. 297) durch Einleiten von Phosgen in die wäßr. Lösung bei Gegenwart von salzsäurebindenden Mitteln (Cassella & Co., D. R. P. 166680; C. 1906 I, 520). Farbloses Pulver. F: oberhalb 300°. Schwer löslich in Wasser, fast unlöslich in allen gebräuchlichen Lösungsmitteln sowie in Säuren und Alkali. Gibt mit Schwefel verschmolzen, einen gelben Schwefelfarbstoff.
- 2.4-Bis-dimethylamino-1-[4-nitro-a-cyan-benzalamino]-benzol, 2.4-Bis-dimethylamino-anil des 4-Nitro-benzoylcyanids, [2.4-Bis-dimethylamino-phenyl]-[μ -cyan-azomethin]-[4'-nitro-phenyl] $C_{18}H_{19}O_2N_5 = [(CH_3)_2N]_2C_6H_3\cdot N:C(CN\cdot C_6H_4\cdot NO_2$. B. Aus N.N.N'.N'-Tetramethyl-4-nitroso-phenylendiamin-(1.3) (8.57) und 4-Nitro-benzylcyanid (Bd. JX, S. 456) in siedendem Alkohol in Gegenwart von etwas Piperidin (Sachs, APPENZELLER, B. 41, 112). Im suffallenden Licht grünbronzeglänzende, im durchfallenden Licht dunkelrote Krystallschuppen oder Nadeln (aus Alkohol). F: 130°. Unlöslich in Wasser, schwer löslich in Äther und Petroläther, sonst ziemlich leicht löslich mit roter Farbe. Wird beim Erwärmen mit verd. Mineralsäuren gespalten.
- 2.4.4'-Triamino-diphenylamin $C_{12}H_{14}N_4 = (H_2N)_2C_6H_3\cdot NH\cdot C_6H_4\cdot NH_2$. B. Durch Reduktion von 2'.4'- Dinitro-4-amino-diphenylamin (S. 79) mit Zinn und Salzsäure (Kehrmann, Messinger, B. 25, 1634) oder mit Zinkstaub und Salzsäure (Barbier, Sisley, Bl. [3] 33, 997; A. ch. [8] 13, 103). Aus salzsaurem 2.4.4'-Triamino-diphenylamin und Benzil entsteht 1-[4-Amino-phenyl]-6-amino-2.3-diphenyl-chinoxaliniumchlorid

entsteht 1-[4-Amino-phenyl]-6-amino-2.3-diphenyl-chinoxaliniumchlorid $H_2N\cdot C_8H_3$ $N=\frac{C\cdot C_6H_5}{N(C_6H_4\cdot NH_2)(Cl)-C\cdot C_6H_5}$ (Syst. No. 3724) (K., M.).

- 2.4-Diamino-4'-dimethylamino-diphenylamin C₁₄H₁₈N₄ = (H₂N)₂C₆H₃·NH·C₆H₄·N(CH₃)₂. B. Aus 2'.4'-Dinitro-4-dimethylamino-diphenylamin (S. 79) durch Reduktion mit Zinn und Salzsäure (Kehemann, Messinger, B. 25, 1635). Man behandelt eine währ. Lösung von salzsaurem 4-Nitroso-dimethylanilin mit Zinkstaub bis zur Entfärbung, versetzt dann mit m-Phenylendiamin und Natriumhypochlorit, filtriert das entstandene Indamin ab und reduziert es in essigsaurer Lösung mit Zinkstaub (GNEHM, Weber, J. pr. [2] 69, 230). Krystalle (aus verd. Alkohol). F: 70—75°; leicht löslich in Alkohol, Äther, Benzol, Aceton, Chloroform, Essigester (G., W.).
- N.N' Bis [2.5 diamino phenyl] p phenylendiamin ¹) $C_{19}H_{20}N_6 = C_6H_4[NH \cdot C_8H_3(NH_2)_2]_2$ ¹). B. Aus Chinon-bis-[2.5-diamino-anil] (S. 296) in viel Wasser durch Reduktion

¹⁾ Zur Frage der Konstitution vgl. die Anmerkung auf S. 296.

mit Schwefelammonium (BANDROWSKI, B. 27, 482). — Krystalle. Sintert bei 160°, schmilzt gegen 230° unter Zersetzung; unlöslich in Alkohol, Ather, Benzol, Chloroform, sehr schwer löslich in kaltem Wasser, leicht in heißem (B.). — Beim Erhitzen mit Schwefel entsteht ein schwarzer Schwefelfarbstoff (Cassella & Co., D. R. P. 167769; C. 1906 I, 1127).

2.4.4'-Tris-benzalamino-diphenylamin $C_{23}H_{32}N_4 = (C_0H_3 \cdot CH : N)_3C_0H_3 \cdot NH \cdot C_0H_4 \cdot N : CH \cdot C_0H_3 \cdot B$. Durch Schütteln der Lösung des salzsauren 2.4.4'-Triamino-diphenylamins (S. 298) mit Benzaldehyd und Neutralisieren mit Natronlauge (Grondberg, B. 33, 216). - Gelbe Flocken (aus Ather + Petroläther). Leicht löslich in Alkohol, unlöslich in Wasser. - Geht durch Erwärmen mit Salzsäure in die Verbindung C45H40N8 (s. u.) über.

Verbindung $C_{48}H_{40}N_8$. B. Durch mehrstündiges Kochen von 2.4.4 Tris-benzalaminodiphenylamin (s. o.) mit 15% iger Salzsäure (G., B. 33, 216). — Flocken bezw. hellgraues Pulver. F: 122—124%. Leicht löslich in Alkohol, unlöslich in Wasser. — Oxalat $C_{48}H_{40}N_8 + 2 C_8H_8O_4$. Hellgrünes Pulver (aus Alkohol + Ather).

N.N' - Bis - [2.5 - bis - acetamino - phenyl] - p - phenylendiamin 1) $C_{26}H_{26}O_4N_6 = C_6H_6[NH\cdot C_6H_3(NH\cdot CO\cdot CH_2)_2]_2$ 1). B. Das Hydrochlorid entsteht beim Kochen von 1 Tl. Chinon-bis-[2.5-bis-acetamino-anil] (8. 297) mit 1 Tl. salzsaurem Phenylhydrazin und 300 Tln. Alkohol (Bandrowski, B. 27, 484). — Krystalle. Sehr schwer löslich in Alkohol und anderen üblichen Lösungsmitteln. - Beim Erhitzen mit Zink und Essigsäure entsteht 1.4-Bis-[6-acetamino-2-methyl-benzimidazolyl-(1)]-benzol (Syst. No. 3715). — $C_{18}H_{28}O_4N_6+2HCl$. Krystalle. Gibt an kaltes Wasser alle Saure ab.

2.4.4'-Tris - [4-nitro-bensamino] - diphenylamin $C_{59}H_{23}O_9N_7 = (O_8N\cdot C_6H_4\cdot CO\cdot NH)_2C_6H_3\cdot NH\cdot C_6H_4\cdot NH\cdot CO\cdot C_6H_4\cdot NO_2\cdot B.$ Aus 2.4.4'-Triamino-diphenylamin, 4-Nitrobenzoylchlorid (Bd. IX, S. 394) und Natronlauge (Kym, B. 87, 1071). — Gelblich-grüne Blättchen mit 1 H₂O (aus Eisessig + Wasser); gelbliche wasserfreie Nädelchen (aus siedendem Nitrobenzol). Schmilzt wasserhaltig bei 180—190°, wasserfrei bei 303—304°. Sehr wenig löslich.

1-Bensolsulfamino-2.4-bis-dimethylamino-bensol $C_{1e}H_{11}O_{2}N_{2}S = [(CH_{2})_{2}N]_{2}C_{e}H_{3}$. NH·SO₂·C₄H₃. B. Aus 1-Amino-2.4-bis-dimethylamino-bensol, gelöst in Ather, Bensolsulfochlorid und Na₂CO₃ (PINNOW, WEGNER, B. 30, 3115). — Prismen (aus Ligroin). F: 84°.

5-Chlor-1.2.4-triamino-bensol $C_0H_2N_3Cl = C_0H_2Cl(NH_2)_3$. B. Aus 5-Chlor-2.4-dinitroanilin (Bd. XII, S. 759) mit Zinnehlorür und Salzsaure (Nietzei, Schedleb, B. 30, 1667). $- C_{\bullet}H_{\bullet}N_{\bullet}Cl + HCl.$

3. 1.3.5-Triamino-benzol C₆H₂N₃ = C₆H₃(NH₂)₃. B. Das Zinnehlorürdoppelsalz entsteht beim Behandeln von 1.3.5-Trinitro-benzol (Bd. V, S. 271) (Herr, A. 215, 348) oder von 2-Chlor-1.3.5-trinitro-benzol (Bd. V, S. 273) (Flesch, M. 18, 760) mit Zinn und Salzsaure. Das salzsaure Salz erhält man durch Zerlegen des Zinnehlorürdoppelsalzes mit H₂S und Verdunsten der Lösung im Vakuum über konz. Schwefelsäure (HEFP). — Die Base ist in freiem Zustande nicht bekannt. — Das salzsaure Salz zerfällt bei längerem

Kochen mit Wasser unter Luftausschluß glatt in Ammoniumchlorid und Phloroglucin (Flesch, M. 18, 758; Cassella & Co., D. R. P. 102358; C. 1899 I, 1263). Beim Erhitzen des Zinndoppelselzes mit 1.3.5-Trinitrobenzol, Glycerin und konz. Schwefelsäure entsteht Benzotripyridin nebenstehender Formel (Syst. No. 3815) (Pioter, Barbier, Bl. [3] 18, 29).

C₆H₉N₂ + 3 HCl + SnCl₂. Krystallkörner (HEPP).

1.8.5-Trianilino-bensol $C_{24}H_{21}N_3 = C_6H_3(NH\cdot C_6H_5)_3$. B. Bei 8-stdg. Erhitzen von 1 Tl. Phloroglucin mit 4 Tln. Anilin (für sich oder in Gegenwart von CaCl₂) im geschlossenen Rohr auf 210° (MINUNNI, G. 20, 337, 339). — Nadeln (aus Alkohol). F: 193°. Wenig löslich in kaltem Alkohol und Benzol, leicht in Ather. Die Lösung in konz. Schwefelssure wird beim Erwärmen violettrot. — $C_{24}H_{21}N_3 + HCl$. Gelbes Pulver, das unterhalb 100° schmilst. — $2C_{24}H_{21}N_3 + 2HCl + PtCl_4$. Gelber Niederschlag. Schmilst gegen 251° unter Zersetzung. Unlöslich in Äther und Benzol.

1.8.5-Tri-p-toluidino-bensol $C_{27}H_{27}N_3 = C_6H_3(NH\cdot C_6H_4\cdot CH_2)_3$. B. Bei 8-stdg. Erhitzen von 1 Tl. Phloroglucin mit 5 Tln. p-Toluidin (für sich oder in Gegenwart von C_6Cl_2) im geschlossenen Rohr auf 200-210° (MINUNNI, G. 20, 322, 325). — Nadeln (aus Alkohol). F: 186—187°. Zersetzt sich bei der Destillation unter Abgabe von p-Toluidin. Sehr wenig löslich in kaltem Alkohol. Die Lösung in konz. Schwefelsäure färbt sich beim Erwärmen intensiv blaugrün. — $C_{27}H_{27}N_3 + HCl.$ B. Durch kurzes Einleiten von trocknem Chlorwasserstoff in die Benzollösung der Base. Flocken. — $C_{27}H_{27}N_3 + 2$ HCl. B. Man löst die Base in kochender konzentrierter Salzsäure und verdunstet die Lösung im Vakuum über Kalk. Nadeln. — $2C_{27}H_{27}N_3 + 2$ HCl + PtCl₄. Gelb, krystallinisch, unlöslich.

¹⁾ Zur Frage der Konstitution vgl. die Anmerkung auf S. 296.

- 1.3.5-Tris-acetamino-bensol $C_{13}H_{15}O_3N_3=C_8H_3(NH\cdot CO\cdot CH_3)_3$. B. Beim Erhitzen von 1 Tl. salzsaurem 1.3.5-Triamino-benzol mit 5—8 Tln. Essigsäureanhydrid im Wasserbad (FLESCH, M. 18, 761). Blättchen (aus Alkohol). F: 208°. Kaum löslich in Benzol, Äther und kaltem Wasser, leicht in heißem Wasser.
- 1.3.5-Tris-acetylanilino-bensol $C_{20}H_{27}O_3N_3=C_0H_3[N(C_0H_5)\cdot CO\cdot CH_2]_3$. B. Aus 1.3.5-Trianilino-benzol und überschüssigem Essigsäureanhydrid auf dem Wasserbade (Minunni, G. 20, 340). Nadeln (aus Alkohol). F: 172—173°. Leicht löslich in siedendem Alkohol und siedendem Benzol.
- 1.3.5-Tris-[acetyl-p-toluidino]-benzol $C_{33}H_{33}O_3N_3 = C_6H_3[N(C_6H_4\cdot CH_3)\cdot CO\cdot CH_3]_3$. B. Aus 1.3.5-Tri-p-toluidino-benzol und überschüssigem Essigsäureanhydrid auf dem Wasserbade (M., G. 20, 326). Nadeln (aus Alkohol). F: 192—193°. Sehr wenig löslich in Äther, leicht in warmem Alkohol und Benzol.
- 1.3.5-Tris-benzoylanilino-benzol $C_{45}H_{33}O_3N_3=C_6H_3[N(C_6H_5)\cdot CO\cdot C_6H_5]_3$. B. Aus 1 Mol.-Gew. 1.3.5-Trianilino-benzol und 4 Mol.-Gew. Benzoylehlorid auf dem Wasserbad (M., G. 20, 341). Nadeln (aus Alkohol + Benzol). Schmilzt oberhalb 350°. Wenig löslich in heißem Alkohol.
- 1.3.5 Tris [benzoyl p toluidino] benzol $C_{48}H_{39}O_3N_3 = C_6H_3[N(C_6H_4 \cdot CH_3) \cdot CO \cdot C_6H_5]_s$. B. Aus 1.3.5-Tri-p-toluidino-benzol und überschüssigem Benzoylchlorid (M., G. 20, 327). Prismen (aus Alkohol). F: 281—282°. Unlöslich in Ather, schwer löslich in Alkohol und Benzol.
- 1.3.5-Tris-phenylnitrosamino-benzol $C_{24}H_{18}O_3N_6=C_6H_3[N(C_6H_5)\cdot NO]_3$. B. Aus 1.3.5-Trianilino-benzol in Benzol und Eisessig und der berechneten Menge Natriumnitrit in wenig Wasser (M., G. 20, 342). Braune Nadeln (aus Alkohol). F: 264—265°. Unlöslich in kaltem Alkohol und Benzol.
- 1.3.5-Tris-p-tolylnitrosamino-benzol $C_{27}H_{24}O_3N_6=C_6H_3[N(C_6H_4\cdot CH_3)\cdot NO]_5$. B. Aus 1.3.5-Tri-p-toluidino-benzol in Benzol und Eisessig und der berechneten Menge Natriumnitrit in wenig Wasser (M., G. 20, 328). Nadeln (aus Alkohol). F: 233—234°. Fast unlöslich in kaltem Alkohol und Benzol.
- **2.4-Dinitro-1.3.5-triamino-benzol** $C_8H_7O_4N_5=(O_2N)_2C_8H(NH_2)_3$. B. Beim Erhitzen von 2.4.6-Tribrom-1.3-dinitro-benzol (Bd. V, S. 269) mit alkoh. Ammoniak im geschlossenen Rohr im Wasserbad (Palmer, Jackson, Am. 11, 449). Gelbe Platten oder flache Prismen (aus Chloroform + Alkohol). Schmilzt nicht bei 300°. Sehr schwer löslich in Alkohol und Chloroform.
- 2.4 Dinitro 1.3.5 tris methylamino benzol $C_9H_{13}O_4N_5 = (O_3N)_9C_6H(NH\cdot CH_3)_8$. B. Aus 2.4.6-Tribrom-1.3-dinitro-benzol und 6 Mol.-Gew. Methylamin in Alkohol (Blanksma, R. 23, 129). Orangerote Krystalle (aus Alkohol). F: 220°. Wird durch Salpetersäure (D: 1,52) in 2.4.6-Trinitro-1.3.5-tris-methylnitramino-benzol (S. 301) verwandelt.
- 2.4-Dinitro-1.3.5-trianilino-benzol $C_{24}H_{19}O_4N_5 = (O_4N)_2C_4H(NH\cdot C_4H_4)_3$. B. Beim Erhitzen von 2.4.6-Tribrom-1.3-dinitro-benzol mit 6 Mol.-Gew. Anilin (Palmer, Jackson, Am. 11, 455). Durch Erwärmen von 2.4.6-Trijod-1.3-dinitro-benzol (Bd. V, S. 270) mit überschüssigem Anilin (Jackson, Behr, Am. 26, 60). Krystallisiert aus einem Gemisch von Benzol und Alkohol in beständigeren orangefarbenen Prismen und in weniger beständigen gelben Platten; die gelbe Form wird reichlich beim Umkrystallisieren der orangefarbenen aus einem Gemisch von viel Benzol und wenig Alkohol erhalten und geht bei einmaligem Umkrystallisieren aus einem Gemisch von viel Alkohol und wenig Benzol vollständig in die orangefarbene über; die gelbe Form färbt sich bei etwa 140° rot (J., Herman, Am. 16, 37). Beide Formen schmelzen bei 179° (J., H.). Verbindung mit Chloroform $C_{24}H_{19}O_4N_5$ + CHCl₂. Dunkelbraunrote Prismen. Verliert das Chloroform teilweise bei gewöhnlicher Temperatur, vollständig bei 100° (J., H.). Verbindung mit Dimethylanilin $C_{24}H_{19}O_4N_5$ + $C_8H_{11}N$. Dunkelbraunrote Prismen. F: 120° (Jackson, Clarke, B. 37, 179).
- 2.4-Dinitro-1.3.5-tri-o-toluidino-benzol $C_{27}H_{25}O_4N_5=(O_2N)_2C_6H(NH\cdot C_6H_4\cdot CH_8)_3$. B. Durch Kochen von 12 g 2.4.6-Tribrom-1.3-dinitro-benzol mit 35 g o-Toluidin (Jackson, Herman, Am. 16, 42). Rote Nadeln (aus Alkohol + Benzol). F: 243°.
- 2.4-Dinitro-1.3.5-tri-p-toluidino-bensol $C_{27}H_{25}O_4N_5 = (O_2N)_2C_6H(NH\cdot C_6H_4\cdot CH_3)_8$. B. Durch Erwärmen von 10 g 2.4.6-Tribrom-1.3-dinitro-benzol mit 18 g p-Toluidin auf dem Wasserbade (Jackson, Herman, Am. 16, 40). Dunkelpurpurrote Tafeln (aus Alkohol + wenig Benzol). F: 197°. Unlöslich in Alkohol und kaltem Eisessig. Wandelt sich beim Kochen mit Alkohol teilweise in gelbe Nadeln um. Verbindung mit Chloroform $C_{27}H_{25}O_4N_5 + CHCl_2$. Dunkelbraunrote Tafeln (aus Chloroform + Benzol) (J., H.).
- 6-Chlor-2.4-dinitro-1.3.5-trianilino-benzol $C_{24}H_{18}O_4N_5Cl = (O_2N)_2C_6Cl(NH\cdot C_6H_5)_2$. B. Aus 5 g 2.4.5.6-Tetrachlor-1.3-dinitro-benzol (Bd. V, S. 266) und 50 g Anilin auf dem

CH,

Wasserbade (Jackson, Carlton, Am. 31, 367). Aus 1 g 5-Chlor-2.4.6-tribrom-1.3-dinitrobenzol (Bd. V, S. 269) und 10 g Anilin auf dem Wasserbad (J., C.). — Dunkelrote Krystalle (aus Ligroin + wenig Benzol). F: 179°. Leicht löslich in Ather, Chloroform, Aceton, CS₂, löslich in Benzol, Eisessig, schwer löslich in Alkohol, unlöslich in kaltem Ligroin. Gibt mit organischen Lösungsmitteln leicht Additionsprodukte. — Verbindung mit Chloroform C24H₁₈O₄N₅Cl+CHCl₂. Dunkelrote Nadeln. Ist unbeständig. — Verbindungen mit Benzol 2C₂₄H₁₈O₄N₅Cl+C₆H₆. Orangefarbige Krystalle. — C₂₄H₁₈O₄N₅Cl+C₆H₆. Dunkelkarmoisinrote Platten. Schmilzt bei 179° unter Abgabe von Benzol. Ist bei gewöhnlicher Temperatur beständig und gibt auch im Vakuum nur langsam Benzol ab, vollkommen bei 100°. — Verbindung mit Toluol 2C₂₄H₁₈O₄N₅Cl+C₇H₈. Orangefarbige Nadeln, die beim Erwärmen unter Verlust von Toluol dunkelrot werden, bei gewöhnlicher Temperatur beständig sind. — Verbindung mit Essigsäure C24H₁₈O₄N₅Cl+C₂H₄O₂. Orangefarbige Nadeln, die beim Erwärmen unter Verlust von Essigsäure dunkelrot werden, bei gewöhnlicher Temperatur beständig sind.

- 6-Brom-2.4-dinitro-1.3.5-trianilino-bensol $C_{24}H_{18}O_4N_5Br = (O_2N)_2C_6Br(NH \cdot C_6H_5)_3$. B. Beim Erwärmen von 7 g 2.4.5.6-Tetrabrom-1.3-dinitro-benzol (Bd. V, S. 269) mit 8,3 g Anilin auf dem Wasserbade (Jackson, Bangroff, Am. 12, 294). Aus 2.4.6-Trichlor-5-brom-1.3-dinitro-benzol (Bd. V, S. 267) durch Erwärmen mit Anilin (J., Gazzolo, Am. 22, 58). Rote Prismen. F: 175—176° (J., B.). Sehr schwer löslich in kaltem Alkohol, unlöslich in Ligroin (J., B.).
- 2.4.6-Trintro-1.3.5-triamino-bensol $C_6H_6O_8N_6=(O_2N)_3C_6(NH_2)_3$. B. Beim Behandeln von 2.4.6-Tribrom-1.3.5-trinitro-benzol (Bd. V, S. 275) mit alkoh. Ammoniak zunächst bei gewöhnlicher Temperatur und schließlich bei Siedetemperatur (Jackson, Wing, Am. 10, 287). Hellgelbe Tafeln (aus Anilin). Zersetzt sich oberhalb des Siedepunktes des Quecksilbers, ohne zu schmelzen (J., W.). Unlöslich in Alkohol, Äther, Chloroform, Benzol und Eisessig, löslich in Nitrobenzol und Anilin (J., W.). Wird von Zinn und Salzsäure in Gegenwart von Alkohol zu Pentaaminobenzol (S. 346) reduziert (Palmer, Am. 14, 378). Wird von Essigsäureanhydrid oder Acetylchlorid nicht angegriffen (J., W.).
- **2.4.6-Trinitro-1.3.5-tris-methylamino-benzol** $C_0H_{12}O_0N_6 = (O_2N)_3C_6(NH\cdot CH_3)_3$. B. Aus 3.5-Dichlor-2.4.6-trinitro-anisol (Bd. VI, S. 292) durch Erhitzen mit Methylamin in Alkohol auf 165° (Blanksma, R. 27, 40). Gelbe Krystalle (aus Alkohol). F: 265°. Mit Salpetersäure (D: 1,52) entsteht 2.4.6-Trinitro-1.3.5-tris-methylnitramino-benzol (s. u.).
- **2.4.6-Trinitro-1.3.5-trianilino-bensol** $C_{24}H_{18}O_{8}N_{6}=(O_{2}N)_{3}C_{6}(NH\cdot C_{6}H_{5})_{2}$. B. Bei mehrtägigem Stehen von 2.4.6-Tribrom-1.3.5-trinitro-benzol (Bd. V, S. 275) mit 6 Mol.-Gew. Anilin (Jackson, Wing, Am. 10, 290). Rote Nadeln (aus'Alkohol + Chloroform). F: 238°. Schwer löelick in Alkohol, leicht in Chloroform.
- **2.4.6-Trinitro-l.3.5-tris-methylnitramino-benzol** $C_0H_0O_{12}N_0 = (O_2N)_3C_0[N(CH_3)\cdot NO_2]_b$. B. Entsteht bei der Einw. von Salpetersäure (D: 1,52) auf 2.4-Dinitro-1.3.5-trismethylamino-benzol (Blanksha, R. 23, 129) oder auf 2.4.6-Trinitro-1.3.5-tris-methylamino-benzol (BL, R. 27, 40). Krystalle (aus Essigsäure). Detoniert bei 200—203° (BL, R. 23, 129).
 - 4. Derivat eines Triaminobenzols (?).

Trianilinobensol (P) $C_{24}H_{31}N_2 = C_4H_4(NH\cdot C_4H_5)_3$ (?). B. Aus a-Benzolhexachlorid (Bd. V, S. 23) und 4 Gew.-Tin. Anilin bei 130° im geschlossenen Rohr (Mohr, M. 11, 23). — Mennigrote Blättchen. F: 242°. Unlöslich in Alkohol, schwer löslich in Äther, Aceton und Ligroin, leicht in Chloroform, Schwefelkohlenstoff und Benzol.

2. Triamine $C_7H_{11}N_8$.

1. 2.3.4-Triamino-toluol¹) C₁H₁₁N₂, s. nebenstehende Formel (s. a. No. 2).

2.3-Diamino-4-methylamino-toluol C₂H₁₂N₂=CH₂·C₂H₂(NH₂)₂·NH·CH₂.

B. Aus 2.3-Dinitro-4-methylamino-toluol (Bd. XII, S. 1008) durch Zinn und Salzsaure (BINNOW, J. pr. [2] 62, 517). — C₂H₁₂N₃+2HCl. Krystalle. F: 161—171° (Zers.).

3 - Amino - 2 - acetamino - 4 - [acetylmethylamino] - toluol $C_{12}H_{17}O_2N_2 = CH_3 \cdot C_2H_2(NH_2)(NH\cdot CO\cdot CH_2)\cdot N(CH_2)\cdot CO\cdot CH_3$. B. Aus salzsaurem 2.3-Diamino-4-methylamino-toluol durch Natriumacetatlösung und Essigsäureanhydrid in der Kälte (Pinnow, J. pr. [2] 62, 506, 517). — Priamen (aus Aceton). F: 198—198,5°; leicht löslich in Alkoholen, schwer in Äther (P., J. pr. [2] 62, 518). — Verliert durch Kochen mit Eisessig Wasser und gibt 4-Acetamino-1.2.5-trimethyl-benzimidazol (Syst. No. 3715) (P., J. pr. [2] 62, 518) und 7-Acetylmethylamino-2.4-dimethyl-benzimidazol (Syst. No. 3715) (P., B. 34, 1133).

¹⁾ Vgl. dasu die Anmerkung auf S. 302.

- 5-Nitro-3-amino-4-methylamino-2-dimethylamino-toluol $C_{10}H_{16}O_2N_4=CH_3\cdot C_6H(NO_2)(NH_2)(NH\cdot CH_2)\cdot N(CH_2)_2$. B. Man suspendiert 5 g 3.5-Dinitro-4-methylamino-2-dimethylamino-toluol (8. 142) in 25 com Alkohol, versetzt mit 5 g konz. Ammoniak, leitet wiederholt H_2 S ein und läßt 3 Tage bei 30° stehen (Sommer, J. pr. [2] 67, 567). Braune Prismen. F: 61,5—62°. Liefert mit überschüssigem Essigsäureanhydrid 7-Nitro-4-dimethylamino-1.2.5-trimethyl-benzimidazol (Syst. No. 3715).
- 2. 2.3.4-Triamino-toluol (?)¹) $C_7H_{11}N_3 = CH_3 \cdot C_6H_2(NH_2)_3$. B. Durch Nitrieren von 4.4'-Dimethyl-azobenzol zu Trinitrodimethylazobenzol und Spaltung mit Zinn und Salzsäure (Janovsky, M. 10, 591; vgl. dazu Werner, Stiasny, B. 32, 3256). Blätter. $C_7H_{11}N_3 + 3HCl$. Nadeln.
- 3. 2.3.5-Triamino-toluol C₇H₁₁N₃, s. nebenstehende Formel. CH₃
 3.5-Diamino-2-methylamino-toluol C₈H₁₃N₃ = CH₃·C₈H₃(NH₃)₂
 NH·CH₃. B. Beim Behandeln von 3.5-Dinitro-2-methylnitramino-toluol (Bd. XII, S. 852) mit Zinn und Salzsäure (VAN ROMBURGH, R. 3, 399). NH₃
 Sehr leicht oxydierbar. Die Lösung des Hydrochlorids wird durch Eisenchlorid rot gefärbt.
- 3.5-Diamino-2-acetamino-toluol $C_9H_{19}ON_9 = CH_3 \cdot C_9H_2(NH_2)_2 \cdot NH \cdot CO \cdot CH_3$. B. Aus 3.5-Dinitro-2-acetamino-toluol (Bd. XII, S. 851) durch Reduktion mit Eisen und verd. Essigsäure (Bayer & Co., D. R. P. 183843; C. 1907 I, 1607). Gelbliche Nadeln (aus verd. Alkohol). F: 210—211°.

- C₈H₁₈N₂ + 2HCl + H₂O. Krystalle. Sehr leicht löslich in Wasser.

- 3.5-Diamino-2-benzolsulfamino-toluol $C_{13}H_{15}O_{2}N_{3}S=CH_{3}\cdot C_{6}H_{2}(NH_{2})_{2}\cdot NH\cdot SO_{2}\cdot C_{6}H_{5}$. B. Aus 3.5-Dinitro-2-benzolsulfamino-toluol (Bd. XII, S. 852) mit Zinn und Salzsäure (RABAUT, Bl. [3] 13, 635). Nädelchen. F: 217°.
- 4. 2.4.5 Triamino toluol $C_7H_{11}N_3$, s. nebenstehende Formel. B. Beim Behandeln von 5-Nitro-2.4-diamino-toluol (S. 141) mit Zinn und Salzsäure (RUHEMANN, B. 14, 2657). Die freie Base ist sehr unbeständig und oxydiert sich äußerst leicht. $C_7H_{11}N_3+3HCl$. Krystallinisch. Färbt sich in feuchtem Zustande bald rot. Reduziert schon in der Kälte Silberlösung. $2C_7H_{11}N_3+3H_2SO_4$. Krystallinisch.
- 2.5 Diamino 4 dimethylamino toluol $C_9H_{16}N_3 = CH_9 \cdot C_6H_2(NH_9)_9 \cdot N(CH_3)_9$. B. Durch Reduktion von 4-Amino-6-dimethylamino-3-methyl-azobenzol-sulfonsäure-(4') (Syst. No. 2183) oder von 4-Amino-5-dimethylamino-2-methyl-azobenzol-sulfonsäure-(4') (Syst. No. 2183) mit SnCl₂ und Salzsäure (Pinnow, Matcovich, B. 31, 2515, 2522). Blätter (aus Ligroin). F: 60—61°. Kp₄₉: 198—202°; Kp₄₀: 193,5°. Oxydiert sich rasch. Gibt beim Erhitzen mit Essigsäureanhydrid im geschlossenen Rohr auf 154—158° 6-Acetamino-1.2.5-trimethyl-benzimidazol (Syst. No. 3715). Hydrobromid. Tafeln (aus Alkohol + Ather). Leicht löslich. Pikrat $C_9H_{16}N_3 + 2C_6H_3O_7N_9$. Rhomboederähnliche gelbbraune Tafeln (aus Alkohol). F: 157—158°. Leicht löslich in Aceton und Eisessig, schwer in Äther und Benzol, unlöslich in Ligroin.
- **2.5-Diamino-4-anilino-toluol** $C_{12}H_{15}N_3 = CH_2 \cdot C_6H_6(NH_2)_2 \cdot NH \cdot C_6H_5$. B. Aus den Azofarbstoffen des 2-Amino-4-anilino-toluols durch Reduktion (Bayer & Co., D. R. P. 84442; Frdl. 4, 419). Blättchen. F: 134°. Verwendung zur Darstellung von Azinfarbstoffen: B. & Co., D. R. P. 84442, 84993; Frdl. 4, 419, 420.
- 4-Amino-2.5-di-p-toluidino-toluol $C_{21}H_{22}N_3 = CH_2 \cdot C_eH_4 \cdot (NH_e) \cdot (NH \cdot C_eH_4 \cdot CH_a)_2$. Zur Konstitution vgl. Green, B. 26, 2773; Soc. 63, 1395. B. Beim Behandeln von 5-Aminotoluchinon-bis-p-tolylimid (s. nebenstehende Formel) (Syst. No. 1874) mit alkoh. Schwefelammonium (Barshowsen, A. 207, 107; Klinger, Pitscher, B. 17, 2440) oder mit Zinkstaub und Eisessig (Green, B. 26, 2777; Soc. 63, 1403). Platten. F: 165—166° (Gr.). Wird durch Luftsauerstoff sowie andere Oxydationsmittel wieder in 5-Aminotoluchinon-bis-p-tolylimid übergeführt (Gr.). Verbindet sich mit o-Diketonen unter Bildung von Chinoxalinderivaten (Gr.). Gibt beim Erhitzen mit Ameriensäure 1-p-Tolyl-5-p-toluidino-6-methyl-benzimidazol (Syst. No. 3715) (Gr.). Die Salze werden durch Wasser zersetzt (Gr.).

Chinon - imid - (1) - [4.6-diamino-8-methyl-anil]-(4) $C_{12}H_{14}N_4$, s. nebenstehende Formel. Vgl. Aminomethylindamin (8. 129).

¹⁾ Eine sicher als 2.3.4-Triamino-toluol aufzufassende Verbindung ist nach dem für die 4. Aufl. dieses Handbuches geltenden Schlußtermin [1. I. 1910] von GORNALT, ROBINSON, Soc. 1926, 1983 beschrieben worden.

- Toluylenblau, Syst. No. 1874.

 4-Dimethylamino-2.5-bis-acetamino-toluol $C_{13}H_{19}O_2N_3 = CH_3 \cdot C_8H_2[N(CH_3)_2](NH \cdot CO \cdot CH_3)_2$. B. Durch 10-stdg. Kochen von 2.5-Diamino-4-dimethylamino-toluol (S. 302) mit Eisessig (Ріммом, Матсоvіон, B. 31, 2516, 2522). Tafeln (aus Methylalkohol). F: 235° bis 236°. Leicht löslich in Eisessig, Chloroform und heißen Alkoholen, schwer in Aceton, Ather und Ligroin.
- 2.5-Bis-acetamino-4-[acetylmethylamino]-toluol $C_{14}H_{19}O_3N_3 = CH_3 \cdot C_6H_2 \cdot NH \cdot CO \cdot CH_3 \cdot N(CH_3) \cdot CO \cdot CH_3$. B. Man reduziert 2.5-Dinitro-4-methylamino-toluol (Bd. XII, 8. 1008) durch Zinn und Salzsäure bei niederer Temperatur und acetyliert das Rohprodukt mit Natriumacetat, Essigsäureanhydrid und Soda (Pinnow, J. pr. [2] 62, 512). Rhomboidische Tafeln (aus Alkohol). F: 257—258°. Schwer löslich in kaltem Wasser. 1 g löst sich in 30 com heißem und 150 com kaltem Alkohol.
- 4.6 Diamino 4' dimethylamino 3 methyl diphenylamin, Leukotoluylenblau $C_{18}H_{20}N_4$, s. nebenstehende Formel. B. Das salzsaure Salz entsteht beim Behandeln von Toluylenblau (Syst. No. 1874) mit Zinn und Salzsaure (Witt, B. 12, 936). Das salzsaure Salz ist krystallinisch, äußerst zersetzlich. Von Oxydationsmitteln wird es sofort in Toluylenblau übergeführt. $C_{18}H_{20}N_4 + HCl + SnCl_2$. Krystalle.
- 5. 2.4.6-Triamino-toluol $C_7H_{11}N_3$, s. nebenstehende Formel. B. Bei mehrtägigem Stehen von 3.5-Dibrom-2.4.6-trinitro-toluol (Bd. V, S. 349) mit Zinn und Salzsäure (Palmer, Brenke, B. 29, 1346). Man behandelt 50 g 2.4.6-Trinitro-toluol (Bd. V, S. 347) mit 245 g Zinn und 500 ccm 33% ger Salzsäure (Weidel, M. 19, 224). Bald erstarrendes Öl. Das salzsaure Salz zerfällt bei 30-stdg. Koohen mit Wasser unter Luftsusschluß in Ammoniumchlorid und 2-Methyl-phloroglucin (Bd. VI, S. 1109) (W.; Cassella & Co., D. R. P. 103683; C. 1899 II, 504). $C_7H_{11}N_3+3$ HCl (über H_2SO_4). Nadeln (P., B.).
- 6. 3.4.5-Triamino-toluol $C_7H_{11}N_3$, s. nebenstehende Formel.

 3.5-Diamino-4-methylamino-toluol $C_8H_{13}N_3 = CH_3 \cdot C_6H_2(NH_2)_2 \cdot NH \cdot CH_3$. Beim Behandeln von 3.5-Dinitro-4-methylnitramino-toluol $H_2N \cdot NH_3 \cdot NH$
- 3.5 Diamino 4 dimethylamino toluol $C_9H_{15}N_3 = CH_3 \cdot C_8H_2(NH_2)_3 \cdot N(CH_3)_2$. B. Durch Reduktion von 3.5-Dinitro-4-dimethylamino-toluol (Bd. XII, S. 1010) mit Zinn und Salzsäure neben chlorhaltigen Produkten (Pinnow, Marcovich, B. 31, 2519). Prismen (aus Ligroin). F: 54,5—56,5°. Kp₂₃: 189°. Durch Erhitzen mit Essigsäureanhydrid im geschlossenen Rohr auf 160° entsteht 7-Acetamino-1.2.5-trimethyl-benzimidazol (Syst. No. 3715). $C_9H_{15}N_3 + 2$ HCl. Prismen (aus Salzsäure). F: 221—225°. Pikrat $C_9H_{15}N_3 + 2C_9H_3O_7N_3$. Schwefelgelbe Nadeln (aus wenig Methylalkohol). F: 142—143°. Schwer löslich in Äther, Ligroin und kaltem Wasser, sonst leicht löslich.
- **3.5-Diamino-4-äthylamino-toluol** $C_9H_{18}N_3=CH_3\cdot C_6H_2(NH_2)_2\cdot NH\cdot C_2H_5$. Beim Behandeln von 3.5-Dinitro-4-äthylnitramino-toluol (Bd. XII, S. 1012) mit Zinn und Salzsäure (VAN ROMBURGH, R. 8, 411). $C_9H_{18}N_3+2HCl$. Nadeln.
- 4-Dimethylamino-3.5-bis-acetamino-toluol $C_{13}H_{19}O_2N_3 = CH_3 \cdot C_6H_2[N(CH_3)_3](NH \cdot CO \cdot CH_3)_3$. B. Durch 10-stdg. Kochen von 3.5-Diamino-4-dimethylamino-toluol (s. o.) mit Eisessig (Pinnow, Matcovich, B. 31, 2520). Nadeln (aus Essigester). F: 151—152°. Schwer löslich in Äther und Ligroin, sonst leicht löslich.
- 3.5-Diamino-4-benzamino-toluol $C_{14}H_{15}ON_3 = CH_3 \cdot C_6H_2(NH_2)_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Behandeln von 3.5-Dinitro-4-benzamino-toluol (Bd. XII, S. 1011) mit Zinn und Salzsäure (Hübner, A. 208, 318). F: 183—185°. Unlöslich in Wasser, löslich in Alkohol und Äther. $C_{14}H_{15}ON_3 + H_2SO_4$. Undeutliche Krystalle.
- 3. 2.4.6-Triamino-m-xylol C₈H₁₈N₂, s. nebenstehende Formel. B. Durch Behandeln von 2.4.6-Trinitro-m-xylol (Bd. V, S. 381) mit Zinn und Salzsäure (Beilstein, Luhmann, A. 144, 277) oder mit Zinnchlorür und Salzsäure (Grevinge, B. 17, 2427). Sublimiert in Nadeln; zersetzt sich bei 140—150°; bräunt sich rasch an der Luft (Gr.). Das salzsaure Salz

 CH₃

 NH₂

 NH₂

zerfällt bei 18—24-stdg. Kochen mit 50 Tln. Wasser unter Luftausschluß in Ammonium-chlorid und 2.4-Dimethyl-phloroglucin (Bd. VI, S. 1116) (Weidel, Wenzel, M. 19, 237; Cassella & Co., D. R. P. 103683; C. 1899 II, 504).

- 4. 2.4.6-Triamino-1.3.5-trimethyl-benzol, eso-Triamino-CH₃ mesitylen C₂H₁₆N₃, s. nebenstehende Formel. B. Beim Behandeln H₂N· NH₂ von 50 g eso-Trinitro-mesitylen (Bd. V, S. 412), verteilt in 100 ccm Eisessig, cH₃· NH₂ chlorid durch eiskalte konzentrierte Natronlauge (Wei., Wen.). Nadeln (aus Xylol). F: 417—119°; kaum löslich in Benzol und Ligroin, schwer in kaltem Wasser und Äther, leicht in heißem Xylol (Wei., Wen.). Das Hydrochlorid zerfällt bei 14-stdg. Kochen mit 100 Tln. Wasser unter Luftausschluß in Ammoniumchlorid und 2.4.6-Trimethylphloroglucin (Bd. VI, S. 1125) (Wei., Wen.; Cassella & Co., D. R. P. 103683; C. 1899 II, 504). Beim Kochen mit Chloroform und Kalilauge entsteht 4.6-Dicarbylamino-2-oxy-1.3.5-trimethyl-benzol (Syst. No. 1855) (Kaufler, M. 22, 1081). Bei 4-stdg. Kochen von 20 g feingeriebenem Hydrochlorid mit 100 ccm Eisessig entsteht das Hydrochlorid des 4.6-Diamino-2-oxy-1.3.5-trimethyl-benzols (Syst. No. 1855) (Wen., M. 22, 984). Bei 3-stdg. Kochen des Hydrochlorids mit Essigsäureanhydrid entsteht 4.6-Bis-acetamino-2-acetoxy-1.3.5-trimethyl-benzol (Syst. No. 1855) (Wen., Wen.). C₉H₁₅N₃ + 3 HCl. Blättchen. Zersetzt sich beim Erhitzen, ohne zu schmelzen; sehr wenig löslich in Alkohol und in konz. Salzsäure (Wei., Wen.).
- 5. 3.4.5 Triamino 1 tert. butyl benzol $C_{10}H_{17}N_3$, s. nebenstehende Formel. B. Aus 3.5-Dinitro-4-amino-1-tert.-butyl-benzol (Bd. XII, S. 1169) mit Zinn und Salzsäure (Jedlicka, J. pr. [2] 48, 100). Prismen (aus Äther). F: 156—157°. Mit Benzil in Eisessig entsteht 8-Amino-6-tert.- H_2N . $N = C \cdot C_6H_5$ butyl-2.3-diphenyl-chinoxalin $(CH_3)_3C \cdot C_6H_2(NH_2)$ $N = C \cdot C_6H_5$ (Syst. No. NH_2 3724). $C_{10}H_{17}N_3 + 2$ HCl. Nädelchen. O xalat $C_{10}H_{17}N_3 + C_2H_2O_4$. Schüppchen. Sehr wenig löslich in Wasser und kaltem Alkohol.
- 3.4.5 Tris acetamino 1 tert. butyl benzol $C_{16}H_{23}O_3N_3 = (CH_3)_3C\cdot C_6H_3(NH\cdot CO\cdot CH_3)_3$. B. Aus 3.4.5-Triamino-1-tert.-butyl-benzol und überschüssigem Essigsäureanhydrid (Jedlicka, J. pr. [2] 48, 103). Prismen (aus Essigsäure). F: 220°. Fast unlöslich in Äther.
- 6. 3.4.5-Triamino-1-tert.-amyl-benzol $C_{11}H_{19}N_3$, s. nebenstehende Formel. B. Aus 3.5-Dinitro-4-amino-1-tert.-amyl-benzol (Bd. XII, S. 1179) in Akohol durch Reduktion mit Zinnehlorür und Salzsäure (Anschütz, Rauff, A. 327, 216). Blättchen (aus Benzol). F: 149°. Leicht löslich in Alkohol, Äther und Benzol, unlöslich in Wasser. NH₂

2. Triamine $C_n H_{2n-9} N_3$.

Triamine C₁₀H₁₁N₃.

1. 1.2.4-Triamino-naphthalin C₁₀H₁₁N₃, s. nebenstehende Formel.

2.4-Diamino-1-anilino-naphthalin C₁₆H₁₅N₃ = (H₂N)₂C₁₀H₅·NH·C₀H₅. B. Beim Kochen einer Lösung von N-Phenyl-2.4-dinitro-naphthylamin-(1) (Bd. XII, S. 1262) in 50% jeem Alkohol mit Zinkstaub und Salmiak (Ullmann, Bruck, B. 41, 3937). — Nadeln (aus Benzol). F: 190% (korr.). Löslich in Essigsäure und Benzol, schwer löslich in Alkohol, kaum in Äther und Ligroin. — Gibt bei der Destillation mit Bleioxyd das Aminonaphthophenazin der nebenstehenden Formel (Syst. No. 3722).

1.2.4 - Trianilino - naphthalin $C_{18}H_{23}N_3=C_{10}H_5(NH\cdot C_4H_5)_3$. B. Entsteht neben 1.2.3.4-Tetraanilino-naphthalin (S. 338) und Phenylrosindulin (Syst. No. 3722) beim Erhitzen von 1 Tl. salzsaurem Naphthochinon-(1.4)-āthylimid-oxim (bezw. salzsaurem 4-Nitroso-1-āthylamino-naphthalin, Bd. VII, S. 728) oder von salzsaurem Naphthochinon-(1.4)-aniloxim (Bd. XII, S. 210) mit 1 Tl. Anilin und 4 Tln. Eisessig (O. Fischer, Heff, A. 256, 250). — Nadeln oder Spieße (aus Alkohol oder Benzol-Ligroin). F: 148° (O. F., H., A. 256, 251). — Liefert beim Kochen mit HgO in Benzol 2-Anilino-naphthochinon-(1.4)-dianil (Syst. No. 1874) und Phenylrosindulin (O. F., H., A. 256, 252; 262, 246).

- 1.2.4-Tri-p-toluidino-naphthalin C₃₁H₃₅N₃ = C₁₀H₄(NH·C₆H₄·CH₃)₃. B. Entsteht neben Trimethylphenylrosindulin (Syst. No. 3722) beim Erhitzen von Naphthochinon-(1.4)-åthylimid-oxim (Bd. VII, S. 728) mit p-Toluidin und salzsaurem p-Toluidin; man kocht das Rohprodukt erst mit Soda und dann mit Alkohol aus (O. FISCHER, HEFF, A. 256, 245). Nadeln (aus Alkohol). F: 159—160°. Bei der Oxydation durch Quecksilberoxyd in Benzol entsteht 2-p-Toluidino-naphthochinon-(1.4)-bis-p-tolylimid (Syst. No. 1874) und dann Trimethylphenylrosindulin.
- **9.4-Diamino-1-acetamino-naphthalin** $C_{12}H_{13}ON_3 = (H_2N)_2C_{10}H_6 \cdot NH \cdot CO \cdot CH_3$. B. Aus N-Acetyl-2.4-dinitro-naphthylamin-(1) (Bd. XII, S. 1263) durch Reduktion mit Eisen und Essigsäure (Höchster Farbw., D. R. P. 151768; C. 1904 II, 274). Schwach bräunliche Nadeln. F: 189°. Sehr leicht löslich in heißem Eisessig, leicht in heißem Alkohol, löslich in kaltem Alkohol, schwer löslich in Benzol und Ligroin. Beim Verschmelzen mit Schwefel entsteht ein gelber Schwefelfarbstoff.
- **2.4-Diamino-1-bensamino-naphthalin** $C_{17}H_{15}ON_3 = (H_3N)_2C_{16}H_5 \cdot NH \cdot CO \cdot C_6H_5$. Beim Behandeln von N-Benzoyl-2.4-dinitro-naphthylamin-(1) (Bd. XII, S. 1263) mit Zinn und Salzsäure (Hübner, A. 208, 331). Wird aus der Lösung der Salze durch Soda als weißer Niederschlag gefällt, der sich leicht an der Luft bläut. $C_{17}H_{15}ON_3 + HCl$. Nadeln. Schwer löslich in Wasser. $C_{17}H_{15}ON_3 + H_2SO_4$. Nadeln.
- 2. 1.2.6-Triamino-naphthalin C₁₀H₁₁N₂, s. Formel I. Zur Konstitution vgl. Kehrmann, Matis, B. 31, 2418. B. Aus 1.6-Dinitro-naphthylamin-(2) (Bd. XII, S. 1315) mit Zinn und Salzsäure (Löwe, B. 23, 2544). Liefert mit Phenanthrenchinon in Essigsäure

I.
$$\underbrace{NH_2}_{H_2N} \cdot \underbrace{NH_3}_{N}$$
 II.
$$\underbrace{H_2N}_{N} \cdot \underbrace{N}_{N}$$

das Amino-naphthophenanthrazin der Formel II (Syst. No. 3728) (L.). — $C_{10}H_{11}N_3 + 2HCl$. Nadeln (L.). — $2C_{10}H_{11}N_3 + 3H_2SO_4$. Krystallbrei. Sehr schwer löslich in kochendem Wasser (L.).

- 1.2.6-Tris-acetamino-naphthalin $C_{10}H_{17}O_{2}N_{3} = C_{10}H_{1}(NH\cdot CO\cdot CH_{2})_{3}$. B. Beim Erhitzen von 1.2.6-Triamino-naphthalin mit entwässertem Natriumacetat und Essigsäure-anhydrid (L., B. 23, 2545). Nadeln (aus Eisessig). Schmilzt unter Zersetzung bei 280°.
- 1.2.6-Tris-benzamino-naphthalin $C_{31}H_{23}O_3N_3 = C_{10}H_3(NH\cdot CO\cdot C_6H_5)_3$. B. Durch Benzoylierung von 1.2.6-Triamino-naphthalin (L., B. 23, 2545). Nadeln (aus Eisessig durch Wasser). F: 277°. Schwer löslich in Alkohol.
- 3. 1.3.6-Triamino-naphthalin C₁₀H₁₁N₂, s. nebenstehende Formel. B. Durch Erhitzen von 1.6-Dioxy-naphthalin-sulfonsäure-(3) (Bd. XI, S. 305) mit Ammoniak und Salmiak im Autoklaven auf 160° bis 180° (KALLE & Co., D. R. P. 89061; Frdl. 4, 599). Sehr leicht Nadeln. Nehr wenig löslich in Wasser. Nitrit färbt die saure Lösung tief braun. Sulfat. Nadeln. Sehr wenig löslich in Wasser.
- 4. 1.3.7 Triamino naphthalin C₁₀H₁₁N₂, s. nebenstehende NH₂ Formel. B. Durch Erhitzen von 1.7-Dioxy-naphthalin-sulfonsäure-(3) (Syst. No. 1926) mit Ammoniak und Salmiak unter Druck auf 160—180° NH₂N. (Kalle & Co., D. R. P. 90905; Frdl. 4, 600). Leicht löslich in Wasser und Alkohol. Salpetrige Säure färbt die saure wäßrige Lösung tief braun; die Lösungen der Salze werden durch Eisenchlorid violettblau, durch Dichromat oder Chlorkalk violettrot gefärbt. Hydrochlorid. Blättehen (aus Wasser). Sulfat. Warzen. Schwer löslich in heißem Wasser.
- 5. 1.3.8-Triamino-naphthalin $C_{10}H_{11}N_3$, s. nebenstehende Formel. H_2N NH_2 B. Beim Behandeln von 1.3.8-Trinitro-naphthalin (Bd. V, S. 563) mit Jodphosphor und Wasser (D'AGUIAR, LAUTEMANN, Bl. [2] 3, 263). $C_{10}H_{11}N_3 + 2H_1$. Nadeln. Geht bei 70—80° über in das Salz $C_{10}H_{11}N_3 + 2H_1$. NH_2 NH_3 NH_4 NH_5
- 6. 1.4.5-Triamino-naphthalin C₁₀H₁₁N₂, s. nebenstehende Formel.

 1-Amino-4.5-bis-bensolsulfamino-naphthalin C₂₂H₁₀O₄N₂S₂=H₂N·C₁₀H₄(NH·SO₂·C₂H₃)₂. B. Man kuppelt N.N'-Dibenzolsulfonyl-naphthylendiamin-(1.8) (S. 207) in alkal. Lösung mit p-Diazobenzolsulfonsäure und reduziert die erhaltene Azoverbindung mit Zinnehlorür in Salzsäure (Sachs, A. 365, H₂N NH₂ 165). Krystalle (aus absol. Alkohol). F: 200° (Zers.).

3. Triamine $C_nH_{2n-11}N_3$.

1. Triamine C₁₂H₁₈N₂.

- 1. 2.4.4' Triamino diphenyl C₁₂H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion von 2-Nitro-benzidin
 (S. 235) mit Zinn und Salzsäure (Täuber, B. 23, 798). H₂N.

 Nadeln. F: 134° (T.). Gibt beim Kochen mit Schwefel in
 Alkohol eine Schwefelverbindung vom Schmelzpunkt 190° (Kalle & Co., D. R. P. 86096;
 Frdl. 4, 1056). C₁₂H₁₂N₂+3HCl. Krystallinisch (T.).
- 2-Amino-4.4'-bis-p-toluolsulfamino-diphenyl $C_{26}H_{25}O_4N_2S_2 = CH_2 \cdot C_6H_4 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot C_6H_3(NH_2) \cdot NH \cdot SO_2 \cdot C_6H_4 \cdot CH_2$. B. Aus N.N'-Di-p-toluolsulfonyl-2-nitro-benzidin (S. 235) durch Reduktion (Akt.-Ges. f. Anilinf., D. R. P. 135016; C. 1902 II, 1165). F: 198°.
- 2. 2.5.4'-Triamino-diphenyl C₁₂H₁₂N₃, s. nebenstehende NH₂
 Formel.

 2.4'-Diamino-5-dimethylamino-diphenyl, 5-[Dimethyl-
- amino]-diphenylin¹) $C_{14}H_{17}N_3 = H_2N \cdot C_6H_4 \cdot C_6H_3(NH_2) \cdot N(CH_3)_2$. NH₂ B. Entsteht als hauptsächliches Umlagerungsprodukt bei der Reduktion des 4-Dimethylamino-azobenzols (Syst. No. 2172) mittels salzsaurer Zinnchlorür-lösung (Jacobson, Kunz, A. 303, 354). Weiße, sich allmählich grau färbende Krystalle. F: 87—89°. Nicht unerheblich löslich in kaltem Wasser, sehr leicht in Alkohol, Benzol, Äther, sehr wenig in Ligroin; sehr leicht löslich in verdünnten Mineralsäuren. Gibt in wäßr. Lösung mit Eisenchlorid intensive Violettfärbung, die bald in Dunkelblau übergeht. Pikrat $C_{14}H_{17}N_3 + 2C_6H_3O_7N_3$. Bernsteingelbe prismatische Krystalle. F: 127°. Sehr wenig löslich in absol. Alkohol. Geht beim Behandeln mit Ammoniak in das Pikrat $C_{14}H_{17}N_3 + C_6H_3O_7N_3$ über, das aus heißem Wasser in rotbraunen Nadeln krystallisiert und bei 175° schmilzt.
- 5-Dimethylamino-2.4'-bis-bensalamino-diphenyl $C_{38}H_{25}N_{3} = C_{6}H_{5} \cdot CH : N \cdot C_{6}H_{4} \cdot C_{6}H_{5}[N(CH_{3})_{4}] \cdot N \cdot CH \cdot C_{6}H_{5}$. B. Aus 2.4'-Diamino-5-dimethylamino-diphenyl (s. o.) und Benzaldehyd in alkoh. Lösung (J., K., A. 803, 357). Gelbe Nadeln (aus Alkohol). F: 146° bis 147°. Schwer löslich in kaltem Alkohol, Äther und Ligroin, sehr leicht in heißem Alkohol. Wird durch verdünnte Säuren unter Abspaltung von Benzaldehyd zersetzt.
- 5-Dimethylamino-2.4'-bis-salicylalamino-diphenyl $C_{28}H_{25}O_2N_3 = HO \cdot C_4H_4 \cdot CH : N \cdot C_6H_4 \cdot C_6H_5[N(CH_3)_3] \cdot N : CH \cdot C_6H_4 \cdot OH$. B. Aus 2.4'-Diamino-5-dimethylamino-diphenyl und Salicylaldehyd in Alkohol (J., K., A. 303, 357, 360). Gelbe Nadeln. F: 158—159°.
- 5-Dimethylamino-2.4'-bis-acetamino-diphenyl $C_{18}H_{31}O_{2}N_{2} = CH_{3} \cdot CO \cdot NH \cdot C_{8}H_{4} \cdot C_{8}H_{3}[N(CH_{3})_{3}] \cdot NH \cdot CO \cdot CH_{3}$. B. Beim Erhitzen von 2.4'-Diamino-5-dimethylamino-diphenyl mit Eisessig oder mit Acetylchlorid (J., K., A. 303, 356). Nadeln (aus verdünntem Alkohol). F: 233°. Leicht löslich in Alkohol und verdünnten Mineralsäuren, fast unlöslich selbst in heißem Wasser.
- 5-Dimethylamino 2 oder 4'-monothiocarbäthoxyamino 4' oder 2-thiocarbonylamino-diphenyl $C_{12}H_{12}ON_2S_2 = (CH_3)_2N \cdot C_{12}H_7(NH \cdot CS \cdot O \cdot C_2H_5) \cdot N \cdot CS$. B. [5-Dimethylamino-diphenylen-(2.4')]-disenföl (s. u.) wird mit absol. Alkohol gekocht (J., K., A. 303, 359). Körnig-krystallinische Masse (aus absol. Alkohol). F: 170°. Leicht löslich in Benzol, schwer in Äther, unlöslich in Ligroin, Alkalien und Säuren.
- 5-Dimethylamino 2.4'-bis-thiocarbonylamino diphenyl, [5-Dimethylamino-diphenylen-(2.4')]-di-isothiocyanat, [5-Dimethylamino-diphenylen-(2.4')]-di-senföl $C_{12}H_{12}N_3S_2 = SC:N\cdot C_6H_4\cdot C_6H_5[N(CH_2)_2]\cdot N:CS.$ B. Eine mit einigen Tropfen Salzsäure versetzte Lösung von 1 g 2.4'-Diamino-5-dimethylamino-diphenyl in 10 ccm Wasser wird mit einer Lösung von 1,25 g Thiophosgen in 5 ccm Chloroform zusammengebracht; unter Umschütteln wird allmählich schwach alkalisch gemacht, das gebildete Senföl geht in die Chloroformschicht (J., K., A. 303, 358). Hellgelbe prismatische Nadeln. F: 149°. Sehr wenig löslich in Alkohol, etwas leichter in Äther, sehr leicht in Benzol und Chloroform. Geht beim Kochen mit absol. Alkohol oder beim Erhitzen mit absol. Alkohol auf 100° im geschlossenen Rohr in 5-Dimethylamino-2 oder 4'-monothiocarbäthoxyamino-4' oder 2-thiocarbonylamino-diphenyl (s. o.) über.

2. Triamine $C_{18}H_{15}N_3$.

¹⁾ Bezifferung von "Dipheaylin" in diesem Handbuch s. S. 211.

p-toluidin (S. 175) und salzsaurem m-Phenylendiamin (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110). — F: 133°.

- 2-Amino-4.4'-bis-dimethylamino-diphenylmethan $C_1, H_{23}N_3 = (CH_2)_3N \cdot C_4H_4 \cdot CH_4 \cdot CH_4 \cdot (NH_4) \cdot N(CH_3)_3$. B. Durch Reduktion des 2-Nitro-4.4'-bis-dimethylamino-diphenylmethans (S. 245) mit Zinkstaub und Salzsäure (Bayer & Co., D. R. P. 79250; Frdl. 4, 203) oder mit Zinnchlorür und Salzsäure (Ullmann, Marió, B. 34, 4314). Nadeln (aus Äther + Ligroin). F: 96° (B. & Co.; U., M.). Leicht löslich in Alkohol, Eisessig und Benzol, schwer in Ligroin (U., M.). Liefert mit Essigsäureanhydrid 4.4'-Bis-dimethylamino-2-acetamino-diphenylmethan (s. u.) (B. & Co.; Kliegl, B. 39, 1273). Verwendung zur Darstellung von Aoridinfarbstoffen: B. & Co., D. R. P. 116353; C. 1901 I, 74.
- **2.4-Diamino-4'-diäthylamino-diphenylmethan** $C_{17}H_{29}N_3 = (H_2N)_3C_6H_3 \cdot CH_2 \cdot C_6H_4 \cdot N(C_2H_5)_2$. B. Aus [4-Diathylamino-benzyl]-p-toluidin (S. 175) und salzsaurem m-Phenylendiamin (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1111). F: 92°.
- 4.4'-Bis-dimethylamino-2-acetamino-diphenylmethan $C_{18}H_{26}ON_2 = (CH_2)_2N \cdot C_2H_4 \cdot CH_2 \cdot C_2H_3[N(CH_3)_2] \cdot NH \cdot CO \cdot CH_2$. B. Aus 2-Amino-4.4'-bis-dimethylamino-diphenylmethan und Acetanhydrid (BAYER & Co., D. R. P. 79250; Frdl. 4, 203; KLIEGL, B. 39, 1273). Nadeln (aus Alkohol, Aceton, Essigester oder Benzol + Ligroin). F: 136° (B. & Co.), 138° (K.). Sehr leicht löslich in Eisessig und Chloroform, sehr wenig in Ather und Ligroin (K.). Liefert bei der Oxydation mit PbO₂ in Schwefelsäure + Essigsäure das Farbsalz des 4.4'-Bis-dimethylamino-2-acetamino-benzhydrols (Syst. No. 1859) (B. & Co.). Wird beim Kochen mit Alkohol und Chloranil zu 4.4'-Bis-dimethylamino-2-acetamino-benzophenon (Syst. No. 1873) oxydiert (K.).
- 4.4'-Bis-dimethylamino-2-bensamino-diphenylmethan $C_{24}H_{27}ON_3 = (CH_2)_2N \cdot C_8H_4 \cdot CH_3 \cdot C_6H_3[N(CH_2)_3] \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 2-Amino-4.4'-bis-dimethylamino-diphenylmethan durch Benzoylierung (BAYER & Co., D. R. P. 79250; Frdl. 4, 203). F: 156—157°.
- 2. 4.4'.a-Triamino-diphenylmethan, 4.4'.a-Triamino-ditan, 4.4'-Diamino-benzhydrylamin $C_{12}H_{12}N_3 = H_2N \cdot C_4H_4 \cdot CH(NH_2) \cdot C_4H_4 \cdot NH_2$.
- a-Amino-4.4'-bis-dimethylamino-diphenylmethan, 4.4'-Bis-dimethylamino-benzhydrylamin, Leukauramin $C_{17}H_{23}N_3 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot NH_3$. B. Beim Eintragen von Natriumamalgam in eine alkoh. Lösung von Auramin $[(CH_3)_2N\cdot C_6H_4]_3C:NH$ (Syst. No. 1873) (Graebe, B. 20, 3265). Durch Reduktion von Auramin mit Zinkstaub und Salzsaure (Kern & Sandoz, D. R. P. 64270; Frdl. 3, 140). — Darst. Man schüttelt die Lösung von 20 g salzsaurem Auramin in 300 g Alkohol mit Natriumamalgam, bis eine Probe sich mit Eisessig sofort tiefblau färbt, bringt die ausgeschiedenen Krystalle nach Zusatz von Alkohol durch Erwärmen in Lösung und versetzt die filtrierte Lösung bis zur eben wieder verschwindender Trübung mit heißem Wasser; beim Erkalten krystallisiert das Leukauramin aus (Möhlau, Heinze, Zimmermann, B. 35, 375). — Farblose Krystalle (aus Alkohol). F: 135° (G.). Kaum löslich in Wasser, ziemlich schwer in Alkohol (G.). Wird beim Übergießen mit Salzsäure grünlich und löst sich dann farblos (G.). Löst sich in Eisessig mit intensiv blauer Farbe (G.). — Geht beim Erhitzen auf seine Schmelztemperatur (bis zum Aufhören der NH₃-Entwicklung) in Bis-[4.4'-bis-dimethylamino-benzhydryl]-amin (S. 309) über (M., H., Z., B. 35, 377). Zerfällt beim Erwärmen mit verd. Salzsäure in Salmiak und 4.4'-Bisdimethylamino-benzhydrol (Syst. No. 1859) (Rosenstiehl, Bl. [3] 11, 405). Beim Erhitzen von Leukauramin mit Schwefel auf 140° entsteht 4.4'-Bis-dimethylamino-thiobenzophenon (Syst. No. 1873) (M., H., Z., B. 35, 377). Beim Leiten von Schwefelwasserstoff in die alkois selected to the losung von Leukauramin entsteht Bis-[4.4'-bis-dimethylamino-benzhydryl]-sulfid [(CH₂)₂N·C₂H₄]₂CH·S·CH[C₂H₄·N(CH₂)₂]₃ (Syst. No. 1859) (M., H., Z., B. 35, 378, 379). Leukauramin kondensiert sich beim Erhitzen mit a-Naphthol in 90% iger Essigsäure zu Bis-[4-dimethylamino-phenyl]-[4-oxy-naphthyl-(1)]-methan [(CH₂)₂N·C₂H₄]₂CH·C₁₀H₄·OH (Syst. No. 1868); analoge Verbindungen wurden mit β-Naphthol, Resoroin und anderen aromatischen Oxyverbindungen erhalten (Sandoz & Co., D. R. P. 81677; Frdl. 4, 220). Beim Lösen von Leukauramin in Schwefelkohlenstoff entsteht das Leukauraminsalz der Leukauramin-N-dithiocarbonsäure (S. 308); beim Erhitzen mit Schwefelkohlenstoff in alkoh. Lösung unter Druck entsteht Bis-[4.4'-bis-dimethylamino-benzhydryl]-sulfid (M., H., Z., B. 35, 380, 381). Beim Kochen molekularer Mengen von Leukauramin und Anilin in alkoh. Lösung entsteht N-Phenyl-leukauramin (s. u.) (M., H., B. 35, 362). Erhitzt man Leukauramin mit Anilin in salzsaurer Lösung, so erfolgt Kondensation zu 4-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 314) (Keen & Sandoz, D. R. P. 68144; Frdl. 8, 141); mit Dimethylanilin erhält man auf diese Weise 4.4'.4"-Tris-dimethylamino-triphenylmethan (K. & S., D. R. P. 64270. 64270; Frdl. 8, 140).
- N-Phenyl-leukauramin $C_{23}H_{37}N_3=[(CH_4)_5N\cdot C_6H_4]_2CH\cdot NH\cdot C_6H_5$. B. Durch Reduktion von N-Phenyl-auramin (Syst. No. 1873) mit Natriumamalgam in wäßr. Alkohol (MÖHLAU,

Heinze, B. 35, 363). Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Anilin in alkoh. Lösung (M., H.). Beim Kochen von Leukauramin (S. 307) mit Anilin in alkoh. Lösung (M., H.). — Prismen (aus Benzol). F: 154°; sehr leicht löslich in heißem Benzol und Chloroform (M., H.). — Wird durch verd. Säuren in 4.4'-Bis-dimethylamino-benzhydrol und Anilin gespalten (M., H.). Beim Erhitzen mit Schwefelkohlenstoff unter Druck auf 110° entstehen Phenylsenföl und Bis-[4.4'-bis-dimethylamino-benzhydryl]-sulfid (Syst. No. 1859) (M., H., ZIMMERMANN, B. 35, 382).

N-[2-Nitro-phenyl]-leukauramin $C_{23}H_{26}O_2N_4 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_4 \cdot NO_2$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit 2-Nitro-anilin in alkoholischer Lösung (M., H., B. 35, 367). — Goldgelbe prismatische Nadeln (aus Aceton). F: 164°. Leicht löslich in Benzol, Aceton und Chloroform, schwer in Alkohol und Äther.

N-[3-Nitro-phenyl]-leukauramin $C_{23}H_{26}O_2N_4 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot NH\cdot C_6H_4\cdot NO_2$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit 3-Nitro-anilin in alkoh. Lösung (M., H., B. 35, 368). — Goldgelbe Prismen (aus Aceton). F: 152°. Leicht löslich in Benzol, Chloroform, Aceton und Eisessig, schwer in Alkohol und Äther.

N-[4-Nitro-phenyl]-leukauramin C₂₂H₂₅O₂N₄ = [(CH₃)₂N·C₆H₄]₂CH·NH·C₄H₄·NO₂. B. Aus 4.4'-Bis-dimethylamino-benzhydrol und 4-Nitro-anilin durch Kochen in alkoh. Lösung (MÖHLAU, HEINZE, B. 35, 368) oder Erhitzen in verd. Salzsäure im Wasserbade (GUYOT, GRANDERYE, C. r. 134, 550). — Gelbe Prismen (aus Aceton). F: 186° (M., H.), 182° (GU., GE.). Leicht löslich in Benzol, Chloroform und Aceton, schwer in Alkohol und Äther (M., H.). — Bei längerem Erhitzen in verd. Salzsäure werden Dimethylanilin, N-[4-Dimethylamino-benzal]-4-nitro-anilin (Syst. No. 1873) und andere Produkte gebildet (GU., GR.).

N-o-Tolyl-leukauramin $C_{24}H_{29}N_3 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Bei 12-stdg. Stehen von 4.4'-Bis-dimethylamino-benzhydrol mit o-Toluidin in Alkohol (M., H., B. 35, 363). — Prismen (aus Chloroform + Alkohol). F: 133°. Leicht löslich in Benzol, Chloroform und Aceton, schwer in Alkohol und Äther.

N-p-Tolyl-leukauramin $C_{24}H_{50}N_3 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit p-Toluidin in Alkohol (M., H., B. 35, 364). — Prismen (aus Benzol). F: 150°. Leicht löslich in Aceton, Chloroform und Benzol, schwer in Alkohol und Äther.

N - [2.4 - Dimethyl - phenyl] - leukauramin $C_{25}H_{31}N_3 = [(CH_3)_3N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_3(CH_3)_3$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit asymm. m-Xylidin in Alkohol (M., H., B. 35, 365). — Prismen (aus Alkohol + Chloroform). F: 147°.

N-a-Naphthyl-leukauramin $C_{27}H_{29}N_3 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_{10}H_7$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit a-Naphthylamin in Alkohol (M., H., B. 35, 367). — Prismatische Nadeln (aus Benzol + Ligroin). F: 182°. Schwer löslich in Alkohol und Ather, leicht in Benzol, Aceton und Chloroform.

N- β -Naphthyl-leukauramin $C_{27}H_{39}N_3 = [(CH_3)_2N \cdot C_9H_4]_2CH \cdot NH \cdot C_{10}H_7$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit β -Naphthylamin in Alkohol (M., H., B. 35, 367). — Prismen (aus Benzol + Ligroin). F: 191°. Schwer löslich in Alkohol und Äther, sehr leicht in heißem Benzol und in Chloroform.

Carbonyldileukauramin $C_{35}H_{44}ON_6 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot NH\cdot CO\cdot NH\cdot CH[C_6H_4\cdot N(CH_2)_2]_2$. B. Beim Erhitzen von 2 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol mit 1 Mol.-Gew. Harnstoff in alkoh. Lösung (M., H., B. 35, 374). — Prismen (aus Chloroform + Äther). F: 250—251°. Schwer löslich in Alkohol, Äther, Benzol und Aceton, leicht in Chloroform.

Leukauramin-N-dithiocarbonsäure, [4.4'-Bis-dimethylamino-benshydryl]-dithiocarbamidsäure $C_{18}H_{43}N_3S_3=[(CH_3)_2N\cdot C_6H_4]_2CH\cdot NH\cdot CS\cdot SH.$ B. Das Leukauraminsalz der Leukauramin-N-dithiocarbonsäure entsteht beim Auflösen von Leukauramin in Schwefelkohlenstoff (M., H., ZIMMERMANN, B. 35, 380). — Leukauramin salz $C_{38}H_{46}N_6S_3=C_{18}H_{28}N_3S_2+C_{17}H_{29}N_3$. Krystalle. F: 167°. Leicht löslich in warmem Benzol und warmem Schwefelkohlenstoff, unlöslich in Alkohol und Äther. Beim Erhitzen mit Alkohol entsteht der Leukauramin-N-dithiocarbonsäure - [4.4'-bis-dimethylamino-benzhydryl]-ester (Syst. No. 1859).

m-Phenylendileukauramin $C_{40}H_{48}N_6=[(CH_3)_2N\cdot C_8H_4]_2CH\cdot NH\cdot C_8H_4\cdot NH\cdot CH[C_8H_4\cdot N(CH_3)_2]_2$. B. Man erhitzt 10 g m-Phenylendiamin und 54 g 4.4'-Bis-dimethylamino-benzhydrol, in 300 g Alkohol gelöst, 5 Stdn. auf dem Wasserbade (Möhlau, Heinze, B. 35, 370). — Krystalle. F: 247—248°. Leicht löslich in Chloroform, schwer in Alkohol, Ather, Aceton und Benzol.

p-Phenylendileukauramin $C_{40}H_{48}N_6=[(CH_9)_2N\cdot C_8H_4]_2CH\cdot NH\cdot C_6H_4\cdot NH\cdot CH[C_6H_4\cdot N(CH_4)_2]_2$. B. Man erhitzt 10,8 g p-Phenylendiamin und 54 g 4.4'-Bis-dimethylamino-benzhydrol, in 220 g Alkohol gelöst, 5 Stdn. am Rückflußkühler (M., H., B. 35, 369). — Prismen

(aus Benzol). F: 225°. Leicht löslich in heißem Benzol und Chloroform, schwer in Alkohol, Äther und Aceton. Wird durch Eisessig blau gefärbt.

N-[3-Amino-4-methyl-phenyl]-leukauramin $C_{34}H_{30}N_4=[(CH_3)_3N\cdot C_6H_4]_2CH\cdot NH\cdot C_6H_3(CH_3)\cdot NH_2$. B. Beim 5-stdg. Erhitzen äquimolekularer Mengen von 2.4-Diamino-toluol und 4.4'-Bis-dimethylamino-benzhydrol in Alkohol (M., H., B. 35, 371). — Prismen (aus Benzol + Ligroin). F: 209°. Leicht löslich in Aceton, Benzol und Chloroform, ziemlich leicht in Alkohol, unlöslich in Äther und Ligroin.

N-[2-Amino-4-methyl-phenyl]-leukauramin $C_{24}H_{30}N_4 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_3(CH_3) \cdot NH_2$. B. Beim Stehen einer alkoh. Lösung äquimolekularer Mengen von 3.4-Diamino-toluol und 4.4'-Bis-dimethylamino-benzhydrol (M., H., B. 35, 371). — Prismatische Krystalle (aus Benzol + Ligroin). F: 165°. Leicht löslich in Aceton, Benzol und Chloroform, ziemlich löslich in Alkohol, schwer in kaltem Äther, unlöslich in Ligroin.

[Diphenylen-(4.4')]-di-leukauramin $C_{46}H_{52}N_6 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_4 \cdot C_6H_4$ $\cdot NH \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Man erhitzt 1 Mol.-Gew. Benzidin (S. 214) mit 2 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol in alkoh. Lösung auf dem Wasserbade (M., H., B. 35, 372). — Prismen (aus Chloroform). F: 242—243°. Leicht löslich in Chloroform, schwer in Alkohol, Ather, Benzol und Aceton.

Bis - [4.4 - bis - dimethylamino - benzhydryl] - amin $C_{34}H_{45}N_5 = [(CH_3)_2N \cdot C_2H_4]_3CH \cdot NH \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erhitzen von Leukauramin auf seine Schmelztemperatur (Möhlau, Heinze, Zimmermann, B. 35, 377). Aus 4.4 · Bis-dimethylamino-benzhydrol durch Kochen mit einer ammoniakalischen Lösung von Ammoniumacetat (Well, B. 27, 1408). — Prismen (aus Chloroform + Äther). F: 185° (W.; M., H., Z.). Sehr wenig löslich in Alkohol, leichter in Benzol (W.).

[3.3'-Dimethyl-diphenylen-(4.4')]-di-leukauramin $C_{48}H_{56}N_6=[(CH_3)_2N\cdot C_8H_4]_2CH\cdot NH\cdot C_8H_3(CH_3)\cdot C_6H_3(CH_3)\cdot NH\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Kochen von 1 Mol.-Gew. o-Tolidin (S. 256) mit 2 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol in alkoh. Lösung (Möhlau, Heinze, B. 35, 372). — Prismen (aus Chloroform + Alkohol). F: 229—230°. Sehr wenig löslich in Alkohol, Äther und Aceton.

3. Triamine C₁₄H₁₇N₃.

- 1. 4.6.4'-Triamino-3-methyl-diphenylmethan CH₃ C₁₄H₁₇N₃, s. nebenstehende Formel. B. 65 g [4-Aminobenzyl]-anilin (S. 175) werden mit 39 g 2.4-Diamino-toluol (S. 124), 120 g Salzsäure (D: 1,19) und 1200 g Wasser 6 Stdn. auf dem Wasserbade erwärmt (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110; P. Cohn, A. Fischer, B. 33, 2588). Gelbliche Krystalle (aus Alkohol). F: 139—140° (P. C., A. Fi.), 135° (H. Fa.). Leicht löslich in Alkohol, Chloroform und Benzol, schwer in Ather (P. C., A. Fi.).
- 4.6-Diamino-4'-dimethylamino-3-methyl-diphenylmethan $C_{16}H_{21}N_3=(CH_9)_2N\cdot C_6H_4\cdot CH_2\cdot C_6H_2(CH_3)(NH_2)_2$. B. Man erwärmt 90 g [4-Dimethylamino-benzyl]-p-toluidin (S. 175), 45 g 2.4-Diamino-toluol, 150 g konz. Salzsäure und 1500 g Wasser auf dem Wasserbade (H. Fa., D. R. P. 107718; C. 1900 I, 1110; P. C., A. Fr., B. 33, 2591). Krystalle (aus Alkohol). F: 112—113° (P. C., A. Fr.), 113° (H. Fa.). Leicht löslich in Äther, Benzol und Chloroform (P. C., A. Fr.).
- 2. 4.2'.4'-Triamino-3-methyl-diphenylmethan $C_{14}H_{17}N_3$, s. nebenstehende Formel. B. Aus [4-Amino-3-methyl-benzyl]-p-toluidin (S. 185) und salzsaurem m-Phenylendiamin (Höchster Farbw., D. R. P. 107718; C. 1900 I, 110). F: 130°.
- 3. 6.2.4'-Triamino-3-methyl-diphenylmethan $C_{14}H_{17}N_3$, s. nebenstehende Formel. B. Aus [6-Amino-3-methyl-benzyl] p-toluidin (S. 185) und salzsaurem m-Phenylendiamin (Höchster Farbwerke, D. R. P. 107718; C. 1900 I, 1110). F: 140°.
- 4. 4.6.4'-Triamino 3.3'-dimethyl diphenyl C₁₄H₁₇N₃, s. nebenstehende Formel. B. Durch Reduktion von 6-Nitro-o-tolidin (S. 260) mit Zinn und Salzsäure (Löwenhebz, B. 25, 1034). Flocken. Sehr leicht löslich in Alkohol, fast unlöslich in Äther.

$$H_3N \cdot \bigcirc \cdot CH_3 \cdot \bigcirc$$
 NH_3

NH,

$$\begin{array}{c} CH_{1} & CH_{2} \\ \vdots & \vdots \\ NH_{2} & NH_{2} \end{array}$$

Triacetylderivat $C_{20}H_{23}O_2N_3=C_{14}H_{14}N_3(CO\cdot CH_2)_3$. Beim Kochen von 4.6.4'-Triamino-3.3'-dimethyl-diphenyl mit Eisessig (L., B. 25, 1035). — Krystalle (aus Alkohol). Schmilzt oberhalb 290°. Leicht löslich in siedendem Alkohol, unlöslich in Äther und Benzol.

4. Triamine C₁₅H₁₉N₃.

- 1. 4.6.4'-Triamino-3.3'-dimethyl-diphenyl-methan C₁₅H₁₉N₃, s. nebenstehende Formel. B. 65 g [4-Amino-3-methyl-benzyl]-p-toluidin (S. 185), 35 g 2.4-Diamino-toluol (S. 124), 117 g konz. Salzsäure und 600 g Wasser werden einige Stunden auf dem Wasserbade eript Cohn, A. Fischer, B. 33, 2589). Nadeln (aus Alkohol). F: 163° (H. Fa.; P. C., A. Fi.). Leicht löslich in Äther, Chloroform und Benzol, schwer in Alkohol (P. C., A. Fi.).
- 2. 4.6.6'- Triamino 3.3'- dimethyl-diphenylmethan CH₃ CH₃ C₁₅H₁₉N₃, s. nebenstehende Formel. B. Man erwärmt 100 g [6-Amino-3-methyl-benzyl]-p-toluidin (S. 185), 54 g 2.4-Diamino-toluol, 180 g konz. Salzsäure und 1 Liter Wasser 6 Stdn. auf dem Wasserbade (Höchster Farbw., D. R. P. 107718; C. 1900 I, 1110; NH₂ NH₂ P. Cohn, A. Fischer, B. 33, 2592). Krystalle (aus Alkohol). F: 154° (P. C., A. Fi.), 155° (H. Fa.).
- 3. 4.4'.a-Triamino-3.3'-dimethyl-diphenylmethan, 4.4'-Diamino-3.3'-dimethyl-benzhydrylamin $C_{15}H_{16}N_3 = H_2N\cdot C_6H_3(CH_3)\cdot CH(NH_2)\cdot C_6H_3(CH_3)\cdot NH_2$. a-Amino-4.4'-bis-methylamino-3.3'-dimethyl-diphenylmethan, 4.4'-Bis-[methylamino] 3.3'-dimethyl-benzhydrylamin, Leukauramin G $C_{17}H_{25}N_3 = [CH_3 \cdot NH \cdot C_6H_3(CH_3)]_2CH\cdot NH_2$. B. Durch Reduktion von Auramin G $[CH_3 \cdot NH \cdot C_6H_3(CH_2)]_2C:NH$ (Syst. No. 1873) mit Zinkstaub und Salzsäure (GNEHM, WEIGHT, B. 35, 914). Strohgelbe Nadeln (aus Benzol). F: 207—208°.

4. Triamine $C_n H_{2n-13} N_3$.

Triamine $C_{14}H_{15}N_{3}$.

- 1. 2.4.2'-Triamino-stilben, a-[2-Amino-phenyl]- NH₂ NH₂ stehende Formel. B. Durch Reduktion von 2.4.2'-Trinitro-stilben (Bd. V, S. 638) mit salzsaurer Zinnchlorür-Eisessiglösung (Thiele, Escales, B. 34, 2848). Gelbe Krystalle (aus Toluol). F: 156—157°.
- 2. 2.4.3'-Triamino-stilben, a-[3-Amino-phenyl]- β -[2.4-diamino-phenyl]- āthylen $C_{14}H_{15}N_3$, s. nebenstehende Formel. B. Durch Reduktion von 2.4.3'-Trinitro-stilben (Bd. V, S. 638) mit salzsaurer Zinnchlorür-Eisessig-lösung (Thiele, Escales, B. 34, 2847). Gelbe Kryställchen (aus Toluol). F: 112—113°. Verändert sich in Lösung sehr leicht.
- 3. 2.4.4'-Triamino-stilben, a-[4-Amino-phenyl]- β -[2.4-diamino-phenyl]- β thylen C₁₄H₁₅N₃, s. nebenstehende Formel. B. Durch Reduktion von 2.4.4'-Trinitro-stilben (Bd. V, S. 638) mit salzsaurer Zinnchlorür-Eisessiglösung (Thiele, Escales, B. 34, 2847). Gelbe Warzen (aus Toluol). F: 176—177°. In Lösungen äußerst leicht oxydabel.

5. Triamin $\tilde{C_n}H_{2n-15}N_8$.

3.9.10 - Triamino - phenanthren $C_{14}H_{13}N_3$, s. nebenstehende H_9N NH₂ Formel.

3.9.10 - Tris - diacetylamino - phenanthren $C_{26}H_{25}O_6N_3 = C_{14}H_7[N(CO \cdot CH_3)_2]_3$. B. Man reduziert 3-Nitro-phenanthrenchinon-dioxim (Bd. VII, S. 807) in siedender alkoholischer Lösung mit Zinnchlorür + Salzsäure und kocht das erhaltene Hydrochlorid des 3.9.10-Triamino-phenanthrens mit Acetanhydrid und Natriumacetat (J. SCHMIDT, SÖLL, B. 41, 3690). — Krystalle (aus Alkohol). F: 307°.

6. Triamine C_n H_{2n-19} N₈.

1. Triamine $C_{19}H_{19}N_8$.

- 1. 2.4'.4"-Triamino-triphenylmethan, 2.4'.4"-Triamino-tritan $C_{19}H_{19}N_3 = CH(C_6H_4\cdot NH_2)_3$ (vgl. auch No. 3). B. Beim Behandeln von 2"-Nitro-4.4'-diamino-triphenylmethan (S. 278) mit Zinkstaub in salzsaurer Lösung (Renouf, B. 16, 1305). Krystalle (aus Alkohol). F: 165° (R.). Die alkoh. Lösung färbt sich beim Kochen mit etwas Essigsäure und Chloranil schwach gelblich-braun (R.). Das salzsaure Salz liefert beim Erhitzen mit Arsensäure auf 150—180° salzsaures 3-Amino-9-[4-amino-phenyl]-acridin (Chrysanilin; Syst. No. 3414) (O. Fischer, Körner, A. 226, 189). $C_{19}H_{19}N_3+3$ HCl. Nadeln. Leicht löslich in Wasser, sehr schwer in Alkohol, unlöslich in Äther; schwer löslich in Salzsäure (R.).
- 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan $C_{25}H_{37}N_3 = H_2N \cdot C_6H_4 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Behandeln von 2"-Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 278) mit Zinkstaub und Salzsäure (O. FISCHER, C. SCHMIDT, B. 17, 1891). Bei der Reduktion von 2-Amino-4'.4"-bis-dimethylamino-triphenylcarbinol (Syst. No. 1865) (BARYER, VILLIGER, B. 36, 2777, 2787). Benzolhaltige Krystalle (aus Benzol + Ligroin) (O. FI., C. SCH.). F: 134—135° (O. FI., C. SCH.), 131—133° (B., V.). Beim Erhitzen mit Arsensäure auf 130—150° entsteht ein rotbrauner Farbstoff; bei der Behandlung mit Superoxyden in essigsaurer Lösung, sowie mit Chloranil in alkoholisch-essigsaurer Lösung tritt Blaufärbung der Lösung ein (O. FI., C. SCH.). Durch Behandeln der schwefelsauren Lösung der Base mit wäßr. Natriumnitritlösung und Verkochen der erhaltenen Diazoniumsalzlösung werden 3-Dimethylamino-9-[4-dimethylamino-phenyl]-fluoren (S. 288) und 4'.4"-Bis-[dimethylamino-phenyl]-shinol-2-oxy-triphenylmethan (Syst. No. 1864) erzeugt (Guyot, Granderye, C. r. 187, 413; Bl. [3] 33, 199).
- 2.4'.4"-Tris-dimethylamino-triphenylmethan-tris-hydroxymethylat $C_{22}H_{43}O_3N_3=CH[C_4H_4\cdot N(CH_3)_3\cdot OH]_3$. B. Das Jodid entsteht beim Behandeln von 2.4'.4"-Triamino-triphenylmethan oder von 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit überschüssigem Methyljodid in methylalkoholischer Lösung bei 100° (Renouf, B. 16, 1306). Salze. Jodid. Amorphe, gelbrote Masse. Sehr leicht löslich in Alkohol. Chloroplatinat 2 $C_{23}H_{40}N_3Cl_3+3$ PtCl₄. Hellgelbe Flocken. Leicht löslich in Wasser, schwer in Alkohol.
- 2-Amino-4'.4"-bis-diäthylamino-triphenylmethan $C_{27}H_{25}N_3 = H_2N \cdot C_4H_4 \cdot CH[C_4H_4 \cdot N(C_2H_5)_2]_2$. B. Bei der Reduktion von 2"-Nitro-4.4'-bis-diäthylamino-triphenylmethan (S. 279) mit Zinkstaub und Salzsäure (O. FISCHER, C. SCHMIDT, B. 17, 1894). Nadeln (aus Benzol). F: 136°.
- Verbindung $C_{51}H_{56}N_6 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot CH_3\cdot CH:N\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid wird erhalten, wenn man 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung behandelt, den Alkohol verdampft, den Rückstand mit Schwefelkohlenstoff auszieht und die erhaltene Lösung verdampft (Reitzenstein, Rothschild, J. pr. [2] 78, 202). $C_{51}H_{56}N_6 + HCl.$ Rot. Sintert von 40° ab und schmilzt bei 68°. Durch Oxydation entsteht ein blaugrüner Farbstoff.
- 4'.4"-Bis-dimethylamino-2-acetamino-triphenylmethan $C_{2s}H_{29}ON_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Kochen von 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit viel überschüssigem Essigsäureanhydrid am Rückflußkühler (O. FISCHER, C. SCHMIDT, B. 17, 1892). Bei der Reduktion von 2-Methyl-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazin $C_6H_4 \cdot N(CH_3)_2|_2 \cdot O$ (Syst. No. 4372) mit Zinkstaub und $N:C(CH_3)_2 \cdot O$ (Syst. No. 4372) $N:C(CH_3)_3 \cdot O$ (Syst. No. 4372) $N:C(CH_3)_3 \cdot O$

Essigsäure (BAEYER, VILLIGER, B. 86, 2777, 2785). — Krystalle. F: 185—186° (B., V.), 186° (O. FI., C. Sch.). — Bei der Oxydation mit Braunstein und eisgekühlter verdünnter Schwefelsäure wird 2-Methyl-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazin zurückerhalten (B., V.).

erhalten (B., V.).

4'.4"-Bis-dimethylamino-2-carbāthoxyamino-triphenylmethan $C_{28}H_{21}O_{1}N_{3} = C_{2}H_{3}\cdot O_{2}C\cdot NH\cdot C_{2}H_{4}\cdot N(CH_{2})_{2}]_{2}$. B. Beim Versetzen von 2-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit Chlorameisensäureester in Pyridin (Baeyer, Villiger, B. 36, 2785). Bei der Reduktion von 2-Athoxy-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazin $C_{4}H_{4}$ $C[C_{2}H_{4}\cdot N(CH_{2})_{2}]_{2}$ O (Syst. No. 4382) (B., V.). — Krystallisiert in zwei Formen: in schiefwinkligen Tafeln vom Schmelzpunkt 131—132° bezw. in Nadeln vom Schmelzpunkt 149°. Trägt man in die methylalkoholische Lösung der niedriger schmelzenden Form einen Krystall der höher schmelzenden ein, so krystallisiert die höher schmelzende aus. Beide Formen sind in Natronlauge unlöslich und färben sich in essigsaurer Lösung auf Zusatz von Bleidioxyd grün.

- 5-Nitro-2-amino-4'.4"-bis-dimethylamino-triphenylmethan $C_{29}H_{26}O_2N_4 = H_2N \cdot C_6H_3(NO_2) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. Läßt sich durch Behandeln mit Natriumnitrit in schwefelsaurer Lösung und Verkochen der Diazoniumlösung in 7-Nitro-3-dimethylamino-9-[4-(dimethylamino)-phenyl]-fluoren (S. 288) überführen (GUYOT, GRANDEBYE, Bl. [3] 33, 203).
- 2. 3.4'.4"-Triamino-triphenylmethan, 3.4'.4"-Triamino-tritan C₁₉H₁₉N₃ == CH(C₆H₄·NH₂)₃ (vgl. auch No. 3). B. Beim Behandeln von 3"-Nitro-4.4'-diamino-triphenylmethan (S. 279) mit Zinkstaub und konz. Salzsäure (O. Fischer, Ziegler, B. 13, 672). Nadeln (aus Benzol) mit 1 Mol. Benzol, die bei 145° unter vorherigem Erweichen schmelzen; Rosetten (aus wasserfreiem Äther + Ligroin) vom Schmelzpunkt 150°, die benzolfreie Base löst sich leicht in Alkohol, ziemlich schwer in Äther und schwer in Ligroin (O. Fi., Z.). Wird beim Erhitzen mit Salzsäure auf ca. 150° zu einem rein violetten Farbstoff oxydiert, der sich leicht in Wasser und Alkohol löst (Unterschied von Paraleukanilin, S. 313) (O. Fi., Z.). Über die Herstellung von Sulfonsäuren der Alkylderivate des 3.4'.4"-Triamino-triphenylmethans und deren Verwendung zur Herstellung von Farbstoffen vgl. Höchster Farbw., D. R. P. 48523, 50293, 50440, 61478; Frdl. 2, 39, 41, 43; 3, 153. 2C₁₉H₁₉N₃ + 6 HCl + 3 PtCl₄ (bei 100°). Gelber krystallinischer Niederschlag. Sehr leicht löslich in Wasser, etwas schwerer in Alkohol und noch schwerer in Äther (O. Fi., Z.).
- 3 Amino 4'.4" bis dimethylamino triphenylmethan C₂₃H₃₇N₃ = H₂N·C₆H₄·CH[C₆H₄·N(CH₃)₂]₂. B. Durch Behandeln von 3".Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 279) oder eines Farbsalzes des 3".Nitro-4.4'-bis-dimethylamino-triphenylcarbinols (Syst. No. 1865) mit Zinkstaub und Salzsäure (E. Fischer, O. Fischer, B. 12, 803). Nädelchen (aus Ligroin). F: 130° (E. Fi., O. Fi.). Liefert bei der Oxydation einen grünen Farbstoff (O. Fi., B. 15, 683). Beim Erwärmen in alkoh. Lösung mit 4-Chlor-1.3-dinitro-benzol entsteht das nicht näher beschriebene 4'.4"-Bis-dimethylamino-3-[2.4-dinitro-anilino]-triphenylmethan, das bei der Oxydation mit Bleidioxyd einen gelbgrün färbenden, in heißem Wasser leicht löslichen Farbstoff gibt (Höchster Farbw., D. R. P. 63026; Frdl. 3, 154; Reitzenstein, Runge, J. pr. [2] 71, 94, 127) und durch Sulfurieren und darauffolgende Oxydation des Reaktionsproduktes in einen grünen Säurefarbstoff übergeführt werden kann (Höchster Farbw., D. R. P. 66791; Frdl. 3, 155). Gibt durch Benzylierung, darauffolgende Sulfurierung und Oxydation eine blaugrüne Farbstoffsulfonsäure (Bayer & Co., D. R. P. 37067; Frdl. 1, 120). Über Kombination der diazotierten Base mit Salicylsäure, Phenolen usw. und Oxydation der so erhaltenen Verbindungen zu Azotriphenylmethanfarbstoffen vgl.: Bayer & Co., D. R. P. 57452, 58572, 58573, 58574; Frdl. 2, 51; 3, 68, 166, 167; Schultz, Tab. No. 510.
- 3.4'.4"-Tris-dimethylamino-triphenylmethan $C_{25}H_{31}N_3 = CH[C_3H_4\cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 1 Tl. 3.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) mit 2 Tln. Dimethylanilin und $^{1}/_{2}$ Tl. Chlorzink auf dem Wasserbade (BARYER, A. 354, 201). Farblose Prismen (aus Benzol + Alkohol). F: 153—154°. Wenig löslich in Alkohol und Äther. Färbt sich an der Luft oberflächlich grün.
- 3.4'.4"-Tris-dimethylamino-triphenylmethan-tris-hydroxymethylat $C_{28}H_{43}O_3N_3 = CH[C_6H_4\cdot N(CH_3)_3\cdot OH]_8$. B. Das Jodid entsteht beim Behandeln von 3.4'.4"-Triamino-triphenylmethan mit überschüssigem Methyljodid und Methylalkohol bei 115° (O. FISCHER, ZIEGLER, B. 13, 673) oder beim Erhitzen von 3-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit Methyljodid und Methylalkohol auf 115—120° (E. FI., O. FI., B. 12, 803). Salze. Jodid. Krystallisiert sehr schwer; in Wasser sehr leicht löslich (E. FI., O. FI.; O. F
- Verbindung $C_{51}H_{56}N_6 = [(CH_5)_2N \cdot C_6H_4]_2CH \cdot C_9H_4 \cdot N \cdot CH \cdot CH \cdot CH \cdot CH_5 \cdot CH : N \cdot C_9H_4 \cdot CH [C_6H_4 \cdot N(CH_5)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 3-Amino-4'.4"-bis-[dimethylamino]-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung (Reitzenstein, Rothschild, J. pr. [2] 78, 203). $C_{51}H_{56}N_6 + HCl$. Grün. F: 78°. Durch Oxydation entsteht ein smaragdgrüner Farbstoff.
- 4-Chlor-3-amino-4'.4"-bis-dimethylamino-triphenylmethan $C_{22}H_{20}N_{2}Cl = H_{2}N \cdot C_{4}H_{3}Cl \cdot CH[C_{6}H_{4} \cdot N(CH_{2})_{2}]_{2}$. Be der Reduktion von 4"-Chlor-3"-nitro-4.4'-bis-dimethylamino-triphenylmethan mit Zinnchlorür und Salzsäure (E. Eedmann, H. Eedmann, A. 294, 382). Nadeln (aus Alkohol). F: 167—167,5°.
- 3. Derivat des 2.4'.4"- oder des 3.4'.4"-Triamino-triphenylmethans $C_{10}H_{10}N_3 = CH(C_0H_4\cdot NH_3)_3$ (vgl. No. 1 und 2).

5-Nitroso-2.4'.4"-tris-dimethylamino-oder 6-Nitroso-3.4'.4"-tris-dimethylamino-triphenylmethan $C_{25}H_{30}ON_4 = (CH_3)_2N \cdot C_6H_3(NO) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Beim Erhitzen von 1 Mol.-Gew. 4-Nitroso-dimethylanilin mit 1 Mol.-Gew. 4.4'-Bis-dimethylamino-benzhydrol in absol. Alkohol auf dem Wasserbade (Möhlau, B. 31, 2352; M., Kloffer, B. 32, 2155). — Gelbe Prismen (aus Benzol) mit $^1/_2$ Mol. Benzol. F: 212°. Leicht löslich in Alkohol und Äther, schwerer in Benzol und Eisessig. Die Lösung in konz. Schwefelsäure ist rotbraun. — Oxydationsmittel färben die sauren Lösungen grün. Beim Erwärmen mit salzsaurer Zinnehlorürlösung auf dem Wasserbade entsteht das entsprechende Amino-tris-dimethylamino-triphenylmethan (S. 343).

4. 4.4'.4"-Triamino-triphenylmethan, 4.4'.4"-Triamino-tritan, Paraleukanilin $C_{19}H_{19}N_3=CH(C_0H_4\cdot NH_2)_3$. B. Bei der Reduktion von 4.4'.4"-Trinitro-triphenylmethan (Bd. V, S. 707) mit Zinkstaub und Eisessig (E. FISCHER, O. FISCHER, A. 194, 272). Bei der Reduktion von 4"-Nitro-4.4'-diamino-triphenylmethan (S. 279) mit Zink und Salzsaure (O. Fi., Greiff, B. 13, 670; O. Fi., B. 15, 678; vgl. Renouf, B. 16, 1301). Bei der Reduktion von Pararosanilin (Syst. No. 1865) mit Zink und Salzsäure (E. Fr., O. Fr., A. 194, 268), mit Schwefelammonium oder besser beim Behandeln einer siedenden alkoholischen Lösung von Pararosanilin mit Natriumhydrosulfit Na₂S₂O₄ und etwas Zinkstaub (O. Fl., Fritzen, J. pr. [2] 79, 563). Entsteht als Nebenprodukt bei der Fabrikation des Fuchsins nach dem Arsensaureverfahren (Graebe, B. 12, 2241). Durch Erhitzen von Aurin (Bd. VIII, S. 361) mit alkoh. Ammoniak bei 150° (Dale, Schorlemmer, B. 10, 1123; vgl. E. Fi., O. Fi., B. 11, 473). Bei mehrstündigem Erhitzen von 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylmethan (S. 331) mit Anilin und salzsaurem Anilin auf 170° (Vongerichten, Book, C. 1903 II, 442). Beim Erwärmen von 4.4'-Diamino-benzhydrol (Syst. No. 1859) mit salzsaurem Anilin in wäßr. Lösung auf dem Wasserbade (V., B.). Beim Erhitzen von rohem salzsaurem 4-Amino-benzaldehyd, erhalten aus 4-Nitro-benzaldehyd durch Reduktion mit Zink und Salzsäure in alkoholischer Lösung und Eindampfen der Flüssigkeit, mit salzsaurem Anilin bei Gegenwart von Zinkchlorid auf 120-140° (Ö. Fr., D. R. P. 16710; Frdl. 1, 57). Beim Erwärmen von Anilin und salzsaurem Anilin mit Phenylhydroxylamin (Syst. No. 1932) und Formaldehyd auf 100° oder mit Methylen-bis-phenylhydroxylamin $CH_1(N(OH) \cdot C_6H_5)_1$ (Syst. No. 1932) auf 100—110° oder besser mit Methylen-bis-phenylhydroxylamin unter Zusatz von Formaldehyd (Kalle & Co., D. R. P. 93699; Frdl. 4, 180). Durch Behander Co., D. R. P. 93699; Frdl. 4, 180). deln des salzsauren Salzes des polymeren Anhydro-[4-hydroxylamino-benzylalkohols] (s. bei 4-Hydroxylamino-benzylalkohol, Syst. No. 1937) mit Anilin und salzsaurem Anilin (Ka. & Co., D. R. P. 87 972; Frdl. 4, 50), neben einer anderen nicht näher beschriebenen Base (KA. & Co., D. R. P. 93699; Frdl. 4, 180).

Blätter (aus Wasser, absol. Alkohol oder Benzol). F: 202,5° (korr.) (Montagne, R. 24, 129), 206° (O. Fi., Fritzen), 207° (E. Fi., O. Fi., B. 37, 3357), 207—208° (O. Fi., G. Schmidt, C. 1904 I, 460). Wärmetönung bei der Neutralisation mit Salzsäure: Schmidlin, C. r. 189, 543; A. ch. [8] 7, 242. — Die Überführung von Paraleukanilin in Pararosanilin (Syst. No. 1865) läßt sich bewerkstelligen durch Erhitzen mit Quecksilberchlorid, durch Erhitzen mit Salzsaure auf 150° (O. Fr., Greiff), durch Versetzen der heißen alkoh. Lösung der Base mit Chloranii (O. Fi., Greiff; Höchster Farbw., D. R. P. 11412; Frdl. 1, 64), durch kurzes Erhitzen mit sirupöser Arsensäurelösung auf 130—140° (E. Fi., O. Fi., A. 194, 273), durch Erhitzen des salzsauren Salzes mit Ferrihydroxyd auf 120—160° (Höchster Farbw., D. R. P. 19484; Frdl. 1, 65) oder durch Behandeln der Base mit Mangandioxyd und Essigsäure bei Gegenwart von Natriumchloridlösung in Aceton (Höchster Farbw., D. R. P. 70905; Frdl. 3, 110), Methylalkohol oder Athylalkohol (Höchster Farbw., D. R. P. 72032; Frdl. 3, 111). Beim Einleiten von salpetriger Säure in eine Lösung von salzsaurem Paraleukanilin entsteht Triphenylmethan-tris-diazoniumchlorid (Syst. No. 2198) (E. Fi., O. Fi., A. 194, 269). Durch Behandeln einer Lösung von Paraleukanilin in konz. Schwefelsäure mit gasförmiger salpetriger Säure und Verkochen der erhaltenen Diazoniumsalzlösung mit Alkohol erhält man Triphenylmethan (Bd. V, S. 698) (E. Fi., O. Fi., A. 194, 270). Durch einmonatiges Stehenlassen von salzsaurem Paraleukanilin in rauchender Schwefelsäure von 60% Anhydridgehalt und anodische Oxydation der mit Wasser und Eis verdünnten Lösung erhält man das Sulfat einer Verbindung $C_{19}H_{13}O_4N_5S_3$ (S. 314); bei $2^1/_2$ -stdg. Kochen mit rauchender Schwefelsäure von $60^9/_0$ Anhydridgehalt liefert salzsaures Paraleukanilin eine Trisulfonsäure (S. 314) der genannten Verbindung (Schatdlin, B. 39, 4204). Beim Erhitzen von Paraleukanilin mit Methyljodid und Methylalkohol entsteht 4.4'.4". Tris-dimethylamino-triphenylmethantris-jodmethylat (8. 315, 316) (E. Fl., O. Fl., B. 12, 2345). Beim Erhitzen von Paraleukanilin mit Glycerin, konz. Schwefelsäure und Pikrinsäure auf 140—150° wird Tri-[chinolyl-(6)]methan CH(C,H_eN)₈ (Syst. No. 3823) erhalten (NOELTING, SCHWARTZ, B. 24, 1606). Uber die Einw. von Formaldehyd auf Paraleukanilin vgl. TRILLAT, Bl. [3] 9, 563. Durch Erhitzen von Paraleukanilin mit überschüssigem Essigsäureanhydrid (R.) unter Druck auf 150—160° (O. Fl., G. SCHMIDT) bildet sich 4.4'.4". Tris-acetamino-triphenylmethan (S. 317). Beim

Erhitzen von 1 Tl. Paraleukanilin mit 2,5 Tln. o-Toluidin und 5 Tln. salzsaurem o-Toluidin entsteht 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylmethan (S. 331) (V., B.).

 $C_{19}H_{19}N_3 + 3$ HCl + H_9 O. Prismen (aus heißer verdünnter Salzsäure). Verliert bei 100° das Krystallwasser; leicht löslich in Wasser, schwer in Alkohol, Äther und in konz. Salzsäure (O. FI., B. 15, 678; vgl. E. FI., O. FI., A. 194, 272; Graebe). Elektrische Leitfähigkeit: Hantzsch, Osswald, B. 33, 304; vgl. Miolati, B. 28, 1698. Verliert bei längerem Erhitzen bei 110—115° etwas Chlorwasserstoff; bei 120—125° tritt allmählich Bildung von Parafuchsin ein (O. FI., B. 15, 679). — $C_{19}H_{19}N_3 + 4$ HCl + H_2 O. B. Bei längerem Einleiten von Chlorwasserstoff in eine alkoholische Suspension der Base (Mi.). — Sulfat. Nadeln (aus Wasser). Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther (R.). — Nitrat. Farblose Blättchen. Leicht löslich in Wasser (Graebe). — Oxalat. Prismen. In Wasser leicht, in Alkohol und Äther schwer löslich (R.). — Chloroplatinat. Nadeln (aus Wasser). Schwer löslich in Wasser, unlöslich in Alkohol (R.).

Verbindung C₁₉H₁₉O₄N₂S₂, s. nebenstehende Formel. B. Durch einmonatiges Stehenlassen von 26 g salzsaurem Paraleukanilin in 250 g rauchender Schwefelsäure von 60°/₀ Anhydridgehalt, Verdünnen mit Wasser und Eis und anodische Oxydation der Lösung (Schmudlin, B. 39, 4204). — Tiefbrauner Niederschlag. — 2 C₁₉H₁₃O₄N₃S₂ + H₂SO₄ + H₂O (bei 100°). Blaue Krystalle mit violettroter Oberflächenfarbe. H₂N·Sehr wenig löslich in Wasser, löslicher in verd. Säuren, sehr leicht löslich in konz. Salzsäure mit brauner Farbe.

Verbindung $C_{19}H_{13}O_{13}N_3S_5=C_{19}H_{10}N_3(SO_3)_2(SO_3H)_3$. B. Bei $2^1/_2$ -stdg. Kochen von 30 g salzsaurem Paraleukanilin mit 200 g rauchender Schwefelsäure von $60^0/_0$ Anhydridgehalt (Schmidlin, B. 39, 4207, 4209). — Scheidet sich aus verd. Schwefelsäure in farblosen Nädelchen mit 4 H_2O aus. Sehr leicht löslich in Wasser; löst sich in warmem Wasser mit tiefblauer Farbe. Verliert bei längerem Erhitzen auf 130—140° das angelagerte Wasser und geht dabei in ein tiefbraunes, in Wasser blau lösliches Pulver über, dessen Lösungen durch Alkalien oder Natriumacetat unter Salzbildung entfärbt werden. Beim Erhitzen auf 170—180° entsteht unter Sauerstoffaufnahme eine in Wasser schwer lösliche Substanz.

4-Amino-4'.4"-bis-dimethylamino-triphenylmethan, N.N.N'.N'-Tetramethylparaleukanilin C₁₂H₂₇N₃ = H₂N·C₆H₄·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Behandeln von 4"-Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 280) mit Zinkstaub und Salzsäure (O. Fischer, B. 14, 2527). Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Anilin in salzsaurer Lösung (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 75; Noelling, Runge, J. pr. [2] 71, 91). Durch Reduktion des Farbsalzes des 4"-Nitro-4.4'-bis-[dimethylamino]-triphenylcarbinols (Syst. No. 1865) mit Zinkstaub und Essigsäure (E. Fi., O. Fi., B. 12, 801, 2344; O. Fi., B. 14, 2529). Beim Erhitzen von α-Amino-4.4'-bis-dimethylamino-diphenylmethan (Leukauramin; S. 307) mit Anilin in salzsaurer Lösung (Keen & Sandoz, D. R. P. 68144; Frdl. 3, 141). — Krystalle (aus Alkohol). F: 151—152°; ziemlich schwer löslich in Alkohol (O. Fi.). — Liefert bei der Oxydation mit Mangandioxyd oder Bleidioxyd in schwach saurer Lösung (O. Fi.) das Farbsalz des 4-Amino-4'.4'-bis-dimethylamino-triphenylcarbinols (Syst. No. 1865). Auch Chloranil kann als Oxydationsmittel dienen (O. Fi., German, B. 16, 709). Beim Erhitzen mit Methyljodid in Methylalkohol entsteht 4.4'.4"-Trisdimethylamino-triphenylmethan-tris-jodmethylat (S. 315, 316) (E. Fi., O. Fi.; O. Fi.; N., Soh.). Einw. von Methylalkohol und Salzsäure: O. Fi., Ge. Beim Kochen mit überschtüssigem Essigsäureanhydrid entsteht 4.4'-Bis-dimethylamino-4"-acetamino-triphenylmethan (S. 317) (O. Fi., Ge.). Über Kombination der diazotierten Base mit Salicylsäure, Phenolen usw. und Oxydation der so erhaltenen Verbindungen zu Azotriphenylmethanfarbstoffen vgl. Bayer & Co., D. R. P. 57452, 58572, 58573, 58574; Frdl. 2, 51; 3, 68, 166, 167.

4-Methylamino-4.4"-bis-dimethylamino-triphenylmethan, N.N.N'.N".N"-Pentamethyl-paraleukanilin $C_{24}H_{35}N_3=CH_3\cdot NH\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_2)_2]_2$. B. Beim Erwärmen von a-Amino-4.4'-bis-dimethylamino-diphenylmethan (Leukauramin, S. 307) mit Monomethylanilin in salzsaurer Lösung auf dem Wasserbade (KERN & SANDOZ, D. R. P. 68144; Frdl. 3, 141). Beim Kochen von 4.4'-Bis-dimethylamino-4''-[acetylmethylamino-friphenylmethan (S. 317) mit konz. Salzsäure (O. Fisoher, Könner, B. 16, 2907). — Warzenförmig vereinigte Nadeln (aus verd. Alkohol), Spieße (aus Benzol). F: 115—116° (O. Fi., Kö.). — Liefert bei der Oxydation Pentamethyl-pararosanilin (Syst. No. 1865) (O. Fi., Kö.). Beim Erhitzen mit überschüssigem Methyljodid und Methylakohol unter Druck auf 100° entsteht 4.4'.4"-Tris-dimethylamino-triphenylmethan-tris-jodmethylat (S. 315, 316) (O. Fi., Kö.). Beim Behandeln mit überschüssigem Essigsäureanhydrid wird 4.4'-Bis-dimethylamino-4''-[acetylmethylamino]-triphenylmethan gebildet (O. Fi., Kö.).

4.4'.4"-Tris-dimethylamino-triphenylmethan, N.N.N'.N'.N".N".Hexamethylparaleukanilin, Leukokrystallviolett C₂₅H₂₁N₃=CH[C₄H₄·N(CH₃)₂]₃. B. Beim Erhitzen von etwas mehr als 2 Mol.-Gew. Dimethylanilin mit 1 Mol.-Gew. Glykol (Bd. I, S. 465) und Zinkohlorid auf ca. 100°, neben 4-Dimethylanilin mit 1 Mol.-Gew. Glykol (Bd. XII, S. 1090) (Heumann, Wieenik, B. 20, 2421). Bei 14—20-stdg. Erhitzen von 3 Tln. Dimethylanilin mit 1 Tl. Ameisensäure oder 1½ Tln. Isoamylformiat in Gegenwart von 3 Tln. Dimethylanilin mit 1 Tl. Orthoameisensäureäthylester (Bd. II, S. 20) in Gegenwart von ca. 2 Tln. Zinkohlorid auf dem Wasserbade (O. Fischer, Körner, B. 17, 99). Durch 12-stdg. Erhitzen von schwefelsaurem Dimethylanilin mit dem durch Erhitzen von Glycerin mit Oxalsäure auf 110—115° erhaltenen Reaktionsprodukt auf 140—150° (Soo. St. Denis, D. R. P. 61815; Frdl. 3, 101). Durch 3-stdg. Erhitzen von 15 ccm Dimethylanilin mit 5 g salzsaurem Diohlormethyl-formamidin (Bd. II, S. 90) auf 120—130° (Gattermann, Schnitzerahn, B. 31, 1774; Bayer & Co., D. R. P. 105198; O. 1900 I, 239). Entsteht als Hauptprodukt beim Erhitzen von 30—40 Tln. Dimethylanilin mit 4 Tln. Schwefelkohlenstoff und 20 Tln. ZnCl₂ auf 100° (Weinmann, C. 1898 I, 1029). Beim Erwärmen von Dimethylanilin mit Leukauramin (S. 307) in salzsaurer Lösung auf 70—90° (Kern & Sandoz, D. R. P. 64270; Frdl. 3, 140). Beim Erwärmen von Dimethylanilin mit 4.4'-Bis-dimethylaminobenzhydrol (Michler Hydrol; Syst. No. 1859) in schwefelsaurer Lösung auf dem Wasserbade (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 77). Beim Einleiten von Chlorwasserstoff in ein Gemisch von Dimethylanilin und 4-Dimethylamino-benzaldehyd (Syst. No. 1873) (Boessneck, B. 19, 366). Aus Krystallviolett (Syst. No. 1865) durch Reduktion mit Schwefelsammonium im Druckrohr bei 120° (A. W. Hofmann, B. 18, 769) oder mit Natriumhydrosulfit Na₂S₂O₄ und etwas Zinkstaub in heißem Alkohol (O. Fi., Fertzen, J. pr. [2] 79, 563). Zur Bildung aus dem durch Oxydation von Dimethylanilin gewonnenen Methylv

Blättchen (aus Alkohol), Nadeln (aus Benzol + Ligroin). Schmilzt bei 173° (O. Fr., Ge.) zu einem tiefblauen Öl (Ga., Schn.). F: 175° (Bamberger, Rudolf, B. 41, 3311), 176° (Wich., B. 16, 2007; O. Fr., Fr.). Unlöslich in kaltem Wasser, schwer löslich in kaltem Alkohol, eicht in heißem Alkohol, Ather, Chloroform, Benzol und Eisessig (Wich., B. 14, 1953). Wärmetönung bei der Neutralisation mit Salzsäure: Schmidlin, C. r. 139, 543; A. ch. [8] 7, 242. — Bei der Oxydation mit Bleidioxyd in salzsaurer Lösung entsteht Krystallviolett (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 77). Bei der Einw. von Sulfomonopersäure wird 4.4'.4''-Tris-dimethylamino-triphenylmethan -N.N'.N''-trioxyd (s. u.) erhalten (Bam., Ru.). Beim Nitrieren mit Salpeterschwefelsäure entsteht 2-Nitro-4.4'.4''-tris-[dimethylamino]-triphenylmethan (S. 317) (Bay. & Co., D. R. P. 82570; Frdl. 4, 205). Wird von Methyljodid in methylalkoholischer Lösung in 4.4'.4''-Tris-dimethylamino-triphenylmethan-tris-jodmethylat (s. u. und S. 316) übergeführt (Rosenstiehl, Bl. [3] 13, 552). Wird von Acetylchlorid oder Essigsäureanhydrid selbst bei 120—130° nicht verändert (O. Fi., Ge.).

 $C_{25}H_{31}N_3+4$ HCl. B. Durch Einleiten von Chlorwasserstoff in eine absolut-alkoholische Suspension der Base (O. Fl., G. Schmidt, C. 1904 I, 460). Krystalle. — $2C_{25}H_{31}N_3+6$ HCl + 3 PtCl₄. Nadeln (Wich., B. 14, 1953).

4.4'.4" - Tris - dimethylamino - triphenylmethan - N.N'.N" - trioxyd, N.N.N'.N".N".- Hexamethyl - paraleukanilin - N.N'.N" - trioxyd $C_{18}H_{31}O_3N_3 = CH[C_8H_4\cdot N(:0)(CH_3)_8]_8$. B. Bei der Einw. einer schwach sauren, eisgekühlten Sulfomonopersäurelösung auf 4.4'.4"-Tris-dimethylamino-triphenylmethan (Bamberger, Rudolf, B. 41, 3311). — Farblose Nadeln (aus absol. Alkohol + absol. Äther). F: 176°. Zieht begierig Wasser an, äußerst leicht löslich in Wasser und Alkohol, schwer in Chloroform, kaum löslich in Äther und Ligroin. Reagiert alkalisch. — Entwickelt beim Erhitzen Formaldehyd. Bei der Reduktion mit Zinkstaub in salzsaurer Lösung entsteht 4.4'.4"-Tris-dimethylamino-triphenylmethan. Bei der Einw. von Natriumnitrit und Salzsäure bildet sich 3.3'.3"-Trinitro-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 317). Liefert mit Essigsäureanhydrid bei Gegenwart von etwas konz. Schwefelsäure 3.3'.3"-Trioxy-4.4'.4"-tris-dimethylamino-triphenylmethan (Syst. No. 1870). — Pikrat $C_{18}H_{31}O_3N_3 + 3C_8H_3O_7N_3$. Hellgelbe Flocken. — $2C_{28}H_{21}O_3N_3 + 6$ HCl + 3 PtCl4. Hellbräunlichgelber Niederschlag.

4.4'.4"-Tris-dimethylamino-triphenylmethan-tris-hydroxymethylat, N.N.N'.N".N".Hexamethyl-paraleukanilin-tris-hydroxymethylat $C_{28}H_{43}O_3N_3 = CH[C_8H_4\cdot N(CH_3)_3\cdot OH]_8$. B. Das Jodid entsteht beim Erhitzen von 4.4'.4"-Triamino-triphenylmethan (E. Fischer, O. Fischer, B. 12, 2345), von 4-Amino-4'.4"-bis-[dimethylamino]-triphenylmethan (E. Fi., O. Fi., B. 12, 2344, 2345; O. Fi., B. 14, 2527; NOELTING, SCHWARTZ, B. 24, 3140), von 4-Methylamino-4'.4"-bis-dimethylamino-triphenylmethan (O. Fi., KÖRNER, B. 16, 2907) oder bei eintägigem Stehen von 4.4'.4"-Tris-dimethylamino-triphenylmethan (Rosenstiehl, Bl. [3] 13, 552) mit Methyljodid und Methylalkohol.

- Salze. Jodid $C_{28}H_{40}N_3I_3$. Nadeln (aus Wasser). Schmilzt bei 188° unter Verlust von Methyljodid (Ro.). F: 193° (Zers.) (N., Sch.). 100 Tle. Wasser lösen bei 20° 4,62 Tle., bei ca. 50° 13,6 Tle.; wenig löslich in Methylalkohol (Ro.). Verliert schon an der Luft Methyljodid (E. Fi., O. Fi.; Ro.). Bei mehrstündigem Kochen mit alkoh. Kali wird 4.4'.4''-Trisdimethylamino-triphenylmethan erhalten (Ro.). Chloroplatinat $2C_{28}H_{40}N_3Cl_3 + 3 PtCl_4$. Hellgelber krystallinischer Niederschlag (E. Fi., O. Fi.).
- 4-Amino-4'.4''-bis-diäthylamino-triphenylmethan, N.N.N'.N'-Tetraäthyl-paraleukanilin $C_{27}H_{24}N_5=H_2N\cdot C_0H_4\cdot CH[C_0H_4\cdot N(C_2H_5)_2]_2$. B. Beim Erwärmen von 4''-Nitro-4.4'-bis-diäthylamino-triphenylmethan mit Zinkstaub und verd. Salzsäure bei 60—70° (Karswurm, B. 19, 747). Nadeln (aus Alkohol). F: 118°. Oxydiert sich leicht an der Luft. Die alkoh. Lösung färbt sich sofort rot, nach längerem Stehen violett.
- 4.4'.4"-Tris-diāthylamino-triphenylmethan, N.N.N'.N".N".N"-Hexaäthyl-paraleukanilin $C_{31}H_{45}N_3 = CH[C_6H_4\cdot N(C_2H_5)_3]_3$. B. Durch 12-stdg. Erhitzen von schwefelsaurem Diāthylanilin mit dem durch Erhitzen von Glycerin mit Oxalsāure auf 110° bis 115° erhaltenen Reaktionsprodukt auf 140—150° (Soc. St. Denis, D. R. P. 61815; Frdl. 3, 102). F: 92°. Löslich in Alkohol, Äther, Benzol und Chloroform. Liefert bei der Oxydation den Farbstoff Äthylviolett (Syst. No. 1865).
- 4.4'-Bis-dimethylamino-4"-anilino-triphenylmethan, N.N.N'.N'-Tetramethyl-N"-phenyl-paraleukanilin $C_{29}H_{31}N_3=C_4H_5\cdot NH\cdot C_4H_4\cdot CH[C_4H_4\cdot N(CH_3)_2]_s$. B. Entsteht neben 4.4'-Bis-dimethylamino-diphenylsulfid (Syst. No. 1853) beim Erhitzen von 10 g Thionylanilin (Bd. XII, 8. 578) mit 17 g Dimethylanilin und 10 g geschmolzenem ZnCl_2 auf 70° (MICHARLIS, A. 274, 214). Blättchen (aus Alkohol). F: 176°. Mäßig löslich in kaltem Alkohol, leichter in heißem Alkohol, Äther und Benzol. Bei der Oxydation mit Mangandioxyd in schwefelsaurer Lösung entsteht das Farbsalz des 4.4'-Bis-dimethylamino-4"-anilino-triphenylcarbinols (Syst. No. 1865). Pikrat $C_{29}H_{31}N_3+C_6H_3O_7N_3$. Gelbe Blättchen (aus Alkohol). Schmilzt bei 185° unter Blaufärbung.
- 4.4'.4"-Trianilino-triphenylmethan, N.N'.N"-Triphenyl-paraleukanilin $C_{37}H_{31}N_3=CH(C_6H_4\cdot NH\cdot C_6H_5)_3$. B. Bei der Reduktion von Anhydro-[4.4'.4"-trianilino-triphenyl-carbinol] (Syst. No. 1865) mit Zinkstaub und Eisessig (Baeyer, Villiger, B. 87, 2873). Beim Einleiten von Schwefelwasserstoff in die alkoh. Lösung von salzsaurem N.N'.N"-Triphenyl-pararosanilin (Syst. No. 1865) bei Gegenwart von Natriumacetat (Lambrecht, B. 40, 249, 253). Nadeln (aus Xylol). F: 182° (L.), 182—184° (B., V.). Leicht löslich in siedendem Benzol und Xylol, sonst schwer löslich (B., V.). Liefert bei der Behandlung mit Chloranil in essigsaurer Lösung das Farbsalz des 4.4'.4"-Trianilino-triphenylcarbinols (B., V.).
- 4.4'-Bis-dimethylamino-4"-p-toluidino-triphenylmethan, N.N.N'.N'-Tetramethyl-N"-p-tolyl-paraleukanilin $C_{30}H_{33}N_3=CH_3\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_3)_3]_2$. B. Beim Erhitzen von 1 Mol.-Gew. Thionyl-p-toluidin (Bd. XII, S. 982) mit 2 Mol.-Gew. Dimethylanilin und ZnCl₂ auf 80° (Michaelis, A. 274, 229). Blättchen (aus Alkohol). F: 177°. Pikrat $C_{30}H_{33}N_3+C_6H_3O_7N_3$. F: 184°.
- **4.4'.4"-Tris-bensylamino-triphenylmethan**, N.N'.N"-Tribensyl-paraleukanilin $C_{49}H_{47}N_{2}=CH(C_{6}H_{4}\cdot NH\cdot CH_{5}\cdot C_{6}H_{5})_{3}$. B. Beim Kochen von 4.4'-4"-Tris-benzalamino-triphenylmethan (s. u.), gelöst in einem Gemisch von Benzol und absol. Alkohol, mit Natriumamalgam (O. Fischer, Fritzen, J. pr. [2] 79, 564). Prismen (aus Benzol + Alkohol). F: 106—107°. Gibt bei der Oxydation mit Bleidioxyd in Eisessig oder mit Chloranil in alkoh. Lösung einen rotvioletten Farbstoff.
- 44'- Bis dimethylamino 4"- [methyl a naphthylamino] triphenylmethan, N.N.N'.N".Pentamethyl-N"-a-naphthyl-paraleukanilin $C_{34}H_{36}N_3 = (C_{10}H_7)(CH_3)N \cdot C_4H_4 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. Zur Formulierung vgl. Friedländer, Frdl. 1, 73; Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 260. B. Beim Behandeln des Farbstoffes Viktoriablau 4 R (erhalten aus Methyl-phenyl-a-naphthylamin und Michlerschem Keton in Gegenwart von POCl₃) (Syst. No. 1865) mit Zinkstanb und Salzsäure (Nathansohn, Müller, B. 22, 1893). Hellblauer flockiger Niederschlag. F: 87°; leicht löslich in Alkohol und Äther, schwer in Benzol (N., M.). Pikrat $C_{34}H_{35}N_3 + C_6H_3O_7N_3$. Grüner flockiger Niederschlag. Reichlich löslich in Alkohol und Benzol (N., M.). $2C_{34}H_{35}N_2 + 2HCl + PtCl_4$. Körnig-krystallinischer Niederschlag. Ziemlich schwer löslich in Alkohol und Äther, auch in der Wärme (N., M.).
- 4.4.'4"-Tris-bensalamino-triphenylmethan, N.N'.N"-Tribensal-paraleukanilin $C_{40}H_{31}N_3 = CH(C_6H_4\cdot N:CH\cdot C_6H_5)_3$. B. Beim Erhitzen von 1 Mol.-Gew. 4.4'.4"-Triamino-triphenylmethan mit 3 Mol.-Gew. Benzaldehyd zunächst auf dem Wasserbade, dann bei 110—115° (O. Fischer, Fritzen, J. pr. [2] 79, 564). Prismen (aus Chloroform + Methylalkohol oder aus absol. Alkohol) vom Schmelzpunkt 175°; Prismen oder Warzen (aus Benzol) mit 1 Mol. Krystallbenzol vom Schmelzpunkt 79°.

- Verbindung $C_{51}H_{56}N_6 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot C_6H_4 \cdot N \cdot CH \cdot CH \cdot CH_2 \cdot CH : N \cdot C_6H_4 \cdot CH[C_6H_4 \cdot N \cdot (CH_3)_2]_5$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4-Amino-4'.4"-bis-[dimethylamino]-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung (Reitzenstein, Rothschild, J. pr. [2] 73, 203). $C_{51}H_{56}N_6 + HCl$. Grün. F: ca. 72°. Durch Oxydation entsteht ein tannierte Baumwolle dunkelblau färbender Farbstoff.
- 4.4'.4"-Tris-salicylal-triphenylmethan, N.N'.N"-Trisalicylal-paraleukanilin $C_{40}H_{31}O_3N_3 = CH(C_6H_4\cdot N:CH\cdot C_6H_4\cdot OH)_3$. B. Beim Erhitzen von 1 Tl. 4.4'.4"-Triaminotriphenylmethan mit 5 Tln. Salicylaldehyd auf dem Wasserbade (O. FISCHER, FRITZEN, J. pr. [2] 79, 565). Gelbe Nadeln (aus Chloroform + Methylalkohol). F: 121°. Sehr wenig löslich in Alkohol, Methylalkohol, Benzol und Äther, leicht in Chloroform.
- 4.4'.4"-Tris-anisalamino-triphenylmethan, N.N'.N"-Trianisal-paraleukanilin $C_{43}H_{37}O_3N_3=CH(C_6H_4\cdot N:CH\cdot C_6H_4\cdot O\cdot CH_3)_3$. B. Beim Kochen von 1 Mol.-Gew. 4.4'.4"-Triamino-triphenylmethan, gelöst in einem Gemisch von Chloroform und Alkohol, mit 3 Mol.-Gew. Anisaldehyd (O. Fischer, Fritzen, J. pr. [2] 79, 566). Säulen oder Nadeln (aus Chloroform + Lignoin). F: 79—80°. Sehr wenig löslich in Alkohol, Methylalkohol und Ather, leicht in Chloroform und Aceton.
- **4.4'-Bis-dimethylamino-4"-acetamino-triphenylmethan, N.N.N'.N'-Tetramethyl-N"-acetyl-paraleukanilin** $C_{25}H_{25}ON_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Kochen von 4-Amino-4'.4"-bis-dimethylamino-triphenylmethan mit überschüssigem Essigsäureanhydrid (O. Fischer, German, B. 16, 708). Nadeln (aus wäßr. Alkohol). F: 108° (O. Fi., Ge.). Liefert beim Behandeln mit Braunstein in stark verdünnter Schwefelsäure (O. Fi., Ge.) oder Bleidioxyd (O. Fi., Körner, B. 16, 2904 Anm.) einen grünen Farbstoff.
- 4.4'.4"-Tris-acetamino-triphenylmethan, N.N'.N"-Triacetyl-paraleukanilin $C_{25}H_{25}O_3N_3=CH(C_6H_4\cdot NH\cdot CO\cdot CH_5)_3$. B. Beim Erhitzen von 4.4'.4"-Triamino-triphenylmethan mit überschüssigem Essigsäureanhydrid unter Druck auf 150—160° (O. Fischer, G. Schmidt, C. 1904 I, 460; vgl. Renouf, B. 16, 1302). Schwach rötliche Blättchen (aus Alkohol). F: 200—201° (O. Fi., G. Sch.). Liefert beim Schütteln mit Bleidioxyd in Eisessiglösung 4.4'.4"-Tris-acetamino-triphenylcarbinol (Syst. No. 1865) (O. Fi., G. Sch.).
- 4.4' Bis dimethylamino 4" [acetylmethylamino] triphenylmethan, N.N.N'.N'.N"-Pentamethyl-N"-acetyl-paraleukanilin C₂₆H₃₁ON₃ = CH₃·CO·N(CH₃)·C₆H₄·CH[C₆H₄·N(CH₃)₂]₂. B. Man erwärmt [4.4'-Bis-dimethylamino-4"-acetylmethylamino-triphenylcarbin]-acetat (Syst. No. 1865) mit Essigsäure und reduziert die so erhaltene grüne Farbstofflösung mit Zinkstaub bis zu völliger Entfärbung (O. Fischer, Körner, B. 16, 2906). Nadeln (aus Alkohol). F: 142—143°. Krystallisiert aus sehr verd. Alkohol in Nadeln, die bei 128° schmelzen, aber nach dem Umkrystallisieren aus absol. Alkohol wieder in die Form vom Schmelzpunkt 142—143° übergehen. Bei der Oxydation in alkoh. Lösung mit Chloranil und Essigsäure entsteht wieder die grüne Farbstofflösung.
- 2 Chlor 4.4'.4"-tris dimethylamino triphenylmethan $C_{28}H_{30}N_3Cl = (CH_3)_2N \cdot C_6H_3Cl \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Durch Diazotierung von 2-Amino-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 342) in konzentrierter salzsaurer Lösung und Verkochen der Diazoniumsalzlösung (HALLER, Guyor, Bl. [3] 25, 752). Weiße Nadeln. F: 170°. Sehr wenig löslich in siedendem Alkohol, leicht in Benzol und Chloroform. Liefert bei der Oxydation mit Bleidioxyd unter den üblichen Bedingungen einen rein blauen Farbstoff.
- 2.2'-Dichlor-4"-amino-4.4'-bis-dimethylamino-triphenylmethan $C_{26}H_{26}N_3Cl_2 = H_2N \cdot C_6H_4 \cdot CH[C_6H_3Cl \cdot N(CH_3)_2]_2$. B. Beim Behandeln von 2.2'-Dichlor-4"-nitro-4.4'-bis-dimethylamino-triphenylmethan mit Zinkstaub und Essigsäure (Kock, B. 20, 1565). Krystallaggregate (aus Alkohol + Benzol). F: 181°. Ist an der Luft sehr beständig.
- 2-Nitro-4.4'.4"-tris-dimethylamino-triphenylmethan $C_{25}H_{30}O_5N_4 = (CH_3)_2N \cdot C_6H_3(NO_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Nitrieren von 4.4'.4"-Tris-dimethylamino-triphenylmethan mit Salpeterschwefelsäure (Bayer & Co., D. R. P. 82570; Frdl. 4, 205). Grüngelbe Nädelchen (aus Toluol). F: 207°. Liefert bei der Reduktion mit Zinkstaub und Salzsäure 2-Amino-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 342).
- **2.2'.2"-Trinitro-4.4'.4"-triamino-triphenylmethan** $C_{19}H_{16}O_{4}N_{6} = CH[C_{6}H_{3}(NO_{2})\cdot NH_{2}]_{3}$. B. Beim Behandeln von 2.4.2'.4'.2".4"-Hexanitro-triphenylmethan (Bd. V, S. 708) mit alkoh. Schwefelammonium unterhalb 15° (Baeyer, Villiger, B. **36**, 2781). Orangefarbene Täfelchen. Färbt sich beim Erhitzen dunkel, ohne bis 300° zu schmelzen. Bei der Reduktion mit Zinn und Salzsäure wird eine farblose, krystallisierende Base, wahrscheinlich Hexaamino-triphenylmethan erhalten.
- 3.3'.3"-Trinitro 4.4'.4"-tris dimethylamino triphenylmethan $C_{25}H_{28}O_6N_6=CH[C_6H_5(NO_9)\cdot N(CH_9)_2]_3$. B. Bei der Einw. von Natriumnitrit und Salzsäure auf 4.4'.4"-Trisdimethylamino-triphenylmethan-N.N'.N"-trioxyd (S. 315) (Bambeegee, Rudolf, B. 41,

3312). — Orangerote Flocken. Sehr schwer löslich in Ligroin und Wasser, wenig in Äther und kaltem Alkohol, ziemlich leicht in heißem Alkohol, sehr leicht in Aceton, Chloroform und Benzol. — Liefert bei der Reduktion mit Zinnchlorür und Salzsäure 3.3'.3"-Triamino-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 347).

2. Triamine $C_{20}H_{21}N_3$.

- 1. $a.a.\beta$ -Tris-[4-amino-phenyl]-āthan $C_{20}H_{21}N_3 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot CH(C_6H_4 \cdot NH_2)_2$. $a.a.\beta$ -Tris-[4-dimethylamino-phenyl]-āthan $C_{26}H_{23}N_3 = (CH_3)_2N \cdot C_6H_4 \cdot CH_2 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Entsteht neben anderen Produkten bei zweitägigem Erhitzen von 80 g 1.1.2-Trichlor-āthan (Bd. I, S. 85) mit 220 g Dimethylanilin und 100 g Zinkchlorid unter Rückfluß auf 110—120° (Heumann, Wieenik, B. 20, 2424). Nadeln (aus Alkohol). F: 125°. Unlöslich in Wasser, fast unlöslich in kaltem Alkohol, schwer löslich in heißem, leicht in Äther, Aceton, Chloroform, Benzol und Eisessig.
- 2. a.a.a-Tris-[4-amino-phenyl]-äthan $C_{30}H_{11}N_3 = CH_3 \cdot C(C_6H_4 \cdot NH_2)_3$. B. Beim Erhitzen von a.a.a-Tris-[4-nitro-phenyl]-äthan (Bd. V, S. 709) mit Zinn und Salzsäure in alkoholischer Lösung (Kuntze-Fechner, B. 36, 474). Rosagefärbte Blättchen (aus Alkohol). F: 191—192°. Löslich in viel Alkohol, schwer löslich in Äther, Benzol, Schwefelkohlenstoff und Wasser. Gibt beim Erwärmen auf dem Platinblech eine fuchsinrote Färbung.

3. 3.4'.4"-Triamino-2-methyl-triphenylmethan $C_{so}H_{s1}N_{s}$, s. nebenstehende Formel.

5 - Chlor-3-amino-4'.4"-bis-dimethylamino-2-methyltriphenylmethan (?) C₂₄H₂₅N₃Cl=H₂N·C₄H₂Cl(CH₃)·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) mit 4-Chlor-2-amino-toluol (Bd. XII, S. 835) in konz. Schwefelsäure auf dem Wasserbade (REITZEN-

NH₂

STEIN, SCHWERDT, J. pr. [2] 75, 401). — Pulver (aus Alkohol). F: 154°. — Läßt sich zu einem blauen Farbstoff oxydieren.

Verbindung $C_{t_3}H_{58}N_{\epsilon}Cl_2 = [(CH_3)_3N \cdot C_6H_4]_2CH \cdot C_6H_2Cl(CH_3) \cdot N \cdot CH \cdot CH \cdot CH \cdot CH_2 \cdot CH \cdot N \cdot C_6H_2Cl(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid erhält man durch Kochen von 5-Chlor-3-amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in absolut alkoholisch - benzolischer Lösung; es gibt mit Kalilauge die Base (R., Sch., J. pr. [2] 75, 404). — Sintert bei 75° und schmilzt bei 105°. — Läßt sich zu einem blauen Farbstoff oxydieren.

4. 4.4'.4" - Triamino - 2 - methyl - triphenyl - methan $C_{50}H_{11}N_3$, s. nebenstehende Formel.

4.4'-Dlamino - 4" - dimethylamino - 2 - methyl - tri-phenylmethan $C_{23}H_{25}N_3 = H_2N \cdot C_4H_3(CH_3) \cdot CH(C_9H_4 \cdot NH_3) \cdot C_4H_4 \cdot N(CH_2)_2$. B. Bei der Reduktion von 4"-Nitro-4-amino-4"-dimethylamino-2-methyl-triphenylmethan (8. 281) mit Zinn und Salzsäure oder Zinkstaub und Essigsäure (NOELTING,

H₂N· CH₃· NH₃

NH₃

v. Skawinski, B. 24, 555). — Nädelchen (aus Äther + Ligroin), die sich an der Luft violett färben. — Durch Oxydation mit Bleidioxyd in essigsaurer Lösung entsteht ein rotstichiges Violett.

4-Amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan $C_{24}H_{12}N_{2} = H_{2}N \cdot C_{4}H_{3}(CH_{3})\cdot CH[C_{4}H_{4}\cdot N(CH_{3})_{2}]_{2}$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) mit m-Toluidin (Bd. XII, S. 853) in Salzsäure auf dem Wasserbade (Riegler, Dissertation [Basel 1892], S. 44; Reitzenstein, Runge, J. pr. [2] 71, 66, 104). — Bläulichweißes Pulver. Für den Schmelzpunkt finden sich die Angaben: 153—154° (Ri.), 224—225° (Rei., Ru.). — Gibt bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einen blauen Farbstoff (Rei., Ru.).

4.4'.4"-Tris-dimethylamino-2-methyl-triphenylmethan $C_{20}H_{20}N_3 = (CH_2)_2N \cdot C_0H_3(CH_2) \cdot CH[C_0H_4 \cdot N(CH_2)_2]_2$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benshydrol mit Dimethyl-m-toluidin (Bd. XII, S. 857) in Gegenwart von Salzzäure oder konz. Sohwefelsäure auf dem Wasserbade (Bielecki, Koleniew, Anseiger Akad. Wiss. Krakau 1908, 308; C. 1908 II, 877; vgl. Reitzenstein, Runge, J. pr. [2] 71, 106). — Prismen (aus Methylakohol). F: 118° (B., K.). — Durch Oxydation mit Chloranil in alkoh. Lösung entsteht ein violettblauer Farbstoff (B., K.).

- 4'.4"-Bis-dimethylamino-4-diäthylamino-2-methyl-triphenylmethan $C_2 H_{37} N_3 = (C_2 H_2)_2 N \cdot C_4 H_3 (CH_3) \cdot C_4 H_4 \cdot N (CH_2)_3 l_2$. Zur Formulierung vgl. BIELECKI, KOLENIEW, Anseiger Akad. Wiss. Krakau 1908, 308. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Diäthyl-m-toluidin (Bd. XII, 8. 857) in konzentrierter Schwefelsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 69, 107). — Braunes Pulver. Liefert bei der Oxydation einen intensiv blauen Farbstoff (REI., RU.).
- 4-Dimethylamino-4'.4"-bis-diäthylamino-2-methyl-triphenylmethan $C_{30}H_{41}N_3 = (CH_3)_2N \cdot C_6H_3(CH_2) \cdot CH[C_6H_4 \cdot N(C_2H_5)_2]_2$. Zur Formulierung vgl. BIELECKI, KOLENIEW, Anzeiger Akad. Wiss. Krakau 1908, 308. B. Beim Erwärmen von 4.4'-Bis-diäthylaminobenzhydrol mit Dimethyl-m-toluidin (Bd. XII, S. 857) in konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 73, 111). — Liefert bei der Oxydation einen blauen Farbstoff (REI., RU.).
- 4.4'.4" Tris diäthylamino 2 methyl triphenylmethan $C_{32}H_{45}N_3=(C_2H_5)_2N-C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(C_2H_5)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-diäthylamino-benzhydrol mit Diäthyl-m-toluidin (Bd. XII, S. 857) in Salzsäure auf dem Wasserbade (Rei., Rv., J. pr. [2] 71, 72, 111). — Liefert bei der Oxydation einen intensiv blauen Farbstoff.
- 4'.4"-Bis dimethylamino 4 [2.4 dinitro anilino] 2 methyl-triphenylmethan $C_{20}H_{21}O_4N_5 = (O_2N)_2C_6H_3 \cdot NH \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. Zur Formulierung vgl. BIELECKI, KOLENIEW, Anzeiger Akad. Wiss. Krakau 1908, 308. B. Beim Erhitzen von 4-Amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) in absol. Alkohol unter Zusatz von Natriumacetat (Reitzenstein, Runge, J. pr. [2] 71, 99, 128). — Gelbbraun. F: 200—201° (Rei., Ru.). — Liefert bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einen erdiggrünen Farbstoff (Rei., Ru.).

 $\begin{array}{lll} \textbf{Verbindung} & C_{53}H_{69}N_6 = [(CH_3)_3N\cdot C_6H_4]_2CH\cdot C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH:N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_3 & bezw. & desmotrope Form (vgl. die analoge Anilinverbindung Bd. XII, S. 204). & B. Das Hydrochlorid entsteht beim Behandeln von 4-Amino-4'.4''-bis$ dimethylamino-2-methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung (Reitzenstein, Rothschild, J. pr. [2] 73, 196). — $C_{53}H_{60}N_6 + HCl$. Gelbgrün. F: ca. 95°. Durch Oxydation entsteht ein blauer Farbstoff.

- 4'-Dimethylamino-4.4"-bis-acetamino-2-methyl-triphenylmethan $C_{26}H_{29}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_2) \cdot CH[C_6H_4 \cdot N(CH_3)_2] \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2$. B. Beim Kochen von 4.4'-Diamino-4'-dimethylamino-2-methyl-henylmethan mit Essigsäureanhydrid (Noel-TING, v. Skawinski, B. 24, 555). — Nadeln (aus Alkohol). F: ca. $13\overline{0}^{\circ}$. — Durch Oxydation mit Chloranil entsteht ein violettroter Farbstoff.
- 5 Chlor 4 amino 4'.4" bis dimethylamino 2 methyl triphenylmethan $C_{24}H_{26}N_5Cl = H_2N \cdot C_6H_2Cl(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-benzhydrol mit 4-Chlor-3-amino-toluol (Bd. XII, S. 871) in salzsaurer Lösung auf 100° (Reitzenstein, Schwerdt, J. pr. [2] 75, 391). Krystallinisches Pulver (aus Toluol). F: 177°. Bei der Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein blauer Farbstoff.

diniumchlorid in alkoholisch-benzolischer Lösung, die freie Base erhält man mittels verdünnter Natronlauge (Rei., Sch., J. pr. [2] 75, 394). — Sintert bei 95° und schmilzt unscharf bei 105°. — Läßt sich zu einem dunkelblauen Farbstoff oxydieren.

5-Nitro-4-amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan $C_{24}H_{28}O_{2}N_{4}=H_{2}N\cdot C_{6}H_{2}(NO_{2})(CH_{3})\cdot CH[C_{6}H_{4}\cdot N(CH_{3})_{2}]_{2}$. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit 4-Nitro-3-amino toluol (Bd. XII, S. 876) in $40^{9}/_{0}$ iger Salzsäure auf dem Wasserbade (Rei., Sch., J. pr. [2] 75, 381). — Pulver (aus Toluol-Ligroin). — Läßt sich zu einem blauen Farbstoff oxydieren.

5. 5.4'.4" - Triamino - 2 - methyl - triphenylmethan C₂₀H₂₁N₃, s. nebenstehende Formel.

5.4'-Diamino-4"-dimethylamino-2-methyl-triphenylmethan $C_{22}H_{25}N_3 = H_2N \cdot C_6H_3(CH_2) \cdot CH(C_6H_4 \cdot NH_2) \cdot C_6H_4 \cdot N(CH_2)_2$. B. Bei der Reduktion von 4"-Nitro-5-amino-4'-dimethylamino-2-methyl-triphenylmethan (S. 282) mit Zinn und Selzsäure (Noelting, v. Skawinski, B. 24, 3138). — Nadeln (aus Äther + Ligroin), die sich an der Luft rötlich färben. F: 1540. — Liefert bei der Oxydation mit Bleidioxyd ein blaustichiges Grün.

 $H_2N \cdot \langle$ NH, NH.

- 5-Amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan $C_{84}H_{29}N_3 = H_2N \cdot C_6H_3(CH_2) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Man erhitzt 27 g 4.4'-Bis-dimethylamino-benzhydrol mit 11 g p-Toluidin (Bd. XII, S. 880) und 270 g konz. Schwefelsäure 6—8 Stdn. auf 50—60° (Noelting, Polonowsky, B. 24, 3127). Nadeln (aus Äther + Ligroin). F: 160°. Unlöslich in Wasser, schwer löslich in Ligroin, leichter in Äther und Alkohol. Bei der Oxydation mit Bleidioxyd in saurer Lösung entsteht ein blaugrüner Farbstoff. Läßt sich durch Behandlung mit Natriumnitrit in verdünnter schwefelsaurer Lösung unter Kühlung und Verkochen der Diazoniumsalzlösung in 5-Oxy-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan (Syst. No. 1865a) überführen.
- 5.4'.4"-Tris-dimethylamino-2-methyl-triphenylmethan $C_{26}H_{32}N_3 = (CH_3)_8N \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit Dimethyl-p-toluidin (Bd. XII, S. 902) in 100% iger Schwefelsäure auf dem Wasserbade (Cassella & Co., D. R. P. 149322; C. 1904 I, 770; Bielecki, Koleniew, C. 1908 II, 878). Beim Kochen einer Lösung von 3,3 g 5.4'-Diamino-4''-dimethylamino-2-methyl-triphenylmethan in Methylakholo mit 6 g Methyljodid und einer konz. Lösung von 5 g Soda in Wasser (Norlting, v. Skawinski, B. 24, 3139). Blättchen (aus Äther + Alkohol), Prismen (aus Äther). F: 113° (B., K.). Durch Oxydation mit Bleidioxyd oder Chloranil entsteht ein blaugrüner Farbstoff (N., v. S.; C. & Co.; B., K.).
- 4'.4"-Bis-dimethylamino-5-äthylamino-2-methyl-triphenylmethan $C_{26}H_{32}N_3 = C_2H_5\cdot NH\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit Äthyl-p-toluidin (Bd. XII, S. 904) in konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 69, 105). Hellblaues Pulver. Liefert bei der Oxydation einen blaugrünen Farbstoff.
- 5-Amino-4'.4"-bis-diäthylamino-2-methyl-triphenylmethan $C_{28}H_{37}N_3 = H_2N \cdot C_6H_3(CH_3) \cdot CH[C_8H_4 \cdot N(C_2H_5)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-diäthylamino-benzhydrol mit p-Toluidin (Bd. XII, S. 880) in Gegenwart von konz. Schwefelsäure auf 50—60° (Noelting, Polonowsky, B. 24, 3135). Nadeln (aus Äther + Ligroin). F: 103°. Liefert bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einen blaugrünen Farbstoff.
- 5.4'.4"-Tris-diäthylamino-2-methyl-triphenylmethan $C_{32}H_{45}N_3=(C_2H_{5})_2N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(C_2H_5)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-diäthylamino-benzhydrol mit Diäthyl-p-toluidin (Bd. XII, S. 904) in konz. Schwefelsäure auf dem Wasserbade (Cassella & Co., D. R. P. 149322; C. 1904 I, 770; Reitzenstein, Runge, J. pr. [2] 71, 73, 111). Liefert bei der Oxydation nach Rei., Ru. einen blauen, nach C. & Co. einen blaugrünen Farbstoff.
- 4'.4"-Bis dimethylamino 5 [2.4 dinitro anilino] 2 methyl triphenylmethan $C_{20}H_{31}O_4N_5 = (O_2N)_2C_6H_5 \cdot NH \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 5-Amino-4'.4"-bis dimethylamino-2-methyl-triphenylmethan mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) in absol. Alkohol unter Zusatz von Natriumscetat (Retyzenstein, Runge, J. pr. [2] 71, 99, 129). Dunkelrote Krystalle (aus Toluol + Ligroin). Liefert bei der Oxydation einen grünen Farbstoff.
- 4'.4"-Bis-dimethylamino-5-dibenzylamino-2-methyl-triphenylmethan $C_{38}H_{41}N_3=(C_6H_5\cdot CH_2)_2N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_3$. B. Bei 8—10 stdg. Kochen von 1 Mol.-Gew. 5-Amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan mit $2^1/_4$ — $2^1/_4$ Mol.-Gew. Benzylchlorid und 1 Mol.-Gew. Natriumcarbonat unter Zusatz von Wasser am Rückflußkühler (Noelting, Polonowsky, B. 24, 3129). Krystalle (aus Äther + Ligroin). F: 120°. Liefert bei der Oxydation einen grünstichig blauen Farbstoff. Hydrochlorid. Nadeln. F: 186°.
- Verbindung $C_{s_1}H_{s_8}N_6 = [(CH_s)_2N \cdot C_eH_4]_sCH \cdot C_eH_3(CH_3) \cdot N : CH \cdot CH_s \cdot CH : N \cdot C_eH_s(CH_3) \cdot CH[C_eH_4 \cdot N(CH_3)_2]_s$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 202). B. Das Hydrochlorid entsteht beim Erwärmen von 5-Amino-4'.4''-bis-[dimethylamino] -2-methyl-triphenylmethan mit Propiolaldehyd-diäthylacetal (Bd. I, S. 750) und 38^0 /ojger Salzsäure in wäßr. Lösung auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 374, 411). $C_{s_1}H_{s_8}N_6 + HCl$. Gelbgrüne Krystalle (aus absol. Alkohol). Sintert bei 140° und schmilzt bei 170°. Leicht löslich in Alkohol, mäßig löslich in Wasser, schwer in Benzol, sehr schwer in Ligroin; mäßig löslich in Salzsäure. Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein grüner Farbstoff.
- Verbindung $C_{53}H_{60}N_6 = [(CH_3)_5N\cdot C_6H_4]_5CH\cdot C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot CH_3\cdot CH:N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_3]_5$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Zusammenbringen der alkoh. Lösungen von 5-Amino-4'.4''-bis-dimethylamino-2-methyl-triphenylmethan und N-[2.4-Dinitro-phenyl]-pyridiniumehlorid (Reitzenstein, Rothschild, J. pr. [2] 73, 198). $C_{58}H_{60}N_6 + HCl.$ Rotes Pulver. F: ca. 130°. Läßt sich zu einem blaugrünen Farbstoff oxydieren.

3 - Chlor - 5 - amino - 4'.4" - bis - dimethylamino - 2 - methyl - triphenylmethan $C_{24}H_{29}N_3Cl=H_2N\cdot C_6H_2Cl(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-benzhydrol mit 2-Chlor-4-amino-toluol (Bd. XII, S. 988) in konz. Schwefelsaure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 383). — Krystallinisches Pulver (aus Toluol-Ligroin). — Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein grüner Farbstoff.

pyridiniumchlorid in benzol-alkoholischer Lösung; die freie Base erhält man durch Behandlung mit Natronlauge (Rei., Sch., J. pr. [2] 75, 386). — Die Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung liefert einen dunkelgrünen Farbstoff. — Hydrochlorid. Rotes Krystallpulver (aus verd. Salzsäure).

4 - Chlor - 5 - amino - 4'.4" - bis-dimethylamino - 2 - methyl - triphenylmethan $C_{24}H_{25}N_3Cl = H_2N\cdot C_6H_3Cl(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit 3-Chlor-4-amino-toluol (Bd. XII, S. 989) in konz. Schwefelsäure auf dem Wasserbade (Rei., Sch., J. pr. [2] 75, 396). — Pulver (aus Alkohol). F: 170°. - Läßt sich zu einem grünen Farbstoff oxydieren.

Verbindung $C_{13}H_{13}N_{13}Cl_{3} = [(CH_{3})_{3}N \cdot C_{6}H_{4}]_{2}CH \cdot C_{6}H_{3}Cl(CH_{3}) \cdot N \cdot CH \cdot CH \cdot CH \cdot CH_{3}CH \cdot N \cdot C_{6}H_{4}Cl(CH_{3}) \cdot CH \cdot CH \cdot CH_{3}CH pyridiniumchlorid in alkoholisch-benzolischer Lösung am Rückflußkühler; die freie Base erhält man aus dem Hydrochlorid durch Kalilauge (Rei., Sch., J. pr. [2] 75, 398). — Die Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung liefert einen dunkelgrünen Farbstoff. — Hydrochlorid. Gelbliche Flocken (aus Methylalkohol). F: 175°.

3 - Nitro - 5 - amino - **4'.4"** - bis - dimethylamino - **2 - methyl** - triphenylmethan $C_{34}H_{25}O_2N_4 = H_2N \cdot C_6H_2(NO_2)(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erwärmen von **4.4'**-Bisdimethylamino-benzhydrol mit 2-Nitro-4-amino-toluol (Bd. XII, S. 996) in konz. Schwefelsaure auf dem Wasserbade (REITZENSTEIN, RUNGE, J. pr. [2] 71, 109). — Löslich in Alkohol und Toluol, unlöslich in Äther und Ligroin. — Liefert bei der Oxydation einen hellblaugrünen Farbstoff.

6. 2.4'.4" - Triamino - 3 - methyl - triphenylmethan C₂₀H₂₁N₂, s. nebenstehende Formel.

H₂N CH₃

5-Nitro-2-amino-4'.4"-bis-dimethylamino - 8 - methyl triphenylmethan $C_{24}H_{23}O_2N_4 = H_2N \cdot C_6H_2(NO_3)(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylaminobenzhydrol mit 5-Nitro-2-amino-toluol (Bd. XII, S. 846) in Salzsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71,

109). — Löslich in Alkohol, Äther, Benzol und Toluol, unlöslich in Ligroin. — Liefert bei der Oxydation einen dunkelblauen Farbstoff.

5 - Nitro - 2.4'.4"-tris - dimethylamino - 3 - methyl - triphenylmethan $C_{10}H_{32}O_2N_4=$ (CH₂)₂N·C₆H₂(NO₂)(CH₃)·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit 5-Nitro-2-dimethylamino-toluol (Bd. XII, S. 847) in Salzsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 110). — Liefert bei der Oxydation einen intensiv blauen Farbstoff.

7. 4.4'.4" - Triamino - 3 - methyl - triphenyl methan, Leukanilin C, H, N, s. nebenstehende Formel. B. Bei der Reduktion von salzsaurem Rosanilin (Syst. No. 1866) mit Zinn und Salzsäure (Rosenstiehl, Gerber, A. ch. [6] 2, 341) oder mit Zinkstaub und Salzsäure (Renour,

R. 16, 1303; SCHMIDLIN, B. 39, 4208) oder mit Schwefelammonium (A. W. Hofmann, J. 1862, 349). — Krystalle (aus Wasser). F: 100°; kaum löslich in kaltem, schwer löslich in kochendem Wasser, wenig in Äther, sehr leicht in Alkohol (A. W. Ho.). Wärmetönung bei der Neutralisation mit Salzsäure: Sch., C. r. 189, 543; A. ch. [8] 7, 242. — Wird von Oxydationsmitteln in Rosanilin übergeführt (A. W. Ho.). Beim Einleiten von Salzsäure: Schwen in eine salzsaure Leuren ib eine staht 2. Mathul. triphanulmathan salpetriger Säure in eine salzsaure Lösung von Leukanilin entsteht 3-Methyl-triphenylmethantris-diazoniumchlorid-(4.4'.4") (Syst. No. 2198) (E. FISCHER, O. FISCHER, A. 194, 281). Leitet man salpetrige Säure in die Lösung der Base in Schwefelsäure und kocht die erhaltene Diazoniumsalzlösung mit Alkohol, so erhält man Diphenyl-m-tolyl-methan (Bd. V, S. 710) (E. Fi., O. Fi., A. 194, 282; vgl. E. Fi., O. Fi., B. 37, 3358). Durch einmonatiges Stehenlassen von salzsaurem Leukanilin in rauchender Schwefelsäure von 60% Anhydridgehalt und anodische Oxydation der mit Eis verdünnten Lösung erhält man das Sulfat einer Verbindung C₂₀H₁₅O₄N₃S₂ (s. u.) (Sch., B. 39, 4211; vgl. Höchster Farbw., D. R. P. 100556; Frdl. 5, 191; C. 1899 I, 716). Bei 10-stdg. Erhitzen von 1 Tl. Leukanilin mit 21/, Tln. Methyljodid und 2 Tln. Methylalkohol im geschlossenen Rohr auf 100° entsteht das Hydrojodid des Hexamethylleukanilin-bis-jodmethylats (s. u.) (A. W. Ho., Grard, B. 2, 448; vgl. Lepèvre, Bl. [3] 13, 252; Ro., Bl. [3] 13, 548). Beim Kochen von Leukanilin mit Essigsäureanhydrid entsteht 4.4'.4"-Tris-acetamino-3-methyl-triphenylmethan (S. 323) (RE., B. 16, 1303). — $C_{20}H_{31}N_3 + 3 HCl + H_2O$. Tafeln. Verliert bei längerem Erhitzen das Krystallwasser (A. W. Ho.). — $C_{20}H_{21}N_3 + 3 HNO_3 + H_2O$. Nadeln. Zersetzt sich bei 100°; löslich in Wasser und Alkohol, unlöslich in Äther (A. W. Ho.). — $2C_{20}H_{21}N_3 + 6 HCl + 3 PtCl_4 + H_2O$. Prismen. Verliert über 100° das Krystallwasser; schwer löslich in kaltem Wasser; wird durch siedendes Wasser zersetzt (A. W. Ho.).

Verbindung C₃₀H₁₅O₄N₃S₃, s. nebenstehende Formel. B. Das Sulfat wird erhalten durch einmonatiges Stehenlassen von 25 g salzsaurem Leukanilin in 250 g rauchender Schwefelsäure von 60% Anhydridgehalt und darauffolgende anodische Oxydation der auf Eis gegossenen Lösung (Schmidlin, B. 39, 4211). — $2 C_{20} H_{15} O_4 N_3 S_2 + H_2 S O_4 + H_4 O$. Dunkelblaue Kryställchen mit rötlichem Reflex. $H_2 N$. Sehr wenig löslich in Wasser, löslich in verdünnter, leicht löslich in konz. Salzsäure. Zersetzt sich beim Umkrystallisieren aus 10°/eiger Schwefel-

CH₃ (?) o,\$ SO₂ \cdot NH.

säure.

4-Amino-4'.4"-bis-dimethylamino-8-methyl-triphenylmethan $C_{14}H_{12}N_3 = H_1N$. 4-Amino-4.4. bis-dimethylamino-3-methyl-triphenylmethan C₂₄H₁₂N₅ = H₂N. C₄H₄(CH₅)·CH[C₅H₄·N(CH₅)₃]₅. B. Bei 2-stdg. Erhitzen von 5 g 4.4 Bis-dimethylamino-benzhydrol, gelöst in 9 g Salzsäure (D: 1,175) und 28 g Wasser, mit 5 g o-Toluidin (Bd. XII, S. 772) auf dem Wasserbade (Bielecki, Koleniew, C. 1908 II, 877; vgl. Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 77). — Krystalle (aus Methylalkohol). F: 184° (Bie., K.). — Färbt sich an der Luft violett (Bie., K.). Gibt durch Oxydation mit Chloranil einen violettblauen Farbstoff (Bie., K.). Liefert mit Natriumdichromat in Schwefelsäure Toluchinon (Bd. VII, S. 645) (Bie., K.). Durch Diazotierung in Gegenwart von Schwefelsäure und Eintragen von Kunfarpulver, in die mit Schwefeldioxyd gesättigte Diazoniumsalzlögung, wird 4.4 "Bis-Kupferpulver in die mit Schwefeldioxyd gesättigte Diazoniumsalzlösung wird 4'.4"-Bisdimethylamino-3-methyl-triphenylmethan-sulfinsäure-(4) (Syst. No. 1921) gebildet (BAYER & Co., D. R. P. 95830; Frdl. 5, 44).

4.4'.4"-Tris-dimethylamino-8-methyl-triphenylmethan, N.N.N'.N'.N".N"-Hexamethyl - leukanilin $C_{26}H_{33}N_3 = (CH_3)_2N \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4 Bis-dimethylamino-benzhydrol mit Dimethyl-o-toluidin (Bd. XII, S. 785) in Salzsaure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 68, 105; Bielecki, Koleniew, C. 1908 II, 877). — Krystallinisches, schwach gelbliches Pulver (aus Ather). (Bie., K.). F: 144° (Bie., K.). — Durch Oxydation mit Chloranil in Alkohol entsteht ein lebhaft violettblauer Farbstoff (BIE., K.; vgl. REI., RU.).

4.4'.4" - Tris - dimethylamino - 3 - methyl - triphenylmethan - bis - jodmethylat $C_{23}H_{32}N_3I_2=(CH_2)_2N\cdot C_6H_6(CH_3)\cdot CH[C_6H_4\cdot N(CH_2)_2]_2+2CH_3I.$ — Hydrojodid, Hexamethylleukanilin-bis-jodmethylat-hydrojodid, Pentamethylleukanilin-tris-jodmethylat $C_{22}H_{40}N_3I_3=I(CH_2)_3N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_3I]\cdot C_6H_4\cdot N(CH_3)_2HI$ oder $IH(CH_2)_2N\cdot C_6H_3(CH_2)\cdot CH[C_6H_4\cdot N(CH_3)_3I]_2$. B. Man erhitzt 1 Tl. Leukanilin, $2^{1/2}$ Tle. Methyljodid und 2 Tle. Methylalkohol 10 Stdn. im geschlossenen Rohr auf 100° (A. W. Hofmann, Girard, B. 2, 448; vgl. Leffvre, Bl. [3] 13, 252; Rosenstiehl, Bl. [3] 13, 548). — Farblose Krystalle (A. W. Ho., G.).

4.4'.4"-Trianilino-3-methyl-triphenylmethan, N.N'.N"-Triphenyl-leukanilin $C_{38}H_{38}N_3=C_6H_5\cdot NH\cdot C_6H_3(CH_3)\cdot CH(C_6H_4\cdot NH\cdot C_6H_5)_3$. B. Beim Behandeln einer alkoh. Lösung von salzsaurem N.N'.N"-Triphenyl-rosanilin (Spritblau; Syst. No. 1866) mit Zink und Salzsäure (A. W. Hofmann, J. 1963, 418). — Niederschlag. Löslich in Alkohol und Äther. — Wird von Oxydationsmitteln leicht wieder in N.N'.N"-Triphenyl-rosanilin übergeführt.

 $\begin{array}{lll} & \textbf{Verbindung} & \textbf{C}_{13}\textbf{H}_{40}\textbf{N}_{6} = [(\textbf{CH}_{3})_{9}\textbf{N}\cdot\textbf{C}_{6}\textbf{H}_{4}]_{2}\textbf{CH}\cdot\textbf{C}_{6}\textbf{H}_{3}(\textbf{CH}_{3})\cdot\textbf{N}:\textbf{CH}\cdot\textbf{CH}:\textbf{CH}\cdot\textbf{CH}_{3}\cdot\textbf{CH}:\textbf{N}\cdot\textbf{C}_{6}\textbf{H}_{4}\cdot\textbf{N}(\textbf{CH}_{3})_{2}]_{3} & \textbf{bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4-Amino-4'.4'' bis$ dimethylamino-3-methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in Alkohol (Reitzenstein, Rothschild, J. pr. [2] 73, 195). — $C_{55}H_{60}N_6+HCl.$ Rotes, an der Luft bläulich werdendes Pulver. F: ca. 95°. Gibt mit Bleidioxyd in Essigsäure einen dunkelblauen Farbstoff.

4.4'.4"-Tris-acetamino-3-methyl-triphenylmethan, N.N'.N"-Triacetyl-leukanilin $C_{26}H_{47}O_3N_3=CH_2\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot CH(C_6H_4\cdot NH\cdot CO\cdot CH_3)_3$. B. Beim Kochen von Leukanilin mit Essigsäureanhydrid (RENOUF, B. 16, 1303). — Nadeln (aus Essigsäure). F: 168°. Wird von Kaliumdichromat in siedenden Eisessig leicht zu [4.4'.4"-Tris-acetamino-3methyl-triphenylcarbin]-acetat (Syst. No. 1866) oxydiert.

6 - Chlor - 4 - amino - 4'.4" - bis - dimethylamino - 3 - methyl - triphenylmethan $C_{24}H_{38}N_3Cl = H_2N\cdot C_6H_2Cl(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_3]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino benzhydrol mit 4-Chlor-2-amino-toluol (Bd. XII, S. 835) in Salzsäure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 402). — Krystalle (aus Toluol). F: 210°. — Gibt mit Chloranil in alkoholisch-essigsaurer Lösung einen rötlichblauen Farbstoff.

 $\begin{array}{l} \textbf{Verbindung} \ \ C_{53}H_{56}N_{6}Cl_{2} = [(CH_{3})_{2}N\cdot C_{6}H_{4}]_{2}CH\cdot C_{6}H_{2}Cl(CH_{3})\cdot N:CH\cdot CH:CH\cdot CH_{2}\cdot CH: \\ N\cdot C_{6}H_{2}Cl(CH_{3})\cdot CH[C_{6}H_{4}\cdot N(CH_{3})_{2}]_{2} \ \ \text{bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204).} \\ B. \ \ Das \ \ Hydruchlorid \ \ \text{entsteht beim Erwärmen von 6-Chloration of the control of the contr$ pyridiniumchlorid in absolut alkoholisch-benzolischer Lösung; die freie Base erhält man mittels Kalilauge (REITZENSTEIN, SCHWERDT, J. pr. [2] 75, 404). — F: 184°. — Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein tiefblauer Farbstoff.

6.4'.4" - Triamino - 3 - methyl - triphenylmethan C₂₀H₂₁N₃, s. nebenstehende Formel.

 H_2N 6-Amino-4'.4"-bis-dimethylamino-8-methyl-triphenyl-

methan C₂₄H₃₅N₃ = H₂N·C₆H₃(CH₃)·CH[C₆H₄·N(CH₃)₂]₃.

Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit
p-Toluidin (Bd. XII, S. 880) in Gegenwart von Salzsäure
(Noelting, Polonowsky, B. 24, 3130) oder von 50% iger

Essigsäure (Baryer, Villiger, B. 36, 2782). — Nadeln (aus Alkohol), Blättchen (aus Alkohol)
+ Benzol). F: 180° (N., P.), 187,5° (B., V.). Leicht löslich in Benzol, schwer in Alkohol
(B., V.). — Färbt sich beim Kochen mit Chloranil in alkoholisch-essigsaurer Lösung blau
(B., V.). Durch Behandeln mit Natriumnitrit in schwefelsaurer Lösung und Verkochen der Diazoniumsalzlösung erhält man 6-Oxy-4'.4"-bis-dimethylamino-3-methyl-triphenylmethan (Syst. No. 1865a); arbeitet man in stark saurer Lösung, so entsteht daneben noch 6-[Dimethylamino]-2-methyl-9-[4-dimethylamino-phenyl]-fluoren (S. 288) (GUYOT, GRANDERYE, Bl. [3] 33, 202; vgl. N., P.).

6.4'.4" - Tris - dimethylamino - 3 - methyl - triphenylmethan $C_{36}H_{33}N_3 = (CH_3)_2N \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Dimethyl-p-toluidin (Bd. XII, S. 902) in Salzsäure auf dem Wasserbade (REITZEN-STEIN, RUNGE, J. pr. [2] 71, 70, 107; BIELECKI, KOLENIEW, C. 1908 II, 878). — Schwach gelbliche Flocken (aus Methylalkohol). F: 107° (B., K.). — Gibt durch Oxydation mit Chloranil in alkoh. Lösung einen violettblauen Farbstoff (B., K.; vgl. Rei., Ru.).

4'.4''-Bis-dimethylamino-6-\(\text{athylamino-3-methyl-triphenylmethan}\) $C_{26}H_{33}N_3=$ $C_2H_5 \cdot NH \cdot C_6H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylaminobenzhydrol mit Athyl-p-toluidin (Bd. XII, S. 904) in Salzsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 68, 105). — Weißes Pulver. — Liefert bei der Oxydation einen blauen Farbstoff.

Verbindung aus 6-Amino-4'.4"-bis-dimethylamino-3-methyl-triphenylmethan, Formaldehyd und schwefliger Säure $C_{2}H_{31}O_{3}N_{3}S = (HO_{3}S)CH_{3}\cdot NH\cdot C_{6}H_{3}(CH_{3})\cdot CH[C_{6}H_{4}\cdot N(CH_{3})_{3}]_{3}$. Beim Behandeln von 6-Amino-4'.4"-bis-dimethylamino-3-methyl-tripheny methan mit Formaldehyd und Natriumdisulfit in saurer Lösung (PRUD'HOMME, Bl. [3] 23, 457). — Geht durch Oxydation mit Bleidioxyd in einen blauen alkaliechten Farbstoff über.

dimethylamino-3-methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung; man fällt die Base mit Kalilauge (REITZENSTEIN, ROTHSCHILD, J. pr. [2] 73, 197). — Rotbraunes Pulver (aus Alkohol). F: ca. 81°. — C₅₃H₆₀N₆ + HCl. Gelbbraun. Sintert von 75° an und schmilzt bei ca. 95°. Liefert bei der Oxydation einen indigblauen Farbstoff.

4'.4" - Bis - dimethylamino - 6 - carbathoxyamino - 3 - methyl - triphenylmethan $C_{27}H_{28}O_{2}N_{3} = C_{2}H_{5} \cdot O_{3}C \cdot NH \cdot C_{6}H_{3}(CH_{3}) \cdot CH[C_{6}H_{4} \cdot N(CH_{3})_{2}]_{2}$. B. Beim Behandeln von 6-Amino-4'.4"-bis-dimethylamino-3-methyl-triphenylmethan mit Chlorameisensäureäthylester in eisgekühltem Pyridin (BARYER, VILLIGER, B. 36, 2783). — Rechteckige Tafeln (aus Alkohol). F: 158-159°.

21*

4 - Chlor - 6 - amino - 4'.4" - bis - dimethylamino - 3 - methyl - triphenylmethan $C_{34}H_{26}N_5Cl = H_2N \cdot C_6H_2Cl(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-benzhydrol mit 2-Chlor-4-amino-toluol (Bd. XII, S. 988) in Salzsäure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 384). — Krystalle (aus Alkohol). F: ca. 100° . — Liefert bei der Oxydation einen dunkelblauen Farbstoff.

Verbindung $C_{t_3}H_{58}N_cCl_2 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot C_6H_2Cl(CH_3) \cdot N \cdot CH \cdot CH \cdot CH_2 \cdot CH : N \cdot C_6H_2Cl(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die angloge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4-Chlor-6-amino -4'.4''. bis - dimethylamino -3 - methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumehlorid in åthylalkoholisch-amylalkoholischer Lösung (Reil, Sch., J. pr. [2] 75, 388). — $C_{43}H_{58}N_6Cl_2 + HCl$. Orangefarbene Krystalle. Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein dunkelblauer Farbstoff.

5 - Chlor - 6 - amino - 4'.4" - bis - dimethylamino - 3 - methyl - triphenylmethan $C_{34}H_{35}N_3Cl = H_2N\cdot C_8H_3Cl(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_3]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-benzhydrol mit 3-Chlor-4-amino-toluol (Bd. XII, S. 989) in Salzsäure auf dem Wasserbade (Reil, Sch., J. pr. [2] 75, 396). — Krystalle (aus Alkohol). Sintert bei 95° und schmilzt bei 105°. — Bei der Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein blauer Farbstoff.

- 9. 3.4'.4"-Triamino-4-methyl-triphenylmethan C₂₀H₂₁N₂, s. nebenstehende Formel.
- 8 Amino 4'.4" bis dimethylamino 4-methyl triphenylmethan C₂₄H₂₆N₃ = H₂N·C₆H₂(CH₃)·CH[C₆H₄·
 N(CH₃)₂]₂. B. Beim Erwärmen von 4.4'.Bis-[dimethylamino]-benzhydrol mit o-Toluidin (Bd. XII, S. 772) in konz.
 Schwefelsäure auf dem Wasserbade (Akt.-Ges. f. Anilinf.,
 D. R. P. 109664; Frdl. 5, 194; C. 1900 II, 459; REITZENSTEIN, RUNGE, J. pr. [2] 71, 67,
 104; BIELECKI, KOLENIEW, C. 1908 II, 877). Nadeln (aus Alkohol), Krystalle (aus Methylalkohol). F: 141—143° (A.-G. f. A.), 146° (B., K.). Bei der Oxydation mit Bleidioxyd
 in essigsaurer Lösung (Rei., Ru.) der Chloranil (B., K.) entsteht ein grüner Farbstoff.
- 8-Methylamino-4'.4"-bis-dimethylamino-4-methyl-triphenylmethan $C_{25}H_{21}N_3 = CH_3 \cdot NH \cdot C_5H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_2)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Methyl-o-toluidin (Bd. XII, S. 784) in konz. Schwefelsäure auf dem Wasserbade (Reil, Ru., J. pr. [2] 71, 67, 105). Hellblaues Pulver. Liefert bei der Oxydation einen hellgrünen Farbstoff.
- 8.4'.4"-Tris-dimethylamino-4-methyl-triphenylmethan $C_{ae}H_{ae}N_b = (CH_a)_2N \cdot C_eH_e(CH_a) \cdot CH[C_aH_b \cdot N(CH_a)_a]_g$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit Dimethyl-o-toluidin (Bd. XII, S. 785) in konz. Schwefelsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 69, 106; Bielecki, Koleniew, C. 1908 II, 877; vgl. Akt.-Ges. f. Anilinf., D. R. P. 109664; C. 1900 II, 459). Krystalle (aus Alkohol). F: 113° (B., K.). Durch Oxydation mit Chloranil in alkoh. Lösung entsteht ein grüner Farbstoff (B., K.; Rei., Ru.; A.-G. f. A.).
- 4'.4"- Bis dimethylamino 3 [2.4 dinitro anilino] 4 methyl-triphenylmethan $C_{20}H_{31}O_4N_5 = (O_2N)_2C_2H_3$. $NH \cdot C_4H_3(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_3$. B. Beim Erhitzen von 3-Amino-4'.4"-bis-dimethylamino-4-methyl-triphenylmethan mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) in Alkohol am Rückflußkühler (Rei., Ru., J. pr. [2] 71, 99, 128). Rotbraun. Liefert bei der Oxydation einen gelbstichig grünen Farbstoff.
- 4'.4"-Bis-dimethylamino-8-bensylamino-4-methyl-triphenylmethan $C_{n}H_{as}N_{g}=C_{e}H_{s}\cdot CH_{2}\cdot NH\cdot C_{e}H_{3}(CH_{2})\cdot CH[C_{e}H_{4}\cdot N(CH_{3})_{g}]_{g}$. B. Bei der Kondensation von 4.4'-Bis-dimethylamino-benzhydrol mit Benzyl-o-toluidin (Bd. XII, 8. 1033) in Gegenwart von Schwefelsäure (Höchster Farbw., D. R. P. 96230; C. 1898 I, 1255; Akt.-Ges. f. Anilinf., D. R. P. 109664; C. 1900 II, 459; vgl. Faiedlinder, Frdl. 5, 195 Anm.; Bielewi, Koleniew, Anxeiger Akad. Wiss. Krakau 1908, 299). Gibt bei der Oxydation einen blaugrünen Farbstoff (A.-G. f. A.). Geht durch Sulfurierung und Oxydation der entstandenen Leukosulfonsäure in einen blauen Farbstoff über (Hö. Fa.).

 $\begin{array}{lll} \textbf{Verbindung} & C_{53}H_{60}N_6 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_3(CH_3)\cdot N\cdot CH\cdot CH\cdot CH\cdot CH_2\cdot CH\cdot N\cdot C_6H_3(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_2 & \text{bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204).} & B. Das Hydrochlorid entsteht beim Erwärmen von 3-Amino-4'.4"-bis$ dimethylamino-4-methyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoh. Lösung auf dem Wasserbade (Reitzenstein, Rothschild, J. pr. [2] 73, 197).

C₅₃H₆₀N₆ + HCl. Grüngelb. F: 78°. Durch Oxydation entsteht ein grüner Farbstoff.

- 6 Nitro 3 amino 4'.4" bis dimethylamino 4 methyl triphenylmethan $C_{24}H_{26}O_2N_4 = H_2N \cdot C_6H_2(NO_2)(CH_3) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-benzhydrol mit 5-Nitro-2-amino-toluol (Bd. XII, S. 846) in konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 109). — Liefert bei der Oxydation einen hellblaugrünen Farbstoff.
- 6 Nitro 3.4'.4"- tris dimethylamino 4 methyl triphenylmethan $C_{16}H_{31}O_2N_4=(CH_3)_2N\cdot C_6H_2(NO_2)(CH_3)\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit 5-Nitro-2-dimethylamino-toluol (Bd. XII, S. 847) in konz. Schwefelsäure erst auf dem Wasserbade, dann im Olbade auf 1200 (REI., Ru., J. pr. [2] 71, 84, 111). - Liefert bei der Oxydation einen hellgrünen Farbstoff.

3. Triamine $C_{21}H_{23}N_3$.

1. 4.4'.4"-Triamino-2.3-dimethyl-triphenylmethan C₂₁H₂₃N₃, s. nebenstehende Formel.

4-Amino-4'.4"-bis-dimethylamino-2.3-dimethyltriphenylmethan C₂₅H₃₁N₃ = H₂N·C₆H₂(CH₃)₂·CH[C₆H₄·
N(CH₃)₂]₂. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit vic.-o-Xylidin (Bd. XII, S. 1101)
in Salzsäure auf dem Wasserbade (Riegler, Dissertation [Basel 1892], S. 42; vgl. Reitzen-STEIN, RUNGE, J. pr. [2] 71, 70, 108). — Krystalle (aus Benzol + Ligroin). F: 168° (Zers.) (RIE.). Ziemlich löslich in Alkohol (REI., RU.). — Liefert bei der Oxydation einen blauen Farbstoff (RIE.).

2. 5.4'.4"-Triamino-2.3-dimethyl-triphenylmethan C₂₁H₂₃N₃, s. nebenstehende Formel.

CH₃ NH,

 CH_3

5.4'.4"-Tris - dimethylamino - 2.3 - dimethyl - triphenylmethan $C_{27}H_{35}N_3 = (CH_3)_2N \cdot C_6H_2(CH_3)_2 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Bei 7-stdg. Erhitzen von 5 g 4.4'-Bis-dimethylamino-benzhydrol mit 3 g Dimethyl-asymm.-o-xylidin (Bd. XII, S. 1103) in 50 g 100% iger Schwefelsäure auf 50° (BIELECKI, KOLENIEW,

NH₂ C. 1908 II, 878). — Blättchen (aus Methylalkohol). F: 1850. — Durch Oxydation mit Chloranil in alkoh. Lösung entsteht ein dunkelblauer Farbstoff.

3. 5.4'.4" - Triamino - 2.4 - dimethyl - triphenylmethan C₂₁H₂₃N₃, s. nebenstehende Formel.

5-Amino-4'.4"- bis-dimethylamino-2.4-dimethyltriphenylmethan $C_{25}H_{31}N_3 = H_2N \cdot C_6H_2(CH_3)_2 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit asymm. m-Xylamin (Bd. XII, S. 1111) in NH₂ Gegenwart von konz. Schwefelsäure auf 50-60° (NOELTING, Polonowsky, B. 24, 3134). — Nadeln (aus Äther + Ligroin). F: 1580. — Liefert bei der Oxydation einen blaustichig grünen Farbstoff.

5.4'.4"-Tris-dimethylamino-2.4-dimethyl-triphenylmethan $C_{27}H_{38}N_3 = (CH_3)_{\frac{1}{2}}N \cdot C_8H_2(CH_3)_{\frac{1}{2}}\cdot CH[C_8H_4\cdot N(CH_3)_{\frac{1}{2}}]_{\frac{1}{2}}$. B. Bei 1-stdg. Erhitzen von 10 g 4.4'-Bis-dimethylamino-benzhydrol mit 6 g Dimethyl-asymm.-m-xylidin (Bd. XII, S. 1115) in 100 g $100^0/_0$ iger Schwefelsäure auf 50° (BIELECKI, KOLENIEW, C. 1908 II, 878). — Prismen (aus Ather). F: 135°. - Durch Oxydation mit Chloranil in alkoh. Lösung entsteht ein grunblauer Farbstoff.

4. 4.4'.4" - Triamino - 2.5 - dimethyl - triphenyl -

methan C₂₁H₂₃N₃, s. nebenstehende Formel. 4-Amino-4'.4"-bis-dimethylamino-2.5-dimethyl-triphenylmethan C₂₅H₃₁N₃ = H₂N·C₆H₂(CH₃)₂·CH[C₆H₄·N(CH₃)₂]₂. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol mit p-Xylidin (Bd. XII, S. 1135) in Salzsäure (RIEGLER, Dissertation [Basel 1892], S. 31; vgl. REITZEN-STEIN, RUNGE, J. pr. [2] 71, 70). — Krystalle. F: 192° (RIE.). — Liefert bei der Oxydation gipen violetthlauer Eachstoff (Pyr.) einen violettblauen Farbstoff (RIE.).

CH,

CH,

 \mathbf{CH}

CH,

CH,

NH.

4.4'.4"-Tris-dimethylamino-2.5-dimethyl-triphenylmethan $C_{27}H_{34}N_3 = (CH_2)_2N \cdot C_6H_2(CH_2)_2 \cdot CH[C_6H_4 \cdot N(CH_2)_2]_2$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit Dimethyl-p-xylidin (Bd. XII, S. 1137) in Gegenwart von Salzsäure auf dem Wasserbad oder in Gegenwart von $100^0/o$ jeer Schwefelsäure auf 50^0 (BIELECKI, KOLENIEW, C. 1908 II, 878). — Nadeln (aus Methylalkohol). F: 150°. Leicht löslich in Äther, Benzol, Toluol, Aceton, schwer in Methylalkohol, fast unlöslich in Petroläther. — Gibt bei der Oxydation mit Chloranil in alkoh. Lösung einen violettstichig blauen Farbstoff.

5. 4.4'.2"-Triamino-2.2'-dimethyl-triphenylmethan C₂₁H₂₃N₃, s. nebenstehende Formel.

2"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyltriphenylmethan C₂₅H₃₁N₃ = H₂N·C₅H₄·CH[C₅H₃(CH₂)
N(CH₂)₂]₂. B. Bei der Reduktion von 2"-Nitro-4.4'-bisdimethylamino-2.2''-dimethyl-triphenylmethan (S. 283)

dimethylamino - 2.2' - dimethyl - triphenylmethan (S. 283) (REITZENSTEIN, RUNGE, J. pr. [2] 71, 89, 95, 116). — Weiße Krystelle. F: 90°. — Liefert bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einen schwachen grünen Farbstoff.

Verbindung $C_{55}H_{64}N_6 = [(CH_3)_2N\cdot C_6H_3(CH_3)]_2CH\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot CH_3\cdot CH:N\cdot C_6H_4\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 2"-Amino-4.4'-bisdimethylamino-2.2'-dimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in Alkohol (Rettzenstein, Rothschild, J. pr. [2] 73, 203). — $C_{55}H_{64}N_6 + HCl$. Dunkelgelbbraun. F: 102°. Bei der Oxydation entsteht ein schwacher blaugrüner Farbstoff.

6. 4.4'.3"-Triamino-2.2'-dimethyl-triphenyl-methan C₁₁H₂₁N₃, s. nebenstehende Formel.

3"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan C₂₅H₂₁N₃ = H₂N·C₅H₄·CH[C₆H₃(CH₂)·N(CH₃)₂]₂. B. Durch Reduktion von 3"-Nitro-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan (S. 283) (Noelting, v. Skawinski, B. 24, 560). — Nådelchen. F: 131°. — Liefert bei der Oxydation einen grünen Farbstoff.

Verbindung $C_{45}H_{64}N_6 = [(CH_3)_2N\cdot C_6H_3(CH_3)]_2CH\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH:N\cdot C_6H_4\cdot CH[C_6H_9(CH_3)\cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 3"-Amino-4.4'-bisdimethylamino-2.2'-dimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in Alkohol (Reitzenstein, Rothschild, J. pr. [2] 73, 204). — $C_{55}H_{64}N_6 + HCl$. Gelbbraun. F: ca. 82°. Liefert bei der Oxydation einen gelbstichiggrünen Farbstoff.

7. 4.4'.4"-Triamino-2.2'-dimethyl-triphenyl-

methan C₃₁H₂₃N₃, s. nebenstehende Formel.

4"-Amino-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan $C_{25}H_{31}N_3 = H_5N \cdot C_6H_4 \cdot CH[C_6H_3(CH_5) \cdot N(CH_3)_2]_2$. B. Beim Behandeln von 4"-Nitro-4.4'-bis-dimethylamino-2.2'-dimethyl-triphenylmethan (S. 283) mit Zinnchlorür (Kock, B. 20, 1564). — Warzen (aus Alkohol). F.: 139° (K.), 140° (NORLTING, y. SKAWINSKI, B. 24, 558). —

Zinnchlorür (Kock, B. 20, 1564). — Warzen (aus Alkohol).
F: 139° (K.), 140° (Noelting, v. Skawinski, B. 24, 558). — Liefert bei der Oxydation einen violetten Farbstoff (N., v. Sk.).

4.4'.4"-Tris-dimethylamino-2.2'-dimethyl-triphenylmethan $C_{27}H_{32}N_3=(CH_2)_3N\cdot C_6H_4\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_3]_2$. B. Bei der Kondensation von 3 g 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit 6 g Dimethyl-m-toluidin in 25 g absol. Alkohol und 4 g kons. Schwefelsäure (Noelting, v. Skawinski, B. 24, 561). Beim Erwärmen von 4.4'-Bis-[dimethylamino]-2.2'-dimethyl-benzhydrol (Syst. No. 1859) mit Dimethylanlin (Bd. XII, S. 141) in alkoholisch-salzsaurer Lösung am Rückflußkühler (Reitzenstein, Runge, J. pr. [2] 71, 116). — Krystelle (aus Benzol-Ligroin). F: ca. 98° (Rei., Ru.). Leicht löslich in allem Lösungsmitteln (N., v. Sk.). — Liefert bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einem blauen Farbstoff (Rei., Ru.; vgl. N., v. Sk.).

Verbindung C_{1t}H_{4t}N₆ = [(CH₂)₂N·C₆H₂(CH₃)]₂CH·C₆H₄·N·CH·CH·CH·CH·CH·CH·N·C₆H₄·CH[C₄H₃(CH₃)·N(CH₃)₄]₅ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4"-Amino-4.4'-bisdimethylamino-2.2'-dimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in Alkohol (Reitzenstein, Rothschild, J. pr. [2] 73, 205). — C₁₅H₄₅N₆ + HCl. Gelb. Sintert von 60° ab und schmilzt bei 78°. Das Oxydationsprodukt färbt tannierte Baumwolle lila.

CH,

8. 6.4'.4" - Triamino - 3.4 - dimethyl - triphenylmethan C₂₁H₂₂N₂, s. nebenstehende Formel.

6.4'.4" - Tris - dimethylamino - 3.4 - dimethyl - triphenylmethan C₂₇H₂₅N₃ = (CH₃)₂N·C₅H₂(CH₂)₂·CH[C₆H₄·
N(CH₆)₂]₂· B. Bei 1-stdg. Erhitzen von 5 g 4.4'-Bis-[dimethylamino]-benzhydrol mit 4,8 g Dimethyl-asymm.-o-xylidin
(Bd. XII, S. 1103) in Gegenwart von 9 g Salzsäure (D: 1,175)
und 25 g Wasser auf dem Wasserbade (Bielecki, Koleniew, C. 1908 II, 878). — Krystalle
(aus Ather) F: 164° — Läßt sigh durch Chloronil oder Bleidiered sight and internalised

(aus Ather). F: 164°. — Läßt sich durch Chloranil oder Bleidioxyd nicht oxydieren.

9. 2.4'.4'' - Triamino - 3.5 - dimethyl - triphenyl methan C₂₁H₂₃N₂, s. nebenstehende Formel.

2 - Amino - 4'.4" - bis - dimethylamino - 8.5 - dimethyltriphenylmethan $C_{25}H_{21}N_3 = H_2N \cdot C_6H_2(CH_3)_3 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Beim Erhitzen von 4.4'-Bis-dimethylaminobenzhydrol mit asymm. m-Xylidin (Bd. XII, S. 1111) in Salz-

HaN CHa $H_{2}N$ ĊH₃ NH,

säure auf dem Wasserbade (Noelting, Polonowsky, B. 24, 3135; Reitzenstein, Runge, J. pr. [2] 71, 70, 108). — F: 145° (N., P.). — Liefert bei der Oxydation mit Bleidioxyd in essigsaurer Lösung einen erdigblauen Farbstoff (Rei., Ru.).

2.4'.4"-Tris-dimethylamino-3.5-dimethyl-triphenylmethan $C_{27}H_{25}N_3 = (CH_3)_2N \cdot C_6H_3(CH_3)_2 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Bei 20-stdg. Erhitzen von 5 g 4.4'-Bis-dimethylamino-benzhydrol mit 6 g Dimethyl-asymm.-m-xylidin (Bd. XII, S. 1115) in Gegenwart von 9 g Salzsaure (D: 1,175) und 25 g Wasser auf dem Wasserbade (BIELECKI, KOLENIEW, C. 1908 II, 878). — Gelbliche Flocken (aus Methylalkohol). F: 115°. — Gibt durch Oxydation mit Chloranil in alkoh. Lösung einen blauen Farbstoff.

10. 4.4'.4"-Triamino-3.3'-dimethyl-triphenylmethan C₂₁H₂₃N₃ s. nebenstehende Formel. B. Beim Behandeln von 4"-Nitro-4.4'-diamino-3.3'-dimethyl-triphenylmethan (S. 284) mit Zinkstaub und Salzsäure (O. Fischer, B. 15, 679). — Nadeln (aus verd. Alkohol). Sehr schwer löslich in Wasser (O. F1.). Wärmetönung bei der Neutralisation mit Salzsäure: SCHMIDLIN, C. r. 189, 543. Liefert bei der Oxydation einen blaustichig fuchsinroten Farb-

NH.

H₃C CH₂

H,N CH,

H₂C CH₂

H₂C NH₂

- F: 163-164°.

NH,

stoff (Farbsalz des 4.4'.4"-Triamino-3.3'-dimethyl-triphenylcarbinols; Syst. No. 1867) (O. Fl.).

4. Triamine $C_{22}H_{25}N_2$.

1. 6.4'.4"-Triamino-2.3.5-trimethyl-triphenylmethan C22H25N2, s. nebenstehende Formel.

6 - Amino-4'.4"-bis-dimethylamino-2.8.5-trimethyltriphenylmethan $C_{20}H_{32}N_3 = H_2N \cdot C_0H(CH_3)_3 \cdot CH[C_0H_4 \cdot N(CH_3)_3]_3$. B. Durch Kondensation von 4.4'-Bis-[dimethylamino]-benzhydrol mit Pseudocumidin (Bd. XII, S. 1150) in Gegenwart von Salzsäure (Norlting, Polonowsky, B. 24, 3135). -

2. 5.4'.4"-Triamino-2.3.6-trimethyl-triphenylmethan C₂₂H₂₅N₂, s. nebenstehende Formel.

5 - Amino-4'.4"-bis-dimethylamino-2.3.6-trimethyltriphenylmethan $C_{26}H_{29}N_3 = H_2N \cdot C_6H(CH_3)_3 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Durch Kondensation von 4.4'-Bis-[dimethylamino]-benzhydrol mit Pseudocumidin (Bd. XII, S. 1150) in Gegenwart von konz. Schwefelsäure (Noelting, Polonowsky,

NH, B. 24, 3135; N., Gerlinger, B. 39, 2046).— F: 132° (N., P.; N., G.).— Liefert bei der Oxydation einen blaustichig grünen Farbstoff (N., P.). Durch Diazotieren und Erwärmen der Diazoniumsalzlösung mit Zinnoxydulnatron auf 80° erhält man 4'.4"-Bis-dimethylamino-2.3.6-trimethyl-triphenylmethan (S. 286) (N., G.).

3. 3.4′.4″ - Triamino - 2.4.6 - trimethyl - tri phenylmethan C₁₂H₂₆N₂, s. nebenstehende Formel.

8 - Amino - 4'.4" - bis - dimethylamino - 2.4.6 - trimethyl-triphenylmethan $C_{s_1}H_{s_2}N_s = H_sN \cdot C_sH(CH_s)_s$ · $CH[C_sH_4 \cdot N(CH_s)_s]_s$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit Mesidin (Bd. XII, S. 1160) und konz. Schwefelsäure auf 50-60° (NoELTING, Polo-NOWSKY, B. 24, 3135). - F: 1420. - Gibt bei der Oxydation einen blaustichig grünen Farbstoff.

 $H_{\bullet}N$

H₃C NH₂

4. 3.4'.4"-Triamino-2.2'.2"-trimethyl-triphenylmethan $C_{22}H_{25}N_3$, s. nebenstehende Formel.

5-Chlor-3-amino-4.'4"-bis-dimethylamino - 2.2'.2"-trimethyl - triphenylmethan $C_{36}H_{32}N_3Cl = H_1N\cdot C_6H_2Cl(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino - 2.2'-dimethyl - benzhydrol mit 4-Chlor - 2-aminotoluol (Bd. XII, S. 835) in konz. Schwefelsäure auf dem Krystens - 1-mg [2] 75, 402) — 1-mg [2] 75, 4

H₂N·CH₃

CH₃

toluol (Bd. XII, S. 835) in konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Schweedt, J. pr. [2] 75, 402). — Krystalle (aus Toluol-Ligroin). — Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht eine schwach grüne Farbstofflösung.

Verbindung $C_{57}H_{46}N_6Cl_2 = [(CH_3)_2N\cdot C_6H_3(CH_3)]_2CH\cdot C_6H_2Cl(CH_3)\cdot N:CH\cdot CH:CH:CH_2\cdot CH:N\cdot C_6H_2Cl(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 5-Chlor-3-amino-4'.4"-bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid; die freie Base erhält man mittels Alkalilauge (Reil, Sch., J. pr. [2] 75, 405). — Pulver. — Läßt sich zu einem schwach grünen Farbstoff oxydieren.

- 5. 4.4'.4" Triamino 2.2'.2" trimethyl triphenylmethan C₁₂H₁₅N₃, s. nebenstehende Formel.
- 4 Amino 4.4" bis dimethylamino 2.2'.2" trimethyl-triphenylmethan $C_{36}H_{33}N_3 = H_2N \cdot C_6H_3(CH_3) \cdot CH[C_6H_3(CH_5) \cdot N(CH_2)_2]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino-2.2'-dimethyl-benzhydrol mit m-Toluidin (Bd. XII, S. 853) in Schwefelsäure oder Salzsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 74, 118, 11 Anzeiger Akad. Wiss. Krakau 1908, 309; C. 1908 II, 877).

 $\begin{array}{c|c} CH_3 & CH_2 \\ \hline \\ H_2N \cdot \bigcirc \\ \hline \\ CH_3 & \cdot \\ \hline \\ NH_2 & \cdot \\ \end{array}$

Wasserbade (REITZENSTEIN, RUNGE, J. pr. [2] 71, 74, 118, 119; vgl. BIELECKI, KOLENIEW, Anzeiger Akad. Wiss. Krakau 1908, 309; C. 1908 II, 877). — F: 115°. — Liefert bei der Oxydation eine schwach blaugrüne Lösung.

4.4'.4"-Tris - dimethylamino - 2.2'.2"-trimethyl-triphenylmethan $C_{28}H_{37}N_3 = CH[C_8H_3(CH_3)\cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethylbenzhydrol mit Dimethyl-m-toluidin (Bd. XII, S. 857) in Schwefelsäure oder Salzsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 76, 77, 120, 121; vgl. B., K., Anz. Akad. Wiss. Krukau, 1908, 309; C. 1908 II, 877). Bei mehrstündigem Erhitzen von 12 g Dimethyl-m-toluidin mit 4 g Orthoameisensäureäthylester und 10 g Chlorzink auf dem Wasserbade (Noelting, Trautmann, B. 24, 562). — Nadeln (aus Alkohol). F: 190—191°; schwer löslich in kaltem, leicht in warmem Alkohol (N., T.). — Liefert bei der Oxydation einen blauen Farbstoff (N., T.; vgl. Rei., Ru.).

Verbindung $C_{57}H_{48}N_6 = [(CH_3)_2N\cdot C_6H_3(CH_3)]_1CH\cdot C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH:N\cdot C_6H_3(CH_3)\cdot CH[C_6H_3(CH_2)\cdot N(CH_2)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4-Amino-4'.4"-bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan mit N-[2.4-Dinitrophenyl]-pyridiniumchlorid in alkoh. Lösung (Reitzenstein, Rothschild, J. pr. [2] 78, 199). — $C_{57}H_{68}N_6 + HCl$. Gelbbraun. Sintert bei 90° und sohmilzt bei 109°. Löslich in Eisessig mit grüner Farbe. Bei der Oxydation entsteht ein schwacher grüner Farbstoff.

5-Chlor-4-amino-4'.4"- bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan $C_{26}H_{32}N_3Cl = H_2N \cdot C_6H_2Cl(CH_2) \cdot CH[C_6H_3(CH_2) \cdot N(CH_2)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethyl-benzhydrol mit 4-Chlor-3-amino-toluol (Bd. XII, S. 871) in Schwefelsäure oder Salzsäure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 392). — Läßt sich zu einem mattgrünen Farbstoff oxydieren.

Verbindung $C_{xy}H_{aa}N_aCl_a = [(CH_a)_aN\cdot C_aH_a(CH_a)]_aCH\cdot C_aH_aCl(CH_a)\cdot N\cdot CH\cdot CH\cdot CH\cdot CH_a\cdot CH\cdot N\cdot C_aH_aCl(CH_a)\cdot CH[C_aH_a(CH_a)\cdot N(CH_a)_a]_a$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht bei kurzem Sieden von 5-Chlor-4-amino-4'.4"-bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid in alkoholisch-benzolischer Lösung (Rei., Sch., J. pr. [2] 75, 395). — $C_{57}H_{56}N_6Cl_3 + HCl$. Rötlich braunes Pulver. Sintert bei 85°. Durch Oxydation entsteht ein schwach grüner Farbstoff.

5-Nitro-4-amino-4'.4"- bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan $C_{36}H_{39}O_2N_4=H_8N\cdot C_6H_2(NO_3)(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_2)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethyl-benzhydrol mit 4-Nitro-3-amino-toluol (Bd. XII, S. 876) in Salzsäure auf dem Wasserbade (Rei., Sch., J. pr. [2] 75, 383). — Pulver. — Läßt sich zu einem grünen Farbstoff oxydieren.

CH₃

CH₃

CH₃

6. 4.4'.5" - Triamino - 2.2'.2" - trimethyl - tri -

phenylmethan C₁₁H₂₅N₃, s. nebenstehende Formel. 5"- Amino - 4.4' - bis - dimethylamino - 2.2'.2"-trimethyl-triphenylmethan $C_{26}H_{32}N_3 = H_2N \cdot C_6H_3(CH_3) \cdot CH[C_6H_3(CH_3) \cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino - 2.2'-dimethyl - benzhydrol mit p-Toluidin ·NH.

(Bd. XII, S. 880) in konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Runge, J. pr. [2] 71, 75, 119). — Krystalle (aus Benzol + Ligroin). — Liefert bei der Oxydation einen schwachen grünen Farbstoff.

4.4'.5"- Tris - dimethylamino - **2.2'.2"-** trimethyl - triphenylmethan $C_{28}H_{37}N_3 = CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethylbenzhydrol mit Dimethyl-p-toluidin (Bd. XII, S. 902) in konz. Schwefelsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 77, 121). — Krystalle (aus Benzol + Ligroin). — Liefert bei der Oxydation einen schwachen blaugrünen Farbstoff.

4.4' - Bis - dimethylamino - 5'' - äthylamino - 2.2'.2'' - trimethyl - triphenylmethan $\begin{array}{lll} C_{23}H_{27}N_3 &= C_2H_5 \cdot NH \cdot C_6H_3(CH_3) \cdot CH[C_6H_3(CH_3) \cdot N(CH_3)_2]_2. & B. & \text{Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethyl-benzhydrol mit Athyl-p-toluidin (Bd. XII, S. 904)} \end{array}$ in konz. Schwefelsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 75, 122). — Liefert bei der Oxydation einen schwachen grünen Farbstoff.

4.4 - Bis - dimethylamino - 5" - [2.4 - dinitro - anilino] - 2.2'.2" - trimethyl-triphenylmethan $C_{32}H_{36}O_4N_5=(O_2N)_3C_6H_3\cdot NH\cdot C_8H_3(CH_3)\cdot CH[C_8H_3(CH_3)\cdot N(CH_3)_2]_2$. B. Bei der Einw. von 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) auf 5"-Amino-4.4'-bis-dimethylamino-1000. 2.2'.2"-trimethyl-triphenylmethan (Rei., Ru., J. pr. [2] 71, 101, 131). — Liefert bei der Oxydation einen schwachen gelbgrünen Farbstoff.

 $\begin{array}{lll} \textbf{Verbinduug} & C_{57}H_{68}N_6 &= [(CH_3)_2N\cdot C_6H_3(CH_3)]_2CH\cdot C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH_3\cdot N\cdot C_6H_3(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2 & \text{bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). } B. Das Hydrochlorid entsteht beim Behandeln der amylalkoholischen Lösung von 5"-Amino-4.4'-bis-dimethylamino-2.2'.2"-trimethyl-triphenyl$ methan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid (Reitzenstein, Rothschild, J. pr. [2] 73, 201). — C₅₇H₆₈N₆ + HCl. Braun. Sintert von 105° ab und schmilzt bei 115°.

3"-Chlor-5"-amino-4.4'-bis-dimethylamino-2.2'.2"-trimethyl-triphenylmethan $\begin{array}{lll} C_{26}H_{38}N_3Cl &= H_2N\cdot C_6H_2Cl(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2. & B. \text{ Beim Erwärmen von 4.4'-Bisdimethylamino-2.2'-dimethyl-benzhydrol} & \text{mit 2-Chlor-4-amino-toluol (Bd. XII, S. 988)} & \text{in } \end{array}$ konz. Schwefelsäure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 385). — Pulver. — Wird durch Chloranil in alkoholisch-essigsaurer Lösung zu einem mattgrünen Farbstoff oxydiert.

 $\begin{array}{lll} \textbf{Verbindung} & C_{57}H_{\bullet 0}N_{\circ}Cl_{9} &= [(CH_{3})_{\circ}N\cdot C_{0}H_{3}(CH_{3})]_{\circ}CH\cdot C_{0}H_{1}Cl(CH_{9})\cdot N:CH\cdot CH\cdot CH\cdot CH\cdot CH_{1}\cdot CH:N\cdot C_{0}H_{1}Cl(CH_{2})\cdot CH[C_{0}H_{3}(CH_{3})\cdot N(CH_{3})_{9}]_{9} \text{ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). } B. Das Hydrochlorid entsteht, wenn man eine benzolische Lösung von 3''-Chlor-5''-amino-4.4' bis-dimethylamino-2.2'.2''-trimethyl-triphenyl$ methan mit einer alkoh. Lösung von N-[2.4-Dinitro-phenyl]-pyridiniumchlorid kurze Zeit sieden läßt; die freie Base erhält man mittels Natronlauge (Rei., Sch., J. pr. [2] 75, 389). Gelborange. — Durch Oxydation mit Chloranil in alkoholisch-essigsaurer Lösung entsteht ein grüner Farbstoff.

7. **4.4'.4" - Tri**amino - 2.2'.3" - trimethyl - tri phenylmethan C₂₂H₂₅N₃, s. nebenstehende Formel.

4"-Amino-4.4'-bis-dimethylamino-2.2'.8"-trimethyl-triphenylmethan $C_{26}H_{32}N_3 = H_2N \cdot C_6H_3(CH_3) \cdot CH[C_6H_3(CH_3) \cdot N(CH_5)_3]_3$. B. Beim Erwärmen von 4.4′-Bis-dimethylamino-2.2′-dimethyl-benzhydrol mit o-Toluidin (Bd. XII, S. 772) in Salzsäure auf dem Wasserbade (REITZEN-

STEIN, RUNGE, J. pr. [2] 71, 72, 118). — Liefert bei der Oxydation einen schwachen blauen Farbstoff.

4.4'.4"-Tris - dimethylamino - 2.2'.3"- trimethyl - triphenylmethan $C_{28}H_{27}N_3 = CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethylbenzhydrol mit Dimethyl-o-toluidin (Bd. XII, S. 185) in Salzsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 74, 120). — Krystalle (aus Alkohol). — Liefert bei der Oxydation einen schwachen blauen Farbstoff.

Verbindung $C_{57}H_{68}N_6 = [(CH_3)_2N\cdot C_6H_3(CH_3)]_2CH\cdot C_6H_3(CH_3)\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH:N\cdot C_6H_3(CH_3)\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_2]_2$ bezw. desmotrope Form (vgl. die analoge Anilinverbinstung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 4"-Amino-

4.4'-bis-dimethylamino-2.2'.3"-trimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumehlerid in alkoh. Lösung (Reitzenstein, Rothschild, J. pr. [2] 78, 199). — C₅₇H₆₈N₆ + HCl. Braungelb. Sintert von 90° ab und schmilzt bei 115°. Löslich in Eisessig mit grüner Farbe. Liefert bei der Oxydation einen schwachen blaugrünen Farbstoff.

6"-Chlor-4"- amino-4.4'-bis-dimethylamino-2.2'.8"-trimethyl - triphenylmethan $C_{10}H_{39}N_3Cl = H_2N \cdot C_0H_1Cl(CH_2) \cdot CH[C_0H_2(CH_3) \cdot N(CH_3)_2]_2. \quad B. \quad \text{Beim Erwärmen von 4.4'-Bis-}$ dimethylamino-2.2'-dimethyl-benzhydrol mit 4-Chlor-2-amino-toluol (Bd. XII, S. 835) in Salzsaure auf dem Wasserbade (Reitzenstein, Schwerdt, J. pr. [2] 75, 403). — Krystallinisches Pulver. — Die Oxydation mit Chloranil führt zu einem mattgrünen Farbstoff.

Verbindung $C_{87}H_{88}N_{8}Cl_{4} = [(CH_{3})_{3}N \cdot C_{6}H_{9}(CH_{3})]_{2}CH \cdot C_{6}H_{8}Cl(CH_{9}) \cdot N : CH \cdot CH : CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot N \cdot C_{6}H_{3}(CH_{3}) \cdot CH[C_{6}H_{5}(CH_{3}) \cdot N(CH_{3})]_{3}$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 6"-Chlor-4"-amino-4.4'-bis-dimethylamino-2.2'.3"-trimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid; die freie Base erhält man mittels Alkalilauge (Rei., Sch., J. pr. [2] 75, 406). — Pulver. — Gibt bei der Oxydation einen schwachen blauen Farbstoff.

8. **4.4'.6" - Triamino - 2.2'.3" -** trimethyl - tri phenylmethan C₂₂H₂₅N₂, s. nebenstehende Formel.

6"-Amino-4.4'-bis-dimethylamino-2.2'.8"-trimethyl-triphenylmethan $C_{26}H_{32}N_2 = H_2N \cdot C_6H_3(CH_2) \cdot H_2N \cdot CH_2(CH_3) \cdot N(CH_3)_2 \mid_{S}$. B. Beim Erwärmen von 4.4'-Bisdimethylamino - 2.2'-dimethyl-benzhydrol mit p-Toluidin (Bd. XII, S. 880) in Salzsäure auf dem Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 11 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 12 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 13 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 13 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 13 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 13 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 14 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, J. pr. [2] 71, 15 in Wasserbade (Rettzenstein, Runge, Run

H,N CH-·NH.

74, 119). — Sintert von 62° ab. — Liefert bei der Oxydation einen schwachen grünblauen Farbstoff.

- 4.4'.6"-Tris-dimethylamino-2.2'.8"-trimethyl-triphenylmethan $C_{22}H_{27}N_3 = CH[C_6H_6(CH_3)\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethylbenzhydrol mit Dimethyl-p-toluidin (Bd. XII, S. 902) in Salzsäure auf dem Wasserbade (Reil, 4.4'.6"- Tris - dimethylamino - 2.2'.8"- trimethyl - triphenylmethan Ru., J. pr. [2] 71, 76, 121). — Liefert bei der Oxydation einen schwachen blauen Farbstoff.
- 4.4' Bis dimethylamino 6" äthylamino 2.2'.3" trimethyl triphenylmethan $C_{23}H_{37}N_3 = C_2H_5 \cdot NH \cdot C_6H_4(CH_3) \cdot CH[C_6H_3(CH_2) \cdot N(CH_3)_2]_2$. B. Beim Erwarmen von 4.4'-Bis-dimethylamino-2.2'-dimethyl-benzhydrol mit Athyl-p-toluidin (Bd. XII, S. 904) in Salzsaure auf dem Wasserbade (REL., Ru., J. pr. [2] 71, 74, 122). — Liefert bei der Oxydation einen schwachen blaugrünen Farbstoff.

Verbindung $C_{57}H_{59}N_6 = [(CH_9)_2N \cdot C_9H_3(CH_2)]_8CH \cdot C_9H_3(CH_3) \cdot N \cdot CH \cdot CH \cdot CH \cdot CH_2 \cdot CH \cdot N \cdot C_9H_3(CH_4) \cdot CH[C_9H_3(CH_2) \cdot N(CH_3)_2]_8$ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Behandeln von 6"-Amino-4.4'-bis-dimethylamino-2.2'.3"-trimethyl-triphenylmethan mit N-[2.4-Dinitro-phenyl]-pyridiniumchlorid (Rettenstein, Rothschild, J. pr. [2] 73, 200). — $C_{57}H_{58}N_6 + HCl$. Dunkelbraunes Pulver. Sintert bei 90° und schmilzt bei 112°. Löslich in Eisessig mit grüner Farbe. Gibt bei der Oxydation einen schwachen grünen Farbstoff.

9. 4.4'.3'' - Triamino - 2.2'.4'' - trimethyl - tri phenylmethan C₂₂H₂₅N₃, s. nebenstehende Formel.

8"- Amino -4.4' - bis - dimethylamino - 2.2'.4" - tri methyl-triphenylmethan $C_{ae}H_{ae}N_a = H_aN \cdot C_aH_a(CH_a) \cdot CH[C_aH_a(CH_a) \cdot N(CH_a)_a]_a$. Beim Erwärmen von 4.4'-Bisdimethylamino-2.2'-dimethyl-benzhydrol mit o-Toluidin in konz. Schwefelsäure auf dem Wasserbade (REITZENSTEIN, RUNGE, J. pr. [2] 71, 73, 117). — F: 120°. — Liefert bei der Oxydation einen schwachen blaugrünen Farbstoff.

CH, CH. \cdot NH.

4.4'.3"- Tris - dimethylamino - 2.2'.4"- trimethyl - triphenylmethan $C_{98}H_{99}N_3=CH[C_6H_3(CH_2)\cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-2.2'-dimethylbenzhydrol mit Dimethyl-o-toluidin (Bd. XII, S. 785) in konz. Schwefelsäure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 75, 120). — Sintert bei 98°. — Liefert bei der Oxydation einen sehwachen grünen Farbstoff.

Verbindung C₁,H₆₂N₆ = [(CH₂)₂N·C₆H₃(CH₂)]₃·CH·C₆H₃(CH₂)·N·CH·CH·CH·CH·CH₃·CH₃·CH·Ch₄(CH₃)·CH[C₆H₃(CH₃)·N(CH₂)]₂ bezw. desmotrope Form (vgl. die analoge Anilinverbindung, Bd. XII, S. 204). B. Das Hydrochlorid entsteht beim Versetzen einer Lösung von 3"-Amino-4.4'-bis-dimethylamino-2.2'.4"-trimethyl-triphenylmethan in Alkohol + Amylalkohol mit einer alkoh. Lösung von N-[2.4-Dinitro-phenyl]-pyridiniumehlorid (REITZENSTEIN, ROTHSCHILD, J. pr. [2] 73, 200). — C₅₇H₆₆N₆ + HCl. Dunkelgelb. Sintert von 85° an und schmilzt bei 115°.

10. 4.4'.4" - Triamino - 3.3'.3" - trimethyl - tri phenylmethan C₂₂H₂₅N₃, s. nebenstehende Formel. B. Beim Erhitzen von 1 Tl. Paraleukanilin mit 2,5 Tln. o-Toluidin und 5 Tln. salzsaurem o-Toluidin (Vongerichten, Bock, C. 1903 II, 442). Beim Erwärmen von 4.4'-Diamino-3.3'-dimethyl-benzhydrol (Syst. No. 1859) mit salzsaurem o-Toluidin in wäßr. Lösung (V., B.). Beim Behandeln von Neufuchsin (Farbsalz des 4.4'.4"-Triamino-

3.3'.3"-trimethyl-triphenylcarbinols; Syst. No. 1867) mit Zinn und Salzsäure (Rosenstiehl., GERBER, A. ch. [6] 2, 352). — Krystalle. F: 150—151° (V., B.), ca. 155—160° (EBERHARDT, WELTER, B. 27, 1815), ca. 160—162° (Höchster Farbw., D. R. P. 59775; Frdl. 3, 114). In Alkohol und Ather leichter löslich als Leukanilin (R., G.), ziemlich leicht löslich in heißem Benzol im Gegensatz zu Paraleukanilin und Leukanilin (SCHMIDLIN, B. 39, 4208). Wärmetõnung bei der Neutralisation mit Salzsäure: Sch., C. r. 139, 543; A. ch. [8] 7, 242. — Durch achttägiges Stehenlassen von salzsaurem 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylmethan in rauchender Schwefelsäure von 80°/₀ Anhydridgehalt und elektrolytische Oxydation der mit Eis versetzten Lösung erhält man die Verbindung C₂₂H₁₀O₄N₃S₃ (s. u.) (SCH., B. 39, 4204, 4212). Liefert bei mehrstündigem Erhitzen mit Anilin und salzsaurem Anilin auf 170º Paraleukanilin (V., B.).

Verbindung C₂₂H₁₉O₄N₃S₂, s. nebenstehende Formel. B. Das Sulfat wird erhalten durch 8-tägiges Stehenlassen von 200 g salzsaurem 4.4'.4"-Triamino-3.3'.3"-trimethyltriphenylmethan in 1000 g rauchender Schwefelsäure von 80%, Anhydridgehalt und elektrolytische Oxydation der mit Eis verdünnten Lösung; die freie Base erhält man durch Schütteln des Sulfats mit 10% jeer Natronlauge (SCHMIDLIN, B. 89, 4204, 4212, 4213). — Schwarze mikrokrystallinische Flocken der Zusammensetzung C₂₂H₁₉O₄N₃S₂ + H₂O. Unlöslich in Wasser und Äther, wenig löslich in Benzol, etwas löslich in Chloroform, löslich in Alkohol und Essigester. — Durch Erhitzen des Sulfats mit

Salzsaure oder durch Behandeln desselben mit Natriumnitrit und Schwefelsaure unter Eis-Salzsaure oder durch Behandein desselben mit Natriumnitrit und Schwefelsaure unter Eiskühlung und Verkochen der Lösung erhält man eine Verbindung C₂₂H₂₁O₃NS₂ (s. u.).—
C₂₃H₁₉O₄N₃S₃ + HCl. Bräunlich gefärbte Krystalle. Löslich in Alkohol, sehr wenig löslich in Wasser, leichter löslich in verd. Säuren.— 2 C₂₂H₁₉O₄N₃S₂ + H₂SO₄ + H₂O. Dunkelblaue Krystalle mit rötlichem Reflex. Sehr wenig löslich in Wasser; sehr leicht löslich in konz. Salzsäure mit brauner Farbe; läßt sich aus dieser Lösung durch Wasser wieder abscheiden.
Ver bindung C₂₂H₂₁O₂NS₂. B. Durch Erhitzen des Sulfats der Verbindung C₃₂H₁₉O₄N₃S₂ (s. o.) mit Salzsäure oder durch Behandeln desselben mit Natriumnitrit und Schwefelging und Washonken der Lösung (SCHMEDLIX R. 29.4 4905). 4245)

saure unter Eiskühlung und Verkochen der Lösung (Schmidlin, B. 39, 4205, 4215). Braunes Pulver (aus Alkohol + Ather). Leicht löslich in Alkohol, schwer in Wasser und Ather, unlöslich in Petroläther; schwer löslich in verd. Säuren, leicht in Alkalien mit brauner Farbe.

5. Triamine $C_{23}H_{27}N_3$.

1. $\beta.\beta-Dimethyl-a.a.y-tris-[4-amino-phenyl]-propan <math>C_{22}H_{27}N_3=H_2N\cdot C_6H_4\cdot C(CH_2)_2\cdot CH(C_2H_4\cdot NH_2)_2$.

 $\beta.\beta$ -Dimethyl-a.a.y-tris-[4-dimethylamino-phenyl]-propan $C_{29}H_{29}N_3=(CH_3)_2N$: $C_4H_4\cdot CH_2\cdot C(CH_2)_3\cdot CH[C_4H_4\cdot N(CH_3)_2]_3$. Das Molekulargewicht wurde kryoskopisch in Phenol bestimmt (Samec, M. 26, 394). — B. Beim Erhitzen von 3 Mol.-Gew. Dimethylanilin mit 1 Mol.-Gew. Formisobutyraldol (Bd. I, S. 833) in Gegenwart von ZnCl₃ im geschlossenen Gefäß auf ca. 130° (S., M. 26, 393). — Farblose Krystalle (aus Petroläther). F: 94-95°. Unlöslich in Wasser, löslich in Alkohol, Äther, Benzol, Petroläther und in Säuren. – Die Krystalle blauen sich leicht. Bei der Oxydation mit Bleidioxyd in salzsauer-essigsaurer Lösung entsteht das Farbsalz des entsprechenden Carbinols (CH₂)₂N·C₂H₄·CH₃·C(CH₂)₂·C(OH)[C₂H₄·N(CH₂)₃] (Syst. No. 1867). — Hydrochlorid. Farblose Krystalle. — Oxalat. Farblose Krystalle. — Chloroplatinat. Gelbbraune Krystalle.

2. 5.4'.4" - Triamino - 2.3.4.6 - tetramethyl triphenylmethan C23H27N2, s. nebenstehende Formel.

5-Amino-4'.4"-bis-dimethylamino-2.3.4.6-tetramethyl-triphenylmethan $C_{af}H_{ab}N_s = H_aN \cdot C_a(CH_a)_a \cdot CH[C_aH_a \cdot N(CH_a)_a]_a$. B. Durch Kondensation von 4.4'-Bisdimethylamino-benshydrol mit Isoduridin (Bd. XII, S. 1175) in Gegenwart von konz. Schwefelsäure oder Salzsäure

(Noelting, Polonowsky, B. 24, 3135). — F: 157°. — Liefert bei der Oxydation einen blaugrünen Farbstoff.

- 3. 4.4'.4" Triamino 2.3.2'.2" tetramethyl triphenylmethan C₂₃H₂₇N₃, s. nebenstehende Formel.
- 4-Amino-4'.4"-bis-dimethylamino-2.3.2'.2"-tetramethyl-triphenylmethan $C_{37}H_{36}N_3 = H_{4}N \cdot C_{6}H_{4}(CH_{3})_{2} \cdot CH[C_{6}H_{3}(CH_{3}) \cdot N(CH_{3})_{2}]_{2}$. Beim Erwärmen von 4.4'-Bisdimethylamino-2.2'-dimethyl-benzhydrol mit vic.-o-Xyling (Pl. XIII) din (Bd. XII, S. 1101) in Salzsäure auf dem Wasserbade

(Reitzenstein, Runge, J. pr. [2] 71, 76, 123). — Krystalle (aus Toluol). — Liefert beim Oxydieren einen schwachen blaugrünen Farbstoff.

4. 5.4'.4"-Triamino - 2.4.2'.2"- tetramethyl - triphenylmethan C₂₃H₂₇N₃, s. nebenstehende Formel.

5-Amino-4'.4"-bis-dimethylamino-2.4.2'.2"-tetramethyl-triphenylmethan $C_{27}H_{38}N_3 = H_2N \cdot C_8H_2(CH_2)_2 \cdot CH[C_8H_3(CH_3) \cdot N(CH_3)_8]_3$. B. Beim Erwärmen von 4.4'.Bisdimethylamino - 2.2' - dimethyl - benzhydrol mit asymm. m-Xylidin (Bd. XII, S. 1111) in konz. Schwefelsäure auf dem

Wasserbade (Rel., Ru., J. pr. [2] 71, 77, 123). — Krystalle (aus Toluol + Ligroin). — Liefert

H₂N·()-CH-(

 $\begin{array}{c|c} H_2N & & \\ \hline \\ & CH_3 & CH_3 \end{array}$

NH.

H₃C CH₃

beim Oxydieren keinen Farbstoff.

- 5. 4.4'.4"-Triamino-2.5.2'.2"-tetramethyl-triphenylmethan C₂₃H₂₇N₃, s. nebenstehende Formel.
- 4-Amino-4'.4"-bis-dimethylamino-2.5.2'.2"-tetramethyl-triphenylmethan $C_{37}H_{38}N_3=H_2N\cdot C_6H_2(CH_3)_2\cdot CH[C_6H_3(CH_3)\cdot N(CH_3)_3]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino - 2.2'- dimethyl- benzhydrol mit p-Xylidin (Bd. XII, S. 1135) in Salzsäure auf dem Wasserbade (REL.,

Ru., J. pr. [2] 71, 78, 124). — Krystalle (aus Benzol + Ligroin). — Liefert bei der Oxydation eine schwach grüne Farbstofflösung.

6. 4.4'.2" - Triamino - 2.2'.3".5" - tetramethyl triphenylmethan C₂₃H₂₇N₃, s. nebenstehende Formel.

2"-Amino-4.4'-bis-dimethylamino-2.2'.3".5"-tetramethyl-triphenylmethan $C_{27}H_{35}N_3 = H_2N \cdot C_6H_2(CH_3)_2 \cdot CH[C_6H_3(CH_3) \cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bisdimethylamino - 2.2'- dimethyl - benzhydrol mit asymm.

CH,

 $C_6H_4 \cdot NH_2$

m-Xylidin (Bd. XII, S. 1111) in Salzsaure auf dem Wasserbade (Rei., Ru., J. pr. [2] 71, 76, 123). — Liefert bei der Oxydation einen schwachen hellgrünen Farbstoff.

- 6. 4.4'.4"-Triamino-2.6.2'.6'.2".6"-hexamethyl-triphenylmethan $C_{ab}H_{a1}N_{a}=$ $CH[C_6H_8(CH_3)_9 \cdot NH_2]_3$
- 4.4'.4''-Tris-dimethylamino-2.6.2'.6'.2''.6''-hexamethyl-triphenylmethan $C_{31}H_{43}N_8$ = CH[C₈H₂(CH₃)₂·N(CH₃)₂]₃. B. Beim Erhitzen von Dimethyl-symm.-m-xylidin (Bd. XII, S. 1131) mit Orthoameisensäureäthylester und ZnCl, auf dem Wasserbade (NOELTING, B. 24, 562). — Nadeln (aus Alkohol). F: 134—135°. — Liefert bei der Oxydation einen grünen Farbstoff.

7. Triamin $C_nH_{2n-21}N_8$.

3.6-Diamino-9-[4-amino-phenyl]-fluoren $C_{19}H_{17}N_3$, s. nebenstehende Formel.

3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl]-fluoren $C_{25}H_{29}N_3 = (CH_3)_2N \cdot C_6H_4 \cdot C_{13}H_7[N(CH_3)_2]_3$. B. Man löst 19,4 g 2-Amino-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 342) in einer Mischung von 50 ccm konz. Schwefelsäure und 30 ccm Wasser, setzt zu der auf 0° abgekühlten Flüssigkeit eine Lösung von 3,45 g Natriumnitrit in 50 ccm konz. Schwefelsäure, läßt 1/2 Stde. stehen, erhitzt auf dem Wasserbade bis zur völligen Zersetzung der Diazoniumverbindung, verdünnt mit Wasser und macht mit Natronlauge stark alkalisch; während der Neutralisation versetzt man die Flüssigkeit mit etwas Äther, damit der Niederschlag krystallinisch ausfällt; man entfernt das gleichzeitig entstandene 2-0xy-4.4'.4''-tris-dimethylamino-triphenylmethan (Syst. No. 1864), indem man den Niederschlag in 100 ccm Alkohol unter Zusatz von 15 ccm konz. Salzsäure löst und zur siedenden Lösung siedende alkoholische Kalilauge bis zur stark alkalischen Reaktion setzt, wobei das Fluorenderivat ausfällt (HALLER, GUYOT, Bl. [3] 25, 753). — Weiße Nadeln (aus Benzol). F: 214°. Sehr wenig löslich in Alkohol, schwer in kaltem, ziemlich löslich in siedendem Benzol. — Gibt mit Chloranil in alkoholischer Lösung eine grünblaue Färbung, die auf Wasserzusatz in Blauviolett übergeht. Liefert bei der Oxydation mit Bleidioxyd Fluorenblau (Syst. No. 1868).

8. Triamine $C_n H_{2n-25} N_3$.

Triamine $C_{23}H_{21}N_3$.

1. Bis-[4-amino-phenyl]-[2-amino-naph-thyl-(1)]-methan $C_{23}H_{21}N_3$, s. nebenstehende Formel.

Bis-[4-dimethylamino-phenyl]-[2-amino-naphthyl-(1)]-methan $C_{27}H_{29}N_3 = H_2N \cdot C_{10}H_6 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. Läßt sich durch Behandeln mit Natriumnitrit in schwefelsaurer Lösung und Verkochen der Diazoniumsalzlösung in 6-[Dimethylamino]-9-[4-dimethylamino-phenyl]-1.2-benzo-fluoren (S. 291) überführen (Güvот, GRANDERYE, Bl. [3] 83, 204).

2. Bis - [4-amino-phenyl] - [4-amino-naph-thyl-(1)]-methan $C_{13}H_{11}N_3$, s. nebenstehende Formel.

 H_2N -CH--·NH, Bis-[4-dimethylamino-phenyl]-[4-amino-naphthyl-methan $C_{37}H_{39}N_3 = H_3N \cdot C_{10}H_6 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Beim Erwärmen von Leukauramin (S. 307) mit a-Naph-

thylamin (Bd. XII, S. 1212) in 90% iger Essigsaure auf dem Wasserbade (KERN & SANDOZ, D. R. P. 68144; Frdl. 3, 141). Bei der Kondensation von 4.4'-Bis-dimethylamino-benzhydrol mit a-Naphthylamin in alkoh. Lösung bei Gegenwart von Salzsäure (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 75; Noelling, Bull. Soc. ind. Mulhouse 72, 223; C. 1903 I, 87; B. 37, 1908). — Blättchen. F: 221—2220 (N.). Sehr schwer löslich in Alkohol, leichter in Benzol und Chloroform (N.). — Liefert bei der Oxydation einen blauen Farbstoff (B. A. S. F.; K. & S.; N.).

Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)]-methan $C_{38}H_{31}N_3 = CH_3 \cdot NH \cdot C_{10}H_6 \cdot CH[C_6H_4 \cdot N(CH_3)_3]_2$. B. Bei der Kondensation von 4.4-Bis-dimethylamino-phenyl-like and the state of the state o benzhydrol mit Methyl-a-naphthylamin (Bd. XII, S. 1221) (NOELTING, B. 87, 1908). Bei der Reduktion des Farbsalzes des Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) mit Zink und Essigsäure (N., Bull. Soc. ind. Mulhouse 72, 223; C. 1903 I, 87; B. 37, 1908). — Blättchen. F: 201—202°. — Luftbeständig. Liefert bei der Oxydation wieder das Farbsalz des Bis-[4-dimethylamino-phenyl]-[4-methylaminonaphthyl-(1)]-carbinols.

Bis - [4 - dimethylamino - phenyl] - [4 - dimethylamino - naphthyl - (1)] - methan $C_{29}H_{32}N_3 = (CH_3)_2N \cdot C_{10}H_3 \cdot CH[C_6H_4 \cdot N(CH_2)_3]_2$. B. Beim Erwärmen von 4.4'-Bis-[dimethylamino]-benzhydrol mit Dimethyl-a-naphthylamin (Bd. XII, S. 1221) in verd. Salzsäure (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdd. 1, 75; NOELTING, PHILIPP, B. 41, 582). Bei der Parkelle and Freiheld an Reduktion des Farbsalzes des Bis-[4-dimethylamino-phenyl]-[4-dimethylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N., Bull. Soc. ind. Mulhouse 72, 224; C. 1903 I, 87; N., Ph.). — Nadeln. F: 172° (N.; N., Ph.). — Durch Oxydation mit Chloranil in alkoholischessigsaurer Lösung entsteht wieder das Farbsalz des Bis-[4-dimethylamino-phenyl]-[4-dimethylamino-naphthyl-(1)]-carbinols (N.; N., Ph.).

Bis-[4-dimethylamino-phenyl]-[4-äthylamino-naphthyl-(1)]-methan $C_{29}H_{33}N_3 = C_3H_5\cdot NH\cdot C_{10}H_3\cdot CH[C_9H_4\cdot N(CH_3)_3]_a$. B. Bei der Kondensation von 4.4'-Bis-[dimethylamino]-benzhydrol mit Athyl-a-naphthylamin (Bd. XII, S. 1222) (Norlting, Bull. Soc. ind. Mulhouse 72, 224; C. 1903 I, 87; B. 37, 1908). Bei der Reduktion des Farbstoffes Viktoriablau R (Syst. No. 1868) (N.). — Prismen. F: 172—173°. — Fluoresciert in Lösung stark. — Bei der Oxydation entsteht wieder der Farbstoff Viktoriablau R.

Bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-methan $C_{33}H_{33}N_3 = C_6H_6$ · NH· $C_{10}H_6$ · CH[C_6H_6 · N(CH₃)₂]₂. B. Beim Erwärmen von Leukauramin (S. 307) mit Phenylanaphthylamin (Bd. XII, S. 1224) in 90% giger Essigsäure auf dem Wasserbade (Kern & Sandoz, D. R. P. 68144; Frdl. 3, 141). Bei der Kondensation von 4.4′-Bis-dimethylamino-benzhydrol mit Phenyl-a-naphthylamin in alkoholisch-essigsaurer Lösung in Gegenwart von Salzsäure (Bayer & Co., D. R. P. 66712; Frdl. 3, 134). Beim Behandeln des Farbstoffes Viktoriablau B (Syst. No. 1868) mit Zinkstaub und Salzsäure (Nathansohn, Müller, B. 22, 1890). — Krystalle. F: 163—165° (B. & Co.), 167—168° (Noelting, B. 37, 1909). Wenig löslich in kaltem, reichlich in heißem Alkohol, leicht in Äther (Na., M.). — Liefert bei der Oxydation den Farbstoff Viktoriablau B zurück (Noel.). — Pikrat $C_{33}H_{33}N_3 + C_6H_3O_7N_3$. Mattgrüne Blättchen (aus Alkohol). Reichlich löslich in heißem Alkohol und Benzol, schwer in Äther (Na., M.). — 2 $C_{33}H_{32}N_3 + 2$ HCl + PtCl₄. Krystallinischer Niederschlag. Reichlich löslich in heißem Alkohol, wenig in Benzol und Äther (Na., M.).

Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-methan $C_{24}H_{34}N_3 = CH_3 \cdot C_6H_4 \cdot NH \cdot C_{16}H_4 \cdot N(CH_3)_3]_2$. B. Bei der Kondensation von 4.4'-Bis-dimethylamino-benzhydrol mit p-Tolyl-a-naphthylamin (Bd. XII, S. 1225) (Noelting, Bull. Soc. ind. Mulhouse 72, 226; C. 1903 I, 88; B. 37, 1909). Bei der Reduktion des Farbsalzes des Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.). — Prismen. F: 193—194°. Schwer löslich in Alkohol, leichter in Essigester mit blauer Fluorescenz. — Bei der Oxydation entsteht wieder das Farbsalz des Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-carbinols.

Bis-[4-dimethylamino-phenyl]-[4-acetamino-naphthyl-(1)]-methan $C_{29}H_{31}ON_{3}=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{6}\cdot CH[C_{9}H_{4}\cdot N(CH_{3})_{3}]_{2}$. B. Beim Acetylieren von Bis-[4-dimethylamino-phenyl]-[4-amino-naphthyl-(1)]-methan (NOELTING, Bull. Soc. ind. Mulhouse 72, 223; C. 1908 I, 87; B. 37, 1908). — Krystalle. F: 228—229°. Sehr wenig löslich in Alkohol, leichter in Essigester. — Liefert durch Oxydation einen grünen Farbstoff.

9. Triamine $C_n H_{2n-27} N_8$.

Triamine CasH25N3.

- 1. $a-Phenyl-\beta.\beta.\beta-tris-[4-amino-phenyl]-athan <math>C_{36}H_{35}N_3=C_6H_5\cdot CH_2\cdot C(C_6H_4\cdot NH_3)_3$.
- a-Phenyl- β , β , β -tris-[4-dimethylamino-phenyl]-äthan $C_{33}H_{37}N_3=C_0H_5\cdot CH_2\cdot C[C_0H_4\cdot N(CH_2)_2]_3$. B. Aus Krystallviolett und Benzylmagnesiumchlorid in Ather (FREUND, BECK, B. 37, 4679). Nadeln (aus Chloroform + absol. Alkohol). F: 181—182°. Sehr leicht löslich in Chloroform, leicht in Salzsäure. Liefert bei der Oxydation keinen Farbstoff. $C_{32}H_{37}N_2+3$ HI. Krystalle. F: 267—268° (Zers.). Fast unlöslich in Wasser und Alkohol.
- 2. 4'.4"-Diamino-2-[4-amino-benzyl]-triphenylmethan C₂₆H₂₅N₃₂ s. nebenstehende Formel.

 4'.4"-Biamino-2-[4-dimethylamino-benzyl]triphenylmethan C. H. N. (CH.) N. C. H. C. H. C. H.
- 4'.4"-Bis-dimethylamino-2-[4-dimethylamino-bensyl]triphenylmethan C₂₂H₂₇N₂ = (CH₂)₂N·C₆H₄·CH₂·C₆H₄·
 CH[C₆H₄·N(CH₂)₂]₂. B. Bei der Kondensation von 1-[4-Dimethylamino-bensyl]-2-[4-dimethylamino-a-oxy-bensyl]-bensol (Syst. No. 1867) mit Dimethylanilin in Gegenwart von Phosphoroxychlorid (Guyor, Pigner, O.r. 146, 1044). Bei der Reduktion des Farbsalzes des 4'.4"-Bis-dimethylamino-2-[4-dimethylamino-bensyl]-triphenylcarbinols (Syst. No. 1868) mit Zink und Salzsäure (G., P.; G., Haller, A. ch. [8] 19, 339). Weiße Nadeln. F: 162° (G., P.; G., H.).
- 4'-Dimethylamino 4''-diäthylamino 2 [4-dimethylamino bensyl] triphenyl-methan $C_{24}H_{41}N_3 = (CH_2)_8N\cdot C_6H_4\cdot CH_2\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_2)_3]\cdot C_6H_4\cdot N(C_3H_3)_2$. B. Bei der Reduktion des Farbsalzes des 4'-Dimethylamino-4''-diäthylamino-2-[4-dimethylamino-benzyl]-triphenylearbinols (Syst. No. 1868) mit Zink und Salzsäure (Guyor, Haller, A. ch. [8] 19, 339). Krystallpulver. F: 107° (G., Pigner, C. r. 146, 1045; G., H.).
- 4'.4"-Bis-diäthylamino-2-[4-dimethylamino-bensyl]-triphenylmethan $C_{ab}H_{4b}N_0 = (CH_2)_2N \cdot C_bH_4 \cdot CH_2 \cdot C_bH_4 \cdot CH[C_bH_4 \cdot N(C_bH_3)_2]_3$. Be der Reduktion des Farbsalzes des 4'.4"-Bis-diäthylamino-2-[4-dimethylamino-bensyl]-triphenylcarbinols (Syst. No. 1868) mit Zink und Salssäure (Guyot, Haller, A. ch. [8] 19, 339). Nadeln. F: 118° (G., Pignet, C. r. 146, 1045; G., H.).

10. Triamin $C_n H_{2n-29} N_8$.

2-Amino-9.9-bis-[4-amino-phenyl]-anthracen- H_2N dihydrid-(9.10), 2-Amino-9.9-bis-[4-amino-phenyl]- 9.10-dihydro-anthracen $C_{26}H_{23}N_3$, s. nebenstehende Formel.

2-Dimethylamino -9.9-bis-[4-dimethylamino-phenyl]anthracen-dihydrid-(9.10) $C_{33}H_{35}N_3 = C_6H_4 \underbrace{C[C_6H_4 \cdot N(CH_3)_3]_2}_{CH_2} C_6H_3 \cdot N(CH_3)_2$. B. Beim Auflösen des Farbsalzes des 4'.4"-Bis-dimethylamino-2-[4-dimethylamino-benzyl]-triphenyl-carbinols (Syst. No. 1868) in konz. Schwefelsäure (Guvor, Pigner, C. r. 146, 1044; G., Haller, A. ch. [8] 19, 340). — Weißes Krystallpulver. F: 175°. Schwer löslich in organischen Lösungsmitteln.

11. Triamin $C_n H_{2n-31} N_3$.

[4 - Amino - phenyl] - bis - [4 - amino - naphthyl - (1)] - methan $C_{27}H_{22}N_2$, s. nebenstehende Formel.

[4-Dimethylamino-phenyl]-bis-[4-methylamino-naphthyl-(1)]-methan $C_{31}H_{31}N_3 = (CH_3)_2N \cdot C_8H_4 \cdot CH(C_{10}H_6 \cdot NH \cdot CH_4)_2$. B. Bei der Kondensation von 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit Methyl-a-naphthylamin (Bd. XII, S. 1221) (Noelting, Bull. Soc. ind. Mulhouse 72, 227; B. 37, 1910). Bei der Reduktion des Farbsalzes des [4-Dimethylamino-phenyl]-bis-[4-methylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.)

bis-[4-methylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.). — Gelbliches amorphes Pulver. Leicht löslich in organischen Lösungsmitteln. — Durch Oxydation entsteht wieder das Farbsalz des [4-Dimethylamino-phenyl]-bis-[4-methylamino-naphthyl-(1)]-carbinols.

[4-Dimethylamino-phenyl]-bis-[4-dimethylamino-naphthyl-(1)]-methan $C_{33}H_{35}N_8=(CH_3)_8N\cdot C_6H_4\cdot CH[C_{10}H_4\cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit 2 Mol.-Gew. Dimethyl-a-naphthylamin (Bd. XII, S. 1221) und etwas ZnCl₂ auf 110–120° (Friedländer, Welmans, B. 21, 3129). — Nadeln. F: 178–179°.

[4-Dimethylamino-phenyl]-bis-[4-äthylamino-naphthyl-(1)]-methan $C_{33}H_{35}N_3 = (CH_3)_3N \cdot C_6H_4 \cdot CH(C_{10}H_6 \cdot NH \cdot C_2H_5)_2$. B. Bei der Kondensation von 4-Dimethylamino-benzaldehyd (8yst. No. 1873) mit Athyl-a-naphthylamin (Bd. XII, S. 1222) (Noellting, Bull. Soc. ind. Mulhouse 72, 228; C. 1903 I, 88; B. 87, 1911). Bei der Reduktion des Farbsalzes des [4-Dimethylamino-phenyl]-bis-[4-äthylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.). — Prismen. F: 220°. Schwer löslich, außer in Pyridin. — Geht durch Oxydation wieder in das Farbsalz des [4-Dimethylamino-phenyl]-bis-[4-äthylamino-naphthyl-(1)]-carbinols über.

[4-Dimethylamino-phenyl]-bis-[4-anilino-naphthyl-(1)]-methan $C_{41}H_{35}N_3 = (CH_3)_3N\cdot C_6H_4\cdot CH(C_{10}H_6\cdot NH\cdot C_6H_5)_2$. B. Bei der Kondensation von 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit Phenyl-a-naphthylamin (Bd. XII, S. 1224) (Norlting, Bull. Soc. ind. Mulhouse 72, 228; B. 37, 1911). Bei der Reduktion des Farbsalzes des [4-Dimethylamino-phenyl]-bis-[4-anilino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.). — Weißes amorphes Pulver. Löst sich in organischen Mitteln mit blauer Fluorescenz. — Durch Oxydation entsteht wieder das Farbsalz des [4-Dimethylamino-phenyl]-bis-[4-anilino-naphthyl-(1)]-carbinols.

[4-Dimethylamino-phenyl]-bis-[4-p-toluidino-naphthyl-(1)]-methan $C_{43}H_{33}N_3 = (CH_3)_3N \cdot C_6H_4 \cdot CH(C_{10}H_6 \cdot NH \cdot C_6H_4 \cdot CH_3)_3$. B. Bei der Kondensation von 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit p-Tolyl-a-naphthylamin (Bd. XII, S. 1225) (Norlting, Bull. Soc. ind. Mulhouse 72, 228; B. 37, 1911). Bei der Reduktion des Farbsalzes des [4-Dimethylamino-phenyl]-bis-[4-p-toluidino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.).— Besitzt ähnliche Eigenschaften wie die vorhergehende Verbindung.

[3 - Nitro - 4 - dimethylamino - phenyl]-bis-[4-methylamino-naphthyl-(1)]-methan $C_{31}H_{30}O_3N_4 = (CH_3)_3N \cdot C_6H_3(NO_3) \cdot CH(C_{10}H_6 \cdot NH \cdot CH_3)_3$. B. Bei der Kondensation von 3-Nitro 4-dimethylamino-benzaldehyd (Syst. No. 1873) mit Methyl-a-naphthylamin (Bd. XII, S. 1221) (NOELTING, Bull. Soc. ind. Mulhouse 72, 229; B. 37, 1911). — Gelborangefarbenes amorphes Pulver. Leicht löslich in organischen Lösungsmitteln. — Wird durch Oxydationsmittel langsam in einen violettblauen Farbstoff verwandelt.

[3-Nitro-4-dimethylamino-phenyl]-bis-[4-äthylamino-naphthyl-(1)]-methan $C_{33}H_{24}O_2N_4 = (CH_3)_2N \cdot C_6H_3(NO_2) \cdot CH(C_{10}H_6 \cdot NH \cdot C_2H_5)_2$. B. Bei der Kondensation von 3-Nitro-4-dimethylamino-benzaldehyd (Syst. No. 1873) mit Äthyl-a-naphthylamin (Bd. XII, S. 1222) (NOELTING, Bull. Soc. ind. Mulhouse 72, 229; C. 1903 I, 88; B. 37, 1911). — Rote Prismen. F: 200°. Schwer löslich in Benzol und Alkohol, leichter in Eisessig, Pyridin und Anisol. — Durch Oxydation entsteht ein violettstichig blauer Farbstoff.

[3 Nitro - 4 - dimethylamino - phenyl] - bis - [4 - anilino - naphthyl - (1)] - methan $C_{41}H_{34}O_{2}N_{4} = (CH_{3})_{2}N \cdot C_{6}H_{3}(NO_{2}) \cdot CH(C_{10}H_{6} \cdot NH \cdot C_{6}H_{5})_{2}$. B. Bei der Kondensation von 3-Nitro-4-dimethylamino-benzaldehyd (Syst. No. 1873) mit Phenyl-a-naphthylamin (Bd. XII, S. 1224) (Norlting, Bull. Soc. ind. Mulhouse 72, 229; B. 37, 1912). — Orangefarbenes amorphes Pulver. Leicht löslich in Benzol und Eisessig, schwerer in Alkohol und Ligroin. — Schwer oxydierbar zu einem violettblauen Farbstoff.

[3-Nitro-4-dimethylamino-phenyl]-bis-[4-p-toluidino-naphthyl-(1)]-methan $C_{43}H_{36}O_{4}N_{4} = (CH_{3})_{2}N \cdot C_{6}H_{3}(NO_{3}) \cdot CH(C_{10}H_{6}\cdot NH \cdot C_{6}H_{4}\cdot CH_{3})_{2}$. B. Bei der Kondensation von 3-Nitro-4-dimethylamino-benzaldehyd (Syst. No. 1873) mit p-Tolyl-a-naphthylamin (Bd. XII, S. 1225) (Noellting, Bull. Soc. ind. Mulhouse 72, 230; B. 37, 1912). — Orangefarbenes Pulver. Leicht löslich in Benzol und Eisessig, schwer in Alkohol und Ligroin. — Ist schwer oxydierbar zu einem violettblauen Farbstoff.

12. Triamin $C_n H_{2n-37} N_3$.

4.4'.4"-Triamino-[tri-naphthyl-(1)-methan], Tris-[4-amino-naphthyl-(1)]-methan $C_{31}H_{25}N_3=CH(C_{10}H_6\cdot NH_2)_3$.

Tris-[4-äthylamino-naphthyl-(1)]-methan $C_{37}H_{37}N_3 = CH(C_{10}H_6 \cdot NH \cdot C_2H_5)_3$. B. Bei der Kondensation von Orthoameisensäureäthylester (Bd. II, S. 20) mit Athyl-anaphthylamin (Bd. XII, S. 1222) in Gegenwart von Zinkchlorid (Noelling, Bull. Soc. ind. Mulhouse 72, 231; C. 1903 I, 88; B. 37, 1912). Bei der Reduktion des Farbsalzes des Tris-[4-äthylamino-naphthyl-(1)]-carbinols (Syst. No. 1868) (N.). — Nadeln. Schmilzt oberhalb 300°. Sublimierbar. Ziemlich leicht löslich in heißem Alkohol. Färbt sich an der Luft grün; liefert durch Oxydation wieder das Farbsalz des Tris-[4-äthylamino-naphthyl-(1)]-carbinols.

D. Tetraamine.

1. Tetraamine $C_n H_{2n-2} N_4$.

1. Tetraamine $C_6H_{10}N_4$.

- 1. 1.2.3.4 Tetraamino benzol C₆H₁₀N₄ = C₆H₉(NH₂)₄. B. Bei der Reduktion von ,,1.2.3.4 Tetranitroso benzol (Bd. VII, S. 886) (NIETZKI, GEESE, B. 32, 505) oder von Dichinoyltetraoxim (Bd. VII, S. 886) (NIETZKI, SCHMIDT, B. 22, 1648) mit saurer Zinnehlorürlösung; man fügt verdünnte Schwefelsäure hinzu und fällt durch Alkohol das Sulfat (N., Sch.). Die freie Base oxydiert sich rasch an der Luft (N., Sch.). Beim Erwärmen des Sulfats mit entwässertem Natriumacetat und Essigsäureanhydrid auf dem Wasserbade entsteht 1-Acetyl-4.5- oder 6.7-bis-acetamino-2-methyl-benzimidazol (CH₃·CO·NH)₂C₆H₂ N(CO·CH₃) C·CH₃ (Syst. No. 3739) (N., Sch.). Bei gelindem Erwärmen der salzsauren Lösung des Sulfats mit Diacetyl bildet sich die Verbindung CH₃·C=N C₆H₂ N=C·CH₃ (Syst. No. 4025) (N., Sch.). C₆H₁₀N₄ + H₂SO₄. Blättchen. Sehr schwer löslich in kaltem wie in heißem Wasser (N., Sch.).
- 2. 1.2.3.5-Tetraamino-benzol C₈H₁₀N₄ = C₆H₂(NH₂)₄. B. Bei der Reduktion von 2.4.6-Trinitro-anilin (Bd. XII, S. 763) mit Zinnehlorür und Salzsäure (NIETZKI, HAGENBACH, B. 30, 539; N., DIETSCHY, B. 34, 58; vgl. dazu BORSCHE, B. 56 [1923], 1939). Die freie Base ist nicht bekannt. Bei der Oxydation des salzsauren Salzes mit Eisenehlorid in der Kälte entsteht 2.6-Diamino-chinon-imid-(4) (Syst. No. 1874), in der Wärme 2.6-Diamino-chinon (N., H.). Die Einw. von Diacetyl führt zu 5.7-Diamino-2.3-dimethyl-chinoxalin (Syst. No. 3740) (N., H.). Beim Erhitzen von salzsaurem 1.2.3.5-Tetraamino-benzol mit Essig-

säureanhydrid und Natriumacetat entsteht 1.2.3.5-Tetrakis-acetamino-benzol (s. u.) (N., H.). — $C_6H_{10}N_4+2$ HCl. B. Beim Hinzufügen von Alkohol zu der Lösung des dreifach salzsauren Salzes in wenig Wasser (N., H.). — $C_6H_{10}N_4+3$ HCl + H_2O . Nadeln (N., H.). — $C_6H_{10}N_4+2$ H_2SO_4 . Blättchen (N., H.).

- 1.2.3.5-Tetrakis-acetamino-benzol $C_{14}H_{18}O_4N_4=C_6H_3(NH\cdot CO\cdot CH_3)_4$. B. Beim Erhitzen von salzsaurem 1.2.3.5-Tetraamino-benzol mit Essigsäureanhydrid und Natrium-Beim acetat (Nietzki, Hagenbach, B. 30, 541). — Nadeln (aus Wasser oder Eisessig). F: 245°. - Beim Erwärmen mit $50^{\circ}/_{0}$ iger Schwefelsäure auf dem Wasserbade entsteht 4.6-Diamino-2-methyl-benzimidazol (Syst. No. 3739).
- 3. 1.2.4.5-Tetraamino-benzol $C_6H_{10}N_4=C_6H_2(NH_2)_4$. B. Beim Behandeln von 4.6-Dinitro-phenylendiamin. (1.3) (S. 59) mit Zinn und Salzsäure (Nietzki, Hagenbach, B. 20, 334; N., B. 20, 2114). — Die freie Base oxydiert sich äußerst leicht an der Luft zu 2.3.6.7-Tetraamino-phenazin (Syst. No. 3767) (N., MÜLLER, B. 22, 447). Wird von Eisenchlorid zu 2.5-Diamino-chinon-diimid (Syst. No. 1874) oxydiert (N., H.). Beim Vermischen der kalten Lösung des salzsauren Salzes mit Natriumacetat und Diacetyl bildet sich 6.7-Diamino-2.3-dimethyl-chinoxalin (Syst. No. 3740); beim Erwärmen mit überschüssigem Di- $N = C \cdot CH_3$ $CH_3 \cdot C = N$ C₆H₂ N=C·CH₃ acetyl entsteht die Verbindung (Syst. No. 4025) (N., M.). $CH_3 \cdot C = N$ Beim Erwärmen von salzsaurem 1.2.4.5-Tetraamino-benzol mit Essigsäureanhydrid und Natriumacetat entsteht 1.2.4.5-Tetrakis-acetamino-benzol (s. u.) (N., M.). Beim Einleiten von Phosgen in eine konzentrierte wäßrige Lösung von salzsaurem 1.2.4.5-Tetraamino-benzol bildet sich Benzo-bis-imidazolon $OC < \frac{NH}{NH} > C_6H_2 < \frac{NH}{NH} > CO$ (Syst. No. 4140) $(N., M.). - C_6H_{10}N_4 + 4$ HCl (bei 100°). Prismen. Leicht löslich in Wasser, schwer in konz. Salzsäure $(N., H.). - C_6H_{10}N_4 + H_2SO_4$. Nadeln. Ziemlich schwer löslich $(N., H.). - 2C_6H_{10}N_4 + 3H_2SO_4$. Blättchen. Schwer löslich (N., H.).

1.5-Diamino-2.4-dianilino-bensol $C_{18}H_{18}N_4=(H_2N)_3C_6H_3(NH\cdot C_6H_5)_3$. B. Beim Behandeln von N.N'-Diphenyl-4.6-dinitro-phenylendiamin-(1.3) (8. 59) mit Zinnchlorür und Salzsäure (NIETZKI, SCHEDLEB, B. 30, 1668). — Nadeln (aus Benzol). F: 207°.

- 1.2.4.5-Tetraanilino-benzol, Hydrazophenin $C_{30}H_{36}N_4=C_0H_3(NH\cdot C_0H_5)_4$. B. Bei 2-stdg. Erhitzen von 2—3 g 2.5-Dianilino-chinon-dianil (Azophenin; Syst. No. 1874) mit 20 ccm konz. alkoholischer Schwefelammoniumlösung und 10 g Toluol im geschlossenen Rohr auf 140° (O. FISCHEB, HEPP, B. 20, 2483). Weiße Nadeln. F: 173—174°; fast unlöslich in Salzsäure (O. Fi., HEPP). — Bei der Einw. von Nitrit unter Zugabe von Salzsäure auf in Eisessig gelöstes Hydrazophenin entstehen grüne Nadeln, die bei ca. 230-235° schmelzen und in Chloroform unlöslich sind, und eine rotbraune Substanz vom Schmelzpunkt 222°, die in Chloroform löslich ist (HERVITT, STEVENSON, B. 31, 1791).
- 1.2.4.5-Tetrakis-acetamino-benzol $C_{14}H_{18}O_4N_4 = C_6H_2(NH\cdot CO\cdot CH_2)_4$. Erwärmen von salzsaurem 1.2.4.5-Tetraamino-benzol mit Essigsäureanhydrid und Natriumacetat (NIETZKI, MÜLLER, B. 22, 440). — Nadeln (aus Eisessig). F: 285°. Schwer löslich in Alkohol, leicht in heißem Eisessig. — Beim Kochen mit Kalilauge werden nur drei Acetylgruppen abgespalten. Bei der Verseifung mit konz. Salzsäure wird Tetraaminobenzol zurückgebildet.
- 1.5-Diamino-2.4-bis-[2-amino-anilino]-benzol $C_{18}H_{20}N_6$, Formel I. Behandeln von N.N'-Bis-[2-amino-phenyl]-4.6-dinitro-phenylendiamin-(1.3) (S. 60) mit Zinnehlorür und Salzsäure bei Gegenwart von metallischem Zinn (NIETZKI, SZABO-

I.
$$NH_{2} \times NH_{2} \times NH_{2} \times NH_{3} \times H_{2}N$$
 II. $NH_{2} \times NH_{3} \times H_{2}N$

SZEWICZ, B. 34, 3729). — Sowohl die freie Base wie die Salze sind leicht bei gewöhnlicher Temperatur oxydierbar zu 2-Amino-3-[2-amino-anilino]-phenazin (Syst. No. 3745). Beim Kochen eines Salzes in wäßriger Lösung bei Luftzutritt entsteht Fluorindin (Formel II) (Syst. No. 4030). — $C_{18}H_{20}N_6 + 4HCl$. — $C_{18}H_{20}N_6 + 4HCl + ZnCl_2$.

1.5-Diamino-2-[2-amino-anilino]-4-[1(?)-amino-naphthyl-(2?)-amino]-benzol $C_{13}H_{12}N_6 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_6(NH_4) \cdot NH \cdot C_{10}H_4 \cdot NH_3$. B. Durch Reduktion von N-[2-Amino-phenyl]-N'-[1(1)-amino-naphthyl-(2?)]-4.6-dinitro-phenylendiamin-(1.3) (S. 200) (NIETZKI, VOLLENBRUCK, B. 37, 3891). — Liefert bei der Oxydation in der Kälte ein gelbes Azin $C_{12}H_{17}N_5$, welches ein braunes Hydrochlorid $C_{12}H_{17}N_5 + 2HCl$ bildet, in der Hitze das Fluorindinderivat der nebenstehenden Formel (Syst. No. 4033). — C. H. N. + 4 HCl

(Syst. No. 4033). — $C_{22}H_{22}N_6 + 4$ HCl.

1.5 - Diamino - 2.4 - bis - [1 (?) - amino - naphthyl - (2 ?) - amino] - bensol $C_{16}H_{24}N_6 = (H_2N)_6C_6H_2(NH\cdot C_{16}H_6\cdot NH_2)_2$. B. Bei der Reduktion von N.N'-Bis-[1(?)-amino-naphthyl-(2?)]-4.6-dinitro-phenylendiamin-(1.3) (S. 200) mit Zinnehlorür, Zinn und Salzsäure (N., V.,

B. 37, 3889). — C₂₆H₂₄N₆ + 4 HCl. Die Lösung bräunt sich an der Luft unter Bildung des Amino-[1(?)-amino-naphthyl-(2?)-amino]-ang.-naphthophenazins der Formel I (Syst. No. 3754); beim Oxydieren in der Wärme entsteht das Fluorindinderivat der Formel II (Syst. No. 4034).

2. 2.3.4.5-Tetraamino-1-methyl-benzol, 2.3.4.5-Tetraamino-toluol $C_7H_{12}N_4=CH_2\cdot C_6H(NH_2)_4$. B. Beim Behandeln von Toludichinoyltetraoxim (Bd. VII, S. 887) oder von 3.5-Dinitro-2.4-diamino-toluol (S. 142) mit Zinnehlorür und Salzsäure (NIETZKI, RÖSEL, B. 23, 3217). — Die freie Base ist äußerst unbeständig. Beim Erhitzen des Sulfats mit Essigsäureanhydrid und Natriumacetat entsteht das Triacetylderivat eines Diamino-dimethyl-benzimidazols $\dot{C}_{15}H_{18}O_9N_3$ (Syst. No. 3739). Beim Erhitzen des Sulfats mit Benzil und Natriumacetat in alkoh. Lösung bildet sich die Verbindung $C_6H_5\cdot C=N$ $C_6H(CH_2)$ $N=C\cdot C_6H_5$ (Syst. No. 4034). — $C_7H_{12}N_4+H_2SO_4$. Blättchen. Unlöslich in Alkohol. — $C_7H_{12}N_4+2H_2SO_4$. Blättchen.

2. Tetraamine C_n H_{2n-8} N₄.

Tetraamine $C_{10}H_{12}N_4$.

1. 1.2.3.4-Tetraamino-naphthalin $C_{10}H_{12}N_4 = C_{10}H_4(NH_2)_4$.

1.2.3.4-Tetraanilino-naphthalin $C_{24}H_{28}N_4 = C_{10}H_4(NH \cdot C_6H_5)_4$. B. Bei längerem Erhitzen von 1 Tl. salzsaurem Naphthochinon-(1.4)-āthylimid-oxim (salzsaurem 4-Nitroso-1-āthylamino-naphthalin, Bd. VII, S. 728) oder salzsaurem Naphthochinon-(1.4)-anil-oxim (Bd. XII, S. 210) mit 1 Tl. Anilin und 4 Tln. Eisessig, neben 1.2.4-Trianilino-naphthalin (S. 304) und dem Anilino-ang.-naphthophenazin-chlorphenylat (salzsaures Phenylrosindulin) der Formel I (Syst. No. 3722) (O. FISCHER, HEPP, A. 256, 249, 250; vgl. O. FI., H., B. 21,

2621). Entsteht auch neben relativ wenig Phenylrosindulin und etwas 1.2.4-Trianilinonaphthalin, wenn man 1 Tl. 4-Benzolazo-naphthylamin-(1) (Syst. No. 2180) mit 2 Tln. Anilin und 2 Tln. salzsaurem Anilin längere Zeit auf 100—110° erhitzt (O. Fl., H., A. 256, 241). — Farblose Krystalle (aus absol. Alkohol). F: 191°; löslich in Chloroform; sehr schwer löslich in Alkohol (O. Fl., H., B. 21, 679). Die Lösungen fluorescieren blau (O. Fl., H., A. 256, 252). — Liefert beim Kochen mit Benzol und gelbem Quecksilberoxyd Dianilino-naphthochinondianil (?) (Syst. No. 1874) und Anilino-phenylrosindulin (Syst. No. 3754) der Formel II (O. Fl., H., A. 256, 252).

2. 1.3.6.8-Tetraamino-naphthalin $C_{10}H_{12}N_4 = C_{10}H_4(NH_5)_4$. B. Das Hydrojodid entsteht beim Behandeln von 1.3.6.8-Tetranitro-naphthalin (Bd. V, S. 564) mit Jodphosphor und Wasser (Lautemann, d'Aguiar, Bl. [2] 3, 267). — $C_{10}H_{12}N_4 + 4$ HI. Gelbliche Blätter, die sich am Licht schwärzen. Löslich in Wasser und Alkohol.

3. Tetraamine $C_n H_{2n-10} N_4$.

1. Tetraamine $C_{12}H_{14}N_4$.

1. 2.4.2'.4'-Tetraamino-diphenyl $C_{12}H_{14}N_4=(H_2N)_2C_6H_3\cdot C_6H_3(NH_2)_2$. B. Bei der Reduktion von 2.2'-Dinitro-benzidin (S. 235) mit Zinn und Salzsäure (Täuber, B. 23, 797). Entsteht auch aus 3.3'-Diamino-hydrazobenzol (Syst. No. 2083) durch Erwärmen mit

mit schwefliger Säure gesättigtem Alkohol am Rückflußkühler auf dem Wasserbade (Kles, Kopp, Z. El. Ch. 5, 111; C. 1898 II, 776) oder besser durch Behandlung der Lösung in heißem Eisessig mit rauchender Salzsäure (Elbs, Wohlfahet, J. pr. [2] 66, 561). — Blättchen (aus Ammoniak) oder Tafeln (aus wenig Alkohol). F: 165° (T., B. 23, 797), 166° (E., K.). — Bei längerem Erhitzen mit Salzsäure im geschlossenen Rohr auf 180—190° entsteht 2.7-Diamino-carbazol (Syst. No. 3411) (T., B. 23, 3266; E., K.). — C₁₂H₁₄N₄ + 4 HCl. Krystalle. Leicht löslich im Wasser (T., B. 23, 797).

- 4.4'-Diamino-2.2'-bis-dimethylamino-diphenyl, 2.2'-Bis-dimethylamino-bensidin C₁₈H₂₈N₄ = (CH₃)₂N·C₈H₃(NH₃)·C₈H₃(NH₃)·N(CH₃)₂. B. Bei kurzem Erhitzen von 3.3'-Bis-dimethylamino-hydrazobenzol (Syst. No. 2083) mit Salzsäure, neben N.N-Dimethyl-m-phenylendiamin (S. 40) und 2.4'-Diamino-4.2'-bis-dimethylamino-diphenyl(?) (s. u.) (Noelthing, Fourneaux, B. 30, 2940). Beim Behandeln einer alkoh. Lösung von 3.3'-Bis-dimethylamino-azobenzol (Syst. No. 2172) mit Zinn und Salzsäure in der Wärme (N., F.), neben N.N-Dimethyl-m-phenylendiamin (Lauth, Bl. [3] 7, 472; vgl. N., F.). Nadeln (aus Alkohol oder Benzol + Ligroin). F: 165,5—166° (N., F.). Wenig löslich in kaltem Wasser und Ligroin, ziemlich leicht in kaltem Alkohol, sehr leicht in Benzol (N., F.), warmem Alkohol und siedendem Wasser (L.). Beim Erhitzen mit Methyljodid und Methylalkohol auf dem Wasserbade bildet sich [4.4'-Diamino-diphenylen-(2.2')]-bis-trimethylammoniumjodid (s. u.) (N., F.). Beim Hinzufügen eines Tropfens Natriumnitritlösung zu einer sauren, stark verdünnten Lösung der Base entsteht eine intensive Violettfärbung, die rasch in Braun übergeht (N., F.); L.). Mit Eisenchlorid und mit Dichromat entstehen orange Färbungen (L.). C₁₆H₂₂N₄ + 4 HCl. Nädelchen. Leicht löslich in Wasser (N., F.; L.), schwer in Alkohol (N., F.). C₁₆H₂₂N₄ + 4 HBr. Prismen. Sehr leicht löslich in Wasser, wenig in Alkohol (N., F.). C₁₆H₂₂N₄ + H₂SO₄. Krystalle. Äußerst löslich in Wasser (N., F.; L.), wenig in Alkohol (N., F.).
- 2.4'- Diamino 4.2'- bis dimethylamino diphenyl (?), 4.2'- Bis dimethylamino diphenylin ¹) (?) $C_{16}H_{22}N_4 = (CH_3)_2N \cdot C_6H_3(NH_3) \cdot C_6H_3(NH_2) \cdot N(CH_3)_2$ (?). B. Entsteht neben N.N-Dimethyl-m-phenylendiamin und 4.4'-Diamino-2.2'-bis-dimethylamino-diphenyl bei kurzem Erhitzen von 3.3'-Bis-dimethylamino-hydrazobenzol mit Salzsäure (NOELTING, FOURNEAUX, B. 30, 2942). Wurde nicht krystallinisch erhalten. Schmilzt unscharf bei 100° . $C_{16}H_{22}N_4 + 4$ HCl + 4 H_2O. Nadeln (aus Alkohol). Sehr leicht löslich in Wasser, wenig in Alkohol.
- 2.2'-Diamino-4.4'-bis-dimethylamino-diphenyl $C_{10}H_{12}N_4 = (CH_2)_2N \cdot C_0H_3(NH_2) \cdot C_0H_2(NH_2) \cdot N(CH_3)_2$. Beim Behandeln von N.N.N'.N'-Tetramethyl-2.2'-dinitro-benzidin (S. 235) mit Zinnchlorür und Salzsäure in der Wärme (Ullmann, Dieterle, B. 37, 33). Farblose Blättchen (aus Benzol-Ligroin). F: 166°. Leicht löslich in Alkohol und Benzol, sehwer in Ligroin und Äther, unlöslich in Wasser.
- [4.4'-Diamino-diphenylen-(2.2')]-bis-trimethylammoniumhydroxyd, [2.2'-Bis-dimethylamino-benzidin]-bis-hydroxymethylat $C_{18}H_{20}O_2N_4=(CH_2)_5N(OH)\cdot C_2H_2(NH_2)\cdot C_6H_3(NH_3)\cdot N(CH_2)_2\cdot OH$. B. Das Jodid entsteht bei $^1/_2$ -stdg. Erhitzen von 13,5 g 4.4'-Diamino-2.2'-bis-dimethylamino-diphenyl mit 15 g Methyljodid und mit Methylalkohol auf dem Wasserbade; es gibt mit feuchtem Silberoxyd die freie Base (NOELTING, FOURNEAUX, B. 30, 2042). Krystalle (aus Alkohol). Jodid $C_{18}H_{28}N_4I_2$. Nadeln (aus Wasser). Leicht löslich in heißem, wenig in kaltem Wasser und Alkohol.
- [4.4'-Bis-dimethylamino-diphenylen-(2.2')]-bis-trimethylammoniumjodid $C_{23}H_{25}N_4I_8 = (CH_3)_3NI \cdot C_6H_3[N(CH_3)_2] \cdot C_6H_3[N(CH_3)_2] \cdot N(CH_3)_3I$. B. Man behandelt [4.4'-Diamino-diphenylen-(2.2')]-bis-trimethylammoniumjodid mit überschüssigem Bromwasserstoff und erhitzt das so erhaltene Salz mit Methylalkohol im geschlossenen Rohr auf 100° ; man macht aus dem entstehenden Salz mit feuchtem Silberoxyd die Ammoniumbase frei, behandelt mit überschüssigem Jodwasserstoff und darauf mit überschüssigem Ammoniak (NOELTING, FOURNEAUX, B. 30, 2943). Farblose Nadeln. F: 190° (Zers.). Leicht löslich in heißem, schwer in kaltem Wasser.
- 2.4.2'.4'-Tetrakis-acetamino-diphenyl $C_{50}H_{52}O_4N_4=(CH_5\cdot CO\cdot NH)_2C_6H_5\cdot C_6H_5(NH\cdot CO\cdot CH_3)_5$. B. Beim Behandeln von 2.4.2'.4'-Tetraamino-diphenyl (S. 338) oder von 3.3'-Diamino-hydrazobenzol (Syst. No. 2083) mit siedendem Eisessig und Acetanhydrid (Elbs, Wohlfaher, J. pr. [2] 66, 562, 563). Nadeln (aus Wasser) mit 3 Mol. Wasser. Wird bei 105—110° wasserfrei. F: 284°. Schwer löslich in kaltem Wasser. 100 Tle. Wasser lösen bei 90° 0,79 Tle. der wasserfreien Substanz. Leicht löslich in heißem Alkohol.
- 2. 2.5.2'.5'-Tetraamino-diphenyl $C_{12}H_{14}N_4 = (H_2N)_2C_3H_2 \cdot C_6H_2(NH_2)_2$. B. Beim Behandeln von 5.5'-Dinitro-2.2'-diamino-diphenyl (S. 210) mit Zinn und Salzsäure (Täuber, B. 25, 130). Nädelchen (aus Tolucl). F: 168°. Leicht löslich in Wasser, Alkohol und Chloroform, schwer in Äther und siedendem Benzol, fast unlöslich in Ligroin und kaltem Benzol.

¹⁾ Besifferung von "Diphenylin" in diesem Handbuch s. S. 211.

- Beim Erhitzen mit der 5-fachen Menge $15-20^{\circ}/_{\circ}$ iger Salzsäure im geschlossenen Rohr auf $180-190^{\circ}$ entsteht 3.6-Diamino-carbazol (Syst. No. 3411).
- 3.3'-Diamino-4.4'-bis-dimethylamino-diphenyl $C_{18}H_{22}N_4 = (CH_3)_2N \cdot C_8H_8(NH_8) \cdot C_6H_8(NH_2) \cdot N(CH_3)_2$. B. Beim Behandeln von N.N.N'.N'-Tetramethyl-3.3'-dinitro-benzidin (S. 236) mit Zinn und Salzsäure bei gewöhnlicher Temperatur (Michler, Pattinson, B. 14, 2164; 17, 118; vgl. Lauth, Bl. [3] 7, 469). Blättchen (aus Alkohol). F: 168°; leicht löslich in heißem Alkohol, schwer in kaltem Alkohol, unlöslich in Wasser (M., P., B. 17, 118). Eisenchlorid und Salzsäure erzeugen Violettfärbung; Kaliumdichromat und Schwefelsäure färben rotbraun, Kaliumpermanganat und Salzsäure rot (M., P., B. 17, 118). Salze: M., P., B. 14, 2165. $C_{18}H_{22}N_4 + 2$ HCl (bei 110°). Nadeln. Schwer löslich in Wasser. $C_{16}H_{22}N_4 + 2$ HI. Nadeln. Schwer löslich in Wasser. $C_{16}H_{22}N_4 + 2$ HCl + PtCl₄. Hellgelbes Pulver.

2. Tetraamine C₁₃H₁₆N₄.

- 1. 2.4.2'.4'-Tetraamino-diphenylmethan. 2.4.2'.4'-Tetraamino-ditan $C_{13}H_{16}N_4 = CH_2[C_6H_3(NH_2)_2]_2$. B. Beim Erhitzen von 2.4.2'.4'-Tetranitro-diphenylmethan (Bd. V, S. 596) mit Zinn und Salzsäure (STAEDEL, A. 218, 341). Bei kurzem Erhitzen von 2.2'-Azo-4.4'-diamino-diphenylmethan $H_2N\cdot C_6H_3 < CH_2 > C_6H_3 \cdot NH_2$ (Syst. No. 3747) mit Zinnchlorür in salzsaurer Lösung (Duval, C. r. 142, 342; Bl. [4] 7, 533). Nadeln (aus überhitzter Benzollösung) (Sr.); Krystalle (aus wenig Wasser) (D.). F: 161° (Sr.). Schmilzt unschaff bei 150—160°, wird dann fest und schmilzt wieder bei 173° (D.). Sehr leicht löslich in Alkohol, ziemlich leicht in Wasser, schwer in Benzol (Sr.), unlöslich in Äther (D.). Die Salze sind in Wasser ungemein leicht löslich (Sr.).
- 2.4.2'-Triamino-4'-dimethylamino-diphenylmethan $C_{15}H_{20}N_4=(H_2N)_2C_8H_3\cdot CH_3\cdot C_6H_3(NH_2)\cdot N(CH_3)_2$. B. Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. N.N-Dimethyl-m-phenylendiamin (S. 40) und 1 Mol.-Gew. m-Phenylendiamin (S. 33) (BAYER & Co., D. R. P. 133709; Frdl. 6, 478; C. 1902 II, 615). Farblose Krystalle (aus Toluol). F: 188—190°. Unlöslich in Wasser, löslich in heißem Toluol, Chloroform und Alkohol; leicht löslich in verd. Mineralsäuren. Durch Kochen der wäßr. Lösung eines Salzes, besonders auf Zusatz von Säure, und Oxydation durch den Luftsauerstoff bezw. Eisenchlorid entsteht ein Acridinderivat.
- 2.2'-Diamino 4-methylamino 4'-dimethylamino diphenylmethan $C_{16}H_{22}N_4 = CH_3 \cdot NH \cdot C_6H_3(NH_2) \cdot CH_2 \cdot C_6H_3(NH_2) \cdot N(CH_3)_2$. B. Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. N.N.-Dimethyl-m-phenylendiamin (S. 40) und 1 Mol.-Gew. N-Methyl-m-phenylendiamin (S. 39) (BAYER & Co., D. R. P. 133709; Frdl. 6, 478; C. 1902 II, 615). Farblose Krystalle (aus Toluol). F: 95°. Unlöslich in Wasser, löslich in heißem Toluol, Chloroform und Alkohol; leicht löslich in verd. Mineralsäuren. Durch Erhitzen mit 10°/0jeger Salzsäure und etwas Chlorzink auf 115—120° und Oxydation mit Eisenchlorid entsteht ein Acridinderivat.
- 2.2'-Diamino-4.4'-bis-dimethylamino-diphenylmethan $C_{17}H_{24}N_4 = CH_2[C_0H_3(NH_2)\cdot N(CH_3)_2]_2$. B. Beim Versetzen einer Lösung von 5 g N.N-Dimethyl-m-phenylendiamin (S. 40) in 10 ccm Alkohol mit 0,9 g 20°/oiger Salzsäure und 1,4 g 40°/oiger Formaldehydlösung (Biehringer, J. pr. [2] 54, 242). Beim Behandeln von 2.2'-Dinitro-4.4'-bis-dimethylamino-diphenylmethan (S. 245) mit Zinn und Salzsäure (Pinnow, B. 27, 3163). Beim Behandeln von 2.2'-Azo-4.4'-bis-dimethylamino-diphenylmethan (CH₃)₂N·C₀H₃ $< CH_3 < CH_3$

2.2'-Diamino-4.4'-bis-acetamino-diphenylmethan $C_{17}H_{20}O_2N_4 = CH_2[C_6H_3(NH_2)\cdot NH\cdot CO\cdot CH_3]_2$. B. Beim Behandeln von 2.2'-Dinitro-4.4'-bis-acetamino-diphenylmethan (S. 246) mit Zinnchlorir und Salzsäure in alkoh. Lösung (Duval, C. r. 146, 1325; Bl. [4] 7, 530). — Nadeln (aus Alkohol). F: 244°; löslich in Alkohol und Pyridin, schwer löslich in Wasser, kaum löslich in Äther, Benzol und Chloroform (D., C. r. 146, 1326; Bl. [4] 7, 531). — Beim Behandeln mit Natriumnitrit in schwefelsaurer Lösung bei 5—10° entsteht neben anderen Produkten die Verbindung CH₃·CO·NH——N:N N:N NH·CO·CH₃ (Syst. No. 4177) (D., C. r. 146, 1408; Bl. [4] 7, 861).

2.4.2'.4'-Tetrakis-acetamino-diphenylmethan $C_{21}H_{24}O_4N_4 = CH_2[C_6H_3(NH\cdot CO\cdot CH_3)_2]_2$. B. Bei der Einw. von Essigsäureanhydrid auf 2.4.2'.4'-Tetraamino-diphenylmethan (S. 340) (STAEDEL, A. 218, 343). — Krystalle (aus Wasser). Sehr schwer löslich in Wasser, ziemlich leicht in Alkohol.

2.4.2'.4'-Tetrakis-benzamino-diphenylmethan $C_{41}H_{32}O_4N_4 = CH_4|C_6H_5|NH\cdot CO\cdot C_6H_5|_2|_2$. B. Beim Behandeln von 2.4.2'.4'-Tetraamino-diphenylmethan mit Benzoylchlorid in alkal. Lösung (Duval, C. r. 142, 342; Bl. [4] 7, 534). — Krystalle (aus Alkohol). F: 275°. Unlöslich in Wasser, schwer löslich in Alkohol, Äther und Benzol, löslich in Essigsäure.

2. 3.4.3'.4'-Tetraamino-diphenylmethan, 3.4.3'.4'-Tetraamino-ditan $C_{13}H_{16}N_4 = CH_2[C_6H_3(NH_2)_2]_2$. B. Bei kurzem Erhitzen von 3.3'-Dinitro-4.4'-diamino-diphenylmethan (S. 246) mit Zinn und Salzsäure auf dem Wasserbade (J. Meyer, Rohmer, B. 33, 257). — Blättchen (aus Wasser oder Benzol). F: 137—138°. Unlöslich in Äther und

$$I. \stackrel{N \leftarrow N}{\longrightarrow} CH_{a} \stackrel{NH}{\longrightarrow} N \qquad \qquad II. \stackrel{HC}{\longrightarrow} \stackrel{NH}{\longrightarrow} CH_{a} \stackrel{NH}{\longrightarrow} CH_{a}$$

Aceton, schwer löslich in Benzol und absol. Alkohol, leicht in heißem Wasser. Die Salze sind in Wasser sehr leicht löslich. — Eisenchlorid färbt die salzsaure Lösung dunkelrot. Bei der Einw. von Natriumnitrit in schwefelsaurer Lösung entsteht das Methylen-bis-benzotriazol der Formel I (Syst. No. 4187). Beim Erhitzen mit konz. Ameisensäure wird das Methylen-bis-benzimidazol der Formel II (Syst. No. 4027) erhalten.

3. Tetraamine $C_{14}H_{18}N_4$.

1. 4.6.2'.4'-Tetraamino-3-methyl-diphenyl-H₂N·CH₂ CH₂ NH₂ methan C₁₄H₁₈N₄, s. nebenstehende Formel.

4.6.2'-Triamino-4'-dimethylamino-3-methyl-diphenylmethan C₁₆H₂₂N₄ = (CH₃)₂N·C₆H₃(NH₂)·CH₂·C₆H₂(CH₃)(NH₂)₂. B. Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. N.N-Dimethyl-m-phenylendiamin (S. 40) und 1 Mol.-Gew. asymm. m-Toluylendiamin (S. 124) (Bayer & Co., D. R. P. 133709; Frdl. 6, 478; C. 1902 II, 615). — Farblose Blättchen (aus Chloroform). F: 177°. Unlöslich in Wasser, löslich in heißem Toluol, Chloroform und Alkohol; leicht löslich in verd. Mineralsäuren. — Durch Kochen der Lösung in 20% jer Schwefelsäure und Oxydation des Reaktionsproduktes mit Eisenchlorid entsteht ein Acridinfarbstoff.

6.2'-Diamino - 4-methylamino - 4'-dimethylamino - 3-methyl - diphenylmethan $C_{17}H_{24}N_4=(CH_3)_2N\cdot C_6H_3(NH_2)\cdot CH_2\cdot C_6H_2(CH_3)(NH_2)\cdot NH\cdot CH_3.$ B. Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. N.N-Dimethyl-m-phenylendiamin (S. 40) und 1 Mol.-Gew. 4-Amino-2-methylamino-toluol (S. 129) (BAYER & Co., D. R. P. 133709; Frdl. 6, 478; C. 1902 II, 615). — Farblose Blättchen (aus Toluol). F: 155°. Unlöslich in Wasser, löslich in heißem Toluol, Chloroform und Alkohol; leicht löslich in verd. Mineralsäuren. — Durch Kochen der wäßr. Lösung eines Salzes und Oxydation des Reaktionsproduktes durch den Luftsauerstoff oder Eisenchlorid entsteht ein Acridinfarbstoff.

4.6.2'-Triamino-4'-diäthylamino-3-methyl-diphenylmethan $C_{18}H_{26}N_4=(C_2H_5)_2N\cdot C_6H_3(NH_2)\cdot CH_3\cdot (C_6H_3(CH_3)(NH_2)_2$. B. Bei der Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. N.N-Diäthyl-m-phenylendiamin (S. 41) und 1 Mol.-Gew. asymm. m-Toluylendiamin (S. 124) (Bayer & Co., D. R. P. 133709; Frdl. 6, 478; C. 1902 II, 615). — Körnige Krystalle (aus Alkohol). F: 122°. Durch Kochen mit verd. Schwefelsäure und Oxydation des Reaktionsproduktes mit Eisenchlorid entsteht ein orangefarbener Acridinfarbstoff.

2. 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenyl
C₁₄H₁₈N₄, s. nebenstehende Formel. B. Beim Kochen von
5.5'-Diamino-2.2'-dimethyl-hydrazobenzol (Syst. No. 2083) mit
alkoholischer schwefliger Säure unter allmählicher Zugabe von
konz. Salzsäure (ELBS, SCHWARZ, Z. El. Ch. 5, 115; C. 1898 II,
777). — Krystalle (aus verd. Alkohol). F: 176°. Beständig an Luft und Licht. — Hydrochlorid. Blättchen oder Prismen.

4. 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenyl-methan $C_{15}H_{20}N_4$, s. nebenstehende Formel. B. Bei der Einw. von Formaldehyd auf asymm. m-Toluylendiamin in schwefelsaurer Lösung (Leonhardt & Co., D. R. P. 52324; Frdl. 2, 109; Ullmann, Naef, B. 33, 915). — Lanzettförmige Blättchen (aus Wasser). F: 203—204° (Bräunung); sehr wenig löslich in Alkohol, Toluol und siedendem Wasser (U., N.). — Durch Erhitzen mit Salzsäure unter Druck und darauffolgende Oxydation mit Eisenchlorid entsteht salzsaures 3.6-Diamino-2.7-dimethylacridin (Acridingelb; Syst. No. 3412) (L. & Co.; U., Maric, B. 34, 4308; Haase, B. 36, 589; vgl. Schultz, Tab. No. 602). Beim Erhitzen mit Methylalkohol bezw. Athylalkohol und Salzsäure unter Druck lassen sich orangegelbe Acridinfarbstoffe erhalten (Akt.-Ges. Anilinf., D. R. P. 129479; Frdl. 6, 473; C. 1902 I, 739). Beim Erhitzen mit Chloressigsäure und wäßr. Salzsäure unter Druck auf 140° entsteht ein Gemenge von gelben und orangegelben Acridinfarbstoffen (Höchster Farbw., D. R. P. 133788; Frdl. 6, 475; C. 1902 II, 616). Durch längeres Erhitzen mit mäßig verdünnter Schwefelsäure auf 220° läßt sich 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan direkt in 3.6-Dioxy-2.7-dimethyl-acridin (Syst. No. 3140) überführen (Cassella & Co., D. R. P. 121686; C. 1901 II, 78; U., Fitzenkam, N. 38, 3794), Beim Erhitzen mit p-Toluidin und salzsaurem p-Toluidin auf 160—170° bildet sich 3-Amino-2.7-dimethyl-acridin (Syst. No. 3399) (U., B. 36, 1018, 1025).

4.6.4.6'-Tetrakis-dimethylamino-3.3'-dimethyl-diphenylmethan $C_{23}H_{24}N_4 = CH_2[C_6H_2(CH_3)[N(CH_3)_2]_2]_2$. B. Bei der Einw. von 40% jeger Formaldehydlösung auf eine Lösung von N.N.N'.N'-Tetramethyl-asymm.-m-toluylendiamin (S. 130) in Essigsäureanhydrid (Mobran, Soc. 81, 657). — Farblose Prismen (aus Alkohol). F: 86°. Leicht löslich in den meisten Lösungsmitteln außer Petroläther; löslich in verdünnten Mineralsäuren. — Beim Erhitzen mit Salzsäure auf 150° entsteht ein Acridinfarbstoff. — Pikrat. Gelbe Krystalle (aus Äthylacetat). F: 147—148°.

e 6.6'- Diamino - 4.4'- bis - benzylamino - 3.3'- dimethyl - diphenylmethan $C_{29}H_{22}N_4=CH_2[C_6H_2(CH_3)(NH_2)\cdot NH\cdot CH_2\cdot C_6H_5]_2$. B. Bei der Einw. von 40°/0iger Formaldehydlösung auf 4-Amino-2-benzylamino-toluol (S. 131) in Schwefelsäure (BAYER & Co., D. R. P. 141297; C. 1903 I, 1163). — Blättchen (aus Alkohol). F: 157°. — Beim Erhitzen mit Schwefelsäure unter Druck auf ca. 160° entsteht ein Gemisch von 3.6-Bis-benzylamino-2.7-dimethylacridin (Syst. No. 3412) mit seinem Dihydrid.

4. Tetraamin $C_n H_{2n-12} N_4$.

2.4.2'.4'-Tetraamino-stilben, $\alpha.\beta$ -Bis-[2.4-diamino-phenyl]-äthylen $C_{14}H_{16}N_4=(H_2N)_2C_6H_3\cdot CH:CH\cdot C_6H_3(NH_2)_3$. B. Aus 2.4.2'.4'-Tetranitro-stilben (Bd. V, S. 638) durch Reduktion mit Zinn und alkoh. Salzsäure (Green, Baddley, Soc. 93, 1725) oder mit Zinnchlorür in Salzsäure-Eisessig-Lösung (Escales, B. 37, 3599). — Gelbliche Blättchen mit 1 Mol. Wasser vom Schmelzpunkt 183—186° (G., B.). Hellbraune Krystalle (aus Amylalkohol) von schwankendem Schmelzpunkt, der einmal bei 191° gefunden wurde (E.). Löslich in Wasser und Alkohol (G., B.). Die Base ist in Lösung sehr licht- und luftempfindlich (E.). — Hydrochlorid. Nadeln. Leicht löslich in Wasser (G., B.).

5. Tetraamine $C_n H_{2n-18} N_4$.

1. Tetraamine $C_{19}H_{20}N_4$.

1. 2.4.4'.4''-Tetraamino-triphenylmethan, 2.4.4'.4''-Tetraamino-tritan $C_{19}H_{20}N_4=(H_2N)_2C_6H_3\cdot CH(C_6H_4\cdot NH_2)_3$.

1 2 - Amino - 4.4'.4" - tris - dimethylamino - triphenylmethan $C_{42}H_{32}N_4 = (CH_8)_2N \cdot C_8H_3(NH_2) \cdot CH[C_6H_4 \cdot N(CH_3)_2]_3$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) mit N.N-Dimethyl-m-phenylendiamin (S. 40) in salzsaurer Lösung auf dem Wasserbade (Bayer & Co., D. R. P. 82268; Frdl. 4, 205). Entsteht auch bei der Reduktion von 2-Nitro-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 317) mit Zinkstaub und Salzsäure (B. & Co., D. R. P. 82570; Frdl. 4, 205). — Nädelchen (aus Toluol), Blättehen (aus Alkohol). F: 190—191° (B. & Co., D. R. P. 82268). — Das Acetylderivat gibt bei der

Oxydation mit Bleidioxyd in saurer Lösung einen blauen Farbstoff (B. & Co., D. R. P. 82268, 82570). Durch Diazotierung in sehr verd. salzsaurer Lösung und Verkochen der erhaltenen Diazoniumsalzlösung läßt sich 2-Oxy-4.4'.4"-tris-dimethylamino-triphenylmethan (Syst. No. 1864) erhalten, bei gesteigerter Konzentration der Salzsäure wird daneben 2-Chlor-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 317) gebildet; letzteres entsteht ausschließlich bei Anwendung von konz. Salzsäure (Haller, Guyor, Bl. [3] 25, 752). Durch Diazotierung in sehr verdünnter schwefelsaurer Lösung und Verkochen der erhaltenen Diazoniumsalzlösung entsteht 2-Oxy-4.4'.4"-tris-dimethylamino-triphenylmethan, bei gesteigerter Konzentration der Schwefelsäure entsteht daneben 3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl]-fluoren (S. 332) (H., G.).

- 2. 2.5.4'.4"-Tetraamino-triphenylmethan, 2.5.4'.4"-Tetraamino-tritan $C_{19}H_{20}N_4=(H_2N)_2C_6H_3\cdot CH(C_6H_4\cdot NH_2)_2$.
- 5-Amino-2.4'.4"- oder 2-Amino-5.4'4"- tris-dimethylamino-triphenylmethan $C_{25}H_{25}N_4=(CH_3)_2N\cdot C_8H_3(NH_2)\cdot CH[C_8H_4\cdot N(CH_2)_2]_2$. B. Durch Erwärmen des aus 4-Nitrosodimethylanilin und 4.4'-Bis-dimethylamino-benzhydrol erhältlichen Nitroso-tris-[dimethylamino]-triphenylmethans (S. 313) mit salzsaurer Zinnchlorürlösung auf dem Wasserbade (Möhlau, Kloffer, B. 32, 2156). Prismen (aus Äther). F: 171°. Sehr leicht löslich in Alkohol und Benzol.
- 3. 3.4.3'.4' Tetraamino triphenylmethan, 3.4.3'.4' Tetraamino tritan $C_{10}H_{10}N_4 = C_0H_4 \cdot CH[C_0H_3(NH_4)_2]_2$.
- 3.3' Diamino 4.4' bis dimethylamino triphenylmethan $C_{22}H_{28}N_4 = C_6H_5$. $CH[C_6H_3(NH_2)\cdot N(CH_3)_2]_2$. B. Beim Behandeln von 3.3'-Dinitro-4.4'-bis-dimethylamino-triphenylmethan (S. 280) mit Zinnchlorür und Salzsäure (Bamberger, Rudolf, B. 41, 3309). Fast farblose Flocken. Leicht löslich in Äther, Benzol, Chloroform und Alkohol, schwer in heißem Ligroin. Die salzsaure Lösung wird durch Eisenchlorid tiefrot, beim Erwärmen violettstichig rot gefärbt. $C_{23}H_{38}N_4 + 2HCl + PtCl_4$.
- 2. 4.6.4'.6' Tetraamino 3.3' dimethyl tri -CH, phenylmethan $C_{21}H_{24}N_4$, s. nebenstehende Formel. B. Bei der Einw. von 1 Mol.-Gew. Benzaldehyd auf H.N. ein Gemisch von je 1 Mol.-Gew. asymm. m-Toluylendiamin und seinem salzsauren Salz bei 70-80° (OEHLER, D. R. P. 43714; Frdl. 2, 104; vgl. Oz., D. R. P. 43720; Frdl. 2, 106). Bei 3-stdg. Erwärmen von 2-Amino-4-benzalamino-toluol (S. 132) mit schwefelsaurem oder salzsaurem asymm. m-Toluylendiamin in Alkohol auf 60—70° (OE., D. R. P. 43714; R. MEYER, GROSS, B. 32, 2359). — Darst. Man gibt zu einer 60° warmen alkoholischen Lösung von 9,8 g salzsaurem und 6,1 g freiem asymm. m-Toluylendiamin 5,3 g Benzaldehyd und erwärmt 3 Stunden (R. M., G., B. 32, 2357). — Tafeln (aus verdunstendem Chloroform). F: 230—231°. Schwer löslich in Ligroin und Benzol, leichter in Alkoholen, Äther und Essigester, sehr leicht in Chloroform und Aceton (R. M., G.). — Durch Erhitzen mit Salzsäure (D: 1,07) unter Druck auf 160° und Oxydieren des entstandenen 3.6-Diamino-2.7-dimethyl-9-phenyl-acridin-dihydrids-(9.10) (Syst. No. 3414) mit Eisenchlorid erhält man Benzoflavin (Syst. No. 3414) (Oz., D. R. P. 43714; R. M., G.). Bei allmählichem Erhitzen mit β -Naphthol auf 190° entsteht das Amino-methyl-ms-phenyl-benzo- $CH(C_0H_0)$ acridindihydrid der nebenstehenden Formel (Syst. No. 3401), neben asymm. m-Toluylendiamin (ULLMANN, RACOVITZA, ROZENBAND, B. 35, 321). Beim Erhitzen mit Resoroin zunächst auf 165°, dann kurze Zeit auf 180—185° entstehen unter Abspaltung von Wasser und asymm. m-Toluylendiamin 3-Amino-6-oxy-2-methyl-9-phenyl-acridindihydrid (Syst. No. 3425) und das entsprechende Acridin (Syst. No. 3425) (U., FITZENKAM, B. 38, 3792). Über die Einw. von salzsaurem p-Toluidin in Gegenwart von freiem p-Toluidin vgl. Bad. Anilin- u. Sodaf., D. R. P. 125697; Frdl. 6, 482; C. 1901 II, 1241; U., B. 36, 1025). — C₁₁H₂₄N₄ + 4 HCl
- 4"-Nitro-4.6.4'.6'-tetraamino-3.3'-dimethyl-triphenylmethan $C_{21}H_{22}O_2N_5=O_2N\cdot C_2H_4\cdot CH[C_6H_2(CH_2)(NH_4)_2]_2$. B. Beim Erhitzen von 1 Mol.-Gew. 4-Nitro-benzaldehyd (Bd. VII, S. 256) mit 2 Mol.-Gew. asymm. m-Toluylendiamin (S. 124) in Alkohol (ULIMANN, GRETHER, C. 1903 I, 883) oder in Alkohol + Salzsaure (Orhiler, D. R. P. 45294; Frdl. 2, 107). Krystalle (aus Anilin). F: 265°; leicht löslich in Eisessig, Anilin und Nitrobenzol, unlöslich in Alkohol, Äther, Ligroin und Benzol (U., G.). Beim Behandeln mit Zinnehlorür und Salzsaure entsteht das 4.6.4'.6'.4"-Pentaamino-3.3'-dimethyl-triphenylmethan (S. 346) (Oz.; U., G.).

+ 2 H₂O. Tafeln (aus salzsaurehaltigem Alkohol) (R. M., G.).

3. 4.6.4'.6'-Tetraamino-3.3'.4"-trimethyl-triphenylmethan, p-Tolyl-bis-[4.6-diamino-3-methyl-phenyl]-methan C₂₂H₂₆N₄, s. nebenstehende Formel. B. Beim Erhitzen von 2 Mol.-Gew. einfach salzsaurem asymm. m-Toluylendiamin mit 1 Mol.-Gew. p-Toluylaldehyd (Bd. VII, S. 297) in alkoh. Lösung auf dem Wasserbade (Oehler, D. R. P. 45294;

Frdl. 2, 107). — Weiß. Unlöslich in Wasser, löslich in Alkohol und Benzol. — Läßt sich durch Erhitzen mit Salzsäure unter Druck auf 160° und Oxydation des gebildeten Produktes mit Eisenchlorid in 3.6-Diamino-2.7-dimethyl-9-p-tolyl-acridin (Syst. No. 3414) überführen.

6. Tetraamine $C_n H_{2n-22} N_4$.

- 1. Tetraamino-dinaphthyl-(2.2') $C_{20}H_{18}N_4=C_{20}H_{10}(NH_2)_4$. B. Durch Eintragen von Zinkstaub in eine Eisessiglösung von Tetranitro-dinaphthyl-(2.2') (Bd. V, S. 727) und Erwärmen auf dem Wasserbade (STRAUB, SMITH, Soc. 47, 106). Amorphes Pulver (aus Toluol). Bräunt sich bei 150° und schmilzt unter Zersetzung bei 164—167°. Wenig löslich in Alkohol, etwas mehr in Toluol und Eisessig.
- 2. 2.7.2'.7'-Tetraamino-[di-naphthyl-(1)-methan], Bis-[2.7-diamino-naphthyl-(1)]-methan $C_{21}H_{20}N_4=CH_2[C_{10}H_5(NH_2)_2]_2$.

Bis-[2.7-dianilino-naphthyl-(1)]-methan $C_{45}H_{36}N_4=CH_2[C_{10}H_5(NH\cdot C_6H_5)_2]_8$. B. Durch Erhitzen von Bis-[2.7-dioxy-naphthyl-(1)]-methan (Bd. VI, S. 1182) mit Anilin und salzsaurem Anilin auf 180—200° (Dahl & Co., D. R. P. 75755; Frdl. 3, 519). — Blättchen (aus Benzol oder Alkohol). F: 157° (D. & Co., D. R. P. 75755). — Gibt mit salzsaurem 4-Nitrosodimethylanilin in Alkohol einen blauen Farbstoff (D. & Co., D. R. P. 75806; Frdl. 3, 324).

7. Tetraamin C_n H_{2n-24} N₄.

Bis-[4-amino-phenyl]-[3.4-diamino-naphthyl-(1)]-methan $C_{23}H_{22}N_4 = (H_2N)_2C_{10}H_5 \cdot CH(C_6H_4 \cdot NH_2)_2$.

Bis-[4-dimethylamino-phenyl]-[3.4-diamino-naphthyl-(1)]-methan $C_{27}H_{20}N_4 = (H_2N)_8C_{10}H_5 \cdot CH[C_6H_4 \cdot N(CH_3)_8]_2$. B. Bei der Kondensation von 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) mit Naphthylendiamin-(1.2) (S. 196) (Norlating, Bull. Soc. ind. Mulhouse 72, 226; C. 1903 I, 88; B. 37, 1909). — Nadeln (aus Benzol). F: 233—234°. Liefert durch Oxydation einen grünblauen Farbstoff.

Bis - [4 - dimethylamino - phenyl] - [8.4 - bis - acetamino - naphthyl - (1)] - methan $C_{31}H_{34}O_2N_4=(CH_3\cdot CO\cdot NH)_3C_{10}H_5\cdot CH[C_8H_4\cdot N(CH_2)_2]_2$. B. Beim Acetylieren von Bis-[4-dimethylamino-phenyl]-[3.4-diamino-naphthyl-(1)]-methan (N., Bull. Soc. ind. Mulhouse 72, 226; C. 1903 I, 88; B. 37, 1910). — Krystalle, die sich an der Luft allmählich grün färben. F: 258—259°. Schwer löslich in Alkohol, leichter in Essigester. — Durch Oxydation entsteht ein grüner Farbstoff.

8. Tetraamine C_nH_{2n-25}N₄.

1. Tetraamine Ca4HanN4.

1. Tetraamino – [1.3.5 – triphenyl – benzol] vom Schmelzpunkt 137—138° $C_{24}H_{32}N_4=C_{24}H_{16}(NH_{3})_4$. B. Beim Behandeln des oberhalb 370° schmelzenden Tetranitro- [1.3.5-triphenyl-benzols] (Bd. V, S. 737) mit Zinn und Salzsäure unter Zusatz von Eisessig (Mellin, B. 23, 2535). — Nädelchen (aus verd. Alkohol). F: 137—138°.

Oktaacetylderivat $C_{ac}H_{ac}O_aN_a = C_{ac}H_{14}[N(CO\cdot CH_a)_a]_a$ B. Beim Kochen des bei 137—138° schmelzenden Tetraamino-[1.3.5-triphenyl-benzols] mit Natriumacetat und Eisessig (M., B. 23, 2535). — Nädelchen. F: 156—158°.

2. Tetraamino - [1.3.5 - triphenyl - benzolj vom Schmelspunkt 96-98° $C_{24}H_{22}N_4=C_{24}H_{14}(NH_2)_4$. B. Beim Behandeln des bei 108° schmelsenden Tetranitro-

[1.3.5-triphenyl-benzols] (Bd. V, S. 738) mit Zinn und Salzsäure unter Zusatz von Eisessig (MELLIE, B. 23, 2536). — Nadeln (aus verd. Alkohol). F: 96—98° (Zers.).

Oktaacetylderivat C₄₀H₃₂O₂N₄ = C₃₄H₁₄[N(CO·CH₂)₂]₄. B. Beim Kochen des bei 96—98° schmelzenden Tetraamino-[1.3.5-triphenyl-benzols] mit Natriumacetat und Eisessig (M., B. 23, 2536). — Krystalle (aus verd. Eisessig). F: 142—143°. Löslich in Alkohol, Äther und Eisessig.

2. $a.a.\beta.\beta$ -Tetrakis-[4-amino-phenyl]-äthan $C_{26}H_{26}N_4 = (H_2N \cdot C_6H_4)_2CH \cdot CH(C_6H_4 \cdot NH_2)_2$. B. Beim Erwärmen von $a.a.\beta.\beta$ -Tetrakis-[4-nitro-phenyl]-äthan (Bd. V, S. 740) mit Zinn und Salzsäure auf dem Wasserbade (Bil.tz, A. 296, 227). — Prismen (aus Alkohol). F: 272° (korr.). Schwer löslich in Alkohol. Gibt durch Diazotieren und Kuppeln mit Aminen und Phenolen substantive Azofarbstoffe. — $C_{26}H_{26}N_4 + 4$ HCl + SnCl₄. Nädelchen (aus Wasser).

a.a.β.β-Tetrakis-[4-dimethylamino-phenyl]-äthan $C_{24}H_{42}N_4=[(CH_3)_2N\cdot C_0H_4]_3CH\cdot CH[C_0H_4\cdot N(CH_2)_3]_2$. Als solches faßte Schoop (B. 13, 2199) eine Verbindung auf, die jetzt als 4.4'-Bis-dimethylamino-diphenylmethan (S. 239) erkannt ist.

a.a. β . β -Tetrakis-[4-acetamino-phenyl]-äthan $C_{34}H_{24}O_4N_4=(CH_3\cdot CO\cdot NH\cdot C_0H_4)_2CH\cdot CH(C_0H_4\cdot NH\cdot CO\cdot CH_3)_3$. B. Beim Kochen von a.a. β . β -Tetrakis-[4-amino-phenyl]-äthan mit Essigsäureanhydrid und Natriumacetat (BILTZ, A. 296, 229). — Krystalle (aus verd. Essigsäure). F: 336—337° (korr.). Unlöslich in Alkohol.

9. Tetraamin C_nH_{2n-28}N₄.

 $\alpha.\alpha.\beta.\beta$ - Tetrakis - [4-amino-phenyl] - äthylen $C_{26}H_{24}N_4=(H_2N\cdot C_6H_4)_2C$: $C(C_6H_4\cdot NH_2)_2$.

a.a.β.β-Tetrakis-[4-dimethylamino-phenyl]-äthylen C₃₄H₄₀N₄ = [(CH₃)₂N·C₈H₄]₂C: C[C₄H₄·N(CH₃)₂]₂. B. Beim Eintragen von 9 g Stanniol in eine Lösung von 5 g 4.4'-Bis-dimethylamino-benzophenon (Syst. No. 1873) in 75 ccm konz. Salzsäure (Willstätter, Goldmann, B. 39, 3775). Beim Erhitzen von 4.4'-Bis-dimethylamino-thiobenzophenon mit Kupferpulver auf 210° (Gattemann, B. 28, 2876). — Grüngelbe Nadeln (aus Aceton + Alkohol), Prismen (aus Benzol). F: 310—315° (Ga.). Sehr schwer löslich in Alkohol, Ather und Ligroin, mäßig in Aceton, leicht in warmem Chloroform, Benzol und Eisessig; die Lösung in Chloroform ist rot und fluoresciert grün (W., Go.).

10. Tetraamin $C_n H_{2n-34} N_4$.

1.4-Bis-[4.4'-diamino-benzhydryl]-benzol, $\omega.\omega.\omega'.\omega'$ -Tetrakis-[4-amino-phenyl]-p-xylol $C_{22}H_{30}N_4=(H_2N\cdot C_0H_4)_2CH\cdot C_0H_4\cdot CH(C_0H_4\cdot NH_2)_3$.

1.4-Bis-[4.4'-bis-dimethylamino-benshydryl]-bensol, $\omega.\omega.\omega'.\omega'$ -Tetrakis-[4-dimethylamino-phenyl]-p-xylol $C_{40}H_{44}N_4=[(CH_3)_3N\cdot C_6H_4]_2CH\cdot C_6H_4\cdot CH[C_6H_4\cdot N(CH_3)_3]_3$. B. Bei der Kondensation von Dimethylanilin mit dem Tetraacetat des Terephthalaldehyds (Bd. VII, S. 676) in Gegenwart von Zinkchlorid (Claussner, B. 38, 2862). — Krystallpulver (aus Benzol + Alkohol). F: 243—248°. Leicht löslich in Essigsäure und Benzol, unlöslich in Alkohol, Ather und Wasser. — Liefert bei der Oxydation mit Bleidioxyd in Essigsäure einen dem Malachitgrün ähnlichen Farbstoff.

E. Pentaamine.

1. Pentaamin $C_n H_{2n+1} N_5$.

1.2.3.4.5 - Pentaamino - cyclopentadien - (1.3) $C_5H_{11}N_5=$

H₂N·HC C(NH₂): C·NH₂

B. Bei allmählichem Eintragen von 10 g frisch dargestelltem, feuchtem Leukonsäurepentaoxim (Bd. VII, S. 906) in ein Gemisch aus 100 g

Zinnehlerür und 200 g kons. Salssäure bei höchstens 40° (NIETZKI, ROSEMANN, B. 22, 919).

— Nur in Form von Salzen erhalten. Versetzt man die Lösung des salzsauren Salses mit Natriumacetat und Diacetyl, so entsteht die Verbindung C₁₁H₁₂N₅ (s. u.). Die waßr. Lösung des salzsauren Salzes liefert mit krokonsaurem Kalium (Bd. VIII, S. 488) die Verbindung

des salzsauren Salzes liefert mit krokonsaurem Kalium (Bd. VIII, S. 288) die Verussiung
$$C_{12}H_{7}O_{6}N_{5}$$
 der nebensteh. Formel $OC \ C(OH) - C = N - C \ CH(NH_{2}) \cdot C - N = C - C(OH) \cdot CO$ (Syst. No. 4180). $-C_{5}H_{11}N_{5} + 3HCl + H_{2}O$. Farblose Nadeln. $-C_{5}H_{11}N_{5} + 4HCl + H_{2}O$. Farblose Tafeln. Zersetzt sich bei 80 –100°. Sehr leicht löslich in Wasser. $-2C_{5}H_{11}N_{5} + KH SO - 18H OO Kenhlere Pilittehen Leicht löslich in Wasser, schwer in Alkohol.$

5H₂SO₄ + 2H₂O. Farblose Blättchen. Leicht löslich in Wasser, schwer in Alkohol.

Verbindung C₁₂H₁₂N₅. B. Bei der Einw. von Diacetyl auf salzsaures 1.2.3.4.5Pentamino-cyclopentadien in Gegenwart von Natriumacetat (NIETZKI, ROSEMANN, B. 22, 922). — Fast schwarze, im durchfallenden Licht violett erscheinende Nadeln (aus verd.

Alkohol) mit ½ H₂O. Zersetzt sich bei höherer Temperatur.

2. Pentaamine $C_n H_{2n-1} N_5$.

1. Pentaaminobenzol $C_6H_{11}N_5=C_6H(NH_2)_5$. B. Durch Reduktion von 2.4.6-Trinitrophenylendiamin-(1.3) (S. 60) (Bare, B. 21, 1547), von 2.4-Dinitro-1.3.5-triamino-benzol (S. 300) (Palmer, Jackson, Am. 11, 451; vgl. P., J., B. 21, 1706) oder von 2.4.6-Trinitro-1.3.5-triamino-benzol (S. 301) (P., Am. 14, 378) mit Zinn und Salzsaure. — Wird durch dem 3.5-triamino-benzol (S. 301) (P., Am. 14, 378) mit Zinn und Salzsaure. — Wird durch dem 1.5.0-triammo-benzol (S. 301) (P., Am. 14, 378) mit Zinn und Salzsäure. — Wird durch den Sauerstoff der Luft in die Verbindung C₈H₇O₂N₂ (s. u.) übergeführt (P., Grindley, B. 26, 2305). Eisenchlorid färbt die wäßr. Lösung des salzsauren Salzes violett und erzeugt eine dunkla Fällung (B.). — C₈H₁₁N₂ + 3 HCl. Nädelchen oder Platten. Sehr leicht löslich in Wässer, fast unlöslich in Alkohol, Äther (B.), Benzol und Chloroform (P., J., Am. 11, 453). Verbindung C₈H₇O₂N₃ (vielleicht 2.3.5-Triamino-p-chinon (Formel I) bezw. 3-Amino-2.5-dioxy-p-chinon-diimid) (Formel II). B. Man saugt durch eine Lösung von 1 g salzsaurem Pentaamino-bensol und 2 g Natriumscetat in 150 com Wasser 2 Tage lang einen Luftstrom (Palmers. Grindlau).

2 Tage lang einen Luftstrom (PALMER, GRINDLEY,

B. 26, 2305). — Dunkelbraunes Pulver, teilweise aus mikroskopischen Prismen bestehend. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Unlöslich. Verliert leicht Ammonisk.

Pentakis-acetamino-benzol $C_{10}H_{21}O_{2}N_{5}=C_{0}H(NH\cdot CO\cdot CH_{2})_{5}$. B. Beim Kochen von salssaurem Pentaaminobenzol mit Natriumacetat und Essigsaureanhydrid (BARR, B. 21, 1547). — Amorphes, unlösliches Pulver.

2. 2.3.4.5.6-Pentaamino-1-methyl-benzol, eso-Pentaamino-toluol $C_2H_{12}N_5 = CH_2 \cdot C_6(NH_2)_5$. B. Durch Reduktion von 2.4.6-Trinitro-3.5-diamino-toluol (S. 165) mit Zinn und Salzsäure (Palmer, B. 21, 3501). — Beim Leiten eines Luftstromes durch eine wäßrige Lösung von salzsauren Pentaaminotoluol und Natriumacetat entsteht eine Verbindung C₇H₂O₂N₃(?) (Palmer, Grindler, B. 26, 2307). Die wäßr. Lösung des salzsauren Salzes färbt sich beim Stehen blau; Eisenchlorid beim Stehen blau; Albeit Witten service Albeit (P.). — $C_7H_{19}N_5 + 3$ HCl (bei 100°). Prismen. Sehr leicht löslich in Wasser, wenig in Alkohol. — $2C_7H_{19}N_5 + 6$ HCl + 3 PtCl₄. Schwarze Krystalle (P.).

3. Pentaamin C_nH_{2n-17}N₅.

4.6.4'.6'.4" - Pentaaminσ - 3.3' - dimethyl - tri phenylmethan C₂₁H₂₅N₅, s. nebenstehende Formel. B. Beim Behandeln von 4"-Nitro-4.6.4'.6'-tetraamino-3.3'-dimethyl-triphenylmethan (S. 343) mit Zinnchlorür und Salzsaure (Ozenter, D. R. P. 45294; Frdl. 2, 107; ULLMANN, GRETHER, C. 1903 I, 883). — Farblose Krystalle. Ziemlich löslich in siedendem Wasser; die

wäßr. Lösungen der Salze geben beim Erwärmen mit Eisenchlorid bräunlichrote Färbungen (Oz.). — Durch Erhitzen mit verd. Salzsäure unter Druck auf 160° und Oxydation des (On.). — Durch Erhitzen mit veru, Saissaure unter 27. August 27. A C.H. NH. CH. acridin der nebenstehenden Formel (Syst. No. 3414) (U., G.).

4.6.4.6'-Tetraamino-4"-acetamino-8.3'-dimethyl-triphenylmethan $C_{22}H_{27}ON_1 = CH_2\cdot CO\cdot NH\cdot C_2H_4\cdot CH[C_6H_2(CH_2)(NH_2)_2]_2$. B. Beim Kochen von 10 g asymm. m.Toluylendiamin mit 6,7 g 4-Acetamino-benzaldehyd in Alkohol am Rückflußkühler (U., G., C. 1903 I, 883). — Krystalle (aus Anilin). F: 205°. Leicht löslich in heißem Anilin und Nitrobenzol, unlöslich in Alkohol, Äther und Benzol. — Beim Erhitzen mit β -Naphthol auf 180° entsteht Amino-methyl-ms-[4-acetamino-phenyl]-benzoacridin (vgl. die Formel im vorangehenden Artikel) (Syst. No. 3414) neben seinem Dihydrid (Syst. No. 3414).

4. Pentaamin C_nH_{2n-85}N₅.

Pentakis-[4-amino-phenyl]-āthan $C_{22}H_{31}N_5 = (H_2N \cdot C_6H_4)_2CH \cdot C(C_6H_4 \cdot NH_2)_3$.

Pentakis-[4-dimethylamino-phenyl]-āthan $C_{42}H_{51}N_5 = [(CH_2)_2N \cdot C_6H_4]_2CH \cdot C[C_4H_4 \cdot N(CH_4)_2]_5$. B. Bei allmāhlichem Versetzen eines Gemenges von Chloral und überschüssigem Dimethylanilin mit Chlorzink in der Kālte (O. Fischer, B. 11, 951; E. Fischer, O. Fi., B. 11, 2097; O. Fi., A. 206, 120). Bei allmāhlichem Zusatz von 10 g Chlorzink zu einer Lösung von 20 g Chloralhydrat in 50 g Dimethylanilin im kochenden Wasserbade, neben Trichlormethyl-[4-dimethylamino-phenyl]-carbinol (Syst. No. 1855) (Borssneck, B. 18, 1516; vgl. Knöfler, Borssneck, B. 20, 3193). — Nadeln (aus Alkohol) mit 1 Mol. Wasser; Krystalle (aus Benzol). F: 1846 (B.), 188—1906 (E. Fi., O. Fi.). Sehr leicht löslich in Chloroform, ziemlich schwer in Alkohol und Äther (O. Fi., A. 206, 121). — Bei der Oxydation mit Braunstein und Schwefelsäure (O. Fi., A. 206, 121) oder mit Bleidioxyd (B.) entsteht ein grünblauer Farbstoff.

Pentakis-[4-diäthylamino-phenyl]-äthan $C_{ss}H_{71}N_s = [(C_sH_s)_sN\cdot C_sH_d]_sCH\cdot C[C_sH_4\cdot N(C_sH_s)_s]_s$. B. Man erwärmt 20 Tle. Chloralhydrat mit 50 Tln. Diäthylanilin und 10 Tln. Chlorsink 5 Stdn. auf dem Wasserbad (Borssneck, B. 19, 367). — F: 158°. In Alkohol etwas leichter löslich als die vorhergehende Verbindung. — Gibt bei der Oxydation einen blaugrünen Farbstoff.

F. Hexaamine.

1. Hexaamin C_nH_{2n-8}N₆.

4.5.6.4'.5'.6'-Hexaamino-2.2'-dimethyl-diphenyl $C_{14}H_{20}N_6=(H_2N)_3C_6H(CH_3)\cdot C_6H(CH_3)(NH_2)_3$.

4.6.4'.6'-Tetraamino-5.5'-bis-acetamino- oder 5.6.5'.6'-Tetraamino-4.4'-bis-acetamino-2.2'-dimethyl-diphenyl C₁₈H₂₄O₂N₆ = CH₃·CO·NH·C₆H(CH₂)(NH₂)₂·C₆H(CH₃) (NH₂)₂·NH·CO·CH₃. B. Beim Behandeln der Verbindung nebenstehender Formel (Syst. No. 4027) mit Zinn und Salzsäure (Bankliewicz, B. 21, 2409): —

Krystalle (aus sehr verd. Alkohol) mit 5 H₂O. F: 196°. Außerst löslich in Alkohol, ziemlich leicht in Äther und Benzol, fast unlöslich in Wasser. — C₁₈H₂₆O₂N₆ + 2 HCl + 2 H₂O. Nadeln. Außerst löslich in Wasser. — Pikrat C₁₈H₂₆O₂N₆ + 2 C₆H₂O₇N₃. Granatrote Nadeln (aus Alkohol).

2. Hexaamin $C_nH_{2n-16}N_6$.

3.4.3'.4''.- Hexaamino-triphenylmethan $C_{10}H_{20}N_6 = CH[C_6H_3(NH_2)_3]_3$.
3.3''.- Triamino-4.4'.4''-tris-dimethylamino-triphenylmethan $C_{20}H_{30}N_6 = CH[C_6H_2(NH_2)\cdot N(CH_3)_2]_3$. B. Bei der Reduktion von 3.3'.3''-Trinitro-4.4'.4''-tris-dimethylamino-triphenylmethan (S. 317) mit Zinnehlorür und Salzsäure (Bambreger, Rudolf, B. 41, 3313). — Weiße Nadeln (aus Alkohol). F: 221,5—223,5° (korr.). Kaum löslich in Wasser, sehr wenig in Ligroin, sehwer in kaltem Alkohol, ziemlich leicht in heißem Alkohol, leicht in Bensol und Chloroform. — Die alkoholische oder schwach salzsaure Lösung nimmt auf Zusatz von Kisenohlorid, die verdünnte essigsaure auf Zusatz von Bleidioxyd eine tiefrote Farbe an. — $2C_{20}H_{24}N_6+6$ HCl + 3 PtCl₄. Bräunlichgelbe Flocken.

3. Hexaamin C_nH_{2n-40}N₆.

Hexaamino-[hexabenzyläthan] $C_{44}H_{48}N_6=C_{44}H_{36}(NH_2)_8$. B. Beim Kochen von Hexanitro-[hexabenzyläthan] (Bd. V, S. 762) mit Jodwasserstoffsäure (D: 1,96) (Schmerda, M. 30, 393). — Schwach gelblichrotes Pulver (aus Benzol + Ligroin). Sintert bei 61°, zersetzt sich bei 105°. Leicht löslich in Benzol, Alkohol, Aceton, Eisessig, schwer in Ligroin.— Gibt mit Eisenchlorid in Alkohol Dunkelrotfärbung, mit Chlorkalk Gelbfärbung. Gibt durch Diazotierung und Kuppelung mit Phenol einen gelben Farbstoff. — $C_{44}H_{46}N_6+2HCl+PtCl_4$. Gelb, krystallinisch. Zersetzt sich beim Erwärmen. Leicht löslich in Alkohol.

G. Oxy-amine.

(Verbindungen, die zugleich Alkohole bezw. Phenole und Amine sind.)

- 1. Aminoderivate der Monooxy-Verbindungen.
- a) Aminoderivate der Monooxy-Verbindungen C_nH_{2n}O.
- 1. Aminoderivate des Cyclohexanols $C_6H_{12}O = C_6H_{11} \cdot OH$ (Bd. VI, S. 5).

"cis"-2-Amino-cyclohexanol-(1)¹) C₆H₁₃ON = H₂C CH₂·CH₄·CH₄·CH·OH. B. Beim Erhitzen von 1 Vol. Cyclohexenoxyd (Syst. No. 2363) mit 5 Vol. wäßr. Ammoniaks (D: 0,92) im Druckrohr auf 110—115° (Beunel, C. r. 137, 199; Bl. [3] 29, 886; A. ch. [8] 6, 253). — Sehr hygroskopische Krystalle von schwach piperidinähnlichem Geruch. F: 66°. Kp: 219°. Löslich in Wasser und den meisten organischen Lösungsmitteln. Zieht bégierig CO₂ an. — C₄H₁₃ON + HCl. Nadeln. F: 175°. Leicht löslich in Wasser, weniger in Alkohol, unlöslich in Ather. — Nitrat. F: 144°. Leicht löslich in Wasser und Alkohol.

"cis"-2-Äthylamino-cyclohexanol-(1) $C_8H_{17}ON=HO\cdot C_6H_{10}\cdot NH\cdot C_2H_5$. B. Durch 2-stdg. Erhitzen von 30 g Cyclohexenoxyd mit 20 g Äthylamin in alkoh. Lösung im Druckrohr auf 115° (B., A. ch. [8] 6, 258). — Hygroskopische Nadeln von starkem Geruch. F: 44° bis 45°. Kp: 222°. — $C_8H_{17}ON+HCl$. Sehr zerfließliche Tafeln. F: 155°.

"cis"-2-Diäthylamino-cyclohexanol-(1) $C_{10}H_{21}ON = HO \cdot C_8H_{10} \cdot N(C_8H_8)_8$. B. Durch 12-stdg. Erhitzen äquimolekularer Mengen von Cyclohexenoxyd und Diäthylamin in alkoh. Lösung im Druckrohr auf 125—130° (B., A. ch. [8] 6, 259). — Flüssigkeit von schwachem Geruch. Kp: 230°. — $C_{10}H_{21}ON + HCl$. Nadeln. F: 168°. Löslich in Wasser und Alkohol, unlöslich in Äther.

"cis"-2-Anilino-cyclohexanol-(1) C_{1s}H₁₇ON = HO·C₆H₁₀·NH·C₆H₈. B. Durch mehrstündiges Erhitzen šquimolekularer Mengen von Cyclohexenoxyd und Anilin in alkoh. Lösung im Druckrohr auf 120—130° (B., A. ch. [8] 6, 261). — Krystalle. F: 58°. Kp₄₆: 210°; Kp: 327°. Leicht löslich in Alkohol, Essigsäure, Benzol, unlöslich in Wasser. — Hydrochlorid. Farblos, schwer krystallisierend. F: 150—151°. Löslich in Wasser und Alkohol.

"cis"-2-Methylanilino-cyclohexanol-(1) $C_{12}H_{10}ON = HO \cdot C_6H_{10} \cdot N(CH_8) \cdot C_5H_5$. B. Durch 60-stdg. Erhitzen äquimolekularer Mengen von Cyclohexenoxyd und Methylanilin (Bd. XII, S. 135) im Druckrohr auf 130° (B., A. ch. [8] 6, 262). — Flüssigkeit. Kp₂₈₋₂₀: 192°; Kp₄₀: 202°; Kp₇₆₇: 329°.

Bis-[2-oxy-cyclohexyl]-amin vom Schmelspunkt 153°C₁₂H₂₃O₂N=(HO·C₆H₁₀)₂NH.

B. Entsteht neben einem Isomeren vom Schmelspunkt 114° beim Erhitzen von 1 Vol. Cyclohexenoxyd mit 2 Vol. kalt gesättigtem alkoholischem Ammoniak im Druckrohr auf 110° bis 115°; beim Erkalten krystallisiert die Verbindung vom Schmelspunkt 153° aus, während die Verbindung vom Schmelspunkt 114° in der Mutterlauge gelöst bleibt und durch Eindampfen derselben gewonnen werden kann (B., C.r. 137, 199; Bl. [3] 29, 887; A. ch. [8] 6, 254). — Blättchen. F: 153°. Schwer löslich in Wasser und Alkohol. — C₁₂H₂₃O₂N + HCl. F: 264° (Zers.). Sehr wenig löslich in Alkohol.

Bis-[2-oxy-cyclohexyl]-amin vom Schmelspunkt 114° C₁₉H₂₀O₂N=(HO·C₆H₁₀),NH. B. s. im vorhergehenden Artikel. — Nadeln (aus Benzol). F: 114° ; leicht löslich in Alkohol

¹⁾ Zur Frage der Konfiguration vgl. die bei Cyclohexandiol-(1.2) (Bd. VI, S. 740) angefährte Literatur.

(B., C. r. 137, 199; Bl. [3] 29, 888; A. ch. [8] 6, 256). — C₁₂H₂₃O₂N + HCl. Schmilzt zuerst bei 192°, erstarrt dann wieder und schmilzt bei 264° unter starker Zersetzung von neuem (Übergang in die isomere Verbindung); leicht löslich in Wasser, ziemlich löslich in Alkohol.

Bis-[2-oxy-cyclohexyl]-äthylamin $C_{14}H_{27}O_2N=(HO\cdot C_0H_{10})_2N\cdot C_2H_5$. B. Durch 8-stdg. Erhitzen von 2 Mol.-Gew. Cyclohexenoxyd und 1 Mol.-Gew. Äthylamin in alkoh. Lösung im Druckrohr auf 130° (B., A. ch. [8] 6, 258). — Blättchen (aus Essigester). F: 114°; Kp: 352°. Unlöslich in Wasser, löslich in Alkohol und Essigester. — $C_{14}H_{27}O_2N+HCl$. Krystalle. F: 162—163°. Löslich in Wasser und Alkohol, unlöslich in Ather.

N-Nitrosoderivat des bei 153° schmelzenden Bis-[2-oxy-cyclohexyl]-amins $C_{13}H_{32}O_3N_3=(HO\cdot C_4H_{10})_3$ N·NO. B. Durch Einw. von Natriumnitrit auf das Hydrochlorid des Bis-[2-oxy-cyclohexyl]-amins vom Schmelzpunkt 153° (B., C. r. 137, 199; Bl. [3] 29, 887; A. ch. [8] 6, 255). — Gelbliche Prismen. F: 148°. Unlöslich in Wasser, löslich in Alkohol.

N-Nitrosoderivat des bei 114° schmelzenden Bis - [2-oxy-cyclohexyl] - amins $C_{12}H_{22}O_3N_2 = (HO \cdot C_6H_{10})_3N \cdot NO$. B. Aus dem Hydrochlorid des Bis-[2-oxy-cyclohexyl]- amins vom Schmelzpunkt 114° und Natriumnitrit (B., C. r. 137, 199; Bl. [3] 29, 888; A. ch. [8] 6, 256). — Gelbliche Prismen. F: 171°. Unlöslich in Wasser, löslich in Alkohol und Benzol.

- 4-Amino-cyclohexanol-(1) $C_6H_{13}ON = H_2N \cdot HC < CH_2 \cdot CH_2 \cdot CH \cdot OH$. B. Beim Erwärmen des Bis-hydrochlorids des 1.4-Diamino-cyclohexans (S. 2) mit Natriumnitrit in wäßr. Lösung auf dem Wasserbade, neben Λ^2 -Tetrahydroanilin (Bd. XII, S. 33) und Dihydrobenzol (Noyes, Ballard, B. 27, 1450; Am. 16, 453). $2C_6H_{13}ON + 2HCl + PtCl_4$. Citronengelbe Täfelchen (aus Alkohol).
- 2. Aminoderivate des Cycloheptanols $C_7H_{14}O = C_7H_{13} \cdot OH$ (Bd. VI, S. 10). 6.7 Dibrom 3 dimethylamino cycloheptanol (1), des Methyltropindibromid $C_9H_{17}ONBr_2 = \frac{H_2C \cdot CH[N(CH_3)_2] \cdot CH_2}{H_2C \cdot CHBr}$ CH · OH. B. Das Hydrobromid entsteht durch Einw. von Brom in Chloroform auf eine wäßrige, durch Bromwasserstoffsäure neutralisierte Lösung von des Methyltropin (S. 351) oder (weniger glatt) durch Einw. von Brom auf das freie des Methyltropin in Chloroformlösung (Willstätter, A. 326, 11). Die aus dem Hydrobromid durch Soda abgeschiedene Base lagert sich in äther. Lösung sohnell in das Bromtropinbrommethylat nebenstehender Formel (Syst. No. 3108) um. $C_2H_{17}ONBr_2 + HBr$. Farblose Spieße (aus Alkohol), rhombenförmige und sechseckige Tafeln (aus Wasser). F: 178° (Zers.). Löslich in $3^1/2$ Tln. warmem Wasser, ziemlich schwer löslich in kaltem Wasser, mäßig in siedendem Alkohol, schwer in kaltem Alkohol. Beständig beim Kochen mit Wasser.
- 4-Dimethylamino-cycloheptanol-(1) $C_9H_{19}ON = \frac{(CH_3)_2N \cdot HC \cdot CH_2 \cdot CH_3}{H_2C \cdot CH_3 \cdot CH_3} \cdot CH \cdot OH$. Ist vermutlich ein Gemisch von Stereoisomeren (WILLSTÄTTER, A. 326, 7). B. Aus dem Chlorwasserstoffadditionsprodukt des Δ^6 -des-Methyltropans (Bd. XII, S. 9) durch Erwärmen mit verd. Salzsäure im Wasserbade (W., A. 326, 7). Farbloses dickflüssiges Öl von schwachem Geruch. Krystallisiert weder bei starker Abkühlung noch bei längerer Aufbewahrung. Kp: 251° (korr.); mischbar mit Wasser (auch in der Wärme), Alkohol und Ätter. Wird von KMnO4 in schwefelsaurer Lösung allmählich angegriffen.
- 3. Aminoderivat des 1.4-Dimethyl-cyclohexanols-(2) $\rm C_8H_{16}O=(CH_2)_2C_0H_9\cdot OH.$
- [3 Oxy 4 methyl hexahydrobensyl] anilin $C_{14}H_{11}ON = CH_{2} \cdot HC < CH_{2} \cdot CH(OH) > CH \cdot CH_{2} \cdot NH \cdot C_{6}H_{5}$. B. Aus 4-Methyl-1-anilinomethylen-cyclohexanon-(2) (Bd. XII, S. 206) mit Natrium und Alkohol (Höchster Farbw., D. R. P. 119862; C. 1901 I, 1024). Krystalle. F: 126—127°.
- 4. Aminoderivat des 1-Methyl-3-methoāthyl-cyclopentanols-(2) $C_9H_{18}O = (CH_9)[(CH_8)_2CH]C_8H_7 \cdot OH$ (Bd. VI, S. 23).
- 3¹ Amino 1 methyl 3 methoäthyl cyclopentanol (2) $C_9H_{19}ON = H_8C CH_8 CH \cdot C(CH_9)_9 \cdot NH_9$. Zur Konstitution vgl. Harries, Matfus, B. 32, 1345. CH₃·HC·CH(OH)

- B. Aus Hydroxylamino-dihydrocampherphoron (Syst. No. 1938) durch Reduktion mit Natrium und Alkohol (Kerp, A. 290, 145). Oxalat 2C₂H₁₉ON+C₂H₂O₄ (über H₂SO₄). Krystalle.
- 5. Aminoderivate der Monooxy-Verbindungen $C_{10}H_{20}O$.
- 1. Aminoderivate des 1-Methyl-4-methoäthyl-cyclohexanols-(3) $C_{10}H_{20}O = (CH_2)[(CH_2)_2CH]C_0H_2 \cdot OH$ (Bd. VI, S. 28).
- 4 Amino p menthanol (3), 4 Amino menthol $C_{10}H_{21}ON = CH_2 \cdot HC \cdot CH_3 \cdot C(NH_2) \cdot CH(CH_3)_2$. B. Durch Reduktion von 4-Amino-menthon (Syst. No. 1873) mit Natrium + Alkohol (Konowalow, Ishewski, B. 31, 1480). Glycerin-ähnliche Flüssigkit Kp: 254°; Kp20: 147—150°. Ziemlich löslich in Wasser. [a]_D: —6°. Riecht spermaartig. $2C_{10}H_{21}ON + H_2SO_4$. Schmilzt bei 250° unter Braunfärbung. Schwer löslich in Wasser.
- 8 Amino p menthanol (3), 8 Amino menthol $C_{10}H_{11}ON = CH_2 \cdot CH_2 \cdot CH_3 \cdot CH \cdot C(CH_3)_2 \cdot NH_2$. B. Aus Pulegonamin (Syst. No. 1873) (Semm-Lee, B. 37, 2288), Pulegonhydroxylamin (Syst. No. 1938) (S., B. 37, 2287) oder Anhydropulegonhydroxylamin (Syst. No. 3180) mit Alkohol und Natrium (S., B. 37, 956; D. R. P. 173775; U. 1906 II, 1094). Kp_{10} : 121—124° (S., B. 37, 2287). D^{30} : 0,9634 (S., B. 37, 2287). n_p : 1,4815 (S., B. 37, 956), 1,4780 (S., B. 37, 2287).
- 8-[ω -Phenyl-thioureido]-p-menthanol-(3), 8-[ω -Phenyl-thioureido]-menthol $C_{17}H_{26}ON_2S=CH_2\cdot C_4H_2(OH)\cdot C(CH_2)_2\cdot NH\cdot CS\cdot NH\cdot C_4H_5$. B. Aus āquimolekularen Mengen von 8-Amino-menthol und Phenylsenföl in Benzol (Semmler, B. 37, 2286). Krystalle (aus Benzol). F: 132°. Oberhalb 132° findet Gasentwicklung statt und Bildung eines Produkts vom Schmelzpunkt 170°.
- 2. Aminoderivat des 1-Methyl-4-[methodthylol- (4^1)]-cyclohexans (?) $C_{10}H_{10}O = CH_2 \cdot C_0H_{10} \cdot C(CH_2)_0 \cdot OH(?)$.
- 2-Amino-p-menthanol-(8) (?) C₁₀H₂₁ON=CH₂·HC CH₂·HC CH₂·CH₂·CH·C(CH₃)₂·OH (?) (wahrscheinlich Gemisch von Stereoisomeren). B. Aus aktivem Dihydrocarvylamin (Bd. XII, S. 39) beim Eindampfen der salzsauren Lösung auf dem Wasserbad (WILLSTÄTTER, A. 396, 6 Ann.). Dickes Öl, krystallisiert bei längerem Aufbewahren zum Teil in Tafeln. Kp: 254—255°. Schwer flüchtig mit Wasserdampf. Mischbar mit Wasser. Zieht CO₂ an. Gegen Permanganat in schwefelsaurer Lösung beständig.
- 3. Aminoderivat des 1.1.2.5-Tetramethyl-cyclohexanols-(3) $\rm C_{10}H_{20}O=(CH_2)_4C_2H_7\cdot OH.$
- [6 Oxy 2.2.4 trimethyl hexahydrobensyl] anilin $C_{16}H_{25}ON = H_2C \xrightarrow{CH(OH) \cdot CH(CH_2 \cdot NH \cdot C_6H_5)} C(CH_2)_2$. B. Aus Anilinomethylen-dihydroisophoron (Bd. XII, 8. 206) mit Natrium und Alkohol (Höchster Farbw., D. R. P. 119862; C. 1901 I, 1024). Nadeln (aus Ligroin); F: 68—70°; Kp_{15} : 221°. Hydrochlorid. Farbloses krystallinisches Pulver. Ziemlich leicht löslich in kaltem Wasser, leicht in ätherischer Salzsäure.
- 4. Aminoderivat des 1 Methyl 3 dimethoathyl cyclopentanols (1) $C_{10}H_{10}O = (CH_2)[(CH_2)_2C]C_2H_7 \cdot OH$.
- 38-Amino-1-methyl-8-dimethoäthyl-cyclopentanol-(1), Oxydihydro-a-fencholenamin $C_{10}H_{21}ON = H_2C \cdot CH_2 \times CH \cdot C(CH_2)_2 \cdot CH_2 \cdot NH_2$. Zur Konstitution vgl. Wallach, A. 414 [1917], 227, 228. B. Entsteht neben a-Fencholenamin (Bd. XII. S. 40) bei der Reduktion von a-Fencholensäurenitril (Bd. IX. S. 67) mit Natrium und Alkohol (Wallach, Jenckel, A. 269, 374; W., A. 300, 310), wenn der Alkohol wasserhaltig ist (W., Tespene und Campher, 2. Aufl. [Leipzig 1914], S. 551). Dickes Öl. Kpm: 1486.
- 6. Aminoderivate des 1.2-Dimethyl-4-methoäthyl-cyclohexanols-(3) $C_{11}H_{20}O = (CH_2)_2(CH_2)_2CH]C_0H_0 \cdot OH.$
- 6 Oxy 2 methyl 5 isopropyl hexahydrobensylamin $C_{11}H_{22}ON = CH_2 \cdot HC < CH_2 \cdot NH_2 \cdot CH \cdot CH(CH_2)_2$. B. Entsteht in swei diastereoisomeren

Formen beim Behandeln von 2-Aminomethylen-menthon (Bd. VII, S. 569) mit Natrium und Alkohol; man sättigt die Lösung des erhaltenen Basengemisches in Benzol mit Chlorwasserstoff, wobei das salzsaure Salz der "trans"-Form ausfällt, während das Salz der "cis"-Form in Lösung bleibt (Höchster Farbw., D. R. P. 119862; C. 1901 I, 1024).

"cis"-Form. Weiße Krystallmasse. Kp₂₀: 165—170°. "trans"-Form. Weiße Krystallmasse. Kp₂₀: 163°.

- [6-Oxy-2-methyl-5-isopropyl-hexahydrobensyl]-dimethylamin $C_{12}H_{27}ON = (CH_3)[(CH_2)_2CH]C_2H_3(OH)\cdot CH_2\cdot N(CH_2)_2$. B. Durch Reduktion von 2-[Dimethylaminomethylen]-menthon (H. F., D. R. P. 119862; C. 1901 I, 1024). Kp_{14} : 140°.
- [6 · Oxy · 2 · methyl · 5 · isopropyl · hexahydrobensyl] · äthylamin $C_{18}H_{27}ON = (CH_3)[(CH_3)_2CH]C_8H_8(OH) \cdot CH_2 \cdot NH \cdot C_2H_5$. B. Durch Reduktion von 2-Äthylaminomethylenmenthon (H. F., Ď. R. P. 119862; C. 1901 I, 1024). Öl. Kp₁₉: 165—166°.
- [6 Oxy 2 methyl 5 isopropyl hexahydrobensyl] anilin $C_{17}H_{27}ON = (CH_3)[(CH_3)_2CH]C_4H_4(OH) \cdot CH_2 \cdot NH \cdot C_2H_3$. B. Aus 2-Anilinomethylen-menthon, welches aus 2-Oxymethylen-menthon (Bd. VII, S. 568) und Anilin erhalten wird, durch Reduktion mit Natrium + Alkohol (H. F., D. R. P. 119862; C. 1901 I, 1024). Dickes Öl. Kp₂₀: 247—248°.

b) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-2} O$.

1. A minoderivate des Cyclohepten-(1)-ols-(3) $C_7H_{12}O = C_7H_{11}\cdot OH$ (Bd. VI, S. 49).

Festes 5 - Methylamino - cyclohepten - (1) - ol - (3) $C_8H_{15}ON =$

H₂C·CH(OH)·CH
CH₂·NH·HC
CH₃·CH₄·CH
CH₃·NH·HC
CH₃·CH₄·CH
Wasserstoffadditionsprodukt des 5-Methylamino-cycloheptadiens-(1.3) (?) (Bd. XII, S. 52) durch Einw. von Natriumdicarbonat (Willstätter, A. 326, 21). Aus dem öligen, unter 12 mm Druck bei 133° siedenden Reaktionsprodukt scheidet sich beim Stehen das feste Isomere aus (Willstätter, A. 326, 21). — Prismen (aus Benzol oder wasserfreiem Äther). F: 103—104°. Schwer löslich in Äther, leicht in heißem hochsiedendem Ligroin, sehr wenig in kaltem Ligroin. Zieht an der Luft Feuchtigkeit und Kohlensäure an. Ist in schwefelsaurer Lösung gegen Kaliumpermanganat völlig unbeständig.

Öliges 5 - Methylamino - cyclohepten - (1) - ol - (3) $C_2H_{15}ON =$

H₃C·CH(OH)·CH
CH. Wahrscheinlich stereoisomer mit dem festen 5-MethylCH₃·NH·HC—CH₄—CH. Wahrscheinlich stereoisomer mit dem festen 5-Methylamino-cyclohepten-(1)-ol-(3). Einheitlichkeit fraglich. Bildung s. im vorhergehenden Artikel.
— Dickes Ol. Ist in Benzol leichter löslich als das feste Isomere (WILLSTÄTTER, A. 326, 21).

Sterisch dem Tropin entsprechendes 5-Dimethylamino-cyclohepten-(1)-ol-(3), des-Methyltropin, "a-Methyltropin" $C_2H_{17}ON = HO \cdot C_7H_{16} \cdot N(CH_2)_2$. B. Durch Destilation von Tropinhydroxymethylat (Syst. No. 3108) (s. nebenstehende Formel) (Merling, A. 216, 332; Ladenburg, A. 217, 430; Willstätter, A. 326, 9). — Farbloses, schwerflüsses Öl. Kp: 243° (L.), 247—248° (korr.) (geringe Zersetzung); Kp₁₉₋₁₉₁₅: 130—131° (W.). Ziemlich leicht löslich in Äther (W.), leicht löslich in Wasser und Alkohol (L.). — Liefert in Bromwasserstoffsäure mit Brom in Chloroform das bromwasserstoffsaure Salz des des-Methyltropindibromids (S. 349) (W.). Gibt mit der berechneten Menge Salzsäure das salzsaure Salz des des-Methyltropins, mit überschüßsiger Salzsäure dasjenige des 3-Chlor-5-dimethylamino-cycloheptens-(1) (Bd. XII, S. 35) (W.). — Hydrochlorid. Allmählich krystallinisch erstarrender Sirup. Sehr leicht löslich in Wasser (W.). — C₉H₁₇ON + HCl + AuCl₂ (L.). Prismen (aus verd. Salzsäure). F: 96° (W.).

Sterisch dem Pseudotropin entsprechendes 5-Dimethylamino-cyclohepten-(1)-ol-(3), des-Methylpseudotropin $C_9H_{17}ON = HO \cdot C_7H_{10} \cdot N(CH_8)_9$. B. Beim Erhitzen von Pseudotropinhydroxymethylat (Syst. No. 3108) (WILLSTÄTTER, A. 326, 15). Aus dem Chlorwasserstoffædditionsprodukt des $A^{(2,4)}(^{\circ})$ -des-Methyltropidins (Bd. XII, S. 52) durch Einw. von Natriumdicarbonat bei gewöhnlicher Temperatur (W.). — Farbloser, auch bei starkem Abkühlen nicht krystallisierender Sirup. Kp: 242—244° (fast ohne Zersetzung), Kp₁₁: 128—129°. — Gibt mit Goldohlorid einen öligen, mitunter krystallisierenden Niederschlag, der sich bald unter Abscheidung von Gold zersetzt.

Benzoesäureester des sterisch dem Tropin entsprechenden 5-Dimethylaminoeyclohepten-(1)-ols-(3), Bensoyl-des-methyltropein $C_{16}H_{21}O_{2}N=C_{6}H_{5}\cdot CO\cdot O\cdot C_{7}H_{10}\cdot N(CH_{2})_{8}$. Beim Erwärmen von des-Methyltropein mit Benzoesäureanhydrid in benzolischer Lösung auf dem Wasserbad (W., A. 326, 10). — Ol. — $C_{16}H_{21}O_{2}N+HCl$. Prismen oder Nadeln (aus Alkohol + wasserfreiem Äther). F: 171—172°. Sehr leicht löslich in Wasser und Alkohol.

Benzoesäureester des sterisch dem Pseudotropin entsprechenden 5-Dimethylamino-cyclohepten-(1)-ols-(3), Benzoyl-des-methylpseudotropein $C_{16}H_{21}O_{2}N=C_{6}H_{5}$. CO·O·C,H₁₀·N(CH₃)₃. B. Beim Erwärmen von des-Methylpseudotropin mit Benzoesäure-anhydrid in benzolischer Lösung (W., A. 326, 18). — Öl. — C₁₀H₂₁O₃N + HCl. Vierseitige Täfelchen und Prismen (aus Alkohol). F: 166—167°. Sehr leicht löslich in Wasser und siedendem Alkohol, ziemlich in kaltem Alkohol.

Sterisch dem Tropin entsprechendes Trimethyl-[3-oxy-cyclohepten-(4)-yl]-ammoniumhydroxyd, des-Methyltropin-hydroxymethylat $C_{10}H_{11}O_3N=HO\cdot C_7H_{10}\cdot N(CH_2)_2\cdot OH$. B. Das Jodid entsteht aus des-Methyltropin (S. 351) und Methyljodid in alkoholischer (Merling, A. 216, 334) oder wäßriger (Ladenburg, A. 217, 131) Lösung. Man erhält die freie Base aus dem Jodid in Wasser durch Silberoxyd (M.; L.). — Liefert bei der Destillation Trimethylamin, Tropiliden (Bd. V, S. 280), wenig Tropilen (Bd. VII, S. 54) (M.; L.) und ein öliges basisches Produkt (M., A. 216, 336). — Jodid. Zerfließliche Nadeln. Schwer löslich in kaltem, leicht in heißem absolutem Alkohol; unlöslich in Äther (M.). Liefert bei der Destillation mit Kali Trimethylamin und Tropiliden (L.). — $2C_{10}H_{20}$ ONCI + PtCl₄. Orangegelbe Krystalle (aus verd. Alkohol). Bräunt sich unter Zersetzung bei 100—110° (M., A. 216, 335).

2. Aminoderivate des Cycloocten-(1)-ols-(3) $C_AH_{14}O=C_AH_{18}\cdot OH$.

5-Dimethylamino-cycloocten-(1)-ol-(8), des-Dimethylpseudogranatolin $C_{10}H_{10}ON=$ CH₃)₂N·HC<CH₃·CH(OH)·CH>CH. B. Durch erschöpfende H₃C—CH—CH₃
Methylierung des Methylpseudogranatolins nebenstehender Formel H₂C N(CH₃) CH·OH (Syst. No. 3109) neben einer isomeren Verbindung C₁₀H₁₂ON (s. bei Methylpseudogranatolin, Syst. No. 3109) (Willstätter, Verlaguth, B. 38, 1990). — Sirup. Kp_{18,8}: 141—142° (unkorr.). In warmem Wasser ziemlich schwerlöslich, sonst leicht löslich. Schwer flüchtig mit Wasserdampf.

3. Aminoderivate der Monooxy-Verbindungen $C_{10}H_{18}O$.

- 1. Aminoderivate des 1-Methyl-bicyclo-[1.3.3]-nonanols-(5) $C_{10}H_{18}O=$ $CH_3 \cdot C_9H_{14} \cdot OH$.
- $\mathbf{H_2C-C(CH_2)-CH_2}$ 8-Amino-1-methyl-bicyclo-[1.3.3]-nonanol-(5) $C_{10}H_{10}ON = H_2C$ CH_2 CH_3 CH_4 CH_4 CH_4 CH_5 H.C-C(OH)-CH. Ist in zwei optisch inaktiven, diastereoisomeren Formen bekannt.
- a) Hochschmelzende Form $C_{10}H_{19}ON = CH_3 \cdot C_9H_{13}(OH) \cdot NH_4$. B. Aus dem hochschmelzenden Oxim des 1-Methyl-bicoccio-[1.3.3]-nonanol-(5)-ons-(3) (Bd. VIII, S. 11) mit Natrium und Alkohol (RABE, A. 360, 279). — Farblose, prismatische Nädelchen (aus Benzol). F: 202—204°. Flüchtig mit Wasserdampf. Leicht löslich in Wasser und Alkohol, ziemlich schwer in Benzol und Äther, sehr wenig in Ligroin.
- b) Niedrigschmelzende Form C₁₀H₁₀ON = CH₂·C₂H₁₀(OH)·NH₂. B. Aus dem niedrigschmelzenden Oxim des 1-Methyl-bicyclo-[1.3.3]-nonanol-(5)-ons-(3) (Bd. VIII, S. 11) mit Natrium und Alkohol (RABE, A. 860, 280). — Oktaedrische Krystalle (aus Benzol). F: 86—87°. In Wasser leichter Itslich als die hochschmeizende Form. — C₁₀H₁₉ON + HCl. Nädelchen (aus Alkohol + wenig Aceton). F: 272—275° (Zers.). Sehr leicht löslich in Wasser. — Pikrat C₁₀H₁₉ON + C₆H₂O₇N₃. Gelbe Krystalle (aus Alkohol). Zersetzt sich bei 238°. Sehr wenig löslich in Wasser, löslich in Alkohol und Ather. — Pikrolonat s. bei Pikrolonat s. saure, Syst. No. 3561.
- 8-Dimethylamino-l-methyl-bicyclo-[1.8.3]-nonanol-(5)-jodmethylat $C_{13}H_{14}ONI=$ CH₃·C₂H₁₅(OH)·N(CH₃)₃I. B. Aus dem piedrigschmelzenden 3-Amino-1-methyl-bicyclo-[1.3.3]-nonanol-(5) in Methylalkohol mit überschüssigem Methyljodid und Natriummethylat (Rabe, A. 360, 281). — Krystalle (aus Alkohol). Zersetzt sich bei ca. 278°.

- 2. Aminoderivate des 1.7.7 Trimethyl bicyclo [1.2.2] heptanols (2) $C_{10}H_{14}O = (CH_2)_3C_7H_4 \cdot OH$ (Bd. VI, S. 72).
- 8-Amino-camphanol-(2), 3-Amino-borneol C₁₉H₁₉ON, s. nebenstehende Formel. Ist in 2 genetisch mit d-Campher verknüpften, diastereoisomeren Formen bekannt. Die sterische Anordnung (vgl. Bd. VI, S. 72; Bd. VII, S. 117) sowohl der Hydroxyl- wie der Aminogruppe ist bei beiden Formen ungewiß.
- a) Hochschmelzendes 3 Amino borneol, "a"- Amino borneol C₁₀H₁₉ON = (CH₃)₃C₇H₇(OH)·NH₂. B. Durch Reduktion von 3-Amino-campher (Syst. No. 1873) mit Natrium + siedendem Alkohol (DUDEN, MACINTYRE, B. 31, 1902). Blättchen (aus Ligroin), dicke wasserhaltige Platten (aus feuchtem Äther), die bei ca. 90° wasserfrei werden. F: 187°; Kp₇₅₁: 264°; leicht sublimierbar; riecht eigentümlich durchdringend; löslich in ca. 100 Tln. Wasser von Zimmertemperatur, sonst leicht löslich (D., M., B. 31, 1903). [a]; —8° 44′ (in Methylalkohol, p = 16,3) (D., M., A. 313, 66). PCl₅ bildet 2-Chlor-3-amino-camphan (Bd. XII, S. 50) (D., M., A. 313, 68). Das Monoacetylderivat schmilzt bei 128° (D., M., A. 313, 67). Hydrochlorid. Leicht lösliche Krystallmasse. Zersetzt sich bei 285° (D., M., B. 31, 1903). Chloroaurat. Nadeln (aus Chloroform). F: 197° (D., M., A. 313, 67). Chloroplatinat 2 C₁₀H₁₉ON + 2 HCl + PtCl₄. Gelbliche Blättchen. Zersetzt sich bei 272° (D., M., B. 31, 1903).
- 3-Methylamino-borneol $C_{11}H_{21}ON=(CH_3)_3C_7H_7(OH)\cdot NH\cdot CH_3$. B. Durch Reduktion von 3-Methylamino-campher (Syst. No. 1873) mit Natrium und absol. Alkohol (DUDEN, PRITZKOW, B. 32, 1542). Aus "a"-Aminoborneol durch Methylierung (D., P.). Dickes, bei längerem Stehen krystallinisch erstarrendes Ol. Kp₇₄₄: 257—258°.
- 3-Dimethylamino-borneol C₁₂H₂₃ON = (CH₃)₂C₇H₇(OH)· N(CH₃)₂. B. Durch Reduktion von 3-Dimethylamino-campher (Syst. No. 1873) mit Natrium und Alkohol (D., P., B. 32, 1543). Prismen (aus Petroläther). F: ca. 80°. Kp₇₅₅: 259—261°. Leicht löslich in organischen Mitteln.
- 3.3'-Imino-di-borneol $C_{20}H_{35}O_3N=[(CH_3)_3C_7H_7(OH)]_2NH$. B. Durch Reduktion von Di-[campheryl-(3)]-amin (Syst. No. 1873) mit Natrium + Alkohol (EINHORN, JAHN, B. 35, 3665). Nädelchen (aus Ligroin). F: 197°; unzersetzt flüchtig; unlöslich in Wasser. Sulfat. Nadeln (aus Alkohol).
- 3-Ureido-borneol vom Schmelspunkt 177° $C_{11}H_{20}O_2N_3 = (CH_3)_3C_7H_7(OH)\cdot NH\cdot CO\cdot NH_2$. B. Aus dem Hydrochlorid des hochschmelzenden 3-Amino-borneols mit Kaliumcyanat in Wasser (D., M., B. 31, 1904). Nadeln (aus Alkohol). F: 177°.
- b) Niedrigschmelzendes 3-Amino-borneol, "β"-Aminoborneol $C_{10}H_{10}ON = (CH_3)_2C_7H_7(OH)\cdot NH_2$. B. Aus 3-Amino-campher durch Natrium in feuchtem Ather (Duden, Macintyre, A. 313, 66). Krystalle (aus Ather-Ligroin). F: 166°. Kp₇₅₁: 262—263°. [a]; :-62° 28′ (in Methylalkohol, p = 26,1). Verhält sich chemisch wie die "a"-Verbindung (s. o.). Die Monoacetylverbindung schmilzt bei 130°. Chloroaurat. Nadeln (aus Chloroform). F: 227°. Chloroplatinat. Blättchen. Zersetzt sich bei 293°.
- 3-Ureido-borneol vom Schmelspunkt 211° $C_{11}H_{20}O_2N_2=(CH_2)_3C_7H_7(OH)\cdot NH\cdot CO\cdot NH_2$. B. Aus dem Hydrochlorid des niedrigschmelzenden 3-Amino-borneols (s. o.) und Kaliumcyanat in Wasser (D., M., A. 318, 67). Blättchen (aus Wasser). F: 211°.

4. Aminoderivate der Monooxy-Verbindungen $C_{11}H_{20}O$.

- 1. Aminoderivate des 1.3-Dimethyl-bicyclo-[1.3.3]-nonanols-(5) $C_{11}H_{20}O = (CH_3)_2C_3H_{13}\cdot OH$.
- 7-Amino-1.3-dimethyl-bicyclo-[1.3.3]-nonanol-(5)
 C₁₁H₂₁ON, s. nebenstehende Formel. Zur Konstitution vgl.
 Bd. VIII, S. 14 Anm. 2. Ist in zwei optisch inaktiven,
 diastereoisomeren Formen bekannt.

 H₂C-C(CH₃)-CH₃
 CH·CH₃
 CH·CH₃
- a) Hochschmelzende Form $C_{11}H_{21}ON = (CH_{2})_{3}C_{3}H_{12}(OH) \cdot NH_{2}$. B. Aus dem hochschmelzenden Oxim des 1.3-Dimethyl-bicyclo-[1.3.3]-nonanol-(5)-ons-(7) (Bd. VIII, S. 14) mit Natrium und Alkohol (Rabe, A. 360, 286). Krystallisiert aus Benzol in weißen, Krystallbenzol enthaltenden, an der Luft rasch verwitternden Blättchen. F: 203—204°. Leicht löslich in Alkohol und Ather, schwer in Benzol, sehr wenig in Wasser.
- b) Niedrigschmelzende Form $C_{11}H_{21}ON = (CH_3)_9C_9H_{12}(OH)\cdot NH_2$. B. Aus dem niedrigschmelzenden Oxim des 1.3-Dimethyl-bioyclo-[1.3.3]-nonanol-(5)-ons-(7) mit Natrium und Alkohol (RABE, A. 360, 286, 287). Weiße Nädelchen (aus Benzol). F: 155°. Leicht löslich in Alkohol und Äther, schwerer in Benzol, sehr wenig in Ligroin; löslich in heißem Wasser.

- $C_{11}H_{21}ON + HCl$. Hygroskopische Krystalle (aus Alkohol mit Äther). Zersetzt sich bei 265—268°; sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. Pikrat $C_{11}H_{21}ON + C_{0}H_{12}O_{1}N_{2}$. Gelbrote Krystalle (aus Alkohol). F: 225—227° (Zers.). Pikrolonat s. bei Pikrolonsäure, Syst. No. 3561.
- 7 Dimethylamino 1.3 dimethyl bicyclo [1.8.3] nonanol (5) jodmethylat C₁₂H₂₅ONI = (CH₂)₂C₂H₁₅(OH)·N(CH₂)₂I. B. Aus dem niedrigschmelzenden 7-Amino-1.3-dimethyl-bicyclo-[1.3.3]-nonanol-(5) in Methylalkohol mit überschüssigem Methyljodid und Natriummethylat (RABE, A. 360, 288). Niederschlag (aus Alkohol mit Äther). Zersetzt sich bei 220—223°; sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther.
- 2. Aminoderivat des 1.3.7.7 Tetramethyl bicyclo [1.2.2] heptanols (2) $C_{11}H_{10}O = (CH_2)_4C_7H_7 \cdot OH$.
- 3-[Anilino-methyl]-borneol C₁₇H₂₅ON, s. nebenstehende Formel. B. Aus 3-Anilinomethylen-campher (Bd. XII, S. 206) mit Natrium und Alkohol (Höchster Farbw., D. R. P. 119862; C. 1901 I, 1024). Nahezu H₂C-CH—CH·CH₂·NH·C₆H₅ farbloser, zähflüssiger Sirup. Kp₂₀: 231°.
 - c) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-4} O$.
- 1. Aminoderivat des Cyclopentadien-(1.3)-ols-(5) $C_5H_6O = C_5H_5 \cdot OH$.
- 1.2.3.4-Tetraamino-cyclopentadien-(1.3)-ol-(5) $C_5H_{10}ON_4=H_1N\cdot C\cdot C(NH_2)$ bezw. desmotrope Formen. B. Aus dem Tetraoxim der Leukonsäure (Bd. VII, S. 906) mit SnCl₂ und konz. Salzsäure (NIETZKI, ROSEMANN, B. 22, 923). $C_6H_{10}ON_4+3$ HCl. Kleine oktaederförmige Kryställchen. $C_5H_{10}ON_4+2H_2SO_4+H_2O$. Schwer lösliche Nadeln.
- 2. Aminoderivat des 1.7.7-Trimethyl-bicyclo-[1.2.2]-hepten-(2)-ols-(2) $C_{10}H_{16}O=(CH_3)_3C_7H_6(OH)$.

Benzoesäureester der Enolform des 3-[Dimethylamino] - campher - jodmethylats $C_{20}H_{20}O_2NI$, s. nebenstehende Formel. B. Aus Trimethyl-campheryl-(3)-ammonium-jodid (Syst. No. 1873) durch Benzoylierung nach Schotten-Baumann (Rabe, Schneider, B. 41, 876). — Öl, das beim Reiben mit Äther erstartt.

$$\begin{array}{c|c} \mathbf{H_3C-C(CH_3)_2 C \cdot O \cdot CO \cdot C_0H_5} \\ & C(CH_3)_3 \\ & \mathbf{H_2C-CH} - C \cdot \mathbf{N(CH_3)_3} \mathbf{I} \end{array}$$

- d) Aminoderivate der Monooxy-Verbindungen C_nH_{2n-6}O.
- 1. Aminoderivate des Oxybenzols $C_eH_eO=C_eH_b\cdot OH$ (Bd. VI, S. 110).

Monoaminoderivate des Oxybenzols.

2-Amino-phenol und seine Derivate.

2-Amino-1-oxy-benzol, 2-Amino-phenol, o-Amino-phenol $C_0H_2ON = H_2N \cdot C_0H_4 \cdot OH$.

Bildung. Aus 2-Nitro-phenol (Bd. VI, S. 213) durch Reduktion mit Schwefelnstrium (A. W. Hofmann, A. 103, 351; Soc. 10, 207), mit hydroschwefligaaurem Natrium Na₂S₂O₄ in siedender alkalischer Lösung (Grandmougin, B. 39, 3562), mit Schwefelammonium (Fritzsche, J. pr. [1] 75, 281; Paul., Z. Ang. 9, 593), mit Aluminiumamalgam in verd. Alkohol (H. Wislioenus, Kaufmann, B. 38, 1326), mit Natriumamalgam in alkal. Lösung (Brunck im Kekulés Lehrbuch der organischen Chemie, III. Bd. [Erlangen 1867], S. 41), mit Zinkstaub und siedendem Wasser (Bamberger, B. 28, 251) in Gegenwart von Chlorosleium (Lumière, Seyewetz, Bl. [3] 11, 1044), mit Zinkstaub und Salzsäure (Kock, B. 20, 1568), mit alkalischer Zinnoxydullösung (Goldschmidt, Eckart, Ph. Ch. 56, 400), mit Zinn und Salzsäure (Schmitt, Cook in Kekulés Lehrbuch der organischen Chemie, III. Band [Erlangen 1867], S. 62), mit Zinnehlorfir in Salzsäure (Paul.; Kock), mit Phenylhydrazin in heißem Xylol (Barb, B. 20, 1497). 2-Amino-phenol entsteht ferner neben braunen und roten Produkten bei der elektrolytischen Reduktion von 2-Nitro-phenol an Platinkathoden unter verschiedenen

Bedingungen (Elbs, J. pr. [2] 43, 40), besonders leicht in Gegenwart überschüssiger Natronlauge (Elbs, J. pr. [2] 43, 45; Löb, Z. El. Ch. 2, 533; C. 1896 I, 902). Bei der Einw. von alkoh. Schwefelsäure auf N-Phenyl-hydroxylamin (Syst. No. 1932), neben anderen Produkten (Bameerger, Lagutt, B. 31, 1501). Sehr geringe Mengen von 2-Amino-phenol entstehen neben viel Azoxybenzol und zahlreichen anderen Verbindungen bei der Einw. wäßr. Natronlauge auf Nitrosobenzol (Bd. V, S. 230) (Bamberger, B. 33, 1939).

Physikalische Eigenschaften. Weiße Nadeln (A. W. Hof.). Zersetzlich; schwärzt sich an der Luft rasch, besonders in Lösung (A. W. Hof.). F: 170° (Bamb., B. 28, 251), 172° hig 173° (Barb., Löb.) 474° (Gr.). Sublimierbar: löglich in 59 Th. Wasser von 0°, in 23 Th.

Physikalische Eigenschaften. Weiße Nadeln (A. W. Hof.). Zersetzlich; schwärzt sich an der Luft rasch, besonders in Lösung (A. W. Hof.). F: 170° (Bahb., B. 28, 251), 172° bis 173° (Bahb., 174° (Gr.). Sublimierbar; löslich in 59 Tln. Wasser von 0°, in 23 Tln. Alkohol, viel leichter in Äther (vgl. A. Kekulé, Lehrbuch der organischen Chemie, Bd. III [Erlangen 1867], S. 62); schwer löslich in warmem Benzol (Barb.). Elektrolytische Dissoziationskonstante k bei 15°: 2,18×10⁻¹⁰ (gemessen durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrocyse des Hydrochlorids) (Veley, Soc. 93, 2131). Verlauf der Leitfähigkeit während des Neutralisierens ("Leitfähigkeitstitration") als Maß der Acidität:

THIEL, ROBMER, Ph. Ch. 63, 738).

Chemisches Verhalten. Bei der Oxydation von 2-Amino-phenol in heißer wäßriger Lösung mit Luftsauerstoff entstehen Aminophenoxazon (Formel I) (s. bei der entsprechenden Leukoverbindung, Syst. No. 4382) und Oxyphenoxazim (Formel II) (KEHEMANN, MATTISSON, B. 39, 135). Aminophenoxazon entsteht auch, wenn man 2-Amino-phenol in siedender benzolischer Lösung mit gelbem Quecksilberoxyd behandelt (O. FISCHER, JONAS, B. 27, 2784). Bei der Oxydation von salzsaurem 2-Amino-phenol in heißer wäßriger Lösung mit Luft-

sauerstoff entsteht Triphendioxazin (Formel III) (Syst. No. 4633) neben braunen amorphen Farbstoffen (Seidel, B. 23, 182; vgl. O. Fischer, Hepp, B. 23, 2792; O. Fisch., Jonas, B. 27, 2784). Ahnlich verläuft die Oxydation von salzsaurem 2-Amino-phenol in heißer wäßriger Lösung mit Kaliumferricyanid (G. Fischer, J. pr. [2] 19, 319; Seidel, B. 23, 182). Wird salzsaures 2-Amino-phenol in wäßr. Lösung mit Kaliumferricyanid in Gegenwart von überschüssiger Salzsäure bei Zimmertemperatur stehen gelassen, so bildet sich neben Triphendioxazin und anderen Produkten Oxyphenoxazon (Formel IV) (s. bei der entsprechenden Leukoverbindung, Syst. No. 4251) und eine Doppelverbindung dieses Oxyphenoxazons mit Aminophenoxazon $C_6H_4 < \frac{N}{O} > C_6H_2(:O) \cdot OH + C_6H_4 < \frac{N}{O} > C_6H_2(:O) \cdot NH_2$ (Syst. No. 4382) (Diefolder, B. 35, 2817). Reichlicher entsteht das Oxyphenoxazon, wenn man salzsaures 2-Amino-phenol mit Eisenchlorid in wäßr. Lösung auf dem Wasserbade unter Ausschluß der

III.
$$0$$
 IV. 0 0 0 0

Luft oxydiert (DIEP.). Bei der Oxydation von 2-Amino-phenol in äther. Lösung mit neutraler Sulfomonopersäurelösung entsteht 2-Nitro-phenol (Bd. VI, S. 213) neben anderen Produkten (Bambergee, Czerkis, J. pr. [2] 68, 473). Erwärmt man eine wäßr. Lösung von salzsaurem 2-Amino-phenol mit einer 10% igen Natriumsuperoxydlösung allmählich auf 80%, so erhält man 2 Nitro phenol sabsitation auf 80%, so erhält man 2 Nitro phenol sabsitation auf 80% auf 80% so erhält man 2 Nitro phenol sabsitation auf 80% au man 2-Nitro-phenol; arbeitet man aber in saurer Lösung, so wird neben einem schwarzbraunen Farbstoff Triphendioxazin gebildet (O. Fisch., Trost, B. 26, 3084). Oxydation von 2-Aminophenol durch Nitrosobenzol s. S. 356, durch Chinon s. S. 356, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 356, durch Chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 356, durch Chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 356, durch Chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 358, durch chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 358, durch chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 358, durch chinon s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenzol s. S. 358, durch salzsaures 4-Aminophenol durch Nitrosobenz azobenzol s. S. 358. Erzeugung brauner Farbstoffe bezw. Farbungen durch Oxydation von 2-Amino-phenol: Akt.-Ges. f. Anilinf., D. R. P. 59964; Frdl. 3, 998; D. R. P. 103505; C. 1899 II, 895. Beim Einleiten von Chlor in eine Suspension von salzsaurem 2-Amino-phenol in Eisessig entsteht zunächst 3.4.5.6-Tetrachlor-2-amino-phenol (S. 386), dann Hexachlorcyclohexen-(1)-dion-(3.4 oder 4.5) (Bd. VII, S. 575) (ZINCKE, KÜSTER, B. 21, 2723). 2-Aminophenol läßt sich durch Erhitzen mit Schwefel bezw. mit Schwefel und Atzalkali in alkalilösliche Schwefelfarbstoffe überführen (Soc. St. Denis, VIDAL, D. R. P. 85330; Frdl. 4, 1049). Durch Erhitzen von 2-Amino-phenol mit Schwefelchlorür entsteht ein braunschwarzer basischer Farbstoff (Cassella & Co., D. R. P. 103646; Frdl. 5, 468; C. 1899 II, 639). Beim Lösen von 2-Amino-phenol in rauchender Schwefelsäure entsteht 2-Amino-phenol-sulfonsäure-(4) (Syst. No. 1926) (Post, A. 205, 51). Beim Übergießen von salzsaurem 2-Amino-phenol mit absol. Alkohol, der mit salpetriger Saure gesättigt ist, entsteht o-Oxy-benzoldiazoniumchlorid (Syst. No. 2199) (Schmitt, B. 1, 67; vgl. Hantzsch, Davidsch, B. 29, 1528). Läßt man zu einer siedend-heißen Lösung von salzsaurem 2-Amino-phenol in salzsaurer Cuprochloridlösung Natriumnitritlösung tropfen, so bildet sich 2-Chlor-phenol (SANDMEYER, B. 17, 2651). Gießt man eine aus 2-Amino-phenol bereitete Diazoniumsalzlösung in eine siedende Cuprisulfat-Lösung, so entsteht Brenzcatechin (Soc. Chim. des Usines du Rhône,

D. R. P. 167211; C. 1906 I, 721). 2-Amino-phenol wird auch bei längerem Erhitzen mit ca. 10°/eiger Salzsäure auf 180° teilweise in Brenzeatechin übergeführt (J. MEYER, B. 30, 2569).

Beim Vermischen von 1 Tl. salzsaurem 2-Amino-phenol in Methylalkohol mit 3 Tln. Methyljodid unter Zusatz von konz. Kalilauge bis zur stark alkalischen Reaktion entsteht Trimethyl-[2-oxy-phenyl]-ammoniumjodid (S. 363) (GRIESS, B. 13, 246). Erhitzt man 2-Amino-phenol mit Brombenzol in Gegenwart geringer Mengen Cuprojodid, so entsteht 2-Oxydiphenylamin (S. 365) (GOLDBERG, D. R. P. 187870; C. 1907 II, 1465). Mit Benzylchlorid reagiert 2-Amino-phenol lebhaft unter Bildung von 2-Dibenzylamino-phenol (S. 367) (BAKUNIN, G. 36 II, 223). 2-Amino-phenol liefert mit Nitrosobenzol (Bd. V, S. 230) in Eisessig reichlich Triphendioxazin (Formel III auf S. 355) (KRAUSE, B. 32, 126). Kocht man 2-Amino-phenol in Alkohol mit 2-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) unter Zusatz von Natriumscetat, so entsteht 2'.6'-Dinitro-2-oxy-diphenylamin (S. 365) (ULLMANN, A. 366, 110; Akt.-Ges. f. Aniling D. R. P. 2007-36. C. 1908-11, 220). Raim S. std. Frhitzen von 2 Amino-phenol Anilinf., D. R. P. 200736; C. 1908 II, 839). Beim 5-stdg. Erhitzen von 2-Amino-phenol mit 4-Brom-1.3-dinitro-benzol (Bd. V, S. 266) im Druckrohr auf 130—140° entsteht 2'.4'-Dinitro-2-oxy-diphenylamin (S. 365) (Schöpff, B. 22, 900). Beim Kochen von 2-Amino-phenol mit Pikrylchlorid und Benzol entsteht 2'.4'.6'-Trinitro-2-oxy-diphenylamin (Turpin, Soc. 59, 720). Salzsaures 2-Amino-phenol gibt beim Erhitzen mit Methylalkohol im Druckrohr auf 180—186° 2-Dimethylamino-phenol; nach Abscheidung desselben mit Ammoniak kann durch Erhitzen der wäßr. Lösung mit konz. Ammoniak im Druckrohr auf 170-1770 eine weitere Menge dieser Base erhalten werden (PINNOW, B. 32, 1405). 2-Amino-phenol verbindet sich mit Brenzcatechin bei 270° zu Phenoxazin C₆H₄< NH₂C₆H₄ (Syst. No. 4198) (BERNTHSEN, B. 20, 942; KEHRMANN, A. 322, 9). Salzsaures 2-Amino-phenol gibt beim Erhitzen mit 2-Nitro-phenol, Glycerin und konz. Schwefelsäure zum mäßigen Sieden 8-Oxychinolin (Syst. No. 3114) (Seraup, B. 15, 893; M. 3, 536). Beim Erwärmen von salzsaurem 2-Amino-phenol mit Paraldehyd und konz. Salzsäure auf dem Wasserbade entsteht 8-Oxy-2-methyl-chinolin (Syst. No. 3114) (DOEBNER, v. MILLER, B. 17, 1705). Äquimolekulare Mengen 2-Amino-phonol und Benzaldehyd kondensieren sich beim Erwärmen auf dem Wasserbade zu 2-Benzalamino-phenol (Pictet, Ankersmit, A. 266, 140). Beim Kochen von 2-Amino-phenol mit Benzaldehyd entsteht 2-Phenyl-benzoxazol (Syst. No. 4199) (Wheeler, Am. 17, 400). Beim Erhitzen von 2-Amino-phenol mit Diacetyl in Wasser entsteht eine Verbindung C₁₆H₁₆O₂N₂ (S. 358) (KEHRMANN, B. 28, 343). 2-Amino-phenol wird durch Chinon in heißer alkoholischer Lösung zu Aminophenoxazon (Formel I auf S. 355) oxydiert (ZINCKE, HEBEBRAND, A. 226, 61; O. FISCHER, HEPP, B. 28, 297). 2-Amino-phenol kondensiert sich in Benzol oder Alkohol mit Phenanthrenchinon (Bd. VII, S. 796) zu einer farblosen Pseudobase C₂₀H₁₂O₂N (Syst. No. 4204), die mit starken Säuren in violette Phenanthrophenaz-

oxoniumsalze C₆H₄·C=O(Ac) C₆H₄ übergeht (Kehrm., B. 38, 2953; Kehrm., Winkelmann, B. 40, 613; vgl. Hantzsch, B. 39, 158). Bei der Kondensation von 2-Amino-phenol mit 2-Oxy-naphthochinon-(1.4) (Bd. VIII, S. 300) durch Erwärmen mit 80% jeger Essigsäure bildet

 $C_{\bullet}H_{\bullet}\cdot C = N$

sich die Verbindung $C_{16}H_2O_2N$, der als Leukoprodukt das Oxy-ang- $\beta.a$ -naphthophenoxazin der Formel V (Syst. No. 4228) entspricht (Kehrm., B. 28, 354). Nimmt man diese Kondensation in alkoh. Lösung vor, so bildet sich daneben 2-[2-Oxy-anilino]-naphthochinon-(1.4) (Syst. No. 1874) (Kehrm., B. 28, 354). Bei der Kondensation von salzsaurem 2-Aminophenol mit 2-Oxy-naphthochinon-(1.4)-imid-(4) bezw. 4-Amino-naphthochinon-(1.2) (Bd. VIII, S. 302) in Alkohol entsteht das Farbsalz $C_{16}H_{11}ON_{2}Cl$, dem als Leukoverbindung das Amino-ang.- β .a-naphthophenoxazin der Formel VI (Syst. No. 4347) entspricht (Kehrm., B. 40,

¹2080); bei der Kondensation von 2-Amino-phenol mit 2-Oxy-naphthochinon-(1.4)-imid-(4) in essigsaurer Lösung entsteht dagegen die Verbindung C₂₂H₁₄O₂N₂, der als Leukoverbindung das [Oxy-anilino]-ang.-β.α-naphthophenoxazin der Formel VII (Syst. No. 4347) entspricht (КЕНВМ., В. 28, 355; 40, 2078). Bei der Kondensation entsteht alle seine (4.4) and the series (4.4) and the series and the series and the series and the series (4.4) and the series are series 2-Oxy-naphthochinon-(1.4)-acetimid-(4) bezw. 4-Acetamino-naphthochinon-(1.2) (Bd. VIII, S. 303) entsteht das Farbsalz $C_{18}H_{13}O_2N_1Cl$, dem als Leukoverbindung das Acetamino-ang.- $\alpha.\beta$ -naphthophenoxazin der Formel VIII (Syst. No. 4347) entspricht; bei der Kondensation

von 2-Amino-phenol mit 2-Oxy-naphthochinon-(1.4)-acetimid-(4) in Abwesenheit von Säure wird die diesem Farbsalz entsprechende Pseudobase erhalten (Kehrm., B. 40, 2084). 2-Aminophenol verbindet sich mit 2.5-Dioxy-chinon (Bd. VIII, S. 377) zu Oxyphenoxazon (Formel IV auf S. 355) (DIEPOLDER, B. 35, 2818), mit 3-Chlor-2.5-dioxy-chinon (Bd. VIII, S. 378) zu Chloroxyphenoxazon $C_{12}H_6O_3$ NCl (s. bei 1 oder 4-Chlor-2.3-dioxy-phenoxazin $C_{12}H_6O_3$ NCl, Syst. No. 4251) (Kehrm., Messinger, B. 26, 2376), mit 3.6-Dioxy-2-methyl-chinon (Bd. VIII. S. 392) zu Oxymethylphenoxazon $C_{13}H_9O_3$ N (s. bei 2.3-Dioxy-1 oder 4-methyl-phenoxazin $C_{13}H_{11}O_3$ N, Syst. No. 4251) (Kehrm., Bürgin, B. 29, 2076). 2-Amino-phenol gibt beim Kochen mit Ameisensäure 2-Formamino-phenol (S. 370), das beim Erhitzen in Wasser und Benzoxazol C₆H₄< N>CH (Syst. No. 4195) zerfällt (Bamberger, B. 36, 2052; vgl. Ladenburg, B. 10, 1124). 2-Formamino-phenol entsteht auch beim Eintragen von 2-Amino-phenol in Ameisenessigsäureanhydrid (Bd. II, S. 165) unter Kühlung (ВЕНАL, A. ch. [7] 20, 428; D. R. P. 115334; C. 1900 II, 1141). Kocht man 2-Amino-phenol mit Essigsäureanhydrid am Rückflußkühler und destilliert dann, so erhält man 2-Methyl-benzoxazol (LADENBURG, B. 9, 1525). Schüttelt man eine Lösung von 2-Amino-phenol in Natronlauge mit Essigsäureanhydrid, so wird 2-Acetamino-phenol gebildet (S. 370) (Lumière, Barbier, Bl. [3] 33, 785). Beim 2-stdg. Erhitzen von 0,7 g 2-Amino-phenol mit 0,65 g Essigsäureanhydrid in 14 ccm Essigsäureäthylester entsteht O.N-Diacetyl-[2-amino-phenol] (S. 371) (BAMBERGER, B. 36, 2050). Beim Kochen von 2 Mol.-Gew. 2-Amino-phenol mit 1 Mol.-Gew. Chloressigsäure in der 20-fachen Menge Wasser entsteht 2-Oxy-anilinoessigsäure (S. 379) (VATER, J. pr. [2] 29, 289). 2-Amino-phenol gibt mit a-Brom-propionsäure-äthylester in Gegenwart von Natriumsulfit bei 115–120° 2-Oxo-3-methyl-phenmorpholin C₆H₄ $NH-CH \cdot CH_3$ (Syst. No. 4278), mit a-Brom-buttersäure-

äthylester und Natriumsulfit bei 1400 a-[2-Oxy-anilino]-buttersäure-äthylester (S. 380), mit a-Brom-isobuttersäureäthylester und Natriumsulfit bei 125° [2-Amino-phenyl]-isobutyrat (S. 360) (Bischoff, B. 30, 2927). Wird 2-Amino-phenol mit Benzoylchlorid schwach erwärmt und das Reaktionsprodukt destilliert, so wird 2-Phenyl-benzoxazol (Syst. No. 4199) erhalten (LADENBURG, B. 9, 1526). Bei 24—36-stdg. Erhitzen von 1 Mol.-Gew. salzsaurem 2-Aminophenol mit 2 Mol.-Gew. Benzoylchlorid unter Zusatz von Benzol entsteht neben 2-Phenylbenzoxazol O.N-Dibenzoyl-[2-amino-phenol] (S. 373) (HÜBNER, A. 210, 387); letzteres entsteht leicht beim Benzoylieren von 2-Amino-phenol mit Benzoylchlorid in Gegenwart von Natronlauge (HINSBERG, v. UDRANSZKY, A. 254, 256). Beim Vermischen von 2 Mol.-Gew. 2-Amino-phenol, in absol. Ather suspendiert, mit 1 Mol.-Gew. Benzoylchlorid entsteht 2-Benzamino-phenol (S. 372) (RANSOM, Am. 23, 17). Bei der Destillation von 2-Aminophenol mit Benzamid (Bd. IX, S. 195) erhält man 2-Phenyl-benzoxazol (Syst. No. 4199) (WHEELER, Am. 17, 400). Dieses entsteht auch, wenn man 2-Amino-phenol mit Benziminomethyläther (Bd. IX, S. 270) auf dem Wasserbade erhitzt oder wenn man ein Gemisch von 2-Amino-phenol und Benzonitril destilliert (WH.). Bei 1—2-stdg. Kochen von 1 Tl. 2-Amino-phenol mit 10 Tln. Oxalsäurediäthylester entsteht N.N'-Bis-[2-oxy-phenyl]-oxamid (S. 374) (R. MEYER, SEELIGER, B. 29, 2643). Beim Erhitzen äquimolekularer Mengen von 2-Aminophenol und Phthalsäureanhydrid auf ca. 2200 erhält man N-[2-Oxy-phenyl]-phthalimid (Syst. No. 3210); destilliert man ein Gemisch von 2-Amino-phenol und Phthalsaureanhydrid nach einigem Erhitzen, so erfolgt größtenteils Verkohlung, und in geringer Menge bildet sieh 2-Phenyl-benzoxazol (LADENBURG, B. 9, 1527, 1528). Mit Chlorameisensäureester (Bd. III, S. 10) liefert 2-Amino-phenol [2-Oxy-phenyl]-urethan (S. 375) (Groenvik, Bl. [2] 25, 178). Beim Behandeln von trocknem 2-Amino-phenol mit Phosgen (Bd. III, S. 13) in Benzol (v. Chelmicki, B. 20, 177; Jacoby, J. pr. [2] 37, 29) oder Chloroform (v. Chelm.) entsteht Benzoxazolon (Syst. No. 4278). Beim Erwärmen von 2-Amino-phenol mit Diphenylcarbamidsäurechlorid (Bd. XII, S. 428) und Pyridin im Wasserbade entsteht Diphenyl-carbamidsaure-[2-amino-phenyl]-ester (S. 361) (Herzog, B. 40, 1833). Ubergießt man 3 Tle. salzsaures 2-Amino-phenol und 2 Tle. Kaliumcyanat mit wenig Wasser, filtriert den Niederschlag ab und erhitzt ihn mit einigen Tropfen Wasser kurze Zeit über kleiner Flamme, so erhält man [2-Oxy-phenyl]-harnstoff (S. 375) (KALCKHOFF, B. 16, 374). Bei der Einw. von Phenylisocyanat (Bd. XII, S. 437) auf 2-Amino-phenol in Ather entsteht N-Phenyl-N'-[2-oxy-phenyl]harnstoff (S. 375) (Leuckart, J. pr. [2] 41, 327). Beim Eintragen von salzsaurem 2-Aminophenol in Kohlensäure-diäthylester-imid (Bd. III, S. 37) entsteht 2-Athoxy-benzoxazol (Syst. No. 4222) (SANDMEYER, B. 19, 2655). 2-Amino-phenol liefert bei der Einw. von Bromcyan in wäßr. Alkohol Benzoxazolon-imid C₆H₄ < NH C:NH (Syst. No. 4278) (PIERRON,

A. ch. [8] 15, 191). Beim Zusammenschmelzen von salzsaurem 2-Amino-phenol mit Harnstoff (Bd. III, S. 42) entsteht Benzoxazolon (Syst. No. 4278) (Sandmeyer, B. 19, 2656). Durch Lösen gleicher Gewichtsmengen von Rhodankalium und salzsaurem 2-Amino-phenol mit möglichst wenig heißem Wasser und Einengen der erhaltenen Lösung über freier Flamme wird [2-Oxy-phenyl]-thioharnstoff (S. 375) erhalten (Bendix, B. 11, 2263). 2-Amino-phenol

gibt mit Allylsenföl (Bd. IV, S. 214) in Alkohol N-Allyl-N'-[2-oxy-phenyl]-thioharnstoff (v. Chelmicki, J. pr. [2] 42, 442). Mit Phenylsenföl (Bd. XII, S. 453) wird N-Phenyl-N'-[2-oxy-phenyl]-thioharnstoff gebildet (Kalckhoff, B. 16, 1829). Bei mehrtätigem Erhitzen von 2-Amino-phenol mit überschüssigem Schwefelkohlenstoff am Rückflußkühler in einer Wasserstoffatmosphäre entsteht Benzoxazolthion C₈H₄ NH CS (Syst. No. 4278) (DÜNNER, B. 9, 465). Dieselbe Verbindung entsteht beim Anfeuchten eines Gemisches von salzsaurem 2-Amino-phenol und Kaliumäthylxanthogenat (Bd. III, S. 209) mit verd. Alkohol schon in der Kälte (Kalckhoff, B. 16, 1825). Beim Erhitzen eines Gemenges von 2-Amino-phenol, 2-Nitro-phenol, Milchsäure und konz. Schwefelsäure entsteht 8-Oxy-2-methyl-chinolin (Syst. No. 3114) (Wallach, Wüsten, B. 16, 2010). Bei ½-stdg. Kochen von āquimolekularen Mengen 2-Amino-phenol und Acetessigester entsteht 2-Methyl-benzoxazolin-essigsäure-(2)-äthylester C₆H₄ NH C(CH₃)·CH₂·CO₂·C₂H₅ (Syst. No. 4307) (Hantzsch, B. 16, 1948). Bei 18-stdg. Kochen von 20 g 2-Amino-phenol mit 30 g Acetessigester erhält man 2-Methyl-benzoxazol (Syst. No. 4195) und 2-Acetamino-phenol (Niementowski, B. 30, 3069). Bei der Einw. von Benzolsulfochlorid (Bd. XI, S. 38) auf 2-Amino-phenol in Gegenwart von Kalilauge können 2-Benzolsulfamino-phenol und O.N-Dibenzolsulfonyl-[2-amino-phenol] (S. 382) entstehen (Tingle, Williams, Am. 37, 61). Beim vorsichtigen Erhitzen von 1 Mol-Gew. schwefelsaurem 4.6-Diamino-resorcin (Syst. No. 1869) mit 2 Mol.-Gew. 2-Amino-phenol bis über den Schmelzpunkt entsteht Triphendioxazin (Formel III auf S. 355) (Syst. No. 4633) (Seidel, B. 23, 188). Dieses entsteht auch beim Kochen von 2-Amino-phenol mit 3 Tln. salzsaurem 4-Amino-azobenzol (Syst. No. 2172) und 20 Tln. 75% iger Essigsäure (O. Fischer, Heff, B. 23, 2789). Einwirkung von Phthalsäureanhydrid auf 2-Amino-phenol s. 8. 357. Verwendung. 2-Amino-phenol findet Verwendung zur Erzeugung von braunen Färbungen auf Haaren und Pelzen (Akt. Ges. f. Anili

Verwendung. 2-Amino-phenol findet Verwendung zur Erzeugung von braunen Färbungen auf Haaren und Pelzen (Akt.-Ges. f. Anilinf., D. R. P. 103505; C. 1899 II, 895). Verwendung von 2-Amino-phenol zur Darstellung von Azofarbstoffen: Erdmann, Borgmann, D. R. P. 78409; Frdl. 4, 785; Höchster Farbw., D. R. P. 167333; C. 1906 I, 1123.

Salze des 2-Amino-phenols. $C_6H_7ON + HCl$. Nadeln. Löst sich bei 0° in 1,25 Tln. Wasser und in 2,36 Tln. Alkohol (Schmitt, Cook in Kerules Lehrbuch der organischen Chemie, III. Band [Erlangen 1867], S. 62). — $2C_6H_7ON + H_2SO_4$. Prismen (Schmitt, Cook). — $C_6H_7ON + H_3PO_4$. Krystallinisch. In Wasser leicht löslich (Raikow, Schtabbanow, Ch.Z. 25, 245). — Acetat $C_6H_7ON + C_2H_4O_2$. Schmilt bei 150°. Löst sich bei 0° in 65 Tln. Wasser und in 10 Tln. Alkohol (Schmitt, Cook).

Verbindung $C_{16}H_{16}O_2N_2$. B. Bei 1-stdg. Kochen von 2 Mol.-Gew. 2-Amino-phenol mit der Lösung von 1 Mol.-Gew. Diacetyl in Wasser (Kehrmann, B. 28, 343). — Blätter (aus Benzol). Schmilzt bei 239—240° unter Bräunung. Unlöslich in Wasser, Alkalien und Säuren.

Funktionelle Derivate des 2-Amino-phenols.

Derivate des 2-Amino-phenols, die lediglich durch Veränderung der Hydroxylgruppe entstanden sind.

2-Amino-phenol-methyläther, 2-Amino-anisol, o-Anisidin C₇H₉ON = H₂N·C₆H₄·O·CH₃. B. Durch Reduktion von 2-Nitro-anisol (Bd. VI, S. 217) mit Zinn und Salzsäure (Brunck, Z. 1867, 205; J. 1867, 619; Mühlhäuser, A. 207, 238), neben 5-Chlor-2-amino-anisol (S. 284) (Herold, B. 15, 1685; Reverdin, Eckhard, B. 32, 2624). Aus 2-Nitro-anisol und alkoh. Na₂S₂ (Blanksma, R. 28, 107). Durch elektrolytische Reduktion von 2-Nitro-anisol in alkoholisch-schwefelsaurer Lösung bei Gegenwart von Kupfer (Brand, J. pr. [2] 67, 159). — Darst. Man versetzt 15,3 g 2-Nitro-anisol mit 75 ccm Salzsäure (D: 1,19) und 32 ccm Wasser und fügt 39 g gepulvertes Zinn in kleinen Portionen hinzu (Vermeulen, R. 25, 20). — F: 5,2° (korr.) (Schneider, Ph. Ch. 22, 234). Kp₇₈₅: 225° (korr.) (Perkin, Soc. 69, 1211); Kp₇₈₅: 218° (korr.) (Körner, Wender, G. 17, 492); Kp₇₈₄: 226,5° (Mühlhiuser, A. 207, 239). D²⁶: 1,108 (Brunck). D²₁: 1,1062; D²₁: 1,0978; D²⁶: 1,0914; D²⁶: 1,0788; D²⁶: 1,0686 (Perkin, Soc. 69, 1211). Absorptionsspektrum im Ultraviolett: Baly, Ewbank, Soc. 87, 1352. Magnetisches Drehungsvermögen: Perk., Soc. 69, 1245. Elektrolytische Dissoziationskonstante k bei 15°: 1,9×10⁻¹⁰ (bestimmt durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrolyse des Hydrochlorids) (Velley, Soc. 93, 2131). Die unter Luftdruck stehenden Dämpfe zeigen bei der Einw. von Teslaströmen rotstichig blaue Luminescenz (Kauffmann, Ph. Ch. 28, 695; B. 33, 1731; vgl. B. 34, 691). — o-Anisidin wird von Caroscher Säure zu 2-Nitroso-anisol (Bd. VI, S. 212, oxydiert (Baeyer, Knorr, B. 35, 3036). Beim Oxydieren von o-Anisidin mit Dichromat und Schwefelsäure entsteht Methoxychinon (Bd. VIII, S. 234) (WILL, B. 21, 605; vgl. MÜHLHÄUSER, A. 207, 251). Durch Vermischen von o-Anisidin mit Methyljodid unter guter Kühlung und allmähliches Erhitzen auf Wasserbadtemperatur entsteht Methyl-o-anisidin (S. 362) (MÜHLHÄUSER, A. 207, 247).

Aus o-Anisidin und Pentamethylendibromid entsteht N.N'-Bis-[2-methoxy-phenyl]-pentamethylendiamin (S. 381) (SCHOLTZ, WASSERMANN, B. 40, 857). Aus aquimolekularen Mengen o-Anisidin und Formaldehyd in wäßrig-salzsaurer Lösung bildet sich Anhydro-[4-aminoo-Anisidin und Formsidery.

3-methoxy-benzylalkohol] CH₃·O·C₆H₃CH₂ (Syst. No. 1869) (KALLE & Co., D. R. P. x 96852; C. 1898 II, 159). Läßt man 2 Mol.-Gew. o-Anisidin auf 1 Mol.-Gew. Formaldehyd in alkoholisch-neutraler oder alkalischer Lösung einwirken, so entsteht Methylen-di-o-anisidin (S. 368) (BISCHOFF, REINFELD, B. 36, 48). Beim Kochen äquimolekularer Mengen von o-Anisidin, Brenztraubensäure und Benzaldehyd in absol. Alkohol erhält man 8-Methoxy-2 - phenyl - chinolin - carbonsäure - (4) (Syst. No. 3344) (Doebner, A. 249, 107). o-Anisidin liefert mit Bromeyan und Pyridin in Äther das hromwasserstoffsaure Salz des 1-[2-Methoxyanilino]-pentadien-(1.3)-al-(5)-[2-methoxy-anils] (S. 369) (König, J. pr. [2] 70, 47).—o-Anisidin findet Verwendung zur Herstellung von Azofarbstoffen, z. B. von Azofosin (Schultz, Tab. No. 94) und Chromechtgelb G G (Schultz, Tab. No. 96). Zur Verwendung von o-Anisidin als Komponente für Azofarbstoffe vgl. ferner Schultz, Tab. No. 93, 95, 259, sowie Bayer & Co., D. R. P. 167497; C. 1906 I, 1205. Verwendung zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw. D. R. P. 162626; C. 1905 II, 1058.—C. H. ON + H.C. Nadeln, Leight Estick in Wasser und Allechel (Müngurung A. 2007). C₁H₉ON + HCl. Nadeln. Leicht löslich in Wasser und Alkohol (MÜHLHÄUSER, A. 207, 239). — C,H,ON + HBr. Krystalle. Leicht löslich in Wasser und Alkohol (MÜHLH.). — C,H,ON + HI. Nadeln. Leicht löslich in Wasser und Alkohol (MÜHLH.). — 2 C,H,ON + H₂SO₄. Krystalle (Mühlh.). – C₇H₂ON + H₂SO₄. Krystalle. Löslich in Alkohol (Mühlh.). – Chioressigsaures Salz Chiores. — Oxalat Chioressigsaures Salz Chioressigsaures Calze Chioressigsaures Chior 15, 1684).

2-Amino-phenol-äthyläther, 2-Amino-phenetol, o-Phenetidin $C_8H_{11}ON=H_2N-C_8H_4\cdot O\cdot C_2H_6$. B. Durch Reduktion von 2-Nitro-phenetol (Bd. VI, S. 218) mit Zinn und Salzsäure (Groll, J. pr. [2] 12, 208; Förster, J. pr. [2] 21, 344) oder mit alkoh. Kali (Schmitt, Möhlau, J. pr. [2] 18, 199). Neben anderen Produkten bei der Einw. von alkoholischer Schwefelsäure oder Salzsäure auf Phenylhydroxylamin (Syst. No. 1932) (Bamberger, LAGUTT, B. 31, 1501). Bei der Reduktion von 2'-Athoxy-4-methyl-azobenzol (Syst. No. 2112) in Alkohol mit Zinnchlorür und Salzsäure (D: 1,19), neben anderen Produkten (Jacobson, Huber, A. 369, 7). — Darst. 100 g 2-Nitro-phonetol werden mit 200 g Zinkstaub zu einem Brei angerührt und dieser allmählich in kleinen Mengen in eine Mischung von 300 g konz. Schwefelsaure und 700 g Wasser eingetragen; die Reaktion wird durch einige Tropfen Kupfersulfatlösung und häufiges Schütteln beschleunigt (G. SCHULTZ, Die Chemie des Steinkohlenteers, 4. Aufl. Bd. I [Braunschweig 1926], S. 294). — Öl, das bei —21° noch flüssig bleibt (F.). Kp: 228° (GROLL); Kp₇₅₆: 229° (F.). Elektrolytische Dissoziationskonstante k bei 20°: 4,64×10⁻¹⁰ (bestimmt durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrolyse des Hydrochlorids (Veley, Soc. 93, 2131). — Bräunt sich rasch am Licht und an der Luft (F.). Durch Eintragen von Brom in eine essigsaure Lösung von o-Phenetidin entsteht 3.5-Dibrom-2-amino-phenetol (Möhlau, Oehmichen, J. pr. [2] 24, 479). Beim Erhitzen von o-Phenetidin mit Äthylbromid entsteht Äthyl-o-phenetidin (Förster, J. pr. [2] 21, 346). Reagiert mit der äquimolekularen Menge Formaldehyd in wäßrig-salzsaurer Lösung rig-salzsaurCaHa · O · CaHa CHa x Bildung von Anhydro-[4-amino-3-athoxy-benzylalkohol] unter

(Syst. No. 1869) (Kalle & Co., D. R. P. 96852; C. 1898 II, 159). Erwärmt man 2 Mol.-Gew. o-Phenetidin mit 1 Mol.-Gew. Formaldehyd in wäßrig-salzsaurer Lösung auf dem Wasserbade, so entsteht 4.4'-Diamino-3.3'-diāthoxy-diphenylmethan (Syst. No. 1869) (Höchster Farbw., D. R. P. 70402; Frdl. 3, 80). Bei der Einw. von Ameisensäureäthylester auf o-Phenetidin entsteht Form-o-phenetidid (S. 370) (Geoll). Verwendung zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw., D. R. P. 162626; C. 1905 II, 1058. — Chloressigsaures Salz CaH₁₁ON+C₂H₂O₃Cl. Nadeln. Leicht löslich in Wasser, Alkohol und Äther (VATER, J. pr. [2] 29, 288).

2-Amino-phenol-phenyläther, 2-Amino-diphenyläther $C_{12}H_{11}ON = H_2N \cdot C_4H_4 \cdot O \cdot C_6H_5$. B. Durch allmähliches Eintragen von 10 g 2-Nitro-diphenyläther (Bd. VI, S. 218), gelöst in 40 com Alkohol, in die warme Lösung von 31 g Zinnohlorür in 100 com konz. Salzsäure und kurzes Kochen des Gemisches (Ullmann, B. 29, 1881). — Krystalle (aus Ligroin). F: 42,5—43°; Kp,28: 307—308°; sehr leicht löslich in den gewöhnlichen Lösungsmitteln (U.). Verwendung des 2-Amino-diphenyläthers zur Herstellung von Azofarbstoffen: Bayer & Co.,

- D. R. P. 214496; C. 1909 II, 1513. Hydrochlorid. Nadeln. F: 151,5°: sehr leicht löslich in Wasser und Alkohol (U.).
- 2-Amino-phenol-o-tolyläther, 2'-Amino-2-methyl-diphenyläther $C_{13}H_{13}ON = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot CH_3$. B. Das Hydrochlorid entsteht aus 2'-Nitro-2-methyl-diphenyläther (Bd. VI, S. 353) durch Reduktion mit Zinn und Salzsäure (Cook, Am. Soc. 23, 808). --- Die freie Base konnte nicht isoliert werden, da sie sich sofort zersetzt. --- Hydrochlorid. Weiße wachsähnliche Masse. Leicht löslich in Äther und Alkohol, schwer in Wasser.
- 2-Amino-phenol-p-tolyläther, 2'-Amino-4-methyl-diphenyläther $C_{13}H_{13}ON =$ H₂N·C₆H₄·O·C₆H₄·CH₃. B. Das Hydrochlorid entsteht durch Reduktion von 2'-Nitro-4-methyl-diphenyläther (Bd. VI, S. 394) in Alkohol mit Zinn und HCl bei 40—50° (Cook, HILLER, Am. 24, 529). — Die freie Base ist nicht isoliert worden. — Hydrochlorid. F. 220°. - Chloroplatinat. Krystallisiert mit 1¹/₂ H₂O. F: 150⁰ (Zers.).
- 2-Amino-phenol-benzyläther $C_{13}H_{13}ON = H_2N \cdot C_6H_4 \cdot O \cdot CH_2 \cdot C_6H_5$. B. Durch Reduktion von 2-Nitro-phenol-benzyläther (Bd. VI, S. 433) (Höchster Farbw., D. R. P. 141516; C. 1903 I, 1381). — Verwendung zur Darstellung von Azofarbstoffen: H. F., D. R. P. 141516. Verwendung zur Erzeugung von Farbstoffen auf der Faser: H. F., D. R. P. 162626; C. 1905 II, 1058. — Hydrochlorid. F: 198° (H. F., D. R. P. 141516).
- 2-Amino-phenol-[2-chlor-benzyl]-äther $C_{13}H_{12}ONCl = H_1N \cdot C_8H_4 \cdot O \cdot CH_2 \cdot C_8H_4Cl$.

 B. Aus 2-Nitro-phenol-[2-chlor-benzyl]-äther (Bd. VI, S. 444) durch Reduktion (Höchster Forbar D. R. P. 449064 C. 1902 II. 20) Farbw., D. R. P. 142061; C. 1903 II, 82). — Krystallinisch. Löslich in Alkohol, Äther, Benzol und Chloroform. — Hydrochlorid. F: 191°. Löslich in Alkohol.
- 2-Amino-phenol-[4-chlor-benzyl]-äther $C_{13}H_{12}ONCl=H_2N\cdot C_2H_4\cdot O\cdot CH_2\cdot C_2H_4Cl.$ B. Durch Reduktion von 2-Nitro-phenol-[4-chlor-benzyl]-äther (Bd. VI, S. 445) (H. F., D. R. P. 142061; C. 1903 II, 82). — Krystallinisch. Löslich in Alkohol, Äther, Benzol und Chloroform. — Hydrochlorid. F: 194—197°. Löslich in Alkohol.
- 2-Amino-phenol- $[\beta$ -oxy-äthyl]-äther, Äthylenglykol-mono-[2-amino-phenyläther] $C_8H_{11}O_8N = H_2N\cdot C_8H_4\cdot O\cdot CH_2\cdot CH_2\cdot OH$. B. Entsteht neben Benzoesäure beim Behandeln des Benzoats des Äthylenglykol-mono-[2-nitro-phenyläthers] (Bd. IX, S. 129) mit Zinn und Salzsaure (Weddige, J. pr. [2] 24, 252). — Blättchen (aus Benzol), die sich allmählich braunviolett färben. F: 89—90°. Wenig löslich in Wasser, leicht in Alkohol, Ather und heißem Benzol. Starke Base; die Salze sind leicht löslich in Wasser.
- 2-Amino-phenol-[β -benzoyloxy-äthyl]-äther, Äthylenglykol-[2-amino-phenyläther]-benzoat $C_{15}H_{15}O_3N=H_2N\cdot C_6H_4\cdot O\cdot CH_2\cdot CH_2\cdot O\cdot CO\cdot C_6H_5$. B. Beim Kochen des Benzoats des Äthylenglykol-mono-[2-nitro-phenyläthers] (Bd. IX, S. 129) mit Zinkstaub und Ammoniak (Weddige, J. pr. [2] 24, 253). — Nadeln (aus wäßr. Alkohol). F: 98—100°. Löslich in Äther.
- $2-[\beta-(2-A\min -phenoxy)-athoxy]-bensoesaure <math>C_{18}H_{18}O_4N = H_2N\cdot C_6H_4\cdot O\cdot CH_2\cdot C_{18}H_{18}O_4N$ Electric Construction of the construction of
- 4-[β -(2-Amino-phenoxy)-athoxy]-bensoesaure $C_{18}H_{18}O_4N = H_8N \cdot C_6H_4 \cdot O \cdot CH_3$ $CH_1 \cdot O \cdot C_0H_4 \cdot CO_2H$. B. Durch Behandeln von $4 \cdot [\beta \cdot (2 \cdot N)]$ behandeln von $4 \cdot [\beta \cdot (2 \cdot N)]$ (Bd. X, S. 157) mit Zinnchlorür und Salzsäure (WAGNER, J. pr. [2] 27, 223). — Nadeln (aus Alkohol). F: 185°.
- Äthylenglykol-bis-[2-amino-phenyläther] $C_{14}H_{16}O_{2}N_{2} = [H_{2}N \cdot C_{6}H_{4} \cdot O \cdot CH_{2}-]_{2}$. B. Beim Behandeln von Äthylenglykol-bis-[2-nitro-phenyläther] (Bd. VI, S. 219) mit Zinn und Salzsäure (Wagner, J. pr. [2] 27, 201). Täfelchen oder Blättehen. F: 128°. Unlöslich in kaltem Wasser, etwas löslich in heißem, leicht in Alkohol, Äther, Chloroform und Benzol. Löslich in konz. Schwefelsäure mit blauschwarzer Farbe. Gibt mit Eisenchlorid eine sepiabraune Färbung. — $C_{14}H_{16}O_2N_3+2HCl+2H_2O$. Nadeln.
- [2-Amino-phenyl]-isobutyrat $C_{10}H_{12}O_2N=H_2N\cdot C_6H_4\cdot O\cdot CO\cdot CH(CH_2)_2$. B. Beim 8-stdg. Erhitzen von a-Brom-isobuttersäure-äthylester mit 2-Amino-phenol in Gegenwart von Natriumsulfit auf 125° (Bischoff, B. 30, 2928). Tafeln und Säulen (aus Äther). F: 112—115°. Destilliert unter 23 mm Druck zwischen 168° und 176°. Unlödlich in kaltem Wasser, wenig löslich in Ligroin, löslich in heißem Wasser, Alkohol, Äther, Benzol, Chloroform und Eisessig. Unlöslich in kalten verdünnten Säuren und Natronlauge.

- [2-Amino-phenyl]-kohlensäure-methylester $C_0H_0O_2N=H_2N\cdot C_0H_4\cdot O\cdot CO_2\cdot CH_3$. B. Das Hydrochlorid entsteht durch Reduktion des [2-Nitro-phenyl]-kohlensäure-methylesters (Bd. VI, S. 220) mit Zinn und Salzsäure bei 0^0 (Urson, Am. 32, 15). Über die Affinitätskonstante und über die Umwandlung in [2-Oxy-phenyl]-carbamidsäure-methylester vgl. Stieglitz, Urson, Am. 31, 482. $C_8H_0O_3N+HCl$ (U.).
- [2-Amino-phenyl]-kohlensäure-äthylester $C_0H_{11}O_3N = H_2N \cdot C_8H_4 \cdot O \cdot CO_2 \cdot C_8H_5$.

 B. 4 g [2-Nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 220) werden mit 15 ccm konz. Salzsäure und unter Eiskühlung mit gepulvertem Zinn versetzt; nach einiger Zeit wird unter Kühlung in 100 g 50% kalilauge gegossen und sofort sechsmal mit Äther extrahiert (Ransom, Am. 23, 43). Öl, das leicht schon beim Aufbewahren im Exsiccator in [2-Oxy-phenyl]-urethan (S. 375) übergeht. Über die Affinitätskonstante und über die Umwandlung in [2-Oxy-phenyl]-urethan vgl. Stieglitz, Upson, Am. 31, 470, 475, 501. $C_9H_{11}O_3N + HCl.$ B. Beim Einleiten von Salzsäure in die Sther. Lösung der Base (R.). Weißer Niederschlag. F: 150—1520 (Zers.). Sehr leicht löslich in Wasser und Alkohol. $2C_9H_{11}O_3N + 2HCl + PtCl_4$ (R.).
- [2-Amino-phenyl]-kohlensäure-methylanilid, Methyl-phenyl-carbamidsäure-[2-amino-phenyl]-ester $C_{14}H_{14}O_3N_2 = H_2N \cdot C_6H_4 \cdot O \cdot CO \cdot N(CH_3) \cdot C_6H_5$. B. Durch Reduktion des Methyl-phenyl-carbamidsäure-[2-nitro-phenyl]-esters (Bd. XII, S. 417) mit Zinnchlorür und Salzsäure (Lellmann, Benz, B. 24, 2110). Nadeln (aus Alkohol). F: 103°.
- [2-Amino-phenyl]-kohlensäure-diphenylamid, Diphenylcarbamidsäure-[2-amino-phenyl]-ester $C_{10}H_{10}O_2N_2=H_2N\cdot C_0H_4\cdot O\cdot CO\cdot N(C_0H_3)_2$. B. Man versetzt eine alkoh. Lösung von Diphenylcarbamidsäure-[2-nitro-phenyl]-ester (Bd. XII, S. 428) abwechselnd mit Salzsäure und mit Zinnehlorür (Lellmann, Bonhöffer, B. 20, 2125). Aus 2-Amino-phenol und Diphenylcarbamidsäure-ehlorid (Bd. XII, S. 428) in Pyridin (Herzog, B. 40, 1833). Nadeln (aus Alkohol). Beginnt bei 173° sich gelb zu färben und ist bei 177° völlig geschmolzen (H.). F: 189—191° (L., B.). Leicht löslich in heißem Alkohol, Eisessig (L., B.). Zerfällt bei mehrstündigem Erhitzen auf 190° in Diphenylamin und Benzoxazolon (Syst. No. 4278) (L., B.).
- 2-Amino-phenoxyessigsäure C₈H₉O₃N = H₂N·C₆H₄·O·CH₂·CO₂H. B. Entsteht als Natriumsalz bei der Reduktion von 2-nitro-phenoxyessigsaurem Natrium (Bd. VI, S. 220) in Wasser mit Natriumamalgam neben anderen Produkten (Thate, J. pr. [2] 29, 161, 175). Das Lactam der 2-Amino-phenoxyessigsäure (Phenmorpholon, Syst. No. 4278) entsteht bei der Reduktion von 2-Nitro-phenoxyessigsäure mit Eisenfeilspänen und Essigsäure (Th., J. pr. [2] 29, 178; Wheeler, Barnes, Am. 20, 560); das Kaliumsalz der 2-Amino-phenoxyessigsäure erhält man aus dem Lactam durch Erwärmen mit Kalilauge auf dem Wasserbade (Th., J. pr. [2] 29, 180). Die Säure ist in freiem Zustande nicht bekannt; bei der Zerlegung der Alkalisalze mit Salzsäure wird das Lactam erhalten (Th.). KC₂H₈O₂N (bei 130°). Prismen. Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol und Äther (Th., J. pr. [2] 29, 180). Pb(C₈H₈O₂N)₂. Nadeln. Schwer löslich in Wasser (Th.). Silbersalz. Leicht löslich in warnem Wasser und Alkohol; sehr zersetzlich (Th.).
- 2-Amino-phenol-[β -amino-äthyl]-äther $C_8H_{12}ON_3=H_2N\cdot C_8H_4\cdot O\cdot CH_2\cdot CH_2\cdot NH_3$. Beim Behandeln von 2-Nitro-phenol-[β -amino-äthyl]-äther (Bd. VI, S. 222) mit Zinn und Salzsäure (Weddige, J. pr. [2] 24, 248). Die freie Base ist nicht isoliert worden. Hydrochlorid. Nadeln. Beim Behandeln mit Eisenchlorid liefert es grünschillernde Krystalle, die sich mit roter Farbe in Wasser lösen.
- **2.2'-Diamino-diphenyläther** $C_{12}H_{12}ON_2 = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot NH_2$. B. Bei der Reduktion von 2.2'-Dinitro-diphenyläther (Bd. VI, S. 219) mit Zinnchlorür und Salzsäure (Haeussermann, Bauer, B. 30, 738). Nädelchen (aus Wasser). F: 60°. Leicht löslich in Alkohol, löslich in Äther und Benzol. Wird von Natriumnitrit in saurer Lösung in eine Bis-diazoverbindung übergeführt, welche gelbe oder rote Azofarbstoffe liefert $C_{12}H_{12}ON_2 + 2HCl$. Nädeln. Leicht löslich in Wasser.
- p-Toluolsulfonsäure-[2-amino-phenyl]-ester $C_{13}H_{13}O_3NS = H_8N\cdot C_8H_4\cdot O\cdot SO_3\cdot C_6H_4\cdot CH_3$. B. Durch Reduktion des p-Toluolsulfonsäure-[2-nitro-phenyl]-esters (Bd. XI, S. 100) in Eisessig mit Zinnchlorür und rauchender Salzsäure (Bamberger, Rising, B. 34, 241). Nadeln. F: 101—101,5° (B., R.). Leicht löslich in Benzol, Äther, Aceton, schwer in Ligroin und Petroläther (B., R.). Verwendung zur Darstellung von Azofarbstoffen: Cassella & Co., D. R. P. 205152; C. 1909 I, 481.

- 2. Derivate des 2-Amino-phenols, die durch Veränderung der Aminogruppe (bezw. der Aminogruppe und der Hydroxylgruppe) entstanden sind.
- a) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit Oxy-Verbindungen, Oxo-Verbindungen und Oxy-oxo-Verbindungen, soweit diesen Kuppelungsprodukten nach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt (vgl. Bd. I, S. 28).
- 2-Methylamino-phenol C₇H₂ON = CH₃·NH·C₆H₄·OH. B. Durch Erhitzen von Methyl-o-anisidin (s. u.) oder von Benzolsulfonsäure-[methyl-o-anisidid] (S. 382) mit rauchender Salzsäure auf 170° (DIEPOLDER, B. 32, 3519). Durch 3-stdg. Erhitzen von 2-[Acetylmethyl-o-anisidid] (S. 382) mit rauchender Salzsäure auf 170° (DIEPOLDER, B. 32, 3519). amino]-phenol (S. 372) mit konz. Salzsäure auf 140° (Lees, Shedden, Soc. 83, 756). Durch Erhitzen von Benzoxazoljodmethylat (Syst. No. 4195) mit verd. Salzsäure unter Rückfluß (O. FISCHER, RÖMER, J. pr. [2] 73, 437). Beim Erhitzen von N-Methyl-benzoxazolon (Syst. No. 4278) (RANSOM, Am. 23, 34) oder von N-Methyl-benzoxazolthion $C_0H_4 \stackrel{N(CH_3)}{\frown} CS$ (Syst. No. 4278) (SEIDEL, J. pr. [2] 42, 453) mit konz. Salzsäure im Einschlußrohr. Entsteht in geringer N(CH₃)·CO (Syst. No. 4278) Menge beim Erhitzen von N-Methyl-phenmorpholon C₆H₄ -ĊH, mit konz. Salzsäure im Einschlußrohr auf 150—160° (Wheeler, Barnes, Am. 20, 561).

 — Blättchen (aus Benzol + Petroläther). F: 86—87° (O. Fl., Rö.), 88—90° (Ra.), 96—97° (L., Sh.). Die salzsaure Lösung gibt mit FeCl₃ tiefrotbraune Färbung (Wh., Ba.). — Bei der Oxydation des schwefelsauren Salzes mit Kaltumferricyanid entsteht das N-Methyl-dioxophenoxazindihydrid nebenstehender Formel (Syst. No. 4298) (DIEP.). — 2C₇H₂ON+ H₂SO₄. Säulen (aus Alkohol) (DIEP.).
- **2-Methylamino-phenol-methyläther**, **Methyl-o-anisidin** $C_aH_{11}ON = CH_a \cdot NH \cdot$ CaHa O CHa. B. Durch Vermischen von o-Anisidin mit Methyljodid unter guter Kühlung und allmähliches Erhitzen auf Wasserbadtemperatur (MÜHLHÄUSER, A. 207, 247). Durch Erhitzen von Damascenin (Syst. No. 1911) oder der daraus durch Verseifung entstehenden Carbonsaure (Damasceninsaure; Syst. No. 1911) mit rauchender Jodwasserstoffsaure und rotem Phosphor im Druckrohr auf 100°, neben anderen Produkten (KELLER, Ar. 246, 16, 20; vgl. Ewins, Soc. 101 [1912], 545; Kaufmann, Rothlin, B. 49 [1916], 578). — Darst. Form-o-anisidid wird mit Methylalkohol und Natriummethylat übergossen, Methyljodid hinzugefügt und das Gemisch nach eintägigem Stehen am Rückflußkühler zum Sieden erhitzt. Nach Abdestillieren des Alkohols kocht man das Gemisch der Formylverbindungen zur Abspaltung der Formylgruppe mit verd. Schwefelsäure und versetzt die mittels Natronlauge und Ather isolierten Basen mit Natriumnitrit und verd. Schwefelsäure. Das hierbei entstandene Methyl-[2-methoxy-phenyl]-nitrosamin wird dann zur Entfernung der Nitrosogruppe mit Zinnchlorür und konz. Salzsäure behandelt (DIEPOLDER, B. 32, 3515; vgl. auch Wedekind, B. 39, 486). — Das Basengemisch von o-Anisidin und Methyl-o-anisidin läßt sich auch in Form ihrer mittels Benzolsulfochlorids erhältlichen Benzolsulfonylderivate trennen (DIEP.). — Säulen. F: 33—33,5° (DIEP.). Kp: 218—220° (M.); Kp₄₆₋₄₇: 141—143° (DIEP.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln (DIEP.). — Reduziert Goldchloridlösung und ammoniakalische Silberlösung (KNORR, B. 32, 732). Oxydationsmittel färben die wäßr. Lösung braunrot; die alkoh. Lösung färbt sich mit Benzochinon und Eiseesig bordeauxrot (Kn.). Salpetrige Säure erzeugt ein gelbes Nitrosamin (O. Fischer, Heff, Best, A. 255, 177; Kn.). Mit Diazoniumverbindungen erfolgt Kuppelung zu Azoverbindungen (Kn.). — Pikrat C₈H₁₁ON + C₆H₃O₇N₃. Gelbe Blättchen (aus Alkohol). F: 139° (W.). — 2C₈H₁₁ON + 2 HCl + PtCl₄. Gelbe Prismen. Ziemlich schwer löslich in Wasser (M.).
- 2-Dimethylamino-phenol $C_8H_{11}ON = (CH_8)_8N \cdot C_8H_4 \cdot OH$. Bei der trocknen Destillation von Trimethyl-[2-oxy-phenyl]-ammoniumchlorid (Griess, B. 18, 249). Durch Erhitzen von salzsaurem 2-Amino-phenol mit Methylalkohol im Druckrohr auf 180—186°; nach Abscheidung des 2-Dimethylamino-phenols mit Ammoniak kann durch Erhitzen der wäßr. Lösung mit konz. Ammoniak im Druckrohr auf 170—1776 eine weitere Menge dieser Base erhalten werden (PINNOW, B. 82, 1405). Entsteht neben anderen Verbindungen beim Eswärmen von salzsaurem Dimethylanilinoxyd (Bd. XII, S. 156) mit konz. Schwefelsäure auf 65—75° (BAMBERGER, LEYDEN, B. 34, 26). Neben anderen Produkten in geringer Menge auf 65—75° (BAMBERGER, LEYDEN, B. 34, 20). Neben anderen Frodukten in geringer menge beim Einleiten von achwefliger Säure in eine wäßr. Lösung von Dimethylanilinoxyd bei 0° (BAMBERGER, TSCHIRNER, B. 32, 1895). In sehr geringer Menge durch Diazotieren von o-Amino-dimethylanilin (S. 15) in Schwefelsäure und Verkochen der Diazoniumsalzlösung (B., TSCH., B. 32, 1907). — Prismen. Riecht teerartig (B., TSCH., B. 32, 1895). F: 45° (G.), 44—44,5° (P.). Kp: 199—200° (P.). Leicht flüchtig mit Wasserdampf (B., TSCH., B. 32, 1907). 1895). Löslich in kochendem Wasser, wenig in kaltem, leicht löslich in den organischen

Lösungsmitteln (B., Tsch., B. 32, 1895). FeCl₂ färbt die wäßr. oder acetonische Lösung rot (G.; B., Tsch., B. 32, 1895). Diese Rotfärbung wird von Zinnchlorür in Gelb umgewandelt (Diefolder, B. 35, 2819).

2-Dimethylamino-phenol-methyläther, Dimethyl-o-anisidin $C_2H_{12}ON = (CH_2)_2N$ CaHa O CHa. B. Bei der trocknen Destillation von Trimethyl-[2-oxy-phenyl]-ammoniumhydroxyd (Griess, B. 18, 248). Beim Erhitzen von Methyl-o-anisidin mit Methylalkohol und Methyljodid auf 120° (MÜHLHÄUSEB, A. 207, 248). — Stark lichtbrechende Flüssigkeit von eigentümlichem Geruch und brennendem Geschmack (Geiess). Kp: 210—212° (M.). D³³: 1,016 (M.). — Eisenchlorid färbt die wäßr. Lösung der Base tief kirschrot; Goldchlorid wird von Dimethyl-o-anisidin schon in der Kälte, ammoniakalische Silberlösung in der Wärme reduziert (KNORB, B. 32, 733). Beim Erhitzen von Dimethyl-o-anisidin mit Arsensäure auf 170° entsteht ein blauer Farbstoff (GRIMAUX, Bl. [3] 25, 216). Trägt man 1 Tl. Dimethylo-anisidin in 6 Tle. rauchende Salpetersäure, die durch ein Kältegemisch gekühlt wird, ein und fällt nach ¹/₃ stdg. Stehen mit Wasser, so erhält man neben einem bei etwa 170° schmelzenden Produkt 5-Nitro-2-dimethylamino-phenol-methyläther (S. 390); letztere Verbindung wird besser durch Behandeln von Dimethyl-o-anisidin in verd. Schwefelsäure mit einem Uberschuß von Natriumnitrit gewonnen (GRIMAUX, LEFEVRE, Bl. [3] 6, 415). Erhitzt man 1 Tl. Dimethyl-o-anisidin mit 20 Tln. gewöhnlicher konzentrierter Salpetersäure bis zum Auftreten nitroser Gase und fällt sofort mit Wasser, so erhält man 3.5-Dinitro-2-[methylnitrosamino]-phenol-methyläther (S. 393) (Geim., Lef.; Van Romburgh, C.r. 113, 505). Kocht man Dimethyl-o-anisidin mit 15—20 Tln. gewöhnlicher konz. Salpetersäure, bis die Entwicklung nitroser Gase aufhört, oder läßt man Dimethyl-o-anisidin einige Stunden mit rauchender Salpetersäure bei 0° stehen, so erhält man 3.5-Dinitro-2-methylnitramino-phenolmethyläther (S. 394) (GRIM., LEF.). Über die Geschwindigkeit der Abspaltung der Methylgruppen beim Kochen von Dimethyl-o-anisidin mit Jodwasserstoffsäure vgl. Goldschmedt. M. 27, 861, 870. — 2C₂H₁₂ON+2HCl+PtCl₄. Gelbe Prismen. Schwer löslich in kaltem Wasser, ziemlich leicht in kochendem (GRIESS).

2-Dimethylamino-phenol-vinyläther $C_{10}H_{13}ON = (CH_3)_2N \cdot C_6H_4 \cdot O \cdot CH : CH_3$. B. Durch Kochen von Dimethylphenmorpholiniumjodid $C_6H_4 \cdot O \cdot CH_3$. [N(CH_3)_2I] \cdot CH_3 (Syst. No. 4194) mit konz. Natronlauge unter Durchleiten von Wasserdampf (Knore, B. 32, 734). — Leicht bewegliches Öl von etwas stechendem Geruch und neutraler Reaktion. Kp: 224—225°. Sehr wenig löslich in Wasser, leicht löslich in den organischen Lösungsmitteln. FeCl₃ färbt die wäßr. Lösung purpurrot. Reduziert AuCl₃ in der Kälte, ammoniakalische Silberlösung in der Wärme. Fügt man zur wäßr. Emulsion eine Spur Chromsäure, so tritt eine tiefrote Färbung auf, die bald verschwindet, während eine schmutzig-grüne Trübung entsteht. NaNO₃ färbt die schwefelsaure Lösung purpurrot.

Trimethyl-[3-oxy-phenyl]-ammoniumhydroxyd C₂H₁₅O₄N=(CH₃)₂N(OH)·C₂H₄·OH. B. Das Jodid entsteht durch Erhitzen von Benzoxazol (Syst. No. 4195) mit Methylalkohol und Methyljodid auf 120° unter Druck (O. Fischer, Römer, J. pr. [2] 73, 435). Das Jodid entsteht ferner beim Vermischen von 2-Methyl-benzoxazolin-essigsäure-(2)-äthylester C₂H₄·OD-(C(CH₃)·CH₂·CO₂·C₃H₅ (Syst. No. 4307) mit alkoh. Kali und Methyljodid (Hantzsch, B. 16, 1951). — Darst. Man vermischt eine kalte Lösung von 1 Tl. salzsaurem 2-Amino-phenol in Methylalkohol mit 3 Tln. Methyljodid und hierauf mit konzentrierter Kalilauge bis zur stark alkal. Reaktion. Das Gemisch bleibt unter öfterem Zusatz von Kali stehen, bis keine saure Reaktion mehr eintritt; man destilliert den Methylalkohol ab und fügt zum Rückstande Jodwasserstofisäure, wobei er zum Jodid erstarrt; dieses wird aus Wasser umkrystallisiert (Gries, B. 13, 246). — Behandelt man die wäßr. Lösung des Jodids mit Silberoxyd oder Silbercarbonat und dampft die filtrierte Flüssigkeit dann ein, so krystallisiert das betainartige Anhydrid C₂H₁₂ON (s. u.) aus (G.). — Salze. C₂H₁₄ON·Cl + 2 H₂O. Prismen. Sehr leicht löslich in Wasser; zerfällt bei der Destillation in Methylchlorid und 2-Dimethylamino-phenol (S. 362) (G.). — C₂H₁₄ON·I + H₂O. Prismen. Verliert das Krystallwasser beim Stehen über Schwefelsäure (H.). F: 198—200° (O. F., R.). Ziemlich leicht löslich in kaltem Wasser (G.). Reagiert stark sauer (G.). Neutralisiert man die Lösung mit Ammoniak, so krystallisiert das Salz C₂H₁₄ON·I + C₂H₁₅ON in schwer löslich in kaltem Wasser (G.). — 2C₃H₁₄ON·Cl + PtCl₄. Gelbrote Nadeln. Schwer löslich in kaltem Wasser (G.). — 2C₃H₁₄ON·Cl + PtCl₄. Gelbrote Nadeln. Ziemlich schwer löslich in kaltem Wasser (G.).

Betainartiges Anhydrid des Trimethyl-[2-oxy-phenyl]-ammoniumhydroxyds $C_0H_{10}ON = (CH_{2})_3N \cdot C_0H_4 \cdot O$. B. s. im vorangehenden Artikel. — Prismen mit 1 H_2O (aus Wasser); ist, bei 105° getrocknet, wasserfrei; sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther; schmeckt sehr bitter; verbindet sich mit Mineralsäuren, nicht aber mit

Kohlensäure zu Trimethyl-[2-oxy-phenyl]-ammoniumsalzen; isomerisiert sich bei der trocknen Destillation zu Dimethyl-o-anisidin (CH_3)₂N· C_6H_4 ·O· CH_3 (S. 363) (GRIESS, B. 13, 246).

Trimethyl-[2-methoxy-phenyl]-ammoniumhydroxyd $C_{10}H_{17}O_2N = (CH_2)_2N(OH) \cdot C_8H_4 \cdot O \cdot CH_3$. B. Das Jodid entsteht, wenn eine methylalkoholische Lösung von Trimethyl-[2-oxy-phenyl]-ammoniumhydroxyd (S. 363) mit Methyljodid und etwas Kalilauge längere Zeit in der Kälte stehen bleibt (GRIESS, B. 13, 649). Das Jodid entsteht ferner beim Behandeln von Dimethyl-o-anisidin mit Methyljodid (G.), aus Methyl-o-anisidin und Methyljodid in Methylalkohol neben Dimethyl-o-anisidin (MÜHLHÄUSER, A. 207, 250) oder durch Behandeln von Allyl-benzyl-o-anisidin mit Methyljodid neben Allyljodid und Benzyljodid (WEDEKIND, B. 39, 488). Man erhält die freie Base aus dem Jodid in Wasser durch Silberoxyd (G.). — Leicht zerfließliche Masse. Reagiert stark alkalisch und zieht begierig CO_2 an (G.). Zerfällt beim Erhitzen in Methylalkohol und Dimethyl-o-anisidin (G.). — Salze. $C_{10}H_{16}ON \cdot I$. Tafeln (aus Methylalkohol) (M.) oder Nadeln (G.). Sublimiert bei 210—220° unter Zersetzung (W.). Schwer löslich in kaltem Wasser oder Alkohol, leicht bei Siedehitze (G.). — $2C_{10}H_{16}ON \cdot Cl + PtCl_4$. Gelbe Blättchen oder Tafeln. Sehr schwer löslich in kaltem Wasser (G.).

Trimethyl - [2 - äthoxy - phenyl] - ammoniumjodid $C_{11}H_{18}ONI = (CH_3)_3NI \cdot C_4H_4 \cdot O \cdot C_2H_5$. B. Aus 2-Amino-phenol-äthyläther (S. 359) mit CH_3I unter guter Kühlung (SEIDEL, J. pr. [2] 42, 451). — Blättchen. Sehr wenig löslich in kaltem Wasser, Alkohol und Äther.

Trimethyl-[2-vinyloxy-phenyl]-ammoniumjodid $C_{11}H_{16}ONI = (CH_3)_3NI \cdot C_8H_4 \cdot O \cdot CH : CH_2$. Beim Stehenlassen eines gekühlten Gemisches gleicher Teile 2-[Dimethylamino]-phenol-vinyläther (S. 363), Methylalkohol und Methyljodid (KNORR, B. 32, 736). — Prismen (aus Methylalkohol).

2-Äthylamino-phenol $C_8H_{11}ON = C_2H_5 \cdot NH \cdot C_8H_4 \cdot OH$. B. Durch 4-stdg. Erhitzen von 2-Äthylamino-phenol-methyläther (s. u.) mit rauchender Salzsäure auf 170° (DIEPOLDER, B. 31, 495). Bei 4-5-stdg. Erhitzen von 2-Äthylamino-phenol-äthyläther mit rauchender Salzsäure auf 150° (FÖRSTER, J. pr. [2] 21, 356). Neben 2-Äcetamino-phenol durch elektrolytische

Reduktion des Phenmorpholons C_8H_4 O— CH_2 (Syst. No. 4278) in schwefelsaurer Lösung (Lees, Shedden, Soc. 83, 754). — Tafeln. F: $107,5^{\circ}$ (Seidel, J. pr. [2] 42, 449 Anm.), 112° (L., Sh.). Sehr leicht löslich in Alkohol, leicht in heißem Benzol, ziemlich schwer in Äther und Chloroform, schwer in Schwefelkohlenstoff (F.). — Bei der Oxydation mit Dichromat und Schwefelsäure entstehen das N-Äthyl-dioxo-phenoxazindihydrid der nebenstehenden Formel (Syst. No. 4298) und Äthylamin (D.). — Die Salze sind wenig beständig; sie lösen sich leicht in Wasser und Alkohol (F.). — $C_8H_{11}ON + HCl$. Nadeln oder Säulen (F.). F: 220° (L., Sh.). — $C_8H_{11}ON + HBr$. Prismen (F.). — $2C_8H_{11}ON + 2HCl + PtCl_4$. Nadeln (F.).

- 2-Äthylamino-phenol-methyläther, Äthyl-o-anisidin $C_9H_{13}ON = C_8H_5 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch 5-stdg. Erhitzen von o-Anisidin mit Äthylbromid auf 59° (DIEPOLDER, B. 31, 495). Wasserhelles Öl. Kp₃: 117°, Kp₇₂₈: 228—229°. $C_9H_{13}ON + HCl$. Rautenförmige Täfelchen. F: 193°.
- 2-Åthylamino-phenol-äthyläther, Åthyl-o-phenetidin $C_{10}H_{15}ON = C_{2}H_{5}$ · NH· $C_{6}H_{4}$ · O· $C_{5}H_{5}$ · B. Bei 4—5-stdg. Erhitzen von 100 g o-Phenetidin (S. 359) mit 84 g Åthylbromid auf 60° (Förster, J. pr. [2] 21, 346). Bei der trocknen Destillation von jodwasserstoffsaurem oder bromwasserstoffsaurem Diäthyl-o-phenetidin (S. 365) (Fö.). Stark lichtbrechendes Öl, das bei —21° noch flüssig bleibt (Fö.). Kp: 238° (Friedländer, M. 19, 633). Kp₇₅₁: 234–236° (Fö.). D¹³: 1,021 (Fö.). Mit Wasserdämpfen flüchtig; in jedem Verhältnis mischbar mit Åther, Benzol, Schwefelkohlenstoff (Fö.). Bromwasserstoffsaures Åthyl-o-phenetidin zerfällt bei raschem und starkem Erhitzen in o-Phenetidin und Åthylbromid; ein analoges Verhalten zeigt das jodwasserstoffsaure Salz (Fö.). Äthyl-o-phenetidin liefert mit Diazoniumverbindungen rote Azofarbstoffe (Fried.). Gibt mit Chlorkalklösung keine violette Färbung wie o-Phenetidin, sondern zunächst eine Braunfärbung, dann eine Ausscheidung schwarzbrauner Flocken und zeigt gegen Bromwasser und andere Oxydationsmittel ein ähnliches Verhalten (Fö.). Die Salze lösen sich sehr leicht in Wasser und Alkohol, nicht in Äther (Fö.). C₁₀H₁₅ON + HCl. Prismen (Fö.). C₁₀H₁₅ON + HBr. Tafeln. Läßt sich bei vorsichtigem Erhitzen sublimieren; schwer löslich in rauchender Bromwasserstoffsäure (Fö.). C₁₀H₁₅ON + HI. Blättchen oder Säulen. Läßt sich bei vorsichtigem Erhitzen sublimieren (Fö.). Oxalat 2C₁₀H₁₅ON + C₂H₂O₄. Prismen. Ziemlich leicht löslich in Wasser (Fö.). 2 C₁₀H₁₅ON + 2 HCl + PtCl₄. Gelbliche Prismen oder Täfelchen (Fö.).
- 2 Methyläthylamino phenol $C_0H_1^1ON = C_0H_4\cdot N(CH_3)\cdot C_0H_4\cdot OH$. B. Neben 2-[Acetylmethylamino]-phenol (S. 372) und N-Methyl-phenmorpholin (Syst. No. 4194) bei der elektrolytischen Reduktion von N-Methyl-phenmorpholon $C_0H_4\cdot O$ (Syst. No. CH₂) (Syst. No. CH₃) (Syst. No. CH₄)

- 4278) in schwefelsaurer Lösung (Lees, Shedden, Soc. 83, 757). $\rm C_9H_{13}ON + HCl.$ Platten. F: 150°. Sehr leicht löslich in Wasser und Alkohol. Gibt in wäßr. Lösung mit Eisenchlorid eine purpurbraune Färbung.
- 2-Diäthylamino-phenol $C_{10}H_{15}ON = (C_2H_5)_2N \cdot C_6H_4 \cdot OH$. B. Man erhitzt den 2-Diäthylamino phenol äthyläther (s. u.) mit Paul-der Salzsäure auf 130° (Förster, J. pr. [2] 21, 367). Gewürzig riechendes Öl. Kp: 219—220°. Sehr wenig löslich in Wasser, leicht in Äther, Chloroform, Alkohol, Benzol. Mit Wasserdampf flüchtig. Die Salze krystallisieren gut, sind aber sehr zersetzlich; sie lösen sich sehr leicht in Wasser und Alkohol. $C_{10}H_{15}ON + HCl.$ $C_{10}H_{15}ON + HBr.$ Tafeln. $2C_{10}H_{15}ON + 2HCl + PtCl_4$. Gelbliche, vierseitige Säulen. Leicht löslich in Wasser und Alkohol.
- 2-Diäthylamino-phenol-äthyläther, Diäthyl-o-phenetidin $C_{12}H_{19}ON = (C_2H_5)_2N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Man erhitzt 2-Amino-phenetol mit der $1^1/_2$ -fachen theoretischen Menge Athyljodid und absolutem Alkohol im geschlossenen Rohr auf $120-130^\circ$ (Förster, J. pr. [2] 21, 363). Aromatisch riechendes Öl. Kp: $231-233^\circ$ (Friedländer, M. 19, 633), Kp. 237-228° (Fö.). Unlöslich in Wasser, in jedem Verhältnis mischbar mit Alkohol, Ather, Chloroform, Benzol und Schwefelkohlenstoff (Fö.). Mit Wasserdampf flüchtig (Fö.). Das Hydrojodid und das Hydrobromid zerfallen bei der trocknen Destillation in Athylo-phenetidin und Athyljodid bezw. Athylbromid (Fö.). Reagiert nicht mit salpetriger Säure und Aldehyden, unvollständig und langsam mit p-Nitro-diazobenzol unter Bildung eines roten Azofarbstoffes (Fried.). Bildet mit Säuren leimartige Salze, die sich sehr leicht in Wasser und Alkohol lösen (Fö.). $C_{12}H_{19}ON + HBr$ (Fö.).
- 2-Methylallylamino-phenol-methyläther, Methyl-allyl-o-anisidin $C_{11}H_{15}ON = CH_2: CH \cdot CH_2 \cdot N(CH_3) \cdot C_4H_4 \cdot O \cdot CH_3$. B. Aus Methyl-o-anisidin und Allyljodid (Wedekind, B. 39, 486). Hellgelbes Öl. Kp₈₅: 167° (W.). Gibt mit Benzylbromid Methylallyl-[2-methoxy-phenyl]-benzyl-ammoniumbromid (S. 367) (Wedekind, Fröhlich, B. 40, 1008).
- 2-Anilino-phenol, 2-Oxy-diphenylamin $C_{12}H_{11}ON = C_4H_5$ NH· C_6H_4 ·OH. B. Bei 24-stdg. Erhitzen von 50 g Anilin mit 59 g Brenzcatechin und 25 g Calciumchlorid auf 180° in mit Kohlensäure gefülltem Einschlußrohr (Deninger, J. pr. [2] 50, 89). Beim Erhitzen von 2-Amino-phenol mit Brombenzol bei Gegenwart von Kupferjodür (Goldberg, D. R. P. 187-870; C. 1907 II, 1465). Aus dem 2-Oxy-N-acetyl-diphenylamin (S. 372) beim Erhitzen mit rauchender Salzsäure auf 130° (Gambarjan, B. 42, 4012). Aus 2-Oxy-N-benzoyl-diphenylamin (S. 374) durch Erhitzen mit methylalkoholischem Kali im geschlossenen Rohr auf 140° (Ga., B. 42, 4009). Prismen (aus Wasser). F: 68° (D.), 69—70° (Ga.). Kp₃₀: 180—189° (Ga.). Schwer löslich in Benzol und kochendem Wasser, leicht in Alkohol und Äther (D.). Eisenchlorid ruft in der wäßr. Lösung eine blauschwarze, sehr schnell in Dunkelrot übergehende Färbung (Ga.) hervor. Gibt mit konz. Schwefelsäure und Nitrit die Diphenylaminreaktion (Ga.). Liefert mit Acetanhydrid das 2-Oxy-N-acetyl-diphenylamin (Ga.). $C_{12}H_{11}ON$ + HCl. Blätter (D.).
- 2'.4'-Dinitro-2-oxy-diphenylamin C₁₂H₉O₅N₃ = (O₂N)₂C₅H₃·NH·C₅H₄·OH. B. Bei 5-stdg. Erhitzen von 10 g 2-Amino-phenol mit 24 g 4-Brom-1.3-dinitro-benzol (Bd. V, S. 266) auf 130—140° im Einschlußrohr (Schöfff, B. 22, 900). Aus 2-Amino-phenol und 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) in Gegenwart von Natriumacetat (Nietzki, Schündelen, B. 24, 3588). Orangegelbe Nadeln oder Blättchen (aus Alkohol). F: 190° (N., Schü.), 198—199° (Schö.). Leicht löslich in Alkohol, schwer in Benzol (Schö.). Liefert beim Schmelzen mit Schwefel und Schwefelalkali einen schwarzen Baumwollfarbstoff (Leonhardt & Co., D. R. P. 113418; C. 1900 II, 704). Bei der Einw. von Alkalipolysulfid in Gegenwart von Kupfersalzen entsteht ein rotbrauner Farbstoff (Akt.-Ges. f. Anilinf., D. R. P. 194198; C. 1908 I, 1014).
- 2'.6'-Dinitro-2-oxy-diphenylamin C₁₂H₂O₅N₃ = (O₂N)₂C₆H₂·NH·C₆H₄·OH. B. Aus 2-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) beim Kochen mit 2-Amino-phenol, Natriumacetat und Alkohol unter Rückfluß (ULLMANN, A. 366, 110; Akt.-Ges. f. Anilinf., D. R. P. 200736; C. 1908 II, 839). Rotviolette Nadeln (aus Alkohol). F: 191° (U.). Leicht löslich in heißem Ather, Eisessig und Benzol mit gelber Farbe (U.). Liefert beim Kochen mit Natronlauge 4-Nitro-phenoxazin (Syst. No. 4198) (U.; A.-G. f. A.).
- 5'-Chlor-2'.4'-dinitro-2-oxy-diphenylamin $C_{12}H_8O_8N_8Cl=(O_8N)_8C_8H_2Cl\cdot NH\cdot C_8H_4\cdot OH.$ B. Aus 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) und 2-Amino-phenol in Alkohol bei Gegenwart von Natriumacetat bei 40—60° (Bad. Anilin- u. Sodaf., D. R. P. 122606; C. 1901 II, 382). F: 195°. Löslich in Alkohol.
- 2-Pikrylamino-phenol, 2'.4'.6'-Trinitro-2-oxy-diphenylamin $C_{12}H_2O_7N_4=(O_2N)_5C_6H_2\cdot NH\cdot C_6H_4\cdot OH$. B. Beim 2-stdg. Kochen von 2-Amino-phenol mit 2-Chlor-

- 1.3.5-trinitro-benzol (Bd. V, S. 273) und Benzol (Turfin, Soc. 59, 720). Rote Nadeln (aus Alkohol). F: 175°. Leicht löslich in Alkohol. Beim Kochen mit Kalilauge entsteht 2.4-Dinitro-phenoxazin (Syst. No. 4198).
- 2-Anilino-phenol-methyläther, Phenyl-o-anisidin, 2-Methoxy-diphenylamin $C_{13}H_{13}ON = C_0H_1 \cdot NH \cdot C_0H_2 \cdot O \cdot CH_3$. B. Beim Erhitzen von 2'-Methoxy-diphenylamin-carbonsäure-(2) (Syst. No. 1894) auf 240—260° (Ullmann, A. 355, 344). Beim Erwärmen von o-Anisidin mit Brombenzol und Pottasche bei Gegenwart von etwas Kupferjodür und Jodbenzol (Goldberg, D. R. P. 187870; C. 1907 II, 1465). Farblose Flüssigkeit. Kp₇₈₀: 320—325° (G.), Kp₇₈₂: 325—326° (U.). Färbt sich an der Luft braun (U.). Mit Alkohol und Ather mischbar (U.). Löst sich in konz. Schwefelsäure bräunlichviolett, auf Zusatz von etwas Salpetersäure tiefdunkelblau (G.).
- [4-Nitro-phenyl]-o-anisidin, 4-Nitro-2-methoxy-diphenylamin $C_{13}H_{12}O_3N_2 = O_3N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Kochen des Kaliumsalzes der 4'-Nitro-2-methoxy-diphenylamin-sulfonsäure-(2') (Syst. No. 1923) mit $20^{\circ}/_{\circ}$ iger Salzsäure (Ullmann, Jüngel, B. 42, 1083). Gelbe Nadeln mit stahlblauem Oberflächenglanz (aus Benzol + Ligroin). F. 111°. Sehr wenig löslich in Wasser und Ligroin, löslich in Alkohol und Benzol mit gelber Farbe.
- [2.4 Dinitro phenyl] o anisidin, 2'.4' Dinitro 2 methoxy diphenylamin $C_{13}H_{11}O_{4}N_{3} = (O_{2}N)_{2}C_{6}H_{5}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Beim Erhitzen von o-Anisidin, gelöst in Alkohol, mit 4-Brom-1.3-dinitro-benzol (Bd. V, S. 266) im Einschlußrohr (Schöffff, B. 22, 902). Rote Nadeln (aus Alkohol). F: 151°. Gibt bei der Chlorierung mit Natrium-chlorat und Salzsäure x.x-Dichlor-2'.4'-dinitro-2-methoxy-diphenylamin $(O_{2}N)_{2}C_{6}H_{3}\cdot NH\cdot C_{6}H_{2}Cl_{2}\cdot O\cdot CH_{3}$ (S. 385) (Reverdin, Crépieux, B. 36, 3270).
- Pikryl o anisidin, 2'.4'.8'- Trinitro 2 methoxy diphenylamin $C_{12}H_{10}O_7N_4=(O_2N)_2C_6H_3\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus o-Anisidin und Pikrylchlorid (Bd. V, S. 273) in Alkohol (Busch, Pungs, J. pr. [2] 79, 548, 552). Orangerote Nadeln. F: 142°. Leicht löslich in Benzol, schwer in Alkohol.
- [3.4 Dinitro phenyl] o phenetidin, 2'.4'- Dinitro 2 äthoxy diphenylamin $C_{14}H_{13}O_5N_3 = (O_2N)_3C_6H_3 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Man versetzt eine alkoholische Lösung von 28 g 2'.4'- Dinitro 2 oxy-diphenylamin (S. 365) mit 3 g Natrium und erhitzt mit 17 g Athyljodid 4—5 Stunden am Rückflußkühler (SCHÖPFF, B. 22, 902). Rote Nadeln (aus Alkohol). F: 164° (SCH.). Gibt bei der Chlorierung mit Natriumchlorat und Salzsäure x.x-Dichlor-2'.4'-dinitro-2-äthoxy-diphenylamin (O₂N)₂C₆H₃·NH·C₆H₂Cl₂·O·C₂H₅ (S. 386) (REVERDIN, CRÉPIEUX, B. 36, 3269).
- Pikryl-o-phenetidin, 2'.4'.6'-Trinitro-2-äthoxy-diphenylamin $C_{16}H_{12}O_7N_4 = (O_2N)_8C_6H_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus o-Phenetidin und Pikrylchlorid in Alkohol (Busch, Pungs, J. pr. [2] 79, 548, 553). Scharlachrote Nadeln. F: 136—137°.
- 2'.4'-Dinitro-2-acetoxy-diphenylamin $C_{14}H_{11}O_{8}N_{3}=(O_{2}N)_{8}C_{6}H_{3}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CO\cdot CH_{2}$. B. Beim Erhitzen von 2'.4'-Dinitro-2-oxy-diphenylamin mit der 10-fachen Menge Essigsäureanhydrid am Rückflußkühler (Schöfff, B. 22, 902). Gelbe Nadeln (aus Alkohol). F: 150°. Unlöslich in Alkalien.
- [2-Pikrylamino-phenyl]-acetat, 2'.4'.6'-Trinitro-2-acetoxy-diphenylamin $C_{14}H_{10}O_{4}N_{4}=(O_{4}N)_{3}C_{6}H_{4}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CO\cdot CH_{5}$. B. Man läßt 2'.4'.6'-Trinitro-2-oxy-diphenylamin mit überschüssigem Essigsäureanhydrid mehrere Tage bei Zimmertemperatur stehen und erwärmt schließlich einige Stunden auf dem Wasserbade (Turfin, Soc. 59, 722). Braunrote Tafeln (aus Eisessig). F: 161°.
- [2-Pikrylamino-phenyl]-benzoat, 2'.4'.6'-Trinitro-2-benzoyloxy-diphenylamin $C_{15}H_{19}O_{9}N_{4}=(O_{2}N)_{3}C_{6}H_{4}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus 2-Pikrylamino-phenol, Benzoylchlorid und Natronlauge (Turpin, Soc. 59, 722). Orangefarbene Nadeln (aus Eisessig). F: 191°.
- 2-Bensylamino-phenol-methyläther, Bensyl-o-anisidin $C_{14}H_{15}ON = C_6H_5 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Erwärmen von o-Anisidin mit Benzylchlorid und gepulvertem Kaliumhydroxyd auf dem Wasserbade (Wedekind, B. 39, 487). Dickes, gelbes Ol. Kp₂₅: 217—220°. Pikrat $C_{14}H_{15}ON + C_6H_3O_7N_3$. Gelbe Prismen (aus Alkohol). F: 137°.
- 2-[3-Nitro-benzylamino]-phenol-methyläther, [2-Nitro-benzyl]-o-anisidin $C_{14}H_{14}O_2N_2=O_2N\cdot C_6H_4\cdot CH_5\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Aus 2 Mol.-Gew. o-Anisidin und 1 Mol.-Gew. 2-Nitro-benzylchlorid in siedender alkoholischer Lösung, neben geringen Mengen Bis-[2-nitro-benzyl]-o-anisidin (Paal, Schilling, J. pr. [2] 54, 277). Aus 1 Mol.-Gew. o-Anisidin und 1-Mol.-Gew. 2-Nitro-benzylchlorid in siedender alkoh. Lösung in Gegenwart von 3 Mol.-Gew. Soda (Busch, Brunner, Birk, J. pr. [2] 52, 401). Orangerote Krystalle (aus Alkohol). F: 80° (Bu., Br., Bl.; P., Sch.). Leicht löslich in den meisten organischen Lösungsmitteln (P., Sch.). Bei der Reduktion mit Zinkstaub und Eisessig entsteht

- [2-Amino-benzyl]-o-anisidin (Bu., Br., Bi.; P., Sch.) neben 2.2'-Bis-[2-methoxy-anilino-methyl]-azobenzol (Syst. No. 2173) (Bu., Br., Bi.). $C_{14}H_{14}O_3N_3 + HCl$. Prismen (aus Alkohol). F: 158° (P., Sch.).
- 2-[4-Nitro-bensylamino]-phenol-methyläther, [4-Nitro-bensyl]-o-anisidin $C_{14}H_{14}O_3N_2=O_3N\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Durch 4-stdg. Kochen von 1 Mol.-Gew. 4-Nitro-benzylchlorid mit 2 Mol.-Gew. o-Anisidin in Alkohol (Paal, Benker, B. 32, 1253). Rote Krystalle (aus Alkohol). F: 95°. Leicht löslich in warmem Alkohol, Äther, Benzol und Eisessig.
- 2-Methylbenzylamino-phenol-methyläther, Methyl-benzyl-o-anisidin $C_{15}H_{17}ON=C_6H_5\cdot CH_2\cdot N(CH_2)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Methyl-o-anisidin (S. 362) und Benzylbromid (Wederind, B. 39, 486). Dickes, gelbes Öl. Kp₆₅: 217—220° (W.). Gibt mit Allylbromid Methyl-allyl-[2-methoxy-phenyl]-benzyl-ammoniumbromid (s. u.) (Wederind, Fröhlich, B. 40, 1008). Pikrat $C_{15}H_{17}ON+C_6H_3O_7N_3$. Prismen (aus Alkohol). F: 129° (W.).
- 2-Allylbensylamino-phenol-methyläther, Allyl-bensyl-o-anisidin $C_{17}H_{19}ON = C_{e}H_{5}\cdot CH_{5}\cdot N(CH_{2}\cdot CH:CH_{3})\cdot C_{e}H_{4}\cdot O\cdot CH_{3}$. B. Aus Allyljodid und Benzyl-o-anisidin (S. 366) in Benzol bei Gegenwart von gepulvertem Ätzkali (Wedekind, B. 39, 487). Öl. Kp₅₀: 205—206°. Bei der Einw. von Methyljodid entsteht unter Abspaltung von Benzyljodid und Allyljodid Trimethyl-[2-methoxy-phenyl]-ammoniumjodid (S. 364).
- Methyl-allyl-[2-methoxy-phenyl]-bensyl-ammoniumhydroxyd $C_{18}H_{23}O_3N = (C_8H_5\cdot CH_2)(CH_3:CH\cdot CH_2)(CH_3)N(OH)\cdot C_8H_4\cdot O\cdot CH_3$. B. Das Bromid entsteht aus Methylallyl-o-anisidin und Benzylbromid (Wedekind, Fröhlich, B. 40, 1008) oder aus Methylbenzyl-o-anisidin und Allylbromid (W., F.). Das Jodid entsteht aus Methyl-allyl-o-anisidin und Benzyljodid (Wedekind, B. 39, 487) oder aus Methyl-benzyl-o-anisidin und Allyljodid (W.). Die freie Base ist nicht bekannt. Bromid $C_{18}H_{23}ON\cdot Br$. Sechsseitige Prismen (aus Alkohol). F: 106—107°; zersetzt sich langsam beim Trocknen (W., F.). Jodid $C_{18}H_{23}ON\cdot I$. Krystallpulver (aus Alkohol) + Äther). Zersetzt sich bei 120° (W.). Salz der [d-Campher]-β-sulfonsäure (Bd. XI, S. 315) $C_{18}H_{22}ON\cdot O\cdot SO_2\cdot C_{10}H_{18}O$. B. Durch Kochen des Bromids mit [d-campher]-β-sulfonsaurem Silber in Essigester + wenig Alkohol (W., F.). Krystalle. F: 108—109°. [a]₁₀²⁰: +10,32° (0,5530 g in 20 ccm Wasser).
- 2-Dibenzylamino-phenol $C_{30}H_{19}ON = (C_8H_5 \cdot CH_2)_*N \cdot C_6H_4 \cdot OH$. B. Das Hydrochlorid entsteht aus 2-Amino-phenol und Benzylchlorid (Barunin, G. 36 II, 223). Die freie Base ist nicht bekannt. $C_{30}H_{19}ON + HCl$. Oktaeder. F: 200—205°. Fast unlöslich in Äther, Petroläther und Benzol, schwer löslich in Wasser.
- 2-[Bis-(2-nitro-benzyl)-amino]-phenol-methyläther, Bis-[2-nitro-benzyl]-o-anisidin $C_{31}H_{19}O_5N_3=(O_2N\cdot C_6H_4\cdot CH_2)_8N\cdot C_6H_4\cdot O\cdot CH_3$. Beim Erhitzen von 1 Mol.-Gew. o-Anisidin mit 2 Mol.-Gew. 2-Nitro-benzylchlorid auf 130° (Paal, Schilling, J. pr. [2] 54, 278). Gelbe Tafeln (aus Alkohol). F: 117°.
- 2-[2-Brommethyl-bensylamino]-phenol-methyläther, [2-Brommethyl-bensyl]-o-anisidin $C_{16}H_{16}ONBr = BrCH_{2} \cdot C_{6}H_{4} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. B. Aus o-Anisidin und o-Xylylenbromid (Bd. V, S. 366) in Chloroform (Scholtz, B. 31, 423). Prismen.
- 2-{[2.4-Dinitro-naphthyl-(1)]-amino}-phenol, N-[2-Oxy-phenyl]-2.4-dinitro-naphthylamin-(1) $C_{10}H_{11}O_5N_3=(O_2N)_2C_{10}H_5\cdot NH\cdot C_6H_4\cdot OH$. B. Aus p-Toluolsulfonsäure-[2.4-dinitro-naphthyl-(1)]-ester (Bd. XI, S. 101) und 2-Amino-phenol in siedendem Alkohol (ULLMANN, BRUCK, B. 41, 3938). Orangerote Nadeln (aus Benzol). F: 178° (korr.). Sehr leicht löslich in Aceton, löslich in warmem Ather, Alkohol und Essigsäure, unlöslich in Ligroin. Gibt beim Erwärmen mit 30°/0iger Natronlauge 2.4-Dinitro-naphthol-(1). Konzentrierte Schwefelsäure löst mit violetter, Atznatron mit roter Farbe.
- 2- β -Naphthylamino-phenol-methyläther, β -Naphthyl-o-anisidin, [2-Methoxyphenyl]- β -naphthylamin $C_{17}H_{15}ON = C_{10}H_7\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 3-Oxy-naphthoesaure-(2) (Bd. X, S. 333), o-Anisidin und Disulfitlösung (Bucherer, Seyde, J. pr. [2] 75, 273). Blättchen (aus heißer alkoh. Lösung durch Wasser). F: 68°. Sehr leicht löslich in organischen Lösungsmitteln. Hydrochlorid. Krystallinisch. Löslich in Alkohol.
- 2-Benshydrylamino-phenol-methyläther, Benshydryl-o-anisidin, a-o-Anisidino-diphenylmethan $C_{20}H_{12}ON=(C_6H_5)_2CH\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Benzal-o-anisidin in Benzol und Phenylmagnesiumbromid im Äther unter guter Kühlung (Busch, Rinck, B. 38, 1770). Stäbchen (aus Alkohol). F: 92°. Kp_{15} : 244—245°. Hydrochlorid. Nadeln. F: 162°. Leicht löslich in Alkohol.
- 2-[β -Oxy-äthylamino]-phenol-methyläther, [β -Oxy-äthyl]-o-anisidin $C_0H_{18}O_2N=HO\cdot CH_2\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot B$. Aus o-Anisidin und β -Chlor-āthylalkohol (Bd. I, S. 337)

bei 115—120° (KNORR, B. 22, 2095). — Dickes Öl. Kp: 305° (korr.). Leicht löslich in den organischen Lösungsmitteln. — Beim Erhitzen von [β-Oxy-āthyl]-o-anisidin mit rauchender Salzsäure auf 160° entsteht nicht näher untersuchtes 2-[β-Chlor-āthylamino]-phenol CH₂Cl·CH₂·NH·C₆H₄·OH, das beim Kochen mit Natronlauge in Phenmorpholin C₆H₄·OH₂ (Syst. No. 4194) übergeht.

2-[Methyl- $(\beta$ -oxy-äthyl)-amino]-phenol-methyläther, $[\beta$ -Oxy-äthyl]-methylo-anisidin $C_{10}H_{15}O_2N=HO\cdot CH_2\cdot CH_3\cdot N(CH_3)\cdot C_0H_4\cdot O\cdot CH_3$. B. Aus Methyl-o-anisidin und β -Chlor-äthylalkohol (Knorr, B. 22, 2098). — Kp: 290° (korr.). — Beim Erhitzen mit rauchender Salzsäure auf 160° entsteht ein chlorhaltiges Produkt, das beim Kochen mit Natronlauge in N-Methyl-phenmorpholin (Syst. No. 4194) übergeht.

Verbindung aus o-Anisidin, Formaldehyd und schwefliger Säure $C_8H_{11}O_4NS = (HO_3S)CH_3 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2$. B. Das Natriumsalz entsteht aus o-Anisidin und Formaldehyd-Natriumdisulfit-Lösung (Bucherer, Schwalbe, B. 39, 2802). — Die freie Säure ist nicht dargestellt. — Das Natriumsalz ist gegen verd. Mineralsäuren bei 20° beständig. Es gibt beim Erwärmen mit einer wäßr. Kaliumcyanidlösung o-Anisidinoacetonitril. — $NaC_9H_{10}O_4NS$ ("methyl-o-anisidin- ω -sulfonsaures Natrium"). Blätter (aus heißem ca. 80%0 gem Alkohol). Leicht löslich in heißem ca. 80%0 gem Alkohol.

Methylen-bis-[2-amino-phenol-methyläther], Methylen-di-o-anisidin, Di-o-anisidino-methan $C_{18}H_{18}O_2N_1=CH_2(NH\cdot C_6H_4\cdot O\cdot CH_3)_2$. B. Aus o-Anisidin in Alkohol und Formaldehydlösung mit oder ohne Zusatz von Kalilauge bei gewöhnlicher Temperatur (Bechoff, Reinfeld, B. 36, 48). — Tafeln (aus Benzol + Ligroin). F: 86° (B., R.). Kp₂₅: 160° (Bischoff, Fröhlich, B. 39, 3972). Sehr leicht löslich in Alkohol, Benzol und Chloroform, löslich in warmem Ligroin (B., R.). Färbt sich an der Luft allmählich rosa (B., R.). — Gibt mit Phenol bei 180—200° [4(?)-Oxy-benzyl]-o-anisidin (Syst. No. 1855), beim Kochen mit Phenol in Benzollösung [2-Oxy-benzyl]-o-anisidin (Syst. No. 1855), mit Oxalsäure-diphenylester (Bd. VI, S. 155) in siedendem Xylol Oxalsäure-di-o-anisidid (S. 374) (B., F.).

[β.β.β-Trichlor-äthyliden]-bis-[2-amino-phenol-methyläther], [β.β.β-Trichlor-äthyliden]-di-o-anisidin $C_{16}H_{17}O_2N_3Cl_3 = CCl_5 \cdot CH(NH \cdot C_6H_4 \cdot O \cdot CH_3)_2$. B. Aus o-Anisidin und Chloral in Benzol auf dem Wasserbade (Wheeler, Am. Soc. 30, 138). — Schwach gelbliche Krystalle (aus Ligroin oder Benzol), Prismen (aus Alkohol). F: 121°. Leicht löslich in kaltem Benzol, Tetrachlorkohlenstoff, heißem Eisessig, löslich in heißem, schwer löslich in kaltem Ligroin. 100 ccm siedender Alkohol lösen etwa 7 g Substanz; 100 ccm Alkohol von 25° lösen etwa 2,5 g Substanz. — Bei der Einw. von Brom in Eisessig entsteht ein bei ca. 230° schmelzendes Bromderivat.

- **2-Bensalamino-phenol** $C_{18}H_{11}ON = C_{6}H_{5}\cdot CH:N\cdot C_{6}H_{4}\cdot OH$. B. Durch Erwärmen äquimolekularer Mengen Benzaldehyd und 2-Amino-phenol auf dem Wasserbade (Pictet, Ankersmit, A. **266**, 140). Blättchen (aus Alkohol). F: 89° (P., An.; Möhlau, Adam, C. **1907** I, 107). Sehr leicht löslich in Äther und Benzol (P., An.). In konz. Schwefelsäure hellorange löslich (M., Ad.).
- **2-[2-Nitro-benzalamino]-phenol** $C_{13}H_{10}O_3N_3=O_2N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot OH.$ B. Aus 2-Nitro-benzaldehyd (Bd. VII, S. 243) und 2-Amino-phenol in $50^\circ/_{\psi}$ igem Alkohol (Möhlau, Adam, Ztschr. f. Farbenindustrie 5, 404; C. 1907 I, 108). Gelbe Nadeln. F: 104°. Leicht löslich in den organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure dunkelgelb. Färbt sich am Licht dunkel.
- **2-[3-Nitro-benzalamino]-phenol** $C_{13}H_{10}O_3N_2=O_2N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot OH.$ B. Aus 3-Nitro-benzaldehyd (Bd. VII, S. 250) und 2-Amino-phenol in absol. Alkohol (Pope, Soc. 93, 535) oder in wäßrig-alkoholischer Lösung (Möhlau, Adam, Ztschr. f. Farbenindustrie 5, 406; C. 1907 I, 108). Gelbliche Nadeln (aus Alkohol). F: 135° (P.), 131° (M., A.). Absorption: P., Soc. 93, 537. Die gelbliche Lösung in Alkohol wird durch Alkali etwas dunkler (P.). Löst sich in konz. Schwefelsäure mit gelber Farbe (M., A.).
- 2-[4-Nitro-benzalamino]-phenol C₁₃H₁₀O₃N₂ = O₂N·C₂H₄·CH:N·C₄H₄·OH. B. Aus 4-Nitro-benzaldehyd (Bd. VII, S. 256) und 2-Amino-phenol in absol. Alkohol (Pope, Soc. 93, 534). Aus 4-Nitro-benzaldehyd, salzsaurem 2-Amino-phenol und Natriumacetat in wäßrigalkoholischer Lösung (Möhlau, Adam, C. 1907 I, 108). Gelbe Nadeln (aus Tetrachlorkohlenstoff). F: 158° (M., A.), 161° (P.). Löslich in Alkohol, Toluol, Essigester, unlöslich in Petroläther, Ligroin (M., A.). Absorption: Pope, Soc. 93, 536. Die gelbe Lösung in Alkohol wird durch Alkali orangerot (P.). Löst sich in konz. Schwefelsäure orangefarben (M., A.).

- 2-[4-Nitro-bensalamino]-phenol-methyläther, [4-Nitro-bensal]-o-anisidin $C_{14}H_{12}O_3N_2 = O_2N \cdot C_6H_4 \cdot CH : N \cdot C_4H_4 \cdot O \cdot CH_3$. B. Beim Erwärmen von 4-Nitro-benzaldehyd (Bd. VII, S. 256) und o-Anisidin in alkoh. Lösung (Pope, Fleming, Soc. 93, 1917). Schwefelgelbe Tafeln (aus verd. Alkohol). F: 111°. $C_{14}H_{12}O_3N_2 + HCl$. Gelbliches amorphes Pulver. Zersetzt sich bei 141°.
- 2-Benzalamino-phenol-āthylāther, Benzal-o-phenetidin $C_{15}H_{15}ON = C_6H_5 \cdot CH: N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus o-Phenetidin und Benzaldehyd in Alkohol (STEINBRENCK, Dissertation [Heidelberg 1896], S. 45). Öl. Kp_{20} : 215—216° (STEINBRENCK, Dissertation; B. 34, 833 Anm.).
- 2-Cinnamalamino-phenol $C_{18}H_{13}ON = C_0H_5 \cdot CH : CH : CH : N \cdot C_0H_4 \cdot OH$. B. Beim Schütteln einer Lösung von 2-Amino-phenol in verd. Essigsäure mit Zimtaldehyd (Bd. VII, S. 348) (HAEGELE, B. 25, 2756). Blättchen (aus Alkohol). F: 79° (H.; MÖHLAU, ADAM, C. 1907 I, 107). Leicht löslich in Alkohol und in Äther (H.). Löst sich in konz. Schwefelsäure orangefarben (M., A.).
- 2-[2-Nitro-cinnamalamino]-phenol $C_{18}H_{12}O_3N_2=O_2N\cdot C_6H_4\cdot CH:CH:CH:N\cdot C_6H_4\cdot OH.$ B. Aus 2-Nitro-zimtaldehyd (Bd. VII, S. 358) und 2-Amino-phenol (Möhlau, Adam, C. 1907 I, 108). Goldglänzende Prismen (aus Alkohol). F: 125°. In konz. Schwefelsäure orange löslich.
- 2-[4-Nitro-cinnamalamino]-phenol $C_{15}H_{12}O_3N_2 = O_2N \cdot C_6H_4 \cdot CH : CH : CH : N \cdot C_8H_4 \cdot OH$. B. Aus 4-Nitro-zimtaldehyd (Bd. VII, S. 358) und 2-Amino-phenol (M., A., C. 1907 I, 108). Gelbe Nadeln (aus Alkohol). F: 158°. Leicht löslich in Essigester, Aceton, Petroläther, Toluol; schwer löslich in Ligroin, Äther. In konz. Schwefelsäure dunkelorange löslich.
- Glutacondialdehyd-bis-[2-methoxy-anil] bezw. 1-[2-Methoxy-anilino]-pentadien-(1.3)-al-(5)-[2-methoxy-anil] $C_{12}H_{20}O_{2}N_{3}=CH_{3}\cdot 0\cdot C_{6}H_{4}\cdot N:CH\cdot CH:CH\cdot CH_{3}\cdot CH:N\cdot C_{6}H_{4}\cdot 0\cdot CH_{3}$ bezw. $CH_{3}\cdot 0\cdot C_{6}H_{4}\cdot N:CH\cdot CH:CH\cdot CH:CH\cdot CH:CH\cdot NH\cdot C_{6}H_{4}\cdot 0\cdot CH_{3}.$ Hydrobromid $C_{12}H_{20}O_{2}N_{3}+HBr.$ Zur Frage der Konstitution vgl. die bei der analogen Anilin-Verbindung (Bd. XII, S. 204) angeführten Literaturstellen. B. Man löst 12,3 go-Anisidin und 4 g Pyridin in 75 cem Äther und fügt eine äther. Lösung von 5,3 g Bromeyan hinzu (König, J. pr. [2] 70, 47). Violettbraune, blauschimmernde Nadeln (aus Alkohol), hellrote, goldglänzende Nadeln (aus Eisessig). F: 148°.
- ms-[(2-Äthoxy-phenylimino)-methyl]-acetylaceton bezw. ms-[o-Phenetidino-methylen]-acetylaceton $C_{14}H_{17}O_{2}N=(CH_{2}\cdot CO)_{2}CH\cdot CH:N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. (CH₃·CO)₂C:CH·NH·C₆H₄·O·C₂H₅. B. Aus N.N'-Bis-[2-āthoxy-phenyl]-formamidin (S. 370) und Acetylaceton bei 125° (Dains, Brown, Am. Soc. 31, 1152). Nadeln (aus Ligroin). F: 115—116°.
- Methyl-[a-o-anisidino-isopropyl]-ketoxim, Amylennitrol-o-anisidin $C_{12}H_{18}O_2N_3=CH_3\cdot C(:N\cdot OH)\cdot C(CH_3)_2\cdot NH\cdot C_2H_4\cdot O\cdot CH_3$. B. Aus Amylennitrosat (Bd. I, S. 391) und o-Anisidin (Wallace, A. 241, 302). Krystalle (aus Alkohol). F: 138—139°. $C_{12}H_{18}O_2N_2+HCl$. Prismen. Leicht löslich in Wasser.
- **2-Salicylaiamino-phenol** $C_{13}H_{11}O_2N = HO \cdot C_5H_4 \cdot CH : N \cdot C_5H_4 \cdot OH$. B. Aus 2-Aminophenol, gelöst in verd. Essignäure, und Salicylaldehyd (HAEGELE, B. 25, 2755). Rote Nadeln (aus Alkohol). F: 185° (H., B. 26, 394). Leicht löslich in Alkohol und Äther, schwerer in Benzol (H., B. 25, 2755).
- **2-Salicylalamino-phenol-äthyläther, Salicylal-o-phenetidin** $C_{15}H_{15}O_2N=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot O\cdot C_8H_8$. Öl. $Kp_{17}\colon 228-229^\circ$ (Steinbrenck, B. 34, 833 Anm.).
- **2-Anisalamino-phenol** $C_{14}H_{12}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot OH.$ B. Aus Anisaldehyd (4-Methoxy-bensaldehyd, Bd. VIII, S. 67) und 2-Amino-phenol (HAEGELE, B. 25, 2755). Gelbbraune Nadeln (aus verd. Alkohol). F: 89°.

- b) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit Mono- und Polycarbonsäuren.
- 2-Formamino-phenol C₇H₇O₂N = OHC·NH·C₆H₄·OH. B. Aus 2-Amino-phenol und Ameisensäure durch Kochen am Rückflußkühler (Bamberger, B. 36, 2052). Beim allmählichen Versetzen von Ameisensäureessigsäureanhydrid mit 2-Amino-phenol unter Kühlen (Béhal, A.ch. [7] 20, 429; D. R. P. 115334; C. 1900 II, 1141). Bei der Oxydation von 2-Amino-benzaldehyd (Syst. No. 1873) mit neutralisierter Sulfomonopersäurelösung, neben anderen Produkten (BA., DEMUTH, B. 36, 831; BA., B. 36, 2042). Beim Erhitzen von Benzoxazol (Syst. No. 4195) mit Wasser im Dampfbade (Ba., B. 36, 2053). - Nadeln (aus Wasser). F: 129—129,5° (BA., D.). Sehr leicht löslich in Alkohol, Essigester, Chloroform, Aceton, heißem Wasser, leicht in heißem Äther, ziemlich löslich in Benzol, kaltem Wasser, schwer in Ligroin (Ba., D.). Eisenchlorid färbt die wäßr. Lösung violettblau, die alkoh. Lösung grünblau (Ba., D.). Reagiert gegen Lackmus neutral, ist aber in Alkalien löslich, durch Säuren fällbar (Ba., D.). — Liefert beim Erhitzen Benzoxazol (Ba.). Wäßrige Atzlauge spaltet bei gewöhnlicher Temperatur in 2-Amino-phenol und Ameisensäure (Ba.). Liefert mit Benzoylchlorid in Gegenwart von Natronlauge O.N-Dibenzoyl-[2-amino-phenol] (BA.).
- 2-Formamino-phenol-methyläther, Ameisensäure-o-anisidid, Form-o-anisidid C₈H₉O₂N = OHC·NH·C₂H₄·O·CH₃. B. Man reduziert 2-Nitro-anisol (Bd. VI, S. 217) mit Zinn und Salzsäure, destilliert das entstandene Basengemisch ab, kocht es mit konz. Ameisensäure und extrahiert hierauf mit verd. Alkohol (1 Vol. Alkohol + 1 Vol. Wasser) mit verd. Alkohol (2 Vol. Alkohol + 2 Vol. Wasser) bei ca. 40°; ungelöst bleibt der 5-Chlor-2-formamino-phenol-methyläther (S. 384) (Die-Folder, B. 32, 3514). — Nadeln (aus verd. Alkohol oder Ligroin). F: 83,5°. Leicht löslich in Alkohol und Benzol, ziemlich leicht in Äther und heißem Wasser.
- 2-Formamino-phenol-äthyläther, Ameisensäure-o-phenetidid, Form-o-phenetidid $C_bH_{11}O_sN=OHC\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_6$. B. Bei der Einw. von Ameisensäureäthylester auf o-Phenetidin (Groll, J. pr. [2] 12, 208). Krystalle. F: 62°. Siedet im Wasserstoffstrome unzersetzt bei 292°.
- 2-[Formyl-(2-nitro-bensyl)-amino]-phenol-methyläther, N [2 Nitro bensyl]-[form-o-anisidid] $C_{15}H_{14}O_4N_3=(OHC)(O_1N\cdot C_0H_4\cdot CH_2)N\cdot C_0H_4\cdot O\cdot CH_3$. B. Beim mehrstündigen Kochen von [2-Nitro-benzyl]-o-anisidin (S. 366) mit_der 4-5-fachen Menge wasserfreier Ameisensäure (PAAL, SCHILLING, J. pr. [2] 54, 279). — Prismen (aus Alkohol). F: 82°. Leicht löslich in Alkohol und Äther.
- 2-[Formyl-(4-nitro-benzyl)-amino]-phenol-methyläther, N-[4-Nitro-benzyl]-[form-o-anisidid] $C_{15}H_{14}O_4N_3 = (OHC)(O_5N \cdot C_6H_4 \cdot CH_3)N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch 5-stdg. Kochen von [4-Nitro-benzyl]-o-anisidin (S. 367) mit der 5-fachen Menge wasserfreier Ameisensaure (Paal, Benker, B. 32, 1254). — Gelbliche Tafeln (aus Alkohol). F: 102°. Ziemlich leicht löslich in den meisten organischen Lösungsmitteln, außer in Ligroin.
- N-[2-Methoxy-phenyl]-formiminoathyläther $C_{10}H_{13}O_2N = C_2H_5 \cdot O \cdot CH : N \cdot C_6H_4 \cdot O \cdot CH = C_2H_5 \cdot O \cdot CH =$ O·CH₃. B. Beim längeren Kochen von o-Anisidin und Orthoameisensäureäthylester (Bd. II, 8. 20) (Goldschmidt, Ch. Z. 25, 329). — Kp: 253°.
- N.N'-Bis-[2-methoxy-phenyl]-formamidin $C_{18}H_{18}O_{2}N_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot N:CH\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. Beim Erhitzen von 2 Mol.-Gew. o-Anisidin mit 1 Mol.-Gew. Orthoameisensaureathylester für sich (Goldschmidt, D. R. P. 103982; Frdl. 5, 772; C. 1899 II, 949; vgl. Dains, Brown, Am. Soc. 31, 1149), oder auch in Gegenwart von Lösungsmitteln, wie Alkohol, Benzol, Toluol, Xylol (G., D. R. P. 103982; vgl. G., Ch. Z. 22, 1033). Aus Dichlor-methyl-formamidin-hydrochlorid (Bd. II, S. 90) und o-Anisidin in Benzol (Dains, B. 35, 2502). — Krystalle (aus Alkohol oder aus Benzol + Ligroin). F: 105° (D., B.), 106°; schwer löslich in Wasser (G.).
- N.N'-Bis-[2-athoxy-phenyl]-formamidin $C_{17}H_{20}O_2N_2 = C_2H_4 \cdot O \cdot C_4H_4 \cdot N : CH \cdot NH \cdot$ C_cH₄·O·C_cH₅. B. Aus o-Phenetidin und Orthoameisensaureathylester bei 140° (Dains, Brown, Am. Soc. 31, 1149). — Nadeln (aus Ligroin). F: 81°. Leicht löslich in Alkohol. $-2C_{17}H_{20}O_2N_2+2HCl+PtCl_4$. Rote Krystalle. F: 178°.
- 2-Acetamino-phenol C₂H₂O₂N = CH₂·CO·NH·C₂H₄·OH. B. Durch Erwärmen von 2-Nitro-phenol (Bd. VI, S. 213) mit Zinn und 100% iger Essigsäure, die durch Zusatz der entsprechenden Menge Essigsäureanhydrid zu bestem Eissesig dargestellt wird (Tingle, WILLIAMS, Am. 37, 57). Bei der Reduktion von 2-Nitro-phenol mit Zinn und mit etwas mehr als der berechneten Menge Eisessig (MORSE, B. 11, 232; vgl. dazu ZINCKE, HERE-BRAND, A. 226, 69 Anm.). Beim Erwärmen von 2-Amino-phenol mit Essigsäureanhydrid bis zur völligen Lösung (Zi., HE.). Durch Schütteln einer Lösung von 10,9 g 2-Amino-phenol in 100 ccm 4%/siger Natronlauge mit 12,3 g Essigsäureanhydrid und Zersetzung des Natriumsalzes mit Salzsäure (A. Lumière, L. Lumière, Barbier, Bl. [3] 33, 785). Beim Kochen von salzsaurem 2-Amino-phenol mit Eisessig, Natriumacetat und der berechneten Menge

Essigsäureanhydrid (MELDOLA, WOOLCOTT, WRAY, Soc. 69, 1323). Beim Erwärmen von 2-Amino-phenol mit Thioessigsäure in Benzol (PAWLEWSKI, B. 35, 112). Entsteht neben 2-Methyl-benzoxazol (Syst. No. 4195) bei 18-stdg. Kochen von 20 g 2-Amino-phenol mit 30 g Acetessigester (NIEMENTOWSKI, B. 30, 3069). Durch Lösen von O.N-Diacetyl-[2-amino-phenol] in Ätzlauge (Bamberger, B. 36, 2050). Beim Erwärmen von 2-Methyl-benzoxazol in verd. Schwefelsäure auf dem Wasserbade (Ladenburg, B. 9, 1525). Bei der elektrolytischen NH—CO

Reduktion des Phenmorpholons C₆H₄ O——CH₂ (Syst. No. 4278) in schwefelsaurer Lösung bei 35° (Lees, Shedden, Soc. 83, 754). — Blättchen (aus verd. Alkohol). F; 201° (La., B. 9, 1526; A. Lu., L. Lu., Bab.), 202–203° (Pa.), 202,5–203,5° (N.), 209° (Bam.). Leicht löslich in Alkohol und heißem Wasser; löst sich in Kalilauge (La.). Die alkoh. Lösung wird mit Eisenchlorid grün; Wasserzusatz bewirkt Übergang der Farbe in Violettbraun bis Rotbraun (Bam.). — Zerfällt beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 130°, oder mit alkoh. Kali auf 120° in Essigsäure und 2-Amino-phenol (La.). Liefert bei der Destillation mit Phosphorsäureanhydrid 2-Methyl-benzoxazol (La.). Beim Zusammenoxydieren von 2-Acetamino-phenol mit p-Phenylendiamin entsteht ein Indophenol, dessen Leukoverbindung beim Verschmelzen mit Schwefel und Schwefelnatrium einen blauen Schwefelfarbstoff gibt (Kalle & Co., D. R. P. 156478; C. 1904 II, 1527).

- 2-Chloracetamino-phenol $C_8H_8O_2NCl=CH_2Cl\cdot CO\cdot NH\cdot C_8H_4\cdot OH$. Bei der Einw. von Chloracetylchlorid auf 2-Amino-phenol in Benzol (Aschan, B. 20, 1524). Leicht löslich in wäßriger Kalilauge.
- 2-Trichloracetamino-phenol $C_0H_0O_2NCl_3=CCl_3\cdot CO\cdot NH\cdot C_0H_4\cdot OH$. B. Aus 2-Amino-phenol und Trichloracetylchlorid in Ather (L. Spiegel, P. Spiegel, B. 40, 1736). Nadeln (aus Alkohol). F: 161—162°. Leicht löslich in Chloroform und Äther. Zersetzt sich bei längerem Erhitzen auf 160° unter Gasentwicklung. Wird durch Erhitzen mit konz. Salzsäure im geschlossenen Rohr in 2-Amino-phenol und Trichloressigsäure gespalten.
- 2-Acetamino-phenol-methyläther, Essigsäure-o-anisidid, Acet-o-anisidid C₂H₁₁O₂N = CH₂·CO·NH·C₆H₄·O·CH₃. B. Beim Erwärmen von o-Anisidin mit Essigsäureanhydrid (MÜHLRÄUSER, A. 207, 242; KÖENER, WENDER, G. 17, 492) oder mit Eisessig (HEBOLD, B. 15, 1685). Aus o-Anisidin und Essigsäureanhydrid in Benzol (KAUFMANN, B. 42, 3482). Krystalle (aus Wasser). F: 78° (MÜ.), 84° (HE.; KÖ., WE.), 87—88° (KAU.). Kp: 303—305° (MÜ.). 100 Tle. 96°/oiger Alkohol lösen bei 21° 55,28 Tle. (KÖ., WE.). Sehr leicht löslich in Eisessig und in heißem Wasser (MÜ.). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 23, 461. Gibt beim Lösen in Salpetersäure (38—45° Bé) ein bei 143° schmelzendes Gemisch zweier Mononitroderivate, das zu 66°/o aus 5-Nitro-2-acetamino-anisol (S. 390) und zu 33°/o aus 4-Nitro-2-acetamino-anisol (S. 389) besteht; nitriert man in schwefelsaurer Lösung mit 1 Mol.-Gew. HNO₃, so erhält man 4-Nitro-2-acetamino-anisol, mit 2 Mol.-Gew. HNO₂ 4.5-Dinitro-2-acetamino-anisol (S. 394) (Freyss, C. 1901 I, 738). Diese Verbindung entsteht auch beim Eintragen von Acet-o-anisidid in rauchende Salpetersäure (MÜ.). Geschwindigkeit der Zersetzung durch wäßr. Natronlauge: Davis, Soc. 95, 1403.
- 2-Acetamino-phenol-äthyläther, Essigsäure-o-phenetidid, Acet-o-phenetidid $C_{10}H_{13}O_5N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Beim Erhitzen von o-Phenetidin mit Essigsäureanhydrid (Reverdin, Düring, B. 32, 159). Blättchen (aus verd. Alkohol). F: 79°; Kp: oberhalb 250° (R., Dü.). Geschwindigkeit der Zersetzung durch wäßr. Natronlauge: Davis, Soc. 95, 1403.
- Äthylenglykol-bis-[2-acetamino-phenyläther] $C_{18}H_{20}O_4N_5 = [CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CH_2-]_5$. B. Beim Erhitzen gleicher Teile Äthylenglykol-bis-[2-amino-phenyläther] (S. 360) und Eisessig auf 160° (Wagner, J. pr. [2] 27, 204). Nadeln (aus Anilin). F: 226°. Fast unlöslich in den gewöhnlichen Lösungsmitteln; leicht löslich in heißem Anilin. Liefert bei der Destillation Äthylenglykol-bis-[2-amino-phenyläther].
- [3-Acetamino-phenyl]-acetat, O.N-Diacetyl-[2-amino-phenol] $C_{10}H_{11}O_3N=CH_3\cdot CO\cdot NH\cdot C_gH_4\cdot O\cdot CO\cdot CH_3$. B. Beim 2-stdg. Erhitzen von 0,7 g 2-Amino-phenol mit 0,65 g Essigsäureanhydrid in 14 ccm Essigsäureathylester (Bamberger, B. 36, 2050). Beim mehrstündigen Kochen von salzsaurem 2-Amino-phenol mit überschüssigem Essigsäureanhydrid und trocknem Natriumacetat (Meldola, Woolcott, Wray, Soc. 69, 1323). Nadeln (aus Wasser). F: 123—124° (M., Woo., Wr.), 124,5° (B.).
- N-Trichloracetyl-O-bengoyl-[2-amino-phenol] $C_{18}H_{10}O_8NCl_8 = CCl_8 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_5$. B. Beim Schütteln von 2-Trichloracetamino-phenol mit 10^9 /, igem Ammoniak und Benzoylchlorid (L. Spiegel, P. Spiegel, B. 40, 1737). Tafeln (aus Alkohol). F: 104— 105° . Leicht löslich in Alkohol und Äther, unlöslich in Wasser.

- [2-Acetamino-phenyl]-kohlensäure-anilid, Phenylcarbamidsäure-[2-acetaminophenyl]-ester $C_{12}H_{14}O_3N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot NH \cdot C_6H_5$. Beim Erhitzen von 2-Acetamino-phenol, gelöst in Toluol, mit Phenylisocyanat (Bd. XII, S. 437) (Leuckabt, J. pr. [2] 41, 328). — Nadeln. F: 162°.
- 2-[Acetylmethylamino]-phenol $C_9H_{11}O_2N = CH_3 \cdot CO \cdot N(CH_3) \cdot C_6H_4 \cdot OH$. Bei $N(CH_3) \cdot CO$ der elektrolytischen Reduktion des N-Methyl-phenmorpholons C_0H_4 −ĊH₃ 4278) in schwefelsaurer Lösung, neben anderen Produkten (Lees, Shedden, Soc. 83, 756).

 — Nadeln (aus Methylal). F: 150°. Leicht löslich in Alkohol. Gibt mit Eisenchlorid in wäßr. Lösung eine purpurne Färbung, die allmählich in Braun übergeht. — Zersetzt sich beim Erhitzen mit konz. Salzsäure auf 140° in Essigsäure und 2-Methylamino-phenol.
- 2-Acetylanilino-phenol, 2-Oxy-N-acetyl-diphenylamin $C_{14}H_{12}O_2N = CH_3 \cdot CO$ N(C₂H₂)·C₂H₃·OH. B. Aus Diphenylamin (Bd. XII, S. 174) und Acetylsuperoxyd (Bd. II, S. 170) in Ather unter starker Kühlung, neben anderen Produkten (Gambarjan, B. 42, 4010). Beim Erhitzen von 2-Oxy-diphenylamin (S. 365) mit Essigsäureanhydrid (G.). Krystalle (aus Petrolather + wenig Eisessig). F: 144—146°. Leicht löslich in Alkohol, Eisessig, Chloroform, ziemlich schwer in Äther, Benzol, Petrolather. Wird aus der Lösung in Natronlauge durch CO, gefällt; kann der Sodalösung durch Äther entzogen werden. Die Lösung in konz. Schwefelsäure ist farblos und wird durch Nitrit nicht verändert. Die alkoh. Lösung gibt mit FeCl₃ keine Färbung. — Liefert beim Erhitzen mit rauchender Salzsäure auf 130° 2-Oxy-diphenylamin.
- 2-[Acetyl-(4-nitro-benzyl)-amino]-phenol-methyläther, N-[4-Nitro-benzyl]-[acet-o-anisidid] $C_{16}H_{16}O_4N_8 = CH_3 \cdot CO \cdot N(CH_2 \cdot C_6H_4 \cdot NO_2) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei $^1/_8$ -stdg. Erhitzen von [4-Nitro-benzyl]-o-anisidin (S. 367) mit dem doppelten Gewicht Essigsäureanhydrid (PAAL, BENKER, B. 32, 1254). — Gelbliche Täfelchen (aus verd. Alkohol). F: 78°.
- N.N'-Bis-[2-methoxy-phenyl]-acetamidin $C_{16}H_{18}O_2N_3=CH_3\cdot O\cdot C_6H_4\cdot N:C(CH_3)\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. Nadeln. F: 99°; leicht löslich in Alkohol und Äther, schwer in Wasser (Täuber, D. R. P. 80568; *Frdl.* 4, 1179).
- 2-Laurylamino-phenol, 2-Laurinoylamino-phenol $C_{18}H_{89}O_2N=CH_3\cdot [CH_2]_{10}\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Aus Laurylchlorid (Bd. II, S. 363) und 2-Amino-phenol in Aceton (Auwers, Bergs, Winternitz, A. 332, 206). Blättchen (aus Alkohol). F: 68—69°. Leicht löslich in Aceton, Eisessig, Benzol, mäßig in Alkohol, schwer in Ligroin, Petroläther.
- 2-Palmitoylamino-phenol C₂₂H₃₇O₂N = CH₃·[CH₂]₁₄·CO·NH·C₆H₄·OH. B. Aus Palmitinsāurechlorid (Bd. II, S. 374) und 2-Amino-phenol in Aceton (Au., B., W., A. 332, 207). — Blättchen (aus Alkohol). F: 78—79°.
- **2-A**cryloylamino-phenol $C_0H_0O_2N = CH_1: CH \cdot CO \cdot NH \cdot C_0H_4 \cdot OH$. B. Aus 2-Amino-phenol $C_0H_0O_2N = CH_1: CH \cdot CO \cdot NH \cdot C_0H_4 \cdot OH$. phenol und Acrylsäurechlorid (Bd. II, S. 400), beide verteilt in absol. Ather (Mourru, A. ch. [7] 2, 186). — Krystalle (aus Benzol). F: 123—124°.
- **2-Benzamino-phenol** $C_{13}H_{11}O_3N=C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot OH$. Bei der Einw. des Sonnenlichtes auf Gemische von Benzaldehyd und Nitrobenzol, neben anderen Produkten (CIAMICIAN, SILBER, B. 38, 1177, 1181; G. 36 II, 193). Wird neben 2-Phenyl-benzoxazol (Syst. No. 4199) erhalten, wenn man Benzoesäure-[2-nitro-phenyl]-ester (Bd. X, S. 118) mit Zinnehlorür und Salzsäure in Eisessig oder mit Zinnehlorür und alkoh. Salzsäure reduziert (EINHORN, A. 811, 39; vgl. BÖTTCHER, B. 16, 630). Bei der Einw. von 1 Mol.-Gew. Benzoylchlorid auf 2 Mol.-Gew. 2-Amino-phenol in absol. Ather (RANSOM, B. 31, 1062; Am. 23, 17). Beim 24-stdg. Kochen von O.N-Dibenzoyl-[2-amino-phenol] mit Wasser, in welchem überschüssiges Bariumcarbonat verteilt ist (HÜBNER, A. 210, 387). Bei 2-tägigem Kochen der alkoh. Lösung von 2-Phenyl-benzoxazol mit Salzsäure am Rückflußkühler (Bö.; vgl. dazu Ein., A. 311, 40). — Blätter (aus Benzol). Schmilzt bei 167° und geht dabei unter Wasserabgabe in 2-Phenyl-benzoxazol über (Hü.); F: 169° (Ci., Si.). Unlöslich in Petrolather, schwer löslich in kaltem Wasser, ziemlich leicht in heißem, leicht in Alkohol, Eisessig, Aceton und Benzol (Hü.). Löslich in kaltem Alkali und daraus durch Säuren fällbar (Bö.). Liefert beim Einleiten von salpetriger Säure in die kalte eisessigsaure Lösung (Bö.) oder beim Behandeln der eisessigsauren Lösung mit höchst konzentrierter Salpetersäure bei -3° bis -5° 4.6-Dinitro-2-benzamino-phenol (S. 396) (HÜ.).
 - 2-[3-Nitro-benzamino]-phenol $C_{13}H_{10}O_4N_3=O_2N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Man suspendiert 2 g 2-Amino-phenol in Ather und gibt eine Lösung von 1,7 g 3-Nitro-benzoylchlorid (Bd. IX, S. 381) hinzu (Ransom, Am. 23, 26). Man mischt eine wäßr. Lösung von salzsaurem 2-Amino-phenol in einer CO₂-Atmosphäre mit einer benzolischen Lösung von 3-Nitro-benzoylchlorid und versetzt dann allmählich mit 20% iger Kalilauge bis zur dauernd alkal. Reaktion; man behandelt das Reaktionsprodukt mit heißem Benzol, wobei O.N-Bis-

- [3-nitro-benzoyl]-[2-amino-phenol] in Lösung geht, 2-[3-Nitro-benzamino]-phenol ungelöst bleibt (Tingle, Williams, Am. 37, 60). Hellgelbe Prismen (aus Alkohol). F: 206° (T., W.), 207° (R.). Leicht löslich in heißem Aceton, unlöslich in Benzol (T., W.).
- 2-[4-Nitro-benzamino]-phenol $C_{13}H_{10}O_4N_2=O_2N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot OH.$ B. Man mischt eine wäßr. Lösung von salzsaurem 2-Amino-phenol in einer $CO_2\cdot Atmosphäre$ mit einer Lösung von 4-Nitro-benzoylchlorid (Bd. IX, S. 394) in Benzol und versetzt dann allmählich mit $20^{\circ}/_{0}$ iger Kalilauge bis zur dauernd alkal. Reaktion; die entstandene Fällung wird gewaschen, getrocknet und hierauf mit Aceton behandelt; 2-[4-Nitro-benzamino]-phenol geht hierbei in Lösung, während O.N-Bis-[4-nitro-benzoyl]-[2-amino-phenol] ungelöst bleibt (T., W., Am. 37, 59). Gelbe Krystalle (aus Alkohol). F: 220°. Ziemlich leicht löslich in Aceton, unlöslich in Benzol.
- 2-Benzamino-phenol-methyläther, Benzoesäure-o-anisidid, Benz-o-anisidid $C_{14}H_{13}O_2N=C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. Be Beim langsamen Versetzen einer äther. Lösung von o-Anisidin mit Benzoylchlorid (MÜHLHÄUSER, A. 207, 244). Krystalle (aus Alkohol). F: 59,8°; die geschmolzene Masse erstarrt nur schwierig (M.). Leicht löslich in Alkohol und Äther (M.). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 30, 540.
- [2-Bengamino-phenyl]-bengoat, O.N-Dibengoyl-[2-amino-phenol] $C_{20}H_{15}O_3N = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von 1 Tl. salzsaurem 2-Amino-phenol mit 2 Tln. Benzoylchlorid und Benzol auf 100°; das Produkt wird durch Destillation von Benzol befreit, dann mit Wasser und Sodalösung gewaschen und mit Petroläther zur Entfernung von 2-Phenyl-benzoxazol (Syst. No. 4199) ausgezogen (Hübner, A. 210, 387). Aus 2-Amino-phenol (Hinseer, v. Udranszky, A. 254, 256), 2-Formamino-phenol (Bamberger, B. 36, 2051), 2-Acetamino-phenol (Tingle, Williams, Am. 37, 58), 2-Benzamino-phenol (Ciamician, Silber, B. 38, 1181; G. 36 II, 193) mit Benzoylchlorid und Natronlauge. Man erhitzt Benzoxazolthion $C_6H_4 < O$ (Syst. No. 4278) mit Benzoylchlorid und läßt das ölige Reaktionsprodukt mit Sodalösung stehen (Kalckhoff, B. 16, 1828). Nadeln (aus Alkohol). F: 182° (K.), 183—184,5° (Ba.), 185° (C., S.). Kaum löslich in kaltem Wasser, schwer löslich in Alkohol, Benzol, heißem Ligroin, leicht in heißem Benzol, sehr leicht in heißem Aceton, heißem Chloroform (Ba.). Zerfällt beim Kochen mit Wasser, in welchem überschüssiges Bariumcarbonat verteilt ist, in Benzoesäure und 2-Benzamino-phenol (Hü.).
- N-Benzoyl-O-[3-nitro-benzoyl]-[2-amino-phenol] $C_{20}H_{14}O_{5}N_{2} = C_{6}H_{5}\cdot CO\cdot NH\cdot C_{0}H_{4}\cdot O\cdot CO\cdot C_{6}H_{4}\cdot NO_{2}$. B. Beim Schütteln einer Lösung von 4 g 2-Benzamino-phenol in Kalilauge mit 3,5 g 3-Nitro-benzoylchlorid und Äther (Ransom, Am. 23, 29). Prismen (aus Alkohol). F: 152°.
- O-Benzoyl-N-[3-nitro-benzoyl]-[2-amino-phenol] $C_{20}H_{14}O_5N_2=O_2N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Man löst 1,29 g 2-[3-Nitro-benzamino]-phenol in einer Lösung von 1 Mol.-Gew. KOH und schüttelt bei 0° mit 0,7 g Benzoylchlorid (R., Am. 23, 28). Nadeln (aus Alkohol). F: 153°. Ziemlich schwer löslich in Alkohol.
- O.N-Bis-[3-nitro-bensoyl]-[2-amino-phenol] $C_{20}H_{13}O_7N_3=O_2N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_4\cdot NO_2$. B. s. im Artikel 2-[3-Nitro-benzamino]-phenol (S. 372). Krystalle (aus Alkohol). F: 186°; löslich in Benzol (Tingle, Williams, Am. 37, 61).
- O.N-Bis-[4-nitro-benzoyl]-[2-amino-phenol] $C_{30}H_{13}O_7N_5 = O_5N \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_4 \cdot NO_5$. B. s. im Artikel 2-[4-Nitro-benzamino]-phenol (s. o.). Krystalle (aus Nitrobenzol). F: 219°; unlöslich in den gebräuchlichen organischen Lösungsmitteln (Tingle, Williams, Am. 37, 60).
- 2 [Benzoylmethylamino] phenol $C_{16}H_{13}O_{2}N=C_{6}H_{5}\cdot CO\cdot N(CH_{3})\cdot C_{6}H_{4}\cdot OH$. Beim Versetzen einer Suspension von 3,7 g 2 Methylamino phenol in Äther mit 2,1 g Benzoylchlorid (Ransom, Am. 23, 34). Krystalle (aus Alkohol). F: 160—162°.
- 2-[(3-Nitro-bensoyl)-methylamino]-phenol $C_{14}H_{19}O_4N_9 = O_9N \cdot C_6H_4 \cdot CO \cdot N(CH_9) \cdot C_6H_4 \cdot OH$. B. Aus 2 Mol.-Gew. 2-Methylamino-phenol und 1 Mol.-Gew. 3-Nitro-benzoyl-chlorid (R., Am. 23, 36). Krystalle (aus Alkohol). F: 105°. Zersetzt sich bei 110—115°.
- N-Methyl-N-benzoyl-O-[3-nitro-benzoyl]-[2-amino-phenol] $C_{21}H_{16}O_zN_2 = C_0H_5$ ·Co·N(CH₂)·C₂H₄·O·Co·C₆H₄·NO₂. B. Aus 2-[Benzoylmethylamino]-phenol und 3-Nitro-benzoylchlorid in alkal. Lösung (R., Am. 23, 37). Krystalle (aus Alkohol). F: 123,5°. Leicht löslich in Alkohol, Äther und Benzol.
- N-Methyl-O-bensoyl-N-[3-nitro-bensoyl]-[2-amino-phenol] $C_{s1}H_{16}O_{s}N_{s}=O_{s}N\cdot C_{s}H_{4}\cdot CO\cdot N(CH_{3})\cdot C_{4}H_{4}\cdot O\cdot CO\cdot C_{5}H_{5}$. B. Man löst 2-[(3-Nitro-benzoyl)-methylamino]-phenol in Natronlauge und versetzt mit Benzoylchlorid (R., Am. 23, 37). Krystalle (aus Alkohol). F: 141°.
- [2-(Benzoylmethylamino)-phenyl]-kohlensäure-äthylester $C_{17}H_{17}O_4N=C_6H_5\cdot CO\cdot N(CH_2)\cdot C_6H_4\cdot O\cdot CO_2\cdot C_5H_5$. B. Aus 2-[Benzoylmethylamino]-phenol und Chlorameisensäure-

äthylester in alkal. Lösung (R., Am. 28, 34). — Nadeln (aus Ligroin). F: 68° Sehr leicht löslich in Alkohol, Äther und Benzol.

2-Bensoylanilino-phenol, 2-Oxy-N-bensoyl-diphenylamin $C_{18}H_{15}O_{2}N=C_{6}H_{5}$ · $CO\cdot N(C_{6}H_{3})\cdot C_{6}H_{4}\cdot OH$. B. Aus Diphenylamin (Bd. XII, S. 174) und Benzoylsuperoxyd (Bd. IX, S. 179) in Chloroform (Gambarjan, B. 42, 4008). — Krystalle (aus Alkohol oder Eisessig). F: 214°. Leicht löslich in heißem Eisessig, ziemlich schwer löslich in den gewöhnlichen Lösungsmitteln. — Liefert mit methylalkoholischem Kali im geschlossenen Rohr bei 140° 2-Oxy-diphenylamin (S. 365).

[2-Bensoylanilino-phenyl]-bensoat, 2-Bensoyloxy-N-bensoyl-diphenylamin $C_{26}H_{19}O_3N=C_6H_5\cdot C0\cdot N(C_6H_5)\cdot C_6H_4\cdot 0\cdot C0\cdot C_6H_5$. B. Aus 2-Oxy-diphenylamin und Benzoylchlorid nach Schotten-Baumann (Deninger, J. pr. [2] 50, 90). — Krystalle (aus Alkohol).

N.N-Diphenyl-N'-[2-methoxy-phenyl]-benzamidin $C_{26}H_{32}ON_2 = (C_6H_5)_2N \cdot C(C_6H_5)$: $N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Man verwandelt Benzoyl-diphenylamin (Bd. XII, S. 270) durch Phosphorpentachlorid in das Dichlorid $C_6H_5 \cdot CCl_2 \cdot N(C_6H_5)_2$ und behandelt dieses mit o-Anisidin (v. Braun, B. 37, 2684). — Pikrat $C_{26}H_{22}ON_2 + C_6H_3O_7N_3$. Krystalle (aus Alkohol). F: 202° bis 203°. Schwer löslich in Alkohol.

N.N'-Bis-[2-oxy-phenyl]-oxamid $C_{14}H_{19}O_4N_3=[-CO\cdot NH\cdot C_6H_4\cdot OH]_3$. B. Bei 1—2-stdg. Kochen von 1 Tl. frisch dargestelltem 2-Amino-phenol mit 10 Tln. Oxalsäure-diäthylester (R. Meyer, Seeliger, B. 29, 2643). — Goldbraune Blättchen (aus Alkohol). F: 280—282°. Ziemlich löslich in heißem Alkohol, wenig löslich in Benzol, fast unlöslich in Ather, Essigester und Ligroin. Löslich in Alkalien mit gelber, in heißen verdünnten Säuren mit roter Farbe.

[3-Methoxy-phenyl]-oxamidsäure, Oxalsäure-mono-o-anisidid $C_9H_9O_4N=HO_9C\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Kochen des sauren o-Anisidin-oxalats mit Alkohol (Anselmino, C. 1906 I, 753). — F: 159°.

N.N'-Bis-[2-methoxy-phenyl]-oxamid, Oxalsäure-di-o-anisidid $C_{16}H_{16}O_4N_8 = [-CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3]_2$. B. Beim Erhitzen von o-Anisidin mit wasserfreier Oxalsäure auf 175° (Bauer, B. 42, 2114). Beim Kochen von o-Anisidin oder Methylen-di-o-anisidin (S. 368) mit Oxalsäurediphenylester (Bd. VI, S. 155) in Xylol (Bischoff, Fröhlich, B. 39, 3973). — Nadeln oder Tafeln (aus Eisessig). F: 245° (Bau.), 246° (Bi., F.). Unlöslich in Ligroin, Alkohol, Äther, schwer löslich in Aceton, leichter in Chloroform, heißem Benzol, Xylol und Eisessig; unlöslich in Salzsäure und Natronlauge (Bi., F.). — Gibt bei 3-stdg. Erhitzen in Benzol mit Phosphorpentachlorid Oxalsäure-bis-[(2-methoxy-phenylimid)-chlorid] (s. u.) (Bau.). Gibt beim Erwärmen mit konz. Schwefelsäure 2.2'-Dimethoxy-oxanilid-disulfonsäure-(5.5'?) (Syst. No. 1926) (Bau.).

Oxalsäure-bis-[(2-methoxy-phenyl)-amidin], "Cyan-o-anisidin" $C_{16}H_{18}O_8N_4=CH_3\cdot O\cdot C_6H_4\cdot NH\cdot C(:NH)\cdot C(:NH)\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$ bezw. $CH_3\cdot O\cdot C_6H_4\cdot N:C(NH_2)\cdot C(NH_2):N\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Einleiten von Dicyan (Bd. II, S. 549) in eine alkoh. Lösung von o-Anisidin (Meves, J. pr. [2] 61, 465). — Prismen (aus Alkohol). F: 205—207°. Unlöslich in Wasser und Petroläther, schwer löslich in Äther. — $C_{16}H_{16}O_2N_4+2HCl$. Nadeln (aus Wasser durch konz. Salzsäure).

N.N'-Bis-[2-acetoxy-phenyl]-oxamid $C_{18}H_{16}O_{9}N_{3}=[-CO\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CO\cdot CH_{3}]_{3}$. B. Beim Kochen von N.N'-Bis-[2-oxy-phenyl]-oxamid mit Essigsäureanhydrid (R. MEYER, SEELIGER, B. 29, 2644). — Blättchen (aus Aceton). F: 201°. Leicht löslich in Alkohol, Essigester, Benzol, Ligroin, schwer in Äther.

Oxalsäure-bis-[(2-methoxy-phenylimid)-chlorid] $C_{10}H_{14}O_2N_3Cl_2 = [-Ccl:N\cdot C_2H_4\cdot O\cdot CH_3]_2$. B. Beim 3-stdg. Kochen einer Suspension von Oxalsäure-di-o-anisidid in Benzol mit Phosphorpentachlorid (BAUER, B. 42, 2114). — Gelbe Tafeln (aus Ligroin). F: 101°. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwer in Ligroin, unlöslich in Wasser. Löslich in kalter konz. Schwefelsäure mit grüner Farbe, die beim Erwärmen in Rot umschlägt. — Wird beim Erwärmen mit Eisessig in Oxalsäure-di-o-anisidid zurückverwandelt. Gibt beim Eintragen in konz. Schwefelsäure auf dem Wasserbade 2.2'-Dimethoxy-oxanilid-disulfonsäure-(5.5'?) (Syst. No. 1926).

N-[2-Oxy-phenyl]-phthalamidsäure $C_{14}H_{11}O_4N = HO_5C \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Beim Erwärmen von N-[2-Oxy-phenyl]-phthalimid (Syst. No. 3210) mit Soda (LADENBURG, B. 9, 1528). — Prismen (aus Wasser). F: 223°. — Na $C_{14}H_{10}O_4N$. Nadeln. Leicht löslich in Wasser.

4-Methyl-phthalsäure-mono-[2-oxy-anilid] $C_{1e}H_{13}O_4N=HO_4C\cdot C_6H_6(CH_6)\cdot CO\cdot NH\cdot C_6H_4\cdot OH.$ Beim Lösen von [4-Methyl-phthalsäure]-[2-oxy-anil] (Syst. No. 3221)

in siedender Sodalösung (NIEMENTOWSKI, M. 12, 633). — Nadeln (aus Alkohol). Schmilzt unter Zerfall in [4-Methyl-phthalsäure]-[2-oxy-anil] und Wasser bei 200°. Unlöslich in Chloroform und Benzol, sehr leicht löslich in Aceton.

- c) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit Kohlensäure.
- [2-Oxy-phenyl]-urethan $C_0H_{11}O_3N = C_3H_5 \cdot O_3C \cdot NH \cdot C_0H_4 \cdot OH$. B. Beim Behandeln von Äthyl-[2-nitro-phenyl]-carbonat (Bd. VI, S. 220) mit Zinn und Salzsäure unter Kühlung (Ransom, B. 31, 1061; Am. 23, 14; vgl. Bender, B. 19, 2268). Aus Chlorameisensäure-äthylester und 2-Amino-phenol, in Gegenwart von Äther (Groenvir, Bl. [2] 25, 177). Aus [2-Amino-phenyl]-kohlensäure-äthylester (S. 361) durch Umlagerung beim Stehen der freien Verbindung im Exsiccator oder bei gelindem Erwärmen in salzsaurer Lösung (R., Am. 23, 43). Prismen (aus Äther + Alkohol). F: 85° (Gr.), 86,5° (R., Am. 23, 15). Triklin (WIIK, Bl. [2] 25, 178). Fast unlöslich in kaltem Wasser, löslich in Äther (Gr.), sehr leicht löslich in Alkohol (Be.); ziemlich löslich in Alkalien (Gr.). Zerfällt beim Kochen mit Barytwasser oder Kalilauge in CO₂, Alkohol und 2-Amino-phenol (Gr.). Spaltet sich bei der Destillation in Alkohol und Benzoxazolon (Syst. No. 4278) (Gr.). Gibt eine bei 77—78° schmelzende Acetylverbindung (BE.). Liefert mit Benzoylchlorid und Natronlauge [2-Benzoyloxy-phenyl]-urethan (S. 377) (R., Am. 23, 16).
- [2-Oxy-phenyl]-harnstoff $C_7H_8O_3N_3=H_2N\cdot CO\cdot NH\cdot C_8H_4\cdot OH$. B. Man übergießt 3 Tle. salzsaures 2-Amino-phenol und 2 Tle. Kaliumcyanat mit wenig Wasser, filtriert den entstandenen Niederschlag ab und erhitzt ihn mit einigen Tropfen Wasser, bis eine Probe beim Erkalten erstarrt (Kalckhoff, B. 16, 374). Prismen. Schmilzt unter Zersetzung bei 154°; leicht löslich in Wasser, Alkohol und Äther; die wäßr. Lösung verharzt sehr bald (K., B. 16, 375). Liefert in der Hitze Benzoxazolon (Syst. No. 4278) (K., B. 16, 1828).
- N-Phenyl-N'-[2-oxy-phenyl]-harnstoff $C_{12}H_{12}O_2N_2 = C_0H_5$ ·NH·CO·NH·C $_0H_4$ ·OH. B. Bei der Einw. von Phenylisocyanat auf 2-Amino-phenol, beide gelöst in Äther (Leuckart, J. pr. [2] 41, 327). Krystalle (aus Wasser). F: 165—166°. Leicht löslich in Wasser, Alkohol und Äther. Beim Erhitzen für sich oder mit Kalilauge entsteht Benzoxazolon (Syst. No. 4278).
- N.N'-Bis-[2-oxy-phenyl]-harnstoff $C_{13}H_{12}O_2N_3 = CO(NH\cdot C_6H_4\cdot OH)_2$. B. Beim Digerieren von Salicylsäure-azid (Bd. X, S. 100) mit Wasser (Struve, Radenhausen, J. pr. [2] 52, 241). Nadeln. F: 125°.
- N.N'-Diphenyl-N''-[2-oxy-phenyl]-guanidin $C_{19}H_{17}ON_3 = C_6H_5 \cdot N : C(NH \cdot C_6H_5) \cdot NH \cdot C_6H_4 \cdot OH$ bezw. $(C_6H_5 \cdot NH)_2C : N \cdot C_6H_4 \cdot OH$. B. Beim Kochen von Diphenylcarbodiimid (Bd. XII, S. 449) mit 2-Amino-phenol in Benzol (Busch, Blume, Pungs, J. pr. [2] 79, 534). Nadeln (aus Alkohol). F: 132—133°. Leicht löslich in den meisten organischen Lösungsmitteln; löslich in verdünnter Salzsäure und in Natronlauge.
- [2-Oxy-phenyl]-thioharnstoff $C_7H_9ON_9S=H_9N\cdot CS\cdot NH\cdot C_6H_4\cdot OH$. B. Man löst salzsaures 2-Amino-phenol und gleich viel Rhodankalium in wenig Wasser und dickt das Gemenge vorsichtig über freiem Feuer ein (Bendix, B. 11, 2263). Krystalle (aus Wasser). Schmilzt bei 161° unter Zersetzung (B.). Fast gar nicht löslich in kaltem Wasser, ziemlichleicht in heißem, sehr leicht in Alkohol und Äther; löst sich in Alkalien (B.). Verbindet sich mit Salzsäure (B.). Geht beim Kochen mit Alkohol und Quecksilberoxyd in Benzoxazolonimid $C_9H_4 < O$ C:NH (Syst. No. 4278) über (B.). Gibt beim Kochen mit Anilin Benzoxazolonanil (Syst. No. 4278) (KALOKHOFF, B. 16, 1827). $2C_7H_8ON_2S + 2HCl + PtCl_4$ (B.).
- N-Allyl-N'-[2-oxy-phenyl]-thioharnstoff $C_{10}H_{19}ON_0S=CH_2:CH\cdot CH_2\cdot NH\cdot CS\cdot NH\cdot C_0H_4\cdot OH$. B. Beim Stehen von 2-Amino-phenol mit Allylsenföl in Alkohol (v. Chelmoki, J. pr. [2] 42, 442). Krystalle. F: 99°. Leicht löslich in Alkohol, Äther, Chloroform, Eisessög, kaum löslich in Wasser und Petroläther; leicht löslich in Alkalien. Beim Erhitzen mit Salzsäure auf 130° entsteht Benzoxazolthion $C_0H_4 < NH > CS$ (Syst. No. 4278).
- N-Phenyl-N'-[3-oxy-phenyl]-thioharnstoff $C_{19}H_{12}ON_{2}S=C_{6}H_{5}\cdot NH\cdot CS\cdot NH\cdot C_{6}H_{4}\cdot OH$. B. Aus salzsaurem 2-Amino-phenol, Phenylsenföl und Natronlauge in der Kälte (Kalckhoff, B. 16, 1829). Blättchen (aus Alkohol). F: 146°. Liefert beim Erhitzen für sich oder beim Behandeln mit Quecksilberoxyd Benzoxazolonanil (Syst. No. 4278).
- [2-Methoxy-phenyl]-urethan $C_{10}H_{13}O_2\dot{N}=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Man suspendiert o-Anisidin in Wasser und versetzt mit überschüssigem Alkali und 1 Mol.-Gew. Chlorameisensäureäthylester (Ranson, Am. 23, 39; B. 31, 1063). Durch Methylierung von [2-Oxy-phenyl]-urethan (s. o.) mit Diazomethan (Syst. No. 3461) (R.). Farbloses Öl. Kp₃₆: 180—1826.

[2-Methoxy-phenyl]-harnstoff $C_8H_{10}O_2N_3=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Beim Versetzen einer wäßrigen Lösung von salzsaurem o-Anisidin mit Kaliumcyanat (MÜHLHÄUSER, A. 207, 244). — Krystalle (aus Alkohol). F: 146,5°. Schwer löslich in kaltem Wasser, leicht in heißem und in Alkohol.

N-[β -Chlor-propyl]-N'-[2-methoxy-phenyl]-harnstoff $C_{11}H_{12}O_8N_2Cl = CH_3 \cdot CHCl \cdot CH_3 \cdot NH \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Erhitzen von N-Allyl-N'-[2-methoxy-phenyl]-harnstoff mit rauchender Salzsäure im geschlossenen Rohr auf 100°, neben 2-[2-Methoxy-phenylimino]-5-methyl-oxazolidin $CH_3 \cdot HC = O \cdot C: N \cdot C_6H_4 \cdot O \cdot CH_3$ (Syst. No. 4271) (MENNE, B. 38, 665). — Nadeln (aus Alkohol). F: 103°.

N-Allyl-N'-[2-methoxy-phenyl]-harnstoff $C_{11}H_{14}O_2N_2=CH_2:CH\cdot CH_2\cdot NH\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Aus o-Anisidin und Allylisocyanat (Bd. IV, S. 214) in Benzol (MENNE, B. 33, 664). — Krystalle (aus Alkohol). F: 112°.

N-Phenyl-N'-[2-methoxy-phenyl]-harnstoff $C_{14}H_{14}O_4N_2 = C_4H_5 \cdot NH \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot CH_3$. Beim Vermischen von 0,61 g o-Anisidin mit 0,59 g Phenylisocyanat unter Kühlung (RANSOM, Am. 23, 40). — Prismen (aus Chloroform durch Ligroin). F: 144°. Löslich in Alkohol, Äther und Chloroform.

N.N'-Bis-[2-methoxy-phenyl]-harnstoff $C_{15}H_{16}O_2N_3 = CO(NH \cdot C_6H_4 \cdot O \cdot CH_3)_2$. B. Beim Einleiten von COCl₂ in eine Benzollösung von o-Anisidin (MÜHLHÄUSER, A. 207, 245). Entsteht neben 4-Oxy-8-methoxy-2-methyl-chinolin (Syst. No. 3137), wenn man o-Anisidin und Acetessigester aufeinander einwirken läßt und das Reaktionsprodukt auf 260° erhitzt (CONEAD, LIMPACH, B. 21, 1654). Beim Behandeln von S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff (S. 378) mit Alkalien (Foerster, B. 21, 1862). — Krystalle. F: 182° (C., L.). Leicht löslich in Alkohol, schwerer in Äther (M.).

N.N'-Bis-[2-methoxy-phenyl]-guanidin $C_{15}H_{17}O_2N_3 = HN:C(NH\cdot C_0H_4\cdot O\cdot CH_3)$ bezw. $CH_3\cdot O\cdot C_0H_4\cdot NH\cdot C(NH_2):N\cdot C_0H_4\cdot O\cdot CH_3$. Bei der Einw. von alkoh. Ammoniak auf S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff (S. 378) (FOERSTEE, B. 21, 1862). — $2C_{15}H_{17}O_2N_3 + 2HCl + PtCl_4$.

N-Phenyl-N'-[2-methoxy-phenyl]-N''-guanyl-guanidin, Phenyl-[2-methoxy-phenyl]-biguanid $C_{15}H_{17}ON_5 = HN:C(NH_3)\cdot NH\cdot C(:N\cdot C_0H_5)\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$ bezw. desmotrope Formen. B. Das Nitrat entsteht beim Entschwefeln von N-Phenyl-N'-guanyl-thioharnstoff (Bd. XII, S. 403) mit Silbernitrat in Gegenwart von o-Anisidin (CRAMER, B. 34, 2603). — Die aus der wäßr. Lösung des Nitrats durch Alkali in Freiheit gesetzte Base krystallisiert nicht. — $C_{18}H_{17}ON_5 + HNO_3$. Krystalle (aus Wasser). F: 206°.

N"-Amino-N.N'-bis-[2-methoxy-phenyl]-guanidin $C_{12}H_{10}O_2N_4 = H_2N \cdot N : C(NH \cdot C_4H_4 \cdot O \cdot CH_3)_3$ bezw. $CH_3 \cdot O \cdot C_4H_4 \cdot NH \cdot C(NH \cdot NH_3) : N \cdot C_4H_4 \cdot O \cdot CH_3$. B. Durch 4-stdg. Erhitzen von 2 g N.N'-Bis-[2-methoxy-phenyl]-thioharnstoff mit 5 g 50% jeger Hydrazin-hydratlösung und 3 g Ätzkali in alkoh. Lösung im Druckrohr auf etwas über 100° (Busch, Ulmer, B. 35, 1725). — Pikrat. $C_{13}H_{19}O_2N_4 + C_4H_3O_7N_3$. Orangegelbe Nädelchen. F: 154°.

[2-Methoxy-phenyl]-thioharnstoff $C_8H_{10}ON_2S = H_2N \cdot CS \cdot NH \cdot C_8H_4 \cdot O \cdot CH_2$. B. Beim Erwärmen von salzsaurem o-Anisidin mit Kaliumrhodanid (MÜHLHÄUSER, A. 207, 246) oder Ammoniumrhodanid (KLUT, B. 36, 3322). Bei der Einw. von Ammoniak auf 2-Methoxy-phenylsenföl (HOFMANN, B. 20, 1796). — Nadeln (aus Alkohol). F: 152° (M.). — Liefert mit Schwefelchlorür S_2Cl_2 oder Thiophosgen in Chloroform N-[2-Methoxy-phenyl]-N'-o-anisidinothioformyl-guanidin (s. u.) (K.). — $C_8H_{10}ON_2S + HCl$. F: 158° (K.).

N-Phenyl-N'-[2-methoxy-phenyl]-thioharnstoff $C_{14}H_{14}ON_2S=C_4H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Bei der Einw. von Phenylsenföl auf o-Anisidin (Forester, B. 21, 1868). Aus 2-Methoxy-phenylsenföl und Anilin (F.). — Prismen. F: 127°. — Liefert mit Methyljodid S-Methyl-N-phenyl-N'-[2-methoxy-phenyl]-isothioharnstoff (S. 377). Liefert mit Athylenbromid 2-Phenylimino-3-[2-methoxy-phenyl]-thiazolidin (Syst. No. 4271).

N.N'-Bis-[2-methoxy-phenyl]-thioharnstoff $C_{15}H_{16}O_3N_3S = CS(NH \cdot C_3H_4 \cdot O \cdot CH_5)_3$.

B. Aus o-Anisidin und Schwefelkohlenstoff in Gegenwart von Hydroperoxyd (v. Braun, Beschke, B. 39, 4377). Durch Erhitzen von o-Anisidin mit Kali, Alkohol und CS₂ (Mürlinger, A. 207, 246; Foerster, B. 21, 1860). — Nadeln (aus Alkohol). F: 135°; schwer löslich in kaltem Alkohol, leicht in heißem (M.). — Zerfällt bei der Destillation in o-Anisidin und 2-Methoxy-phenylsenföl (Hofmann, B. 20, 1796).

N-[2-Methoxy-phenyl]-N'-o-anisidinothioformyl-guanidin, N-[2-Methoxy-phenyl]-N'-[(2-methoxy-phenyl)-guanyl]-thioharnstoff $C_{10}H_{10}O_{8}N_{4}S=CH_{4}\cdot O\cdot C_{6}H_{4}\cdot NH\cdot C(:NH)\cdot NH\cdot CS\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{8}$ bezw. desmotrope Formen. B. Beim Behandeln von [2-Methoxy-phenyl]-thioharnstoff (s. o.) mit Schwefelchlorür S₂Cl₂ oder Thiophosgen in Chloroform (Klut, B. 36, 3323). — Blättchen (aus wenig Benzol + Ligroin). F: 80—82°. Unlöslich in Wasser, sonst leicht löslich. Färbt sich am Licht dunkelgelb. — $C_{10}H_{10}O_{2}N_{4}S+HCl$.

Prismen (aus Alkohol). F: 232°. — $C_{14}H_{18}O_2N_4S + HNO_2$. Krystallinisch. F: 129°. Geht beim Erwärmen mit Wasser in die Verbindung $C_{16}H_{17}O_3N_5S$ (s. u.) über. — Pikrat $C_{16}H_{16}O_2N_4S + C_6H_3O_7N_3$. Gelbe Blättchen (aus verd. Alkohol). Sintert bei 175°, schmilzt bei 198°.

Verbindung $C_{10}H_{17}O_3N_5S$. B. Durch Erwärmen des N-[2-Methoxy-phenyl]-N'-[(2-methoxy-phenyl)-guanyl]-thioharnstoff-nitrits mit Wasser (K.). — Citronengelbe Nadeln

(aus Alkohol). F: 171-172º

Verbindung C₁₀H₂₀O₂N₄S. B. Beim Erwärmen von N-[2-Methoxy-phenyl]-N'-[(2-methoxy-phenyl)-guanyl]-thioharnstoff mit Essigsäureanhydrid (K.). — Blättchen (aus Alkohol). F: 205-2060; leicht löslich in Alkohol, Chloroform, Benzol, unlöslich in Ather,

Verbindung $C_{22}H_{23}O_3N_5S$. B. Beim Eindampfen von N-[2-Methoxy-phenyl]-N'-[(2-methoxy-phenyl)-guanyl]-thioharnstoff mit Phenylisocyanat in Benzol auf dem Wasser-

bade (K.). — Blättchen (aus verd. Alkohol). F: 185°.

Verbindung C₂₂H₂₂O₂N₅S₂. B. Beim Erwärmen von N-[2-Methoxy-phenyl]-N'-[(2-methoxy-phenyl)-guanyl]-thioharnstoff mit Phenylsenföl (K.). — Blättchen (aus Eisesig + Wasser). F: 210—211°.

- S-Methyl-N-phenyl-N'-[2-methoxy-phenyl]-isothioharnstoff $C_{15}H_{16}ON_2S = C_6H_5$. N: $C(S \cdot CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$ bezw. $C_6H_5 \cdot NH \cdot C(S \cdot CH_3) : N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei der Einw. von Methyljodid auf N-Phenyl-N'-[2-methoxy-phenyl]-thioharnstoff (S. 376) (FOERSTER, B. 21, 1870). Nadeln. F: 80°. Liefert mit CS_2 Phenylsenföl.
- [3-Methoxy-phenyl]-dithiocarbamidsäure-methylester $C_0H_{11}ONS_2=CH_3\cdot S\cdot CS\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. Beim 3—4-stdg. Erhitzen von S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff (S. 378) mit CS₂ auf 160°, neben 2-Methoxy-phenylsenföl (Foerster, B. 21, 1863). — Löst sich unzersetzt in sehr verd. Kalilauge. — Entwickelt beim Erhitzen 2-Methoxy-phenylsenföl und Methylmercaptan.
- N-Phenyl-N'-[2- \ddot{a} thoxy-phenyl]-harnstoff $C_{15}H_{16}O_2N_2 = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_6H_4 \cdot CO \cdot NH \cdot$ O·C₂H₅. B. Beim Erhitzen von N-Phenyl-N'-[2-oxy-phenyl]-harnstoff mit Athyljodid und alkoh. Kalilauge (Leuckart, J. pr. [2] 41, 327). — Nadeln (aus verd. Alkohol). F: 169—170°.
- 2-Äthoxy-phenyloyanamid, N-Cyan-o-phenetidin $C_2H_{10}ON_2 = NC \cdot NH \cdot C_6H_4$. O·C₂H₅. B. Beim Einleiten von Chlorcyan in eine äther. Lösung von o-Phenetidin (BERLINER-BLAU, J. pr. [2] 30, 99). Aus o-Phenetidin und der äquimolekularen Menge Bromcyan in Gegenwart einer wäßr. Alkalidicarbonatlösung bei gewöhnlicher Temperatur (PIERRON, Bl. [3] 35, 1200; A. ch. [8] 15, 157, 167). Entsteht auch beim Kochen von [2-Athoxy-phenyl]thioharnstoff in überschüssiger Natronlauge mit Bleihydroxyd (B.), Bleiacetat oder Kupfersulfat (P.). — Krystalle (aus Alkohol). F: 94° (B.). Unlöslich in kaltem Wasser, leicht löslich in Alkohol und Äther; leicht löslich in heißen Alkalien und in Salzsäure (B.). — Zerfällt beim Erhitzen mit rauchender Salzsäure im geschlossenen Rohr auf 120° in 2-Amino-phenol, CO₂, NH₂ und Äthylchlorid (B.). — NaC₂H₂ON₂. B. Durch Fällen einer alkoh. Lösung von 2-Äthoxy-phenylcyanamid mit Natriumäthylat (B.). Nadeln. Fast unlöslich in Alkohol, ziemlich leicht löslich in Wasser. Wird nicht durch CO₂ zerlegt. — AgC₂H₂ON₂. Käsiger Niederschlag (B.).
- N-[3-Åthoxy-phenyl]-N'-guanyl-guanidin, ω -[3-Åthoxy-phenyl]-biguanid $C_{10}H_{18}ON_5 = HN:C(NH_2)\cdot NH\cdot C(:NH)\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$ bezw. desmotrope Formen. B. Das Hydrochlorid entsteht durch Erhitzen äquimolekularer Mengen von Dicyandiamid (Bd. III, S. 91) mit salzsaurem o-Phenetidin im Ölbade bis zum Schmelzen und Wiedererstarren des Produktes (Lumière, Perrin, Bl. [3] 33, 206). — Hydrochlorid. F: 183-184°. - Pikrat. F: 161-162°.
- [**2**-Äthoxy-phenyl]-thioharnstoff $C_0H_{12}ON_0S = H_2N \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Bei 2—3 maligem Abdampfen der wäßr. Lösung von salzsaurem o-Phenetidin mit 1 Mol.-Gew. Rhodanammonium (Berlinerblau, J. pr. [2] 30, 106). — Tafeln (aus Alkohol). F: 110°; ziemlich leicht löslich in Alkohol, unlöslich in Wasser; löslich in Alkalien (B.). — Wird durch Kochen in alkal. Lösung in Gegenwart von Bleihydroxyd (B.) oder Kupfersulfat (PIERRON, Bl. [3] 85, 1200; A. ch. [8] 15, 159, 167) in 2-Athoxy-phenylcyanamid übergeführt.

Dithicallophansäure - o - phenetidid, ω - [2 - Athoxy - phenyl] - dithiobiuret $C_{10}H_{18}ON_2S_2 = H_2N \cdot CS \cdot NH \cdot CS \cdot NH \cdot C_4H_4 \cdot O \cdot C_2H_5$. B. Aus o-Phenetidin und Xanthan-SC · S · S HN—C:NH (Syst. No. 4445) auf dem Wasserbade (FROMM, SCHNEIDER, A. wasserstoff 348, 173). — Gelbliche Nadeln (aus Alkohol). F: 153°.

[2-Bensoyloxy-phenyl]-urethan $C_{16}H_{15}O_4N=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_4H_5$. Beim Schütteln einer Lösung von [2-Oxy-phenyl]-urethan in einer Lösung von 1 Mol.-Gew.

KOH mit Benzoylchlorid (RANSOM, B. 31, 1062, 1268; Am. 23, 16). Beim Behandeln von 2-Benzamino-phenol mit Chlorameisensäureester in Gegenwart von Kalilauge (R.). Entsteht ferner beim Behandeln von [2-Amino-phenyl]-kohlensäure-äthylester mit Benzoylchlorid in Gegenwart von Natronlauge (R., Am. 23, 45). — Krystalle (aus Alkohol + Wasser). F: 76,5°. Leicht löslich in heißem Alkohol. — Gibt bei der trocknen Destillation Alkohol, Benzoesäureester, Benzoxazolon C₆H₄ OCO (Syst. No. 4278), N-Benzoyl-benzoxazolon (Syst.

No. 4278) und 2-Phenyl-benzoxazol $C_6H_4 < \frac{N}{O} > C \cdot C_6H_5$ (Syst. No. 4199).

[3 - (3 - Nitro - bensoyloxy) - phenyl] - urethan $C_{16}H_{14}O_4N_2 = C_4H_5 \cdot O_2C \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_4 \cdot NO_2$. B. Aus [2-Oxy-phenyl]-urethan und 3-litro-benzoylchlorid in alkal. Lösung (Ransom, Am. 23, 22). Aus 2-[3-Nitro-benzamino]-phenol und Chlorameisensäureester in alkal. Lösung (R.). — Prismen (aus Benzol + Ligroin). F: 86,5°. Löslich in Alkohol, Ather und Benzol, unlöslich in Ligroin. — Gibt bei der trocknen Destillation Alkohol, 3-Nitro-benzoesäure, Benzoxazolon (Syst. No. 4278) und 2-[3-Nitro-phenyl]-benzoxazol (Syst. No. 4199).

[2-Amino-phenol]-O oder N-carbonsäureäthylester-N oder O-carbonsäureanilid $C_1H_{10}O_4N_2 = C_0H_5 \cdot NH \cdot C_0 \cdot NH \cdot C_0H_4 \cdot O \cdot CO_2 \cdot C_2H_5$ oder $C_2H_5 \cdot O_2C \cdot NH \cdot C_0H_4 \cdot O \cdot CO \cdot NH \cdot C_0H_3 \cdot O$. Man versetzt [2-Oxy-phenyl]-urethan und 1 Mol.-Gew. Phenylisocyanat in absolut-atherischer Lösung mit wenig Aluminiumchlorid und läßt einige Stunden stehen (R., Am. 23, 31). — Fast weiße Prismen (aus Alkohol). F: 116—118°. Gut löslich in den meisten gewöhnlichen Lösungsmitteln; unlöslich in Alkalien und Säuren.

Methyl-[2-oxy-phenyl]-urethan $C_{10}H_{19}O_3N=C_2H_3\cdot O_2C\cdot N(CH_3)\cdot C_6H_4\cdot OH$. B. Beim Schütteln einer Suspension von 2 Mol.-Gew. 2-Methylamino-phenol in absol. Äther mit 1 Mol.-Gew. Chlorameisensäureester (R., Am. 23, 35). — Krystallisiert nur schwierig aus Ligroin. F: 53°. Kp₁₈₋₂₀: 175—180°.

Methyl-[2-bensoyloxy-phenyl]-urethan $C_{17}H_{17}O_{4}N=C_{2}H_{4}\cdot O_{2}C\cdot N(CH_{3})\cdot C_{4}H_{4}\cdot O\cdot CO\cdot C_{4}H_{5}$. B. Beim Schütteln einer alkal. Lösung von Methyl-[2-oxy-phenyl]-urethan mit 1 Mol.-Gew. Benzoylchlorid (R., Am. 23, 36). — Nadeln (aus Alkohol). F: 88—90°. Gut löslich in den meisten organischen Lösungsmitteln.

N-Phenyl-N'-[2-methoxy-phenyl]-N'-[4-nitro-bensyl]-harnstoff $C_{21}H_{10}O_4N_3 = C_0H_4\cdot NH\cdot CO\cdot N(CH_2\cdot C_2H_4\cdot NO_2)\cdot C_4H_4\cdot O\cdot CH_3$. B. Aus [4-Nitro-benzylamino]-o-anisidin und Phenylisocyanat in Benzol auf dem Wasserbade (Paal, Benker, B. 32, 1257). — Gelbliche Nadeln oder Blättchen (aus verd. Alkohol). F: 110°. Ziemlich leicht löslich in Alkohol, Äther und Benzol, fast unlöslich in Ligroin.

2-Methoxy-phenylisocyanat, 2-Methoxy-phenylcarbonimid $C_0H_0O_1N = OC:N \cdot C_0H_4 \cdot O \cdot CH_3$. B. Beim Erhitzen von 2-Methoxy-benzazid (Bd. X, S. 101) in Benzol (STORRMER, B. 42, 3133). — Ol.

Kohlensäure - bis - [2 - methoxy - anil], Bis - [2 - methoxy - phenyl] - carbodiimid $C_{12}H_{14}O_2N_2 = CH_2 \cdot O \cdot C_6H_4 \cdot N : C : N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei der Destillation von S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff (s. u.) (FOERSTER, B. 21, 1861). — Prismen. F: 56°. — Liefert beim Kochen mit verd. Salzsäure N.N'-Bis-[2-methoxy-phenyl]-harnstoff.

N.N'.N"-Tris-[2-methoxy-phenyl]-guanidin $C_{a_2}H_{a_3}O_aN_a = (CH_a \cdot O \cdot C_aH_a \cdot NH)_aC:N \cdot C_aH_a \cdot O \cdot CH_a$. B. Bei der Einw. von o-Anisidin auf S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff (s. u.) (FOERSTER, B. 21, 1862). — $2C_{a_2}H_{a_2}O_aN_a + 2HCl + PtCl_a$.

2-Methoxy-phenylisothiocyanat, 2-Methoxy-phenylsenföl $C_0H_1ONS = SC:N \cdot C_0H_1 \cdot O \cdot CH_3$. B. Bei der trocknen Destillation von N.N'-Bis-[2-methoxy-phenyl]-thioharn-stoff (Hofmann, B. 20, 1796). — Kp: 284—266°.

S-Methyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff $C_{10}H_{10}Q_{10}N_{0}S = CH_{3} \cdot O \cdot C_{0}H_{1} \cdot NH \cdot C(S \cdot CH_{3}) \cdot N \cdot C_{0}H_{1} \cdot O \cdot CH_{3} \cdot B$. Aus N.N'-Bis-[2-methoxy-phenyl]-thioharnstoff und Methyljodid bei 100° (Forester, B. 21, 1861). — Prismen (aus Alkohol). F: 87°. Fast unlöslich in Wasser, sehr leicht löslich in heißem Alkohol und Äther. — Liefert bei der Destilation Methylmercaptan und Kohlensäure-bis-[2-methoxy-anil]. Durch Alkali entstehen Methylmercaptan und N.N'-Bis-[2-methoxy-phenyl]-harnstoff. Durch alkoh. Ammoniak entsteht N.N'-Bis-[2-methoxy-phenyl]-guanidin, durch o-Anisidin N.N'.N''-Tris-[2-methoxy-phenyl]-guanidin. Liefert beim Erhitzen mit CS₂ auf 160° 2-Methoxy-phenyl]-dithiocarbamidsäure-methylester. — $C_{10}H_{10}Q_{0}N_{0}S + HCl$. Blättchen. — $2C_{12}H_{10}Q_{0}N_{0}S + 2HCl + PtCl_{0}$. Flockiger Niederschlag, der sich bald in kleine Prismen umwandelt. In Alkohol leichter löslich als in Wasser.

- S-Äthyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff $C_{17}H_{29}O_2N_2S=CH_3\cdot O\cdot C_6H_4\cdot NH\cdot C(S\cdot C_2H_3):N\cdot C_6H_4\cdot O\cdot CH_3.$ B. Aus N.N'-Bis-[2-methoxy-phenyl]-thioharnstoff und Äthyljodid bei 100° (F., B. 21, 1863). F: 82,5°. $C_{17}H_{29}O_2N_2S+HI$. Rhomboeder. Schmilzt bei 162—163° unter Zersetzung. $2C_{17}H_{29}O_2N_2S+2HCl+PtCl_4$.
- 8-Propyl-N.N'-bis-[2-methoxy-phenyl]-isothioharnstoff $C_{18}H_{22}O_{2}N_{2}S = CH_{3} \cdot 0 \cdot C_{6}H_{4} \cdot NH \cdot C(S \cdot CH_{3} \cdot CH_{2} \cdot CH_{3}) : N \cdot C_{6}H_{4} \cdot 0 \cdot CH_{5}$. B. Aus N.N'-Bis-[2-methoxy-phenyl]-thioharnstoff und Propylchlorid bei 100° (F., B. 21, 1864). Blättchen. F: 58° . $2C_{18}H_{22}O_{2}N_{2}S + 2HCl + PtCl_{4}$.
- d) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit weiteren Oxy-carbonsäuren, mit Oxo-carbonsäuren und Oxy-oxo-carbonsäuren, soweit diesen Kuppelungsprodukten nach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt (vgl. Bd. I, S. 28).
- 2-Oxy-anilinoessigsäure, N-[2-Oxy-phenyl]-glycin $C_8H_9O_3N = HO_2C \cdot CH_8 \cdot NH \cdot C_8H_4 \cdot OH$. B. Bei $^1/_2$ -stdg. Kochen von 1 Mol.-Gew. Chloressigsäure mit 2 Mol.-Gew. 2-Aminophenol und der 20-fachen Menge Wasser; man schüttelt die filtrierte Lösung mit Äther aus und verdunstet dann zur Krystallisation (VATER, J. pr. [2] 29, 289). Blättchen mit 1 H_2O . Leicht löslich in Alkohol, schwer in Wasser, sehr wenig in Äther. Wird durch Eisenchlorid blaurot gefärbt. Liefert beim Erhitzen auf 100—105° das Anhydrid C_6H_4 O—CO (Syst. No. 4278).
- N-[2-Methoxy-phenyl]-glycin, o-Anisidinoessigsäure $C_9H_{11}O_3N = HO_2C \cdot CH_2 \cdot NH \cdot C_4H_4 \cdot O \cdot CH_3$. B. Beim Kochen von 1 Mol.-Gew. Chloressigsäure, mit 2 Mol.-Gew. o-Anisidin in alkoh. Lösung; man verjagt den Alkohol, versetzt den Rückstand mit Wasser und schüttelt mit Äther aus (VATER, J. pr. [2] 29, 292). Durch Verseifen des aus o-Anisidin und Chloressigester entstehenden rohen o-Anisidinoessigsäure-äthylesters mit konz. Kalilauge (Diepolder, B. 32, 3519). Nadeln (aus Benzol). F: 153° (Zers.) (D.). Schwer löslich in Wasser, leicht in Alkohol und Äther (V.). $C_9H_{11}O_3N + HCl$. Krystalle. Wird durch viel Wasser zerlegt (V.). $Pb(C_9H_{10}O_3N)_2 + 2C_9H_{11}O_3N$. Gallertartiger Niederschlag (V.).

Amid $C_0H_{10}O_2N_2 = H_2N \cdot CO \cdot CH_2 \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3$. B. Aus o-Anisidin und Chloracetamid (Lumiere, Perrin, Bl. [3] 29, 967). — F: 153—154°.

- [N-(2-Methoxy-phenyl)-glycyl]-urethan $C_{12}H_{16}O_4N_2 = C_2H_5 \cdot O_2C \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Kochen von Chloracetyl-urethan (Bd. III, S. 26) mit o-Anisidin in alkoh. Lösung (Frericus, Breustedt, J. pr. [2] 66, 259). Nadeln (aus verd. Alkohol). F: 134—135°. Unlöslich in kaltem Wasser, leicht löslich in Alkohol. Spaltet beim Erhitzen keinen Alkohol ab.
- o-Anisidinoessigsäure-nitril, o-Anisidinoacetonitril, Cyanmethyl-o-anisidin $C_9H_{10}ON_2=NC\cdot CH_2\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Man rührt ein Gemisch aus äquimolekularen Mengen o-Anisidin und Formaldehydnatriumdisulfit 6 Stdn. bei Zimmertemperatur und behandelt das hierbei entstandene "methyl-o-anisidin- ω -sulfonsaure Natrium" (S. 368) bei 90° mit einer wäßr. Kaliumeyanidlösung (Bucherer, Schwalber, B. 39, 2802). Prismen. F: 68°. Leicht löslich in Alkohol, Benzol, Pyridin, Aceton und Äther, schwer in Ligroin und Petroläther.
- N-[2-Åtkoxy-phenyl]-glycin, o-Phenetidinoessigsäure $C_{10}H_{10}O_3N = HO_2C \cdot CH_3 \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_3$. B. Beim Kochen von Chloressigsäure mit 2 Mol.-Gew. o-Phenetidin in alkoh. Lösung (Vater, J. pr. [2] 29, 294). Krystalle. F: 120°. Schwer löslich in Wasser, leicht in Alkohol und Äther.
- Äthylester $C_{12}H_{17}O_3N=C_4H_5\cdot O_3C\cdot CH_3\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Bei 6-stdg. Kochen äquimolekularer Mengen von o-Phenetidin und Chloressigsäureäthylester in alkoh. Lösung (VATER, J. pr. [2] 29, 295). Nadeln. Mit Wasserdämpfen flüchtig. Schwer löslich in Wasser, in jedem Verhältnis löslich in Alkohol und Äther. $C_{12}H_{17}O_3N+HCl$. Nadeln. Leicht löslich in Wasser und Alkohol, unlöslich in Äther.
- Amid $C_{10}H_{14}O_{2}N_{3}=H_{2}N\cdot CO\cdot CH_{3}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Aus o-Phenetidin und Chloracetamid (LUMIÈRE, PERRIN, Bl. [3] 29, 967). F: 161—162°.
- N-Äthyl-N-[2-äthoxy-phenyl]-glycin, [Äthyl-o-phenetidino]-essigsäure $C_{12}H_{17}O_2N=HO_2C\cdot CH_2\cdot N(C_2H_3\cdot O\cdot C_2H_3\cdot B.$ Bei 2-stdg. Kochen von 1 Mol.-Gew. Chloressigsäure mit 2 Mol.-Gew. Athyl-o-phenetidin in alkoh. Lösung (VATER, J. pr. [2] 29, 296). Flüssig. Sehr schwer löslich in Wasser, mischbar mit Alkohol und Äther. $C_{12}H_{17}O_3N+HCl$. Nadeln. Sehr leicht löslich in Wasser und Alkohol, schwer in Äther.
- Chlorëthylat, Carboxymethyl-diëthyl-[2-ëthoxy-phenyl]-ammoniumchlorid $C_{1d}H_{12}O_2NCl=(HO_2C\cdot CH_3)(C_2H_5)_2NCl\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Beim Erhitzen von 1 Mol.-Gew. Chloressigsäure mit 1 Mol.-Gew. Diëthyl-o-phenetidin und Äther im geschlossenen Rohr auf

100°; von den gebildeten zwei Schichten wird die untere, ölige abgetrennt, in Wasser gelöst, die Lösung durch Ausschütteln mit Äther von Beimengungen befreit und dann verdunstet (VATER, J. pr. [2] 29, 296). — Öl. Bei der Einw. von Natronlauge entsteht ein in Wasser unlösliches, mit Alkohol oder Äther mischbares Öl. — $2C_{14}H_{24}O_4N\cdot Cl + PtCl_4$. Hellgelbe Krystalle. Leicht löslich in Wasser und Alkohol, unlöslich in Äther.

[Thiocarbāthoxy - thioglykolsäure] - o - anisidid, Äthylkanthogenessigsäure-o-anisidid $C_{12}H_{15}O_3NS_2 = C_2H_5 \cdot O \cdot CS \cdot S \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus dem (nicht beschriebenen) Chloracet - o - anisidid und Kaliumāthylkanthogenat (Bd. III, S. 209) in siedender alkoholischer Lösung (Frenchs, Rentschler, Ar. 244, 85). — Nadeln (aus Alkohol). F: 53—54°. Leicht löslich in Äther, Chloroform, Eisessig, schwerer in Alkohol, unlöslich in Wasser.

Selencyanessigsäure-o-anisidid $C_{10}H_{10}O_4N_4Se=NC\cdot Se\cdot CH_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus dem (nicht beschriebenen) Chloracet-o-anisidid und Selencyankalium (Bd. III, S. 225) in siedender alkoholischer Lösung (FRERICHS, Ar. 241, 214). — Fast farblose Nadeln. F: 110°. Leicht löslich in Alkohol und Eisessig, weniger in Äther.

Diselendiglykolsäure-di-o-anisidid $C_{18}H_{20}O_4N_2Se_3=[CH_3\cdot O\cdot C_8H_4\cdot NH\cdot CO\cdot CH_3\cdot Se_-]_3$. B. Man löst Selenoyanessigsäure-o-anisidid in heißem Eisessig, versetzt mit rauchender Salzsäure, gießt die unter Gasentwicklung gelblich gewordene Flüssigkeit in Wasser und krystallisiert das ausgeschiedene Produkt aus heißem Alkohol um (Ferricus, Ar. 241, 214). — Etwas gelbliche Nadeln. F: 124°. Löslich in Alkohol und Äther, leichter in Eisessig und heißem Alkohol.

a-[2-Oxy-anilino]-buttersäure-äthylester $C_{12}H_{17}O_3N=C_2H_4\cdot O_3C\cdot CH(C_2H_4)\cdot NH\cdot C_4H_4\cdot OH$. B. Beim Erhitzen von a-Brom-buttersäure-äthylester mit 2-Amino-phenol in Gegenwart von Natriumsulfit auf 140° (BISCHOFF, B. 30, 2928). — Krystalle (aus Ligroin). F: 81°.

- a-[2-Methoxy-phenyliminomethyl]-acetessigsäure-äthylester bezw. a-o-Anisidinomethylen-acetessigsäure-äthylester $C_{14}H_{17}O_4N=C_3H_5\cdot O_2C\cdot CH(CO\cdot CH_3)\cdot CH:N\cdot C_6H_4\cdot O\cdot CH_3$ bezw. $C_3H_5\cdot O_2C\cdot C(CO\cdot CH_3):CH\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus N.N'-Bis-[2-methoxy-phenyl]-formamidin und Acetessigester bei 150° (DAINS, Brown, Am. Soc. 31, 1151). Nadeln (aus Alkohol). F: 112°.
- 2 Åthoxy phenyliminomethylmalonsäure äthylester o phenetidid bezw. o-Phenetidinomethylenmalonsäure-äthylester-o-phenetidid $C_{12}H_{20}O_5N_2=C_2H_4\cdot 0\cdot C_4H_4\cdot N:CH\cdot CH(CO_2\cdot C_2H_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$ bezw. $C_2H_5\cdot O\cdot C_4H_4\cdot NH\cdot CH:C(CO_2\cdot C_2H_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus N.N'-Bis-[2-āthoxy-phenyl]-formamidin und Maloneter bei 130° (D., B., Am. Soc. 81, 1149). Nadeln (aus Alkohol). F: 110°. Ziemlich löslich in Alkohol.

γ-o-Anisidino-α-cyan-acetessigsäure-äthylester $C_{14}H_{16}O_4N_3=C_2H_3\cdot O_3C\cdot CH(CN)\cdot CO\cdot CH_3\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Beim Stehen von Chloracetyl-malonsäure-äthylesternitril (Bd. III, S. 798), n-Natronlauge und o-Anisidin (Benary, B. 41, 2408). — Nädelchem (aus absol. Alkohol). Schmilzt nach vorhergehendem Erweichen bei 207—208°. Leicht löslich in Chloroform, Eisessig, löslich in Alkohol, schwer löslich in Äther, Benzol, Wasser. Wird durch FeCl₃ rot gefärbt. — Reduziert ammoniakalische Silberlösung in der Wärme.

e) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit Oxyaminen, soweit diesen Kuppelungsprodukten nach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt (vgl. Bd. I, S. 28).

N-[2-Oxy-phenyl]-äthylendiamin $C_9H_{19}ON_9 = H_9N \cdot CH_9 \cdot CH_9 \cdot NH \cdot C_9H_4 \cdot OH$. B. Beim Kochen von 1 Tl. N-[2-Methoxy-phenyl]-äthylendiamin oder 1 Tl. N-[2-Methoxy-phenyl]-N'-phthalyl-äthylendiamin (Syst. No. 3218) mit 10 Tln. Jodwasserstoffsäure (Dieffenbach, B. 27, 930). — Krystalle (aus Essigester). F: 154°. Kp: 280—285°. — $C_9H_{19}ON_9 + 2HCl$. Schmilzt nicht bei 300°. — $C_9H_{19}ON_9 + 2HCl$. Schmilzt nicht bei 300°. — $C_9H_{19}ON_9 + 2HI + H_2O$. F: 106—107°. — $C_9H_{19}ON_9 + 2H_9ON_9 + 2H_9$

N-[2-Methoxy-phenyl]-äthylendiamin $C_sH_{14}ON_s=H_sN\cdot CH_s\cdot CH_s\cdot NH\cdot C_sH_s\cdot O\cdot CH_s\cdot B$. Bei 7-stdg. Kochen von 50 g N-[2-Methoxy-phenyl]-N'-phthalyl-åthylendiamin (Syst. No. 3218) mit 350 g konz. Salzsäure (DI., B. 27, 929). — Nach faulen Fischen riechendes Ol. Kp,24: 277—280°. — $C_sH_{14}ON_s+2$ HCl. Krystalle (aus Alkohol). F: 156°. — Pikrat $C_sH_{14}ON_s+2C_0H_3O_7N_s$. Hellgelbe Krystalle.

- N-[2-Methoxy-phenyl]-N'-anilinothioformyl-äthylendiamin $C_{16}H_{19}ON_3S = C_6H_5$ ·NH·CS·NH·CH₂·CH₂·NH·C₆H₄·O·CH₃. B. Aus N-[2-Methoxy-phenyl]-äthylendiamin und Phenylsenföl (D1., B. 27, 930). Krystalle (aus Äther-Alkohol). F: 117—118°.
- [\$\beta\$-o-Anisidino-\text{athyl}]-dithiocarbamids\text{\text{aure}} \$C_{10}H_{14}ON_2S_2 = HS_2C\text{·NH\chi}CH_3\cdot CH_2\text{.} \$NH\chi C_4H_4\cdot O\chi CH_3\cdot B\$. Das Salz dieser S\text{\text{\text{aure}}} mit \$N-[2\text{-Methoxy-phenyl}]-\text{\text{\text{\text{ath}}}} without the constant of the constan
- N-[2-Methoxy-phenyl]-N.N'-dibenzoyl-äthylendiamin $C_{23}H_{23}O_3N_2=C_6H_5\cdot CO\cdot NH\cdot CH_2\cdot CH_2\cdot N(CO\cdot C_6H_5)\cdot C_6H_4\cdot O\cdot CH_3$. Beim Schütteln von N-[2-Methoxy-phenyl]-äthylendiamin mit Benzoylchlorid und Natronlauge (DI., B. 27, 930). Krystalle (aus Äther-Alkohol). F: 134—135°.
- N-[2-Benzoyloxy-phenyl]-N.N'.N'-tribenzoyl-äthylendiamin $C_{36}H_{28}O_5N_8 = (C_6H_5\cdot CO)_*N\cdot CH_2\cdot CH_2\cdot N(CO\cdot C_6H_5)\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Beim Schütteln von N-[2-Oxyphenyl]-äthylendiamin mit Benzoylchlorid und Natronlauge (DI., B. 27, 932). Krystalle (aus Essigester). F: 63—65°.
- N.N'-Bis-[2-methoxy-phenyl]-pentamethylendiamin $C_{10}H_{26}O_2N_2=CH_3\cdot O\cdot C_6H_4\cdot NH\cdot CH_2\cdot [CH_3]_3\cdot CH_3\cdot NH\cdot C_8H_4\cdot O\cdot CH_3$. B. Beim mehrstündigen Kochen von o-Anisidin mit Pentamethylendibromid (Bd. I, S. 131) in Alkohol (Scholtz, Wassermann, B. 40, 857). Prismen. F: 131°.
- 4'.6' Dinitro 2 oxy 3' amino diphenylamin $C_{12}H_{10}O_5N_4 = H_2N \cdot C_6H_2(NO_2)_2 \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Erhitzen von 5' Chlor 2'.4' dinitro 2 oxy diphenylamin (S. 365) mit alkoh. Ammoniak auf 150—160° (Bad. Anilin- u. Sodaf., D. R. P. 116172; Frdl. 6, 657; C. 1901 I, 75). Braunrote Nadeln (aus Alkohol). F: 212°.
- 2-Methoxy-4'-amino-diphenylamin $C_{13}H_{14}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei der Reduktion von 4'-Nitro-2-methoxy-diphenylamin mit Zinkstaub und Salmiak (ULL-MANN, JÜNGEL, B. 42, 1083). Beim Erwärmen des Kaliumsalzes der 2'-Methoxy-4-amino-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) mit verd. Salzsäure (U., J.). Nadeln (aus Ligroin). F: 80°. Schwer löslich in siedendem Wasser, löslich in Benzol, leicht löslich in Alkohol und Äther. Gibt in verd. Salzsäure mit FeCl₃ Blaufärbung.
- N.N-Diphenyl-N'-[2-oxy-phenyl]-N'-acetyl-p-phenylendiamin (?), 4-[N-Acetyl-2-oxy-anilino]-triphenylamin (?) $C_{26}H_{23}O_2N_3=(C_6H_6)_2N\cdot C_6H_4\cdot N(CO\cdot CH_3)\cdot C_6H_4\cdot OH(?)$. B. Aus Diphenylamin und Acetylsuperoxyd (Bd. II, S. 170) in kaltem Ather, neben anderen Produkten (Gambarjan, B. 42, 4010, 4012). Krystalle (aus Eisessig). F: 218—220°. Verfärbt sich oberhalb des Schmelzpunktes. Löslich in Natronlauge. Die Lösung in konz. Schwefelsäure ist farblos und wird durch Zusatz von Nitrit blau gefärbt. Die alkoh. Lösung färbt sich durch Eisenchlorid olivgrün.
- 2'-Äthoxy-6-amino-3-methyl-diphenylamin $C_{15}H_{16}ON_2 = H_2N \cdot C_6H_3 \cdot C_8H_3 \cdot C_8H_3 \cdot C_8H_4 \cdot O \cdot C_2H_5$. B. Bei der Reduktion von 2'-Äthoxy-4-methyl-azobenzol (Syst. No. 2112) in Alkohol mit Zinnehlorür und Salzsäure (D: 1,19), neben anderen Produkten (Jacobson, A. 369, 17). Kryställehen (aus Benzol). F: 75—77°. Gibt mit Nitrit in salzsaurer Lösung eine Trübung. Liefert mit Benzil (Bd. VII, S. 747) in alkoh. Lösung bei Gegenwart von Salzsäure 6-Methyl-2.3-diphenyl-4-[2-šthoxy-phenyl]-chinoxaliniumchlorid, das durch Ammoniak in die Pseudobase $CH_3 \cdot C_6H_3 \cdot N = C \cdot C_6H_5 \cdot C \cdot C_8H_5$ (Syst. No. 3492) übergeführt wird.
- 2-[2-Amino-benzylamino]-phenol-methyläther, [[2-Amino-benzyl]-o-anisidin $C_{14}H_{16}ON_2 = H_2N \cdot C_4H_4 \cdot CH_2 \cdot NH \cdot C_4H_4 \cdot O \cdot CH_2$. B. Aus [2-Nitro-benzyl]-o-anisidin bei der Reduktion mit Zinkstaub und Eisessig (Busch, Brunner, Birk, J. pr. [2] 52, 401; Paal, Schilling, J. pr. [2] 54, 279). Nadeln (aus verd. Alkohol). F: 99° (Bu., Br., Br.), 95° (P., Sch.). Mit Formaldehyd und alkoholischer Kalilauge entsteht 3-[2-Methoxy-phenyl]-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3470) (Bu., Dietz, J. pr. [2] 53, 423). Mit Phoegen entsteht 2-Oxo-3-[2-methoxy-phenyl]-chinazolintetrahydrid (Syst. No. 3567) und mit Schwefelkohlenstoff die entsprechende Thioverbindung (Bu., Br., Br.). $C_{14}H_{16}ON_2 + 2HCl$. Nadeln (aus Alkohol + Ather). Schmilzt gegen 175—176° unter Bräunung (Bu., Br., Br.).
- [2-Salicylalamino-bensyl]-o-anisidin $C_{tt}H_{20}O_{2}N_{2}=HO\cdot C_{0}H_{4}\cdot CH:N\cdot C_{0}H_{4}\cdot CH_{2}\cdot NH\cdot C_{0}H_{4}\cdot O\cdot CH_{3}$. Aus [2-Amino-bensyl]-o-anisidin und Salicylaldehyd (Busch, Brunner, Birk, J. pr. [2] 52, 403). Gelbe Nadeln. F: 79°.

- N [2 Amino bensyl] [form o anisidid] $C_{12}H_{16}O_2N_2 = H_2N \cdot C_6H_4 \cdot CH_2 \cdot N(CHO) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei vorsichtiger Reduktion von N-[2-Nitro-benzyl]-[form-o-anisidid] mit Zinkstaub und Essigsaure in der Kalte (PAAL, SCHILLING, J. pr. [2] 54, 279). — Nadeln (aus Ligroin), Prismen (aus Ather). F: 98°. Leicht löslich in fast allen gebräuchlichen organischen Lösungsmitteln, schwierig in Ligroin. — Beim Erwärmen mit verd. Mineralsäuren entsteht 3-[2-Methoxy-phenyl]-chinazolindihydrid (Syst. No. 3474).
- N.N'-Bis-[2-methoxy-phenyl]-o-xylylendiamin, o-Xylylen-di-o-anisidin $C_{22}H_{24}O_2N_3=C_4H_4(CH_2\cdot NH\cdot C_8H_4\cdot O\cdot CH_2)_3$. B. Beim ½-stdg. Kochen von o-Xylylenbromid (Bd. V, S. 366) und o-Anisidin in alkoh. Lösung (Scholtz, B. 31, 1157). Nadeln (aus Alkohol). F: 105°.
 - f) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit Amino essigsäure.
- 2-Glycylamino-phenol-methyläther, Glycin-o-anisidid $C_0H_{10}O_2N_3=H_2N\cdot CH_2\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Bei 5—6-stdg. Erhitzen von o-Anisidin mit den salzsauren Salzen des Methylesters, Athylesters oder Amids der Aminoessigsäure auf 130—150° (MAJERT, D. R. P. 59874; Frdl. 3, 918). Bei der Einw. von überschüssigem alkoholischem Ammoniak auf das (nicht näher beschriebene) Chloressigsäure-o-anisidid (M., D. R. P. 59121; Frdl. 3, 915). — Nadeln. F: 32—33°.
- 2-Glycylamino-phenol-äthyläther, Glycin-o-phenetidid $C_{10}H_{14}O_2N_2=H_2N\cdot CH_2\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_2H_5$. B. Bei 5-6-stdg. Erhitzen von o-Phenetidin mit den salzsauren Salzen des Methylesters, Äthylesters oder Amids der Aminoessigsäure auf 130-150° (MAJERT, D. R. P. 59874; Frdl. 3, 918). Bei der Einw. von überschüssigem alkoholischem Ammoniak auf das (nicht näher beschriebene) Chloressigsäure-o-phenetidid (M., D. R. P. 59121; Frdl. 8, 915). — F: 66,5°.
 - g) N-Derivate des 2-Amino-phenols, entstanden durch Kuppelung mit anorganischen Säuren.
- **2-Bensolsulfam**ino-phenol, Bensolsulfonsäure-[2-oxy-anilid] $C_{12}H_{11}O_5NS = C_6H_5 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot OH$. B. Wurde einmal erhalten bei der Einw. von 12 g Benzolsulfochlorid (Bd. XI, S. 34) auf 5 g salzsaures 2-Amino-phenol in Gegenwart von $10^{\circ}/_{\circ}$ iger Kalilauge (TINGLE, WILLIAMS, Am. 37, 61). Nadeln (aus Benzol oder Ather). F: 141°.
- 2-p-Toluolsulfamino-phenol, p-Toluolsulfonsäure-[2-oxy-anilid] $C_{13}H_{13}O_3NS = CH_3 \cdot C_2H_4 \cdot SO_3 \cdot NH \cdot C_2H_4 \cdot OH$. Be längerem Kochen von 2 Mol.-Gew. 2-Amino-phenol mit 1 Mol.-Gew. p-Toluolsulfochlorid und Alkohol (TROEGER, ULLMANN, J. pr. [2] 51, 441). Nadeln (aus Wasser). F: 138—139°. Leicht löslich in Alkohol, Äther und Essigester. Bei der Oxydation mit KMnO₄ in neutraler Lösung entsteht p-Toluolsulfamid.
- Bensolsulfonsäure-o-anisidid $C_{10}H_{10}O_{2}NS=C_{0}H_{1}$; $SO_{3}\cdot NH\cdot C_{0}H_{4}\cdot O\cdot CH_{2}$. B. Aus Bensolsulfochlorid und o-Anisidin (Akt.-Ges. f. Anilinf., D. R. P. 157859; C. 1905 I, 415; vgl. Diepolder, B. 32, 3517). Tafeln (aus Alkohol). F: 89°; leicht löslich in Bensol, sehr wenig in Ligroin und heißem Wasser (D.). — Natriumsals. Nadeln. Leicht löslich in Wasser, schwer in Natronlauge (D.).
- p-Toluolsulfonssure-o-anisidid $C_{1a}H_{1b}O_{a}NS = CH_{a} \cdot C_{c}H_{a} \cdot SO_{a} \cdot NH \cdot C_{c}H_{a} \cdot O \cdot CH_{a}$. B. Aus p-Toluolsulfochlorid und o-Anisidin (Akt.-Ges. f. Anilinf., D. R. P. 157859; C. 1905 I, 415). — Prismen. F: 127°.
- Toluol ω sulfonsäure o phenetidid, "Bensylsulfonsäure" o phenetidid $C_{1p}H_{17}O_2NS = C_2H_2 \cdot CH_2 \cdot SO_2 \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_3$. B. Durch Erwärmen von Toluol- ω -sulfonsäure-chlorid (Bd. XI, S. 116) mit o-Phenetidin (Fromm, de Seixas Palma, B. 89, - Prismen (aus verd. Alkohol). F: 85°.
- [2-Bensolsulfamino-phenyl]-bensolsulfonat, O.N-Dibensolsulfonyl-[2-amino-phenol] $C_{12}H_{12}O_2NS_2=C_4H_5\cdot SO_2\cdot NH\cdot C_4H_4\cdot O\cdot SO_2\cdot C_6H_5$. B. Aus 2-Amino-phenol und Bensolsulfochlorid in Gegenwart von 10°/ciger Kalilauge (Tingle, Williams, Am. 87, 62). Schwach rötliche Säulen (aus Alkohol). F: 134°.
- Bensolsulfonsäure-[methyl-o-anisidid] $C_{14}H_{18}O_{2}NS = C_{6}H_{4} \cdot SO_{3} \cdot N(CH_{3}) \cdot C_{6}H_{4} \cdot O \cdot CH_{6}$. Beim Behandeln von Methyl-o-anisidin mit Bensolsulfochlorid und Natronlauge (Difference, B. 32, 3518). Aus der Natriumverbindung des Benzolsulfonsäure-o-anisidids in Methylalkohol mit Methyljodid (D.). — Tafeln und Prismen (aus Äther-Ligroin). F: 60°. Fast unlöslich in Wasser, ziemlich schwer löslich in Ligroin, leicht löslich in Alkohol, Ather, Benzol.
- **2-Thionylamino-phenol-methyläther**, Thionyl-o-anisidin $C_1H_1O_2NS = OS:N$ C.H. O.CH. B. Beim Kochen von 20 g o-Anisidin, gelöst in 150 ccm Benzol, mit der berechneten Menge Thionylchlorid (MICHARLIS, A. 274, 246). — Rotbraunes Öl. Kp45: 203°.

- 2-Methylnitrosamino-phenol, [2-Oxy-phenyl]-methyl-nitrosamin $C_7H_8O_2N_2\simeq ON\cdot N(CH_3)\cdot C_0H_4\cdot OH$. Be Beim Behandeln einer verdünnten schwefelsauren Lösung von 2-Methylamino-phenol mit der berechneten Menge Natriumnitritlösung (Diepolder, B. 32, 3520). Nadeln (aus Alkohol). Zersetzt sich bei 121°. Leicht löslich in heißem Wasser und in Alkohol, ziemlich schwer in Benzol, schwer in Ligroin; leicht löslich in verdünnter kalter Natronlauge.
- N-Nitroso-N-methyl-o-anisidin, [2-Methoxy-phenyl]-methyl-nitrosamin $C_8H_{10}O_2N_2=ON\cdot N(CH_3)\cdot C_6H_4\cdot O\cdot CH_3$. B. Man fügt zu einer Lösung von Methyl-o-anisidin in sehr verdünnter Schwefelsäure erst Äther und dann tropfenweise Dreiviertel der berechneten Menge Natriumnitritlösung (Best, A. 255, 177). Gelbbraunes Öl. Nicht unzersetzt destillierbar. Leicht löslich in Älkohol und Äther, unlöslich in Wasser.
- 2-Äthylnitrosamino-phenol, [2-Oxy-phenyl]-äthyl-nitrosamin $C_8H_{10}O_2N_2=ON\cdot N(C_2H_5)\cdot C_6H_4\cdot OH$. B. Beim Leiten von salpetriger Säure in eine absolut-alkoholische Lösung von salzsaurem 2-Äthylamino-phenol unter Kühlung (Förster, J. pr. [2] 21, 361). Blättchen. F: 121,5°. Sehr leicht löslich in Alkohol, Äther, Benzol. Verbindet sich nicht mit Basen oder Säuren. Geht beim Behandeln mit Zinn und Salzsäure wieder in 2-[Äthylamino]-phenol über (?).

Substitutions produkte des 2-Amino-phenols.

- a) Halogen-Derivate des 2-Amino-phenols.
- 3-Chlor-2-amino-phenol-methyläther, 3-Chlor-2-amino-anisol $C_7H_8ONCl = H_2N \cdot C_8H_3Cl \cdot O \cdot CH_8$. B. Aus 3-Chlor-2-nitro-anisol (Bd. VI, S. 238) durch Reduktion mit Zinn und Salzsäure (Meldola, Eyre, Soc. 81, 996). Öl. Mit Wasserdampf flüchtig. Hydrochlorid. Nadeln.
- 8-Chlor-2-acetamino-phenol-methyläther, 8-Chlor-2-acetamino-anisol $C_9H_{10}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_6H_3Cl\cdot O\cdot CH_3$. B. Aus salzsaurem 3-Chlor-2-amino-anisol (s. o.) durch Erhitzen mit Essigsäureanhydrid und Natriumacetat (M., E., Soc. 81, 996). Farblose Prismen (aus Alkohol). Erweicht bei 115—125°, schmilzt bei 147—148°.
- 3-Chlor-2-benzamino-phenol-methyläther, 3-Chlor-2-benzamino-anisol $C_{14}H_{13}O_3NCl=C_6H_5\cdot CO\cdot NH\cdot C_6H_3Cl\cdot O\cdot CH_3$. Weiße Nadeln (aus verd. Alkohol). F: 130° (M., E., Soc. 81, 996).
- 4-Chlor-2-amino-phenol $C_0H_0ONCl=H_2N\cdot C_0H_3Cl\cdot OH$. B. Aus 4-Chlor-2-nitrophenol (Bd. VI, S. 238) mit Zinn und Salzsäure (FAUST, SAAME, A. Spl. 7, 193). Verwendung zur Darstellung von Azofarbstoffen: Bad. Anilin- u. Sodaf., D. R. P. 131288; C. 1902 I, 1287; K. Oehler, D. R. P. 155740; C. 1904 II, 1526; Höchster Farbw., D. R. P. 168610; C. 1906 I, 1125; Chem. Fabr. Griesheim-Elektron, D. R. P. 172457; C. 1906 II, 644; Chem. Fabr. Sandoz, D. R. P. 175625; C. 1906 II, 1748. Salzsaures Salz. Blättchen (aus Wasser) (FAUST, SAAME).
- 4-Chlor-2-amino-phenol-methyläther, 4-Chlor-2-amino-anisel C₇H₈ONCl = H₂N·C₆H₃Cl·O·CH₃. B. Durch Reduktion von 4-Chlor-2-nitro-anisel (Bd. VI, S. 238) mit Zinn-chlorür und Salzsäure (Reverdin, Eckhard, B. 32, 2623) oder mit Eisen und Salzsäure (Akt.-Ges. f. Anilinf., D. R. P. 137956; C. 1903 I, 112). Nadeln. F: 82° (R., E.), 84° (A.-G. f. A.). Leicht löglich in Alkohol, schwer in Benzin (R., E.). Flüchtig mit Wasserdämpfen (R., E.). Läßt sich durch Austausch der NH₂-Gruppe gegen Cl nach dem Verfahren von Sandmeyer in 2.4-Dichlor-anisel überführen (R., E.). Über Verwendung zur Erzeugung von Azofarbstoffen auf der Faser vgl. Schuttz, Tab. No. 97. Pikrat. Nadeln. F: 194° (Zers.) (R., E.).
- 4-Chlor-2-amino-phenol-āthylāther, 4-Chlor-2-amino-phenetol $C_8H_{10}ONCl=H_2N\cdot C_6H_2Cl\cdot O\cdot C_2H_5$. B. Durch Reduktion von 4-Chlor-2-nitro-phenetol (Bd. VI, S. 238) mit SnCl₂ und Salzsäure (Reverdin, Düring, B. 32, 154). Durch Chlorieren von 2-Acetamino-phenol-āthylāther (S. 371) und nachfolgendes Verseifen des dabei entstehenden 4-Chlor-2-acetamino-phenol-āthylāthers (R., D.). Nadeln (aus verd. Alkohol). F: 42°. Mit Wasserdampf flüchtig. Sehr wenig löslich in Wasser, löslich in Äther, Alkohol, Ligroin, Chloroform. Hydrochlorid. Löslich in Wasser und Alkohol. Gibt mit Eisenchlorid einen blaugrünen, mit Dichromat einen gelbgrünen Niederschlag. Pikrat. Gelbe Nadeln (aus Alkohol). F: 132,5°.
- **4-Chlor-2-amino-phenol-bensyläther** $C_{19}H_{12}ONCl = H_2N \cdot C_6H_3Cl \cdot O \cdot CH_3 \cdot C_6H_5$. B. Aus [4-Chlor-2-nitro-phenyl]-benzyl-ather (Bd. VI, S. 433) durch Reduktion (Höchster Farbw., D. R. P. 142899; C. 1903 II, 83). Hydrochlorid. F: 168—173°.

- 4-Chor-2-amino-phenol-[3-chlor-benzyl]-äther $C_{18}H_{11}ONCl_8=H_1N\cdot C_0H_3Cl\cdot O\cdot CH_2\cdot C_0H_4Cl.$ B. Aus [4-Chlor-2-nitro-phenyl]-[2-chlor-benzyl]-äther (Bd. VI, S. 444) durch Reduktion (Höchster Farbw., D. R. P. 142061; C. 1903 II, 82). Hydrochlorid. F: 189°.
- [4-Chlor-2-amino-phenyl]-acetat $C_8H_8O_2NCl = H_2N \cdot C_8H_8Cl \cdot O \cdot CO \cdot CH_2$. B. Durch Reduktion von [4-Chlor-2-nitro-phenyl]-acetat (Bd. VI, S. 238) mit Zinn und Salzsäure (Urson, Am. 32, 38, 40). Nadeln. F: 73—74°. Löslich in Chloroform und Benzol, sehr wenig löslich in Ligroin; löslich in Säuren, unlöslich in Alkalien. Lagert sich spontan in 4-Chlor-2-acetamino-phenol (s. u.) um. $C_8H_8O_2NCl + HCl$. F: 105—107°. 2 $C_8H_8O_2NCl + 2HCl + PtCl_4$. Schmilzt nicht bei 200°. Unlöslich in Wasser.
- [4-Chlor-2-amino-phenyl]-kohlensäure-äthylester $C_0H_{10}O_3NCl=H_1N\cdot C_0H_3Cl\cdot O\cdot CO_3\cdot C_3H_4$. B. Das Hydrochlorid entsteht durch Reduktion von [4-Chlor-2-nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 238) mit Zinn und Salzsäure bei ca. 10° (Urson, Am. 32, 23). Über die Umwandlung des Hydrochlorids in [5-Chlor-2-oxy-phenyl]-urethan (s. u.) vgl. Stieglitz, Urson, Am. 31, 501; U. $C_0H_{10}O_3NCl+HCl$. Weißer Niederschlag. Löslich in Alkohol, unlöslich in Wasser, Benzol und Chloroform; ziemlich löslich in konz. Salzsäure und Risessig, unlöslich in Alkali (U.). $2C_0H_{10}O_3NCl+2HCl+PtCl_4$. Gelbe Nadeln, die bei ca. 140° sich zu zersetzen beginnen, bei $175-180^{\circ}$ erweichen.
- 4-Chlor-2-acetamino-phenol C₈H₈O₂NCl = CH₃·CO·NH·C₈H₅Cl·OH. B. Entsteht spontan aus [4-Chlor-2-amino-phenyl]-acetat (s. o.) (UPSON, Am. 32, 40). Beim Erhitzen des Hydrochlorids des 4-Chlor-2-amino-phenols mit Essigsäureanhydrid und Natriumacetat am Rückflußkühler (U.). F: 176°; löslich in Alkali (U.). Wird durch Sulfurieren und Verseifen des Reaktionsproduktes in 4-Chlor-6-amino-phenol-sulfonsäure-(2) (Syst. No. 1926) übergeführt (BAYER & Co., D. R. P. 194935; C. 1908 I, 1114).
- 4 Chlor 2 acetamino phenol methyläther, 4 Chlor 2 acetamino anisol $C_0H_{10}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_0H_3Cl\cdot O\cdot CH_3$. B. Aus 4-Chlor-2-amino-anisol durch Acetylieren (Reverdin, Eckhard, B. 32, 2623; Akt.-Ges. f. Anilinf., D. R. P. 137956; C. 1903 I, 112). Nädelchen (aus Wasser). F: 104° (R., E.; A.-G. f. A.).
- **4 Chlor 2 acetamino phenol äthyläther, 4 Chlor 2 acetamino phenetol** $C_{10}H_{12}O_2NCl = CH_2\cdot CO\cdot NH\cdot C_0H_2Cl\cdot O\cdot C_2H_5$. Blättchen (aus verd. Alkohol). F: 110° (REVERDIN, DÜRING, B. **32**, 154).
- [5-Chlor-2-oxy-phenyl]-urethan $C_9H_{10}O_3NCl = C_2H_6 \cdot O_2C \cdot NH \cdot C_6H_3Cl \cdot OH$. B. Beim Kochen des Hydrochlorids des [4-Chlor-2-amino-phenyl]-kohlensäure-äthylesters (s. o.) mit Wasser (Urson, Am. 32, 24; vgl. Stieglitz, Urson, Am. 31, 501). Durch Kondensation von 4-Chlor-2-amino-phenol mit Chlorameisensäureäthylester (U.). Krystalle. F: 136° bis 137°; löslich in Alkohol und Äther; löslich in Alkalien, unlöslich in Säuren (U.).
- 5-Chlor-2-amino-phenol-methyläther, 5-Chlor-2-amino-anisol C₇H₈ONCl = H₂N·C₆H₂Cl·O·CH₂. Zur Konstitution vgl. Reverdin, Eckhard, B. 32, 2625. B. Neben o-Anisidin, bei der Reduktion von 2-Nitro-anisol (Bd. VI, S. 217) mit Zinn und Salzsäure (Herold, B. 15, 1685; Reverdin, Eckhard, B. 32, 2625). Durch elektrochemische Reduktion von 2-Nitro-anisol in salzsaurer Lösung bei Gegenwart von SnCl₂ (Brand, J. pr. [2] 67, 158). Durch Einw. von Kupferchlorür und Salzsäure auf diazotiertes 5-Amino-2-acetamino-anisol [erhalten durch Reduktion von 5-Nitro-2-acetamino-anisol] (R., E.). Prismen (aus Alkohol). F: 52°; Kp: 260°; leicht löslich in Alkohol, Äther und Benzol (H.). Läßt sich durch Eliminierung der Aminogruppe in 3-Chlor-anisol überführen (R., E.). C, H₃ ONCl + HCl. Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser, sehr schwer in Äther, leichter in Alkohol (H.). Pikrat C, H₃ ONCl + C, H₂ O, N₃. Grünlichgelbe Nadeln. Schmilzt unter Zersetzung gegen 200°; wenig löslich in Wasser, leicht in Alkohol und Äther (H.). 2C, H₃ ONCl + 2 HCl + PtCl₄. Gelbe Nadeln. Sehr leicht löslich in Wasser, leicht in Alkohol, schwer in Äther (H.).
- 5-Chlor-2-formamino-phenol-methyläther, 5-Chlor-2-formamino-anisol $C_8H_6O_2NCl=OHC\cdot NH\cdot C_8H_3Cl\cdot O\cdot CH_3$. B. Bleibt ungelöst zurück, wenn man das bei der Reduktion von 2-Nitro-anisol mit Zinn und Salzsäure erhaltene Basengemisch mit Ameisensäure kocht und das Produkt mit verdünntem Alkohol (1 Vol. Alkohol + 2 Vol. Wasser)

- bei ca. 40° extrahiert (DIEPOLDER, B. 32, 3514). Blättchen (aus Alkohol). F: 177—178°. Schwer löslich in kaltem Alkohol, Benzol, Äther und heißem Wasser.
- 5 Chlor 2 acetamino phenol methyläther, 5 Chlor 2 acetamino anisol $C_0H_{10}O_2NCl = CH_2 \cdot CO \cdot NH \cdot C_0H_3Cl \cdot O \cdot CH_3$. B. Aus 5-Chlor-2-amino-anisol (S. 384) und Essigsäureanhydrid (Hebold, B. 15, 1686). Blättchen (aus Wasser). F: 150°. Kp: 326°.
- N.N'-Bis-[4-chlor-2-methoxy-phenyl]-thioharnstoff $C_{18}H_{14}O_2N_3Cl_3S = CS(NH\cdot C_6H_3Cl\cdot O\cdot CH_3)_3$. B. Durch Kochen von 5-Chlor-2-amino-anisol mit CS_2 und Alkohol (Herold), B. 15, 1687). Nadeln. F: 152,5°; leicht löslich in Alkohol, Äther und Eisessig.
- [6-Chlor-2-amino-phenyl]-kohlensäure-äthylester $C_9H_{10}O_3NCl=H_1N\cdot C_9H_9Cl\cdot O\cdot CO_2\cdot C_9H_5$. B. Das Hydrochlorid entsteht aus [6-Chlor-2-nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 239) durch Zinn und Salzsäure (UPSON, Am. 32, 27). Hydrochlorid. Voluminöser Niederschlag. F: 126—127° (Zers.); löslich in Alkohol, unlöslich in Wasser; unlöslich in Alkalien, schwer löslich in Säuren (U.). Über die Umwandlung in [3-Chlor-2-oxy-phenyl]-urethan (s. u.) vgl. Stieglitz, UPSON, Am. 31, 501.
- [3-Chlor-2-oxy-phenyl]-urethan $C_0H_{10}O_3NCl = C_3H_5 \cdot CO_3 \cdot NH \cdot C_6H_3Cl \cdot OH$. B. Aus dem Hydrochlorid des [6-Chlor-2-amino-phenyl]-kohlensäure-äthylesters (s. o.) durch gelindes Erwärmen mit Wasser (UPSON, Am.32, 27; vgl. STIEGLITZ, UPSON, Am.31, 501). Nadeln. F: 92—93°; löslich in Alkohol, Äther; löslich in Alkalien, unlöslich in Säuren (U.).
- x-Chlor-2-amino-phenoxyessigsäure $C_8H_8O_3NCl=H_4N\cdot C_6H_3Cl\cdot O\cdot CH_3\cdot CO_2H$. B. Das Anhydrid (x-Chlor-phenmorpholon; Syst. No. 4278) erhält man beim Behandeln von 2-Nitro-phenoxyessigsäure (Bd. VI, S. 220) mit SnCl₂ und Salzsäure; man erhält aus dem Anhydrid durch Erwärmen mit Kalilauge auf dem Wasserbade das Kaliumsalz der Säure (Thate, J. pr. [2] 29, 183). Die freie Säure ist nicht bekannt, da sie leicht in ihr Anhydrid übergeht, scheint aber in wäßriger oder verdünnter saurer Lösung vorübergehend bestehen zu können. KC₃H₇O₃NCl (bei 115°). Nadeln. Leicht löslich in Wasser, schwerer in Alkohol. AgC₃H₇O₃NCl. Mikrokrystallinisch. Pb(C₃H₇O₃NCl)₂. Krystallpulver. Unlöslich in kaltem Wasser, Alkohol und Äther.
- 3.4 Dichlor 2 amino phenol methyläther, 3.4 Dichlor 2 amino anisol $C_7H_7ONCl_2 = H_2N\cdot C_6H_2Cl_2\cdot O\cdot CH_3$. B. Aus 3.4-Dichlor-2-nitro-anisol (Bd. VI, S. 240) durch Reduktion mit Zinn und Salzsäure in alkoh. Lösung (Meldola, Eyre, Soc. 81, 998). Farbloses, ziemlich beständiges Öl. $C_7H_7ONCl_2+HCl$. Nadeln.
- 3.4-Dichlor-2-acetamino-phenol-methyläther, 3.4-Dichlor-2-acetamino-anisol $C_0H_0O_2NCl_2=CH_3\cdot CO\cdot NH\cdot C_0H_2Cl_2\cdot O\cdot CH_3$. B. Aus 3.4-Dichlor-2-amino-anisol und Essigsäureanhydrid in Gegenwart von Wasser (M., E., Soc. 81, 998). Krystalle (aus verd. Alkohol). F: 191—192°.
- 4.6-Dichlor-2-amino-phenol C₆H₅ONCl₂ = H₂N·C₆H₃Cl₂·OH. B. Aus 4.6-Dichlor-2-nitro-phenol (Bd. VI, S. 241) mit Zinn und Salzsäure (F. FISCHEB, A. Spl. 7, 189). Schuppen. Zersetzt sich rasch (F. FI.). Das salzsaure Salz scheidet auf Zusatz von Silbernitrat Chlorsilber und einen Silberspiegel ab (F. FI.). Über Verwendung zur Darstellung von Azofarbstoffen vgl. Schultz, Tab. No. 86, sowie ferner Bad. Anilin- u. Sodaf., D. R. P. 131 288; C. 1902 I, 1287; Chem. Fabr. Sandoz, D. R. P. 175625; C. 1906 II, 1748. C₆H₅ONCl₂ + HCl. Leicht löslich in Wasser und Alkohol; wird aus der wäßr. Lösung durch konzentrierte Salzsäure gefällt (F. FI.). 2C₆H₅ONCl₂ + H₂SO₄ (F. FI.).
- [4.6-Dichlor-2-amino-phenyl]-kohlensäure-äthylester $C_0H_0O_3NCl_2=H_2N\cdot C_0H_3Cl_3\cdot O\cdot CO_2\cdot C_2H_3$. B. Aus [4.6-Dichlor-2-nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 241) durch Zinn und Salzsäure (Urson, Am. 32, 30). Hydrochlorid. Krystalle. F: 132—135° (Zers.); löslich in Alkohol, unlöslich in Wasser; unlöslich in Alkalien und Säuren (U.). Über die Umwandlung in [3.5-Dichlor-2-oxy-phenyl]-urethan (s. u.) vgl. STIEGLITZ, Urson, Am. 31, 501; U.
- [3.5-Dichlor-2-oxy-phenyl]-urethan $C_0H_0O_3NCl_2=C_2H_0\cdot CO_3\cdot NH\cdot C_0H_2Cl_2\cdot OH$. B. Beim Stehen einer mit etwas Wasser versetzten alkoh. Lösung des Hydrochlorids des [4.6-Dichlor-2-amino-phenyl]-kohlensäure-äthylesters (s. o.) (Urson, Am. 32, 31; vgl. STIEGLITZ, Urson, Am. 31, 501). Aus 4.6-Dichlor-2-amino-phenol und Chlorameisensäureäthylester (U.). F: 125° (U.).
- x.x-Dichlor-2'.4'-dinitro-2-methoxy-diphenylamin $C_{13}H_9O_5N_2Cl_2 = (O_5N)_2C_6H_2 \cdot NH \cdot C_9H_9Cl_3 \cdot O \cdot CH_3$. B. Aus 2'.4'-Dinitro-2-methoxy-diphenylamin (S. 366) mit chlorsaurem Natrium und Salzsaure (Reverdin, Crépteux, B. 36, 3270). Rote Nadeln. F:206—207°. Sehr leicht löslich in Benzol, Chloroform, Aceton, Eisessig, schwer in Äther, Ligroin, CS₂, Alkohol.

- $\textbf{x.x-Dichlor-2'.4'-dinitro-2-$athoxy-diphenylamin} \ C_{14}H_{11}O_{5}N_{3}Cl_{3} = (O_{2}N)_{3}C_{5}H_{3} \cdot NH \cdot$ C₂H₂Cl₂·O·C₂H₃. B. Aus 2'.4'-Dinitro-2-athoxy-diphenylamin (S. 366) mit chlorsaurem Natrium und Salzsaure (R., C., B. 36, 3269). — Orangegelbe Nadeln (aus Aceton und Eisessig). F: 185-186°. Sehr leicht löslich in Benzol, Chloroform, Aceton, Eisessig, schwer in Ather, Ligroin, CS, Alkohol.
- **8.4.5.6-Tetrachlor-2-amino-phenol** $C_4H_2ONCl_4 = H_2N \cdot C_4Cl_4 \cdot OH$. B. Entsteht beim Einleiten von Chlor in eine eisgekühlte eisessigsaure Lösung von salzsaurem 2-Aminophenol (ZINCKE, KÜSTER, B. 21, 2724). — Nadeln. Die nicht ganz rein erhaltene Substanz schmolz bei 244° unter Zersetzung.
- 4-Brom-2-amino-phenol C₂H₂ONBr = H₂N·C₃H₂Br·OH. B. Beim Behandeln von 4-Brom-2-nitro-phenol (Bd. VI, S. 243) mit Zinn und Salzsäure (SCHÜTT, J. pr. [2] 32, 61), mit SnCl₃ und Salzsäure (SCHÜTPER, B. 26, 2469; Dissertation [Heidelberg 1894], S. 23). — Blättchen (sus CS₂). F: 128° (SCHÜTT). Die wäßr. Lösung wird durch Eisenchlorid tief kirschrot gefärbt (SCHÜTT). — 2C₆H₆ONBr+H₂SO₄. Blättchen (SCHÜTT).
- 4-Brom-2-amino-phenol-methyläther, 4-Brom-2-amino-anisol C₇H₂ONBr = H₂N·C₂H₃Br·O·CH₂. B. Entsteht aus 4-Brom-2-nitro-anisol (Bd. VI, S. 243) mit Zinn und Salzsaure (Staedel, A. 217, 59). Krystalle (aus Benzol). F: 97—98°. Leicht löslich in Benzol, Äther und heißem Alkohol. C₇H₂ONBr + HCl. Nadeln. Leicht und unzersetzt löslich in Alkohol. Wird von Wasser in HCl und 4-Brom-2-amino-anisol zerlegt. 2 C.H. ONBr + H SO. Nadeln (aus Alkohol). $2C_7H_9ONBr + H_9SO_4$. Nadeln (aus Alkohel). Löst sich unter Zersetzung in heißem Wasser. — Oxalat $2C_7H_9ONBr + C_9H_9O_4$. Nadeln (aus Alkohel). Fast unlöslich in kaltem Wasser.
- 4-Brom-2-amino-phenol-āthylāther, 4-Brom-2-amino-phenetol C₂H₁₀ONBr = H₂N·C₂H₂Br·O·C₂H₃. B. Aus 4-Brom-2-nitro-phenetol (Bd. VI, S. 243) mit Zinn und Salzsaure (Staeden, A. 217, 62; vgl. Reverden, Düring, B. 32, 163). Durch Erhitzen von 4-Brom-2-acetamino-phenetol (s. u.) mit Salzsaure auf dem Wasserbade (R., D., B. 32, 159). Nadeln (aus Alkohol). F: 57° (Sr.), 53° (R., D.). Leicht löslich in Alkohol, Äther und Benzol (Sr.). Mit Wasserdampf flüchtig (R., D.). Reduxiert alkoholische Silbernitratiösung nicht (R., D.). C₅H₁₀ONBr + HCl. Nadeln (aus Alkohol). Leicht löslich in Alkohol; wird durch Wasser zermetzt (Sr.) 2 C. H. ONBr + H. S.O. Nadeln Leicht löslich in Alkohol; wird durch Wasser zersetzt (Sr.). — $2 C_9 H_{10} ONBr + H_9 SO_4$. Nadeln. Leicht löslich in Alkohol; wird durch Wasser zersetzt (Sr.). — $Oxalat \ 2C_9 H_{10} ONBr + C_9 H_9 O_4$. Nadeln. Leicht löslich in Alkohol; wird durch Wasser zersetzt (Sr.). — Pikrat. Nadeln. F: 135—137° (R., D.).
- 4-Brom-2-amino-phenol-bensyläther $C_1, H_1, 0$ NBr = $H_2, N \cdot C_4, H_2, B \cdot O \cdot CH_2 \cdot C_4, H_3$. B. Aus [4-Brom-2-nitro-phenyl]-bensyläther (Bd. VI, S. 433) durch Reduktion (Höchster Farbw., D. R. P. 142899; C. 1908 II, 83). — Hydrochlorid. F: 187°.
- $\begin{tabular}{ll} \textbf{[4-Brom-9-amino-phenyl]-kohlensäure-äthylester} & $C_2H_{10}O_2NBr = H_2N\cdot C_4H_2Br\cdot O\cdot \\ \end{tabular}$ CO₃·C₄H₅. B. Das Hydrochlorid entsteht aus [4-Brom-2-nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 243) durch Zinn und Salzsäure (Urson, Am. 32, 28). — Hydrochlorid. F: 136—137° (U.). — Über die Umwandlung in [5-Brom-2-oxy-phenyl]-urethan (s. u.) vgl. STIEGLITZ, UPSON, Am. 81, 501.
- 4-Brom-2-acetamino-phenol $C_2H_2O_2NBr=CH_2\cdot CO\cdot NH\cdot C_2H_3Br:OH.$ B. Aus 4-Brom-2-amino-phenol und Essignäureanhydrid (Schütt, J. pr. [2] 32, 63). Bei der Krystallisation aus Wasser wurden Blättehen vom Schmelzpunkt 177° oder Nadeln vom Schmelzpunkt 179° erhalten. Sehr schwer löslich in Wasser; löslich in Alkalien.
- 4 Brom 2 acetamino phenol äthyläther, 4 Brom 2 acetamino phenetol C₁₈H₁₉O₂NBr = CH₂·CO·NH·C₂H₂Br·O·C₂H₅. B. Aus Acet-o-phenetidid (8: 371) durch Bromnatronlauge in Kisessig-Salzsbure (neben niedriger schmelzenden Produkten) (REVER-DIN, DÜRING, B. 32, 159). — Blättchen (aus verdünntem Alkohol). F: 1334. Ziemlich löslich in Alkohol, fast unlöslich in Wasser.
- [5-Brom-2-oxy-phenyl]-urethan $C_0H_{10}O_0NBr=C_0H_1\cdot CO_2\cdot NH\cdot C_0H_2Br\cdot OH$. B. Bei der Einw. von Wasser auf das Hydrochlorid des [4-Brom-2-amino-phenyl]-kohlensäure-äthylesters (s. o.) (Urson, Am. 32, 28; vgl. Stieglitz, Urson, Am. 31, 501). Nadeln (aus Wasser). F: 140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkohol, Äther, Chloroform; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich in Alkalien, unlöslich van Stieglitz (140—142°; löslich van Stiegl lich in Säuren (U.).
- [x-Brom-2-methoxy-phenyl]-urethan $C_{10}H_{12}O_{2}NBr = C_{2}H_{4}\cdot CO_{2}\cdot NH\cdot C_{4}H_{2}Br\cdot O\cdot CH_{2}$. B. Bei der Bromierung von [2-Methoxy-phenyl]-urethan, neben einem Produkt vom Schmelzpunkt 252° (RANSOM B. 81, 1064; Am. 28, 39). — F: 102,5°.

- [4-Chlor-6-brom-2-amino-phenyl]-kohlensäure-äthylester $C_9H_9O_3NClBr = H_2N\cdot C_9H_9ClBr\cdot O\cdot CO_2\cdot C_2H_5$. B. Das Hydrochlorid entstellt aus [4-Chlor-6-brom-2-nitro-phenyl]-kohlensäure-äthylester (Bd. VI, S. 245) durch Behandeln mit Zinn und Salzsäure (Urson, Am. 32, 32). Hydrochlorid. F. 131—132° (Zers.); konnte nicht vollkommen rein erhalten werden (U.). Über die Umwandlung in [5-Chlor-3-brom-2-oxy-phenyl]-urethan (s. u.) vgl. Stieglitz, Urson, Am. 31, 501; Ü.
- [5-Chlor-3-brom-2-oxy-phenyl]-urethan $C_0H_0O_3NClBr = C_2H_5\cdot CO_2\cdot NH\cdot C_6H_2ClBr\cdot OH$. B. Bei der Einw. von Wasser auf das Hydrochlorid des [4-Chlor-6-brom-2-aminophenyl]-kohlensäure-äthylesters (s. o.) (UPSON, Am. 32, 33; vgl. Stieglitz, UPSON, Am. 31, 501). F: 116—118°; löslich in Alkalien, unlöslich in Säuren (U.).
- 3.5-Dibrom-2-amino-phenol $C_6H_5ONBr_2=H_5N\cdot C_6H_3Br_3\cdot OH$. B. Aus 3.5-Dibrombenzochinon-(1.2)-diazid-(2) (s. 3.5-Dibrom-2-diazo-phenol; Syst. No. 2199) mit Zinnchlorür und konz. Salzsäure in Eisessig (Bamberger, Kraus, B. 39, 4249). Durch Verseifung von 3.5-Dibrom-2-amino-phenetol (s. u.) mit $AlCl_2$ (B., K.). Nadeln (aus Ligroin). F: 145°. In Ligroin und in Wasser bei Siedetemperatur leicht löslich. Leicht löslich in Alkalien, schwer in Salzsäure. Die alkoh. Lösung wird mit Eisenchlorid erst violett, dann braunrot unter Abscheidung dunkler Flocken. Hydrochlorid. Nadeln. Schmilzt nicht bei 190°. Schwer löslich in Wasser und verd. Salzsäure.
- 3.5 Dibrom 2 amino phenol äthyläther, 3.5 Dibrom 2 amino phenetol $C_8H_9ONBr_8 = H_9N\cdot C_8H_9Br_3\cdot O\cdot C_9H_5$. B. Durch Eintragen von Brom in eine essigsaure Lösung von 2-Amino-phenetol (Möhlau, Oehmichen, J. pr. [2] 24, 479). Wird zur Reinigung vorteilhaft aus Petroläther umkrystallisiert (Bamberger, Kraus, B. 39, 4251). Prismen (aus verd. Alkohol). F: 52,5°; mit Wasserdämpfen flüchtig (M., Oe.). Gibt beim Verseifen mit AlCl₃ 3.5-Dibrom-2-amino-phenol (B., K.).
- 4.6-Dibrom-2-amino-phenol C₆H₅ONBr₂ = H₂N·C₆H₂Br₂·OH. B. Durch Reduktion von 4.6-Dibrom-2-nitro-phenol (Bd. VI, S. 246) mit Zinn und Salzsäure (Hölz, J. pr. [2] 32, 69), mit salzsaurem Zinnchlorür in Eisessiglösung (Thiele, Eichwede, A. 311, 373). Hellgelbe Nadeln (aus verd. Alkohol). F: 91—92° (H.), 99° (Th., El.). Leicht löslich in Alkohol, Äther, Chloroform und Benzol, schwer in Wasser (H.). Hydrochlorid. Blättchen (H.). Hydrobromid. Nadeln (H.). 2C₆H₅ONBr₂ + H₂SO₄. Blättchen (aus Wasser) (Th., El.).
- 4.6 Dibrom 2 amino phenol methyläther, 4.6 Dibrom 2 amino anisol $C_7H_7ONBr_3=H_8N\cdot C_6H_3Br_3\cdot O\cdot CH_3$. B. Aus 4.6-Dibrom-2-nitro-anisol (Bd. VI, S. 246) mit Zinn und Salzsäure (Staedel, A. 217, 63). In der Kälte nicht erstarrendes Öl. Löslich in Alkohol und Äther. $C_7H_7ONBr_3+HCl$. Nadeln. Ziemlich leicht und unzersetzt löslich in Alkohol. $2C_7H_7ONBr_3+H_3SO_4$. Nadeln (aus verd. Alkohol). Schmilzt unter Zersetzung bei 177°. Unzersetzt löslich in Alkohol. Oxalat $2C_7H_7ONBr_3+C_3H_3O_4$. Nadeln oder Blättchen. Schmilzt unter Zersetzung bei 147—148°. Wird von Wasser zerlegt.
- 4.6 Dibrom 2 amino phenol äthyläther, 4.6 Dibrom 2 amino phenetol $C_8H_9ONBr_8 = H_4N \cdot C_9H_2Br_3 \cdot O \cdot C_2H_3$. B. Aus 4.6-Dibrom-2-nitro-phenetol (Bd. VI, S. 246) mit Zinn und Salzsäure (STAEDEL, A. 217, 65). Krystalle (aus Alkohol). F: 92°. Leicht löslich in Alkohol und Äther. $C_8H_9ONBr_2 + HCl$. Nadeln. Leicht löslich in Alkohol. Wird durch Wasser zersetzt. $2C_9H_9ONBr_2 + H_2SO_4$. Nadeln. Leicht löslich in Alkohol. Oxalat $2C_9H_9ONBr_2 + C_9H_9O_4$. Nadeln. Leicht löslich in Alkohol.
- 4.6-Dibrom-2-acetamino-phenol C₈H₇O₂NBr₂ = CH₃·CO·NH·C₆H₂Br₂·OH. B. Aus 4.6-Dibrom-2-amino-phenol und Essigsäureanhydrid (Hölle, J. pr. [2] 32, 69). Gelbliche Nadeln (aus Wasser). F: 186°. Leicht löslich in Alkohol, Äther, Benzol; leicht löslich in Alkalien.
- x.x-Dibrom-2-amino-phenol $C_0H_0ONBr_2 = H_2N \cdot C_0H_2Br_2 \cdot OH$. B. Man bereitet aus der kalten wäßrigen Lösung von Benzoxazolon (Syst. No. 4278) durch überschüssiges Bromwasser ein x.x-Dibrom-benzoxazolon-(2) $Br_2C_0H_2 < O > CO$ (Jacoby, J. pr. [2] 37, 51) und kocht dieses mit 5—100/aiger Kalilauge (Van Dam, R. 18, 415). F: 1400 (v. D.).
- 3.4.5- oder 3.5.6-Tribrom-2-amino-phenol-äthyläther, 3.4.5- oder 3.5.6-Tribrom-2-amino-phenetol C₂H₂ONBr₃ = H₂N·C₆HBr₅·O·C₂H₅. B. Durch Eintragen von 17,5 Tln. Brom in eine kochende Lösung von 5 Tln. 2-Amino-phenetol in 50 Tln. Eisessig (Möhlau, Oermichen, J. pr. [2] 24, 480). Nadeln (aus verd. Alkohol). F: 77°. Zersetzt sich beim Destillieren. In konz. Salzsäure äußerst sohwer löslich.

- 5-Jod-2-acetamino-phenol-methyläther, 5-Jod-2-acetamino-anisol $C_2H_{10}O_2NI=CH_3\cdot CO\cdot NH\cdot C_0H_3I\cdot O\cdot CH_3$. B. Man reduziert 5-Nitro-2-acetamino-anisol (8. 390) mit Risenstaub und wenig Essigsäure in heißem Wasser und ersetzt in dem entstehenden Amin die Aminogruppe nach ihrer Diazotierung durch Jod (Meldolla, Chem. N. 78, 315). — Tafain. F: 175—176⁵.
 - b) Nitroso- und Nitro-Derivate des 2-Amino-phenols.
- 5-Nitroso-2-amino-phenol-methyläther, 5-Nitroso-2-amino-anisol $C_7H_6O_8N_8=H_8N\cdot C_9H_8(NO)\cdot 0\cdot CH_8$ beaw, sein N-Methylderivat $C_9H_{10}O_2N_8=CH_3\cdot NH\cdot C_9H_8(NO)\cdot 0\cdot CH_8$ sind desmotrop mit 2-Methoxy-benzochinon-(1.4)-imid-(1)-oxim-(4) HN: $C_9H_8(:N\cdot OH)\cdot 0\cdot CH_8$ bezw. seinem N-Methylderivat CH₂·N:C₂H₂(:N·OH)·O·CH₂, Bd. VIII, S. 237
- 8-Nitro-2-amino-phenol-methyläther, 8-Nitro-2-amino-anisol $C_1H_2O_2N_2=H_2N$. C₂H₃(NO₂)·O·CH₂. B. Aus 2.3-Dinitro-anisol (Bd. VI, S. 251) und alkoh. Ammoniak bei 190° (BANTLIN, B. 11, 2106), bei 150° (BLANKSMA, C. 1908 II, 1826). — Gelbe Nadeln. F: 76° (BA.; Bt.,). — Wird durch Diazotierung und Behandlung der Diazoniumsalzlösung mit Kaliumkupfercyanürlösung in Methyläther-6-nitro-salicylsäure-nitril (Bd. X, S. 120) verwandelt (Bl.).
- 3-Nitro-2-amino-phenol-äthyläther, 3-Nitro-2-amino-phenetol C₂H₁₀O₂N₂ = H₂N·C₂H₃(NO₂)·O·C₂H₃. B. Aus 2.3-Dinitro-phenetol (Bd. VI, S. 251) und alkoh. Ammoniak bei 150⁶ (Blanksma, C. 1908 II, 1826). Gelbe Krystalle (aus Wasser). F: 49⁶. Wird durch Diazotierung und Behandlung der Diazoniumsalzlösung mit Kaliumkupferoyanürlösung in Kaliumkupferoyanürlösung in Athylather-6-nitro-salicylsaure-nitril (Bd. X, S. 120) verwandelt.
- 3-Nitro-2-methylamino-phenol-methyläther, 3-Nitro-2-methylamino-anisol $C_8H_{10}O_2N_2=CH_2\cdot NH\cdot C_4H_2(NO_2)\cdot O\cdot CH_2$. B. Aus 2.3-Dinitro-anisol und alkoh. Methylamin bei 120° (BL., C. 1908 II, 1826). Dunkelrote Nadeln. F: 58°. Leicht löslich in Alkohol. - Gibt bei der Nitrierung 3.5-Dinitro-2-methylnitramino-anisol (S. 394).
- 8-Nitro-2-methylamino-phenol-äthyläther, 8-Nitro-2-methylamino-phenetol $C_0H_{12}O_2N_2=CH_2\cdot NH\cdot C_0H_2(NO_2)\cdot O\cdot C_2H_3$. B. Aus 2.3-Dinitro-phenetol und alkoh. Methylamin bei 120° (Br., C. 1908 II, 1826). Dunkelrote Krystalle (aus Alkohol). F: 59°. Gibt bei der Nitrierung 3.5-Dinitro-2-methylnitramino-phenetol (S. 394).
- 8 Nitro 2 acetamino phenol methyläther, 8 Nitro 2 acetamino anisol $C_0H_{10}O_4N_3=CH_3\cdot CO\cdot NH\cdot C_0H_3(NO_3)\cdot O\cdot CH_3$. B. Aus 3-Nitro-2-amino-anisol mit Essigsaureanhydrid und etwas konz. Schwefelsäure (BL., C. 1908 II, 1826). — Krystalle (aus verd. Alkohol). F: 128".
- 8 Nitro 2 acetamino phenol äthyläther, 8 Nitro 2 acetamino phenetol $C_{10}H_{10}O_4N_8 = CH_8 \cdot CO \cdot NH \cdot C_0H_6(NO_2) \cdot O \cdot C_2H_6$. B. Aus 3-Nitro-2-amino-phenetol durch 3-stdg. Kochen mit Essigsäureanhydrid (BL., C. 1908 II, 1826). — Krystalle (aus Petroläther). F: 64°.
- 4-Nitro-2-amino-phenol $C_0H_0O_0N_2=H_0N\cdot C_0H_0(NO_0)\cdot OH$. B. Bei der Reduktion von 2.4-Dinitro-phenol (Bd. VI, S. 251) mit Schwefelammonium (LAURENT, GERHARDT, A. 75, 68; POST, STUCKENBERG, A. 205, 72; AUWEBS, RÖHRIG, B. 30, 995). Durch elektrolytische Reduktion von 2.4-Dinitro-phenol in Gegenwart von Vanadiumverbindungen (HOFER, JAKOB, B. 41 3196). Entsteht neben 2-Nitro-4-amino-phenol bei der Einw. von Schwefelsaure auf 3-Nitro-1-azido-benzol (Bd. V, S. 278) (Kehrmann, Idzkowska, B. 32, 1066). — Orangefarbene Prismen. Die Krystalle enthalten 1 Mol. Krystallwasser (L., G.). Dieses wird beim Trocknen im Exsiccator über Schwefelsaure abgegeben (P., Sr.). Schmilzt Dieses wird beim Trocknen im Exsiccator über Schwefelsäure abgegeben (P., St.). Schmilzt wasserhaltig bei 80—90°, wasserfrei bei 142—143° (P., St.). Schwer löslich in kaltem Wasser, sehr leicht in Alkohol und Äther (L., G.; P., St.). Elektrolytische Dissoziationskonstante k bei 25°: 0,26×10⁻⁶ (BADER, Ph. Ch. 6, 300). — Beim Erhitzen mit Natronlauge und Natriumthiosulfat auf 160° entsteht ein krystallisierter schwarzer Schwefelfarbstoff (Chem. Fabr. Sandoz, D. R. P. 136016; C. 1902 II, 1287). Liefert beim Kochen mit Phenanthrenchinon in Benzol die farblose Pseudoform des Nitrophenanthrophenazoxoniumhydroxyds C₂₆H₁₂O₄N₂ (F: 234—225°) (Syst. No. 4204) (Kehrmann, Winkelmann, B. 40, 618; vgl. Hantzsch, B. 39, 158). Verwendung zur Darstellung von Azofarbstoffen: Chem. Fabr. Sandoz; D. R. P. 175625; C. 1906 II, 1748; Bad. Anilin- u. Sodaf., D. R. P. 120980, 122894; C. 1901 II, 519, 520. Der aus diszotiertem 4-Nitro-2-amino-phenol und m-Toluylendiamin erhältliche Azofarbstoff gibt beim Erhitzen mit Schwefel und Alkalisulfid zunächst auf erhältliche Azofarbstoff gibt beim Erhitzen mit Schwefel und Alkalisulfid zunächst auf 160°, dann auf 200—205° einen braunen, direkt färbenden Baumwollfarbstoff (Akt.-Ges. f. Anilinf., D. R. P. 120833; C. 1901 I, 1255). — 4-Nitro-2-amino-phenol schmeckt intensiv süß (Kehrmann, Gauhe, B. 80, 2132). — $KC_6H_6O_2N_2 + C_6H_6O_3N_2$. Tiefrote Krystall-

warzen. Sehr leicht löslich in Wasser und Alkohol (L., G.). — $AgC_6H_5O_3N_2 + C_6H_6O_3N_2$. Gelbbraune Blättchen (L., G.).

4-Nitro-2-amino-phenol-methyläther, 4-Nitro-2-amino-anisol C₇H₈O₂N₂ = H₂N·C₈H₈(NO₂)·O·CH₃. B. Aus 2.4-Dinitro-anisol (Bd. VI, S. 254) mit alkoholischem Schwefelammonium (Cahours, A. ch. [3] 27, 445; A. 74, 301; Vermeulen, R. 25, 17) oder mit methylalkoholischem Na₂S₂ (Blanksma, C. 1908 II, 1826; R. 28, 111). Durch Verseisen des 4-Nitro-2-acetamino-anisols (Fabr. de Thann et Mulhouse, D. R. P. 98637; C. 1898 II, 951; Freyss, C. 1901 I, 739). — Rote Nadeln (aus Alkohol oder Äther). F: 118° (Meldola, Woolgott, Wray, Soc. 69, 1330; Ve.), 117—118° (Fabr. de Th. et M.), 116,5—117,5° (Freyss). Erstarrt bei 116,2° (Ve.). D^{185,0}: 1,2068 (Ve.). Sehr leicht löslich in Aceton, leicht in Eisessig, Essigester, Alkohol und siedendem Benzol, sehr wenig in Ligroin (Ve.). — Läßt sich durch Diazotierung in absol. Alkohol und nachfolgendes Erwärmen in 4-Nitro-anisol überführen (Ve.). Überführung in 2-Chlor-4-nitro-anisol: Freyss, in 2-Jod-4-nitro-anisol: Meldola, Eyre, Chem. N. 83, 286. Gibt, diazotiert und mit CuCN behandelt, Methyläther-5-nitro-salicylsäure-nitril (Bd. X., S. 119) (Bl., C. 1908 II, 1827). — C₇H₈O₃N₂ + HGl. Nadeln. Leicht löslich in siedendem Wasser, schwer in kaltem (C.). — C₇H₈O₃N₂ + HBr. Nadeln (C.). — 2 C₇H₈O₃N₂ + HBr. Nadeln (C.). — 2 C₇H₈O₃N₂ + H2 Cl. + PtCl₄. Orangebraune Nadeln (C.).

4-Nitro-2-amino-phenol-äthyläther, 4-Nitro-2-amino-phenetol C₈H₁₀O₃N₂ = H₂N·C₆H₃(NO₂)·O·C₂H₅. B. Aus 2.4-Dinitro-phenetol (Bd. VI, S. 254) durch partielle Reduktion mit alkoh. Na₂S₂ oder Schwefelammonium (Blankema, C. 1908 II, 1826; R. 28, 111). Beim Erwärmen von 5.5'-Dinitro-2.2'-diāthoxy-hydrazobenzol (Syst. No. 2078) mit konz. Salzsäure auf dem Wasserbade, neben 5.5'-Dinitro-2.2'-diāthoxy-azobenzol (Syst. No. 2112) (Andreae, J. pr. [2] 21, 327). Beim Verseifen von 4-Nitro-2-acetamino-phenetol (s. u.) (Reverdin, Düring, B. 32, 164). — Gelbe Nadeln (aus verd. Alkohol). F: 96—97° (A.), 97° (R., D.), 99° (B.). Schwer löslich in Wasser, äußerst leicht in absol. Alkohol (A.). — Durch Diazotieren des salzsauren Salzes in absol. Alkohol und Verkochen der Diazoverbindung mit Alkohol wird 4-Nitro-phenetol (Bd. VI, S. 231) gebildet (A.). Gibt beim Austausch von NH₂ gegen CN nach dem Sandmeyerschen Verfahren Äthyläther-5-nitro-salicylsäure-nitril (Bd. X, S. 119) (B., C. 1908 II, 1826). — C₈H₁₀O₃N₂ + HCl. Gelbe Prismen. Schwer löslich in kalter konzentrierter Salzsäure (A.).

Trimethyl-[5-nitro-2-oxy-phenyl]-ammoniumhydroxyd $C_0H_{14}O_4N_2=(CH_3)_8N(OH)\cdot C_4H_3(NO_2)\cdot OH$. B. Das Jodid entsteht durch Behandeln von 1 Mol.-Gew. 4-Nitro-2-aminophenol in Methylalkohol mit 3 Mol.-Gew. Methyljodid und konz. Kalilauge, ganz wie bei Trimethyl-[2-oxy-phenyl]-ammoniumhydroxyd (S. 363) (GRIESS, B. 13, 647). — Fügt man zur kochend gesättigten wäßr. Lösung des Jodios Kalilauge, so krystallisiert beim Erkalten das betainartige Anhydrid $C_9H_{12}O_3N_2$ (s. u.) aus. — Salze $C_9H_{13}O_3N_3\cdot Cl+H_2O$. Säulen oder Prismen. — $C_9H_{13}O_3N_2\cdot Cl+H_2O$. Nadeln. Ziemlich leicht löslich in heißem Wasser, schwer in kaltem. — $2C_9H_{13}O_3N_2\cdot Cl+PtCl_4+6H_2O$. Hellgelbe Nadeln oder Blättchen. Schwer löslich in kochendem Wasser, fast unlöslich in Alkohol.

Betainartiges Anhydrid des Trimethyl-[5-nitro-2-oxy-phenyl]-ammoniumhydroxyds $C_9H_{12}O_3N_2=(CH_3)_3N\cdot C_6H_3(NO_2)\cdot O$. B. s. im vorangehenden Artikel. — Gelbe, bitter schmeckende Nadeln oder Tafeln (aus Wasser); schmilzt bei 200° noch nicht; verkohlt bei stärkerem Erhitzen; schwer löslich in kaltem Wasser und kaltem Alkohol, unlöslich in Äther, Benzol; zeigt keine Reaktion gegen Pflanzenfarbstoffe; verbindet sich mit Säuren zu Trimethyl-[5-nitro-2-oxy-phenyl]-ammoniumsalzen (s. o.) (GRIESS, B. 13, 647).

- 4 Nitro 2 acetamino phenol methyläther, 4 Nitro 2 acetamino anisol $C_9H_{10}O_4N_9=CH_3\cdot CO\cdot NH\cdot C_6H_3(NO_2)\cdot O\cdot CH_3$. B. Entsteht neben 5-Nitro-2-acetamino-anisol beim Lösen von Acet-o-anisidid in Salpetersäure von 38—45° Bé (Freyss, C. 1901 I, 738; vgl. auch Fabr. de Thann et Mulhouse, D. R. P. 98637; C. 1898 II, 950; Meldola, Eyre, Chem. N. 83, 286). Entsteht ausschließlich beim Nitrieren von Acet-o-anisidid in Schwefelsäure mit 1 Mol.-Gew. Salpetersäure (Freyss). Beim Verreiben von 4-Nitro-2-amino-anisol mit wenig Eisessig und einem kleinen Überschuß von Essigsäure-anhydrid (Vermeulen, R. 25, 18). Nadeln (aus Wasser). F: 174—175° (Meldola, Woolcott, Wray, Soc. 69, 1330; Ve.), 175—176° (Freyss, Bull. Soc. ind. Mulhouse 70, 376). Schwer löslich in Benzol und Wasser, unlöslich in Ligroin (Ve.).
- 4 Nitro 2 acetamino phenol äthyläther, 4 Nitro 2 acetamino phenetol $C_{10}H_{12}O_4N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(NO_2) \cdot O \cdot C_2H_5$. B. Aus 10 g Acet-o-phenetidid in 40 g Schwefelsäure (66° Bé) und 10 g Eisessig durch ein Gemisch von 8,4 g Salpetersäure (40° Bé) und 16,8 g Schwefelsäure (66° Bé) bei 0° (Reverdin, Düring, B. 32, 164). Gelbe Nadeln (aus Alkohol). F: 196° (R., D.), 199° (BLANKSMA, R. 28, 111). Gibt bei weiterem Nitrieren 4.5-Dinitro-2-acetamino-phenetol (B.).

- 4-Nitro-2-bensamino-phenol C₁₃H₁₀O₄N₂ = C₆H₅·CO·NH·C₆H₆(NO₂)·OH. B. Aus 4-Nitro-2-amino-phenol und Benzoylchlorid (Post, Stuckenberg, A. 205, 73). Nadeln (aus Anilin). Zersetzt sich oberhalb 200°, ohne zu schmelzen. Schwer löslich in Alkohol und Eisessig, leicht in Anilin.
- 4 Nitro 2 bensamino phenol methyläther, 4 Nitro 2 bensamino anisol $C_{14}H_{19}O_4N_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_2(NO_8)\cdot O\cdot CH_3$. B. Aus 4-Nitro-2-amino-anisol und Bensoylchlorid (Cahours, A. ch. [3] 27, 450; A. 74, 305). Ockergelbe Nadeln (aus Alkohol). F: 160° bis 161° (Meldolla, Eyre, Chem. N. 83, 286). Kaum löslich in kaltem Alkohol und Äther, ziemlich reichlich in kochendem Alkohol (C.).
- 4-Nitro-2-cinnamoylamino-phenol-methyläther, 4-Nitro-2-cinnamoylamino-anisol $C_{16}H_{14}O_4N_2=C_6H_5\cdot CH\cdot CH\cdot CO\cdot NH\cdot C_6H_8(NO_2)\cdot O\cdot CH_8$. B. Aus 4-Nitro-2-amino-anisol und Cinnamoylchlorid (Cahours, A. ch. [3] 27, 452; A. 74, 306). Gelbliche Nadeln (aus Alkohol). Wenig löslich in kaltem Alkohol.
- 5-Nitro-2-amino-phenol $C_4H_6O_5N_2=H_2N\cdot C_4H_5(NO_2)\cdot OH$. B. Beim Erwärmen von p-Nitro-diazobenzolimid (Bd. V, S. 278) mit verd. Schwefelsäure (2 Vol. H_2SO_4+1 Vol. Wasser) (FRIEDLÄNDER, ZEITLIN, B. 27, 196). Durch Lösen von O.N-Diacetyl-[5-nitro-2amino-phenol] (S. 391) in Natronlauge und kurzes Kochen der Lösung (MELDOLA, WOOL-COTT, WRAY, Soc. 69, 1325). Aus 2-Methyl-benzoxazol (Syst. No. 4195) durch Nitrieren in schwefelsaurer Lösung und Aufspaltung des dabei entstehenden Nitro-methyl-benzoxazols, durch Erwärmen mit konz. Salzsäure auf dem Wasserbade (Akt.-Ges. f. Anilinf., D. R. P. 165650; C. 1906 I, 516). — Hellbraune Nadeln (aus Wasser, Alkohol oder Essigsäure). F: 201° bis 202° (F., Z.,; M., Wo., Wr.). — Läßt sich in 6-Jod-3-nitro-phenol überführen (MELDOLA, EYRE, Chem. N. 83, 286). Gibt beim Kochen mit Phenanthrenchinon in Isoamylalkohol die farblose Pseudoform des Nitrophenanthrophenazoxoniumhydroxyds C₂₀H₁₂O₄N₂ (F: 220°) (Syst. No. 4204) (Kehrmann, Winkelmann, B. 40, 620; vgl. Hantzsch, B. 39, 168). Verwendung zur Herstellung von Azofarbstoffen: A.-G. f. A., D. R. P. 167143, 167933; C. 1906 I, 723, 1124; Höchster Farbw., D. R. P. 184689, 188819; C. 1907 II, 764, 1571.
- 5-Nitro-2-amino-phenol-methyläther, 5-Nitro-2-amino-anisol $C_7H_2O_2N_2=H_2N$. $C_6H_3(NO_2)\cdot O\cdot CH_3$. B. Aus 2.5-Dinitro-anisol mit Schwefelammonium (Vermeulen, R. 25, 18). Man nitriert Acet-o-anisidid, verseift die entstandenen Nitroprodukte durch Kochen mit Alkali und löst das Gemisch der Nitroaminoanisole in heißer verdünnter Schwefelsäure; beim Erkalten krystallisiert das Sulfat des 5-Nitro-2-amino-anisols aus, während das Sulfat des 4-Nitro-2-amino-anisols gelöst bleibt (Fabr. de Thann et Mulhouse, D. R. P. 98637; C. 1898 II, 951; Freyss, C. 1901 I, 739; Meldola, Eyre, Chem. N. 83, 286). — Heligelbe Nädelchen. F: 139—140° (Fa. de Th. et M.; Fa.; Ve.). Dieno: 1,2112 (Ve.). — Gibt bei der Reduktion ein p-Diamin vom Schmelzpunkt 220° (Fa.). Durch Kochen mit wäßr. Kalilauge entsteht 4-Nitro-brenzcatechin-2-methyläther (5-Nitro-guajacol) (Bd. VI, S. 788) (Fr., Ö. 1901 I, 739; Fr., Privatmitteilung). Läßt sich in 6-Jod-3-nitro-anisol überführen (MELDOLA, EYRE). — Verwendung zur Darstellung von Azofarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 169826; C. 1906 I, 1810. Über Verwendung zur Herstellung eines Azofarbstoffes auf der Faser vgl. Schultz, Tab. No. 98.
- 5-Nitro-2-amino-phenol- $C_1H_{10}O_2N_2 = 5$ H₂N·C₆H₃(NO₂)·O·C₂H₅. B. Aus 5-Nitro-2-acetamino-phenetol durch Verseifung mit konz. Salzsäure (Reverdin, Düring, B. 32, 164). Durch Erhitzen von 5-Nitro-2-anisalaminophenol (s. u.) mit Natrium und Äthylbromid in absol. Alkohol (JACOBSON, HÖNIGSBERGER, B. 36, 4124). — Gelbe Nadeln (aus verd. Alkohol). F: 90° (R., D.), 91° (J., H.). Leicht löslich in Alkohol, Ather, Aceton, schwer in Ligroin (R., D.). Bildet ein schwer lösliches, beim Erhitzen wenig beständiges Sulfat (R., D.).
- 5-Nitro-2-dimethylamino-phenol-methyläther, 5-Nitro-2-dimethylamino-anisol $C_0H_{13}O_3N_2=(CH_3)_2N\cdot C_0H_3(NO_2)\cdot O\cdot CH_3$. B. Man trägt 3,2 Tle. NaNO₂ (gelöst in 60 Tln. Wasser) in die Lösung von 1 Tl. Dimethyl-o-anisidin in 2 Tln. Schwefelsäure und 10 Tln. Wasser ein (GRIMAUX, LEFEVRE, Bl. [3] 6, 416). Citronengelbe Nadeln. F: 99°. Sehr schwer löslich in kaltem, leicht in siedendem Alkohol.
- 5-Nitro-2-anisalamino-phenol $C_{14}H_{18}O_4N_8=CH_2\cdot O\cdot C_4H_4\cdot CH:N\cdot C_4H_6(NO_4)\cdot OH.$ B. Durch Erhitzen äquimolekularer Mengen Anisaldehyd und 5-Nitro-2-amino-phenol (Jacobson, HÖNIGSBERGER, B. 36, 4124). — Gelbe Tafeln (aus Benzol). F: 160—161°. Ziemlich leicht löslich in Benzol, unlöslich in Ligroin. Löslich in Alkalien, die Lösung bleibt auf Zusatz von Säuren klar. — Geht beim Erhitzen mit Natrium und Athylbromid in absolut-alkoholischer Lösung in 5-Nitro-2-amino-phenetol (s. o.) über.
- 5 Nitro 2 acetamino phenol methyläther, 5 Nitro 2 acetamino anisol $C_9H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_9H_3(NO_9)\cdot O\cdot CH_3$. B. Entsteht neben 4-Nitro-2-acetamino-anisol beim Nitrieren von Acet-o-anisidid mit Salpetersäure von 38—45° Bé (Fabr. de Thann

- et Mulhouse, D. R. P. 98637; C. 1898 II, 950; Freyss, C. 1901 I, 738; Meldola, Eyre, Chem. N. 83, 286). Aus 5-Nitro-2-amino-anisol in Eisessig mittels Essignaureanhydrid (Vermeulen, R. 25, 19). Hellgelbe Krystalle (aus Essignaureanhydrid et Mulhouse; Meldola, Chem. N. 78, 315; Fr.; Ve.). Löslich in siedendem Benzol, unlöslich in Ligroin (Ve.).
- 5-Nitro-2-acetamino-phenol-äthyläther, 5-Nitro-2-acetamino-phenetol $C_{10}H_{12}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H_3(NO_3)\cdot O\cdot C_9H_5$. B. Aus Acet-o-phenetidid durch Salpetersäure (41° Bé) bei 25—40°, neben anderen Produkten (Reverdin, Düring, B. 32, 164). Gelbe Nadeln. F: 165°. Löslich in Alkohol.
- [5-Nitro-2-acetamino-phenyl]-acetat, O.N-Diacetyl-[5-nitro-2-amino-phenol] $C_{10}H_{10}O_5N_2=CH_3\cdot CO\cdot NH\cdot C_6H_3(NO_3)\cdot O\cdot CO\cdot CH_3$. B. Bei 3-stdg. Stehen einer gut gekühlten Lösung des O.N-Diacetyl-[2-amino-phenols] (S. 371) in konz. Salpetersäure (D: 1,42) unter Zusatz von etwas rauchender Salpetersäure (Meldola, Woolcott, Wray, Soc. 69, 1325). Nädelchen (aus Wasser). F: 187°. Löst sich leicht in kalter Natronlauge unter Abspaltung der einen Acetylgruppe; bei kurzem Kochen wird auch die zweite Acetylgruppe abgespalten.
- 5 Nitro 2 benzamino phenol methyläther, 5 Nitro 2 benzamino anisol $C_{14}H_{13}O_4N_2=C_6H_5\cdot CO\cdot NH\cdot C_6H_3(NO_2)\cdot O\cdot CH_3$. B. Durch Benzoylierung des 5-Nitro-2-amino-anisols (Meldola, Efre, Chem. N. 83, 286). Nadeln (aus Alkohol). F: 149—150°.
- [4-Nitro-2-oxy-phenyl]-harnstoff $C_2H_2O_4N_3=H_2N\cdot CO\cdot NH\cdot C_4H_2(NO_2)\cdot OH^4$). B. Durch 1-stdg. Kochen der Verbindung $C_{10}H_2O_2N_3$ der Formel I ¹) (Syst. No. 4588) [erhalten bei der Einw. von salpetriger Säure auf Oxalsäure-äthyleeter-anilidoxim (Bd. XII, S. 287)] mit der 6 Mol.-Gew. Alkali entsprechenden Menge n/10-Alkalilauge (Jowitschittsch, B. 39, 3825). Durch 1-stdg. Kochen der Verbindung $C_2H_2O_2N_3$ der Formel II ¹) (Syst. No. 4491) (erhalten aus der Verbindung $C_{10}H_2O_2N_3$ durch Einw. der 2 Mol.-Gew. Alkali entsprechenden

$$I. \xrightarrow[O_2N]{NH} \underbrace{C \cdot CO_2 \cdot C_2H_6}_{NH} \qquad II. \underbrace{O_2N \cdot \bigcirc NH}_{O_2N} \qquad III. \underbrace{O_2N \cdot \bigcirc -NH}_{O_2N} co$$

Menge n ₁₀-Alkalilauge bei gewöhnlicher Temperatur) mit der 4 Mol.-Gew. entsprechenden Menge n ₁₀-Alkalilauge (J.). — Goldgelbe Schuppen. F: 205°. Ziemlich leicht löslich in Alkohol, fast unlöslich in Äther, kaltem Wasser, Säuren; löslich mit roter Farbe in Alkalien. Die Alkalisalze sind sehr leicht löslich in Wasser. — Gibt beim Kochen mit Mineralsäure das bei 244° schmelzende Nitrobenzoxazolon der Formel III ¹) (Syst. No. 4278). — Silbersalz. Rotbraun.

- 5-Nitro-2-benzolsulfamino-phenol-methyläther, 5-Nitro-2-benzolsulfamino-anisol, Benzolsulfonsäure-[4-nitro-2-methoxy-anilid] $C_{19}H_{19}O_{5}N_{2}S=C_{6}H_{5}\cdot SO_{5}\cdot NH\cdot C_{6}H_{3}(NO_{5})\cdot O\cdot CH_{5}$. Man erhitzt Benzolsulfonsäure-o-anisidid (S. 382) mit verdünnter wäßriger Salpetersäure (Akt.-Ges. f. Anilinf., D. R. P. 157859; C. 1905 I, 415). Gelbe Blättchen. F: 181°.
- 5-Nitro-2-p-toluolsulfamino-phenol-methyläther, 5-Nitro-2-p-toluolsulfamino-anisol, p-Toluolsulfonsäure-[4-nitro-2-methoxy-anilid] $C_{14}H_1eO_2N_2S = CH_2\cdot C_eH_4\cdot SO_2\cdot NH\cdot C_eH_2(NO_2)\cdot O\cdot CH_2$. B. Aus p-Toluolsulfonsäure-o-anisidid durch Erhitzen mit verdünnter wäßriger Salpetersäure (Akt.-Ges. f. Anilinf., D. R. P. 157859; C. 1905 I, 415) oder durch Lösen in Risessig und Erhitzen mit verdünnter wäßriger Salpetersäure (A.-G. f. A., D. R. P. 163516; C. 1905 II, 1207). Gelbe Prismen. F: 175°.
- 5-Nitro-2-methylnitrosamino-phenol-methyläther, 5-Nitro-2-methylnitrosamino-anisol, [4-Nitro-2-methoxy-phenyl]-methyl-nitrosamin $C_8H_9O_4N_8=CH_3$ ·N(NO)· $C_6H_8(NO_8)$ ·O· CH_2 . B. Aus Methyl-o-anisidin oder N-Nitroso-N-methyl-o-anisidin und überschüssiger salpetriger Saure (Best, A. 255, 181). Nadeln (aus verd. Alkohol). F: 138°. Löslich in Alkohol, schwerer löslich in Ather.
- 5-Nitro-2-äthylnitrosamino-phenol-äthyläther, 5-Nitro-2-äthylnitrosamino-phenetol, [4-Nitro-2-äthoxy-phenyl]-äthyl-nitrosamin $C_{10}H_{13}O_4N_5 = C_2H_5 \cdot N(NO) \cdot C_4H_3(NO_2) \cdot O \cdot C_2H_5 \cdot B$. Beim Einleiten von salpetriger Saure in eine Lösung von salzsaurem Äthyl-o-phenetidin in absol. Alkohol (Förster, J. pr. [2] 21, 354). Gelbliche Säulen. Sehr leicht löslich in Äther, leicht in Alkohol. Verbindet sich nicht mit Säuren oder Basen.
- 6-Nitro-2-amino-phenol C₂H₂O₃N₂ =: H₂N·C₂H₃(NO₃)·OH. B. Aus 2.6-Dinitrophenol (Bd. VI, S. 257) und Schwefelammonium (Post, Stuckenberg, A. 205, 85). Rote Nadeln (aus wäßr. Alkohol). F: 110—111°. Sehr schwer löslich in kaltem Wasser, leicht

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von SEMPER, LICHTENSTADT, A. 400 [1913], 302.

löslich in Alkohol, sehr leicht in Eisessig, Ather, Benzol, Chloroform. — 2CaHaO2N2+H2SO4. Farblose Blättchen.

- 6-Chlor-4-nitro-2-amino-phenol $C_0H_5O_8N_3Cl=H_2N\cdot C_0H_2Cl(NO_2)\cdot OH$. B. Aus 6-Chlor-2.4-dinitro-phenol (Bd. VI, S. 259) mit Schwefelammonium (Griess, A. 109, 291; Faust, Z. 1871, 339; Faust, Müller, A. 173, 315). Messinggelbe Nadeln (aus Wasser). Enthält, bei gewöhnlicher Temperatur getrocknet, 1H₂O, das bei 100° entweicht, wobei die Verbindung scharlachrot wird (G.). F: ca. 160°; schwer löslich in heißem Wasser, sehr leicht in Alkohol und Äther (G.). — Das salzsaure (F.) und das schwefelsaure (F., M.) Salz färben die Haut braun. Geschmack süßlich, danach bitter (G.). — NH₄C₄H₄O₃N₅Cl. Gelbrote Krystalle (G.). — Ba(C₄H₄O₃N₂Cl)₂ + 4H₂O. Schwarze Nadeln. Leicht löslich in Wasser (F.; F., M.). — Pb(C₅H₄O₃N₂Cl)₂ (bei 100°). Rotbrauner Niederschlag (G.). — C₆H₅O₃N₂Cl + HCl. Gelbliche Nadeln. Leicht löslich in Wasser (F.; F., M.). — 2C₆H₅O₃N₂Cl + H₂SO₄. Gelbliche Blätter (F.; F. M.).
- 4-Chlor-5-nitro-2-amino-phenol $C_6H_5O_3N_2Cl = H_2N \cdot C_6H_2Cl(NO_2) \cdot OH$. B. Aus dem durch Einw. von Phosgen auf 4-Chlor-2-amino-phenol entstehenden 5-Chlor-benzoxazolon-(2) >CO (Syst. No. 4278), durch Nitrieren und nachfolgende Verseifung mit Calciumhydroxyd oder Soda (Höchster Farbw., D. R. P. 184689; C. 1907 II, 764). Aus 5-Chlor-6-nitro-2-methyl-benzoxazol (Syst. No. 4195) durch Mineralsauren (BAYER & Co., D. R. P. 186655; C. 1907 II, 1132). Neben 4-Chlor-6-nitro-2-amino-phenol (s. u.) beim Nitrieren von 4-Chlor-2-amino-phenol (B. & Co.). — Gelbe Nadeln. Färbt sich bei 200° dunkel und schmilzt gegen 225° unter Gasentwicklung (B. & Co.). Schwer löslich in heißem Wasser mit gelber Farbe (H. F., D. R. P. 184689), leicht löslich in Alkohol (B. & Co.). Löslich in verd. Alkalien mit tief rotbrauner Farbe (H. F., D. R. P. 184689). — Gibt mit Salzsaure und Nitrit eine schwer lösliche Diazoverbindung (H. F., D. R. P. 184689). — Verwendung zur Darstellung von Azofarbstoffen: H. F., D. R. P. 184689, 188819; C. 1907 II, 764, 1571; B. & Co.
- 4-Chlor-5-nitro-2-amino-phenol-methyläther, 4-Chlor-5-nitro-2-amino-anisol $C_7H_7O_3N_3C1 = H_3N \cdot C_6H_3C1(NO_3) \cdot O \cdot CH_3$. B. Aus 4-Chlor-5-nitro-2-acetamino-anisol (s. u.) durch Verseifen mit Natronlauge bei ca. 90° (Akt.-Ges. f. Anilinf., D. R. P. 137956; C. 1908 I, 112). — Krystalle (aus Benzol). F: 132°; Idelich in Benzol; die Salze werden durch Wasser dissoziiert (A.-G. f. A., D. R. P. 137956). Verwendung zur Darstellung von Azofarbstoffen: A.-G. f. A.; D. R. P. 131364; C. 1902 I, 1382; Ges. f. chem. Ind., D. R. P. 153940; C. 1904 II, 1014.
- 4-Chlor-5-nitro-2-acetamino-phenol-methyläther, 4-Chlor-5-nitro-2-acetaminoanisol C₂H₂O₄N₂Cl = CH₂·CO·NH·C₂H₂Cl(NO₂)·O·CH₃. B. Aus 4-Chlor-2-acetamino-anisol (S. 384) in konz. Schwefelsäure durch Nitrieren mit Salpeterschwefelsäure bei 20—25° (Akt.-Ges. f. Anilinf., D. R. P. 137956; C. 1903 I, 112). — Krystalle (aus Xylol). F: 193°.
- 4-Chlor-6-nitro-2-amino-phenol C₆H₅O₅N₅Cl = H₅N·C₅H₅Cl(NO₅)·OH. B. Aus 4-Chlor-2.6-dinitro-phenol (Bd. VI, S. 260) durch partielle Reduktion (Chem. Fabr. Sandoz, D. R. P. 147060; C. 1904 I, 233). Neben 4-Chlor-5-nitro-2-amino-phenol (s. o.) beim Nitrieren von 4-Chlor-2-amino-phenol (BAYER & Co., D. R. P. 186655; C. 1907 II, 1132). – F: 152° (Chem. Fabr. S.). – Verwendung zur Darstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 153297; C. 1904 II, 749.
- 5-Chlor-x-nitro-2-acetamino-phenol-methyläther, 5-Chlor-x-nitro-2-acetaminoanisol $C_0H_0Q_N_2Cl = CH_0 \cdot CO \cdot NH \cdot C_0H_2Cl(NO_0) \cdot O \cdot CH_0$. B. Durch Versetzen einer Lösung von 5-Chlor-2-acetamino-anisol (S. 385) in viel Eisessig mit rauchender Salpetersäure (Hebold, B. 15, 1686). — Hellgelbe Nadeln. F: 185°. Wenig löslich in heißem Wasser, leicht in Alkohol, Äther und Eisessig.
- 6-Brom-4-nitro-2-amino-phenol $C_0H_5O_2N_2Br = H_2N \cdot C_0H_2Br(NO_2) \cdot OH$. B. Beim Kochen von 6-Brom-2.4-dinitro-phenol (Bd. VI, S. 261) mit $(NH_4)_2S$ (Meldola, Woolcott, WRAY, Soc. 69, 1326). — Nadeln. F: 162—163°.
- 6-Brom-4-nitro-2-amino-phenol-methyläther, 6-Brom-4-nitro-2-amino-anisol $C_2H_2O_2N_2Br=H_2N\cdot C_2H_2Br(NO_2)\cdot O\cdot CH_2$. B. Man führt 6-Brom-4-nitro-2-acetamino-phenol (S. 393) mit Methyljodid und methylalkoholischem Kali in das (nicht näher beschriebene) 6-Brom-4-nitro-2-acetamino-anisol über und kocht mit Natronlauge (MELDOLA, WOOLCOTT, WRAY, Soc. 69, 1327). — Gelbe Nadeln (aus Wasser). F: 120—121°.

- 6-Brom-4-nitro-2-acetamino-phenol $C_8H_7O_4N_2Br=CH_3\cdot CO\cdot NH\cdot C_6H_2Br(NO_2)\cdot OH$. B. Aus 6-Brom-4-nitro-2-amino-phenol, gelöst in Eisessig und Essigsäureanhydrid (Meldola, Woolcott, Wray, Soc. 69, 1326). Nädelchen (aus Wasser). Schmilzt, langsam erhitzt, bei 194° (unter Zersetzung), schnell erhitzt, bei 204° (unter Zersetzung).
- **4-Brom-6-nitro-2-amino-phenol** $C_6H_5O_3N_8Br=H_3N\cdot C_6H_2Br(NO_9)\cdot OH$. B. Aus 4-Brom-2.6-dinitro-phenol (Bd. VI, S. 262) durch Erhitzen mit Ammoniumsulfid (Meldola, Steatfelld, Soc. 78, 687). Braune Schuppen. F: 141—142°.
- 4-Brom-6-nitro-2-acetamino-phenol C₈H₂O₄N₂Br = CH₃·CO·NH·C₆H₂Br(NO₂)·OH. B. Aus 4-Brom-6-nitro-2-amino-phenol und Essigsäureanhydrid in Eisessig (ME., St., Soc. 78, 687). Nadeln. F: 161—162°.
- 3.5-Dinitro-2-amino-phenol-methyläther, 3.5-Dinitro-2-amino-anisol $C_7H_7O_8N_3=H_8N\cdot C_6H_8(NO_2)_2\cdot O\cdot CH_3$. B. Aus 2.3.5-Trinitro-anisol (Bd. VI, S. 264) und alkoh. Ammoniak (Blanksma, R. 23, 113). Gelbe oder rote Krystalle vom Schmelzpunkt 174° (B., R. 23, 113); rote grünglänzende Nadeln (aus Eisessig) vom Schmelzpunkt 181° (Meldola, Hay, Soc. 91, 1477). Liefert mit Essigsäureanhydrid und etwas konz. Schwefelsäure 3.5-Dinitro-2-acetamino-anisol (s. u.) (B., C. 1908 II, 1826).
- 8.5-Dinitro-2-amino-phenol-äthyläther, 3.5-Dinitro-2-amino-phenetol $C_8H_9O_5N_3 = H_2N \cdot C_8H_9(NO_2)_3 \cdot O \cdot C_2H_5$. B. Aus 2.3.5-Trinitro-phenetol durch alkoholisches Ammoniak (Blanksma, R. 24, 41). Gelbe Krystalle. F: 195°. Schwer löslich in Alkohol.
- 3.5-Dinitro-2-methylamino-phenol-methyläther, 3.5-Dinitro-2-methylamino-anisol $C_8H_9O_5N_3=CH_3\cdot NH\cdot C_8H_3(NO_2)_2\cdot O\cdot CH_2$. B. Aus 2.3.5-Trinitro-anisol oder 3.5-Dinitro-brenzcatechin-dimethyläther (Bd. VI, S. 791) und Methylamin (Blanksma, R. 23, 113). Durch Kochen des 3.5-Dinitro-2-methylnitrosamino-anisols (s. u.) oder des 3.5-Dinitro-2-methylnitrosamino-anisols (s. u.) oder des 3.5-Dinitro-2-methylnitrosamino-anisols (v. n.) oder des 3.5-Dinitro-2-methylnitrosamino-anisols (v. n.) oder des 3.5-Dinitro-2-methylnitrosamino-anisols (v. n.) előst, beim Behandeln mit nitrosen Gasen 3.5-Dinitro-2-methylnitrosamino-anisol (v. n.). Wird durch Salpetersäure (D: 1,52) in 3.5-Dinitro-2-methylnitramino-anisol verwandelt (B.).
- 3.5 Dinitro 2 methylamino phenol äthyläther, 3.5 Dinitro 2 methylamino phenetol $C_0H_{11}O_5N_3 = CH_3 \cdot NH \cdot C_0H_3(NO_0)_2 \cdot O \cdot C_2H_5$. B. Aus 2.3.5-Trinitro-phenetol durch Methylamin (Blanksma, R. 24, 41). Orangefarbene Krystalle. F: 174°. Wird durch Salpetersäure (D: 1,52) in 3.5-Dinitro-2-methylnitramino-phenetol (S. 394) verwandelt.
- 3.5-Dinitro-2-äthylamino-phenol-methyläther, 3.5-Dinitro-2-äthylamino-anisol $C_0H_{11}O_5N_3=C_2H_5\cdot NH\cdot C_0H_{21}(NO_2)_2\cdot O\cdot CH_2$. B. Aus 2.3.5-Trinitro-anisol und Äthylamin (Blanksma, R. 23, 113). F: 123°. Wird durch Salpetersäure (D: 1,52) in 3.5-Dinitro-2-äthylnitramino-anisol (S. 394) verwandelt.
- 3.5-Dinitro-2-äthylamino-phenol-äthyläther, 3.5-Dinitro-2-äthylamino-phenotol $C_{10}H_{13}O_5N_3=C_2H_5\cdot NH\cdot C_0H_1(NO_2)_2\cdot O\cdot C_2H_5$. B. Aus 2.3.5-Trinitro-phenotol durch Äthylamin (Blanksma, R. 24, 41). Orangefarbene Krystalle. F: 137°. Wird durch Salpetersäure (D: 1,52) in 3.5-Dinitro-2-äthylnitramino-phenotol (S. 394) verwandelt.
- 3.5-Dinitro-2-anilino-phenol-methyläther, 4.6-Dinitro-2-methoxy-diphenylamin $C_{13}H_{11}O_5N_3=C_6H_5\cdot NH\cdot C_6H_2(NO_2)_2\cdot O\cdot CH_3$. B. Aus 2.3.5-Trinitro-anisol und Anilin in Alkohol (Blanksma, R. 23, 114). Hellgelbe Krystalle (aus Essigsäure). F: 155°.
- 3.5-Dinitro-2-anilino-phenol-äthyläther, 4.6-Dinitro-2-äthoxy-diphenylamin $C_{14}H_{13}O_5N_2=C_6H_5\cdot NH\cdot C_6H_3(NO_2)_2\cdot O\cdot C_2H_5$. B. Aus 2.3.5-Trinitro-phenetol mit Anilin (Blanksma, R. 24, 41). Gelbe Nadeln. F: 155°.
- 3.5-Dinitro-2-acetamino-phenol-methyläther, 3.5-Dinitro-2-acetamino-anisol $C_9H_9O_6N_3=CH_3\cdot CO\cdot NH\cdot C_9H_9(NO_9)_3\cdot O\cdot CH_3$. B. Aus 3.5-Dinitro-2-amino-anisol (s. o.) mit Essigsäureanhydrid und etwas konz. Schwefelsäure (Blanksma, C. 1908 II, 1826). Farblose Krystalle (aus Alkohol). F: 202°.
- 3.5-Dinitro-2-methylnitrosamino-phenol-methyläther, 3.5-Dinitro-2-methylnitrosamino-anisol, [4.6-Dinitro-2-methoxy-phenyl]-methyl-nitrosamin $C_0H_0O_0N_4=ON\cdot N(CH_0)\cdot C_0H_2(NO_2)_2\cdot O\cdot CH_3$. B. Man erwärmt 1 Tl. Dimethyl-o-anisidin (S. 363) mit 20 Tln. konz. Salpetersäure bis zum Auftreten nitroser Gase und fällt sofort mit Wasser (Grimaux, Lepèvre, Bl. [3] 6, 417; van Romburgh, C. r. 113, 505). Aus 3.5-Dinitro-2-methylamino-anisol (s. o.), gelöst in Salpetersäure (D: 1,34), durch Behandeln mit nitrosen Gasen (v. R., C. r. 113, 507). Prismen. F: 135°; löslich in 15 Tln. siedendem Alkohol (G., L.). Gibt beim Kochen mit gewöhnlicher konzentrierter Salpetersäure bis zum Aufhören der Entwicklung nitroser Gase 3.5-Dinitro-2-methylnitramino-anisol (G., L.). Geht durch Kochen mit Phenol wieder in 3.5-Dinitro-2-methylamino-anisol über (v. R.).

- 8.5-Dinitro-2-methylnitramino-phenol-methyläther, 8.5-Dinitro-2-methylnitramino-anisol, [4.6-Dinitro-2-methoxy-phenyl]-methyl-nitramin $C_2H_2O_7N_4=O_2N\cdot N(CH_2)\cdot C_2H_4(NO_2)_2\cdot O\cdot CH_3$. B. Aus Dimethyl-o-anisidin (S. 363) oder aus 5-Nitro-2-dimethyl-o-anisidin (S. 363) oder aus 5-Nitro-2-di amino-anisol (S. 390) beim Kochen mit 15-20 Tln. gewöhnlicher konzentrierter Salpetersaure bis zum Aufhören der Entwicklung nitroser Gase (GRIMAUX, LEFÈVRE, Bl. [3] 6, 419). Aus Dimethyl-o-anisidin bei mehrstündigem Stehen mit rauchender Salpetersaure bei 0 (G., L.). Durch Einw. von Salpetersäure (D: 1,52) auf 3-Nitro-2-methylamino-anisol (S. 388) (Blanksma, C. 1908 II, 1826) oder auf 3.5-Dinitro-2-methylamino-anisol (S. 393) (B., R. 28, 113). Beim Kochen von 3.5-Dinitro-2-methylnitrosamino-anisol (S. 393) mit gewöhnlicher konzentrierter Salpetersäure bis zum Aufhören der Entwicklung nitroser Gase (G., L.). — Blättchen. F: 118—119° (G., L.), 118° (B.). Wenig löslich in Äther, löslich in 8 Tln. kochendem Alkohol, sehr leicht in Aceton (G., L.).
- 8.5-Dinitro-2-methylnitramino-phenol-äthyläther, 8.5-Dinitro-2-methylnitramino-phenetol, [4.6-Dinitro-2-āthoxy-phenyl]-methyl-nitramin $C_0H_{10}O_7N_4=O_2N\cdot N(CH_2)\cdot C_0H_2(NO_2)_2\cdot O\cdot C_2H_3$. B. Bei der Einw. von Salpetersäure (D: 1,52) auf 3.5-Dinitro-2-methylamino-phenetol (S. 393) (BLANKSMA, R. 24, 41) oder auf 3-Nitro-2-methylaminophenetol (S. 388) (B., Chemisch Weekblad 5, 791; C. 1908 II, 1826). — Farblose Krystalle (aus Alkohol). F: 79-80°.
- 8.5 Dinitro 2 äthylnitramino phenol methyläther, 8.5 Dinitro 2 äthylnitramino-anisol, [4.6-Dinitro-2-methoxy-phenyl]-äthyl-nitramin $C_0H_{10}O_7N_4=O_2N\cdot N(C_2H_3)\cdot C_0H_5(NO_3)_3\cdot O\cdot CH_3$. Aus 3.5-Dinitro-2-athylamino-anisol (S. 393) durch Salpetersaure (D: 1,52) (BLANKSMA, R. 23, 113). — F: 67°.
- 8.5-Dinitro-2-äthylnitramino-phenol-äthyläther, 8.5-Dinitro-2-äthylnitraminophenetol, [4.6-Dinitro-2-sthoxy-phenyl]-sthyl-nitramin $C_{10}H_{12}O_7N_4 = O_2N \cdot N(C_2H_5)$ C₂H₂(NO₂)₂·O·C₂H₅. B. Aus 3.5-Dinitro-2-sthylamino-phenetol (S. 393) durch Salpetersaure (D: 1,52) (Blanksma, R. 24, 41). — F: 72°.
- 4.5-Dinitro-2-amino-phenol-methyläther, 4.5-Dinitro-2-amino-anisol $C_7H_7O_8N_2=H_8N\cdot C_9H_8(NO_2)_2\cdot O\cdot CH_3$. Zur Konstitution vgl. Freyss, C. 1901 I, 739; Meldola, Eyre, Chem. N. 83, 285; Soc. 79, 1076. B. Aus 4.5-Dinitro-2-acetamino-anisol durch Verseifen (M., Wechsler, Soc. 77, 1172; F.). Orangefarbene Nadeln (aus verd. Alkohol). F: 1860 bis 188° (M., W.). – Liefert bei der Reduktion in Eisessiglösung mit Zinn und etwas Salzsäure das — nicht näher beschriebene — 2.4.5-Triamino-anisol, welches mit Benzil das entsprechende Azin (Syst. No. 3773) gibt (M., E., Soc. 79, 1077). Liefert bei der Einw. von Nitrit und Essigsäure 6-Nitro-4-diazo-resorein-3-methyläther (Syst. No. 2199) (M., W.; M., E.), woraus durch Einw. von alkoh. Natronlauge 4-Nitro-resorcin-1-methyläther (Bd. VI, S. 824) entsteht (M., E.; vgl. F.).
- 4.5-Dinitro-2-acetamino-phenol-methyläther, 4.5-Dinitro-2-acetamino-anisol $C_0H_0O_0N_0 = CH_2 \cdot CO \cdot NH \cdot C_0H_2(NO_0)_0 \cdot O \cdot CH_2$. B. Durch Eintragen von Acet-o-anisidid in rauchende Salpetersäure (MÜHLHÄUSER, A. 207, 243). Durch Nitrieren von Acet-o-anisidid in Schwefelsaure mit 2 Mol.-Gew. Salpetersaure (Freyss, C. 1901 I, 738). Durch Nitrieren von 4-Nitro-2-acetamino-anisol oder von 5-Nitro-2-acetamino-anisol (F.; Meldola, Eyre, Chem. N. 83, 286; vgl. Mr., Wechsler, Soc. 77, 1172). — Nadeln (aus verd. Alkohol). F: 162—163° (Mr., W.; F.).
- **4.5-Dinitro-2-acetamino-phenol-äthyläther, 4.5-Dinitro-2-acetamino-phenetol** $C_{10}H_{11}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_0H_2(NO_2)_2 \cdot O \cdot C_2H_5$. B. Aus 4-Nitro-2-acetamino-phenetol mit Salpetersaure (D: 1,52) und konz. Schwefelsäure (Blanksma, R. 28, 111). Hellgelbe Krystalle (aus Alkohol). F: 143°.
- 4.5-Dinitro-2-benzamino-phenol-methyläther, 4.5-Dinitro-2-benzamino-anisol $C_{14}H_{11}O_{\bullet}N_{3}=C_{\bullet}H_{5}\cdot CO\cdot NH\cdot C_{0}H_{2}(NO_{3})_{3}\cdot O\cdot CH_{3}$. Ockergelbe Schuppen (aus Essigsäure). F: 185—186° (Meldola, Eyrr, *Chem. N.* 83, 286).
- **4.6-Dinitro-2-amino-phenol, Pikraminsäure** $C_6H_5O_5N_8=H_2N\cdot C_6H_2(NO_3)_3\cdot OH$. B. Aus Pikrinsäure (Bd. VI, S. 265) durch Reduktion mit Schwefelwasserstoff in ammoniakalischalkoholischer Lösung (Gibabd, C.r. 36, 421; A. 88, 281; Lea, Chem. N. 4, 193; J. 1861, 637), mit wäßr. Natriumhydrosulfid NaSH in der Wärme (Brand, J. pr. [2] 74, 471), mit hydroschwefligsaurem Natrium Na, S, O, in der Kälte (ALOY, FREBAULT, Bl. [3] 88, 496), mit Zinkstaub in Gegenwart von Ammoniak (Aloy, Frán. J. 181. [3] 38, 496; C. 1904 II, 1385), mit Ferrosalzen (z. B. FeSO₄) in Gegenwart von Alkalien (Wöhler, Ann. d. Physik 18, 492; Pugh, A. 96, 83; Girard, C. r. 42, 60; J. 1855, 535), mit Natriumferropyrophosphat Na₂Fe₂(P₂O₇)₂ (Pascal, A. ch. [8] 16, 395), mit Kupferchlorür oder Zinnehlorür in Gegenwart von Ammoniak (Girard, C. r. 42, 60; J. 1855, 535). Bei der elektrolytischen Reduktion von Pikrinsäure in alkoh. Schwefelsäure bei Gegenwart von Vanadylsulfat (HOFER, JAKOB.

B. 41, 3198). Aus 4.6-Dinitro-2-benzamino-phenol (S. 396) durch Erhitzen mit konz. Salzsaure auf 130° (Post, Stuckenberg, A. 205, 75), auf 140° (HÜBNER, A. 210, 392).

Dunkeirote Nadeln (aus Alkohol), Säulen (aus Chloroform), die im durchfallenden Licht dunkelrot bis gelb erscheinen. F: 169—170° (Post, Stuckenberg), 168—169° (Rudolf, J. pr. [2] 48, 425). 100 Tle. Wasser lösen bei 22° 0,14 Tle. Pikraminsäure, nicht viel leichter löslich in heißem Wasser (Dabney, Am. 5, 36). Ziemlich schwer löslich in Äther, Chloroform, ziemlich leicht in Alkohol, leicht in Benzol und Eisessig, zerfließt in Anilin (P., St.). Verlauf der Leitfähigkeit während der Neutralisation ("Leitfähigkeitstitration") als Maß der Acidität: Thiel, Roemer, Ph. Ch. 63, 739. Löst sich in Natronlauge rotbraun, in konz. Salzsäure fast farblos (Kauffmann, Beisswenger, B. 36, 569). Verbindet sich nicht mit Phosphorsäure (Raikow, Schtarbanow, Ch. Z. 25, 262).

Explosionsfähigkeit: WILL, Ch. I. 26, 130. Schwefelwasserstoff reduziert Pikraminsäure in überschüssigem wäßr. Ammoniak zu 4-Nitro-2.6-diamino-phenol (Griess, A. 154, 202). Durch Erhitzen von Pikraminsäure mit Schwefel und Schwefelalkali in wäßr. Lösung am Rückflußkühler wird ein violettschwarzer Schwefelfarbstoff gebildet (Akt.-Ges. f. Anilinf., D. R. P. 116791; C. 1901 I, 78). Beim Einleiten von nitrosen Gasen (aus Salpetersäure und arseniger Säure) in die alkoh. Lösung der Pikraminsäure (GRIESS, A. 113, 205) oder beim Eintragen von NaNO₂ unter Kühlung in die Lösung von Pikraminsäure in verd. Schwefelsäure (HJELT, Of. Fi. 37, 176) entsteht 4.6-Dinitro-2-diazo-phenol (Syst. No. 2199). Kann durch Salpetersäure nicht in Pikrinsäure zurückverwandelt werden (Wöhler; Lea). Liefert beim Erwärmen mit Cyankalium in wäßr. Lösung gleiche Mengen von 6-Nitro-2-hydroxylamino-4-amino-3-oxy-benzonitril (Syst. No. 1939) und von 2.6-Dinitro-4-amino-3-oxy-benzonitril (Syst. No. 1911), beide in Form ihrer Kaliumsalze (Borsche, Heyde, B. 38, 3938). Gibt beim Erhitzen mit Phosgen in Chloroform auf 130—140° im geschlossenen Rohr 3.5-Dinitro-2-oxy-phenylisocyanat (S. 397) (RUDOLF, J. pr. [2] 48, 426). — Pikraminsaure findet Verwendung zur Darstellung von Azofarbstoffen, z. B. von Chrompatentgrün (Schultz, Tab. No. 219), Metachrombraun (Schultz, Tab. No. 89). Zur Verwendung als Komponente von Azofarbstoffen vgl. ferner Schultz, Tab. No. 88, 92; Akt.-Ges. f. Anilinf., D. R. P. 112819, 113241, 118013, 135016, 189304; C. 1900 II, 463, 512; 1901 I, 601; 1902 II, 1165; 1907 II, 2006; Höchster Farbw., D. R. P. 111327, 112280, 116980, 124791; C. 1900 II, 547, 698; 1901 I, 239; 1901 II, 1030; KALLE & Co., D. R. P. 110711, 117802, 131527; C. 1900 II, 509; 1901 I, 487; 1902 I, 1383; DAHL & Co., D. R. P. 142153; C. 1903 II, 83; GEIGY & Co., D. R. P. 145907; C. 1903 II, 1153; K. OEHLEB, D. R. P. 151332; C. 1904 I, 1506; Soc. St. Denis, D.-R. P. 169579; C. 1906 I, 1721; Chem. Fabr. Sandoz, D. R. P. 175625; C. 1906 II, 1748.

Pikraminsaure ist giftiger als Pikrinsaure (Walko, A. Pth. 46, 189).

Salze der Pikraminsäure mit Basen: GIRABD, C. r. 36, 423; A. 88, 282; SMOLKA, M. 8, 391. — NH₄C₄H₄O₄N₃. Dunkelorangerote Tafeln (G.). — NaC₄H₄O₅N₃+H₂O. Dunkelrote Krusten. 100 Tle. Wasser lösen bei 15,5° 2,06 Tle. des wasserfreien Salzes (Sm.). — KC₄H₄O₅N₃. Rote Tafeln. Ziemlich löslich in Wasser, wenig in Alkohol (G.). — Cu(C₆H₄O₄N₃)₃. Gelblichgrün, amorph (G.). — AgC₆H₄O₅N₃. Ziegelrot, amorph (G.). — Mg(C₆H₄O₅N₃)₃. H₃O. Dunkelrotbraune Blättchen. 100 Tle. Wasser lösen bei 17° 5,5842 Tle. des wasserfreien Salzes (Sm.). — Ba(C₆H₄O₅N₃)₃. Wenig löslich in Wasser und Alkohol (G.). — Zn(C₆H₄O₄N₃)₃ + H₃O. Gelbe Nadeln. 100 Tle. Wasser lösen bei 23° 0,017 Tle. und bei 100° 0,0543 Tle. des wasserfreien Salzes (Sm.). — Cd(C₆H₄O₅N₃)₃ + H₃O. Grüngelbe Nadeln. 100 Tle. Wasser lösen bei 23° 0,0823 Tle. und bei 100° 0,3144 Tle. des wasserfreien Salzes (Sm.). — HgC₆H₄O₅N₃. Zinnoberrotes Krystallpulver. 100 Tle. Wasser lösen bei 17,5° 0,0048 Tle. und bei 100° 0,008 Tle. Salz (Sm.). — Hg(C₆H₄O₅N₃)₂ + H₃O. Ockergelbe Nadeln. 100 Tle. Wasser lösen bei 18° 0,032 Tle. und bei 100° 0,0802 Tle. des wasserfreien Salzes (Sm.). — P(C₆H₄O₅N₃)₃. Rotbraune Nadeln. 100 Tle. Wasser lösen bei 20,5° 0,038 Tle. und bei 100° 0,067 Tle. Salz (Sm.). — Mn(C₆H₄O₅N₃)₂ + 2H₂O. Dunkelstahlgrüne Nadeln. 100 Tle. Wasser lösen bei 19° 1,0261 Tle. des wasserfreien Salzes (Sm.). — Co(C₆H₄O₅N₃)₃. Erbsengelb, amorph. 100 Tle. Wasser lösen bei 100° 0,0286 Tle. Salz (Sm.). — Salze der Pikraminsäure mit Säuren: Petersen Z. 1868, 378. — C₆H₅O₅N₃ + HCl. Rotbraune Nadeln. Verliert die Salzes ure tellweise beim Liegen an der Luft, vollständig bei 80°. — 2C₆H₅O₅N₃ + 2HCl + PtCl₄. Gelbe körnige Krystalle.

4.6-Dinitro-2-amino-phenol-methyläther, 4.6-Dinitro-2-amino-anisol $C_7H_7O_5N_3=H_9N\cdot C_6H_9(NO_2)_2\cdot O\cdot CH_3$. B. Aus 2.4.6-Trinitro-anisol (Bd. VI, S. 288) und alkoh. Schwefelammonium (Cahours, A. ch. [3] 27, 453; A. 74, 306). — Dunkelviolette Nadeln (aus Alkohol). Unlöslich in kaltem Wasser, wenig löslich in kaltem Alkohol. Verbindet sich mit Säuren, den Salzen wird aber durch Wasser die Säure entzogen.

[4.6-Dinitro-2-amino-phenyl]-benzoat $C_{13}H_{9}O_{e}N_{3}=H_{2}N\cdot C_{e}H_{2}(NO_{2})_{2}\cdot O\cdot CO\cdot C_{e}H_{5}$. Aus Pikraminsäure und Benzoylchlorid bei 150° (Hübner, Haarhaus, A. 210, 395). —

Blättchen. F: 218—219°. Unlöslich in Wasser, löslich in Alkohol, Eisessig und Ligroin. — Löst sich in höchst konzentrierter Salpetersäure unter Bildung von 5.7-Dinitro-2-phenylbenzoxazol $(O_2N)_2C_6H_2 < N > C \cdot C_6H_5$ (Syst. No. 4199).

3.5.2'.4'-Tetranitro-2-oxy-diphenylamin C₁₂H₇O₉N₅, s. nebenstehende Formel. B. Aus 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) durch Kondensation mit Pikraminsaure (Cassella & Co., D. R. P. 111789; C. 1900 II, 610). — F: 211°. Lösung in Alkali gelbrot. In Eisessig leicht löslich. — Liefert beim Erhitzen mit Schwefel und Schwefelalkali einen braunen Farbstoff.

4.6-Dinitro-2-acetamino-phenol C₂H₂O₆N₃ = CH₃·CO·NH·C₆H₂(NO₂)₂·OH. B. Aus Pikraminsäure durch Erwärmen mit Essigsäureanhydrid auf dem Wasserbade (SCHIFF, A. 239, 366) oder durch Schütteln mit Essigsäureanhydrid in Sodalösung bei 60° (CASSELLA & Co., D. R. P. 161341; C. 1905 II, 181). Durch Nitrieren von O.N-Diacetyl-[2-amino-phenol] (S. 371) (MELDOLA, WECHSLER, Chem. N. 82, 254). — Nadeln (aus Wasser). F: 201° (M., W.), 193° (SCH.). Schwer löslich in Wasser, mehr in Alkohol (SCH.). Beim Kochen mit Natronlauge entsteht Pikraminsäure (M., W.).

4.6-Dinitro-2-benzamino-phenol $C_{13}H_9O_6N_3 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_2(NO_8)_3 \cdot OH$. Beim Eintragen von 4-Nitro-2-benzamino-phenol in mit gleich viel Eisessig versetzte rauchende Salpetersäure (Post, Stuckenberg, A. 205, 74). Durch Behandeln von 2-Benzamino-phenol mit einem Gemisch von Eisessig und höchst konzentrierter Salpetersäure bei -3° bis -5° (Hübner, A. 210, 388). Beim Einleiten von salpetriger Säure in eine eisessigsaure Lösung von 2-Benzamino-phenol (Böttcher, B. 16, 632). Durch Erhitzen von Pikraminsäure und Benzoylchlorid auf 160–180° (Kvm, B. 32, 1429). — Grüngelbe Nadeln (aus Eisessig oder Xylol). F: 218–219° (P., St.), 220° (H.), 222–223° (B.), 229–230° (K.). Fast unlöslich in Wasser, sehr schwer löslich in Alkohol (P., St.; H.) und Benzol (H.), schwer löslich in heißem Eisessig (P., St.; H.). — Zerfällt beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 130° in Benzoesäure und Pikraminsäure (P., St.). — NH4C13H8O6N3 + H2O. Rotgelbe Nadeln (H.). — KC13H8O6N3 + 2 H2O. Rotgelbe Nadeln. Leicht löslich in Wasser und verd. Alkohol (H.). — AgC13H8O6N3 - Dunkelrote Nadeln. Leicht löslich in Wasser und verd. Alkohol (H.). — AgC13H8O6N3 - Dunkelrote Nadeln. Leicht löslich in Wasser (H.). — Ba(C12H8O8N3) + 5 H2O. Scharlachrote Nadeln (H.). — Zn(C13H8O8N3) + 3 H2O. Rotgelbe Nadeln. Leicht löslich in heißem Wasser, schwer in Alkohol (H.).

[3.5-Dinitro-2-oxy-phenyl]-carbamidsäure-methylester $C_8H_7O_7N_8 = CH_8 \cdot O_2C \cdot NH \cdot C_8H_7(NO_7)_8 \cdot OH$. B. Bei mehrstündigem Kochen von 3.5-Dinitro-2-oxy-phenylisocyanat (S. 397) mit Methylalkohol (Rudolf, J. pr. [2] 48, 444). — Gelbe Nadeln. F: 179°. — $NH_4C_8H_6O_7N_3$. Rote Krystalle.

[3.5 - Dinitro - 2 - oxy-phenyl] - carbamidsäure - äthylester, [3.5 - Dinitro - 2 - oxy-phenyl]-urethan $C_0H_0O_7N_3 = C_2H_5 \cdot O_3C \cdot NH \cdot C_6H_4(NO_3)_2 \cdot OH$. B. Bei mehrstündigem Kochen von 3.5-Dinitro-2-oxy-phenylisocyanat mit Alkohol (R., J. pr. [2] 48, 439). — Gelbe Nadeln. F: 152—153°. Leicht löslich in Äther, Chloroform, Benzol, Eisessig und in heißem Alkohol, unlöslich in Petroläther. — $NH_4C_2H_6O_7N_3$. Rote Prismen. — $KC_2H_8O_7N_3$ (bei 100°). Rote Nadeln. Leicht löslich in kaltem Wasser. — $AgC_2H_6O_7N_3$. Dunkelorangefarbene Nadeln (aus Wasser).

[3.5-Dinitro-2-oxy-phenyl]-harnstoff $C_7H_6O_6N_4=H_4N\cdot CO\cdot NH\cdot C_8H_4(NO_2)_2\cdot OH$. B. Beim Eintragen von Pikraminsäure in gleich viel geschmolzenen Harnstoff; man löst das Produkt in verdünntem Ammoniak und fällt die Lösung mit Salzsäure (Gries, J. pr. [2] 5, 1). Aus 3.5-Dinitro-2-oxy-phenylisocyanat (S. 397) und wäßrigem oder alkoholischem Ammoniak (RUDOLF, J. pr. [2] 48, 429). — Hellgelbe Blättchen oder Nadeln. Schmilzt unter Bräunung gegen 220^9 (R.). Fast unlöslich in kaltem Wasser, schwer löslich in Äther, leichter in Alkohol, sehr leicht in Eisessig (R.). — Beim Kochen mit Wasser entsteht zum Teil 3.5-Dinitro-2-oxy-phenylisocyanat (R.). Wird von Schwefelammonium in der Wärme zu [5-Nitro-3-amino-2-oxy-phenyl]-harnstoff (Syst. No. 1854) reduziert (G.). — NH₄C₇H₅O₆N₄. Rote Prismen. Zersetzt sich bei 185⁶ (R.). — AgC₇H₅O₆N₄. Rotgelb, amorph (G.). — Ba(C₇H₅O₆N₄)₂ + 5H₂O. Rote Nadeln (R.).

N-Phenyl-N'-[8.5-dinitro-2-oxy-phenyl]-harnstoff $C_{19}H_{10}O_{e}N_{4}=C_{e}H_{e}\cdot NH\cdot CO\cdot NH\cdot C_{e}H_{e}(NO_{e})_{e}\cdot OH$. Man neutralisiert eine heiße Lösung von 3.5-Dinitro-2-oxy-phenylisocyanat in Anilin mit konz. Salzsäure und trägt den entstandenen Krystallbrei in viel siedende verdünnte Salzsäure ein (R., J. pr. [2] 48, 434). — Rote Prismen (aus Alkohol). Zersetzt sich oberhalb 200°. Äußerst löslich in Aceton und Anilin, schwerer in Äther.

O-Äthyl-N-[3.5-dinitro-2-oxy-phenyl]-isoharnstoff $C_0H_{10}O_0N_4=C_2H_5\cdot O\cdot C(:NH)\cdot NH\cdot C_0H_9(NO_9)_2\cdot OH$. Beim Sättigen einer alkoh. Lösung von Pikraminsäure mit Cyangas; die Lösung bleibt 8 Tage stehen, dann filtriert man und kocht den Niederschlag mit Alkohol

aus (GRIESS, B. 15, 448). — Dunkelgelbe Nadeln. Verkohlt beim Erhitzen. Spurenweise löslich in heißem Wasser und Alkohol, unlöslich in Äther, Chloroform und Benzol. Löst sich ziemlich leicht in kalter Kalilauge und wird daraus durch CO₂ gefällt. Zersetzt sich beim Kochen mit Alkalien und Säuren. Beim mehrwöchigen Stehen in überschüssigem konzentriertem wäßrigem Ammoniak bilden sich [3.5-Dinitro-2-oxy-phenyl]-guanidin und Alkohol. Zerfällt beim Kochen mit Salzsäure in Alkohol und [3.5-Dinitro-2-oxy-phenyl]-harnstoff. Löst sich in kalten Mineralsäuren unter Bildung von Salzen, welche durch Wasser zerlegt werden. — C₂H₁₀O₂N₄ + HCl. Gelbliche Tafeln oder Nadeln.

[3.5-Dinitro-2-oxy-phenyl]-guanidin $C_7H_7O_5N_5 = H_2N\cdot C(:NH)\cdot NH\cdot C_6H_3(NO_2)_2\cdot OH.$ B. Bei mehrwöchigem Stehen einer Lösung von O-Äthyl-N-[3.5-dinitro-2-oxy-phenyl]-isoharnstoff (8. 396) in überschüssigem konzentriertem wäßrigem Ammoniak; man filtriert den gebildeten Niederschlag ab, löst ihn in heißer verdünnter Salzsäure und fällt kochendeiß mit Ammoniak (Griess, B. 15, 450). — Scharlachrote Nadeln. Fast unlöslich in Wasser, Alkohol, Äther und Chloroform. Löst sich in kalter Kalilauge und wird daraus durch CO_2 gefällt. Zersetzt sich leicht beim Kochen mit Kalilauge, aber gar nicht beim Kochen mit konz. Salzsäure. — $C_7H_7O_5N_5+HCl$. Honiggelbe Prismen. Gibt an Wasser alle Säure ab.

N-Methyl-N'-[3.5-dinitro-2-oxy-phenyl]-guanidin $C_9H_9O_5N_5=CH_3\cdot NH\cdot C(:NH)\cdot NH\cdot C_9H_9(NO_9)_9\cdot OH$. B. Aus O-Äthyl-N-[3.5-dinitro-2-oxy-phenyl]-isoharnstoff und wäßr. Methylamin (GRIESS, B. 15, 451). — Gelbe Nadeln.

3.5 - Dinitro - 2 - oxy - phenylisocyanat, 3.5 - Dinitro - 2 - oxy - phenylcarbonimid $C_7H_3O_6N_2 = OC: N\cdot C_6H_2(NO_2)_2\cdot OH.$ B. Bei 4—5-stdg. Erhitzen von 10 g Pikraminsäure mit einer 15% igen Lösung von Phosgen in Chloroform im geschlossenen Rohr auf 130—140° (RUDOLF, J. pr. [2] 48, 426). Beim Eindampfen einer konzentrierten wäßrigen Lösung von [3.5-Dinitro-2-oxy-phenyl]-harnstoff mit konz. Salzsäure (R., J. pr. [2] 48, 433). — Spieße (aus Wasser). F: 222—223°. Unlöslich in Chloroform, sehr schwer löslich in kaltem Wasser, schwer löslich in Benzol, löslich in Alkohol, Äther und Aceton; sehr leicht löslich in Eisessig. Beim Kochen mit Wasser entsteht allmählich Pikraminsäure. Wäßriger oder alkoh. Ammoniak erzeugt das Ammoniumsalz des [3.5-Dinitro-2-oxy-phenyl]-harnstoffs. Analog entsteht in äther. Lösung bei der Einw. von Phenylhydrazin das Phenylhydrazinsalz des 1-Phenyl-4-[3.5-dinitro-2-oxy-phenyl]-semicarbazids (Syst. No. 2040). Beim Kochen mit Alkohol entsteht [3.5-Dinitro-2-oxy-phenyl]-urethan (S. 396). — NaC $_7H_2O_6N_3$ (bei 110°). Gelb. — $KC_7H_2O_6N_3$ (bei 110°). Gelb.

5-Chlor-x.x-dinitro-2-acetamino-phenol-methyläther, 5-Chlor-x.x-dinitro-2-acetamino-anisol $C_9H_9O_8N_3Cl=CH_3\cdot CO\cdot NH\cdot C_6HCl(NO_9)_2\cdot O\cdot CH_3$. B. Durch Eintragen von 5-Chlor-2-acetamino-anisol (8. 385) in rauchende Salpetersäure (Herold, B. 15, 1686). — Braungelbe Nadeln (aus Alkohol). F: 165°.

5-Chlor-3.4.6-trinitro-2-acetamino-phenol-methyläther, 5-Chlor-3.4.6-trinitro-2-acetamino-anisol $C_0H_0O_0N_4Cl = CH_3 \cdot CO \cdot NH \cdot C_0Cl(NO_2)_3O \cdot CH_3$. B. Durch Erwärmen der Lösung von 5-Chlor-2-acetamino-anisol in rauchender Salpetersäure auf dem Wasserbade (Herold, B. 15, 1686). — Orangegelbe Nadeln. F: 198°. Leicht löslich in Alkohol und Eisessig.

Schwefelanalogon des 2-Amino-phenols und seine Derivate.

2-Amino-thiophenol, 2-Amino-phenylmercaptan $C_0H_1NS = H_2N \cdot C_0H_4 \cdot SH$. Bei der Reduktion von 2-Nitro-benzolsulfonsäure-chlorid (Bd. XI, S. 67) mit Zinn und Salzsäure (A. W. HOFMANN, B. 13, 20), Beim Einleiten von Schwefelwasserstoff in die erwärmte Lösung von salzsaurem 2.2'-Diamino-diphenyldisulfid (S. 400) (A. W. H., B. 12, 2364). Beim Kochen von S.N-Diacetyl-[2-amino-thiophenol] mit alkoh. Kali (Jacobson, B. 20, 1902). Bei der Kalischmelze von Benzthiazol (Syst. No. 4195), von 2-Chlor-benzthiazol $C_0H_4 < \frac{N}{S} > CCl$ (Syst. No. 4195) (A. W. H., B. 13, 18, 20), von 2-Phenyl-benzthiazol (Syst. No. 4199) (A. W. H., B. 12, 2363), von Benzthiazolon (Syst. No. 4278) (A. W. H., B. 13, 20), von 2-Amino-benzthiazol (Benzthiazolon-imid, Syst. No. 4278) (A. W. H., B. 13, 20) oder von Bis-[benzthiazolyl-(2)] $C_0H_4 < \frac{N}{S} > Cc < \frac{N}{S} > C_0H_4$ (Syst. No. 4630) (A. W. H., B. 13, 1230). — Darst. Man schmilzt 50 g 2-Phenyl-benzthiazol mit 200 g angefeuchtetem Kali 10—15 Minuten; die einigermaßen erkaltete Schmelze nimmt man mit siedendem Wasser auf, wobei benzoesaures Kalium und das Kaliumsalz des Aminothiophenols gelöst werden; man neutralisiert die Lösung darauf nahesu mit Salzsäure, filtriert und fügt zu dem stark verd. Filtrat allmählich eine Lösung von Kaliumdiohromat, bis der Niederschlag, eine Mischung aus 2.2'-Diamino-diphenyl-

disulfid und Chromoxyd, sehr dunkel zu werden beginnt; man entzieht dem Niederschlag das Disulfid durch Auskochen mit Alkohol und reduziert mit Zinn und Salzsäure zum Aminothiophenol (A. W. H., B. 20, 2259).

Nadeln. F: 26°; Kp: 234° (A. W. HOFMANN, B. 13, 1231).

2-Amino-thiophenol wird von Jodwasserstoffsäure in Anilin und Schwefelwasserstoff zerlegt (A. W. H., B. 13, 1228). Wird durch Luftsauerstoff langsam, rasch durch Oxydationsmittel wie Eisenchlorid in 2.2'-Diamino-diphenyldisulfid (S. 400) übergeführt (A. W. H., B. 12, 2363; B. 18, 1231). Behandelt man die kalte saure Lösung des 2-Amino-thiophenols mit NaNO₂, so erhalt man Phenylendiazosulfid C₆H₄< No. (Syst. No. 4491) (Jacobson, B. 21, 3105; JAC., JANSSEN, A. 277, 219). 2-Amino-thiophenol liefert bei kurzem Erwärmen mit der squimolekularen Menge Methyljodid Methyl-[2-amino-phenyl]-sulfid $H_2N \cdot C_aH_a \cdot S \cdot CH_a \cdot (S. 399) (A. W. H., B. 20, 1793). Beim Versetzen von 1 Mol.-Gew. 2-Amino-thiophenol,$ gelöst in 1 Mol.-Gew. alkoh. Kali, mit 3 Mol.-Gew. Athylenbromid (Bd. I, S. 90) entsteht in NH—CH₂ (Syst. No. 4194) (LANGLET, geringer Ausbeute 2.3-Benzo-1.4-thiazindihydrid C₆H₄ Bikang till Svenska Vet.-Akad. Handlingar 22 II, No. 1, S. 8). Zur Umsetzung von 2-Aminothiophenol mit Athylenbromid vgl. ferner Unger, B. 30, 609. Beim Kochen von 2-Aminothiophenol mit $a.\beta$ -Dibrom-athylen in Gegenwart von Eisessig oder alkoh. Kali entsteht 2.3-Benzo-1.4-thiazin C₀H₄ NH—CH (Syst. No. 4195) (La.). Bei der Einw. von Pikrylchlorid auf salzsaures 2-Amino-thiophenol in Gegenwart von Natriumacetat entsteht [2-Pikrylamino]-thiophenol (S. 400) (KEHRMANN, SCHILD, B. 32, 2606). Bei der Einw. von ω-Bromacetophenon (Bd. VII, S. 283) auf 2-Amino-thiophenol unter Kühlung entsteht 5-Phenyl-2.3-benzo-1.4-thiazin (Syst. No. 4199) (U.). Beim Kochen des 2-Amino-thiophenols oder seines salzsauren Salzes mit Ameisensäure (in Gegenwart von etwas Zink) erhält man Benzthiasol (Syst. No. 4195) (A. W. H., B. 13, 18). Diese Verbindung entsteht auch aus salzsaurem 2-Amino-thiophenol und Kaliumoyanid in wäßr. Lösung in der Wärme (A. W. H., B. 13, 1238). 2-Amino-thiophenol gibt beim Kochen mit Essigsäureanhydrid, beim Erhitzen mit Acetylchlorid im geschlossenen Rohr auf 150° (A. W. H., B. 13, 21) oder mit Acetonitril im geschlossenen Rohr auf 180° (A. W. H., B. 13, 1238) 2-Methyl-benzthiazol (Syst. No. 1408). 4195). 2-Amino-thiophenol liefert beim Erwärmen mit Chloressigsaure 5-Oxo-2.3-benzo-NH-CO (Syst. No. 4278) (A. W. H., B. 13, 1234; U., B. 30, 1.4-thiazindihydrid C_eH₄< -сн, 607; FRIEDLANDER, CHWALA, M. 28, 271); dieselbe Verbindung entsteht auch in Gegenwart von etwas Salzsäure (LL.). Auch beim Stehen von 2-Amino-thiophenol mit Chloressigester (UNGER, GRAFF, B. 30, 2393) oder besser mit Bromessigsäure in alkoh. Lösung (U., B. 30, 608) entsteht 5-Oxo-2.3-benzo-1.4-thiazindihydrid. 2-Amino-thiophenol liefert mit Bromacetylbromid in ather. Lösung die Verbindung $C_0H_4 < \frac{N}{S} > C \cdot CH_2 \cdot S \cdot C_0H_4 \cdot NH_2$ (Syst. No. 4222) (U.; U., Gr.). Last man Oxalsaure in Gegenwart von PCl, auf 2-Amino-thiophenol einwirken oder erhitzt man dieses mit Oxalsaureester auf 250°, so wird Bis-[benzthiazolyl-(2)] erhalten (A. W. H., B. 13, 1228). Leitet man Dicyan (Bd. II, S. 549) in eine erwärmte alkoh. Lösung von 2-Amino-thiophenol, so erhält man Bis-[benzthiazolyl-(2)] (A. W. H., B. 18, 1238; 20, 2252); wird dagegen eine kleine Menge 2-Amino-thiophenol in eine alkoh. Lösung von Dicyan eingetragen, wobei letzteres stets im Überschuß vorhanden ist, so wird Benzthis zolyl-(2)-formamidin $C_8H_4 < N > C \cdot C < NH_2$ (Syst. No. 4308) erhalten (A. W. H., B. 20, 2252). Beim Erwärmen von 2-Amino-thiasol mit Succinamid (Bd. II, S. 614) entsteht $a.\beta-Bis-[bensthiasolyl-(2)]-\bar{a}than\ C_0H_4 < \frac{N}{8} > C \cdot CH_2 \cdot CH_2 \cdot C + \frac{N}{8} > C_0H_4\ (Syst.\ No.\ 4630)\ (A.\ W.$ H., B. 13, 1231). Beim Kochen von 2-Amino-thiophenol in Salzsaure mit einer wäßr. Losung von Brombernsteinsäure entsteht 5-Oxo-2.3-benzo-1.4-thiazindihydrid-essigsäure-(6) C.H. (Syst. No. 4330) (LA.). 2-Amino-thiophenol liefert in ather. -CH-CH_a-CO_aH Lösung mit Chlorameisensäureester (Bd. III, S. 10) ein öliges, in Natronlauge lösliches Produkt, wielleicht [2-Mercapto-phenyl]-urethan, das bei der Destillation in Alkohol und Benzthiazolon serfalle (A. W. H., B. 20, 1797). Aus 2-Amino-thiophenol und Thiophosgen (Bd. III, S. 134) in Chloroform entsteht Bensthiazolthion C₀H₄ NH CS (Syst. No. 4278) (SEIDEL, J. pr. [2] 42, 447); dieses wird auch beim Kochen von 2-Amino-thiophenol mit Schwefelkohlenstoff erhalten (A. W. H., B. 20, 1789). 2-Amino-thiophenol gibt beim Erhitzen mit der aquimolekularen Menge Phenylsenföl unter Entwicklung von Schwefelwasserstoff Benzthiazolon-anil C₆H₄ NH C: N·C₆H₅ (Syst. No. 4278) (A. W. H., B. 20, 1796). Beim Erhitzen von 2-Amino-thiophenol mit Benzilsäure (Bd. X, S. 342) und Eisessig-Bromwasserstoff auf 100° entsteht 5-Oxo-6.6-diphenyl-2.3-benzo-1.4-thiazindihydrid C₆H₄ NH—CO (Syst. No. 4286) (La.). Bei der Einw. von a-Chlor-acetessigsäure-āthylester (Bd. III, S. 662) auf 2-Amino-thiophenol in āther. Lösung entsteht 5-Methyl-6-carbāthoxy-2.3-benzo-1.4-thiazin (Syst. No. 4308) (II., Gr.).

thiazin (Syst. No. 4308) (U., Gr.).

C₆H₇NS + H₃PO₄. Zerfällt beim Kochen mit Wasser in seine Komponenten (RAIKOW,

SCHTARBANOW, Ch. Z. 25, 245).

Funktionelle Derivate des 2-Ammo-thiophenols.

a) Derivate des 2-Amino-thiophenols, die lediglich durch Veränderung der Sulfhydrylgruppe entstanden sind.

Methyl-[2-amino-phenyl]-sulfid $C_7H_9NS = H_2N \cdot C_9H_4 \cdot S \cdot CH_3$. B. Das Hydrojodid entsteht bei kurzem Erwärmen von 2-Amino-thiophenol mit Methyljodid; man zerlegt es durch Kalilauge (A. W. HOFMANN, B. 20, 1793). — Flüssig. Siedet nicht ganz unzersetzt bei 234°. Unlöslich in Alkalien. Bildet mit Säuren beständige Salze. — Beim Kochen mit Schwefelkohlenstoff in Gegenwart von etwas festem Kaliumhydroxyd entsteht N.N'-Bis-[2-methylmercapto-phenyl]-thioharnstoff. — $C_7H_9NS + HCl$. Nicht ganz leicht lösliche Nadeln.

- **2-Amino-diphenylsulfid** $C_{12}H_{11}NS = H_2N \cdot C_6H_4 \cdot S \cdot C_6H_5 \cdot B$. Bei der Reduktion einer Lösung von 2-Nitro-diphenylsulfid (Bd. VI, S. 337) in Alkohol mit Zinnchlorür und Salzsäure in der Wärme (Mauthner, B. 39, 3597). Öl. Schwach basisch; die Salze werden durch Kochen mit Wasser vollständig zerlegt. $C_{12}H_{11}NS + H_2SO_4$. Nadeln.
- 2-Amino-diphenylsulfon $C_{12}H_{11}O_2NS = H_2N \cdot C_6H_4 \cdot SO_2 \cdot C_6H_5$. B. Aus 2-Nitro-diphenylsulfon (Bd. VI, S. 338) durch Reduktion mit alkoh. Zinnchlorürlösung (ULLMANN, PASDERMADJIAN, B. 34, 1153). Blättchen (aus verd. Alkohol). F: 122°. Unlöslich in Wasser, leicht löslich in Alkohol, Benzol und Eisessig.
- [2-Amino-phenylmercapto]-essigsäure, S-[2-Amino-phenyl]-thioglykolsäure $C_8H_9O_2NS = H_2N \cdot C_6H_4 \cdot S \cdot CH_2 \cdot CO_2H$. B. Beim Kochen von 5-0xo-2.3-benzo-1.4-thiazindhydrid $C_6H_4 \cdot S \cdot CH_2 \cdot CO_2H$. B. Beim Kochen von 5-0xo-2.3-benzo-1.4-thiazindhydrid $C_6H_4 \cdot S \cdot CH_2 \cdot CH$
- 2-[2-Amino-phenylmercapto]-benzoesäure, S-[2-Amino-phenyl]-thiosalicylsäure, 2'-Amino-diphenylsulfid-carbonsäure-(2) $C_{13}H_{11}O_{3}NS = H_{2}N \cdot C_{6}H_{4} \cdot S \cdot C_{6}H_{4} \cdot CO_{2}H$. B. Bei der Reduktion von 2'-Nitro-diphenylsulfid-carbonsäure-(2) (Bd. X, S. 126) mit Ferrosulfat in wäßr. Ammoniak (F. Mayer, B. 42, 3062). Krystalle (aus Eisessig). F: 156—157,6°. Gibt mit viel konz. Schwefelsäure auf dem Wasserbad 4-Amino-thioxanthon $C_{6}H_{4} < C_{6} > C_{6}H_{3} \cdot NH_{2}$ (Syst. No. 2643).
- 2.2'-Diamino-diphenylsulfid $C_{12}H_{12}N_2S=(H_2N\cdot C_6H_4)_2S$. B. Bei der Reduktion von 2.2'-Dinitro-diphenylsulfid (Bd. VI, S. 337) in essigsaurer Lösung mit Zinkstaub (NIETZKI, BOTHOF, B. 29, 2774). Nädelchen (aus Wasser). F: 85—86°. Das Diacetylderivat schmilzt bei 160°, das Dibenzoylderivat bei 162—163°.
- **2.2'-Diamino-diphenylsulfon** $C_{12}H_{12}O_2N_2S = (H_2N \cdot C_6H_4)_2SO_2$. B. Durch Nitrieren von Diphenylsulfon, sowie durch Einw. von SO_3 auf Nitrobenzol entsteht ein Dinitrodiphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. LOBRY DE BRUYN, BLANKSMA, R. 20 118) als 2.2'-Dinitro-diphenylsulfon, das zeitweise (vgl. R. 20 118) als 2.2'-Dinitro-

sulfon angesehen und in Bd. VI, S. 338, im Artikel 2.2'-Dinitro-diphenylsulfon mit abgehandelt worden ist. Nach TASSINABI, G. 28 I, 194; MARTINET, HAEHL, C. r. 178 [1921] 777; GRANDmougn, C. r. 174 [1922], 168, entsteht aber bei den genannten Verfahren nicht 2.2'- sondern 3.3'-Dinitro-diphenylsulfon. Das diesem entsprechende Reduktionsprodukt ist daher S. 426 als 3.3'-Diamino-diphenylsulfon aufgeführt.

2.2'-Diamino-diphenyldisulfid C₁₂H₁₃N₂S₂ = [H₂N·C₆H₄·S-]₂. B. Entsteht neben anderen Produkten bei 12-stdg. Erhitzen von 100 g Anilin und 35 g Schwefel auf 170—180° (K. A. HOFMANN, B. 27, 2807). Aus 2-Amino-thiophenol durch Oxydation mit Luftsauerstoff oder besser in salzsaurer Lösung mit Eisenchlorid (A. W. HOFMANN, B. 12, 2363; 13, 1231; Reisser, B. 38, 3434). — Hellgelbe Platten oder Nadeln (aus 50% jegem Alkohol). F: 93°; unlöslich in Wasser, leicht löslich in siedendem Alkohol (A. W. H., B. 12, 2364). — Beim Einleiten von Schwefelwasserstoff in die erwärmte Lösung des salzsauren 2.2'-Diamino-diphenyldisulfids erhält man 2-Amino-thiophenol (A. W. H., B. 12, 2364). Sättigt man die wäßr. Suspension von salzsaurem 2.2'-Diamino-diphenyldisulfid mit schwefliger Saure, so entsteht S-[2-Amino-phenyl]-thioschwefelsäure (s. u.) (Clayton Anil. Co., D. R. P. 120504; Frdl. 6, 88; C. 1901 I, 1127). 2.2'-Diamino-diphenyldisulfid gibt beim 1-stdg. Kochen mit überschüssigem Essigsäureanhydrid S.N-Diacetyl-[2-amino-thiophenol] (JACOBSON, B. 20, 1901). Geht beim Kochen mit Schwefelkohlenstoff, unter intermediärer Bildung von 2-Amino-thiophenol, in Benzthiazolthion C_eH₄ S CS (Syst. No. 4278) über (A. W. H., B. 20, 1793). Bei der Einw. von Chinizarindihydrid (Bd. VIII, S. 431) in Eisessig in Gegenwart von Borsäure entsteht die Verbindung (C₂₂H₁₆O₂N₂S₂)_X (s. u.) (FRIEDLÄNDER, MAUTHNER, C. 1904 II, 1175). Einw. von 2.2'-Diamino-diphenyldisulfid auf Phenaxthioniumsalze und auf Gallecyanin: F., M. — C₁₂H₁₂N₂S₂ + 2 HCl. Nadeln (K. A. H., B. 27, 2809).

Verbindung (C₂₂H₁₆O₂N₂S₂)_X. B. Aus Chinizarindihydrid (Bd. VIII, S. 431) und 2.2'-Diamino-diphenyldisulfid in Eisessig bei Gegenwart von Borsäure (FRIEDLÄNDER, MAUTHNER, C. 1904 II, 1175). — Blaue, metallglänzende Nadeln (aus Benzoesäureester und Chinolin). Schmilzt oberhalb 280°. Lözlich in deißem Nitrobenzol mit blauer, in konz. Schwefelsäure mit grüng Feshe. Lözlich in selkel Lözung von hydroschwefilgseurem Natzium Na S.O.

mit grüner Farbe. Löst sich in alkal. Lösung von hydroschwefligsaurem Natrium Na₂S₂O₄ mit goldgelber Farbe unter Bildung einer Küpe, welche Baumwolle blaugrau färbt.

- $S-[2-Amino-phenyl]-thioschwefelsäure, "Anilin-o-thiosulfonsäure" <math>C_6H_7O_2NS_2$ = H₂N·C₂H₄·S·SO₂H. B. Durch Sättigung der wäßt. Suspension von salzsaurem 2.2′-Diamino-diphenyldisulfid mit schwefliger Säure (Clayton Anil. Co., D. R. P. 120504; Frdl. 6, 88; C. 1901 I, 1127). — Nadeln. Schwer löslich in kaltem Wasser, leicht in heißem. — Die saure oder alkalische Lösung zersetzt sich beim Kochen unter Bildung von 2.2′-Diamino-diphenyldisulfid und schwefliger Säure. Natriumpolysulfid fällt die Lösungen der Alkalisalze hellgelb. Bei der Diazotierung entsteht Phenylendiazosulfid $C_6H_4 < \frac{N}{S} > N$ (Syst. No. 4491).
- b) Derivate des 2-Amino-thiophenols, die durch Veränderung der Aminogruppe (bezw. der Aminogruppe und der Sulfhydrylgruppe) entstanden sind.
- **2.2'-Bis-methylamino-diphenyldisulfid** $C_{14}H_{16}N_2S_2 = [CH_3 \cdot NH \cdot C_6H_4 \cdot S_-]_2$. B. Durch Schmelzen von 3-Methyl-benzthiazolon-imid $C_6H_4 \stackrel{N(CH_3)}{\longrightarrow} C: NH$ (Syst. No. 4278) mit Kaliumhydroxyd und Einw. von Luft auf das Reaktionsprodukt (HARRIES, LÖWENSTEIN, B. 27, 867). — Goldgelbe, vierseitige Tafeln (aus 50% igem Alkohol). F: 67—68°. Leicht löslich in allen Lösungsmitteln, außer in Wasser.
- 2 Pikrylamino thiophenol, 2'.4'.6' Trinitro 2 sulfhydryl diphenylamin, 2'.4'.6'-Trinitro-2-mercapto-diphenylamin $C_{19}H_9O_6N_4S = (O_9N)_9C_6H_9 \cdot NH \cdot C_6H_4 \cdot SH$. B. Aus Pikrylchlorid (Bd. V, S. 273) und salzsaurem 2-Amino-thiophenol in konzentrierter wäßrigsalkoholischer Lösung bei Gegenwart von Natriumacetat (Kehrmann, Schild, B. 32, 2606). — Orangegelbes Krystallpulver. — Durch Erwärmen mit alkoholischem Alkali entsteht 2.4-Dinitro-phenthiazin C₆H₄ NH C₆H₂(NO₂)₂ (Syst. No. 4198).
- 2-Acetamino-diphenylsulfid $C_{14}H_{13}ONS = CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot S \cdot C_4H_5$. B. Beim 1-stdg. Erhitzen von 2-Amino-diphenylsulfid in Eisessig mit Acetylchlorid (MAUTHNER, B. 39, 3598). Nadeln (aus Ligroin + Petroläther). F: 86°. Schwer löslich in Petroläther, sonst leicht löslich; farblos löslich in konz. Schwefelsäure.

- 2-Acetamino-diphenylsulfon $C_{14}H_{18}O_2NS = CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot SO_2 \cdot C_0H_5$. B. Beim kurzen Erwärmen von 2-Amino-diphenylsulfon mit Essigsäureanhydrid und Natriumacetat (Ullmann, Pasdermadjian, B. 34, 1153). Prismatische Krystalle (aus verd. Alkohol) F: 132°. Schwer löslich in heißem Wasser, leicht in Alkohol und Eisessig.
- 8.N-Diacetyl-[2-amino-thiophenol], S.N-Diacetyl-[2-amino-phenylmercaptan] $C_{10}H_{11}O_4NS=CH_4\cdot CO\cdot NH\cdot C_6H_4\cdot S\cdot CO\cdot CH_3$. B. Beim 1-stdg. Kochen von 2.2'-Diamino-diphenyldisulfid mit überschüssigem Essigsäureanhydrid (Jacobson, B. 20, 1901). Stäbchen (aus Alkohol). F: 135°. Ziemlich leicht löslich in Alkohol. Zerfällt beim Kochen mit alkoh. Kali unter Bildung von 2-Amino-thiophenol.
- 2-[2-Acetamino-phenylmercapto]-benzoesäure, S-[2-Acetamino-phenyl]-thiosalicylsäure, 2'-Acetamino-diphenylsulfid-carbonsäure-(2) $C_{15}H_{13}O_3NS = CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot S \cdot C_6H_4 \cdot CO_4H$. B. Aus 2'-Amino-diphenylsulfid-carbonsäure-(2) und Essigsäure-anhydrid (F. MAYER, B. 42, 3062). Blättchen. Schmilzt unscharf bei 188—196°. Leicht löslich in Methylalkohol und Alkohol, unlöslich in Benzol und Ligroin.
- 8.N-Dibenzoyl-[2-amino-thiophenol], S.N-Dibenzoyl-[2-amino-phenylmercaptan] $C_{20}H_{15}O_{2}NS = C_{4}H_{5}\cdot CO\cdot NH\cdot C_{4}H_{4}\cdot S\cdot CO\cdot C_{4}H_{5}$. B. Beim allmählichen Zugeben von Benzoylchlorid zu einer Suspension von Benzthiazol (Syst. No. 4195) in verd. Natronlauge (Reissert, B. 38, 3432). Stäbchen (aus Alkohol). F: 154—155°. Leicht löslich in Chloroform, in der Wärme in Alkohol, Eisessig und Aceton, schwerer löslich in Äther und siedendem Benzol, sehr wenig in Benzin, Ligroin.
- [2-Methylmercapto-phenyl]-thioharnstoff $C_8H_{10}N_2S_2 = H_2N \cdot CS \cdot NH \cdot C_6H_4 \cdot S \cdot CH_2$. B. Beim Behandeln von 2-Methylmercapto-phenylsenföl mit alkoh. Ammoniak (A. W. Hormann, B. 20, 1795). Prismen. F: 168°.
- N.N'-Bis-[2-methylmercapto-phenyl]-thioharnstoff $C_{18}H_{16}N_1S_3 = CS(NH\cdot C_6H_4\cdot S\cdot CH_3)_8$. B. Beim mehrtägigen Kochen von Methyl-[2-amino-phenyl]-sulfid (S. 399) mit CS_2 und etwas festem Kali; man wäscht das Produkt mit warmem Alkohol (A. W. Hofmann, B. 20, 1794) Krystalle (aus Alkohol). F: 162°. Äußerst schwierig löslich in Alkohol. Schmeckt intensiv bitter. Zerfällt bei der Destillation in Methyl-[2-amino-phenyl]-sulfid und 2-Methylmercapto-phenylsenföl.
- 2 Methylmercapto phenylisothiocyanat, 2 Methylmercapto phenylsenföl $C_8H_7NS_2=SC:N\cdot C_6H_4\cdot S\cdot CH_3$. B. Bei der Destillation von N.N'-Bis-[2-methylmercaptophenyl]-thioharnstoff, neben Methyl-[2-amino-phenyl]-sulfid (A. W. HOFMANN, B. 20, 1795). Ist nicht in ganz reinem Zustande erhalten worden. Flüssig. Siedet bei etwa 270°.

Substitutions produkte des 2-Amino-thiophenols.

- 5-Nitro-2-amino-thiophenol C₆H₆O₂N₂S = H₂N·C₆H₃(NO₂)·SH. B. Aus 6-Nitro-benzthiazol (Syst. No. 4195) durch alkoh. Kalilauge (MYLIUS, Dissertation [Berlin 1883], S. 43). Bei 4-stdg. Erhitzen von 2 g 6-Nitro-benzthiazolon (Syst. No. 4278) mit 25 ccm wäßr. Ammoniak (D: 0,95) im geschlossenen Rohr auf 160—170° (Jacobson, Kwaysser, A. 277, 242). Orangegelbe Platten (aus Alkohol + Wasser), hellgelbe Nadeln (aus Alkohol). F: 83—84° (J., K.), 84° (M.). In Alkalien mit braunroter Farbe löslich (M.). NaC₆H₅O₂N₂S. Rubinrote Prismen. Leicht löslich in Wasser; schwerer löslich in Natronlauge (M.).
- 5.5'-Dinitro-2.2'-diamino-diphenyldisulfid $C_{12}H_{16}O_4N_4S_2 = [H_2N\cdot C_6H_3(NO_9)\cdot S-]_2$. B. Beim Versetzen einer Lösung von 5-Nitro-2-amino-thiophenol in verd. Salzsäure mit Eisenchlorid (Jacobson, Kwaysseb, A. 277, 243). Citronengelbe Nadeln (aus Alkohol). F: 236—237°.
- 5 Nitro 4' äthoxy 2 [4 nitro anilino] diphenylsulfoxyd, 4.4' Dinitro-2-[4-äthoxy-phenylsulfoxyd]-diphenylamin $C_{s0}H_{17}O_{e}N_{s}S = O_{s}N\cdot C_{e}H_{s}\cdot NH\cdot C_{s}H_{s}(NO_{s})\cdot SO\cdot C_{e}H_{s}\cdot O\cdot C_{s}H_{s}$. B. Aus 4.4'-Dinitro-diphenylamin (Bd. XII, S. 716) und p-Phenetolsulfinsure (Bd. XI, S. 19) mit Phosphoroxychlorid (SMILES, HILDITCH, Soc. 93, 153). Tief oliv-grünes, krystallinisches Pulver (aus Chloroform + Ather). F: 170°. Schwer löslich in Ather, leicht in Chloroform und Alkohol mit brauner oder braungrüner Farbe.

3-Amino-phenol und seine Derivate.

3-Amino-1-oxy-benzol, 3-Amino-phenol, m-Amino-phenol $C_6H_7ON=H_2N\cdot C_6H_4\cdot OH$.

Bildung. Bei der Reduktion von 3-Nitro-phenol (Bd. VI, S. 222) mit Zinn und Salzsäure (Bantlin, B. 11, 2101) oder Zinnehlorür und Salzsäure (Goldschmidt, Sunde, Ph. Ch. 56, 7, 8). Beim Erhitzen von Resorein (Bd. VI, S. 796) mit Salmiak und wäßr. Ammoniak auf 2000 (Leonhardt & Co., D. R. P. 49060; Frdl. 2, 14). Durch Erhitzen von Resorein mit wäßr.

Natriumdisulfitlösung und Behandlung des Reaktionsproduktes mit Ammoniak (Bad. Anilin-E. Sodaf., D. B. P. 115335; C. 1901 II, 1136) oder direkt durch Erhitzen von Resorcin mit Ammoniumsulfit und wäßr. Ammoniak auf 100—125° (B. A. S. F., D. R. P. 117471; C. 1901 I, 349). Aus m-Phenylendiamin durch Überführung in [3-Amino-phenyl]-oxamidsaure (S. 47), Diazotieren derselben in verdünnter Schwefelsäure, Erwärmen der die Diazoverbindung enthaltenden Lösung im Wasserbade bis zum Aufhören der Stickstoffentwicklung und Eindampfen der Flüssigkeit, wodurch aus der entstandenen [3-Oxy-phenyl]-oxamidsäure (S. 417) die Oxalsäure abgespalten wird (B. A. S. F., D. R. P. 77131; Frdl. 4, 107). Durch Verschmelzen von Anilin-sulfoneäure-(3) (Syst. No. 1923) mit Natron bei 280-290° (Ges. f. chem. Ind., D. R. P. 44792; Frdl. 2, 11). Aus dem Natriumsalz der 3-Amino-phenolsulfonsäure-(4) oder der 5-Amino-phenol-sulfonsäure-(2) (Syst. No. 1926) durch Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 180° oder durch trockne Destillation mit Calcium-

hydroxyd (Andri, Dissertation [Bonn 1909], S. 16, 25).

Darstellung. Man erhitzt 10 kg Resorcin mit 6 kg Salmiak und 30 kg 10°/sigem Ammoniak 12 Stdn. im Autoklaven auf 200°; nach dem Erkalten säuert man mit Salzsäure an, entfernt durch Ausäthern unverändertes Resorcin und neutralisiert mit Soda, wodurch 3-Aminophenol krystallinisch ausgeschieden wird; der Rest wird durch Ausäthern der Mutterlauge gewonnen (LEONHARDT & Co., D. R. P. 49060; Frdl. 2, 14; vgl. Ikuta, Am. 15, 40). — Man schmilzt 20 kg NaOH mit 4 kg Wasser, trägt 10 kg scharf getrocknete Anilin-sulfonsäure-(3) oder deren Natriumsalz ein und erhitzt 1 Stde. auf 280-290°, löst die Schmelze in Wasser, säuert mit Salssäure an und filtriert von harzartigen Substanzen ab; aus dem Filtrat wird das 3-Amino-phenol mit Soda oder Natriumdicarbonat in Freiheit gesetzt, mit Ather ausgezogen und aus heißem Wasser umkrystallisiert (Ges. f. chem. Ind., D. R. P. 44792; Frdl. 2, 11; R. MEYER, SUNDMACHER, B. 32, 2113).

Physikalische Eigenschaften. Prismen (aus Toluol). F: 122—123° (IKUTA, Am. 15, 40). Leicht löslich in Äther, Alkohol und Amylalkohol, ziemlich leicht in heißem Wasser, schwer in Benzol, sehr wenig in Ligroin (Ges. f. chem. Ind., D. R. P. 44792; Frdl. 2, 11). Verlauf der Leitfähigkeit während des Neutralisierens ("Leitfähigkeitstitration") als Maß der Acidität: THIM., ROMER, Ph. Ch. 68, 739. 3-Amino-phenol liefert mit Phosphorsaure kein krystalli-

sierendes Salz (RAIKOW, SCHTARBANOW, Ch. Z. 25, 245).

Okemisches Verhalten. Nach Oxydation von 3-Amino-phenol mit neutralisierter Sulfo-monopersäure wurden isoliert: 3.3'-Dioxy-azoxybenzol (Syst. No. 2212), 3-Nitro-phenol, 3-Nitro-brenzoatechin (Bd. VI, S. 787) und 4-Nitro-brenzoatechin (Bd. VI, S. 788) (BAMERGER, CERKIS, J. pr. [2] 68, 474). Bei der Einw. von überschüssigem Brom auf die Lösung von 3-Amino-phenol in Eisessig entsteht 2.4.6-Tribrom-3-amino-phenol (Ikuta, Am. 15, 44; vgl. Bamberger, B. 48 [1915], 1356). Durch Einw. von Amylnitrit auf 3-Amino-phenol in alkoholisch-alkalischer Lösung entsteht ein Nitroscaminophenol (LEONHARDT & Co., D. R. P. 82635; Frdl. 4, 110). Beim Eintragen der alkoh. Lösung des salzsauren 3-Aminophenols in die alkoh. Lösung von Amylnitrit unterhalb 0° entsteht m-Oxy-benzoldiazoniumchlorid (Syst. No. 2199) (CAMERON, Am. 20, 234). Durch Diazotierung von 3-Amino-phenol in schwefelsaurer Lösung und Verkochen der Diazoniumsulfatlösung erfolgt Übergang in Resorcin (BANTLIN, B. 11, 2101). 3-Amino-phenol gibt beim Erhitzen mit Schwefel auf 260° einen braunen, Baumwolle direkt färbenden schwefelhaltigen Farbstoff (VIDAL, D. R. P. 107236; C. 1900 I, 880). Beim Erhitzen von 3-Amino-phenol mit Schwefelchlorür entsteht ein braunschwarzer Farbstoff (Cassella & Co., D. R. P. 103646; C. 1899 II, 639). Beim Erhitzen von 1 Tl. 3-Amino-phenol mit 3 Tln. konz. Schwefelsäure im Wasserbade entsteht 5-Amino-phenol-sulfonsaure-(2) (Syst. No. 1926) (Öhler, D. R. P. 70788; Frdl. 3, 59; vgl. ANDRA, Dissertation [Bonn 1909], S. 31).

3-Amino-phenol liefert beim Kochen mit Pikrylchlorid (Bd. V, S. 273) in alkoh. Lösung

3-Pikrylamino-phenol (S. 411) (WEDEKIND, B. 83, 433). Beim Behandeln von 1 Mol.-Gew. 3-Amino-phenol mit 2 Mol.-Gew. 2-Nitro-bensylchlorid (Bd. V, S. 327) in Gegenwart von Natriumacetat in alkoh. Lösung entsteht 3-[Bis-(2-nitro-benzyl)-amino]-phenol (S. 414) (Lellmann, Mayer, B. 25, 3583; vgl. Bakunin, Profilo, G. 37 II, 240). Durch Erhitzen von salzsaurem 3-Amino-phenol mit 3 Tln. Methylalkohol im geschlossenen Gefäß auf 170° wird 3-Dimethylamino-phenol gebildet; analog erfolgt mit Äthylalkohol Bildung von 3-Di-athylamino-phenol (Badische Anilin- u. Sodaf., D. R. P. 44002; Frill. 2, 70). Beim Erhitzen von 3-Amino-phenol mit Hydrochinon und Schwefel auf 200° entsteht ein schwarzer Schwefelfarbstoff (Dt. Vidal-Farbst.-A.-G., D. R. P. 114802; C. 1900 II, 932). Kocht man salzsaures

3-Amino-phenol mit Glycerin, 3-Nitro-phenol und konz. Schwefelsäure, so wird 7-Oxychinolin (Syst. No. 3114) gebildet (Skraup, M. 3, 534, 559; D. R. P. 14976; Frdl. 1, 178;
vgl. Leelmann, B. 20, 2175). Aus 3-Amino-phenol und Salicylaldehyd in verd. Essigsäure
entsteht 3-Salicylalamino-phenol (Semier, Shepperard), Soc. 95, 1947). Beim Versetzen von 1 Tl. 3-Amino-phenol mit 1,1 Tl. Resignaureanhydrid entsteht 3-Acetamino-phenol; erhitzt man 1 Tl. 3-Amino-phenol mit 3-4 Tln. Essignaureanhydrid auf 150-160°, so erhält man [3-Acetamine-phenyl]-acetat (IKUTA, Am. 15, 41, 42). Beim Erhitzen von 3-Amino-phenol

mit Benzoessureanhydrid in Toluol entsteht 3-Benzamino-phenol (R. MEYER, SUNDMACHER, B. 32, 2124); beim Schütteln einer Lösung von 1,5 g 3-Amino-phenol in 15 g 10% iger Natronlauge mit 4 g Benzoylchlorid wird [3-Benzamino-phenyl]-benzoat gebildet (I., Am. 15, 43). Beim Kochen von 3-Amino-phenol mit 5 Thn. Oxalsäurediäthylester entsteht [3-Oxy-phenyl]-oxamidsäure-äthylester; erhitzt man gleiche Mengen von 3-Amino-phenol und Oxalsäure-diäthylester im Druckrohr auf 170%, so wird N.N'-Bis-[3-Oxy-phenyl]-oxamid gebildet (R. MEYER, SUNDMACHER, B. 32, 2117, 2118). 3-Amino-phenol reagiert mit 1 Mol.-Gew. Phthalsäureanhydrid (Syst. No. 2479) in heißem Toluol unter Bildung von N-[3-Oxy-phenyl]-phthalamidsäure (S. 417) (R. M., Su., B. 32, 2119). Erhitzt man 3-Amino-phenol mit Phthalsäureanhydrid in Gegenwart von konz. Schwefelsäure auf 180—190%, so erfolgt Kondensatios ur Rhodamin (Formel I bezw. II) (Syst. No. 2933) (Bad. Anilin- u. Sodaf., D. R. P. 44002; Frdl. 2, 68; R. M., Su., B. 32, 2120). Mit Bernsteinsäureanhydrid (Syst. No. 2475) erfolgt Bildung eines analogen Succineinfarbstoffes (BAYER & Co., D. R. P. 51983; Frdl. 2, 87). Bei der Einw. von Kaliumcyanat auf salzsaures 3-Amino-phenol in wenig heißem Wasser entsteht [3-Oxy-phenyl]-harnstoff (R. M., Su., B. 32, 2114). Beim Eindampfen von salzsaurem 3-Amino-phenol mit Kaliumrhodanid in wenig Wasser erhält man [3-Oxy-phenyl]-thioharnstoff (R. M., Su., B. 32, 2115). Beim Erwärmen von 3-Amino-phenol mit Phenylsenföl in alkoh. Lösung entsteht N-Phenyl-N'-[3-oxy-phenyl]-thioharnstoff (R. M., Su., B. 32, 2116). Beim Kochen von 3-Amino-phenol mit Schwefelkohlenstoff in alkoh. Lösung

wird N.N.-Bis-[3-oxy-phenyl]-thioharnstoff gebildet (R. M., Su., B. 32, 2116). 3-Amino-phenol gibt mit Benzaldehyd und Brenztraubensäure in Alkohel im Wasserbade 7-Oxy-2-phenyl-chinolin-carbonsäure-(4) (Syst. No. 3344) (Borsche, B. 41, 3889). Beim 3-stdg. Erhitzen äquimolekularer Mengen 3-Amino-phenol und Acetessigester (Bd. III, S. 632) im Wasserbade entsteht ein öliges Produkt (β -[3-Oxy-phenylimino]-buttersäure-äthylester bezw. β -[3-Oxy-anilino]-crotonsäure-äthylester), das beim Erhitzen auf 250—260° in 4.7(?)-Dioxy-2-methylchinolin (Syst. No. 3137) übergeht (v. Pechmann, B. 32, 3686; v. Pe., Schwarz, B. 32, 3704). Erhitzt man aquimolekulare Mengen 3-Amino-phenol und Acetessigester im Druckrohr auf 150°, so wird 2.7(?)-Dioxy-4-methyl-chinolin (Syst. No. 3137) gebildet (v. Pe., B. 32, 3688; v. Pe., Schw., B. 32, 3700). Kocht man 10—12 Stdn. 100 g 3-Amino-phenol mit 140 g Acetessigester, 200 g Alkohol und 200 g 50% iger alkoh. Zinkchloridlösung, so erhält man 7-Amino-4-methyl-cumarin $H_1N \cdot C_6H_3 < 0$ (Syst. No. 2643), 2.7(?) - Dioxy--¢0 4-methyl-chinolin (Syst. No. 3137), 7(?)-Oxy-2.4.4-trimethyl-dihydrochinolin (Syst. No. 3113) C₆H₂ C(CH₃)₃ CH₂ (Syst. No. 4281 (v. Pr., B. 32, $HC = C(CH_3)$ und die Verbindung -0/ 3687; v. Pr., Sohw., B. 32, 3696, 3699). Beim Kochen von 3-Amino-phenol mit p-Toluolsulfochlorid (Bd. XI, S. 13) in alkoh. Lösung entsteht p-Toluolsulfonsaure-[3-oxy-anilid] (S. 419) (Teöger, Ullmann, J. pr. [2] 51, 442). Beim Erhitzen von 3-Amino-phenol mit salzsaurem Anilin oder von salzsaurem 3-Amino-phenol mit Anilin im Autoklaven auf 210° bis 215° wird 3-Oxy-diphenylamin gebildet (Bad. Anilin- u. Sodaf., D. R. P. 46869; Frdl. 2, 12). Beim Erwärmen von 3-Amino-phenol mit salzsaurem 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in Alkohol erhält man einen in Wasser leicht löslichen Farbstoff, der tannierte Baumwolle grauschwarz färbt (Ges. f. chem. Ind., D. R. P. 55059; Frdl. 2, 185). Beim Erhitzen von 3-Amino-phenol mit p-Phenylendiamin oder 4-Amino-phenol und Schwefel auf 200° werden schwarze Schwefelfarbstoffe gebildet (Dt. VIDAL-Farbst.-A.-G., D. R. P. 114802; C. 1900 II, 932). Einw. von Bernsteinsäureanhydrid und von Phthalsäureanhydrid auf 3-Aminophenol s. oben.

Verwendung. Verwendung von 3-Amino-phenol zur Darstellung von Azofarbstoffen: Bayer & Co., D. R. P. 65055; Frdl. 3, 659; Cassella & Co., D. R. P. 150914; C. 1904 I, 1309; Soc. St. Denis, D. R. P. 169579; C. 1906 I, 1721; Chem. Fabr. Griesheim-Elektron, D. R. P. 173248; C. 1906 II, 987; vgl. auch Schultz, Tab. No. 90. Verwendung zur Darstellung von Schwefelfarbstoffen: Vidal, D. R. P. 107236; 114802; C. 1900 I, 880; 1900 II, 932. Erzeugung eines braunen Farbstoffs auf der Faser durch Behandlung derselben mit salssaurem 3-Amino-phenol unter Zusatz von Kaliumferrocyanid und Natriumchlorat: H. Schmid, D. R. P. 210643; Frdl. 9, 858.

Salze des 3-Amino-phenols: IKUTA, Am. 15, 41. — $C_6H_7ON + HCl$. Prismen (aus Wasser). F: 229°. — $C_6H_7ON + HBr$. Prismen. F: 224°. — $C_6H_7ON + HI$. Prismen. F: 209°. — $C_6H_7ON + H_2SO_4$. Tafeln oder Nadeln. F: 152°.

Funktionelle Derivate des 3-Amino-phenols.

- a) Derivate des 3-Amino-phenols, die lediglich durch Veränderung der Hydroxylgruppe entstanden sind.
- 3-Amino-phenol-methyläther, 3-Amino-anisol, m-Anisidin C,H₂ON = H₂N·C₂H₄·O·CH₂. B. Bei der Reduktion von 3-Nitro-anisol (Bd. VI, S. 224) mit Zinn und Salzsäure (Pfaff, B. 16, 614; Körner, Wender, G. 17, 492; Mauther, B. 39, 3597), mit Zinkstaub und Salzsäure (Kock, B. 20, 1568) oder mit alkoh. Na₂S₂ (Blanesma, R. 28, 107). Öl. Bleibt bei —12° flüssig; Kp_{755,5}: 243,5° (Körner, Wender, G. 17, 492); Kp: 251° (korr.) (Pfaff, B. 16, 614, 1139). Läßt sich durch Diazotierung, Eintragen der Diazonium-salzlösung in die wäßr. Lösung von xanthogensaurem Kalium bei 85—90° und Verseifung des so entstandenen Xanthogensäureesters mit siedender alkoh. Kalilauge in 3-Methoxythiophenol (Bd. VI, S. 833) überführen (M.). C₇H₂ON+HCl. Krystalle (P., B. 16, 615).
- 3-Amino-phenol-šthylšther, 3-Amino-phenetol, m-Phenetidin $C_8H_{11}ON=H_2N\cdot C_8H_4\cdot O\cdot C_8H_5$. B. Aus 3-Nitro-phenetol (Bd. VI, S. 224) mit Zinn und Salzsäure (Ph. Wagner, J. pr. [2] 32, 71). Flüssig. $Kp_{100}:180-205^{\circ}$. $C_8H_{11}ON+HCl$. Nadeln. Leicht löslich in Wasser und Alkohol. $2C_8H_{11}ON+H_2SO_4+1^{1}/_2H_2O$. Nadeln. Leicht löslich in Wasser. $C_8H_{11}ON+HCl+SnCl_2$. Blättchen.
- 3-Amino-phenol-phenyläther, 3-Amino-diphenyläther $C_{12}H_{12}ON = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_5$. B. Aus 3-Nitro-diphenyläther (Bd. VI, S. 224) durch Reduktion mit Zinn und Salzsäure (Ullmann, Sponagel, A. 350, 104). Beim Erhitzen von 17,2 g 3-Brom-anilin (Bd. XII, S. 633) mit einer Lösung von 6 g Ätzkali in 25 g Phenol in Gegenwart von etwas Kupfer auf 180—200° (U., Sp., A. 350, 104). Prismen (aus Benzol + Ligroin). F: 37°. Kp₁₄: 190—191°; Kp: 315°. Leicht löslich in den meisten Lösungsmitteln außer Petroläther. Hydrochlorid. Blättchen. F: ca. 139°. Leicht löslich in Wasser. Sulfat. F: 187° bis 189°.
- 8-Amino-phenol-bensyläther $C_{13}H_{12}ON = H_2N \cdot C_6H_4 \cdot O \cdot CH_3 \cdot C_6H_5$. B. Durch Umsetzung von 3-Nitro-phenol-alkali mit Bensylchlorid und Reduktion des entstandenen [3-Nitro-phenyl]-bensyl-athers (Höchster Farbw., D. R. P. 141516; Frdl. 7, 463; C. 1903 I, 1381). Verwendung zur Darstellung von Monoazofarbstoffen: H. F. Hydrochlorid. Blättchen. F: 149°.
- Äthylenglykol-bis-[3-amino-phenyläther] $C_{14}H_{16}O_2N_2 = [H_2N\cdot C_0H_4\cdot O\cdot CH_2-]_s$. Bei der Reduktion des Äthylenglykol-bis-[3-nitro-phenyl]-äthers (Bd. VI, S. 224) mit Zinn und Salzsäure (E. Wagner, J. pr. [2] 27, 209). Prismen (aus Alkohol). F: 135°. Unlöslich in kaltem Wasser, etwas löslich in heißem, ziemlich leicht in siedendem Alkohol und Benzol, schwer in Äther. Wird durch Eisenchlorid braunschwarz gefärbt.
- [3-Amino-phenyl]-bensoat $C_{12}H_{11}O_2N=H_2N\cdot C_2H_4\cdot O\cdot CO\cdot C_6H_5$. B. Bei der Reduktion des Benzoesäure-[3-nitro-phenyl]-esters (Bd. IX, S. 119) mit Zinnehlorür und Salzsäure in Gegenwart von Alkohol (Ullmann, Lorwenthal, A. 332, 65). Nadeln (aus Benzol + Ligroin). Leicht löslich in heißem Alkohol, Benzol und Äther, sehr wenig in Ligroin, unlöslich in Wasser.
- [3-Amino-phenyl]-kohlensäure-methylanilid, Methyl-phenyl-carbamidsäure-[3-amino-phenyl]-ester $C_{14}H_{14}O_2N_2=H_2N\cdot C_0H_4\cdot O\cdot CO\cdot N(CH_4)\cdot C_0H_6$. B. Man reduziert die alkoh. Lösung des Methyl-phenyl-carbamidsäure-[3-nitro-phenyl]-esters (Bd. XII, S. 417) mit Zinnchlorür und Salzsäure (Lellmann, Benz, B. 24, 2110). Gelbes Krystall-pulver. F: 94°.
- [8 Amino phenyl] kohlensäure diphenylamid, Diphenylcarbamidsäure [8-amino-phenyl]-ester $C_{19}H_{16}O_2N_9 = H_2N \cdot C_6H_4 \cdot O \cdot CO \cdot N(C_6H_5)_9$. B. Durch Reduktion des Diphenylcarbamidsäure-[3-nitro-phenyl]-esters (Bd. XII, S. 428) mit Zinnchlorür und Salzsäure in Gegenwart von Alkohol (Lellmann, Benz, B. 24, 2111). Rötliche Nadeln. F: 132—133°.
 - b) Derivate des 3-Amino-phenols, die durch Veränderung der Aminogruppe (bezw. der Aminogruppe und der Hydroxylgruppe) entstanden sind.
 - 3-Methylamino-phenol C,H,ON = CH, NH·C,H,OH. B. Beim Erhitzen von 3-Methylamino-benzol-sulfonsäure-(1) (Syst. No. 1923) mit Kali auf 200—220° (Bad. Anilin- u. Sodaf., D. R. P. 48151; Frdl. 2, 13; GNEHM, SOHEUTZ, J. pr. [2] 63, 422). Erstarrendes Öl.

N(CH₃)₂

Kp₁₈: 170° (G., Son.). Schwer löslich in kaltem Wasser und Ligroin (B.A.S.F., D. R. P. 48151), löslich in heißem Wasser, sehr leicht löslich in Essigester (G., Son.), in Alkohol, Äther, Benzol; sehr leicht löslich in Säuren und Alkalien (B.A.S.F., D.R. P. 48151). — Kondensation von 3-Methylamino-phenol mit Benzaldehyd bezw. dessen Nitro-, Oxy- und Aminoderivaten in Gegenwart wasserentziehender Mittel zu Leukobasen von Triphenylmethanfarbstoffen: BAYEB & Co., D. R. P. 62574; Frdl. 8, 98. Durch Erhitzen von 3-Methylamino-phenol mit Phthalsäureanhydrid in Gegenwart von Zinkohlorid bei 170—180° erhält man das N.N'-Dimethyl-rhodamin (Formel I bezw. II) (Syst. No. 2933) (B.A. S. F., D. R. P. 48731; Frdl. 2, 77).

Beim Erhitzen mit Phthalimid in Gegenwart von Borsäure wird das Amid der 2-[4-(Methylamino)-2-oxy-benzoyl]-benzoesaure (Syst. No. 1920) gebildet (B. A. S. F., D. R. P. 162034; C. 1905 II, 729). Beim Kochen von 3-Methylamino-phenol mit Acetessigester und ZnCl, in Alkohol erhält man 7-Methylamino-4-methyl-cumarin CH₃·NH·C₆H₃CO $C(CH_2): CH$

2643) (v. Pechmann, Schwarz, B. 32, 3697). Überführung von 3-Methylamino-phenol in braune Schwefelfarbstoffe durch Erhitzen mit Phenolen oder aromatischen Aminen in Gegenwart von Schwefel: Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649.

3-Dimethylamino-phenol $C_8H_{11}ON = (CH_8)_2N \cdot C_6H_4 \cdot OH$.

B. Beim 12-stdg. Erhitzen von Resorcin (Bd. VI, S. 796) mit einer wäßr. Lösung von Dimethylamin und salzsaurem Dimethylamin im Autoklaven auf ca. 200° (Leonhardt & Co., D. R. P. 49060; Frdl. 2, 14). Beim Erhitzen von Resorcin mit der wäßr. Lösung von Dimethylamin und schwefligsaurem Dimethylamin im geschlossenen Gefäß auf 125° (Bad. Anilin- u. Sodaf., D. R. P. 121683; C. 1901 II, 74). Aus Dimethylanilin durch Sulfurieren mit rauchender Schwefelsäure (30% Anhydridgehalt) bei 55-60% und Verschmelzen der entstandenen Dimethylanilin-sulfonsaure (Syst. No. 1923) mit Natron bei 270-3006 (Ges. f. chem. Ind., D. R. P. 44792; Frdl. 2, 11). Durch Diazotierung von N.N-Dimethyl-m-phenylendiamin (S. 40) in verd. Schwefelsäure und Kochen der Diazoniumsalzlösung (B. A. S. F., D. R. P. 44 002; Frdl. 2, 70). Bei 8-stdg. Erhitzen von salzsaurem 3-Amino-phenol mit 3 Tln. Methylalkohol im Autoklaven auf 170° (B. A. S. F., D. R. P. 44002; Frdl. 2, 70). Durch Erhitzen der 3-Amino-phenol-sulfonsäure-(4) (Syst, No. 1926) mit 1 Mol.-Gew. Methyljodid und 1 Mol.-Gew. Kaliumhydroxyd in wäßr. Lösung im Autoklaven auf 100—110° und 8—9-stdg. Erhitzen des so erhaltenen methylaminophenolsulfonsauren Salzes mit methylschwefelsaurem Natrium in waßr. Lösung im Autoklaven auf 170-180° (BAYER & Co., D. R. P. 82765; Frdl. 4, 109). Reinigung des technischen 3-Dimethylamino-phenols durch Destillation im Vakuum: v. MEYENBURG, B. 29, 502.

Nadeln (aus Ligroin). F: 85° (BIEHRINGER, J. pr. [2] 54, 222). Kp: 265—268° (Ges. f. chem. Ind., D. R. P. 44792; LEFÈVEE, Bl. [3] 15, 901); Kp₁₀₀: 206°; Kp₅₀: 194°; Kp₅: 153° (v. Mey., B. 29, 502). Leicht löslich in Alkohol, Ather, Benzol, Aceton und Schwefelkohlenstoff, weniger leicht in heißem Ligroin, schwer in heißem Wasser (Biz.). Löslich in verd. Säuren und Atzalkalien; wird aus der sauren Lösung durch vorsichtiges Neutralisieren mit

Atzalkali, aber nicht mit Soda abgeschieden (Brs.).

Reduziert ammoniakalische Silberlösung und salzsaure Goldlösung (BIE.). Liefert beim Behandeln mit Natriumnitrit in salzsaurer Lösung bei 0° 4-Dimethylamino-benzochinon-(1.2) oxim -(1) bezw. 6-Nitroso-3-dimethylamino-phenol (Syst. No. 1874) (B. A. S. F., D. R. P. 45268; Frdl. 2, 174; Möhlau, B. 25, 1058). Geschwindigkeit der Abspaltung von Methylgruppen beim Kochen von 3-Dimethylamino-phenol mit Jodwasserstoffsaure: Gold-SCHMIEDT, M. 27, 861, 870. — 3-Dimethylamino-phenol gibt mit Methyljodid bei 100° Trimethyl-[3-oxy-phenyl]-ammoniumjodid (Hantzsch, Davidson, B. 29, 1533). Beim Erhitzen von 3-Dimethylamino-phenol mit Methylenchlorid im Autoklaven auf 130—140° erhält man 4.4'-Bis-dimethylamino-2.2'-dioxy-diphenylmethan (Syst. No. 1869) (BAYER & Co., D. R. P. 54190; Frdl. 2, 61). Beim Erhitzen von 2 Mol. Gew. 3-Dimethylamino-phenol mit 1 Mol. Gew. Benzotrichlorid (Bd. V, S. 300) in Benzol im Wasserbade entsteht das Tetramethylrosamin CCH. HO-C₂₃H₂₃ON₂Cl (s. bei der zugehörigen Carbinolbase, dem

3.6-Bis-dimethylamino-9-phenyl-xanthydrol der nebenstehenden Formel (Syst. No. 2642) (HEUMANN, REY, B. 22, 3002; vgl. B. A. S. F., D. R. P. 56018; Frdl. 3, 168). Beim Erhitzen mit Phenolen, z. B. Resorcin, und Schwefel erhält man braune Schwefelfarbstoffe (Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649). Bei der Kinw. von wäßr. Formaldehydlösung auf 3-[Dimethyl-

amino]-phenol in Alkohol (LEONHARDT & Co., D.R.P. 58955; Frdl. 3, 92; MÖHLAU, KOCH, B. 27, 2896; Brs., J. pr. [2] 54, 223) oder besser bei Einw. von Formaldehyd auf die Salze des 3-Dimethylamino-phenols mit Säuren oder Alkalien in kalter wäßriger Lösung (Lzo. & Co., D. R. P. 63081; Frdl. 3, 93) entsteht 4.4'-Bis-dimethylamino-2.2'-dioxy-diphenylmethan (Syst. No. 1869). Aus 3-Dimethylamino-phenol und Acetaldehyd in Gegenwart von Salzasure bildet sich a.a-Bis-[4-dimethylamino-2-oxy-phenyl]-āthan CH₃·CH[C₆H₃(OH)·N(CH₃)₃]₃ (Syst. No. 1869) (Mö., Косн, B. 27, 2895; Вге., J. pr. [2] 54, 228). Erwärmt man 2 Mol.-Gew. 3-Dimethylamino-phenol mit 1 Mol.-Gew. Chloralhydrat (Bd. I, S. 619), so entsteht ein Produkt, das bei der Oxydation mit Eisenchloridlösung in einen blauen Farbstoff übergeht; dieser wird durch Kochen der wäßr. Lösung in einen roten Farbstoff der Rhodamingruppe umgewandelt (B. A. S. F., D. R. P. 81042; Fidl. 4,178). Beim Erhitzen von 3-[Dimethylamino]-phenol in verdünnt-schwefelsaurer Lösung mit Benzaldehyd und Alkohol im Wasserbade erhält man 4.4'-Bis-dimethylamino-2.2'-dioxy-triphenylmethan (Syst. No. 1869) (Brs., J. pr. [2] 54, 251; vgl. Bay. & Co., D.R.P. 62574; Frdl. 3, 98). 3-Dimethylamino-phenol left mit Chinondimind (Bd. VII, S. 621) in heißem Alkohol einen blauen Farbstoff (Leo. & Co., D. R. P. 68557; Frdl. 3, 385). 3-Dimethylamino-phenol kondensiert sich mit 2-Oxy-benzochinon-(1.4)-oxim-(1) (4-Nitroso-resorcin) (Bd. VIII, S. 235) in kons. Schwefelsäure im Wasserbade zu einem Farbstoff, dem als Leukoverbindung das 7-Dimethylamino-2-oxy-phenoxazin der nebenstehenden Formel (Syst. No. 4382) entspricht (Möhlau, B. 25, 1065). Bei der Kondensation von 3-Dimethylamino-phenol mit Protocatechu-aldehyd (Bd. VIII, S. 246) in siedender verdünnter Schwefelsäure erhält man 4.4'-Bis-dimethylamino-2.2'.3".4"-tetraoxy-triphenylmethan ("Leukoprotorot") (Syst. No. 1871) (LIEBERMANN, B. 86, 2919). Beim Erhitzen von 2 Mol.-Gew. 3-Dimethylamino-phenol mit 1 Mol.-Gew. Bernsteinsäure bezw. Bernsteinsäureanhydrid in Gegenwart von Zinkchlorid auf 170° entsteht der Succineinfarbstoff der Formel I bezw. II (Syst. No. 2933) (BAY. & Co., D. R. P. 51983; Frdl. 2, 87). Beim Erhitzen mit Succinimid (Syst. No. 3201) und Borsäure auf 150—175° entsteht β -[4-Dimethylamino-2-oxy-

benzoyl]-propionsäure-amid(CH₃)₂N·C₆H₃(OH)·CO·CH₃·CH₃·CO·NH₃(Syst. No. 1920) (Weinschenk, C. 1903 II, 1433). Aus äquimolekularen Mengen 3-Dimethylamino-phenol und Phthalsäureanhydrid erhält man durch Kochen in Bensollösung (Basler Chemische Fabrik Bindschedler, D. R. P. 85931; Frdl. 4, 261) oder durch Verschmelzen bei 100° (Basler Chem. Fabr. Bind., D. R. P. 87068; Frdl. 4, 262) 2-[4-Dimethylamino-2-oxy-benzoyl]-benzoesäure (Syst. No. 1920). Beim Erhitzen mit Phthalsäureanhydrid auf 170—175° wird Tetramethylrhodamin (Formel III bezw. IV) (Syst. No. 2933) gebildet (B. A. S. F., D. R. P.

$$III. \underbrace{\begin{smallmatrix} CO \\ C_0H_4 & CO - O \\ (CH_3)_2N \cdot & & & \\ (CH_3)_2N \cdot & & \\ (CH_3)_2N \cdot & & & \\ (CH_3)_2N \cdot & & \\$$

44002; Frdl. 2, 70; Noelting, Dziewoński, B. 38, 3518). Beim Schütteln einer Lösung von 2 Mol.-Gew. 3-Dimethylamino-phenol-natrium mit einer benzolischen Lösung von 1 Mol.-Gew. Phosgen entsteht Bis-[3-dimethylamino-phenyl]-carbonat (S. 407); läßt man die Benzollösung von 3-Dimethylamino-phenol in viel überschüssige Phosgenlösung fließen, so wird [3-Dimethylamino-phenyl]-kohlensäure-chlorid (CH₃)₂N·C₂H₄·O·COCl (S. 408) gebildet (v. Mexenburg, B. 39, 504, 506). Beim Erhitzen mit Phosgen auf 160° entsteht zunächst überwiegend ein violetter Farbstoff (wahrscheinlich das Farbsalz des 4.4'.4''-Tris-dimethylamino-2.2'.2''-trioxy-triphenylcarbinols), dann ein roter Farbstoff C₂₆H₂₈O₄N₃Cl der Rosamingruppe (s. bei der zugehörigen Carbinolbase, dem 3.6-Bis-dimethylamino-9-[4-dimethylamino-2-oxy-phenyl]-xanthydrol der nebenstehenden Formel, Syst. No. 2642) (v. M., B. 25, 509). Bei der Kondensation von 3-Dimethylamino-phenol (CH₃)₃N·CH₂)₃

chloridlösung entsteht 7-Dimethylamino-4-methyl-cumarin $(CH_2)_2N \cdot C_0H_3 \stackrel{C(CH_3):CH}{\sim} 0$ (Syst

mit Acetessigester in Gegenwart von alkoh. Zink-

No. 2643) (v. Pechmann, B. 30, 277; 32, 3682; v. Pe., Schaal, B. 32, 3690). Beim Erhitzen von 3-Dimethylamino-phenol mit 2-[2.4-Dioxy-benzoyl]-benzoesäure (Bd. X, S. 1007) in Gegenwart von Zinkchlorid auf 140—160° entsteht Dimethylrhodol (Formel I bezw. desmotrope Formen) (s. Syst. No. 2934) (BAY. & Co., D. R. P. 54085; Frdl. 2, 85). 3-Dimethylaminophenol liefert beim Erhitzen mit salzsaurem 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in Alkohol einen blauen Farbstoff (LEO. & Co., D. R. P. 68557; Frill. 8, 385). Beim Erhitzen von 3-Dimethylamino-phenol mit N-Acetyl-p-phenylendiamin (S. 94) in Gegenwart von Schwefel entsteht ein brauner Schwefelfarbstoff (Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649). Aus 3-Dimethylamino-phenol und 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) in Alkohol in Gegenwart von konz. Salzsäure im Wasserbade wird 4.4'.4"-Trisdimethylamino-2-oxy-triphenylmethan (Syst. No. 1864) gebildet (Noelting, Gerlinger,

I.
$$(CH_3)_2N \cdot O \cdot OH$$

$$(CH_3)_2N \cdot O \cdot OH$$

$$(CH_3)_2N \cdot O \cdot N(CH_3)_3$$

B. 39, 2053). Bei der Kondensation von 3-Dimethylamino-phenol mit salzsaurem 6-Nitroso-3-dimethylamino-phenol [4-Dimethylamino-benzochinon-(1.2)-oxim-(1), Syst. No. 1874] in siedendem Eisessig entsteht ein Farbsalz, dem als Leukoverbindung das 2.7-Bis-dimethylaminophenoxazin (Formel II) (Syst. No. 4367) entspricht (Mö., UHLMANN, A. 289, 119). Einw. von Bernsteinsäureanhydrid, von Succinimid und von Phthalsäureanhydrid auf 3-Dimethylaminophenol s. S. 406. Kondensation von 3-Dimethylamino-phenol mit 2-[4-Dialkylamino-2-oxybenzoyl]-benzoesäuren (Syst. No. 1920) in Gegenwart von konz. Schwefelsäure zu Tetraalkyl-

rhodaminen (Syst. No. 2933): Bas. Ch. F. BIND., D. R. P. 85931; Frdl. 4, 261.

3-Dimethylamino-phenol findet Verwendung zur Darstellung des Farbstoffs Pyronin (Syst. No. 2642)(Schultz, Tab. No. 568) und ähnlicher Produkte (vgl. Schultz, Tab. No. 570). Über Verwendung zur Darstellung von Azofarbstoffen vgl.: Ges. f. chem. Ind., D. R. P. 47375; Frdl. 2, 176; BAYER & Co., D. R. P. 49844; Frdl. 2, 177; D. R. P. 210597; C. 1909 II, 242; LEONHARDT & Co., D. R. P. 75018; Frdl. 3, 390.

8-Dimethylamino-phenol-methyläther, Dimethyl-m-anisidin $C_9H_{13}ON = (CH_9)_2N$. $C_0H_4\cdot O\cdot CH_3$. Gibt bei der Einw. einer benzolischen Lösung von Phosgen in Gegenwart von Aluminiumchlorid einen blauen Triphenylmethanfarbstoff (GRIMAUX, Bl. [3] 5, 647; 25, 215). Beim Erhitzen mit Phthalsäureanhydrid in Gegenwart von Zinkchlorid oder konz. Schwefelsäure entsteht ein roter fluorescierender Farbstoff (Gr., Bl. [3] 5, 648; vgl. Bl. [3] **25**, 215, 217).

3 - Dimethylamino - phenol - äthyläther, Dimethyl - m - phenetidin $C_{10}H_{15}ON = (CH_3)_8N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus 3-Amino-phenol-āthylāther, 2 Mol.-Gew. Methyljodid, Methylalkohol und Kalilauge (Wagner, J. pr. [2] 32, 77). Beim Erhitzen von bromwasserstoffsaurem 3-Amino-phenol-āthylāther mit 2 Mol.-Gew. Methylalkohol (vom Baur, Staedel, B. 16, 12). 33). — Flüssig. Kp: 247° (W.). — Liefert in salzsaurer Lösung mit Natriumnitrit oder Amylnitrit 6-Nitroso-3-dimethylamino-phenol-athylather (S. 421) (v. B., St.; W.; GRIMAUX, Bl. [3] 25, 219). Gibt bei der Einw. einer benzolischen Lösung von Phosgen in Gegenwart von Aluminium Erhitzen mit Phthalsäureanhydrid in Gegenwart von Zinkchlorid oder konz. Schwefelsaure einen roten, fluorescierenden Farbstoff (G., Bl. [3] 5, 648; vgl. Bl. [3] 25, 215).

[3-Dimethylamino-phenyl]-acetat $C_{10}H_{13}O_2N=(CH_3)_2N\cdot C_0H_4\cdot O\cdot CO\cdot CH_3$. B. Aus 3-Dimethylamino-phenol und Essigsäureanhydrid; man destilliert das Produkt im Vakuum (v. Meyenburg, B. 29, 508). — Blattchen (aus Petrolather). F: 36,5°. Kp₅: 160°. Mit Phosgen entsteht ein blauer Farbstoff.

[3-Dimethylamino-phenyl]-bensoat $C_{15}H_{15}O_5N=(CH_3)_5N\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. Bei der Benzoylierung von 3-Dimethylamino-phenol nach Schotten-Baumann (v. Meyenburg, B. 29, 508). — Tafeln (aus Schwefelkohlenstoff + Ligroin). Monoklin prismatisch (Wülfing, B. 29, 508; vgl. Groth, Ch. Kr. 5, 138). F: 94°; Kp₅: 250°; schwer löslich in kaltem Alkohol und Ligroin (v. M.). — Hydrochlorid. Nadeln (aus Alkohol). F: gegen 180° (v. M.).

Bis-[3-dimethylamino-phenyl]-carbonat $C_{17}H_{20}O_2N_3 = [(CH_2)_1N \cdot C_0H_4 \cdot O]_3CO$. B. Bei allmählichem Eintragen von 50 ccm n-Phosgenlösung (in Benzol) in die Lösung von 13,8 g 3-Dimethylamino-phenol in 200 ccm n_f -Natronlauge (v. Meyenburg, B. 29, 504). — Nadeln (aus Alkohol). F: 137—138°. Kp₁₅: 265°. Löslich in ca. 10 Tln. heißem 95°/0 igem Alkohol; sehr leicht löslich in Benzol, Schwefelkohlenstoff und Aceton, unlöslich in Wasser. Mit Anilin entstehen bei 190° N.N. Diphenyl-harnstoff (Bd. XII, S. 352) und 3-Dimethylamino-phenol. — $C_{17}H_{20}O_3N_3 + 2$ HCl. Nadeln. F: 205° (Zers.). — Pikrat. Gelbe Blättchen. F: 162°. — $C_{17}H_{20}O_3N_3 + 2$ HCl + PtCl₄. Goldgelbe Krystallkörner (aus Wasser), amorphes Pulver (aus Alkohol). (aus Alkohol).

[8-Dimethylamino-phenyl]-kohlensäure-chlorid $C_0H_{10}O_0NCl=(CH_4)_0N\cdot C_0H_4\cdot O\cdot COCl.$ B. Beim Einfließenlassen der benzolischen Lösung von 3-Dimethylamino-phenol in viel überschüssige Phosgenlösung (v. Meyenbueg, B. 29, 506). — Nur als Sirup erhalten. Sehr zersetzlich. Löst sich in warmem Wasser langsam unter CO₂-Entwicklung und Bildung von salzsaurem 3-Dimethylamino-phenol. Mit konz. Schwefelsäure erfolgt Zersetzung in HCl, CO₂ und 3-Dimethylamino-phenol. Beim Schütteln mit 3-Dimethylamino-phenol natrium entsteht Bis-[3-dimethylamino-phenyl]-carbonat.

Trimethyl-[3-oxy-phenyl]-ammoniumhydroxyd $C_0H_{15}O_2N=(CH_2)_2N(OH)\cdot C_0H_4\cdot OH$. B. Das Jodid entsteht durch Einw. von Methyljodid auf 3-Dimethylamino-phenol bei 100°; die freie Base erhält man durch Digerieren des Jodids mit Silberoxyd (Hantzson, Davidson, B. 29, 1533). — Hygroskopische Nadeln mit $^{1}/_{2}$ H $_{1}$ O. F: 110—111°; schmeckt bitter (H., D.). Elektrische Leitfähigkeit: H., D., B. 29, 1534. Verwendung zur Herstellung von Azofarbstoffen: Höchster Farlw., D. R. P. 97244; C. 1898II, 589. — Jodid C_{2} H $_{14}$ ON·L. F: 182° (H., D., B. 29, 1533).

3-Åthylamino-phenol C₈H₁₁ON = C₂H₅·NH·C₈H₄·OH. B. Aus N-Åthyl-m-phenylendiamin (S. 41) durch Diazotieren in verd. Schwefelsäure und Verkochen der Diazoniumsalzlösung (Bad. Anilin- u. Sodaf., D. R. P. 76419; Frdl. 4, 108). Beim Schmelzen der 3-Åthylaminobenzol-sulfonsäure-(1) (Syst. No. 1923) mit Kali (B. A. S. F., D. R. P. 48151; Frdl. 2, 14; GNEHM, SCHEUTZ, J. pr. [2] 63, 423). Durch 8—10-stdg. Erhitzen einer wäßr. Lösung des Kalium-sulges der 5-Årsing phenol sulfonsäure-(2) (Syst. No. 1928) mit šthylachwefelsaurem Natzium salzes der 5-Amino-phenol-sulfonsäure-(2) (Syst. No. 1926) mit äthylschwefelsaurem Natrium im Autoklaven auf 170—178° (BAYER & Co., D. R. P. 82765; Frdl. 4, 109). — Federförmige Krystalle (aus Benzol + Ligroin). T: 62° (B.A. S.F., D. R. P. 48151; Frdl. 2, 14; G., Son.).

I.
$$O \cdot \bigcup_{N \subset 2H_5}^{N} \cdot OH$$

II. $O \cdot \bigcup_{N \subset 2H_5}^{N} \cdot NH_2$

Kp₁₂: 176° (G., Son.). Leight löslich in Chloroform, löslich in heißem Wasser, Alkohol, Ather, Benzol, schwer löslich in Ligroin (G., Sch.). — Über Kondensation von 3-Athylamino-phenol mit Benzaldehyd bezw. dessen Nitro-, Oxy- und Aminoderivaten in Gegenwart wasserentziehender Mittel zu Leukobasen von Triphenylmethanfarbetoffen vgl. BAYER & Co., D. R. P. 62574; Frdl. 3, 100. Beim Erhitzen von 3-Athylamino-phenol mit dem Natriumsalz des 4-Nitroso-phenols (Chinon-monoxims, Bd. VII, S. 622) in verdünnter Natronlauge wird Anhydro - [2.7 - dioxy - phenazin - hydroxyāthylat - (9)] (Formel I) (Syst. No. 3538) gebildet (JAUBERT, B. 31, 1183). 3-Äthylamino-phenol liefert beim Erhitzen mit 4-Nitroso-anilin

$$III. \underbrace{\begin{smallmatrix} C_0 \\ C_0 H_4 & C_0 \\ C_2 H_5 \cdot NH \cdot & C_2 H_5 \end{smallmatrix}}_{C_0 H_4 \cdot NH \cdot C_2 H_5} \underbrace{\begin{smallmatrix} C_0 H_4 \cdot CO_2 H \\ C_2 H_5 \cdot NH \cdot & C_2 H_5 \\ C_3 H_5 \cdot NH \cdot & C_3 H_5 \\ C_4 H_5 \cdot NH \cdot & C_3 H_5 \\ C_5 H_5 \cdot NH \cdot & C_5$$

(Chinon-imid-oxim, Bd. VII, S. 625) in Gegenwart von Natriumacetat in Alkohol oder Eisessig im Wasserbade Anhydro-[7-amino-2-oxy-phenazin-hydroxysthylat-(9)] (Formel II) (Syst. No. 3770) (J., B. 31, 1186). Läßt sich durch Erhitzen mit Phthalsaureanhydrid (G., Scil., J. pr. [2] 63, 424) in Gegenwart von Zinkchlorid (B.A.S.F., D.R.P. 48731; Frdl. 2, 78; Hoelfing, Dziewoński, B. 38, 3523) auf 180° in N.N'-Diathyl-rhodamin (Formel III bezw. IV) (Syst. No. 2933) überführen. Bildet beim Erhitzen mit Phthalimid in Gegenwart von Borsaure auf 150—160° 2-[4-Åthylamino-2-oxy-benzoyl]-benzoesaure-amid C.H. NH·C.H. (OH)·CO·C.H. CO·NH. (Syst. No. 1920) (B.A.S.F., D. R. P. 162034; C. 1905 II, 729).

— Verwendung sur Herstellung von Rhodaminfarbstoffen: Schultz, Tab. No. 571, 577.

3-Disthylemino-phenol $C_{10}H_{15}ON = (C_2H_2)_2N \cdot C_2H_4 \cdot OH$. B. Betm Ryhitsen von Resoroin mit salzsaurem Disthylemin und wäßr. Disthyleminlösung im Autoklaven auf ea. 200° (LEONHARDT & Co., D. R. P. 49060; Fril. 2, 14). Aus Diäthylanilin durch Sulfurieren mit rauchender Schwefelsäure und Verschmelsen der entstandenen Diathylanilinsulfonsäure (Syst. No. 1923) mit Natron bei 270—300° (Ges. f. chem. Ind., D. R. P. 44792; Fril. 2, 12). Durch Diazotierung von N.N-Diathyl-m-phenylendiamin in verdünnter Schwefelsäure und Kochen der Diazoniumsalzlösung (Bed. Anilin- u. Sodaf., D. R. P. 44002; Fvdl. 3, 70). Beim 10-stdg. Erhitzen von salzsaurem 3-Amino-phenol mit der dreifschen Gewichtsmenge Athylalkohol im Autoklaven auf 170° (B. A. S. F., D. E. P. 44002; Frdl. 2, 70). — Reinigung des technischen Produkts durch Destillation im Vakuum: v. Muyan-BURG, B. 29, 502.

Krystalle (aus Schwefelkohlenstoff-Ligroin). Rhombisch bipyramidal (Wülferg, B. 29, 502; vgl. Groth, Ch. Kr. 4, 210). F: 78° (Biehringer, J. pr. [2] 54, 223). Kp: 276—280° (Lefèvre, Bl. [3] 15, 901). Kp₂₈: 201°; Kp₁₈: 170° (v. Mex.).

Liefert beim Behandeln mit Natriumnitrit in verd, salzsaurer Lösung bei 0° 6-Nitroso-3-diäthylamino-phenol [4-Diäthylamino-benzochinon-(1.2)-oxim-(1) (Syst. No. 1874)] (B.A.S.F., D. R. P. 45268; Frdl. 2, 174; MÖHLAU, B. 25, 1060). Beim Erhitzen von 2 Mol.-Gew. 3-Diäthylamino-phenol mit 1 Mol.-Gew. Benzotrichlorid in Benzol oder Toluol im Wasserbade entstaht. Tetraäthylvossymin (s. bei der zugehörigen

bade entsteht Tetraäthylrosamin (s. bei der zugehörigen Carbinolbase, dem 3.6-Bis-diäthylamino-9-phenyl-zanthydrol der nebenstehenden Formel (Syst. No. 2642) (HEUMANN, REY, B. 22, 3004; B. A. S. F., D. R. P. 56018; Frdl. 3, 167). Beim Erhitzen von 3-Diäthylamino-phenol mit Phenolen in Gegenwart von Schwefel ent-

$$(C_2H_5)_2N \cdot \underbrace{ \begin{array}{c} HO \quad C_0H_5 \\ \\ O \end{array} } \cdot N(C_2H_6)_2$$

stehen braune Schwefelfarbstoffe (Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649). Bei der Einw. von wäßr. Formaldehydlösung (1 Mol.-Gew.) auf 2 Mol.-Gew. 3-[Diāthylamino]-phenol in Gegenwart von Salzsäure erfolgt Kondensation zu 4.4'-Bis-diāthylamino-2.2'-dioxy-diphenylmethan (Syst. No. 1869) (Leonhabdt & Co., D. R. P. 58965, 63081; Frdl. 3, 92, 93; Bieheninger, J. pr. [2] 54, 226). Beim Erhitzen von 2 Mol.-Gew. 3-Diāthylamino-phenol mit 1 Mol.-Gew. Chloralhydrat (Bd. I, S. 619) entsteht ein Kondensationsprodukt, das durch Oxydation mit Eisenchloridlösung in einen grünblauen Farbstoff übergeht; dieser wandelt sich beim Kochen der wäßr. Lösung in kurzer Zeit in einen roten Farbstoff der Pyroningruppe um (B. A. S. F., D. R. P. 81042; Frdl. 4, 177). Beim Erhitzen mit 2.5-Dichlorbenzaldehyd (Bd. VII, S. 237) in Gegenwart von ZnCl. in Eisessig auf 130° wird 2".5"-Dichlor-da'-bis-diāthylamino-2.2'-dioxy-triphenylmethan (Syst. No. 1869) gebildet (Græhm, Schüle, A. 239, 356). Analog verläuft die Kondensation von 3-Diāthylamino-phenol mit Benzaldehyd und seinen Nitro-, Oxy- und Aminoderivaten in Gegenwart wasserentziehender Mittel, z. B. Zinkchlorid, vgl. Bayer & Co., D. R. P. 62574; Frdl. 3, 98. Aus 3-Diāthylamino-phenol und Chinondichlordiimid (Bd. VII, S. 621) in heißem Alkohol entsteht ein blaner Farbstoff (Leo. & Co., D. R. P. 68557; Frdl. 3, 385). Kondensation von 3-Diāthylamino-phenol mit Monocarbonsāuren (Essigsāure, 3-Nitro-benzoesāure usw.) und mit Sāureestern (Salicylsäureester) mittels konz. Schwefelsäure oder Zinkchlorids bei 175—185° zu Farbstoffen: Thauss, Scherler, D. R. P. 79168; Frdl. 4, 259. Beim Erhitzen von 3-Diāthylamino-phenol mit Bernsteinsäure bezw. Bernsteinsäureanhydrid in Gegenwart von Zinkchlorid oder Schwefelsäure erhält man einen Succineinfarbstoff (Bayer & Co., D. R. P. 51983; Frdl. 2, 87). 3-Diāthylamino-phenol gibt mit der äquimolekularen Menge Phthalsäureanhydrid beim Kochen in Toluol (Basler Chemische Fabrik Bindbschedler, D. R. P. 85931; Frdl. 4, 261) oder beim Verschwelzen be

$$I. \quad \begin{array}{c} C_0H_4 \\ C_0 \\ (C_2H_6)_2N \\ \end{array} \\ \begin{array}{c} C_0H_4 \cdot CO - O \\ \\ O \\ \end{array} \\ \begin{array}{c} C_0H_4 \cdot CO - O \\ \\ O \\ \end{array} \\ \vdots \\ N(C_2H_6)_2 \\ \end{array} \\ \begin{array}{c} C_0H_4 \cdot CO - O \\ \\ O \\ \end{array} \\ \vdots \\ N(C_2H_6)_2 \\ \end{array}$$

2-oxy-benzoyl]-benzoesäure (C_2H_2) \cdot N· $C_0H_2(OH)$ ·Co· C_0H_4 ·Co₂H (Syst. No. 1920). Erhitzt man 3-Diäthylamino-phenol mit Phthalsäureanhydrid auf 170—175°, so entsteht das Tetraathylrhodamin (Formel I bezw. II) (Syst. No. 2933) (B. A. S. F., D. R. P. 44002; Frdl. 2, 71; NORLTING, DZIEWOŃSKI, B. 38, 3519). Durch Schütteln einer alkal. Lösung von 2 Mol.-Gew. 3-Diathylamino-phenol mit einer benzolischen Lösung von 1 Mol.-Gew. Phosgen erhält man Bis-[3-diathylamino-phenyl]-carbonat (8. 410); last man Phosgen auf 3-Diathylamino-phenol ohne Anwesenheit von Alkali in Benzollösung einwirken, so erhält man [3-Diäthylaminophenyl]-kohlensaure-chlorid (S. 410); erhitzt man die Komponenten auf 160°, so entsteht zuerst überwiegend ein violetter Farbstoff der Triphenylmethanreihe, dann ein roter pyronin-artiger Farbstoff (v. Mex., B. 29, 506, 507, 509). Beim Erhitzen von 3 Mol.-Gew. 3-[Diathyl-amino]-phenol mit 1 Mol.-Gew. Phthalonsäure (Bd. X, S. 857) auf 100° entsteht eine Verbindung C₂₉H₄₇O₆N₅(?) (S. 410), welche durch höheres Erhitzen oder Oxydation in Tetrasthylrhodamin (Syst. No. 2933) übergeht (B. A. S. F., D. R. P. 87028, 89092; Frül. 4, 238, 239). Durch Erhitzen von 3-Diathylamino-phenol mit 2-[2.4-Dioxy-benzoyl]-benzoesaure (Bd. X, S. 1007) in Gegenwart von Zinkehlerid entsteht Diathylrhodel (vgl. Syst. No. 2934) (BAYER & Co., D. R. P. 54085; Frdl. 2, 85; vgl. Cassella & Co., D. R. P. 108419; Frdl. 5, 230; C. 1900 I, 1182). 3-Diathylamino-phenol und Benzaldehyd-sulfonsäure-(2) (Bd. XI, S. 324) kondensieren sich beim Kochen in schwach saurer Lösung zu Bis-diathylamino-dioxy-triphenylmethansulfonsäure, die durch Behandlung mit wasserentziehenden Mitteln und Oxydation in einen rhodaminähnlichen Farbstoff übergeführt werden kann (GEIGY & Co., D. R. P. 90487; Frdl. 4, 258). Einen analogen Farbstoff erhält man bei Anwendung von Benzaldehyd-disulfonsaure-(2.4) (Bd. XI, S. 325) (Höchster Farbw., D. R. P. 205758; C. 1909 I, 968). Beim Erhitzen von 3-Diathylamino-phenol mit aromatischen Aminen in Gegenwart von Schwefel entstehen braune Schwefelfarbstoffe (Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649). 3-Diathylamino-phenol gibt beim Erwärmen mit salzsaurem 4-Nitroso-dimethylanilin Über Verwendung von 3-Diäthylamino-phenol zur Herstellung von Rhodaminen und ähnlich konstituierten Farbstoffen vgl. Schultz, Tab. No. 570, 573, 579. Verwendung von 3-Diäthylamino-phenol zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw., (D. R. P. 162625; C. 1905 II, 1058.

C₁₀H₁₅ON + HCl + ½ H₂O. Krystalle (aus Wasser) (Biehringer, J. pr. [2] **54**, 223). Verbindung C₂₆H₄₇O₆N₃(?). B. Aus 1 Mol.-Gew. Phthalonsäure (Bd. X, S. 857) und 3 Mol.-Gew. 3-Diäthylamino-phenol beim Erhitzen auf 100° (Bad. Anilin- u. Sodaf., D. R. P. 87028, 89092; Frdl. 4, 238, 239). — Farbloses, krystallinisches Pulver. F: 175°. Kaum löslich in Wasser, sehr wenig in Alkohol, leicht in Eisessig, verd. Salzsäure und Sodalösung. — Beim Erhitzen auf 180° oder beim Behandeln mit Oxydationsmitteln entsteht Tetraäthylrhodamin (Syst. No. 2933).

[3-Diāthylamino-phenyl]-acetat $C_{12}H_{17}O_2N = (C_2H_5)_2N \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. B. Aus 3-Diāthylamino-phenol und Essigsāureanhydrid (v. Meyenburg, B. 29, 508). — Öl. Erstarrt nicht bei —20°. Kp₅: 160,5°.

[3-Diäthylamino-phenyl]-bensoat $C_{17}H_{19}O_2N = (C_2H_5)_8N \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_5$. B. Bei der Benzoylierung von 3-Diäthylamino-phenol nach Schotten-Baumann (v. M., B. 29, 509). — Scheidet sich aus den Lösungen ölig ab. Blättchen. F: 22,5—23°. Kp₁₅: 236°.

Bis-[3-diäthylamino-phenyl]-carbonat $C_{21}H_{28}O_2N_2=[(C_2H_5)_2N\cdot C_4H_4\cdot O]_2CO$. B. Beim Schütteln einer alkal. Lösung von 3-Diäthylamino-phenol mit einer benzolischen Lösung von Phosgen (v. M., B. 29, 506). — Prismen (aus Methylalkohol). F: 67°. Kp₅: 292°. Schwer löslich in kaltem Alkohol und Ligroin. — $C_{21}H_{28}O_3N_2+2HCl$. Blättchen. F: 205° (Zers.). — $C_{31}H_{28}O_3N_2+2HCl$. Gelbe Nadeln. F: 201°. — $C_{21}H_{28}O_3N_2+2HCl+PtCl_4$. Amorph, äußerst unbeständig.

[3-Diäthylamino-phenyl]-kohlensäure-chlorid $C_{11}H_{14}O_{2}NCl = (C_{2}H_{5})_{8}N\cdot C_{6}H_{4}\cdot O\cdot COCl.$ B. Aus 3-Diäthylamino-phenol und Phosgen (in Benzol) (v. M., B. 29, 507). — Sirup. Erstarrt nach längerem Stehen bei 0° krystallinisch.

3-Anilino-phenol, 3-Oxy-diphenylamin C₁₂H₁₁ON = C₆H₅·NH·C₆H₄·OH. B. Bei 8-stdg. Erhitzen von 1 Mol-Gew. Resorcin mit 4 Mol.-Gew. Anilin und 2 Mol-Gew. CaCl₈ im geschlossenen Rohr auf 270—280° (Merz, Weith, B. 14, 2345; Calm, B. 16, 2787). Beim 8-stdg. Erhitzen von 3-Amino-phenol mit salzsaurem Anilin oder von salzsaurem 3-Amino-phenol mit Anilin im Autoklaven auf 210—215° (Bad. Anilin- u. Sodaf., D. R. P. 46869; Frdl. 2, 12). — Blättchen (aus Wasser). F: 81,5—82° (Calm). Kp: 340° (Calm). Löslich in viel heißem Wasser, wenig löslich in Ligroin, leicht löslich in Alkohol, Ather, Aceton und Benzol (Calm). Löst sich in Natronlauge und in verd. Mineralsäuren; wird aus der sauren Lösung durch Natriumacetat gefällt (Calm). — Liefert beim Glühen mit Zinkstaub Diphenylamin (Bd. XII, S. 174) (Calm). Gibt beim Erhitzen mit Schwefel in natronalkalischer Lösung die Verbindung C₁₂H₉ONS₂ (S. 411) (Lange, D. R. P. 52827; Frdl. 2, 535). Bei der Einw. von konz. Schwefelsäure im Wasserbade entsteht 5-Anilino-phenol-sulfonsäure-(2) (Syst. No. 1926) (Akt.-Ges. f. Anilinf., D. R. P. 76415; Frdl. 4, 87; vgl. Leonhardt & Co., D. R. P. 245230; C. 1912 I, 1347). Mit Natriumnitrit in verdünnt schwefelsaurer Lösung unter Kühlung erhält man N-Nitroso-3-oxy-diphenylamin (S. 419) (Kohler, B. 21, 908). Erhitzt man 3-Oxy-diphenylamin mit 4-Nitroso-phenol (Chinon-monoxim, Bd. VII, S. 622) in verd. Natronlauge, so wird Safranol (S. 415) (CeH₅ von Benzoylchlorid auf 3-Oxy-diphenylamin in Pyridin entsteht 3-Benzoyloxy-diphenylamin (S. 411) (Auwers, A. 364, 171 Anm.). Beim Erhitzen von 3-Oxy-diphenylamin mit 1 Mol-Gew. Phthalsäureanhydrid auf 120° entsteht N-Phenyl-N-[3-oxy-phenyl]-phthalamidsäure (S. 417);

beim Erhitzen mit 1/2 Mol.-Gew. Phthalsäureanhydrid auf 150-160° entsteht Diphenyl-

rhodamin (Formel I bezw. II) (Syst. No. 2933) (PIUTTI, PICCOLI, G. 28 I, 377; B. 31, 1331; vgl. B.A.S.F., D.R.P. 45263; Frdl. 2, 72). Beim Erhitzen äquimolekularer Mengen von 3-Oxydiphenylamin und salzsaurem 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in Gegenwart von geschmolzenem Natriumacetat in Alkohol oder Eisessig erhält man das 7-Dimethylamino-

$$\begin{array}{c} CO \\ C_0H_4 \cdot CO_2H \\ I. \\ C_0H_5 \cdot NH \cdot C_0H_5 \end{array} \qquad \qquad II. \\ C_0H_5 \cdot NH \cdot C_0H_5 \qquad \qquad C_0H_6 \cdot NH \cdot C_0H_5 \end{array}$$

2-oxy-phenazin-chlorphenylat-(9) (Syst. No. 3770) (J., B. 28, 271). Beim Kochen von 3-Oxydiphenylamin mit 3 Mol.-Gew. salzsaurem 4-Nitroso-dimethylanilin oder 4-Nitroso-diäthylanilin in Alkohol erfolgt Bildung von Farbstoffen, die tanningebeizte Baumwolle schwarz färben (Leo. & Co., D. R. P. 50612; Frdl. 2, 184; vgl. Schultz, Tab. No. 658). Bei gemeinsamer Oxydation von 3-Oxy-diphenylamin und p-Phenylen-diamin mit Kaliumdichromat entsteht Safraninon (s. nebenstehende Formel) (Syst. No. 3770) (J., B. 28, 274). Bei gemeinsamer

Oxydation von 3-Oxy-diphenylamin und 4-Amino-phenol in verd. Natronlauge mit Kaliumdichromat entsteht Safranol (J., B. 28,

C.H.

273). Aus 3-Oxy-diphenylamin und Isatinchlorid (Syst. No. 3184) in Benzol bildet sich die Verbindung $C_0H_b \cdot NH \cdot C < CH \cdot CO > C \cdot CC < NH > C_0H_4$ (Syst. No. 3427) (Friedländer,

SCHULOFF, M. 29, 391). — Verwendung von 3-Oxy-diphenylamin zur Herstellung von Azofarbstoffen: Cassella & Co., D. R. P. 61202; Frdl. 3, 549; Oehler, D. R. P. 155044, 157495; C. 1904 II, 1270; 1905 I, 481; Bayer & Co., D. R. P. 210597; C. 1909 II, 242; vgl. auch Schultz, Tab. No. 381. Verwendung zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw., D. R. P. 162625; C. 1905 II, 1058.

Ba($C_{12}H_{10}ON$)₂ + 5 H₂O. Blätter (aus heißem Wasser) (Calm, B. 16, 2791). $C_{13}H_{11}ON + HCl$. Leicht zersetzliche Nadeln (Calm, B. 16, 2790). — $2C_{12}H_{11}ON + H_2SO_4$. Nadeln (aus schwefelsäurehaltigem Wasser), die von Wasser und Alkohol zersetzt werden (Calm).

Verbindung $C_{12}H_{0}ONS_{2} = C_{0}H_{4} < \frac{S \cdot S}{NH} > C_{0}H_{3} \cdot OH(?)$. B. Beim Kochen von 3-Oxydiphenylamin in natronalkalischer Lösung mit Schwefel (LANGE, D. R. P. 52827; Frdl. 2, 535). — Hellgelbes Pulver. F: ca. 155°. Leicht löslich in Alkohol, Äther, Eisessig, Benzol, unlöslich in Benzin. Leicht löslich in Alkalien und in Alkalisulfiden, weniger in kohlensauren Alkalien und Ammoniak. — Acetylverbindung. F: ca. 130—133°.

- **3-Pikrylamino-phenol**, **2'.4'.6'-Trinitro-3-oxy-diphenylamin** $C_{12}H_0O_7N_4=(O_2N)_2C_2H_3\cdot NH\cdot C_4H_4\cdot OH$. B. Aus Pikrylchlorid (Bd. V, S. 273) und 3-Amino-phenol in Alkohol (Wedekind, B. 33, 433). Tiefrote, anscheinend krystallalkoholhaltige Nadeln, die bei 100° hellorangerot werden. F: 203—204°. Lösung in Alkalien rot.
- **3-Anilino-phenol-methyläther, Phenyl-m-anisidin, 3-Methoxy-diphenylamin** $C_{13}H_{13}ON = C_6H_5\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. Verwendung zur Herstellung von Triphenylmethanfarbstoffen: Cassella & Co., D. R. P. 65733; *Frdl.* 3, 119.
- 8-Anilino-phenol-äthyläther, Phenyl-m-phenetidin, 8-Äthoxy-diphenylamin $C_{14}H_{15}ON = C_{4}H_{5} \cdot NH \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{4} \cdot B$. Durch Athylierung von 3-Oxy-diphenylamin (Cassella & Co., D. R. P. 65733; Frdl. 3, 119). — Verwendung zur Herstellung von Triphenylmethanfarbstoffen: Ca., D. R. P. 65733, von Azofarbstoffen: Ca., D. R. P. 61202; Frdl. 3, 549.
- [8-Anilino-phenyl]-bensoat, 8-Bensoyloxy-diphenylamin $C_{19}H_{15}O_{2}N = C_{0}H_{5}\cdot NH$ C.H. O.CO.C.H. B. Aus 3-Oxy-diphenylamin in Pyridin mit Benzoylchlorid (Auwers, A. 864, 171 Anm.). — Nadeln (aus Alkohol). F: 125,5—126,5°. Leicht löslich in Ather und Benzol, ziemlich leicht in Alkohol und Eisessig, schwer in Ligroin; unlöslich in Alkali. — Erhitzt man mit Benzoylchlorid auf 150—160° und verseift die entstandene Dibenzoylverbindung mit alkoh. Natronlauge, so erhält man 3-0xy-N-benzoyl-diphenylamin (S. 416).
- 8-o-Toluidino-phenol, 3'-Oxy-2-methyl-diphenylamin $C_{19}H_{19}ON=CH_2\cdot C_0H_4\cdot NH\cdot C_0H_4\cdot OH$. B. Bei 9-stdg. Erhitzen von 1 Mol.-Gew. Resorcin, 2 Mol.-Gew. o-Toluidin und Calciumchlorid im geschlossenen Rohr auf 260—280°; man fraktioniert das Produkt im Wasserstoffstrome (Риціг, J. pr. [2] 84, 70). Beim 8-stdg. Erhitzen von salzsaurem 3-Aminophenol mit o-Toluidin im Autoklaven auf 210—220° (Bad. Anilin- u. Sodaf., D. R. P. 46869; Frdl. 2, 13). — Öl. Kp: 370—375° (korr.) (Ph.). Leicht löslich in Alkohol, Äther, Benzol und Eisessig (Ph.). — Liefert beim Glühen mit Zinkstaub Acridin (Syst. No. 3088) und geringe Mengen Dihydroacridin (Syst. No. 3087) (Ph.). Liefert beim Kochen mit überschüssiger Ameisensäure 3-[Formyl-o-toluidino]-phenol (S. 415) (Ph.). Verwendung zur Darstellung von Rhodamin- und Rhodolfarbetoffen: Bad. Anilin- u. Sodaf., D. R. P. 96668; C. 1898 II,

317. Verwendung zur Erzeugung von Farbstoffen auf der Faser: Höchster Farbw., D. R. P. 162625: C. 1905 II, 1058.

8-o-Toluidino-phenol-methyläther, o-Tolyl-m-anisidin, 3'-Methoxy-2-methyldiphenylamin $C_{14}H_{15}ON = CH_3 \cdot C_4H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Erhitzen von 3'-Oxy-2-methyl-diphenylamin mit Natriumhydroxyd, Methylchlorid und Methylalkohol im Autoklaven auf 115—120° (Bad. Anilin- u. Sodaf., D. R. P. 63260; Frdl. 3, 144). — Öl. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P. 63260, H_{12}^{ACA} . Frdl. 2, 444 64217; Frdl. 8, 144.

8-o-Toluidino-phenol-āthylāther, o-Tolyl-m-phenetidin, 3'-Āthoxy-8-methyldiphenylamin $C_{15}H_{17}ON=CH_3\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot O\cdot C_5H_5$. B. Beim Krhitzen von 3'-Oxy-2-methyl-diphenylamin mit Ätznatron, Äthylchlorid und Äthylalkohol im Autoklaven auf 110—120° (Bad. Anilin- u. Sodaf., D. R. P. 63260, Frdl. 3, 144). — Öl. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P. 63260, 64217; Frdl. 3, 144.

8-p-Toluidino-phenol, 3'-Oxy-4-methyl-diphenylamin $C_{18}H_{12}ON = CH_{4} \cdot C_{4}H_{4} \cdot OH$. B. Bei 8-stdg. Erhitzen von 1 Tl. Resorcin mit 2 Tln. p-Toluidin und 2 Tln. Calciumchlorid im geschlossenen Rohr auf 280° (HATSCHER, ZEGA, J. pr. [2] 83, 209). Beim 8-stdg. Erhitzen von salzsaurem 3-Amino-phenol mit p-Toluidin auf 210—220° (Bed. Anilinu. Sodaf., D. R. P. 46869; Frdl. 2, 13). Reinigung des technischen Produktes durch Destillation im Vakuum: GNEHM, VEHLON, J. pr. [2] 65, 49. — Nadeln oder Prismen (aus Benzol + Petroläther). F: 91° (H., Z.), 92° (G., V.). Kp: 350° (korr.) (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). Leicht löslich in Alkohol, Ather, Benzol und Aceton, Schwer in Petroläther und in kochendem Wasser (H., Z.). löslich in Alkalien (H., Z.). Die Lösung in konz. Schwefelsäure wird durch eine Spur Nitzit blau bis graublau gefärbt (H., Z.). — Wird durch Glühen mit Zinkstaub zu Phenyl-p-toluidin (Bd. XII, S. 905) reduziert (H., Z.). Gibt bei der Bromierung ein Pentabromderivat (s. u.) (G., V.). Beim Versetzen der alkoh. Lösung mit Natriumnitrit und Salzsäure entsteht N-Nitroso-3'-oxy-4-methyl-diphenylamin (S. 419) (H., Z.). Bei der Sulfurierung mit konz. Schwefelsäure entsteht als Hauptprodukt [3'-Oxy-4-methyl-diphenylamin]-sulfonsäure (s. u.); wendet man rauchende Schwefelsäure von 9% Anhydridgehalt an, so erhält man in überwiegender Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsäure (s. u.), wendet man in überwiegender Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsaure (s. u.) wendet man in überwiegender Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsaure (s. u.) wendet man in überwiegender Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsaure (s. u.) wendet man rauchende man in überwiegender Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsaure (s. u.) wendet man rauchende Schwefelsäure von der Menge [3'-Oxy-4-methyl-diphenylamin]-disulfonsaure (s. u.) wendet man rauchende Schwefelsäure von der Menge [3'-Oxy-4-methyl-diphenylamin]-diphenylamin Saure von 20—25 % Anhydridgehalt ausschließlich [3'-Oxy-4-methyl-diphenylamin]-trisulfonsaure (S. 413) gebildet wird (G., V.). 3'-Oxy-4-methyl-diphenylamin liefert beim Erhitzen mit Ameisensaure 3-[Formyl-p-toluidino]-phenol (S. 415) (H., Z.). Gibt bei der Acetylierung mit Acetylchlorid in Benzol bei Gegenwart von Kaliumcarbonat oder mit Essigsäureanhydrid 3-[Acetyl-p-toluidino]-phenol (S. 416) (G., V.). — C₁₂H₁₂ON + HCl. Außerst unbeständig; wird durch Wasser völlig zersetzt (H., Z.).

Pentabrom-[3'-oxy-4-methyl-diphenylamin] C₁₈H₂ONBr₅. B. Aus 3'-Oxy-4-methyl-diphenylamin durch 10 At.-Gew. Brom in Wasser (GNEHM, VEILLON, J. pr. [2] 65, 80). — Tafeln (aus verd. Alkohol). F: 203—204°. Konzentrierte Schwefelsäure löst

ohne Zersetzung.

Pentanitro-[3'-oxy-4-methyl-diphenylamin] C₁₉H₈O₁₁N₈. B. Aus [3'-Oxy-4-methyl-diphenylamin]-sulfonsaure (s. u.) durch Salpetersaure (D: 1,4) bei 10—15° (G., V Aus [3'-0xy-J. pr. [2] 65, 81). — Rötlichbraune Säulen (aus Eisessig). F: 230°. In Wasser und Alkohol sehr wenig löslich, in Eisessig und Alkalien leicht löslich. Nicht explosiv.

[3'-Oxy-4-methyl-diphenylamin]-sulfonsaure $C_{13}H_{13}O_4NS = CH_3 \cdot C_{19}H_3N(OH) \cdot SO_3H$. B. Bei der Einw. von konz. Schwefelsaure auf 3'-Oxy-4-methyl-diphenylamin im Wasserbad (G., V., J. pr. [27] 65, 58). — Quadratische Tafeln. In kaltem Wasser fast unlöslich, in heißem Wasser schwer löslich. — Gibt beim Verschmelzen mit Phthalsäureanhydrid eine [N.N'-Di-p-tolyl-rhodamin]-disulfonsäure (s. bei N.N'-Di-p-tolyl-rhodamin, Syst. No. 2933). — Na $C_{13}H_{18}O_4NS$. Nadeln (aus Wasser). In Wasser ziemlich löslich. — $KC_{13}H_{18}O_4NS$. Blättchen (aus Wasser). Leicht löslich in heißem Wasser, schwer in kaltem Wasser. — Ba $(C_{13}H_{18}O_4NS)_8$. Nadeln. In heißem Wasser schwer löslich.

[N-Nitroso-3'-oxy-4-methyl-diphenylamin]-sulfonsaure C₁₂H₁₂O₂N₂S = CH₃·C₁₂H₁N(NO)(OH)·SO₂H. B. Aus [3'-Oxy-4-methyl-diphenylamin]-sulfonsaure (s. o.) United the sulfonsaure (s. o.) Sulfonsaure (s. o.) Sulfonsaure (s. o.) Albelon (s. o.) Albelon (s. o.) Sulfonsaure (s. o.) Albelon (s. o.) Albelon (s. o.) Sulfonsaure (s. o.) Albelon (s. o.) Sulfonsaure (s. o.) Albelon (s. o.) Sulfonsaure (s. o chen (aus verd. Alkohol). In Wasser und Alkohol sehr wenig löslich. In warmen Alkalien leicht löslich. — Liefert beim Schütteln mit alkoh. Salzsäure eine [6-Oxy-2-methyl-phenazin]-

sulfonsaure (Syst. No. 3707).

 $[3' \cdot 0 \times y \cdot 4 \cdot methyl \cdot diphenylamin] \cdot disulfons aure C₁₈H₁₈O₇NS₈ =$ CH₃·C₁₂H₇N(OH)(SO₃H)₂. B. Aus 3'-Oxy-4-methyl-diphenylamin mit rauchender Schwefelsäure von 9% Anhydridgehalt; man trennt von der Monosulfonsäure durch Behandeln mit kaltem Wasser, worin diese fast unlöslich ist (G., V., J. pr. [2] 65, 60). — Undeutlich krystallinische Masse. In Wasser leicht löslich. Die Lösung der Alkalisalze gibt mit FeCl. eine tiefviolette Färbung. — Na₂C₁₈H₁₁O₇NS₂. Nadeln. — K₂C₁₈H₁₁O₇NS₂. Nadeln (aus Wasser durch Alkohol). — BaC₁₈H₁₁O₇NS₃ + H₂O. Nadeln (aus Wasser). [3'-Oxy-4-methyl-diphenylamin]-trisulfonsāure $C_{12}H_{12}O_{10}NS_2 = CH_3 \cdot C_{12}H_4N(OH)(SO_2H)_2$. B. Aus 3'-Oxy-4-methyl-diphenylamin mit rauchender Schwefelsaure von 20—25°/2 Anhydridgehalt (G., V., J. pr. [2] 65, 61). — Die Säure und ihre Salze ließen sich nicht krystallisiert erhalten. — Ba₃($C_{12}H_{10}O_{10}NS_2$)₂. Bräunliches Pulver. In Wasser leicht löslich.

8-p-Toluidino-phenol-methyläther, p-Tolyl-m-anisidin, 3'-Methoxy-4-methyldiphenylamin C₁H₁₈ON = CH₃·C₅H₄·NH·C₅H₄·O·CH₃. B. Beim Erhitzen von 100 Tln. 3'-Oxy-4-methyl-diphenylamin mit 20 Tln. Natriumhydroxyd, 400 Tln. Methylalkohol und 40 Tln. Methylchlorid im Autoklaven auf 115—120° (Bad. Anilin- u. Sodaf., D. R. P. 62539; Frdl. 3, 142). - Krystalle (aus Benzol). F: 68°; Kp: ca. 360° (B. A. S. F., D. R. P. 62539). Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P. 62539, 63260, 64217; Frdl. 3, 142, 144.

3-p-Toluidino-phenoi-āthylāther, p-Tolyl-m-phenetidin, 3'-Āthoxy-4-methyldiphenylamin $C_{12}H_{17}ON=CH_2\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot O\cdot C_8H_8$. B. Beim Erhitzen von 100 Tln. 3'-Oxy-4-methyl-diphenylamin mit 20,5 Tln. Natriumhydroxyd, 200 Tln. Āthylalkohol und 75 Tln. Āthylalkoholi im Autoklaven auf 110—120° (Bad. Anilin- u. Sodaf., D. R. P. 62539; Frdl. 3, 142). — Krystallinische Masse. F: ca. 30° (GMEHM, VEILLON, J. pr. [2] 65, 3). Im Vakuum destillierbar (G., V.). — Findet Verwendung zur Herstellung des Triphenylmethanfarbstoffs Sāureviolett 6BN (Schultz, Tab. No. 548). Weitere Verwendung für Triphenylmethanfarbstoffe s. B. A. S. F., D. B. P. 63260, 64217; Frdl. 3, 144.

8-[Äthyl-p-toluidino]-phenol-äthyläther, Äthyl-p-tolyl-m-phenetidin, **8**'-Äthoxy-4-methyl-N-äthyl-diphenylamin $C_{17}H_{21}ON = CH_3 \cdot C_4H_4 \cdot N(C_2H_5) \cdot C_4H_4 \cdot O \cdot C_2H_5$. B. Aus 1 Mol.-Gew. 3'-Oxy-4-methyl-diphenylamin, 2 Mol.-Gew. Äthyljodid und 2 Mol.-Gew. Kaliumhydroxyd im geschlossenen Rohr bei 100° (HATSCHEK, ŽEGA, J. pr. [2] **33**, 217). — Flüssig.

3-Bensylamino-phenol $C_{18}H_{13}ON = C_{\bullet}H_{5}\cdot CH_{5}\cdot NH\cdot C_{\bullet}H_{4}\cdot OH$. B. Durch Kondensation von gleichen Teilen Resorcin und Bensylamin bei ca. 200° (Bad. Anilin- u. Sodaf., D. R. P. 98972; C. 1898 II, 1151). — Dickes Öl. Verwendung zur Darstellung von Rhodaminfarbstoffen: B. A. S. F. – Hydrochlofid. Weiße, krystallinische Masse. In Wasserleicht löslich.

8-Methylbensylamino-phenol $C_{14}H_{15}ON = C_4H_5 \cdot CH_2 \cdot N(CH_2) \cdot C_4H_4 \cdot OH$. Überführung in braune Schwefelfarbstoffe durch Erhitzen mit Phenolen oder Aminen in Gegenwart von Schwefel: Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: Bad. Anilin- u. Sodaf., D. R. P. 97015; C. 1898 II, 566.

3-Äthylbengylamino-phenol $C_{12}H_{17}ON = C_4H_5 \cdot CH_2 \cdot N(C_2H_5) \cdot C_4H_4 \cdot OH$. B. Beim Erhitzen des Natriumsalzes der N-Äthyl-N-bengyl-anilin-sulfonsäure-(3) (Syst. No. 1923) mit Kali auf 240—260° (Bad. Anilin- u. Sodaf., D. R. P. 59996; Frdl. 3, 168; GNEHM, SCHEUTZ, J. pr. [2] 63, 423). — Reindarstellung aus dem technischen Rohprodukt: BÜLOW, SPRÖSSER, B. 41, 489. — Krystalle (aus Benzol + Ligroin oder Schwefelkohlenstoff + Ligroin). F: 68° (BÜ., Sp.). Sehr leicht löslich in Alkohol, Äther, Benzol und Chloroform, schwer in Ligroin

I.
$$(C_{\theta}H_{\theta}\cdot CH_{\theta})(C_{\theta}H_{\theta})N\cdot \bigcirc O \cdot N(C_{\theta}H_{\theta})\cdot CH_{\theta}\cdot C_{\theta}H_{\theta}$$

und siedendem Wasser; löslich in Mineralsäuren, Essigsäure und Oxalsäure; löslich in Natronlauge und Ammoniak, unlöslich in Sodalösung (Bü., Sr.). Färbt sich in feuchtem Zustande an der Luft und am Licht ! läulich-violett (Bü., Sr.). Die wäßrige Lösung färbt sich beim Kochen mit Eisenchlorid braunrot (Bü., Sr.). — Redusiert beim Erwärmen ammoniakalische Silberlösung (Bü., Sr.). Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Bensoesäure (Bü., Sr.). Überführung von 3-Äthylbensylamino-phenol in braune Schwefel-

II.
$$(C_{\bullet}H_{\bullet} \cdot CH_{\bullet})(C_{\bullet}H_{\bullet})N \cdot (C_{\bullet}H_{\bullet}) \cdot CH_{\bullet} \cdot C_{\bullet}H_{\bullet}$$

farbstoffe durch Erhitsen mit Phenolen oder Aminen in Gegenwart von Schwefel: Ges. f. chem. Ind., D. R. P. 172016; C. 1906 II, 649. Beim Erhitzen mit Acetessigester und Zinkehlorid in Alkohol erfolgt Kondensation zu 7-Äthylbensylamino-4-methyl-cumarin CeH₈·CH₂·N(C₂H₃)·C₄H₃·C(CH₃):CH

COC CH₃·CH₄·N(C₂H₃)·C₄H₃·C₄C(Syst. No. 2643) (Bt., Sp.). Durch Erhitzen mit Phthalsurgenhydrid auf 470—4802 crhalt man Disthyldibensylphodamin (Formel I bezw. II)

säureanhydrid auf 170—180° erhält man Diäthyldibenzylrhodamin (Formel I bezw. II) (Syst. No. 2933) (B. A. S. F., D. R. P. 59996; Gr., Sch.). Über Verwendung zur Darstellung von Rhodamin- und Rhodolfarbstoffen vgl. auch B. A. S. F., D. R. P. 98971; C. 1898 II,

1112. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P.

97015; C. 1898 II, 566).

Na· $C_{15}H_{16}ON+2H_{5}O(?)$. Blättchen. F: 120° ; leicht löslich in Alkohol; wird durch Wasser teilweise hydrolytisch gespalten (Bü., Sr.). — $C_{15}H_{17}ON+HCl+H_{5}O$. Krystalle (aus $10^{\circ}/_{\circ}$ iger Salzsäure). F: 91° ; ziemlich leicht löslich unter partieller Dissoziation in Wasser, Alkohol und Eisessig; unlöslich in Benzol, Schwefelkohlenstoff und Ligroin; schmeckt bitter (Bü., Sr.). — $2C_{15}H_{17}ON+2HCl+PtCl_{4}+2H_{5}O$. Goldgelbe Krystalle. Verliert bei $110-120^{\circ}$ sein Krystallwasser, hellt dabei seine Farbe auf, ohne die Form zu ändern (Bü., Sr.).

- 8-Åthylbensylamino-phenol-äthyläther, Äthyl-bensyl-m-phenetidin $C_{17}H_{21}ON = C_8H_5 \cdot CH_3 \cdot N(C_8H_4) \cdot C_8H_4 \cdot O \cdot C_8H_5$. Beim Kochen von 3-Åthylbenzylamino-phenol mit Åthyljodid und Natriumhydroxyd in absol. Alkohol (Bülow, Sprösser, B. 41, 494). Gelbe Flüssigkeit. Kp₃₁: 250°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln. Löslich in Säuren.
- 3-[Bis-(2-nitro-bensyl)-amino]-phenol $C_{30}H_{17}O_5N_3=(O_2N\cdot C_6H_4\cdot CH_2)_2N\cdot C_6H_4\cdot OH$, Zur Konstitution vgl. Bakunin, Profilo, G. 37 II, 240. B. Aus 1 Mol.-Gew. 3-Aminophenol mit 2 Mol.-Gew. 2-Nitro-benzylchlorid (Bd. V, S. 327) und 2 Mol.-Gew. Natriumacetat in alkoholischer Lösung (Lellmann, Mayer, B. 25, 3583). Dunkelbraune Krystalle (aus Alkohol). F: 190°; ziemlich leicht löslich in heißem Alkohol, Eisessig und Benzol, schwerer in Äther, unlöslich in Alkalien (L., M.).
- **8-[asymm.-m-Xylidino]-phenol-methyläther,** N-[2.4-Dimethyl-phenyl]-m-anisidin, 3'-Methoxy-2.4-dimethyl-diphenylamin $C_{18}H_{17}ON = (CH_3)_3C_8H_3 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Kondensation von asymm. m-Xylidin (Bd. XII, S. 1111) mit Resorcin und Erhitzen des Natriumsalzes des entstandenen 3'-Oxy-2.4-dimethyl-diphenylamins mit Methylchlorid und Methylalkohol (Bad. Anilin- u. Sodaf., D. R. P. 62539; Frdl. 3, 142). Öl. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P. 62539, 63260, 64217; Frdl. 3, 142, 144.
- 3 [asymm. m Xylidino] phenol äthyläther, N [2.4 Dimethyl phenyl] m-phenetidin, 3'-Äthoxy-2.4-dimethyl-diphenylamin $C_{16}H_{19}ON = (CH_3)_2C_6H_3 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Durch Kondensstion von asymm. m-Xylidin mit Resorcin und Erhitzen des Alkalisalzes des entstandenen 3'-Oxy-2.4-dimethyl-diphenylamins mit Äthylchlorid und Athylalkohol (Bad. Anilin- u. Sodaf., D. R. P. 62539; Frdl. 3, 142). Öl. Verwendung zur Darstellung von Triphenylmethanfarbstoffen: B. A. S. F., D. R. P. 62539, 63260, 64217; Frdl. 3, 142, 144.
- **3.3'-Dioxy-diphenylamin** $C_{13}H_{11}O_3N = HO \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Bei 10-stdg. Erhitzen von 1 Tl. Resorcin mit 4 Tln. Chlorcalciumammoniak im geschlossenen Rohr auf 190—200⁶ (Seyewitz, C. 7. 109, 946; Bl. [3] 3, 811). Braungelbe Krystalle (aus Alkohol). Unlöslich in Wasser. Beim Glühen mit Zinkstaub entsteht Diphenylamin.
- **3-[3-Nitro-bensalamino]-phenol** $C_{13}H_{10}O_3N_3=O_3N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot OH$. Blättchen (aus Benzol). Löslich in Äther und Benzol, leicht löslich in Alkohol; die Lösung in Natronlauge ist bräunlich gelb; Verwendung zur Darstellung von Schwefelfarbstoffen: Ges. f. chem. Ind., D. R. P. 135335; *Frdl.* 6, 717; C. 1902 II, 1166.
- **8-[4-Nitro-bensalamino]-phenol** $C_{13}H_{10}O_3N_2 = O_2N \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot OH$. Verwendung zur Darstellung von Schwefelfarbstoffen: Ges. f. chem. Ind., D. R. P. 135335; *Frdl*. **6**, 717; *C*. **1902** II, 1166.
- Acetylaceton mono [8 oxy anil] $C_{11}H_{13}O_{2}N = CH_{3} \cdot CO \cdot CH_{2} \cdot C(CH_{3}) : N \cdot C_{6}H_{4} \cdot OH$ bezw. desmotrope Formen. B. Aus Acetylaceton und 3-Amino-phenol auf dem Wasserbad (BÜLOW, ISSLER, B. 36, 4015). Blättchen (aus heißem Alkohol). F: 135°. Leicht löslich in Alkohol, Ather, Aceton und Eisessig, schwer in Benzol und Ligroin, unlöslich in Wasser; leicht löslich in verd. Alkalien. Wird durch Destillation mit 15°/oiger Natronlauge in 3-Amino-phenol, Aceton und Essigsäure gespalten. Beim Einleiten von Chlorwasserstoff in die eisessigsaure Lösung entsteht 2.4-Dimethyl-7-oxy-chinolin neben geringen Mengen 2.4-Dimethyl-5-oxy-chinolin(?) (Syst. No. 3114).
- 8-[3-Oxy-phenylimino]-d-campher, [d-Campher]-chinon-[3-oxy-anil]-(3) $C_{16}H_{19}O_2N = C_6H_{14} C_{18}O_{18} B$. Aus Campherchinon (Bd. VII, S. 581) und 3-Amino-phenol (Forster, Thornley, Soc. 95, 954). Gelbliche Krystalle (aus Benzol).

F: 173,5°. Leicht löslich in organischen Lösungsmitteln, unlöslich in siedendem Petroläther. $[a]_{\rm D}$: +630° (0,4124 g in 100 ccm Chloroform). Die Lösung in Kalilauge ist orangegelb.

 β -[3-Oxy-phenylimino]-butyrophenon $C_{16}H_{16}O_2N=C_6H_5\cdot CO\cdot CH_2\cdot C(CH_3):N\cdot C_6H_4\cdot OH$ bezw. desmotrope Formen. B. Durch Vermischen der Lösungen von 3-Amino-phenol und Benzoylaceton (Bd. VII, S. 680), in Eisessig (Büllow, Issler, B. 36, 2451). — Gelbe Krystalle (aus Alkohol). F: 160°. Leicht löslich in siedendem Alkohol, Äther, Aceton, weniger in Eisessig, schwer löslich in Benzol, Ligroin und Chloroform, unlöslich in Wasser; leicht löslich in verd. Alkalien. — Zerfällt bei 1-tägigem Kochen mit Wasser in die Ausgangs-substanzen. Liefert bei der Behandlung mit konz. Schwefelsäure 7-Oxy-2-methyl-4-phenyl-chinolin (Syst. No. 3118).

Semicarbason $C_{17}H_{18}O_2N_4 = C_6H_5 \cdot C(:N \cdot NH \cdot CO \cdot NH_2) \cdot CH_3 \cdot C(CH_3) : N \cdot C_6H_4 \cdot OH$. B. Aus β -[3-Oxy-phenylimino]-butyrophenon (s. o.) mit salzsaurem Semicarbazid und Natriumacetat beim Kochen (B., I., B. 36, 2452). — Farblose Nadeln (aus Alkohol). F: 124°. Löslich in Alkohol, Äther, Eisessig und Chloroform, schwer löslich in Benzol und Ligroin.

β-[8-Oxy-phenylimino]-valerophenon $C_{17}H_{17}O_2N = C_6H_5 \cdot CO \cdot CH_2 \cdot C(C_2H_5) \cdot N \cdot C_6H_4 \cdot OH$ bezw. desmotrope Formen. B. Durch Lösen von 3-Amino-phenol in ω-Propionyl-acetophenon (Bd. VII, S. 687) auf dem Wasserbade (B., I., B. 36, 4018). — Hellgelbe Prismen (aus Alkohol). F: 139°. Leicht löslich in Alkohol, Äther, Aceton, weniger in Eisessig, unlöslich in Wasser; leicht löslich in verdünnten Alkalien. — Geht durch Behandeln mit konz. Schwefelsäure in 7-Oxy-2-äthyl-4-phenyl-chinolin (Syst. No. 3118) über.

 β -[3-Oxy-phenylimino]-caprophenon $C_{18}H_{19}O_2N=C_8H_5\cdot CO\cdot CH_2\cdot C(CH_4\cdot CH_3\cdot CH_3\cdot CH_3\cdot N\cdot C_8H_4\cdot OH$ bezw. desmotrope Formen. B. Man löst 3-Amino-phenol in ω -Butyrylacetophenon (Bd. VII, S. 689) unter gelindem Erwärmen (B., I., B. 36, 4019). — Gelbe Tafeln (aus Alkohol). F: 152°. Löslichkeit ähnlich der des β -[3-Oxy-phenylimino]-butyrophenons (s. o.). — Durch Behandlung mit konz. Schwefelsäure erhält man 7-Oxy-2-propyl-4-phenyl-chinolin (Syst. No. 3118).

Dibenzoylmethan-mono-[3-oxy-anil] $C_{a1}H_{i7}O_{a}N = C_{e}H_{5} \cdot CO \cdot CH_{2} \cdot C(C_{e}H_{5}) : N \cdot C_{e}H_{4}$. OH bezw. desmotrope Formen. B. Aus Dibenzoylmethan (Bd. VII, S. 769) und 3-Aminophenol in Eisessig bei kurzem Kochen (B., I., B. 36, 4017). — Gelbe Nadeln (aus Alkohol). F: 172°. Löslichkeit ähnlich der des Acetylaceton-mono-[3-oxy-anils] (S. 414). — Gibt beim Behandeln mit Chlorwasserstoff in Eisessiglösung 7-Oxy-2.4-diphenyl-chinolin (Syst. No. 3122).

- 3-Salicylalamino-phenol C₁₃H₁₁O₂N = HO·C₆H₄·CH:N·C₆H₄·OH. B. Aus Salicylaldehyd und 3-Amino-phenol in verd. Essigsäure (SENIER, SHEPHEARD, Soc. 95, 1947).

 Rötlichorange Schuppen (aus Benzol durch Petroläther). F: 128—129° (korr.). Leicht löslich in Alkohol, Chloroform, Eisessig mit tiefgelber Farbe, in Äther mit gelblicher Farbe, löslich in Benzol, Petroläther ohne Farbe. Ist thermotrop.
- 3-[Formyl-o-toluidino]-phenol, 3'-Oxy-2-methyl-N-formyl-diphenylamin $C_{14}H_{13}O_2N=OHC\cdot N(C_6H_4\cdot CH_3)\cdot C_6H_4\cdot OH$. B. Beim Kochen von 3-o-Toluidino-phenol mit Ameisensäure (Philip, J. pr. [2] 34, 71). Tafeln (aus Alkohol). F: 169°. Wenig löslich in kaltem Alkohol, Äther und Eisessig.
- 3-[Formyl-p-toluidino]-phenol, 3'-Oxy-4-methyl-N-formyl-diphenylamin $C_{14}H_{13}O_2N=OHC\cdot N(C_6H_4\cdot CH_5)\cdot C_6H_4\cdot OH$. B. Beim Kochen von 3-p-Toluidino-phenol mit Ameisensäure (Hatscher, Zega, J. pr. [2] 33, 214). F: 146°. Leicht löslich in Äther, Aceton und in warmem Benzol, sehr wenig in Petroläther.
- 3-Acetamino-phenol $C_9H_9O_2N=CH_9\cdot CO\cdot NH\cdot C_9H_4\cdot OH$. B. Aus 1 Tl. 3-Amino-phenol und 1,1 Tl. Essigsäureanhydrid beim Vermischen (Ikuta, Am. 15, 41). Nadeln (aus Wasser). F:148–149°; leicht löslich in Wasser und Alkohol, schwer in Äther, Benzol und Chloroform (I.). Läßt sich durch Einw. von Natriumnitrit auf die eiskalte salzsaure Lösung und Verseifung der ausgeschiedenen Nitrosoverbindung mit Natronlauge in 6-Nitroso-3-amino-phenol C_9H_5

(Bd. VIII, S. 237) überführen (Leonhardt & Co., D. R. P. 86068; Frdl. 4, 111). Liefert beim Erhitzen mit Benzotrichlorid und Nitrobenzol auf 150—160° ein Reaktionsgemisch, aus welchem 6-Acetamino-9-phenyl-fluoron (Formel I) (Syst. No. 2643) und Diacetylrosamin C₂₃H₁₉O₃N₂Cl (s. bei der zugehörigen Carbinolbase, dem 3.6-Bis-acetamino-9-phenyl-xanthydrol der Formel II, Syst. No. 2642) erhalten werden konnten (Kehrmann, Dengler, B. 41, 3442).

- 3-Acetamino-phenol-methyläther, Essigsäure-m-anisidid, Acet-m-anisidid $C_0H_{11}O_9N=CH_2\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Aus m-Anisidin durch Acetylierung (Körner, Wender, G. 17, 493). Nadeln oder Blättchen (aus Wasser). F: 80—81°; 100 Tle. 96°/0iger Alkohol lösen bei 20,9° 80 Tle. (K., W.). Geschwindigkeit der Zersetzung durch wäßr. Natronlauge: Davis, Soc. 95, 1403.
- 3-Acetamino-phenol-äthyläther, Essigsäure-m-phenetidid, Acet-m-phenetidid $C_{10}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_2H_5$. B. Aus m-Phenetidin und Essigsäureanhydrid (Wagner, J. pr. [2] 32, 75). Blättchen (aus Wasser). F: 96,7° (W.). Geschwindigkeit der Zersetzung durch wäßr. Natronlauge: Davis, Soc. 95, 1403.
- **3-Acetamino-phenol-phenyläther, 3-Acetamino-diphenyläther** $C_{14}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_6H_5$. Prismen (aus Ligroin). F: 83°; leicht löslich in den meisten Lösungsmitteln außer Ligroin (Ullmann, Sponagel, A. 850, 105).
- [3-Acetamino-phenyl]-acetat, O.N-Diacetyl-[3-amino-phenol] $C_{10}H_{11}O_3N=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CO\cdot CH_2$. B. Aus 1 Tl. 3-Amino-phenol und 3—4 Tln. Essigräureanhydrid bei 150—160° (IEUTA, Am. 15, 42). Schuppen (aus Benzol + Petroläther). F: 101°; leicht löslich in Alkohol und Äther, weniger in Wasser und Benzol (I.). Liefert bei der Nitrierung ein Gemisch von 4-Nitro-3-acetamino-phenol und 6-Nitro-3-acetamino-phenol (MFLDOLA, STEPHENS, Soc. 89, 924).
- 3-[Acetyl-p-toluidino]-phenol, 3'-Oxy-4-methyl-N-acetyl-diphenylamin $C_{18}H_{15}O_2N=CH_3\cdot CO\cdot N(C_8H_4\cdot CH_3)\cdot C_8H_4\cdot OH$. B. Man läßt zu 3-p-Toluidino-phenol (S. 412) in Benzol bei Gegenwart von Pottasche und unter Kühlung Acetylchlorid fließen (GNEHM, VEILLON, J. pr. [2] 65, 50). Durch Kochen von 3-p-Toluidino-phenol mit Acetanhydrid unter Rückfluß (G., V.). Tafeln (aus Alkohol). F: 213°. Fast unlöslich in Benzol, Äther und Petroläther, ziemlich schwer löslich in heißem Alkohol, Essigester, leichter in Eissen Ist in wäßr. Alkalien löslich. Wird durch siedendes alkoh. Kall verseit.

[3'-Oxy-4-methyl-N-acetyl-diphenylamin] - disulfonsäure $C_{15}H_{15}O_8NS_2 = CH_3 \cdot C_{12}H_4N(CO \cdot CH_3)(OH)(SO_3H)_2$. B. Man trägt unter Rühren 3-[Acetyl-p-toluidino]-phenol in ein Gemisch aus Schwefelsäuremonohydrat und Phosphorpentoxyd ein; zum Schluß erwärmt man kurze Zeit auf 45—50° (G., V., J. pr. [2] 65, 55). — $BaC_{15}H_{13}O_8NS_2 + H_2O.$

Weiße Nädelchen (aus Wasser).

- [3'-Oxy-4-methyl-N-acetyl-diphenylamin]-trisulfonsaure $C_{15}H_{15}O_{11}NS_3 = CH_3 \cdot C_{12}H_2N(CO \cdot CH_2)(OH)(SO_3H)_2$. B. Durch Sulfurieren von 3-[Acetyl-p-toluidino]-phenol mit rauchender Schwefelsaure (20% SO_3) (G., V., J. pr. [2] 65, 56). Ba₃(C₁₅H₁₂O₁₁NS₃)₂. Konnte nicht krystallinisch erhalten werden. Sehr leicht löslich in Wasser.
- 3-[Acetyl-p-toluidino]-phenol-äthyläther, N-p-Tolyl-[acet-m-phenetidid], 3'-Äthoxy-4-methyl-N-acetyl-diphenylamin $C_{17}H_{19}O_2N=CH_3\cdot CO\cdot N(C_8H_4\cdot CH_3)\cdot C_9H_4\cdot O\cdot C_4H_4$. B. Aus 3-p-Toluidino-phenol-äthyläther durch Erhitzen mit Acetylchlorid auf dem Wasserbade (G., V., J. pr. [2] 65, 53). Aus 3-[Acetyl-p-toluidino]-phenol mit Natronlauge und Diäthylsulfat (G., V.). Tafeln (aus verd. Alkohol). F: 61°. In Äther löslich.
- 3-Bensamino-phenol $C_{13}H_{11}O_2N=C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot OH$. B. Aus O.N-Dibenzoyl-[3-amino-phenol] (s. u.) und 2 Mol.-Gew. alkoh. Kali beim Kochen (IKUTA, Am. 15, 43). Aus 3-Amino-phenol und Benzoesäureanhydrid in heißem Toluol (R. MEYER, SUNDMACHER, B. 32, 2124). Nadeln (aus Toluol). F: 174° (I.; R. M., S.). Sehr leicht löslich in Alkohol und Äther, weniger in Chloroform und Toluol, sehwer in Benzol und Wasser (I.).
- [3-Bengamino-phenyl]-bengoat, O.N-Dibengoyl-[3-amino-phenol] $C_{20}H_{15}O_3N=C_0H_5\cdot CO\cdot NH\cdot C_0H_1\cdot O\cdot CO\cdot C_0H_5$. B. Man löst 1,5 g 3-Amino-phenol in 15 g $10^0/_0$ iger Natronlauge und schüttelt mit 4 g Benzoylchlorid (Ikuta, Am. 15, 43). Prismen (aus Benzol), Schuppen (aus absol. Alkohol). F: 153°. Unlöslich in Wasser und Petroläther, schwer löslich in Äther, mäßig in Alkohol und Chloroform.
- 3-Bensoylanilino-phenol, 3-Oxy-N-bensoyl-diphenylamin $C_{10}H_{15}O_{2}N=C_{6}H_{5}\cdot CO\cdot N(C_{6}H_{5})\cdot C_{6}H_{4}\cdot OH.$ B. Aus [3-Anilino-phenyl]-benzoat (8. 411) durch Erhitzen mit Benzoyl-chlorid auf 150—160° und Verseifen der entstandenen Dibenzoylverbindung mit alkoh. Natron (Auwers, A. 364, 171 Anm.). Farblose Krystalle (aus verd. Alkohol). F: 201°.
- [8-(Bensoyl-p-toluidino)-phenyl]-bensoat, 3'-Bensoyloxy-4-methyl-N-bensoyl-diphenylamin $C_{rr}H_{rr}O_{s}N=C_{s}H_{s}\cdot CO\cdot N(C_{s}H_{s}\cdot CH_{s})\cdot C_{s}H_{s}\cdot O\cdot CO\cdot C_{s}H_{s}$. B. Aus 3-p-Toluidino-phenol und Benzoylchlorid im Ölbad bei 120—130° (HATSCHEK, ZEGA, J. pr. [2] 38, 215). Wurde nicht rein erhalten. Nadeln (aus Äther + Petroläther). Schmilzt unscharf bei 105°.
- **x.x** Dinitro {[8 (bensoyl p toluidino) phenyl] bensoat} $C_{27}H_{19}O_7N_3 = C_{27}H_{19}O_2N(NO_2)_2$. B. Bei 12-stdg. Stehen einer Lösung von [3-(Benzoyl-p-toluidino)-phenyl]-benzoat in kalter rauchender Salpetersäure (H., Z., J. pr. [2] 38, 215). Gelbe Nädelchen (aus Alkohol). F: 110°.

[8-Oxy-phenyl]-oxamidsäure $C_8H_7O_4N=HO_2C\cdot CO\cdot NH\cdot C_8H_4\cdot OH$. B. Durch Verseifung des Äthylesters (s. u.) mittels verdünnter Natronlauge (R. MEYER, SUNDMACHER, B. 32, 2117). — Krystalle (aus Wasser). F: 215° (Zers.). Leicht löslich in Alkohol und Aceton, schwer in Toluol.

Äthylester $C_{10}H_{11}O_4N=C_2H_5\cdot O_5C\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Kochen von 3-Aminophenol mit 5 Tln. Oxalsäurediäthylester (R. M., S., B. 82, 2117). — Nadeln (aus Alkohol). F: 183—184°.

[3-Oxy-phenyl]-oxamid $C_8H_8O_2N_2=H_2N\cdot CO\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Einw. von Ammoniak auf [3-Oxy-phenyl]-oxamidsāure-āthylester (s. o.) (R. M., S., B. 32, 2117). — Nadeln (aus Alkohol). F: 225—227°. Löslich in heißem Wasser, leicht löslich in heißem Alkohol, sehr wenig in Toluol.

N.N'-Bis-[3-oxy-phenyl]-oxamid $C_{14}H_{12}O_4N_2 = [-CO \cdot NH \cdot C_4H_4 \cdot OH]_2$. B. Durch 1 /₃-stdg. Erhitzen gleicher Teile 3-Amino-phenol und Oxalsäurediäthylester auf 170°, neben einer rotgelben, in alkoh. Lösung grün fluorescierenden Substanz (R. M., S., B. 32, 2118). — Blättehen (aus Alkohol), Nädelchen (aus Eisessig + Wasser). F: 269—270°.

N-[3-Oxy-phenyl]-phthalamidsäure $C_{14}H_{11}O_4N=HO_2C\cdot C_4H_4\cdot CO\cdot NH\cdot C_4H_4\cdot OH$. B. Aus 3-Amino-phenol und Phthalsäureanhydrid (Syst. No. 2479) in Toluol (R. M., S., B. 32, 2119). — Nadeln (aus Alkohol). F: 227—229°. Ziemlich leicht löslich in heißen Alkoholen und Äther, sehr wenig in Benzol, unlöslich in verdünnten Säuren. Die alkalische Lösung färbt sich mit p-Diazobenzolsulfonsäure intensiv rotgelb.

N-Phenyl-N-[8-oxy-phenyl]-phthalamidsäure C₂₀H₁₅O₄N = HO₂C·C₆H₄·CO·N(C₆H₄)·C₆H₄·OH. B. Durch Erhitzen äquimolekularer Mengen 3-Oxy-diphenylamin (8.410) und Phthalsäureanhydrid über 120° (Piutti, Piccoll, G. 28 I, 377; B. 3I, 1331). — Krystallinische Krusten (aus Alkohol). Färbt sich bei 185° violett und schmilzt bei 191° bis 192°. — Liefert beim Erhitzen auf den Schmelzpunkt oder bei der Einwirkung von Phosphoroxychlorid oder konz. Schwefelsäure Diphenylrhodamin (Syst. No. 2933). — AgC₂₀H₁₄O₄N. Weißer, voluminöser Niederschlag.

Athylester $C_{22}H_{19}O_4N = C_2H_5 \cdot O_3C \cdot C_0H_4 \cdot CO \cdot N(C_0H_5) \cdot C_0H_4 \cdot OH$. B. Aus dem Silbersalz der N-Phenyl-N-[3-oxy-phenyl]-phthalamidsäure und Athyljodid (Piutti, Piccoli, G. 28 I, 379; B. 31, 1332). — Krystallinische Krusten. Schmilzt bei 155—157° zu einer violetten Flüssigkeit.

N-Phenyl-N-[3-methoxy-phenyl]-phthalamidsäure $C_{31}H_{17}O_4N = HO_4C \cdot C_6H_4 \cdot CO \cdot N(C_6H_5) \cdot C_6H_4 \cdot O \cdot CH_5$. B. Aus dem Kaliumsalz der N-Phenyl-N-[3-oxy-phenyl]-phthalamidsäure (s. o.) durch Kochen mit alkoh. Kalilauge und Methyljodid (Piutti, Piccoll, G. 28 I, 379; B. 31, 1332). — F: 95—98°. Verfärbt sich bei 120°. Sehr leicht löslich in Alkohol, Äther und Aceton. — $AgC_{x1}H_{16}O_4N$. Ziemlich löslich in Wasser.

N-Phenyl-N-[3-āthoxy-phenyl]-phthalamidsäure $C_{13}H_{19}O_4N = HO_3C \cdot C_6H_4 \cdot CO \cdot N(C_6H_5) \cdot C_6H_4 \cdot O \cdot C_2H_5$. Aus dem Kaliumsalz der N-Phenyl-N-[3-oxy-phenyl]-phthalamidsäure durch Kochen mit alkoh. Kali und Äthyljodid (Piutti, Piccoli, G. 28 I, 380; B. 31, 1332). — F: 90°. Färbt sich bei 118° violett. — $AgC_{12}H_{18}O_4N$.

[3-Oxy-phenyl]-harnstoff $C_7H_2O_2N_2 = H_2N \cdot CO \cdot NF \cdot C_6H_4 \cdot OH$. B. Aus salzsaurem 3-Amino-phenol und Kaliumcyanat in wenig heißem Wasser (R. MEYER, SUNDMACHER, B. 32, 2114). — Prismen (aus Wasser). F: 180—181°. Leicht löslich in heißem Alkohol und Eisessig, kaum in Benzol.

N-Phenyl-N'-[8-oxy-phenyl]-harnstoff $C_{13}H_{12}O_2N_2=C_4H_5\cdot NH\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Durch 3—4-stdg. Erhitzen von [3-Oxy-phenyl]-harnstoff (s. o.) mit Anilin auf 180—190° (R. M., S., B. 32, 2114). — Nädelchen (aus verd. Alkohol). F: 230—232°. Sehr wenig löslich in heißem Wasser.

N.N'-Bis-[3-oxy-phenyl]-harnstoff $C_{12}H_{12}O_3N_2 = CO(NH\cdot C_0H_4\cdot OH)_2$. B. Beim Koohen von 3-Oxy-benzazid (Bd. X, S. 142) mit Wasser (Struye, Radenhausen, J. pr. [2] 52, 236). Durch Erhitzen von [3-Oxy-phenyl]-harnstoff (s. o.) mit 3-Amino-phenol auf 180—190° (R. Meyer, Sundmacher, B. 32, 2115). — Nädelchen (aus verd. Alkohol). F: 222° (R. M., Su.); 220° (Str., Ra.).

[3-Oxy-phenyl]-thioharnstoff $C_1H_0ON_0S = H_2N \cdot CS \cdot NH \cdot C_0H_4 \cdot OH$. B. Aus salz-saurem 3-Amino-phenol und Rhodankalium in wenig heißem Wasser (R. MEYEB, SUND-MACHER, B. 32, 2115). — Prismen (aus heißem Wasser). F: 183—184°.

N-Phenyl-N'-[3-oxy-phenyl]-thioharnstoff $C_{13}H_{13}ON_1S = C_4H_5 \cdot NH \cdot CS \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch 1-stdg. Erwärmen von 3-Amino-phenol mit Phenylsenföl in Alkohol (R. M., S., B. 32, 2116). — Blättchen (aus Alkohol). F: 155—156°.

- N.N'-Bis-[3-oxy-phenyl]-thioharnstoff $C_{13}H_{12}O_2N_2S=CS(NH\cdot C_6H_4\cdot OH)_2$. B. Durch 15-stdg. Kochen von 3-Amino-phenol mit Schwefelkohlenstoff in Alkohol (R. M., S., B. 32, 2116). — Gelbliche Nadeln (aus Wasser). F: 164—165°. Sehr leicht löslich in Alkohol und Eisessig.
- [3-Åthoxy-phenyl]-harnstoff $C_9H_{12}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5$. B. Durch Erhitzen der wäßrig-alkoholischen Lösung von 3-Äthoxy-phenylcyanamid mit Säuren (Pierron, Bl. [3] 35, 1201; A. ch. [8] 15, 168). Aus salzsaurem 3-Äthoxy-anilin und Kaliumcyanat (P.). Nadeln. F: 112°. Löslich in heißem Alkohol, schwer löslich in Wasser, Alkohol und Benzol.
- N-[\$\beta\$-Chlor-propyl]-N'-[\$\frac{3}{6}\text{thoxy-phenyl}]-harnstoff \$C_{12}H_{17}O_2N_3Cl = CH_3\cdot CHCl\cdot CH_3\cdot NH\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_4H_5\cdot B. Durch Erhitzen von N-Allyl-N'-[\$\frac{3}{6}\text{thoxy-phenyl}]-harnstoff (s. u.) mit rauchender Salzs\(\text{salz}\) are im Druckrohr auf 100\(^0\) (Menne, \$B\$. 33, 665). Krystalle (aus Ligroin). F: 116°.
- N-Allyl-N'-[8-äthoxy-phenyl]-harnstoff $C_{12}H_{16}O_2N_2=CH_2\cdot CH\cdot CH_2\cdot NH\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot C_2H_3$. B. Allylisocyanat (Bd. IV, S. 214) und m-Phenetidin in Benzol (M., B. 88, 665). — F: 154°.
- 8-Athoxy-phenylcyanamid, N-Cyan-m-phenetidin $C_0H_{10}ON_2 = NC \cdot NH \cdot C_0H_4 \cdot O \cdot$ C₂H₄. B. Man versetzt eine kalte Lösung von 7 g m-Phenetidin in 200 com Alkohol mit einer konzentrierten wäßrigen Lösung von 5,5 g Kaliumdicarbonat und einer ebensolchen Lösung von 5,5 g Bromeyan und läßt 10—12 Stdn. stehen (Pierron, Bl. [3] 35, 1200; A. ch. [8] 15, 167). — Nadeln. F: 57°; leicht löslich in Alkohol, schwer in Wasser, Äther und Benzol; leicht löslich in Alkalien (P., Bl. [3] 35, 1200; A. ch. [8] 15, 167). — Das Alkalisalz reagiert mit Benzoldiazoniumchlorid unter Bildung von 2-Athoxy-4-cyanaminoarchengel (Syst No. 2188) (P. A. ch. [8] 15, 225, 268) azobenzol (Syst. No. 2185) (P., A. ch. [8] 15, 225, 256).
- N-Phenyl-N'-[3-äthoxy-phenyl]-thioharnstoff $C_{15}H_{16}ON_{2}S=C_{6}H_{5}\cdot NH\cdot CS\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}\cdot B$. Aus m-Phenetidin und Phenylsenföl (Jacobson, Hönigsberger, B. 36, 4102). Blättchen (aus Alkohol). F: 138,5°.
- [N-(3-Oxy-phenyl)-glycin]-amid $C_0H_{10}O_2N_3=H_2N\cdot CO\cdot CH_3\cdot NH\cdot C_0H_4\cdot OH.$ B. Aus 3-Amino-phenol und Chloressigsäure-amid (Bd. II, S. 199) (Lumière, Perrin, Bl. [3] 29, 967). — F: 145°.
- 3-Oxy-4'-dimethylamino-diphenylamin $C_{16}H_{16}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Beim $4^1/_2$ -stdg. Erhitzen von N.N-Dimethyl-p-phenylendiamin (S. 72) mit Resorcin auf 200—220° (Akt.-Ges. f. Anilinf., D. R. P. 74196; Frdl. 3, 38; GNEHM, WEBER, B. 35, 3087; J. pr. [2] 69, 232). — Blättchen (aus verdünntem Alkohol oder Wasser). F: 99°; leicht löslich in Alkohol, Äther und Aceton, schwerer in Benzol und Chloroform, unlöslich in Ligroin und kaltem Wasser (G., W.). — Wenn man auf 3-0xy-4'-dimethylamino-diphenylamin in alkoh. Lösung in Gegenwart von Salzsäure (D: 1,19) 40° /oige Formaldehydlösung einwirken läßt, so entsteht bei Zimmertemperatur 4-[4-Dimethylamino-anilino]-2-oxybenzylalkohol (Syst. No. 1869), bei $40-50^{\circ}$ das 4.4'-Bis-[4-dimethylamino-anilino]-2.2'-dioxy-diphenylmethan (Syst. No. 1869) (G., W.). — $C_{14}H_{16}ON_3 + HCl$. Nadeln. F: 207° (G., W.). — $2C_{14}H_{16}ON_3 + H_3SO_4$. Prismen. F: 193° (G., W.).
- beim 3-stdg. Kochen (G., W., J. pr. [2] 69, 236). — Nadeln. F: 199,5—200°. Leicht löslich in Alkohol, Pyridin, heißem Wasser, unlöslich in Äther, Benzol.
- Jodäthylat $C_{16}H_{31}ON_{3}I = (C_{2}H_{5})(CH_{3})_{3}NI \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4} \cdot OH$. B. Analog der der verbindung (G., W., J. pr. [2] 69, 237). F: 180°. Leicht löslich in Alkohol, Chloroform, heißem Wasser, schwer in Ather, Benzol, Essigester.
- 8-Acetoxy-4'-dimethylamino-N-acetyl-diphenylamin $C_{18}H_{20}O_8N_8 = (CH_8)_8N \cdot C_6H_4$ N(CO·CH₂)·C₆H₄·O·CO·CH₃. B. Aus 3-Oxy-4'-dimethylamino-diphenylamin mit Acetylchlorid in Äther in Gegenwart von Kaliumcarbonat in der Kälte oder durch Erhitzen mit Essigsäure-anhydrid am Rückflußkühler (G., W., B. 35, 3087; J. pr. [2] 69, 234). — Nadeln. F: 101°. Leicht löslich in Alkohol, Äther, Benzol und heißem Ligroin.
- 8-Bensoyloxy-4'-dimethylamino-N-bensoyl-diphenylamin $C_{ss}H_{24}O_sN_s = (CH_s)_sN$. $C_6H_4\cdot N(CO\cdot C_6H_5)\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus 3-Oxy-4'-dimethylamino-diphenylamin mit Benzoylchlorid durch direktes Erhitzen oder durch Erwärmen in Äther in Gegenwart von Kaliumcarbonat (G., W., B. 35, 3087; J. pr. [2] 69, 235, 236). — F: 112°. Leicht löslich in Benzol und heißem Alkohol, unlöslich in Äther.

8'-Oxy-8-amino-4-methyl-diphenylamin $C_{12}H_{14}ON_2 = H_2N \cdot C_6H_6(CH_2) \cdot NH \cdot C_6H_4$ OH. B. Durch 12-stdg. Erhitzen gleicher Teile von asymm. m-Toluylendismin und Resorcin auf 200—220° im CO, Strome (BAYER & Co., D. R. P. 82640; Frdl. 4, 86). — Blättchen (aus Wasser, Alkohol oder Benzol). F: 177—178°; schwer löslich in Wasser und Benzol, sehr wenig in Ligroin (B. & Co., D. R. P. 82640). — Darstellung von roten bis violetten Farbstoffen durch Kondensation mit aromatischen Nitrosobasen: B. & Co., D. R. P. 84064; Frdl. 4, 418.

3-[(2-Amino-bensyl)-äthyl-amino]-phenol $C_{15}H_{16}ON_3=H_3N\cdot C_6H_4\cdot CH_3\cdot N(C_8H_6)\cdot C_6H_4\cdot OH$. B. Man erhitzt eine alkoh. Lösung von 1 Mol.-Gew. 2-Nitro-benzylchlorid mit 2 Mol.-Gew. 3-Athylamino-phenol, destilliert darauf den Alkohol ab und behandelt den Rückstand anhaltend mit verd. Salzsäure; das hierbei zurückbleibende Pulver löst man in konz. Salzsäure und läßt die Lösung mit einem geringen Überschuß von Zinnchlorür stehen; nach einem Tage erwärmt man einige Stunden im Wasserbade, verjagt den größten Teil der Salzsäure und gießt den mit Wasser verdünnten Rückstand in überschüssiges Schwefelammon (LELLMANN, BOYE, B. 23, 1781). — Blättohen (aus Ather). F: 145°. — Versetzt man die Lösung von 3-[(2-Amino-benzyl)-äthyl-amino]-phenol in verd. Salzsäure mit 1 Mol.-Gew. Natriumnitrit, so tritt eine intensive Braunfärbung auf; Natriumacetat fällt aus der Lösung ein Produkt der Zusammensetzung $C_{18}H_{18}ON_3$ (dunkelbraunes grünglänzendes Pulver; leicht löslich in Alkohol, Eisessig und Phenol; färbt Seide gelbbraun).

8-Glycylamino-phenol-methyläther, Glycin-m-anisidid $C_0H_{12}O_2N_2 = H_2N \cdot CH_2$. ${
m CO\cdot NH\cdot C.H.}$ ${
m O\cdot CH}$, ${
m B.}$ Durch Einwirkung von überschüssigem stärkstem alkoholischem oder wäßrigem Ammoniak auf Bromessigsäure-m-anisidid, neben etwas Diglykolamidsäuredi-m-anisidid (s. u.) (MAJERT, D. R. P. 59121; Frdl. 3, 916). Aus salzsauren Glykokollalkylestern und m-Anisidin bei 130-1500 (M., D. R. P. 59874; Frdl. 3, 918). - Blättchen. F: 96° (M., D. R. P. 59121).

Iminodiessigsäure-di-m-anisidid, Diglykolamidsäure-di-m-anisidid $C_{18}H_{21}O_2N_3 =$ $HN(CH_2 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot CH_3)_2$. B. s. o. beim Glycin-m-anisidid (M., D. R. P. 59121; Frdl. 3, 916). — F: 116.

3-Glycylamino-phenol-āthylāther, Glycin-m-phenetidid $C_{10}H_{14}O_2N_2=H_2N\cdot CH_2\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot C_2H_5$. *B.* Analog dem Glycin-m-anisidid (s. o.) (M., D. R. P. 59121, 59874; *Frdl.* **3**, 916, 918). — F: 92°.

Iminodiessigsäure - di - m - phenetidid , Diglykolamidsäure - di $C_{20}H_{25}O_4N_5 = HN(CH_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5)_3$. B. Analog dem D di-m-anisidid (s. o.) (M., D. R. P. 59121; Frdl. 3, 916). — F: 130—131°. Diglykolamidsäure - di - m - phenetidid B. Analog dem Diglykolamidsäure-

8-p-Toluolsulfamino-phenol, p-Toluolsulfonsäure-[3-oxy-anilid] $C_{13}H_{13}O_3NS = CH_3 \cdot C_4H_4 \cdot SO_3 \cdot NH \cdot C_4H_4 \cdot OH$. Bei längerem Kochen von 2 Mol.-Gew. 3-Amino-phenol mit 1 Mol.-Gew. p-Toluolsulfochlorid (Bd. XI, S. 103) und Alkohol (Troeger, Uhlmann, J. pr. [2] 51, 442). — Nadeln. F: 157°. — Bei der Oxydation mit Kaliumpermanganat in neutraler Lösung entsteht p-Toluolsulfamid.

8-Phenylnitrosamino-phenol, N-Nitroso-3-oxy-diphenylamin, [8-Oxy-phenyl]-phenyl-nitrosamin, $C_{13}H_{10}O_2N_3 = C_2H_3$. $N(NO) \cdot C_3H_4 \cdot OH$. B. Aus 3-Oxy-diphenylamin in verd. Alkohol mit Natriumnitrit und Schwefelsaure (Kohler, B. 21, 908). — Gelbe Nadeln. Schmilzt unter Zersetzung bei 115°. Leicht löslich in Alkohol und Äther, schwerer in Benzol und Ligroin. — Wird durch Stehen mit alkoh. Salzsäure in 4-Nitroso-3-oxy-diphenylamin (Bd. XII, S. 222) übergeführt.

8-p-Tolylnitrosamino-phenol, N-Nitroso-8'-oxy-4-methyl-diphenylamin, [3-Oxyphenyl]-p-tolyl-nitrosamin $C_{19}H_{19}O_{2}N_{2}=CH_{3}\cdot C_{4}H_{4}\cdot N(NO)\cdot C_{5}H_{4}\cdot OH$. B. Aus 3'-Oxy-4-methyl-diphenylamin in alkoh Lösung mit Natriumnitrit und Salzsäure (Hatschek, Zega, J. pr. [2] 88, 216; GNEHM, VEILLON, J. pr. [2] 65, 65). — Gelbe Nadeln oder Tafeln (aus verd. Alkohol). Schmilzt unter Zersetzung bei 105° (H., Z.). F: 127° (G., V.). Wenig löslich in kaltem Alkohol, Äther und Benzol, reichlich in siedendem Petroläther (H., Z.).

8-[(4-Dimethylamino-phenyl)-nitrosamino]-phenol, N-Nitroso-3-oxy-4-dimethylamino-diphenylamin, [3-Oxy-phenyl]-[4-dimethylamino-phenyl]-nitrosamin C₁₄H₁₅O₂N₃ = (CH₃)₂N·C₆H₄·N(NO)·C₆H₄·OH. B. Aus 3-Oxy-4'-dimethylamino-diphenylamin (8. 418) durch salpetrige Säure (GNEHM, WEBER, B. 35, 3087; J. pr. [2] 69, 237). — Grau-bräunliche Nadeln (aus verd. Alkohol). F: 125,5°; leicht löslich in Alkohol und Chloro-

form, unlöslich in Benzol und Äther (G., W.). — Wird durch alkoh. Salzsäure unterhalb 0° in 4-Nitroso-3-oxy-4'-dimethylamino-diphenylamin (S. 93) umgelagert (G., W., J. pr. [2] 69, 238).

Substitutions produkte des 3-Amino-phenols.

- 2-Chlor-3-amino-phenol C₆H₆ONCl = H₂N·C₆H₂Cl·OH. B. Aus 2-Chlor-3-nitrophenol (Bd. VI, S. 239) mit Zinnchlorür und konz. Salzsäure (SCHLIEFEE, B. 26, 2466). F: 85—87°.
- 2 Chlor 3 amino phenol methyläther, 2 Chlor 3 amino anisol $C_7H_9ONCl = H_9N \cdot C_9H_9Cl \cdot O \cdot CH_9$. B. Aus 2-Chlor 3-nitro-anisol mit Zinnehlorür und konz. Salzsäure (Sch., B. 26, 2467). $C_7H_9ONCl + HCl$. Blättehen.
- 4-Chlor-3-amino-phenol-äthyläther, 4-Chlor-3-amino-phenetol C_0H_{10} ONCl = H_2 N· C_0H_3 Cl·O· C_3 H $_5$. B. Aus 4-Chlor-3-nitro-phenetol (Bd. VI, S. 239) durch Zinn und Salzsäure (REVERDIN, DÜRING, B. 32, 157). Öl. Erstarrt bei —12° nicht. Mit Wasserdampf flüchtig. Pikrat. Hellgelbe Nadeln. F: 111°.
- 4 Chlor 8 acetamino phenol äthyläther, 4 Chlor 8 acetamino phenetol $C_{10}H_{12}O_2NCl = CH_3 \cdot CO \cdot NH \cdot C_6H_3Cl \cdot O \cdot C_2H_5$. Blätter (aus Alkohol). F: 106° (R., D., B. 32, 157).
- 4-Chlor-3-bensamino-phenol $C_{13}H_{10}O_{2}NCl = C_{2}H_{5}\cdot CO\cdot NH\cdot C_{2}H_{3}Cl\cdot OH.$ B. Aus 4-Chlor-3-amino-phenol (erhalten durch Reduktion von 4-Chlor-3-nitro-phenol) und Benzoylchlorid in Gegenwart von Natronlauge (Meldola, Woolcott, Wray, Soc. 69, 1323). Nadeln oder Schuppen (aus Alkohol). F: 191—192°.
- 6-Chlor-3-amino-phenol-methyläther, 6-Chlor-3-amino-anisol $C_7H_0ONCl = H_2N\cdot C_0H_2Cl\cdot O\cdot CH_3$. B. Durch Reduktion des 6-Chlor-3-nitro-anisols (Bd. VI, S. 240) mit Zinnehlorür und Salzsäure (REVERDIN, ECKHARD, B. 32, 2626). Nädelchen (aus Benzol + Benzin). F: 77°. Flüchtig mit Wasserdampf.
- 6 Chlor 3 acetamino phenol methyläther, 6 Chlor 3 acetamino anisol $C_0H_{19}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_0H_3Cl\cdot O\cdot CH_3$. Nadeln (aus Wasser). F: 122° (R., E., B. 32, 2626).
- 2.4.6-Trichlor-3-amino-phenol C₆H₄ONCl₃ = H₂N·C₆HCl₃·OH. B. Beim Behandeln von 2.4.6-Trichlor-3-nitro-phenol (Bd. VI, S. 242) mit Zinn und Salzsäure (Daccomo, B. 18, 1166). Nadeln. F: 95°. Schwer löslich in kaltem Wasser, sehr leicht in Alkohol, Äther, Chloroform und Benzol. Die wäßr. Lösung wird durch Eisenchlorid violettrot gefärbt.
- 2-Brom-3-amino-phenol-äthyläther, 2-Brom-3-amino-phenetol $C_0H_{10}ONBr = H_2N \cdot C_9H_2Br \cdot O \cdot C_2H_5$. B. Aus 2-Brom-3-nitro-phenetol (Bd. VI, S. 244) mit Zinn und Salzsaure (Lindner, B. 18, 612; vgl. Schlieper, B. 25, 554). Öl. Unlöslich in Wasser (L.). $C_8H_{10}ONBr + HCl + SnCl_2$ (L.).
- 6-Brom-3-amino-phenol C₆H₆ONBr = H₂N·C₆H₆Br·OH. B. Aus 6-Brom-3-acetamino-phenol durch Erhitzen mit Salzsäure am Rückflußkühler (Heller, Kammann, B. 42, 2196). Blättchen (aus Wasser). F: gegen 150° (Zers.). Sehr leicht löslich in Alkohol, Aceton, Eisessig, löslich in heißem Benzol, sehr wenig löslich in Ligroin. Wird von Eisenchlorid in der Hitze oxydiert.
- 6-Brom-3-acetamino-phenol C₈H₈O₂NBr = CH₃·CO·NH·C₈H₈Br·OH. B. Man reduziert 6-Brom-3-nitro-phenol mit Zinnehlorür und konz. Salzsäure auf dem Wasserbade, stumpft nach dem Erkalten nahezu mit Natriumacetatlösung ab und fügt Essigsäure-anhydrid hinzu (Helle, Kammann, B. 42, 2196). Nadeln (aus Eisessig + Wasser). F: 209—211°. Sehr leicht löslich in Alkohol, Aceton, löslich in heißem Eisessig, sehr wenig löslich in Chloroform, Benzol, Ligroin.
- x.x Dibrom 3 amino phenol äthyläther, x.x Dibrom 3 amino phenetol $C_0H_0ONBr_2 = H_2N \cdot C_0H_2Br_2 \cdot O \cdot C_2H_3$. B. Aus x.x-Dibrom-3-nitro-phenetol (Bd. VI, S. 246) mit Zinn und Salzsäure (LINDNER, B. 18, 613). Flüssig. $C_0H_0ONBr_2 + HCl + SnCl_3$. Blätter.

- 2.4.6-Tribrom-3-amino-phenol C₀H₄ONBr₂ = H₂N·C₂HBr₂·OH. B. Beim Behandeln von 2.4.6-Tribrom-3-nitro-phenol (Bd. VI, S. 248) mit Zinn und Salzsäure (DACCOMO, B. 18, 1168). Aus 1 g 3-Amino-phenol, gelöst in 95% iger Essigsäure, und 4,5 g Brom (Ikuta, Am. 15, 44; vgl. Bamberger, B. 48 [1915], 1356). Durch Einw. einer stark alkal. Lösung von unterbromigsaurem Kalium auf 3-Oxy-benzamid (Bd. X, S. 140) (Van Dam, R. 18, 417). Nadeln (aus Petroläther). F: 115° (DaC.), 117° (v. Dam), 121° (I.). Weniglöslich in kaltem Wasser, leicht in Alkohol, Äther, Chloroform und Benzol (DaC.), weniger löslich in Petroläther (I.). Die wäßr. Lösung wird durch Eisenchlorid grün gefärbt (DaC.).
- 2.4.6-Tribrom-3-amino-phenol-äthyläther, 2.4.6-Tribrom-3-amino-phenetol $C_0H_0ONBr_3 = H_2N \cdot C_0HBr_3 \cdot O \cdot C_2H_5$. B. Aus 2.4.6-Tribrom-3-nitro-phenetol (Bd. VI, S. 248) mit Zinn und Salzsäure (Lindner, B. 18, 614). Flüssig. $C_0H_0ONBr_2 + HCl$. $2C_0H_0ONBr_3 + H_2SO_4$. Nadeln. Ziemlich leicht löslich in Alkohol, unlöslich in Äther. $C_2H_0ONBr_2 + HCl + SnCl_2$. Nadeln.
- [2.4.6-Tribrom-8-diacetylamino-phenyl]-acetat, O.N.N-Triacetyl-[2.4.6-tribrom-8-amino-phenol] $C_{13}H_{10}O_4NBr_3=(CH_3\cdot CO)_9N\cdot C_6HBr_3\cdot O\cdot CO\cdot CH_3$. B. Aus 2.4.6-Tribrom-3-amino-phenol durch Acetylierung (VAN DAM, R. 18, 417). F: 136°.
- 4-Nitroso-3-amino-phenol $C_6H_6O_3N_2=H_2N\cdot C_6H_3(NO)\cdot OH$ ist desmotrop mit 2-Amino-p-chinon-oxim-(1) $H_2N\cdot C_6H_3(:N\cdot OH):O$, Syst. No. 1874.
- 6 Nitroso 3 amino phenol $C_0H_0O_2N_3=H_3N\cdot C_0H_3(NO)\cdot OH$ ist desmotrop mit 2-Oxy-p-chinon-imid-(4)-oxim-(1) $HN:C_0H_3(:N\cdot OH)\cdot OH$, Bd. VIII, S. 237.
- 6-Nitroso-3-dimethylamino-phenol $C_2H_{10}O_2N_2=(CH_3)_2N\cdot C_6H_3(N0)\cdot OH$ ist desmotrop mit 4-Dimethylamino-o-chinon-oxim-(1) $(CH_3)_2N\cdot C_6H_3(:N\cdot OH):O$, Syst. No. 1874.
- 6-Nitroso-3-dimethylamino-phenol-äthyläther, 6-Nitroso-3-dimethylamino-phenetol $C_{10}H_{14}O_2N_2=(CH_3)_2N\cdot C_6H_3(NO)\cdot O\cdot C_2H_5$. B. Das Hydrochlorid entsteht, wenn man salzsaures Dimethyl-m-phenetidin in alkoh. Salzsäure löst und in der Kälte Amylnitrit in kleinen Anteilen einträgt (Wagner, J. pr. [2] 32, 79). Über Farbstoffe aus 6-Nitroso-3-dimethylamino-phenol mit aromatischen Phenolen und Aminen s. Grimaux, Bl. [3] 5, 647; 25, 219. Hydrochlorid. Goldgelbe Blättchen (vom Baur, Stardel, B. 16, 33; W.). Leicht löslich in Wasser und Alkohol (W.).
- 6-Nitroso-3-äthylamino-phenol $C_8H_{10}O_9N_9=C_2H_5\cdot NH\cdot C_9H_8(NO)\cdot OH$ ist desmotrop mit 2-Oxy-p-chinon-āthylimid-(4)-oxim-(1) $C_2H_5\cdot N:C_9H_3(:N\cdot OH)\cdot OH$, Bd. VIII, S. 237.
- 6-Nitroso-3-diäthylamino-phenol $C_{10}H_{14}O_2N_2=(C_2H_5)_2N\cdot C_6H_3(NO)\cdot OH$ ist desmotrop mit 4-Diäthylamino-o-chinon-oxim-(1) $(C_2H_5)_2N\cdot C_6H_3(:N\cdot OH):O$, Syst. No. 1874.
- 6-Nitroso-3-anilino-phenol, 4-Nitroso-3-oxy-diphenylamin $C_{12}H_{10}O_2N_2 = C_6H_5$ · NH· $C_6H_3(NO)$ · OH ist desmotrop mit 2-Oxy-p-chinon-anil-(4)-oxim-(1) C_6H_5 · N: $C_6H_3(:N\cdot OH)$ · OH, Bd. XII, S. 222.
- $\begin{array}{lll} \textbf{6-Nitroso-8-p-toluidino-phenol, 4'-Nitroso-3'-oxy-4-methyl-diphenylamin } \\ C_{13}H_{19}O_{2}N_{3} &= CH_{2}\cdot C_{6}H_{4}\cdot NH\cdot C_{6}H_{3}(NO)\cdot OH & \text{ist desmotrop mit 2-Oxy-p-chinon-[p-tolyl-imid]-(4)-oxim-(1)} \\ CH_{2}\cdot C_{6}H_{4}\cdot N:C_{6}H_{3}(:N\cdot OH)\cdot OH, & \text{Bd. XII. S. 917.} \\ \end{array}$
- 6-Nitroso-3-[4-dimethylamino-anilino]-phenol, 4-Nitroso-3-oxy-4'-[dimethylamino]-diphenylamin $C_{14}H_{15}O_2N_3=(CH_2)_2N\cdot C_6H_4\cdot NH\cdot C_6H_4(NO)\cdot OH$ ist desmotrop mit 2-Oxy-p-chinon-[4-dimethylamino-anil]-(4)-oxim-(1) $(CH_3)_2N\cdot C_6H_4\cdot N:C_6H_3(:N\cdot OH)\cdot OH$, S. 93.
- 4-Nitro-3-amino-phenol $C_6H_6O_3N_3=H_3N\cdot C_6H_3(NO_3)\cdot OH$. B. Beim Verseifen des 4-Nitro-3-acetamino-phenols (S. 422) mit Schwefelsäure (Meldola, Stephens, Soc. 89, 924). Orangefarbene Nadeln (aus Wasser). F: 185—186°. Läßt sich durch Diazotieren und Verkochen mit absol. Alkohol in 4-Nitro-phenol (Bd. VI, S. 226) überführen.
- 4-Nitro-3-amino-phenol-methyläther, 4-Nitro-3-amino-anisol $C_7H_8O_9N_9=H_2N\cdot C_9H_3(NO_9)\cdot O\cdot CH_3$. B. Entsteht aus 3.4-Dinitro-anisol (Bd. VI, S. 258) und alkoh. Ammoniak bei 190° (Bantlin, B. 11, 2106). Man methyliert 4-Nitro-3-acetamino-phenol mit Dimethylsulfat und Alkali und verseift das Reaktionsprodukt mit Schwefelsäure (Meldola, Stephens, Soc. 89, 924). Braune Nadeln, die bei 129° schmelzen und unzersetzt in hellgelben Blättehen sublimieren (B.). F: 131° (M., Sr.).
- 4-Nitro-8-anilino-phenol, 6-Nitro-3-oxy-diphenylamin $C_{19}H_{10}O_{9}N_{2}=C_{6}H_{6}$ ·NH· $C_{6}H_{2}(NO_{9})$ ·OH. B. Entsteht neben 6-Nitro-3-athoxy-diphenylamin (S. 422) und 4.4'-Diathoxy-2.2'-dianilino-azoxybenzol (Syst. No. 2216) bei 6-stdg. Erhitzen von 3 g 5-Chlor-2-nitro-

- diphenylamin (Bd. XII, S. 731) mit einer Lösung von 1 g Natrium in 30 ccm Alkohol im geschlossenen Rohr auf 120°; durch fraktioniertes Versetzen mit Wasser scheidet man zunächst das 6-Nitro-3-äthoxy-diphenylamin, dann das 4.4′-Diäthoxy-2.2′-dianilino-azoxybenzol ab und fällt schließlich durch Ansäuern mit Schwefelsäure das 6-Nitro-3-oxy-diphenylamin aus (Jacobson, Fersch, Fischer, B. 26, 684). Rotbraune Krystalle (aus Alkohol), Blättchen (aus Benzol). F: 165°. Leicht löslich in Alkohol, schwerer löslich in Benzol.
- 4-Nitro-3-anilino-phenol-äthyläther, 6-Nitro-3-äthoxy-diphenylamin $C_{16}H_{16}O_3N_2 = C_6H_5\cdot NH\cdot C_6H_3(NO_2)\cdot O\cdot C_2H_5$. B. s. im voranstehenden Artikel. Orangegelbe Nädelchen (aus Alkohol). F: 106—106,5°; leicht löslich in fast allen Lösungsmitteln (J., Fr., Fr., B. 26, 685).
- 4-Nitro-3-acetamino-phenol C₈H₈O₄N₃ = CH₃·CO·NH·C₆H₈(NO₃)·OH. B. Entsteht neben 6-Nitro-3-acetamino-phenol (S. 423), wenn man 1 g O.N-Diacetyl-[3-amino-phenol] in 2 ccm eiskalte Salpetersäure (D: 1,4) einträgt und zu der erhaltenen Lösung ihr halbes Volumen Salpetersäure (D: 1,5) fügt; gießt man nach 3 Stdn. auf Eis, so krystallisiert 4-Nitro-3-acetamino-phenol aus, während 6-Nitro-3-acetamino-phenol zunächst in der Mutterlauge gelöst bleibt und sich daraus erst nach mehrtägigem Stehen abscheidet (Meldola, Stephens, Soc. 89, 924). Silbrige Schuppen oder prismatische Nadeln (aus Eisesig). F: 266°. Löslich in Alkalilauge mit gelber Farbe.
- 4-Nitro-3-acetamino-phenol-methyläther, 4-Nitro-3-acetamino-anisol $C_0H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_0H_3(NO_2)\cdot O\cdot CH_3$. B. Aus 4-Nitro-3-amino-anisol beim Kochen mit Essigsäureanhydrid (M., Sr., Soc. 89, 925). Weiße Nadeln (aus Alkohol). F: 124°.
- 5-Nitro-3-amino-phenol C₆H₆O₃N₂ = H₂N·C₆H₃(NO₂)·OH. B. Durch Reduzieren von 3.5-Dinitro-phenol (Bd. VI, S. 258) mit Schwefelammon in alkoh. Lösung (Blanksma, R. 27, 27). Aus 5-Nitro-3-acetamino-phenol (s. u.) durch Erhitzen mit der 20-fachen Menge konz. Salzsäure am Rückflußkühler (Heller, Kammann, B. 42, 2193). Gelbe Krystalle. F: 165° (B.; H., K.). Sehr leicht löslich in Alkohol, Äther, Eisessig, Aceton, sehr wenig in Benzol, Chloroform, Ligroin; Eisenchlorid gibt keine Färbung; die Sodalösung ist rötlichgelb und wird vom Sauerstoff der Luft nicht verändert (H., K.). Gibt in 9 Tln. Eisessig mit 5 Tln. 20°/ojger eisessigsaurer Bromlösung unter Kühlung 2-Brom-5-nitro-3-amino-phenol (S. 423) und 2.4.6-Tribrom-5-nitro-3-amino-phenol (S. 423) (H., K.). Wird durch Diazotieren in Bromwasserstoffsäure mit Natriumnitrit und Zersetzung des Reaktionsprodukts mit Kupferpulver in 5-Brom-3-nitro-phenol (Bd. VI, S. 244) übergeführt (H., K.). Salzsaures Salz. Farblos (H., K.).
- 5-Nitro-3-amino-phenol-methyläther, 5-Nitro-3-amino-anisol $C_7H_8O_3N_2=H_2N\cdot C_8H_3(NO_2)\cdot O\cdot CH_3$. B. Durch Reduktion von 3.5-Dinitro-anisol mit alkoh. Schwefel-ammonium (Blanksma, R. 24, 44; Vermeulen, R. 25, 20) oder mit alkoh. Na₉S₂ (B., R. 28, 11). Orangefarbene Krystalle. F: 118° (B., R. 24, 44), 120° (V.). D¹⁵⁵: 1,2034 (V.). Leicht löslich in heißem Wasser (B., R. 24, 44), löslich in Alkohol und Benzol, unlöslich in Ligroin (V.).
- 5-Nitro-3-amino-phenol-äthyläther, 5-Nitro-3-amino-phenetol $C_8H_{10}O_3N_2=H_2N\cdot C_6H_3(NO_2)\cdot O\cdot C_2H_5$. B. Aus 3.5-Dinitro-phenetol mit alkoh. Schwefelammonium (Blanksma, R. 24, 43). Gelbe Nadeln (aus Alkohol). F: 115°. Leicht löslich in Alkohol und heißem Wässer, schwer in kaltem Wasser. Bei der Einw. von Brom in Eisessig entsteht 2.4.6-Tribrom-5-nitro-3-amino-phenetol (S. 423).
- 5-Nitro-3-acetamino-phenol C₈H₈O₄N₂ = CH₃·CO·NH·C₈H₈(NO₂)·OH. B. Man reduziert 3.5-Dinitro-phenol in Eisessig mit Zinnchlorür und Salzsäure, neutralisiert das Reaktionsprodukt nahezu mit gesättigter Natriumacetatlösung und fügt Essigsäureanhydrid hinzu (Heller, Kammann, B. 42, 2192). Schwach gelbe Prismen (aus Essigester oder 50% jeger Essigsäure). Färbt sich gegen 240%, zersetzt sich um 260% und ist bei 270% völlig geschmolzen. Leicht löslich in Alkohol, Eisessig, Aceton, sehr wenig in Benzol, Chloroform, Ligroin, Äther; löslich in Soda. Gibt mit Brom in Eisessig auf dem Wasserbade 2-Brom-5-nitro-3-acetamino-phenol (S. 423).
- 5-Nitro-3-acetamino-phenol-methyläther, 5-Nitro-3-acetamino-anisol $C_9H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_9H_3(NO_2)\cdot O\cdot CH_3$. B. Aus 5-Nitro-3-amino-anisol und Eisessig (Blanesma, R. 24, 44) oder Essigsäureanhydrid (Vermeulen, R. 25, 21). Krystalle. F: 193° (B.), 200° (V.). Löslich in Alkohol und Essigester, weniger in Benzol, fast unlöslich in Wasser und Ligroin (V.).
- 6-Nitro-3-amino-phenol $C_6H_6O_3N_2=H_5N\cdot C_6H_3(NO_2)\cdot OH$. B. Aus 6-Nitro-3-acetamino-phenol (S. 423) durch Hydrolyse mit Schwefelsäure (Meldola, Stephens, Soc. 89, 925). Orangegelbe Nadeln (aus Wasser). F: 158°.

- 6-Nitro-3-acetamino-phenol $C_9H_8O_4N_2=CH_9\cdot CO\cdot NH\cdot C_9H_3(NO_9)\cdot OH$. B. Beim Nitrieren von O.N-Diacetyl-[3-amino-phenol], neben 4-Nitro-3-acetamino-phenol (S. 422) (M., Sr., Soc. 89, 925). Ockergelbe Nadeln (aus Eisessig). F: 221°. Löslich in Alkalilauge mit gelber Farbe.
- 4-Chlor-6-nitro-8-amino-phenol-methyläther, 4-Chlor-6-nitro-8-amino-anisol $C_7H_7O_3N_2Cl = H_2N\cdot C_6H_3Cl(NO_3)\cdot O\cdot CH_3$. Verwendung der Diazoverbindung zur Darstellung eines für die Lackfarbenfabrikation geeigneten Azofarbstoffes: Akt.-Ges. f. Anilinf., D. R. P. 216417; C. 1909 Π , 2106).
- 2-Brom-5-nitro-3-amino-phenol C₄H₅O₅N₂Br = H₂N·C₅H₂Br(NO₅)·OH. B. Aus 2-Brom-5-nitro-3-acetamino-phenol durch Erhitzen mit der 12-fachen Menge 23% jeger Salzsäure im geschlossenen Rohr auf 125—130° (Heller, Kammann, B. 42, 2194). Aus 5-Nitro-3-amino-phenol (S. 422) in 9 Tln. Eisessig durch 5 Tle. 20% jeger eisessigsaurer Bromlösung unter Kühlung (H., K.). Rotbraune Krystalle (aus heißem Wasser oder Essigsäure). F: 205°. Sehr leicht löslich in Alkohol, Aceton, Äther, in der Hitze löslich in Wasser und Eisessig, schwer löslich in Benzol, Ligroin. Läßt sich durch Diazotieren in schwefelsaurer Lösung mit Natriumnitrit und Erwärmen der Diazoniumsalzlösung mit Alkohol auf dem Wasserbade in 6-Brom-3-nitro-phenol (Bd. VI, S. 244) überführen.
- 2-Brom-5-nitro-3-acetamino-phenol $C_8H_7O_4N_2Br=CH_3\cdot CO\cdot NH\cdot C_6H_2Br(NO_2)\cdot OH$. B. Aus 5-Nitro-3-acetamino-phenol (S. 422) und Brom in Eisessig auf dem Wasserbade (H., K., B. 42, 2193). Gelbe spießige Krystalle (aus Essigester). F: 242—243°. Sehr leicht löslich in Aceton, in der Hitze löslich in Alkohol und Eisessig, sehr wenig löslich in Äther, Benzol, Chloroform, Ligroin.
- 2.4.6-Tribrom-5-nitro-3-amino-phenol $C_0H_3O_3N_2Br_3=H_2N\cdot C_6Br_3(NO_2)\cdot OH$. B. Neben 2-Brom-5-nitro-3-amino-phenol aus 5-Nitro-3-amino-phenol (S. 422) in 9 Tln. Eisessig durch 5 Tle. $20^9/_0$ iger eisessigsaurer Bromlösung unter Kühlung (H., K., B. 42, 2194). Gezackte, schwach gelbe Blättchen (aus Ligroin). F: 147°. Sehr leicht löslich in den meisten Lösungsmitteln. Kaliumsalz. Rote Nadelbüschel (aus Aceton + Äther).
- 2.4.6-Tribrom-5-nitro-3-amino-phenol-methyläther, 2.4.6-Tribrom-5-nitro-3-amino-anisol $C_7H_5O_2N_2Br_3=H_2N\cdot C_6Br_3(NO_2)\cdot O\cdot CH_2$. B. Aus 5-Nitro-3-amino-anisol (S. 422) durch Bromieren (Blanksma, R. 24, 44). F: 110°. Liefert bei der Reduktion mit Zinn und Salzsäure 3.5-Diamino-anisol.
- 2.4.6 Tribrom 5 nitro 8 amino phenol äthyläther, 2.4.6 Tribrom 5 nitro 8 amino phenotol $C_9H_7O_9N_3Br_8=H_2N\cdot C_9Br_8(NO_9)\cdot O\cdot C_2H_5$. B. Aus 5-Nitro-3 amino phenotol (8. 422) und Brom in Eisessig (BL., R. 24, 44). Gelbe Krystalle. F: 102°.
- 2.4-Dinitro-3-amino-phenol-methyläther, 2.4-Dinitro-3-amino-anisol $C_7H_7O_8N_8=H_8N\cdot C_6H_8(NO_8)_8\cdot O\cdot CH_3$. B. Aus 2.3.4-Trinitro-anisol (Bd. VI, S. 264) und 2 Mol.-Gew. alkoh. Ammoniak (Blanksma, C. 1909 I, 644). Gelbe Krystalle (aus Alkohol). F: 167°. Wird durch Diazotieren und Kochen mit Alkohol in 2.4-Dinitro-anisol verwandelt.
- 2.4 Dinitro 3 amino phenol äthyläther, 2.4 Dinitro 3 amino phenetol $C_8H_9O_5N_3=H_9N\cdot C_6H_8(NO_2)_2\cdot O\cdot C_2H_5$. B. Beim Kochen von 2.3.4-Trinitro-phenetol mit alkoh. Ammoniak (B., R. 27, 52). Gelbe Krystalle (aus Alkohol). F: 130°.
- 2.4-Dinitro-8-methylamino-phenol-methyläther, 2.4-Dinitro-8-methylamino-anisol $C_8H_9O_5N_8=CH_8\cdot NH\cdot C_8H_8(NO_3)_2\cdot O\cdot CH_3$. B. Aus 2.3.4-Trinitro-anisol und alkoh. Methylamin (B., C. 1909 I, 644). Gelbe Krystalle (aus Alkohol). F: 130°. Wird durch Salpeterschwefelsäure nitriert unter Bildung von 2.4.6-Trinitro-3-methylnitramino-anisol (S. 425).
- 2.4 Dinitro 8 methylamino phenol äthyläther, 2.4 Dinitro 8 methylamino phenetol $C_2H_{11}O_2N_3 = CH_3 \cdot NH \cdot C_2H_3(NO_2)_2 \cdot 0 \cdot C_2H_5$. B. Aus 2.3.4-Trinitro-phenetol mit 2 Mol.-Gew. Methylamin in Alkohol suf dem Wasserbade (B., R. 27, 53). Gelbe Blättchen (aus Alkohol). F: 147°. Bei der Nitrierung entsteht 2.4.6-Trinitro-3-methylnitramino-phenetol (S. 425).
- **2.4-Dinitro-8-anilino-phenol-methyläther**, **2.6-Dinitro-8-methoxy-diphenylamin** $C_{13}H_{11}O_4N_3=C_6H_5\cdot NH\cdot C_6H_5(NO_6)_3\cdot O\cdot CH_3$. B. Aus 2.3.4-Trinitro-anisol und alkoh. Anilin (B., C. 1909 I, 644). Rotbraune Krystalle (aus Alkohol). F: 152°.
- 2.4-Dinitro-8-anilino-phenol-äthyläther, 2.6-Dinitro-8-äthoxy-diphenylamin $C_{14}H_{13}O_5N_3=C_6H_5\cdot NH\cdot C_6H_3(NO_2)_5\cdot O\cdot C_2H_5$. B. Aus 2.3.4-Trinitro-phenetol und Anilin in Alkohol (B., R. 27, 54). Gelbe Krystelle. F: 125°.

- 2.6-Dinitro-8-amino-phenol¹) $C_0H_5O_5N_3=H_4N\cdot C_0H_6(NO_2)_0\cdot OH$. B. Beim Erwärmen einer alkoh. Lösung von 2.4-Dinitro-anilin (Bd. XII, S. 747) mit einer alkoh. Cyankaliumlösung auf 60°; der gebildete Niederschlag wird abfiltriert, in Wasser gelöst und durch Salssäure gefällt (Lippmann, Fleissner, M. 7, 95). Braunrote Krystalle (aus Chloroform). F: 225°. Sehr schwer löslich in Wasser und Chloroform, leichter in Alkohol und Äther. Zerfällt beim Kochen mit wäßr. Alkalilauge in Ammoniak und 2.4-Dinitro-resorcin (Bd. VI, S. 827). $KC_0H_4O_5N_3$. Schwer löslich in Alkohol. $Ba(C_0H_4O_5N_3)_3$ (bei 150°). Gelbe Nadeln. Schwer löslich in Wasser.
- 2.6-Dinitro-3-dimethylamino-phenol ^{a)} C₈H₅O₅N₃ = (CH₅)₂N·C₆H₃(NO₅)₅·OH. B. Beim Eintragen von reinem Kaliumcyanid in eine 50° warme alkoh. Lösung von N.N-Dimethyl-2.4-dinitro-anilin (Bd. XII, S. 749); man saugt nach einer Stunde die Krystalle ab, wäscht sie mit kaltem Alkohol, löst sie in Wasser und fällt mit Salzsäure; zur Reinigung werden die erhaltenen Krystalle in Chloroform gelöst, die Chloroformlösung wird verdunstet, der Rückstand mit alkoh. Kali versetzt, das Kaliumsalz aus Wasser umkrystallisiert und durch Salzsäure zerlegt (Lippmann, Fleisner, M. 6, 808). Hellgelbe Krystalle. Triklin pinakoidal Optscheiner, M. 6, 809; vgl. Groth, Ch. Kr. 4, 201). F: 195°. Unlöslich in Benzol und Petroläther, sehr schwer löslich in Alkohol, leichter in Chloroform. Zerfällt beim Kochen mit verd. Kalilauge in Dimethylamin und 2.4-Dinitro-resorcin (Bd. VI, S. 827). Die Salze verpuffen beim Erhitzen. NH₄C₈H₂O₅N₃. Goldgelbe Blättchen. F: 195°. Leicht löslich in Wasser, schwer in Alkohol. KC₈H₈O₅N₃. Orangerote Nadeln. Unlöslich in Alkohol. AgC₈H₂O₅N₃. Hellrot, krystallinisch. Ziemlich löslich in kaltem Wasser. Ba(C₈H₈O₅N₃)₂ + 1¹/₂ H₂O. Niederschlag, aus orangeroten Krystallen bestehend.
- 4.6-Dinitro-3-amino-phenol $C_0H_5O_5N_3=H_5N\cdot C_0H_5(NO_2)_2\cdot OH$. B. Aus 4.6-Dinitro-3-acetamino-phenol (S. 425) durch Hydrolyse mit Schwefelsäure (Meldola, Stephens, Soc. 89, 926). Orangegelbe Nadeln (aus Alkohol). F: 231°. Löslich in Alkali mit orangegelber Farbe.
- 4.6-Dinitro-8-amino-phenol-methyläther, 4.6-Dinitro-3-amino-anisol $C_7H_7O_8N_8=H_8N\cdot C_6H_9(NO_2)_8\cdot O\cdot CH_3$. B. Aus 5-Brom-2.4-dinitro-anisol (Bd. VI, S. 261) und alkoh. Ammoniak (Blanksma, R. 23, 121). Man setzt das Silbersalz des 4.6-Dinitro-3-acetamino-phenols (S. 425) mit Methyljodid um oder man nitriert Acet-m-anisidid mit eiskalter rauchender Salpetersäure und verseift das entstandene 4.6-Dinitro-3-acetamino-anisol (S. 425) mit Schwefelsäure oder verdünnter Natronlauge (Meldola, Stephens, Soc. 89, 927). Kanariengelbe Nadeln (aus Alkohol). F: 208° (M., St.). Läßt sich in mineralsaurer Lösung normal diazotieren (M., St.).
- 4.6-Dinitro-8-methylamino-phenol-methyläther, 4.6-Dinitro-8-methylamino-anisol $C_8H_9O_5N_3=CH_3\cdot NH\cdot C_8H_9(NO_2)_3\cdot O\cdot CH_3$. B. Aus 5-Brom-2.4-dinitro-anisol und Methylamin (Blanesma, R. 23, 121). Gelbe Krystalle. F: 198°. Liefert bei Einw. von Salpetersäure (D: 1,52) 2.4.6-Trinitro-3-methylnitramino-anisol (S. 425).
- 4.6-Dinitro-8-äthylamino-phenol-methyläther, 4.6-Dinitro-8-äthylamino-anisol $C_0H_{11}O_5N_5=C_0H_5\cdot NH\cdot C_5H_6(NO_5)_5\cdot O\cdot CH_5$. Aus 5-Brom-2.4-dinitro-anisol und Äthylamin (B., R. 23, 121). F: 148°.
- 4.6-Dinitro-8-anilino-phenol-methyläther, 4.6-Dinitro-8-methoxy-diphenylamin $C_{13}H_{11}O_5N_3=C_6H_5\cdot NH\cdot C_6H_5(NO_9)_3\cdot O\cdot CH_2$. B. Aus 5-Brom-2.4-dinitro-anisol und alkoh. Anilin (B., R. 23, 121). Gelbe Krystalle. F: 168°.
- 4.6-Dinitro-8-anilino-phenol-šthyläther, 4.6-Dinitro-8-äthoxy-diphenylamin $C_{14}H_{13}O_5N_3=C_6H_5\cdot NH\cdot C_6H_6(NO_6)_3\cdot O\cdot C_6H_6$. B. Aus 5-Chlor-2.4-dinitro-phenetol (Bd. VI, S. 259) und Anilin in Alkohol (BLANKSMA, R. 28, 123). Gelbe Krystalle. F: 170°.

Glutacondialdehyd-mono-[4.6-dinitro-3-oxy-anil] C₁₁H₂O₆N₃ = OHC·CH₂·CH·CH·CH·CH·CH·N·C₄H₂(NO₂)₂·OH bezw. desmotrope Formen, z. B. HO·CH·CH·CH·CH·CH·CH·CH·N·C₄H₂(NO₂)₂·OH. B. Entsteht als solver lösliches orangegelbes Natriumsals bei der Einw. überschüssiger Natronlauge auf das betainartige Anhydrid des N-[4.6-Dinitro-3-oxy-phenyl]-pyridiniumhydroxyds (Syst. No. 3051); man zerlegt das Natriumsals durch Eisessig (ZINCKE, WEISFERNING, J. pr. [2] 83, 12; vgl. BRITZENSTEIN, ROTHSCHILD, J. pr. [2] 78, 272. — Feurigrote Blättchen oder Nadeln. F: 206—206° (Z., W.), 208° (REI., Ro.). Schwer löslich in den gebräuchlichen Lösungsmitteln (Z., W.). — Läßt sich durch Erhitzen mit Eisessig-Salzsäure auf 100° und Zusatz von Ammoniak zum Reaktionsprodukt in das betainartige Anhydrid des N-[4.6-Dinitro-3-oxy-phenyl]-pyridiniumhydroxyds surückverwandeln; liefert

¹⁾ Vgl. nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I, 1910] KEHNER, Soc. 105 [1914], 2731.

⁵⁾ Vgl. nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] KENNER, Soc. 105 [1914], 2731 und BORSCHE, B. 50 [1917], 1353 Anm.

- beim Erhitzen mit wäßr. Salzsäure 4.6-Dinitro-3-amino-phenol, mit Anilin und Alkohol 4.6-Dinitro-3-amino-phenol und Glutacondialdehyd-dianil (Bd. XII, S. 204) (Z., W.).
- 4.6-Dinitro-8-acetamino-phenol C₂H₇O₂N₃ = CH₃·CO·NH·C₂H₃(NO₂)₃·OH. B. Aus 4-Nitro-3-acetamino-phenol oder 6-Nitro-3-acetamino-phenol mit rauchender Salpetersäure bei —10° (Meldola, Stephens, Soc. 89, 925). Farblose Nadeln (aus Alkohol oder Eisessig). F: 168°.
- 4.6-Dinitro-8-acetamino-phenol-methyläther, 4.6-Dinitro-8-acetamino-anisol $C_0H_0O_0N_3=CH_2\cdot CO\cdot NH\cdot C_0H_1(NO_2)_2\cdot O\cdot CH_3$. B. Aus Acet-m-anisidid beim Lösen in eiskalter rauchender Salpetersäure (M., Sr., Soc. 89, 927). Farblose Nadeln (aus Eisessig). F: 146°.
- 2.4.6-Trinitro-8-amino-phenol $C_0H_4O_7N_4=H_2N\cdot C_0H(NO_2)_2\cdot OH$. B. Aus 2.3.4.6-Tetranitro-phenol (Bd. VI, S. 292) oder 3-Chlor-2.4.6-trinitro-phenol (Bd. VI, S. 292) und alkoh. Ammoniak (Blanksma, R. 21, 259). F: 218° (Zers.). Wird durch Erhitzen mit Alkalien in 2.4.6-Trinitro-resorcin (Bd. VI, S. 830) verwandelt. $NH_4C_0H_3O_7N_4$. Zersetzt sich bei ca. 240°.
- 2.4.6-Trinitro-3-methylamino-phenol $C_7H_6O_7N_4=CH_3\cdot NH\cdot C_6H(NO_9)_3\cdot OH$. B. Aus 2.3.4.6-Tetranitro-phenol oder 3-Chlor-2.4.6-trinitro-phenol und Methylamin (B., R. 21, 260). Gelbe Krystalle. F: 156°. Wird durch Salpetersäure in 2.4.6-Trinitro-3-methylnitramino-phenol (s. u.) verwandelt. Methylaminsals $CH_5N+C_7H_6O_7N_4$. Gelbe Nadeln (aus Alkohol). F: 215° (Zers.).
- 2.4.6-Trinitro-3-anilino-phenol, 2.4.6-Trinitro-3-oxy-diphenylamin $C_{19}H_{4}O_{7}N_{4}=C_{6}H_{5}\cdot NH\cdot C_{6}H(NO_{2})_{3}\cdot OH$. B. Aus 2.3.4.6-Tetranitro-phenol oder 3-Chlor-2.4.6-trinitro-phenol und Anilin (Blanksma, R. 21, 261). Aus dem Diāthylanilinsalz des p-Toluolsulfonsäure-[2.4.6-trinitro-3-oxy-phenyl]-esters (Bd. XII, S. 165—166) durch Anilin (Ullmann, Bruck, B. 41, 3940). Gelbe Krystalle (aus Eisessig). F: 165° (Bl.), 162° (korr.) (U., Br.); kaum löslich in Ather und Ligroin, leicht in Benzol und Aceton, sehr leicht in Eisessig mit gelber Farbe; konz. Schwefelsäure löst gelb, Atznatron rot; spaltet beim Kochen mit Alkalien Anilin ab (U., Br.).
- **2.4.6-Trinitro-3-anilino-phenol-methyläther, 2.4.6-Trinitro-3-methoxy-diphenylamin** $C_{19}H_{10}O_7N_4=C_8H_5\cdot NH\cdot C_6H(NO_9)_5\cdot O\cdot CH_2$. B. Aus 3-Chlor-2.4.6-trinitro-anisol (Bd. VI, S. 292) und Anilin in Alkohol (Blanesma, R. 21, 324). Gelbe Krystalle. F: 178°. Liefert mit NH₂ in Alkohol 2.4.6-Trinitro-3-amino-diphenylamin (S. 61).
- **2.4.6-Trinitro-8-anilino-phenol-āthylāther**, and $C_{14}H_{19}O_{7}N_{4}=C_{0}H_{5}\cdot NH\cdot C_{0}H(NO_{2})_{3}\cdot O\cdot C_{2}H_{5}$. Aus 3-Chlor-2.4.6-trinitro-phenetol and Anilin in Alkohol (B., R. 21, 326). F: 174°.
- **2.4.6-Trinitro-8-methylnitramino-phenol**, [2.4.6-Trinitro-8-oxy-phenyl]-methylnitramin $C_1H_1O_2N_3=O_2N\cdot N(CH_2)\cdot C_0H(NO_2)_2\cdot OH$. B. Beim Kochen von Methyl-[2.3.4.6-tetranitro-phenyl]-nitramin (Bd. XII, S. 771) mit Wasser (van Romburgh, R. 8, 275; RLANGMA, R. 21, 266). Beim Kochen von 2.6-Dinitro-3-dimethylamino-phenol (S. 424) mit Salpetersäure (D: 1,5) (v. R., R. 8, 276). Aus 2.4.6-Trinitro-3-methylamino-phenol (s. o.) und Salpetersüure (B., R. 21, 260). Krystalle. F: 187° (Zers.) (B.), solmilzt unter Zersetzung bei $180-188^{\circ}$ (v. R.). Beim Kochen mit Kalilauge entweicht Methylamin (v. R.). KC₁H₄O₈N₅ (v. R.).
- 2.4.6-Trinitro-3-methylnitramino-phenol-methyläther, 2.4.6-Trinitro-3-[methylnitramino]-anisol, [3.4.6-Trinitro-3-methoxy-phenyl]-methyl-nitramin $C_0H_1O_0N_5=O_0N\cdot N(CH_2)\cdot C_0H(NO_2)_2\cdot O\cdot CH_2$. B. Beim Kochen von Methyl-[2.3.4.6-tetranitro-phenyl]-nitramin (Bd. XII, S. 771) mit Methylalkohol (VAN ROMBURGH, R. 8, 278). Aus 2.4-Dinitro-3-methylamino-anisol (S. 423) durch Salpeterschwefelsäure (Blanksma, C. 1909 I, 644). Aus 4.6-Dinitro-3-methylamino-anisol (S. 424) durch Salpetersäure (D: 1,52) (B., R. 28, 131). Farblose Krystalle (aus Methylalkohol). F: 99° (v. R.; B., C. 1909 I, 644), 98° (B., R. 33, 121).
- 2.4.6-Trinitro-3-methylnitramino-phenol-āthylāther, 2.4.6-Trinitro-3-[methylnitramino]-phenetol, [2.4.6-Trinitro-3-āthoxy-phenyl]-methyl-nitramin $C_5H_5O_5N_5=O_5N\cdot N(CH_2)\cdot C_5H(NO_2)_2\cdot O\cdot C_2H_5$. B. Beim Kochen von Methyl-[2.3.4.6-tetranitro-phenyl]-nitramin mit āthylalkohol (van Rombusch, R. 8, 278). Aus 2.4-Dinitro-3-methylamino-phenetol (8, 423) mit Salpetersäure (D: 1,52) + konz. Schwefelsäure (Blanksma, R. 27, 53). Farblose Krystalle (aus Methylalkohol). F: 98° (v. R.; B.).
 - Schwefelanalogon des 3-Amino-phenols und seine Derivate.
- 8-Amino-thiophenol, 8-Amino-phenylmercaptan $C_0H_1NS = HS \cdot C_0H_4 \cdot NH_1$. B. Aus 3-Nitro-bensolsulfochlorid (Bd. XI, S. 69) mit Zinn und Salzsäure (GLUTZ, SCHRANK, J. pr. [2] 2, 224; BIEDHEMANN, B. 8, 1675). Durch Reduktion einer alkoh. Lösung von

3.3'-Dinitro-diphenyldisulfid (Bd. VI, S. 339) mit Natriumamalgam (Leuckart, Holtzaffel, J. pr. [2]. 41, 199). — Ölig. — $C_6H_7NS+HCl$. Krystallwarzen. F: 232°; sublimierbar (B.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther (G., Sch.; B.). — $Pb(C_6H_6NS)_2$. Gelb (L., H.). — $Pt(C_6H_6NS)_2+2HCl+PtCl_4(?)$. B. Aus der alkoh. Lösung des salzsauren Salzes und alkoh, Platinchlorid (B.). Gelb.

3 (?)-Amino-diphenylsulfon 1) $C_{12}H_{11}O_2NS = H_2N\cdot C_0H_4\cdot SO_2\cdot C_0H_5$. B. Aus einem durch Nitrieren von Diphenylsulfon erhaltenen, bei 90—92° schmelzenden 3(?)-Nitro-diphenylsulfon (in Bd. VI, S. 341, als x-Nitro-diphenylsulfon aufgeführt) und alkoh. Schwefelammonium (Gericke, A. 100, 209). — Prismen. Schwer löslich in kaltem Wasser, leicht in heißem und in Alkohol (G.). — Das Hydrochlorid liefert durch Diazotierung und Verkochen der Diazoniumsalzlösung ein bei 161° schmelzendes Oxy-diphenylsulfon (Bd. VI, S. 870) (Hefelmann, C. 1885, 886; J. 1885, 1591). — $C_{12}H_{11}O_2NS + HCl$. Vierseitige Prismen. F: 90°; leicht löslich in Wasser und Alkohol (G.). — $2C_{12}H_{11}O_2NS + 2HCl + PtCl_4$. Gelblichbrauner Niederschlag, löslich in kaltem Alkohol (G.).

[\$\beta-Oxy-\text{sthyl}]-[8-amino-phenyl]-sulfon, \$\beta-[8-Amino-phenylsulfon]-\text{-\$thylalkohol}\$ \$C_8H_{11}O_3NS \text{\rightarrow} H_2N\cdot C_6H_4\cdot SO_2\cdot CH_2\cdot CH_2\cdot OH. \$B\$. Man kocht \$a.\beta-Bis-[3-amino-phenylsulfon]-\text{\text{\text{\$than}}}\$ (s. u.) mit 1 Mol.-Gew, verd. Kalilauge und extrahiert das Produkt mit \text{\text{\$ther}}\$ (Limerical A. 294, 248). Man reduziert \$\beta-[3-Nitro-phenylsulfon]-\text{\text{\$thylalkohol}}\$ (Bd. VI, S. 338) mit Zinnehlor\text{\text{\$til}}\$ (Li.). \$-C_8H_{11}O_3NS + HCl. Prismen. F: 210\text{\text{\$shape \$thylalkohol}}\$ (Bd. VI, S. 338) wit Zinnehlor\text{\text{\$til}}\$ (Alicelet A. 200) \$\text{\$thylalkohol}\$ (Bd. VI, S. 338) mit Zinnehlor\text{\text{\$til}}\$ (Bl. VI, S. 338) \$\text{\$thylalkohol}\$ (Bd. VI, S. 338) \$\text{\$

Äthylen-bis-[3-amino-phenylsulfon], $a.\beta$ -Bis-[3-amino-phenylsulfon]-äthan $C_{14}H_{46}O_4N_5S_5=[H_5N\cdot C_6H_4\cdot SO_5\cdot CH_5-]_5$. Bei der Reduktion des Äthylen-bis-[3-nitrophenylsulfons] (Bd. VI, S. 338) mit Zinnchlorür (Limpelour, A. 294, 245). — Krystalle. F: 245°. Schwer löslich in kochendem Alkohol. — $C_{14}H_{16}O_4N_5S_5+HCl$. Schuppen. Schwärzt sich bei 275° und schmilzt bei 295° unter Zersetzung. Fast unlöslich in siedendem Alkohol.

2. [3-Amino-phenylmercapto] - bensoesäure, S-[3-Amino-phenyl]-thiosalicylsäure, 3'-Amino-diphenylsulfid - carbonsäure - (2) C₁₃H₁₁O₂NS = H₂N·C₆H₄·S·C₆H₄·S·C₉H. B. Aus 3'-Nitro-diphenylsulfid-carbonsäure - (2) (Bd. X, S. 126) durch Reduktion mit Ferrosulfat und Ammoniak (F. MAYER, B. 42, 3065). — Schwach gelbe Nadeln (aus Alkohol oder verd. Eisessig). F: 159—160°. — Gibt mit kons. Schwefelsäure das Aminothioxanthon der nebenstehenden Formel (Syst. No. 2643).

Bis-[β -(3-amino-phenylsulfon)-äthyl]-amin $C_{16}H_{21}O_4N_3S_3 = (H_2N\cdot C_6H_4\cdot SO_2\cdot CH_2\cdot CH_4)_2NH$. B. Bei der Reduktion des Bis-[β -(3-nitro-phenylsulfon)-āthyl]-amins (Bd. VI, S. 339) mit SnCl₂ (Limpricht, A. 294, 252). — $C_{16}H_{21}O_4N_3S_2 + HCl$. Prismen. Färbt sich bei 230° dunkel und schmilzt bei 235°. Unlöslich in Alkohol.

3.3'-Diamino-diphenylsulfon $C_{19}H_{12}O_2N_2S=(H_2N\cdot C_6H_4)_8SO_2$. Zur Konstitution vgl. Tassinari, G. 23 I, 194; Martinet, Haehl, C. r. 173 [1921], 777; Geandmougin, C. r. 174 [1922], 168. — B. Bei der Reduktion von 3.3'-Dinitro-diphenylsulfon (erhalten durch Nitrieren von Diphenylsulfon oder aus Nitrobenzol und SO_3) (vgl. Bd. XII, S. 1435) mit alkoh. Schwefelammonium (Gericke, A. 100, 212; Schmid, Noeliting, B. 9, 80). — Prismen. F: 168° (Sch., Noe.). Schwer löslich in kaltem Wasser und Alkohol, leicht beim Erwärmen; unlöslich in Alkalien (Ge.). — Läßt sich durch Diazotieren und Verkochen in 3.3'-Dioxy-diphenylsulfon (vgl. Bd. XII, S. 1435) überführen (Heffelmann, C. 1885, 886; J. 1885, 1591; T.). — Verwendung zur Herstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 61826; Frdl. 3, 648). — $C_{12}H_{12}O_2N_2S+2$ HCl. Prismen. Leicht löslich in Wasser und Alkohol (Ge.). — $C_{12}H_{12}O_2N_2S+2$ HCl. PtCl₄. Brauntoter Niederschlag (Ge.).

8.3'-Diamino-diphenyldisulfid $C_{12}H_{12}N_{2}S_{2}=[H_{2}N\cdot C_{0}H_{4}\cdot S-]_{2}$. B. Beim Digerieren von 3.3'-Dinitro-diphenyldisulfid (Bd. VI, S. 339) mit Schwefelammonium; man extrahiert das abgedampfte Filtrat mit Äther (LIMPRICHT, A. 278, 254). — $C_{12}H_{12}N_{2}S_{2}+H_{2}SO_{4}$ (bei 100°). Krystalle.

3.3'- Diamino - diphenyldisulfoxyd $C_{12}H_{12}O_2N_2S_2=[H_2N\cdot C_0H_4\cdot SO-]_2^2)$. B. Beim Erwärmen von 3-Amino-benzolsulfinsäure (Syst. No. 1921) mit Säuren (Limpricht, A. 278, 1255). — Nadeln (aus verd. Alkohol). Nicht rein erhalten. — $C_{12}H_{12}O_2N_2S_2+2HCl$. Nadeln. Verkohlt bei 200°, ohne zu schmelzen. Leicht löslich in Wasser und verd. Alkohol. — $C_{12}H_{12}O_2N_2S_2+2HCl$. Prismen.

War vielleicht nicht einheitlich; vgl. dazu die nach dem Literatur-Schlußtermin der
 Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von OLIVIER, R. 35, 111.
 Zur Auffassung der Disulfoxyde als Thiosulfonsäureester vgl. Bd. XI, S. 3 Anm.

3 (?)-Acetamino-diphenylsulfon $C_{14}H_{18}O_3NS = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot SO_3 \cdot C_6H_5$. B. Aus 3(?)-Amino-diphenylsulfon (S. 426) und Essigsäureanhydrid oder Acetylchlorid (Hefelmann, C. 1885, 886; J. 1885, 1590). — Nadeln oder Blättchen. F: 140°.

3.3'-Bis-acetamino-diphenylsulfon $C_{16}H_{16}O_4N_2S=(CH_3\cdot CO\cdot NH\cdot C_6H_4)_2SO_3$. B. Aus 3.3'-Diamino-diphenylsulfon mit Essigsäureanhydrid oder Acetylchlorid (H.). — F: 211°.

4-Chlor-3-amino-thiophenol, 4-Chlor-3-amino-phenylmercapton C₆H₆NCIS = H₂N·C₆H₅Cl·SH. Zur Konstitution vgl. P. FISCHER, B. 24, 3193. B. Aus 4-Chlor-3-nitro-benzol-sulfonsaure-(1)-chlorid (Bd. XI, S. 72) mit Zinn und Salzsaure (Allert, B. 14, 1435). — F: 130°. — C₆H₆NCIS + HCl. Fleischfarbene Nadeln, die bei 100° alle Salzsaure verlieren.

4'.6' - Dinitro - 2 - oxy - 3' - sulfhydryl - diphenylamin , OH SH 4'.6'-Dinitro - 2-oxy - 3'-mercapto-diphenylamin $C_{12}H_9O_8N_3S$, s. nebenstehende Formel. B. Aus 5'-Chlor - 2'.4' - dinitro - 2-oxy - diphenylamin (S. 365) oder aus 4'.6' - Dinitro - 2-oxy - 3' - rhodan-diphenylamin (s. u.) und Kaliumhydrosulfid (Bad. Anilin- u. Sodaf., D. R. P. 122606; C. 1901 II, 382). — Gelbrotes Krystallpulver. Verpufft bei 302°.

4'.6' - Dinitro - 2 - oxy - 3' - rhodan - diphenylamin $C_{12}H_2O_2N_4S = HO \cdot C_2H_4 \cdot NH \cdot C_6H_2(NO_2)_3 \cdot S \cdot CN$. B. Aus 4.6-Dinitro-1.3-dirhodan-benzol (Bd. VI, S. 836) und 2-Aminophenol (Bad. Anilin- und Sodaf., D. R. P. 122569; C. 1901 II, 381). — Rotes Pulver. F: 255°, Schwer löslich in Alkohol, leicht in Aceton und in heißem Eisessig.

4-Amino-phenol und seine Derivate.

4-Amino-1-oxy-benzol, 4-Amino-phenol, p-Amino-phenol $C_6H_7ON=H_2N\cdot C_6H_4\cdot OH.$

Bildung.

Aus 4-Nitroso-phenol (Chinonoxim, Bd. VII, S. 622) bei Behandlung mit Zinn und Salzsăure (BAEYER, CARO, B. 7, 965), mit Schwefelnatrium (VIDAL, C. 1905 I, 1316; Ch. Z. 29, 486) oder mit Phenylhydrazin in Benzol (Plancher, G. 25 II, 384). Bei der elektrolytischen Reduktion von 4-Nitro-phenol (Bd. VI, S. 226) in verd. Alkohol bei Gegenwart von Schwefelsaure (Elbs, J. pr. [2] 43, 42). Beim Kochen von 4-Nitro-phenol mit Zinkstaub und Wasser (BAMBERGER, B. 28, 251) in Ggw. von Calciumchlorid (LUMIÈRE, SEYEWETZ, Bl. [3] 11, 1043). Bei der Reduktion von 4-Nitro-phenol mit Zinkstaub und Disulfitlösung (Goldberger, C. 1900 II, 1014), mit Zinkstaub und Salzsäure (Kook, B. 20, 1568), mit Eisen und Essigsäure (FRITZSCHE, A. 110, 166), mit Eisen und Salzsäure (PAUL, Z. Ang. 10, 172), mit Zinn und Salzsäure (Schmitt, Cook, in Kekulés Lehrbuch der organischen Chemie, Bd. III [Erlangen 1867], S. 62; Paul, Z. Ang. 9, 594). Bei der Reduktion von 4-Nitro-phenol mit alkal, Zinnoxydullösung (Goldschmidt, Eckardt, Ph. Ch. 56, 400). Bei der Reduktion von 4-Nitro-phenol mit Schwefelnatrium in Gegenwart von Natriumhydroxyd (Vidal, D. R. P. 95755; U. 1898 I, 813). Beim Erwärmen von 4-Nitro-phenol mit Phenylhydrazin (BARR, B. 20, 1499). Bei 12-stdg. Erhitzen von 4-Chlor-phenol (Bd. VI, S. 186) mit wäßr. Ammoniak und Kupfersulfat unter Druck auf 140° (Akt.-Ges. f. Anilinf., D. R. P. 205415; C. 1909 I, 600). Bei der Destillation von 5-Amino-2-oxy-benzoesaure (Syst. No. 1911) mit Bimssteinpulver (Schmitt, Soc. 17, 194; J. 1864, 423; B. 1, 67). Bei der Reduktion von 4-Oxy-azobenzol (Syst. No. 2112) durch Erhitzen mit Schwefelnatrium in Gegenwart von Natriumhydroxyd (Vidal, D. R. P. 95755; C. 1898 I, 813) durch Kochen mit alkoh. Ammonium-hydroxulfid (Jacobson, Hönigsberger, B. 36, 4110), durch Behandeln mit Zinkstaub und Essigsaure (Ja., Hö., B. 36, 4111), durch Erhitzen mit Phenylhydrazin auf 100° (Oddo, Puxeddu, B. 38, 2755). Bei der Reduktion von 4.4'-Dioxy-azobenzol (Syst. No. 2112) mit Zinnehlorür und Salzsäure oder mit Zinkstaub und Natronlauge (Täuber, D. R. P. 82426; Frdl. 4, 106).

Durch Eintragen von β-Phenyl-hydroxylamin (Syst. No. 1932) in mit Eis versetzte Schwefelsäure und darauffolgendes Kochen (Bambergee, B. 27, 1552; Wohl, D. R. P. 83433; Frdl. 4, 53; vgl. Bam., Lagutt, B. 31, 1501). Zum Mechanismus der Bildung von 4-Amino-phenol aus β-Phenyl-hydroxylamin vgl. Bam., B. 33, 3605. Bei der Einw. von wäßr. Natronlauge auf Nitrosobensol (Bd. V, S. 230), in geringer Menge, neben viel Azoxybenzol und zahlreichen anderen Verbindungen (Bambergee, B. 38, 1939). Bei der Einw. von p-Toluolsulfinsäure auf Nitrosobensol, neben anderen Produkten (Bam., Ribing, B. 34, 228). Bei der elektrolytischen Reduktion von Nitrobenzol (Bd. V, S. 233) in schwefelsaurer Lösung oder Suspension unter Anwendung einer Platinkathode (Gattermann, Kopfert, Ch. Z.

17, 210; GA., B. 26, 1847; BAYER & Co., D. R. P. 75260; Frdl. 3, 53; vgl. auch Elbs, Z. El. Ch. 2, 472; HABER, Z. El. Ch. 4, 510); statt einer Platinkathode verwendet man vorteilhaft eine Kohlenkathode (DARMSTÄDTER, D. R. P. 150800, 154086; C. 1904 I, 1235; II, 1012) oder Silberkathode (K. Brand, Die elektrochemische Reduktion organischer Nitrokörper und verwandter Verbindungen, Ahrenssche Sammlung chemischer und chemisch-technischer Vorträge, Bd. XIII [Stuttgart 1908], S. 142). Beim Behandeln einer Lösung von Nitrobenzol in konz. Schwefelsäure mit Zinkstaub bei 50—80° (Höchster Farbw., D. R. P. 96853; C. 1898 II, 160). Bei mehrmonatiger Einw. von Sonnenlicht auf die alkoh. Lösung von Nitrobenzol, neben anderen Produkten (CIAMICIAN, SILBER, R. A. L. [5] 14 II, 377; B. 38, 3815; G. 36 II, 174). Bei längerem Kochen von 1 Tl. Azidobenzol (Bd. V, S. 276) mit 5 Tln. Schwefelsäure (gleiche Volume konz. Schwefelsäure und Wasser) (GRIESS, B. 19, 314). Neben anderen Produkten aus Anilin durch Oxydation mit unterchloriger Säure (BAMBERGER, TSCHIRNER, B. 31, 1523; A. 311, 82) oder mit Kaliumpermanganat in schwefelsaurer Lösung bei Gegenwart von Formaldehyd (Ba., TSCH., A. 311, 87). 4-Amino-phenol entsteht ferner durch Hydrolyse von Verbindungen, die nach Verabreichung von Formanilid an Kaninchen (KLEINE, H. 22, 330) oder von Acetanilid an Hunde und Kaninchen (JAFFÉ, HILBERT, H. 12, 305) im Harn auftreten.

Darstellung.

Man erhitzt 250 g 4-Nitro-phenol mit 45 g Salzsäure (20° Bé) und 500 g Wasser auf 98°, trägt allmählich 15—20 g Eisenspäne ein und setzt nach Beendigung der lebhaften Reaktion das Eintragen fort, bis die Menge des zugesetzten Eisens 400 g beträgt, kocht dann auf, trägt weitere 50 g Eisenspäne ein und kocht ½ Stde.; die Reduktionsmasse kocht man mit 2 l Wasser und 25—30 g Soda und läßt aus der filtrierten Lösung das 4-Amino-phenol auskrystallisieren (Paul, Z. Ang. 10, 172). — Darstellung von 4-Amino-phenol durch elektrotytische Reduktion von Nitrobenzol in verd. Schwefelsäure: Darmstädter, D. R. P. 154086; C. 1904 II, 1012. — Ausscheidung von 4-Amino-phenol aus seinen Salzen durch Natriumsulfit: Lumière, Seyewetz, C. r. 116, 1203.

Physikalische Eigenschaften.

Blättchen. F: 184° (Zers.) (Lossen, A. 175, 296), 186° (Gattermann, B. 26, 1847). Sublimiert zum Teil unzersetzt (Schmitt, Cook, in Kekuläs Lehrbuch der organischen Chemie, Bd. III [Erlangen 1867], S. 62). Löst sich in 90 Th. Wasser von 0° und in 22 Th. absol. Alkohol von 0° (Schmitt, Cook). Fast unlöslich in Chloroform und Benzol (Bakunin, G. 36 II, 212). Absorptionsspektrum im Ultraviolett: Bally, Ewbank, Soc. 87, 1353. Molekulare Verbrennungswärme bei konstantem Druck: 763,3 Cal. (Lemoult, C. 7. 148, 775). Elektrische Leitfähigkeit des salzsauren und des schwefelsauren Salzes: Walker, Ph. Ch. 4, 339. Elektrolytische Dissoziationskonstante k bei 15°: 5.6×10⁻⁶ (bestimmt durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrolyse des Hydrochlorids) (Veley, Soc. 93, 2131). Verlauf der Leitfähigkeit während des Neutralisierens ("Leitfähigkeitstitration") als Maß der Acidität: Thiel, Roembe, Ph. Ch. 63, 739.

·Chemisches Verhalten.

Einwirkung anorganischer Reagenzien. 4-Amino-phenol oxydiert sich in wäßr. Lösung schon an der Luft zu der Verbindung (C_eH_eON)_x (S. 434) (v. Bandrowski, M. 10, 127). Liefert in absolut-ätherischer Suspension mit trocknem Silberoxyd Chinonmonoimid (Bd. VII, S. 619) (Willstätter, Pyamnertei, B. 37, 4607). Behandelt man salssaures 4-Amino-phenol in eiskalter wäßriger Lösung mit Eisenchlorid, so entsteht die Verbindung (C_eH_eO_eN_eCl (S. 434) (Willstätter, Piccard, B. 42, 1903). Über Bildung von braunen Farbstoffen durch Oxydation von salssaurem 4-Amino-phenol in wäßr. Lösung mit Eisenshlorid oder Ammoniumpersulfat vgl. Tschörner, D. R. P. 138147; C. 1903 I, 210. Schüttelt man die Suspension von 5 g 4-Amino-phenol in 2 kg Äther bei 14—18° mit 200 com neutfalisierter Sulfomomopersäurelösung (entsprechend 16 g aktivem Sauerstoff), so lassen sich 4-Nitroso-phenol (Chinonoxim, Bd. VII, S. 622) und 4-Nitro-phenol (Bd. VI, S. 226) isolieren; behandelt man wäßr. Lösungen von 4-Amino-phenol mit Sulfomomopersäure, so entstehen Chinon und Hydrochinon (Bamberger, Czerkis, J. pr. [2] 68, 479). Versetzt man eine Lösung von 4-Amino-phenol in verdünnter Schwefelsäure mit Bleidioxyd, so wird fast quantitativ Chinon gebildet (Schmitt, J. pr. [2] 19, 317). Auch bei der Oxydation von 4-Amino-phenol mit Kaliumdichromat und Schwefelsäure entsteht fast quantitativ Chinon (Bd. VII, S. 609) (Körner, J. 1867, 615; Willstätter, Dorock, B. 42, 2166). Über einen aus 4-Amino-phenol durch Oxydation mit Kaliumdichromat in überschüssiger Salssäure erhaltenen braunen Farbstoff vgl. Akt.-Ges. f. Anilinf., D. R. P. 59964; Frdl. 3, 999. 4-Amino-phenol wird durch Discetyl-orthosalpetersäure (Bd. II, S. 171) in Oxalsüre verwandelt (Protet, C. 1903 II, 1109). — Beim Sättigen einer Suspension von 4-Amino-phenol in konzentrierter rauchender

Salzsäure mit Chlor entsteht Trichloraminophenol (S. 514) (SCHMITT, ANDRESEN, J. pr. [2] 23, 437). Bei längerem Einleiten von Chlor in die Suspension von salzsaurem 4-Aminophenol in Eisessig werden Hexachlor-cyclohexen-(1)-dion-(3.6) (Bd. VII, S. 574) und Tetra-chlorchinon (Bd. VII, S. 636) gebildet (ZINCKE, FUCHS, A. 267, 16). Bei der Einw. von wäßr. Natriumhypochloritiosung auf 4-Amino-phenol in verdünnter Salzsäure entsteht Chinon-monochlorimid (Bd. VII, S. 619) (WILLSTÄTTER, E. MAYER, B. 87, 1499). Dieses entsteht auch, wenn man zu einer wäßr. Lösung von salzsaurem 4-Amino-phenol bei Gegenwart eines geringen Überschusses von Salzsäure unter Kühlung Chlorkalklösung fügt, bis Niederschlag und Flüssigkeit rein gelb erscheinen (Sohm., Bennewitz, J. pr. [2] 8, 2; Hirson, B. 18, 1903; Schm., An., J. pr. [2] 23, 435; Fogh, B. 21, 890). Läßt man auf salzsaures 4-Aminophenol, das in rauchender Salzsäure suspendiert ist, unter Kühlung eine 2 Mol. Chlor entsprechende Menge Chlorkalklösung einwirken, so entstehen Di- und Trichloraminophenol; bei weiterem Zusatz von Chlorkalklösung entsteht Trichlorchinon (Bd. VII, S. 634); versetzt man die siedende Lösung von salzsaurem 4-Amino-phenol in konz. Salzsäure mit Chlorkalklösung bis zur Gelbfärbung, so bildet sich ein Gemisch von Trichlorchinon und Tetra-chlorchinon (SCHM., AN., J. pr. [2] 23, 436). Bei der Einw. von Brom auf salzsaures 4-Aminophenol entsteht Chinon (ANDRESEN, J. pr. [2] 28, 173). Leitet man salpetrige Saure in die alkoholische Lösung von salzsaurem 4-Amino-phenol, so entsteht p-Oxy-benzoldiazoniumchlorid (Syst. No. 2199) (Schm., B. 1, 67; Böhmer, J. pr. [2] 24, 449). Erhitzt man 2 Tle. 4-Amino-phenol mit 1 Tl. Schwefel kurze Zeit auf 190—200°, so entsteht ein schwefelhaltiges Produkt, das in salzsaurer Lösung von Dichromat zu einem schwarzvioletten, in alkal. Lösung durch Luftsauerstoff zu einem blauen Farbstoff oxydiert wird (RIS, B. 33, 798; GEIGY & Co., D. B. P. 122850; C. 1901 II, 566). Durch längeres Erhitzen von 4-Amino-phenol mit Schwefel und Natronlauge erhält man einen schwarzen Schwefelfarbstoff (Soc. St. Denis, VIDAL, D. R. P. 85330; Frdl. 4, 1050; VIDAL, C. 1897 II, 748), der durch Behandlung mit Natriumsulfit in wasserlösliche Form gebracht werden kann (Soc. St. Denis, VIDAL, D. R. P. 88392; Frdl. 4, 1052). Überführung von 4-Amino-phenol in grüne Schwefelfarbstoffe durch Erhitzen mit Schwefelalkalien bei Gegenwart eines Kupfersalzes: LEPETIT, DOLLFUS & GANSSER, D. R. P. 101577; C. 1899 I, 1091, bei Gegenwart von metallischem Kupfer: Ges. f. chem. Ind., D. R. P. 148024; C. 1904 I, 330. Bildung eines schwarzen Schwefelfarbstoffs durch Erhitzen von 4-Amino-phenol mit Schwefel und Ammoniak: Dtsch. VIDAL-Farbst.-Akt.-Ges., D. R. P. 111385; O. 1900 II, 547. Beim Erhitzen von 4-Amino-phenol mit Schwefelchlorür auf 180—200° erhält man einen blauschwarzen Farbstoff (Cassella & Co., D. R.P. 103646; C. 1899 II, 639). Beim Behandeln von 4-Amino-NH

phenol mit Schwefelwasserstoff und Eisenchlorid entsteht
Thionolin [s. bei dessen Leukoverbindung, dem Amino-oxythiodiphenylamin der nebenstehenden Formel (Syst. No.
4382)] (BERTHSEN, A. 280, 202). Beim Erhitzen von 4-Amino-phenol mit Natriumdisulfitlösung unter Druck auf 180° entsteht ein Produkt, das sich in Atzakkalien und Alkalicarbonaten
mit indigblauer Farbe löst (Höchster Farbw., D. R. P. 125668; C. 1901 II, 1243). — Überführung von 4-Amino-phenol in einen blauschwarsen Schwefelfarbstoff durch Erhitzen
mit Natriumthiosulfat und Atzakkali: Landendyf & Meyer, D. R. P. 144104; C. 1903 IL
859. Durch Einw. von Natriumthiosulfat und Alkalidichromat auf 4-Amino-phenol in sæffer
Lösung entstehen "Thiosulfonsäuren", die, mit 4-Amino-phenol oxydiert und in saurer Lösung
erhitzt, schwarse oder violettbraune Schwefelfarbstoffe liefern (Clayton-Aniline Co., D. R. P.

Lösung entstehen "Thiosulfonsäuren", die, mit 4-Amino-phenol oxydiert und in saurer Lösung erhitzt, schwarze oder violettbraune Schwefelfarbstoffe liefern (Claytop-Aniline Co., D. R. P. 120560, 127440; C. 1901 I, 1187; 1902 I, 287). Beim Erwärmen von 4-Amino-phenol mit rauchender (Schmutt, Bennewitz, J. pr. [2] 8, 8) oder konzentrierter (Cohn, A. 309, 236) Schwefelsäure entsteht 4-Amino-phenol-sulfonsäure-(2) (Syst. No. 1928). Bei 4-stdg. Erhitzen aquimolekularer Mengen von 4-Amino-phenol und salzsaurem 4-Amino-phenol mit Wasser im geschlossenen Rohr auf 200° entsteht 4.4'-Dioxy-diphenylamin (S. 451) (Vidal, C. 1903 I, 85). Erhitzt man äquimolekulare Mengen von 4-Amino-phenol und salzsaurem 4-Amino-phenol 10 Stdn. auf 170° oder 5—6 Stdn. auf 180—210°, so entsteht ein in verd. Mineralsäuren unlösliches schwarzes Kondensationsprodukt, das beim Erhitzen mit Schwefel und Schwefelnatrium auf 180—220° einen schwarzen Beumwollfarbetoff gibt (Rudolffe, D. R. P. 117348; C. 1901 I, 287); wärden 33 Tle. 4-Amino-phenol mit 15 Tln. salzsaurem 4-Amino-phenol 10 Stdn. auf 160—480° erhitzt, so erhält man neben 4.4'-Dioxy-diphenylamin ein hellgrages Kondensationsprodukt, das sehr wenig löslich in Wasser und verd. Salzsäure ist, sich in Alkenol und verd. Natronlauge löst, mit salpetriger Säure und mit Eisenchlorid blaue Niederschläge

gibt und in Schwefelfarbstoffe übergeführt werden kann (Ru., D. R. P. 118123; C. 1901 I, 653).

Einwirkung organischer Reagensien. Behandelt man salzsaures 4-Amino-phenol in methylalkoholischer Lösung mit Methyljodid und konz. Kalilauge, so läßt sich Trimethyl-[4-oxy-phenyl]-ammoniumjodid (CH₂),NI-C₂H₄·OH (S. 443) erhalten (GRIESS, B. 13, 249; Auwmas, Wang, A. 384, 308). Dieselbe Verbindung entsteht auch beim Koohen von 1 Tl. 4-Amino-phenol mit 4 Tln. Methyljodid, Soda und Wasser (v. PECHMANN, B. 32, 3683 Anm. 3). Zur Methyljerung von 4-Amino-phenol vgl. auch PAUL, Z. Ang. 10, 172.

Beim Erhitzen von 4-Amino-phenol mit Brombenzol in Gegenwart von Kupferjodür wird 4-Oxy-diphenylamin (S. 444) gebildet (GOLDBERG, D. R. P. 187870; C. 1907 II, 1465). Beim Erhitzen von 4-Amino-phenol mit seinem Hydrochlorid und Nitrobenzol auf 140-180° entsteht ein alkalilöslicher nigrosinartiger Farbstoff (Rudolph, D. R. P. 132644; С. 1902 II, 82), der durch Erhitzen mit Schwefel und Schwefelnatrium auf 160—170° in einen schwarz-violetten Baumwollfarbstoff übergeführt werden kann (Ru., D. R. P. 117073; C. 1901 I, 240). Bei der Kondensation von 4-Amino-phenol mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) erusteht 2'.4'-Dinitro-4-oxy-diphenylamin (S. 444) (NIETZKI, SIMON, B. 28, 2973). Beim Erhitzen von salzsaurem 4-Amino-phenol mit 2.5-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) in Gegenwart von Natriumscetat in Alkohol wird 4'-Chlor-2'.6'-dinitro-4-oxy-diphenylamin (S. 445) gebildet (Bad. Anilin- u. Sodaf., D. R. P. 116677; C. 1901 I, 78). Beim Erhitzen ăquimolekularer Mengen 4-Amino-phenol und 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) in Gegenwart von Natriumacetat in Alkohol entsteht 5'-Chlor-2'.4'-dinitro'4-oxy-diphenylamin (S. 445) (B. A. S. F., D. R. P. 122606; C. 1901 II, 382); wendet man 2 Mol. Gew. 4-Aminophenol an, so erhalt man N.N'-Bis-[4-oxy-phenyl]-4.6-dinitro-phenylendiamin-(1.3) (S. 500) (B. A. S. F., D. R. P. 112298, 121211; C. 1900 II, 699; 1901 I, 1395). Mit Pikrylchlorid bei Gegenwart von Natriumhydroxyd in heißem Alkohol entsteht 2'.4'.6'-Trinitro-4-oxydiphenylamin (S. 445) (TURFIN, Soc. 59, 718). Beim Erhitzen von 4-Amino-phenol mit Benzylchlorid in alkoholischer Lösung bilden sich 4-Benzylamino-phenol (S. 448) und 4-Dibenzyl-

amino-phenol (S. 450) (BAKUNIN, G. 36 II, 211; vgl. BAK., G. 33 II, 459). Läßt man die auf 0° abgekühlte Lösung von 4-Amino-phenol und Phenol in Natronlauge in eisgekühlte, mit Kochsalz versetzte Natriumhypochloritlösung einlaufen, so erhält man das Natriumsalz des Chinon-mono-[4-oxy-anils] $0:C_0H_4:N\cdot C_0H_4\cdot OH$ (S. 456) (Akt.-Ges. f. Anilinf., D. R. P. 157288; C. 1905 I, 315; vgl. Köchlin, D. R. P. 15915; Frdl. 1, 283; Wurster, B. 20, 2936). Durch Erhitzen von 4-Amino-phenol mit seinem Hydrochlorid und 2-Nitro-phenol auf 145° nnd dann auf 160—170° erhält man einen alkalilöslichen, nigrosinähnlichen Farbstoff (Rudolph, D. R. P. 132644; Frdl. 6, 515; C. 1902 II, 82), den man durch Erhitzen mit Schwefel und Schwefelnatrium auf 140—180° in einen blauen bis schwarzen Schwefelfarbstoff überführen kann (Ru., D. R. P. 117073; Frdl. 6, 720; C. 1901 I, 240). Versetzt man eine Lösung von p-Xylenol (Bd. VI, S. 494) in Natronlauge bei 0° mit einer Lösung von salzsaurem 4-Amino-phenol und oxydiert mit Natriumhypochlorit unter Eiskühlung, so erhält man das Natriumsalz des Indophenols $O: C_6H_2(CH_3)_8: N \cdot C_6H_4 \cdot OH$ bezw. $HO \cdot C_6H_2(CH_3)_8 \cdot N \cdot C_6H_4 \cdot OH$ bezw. $HO \cdot C_6H_2(CH_3)_8 \cdot N \cdot C_6H_4 \cdot OH$ N:C₆H₄:O (S. 435) (Cassella & Co., D. R. P. 191683; C. 1908 I, 574). Beim Erhitzen von 4-Amino-phenol mit a-Naphthol und Schwefel oder Schwefel + Schwefelnatrium erhält man schwarze Schwefelfarbstoffe (Soc. St. Denis, D. R. P. 125582; C. 1901 II, 1191). Trägt man in eine Lösung von 4-Amino-phenol und Resorcin in konz. Schwefelsäure Braunstein ein und erhitzt das Gemisch im Wasserbade, so entsteht Resorufin (s. bei seiner Leukoverbindung, dem 2.7-Dioxy-phenoxazin, Syst. No. 4251) (NIETZKI, DIETZE, MÄCKLEB, B. 22, 3055). Beim Erhitzen von 4-Amino-phenol mit Resorcin und Schwefel erhält man einen schwarzen Schwefelfarbstoff (Dtsch. VIDAL-Farbst.-Akt.-Ges., D. R. P. 114802; C. 1900 II, 932). Beim Erwärmen von 4-Amino-phenol mit 4.6-Dinitro-1.3-dirhodan-benzol (Bd. VI, S. 836) in Gegenwart von Natriumacetat in Alkohol auf 60-65° wird 4.6-Dinitro-4'-oxy-3-rhodan-diphenylamin (S. 451) gebildet (Bad. Anilin- u. Sodaf., D. R. P. 122569; C. 1901 II, 381). Beim Érhitzen gleicher Teile 4-Amino-phenol und Hydrochinon mit geschmolzenem Calciumchlorid im geschlossenen Rohr auf 160-180° entsteht 4.4'-Dioxy-diphenylamin (S. 451) (Schneider, B. 32, 690). Beim Erhitzen gleicher Teile 4-Amino-phenol und Hydrochinon mit Schwefel auf 200° erfolgt Kondensation zu 2.7-Dioxy-phenthiazin (Leukothionol, Syst. No. 4251) (VIDAL, D. R. P. 103301; C. 1899 II, 548; vgl. VI., C. 1897 II, 748). Bildung schwarzer Schwefelfarbstoffe durch Erhitzen von 4-Amino-phenol und Hydrochinon mit Schwefel und Ammoniak oder Schwefel und Phospham: Dtsch. VIDAL-Farbst.-Akt.-Ges., D. R. P. 111385; C. 1900 II, 547. Beim Erhitzen von 4-Amino-phenol mit 4-Nitro-phenol, Glycerin und konz. Schwefelsaure entsteht 6-Oxy-chinolin (Syst. No. 3114) (SKRAUF, M. 3, 534, 545; D. R. P. 14976; Frdl. 1, 178).

4-Amino-phenol liefert mit Formaldehyd in verdünnter alkalischer Lösung polymeres 4-Methylenamino-phenol ($HO \cdot C_0H_4 \cdot N : CH_2)_x$ (S. 452) (Ges. f. chem. Ind., D. R. P. 68707; Frdl. 3, 996). Über Einw. von Formaldehyd auf 4-Amino-phenol in Gegenwart von Salzsäure vgl. Goldschmidt, Ch. Z. 25, 564. Aus 4-Amino-phenol und der währ. Lösung von Formaldehydnatriumdisulfit in Gegenwart von etwas Natriumsulfit im Wasserbade erhält man die Verbindung (HO₂S)CH₂·NH·C₂H₄·OH (S. 452) (Ges. f. chem. Ind., D. R. P. 70541; Frdl. 3, 998; vgl. KNOEVENAGEL, B. 37, 4076). Beim Erwärmen von 4-Amino-phenol mit Aldehyd oder Paraldehyd und roher Salzsäure bildet sich 6-Oxy-2-methyl-chinolin (Syst. No. 3114) (Doeener, v. Miller, B. 17, 1708; Chem. Fabr. Schering, D. R. P. 24317; Fril. 1, 187). Beim Kochen von 4-Amino-phenol mit Aceton entsteht 4-Isopropylidenamino-phenol (S. 452) (Highle, B. 25, 2755; Michaelis, Luxemburg, B. 27, 3006). Erhitzt man 4-Amino-phenol mit 3 Tln. Aceton tagelang auf 170—180° oder erhitzt man die salzsaure

Lösung von 4-Amino-phenol mit einem Gemisch von Aceton und Paraldehyd, das mit Chlorwasserstoff gesättigt wurde, auf 100°, so erhält man 6-Oxy-2.4-dimethyl-chinolin (Syst. No. 3114) (Engler, B. 22, 213, 215). Aus 4-Amino-phenol und Benzaldehyd in verdünnter essigsaurer (Hä., B. 25, 2753; 26, 394) oder alkoholischer (Philipp, B. 25, 3248) Lösung bildet sich 4-Benzalamino-phenol (S. 453). Versetzt man die mit Schwefeldioxyd gesättigte alkoholische Lösung von 4-Amino-phenol mit Benzaldehyd, so entsteht die Verbindung HO·C₆H₄·NH·CH(C₆H₂)(SO₃H) (S. 453) (Michaelis, A. 274, 244; vgl. Knoevenagel, B. 37, 4076). Beim Erhitzen von 4-Amino-phenol mit Benzophenon in Gegenwart von Zinkchlorid erhält man 4-[Diphenylmethylen-amino]-phenol (S. 455) (Reddellen, B. 42, 4762). 4-Amino-phenol liefert mit Glyoxalnatriumdisulfit (Bd. I, S. 761, Zeile 4 v. o.) in verdünnter alköholischer Lösung im Wasserbade N-(4-Oxy-phenyl)-glycin (S. 488) und [N-(4-Oxy-phenyl)-glycin]-[4-oxy-anilid] (S. 506) (Hinsberg, B. 41, 1369, 1370). Wird bei der Einw. von Chinon in heißer schwach saurer wäßriger Lösung in 2.5-Bis-[4-oxy-anilino]-chinon (Syst. No. 1874) übergeführt (Zinger, Heberbrand, A. 226, 70). Gibt in wäßr. Lösung mit Chinonmonoxim (4-Nitroso-phenol, Bd. VII, S. 622) ein amorphes Produkt, das sich in Sodalösung mit blauer, in Natronlauge mit roter, in konz. Schwefelsäure mit tiefblauer Farbe löst und beim Erhitzen mit Schwefel und Schwefelslakili einen schwarzen Schwefelfarbstoff liefert (B. A. S. F., D. R. P. 125136; C. 1901 II, 1106).

4-Amino-phenol liefert beim Kochen mit 50%, iger Ameisensäure 4-Formamino-phenol (S. 459) (Dahl & Co., D. R. P. 146265; C. 1903 II, 1227). 4-Amino-phenol liefert beim Kochen mit Eisessig (Dahl & Co., D. R. P. 146265; C. 1903 II, 1227), beim Übergießen mit Essigsaureanhydrid (Friedlander, B. 26, 177) oder beim Versetzen der verdünnten essigsauren Lösung mit Essigsäureanhydrid (LUMIÈRE, BARBIER, Bl. [3] 33, 785) 4-Acetamino-phenol (S. 460). Beim Erhitzen mit Essigsäureanhydrid auf 160° entsteht O.N-Diacetyl-[4-amino-phenol control of the control phenol] (S. 464) (LADENBURG, B. 9, 1529). Aus 4-Amino-phenol und Chloressigsaure in siedendem Wasser wird 4-Oxy-anilinoessigsäure (S. 488) gebildet (VATER, J. pr. [2] 29, 291). Beim Erhitzen von α-Brom-buttersäure-äthylester mit 4-Amino-phenol in Gegenwart von Natriumsulfit auf 125—130° erhält man a-[4-Oxy-anilino]-buttersäure-äthylester (S. 492) (BISCHOFF, B. 30, 2929). Mit a-Brom-isobuttersäure-äthylester entsteht auf analoge Weise a oder β -[4-Oxy-anilino]-isobuttersaure-athylester (S. 492) (Bl., B. 30, 2929). Beim Behandeln von 4-Amino-phenol mit 1 Mol.-Gew. Benzoylchlorid in äther. Lösung entsteht 4-Benzamino-phenol (S. 469) (Smith, B. 24, 4042); dieses erhält man auch bei der Einw. von Benzoylchlorid auf 4-Amino-phenol in alkoh. Lösung (REVERDIN, DRESEL, C. 1905 I, 80). Erhitzt man das Hydrochlorid mit 1 oder 2 Mol.-Gew. Benzoylchlorid, so entsteht stets O.N-Dibenzoyl-[4amino-phenol] (RE., DR., C. 1905 I, 80; Bl. [3] 31, 1269; B. 37, 4453). O.N-Dibenzoyl-[4amino-phenol] erhält man auch bei der Einw. von Benzoylchlorid auf 4-Amino-phenol in Gegenwart von überschüssiger Natronlauge (HINSBERG, UDRANSZKY, A. 254, 252, 256). Beim Stehen einer Lösung von 4-Amino-phenol in Pyridin mit 1 Mol.-Gew. Benzoylchlorid entstehen 4-Benzamino-phenol und O.N-Dibenzoyl-[4-amino-phenol] nebeneinander (Auwers, Sonnen-STUHL, B. 37, 3940). Beim Erhitzen von 1 Tl. 4-Amino-phenol mit 2 Tln. Oxalsäure erfolgt Bildung von N.N'-Bis-[4-oxy-phenyl]-oxamid (S. 472) (CASTELLANETA, G. 25 II, 532; vgl. Wirths, Ar. 234, 623; Piutti, Piccoli, B. 31, 330). Beim Erhitzen äquimolekularer Mengen von 4-Amino-phenol und Oxalester im geschlossenen Rohr auf 160° entstehen [4-Oxy-phenyl]-oxamidsäure-äthylester (S. 471) und N.N'-Bis-[4-oxy-phenyl]-oxamid (PIUTTI, PICCOLI, B. 31, 331; vgl. CA., G. 25 II, 533; WI., Ar. 234, 623). Beim Erhitzen von 1 Tl. 4-Amino-phenol mit 2 Tln. Malonester auf 185° erhält man N.N'-Bis-[4-oxy-phenyl]-malonamid (S. 474) (CA., G. 25 II, 537). Erhitzt man äquimolekulare Mengen von 4-Amino-phenol und Bernsteinsäure auf 150-1700 (TÄUBER, D. R. P. 88919; Frdl. 4, 1168) oder von 4-Aminophenol und Bernsteinsäureanhydrid (Syst. No. 2475) auf 170°, so entsteht N-[4-Oxy-phenyl]succinimid (Syst. No. 3201) (Pru., B. 29, 84; WI., Ar. 234, 622). Beim Kochen einer Suspension von schwefligsaurem 4-Amino-phenol, erhalten durch Umsetzung von salzsaurem 4-Aminophenol mit Natriumsulfit, in Aceton mit einer Lösung von 1 Mol.-Gew. Maleinsäureanhydrid (Syst. No. 2476) in Benzol wird N-[4-Oxy-phenyl]-maleinamidsäure (S. 476) gebildet (Piutti, R. A. L. [5] 18 II, 313). Beim Verrühren äquimolekularer Mengen von 4-Amino-phenol und Phthalsäureanhydrid (Syst. No. 2479) mit etwas Aceton entsteht N-[4-Oxy-phenyl]-phthalamidsäure (S. 477) (Piutti, Abati, B. 36, 998; G. 33 II, 5). Beim Schmelzen von 4-Amino-phenol mit Phthalsäureanhydrid erhält man N-[4-Oxy-phenyl]-phthalimid (Syst. No. 3210) (Prv., G. 16, 252). 4-Amino-phenol läßt sich mit Phthalsäureanhydrid auch zu 4-Amino-1-oxy-anthrachinon (Syst. No. 1878) kondensieren (BAYER & Co., D. R. P. 94396; C. 1898 I, 543). 4-Amino-phenol liefert bei der Einw. von Chlorameisensäureäthylester (Bd. III, S. 10) [4-Oxy-phenyl]-urethan (S. 478) (GROENVIK, Bl. [2] 25, 179). Schüttelt man 4-Aminophenol in natronalkalischer Lösung mit 2,5 Mol.-Gew. Chlorameisensäureäthylester, so entsteht [4-Amino-phenol]-O.N-bis-carbonsaureathylester (S. 485) (H1., A. 305, 287). Beim Erhitzen von 4-Amino-phenol mit Phosgen (Bd. III, S. 13) in Xylol im geschlossenen Rohr auf 210—220° wird 4-Chlorformyloxy-phenylisocyanat (S. 488) gebildet (Schönherr, J. pr.

[2] 67, 339). Aus salzsaurem 4-Amino-phenol und Kaliumeyanat (Bd. III, S. 31) in konzentrierter wäßriger Lösung entsteht [4-Oxy-phenyl]-harnstoff (S. 478) (KALCEHOFF, B. 16, 376). Erhitst man squimolekulare Mengen 4-Amino-phenol und Phenylisocyanat in Benzol im geschlossenen Rohr auf 100°, so entsteht N-Phenyl-N'-[4-oxy-phenyl]-harnstoff (S. 478) (AUWERS, TRAUE, WELDE, B. 32, 3308). Dieselbe Verbindung entsteht neben [4-Aminophenol]-O.N-bis-carbonsaureanilid (S. 485) bei der Einw. von 1 Mol.-Gew. 4-Amino-phenol auf 1 Mol.-Gew. Phenylisocyanat in alkal. Lösung unter Kühlung (E. FISCHER, B. 38, 1701 Anm. 3). 4-Amino-phenol gibt beim Erhitzen mit Dicyandiamid (Bd. III, S. 91) N-[4-0xyphenyl]-N'-guanyl-guanidin H,N·C(:NH)·NH·C(:NH)·NH·C₆H,·OH (S. 478) (LUMIERE, PERRIN, Bl. [3] 33, 206). Liefert beim Erhitzen mit Kaliumrhodanid (Bd. III, S. 150) und twas Wasser [4-Oxy-phenyl]-thioharnstoff (S. 478) (Ka., B. 16, 374). Durch Behandlung mit 1 Mol.-Gew. Phenylsenföl in Alkohol im Wasserbade erhält man N-Phenyl-N'-[4-oxy-phenyl]-thioharnstoff (S. 479) (Ka., B. 16, 376). Beim Digerieren von 4-Amino-phenol mit Schwefelkohlenstoff (Ka., B. 16, 1830) oder leichter bei 1—2-stdg. Erhitzen mit Schwefelkohlenstoff und Alkohol in Gegenwart von Schwefel (Hugershoff, B. 32, 2246) wird N.N'-Bis-[4-oxy-phenyl]-thioharnstoff (S. 479) gebildet. Beim Erhitzen von 4-Amino-phenol mit Milchsäure (Rd. 11 S. 268) and 170—1800 erhält men 4-Lastylamino-phenol (S. 401) (Täurpen D. R. D. (Bd. III, S. 268) auf 170—180° erhält man 4-Lactylamino-phenol (S. 491) (Täuber, D.R.P. 90412; Frdl. 4, 1168; Chem. Fabr. vorm. Goldenberg, Geromont & Co., D. R. P. 90595; Fril. 4, 1159). Beim Erhitzen von 4-Amino-phenol mit Salicylsäurephenylester (Bd. X, S. 76) können je nach den Mengenverhältnissen 4-Salicoylamino-phenol (S. 493) oder O.N-Disalicoyl-[4-amino-phenol] (S. 493) entstehen (Cohn, J. pr. [2] 61, 551). Beim Kochen von 4-Amino-phenol mit 3-Oxy-naphthoesaure-(2) (Bd. X, S. 333) und Natriumdisulfitlösung bildet sich 4-β-Naphthylamino-phenol (S. 450) (BUCHERER, STOHMANN, C. 1904 I, 1013; J. pr. [2] 71, 446). 4-Amino-phenol liefert mit Brenztraubensäure (Bd. III, S. 608) in Alkohol Brenzweinsäure-[4-oxy-phenyl]-imid N·C₆H₆·OH (Syst. No. 3201) (GIUFFRIDA, CHIMIENTI, CH, CO G. 34 II, 262). Beim Erhitzen von 4-Amino-phenol mit Brenztraubensäure und Benzaldehyd in Alkohol entsteht 6-Oxy-2-phenyl-chinolin-carbonsaure-(4) (Syst. No. 3344) (Doebner, FETTBACK, A. 281, 11; CLAUS, BRANDT, A. 282, 99).

4-Amino-phenol reagiert mit 1 Mol.-Gew. Benzolsulfochlorid in Alkalilauge unter Bildung von 4-Benzolsulfamino-phenol (S. 507) (Chem. Fabr. Sandoz, D. R. P. 128815; C. 1902 I, 551); diese Verbindung wird auch bei Anwendung von 2 Mol.-Gew. Benzolsulfochlorid auf 1 Mol.-Gew. 4-Amino-phenol bei Gegenwart von Alkalilauge erhalten (Tingle, Williams, Am. 87, 69). Beim Erhitzen von 2 Mol.-Gew. 4-Amino-phenol mit 1 Mol.-Gew. p-Toluolsulfochlorid in alkoh. Lösung entsteht 4-p-Toluolsulfamino-phenol (S. 507) (Troeger, Uhl-Mann, J. pr. [2] 51, 438). Behandelt man 1 Mol.-Gew. 4-Amino-phenol in wäßriger oder alkoholischer Lösung mit 2 Mol.-Gew. p-Toluolsulfochlorid in Gegenwart von Natrium-carbonat oder -acetat, so erhält man O.N-Di-p-toluolsulfonyl-[4-amino-phenol] (S. 508) und ein Nebenprodukt vom Schmelzpunkt 183—184° (Reverdin, Dresel, C. 1905 1, 81).

Läßt man auf eine Lösung von 4-Amino-phenol, Anilin und Natriumthiosulfat Natriumdichromat einwirken, so entstehen Verbindungen, die beim Erhitzen in saurer Lösung in schwefelhaltige Farbstoffe übergeführt werden (Clayton Aniline Co., D. R. P. 127856, 130440; C. 1903 I, 386, 1140). Durch Einw. von Natriumdichromat auf die verdünnte schwefelsaure Lösung von 4-Amino-phenol und Methylanilin und Reduktion des Produktes mit Schwefelnatriumlösung erhält man 4-Oxy-4'-methylamino-diphenylamin (S. 501); analoge Verbindungen erhält man mit Äthylanilin und anderen monoalkylierten Aminen (CASSELLA & Co., D. R. P. 133481; C. 1902 II, 555). Bei der Oxydation eines Gemisches von salzsaurem 4-Amino-phenol und salzsaurem Dimethylanilin mit Kaliumdichromat in wäßr. Lösung entsteht Phenolblau (S. 88) (Ca. & Co., D. R. P. 19231; Frdl. 1, 285). Beim Erhitzen von 4-Amino-phenol mit Acetanilid und Schwefel entsteht unter Entwicklung von Schwefelwasserstoff und wenig Ammoniak ein schwarzer Schwefelfarbstoff; ähnliche Farbstoffe erhält man mit Acetylderivaten anderer aromatischer Amine und Oxyamine (GEIGY & Co., D. R. P. 128361; C. 1902 I, 508). Überführung von 4-Amino-phenol in einen schwarzen Schwefelfarbstoff durch Erhitzen mit 1 Mol.-Gew. 2-Nitro-anilin, Schwefel und Schwefelnatrium auf 180-210°: Soc. St. Denis, D. R. P. 125135; C. 1901 II, 1190. Durch Erhitzen von 4-Amino-phenol mit salzsaurem 4-Amino-phenol und 4-Nitro-anilin auf 130—170° erhält man einen alkalilöslichen, nigrosinähnlichen Farbstoff (Rudolff, D. R. P. 132644; C. 1902 II. \$2), den man durch Erhitzen mit Schwefel und Schwefelnatrium auf 170-190° in einen violettschwarzen Schwefelfarbstoff überführen kann (Ru., D. R. P. 117073; C. 1901 I, 240). Bei der gemeinsamen Oxydation von 4-Amino-phenol und o-Toluidin mit Eisenchlorid in Wasser + Alkohol bei Gegenwart von Natriumacetat (GNEHM, Bors, J. pr. [2] 69, 172) oder mit Natriumdichromat in schwefelsaurer Lösung (Ca. & Co., D. R. P. 139204; C. 1903 I, 608) entsteht das Indophenol $C_{13}H_{19}ON_{3}$ (S. 435), das bei der Reduktion mit Schwefelnatrium 4'-0xy-4-amino-3-methyl-diphenylamin (S. 504) gibt (Ca. & Co., D. R. P. 139204; Gn., Bots,

J. pr. [2] 69, 173). Beim Erhitzen von 4-Amino-phenol mit o-Phenylendiamin und Schwefel auf 200° (Soc. St. Denis, D. R. P. 125135; C. 1901 II, 1190) oder mit m-Phenylendiamin und Schwefel auf 200° (Deutsche Vidal-Farbst.-Akt.-Ges., D. R. P. 114802; C. 1900 II, 932) entstehen schwarze Schwefelfarbstoffe. Darstellung eines alkalilöslichen Kondensationsproduktes durch Erhitzen eines Gemisches von 4-Amino-phenol und dessen salzsaurem Salz mit m-Phenylendiamin und 2-Nitro-phenol auf 150—165°: Rudolph, D. R. P. 139961; О. 1908 I. 859. Beim Erhitzen von salzsaurem 4-Amino-phenol mit p-Phenylendiamin ohne Solvens auf 160—180° (Deutsche Vidal-Farbst.-Akt.-Ges., D. R. P. 116337; C. 1901 I, 76) oder in Gegenwart von Wasser im geschlossenen Rohr auf 200° (Vidal, C. 1903 I, 85) entsteht 4-Oxy-4'-amino-diphenylamin (S. 500). Darstellung eines alkaliöslichen Kondensations-produktes durch Erhitzen eines Gemisches von 4-Amino-phenol, salzsaurem p-Phenylen-diamin und 2-Nitro-phenol auf 135—170°: Ru., D. R. P. 139961; C. 1903 I, 859. Beim Er-hitzen von 4-Amino-phenol mit N.N-Dimethyl-p-phenylendiamin entsteht als Hauptprodukt 4-Oxy-4'-dimethylamino-diphenylamin (S. 501) (GNEHM, WEBER, J. pr. [2] 69, 226). Diese Verbindung erhält man auch beim Erhitzen von salzsaurem 4-Amino-phenol mit N.N-Dimethyl-p-phenylendiamin (Ca. & Co., D. R. P. 134947; C. 1902 II, 1023). Erhitzt man 4-Aminophenol mit N.N-Dimethyl-p-phenylendiamin in Gegenwart von Zinkchlorid auf 150°, so erhält man als Hauptprodukt 4-Amino-4'-dimethylamino-diphenylamin (S. 111) (GNEHM, WEBER, J. pr. [2] 69, 226). Überführung von 4-Amino-phenol in braune Schwefelfarbstoffe durch Erhitzen mit 2.4-Diamino-toluol und Schwefel auf 250°: Akt.-Ges. f. Anilinf., D. R. P. 215547, 215548; C. 1909 II, 1781. Beim Erhitzen von 21,8 Tln. 4-Amino-phenol mit 23,1 Tln. salzsaurem Naphthylendiamin-(1.4) in Gegenwart von Wasser auf 140° entsteht N.N'-Bis-[4-oxy-phenyl]-naphthylendiamin-(1.4) (S. 506) (KALLE & Co., D. R. P. 168115; C. 1906 I, 1305). Beim Verschmelzen von 4-Amino-phenol mit Naphthylendiamin-(1.4) in Gegenwart von Salzsaure und einer oxydierenden Substanz, z. B. einer aromatischen Nitroverbindung, entsteht das Trioxyphenylrosindulin der nebenstehenden

Formel (Syst. No. 3772) (Ka. & Co., D. R. P. 158077, 158100; C. 1905 I, 484). Uberführung von 4-Aminophenol in substantive Schwefelfarbstoffe durch Erhitzen mit 1.2.4-Triamino-benzol und Schwefel oder Schwefel + Schwefelnatrium auf 200—220°: Soc. St. Denis, D. R. P.

125135; C. 1901 II, 1190. — Bildung eines schwarzen
Schwefelfarbstoffs durch Erhitzen von 4-Amino-phenol
mit 3-Amino-phenol und Schwefel auf 200° (Deutsche VIDAL-Farbst.-Akt.-Ges., D. R. P.
114802; C. 1900 II, 932. Bei der gemeinsamen Oxydation von 4-Amino-phenol und 3-Oxydiphenylamin (S. 410) in verd. Natronlauge mit Kaliumdichromat entsteht Safranol (s. hebenstehende Formel) (Syst. No. 3538) (JAUBERT, B. 28, 273). — Durch Erhitzen von 4-Amino-phenol mit Sulfanilsaure (Syst. No. 1923) auf 175-225° entsteht ein in verdünnten Sauren schwer löslicher, in verdünnten Alkalien mit

blauer Farbe löslicher Farbstoff (Vidal, D. R. P. 104105; C. 1899 II, 923), der durch Erhitzen mit Schwefel und Natronlauge in einen schwarzen Schwefelfarbstoff übergeht (VI., D. R. P. 108496; C. 1900 I, 1183); erhitst man 4-Amino-phenol mit Sulfanilsäure auf 250°, so erhält man einen in verd. Alkalien mit blauschwarzer Farbe löslichen Farbstoff (Dtsch. VIDAL-Farbst.-Akt.-Ges., D. R. P. 109736; C. 1900 II, 299), der durch Erhitzen mit Schwefel und Natronlauge einen schwarzen Farbstoff liefert (Dtsch. VIDAL-Farbst.-Akt.-Ges., D. R. P. 115003; O. 1900 II, 1143). — Erhitzt man 4 Mol.-Gew. 4-Amino-phenol mit 2 Mol.-Gew. 4-Oxyazobensol (Syst. No. 2112) und 7 At.-Gew. Schwefel auf 180-190°, so entsteht unter Entwicklung von Ammoniak und Abspaltung von Anilin ein schwefelhaltiges farbloses Produkt, das, mit weiteren Schwefelmengen auf 220° erhitzt, unter Entwicklung von Schwefelwasserstoff einen schwarzen Farbstoff liefert (Ris, B. 88, 796; Grigy & Co., D. R. P. 122850; C. 1901 II, 566). Überführung von 4-Amino-phenol in schwarze Baumwollfarbetoffe durch Erhitzen mit 4-Amino-azobenzol (Syst. No. 2172) und Schwefel auf 220°: GEI. & Co., D. R. P. 122826; C. 1901 II, 448; vgl. auch D. R. P. 122850; C. 1901 II, 566. Beim Erhitzen von 4-Aminophenol mit salssaurem 4-Bensolaso-naphthylamin-(1) auf 160—170° entsteht Trioxyphenylrosindulin (Formel s. oben) (Syst. No. 3772) (Kalle & Co., D. R. P. 158077; C. 1905 I, 484). Einwirkung von Paraldehyd s. S. 430, von Bernsteinsäureanhydrid, Maleinsäureanhydrid und Phthalasureanhydrid auf 4-Amino-phenol s. S. 431. Beim Versetzen der Lösung von Aminophenol s. S. 431. Beim Versetzen der Lösung von

4-Amino-phenol in Pyrklin mit einer ather. Bromeyanlösung wird das Hydrobromid des Glutacondialdehyd-bis-[4-oxy-anils] (S. 455) gebildet (Körig, J. pr. [2] 69, 131; 70, 23, 52; D. R. P. 155782; C. 1904 II, 1558; ZINCKE, HEUSER, MÖLLER, A. 333, 340).

Biochemisches Verhalten.

Über die physiologische Wirkung des 4-Amino-phenols vgl. HINSBERG, TREUPEL, A. Pth. 38, 216, 219; O. 1894 I, 641.

Verwendung.

4-Amino-phenol findet Verwendung zur Herstellung von Schwefelfarbstoffen, z. B. von Vidalschwarz (Schultz, Tab. No. 717) und Immedialschwarz (Schultz, Tab. No. 724). Über Verwendung von 4-Amino-phenol zur Herstellung von Azofarbstoffen vgl. Schultz, Tab. No. 84; BAYER & Co., D. R. P. 79165; Frdl. 4, 750. Verwendung zum Färben von Haaren und Federn: H. Erdmann, D. R. P. 51073; Frdl. 2, 499; vgl. Schultz, Tab. No. 923; Pauly, Binz, C. 1904 II, 1583. Verwendung als photographischer Entwickler (Rodinal): Andressen, D. R. P. 60174; B. 25 Ref., 305; vgl. H. Erdmann, Ch. I. 15, 173; Eder, Valenta, Ch. I. 15, 432.

Farbreaktionen und Nachweis.

Die farblose Lösung von 4-Amino-phenol in ätzenden oder kohlensauren Alkalien färbt sich an der Luft rasch violett (Lossen, A. 175, 296). 4-Amino-phenol gibt mit Eisenchlorid violette Färbung, die auf Zusatz von konz. Salzsäure oder Alkalilauge verschwindet (Will-stätter, Piccard, B. 42, 1903). Gießt man eine Lösung von salzsaurem 4-Amino-phenol vorsichtig in verdünnte Chlorkalklösung, so entsteht eine violette Färbung, die beim Umschütteln in Grün übergeht (charakteristische Reaktion) (Lo., A. 175, 296). Man weist freies 4-Amino-phenol mittels der Chlorkalkreaktion am besten nach, indem man zu der schwach essigsauren Lösung desselben tropfenweise eine Chlorkalklösung fügt; bei Anwesenheit von 4-Amino-phenol tritt Violettfärbung ein (Michaelis, Luxembourg, B. 27, 3009).

Salze des 4-Amino-phenols.

C₄H₇ON + 3 HF + 1½ H₂O. Prismen (Weinland, Lewkowitz, Z. a. Ch. 45, 49).

— C₆H₇ON - HCl. Prismen (Lossen, A. 175, 296). Löst sich bei 0° in 1,4 Tln. Wasser und in 10 Tln. absol. Alkohol (Schmitt, Cook, in Kekulés Lehrbuch der organischen Chemie, Bd. III [Erlangen 1867], S. 62). — 10 C₆H₇ON + H₂SO₃. B. Durch Behandeln der 80° heißen wäßrigen Suspension des 4-Amino-phenols mit Schwefeldioxyd oder durch Auflösen von 4-Amino-phenol in heißer 40°/ojger Natriumdisulfitlösung (Lumüre, Setentz, Bl. [3] 35, 1205; Soc. anon. Lumière et ses fils, D. R. P. 198497; C. 1908 I, 2070). Weiße, schwach nach Schwefeldioxyd riechende, luftbeständige Krystalle. Schmilzt unter SO₂-Entwicklung bei 184° (Schmelzpunkt des 4-Amino-phenols) (SO₂-Entwicklung). Löslich in Wasser von 15° zu 0,5°/o, leichter in heißem Wasser, leicht löslich in einer heißen Lösung von schwefliger Säure. — C₆H₇ON + H₂PO₄. Nadeln (aus siedendem Wasser) (Raikow, Schtarbanow, Ch. Z. 25, 245). — Essigsaures Salz. F: 183°; löst sich bei 0° in 9 Tln. Wasser und in 12 Tln. absol. Alkohol (Schmitt, Cook). — Salz der Weinsäure (Bd. III, S. 481) C₆H₇ON + C₄H₆O₅. Krystalle (aus Wasser). F: 216°; löslich in 27 Tln. Wasser von 15°, sehr leicht löslich in heißem Wasser (Hinseere, A. 305, 288). — Salz der p-Toluolsulfonsäure (Bd. XI, S. 97) C₆H₇ON + C₇H₈O₃S. B. Neben anderen Produkten bei der Einw. von p-Toluolsulfinsäure (Bd. XI, S. 9) auf Nitrosobenzol in Chloroform oder Eisessig oder auf Phenylhydroxylamin in Chloroform (Bambebger, Rieing, B. 34, 236, 252). Blättchen. F: 220—245° (Zers.). Leicht löslich in Wasser und Alkohol, sehr wenig in Chloroform und Benzol.

Umwandlungsprodukte ungewisser Konstitution aus 4-Amino-phenol.

Verbindung (C_eH₅ON)_x. B. Beim Einleiten von Sauerstoff in eine wäßr. Lösung von 4-Amino-phenol (Bandbowski, M. 10, 127). — Fadenartige, dunkelgrüne, rotschimmernde Kryställchen. Schmilzt unter Zersetzung bei 228°. Unlöslich in Chloroform und Benzol, sehr wenig löslich in Wasser, leichter in Alkohol. Löslich in Alkalien mit rotvioletter, in Säuren mit blauer Farbe. Liefert kein Acetylderivat. Geht durch Reduktion in eine Leukoverbindung über, die sehr leicht die Ausgangsverbindung zurückbildet.

verbindung über, die sehr leicht die Ausgangsverbindung zurückbildet.

Verbindung ClaH₁₁O₅N₂Cl. B. Aus salzsaurem 4-Amino-phenol mit Eisenchlorid in nicht zu konzentrierter wäßriger Lösung bei 0° (WILLSTÄTTER, PICCARD, B. 42, 1904).

— Büschel von violetten Prismen; ziemlich schwer löslich in Wasser, Alkohol und Methylalkohol mit violetter Farbe. Löslich in konz. Schwefelsäure mit brauner Farbe, die auf Zusatz von Wasser violett wird. — Liefert bei der Oxydation mit Chromsäuregemisch weniger als ihr halbes Gewicht an p-Chinon. Wird von Zinnehlorür und Salzsäure zu einem Dioxyamino-diphenylamin (s. u.) reduziert. Wird durch Natronlauge sofort zersetzt unter Bildung eines dunkelbraunen Niederschlags.

Dioxy-amino-diphenylamin C₁₂H₁₂O₂N₂, s. nebenstehende Formeln). B. Bei der
Einw. von Zinnchlorür und NH₂

OH

OH

NH

NH

NH

NH

NH

H₂N· OH in Betracht gezogen.

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Haudbuches [1. I. 1910] wird für diese Verbindung von ZINCKE, JÖRG, B. 44 [1911], 620, noch eine dritte Formel OH

Salzsäure auf die Verbindung $C_{13}H_{11}O_{2}N_{3}Cl$ (S. 434) (Willstätter, Piccard, B. 42, 1906). — Dendritische Krystallaggregate. F: 202—203° (korr.). Sehr leicht löslich in Aceton, ziemlich leicht in Alkohol, unlöslich in Ather, Benzol und Chloroform; leicht löslich in Säuren, Alkalien und Soda. Die alkal. Lösung färbt sich sofort rot. Wird bei der Oxydstion mit Chromsäuregemisch teilweise in p-Chinon übergeführt. Das salzsaure Salz wird durch Eisenchlorid in Gegenwart von überschüssiger Salzsäure zu der Verbindung $C_{12}H_{11}O_{2}N_{2}Cl$ oxydiert. — $C_{13}H_{12}O_{2}N_{3}+HCl$. Prismen. Löslich in etwa 10 Tln. Wasser, sehr leicht löslich in Alkohol. — $C_{13}H_{12}O_{2}N_{3}+2$ HCl. Prismen (aus verd. Salzsäure). F: ca. 238° (Zers.). Sehr leicht löslich in Wasser, schwer löslich in Alkohol.

Indophenol C₁₂H₁₂ON₂ = HN:C₆H₂(CH₂):N·C₆H₄·OH bezw. H₂N·C₆H₄(CH₂)·N: C₆H₄:O. B. Bei der gemeinsamen Oxydation von o-Toluidin und 4-Amino-phenol in Wasser + Alkohol mit Eisenchlorid in Gegenwart von Natriumacetat bei 0° (GNEHM, BOTS, J. pr. [2] 69, 172). Beim Zusammenreiben von salzsaurem o-Toluidin und Chinonchlorimid, zweckmäßig unter Zusatz von Kochsalz (Weiler-tee Meer, D. R. P. 189212; C. 1907 II, 1564). — Grauschwarzes Pulver (W.-T. M.); dunkelgrünes amorphes Pulver (G., B.). Löslich in Alkohol (W.-T. M.) und in Pyridin (G., B.). Löslich in verd. Natronlauge mit violettblauer, in konz. Schwefelsäure mit grünblauer Farbe (W.-T. M.). — Liefert bei der Reduktion mit Schwefelnatrium 4'-Oxy-4-amino-3-methyl-diphenylamin (S. 504) (Cassella & Co., D. R. P. 139204; C. 1903 I, 608; G., B.).

Indophenol $C_{14}H_{13}O_4N = O:C_6H_2(CH_3)_3:N\cdot C_6H_4\cdot OH$ bezw. $HO\cdot C_6H_2(CH_3)_3\cdot N:C_6H_4:O.$ B. Man versetzt eine Lösung von p-Xylenol (Bd. VI, S. 494) in Natronlauge bei 0° mit einer Lösung von salzsaurem 4-Amino-phenol und oxydiert mit Natriumhypochlorit unter Eiskühlung (Cassella & Co., D. R. P. 191863; C. 1908 I, 574). — Zinnoberrotes Krystallpulver (aus dem Natriumsalz durch vorsichtigen Zusatz von Säure). F: 154°. Leicht löslich in Alkohol, Ather und Benzol mit roter Farbe. — Bei der Reduktion mit Sohwefelnatrium oder Zinkstaub entsteht 4:4'-Diosy-2.5-dimethyl-diphenylamin (Syst. No. 1855).

Funktionelle Derivate des 4-Amino-phenols.

1. Derivate des 4-Amino-phenols, die lediglich durch Veränderung der Hydroxylgruppe entstanden sind.

4-Amino-phenol-methyläther, 4-Amino-anisol, p-Anisidin $C_7H_9ON = H_8N \cdot C_9H_4 \cdot O \cdot CH_3$. Bei der Reduktion von 4-Nitro-anisol (Bd. VI, S. 230) mit alkoh. Schwefelammonium (Cahours, A. 74, 300) oder mit Zinn und Salzsäure (Brunck, Z. 1867, 205; J. 1867, 619) oder mit Na₂S₂ in Alkohol (Blanksma, R. 28, 107). Bei der Destillation von anishydr-OXAMSAUTEM BATIUM (Bd. X. S. 170) (LOSSEN, A. 175, 324). — Tafeln (aus Wasser). F 57,2° (PERKIN, Soc. 69, 1211), 55,5—56,5° (Lo.), 52° (BRUNCK). Kp₇₆₅: 239,5° (korr.). (KÖRNER, WENDER, G. 17, 492). Kp₇₆₆: [243° (korr.) (PER., Soc. 69, 1211); Kp: 245—246° (korr.) (H. SALKOWSKI, B. 7, 1009). Sehr wenig flüchtig mit Wasserdämpfen (H. S.). Diff: 1,0866; D_{00}^{∞} : 1,0786 (Per., Soc. 69, 1211). Ziemlich löslich in Wasser (Lo.). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 23, 452. Molekulare Verbrennungswärme bei konstantem Volumen: 927,29 Cal., bei konstantem Druck: 928 Cal.: LEMOULT, C. r. 188, 1038. Absorptionsspektrum im Ultraviolett: Baly, Ewbank, Soc. 87, 1352. Die Dämpfe zeigen unter dem Einfluß von Teslaströmen bei Luftdruck rotstichig blaue Luminescenz (Kauffmann, Ph. Ch. 26, 723; B. 33, 1731; vgl. B. 34, 691). Magnetisches Drehungsvermögen: Ph., Soc. 69, 1245. Geschwindigkeit der Absorption von Chlorwasserstoff durch festes p-Anisidin: HANTZSCH, Ph. Ch. 48, 323, 327; HA., WIEGNER, Ph. Ch. 61, 486. Elektrische Leitfähigkeit des Hydrochlorids: Hantzsch, Engler, B. 33, 2152 Anm. Elektrolytische Dissoziations-konstante k bei 17°: 5,7×10⁻⁰ (bestimmt durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrolyse des Hydrochlorids (Veley, Soc. 93, 2131), bei 25°: 1,47×10⁻⁹ (bestimmt durch den durch Verteilung zwischen Wasser und Benzol ermittelten Grad der Hydrolyse des Hydrochlorids) (Farmer, Warth, Soc. 85, 1726). — p-Anisidin liefert mit einer neutralisierten und dann mit Essigsäure schwach angesäuerten Lösung von Sulfomonopersäure ein Gemisch von 4-Nitroso-anisol mit etwas 4-Nitro-anisol (Baeyer, Knorr, B. 35, 3034). Durch Einw. von salpetriger Säure (H. Sa.) oder von Isoamylnitrit (KNOEVE-NAGEL, B. 28, 2056) auf Salze des p-Anisidins lassen sich p-Methoxy-benzoldiazoniumsalze (Syst. No. 2199) gewinnen. p-Anisidin gibt in schwefelsaurer Lösung mit Salpeterschwefelsaure 2-Nitro-4-amino-anisol (S. 520) (Höchster Farbw., D. R. P. 101778; Frdl. 5, 68; C. 1899 I, 1175). Liefert, mit konz. Schwefelsaure auf dem Wasserbade erwarmt, 4-Aminophenol-sulfonsaure-(?) (Syst. No. 1926) neben wenig 4-Amino-anisol-sulfonsaure-(2); letztere wird das Hauptprodukt, wenn man p-Anisidin, gelöst in konz. Schwefelsäure, mit rauchender Schwefelsäure (20% Anhydridgehalt) auf 55% erwärmt (BAUEB, B. 42, 2110). Durch Erhitzen von p-Anisidin mit Äthylenbromid in Gegenwart von entwässertem Natriumcarbonat oder von Natriumacetat erhält man N.N'-Bis-[4-methoxy-phenyl]-piperazin (Syst. No. 3460) (BISCHOFF, B. 22, 1782). p-Anisidin liefert mit Pentamethylendibromid N-[4-Methoxyphenyl]-piperidin (SCHOLTZ, WASSERMANN, B. 40, 857). Durch Erwärmen von p-Anisidin mit Glycerin, 4-Nitro-anisol und konz. Schwefelsäure erhält man 6-Methoxy-chinolin (Syst. No. 3114) (SKRAUP, M. 6, 762; D. R. P. 14976; Frdl. 1, 178). p-Anisidin, in wenig Alkohol gelöst, liefert mit 30°/oiger Formaldehydlösung bei gewöhnlicher Temperatur Anhydroformaldehyd-p-anisidin CH₂·O·C₆H₄·N(C₆H₄·O·CH₉) CH₂ (Syst. No. 3796); erwärmt man die alkoh. Lösung mit der Formaldehydlösung in Gegenwart von etwas Kaliumhydroxyd, so wird Methylen-di-p-anisidin (S. 452) erhalten (BISCHOFF, REINFELD, B. 36, 48). Über Einw. von Formaldehyd auf p-Anisidin in Gegenwart von Salzsäure vgl. Goldschmidt, Ch. Z. 21, 396. Beim Leiten von Dioyan (Bd. II, S. 549) in die alkoh. Lösung von p-Anisidin entsteht Oxalsäure-bis-[(4-methoxy-phenyl)-amidin] (S. 472) und die Verbindung CH₂·O·C₂H₃·N:C

(Syst. No. 3614) (Mewes. J. pr. [2] 61, 463).

CH₃·O·C₆H₄·N:C N(C₆H₄·O·CH₂)·C:NH (Syst. No. 3614) (Mewes, J. pr. [2] 61, 463). CH₃·O·C₆H₄·N:C N(C₆H₄·O·CH₃)·C:NH (Syst. No. 3614) (Mewes, J. pr. [2] 61, 463). Einwirkung von Citronensäure (Bd. III, S. 556) auf p-Anisidin: Chem. Fabr. v. Heyden, D. R. P. 88548; Frdl. 4, 1171. Beim Kochen äquimolekularer Mengen von p-Anisidin, Brenztraubensäure und Benzaldehyd in absol. Alkohol erhält man 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4) (Syst. No. 3344) (Doebner, A. 249, 105). Beim Erhitzen mit 2-Benzoyl-benzoesäure (Bd. X, S. 748) entsteht 2-Benzoyl-benzoesäure-pseudo-p-anisidid (S. 496) (H. Meyer, Turnau, M. 30, 481, 489) Beim Erhitzen von 2½, Mol.-Gew. p-Anisidin mit 1 Mol.-Gew. Sulfoessigsäure (Bd. IV, S. 21) erhält man das p-Anisidinsalz des Sulfoessigsäurep-anisidids (S. 499) (Stillich, J. pr. [2] 74, 55). Versetzt man eine absolut-alkoholische Lösung von p-Anisidin und Pyridin mit einer Eisessiglösung von Bromcyan, so erhält man das Hydrobromid des Glutacondialdehyd-bis-[4-methoxy-anils] (S. 455) (König, J. pr. [2] 70, 48); D. R. P. 155782; Frdl. 7, 330; C. 1904 II, 1557; vgl. Zincke, Heuser, Möller, A. 333, 340).

 $C_7H_9ON + HCl.$ Blättchen (Brunck, Z. 1867, 205; J. 1867, 620) oder Nadeln (Lossen, A. 175, 324). Färbt sich mit Eisenchlorid violett (Lo.). — Salze der Oxalsäure (Bd. II, S. 502). $2C_7H_9ON + C_2H_2O_4$. F: 199° (Anselmino, C. 1904 I, 505). — $C_7H_9ON + C_2H_2O_4$. F: 186° (An., C. 1904 I, 505). — Salz der Bernsteinsäure (Bd. II, S. 601) $C_7H_9ON + C_4H_4O_4$. F: 125° (An., C. 1904 I, 506). — Salz der Weinsäure (Bd. III, S. 481) $C_7H_9ON + C_4H_4O_4$. F: 183° (An., C. 1903 II, 566). — Salz der Citronensäure (Bd. III, S. 556) $C_7H_9ON + C_4H_4O_7$ (An., C. 1903 II, 566). F: 187° (Roos, D. R. P. 101951; C. 1899 I, 1176). — Salz des Phenols (Bd. VI, S. 110) $C_7H_9ON + C_6H_4O$. Prismen (aus Äther). F: 60°; leicht löslich in Alkohol, Äther, Benzol, schwer in Ligroin (Bischoff, Fröhlich, R. 39, 3975).

2 C, H, ON + PdCl₂. Gelbe Nadeln (aus Alkohol) (GUTBIEB, KRELL, JANSSEN, Z. c. Ch. 47, 32). — 2 C, H, ON + 2 HCl + PdCl₂. Gelbbraune Blättchen (aus verd. Salzsäure) (GU., Kr., JA.). — 2 C, H, ON + PdBr₂. Gelbe Nadeln (aus Alkohol) (GU., Kr., JA.). — 2 C, H, ON + PdBr₂. Rotbraune Blättchen (aus verd. Bromwasserstoffsäure) (GU., Kr., JA.). — 2 C, H, ON + 2 HCl + PtCl₄. Hellgoldgelbe Krystalle. Schwer löslich in Wasser (Lo.).

4-Amino-phenol- \mathbf{H}_{11} \mathbf{O} \mathbf{H}_{12} \mathbf{O} \mathbf{H}_{13} \mathbf{O} \mathbf{H}_{14} \mathbf{O} \mathbf{H}_{15} \mathbf{O} \mathbf{H}_{17} \mathbf{O} \mathbf{O} \mathbf{H}_{17} \mathbf{O} eHa. O. C. Ha. B. Aus 4-Nitro-phenetol (Bd. VI, S. 231) mit Zinn und Salzsäure (Hallock, Am. 1, 272), mit Zinnehlorür und Salzsäure (PAUL, Z. Ang. 9, 595), mit Eisen und Salzsäure (G. COHN in ULLMANES Ensyklopadie der technischen Chemie, Bd. IX [Berlin-Wien 1921], S. 55). Entsteht auch aus 4-Nitro-phenetol beim Kochen mit alkoh. Kali (SCHMITT, MÖHLAU, J. pr. [2] 18, 199). Durch Erwärmen von 4-Benzalamino-phenol mit Äthylbromid, Natronlauge und Alkohol unter Druck auf 100° und Erhitzen des entstandenen Benzal-p-phenetidins mit überschüssiger Salzsäure oder Schwefelsäure (Höchster Farbw., D. R. P. 69006; Frdl. 3, 55). Bei der Reduktion von 4.4'-Disthoxy-azobenzol (Syst. No. 2112) mit Zinn + Salzssure (RIEDEL, D. R. P. 48543; Frdl. 2, 526). Bei der Einw. von alkoh. Schwefelsaure auf Phenylhydroxylamin (Syst. No. 1932) neben geringen Mengen o-Phenetidin, 4- und 2-Amino-phenol, Azoxybenzol, Anilin und anderen Produkten (Banberger, Lagutt, B. 31, 1501). — F: 2,4° (korr.) (v. Schneider, Ph. Ch. 22, 232). Kpres: $254.2-254.7^{\circ}$ (korr.) (Kinzel, Ar. 229, 330). Kpres, 244° (Bischoff, B. 22, 1782). Dis: 1,0613 (Kinzel). Elektrolytische Dissoziationskonstante k bei 15° 2, 15×10^{-9} (bestimmt durch den colorimetrisch mit Methylorange ermittelten Grad der Hydrolyse des Hydrochlorids) (VELEY, Soc. 93, 2131). Dielektrizitätskonstante: MATHEWS, C. 1906 I, 224. Die Dämpfe des p-Phenetidins zeigen unter dem Einfluß von Teslaströmen bei atmosphärischem Druck rotatichig blaue Luminescenz (KAUFF-MANN, Ph. Ch. 26, 723). — Die wäßr. Lösung des salzsauren p-Phenetidins gibt mit Eisenchlorid eine rote, allmählich violett werdende Färbung und mit Chlorkalk eine rote Färbung und Fällung (Liebermann, v. Kostanecki, B. 17, 884). Bei der Oxydation des p-Phenetidins bilden sich eine Farbbase Catharo, 4.4'-Diäthoxy-azobenzol (Syst. No. 2112), eine bei

178° schmelzende Verbindung, Chinon und andere Produkte (KINEEL). Salzsaures p-Phenetidin gibt in absol. Alkohol mit nitrosen Gasen (HANTZSCH, J. pr. [2] 22, 461) oder mit Isamylnitrit (KNOEVENAGEL, B. 28, 2056) p-Athoxy-benzoldiazoniumchlorid (Syst. No. 2199). p-Phenetidin liefert beim Nitrieren in sochwefelsaurer Lösung mit Salpeterschwefelsaurer Nitrieren in Schwefelsaurer De B. D. 2007 (1990) (2-Nitro-4-amino-phenetol (S. 520) (Höchster Farbw., D. R. P. 101778; U. 1899 I, 1175). Beim Erwärmen von p-Phenetidin mit konzentrierter oder rauchender Schwefelsäure ent-Beim Erwarmen von p-Phenetidin mit konzentierter oder rauchender Schweießaure entsteht 4-Amino-pheneticlifonsäure-(2) (Syst. No. 1926) (Hoffmann-La Roche, D. R. P. 98839; C. 1898 II, 1189). 1 Mol.-Gew. Formaldehyd reagiert mit 2 Mol.-Gew. p-Phenetidin ohne oder mit Zusatz von Kali unter Bildung von Methylen-di-p-phenetidin (BISCHOFF, B. 31, 3245; vgl. Bi., Reinfeld, B. 36, 49). p-Phenetidin liefert mit Formaldehyd in konz. Salzsäure 6-Athoxy-3-[4-Sthoxy-phenyl]-chinazolindihydrid (Syst. No. 3509) (Goldschmidt, Ch. Z. 21, 395; 25, 178; Lepetit, Maimeri, R. A. L. [5] 26 [1917], 558; Lep., Maffelt, Maim., G. 57 [1927], 862; Maf., G. 58 [1928], 267), neben anderen Produkten (Lep., Maim.; Lep., Maf., Maf.). Liefert mit Formaldehyd und Alkali- oder Ammoniumdisulfit die entsprechenden Selze der Verbindung (HO₂S)CH₂·NH·C₂H₄·O·C₂H₅ (Lepetit. D. R. P. 209695; C. 1909 I. 1682). Phenetidin liefert mit reinem (durch Schütteln (LEPETIT, D. R. P. 209695; O. 1909 I, 1682). Phenetidin liefert mit reinem (durch Schütteln mit Quecksilber von Schwefel befreitem) Schwefelkohlenstoff in Äther zunächst als weißen, zersetzlichen Niederschlag [4-athoxy-phenyl]-dithiocarbamidsaures Phenetidin; beim Zufügen von Schwefel geht dasselbe unter Entwicklung von Schwefelwasserstoff in N.N'-Bis-[4-sthoxy-phenyl]-thioharnstoff (S. 482) über (Hugershoff, B. 32, 2247). Rasch und quantitativ erhält man N.N'-Bis-[4-athoxy-phenyl]-thioharnstoff, wenn man p-Phenetidin mit Schwefelkohlenstoff und Schwefel in alkoh. Lösung im Wasserbade erhitzt (Hu.). Bei der Einw. von Schwefelkohlenstoff und Ammoniak auf die alkoh. Lösung des p-Phenetidins entsteht das Ammoniumsalz der [4-Äthoxy-phenyl]-dithiocarbamidsaure (S. 483) (Heller, Bauer, J. pr. [2] 65, 378; Wagner, M. 27, 1241). Reaktion zwischen p-Phenetidin und Citronensaure: Chem. Fabr. v. HEYDEN, D. R. P. 87428; Frdl. 4, 1170; ANSELMINO, C. 1903 II, 565. Aus äquimolekularen Mengen von Acetessigester und p-Phenetidin erhält man bei gewöhnlicher Temperatur den β -[4-Athoxy-phenylimino]-buttersäure-äthylester bezw. β-p-Phenetidino-crotonsaure-athylester (S. 496) (RIEDEL, D. R. P. 76798; Frdl. 4, 1199). Bei 140—150° entstehen aus p-Phenetidin und Acetessigester N.N'-Bis-[4-5thoxy-phenyl]-harnstoff (S. 481), Alkohol und Aceton (FOGLINO, C. 1898 I, 501). Beim Erhitzen von p-Phenetidin mit Acetbernsteinsäureester (Bd. III, S. 801) entstehen [a.a-Di-p-phenevon p-Prienetium mit Acetoernsteinsaureester (Bd. 111, S. 801) entstehen [a.a-Di-p-phenetidino-āthyl]-bernsteinsäure-diāthylester (?) (S. 497) und [a.a-Di-p-phenetidino-āthyl]-bernsteinsäure-diāthylester (Bd. 111, S. 840) entstehen je nach den Mengenverhältnissen und der Temperatur N - [4 - Āthoxy - phenyl] - 2.5 - dimethyl - pyrrol - dicarbonsäure - (3.4) - di-āthylester (Syst. No. 3276), N - [4 - Āthoxy - phenyl] - 2.5 - dimethyl - pyrrol - dicarbonsäure - (3.4) - (5 - \$\frac{CO}{C} \cdot \c

β.β.ε.ε-Tetra-p-phenetidino-hexan-γ.δ-dicarbonsāure-diāthylester (?) (S. 498) und β.β.ε.ε-Tetra-p-phenetidino-hexan-γ.δ-dicarbonsāure-di-p-phenetidid (?) (S. 498) (Rossi, G. 36 II, 868). Durch Erhitzen von 2 Mol.-Gew. Sulfoessigsāure (Bd. IV, S. 21) mit 3 Mol.-Gew. p-Phenetidin auf 200° erhālt man das p-Phenetidinsalz des Sulfoessigsāure-p-phenetidids (S. 499) (STILLICH, J. pr. [2] 74, 54).

p-Phenetidin dient zur Herstellung von Heilmitteln, z. B. Phenacetin (S. 461), Lactophenin (S. 492), Phenokoll (S. 506), Holocain (S. 468), sowie des Süßstoffs Dulcin (S. 480). Uber Verwendung zur Herstellung von Farbstoffen vgl. Schultz, Tab. No. 96 Anm., 584. Nachweis von p-Phenetidin im Harn: Edlefsen, C. 1900 I, 573.

C₆H₁₁ON + 2 HF. Fast farblose Blättohen (Weinland), Lewkowitz, Z. a. Ch. 45, 50).

— C₈H₁₁ON + HCl. Tafeln. F: 234° (Liebermann, v. Kostanecki, B. 17, 884), 233° (Bischoff, B. 22, 1782). Sublimiert in Nadeln (Lie., v. Ko.). Sehr leicht löslich in Wasser Hallock, Am. 1, 272′. — 2 C₈H₁₁ON + H₂PO₄. Blättchen (aus heißem Wasser). Leicht löslich in heißem Wasser (Raikow, Schrarbanow, Ch. Z. 25, 245). — C₈H₁₁ON + H₂PO₄. Schuppen (aus heißem Wasser). Unlöslich in Ather (Rail, Scht.). — Salze der Oxalsäure (Bd. II, S. 502) 2 C₈H₁₁ON + C₈H₂O₄. F: 201° (Ans., C. 1906 I, 753). — C₈H₁₁ON, C. 1906 I, 753). — C₈H₁₁ON + C₈H₂O₄. F: 201° (Ans., C. 1906 I, 753). — Salz der Äpfelsäure (Bd. III, S. 419) C₈H₁₁ON + C₄H₂O₅. Weiße Krystalle (aus Wasser). F: 150° (Campanabo, G. 28 II, 193). — Salz der Weinsäure (Bd. III, S. 481) C₈H₁₁ON + C₄H₄O₅. Blättchen. F: ca. 168° (C. 1907 II, 352; P. C. H. 48, 399), 192° (Anselmino, C. 1903 II, 566). Leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther (P. C. H. 48, 399). Fand unter dem Namen "Vinopyrin" Anwendung als Antipyreticum und Antineuralgicum (C. 1907 II, 352). — Salz der Citronensäure (Bd. III, S. 556) C₈H₁₁ON + C₈H₈O₇. Prismen. F: 188° (An., C. 1903 II, 566), 186°; sehr leicht löslich in Wasser, wenig in Alkohol (Roos, D. R. P. 101951; C. 1899 I, 1176). Fand unter dem Namen "Citrophen" Verwendung als Antipyreticum und Antineuralgicum (An., C. 1903 II, 566). — Neutrales Salz der Sulfoessigsäure (Essig-

säure-sulfonsäure, Bd. IV, S. 21) 2C₃H₁₁ON+C₂H₄O₅S. Nadeln (aus absol. Alkohol). Sohmilzt bei ca. 146° zu einer trüben Flüssigkeit, welche bei ca. 170° klar wird; löslich in heißem Wasser, unlöslich in Aceton, Äther und Benzol (Stillich, J. pr. [2] 74, 54). — Salz des Phenols (Bd. VI, S. 110). Nadeln (aus Ligroin). F: 52°; leicht löslich in allen gebräuchlichen Solvenzien (Bischoff, Fröhlich, B. 39, 3976). — Salz der Guajacolsulfonsäure (Bd. XI, S. 295). Mikrokrystallinisch. Schmilzt bei 186—188° unter Schwärzung; löslich in Wasser, Alkohol, fast unlöslich in Äther (Tagliavini, C. 1909 I, 1556).

Verbindung C₂₄H₂₅O₄N₂. B. Bei der Oxydation von p-Phenetidin, neben anderen Produkten (Kinzel, Ar. 229, 329). — Braunes Krystallpulver. Sublimiert in Nadeln. Löslich in ca. 900 Tln. Alkohol, etwas leichter löslich in Xylol, Benzol und Chloroform; löslich in konz. Säuren mit blauer Farbe. Durch Wasserzusatz wird die Base wieder ausgeschieden. —

Bei der Reduktion entsteht eine Leukoverbindung C₂₄H₂₄O₅N₂.

- 4-Amino-phenol-propyläther $C_0H_{12}ON = H_0N \cdot C_0H_4 \cdot C \cdot CH_2 \cdot CH_3 \cdot CH_3$. B. Durch Reduktion von Propyl-[4-nitro-phenyl]-äther (Bd. VI, S. 232) in alkoh. Lösung mit Zinn und Salzsäure (Spiegel, Sabbath, B. 34, 1938). Farbloses Öl. Fast unlöslich in Wasser, leicht in organischen Solvenzien. $C_0H_{12}ON + HCl$. Nadeln. F: 171°. Wird teilweise schon bei 100° dissoziiert. Leicht löslich in Wasser und Alkohol, unlöslich in Äther und Benzol. Pikrat. Goldgelbe Nadeln (aus Wasser). Schwärzt sich bei 162°, ist aber erst bei 176° klar geschmolzen. Ziemlich schwer löslich in heißem Wasser, leicht in Alkohol und Äther. $2C_0H_{12}ON + 2HCl + PtCl_4$. Zersetzt sich beim Erhitzen mit Wasser oder Alkohol.
- 4-Amino-phenol-isobutyläther $C_{10}H_{15}ON = H_2N \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CH(CH_3)_8$. B. Bei der Reduktion von Isobutyl-[4-nitro-phenyl]-äther mit Zinn und Salzsäure (Sr., Sa., B. 34, 1945). Leicht löslich in Alkohol, Äther, Ligroin und Benzol. $C_{10}H_{15}ON + HCl$. Nadeln. F: 209°. Schwer löslich in kaltem leicht in heißem Wasser und Alkohol Pikrat. Hellgelbe Nadeln. F: 155°.
- 4-Amino-phenol-isoamyläther $C_{11}H_{17}ON = H_1N \cdot C_6H_4 \cdot O \cdot C_5H_{11}$. B. Bei der Reduktion von Isoamyl-[4-nitro-phenyl]-äther mit Zinn und Salzsäure (Sp., Sa., B. 34, 1936, 1942). Mit Wasserdampf leicht flüchtig. Leicht löslich in organischen Solvenzien. $C_{11}H_{17}ON + HCl$. Weiße, an der Luft sich rötlich färbende Krystalle. F: 236°. Sehr leicht löslich in Wasser und Alkohol. $2C_{11}H_{12}ON + 2HCl + PtCl_4$.
- 4-Amino-phenol-allyläther $C_9H_{11}ON = H_2N \cdot C_9H_4 \cdot O \cdot CH_3 \cdot CH \cdot CH_2$. B. Bei der Reduktion von Allyl-[4-nitro-phenyl]-äther mit Zinn und Salzsäure (Sp., Sa., B. 34, 1940). Öl. $C_9H_{11}ON + HCl$. Krystallinische Masse. Schmilzt bei 205°, dissoziiert sich aber zum Teil schon bei 80°. Pikrat. Dunkelgelbe Nädelchen (aus Wasser). F: 164°.
- 4-Amino-phenol-phenyläther, 4-Amino-diphenyläther $C_{12}H_{11}ON = H_2N \cdot C_4H_4 \cdot O \cdot C_6H_5$. B. Beim 3-stdg. Erhitzen von 8,6 g 4-Brom-anilin mit einer Lösung von 3,5 g Atzkali in 20 g Phenol und 0,1 g Kupfer in einer Wasserstoffatmosphäre auf 180° (Ullmann, Sponagel, A. 350, 105). Bei der Reduktion von Phenyl-[4-nitro-phenyl]-äther, gelöst in Alkohol, mit Zinn + Salzsäure (Haeussermann, Teichmann, B. 29, 1447). Nädelchen (aus heißem Wasser). F: 84° (H., T.), 83,5° (U., Sp.). Leicht löslich in Alkohol und Äther, schwer in kaltem Ligroin (H., T.). Verwendung zur Darstellung von Azofarbstoffen: Bayer & Co., D. R. P. 21496; C. 1909 II, 1513. $C_{12}H_{11}ON + HCl$. Nadeln (H., T.). $2C_{12}H_{11}ON + H_2SO_4$. Blättchen. Schwer löslich in Wasser (H., T.).
- 4-Amino-phenol-[2.4-dinitro-phenyl]-äther, 2'.4'-Dinitro-4-amino-diphenyläther $C_{12}H_2O_5N_3=H_2N\cdot C_6H_4\cdot 0\cdot C_6H_3(NO_2)_3$. B. Durch Kochen von 4-Acetamino-phenol-[2.4-dinitro-phenyl]-äther (S. 463) mit Salzsäure (Reverdin, Dresel, B. 37, 1518; Bl. [3] 31, 1080). Dunkelgelbe Blättchen (aus Alkohol). F: 144°. Leicht löslich in Alkohol, Aceton und Benzol, schwer in Wasser, unlöslich in Ligroin. Wird durch Natriumchlorat und Salzsäure unter Bildung eines Chlorchinons gespalten. Liefert mit 4-Chlor-1.3-dinitro-benzol in alkoh. Lösung bei Gegenwart von Natriumacetat 2'.4'-Dinitro-4-[2.4-dinitro-phenoxy]-diphenylamin.
- 4-Amino-phenol-o-tolyläther, 4'-Amino-2-methyl-diphenyläther $C_{13}H_{12}ON = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot CH_3$. B. Durch Reduktion von 4'-Nitro-2-methyl-diphenyläther (Bd. VI, S. 353) mit Zinn und Salzsäure (Cook, Eberly, Am. Soc. 24, 1202). F: ca. 60°. Löslich in Alkohol und Benzol, unlöslich in Ather. $C_{13}H_{13}ON + HCl$. Nadeln und Säulen. F: 182° bis 183°. Zersetzt sich leicht beim Umkrystallisieren. Hydro bromid. Krystallwarzen. F: 200—204° (Zers.). Löslich in Wasser und Alkohol, unlöslich in anderen organischem Lösungsmitteln. Sulfat. Krystalle. F: 155—160° (Zers.). Nitrat. Krystallflocken. F: 153—155° (Zers.). Löslich in Wasser und Alkohol, unlöslich in anderen organischen Lösungsmitteln. Chloroplatinat. Hellbraun. F: 180—190° (Zers.).
- 4-Amino-phenol-m-tolyläther, 4'-Amino-8-methyl-diphenyläther $C_{1}H_{13}ON = H_{2}N \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{4} \cdot CH_{2}$. B. Aus 4'-Nitro-3-methyl-diphenyläther (Bd. VI, S. 377) durch

Reduktion mit Zink und Salzsäure (Cook, Frary, Am. 28, 488). — Nur in trocknem Zustand beständig. — Hydrochlorid. Nadeln. Sintert bei 146°. Zersetzt sich zum Teil beim Eindampfen der Lösung. — Sulfat. Krystalle. — Nitrat. Federartige Krystalle.

4-Amino-phenol-p-tolyläther, 4'-Amino-4-methyl-diphenyläther $C_{18}H_{13}ON = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot CH_3$. B. Bei der elektrolytischen Reduktion von 4'-Nitro-4-methyl-diphenyläther (Bd. VI, S. 394) in salzsaurer Suspension (Haeussermann, Schmidt, B. 34, 3770). Bei der Reduktion von 4'-Nitro-4-methyl-diphenyläther mit Zinn und Salzsäure (Cook, Am. Soc. 25, 61). — Nadeln (aus Wasser). F: 123° (H., Sch.), 122° (C.). Löslich in Alkohol, unlöslich in Ather (C.). — Hydrochlorid. Nadeln (aus heißer Salzsäure) (C.). — $2 C_{18}H_{13}ON + 2 HCl + PtCl_4 + H_3O$. Nadeln. F: 195° (C.).

4-Amino-phenol-bensyläther C₁₃H₁₂ON = H₂N·C₂H₄·O·CH₂·C₄H₅. B. Bei 3-stdg. gelindem Kochen von 5 g [4-Nitro-phenyl]-benzyl-äther (Bd. VI, S. 433) mit 5 g Eisenspänen und 500 ccm 1% giger Essigsäure unter Rückfluß (Spiegel, Sabbath, B. 34, 1944). Beim Behandeln von 4'-Benzyloxy-4-methyl-azobenzol (Syst. No. 2112) mit salzsaurer Zinnchlorürlösung (Jacobson, A. 287, 182). — Blättchen (aus Wasser oder verd. Alkohol). F: 56° (J.; Sp., Sa.). Sehr leicht löslich in Alkohol, Äther und Benzol, unlöslich in Ligroin (J.). — Verwendung zur Herstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 141516; C. 1903 I, 1381. — C₁₂H₁₃ON + HCl. F: 213°; zerfällt in heißem Wasser zum Teil in Benzylchlorid und 4-Amino-phenol (Sp., Sa.). — Pikrat. Citronengelbe Nädelchen. F: 155° (Zers.). (Sp., Sa.)

Äthylenglykol-bis-[4-amino-phenyläther] $C_{14}H_{16}O_2N_3 = H_2N \cdot C_6H_4 \cdot O \cdot CH_3 \cdot CH_2 \cdot O \cdot C_6H_4 \cdot NH_3$. B. Bei der Reduktion von Äthylenglykol-bis-[4-nitro-phenyläther] (Bd. VI, S. 232) mit Zinn und Salzsäure (Wagner, J. pr. [2] 27, 206). Durch Reduktion des Äthylenglykol-bis-[4-nitro-phenyläthers] mit Eisen in 90% jeger Essigsäure und Verseifen der erhaltenen Diacetylverbindung mit alkoh. Salzsäure (Kinzel, Ar. 236, 261). — Nadeln (aus Alkohol). F: 176% (K.), 168—172% (W.). Etwas löslich in heißem Wasser, schwer löslich in Äther und Chloroform (W.), löslich in heißem Alkohol (K.), leicht löslich in heißem Benzol (W.). Konzentrierte Schwefelsäure löst mit blauer Farbe (K.). Gibt mit Eisenchlorid eine kirschrote Färbung und mit einer Lösung von Kaliumdichromat oder Kaliumferricyanid und etwas Salzsäure eine blauviolette Färbung, welche durch mehr Salzsäure in Blau übergeht (W.). — Verwendung zur Darstellung von Azofarbstoffen: Ges. f. chem. Ind., D. R. P. 47301; Frdl. 2, 459. — $C_{14}H_{16}O_2N_2 + 2$ HCl. Nadeln. Löslich in Wasser (K.). — $C_{14}H_{16}O_3N_3 + H_2SO_4$. Prismatische Blättchen. Schmilzt bei ca. 285% unter Zersetzung (K.). Schwer löslich in Wasser und Alkohol (K.).

Hydrochinon-phenyläther-[4-amino-phenyläther] $C_{18}H_{15}O_{2}N=H_{2}N\cdot C_{6}H_{4}\cdot 0\cdot C_{6}H_{4}\cdot 0\cdot C_{6}H_{5}\cdot B$. Durch Reduktion von Hydrochinon-phenyläther-[4-nitro-phenyläther] (Bd. VI, S. 844) mit Zinn und Salzsäure in Alkohol (Haeussermann, Müller, B. 34, 1070). — Säulen (aus Petroläther). F: 83—84,5°. Sehr leicht löslich in Benzol, schwerer in kaltem Alkohol, Petroläther, kaum in Wasser. — $C_{18}H_{15}O_{2}N+HCl$. Schuppen (aus Wasser), F: 210°.

Hydrochinon-bis-[4-amino-phenyläther] $C_{18}H_{16}O_{8}N_{8} = H_{8}N \cdot C_{6}H_{4} \cdot O \cdot C_{8}H_{4} \cdot O \cdot$

4-Amino-phenol-phenacyläther, ω -[4-Amino-phenoxy]-acetophenon $C_{14}H_{13}O_{2}N=H_{2}N\cdot C_{6}H_{4}\cdot 0\cdot CH_{2}\cdot C0\cdot C_{6}H_{5}$. B. Man kocht ω -Brom-acetophenon und 4-Acetamino-phenol in alkoh. Lösung in Gegenwart von Alkali 2—3 Stdn. am Rückflußkühler und verseift den so erhaltenen 4-Acetamino-phenol-phenacyläther (8. 464) mit Salzsäure (VIGNOLO, R. A. L. [5] 6 I, 72). — Harte Krystallaggregate (aus Benzol). F: 95°. Sehr wenig löslich in Wasser, schwer in Petroläther und Schwefelkohlenstoff, sehr leicht in Alkohol, Benzol. — Reduziert alkoh. Silbernitratlösung in der Wärme unter Spiegelbildung, reduziert auch Frihlungsche Lösung. Das salzsaure Salz gibt mit Eisenchlorid intensive Violettfärbung. Löst sich in konz. Salpetersäure azurblau, auf Zusatz von konz. Schwefelsäure rubinrot. — $C_{14}H_{13}O_{2}N$ + HCl. Nadeln. F: 201° (Zers.). — $2C_{14}H_{13}O_{2}N + H_{2}SO_{4} + H_{3}O$. Schmilzt oberhalb 210° unter Zersetzung. — $C_{14}H_{13}O_{2}N + H_{2}SO_{4} + H_{3}O$. F: 188° (Zers.). — $C_{14}H_{13}O_{3}N + H_{3}O_{4}N$. F: ca. 160° (Zers.). — Pikrat $C_{14}H_{13}O_{2}N + C_{4}H_{3}O_{7}N_{3}$. F: 177°.

- [4-Amino-phenyl]-bensoat $C_{12}H_{11}O_2N=H_2N\cdot C_0H_4\cdot O\cdot CO\cdot C_0H_2$. B. Man suspendiert 50 g Benzoesäure-[4-nitro-phenyl]-ester (Bd. IX, S. 119) in einem Gemisch von 500 ccm Alkohol und 200 ccm $50^{\circ}/_{\circ}$ iger Essigsäure und fügt allmählich 100 g mit Alkohol angefeuchteten Zinkstaub hinzu, wobei die Temperatur nicht über 40° steigen soll; dann setzt man 50 ccm Eisessig hinzu und rührt um, bis Kalilauge beim Erwärmen keine Gelbfärbung mehr hervorruft (Forster, Fierz, Soc. 91, 866). Beim Behandeln von Benzoesäure-[4-nitro-phenyl]-ester mit Zinn und Salzsäure in Alkohol (Hübner, A. 210, 379). Blätter. F: 153° bis 154° (H.). Leicht löslich in kochendem Wasser, Alkohol und in Eisessig (H.).
- [4-Amino-phenyl]-kohlensäure-methylester $C_0H_0O_0N=H_0N\cdot C_0H_4\cdot O\cdot CO_0\cdot CH_0$. Bei der Reduktion von Kohlensäure-methylester-[4-nitro-phenyl]-ester (Bd. VI, S. 233) mit Zinnchlorür und Salzsäure (Urson, Am. 32, 14). Affinitätskonstante: Stiegletz, Urson, Am. 31, 470). $C_0H_0O_0N+HCl$. Weiße Masse. Zeigt beim Verweilen unter Wasser keine Tendenz zur Umlagerung (U.).
- [4-Amino-phenyl]-kohlensäure-äthylester $C_0H_{11}O_3N=H_1N\cdot C_0H_4\cdot O\cdot CO_3\cdot C_2H_5$. B. Man löst 2 g Kohlensäure-äthylester-[4-nitro-phenyl]-ester in heißem Alkohol, versetzt mit konz. Salzsäure und gibt 11 g Zinnehlorür hinzu (Ransom, Am. 23, 48; B. 31, 1065; vgl. A. Lumière, L. Lumière, Perrin, Bl. [3] 33, 710). Krystallinische Masse. F: 36° (R.). Affinitätskonstante: Stiechtz, Urson, Am. 31, 467. $C_2H_{11}O_2N+HCl$. Weiße Krystalle. Färbt sich bei 160° dunkel und schmilzt bei 197° unter Zersetzung (R.). $2C_2H_{11}O_3N+2HCl+PtCl_4$. Hellgelber, krystallinischer Niederschlag. Schwärzt sich bei 208° und schmilzt bei 237° (R.).
- [4-Amino-phenyl]-kohlensäure-diäthylamid, Diäthylearbamidsäure-[4-amino-phenyl]-ester $C_{11}H_{16}O_2N_2 = H_2N\cdot C_2H_4\cdot O\cdot CO\cdot N(C_2H_5)_2$. B. Bei der Reduktion von Kohlensäure-[4-nitro-phenyl]-ester-diäthylamid (Bd. VI, S. 233) mit Zinnehlorür und Salzsäure (A. Lumière, L. Lumière, Perrin, Bl. [3] 33, 712). Krystalle. F: 62°.
- [4-Amino-phenyl]-kohlensäure-methylanilid, Methyl-phenyl-carbamidsäure-[4-amino-phenyl]-ester $C_{14}H_{14}O_{2}N_{3}=H_{2}N\cdot C_{0}H_{4}\cdot O\cdot CO\cdot N(CH_{2})\cdot C_{0}H_{5}$. B. Man löst Methyl-phenyl-carbamidsäure-[4-nitro-phenyl]-ester (Bd. XII, S. 417) in heißem Alkohol, fügt konz. Salzsäure und allmählich die theoretische Menge Zinnchlorür hinzu (Lellmann, Benz, B. 24, 2110). Nadeln. F: 104°.
- [4 Amino phenyl] kohlensäure diphenylamid, Diphenylcarbamidsäure [4-amino-phenyl]-ester $C_{1p}H_{16}O_{2}N_{2}=H_{2}N\cdot C_{6}H_{4}\cdot O\cdot CO\cdot N(C_{6}H_{2})_{2}$. B. Aus Diphenylcarbamidsäure-[4-nitro-phenyl]-ester (Bd. XII, S. 428) mit Zinnchlorür und Salzsäure (L., B., B. 24, 2111). Nadeln. F: 146°.
- 4-Amino-phenoxyessigsäure $C_0H_0O_3N = H_2N \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CO_2H$. B. Bei der Reduktion von 4-Nitro-phenoxyessigsäure (Bd. VI, S. 234) mit der berechneten Menge Zinn und Salzsäure in alkoh. Lösung (Kym, J. pr. [2] 55, 118; vgl. Fritzsche, J. pr. [2] 20, 293). Durch mehrstündiges Kochen von 4-Acetamino-phenoxyessigsäure (S. 465) mit der 5-fachen Menge 20° /eiger Salzsäure (Howard, B. 30, 547). Primmen (aus heißem Wasser) mit 1 H_2O ; verliert das Krystallwasser bei 100° (H.). Die wasserfreie Substanz schmilst noch nicht bei 312° (K.). Schwer löslich in heißem Wasser, fast unlöslich in Alkohol, unlöslich in Äther (K.). $NH_4C_3H_3O_3N$. Nadeln. F: $201-202^{\circ}$; sehr leicht löslich in Wasser (K.). $C_2H_3O_3N + HCl$. Nadeln (aus Alkohol durch Äther). Leicht löslich in kaltem Wasser und heißem Alkohol (K.).
- Äthylester $C_{10}H_{10}O_2N=H_0N\cdot C_0H_4\cdot O\cdot CH_3\cdot CO_3\cdot C_2H_5$. B. Aus 4-Amino-phenoxyessigsaure durch Esterifizierung (Howard, B. 80, 2107). Prismen (aus Petrolather). F: 58°. Sehr leicht löslich in Alkohol, Ather, Wasser und Benzol, viel schwerer in Petrolather.
- Anilid $C_{14}H_{14}O_2N_3 = H_2N \cdot C_2H_4 \cdot O \cdot CH_3 \cdot CO \cdot NH \cdot C_2H_3$. B. Bei der Reduktion von 4-Nitro-phenoxyessigsäure-anilid (Bd. XII, S. 482) mit Zinn und Salssäure in Acetonlösung (Kym, J. pr. [2] 55, 116). Nadeln (aus Benzol durch Petroläther). F: 104—106°. Leicht löslich in Alkohol.
- a-[4-Amino-phenoxy]-propionsäure $C_0H_{11}O_0N=H_2N\cdot C_0H_4\cdot O\cdot CH(CH_4)\cdot CO_0H$. B. Aus dem rohen Nitrierungsprodukt der a-Phenoxy-propionsäure durch Reduktion mit Eisen und Eisessig, Eindampfen der mit Soda alkalisch gemachten Lösung, Abscheidung des Methylphenmorpholons C_0H_4 (Syst. No. 4278) und Versetzen der Mutterlauge
- mit Salzsäure und Natriumacetat (Bischoff, B. 88, 930). Nadeln (aus Wasser). F: 219°. Fast unlöslich in kaltem Wasser.
- [4-Amino-phenyl]-salicylat $C_{19}H_{11}O_{2}N=H_{2}N\cdot C_{0}H_{4}\cdot O\cdot CO\cdot C_{0}H_{4}\cdot OH$. B. Durch Reduktion von Salicylsäure-[4-nitro-phenyl]-ester (Bd. X, S. 78) mit Zinn + Salzature

bei Gegenwart von Alkohol (BAYEB & Co., D. R. P. 62533; Frdl. 3, 836). — Tafeln (aus Alkohol oder Benzol). F: 151—152°. — Hydrochlorid. Nadeln. Leicht löslich in heißem Wasser.

4-[4-Amino-phenoxy]-bensoesäure, 4'-Amino-diphenyläther-carbonsäure-(4) $C_{19}H_{11}O_{2}N = H_{2}N \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{4} \cdot CO_{2}H$. B. Aus 4-[4-Nitro-phenoxy]-benzoesäure (Bd. X, 8.157) mit Zinn + Salzsäure (Harussermann, Bauer, B. 29, 2084). — Blättchen (aus Alkohol). F: 193—194°. Sehr wenig löslich in Wasser. — $Ba(C_{12}H_{10}O_{2}N)_{2}$. Nadeln. Leicht löslich in warmem Wasser. — $C_{12}H_{11}O_{2}N + H$ Cl. Schuppen. Schwer löslich in kaltem Wasser. — $2C_{12}H_{11}O_{2}N_{2} + H_{2}SO_{4}$. Krystallpulver. Schwer löslich in kaltem Wasser.

- 4-Amino-phenol-[β -amino-äthyl]-äther $C_2H_{12}ON_2 = H_2N \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CH_2 \cdot NH_2$. B. Aus [β -Amino-äthyl]-[4-nitro-phenyl]-äther (Bd. VI, S. 237), erhalten durch Einw. von 4-Nitro-phenolkalium auf β -Brom-äthylamin, durch Reduktion (BAYER & Co., D. R. P. 88502; Frdl. 4, 814). Verwendung zur Darstellung von Azofarbstoffen: B. & Co.
- 4-Amino-phenol-[β -dimethylamino-äthyl]-äther $C_{10}H_{10}ON_{2}=H_{2}N\cdot C_{8}H_{4}\cdot O\cdot CH_{3}\cdot CH_{3}\cdot N(CH_{3})_{2}$. B. Aus [β -Brom-äthyl]-[4-nitro-phenyl]-äther (Bd. VI, S. 232) durch Kombination mit Dimethylamin und nachherige Reduktion (B. & Co., D. R. P. 88502; Frdl. 4, 814). Verwendung zur Darstellung von Azofarbstoffen: B. & Co.
- 2.4'-Diamino-diphenyläther $C_{12}H_{12}ON_2=H_2N\cdot C_0H_4\cdot O\cdot C_0H_4\cdot NH_2$. B. Beim Behandeln von 2.4'-Dinitro-diphenyläther (Bd. VI, S. 232) in alkoh. Lösung mit Zinn und Salzsäure (Haeussermayn, Bauer, B. 29, 2083). F:78—80° (H., B.). Verwendung der Disulfonsäure des 2.4'-Diamino-diphenyläthers zur Darstellung von Azofarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 202017; C. 1908 II, 1223. $C_{12}H_{12}ON_2+2HCl$ (H., B.).
- 4.4'-Diamino-diphenyläther $C_{12}H_{12}ON_2 = H_2N \cdot C_6H_4 \cdot O \cdot C_6H_4 \cdot NH_2$. B. Aus 4.4'-Dinitro-diphenyläther (Bd. VI, S. 232) mit Zinn und Salzsäure (Hoffmeister, A. 159, 208) bei Gegenwart von Alkohol (Haeussermann, Teichmann, B. 29, 1449). Schuppen (aus Alkohol). F: 185° (Ho.), 186—187° (Haeu., T.). Nicht unzersetzt flüchtig (Ho.). Verwendung der Sulfurierungsprodukte zur Darstellung von Azofarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 192404, 192891; C. 1908 I, 502. $C_{12}H_{12}ON_2 + 2HCl + H_2O$. Nädelchen (Haeu., T.). Sulfat. Nadeln. Leicht löslich in Wasser, unlöslich in Alkohol.
- Methansulfonsäure-[4-amino-phenyl]-ester $C_7H_9O_3NS = H_2N \cdot C_4H_4 \cdot O \cdot SO_3 \cdot CH_9$. Durch Reduktion von Methansulfonsäure-[4-nitro-phenyl]-ester (Bd. VI, S. 237), gelöst in Eisessig, mit Zinn und Salzsäure (Schall, J. pr. [2] 48, 248). Nädelchen (aus Benzol). F: 89—90°.
- p-Toluolsulfonsäure-[4-amino-phenyl]-ester $C_{19}H_{19}O_9NS = H_2N \cdot C_9H_4 \cdot O \cdot SO_4 \cdot C_8H_4 \cdot CH_3$. B. Bei der Einw. von p-Toluolsulfinsäure auf Nitrosobenzol oder auf Phenylhydroxylamin (Bamberger, Rising, B. 34, 228, 241). Aus p-Toluolsulfonsäure-[4-nitrophenyl]-ester (Bd. XI, S. 100) durch Reduktion (B., R.). Prismen. F: 142,5°. Ziemlich löslich in Aceton und "Äther. p-Toluolsulfonsaures Sals $C_{19}H_{13}O_9NS + C_7H_8O_3S$. Nadeln. F: 242,5—243°. Löslich in heißem Chloroform und Alkohol.
- 2. Derivate des 4-Amino-phenols, die durch Veränderung der Aminogruppe (bezw. der Aminogruppe und der Hydroxylgruppe) entstanden sind.
- a) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit Oxy-Verbindungen, Oxo-Verbindungen und Oxy-oxo-Verbindungen, soweit diesen Kuppelungsprodukten nach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt (vgl. Bd. I, S. 28).
- 4-Methylamino-phenol C,H₉ON = CH₂·NH·C₂H₄·OH. B. Aus N-[4-Oxy-phenyl]-glycin (S. 488) durch CO₂-Abspaltung beim Erhitzen auf 245—247° (PAUL, Z. Ang. 10, 171). Durch Erwärmen von 4-Chlor-phenol (Bd. VI, S. 186) mit 33°/eiger wäßr. Methylaminlösung in Gegenwart von etwas Kupfersulfat unter Druck auf 135° (Akt.-Ges. f. Anilinf., D. R. P. 205415; C. 1909 I, 600). Entfernung von 4-Amino-phenol aus technisch hergestelltem 4-Methylamino-phenol durch Behandlung mit aromatischen Aldehyden: Chem. Fabr. SCHERING, D. R. P. 208434; C. 1909 I, 1367. Nädelchen (aus Benzol). F: 85° (PAUL), 87° (LUMIÈRE, SEYEWETZ, Bl. [3] 35, 1206; LUMIÈRE et fils, D. R. P. 198497; C. 1908 I, 2070). Geht durch Oxydation mit Bleidioxyd und Schwefelsäure sowie mit Chlorkalk in Chinon über (PAUL). Wird in äther. Lösung von PbO₂ zu Chinonmonomethylimid [helle, sehr unbeständige Nadeln] oxydiert (Willstätter, Peannenstiel, B. 38, 2251). Liefert mit

Hydrochinon eine krystallisierte Verbindung (s. u.) (L., S., C. 1903 I, 1129; Lumires et fils, D. R. P. 174689; C. 1906 II, 1224). — Verwendung zum Färben von Haaren und Federn: Erdmann, D. R. P. 80814; Frdl. 4, 1069. — Das Sulfat findet unter dem Namen "Metol" als photographischer Entwickler Verwendung (PAUL; HAUFF-LEONAR A.-G., Privatmitt.). — 6 C,H. ON + H. 80. B. Beim Erwärmen des Sulfats des 4-Methylamino-phenols mit einer Lösung von neutralem Natriumsulfit unter Zusatz von Natriumdisulfit (Lumire, Sexwerz, Bl. [3] 35, 1205; Lumires et fils, D. R. P. 198497; C. 1908 I, 2070). Durch Behandeln der 80° heißen wäßrigen Suspension des 4-Methylamino-phenols mit Schwefeldioxyd (L., S., Bl. [3] 35, 1205; L. et fils, D. R. P. 198497). Durch Auflösen von 4-Methylamino-phenol in 40% jeger heißer Disulfitlösung (L., S., Bl. [3] 35, 1205; L. et fils, D. R. P. 198497). Weiße, luftbeständige Krystalle (aus einer gesättigten, mit ½ ihres Volumens konz. Disulfitlösung versetzten SO.-Lösung). Schmiltzt bei 87° unter starker SO.-Entwicklung; löslich in Wasser von 15° zu 3,5% (L., S., Bl. [3] 35, 1205; L. et fils, D. R. P. 198497). — 2 C, H. ON + H. 80. (PAUL). Über Verwendung als photographischer Entwickler (Metol): PAUL. Prüfung des Handelsproduktes auf 4-Amino-phenol: NICOLLE, C. 1909 I, 1508. — Verbindung von 4-Methylamino-phenol mit Hydrochinon 2C, H. ON + C. H.

4-Methylamino-phenol-methyläther, Methyl-p-anisidin $C_8H_{11}ON=CH_8\cdot NH\cdot C_4H_4\cdot O\cdot CH_8$. B. Aus Form-p-anisidid durch Behandeln mit Methyljodid und Natrium-athylat in Alkohol und Verseifen des Reaktionsproduktes durch Kochen mit konz. Salzsaure; man reinigt die Base durch Überführung in das Nitrosamin (FBÖHLICH, WEDEKIND, B. 40, 1010). — Kryställchen (aus Ligroin). F: 37°. Kp₁₉: 135—136°. Löelich in den meisten Lösungsmitteln.

4-Methylamino-phenol-äthyläther, Methyl-p-phenetidin C₉H₁₉ON = CH₂·NH·C₄H₄·O·C₂H₅. B. Entsteht neben anderen Verbindungen beim Erhitzen von N-[4-Äthoxyphenyl]-glycin (S. 488) im Wasserstoffstrom anfangs auf 260°, zuletzt auf 300° (Bischoff, Nastvogel, B. 22, 1789). Durch Erwärmen von Form-p-phenetidid mit Methyljodid und Natriummethylat in Methylakholo und Zersetzen des Reaktionsproduktes durch Kochen mit konz. Salzsäure; man reinigt die Base durch Überführung in das Nitrosamin (Winnetten, Fröhlich, B. 40, 1003). — Flüssig. Kp: 251° (B., N.), Kp₄₀: 164° (W., F.). Schwer hälich in Wasser, leicht in Alkohol und Äther (B., N.). — Liefert beim Erwärmen mit Glyoxalnatriumdisulfit (Bd. I, S. 761) 1-methyl-5-äthoxy-oxindolschwefligsaures Natrium C₂H₆·O·CH₂/C·O·SO₂Na (Syst. No. 3136), das beim Erhitzen mit Salzsäure unter

Bildung von 1-Methyl-5-åthoxy-oxindol $C_2H_5 \cdot O \cdot C_2H_3 < CH_2 > CO$ (Syst. No. 3239) zersetzt wird (Hinsburg, B. 41, 1371).

[4-Methylamino-phenyl]-benzoat $C_{14}H_{13}O_3N=CH_3\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus 4-Methylamino-phenol in Alkohol durch Benzoylchlorid in Gegenwart von Natriumacetat (Reverdin, B. 42, 1524; C. 1909 I, 1809). — Prismenförmige Krystalle (aus 50%-jegem Alkohol). F: 173—174%. Löslich in Alkohol und Essigsäure, sohwer Ibslich in heißem Benzol, unlöslich in Ligroin; löslich in warmer verdünnter Natronlauge. — Liefert mit Salpetersäure [2.3-Dinitro-4-methylamino-phenyl]-benzoat (S. 526), mit Salpeterschwefelsäure [2.3 (?)-Dinitro-4-methylamino-phenyl]-[3-nitro-benzoat] (S. 526).

p-Toluolsulfonsäure-[4-methylamino-phenyl]-ester $C_{14}H_{15}O_2NS = CH_2 \cdot NH \cdot C_0H_4 \cdot O \cdot SO_5 \cdot C_0H_4 \cdot CH_2$. B. Aus 4-Methylamino-phenol durch p-Toluolsulfochlorid in Alkohol in Gegenwart von Natriumacetat (REVERDIN, B. 42, 1523; C. 1909 I, 1809). — Prismatische Nadeln (aus Benzol + Ligroin). F: 135°. — Liefert mit Salpetersäure p-Toluolsulfonsäure-[2.3-dinitro-4-methylamino-phenyl]-ester (S. 526), neben p-Toluolsulfonsäure-methylamid (Bd. XI, S. 105).

4-Dimethylamino-phenol $C_2H_{11}ON=(CH_3)_2N\cdot C_6H_4\cdot OH$. B. Durch Destillieren von Trimethyl-[4-oxy-phenyl]-ammoniumjodid unter 30 mm Druck, neben etwas Dimethyl-p-aniaidin, das beim Behandeln des Produkts mit verdünnter Natronlauge ungelöst bleibt (v. Pechann, B. 32, 3682 Anm. 3). Entsteht neben anderen Verbindungen bei der Zersetzung des salzsauren Dimethylanilinoxyds (Bd. XII, S. 156) durch Erwärmen (Bamemene, Leyden, B. 34, 21, 25). In sehr geringer Menge durch Verschmelzen von Dimethylanilin-sulfonsäure-(4) mit Kali (B., L.). Beim Kochen des [4-Dimethylamino-phenyl]-acetats (S. 443) mit alkoh. Kali (Auwers, Wehr, A. 334, 309). — Krystalle (aus Ligroin + etwas Benzol), Nadeln (aus Petroläther). Geruchlos (B., L.). F: 74—76° (v. P.), 75° (Au., W.), 76—77° (B., L.).

- Kp_{20} : 165° (v. P.). Mit Wasserdampf langsam flüchtig (B., L.). Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Ligroin (Au., W.).
- **4-Dimethylamino-phenol-methyläther, Dimethyl-p-anisidin** $C_9H_{18}ON = (CH_9)_2N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei der Destillation von Trimethyl-[4-oxy-phenyl]-ammoniumhydroxyd (s. u.) (GRIESS, B. 13, 249). Blättchen (aus Alkohol). F: 48°.
- 4-Dimethylamino-phenol-äthyläther, Dimethyl-p-phenetidin $C_{10}H_{15}ON = (CH_3)_8N\cdot C_6H_4\cdot 0\cdot C_2H_5$. Bei der trocknen Destillation des Trimethyl-[4-āthoxy-phenyl]-ammoniumjodids (s. u.) (Knorr, A. 293, 34). Blättchen (aus Alkohol). F: 35—36,5°. Mit Wasserdampf flüchtig.
- [4-Dimethylamino-phenyl]-acetat $C_{10}H_{18}O_3N = (CH_3)_3N \cdot C_8H_4 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen des Trimethyl-[4-oxy-phenyl]-ammoniumjodids mit Essigsäureanhydrid im Kohlensäurestrom (Auwers, Wehr, A. 334, 308). Nadeln oder Tafeln (aus verd. Alkohol). F: 78° bis 79°. Schwer löslich in Wasser, leicht in Alkohol, Äther, Ligroin, Eisessig, sehr leicht in Benzol und Chloroform.
- 4.4'-Bis-dimethylamino-diphenyläther $C_{16}H_{20}ON_2 = [(CH_3)_8N \cdot C_6H_4]_9O$. B. Bei 1-stdg. Erhitzen von 1 Mol.-Gew. 4.4'-Bis-dimethylamino-diphenylsulfid (S. 538) in alkoh. Lösung mit 2 Mol.-Gew. alkoholisch-ammoniakalischer Silbernitratlösung (Holemann, B. 21, 2056). Entsteht neben anderen Verbindungen beim Erwärmen von salzsaurem Dimethylanilinoxyd (Bd. XII, S. 156) mit konz. Schwefelsäure (Bamberger, Levden, B. 34, 25). Nadeln (aus verd. Alkohol). F: 119°; unlöslich in Wasser, schwer löslich in kaltem Ather und Benzol, leicht in heißem Alkohol (H.). Salze: H. Pikrat $C_{16}H_{20}ON_3 + 2C_6H_3O_7N_3$. Nadeln (aus Benzol). Schmilzt unter Bräunung bei 150°. Leicht löslich in warmem Benzol, schwer in kaltem Alkohol. $C_{16}H_{20}ON_2 + 2HCl + PtCl_4$. Hellgelber mikrokrystallinischer Niederschlag. Schwer löslich in kochendem Wasser und Alkohol.
- Trimethyl-[4-oxy-phenyl]-ammoniumhydroxyd $C_0H_{15}O_2N = (CH_0)_2N(OH) \cdot C_0H_4 \cdot OH$. B. Das Jodid ist erhältlich aus salzsaurem 4-Amino-phenol in Methylalkohol durch abwechselnde Behandlung mit Methyljodid und konz. Kalilauge (Grisss, B. 13, 246, 249: Auwers, Wehe, A. 384, 308), ferner durch 6—8-stdg. Kochen van 50 g 4-Amino-phenol mit 200 g Methyljodid, 130 g Soda und 750 g Wasser (v. Pechans, B. 82, 3682 Ann. 3). Es liefert mit Silberoxyd oder Silbercarbonat die Ammoniumbase (G.), Prismen oder Täfelchen. Liefert bei der trocknen Destillation Dimethyl-p-anisidin (s. o.) (G.). Jodid $C_2H_{14}ON \cdot I + H_2O$. Schwach gelbliche Platten (aus heißem Wasser). Schmilkt zwischen 190° und 201°; leicht löslich in Wasser, Alkohol und Eisessig, unkfalich in Äther, Bensol, Chieroform und Ligroin (Au., W.).
- Trimethyl-[4-methoxy-phenyl]-ammoniumhydroxyd $C_{10}H_{11}O_2N = (CH_2)N(OH) \cdot C_0H_4 \cdot O \cdot CH_6$. B. Das Jodid entsteht bei längerem Stehen von Trimethyl-[4-oxy-phenyl]-ammoniumhydroxyd in Methylalkohol mit Methyljodid und Kali in der Kälte (Griess, B. 18, 649). Das Jodid entsteht ferner aus Dimethyl-p-anisidin und Methyljodid (G.). Die freie Base entsteht aus dem Jodid mit Silberoxyd. Stark kaustisch. Zerfällt bei der Destillation in Methylalkohol und Dimethyl-p-anisidin (s. o.). Salze. Jodid $C_{10}H_{16}ON \cdot I$. Tafeln oder Blättchen. Chloroplatinat $2C_{10}H_{16}ON \cdot Cl + PtCl_4$. Gelbe sechsseitige Prismen.
- Trimethyl-[4-äthoxy-phenyl]-ammoniumhydroxyd $C_{11}H_{10}O_2N = (CH_3)_2N(OH) \cdot C_2H_4 \cdot O \cdot C_2H_5 \cdot \dots$ Jodid $C_{11}H_{12}ON \cdot I$. Nadeln. Zersetzt sich, rasch erhitzt, bei 230—235° (KNORR, A. 293, 34). Zerfällt bei der trocknen Destillation in Methyljodid und Dimethylp-phenetidin (s. o.) (K.). Chloroplatinat $2C_{11}H_{12}ON \cdot Cl + PtCl_4$. Orangefarbene Krystalle. Zersetzt sich bei ca. 227° (K.).
- Trimethyl-[4-acetoxy-phenyl]-ammoniumjodid $C_{11}H_{16}O_2NI = (CH_2)_2NI \cdot C_6H_4 \cdot O \cdot CO \cdot CH_2$. B. Entsteht aus [4-Dimethylamino-phenyl]-acetat (s. o.) und Methyljodid auf dem Wasserbad (Auwers, Wehr, A. 334, 310). Schüppchen (aus Eisessig), Nadeln (aus Alkohol). F: 192—193°. Leicht löslich in heißem Wasser, Alkohol und Eisessig, schwer in Äther, Chloroform, Benzol und Ligroin.
- 4-Äthylamino-phenol C₂H₁₁ON = C₂H₃·NH·C₂H₄·OH. B. Durch Erwärmen von 4-Chlor-phenol (Bd. VI, S. 186) mit wäßr. Äthhylaminlösung in Gegenwart von Kupfersulfat unter Druck auf 135° (Akt.-Ges. f. Anilinf., D. R. P. 205415; C. 1909 I, 600). Weiße Nädelchen (aus Wasser). F: 100°. Die Salze sind in Wasser meistens leicht löslich. Sulfat. Weiße Krystalle (aus Wasser).
- 4.4'-Bis-diäthylamino-diphenyläther $C_{20}H_{20}ON_8 = [(C_2H_5)_2N\cdot C_6H_4]_2O$. B. Bei 1-stdg. Erhitzen von 1 Mol.-Gew. 4.4'-Bis-diāthylamino-diphenylsulfid in alkoh. Lösung mit 2 Mol.-Gew. alkoholisch-ammoniakalischer Silbernitratlösung (HOLZMANN, B. 21, 2061). Nadeln (aus verd. Alkohol). F: 89°. Unlöslich in Wasser, schwer löslich in kaltem Alkohol, Ather und Benzol. Pikrat $C_{20}H_{20}ON_2 + 2C_6H_3O_7N_3$. Gelber krystallinischer Niederschlag.

Schmilzt unter Bräunung gegen 174°. Kaum löslich in Alkohol und Ligroin. — Chloroplatinat $C_{so}H_{so}ON_s+2HCl+PtCl_s$. Gelber flockiger Niederschlag. Schwer löslich in warmem Alkohol und Ather.

- 4-Methylallylamino-phenol-methyläther, Methyl-allyl-p-anisidin $C_{11}H_{15}ON=CH_1:CH\cdot CH_2\cdot N(CH_3)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Methyl-p-anisidin und Allyljodid (Feöhlich, Wedekind, B. 40, 1011). Öl. Kp₆₀: 172—173°.
- 4-Methylallylamino-phenol-äthyläther, Methyl-allyl-p-phenetidin $C_{19}H_{17}ON=CH_1:CH\cdot CH_2\cdot N(CH_2)\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Aus Methyl-p-phenetidin und Allyljodid (Wedenind, Fröhlich, B. 40, 1003). Hellgelbes Öl. Kp_{95} : 191°.
- 4-Anilino-phenol, 4-Oxy-diphenylamin C₁₂H₁₁ON = C₂H₅·NH·C₂H₄·OH. B. Bei 8—10-stdg. Erhitzen von 1 Mol.-Gew. Hydrochinon (Bd. VI, S. 836) mit 4 Mol.-Gew. Anilin und 2 Mol.-Gew. Calciumchlorid auf 250—260° (Calm. B. 16, 2799). Man löst das Reaktionsprodukt in Salzsaure, fällt die filtrierte Lösung mit Natriumacetat und destilliert das abgeschiedene 4-Oxy-diphenylamin im Wasserstoffstrom (Philip, Calm, B. 17, 2431). 4-Oxydiphenylamin entsteht ferner beim Erhitzen von Brombenzol mit 4-Amino-phenol bei Gegenwart von Kupferjodür (GOLDBERG, D. R. P. 187870; C. 1907 II, 1465). Durch Erhitzen von salzsaurer 5-Amino-2-oxy-benzoesäure (Syst. No. 1911) mit 2 Mol.-Gew. Anilin auf 210° (Lim-PRICHT, B. 22, 2909). Beim Erhitzen von 5-Anilino-2-oxy-benzoesäure (Syst. No. 1911) mit Atzkalk (Dierbach, A. 273, 121). Beim Erhitzen von 6-Amino-3-oxy-benzoesäure (Syst. No. 1911) mit Anilin (LIMPRICHT, B. 22, 2912). — Blättchen. F: 70°. Kp: 330° (CALM). Kp₁₈: 215—216° (unkorr.) (Willstätter, Kubli, B. 42, 4138, 4150). Sehr wenig löslich in kaltem Wasser und Ligroin, leicht in Alkohol und Äther, Chloroform und in warmem Benzol; leicht löslich in verdünnten Alkalien und verdünnten Mineralsäuren (CALM). — Die Dämpfe des 4-Oxy-diphenylamins zeigen unter dem Einfluß von Teslaströmen bei atmosphärischem Druck blaue Luminescenz (KAUFFMANN, Ph. Ch. 28, 695, 703; B. 83, 1731). Wird von Quecksilberoxyd in Benzollösung zu Chinon-monoanil (Bd. XII, S. 206) oxydiert (E. BAND-BOWSKI, M. 9, 134). Liefert beim Erhitzen mit Zinkstaub Diphenylamin (Bd. XII, S. 174) (CALM). Gibt mit Natriumnitrit in verd. Salzsaure N-Nitroso-4-oxy-diphenylamin (PH., CALM). Beim Schmelzen mit Schwefel entsteht das Oxy-phenthiazin der nebenstehenden Formel (Syst. No. 4225) (Bernthsen, A. 230, 182). Beim Erhitzen mit Schwefelchlorür bildet sich ein braunvioletter basischer Farbstoff (Cassella & Co., D. R. P. 103646; Frdl. 5, 468; C. 1899 II, OH 639). 4-Oxy-diphenylamin wird von konz. Schwefelsaure in 4-Oxy-diphenylamin-sulfon-saure-(3) (Syst. No. 1926) übergeführt (WIRLAND, GAMBABJAN, B. 39, 1504). Erhitzt man 4-Oxydiphenylamin mit p-Toluidin, Calciumchlorid und Zinkchlorid, so entsteht N.N'-Di-p-tolyl-p-phenylendiamn (S. 81) neben N.N'-Diphenyl-p-phenylendiamin (S. 80) (CALM). 4-Oxy-diphenylamin gibt im Gemisch mit der äquimolekularen Menge 4-Amino-diphenylamin (S. 76) bei der Oxydation mit Wasserstoffsuperoxyd in Gegenwart von wenig FeSO₄ die Verbindung C_MH₁₉ON₃ (s. u.) (Wellstätter, Moore, B. 40. 2686). Gibt, zusammen mit 4.4'-Bis-disthylamino-benzhydrol (Syst. No. 1859) auf der Faser oxydiert, einen blauen Farbstoff (Höchster Farbw., P. 168080; C. 1906 I, 1300). — C₁₂H₁₁ON+HCl. Nadeln. Wird durch Wasser zerlegt (Calm). — C₁₂H₁₁ON+HBr. Nadeln (Philip, Calm).

Verbindung $C_{24}H_{19}ON_8 = C_9H_8 \cdot NH \cdot OH.$ NH· $\cdot NH \cdot OH.$ Oder $C_9H_8 \cdot N: \cdot NH \cdot OH.$ B. Durch gemeinschaftliche Oxydation von 4-Oxy-diphenylamin und 4-Amino-diphenylamin (S. 76) mit Wasserstoffsuperoxyd in salzsaurer Lösung in Gegenwart von etwas $FeSO_4$ (WILLSTÄTTER, MOORE, B. 40, 2686). — Rosetten blauer Nädelchen (aus Hexan). F: 148—149°. Sehr leicht löslich in Aceton und Chloroform mit rein blauer Farbe. Die Lösung in Eisessig ist grün. — Gibt in Benzol mit Bleidioxyd die Verbindung $C_{24}H_{17}ON_8$ (S. 90).

4'-Nitro-4-oxy-diphenylamin C₁₈H₁₉O₅N₃=O₅N·C₆H₄·NH·C₆H₄·OH. B. Aus 4-Nitro-4'-oxy-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) durch Erhitzen mit verdünnten Säuren unter Druck (Höchster Farbw., D. R. P. 112180; C. 1900 II, 701) oder durch Erwärmen mit konz. Salzsäure oder verd. Schwefelsäure im offenen Gefäß (ULLMANN, D. R. P. 193448; C. 1908 I, 1003; U., JÜNGRI, B. 42, 1078) — Gelbbraune oder rotbraune Blättchen mit stahlblauem Reflex (aus siedendem Wasser). F: 183°; leicht löslich in Alkohol und Essigester, löslich in Äther und Eisessig, schwer löslich in siedendem Benzol, fast unlöslich in Tetrachlorkohlenstoff und Ligroin (U., J.). Natronlauge löst mit hellbrauner Farbe (H. F.; U., J.); konz. Schwefelsäure löst mit schwach grüner Farbe, die beim Erwärmen blau wird (U., J.).

2'.4'-Dinitro-4-oxy-diphenylamin $C_{12}H_2O_2N_3 = (O_2N)_2C_2H_3\cdot NH\cdot C_4H_4\cdot OH$. B. Aus aquimolekularen Mengen 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und 4-Amino-phenol

in alkoh. Lösung bei Gegenwart von Natriumacetat (NIETZKI, SIMON, B. 28, 2973; CASSELLA & Co., D. R. P. 103861; C. 1899 II, 896). — Rote Blättchen. F: 190° (N., S.), 187° (ERD-MANN, A. 362, 152). — Läßt sich mit Natriumchlorat und Salzsäure in mäßig verdünnter Essigsaure je nach den Versuchsbedingungen in 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4) (Bd. XII, S. 754) oder in 3.5-Dichlor-2'.4'-dinitro-4-oxy-diphenylamin (S. 513) überführen (Reverdin, Creften, Bl. [3] 29, 1055; B. 36, 3262). 2'.4'-Dinitro-4-oxy-diphenylamin läßt sich durch Zinnehlorür und Salzsäure zum entsprechenden Diamino-oxy-diphenylamin (S. 504) reduzieren (N., S.). Dieses bildet sich neben dem Nitro-aminooxy-diphenylamin der nebenstehenden Formel (S. 499), wenn man 100 g krystallinisches Schwefelnatrium Na₂S+9aq mit O₂N. NH-25 g Schwefel und 20 g Wasser zusammenschmilzt und bei 86° 20 g 2'.4'-Dinitro-4-oxy-diphenylamin einträgt (ERDMANN, A. 362, 152). Bei längerem Erhitzen von 2'.4'-Dinitro-4-oxy-diphenylamin mit Schwefelalkalien und Schwefel entsteht ein blauschwarzer Schwefelfarbstoff (Immedialschwarz) (Cassella & Co., D. R. P. 103861; C. 1899 II, 896; vgl. E.; Schultz, Tab. No. 724), der durch Behandlung mit Wasserstoffsuperoxyd auf der Faser in einen blauen Farbstoff übergeht (C. & Co., D. R. P. 110367; C. 1900 II, 296; vgl. E.; Schuttz, Tab. No. 724). Auch durch Auskochen von Immedialschwarz mit Alkohol und Eindampfen der alkoh. Lösung lätt sich ein blauer Schwefelfarbstoff gewinnen (Akt.-Ges. f. Anilinf., D. R. P. 109456; C. 1900 II, 298). Beim Erhitzen von 2'.4'-Dinitro-4-oxy-diphenylamin mit Alkalipolysulfid in alkoh. Lösung unter Druck entsteht ein violettblauer krystallinischer Schwefelfarbstoff (Ges. f. chem. Ind., D. R. P. 132424; C. 1902 II, 172; vgl. Schultz, Tab. No. 726). 2'.4'-Dinitro-4-oxy-diphenylamin liefert beim Kochen mit wäßr. Alkalien unter Ammoniakabspaltung braune Verbindungen, welche durch Erhitzen mit Schwefel und Schwefelalkalien braune Farbstoffe liefern (C. & Co., D. R. P. 112484; C. 1900 II, 700; vgl. Schultz, Tab. No. 725). Erhitzt man 2'.4'-Dinitro-4-oxy-diphenylamin mit Chlorschwefel auf 120°, so entsteht ein Produkt, das bei Behandlung mit Alkalilauge in einen braunen, bei Behandlung mit Schwefelnatriumlösung in einen blauschwarzen Schwefelfarbstoff übergeht (Farbw. Griesheim, D. R. P. 109586, 111950, 112299; C. 1900 II, 298, 612, 699). Beim Erhitzen mit Natriumsulfit entsteht ein leicht lösliches Produkt, das beim Erhitzen mit Alkalipolysulfid einen braunen Schwefelfarbstoff liefert (Höchster Farbw., D. R. P. 125588; C. 1901 II, 1243). Überführung von 2'.4'-Dinitro-4-oxydiphenylamin in einen braunen Schwefelfarbstoff durch Erhitzen mit Thiosulfat und Alkali: LANDSHOFF & MEYER, D. R. P. 144104; C. 1908 II, 859. Überführung in einen schwarzen Schwefelfarbstoff durch Erhitzen mit m-Phenylendiamin, Schwefel und Schwefelnatrium: C. & Co., D. R. P. 135738; C. 1902 II, 1287.

5'-Chlor-2'.4'-dinitro-4-oxy-diphenylamin $C_{12}H_5O_5N_8Cl = (O_2N)_2C_6H_2Cl\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) und 4-Amino-phenol (Bad. Anilin- u. Sodaf., D. R. P. 122606; C. 1901 II, 382). — Rote Prismen (aus Alkohol). F: 228°. Unlöslich in Wasser. — Durch Einw. von Kaliumxanthogenat entsteht ein Xanthogensäure-derivat [Nadeln (aus Eisessig); sintert bei 115° und schmilzt bei 125—130°; unlöslich in Wasser und Ligroin, schwer löslich in Alkohol, Äther, Benzol, löslich in Aceton und heißem Eisessig].

4'-Chlor-2'.6'-dinitro-4-oxy-diphenylamin $C_{12}H_2O_5N_3Cl = (O_4N)_2C_6H_2Cl\cdot NH\cdot C_6H_4\cdot OH.$ B. Aus 2.5-Dichlor-1.3-dinitro-benzol und 4-Amino-phenol (B.A.S.F., D. R. P. 116677; C. 1901 I, 78). — Rubinrote Nadeln. F: 175°. Leicht löslich in Alkalien. — Gibt beim Verschmelzen mit Schwefel und Schwefelalkali einen braunen Schwefelfarbstoff.

4-Pikrylamino-phenol, 2'.4'.8'-Trinitro -4-oxy-diphenylamin $C_{12}H_3O_7N_4=(O_2N)_9C_6H_2\cdot NH\cdot C_6H_4\cdot OH$. B. Aus šquimolekularen Mengen 4-Amino-phenol, Pikrylchlorid (Bd. V, S. 273) und NaOH in Alkohol beim Erwärmen (Turpin, Soc. 59, 718). Durch 1-stdg. Erhitzen von 2 Mol.-Gew. 4-Amino-phenol und 1 Mol.-Gew. Pikrylchlorid in Alkohol am Rückflußkühler (Wederind, B. 33, 433). — Krystallisiert aus Alkohol mit 1 Mol. C_2H_4O in dunkelpurpurbraunen Nadeln; F: 174° (T.), 172—173° (W.). Leicht löslich in Alkohol (T.).

4-Anilino-phenol-methyläther, Phenyl-p-anisidin, 4-Methoxy-diphenylamin $C_{12}H_{12}ON = C_6H_5 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus 4-Oxy-diphenylamin in Methylalkohol mit Dimethylsulfat und Kalilauge (Willstätter, Kubli, B. 42, 4138). — Prismen (aus Methylalkohol). F: 105° (korr.). Kp₁₂: 195°. Sehr leicht löslich in heißen organischen Lösungsmitteln; 1 g löst sich in 2,5 com siedendem Alkohol, in 50 com bei 0° .

[4-Nitroso-phenyl]-p-anisidin, 4'-Nitroso-4-methoxy-diphenylamin C₁₃H₁₅O₂N₂ = ON·C₂H₄·NH·C₂H₄·O·C₂H₅ ist desmotrop [mit Chinon-[4-methoxy-anil]-oxim HO·N:

 $C_0H_4: N \cdot C_0H_4 \cdot O \cdot CH_2$ S. 457.

[4-Nitro-phenyl]-p-anisidin, 4'-Nitro-4-methoxy-diphenylamin $C_{15}H_{12}O_3N_5 = O_3N\cdot C_5H_4\cdot NH\cdot C_5H_4\cdot O\cdot CH_5$. B. Aus 4'-Nitro-4-oxy-diphenylamin durch Dimethylsulfat (Ullmann, Jüngel, B. 42, 1079). Beim Erwärmen des Kaliumsalzes der 4'-Nitro-4-methoxy-diphenylamin-sulfonsäure-(2') [=4-Nitro-4'-methoxy-diphenylamin-sulfonsäure-(2), Syst. No. 1923] mit 20% ger Salzsäure (U., J., B. 42, 1081). — Gelbbraune, stahlblau irisierende

Blättchen. F: 151°. Sehr wenig löslich in Wasser, schwer in Äther, leicht in Benzol und Alkohol mit gelber Farbe.

- [3.4 Dinitro phenyl] p anisidin, 2'.4' Dinitro 4 methoxy diphenylamin $C_{13}H_{11}O_5N_3 = (O_2N)_3C_2H_3$. NH· C_4H_4 ·O·CH₃. B. Bei $1^1/_3$ —2-stdg. Kochen von 1 Mol.-Gew. 4-Brom-1.3-dinitro-benzol (Bd. V, S. 266) mit 2 Mol.-Gew. p-Anisidin und Alkohol (O. FISCHER, B. 39, 1875). Scharlachrote Spieße (aus Benzol + Alkohol). F: 141°; schwer löslich in Alkohol (O. F.). Liefert bei der Behandlung mit Natriumchlorat und Salzsäure 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4) (Bd. XII, S. 754) (Reverdin, Crépieux, Bl. [3] 29, 1063; B. 36, 3269).
- Pikryl-p-anisidin, 2'.4'.6'-Trinitro-4-methoxy-diphenylamin $C_{12}H_{10}O_7N_4 = (O_2N)_2C_6H_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Man kocht 4-Pikrylamino-phenol in Methylalkohol mit Natriummethylat und Methyljodid (Turfin, Soc. 59, 720). Aus Pikrylchlorid und p-Anisidin in Alkohol (Busch, Pungs, J. pr. [2] 79, 552). Rote Nadeln (aus Alkohol + Eisesig). F¹): 165° (T.), erweicht bei 165°, schmilzt bei 171° (Busch, Privat-Mitteilung). Leicht löslich in Benzol, ziemlich leicht in Ather (T.).
- 4-Anilino-phenol-äthyläther, Phenyl-p-phenetidin, 4-Äthoxy-diphenylamin $C_{14}H_{15}ON = C_{2}H_{4}\cdot NH\cdot C_{2}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Durch mehrstündiges Kochen von 4-Oxy-diphenylamin mit Äthyljodid und Natriumäthylat in Alkohol (JACOBSON, HENRICH, KLEIN, B. 26, 696). Nadeln (aus Ligroin). F: 73—74°. Kp: 348° (korr.). Sehr leicht löslich in Äther und Benzol, schwerer in Ligroin.
- [4-Nitroso-phenyl]-p-phenetidin,4'-Nitroso-4-äthoxy-diphenylamin $C_{14}H_{14}O_2N_2=ON\cdot C_4H_4\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$ ist desmotrop mit Chinon-[4-äthoxy-anil]-oxim $HO\cdot N:C_6H_4:N\cdot C_6H_4\cdot O\cdot C_2H_5$, 8. 457.
- [2-Nitro-phenyl]-p-phenetidin, 2'-Nitro-4-äthoxy-diphenylamin $C_{14}H_{14}O_{3}N_{2}=O_{3}N\cdot C_{4}H_{4}\cdot NH\cdot C_{4}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Bei 3-stdg. Erhitzen von 1 Tl. 2-Brom-1-nitro-benzol mit 1\(^{1}\)_{2} Tln. p-Phenetidin und 1\(^{1}\)_{2} Tln. Alkohol im geschlossenen Rohr auf 180\(^{0}\) (Jacobson, Fertsch, Fischer, B. 26, 683). Orangegelbe Prismen (aus Alkohol). F: 84\(^{0}\).
- Pikryl-p-phenetidin, 2'.4'6'-Trinitro-4-äthoxy-diphenylamin $C_{14}H_{12}O_7N_4 = (O_2N)_2C_2H_2\cdot NH\cdot C_9H_4\cdot O\cdot C_2H_3$. B. Aus Pikrylchlorid und p-Phenetidin in Alkohol (Busch, Puncs, J. pr. [2] 79, 548, 553). Rote Nadeln. F: 123—124°. Leicht löslich in Benzol und Alkohol, ziemlich schwer in Äther.
- 4-Anilino-phenol-isobutyläther, 4-Isobutyloxy-diphenylamin $C_{16}H_{19}ON = C_{6}H_{5}$ · $NH \cdot C_{6}H_{4} \cdot O \cdot CH_{3} \cdot CH(CH_{3})_{8}$. B. Durch 6-stdg. Erhitzen von 4 Mol.-Gew. 4-Oxy-diphenylamin, 2 Mol.-Gew. Isobutyljodid, 2 Mol.-Gew. KOH und etwas Isobutylalkohol im geschlossenen Rohr auf 150° (Philip, Cahn, B. 17, 2435). Blättchen. F: 68°. Leicht löslich in Alkohol, Äther, Benzol und Ligroin; unlöslich in Natronlauge.
- 2'.4'-Dinitro-4-[2.4-dinitro-phenoxy]-diphenylamin, O.N-Bis-[2.4-dinitro-phenyl]-[4-amino-phenol] $C_{18}H_{11}O_{9}N_{5} = (O_{2}N)_{8}C_{6}H_{3}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{6}H_{3}(NO_{2})_{2}$. B. Aus 1 Mol.-Gew. 2'.4'-Dinitro-4-oxy-diphenylamin (8. 444) und 1 Mol.-Gew. 4-Chlor-1.3-dinitro-benzol durch Erhitzen mit wäßr. Natriumhydroxyd am Rückflußkühler (Bad. Anilin- u. Sodaf., D. R. P. 111892; C. 1900 II, 610). Aus 4-Amino-phenol-[2.4-dinitro-phenyl]-äther und 4-Chlor-1.3-dinitro-benzol bei Gegenwart von Natriumacetat in alkoh. Lösung (Reverdin, Dresel, B. 37, 1518; Bl. [3] 31, 1081). Citronengelbe Nadeln (aus Eisessig). F: 225° (B. A. S. F.; R., Dr.). Sehr wenig löslich in Alkohol, Äther und Schwefelkohlenstoff, leichter in heißem Toluol; Lösung in konz. Schwefelsäure braunrot; gibt mit Schwefel und Schwefelakali einen schwarzen substantiven Baumwollfarbstoff (B. A. S. F.). Liefert mit Salpetersäure (46,8° Bé) x.x.2'.4'-Tetranitro-4-[2.4-dinitro-phenoxy]-diphenylamin (S. 532) (R., Delátra, B. 37. 1732; Bl. [3] 31, 641).
- 2'.4'-Dinitro-4-acetoxy-diphenylamin $C_{14}H_{11}O_{4}N_{3} = (O_{2}N)_{3}C_{4}H_{3} \cdot NH \cdot C_{4}H_{4} \cdot O \cdot CO \cdot CH_{3}$. B. Aus 2'.4'-Dinitro-4-oxy-diphenylamin mit Essigsäureanhydrid (Nietzki, Simon, B. 28, 2974). Gelbe Blättchen (aus Alkohol). F: 137° (Reverdin, Crépteux, B. 38, 3265; Bl. [3] 29, 1059), 129° (N., S.). Gibt bei der Chlorierung mit Natriumchlorat und Salzsäure in Eisessig 2-Chlor-2'.4'-dinitro-4-acetoxy-diphenylamin (S. 512) (R., C.). Liefert mit Salpetersäure (46,8° Bé) x.x.2'.4'-Tetranitro-4-acetoxy-diphenylamin (S. 532) (R., Delétra, B. 37, 1731; Bl. [3] 31, 639).
- [4-Pikrylamino-phenyl]-acetat, 2'.4'.6'-Trinitro-4-acetoxy-diphenylamin $C_{14}H_{19}O_{9}N_{4}=(O_{2}N)_{5}C_{2}H_{2}\cdot NH\cdot C_{2}H_{4}\cdot O\cdot CO\cdot CH_{2}$. B. Aus 4-Pikrylamino-phenol und Essigsaureanhydrid (Turrin, Soc. 59, 719). Dunkelrote Prismen (aus Eisessig). F: 165°.

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] geben James, Jones, Lewis, Soc. 117, 1277, als Schmelspunkt 172,5° an.

- [4-Anilino-phenyl]-benzoat, 4-Benzoyloxy-diphenylamin $C_{19}H_{15}O_2N = C_6H_5$. NH· C_6H_4 ·O·CO· C_6H_5 . B. Aus 4-Oxy-diphenylamin und Benzoylchlorid in Pyridin (SMITH, ORTON, Soc. 93, 317). Gelblichweiße Tafeln (aus Ligroin). F: 114—115°. Unlöslich in Alkali.
- [4-Pikrylamino-phenyl]-benzoat, 2'.4'.6'-Trinitro-4-benzoyloxy-diphenylamin $C_{12}H_{12}O_3N_4 = (O_2N)_3C_4H_2\cdot NH\cdot C_8H_4\cdot O\cdot CO\cdot C_8H_5$. B. Aus 4-Pikrylamino-phenol, Benzoyl-chlorid und verd. Sodalösung (Turpin, Soc. 59, 720). Orangefarbene Nadeln (aus Eisessig). F: 191°. Fast unlöslich in Alkalien.
- 4'-Nitro-4-p-toluolsulfonyloxy-diphenylamin $C_{19}H_{16}O_5N_2S = O_2N \cdot C_8H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot SO_3 \cdot C_6H_4 \cdot CH_3$. B. Beim Erwärmen einer Lösung von 4'-Nitro-4-oxy-diphenylamin in Natronlauge mit p-Toluolsulfochlorid auf dem Wasserbade (Ullmann, Jüngel, B. 42, 1079). Gelbe Nadeln (aus Benzol). F: 143°. Unlöslich in Wasser, schwer löslich in Ligroin, löslich in siedendem Benzol, leicht löslich in Eisessig, Alkohol und Pyridin.
- 2'.4'-Dinitro-4-p-toluolsulfonyloxy-diphenylamin $C_{19}H_{16}O_7N_3S = (O_2N)_8C_6H_3$ · $NH \cdot C_6H_4 \cdot O \cdot SO_2 \cdot C_6H_4 \cdot CH_3$. B. Durch $^8/_4$ -stdg. Kochen einer Lösung von 2'.4'-Dinitro-4-oxy-diphenylamin in verd. Natronlauge mit p-Toluolsulfochlorid (Reverdin, Delétra, B. 37, 1731; Bl. [3] 31, 640). Grünlichgelbe Blättchen (aus Essigsäure), braungelbe prismatische Nadeln (aus wäßr. Aceton). F: 178,5°. Leicht löslich in Eisessig, Aceton, Benzol, ziemlich in Alkohol, schwer in Ligroin, unlöslich in Wasser. Gibt mit Salpetersäure (46,8° Bé) x.x.2'.4'-Tetranitro-4-p-toluolsulfonyloxy-diphenylamin (S. 532).
- 4-Methylanilino-phenol-methyläther, Methyl-phenyl-p-anisidin, 4-Methoxy-N-methyl-diphenylamin $C_{14}H_{15}ON = C_6H_5 \cdot N(CH_3) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch 2—3-stdg. Erhitzen von 1 Mol.-Gew. 4-Oxy-diphenylamin mit 2 Mol.-Gew. Methyljodid, 2 Mol.-Gew. Kaliumhydroxyd und wenig Methylalkohol im geschlossenen Rohr auf 120—130° (Philip, Calm, B. 17, 2433). Gelbliches Öl. Kp: 313°. Geruch geranien- oder veilchenähnlich.
- 4-Äthylanilino-phenol-äthyläther, Äthyl-phenyl-p-phenetidin, 4-Äthoxy-N-äthyl-diphenylamin $C_{16}H_{19}ON=C_{6}H_{5}\cdot N(C_{2}H_{5})\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Analog derjenigen der vorangehenden Verbindung. Flüssig. Kp: 318—320°; Geruch geranien- bis veilchenähnlich (Philip, Calm, B. 17, 2434).
- 4-o-Toluidino-phenol, 4'-Oxy-2-methyl-diphenylamin $C_{13}H_{13}ON = CH_3 \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Beim 10-stdg. Erhitzen äquimolekularer Mengen Hydrochinon, o-Toluidin und CaCl₃ im geschlossenen Rohr auf 240—250°; man fraktioniert das Produkt im Wasserstoffstrome (Phillip, J. pr. [2] 34, 57). Blättchen (aus Benzol + Petroläther). F: 90°. Kp: 366—368° (korr.). Leicht löslich in Alkohol und Äther, sehr wenig in Petroläther; leicht löslich in verdünnter Alkalilauge. Liefert bei der Destillation mit Zinkstaub im Wasserstoffstrom Acridin (Syst. No. 3088). Zerfällt beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 240° in o-Toluidin und Hydrochinon. $C_{13}H_{13}ON + HCl$. Nadeln. Wird durch Wasser rasch zersetzt.
- 4-o-Toluidino-phenol-äthyläther, o-Tolyl-p-phenetidin, 4'-Äthoxy-2-methyldiphenylamin $C_{18}H_{17}ON = CH_3 \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus 4'-Oxy-2-methyldiphenylamin (s. o.), Äthyljodid und Natriumäthylat in alkoh. Lösung (Jacobson, Henrich, A. 287, 175). Krystalle (aus Ligroin). F: 81—82°. Kp_{760} : 354°.
- 4 [Methyl o toluidino] phenol methyläther, Methyl o tolyl p anisidin, 4'-Methoxy-N.2-dimethyl-diphenylamin $C_{1t}H_{17}ON = CH_{2} \cdot C_{6}H_{4} \cdot N(CH_{3}) \cdot \hat{C}_{6}H_{4} \cdot O \cdot CH_{3}$. B. Durch 3-stdg. Erhitzen von 1 Mol.-Gew. 4'-Oxy-2-methyl-diphenylamin mit 2 Mol.-Gew. Methyljodid, 2 Mol.-Gew. Kaliumhydroxyd und etwas Methylalkohol im geschlossenen Rohr auf 130—140° (Philip, J. pr. [2] 34, 59). Zähes Öl. Siedet im Wasserstoffstrome bei 335—336° (korr.). Leicht löslich in Alkohol, Äther und Benzol.
- 4.6-Dinitro-4'-oxy-3-methyl-diphenylamin $C_{13}H_{11}O_5N_3=CH_3\cdot C_6H_4\cdot NO_2)_3\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Erhitzen einer alkoh. Lösung von 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344), 4-Amino-phenol und Natriumacetat am Rückflußkühler (Reverdin, Crépieux, B. 33, 2508). Rote Krystalle (aus Alkohol). F: 194—195°. Beim Schmelzen mit Schwefel und Schwefelnatrium entsteht ein schwarzer Farbstoff.
- 2.4.6-Trinitro-4'-oxy-8-methyl-diphenylamin $C_{13}H_{10}O_7N_4 = CH_3 \cdot C_6H(NO_2)_3 \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Kondensation von 3-Chlor-2.4.6-trinitro-toluol (Bd. V, S. 349) mit 4-Amino-phenol in alkoh. Lösung bei Gegenwart von Natriumacetat (Reverdin, Dreel, Delétra, B. 37, 2095; Bl. [3] 31, 634). Braune Nadeln (aus Alkohol oder Essigsäure). F: 207°. Leicht löslich in Essigsäure, löslich in Alkohol, Aceton, schwer löslich in Ather, Chloroform, fast unlöslich in Ligroin.
- **4.6-Dinitro-4'-methoxy-3-methyl-diphenylamin** $C_{14}H_{13}O_5N_3 = CH_3 \cdot C_6H_2(NO_2)_2 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2$. B. Durch Kondensation von 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344) mit p-Anisidin in alkoh. Lösung bei Gegenwart von Natriumacetat (R., Dr., De., B. 37,

- 2094; Bl. [3] 31, 632). Ziegelrote Prismen (aus Aceton + Alkohol) oder goldgelbe Nadeln (aus Alkohol), die sich sofort beim Erhitzen, allmählich bei gewöhnlicher Temperatur in die rote Modifikation umwandeln. F: 139°. Sehr leicht löslich in Aceton und Alkohol, ziemlich löslich in Ligroin.
- 4-Chlor-4'-āthoxy-3-methyl-diphenylamin $C_{15}H_{16}ONCl=CH_5\cdot C_6H_6Cl\cdot NH\cdot C_6H_4\cdot O\cdot C_9H_5$. B. Aus 4'-Āthoxy-4-amino-3-methyl-diphenylamin (S. 504) durch Diazotierung in Salzsaure und Eintragen der Diazoniumchloridlösung in siedende salzsaure Kupferchlorürlösung (JACOBSON, A. 287, 168). Blättchen (aus Methylalkohol). F: 77—78°. Schwerlöslich in Ligroin
- 4.6-Dinitro-4'-acetoxy-8-methyl-diphenylamin $C_{10}H_{12}O_{0}N_{3}=CH_{2}\cdot C_{0}H_{2}(NO_{2})_{3}\cdot NH\cdot C_{0}H_{4}\cdot O\cdot CO\cdot CH_{2}$. B. Aus 4.6-Dinitro-4'-oxy-3-methyl-diphenylamin (S. 447) durch Acetylierung (Reverdin, Deletel, Deletel, B. 87, 2093; Bl. [3] 81, 631). Hellgelbe Nadeln (aus Aceton), rotbraune Blättchen (aus Benzol). F: 146—147°.
- 4-p-Toluidino-phenol, 4'-Oxy-4-methyl-diphenylamin $C_{13}H_{12}ON = CH_3 \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Bei 8-stdg. Erhitzen von 1 Tl. Hydrochinon mit 2 Tln. p-Toluidin und 2 Tln. Calciumchlorid im geschlossenen Rohr auf 260°; man reinigt das Produkt durch Destillation im Wasserstoffstrom (Hatschek, Zega, J. pr. [2] 33, 224). Aus Chinon-mono-tolylimid (Bd. XII, S. 913) durch Zinnchlorür (Willstätter, Kubli, B. 42, 4142). Blättchen. F: 122°; siedet zwischen 350° und 360° (korr.); wenig löslich in kaltem Eisessig, leicht in Alkohol und Benzol (H., Z.). Wird durch Destillation mit Zinkstaub in 4-Methyl-diphenylamin übergeführt (H., Z.). Liefert beim Erhitzen mit Anilin, Zinkchlorid und Calciumchlorid im geschlossenen Rohr auf 220° N.N'-Di-p-tolyl-p-phenylendiamin (S. 81) und N.N'-Diphenyl-p-phenylendiamin (S. 80), beim Erhitzen mit o-Toluidin, Zinkchlorid und Calciumchlorid im geschlossenen Rohr auf 220° N.N'-Di-o-tolyl-p-phenylendiamin (S. 81) und N.N'-Di-p-tolyl-p-phenylendiamin (H., Z.). $C_{12}H_{13}ON + HCl$. Pulver. Wird durch Wasser leicht und vollständig zersetzt (H., Z.).
- 4-[Äthyl-p-toluidino]-phenol-äthyläther, Äthyl-p-tolyl-p-phenetidin, 4'-Äthoxy-4-methyl-N-äthyl-diphenylamin $C_{17}H_{41}ON = CH_3 \cdot C_5H_4 \cdot N(C_2H_5) \cdot C_6H_4 \cdot O \cdot C_2H_6$. B. Durch 3-stdg. Erhitzen von 1 Mol.-Gew. 4'-Oxy-4-methyl-diphenylamin, 2 Mol.-Gew. Äthyljodid und 2 Mol.-Gew. Kaliumhydroxyd im geschlossenen Rohr bis über 100° (Hatschek, Zega, J. pr. [2] 33, 229). Kugelige Aggregate. Kp: 340°. Leicht löslich in Alkohol, Äther und Benzol.
- 4-Benzylamino-phenol $C_{19}H_{13}ON = C_{2}H_{5} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4} \cdot OH$. B. Durch Reduktion von 4-Benzalamino-phenol (S. 453) mit Zinkstaub und Natronlauge (Chem. Fabr. SCHERING, D. R. P. 211869; C. 1909 II, 392). Beim Erhitzen von 4-Amino-phenol mit Benzylchlorid in Alkohol entstehen 4-Benzylamino-phenol und 4-Dibenzylamino-phenol (S. 450) nebeneinander in Form ihrer salzsauren Salze, die man durch Alkohol trennen kann, worin das salzsaure 4-Dibenzylamino-phenol weniger löslich ist als das salzsaure 4-Benzylamino-phenol (BAKUNIN, G. 36 II, 213, 218). Blättchen. F: 89° (Ch. F. SCH.), 89—90° (B.). Leicht löslich in Alkohol und Benzol, sehr wenig in Wasser und Ligroin; leicht löslich in Alkalilaugen, sehr wenig in Alkalicarbonatlösungen (Ch. F. SCH.). Hydrochlorid $C_{13}H_{13}ON + HCl + H_{2}O$ (B.). Prismen (aus Wasser). Schmilzt wasserhaltig bei ca. 130°, wasserfrei bei 172°; unzersetzt flüchtig; löslich in Alkohol, fast unlöslich in Åther (B.), leicht löslich in heißem Wasser, ziemlich schwer in kaltem Wasser (Ch. F. SCH.). Acetat. Leicht löslich in kaltem Wasser (Ch. F. SCH.).
- 4-[4-Nitro-bensylamino]-phenol C₁₃H₁₂O₂N₃ = O₂N·C₃H₄·CH₄·NH·C₆H₄·OH. B. Bei Einw. von 20 g 4-Amino-phenol auf 31,4 g 4-Nitro-benzylchlorid (Bd. V, S. 329) in alkoh. Lösung neben 4-[Bis-(4-nitro-benzyl)-amino]-phenol (S. 450); man behandelt das Produkt mit Chloroform ungelöst bleibt salzsaures 4-[4-Nitro-benzylamino]-phenol dunstet die Chloroformlösung ein, entzieht dem Rückstand unverändertes 4-Nitro-benzylchlorid mit Petroläther und behandelt ihn dann mit Wasser, worin sich nur das 4-[4-Nitro-benzyl-amino]-phenol löst, während 4-[Bis-(4-nitro-benzyl)-amino]-phenol ungelöst bleibt (Bakunin, Propilo, G. 37 II, 241). Rotbraune Krystalle (aus wasserfreiem Chloroform oder Benzin). F: 114—115°; nimmt an der Luft oder beim Umkrystallisieren aus wasserhaltigen Lösungsmitteln 1 Mol. Wasser auf und bildet gelbe Krystalle vom Schmelzpunkt 87—88°, die zwischen 80 und 100° sich in die wasserfreie rote Substanz zurückverwandeln. Löslich in Sodalösung. Bei der Einw. von Benzoylchlorid in Benzol entsteht 4-[Benzoyl-(4-nitro-benzyl)-amino]-phenol (S. 471). C₁₈H₁₈O₂N₃ + HCl. Gelbgrünliches Pulver. F: 191°. Wird durch Erwärmen und durch Feuchtigkeit zersetzt.
- 4-Bensylamino-phenol-methyläther, Bensyl-p-anisidin $C_{14}H_{15}ON = C_{4}H_{5}\cdot CH_{2}\cdot NH\cdot C_{5}H_{4}\cdot O\cdot CH_{3}$. Beim Erwärmen von 2 Mol.-Gew. p-Anisidin mit 1 Mol.-Gew. Benzylchlorid (Fröhlich, Wederisch, B. 40, 1010). Blättchen (aus Ligorin). F: 52°. Kp₃₂: 236° bis 238°. Löslich in den meisten Lösungsmitteln.

- 4 [2 Nitro benzylamino] phenol methyläther, [2-Nitro-bensyl]-p-anisidin $C_{14}H_{14}O_3N_2=O_3N\cdot C_6H_4\cdot CH_4\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Entsteht neben Bis-[2-nitro-benzyl]-p-anisidin aus 1 Mol.-Gew. 2-Nitro-benzylchlorid (Bd. V, S. 327) und 2 Mol.-Gew. p-Anisidin in Alkohol (Busch, Hartmann, J. pr. [2] 52, 405; Paal, Schilling, J. pr. [2] 54, 283).

 Hellscharlschrote Blätter (aus verd. Alkohol). F: 73°; sehr schwer löslich in Ligroin, leicht in den meisten anderen organischen Lösungsmitteln (P., Sch.). — Bei der Reduktion mit Zinkstaub und Eisessig entstehen [2-Amino-benzyl]-p-anisidin (S. 505) und das 2-[4-Methoxy-phenyl]-indazol C_0H_4 $N \cdot C_0H_4 \cdot O \cdot CH_3$ (Syst. No. 3473) (B., H., J. pr. [2] 52, 404).
- $C_{14}H_{14}O_3N_3 + HCl$. Nadeln (aus Alkohol + Ather). F: 185° (P., Sch.).
- 4-Bensylamino-phenol-äthyläther, Bensyl-p-phenetidin $C_{15}H_{17}ON = C_{6}H_{5} \cdot CH_{5} \cdot NH \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5}$. B. Durch Erwärmen von 126,5 g Benzylchlorid mit 274 g p-Phenetidin auf dem Wasserbad (RIEDEL, D. R. P. 81743; Frdl. 4, 1174). Blättchen (aus Alkohol und Wasser). F: 45-46°; fast unlöslich in Wasser, löslich in Alkohol (R.).
- 4-[2-Nitro-bensylamino]-phenol-äthyläther, [2-Nitro-bensyl]-p-phenetidin $C_{15}H_{16}O_2N_2=O_2N\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Bei mehrstündigem Kochen einer konzentrierten alkoholischen Lösung von 2-Nitro-benzylchlorid und 2 Mol.-Gew. p-Phenetidin (PAAL, KÜTTNER, J. pr. [2] 48, 555). Blutrote Tafeln (aus verd. Alkohol). F: 52°. Schwer löslich in Ligroin, leicht in Ather, Schwefelkohlenstoff und Benzol. Wird von Zinn und Salzsäure zu 2-[4-Äthoxy-phenyl]-indazol C_6H_6 $\stackrel{CH}{\underset{N}{\bigvee}}$ $N \cdot C_6H_6 \cdot O \cdot C_2H_5$ (Syst. No. 3473) reduziert.
- C₁₅H₁₆O₃N₂+HCl. Nadeln (aus salzsäurehaltigem Alkohol). F: 163°.
- [4-(4-Nitro-bensylamino)-phenyl]-bensoat $C_{20}H_{10}O_{4}N_{2} = O_{2}N \cdot C_{4}H_{4} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4} \cdot O \cdot C_{0} \cdot C_{6}H_{5}$. B. Bei Einw. ăquimolekularer Mengen von 4-Nitro-benzylchlorid auf [4-Amino-phenyl]-benzoat in Alkohol auf dem Wasserbad (Bakunin, Profilo, G. 37 II, 246). Krystalle (aus Benzin). F: 218—220°. Ziemlich schwer Idelich in Alkohol, schwer in Chloroform, löslich in Aceton und Benzin. — C₂₀H₁₆O₄N₂ + HCl. F: 110—112°. Leicht veränderlich.
- 4-Methylbensylamino-phenol-methyläther, Methyl-bensyl-p-anisidin $C_{15}H_{17}ON =$ $C_0H_5 \cdot CH_2 \cdot N(CH_2) \cdot C_0H_4 \cdot O \cdot CH_2$. B. Aus Methyl-p-anisidin und Benzylbromid (Fröhlich, Wederind, B. 40, 1011). — Hellgelbes Öl. Kp₂₀: 220—222°.
- 4 Methylbensylamino phenol äthyläther, Methyl bensyl p phenetidin $C_{16}H_{19}ON = C_6H_5 \cdot CH_2 \cdot N(CH_2) \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Methyl-p-phenetidin und Benzylbromid (W., F., B. 40, 1003). Dickes, in der Kälte erstarrendes Öl. Kp_{35} : 215—217°.
- 4-Allylbensylamino-phenol-äthyläther, Allyl-bensyl-p-phenetidin $C_{18}H_{31}ON=C_6H_5\cdot CH_3\cdot N(CH_3\cdot CH:CH_3)\cdot C_6H_4\cdot O\cdot C_2H_5$. B: Aus Benzyl-p-phenetidin und Allyljodid unter Kühlung (W., F., B. 40, 1004). Dickes gelbes Öl. Kp₃₅: 238—250°. Pikrat $C_{18}H_{21}ON+C_6H_3O_7N_3$. Gelbe Blättchen (aus Alkohol). F: 141°.
- Methyl-allyl-[4-methoxy-phenyl]-bensyl-ammoniumhydroxyd C₁₈H₃₂O₂N = (C₆H₅·CH₂)(CH₂:CH·CH₂)(CH₂)N(OH)·C₆H₄·O·CH₅. B. Das Bromid wurde erhalten aus Methyl-allyl-p-anisidin und Benzylbromid (Fröhlich, Wederind, B. 40, 1011), sowie aus Methyl-benzyl-p-anisidin und Allylbromid (F., W.). Das Jodid wurde erhalten aus Methyl-allyl-p-anisidin und Benzyljodid (F., W.), sowie aus Methyl-benzyl-p-anisidin und Allyljodid (F., W.). Salze. Bromid C₁₈H₃₂ON·Br. Prismen (aus Alkohol). F: 147—148°. Leichter löslich als das Jodid. Jodid C₁₈H₃₂ON·I. Prismen (aus Alkohol). F: 132—133°. Löslich in Alkohol, Chloroform, Wasser, unlöslich in Aceton, Äther, Ligroin, Benzol. Salz der [d.Camphar]·6.sulforsänra (Bd. XI. S. 345) C. H. ON·O.S. C. H. O. R. Aus Salz der [d-Campher]-β-sulfonsäure (Bd. XI, S. 315) C₁₈H₂₂ON·O₃S·C₁₀H₁₈O. B. Aus dem Bromid und dem Silbersalz der [d-Campher]-β-sulfonsäure (F., W.). F: 153°. Optisches Verhalten und Versuche zur Spaltung in die stereoisomeren Komponenten: F., W. - Salz der a-Brom-[d-campher]-π-sulfonsäure (Bd. XI, S. 319) C₁₈H₂₂ON·O₃S·C₁₀H₁₄OBr. B. Beim Kochen des Bromids mit dem Silbersalz der a-Brom-[d-campher]-π-sulfonsäure in Essigester und wenig Alkohol (F., W.). Krystalle. F: 159—160°. Durch fraktioniertes Fällen der Chloroformlösung mit Äther läßt sich ein schwach linksdrehendes a-Brom-[d-campher]-π-sulfonat erhalten, das mit KI ein schwach linksdrehendes Jodid liefert (F., W.).

Methyl-allyl-[4-āthoxy-phenyl]-bensyl-ammoniumhydroxyd $C_{19}H_{26}O_2N = (C_8H_8\cdot CH_2)(CH_2)N(OH)\cdot C_8H_4\cdot O\cdot C_2H_5$.

a) Salze des dl-Methyl-allyl-[4-āthoxy-phenyl]-benzyl-ammoniumhydroxyds. Bromid $C_{19}H_{20}ON\cdot Br$. B. Aus Methyl-allyl-p-phenetidin und Benzylbromid (WEDEKIND, FRÖHLICH, B. 40, 1005). Aus Methyl-benzyl-p-phenetidin und Allylbromid (W., F.). Vierseitige Blättchen (aus Alkohol + Aceton). F: 139—140°. — Jodid $C_{19}H_{24}ON\cdot I$.

B. Aus Methyl-allyl-p-phenetidin und Benzyljodid (W., F.). Aus Allyl-benzyl-p-phenetidin und Methyl-benzyl-p-phenetidin und Methyl-be benzyl-p-phenetidin und Allyljodid (W., F.). Aus Allyl-benzyl-p-phenetidin und Methyl-

- jodid (W., F.). Prismen (aus Alkohol + Äther). F: 128°. Löslich in Alkohol, Wasser, warmem Chloroform, unlöslich in Benzol, Ligroin und Äther. Salz der a-Brom-[d-campher]-π-sulfonsäure (Bd. XI, S. 319) C₁₉H₂₄ON·O₃S·C₁₀H₁₄OBr. B. Aus dem Bromid durch Kochen mit dem Silbersalz der a-Brom-[d-campher]-π-sulfonsäure in Essigester und wenig Alkohol (W., F., B. 40, 1007). Krystallohen. F: 146°. Optisches Verhalten: W., F.
- b) Salze des 1-Methyl-allyl-[4-āthoxy-phenyl]-benzyl-ammoniumhydroxyds. Jodid. B. Aus dem Salz der [d-Campher]-β-sulfonsäure (s. u.) durch Fällen der Lösung mit Kaliumjodid (W., F., B. 40, 1006). Krystalle (aus Alkohol + Ather). F: 128°. Die Lösungen in Alkohol und in Chloroform sind linksdrehend. Salz der [d-Campher]-β-sulfonsäure (Bd. XI, S. 315) C₁₃H₂₄ON·O₂S·C₁₀H₁₈O. B. Man kocht 55 g dl-Methyl-allyl-[4-āthoxy-phenyl]-benzyl-ammoniumbromid (S. 449) mit 51,5 g Silbersalz der [d-Campher]-β-sulfonsäure in Essigester unter Zusatz von etwas Alkohol, konzentriert das Filtrat und versetzt mit etwas Ather (W., F., B. 40, 1005). Kann analog auch aus dl-Methyl-allyl-[4-āthoxy-phenyl]-benzyl-ammoniumjodid erhalten werden (W., F., B. 40, 1006). Nādelchen. F: 164°. Löslich in Wasser, Chloroform und Alkohol. [a]_D^m: +7,95° (0,3552 g gelöst in 20 cem Wasser).
- 4-Dibensylamino-phenol $C_{20}H_{19}ON=(C_0H_8\cdot CH_2)_2N\cdot C_0H_4\cdot OH$. B. Beim Erhitzen von 4-Amino-phenol mit Benzylchlorid in Alkohol, neben 4-Benzylamino-phenol (S. 448) (BAKUNIN, G. 36 II, 213; vgl. B., G. 38 II, 459). Nadeln. F: 127—128°; sehr leicht löslich in Alkohol, Äther, sehr wenig in Wasser; rötet sich leicht (B., G. 36 II, 217). $C_{20}H_{19}ON+HCl$. Prismen (aus Alkohol); erweicht gegen 200°, schmilzt bei 224°; fast unlöslich in Äther, Petroläther, Benzol; wird von Wasser hydrolysiert (B., G. 36 II, 216).
- 4-[Bis-(4-nitro-bensyl)-amino]-phenol $C_{20}H_{17}O_5N_3=(O_2N\cdot C_6H_4\cdot CH_2)_2N\cdot C_6H_4\cdot OH$. Bei Einw. von 20 g 4-Amino-phenol auf 31,4 g 4-Nitro-benzylchlorid in alkoh. Lösung, neben 4-[4-Nitro-benzylamino]-phenol (S. 448) (Bakunin, Profilo, G. 37 II, 244). Rote nadelförmige Krystalle bezw. prismatische Tafeln. F: 179—180°. Leicht löslich in Aceton, löslich in Alkohol, Chloroform, schwer in Äther. $C_{20}H_{17}O_5N_3+HCl$. Weißes Pulver. F: 204°. Liefert bereits mit Wasser die Base zurück.
- 4-[4-Isopropyl-bensylamino]-phenol, 4-Cuminylamino-phenol $C_{16}H_{16}ON = (CH_{3})_{4}CH \cdot C_{6}H_{4} \cdot CH_{5} \cdot NH \cdot C_{6}H_{4} \cdot OH$. B. Beim Behandeln einer Lösung von 4-Cuminalaminophenol (S. 454) in absol. Alkohol mit Natriumamalgam (UEBEL, A. 245, 297). Blättchen. Schmilzt unter Zersetzung bei 107—108°. Sehr leicht löslich in Alkohol und Äther. $C_{16}H_{16}ON + HCl$. Blättchen. Leicht löslich in Alkohol.
- 4-{[4.8-Dinitro-naphthyl-(1)]-amino}-phenol, N-[4-Oxy-phenyl]-4.8-dinitro-naphthylamin-(1) $C_{1e}H_{11}O_5N_3=(O_2N)_2C_{10}H_5\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 4-Chlor-1.5-dinitro-naphthalin (Bd. V, S. 561) und 4-Amino-phenol (Chem. Fabr. Sandoz, D. R. P. 123922; C. 1901 II, 798). Braunrote Nadeln. In Wasser unlöslich, in Benzol sehr wenig löslich, in Alkohol, Ather, Aceton und Eisessig sehr leicht löslich. Die Lösung in kalter verdünnter Natronlauge ist braunrot und wird durch Luftoxydation allmählich violettbraun. Verwendung zur Darstellung von Schwefelfarbstoffen: Ch. F. S.
- 4-a-Naphthylamino-phenol-methyläther, a-Naphthyl-p-anisidin, [4-Methoxyphenyl]-a-naphthylamin $C_{17}H_{15}ON = C_{10}H_7\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Durch Erhitzen von salzsaurem p-Anisidin mit a-Naphthylamin (Bayer & Co., D. R. P. 80669; Frdl. 3, 136). Blättchen. F: 110°.
- 4-a-Naphthylamino-phenol-äthyläther, a-Naphthyl-p-phenetidin, [4-Äthoxyphenyl]-a-naphthylamin $C_{18}H_{17}ON = C_{10}H_7 \cdot NH \cdot C_8H_4 \cdot O \cdot C_2H_8$. B. Durch Erhitzen von salzsaurem p-Phenetidin mit a-Naphthylamin (Bayer & Co., D. R. P. 80669; Frdl. 3, 136). Prismen. F: 89°.
- 4-β-Naphthylamino-phenol, [4-Oxy-phenyl]-β-naphthylamin $C_{16}H_{13}ON = C_{10}H_1\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 3-Oxy-naphthoesäure-(2) (Bd. X, S. 333) und 4-Amino-phenol durch Erwärmen mit Natriumdisulfitlösung (Bucherer, Stohmann, C. 1904 I, 1012). Blättchen. F: 135°. Leicht löslich in Äther und Alkohol.
- 4- β -Naphthylamino-phenol-methyläther, β -Naphthyl-p-anisidin, [4-Methoxyphenyl]- β -naphthylamin $C_{17}H_{15}ON = C_{10}H_{7}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Aus 3-Oxy-naphthoesäure-(2), p-Anisidin und Natriumdisulfitlösung (Bucherer, Seyde, J. pr. [2] 75, 273). Blättchen (aus Alkohol oder heißem Ligroin). F: 104°; leicht löslich in Benzol, Ather, heißem Alkohol und heißem Ligroin, schwer in kaltem Alkohol

und Ligroin; die alkoholische Lösung fluoresciert blau (B., S., J. pr. [2] 75, 273). — Gibt in alkoholischer Lösung mit Formaldehyd in Gegenwart von konzentrierter Salzsäure das Methoxy - benzoacridindihydrid der nebenstehenden Formel (Syst. No. 3119) (B., S., B. 40, 862).

- 4- β -Naphthylamino-phenol-äthyläther, β -Naphthyl-p-phenetidin, [4-Äthoxyphenyl]- β -naphthylamin $C_{19}H_{17}ON=C_{10}H_7\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 3-Oxy-naphthoesäure-(2), p-Phenetidin und Natriumdisulfitlösung (Bucherer, Seyde, J. pr. [2] 75, 274).

 Blättchen (aus Ligroin). F: 95°. Leicht löslich in Benzol, Aceton, Chloroforn, heißem Alkohol und heißem Ligroin, schwer in kaltem Ligroin und Alkohol. Die alkoh. Lösung fluoresciert blau.
- 4-Benshydrylamino-phenol-methyläther, Benshydryl-p-anisidin, a-p-Anisidino-diphenylmethan $C_{20}H_{19}ON = (C_0H_5)_2CH \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3$. B. Aus Benzal-p-anisidin (S. 453) und Phenylmagnesiumbromid (Busch, Rinck, B. 38, 1770). Nadelbüschel (aus Alkohol). F: 81°. Kp₁₂: 252—255°. Leicht löslich in Alkohol, Äther, schwer in Ligroin. Hydrochlorid. Nadeln (aus alkoh. Salzsäure + Äther). F: 187°. Nitrat. Nadeln. F: 153°.
- OH 4.6 - Dinitro - 3.4' - dioxy - diphenylamin $C_{18}H_{9}O_{6}N_{3}$ s. nebenstehende Formel. B. Aus 5-Chlor-2.4-dinitro-phenol (Bd. VI, S. 259) und 4-Amino-phenol (Bad. Anilin- u. Sodaf., Oallo-tag. Pulyang \cdot OH D. R. P. 135635; C. 1902 II, 1287). — Gelbrotes Pulver. NO. F: 185—1860 (Zers.). Fast unlöslich in Wasser, schwer löslich in Ather, leicht in Alkohol mit gelbroter Farbe. — Beim Erhitzen mit Schwefel und Schwefelalkali entsteht ein schwarzer Schwefelfarbstoff.
- 4.6-Dinitro-4'-oxy-8-sulfhydryl-diphenylamin, 4.6-Dinitro-4'-oxy-8-mercapto-diphenylamin $C_{12}H_0O_6N_3S = HS \cdot C_6H_4(NO_2)_8 \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus 5'-Chlor-2'.4'-dinitro-4-oxy-diphenylamin (S. 445) oder aus 4.6-Dinitro-4'-oxy-3-rhodan-diphenylamin (s. u.) durch Einw. von Kaliumhydrosulfid (Bad. Anilin- u. Sodaf., D. R. P. 122606; C. 1901 II, 382). — Gelbrote Nadeln oder Blättchen. Verpufft bei 307°. Unlöslich in Wasser und Benzol, schwer löslich in heißem Alkohol, leichter in heißem Aceton und heißem Eisessig.
- 4.6-Dinitro-4'-oxy-3-rhodan-diphenylamin $C_{13}H_{2}O_{5}N_{4}S = NC \cdot S \cdot C_{6}H_{2}(NO_{2})_{2} \cdot NH \cdot C_{5}H_{4} \cdot OH$. B. Aus 4.6-Dinitro-1.3-dirhodan-benzol (Bd. VI, S. 836) und 4-Amino-phenol (Bad. Anilin- u. Sodaf., D. R. P. 122569; C. 1901 II, 381). — Rote Krystalle (aus heißem Alkohol). F: 227—228°; schwer löslich in Alkohol, sehr leicht in Aceton und heißem Eisessig (B. A. S. F., D. R. P. 122569). — Verwendung zur Darstellung von Schwefelfarbstoffen: B. A. S. F., D. R. P. 122605; C. 1901 II, 382.
- 4.4'-Dioxy-diphenylamin C₁₂H₁₁O₂N = HN(C₆H₄·OH)₂. B. Durch 7-stdg. Erhitzen von 10 g Hydrochinon mit 4 g Chlorammonium und 6 g Natronlauge von 40° Bé im geschlossenen Rohr auf 160—180° (Schneder, B. 32, 689). Aus Hydrochinon durch Erhitzen mit Phospham auf 200—250° (Vidal, D. R. P. 106823; C. 1900 I, 743). Durch 5-stdg. Erhitzen von 11 g 4-Amino-phenol mit 11 g Hydrochinon und 40 g geschmolzenem Calciumchlorid im geschlossenen Rohr auf 160—180° (Sch.). Durch 4-stdg. Erhitzen von 4-Amino-phenol mit salzsaurem 4-Amino-phenol und Wasser (3—4-fache Menge des Reaktionsgemisches) im geschlossenen Rohr auf 200° (V. C. 1903 I, 85). Krystalle (aus Reaktionsgemisches) im geschlossenen Rohr auf 200° (V., C. 1903 I, 85). — Krystalle (aus Wasser). F: 174,5°; schwer löslich in Benzol, Ligroin und Ather; leicht löslich in Eisessig und verdünnten Säuren; löslich in Alkalien mit blauer Farbe unter Bildung von Chinonmono-[4-oxy-anil] (S. 456); die blaue Lösung in konz. Schwefelsäure färbt sich auf Wasserzusatz braun (Sch.). — Wird von Quecksilberoxyd in Benzol zu Chinon-mono-[4-oxy-anil] oxydiert (Sch.). Verwendung zur Darstellung von Schwefelfarbstoffen: Soc. St. Denis, D. R. P. 131468; C. 1902 I, 1384; Akt.-Ges. f. Anilinf., D. R. P. 149637; C. 1904 I, 848).
- **4.4'-Dimethoxy-diphenylamin** $C_{14}H_{15}O_{2}N = HN(C_{6}H_{4}\cdot O\cdot CH_{3})_{2}$. B. Durch Kochen von Acet-p-anisidid, 4-Jod-anisol, Kaliumcarbonat, Kupferpulver und wenig Jod in Nitrobenzel und Verseifen der entstandenen Acetylverbindung durch Kochen mit konz. Salzsaure (WIELAND, B. 41, 3493). Aus Tetrakis-[4-methoxy-phenyl]-tetrazen $(CH_3 \cdot O \cdot C_6H_4)_2N \cdot N \cdot N \cdot N(C_6H_4 \cdot O \cdot CH_3)_3$ (Syst. No. 2250) durch Spaltung mit Chlorwasserstoff oder Eisessig neben anderen Produkten (W., B. 41, 3505). — Blätter (aus Alkohol). F: 103°; leicht löslich in Benzol, Aceton, Chloroform, heißem Alkohol, löslich in Äther, schwer löslich in kaltem Alkohol, Gasolin, unlöslich in Wasser; unlöslich in verdünnten Säuren; unzersetzt flüchtig; konz. Schwefelsäure löst farblos, etwas Nitrit bewirkt Blaufärbung; gibt bei der Oxydaton mit Kaliumpermanganat in Acetonlösung im Kältegemisch 9.10-Bis-[4-methoxy-phenyl]-2.6-dimethoxy-phenazindihydrid (s. nebenstehende Formel) (Syst. No.

3537) (W., B. 41, 3494).

C.H. O.CH.

Verbindung aus 4-Amino-phenol, Formaldehyd und schwefliger Säure $C_7H_9O_4NS=(HO_9S)CH_3\cdot NH\cdot C_9H_4\cdot OH$ (vgl. Knoevenagel, B. 37, 4076). B. Das Natriumsalz entsteht beim Erwärmen von 4-Amino-phenol mit einer wäßr. Lösung von Formaldehydnatriumdisulfit bei Gegenwart von etwas Natriumsulfit im Wasserbade (Ges. f. chem. Ind., D. R. P. 70541; Frdl. 3, 998) oder beim Auflösen von polymerem 4-Methylenamino-phenol (s. u.) in $40^9/_9$ iger Natriumdisulfitlösung (Ges. f. chem. Ind., D. R. P. 68707; Frdl. 3, 997). — Natriumsalz. Blättchen. Leicht löslich in Wasser, etwas schwieriger in Alkohol (G. f. ch. I., D. R. P. 68707).

Verbindung aus p-Phenetidin, Formaldehyd und schwefliger Säure $C_9H_{12}O_4NS = (HO_2S)CH_2 \cdot NH \cdot C_8H_4 \cdot O \cdot C_9H_5$ (vgl. Knoevenagel, B. 37, 4076). B. Die Salze entstehen durch Einw. von Alkali- oder Ammoniumdisulfit und Formaldehyd auf p-Phenetidin in Gegenwart von Alkohol in der Wärme (Lepetit, D. R. P. 209695; Fril. 9, 969; C. 1909 I, 1682). — Die freie Säure bildet weiße Nadeln. — Ammoniumsalz. Die gesättigte Lösung enthält bei 17° 17°/0 Salz (L.). — NaC₉H₁₂O₄NS + H₂O. Weiße Blättchen. Schweckt erst schwach salzig, dann intensiv süß (L.). Die gesättigte Lösung enthält bei 15° 10,5°/0 Salz (L.). Sehr leicht löslich in heißem Wasser, sehr wenig in Alkohol, unlöslich in Ather und Chloroform (L.).

Methylen-bis-[4-amino-phenol-methyläther], Methylen-di-p-anisidin, Di-p-anisidino-methan $C_{18}H_{18}O_2N_3=CH_3(NH\cdot C_0H_4\cdot O\cdot CH_3)_3$. B. Aus p-Anisidin und Formaldehydlösung bei Gegenwart von Alkohol und Kaliumhydroxyd in der Wärme (BISCHOFF, REINFELD, B. 36, 49). — Krystalle (aus Ligroin). F: 66⁶ (B., R.). — Verwandelt sich beim Umkrystallisieren aus Alkohol in Anhydroformaldehyd-p-anisidin

CH₃·O·C₆H₄·N(C₆H₄·O·CH₃) CH₃ (Syst. No. 3796) (B., R.). Liefert beim Erhitzen mit Phenol auf 180° oder beim Erhitzen mit Phenol in siedendem Xylol [2-Oxy-benzyl]-p-anisidin (Syst. No. 1855), mit Oxalsāure-diphenylester bei 150° Oxalsāure-di-p-anisidid (S. 472), mit Oxalsāure-di-phenylester in siedendem Xylol neben dem Oxalsāure-di-p-anisidid [2-Oxy-benzyl]-p-anisidin, mit Resorcin in Benzol [2.4-Dioxy-benzyl]-p-anisidin (Syst. No. 1869) (Bischoff, Fröhlich, B. 39, 3974).

Methylen-bis-[4-amino-phenol-äthyläther], Methylen-di-p-phenetidin, Di-p-phenetidino-methan $C_{17}H_{12}O_2N_2 = CH_2(NH\cdot C_0H_4\cdot O\cdot C_2H_5)_2$. B. Aus 2 Mol.-Gew. Phenetidin und 1 Mol.-Gew. wäßr. Formaldehydlösung beim Schütteln (Bischoff, B. 31, 3245). Durch Erwärmen von 27,4 g p-Phenetidin mit 5,3 g Alkohol und 4,5 g Ätzkali und allmählichen Zusatz von 10 g 33% oliger Formaldehydlösung (B.). — Nadeln (aus Ligroin). F: 80° (B.). — Verändert sich beim Kochen mit Alkohol nicht (Bischoff, Reinfeld, B. 36, 49). Gibt mit Phenol in siedendem Benzol [4 (?)-Oxy-benzyl]-p-phenetidin (Syst. No. 1869) (Bischoff, Fröhlich, B. 39, 3976). Liefert mit Säurechloriden wie Acetylchlorid, Benzoylchlorid die Acylderivate des p-Phenetidins (B.). Gibt mit Oxalsäure-diphenylester das Oxalsäure-di-p-phenetidin (S. 473) neben dem [4 (?)-Oxy-benzyl]-p-phenetidin (B., F.).

Trimeres Methylen-p-anisidin, Anhydroformaldehyd-p-anisidin $C_{34}H_{37}O_{3}N_{3}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot N\langle C_{4}H_{4}\cdot O\cdot CH_{3}\rangle CH_{2}\cdot N(C_{6}H_{4}\cdot O\cdot CH_{3}) CH_{2}$ s. Syst. No. 3796.

Polymeres 4-Methylenamino-phenol (C,H,ON)_x = (CH₂:N·C₆H₄·OH)_x. B. Aus 4-Amino-phenol und Formaldehyd in verdünnter alkalischer Lösung bei 5—10° (Ges. f. chem. Ind., D. R. P. 68707; Frdl. 3, 996). — Weiße Flocken, die sich an der Luft dunkler färben und dann in Natriumdisulfitlösung unlöslich werden. Unlöslich in Ather, Benzol und Wasser, leicht löslich in kaustischen Alkalien zu Alkalisalzen, welche in Wasser mit grünlichgelber Farbe löslich sind und durch CO₂ zerlegt werden (G. f. ch. I., D. R. P. 68707). Liefert mit Natriumdisulfitlösung das Natriumsalz der Verbindung (HO₂S)CH₂·NH·C₂H₄·OH (s. o.) (G. f. ch. I., D. R. P. 68707). — Verwendung zur Darstellung von Schwefelfarbstoffen: G. f. ch. I., D. R. P. 135335; C. 1902 II, 1166.

[$\beta.\beta.\beta$ -Trichlor-äthyliden]-bis-[4-amino-phenol-methyläther], [$\beta.\beta.\beta$ -Trichlor-äthyliden]-di-p-anisidin $C_{16}H_{17}O_2N_3Cl_2 = CCl_3 \cdot CH(NH \cdot C_6H_4 \cdot O \cdot CH_3)_8$. B. Aus p-Anisidin und Chloral in Benzol auf dem Wasserbade (Wheeler, Am. Soc. 30, 139). — Säulen (aus Ligroin). F: 118—120°. Zersetzt sich bei 158°. Ziemlich löslich in Benzol, heißem Alkohol. — Bei der Einw. von Brom in Eisessig entsteht ein Bromderivat, das sich bei ca. 198° schwätzt.

4-Isopropylidenamino-phenol C₅H₁₁ON = (CH₅)₂C:N·C₅H₄·OH. B. Beim Kochen von 4-Amino-phenol mit Aceton (Hargele, B. 25, 2755; Michaelis, Luxembourg, B. 27, 3006). — Blättchen (aus Wasser). F: 172—174° (M., L.). Zersetzt sich beim Kochen mit Wasser teilweise, beim Kochen mit verdünnter Schwefelsäure vollständig in 4-Amino-phenol und Aceton (M., L.).

- Verbindung aus 4-Amino-phenol, Benzaldehyd und schwefliger Säure $C_{13}H_{13}O_4NS = (HO_3S)CH(C_6H_5)\cdot NH\cdot C_6H_4\cdot OH$ (vgl. Knoevenagel, B. 37, 4076). B. Man versetzt eine mit Schwefeldioxyd gesättigte alkoholische Lösung von 4-Amino-phenol mit 1 Mol.-Gew. Benzaldehyd (Michaelis, A. 274, 244). Blättchen. Sehr leicht löslich in Wasser und Alkohol, unköslich in Äther (M.). Gibt beim Erwärmen 4-Benzalamino-phenol (s. u.) und zeigt deshalb dessen Schmelzpunkt (183°) (M.).
- 4-Benzalamino phenol C₁₃H₁₁ON = C₆H₅·CH:N·C₆H₄·OH. B. Aus äquimole-kularen Mengen von 4-Amino-phenol und Benzaldehyd in verd. Essigsäure (HAEGALE, B. 25, 2753; 26, 394; POPE, Soc. 93, 533) oder in alkoh. Lösung (Philipp, B. 25, 3248). Aus Benzaldehyd und salzsaurem 4-Amino-phenol in wäßr. Lösung bei Gegenwart von Natriumacetat (Philipp, B. 25, 3247; Höchster Farbw., D. R. P. 69006; Frdl. 3, 55). Blätter (aus verd. Alkohol). F: 183° (H.; Po.), 181° (Ph.; MÖHLAU, ADAM, C. 1907 I, 107). Leicht löslich in Alkohol (H.). Die fast farblose Lösung in Alkohol wird durch Alkali etwas dunkler (Po.). Löst sich in konz. Schwefelsäure hellgelb (M., A.). Lichtabsorption: POPE. C₁₃H₁₁ON + HCl (Ph.). Gelbe Nadeln. Zersetzt sich bei 132° (POPE, FLEMING, Soc. 93, 1915). Leicht löslich in heißem Alkohol (Po., Fl.).
- 4-[2-Nitro-benzalamino]-phenol $C_{13}H_{10}O_3N_2=O_2N\cdot C_6H_4\cdot CH:N\cdot C_8H_4\cdot OH.$ B. Aus 2-Nitro-benzaldehyd (Bd. VII, S. 243) und 4-Amino-phenol in verd. Essigsäure (Pope, Fleming, Soc. 93, 1918). Man schüttelt eine Lösung von 2-Nitro-benzaldehyd in wenig Toluol mit einer wäßr. Lösung von salzsaurem 4-Amino-phenol und Natriumacetat (Möhlau, Adam, Zeitschrift f. Farbenindustrie 5, 404; C. 1907 I, 107). Gelbe Nadeln (aus verd. Alkohol oder Toluol). F: 159° (P., Fl.), 156° (M., A.). In konz. Schwefelsäure mit gelber Farbe löslich (M., A.). $C_{13}H_{10}O_3N_2 + HCl$. Gelbes amorphes Pulver. Zersetzt sich bei 216° (P., Fl.).
- 4-[3-Nitro-benzalamino]-phenol $C_{13}H_{10}O_3N_2 = O_2N \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot OH$. B. Aus 3-Nitro-benzaldehyd (Bd. VII, S. 250) und 4-Amino-phenol in warmer verdünnter Essigsäure (Pope, Soc. 93, 534). Aus 3-Nitro-benzaldehyd und salzsaurem 4-Amino-phenol in verd. Alkohol unter Zusatz von Natriumacetat (Möhlau, Adam, Zeitschrift f. Farbenindustrie, 5, 406; C. 1907 I, 108). Braune Nadeln (aus verd. Alkohol). F: 154° (P.), 158° (M., A.). Die gelbliche Lösung in Alkohol wird durch Alkali etwas dunkler (P.). In konz. Schwefelsäure hellgelb löslich (M., A.). Lichtabsorption: P. Verwendung zur Darstellung von Schwefelfarbstoffen: Ges. f. chem. Ind., D. R. P. 135335; C. 1902 II, 1166.
- 4-[4-Nitro-benzalamino]-phenol C₁₃H₁₀O₃N₂ = O₂N·C₆H₄·CH:N·C₆H₄·OH. B. Aus 4-Nitro-benzaldehyd (Bd. VII, S. 256) und 4-Amino-phenol in verd. Essigsäure (POPE, Soc. 93, 533). Aus 4-Nitro-benzaldehyd, salzsaurem 4-Amino-phenol und Natriumacetat in wäßrigalkoholischer Lösung (Möhlau, Adam, Zeitschrift f. Farbenindustrie 5, 408; C. 1907 I, 108). Gelbe Prismen (aus Äther oder Toluol). F: 166° (M., A.), 168,5° (P.). Unlöslich in Ligroin, leicht löslich in den übrigen organischen Lösungsmitteln (M., A.). In konz. Schwefelsäure gelb löslich (M., A.). Die orangegelbe Lösung in Alkohol wird durch Alkali tief orangerot (P.). Lichtabsorption: P. Verwendung zur Darstellung von Schwefelfarbstoffen: Ges. f. chem. Ind., D. R. P. 135335; C. 1902 II, 1166. C₁₃H₁₀O₃N₂ + HCl. Braunes Pulver. Zersetzt sich beim Trocknen (POPE, Fleming, Soc. 93, 1919).
- 4-Benzalamino-phenol-methyläther, Benzal-p-anisidin $C_{14}H_{13}ON = C_6H_5 \cdot CH:N\cdot C_6H_4 \cdot O \cdot CH_3$. B. Durch Erhitzen äquimolekularer Mengen von 4-Benzalamino-phenol, Methyljodid und Kaliumhydroxyd in methylalkoholischer Lösung (Philipp, B. 25, 3248). Aus äquimolekularen Mengen p-Anisidin und Benzaldehyd (v. Miller, Plöchl, Scheitz, B. 31, 2706) in alkoh. Lösung (Ph.). Blätter (aus verd. Alkohol). F: 72° (v. M., Pl., Sch.). Sehr leicht löslich in den organischen Lösungsmitteln (v. M., Pl., Sch.). $C_{14}H_{13}ON + HCl$. Schwefelgelbes Krystallpulver. F: 70° (Pope, Fleming, Soc. 93, 1915).
- 4-[4-Nitro-benzalamino]-phenol-methyläther, [4-Nitro-benzal]-p-anisidin $C_{14}H_{19}O_3N_2=O_3N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4-Nitro-benzaldehyd und p-Anisidin in alkoh. Lösungen (Pope, Fleming, Soc. 93, 1917). Goldgelbe Blättchen (aus Alkohol). F:139°. Schwerlöslich in siedendem Alkohol. — $C_{14}H_{12}O_3N_2+HCl$. Schwefelgelbe Krystalle Zersetzt sich bei 200°.
- 4-Benzalamino-phenol-äthyläther, Benzal-p-phenetidin $C_{15}H_{15}ON = C_6H_5 \cdot CH$: $N \cdot C_6H_4 \cdot O \cdot C_2H_5 \cdot B$. Durch Erhitzen von 4-Benzalamino-phenol in Alkohol mit Äthylbromid und Natronlauge im Autoklaven auf 100° (Höchster Farbw., D. R. P. 69006; Frdl. 3, 55). Aus p-Phenetidin und Benzaldehyd in alkoh. oder essigsaurer Lösung (Phillipp, B. 25, 3249). Gelbliche Prismen (aus Alkohol). F: 71° (H. F.), 76° (Ph.). Unlöslich in Wasser, leicht löslich in warmem Alkohol und Eisessig, sehr leicht in Äther und Benzol (H. F.). $C_{15}H_{15}ON + HCl$. Gelbliches Krystallpulver. Zersetzt sich bei 138—139° (Pope, Fleming, Soc. 93, 1916).
- 4-[2.5-Dichlor-benzalamino]-phenol-äthyläther, [2.5-Dichlor-benzal]-p-phenetidin $C_{15}H_{13}ONCl_2=C_6H_3Cl_2\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 2.5-Dichlor-benzaldehyd und

- p-Phenetidin in Alkohol (GNEHM, BÄNZIGER, B. 29, 876; A. 296, 70). Blättchen. F: 59°. Löslich in Ligroin, Petroläther, Benzol und heißem Alkohol.
- 4-[4-Nitro-bensalamino]-phenol-āthylāther, [4-Nitro-bensal]-p-phenetidin $C_{15}H_{14}O_3N_5=O_2N\cdot C_6H_4\cdot CH:N\cdot C_5H_4\cdot O\cdot C_2H_5$. B. Aus 4-Nitro-benzaldehyd und p-Phenetidin in Alkohol (Pope, Fleming, Soc. 93, 1917). Schwefelgelbe Nadeln (aus Alkohol). F: 130,5° (P., F.). Über das Auftreten verschiedener Formen beim Erstarren der Schmelze vgl. Vorländer, B. 40, 1425. Schwer löslich in heißem Alkohol (P., F.). $C_{15}H_{14}O_3N_3+HCl$. Hellgelbe Nadeln. Zersetzt sich bei 196° (P., F.).
- 4-[2.4-Dinitro-bensalamino]-phenol-äthyläther, [2.4-Dinitro-bensal]-p-phenetidin $C_{15}H_{13}O_5N_3=(O_2N)_3C_6H_3\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 2.4-Dinitro-benzaldehyd und p-Phenetidin in heißem Alkohol (Pope, Fleming, Soc. 98, 1918). Bräunlichgelbe Nadeln (aus Alkohol). F: 135°. Sehr wenig löslich in Alkohol, Benzol. Zersetzt sich an der Luft.
- [4-Benzalamino-phenyl]-benzoat $C_{50}H_{15}O_2N=C_6H_5\cdot CH:N\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus salzsaurem [4-Amino-phenyl]-benzoat (S. 440) und Benzaldehyd in Alkohol unter Zusatz von Natriumdicarbonat (Wohl, B. 36, 4151). Nadeln (aus Alkohol). F: 148° (korr.).
- $\begin{array}{ll} N\text{-}[4\text{-}Methoxy\text{-}phenyl]\text{-}isobenzaldoxim} & C_{14}H_{13}O_{2}N = C_{6}H_{5}\cdot CH:N(:O)\cdot C_{6}H_{4}\cdot O\cdot CH_{3}\\ \text{bezw. } C_{6}H_{5}\cdot HC \xrightarrow{\hspace*{1cm}} N\cdot C_{6}H_{4}\cdot O\cdot CH_{3} \text{ s. Syst. No. 4194.} \end{array}$
- $\begin{array}{lll} \textbf{N-[4-Bensoyloxy-phenyl]-isobensaldoxim} & \textbf{C}_{20}\textbf{H}_{15}\textbf{O}_2\textbf{N} = \textbf{C}_6\textbf{H}_5 \cdot \textbf{CH}: \textbf{N}(:0) \cdot \textbf{C}_6\textbf{H}_4 \cdot \textbf{O} \cdot \textbf{CO} \cdot \textbf{C}_6\textbf{H}_5 & \textbf{s. Syst. No. 4194}. \end{array}$
- 4-[Methylphenylmethylen-amino]-phenol-äthyläther, [Methylphenylmethylen]-p-phenetidin, Acetophenon-[4-äthoxy-anil] $C_{16}H_{17}ON = C_{6}H_{5} \cdot C(CH_{2}) : N \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5}$. B. Aus Acetophenon (Bd. VII, S. 271) und p-Phenetidin (Valentiner, Schwarz, D. R. P. 87897; Frdl. 4, 1186; D. R. P. 98840; Frdl. 5, 765; C. 1898 II, 1189). Citronengelbe Nadeln (aus Alkohol). F: 88°. Kp₇₂: 210—212°. Leicht löslich in Äther und Eisessig, unlöslich in Wasser.
- 4-Cuminalamino-phenol $C_{16}H_{17}ON = (CH_3)_2CH \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot OH$. B. Aus Cuminaldehyd (Bd. VII, S. 318) und 4-Amino-phenol in alkoh. Lösung (UEBEL, A. 245, 296). Tafeln. Schmilzt bei 183° unter Zersetzung.
- 4-Cinnamalamino-phenol $C_{15}H_{13}ON = C_6H_5 \cdot CH : CH : CH : N \cdot C_6H_4 \cdot OH$. B. Beim Schütteln von 4-Amino-phenol in essigsaurer Lösung mit Zimtaldehyd (HAEGELE, B. 25, 2754). Hellgrüne (H.), hellgelbe (Möhlau, Adam, C. 1907 I, 107) Nadeln (aus Alkohol). F: 223° (H.; M., A.). Leicht löslich in Äther, Eisessig und Benzol (H.). In konz. Schwefelsäure orangegelb löslich (M., A.).

Dibromid des 4-Cinnamalamino-phenols $C_{15}H_{12}ONBr_2$. Zur Konstitution vgl. James, Judd, Soc. 105 [1914], 1428. — B. Aus 4-Cinnamalamino-phenol mit Brom in Eisessig (H., B. 25, 2754). — Dunkelrote Nadeln. F: 287°. Schwer löslich in Alkohol, unlöslich in Wasser.

- 4-[2-Nitro-cinnamalamino]-phenol C₁₅H₁₉O₃N₂ = O₄N·C₆H₄·CH:CH:CH:N·C₆H₄·OH. B. Beim Vermischen von 2-Nitro-zimtaldehyd (Bd. VII, S. 358) in Alkohol mit einer Lösung von salzsaurem 4-Amino-phenol in Wasser und Natriumacetat in Wasser (Möhlau, Adam, C. 1907 I, 108). Gelbe Krystalle (aus Toluol). F: 168. Leicht löslich in den organischen Lösungsmitteln. In konz. Schwefelsäure dunkelgelb löslich.
- 4-[3-Nitro-cinnamalamino]-phenol $C_{15}H_{12}O_3N_3=O_2N\cdot C_5H_4\cdot CH:CH:CH:N\cdot C_6H_4\cdot OH.$ B. Beim Vermischen einer Lösung von 3-Nitro-zimtaldehyd (Bd. VII, S. 358) in Alkohol mit einer heißen Lösung von salzsaurem 4-Amino-phenol und Natriumacetat in Wasser (M., A., C. 1907 I, 108). Gelbe Tafeln (aus Alkohol). F: 196°. Leicht löslich in heißem Toluol, schwer in Ligroin, Petroläther, Tetrachlorkohlenstoff.
- 4-[4-Nitro-cinnamalamino]-phenol $C_{15}H_{12}O_3N_2=O_4N\cdot C_6H_4\cdot CH:CH:CH:N\cdot C_6H_4\cdot OH.$ B. Beim Vermischen einer Lösung von 4-Nitro-zimtaldehyd (Bd. VII, S. 358) in Alkohol mit einer Lösung von 4-Amino-phenol und Natriumacetat in Wasser (M., A., C. 1907 I, 108). Gelbe Nadeln (aus Alkohol). F: 191°. In konz. Schwefelsäure dunkelorange löslich.
- 4-[4-Nitro-cinnamalamino]-phenol-methyläther, [4-Nitro-cinnamal]-p-anisidin $C_{16}H_{14}O_3N_2=O_4N\cdot C_6H_4\cdot CH:CH:N\cdot C_6H_4\cdot O\cdot CH_3$. Monotrop-krystallinisch-flüssig (Vorländer, B. 40, 1425).
- 4-[4-Nitro-cinnamalamino]-phenol-äthyläther, [4-Nitro-cinnamal]-p-phenetidin $C_{17}H_{16}O_3N_8=O_2N\cdot C_6H_4\cdot CH:CH\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_5.$ Enantiotrop-krystallinisch-flüssig (V., B. 40, 1425).

4-[Diphenylmethylen-amino]-phenol, Benzophenon-[4-oxy-anil] $C_{10}H_{15}ON = (C_0H_5)_2C:N\cdot C_0H_4\cdot OH$. B. Aus 4-Amino-phenol, Benzophenon (Bd. VII, S. 410) und Zinkchlorid bei 160° (Reddelien, B. 42, 4762). — Gelbe Blättchen mit 1 Mol. Krystallalkohol (aus Alkohol). F: 172°. Leicht löslich in Äther und Chloroform, schwer in Alkohol und Benzol, fast unlöslich in Petroläther. Löslich in Kalilauge mit gelbbrauner Farbe.

 $\begin{array}{lll} \textbf{N.N'-Bis-[4-oxy-phenyl]-glyoxaldiisoxim} & C_{14}H_{19}O_{4}N_{2} = HO \cdot C_{6}H_{4} \cdot N(:O) : CH \cdot CH : \\ N(:O) \cdot C_{6}H_{4} \cdot OH & bezw. & HO \cdot C_{6}H_{4} \cdot N - CH \cdot HC - N \cdot C_{6}H_{4} \cdot OH & s. & Syst. & No. 4620. \end{array}$

Acetylaceton-mono-[4-methoxy-anil] $C_{12}H_{15}O_2N = CH_3 \cdot CO \cdot CH_2 \cdot C(CH_3) : N \cdot C_8H_4 \cdot O \cdot CH_3$ bezw. desmotrope Formen. B. Durch $^{1}/_{2}$ -stdg. Erwärmen von 5 g Acetylaceton und 6 g p-Anisidin (Koenigs, Mengel, B. 37, 1333). — Tafeln (aus Ligroin). F: 49°. Kp₁₅: 195°. Schwer löslich in verd. Essigsäure.

Glutacondialdehyd-bis-[4-oxy-anil] bezw. 1-[4-Oxy-anilino]-pentadien-(1.3)-al-(5)-[4-oxy-anil] $C_{17}H_{16}O_2N_3=H0\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot CH_2\cdot CH:N\cdot C_6H_4\cdot OH$ bezw. $H0\cdot C_6H_4\cdot N:CH\cdot CH:CH\cdot CH:CH\cdot CH:CH\cdot NH\cdot C_6H_4\cdot OH$. B. Das Hydrobromid entsteht aus 4-Aminophenol, Pyridin und Bromeyan in Äther (König, J. pr. [2] 69, 131; D. R. P. 155782; Frdl. 7, 330). — Die freie Base ist nicht bekannt. — $C_{17}H_{16}O_2N_3+HBr$. Zur Frage der Konstitution vgl. die bei der entsprechenden Anilinverbindung (Bd. XII, S. 204) angeführte Literatur. Stahlblaue, bisweilen grünglänzende Prismen. F: 181°. Ziemlich schwer löslich in Wasser, leicht in Alkohol, Eisessig. In Alkalien gelbrot löslich, auf Zusatz von Eisessig wird die Lösung tiefrot,

Glutacondialdehyd-bis-[4-methoxy-anil] bezw. 1-[4-Methoxy-anilino]-pentadien-(1.3)-al-(5)-[4-methoxy-anil] $C_{19}H_{20}O_{1}N_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot N:CH\cdot CH:CH\cdot CH\cdot CH_{2}\cdot CH:N\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$ bezw. $CH_{3}\cdot O\cdot C_{6}H_{4}\cdot N:CH\cdot CH:CH:CH:CH:NH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Das Hydrobromid entsteht, wenn man 12,3 g p-Anisidin und 4 g Pyridin in 60 ccm heißem absolutem Alkohol löst und eine Lösung von 5,3 g Bromcyan in Eisessig hinzufügt (König, J. pr. [2] 70, 48). — Die freie Base ist nicht bekannt. — $C_{19}H_{20}O_{2}N_{2}+HBr.$ Zur Frage der Konstitution vgl. die bei der entsprechenden Anilinverbindung (Bd. XII, S. 204) angeführte Literatur. Braunviolette, blauschimmernde Nadeln oder lanzettförmige Blättchen (aus Eisessig). F: 148—149°. Leicht löslich in heißem Alkohol, Eisessig. Liefert beim Kochen mit p-Anisidin N-[4-Methoxy-phenyl]-pyridiniumbromid (Syst. No. 3051).

Glutacondialdehyd - bis - [4 - āthoxy - anil] bezw. 1 - [4 - Āthoxy - anilino] - pentadien-(1.3)-al (5)-[4-āthoxy-anil] $C_{a_1}H_{a_2}O_aN_a = C_1H_5 \cdot 0 \cdot C_6H_4 \cdot N \cdot CH \cdot CH \cdot CH \cdot CH_4 \cdot CH \cdot N \cdot C_6H_4 \cdot 0 \cdot C_2H_5$ bezw. $C_2H_5 \cdot 0 \cdot C_6H_4 \cdot N \cdot CH \cdot CH \cdot CH \cdot CH \cdot NH \cdot C_6H_4 \cdot 0 \cdot C_2H_5$. B. Das Hydrobromid entsteht aus p-Phenetidin, Pyridin und Bromcyan in Āther (König, J. pr. [2] 69, 130). — Die freie Base ist nicht bekannt. — $C_{a_1}H_{a_2}O_2N_2 + HBr$. Zur Frage der Konstitution vgl. die bei der entsprechenden Anilinverbindung (Bd. XII, S. 204) angeführte Literatur. Violettschwarze Nadeln oder blauviolette Prismen. F: 143°. Schwer löslich in Wasser, Äther, leicht in Alkohol, Eisessig.

3 - [4 - Åthoxy - anilino] - 3 - hydroxylamino - d - campher $C_{18}H_{26}O_3N_3 = C_0$ $C_0H_{14} \stackrel{\cdot}{C}(NH\cdot OH)\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$ B. Aus 3-[4-Åthoxy-phenylimino]-d-campher (S. 456) in Alkohol mit salzsaurem Hydroxylamin und Natriumacetat in Wasser (Forster, Thornley, Soc. 95, 953). — Nadeln (aus Petroläther). F: 63°. — Zerfällt beim Erwärmen mit Lösungsmitteln in beständigen a-Isonitrosocampher (Bd. VII, S. 583) und p-Phenetidin. 3 - [4 - Oxy - phenylimino] - d - campher, [d-Campher]-chinon-[4-oxy - anil]-(3)

 $C_{16}H_{19}O_2N=C_8H_{14}$ CO $C_1N\cdot C_8H_4\cdot OH$ B. Bei kurzem Erwärmen äquimolekularer Mengen von Campherchinon (Bd. VII, S. 581), salzsaurem 4-Amino-phenol und Natriumacetat in verd. Alkohol (F., Th., Soc. 95, 950). — Sintert bei ca. 220° und schmilzt bei 233°. Sehr wenig löslich in siedendem Wasser, unlöslich in Petroläther, schwer löslich in sonstigen organischen Mitteln. [a]_D: $+1650^{\circ}$ (0,4152 g in 100 ccm Pyridin), $+1492^{\circ}$ (0,0419 g in 100 ccm Ather), $+1412^{\circ}$ (0,0956 g in 100 ccm Essigester), $+1404^{\circ}$ (0,1810 g in 100 ccm Aceton), $+1372^{\circ}$ (0,0832 g in 100 ccm Alkohol), $+1363^{\circ}$ (0,2312 g in 100 ccm Chloroform). Mit dunkelroter Farbe löslich in Alkalien. — Gibt mit Zinkstaub und verd. Natronlauge 3-[4-Oxyanilino]-campher (Syst. No. 1873). Zersetzt sich beim Erhitzen mit Salzsäure unter Bildung von Campherchinon. Beim Stehen mit salzsaurem Hydroxylamin und Natriumacetat in alkoholisch-wäßriger Lösung werden a-Isonitrosocampher (Bd. VII, S. 583) und 4-Aminophenol gebildet.

- 8-[4-Methoxy-phenylimino]-d-campher, [d-Campher]-chinon-[4-methoxy-anil]-(3) $C_{17}H_{21}O_2N = C_2H_{14} \overset{CO}{\smile} : N \cdot C_6H_4 \cdot O \cdot CH_2$ auf dem Wasserbade (F., Th., Soc. 95, 952). Goldgelbe Nadeln (aus Alkohol). F: 120°. Leicht löslich in kalten organischen Flüssigkeiten außer Petroläther. [a]_a: +1223° (0,3884 g in 100 ccm Chloroform).
- 3-[4-Äthoxy-phenylimino]-d-campher, [d-Campher]-chinon-[4-äthoxy-anil]-(3) $C_{18}H_{23}O_2N=C_8H_{14}\overset{CO}{\smile}:N\cdot C_9H_4\cdot O\cdot C_2H_5$ 8. Beim Erhitzen einer wäßr. Lösung von salzsaurem p-Phenetidin und Natriumacetat mit einer alkoh. Lösung von Campherchinon (F., Th., Soc. 95, 952). Gelbe Blättchen (aus Petroläther). F: 112°. Leicht löslich in organischen Flüssigkeiten. [a]_D: +1250° (0,4312 g in 100 ccm Chloroform). Vereinigt sich mit Hydroxylamin zu 3-[4-Äthoxy-anilino]-3-hydroxylamino-d-campher (S. 455).
- 3 [(4 Oxy phenylimino) methyl] d campher bezw. 3 [4 Oxy anilinomethylen] d campher, "p Oxyphenylcamphoformenamin" $C_{17}H_{11}O_2N = C_0H_{14}$ CH · CH : N · C $_0H_4$ · OH bezw. C_0H_{14} · CH · NH · C $_0H_4$ · OH camphoformenaminearbons are " (S. 497) beim Erhitzen über den Schmelzpunkt (Tingle, Williams, Am. 39, 292). Krystalle (aus Benzol). Erweicht von 305° ab und schmilzt bei 314°.

Chinon-mono-[4-oxy-anil] $C_{12}H_0O_2N=O:C_0H_4:N\cdot C_0H_4\cdot OH.$ B. Beim Vermischen von Chinon-mono-chlorimid (Bd. VII, S. 619) mit Phenol und Kalilauge (Hiesch, B. 13, 1909). Beim Hinzufügen von etwas Natronlauge zu einer siedenden wäßrigen Lösung von Chinon-mono-[4-dimethylamino-anil] (S. 88) (Möhlau, B. 18, 2916). Beim Schütteln einer Emulsion von Phenol in Wasser mit Ammoniak, Sodalösung und Wasserstoffsuperoxyd, wobei man den Krystall eines Hydroxylaminsalzes als Katalyastor zusetzt (Wurster, B. 20, 2935). Durch Hinzufügen von Ammoniak zu einer wäßr. Lösung von Chinon und überschüssigem Phenol und Schütteln mit Luft (W.). Aus 4-Amino-phenol, gelöst in Natronlauge, und Phenol beim Schütteln an der Luft (W.). Bei der Oxydation von 4.4'-Dioxy-diphenylamin (S. 451) in Benzol mit Quecksilberoxyd (Schneider, B. 32, 690). — Darst. In eine mit Salz und Eis versetzte Lösung von Natriumhypochlorit läßt man das abgekühlte Gemisch der Lösungen von salzsaurem 4-Amino-phenol einerseits und Phenol und Natronlauge andererseits einfließen; das ausgeschiedene Natriumsalz zersetzt man mit Mineralsäure oder Essigsäure (Akt.-Ges. f. Anilinf., D. R. P. 157288; C. 1905 I, 315). — Braunes Pulver. Löslich in Alkohol, Äther und Chloroform, schwer löslich in Benzol (A.-G. f. A.). Die Lösung in Alkohol ist grünblau, die in Wasser blau (A.-G. f. A.).

Chinon-imid-[4-oxy-anil] $C_{18}H_{10}ON_2 = HN:C_0H_4:N\cdot C_0H_4\cdot OH$. Vgl. das Indophenol $C_{18}H_{10}ON_2$, S. 70.

 $\begin{array}{ll} Chinon-anil-[4-oxy-anil] & C_{18}H_{14}ON_8=C_8H_8\cdot N:C_8H_4:N\cdot C_8H_4\cdot OH. & Vgl. \ das \ Indophenol \ C_{18}H_{14}ON_9, \ Bd. \ XII, \ 8. \ 180. \end{array}$

2.6 - Dichlor - chinon - imid - [4 - oxy - anii] $C_{12}H_0ON_2Cl_2 = HN: C_0H_2Cl_2: N\cdot C_0H_4\cdot OH.$ Vgl. das Indophenol $C_{12}H_0ON_2Cl_2$, S. 118.

 $\label{eq:continuous} \textbf{2.6-Dibrom-ohinon-[4-oxy-anil]-(4)} \quad C_{19}H_7O_9NBr_9 = O: \\ C_6H_9Br_9: N\cdot C_6H_4\cdot OH. \quad Vgl. \\ das \quad Indophenol \quad C_{19}H_7O_9NBr_9, \quad S. \quad 517.$

Chinon-mono-[4-methoxy-anil] $C_{13}H_{11}O_{2}N=O:C_{4}H_{4}:N\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Beim Stehen der wäßr. Lösung von Chinon-imid-[4-methoxy-anil] (s. u.) (WILLSTÄTTER, KURLI, B. 42, 4140)..— Hellbraune, grünlichschillernde Tafeln (aus Gasolin). F: 84°. Sehr leicht löslich mit braunroter Farbe in Alkohol, Äther und Benzol, leicht in Petroläther. Färbt konz. Schwefelsäure dunkelblau.

Chinon-imid-[4-methoxy-anii] $C_{12}H_{12}ON_{3} = HN:C_{6}H_{4}:N\cdot C_{6}H_{4}\cdot O\cdot CH_{2}$. B. Aus 4-Methoxy-4'-amino-diphenylamin (S. 503), gelöst in trocknem Äther, mit Silberoxyd in Gegenwart von trocknem Natriumsulfat (W., K., B. 42, 4139). — Goldgelbe Prismen (aus trocknem Gasolin) vom Schmelzpunkt 71—72°. Gibt mit 1 H₂O heller gefärbte Krystalle vom Schmelzpunkt 40°. Färbt die Haut violettachwarz. Leicht löslich in kaltem Äther, Alkohol, Benzol, ziemlich leicht in siedendem Petroläther, sehwer in Wasser mit orangegelber Farbe. Gibt mit konz. Schwefelsäure eine dunkelblaue Lösung. Gibt beim Kochen mit verd. Säuren Chinon, beim Stehen der wäßr. Lösung Chinon-mono-[4-methoxy-anil] (s. o.). — $C_{12}H_{11}ON_{3}+2$ HCl. Rotbraune Flocken. Leicht löslich in Wasser mit blauvioletter, löslich in Alkohol, Aceton und Chloroform mit dunkelblauer Farbe.

Verbindung $C_{25}H_{19}O_2N_3 = O:C_6H_4:N\cdot C_6H_4\cdot N:C_6H_4:N\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4-Oxydiphenylamin (S. 444) und 4-Methoxy-4'-amino-diphenylamin (S. 503) mit Wasserstoffsuperoxyd (W., K., B. 42, 4150). — Rote zugespitzte Prismen (aus Benzol). F: 229—230°.

Chinon-[4-methoxy-anil]-oxim bezw. [4-Nitroso-phenyl]-p-anisidin, 4'-Nitroso-4-methoxy-diphenylamin $C_{13}H_{12}O_3N_3 = HO \cdot N : C_6H_4 \cdot N \cdot C_6H_4 \cdot O \cdot CH_3$ bezw. $ON \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus dem N-Nitroso-N-phenyl-p-anisidin (S. 509) in ather. Lösung mit konzentrierter alkoholischer Salzsaure (W., K., B. 42, 4139). — Stahlblauglänzende, in der Durchsicht olivgrüne bis braune Prismen (aus Methylalkohol). F: 165° (korr.). Ziemlich schwer löslich in kaltem Alkohol und Benzol; sehr wenig in Ligroin; löslich in konz. Schwefelsäure mit dunkelblauer Farbe.

Chinon-[4-äthoxy-anil]-oxim bezw. [4-Nitroso-phenyl]-p-phenetidin, 4'-Nitroso-4-äthoxy-diphenylamin $C_{14}H_{14}O_{2}N_{3}=H0\cdot N:C_{6}H_{4}:N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. $ON\cdot C_{6}H_{4}\cdot N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. $ON\cdot C_{6}H_{4}\cdot N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ Beim Behandeln des N-Nitroso-N-phenyl-p-phenetidins (S. 509) mit kalter alkoholischer Salzsäure (Jacobson, Henrich, Klein, B. 26, 697). — Grüne Blättchen (aus Benzol). Schmilzt bei 150—155°. Leicht löslich in Alkohol und Äther.

- **2 Methyl benzochinon (1.4) imid (1) [4 oxy anil] (4),** Toluchinon-imid-(1)-[4-oxy-anil]-(4)^1) $C_{13}H_{12}ON_2 = HN: C_6H_3(CH_3): N\cdot C_cH_4\cdot OH.$ Vgl. das Indophenol $C_{13}H_{12}ON_2$, S. 435.
- **2.5-Dimethyl-bensochinon-(1.4)-mono-[4-oxy-anil]**, p-Xylochinon-mono-[4-oxy-anil] $C_{14}H_{13}O_2N = O:C_6H_4(CH_3)_2:N\cdot C_6H_4\cdot OH.$ Vgl. das Indophenol $C_{14}H_{13}O_2N$, S. 435.
- β-[4-Methoxy-phenylimino]-butyrophenon $C_{17}H_{17}O_2N=C_6H_5\cdot CO\cdot CH_2\cdot C(CH_3):N\cdot C_6H_4\cdot O\cdot CH_3$ bezw. desmotrope Formen. B. Bei 3—4-stdg. Erhitzen von 10 g Benzoylaceton (Bd. VII, S. 680) mit 8 g p-Anisidin auf 150° (Königs, Meimberg, B. 28, 1045). Gelbe Nadeln (aus Alkohol). F: 107—108°. Zerfällt beim Kochen mit verd. Säuren in Benzoylaceton und p-Anisidin.
- 1-Phenyl-cyclohexandion-(3.5)-mono-[4-äthoxy-anil], Phenyldihydroresorcin-mono-[4-äthoxy-anil] $C_{20}H_{21}O_2N = CH_2 < \frac{CO}{CH(C_0H_5)\cdot CH_2} > C: N\cdot C_0H_4\cdot O\cdot C_2H_5$ bezw. desmotrope Formen. B. Beim Erwärmen von Phenyldihydroresorcin (Bd. VII, S. 706) mit überschüssigem p-Phenetidin auf dem Wasserbade (VORLÄNDER, ERIG, A. 294, 307). F: 207°.

 $\label{eq:control_equation} \begin{aligned} &\textbf{Maphthochinon-(1.4)-imid-[4-oxy-anil]} & & C_{16}H_{12}ON_2 = HN: & & C_{10}H_6: N\cdot C_6H_4\cdot OH. & Vgl. \\ &\textbf{das Indophenol C}_{16}H_{12}ON_2, & \textbf{Bd. XII, S. 1221.} \end{aligned}$

- 1.5 Bis [4 āthoxy phenylimino] pentanon (2) bezw. 1.5 Bis [4 āthoxy phenylimino] penten-(2) ol-(2), Oxyglutacondialdehyd-bis-[4-āthoxy-anil] bezw. 5-[4-Āthoxy-phenylimino] 1-p-phenetidino-penten-(1) on-(4) bezw. 5 [4 Āthoxy phenylimino] 1-p-phenetidino-pentadien-(1.3) ol-(4) C₃: H₂₄O₃N₂ = C₂H₅ · O·C₈H₄· N: CH. CH₂· CO·C₃H₅· O·C₈H₄· O·C₂H₅ bezw. C₂H₅· O·C₈H₄· N: CH. CH₂· CO·C₈H₄· N: CH. CH₂· CO·C₈H₄· O·C₈H₄· O·C₈H₈· O·C₈H₄· O·C₈H₈· O·C₈H
- 4-Salicylalamino-phenol $C_{13}H_{11}O_2N=H_0\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot OH.$ B. Durch Schütteln einer Lösung von 4-Amino-phenol in verd. Essigsäure mit Salicylaldehyd (Bd. VIII, S. 31) (Hargele, B. 25, 2754). Gelbe bis gelbrote Blättchen (aus verd. Alkohol). F: 135°(H.), 137—138° (Ges. f. chem. Ind., D. R. P. 79857; Frdl. 4, 1182). Schmilzt unter Wasser schon unterhalb 100° (G. f. ch. I.).
- 4-Salicylalamino-phenol-methyläther, Salicylal-p-anisidin $C_{14}H_{13}O_5N = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus gleichen Mengen Salicylaldehyd und p-Anisidin (Hantzsch, Wechsler, A. 325, 248). Hellgelbe Schuppen (aus verd. Alkohol). F: 86°. Leicht löslich in organischen Lösungsmitteln.

Bezifferung der vom Namen "Toluchinon" abgeleiteten Namen in diesem Handbuch s. Bd. VII,
 645.

- 4-Salicylalamino-phenol-äthyläther, Salicylal-p-phenetidin $C_{15}H_{15}O_5N=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_3$. B. Aus p-Phenetidin und Salicylaldehyd (Roos, D. R. P. 79814; Frdl. 4, 1182). Durch 1-stdg. Erwärmen von 17 Tln. 4-Salicylalamino-phenol (S. 457) mit 4,5 Tln. Kali und 9 Tln. Äthylbromid in 50 Tln. Alkohol (Ges. f. chem. Ind., D. R. P. 79857; Frdl. 4, 1182). Hellgelbe Krystalle (aus Alkohol). Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Benzol. F: 90—91,5° (Ges. f. chem. Ind.), 94° (R.).
- Verbindung aus 4 Amino phenol, Anisaldehyd und schwefliger Säure $C_{14}H_{15}O_{2}NS = (HO_{3}S)CH(C_{4}H_{4}\cdot O\cdot CH_{3})\cdot NH\cdot C_{4}H_{4}\cdot OH$ (vgl. Knoevenagel, B. 37, 4076). B. Beim Versetzen der mit Schwefeldioxyd gesättigten alkoholischen Lösung von 4-Aminophenol mit 1 Mol.-Gew. Anisaldehyd (Bd. VIII, S. 67) (MICHAELIS, A. 274, 245). Krystalle. Schmilzt unter Gelbfärbung bei 188°, dabei in 4-Anisalamino-phenol übergehend (M.). Leicht löslich in Wasser und Alkohol (M.).
- 4-Anisalamino-phenol $C_{14}H_{13}O_{8}N = CH_{3} \cdot O \cdot C_{4}H_{4} \cdot CH : N \cdot C_{4}H_{4} \cdot OH$. B. Beim Schütteln einer Lösung von 4-Amino-phenol in verd. Essigsäure mit Anisaldehyd (HAEGELE, B. 25, 2754). Gelbe Prismen (aus Alkohol). F: 188° (H.). Leicht löslich in Ather und Benzol (H.). Bei der Reduktion mit Zinkstaub und Alkalihydroxyd entsteht 4-[4-Methoxy-benzylamino]-phenol (Syst. No. 1855) (Chem. Fabr. Schering, D. R. P. 211869; C. 1909 II, 392).
- 4-Anisalamino-phenol-methyläther, Anisal-p-anisidin $C_{15}H_{16}O_2N = CH_2 \cdot O \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Anisaldehyd und p-Anisidin (Hantzsch, Schwab, B. 34, 832). Weiße Blättchen. F: 142°.
- $\begin{array}{lll} \textbf{N-[4-Methoxy-phenyl]-isoanisaldoxim} & C_{15}H_{16}O_3N = CH_3\cdot O\cdot C_6H_4\cdot CH:N(:O)\cdot C_6H_4\cdot O\cdot CH_3 & \text{bezw.} & CH_3\cdot O\cdot C_6H_4\cdot HC \\ \hline O\cdot CH_3 & \text{bezw.} & CH_3\cdot O\cdot C_6H_4\cdot HC \\ \hline O\cdot CH_3 & \text{s.} & \text{Syst. No. 4221.} \end{array}$
- $\begin{array}{ll} \textbf{N-[4-\Tilde{A}thoxy-phenyl]-isoanisaldoxim} & C_{16}H_{17}O_3N = CH_3\cdot O\cdot C_6H_4\cdot CH:N(:O)\cdot C_6H_4\cdot O\cdot C_8H_5 & \text{bezw. } CH_3\cdot O\cdot C_6H_4\cdot HC\underbrace{O\cdot C_8H_6} \cdot O\cdot C_8H_5 & \text{s. Syst. No. 4221.} \end{array}$
- 4-[4-Oxy-3-methoxy-bensalamino]-phenol, 4-Vanillalamino-phenol $C_{14}H_{18}O_3N=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:N\cdot C_6H_4\cdot OH.$ B. Aus Vanillin (Bd. VIII, S. 247) und 4-Aminophenol in Gegenwart 10% light Essigsäure (Rogow, B. 31, 175). Krystallinisches Pulver (aus Benzol). F: 203°. Leicht löslich in Aceton und Essigester, wenig in Chloroform und Ather.
- 4-[8.4-Dioxy-bensalamino]-phenol-methyläther, [8.4-Dioxy-bensal]-p-anisidin $C_{14}H_{13}O_3N = (HO)_3C_6H_3 \cdot CH : N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei etwa 10 Minuten langem Kochen von Protocatechualdehyd (Bd. VIII, S. 246) und p-Anisidin in alkoh. Lösung (R., B. 31, 176). Goldgelbe Krystalle (aus Benzol). F: 161—161,5°. Leicht löslich in Aceton, Essigester und heißem Chloroform, weniger in kaltem Chloroform, ziemlich löslich in Äther. Die alkoh. Lösung wird von Eisenchlorid braunrot gefärbt.
- 4-[4-Oxy-3-methoxy-benzalamino]-phenol-methyläther, Vanillal-p-anisidin $C_{18}H_{18}O_2N=CH_3\cdot O\cdot C_0H_3(OH)\cdot CH:N\cdot C_0H_4\cdot O\cdot CH_2$. B. Beim Zusammenreiben von Vanillin und p-Anisidin (R., B. 31, 176). Farblose Prismen (aus Benzol oder Ligroin). F: 137°. Leicht löslich in Aceton, Essigester und Chloroform, ziemlich in Ather.
- 4-[8.4-Dioxy-bensalamino]-phenol-äthyläther, [3.4-Dioxy-bensal]-p-phenetidin $C_{15}H_{15}O_5N=(HO)_5C_6H_5\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Protocatechualdehyd (Bd. VIII, S. 246) und p-Phenetidin bei 120° (Goldschmidt, D. R. P. 92756; Frdl. 4, 1183). Gelbes Pulver. Krystallisiert mit 2 Mol. Wasser. F: 220° (Zers.).
- 4-[4-Oxy-3-methoxy-bensalamino]-phenol-āthylāther, Vanillal-p-phenetidin $C_{10}H_{17}O_1N=CH_3\cdot O\cdot C_0H_3(OH)\cdot CH:N\cdot C_0H_4\cdot O\cdot C_0H_5$. B. Aus Vanillin und p-Phenetidin bei 140° (Goldsjehudt, D. R. P. 91171; Frdl. 4, 1183) oder beim Erhitzen mit Alkohol auf dem Wasserbade (Zidmer & Co., D. R. P. 96342; Frdl. 4, 1185). Gelbliche, prismatische Krystalle (aus Benzol-Petrolāther). Krystallisiert aus Wasser mit 3 H_2O (G.). Die wasserfreie Verbindung schmilzt bei 102° (Z. & Co.), die wasserhaltige bei 97° (G.). Die wasserfreie Verbindung ist leicht löslich in Alkohol, Benzol, Chloroform, schwer in Petrolāther, fast unlöslich in Wasser (Z. & Co.). Sulfat. Gelbe Nadeln. F: 148—149° (Z. & Co.).
- 4-[3.4-Dimethoxy-bensalamino]-phenol-äthyläther, Veratral-p-phenetidin $C_{17}H_{19}O_2N=(CH_3\cdot O)_2C_2H_3\cdot CH:N\cdot C_2H_4\cdot O\cdot C_2H_5$. B. Aus Veratrumaldehyd (Bd. VIII, S. 255) und p-Phenetidin bei ca. 110^6 (Goldschmidt, D. R. P. 92757; Frdl. 4, 1184). Gelbes Pulver (aus Wasser). Krystallisiert mit 2 H_3O . F: 210°. Unlöslich in Åther.
- 4-[8-Methoxy-4-phenacyloxy-bensalamino]-phenol-äthyläther, [8-Methoxy-4-phenacyloxy-bensal]-p-phenetidin $C_{24}H_{23}O_4N=C_6H_5\cdot CO\cdot CH_2\cdot O\cdot C_2H_3(O\cdot CH_3)\cdot CH:$ N·C₆H₄·O·C₂H₅. B. Aus Vanillinphenacyläther (Bd. VIII, S. 258) und p-Phenetidin (ZIMMER & Co., D. R. P. 101684; Frdl. 5, 765; C. 1899 I, 1175). F: 91—92°.

- 4 [3 Methoxy 4 (carbāthoxy oxy) bensalamino] phenol āthylāther, [3-Methoxy-4-(carbāthoxy-oxy)-bensal]-p-phenetidin $C_{19}H_{11}O_5N=C_2H_5\cdot O_2C\cdot O\cdot C_4H_3(O\cdot CH_3)\cdot CH:N\cdot C_2H_4\cdot O\cdot C_2H_5$. B. Aus Vanillinkohlensāureāthylester (Bd. VIII, S. 258) und p-Phenetidin (Z. & Co., D. R. P. 101684; C. 1899 I, 1174). F: 87—88°.
- 4-[4-Oxy-8-methoxy-benzalamino]-phenol-phenocyläther, 4-Vanillalamino-phenol-phenocyläther, ω -[4-Vanillalamino-phenoxy]-acetophenon $C_{22}H_{19}O_4N=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:N\cdot C_6H_4\cdot O\cdot CH_3\cdot CO\cdot C_6H_5$. B. Aus 4-Amino-phenol-phenocyläther (S. 439) und Vanillin (Bd. VIII, S. 247) (Z. & Co., D. R. P. 101684; C. 1899 I, 1174). F: 69—70°.
- 4-[8-Methoxy-4-phenacyloxy-benzalamino]-phenol-phenacyläther $C_{30}H_{45}O_5N=C_6H_5\cdot CO\cdot CH_2\cdot O\cdot C_6H_3(O\cdot CH_3)\cdot CH:N\cdot C_6H_4\cdot O\cdot CH_5\cdot CO\cdot C_6H_5$. B. Aus Vanillinphenacyläther (Bd. VIII, S. 258) und 4-Amino-phenol-phenacyläther (S. 439) (Z. & Co., D. R. P. 101684; C. 1899 I, 1174). F: 114—115°.
- **4** [3 Methoxy 4 (carbāthoxy oxy) bensalamino] phenol phenocylāther $C_{35}H_{35}O_6N = C_2H_5 \cdot O_2C \cdot O \cdot C_6H_3 \cdot O \cdot CH_3 \cdot CH_5 \cdot O \cdot C_6H_5 \cdot CO \cdot C_6H_5 \cdot B$. Aus Vanillinkohlensaureāthylester (Bd. VIII, S. 258) und 4-Amino-phenol-phenocylāther (S. 439) (Z. & Co., D. R. P. 101684; C. 1899 I, 1174). F: 107—108°.
- 1-[4-Methoxy-phenyl]-cyclohexandion-(3.5)-mono-[4-äthoxy-anil], [4-Methoxy-phenyl] dihydroresorcin mono [4-äthoxy-anil] $C_{21}H_{23}O_3N=H_2C<\frac{CO}{CH(C_6H_4\cdot O\cdot CH_3)\cdot CH_2^*}>C:N\cdot C_6H_4\cdot O\cdot C_2H_5$ bezw. desmotrope Formen. B. Aus [4-Methoxy-phenyl]-dihydroresorcin (Bd. VIII, S. 298) und p-Phenetidin (Vorländer, Erig, A. 294, 311). Blättchen (aus Alkohol). F: 226°.
- $\gamma.\delta$ -Bis-[4-methoxy-phenylimino]-α-phenyl- δ -[4-methoxy-phenyl]-α-butylen $C_{31}H_{32}O_3N_2=CH_3\cdot O\cdot C_6H_4\cdot C(:N\cdot C_6H_4\cdot O\cdot CH_3)\cdot C(:N\cdot C_6H_4\cdot O\cdot CH_3)\cdot CH:CH\cdot C_8H_5$. B. Aus Acetylanisoyl (Bd. VIII, S. 288), Benzaldehyd und p-Anisidin in Alkohol auf dem Wasserbade (Borsche, Titsingh, B. 42, 4287). Gelbe Nadeln (aus Alkohol). F: 158°.
- [d-Glykose]-[4-äthoxy-anil] $C_{14}H_{21}O_{6}N = C_{6}H_{12}O_{5}:N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. $C_{6}H_{11}O_{5}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. Zur Konstitution vgl. Irvine, Gilmour, Soc. 93, 1432; 95, 1545; Irvine, Bio. Z. 23, 363. B. Durch Kochen von d-Glykose (Bd. I, S. 879) mit p-Phenetidin in absol. Alkohol (Claus, Rér, D. R. P. 97736; C. 1898 II, 695) oder in verd. Alkohol (I., G., Soc. 95, 1550). Nådelehen (aus Alkohol). F: 160° (C., R.). Krystalle mit 1 Mol. Wasser, die bei 95° erweichen und bei 110—120° unter Zersetzung schmelzen (I., G.). Schwer löslich in kaltem, leicht in siedendem Wasser und in kochendem Alkohol, sehr wenig in Äther, ziemlich leicht in kaltem Alkohol (C., R.). Löst sich in konz. Schwefelsäure mit grünlichgelber Farbe, welche mit der Zeit grünschwarz wird (C., R.). Zeigt Mutarotation; die methylalkoholische Lösung (c = 3,4660) zeigt den Anfangswert der optischen Drehung [a]p: —96,1°; der Drehungswert der Lösung sinkt beim Stehen und erreicht schließlich den konstanten Wert [a]p: —38,3° (I., G.).
- Tetraacetyl-[d-glykose]-[4-äthoxy-anil] $C_{22}H_{29}O_{10}N = (CH_3 \cdot CO \cdot O)_4C_8H_8O : N \cdot C_8H_4 \cdot O \cdot C_2H_8$ bezw. $(CH_3 \cdot CO \cdot O)_4C_8H_7O \cdot NH \cdot C_8H_4 \cdot O \cdot C_8H_8$. B. Aus β -Acetobrom-d-glykose (Bd. II, S. 162) und p-Phenetidin in absolut-ätherischer Lösung (Mostowski, C. 1909 II, 1267). Nadeln. F: 132°. Leicht löslich in Äther, schwer in Alkohol, unlöslich in Petroläther und kaltem Wasser.
- [d-Galaktose]-[4-äthoxy-anil] $C_{16}H_{11}O_{6}N=C_{6}H_{12}O_{5}$: $N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. $C_{6}H_{11}O_{5}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. Zur Konstitution vgl. IRVINE, Mc NICOLL, Soc. 97 [1910], 1450. B. Durch Erhitzen von d-Galaktose (Bd. I, S. 909) mit p-Phenetidin in alkoh. Lösung (Claus, Rée, D. R. P. 97736; C. 1898 II, 695). Säulen (aus Alkohol). F: 165°; löslich in Wasser und Alkohol, unlöslich in Äther (C., R.).
- b) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit Monound Polycarbonsäuren.
- 4-Formamino-phenol C₇H₇O₂N = OHC·NH·C₆H₄·OH. B. Beim Kochen von 4-Amino-phenol mit 50%/oiger Ameisensäure (DAHL & Co., D. R. P. 146265; C. 1903 II, 1227).

 Nadeln (aus heißem Wasser). F: 139—140%. Ziemlich schwer löslich in kaltem Wasser, leicht in heißem Wasser. Verwendung zur Darstellung von Azofarbstoffen: D. & Co.
- 4-Formamino-phenol-methyläther, Ameisensäure-p-anisidid, Form-p-anisidid C₈H₉O₂N = OHC·NH·C₂H₄·O·CH₃. B. Beim Kochen von p-Anisidin mit Ameisensäure (BAYER & Co., D. R. P. 49075; Frdl. 2, 528; Fröhlich, Wedekind, B. 40, 1009) oder mit Ameisensäure-äthylester (B. & Co.). Beim Erhitzen von salzsaurem p-Anisidin, Ameisen-

- säure und ameisensaurem Natrium (B. & Co.). Prismen (aus_Alkohol). F: 80—81° (F., W.), 81° (B. & Co.). Leicht löslich in den meisten Lösungsmitteln (F., W.). Gibt mit Natrium-äthylat und Methyljodid in Alkohol ein öliges Produkt, das beim Kochen mit konz. Salzsäure Methyl-p-anisidin liefert (F., W.). Über Formaldehydderivate des Form-p-anisidids vgl. Orlow, C. 1906 I, 1414.
- 4-Formamino-phenol-äthyläther, Ameisensäure-p-phenetidid, Form-p-phenetidid C₂H₁₁O₂N = OHC·NH·C₂H₄·O·C₂H₅. B. Beim Kochen von p-Phenetidin mit Ameisensäure (βανεβ & Co., D. R. P. 49075; Frdl. 2, 528; Wedekind, Fröhlich, B. 40, 1002) oder mit Ameisensäure-äthylester (βα. & Co.). Beim Erhitzen von salzsaurem p-Phenetidin, Ameisensäure und ameisensaurem Natrium (βα. & Co.). Aus p-Phenetidin und Ameisensäure-essigsäure-anhydrid (βέμαι, A.ch. [7] 20, 429; D. R. P. 115334; C. 1900 II, 1141). Blättchen (aus Wasser). F: 69° (βα. & Co.), 68,5° (βέ.), 68—70° (W., F.). Schwer löslich in kaltem Wasser, leichter in Alkohol, Äther und heißem Wasser (βα. & Co.). Kryoskopisches Verhalten in Benzol: Auwers, Ph. Ch. 15, 44. Gibt mit Natriummethylat und Methyljodid in Methylalkohol ein öliges Produkt, das durch Kochen mit konz. Salzsäure Methyl-p-phenetidin liefert (W., F.).
- 4-Formylanilino-phenol, 4-Oxy-N-formyl-diphenylamin $C_{12}H_{11}O_2N=OHC\cdot N(C_0H_5)\cdot C_0H_4\cdot OH.$ B. Bei 2—3-stdg. Kochen von 4-Oxy-diphenylamin (8. 444) mit überschüssiger Ameisensäure und etwas Natriumformiat (Philip, Calm, B. 17, 2435). Nadeln (aus Alkohol). F: 178°. Leicht löslich in heißem Alkohol, löslich in Äther, heißem Benzol und Eisessig.
- 4-[Formyl-o-toluidino]-phenol, 4'-Oxy-2-methyl-N-formyl-diphenylamin $C_{14}H_{15}O_2N=OHC\cdot N(C_6H_4\cdot CH_3)\cdot C_6H_4\cdot OH$. B. Beim Kochen von 4-o-Toluidino-phenol (S. 447) mit Ameisensäure und etwas Natriumformiat (Philip, J. pr. [2] 34, 60). Prismatische Nädelchen (aus verd. Alkohol). F: 136,5°. Leicht löslich in Alkohol und Eisessig, mäßig in Benzol.
- 4-[Formyl-(2-nitro-bensyl)-amino]-phenol-methyläther, N-[2-Nitro-bensyl]-[form-p-anisidid] $C_{15}H_{16}O_4N_2 = OHC \cdot N(CH_2 \cdot C_6H_4 \cdot NO_2) \cdot C_6H_4 \cdot O \cdot CH_2$. B. Bei 4-stdg. Kochen von 1 Tl. [2-Nitro-benzyl]-p-anisidin mit 4 Tln. Ameisensäure (SCHILLING, J. pr. [2] 54, 284). Säulen (aus Alkohol). F: 69°. Mit Zinkstaub + Salzsäure entsteht 3-[4-Methoxy-phenyl]-chinazolindihydrid (Syst. No. 3474).
- 4 [Formyl (2 nitro bensyl) amino] phenol äthyläther, N-[2-Nitro-bensyl]-[form p phenetidid] $C_{16}H_{16}O_4N_4 = OHC \cdot N(CH_3 \cdot C_6H_4 \cdot NO_3) \cdot C_6H_4 \cdot O \cdot C_8H_5$. B. Bei 2-3-stdg. Kochen von [2-Nitro-benzyl]-p-phenetidin mit konz. Ameisensäure (PAAL, KÜTTNER, J. pr. [2] 48, 556). Tafeln (aus Benzol), Pyramiden (aus verd. Alkohol). F: 96°. Wird von Zinn und Salzsäure zu 3-[4-Äthoxy-phenyl]-chinazolindihydrid (Syst. No. 3474) reduziert.
- N.N'-Bis-[4-methoxy-phenyl]-formamidin $C_{18}H_{18}O_{2}N_{8} = CH_{8}\cdot O\cdot C_{8}H_{4}\cdot NH\cdot CH: N\cdot C_{8}H_{4}\cdot O\cdot CH_{3}$. B. Durch Erhitzen von p-Anisidin mit Orthoameisensäureäthylester in Alkohol (Goldschaudt, Ch. Z. 22, 1033; D. R. P. 97103; C. 1898 II, 523). Aus Dichlormethyl-formamidin-hydrochlorid (Bd. II, S. 90) und p-Anisidin in Benzol (Dains, B. 35, 2502). F: 1126 (G.).
- N.N'-Bis-[4-äthoxy-phenyl]-formamidin $C_{17}H_{20}O_2N_2=C_2H_5\cdot O\cdot C_6H_4\cdot NH\cdot CH:N\cdot C_6H_4\cdot O\cdot C_2H_5$. Beim Erhitzen von p-Phenetidin mit Orthoameisensäureäthylester in Alkohol (Goldschmidt, Ch. Z. 22, 1033; D. R. P. 97103; C. 1898 II, 523). Krystalle (aus verd. Alkohol). F: 115°. Hydrochlorid. Schmilst oberhalb 200°.
- 4-Acetamino-phenol C₈H₉O₂N = CH₈·CO·NH·C₈H₄·OH. B. Aus 4-Nitro-phenol durch Reduktion mit Zinn und Eisessig (Morse, B. 11, 232) oder mit Zinn und 100°/₀iger Essigsäure, die man durch Hinzufügen der erforderlichen Menge Essigsäureanhydrid zu Eisessig erhält (Tingle, Williams, Am. 37, 63). Aus 4-Amino-phenol mit Eisessig (Vignolo, R. A. L. [5] 6 I, 71) oder Essigsäureanhydrid (Friedländer, B. 26, 178). Durch Schütteln einer Lösung von 10,9 g 4-Amino-phenol in 100 ccm Wasser und 7 g Eisessig mit 12,3 g Essigsäureanhydrid (A. Luntère, L. Lumtère, Barbier, Bl. [3] 33, 785). Prismen (aus Wasser und aus Alkohol). Monoklin prismatisch (Fris, Z. Kr. 32, 387; vgl. Groth, Ch. Kr. 4, 240). F: 168—169° (Fe.), 167—168° (Vi.), 166° (Fe.). D²¹: 1,293 (Fe.). Unlöslich in kaltem Wasser, sehr leicht Jöslich in heißem und in Alkohol (Morse). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 23, 462. Liefert, in konz. Schwefelsäure gelöst, beim Versetzen mit einem Gemisch aus konz. Schwefelsäure und 60°/₀iger Selpetersäure unter guter Kühlung 2.6-Dinitro-4-acetamino-phenol (Cassella & Co., D. R. P. 172978; C. 1906 II, 984). Beim Erhitzen mit Schwefel und Schwefelslkali entsteht ein brauner Schwefelfarbstoff (Koetzle, D. R. P. 121052; C. 1901 I, 1397). Verwendung zur Darstellung von Azofarbstoffen: Dahl & Co., D. R. P. 146265; C. 1903 II, 1227. C₈H₉O₂N + 3 HF + 2 H₂O (Weinland, Lewkowitz, Z. a. Ch. 45, 44). Rhombisch (Sommerfeldt, Z. a. Ch. 45, 44).

4-Acetamino-phenol-methyläther, Essigsäure-p-anisidid, Acet-p-anisidid, Methacetin C₂H₁·O₂N = CH₃·CO·NH·C₂H₄·O·CH₃. B. Aus p-Anisidin bei mehrstündigem Erwärmen mit Eisessig (Körner, Wender, G. 17, 493), beim Schütteln mit Acetanhydrid und Wasser (Reverdin, Bucky, B. 36, 2689; Bl. [3] 35, 1110; C. 1906 II, 1189), beim Übergießen mit Thioessigsäure (Pawlewski, B. 35, 111). — Tafeln (aus Wasser). Ist triboluminescent (Trautz, Ph. Ch. 53, 54). F: 130—1320 (Pa.), 127,1° (Kö., We.). 100 Tle. 96% giger Alkohol lösen bei 21,2° 12,71 Tle. (Kö., We.). — Acet-p-anisidid liefert beim Kochen mit 11% giger Salpetersäure (Reverdin, B. 39, 2595; J. 1896, 1156; Bl. [3] 17, 115) sowie auch, in der 4-fachen Gewichtsmenge Eisessig gelöst, beim Zufügen des gleichen Vol. Salpetersäure (D: 1,27) bei höchstens 20° 3-Nitro-4-acetamino-anisol (Wender, G. 19, 220). Löst man Acet-p-anisidid in konz. Salpetersäure (D: 1,42), so erhält man 2.3-Dinitro-4-acetamino-anisol (Meldola, Eyre, Soc. 81, 990). Wird die Nitrierung in konz. Schwefelsäure mit einem Gemisch der äquimolekularen Menge Salpetersäure (D: 1,34) mit konz. Schwefelsäure bei 5° vorgenommen, so erhält man 2-Nitro-4-acetamino-anisol (Höchster Farbw., D. R. P. 101778; Frdl. 5, 68; Reverdin, Bucky, B. 39, 2689; Bl. [3] 35, 1110; C. 1906 II, 1189). Nitriert man Acet-p-anisidid in konz. Schwefelsäure mit einem großen Überschuß von Salpetersäure (D: 1,4 oder 1,52), so erhält man 2.6-Dinitro-4-amino-anisol und seine Acetylverbindung, sowie 2.5-Dinitro-4-acetamino-anisol (Reverdin, Bucky, B. 39, 2690). Geschwindigkeit der Verseifung des Acet-p-anisidids durch wäßr. Natronlauge: Davis, Soc. 95, 1403. — Acet-p-anisidid wirkt antipyretisch und antineuralgisch; über die physiologische Wirkung vgl. Hinsberg, Treuter, A. Pih. 33, 231; C. 1894 I, 641. — Quecksilber-acet-panisidid Hg(C₉H₁₀O₃N)₃. B. Aus Acet-p-anisidid und Sublimat in alkoh. Lösung durch Soda (Prussia, G. 28 II, 123; Pesci, G. 28 II, 459). Nadeln. F: 191—191,5° (Pr.), 190° bis 190,5° (Pr.). Wird durch die

M-Phenyl-N'-[4-methoxy-phenyl]-acetamidin C₁₅H₁₆ON₂ = C₆H₅·N:C(CH₃)·NH·C₆H₄·O·CH₃ bezw. C₆H₅·NH·C(CH₃):N·C₆H₄·O·CH₃. B. Bei längerem Erhitzen von Acetp-anisidid mit salzsaurem Anilin (Täuber, D. R. P 80568; Frdl. 4, 1177). — Dickflüssiges Ol. Kp₈₀: 295—300°. Leicht löslich in Alkohol und Äther, schwer in Wasser und Petroläther. N-[4-Methoxy-phenyl]-N'-[2-äthoxy-phenyl]-acetamidin C₁₇H₂₀O₂N₂ = C₂H₅·O·C₆H₄·N:C(CH₃)·NH·C₆H₄·O·CH₃ bezw. C₂H₅·O·C₆H₄·NH·C(CH₃):N·C₆H₄·O·CH₃. B. Durch 12-stdg. Erhitzen von 16 Tln. salzsaurem p-Anisidin mit 17,5 Tln. salzsaurem o-Phenetidin (S. 359) und 6,6 Tln. Acetonitril im geschlossenen Gefäß auf 230—240° (Täuber, D. R. P. 80568; Frdl. 4, 1178). — Warzen. F: 85°. Leicht löslich in Alkohol und Äther, schwer in Ligroin.

4-Acetamino-phenol-äthyläther, Essigsäure-p-phenetidid, Acet-p-phenetidid, Phenacetin C₁₀H₁₃O₂N = CH₃·CO·NH·C₆H₄·O·C₅H₅. B. Aus p-Phenetidin durch Kochen mit überschüssigem Eisessig (Hinsberg, A. 305, 278), durch Schütteln mit überschüssigen Essigsäureanhydrid in Gegenwart von Eiswasser (Hi.), durch Einw. von Thioessigsäure (Pawlewski, B. 35, 111). Man löst 4-Acetamino-phenol in der äquimolekularen Menge starker Natronlauge, fügt 1 Mol.-Gew. Athylbromid oder Athyljodid und soviel Alkohol hinzu, daß eine homogene Flüssigkeit entsteht, und erwärmt 2—3 Stdn. auf dem Wasserbade (Hi.). Bei 4-stdg. Erhitzen von 4-Acetamino-phenol mit äthylschwefelsaurem Kalium in wäßrig-alkoholischem Natron im geschlossenen Gefäß auf 150° (Täuber, D. R. P. 85988; Frdl. 4, 1167).

Prismen oder Tafeln (aus verd. Alkohol). Monoklin prismatisch (Monti, Z. Kr. 25, 415; vgl. Groth, Ch. Kr. 4, 242). F: 135° (Hi.), 137—138° (Paw.). Löslich in ca. 1500 Tln. kaltem Wasser (Hi.), in ca, 1400 Tln. Wasser bei 20°, in 80 Tln. siedendem Wasser (Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 524). Es enthalten in 100 g gesättigter Lösung: Wasser 0,11 g bei 25°, Ather 1,56 g bei 25°, Chloroform 4,76 g bei 25°, Aceton 10,68 g bei 30—31°, Benzol 0,65 g bei 30—31°, Benzaldehyd 8,44 g bei 30—31°, Amylacetat 2,42 g bei 30—31°, Anilin 9,46 g bei 30—31°, Amylalkohol 3,51 g bei 25°, 99,5% Essigsäure 13,65 g bei 21,5°, Xylol 1,25 g bei 32,5°, Toluol 0,30 g bei 25° (Seidell, Am. Soc. 29, 1091). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 23, 462. Molekulare Verbrennunsgwärme bei konstantem Druck: 1303 Cal. (Lemoult, C. r. 143, 775). — Die Dämpfe des Phenacetins zeigen unter dem Einfluß von Teslaströmen bei atmosphärischem Druck blaue Luminescenz (Kauffmann, Ph. Ch. 28, 695; B. 33, 1732).

Löst man 50 g Phenscetin in 500 com Eisessig und 130 ccm konz. Salzsäure und fügt man Chlorlauge, erhalten durch Sättigen von 64 ccm 40% jeger heißer Natronlauge mit Chlor, unter Kühlen hinzu, so erhält man 2-Chlor-4-acetamino-phenetol (Reverdin, Düring, B.

Zur Zusammensetzung und Formulierung vgl. die nach dem Literatur-Schlußtermin der
 Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von EMERY, Am. Soc. 88, 143, 148.

82, 156). Löst man 36 g Phenacetin in 200 ccm Eisessig und versetzt nach Zugabe von 17 g NaClO₃, gelöst in wenig Wasser, auf einmal mit 60 ccm konz. Salzsäure unter Wasserkühlung, so entsteht 2.5-Dichlor-4-acetamino-phenetol neben 2-Chlor-4-acetamino-phenetol und anderen Produkten (RE., Dt.; vgl. BARGELLINI, G. 59 [1929], 19, 29). Versetzt man eine Lösung von Phenacetin in Eisessig mit Salzsäure und gibt Kaliumbromid und Kaliumbromat (VAUBEL, J. pr. [2] 52, 421; 55, 217) oder Bromlauge, erhalten durch Eintragen von Brom in heiße Natronlauge (Hodurek, B. 30, 477) hinzu, so erhält man 2-Brom-4-acetamino-phenetol. Phenacetin liefert bei der Einw. von Jod-Jodkalium und Salzsäure oder von Jod und Jodwasserstoffsäure die Verbindung 2C₁₀H₁₈O₂N+ HI+4I (s. u.) (RIEDEL, D. R. P. 58409; Frdl. 3, 875; SCHOLVIEN, P. C. H. 32, 311; vgl. EMERY, Am. Soc. 38 [1916], 141, 146). Phenacetin liefert beim Aufkochen mit etwa der doppelten der von der Theorie geforderten Menge 10—12% jiger Salpetersäure (Autenrieth, Hinsberg, Ar. 229, 457; Hi., A. 305, 279) oder, in dem 4-fachen Gewicht Eisessig gelöst, durch Zufügen des gleichen Volumens Salpetersäure (D: 1,27) bei höchstens 20° (Wender, G. 19, 219) oder beim Behandeln mit Benzoylnitrat in Tetrachlorkohlenstoff 3-Nitro-4-acetamino-phenetol (Buttier, B. 39, 2007). 3807). Nitriert man 1 g Phenacetin mit 5 ccm Salpetersäure (D: 1,52) unter Eiskühlung (Blanksma, R. 27, 49) oder, in der 5-fachen Menge seines Gewichts Eisessig gelöst, mit dem gleichen Vol. Salpetersäure (D: 1,54) bei 5°, so entsteht 2.3-Dinitro-4-acetamino-phenetol (WE.). Phenacetin liefert beim Erhitzen mit konz. Schwefelsäure 4-Acetamino-phenetolsulfonsäure-(2) (Syst. No. 1926) (G. Cohn, A. 309, 233). Durch Schwefelsäure von 80-90% entstehen 4 - Amino - phenol, 4 - Amino - phenol - sulfonsäure - (2) und Essigester (G. Co.). 50% ige Schwefelsäure liefert in der Kälte ein Sulfat, welches durch Wasser sofort wieder Phenacetin liefert, in der Hitze Essigsäure und p-Phenetidin (G. Co.). Bei der Einw. von Phosphoroxychlorid auf Phenacetin entstehen je nach den Bedingungen N.N.-Bis-[4-äthoxy-phenyl]-acetamidin (S. 468) (Täuber, D. R. P. 79868; C. 1897 I, 1100) oder eine Verbindung C₂₀H₂₂O₂N₂ (s. u.) (Silberstein, D. R. P. 137121; C. 1903 I, 107). N.N.-Bis-[4-äthoxy-phenyl]-acetamidin entsteht auch bei der Einw. von Phosphortrichlorid oder Phosphorpentachlorid auf Phenacetin (Täuber, D. R. P. 79868). Geschwindigkeit der Zersetzung des Phenacetins durch wäßr. Natronlauge: Davis, Soc. 95, 1403.

Phenacetin findet Verwendung als Antipyreticum und Antineuralgicum; über die physio-

logische Wirkung vgl. HINSBERG, TREUPEL, A. Pth. 83, 232; C. 1894 I, 641.

Kocht man Phenacetin mit Salzaäure und gibt zu der verdünnten Lösung etwas Chromsäure, so tritt allmählich eine rubinrote Färbung ein (Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 524). Phenacetin gibt in einer Verdünnung von 1:100 mit Natriumhypobromit in Gegenwart von etwas Ammoniak eine tiefbernsteinbraune, bei der Verdünnung 1:1000 eine bernsteingelbe Färbung (Dehn, Scott, Am. Soc. 30, 1422). Farbreaktionen des Phenacetins mit Natriumpersulfat, Bromwasser und Millons Reagens: Barbal, C. 1904 I, 1107. Phenacetin färbt sich beim Erwärmen mit 10—12% giger Salpetersäure gelb, indem es in 3-Nitro-4-acetamino-phenetol übergeht (Unterscheidung von Acetanilid und Antipyrin) (Auv., Hi.; Hi.). Unterscheidung des Phenacetins von Aspirin und Salophen: Referon, C. 1907 II, 637.

C. 1907 II, 637.

C₁₀ H₁₂O₂N + HF + H₂O. Nadeln. Verwittert rasch (Weinland, Lewkowitz, Z. a. Ch. 45, 47). — C₁₀ H₁₂O₂N + 3 HF + 2 H₂O. Tafeln. Triklin pinakoidal (Sommerfeldt, Z. a. Ch. 45, 46; vgl. Groth, Ch. Kr. 4, 242). Wird beim Lösen in Wasser oder Alkohol zersetzt (W., L., Z. a. Ch. 45, 46). — 2 C₁₀ H₁₂O₂N + HI + 4 I¹). B. Bei der Einw. von Jod-Jod-kalium und Salzsäure oder von Jod und Jodwasserstoffsäure auf Phenacetin (Riedel, D. R. P. 58409; Frdl. 3, 875; Scholvien, P. C. H. 32, 311). Grünrot schillernde Säulen oder braune Nadeln (aus Essigsäure). Leicht löslich in Eisessig, ziemlich leicht in Alkohol, schwer in Benzol und Chloroform, fast unlöslich in Wasser. Gibt das Jod leicht ab, so z. B.

beim Kochen mit Wasser.

Verbindung $C_{50}H_{25}O_{3}N_{2}$. B. Man erhitzt 100 g Phenacetin mit 115 g Phosphoroxychlorid 6 Stdn. auf dem Wasserbade und gießt dann in 150 g Wasser; das nach 24-stdg. Stehen abgeschiedene salzsaure Salz zerlegt man nach dem Wasschen mit Salzsäure in wäßr. Lösung durch Alkalien (Silberstein, D. R. P. 137121; C. 1903 I, 107). — Krystalle. F: 220°. — $C_{20}H_{22}O_{2}N_{2}$ + HCl. Gelbe Nadeln. F: 265°. Ziemlich leicht löslich in Alkohol, schwer in Wasser.

4-Acetamino-phenol-[β-brom-šthyl]-šther, Essigsäure-[ω-brom-p-phenetidid] $C_{19}H_{19}O_pNBr = CH_3^*\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3\cdot CH_3Br$. B. Man versetzt 4-Acetamino-phenol mit 1 Mol.-Gew. konz. Natronlauge, überschüssigem Äthylenbromid und soviel Alkohol, daß Lösung eintritt, und kocht das Gemisch 6—8 Stdn. auf dem Wasserbade (Hinsberg, A. 305, 283; Täure, D. R. P. 85988; Frdl. 4, 1167). — Nädelchen (aus verd. Alkohol). F: 130° (T.; H.). Leicht löslich in Alkohol und Eisessig, schwer in Wasser (T.; H.).

Zur Zusammensetzung und Formulierung vgl. die nach dem Literatur-Schlußtermin der
 Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von EMERY (Am. Soc. 38, 141, 146).

- N-Phenyl-N'-[4-äthoxy-phenyl]-acetamidin $C_{16}H_{18}ON_2 = C_6H_5 \cdot N : C(CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $C_6H_5 \cdot NH \cdot C(CH_3) : N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Bei längerem Erhitzen von Phenacetin mit salzsaurem Anilin (Täuber, D. R. P. 80568; Frdl. 4, 1179). Monoklin (Fock, Z. Kr. 29, 282). F: 85°; leicht löslich in Alkohol und Äther, schwer löslich in Petroläther und Wasser (T.).
- N-[3-Methoxy-phenyl]-N'-[4-äthoxy-phenyl]-acetamidin $C_{17}H_{20}O_2N_2 = CH_3 \cdot O \cdot C_6H_4 \cdot N : C(CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $CH_3 \cdot O \cdot C_6H_4 \cdot NH \cdot C(CH_3) : N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Beim Erhitzen von Acet-o-anisidid und Phenacetin im Chlorwasserstoffstrom auf 150° (T., D. R. P. 80568; Frdl. 4, 1179). Prismen und Nadeln (aus verd. Alkohol). F: 107°. Leicht löslich in Alkohol und Äther.
- N-[2-Äthoxy-phenyl]-N'-[4-äthoxy-phenyl]-acetamidin $C_{18}H_{22}O_2N_2=C_2H_5\cdot O\cdot C_0H_4\cdot NH\cdot C(CH_3):N\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Beim 5-stdg. Erhitzen von Phenaeetin und salzsaurem o-Phenetidin auf 180° (T., D. R. P. 80568; Frdl. 4, 1180). Warzen. F: 75°. Leicht löslich in Alkohol und Äther, schwer in Ligroin.
- Acet-p-phenetidid-oxim $C_{10}H_{14}O_{2}N_{3} = CH_{3} \cdot C(:N \cdot OH) \cdot NH \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5}$ bezw. $CH_{3} \cdot C(NH \cdot OH) \cdot N \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5}$. B. Aus p-Phenetidin und Acethydroximsäurechlorid (Bd. II, S. 188) in Alkohol (Wieland, B. 4Q, 1679). Tafeln (aus Alkohol). F: 148°. Mäßig löslich in organischen Lösungsmitteln; löslich in Säusen und Alkalien. Wird mit Eisenchlorid carmoisinrot.
- Acet-p-phenetidid-oximacetat $C_{19}H_{16}O_3N_9 = CH_3 \cdot C(:N \cdot O \cdot CO \cdot CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_6$ bezw. $CH_3 \cdot C(NH \cdot O \cdot CO \cdot CH_3) : N \cdot C_9H_4 \cdot O \cdot C_2H_5 \cdot B$. Beim Übergießen von Acet-p-phenetidid-oxim mit Essigsäureanhydrid (W., B. 40, 1679). Prismen (aus Benzol + Ligroin). F: 117—118°. Färbt sich mit Eisenchlorid rot.
- 4-Chloracetamino-phenol-äthyläther, Chloressigsäure-p-phenetidid $C_{10}H_{12}O_2NCl=CH_2Cl\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Chloracetylchlorid in Toluol (BISTRZYCKI, ULFFERS, B. 31, 2790). Durch Erhitzen äquimolekularer Mengen von salzsaurem p-Phenetidin und Chloracetamid auf 160—170° (BAYER & Co., D. R. P. 84654; Frdl. 4, 1153). Durch Einw. von P_2O_5 auf chloressigsaures p-Phenetidin (Grothe, Ar. 238, 590; BA. & Co., D. R. P. 79174; Frdl. 4, 1154). Prismen oder Blätter. F: 145—146° (BI., U.), 148° (GR.). Leicht löslich in heißem Alkohol und Benzol, etwas in Wasser, fast unlöslich in Äther und Ligroin (BI., U.).
- 4 Trichloracetamino phenol äthyläther, Trichloressigsäure p phenetidid $C_{10}H_{10}O_2NCl_3 = CCl_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Trichloracetylchlorid und p-Phenetidin in wasserfreiem gekühltem Äther (L. Spiegel, P. Spiegel, B. 40, 1734). Täfelchen (aus Alkohol). F: 132°. Leicht löslich in Alkohol, Chloroform, Benzol, ziemlich in Äther, unlöslich in Wasser.
- **4-Bromacetamino-phenol-äthyläther, Bromessigsäure-p-phenetidid** $C_{10}H_{12}O_2NBr = CH_2Br \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und Bromessigsäurebromid (BISCHOFF, B. 33, 1395). Nädelchen (aus Alkohol und Aceton). Bräunt sich bei 165° und schmilzt zwischen 171,5 und 176°. Löslich in Benzol.
- **4-Thioacetamino-phenol-äthyläther, Thioessigsäure-p-phenetidid** $C_{10}H_{13}ONS = CH_3 \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. *B*, Aus 4-Äthoxy-phenylsenföl und Methylmagnesiumjodid (Sachs, Loevy, *B*. 37, 876). Gelbliche Blättchen (aus Essigsäure). F: 99—100°. Leicht löslich in Alkohol, Äther, Benzol, Eisessig, unlöslich in Wasser; löslich in kalten Alkalien.
- 4-Acetamino-phenol-propyläther $C_{11}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot CH_2\cdot CH_3$. B. Aus 4-Amino-phenol-propyläther (S. 438) durch Kochen mit Eisessig oder durch Schütteln mit Essigsäureanhydrid und Eiswasser (HINSBERG, A. 305, 283). Bei mehrstündigem Erwärmen einer Lösung von 4-Acetamino-phenol in Natronlauge mit Propyljodid und Alkohol auf dem Wasserbade (H.). Blättchen (aus verd. Alkohol). F: 122° (H.). Schwer löslich in Alkohol, löslich in Eisessig und in 6000 Tln. Wasser von 30° (H.). Wirkt schwächer antipyretisch als Phenacetin; über die physiologische Wirkung vgl. H.; H., TREUPEL, A. Pth. 33, 233; C. 1894 I, 641.
- 4-Acetamino-phenol-isoamyläther $C_{18}H_{19}O_3N=CH_3\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_5H_{11}$. B. Bei gelindem Erwärmen von 4-Amino-phenol-isoamyläther mit überschüssigem Acetanhydrid (Spiegel, Sabbath, B. 34, 1942). Nädelchen (aus sehr verd. Alkohol). F: 97°. Schwer löslich in heißem Wasser und verd. Alkohol, sehr leicht in 96% alkohol und Äther.
- 4-Acetamino-phenol-[3.4-dinitro-phenyl]-äther, 2.4-Dinitro-4-acetamino-diphenyläther $C_{14}H_{11}O_6N_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_6H_3(NO_2)_2$. B. Durch Kochen von 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und 4-Acetamino-phenol in Alkohol bei Gegenwart von Atzkali (Reverdin, Dresel, B. 37, 1518; Bl. [3] 31, 1080). Blättchen (aus Benzol). F: 195°. Leicht löslich in Aceton, Eisessig und Chloroform, ziemlich in Wasser, unlöslich in Ligroin. Gibt beim Kochen mit Salzsäure 4-Amino-phenol-[2.4-dinitro-phenyl]-äther (S. 438).

- 4-Acetamino-phenol-benzyläther $C_{15}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot C_6H_5$. Bei mehrstündigem Kochen von 4-Amino-phenol-benzyläther mit Eisessig (Jacobson, A. 287, 182). Tafeln. F: 139°. Leicht löslich in Alkohol und Eisessig.
- 4-Acetamino-phenol- $[\beta$ -salicoyloxy-āthyl]-āther, Āthylenglykol-[4-acetamino-phenylāther]-salicylat C_1 ; H_1 ; O_2 N = CH_2 · CO · NH · C_4 H $_4$ · O · CH_2 · CH_2 · O · CO · C_6 H $_4$ · OH. B. Beim Erwärmen von 4-Acetamino-phenol- $[\beta$ -brom-āthyl]-āther (S. 462) mit Natriumsalicylat auf 160—180° (HINSBERG, A. 305, 285; Höchster Farbw., D. R. P. 88950; Frdl. 4, 1169). Krystalle (aus Alkohol). F: 133° (HI.), 132—134° (Hö. F.). Schwer löslich in Alkohol (HI.). Physiologische Wirkting: Hö. F. Natriumsalz. Schwer löslich in Wasser (HI.).

Äthylenglykol-bis-[4-acetamino-phenyläther] $C_{18}H_{20}O_4N_5 = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CH_3 \cdot O \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Durch 4—5-stdg. Kochen von 4-Acetamino-phenol und Athylenbromid in alkoh. Kalilauge, neben 4-Acetamino-phenol-[β -brom-athyl]-ather (Tiuber, D. R. P. 85988; Frdl. 4, 1167; vgl. Hinsberg, A. 305, 284). Bei der Reduktion von Athylenglykol-bis-[4-irto-phenyläther] (Bd. VI, S. 232) mit Eisen und 99% jeger Essigsaure (Kinzel, Ar. 236, 261). — Schüppchen (aus Anilin oder Phenol). F: 260° (T.), 257° (K.). Sehr wenig löslich in den üblichen Lösungsmitteln (K.).

- 4-Acetamino-phenol-phenocyläthez, ω -[4-Acetamino-phenoxy]-acetophenon $C_{16}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_4\cdot CO\cdot C_6H_5$. B. Bei 2—3-stdg. Kochen von ω -Bromacetophenon (Bd. VII, S. 283) mit der Kaliumverbindung des 4-Acetamino-phenols in alkoh. Lösung unter Rückfluß (VIGNOLO, R. A. L. [5] 6 I, 71). Blättchen (aus Alkohol). F: ca. 160° (Zers.); sohwer löslich in Chloroform, Schwefelkohlenstoff und Benzol, leicht in Essigester, fast unlöslich in Wasser und Äther (V., R. A. L. [5] 6 I, 72). Wurde unter dem Namen "Hypnoacetin" als Hypnoticum und Antipyreticum empfohlen (V., R. A. L. [5] 4 I, 360).
- [4-Acetamino-phenyl]-acetat, O.N-Diacetyl-[4-amino-phenol] $C_{10}H_{11}O_3N = CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot CO \cdot CH_3$. B. Beim Erhitzen von 4-Amino-phenol mit Essigsäure-anhydrid (LADENBURG, B. 9, 1528; Hähle, J. pr. [2] 43, 62). Bei Einw. von Acetylchlorid auf 4-Acetamino-phenol (Tingle, Williams, Am. 87, 66). Blätter (aus Wasser). F: 150° bis 151° (LA.), 150° (Ti., Wil). Gibt bei Behandlung mit Salpetersäure allein [3-Nitro-4-acetamino-phenyl]-acetat (8. 522) (H.; vgl. Reverdin, Dresel, B. 37, 4455; Bl. [3] 31, 1272) bezw. [3.5-Dinitro-4-acetamino-phenyl]-acetat (8. 530) (R., D., B. 37, 4455; 38, 1593; C. 1905 I, 1601; Bl. [3] 31, 1272; 33, 562; R., Bucky, B. 39, 2687; Bl. [3] 35, 1108; C. 1906 II, 1188). Bei der Nitrierung mit Salpeterschwefelsäure erhält man 2.6-Dinitro-4-acetamino-phenol (S. 528) (R., B.) bezw. 2.3.6-Trinitro-4-acetamino-phenol (S. 533) (Meldola, Soc. 89, 1936; R., Me., J. pr. [2] 88 [1913], 786). O.N-Diacetyl-[4-amino-phenol] gibt in einer Lösung von Acetanhydrid und konz. Schwefelsäure mit Salpeterschwefelsäure neben wenig 2.6-Dinitro-4-acetamino-phenol eine Verbindung von Zersetzungspunkt 163,5° als Hauptprodukt (R., B.). Wird in Acetanhydrid von konz. Schwefelsäure zu 4-Acetamino-phenol verseift (R., B.).
- [4 Acetamino phenyl] benzoat, N Acetyl O benzoyl [4 amino phenol] $C_{18}H_{19}O_8N = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_8$. B. Bei der Einw. von Benzoylchlorid auf 4-Acetamino-phenol in Gegenwart von Kalilauge (Tingle, Williams, Am. 37, 66) bezw. Sodalösung (Reverdin, B. 39, 3794; Bl. [3] 35, 1256; C. 1907 I, 104). Nadeln (aus Alkohol). F: 166,5° (T., V.), 171° (R.). Leicht löslich in Essigsäure, verd. Alkohol, absol. Alkohol und Benzol (R.), wenig löslich in heißem Wasser (T., W.), unlöslich in Ligroin; unlöslich in Sodalösung (R.).
- [4-Acetamino-phenyl]-kohlensäure-äthylester C₁₁H₁₈O₄N = CH₃·CO·NH·C₆H₄·O·CO₅·C₂H₅. B. Beim Schütteln einer Lösung von 4-Acetamino-phenol in verd. Natronlauge mit Chlorameisensäureester (Bd. III, S. 10) unter Kühlung (Hinsberg, A. 305, 285). Entsteht ferner beim abwechselnden Versetzen einer alkoh. Lösung von 4-Acetamino-phenol mit Chlorameisensäureester und Natriumäthylat (Merck, D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). Nadeln (aus verd. Alkohol). F: 121° (H.), ca. 120° (M.), 118—119° (A. Lumière, L. Lumière, Perrin, Bl. [3] 33, 711). Löslich in Alkohol und Eisessig, sehwer löslich in Wasser (H.).
- [4-Acetamino-phenyl]-kohlensäure-propylester $C_{12}H_{15}O_4N = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO_2 \cdot C_3H_2$. B. Analog der des [4-Acetamino-phenyl]-kohlensäure-äthylesters (Merck, D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). Blättchen. F: 105—108°. Schwer löslich in Wasser
- [4-Acetamino-phenyl]-kohlensäure-butylester $C_{12}H_{17}O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO_2\cdot C_4H_9$. B. Analog der des [4-Acetamino-phenyl]-kohlensäure-äthylesters (Merck, D. R. P. 85803; Frdl. 4, 1164; C. 1897 I, 468). Krystalle. F: 117—120°.
- Bis-[4-acetamino-phenyl]-carbonat $C_{17}H_{16}O_5N_2=(CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O)_2CO.$ B. Man leitet Phosgen in eine Lösung von 5 Tln. 4-Acetamino-phenol und 1,4 Tln.

Natriumhydroxyd in 100 Tln. Wasser bis zum Eintritt saurer Reaktion (MERCK, D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). — Blättehen. F: ca. 200°. Schwer löslich in Wasser, leicht in Alkohol.

[4-Acetamino-phenyl]-kohlensäure-diäthylamid, Diäthylcarbamidsäure-[4-acetamino-phenyl]-ester $C_{13}H_{18}O_3N_2=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot N(C_2H_3)_2$. F: 90—91° (A. Lumière, L. Lumière, Perry, Bl. [3] 33, 713).

4-Acetamino-phenoxyessigsäure C₁₀H₁₁O₄N = CH₃·CO·NH·C₆H₄·O·CH₃·CO₅H. B. Durch Reduktion von 4-Nitro-phenoxyessigsäure (Bd. VI, S. 234) mit Zinn + Eisessig (Howard, B. 30, 546). Beim Schütteln einer Lösung von 4-Amino-phenoxyessigsäure (S. 440) in Natronlauge mit Essigsäureanhydrid unter Wasserkühlung (Kym, J. pr. [2] 55, 121). Aus 4-Acetamino-phenol und Chloressigsäure in Gegenwart von Natronlauge (H.). — Nadeln mit 1 H₃O aus heißem Wasser. Schmelzpunkt der wasserfreien Substanz: 174° (H., B. 30, 546), 175—176° (K.). Leicht löslich in heißem Wasser und Alkohol, schwerer in Äther (H., B. 30, 546). — Liefert bei der Nitrierung mit rauchender Salpetersäure unter Kühlung 2.3-Dinitro-4-acetamino-phenoxyessigsäure (H., B. 30, 2105; REVERDIN, DEESEL, B. 38, 1596; Bl. [3] 33, 566; Re., Bucky, B. 39, 2682; Bl. [3] 35, 1103; C. 1906 II, 1188) und 3.5-Dinitro-4-acetamino-phenoxyessigsäure (Re., Bu.). Bei der Nitrierung in konz. Schwefelsäure durch ein Gemisch aus konz. Schwefelsäure + Salpetersäure (D: 1,4 oder 1,52) erhält man 2.5-Dinitro-4-acetamino-phenoxyessigsäure (Re., Bu.). — Physiologische Wirkung: K.

Methylester $C_{11}H_{13}O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3\cdot CO_3\cdot CH_3$. B. Aus 4-Nitrophenoxyessigsäure-methylester durch Reduktion mit Zinn in Eisessiglösung unter Zusatz von Essigsäureanhydrid (Fuohs, D. R. P. 96492; C. 1898 I, 1252). — F: 129—130°.

Äthylester $C_{12}H_{15}O_4N = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_5 \cdot CO_2 \cdot C_5H_5$. B. Analog der des 4-Acetamino-phenoxyessigsäure-methylesters (F., D. R. P. 96492; C. 1898 I, 1252). — F: 103—104° (F.).

Propylester $C_{13}H_{17}O_4N = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_2 \cdot C_3H_7$. B. Analog der des 4-Acetamino-phenoxyessigsäure-methylesters (F., D. R. P. 96492; C. 1898 I, 1252). — F: 66—68°.

Amid $C_{10}H_{19}O_3N_3=CH_3\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3\cdot CO\cdot NH_3$. B. Beim Behandeln von 4-Nitro-phenoxyessigsäure-amid mit Zinn und Eisessig unter Zusatz von Essigsäureanhydrid (Fuchs, D. R. P. 96492; C. 1898 I, 1252). Beim Kochen einer Lösung von 4-Acetaminophenol in alkoh. Alkalilauge mit Chloracetamid (Akt.-Ges. f. Anilinf., D. R. P. 102315; C. 1899 I, 1262). Beim Schütteln der 4-Acetamino-phenoxyessigsäure-ester mit der 3—4-fachen Gewichtsmenge 25—30% igen Ammoniaks (F.). — Nadelförmige Krystalle von etwas bitterlichem Geschmack (aus Wasser). Beginnt bei 202° zu sintern und schmilzt bei 208° zu einer wasserhellen, klaren Flüssigkeit (F.). Leicht löslich in siedendem Wasser und kaltem Alkohol, schwer in kaltem Wasser, fast unlöslich in Äther und Benzol (F.).

Anilid $C_{16}H_{16}O_3N_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_5$. B. Beim Behandeln von 4-Amino-phenoxyessigsäure-anilid mit Essigsäureanhydrid (KYM, J. pr. [2] 55, 117). — Blättchen (aus Eisessig). F: 204—205°. Unlöslich in kaltem Alkohol, ziemlich löslich in heißem Eisessig.

4-Acetamino-phenoxyessigsäure- $[\beta.\beta.\beta$ -trichlor-a-oxy-äthylamid] $C_{19}H_{13}O_4N_2Cl_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_9\cdot CO\cdot NH\cdot CH(OH)\cdot CCl_3$. B. Durch Mischen von 4-Acetamino-phenoxyessigsäure-amid mit Chloral in äquimolekularen Mengen (Fuchs, D. R. P. 96493; C. 1898 I, 1252). — Weißes Pulver, das schwach nach Chloral riecht. F: 196—197°. Schwer löslich in kaltem Wasser und Alkohol; wird beim Kochen mit beiden Lösungsmitteln in seine Komponenten gespalten.

[4-Acetamino-phenyl]-'salicylat, N-Acetyl-O-salicoyl-[4-amino-phenol], Salophen C₁₃H₁₂O₄N = CH₂·CO·NH·C₆H₄·O·CO·C₆H₄·OH. B. Durch Einw. von Essigsäureanhydrid oder Acetylchlorid auf in Eisessig gelöstes [4-Amino-phenyl]-salicylat (BAYER & Co., D. R. P. 62533; Frdl. 3, 836). Aus Salicylsäure und 4-Acetamino-phenol bei Gegenwart von Phosphoroxychlorid (B. & Co., D. R. P. 69289; Frdl. 3, 836). Aus Salol (Bd. X, S. 76) und 4-Acetamino-phenol bei 200—210° (G. COHN, J. pr. [2] 61, 550). — Blättchen (aus Alkohol). Ist triboluminescent (TRAUTZ, Ph. Ch. 53, 57; VAN ECK, P. C. H. 48, 615; C. 1907 II, 692). F: 187° (B. & Co.), 185° (G. C.). Schwer löslich in heißem Wasser (B. & Co., D. R. P. 62533). Die alkal. Lösung färbt sich an der Luft blau; Eisenchlorid färbt die alkoh. Lösung violett (G. C.). — Findet Verwendung als Antipyreticum und Antineuralgicum (GOLDMANN, C. 1898 I., 267). Nachweis des Salophens: Repiton, C. 1907 II, 637.

N-Chloracetyl-O-salicoyl-[4-amino-phenol] C₁₅H₁₂O₄NCl = CH₂Cl·CO·NH·C₆H₄·O·CO·C₆H₄·OH. B. Durch 2-stdg. Erhitzen von 265 Tln. salzsaurem [4-Amino-phenyl]-salicylat mit 100 Tln. Chloracetamid auf 150–160° (BAYER & Co., D. R. P. 84654; Frdl. 4, 1153). — Krystalle (aus verd. Alkohol). F: 158°. Leicht löslich in Alkohol, fast unlöslich in Wasser.

- [4 Acetamino phenyl] o kresotinat $C_{16}H_{16}O_4N = CH_4 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot CO \cdot C_6H_5(CH_4) \cdot OH$. B. Aus o-Kresotinsšure und 4-Acetamino-phenol durch Erhitzen mit Phosphoroxychlorid auf cs. 160° (Bayer & Co., D. R. P. 70714; Frdl. 3, 837). Aus o-Kresotinsšure-[4-nitro-phenyl]-ester, erhalten aus o-Kresotinsšure und 4-Nitro-phenol, durch Reduktion mit Eisen und Salzsšure in Alkohol und Behandlung der entstandenen Aminoverbindung mit Easigssureanhydrid in Benzol (B. & Co.). Blättchen (aus Alkohol oder Benzol). F: 181°.
- [4 Acetamino phenyl] p kresotinat $C_{16}H_{15}O_4N = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_6(CH_6) \cdot OH$. B. Analog der des [4-Acetamino-phenyl]-o-kresotinats (BAYER & Co., D. R. P. 70714; Frdl. 3, 837). Blättchen (aus Alkohol). F: 167°.
- [4 Acetamino phenyl] m kresotinat $C_{10}H_{10}O_4N = CH_2 \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot CO \cdot C_0H_3(CH_2) \cdot OH$. B. Analog der des [4-Acetamino-phenyl]-o-kresotinats (BAYER & Co., D. R. P. 70714; Frdl. 3, 837). Nadeln (aus Alkohol). F: 198°.

Methansulfonsäure-[4-acetamino-phenyl]-ester, O-Methansulfonyl-N-acetyl-[4-amino-phenol] $C_0H_{11}O_4NS = CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot SO_4 \cdot CH_2$. B. Aus Methansulfonsäure-[4-amino-phenyl]-ester und Essigsäureanhydrid in der Hitze (SCHALL, J. pr. [2] 48, 248). — Nädelchen (aus Alkohol). F: 177—178°.

p-Toluolsulfonsäure-[4-acetamino-phenyl]-ester, O-p-Toluolsulfonyl-N-acetyl-[4-amino-phenol] $C_{12}H_{15}O_4NS = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot SO_3 \cdot C_6H_4 \cdot CH_3$. B. Bei 2-stdg. Kochen einer Lösung von p-Toluolsulfonsäure-[4-amino-phenyl]-ester (S. 441) in Essigsäure-anhydrid, neben p-Toluolsulfonsäure-[4-diacetylamino-phenyl]-ester; man verdunstet das Lösungsmittel und krystallisiert aus wenig Benzol um; das Monoacetylderivat krystallisiert aus, während die Diacetylverbindung in der Mutterlauge bleibt und durch Zusatz von Petroläther ausgefällt werden kann (Bamberger, Rising, B. 34, 237). Aus 4-Acetamino-phenol und p-Toluolsulfochlorid in Gegenwart von Soda auf dem Wasserbade (Reverdin, B. 40, 2850; Bl. [4] 1, 625). Beim Behandeln von p-Toluolsulfonsäure-[4-diacetylamino-phenyl]-ester mit heißer Natronlauge (B., Ri.). — Nadeln (aus wenig Benzol). F: 146° (Re.), 145,5° bis 146° (B., Ri.). Unlöslich in verd. Natronlauge und Natriumcarbonatlösung (Re.). — Liefert mit Salpetersäure (D: 1,52) oder mit einem Gemisch aus Schwefelsäure + Salpetersäure (D: 1,40 O-[2-Nitro-toluol-sulfonyl-(4)]-N-acetyl-[3-nitro-4-amino-phenol] (Re.). In Essigsäureanhydrid entsteht bei der Nitrierung mit Schwefelsäure + Salpetersäure (D: 1,40 oder mit Acetylnitrat O-p-Toluolsulfonyl-N-acetyl-[3-nitro-4-amino-phenol] (Re.).

[4-Acetamino-phenyl]-schwefelsäure $C_8H_8O_8NS = CH_8 \cdot CO \cdot NH \cdot C_8H_4 \cdot O \cdot SO_8H$. B. Acetamilid, innerlich eingenommen, geht in den Harn teilweise als [4-Acetamino-phenyl]-schwefelsäure über; zur Isolierung der Säure stellt man die Verbindung ihres Kaliumsalzes mit Kaliumäthyloxalat dar (Möenee, H. 13, 15). — KC_8H_8O_8NS (bei 100°). Tafeln (aus 95°/ $_0$ igem Alkohol). Zerfällt beim Erhitzen mit verd. Schwefelsäure auf 120° in 4-Aminophenol und Easigsäure. — Verbindung mit Kaliumäthyloxalat. KC_8H_8O_8NS + C_8H_8 \cdot O_8C \cdot CO_8K. Blättchen. Leicht löslich in Wasser, ziemlich löslich in heißem 96°/ $_0$ igem Alkohol.

Äthylester $C_{10}H_{18}O_{4}NS = CH_{3}\cdot CO\cdot NH\cdot C_{4}H_{4}\cdot O\cdot SO_{2}\cdot O\cdot C_{4}H_{5}$. B. Aus Äthylschwefelsäurechlorid (Bd. I, S. 327) und 4-Acetamino-phenol bei Gegenwart von Natronlauge (BAYER & Co., D. R. P. 75456; Frdl. 4, 1112). — Blättchen (aus verd. Alkohol). F: 136°. Schwer löslich in Wasser und Äther.

- 4-[Acetylmethylamino]-phenol $C_9H_{11}O_9N=CH_3\cdot CO\cdot N(CH_3)\cdot C_9H_4\cdot OH$. B. Man stellt zunächst durch Behandeln von 4-Amino-phenol mit Methylchlorid, Methylbromid oder Methyljodid 4-Methylamino-phenol her und behandelt dieses mit Essigsäureanhydrid (Höchster Farbw., D. R. P. 79098, 89595, 93307; Frdl. 4, 1165, 1181). F: 240—241° (H. F., D. R. P. 89595). Reichlich löslich in Alkohol, wenig in Wasser (H. F., D. R. P. 93307).
- 4-[Acetylmethylamino]-phenol-āthylāther, N-Methyl-[acet-p-phenetidid], N-Methyl-phenacetin $C_{11}H_{15}O_2N=CH_3\cdot CO\cdot N(CH_2)\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Beim Behandeln von Methyl-p-phenetidin (S. 442) mit Essigsäureanhydrid oder Acetylchlorid (Bayer & Co., D. R. P. 57337; Frdl. 3, 908). Man kocht Phenacetin mit Natrium in Xylol, läßt abkühlen, fügt Methyljodid in geringem Überschuß hinzu und erhitzt auf dem Wasserbade (Hinsberg, A. 305, 280; Bayer & Co., D. R. P. 53753; Frdl. 2, 527). Krystalle (aus Alkohol oder Ather). F: 41° (H.), 40° (B. & Co.); Kp: 295—305° (B. & Co.). Mäßig löslich in Wasser (B. & Co.), leicht in Alkohol und Äther (H.). Physiologisches Verhalten: Hinsberg, Treupel, A. Ptb. 33, 234; C. 1894 I, 641.
- [4-(Acetylmethylamino)-phenyl]-acetat, N-Methyl-O.N-diacetyl-[4-amino-phenol] $C_{11}H_{12}O_{2}N=CH_{2}\cdot CO\cdot N(CH_{2})\cdot C_{2}H_{4}\cdot O\cdot CO\cdot CH_{3}$. B. Beim Kochen von 4-[Acetylmethylamino]-phenol mit Essigsäureanhydrid (Höchster Farbw., D. R. P. 93307; Frdl. 4, 1181). Entsteht ferner beim Schütteln einer Lösung von 4-[Acetylmethylamino]-phenol in Natronlauge mit Essigsäureanhydrid unter Kühlung (H. F.). Prismen (aus Wasser). F: 97—98°. Leicht löslich in Alkohol, schwerer in Äther.

- [4-(Acetylmethylamino)-phenyl]-kohlensäure-methylester $C_{11}H_{13}O_4N=CH_3\cdot CO\cdot N(CH_2)\cdot C_0H_4\cdot O\cdot CO_3\cdot CH_3$. B. Beim Schütteln einer Lösung von 4-[Acetylmethylamino]-phenol in Natronlauge mit Chlorameisensäuremethylester (Bd. III, S. 9) (H. F., D. R. P. 89595; Frdl, 4, 1166). F: 145—146°.
- [4-(Acetylmethylamino)-phenyl]-kohlensäure-äthylester $C_{12}H_{18}O_4N=CH_6\cdot CO\cdot N(CH_2)\cdot C_0H_4\cdot O\cdot CO_3\cdot C_2H_5$. B. Beim Schütteln einer Lösung von 4-[Acetylmethylamino]-phenol in Natronlauge mit Chlorameisensäureäthylester (H. F., D. R. P. 89595; Frdl. 4, 1166). F: 103—104°.
- 4-[Acetyläthylamino]-phenol $C_{10}H_{12}O_2N=CH_2\cdot CO\cdot N(C_2H_5)\cdot C_6H_4\cdot OH$. B. Beim Schütteln von rohem 4-Äthylamino-phenol [erhalten durch Erhitzen von N-Äthyl-phenacetin mit konz. Salzsäure im Druckrohr auf 220—240° (HINSBERG, A. 805, 286) oder durch Erwärmen von 4-Amino-phenol mit Äthylbromid und Alkohol (Höchster Farbw., D. R. P. 79098; Frdl. 4, 1165; HI.)] mit Essigsäureanhydrid und Eiswasser (Hö. F.; HI.). Blättchen (aus Alkohol oder Eisessig). F: 184° (Hö. F.), 187° (HI.). Löslich in 1250 Tln. Wasser von 24° (HI.). Physiologische Wirkung: HINSBERG, TREUFEL, A. Pth. 33, 242; C. 1894 I, 641.
- 4-[Acetyläthylamino]-phenol-äthyläther, N-Äthyl-[acet-p-phenetidid], N-Äthyl-phenacetin C₁₂H₁₇O₂N = CH₃·CO·N(C₂H₃)·C₆H₄·O·C₂H₅. B. Man versetzt eine Lösung von 4-Acetamino-phenol in Xylol mit Natrium und erwärmt die hierbei erhaltene Dinatrium-verbindung des 4-Acetamino-phenols mit Äthylbromid (BAYEE & Co., D. R. P. 57338; Frdl. 3, 908). Beim Behandeln von Äthyl-p-phenetidin mit Essigsäureanhydrid (B. & Co., D. R. P. 57337; Frdl. 3, 908). Man erhitzt Phenacetin in Xylollösung mit Natrium, läßt abkühlen, fügt Äthyljodid in geringem Überschuß hinzu und erhitzt auf dem Wasserbade (HINSBEEG, A. 305, 281; B. & Co., D. R. P. 54990; Frdl. 2, 528). Krystalle. F: 38° (H.), 34,5°; Kp: 298° (B. & Co., D. R. P. 57337). Löslich in 140 Tln. Wasser bei 15°, sehr leicht löslich in Alkohol und Äther (H.). Physiologische Wirkung: HINSBEEG, TREUPEL, A. Pth. 38, 236; C. 1894 I, 641.
- [4-(Acetyläthylamino)-phenyl]-acetat, N-Äthyl-O.N-diacetyl-[4-amino-phenol] $C_{12}H_{13}O_2N=CH_3\cdot CO\cdot N(C_2H_3)\cdot C_0H_4\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 4-[Acetyläthylamino]-phenol mit Essigsäureanhydrid (HINERERG, A. 305, 287; Höchster Farbw., D. R. P. 93307; Frdl. 4, 1181) oder beim Schütteln mit Essigsäureanhydrid und sehr verdünnter Natronlauge unter Kühlung (Hö. F.). Nadeln (aus Petroläther). F: 58° (HI.), 57—58° (Hö. F.). Leicht löslich in Alkohol und Äther, reichlich in Wasser (Hö. F.).
- [4-(Acetyläthylamino)-phenyl]-kohlensäure-methylester $C_{12}H_{15}O_4N=CH_2\cdot CO\cdot N(C_2H_4\cdot O\cdot CO_2\cdot CH_2.$ B. Beim Schütteln einer Lösung von 4-[Acetyläthylamino]-phenol in Natronlauge mit Chlorameisensäuremethylester (Bd. III, S. 9) (Höchster Farbw., D. R. P. 89595; Frdl. 4, 1166). F: 83—84°. Unlöslich in kaltem Wasser, schwer löslich in Ligroin, leicht löslich in Alkohol, Äther, Benzol und Essigester.
- [4-(Acetyläthylamino)-phenyl]-kohlensäure-äthylester $C_{13}H_{17}O_4N=CH_3\cdot CO\cdot N(C_2H_5)\cdot C_6H_4\cdot O\cdot CO_3\cdot C_2H_5$. B. Beim Schütteln einer Lösung von 4-[Acetyläthylamino]-phenol in Natronlauge mit Chlorameisensäureäthylester (H. F., D. R. P. 79098; Frdl. 4, 1165). Nadeln. F: 95—96°.
- 4-[Acetylisopropylamino]-phenol-äthyläther, N-Isopropyl-[acet-p-phenetidid], N-Isopropyl-phenacetin $C_{12}H_{19}O_2N=CH_2\cdot CO\cdot N[CH(CH_3)_2]\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Analog der des N-Methyl-phenacetins aus Phenacetin-natrium und Isopropyljodid (HINSBERG, A. 805, 282). Dickes Öl. Löslich in ca. 260 Tln. Wasser von 30°, sehr leicht löslich in Alkohol, Ather und Benzol (H.). Physiologische Wirkung: HINSBERG, TREUPEL, A. Pth. 33, 240; C. 1894 I, 641.
- [4-Acetylanilino-phenyl]-acetat, 4-Acetoxy-N-acetyl-diphenylamin $C_{1e}H_{1s}O_{3}N=CH_{s}\cdot CO\cdot N(C_{e}H_{s})\cdot C_{e}H_{s}\cdot O\cdot CO\cdot CH_{s}$. Be i 2-stdg. Erhitzen von 1 Mol.-Gew. 4-Anilino-phenol (8. 444) mit 2 Mol.-Gew. Essigsäureanhydrid und 1 Mol.-Gew. geschmolzenem Natrium-acetat auf 130—140° (Philip, Calm, B. 17, 2436). Prismen (aus Benzol + Ligroin). F: 120°. Leicht löslich in warmem Benzol, Alkohol, Ather und Eisessig.
- [4-(Acetyl-o-toluidino)-phenyl]-acetat, 4'-Acetoxy-2-methyl-N-acetyl-diphenyl-amin $C_{17}H_{17}O_3N=CH_3\cdot CO\cdot N(C_6H_4\cdot CH_3)\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 4-o-Toluidino-phenol mit Essigsäureanhydrid und etwas geschmolzenem Natriumacetat (Philip, J. pr. [2] 34, 61). Nadeln (aus Benzol + Petroläther). F: 106°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Petroläther.
- [4-(Acetyl-p-toluidino)-phenyl]-acetat, 4'-Acetoxy-4-methyl-N-acetyl-diphenyl-amin $C_{17}H_{17}O_2N=CH_3\cdot CO\cdot N(C_4H_4\cdot CH_2)\cdot C_2H_4\cdot O\cdot CO\cdot CH_3$. B. Beim kurzen Kochen von 4-p-Toluidino-phenol mit überschtissigem Essigsäureanhydrid (HATSCHEK, ZEGA, J. pr. [2] 33, 227). Tafeln (aus Alkohol). F: 101°. Wenig löslich in kaltem Alkohol.

- 4.4'-Diacetoxy-N-acetyl-diphenylamin $C_{18}H_{17}O_5N=CH_3\cdot CO\cdot N(C_6H_4\cdot O\cdot CO\cdot CH_3)_8$. Beim $^1/_2$ -stdg. Erhitzen von 4.4'-Dioxy-diphenylamin (S. 451) und Essigsäureanhydrid in Gegenwart von etwas konz. Schwefelsäure auf dem Wasserbade (Schneider, B. 32, 690). Krystalle (aus verd. Alkohol). F: 128,5°.
- N.N'-Bis-[4-methoxy-phenyl]-acetamidin $C_{16}H_{16}Q_{2}N_{2}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot NH\cdot C(CH_{2})$: $N\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Durch Erhitzen von Acet-p-anisidid (S. 461) mit Phosphorpentasulfid auf 100—120° und Zufügen von Alkohol zum Reaktionsprodukt (Täuber, D. R. P. 80568; Frdl. 4, 1178). Durch mehrstündiges Erhitzen von 4 Tln. p-Anisidin und 1 Tl. Eisessig mit 2 Tln. Phosphortrichlorid auf cs. 160° (T.). Krystalle (aus 60°/oigem Alkohol). F: 105°. Leicht löslich in Alkohol und Äther, schwer in Wasser.
- N-[4-Oxy-phenyl]-N'-[4-äthoxy-phenyl]-acetamidin $C_{16}H_{19}O_{2}N_{2}=HO\cdot C_{6}H_{4}\cdot NH\cdot C(CH_{3}):N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$ bezw. $HO\cdot C_{6}H_{4}\cdot N:C(CH_{3})\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Aus 4-Acetamino-phenol und p-Phenetidin mittels Phosphoroxychlorids in Benzol (T., D. R. P. 80568; Frdl. 4, 1178). Hydrochlorid. Krystallinische Masse.
- N-[4-Methoxy-phenyl]-N'-[4-šthoxy-phenyl]-acetamidin C_1 , $H_{20}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot NH \cdot C(CH_3) \cdot N \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $CH_3 \cdot O \cdot C_6H_4 \cdot N : C(CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Phenacetin und p-Anisidin mittels Phosphorpentachlorids, Phosphoroxychlorids oder Phosphortrichlorids in Benzol (Täuber, D. R. P. 80568; Frdl. 4, 1178). F: 98°. Leicht löslich in Alkohol und Äther, schwer in Petroläther und Wasser.
- N.N'-Bis-[4-āthoxy-phenyl]-acetamidin C₁₈H₂₈O₂N₂ = C₂H₅·O·C₄H₄·NH·C(CH₃): N·C₄H₄·O·C₂H₅. B. Durch Einw. von Phosphorchloriden auf p-Phenetidin + Eisessig, Phenacetin + p-Phenetidin oder Phenacetin allein (Täuber, D. R. P. 79868; Frdl. 4, 1175; C. 1897 I, 1100). Durch 15-stdg. Erhitzen von gleichen Mengen Phenetidin-hydrochlorid und Phenacetin auf 180° (T.). Durch Überleiten von Chlorwasserstoff über auf 150° erhitztes Phenacetin (T.). Aus p-Phenetidin-hydrochlorid und Acetonitril bei 230—240° (T.). Durch Erhitzen von 2 Tln. Phenacetin und 1 Tl. Phosphorpentasulfid auf 100—120° und langsames Zufügen von 10 Tln. Alkohol zum Reaktionsprodukt (T.). Durch Überleiten von Phosgen über auf 140—150° erhitztes [4-Āthoxy-phenyl]-glycin-p-phenetidid (T.). Nadeln. F: 117° (Kennert, C. 1897 II, 556). 100 Tle. Wasser lösen bei 15° 2,218 Tle. (K.). Leicht löslich in Alkohol, Benzol und Äther, kaum löslich in Ligroin (T.). Farbreaktion: K. Salzsaures Salz. F: 189° (K.). Wird unter der Bezeichnung Holocain als lokales Anāstheticum in der Augenpraxis verwendet. Vgl. dazu Gutmann, C. 1897 I, 875.
- 4 Diacetylamino phenol äthyläther, Diacetyl p phenetidin $C_{12}H_{18}O_2N = (CH_3 \cdot CO)_2N \cdot C_4H_4 \cdot O \cdot C_2H_4$. B. Aus Phenacetin und Essigsäureanhydrid durch ca. 6-stdg. Kochen unter Ausschluß von Luftfeuchtigkeit (BISTRZYCKI, ULFFERS, B. 31, 2788) oder 8—10-stdg. Erhitzen im geschlossenen Gefäß auf 200° (B., U., D. R. P. 75611; Frdl. 4, 1172). Beim 3-stdg. Erhitzen von Phenacetin mit Acetylchlorid auf 180—190° unter Rückfluß (B., U., D. R. P. 75611). Nadeln (aus Ligroin). F: 53,5—54°. Kp₁₂: 182°. Leicht löslich in Alkohol und Eisessig, schwieriger in kaltem Benzol und Ather, schwer in heißem Ligroin; löslich in ca. 400 Tln. Wasser von Zimmertemperatur. Gibt unter dem Einfluß der Luftfeuchtigkeit etwas Essigsäure ab. Wirkt physiologisch ähnlich wie Phenacetin, die Wirkung ist intensiver, läßt aber auch früher nach.
- p-Toluolsulfonsäure-[4-diacetylamino-phenyl]-ester, O-p-Toluolsulfonyl-N.N-diacetyl-[4-amino-phenol] $C_{17}H_{17}O_5NS = (CH_3\cdot CO)_5N\cdot C_6H_4\cdot O\cdot SO_2\cdot C_6H_4\cdot CH_2$. B. Beim Erwärmen von p-Toluolsulfonsäure-[4-acetamino-phenyl]-ester mit Essigsäureanhydrid oder Acetylchlorid (Bamberger, Rising, B. 34, 238). Eine weitere Bildung s. im Artikel p-Toluolsulfonsäure-[4-acetamino-phenyl]-ester (S. 466). Nadeln (aus Alkohol). F: 101°.
- 4-[(a-Chlor-propionyl)-amino]-phenol-methyläther, a-Chlor-propionsäure-p-anisidid $C_{10}H_{12}O_2NCl=CH_3\cdot CHCl\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Aus a-Chlor-propionylchlorid und p-Anisidin in Äther (GOLDENBERG, GEROMONT & Co., D. R. P. 85212; Frdl. 4, 1158). Prismen (aus Alkohol). F: 110°. Leicht löslich in Chloroform, sehr wenig in kaltem Wasser und Ligroin.
- 4-[(a-Brom-propionyl)-amino]-phenol-āthylāther, a-Brom-propionsāure-p-phenetidid $C_{11}H_{14}O_2NBr=CH_3\cdot CHBr\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot C_0H_5$. B. Aus p-Phenetidin und a-Brom-propionylbromid (Bischoff, B. 31, 3246) in absol. Ather unter Kühlen (Golden-Berg, Geromont & Co., D. R. P. 85212; Frdl. 4, 1158; B., B. 38, 1394). Nadeln (aus verd. Alkohol oder aus Benzol). F: 138° (B., B. 31, 3246), 130° (Go., Ge. & Co.; B., B. 33, 1394). Unlöslich in Wasser, schwer löslich in Ather, leicht in heißem Alkohol (Go., Ge. & Co.).
- 4-Thiopropionylamino phenol äthyläther, Thiopropionsäure p phenetidid $C_{11}H_{15}ONS = CH_3 \cdot CH_5 \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Aus Äthylmagnesiumbromid und 4-Athoxy-phenylsenföl (Sachs, Loeve, B. 37, 876). Gelbliche Blättchen (aus 75%) iger Essigsäure). F: 74–75%. Leicht löslich in organischen Lösungsmitteln; löslich in kalten Alkalien.

- [4-Propionylamino-phenyl]-kohlensäure-äthylester $C_{12}H_{15}O_4N=CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO_2\cdot C_2H_5$. \hat{B} . Beim Versetzen von nicht näher beschriebenem 4-Propionylamino-phenol in Alkohol abwechselnd mit Chlorameisensäureäthylester (Bd. III, S. 10) und mit Natriumäthylat (Merck, C. 1897 I, 468; D. R. P. 85803; Frdl. 4, 1164). Nadeln oder Blätter (aus Alkohol). F: 101—103°. Schwer löslich in Wasser.
- Bis-[4-propionylamino-phenyl]-carbonat $C_{19}H_{20}O_5N_5=(CH_3\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O)_5CO$. B. Man leitet Phosgen in eine Lösung von 4-Propionylamino-phenol in sehr verd. Natronlauge bis zum Eintritt saurer Reaktion (Merck, C. 1897 I, 468; D. R. P. 85803; Frdl. 4, 1163). Weiße Blätter. F: 180°. Schwer löslich in Wasser, leicht in Alkohol.
- Dipropylessigsäure-p-phenetidid $C_{16}H_{25}O_2N = (CH_2 \cdot CH_2 \cdot CH_2)_2CH \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Beim Kochen von Dipropylessigsäure und p-Phenetidin (Akt.-Ges. f. Anilinf., D. R. P. 163034; C. 1905 II, 1206). Krystalle (aus Benzol). F: 147°. Schwer löslich in heißem Wasser, ziemlich leicht in heißem Benzol oder Alkohol.
- 4-Palmitoylamino-phenol C₂₂H₃₇O₂N = CH₃·[CH₂]₁₆·CO·NH·C₆H₄·OH. B. Beim Schmelzen von 4-Amino-phenol mit Palmitinsäure (Sulzeerger, D. R. P. 193451; C. 1908 I, 1011). Verwendung zur Darstellung fettähnlicher Azofarbstoffe: S.
- n-Amylpropiolsäure-p-anisidid $C_{16}H_{19}O_2N=CH_3\cdot [CH_3]_4\cdot C:C\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot CH_3$. B. Aus p-Anisidin und n-Amyl-propiolsäure-chlorid (Bd. II, S. 487) in wasserfreiem Ather (Moureu, Delange, C. r. 132, 989; Bl. [3] 29, 657; M., D. R. P. 132802; C. 1902 II, 169). F: 44°.
- 4-Bengamino-phenol $C_{13}H_{11}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 4-Aminophenol und Benzoylchlorid in āther. (SMITH, B. 24, 4042) oder alkoh. Lösung (REVERDIN, DRESEL, C. 1905 I, 80) oder in Pyridin (Auwers, Sonnenstuhl, B. 37, 3941). Durch Einw. von PCl_5 auf syn-4-Oxy-benzophenon-oxim (Bd. VIII, S. 160) in Äther unter Kühlung und Zersetzung des Reaktionsproduktes mit Wasser (SM., B. 24, 4042). Blättchen (aus Alkohol). F: 205—207 (SM.), 212—213° (Au., So.), 214—215° (R., Dr., B. 37, 4453; Bl. [3] 31, 1269; C. 1905 I, 80). Gibt mit einem Gemisch von Salpetersäure (D: 1,4) und konz. Schwefelsäure, sowie mit Salpetersäure (D: 1,50) bei —10° bis 0° oder mit Salpetersäure (D: 1,34) bei 20—26° 2.6-Dinitro-4-benzamino-phenol (R., Delétea, B. 39, 126; Bl. [3] 35, 306). Zersetzt sich bei Einw. von Salpetersäure (D: 1,5) schon bei 30—35° vollständig (R., Dr., C. 1905 I, 80).
- 4-[3-Nitro-benzamino]-phenol C₁₈H₁₀O₄N₂ = O₂N·C₆H₄·CO·NH·C₆H₄·OH. B. Aus 4-Amino-phenol und 3-Nitro-benzoylchlorid in Benzol in Gegenwart von Kalilauge, neben O.N-Bis-[3-nitro-benzoyl]-[4-amino-phenol]; man extrahiert das Reaktionsprodukt mit Äthylacetat, welches O.N-Bis-[3-nitro-benzoyl]-[4-amino-phenol] ungelöst läßt (TINGLE, WILLIAMS, Am. 37, 68). Hellgelbe Nadeln (aus Aceton). F: 215—216°.
- 4-[4-Nitro-benzamino]-phenol $C_{13}H_{10}O_4N_2=O_2N\cdot C_0H_4\cdot CO\cdot NH\cdot C_0H_4\cdot OH$. B. Analog der des 4-[3-Nitro-benzamino]-phenols (T., W., Am. 37, 67). Orangerote Krystalle (aus Alkohol). F: 258°.
- 4-Bensamino-phenol-methyläther, Bensoesäure-p-anisidid, Bens-p-anisidid C₁₄H₁₃O₂N = C₆H₅·CO·NH·C₆H₄·O·CH₃. B. Aus p-Anisidin durch Benzoylchlorid in 50% iger alkoh. Lösung in Gegenwart von Natriumacetat (Reverdin, B. 42, 1524; C. 1909 I, 1809). Durch Einw. von Phosphorpentachlorid auf syn-4-Methoxy-benzophenon-oxim (Bd. VIII, S. 160) in Ather und Zersetzung des Reaktionsproduktes mit Wasser (Hantzsch, B. 24, 25, 54). Entsteht neben Kohlendioxyd, Benzoesäure und 4-Methoxy-phenylisocyanat bei der Destillation von Anisbenzhydroxamsäure (Bd. X, S. 171) (Lossen, A. 175, 299; L., Pieschell, A. 175, 312). Blättchen (aus Alkohol). F: 153—154% (L.), 156% (Re., B. 42, 1524). Kryoskopisches Verhalten in Naphthalin: Auwers, Ph. Ch. 30, 540. Liefert mit Salpetersäure (D: 1,4) bei 70—80° 2.3-Dinitro-4-benzamino-anisol (Re., B. 42, 1527; vgl. Re., B. 44 [1911], 2368 Anm.). In Eisessiglösung entsteht durch Behandlung mit Salpetersäure (D: 1,4) erst bei gewöhnlicher Temperatur, dann auf dem Wasserbade als Hauptprodukt 3-Nitro-4-benzamino-anisol und wenig 2.3-Dinitro-4-benzamino-anisol (Re., B. 42, 1527). Die Nitrierung in Essigsäureanhydrid mit Salpetersäure (D: 1,52) bei höchstens 50° liefert 2.3.5-Trinitro-4-benzamino-anisol neben 2.3-Dinitro-4-benzamino-anisol (Re., B. 42, 1527; vgl. Re., Meldola, J. pr. [2] 88 [1913], 785). Benzoesäure-p-anisidid zerfällt mit konz. Salzsäure bei 180° in 4-Amino-phenol, Methylchlorid und Benzoesäure (L.).
- 4-Benzamino-phenol-äthyläther, Benzoesäure-p-phenetidid, Benz-p-phenetidid $C_{16}H_{15}O_2N = C_6H_6$: $C_0\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Benzoylchlorid (BISCHOFF, B. 31, 3246). Blättchen (aus verd. Alkohol). F: 173°.

- 4-Thiobensamino-phenol-äthyläther, Thiobensoesäure-p-phenetidid $C_{18}H_{18}ONS = C_6H_5 \cdot CS \cdot NH \cdot C_8H_4 \cdot O \cdot C_8H_5$. B. Aus Phenylmagnesiumbromid und 4-Äthoxy-phenylsenföl (Sachs, Loevy, B. 37, 876). Gelbe Blättchen (aus Eisessig). F: 127°. Leicht löslich in den üblichen organischen Solvenzien; löslich in kalten Alkalien.
- 4-Bensamino-phenol-phenacyläther, ω [4 Bensamino phenoxy] acetophenon $C_{11}H_{17}O_{2}N = C_{6}H_{5}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{2}\cdot CO\cdot C_{6}H_{5}$. B. Beim Mischen äquimolekularer Mengen 4-Amino-phenol-phenacyläther und Benzoylchlorid (Vignolo, R. A. L. [5] 6 I, 76). Nadeln (aus Alkohol). F: 166°. Wenig löslich in Wasser, reichlich in Alkohol.
- [4-Benzamino-phenyl]-acetat, O-Acetyl-N-benzoyl-[4-amino-phenol] $C_{18}H_{18}O_8N = C_8H_5\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Man löst 4-Benzamino-phenol in Acetanhydrid bei 120°, versetzt mit wenig konz. Schwefelsäure und erhitzt sodann $^{1}/_{2}$ Stunde (Reverdin, B. 39, 3793; Bl. [3] 35, 1256; C. 1907 I, 104). Blättchen (aus Benzol). F: 171°. Leicht löslich in der Wärme in Essigsäure, Alkohol und Benzol, unlöslich in Ligroin, Wasser; unlöslich in Sodalösung.
- [4-Benzamino-phenyl]-benzoat, O.N-Dibenzoyl-[4-amino-phenol] C₂₀H₁₅O₂N = C₆H₅·CO·NH·C₆H₄·O·CO·C₆H₅. B. Durch Einw. des Lichtes auf Gemische von Benzaldehyd und Nitrobenzol, neben anderen Produkten (CIAMICIAN, SILBER, B. 38, 1181; G. 36 II, 191). Beim Erhitzen von 4-Amino-phenol (LADENBURG, B. 9, 1529) oder von salzsaurem 4-Amino-phenol mit Benzoylchlorid (Reverdin, Dersel, Bl. [3] 31, 1269; B. 37, 4453; C. 1905 I, 80; vgl. Hübner, A. 210, 378). Aus 4-Amino-phenol und Benzoylchlorid in Gegenwart von Pyridin (Auwers, Sonnenstuhl, B. 37, 3940) oder von Natronlauge (Hinserg, v. Udránszky, A. 254, 256; Au., So.). Nadeln (aus Methylakohol oder Athylakohol). F: 231° (La.), 233—234° (Börnstein, B. 29, 1484; Re., Dr.), 235° (Ci., Si., R. A. L. [5] 14 II, 377; B. 38, 1181, 3815; G. 36 II, 193). Ziemlich leicht löslich in heißem Eisessig, sonst wenig löslich (Au., So.). Die O-Benzoylgruppe wird durch konz. Schwefelsäure schon in der Kälte abgespalten (Reverdin, Delétra, B. 39, 128; Bl. [3] 35, 309). [4-Benzamino-phenyl]-benzoat liefert bei der Nitrierung mit Salpetersäure (D: 1,48) bei 0—10° [3-Nitro-4-benzamino-phenyl]-benzoat (S. 523) (Re., Dr., Bl. [3] 31, 1271; B. 37, 4454; C. 1905 I, 80). Durch Eintragen in Salpetersäure (D: 1,52) bei höchstens 25° und schließliches Erwärmen auf 60° wird O.N-Bis-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol] (S. 530) erhalten (Re., Dr., Bl. [3] 31, 1270; 33, 561; B. 37, 4453; 38, 1593; C. 1905 I, 80, 1601; Re., Delétra, Bl. [3] 35, 308; B. 39, 127). Versetzt man eine Lösung von [4-Benzamino-phenol] (S. 528) (Re., Dr.). Wird [4-Benzamino-phenyl]-benzoat, in Essigsäureanhydrid suspendiert, mit einem Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4) bei 6—11° nitriert, so entsteht O.N-Bis-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol]; suspendiert man jedoch statt in Essigsäureanhydrid in Eisessig, so ergibt die Nitrierung selbst beim Erhitzen bis auf 60° als Hauptprodukt [3-Nitro-4-benzamino-phenyl]-benzoat (Re., Dr.).
- O.N Bis [3-nitro benzoyl] [4 amino phenol] $C_{s0}H_{13}O_7N_3 = O_2N \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_4 \cdot NO_3$. B. Neben 4-[3-Nitro-benzamino]-phenol (S. 469) aus 4-Aminophenol und 3-Nitro-benzoylchlorid in Benzol in Gegenwart von Kalilauge (TINGLE, WILLIAMS, Am. 37, 69). Hellgraues Pulver (aus Nitrobenzol). F: 264—265°.
- O.N-Bis [4 nitro benzoyl] [4-amino phenol] $C_{90}H_{13}O_7N_8 = O_2N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot CO\cdot C_6H_4\cdot NO_2$. B. Analog der des O.N-Bis-[3-nitro-benzoyl]-[4-amino-phenols] (T., W., Am. 37, 68). Hellgelbe Krystalle (aus Nitrobenzol). F: 264°.
- [4-Benzamino-phenyl]-kohlensäure-äthylester $C_{16}H_{18}O_4N = C_6H_6 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO_2 \cdot C_2H_5$. B. Beim abwechselnden Versetzen einer alkoh. Lösung von 4-Benzaminophenol mit Chlorameisensäureester und Natriumäthylat (Merok, C. 1897 I, 468; D. R. P. 85803; Frill. 4, 1164). Nadeln. F: 183—184°. Schwer löslich.
- Bis-[4-benzamino-phenyl]-carbonat $C_{27}H_{20}O_5N_2=(C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot O)_2CO$. B. Man leitet Phosgen in eine Lösung von 4-Benzamino-phenol in sehr verd. Natronlauge bis zum Eintritt saurer Reaktion (M., C. 1897 I, 468; D. R. P. 85803; Frdl. 4, 1163). Mikrokrystallinisches Pulver. Schmilzt oberhalb 220° unter Zersetzung. Fast unlöslich in Wasser und Alkohol, schwer löslich in Äther.
- 4-Benzamino-phenoxyessigsäure $C_{15}H_{13}O_4N = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3 \cdot CO_4H$. B. Beim Schütteln einer Lösung von 4-Amino-phenoxyessigsäure (S. 440) in verd. Natronlauge mit Benzoylchlorid (Kym, J. pr. [2] 55, 121). Aus 4-Amino-phenoxyessigsäure, Benzoylchlorid und Natriumacetat in Wasser (Reverdin, B. 42, 4110; C. 1910 I, 349). Blättchen (aus $50^0/_0$ iger Essigsäure), Nädelchen (aus verd. Alkohol). Sintert bei 188 0 und schmilzt bei 194—195 0 (K.); schmilzt nach vorhergehendem Erweichen bei 197 0 (Re.). Löslich in heißem Alkohol, in Essigsäure, schwer löslich oder unlöslich in Benzol und Ligroin (Re.). Liefert mit Salpetersäure (D: 1,4) bei 30—40 0 3-Nitro-4-benzamino-phenoxyessigsäure (S. 523);

die gleiche Verbindung entsteht auch bei der Nitrierung in Eisessig mit Salpetersäure (D: 1,4) bei 40—50° oder Salpetersäure (D: 1,52) bei 20—30° oder auch mit Salpetersäure (D: 1,4) in Gegenwart von Essigsäureanhydrid bei 10—20° (RE.). Nitriert man mit einem Gemisch aus Salpetersäure (D: 1,52) und Essigsäureanhydrid bei 0—10° und verseift das Nitrierungsprodukt mit konz. Schwefelsäure, so erhält man 2.6-Dinitro-4-amino-phenoxyessigsäure (S. 528) (RE.). In konz. Schwefelsäure erhält man durch Nitrieren mit einem Gemisch aus konz. Schwefelsäure und Salpetersäure (D: 1,4 oder 1,52) als Hauptprodukt 2.5-Dinitro-4-[3-nitro-benzamino]-phenoxyessigsäure (S. 527) (RE.).

- p-Toluolsulfonsäure-[4-benzamino-phenyl]-ester, O-p-Toluolsulfonyl-N-benzoyl-[4-amino-phenol] $C_{20}H_{17}O_4NS = C_8H_5 \cdot CO \cdot NH \cdot C_8H_4 \cdot O \cdot SO_3 \cdot C_8H_4 \cdot CH_3$. B. Aus p-Toluolsulfochlorid (Bd. XI, S. 103) und 4-Benzamino-phenol in Gegenwart von Natronlauge auf dem Wasserbade (Reverdin, B. 40, 2850; Bl. [4] 1, 625). Nadeln (aus Eisessig). F: 218°. Schwer löslich in Ligroin und Benzol, ziemlich schwer in heißem Alkohol, leicht in warmem Eisessig; unlöslich in Sodalösung und verd. Natronlauge.
- [4-Benzoylanilino-phenyl]-benzoat, 4-Benzoyloxy-N-benzoyl-diphenylamin $C_{26}H_{19}O_3N=C_6H_5\cdot CO\cdot N(C_6H_5)\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Bei 2-stdg. Erhitzen von 1 Mol.-Gew. 4-Anilino-phenol (S. 444) mit 2 Mol.-Gew. Benzoylchlorid auf 120—130° (Phillip, Calm, B. 17, 2437). Prismen (aus Alkohol). F: 175°. Schwer löslich in kaltem Alkohol, leichter in Äther, Benzol und Eisessig.
- Dinitroderivat C₂₈H₁₇O₇N₃. B. Beim Versetzen einer eisessigsauren Lösung von 4-Benzoyloxy-N-benzoyl-diphenylamin mit einem Gemisch aus rauchender Salpetersäure und Eisessig (P., C., B. 17, 2437). Gelbliche Krystallmasse (aus Eisessig). F: 194—195°. Leicht löslich in warmem Eisessig, ziemlich in Äther und in warmem Benzol, sehr schwer in Alkohol. Liefert beim Kochen mit sehr konz. Kalilauge Benzoesäure.
- [4-(Benzoyl-o-toluidino)-phenyl]-benzoat, 4'-Benzoyloxy-2-methyl-N-benzoyl-diphenylamin $C_{27}H_{21}O_3N=C_6H_5\cdot CO\cdot N(C_6H_4\cdot CH_3)\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Beim Erhitzen von 4-o-Toluidino-phenol und Benzoylchlorid (Philip, J. pr. [2] 34, 61). Blättchen (aus Benzol + Petroläther), Nädelchen (aus Alkohol). F: 171°. Wenig löslich in kaltem Alkohol und Benzol, fast gar nicht in Petroläther.
- [4-(Benzoyl-p-toluidino)-phenyl]-benzoat, 4'-Benzoyloxy-4-methyl-N-benzoyl-diphenylamin $C_{27}H_{21}O_3N = C_6H_5 \cdot \text{CO} \cdot \text{N}(C_6H_4 \cdot \text{CH}_3) \cdot C_6H_4 \cdot \text{O} \cdot \text{CO} \cdot C_6H_5$: B. Beim Erhitzen von 4-p-Toluidino-phenol und Benzoylchlorid auf 130° (HATSCHEK, ZEGA, J. pr. [2] 33, 228). Nadeln oder Schuppen (aus Benzol). F: 169°. Schwer löslich in kaltem Alkohol.
- 4-[Benzoyl-(4-nitro-benzyl)-amino]-phenol $C_{20}H_{16}O_4N_2=C_6H_5\cdot CO\cdot N(CH_2\cdot C_6H_4\cdot NO_2)\cdot C_6H_4\cdot OH$. B. Aus äquimolekularen Mengen von 4-[4-Nitro-benzylamino]-phenol und Benzoylchlorid in Benzol (Bakunin, Profilo, G. 37 II, 248). Gelbliche Nadeln. F: 208—210°. Löslich in Benzol und Äther.
- N.N'-Methylen-bis-[benzoesäure-p-phenetidid], Bis-[benzoyl-p-phenetidino]-methan $C_{31}H_{30}O_4N_3=CH_2[N(C_6H_4\cdot O\cdot C_2H_5)\cdot CO\cdot C_6H_5]_2$. B. Man erhitzt Di-p-phenetidino-methan (S. 452) mit Benzoesäure und etwas Natriumbenzoat unter Zugabe von so viel Benzol auf dem Wasserbade, daß in der Hauptsache Lösung erfolgt (Heller, B. 37, 3113, 3117). F: 83—84°.
- N.N Dimethyl N' [4 äthoxy phenyl] α naphthamidin $C_{31}H_{32}ON_2 = C_{10}H_7$ · $C[N(CH_3)_2]:N\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Man verwandelt α -Naphthoesäure-dimethylamid durch Phosphorpentachlorid in das Dichlorid $C_{10}H_7\cdot CCl_2\cdot N(CH_3)_2$ und behandelt dieses mit p-Phenetidin (v. Braun, B. 37, 2685). Krystallmasse (aus Alkohol). F: 150°. Schwer löslich in den organischen Lösungsmitteln. Chloroplatinat. Gelbrote, verfilzte Nadeln (aus heißem Wasser). F: 220°. Sehr wenig löslich in siedendem Wasser.
- [4-Oxy-phenyl]-oxamidsäure-äthylester $C_{10}H_{11}O_4N = C_2H_5 \cdot O_3C \cdot CO \cdot NH \cdot C_8H_4 \cdot OH$. B. Beim Erhitzen äquimolekularer Mengen von 4-Amino-phenol und Oxalester im Druckrohr auf 160°, neben N.N'-Bis-[4-oxy-phenyl]-oxamid (S. 472) (Piutti, Piccoll, B. 31, 331; G. 28 I, 287). Prismen oder Nadeln. Monoklin prismatisch (Scacchi, B. 31, 331; vgl. Groth, Ch. Kr. 4, 267). F: 184—185°; löslich in Alkohol, heißem Wasser und Essigsäure (Piu., Picc.). Beim Erhitzen mit konz. Ammoniak entsteht [4-Oxy-phenyl]-oxamid (s. u.) (Piu., Picc.).
- [4-Oxy-phenyl]-oxamid $C_8H_8O_3N_2=H_2N\cdot CO\cdot CO\cdot NH\cdot C_8H_4\cdot OH$. B. Bei der Einw. von konz. Ammoniak auf [4-Oxy-phenyl]-oxamidsäure-äthylester (s. o.) (Pru., Proc., B. 31, 332; G. 28 I, 289). Nadeln, die bei etwa 266° unter Zersetzung sublimieren.

N.N'-Bis-[4-oxy-ph enyl]-oxamid $C_{14}H_{12}O_4N_3=[-CO\cdot NH\cdot C_6H_4\cdot OH]_2$. B. Neben [4-Oxy-phenyl]-oxamidssure-sthylester (8. 471) beim Erhitzen squimolekularer Mengen von Oxslester mit 4-Amino-phenol im geschlossenen Rohr auf 160° (Piutti, Piocolz, B. 31, 331, 332; G. 28 I, 287, 290; vgl. Castellanetta, G. 25 II, 532; Wiettes, Ar. 234, 620). — Krystalle. Sublimiert, ohne zu schmelzen, oberhalb 280°; unlöslich in Alkohol und Äther, schwer löslich in Essigssure (C.).

[4-Methoxy-phenyl]-oxamidsäure, Oxalsäure-mono p-anisidid $C_0H_0O_0N=HO_2\bar{C}\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Entsteht neben Oxalsäure-di-p-anisidid beim Erhitzen von 1 Tl. p-Anisidin (S. 435) mit 2 Tln. Oxalsäure bis auf 190°; kochender Alkohol entzieht dem Rückstand nur das Mono-p-anisidid (Castellaneta, G. 25 II, 534). Beim Verseifen des entsprechenden Athylesters (s. u.) mit Natriumoarbonat (C., G. 25 II, 534). — Prismen. F: 166° bis 167°. Löslich in siedendem Wasser, Alkohol und Äther.

[4-Methoxy-phenyl]-oxamidsäure-äthylester, Oxalsäure-äthylester-p-anisidid $C_{11}H_{13}O_4N=C_2H_5\cdot O_2C\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot B.$ Wird neben Oxalsäure-di-p-anisidid erhalten, wenn man p-Anisidin (oder sein Hydrochlorid) mit ungefähr der doppelten Menge Oxalester erhitzt, bis bei 200° die Flüssigkeit zu sieden beginnt (Castellaneta, G. 25 II, 534; Piutti, Piocoli, B. 31, 333; G. 28 I, 291; vgl. Wieths, Ar. 234, 627). — Nadeln (aus Wasser) oder Prismen (aus Alkohol). Triklin pinakoidal (Scacchi, B. 31, 333; vgl. Groth, Ch. Kr. 4, 267). F: 108—109° (Piu., Pioc.), 115° (W.). Löslich in siedendem Wasser, Essigsäure und Alkohol (Piu., Pioc.).

[4-Methoxy-phenyl]-oxamid, Oxalsäure-amid-p-anisidid $C_0H_{10}O_2N_2=H_2N\cdot CO\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Bei der Einw. von konz. Ammoniak auf [4-Methoxy-phenyl]-oxamidsäure-äthylester (s. o.) (PIUTTI, PICCOLI, B. 31, 334; G. 28 I, 292). — Flocken (aus Alkohol). F: 241°. Schwer löslich in heißem Wasser, leicht in Alkohol.

N.N´-Bis-[4-methoxy-phenyl]-oxamid, Oxalsäure-di-p-anisidid $C_{16}H_{16}O_6N_2 = [-CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_5]_3$. B. Aus p-Anisidin und Oxalsäure-diphenylester (Bd. VI, S. 155) in siedendem Xylol (Bischoff, Fröhlich, B. 39, 3975). Aus Methylen-di-p-anisidin (S. 452) und Oxalsäure-diphenylester beim Erhitzen auf 150° (Bi., Fr., B. 39, 3974) oder beim Kochen in Xylol (Bi., Fr., B. 39, 3975). Weitere Bildungen s. in den Artikeln [4-Methoxy-phenyl]-oxamidsäure (s. o.) und [4-Methoxy-phenyl]-oxamidsäure-äthylester (s. o.). — Schuppen (aus Essigsäure). F: 254° (Castellanta, G. 25 II, 534), 260° (Wirths, Ar. 234, 628), 260—261° (Bi., Fr.). Etwas löslich in Xylol und Eisessig, sonst schwer löslich (Bi., Fr.). — Gibt bei 4-stdg. Erhitzen mit PCl₅ in Benzol Oxalsäure-bis-[(4-methoxy-phenylimid)-chlorid] (S. 473) (Bauer, B. 42, 2111). Gibt mit konz. Schwefelsäure auf dem Wasserbade N.N´-Bis-[4-methoxy-3-sulfo-phenyl]-oxamid (Syst. No. 1926) (Bau.).

Oxalsäure-bis-[(4-methoxy-phenyl)-amidin], "Cyan-p-anisidin" $C_1H_1O_2N_4$ — $CH_3 \cdot O \cdot C_4H_4 \cdot NH \cdot C(:NH) \cdot C(:NH) \cdot NH \cdot C_4H_4 \cdot O \cdot CH_3$ bezw. $CH_3 \cdot O \cdot C_6H_4 \cdot N \cdot C(NH_3) \cdot C(NH_3) \cdot N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Entsteht neben 1.3-Bis-[4-methoxy-phenyl]-parabansäure-diimid-(4.5)-[4-methoxy-anil]-(2) $CH_3 \cdot O \cdot C_6H_4 \cdot N \cdot C \cdot N(C_6H_4 \cdot O \cdot CH_3) \cdot C \cdot NH$ (Syst. No. 3614) beim Einlaiten von Cyan (Bd. II. S. 549) in die wäßtrig-alkoholische Lösung von p. Anisidin et al. (Constant of the constant of the con

beim Einleiten von Cyan (Bd. II, S. 549) in die wäßrig alkoholische Lösung von p-Anisidin; man behandelt das ausgeschiedene Gemisch mit verd. Schwefelsäure, wodurch nur das "Cyan-p-anisidin" in Lösung geht, filtriert, versetzt das Filtrat mit Ammoniak, wäscht den ausgeschiedenen Niederschlag mit Wasser und krystallisiert aus starkem Alkohol um (Meves, J. pr. [2] 61, 463). — Blättchen (aus Alkohol). F: 207—209°. Unlöslich in Wasser und Petroläther, schwer löslich in Äther, Chloroform, Aceton, kaltem Alkohol und kaltem Benzol, leicht in heißem Alkohol, heißem Benzol und Eisessig. Die Salze sind gegen Wasser beständig. — C₁₈H₁₈O₂N₄ + HCl. Nadeln (aus Wasser durch kong. Salzsäure).

Oxalsäure-nitril-p-anisididoximacetat, O-Acetyl-[cyanform-p-anisididoxim]

C₁₁H₁₁O₅N₂ = NC · C(: N · O · CO · CH₂)·NH · C₅H₄· O · CH₃ bezw. NC · C(NH · O · CO · CH₃): N · C₆H₄· O · CH₂. B. Aus 1,5 g Isonitrosomalonsäure-mono-p-anisididoxim HO₅C · C(: N · OH) · C(: N · OH) · NH · C₆H₄· O · CH₃ (S. 497) und 4 ccm Essigsäureanhydrid bei 65—90° (WIELAND, SEMPER, GRELIN, A. 367, 75). — Nadeln (aus 50°/sigem Alkohol). F: 171—172° (Zers.). Sohwer löslich im Wasser und Äther, ziemlich leicht in heißem Alkohol. — Liefert in Alkohol mit Schwefelammoniumlösung Thiooxalsäure-amid-p-anisididoxim (s. u.).

Thiooxalsäure-amid-p-anisididoxim C₃H₁₁O₂N₂S=H₁N·CS·C(:N·OH)·NH·C₆H₄·O·CH₃ bezw. desmotrope Formen. B. Aus 2 g Oxalsäure-nitril-p-anisididoximacetat (s. o.) in 3—4 ccm Alkohol beim Erhitzen mit 8 ccm starker Schwefelammoniumlösung (WI., S., G., A. 867, 76). — Hellgelbe Nädelchen (aus verd. Alkohol). Zersetzt sich bei 174°. Leicht löslich in Alkohol, Bensol, ziemlich leicht in Äther und heißem Wasser. Löslich in Alkali. Eisenchlorid färbt dunkelgrün. — Liefert mit einem Gemisch von konz. Schwefelsäure und rauchender Schwefelsäure 5-Methoxy-isatin-oxim-(2) (Syst. No. 3240).

- [4-Äthoxy-phenyl]-oxamidsäure, Oxalsäure-mono-p-phenetidid $C_{10}H_{11}O_4N=HO_2C\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_4H_5$. B. Neben wenig Oxalsäure-di-p-phenetidid (s. u.) beim Erwärmen von 1 Tl. p-Phenetidin (S. 436) mit 2 Tln. Oxalsäure bis auf ca. 200°; durch Kochen mit Alkohol entzieht man dem Reaktionsgemisch das Oxalsäure-mono-p-phenetidid (Castellaneta, G. 25 II, 535, 536). Schuppen. F: 180—181° (Zers.). Löslich in siedendem Wasser, Alkohol und Äther.
- [4-Äthoxy-phenyl]-oxamidsäure-äthylester, Oxalsäure-äthylester-p-phenetidid C₁₉H₁₅O₄N = C₂H₅·O₂C·CO·NH·C₆H₄·O·C₂H₅. B. Entsteht neben Oxalsäure-di-p-phenetidid beim Erhitzen von 1 Tl. p-Phenetidin mit 2 Tln. Oxalester bis auf beinahe 300°; durch Kochen mit Alkohol entzieht man dem Reaktionsgemisch das Oxalsäure-äthylester-p-phenetidid (Castellaneta, G. 25 II, 535, 537). Neben Oxalsäure-di-p-phenetidid beim Erhitzen äquimolekularer Mengen von p-Phenetidin und Oxalester im geschlossenen Rohr auf 160° (Wirths, Ar. 234, 628; vgl. Piutti, Piccoll, B. 31, 330, 334; G. 28 I, 284, 293). Tafeln (aus heißem Wasser). Monoklin prismatisch (Scacchi, B. 31, 334; vgl. Groth, Ch. Kr. 4, 268). F: 108—110° (Piu., Picc.), 110° (W.), 110—111° (C.). Löslich in siedendem Wasser, in Alkohol und Äther (C.).
- [4-Äthoxy-phenyl]-oxamid, Oxalsäure-amid-p-phenetidid $C_{10}H_{12}O_3N_2 = H_2N \cdot CO \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Aus Oxalsäure-äthylester-p-phenetidid (s. o.) und alkoh. Ammoniak (Piutti, Piccoll, B. 31, 335; G. 28 I, 295). Flocken. F: 241,5°. Löslich in siedendem Alkohol.
- N.N'-Bis-[4-äthoxy-phenyl]-oxamid, Oxalsäure-di-p-phenetidid $C_{18}H_{20}O_4N_8=[-CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5]_s$. B. Beim Erhitzen von 2 Mol.-Gew. p-Phenetidin mit 1 Mol.-Gew. Oxalsäure auf ca. 140—145° (RIEDEL, D. R. P. 79099; Frdl. 4, 1173; vgl. Castellaneta, G. 25 II, 535). Bildung aus Oxalsäurediäthylester s. im Artikel [4-Åthoxy-phenyl]-oxamidsäure-äthylester (s. o.). Aus p-Phenetidin und Oxalsäure-diphenylester (Bd. VI, S. 155) in siedendem Xylol (Bischoff, Fröhlich, B. 39, 3977). Aus Methylen-di-p-phenetidin (S. 452) und Oxalsäure-diphenylester bei 110° (Bi., Fr.). Beim Erhitzen von N.N'-Bis-[4-oxy-phenyl]-oxamid (S. 472) mit Åthyljodid und alkoh. Kalilauge im geschlossenen Rohr auf 110° (C., G. 25 II, 536 Anm.). Nadeln (aus Eisessig). F: 256—258° (C.), 261° (Bi., Fr.), 262° (Wirths, Ar. 234, 629 Anm. 1), 263° (R.). Unlöslich in Wasser und Åther, schwer löslich in Alkohol, Benzol und Chloroform, leichter in heißem Eisessig (R.).
- Oxalsäure-bis-[(4-äthoxy-phenyl)-amidin], "Cyan-p-phenetidin" $C_{18}H_{18}O_2N_4 = C_2H_5 \cdot O \cdot C_6H_4 \cdot NH \cdot C(:NH) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $C_2H_5 \cdot O \cdot C_6H_4 \cdot N : C(NH_2) \cdot C(NH_2) \cdot NH_2 \cdot NH_3 \cdot NH_4 \cdot NH_5 \cdot C(NH_2) \cdot NH_4 \cdot NH_5 \cdot NH$
- N.N'-Bis-[4-äthoxy-phenyl]-monothiooxamid, Monothiooxalsäure-di-p-phenetidid $C_{18}H_{20}O_3N_2S=C_2H_5\cdot O\cdot C_6H_4\cdot NH\cdot CO\cdot CS\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Man behandelt p-Phenetidin mit Chloressigsäure und Rhodankalium, versetzt das gebildete, nicht isolierte [Carbaminyl-thioglykolsäure]-p-phenetidid in Ammoniaklösung mit H_2O_2 , wobei (nicht näher beschriebenes) Dithiodiglykolsäure-di-p-phenetidid ausfällt; dieses kocht man kurze Zeit mit $20^0/_{\rm o}$ iger Natronlauge (Frenchs, Wildt, A. 360, 106, 114). Krystalle (aus Eisessig oder Alkohol). F: 156—157°; leicht löslich in Chloroform, Benzol und Eisessig, schwer in Alkohol, unlöslich in Wasser (F., W., A. 360, 114).
- N.N'-Bis-[4-äthoxy-phenyl]-monoselenoxamid, Monoselenoxalsäure-di-p-phenetidid $C_{18}H_{19}O_{2}N_{2}Se=C_{2}H_{5}\cdot O\cdot C_{2}H_{4}\cdot NH\cdot CO\cdot CSe\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Beim Kochen von Diselendiglykolsäure-di-p-phenetidid (S. 491) mit Natronlauge (F., W., A. 360, 126). Rote Nadeln (aus Alkohol). F: 160—161°. Leicht löslich in Chloroform und Benzol, löslich in Alkohol und Eisessig, unlöslich in Wasser.
- N.N'-Bis-[4-acetoxy-phenyl]-oxamid $C_{18}H_{16}O_{6}N_{2} = [-CO \cdot NH \cdot C_{6}H_{4} \cdot O \cdot CO \cdot CH_{3}]_{2}$. B. Beim Kochen von N.N'-Bis-[4-oxy-phenyl]-oxamid (S. 472) mit Essigsäureanhydrid am Rückflußkühler (Castellaneta, G. 25 II, 533). Schuppen. Sublimiert gegen 260°.
- Oxalsäure-bis-[(4-methoxy-phenylimid)-chlorid] $C_{16}H_{14}O_{2}N_{2}Cl_{3} = CH_{3}\cdot O\cdot C_{6}H_{4}\cdot N:CCl\cdot CCl:N\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Durch 4-stdg. Erhitzen von Oxalsäure-di-p-anisidid (S. 472) mit Phosphorpentachlorid in Benzol (Bauer, B. 42, 2111). Gelbe Nadeln (aus Ligroin + etwas Benzol). F: 150°. Unlöslich in Wasser, sehr wenig löslich in Ligroin, mäßig löslich in Essigester, Aceton, Schwefelkohlenstoff, leicht in Benzol, Chloroform, Alkohol und Äther. Löslich in kalter Schwefelsäure mit indigoblauer Farbe, die beim Erwärmen in Braunrot übergeht. Beim Eintragen in konz. Schwefelsäure auf dem Wasserbade entstehen N.N'-Bis-[4-methoxy-3-sulfo-phenyl]-oxamid (Syst. No. 1926) und geringe Mengen 5-Methoxy-isatin (Syst. No. 3240). Löst sich in Eisessig beim Erwärmen unter Bildung von Oxalsäure-di-p-anisidid.

N.N'-Bis-[4-oxy-phenyl]-malonamid $C_{12}H_{14}O_4N_2 = CH_2(CO \cdot NH \cdot C_4H_4 \cdot OH)_2$. B. Beim Erhitzen von 2 Tin. Malonsäureester mit 1 Ti. 4-Amino-phenol bis 185⁶ (Castellaneta, G. 25 II, 537). — Schuppen. F: 235⁶ (Zers.).

N-[4-Methoxy-phenyl]-malonamidsäure, Malonsäure-mono-p-anisidid $C_{10}H_{11}O_4N$ = $HO_2C\cdot CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2$. B. Durch Verseifen des entsprechenden Äthylesters (s. u.) mit Alkalicarbonatiösung (C., G. 25 II, 539). — Schüppehen. F: 143° (Zers.). Löslich in siedendem Wasser, in Alkohol und Äther.

N-[4-Methoxy-phenyl]-malonamidsäure-äthylester, Malonsäure-äthylesterp-anisidid $C_{12}H_{15}O_4N=C_2H_5\cdot O_2C\cdot CH_2\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CH_3$. B. Entsteht neben Malonsäure-di-p-anisidid (s. u.) beim Erhitzen von 2 Tln. Malonsäurediäthylester mit 1 Tl. p-Anisidin auf ca. 190° (C., G. 25 II, 538, 539). — Nadeln (aus Alkohol). F: 73°. Löslich in siedendem Wasser, Alkohol, Äther und Essigsäure.

N.N'-Bis-[4-methoxy-phenyl]-malonamid, Malonsäure-di-p-anisidid $C_{17}H_{18}O_4N_2$ = $CH_1(CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_2)_2$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 232—233°; löslich in Alkohol und siedender Essigsäure, unlöslich in Wasser und Äther (C., G. 25 II, 539).

N - [4 - Athoxy - phenyl] - malonamidsäure, Malonsäure - mono - p - phenetidid $C_{11}H_{12}O_{4}N = HO_{5}C \cdot CH_{5} \cdot CO \cdot NH \cdot C_{5}H_{4} \cdot O \cdot C_{2}H_{5}$. B. Durch Verseifen des entsprechenden Athylesters (s. u.) mit Alkalicarbonatlösung (C., G. 25 II, 541). — Schuppen. F: 143° (Zers.). Löslich in siedendem Wasser, in Alkohol und Ather.

N-[4-Åthoxy-phenyl]-malonamidsäure-äthylester, Malonsäure-äthylester-p-phenetidid $C_{13}H_{17}O_4N=C_2H_5\cdot O_2C\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Entsteht neben Malonsäure-di-p-phenetidid (s. u.) beim Erhitzen von 2 Tln. Malonester mit 1 Tl. p-Phenetidin áuf 180°; zur Trennung löst man das Gemisch in warmem Alkohol; beim Abkühlen scheidet sich zunächst Malonsäure-di-p-phenetidid aus (C., G. 25 II, 540, 541). — Schuppen (aus siedendem Wasser). F: 109°. Sehr leicht löslich in Alkohol und Essigsäure, löslich in Ather und siedendem Wasser.

N.N'-Bis-[4-äthoxy-phenyl]-malonamid, Malonsäure-di-p-phenetidid $C_{10}H_{32}O_4N_3$ = $CH_{3}(CO\cdot NH\cdot C_0H_4\cdot O\cdot C_3H_5)_2$. B. Beim Vermischen von N.N'-Bis-[4-oxy-phenyl]-malonamid (s. o.) mit Åthyljodid und Kalilauge in alkoh. Lösung (Castellaneta, G. 25 II, 540). Eine weitere Bildung s. im Artikel Malonsäure-äthylester-p-phenetidid. — Nadeln (aus Alkohol). F: 233—234° (C.), 226° (Bischoff, B. 31, 3257). Unlöslich in Äther und Wasser, löslich in Alkohol und Essigsäure (C.).

N.N'-Bis-[4-acetoxy-phenyl]-malonamid $C_{19}H_{18}O_6N_9=CH_2(CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot CH_9)_9$. B. Beim Kochen von N.N'-Bis-[4-oxy-phenyl]-malonamid (s. o.) mit Essigsäureanhydrid (Castellaneta, G. 25 II, 538). — Krystallpulver (aus Alkohol). Erweicht gegen 190° und schmilzt bei ca. 210°. Löslich in siedendem Alkohol, unlöslich in Wasser und Äther.

N-[4-Oxy-phenyl]-succinamidsäure $C_{10}H_{11}O_4N = HO_2C \cdot CH_2 \cdot CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Beim Erhitzen von N-[4-Oxy-phenyl]-succinimid (Syst. No. 3201) mit Kalilauge (P1UTTI, G. 25 II, 511; B. 29, 84). — Krystalle (aus Wasser). F: 171—172°. Löslich in Wasser, Alkohol und Essigsäure.

 $N-[4-Methoxy-phenyl]-succinamidsäure, Bernsteinsäure-mono-p-anisidid <math>C_{11}H_{18}O_4N=HO_2C\cdot CH_3\cdot CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus N-[4-Methoxy-phenyl]-succinimid beim Erhitzen mit Kalilauge (P., G. 25 II, 513; B. 29, 85). — Krystalle (aus heißem Wasser). F: 156—157°. Löslich in Alkohol und Essigsäure.

N.N' - Bis - [4 - methoxy - phenyl] - succinamid, Bernsteinsäure - di - p - anisidid $C_{12}H_{20}O_4N_2 = [-CH_2\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot CH_3]_2$. B. Bei 4-stdg. Erhitzen von 2 Mol.-Gew. p-Anisidin und 1 Mol.-Gew. Bernsteinsäure auf 260° (Fici, C. 1902 II, 1449). — Blättchen. F: 243°. Unlöslich in Alkohol, Äther, Chloroform, Benzol und Essigsäure. Beständig gegen konz. Alkalien. — Wird durch konz. Salzsäure bei 130° unter Bildung von Bernsteinsäure und 4-Amino-phenol gespalten.

N-[4-Åthoxy-phenyl]-succinamidsäure, Bernsteinsäure-mono-p-phenetidid C₁₂H₁₂O₄N = HO₂C·CH₃·CH₃·CO·NH·C₆H₄·O·C₂H₃. B. Aus p-Phenetidin und Bernsteinsäureanhydrid in Toluol (GILBODY, SPRANKLING, Soc. 81, 789). Aus N-[4-Åthoxy-phenyl]succinimid (Syst. No. 3201) beim Erhitzen mit Kalilauge (Piutti, G. 25 II, 515; B. 29, 86). Aus N-[4-Åthoxy-phenyl]-maleinimid (Syst. No. 3202) in wäßr. Alkohol mit der 20—25-fachen Menge 5% igem Natriumamalgam (P., R. A. L. [5] 18 II, 320). — Blättchen (aus heißem Wasser). F: 160—161° (P.), 166—167° (G., Sp.). Löslich in Alkohol und Essigsäure, schwer löslich in trocknem Äther (G., Sp.). — NaC₁₃H₁₄O₄N ("lösliches Pyrantin"). Blättchen (aus der wäßr. Lösung durch Ammoniumsulfatzusatz). Sehr leicht löslich in Wasser (P., G. 25 II, 515; B. 29, 86). Physiologische Wirkung und Verwendung als Antipyreticum: P.

N.N'-Bis-[4-äthoxy-phenyl]-succinamid, Bernsteinsäure-di-p-phenetidid $C_{50}H_{24}O_4N_2=[-CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5]_2$. B. Beim Erhitzen von p-Phenetidin mit Bernsteinsäureanhydrid (Syst. No. 2475) neben N-[4-Äthoxy-phenyl]-succinimid (Syst. No. 3201) (Wirths, Ar. 234, 626, 627). — Nadeln (aus Eisessig). F: 258°. Unlöslich in Wasser.

a.a'-Dibrom-bernsteinsäure-di-p-phenetidid $C_{20}H_{23}O_4N_2Br_3 = [-CHBr\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_2H_5]_2$. B. Aus Fumarsäure-di-p-phenetidid (S. 476) und Brom in Eisessiglösung (CAMPANARO, G. 28 II, 196). — F: 199°.

Methylmalonsäure - bis - [4 - oxy - anilid], Isobernsteinsäure - bis - [4 - oxy - anilid] $C_{16}H_{16}O_4N_2 = CH_3 \cdot CH(CO \cdot NH \cdot C_6H_4 \cdot OH)_2$. B. Beim Erhitzen äquimolekularer Mengen von 4-Amino-phenol und Isobernsteinsäureester im Kohlendioxydstrome auf 180—183° (COMANDUCCI, LOBELLO, G. 35 II, 315). — Krystalle (aus Benzol). F: 136—137°. Färbt sich mit rauchender Salpetersäure gelb.

Methylmalonsäure-mono-p-anisidid, Isobernsteinsäure-mono-p-anisidid $C_{11}H_{13}O_4N=CH_3\cdot CH(CO_3H)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus dem entsprechenden Äthylester (s. u.) durch Verseifung mit Kaliumcarbonatlösung (C., L., G. 35 II, 316). — Krystallmasse. F: 143° (Zers.). Löslich in Wasser und Essigsäure, sehr wenig in Benzol und Chloroform. Gibt mit Eisenchlorid in alkoh. Lösung eine gelbrote Färbung.

Methylmalonsäure - äthylester - p - anisidid, Isobernsteinsäure - äthylester - p-anisidid $C_{19}H_{17}O_4N=CH_3\cdot CH(CO_2\cdot C_2H_5)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Neben Isobernsteinsäure-di-p-anisidid beim Erhitzen von p-Anisidin mit Isobernsteinsäureester auf 170—175° (C., L., G. 35 II, 316). — Krystallmasse. F: 112—114°.

Methylmalonsäure-di-p-anisidid, Isobernsteinsäure-di-p-anisidid $C_{18}H_{20}O_4N_2=CH_3\cdot CH(CO\cdot NH\cdot C_8H_4\cdot O\cdot CH_3)_3$. B. s. im vorangehenden Artikel. — Nädelchen (aus Alkohol). F: 200—201°; löslich in Alkohol, Essigsäure, sehr wenig löslich in Benzol und Chloroform, unlöslich in Wasser (C., L., G. 35 II, 315). Färbt sich in alkoh. Lösung mit Eisenchlorid grünlich, mit rauchender Salpetersäure orange (C., L.).

Methylmalonsäure-mono-p-phenetidid, Isobernsteinsäure-mono-p-phenetidid $C_{12}H_{18}O_4N=CH_3\cdot CH(CO_2H)\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Aus dem entsprechenden Äthylester (s. u.) durch Kaliumcarbonatlösung (C., L., G. 35 II, 318). — Krystalle. F: 146—148°. Löslich in Alkohol und Essigsäure, schwer löslich in Benzol und Chloroform. Gibt mit Eisenchlorid eine hellorange Färbung.

Methylmalonsäure - äthylester - p - phenetidid, Isobernsteinsäure - äthylester-p-phenetidid $C_{14}H_{19}O_4N=CH_3\cdot CH(CO_3\cdot C_3H_3)\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Neben Isobernsteinsäure-di-p-phenetidid (s. u.) aus p-Phenetidin und Isobernsteinsäureester bei 190° bis 192° (C., L., G. 35 II, 318). — Nädelchen. F: 125—126°. Färbt sich mit Eisenchlorid violett und mit Salpetersäure orange.

Methylmalonsaure - di - p - phenetidid, Isobernsteinsaure - di - p - phenetidid $C_{20}H_{24}O_4N_2=CH_3\cdot CH(CO\cdot NH\cdot C_2H_4\cdot O\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Nädelchen (aus Alkohol). F: 210° (C., L., G. 35 II, 317).

Brenzweinsäure-mono-p-anisidid $C_{12}H_{18}O_4N = HO_2C \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$ oder $HO_2C \cdot CH(CH_3) \cdot CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus Brenzweinsäure-[4-methoxy-phenylimid] (Syst. No. 3201) und Kaliumhydroxyd in wâßrig-alkoholischer Lösung (GIUFFRIDA, CHIMIENTI, G. 34 Π , 268). — Krystalle. F: 137°.

Brenzweinsäure-di-p-anisidid $C_{19}H_{22}O_4N_3 = CH_3 \cdot O \cdot C_8H_4 \cdot NH \cdot CO \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH \cdot C_8H_4 \cdot O \cdot CH_3$. B. Aus p-Anisidin und Brenztraubensäure in alkoh. Lösung (G., Ch., G. 34 II, 264). Neben Brenzweinsäure-[4-methoxy-phenylimid] (Syst. No. 3201) aus p-Anisidin und Brenzweinsäure (G., Ch., G. 34 II, 266). — Nadeln (aus Alkohol). F: 241° bis 242°. Unlöslich in Wasser, löslich in warmem Alkohol, Äther und Essigsäure. — Wird durch Salzsäure bei 100° im Einschmelzrohr gespalten in Methylchlorid, 4-Amino-phenolhydrochlorid und Brenzweinsäure.

Brensweinsäure-mono-p-phenetidid $C_{13}H_{17}O_4N = HO_3C \cdot CH_2 \cdot CH(CH_3) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ oder $HO_3C \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und Brenzweinsäureanhydrid (Syst. No. 2475) in Benzol (Gilbody, Sprankling, Soc. 81, 790). — Nadeln (aus 50°/kigem Alkohol). F: 149—150°.

Brenzweinsäure - di - p - phenetidid $C_{21}H_{26}O_4N_2 = C_2H_5 \cdot O \cdot C_8H_4 \cdot NH \cdot CO \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH \cdot C_8H_4 \cdot O \cdot C_2H_5$. Aus Brenztraubensäure und p-Phenetidin in alkoh. Lösung (GIUFFRIDA, CHIMIENTI, G. 34 II, 269). — Nadeln (aus siedendem Alkohol). F: 234 —235°. Unlöslich in Wasser, löslich in warmer Essigsäure und siedendem Alkohol.

a.a-Dimethyl-bernsteinsäure-mono-p-phenetidid $C_{14}H_{19}O_4N = HO_2C \cdot CH_2 \cdot C(CH_3)_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ oder $HO_2C \cdot C(CH_3)_2 \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus a.a-Dimethyl-bernsteinsäure-anhydrid (Syst. No. 2475) und p-Phenetidin (Gilbody, Sprankling,

Soc. 81, 790). — Prismen (aus Alkohol). Schmilzt bei 160—161⁶ unter geringer Gasentwicklung. Schwer löslich in heißem Wasser.

Mono-p-phenetidid der hochschmelsenden (fumaroiden) a.a'-Dimethyl-bernsteinsäure, Paradimethylbernsteinsäure-mono-p-phenetidid $C_{1_6}H_{19}O_4N=HO_2C\cdot CH(CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Paradimethylbernsteinsäureanhydrid (Syst. No. 2475) (G., S., Soc. 81, 791). — Nadeln (aus Alkohol). Schmilzt bei 184—1856 unter langsamer Zersetzung. Schwer löslich in heißem Wasser.

Mono-p-phenetidid der niedrigschmelsenden (maleinoiden) a.a'-Dimethylbernsteinsäure, Antidimethylbernsteinsäure-mono-p-phenetidid $C_{14}H_{19}O_4N = HO_2C \cdot CH(CH_3) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und Antidimethylbernsteinsäureanhydrid (Syst. No. 2475) (G., S., Soc. 81, 791). — Nadeln (aus Alkohol). F: 155 bis 156°.

Isopropylbernsteinsäure – mono – p – phenetidid $C_{18}H_{21}O_4N = HO_2C \cdot CH_2 \cdot CH[CH(CH_2)_2] \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5$ oder $HO_2C \cdot CH[CH(CH_2)_2] \cdot CH_2 \cdot CO \cdot NH \cdot C_3H_4 \cdot O \cdot C_2H_5$. B. Aus Isopropylbernsteinsäureanhydrid (Syst. No. 2475) und p-Phenetidin in Benzol (G., S., Soc. 81, 792). — Blättchen (aus Alkohol). F: 151—152°. Die wäßr. Lösung ist schwach sauer. — Geht leicht in Isopropylbernsteinsäure-[4-āthoxy-phenylimid] (Syst. No. 3201) über.

Diäthylmalonsäure-di-p-phenetidid $C_{29}H_{20}O_4N_5=(C_2H_5)_2C(CO\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5)_4$. B. Aus Diäthylmalonylchlorid (Bd. II, S. 687) und p-Phenetidin (Akt.-Ges. f. Anllinf., D. R. P. 165311; C. 1906 I, 299). — Nadeln (aus Alkohol). F: 186°. In heißem Wasser sehr wenig löslich, in heißem Alkohol und Benzol leicht löslich.

Trimethylbernsteinsäure-mono-p-phenetidid $C_{11}H_{21}O_1N = HO_2C \cdot CH(CH_2) \cdot C(CH_2)_2 \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5$, der $HO_2C \cdot C(CH_2)_2 \cdot CH(CH_2) \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und Trimethylbernsteinsäureanhydrid (Syst. No. 2475) (GILBODY, SPRANKLING, Soc. 81, 792). — Platten oder Prismen (aus Alkohol). F: 128—129°. Schwer löslich in Wasser. — Geht leicht in Trimethylbernsteinsäure-[4-āthoxy-phenylimid] (Syst. No. 3201) über.

Dipropylmalonsäure-di-p-phenetidid $C_{25}H_{24}O_4N_5=(CH_2\cdot CH_2\cdot CH_2)_2C(CO\cdot NH\cdot C_6H_4\cdot O\cdot C_5H_6)_2$. B. Aus Dipropylmalonylchlorid (Bd. II, S. 713) und p-Phenetidin (Akt.-Ges. f. Anilinf., D. R. P. 165311; C. 1906 I, 299). — Nadeln. F: 143°. In heißem Wasser sehr wenig löslich, in heißem Alkohol leicht löslich.

N.N'-Bis-[4-oxy-phenyl]-fumaramid $C_{16}H_{14}O_4N_8 = H0 \cdot C_6H_4 \cdot NH \cdot C0 \cdot CH : CH \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Bei längerem Erhitzen von (nicht näher beschriebenem) saurem fumarsaurem 4-Amino-phenol im Kohlendioxydstrom auf 200° (Piutti, R. A. L. [5] 16 II, 324; vgl. P., R. A. L. [5] 17 I, 637). — Weiße Krystallmasse (aus Alkohol). Wird gegen 220° dunkel, schmilzt noch nicht bei 250°. Liefert beim Umkrystallisieren aus Essigsäure eine chemisch identische, aber gelbe Form.

N.N'-Bis-[4-methoxy-phenyl]-fumaramid, Fumarasure-di-p-anisidid C₁₄H₁₈O₂N₂ = CH₃·O·C₆H₄·NH·CO·CH:CH·CO·NH·C₆H₄·O·CH₃. B. Bei mehrstündigem Erhitzen von (nicht näher beschriebenem) neutralem fumarasurem p-Anisidin im Kohlendioxydstrome auf 200° oder bei 3-stdg. Erhitzen von 1 Mol.-Gew. Maleinsäureanhydrid (Syst. No. 2476) mit 2 Mol.-Gew. p-Anisidin auf 150° (P., R. A. L. [5] 18 II, 324; vgl. P., R. A. L. [5] 17 I, 637). — Weiße Krystalle (aus Alkohol). F: 215—216°. Unlöslich in Wasser, schwer löslich in Alkohol, leicht in Essigsäure und den höheren Fettsäuren, aus denen es in einer chemisch identischen, gelben Form sich ausscheidet.

N.N'-Bis-[4-āthoxy-phenyl]-fumaramid, Fumarsäure-di-p-phenetidid C₂₄H₂₂O₄N₂ =: C₂H₃·O·C₆H₄·NH·CO·CH:CH·CO·NH·C₆H₄·O·C₄H₅. B. Aus Apfelsäure (Bd. III, S. 419) und p-Phenetidin bei 180° (Campanabo, G. 28 II, 193, 195). Beim Erhitzen von N-[4-Āthoxy-phenyl]--malamidsäure (S. 494) (C., G. 28 II, 196). Aus Maleinsäureanhydrid (Syst. No. 2476) und p-Phenetidin bei 185—200° (Piutti, R. A. L. [5] 18 II, 326; vgl. P., R. A. L. [5] 17 I, 637). Bei 5-6-stdg. Erhitzen der alkoh. Lösung von N-[4-Āthoxy-phenyl]-maleinamidsäure (S. 477.) im Autoklaven auf 140—150° (P., R. A. L. [5] 18 II, 316, 326). Aus (nicht näher beschriebenem) neutralem fumarsaurem p-Phenetidin bei 150° im CO₂-Strom (P., R. A. L. [5] 18 II, 326). — Weiße Nadeln. F: 225°; unlöslich in Wasser und Äther, leicht löslich in Essigsäure (P.). Scheidet sich aus den Lösungen in Essigsäure in einer chemisch identischen, aber gelben Form ab, die auch beim Zerreiben der weißen Form entsteht (P., R. A. L. [5] 18 II, 326; vgl. P., R. A. L. [5] 17 I, 637).

H-[4-Oxy-phenyl]-maleinamidsäure C₁₀H₂O₄N = HO₅C·CH·CH·CO·NH·C₀H₄·OH.

B. Man vermischt eine Lösung von 5 g Maleinsäureanhydrid (Syst. No. 2476) in wasserfreiem Benzol mit einer Suspension von 5—6 g 4-Amino-phenol-sulfit (frisch bereitet durch

Einw. von Natriumsulfit auf das Hydrochlorid des 4-Amino-phenols) in Aceton und kocht am Rückflußkühler (P., R. A. L. [5] 18 II, 313). — Am Licht sich bräunende gelbe Nadeln. F: 182°. Unlöslich in Wasser, fast unlöslich in Äther und Benzol, etwas löslich in warmem Essigester, Alkohol und Aceton.

 $N - [4 - Methoxy - phenyl] - maleinamidsäure, Maleinsäure - mono - p - anisidid <math>C_H H_{11} O_4 N = H O_2 C \cdot CH : CH \cdot CO \cdot NH \cdot C_2 H_4 \cdot O \cdot CH_3$. B. Aus 10 g Maleinsäureanhydrid (Syst. No. 2476) und 12,55 g p-Anisidin in Benzol (P., R. A. L. [5] 18 II, 314). — Gelbe Krystalle (aus Alkohol). F: 180—181°. Unlöslich in siedendem Benzol, löslich in warmem Alkohol. Die wäßr. Lösungen geben mit Eisenchlorid eine gelbbraune, dann violette Färbung.

N-[4-Äthoxy-phenyl]-maleinamidsäure, Maleinsäure-mono-p-phenetidid C₁₂H₁₂O₄N = HO₂C·CH:CH·CO·NH·C₂H₄·O·C₂H₅. B. Aus 10 g Maleinsäureanhydrid (Syst. No. 2476) und 14,1 g p-Phenetidin in Benzol (P., R. A. L. [5] 18, II, 315). — Gelbe Krystalle. Schmilzt bei 181—182° unter Bräunung; unlöslich in Benzol, Wasser, schwer löslich in Äther, löslich in warmem Alkohol (P.). Die alkoh. Lösung gibt mit Eisenchlorid eine zuerst braune, dann violette Färbung (P.). — Liefert, in alkoh. Lösung im Autoklaven auf 140—150° erhitzt, Fumarsäure-di-p-phenetidid (S. 476) (P.). Gibt beim Erhitzen mit Phenyliscoyanat in Toluol am Rückflußkühler Maleinsäureanhydrid und N-Phenyl-N'-[4-äthoxy-phenyl]-harnstoff (S. 481) (ABATI, GALLO, G. 36 II, 822; C. 1907 I, 246).

Citraconssure-mono-p-anisidid C₁₂H₁₃O₄N = HO₂C·C(CH₃):CH·CO·NH·C₈H₄·O·CH₅ oder HO₂C·CH:C(CH₃)·CO·NH·C₆H₄·O·CH₅. B. Durch Zusammenbringen āquimolekularer Mengen von Citraconssureanhydrid (Syst. No. 2476) und p-Anisidin in Benzol + Aceton oder durch Verseifung von N-[4-Methoxy-phenyl]-citraconimid (Syst. No. 3202) mit Kaliumāthylat und darauffolgende Sättigung mit HCl (Piutti, B. 39, 2772; G. 36 II, 371). — Schmilzt bei 169° unter Zersetzung.

Cyclohexen-(1)-dicarbonsäure-(1.2)-mono-[4-oxy-anilid], Δ^1 -Tetrahydrophthalsäure-mono-[4-oxy-anilid] $C_{14}H_{15}O_4N=HO_2C\cdot C_4H_4\cdot CO\cdot NH\cdot C_6H_4\cdot OH$. B. Aus äquimolekularen Mengen 4-Amino-phenol und [Δ^1 -Tetrahydrophthalsäure]-anhydrid (Syst. No. 2477) in Aceton (Piurri, Abari, B. 36, 999; G. 33 II, 9). — Schmilzt, langsam erhitzt, bei 131° zu einer gelben Flüssigkeit, wird bei 140—145° wieder fest und schmilzt abermals gegen 165°. Schmilzt bei raschem Erhitzen bei 170—175°. Leicht löslich in Alkohol. Gibt mit Eisenchlorid nach wenigen Augenblicken violette Färbung.

Cyclohexen-(1)-dicarbonsäure-(1.2)-mono-p-anisidid, Δ^1 -Tetrahydrophthalsäure-mono-p-anisidid $C_{18}H_{17}O_4N=HO_8C\cdot C_8H_8\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot CH_3$. B. Aus äquimole-kularen Mengen p-Anisidin und [Δ^1 -Tetrahydrophthalsäure]-anhydrid (Syst. No. 2477) in Aceton (P., A., B. **36**, 999; G. **33** II, 11). — Weiße Krystalle. F: 150—155°. Leicht löslich in Alkohol. Gibt mit Eisenchlorid sofort rotviolette Färbung.

Cyclohexen-(1)-dicarbonsäure-(1.2)-mono-p-phenetidid, Δ^1 -Tetrahydrophthalsäure-mono-p-phenetidid $C_{16}H_{10}O_4N = HO_2C \cdot C_6H_8 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus äquimolekularen Mengen [Δ^1 -Tetrahydrophthalsäure]-anhydrid (Syst. No. 2477) und p-Phenetidin in Benzol (P., A., B. 36, 999; G. 33 II, 12). — Weiße Krystalle. F: ca. 145°. Schwer löslich in Wasser, selbst in der Siedehitze, löslich in Alkohol, Ather und Benzol mit gelber Farbe in der Wärme, in Aceton mit orangegelber Farbe. Gibt mit Eisenchlorid nach einigen Augenblicken rotviolette Färbung.

N-[4-Oxy-phenyl]-phthalamidsäure $C_{14}H_{11}O_4N = HO_4C \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus N-[4-Oxy-phenyl]-phthalimid (Syst. No. 3210) und Kalilauge (Piutti, G. 16, 252). Aus Phthalsäureanhydrid (Syst. No. 2479) und 4-Amino-phenol in Aceton (Piutti, Abati, B. 36, 998; G. 33 II, 5). — F: 220—225° (P., A.). Gibt mit Eisenchlorid erst nach einigen Tagen Violettfärbung (P., A.).

 $N - [4 - Methoxy - phenyl] - phthalamidsäure, Phthalsäure - mono - p - anisidid <math>C_{15}H_{13}O_4N = HO_2C \cdot C_2H_4 \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot CH_2$. B. Aus äquimolekularen Mengen Phthalsäureanhydrid (Syst. No. 2479) und p-Anisidin in Aceton (P., A., B. 36, 998; G. 33 II, 6). Man löst N-[4-Methoxy-phenyl]-phthalimid (Syst. No. 3210) in der äquimolekularen Menge alkoh. Kalis und fällt die Lösung mit der berechneten Menge Schwefelsäure (P., A.). — Weiße oder gelbe Nadeln. F: 180—185°. Gibt mit Eisenchlorid nach und nach rotviolette, später tiefviolette Färbung.

N - [4 - Åthoxy - phenyl] - phthalamidsäure, Phthalsäure - mono - p - phenetidid C₁₈H₁₈O₄N = HO₂C·C₂H₄·CO·NH·C₂H₄·O·C₂H₅. B. Aus äquimolekularen Mengen Phthalsäureanhydrid (Syst. No. 2479) und p-Phenetidin in Aceton (P., A., B. 36, 998; G. 38 II, 7). Man löst N-[4-Äthoxy-phenyl]-phthalimid (Syst. No. 3210) in der äquimolekularen Menge alkoh. Kalis und fällt die entstandene Phthalamidsäure mit der berechneten Menge Schwefelsäure (P., A.). — F: 160—165°. Gibt mit Eisenchlorid erst rotviolette, nach 10 Minuten tiefviolette Färbung.

N-Phonyl-N-[4-oxy-phonyl]-phthalamidsäure $C_{50}H_{15}O_4N = HO_2C \cdot C_6H_4 \cdot CO$. $N(C_6H_6) \cdot C_6H_4 \cdot OH$. B. Durch Erhitzen äquimolekularer Mengen von Phthalsäureanhydrid (Syst. No. 2479) und 4-0xy-diphenylamin (S. 444) auf 150—195° (Piurri, Piccoll, G. 28 I, 373; P. 21 4290) B. 31, 1329). — Prismen (aus verd. Alkohol). F: 191—192°. Leicht löslich in Alkohol, Ather, Essignaure, unlöslich in Wasser. Löslich in Salpetersaure mit gelber Farbe. Die intensiv blaue Lösung in konz. Schwefelsäure entfärbt sich auf Zusatz von Wasser oder Alkohol. $-\text{Cu}(C_{80}\text{H}_{14}\text{$\bar{0}_4$N})_8 + 4\text{H}_8\text{O}$. Hellgrün. — $\text{AgC}_{80}\text{H}_{14}\text{O}_4\text{N} + 3^1/_2\text{H}_8\text{O}$. Wird bei 100° wasserfrei.

Äthylester $C_3H_3O_4N=C_2H_5\cdot O_3C\cdot C_6H_4\cdot CO\cdot N(C_6H_5)\cdot C_6H_4\cdot OH$. B. Aus dem Silbersalz der N-Phenyl-N-[4-oxy-phenyl]-phthalamidsäure (s. o.) mit Äthyljodid (Piutti, Piccoll, G. 28 I, 375; B. 31, 1330). — Nadeln. F: 166—168°.

 $\label{eq:normalized} \textbf{N-Phenyl-N-[4-methoxy-phenyl]-phthalamids aure} \quad C_{21}H_{17}O_4N = HO_2C\cdot C_6H_4\cdot CO\cdot N(C_6H_4\cdot O\cdot CH_3\cdot B. \quad \text{Man lost N-Phenyl-N-[4-oxy-phenyl]-phthalamids aure in absolution of the state of the$ Alkohol, neutralisiert mit Kalilauge und erhitzt mit der berechneten Menge Methyljodid und Kalilauge unter Rückfluß; die von KI abfiltrierte Lösung wird eingedampft, der Rückstand in Wasser gelöst und die Säure mit Salzsäure gefällt (Piutti, Piccoll, G. 28 I, 375; B. 31, 1330). — Amorpher Niederschlag (aus Alkohol + Wasser). F: 90—92°. Leicht löslich in Alkohol, Äther, Aceton, unlöslich in Wasser. — AgC₂₁H₁₆O₄N. Etwas löslich in Wasser.

N-Phenyl-N-[4-sthoxy-phenyl]-phthalamidssure $C_{22}H_{10}O_4N = HO_2C \cdot C_6H_4 \cdot CO \cdot N(C_6H_5) \cdot C_6H_4 \cdot O \cdot C_5H_5$. Analog der der vorangehenden Verbindung. — F: 80—82° (Piutti, Piccoll, G. 28 I, 376; B. 31, 1330). — $AgC_{22}H_{18}O_4N$ (P., P.).

Aconitsäure - mono - p - phenetidid C₁₄H₁₅O₄N = HO₃C·CH:C(CO₂H)·CH₃·CO·NH·C₄H₄·O·C₄H₅ oder HO₃C·CH₃·C(CO₄H):CH·CO·NH·C₄H₄·O·C₄H₅ oder HO₅C·CH:C(CH₂·CO₄H)·CO·NH·C₄H₄·O·C₄H₅. B. Durch Erhitzen von Citronensäure (Bd. III, S. 556) mit der äquimolekularen Menge p-Phenetidin auf 100—200° (Chem. Fabr. v. HEYDEN, D. R. P. 87428; Frdl. 4, 1170; ANSELMINO, C. 1908 II, 565). — Krystalle mit 1 H₂O (aus Wasser) (A.). Schmilzt bei 72° in seinem Krystallwasser; die bei 100° entwässerte Verbindung schmilzt unscharf bei 129° (A.). Krystallisiert aus einer Benzol-Eisessig-Mischung mit 1 Mol. Krystallessigsaure; diese Krystalle schmelzen bei 112º (A.).

- c) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit Kohlensäure.
- [4-Oxy-phenyl]-urethan C₂H₁₁O₃N = C₄H₅·O₂C·NH·C₆H₄·OH. B. Aus 4-Aminophenol und Chlorameisensäureäthylester (Bd. III, S. 10) (Groenvik, Bl. [2] 25, 179). Aus 4-Chlorformyloxy-phenylisocyanat (S. 488) und 50% igem Alkohol im geschlossenen Rohr bei 150% (Schönhere, J. pr. [2] 67, 341). Tafeln (aus Alkohol + Äther), Blättchen (aus heißem Wasser). Monoklin (Wiik, Bl. [2] 25, 179). F: 120% (G.), 123% (Sch.). Leicht löslich in Alkalien (G.). Scheidet sich beim Eindampfen der ammoniakalischen Lösung unverändert **ab** (G.).
- [4-Oxy-phenyl]-harnstoff $C_7H_8O_2N_2 = H_2N \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus salzsaurem 4-Amino-phenol und Kaliumcyanat (KALCKHOFF, B. 16, 376). Tafeln (aus Wasser). F: 168° (Zers.). Löslich in Wasser und Alkohol; löslich in Alkalien und Säuren.
- N-Phenyl-N'-[4-oxy-phenyl]-harnstoff $C_{13}H_{12}O_2N_3 = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus 4-Amino-phenol und Phenylisocyanat in Benzol im geschlossenen Rohr bei 100° (Auwers, Traux, Welde, B. 32, 3308) oder durch Schütteln in kalt gehaltener alkalischer Lösung, neben [4-Amino-phenol]-O.N-bis-carbonsäureanilid (S. 485) (E. Fischer, B. 33, 1701 Anm. 3). Nädelchen (aus Eisessig). F: 216—217° (A., T., W.), 221° (korr.) (E. F.). Schwer löslich in heißem Wasser, Äther und Benzol, löslich in ca. 12 Tin. sied. Eisessig (E. F.).

N.N'-Bis-[4-oxy-phenyl]-harnstoff $C_{13}H_{13}O_3N_3=CO(NH\cdot C_6H_4\cdot OH)_3$. B. Beim Kochen von 4-Oxy-benzazid (Bd. X, S. 175) mit Wasser (Struve, Radenhausen, J. pr. [2] 52, 238). — Nadeln (aus heißem Wasser). Zersetzt sich gegen 230°, ohne zu schmelzen.

N-[4-Oxy-phenyl]-N'-guanyl-guanidin, ω -[4-Oxy-phenyl]-biguanid $C_sH_{11}ON_s = HN:C(NH_s)\cdot NH\cdot C(:NH)\cdot NH\cdot C_sH_s \cdot OH$ bezw. desmotrope Formen. B. Das Hydrochlorid entsteht durch Erhitzen äquimolekularer Mengen von Dicyandiamid (Bd. III, S. 91) und dem Hydrochlorid des 4-Amino-phenols im Ölbade bis zum Schmelzen und Wiedererstarren des Produktes (Lumière, Perenn, Bl. [3] 38, 206). — Hydrochlorid. F: 203—204. Pikrat $C_{1}H_{16}ON_{1} + C_{2}H_{2}O_{7}N_{3}$. F: 200-201°.

[4-Oxy-phenyl]-thioharnstoff $C_7H_8ON_1S = H_2N \cdot CS \cdot NH \cdot C_8H_4 \cdot OH$. Beim Abdampfen einer Lösung von 4-Amino-phenol-hydrochlorid mit Rhodankalium (KALOKHOFF, B. 16, 375). Aus 4-Acetoxy-phenylsenföl (S. 487) und Ammoniak (KALCK., B. 16, 1832).

— Tafeln (aus absol. Alkohol). Schmilzt unter Zersetzung bei 214° (KALCK., B. 16, 375); F: 220—221° (DIXON, Soc. 67, 559). Fast unlöslich in kaltem Wasser, wenig löslich in kaltem Alkohol, ziemlich löslich in heißem Wasser oder heißem Alkohol; leicht löslich in Alkalien und konz. Säuren (KALCK., B. 16, 375). — Überführung in einen grünen Schwefelfarbstoff durch Erhitzen mit Schwefel und Schwefelnatrium: KALLE & Co., D. R. P. 138104; C. 1903 I, 210.

N-Phenyl-N'-[4-oxy-phenyl]-thioharnstoff $C_{13}H_{12}ON_2S=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Vermischen und Erwärmen der alkoh. Lösungen äquimolekularer Mengen von 4-Amino-phenol-hydrochlorid, Phenylsenföl und Natriumhydroxyd (KALCKHOFF, B. 16, 376). — Blättchen. F: 162° ; leicht löslich in Alkohol, schwerer in Äther und Benzol, kaum in Wasser; leicht löslich in Alkalien, kaum löslich in verd. Säuren (KALCK.). — Überführung in einen grünen Schwefelfarbstoff durch Erhitzen mit Schwefel und Schwefelakali: KALLE & Co., D. R. P. 138104; C. 1903 I, 210.

N-[3-Nitro-phenyl]-N'-[4-oxy-phenyl]-thioharnstoff $C_{13}H_{11}O_3N_3S = O_2N\cdot C_6H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 3-Nitro-phenylsenföl (Bd. XII, S. 709) und 4-Aminophenol in Alkohol (STEUDEMANN, B. 16, 2335). — Nadeln. F: 152°. Leicht löslich in heißem Alkohol und Eisessig, kaum in Äther, unlöslich in Wasser und Benzol.

N.N´-Bis-[4-oxy-phenyl]-thioharnstoff $C_{13}H_{19}O_3N_2S=CS(NH\cdot C_6H_4\cdot OH)_2$. B. Aus 4-Amino-phenol und Schwefelkohlenstoff (Kalckhoff, B. 16, 1830). — Darst. Man erhitzt 4-Amino-phenol mit Schwefelkohlenstoff und Alkohol in Gegenwart von Schwefel 1—2 Stdn. (Hugershoff, B. 32, 2246). — Blättchen (aus Wasser). Schmilzt bei 222° unter lebhaftem Aufschäumen; sehr leicht löslich in Alkohol; sehr leicht löslich in Alkalien (K.). — Wird durch Quecksilberoxyd sehr leicht entschwefelt, offenbar unter Bildung von N.N´-Bis-[4-oxy-phenyl]-harnstoff (K.). Liefert beim Kochen mit Essigsäureanhydrid 4-Acetoxy-phenylsenföl (S. 487) (K.).

N-[4-Oxy-phenyl]-N'-carbäthoxy-thioharnstoff, N-[4-Oxy-phenyl]-thioharnstoff-N'-carbonsäureäthylester, a-[4-Oxy-phenyl]-monothioallophansäure-äthylester $C_{10}H_{12}O_3N_2S=C_2H_5\cdot O_2C\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot OH$. B. Aus Carbäthoxythiocarbimid (Bd. III, S. 174) und 4-Amino-phenol in Alkohol (Doran, Soc. 69, 329). — Prismen (aus Alkohol). F: 198,5—199°. Schwer löslich in Äther und Schwefelkohlenstoff, fast unlöslich in kaltem Benzol.

[4-Methoxy-phenyl]-urethan $C_{10}H_{13}O_3N = C_2H_5 \cdot O_3C \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus 4-Methoxy-phenylisocyanat (S. 487) und absol. Alkohol (Vittenet, Bl. [3] 21, 957). — Nadeln (aus Alkohol). F: 63—64°. Leicht löslich in Äther und Benzol, schwer in kaltem Ligroin, löslich in siedendem Wasser.

N.N'-Bis-[4-methoxy-phenyl]-harnstoff $C_{15}H_{16}O_3N_2 \Rightarrow CO(NH \cdot C_6H_4 \cdot O \cdot CH_3)_2$. B. Durch Kochen von Guajacolcarbonat (Bd. VI, S. 776) mit 3 Tln. p-Anisidin (Cazeneuve, Moreau, C. r. 124, 1104). Beim Kochen von anisbenzhydroxamsaurem Kalium (Bd. X, S. 171) mit Wasser (Lossen, A. 175, 295). Beim Behandeln von 4-Methoxy-phenylisocyanat (S. 487) mit Sodalösung (Pieschel, A. 175, 312). — Prismen oder Nadeln. F: 232—234° (Zers.) (L.), 231—232° (C., M.). Unlöslich in Äther (C., M.), schwer löslich in Alkohol (L.), Benzol, Chloroform (C., M.), ziemlich löslich in Nitrobenzol (C., M.). Wird von konz. Salzsäure bei 180—200° glatt zerlegt in Kohlendioxyd, Methylchlorid und 4-Amino-phenol (L.).

N-[4-Methoxy-phenyl]-N'-benzoyl-harnstoff $C_{15}H_{14}O_3N_2 = C_6H_5 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus N-Benzoyl-monothiocarbamidsaure-O-athylester (Bd. IX, S. 218) und p-Anisidin (Wheeler, Johnson, Am. 24, 211). — Prismen. F: 216—218°.

N-[4-Methoxy-phenyl]-N'-anisoyl-harnstoff $C_{16}H_{16}O_4N_2=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot NH\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim allmählichen Hinzufügen von 10 g Brom zu einer abgekühlten Lösung von 10 g Anisamid (Bd. X, S. 164) in einer Lösung von 2,5 g Natrium in 200 ccm Methylalkohol (van Dam, R. 18, 421). — Krystalle. F: 222°. Unlöslich in den gewöhnlichen Lösungsmitteln, ziemlich löslich in Phenol. Gibt beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 225° 4-Oxy-benzoesäure und 4-Amino-phenol.

O-Äthyl-N-[4-methoxy-phenyl]-N'-bengoyl-isoharnstoff $C_{17}H_{18}O_3N_2=C_6H_5\cdot CO\cdot N:C(O\cdot C_2H_5)\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$ bezw. $C_6H_5\cdot CO\cdot NH\cdot C(O\cdot C_2H_5):N\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus p-Anisidin und Monothiokohlensäure-O.S-diäthylester-benzoylimid (Bd. IX, S. 223) (Johnson, Menge, Am. 32, 367). — Prismen (aus Alkohol). F: 66—67°.

N.N´-Bis-[4-methoxy-phenyl]-guanidin $C_{15}H_{17}O_3N_3 = HN:C(NH\cdot C_6H_4\cdot O\cdot CH_3)_2$ bezw. $CH_3\cdot O\cdot C_6H_4\cdot NH\cdot C(NH_3):N\cdot C_6H_4\cdot O\cdot CH_3$. B. Durch Einw. von wäßrig-alkoholischem Ammoniak und Quecksilberoxyd oder Bleihydroxyd auf in Alkohol suspendierten N.N´-Bis-[4-methoxy-phenyl]-thioharnstoff (S. 480) (RIEDEL, D. R. P. 68706; Frdl. 3, 914).—Nadeln. F: 153,5°. Löslich in ca. 2000 Tln. kaltem Wasser oder in ca. 6 Tln. Alkohol.

Schmeckt bitter. — $C_{14}H_{17}O_2N_3 + HCl$. Nadeln (aus Wasser). F: 192°. — $2C_{15}H_{17}O_2N_3 + H_2SO_4$. Nadeln. F: 209—210°. — $C_{14}H_{17}O_2N_3 + HCl + AuCl_3$. Braune Nadelchen. F: 137—138°. — $2C_{15}H_{17}O_2N_3 + 2HCl + PtCl_4$. Hellgelbe Nadeln. F: 217—218°.

N.N'-Bis-[4-methoxy-phenyl]-N''-benzoyl-guanidin $C_{43}H_{41}O_3N_3 = C_6H_5 \cdot CO \cdot N: C(NH \cdot C_6H_4 \cdot O \cdot CH_3)_2$ bezw. $CH_3 \cdot O \cdot C_6H_4 \cdot NH \cdot C(NH \cdot CO \cdot C_6H_5): N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus N.N'-Bis-[4-methoxy-phenyl]-guanidin und Benzoylchlorid (RIEDEL, D. R. P. 68706; Frdl. 3, 915). — Nadeln. F: 180,5°.

N-[4-Methoxy-phenyl]-N'-guanyl-guanidin, ω -[4-Methoxy-phenyl]-biguanid C₂H₁₂ON₅ = HN:C(NH₂)·NH·C(:NH)·NH·C₆H₄·O·CH₂ bezw. desmotrope Formen. B. Das Hydrochlorid entsteht durch Erhitzen äquimolekularer Mengen von Dicyandiamid (Bd. III, S. 91) und dem Hydrochlorid des p-Anisidins im Ölbade bis zum Schmelzen und Wiedererstarren des Produktes (LUMIÈRE, PERRIN, Bl. [3] 38, 206). — Hydrochlorid. F: 221—222°. — Pikrat. F: 193—195°.

N-Phenyl-N'-[4-methoxy-phenyl]-thioharnstoff $C_{14}H_{14}ON_2S = C_4H_5 \cdot NH \cdot CS \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Aus p-Anisidin und Phenylsenföl (Wheeler, Am. Soc. 23, 226). Aus p-Anisidin und N-Anilinothioformyl-benziminomethyläther (Bd. XII, S. 401) (Wh., Sanders, Am. Soc. 22, 372; vgl. Wh., Am. Soc. 23, 224, 226). — Krystalle. F: ca. 180°.

N.N'-Bis-[4-methoxy-phenyl]-thioharnstoff $C_{18}H_{16}O_2N_2S=CS(NH\cdot C_6H_4\cdot O\cdot CH_3)_2$. B. Aus p-Anisidin und Schwefelkohlenstoff in Alkohol (H. Salkowski, B. 7, 1012) oder in Ather durch 4-tägige Einwirkung bei höchstens $+10^{\circ}$ (Riedel, D. R. P. 68706; Frdl. 3, 914). Aus p-Anisidin und Schwefelkohlenstoff in Gegenwart von 3° /ogem Wasserstoff superoxyd bei gewöhnlicher Temperatur (v. Braun, Beschke, B. 39, 4377). — Nädelchen (aus Alkohol). F: 185° (H. S.), 188° (v. Br., Br.), 191° (R.). Schwer löslich in Alkohol (H.S.; v. Br., Br.). — Wird von alkoh. Ammoniak bei Gegenwart von Quecksilberoxyd oder Bleihydroxyd in N.N'-Bis-[4-methoxy-phenyl]-guanidin (S. 479) umgewandelt (R.).

S-Äthyl-N-[4-methoxy-phenyl]-N-benzoyl-isothioharnstoff $C_{17}H_{18}O_{2}N_{8}S=C_{6}H_{5}\cdot CO\cdot N:C(S\cdot C_{2}H_{5})\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$ bezw. $C_{6}H_{5}\cdot CO\cdot NH\cdot C(S\cdot C_{2}H_{5}):N\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. B. Aus Dithiokohlensäure-diäthylester-benzoylimid (Bd. IX, S. 224) und p-Anisidin (Wheeler, Johnson, Am. 26, 414). — Prismen (aus Alkohol). F: 99—100°.

p - Anisidinothioformyl - hydrasin, 4 - [4 - Methoxy - phenyl] - thiosemicarbasid $C_0H_1ON_3S=H_2N\cdot NH\cdot CS\cdot NH\cdot C_0H_4\cdot O\cdot CH_3$. B. Durch 8-stdg. Kochen von N-Phenyl-N'-[4-methoxy-phenyl]-thioharnstoff mit Hydrazinhydratlösung in Alkohol (Busch, Ulmer, B. 35, 1714). — Schwach rosa gefärbte Blätter. F: 144°. Ziemlich leicht löslich, außer in Ligroin.

[4-Āthoxy-phenyl]-urethan $C_{11}H_{15}O_3N=C_2H_4\cdot O_2C\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Chlorameisensäureäthylester (Bd. III, S. 10) und p-Phenetidin in Alkohol (Köhler, J. pr. [2] 29, 257) oder in Benzol (Autenbieth, Bernheim, Ar. 242, 588). — Nadeln oder Blättchen (aus Alkohol). F: 94° (K.), 93,5° (Au., B.). Unlöslich in kaltem Wasser und Petroläther, leicht löslich in Alkohol, Äther, Chloroform, Benzol und Eisessig (K.). Zerfällt beim Kochen mit Natronlauge in CO_2 , Alkohol und p-Phenetidin (K.).

Mono-[4-šthoxy-phenyl]-carbamidsäureester des Brenzcatechins $C_{15}H_{15}O_4N = HO \cdot C_9H_4 \cdot O \cdot CO \cdot NH \cdot C_9H_4 \cdot O \cdot C_2H_5$. B. Aus Brenzcatechincarbonat $C_9H_4 < {\stackrel{\bigcirc}{O}} > CO$ (Syst. No. 2742) und p-Phenetidin bei gewöhnlicher Temperatur (Einhorn, A. 300, 143; Höchster Farbw., D. R. P. 92535; Frdl. 4, 1110). — Blättchen (aus Alkohol). F: 146°; löslich in Äther, Benzol und Ligroin (E.).

Mono-[4-āthoxy-phenyl]-carbamidsäureester des 4-Propyl-brenzcatechins $C_{19}H_{21}O_4N = HO \cdot C_6H_3(CH_2 \cdot CH_3 \cdot CH_3) \cdot O \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Propylbrenzcatechincarbonat $CH_3 \cdot CH_2 \cdot CH_3 \cdot C_6H_3 < 0 > CO$ (Syst. No. 2742) und p-Phenetidin (Delange, C. r. 138, 425). — F: 122.

O¹-[4-Äthoxy-phenyl]-carbamidsäureester des Pyrogallols, [4-Äthoxy-phenyl]-carbamidsäure-[2.8-dioxy-phenyl]-ester $C_{1t}H_{1t}O_tN=(HO)_sC_cH_s\cdot O\cdot CO\cdot NH\cdot C_cH_4\cdot O\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot C_cH_5\cdot O\cdot CO\cdot NH\cdot C_cH_5\cdot O\cdot C_cH_5\cdot$

[4-Åthoxy-phenyl]-harnstoff, Dulcin $C_0H_{10}O_2N_2 = H_2N \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot C_0H_5$. B. Aus salssaurem p-Phenetidin und Kaliumoyanat (Berlinerblau, J. pr. [2] 30, 103). Durch Einw. von Ammoniak auf das aus p-Phenetidin und Phosgen in Benzol- oder Toluollösung

entstehende Produkt (Berlinerblau, D. R. P. 63485; Frdl. 3, 906; vgl. Wenghöffer, Apotheker-Zeitung 9, 201). Aus p-Phenetidin und Urethan (Bd. III, S. 22) bei 100—180° (J. D. Riedel, D. R. P. 77420; Frdl. 4, 1269). Aus salzsaurem p-Phenetidin und Harnstoff (Bd. III, S. 42) bezw. freiem p-Phenetidin und Harnstoffsalzen durch Erhitzen im Autoklaven auf 160° oder durch längeres Kochen in wäßr. Lösung (J. D. R., D. R. P. 76596; Frdl. 4, 1268). Durch Kochen von p-Phenetidin mit Acetylharnstoff in wäßriger oder alkoholischer Lösung (J. D. R., D. R. P. 79718; Frdl. 4, 1270). Aus [4-Athoxy-phenyl]-urethan und Ammoniak bei 100—180° (J. D. R., D. R. P. 77420). Durch Erhitzen von N.N'-Bis-[4-athoxy-phenyl]-harnstoff mit Harnstoff, carbamidsaurem Ammoniak oder käuflichem Ammoniumcarbonat im Autoklaven auf 150—160° (J. D. R., D. R. P. 73083; Frdl. 3, 907) oder mit Ammoniak allein oder in Gegenwart von Alkohol im Autoklaven auf 170—175° (J. D. R., D. R. P. 7310; Frdl. 4, 1271). Aus [4-athoxy-phenyl]-dithiocarbamidsaurem Ammonium (S. 483) durch 2 Mol.-Gew. Bleicarbonat in alkal. Flüssigkeiten, neben 4-Athoxy-phenylcyanamid (Heller, Bauer, J. pr. [2] 65, 379). — Blättchen (aus verd. Alkohol). F: 170—171° (J. D. R., D. R. P. 79718), 171—172° (He., Bau.), 173—174° (W.). Löslich in ca. 800 Tln. Wasser von 15°, in 50 Tln. siedendem Wasser, in 25 Tln. kaltem 90°/oigem Alkohol (W.); löslich in Ather; löslich in heißer konz. Salzsäure (Be., J. pr. [2] 30, 104). — Bei längerem Einleiten von salpetriger Säure in die alkoh. Lösung fällt [2-Nitro-4-äthoxy-phenyl]-harnstoff (S. 523) aus (Be., J. pr. [2] 30, 104; Thoms, Nettesheim, Ber. Disch. Pharm. Ges. 30 [1920], 229). — Schmeckt sehr süß (Be., J. pr. [2] 30, 104); die Süßkraft ist die 250-fache der des Rohtzuckers (W.); Dulcin findet als Süßstoff Verwendung (W.). Verhalten im Organismus: W.; Treupel, C. 1897 I, 299). — Nachweis in Nahrungsmitteln: W.; Bianchi, di Nola, C. 1908 II, 2039.

N-Phenyl-N'-[4-äthoxy-phenyl]-harnstoff $C_{15}H_{16}O_2N_2 = C_6H_5$. NH·CO·NH·C $_6H_4$ ·O·C $_2H_5$. B. Aus äquimolekularen Mengen von p-Phenetidin und Phenylisocyanat (Bd. XII, S. 437) in äther. Lösung (Abati, Gallo, C. 1907 I, 246; G. 36 II, 823). Aus N-[4-Äthoxy-phenyl]-maleinamidsäure (S. 477) beim Erhitzen mit Phenylisocyanat in Toluol (A., Ga.). — Krystalle (aug Alkohol). F: 178° (A., Ga.), 187° (Dimroth, Eble, Gruhl, B. 40, 2400).

N.N'-Bis-[4-äthoxy-phenyl]-harnstoff $C_1,H_{20}O_3N_2=CO(NH\cdot C_6H_4\cdot O\cdot C_8H_5)_3$. B. Aus p-Phenetidin und Phosgen (Berlinerblau, D.R.P. 63485; Frdl. 3, 906). Aus 4-Åthoxy-phenylisocyanat und p-Phenetidin (Gattermann, Cantzler, B. 25, 1090). Aus Pyrogallolcarbonat $HO\cdot C_6H_3<0>CO$ (Syst. No. 2805) mit p-Phenetidin auf dem Wasserbade (Einhorn, Cobliner, B. 37, 110). Aus p-Phenetidin und Acetessigester, a-substituierten Acetessigestern oder a-Benzyl-acetessigsäure-amid bei höherer Temperatur (Foglino, C. 1898 I, 501). — Nadeln (aus Eisessig). F: 224° (J. D. Riedell, D. R. P. 66550; Frdl. 3, 914), 225—226° (G., Ca.). Nicht acetylierbar (J. D. R.).

N-[4-Äthoxy-phenyl]-N'-[phenyl-glycyl]-harnstoff $C_{17}H_{19}O_3N_3 = C_0H_5 \cdot NH \cdot CH_3 \cdot CO \cdot NH \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot C_0H_5 \cdot B$. Aus (nicht näher beschriebenem) N-[4-Äthoxy-phenyl]-N'-chloracetyl-harnstoff und Anilin (Freeichs, Beckurts, Ar. 237, 336). — Nadeln (aus verd. Alkohol). F: 162°.

N-[4-Äthoxy-phenyl]-N'-[0-tolyl-glycyl]-harnstoff $C_{18}H_{21}O_{2}N_{3}=CH_{3}\cdot C_{6}H_{4}\cdot NH\cdot CH_{3}\cdot CO\cdot NH\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. Analog der der vorangehenden Verbindung. — Nadeln (aus verd. Alkohol). F: 183° (F., B., Ar. 237, 336).

 $\begin{array}{ll} \textbf{N-[4-Athoxy-phenyl]-N'-[p-tolyl-glycyl]-harnstoff} & C_{16}H_{21}O_3N_3 = CH_3\cdot C_6H_4\cdot NH\cdot CH_2\cdot CO\cdot NH\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5. & Nadeln (ausiverd. Alkohol). & F: 1720 (F., B., $A7.287, 336). \end{array}$

4-Äthoxy-phenylcyanamid, N-Cyan-p-phenetidin $C_0H_{10}ON_2=NC\cdot NH\cdot C_0H_4$ · $O\cdot C_2H_3$. B. Beim Einleiten von Chlorcyan (Bd. III, S. 38) in eine äther. Lösung von p-Phenetidin (Berlinerblau, J. pr. [2] 30, 102). Aus p-Phenetidin und Bromcyan in Gegenwart einer wäßrigen Alkalidicarbonatlösung (Pierron, Bl. [3] 35, 1198; A. ch. [8] 15, 157, 167). Beim Behandeln einer Lösung von [4-Äthoxy-phenyl]-thioharnstoff (S. 482) in siedender Natronlauge mit Bleihydroxyd (Berlinerblau, J. pr. [2] 30, 108) oder in siedender Kalilauge mit Kupfersulfat (Pierron, Bl. [3] 35, 1200; A. ch. [8] 15, 159, 167). Aus [4-äthoxy-phenyl]-dithiocarbamidsaurem Ammonium (S. 483) durch 2 Mol.-Gew. Bleicarbonat in alkal. Flüssigkeit (Heller, Bauer, J. pr. [2] 35, 380). — Krystalle (aus Chloroform + Ligroin). F: 87° (H., Bau.). Unlöslich in Wasser, sehr leicht löslich in Alkohol und Äther (Be., J. pr. [2] 30, 103). — Polymerisiert sich in siedendem Benzol (H., Bau.). — AgC₂H₂ON₂ (Be., J. pr. [2] 30, 113).

N.N'-Diphenyl-N"-[4-\$thoxy-phenyl]-guanidin $C_{21}H_{21}ON_3 = C_6H_5 \cdot NH \cdot C(:N \cdot C_6H_6 \cdot NH \cdot C_6H_6 \cdot O \cdot C_2H_5$ bezw. $(C_6H_6 \cdot NH)_2C:N \cdot C_6H_4 \cdot O \cdot C_4H_5$. B. Man behandelt ein äquimolekulares Gemenge von N.N'-Diphenyl-thioharnstoff (Bd. XII, S. 394) und p-Phenetidin in heißem Alkohol mit einem Entschwefelungsmittel, z. B. Bleioxyd (Chem. Fabr. v. Heyden, D. R. P. 104361; C. 1899 II, 951). — Ol. — Hydrochlorid. F: 170°.

- N.N´-Bis-[4-āthoxy-phenyl]-guanidin $C_{17}H_{21}O_2N_2=HN:C(NH\cdot C_2H_4\cdot O\cdot C_2H_5)_3$ bezw. $C_2H_3\cdot O\cdot C_3H_4\cdot NH\cdot C(NH_2):N\cdot C_4H_4\cdot O\cdot C_2H_3$. B. Durch Einw. von alkoh. Ammoniak und Quecksilberoxyd oder Bleihydroxyd auf in Alkohol suspendierten N.N´-Bis-[4-āthoxy-phenyl]-thioharnstoff bei 60° (REEDEL, D. R. P. 66550; Frdl. 3, 913). F: 122,5°. Löslich in ca. 1000 Tln. heißem Wasser oder 2 Tln. Alkohol. Schmecht bitter. $C_{17}H_{21}O_2N_3 + HCl$. Prismen (aus verd. Alkohol). F: 175°. $2C_{17}H_{21}O_2N_3 + H_3SO_4$. Nadeln. F: 203°. $C_{17}H_{21}O_2N_3 + HCl + AuCl_3$. Braunrote Nadeln. F: 144—144,5°. $2C_{17}H_{21}O_2N_3 + 2HCl + PtCl_4$. Tafeln. F: 209—210°.
- N.N'-Bis-[4-äthoxy-phenyl]-N"-acetyl-guanidin $C_{10}H_{13}O_3N_3 = CH_3 \cdot CO \cdot N : C(NH \cdot C_0H_4 \cdot O \cdot C_3H_6)_3$ bezw. $C_3H_6 \cdot O \cdot C_4H_6 \cdot N \cdot C(NH \cdot CO \cdot CH_9) : N \cdot C_6H_6 \cdot O \cdot C_2H_6$. B. Man erwärmt N.N'-Bis-[4-äthoxy-phenyl]-guanidin, für sich oder in Benzol gelöst, mit dem gleichen Gewicht Acetylchlorid (Riedel, D. R. P. 66550; Frdl. 3, 914). Nadeln (aus Alkohol). F: 165° (unscharf). Zersetzt sich leicht an der Luft.
- N.N'- Bis [4 athoxy phenyl] N''- bensoyl guanidin $C_{34}H_{25}O_3N_3 = C_4H_6 \cdot CO \cdot N:C(NH \cdot C_4H_4 \cdot O \cdot C_2H_5)$ bezw. $C_2H_5 \cdot O \cdot C_4H_4 \cdot NH \cdot C(NH \cdot CO \cdot C_4H_5):N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Man erwärmt N.N'-Bis-[4-athoxy-phenyl]-guanidin mit Benzoylchlorid (RIEDEL, D.R.P. 66550; Frill. 3, 914). Krystalle. F: 184°.
- N-[4-Åthoxy-phenyl]-N'-guanyl-guanidin, ω -[4-Åthoxy-phenyl]-biguanid $C_{10}H_{15}ON_5 = HN:C(NH_2)\cdot NH\cdot C(:NH)\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$ bezw. desmotrope Formen. B. Man erhitzt ein Äquimolekulares Gemenge von salzsaurem p-Phenetidin und Dicyandiamid (Bd. III, S. 91) zum Schmelzen (Lumere, Perrin, Bl. [3] 38, 206). Hydrochlorid. F: 209—210°. Pikrat. F: 182—183°.
- N-[4-\$\text{Athoxy-phenyl}-N'-anilinothioformyl-guanidin, N-Phenyl-N'-[(4-\$\text{athoxy-phenyl})-guanyl]-thioharnstoff $C_{16}H_{18}ON_6S=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C(:NH)\cdot NH\cdot C_6H_4\cdot O\cdot C_9H_8$ bezw. desmotrope Formen. B. Aus 1 Mol.-Gew. salzsaurem Phenylthiuret $C_6H_5\cdot N:C-S-S$
- HN——C:NH (Syst. No. 4445) und 2 Mol.-Gew. p-Phenetidin in siedender alkoholischer Lösung (Fromm, Vetter, A. 856, 183). Blättchen (aus Alkohol). F: 168°.
- Acetylderivat $C_{18}H_{20}O_8N_4S = C_{16}H_{17}ON_4S \cdot CO \cdot CH_3$. B. Aus N-Phenyl-N'-[(4-āthoxyphenyl)-guanyl]-thioharnstoff (s. o.) und Essigsäureanhydrid (F., V., A. 356, 187). Krystalle (aus Eisessig). F: 183°.
- Verbindung C₁₈H₁₈ON₄S. B. Aus dem Acetylderivat des N-Phenyl-N'-[(4-āthoxyphenyl)-guanyl]-thioharnstoffs (s. o.) durch Kochen mit Alkohol und Alkali (F., V., A. 356, 187). F: 204°.
- N-Phenyl-S-bensyl-N'-[(4-äthoxy-phenyl)-guanyl]-isothioharnstoff $C_{22}H_{24}ON_4S = C_9H_5\cdot N:C(S\cdot CH_3\cdot C_0H_5)\cdot NH\cdot C(:NH)\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$ bezw. desmotrope Formen. B. Aus N-Phenyl-N'-[(4-āthoxy-phenyl)-guanyl]-thioharnstoff (s. o.), gelöst in wenig Alkohol, überschüssigem Benzylchlorid und überschüssiger Natronlauge (F., V., A. 856, 184). Krystalle (aus Alkohol). F: 230°.
- [4-Äthoxy-phenyl]-thioharnstoff C₉H₁₉ON₉S = H₂N·CS·NH·C₈H₄·O·C₉H₅. B. Man versetzt 1 Mol.-Gew. salzsaures p-Phenetidin mit 1 Mol.-Gew. Ammoniumrhodanid in wäßr. Lösung und dampft auf dem Wasserbad 2—3mal zur Trockne (Berlinerblau, J. pr. [2] 30, 108). Aus [4-äthoxy-phenyl]-dithiocarbamidsaurem Ammonium (S. 483) in wäßr. Lösung durch 1 Mol.-Gew. Bleicarbonat (Helle, Bauer, J. pr. [2] 65, 379). Krystalle (aus Alkohol). Schmeckt bitter (Be.). F: 172° (He., Bau.). Löslich in Wasser; löslich in Alkalien (Be.). Wird von Bleihydroxyd und siedender verdünnter Natronlauge in 4-Äthoxy-phenylcyannid (S. 481) übergeführt (Be.). Gibt mit Essigsäureanhydrid N-[4-Äthoxy-phenyl]-N-acetyl-thioharnstoff (S. 486) (Hugershoff, B. 32, 3660; vgl. Wheeler, Am. 27, 270).
- N-[4-Åthoxy-phenyl]-N'-p-tolyl-thioharnstoff C₁₆H₁₈ON₂S = CH₂·C₆H₄·NH·CS·NH·C₆H₄·O·C₂H₅. B. Aus p-Phenetidin und p-Tolylsenföl (Bd. XII, S. 956) (Јасоввом, Нискванотт, B. 36, 3851). In geringer Menge beim Erhitzen von 4-Äthoxy-4-methyl-hydrazobenzol (Syst. No. 2078) mit Schwefelkohlenstoff im Druckrohr auf 150° (J., H.).
 Schüppchen (aus Alkohol). F: 134—135°. Leicht löslich in Alkohol.
- N.N.-Bis-[4-ëthoxy-phenyl]-thioharnstoff $C_{17}H_{20}O_8N_8S=CS(NH\cdot C_6H_4\cdot O\cdot C_8H_6)_8$. B. Durch 4-tagige Einw. von Schwefelkohlenstoff auf in Ather gelöstes p-Phenetidin bei gewöhnlicher Temperatur (J. D. Riedel, D. R. P. 66550; Frdl. 3, 913). Beim Schütteln von p-Phenetidin und Schwefelkohlenstoff mit 3°/ojeer waßr. Wasserstoffsuperoxydlösung (v. Braun, Bescher, B. 89, 4377). Aus [4-ëthoxy-phenyl]-dithiocarbamidsaurem Ammonium (S. 483) beim Stehen der wäßr. Lösung (Heiller, Bauer, J. pr. [2] 65, 378). Aus [4-ëthoxy-phenyl]-dithiocarbamidsaurem p-Phenetidin beim Behandeln mit Schwefel oder mit 3°/ojeer wäßr. Wasserstoffsuperoxydlösung (v. Br., Br.). Neben ω -[4-Athoxy-phenyl]-dithiobiuret

(s. u.), beim Erhitzen gleicher Gewichtsteile von p-Phenetidin und Isopersulfocyansäure (Xanthanwasserstoff) $\begin{array}{c} SC-S-S \\ HN---C:NH \end{array}$ (Syst. No. 4445) auf dem Wasserbade (Fromm, Vetter,

A. 356, 184). — Darst. Man erhitzt 2,7 g p-Phenetidin mit 1,5 g Schwefelkohlenstoff, 10 g Alkohol und 0,3 g Schwefel 2 Stdn. am Rückflußkühler (HUGERSHOFF, B. 32, 2246; HE., BAU.). — Blättchen (ans Alkohol). F: 168° (J. D. R.), 169° (HE., BAU.), 170° (F., V.). Unlöslich in kaltem Alkali (F., V.).

N-[4-Äthoxy-phenyl]-N'-acetyl-thioharnstoff $C_{11}H_{14}O_2N_3S = CH_3\cdot CO\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot O\cdot C_8H_5$. Zur Konstitution vgl. Wheeler, Am. 27, 270. — B. Aus N-[4-Äthoxy-phenyl]-N-acetyl-thioharnstoff (S. 486) durch Erhitzen über den Schmelzpunkt (Hugershoff, B. 32, 3660). — Krystalle (aus Alkohol). F: 196° (H.).

HN——C:NH 'S alkoh. Lösung (FBOMM, VETTER, A. 356, 185). — Krystalle (aus Alkohol). F: 170°. — Gibt in alkoh. Lösung mit Benzylchlorid und Natronlauge N-[4-Äthoxy-phenyl]-S-benzyl-N'-[phenyl-yuanyl]-isothioharnstoff (s. u.).

[phenyl-guanyl]-isothioharnstoff (s. u.).

Acetylderivat C₁₈H₂₀O₂N₄S = C₁₆H₁₇ON₄S·CO·CH₂. B. Aus N-[4-Athoxy-phenyl]-N'-[phenyl-guanyl]-thioharnstoff (s. o.) und Essigsäureanhydrid (F., V., A. 356, 187).

Nadeln (aus Essigsäure). F: 172°.
 Verbindung C₁₈H₁₈ON₄S. B. Aus dem Acetylderivat des N-[4-Athoxy-phenyl]-N'-[phenyl-guanyl]-thioharnstoffs (s. o.) durch Kochen mit Alkohol und Kalilauge (F., V., A. 356, 188). — Krystalle (aus Alkohol). F: 187°.

Dithioallophansäure - p - phenetidid, ω - [4 - Äthoxy - phenyl] - dithiobiuret $C_{10}H_{18}ON_8S_8 = H_8N \cdot CS \cdot NH \cdot CS \cdot NH \cdot C_8H_4 \cdot O \cdot C_8H_8$. Neben N.N'-Bis-[4-āthoxy-phenyl]-thioharnstoff beim Erhitzen gleicher Gewichtsteile von p-Phenetidin und Isopersulfocyansäure (Xanthanwasserstoff) SC - S - S (Syst. No. 4445) auf dem Wasserbade (F., V.,

A. 356, 184). — Blättchen (aus Alkohol). F: 178°. Löslich in kalter Natronlauge.

N-[4-Äthoxy-phenyl]-S-benzyl-N-[phenyl-guanyl]-isothioharnstoff $C_{23}H_{24}ON_4S = C_6H_5 \cdot NH \cdot C(:NH) \cdot N \cdot C(S \cdot CH_2 \cdot C_6H_5) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. desmotrope Formen. B. Aus N-[4-Äthoxy-phenyl]-N'-[phenyl-guanyl]-thioharnstoff (s. o.) in alkoh. Lösung mit Benzyl-chlorid und Natronlauge (F., V., A. 356, 185). — Blättchen (aus Alkohol). F: 166°.

N-[4-Äthoxy-phenyl]-isothioharnstoff-S-essigsäure, N-[4-Äthoxy-phenyl]-pseudothiohydantoinsäure $C_{11}H_{14}O_2N_2S = HO_3C \cdot CH_2 \cdot S \cdot C(:NH) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $HO_2C \cdot CH_2 \cdot S \cdot C(NH_2) \cdot N \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Man kocht Chloressigsäure-p-phenetidid mit Kaliumrhodanid in alkoh. Lösung, wobei sich das "labile Äthoxyphenylpseudothio-S·C(:NH) H_1C O $N \cdot C_6H_4 \cdot O \cdot C_2H_5$ (Syst. No. 4298) bildet; aus der alkoholisch-wäßrigen Mutterlauge scheidet sich beim Eindampfen die N-[4-Äthoxy-phenyl]-isothioharnstoff-S-essigsäure aus (Wheeler, Johnson, Am. 28, 157). — Unlösliches Pulver. Zersetzt sich bei ca. 212°. Unverändert löslich in verd. Alkali.

[4-Åthoxy-phenyl]-dithiocarbamidsäure C₃H₁₁ONS₃ = HS₂C·NH·C₆H₄·O·C₂H₅.

B. Das p-Phenetidinsalz entsteht aus p-Phenetidin und Schwefelkohlenstoff direkt oder in alkoholischer oder ätherischer Lösung (Chem. Fabr. v. Heyden, D. R. P. 104361; C. 1899 II, 951; Hugershoff, B. 32, 2247). Das Ammoniumsalz entsteht aus p-Phenetidin in Alkohol mit Schwefelkohlenstoff und 20% jegem Ammoniak (Heller, Bauer, J. pr. [2] 65, 378; Wagner, M. 27, 1241). — Nur in Form von Salzen untersucht. Das Ammoniumsalz gibt beim Stehen in wäßr. Lösung N.N'-Bis-[4-äthoxy-phenyl]-thioharnstoff (Heller, Bauer, J. pr. [2] 65, 378). Behandelt man das Ammoniumsalz in wäßr. Lösung mit 1 Mol.-Gew. Bleicarbonat, so entsteht 4-[Athoxy-phenyl]-thioharnstoff (S. 482); bei Einw. von 2 Mol.-Gew. Bleicarbonat in Gegenwart von Alkali werden [4-Äthoxy-phenyl]-harnstoff (S. 480) und 4-Äthoxy-phenylcyanamid (S. 481) gebildet (He., Bau.). Behandelt man das Ammoniumsalz in alkoh. Suspension mit Chloressigsäureäthylester, so erhält man [4-Äthoxy-phenyl]-rhodaninsäure

OC——CH. (Syst. No. 4298) (W.). Das p-Phenetidinsalz gibt

bei Behandlung mit Schwefel (Hu.) oder mit Wasserstoffsuperoxydlösung (v. Braun, Beschke, B. 39, 4377) N.N'-Bis-[4-āthoxy-phenyl]-thioharnstoff. — p-Phenetidinsalz. Weiße Fällung. Schmilzt bei ca. 50° (Ch. F. v. H.). In der Kälte stundenlang beständig (Hu.).

- [4-Propyloxy-phenyl]-harnstoff C₁₀H₁₄O₂N₂ = H₂N·CO·NH·C₄H₄·O·CH₄·CH
- N.N'-Bis-[4-propyloxy-phenyl]-harnstoff $C_{13}H_{24}O_3N_3=CO(NH\cdot C_6H_4\cdot O\cdot CH_3\cdot CH_3\cdot CH_3)_3$. B. Beim Erwärmen von 5 g salzsaurem 4-Amino-phenol-propyläther, 3 g Harnstoff und 20 com Wasser in einem mit Kühlrohr versehenen Kölbehen auf 120—125° (Sr., Sa., B. 34, 1939). Nadeln (aus 70°/eigem Alkohol). F: 201°. Unlöslich in Wasser, sehr wenig löslich in kaltem Alkohol, leicht in anderen organischen Lösungsmitteln.
- [4-Propyloxy-phenyl]-thioharnstoff $C_{10}H_{14}ON_2S = H_2N \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot B$. Beim Eindampfen einer wäßr. Lösung äquimolekularer Mengen von salzsaurem 4-Amino-phenol-propyläther und Ammoniumrhodanid auf dem Wasserbade (Sp., Sa., B. 34, 1940). Nadeln (aus 60% igem Alkohol). F: 158%. Ziemlich schwer löslich in Wasser, leicht in Alkohol, Äther und Benzol.
- [4-Isobutyloxy phenyl] harnstoff $C_{11}H_{10}O_{2}N_{2}=H_{2}N\cdot CO\cdot NH\cdot C_{0}H_{4}\cdot O\cdot CH_{2}\cdot CH(CH_{2})_{2}$. B. Aus salzsaurem 4-Amino-phenol-isobutyläther und Harnstoff in Wasser auf dem Wasserbade (Sp., Sa., B. 84, 1937, 1946). Prismen (aus Wasser). F: 156°. Fast unlöslich in kaltem Wasser, leicht löslich in heißem Wasser und in Alkohol. Nicht süß; stark giftig.
- [4-Isobutyloxy-phenyl]-thioharnstoff $C_{11}H_{16}ON_2S = H_2N \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CH(CH_2)_2$. B. Durch mehrmaliges Eindampfen des salzsauren 4-Amino-phenol-isobutylathers mit Ammoniumrhodanid (Sp., Sa., B. 34, 1946). Krystalle. F: 158°.
- [4-Isoamyloxy-phenyl]-harnstoff $C_{12}H_{18}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_8H_{11}$. B. Aus salzsaurem 4-Amino-phenol-isoamyläther und Harnstoff in Wasser auf dem Wasserbad (Sp., Sa., B. 34, 1937, 1943). Krystalle (aus Wasser). F: 133°. Ziemlich schwer löslich selbst in heißem Wasser, leicht in Alkohol und Äther. Nicht süß; stark giftig.
- N.N'-Bis-[4-isoamyloxy-phenyl]-harnstoff $C_{23}H_{22}O_2N_2 = CO(NH \cdot C_4H_4 \cdot O \cdot C_5H_{11})_3$. B. Beim Erhitzen von salzsaurem 4-Amino-phenol-isoamyläther mit Harnstoff und Wasser auf 120—125° (Sr., Sa., B. 34, 1943). Nadeln (aus 80°/eigem Alkohol). F: 170°. Leicht löslich in organischen Lösungsmitteln.
- [4-Isoamyloxy-phenyl]-thioharnstoff $C_{12}H_{12}ON_2S=H_2N\cdot CS\cdot NH\cdot C_0H_4\cdot O\cdot C_8H_{11}$. Beim Eindampfen einer Lösung von salzsaurem 4-Amino-phenol-isoamyläther mit Ammoniumrhodanid (Sp., Sa., B. 34, 1943). Blättehen (aus 30% eigem Alkohol). F: 167°.
- [4-Allyloxy-phenyl]-harnstoff $C_{10}H_{10}O_2N_3=H_2N\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot CH_2\cdot CH_2\cdot CH_2\cdot B$. Aus salzsaurem 4-Amino-phenol-allyläther und Harnstoff in Wasser auf dem Wasserbad (Sr., Sa., B. 34, 1941). Nädelchen (aus Wasser). F: 154°. Fast unlöslich in kaltem Wasser, leicht löslich in heißem Wasser, in Alkohol, Äther, Benzol und Aceton. Nicht süß; stark giftig.
- [4-Allyloxy-phenyl]-thioharnstoff $C_{10}H_{12}ON_2S = H_2N \cdot CS \cdot NH \cdot C_0H_4 \cdot O \cdot CH_2 \cdot CH_2 \cdot CH_3$. B. Aus salzsaurem 4-Amino-phenol-allyläther und Ammoniumrhodanid (Sp., Sa., B. 34, 1941). Nädelchen (aus Wasser). F: 148°. Leicht löslich in Alkohol, Äther und Benzol.
- N.N'-Bis-[4-allyloxy-phenyl]-thioharnstoff $C_{19}H_{20}O_2N_3S = CS(NH\cdot C_6H_4\cdot O\cdot CH_2\cdot CH: CH_2)_2$. B. Durch Auflösen von 4-Amino-phenol-allyläther in überschüssigem Schwefelkohlenstoff, Verdunsten des überschüssigen Schwefelkohlenstoffs und Umkrystallisieren des Produktes aus Alkohol (Sp., Sa., B. 34, 1941). Nadeln (aus Alkohol). F: 161°. Fast unlöslich in Wasser, ziemlich leicht löslich in organischen Lösungsmitteln.
- [4-Bensyloxy-phenyl]-harnstoff $C_{14}H_{14}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot C_6H_6$. B. Beim Eindampfen einer Lösung von salzsaurem 4-Amino-phenol-benzyläther mit Kalium-cyanat (Sp., Sa., B. 34, 1945). Nadeln (aus verd. Alkohol). F: 174°. Fast unlöslich in kaltem Wasser, leicht löslich in Alkohol und Ather. Nicht süß; stark giftig.
- [4 Phenacyloxy phenyl] harnstoff, ω [4 Ureido phenoxy] acetophenon $C_{18}H_{14}O_2N_4 = H_2N \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_4 \cdot CO \cdot C_6H_5$. B. Aus salzsaurem 4 Amino phenol phenacyläther (S. 439) und cyansaurem Kalium (Vignolo, R. A. L. [5] 6 I, 124). Lichtempfindliche Nadeln (aus Wasser oder Alkohol). F: 160° (Zers.). Schwer löslich in Wasser und Äther in der Kälte, mäßig in heißem Wasser, ziemlich in heißem Alkohol. Geschmacklos. Wirkt antithermisch, analgisch und hypnotisch.

- N-Phenyl-N'-[4-acetoxy-phenyl]-thioharnstoff $C_{15}H_{14}O_2N_2S=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_5H_4\cdot O\cdot CO\cdot CH_3$. B. Aus 4-Acetoxy-phenylsenföl (S. 487) und Anilin (Kalokhoff, B. 16, 1831). F: 137°. Unlöslich in Wasser, löslich in Alkohol, Äther und Eisessig; unlöslich in Alkalien.
- N [4 Acetoxy phenyl] N' [2 brom 4 methyl phenyl] thioharnstoff $C_{16}H_{15}O_2N_3BrS = CH_3 \cdot C_6H_3Br \cdot NH \cdot CS \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot CH_3$. B. Aus 4-Acetoxy-phenylsenföl und 3-Brom-4-amino-toluol (Bd. XII, S. 991) (K., B. 16, 1832). Prismen (aus Eisessig). F: 156°. Schwer löslich in Alkohol und Äther, ziemlich leicht in Eisessig.
- [4-Amino-phenol]-O.N-bis-carbonsäureäthylester, [4-(Carbäthoxy-amino)-phenyl]-kohlensäure-äthylester, [4-(Carbäthoxy-oxy)-phenyl]-urethan $C_{12}H_{15}O_5N=C_2H_5\cdot O_3C\cdot NH\cdot C_4H_4\cdot O\cdot CO_3\cdot C_2H_5$. B. Aus 4-Amino-phenol und Chlorameisensäureäthylester (Bd. III, S. 10) in alkal. Lösung (Hinsberg, A. 305, 287). Aus [4-Oxy-phenyl]-urethan und Chlorameisensäureäthylester in alkoh. Lösung in Gegenwart von Natriumäthylat (Merck, D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). Nadeln (aus Alkohol). F: 104—105° (M.), 108—109° (H.). Schwer löslich in Wasser, löslich in Alkohol (M.; H.).
- [4 Amino phenol] N carbonsäureäthylester O carbonsäurepropylester, [4-(Carbäthoxy-amino)-phenyl]-kohlensäure-propylester $C_{13}H_{17}O_5N=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_4\cdot O\cdot CO_3\cdot CH_2\cdot CH_3\cdot B$. Aus [4-Oxy-phenyl]-urethan, Chlorameisensäurepropylester und Natriumpropylat in Alkohol (Merck, D. R. P. 85803; Frdl. 4, 1164; C. 1897 I, 468). Blätter. F: ca. 54—56°.
- [4 Amino phenol] O carbonsäureäthylester N carbonsäurepropylester, [4-(Carbäthoxy-oxy)-phenyl]-carbamidsäure-propylester $C_{13}H_{17}O_5N=CH_3\cdot CH_2\cdot CH_2\cdot CO_2\cdot C_1H_3\cdot CO_2\cdot C_2H_3\cdot B$. Aus (nicht näher beschriebenem) [4-Oxy-phenyl]-carbamidsäure-propylester, Chlorameisensäureäthylester und Natriumäthylat in Alkohol (M., D. R. P. 85803; Frdl. 4, 1164; C. 1897 I, 468). Blätter. F: ca. 94—96°.
- Bis [4 (carbāthoxy-amino) phenyl] carbonat, O.O' Carbonyl bis [(4 oxy-phenyl)-urethan] $C_{19}H_{20}O_7N_2 = (C_2H_5 \cdot O_2C \cdot NH \cdot C_6H_4 \cdot O)_2CO$. B. 6 Tle. [4-Oxy-phenyl]-urethan (S. 478) und 1,5 Tle. Natriumhydroxyd in 100 Tln. Wasser werden bis zum Eintritt saurer Reaktion mit Phosgen behandelt (M., D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). Blättchen. F: ca. 184°. Leicht löslich in Alkohol, sehr wenig in Wasser.
- O.O'-Carbonyl'bis-[(4-oxy-phenyl)-carbamidsäure-propylester] $C_{21}H_{24}O_7N_2=(CH_3\cdot CH_2\cdot O_2C\cdot NH\cdot C_6H_4\cdot O)_2CO$. B. Aus (nicht näher beschriebenem) [4-0xy-phenyl]-carbamidsäure-propylester, Natronlauge und Phosgen, analog dem O.O'-Carbonyl-bis-[(4-oxy-phenyl)-urethan] (s. o.) (M., D. R. P. 85803; Frdl. 4, 1163; C. 1897 I, 468). Blättchen. F: gegen 155°.
- [4-Amino-phenol]-N-carbonsäurephenylester-O-carbonsäurechlorid, [4-Chlor-formyloxy-phenyl]-carbamidsäure-phenylester $C_{14}H_{10}O_4NCl=C_6H_5\cdot O\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot COCl.$ B. Aus 4-Chlorformyloxy-phenylisocyanat (S. 488) und Phenol bei 160° (Schön-Herr, J. pr. [2] 67, 340). Gelblichweiße Blättchen (aus Benzol-Petroläther). F: 143—144°.
- [4 Amino phenol] O-carbonsäureäthylester N carbonsäureamid, [4-Ureidophenyl]-kohlensäureäthylester, [4-(Carbäthoxy-oxy)-phenyl]-harnstoff $C_{10}H_{12}O_4N_2=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO_2\cdot C_2H_5$. B. Aus salzsaurem [4-Amino-phenyl]-kohlensäure-äthylester (S. 440) mit der berechneten Menge Kaliumcyanat in Wasser (Ransom, Am. 23, 49). Krystalle (aus Wasser). F: 147—150° (R.), 151—152° (A. Lumière, L. Lumière, Perrin, Bl. [3] 33, 711).
- [4-Amino-phenol]-N-carbonsäureamid-O-carbonsäurediäthylamid, [4-Ureido-phenyl]-kohlensäure-diäthylamid, [4-Diäthylaminoformyloxy-phenyl]-harnstoff $C_{12}H_{17}O_5N_3=H_2N\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot N(C_2H_5)_2$. F: 159—160° (A. Lumière, L. Lumière, Perrin, Bl. [3] 33, 713).
- [4-Amino-phenol]-O.N-bis-carbonsäureanilid, [4-(ω -Phenyl-ureido)-phenyl]-kohlensäure-anilid, N-Phenyl-N'-[4-anilinoformyloxy-phenyl]-harnstoff $C_{50}H_{17}O_3N_3 = C_6H_5\cdot NH\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot NH\cdot C_6H_5$. B. Neben N-Phenyl-N'-[4-oxy-phenyl]-harnstoff (S. 478) beim Schütteln von 4-Amino-phenol mit Phenylisocyanat (Bd. XII, S. 437) in kalt gehaltener alkalischer Lösung (E. Fischer, B. 33, 1701, Anm. 3). Aus 4-Chlorformyloxy-phenylisocyanat (S. 488) und Anilin in Äther (Schönherr, J. pr. [2] 67, 340). Krystalle (aus etwa 100 Tln. siedendem Eisessig); sintert bei 220°, schmilzt bei 240° (korr.) unter Zersetzung (E. F.); sintert bei 223° und schmilzt bei 238—239° (Sch.).
- **4-Ureido-phenoxyessigs**äure $C_9H_{10}O_4N_2 = H_2N \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_2H$. B. Aus dem Hydrochlorid der 4-Amino-phenoxyessigsäure (S. 440) und Kaliumcyanat (Howard, B. 30, 547). Prismen mit 2 Mol. Krystallwasser (aus heißem Wasser). F: 195°. Leicht

löslich in heißem Alkohol, ziemlich in heißem Wasser, sohwer in kaltem Alkohol, sehr wenig in kaltem Wasser. Schmeckt sohwach sauer.

Äthylester $C_{11}H_{14}O_4N_2 = H_2N \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_3 \cdot C_3H_5$. B. Durch Kochen von 4-Ureido-phenoxyessigsäure mit absolut-alkoholischer Salzsäure (H., B. 30, 548). — Nadeln. F: 148°. Schmeckt nicht süß.

- N-Äthyl-[4-amino-phenol]-O.N-bis-carbonsäureäthylester, [4-(Carbäthoxy-äthylamino)-phenyl]-kohlensäure-äthylester, Äthyl-[4-(carbäthoxy-oxy)-phenyl]-urethan $C_{14}H_{16}O_4N=C_3H_5\cdot O_4C\cdot N(C_2H_5)\cdot C_4H_4\cdot O\cdot CO_3\cdot C_2H_5$. B. Aus 4-Äthylamino-phenol, erhalten durch Erhitzen von N-Äthyl-phenacetin mit konz. Salzsäure im Druckrohr auf 220—240° oder durch Erwärmen von 4-Ämino-phenol mit der äquimolekularen Menge Äthylbromid in alkoh. Lösung, und Chlorameisensäureäthylester (Bd. III, S. 10) in verd. Natronlauge unter Kühlung (HINSBERG, A. 305, 288). Krystalle (aus verd. Alkohol). F: 60—62°.
- [4-Oxy-phenyl]-acetyl-carbamidsäure-methylester $C_{10}H_{11}O_4N = CH_3 \cdot O_3C \cdot N(CO \cdot CH_3) \cdot C_8H_4 \cdot OH$. B. Aus (dem nicht näher beschriebenen) [4-Oxy-phenyl]-carbamidsäure-methylester durch Acetylierung (Merck, D. R. P. 69328; Frdl. 3, 919). Blättchen. F: 118—120°. Schwer löslich in kaltem Wasser.
- [4-Oxy-phenyl]-acetyl-carbamidsäure-äthylester, [4-Oxy-phenyl]-acetyl-urethan $C_{11}H_{13}O_4N=C_2H_5\cdot O_3C\cdot N(CO\cdot CH_5)\cdot C_5H_5\cdot OH$. B. Analog der vorangehenden Verbindung. Nadeln oder Prismen (aus Alkohol). F: 87° (M., D. R. P. 69328; Frdl. 3, 919). Wirkt antineuralgisch und antipyretisch ("Neurodin") (v. Muring, Therap. Monatsh. 7, 582).
- [4-Oxy-phenyl]-acetyl-carbamidsäure-propylester $C_{12}H_{12}O_4N=CH_3\cdot CH_3\cdot CH_3\cdot C_{12}C\cdot N(CO\cdot CH_3)\cdot C_4H_4\cdot OH$. Blättchen. F: 85—86° (M., D. R. P. 69328; Frdl. 3, 919).
- [4-Oxy-phenyl]-acetyl-carbamidsäure-isobutylester $C_{12}H_{17}O_4N=(CH_3)_2CH\cdot CH_2\cdot O_2C\cdot N(CO\cdot CH_3)\cdot C_6H_4\cdot OH$. Nädelchen. F: 91—92° (M., D. R. P. 69328; Frdl. 3, 919).
- [4-Oxy-phenyl]-acetyl-carbamidsäure-isoamylester $C_{14}H_{19}O_4N=C_4H_{11}\cdot O_5C\cdot N(CO\cdot CH_3)\cdot C_4H_4\cdot OH$. Nädelchen (aus Eisessig + Wasser). F: 63—65° (M., D. R. P. 69328; Frdl. 3, 920).
- [4-Methoxy-phenyl]-acetyl-carbamidsäure-äthylester, [4-Methoxy-phenyl]-acetyl-urethan $C_{12}H_{15}O_4N=C_4H_5\cdot O_2C\cdot N(CO\cdot CH_2)\cdot C_4H_4\cdot O\cdot CH_2$. Nädelchen. F: 60—61° (M., D. R. P. 69328; Frdl. 3, 920).
- [4-Äthoxy-phenyl]-acetyl-carbamidsäure-methylester $C_{19}H_{18}O_4N=CH_8\cdot O_2C\cdot N(CO\cdot CH_3)\cdot C_6H_4\cdot O\cdot C_2H_5$. Blättchen (aus Eisessig + Wasser). F: 84—86° (M., D. R. P. 69328; Frdl. 3, 920).
- [4-Äthoxy-phenyl]-acetyl-carbamidsäure-äthylester, [4-Äthoxy-phenyl]-acetylurethan $C_{12}H_{17}O_4N=C_2H_5\cdot O_2C\cdot N(CO\cdot CH_2)\cdot C_6H_4\cdot O\cdot C_2H_5$. Nadeln (aus Eisessig). F: 95° (Merck, D. R. P. 69328; Frdl. 3, 920). Wirkt antipyretisch und antineuralgisch ("Thermodin") (v. Mering, Therap. Monatsh. 7, 584).
- [4-Äthoxy-phenyl]-acetyl-carbamidsäure-isoamylester $C_1 = C_2 = C_3 = C_4 = C_4 = C_4 = C_4 = C_5 =$
- N-[4-Åthoxy-phenyl]-N-acetyl-thioharnstoff $C_{11}H_{14}O_{2}N_{2}S = H_{2}N \cdot CS \cdot N(CO \cdot CH_{2}) \cdot C_{6}H_{4} \cdot O \cdot C_{4}H_{5}$. Zur Konstitution vgl. Wherler, Am. 27, 270. B. Aus [4-Åthoxy-phenyl]-thioharnstoff (S. 482) und Essigsäureanhydrid bei gelindem Erwärmen (Hugershoff, B. 32, 3660). Krystalle (aus Alkohol). F: 137° (H.). Liefert beim Erhitzen über den Schmelzpunkt N-[4-Åthoxy-phenyl]-N'-acetyl-thioharnstoff (S. 483) (H.; vgl. Wh.).
- N.N'-Bis-[4-āthoxy-phenyl]-N-acetyl-thioharnstoff $C_{10}H_{20}O_3N_4S = C_2H_5 \cdot O \cdot C_4H_4 \cdot NH \cdot CS \cdot N(CO \cdot CH_2) \cdot C_6H_4 \cdot O \cdot C_4H_5$. B. Aus N.N'-Bis-[4-āthoxy-phenyl]-thioharnstoff (S. 482) und Essigsäureanhydrid (H., B. 32, 3657). Krystallpulver (aus Alkohol). F: 98°.
- [4-Oxy-phenyl]-propionyl-carbamidsäure-methylester $C_{11}H_{12}O_4N=CH_2\cdot O_2C\cdot N(CO\cdot CH_2\cdot CH_2)\cdot C_4H_4\cdot OH$. B. Aus (dem nicht näher beschriebenen) [4-Oxy-phenyl]-carbamidsäure-methylester durch Acylierung (M., D. R. P. 69328; F_1dl . 3, 920). Blättehen. F: 86—87°.
- [4-Oxy-phenyl]-propionyl-carbamidsäure-propylester $C_{12}H_{17}O_2N = CH_2 \cdot CH_2 \cdot CH_2 \cdot O_2C \cdot N(CO \cdot CH_2 \cdot CH_2) \cdot C_0H_4 \cdot OH$. B. Analog der vorangehenden Verbindung. Blättehen (aus Eisessig + Wasser). F: 80—82° (M., D. R. P. 69328; Frill. 8, 920).
- [4-Äthoxy-phenyl]-propionyl-carbamidsäure-äthylester, [4-Äthoxy-phenyl]-propionyl-urethan $C_{14}H_{19}O_4N=C_2H_5\cdot O_2C\cdot N(CO\cdot CH_2\cdot CH_3)\cdot C_4H_4\cdot O\cdot C_2H_5$. Blättchen. F: 85—86° (M., D. R. P. 69328; Frdl. 3, 920).

- [4-Oxy-phenyl]-benzoyl-carbamidsäure-methylester $C_{15}H_{13}O_4N=CH_3\cdot O_2C\cdot N(CO\cdot C_6H_6\cdot C_6H_4\cdot OH.$ B. Aus (dem nicht näher beschriebenen) [4-Oxy-phenyl]-carbamidsäure-methylester durch Benzoylierung (M., D.R.P. 73285; Frdl. 3, 920). Nädelchen (aus Benzol). F: ca. 91—92°.
- [4-Oxy-phenyl]-bensoyl-carbamidsäure-propylester $C_{17}H_{17}O_4N=CH_3\cdot CH_2\cdot CH_2\cdot O_2C\cdot N(CO\cdot C_6H_5)\cdot C_6H_4\cdot OH$. B. Analog der vorangehenden Verbindung. Nädelchen (aus Alkohol). Schmilzt bei 133—144° (M., D. R. P. 73285; Frdl. 8, 921).
- [4-Methoxy-phenyl]-benzoyl-carbamidsäure-propylester $C_{1s}H_{19}O_4N=CH_3\cdot CH_2\cdot CH_3\cdot O_2C\cdot N(CO\cdot C_0H_3)\cdot C_0H_4\cdot O\cdot CH_3$. Nadeln (aus Benzol). F: ca. 78—80° (M., D. R. P. 73285; Frdl. 3, 921).
- [4-Butyloxy-phenyl]-benzoyl-carbamidsäure-isoamylester $C_{39}H_{39}O_4N=C_5H_{11}\cdot O_2C\cdot N(CO\cdot C_6H_5)\cdot C_6H_4\cdot O\cdot C_4H_9$. Nädelchen. F: ca. 86—88° (M., D. R. P. 73285; Frdl. 3, 921).
- 4-Methoxy-phenylisocyanat, 4-Methoxy-phenylcarbonimid $C_8H_7O_8N=OC:N\cdot C_8H_4\cdot O\cdot CH_3$. B. Durch Einw. von überschüssigem Phosgen (Bd. III, S. 13) auf p-Anisidin (VITTENET, Bl. [3] 21, 956). Bei der Destillation von Anisbenzhydroxamsäure (Bd. X, S. 171) (PIESOHEL, A. 175, 312). Kp_{38,5}: 132—133° (V.).
- N.N'.N"-Tris-[4-methoxy-phenyl]-guanidin $C_{22}H_{23}O_3N_3 = (CH_3 \cdot O \cdot C_6H_4 \cdot NH)_3C: N \cdot C_6H_4 \cdot O \cdot CH_3$. B. Man behandelt ein äquimolekulares Gemenge von N.N'-Bis-[4-methoxy-phenyl]-thioharnstoff und p-Anisidin mit einem Entschweflungsmittel, z. B. Bleioxyd (Chem. Fabr. v. Heyden, D. R. P. 104361; C. 1899 II, 951). Hydrochlorid. F: 201°.
- 4-Methoxy-phenylisothiocyanat, 4-Methoxy-phenylsenföl $C_8H_7ONS=SC:N\cdot C_8H_4\cdot O\cdot CH_3$. B. Man läßt auf das Reaktionsprodukt aus p-Anisidin und Schwefelkohlenstoff alkoh. Jodlösung einwirken, filtriert von N.N'-Bis-[4-methoxy-phenyl]-thioharnstoff ab, fällt das Filtrat nach Abdestillieren des Alkohols mit Wasser, erhitzt das ausgefällte jodhaltige Öl auf 170—180° und leitet Wasserdampf ein (H. Salkowski, B. 7, 1012). Flüssig. Kp: ca. 270°.
- 4-Äthoxy-phenylisocyanat, 4-Äthoxy-phenylcarbonimid $C_0H_0O_0N=OC:N\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Aus diazotiertem p-Phenetidin mit Kaliumcyanat und Kupferpulver (Gattermann, Cantzler, B. 25, 1090). Durch Einw. von Phosgen (Bd. III, S. 13) auf geschmolzenes salzsaures p-Phenetidin oder auf freies auf 230° erhitztes p-Phenetidin (Wenghöffer, Apoth.-Ztg. 9, 201). Aus p-Phenetidin oder salzsaurem p-Phenetidin und Phosgen in Toluollösung durch Erhitzen unter Druck auf 120° (Zimmer & Co., D. R. P. 133760; C. 1902 II, 553). Kp: 230—235° (G., C.; Z. & Co.).
- Kohlensäure bis [4 äthoxy anil], Bis [4 äthoxy phenyl] carbodiimid $C_{17}H_{18}O_2N_3 = C(:N\cdot C_6H_4\cdot O\cdot C_2H_5)_2$. B. Durch Erhitzen von N.N'-Bis-[4-āthoxy-phenyl]-thioharnstoff (S. 482) mit Bleioxyd in Benzol (Chem. Fabr. v. Heyden, D. R. P. 104361; C. 1899 II, 951). Hydrochlorid. Krystalle. F: 200° (Zers.).
- N.N'- Bis [4 methoxy phenyl] N''- [4 äthoxy phenyl] guanidin $C_{22}H_{23}O_2N_3 = (CH_3 \cdot O \cdot C_4H_4 \cdot NH)_2C \cdot N \cdot C_4H_4 \cdot O \cdot C_4$
- N [4 Methoxy phenyl] N'.N''- bis [4 šthoxy phenyl] guanidin C_{2} , H_{2} , O_{3} N_{3} = $CH_{2} \cdot O \cdot C_{4}H_{4} \cdot NH \cdot C(NH \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{5})$ bezw. $CH_{2} \cdot O \cdot C_{4}H_{4} \cdot N \cdot C(NH \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{5})$ bezw. $CH_{3} \cdot O \cdot C_{4}H_{4} \cdot N \cdot C(NH \cdot C_{4}H_{4} \cdot O \cdot C_{4}H_{5})$ B. Man behandelt ein squimolekulares Gemenge von N.N'-Bis-[4-\$thoxy-phenyl]-thioharnstoff und p-Anisidin mit einem Entschweflungsmittel, z. B. Bleioxyd (Ch. F. v. H., D. R. P. 104361; C. 1899 II, 961). Hydrochlorid. F: 182°.
- N.N'.N''-Tris-[4-äthoxy-phenyl]-guanidin $C_{ss}H_{ss}O_{s}N_{s}=(C_{s}H_{s}\cdot O\cdot C_{s}H_{s}\cdot NH)_{s}C:N\cdot C_{s}H_{s}\cdot O\cdot C_{s}H_{s}\cdot B$. Man behandelt ein äquimolekulares Gemenge von N.N'-Bis-[4-āthoxy-phenyl]-thioharnstoff (S. 482) und p-Phenetidin mit einem Entschweflungsmittel, z. B. Bleioxyd (Ch. F. v. H., D. R. P. 104361; C. 1899 II, 951). F: 55°. Schwer löslich in Wasser, leicht in Alkohol, Äther und Benzol. Hydrochlorid. Nadeln. F: 197°.
- 4-Äthoxy-phenylisothiocyanat, 4-Äthoxy-phenylsenföl C.H.ONS = SC: N·C.H. O·C.H. O·C.H. B. Aus p-Phenetidin und Thiophosgen (Bd. III, S. 134) in Chloroform bei Zusatz von Natronlauge (GATTERMANN, J. pr. [2] 59, 588). Blättchen. F: 62,5°.
- 4-Acetoxy-phenylisothicoyanat, 4-Acetoxy-phenylsenföl $C_0H_1O_2NS=SC:N\cdot C_0H_4\cdot O\cdot CO\cdot CH_2$. B. Beim Kochen von N.N'-Bis-[4-oxy-phenyl]-thioharnstoff (S. 479) mit Essig-

- säureanhydrid (Калскногг, В. 16, 1831). Blättchen (aus Alkohol). Geruchlos. F: 36°. Unlöslich in Wasser, löslich in Alkohol, Äther und Eisessig. — Mit Ammoniak entsteht [4-Oxyphenyl]-thioharnstoff (S. 478). Anilin wird addiert unter Bildung von N-Phenyl-N'-[4-acetoxy-phenyl]-thioharnstoff (S. 485).
- 4 Chlorformyloxy phenylcarbonimid 4 - Chlorformyloxy - phenylisocyanat, C₈H₄O₃NCl = OC:N·C₆H₄·O·COCl. B. Aus 4-Amino-phenol und Phosgen in Xylol bei 210-220°; die Lösung wird von schwarzen Massen durch Filtration getrennt und im Vakuum destilliert (Schönherr, J. pr. [2] 67, 339). — Wachsartige, zugleich nach Chlorameisensäureester und Phenylisocyanat riechende Masse. F: 36—37°. Greift die Schleimhäute stark an. Leicht löslich in Alkohol und Benzol. — Gibt mit 50% gigem Alkohol bei 150% [4-Oxy-phenyl]-urethan (S. 478).
- d) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit weiteren Oxy-carbonsauren, mit Oxo-carbonsauren und Oxy-oxo-carbonsauren, soweit diesen Kuppelungsprodukten nach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt (vgl. Bd. I, S. 28).
- 4-Oxy-anilinoessigsäure, N-[4-Oxy-phenyl]-glycin $C_8H_9O_3N=HO_2C\cdot CH_2\cdot NH\cdot M$ CaHa: OH. B. Durch Kochen von 1 Mol.-Gew. Chloressigsäure (Bd. II, S. 194) mit 2 Mol.-Gew. 4-Amino-phenol und der 20-fachen Menge Wasser (VATER, J. pr. [2] 29, 291). Beim Erwärmen von 4-Amino-phenol mit der Natriumdisulfitverbindung des Glyoxals (Bd. I, S. 761) in verd. Alkohol auf dem Wasserbade, neben 4-Oxy-anilinoessigsäure-[4-oxy-anilid] (S. 506) (HINSBERG, B. 41, 1370). — Kugelige Aggregate oder glimmerähnliche Blättchen (aus Wasser). Bräunt sich bei 200°; beginnt bei 220° zu schmelzen und ist bei 245—247° vollständig geschmolzen, wobei es sich in CO₂ und 4-Methylamino-phenol zersetzt (PAUL, Z. Ang. 10, 174). Schwer löslich in Wasser und Alkohol, unlöslich in Ather (V.). Wird durch Eisenchlorid blutrot gefärbt; mit Kupfersulfat und Natronlauge entsteht eine grüne Färbung (V.). — Gibt mit Benzoylchlorid in Gegenwart von Natriumdicarbonat, Natronlauge oder Soda in Wasser oder in Gegenwart von Natriumacetat in Alkohol N-[4-Benzoyloxy-phenyl]glycin (S. 489) (REVERDIN, B. 42, 4110; C. 1910 I, 349). — Findet unter dem Namen, Glycin Verwendung als photographischer Entwickler (EDER, VALENTA, Ch. I. 15, 468). — NaC₈H₈O₃N. Blättchen. Sehr leicht löslich in Wasser, löslich in Alkohol (V.).
- Äthylester $C_{10}H_{13}O_2N = C_2H_5 \cdot O_2C \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Behandeln des N-[4-p-Toluolsulfonyloxy-phenyl]-glycin-athylesters (S. 489) mit kalter Sodalösung (Reverdin, B. 42, 4110; C. 1910 I, 349). — Blattchen. F: 79°. Löslich in Alkohol und heißem Wasser. Bräunt sich am Licht.
- Amid $C_0H_{10}O_2N_3=H_2N\cdot CO\cdot CH_2\cdot NH\cdot C_6H_4\cdot OH$. B. Aus 4-Amino-phenol und Chloracetamid (Lumière, Perrin, Bl. [3] 29, 967). F: 135—136° (L., P.). Verwendung als photographischer Entwickler: Akt.-Ges. f. Anilinf., D. R. P. 166799; C. 1906 I, 984.
- N-[4-Methoxy-phenyl]-glycin, p-Anisidinoessigsäure $C_9H_{11}O_9N=HO_2C\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Chloressigsäure und p-Anisidin in siedendem Wasser (VATER, J. pr. [2] 29, 294). Kugelige Aggregate. Zersetzt sich bei 200°, ohne zu schmelzen. Schwer löslich in kaltem Wasser und Ather, leichter in Alkohol.
- Amid $C_0H_{12}O_2N_2 = H_2N \cdot CO \cdot CH_2 \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3$. B. Aus p-Anisidin und Chloracetamid (Lumière, Perrin, Bl. [3] 29, 967). F: 145—146°.
- N-[4-Athoxy-phenyl]-glycin, p-Phenetidinoessigsaure $C_{10}H_{13}O_3N = HO_2C \cdot CH_2 \cdot$ NH·C₆H₄·O·C₂H₅. B. Man versetzt eine Lösung von 17 g salzsaurem p-Phenetidin in 50 com Wasser mit 9,4 g Chloressigsäure, gelöst in der gleichen Menge Wasser, fügt dann 2 Mol.-Gew. Natronlauge hinzu und kocht 1½ Stdn. (BISCHOFF, NASTVOGEL, B. 22, 1788). — Krystalle (aus Wasser). F: 163°. Leicht löslich in Ammoniak. Reduziert ammoniakalische Silberlösung. Eisenchlorid bewirkt in der wäßrig-alkoholischen Lösung eine intensiv blau-violette Färbung. Liefert beim Erhitzen zu 300° Methyl-p-phenetidin (S. 442), p-Phenetidinoessigsaure-p-phenetidid (S. 506), 1.4-Bis-[4-athoxy-phenyl]-2.5-dioxo-piperazin (Syst. No. 3587) und [N-(4-Athoxy-phenyl)-iminodiessigsäure]-mono-p-phenetidid(?) (S. 507).
- Amid $C_{10}H_{14}O_2N_3=H_2N\cdot CO\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Chloracetamid (Lumière, Perrin, Bl. [3] 29, 967). F: 145—146°.
- [N-(4-Åthoxy-phenyl)-glycyl]-urethan $C_{13}H_{16}O_4N_2=C_5H_5\cdot O_2C\cdot NH\cdot CO\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_5H_5$. B. Durch $^1/_2-^3/_4$ -stdg. Erhitzen von p-Phenetidin und Chloracetyl-urethan (Bd. III, S. 26) unter Zusatz von wenig Alkohol (Ferrichs, Beckurts, Ar. 287, 341). Nadeln. Schmilzt gegen 100°. Leicht löslich in Alkohol und Äther, sehr leicht in verd. Säuren, unlöslich in Wasser.

[N-(4-Äthoxy-phenyl)-glycyl]-harnstoff $C_{11}H_{18}O_3N_3=H_2N\cdot CO\cdot NH\cdot CO\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch Einw. von p-Phenetidin auf Chloracetyl-harnstoff (Bd. III, S. 62) auf dem Wasserbade (F., B., Ar. 237, 334). — Nadeln (aus verd. Alkohol). F: 177°.

N-Methyl-N'-[N-(4-äthoxy-phenyl)-glycyl]-harnstoff $C_{12}H_{17}O_3N_3 = CH_3 \cdot NH \cdot CO \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und N-Methyl-N'-chloracetyl-harnstoff (Bd. IV, S. 67) auf dem Wasserbade (F., B., Ar. 237, 335). — Blättchen (aus verd. Alkohol). F: 170°.

N-Phenyl-N'-[N-(4-äthoxy-phenyl)-glycyl]-harnstoff $C_{17}H_{19}O_3N_3=C_6H_5\cdot NH\cdot C()\cdot NH\cdot CO\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und N-Phenyl-N'-chloracetyl-harnstoff (Bd. XII, S. 356) auf dem Wasserbade (F., B., Ar. 237, 336). — Nadeln (aus verd. Alkohol). F: 154°.

N-[4- \ddot{A} thoxy-phenyl]-N'-[N-(4- \ddot{a} thoxy-phenyl)-glycyl]-harnstoff $C_{19}H_{23}O_4N_3=C_2H_5\cdot O\cdot C_0H_4\cdot NH\cdot CO\cdot NH\cdot CO\cdot CH_9\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Aus (nicht näher beschriebenem) N-[4- \ddot{A} thoxy-phenyl]-N'-chloracetyl-harnstoff und p-Phenetidin auf dem Wasserbade (F., B., Ar. 237, 336). — Nadeln (aus Eisessig). F: 162°. Sehr wenig löslich in Alkohol.

N-[4-Bensoyloxy-phenyl]-glycin $C_{15}H_{13}O_4N=HO_3C\cdot CH_3\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus N-[4-Oxy-phenyl]-glycin mit Benzoylchlorid und Natriumdicarbonatlösung (Reverdin, B. 42, 4110; C. 1910 I, 349). — Blättchen oder prismatische Krystalle. Schmilzt unscharf zwischen 165° und 171°. — Liefert durch Nitrierung mit Salpetersäure (D: 1,4) und nachfolgende Verseifung N-[2.6(?)-Dinitro-4-oxy-phenyl]-glycin (S. 531).

N-[4-p-Toluolsulfonyloxy-phenyl]-glycin $C_{15}H_{16}O_5NS = HO_5C \cdot CH_5 \cdot NH \cdot C_6H_4 \cdot O \cdot SO_5 \cdot C_6H_4 \cdot CH_3$. B. Beim Erwärmen von N-[4-Oxy-phenyl]-glycin in Wasser mit p-Toluolsulfonsäurechlorid und Natriumhydroxyd (R., B. 42, 4109; C. 1910 I, 349). — Nadeln (aus Alkohol oder Wasser). Schmilzt gegen 161°. Leicht löslich in Alkohol und Essigsäure, löslich in heißem Benzol, schwer löslich in Ligroin. Löslich in kalter Sodalösung und Natronlauge. — Beim Behandeln mit Salpetersäure (D: 1,4) auf dem Wasserbade entsteht N-[2.6(?)-Dinitro-4-p-toluolsulfonyloxy-phenyl]-glycin (S. 531).

Äthylester C₁,H₁₉O₂NS = C₂H₅·O₃C·CH₂·NH·C₆H₄·O·SO₃·C₆H₄·CH₃. B. Aus [4-Oxyphenyl]-glycin, p-Toluolsulfonsäurechlorid und Alkohol auf dem Wasserbade (R., B. 42, 4110; C. 1910 I, 349). — Nadeln mit 1 Mol. Krystallwasser. F: 205°. Löslich in Alkohol, unlöslich in Ligroin. — Gibt mit kalter Sodalösung N-[4-Oxy-phenyl]-glycin-āthylester (S. 488).

N-[4-Oxy-phenyl]-N-acetyl-glycin $C_{10}H_{11}O_4N = HO_3C \cdot CH_3 \cdot N(CO \cdot CH_3) \cdot C_6H_4 \cdot OH$. B. Durch Schütteln einer Lösung von 16,7 g N-[4-Oxy-phenyl]-glycin und 5,5 g Soda in 100 com Wasser mit 12,3 g Essigsaureanhydrid und Zersetzung des Natriumsalzes mit Salzsaure (A. Lumière, Barbier, Barbier, Bl. [3] 33, 787). — Weiße Prismen. F: 203°. Leicht löslich in Alkohol und in heißem Wasser, schwer in kaltem Wasser, sehr wenig in Äther, Benzol, Chloroform.

N-[4-Åthoxy-phenyl]-N-carbäthoxy-glycin-amid, [Carbäthoxy-p-phenetidino]-acetamid $C_{12}H_{12}O_4N_2 = H_2N \cdot CO \cdot CH_2 \cdot N(CO_2 \cdot C_2H_3) \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidino-acetamid und Chlorameisensäureäthylester (Bd. III, S. 10) in Gegenwart von Natrium-acetatlösung (A. L., L. L., B., Bl. [3] 35, 126). — Nadeln. F: 140°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther.

4-Phenoxyacetamino-phenol $C_{14}H_{18}O_3N=C_0H_5\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_0H_4\cdot OH$. B. Durch Erhitzen aquimolekularer Mengen von Phenoxyessignaure (Bd. VI, S. 161) und 4-Aminophenol auf 120—140° (Lederer, D. R. P. 82105; Frdl. 4, 1161). — Verfilzte Nadeln (aus Alkohol). F: 158—159°. Leicht löslich in warmem Alkohol, wenig in kaltem.

Methyläther, Phenoxyessigsäure-p-anisidid $C_{15}H_{15}O_3N=C_6H_5\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Erhitzen äquimolekularer Mengen von Phenoxyessigsäure und p-Anisidin auf 120—140° (L., D. R. P. 82105; Frdl. 4, 1161). — Prismen (aus Alkohol). F: 135—136°. Leicht löslich in warmem Alkohol.

Selencyanessigsäure-p-anisidid $C_{10}H_{10}O_2N_2Se = NC \cdot Se \cdot CH_2 \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot CH_3$. B. Aus (nicht näher beschriebenem) Chloressigsäure-p-anisidid und Selencyankalium (Bd. III, S. 225) in Alkohol (H. Frerichs, Ar. 241, 215). — Farblose Blättchen. F: 131°. Leicht löslich in Alkohol und Eisessig, weniger in Äther.

Diselendiglykolsäure-di-p-anisidid $C_{18}H_{20}O_4N_2Se_3 = [-Se\cdot CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CH_3]_2$. B. Man löst Selencyanessigsäure-p-anisidid in heißem Eisessig, versetzt mit rauchender Salzsäure, gießt die unter Gasentwicklung gelblich gewordene Flüssigkeit in Wasser und krystallisiert das ausgeschiedene Produkt aus heißem Alkohol um (H. F., Ar. 241, 215).

— Gelbliche Blättchen. F: 172°. Löslich in Alkohol, Eisessig, Äther, leicht in heißem Alkohol.

Methoxyessigsäure-p-phenetidid $C_{11}H_{18}O_3N = CH_3 \cdot O \cdot CH_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und Methylätherglykolsäure (Bd. III, S. 232) bei 120—130° (BISCHLER

bei Eichhorst, C. 1897 I, 1216). — Nadeln. F: 98—99°. Löslich in 600 Tln. kaltem und 52 Tln. siedendem Wasser. Wurde als Antipyreticum ("Kryofin") empfohlen; physiologische Wirkung: Eichh., C. 1897 I, 1216.

Phenoxyessigsäure-p-phenetidid C₁₆H₁₇O₃N = C₆H₅·O·CH₂·CO·NH·C₆H₄·O·C₂H₅.

B. Aus Phenoxyessigsäure (Bd. VI, S. 161) und p-Phenetidin bei 120—140⁶ (LEDERER, D. R. P. 82105; Frdl. 4, 1161). — Nadeln (aus Alkohol). F: 130—131⁶.

- 4-Nitro-phenoxyessigsäure-p-phenetidid $C_{16}H_{16}O_5N_2=O_2N\cdot C_6H_4\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 4-Nitro-phenoxyessigsäure (Bd. VI, S. 234) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1162). Nadeln. F: 156—157°. Schwer löslich in Alkohol.
- o-Kresoxyessigsäure-p-phenetidid $C_{17}H_{19}O_3N=CH_3\cdot C_6H_4\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_3H_6$. B. Aus o-Kresoxyessigsäure (Bd. VI, S. 356) und p Phenetidin bei 120—140° (L., D. R. P. 82105; Frdl. 4, 1161). Nadeln. F: 112—113°. Ziemuich leicht löslich in heißem Alkohol.
- m-Kresoxyessigsäure-p-phenetidid $C_{17}H_{19}O_5N=CH_3\cdot C_6H_4\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_9H_5$. B. Aus m-Kresoxyessigsäure (Bd. VI, S. 379) und p-Phenetidin bei 120—140° (L., D. R. P. 82105; Frdl. 4, 1161). Nadeln. F: 124–125°. Leicht löslich in heißem Alkohol.
- p-Kresoxyessigsäure-p-phenetidid $C_{17}H_{19}O_2N=CH_3\cdot C_6H_4\cdot O\cdot CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Kresoxyessigsäure (Bd. VI, S. 398) und p-Phenetidin bei 120—140° (L., D. R. P. 82105; Frdl. 4, 1161). Nadeln. F: 133—134°. Mäßig löslich in warmem Alkohol.
- Carvacroxyessigsäure-p-phenetidid $C_{20}H_{25}O_3N=(CH_3)_2CH\cdot C_6H_3(CH_3)\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_5H_5$. B. Aus Carvacroxyessigsäure (Bd. VI, S. 530) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1161). Nadeln (aus Alkohol). F: 105—106°. Leicht löslich in heißem Alkohol.
- Thymoxyessigsäure-p-phenetidid $C_{20}H_{25}O_2N = (CH_2)_2CH \cdot C_6H_3(CH_3) \cdot O \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_9H_5$. B. Aus Thymoxyessigsäure (Bd. VI, S. 538) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1161). Nadeln (aus Alkohol). F: 129—130°. Leicht löslich in Alkohol.
- a-Naphthoxyessigsäure-p-phenetidid $C_{20}H_{19}O_2N=C_{10}H_7\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_8H_8$. B. Aus a-Naphthoxyessigsäure (Bd. VI, S. 609) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1161). Nadeln. F: 145—146°. Ziemlich schwer löslich in Alkohol.
- β -Naphthoxyessigsäure-p-phenetidid $C_{20}H_{19}O_2N=C_{10}H_7\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot C_2H_5$. B. Aus β -Naphthoxyessigsäure (Bd. VI, S. 645) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1162). Nadeln. F: 164—165°. Schwer löslich in heißem Alkohol.
- 2-Methoxy-phenoxyessigsäure-p-phenetidid, Guajacolglykolsäure-p-phenetidid C₁₉H₁₈O₄N = CH₂·O·C₆H₄·O·CH₂·CO·NH·C₆H₄·O·C₆H₅. B. Aus Guajacolnatrium und Bromessigsäure-p-phenetidid (S. 463) in siedendem Alkohol (BISCHOFF, B. 33, 1395). Aus Guajacolglykolsäure (Bd. VI, S. 778) und p-Phenetidin bei 120—140° (LEDEREE, D. R. P. 82105; Frdl. 4, 1161). Krystalle (aus Alkohol). F: 103° (B.), 103—104° (L.). Leicht löslich in Benzol, Chloroform, Eisessig, schwer in Äther, sehr wenig in Wasser (B.).
- 2-Methoxy-4-methyl-phenoxyessigsäure-p-phenetidid, Kreosolglykolsäure-p-phenetidid $C_{19}H_{31}O_4N=CH_3\cdot O\cdot C_6H_3(CH_3)\cdot O\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_6H_6$. B. Aus Kreosolglykolsäure (Bd. VI, S. 880) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1161). Nadeln. F: 80—82°. Leicht löslich in Benzol, schwer in Gasolin.
- 2 Methoxy 4 allyl phenoxyessigsäure p phenetidid, Eugenolglykolsäure p-phenetidid $C_{ap}H_{ap}O_4N = CH_3 \cdot O \cdot C_0H_4(CH_2 \cdot CH_1) \cdot O \cdot CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Aus Eugenolglykolsäure (Bd. VI, S. 966) und p-Phenetidin bei 120—140° (L., D. R. P. 83538; Frdl. 4, 1161). Nadeln (aus Alkohol). F: 93—94°.
- Acetoxyessigsäure-p-phenetidid, Acetylglykolsäure-p-phenetidid $C_{12}H_{15}O_4N = CH_3 \cdot CO \cdot O \cdot CH_3 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot C_2H_3$. B. Aus p-Phenetidin und Acetylglykolsäure-chlorid (Bd. III, S. 240) in Äther (Änsuhürz, Bertram, B. 37, 3975). Nadeln (aus stark yerdünntem Alkohol). F: 130—131°. Leicht löslich in Methylalkohol und Äthylalkohol, sehr wenig in Wasser.
- Salicylsäure-O-essigsäure-p-phenetidid $C_{17}H_{17}O_5N = HO_2C \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_4H_5$. B. Durch Erhitzen der Salicylsäure-O-essigsäure (Bd. X, S. 69) mit p-Phenetidin auf cs. 120° (RIEDEL, D. R. P. 98707; C. 1898 II, 952). Nadeln. F: 182°. Schwer löslich in Wasser, Alkohol und Äther, leichter in heißem Alkohol. Natriumsalz. In Wasser leicht löslich.

4-Acetamino-phenoxyessigsäure-p-phenetidid $C_{18}H_{29}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch Erhitzen von 4-Acetamino-phenoxyessigsäure (S. 465) mit p-Phenetidin auf 160° (Howard, B. 30, 2107). — Krystalle (aus verd. Essigsäure). F: 198°. Fast unlöslich in Wasser.

Phenylsulfonessigsäure-p-phenetidid $C_{16}H_{17}O_4NS = C_6H_5 \cdot SO_2 \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Chloressigsäure-p-phenetidid (S. 463) und benzolsulfinsaurem Natrium (Bd. XI, S. 2) auf dem Wasserbade (Geothe, Ar. 238, 597). — Nadeln. F: 151°. Schwer löslich in Wasser, Alkohol, Ligroin, leicht in Eisessig und Äther.

p-Tolylsulfonessigsäure-p-phenetidid C_1 , H_1 , O_4 NS = $CH_2 \cdot C_5H_4 \cdot SO_2 \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Chloressigsäure-p-phenetidid und p-toluolsulfinsaurem Natrium (Bd. XI, S. 9) auf dem Wasserbade (G., Ar. 238, 597). — Nadeln. F: 156°. Unlöslich in Wasser, schwer löslich in Alkohol und Äther.

Thiodiglykolsäure-di-p-phenetidid $C_{29}H_{20}O_4N_2S=S(CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_3H_5)_3$. Beim Erhitzen der alkoh. Lösungen von Kaliumhydrosulfid und Chloressigsäure-p-phenetidid auf dem Wasserbade (G., Ar. 238, 603). — Nadeln. F: 221°. Schwer löslich in Alkohol und Eisessig.

Sulfondiessigsäure - di - p - phenetidid $C_{20}H_{24}O_{0}N_{2}S = SO_{3}(CH_{2}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{6}H_{5})_{2}$. B. Durch Oxydation einer eisessigsauren Lösung von Thiodiglykolsäure-di-p-phenetidid (s. o.) mit Kaliumpermanganat (G., Ar. 238, 607). — Blättchen. F: 239°. Schwer löslich in Alkohol und Äther, leichter in Eisessig.

Selencyanessigsäure-p-phenetidid $C_{11}H_{12}O_2N_2Se=NC\cdot Se\cdot CH_2\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5$. B. Aus Chloressigsäure-p-phenetidid (S. 463) mittels einer mit einigen Tropfen Salzsäure versetzten alkoholischen, siedenden Lösung von Selencyankalium (Frerichs, Wildt, A. 360, 124). — Gelbliche Nadeln. F: 162—163° (Zers.). Löslich in heißem Alkohol und Eisessig, unlöslich in Wasser.

Selendiglykolsäure - di - p-phenetidid $C_{20}H_{24}O_4N_2Se = Se(CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5)_2$. B. Beim Kochen von Diselendiglykolsäure-di-p-phenetidid mit 25% jeger Natronlauge (F., W., A. 360, 125). — F: 199—200°. Löslich in Alkohol und Eisessig, unlöslich in Wasser.

Diselendiglykolsäure-di-p-phenetidid $C_{30}H_{34}O_4N_3Se_3=[-Se\cdot CH_3\cdot CO\cdot NH\cdot C_5H_4\cdot O\cdot C_5H_5]_2$. B. Durch Behandeln von Selencyanessigsäure-p-phenetidid (s. o.) in Eisessig mit rauchender Salzsäure, Versetzen mit Wasser und Erhitzen des ausgeschiedenen Produktes mit Alkohol (F., W., A. 360, 125). — Gelbliche Nadeln (aus Alkohol + Wasser). F: 161—162°. Löslich in Alkohol und Eisessig, unlöslich in Wasser.

a-[4-Oxy-anilino]-propionsäure-äthylester, N-[4-Oxy-phenyl]-alanin-äthylester $C_HH_{15}O_2N=C_2H_5\cdot O_2C\cdot CH(CH_5)\cdot NH\cdot C_2H_4\cdot OH.$ B. Durch 8-stdg. Erhitzen von 4-Aminophenol mit a-Brom-propionsäure-äthylester (Bd. II, S. 255) und Natriumsulfit auf 125—130° (Візсноуу, B. 30, 2929). — Kryställchen (aus Ligroin). F: 86°. Sehr leicht löslich in kaltem Ather, Alkohol, Benzol, Chloroform, Aceton und Eisessig.

4-Lactylamino-phenol C₂H₁₁O₃N = CH₂·CH(OH)·CO·NH·C₂H₄·OH. B. Aus 4-Aminophenol und Milohsäure (Bd. III, S. 268) bei ca. 170—180° (Täuber, D. R. P. 90412; Frdl. 4, 1168; Goldenberg, Gebomont & Co., D. R. P. 90595; Frdl. 4, 1159). — Krystalle (aus Wasser). F: 137—138° (T.; Go., Ge. & Co). Leicht löslich in heißem Wasser und Alkohol, schwer in Äther und Benzol (T.; Go., Ge. & Co.).

4-Lactylamino-phenol-methyläther, Milchsäure-p-anisidid $C_{10}H_{19}O_2N=CH_3$: $CH(OH)\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot CH_2$. B. Durch 5—10-stdg. Erhitzen von p-Anisidin mit Milchsäureäthylester auf 180° (GOLDENBERG, GEBOMONT & Co., D. R. P. 70250; Frdl. 3, 911). — Nädelohen (aus Wasser). F: 106,5°. Sehr leicht löslich in heißem Wasser, schwer in kaltem Benzol und Äther.

4-Lactylamino-phenol-äthyläther, Milchsäure-p-phenetidid $C_{11}H_{15}O_2N=CH_3\cdot CH(OH)\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot C_2H_5$. B. Durch Erhitzen von (nicht näher beschriebenem) milchsaurem p-Phenetidin auf 180° oder durch Erhitzen von p-Phenetidin mit Lactid $CH_3\cdot CH\cdot O\cdot CO$ (Syst No 2750) oder Milchsäusestern (Goldberger Germanner Co

(Syst. No. 2759) oder Milchsäureestern (Goldenberg, Geromont & Co., CO.O.CH.CH.

D. R. P. 70250; Frdl. 3, 911). Durch Erhitsen von Lactamid (Bd. III, S. 283) und p-Phenetidin auf 150° (Go., Gr. & Co., D. R. P. 81539; Frdl. 4, 1157). Durch Kochen von a-Brom-propion-säure-p-phenetidid (S. 468) mit Natriumacetat in 90°/sigem Alkohol (Go., Gr. & Co., D. R. P. 85212; Frdl. 4, 1158). Durch 4-5-stdg. Erhitzen von 4-Lactylamino-phenol (s. o.) mit Äthylbromid in alkoholisch-alkalischer Lösung auf 100° (Go., Gr. & Co., D. R. P. 90595; Frdl. 4, 1159). — Nadeln (aus Wasser). F: 117,5—118° (Go., Gr. & Co., D. R. P. 70250). Leicht löslich in Alkohol, heißem Benzol und Wasser, schwer in Äther und Ligroin (Go., Gr. & Co., D. R. P. 70250). — Prüfung suf Reinheit: Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926].

S. 379. Findet unter dem Namen "Lactophenin" als Antipyreticum und Antineuralgicum Verwendung (SCHMIEDEBERG; vgl. STRAUSS, Therap. Monatch. 8, 442, 509).

Milchsäure-[ω -chlor-p-phenetidid] $C_{11}H_{14}O_3NCl = CH_3 \cdot CH(OH) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3 \cdot CH_2Cl$. B. Aus 4-Lactylamino-phenol (S. 491) und Athylenchlorid in alkoh. Kalilauge (Täuber, D. R. P. 90412; Frdl. 4, 1168). — Blättchen. F: 112—113°. Leicht löslich in heißem Wasser und Alkohol.

Milchsäure-[ω -brom-p-phenetidid] $C_{11}H_{14}O_3NBr=CH_3\cdot CH(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3\cdot CH_4Br$. B. Aus 4-Lactylamino-phenol und Äthylenbromid in alkoh. Kalilauge (T., D. R. P. 90412; Frdl. 4, 1168). — Blättchen. F: 114—115°.

a-Phenoxy-propionsäure-p-phenetidid $C_{17}H_{19}O_3N=CH_5\cdot CH(O\cdot C_6H_5)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus der a-Phenoxy-propionsäure (Bd. VI, S. 163) und p-Phenetidin bei 160° (Bischoff, B. 33, 926). — Nädelchen (aus Alkohol). F: 119°.

Brenzcatechin-O-a-propionsäure-p-phenetidid $C_{17}H_{19}O_4N = HO \cdot C_6H_4 \cdot O \cdot CH(CH_3) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Neben Brenzcatechin-O.O-di-a-propionsäure-mono-p-phenetidid beim Erhitzen des Gemisches der stereoisomeren Brenzcatechin-O.O-di-a-propionsäuren (F: 138—141°) (Bd. VI, S. 779) mit p-Phenetidin auf 130° (BISCHOFF, B. 33, 1673). — Prismen mit 2 Mol. Wasser (aus Wasser). F: 163,5°.

Brenzcatechin-methyläther-O-a-propionsäure-p-phenetidid $C_{18}H_{21}O_4N=CH_3\cdot O\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Brenzcatechin-methyläther-O-a-propionsäure (Bd. VI, S. 779) und p-Phenetidin bei 160°, oder aus a-Brom-propionsäure-p-phenetidid (S. 468) und Guajacolnatrium in siedendem Alkohol (B., B. 38, 1394). — Nädelchen (aus Alkohol). F: 96,5°. Leicht löslich in Chloroform, sehr leicht in kaltem Eisessig. Geschmacklos und ungiftig.

Brenscatechin-O.O-di-a-propionsäure-mono-p-phenetidid $C_{20}H_{23}O_6N=HO_2C\cdot CH(CH_3)\cdot O\cdot C_6H_4\cdot O\cdot CH(CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus dem Gemisch der stereoisomeren Brenzcatechin-O.O-di-a-propionsäuren (F: 138—141°) (Bd. VI, S. 779) und p-Phenetidin bei 130°, neben Brenzcatechin-O-a-propionsäure-p-phenetidid (s. o.) (B., B. 33, 1673). — Prismen (aus Wasser). F: 169—170°.

Brenzcatechin-O.O-di-a-propionsäure-di-p-phenetidid $C_{18}H_{32}O_6N_2 = C_6H_4[O\cdot CH(CH_2)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_6]_2$. B. Aus dem Gemisch der stereoisomeren Brenzcatechin-O.O-di-a-propionsäuren (F: 138—141°) (Bd. VI, S. 779) und p-Phenetidin bei 170° oder aus a-Brom-propionsäure-p-phenetidid (S. 468) und dem Dinatriumsalz des Brenzcatechins (Bd. VI, S. 766) in siedendem Alkohol (B., B. 33, 1673). — Nädelchen (aus Alkohol-Aceton). F: 186—187°. Schwer löslich in siedendem Äther, leicht in heißem Alkohol.

- a Acetoxy propionsäure p phenetidid, Acetylmilchsäure p phenetidid $C_{13}H_{17}O_4N = CH_3 \cdot CH(O \cdot CO \cdot CH_3) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Acetylmilchsäurechlorid (Bd. III, S. 283) und p-Phenetidin in trocknem Ather (Anschütz, Bertram, B. 37, 3974). Nadeln (aus Wasser). F: 129° (A., B.). Physiologische Wirkung: Dreser, B. 37, 3977.
- 4-Lactylamino-phenoxyessigsäure-amid $C_{11}H_{14}O_4N_3=CH_3\cdot CH(OH)\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot CH_3\cdot CO\cdot NH_2$. B. Durch Erhitzen von Chloracetamid (Bd. II, S. 199) mit 4-Lactylamino-phenol (S. 491) und alkoh. Kalilauge (Akt.-Ges. f. Anilinf., D. R. P. 102892; Frill. 5, 763; C. 1899 II, 462). Nadeln (aus Wasser). F: 175—177°. Löslich bei 25° in 83,5 Tln. Wasser, leicht löslich in Alkohol.
- [4-Lactylamino-phenyl]-salicylat, N-Lactyl-O-salicoyl-[4-amino-phenol] $C_{16}H_{18}O_5N=CH_3\cdot CH(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot C_6H_6\cdot OH$. B. Durch $^1/_3$ -stdg. Erhitzen von [4-Amino-phenyl]-salicylat (S. 440) mit Lactylmilchsäure $CH_3\cdot CH(OH)\cdot CO\cdot C\cdot CH(CH_3)\cdot CO_3H$ (Bd. III, S. 282) auf 150° (Bayer & Co., D. R. P. 82635; Frdl. 4, 1160). Aus salzsaurem [4-Amino-phenyl]-salicylat und Lactamid (Bd. III, S. 283) bei 160—170° (B. & Co.). Blättchen (aus Alkohol). F: 268°. Schwer löslich in kaltem Wasser, leichter in heißem.
- a-[4-Oxy-anilino]-buttersäure-äthylester $C_{12}H_{17}O_3N = C_2H_5 \cdot O_2C \cdot CH(C_2H_5) \cdot NH \cdot C_4H_4 \cdot OH$. B. Beim Erhitzen von 4-Amino-phenol mit a-Brom-buttersäure-äthylester (Bd. II, S. 282) in Gegenwart von Natriumsulfit auf 125—130° (BISCHOFF, B. 30, 2929). Nädelchen (aus Alkohol und Ligroin). F: 59,5°.
- a oder β -[4-Oxy-anilino]-isobuttersäure-äthylester $C_{12}H_{17}O_{2}N=C_{2}H_{5}\cdot O_{2}C\cdot C(CH_{3})_{2}\cdot NH\cdot C_{6}H_{4}\cdot OH$ oder $C_{2}H_{5}\cdot O_{2}C\cdot CH(CH_{2})\cdot CH_{3}\cdot NH\cdot C_{6}H_{4}\cdot OH$. B. Aus 4-Minophenol und a-Brom-isobuttersäure-äthylester in Gegenwart von Natriumsulfit (Bischoff, B. 30, 2929). Gelbliche Prismen (aus Alkohol + Ligroin oder Äther + Ligroin). F: 91–91,5°. Leicht löslich in organischen Lösungsmitteln.
- $a \cdot [4 \cdot Oxy \cdot anilino] \cdot isobuttersäure \cdot nitril, <math>4 \cdot [a \cdot Cyan \cdot isopropylamino] \cdot phenol C_{10}H_{12}ON_2 = NC \cdot C(CH_2)_2 \cdot NH \cdot C_4H_4 \cdot OH$. Zur Konstitution vgl. MULDER, R. 26, 181. B. Aus salzsaurem 4-Amino-phenol, Cyankalium und Aceton in Ligroin (Bucherer, Grolée,

- B. 39, 998). Aus 4-Amino-phenol und Acetoncyanhydrin in Äther (B., G.). Blättchen. F: 137°; leicht löslich in Alkohol, Äther, Aceton, schwerer in Benzol, fast unlöslich in Ligroin (B., G.). Die Lösung in Natronlauge färbt sich an der Luft violett (B., G.). Zersetzt sich mit verd. Salzsäure (B., G.).
- a-p-Anisidino-isobuttersäure-nitril, 4-[a-Cyan-isopropylamino]-phenol-methyläther, [a-Cyan-isopropyl]-p-anisidin $C_{11}H_{14}ON_2 = NC \cdot C(CH_3)_2 \cdot NH \cdot C_8H_4 \cdot O \cdot CH_3$. Zur Konstitution vgl. Mulder, R. 26. 181. B. Aus salzsaurem p-Anisidin, Cyankalium und Aceton oder aus p-Anisidin und Acetoncyanhydrin in Äther (Bucherer, Grolée, B. 39, 999). F: 47—48°; sehr zersetzlich (B., G.).
- 4-[a-Oxy-isobutyramino]-phenol-äthyläther, a-Oxy-isobuttersäure-p-phenetidid $C_{12}H_{17}O_3N=HO\cdot C(CH_3)_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus a-Oxy-isobuttersäure (Bd. III, S. 313) und p-Phenetidin bei 150—200° (Winzheimer, P. C. H. 50, 704; C. 1909 II, 1370). Prismen (aus Alkohol oder Benzol). F: 151—152°.
- 4-[a-Oxy-a-methyl-butyramino]-phenol-äthyläther, Methyläthylglykolsäurep-phenetidid $C_{13}H_{19}O_3N=CH_3\cdot CH_2\cdot C(CH_2)(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Methyläthyl-glykolsäure (Bd. III, S. 324) und p-Phenetidin bei 150—200° (WINZHEIMER, P. C. H. 50, 704; C. 1909 II, 1370). Schüppchen (aus Alkohol oder Benzol). F: 101°.
- 4-[2-Oxy-benzamino]-phenol, 4-Salicoylamino-phenol $C_{13}H_{11}O_3N = HO \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Erhitzen von 5 Tln. Salol (Bd. X, S. 76) und 2,5 Tln. 4-Aminophenol (COHN, J. pr. [2] 61, 551). Nadeln (aus sehr verd. Alkohol). F: 168—169°. Sehr leicht löslich in Alkohol. Die ammoniakalische Lösung färbt sich an der Luft blau.
- 4-Salicoylamino-phenol-methyläther, Salicylsäure-p-anisidid $C_{14}H_{13}O_3N=HO\cdot C_8H_4\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot CH_3$. B. Durch Erhitzen von Salol (Bd. X, S. 76) mit p-Anisidin (C., J. pr. [2] 61, 547). Nadeln (aus Alkohol). F: 159—160°. Schwer löslich in Alkohol.
- [2-Carboxymethoxy-benzoesäure]-p-anisidid, Salicylsäure-p-anisidid-O-essigsäure $C_{16}H_{15}O_5N = HO_2C\cdot CH_2\cdot O\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Salicylsäure-p-anisidid (s. o.) und Chloressigsäure in Gegenwart von Natronlauge (C., J. pr. [2] 60, 406). Nadeln (aus Methylalkohol). Schmilzt gegen 174°.
- 4-Salicoylamino-phenol-äthyläther, Salicylsäure-p-phenetidid $C_{15}H_{15}O_3N=HO\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_9H_5$. B. Aus Salol und p-Phenetidin (Cohn, J. pr. [2] 61, 547). Durch Erhitzen von Salicylsäure mit schwefelsaurem p-Phenetidin (Bolezzi, G. 28 II, 198). F: 140° (C.), 142—143° (B.). Löslich in Alkohol, Äther und Eisessig, unlöslich in Wasser (B.).
- [2 Acetoxy benzoesäure] p phenetidid, Acetylsalicylsäure p phenetidid $C_{17}H_{17}O_4N = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Salicylsäure-p-phenetidid (s. o.) und Essigsäureanhydrid (Bolezzi, G. 28 II, 200). Aus p-Phenetidin und Acetylsalicylsäurechlorid (Bd. X, S. 86) in Äther (Anschütz, Bertram, B. 37, 3976). Nadeln (aus Alkohol und Wasser). F: 132° (A., Bz.; Bo.). Leicht löslich in Alkohol, Chloroform, Benzol, Äther, schwer in Petroläther und Wasser (A., Bz.).
- [3-Benzoyloxy-benzoesäure]-p-phenetidid, Benzoylsalicylsäure-p-phenetidid $C_{22}H_{18}O_4N=C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Salicylsäure-p-phenetidid (s. o.) und Benzoesäureanhydrid (Bd. IX, S. 164) (Bo., G. 28 II, 201). Nädelchen. F: 136° bis 137°. Unlöslich in Wasser, löslich in Alkohol und Eisessig.
- [2 Carboxymethoxy bensoesäure] p phenetidid, Salicylsäure p phenetidid O-essigsäure $C_{17}H_{17}O_zN = HO_zC\cdot CH_z\cdot O\cdot C_zH_z\cdot CO\cdot NH\cdot C_zH_z\cdot O\cdot C_zH_z$. B. Aus Salicylsäure-p-phenetidid und Chloressigsäure in Gegenwart von 20%, iger Natronlauge auf dem Wasserbad (Cohn, J. pr. [2] 60, 405). Blättchen (aus Methylalkohol). F: 175—178°. Schwer löslich in Alkohol. Wird durch längeres Kochen mit Kalilauge nicht zersetzt. Natriumsalz. Nädelchen (aus Alkohol). Sehr leicht löslich in Wasser. Schmeckt bitter.
- [4 Salicoylamino phenyl] salicylat, O.N Disalicoyl [4 amino phenol] $C_{50}H_{16}O_5N = HO \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_4 \cdot OH$. B. Aus 1,3 Tln. 4-Amino-phenol und 5 Tln. Salol (Bd. X, S. 76) bei 200° (C., J. pr. [2] 61, 551). F: 176°. Schwer löslich in Alkohol.
- [4-Methoxy-benzoesäure]-p-anisidid, Anissäure-p-anisidid $C_{15}H_{15}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 4.4'-Dimethoxy-benzophenon-oxim (Bd. VIII, S. 318) durch Behandlung mit Phosphorpentachlorid und Zersetzung des Reaktionsproduktes mit Wasser (SCHNACKENBERG, SCHOLL, B. 36, 654). Blättchen (aus Alkohol). F: 202°. Löst sich in konz. Säuren mit roter Farbe.

- [4-Methoxy-thiobensoesäure]-p-anisidid, Thioanissäure-p-anisidid $C_{15}H_{15}O_3NS=CH_3\cdot O\cdot C_4H_4\cdot CS\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. Aus Anisol (Bd. VI, S. 138) und 4-Methoxy-phenylsenföl (S. 487) in Gegenwart von Aluminiumchlorid (Gattermann, J. pr. [2] 59, 587). Nadeln. F: 148°.
- [4-Äthoxy-thiobenzoesäure]-p-anisidid $C_{1e}H_{17}O_{2}NS = C_{2}H_{5}\cdot O\cdot C_{6}H_{4}\cdot CS\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{4}$. B. Aus Phenetol (Bd. VI, S. 140) und 4-Methoxy-phenylseniöl (S. 487) in Gegenwart von Aluminiumchlorid (G., J. pr. [2] 59, 587). Nadeln. F: 154,5°.
- [4-Åthoxy-benzoesäure]-p-phenetidid C_1 , H_1 , O_2 N = $C_2H_4 \cdot O \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_3$. B. Aus dem 4-Åthoxy-thiobenzoesäure-p-phenetidid (s. u.) durch Jod in Alkohol (G., J. pr. [2] 59, 588). Nadeln (aus Eisessig). F: 171°.
- [4 Methoxy thiobensoesäure] p phenetidid, Thioanissäure p phenetidid C₁₂H₁₇O₂NS = CH₂·O·C₂H₄·CS·NH·C₂H₄·O·C₃H₅. B. Aus Anisol (Bd. VI, S. 138) und 4-Åthoxy-phenylsenföl (S. 487) in Gegenwart vop Aluminiumchlorid (G., J. pr. [2] 59, 588). F: 135,5°.
- [4-Åthoxy-thiobenzoesäure]-p-phenetidid $C_{17}H_{19}O_2NS = C_2H_5 \cdot O \cdot C_6H_4 \cdot CS \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5 \cdot B$. Aus Phenetol (Bd. VI, S. 140) und 4-Åthoxy-phenylsenföl (S. 487) in Gegenwart von Aluminiumehlorid (G., J. pr. [2] 59, 588). F: 151—152°.
- a-Acetoxy-phenylessigsäure-p-phenetidid, Acetylmandelsäure-p-phenetidid $C_{18}H_{18}O_4N=CH_2\cdot CO\cdot O\cdot CH(C_0H_2)\cdot CO\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Aus Acetylmandelsäure-chlorid (Bd. X, S. 203) und p-Phenetidin in Äther (Anschütz, Böcker, A. 368, 62). Weiße Nadeln (aus Ligroin). F: 157°.
- [4-Phenylglykoloylamino phenyl] kohlensäure methylester, Mandelsäure [4-carbomethoxy-anilid] $C_{1e}H_{15}O_tN=C_eH_5\cdot CH(OH)\cdot CO\cdot NH\cdot C_eH_4\cdot O\cdot CO_3\cdot CH_3$. B. Aus nicht näher beschriebenem Mandelsäure-[4-oxy-anilid] und Chlorameisensäuremethylester (Bd. III, S. 9) in Gegenwart von alkoh. Natriumäthylatlösung (MERCK, C. 1897 I, 469). Krystalle. F: 135—136°.
- [4 Phenylglykoloylamino phenyl] kohlensäure äthylester, Mandelsäure [4-carbäthoxy-anilid] $C_{17}H_{17}O_5N = C_6H_5 \cdot CH(OH) \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot CO_2 \cdot C_2H_5$. B. Aus nicht näher beschriebenem Mandelsäure-[4-oxy-anilid] und Chlorameisensäureäthylester (Bd. III, S. 10) in Gegenwart von alkoh. Natriumäthylatlösung (M., C. 1897 I, 469). F: 162—163°.
- [3-Oxy-naphthoesäure-(2)]-p-anisidid $C_{18}H_{18}O_{2}N=H_{0}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot O\cdot CH_{2}$. B. Neben 3-p-Anisidino-naphthoesäure-(2) und 3-p-Anisidino-naphthoesäure-(2)-p-anisidid (Syst. No. 1907) bei 6—8-stdg. Erhitzen von 3-Oxy-naphthoesäure-(2) mit 1½ Mol.-Gew. p-Anisidin auf 200—205° (WILEE, Dissert. Rostock [1895], S. 15). Blättohen (aus Alkohol). F: 230°. Schwer löslich in Alkohol, Äther, Chloroform, Benzol, leichter in Eisessig.
- N-[4-Äthoxy-phenyl]-l-malamidsäure, [1-Äpfelsäure]-mono-p-phenetidid $C_{12}H_{12}O_{2}N=HO_{2}C\cdot C_{2}H_{2}(OH)\cdot CO\cdot NH\cdot C_{0}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Aus saurem äpfelsaurem p-Phenetidin (S. 437) durch Erhitzen auf 110—180° (Campanaeo, G. 28 II, 193). Hellgelbe Nädelchen (aus Wasser). F: 160°. Bildet mit Essigsäureanhydrid ein nicht näher beschriebenes Acetylderivat vom Schmelzpunkt 140°. Ba($C_{12}H_{14}O_{2}N$)₂. Nadeln. Ag $C_{12}H_{14}O_{2}N$. Krystallinischer Niederschlag.

Athylester $C_{14}H_{19}O_5N=C_5H_5\cdot O_5C\cdot C_5H_5(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_5H_5$. B. Aus der entsprechenden Säure und absol. Alkohol durch Einleiten von trocknem Chlorwasserstoffgas (C., G. 28 II, 195). — F: 235°. Sehr leicht löslich in Wasser, weniger in Alkohol, sehr wenig in Äther.

4-Galloylamino-phenol-äthyläther, Gallussäure-p-phenetidid $C_{15}H_{16}O_5N = (HO)_2C_6H_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Gallamid (Bd. X, S. 487) oder Gallanilid (Bd. XI, S. 510) oder Tannin (Syst. No. 4776) bei 180—190° (Gneem, Gansser, J. pr. [2] 68, 77). — Nädelchen oder Blättchen (aus Wasser) mit $1^{1}/_{8}H_6O$. F: 219°. Verliert an der Luft Krystallwasser. Unlöslich in Äther, Benzol und Ligroin, schwer löslich in Wasser, leichter in Alkohol. Färbt sich mit Eisenchlorid graublau. Ist gegen Säuren ziemlich beständig. Wird von Alkalien unter Zersetzung gelöst. — Ver bindung mit Anilin $2C_6H_7N + C_{12}H_{15}O_5N$. Nadeln. F: 147°. Leicht löslich in Alkohol, schwerer in Äther.

Triscetylgallussäure-p-phenetidid $C_{21}H_{21}O_{2}N = (CH_{2}\cdot CO\cdot O)_{2}C_{2}H_{2}\cdot CO\cdot NH\cdot C_{2}H_{4}\cdot O\cdot C_{2}H_{3}$. B. Aus Gallussäure-p-phenetidid (s. o.) durch siedendes Essigsäureanhydrid (Gm., Ga., J. pr. [2] 63, 86). — Nädelchen (aus Alkohol). F: 133—134°. Färbt sich nicht mit Eisenchlorid.

N.N'-Bis-[4-oxy-phenyl]-d-tartramid $C_{10}H_{10}O_{0}N_{3}=[-CH(OH)\cdot CO\cdot NH\cdot C_{0}H_{4}\cdot OH]_{2}$. B. Aus [d-Weinsäure]-diāthylester (Bd. III, S. 512) und 4-Amino-phenol bei 160° (Wibths, Ar. 234, 624). — Nadeln. F: 282° (Zers.).

N.N' - Bis - [4 - methoxy - phenyl] -d -tartramid, [d - Weinsäure] -di - p - anisidid $C_{18}H_{20}O_6N_2=[-CH(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3]_2$. B. Beim Erhitzen von [d-Weinsäure]-diäthylester (Bd. III, S. 512) mit 2 Mol.-Gew. p-Anisidin auf 160° (W., Ar. 234, 629). — Blättehen (aus heißem Eisessig). F: 259°. Leicht löslich in Alkohol, sehwer in Äther, Chloroform, Benzol, sehr wenig in Wasser.

N.N'-Bis-[4-äthoxy-phenyl]-d-tartramid, [d-Weinsäure]-di-p-phenetidid $C_{20}H_{24}O_6N_2=[-CH(OH)\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5]_2$. B. Beim Erhitzen von [d-Weinsäure]-diäthylester (Bd. III, S. 512) mit 2 Mol.-Gew. p-Phenetidin auf 160° (W., Ar. 234, 630). — Blättchen. F: 271°. Leicht löslich in Alkohol, sehr wenig in Wasser, Äther, Benzol und Chloroform.

β-p-Phenetidino-propan-a, β-p-tricarbonsäure, β-p-Phenetidino-tricarballylsäure $C_{14}H_{17}O_7N = (HO_2C \cdot CH_2)_2C(CO_2H) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Durch Kochen von 3-p-Phenetidino - 2.5 - dioxo - pyrrolidin - essigsäure - (3) - äthylester (Syst. No. 3442) mit Natronlauge (SCHROETER, B. 38, 3188). — Würfel (aus Wasser) mit 2 H_2O . Bei längerem Erhitzen im Vakuum auf 55° entweicht das Wasser. F: 121—122° (Zers.).

 β -p-Phenetidino-propan-a.y-bis-carbonsäureäthylester- β -carbonsäureamid, β -p-Phenetidino- β -aminoformyl-glutarsäure-diäthylester, β -p-Phenetidino-tricarballylsäure-a.a'-diäthylester- β -amid $C_{18}H_{26}O_6N_3=(C_2H_5\cdot O_2C\cdot CH_2)_2C(CO\cdot NH_2)\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch kurze Einw. von kalter konzentrierter Schwefelsäure auf β -p-Phenetidino- β -cyan-glutarsäure-diäthylester (s. u.) (SCH., B. 38, 3187). — Krystallinische Masse. F: 77°.

 β -p-Phenetidino-propan- $a.\gamma$ -bis-carbonsäureäthylester- β -carbonsäurenitril, β -p-Phenetidino- β -cyan-glutarsäure-diäthylester, β -p-Phenetidino-tricarballylsäure-a.a'-diäthylester- β -nitril $C_{18}H_{24}O_5N_2=(C_2H_5\cdot O_2C\cdot CH_2)_2C(CN)\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Bei 2-tägigem Stehen von β -[4-Åthoxy-phenylimino]-glutarsäure-diäthylester (S. 497) mit absol. Blausäure (Soh., B. 38, 3186). — Öl. — Gibt bei kurzem Stehen mit konz. Schwefelsäure β -p-Phenetidino- β -aminoformyl-glutarsäure-diäthylester (s. o.); bei mehrtägigem Stehen mit konz. Schwefelsäure entsteht 3-p-Phenetidino-2.5-dioxo-pyrrolidin-essigsäure-(3)-åthylester (Syst. No. 3442).

Citronensäure-di-p-phenetidid $C_{22}H_{26}O_7N_8 = HO_2C\cdot CH_2\cdot C(OH)(CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5)\cdot CH_2\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5$ oder $HO_2C\cdot C(OH)(CH_2\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_2H_5)_2$. B. Durch mehrstündiges Erhitzen von 42 g Citronensäure (Bd. III, S. 556) mit 55 g p-Phenetidin auf $100-200^{\circ}$ (Chem. Fabr. v. Heyden, D. R. P. 87428; Frdl. 4, 1170). — Weißes Pulver. F: 179°. Schwer löslich in Wasser, leichter in Alkohol. Das Natriumsalz ist in Wasser löslich, in verd. Natronlauge sehr wenig löslich.

a-[4-Methoxy-phenylimino]-propionsäure, Brenztraubensäure-[4-methoxy-anil] bezw. a-p-Anisidino-acrylsäure $C_{10}H_{11}O_2N = HO_2C \cdot C(CH_2) \cdot N \cdot C_6H_4 \cdot O \cdot CH_3$ bezw. $HO_2C \cdot C(:CH_2) \cdot N + C_6H_4 \cdot O \cdot CH_3$. B. Aus alkoh. Lösungen äquimolekularer Mengen von p-Anisidin und Brenztraubensäure (Bd. III, S. 608) in einer Kältemischung von Schnee und Salzsäure (GIUFFRIDA, CHIMIENTI, G. 34 II, 272). — Gelbes amorphes Produkt. Unlöslich in organischen Lösungsmitteln in der Kälte; zersetzt sich damit in der Wärme unter Bildung von Brenzweinsäure-di-p-anisidid (S. 475).

a-[4-Äthoxy-phenylimino]-propionsäure. Brenztraubensäure - [4-äthoxy-anil] bezw. a-p-Phenetidino-acrylsäure $C_{11}H_{18}O_3N = HO_2C \cdot C(CH_3) : N \cdot C_6H_4 \cdot O \cdot C_3H_5$ bezw. $HO_2C \cdot C(:CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_3H_5$. B. Aus alkoh. Lösungen äquimolekularer Mengen von Brenztraubensäure und p-Phenetidin in einer Kältemischung von Schnee und Salzsäure (G., Ch., G. 34 II, 273). — Gelbe amorphe Masse. Beginnt bei 105° zu schmelzen und ist bei 228° völlig geschmolsen. Unlöslich in organischen Lösungsmitteln in der Kälte; zersetzt sich damit in der Wärme unter Bildung von Brenzweinsäure-di-p-phenetidid (S. 475).

4-Pyruvylamino-phenol-methyläther, Brenstraubensäure-p-anisidid C₁₀H₁₁O₂N = CH₃·CO·CO·NH·C₂H₂·O·CH₃. B. Neben Acetylanisoyl (Bd. VIII, S. 288) und Anissäure (Bd. X S. 154) aus a-Isonitroso-a-[4-methoxy-phenyl]-aceton (Bd. VIII, S. 288) durch Einw. von 10% jeger Schwefelsäure (Borsohe, B. 40, 743; B., TITSINGH, B. 42, 4286). — Nadeln (aus Wasser). F: 129—130° (B., B. 40, 743). Leicht löslich in ätzenden und kohlensauren Alkalien (B., B. 40, 743).

- β -[4-Oxy-phenylimino]-buttersäure-nitril, Cyanaceton-[4-oxy-anil] bezw. β -[4-Oxy-anilino]-crotonsäure-nitril $C_{10}H_{10}ON_2=NC\cdot CH_2\cdot C(CH_3):N\cdot C_2H_4\cdot OH$ bezw. NC·CH: $C(CH_3)\cdot NH\cdot C_2H_4\cdot OH$. B. Aus 4-Amino-phenol und Discetonitril (Bd. III, S. 660) in verd. Essigsäure (E. v. Meyer, C. 1908 II, 592; J. pr. [2] 78, 503). Bräunliche Nadeln. F: 120°.
- β-[4-Methoxy-phenylimino]-buttersäure-äthylester, Acetessigsäure-äthylester-[4-methoxy-anil] bezw. β-p-Anisidino-crotonsäure-äthylester $C_{13}H_{1}$, $O_{3}N = C_{2}H_{5} \cdot O_{2}C \cdot CH_{2} \cdot C(CH_{3}) \cdot N \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$ bezw. $C_{2}H_{5} \cdot O_{2}C \cdot CH \cdot C(CH_{3}) \cdot NH \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. B. Bei 1—2-tägigem Stehen der äther. Lösung von 1 Mol.-Gew. Acetessigsäureäthylester (Bd. III, S. 632) mit 1 Mol.-Gew. p-Anisidin (Conbad, Limpach, B. 21, 1649). Prismen (aus Alkohol). F: 46°. Wird durch Säuren oder Alkalien in Acetessigseter und p-Anisidin gespalten. Beim Erhitzen auf 260° entsteht 4-Oxy-6-methoxy-2-methyl-chinolin (Syst. No. 3137).
- β-[4-Äthoxy-phenylimino]-buttersäure-äthylester, Acetessigsäure-äthylester-[4-äthoxy-anil] bezw. β-p-Phenetidino-crotonsäure-äthylester $C_{14}H_{19}O_3N = C_2H_5$ · $O_2C \cdot CH_2 \cdot C(CH_3) \cdot N \cdot C_2H_4 \cdot O \cdot C_2H_5$ bezw. $C_2H_5 \cdot O_3C \cdot CH \cdot C(CH_3) \cdot NH \cdot C_4H_4 \cdot O \cdot C_2H_5$. B. Aus Acetessigester und p-Phenetidin (Riedel, D.R.P. 76798; Frdl. 4, 1199). Blättrige Krystallmasse. F: 52,5—53°. Sehr leicht löslich in Äther, löslich in Alkohol, unlöslich in Wasser.
- β-[4-Äthoxy-phenylimino]-buttersäure-nitril, Cyanaceton-[4-äthoxy-anil] bezw. β-p-Phenetidino-crotonsäure-nitril $C_{19}H_{14}ON_2=NC\cdot CH_2\cdot C(CH_3):N\cdot C_6H_4\cdot O\cdot C_2H_5$ bezw. $NC\cdot CH:C(CH_3)\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus p-Phenetidin und Diacetonitril (Bd. III, S. 660) in verd. Essigsäure (E. v. Meyer, C. 1908 II, 592; J. pr. [2] 78, 503). Weiße Nadeln, F: 138°.
- $\gamma.\gamma$ -Bis-äthylsulfon-n-valeriansäure-p-phenetidid $C_{17}H_{27}O_6NS_2=(C_2H_5\cdot SO_3)_2C(CH_3)\cdot CH_5\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Man erwärmt 10 g $\gamma.\gamma$ -Bis-äthylsulfon-n-valeriansäure (Bd. III, S. 678) mit 1,7 g PCl₃ und 100 ccm Toluol einige Stunden auf dem Wasserbade und versetzt die von der phosphorigen Säure abgegossene Lösung allmählich unter Kühlung mit 23 g p-Phenetidin in Toluol (Posner, B. 32, 2810). Nädelchen (aus verd. Alkohol). F: 136°. Fast unlöslich in Wasser.
- 4-[a-Cyan-bensalamino]-phenol, 4-Oxy-anil des Benzoyleyanids, [4-Oxy-phenyl]-[μ -cyan-azo-methin]-phenyl $C_{14}H_{10}ON_2=C_6H_5\cdot C(CN):N\cdot C_6H_4\cdot OH$. B. Durch Oxydation von a-[4-Oxy-anilino]-phenylacetonitril (Syst. No. 1905) mit Kaliumpermanganat in Aceton (Sachs, Goldmann, B. 35, 3348). Durch Kondensation von 4-Nitroso-phenol (Bd. VII, S. 622) und Benzylcyanid in alkoh. Lösung bei Gegenwart von Natriumhydroxyd (S., G.; vgl. S., D. R. P. 121974; C. 1901 II, 70). Rotgelbe Nadeln (aus verd. Alkohcl). F: 146° (S., G.). Löslich in Alkalien mit intensiv roter Farbe (S., G.).
- Benzoylessigsäure-p-phenetidid $C_{17}H_{17}O_3N=C_6H_5\cdot CO\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus Benzoylessigester (Bd. X, S. 674) und p-Phenetidin bei 120—130° (Foglino, C. 1898 I, 501). Nädelchen (aus Alkohol). F: 139—140°. Unlöslich in kaltem Wasser.
- 2-Bensoyl-bensoesäure-p-anisidid, Benzophenon carbonsäure (2) p anisidid bezw. 1-Oxy-3-oxo-1-phenyl-2-[4-methoxy-phenyl]-isoindolin, 3-Oxy-3-phenyl-2-[4-methoxy-phenyl]-isoindolin, 3-Oxy-3-phenyl-2-[4-methoxy-phenyl]-phthalimidin $C_nH_{17}O_3N = C_0H_5 \cdot CO \cdot C_0H_4 \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3$ bezw. $C_0H_4 \cdot CO \cdot C_0H_5 \cdot CO \cdot CH_3 \cdot CO \cdot CO \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3 \cdot CO \cdot CO \cdot NH \cdot C_0H_4 \cdot CO \cdot$
- 2-Benzoyl-benzoesäure-pseudo-p-anisidid, Benzophenon-carbonsäure-(2)-pseudo-p-anisidid $C_{21}H_{17}O_3N = C_6H_4 \underbrace{C(C_6H_5)(OH)}_{CO}N\cdot C_6H_4\cdot O\cdot CH_3$ (1-Oxy-3-oxo-1-phenyl-2-[4-methoxy-phenyl]-isoindolin, 3-Oxy-3-phenyl-2-[4-methoxy-phenyl]-phthalimidin) oder $C_{11}H_{17}O_3N = C_6H_4 \underbrace{C(C_6H_5)(NH\cdot C_6H_4\cdot O\cdot CH_3)}_{CO}O$ (3-p-Anisidino-3-phenyl-phthalid) (vgl. auch die vorangehende Verbindung). B. Durch mehrstündiges Erhitzen von 2-Benzoyl-benzoesäure (Bd. X, S. 747) mit p-Anisidin (M., T., M. 30, 481). Farblose Nadeln (aus Alkohol). F: 198°. Unlöslich in Wasser, schwer löslich in Aceton, Essigester und Alkohol, leichter in Eisessig. Ist mit Alkalien glatt titrierbar. Beim Erhitzen mit Phenylhydrazin entsteht 1.3-Diphenyl-phthalazon-(4) C_6H_4 $\underbrace{CO-N\cdot C_6H_5}_{C(C_6H_5):N}$ (Syst. No.

3572), mit Acetanhydrid 2 - Benzoyl - benzoesäure - p - anisidid (S. 496). Färbt sich mit konz. Schwefelsäure schwach bräunlich.

- α-[4-Äthoxy-phenyliminomethyl]-acetessigsäure-p-phenetidid bezw. α-p-Phenetidinomethylen-acetessigsäure-p-phenetidid $C_{21}H_{24}O_4N_2=C_2H_5\cdot O\cdot C_6H_4\cdot N:CH\cdot CH\cdot CO\cdot CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5\cdot D\cdot C_6H_4\cdot NH\cdot CH:C(CO\cdot CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5\cdot D\cdot C_6H_4\cdot NH\cdot CH:C(CO\cdot CH_3)\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5\cdot B.$ Aus N.N'-Bis-[4-āthoxy-phenyl]-formamidin (S. 460) und Acetessigester (Bd. III, S. 632) bei 150° (Dains, Brown, Am. Soc. 31, 1151). Gelbe Krystalle. F: 138°. Leicht löslich in Alkohol.
- [4-Oxy-phenylimino] [campheryl (3)] essigsäure bezw. [4-Oxy-anilino] [campheryliden (3)] essigsäure, "p-Oxyphenylcamphoformenamincarbonsäure"

 Co

 CigHinO4N = CgHia CO

 Ch·C(:N·C6H4·OH)·CO2H

 bezw. CgHia C:C(NH·C6H4·OH)·CO2H

 B. Man erhitzt äquimolekulare Mengen 4-Amino-phenol und Campheroxalsäure (Bd. X, S. 796) in absol. Alkohol im Druckrohr 2 Stdn. auf 105—110° und zerlegt das hierbei entstandene 4-Amino-phenol·Salz durch kurzes Erhitzen mit verd. Salzsäure (TINGLE, WILLIAMS, Am. 39, 291). Gelbe Krystalle (aus Benzol). F: 178° (Zers.). Geht beim Erhitzen über den Schmelzpunkt unter Abspaltung von CO2 in "p-Oxyphenylcamphoformenamin" (S. 456) über. 4-Amino-phenol·Salz C6H7ON+C18H21O4N. Gelbe Krystalle (aus Alkohol). F: 190° (Zers.).
- 4 [4 Äthoxy phenylimino] 2 phenyl cyclohexanon (6) carbonsäure (1) äthylester bezw. 4-p-Phenetidino-2-phenyl-cyclohexen-(4)-on-(6)-carbonsäure-(1)-äthylester $C_{23}H_{25}O_4N = C_2H_5 \cdot O_2C \cdot CH < \frac{CH(C_6H_6) \cdot CH_2}{CO CH_2} > C \cdot N \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. $C_2H_5 \cdot O_2C \cdot CH < \frac{CH(C_6H_6) \cdot CH_3}{CO CH_2} > C \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$ bezw. weitere desmotrope Formen. B. Beim 8-10-stdg. Erhitzen von Phenyldihydroresorcylsäure-äthylester (Bd. X, S. 826) mit

p-Phenetidin (S. 436) (Vorländer, A. 294, 279). — Krystalle (aus Alkohol). F: 168°.

- beim 8—10-stdg. Rühren; zur Gewinnung der freien Säure zersetzt man das p-Anisidinsalz mit 7°/oiger Salzsäure (Wieland, Semper, Gmelin, A. 367, 74). Weiße Blättchen. F: 164° (Zers.). Sehr wenig löslich in Alkohol, Äther, Eisessig. Sehr unbeständig gegen Alkali. Eisenchlorid gibt dunkelgrüne Färbung. Gibt beim Erwärmen mit Essigsäureanhydrid erst auf 65°, dann auf 90° Oxalsäure-nitril-p-anisididoximacetat (S. 472).
- 4-Methoxy-phenyliminomethylmalonsäure-äthylester-p-anisidid bezw. p-Anisidinomethylenmalonsäure-äthylester-p-anisidid $C_{20}H_{20}O_5N_2=CH_3\cdot O\cdot C_0H_4\cdot N:CH\cdot CH(CO_2\cdot C_2H_5)\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CH_3$ bezw. $CH_3\cdot O\cdot C_0H_4\cdot NH\cdot CH:C(CO_2\cdot C_2H_5)\cdot CO\cdot NH\cdot C_4H_4\cdot O\cdot CH_3$. B. Durch Erhitzen von N.N'-Bis-[4-methoxy-phenyl]-formamidin (S. 460) mit Malonsäurediäthylester im Druckrohr auf 150° (Dains, B. 35, 2508). F: 130°. Leicht löslich in Alkohol, Äther, Eisessig.
- β -[4-Äthoxy-phenylimino]-glutarsäure-diäthylester bezw. β -p-Phenetidino-glutaconsäure-diäthylester $C_{17}H_{29}O_2N=(C_2H_5\cdot O_2C\cdot CH_2)_2C\cdot N\cdot C_6H_4\cdot O\cdot C_2H_5$ bezw. $C_2H_5\cdot O_2C\cdot CH:C(CH_2\cdot CO_2\cdot C_2H_3)\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Bei 2-tägigem Stehen äquimolekularer Mengen von Acetondicarbonsäurediäthylester (Bd. III, S. 791) und p-Phenetidin (SCHROETER, B. 38, 3186). Durchsichtige Prismen (aus Petroläther). F: 57°. Leicht löslich in Alkohol, Äther, Aceton, Benzol, schwer in kaltem Petroläther. Gibt mit wasserfreier Blausäure β -p-Phenetidino-tricarballylsäure-a.α'-diäthylester- β -nitril (S. 495).
- $\begin{array}{lll} & [a.a\text{-Di-p-phenetidino-$athyl]-bernsteins "auredi "athylester" (?) & C_{3a}H_{36}O_{6}N_{2}(?) = C_{2}H_{5} \cdot O_{2}C \cdot CH_{3} \cdot CH(CO_{2} \cdot C_{2}H_{5}) \cdot C(CH_{3})(NH \cdot C_{6}H_{4} \cdot O \cdot C_{3}H_{5})_{2}(?). & B. & \text{Entsteht neben dem } [a.a\text{-Di-discontinuous continuous co$

p-phenetidino-äthyl]-bernsteinsäure-di-p-phenetidid(?) (s. u.) beim Erhitzen äquimolekularer Mengen p-Phenetidin und Acetbernsteinsäureester (Bd. III, S. 802) auf 150° (Rossi, G. 36 II, 875). — Weiße Nadeln. F: 114—115°. Ziemlich löslich in warmem Alkohol. Färbt sich in alkoh. Lösung mit Eisenchlorid grünlich. — Geht beim Erhitzen mit p-Phenetidin in das [a.a-Di-p-phenetidino-äthyl]-bernsteinsäure-di-p-phenetidid(?) (s. u.) über.

[a.a-Di-p-phenetidino-äthyl]-bernsteinsäure-di-p-phenetidid (?) $C_{38}H_{46}O_6N_4$ (?) = $(C_2H_5\cdot O\cdot C_6H_4\cdot NH)_2C(CH_3)\cdot CH(CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5)\cdot CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$ (?). B. Beim Erhitzen äquimolekularer Mengen von Acetbernsteinsäureester (Bd. III, S. 802) mit p-Phenetidin, neben [a.a-Di-p-phenetidino-äthyl]-bernsteinsäurediäthylester(?) (S. 497)(Rossi, G· 36 II, 874). — Weiße Nadeln. F: 230—232°. Löslich in viel siedendem Alkohol, schwer löslich in kaltem Alkohol, Benzol.

β.β.ε.ε-Tetra-p-phenetidino-hexan-γ.δ-dicarbonsäure-diäthylester (?) $C_{44}H_{88}O_8N_4$ (?) = [-CH(CO₂·C₂H₅)·C(CH₃)(NH·C₆H₄·O·C₂H₅)₂]₂(?). B. Beim Erhitzen von 1 Mol.-Gew. Diacetbernsteinsäureester (Bd. III, S. 842) mit 2 Mol.-Gew. p-Phenetidin über 130° bezw. im Einschmelzrohr über 200° (R., G. 36 II, 872). — Gelbes Pulver. F: 159—160°. Leicht löslich in warmen, löslich in kaltem Alkohol, schwer löslich in Äther, Aceton und Benzol.

 $\beta.\beta.\epsilon.\epsilon$ - Tetra - p - phenetidino - hexan - $\gamma.\delta$ - dicarbonsäure - di - p - phenetidid $C_{53}H_{68}O_{6}N_{6}(?) = [-CH(CO\cdot NH \cdot C_{6}H_{4} \cdot O \cdot C_{3}H_{5}) \cdot C(CH_{9})(NH \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5})_{9}]_{9}(?)$. B. Beim Erhitzen von 1 Mol.-Gew. Diacetbernsteinsäureester (Bd III, S-842) mit 4 oder 6 Mol.-Gew. p-Phenetidin über 130° bezw. im Einschmelzrohr über 200° (R., G. 36 II, 873). — Weiße Nadeln. F: 230°. Ziemlich löslich in Alkohol, schwer in Äther.

- 5.6-Dimethoxy-2-[4-oxy-phenyliminomethyl]-bensoesäure bezw. 6.7-Dimethoxy-3-[4-oxy-anilino]-phthalid $C_{1e}H_{1s}O_{s}N=(CH_{s}\cdot O)_{2}C_{e}H_{s}(CO_{s}H)\cdot CH:N\cdot C_{e}H_{4}\cdot OH$ bezw. $(CH_{s}\cdot O)_{2}C_{e}H_{s}$ $CH(NH\cdot C_{e}H_{4}\cdot OH)$ O, Opiansäure-[4-oxy-anil]. B. Durch kurzes Kochen von 2 Tin. Opiansäure (Bd. X, S. 990) und 1 Tl. 4-Amino-phenol in verd. Alkohol (BISTREYOKI, HERBST, B. 34, 1018). Täfelchen (aus Alkohol). F: 223°. Schwer löslich in Alkohol, Eisessig; fast unlöslich in Benzol, Ligroin.
- 5.6-Dimethoxy-2-[4-āthoxy-phenyliminomethyl]-bensoesāure bezw. 6.7-Dimethoxy-3-p-phenetidino-phthalid $C_{18}H_{19}O_5N = (CH_2 \cdot O)_2C_6H_2(CO_2H) \cdot CH : N \cdot C_6H_4 \cdot O \cdot C_2H_8$ bezw. $(CH_2 \cdot O)_2C_6H_2 \xrightarrow{CH(NH \cdot C_6H_4 \cdot O \cdot C_8H_8)} O$, Opiansāure [4-āthoxy-anil]. B. Aus Opiansāure (Bd. X, S. 990) und p-Phenetidin bei 120° (Goldschmidt, D. R. P. 92757; Frill. 4, 1184). Weißes Pulver. F: 175°. Unlöslich in Wasser.
- C₂H₅·O₂C·CH<CH₄·O·CH₈·CH₂·CH₂·C·NH·C₆H₄·O·C₂H₅ bezw. weitere desmotrope Formen. B. Aus dem [4-Methoxy-phenyl]-dihydroresorcylsäure-äthylester (Bd. X, S. 1005) und p-Phenetidin (Vorländer, A. 294, 296). Krystalle (aus Essignäure). F: 217°.

e) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit Oxosulfonsäuren, Sulfo-carbonsäuren, Oxy-aminen, Amino-carbonsäuren usw., soweit diesen Kuppelungsprodukten fiach den Anordnungsregeln dieses Handbuches nicht eine spätere Stelle zukommt [vgl. Bd. I, S. 23 (§ 25d) und S. 28].

(1.4)-sulfonsäure-(2) (Syst. No. 1923) eingeordnete Indophenol C₁₂H₁₀O₄N₂S.

4-Sulfoacetamino-phenol-methyläther, Sulfoessigsäure-p-anisidid C₂H₁₁O₅NS = HO₃S·CH₂·CO·NH·C₂H₄·O·CH₃. B. Das p-Anisidinsalz entsteht beim Erhitzen von p-Anisidin mit Sulfoessigsäure (Bd. IV, S. 21) auf 160—170° (STILLIOH, J. pr. [2] 74, 55). — NaC₃H₁₀O₅NS + H₂O. Rechteckige Blättchen (aus verd. Alkohol). Erweicht bei ca. 269°, zersetzt sich bei weiterem Erhitzen allmählich. — p-Anisidinsalz C₂H₂ON+C₃H₁₁O₅NS. Nadeln (aus Alkohol). Schmilzt bei 224—227° zu dunkelroter Flüssigkeit.

4-Sulfoacetamino-phenol-äthyläther, Sulfoessigsäure-p-phenetidid $C_{10}H_{13}O_8NS=HO_3S\cdot CH_2\cdot CO\cdot NH\cdot C_8H_4\cdot O\cdot C_8H_5$. B. Durch Kochen von Chloressigsäure-p-phenetidid (S. 463) mit Natriumsulfit in wäßr. Lösung (Bayer & Co., D. R. P. 79174; Frdl. 4, 1154). Das p-Phenetidinsalz entsteht beim Erhitzen von Sulfoessigsäure mit p-Phenetidin auf 200° (STILLICH, J. pr. [2] 74, 54). — Na $C_{10}H_{13}O_5NS$. Wasserfreie Nadeln (aus absol. Alkohol); krystallisiert aus Wasser mit 2 Mol. Wasser (Sr.). Schmilzt wasserfrei bei ca. 270° zu einer trüben Flüssigkeit, die bei 290° noch nicht klar ist (Sr.). Leicht löslich in Wasser (B. & Co.). — p-Phenetidinsalz $C_9H_{11}ON+C_{10}H_{13}O_5NS$. Nadeln (aus Wasser). Sintert bei 224°, schmilzt bei 233—240° (Sr.).

N.N'-Bis-[4-äthoxy-phenyl]-äthylendiamin $C_{18}H_{24}O_2N_2 = C_2H_5 \cdot O \cdot C_4H_4 \cdot NH \cdot CH_2 \cdot CH_2 \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5$. B. Entsteht als Hauptprodukt (neben 1.4-Bis-[4-āthoxy-phenyl]-piperazin, Syst. No. 3460) beim Kochen von 34 g salzsaurem p-Phenetidin mit 18 g Åthylenbromid und einer Lösung von 34 g Natriumcarbonat in 200 g Wasser (BISCHOFF, TRAPESONZJANZ, B. 28, 1979). — Blättchen (aus Åther + Alkohol). F: 98°. — Beim Erhitzen mit Åthylenbromid und Natriumcarbonat entsteht 1.4-Bis-[4-āthoxy-phenyl]-piperazin.

4'-Oxy-2-amino-diphenylamin $C_{12}H_{12}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Man oxydiert eine wäßr. Lösung von o-Phenylendiamin und Phenol mit Braunstein und reduziert das Reaktionsprodukt mit einer wäßr. Lösung von Schwefelnatrium (ULLMANN, FURUI, B. 41. 624). — Fast farblose Nadeln (aus verd. Alkohol). F: 149,5°. Leicht löslich in Eisessig, Alkohol, siedendem Benzol, sehr wenig in siedendem Wasser, fast unlöslich in siedendem Ligroin. — Färbt sich an der Luft etwas braun. Die farblose Lösung in verd. Salzsäure wird auf Zusatz von Eisenchlorid erst rot, dann violett; die Lösung in verd. Natronlauge färbt sich durch Luftoxydation blau. Die Lösung in Salzsäure gibt mit Natriumnitrit das 1-[4-Oxy-phenyl]-benztriazol (Syst. No. 3803). Liefert mit Phenanthrenchinon in Eisessig bei Gegenwart von Salzsäure N-[4-Oxy-phenyl]-phenanthrophenazoniumchlorid (Syst. No. 3493).

4-Nitro-4'-oxy-2-amino-diphenylamin C₁₉H₁₁O₂N₃=H₂N·C₆H₃(NO₂)·NH·C₆H₄·OH. B. Entsteht neben 4'-Oxy-2.4-diamino-diphenylamin (S. 504), wenn man 20 g 2'.4'-Dinitro-4-oxy-diphenylamin (S. 444) in ein auf 86° erhitztes Gemisch aus 100 g krystallisiertem Schwefelnatrium Na₁S + 9aq, 25 g Schwefel und 20 g Wasser einträgt, wobei sich die Schmelze spontan auf ca. 114° erwärmt, und sofort mit Eiswasser verdünnt (Erddann, A. 362, 152; vgl. Kalle & Co., D. R. P. 128087; C. 1902 I, 447; Soc. St. Denis, D. R. P. 131468; C. 1902 I, 1384). — Braunrote Nadeln (aus verd. Alkohol). F: 204—205°; ziemlich schwer löslich in Wasser, leicht in verd. Salzsäure (K. & Co., D. R. P. 128087). — Beim Erhitzen mit Natriumpolysulfid in Alkohol unter Druck entsteht ein blauer krystallinischer Schwefelfarbstoff (Ges. f. chem. Ind., D. R. P. 132424; C. 1902 II, 172). Durch Kochen mit Schwefelkohlenstoff entsteht ein Thioharnstoff (Kryställchen aus Eisessig, F: oberhalb 280°), aus dem sich durch Verschmelzen mit Schwefelnatrium und Schwefel ein blaugrüner Schwefelfarbstoff herstellen läßt (K. & Co., D. R. P. 139099; C. 1903 I, 548). Liefert mit den Produkten der Einw. von Chlorschwefel auf Phenol oder Kresole Kondensationsprodukte, die als Ausgangsprodukte für Schwefelfarbstoffe verwendbar sind (Soc. St. Denis, D. R. P. 131468). Mit 2 Mol.-Gew. 4-Chlor-1.3-dinitro-benzol entsteht ein Kondensationsprodukt (rote Nadeln aus Aceton; F: 180—182°), welches beim Verschmelzen mit Schwefelnatrium und Schwefel einen blauen Schwefel einen blauen Schwefelfarbstoff gibt (K. & Co., D. R. P. 128087). Die Einw. von 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in siedendem Alkohol führt zu einem Kondensationsprodukt, das beim

Verschmelzen mit Schwefelnatrium und Schwefel einen violetten Schwefelfarbstoff liefert (K. & Co., D. R. P. 144157; C. 1908 II, 814).

- 4'-Äthoxy-2-amino-diphenylamin $C_{14}H_{16}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Durch Reduktion von 1 g 2'-Nitro-4-athoxy-diphenylamin (S. 446) mit 15 ccm einer Lösung von 40 g Zinnehlorür in 100 com 38°/eiger Salzsaure (Jacobson, Fertsch, Fischer, B. 26, 683). Nadeln (aus verd. Alkohol). F: 95°.
- 4.6-Dinitro-4'-oxy-8-amino-diphenylamin $C_{12}H_{10}O_5N_4=H_2N\cdot C_6H_2(NO_2)_2\cdot NH\cdot C_6H_4\cdot OH.$ B. Man kondensiert 4-Amino-phenol mit 1 Mol.-Gew. 4.6-Dichlor-1.3-dinitro-benzol (Bd. V, S. 265) und behandelt das Produkt mit Ammoniak unter Druck (Bad. Anilin- u. Sodaf., D. R. P. 116172; C. 1901 I, 75). Rote Nadeln (aus Alkohol). F: 214°. Unlöslich in Wasser, leicht löslich in Alkohol. Gibt in der Schwefel-Schwefelalkali-Schmelze einen schwarzen Farbstoff.
- N [2 Oxy phenyl] N' [4 oxy-phenyl] 4.6 dinitro phenylendiamin (1.3) $C_{18}H_{14}O_8N_4 = HO \cdot C_6H_4 \cdot NH \cdot C_6H_2(NO_2)_2 \cdot NH \cdot C_6H_4 \cdot OH$. B, Aus 4.6-Dichlor-1.3-dinitrobenzol durch Kondensation mit 1 Mol.-Gew. 2-Amino-phenol und Einw. von 4-Amino-phenol auf das Reaktionsprodukt (Bad. Anilin- u. Sodaf., D. R. P. 114270; C. 1900 II, 999). Dunkelrote Krystalle (aus Alkohol). F: ca. 242°. Verwendung zur Herstellung von Schwefelfarbstoffen: B. A. S. F.
- N.N'- Bis [4 oxy phenyl] 4.6 dinitro phenylendiamin (1.3) $C_{18}H_{14}O_6N_4 = (O_2N)_2C_6H_4(NH\cdot C_6H_4\cdot OH)_2$. B. Aus 4.6-Dichlor-1.3-dinitro-benzol und 2 Mol.-Gew. 4-Aminophenol in Gegenwart von Natriumacetat (Bad. Anilin- u. Sodaf., D. R. P. 112298, 121211; C. 1900 II, 699; 1901 I, 1395). Rote Tafeln (aus Alkohol). F: 284—286°. Durch Erhitzen mit Schwefel und Schwefelalkali entsteht ein schwarzer Farbstoff (B. A. S. F., D. R. P. 112298).
- N.N' Bis [4 oxy phenyl] 6 chlor 2.4 dinitro phenylendiamin (1.3) (?) $C_{18}H_{18}O_4N_4Cl = (O_5N)_5C_6HCl(NH\cdot C_6H_4\cdot OH)_5$. B. Aus 2.4.5 Trichlor 1.3 dinitro benzol (Bd. V, S. 266 als 1.2.4 Trichlor x.x dinitro benzol bezeichnet; zur Konstitution vgl. Hüfffer, R. 40 [1921], 452) und 2 Mol. Gew. 4-Amino-phenol in Gegenwart von Natriumacetat, (Bad. Anilin- u. Sodaf., D. R. P. 127441; C. 1902 I, 288). Orangefarbenes Krystallpulver. Sintert bei ca. 155° und verkohlt bei ca. 215° unter Aufschäumen. Unlöslich in Wasser, leicht löslich in Alkohol, schwer in Äther. Die Lösung in kalter verdünnter Natronlauge ist gelbrot. Beim Erhitzen mit Schwefel und Schwefelnatrium entsteht ein schwarzer Schwefelfarbstoff.
- N.N'-Bis-[4-oxy-phenyl]-2.4.6-trinitro-phenylendiamin-(1.3) $C_{18}H_{18}O_8N_5=(O_8N)_5C_6H(NH\cdot C_6H_4\cdot OH)_8$. B. Aus 2.4-Dichlor-1.3.5-trinitro-benzol (Bd. V, S. 275) und 4-Amino-phenol bei Gegenwart von Natriumacetat (Bad. Anilin- u. Sodaf., D. R. P. 137108; C. 1902 II, 1486). Ziegelrote Blättchen (aus Alkohol). F: 224—226° (Zers.). Gibt mit Alkalipolysulfiden bei 160—180° einen schwarzen Schwefelfarbstoff.
- 4-Oxy-4'-amino-diphenylamin C₁₈H₁₉ON₂ = H₂N·C₆H₄·NH·C₆H₄·OH. B. Aus dem Indophenol C₁₈H₁₆ON₂ (S. 70), erhalten durch gemeinsame Oxydation von p-Phenylendiamin und Phenol, durch Reduktion mit Schwefelalkalien (Akt.-Ges. f. Anilinfabr., D. R. P. 204596; C. 1909 I, 115). Aus p-Phenylendiamin und Hydrochinon durch Einw. wasserentziehender Mittel (Schneider, B. 32, 690) oder durch Erhitzen mit Zinkspänen in phenolischem oder alkoholischem Medium auf 180° (Vidal, C. 1905 II, 1397). Durch Erhitzen von p-Phenylendiamin mit salzsaurem 4-Amino-phenol auf 160—180° (Dtsch. Vidal-Farbst.-A.-G., D. R. P. 116337; C. 1901 I, 76) oder in Gegenwart von Wasser im geschlossenen Rohr auf 200° (V., C. 1903 I, 85). Bei der Reduktion des 4'-Nitro-4-oxy-diphenylamins (S. 444) in siedendem Wasser mit Zinkstaub in Gegenwart von Salmiak (Ullmann, Jüngel, B. 42, 1080). Aus 4'-Oxy-4-amino-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) durch 6-stdg. Erhitzen mit verd. Schwefelsäure im geschlossenen Gefäß auf 150° (Höchster Farbw., D. R. P. 112180; C. 1900 II, 701), ferner durch 5-stdg. Erhitzen mit mäßig verdünnter Schwefelsäure auf dem Wasserbad oder durch 4-stdg. Erhitzen mit konz. Salzsäure und etwas Zinnchlorür unter Rückfluß (Ullm., J.; vgl. Ullm., D.R.P. 193351; C. 1908 I, 429). Blätter (aus Wasser oder Toluol). F: 166° (Ullm., J.). Sehr wenig löslich in Ligroin, schwer in siedendem Wasser, leicht in Eisessig, Alkohol und Aceton (Ullm., J.). Die anfangs farblose Lösung in verd. Alkalien färbt sich rasch blau (Ullm., J.). Die Lösung in verd. Salzsäure wird mit Eisenchlorid intensiv blau (Ullm., J.). Verwendung zur Darstellung von Schwefelfarbstoffen: Dtsch. Vidal-Farbstoffen: A.-G., D. R. P. 116337; C. 1901 I, 76; Höchster Farbw., D. R. P. 179884; C. 1907 I, 1369; Schultz, Tab. No. 732. Verwendung des p-Toluolsulfonylderivates zur Darstellung von Schwefelfarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 192530; C. 1908 I, 575. Verwendung zur Erzeugung schwarzer Färbungen auf Textilfasern: Ulleich,

FUSSGÄNGER, C. 1908 I, 103; auf Pelzen, Haaren, Federn: H. F., D. R. P. 149676; C. 1904 I, 768. Erzeugung von Farbstoffen auf der Faser durch gemeinsame Oxydation von 4-Oxy-4'-amino-diphenylamin mit Aminen oder mit Phenolen: H. F., D. R. P. 162625; C. 1905 II. 1058. — C₁₂H₁₂ON₂ + 2 HCl. Braune Nädelchen (aus verd. Salzsäure); F: über 190° (Zers.) (SCHN., B. 32, 691). — C₁₂H₁₃ON₂ + H₂SO₄. Leicht löslich in heißem Wasser, schwerer in Alkohol, kaum löslich in Eisessig (ULLM., J.).

Diacetylderivat $C_{16}H_{16}O_3N_3 = C_{12}H_{10}ON_2(CO \cdot CH_3)_3$. B. Durch kurzes Erwärmen des 4-Oxy-4'-amino-diphenylamins mit Essigsäureanhydrid und Natriumacetat (ULLMANN, JÜNGEL, B. 42, 1081). — Fast farblose Blättchen (aus Toluol). F: 141°. Schwer löslich in siedendem Wasser und Benzol, leicht in Alkohol.

4-Oxy-4'-methylamino-diphenylamin $C_{18}H_{14}ON_8 = CH_8 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Man reduziert das Produkt der gemeinsamen Oxydation von Methylanilin und 4-Aminophenol (Cassella & Co., D. R. P. 133481; C. 1902 II, 555). — Farblose Nadeln (aus Wasser). F: 171°. — Beim Erhitzen mit Schwefelnatrium und Schwefel in Gegenwart von Wasser entsteht ein blauer Schwefelfarbstoff.

4-Oxy-4'-dimethylamino-diphenylamin $C_{14}H_{16}ON_2 = (CH_3)_8N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Erhitzen von N.N-Dimethyl-p-phenylendiamin (S. 72) mit Hydrochinon und etwas Zinkchlorid auf 180° im CO_3 -Strom (GNEHM, Bots, B. 35, 3085; J. pr. [2] 69, 161). Durch Erhitzen von N.N-Dimethyl-p-phenylendiamin mit salzsaurem 4-Amino-phenol (Cassella & Co., D. R. P. 134947; C. 1902 II, 1023). Aus dem durch Oxydation von N.N-Dimethyl-p-phenylendiamin mit FeCl₂ erhältlichen Reaktionsprodukt und Phenol in verdünnter salzsaurer Lösung (Akt.-Ges. f. Anilinf., D. R. P. 184651; C. 1907 II, 859). Aus Chinonmono-[4-dimethylamino-anil] (Phenolblau, S. 88) mit Zinkstaub und Essigsäure (Gn., B.). – Fast weiße Nadeln (aus Wasser unter Zusatz von etwas Zinkstaub oder Hydrosulfitlösung); Prismen (aus Benzol). F: 161° (Gn., B.), 161—162° (C. & Co., D. R. P. 134947). Fast unlöslich in kaltem, schwer löslich in heißem Wasser, schwer in kaltem, ziemlich leicht in heißem Benzol, Äther, Essigester, leicht in Alkehol (Gn., B.). Gibt mit Mineralsäuren leicht lösliche farblose Salze (C. & Co., D. R. P. 134947). — Die Lösungen in Alkalien oxydieren sich an der Luft unter Bildung von Phenolblau (Gn., B.). Durch Erhitzen mit Schwefelalkalien und Schwefel entsteht ein reinblauer Schwefelfarbstoff (Immedialreinblau; s. u.) (C. & Co., D. R. P. 134947). Durch Erhitzen mit Alkalipolysulfiden bei Gegenwart von Kupfersalzen entsteht ein blaugrüner Schwefelfarbstoff (C. & Co., D. R. P. 129540; C. 1902 I, 739). Läßt sich auf der Faser zu einem schwarzen Farbstoff oxydieren (Ullrich, Fussgänger, C. 1903 I, 103). — Sulfat. Nadeln (aus Wasser); F: 156° (Gn., B.). — Verbindung mit Pikrylchforid. Hellbraune Nadeln (aus Alkohol) (Gn., B.).

Immedialreinblau $C_{14}H_{12}O_2N_2S_3$. Zur Zusammensetzung vgl. GNEHM, Bots, J.pr. [2] 69, 168. — B. Aus 4-Oxy-4'-dimethylamino-diphenylamin mit Schwefel und Schwefelnatrium bei 110—115° (Cassella & Co., D. R. P. 134947; C. 1902 II, 1023). Zur Reinigung verwandelt man das Produkt in die Disulfitverbindung (s. u.) (C. & Co., D. R. P. 135952; C. 1902 II, 1234), oder man benutzt die Löslichkeit des salzsauren Salzes der Leukoverbindung in salzfreiem Wasser (C. & Co., D. R. P. 136188; C. 1902 II, 1288). — Bronzeglänzendes Pulver. Unlöslich in Wasser und verdünnten Säuren; löslich in konz. Schwefelsäure, in konz. Salzsäure und in Ätzalkalien; in basischen organischen Mitteln (Anilin, Pyridin usw.) unter Veränderung löslich (G., B., J.pr. [2] 69, 168). — Beim Erhitzen mit Natriumchlorat und Salzsäure im geschlossenen Rohr auf 130° entsteht Chloranil (GNEHM, KAUFLER, B. 37, 2623). Liefert beim Erhitzen mit Kaliumbromat und Bromwasserstoffsäure auf 115—125° unter Druck ein Tetrabrommethylenviolett $C_{14}H_8ON_2SBr_4$ (Syst. No. 4382) (G., K., B. 37, 2620). — $ZnC_{14}H_{10}O_2N_2S_3$. Tiefblau, amorph (G., B., J.pr. [2] 69, 168).

Verbindung C₁₄H₁₈O₂N₂S₂ + NaHSO₃ + 2 H₂O. B. Man digeriert 10 g Immedialreinblau 10 Stdn. mit 20 g kalter Natriumdisulfitlösung (40° Bé), verdünnt mit 50 ccm Wasser, erwärmt langsam auf 90° und filtriert; beim Erkalten scheidet sich die Verbindung ab (GNEHM, BOTS, J. pr. [2] 69, 169). Man verschmilzt 4-Oxy-4′-dimethylamino-diphenylamin (s. o.) mit Schwefel + Schwefelnatrium, fällt die Lösung der Schmelze durch Disulfitlösung, behandelt das ausgefällte Produkt mit Disulfitlösung bei 90°, filtriert und läßt krystallisieren (Cassella & Co., D. R. P. 135952; C. 1902 II, 1234). — Orangegelbe Nädelchen (aus wäßriger schwefliger Säure). Schwer löslich in kaltem, löslich in heißem Wasser, unlöslich in Alkohol, Äther und Benzol; färbt Wolle im sauren Bade und liefert mit Oxydationsmitteln echte indigoblaue Färbungen (C. & Co.).

Trimethyl-[4-(4-oxy-anilino)-phenyl]-ammoniumjodid $C_{15}H_{19}ON_3I = (CH_2)_3NI \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus 4-Oxy-4'-dimethylamino-diphenylamin und Methyljodid in siedendem Methylalkohol (GNEHM, Bors, B. 35, 3086; J. pr. [2] 69, 166). — Nadeln (aus Wasser). F: 218°. Unlöslich in den gebräuchlichen organischen Mitteln. — Gibt bei der Acetylierung 4-Acetoxy-4'-dimethylamino-N-acetyl-diphenylamin (S. 504).

4-Oxy-4'-äthylamino-diphenylamin $C_{14}H_{16}ON_s:=C_sH_s\cdot NH\cdot C_eH_s\cdot NH\cdot C_eH_a\cdot OH$. B. Man reduziert das durch gemeinsame Oxydation von Athylanilin und 4-Amino-phenol erhältliche Indophenol (Cassella & Co., D. R. P. 133481; C. 1902 II, 555). — Nadeln. F: 140°.

Dimethyl - äthyl - [4 - (4 - oxy - anilino) - phenyl] - ammoniumjodid $C_{1e}H_{21}ON_{2}I = (C_{2}H_{6})(CH_{3})_{2}NI \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4} \cdot OH$. B. Aus 4-0xy-4'-dimethylamino-diphenylamin und Athyljodid (GNEHM, Bots, B. 35, 3086; J. pr. [2] 69, 166). — Nadeln. F: 207°.

N-Phenyl-N'-[4-oxy-phenyl]-p-phenylendiamin, 4-Oxy-4'-anilino-diphenylamin C₁₈H₁₆ON₂ = C₆H₅·NH·C₆H₄·NH·C₆H₄·OH. B. Man oxydiert ein Gemisch von 4-Amino-phenol und Diphenylamin in alkoh. Lösung mit Natriumdichromat und Salzsäure und reduziert mit Zinkstaub und Salzsäure (Cassella & Co., Deutsche Patentanmeldung C. 19964 [1902]; Französ. Patent 323 202; Frdl. 7, 74; A. Winther, Zusammenstellung der Patente auf dem Gebiete der organischen Chemie, Bd. I [Gießen 1908], S. 383). Man oxydiert ein Gemisch von salzsaurem 4-Amino-diphenylamin und Phenol in wäßr. Lösung mit Natriumdichromat und Essigsäure, macht mit Soda alkalisch und reduziert durch Erwärmen mit Natriumsulfidlösung (C. & Co.). — Blättchen (aus Wasser), Krystalle (aus Benzol). F: 149—150°; fast unlöslich in kaltem, sehr wenig löslich in heißem Wasser, ziemlich schwer in Benzol, leicht in Alkohol; alkalische Lösungen färben sich an der Luft rasch blau (C. & Co., Dt. Pat.-Anm. C. 10964). — Beim Erhitzen mit Polysulfiden entsteht ein blauer Schwefelfarbstoff (C. & Co., D. R. P. 150553; C. 1904 I, 1467; vgl. Schultz, Tab. No. 735). Beim Erhitzen der Natriumverbindung mit Schwefel allein entsteht ein in wäßr. Schwefelalkali fast farblos löslicher, Baumwolle aus heißem Bad intensiv blau färbender Schwefelfarbstoff (Bad. Anilin- u. Sodaf., D. R. P. 178088; C. 1906 II, 1799).

N-[4-Oxy-phenyl]-N'-[4-amino-phenyl]-p-phenylendiamin, 4-Oxy-4'-[4-amino-anilino]-diphenylamin, 4-Amino-4'-[4-oxy-anilino]-diphenylamin $C_{18}H_{17}ON_3=H_2N\cdot C_8H_4\cdot NH\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot OH$. B. Man oxydiert 4.4'-Diamino-diphenylamin (8. 110) mit 1 Mol.-Gew. Phenol und reduziert das entstandene Indophenol (Höchster Farbw., D. R. P. 153916; C. 1904 II, 966). — Krystalle (aus Wasser). F: 185°. — Läßt sich in einem blauen Schwefelfarbstoff überführen.

N-[4-Oxy-phenyl]-N'-[4-p-toluidino-phenyl]-p-phenylendiamin, 4-[4-Oxy-anilino]-4'-p-toluidino-diphenylamin $C_{2b}H_{22}ON_3 = CH_3 \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus 4-Oxy-diphenylamin (S. 444) und 4'-Amino-4-methyl-diphenylamin (S. 81) mit Wasserstoffsuperoxyd (WILLSTÄTTER, KUBLI, B. 42, 4149). — Blättchen, F: 211° bis 212°. Leicht löslich in siedendem Aceton, schwer in heißem Alkohol und Benzol, sehr wenig in Äther.

4.4'-Bis-[4-oxy-anilino]-diphenylamin $C_{24}H_{21}O_2N_2 = HO \cdot C_6H_4 \cdot NH \cdot C_6H_6

3'-Chlor-4-oxy-4'-methylamino-diphenylamin $C_{18}H_{18}ON_2Cl = CH_2 \cdot NH \cdot C_6H_3Cl \cdot NH \cdot C_6H_4 \cdot OH$. B. Man reduziert das Indophenol aus N-Methyl-2-chlor-anilin (Bd. XII, S. 599) und 4-Amino-phenol (Chem. Fabr. Griesheim-Elektron, D. R. P. 172079; C. 1906 II, 649). — F: 105°. — Beim Erhitzen mit Schwefel und Schwefelalkali entsteht ein blauer Schwefelfarbstoff.

3'-Chlor-4-oxy-4'-äthylamino-diphenylamin $C_{14}H_{18}ON_{9}Cl = C_{2}H_{4}\cdot NH\cdot C_{6}H_{2}Cl\cdot NH\cdot C_{6}H_{4}\cdot OH$. *B.* Man reduziert das Indophenol aus dem (nicht näher beschriebenen) N-Äthyl-2-chlor-anilin und 4-Amino-phenol (Ch. F. G.-E., D. R. P. 172079; *C.* 1906 II, 649). — F: 115°. — Beim Erhitzen mit Schwefel und Schwefelalkali entsteht ein blauer Schwefelfarbstoff.

- 2'.6' oder 3'.5' Dichlor 4 oxy 4' amino diphenylamin $C_{12}H_{10}ON_2Cl_2 = H_2N \cdot C_6H_2Cl_2 \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Reduktion des entsprechenden Indophenols $C_{12}H_8ON_2Cl_2$ (S. 118) mit Schwefelnatrium (Bad. Anilin- u. Sodaf., D. R. P. 152689; C. 1904 II, 274). Farblose Krystalle. Sehr leicht löslich in verd. Natronlauge; diese Lösung färbt sich an der Luft rotstichig blau und allmählich fällt das Indophenol aus. Hydrochlorid. Nädelchen.
- 4-Methoxy-4'-amino-diphenylamin $C_{13}H_{14}ON_2 = H_{2}N \cdot C_{6}H_{4} \cdot NH \cdot C_{6}H_{4} \cdot O \cdot CH_{3}$. B. Aus 4'-Nitroso-4-methoxy-diphenylamin (S. 457) mit alkoh. Schwefelammonium (Will-Stätter, Kubli, B. 42, 4139). Bei 12-stdg. Kochen der 4-Methoxy-4'-amino-diphenylamin-sulfonsäure-(2') (Syst. No. 1923) mit 20% oiger Salzsäure und etwas Zinnchlorür (Ullmann, Jüngel, B. 42, 1082). Entsteht neben anderen Produkten bei der Reduktion von 4-Methoxy-azobenzol (Syst. No. 2112) in Alkohol mit Zinnchlorür und konz. Salzsäure (Facobson, Jaenicke, Meyer, B. 29, 2684). Nadeln (aus Ligroin). F: 102° (Jac., Jae., M.). Kp₁₂: 238° (W., K.). Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin (Jac., Jae., M.) und Wasser (U., Jü.). Die verdünnte salzsaure Lösung wird durch Eisenchlorid intensiv blau gefärbt (Jac., Jae., M.). Gibt in trocknem Äther mit Silberoxyd Chinon-imid-[4-methoxy-anil] (S. 456) (W., K.). Mit 4-Oxy-diphenylamin und Wasserstoffsuperoxyd erhält man 4-[4-Oxy-anilino]-4'-p-anisidino]-diphenylamin (s. u.) und die Verbindung O:C₆H₄:N·C₆H₄·N·C₆H
- Verbindung C₃₉H₃₆O₃N₆. Zur Konstitution vgl. Willstätter, Kubli, B. 42, 4137.

 B. Aus 4-Methoxy-4-amino-diphenylamin in Methylalkohol und Chinon-imid-[4-methoxy-anil] in Äther durch Einw. von Salzsäure (W., K., B. 42, 4147). Schokoladenbraune Prismen (aus Benzol). Färbt sich bei 150° dunkler, erweicht bei 170° und schmilzt bei 176°. Löslich in konz. Schwefelsäure mit brauner Farbe.
- 4-[4-Oxy-anilino]-4'-p-anisidino-diphenylamin $C_{25}H_{23}O_2N_3 = HO \cdot C_6H_4 \cdot NH
- 4-Äthoxy-4'-amino-diphenylamin $C_{14}H_{16}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus 4'-Nitroso-4-äthoxy-diphenylamin (S. 457) mit alkoh. Schwefelammonium (Jacobson, Henrich, Klein, B. 26. 697). Entsteht auch in geringer Menge bei der Reduktion von 4-Äthoxy-azobenzol (Syst. No. 2112) mit Zinnchlorür und Salzsäure (J., H., K.). Nadeln (aus Ligroin). F: 98—99,5°. Sehr leicht löslich in Alkohol, ziemlich schwer in heißem Ligroin. Die verdünnte salzsaure Lösung wird durch wenig Natriumnitrit tief dunkelviolett gefärbt; auf Zusatz von mehr Natriumnitrit verschwindet die Färbung. $C_{14}H_{16}ON_2 + HCl$. Nadeln.
- 4-Äthoxy-4'-bensalamino-diphenylamin $C_{21}H_{20}ON_2 = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot NH \cdot C_8H_4 \cdot O \cdot C_9H_8$. B. Aus 4-Äthoxy-4'-amino-diphenylamin und Benzaldehyd auf dem Wasserbad (J., H., K., B. 26, 694). Krystalle (aus Alkohol). F: 109—110°.
- 4-Äthoxy-4'-acetamino-diphenylamin $C_{15}H_{18}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_5H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Beim Kochen von 4-Äthoxy-4'-amino-diphenylamin mit überschüssigem Eisessig (J., H., K., B. 26, 693). Nadeln (aus verd. Alkohol). F: 134°.
- Thioharnstoff aus 4-Äthoxy-4'-amino-diphenylamin $C_{29}H_{30}O_{2}N_{4}S=CS(NH\cdot C_{6}H_{4}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{9}H_{5})_{4}$. B. Man erwärmt 4-Äthoxy-4'-amino-diphenylamin in wenig Alkohol mit Schwefelkohlenstoff auf dem Wasserbad (J., H., K., B. 26, 694). Nädelchen (aus Alkohol). F: 155—156°.
- 3'-Brom-4-ëthoxy-4'-amino-diphenylamin $C_{14}H_{15}ON_2Br = H_2N\cdot C_6H_3Br\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch Reduktion von 2'-Brom-4-ëthoxy-azobenzol (Syst. No. 2112) mit Zinn-chlorür in alkoholischer Lösung (Jacobson, Franz, Zaar, B. 36, 3865). Weiße Blättchen (aus Ligroin). F: 54°. Leicht löslich in Alkohol und Äther. Hydrochlorid. Nadeln. Schwer löslich in Wasser. Sulfat. Flitter. Schwer löslich in Wasser.
- 3'-Brom-4-ëthoxy-4'-[3-nitro-bensalamino]-diphenylamin $C_{21}H_{18}O_3N_3Br=O_3N\cdot C_6H_4\cdot CH:N\cdot C_6H_3Br\cdot NH\cdot C_6H_4\cdot O\cdot C_3H_3$. B. Durch Kochen von 3'-Brom-4-ëthoxy-4'-amino-diphenylamin mit 3-Nitro-bensaldehyd in Alkohol (J., F., Z., B. 36, 3866). Nadeln (aus Alkohol). F: 137—138°. Löslich in Alkohol, Äther und Ligroin.
- 4-[4-Amino-anilino]-phenoxyessigsäure $C_{14}H_{14}O_3N_3=H_2N\cdot C_6H_4\cdot NH\cdot C_6H_4\cdot O\cdot CH_2\cdot CO_3H$. Eine Verbindung $C_{14}H_{14}O_3N_3$, der vielleicht diese Formel zukommt, s. bei 4-Benzolazo-phenoxyessigsäure $C_6H_5\cdot N:N\cdot C_6H_4\cdot O\cdot CH_2\cdot CO_3H$, Syst. No. 2112.
- 4-Äthoxy-4'-acetamino-N-acetyl-diphenylamin $C_{19}H_{20}O_3N_8=CH_3\cdot CO\cdot NH\cdot C_9H_4\cdot N(CO\cdot CH_3)\cdot C_9H_4\cdot O\cdot C_9H_5$. B. Aus 4-Äthoxy-4'-amino-diphenylamin und Acetylchlorid auf dem Wasserbad (Jacobson, Henrich, Klein, B. 26, 693). Rechteckige Täfelchen (aus Alkohol). F: 175—176°.

4-Acetoxy-4'-dimethylamino-N-acetyl-diphenylamin $C_{18}H_{20}O_3N_2=(CH_3)_2N\cdot C_6H_4\cdot N(CO\cdot CH_3)\cdot C_6H_4\cdot O\cdot CO\cdot CH_3\cdot B$. Beim Kochen von 4-Oxy-4'-dimethylamino-diphenylamin mit Essigsäureanhydrid (GNEHM, Bors, B. 35, 3086; J. pr. [2] 69, 164). — Nadeln (aus verd. Alkohol). F: 131°. Leicht löslich in Alkohol, Toluol, Essigester, schwer in Äther, unlöslich in Wasser. — Leicht verseifbar. Liefert mit konz. Salpetersäure ein Tetranitro-4-oxy-4'-dimethylamino-diphenylamin.

Tetranitro-4-oxy-4'-dimethylamino-diphenylamin $C_{14}H_{19}O_{9}N_{6}$. B. Durch Einw. von konz. Salpetersäure auf 4-Acetoxy-4'-dimethylamino-N-acetyl-diphenylamin (G., B., B. 35, 3086; J. pr. [2] 69, 166). — Gelbe Blättehen (aus Alkohol-Wasser). F: 228° (Zers.).

- 4-Bensoyloxy-4'-dimethylamino-N-bensoyl-diphenylamin $C_{28}H_{24}O_{2}N_{2}=(CH_{3})_{2}N\cdot C_{6}H_{4}\cdot N(CO\cdot C_{6}H_{5})\cdot C_{6}H_{4}\cdot O\cdot CO\cdot C_{6}H_{5}.$ B. Beim Kochen von 4-Oxy-4'-dimethylamino-diphenylamin mit Benzoylchlorid (GNEHM, Bors, B. 35, 3086; J. pr. [2] 69, 165). Tafeln (aus Toluol). F: 210°. Löslich in Alkohol, Benzol, unlöslich in Ather, Petroläther, Wasser.
- 4'-Oxy-2.4-diamino-diphenylamin $C_{12}H_{12}ON_3 = (H_2N)_2C_2H_2 \cdot NH \cdot C_2H_4 \cdot OH$. B. Aus 2'.4'-Dinitro-4-oxy-diphenylamin (S. 444) mit Zinnehlorür und Salzsäure (Nietzki, Simon, B. 28, 2974) oder, neben 4-Nitro-4'-oxy-2-amino-diphenylamin (S. 499), durch Erwärmen mit wäßr. Schwefelnatrium und Schwefel (Erdmann, A. 862, 152). Oxydiert sich in ammoniakalischer Lösung an der Luft zum entsprechenden Aminoindophenol (s. u.). Bei der Oxydation mit Mangandioxyd in ammoniakalischer heißer Lösung entsteht 2-Oxy-7-amino-phenazin (Syst. No. 3770) (N., S.). Durch Kochen mit Schwefelkohlenstoff entsteht ein Thioharnstoff, der beim Verschmelzen mit Schwefelnatrium und Schwefel denselben Schwefelfarbstoff liefert wie der Thioharnstoff aus 4-Nitro-4'-oxy-2-amino-diphenylamin (Kalle & Co., D. R. P. 148342; C. 1904 I, 415). Über Verwendung zur Herstellung von Schwefelfarbstoffen vgl. ferner Schultz, Tab. No. 732. $C_{12}H_{13}ON_3 + HCl (N., S.)$.

Indophenol C₁₈H₁₁ON₃ = HN:C₆H₃(NH₂):N·C₆H₄·OH bezw. (H₂N)₂C₆H₃·N:C₆H₄:O. Zur Konstitution vgl. Ullmann, Gnaedinger, B. 45 [1912], 3437. — B. Beim Einleiten von Luft in die mit Ammoniak übersättigte Lösung von salzsaurem 4'-Oxy-2.4-diamino-diphenylamin (Nietzki, Simon, B. 28, 2974). — Dunkle Nadeln mit 2 H₂O. Schmilzt wasser frei bei 133°; löslich in konz. Kalilauge mit roter Farbe, die beim Verdünnen in Blau übergeht (N., S.).

- 4'-Methoxy-2.4-diamino-diphenylamin $C_{13}H_{15}ON_3 = (H_2N)_2C_6H_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. Bei 15 Minuten langem Kochen von 2'.4'-Dinitro-4-methoxy-diphenylamin mit Zinn und Salzsäure (+ wenig Alkohol) (O. FISCHER, B. 29, 1875). Tafeln (aus Benzol). F: 118° bis 120°. Leicht löslich in Alkohol, ziemlich leicht in Wasser, schwerer in Benzol und Äther, fast unlöslich in Ligroin. Beim Erhitzen mit Bleioxyd entsteht 2-Methoxy-7-amino-phenazin (Syst. No. 3770).
- 4'-Äthoxy-4-amino-2-methyl-diphenylamin $C_{15}H_{18}ON_2 = H_2N \cdot C_2H_3(CH_3) \cdot NH \cdot C_2H_4 \cdot O \cdot C_3H_5$. B. Bei der Reduktion von 4'-Äthoxy-3-methyl-azobenzol (Syst. No. 2112) mit Zinnohlorür und Salzsäure (Jacobson, A. 287, 173). Nadeln. F: 92—93°. Sehr wenig löslich in Ligroin, leicht in Alkohol, Äther und Benzol. $C_{15}H_{18}ON_3 + HCl$. Blättehen (aus Wasser). Äußerst schwer löslich in kaltem Wasser.
- 4'-Äthoxy-4-acetamino-2-methyl-diphenylamin C_1 , $H_{20}O_2N_2=CH_2\cdot CO\cdot NH\cdot C_6H_3(CH_2)\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch 10-stdg. Kochen von 4'-Äthoxy-4-amino-2-methyl-diphenylamin mit Eisessig (J., A. 287, 174). Nädelchen (aus Benzol + Ligroin). F: 112° bis 113°. Schwer löslich in Ligroin und heißem Wasser, leicht in Alkohol und Benzol.
- 4'-Oxy-4-amino-3-methyl-diphenylamin C₁₃H₁₄ON₂ = H₂N·C₆H₃(CH₃)·NH·C₆H₄·OH. B. Man oxydiert 4-Amino-phenol zusammen mit o-Toluidin in saurer Lösung und reduziert das so entstandene Indophenol mit Schwefelnatrium (Cassella & Co., D. R. P. 139 204; C. 1903 I, 608; GNEHM, BOTS, J. pr. [2] 69, 173). Nadeln (aus Wasser). F: 159—160° (G., B.), 160° (C. & Co., D. R. P. 139 204). Leicht löslich in Alkohol, Aceton, Essigester, schwer in Chloroform, Ligroin, Äther und kaltem Wasser, unlöslich in Petroläther (G., B.). Liefert beim Verschmelsen mit Alkalipolysulfiden blaue Schwefelfarbstoffe (Cassella & Co., D. R. P. 199963; C. 1908 II, 366). Anwendung zum Färben von Pelzen und Haaren: Höchster Farbw., D. R. P. 209121; C. 1909 I, 1678.
 - 4'-Oxy-4-ëthylamino-8-methyl-diphenylamin $C_{15}H_{16}ON_2 = C_2H_5 \cdot NH \cdot C_6H_6(CH_2) \cdot NH \cdot C_6H_4 \cdot OH$. Man redusiert das Produkt der gemeinsamen Oxydation von Athylo-toluidin und 4-Amino-phenol mit Schwefelnatrium (Cassella & Co., D. R. P. 133481; C. 1909 II, 555). F: 105°.
 - 4'-Äthoxy-4-amino-3-methyl-diphenylamin $C_{15}H_{16}ON_8 = H_2N \cdot C_6H_6(CH_6) \cdot NH \cdot C_6H_4 \cdot O \cdot C_8H_8$. Beim Behandeln von 4'-Äthoxy-2-methyl-azobenzol (Syst. No. 2112)

- mit salzsaurer Zinnehlorürlösung (Jacobson, A. 287, 163; Höchster Farbw., D. R. P. 75292; Frdl. 3, 37). Nadeln (aus Ligroin). F: 82°. $C_{15}H_{18}ON_2 + HCl.$ Blättehen. Sehr wenig löslich in kaltem Wasser.
- 4'-Äthoxy-4-benzalamino-3-methyl-diphenylamin $C_{22}H_{23}ON_2 = C_0H_5 \cdot CH : N \cdot C_0H_3 (CH_3) \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Beim Erwärmen von 4'-Äthoxy-4-amino-3-methyl-diphenylamin (S. 504) mit Benzaldehyd (Jacobson, A. 287, 167). Blättchen. F: 86—87°. Löslich in heißem Ligroin.
- 4'-Äthoxy-4-salicylalamino-3-methyl-diphenylamin $C_{32}H_{32}O_3N_2=HO\cdot C_6H_4\cdot CH: N\cdot C_6H_3(CH_3)\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 4'-Äthoxy-4-amino-3-methyl-diphenylamin und Salicylaldehyd (J., A. 287, 167). Grünlichgelbe Blättchen (aus Ligroin). F: 124° bis 125°. Leicht löslich in Alkohol und Benzol.
- 4'-Äthoxy-4-acetamino-8-methyl-diphenylamin $C_{17}H_{29}O_2N_2 = CH_2 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Durch 10-stdg. Kochen von 4'-Äthoxy-4-amino-3-methyl-diphenylamin (S. 504) mit 5 Tln. Eisessig (J., A. 287, 166). Nadeln (aus verd. Alkohol). F: 156°. Kaum löslich in Äther und Ligroin, löslich in heißem Wasser, leicht löslich in Alkohol und Benzol.
- 4'-Äthoxy-4-formamino-3-methyl-N-formyl-diphenylamin $C_{17}H_{18}O_3N_2 = OHC \cdot NH \cdot C_6H_3(CH_3) \cdot N(CHO) \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Durch Kochen von 4'-Äthoxy-4-amino-3-methyl-diphenylamin mit wasserfreier Ameisensäure (Jacobson, Franz, Zaar, B. 36, 3860; vgl. J., A. 287, 144). Stäbchen (aus verd. Alkohol). F. 140°; schwer löslich in Ligroin und Äther, leicht in Chloroform und Alkohol (J., F., Z.).
- 4'-Äthoxy-4-acetamino-3-methyl-N-acetyl-diphenylamin $C_{19}H_{23}O_2N_3=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot N(CO\cdot CH_2)\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 4'-Äthoxy-4-amino-3-methyl-diphenylamin (S. 504) und Acetylchlorid (Jacobson, A. 287, 166). Nadeln (aus verd. Alkohol). F: 180—181°. Kaum löslich in Äther und Benzol, schwer in heißem Wasser, leicht in Alkohol.
- $\begin{array}{lll} \textbf{4} \cdot [\textbf{2} \cdot \textbf{Amino-bensylamino}] \cdot \textbf{phenol-methyläther, [2-Amino-bensyl]-p-anisidin} \\ \textbf{C}_{14}\textbf{H}_{16}\textbf{ON}_2 &= \textbf{H}_2\textbf{N} \cdot \textbf{C}_6\textbf{H}_4 \cdot \textbf{CH}_5 \cdot \textbf{NH} \cdot \textbf{C}_6\textbf{H}_4 \cdot \textbf{O} \cdot \textbf{CH}_3. \quad B. \quad \textbf{Entsteht neben 2-[4-Methoxy-phenyl]-indazol (Syst. No. 3473) bei der Reduktion von [2-Nitro-benzyl]-p-anisidin (S. 449) mit Zinkstaub und Eisessig (Busch, Hartmann, J. pr. [2] 52, 405). Schuppen (aus Alkohol). F: 82°. Sehr leicht löslich in den meisten Mitteln. Salpetrige Säure erzeugt das Methoxyphenylbenzotriazindihydrid <math display="inline">\textbf{C}_6\textbf{H}_4 \cdot \textbf{O} \cdot \textbf{CH}_3 \cdot \textbf{O} \cdot \textbf{CH}_3 \cdot \textbf{CH}_4 \cdot \textbf{O} \cdot \textbf{CH}_3 \cdot \textbf{No. 3804}). \end{array}$
- 4-[2-Amino-benzylamino]-phenol-äthyläther, [2-Amino-benzyl]-p-phenetidin $C_{15}H_{18}ON_2=H_2N\cdot C_0H_4\cdot CH_2\cdot NH\cdot C_0H_4\cdot O\cdot C_2H_5$. B. Bei der Reduktion von [2-Nitrobenzyl]-p-phenetidin (S. 449) mit Zinkstaub und Eisessig (B., H., J. pr. [2] 52, 396). Blättchen (aus verd. Alkohol). F: 78°. Leicht löslich in Alkohol, Äther, Benzol und Chloroform. Mit salpetriger Säure entsteht das Äthoxyphenylbenzotriazindihydrid
- $\begin{array}{c} CH_{2}\cdot N\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5} \\ N=N \end{array} \text{ (Syst. No. 3804).} \\ -C_{15}H_{18}ON_{2}+H_{2}SO_{4}. \\ \text{ Krystalle (aus Alkohol).} \\ F: 100^{\circ}. \\ \text{ Löslich in Wasser, schwerer in Alkohol und Eisessig.} \\ -Oxalat \ 2C_{15}H_{18}ON_{2}+C_{2}H_{2}O_{4}. \\ \text{Nadeln.} \\ F: 132^{\circ}. \\ \text{Unlöslich in Wasser, löslich in Alkohol.} \end{array}$
- [2-Bensalamino-bensyl]-p-phenetidin $C_{23}H_{22}ON_s = C_0H_5 \cdot CH : N \cdot C_0H_4 \cdot CH_2 \cdot NH \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Aus [2-Amino-benzyl]-p-phenetidin und Benzaldehyd auf dem Wasserbad (B., H., J. pr. [2] 52, 397). Krystalle (aus Alkohol). F: 137°. Fast unlöslich in Äther und Ligroin, leichter in Alkohol, Benzol, Essigester, Chloroform.
- [2-Salicylalamino-benzyl]-p-phenetidin $C_{22}H_{22}O_2N_2=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot CH_3\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_4\cdot O\cdot C_2H_4$. B. Aus [2-Amino-benzyl]-p-phenetidin und Salicylaldehyd auf dem Wasserbad (B., H., J. pr. [2] 52, 397). Nädelchen. F: 94°. Fast unlöslich in Äther und Ligroin, leichter löslich in Alkohol, Benzol, Essigester, Chloroform.
- N-[4-Oxy-phenyl]-naphthylendiamin-(1.4) $C_{10}H_{14}ON_{2} = H_{2}N \cdot C_{10}H_{6} \cdot NH \cdot C_{4}H_{4} \cdot OH$. B. Eine kalte wäßrige Lösung des aus 14,6 kg salzsaurem 4-Amino-phenol durch Einw. der berechneten Menge Eisenchlorid erhaltenen Chinonimids wird in der Kälte mit einer Lösung von 18 kg salzsaurem a-Naphthylamin versetzt (Akt.-Ges. f. Anilinf., D. R. P. 184 601; C. 1907 II, 859). Gelbbraune Krystalle (aus verd. Alkohol). F: 170—171°.
- N-Äthyl-N'-[4-oxy-phenyl]-naphthylendiamin-(l.4) $C_{18}H_{18}ON_5 = C_9H_5 \cdot NH \cdot C_{10}H_6 \cdot NH \cdot C_8H_4 \cdot OH$. B. Man reduxiert das Produkt der gemeinsamen Oxydation von Äthyla-naphthylamin und 4-Amino-phenol (Cassella & Co., D. R. P. 133481; C. 1902 II, 555). F: 170°.

N.N'-Bis-[4-oxy-phenyl]-naphthylendiamin-(1.4) $C_{12}H_{18}O_2N_2 = C_{10}H_6(NH\cdot C_6H_4\cdot OH)_2$. B. Durch Erhitzen von salzsaurem Naphthylendiamin-(1.4) mit 2 Mol.-Gew. 4-Aminophenol auf 140°, bis eine Probe der Schmelze sich in verd. Natronlauge mit blauer Farbe löst (Kalle & Co., D. R. P. 168115; C. 1906 I, 1305). — Blaue Nadeln (aus der alkal. Lösung mit HCl). Unlöslich in Wasser, Äther und Benzol; löslich mit blauer Farbe in konz. Schwefelsäure und in verd. Natronlauge. — Gibt beim Erhitzen mit 4-Amino-phenol unter Zusatz eines Oxydationsmittels, z. B. 4-Nitroso-phenol, den Rosindulinfarbstoff nebenstehender Formel (Syst. No. 3772).

4.4'-Bis-dimethylamino-a-p-phenetidino-diphenylmethan, N-[4-Äthoxy-phenyl]-leukauramin $C_{25}H_{31}ON_5 = [(CH_3)_8N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus p-Phenetidin und 4.4'-Bis-dimethylamino-benzhydrol (Syst. No. 1859) in siedendem Alkohol (MÖHLAU, HEINZE, B. 35, 369). — Prismen (aus Benzol). F: 159—160°. Leicht löslich in Aceton, Benzol und Chloroform, schwer in Alkohol und Äther.

4-Oxy-anilinoessigsäure-[4-oxy-anilid], [N-(4-Oxy-phenyl)-glycin]-[4-oxy-anilid] $C_{14}H_{14}O_3N_2 = HO \cdot C_6H_4 \cdot NH \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot OH$. B. Durch Erwärmen von 4-Amino-phenol und Glyoxalnatriumdisulfit (Bd. I, S. 761) in verd. Alkohol auf dem Wasserbade (HINSBERG, B. 41, 1369). — Nadeln (aus verd. Alkohol). F: 190°. Leicht löslich in Alkohol, schwer in Wasser. Löst sich in Natronlauge und in Mineralsäuren. — Gibt mit Ferricyankalium und Alkali eine dunkelbraune Fällung. — Hydrochlorid. Nädelchen (aus Wasser); ziemlich schwer löslich.

4-Glycylamino-phenol-methyläther, Glycin-p-anisidid $C_9H_{12}O_2N_3 = H_2N \cdot CH_2 \cdot CO \cdot NH \cdot C_8H_4 \cdot O \cdot CH_3$. B. Durch Erwärmen von (nicht näher beschriebenem) Chloressigsäure- oder Bromessigsäure-p-anisidid mit überschüssigem alkoholischem Ammoniak unter Druck (Majert, D. R. P. 59121; Frdl. 3, 916). Man erhitzt p-Anisidin mit salzsaurem Glycinamid (Bd. IV, S. 343) oder salzsauren Glycinestern (M., D. R. P. 59874; Frdl. 3, 918). — Nadeln. F: 89° (M., D. R. P. 59121).

Iminodiessigsäure-di-p-anisidid, Diglykolamidsäure-di-p-anisidid $C_{18}H_{21}O_4N_3 = HN(CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot O\cdot CH_3)_3$. B. Durch Erwärmen von Chloressigsäure- oder Bromessigsäure- p-anisidid mit alkoh. Ammoniak unter Druck (M., D. R. P. 59121; Frdl. 3, 916). — F: 142°.

4-Glycylamino-phenol-äthyläther, Glycin-p-phenetidid C₁₀H₁₄O₂N₂ = H₂N·CH₂·CO·NH·C₆H₄·O·C₄H₅. B. Durch Erwärmen von Chloressigsäure- oder Bromessigsäure-p-phenetidid (S. 463) mit überschüssigem alkoholischem Ammoniak unter Druck (M., D. R. P. 59121; Frdl. 3, 916). Man erhitzt p-Phenetidin mit salzsaurem Glycinamid oder salzsauren Glycinestern (M., D. R. P. 59874; Frdl. 3, 918). — Nadeln mit 1 H₂O; schmilzt wasserhaltig unscharf bei 95°, wasserfrei bei 400,5° (M., D. R. P. 59121). — Zur physiologischen Wirkung vgl. Abderhalden, Biochem. Handlexikon, Bd. IV [Berlin 1911], S. 414; Fränkel, Die Arzneimittel-Synthese, 6. Aufl., [Berlin 1927], S. 296. Findet unter der Bezeichnung "Phenokoll" Verwendung als Antipyreticum und Antineuralgicum (Fränkel). — Gibt beim Erhitzen mit Alloxan bezw. Alloxantinlösung eine intensive Gelbfärbung, die durch Einw. von wäßr. Natronlauge allmäblich in Blaugrün übergeht (Acrestini, O. 1902 I, 631). Nachweis in Vergiftungsfällen: Archetti, Ch. Z. 28, 597. — C₁₀H₁₄O₂N₂ + HCl (M., D. R. P. 59121). — Citrat 2C₁₀H₁₄O₂N₃ + C₆H₈O₇. Nadeln (aus Wasser). F: 198—200° (Zernik, C. 1908 I, 1203). — Gua jasolsulfonat. Vgl. darüber Tagliarni, C. 1909 I, 1556.

[N.N - Dimethyl - glycin] - p - phenetidid $C_{12}H_{12}O_2N_2 = (CH_3)_2N \cdot CH_2 \cdot CO \cdot NH \cdot C_4H_4 \cdot O \cdot C_2H_3$. B. Durch Erwärmen von Chloressigsäure-p-phenetidid (8. 463) mit Dimethylaminlösung auf 50—60° im geschlossenen Gefäß (MAJERT, D. R. P. 59121; Frdl. 8, 916). — Blättchen (aus Äther). F: 50°. Schwer löslich in Wasser. — Die Salze zerfließen an der Luft.

[N-(4-Äthoxy-phenyl)-glycin]-p-phenetidid, p-Phenetidinoessigsäure-p-phenetidid C₁₈H₂₂O₃N₂ = C₂H₅·O·C₆H₄·NH·CH₂·CO·NH·C₆H₄·O·C₂H₅. B. Aus p-Phenetidin und Chloracetylchlorid (Täuber, D. R. P. 79868; Frdl. 4, 1176). Entsteht neben anderen Produkten beim allmählichem Erhitzen von N-[4-Äthoxy-phenyl]-glycin (S. 488) im Wasserstoffstrome auf 300° (Bischoff, Nastvocel, B. 22, 1789). Aus N-[4-Äthoxy-phenyl]-glycin und p-Phenetidin (B., N.). — Tafeln (aus Benzol). F: 139—140° (B., N.), 138° (T.). Sehr leicht löslich in Alkohol und Benzol, sehr wenig in Wasser und Petroläther.

[N-Acetyl-glycin] - p-phenetidid $C_{12}H_{16}O_2N_2 = CH_2 \cdot CO \cdot NH \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. F: 205°; sohwer löslich in Wasser und Ather (ZERNIE, Apoth.-Ztg. 21, 1085). — Das zur Verwendung als Antipyreticum und Antineuralgicum vorgeschlagene "Aspirophen" ist ein Gemisch von [N-Acetyl-glycin]-p-phenetidid und Salicylsäure (Z.; vgl. C. 1906 II, 1212).

Iminodiessigsäure - di - p - phenetidid, Diglykolamidsäure - di - p - phenetidid $C_{20}H_{25}O_4N_2 = HN(CH_2\cdot CO\cdot NH\cdot C_2H_4\cdot O\cdot C_2H_5)_2$. B. Durch Erwärmen von Chloracet- oder Bromacet-p-phenetidid mit alkoh. Ammoniak unter Druck (MAJERT, D. R. P. 59121; Frdl. 3, 916). — F: 157°.

[N-(4-Åthoxy-phenyl)-iminodiessigsäure]-mono-p-phenetidid (P) $C_{20}H_{34}O_5N_2 = C_2H_5 \cdot O \cdot C_2H_4 \cdot N(CH_2 \cdot CO_2H) \cdot CH_2 \cdot CO \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5(t)$. B. Neben anderen Produkten beim Erhitzen von N-[4-Åthoxy-phenyl]-glycin im Wasserstoffstrom auf 300° (BISCHOFF, NASTVOGEL, B. 22, 1790). — Krystalle (aus verd. Alkohol). F: 157°. Unlöslich in heißem Wasser.

- f) N-Derivate des 4-Amino-phenols, entstanden durch Kuppelung mit anorganischen Säuren.
- 4 Bensolsulfamino phenol, Bensolsulfonsäure [4 oxy anilid] $C_{13}H_{11}O_3NS = C_6H_5 \cdot SO_3 \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus Benzolsulfochlorid (Bd. XI, S. 34), 4-Amino-phenol und wäßr. Alkali (Chem. Fabr. Sandoz, D. R. P. 128815; C. 1902 I, 551; Tingle, Williams, Am. 37, 69). Nadeln. F: 153—154° (Ch. F. S.), 156,5° (T., W.). Beim Schmelzen mit Alkalipolysulfid entsteht ein grüner Schwefelfarbstoff (Ch. F. S.).
- 4-o-Toluolsulfamino-phenol, o-Toluolsulfonsäure-[4-oxy-anilid] $C_{13}H_{13}O_3NS = CH_3 \cdot C_6H_4 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot OH$. B. Aus o-Toluolsulfochlorid, 4-Amino-phenol und wäßr. Alkali bei 60—70° (Chem. Fabr. Sandoz, D. R. P. 128815; C. 1902 I, 551). Blättchen. F: 144°. Beim Schmelzen mit Alkalipolysulfid entsteht ein grüner Schwefelfarbstoff.
- 4-p-Toluolsulfamino-phenol, p-Toluolsulfonsäure-[4-oxy-anilid] $C_{13}H_{13}O_3NS = CH_3 \cdot C_4H_4 \cdot SO_2 \cdot NH \cdot C_5H_4 \cdot OH$. Bei längerem Kochen von 2 Mol.-Gew. 4-Amino-phenol mit 1 Mol.-Gew. p-Toluolsulfochlorid und Alkohol (Trorger, Uhlmann, J. pr. [2] 51, 438). Nadeln. F: 143°. Bei der Oxydation mit alkal. Kaliumpermanganatlösung entsteht p-Sulfamid-benzoesäure (Bd. XI, S. 390).

Benzolsulfonsäure-p-anisidid $C_{12}H_{13}O_2NS = C_0H_5 \cdot SO_2 \cdot NH \cdot C_0H_4 \cdot O \cdot CH_3$. F: 95° bis 96°; leicht löslich in verd. Natronlauge; durch konz. Natronlauge wird das Natriumsalz gefällt (v. Braun, B. 37, 2810).

p-Toluolsulfonsäure-p-anisidid C₁₄H₁₅O₂NS = CH₂·C₈H₄·SO₂·NH·C₄H₄·O·CH₃.

B. Aus p-Anisidin und p-Toluolsulfochlorid in wäßriger oder alkoholischer Lösung in Gegenwart von Natriumacetat (Reverdin, B. 42, 1523; C. 1909 I, 1809). — Schwachviolette Nadeln (aus 50% jeger Essigsäure). F: 114%. Sehr leicht löslich in Alkohol und Essigsäure, unlöslich in Ligroin; löslich in warmer Sodalösung und verd. Natronlauge. Liefert in Eisessig mit Salpetersäure (D: 1,4) bei 10—22% 3-Nitro-4-p-toluolsulfamino-anisol, neben nicht rein isoliertem 3.5-Dinitro-4-p-toluolsulfamino-anisol, das durch Verseifung in 3.5-Dinitro-4-amino-anisol übergeht; mit Salpetersäure (D: 1,52) in Eisessig erhält man 2.3-Dinitro-4-p-toluolsulfamino-anisol.

Äthansulfonsäure - p - phenetidid $C_{10}H_{15}O_5NS = C_5H_5 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot O \cdot C_5H_5$. B. Aus p-Phenetidin und Äthansulfonsäurechlorid (Bd. IV, S. 6) in Benzol (AUTENRIETH, BERNHEIM, Ar. 242, 584). — Blättchen (aus Wasser oder verd. Alkohol). F: 80—81° (Au., B.). Sehr wenig löslich in kaltem Wasser, leichter in heißem Wasser, leicht in Alkohol, Äther, Aceton, Chloroform; leicht löslich in Alkalien (Au., B.). Geschmack stark bitter (Au., B.). — Liefert bei der Nitrierung mit Salpetersäure (1 Tl. konz. Salpetersäure + 2 Tle. Wasser) 3-Nitro-4-äthansulfonylamino-phenetol (S. 523) und 3.5-Dinitro-4-äthansulfonylamino-phenetol (S. 531) (Reverboux, Helv. chim. Acta 12 [1929], 1052; vgl. Au., B.). — Pharmakologische Wirkung: Roos, Ar. 242, 582.

Äthylensulfonsäure-p-phenetidid $C_{10}H_{13}O_{2}NS = CH_{4}:CH\cdot SO_{2}\cdot NH\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Aus p-Phenetidin und Äthan-a. β -bis-sulfonsäurechlorid (Bd. IV, S. 11) in Benzollösung (Autenbert, Koburger, B. 36, 3631). — Bitter schmeckende Blättchen (aus Wasser oder verd. Alkohol). F: 88°. — Natriumsalz. Krystalle. Schwer löslich in Natronlauge.

Benzolsulfonsäure-p-phenetidid $C_{14}H_{15}O_2NS = C_6H_5 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Benzolsulfochlorid und p-Phenetidin in Gegenwart von Kalilauge (HINSBERG, A. 265, 184). — Nadeln (aus Alkohol). F: 142° (H.), 136° (Akt.-Ges. f. Anilinf., D. R. P. 164130; C. 1905 II, 1476). — Liefert mit Jod-Jodkalium und Soda 2.4′-oder 5.4′-Diāthoxy-N-benzolsulfonyl-5 oder 2-benzolsulfamino-diphenylamin (S. 568) (H.).

p-Toluolsulfonsäure-p-phenetidid $C_{18}H_{17}O_{5}NS = CH_{3} \cdot C_{5}H_{4} \cdot SO_{2} \cdot NH \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5} \cdot B$. Aus p-Toluolsulfochlorid und p-Phenetidin beim Schütteln mit überschüssiger verdünnter Natronlauge in der Kälte (Reverdix, Crépheux, B. 34, 3002). — Nadeln (aus verd. Alkohol). F: 105—107° (R., C.), 105° (Akt.-Ges. f. Anilinf., D. R. P. 164130; C. 1905 II, 1476). Leicht löslich in heißem Alkohol, Chloroform, Äther, unlöslich in Wasser (R., C.).

Methandisulfonsäure - di - p - phenetidid, Methionsäure - di - p - phenetidid $C_{17}H_{29}O_2N_2S_2 = CH_4(SO_2 \cdot NH \cdot C_2H_4 \cdot O \cdot C_2H_5)_2$. B. Aus Methionsäure-dichlorid (Bd. I, S. 579) und p-Phenetidin (Schboeter, Herzberg, B. 38, 3393). — F: 221°.

 $a.\beta$ -Dibrom-äthan-a-sulfonsäure-p-phenetidid $C_{10}H_{12}O_{2}NBr_{2}S=CH_{2}Br\cdot CHBr\cdot SO_{2}\cdot NH\cdot C_{2}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Aus 1 Mol.-Gew. Äthylensulfonsäure-p-phenetidid (S. 507) und 8 At.-Gew. Brom in Chloroformlösung neben bromiertem p-Phenetidin (Autenrieth, Koburger, B. 36, 3633). — Prismen (aus verd. Alkohol). F: 139°.

N-p-Toluolsulfonyl-O-acetyl-[4-amino-phenol] $C_{15}H_{15}O_4NS=CH_2\cdot C_6H_4\cdot SO_3\cdot NH\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Aus 4-p-Toluolsulfamino-phenol und Essigsäureanhydrid auf dem Wasserbade (Reverdin, B. 40, 2849; Bl. [4] 1, 624). — Blättchen (aus Eisessig und verd. Alkohol). F: 138—139°. Leicht löslich in Eisessig und Alkohol. — Wird beim Lösen in kalter Natronlauge, in warmer Sodalösung und in kalter konzentrierter Schwefelsäure verseift. Gibt mit Salpetersäure (D: 1,52) bei 0° bis —10° 3.5-Dinitro-4-p-toluolsulfamino-phenol. Bei der Nitrierung mit Salpeterschwefelsäure in Essigsäureanhydrid entstehen Verbindungen, welche bei der Verseifung 3.5-Dinitro-4-amino-phenol und 3-Nitro-4-amino-phenol liefern.

N-p-Toluolsulfonyl-O-bensoyl-[4-amino-phenol] $C_{20}H_{17}O_4NS = CH_3 \cdot C_6H_4 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot O \cdot CO \cdot C_6H_5$. B. Aus 4-p-Toluolsulfamino-phenol und Benzoylchlorid in Natronlauge (R., B. 40, 2849; Bl. [4] 1, 625). — Nadeln (aus verd. Essigsäure). F: 170°. Löslich in Alkohol, Eisessig, heißem Benzol, schwer löslich in Ligroin. — Spaltet beim Erwärmen mit Natronlauge die Benzoylgruppe ab. Gibt mit Salpetersäure (D: 1,52) N-[2-Nitro-toluolsulfonyl-(4)]-O-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol] (S. 531). Bei der Nitrierung in Acetanhydrid mittels $H_1SO_4 + HNO_3$ entsteht ein Produkt, welches bei der Verseifung 3-Nitro-4-amino-phenol liefert.

4-p-Toluolsulfamino-phenoxyessigsäure $C_{15}H_{15}O_bNS = CH_3 \cdot C_6H_4 \cdot SO_2 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_2 \cdot CO_2H$. B. Aus p-Toluolsulfochlorid, 4-Amino-phenoxyessigsäure (S. 440) und Natriumacetat in Alkohol auf dem Wasserbade (R., B. 42, 4109; C. 1910 I, 349). — Prismatische Blättchen. F: ca. 187°. Leicht löslich in Alkohol und Essigsäure. — Liefert in Eisessig mit Salpetersäure (D: 1,4) 3-Nitro-4-p-toluolsulfamino-phenoxyessigsäure.

Äthylester $C_{17}H_{19}O_5NS = CH_5 \cdot C_6H_4 \cdot SO_5 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_5 \cdot CO_2 \cdot C_5H_5$. B. Aus p-Toluolsulfochlorid und 4-Amino-phenoxyessigsäure in Alkohol auf dem Wasserbade (R., B. 42, 4109; C. 1910 I, 349). — Blättchen. F: 90°. Löslich in Alkohol und Benzol, unlöslich in Wasser und Ligroin. — Gibt mit warmer Sodalösung 4-Amino-phenoxyessigsäure.

O.N - Di - p - toluolsulfonyl - [4 - amino - phenol] $C_{20}H_{10}O_5NS_2 = CH_3 \cdot C_6H_4 \cdot SO_3 \cdot NH \cdot C_6H_4 \cdot O \cdot SO_3 \cdot C_6H_4 \cdot CH_3$. B. Aus p-Toluolsulfonsäure-[4-amino-phenyl]-ester (S. 441) oder aus 4-p-Toluolsulfamino-phenol (S. 507) oder aus 4-Amino-phenol und p-Toluolsulfochlorid in Alkohol oder Wasser bei Gegenwart von Natriumcarbonat oder Natriumacetat (Reverdin, Dribbell, C. 1905 I, 81; Bl. [3] 31, 1272; B. 37, 4456). — Nadeln (aus Benzol). F: 169°. Leicht löslich in Aceton, Eisessig, ziemlich in Alkohol, schwer in Wasser. — Ergibt bei der Nitrierung O.N-Di-p-toluolsulfonyl-[3-nitro-4-amino-phenol] (S. 524).

Äthansulfonsäure-[methyl-p-phenetidid] $C_1H_1,O_2NS = C_2H_5 \cdot SO_2 \cdot N(CH_3) \cdot C_8H_4 \cdot O \cdot C_2H_5$. B. Aus Äthansulfonsäure-p-phenetidid und Methyljodid in absol. Alkohol in Gegenwart von Natriumäthylat (Autenrieth, Bernheim, Ar. 242, 587). — Prismen (aus verd. Alkohol). F: 49° (Au., B.). Leicht löslich in Alkohol, Äther, Chloroform, Benzol, fast unlöslich in Wasser; unlöslich in Alkalien (Au., B.). — Pharmakologische Wirkung: Roos, Ar. 242, 582.

Benzolsulfonsäure-[methyl-p-phenetidid] $C_{18}H_{17}O_{9}NS = C_{6}H_{5} \cdot SO_{2} \cdot N(CH_{5}) \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{5}$. B. Durch Erwärmen von Benzolsulfonsäure-p-phenetidid mit Methyljodid und Alkali auf dem Wasserbade (HINSBERG, A. 265, 184). — Tafeln (aus Äther). F: 79°.

Äthansulfonsäure-[äthyl-p-phenetidid] $C_{12}H_{19}O_{2}NS = C_{2}H_{5}\cdot SO_{2}\cdot N(C_{2}H_{5})\cdot C_{6}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Analog derjenigen des Äthansulfonsäure-[methyl-p-phenetidids] (s. o.) (Autenrieth, Bernheim, Ar. 242, 587). — Prismen (aus verd. Alkohol). F: 57°. Leicht löslich in Alkohol, Äther, Chloroform, Benzol, fast unlöslich in Wasser, unlöslich in Alkalien (Au., B.). — Pharmakologische Wirkung: Roos, Ar. 242, 582.

Methandisulfonsäure - bis - [äthyl - p - phenetidid], Methionsäure - bis - [äthyl - p - phenetidid] $C_{21}H_{20}O_{2}N_{2}S_{2} = CH_{2}[SO_{2}\cdot N(C_{2}H_{3})\cdot C_{2}H_{4}\cdot O\cdot C_{2}H_{5}]_{2}$. B. Durch Athylieren des Methionsäure-di-p-phenetidids (s. o.) (SCHEOETER, HERZBERG, B. 38, 3393). — F: 141—142°.

Propan-a.a-disulfonsäure-bis-[äthyl-p-phenetidid], [Äthyl-methionsäure]-bis-[äthyl-p-phenetidid] $C_{23}H_{24}O_{6}N_{2}S_{3} = C_{2}H_{5} \cdot CH[SO_{2} \cdot N(C_{2}H_{3}) \cdot C_{6}H_{4} \cdot O \cdot C_{2}H_{3}]_{2}$. B. Durch Einw. von Äthylhalogeniden auf die Natriumverbindung des Methionsäure-bis-[äthyl-p-phenetidids] in Benzol (Soh., H., B. 38, 3393). — F: 93,5—94,5°.

p-Toluolsulfonyl-acetyl-p-anisidin $C_{16}H_{12}O_4NS=CH_8\cdot C_6H_4\cdot SO_2\cdot N(CO\cdot CH_3)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus p-Toluolsulfonsäure-p-anisidid (S. 507) und Essigsäureanhydrid (Reverdin, B. 42, 1523; C. 1909 I, 1809). — Nadeln (aus Wasser). F: 148°.

Äthansulfonyl-acetyl-p-phenetidin, N-Äthansulfonyl-phenacetin $C_{12}H_{17}O_4NS = C_2H_5 \cdot SO_2 \cdot N(CO \cdot CH_2) \cdot C_2H_5 \cdot O \cdot C_2H_5$. B. Durch Kochen von Äthansulfonsäure-p-phenetidid (S. 507) mit Essigsäureanhydrid (Autenrieth, Bernheim, Ar. 242, 585). — Blättchen (aus verd. Alkohol). F: 78°. Leicht löslich in heißem Wasser, Alkohol, Äther, Chloroform, Benzol, fast unlöslich in kaltem Wasser (Au., B.). — Wird von konz. siedender Kalilauge unter Abspaltung der Acetylgruppe allmählich gelöst (Au., B.). — Pharmakologische Wirkung: Roos, Ar. 242, 582.

Äthylensulfonyl - acetyl - p - phenetidin, N - Äthylensulfonyl - phenacetin $C_{19}H_{15}O_4NS = CH_2 \cdot CH \cdot SO_2 \cdot N(CO \cdot CH_3) \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Äthylensulfonsäure-p-phenetidid (S. 507) und Essigsäureanhydrid (Autenbieth, Koburger, B. 36, 3631). — Bitter schmeckende Prismen. F: 70°.

O.N-Di-p-toluolsulfonyl-N-acetyl-[4-amino-phenol] $C_{22}H_{21}O_6NS_2 = CH_3 \cdot C_6H_4 \cdot SO_2 \cdot N(CO \cdot CH_3) \cdot C_6H_4 \cdot O \cdot SO_2 \cdot C_6H_4 \cdot CH_3$. B. Durch Acetylieren von O.N-Di-p-toluolsulfonyl-[4-amino-phenol] (S. 508) (Reverdin, Dresel, C. 1905 I, 81; Bl. [3] 31, 1272; B. 37, 4456). — Nadeln. F: 150—152°.

Äthansulfonyl-bengoyl-p-phenetidin $C_{17}H_{19}O_4NS = C_3H_5 \cdot SO_3 \cdot N(CO \cdot C_6H_5) \cdot C_6H_4 \cdot O \cdot C_9H_5$. B. Durch Erhitzen von Äthansulfonsäure-p-phenetidid (S. 507) mit Benzoylchlorid auf 130° (Autenrieth, Bernheim, Ar. 242, 586). — Prismen (aus Alkohol). F: 117°. Fast unlöslich in Wasser, leicht löslich in den organischen Lösungsmitteln.

Benzolsulfonyl-[4-methoxy-phenyl]-cyanamid, Benzolsulfonyl-cyan-p-anisidin $C_{14}H_{12}O_3N_3S=C_6H_5\cdot SO_4\cdot N(CN)\cdot C_5H_4\cdot O\cdot CH_3$. B. Aus Benzolsulfonsäure-p-anisidid, Bromcyan und Natriumäthylat in Alkohol (v. Braun, B. 37, 2810). — Krystalle (aus Äther-Ligroin). F: 90—91°.

Äthansulfonyl-carbäthoxy-p-phenetidin, Äthansulfonyl-[4-äthoxy-phenyl]-urethan $C_{13}H_{19}O_5NS=C_2H_5\cdot SO_2\cdot N(CO_2\cdot C_2H_5)\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus 1 Mol.-Gew. Äthansulfonsäure-p-phenetidid (S. 507) und 1 Mol.-Gew. Chlorameisensäureäthylester (Bd. III, S. 10) in absol. Alkohol in Gegenwart von Natriumäthylat (AUTENRIETH, BERNHEIM, Ar. 242, 587). — Blättchen (aus verd. Alkohol). F: 112°; leicht löslich in Alkohol, Äther, Chloroform, Benzol, fast unlöslich in Wasser, unlöslich in Alkalien (Au., B.). — Ist giftig (Roos, Ar. 242, 582).

4-Thionylamino-phenol-äthyläther, Thionyl-p-phenetidin $C_8H_9O_2NS = OS:N\cdot C_6H_4\cdot O\cdot C_2H_3$. B. Durch Zusatz von Thionylchlorid zu einer Lösung von p-Phenetidin in Benzol (MICHAELIS, JUNGHANS, A. 274, 246). — Nadeln (aus Petroläther). F: 32°; Kp₂₀₀: 220°. Leicht löslich in Alkohol, Äther und Ligroin.

4-Phenylnitrosamino-phenol, N-Nitroso-4-oxy-diphenylamin, [4-Oxy-phenyl]-phenyl-nitrosamin $C_{12}H_{10}O_2N_2=ON\cdot N(C_6H_5)\cdot C_6H_4\cdot OH$. B. Man löst 1 Mol.-Gew. 4-Oxy-diphenylamin in der äquimolekularen Menge Salzsäure und gibt unter Eiskühlung eine verdünnte (1: 200) wäßrige Lösung von 1 Mol.-Gew. Natriumnitrit hinzu (Philip, Calm, B. 17, 2433). — Gelbe Blättchen. Schmilzt unter beginnender Zersetzung bei 95°. Leicht löslich in Alkohol, Äther, Benzol, Ligroin und sehr leicht in Aceton.

N-Nitroso-N-phenyl-p-anisidin, N-Nitroso-4-methoxy-diphenylamin, [4-Methoxy-phenyl]-phenyl-nitrosamin $C_{18}H_{18}O_2N_3=ON\cdot N(C_6H_6)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Phenylp-anisidin (4-Methoxy-diphenylamin) in alkoh. Lösung mit Natriumnitrit und Salzsäure (WILLSTÄTTER, KUBLI, B. 429, 4138). — Hellgelbe Prismen. F: 83°. Leicht löslich in kaltem Ather und Benzol, ziemlich schwer in Methylalkohol, sehwer in Ligroin. — Gibt mit alkoh. Salzsäure 4'-Nitroso-4-methoxy-diphenylamin (8. 457).

N - Nitroso - N - phenyl - p - phenetidin, N - Nitroso - 4 - āthoxy - diphenylamin, [4-Āthoxy-phenyl]-phenyl-nitrosamin $C_{14}H_{14}O_{2}N_{3}=ON\cdot N(C_{6}H_{5}\cdot C_{6}H_{4}\cdot O\cdot C_{5}H_{5}$. B. Durch Zusatz einer möglichst konzentrierten wäßrigen Lösung von 1 Mol.-Gew. Natriumnitrit zu einer gekühlten Lösung von 1 Mol.-Gew. Phenyl-p-phenetidin (4-Āthoxy-diphenylamin) und 1 Mol.-Gew. Salzsäure in der 5-fachen Menge Alkohol (Jacobson, Henrich, Klein, B. 26, 696). — Prismen (aus Ligroin). F: 73—75°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin. — Geht beim Stehen mit alkoh. Salzsäure in 4'-Nitroso-4-āthoxy-diphenylamin über.

N-Nitroso-N-o-tolyl-p-phenetidin, N-Nitroso-4'-äthoxy-2-methyl-diphenylamin, [4-Äthoxy-phenyl]-o-tolyl-nitrosamin $C_{18}H_{16}O_{2}N_{2}=ON\cdot N(C_{6}H_{4}\cdot CH_{3})\cdot C_{6}H_{4}\cdot O\cdot C_{8}H_{8}$. B. Analog derjenigen der vorangehenden Verbindung (Jacobson, Düsterbehn, Klein, Schkolnik, A. 287, 175). — Pyramidenförmige Krystalle (aus Ligroin). F: 71—72°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin.

- N-Nitroso-N-[4-chlor-3-methyl-phenyl]-p-phenetidin, 4-Chlor-N-nitroso-4'-āthoxy-3-methyl-diphenylamin, [4-Äthoxy-phenyl]-[4-chlor-3-methyl-phenyl]-nitrosamin $C_{15}H_{15}O_5N_5Cl = ON\cdot N(C_6H_2Cl\cdot CH_3)\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Analog derjenigen der vorangehenden Verbindungen (J., D., K., Soh., A. 287, 168). Gelbe Tafeln (aus Ligroin). F: 49—50°. Leicht löslich in Eisessig, Äther und Ligroin, schwerer in Alkohol.
- N-Nitroso-N-[2-nitro-bensyl]-p-phenetidin, [4-Äthoxy-phenyl]-[2-nitro-bensyl]-nitrosamin $C_{15}H_{15}O_4N_3 = ON\cdot N(CH_2\cdot C_6H_4\cdot NO_2)\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Aus [2-Nitro-benzyl]-p-phenetidin (8. 449), gelöst in Alkohol und Salzsäure unter Zusatz von Eisessig, mit berechneter Menge Natriumnitrit, gelöst in Wasser (Busch, Hartmann, B. 27, 2903). Orangefarbene Blättchen (aus Alkohol). F: 95°. Schwer löslich in Ligroin, sonst leichter löslich.
- 4-Cuminylnitrosamino-phenol, [4-Oxy-phenyl]-cuminyl-nitrosamin $C_{16}H_{16}O_2N_2 = (CH_3)_2CH \cdot C_6H_4 \cdot CH_4 \cdot N(NO) \cdot C_6H_4 \cdot OH$. B. Aus salzsaurem 4-Cuminylamino-phenol mit Natriumnitrit (UEBEL, A. 245, 299). Gelbbraun, krystallinisch. Unbeständig. Leicht löslich in Alkohol und Äther.
- N-Nitroso-4.4'-dimethoxy-diphenylamin, Bis-[4-methoxy-phenyl]-nitrosamin $C_{14}H_{16}O_3N_3 = ON \cdot N(C_0H_4 \cdot O \cdot CH_3)_3$. B. Aus 4.4'-Dimethoxy-diphenylamin (S. 451), gelöst in Alkohol und Salzsäure, mit wäßr. Natriumnitritlösung unter Eiskühlung (WIELAND, B. 41, 3503). Hellgelbe Nadeln (aus Alkohol). F: 79°. Leicht löslich in Alkohol; löslich in konz. Schwefelsäure mit grünblauer Farbe. Gibt bei der Reduktion mit Zinkstaub und Eisessig in Alkohol + Äther bei höchstens 35° N.N-Bis-[4-methoxy-phenyl]-hydrazin.

Phosphorsäure-di-p-phenetidid $C_{18}H_{21}O_4N_2P = HO \cdot PO(NH \cdot C_6H_4 \cdot O \cdot C_2H_5)_2$. B. Neben Phosphorsäure-tri-p-phenetidid (s. u.) durch Schütteln von äquimolekularen Mengen p-Phenetidin und POCl₃ in gekühlter $10^9/_0$ iger Alkalilauge; man säuert mit Salzsäure an, filtriert, wäscht mit Wasser aus und extrahiert das Reaktionsprodukt mit Ammoniak oder mit verd. Sodalösung, wobei das Nebenprodukt ungelöst bleibt (AUTENRIETH, RUDOLPH, B. 33, 2110). — Krystalle (aus heißem, aber nicht siedendem Alkohol durch wenig konz. Salzsäure). F: 202°. Schwer löslich in Äther und kaltem Alkohol, unlöslich in Wasser. — Natriumsalz. Nädelchen (aus absol. Alkohol durch viel Äther), Prismen (aus Aceton durch viel Äther). Leicht löslich in Wasser.

Phosphorsaure-tri-p-phenetidid $C_{24}H_{30}O_4N_3P=OP(NH\cdot C_8H_4\cdot O\cdot C_2H_5)_3$. B. Durch Schütteln aquimolekularer Mengen p-Phenetidin und POCl₃ in $25^{\circ}/_{0}$ iger Alkalilauge unter Kühlung, neben Phosphorsaure-di-p-phenetidid (s. o.) (Au., R., B. 33, 2109). — Prismen (aus verd. Alkohol). F: 168°. Leicht löslich in Chloroform und heißem Alkohol, ziemlich schwer in Ather und kaltem Alkohol, unlöslich in Wasser.

Monothiophosphorsäure-di-p-phenetidid $C_{18}H_{31}O_{3}N_{3}SP = HO \cdot PS(NH \cdot C_{8}H_{4} \cdot O \cdot C_{8}H_{5})_{3}$. B. Durch Schütteln von p-Phenetidin mit $PSCl_{3}$ und Natronlauge, neben Thiophosphorsäure-tri-p-phenetidid (s. u.) (Au., R., B. 33, 2114). — Weißer Niederschlag. Sehr leicht löslich in Alkohol. — Zersetzt sich durch Kochen mit Wasser oder Alkohol.

Thiophosphorsäure-tri-p-phenetidid $C_{34}H_{30}O_{3}N_{3}SP=SP(NH\cdot C_{6}H_{4}\cdot O\cdot C_{6}H_{5})_{3}$. B. s. im vorangehenden Artikel. — Prismen (aus verd. Alkohol). F: 152°. Leicht löslich in Chloroform, Aceton, siedendem Alkohol und heißem Eisessig, fast unlöslich in Äther, unlöslich in Wasser (Au., R., B. 33, 2114).

Substitutions produkte des 4-Amino-phenols.

a) Halogen-Derivate des 4-Amino-phenols.

2-Chlor-4-amino-phenol $C_0H_0ONCl = H_2N \cdot C_0H_2Cl \cdot OH$. B. Aus 2-Chlor-4-nitrophenol (Bd. VI, S. 240) mit Zinn und Salzsäure (FAUST, Z. 1871, 339; KOLLBEFP, A. 234, 6). — Nadeln (aus Alkohol, Äther oder Wasser). F: 153° (K.). Leicht löslich in Alkohol und Äther (K.). — Gibt in verdünnter schwefelsaurer Lösung mit Kaliumchromatlösung Chlorchinon (Bd. VII, S. 630) (K.). Wird von Chlorkalklösung und etwas Salzsäure zu 2-Chlorchinon-chlorimid-(4) (Bd. VII, S. 631) oxydiert (K.). Liefert beim Erhitzen mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) 3-Chlor-2'.4'-dinitro-4-oxy-diphenylamin (Akt.-Ges. f. Anilinf., D. R. P. 128 725; O. 1902 I, 551; Reverdin, Dresel, B. 37, 1517; Bl. [3] 31, 1080). — $C_0H_0ONCl + H_0Cl$. In Wasser leicht lösliche Blättchen (K.). — $2C_0H_0ONCl + H_0SO_0 + 2H_0ONCl + 2H_0ORcl + 2H_0ORc$

- 2-Chlor-4-amino-phenol-methyläther, 2-Chlor-4-amino-anisol $C_7H_8ONCl=H_8N\cdot C_6H_9Cl\cdot O\cdot CH_3$. B. Durch Reduktion von 2-Chlor-4-nitro-anisol (Bd. VI, S. 240) mit Zinnehlorür und Salzsäure (Reverdin, Eckhard, B. 32, 2623). Nädelchen (aus Benzin). F: 62°. Leicht löslich in Alkohol, Äther und Benzol. Pikrat. Nadeln. F: 186° (Zers.).
- 2-Chlor-4-amino-phenol-äthyläther, 2-Chlor-4-amino-phenetol C₈H₁₀ONCl = H₂N·C₆H₃Cl·O·C₂H₅. B. Durch Reduktion von 2-Chlor-4-nitro-phenetol (Bd. VI, S. 240) mit Zinnchlorür und Salzsäure (Reverdin, Düring, B. 32, 155). Durch 3-stdg. Kochen von 2-Chlor-4-acetamino-phenetol (s. u.) mit Salzsäure (R., D.). Nädelchen (aus Alkohol). F: 66°. Mit Wasserdampf flüchtig. Hydrochlorid. Nadelbüschel. Wird durch Wasser nicht dissoziiert. Pikrat. Nadeln. F: 167—170°. Löslich in Alkohol.
- 3 Chlor 2'.4' dinitro 4 oxy diphenylamin

 C₁₂H₈O₈N₂Cl, s. nebenstehende Formel. B. Aus 4-Chlor1.3-dinitro-benzol und 2-Chlor-4-amino-phenol bei Gegenwart O₂N.

 NH—

 OH

 von Soda oder Natriumacetat (Akt.-Ges. f. Anilinf., D. R. P.

 128725; C. 1902 I, 551). Rote Nadeln (aus Alkohol). F: 180° (Akt.-Ges. f. Anilinf.), 183° (Reverdin, Crápteux, B. 36, 3267; Bl. [3] 29, 1060). Sehr leicht löslich in heißem Alkohol, Aceton, Eisessig, schwer in kaltem Alkohol, Äther, Benzol, CS₂, unlöslich in Ligroin (R., C.). Beim Kochen mit Schwefel und Schwefelalkalien in wäßr. Lösung entsteht ein schwarzer Schwefelfarbstoff (Akt.-Ges. f. Anilinf.). Gibt beim Chlorieren 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4) (Bd. XII, S. 754) (R., C.). Natriumsalz. Schwarze Nadeln (R., C.).
- 2-Chlor-4-pikrylamino-phenol, 3-Chlor-2'.4'.6'-trinitro-4-oxy-diphenylamin C₁₂H₇O₇N₂Cl, s. nebenstehende Formel. Dunkelrote Krystalle. F: 185,5° (REVERDIN, DELETRA, B. 37, 1728; Bl. [3] 31, 637). Das Acetylderivat krystallisiert in orangefarbigen Prismen vom Schmelzpunkt 173°.
- $\begin{array}{ccc} NO_2 & Cl \\ O_2N \cdot & & \\ & & NH \\ & & \\ NO_2 & & \\ \end{array}$
- 3-Chlor-2'.4'-dinitro-4-scetoxy-diphenylamin C₁₄H₁₀O_eN₃Cl, s. nebenstehende Formel. B. Aus 3-Chlor-2'.4'-dinitro-4-oxy-diphenylamin durch Acetylieren (Reverdir, Crépteux, B. 36, 3267; Bl. [3] 29, 1060).

 Gelbe Nadeln (aus einem Gemisch von Aceton und Alkohol), die sich bei 149° zusammenziehen und bräunen, bei 156° schmelzen; ziemlich löslich in heißem Alkohol, Aceton, Benzol, Eisessig, Chloroform, schwer in Äther, CS₂, unlöslich in Ligroin.
- 3'-Chlor-4.6-dinitro-4'-oxy-3-methyl-diphenylamin

 C₁₃H₁₀O₅N₃Cl, s. nebenstehende Formel. B. Durch Kondensation von 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344) mit
 2-Chlor-4-amino-phenol in alkoh. Losung in Gegenwart von Natriumacetat (Reverdin, Dresel, Delétra, B. 37, 2093;

 Bl. [3] 31, 632). Gelbrote Nadeln. F: 176°. Leicht löslich in Alkohol, Chloroform, Benzol, Ather und Eisessig, schwer in Ligroin und Wasser.
- 2-Chlor-4-acetamino-phenol C₆H₈O₂NCl = CH₃·CO·NH·C₆H₃Cl·OH. B. Aus 2-Chlor-4-amino-phenol durch Kochen mit Eisessig (Dahl. & Co., D. R. P. 147530; C. 1904 I, 233). Nadeln (aus Wasser). F: 144°. Schwer löslich in kaltem Wasser, leicht in heißem Wasser. Verwendung zur Darstellung von Monazofarbstoffen: D. & Co.
- 2 Chlor 4 acetamino phenol methyläther, 2 Chlor 4 acetamino anisol $C_9H_{16}O_9NCl=CH_8\cdot CO\cdot NH\cdot C_6H_3Cl\cdot O\cdot CH_9$. B. Durch Acetylierung von 2-Chlor-4-amino-anisol (Reverdin, Eckhard, B. 32, 2623). Nadeln (aus Wasser). F: 94°.
- 2 Chlor 4 acetamino phenol äthyläther, 2 Chlor 4 acetamino phenetol $C_{10}H_{12}O_2NCl = CH_3\cdot CO\cdot NH\cdot C_4H_3Cl\cdot O\cdot C_4H_5$. B. Man versetzt 50 g Phenacetin (S. 461), gelöst in 500 com Eisessig und 130 com Salzsäure, unter Kühlung mit einer Chlorlauge, die durch Sättigen von 64 com $40^9/_0$ iger heißer Natronlauge mit Chlor bereitet war (Reverdin, Düring, B. 32, 156). Aus 2-Chlor-4-amino-phenetol (s. o.) mit Essigsäureanhydrid oder aus seinem salzsauren Salz mit Essigsäureanhydrid in Gegenwart von Natriumacetat (R., D.). Nadeln (aus Alkohol). F: 132°.
- [3-Chlor-4-acetamino-phenyl]-acetat, O.N-Diacetyl-[2-chlor-4-amino-phenol] $C_{10}H_{10}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_6H_3Cl\cdot O\cdot CO\cdot CH_3$. B. Aus 2-Chlor-4-amino-phenol und Essigsäureanhydrid (Kehrmann, Grab, A. 303, 8). Nadeln (aus Wasser). F: 124°.
- 3-Chlor-4-amino-phenol C₆H₆ONCl = H₅N·C₆H₅Cl·OH. B. Durch Reduktion von 3-Chlor-4-nitro-phenol (Bd. VI, S. 240) mit Eisen und Salzsäure bei 80—100° (Chem. Fabr. Griesheim-Elektron, D. R. P. 143449; C. 1903 II, 320). Nadeln. F: 160° (Chem. Fabr. G.-E.). Liefert beim Kochen mit 4-Chlor-1.3-dinitro-benzol in alkoh. Lösung bei Gegenwart von Natriumacetat als Hauptprodukt 3-Chlor-2'.4'-dinitro-4-amino-diphenyläther

- (s. u.) (Reverdin, Dresel, B. 87, 1517; Bl. [3] 81, 1079). Beim Kochen der alkoh. Lösung von 3-Chlor-4-amino-phenol mit 4-Chlor-1.3-dinitro-benzol ohne Zusatz von Natriumacetat oder beim Erhitzen von 3-Chlor-4-amino-phenol mit 4-Chlor-1.3-dinitro-benzol bei Gegenwart von Natriumacetat auf 150° entsteht 2-Chlor-2'.4'-dinitro-4-oxy-diphenylamin (s. u.) (R., D.). Verwendung als photographischer Entwickler: Chem. Fabr. G.-E.
- 3-Chlor-4-amino-phenol-[2.4-dinitro-phenyl]-äther,
 8-Chlor-2'.4'-dinitro-4-amino-diphenyläther C₁₂H₂O₂N₃Cl,
 s. nebenstehende Formel. B. Beim Kochen von 3-Chlor4-amino-phenol mit 4-Chlor-1.3-dinitro-benzol in alkoh.
 Lösung bei Gegenwart von Natriumacetat (Reverdin, Dressel, B. 37, 1517; Bl. [3] 31, 1079). Braungelbe Nadeln. F: 137°. Leicht löslich in Aceton, Benzol und Chloroform, unlöslich in Ligroin. Liefert bei Behandlung mit Natriumchlorat und Salzsäure Trichlorchinon (Bd. VII, S. 634).
- 2 Chlor 2'.4' dinitro 4 oxy diphenylamin

 C₁₂H₂O₂N₂Cl, s. nebenstehende Formel. B. Durch Kochen
 von 3-Chlor-4-amino-phenol mit 4-Chlor-1.3-dinitro-benzol in
 O₂N· NH— OH
 alkoh. Lösung (R., Dresel, B. 37, 1517; Bl. [3] 31, 1079).

 Durch Erhitzen von 3-Chlor-4-amino-phenol mit 4-Chlor-1.3-dinitro-benzol in Gegenwart
 von Natriumacetat auf 150° (R., D.): Aus 2-Chlor-2'.4'-dinitro-4-acetoxy-diphenylamin (s. u.)
 durch Verseifung mit siedender Salzsäure (R., Crépieux, B. 36, 3266; Bl. [3] 29, 1060).

 Rote Nadeln. F: 189°; sehr leicht löslich in heißem Alkohol, Aceton, Eisessig, schwer
 in kaltem Alkohol, Äther, Benzol, Schwefelkohlenstoff, unlöslich in Ligroin (R., C.). Aus
 der Lösung in Soda fällt beim Erkalten nicht das Natriumsalz, sondern die freie Verbindung
 aus (R., C.). Bei der Einw. von Natriumchlorat und Salzsäure entsteht 2.3.5-Trichlorchinon-mono-[2.4-dinitro-anil] (Bd. XII, S. 754) (R., C.).
- 2 Chlor 2'.4' dinitro 4 acetoxy diphenylamin $C_{16}H_{10}O_8N_3Cl = (O_2N)_8C_6H_3\cdot NH\cdot C_4H_3Cl\cdot O\cdot CO\cdot CH_3$. B. Bei der Chlorierung von 2'.4'-Dinitro-4-acetoxy-diphenylamin (S. 446) mit Natriumchlorat und Salzsäure in Eisessig (R., C., B. 36, 3266; Bl. [3] 29, 1059). Citronengelbe Nadeln oder Prismen. F: 170°. Ziemlich löslich in heißem Alkohol, Aceton, Benzol, Eisessig, Chloroform, schwer in Äther, Schwefelkohlenstoff, unlöslich in Ligroin.
- 3-Chlor-4-bensylamino-phenol $C_{19}H_{19}$ ONCl = $C_{6}H_{5} \cdot CH_{2} \cdot NH \cdot C_{6}H_{3}$ Cl·OH. B. Bei der Reduktion von 3-Chlor-4-benzalamino-phenol (s. u.) mit Zinkstaub und Natronlauge (Chem. Fabr. Schering, D. R. P. 213592; C. 1909 II, 1097). Öl. Leicht löslich in Äther, Alkohol, schwer in Wasser. Leicht löslich in verd. Alkali, schwer in Sodalösung. Hydrochlorid. Krystalle. Schmilzt bei 195° unter geringer Zersetzung.
- 3-Chlor-4-bensalamino-phenol $C_{13}H_{10}ONCl = C_6H_5\cdot CH:N\cdot C_6H_3Cl\cdot OH.$ B. Durch Einw. von Benzaldehyd auf das Sulfat des 3-Chlor-4-amino-phenols in Gegenwart von Kaliumacetat (Chem. Fabr. Schward, D. R. P. 213592; C. 1909 II, 1097). F: 180—181°. Leicht löslich in heißem Alkohol, schwerer in kaltem Alkohol, unlöslich in Wasser. Unlöslich in verd. Essigsäure. Geht bei der Reduktion mit Zinkstaub und Natronlauge in 3-Chlor-4-bensylamino-phenol (s. o.) über.
- 2.5 Dichlor 4 amino phenol žthyläther, 2.5 Dichlor 4 amino phenotol ') C₂H₂ONCl₂ = H₂N·C₄H₂Cl₂·O·C₂H₂. B. Aus 2.5-Dichlor-4-acetamino-phenol-žthyläther (s. u.) durch Spaltung mit konz. Salzsäure (Reverdin, Düring, B. 32, 154). Prismen (aus Alkohol). F: 63,5—64,5°. Schwer löslich in Wasser, leicht in organischen Mitteln. Gibt mit Dichromat und Salzsäure einen erst dunkelgrünen, dann blauen bis rotvioletten Niederschlag, mit Eisenchlorid einen roten Niederschlag. Hydrochlorid. Schwer löslich in Wasser und dadurch dissoziierbar. Pikrat. Gelbe Nadeln (aus Alkohol). F: 149—150°.
- 2.5-Dichlor-4-acetamino-phenol-äthyläther, 2.5-Dichlor-4-acetamino-phenetol') $C_{10}H_{11}O_2NCl_2=CH_3\cdot CO\cdot NH\cdot C_6H_3Cl_2\cdot O\cdot C_2H_5$. B. Man gibt zu einer Lösung von 36 g Phenacetin (S. 461) in 200 ccm Eisessig 17 g Natriumohlorat in wenig Wasser und fügt 60 ccm konz. Salzsäure unter Wasserkühlung auf einmal hinzu; daneben entstehen 2-Chlor-4-acetamino-phenetol und andere Produkte (R., D., B. 32, 154). Nadeln (aus Alkohol). F: 162°. In Wasser fast unlöslich.
- 2.6-Dichlor-4-amino-phenol $C_0H_0ONCl_2=H_2N\cdot C_0H_2Cl_2\cdot OH$. B. Aus 2.6-Dichlor-4-nitro-phenol (Bd. VI, S. 241) mit Zinn und Salzsäure (SEIFART, A. Spl. 7, 202; Kollberg, A. 234, 10). Nadeln (aus Wasser oder Benzol). F: 165—166° (S.), 167° (K.). Sublimiert

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von BARGELLINI (G. 59, 19, 29; C. 1929 I, 1807).

bei vorsichtigem Erhitzen (S.). Fast unlöslich in kaltem Wasser, sehwer löslich in siedendem Wasser oder in Benzol, sehr leicht löslich in Alkohol und Äther (K.). — Wird leicht, z. B. durch Dichromatgemisch zu 2.6-Dichlor-chinon (Bd. VII, S. 633) oxydiert (K.). Mit HCl und Chlorkalklösung unter Kühlung entsteht 2.6-Dichlor-chinon-chlorimid-(4) [Bd. VII, S. 634) (K.). — C₆H₅ONCl₂ + HCl. Nadeln (aus Wasser). Leicht löslich in Wasser und Alkohol, weniger in Äther (S.). Sublimierbar (S.). Schmilzt nicht unter 230° (S.). — C₆H₅ONCl₂ + HBr. Tafeln. Äußerst schwer löslich in kaltem Wasser (K.). — 2C₆H₅ONCl₂ + H₂O. Nadeln. Wenig löslich in heißem Alkohol, kaum in kaltem Wasser (S.). — C₆H₅ONCl₂ + HNO₃. Tafeln (aus Wasser). Schmilzt unter Zersetzung bei 110° (K.). — Oxalat 2 C₆H₅ONCl₂ + C₂H₂O₄. Nadeln. Ziemlich leicht löslich in heißem Wasser (K.).

8.5 - Dichlor - 2'.4' - dinitro - 4 - oxy - diphenylamin C₁₂H₁O₂N₂Cl₂, s. nebenstehende Formel. B. Durch Kondensation von 4 - Chlor - 1.3 - dinitro - benzol und 2.6 - Dichlor 4-amino-phenol (REVERDIN, CRÉPIEUX, B. 36, 3264; Bl. [3] 29, 1057). Durch Einw. von schwefliger Säure, von konz.
warmer Natriumacetatlösung oder von Sodalösung auf 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4)

(Bd. XII, S. 754) oder durch tagelanges Stehen einer Lösung dieser Verbindung in konz. Schwefelsäure (R., C.). Durch Chlorierung von 2'.4'-Dinitro-4-oxy-diphenylamin (S. 444) oder von 2'.4'-Dinitro-4-amino-diphenylamin (S. 79) mit Natriumchlorat und Salzsäure in 80% iger Essigsaure (R., C.). — Rotorangefarbige Nadeln (aus Eisessig oder Aceton). F: 207°. Sehr leicht löslich in Alkohol, Ather, Aceton, Benzol, Chloroform, Eisessig und kochender Sodalösung, schwer löslich in Schwefelkohlenstoff; unlöslich in Ligroin. — Geht, in 90% iger Essigsäure mit Natriumchlorat und Salzsäure behandelt, in 2.6-Dichlor-chinon-[2.4-dinitro-anil]-(4) über. — Natriumsalz. Schwarze Nadeln.

2.6 - Dichlor - 4 - pikrylamino - phenol, 3.5 - Dichlor-2'.4'.6' - trinitro - 4 - oxy - diphenylamin C₁₂H₆O₂N₄Cl₂, s. nebenstehende Formel. B. Durch Kondensation von Pikrylchlorid (Bd. V, S. 273) mit 2.6-Dichlor-4-amino-phenol (Reverbin, Delétra, B. 37, 1730; Bl. [3] 31, 639). — Gelbbraune Prismen. F: 225°. — Das Acetylderivat bildet grünlichgelbe Blättchen vom Schmelzpunkt 259°.

$$O_2N \cdot \bigcirc NO_2 \quad Cl$$
 $NO_2 \quad Cl$

3.5 - Dichlor - 2'.4' - dinitro - 4 - acetoxy - diphenylamin $C_{14}H_{9}O_{6}N_{3}Cl_{2} = (O_{9}N)_{2}C_{6}H_{3}$. NH·C₄H₂Cl₂·O·CO·CH₃. Citronengelbe Krystalle. F: 207—208° (REVERDIN, CRÉPIEUX, Bl. [3] 29, 1057; B. 36, 3264).

3'.5'-Dichlor-4.6-dinitro-4'-oxy-8-methyl-diphenylamin C₁₈H₂O₂N₂Cl₂, s. nebenstehende Formel. B. Aus 2.6-Dichlor-4-amino-phenol und 5-Chlor-2.4-dinitro-toluol (Bd. V, S. 344) in alkoh. Lösung bei Gegenwart von Natriumscetat (Reverdir, Dresel, Deletra, B. 37, 2094; Bl. [3] 31, 632).

— Grünlichgelbe Blättchen. F: 230°. Leicht löslich in Alkohol, Chloroform, Äther, Benzol

$$\begin{array}{cccc} CH_3 & CI \\ O_2N \cdot & & NH & OH \\ \dot{N}O_2 & \dot{C}I \end{array}$$

und Eisessig, schwer in Ligroin und Wasser.

8.5 - Dichlor - 4-oxy-4'-dimethylamino-diphenylamin C₁₄H₁₄ON₂Cl₂, s. nebenstehende Formel. B. Man oxydiert das Gemisch von N.N-Dimethyl-p-phenylendiamin (S. 72) und 2.6-Dichlor-phenol in alkal. Lösung zum entsprechenden Indophenol und reduziert dieses mit

Schwefelnatriumlösung (Höchster Farbw., D. R. P. 161665; C. 1905 II, 368). — Kryställchen, die sich an der Luft zu den grünen Krystallen des entsprechenden Indophenols oxydieren. Beim Erhitzen mit Schwefel und Schwefelalkali auf 90—100° entsteht ein chlorfreier blauer Farbstoff.

3.5-Dichlor-4-amino-phenol¹) $C_6H_5ONCl_2 = H_2N \cdot C_6H_2Cl_2 \cdot OH$. B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Chinonoxim (Bd. VII, S. 622) (JAEGER, B. 8, 895). — Nadeln. F: 175°. Sublimierbar, aber nicht destillierbar. Löslich in Alkalien und Säuren.

3.5 - Dichlor - 4 - amino - phenol - methyläther, **3.5 - Dichlor - 4 - amino - anisol** ¹) $C_7H_7ONCl_2 = H_2N \cdot C_6H_2Cl_2 \cdot O \cdot CH_3$. B. Beim Übergießen von Chinonoxim (Bd. VII, S. 622) mit einer Lösung von Chlorwasserstoff in Methylalkohol bei 0° (JAEGER, B. 8, 897). — Nadeln (aus wäßr. Alkohol). F: 71,5°. Mit Wasserdämpfen flüchtig. Löslich in Säuren, aber nicht in Alkalien.

¹ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von BARGELLINI, LEONE (R. A. L. [6] 8, 399; C. 1929 I, 1441) und BARGELLINI (G. 59, 16; C. 1929 I, 1807).

3.5 - Dichlor - 4 - amino - phenol - äthyläther, 3.5 - Dichlor - 4 - amino - phenetol 1) C₂H₂ONCl₂ = H₂N·C₄H₂Cl₂·O·C₂H₅. B. Analog derjenigen der vorangehenden Verbindung. — Nadeln (aus verd. Alkohol). F: 46°; Kp: 275°; mit Wasserdämpfen leicht flüchtig; verbindet sich mit Säuren (JAEGER, B. 8, 898).

2.3.5.4'-Tetrachlor-4-oxy-diphenylamin C₁₂H₇ONCl₄, Cl Cl s. nebenstehende Formel. B. Aus 2.3.5-Trichlor-chinon-[4-chlor-anil]-(1) (Bd. XII, S. 611) in Alkohol bei der Reduktion Cl-NH—NH—OH mit Zinkstaub und Eisessig (Jacobson, A. 367, 317; vgl. J., C. 1898 II, 36). Nadeln (aus Ligroin). F: 128°. Leicht löslich in Kther, Alkohol, Benzol, schwer in kaltem Ligroin, unlöslich in Wasser. Löslich in wäßr. Alkali, unlöslich in verd. Säuren. Färbt sich beim Leiten von Luft durch die Lösung in wäßr. Alkali rot und scheidet einen roten Niederschlag ab.

2.3.5.2'.4'.6'-Hexachlor-4-benzoyloxy-diphenylamin $C_{19}H_9O_2NCl_6 = C_6H_2Cl_3 \cdot NH \cdot C_6HCl_3 \cdot O \cdot CO \cdot C_6H_5$. B. Aus 2.3.5.2'.4'.6'-Hexachlor-4-oxy-diphenylamin mit Benzoylchlorid und Pyridin (O., S., Soc. 87, 396). — Prismen (aus Alkohol). F: 169°.

2.3.5- oder 2.3.6-Trichlor-4-amino-phenol $C_6H_4ONCl_3 = H_2N \cdot C_6HCl_3 \cdot OH$. B. Beim Sättigen von in rauchender Salzsäure suspendiertem 4-Amino-phenol mit Chlor (Schmitt, Andresen, J. pr. [2] 23, 437). Aus Chinonchlorimid (Bd. VII, S. 619) in möglichst wenig Eisessig beim Eintragen in die 16—20-fache Menge stark gekühlter konzentrierter Salzsäure, neben anderen Chlorsubstitutionsprodukten des 4-Amino-phenols (Hirsch, B. 13, 1907). — Darst. Man übergießt salzsaures 4-Amino-phenol mit rauchender Salzsäure und leitet unter beständigem Schütteln Chlor ein, bis eine Probe des Niederschlages sich ohne Trübung in Wasser löst, und diese Lösung mit Chlorkalk große, gelbe Flocken von Trichlorchinon-chlorimid rasch abscheidet, ohne daß hierbei eine Emulsion entsteht. Wird das Reaktionsprodukt zu dickbreiig, so verdünnt man mit rauchender Salzsäure; nach beendigter Reaktion raucht man die Salzsäure im Wasserbade ab, löst den Rückstand im Wasser und fällt die vom Trichlorchinon abfiltrierte Lösung mit Soda (Schmitt, Andresen, J. pr. [2] 24, 426). — Nädelchen (aus Alkohol). Schmilzt bei 159° zu einer bräunlichen Flüssigkeit (Sch., A.). Schwer löslich in kaltem Wasser, leichter in heißem Wasser, in Alkohol und Äther (Sch., A.). — Liefert mit Salzsäure und Chlorkalklösung Trichlorchinon-monochlorimid (Bd. VII, S. 636) (Sch., A., J. pr. [2] 23, 438; 24, 429). Diazotiert man das Trichloraminophenol in wäßrigsalkoholischer Lösung und kocht das entstandene Trichlordiazophenol (Syst. No. 2199) anhaltend mit absol. Alkohol, so erhält man das bei 55° schmelzende Trichlorphenol (Bd. VI, S. 190) (H., B. 13, 1908; Lamper, J. pr. [2] 33, 376). — 2CeH4ONCl3+H2SO4. Krystalle (aus verd. Schwefelsäure) (H., Dissertation [Straßburg 1880], S. 16). Beim Erhitzen des trocknen Sulfats sublimiert Trichloraminophenol (Soh., A., J. pr. [2] 24, 427).

2.3.6- oder **2.3.5-Trichlor-2'.4'-** dinitro - 4-oxy-diphenylamin $C_{13}H_{4}O_{5}N_{3}Cl_{3}$, s. Formeln I und II. B. Durch längeres Kochen von 2.3.5-Trichlor-chinon-mono-[2.4-dinitro-

I.
$$O_2N \cdot \bigcirc \longrightarrow NH - \bigcirc OH$$

II. $O_2N \cdot \bigcirc \longrightarrow NH - \bigcirc OH$

anil] (Bd. XII, S. 754) mit Sodalösung (Reverdin, Crépieux, Bl. [3] 29, 1062; B. 36, 3269).

— Orangerot. F: 211°.

2.3.6- oder 2.3.5-Trichlor-2'.4'-dinitro-4-acetoxy-diphenylamin $C_{14}H_8O_6N_3Cl_3 = (O_2N)_2C_6H_3\cdot NH\cdot C_6HCl_2\cdot O\cdot CO\cdot CH_3$. B. Aus 2.3.6- oder 2.3.5-Trichlor-2'.4'-dinitro-4-oxy-diphenylamin durch Acetylieren (R., C., Bl. [3] 29, 1062; B. 36, 3269). — Citronengelbe Prismen. F: 153°.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von BARGELLINI, LEONE (R. A. L. [6] 8, 399; C. 1929 I, 1441) und BARGELLINI (G. 59, 16; C. 1929 I, 1807).

2.3.6- oder 2.3.5-Trichlor-4-oxy-4'-dimethylamino-diphenylamin $C_{14}H_{13}ON_{1}Cl_{2}$, s. Formeln I und II. B. Entsteht neben einer Sulfonsäure $(CH_{2})_{2}N \cdot C_{2}H_{4} \cdot NH \cdot C_{4}Cl_{3}(OH) \cdot SO_{4}H$ (Syst. No. 1926) beim Leiten von sohwefliger Säure durch ein Gemenge von 1 Tl. 2.3.5-Trichlor-chinon-mono-[4-dimethylamino-anil] (S. 89) und 50 Tln. Wasser unter Erwärmen; der gebildete Niederschlag wird unter Erwärmen in wäßr. Ammoniak gelöst; beim Kochen der Lösung fällt zunächst Trichlor-oxy-dimethylamino-diphenylamin aus (SCHMITT, ANDRESEN, J. pr. [2] 24, 439). Entsteht auch bei der Reduktion des 2.3.5-Trichlor-chinon-mono-[4-dimethylamino-anils] mit alkoh. Schwefelammonium (SCH., A.). — Prismen.

F: 138—139°. Färbt sich beim Schmelzen blau und zersetzt sich wenige Grade über dem Schmelzpunkt. Fast unlöslich selbst in heißem Wasser, leicht löslich in Äther, Chloroform, Benzol und heißem Alkohol. Verbindet sich mit Basen, die alkal. Lösungen färben sich an der Luft sehr rasch tief blau, indem 2.3.5-Trichlor-chinon-mono-[4-dimethylamino-anil] (S. 89) gebildet wird. Alle Oxydationsmittel bewirken die gleiche Reaktion. Das Ammoniumsalz verliert beim Aufkochen alles Ammoniak. — C₁₄H₁₃ON₃Cl₃+HCl. Scheidet sich beim Auflösen von Trichlor-oxy-dimethylamino-diphenylamin in kochender verdünnter Salzsäure in Tafeln oder Blättchen aus. Außerst löslich in Alkohol, schwerer in Wasser, unlöslich in Äther. — Sulfat. Nadeln, die sich in heißem Wasser und noch leichter in Alkohol lösen.

- 2-Brom-4-amino-phenol C₆H₆ONBr = H₂N·C₆H₂Br·OH. B. Bei der Elektrolyse einer Lösung von m-Brom-nitrobenzol (Bd. V, S. 248) in konz. Schwefelsäure (GATTERMANN, B. 27, 1931). Beim Behandeln von 2-Brom-4-nitro-phenol (Bd. VI, S. 244) mit Zinn und Salzsäure (Hölz, J. pr. [2] 32, 65). Bei der Einw. von Jodwasserstoffsäure (D:1,7) auf 2-Brom-4-acetamino-phenol (S. 516) (Hodurek, B. 30, 480). Nadeln (aus Benzol), Nadeln oder Säulen (aus verd. Alkohol). F: 155° (Hod.), 158° (Zers.) (Hölz), 163° (Zers.) (G.). Schwer löslich in kaltem Wasser, leicht in Alkohol, Äther, Benzol und Chloroform (Hölz). C₆H₆ONBr + HI. Gelbliche, in Wasser, Alkohol, Alkalien und Säuren leicht lösliche Blättchen (Hod.).
- 2-Brom-4-amino-phenol-methyläther, 2-Brom-4-amino-anisol $C_7H_8ONBr=H_2N\cdot C_6H_3Br\cdot O\cdot CH_3$. B. Aus 2-Brom-4-nitro-anisol (Bd. VI, S. 244) durch Reduktion mit Zinn und Salzsäure (Staedel, A. 217, 68). Durch Erwärmen von N-[3-Brom-4-methoxy-phenyl]-succinimid (Syst. No. 3201) mit alkoh. Salzsäure unter 40 cm Quecksilberüberdruck (Benevento, G. 28 II, 205). Weiße Blättchen (Reverdin, Dürling, B. 32, 162 Anm.). F: 60° bis 61° (B.), 64° (R., D.). Unlöslich in kaltem Wasser, löslich in warmem Wasser, in Alkohol, Äther und Essigester (B.). $C_7H_8ONBr+HCl$. Nadeln. F: 254—255° (B.). $2C_7H_8ONBr+H_2SO_4$. Blättchen. Zersetzt sich gegen 243° (B.). Oxalat $2C_7H_8ONBr+C_2H_2O_4$. Nadeln. F: 159–160° (B.). Succinat $2C_7H_8ONBr+C_4H_6O_4$. Nadeln. F: 61° (B.).
- 2-Brom-4-amino-phenol-äthyläther, 2-Brom-4-amino-phenetol $C_0H_{10}ONBr = H_2N \cdot C_0H_2Br \cdot O \cdot C_2H_5$. B. Aus 2-Brom-4-nitro-phenetol (Bd. VI, S. 245) durch Zinn und Salzaäure (BTARDEL, A. 217, 69) oder durch Zinnchlorür und Salzaäure (PTUTTI, G. 27 II, 189; B. 30, 1173; REVERDIN, DÜRING, B. 32, 161). Durch Einw. rauchender Salzaäure auf 2-Brom-4-acetamino-phenetol (S. 516) bei 100° (Hodurek, B. 30, 478; R., D., B. 32, 158). Beim Kochen von N-[3-Brom-4-äthoxy-phenyl]-succinimid (Syst. No. 3201) mit konz. Salzaäure (P.). Tafeln (aus Äther). Rhombisch (SCACCHI, G. 27 II, 187; B. 30, 1172). F: 47,2—47,5° (P.), 46° (H.). Kpa: ca. 200° (P.). Kpa: 189° (H.). Ist mit Wasserdampf nur schwierig flüchtig (R., D.). Leicht löslich in Alkohol und Äther, unlöslich in Wasser (H.). Sehr unbeständig (H.). Reduziert Platinchlorid- und Silbernitratlösungen sehon in der Kälte (H.). Diazotiert man 2-Brom-4-amino-phenetol in Alkohol und erwärmt die erhaltene Diazolösung, so erhält man 2-Brom-phenetol (Bd. VI, S. 197) (H.). Giftwirkung des salzsauren Salzes: P. $C_0H_{10}ONBr + HCl$. Nadeln (aus Wasser + Salzsäure). Schmilzt bei $256-257^{\circ}$ unter Zersetzung (P.). Löslich in Wasser und Alkohol, unlöslich in Äther (H.). Unlöslich in konz. Salzsäure; durch Wasser nicht zersetzlich (H.). $2 C_0H_{10}ONBr + H_1SO_4$. Krystalle. Leicht löslich in Alkohol (St.). Oxalat $2C_0H_{10}ONBr + C_2H_2O_4$. Nadeln (St.). Pikrat. Nadeln (aus Alkohol). F: $178-179^{\circ}$ (R., D.). $C_8H_{10}ONBr + HCl + HgCl_2$. Schwer löslich in Wasser; färbt sich bald gelblich (H.).
- 2-Brom-4-acetamino-phenol $C_0H_0O_2NBr=CH_3\cdot CO\cdot NH\cdot C_0H_3Br\cdot OH$. B. Aus 2-Brom-4-amino-phenol und Essigsäureanhydrid (Hölz, J. pr. [2] 32, 67). Nadeln (aus Wasser). F: 157⁶ (Hölz), 155⁶ (Hodurek, B. 30, 480). Leicht löslich in Alkohol, Benzol und in Alkalien (Hölz).

- 2 Brom 4 acetamino phenol methyläther, 2 Brom 4 acetamino anisol $C_9H_{10}O_9NBr=CH_3\cdot CO\cdot NH\cdot C_6H_3Br\cdot O\cdot CH_3$. B. Durch Acetylieren von 2-Brom-4-amino-anisol (Reverbin, Düring, B. 32, 162 Anm.). F: 111°.
- 2 Brom 4 acetamino phenol äthyläther, 2 Brom 4 acetamino phenetol $C_{10}H_{19}O_3NBr = CH_3 \cdot CO \cdot NH \cdot C_6H_3Br \cdot O \cdot C_2H_5$. B. Zu einer Lösung von 100 g Phenacetin in 1000 ccm Eisessig werden 250 ccm konz. Salzsäure und dann langsam eine durch Eintragen von Brom in heiße Natronlauge erhaltene Bromlauge zugesetzt, bis bleibende Bromreaktion sich zeigt (Hofmann & Schoetensack bei Hodurek, B. 30, 477; vgl. auch Vaubel, J. pr. [2] 55, 217). Nadeln (aus verd. Alkohol). F: 114° (Reverdin, Düring, B. 32, 161). Leicht löslich in Alkohol und Eisessig, sehr wenig in Wasser und Äther (Hod.). Gibt beim Erhitzen mit rauchender Salzsäure 2-Brom-4-amino-phenetol, mit rauchender Jodwasserstoffsäure (D: 1,7) 2-Brom-4-amino-phenol (Hod.).
- 2-Brom-4-diacetylamino-phenol-äthyläther, 2-Brom-4-diacetylamino-phenetol $C_{19}H_{16}O_{3}NBr = (CH_{3}\cdot CO)_{2}N\cdot C_{6}H_{3}Br\cdot O\cdot C_{2}H_{5}.$ B. Aus 2-Brom-4-acetamino-phenetol und Essigsäureanhydrid bei 170° (Hodurek, B. 30, 480). F: 90°. Löslich in Alkohol und Äther, unlöslich in Wasser. Durch längeres Kochen mit Natronlauge wird eine Acetylgruppe wieder abgespalten.
- [2-Brom-4-benzamino-phenyl]-benzoat, O.N-Dibenzoyl-[2-brom-4-amino-phenol] $C_{50}H_{16}O_3NBr=C_6H_5\cdot CO\cdot NH\cdot C_6H_3Br\cdot O\cdot CO\cdot C_6H_5$. Nadeln (aus Alkohol). F: 192° (Gattermann, B. 27, 1931).
- N-[3-Brom-4-äthoxy-phenyl]-succinamid-säure $C_{12}H_{14}O_4NBr$, s. nebenstehende Formel. B. Beim Lösen von N-[3-Brom-4-äthoxy-phenyl]- $HO_2C\cdot CH_2\cdot CH_3\cdot CO\cdot NH\cdot \bigcirc \cdot O\cdot C_2H_5$ succinimid (Syst. No. 3201) in wäßrig-alkoholischer Kalilauge (Piutti, G. 27 II, 190; B. 30, 1174). Nadeln (aus verd. Alkohol). F: 149° bis 150°. $AgC_{12}H_{13}O_4NBr$. Krystallinischer Niederschlag.
- 2 Brom 2'.4' dinitro 4 oxy diphenylamin

 C₁₂H₂O₅N₃Br, s. nebenstehende Formel. B. Aus dem entsprechenden Acetylderivat (s. u.) durch Verseifung mit kochender Salzsäure (Reverdin, Crépieux, Bl. [3] 29, 1063; B. 36, 3269). Rote Krystalle (aus Alkohol). F: 178—179°.
- 2-Brom-2'.4'-dinitro-4-acetoxy-diphenylamin $C_{14}H_{10}O_8N_3Br = (O_2N)_2C_8H_3\cdot NH\cdot C_4H_3Br\cdot O\cdot CO\cdot CH_3$. B. Durch Einw. von Brom auf 2'.4'-Dinitro-4-acetoxy-diphenylamin (S. 446) in Eisessig (R., C., Bl. [3] 29, 1062; B. 36, 3269). Gelbe Nadeln (aus Alkohol + Aceton). F: 165—166°.
- 2.2'.4'-Tribrom-4-oxy-diphenylamin ') C₁₂H₈ONBr₃,
 s. nebenstehende Formel. B. Beim langsamen Eintragen einer
 Lösung von 19,2 g Brom in 100 com Eisessig unter Kühlung Br. NH—NH—NH—NH und Ümrühren in eine Lösung von 7,4 g 4-Oxy-diphenylamin
 (S. 444) und 9,6 g wasserfreiem Natriumacetat in 200 com Eisessig (Smith, Orton, Soc. 93, 317).—Nadeln (aus Ligroin). F: 153°. Leicht löslich in Alkohol, Eisessig, Benzol, löslich in Chloroform. Löslich in Alkalien; löst sich in Schwefelsäure mit grüner Farbe.—CrO₃ in Eisessig oxydiert zu 2-Brom-chinon-mono-[2.4-dibrom-anil] (Bd. XII, S. 656).
- 2.2'.4'-Tribrom-4-bensoyloxy-diphenylamin $C_{18}H_{19}O_8NBr_8 = C_6H_3Br_8\cdot NH\cdot C_6H_3Br\cdot O\cdot CO\cdot C_6H_3$. Aus 1 g 2.2'.4'-Tribrom-4-oxy-diphenylamin in 5 com Pyridin und 0,5 com Benzoylchlorid (S., O., Soc. 93, 318). Prismen (aus Ligroin). F: 147°. Löslich in organischen Mitteln.

Brensweinsäure-bis-[2 oder 3-brom-4-methoxy-anilid] $C_{19}H_{20}O_4N_2Br_3 = CH_3 \cdot O \cdot C_6H_3Br \cdot NH \cdot CO \cdot CH(CH_3) \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_3Br \cdot O \cdot CH_3$. B. Aus Brenzweinsäure-di-p-anisidid (S. 475) mit Brom in Essigsäure (GIUFFRIDA, CHIMIENTI, G. 34 II, 267). — Gelbliche Nadeln. F: 82—83°.

Brensweinsäure-p-phenetidid-[2 oder 3-brom-4-äthoxy-anilid] $C_{21}H_{25}O_4N_2Br = C_2H_5 \cdot O \cdot C_2H_4 \cdot NH \cdot CO \cdot C_2H_3(CH_2) \cdot CO \cdot NH \cdot C_6H_2Br \cdot O \cdot C_2H_5$. B. Aus Brenzweinsäure-dip-phenetidid (S. 475) und Brom in Eisessig (GI., CH., G. 34 Π , 271). — Nadeln (aus Alkohol). F: 74°. Sehr leicht löslich in Alkohol.

¹⁾ Diese Verbindung, die nach SMITH, ORTON, Soc. 98, 315, als 2.2'.4' oder 3.2'.4'-Tribrom-4-oxy-diphenylamin aufzufassen war, muß auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von BRADFIELD, COOPER, ORTON, Soc. 1927, 2854, als 2.2'.4'-Tribrom-4-oxy-diphenylamin formuliert werden.

Dibromgallussäure-[2 oder 3-brom-4-äthoxy-anilid] $C_{15}H_{12}O_5NBr_3 = (HO)_3C_6Br_2 \cdot CO\cdot NH\cdot C_6H_3Br\cdot O\cdot C_2H_5$. B. Aus Gallussäure-p-phenetidid (S. 494) durch 3 Mol.-Gew. Brom in Chloroform (Gnehm, Ganserr, J. pr. [2] 63, 85). — Krystalle mit 2 H_2O (aus verd. Methylalkohol). Schmilzt bei 209—210°, wasserfrei bei 218—219°. Ist gegen Säuren sehr beständig. Wird von Kalilauge schon in der Kälte zersetzt. Färbt sich mit FeCl₂ gelbgrün.

2.5.2'.4'-Tetrabrom-4-oxy-diphenylamin C₁₈H₇ONBr₄, Br s. nebenstehende Formel. B. Aus 2.2'.4'-Tribrom-4-oxy-diphenylamin (S. 516) und 1 Mol.-Gew. Brom in siedendem Br NH—NH—NH—OH Chloroform (SMITH, ORTON, Soc. 93, 321). — Nadeln (aus Eisessig und wenig Wasser). F: 143—144°. Löslich in Chloroform, Ligroin. — CrO₃ in Eisessig oxydiert zu 2.5-Dibrom-chinon-mono-[2.4-dibrom-anil] (Bd. XII, S. 656).

2.5.2'.4'-Tetrabrom-4-benzoyloxy-diphenylamin $C_{19}H_{11}O_2NBr_4 = C_6H_3Br_2\cdot NH \cdot C_6H_2Br_2\cdot O\cdot CO\cdot C_6H_5$. B. Aus 2.5.2'.4'-Tetrabrom-4-oxy-diphenylamin in Pyridin und Benzoylchlorid (S., O., Soc. 93, 321). — Nadeln (aus Ligroin). F: 178°. Schwer löslich in organischen Mitteln. Unlöslich in Alkalien.

2.6-Dibrom-4-amino-phenol C₆H₅ONBr₂ = H₂N·C₆H₄Br₂·OH. B. Bei der Reduktion von 2.6-Dibrom-4-nitro-phenol (Bd. VI, S. 247) mit Zinn und Salzsäure (Möhlau, B. 15, 2493; 16, 2845; M., Uhlmann, A. 289, 94) oder besser mit Zinn und Eisessig (Lellmann, Grothmann, B. 17, 2731). Beim Behandeln von 2.6-Dibrom-4-nitroso-phenol (2.6-Dibrom-chinon-oxim-(4), Bd. VII, S. 641) mit Zinn und Salzsäure (Fischee, Hepp, B. 21, 674). Bei der Einw. einer stark abgekühlten Lösung von 1½ Mol.-Gew. Bariumhypobromit + 2 Mol.-Gew. Bariumhydroxyd auf 1 Mol.-Gew. 4-Oxy-benzamid (Bd. X, S. 164) (van Dam, R. 18, 418). Beim Behandeln von 2.6-Dibrom-4-diazo-phenol O:C₆H₂Br₃:N₂ (Syst. No. 2199) mit Zinn und Salzsäure (Böhmer, J. pr. [2] 24, 469). Neben 2-[3.5-Dibrom-4-oxy-benzoyl]-benzoesäure beim Kochen der alkoh. Lösung von Tetrabromphenolphthaleinoxim (Syst. No. 2539) mit verd. Schwefelsäure (Friedländer, Stange, B. 26, 2261). — Nadeln (aus Alkohol). Schmilzt unter vorheriger Bräunung zwischen 191,5 und 192,5° (M., U.; vgl. Forster, Robertson, Soc. 79, 690). Unlöslich in Wasser, etwas löslich in Ather, leicht in Alkohol (B.). — Bläut sich an der Luft (B.). Beim Leiten von nitrosen Gasen in die alkoh. Lösung entsteht 2.6-Dibrom-4-diazo-phenol (B.). Liefert mit Chlorkalklösung 2.6-Dibrom-chinon-chlorimid-(4) (Bd. VII, S. 640) (Möhlau, B. 16, 2845). Bei der gemeinsamen Oxydation von 2.6-Dibrom-4-amino-phenol und Phenol entsteht das Indophenol C₁₂H₇O₃NBr₂ + 2HCl + SnCl₂. Säulen (Hölz, J. pr. [2] 32, 68).

Indophenol C₁₂H₇O₂NBr₂ = O:C₆H₄:N·C₆H₂Br₂·OH bezw. O:C₆H₂Br₂:N·C₆H₄·OH. B. Das Natriumsalz scheidet sich aus beim allmählichen Eintragen von 8—12 ccm alkal. Phenollösung (mit 0,2 g Phenol in 1 ccm) in 5 g mit etwas verd. Alkohol angeriebenes 2.6-Dibrom-chinon-chlorimid-(4) (Bd. VII, S. 640) (Möhlau, B. 16, 2845). Beim Versetzen einer Lösung von 26 g 2.6-Dibrom-4-amino-phenol und 10 g Phenol in 40 g Natronlauge (D: 1,29) und etwa dem gleichen Vol. Wasser mit kalter Kaliumdichromatlösung (M., B. 16, 2849). — Dunkelrote Prismen. Unlöslich in Wasser; löslich mit fuchsinroter Farbe in Alkohol, Ather und Eisessig. — Zerfällt beim Kochen mit salzsäurehaltigem Wasser in Chinon und 2.6-Dibrom-4-amino-phenol. Wird durch schweflige Säure zu 3.5-Dibrom-4-4'-dioxy-diphenylamin (S. 518) reduziert. — NaC₁₂H₆O₂NBr₂. Goldgrüne Prismen. Löslich in Wasser und Alkohol mit blauer Farbe. Die Lösung in verd. Natronlauge wird in der Wärme blaßrot und beim Erkalten wieder blau.

2.6 - Dibrom - 4 - amino - phenol - methyläther, 2.6 - Dibrom - 4 - amino - anisol C₇H₇ONBr₂ = H₂N·C₆H₂Br₂·O·CH₃. B. Aus 2.6-Dibrom-4-nitro-anisol (Bd. VI, S. 247) durch Reduktion mit Zinn und Salzsäure (Staedel, A. 217, 70; Robertson, Soc. 81, 1479) oder mit Zinnchlorür und Salzsäure (Jackson, Fiske, B. 35, 1131; Am. 30, 62). — Blättchen

(aus Ligroin). F: 64—65° (J., F.), 66° (R.). Sehr leicht löslich in den gebräuchlichen organischen Lösungsmitteln (R.). — Verliert durch Einw. von Salpetersäure in der Kälte oder bei 30—40° kein Brom (R.). — C,H,ONBr₂ + HCl (ST.; J., F.). Nadeln. — 2 C,H,ONBr₂ + H₂SO₄. Nadeln (ST.). — Oxalat 2C,H,ONBr₂ + C₂H₂O₄. Nadeln. Bräunt sich bei 190° und schmilzt

unter Zersetzung bei 195° (ST.).

2.6 - Dibrom - 4 - amino - phenol - äthyläther, 2.6 - Dibrom - 4 - amino - phenetol $C_8H_9ONBr_2 = H_8N \cdot C_6H_2Br_2 \cdot O \cdot C_2H_5$. B. Aus 2.6-Dibrom-4-nitro-phenetol durch Reduktion mit Zinn und Salzsäure (Staedel, A. 217, 71) oder mit Zinnchlorür und Salzsäure (J., F., B. 35, 1132; Am. 30, 66). — Nadeln (aus Alkohol). F: 107° (J., F.). Leicht löslich in Äther,

Benzol, Aceton, löslich in Alkohol, Chloroform, unlöslich in Ligroin (J., F.). — C₈H₉ONBr₂ + HCl (J., F.).

- 3.5.2'.4'.6' Pentabrom 4 oxy diphenylamin Br Br C₁₂H₆ONBr₅, s. nebenstehende Formel. B. Aus 2.6-Dibrom-chinon-[2.4.6-tribrom-anil]-(4) (Bd. XII, S. 665) in Aceton durch Br OH Reduktion mit Zinkstaub und Eisessig (SMITH, ORTON, Soc. 91, 151). Nadeln (aus Eisessig). F: 155—156° (SM., O.), 157° Br Br (Bradfield), Cooper, Orton, Soc. 1927, 2858 Ann.). Leicht löslich in Chloroform, Benzol, Alkohol, ziemlich in Eisessig, schwer in Ligroin. Wird durch Oxydation mit Quecksilberoxyd in Benzol oder mit CrO₃ in Eisessig in 2.6-Dibrom-chinon-[2.4.6-tribrom-anil]-(4) zurückverwandelt.
- 3.5 Dibrom 4.4' dioxy diphenylamin C₁₂H₂O₂NBr₂,
 s. nebenstehende Formel. B. Beim Einleiten von schwefliger
 Säure in eine warme, wäßrige Lösung des Natriumsalzes des
 Indophenols C₁₂H₂O₂NBr₂ (S. 517) (Mömlau, B. 16, 2848).

 Prismen. Schmilzt unter Bräunung bei 170°. Leicht löslich, außer in Wasser.

 Br

Chinon - mono - [3.5 - dibrom - 4 - oxy - anil] C₁₂H₇O₂NBr₂, s. nebenstehende Formel. Vgl. hierzu das bei 2.6-Dibrom-4-aminophenol (S. 517) eingeordnete Indophenol C₁₂H₇O₂NBr₂.

Naphthochinon-(1.4)-mono-[3.5-dibrom-4-oxy-anil] $C_{16}H_{9}O_{9}NBr_{9}=0:C_{16}H_{6}:N\cdot C_{6}H_{2}Br_{9}\cdot OH.$ Vgl. hierzu Bd. VII, S. 641 Zeile 1 v. o., sowie Bd. VIII, S. 615.

- 2.6-Dibrom-4-acetamino-phenol C₈H₇O₃NBr₃ = CH₃·CO·NH·C₈H₂Br₃·OH. B. Aus 2.6-Dibrom-4-amino-phenol und Acetanhydrid (Hölz, J. pr. [2] 32, 68; Fischer, Heff, B. 21, 675; Roberson, Soc. 81, 1477). Blättchen mit 1 H₂O (aus stark verd. Alkohol). F: 173—174° (Hölz). Krystallessigsäure enthaltende Nadeln (aus Essigsäure); verliert die Essigsäure beim Liegen an der Luft; schmilzt essigsäurehaltig bei 178—179°, essigsäurefrei bei 185—186° (R.). Schwer löslich in heißem Wasser, leicht in Alkohol (R.). Leicht löslich in Alkalien (Hölz). Mit Salpetersäure in Eisessig entsteht 6-Brom-2-nitro-4-acetamino-phenol (R.).
- 2.6-Dibrom-4-acetamino-phenol-methyläther, 2.6-Dibrom-4-acetamino-anisol $C_0H_9O_2NBr_9=CH_3\cdot CO\cdot NH\cdot C_0H_9Br_2\cdot O\cdot CH_3$. B. Aus 2.6-Dibrom-4-amino-anisol und Acetanhydrid (Roberton, Soc. 81, 1479). Nadeln (aus Methylalkohol). F: 206°. Schwer löslich in Wasser und Petroläther, leicht in Alkohol und Chloroform.
- 2.6-Dibrom-4-benzamino-phenol $C_{13}H_9O_2NBr_2 = C_0H_5\cdot CO\cdot NH\cdot C_0H_2Br_2\cdot OH$. B. Aus 2.6-Dibrom-4-amino-phenol, Benzoylchlorid und Natronlauge (Forster, Robertson, Soc. 79, 690; R., Soc. 81, 1478). Nadeln (aus Alkohol). F: 208° (F., R.). Mit Salpetersäure in Eisessig entsteht 6-Brom-2-nitro-4-benzamino-phenol (R.).
- 2.6-Dibrom-4-bensamino-phenol-methyläther, 2.6-Dibrom-4-bensamino-anisol $C_{14}H_{11}O_2NBr_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_2Br_2\cdot O\cdot CH_2$. B. Aus 2.6-Dibrom-4-amino-anisol, Benzoylchlorid und Natronlauge (ROBERTSON, Soc. 81, 1480). Nadeln (aus Alkohol). Erweicht bei 174°. F: 180°. Leicht löslich in Alkohol, ziemlich in Benzol, unlöslich in heißem Wasser.

Chinon-carbonsäure-(2)-[3.5-dibrom-4-oxy-anil]-(4) $C_{13}H_{7}O_{4}NBr_{2}=O:C_{6}H_{3}(CO_{2}H):N\cdot C_{6}H_{2}Br_{2}\cdot OH.$ Vgl. hierzu Bd. X, S. 63, Zeile 5 v. unten.

- 2.6 Dibrom 4 nitrosamino phenol methyläther, [3.5 Dibrom 4 methoxy-phenyl]-nitrosamin $C_7H_6O_2N_2Br_2 = ON \cdot NH \cdot C_6H_2Br_2 \cdot O \cdot CH_2$ s. Syst. No. 2199.
- 2.3.5.2'.4' Pentabrom 4 oxy diphenylamin ')

 C₁₂H₆ONBr₅, s. nebenstehende Formel. B. Aus 2.5.2'.4'-Tetrabrom-4-oxy-diphenylamin (S. 517) in Chloroform mittels

 1 Mol.-Gew. Brom im Sonnenlicht (SMITH, ORTON, Soc. 93, 323). Nadeln (aus Chloroform oder Eisessig). F: 207—208°.

 Löslich in Aceton, schwer löslich in anderen Lösungsmitteln. CrO₃ in Eisessig oxydiert zu 2.3.5-Tribrom-chinon-mono-[2.4-dibrom-anil] (Bd. XII, S. 656).

¹⁾ Diese Verbindung, die nach SMITH, ORTON, Soc. 93, 316, als 2.3.6.2'.4' oder 2.8.5.2'.4'-Pentabrom-4-oxy-diphenylamin aufzufassen war, muß auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von BRADFIELD, COOPER, ORTON, Soc. 1927, 2854, als 2.3.5.2'.4'-Pentabrom-4-oxy-diphenylamin formuliert werden.

- 2.3.5.2'.4'.6' Hexabrom 4 oxy diphenylamin Br Br Br C₁₂H₅ONBr₆, s. nebenstehende Formel. B. Aus 2.3.5-Tribrom chinon [2.4.6 tribrom anil] (1) (Bd. XII, S. 666) in Br OH Aceton durch Reduktion mit Zinkstaub und Eisessig (SMITH, ORTON, Soc. 91, 152). Nadeln (aus Chloroform), Br Br Br Prismen (aus Eisessig). F: 216° (Bradfield), Cooper, Orton, Soc. 1927, 2858 Anm.). Schwer löslich in den meisten Lösungsmitteln (S., O.). Liefert bei der Oxydation mit Quecksilberoxyd in Benzol oder mit Chromsäure in Eisessig 2.3.5-Tribrom-chinon-[2.4.6-tribrom-anil]-(1) zurück (S., O.).
- 2.3.5.2'.4'-Pentabrom-4-benzoyloxy-diphenylamin C₁₉H₁₀O₂NBr₈, s. nebenstehende Formel. B. Aus
 2.3.5.2'4'-Pentabrom-4-oxy-diphenylamin in Pyridin und Benzoylchlorid (SMITH, ORTON, Soc. 93, 323).

 Nadeln (aus Ligroin). F: 176°. Schwer löslich in den gewöhnlichen Mitteln.
- 2.3.6-Tribrom-4-acetamino-phenol $C_8H_6O_2NBr_3 = CH_3 \cdot CO \cdot NH \cdot C_8HBr_3 \cdot OH$. B. Aus 2.6-Dibrom-4-acetamino-phenol und Brom in Eisessig (Robertson, Soc. 81, 1478). Nadeln (aus Alkohol). F: 224° (Zers.). Mit Salpetersäure in Eisessig in der Kälte entsteht in geringer Menge ein teerartiges Produkt, in der Wärme wurden Oxalsäure, Dibromdinitromethan (Bd. I, S. 78) und wahrscheinlich Bromanil erhalten.
- 2.3.5.6.2'.4'.6' Heptabrom 4 oxy diphenylamin

 C₁₂H₄ONBr₇, s. nebenstehende Formel. B. Man läßt 7 Mol.Gew. Brom auf 1 Mol.-Gew. 4-Oxy-diphenylamin, mit
 Chloroform angefeuchtet, einwirken und führt die Reaktion
 durch Erhitzen im Wasserbad zu Ende (SMTH, OBTON, Soc.

 93, 324). Man erhitzt 2.3.5.2'.4'-Pentabrom-4-oxy-diphenylamin mit 2 Mol.-Gew. Brom
 im Rohr auf 100° (S., O.). Rhomben (aus Eisessig). F: 173°. Löslich in Chloroform, Benzol,
 Aceton, schwer löslich in Eisessig, Alkohol, Ligroin. CrO₃ in Eisessig oxydiert zu Tetrabromehinon-mono-[2.4.6-tribrom-anil] (Bd. XII, S. 665).
- 2.3.5.6.2'.4'.6' Heptabrom 4 acetoxy di phenylamin C₁₄H₆O₂NBr₇, s. nebenstehende Formel.

 B. Man erwärmt die Suspension von 0,5 g 2.3.5.6.2'.4'.6'.
 Heptabrom-4-oxy-diphenylamin in 50 com Essigsäure-anhydrid nach Zusatz von 0,1 com konz. Schwefelsäure 15 Minuten auf dem Wasserbade (SMITH, OBTON, Soc. 98, 1250). Körnige Krystalle. F: 193°. Unlöslich in warmem alkoh. Kali.
- 2.3.5.6.2'.4'.6'-Heptabrom 4-bensoyloxy-diphenylamin $C_{19}H_{9}O_{2}NBr_{7}=C_{6}H_{2}Br_{9}$ · $NH\cdot C_{6}Br_{4}\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus 2.3.5.6.2'.4'.6'-Heptabrom-4-oxy-diphenylamin in Pyridin und Benzoylchlorid (S., O., Soc. 98, 325). Rhomben (aus Alkohol oder Eisessig). F: 206°. Löslich in Chloroform, sehr wenig löslich in anderen Mitteln.
- 2-Jod-4-amino-phenol-methyläther, 2-Jod-4-amino-anisol C₇H₈ONI = H₂N·C₆H₃I·O·CH₃. B. Bei der Reduktion von 2-Jod-4-nitro-anisol (Bd. VI, S. 250) mit Zinn-chlorür und Salzsäure (Reverdin, B. 29, 998; Bl. [3] 15, 639). Nadeln (aus Wasser), Blättchen (aus Ligroin). F: 74—75° (R.). Flüchtig mit Wasserdämpfen (R.). Die wäßr. Lösung wird durch FeCl₃ vorübergehend violett gefärbt (R.). Mit Natriumamalgam und Alkohol entsteht p-Anisidin (R.). Pikrat. Gelbe Prismen (aus Wasser oder Alkohol). Rhombisch bipyramidal (Pharcm, B. 29, 1001; Bl. [3] 15, 642; Z. Kr. 30, 82; vgl. Groth, Ch. Kr. 4, 189). Zersetzt sich bei 207° (R.). 2 C₇H₃ONI + 2 HCl + PtCl₄ (R.).
- 2-Jod-4-amino-phenol-äthyläther, 2-Jod-4-amino-phenetol $C_8H_{10}ONI = H_2N \cdot C_8H_3I \cdot O \cdot C_2H_8$. B. Das Hydrochlorid entsteht bei der Reduktion von 2-Jod-4-nitro-phenetol (Reverdin, B. 29, 2596; Bl. [3] 17, 116). Hydrochlorid. Nadeln. Gibt mit FeCl₂ rotviolette Färbung. Sulfat. Nadeln (aus Alkohol). Schwer löslich in Wasser. —

Pikrat. Gelbe Nadeln (aus Wasser). Leicht löslich in Alkohol, schwer in kaltem Wasser. Zersetzt sich bei 180° .

2-Jod-4-acetamino-phenol-methyläther, 2-Jod-4-acetamino-anisol $C_9H_{10}O_3NI = CH_3 \cdot CO \cdot NH \cdot C_6H_3I \cdot O \cdot CH_3$. Blättchen (aus Wasser). F: 152—153° (R., B. 29, 999; Bl. [3] 15, 640).

2-Jod-4-acetamino-phenol-äthyläther, 2-Jod-4-acetamino-phenetol $C_{10}H_{12}O_2NI = CH_3 \cdot CO \cdot NH \cdot C_8H_3I \cdot O \cdot C_2H_5$. Täfelchen (aus verd. Alkohol). F: 146°; löslich in Alkohol, Chloroform und Essigsäure, sehr wenig löslich in Wasser, unlöslich in Benzin (R., B. 29, 2596; Bl. [3] 17, 116).

N.N'-Bis - [3 - jod - 4 - methoxy - phenyl] - thioharnstoff $C_{15}H_{14}O_{5}N_{2}I_{2}S$, s. nebenstehende Formel. Nadeln. F: 194—195°; unlöslich in Wasser, auch in den meisten übrigen Lösungsmitteln CS $NH \cdot O \cdot CH_{3}$ fast unlöslich (Reverdin, B. 29, 999).

N.N'-Bis-[3-jod-4-āthoxy-phenyl]-thioharnstoff $C_{17}H_{18}O_2N_2I_2S=CS(NH\cdot C_6H_3I\cdot O\cdot C_2H_5)_2$. Krystalle (aus Alkohol). F: 163° (Reverdin, B. 29, 2596).

2.6-Dijod-4-amino-phenol $C_6H_5ONI_2 = H_2N \cdot C_6H_2I_2 \cdot OH$. B. Aus 2.6-Dijod-4-nitro-phenol mit salzsaurem Zinnchlorür (Seiffert, J. pr. [2] **28**, 437). — Nadeln (aus Alkohol). Schmilzt unter Jodverlust bei 221,5°.

b) Nitro-Derivate des 4-Amino-phenols.

- 2-Nitro-4-amino-phenol C₆H₆O₃N₂ = H₂N·C₆H₃(NO₂)·OH. B. Durch Einw. von verd. Schwefelsäure (2 Vol. konz. Schwefelsäure + 1 Vol. Wasser) auf m-Nitro-diazobenzolimid (Bd. V, S. 278) (FRIEDLÄNDER, ZEITLIN, B. 27, 196), neben 4-Nitro-2-amino-phenol (S. 388) (KEHRMANN, IDZKOWSKA, B. 32, 1066). Beim Erwärmen von 5 g 3-Nitro-phenylhydroxylamin (Syst. No. 1932) mit 20 cem bis 30 ccm 60% iger Schwefelsäure auf dem Wasserbade (BRAND, B. 38, 4012). Beim Leiten von Schwefelwasserstoff in die alkoholischammoniakalische Lösung von 3-Nitro-4-oxy-diazobenzolimid (Bd. VI, S. 294) (FORSTER, FIERZ, Soc. 91, 865). Dunkelrote Tafeln oder Nadeln (aus Wasser oder Alkohol). F: 126—128° (FR., Z.; BR.), 131° (Fo., FI.). Durch Oxydation mit CrO₃ entsteht 3 oder 6-Nitro-2-[3-nitro-4-oxy-anilino]-chinon (Syst. No. 1874) (FR., B. 28, 1387; K., IDz.).
- 2-Nitro-4-amino-phenol-methyläther, 2-Nitro-4-amino-anisol $C_7H_8O_3N_8=H_2N\cdot C_6H_3(NO_2)\cdot O\cdot CH_3$. B. Durch Nitrieren von Acet-p-anisidid in schwefelsaurer Lösung mit Salpeterschwefelsaure und Verseifen des hierbei erhaltenen 2-Nitro-4-acetamino-anisols durch Erhitzen mit verd. Schwefelsaure auf 80—90° (Höchster Farbw., D. R. P. 101778; C. 1899 I, 1175). Rote Krystalle (aus Äther). Schmilzt gegen 50°.
- 2-Nitro-4-amino-phenol-äthyläther, 2-Nitro-4-amino-phenetol $C_8H_{10}O_2N_8=H_2N\cdot C_6H_2(NO_2)\cdot O\cdot C_2H_5$. B. Durch Nitrieren von Phenacetin in schwefelsaurer Lösung mit Salpeterschwefelsaure und Verseifen des hierbei erhaltenen 2-Nitro-4-acetamino-phenetols durch Erhitzen mit verd. Schwefelsaure auf 80—90° (Höchster Farbw., D. R. P. 101778; C. 1899 I, 1175). Gelbe Nädelchen (aus verd. Alkohol). F: 170°.
- 2-Nitro-4-amino-phenoxyessigsäure $C_8H_8O_5N_2=H_2N\cdot C_6H_8(NO_3)\cdot O\cdot CH_3\cdot CO_2H$. B. Bei Einw. der berechneten Menge Kaliumnitrat auf in konz. Schwefelsäure gelöste 4-Amino-phenoxyessigsäure unter Eiskühlung (Howard, B. 30, 2106). Bräunhenoxyessigsäure unter Eiskühlung (Howard, B. 30, 2106). Bräunhenoxyessigsäure (aus Wasser). F: 196°. Gibt mit Zinn und Salzsäure das Amino-phenmorpholon der nebenst. Formel (Syst. No. 4383).
- 8.2'.4' Trinitro 4 oxy diphenylamin C₁₂H₃O₇N₄, s. nebenstehende Formel. B. Aus 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und 2-Nitro-4-amino-phenol in siedender alko-O₂N. NH—OH holischer Lösung in Gegenwart von Natriumacetat (Kalle & Co., D. R. P. 107971; C. 1900 I, 1055). Orangegelbe Blättchen. F: 232—233°; ziemlich löslich in warmem Alkohol und warmem Benzol, leicht in Aceton und Eisessig (Reverdin, Dresel, B. 38, 1594; Bl. [3] 38, 563). Wird durch Erhitzen mit Schwefel und Schwefelnatrium auf 150—160° in einen schwarzen Schwefelfarbstoff übergeführt (K. & Co.). Das Acetylderivat bildet Prismen vom Schmelspunkt 167—168° (R., D.).
- 2-Nitro-4-[4-nitro-bensalamino]-phenol-äthyläther, 2-Nitro-4-[4-nitro-bensalamino]-phenetol $C_{15}H_{12}O_5N_5=O_5N\cdot C_6H_4\cdot CH:N\cdot C_6H_5(NO_5)\cdot O\cdot C_5H_5$. B. Aus 4-Nitro-benzaldehyd (Bd. VII, S. 256) und 2-Nitro-4-amino-phenetol in heißem Alkohol (Porz, Fleming, Soc. 93, 1918). Orangerote Nadeln (aus verd. Alkohol). F: 84°.
- 2-Nitro-4-acetamino-phenol $C_0H_0O_4N_5=CH_2\cdot CO\cdot NH\cdot C_0H_3(NO_2)\cdot OH$. B. Aus 2-Nitro-4-amino-phenol durch Acetylieren (FRIEDLÄNDER, ZEITLIN, B. 27, 197). Gelbe Nadeln. F: 157—158°. Löslich in Alkalien mit roter Farbe.

- 2 Nitro 4 acetamino phenol methyläther, 2 Nitro 4 acetamino anisol $C_0H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H_3(NO_2)\cdot O\cdot CH_3$. B. Bei der Nitrierung von Acet-p-anisidid in konz. Schwefelsäure durch ein Gemisch von Salpetersäure (D: 1,34) und konz. Schwefelsäure (Höchster Farbw., D. R. P. 101778; C. 1899 I, 1175; REVERDIN, BUCKY, B. 39, 2689; Bl. [3] 35, 1111). Orangegelbe Nadeln (aus verd. Alkohol). F: 148—149°; löslich in Wasser, schwer löslich in Benzol und Ligroin (R., B.).
- 3-Nitro-4-amino-phenol C₆H₆O₃N₈ = H₂N·C₆H₃(NO₂)·OH. B. Durch Einw. von Schwefelsäure auf o-Nitro-diazobenzolimid (Bd. V, S. 278) (Kehrmann, Gauhe, B. 30, 2137; 31, 2403; vgl. Friedländer, Zeitlin, B. 27, 195). Beim Verseifen von 5 g O.N-Diacetyl-[3-nitro-4-amino-phenol] (S. 522) durch Kochen mit 63 ccm n-Natronlauge (Hähle, J. pr. [2] 43, 64). Beim Verseifen von N-Acetyl-O-[3-nitro-benzoyl]-[3-nitro-4-amino-phenol] mit konz. Schwefelsäure auf dem Wasserbade (Reverdin, B. 39, 3796; Bl. [3] 35, 1260). Durch Verseifen von O.N-Dibenzoyl-[3-nitro-4-amino-phenol] (S. 523) mit Schwefelsäure (Re., Dresel, B. 37, 4454; Bl. [3] 31, 1271). Dunkelrote Prismen mit grünem Oberflächenschimmer (aus Äther). F: 154° (Re., Dr.). Löslich in Äther, Chloroform (Hähle). Löst sich in Wasser oder Alkohol mit orangegelber Farbe, die auf Zusatz von Alkalien in Purpurviolett, von starken Säuren in Hellgelb übergeht (Hähle; Kauffmann, Beisswenger, B. 36, 568). Die Violettfärbung der Lösung in Natronlauge ist in der Wärme beständig (Re., B. 40, 2856; Bl. [4] 1, 632). Liefert bei der Reduktion mit Zinn und Salzsäure (Hähle) oder Zinnchlorür und Salzsäure (Ke., Gau., B. 31, 2403) 3.4-Diamino-phenol. Gibt in alkoh. salzsaurer Lösung beim Behandeln mit nitrosen Gasen ein Diazoniumchlorid, das beim Erhitzen mit absol. Alkohol unter einem Überdruck von 30—40 mm Quecksilber in (Hähle). C₆H₆O₃N₂ + HCl. Farblose Blättchen oder Prismen (Hähle).
- 3-Nitro-4-amino-phenol-methyläther, 3-Nitro-4-amino-anisol C₇H₈O₃N₂ = H₂N·C₆H₃(NO₂)·O·CH₃. B. Aus Nitrohydrochinon-dimethyläther (Bd. VI, S. 857) durch Erhitzen mit 33°/ajgem wäßr. Ammoniak im geschlossenen Gefäß auf 130—140° (SCHEIDEL, D. R. P. 36014; Frdl. 1, 221). Beim Verseifen von 3-Nitro-4-acetamino-anisol mit alkoh. Kali (Reverdin, B. 29, 2595; vgl. Hinsberg, A. 292, 249). Beim Verseifen von 3-Nitro-4-p-toluol-sulfamino-anisol mit Schwefelsäure (Re., B. 42, 1525; C. 1909 I, 1810). Entsteht in geringer Menge neben Trimethylamin, wenn man 3-Nitro-4-amino-phenol mit der äquivalenten Menge Tetramethylammoniumhydroxyd in wäßr. Lösung versetzt und das dabei erhaltene Tetramethylammoniumsalz nach dem Trocknen im Vakuumexsiccator erhitzt (Hähle, J. pr. [2] 43, 65). Dunkelrote Prismen (aus Wasser und Alkohol). F: 123° (Hä.), 129° (Hi.). Löslich in Wasser, Alkohol und Äther, wenig in Benzol (Hä.). Flüchtig mit Wasserdämpfen (Hä.). Bei der Entamidierung entsteht 3-Nitro-anisol (Re., B. 29, 2595; J. 1896, 1156; Bl. [3] 17, 115). Läßt sich in alkoh. Lösung durch Zinkstaub und Natronlauge (Hinsberg) oder in Eisessig durch Zinkstaub und etwas Salzsäure (Meldel, Eyre, Soc. 81, 991) zu dem nicht näher beschriebenen 3.4-Diamino-anisol reduzieren. C₇H₈O₃N₂ + HCl. Farblose Prismen. Verliert leicht Salzsäure (Hä.).
- 3-Nitro-4-amino-phenol-äthyläther, 3-Nitro-4-amino-phenetol $C_8H_{10}O_3N_2=H_2N\cdot C_8H_3(NO_2)\cdot O\cdot C_2H_5$. B. Aus Nitrohydrochinon-diäthyläther (Bd. VI, S. 857) durch Erhitzen mit wäßr. Ammoniak im geschlossenen Rohr auf 130—140° (SCHEIDEL, D. R. P. 36014; Frdl. 1, 221). Bei kurzem Kochen von 3-Nitro-4-acetamino-phenetol mit 1 Mol.-Gew. alkoh. Kali (Autenrieth, Hinsberg, Ar. 229, 460). Rote Prismen (aus Alkohol). F: 113° (Au., H.), 109° (Sch.). Sehr schwer löslich in kaltem Alkohol, leicht in Äther und Chloroform (Au., H.). Wird in alkoh. Lösung von Zinkstaub und Natronlauge zu 3.4-Diamino-phenetol (S. 564) reduziert (Au., H.). Gibt bei der Entamidierung 3-Nitro-phenetol (Reverdin, B. 29, 2597; J. 1896, 1157; Bl. [3] 17, 118). Verwendung zur Darstellung von Azofarbstoffen auf der Faser: Höchster Farbw., D. R. P. 64510; Frdl. 3, 789; D. R. P. 99338; Frdl. 5, 487; C. 1899 I, 397.
- 3-Nitro-4-amino-phenol-[2.4-dinitro-phenyl]
 äther, 3.2'4'-Trinitro-4-amino-diphenyläther C₁₂H₈O₇N₄,

 s. nebenstehende Formel. B. Aus 3-Nitro-4-amino-phenol und
 4-Chlor-1.3-dinitro-benzol (Reverdin, Dresel, B. 38, 1595;

 Bl. [3] 33, 563). Grünlichgelbe Blättchen (aus Alkohol).

 NO₂

 NO₂

 NO₂

 NO₂

 F: 188°.
- 8-Nitro-4-amino-phenoxyessigsäure $C_8H_8O_5N_2=H_2N\cdot C_6H_3(NO_2)\cdot O\cdot CH_2\cdot CO_2H$. B. Beim Verseifen von 3-Nitro-4-benzamino-phenoxyessigsäure (S. 523) mit Schwefelsäure (Reverden, B. 42, 4113; C. 1910 I, 349). Beim Erhitzen von 3-Nitro-4-p-toluolsulfamino-phenoxyessigsäure (S. 524) mit konz. Schwefelsäure auf dem Wasserbade (R.). Braune Nadeln. F: 185°. Bariumsalz. Orangefarbene Nadeln.
- 3-Nitro-4-acetamino-phenol $C_0H_0O_4N_3=CH_3\cdot CO\cdot NH\cdot C_0H_3(NO_2)\cdot OH$. B. Beim gelinden Erwärmen von 3-Nitro-4-amino-phenol mit Essigsäureanhydrid (FRIEDLÄNDER,

ZEITLIN, B. 27, 195). Aus O.N-Diacetyl-[3-nitro-4-amino-phenol] bei vorsichtiger Verseifung mit 40°/6iger Natronlauge oder mit konz. Schwefelsäure in der Kälte (REVERDIN, DRESEL, B. 37, 4455; Bl. [3] 31, 1272; MELDOLA, HAY, Soc. 91, 1481 Anm.). — Braungelbe Nadeln (aus Wasser). F: 218° (RE., D.). Löslich in Alkalien (F., Z.). — Bei der Einw. von Salpetersäure (D: 1,42) unter Eiskühlung entsteht 2.3-Dinitro-4-acetamino-phenol (ME., H., Soc. 91, 1481). Mit rauchender Salpetersäure (D: 1,5) in Gegenwart oder Abwesenheit von Eisessig entsteht 2.3-6-Trinitro-4-acetamino-phenol (ME., H., Soc. 91, 1481; 95, 1380; vgl. dazu REVERDIN, MELDOLA, J. pr. [2] 88 [1913], 786).

- 3-Nitro-4-acetamino-phenol-methyläther, 3-Nitro-4-acetamino-anisol $C_9H_{10}O_4N_9=CH_3\cdot CO\cdot NH\cdot C_8H_3(NO_2)\cdot O\cdot CH_3$. B. Beim Erhitzen von Acet-p-anisidid mit 11% iger Salpetersäure bis zum Sieden (Reverdin, B. 29, 2595; J. 1896, 1156; Bl. [3] 17, 115). Gelbe Nadeln (aus Alkohol). F: 1170 (R.), 1160 (Wender, G. 19, 220), 1150 (Hähle, J. pr. [2] 43, 66). Leicht löslich in Alkohol, Äther, Benzol, Eisessig und heißem Wasser (Hä.). Gibt mit Salpetersäure (D: 1,42) (Meldola, Eyrer, Soc. 81, 990) oder in Eisessig mit Salpetersäure (D: 1,54) bei höchstens 10° 2.3-Dinitro-4-acetamino-anisol (W.).
- 3-Nitro-4-acetamino-phenol-äthyläther, 3-Nitro-4-acetamino-phenetol $C_{19}H_{19}O_4N_2=CH_2\cdot CO\cdot NH\cdot C_4H_2(NO_2)\cdot O\cdot C_2H_5$. B. Beim Aufkochen von Phenacetin mit etwa der doppelten der von der Theorie geforderten Menge 10—12% ger Salpetersäure (Autenbeith, Hinsberg, Ar. 229, 457). Aus Phenacetin, das mit verd. Salpetersäure angerührt wird, durch allmähliches Hinzufügen von konz. Salpetersäure in geringem Überschuß (Au., H.). Beim Versetzen einer Lösung von Phenacetin in dem 4-fachen Gewicht Eisessig mit dem gleichen Vol. Salpetersäure (D: 1,27) bei höchstens 20% (Wender, G. 19, 219). Beim Behandeln von Phenacetin mit Benzoylnitrat (Bd. IX, S. 181) in Tetrachlorkohlenstoff (Butler, B. 39, 3807). Gelbe Nadeln (aus Wasser). F: 104% (W.), 103% (Au., H.). Leicht löslich in absol. Alkohol, Äther und Chloroform (Au., H.). Gibt in Eisessig mit Salpetersäure (D: 1,54) bei höchstens 10% 2.3-Dinitro-4-acetamino-phenetol (W.).
- [3-Nitro-4-acetamino-phenyl]-acetat, O.N-Diacetyl-[3-nitro-4-amino-phenol] $C_{10}H_{10}O_5N_2 = CH_2 \cdot CO \cdot NH \cdot C_6H_3 \cdot (NO_2) \cdot O \cdot CO \cdot CH_2$. B. Beim Eintragen von 1 Tl. O.N-Diacetyl-[4-amino-phenol] in 1,5 Tle. eiskalte rauchende Salpetersäure (Hähle, J. pr. [2] 43,63). Schwefelgelbe Prismen (aus verd. Alkohol). F: 146—147° (Hä.). Gibt bei der Nitrierung mit rauchender Salpetersäure und konz. Schwefelsäure unter Kühlung 2.3.6-Trinitro-4-acetamino-phenol (Meldola, Soc. 89, 1935; vgl. dazu Reverdin, Meldola, J. pr. [2] 88 [1913], 786). Liefert bei vorsichtiger Verseifung mit 40°/0 natronlauge oder mit konz. Schwefelsäure in der Kälte 3-Nitro-4-acetamino-phenol (Reverdin, Dresel, B. 37, 4455; Bl. [3] 31, 1272). Gibt beim Kochen mit der berechneten Menge n-Natronlauge oder beim Eintragen in siedende rauchende Salzsäure 3-Nitro-4-amino-phenol (Hä.).

N-Acetyl-O-[8-nitro-benzoyl]-[8-nitro-4-amino-phenol] $C_{15}H_{11}O_7N_3=CH_3\cdot CO\cdot NH\cdot C_8H_8(NO_2)\cdot O\cdot CO\cdot C_6H_4\cdot NO_2$. B. Aus N-Acetyl-O-benzoyl-[4-amino-phenol] durch Salpetersäure (D: 1,5) bei höchstens 17° (Reverdin, B. 39, 3796; Bl. [3] 35, 1259). Entsteht ferner aus N-Acetyl-O-benzoyl-[4-amino-phenol] in konz. Schwefelsäure durch ein Gemisch von Salpetersäure (D: 1,4) und konz. Schwefelsäure bei höchstens 17° (R.). — Gelbe Nadeln. F: 184°. Löelich in warmer Essigsäure (auch in verdünnter), sehr wenig löslich in Alkohol, unlöslich in Wasser. — Wird beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbade in 3-Nitro-benzoesäure und 3-Nitro-4-amino-phenol gespalten.

O-p-Toluolsulfonyl-N-acetyl-[8-nitro-4-amino-phenol] $C_{18}H_{14}O_8N_8S=CH_3\cdot CO\cdot NH\cdot C_8H_8(NO_8)\cdot O\cdot SO_9\cdot C_6H_4\cdot CH_9$. B. Aus O-p-Toluolsulfonyl-N-acetyl-[4-amino-phenol] in Essigsäureanhydrid mit einem Gemisch von Schwefelsäure und Salpetersäure (D: 1,4) oder mit Acetylnitrat (Reverdin, B. 40, 2854; Bl. [4] 1, 630). — Gelbe Blättchen (aus Alkohol). F: 134°. Unlöslich in kalter Sodalösung und Natronlauge; löst sich in letzterer beim Erwärmen.

- O-[3-Nitro-toluol-sulfonyl-(4)]-N-acetyl[3-nitro-4-amino-phenol] C₁₈H₁₉O₈N₉S, s.
 nebenstehende Formel. B. Aus Ö-p-Toluolsulfonyl-N-acetyl-[4-amino-phenol] mit Salpetersăure (D: 1,52) oder mit einem Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4)
 (REVERDIN, B. 40, 2853; Bl. [4] 1, 629). Goldgelbe Blättchen (aus Alkohol). F: 146°.
 Sehr leicht löslich in heißem Alkohol, löslich in Essigsäure und Benzol, unlöslich in Ligroin.
 Gibt bei der Verseifung mit konz. Schwefelsäure 3-Nitro-4-amino-phenol und 2-Nitrotoluol-sulfonsäure-(4).
- 3-Nitro-4-bensamino-phenol-methyläther, 3-Nitro-4-bensamino-anisol $C_{14}H_{12}O_4N_2=C_6H_5\cdot CO\cdot NH\cdot C_6H_2(NO_2)\cdot O\cdot CH_2$. B. Aus Benz-p-anisidid (8. 469) in Eisessig durch Salpetersaure (D: 1,4) (Reverdin, B. 42, 1527; C. 1909 I, 1810). Orangefarbene Blättchen (aus Alkohol). F: 140°. Löslich in heißem Alkohol, heißer Essigsäure, kaltem Benzol. Gibt bei der Verseifung Benzoesäure und 3-Nitro-4-amino-anisol.

- [3-Nitro-4-benzamino-phenyl]-benzoat, O.N-Dibenzoyl-[3-nitro-4-amino-phenol] $C_{20}H_{14}O_5N_2 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_2(NO_2) \cdot O \cdot CO \cdot C_6H_5$. B. Aus O.N-Dibenzoyl-[4-amino-phenol] (S. 470) bei Einw. von Salpetersäure (D: 1,48) bei 0° bis 10° (Reverdin, Drienzoyl-[4-amino-phenol] in Eisessiglösung und einem Gemisch von Salpetersäure und konz. Schwefelsäure bei höchstens 60° (Reverdin, Delétra, B. 39, 129; Bl. [3] 35, 310). Gelbe Nadeln (aus Eisessigl). F: 147° (R., Dr.). Schwefelsäure zu 3-Nitro-4-amino-phenol und Benzoesäure verseift (R., Dr.). Wird durch Schwefelsäure zu 3-Nitro-4-amino-phenol und Benzoesäure verseift (R., Dr.).
- 3-Nitro-4-bensamino-phenoxyessigsäure $C_{15}H_{12}O_6N_8=C_6H_5\cdot CO\cdot NH\cdot C_8H_3(NO_8)\cdot O\cdot CH_2\cdot CO_2H$. B. Aus 4-Benzamino-phenoxyessigsäure (S. 470) mit Salpetersäure (D: 1,4) bei 30—40° (Reverdin, B. 42, 4113; C. 1910 I, 349). Entsteht gleichfalls bei der Nitrierung von 4-Benzamino-phenoxyessigsäure in Eisessig durch Salpetersäure (D: 1,4) bei 40—50° oder durch Salpetersäure (D: 1,52) bei 20—30° oder auch in Gegenwart von Essigsäureahydrid durch Salpetersäure (D: 1,4) bei 10—20° (R.). Citronengelbe Nadeln (aus Essigsäure). F: 176—177°. Leicht löslich in warmem Alkohol und Essigsäure. Gibt bei der Verseifung mit Schwefelsäure 3-Nitro-4-amino-phenoxyessigsäure.
- O-[2-Nitro-toluol-sulfonyl-(4)]-N[3-nitro-benzoyl]-[3-nitro-4-amino-phenol]
 C₂₀H₁₄O₁₀N₄S, s. nebenstehende Formel. B. Aus
 O-p-Toluolsulfonyl-N-benzoyl-[4-amino-phenol]
 (S. 471) mit Salpetersäure (D: 1,52) oder mit Salpeterschwefelsäure (Reverdin, B. 40, 2855; Bl. [4] 1, 631). Krystalle (aus Essigsäure). Schmilzt nicht glatt bei 145—150°. Schwer löslich in Alkohol und Ligroin, löslich in Aceton und Toluol, ziemlich löslich in Benzol; in der Kälte unlöslich in Sodalösung und in Natronlauge.

N.N'-Bis-[2(?)-nitro-4-methoxy-phenyl]-succinamid $C_{18}H_{18}O_8N_4$, s. nebenstehende Formel. B. Durch vorsichtiges Hinzufügen von 1 Tl. N.N'-Bis-[4-methoxy-phenyl]-succinamid (S. 474) zu einem Gemisch von 8 Tln. konz. Salpetersäure und 2 Tln. konz. Schwefelsäure unter Kühlung (Fici, C. 1902 II, 1449). — Goldgelbe Krystalle (aus Essigsäure). F: 215°. Unlöslich in Wasser und Alkohol.

Brenzweinsäure-bis-[2(P)-nitro-4-methoxy-anilid] $C_{19}H_{20}O_9N_4=CH_3\cdot O\cdot C_9H_2(NO_2)\cdot NH\cdot CO\cdot CH(CH_3)\cdot CH_3\cdot CO\cdot NH\cdot C_9H_3(NO_2)\cdot O\cdot CH_3$. B. Beim Eintropfen einer alkoh. Lösung von Brenzweinsäure-di-p-anisidid (S. 475) in gekühlte rauchende Salpetersäure (GIUFFRIDA, CHIMIENTI, G. 84 Π , 266). — Gelbe Krystalle. F: 202°.

Brenzweinsäure-p-phenetidid-[2(P)-nitro-4-äthoxy-anilid] $C_{a_1}H_{a_5}O_6N_3 = C_5H_5 \cdot O \cdot C_6H_4 \cdot NH \cdot CO \cdot C_5H_5 (CH_5) \cdot CO \cdot NH \cdot C_6H_6 (NO_3) \cdot O \cdot C_5H_5$. *B.* Man tropit eine alkoh. Lösung von Brenzweinsäure-di-p-phenetidid in gekühlte rauchende Salpetersäure (G., Ch., *G.* 34 II, 271). — Krystalle (aus Essigsäure). F: 195°.

- [2-Nitro-4-äthoxy-phenyl]-urethan 1) $C_{11}H_{14}O_5N_2$, s. nebenstehende Formel. B. Beim Erwärmen von [4-Äthoxy-phenyl]-urethan mit 15 Tln. Salpetersäure (D: 1,125) $C_2H_5 \cdot O_2C \cdot NH \cdot O_2C \cdot NH \cdot O_2H_5$ (Köhler, J. pr. [2] 29, 261, 263, 270). Goldgelbe Nadeln (aus Alkohol). F: 71°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Benzol.
- [2 Nitro 4 \ddot{a} thoxy phenyl] harnstoff ²) $C_3H_{11}O_4N_3 = H_2N \cdot CO \cdot NH \cdot C_6H_3(NO_2) \cdot O \cdot C_2H_5^2$). B. Beim Einleiten von salpetriger Säure in die alkoh. Lösung des [4- \ddot{a} thoxy-phenyl]-harnstoffs (S. 480) (Berlinerblau, J. pr. [2] 30, 104). Ziegelrote Krystalle (aus Alkohol). Leicht löslich in heißem, schwer in kaltem Alkohol.
- 3-Nitro-4-p-toluolsulfamino-phenol-methyläther, 3-Nitro-4-p-toluolsulfamino-anisol, p-Toluolsulfonsäure-[2-nitro-4-methoxy-anilid] $C_{14}H_{14}O_{2}N_{3}S = CH_{3} \cdot C_{6}H_{4} \cdot SO_{2} \cdot NH \cdot C_{6}H_{3}(NO_{3}) \cdot O \cdot CH_{2}$. B. Beim allmählichen Eintragen von 5 Tln. Salpetersäure (D: 1,4) in die Lösung von p-Toluolsulfonsäure-p-anisidi (S. 507) in Eisessig bei $10-22^{\circ}$, neben (nicht in reinem Zustand erhaltenen) 3.5-Dinitro-4-p-toluolsulfamino-anisol (Reverdin, B. 42, 1524; C. 1909 I, 1810). Nadeln (aus Alkohol), gelborange Prismen (aus Benzol). F: 105°. Leicht löslich in Alkohol, Essigsäure, Benzol; löslich in warmer Sodalösung und kalter verd. Natronlauge. Gibt bei der Verseifung 3-Nitro-4-amino-anisol.
- 8-Nitro-4-äthansulfonylamino-phenol-äthyläther, 8-Nitro-4-[äthansulfonylamino]-phenetol, Äthansulfonsäure-[2-nitro-4-äthoxy-anilid] $C_{10}H_{14}O_{\delta}N_{2}S=C_{2}H_{\delta}$.

¹⁾ Zur Konstitution vgl. auch nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] REVERDIN, Helv. chim. Acta 9 [1926], 796 Anm.

³) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von THOMS, NETTESHEIM, Ber. Disch. Pharm. Ges. 30 [1920], 229.

- SO₂·NH·C₂H₂(NO₂)·O·C₂H₃. B. Neben 3.5-Dinitro-4-äthansulfonylamino-phenetol (S. 531) beim Behandeln von Äthansulfonsäure-p-phenetidid mit Salpetersäure (1 Tl. konz. Salpetersäure + 2 Tle. Wasser) (REVERDIN, Helv. chim. Acta 12 [1929], 1052; vgl. AUTENBIETH, BERNHEIM, Ar. 242, 589). Gelbe Nadeln. F: 91°; löslich in Äther (RE.).
- 3-Nitro-4-äthylensulfonylamino-phenol-äthyläther, 3-Nitro-4-äthylensulfonylamino-phenetol, Äthylensulfonsäure-[2-nitro-4-äthoxy-anilid] $C_{10}H_{12}O_{\delta}N_{2}S=CH_{2}$: $CH\cdot SO_{2}\cdot NH\cdot C_{\delta}H_{\delta}(NO_{2})\cdot O\cdot C_{2}H_{\delta}$. B. Man schüttelt 1 g Äthylensulfonsäure-p-phenetidid (S. 507) zunächst mit 10 ccm verd. Salpetersäure, fügt dann die gleiche Menge konz. Salpetersäure hinzu und läßt unter häufigem Umschütteln einige Stunden stehen (AUTENRIETH, KOBURGER, B. 36, 3631). Gelbe Prismen (aus verd. Alkohol). Schmilzt unscharf bei 92°. Sehr wenig löslich in Wasser, leicht in Alkohol, Äther, Chloroform. Läßt sich durch Spaltung mit Kalilauge und Behandeln der erhaltenen Lösung mit Zinkstaub in 3.4-Diamino-phenetol überführen.
- 3-Nitro-4-benzolsulfamino-phenol-äthyläther, 3-Nitro-4-benzolsulfamino-phenetol, Benzolsulfonsäure-[2-nitro-4-äthoxy-anilid] $C_{14}H_{14}O_5N_2S = C_6H_5 \cdot SO_2 \cdot NH \cdot C_6H_5(NO_2) \cdot O \cdot C_2H_5$. Beim Nitrieren von Benzolsulfonsäure-p-phenetidid (S. 507) mit verd. Salpetersäure in der Wärme (Akt.-Ges. f. Anilinf., D. R. P. 164130; C. 1905 II, 1476). Gelbe Nadeln. F: 72°.
- 3-Nitro-4-p-toluolsulfamino-phenol-äthyläther, 3-Nitro-4-p-toluolsulfamino-phenetol, p-Toluolsulfonsäure-[2-nitro-4-äthoxy-anilid] $C_{15}H_{16}O_5N_2S = CH_3 \cdot C_6H_4 \cdot SO_5 \cdot NH \cdot C_6H_3(NO_2) \cdot O \cdot C_2H_5$. B. Beim Kochen von p-Toluolsulfonsäure-p-phenetidid mit verd. Salpetersäure (Akt.-Ges. f. Anilinf., D. R. P. 164130; C. 1905 II, 1476). Gelbe Nadeln. F: 94°.
- 3-Nitro-4-p-toluolsulfamino-phenoxyessigsäure $C_{15}H_{14}O_7N_2S = CH_3 \cdot C_0H_4 \cdot SO_2 \cdot NH \cdot C_0H_3(NO_2) \cdot O \cdot CH_2 \cdot CO_2H$. B. Aus 4-p-Toluolsulfonylamino-phenoxyessigsäure in Eisessig mit Salpetersäure (D: 1,4) bei 50° (Reverdin, B. 42, 4111; C. 1910 I, 349). Fast weiße Krystalle (aus verd. Alkohol), hellgelbe Nadeln (aus Benzol), citronengelbe Nadeln (aus Eisessig). F: 158°.
- O.N-Di-p-toluolsulfonyl-[3-nitro-4-amino-phenol] $C_{20}H_{18}O_7N_2S_2 = CH_3 \cdot C_6H_4 \cdot SO_3 \cdot NH \cdot C_6H_5(NO_2) \cdot O \cdot SO_4 \cdot C_6H_4 \cdot CH_3$. B. Aus O.N-Di-p-toluolsulfonyl-[4-amino-phenol] und Salpetersäure (D: 1,48) bei 10—15° (Reverdin, Dresel, B. 37, 4456; Bl. [3] 31, 1272). Gelbbraune Prismen. F: 139°.
- Phosphorsäure tris [2 nitro 4 äthoxy anilid] $C_{24}H_{17}O_{10}N_sP$, s. nebenstehende Formel. B. Durch Erhitzen von Phosphorsäure-tri-p-phenetidid (S. 510) mit 15—20% ger OP $NH \cdot O \cdot C_2H_5$ Salpetersäure (Autenrieth, Rudolph, B. 33, 2110). Beim Versetzen einer Lösung von Phosphorsäure-tri-p-phenetidid in Eisessig mit dem gleichen Volumen konz. Salpetersäure unter Kühlen (Av., R.). Krystalle (aus Eisessig). Schmilzt bei ca. 126° unter Zersetzung. Ziemlich löslich in Alkohol, sehr wenig in Äther.
- 6-Chlor-2-nitro-4-amino-phenol $C_0H_5O_3N_4Cl = H_2N\cdot C_0H_4Cl(NO_2)\cdot OH$. B. Durch Nitrieren von 2-Chlor-4-amino-phenol in schwefelsaurer Lösung (Chem. Fabr. Sandoz, D. R. P. 147060; C. 1904 I, 233). F: 130°.
- 5 Chlor 3.2'.4' trinitro 4 oxy diphenylamin

 C₁₂H₇O₇N₄Cl, s. nebenstehende Formel. B. Durch Kondensation des 6-Chlor-2-nitro-4-amino-phenols mit 4-Chlor-1.3-dinitro-benzol (REVERDIN, DELETRA, B. 37, 1729; Bl. [3]

 31, 637). Goldgelbe Nadeln. F: 232°. Das Acetylderivat schmilzt bei 188,5°.
- 5 Chlor 2 (?).2'.4' trinitro 4 oxy diphenylamin $C_{12}H_{7}O_{7}N_{4}Cl$, s. nebenstehende Formel. B. Aus 5-Chlor-2(?).2'.4'-trinitro-4-acetoxy-diphenylamin (s. u.) durch Kochen mit Sodalösung (R., Dr., B. 37, 1728; Bl. [3] 81, 637). O2N NH OH Gelbrotes Pulver. F: 252°. Liefert bei der Acetylierung wieder das Acetylderivat vom Schmelzpunkt 177,5—178°.
- 5-Chlor-2 (P.2'.4'-trinitro-4-acetoxy-diphenylamin C₁₄H₂O₅N₄Cl = (O₅N)₂C₅H₂·NH·C₆H₃Cl(NO₂)·O·CO·CH₂. B. Aus 1 Tl. 3-Chlor-2'.4'-dinitro-4-acetoxy-diphenylamin (S. 511) und 2 Tln. rauchender Salpetersäure (46,8° B6) bei 5-10° (R., DE., B. 87, 1728; Bl. [3] 81, 636). Orangegelbe Prismen (aus Benzol + Ligroin oder aus Eisessig), Nadeln (aus verd. Aceton). F: 177,5—178°. Leicht löslich in Aceton und Chloroform, schwer in Alkohol und Äther, unlöslich in Ligroin.

- 2-Chlor-x.2'.4'-trinitro-4-oxy-diphenylamin $C_{12}H_7O_7N_4Cl = (O_2N)_2C_6H_3\cdot NH\cdot C_6H_2Cl(NO_2)\cdot OH.$ B. Aus 2-Chlor-x.2'.4'-trinitro-4-acetoxy-diphenylamin (s. u.) durch Verseifung mit Sodalösung (R., Dr., B. 37, 1729). Citronengelbe Nadeln (aus Aceton). F: 232,5°. Liefert bei der Acetylierung wieder das Acetylderivat vom Schmelzpunkt 134,5°.
- 2-Chlor-x.2'.4'-trinitro-4-acetoxy-diphenylamin $C_14H_9O_8N_4Cl = (O_9N)_2C_6H_3\cdot NH\cdot C_6H_3Cl(NO_9)\cdot O\cdot CO\cdot CH_3$. B. Durch Nitrierung von 2-Chlor-2'.4'-dinitro-4-acetoxy-diphenylamin (8. 512) mit 2 Thn. rauchender Salpetersäure (46,8° Bé) bei 5—10° (R., DE., B. 37, 1729; Bl. [3] 31, 638). Citronengelbe prismatische Krystalle (aus Aceton), wahrscheinlich Krystallaceton enthaltend. Schmilzt nach dem Trocknen auf dem Wasserbade bei 134,5°. Leicht löslich in Aceton und Chloroform, schwer in Alkohol und Äther, unlöslich in Ligroin.
- 3.5 Dichlor 2.2'.4' trinitro 4 oxy diphenylamin $O_2 O_2 N$ Cl $O_2 N_1 O_2 O_2 N$ Cl $O_2 N_2 O_2 N_1 O_2 O_2 N$ Cl $O_2 N_2 O_2
- 3.5-Dichlor-2.2'.4'-trinitro-4-acetoxy-diphenylamin $C_{14}H_8O_8N_4Cl_2 = (O_2N)_2C_8H_3$. $NH\cdot C_8HCl_2(NO_2)\cdot O\cdot CO\cdot CH_3$. B. Durch Nitrierung von 3.5-Dichlor-2'.4'-dinitro-4-acetoxy-diphenylamin mit rauchender Salpetersäure (46,8° Bé) bei 20—30° (R., De., B. 37, 1730; Bl. [3] 31, 638). Citronengelbe Prismen (aus Aceton oder Essigsäure). F: 177,5°. Leicht löslich in Aceton und Chloroform, schwer in Alkohol und Äther, unlöslich in Ligroin.
- 6-Brom-2-nitro-4-acetamino-phenol $C_8H_7O_4N_2Br=CH_3\cdot CO\cdot NH\cdot C_6H_2Br(NO_2)\cdot OH$. B. Beim Behandeln einer Suspension von 2.6-Dibrom-4-acetamino-phenol in Eisessig mit Salpetersäure in der Kälte (ROBERTSON, Soc. 81, 1478). Krystalle (aus Methylalkohol). F: 230°. Sehr leicht löslich in den gewöhnlichen organischen Lösungsmitteln.
- **6-Brom-2-nitro-4-benzamino-phenol** $C_{13}H_9O_4N_2Br=C_6H_5\cdot CO\cdot NH\cdot C_6H_2Br(NO_2)\cdot OH$. B. Beim Behandeln von 2.6-Dibrom-4-benzamino-phenol in Eisessig mit Salpetersäure bei 18—20° (ROBERTSON, Soc. 81, 1478). Gelbe Nadeln (aus Methylalkohol). F: 247°. Leicht löslich in organischen Lösungsmitteln.
- 2.3-Dinitro-4-amino-phenol $C_0H_5O_5N_3=H_2N\cdot C_0H_2(NO_2)_2\cdot OH$. B. Durch kurzes Erwärmen von 2.3-Dinitro-4-acetamino-phenol mit konz. Schwefelsäure (Meldola, Hay, Soc. 19, 1482). Roter krystallinischer Niederschlag. Sehr schwach basisch; die Salze werden durch Wasser völlig gespalten. Die Diezotierung in Eisessig in Gegenwart von Schwefelsäure liefert 2.3-Dinitro-4-oxy-benzoldiazoniumsalz. Bei der Zersetzung der in eisessigsaurer Lösung bei Abwesenheit von Mineralsäure gewonnenen Diezoverbindung mit CuCl entsteht hauptsächlich 4-Chlor-2-nitro-phenol.
- 2.3-Dinitro-4-amino-phenol-methyläther, 2.3-Dinitro-4-amino-anisol $C_7H_7O_5N_3=H_1N\cdot C_6H_8(NO_5)_2\cdot O\cdot CH_3$. B. Beim Erhitzen von 2.3-Dinitro-4-acetamino-anisol mit alkoh. Natronlauge (Meldola, Eyre, Soc. 81, 990) oder mit konz. Schwefelsäure auf 110° (Wender, G. 19, 221). Entsteht ferner bei der Verseifung von 2.3-Dinitro-4-benzamino-anisol und von 2.3-Dinitro-4-p-toluolsulfamino-anisol (Reverdin, B. 42, 1526; C. 1909 I, 1810). Rote Nadeln (aus Alkohol). F: 188° (M., E.), 182° (W.). Sehr leicht löslich in Alkohol, Ather und Essigsäure (W.), schwer in heißem Wasser (M., E.). Liefert mit Athylnitrit 2.3-Dinitro-anisol (Bd. VI, S. 251) (W.; vgl. M., E.). Bei der Diazotierung in essigsaurer Lösung in Gegenwart von Salpetersäure oder Schwefelsäure entsteht in normaler Weise ein Dinitrodiazoniumsalz, bei der Diazotierung in essigsaurer Lösung in Gegenwart von konz. Salzsäure entsteht 2-Chlor-3-nitro-4-methoxy-benzoldiazoniumsalz, bei der Diazotierung in Eisessigsuspension entsteht ein Produkt, das mit O₂N OH alkal. \$\beta\$-Naphthollösung die Azoverbindung nebenstehender CH₃·O·N:N·C₁₀H₆·OH
- 2.3-Dinitro-4-amino-phenol-äthyläther, 2.3-Dinitro-4-amino-phenetol $C_8H_9O_5N_3 = H_2N \cdot C_6H_8(NO_2)_2 \cdot O \cdot C_2H_5$. B. Bei 10 Minuten langem Erhitzen von 2.3-Dinitro-4-acetamino-phenetol mit kons. Schwefelsäure auf 100° (Wender, G. 19, 220) oder beim 4-stdg. Kochen mit 25°/ajger Salzsäure (Blanksma, R. 27, 50). Braunrote Prismen (aus Alkohol). F: 145° (W.; B.). Schr leicht löslich in kochendem Alkohol (W.). Läßt sich durch Diazotieren und Verkochen der Diazoniumverbindung mit Alkohol in 2.3-Dinitro-phenetol (Bd. VI, S. 251) überführen (B.).

- 2.8 Dinitro 4 amino phenoxyessigsäure $C_8H_7O_7N_3 = H_2N \cdot C_6H_8(NO_8)_3 \cdot O \cdot CH_2 \cdot CO_8H$. Zur Konstitution vgl. Reverdin, Buoky, B. 39, 2685; Bl. [3] 35, 1106. B. Durch Verseifung der 2.3-Dinitro-4-acetamino-phenoxyessigsäure (s. u.) mit Schwefelsäure (Reverdin, Dresel, B. 38, 1596; Bl. [3] 38, 566). — Rote Prismen (aus Eisessig). Beginnt bei 190° sich zu zersetzen und schmilzt bei 204—205°; leicht löslich in Essigsäure, Alkohol und Aceton, ziemlich löslich in Wasser, schwer in Benzol und unlöslich in Ligroin; löslich in Alkalien mit gelbbrauner Farbe (R., D.). — Gibt beim Erhitzen mit Essigsäureanhydrid und einigen Tropfen konz. Schwefelsäure 2.3-Dinitro-4-acetamino-phenoxyessigsäure (R., D.). — Natriumsalz. Rote Blättchen (R., D.).
- [2.8-Dinitro-4-methylamino-phenyl]-benzoat $C_{14}H_{11}O_6N_3 = CH_3 \cdot NH \cdot C_6H_2(NO_2)_2$ O·CO·C.H. B. Beim Nitrieren von [4-Methylamino-phenyl]-benzoat (S. 442) mit Salpetersaure (D: 1,4 oder 1,52) (REVERDIN, B. 42, 1528; C. 1909 I, 1811). — Gelbe Nadeln (aus Alkohol). F: 178°. Sehr leicht löslich in heißem Wasser, leicht in heißem Alkohol, löslich in Essignaure. — Gibt bei der Verseifung Benzoesaure und eine Dinitroverbindung, deren Reduktionsprodukt alle charakteristischen Reaktionen eines o-Diamins zeigt.
- [2.3 (?)-Dinitro-4-methylamino-phenyl]-[3-nitro-benzoat] $C_{14}H_{10}O_8N_4 = CH_3 \cdot NH$. C.H. (NO.). O·CO·C.H. NO. B. Beim allmählichen Versetzen einer Lösung von 1 Tl. [4-Methylamino-phenyl]-benzoat in 5 Tln. konz. Schwefelsäure mit einem Gemisch aus 50%, Salpetersaure (D: 1,4 oder 1,52) und konz. Schwefelsaure bei 0—10% (REVERDIN, B. 42, 1529; O. 1909 I, 1811). — Citronengelbe Nadeln (aus Essigsaure). F: 203—204%. — Gibt mit Sodalösung Methylamin und 3-Nitro-benzoesäure.
- p-Toluolsulfonsäure-[2.8-dinitro-4-methylamino-phenyl]-ester $C_{14}H_{13}O_7N_3S =$ CH2·NH·C2H2(NO2)2·O·SO2·C2H4·CH2. B. Beim Nitrieren von p-Toluolsulfonsäure-[4-methylamino-phenyl]-ester in essigsaurer Lösung mit Salpetersäure (D: 1,4 oder 1,52) (Reverdin, B. 42, 1526; C. 1909 I, 1810). — Gelbe Nadeln (aus Alkohol). F: 168—169°. - Gibt ein Reduktionsprodukt, das alle Eigenschaften eines o-Diamins aufweist.
- 2.3 Dinitro 4-acetamino phenol $C_8H_2O_4N_8=CH_3\cdot CO\cdot NH\cdot C_6H_2(NO_3)_3\cdot OH.$ B. Man lost 5 g 3-Nitro 4-acetamino phenol in 35 com eiskalter Salpetersäure (D: 1,42) (Meldolla, HAY, Soc. 91, 1481). — Gelbe Nadeln (aus Wasser oder verd. Essigsäure). F: 199,5° (Zers.). Beim Erwärmen mit Anilin entsteht 1-Phenyl-7-nitro-6-oxy-2-methyl-benzimidazol (Syst. No. 3509). Gibt bei der Verseifung mit konz. Schwefelsäure 2.3-Dinitro-4-amino-phenol (8.525).
- 2.8-Dinitro-4-acetamino-phenol-methyläther, 2.8-Dinitro-4-acetamino-anisol $C_0H_0O_0N_3 = CH_3 \cdot CO \cdot NH \cdot C_0H_1 \cdot NO_0)_3 \cdot O \cdot CH_3$. B. Beim Lösen von Acet-p-anisidid in kalter Salpetersäure (D: 1,42) (Meldola, Eyre, Soc. 81, 990). Aus 3-Nitro-4-acetamino-anisol beim Lösen in Salpetersäure (D: 1,42) (M., E.) oder durch Lösen in Eisessig und Hinzu-fügen von Salpetersäure (D: 1,54) bei höchstens 10° (Wender, G. 19, 220). — Nadeln (aus Alkohol). F: 230—231° (korr.) (M., E.), 220° (W.). Ziemlich schwer löslich in kaltem Alkohol
- **2.3-Dinitro-4-acetamino-phenol-äthyläther**, **2.3-Dinitro-4-acetamino-phenetol** $C_{12}H_{11}O_4N_2 = CH_2 \cdot CO \cdot NH \cdot C_4H_2(NO_2)_2 \cdot O \cdot C_4H_3$. B. Beim allmählichen Hinzufügen von Salpetersäure (D: 1,52) zu Phenacetin unter Eiskühlung (Blanksma, R. 27, 49). Bei der Nitrierung einer Lösung von Phenacetin in der 5-fachen Menge seines Gewichtes Eisessig durch das gleiche Vol. Salpetersäure (D: 1,54) bei 5° (Wender, G. 19, 219). Aus 3-Nitro-4-acetamino-phenetol in Eisessig mit Salpetersäure (D: 1,54) bei höchstens 10° (W). Gelbliche Nadeln (aus Alkohol). F: 206° (W.; B.). Sehr schwer löslich in kaltem Alkohol (W.). Wird durch 10 Minuten langes Erwärmen mit konz. Schwefelsäure auf höchstens 100° (W.) oder durch 4-stdg. Kochen mit 25°/oiger Salzsäure (B.) zu 2.3-Dinitro-4-aminophenetol · verseift.
- **2.3-Dinitro-4-acetamino-phenoxyessigsäure** $C_{10}H_2O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_6H_2(NO_3)_3 \cdot CO \cdot NH \cdot C_6H_2(NO_3)_3 \cdot CO \cdot NH \cdot C$ O·CH₂·CO₂H. Zur Konstitution vgl. REVERDIN, BUOKY, B. 39, 2685; Bl. [3] 35, 1106. B. Beim Nitrieren von 4-Acetamino-phenoxyessigsäure mit rauchender Salpetersäure unter Eiskühlung (Howard, B. 80, 2105), neben 3.5-Dinitro-4-acetamino-phenoxyessigsäure (S. 530) (R., B., B. 89, 2686). — Gelbliche Krystalle (aus Wasser). F: 205° (H.). — Liefert

bei der Reduktion mit Zinn und Salzsäure die Verbindung CH₃·C·NH NH·CO (Syst. No. 4673) (H.). Wird durch Schwefelsäure zu 2.3-Dinitro-4-amino-phenoxyessigsäure (s. o.) verseift (REVERDIN, DRESEL, B. 88, 1596; Bl. [3] 83, 566).

2.3-Dinitro-4-bensamino-phenol-methyläther, 2.3-Dinitro-4-bensamino-anisol C₁₆H₁₁O₆N₅ = C₆H₅·CO·NH·C₆H₂(NO₆)₅·O·CH₅. B. Man läßt auf Benz-p-anisidid (S. 469) Salpetersaure (D: 1,4) einwirken und erhitzt schließlich auf dem Wasserbade auf 70—80° (REVERDIN, B. 42, 1527; C. 1909 I, 1810). In geringer Menge neben anderen Produkten bei der Nitrierung von Benz-p-anisidid mit Salpetersäure (D: 1,52) bei 40° (R.). Entsteht ferner bei der Nitrierung von Benz-p-anisidid in Essigsäureanhydridlösung durch Salpetersäure (D: 1,52) bei höchstens 50°, neben anderen Verbindungen (R.). — Hellgelbe Nadeln (aus Alkohol). F: 185°. Löslich in heißem Alkohol und heißer Essigsäure, schwer löslich in Benzol. — Gibt bei der Verseifung 2.3-Dinitro-4-amino-anisol.

2.3-Dinitro-4-p-toluolsulfamino-phenol-methyläther, 2.3-Dinitro-4-p-toluolsulfamino-anisol, p-Toluolsulfonsäure-[2.3-dinitro-4-methoxy-anilid] $C_{14}H_{13}O_7N_3S = CH_5 \cdot C_6H_4 \cdot SO_2 \cdot NH \cdot C_6H_8(NO_8)_2 \cdot O \cdot CH_8$. B. Aus 4-p-Toluolsulfamino-anisol in Eisessig durch Salpetersäure (D: 1,52) bei 20—30° (REVERDIN, B. 42, 1525; C. 1909 I, 1810). — Nadeln (aus Benzol + Ligroin). F: 165—167°. Löslich in Alkohol, Benzol, Essigsäure, unlöslich in Ligroin. Löslich in Sodalösung und warmer verdünnter Natronlauge. — Gibt bei der Verseifung 2.3-Dinitro-4-amino-anisol.

2.5-Dinitro-4-amino-phenol-methyläther, 2.5-Dinitro-4-amino-anisol $C_7H_7O_5N_3=H_2N\cdot C_8H_2(NO_2)_2\cdot O\cdot CH_3$. B. Beim Erhitzen von 2.5-Dinitro-4-acetamino-anisol mit verd. Schwefelsäure (Reverdin, Bucky, B. 39, 2691; Bl. [3] 35, 1113). — Rote Nadeln (aus Benzol + Ligroin). F: 153°. Leicht löslich in Benzol, sehr wenig in Ligroin, löslich in Alkohol und Essigsäure. Wird durch Natriumcarbonatlösung, Natronlauge und Ammoniak violettrot gefärbt. — Gibt beim Diazotieren und Verkochen der Diazoverbindung mit Alkohol 2.5-Dinitro-phenol.

2.5-Dinitro-4-amino-phenoxyessigsäure $C_8H_7O_7N_3=H_2N\cdot C_6H_2(NO_2)_2\cdot O\cdot CH_3\cdot CO_2H$. B. Beim Erwärmen von 2.5-Dinitro-4-acetamino-phenoxyessigsäure mit konz. Schwefelsäure auf dem Wasserbade oder beim Kochen mit verd. Schwefelsäure oder verd. Salzsäure (R., B., B. 39, 2681; Bl. [3] 35, 1101). — Rote Nadeln oder orangerote Blättchen (aus Wasser). F: 170°. Leicht löslich in Alkohol, Aceton, Eisessig, ziemlich leicht in verd. Alkohol, verd. Essigsäure und heißem Wasser, weniger löslich in der Kälte, unlöslich in Benzol und Ligroin; leicht löslich in Ätzalkalien und Alkalicarbonaten. — Wird durch Diazotierung und Verkochen der Diazoniumsalzlösung mit Alkohol in 2.5-Dinitro-phenol übergeführt. Gibt mit Essigsäureanhydrid und wenig konz. Schwefelsäure in der Kälte 2.5-Dinitro-4-acetamino-phenoxyessigsäure. — Ba $(C_8H_8O_7N_8)_8+3H_2O$. Rotbraune Nadeln, die beim Erwärmen auf dem Wasserbade wahrscheinlich durch Verlust eines Teiles ihres Krystallwassers ihre Farbe ändern. Verliert das Krystallwasser vollständig bei 150° unter gleichzeitiger Zersetzung.

Äthylester $C_{10}H_{11}O_7N_3 = H_2N \cdot C_6H_2(NO_2)_2 \cdot O \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen der 2.5-Dinitro-4-amino-phenoxyessigsäure in verd. schwefelsaurer Lösung mit Alkohol (R., B., B. 39, 2682; Bl. [3] 35, 1102). — Rote Nadeln. F: 144°. Löslich in Essigsäure und warmem Benzol, schwer löslich oder unlöslich in Ligroin.

2.5-Dinitro-4-acetamino-phenol-methyläther, 2.5-Dinitro-4-acetamino-anisol $C_9H_9O_6N_3=CH_3\cdot CO\cdot NH\cdot C_6H_2(NO_2)_2\cdot O\cdot CH_3$. B. Aus Acet-p-anisidid (S. 461) in konz. Schwefelsäure durch Nitrieren mit einem Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4 oder 1,52) bei höchstens $+5^\circ$ und nachfolgendes Erwärmen auf 35°, neben 2.6-Dinitro-4-amino-anisol und 2.6-Dinitro-4-acetamino-anisol (R., B., B. 39, 2690; Bl. [3] 35, 1112). — Citronengelbe Nadeln (aus verd. Essigsäure). F: 175,5—176,5°. Leicht löslich in Aceton, ziemlich leicht in verd. Essigsäure und Alkohol, schwer in Wasser, Benzol und Ligroin.

2.5-Dinitro-4-acetamino-phenoxyessigsäure $C_{10}H_{2}O_{8}N_{3} = CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{2}(NO_{2})_{2} \cdot O \cdot CH_{2} \cdot CO_{2}H$. B. Aus 4-Acetamino-phenoxyessigsäure (S. 465) in konz. Schwefelsäure durch ein Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4 oder 1,52) (R., B., B. 39, 2680; Bl. [3] 35, 1100). Aus der 2.5-Dinitro-4-amino-phenoxyessigsäure und Acetanhydrid in Gegenwart von wenig konz. Schwefelsäure (R., B.). — Gelbe Nadeln oder gelbe bis orangefarbene Blättchen (aus Alkohol und Wasser). F: 176°. Leicht löslich in Eisessig, Aceton und Acetanhydrid, ziemlich leicht in Alkohol, schwer in Wasser, sehr wenig in Benzol und Chloroform, unlöslich in Ligroin. Löslich in ätzenden und kohlensauren Alkalien. — Ba($C_{10}H_{8}O_{8}N_{3})_{2}+2H_{2}O$. Gelbbraune Prismen. Schwer löslich in kaltem Wasser, verliert bei 120—140° sein Krystallwasser unter gleichzeitiger Zersetzung.

2.5-Dinitro-4-[3-nitro-benzamino]-phenoxyessigsäure $C_{15}H_{10}O_{10}N_4 = O_2N \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_2(NO_2)_3 \cdot O \cdot CH_2 \cdot CO_2H$. B. Aus 4-Benzamino-phenoxyessigsäure in konz. Schwefelsäure durch ein Gemisch von konz. Schwefelsäure und konz. Salpetersäure (D: 1,4 oder 1,52) neben anderen Produkten (Reverdin, B. 42, 4114; C. 1910 I, 349). — Citronengelbe Nadeln. F: 206°. — Gibt bei der Verseifung mit Schwefelsäure 2.5-Dinitro-4-aminophenoxyessigsäure.

2.6-Dinitro-4-amino-phenol, Isopikraminsäure $C_6H_5O_5N_3=H_5N\cdot C_6H_2(NO_5)_5\cdot OH$. B. Beim Verseifen von 2.6-Dinitro-4-acetamino-phenol mit Salzsäure in der Wärme (Reverdin,

Dresel, B. 38, 1598; Bl. [3] 33, 567; vgl. Cassella & Co., D. R. P. 172978; C. 1906 II, 984). Bei 12-stdg. Erhitzen von 2.6-Dinitro-4-benzamino-phenol mit Salzsäure (5 Vol. konz. Salzsäure + 3 Vol. Wasser) im geschlossenen Rohr auf 130° (Dabney, Am. 5, 33). Entsteht ferner aus 2.6-Dinitro-4-benzamino-phenol durch 2-stdg. Erhitzen mit konz. Schwefelsäure auf dem Wasserbad (Reverdin, Delétra, B. 39, 126; Bl. [3] 35, 307). — Gelbbraune Nadeln (aus Wasser), die in feuchtem Zustande goldglänzend sind (DA.). Schmilzt bei 170° (DA.; RE., DE.). 100 Tle. Wasser lösen bei 22° 0,082 Tle. und bei Siedehitze 0,812 Tle.; sehr leicht löslich in Alkohol, weniger löslich in Benzol; die Lösungen sind rot gefärbt (DA.). Läßt sich in ein sehr explosives Diazoniumsalz überführen, das beim Kochen mit absol. Alkohol 2.6-Dinitro-phenol liefert (RE., DR.). Gibt mit 4-Chlor-1.3-dinitro-benzol in alkoh. Lösung bei Gegenwart von Natriumacetat 3.5.2'.4'-Tetranitro-4-oxy-diphenylamin (Re., Dr.). — KC₆H₄O₅N₈ (über Schwefelsäure getrocknet). Blauschwarze Nadeln (aus Alkohol). Äußerst leicht löslich in Wasser, weniger in Alkohol (DA.).

- 2.6-Dinitro-4-amino-phenol-methyläther, 2.6-Dinitro-4-amino-anisol $C_7H_7O_5N_3=H_2N\cdot C_6H_8(NO_2)_8\cdot O\cdot CH_8$. Beim Verseifen von 2.6-Dinitro-4-acetamino-anisol mit verd. Schwefelsäure (Meldola, Stephens, Soc. 87, 1204). Nadeln (aus verd. Alkohol). F: 212°. - Liefert bei der Diazotierung das 2.6-Dinitro-chinon-diazid-(4) O: $C_6H_2(NO_2)_2:N_2$ (Syst. No. 2199).
- $\textbf{2.6-Dinitro-4-amino-phenoxyessigs\"{a}ure} \ C_8H_7O_7N_3=H_2N\cdot C_6H_2(NO_2)_{\underline{3}}\cdot O\cdot CH_2\cdot CO_2H.$ B. Man nitriert 4-Benzamino-phenoxyessigsaure (S. 470) mit Salpetersaure (D: 1,52) in Acetanhydrid und verseift das erhaltene Produkt mit konz. Schwefelsäure (REVERDIN, B. 42, 4114; C. 1910 I, 349). — Gelbbraune Schuppen. F: 176°.
- **3.5.2'.4'-Tetranitro-4-oxy-diphenylamin** $C_{12}H_7O_9N_5$, s. nebenstehende Formel. B. Durch Kondensation von NO2 NO, 4-Chlor-1.3-dinitro-benzol und 2.6-Dinitro-4-amino-phenol in O2N. он alkoh. Lösung bei Gegenwart von Natriumacetat (REVERDIN, Dresel, B. 38, 1598; Bl. [3] 33, 568). — Gelbes Pulver. F: 236°. Fast unlöslich in allen üblichen Lösungsmitteln. — Das Acetylderivat bildet gelbe Nadeln vom Schmelzpunkt 210°.
- **2.6-Dinitro-4-acetamino-phenol** $C_8H_7O_9N_3=CH_3\cdot CO\cdot NH\cdot C_8H_2(NO_2)_2\cdot OH.$ B. Man gibt zu einer Lösung von 4-Amino-phenol in Eisessig Essigsäureanhydrid und fügt eine Lösung von Salpetersäure (D: 1,5) in Eisessig unter Eiskühlung hinzu (Meldola, Stephens, Soc. 87, 1203). Beim Eintragen eines Gemisches aus gleichen Teilen konz. Schwefelsäure und 60% iger Salpetersäure in eine Lösung von 4-Acetamino-phenol in konz. Schwefelsäure unter guter Kühlung (Cassella & Co., D. R. P. 172978; C. 1906 II, 984; REVERDIN, DRESEL, B. 38, 1598; Bl. [3] 33, 567). Aus 4-Diacetylamino-phenol in konz. Schwefelsäure durch ein Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4) bei höchstens $+5^{\circ}$ (Reverdin, Bucky, B. 39, 2687; Bl. [3] 35, 1108). Aus N-Acetyl-O-benzoyl-[4-aminophenol] in konz. Schwefelsäure durch ein Gemisch von Salpetersäure (D: 1,4) und konz. Schwefelsäure bei höchstens 17° (REVERDIN, B. 39, 3796; Bl. [3] 35, 1259). — Gelbbraune Nadeln oder braune Prismen (REVERDIN, DELETRA, B. 39, 127; Bl. [3] 35, 307). F: 182° (M., St.), 181° (R., B.). Leicht löslich in Eisessig und Aceton, löslich in Alkohol und Wasser, schwer löslich in Ather, Benzol und Chloroform, unlöslich in Ligroin (R., Del.). — Liefert bei der Reduktion mit verd. Natriumsulfidlösung 6-Nitro-2-amino-4-acetamino-phenol (C. & Co.). Wird von Salzsäure in der Wärme unter Bildung von Isopikraminsäure verseift (R., Dr.). — NH₄C₅H₅O₆N₃. Rote Nadeln (aus Wasser) (M., Sr.). — AgC₆H₅O₆N₃. Rote Nadeln. Unlöslich in Wasser (M., Sr.). — Anilinsalz C₆H₇N + C₈H₇O₆N₃. Rote Nadeln (aus Alkohol). F: 171° (M., Sr.). — Benzylaminsalz C₇H₉N + C₈H₇O₆N₃. Rote Prismen (aus Alkohol). F: 221° (M., Sr.).
- 2.6-Dinitro-4-acetamino-phenol-methyläther, 2.6-Dinitro-4-acetamino-anisol $C_9H_9O_9N_3=CH_3\cdot CO\cdot NH\cdot C_9H_9(NO_9)_2\cdot O\cdot CH_3$. B. Aus Acet-p-anisidid in konz. Schwefelsäure durch Nitrieren mit einem Gemisch von Schwefelsäure und Salpetersäure (D: 1,4 oder 1,52) bei höchstens +5° und nachfolgendes Erwärmen auf 35° (Reverdin, Bucky, B. 39, 2690; Bl. [3] 35, 1112). Man erwärmt das Silbersalz des 2.6-Dinitro-4-acetaminophenols mit Methyljodid in Methylalkohol (Meldola, Stephens, Soc. 87, 1204). — Strohgelbe Nadeln (aus verd. Eisessig). F: 157° (M., Sr.; R., B.).
- 2.6-Dinitro-4-benzamino-phenol $C_{18}H_9O_6N_3 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_9(NO_2)_2 \cdot OH$. B. Aus 4-Benzamino-phenol (S. 469) bei der Einw. von Salpetersäure (D: 1,5) bei —10 bis 0° oder bei der Einw. von Salpetersäure (D: 1,34) bei $20-26^{\circ}$ (Reverdin, Delétra, B. 39, 127; Bl. [3] 35, 308). Aus 20 g 4-Benzamino-phenol in 40 ccm konz. Schwefelsäure durch ein Gemisch von 15 ccm Salpetersäure (D: 1,40) und 17 ccm konz. Schwefelsäure bei 7—120 (RE., DE.). Beim langsamen Versetzen einer Lösung von O-Acetyl-N-benzoyl-[4-aminophenol] (S. 470) in konz. Schwefelsäure mit einer Lösung von Salpetersäure (D: 1,4) in

konz. Schwefelsäure bei —8°; man läßt dann die Temperatur langsam auf 40° steigen (Re., B. 39, 3794; Bl. [3] 35, 1257). Aus O.N-Dibenzoyl-[4-amino-phenol] (S. 470) in konz. Schwefelsäure durch ein Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4) bei 7—14°; man erwärmt schließlich auf 60° (Re., De.). Beim Behandeln einer Lösung von 1 Tl. 5-Benzamino-salicylsäure (Syst. No. 1911) in 20—30 Tln. Eisessig mit konz. Salpetersäure; man verwendet 4—5 Tropfen Salpetersäure auf je 100 ccm Lösung und erwärmt auf 80°; sobald die Lösung hellgelb geworden ist, wird sie sofort in das vierfache Volumen Wasser gegossen und der gefällte Niederschlag aus Alkohol umkrystellisiert (Dabney, Am. 5, 28). — Gelbe Tafeln (aus Alkohol). Entwickelt oberhalb 150° rote Dämpfe und schmilzt bei 250° (Da.); F: 263° (Re., De.). Leicht löslich in Aceton und Eisessig, schwer in Alkohol, Chloroform, Benzol und Wasser, sehr wenig in Äther, unlöslich in Ligroin (Re., De.). — Gibt bei der Reduktion mit Zinn und Salzsäure Benzoesäure und 2.4.6-Triamino-phenol (Re., De.). Wird bei 12-stdg. Erhitzen mit Salzsäure (5 Vol. konz. Salzsäure und 3 Vol. Wasser) im Druckrohr auf 130° (Da.) oder bei 2-stdg. Erhitzen mit konz. Schwefelsäure auf dem Wasserbade (Re., De.) zu Isopikraminsäure und Benzoesäure verseift. — Natriumsalz. Rote Nadeln oder Flitter mit grünen Reflexen (Re., De.). — KC₁₃H₈O₆N₃ + H₂O. Hellrote Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser (Da.). — Ca(C₁₃H₈O₆N₃)₂ + 3 H₂O. Rote Nadeln (Da.). — Pb(C₁₃H₈O₆N₃)₂. Dunkelroter, krystallinischer Niederschlag (Da.).

3.5-Dinitro-4-amino-phenol $C_8H_5O_5N_3=H_2N\cdot C_6H_2(NO_2)_2\cdot OH$. B. Durch Verseifung von O.N-Diacetyl-[3.5-dinitro-4-amino-phenol] (S. 530) mit Schwefelsäure oder Salzsäure (Reverdin, Dresel, B. 37, 4455; 38, 1593; Bl. [3] 31, 1272; 38, 562; C. 1905 I, 80, 1601). Entsteht ferner bei der Verseifung von O-Acetyl-N-benzoyl-[3.5-dinitro-4-amino-phenol] (S. 530) (Reverdin, B. 39, 3795; Bl. [3] 35, 1258; C. 1907 I, 104), O.N-Bis-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol] (S. 530) (Re., Dr., B. 37, 4454; vgl. Re., Dr., B. 38, 1593) oder 3.5-Dinitro-4-p-toluolsulfamino-phenol (S. 531) mit konz. Schwefelsäure auf dem Wasserbade (Re., B. 40, 2851; Bl. [4] 1, 626). — Blättchen mit grünem metallischem Schimmer (aus konz. Lösung) oder rote, grünlich schimmernde Nadeln (aus verd. Lösung). F: 230—231°; sublimiert gegen 150° (Re., Dr., B. 38, 1593). Leicht löslich in Alkohol, siedendem Wasser, ziemlich in Benzol, fast unlöslich in Ligroin (Re., Dr., Arch. Sc. phys. et nat. Genève [4] 18, 438; C. 1905 I, 81); löslich in Ammoniak, Natronlauge oder Sodalösung mit blauvioletter Farbe, die allmählich über Rot in Brauu übergeht (Re., Dr., B. 38, 1593; vgl. Re., B. 40, 2856). — Läßt sich in schwefelsaurer Lösung durch Natriumnitrit in ein orangegelbes Diazoniumsalz überführen, das beim Kochen mit absol. Alkohol 3.5-Dinitro-phenol liefert (Re., Dr., B. 38, 1595).

3.5-Dinitro-4-amino-phenol-methyläther, 3.5-Dinitro-4-amino-anisol C₇H₇O₅N₃= H₂N·C₆H₂(NO₂)₂·O·CH₃. B. Man nitriert p-Toluolsulfonsäure-p-anisidid (S. 507) in Eisessiglösung durch allmähliches Eintragen von 5 Tln. Salpetersäure (D: 1,4) bei 10—20°; man löst das Nitrierungsprodukt in Benzol und versetzt mit Ligroin; die zunächst sich ausscheidenden Nadeln (Gemisch von 3.5-Dinitro-4-p-toluolsulfamino-anisol und 3-Nitro-4-p-toluolsulfamino-anisol und 3-Nitro-4-p-toluolsulfamino-anisol) krystallisiert man wiederholt aus Essigsäure oder Alkohol um, verseift durch Schwefelsäure und gießt in Wasser, wobei sich das 3.5-Dinitro-4-amino-anisol ausscheidet (Reverdin, B. 42, 1524; C. 1909 I, 1810). Beim Verseifen von 3.5-Dinitro-4-acetamino-anisol mit Schwefelsäure (Meldola, Stephens, Soc. 87, 1206; M., Hay, Soc. 91, 1480). — Rubinrote Prismen (aus Eisessig). F: 163°; schwer löslich in Alkohol, ziemlich leicht in Eisessig (M., St.).

3.5 - Dinitro-4-amino - phenol - [2.4 - dinitro - phenyl] - NO₂ NO₂ ather, 3.5.2'.4' - Tetranitro - 4 - amino - diphenyläther C₁₂H₇O₂N₅, s. nebenstehende Formel. B. Durch Erhitzen von 3.5-Dinitro-4-amino-phenol mit einer alkoh. Lösung von 4-Chlor-1.3-dinitro-phenol (REVERDIN, DRESEL, B. 38, 1594; NO₂ RI. [3] 33, 563; C. 1905 I, 1601). — Citronengelbe Nadeln (aus Eisessig oder Aceton). F: 225° bis 226°. Unlöslich in Wasser, schwer löslich in Alkohol, Benzol, Chloroform und Ligroin; unlöslich in Sodalösung.

3.5 - Dinitro - 4-amino - phenoxyessigsäure $C_8H_7O_7N_3=H_2N\cdot C_6H_2(NO_2)_2\cdot O\cdot CH_2\cdot CO_2H$. B. Durch Verseifen von 3.5-Dinitro-4-acetamino-phenoxyessigsäure (S. 530) mit konz. Schwefelsäure (Reverdin, Bucky, B. 39, 2686; Bl. [3] 35, 1107; C. 1906 II, 1188).— Rote Nadeln (aus Wasser). F: 190°. Löslich in heißem Wasser, Alkohol und Essigsäure, schwer löslich in heißem Benzol, unlöslich in Ligroin. — Läßt sich durch Diazotieren und Verkochen der Diazoniumverbindung mit Alkohol in 3.5-Dinitro-phenoxyessigsäure (Bd. VI. S. 259) überführen.

Äthylester $C_{10}H_{11}O_7N_3 = H_2N \cdot C_0H_2(NO_2)_2 \cdot O \cdot CH_2 \cdot CO_2 \cdot C_2H_3$. B. Aus 3.5-Dinitro-4-amino-phenoxyessigsaure und siedendem Alkohol durch Chlorwasserstoff (RE., B., B. 39, 2687; Bl. [3] 35, 1108; C. 1906 II, 1188). — Rote, grünschimmernde Nadeln. F: 87°.

- 3.5-Dinitro-4-acetamino-phenol $C_8H_7O_6N_8=CH_2\cdot CO\cdot NH\cdot C_6H_2(NO_2)_2\cdot OH$. B. Bei mäßiger Einw. von Essigsäureanhydrid auf 3.5-Dinitro-4-amino-phenol (REVERDIN, DRESEL, B. 38, 1594; Bl. [3] 33, 562; C. 1905 I, 1601). Durch Kochen von O.N-Diacetyl-[3.5-dinitro-4-amino-phenol] mit Sodalösung (R., D., B. 38, 1594; Bl. [3] 33, 562; C. 1905 I, 1601). Gelbe Nadeln. F: 182°; löslich in Sodalösung (R., D., B. 37, 4454; Bl. [3] 31, 1270; C. 1905 I, 80). Wird beim Erhitzen mit Salzsäure zu 3.5-Dinitro-4-amino-phenol verseift (R., D.).
- 8.5-Dinitro-4-acetamino-phenol-methyläther, 3.5-Dinitro-4-acetamino-anisol $C_9H_9O_6N_3=CH_3\cdot CO\cdot NH\cdot C_9H_9(NO_9)_3\cdot O\cdot CH_3$. Bei der Methylierung von 3.5-Dinitro-4-acetamino-phenol mit Methyljodid und Silberoxyd in Alkohol (Meldola, Stephens, Soc. 87, 1206). Weiße Nadeln (aus verd. Alkohol). F: 196°. Wird von Schwefelsäure zu 3.5-Dinitro-4-amino-anisol verseift.
- 8.5-Dinitro-4-acetamino-phenol-[2.4-dinitro-phenyl]-äther, 3.5.2'.4'. Tetranitro-4-acetamino-diphenyläther C₁₄H₂O₁₀N₅, s. nebenstehende Formel.

 B. Beim Erwärmen von 3.5-Dinitro-4-amino-phenol-[2.4-dinitro-phenyl]-äther mit Essigsäureanhydrid und etwas konzentrierter Schwefelsäure (Reverdin, Dresel, B. 38, 1595; Bl. [3] 33, 564; C. 1905 I, 1601). Weiße Nadeln (aus Eisessig). F: 238° (Zers.). Schwer löslich in Alkohol.
- [3.5-Dinitro-4-acetamino-phenyl]-acetat, O.N-Diacetyl-[3.5-dinitro-4-amino-phenol] $C_{10}H_0O_7N_3=CH_3\cdot CO\cdot NH\cdot C_6H_2(NO_4)_3\cdot O\cdot CO\cdot CH_3$. B. Bei der Nitrierung von O.N-Diacetyl-[4-amino-phenol] (S. 464) mit 5 Raumteilen Salpetersäure (D: 1,52) bei —10° (Reverdin, Dresel, B. 38, 1593; Bl. [3] 33, 562; C.1905 I, 1601), besser bei der Nitrierung mit Salpetersäure (D: 1,525) (Reverdin, Bucky, B. 39, 2687; Bl. [3] 35, 1108; C. 1906 II, 1188). Nadeln (aus verd. Essigsäure oder Alkohol). F: 223—224°; leicht löslich in Essigsäure und Aceton, siemlich in Alkohol, Chloroform, Benzol, Ligroin und heißem Wasser (R., D.). Gibt beim Verseifen mit Schwefelsäure oder Salzsäure 3,5-Dinitro-4-amino-phenol, beim Kochen mit Sodalösung 3,5-Dinitro-4-acetamino-phenol (R., D.).
- 3.5-Dinitro-4-acetamino-phenoxyessigsäure $C_{10}H_{2}O_{3}N_{3}=CH_{2}\cdot CO\cdot NH\cdot C_{6}H_{2}(NO_{2})_{3}\cdot O\cdot CH_{2}\cdot CO_{3}H$. B. Neben 2.3-Dinitro-4-acetamino-phenoxyessigsäure aus 4-Acetamino-phenoxyessigsäure (S. 465) und rauchender Salpetersäure (R., B., B. 39, 2686; Bl. [3] 35, 1107; C. 1906 II, 1188). Gelbe Nadeln (aus verd. Essigsäure oder verd. Alkohol). Unlöslich in Ligroin, sohwer löslich in Wasser und Benzol, leicht in heißem Alkohol und Essigsäure.
- 8.5 Dinitro 4 [3 nitro benzamino] phenol $C_{12}H_8O_8N_4=O_4N\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_6(NO_8)_8\cdot OH.$ B. Bei der Einw. von kalter alkoh. Natronlauge auf O.N-Bis-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol] (s. u.) (Meldola, Hay, Soc. 91, 1479). Weiße Nadeln (aus Alkohol). F: 215,5°. Löst sich in wäßr. Alkali orangefarben. Gibt bei der Verseifung 3.5-Dinitro-4-amino-phenol.
- 3.5-Dinitro-4-[3-nitro-bensamino]-phenol-methyläther, 3.5-Dinitro-4-[3-nitro-bensamino]-anisol $C_{14}H_{10}O_{5}N_{4}=O_{2}N\cdot C_{5}H_{4}\cdot CO\cdot NH\cdot C_{5}H_{4}(NO_{2})_{2}\cdot O\cdot CH_{5}$. Bei der Methylierung von 3.5-Dinitro-4-[3-nitro-benzamino]-phenol durch Dimethylsulfat in Gegenwart von Alkali (MELDOLA, HAY, Soc. 91, 1479). Nadeln (aus Eisessig). F: 174—175°.
- [3.5-Dinitro-4-bensamino-phenyl]-acetat, O-Acetyl-N-benzoyl-[3.5-dinitro-4-amino-phenol] $C_{18}H_{11}O_7N_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_8(NO_2)_3\cdot O\cdot CO\cdot CH_3$. B. Aus O-Acetyl-N-benzoyl-[4-amino-phenol] (S. 470) in einer Lösung von Essigsäureanhydrid und konz. Schwefelsäure durch ein Gemisch von Salpetersäure (D: 1,4) und konz. Schwefelsäure sunächst bei 0° und dann bei 30° (Reverdin, B. 39, 3795; Bl. [3] 35, 1258; C. 1907 I, 104). Nadeln (aus Alkohol). F: 215°. Unlöslich in Wasser, fast unlöslich in kaltem Alkohol, etwas reichlicher beim Erwärmen, ziemlich löslich in heißer Essigsäure. Gibt bei der Verseifung 3.5-Dinitro-4-amino-phenol.
- O.N-Bis-[3-nitro-beneoy]]-[3.5-dinitro-4-amino-phenol] $C_{20}H_{11}O_{11}N_5 = O_sN\cdot C_8H_4\cdot CO\cdot NH\cdot C_8H_8(NO_8)_8\cdot O\cdot CO\cdot C_8H_4\cdot NO_8$. B. Beim Eintragen von O.N-Dibenzoyl-[4-amino-phenol] (S. 470) in Salpetersäure (D: 1,52) bei höchstens 25°; man erwärmt schließlich auf dem Wasserbade bis auf 60° (Reverdin, Dribel, B. 37, 4453; Bl. [3] 31, 1270; B. 38, 1593; Bl. [3] 38, 561; R., Drifter, B. 39, 127; Bl. [3] 35, 308). Aus O.N-Dibenzoyl-[4-amino-phenol] in Essigsäureanhydrid und konz. Schwefelsäure durch ein Gemisch von konz. Schwefelsäure und Salpetersäure (D: 1,4) bei 6—11° (R., Dr., B. 39, 129; Bl. [3] 35, 310). Krystalle (aus Eisessig). F: 229° (R., Dr.).

[2.6-Dinitro-4-äthoxy-phenyl]-urethan $C_{11}H_{12}O_7N_3$, s. nebenstehende Formel. Diese Konstitution besitzt nach Reverdin, Helv. chim. Acta 9 [1926], 796 vielleicht das von Köhler (J. pr. [2] 29, 274) beschriebene [Dinitro-4-äthoxy-phenyl]-urethan vom Schmelzpunkt 141° (S. 532).

2.6 (?) - Dinitro - 4 - oxy - anilinoessigsäure, N-[2.6 (?) - Dinitro - 4 - oxy-phenyl]-glycin C₈H₇O₇N₈, s. nebenstehende Formel. B. Durch Eintragen von N-[4-Benzoyloxy-phenyl]-glycin (S. 489) in Salpetersäure (D: 1,4) unter Kühlung und Verseifen des hierbei entstandenen Produktes mit Schwefelsäure (Reverdin, B. 42, 4115; C. 1910 I, 349). Beim Verseifen von 2.6(?)-Dinitro-4-p-toluolsulfonyloxy-anilinoessigsäure oder 2.6(?)-Dinitro-4-[2-nitro-toluol-sulfonyl-(4)-oxy]-anilinoessigsäure (s. u.) mit konz. Schwefelsäure (R., B. 42, 4112; C. 1910 I, 349). — Schwarzbraune, metallisch glänzende Nadeln oder Blättchen. F: ca. 176—177° (Zers.). Löslich in verd. Natronlauge mit rotvioletter Farbe. Die alkoh. Lösung färbt sich mit alkoh. Kali blau und scheidet ein Kaliumsalz aus.

2.6 (?) - Dinitro - 4 - p - toluolsulfonyloxy-anilinoessigsäure, N - [2.6 (?) - Dinitro - 4 - p - toluolsulfonyloxy - phenyl] - glycin

C₁₆H₁₈O₂N₃S, s. nebenstehende Formel. B.
Durch Eintragen von N-[4-p-Toluolsulfonyloxy-phenyl]-glycin (S. 489) in Salpetersäure (D: 1,4) und nachfolgendes Erwärmen auf 60—70° (Reverdin, B. 42, 4112; C. 1910 I, 349). Aus 4-p-Toluolsulfonyloxy-anilinoessigsäure in Eisessig mit Salpetersäure (D: 1,4 oder 1,52) bei 20—30° (R.). — Fast weiße oder hellgelbe Nadeln. F: 222° (Zers.). Leicht löslich in Alkohol und Essigsäure. Gibt bei der Verseifung mit Schwefelsäure 2.6(?)-Dinitro-4-oxy-anilinoessigsäure.

- 3.5-Dinitro-4-p-toluolsulfamino-phenol, p-Toluolsulfonsäure-[2.6-dinitro-4-oxy-anilid] $C_{13}H_{11}O_7N_3\hat{S}=CH_3\cdot C_6H_4\cdot SO_2\cdot NH\cdot C_6H_3(NO_2)_3\cdot OH$. B. Beim allmählichen Eintragen von N-p-Toluolsulfonyl-O-acetyl-[4-amino-phenol] (S. 508) in Salpetersäure (D: 1,52) bei 0 bis -10^6 (Reverdin, B. 40, 2851; Bl. [4] 1, 626). Nadeln (aus Alkohol). F: 157° bis 158°. Leicht löslich in warmem Alkohol, löslich in Essigsäure, ziemlich schwer löslich in Benzol, schwer in Ligroin, löslich in Natronlauge und kalter Sodalösung. Gibt mit konz. Schwefelsäure auf dem Wasserbade 3.5-Dinitro-4-amino-phenol.
- 3.5 Dinitro 4 äthansulfonylamino phenol äthyläther, 3.5 Dinitro 4 äthansulfonylamino-phenetol, Äthansulfonsäure-[2.6-dinitro-4-äthoxy-anilid] $C_{10}H_{13}O_7N_8S = C_3H_5 \cdot SO_4 \cdot NH \cdot C_6H_5(NO_2)_2 \cdot O \cdot C_2H_5$. B. Neben 3-Nitro-4-äthansulfonylamino-phenetol beim Behandeln von Äthansulfonsäure-p-phenetidid mit Salpetersäure (1 Tl. konz. Salpetersäure + 2 Tle. Wasser) (Reverdin, Helv. chim. Acta 12 [1929], 1052; vgl. Auttenriether, Ar. 242, 589). Weiße Krystalle vom Schmelzpunkt 182° (R.), gelbe Nadeln vom Schmelzpunkt 179° (Au., B.). Unlöslich in Äther (Au., B.; R.), kaltem Wasser, leicht löslich in Alkohol; löslich in Alkalien mit tiefroter Farbe (Au., B.).
- N [2 Nitro toluol sulfonyl (4)] O-[3-nitro-benzoyl]-[3.5-dinitro-4-amino-phenol] C₂₀H₁₃O₁₂N₅S, s. nebenstehendeFormel.

 B. Aus N-p-Toluolsulfonyl-O-benzoyl-[4-amino-phenol] (S. 508) und Salpetersäure (D: 1,52) bei 0 bis —10° (Reverdin, B. 40, 2853; Bl. [4] 1, 628). Gelbliche Nadeln (aus verd. Alkohol). F: 189—190°. Schwer löslich in Benzol, löslich in Aceton, warmem Toluol und heißer Essigsäure. Gibt bei der Verseifung mit konz. Schwefelsäure 3.5-Dinitro-4-amino-phenol.

x.x.2'.4'-Tetranitro-4-oxy-diphenylamin $C_{12}H_7O_2N_5=(O_2N)_2C_8H_3\cdot NH\cdot C_8H_3(NO_2)_2\cdot OH$. B. Durch Erwärmen des x.x.2'.4'-Tetranitro-4-[2.4-dinitro-phenoxy]-diphenylamins mit Natronlauge (Reverdin, Delétra, B. 37, 1731; Bl. [3] 31, 640). Durch Verseifung von x.x.2'.4'-Tetranitro-4-acetoxy-diphenylamin mit Soda (R., D.). Durch Erwärmen von x.x.2'.4'-Tetranitro-4-p-toluolsulfonyloxy-diphenylamin mit Natronlauge (R., D.). — Citronengelbe Nadeln (aus verd. Aceton oder Alkohol). F: 225,5°. Sehr leicht löslich in Aceton,

leicht in Essigsäure, ziemlich löslich in Alkohol, Äther und Chloroform, schwer in Benzol,

unlöslich in Ligroin.

x.3°.4′ - Tetranitro - 4 - [3.4 - dinitro - phenoxy] - diphenylamin $C_{18}H_{2}O_{18}N_{7} = (O_{2}N)_{2}C_{4}H_{3}\cdot NH\cdot C_{6}H_{3}(NO_{2})_{3}\cdot O\cdot C_{6}H_{3}(NO_{2})_{3}\cdot B$. Bei der Nitrierung von O.N-Bis-[2.4-dinitrophenyl]-[4-amino-phenol] (S. 446) mit Salpetersäure (46,8° Bé) (Reverdin, Delétra, B. 37, 1732; Bl. [3] 31, 641). — Braungelbe Blättchen. F: 233°. Wenig löslich in den gewöhnlichen Lösungsmitteln, ausgenommen in Aceton, unlöslich in Alkohol und Ligroin. — Wird beim Erwärmen mit Natronlauge unter Bildung des x.x.2'.4'-Tetranitro-4-oxy-diphenylamins vom Schmelzpunkt 225,5° verseift.

x.x.2'.4' - Tetranitro - 4 - acetoxy - diphenylamin $C_{14}H_9O_{10}N_5 = (O_9N)_9C_9H_3$. NH· $C_8H_4(NO_9)_2 \cdot O \cdot CO \cdot CH_9$. B. Durch Nitrierung von 2'.4'-Dinitro-4-acetoxy-diphenylamin mit rauchender Salpetersäure (46,8° Bé) (R., Dr., B. 87, 1731; Bl. [3] 81, 639). — Braungelbe Prismen (aus Aceton), gelbe Nadeln (aus verd. Aceton). Braunt sich bei 155° und schmilzt bei 161°. Löslich in Essigsäure, Aceton, Chloroform, Benzol, schwer löslich in Alkohol, sehr weine in Ather, unlöslich in Ligroin. — Wird von Södelösung unter Bildung des x.x.2'.4'-

Tetranitro-4-oxy-diphenylamins vom Schmelzpunkt 225,5° verseift.

X.X.2'.4'-Tetranitro-4-p-toluolsulfonyloxy-diphenylamin C₁₉H₁₈O₁₁N₅S=(O₂N)₂C₆H₃·NH·C₆H₄(NO₂)₂·O·SO₂·C₆H₄·CH₃. B. Durch Nitrierung von 2'.4'-Dinitro-4-[p-toluolsulfonyloxy]-diphenylamin (S. 447) mit Salpetersäure (46,8° Bé) (R., DE., B. 37, 1732; Bl. [3] 31, 640). — Citronengelbe Nadeln. F: 189,5°. Ziemlich löslich in Eisessig und Aceton, unlöslich in Ligroin. — Wird beim Erwärmen mit Natronlauge unter Bildung des x.x.2'.4'-Tetranitro-4-oxy-diphenylamins vom Schmelzpunkt 225,5° verseift.

[x.x-Dinitro-4-äthoxy-phenyl]-urethan vom Schmelspunkt 141° $C_{11}H_{13}O_7N_4 =$ $C_0H_5\cdot O_0C\cdot NH\cdot C_0H_1(NO_2)_2\cdot O\cdot C_0H_5^{-1})$. B. Beim Übergießen von [4-Athoxy-phenyl]-urethan (S. 480) mit kalter roter rauchender Salpetersäure neben geringen Mengen einer isomeren Verbindung vom Schmelzpunkt 121º (s. u.); die beiden Dinitroderivate lassen sich durch ihre verschiedene Löslichkeit in Alkohol trennen (Köhler, J. pr. [2] 29, 274). — Hellgelbe Nadeln (aus Alkohol). F: 141°. Schwer löslich in Alkohol, leichter in Ather, Chloroform, Benzol und Eisessig. — Liefert bei der Reduktion mit Zinn und Salzsäure ein [x.x-Diamino-4-athoxy-phenyl]-urethan (S. 571). Gibt beim Kochen mit Salpetersäure (D: 1,4) [2.3.6-Trinitro-4-athoxy-phenyl]-urethan (S. 533).

[x.x-Dinitro-4-äthoxy-phenyl]-urethan vom Schmelspunkt 121° $C_{11}H_{12}O_7N_2 = C_2H_5 \cdot O_2C \cdot NH \cdot C_2H_3(NO_3)_2 \cdot O \cdot C_2H_5^{-3})$. B. s. im vorhergehenden Artikel. — Nadeln (aus Alkohol). F: 121° (Köhler, J. pr. [2] 29, 276). In Alkohol usw. viel leichter löslich als das Isomere vom Schmelspunkt 141° (K). — Wird durch Erhitzen mit Salpetersäure (D: 1,4) viel schwerer in [2.3.6-Trinitro-4-5thoxy-phenyl]-urethan (S. 533) übergeführt als die Verbindung vom Schmelzpunkt 141° (K.).

- 2.3.5 Trinitro 4 amino phenol methyläther, 2.3.5 Trinitro 4 amino anisol $C_7H_4O_7N_4=H_2N\cdot C_6H(NO_2)_3\cdot O\cdot CH_3^{-3})$. B. Man löst Benz-p-anisidid (S. 469) in 10 Tln. Essigsäureanhydrid, versetzt die abgekühlte Lösung mit Salpetersäure (D: 1,52), wobei man die Temperatur nicht über 50° steigen läßt, trennt das Gemisch der entstandenen Produkte durch Alkohol und Benzol und unterwirft den unlöslichen Anteil (F: 220—230°) der Verseifung durch Schwefelsäure (REVERDIN, B. 42, 1528; C. 1909 I, 1810). — Rote Schuppen (aus Alkohol). F: 126°.
- 2.3.5 Trinitro 4 amino phenol äthyläther, 2.3.5 Trinitro 4 amino phenetol $C_8H_8O_7N_4=H_2N\cdot C_8H(NO_3)_5\cdot O\cdot C_2H_5$. Das von Köhler, J. pr. [2] 29, 282, als Trinitro-4-amino-phenetol beschriebene Produkt, welches er durch Erhitzen von [2.3.6-Trinitro-4-äthoxy-phenyl]-urethan (S. 533) mit Schwefelsäure (D: 1,14) auf 100° erhielt, dürfte ein Gemisch von 2.3.5-Trinitro-4-amino-phenetol mit viel unverändertem [2.3.6-Trinitro-4-athoxyphenyl]-urethan gewesen sein (Redaktion dieses Handbuches) 4).

2) Diese Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von REVERDIN, Helv. chim. Acta 9 [1926], 796, vielleicht ein Gemisch von zwei isomeren Dinitroverbindungen.

3) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von REVERDIN, MELDOLA, J. pr. [2] 88 [1913], 785.

¹⁾ Diese Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von REVERDIN, Helv. chim. Acta 9 [1926], 796, vielleicht als [2.6-Dinitro-4-athoxy-phenyl]-urethan aufsufassen.

⁴⁾ Das wirkliche 2.3.5 - Trinitro - 4 - amino - phenetol ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] von REVERDIN, FÜRSTENBERG, J. pr. [2] 88 [1913] 323; Bl. [4] 18 [1913], 675, und von LORANG, R. 46 [1927], 644, beschrieben worden.

- 2.3.6-Trinitro-4-amino-phenol $C_6H_4O_7N_4 = H_3N \cdot C_6H(NO_2)_2 \cdot OH^2$). B. Beim kurzen Erhitzen von 2.3.6-Trinitro-4-acetamino-phenol mit konz. Schwefelsäure auf dem Wasserbade (Meldola, Hay, Soc. 95, 1381). Rote Nadeln (aus Eisessig). Zersetzt sich bei ca. 145°.
- **2.3.6-Trinitro-4-acetamino-phenol** $C_8H_6O_8N_4=CH_3\cdot CO\cdot NH\cdot C_8H(NO_9)_3\cdot OH^3)$. B. Bei der Einw. eines Gemisches aus konz. Schwefelsäure und rauchender Salpetersäure auf O.N-Diacetyl-[4-amino-phenol] (S. 464) oder O.N-Diacetyl-[3-nitro-4-amino-phenol] (S. 522) unter Kühlung (Meldolla, Soc. 89, 1936). Aus 3-Nitro-4-acetamino-phenol (S. 521) und rauchender Salpetersäure (D: 1,5) (Meldolla, Hay, Soc. 95, 1380). Gelbe Nadeln (aus Eisessig). F: 178—179° (Zers.); löslich in heißem Alkohol, schwer löslich in heißem Wasser (M.). Liefert mit Anilin in siedendem Alkohol 1-Phenyl-5.7-dinitro-6-oxy-2-methyl-benz-imidazol (Syst. No. 3509) und in geringer Menge 2.4-Dinitro-3-oxy-6-acetamino-diphenylamin (M.; M., H., Soc. 93, 1671). $KC_8H_5O_8N_4+H_2O$. Rote Nadeln. Leicht löslich in Wasser; explosiv (M., H., Soc. 95, 1381).

Schwefelanalogon des 4-Amino-phenols und seine Derivate.

4-Amino-thiophenol, 4-Amino-phenylmercaptan C₆H₇NS = H₂N·C₆H₄·SH. B. Aus 4.4′-Diamino-diphenyldisulfid (S. 536) beim Behandeln mit Zinkstaub und Salzsäure oder auch beim Kochen mit konzentrierter alkoholischer Kalilauge (HINSBERG, B. 39, 2428). Beim Erhitzen des Äthylxanthogensäure-[4-amino-phenyl]-esters (S. 535) mit alkoh. Kali (ZINOKE, JÖRG, B. 42, 3366). Durch Reduktion des 4-Acetamino-benzolsulfochlorids (Syst. No. 1923) in alkoholischer Lösung mit Zinkstaub und konz. Salzsäure und Kochen der entstandenen Verbindung mit Alkohol und konz. Salzsäure (Z., J., B. 42, 3367). — Körnigkrystallinische, schwach riechende Masse. F: 46°; Kp₁₅₋₁₆: 140—145°; mit Wasserdampf flüchtig; löslich in Wasser, leicht löslich in den gebräuchlichen Lösungsmitteln (Z., J.). Leicht löslich in Mineralsäuren und in Alkali (H.). Wird in diesen Lösungen an der Luft rasch oxydiert zu 4.4′-Diamino-diphenyldisulfid (H.). — Salzsaures Salz. Nadeln (aus verd. Salzsäure). Leicht löslich in Wasser (Z., J.).

Funktionelle Derivate des 4-Amino-thiophenols.

a) Derivate des 4-Amino-thiophenols, die lediglich durch Veränderung der Sulfhydrylgruppe entstanden sind.

Methyl-[4-amino-phenyl]-sulfid $C_7H_9NS = H_2N \cdot C_6H_4 \cdot S \cdot CH_3$. B. Aus Methyl-[4-acetamino-phenyl]-sulfid (S. 542) beim Kochen mit alkoh. Salzsäure (ZINCKE, JÖRG, B. 42, 3368). — Gelbliche, schwach riechende Flüssigkeit. Kp_{15-16} : 140°. Ziemlich löslich in Alkohol, Äther und Benzol. Wird beim Aufbewahren braun. Gibt beim Erhitzen mit Methyljodid Trimethyl-[4-methylmercapto-phenyl]-ammoniumjodid (S. 539). — $C_7H_9NS + HCl.$ Nadeln. Leicht löslich in Wasser, weniger in verd. Salzsäure. — $2C_7H_9NS + H_2SO_4$. Nadeln oder Blättchen (aus viel heißem Wasser).

Äthyl-[4-amino-phenyl]-sulfid $C_8H_{11}NS=H_2N\cdot C_8H_4\cdot S\cdot C_2H_5$. B. Aus Äthyl-[4-nitro-phenyl]-sulfid (Bd. VI, S. 339) durch Reduktion mit Zinn und Salzsäure (Monier-Williams, Soc. 89, 278). — Gelbes Öl. Kp: 280—281°.

4-Amino-diphenylsulfid $C_{12}H_{11}NS = H_1N \cdot C_0H_4 \cdot S \cdot C_0H_5$. B. Durch 3-stdg. Erwärmen von $4^{1}/_{2}$ Th. salzsaurem Anilin mit 1 Tl. Benzolsulfinsäure (Bd. XI, S. 2) und etwas Wasser (HINSBERG, B. 36, 114). Bei der Reduktion der alkoh. Lösung von 4-Nitro-diphenylsulfid (Bd. VI, S. 339) mit Zinnehlorür und Salzsäure (Kehrmann, Bauer, B. 29, 2364). Beim

So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von REVERDIN, MELDOLA, J. pr. [2] 88 [1913], 785.

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von Reverdin, Helv. chim. Acta 9 [1926], 796, und von LORANG, R. 46 [1927], 643.

Erwärmen von 4-Amino-diphenylsulfoxyd (s. u.) mit Zinkstaub und verd. Salssäure (H., B. 36, 114). — Nadeln (aus verd. Methylalkohol). F: 93° (K., B.), 95° (H.). Leicht löslich in Alkohol, Äther, ziemlich schwer in heißem Wasser (H.). Eisenchlorid färbt die warme verdünnt-salzsaure Lösung blaugrün (H.). Wird durch konz. Schwefelsäure nicht gefärbt (Unterschied von 4.4'-Diamino-diphenylsulfid) (K., B.).

4'-Nitro-4-amino-diphenylsulfid $C_{11}H_{10}O_{2}N_{1}S = H_{2}N \cdot C_{2}H_{4} \cdot NO_{2}$. B. Entsteht neben 4-Nitro-thiophenol (Bd. VI, S. 339) und 4.4'-Dichlor-azoxybenzol (Syst. No. 2207) bei allmählichem Eintragen einer alkoh. Lösung von 1½, Mol.-Gew. Na₂S in 1 Mol.-Gew. p-Chlor-nitrobenzol (Bd. V, S. 243) unter Kühlung; man versetzt das Produkt mit Wasser und kooht den entstandenen Niederschlag wiederholt mit verd. Salzsäure aus, wobei nur 4'-Nitro-4-amino-diphenylsulfid gelöst wird (Kehrmann, Bauer, B. 29, 2362). Neben 4-Nitro-phenol, 4.4'-Dinitro-diphenylsulfid (Bd. VI, S. 339), 4.4'-Dinitro-diphenylsulfid (Bd. VI, S. 339), 4.4'-Dinitro-diphenyldisulfid (Bd. VI, S. 340) und 4.4'-Bis-[4-nitro-phenylmercapto]-azobenzol (Syst. No. 2112) beim Kochen von p-Chlor-nitrobenzol mit Schwefel und alkoh. Natronlauge (Fromm, Wittmann, B. 41, 2264). Aus 4.4'-Dinitro-diphenylsulfid durch ½-stdg. Digerieren mit einer gesättigten alkoholischen Schwefelammoniumlösung bei 50° und 5-stdg. Digerieren bei gewöhnlicher Temperatur (K., B., B. 29, 2365). Beim Erhitzen von 4.4'-Dinitro-diphenyldisulfid mit Ammoniak im geschlossenen Rohr (F., W., B. 41, 2269). — Orangefarbene, bläulich schimmernde Prismen (aus Benzol). F: 143° (K., B.). Unlöslich in Wasser, leicht löslich in den gebräuchlichen Lösungsmitteln (K., B.). — Bei der Reduktion der alkoh. Lösung mit Zinnehlorür und Salzsäure entsteht 4.4'-Diamino-diphenylsulfid (K., B.). Beim Erwärmen der alkoh. Lösung mit Natriumnitrit und verd. Schwefelsäure wird 4-Nitro-diphenylsulfid (Bd. VI, S. 339) erzeugt (K., B.). — $C_{12}H_{10}O_{2}N_{2}S_{1}+HCl$ (über CaO). Nadeln. Wird durch Wasser zersetzt (K., B.).

4-Amino-diphenylsulfoxyd C₁₂H₁₁ONS= H₂N·C₂H₄·SO·C₂H₅. B. Durch ca. 4-stdg. Erwärmen von 4 Tln. Anilin mit 1 Tl. Benzolsulfinsäure (Bd. XI, S. 2) (HINSBERG, B. 36, 113). — Nadeln (aus Wasser). F: 152°. Sehr leicht löslich in Alkohol und Äther. Färbt sich mit warmer konzentrierter Schwefelsäure violett; gibt mit Mineralsäuren leicht lösliche Salze. — Wird von Zinkstaub + verd. Salzsäure glatt zu 4-Amino-diphenylsulfid reduziert.

4-Amino-diphenylsulfon $C_{12}H_{11}O_2NS = H_2N \cdot C_6H_4 \cdot SO_2 \cdot C_6H_5$. B. Aus 4-Nitro-diphenylsulfon (Bd. VI, S. 339) durch Reduktion mit Zinnehlorür + Salzsäure (ULLMANN, PASDERMADJIAN, B. 34, 1155). — Farblose Nadeln (aus Alkohol). F: 176°. Leicht löslich in heißem Benzol und Eisessig, unlöslich in Wasser.

[4-Amino-phenyl]-p-tolyl-sulfid, 4'-Amino-4-methyl-diphenylsulfid C₁₈H₁₈NS = H₂N·C₆H₄·S·C₆H₄·CH₃. B. Beim Erhitzen von p-toluolsulfinsaurem Anilin (Bd. XII, S. 123) auf 215°; man entfernt aus der Schmelze das als Nebenprodukt entstandene p-toluolsulfonsaure Anilin durch Kochen mit Wasser, kocht den Rückstand mit verd. Schwefelsaure aus, zerlegt das entstandene Sulfat mit Ammoniak und zieht die Base mit Ather aus (E. v. MEYER, J. pr. [2] 63, 179; C. 1901 I, 455). — Nadeln (aus Äther). F: 72° (E. v. M.). Kp: gegen 365° (geringe Zersetzung); mit Wasserdampf flüchtig; leicht löslich in Alkohol, Äther, Eisessig, weniger leicht in Benzol und Ligroin, unlöslich in Wasser (E. v. MEYER, HEIDUSCHEA, J. pr. [2] 68, 265). Die Salze werden durch warmes Wasser zerlegt (E. v. M.). — Liefert mit Methyljodid in Äther Methyl-[4-amino-phenyl]-p-tolyl-sulfoniumjodid (s. u.) (E. v. M., H.). — C₁₃H₁₃NS + HCl. Nadeln (aus Alkohol). F: 188,5°; leicht löslich in heißem Alkohol, Eisessig, Pyridin, fast unlöslich in Äther und Wasser (E. v. M., H.). — 2 C₁₈H₁₈NS + H₂S Q₄. Krystallnisches Pulver (aus Alkohol). F: 215° (geringe Zersetzung); mit viel siedendem Wasser in seine Komponenten zerlegbar (E. v. M., H.). — Nitrat. Krystallmasse. F: 170° (E. v. M., H.). — Oxalat 2 C₁₃H₁₈NS + C₃H₂O₄. Krystallbättchen. Schmilzt bei 169° unter Zersetzung und Bildung von N.N'-Bis-[4-p-tolylmercapto-phenyl]-oxamid (S. 546) (E. v. M., H.). — 2 C₁₃H₁₃NS + 2 HCl + PtCl₄. Gelbe Blättchen (E. v. M., H.).

[4-Amino-phenyl]-p-tolyl-sulfon, 4'-Amino-4-methyl-diphenylsulfon C₁₂H₁₈O₂NS = H₂N·C₆H₄·SO₂·C₆H₄·CH₃·1). B. Bei der Einw. von p-Toluolsulfinsäure (Bd. XI, S. 9) auf Phenylhydroxylamin (Syst. No. 1932) in Chloroform (BAMBERGER, RISING, B. 34, 244, 250). Aus p-Toluolsulfonsäure (Bd. XI, S. 97), salzsaurem Anilin und P₂O₅ bei 150° (B., R.). — Nadeln. F: 181,5°. Löslich in Aceton, heißem Alkohol, heißem Benzol. Die Salze werden durch Wasser zerlegt. Das Acetylderivat schmilzt bei 198°.

Methyl - [4 - amino - phenyl] - p - tolyl - sulfoniumjodid $C_{14}H_{14}NIS = H_2N \cdot C_4H_4 \cdot S(CH_3)(C_4H_4 \cdot CH_2)I$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und 1½ Mol.-Gew. Methyljodid in Åther (E. v. Meyer, Heiduschka, J. pr. [2] 68, 278). — Bräunlichgelbe Blättchen. F: 80°. Leicht löslich in Alkohol, schwer in siedendem Wasser. Gibt in absolut-alkoholischer Lösung mit Silbernitrat einen blauen Niederschlag.

¹⁾ So formuliert von Halberkann, B. 55 [1922], 3076, 3084.

Bensal-bis-[4-amino-phenylsulfid], Bensaldehyd-bis-[4-amino-phenyl]-mercaptal $C_{19}H_{18}N_2S_2=(H_2N\cdot C_0H_4\cdot S)_2CH\cdot C_0H_5$. B. Bei der Reduktion des Benzaldehyd-bis-[4-nitro-phenyl]-mercaptals (Bd. VII, S. 268) in Eisessiglösung mit Zinn und konz. Salzsäure (Fromm, Wittmann, B. 41, 2271). — $C_{19}H_{18}N_2S_2+2$ HCl. Nadeln.

Dithiokohlensäure-O-äthylester-S-[4-amino-phenylester], Äthylkanthogensäure-[4-amino-phenyl]-ester $C_9H_{11}ONS_2=H_2N\cdot C_6H_4\cdot S\cdot CS\cdot O\cdot C_2H_5$. B. Man diazotiert 4-Nitro-anilin in salzaurer Lösung, gießt die Diazoniumsalzlösung in eine warme Lösung von xanthogensaurem Kalium (Bd. III, S. 209), löst das abgeschieden Öl in alkoh. Ammoniak und leitet in die Lösung Schwefelwasserstoff ein (Leuckart, Lustig, J. pr. [2] 41, 200). Aus Äthylkanthogensäure-[4-acetamino-phenyl]-ester (S. 543) durch Kochen mit alkoh. Salzsäure (Zincke, Jöeg, B. 42, 3366). Beim Einleiten von Schwefelwasserstoff in eine Lösung von Äthylkanthogensäure-[4-benzolazo-phenyl]-ester $C_6H_5\cdot N:N\cdot C_6H_4\cdot S\cdot CS\cdot O\cdot C_5H_6$ (Syst. No. 2112) in alkoh. Ammoniak (Leu., Lu., J. pr. [2] 41, 201). — Blaßgelbe Nadeln (aus Benzin). F: 50°; leicht löslich in Methylalkohol und Äthylalkohol (Z., J.). — Gibt beim Erhitzen mit alkoh. Kali 4-Amino-thiophenol (Z., J.). — 2 $C_9H_{11}ONS_3 + H_2SO_4$. Gelbgrauer Niederschlag (Leu., Lu.).

- [4-Amino-phenylmercapto]-essigsäure, S-[4-Amino-phenyl]-thioglykolsäure $C_8H_9O_2NS=H_2N\cdot C_6H_4\cdot S\cdot CH_2\cdot CO_2H$. B. Aus S-[4-Nitro-phenyl]-thioglykolsäure (Bd. VI, S. 340) mit Eisen und Essigsäure (FRIEDLÄNDER, CHWALA, SLUBEK, M. 28, 275). Farblose Nadeln (aus heißem Wasser). F: 196—197°. (Zers.). Leicht löslich in Säuren und Alkalien.
- 2-[4-Amino-phenylmercapto]-benzoesäure, S-[4-Amino-phenyl]-thiosalicylsäure, 4'-Amino-diphenylsulfid-carbonsäure-(2) $C_{13}H_{11}O_2NS = H_2N \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot CO_2H$. B. Durch Reduktion von 4'-Nitro-diphenylsulfid-carbonsäure-(2) (Bd. X, S. 127) in Alkohol mit konz. Salzsäure und Stanniol (F. Mayer, B. 42, 3054). Blätter oder Spieße (aus verd. Alkohol). F: 193°. Fast unlöslich in Wasser. Beim Erwärmen mit konz. Schwefelsäure im Wasserbade entsteht 2-Amino-thioxanthon (Syst. No. 2643). Hydrochlorid. Nadeln. Zersetzt sich bei 260°.
- 2.4'-Diamino-diphenylsulfid $C_{12}H_{12}N_2S = (H_2N \cdot C_6H_4)_2S$. Zur Konstitution vgl. HINSBERG, B. 38, 1136. B. Neben 4.4'-Diamino-diphenyldisulfid, 4.4'-Diamino-diphenylsulfid und anderen Verbindungen bei $4^1/_3$ -stdg. Erhitzen von 100 g Anilin, 50 g salzsaurem Anilin und 45 g Schwefel auf 170—180° (HINSBERG, B. 38, 1131, 1134; vgl. B. 39, 2429). Nadeln (aus Wasser oder Alkohol). F: 58°; leicht löslich in Alkohol, Äther und Benzol, sehr wenig in Petroläther (H., B. 38, 1135). Liefert bei der Acetylierung 2.4'-Bis-[soctamino]-diphenylsulfid (S. 543) (H., B. 38, 1136). $C_{12}H_{12}N_2S + 2HCl$. Prismen oder Nadeln. Schwer löslich in konz. Salzsäure (H., B. 38, 1135). $2C_{12}H_{12}N_2S + H_2SO_4$. Krystalle. Schwer löslich in heißem Wasser (H., B. 38, 1136). Oxalat $C_{12}H_{12}N_2S + C_2H_2O_4$. Nadeln. Ziemlich löslich in Wasser (H., B. 38, 1136).
- 4.4'-Diamino-diphenylsulfid, Thioanilin $C_{12}H_{12}N_2S = (H_2N \cdot C_0H_4)_2S$. Zur Konstitution vgl. Nietzki, Bothof, B. 27, 3261; Kehrmann, Bauer, B. 29, 2363. B. Neben anderen Produkten bei mehrtägigem Kochen von Anilin mit Schwefel (MERZ, WEITH, B. 4, Neben 4.4'-Diamino-diphenyldisulfid, 2.4'-Diamino-diphenylsulfid und anderen Produkten bei 4½-stdg. Erhitzen von 100 g Anilin, 50 g salzsaurem Anilin und 45 g Schwefel auf 170—180° (HINSBERG, B. 38, 1131, 1134; vgl. B. 39, 2429). Durch Eintragen einer Lösung von 1 Mol.-Gew. Schwefelchlorür in Chloroform in eine Lösung von 4 Mol.-Gew. Anilin in Chloroform bei höchstens 50°, neben salzsaurem Anilin (EDELEANU, Bl. [3] 5, 173; vgl. E. B. SCHMIDT, B. 11, 1169). Bei der Einw. von Bromschwefel oder Jodschwefel auf Anilin, in geringer Ausbeute (E. B. Sch., B. 11,1168). In geringer Menge bei der Einw. von Perchlormethylmercaptan (Bd. III, S. 135) auf überschüssiges Anilin (RATHKE, A. 167, 213, 215). Aus Diphenylsulfid (Bd. VI, S. 299) durch Eintragen in starke Salpetersaure unter Kühlung und Reduktion des rohen 4.4'-Dinitro-diphenylsulfids (Кватрт, В. 7, 384). Durch Reduktion von reinem 4.4'-Dinitro-diphenylsulfid (Bd. VI, S. 339) in Eisessig mit Zinkstaub (Nівтакі, Вотног, В. 27, 3262). Beim Erwärmen der alkoh. Lösung von 4'-Nitro-4-amino-diphenylsulfid (S. 534) mit Zinnehlorür und Salzsäure (Kehrmann, Bauer, B. 29, 2363). — Darst. Man erhitzt 2 Mol.-Gew. Anilin mit 2 At.-Gew. Schwefel auf 150—160° und fügt allmählich überschüssige Bleiglätte hinzu, zieht das Produkt mit siedendem Alkohol aus, destilliert den Alkohol ab, destilliert den Rückstand zur Entfernung des Anilins mit Wasserdampf und zieht die zurückbleibende Masse mit verd. Salzsäure aus; die salzsaure Lösung dampft man im Wasserbade zur Trockne ein, übergießt den Bückstand mit viel Wasser, entfernt aus der wäßr. Lösung durch wenig Alkali ein Harz, dann fällt man das 4.4'-Diamino-diphenylsulfid durch Alkali völlig aus, löst es in Äther-Alkohol, schlägt durch verd. Schwefelsäure das Sulfat des 4.4'-Di-

amino-diphenylsulfids nieder, löst es in heißem Wasser und fällt mit Alkali (M., W., B. 4, 384, 386). — Nadeln (aus Wasser). Geruchlos (M., W.). F: 108° (N., Bo., B. 27, 3262; Hi., B. 38, 1134). Kaum löslich in kaltem Wasser, wenig in heißem, leicht in Alkohol, Äther und heißem Benzol (M., W.). Die Salze reagieren sauer (M., W.). — Zerfällt bei der Destillation unter Verkohlung in Anilin und Schwefelwasserstoff (M., W.). Wird in Acetonlösung durch Wasserstoffsuperoxyd zu 4.4'-Diamino-diphenylsulfoxyd (s. u.) oxydiert (Gazdar, Smills, Soc. 93, 1835). Natriumamalgam ist ohne Wirkung (M., W.). Wird von alkoh. Kali und von konz. Salzsäure bei 200° nicht angegriffen (M., W.). Liefert beim Kochen mit Thionylchlorid in Benzol 4.4'-Bis-thionylamino-diphenylsulfid (S. 546) (Ruhl, A. 270, 149). Gibt mit kalter rauchender Schwefelsäure 4.4'-Diamino-diphenylsulfid-disulfonsäure-(2.2') (Syst. No. 1926) (O. Schmidt, B. 39, 612). Salpetersäure wirkt beim Erwärmen sehr heftig ein und erzeugt Schwefelsäure und Pikrinsäure (M., W.). Durch Diazotierung mit salpetriger Säure oder mit Äthylnitrit und Zersetzung der Diazoniumverbindung mit Alkohol entsteht Diphenylsulfid (Krafft, B. 7, 385). Beim Kochen mit überschüssigem Eisessig erhält man 4.4'-Bis-acetamino-diphenylsulfid (S. 543) (M., W.). Beim Erhitzen des salzsauren Salzes mit Anilin bis zum gelinden Sieden entsteht Thiodiphenylamin (Syst. No. 4198) (Hoffmann, B. 27, 3324). — Die Salze färben in stark verdünnter Lösung Fichtenholz orange (M., W.). Erwärmt man die Lösung der Salze mit Eisenchlorid, so tritt sehr rasch eine intensiv blaue bis blauviolette Färbung ein (empfindliche Reaktion) (M., W.). Beim Erwärmen mit konz. Schwefelsäure färbt sich die Lösung blau, dann violett; gießt man die blaue Lösung in Wasser, so nimmt sie eine rote Farbe an (empfindliche Reaktion) (M., W.). Über Verwendung von 4.4'-Diamino-diphenylsulfid zur Herstellung von Azofarbstoffen vgl. Schultz, Tab. No. 293, 294.

 $C_{12}\dot{H}_{12}N_2S+HCl+2\,H_2O.$ Nadeln. Schwer löslich in kaltem Wasser; durch siedendes Wasser erfolgt Zersetzung (M., W., B. 4, 388). — $C_{12}H_{12}N_2S+2\,HCl+2\,H_2O.$ Prismen. Leicht löslich in Wasser, kaum löslich in Äther, Alkohol und kalter konzentrierter Salzsäure (M., W.). — $2\,C_{12}H_{12}N_2S+H_2SO_4+H_2O.$ Blätter (M., W.). — $C_{12}H_{12}N_2S+H_2SO_4+H_2O.$ Nadeln oder Prismen (aus schwefelsäurehaltigem Wasser). Wenig löslich in kaltem Wasser, leichter in heißem Wasser, fast gar nicht in Alkohol (M., W.). — Oxalat $C_{12}H_{12}N_2S+C_2H_2O_4.$ Nadeln (M., W.). Sehr wenig löslich in kaltem Wasser, ziemlich leicht in heißem Wasser (HI., B. 38, 1134). — $C_{12}H_{12}N_2S+2\,HCl+PtCl_4.$ Gelbe, blättrig-krystallinische Fällung (M., W.).

4.4'-Diamino-diphenylsulfoxyd $C_{19}H_{19}ON_9S=(H_2N\cdot C_6H_4)_9SO$. B. Aus 4.4'-Diamino-diphenylsulfid in Acetonlösung mit Wasserstoffsuperoxyd (GAZDAR, SMILES, Soc. 93, 1835). — Farblose Prismen (aus Alkohol oder Wasser). F: 175° (Zers.). Gibt mit konz. Schwefelsäure eine tiefblaue Färbung.

4.4'-Diamino-diphenylsulfon $C_{12}H_{12}O_2N_2S = (H_2N\cdot C_0H_4)_2SO_2$. B. Aus 4.4'-Dinitro-diphenylsulfon (Bd. VI, S. 340) mit Zinn und starker Salzsäure (Fromm, Wittmann, B. 41, 2270). — Weiße Blättchen (aus verd. Alkohol). F: 174°.

4.4'-Diamino-diphenyldisulfid, Dithioanilin C₁₂H₁₄N₂S₂ = [H₂N·C₆H₄·S-]₈. Zur Konstitution vgl. Leuckaet, J. pr. [2] 41, 204; Hinsberg, B. 39, 2427. — B. Man erhitzt 100 g Anilin mit 50 g 36% iger Salzaäure und 35 g Schwefel allmählich im Laufe von 3 Stdn. bis auf 150° und läßt weitere 6 Stdn. gelinde kochen (Hofmann, B. 27, 2813; 38, 1433; HI., B. 39, 2429). Neben 2.4'-Diamino-diphenylsulfid, 4.4'-Diamino-diphenylsulfid und anderen Produkten bei 4½-stdg. Erhitzen von 100 g Anilin, 50 g salzsaurem Anilin und 45 g Schwefel auf 170—180° (Hi., B. 38, 1131, 1133). Durch Erhitzen von Acetanilid mit Schwefelchlorür auf 100° entstehen 4.4'-Bis-acetamino-diphenyldisulfid (F: 215°) (S. 544) und 4.4'-Bis-acetamino-diphenyltrisulfid (S. 545); aus der Lösung des Produktes in Eisessig krystallisiert zunächst das schwerer lösliche Trisulfid aus; das 4.4'-Bis-acetamino-diphenyldisulfid zerlegt man durch Erhitzen mit verd. Schwefelsäure (Schmidt, B. 11, 1171). Durch Eintragen von diazotiertem N-Acetyl-p-phenylendiamin in die auf 60—70° erwärmte Lösung von Kalium-xanthogenat (Bd. III, S. 209), Kochen des entstandenen Äthylxanthogensäure-[4-acetamino-diphenyldisulfids (F: 215°) mit heißer verdünnter Schwefelsäure (Læuckaet, Lustig, J. pr. [2] 41, 204; vgl. Lu., G. 21 I., 215). Bei der Oxydation von 4-Amino-phenylmercaptan an der Luft (Hi., B. 39, 2429). Bei der Reduktion des 4.4'-Dinitro-diphenyldisulfids (Bd. VI, S. 340) mit Zink und Schwefelsäure (Læu., Lu., J. pr. [2] 41, 200). — Darstellung von 4.4'-Diamino-diphenyldisulfid aus Anilin, salzsaurem Anilin und Schwefel: Hi., B. 38, 1131; 39, 2429. — Gelbe Prismen oder Nadeln (aus verd. Alkohol), gelbe Nadeln (aus Wasser) (Hi., B. 38, 1133); farblose Nadeln (aus verd. Alkohol), delbe Nadeln (aus Wasser) (Hi., B. 38, 1133); farblose Nadeln (aus verd. Alkohol), Åther und Chloroform, 51 delbe 1
sehr wenig in kaltem Benzol, Schwefelkohlenstoff, Ligroin, mehr in der Wärme (Sch., B. 11, 1172). Die Lösungen in Alkohol (Ho., B. 27, 2813) und in anderen Lösungsmitteln (Hi., B. 38, 1133) sind gelb. — Läßt sich durch Oxydation mit Permanganat in Eisessig und Erhitzen des Oxydationsproduktes mit Schwefelsäure in Sulfanilsäure überführen (Ho., B. 27, 2814). Liefert bei der Einw. von Zinkstaub und Salzsäure oder beim Kochen mit konz. alkoh. Kalilauge 4-Amino-phenylmercaptan (HI., B. 39, 2428). Wird durch Diazotierung und Ersatz der NH₂-Gruppe durch Brom nach SANDMEYEB in 4-Brom-thiophenol (Bd. VI. S. 330) übergeführt (Ho., B. 27, 2814). Liefert mit Acetanhydrid das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 182° (S. 544) und bisweilen auch das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215° (S. 544) (Hi., B. 39, 2429, 2430; vgl. Ho., B. 27, 2814; 38, 1433; Hi., B. 38, 1134, 1902 Anm.; Zinge, Jörg, B. 42, 3374). Durch Einw. von xanthogensaurem Kalium (Bd. III, S. 209) auf die Lösung von diazotiertem 4.4'-Diamino-diphenyldisulfid und Verseifung des entstandenen Ols mit alkoh. Kali entsteht Dithiohydrochinon (Bd. VI, S. 867) (Leu., Lu., J. pr. [2] 41, 205). Beim Erhitzen des Hydrochlorids mit Anilin auf 180° entsteht Thiodiphenylamin (Syst. No. 4198) (Ho., B. 27, 3324). — Die farblose Lösung von 4 4'-Diamino-diphenyldisulfid in konz. Schwefelsäure färbt sich beim Erhitzen violett; bei Zusatz von Wasser entsteht eine weinrote Lösung; beim Übersättigen mit Natronlauge erfolgt Violettrotfärbung (Ho., B. 27, 2813). $C_{12}H_{12}N_2S_2 + 2$ HCl. Nadeln (Ho., B. 27, 2813). $-C_{12}H_{12}N_2S_2 + H_2SO_4 + 2$ H $_2O$. Nadeln (aus schwefelsäurehaltigem Wasser) (Sch., B. 11, 1171).

 b) Derivate des 4-Amino-thiophenols, die durch Veränderung der Aminogruppe (bezw. der Aminogruppe und der Sulfhydrylgruppe) entstanden sind.

4-Dimethylamino-thiophenol, 4-Dimethylamino-phenylmercaptan $C_2H_{11}NS =$ $(CH_a)_a N \cdot C_6 H_4 \cdot SH.$ Beim Behandeln von 4.4'-Bis-dimethylamino-diphenyldisulfid В. mit Zinn und Salzsäure (Merz, Weith, B. 19, 1574). — F: 28,5°; siedet unter Zersetzung bei 259—260° (Leuckart, J. pr. [2] 41, 208). Oxydiert sich an der Luft schnell zu 4.4'-Bisdimethylamino-diphenyldisulfid (M., W.; L.). — Pb(C₂H₁₀NS)₂. Blutkuchenartige Masse, die sich bei längerem Stehen in mennigfarbene Blättchen umwandelt (M., W.).

Methyl-[4-dimethylamino-phenyl]-sulfid $C_0H_{13}NS = (CH_3)_2N \cdot C_0H_4 \cdot S \cdot CH_3$. Aus Trimethyl-[4-methylmercapto-phenyl]-ammoniumchlorid (S. 539) bei 200° (ZINCKE, Jörg, B. 42, 3374). Aus salzsaurem Methyl-[4-amino-phenyl] sulfid mit Chlorwasserstoff-Methylalkohol bei 140° (Z., J.). — Schwach riechende Blättchen (aus kaltem Methylalkohol durch Wasser). F: 23°. Mit Wasserdampf flüchtig. In Wasser kaum löslich, leicht löslich in organischen Mitteln. — C. $H_{13}NS + HCl$. Nadeln (aus absol. Alkohol durch Ather). Leicht löslich in Wasser.

Methyl-[4-dimethylamino-phenyl]-sulfon $C_0H_{12}O_2NS = (CH_2)_2N \cdot C_0H_4 \cdot SO_3 \cdot CH_2$. B. Aus aquimolekularen Mengen dimethylanilin-p-sulfinsaurem Natrium (Syst. No. 1921) und Methylbromid in absolut-alkoholischer Lösung bei Wasserbadtemperatur (MICHAELIS, SCHINDLEB, A. 310, 148). — Nadeln (aus heißem Wasser). F: 166—167°. Leicht löslich in organischen Lösungsmitteln.

Äthyl-[4-dimethylamino-phenyl]-sulfon $C_{10}H_{15}O_2NS = (CH_3)_2N\cdot C_0H_4\cdot SO_4\cdot C_3H_5$. B. Aus äquimolekularen Mengen dimethylanilin-p-sulfinsaurem Natrium und Äthylbromid in absolut-alkoholischer Lösung im Wasserbade (M., Sch., A. 310, 147). — Blättchen (aus heißem Wasser). F: 116°. Leicht löslich in fast allen organischen Lösungsmitteln. — $C_{10}H_{15}O_2NS + HCl$. Farblose Krystalle. F: 139—140°. Leicht zersetzbar durch Wasser.

4-Dimethylamino-diphenylsulfon $C_{14}H_{15}O_2NS = (CH_2)_2N \cdot C_0H_4 \cdot SO_2 \cdot C_0H_5$. Die von MICHLEB, K. MEYER (B. 12, 1792) als Dimethylamino-diphenylsulfon beschriebene Verbindung ist sufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844 als Benzolsulfonsäure-methylanilid $C_{19}H_{19}O_{9}NS = C_{9}H_{5} \cdot N(CH_{3}) \cdot SO_{2} \cdot C_{9}H_{5}$ (Bd. XII, S. 575) aufzufassen.

[4-Dimethylamino-phenyl]-p-tolyl-sulfon, 4'-Dimethylamino-4-methyl-diphenylsulfon C_1H_1 , $O_2NS = (CH_2)_2N \cdot C_2H_4 \cdot SO_2 \cdot C_2H_4 \cdot CH_3$. Die von Michler, K. Meyer (B. 12, 1793) als [Dimethylaminophenyl]-p-tolyl-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von BERGEL, DÖRING, B. 61 [1928], 844 als p-Toluolsulfonsäure-methylanilid $C_{14}H_{15}O_2NS = C_6H_6 \cdot N(CH_3) \cdot SO_2 \cdot C_6H_4 \cdot CH_2$ (Bd. XII, S. 575) aufzufassen.

[4-Dimethylamino-phenyl]-a-naphthyl-sulfon $C_{10}H_{17}O_{2}NS = (CH_{3})_{2}N \cdot C_{2}H_{4} \cdot SO_{2} \cdot C_{10}H_{7}$. Die von Michier, Salathé (B. 12, 1789) als [Dimethylaminophenyl]-a-naphthyl-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als a-Naphthalinsulfonsäure-methylanilid $C_{17}H_{15}O_2NS = C_0H_5 \cdot N(CH_3) \cdot SO_2 \cdot C_{10}H_7$ (Bd. XII, S. 575) aufzufassen. [4-Dimethylamino-phenyl]- β -naphthyl-sulfon $C_{10}H_{17}O_2NS = (CH_2)_2N \cdot C_4H_4 \cdot SO_2 \cdot C_{10}H_4$. Die von Michler, Salatha (B.12,1790) als [Dimethylaminophenyl]- β -naphthyl-sulfon beschriebene Verbindung ist sufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844 als β -Naphthalinsulfonsäure-methylanilid $C_{17}H_{18}O_{2}NS = C_{6}H_{5}\cdot N(CH_{2})\cdot SO_{2}\cdot C_{10}H_{7}$ (Bd. XII, S. 575) aufzufassen.

[4-Dimethylamino-phenyl]-anthryl-(2)-sulfon $C_{22}H_{12}O_{2}NS = (CH_{2})_{2}N \cdot C_{6}H_{4} \cdot SO_{2} \cdot C_{14}H_{2}$. Die von Heffere (B. 28, 2260) als [Dimethylaminophenyl]-anthryl-(2)-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlüßtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von BERGEL, DÖRING, B. 61 [1928], 844 als Anthracensulfonsture-(2)-methylanilid $C_{21}H_{17}O_2NS = C_4H_5 \cdot N(CH_2) \cdot SO_2 \cdot C_{14}H_9$ (Bd. XII, S. 575) aufzufassen.

[4-Dimethylamino-phenyl]-anthrachinonyl-(2)-sulfon $C_{32}H_{17}O_4NS = (CH_3)_2N$ $C_0H_4\cdot SO_3\cdot C_0H_3(CO)_3C_0H_4$. Die von Mo Houl (B. 13, 693) als [Dimethylaminophenyl]-anthrachinonyl-(2)-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von BERGEL, DÖRING, B. 61 [1928], 844 als Anthrachinon-sulfonsaure-(2)-methylanilid C₁₁H₁₁O₄NS = $C_eH_5 \cdot N(CH_2) \cdot SO_2 \cdot C_eH_3(CO)_2C_eH_4$ (Bd. XII, S. 575) sufzufassen.

Dithiokohlensäure - O - äthylester - S - [4 - dimethylamino - phenylester], Äthyl-xanthogensäure-[4-dimethylamino-phenyl]-ester $C_{11}H_{15}ONS_2=(CH_2)_2N\cdot C_2H_4\cdot S\cdot CS\cdot O\cdot C_2H_5$. B. Man bereitet aus salzsaurem N.N-Dimethyl-p-phenylendiamin (S. 72) und Natriumnitrit eine Lösung von p-Dimethylamino-benzoldiazoniumohlorid, läßt diese langsam zu einer 70° warmen Lösung von xanthogensaurem Kalium (Bd. III, S. 209) fließen, zieht das unter Stickstoffentwicklung gebildete Ol mit Ather aus, löst es nach Abdampfen des Äthers in verd. Schwefelsäure und entzieht es dieser Lösung wieder durch wiederholtes Ausschütteln mit Äther; das beim Verdunsten des Äthers verbleibende hellgelbe Ol ersterrt bald krystallinisch (Leuckaet, J. pr. [2] 41, 206). — Hellgelbe Krystalle (aus Alkohol). F: 54,5°. Leicht löslich in den üblichen Lösungsmitteln. Bildet mit Sauren Salze. Alkoholisches Kali oder Anilin erzeugen 4.4'-Bis-dimethylamino-diphenyldisulfid.

4.4'-Bis - dimethylamino - diphenylsulfid, Thiodimethylanilin $C_{16}H_{20}N_1S = [(CH_2)_1N\cdot C_2H_4]_2S$. B. Beim Vermischen von 3 Tln. Dimethylanilin und 1 Tl. Schwefeldichlorid SCl₂, beide gelöst in dem 9-fachen Volumen Petrolather; den gebildeten Niederschlag löst man in verd. Salzsäure, kocht die Lösung mit überschüssiger Natronlauge und krystallisiert den nicht flüchtigen Rückstand, nach dem Waschen mit etwas warmem Alkohol, aus heißem Alkohol um (Holzmann, B. 20, 1641; 21, 2056). Entsteht ferner durch Zersetzung der bei der Einw. von 1 Mol.-Gew. Thionylchlorid auf 3 Mol.-Gew. Dimethylanilin in Petroläther unter Kühlung entstehenden Verbindung C₁₆H₂₈ON₂Cl₃S (Bd. XII, S. 155) mit Wasser von gewöhnlicher Temperatur (MICHAELIS, SCHINDLEB, A. 310, 138, 139, 141, 142; vgl. MI., GODCHAUX, B. 23, 554). Beim Erhitzen von Thionylanilin (Bd. XII, S. 578) mit 2 Mol.-Gew. Dimethylanilin und Zinkehlorid auf 70° (Mr., A. 274, 214). Beim Erwärmen von 3 Tln. Dimethylanilin mit 2 Tln. Isopersulfocyansaure (Xanthanwassersoff) (Syst. No. 4445) (Tursini, B. 17, 586). Bei der Einw. von 1 Tl. Perchlormethylmercaptan (Bd. III, S. 135) auf 2 Tle. Dimethylanilin, neben anderen Produkten (RATHKE, B. 19, 397). Bei der Reduktion von 4.4'-Bis-dimethylamino-diphenylsulfoxyd (s. u.) in alkoh. Lösung mit Natrium (MI., Sch., A. 310, 150). — Nadeln (aus Alkohol). F: 126° (Mr., G., B. 23, 554), 125° (Tv.), 123,5° (Ho., B. 20, 1641), 123° (R.). Destilliert fast unzersetzt (Tv.). Unlöslich in Wasser, wenig löslich in kaltem Alkohol, Äther, Benzol, Eisessig, leichter in der Wärme (Ho., B. 20, 1641), schwer löslich in Petroläther (R.). Leicht löslich in Säuren (Mr., G.; Ho., B. 20, 1641). — Wird durch Kochen mit alkoholisch-ammoniakalischer Silbernitratiosung in 4.4 Bis-dimethylamino-diphenyläther (S. 443) umgewandelt (Ho., B. 21, 2056; vgl. BAMBERGER, B. 84, 25). Bleibt beim Schmelzen mit Kali unverändert (Tu.). Konzentrierte Salzsäure wirkt bei 200° nicht ein (Tu.). Beim mit Kali unverändert (TU.). Konzentrierte Salzsäure wirkt bei 200° nicht ein (TU.). Beim Erhitzen mit Kupferpulver auf 300° wird Dimethylanilin gebildet (Ho., B. 21, 2067). Wird in Eisessiglösung durch Braunstein oder Bleidioxyd tief blau gefärbt (R.). — C₁₆H₂₀N₂S + 2 HCl. F: 176°; äußerst löslich in Wasser (Mi., G.). — C₁₆H₂₀N₂S + HCNS. Blättchen (aus Alkohol). F: 168° (Tu.; R.). Unlöslich in Ather (Tu.). — Pikrate. C₁₆H₂₀N₂S + C₃H₃O₇N₃ (Tu.). Gelbe Nadeln (aus Alkohol). F: 142° (Mi., G.). Unlöslich in Wasser, sohwer löslich in Alkohol (Tu.). — C₁₆H₂₀N₂S + 2 C₃H₃O₇N₃. Gelbes Pulver. F: ca. 146° (Zers.) (Ho., B. 20, 1642). Unlöslich in Alkohol und Äther (Ho.). — C₁₆H₂₀N₂S + 4 HCN + Fe(CN)₂ + 6 H₂O. Weißes Pulver. In Wasser fast unlöslich (Mi., G.). — C₁₆H₂₀N₃S + 2 HCl + PtCl₄. Enthält nach Mi., G., B. 23, 555, 2 Mol. H₂O, nach Ho., B. 20, 1642, 3 bis 4 Mol. H₂O. Gelbbraune Flocken. Verliert das Wasser bei 100° (No.).

4.4'-Bis-dimethylamino-diphenylsulfoxyd $C_{10}H_{20}ON_2S = [(CH_0)_2N\cdot C_0H_4]_2SO$. B. Aus dimethylanilin-p-sulfinsauren Alkalisalzen mit Säuren, am besten beim Erwärmen

mit wäßriger schwefliger Säure (MICHAELIS, SCHINDLEB, A. 310, 148). — Farblose Krystalle. F: 151—152°. Sehr leicht löslich in Chloroform, heißem Methylalkohol und Äthylalkohol, schwer in Äther, unlöslich in Petroläther. — Wird bei längerem Kochen mit verd. Salzsäure quantitativ in SO₂ und Dimethylanilin gespalten, durch Natrium in alkoh. Lösung zu 4.4′-Bisdimethylamino-diphenylsulfid (S. 538) reduziert. — C₁₆H₂₀ON₂S + 2 HCl. Nadeln. F: 174°. — Pikrat C₁₆H₂₀ON₂S + C₆H₃O₇N₃. Bräunliche Warzen (aus kaltem Alkohol). F: 119°. — Pikrat C₁₆H₂₀ON₂S + 2 C₆H₃O₇N₃. Gelbe Nadeln (aus heißem Alkohol oder Wasser). F: 155—156°. — C₁₆H₂₀ON₂S + 2 HCl + PtCl₄ + 2 H₂O. Braungelber krystallinischer Niederschlag. Zersetzt sich bei 50°. — C₁₆H₂₀ON₂S + 2 HCl + PtCl₄ + 8 H₂O. Bräunlichgelber krystallinischer Niederschlag.

Tris-[4-dimethylamino-phenyl]-sulfoniumhydroxyd $C_{24}H_{31}ON_3S = [(CH_3)_2N \cdot C_4H_4]_3S \cdot O \cdot Hg \cdot C_6H_4 \cdot N(CH_3)_3$ entsteht bei allmählichem Versetzen einer lauwarmen Lösung von 10 g der Verbindung $Hg[C_4H_4 \cdot N(CH_3)_3]_3$ (Syst. No. 2345) in 200—250 ccm Benzol mit einer Lösung von 1,5—2 g Thionylchlorid in 30 ccm Benzol; man kocht den mit Wasser gewaschenen Niederschlag mit mäßig konz. Salzsäure, leitet in die kalte Lösung Schwefelwasserstoff, filtriert und fällt das Filtrat von HgS mit Natronlauge; hierdurch wird das Chlorid gefällt, welches man durch Kochen mit Wasser von anhaftendem Dimethylanilin befreit und dann durch Silberoxyd zerlegt (MICHAELIS, GODCHAUX, B. 24, 758). — Die freie Base krystallisiert in Nadeln mit 7 H₂O (aus Wasser). Schmilzt wasserhaltig bei 80—90°, wasserfrei bei 200°. Leicht löslich in Wasser; reagiert stark alkalisch. — Behandelt man das Chlorid mit Reduktionsmitteln, so entstehen 4.4'-Bisdimethylamino-diphenylsulfid und Dimethylanilin. — Salze. $C_{24}H_{30}N_3S \cdot Cl + 6H_2O$. Krystalle (aus verd. Alkohol). Schmilzt bei 98°, wird bei 120° unter Wasserverlust fest und schmilzt dann bei 150°. Sehr leicht löslich in Alkohol und Chloroform, ziemlich schwer in kaltem Wasser, schwer in Äther und Ligroin. — $C_{24}H_{30}N_3S \cdot Br$. Farblose Krystalle (aus Wasser). F: 240°. Unlöslich in Äther, schwer löslich in kaltem Wasser, leicht in Alkohol und Chloroform. — $C_{24}H_{30}N_3S \cdot Cl + C_6H_3O_7N_3$. Rötlichgelbe Blättchen (aus Alkohol). F: 135°. Schwer löslich in kaltem Alkohol. — $C_{24}H_{30}N_3S \cdot Cl + H_{30}N_3S

4.4'-Bis-dimethylamino-diphenyldisulfid, Dithiodimethylanilin C₁₆H₂₆N₂S₂ = [(CH₂)₂N·C₂H₄·S-]₂. B. Aus Dimethylanilin und Chlorschwefel S₂Cl₂ (Merz, Weith, B. 19, 1571; vgl. Handann, B. 10, 403). Beim Erhitzen von Äthylamihogensäure-[4-dimethylamino-phenyl]-ester (S. 538) mit alkoh. Kali oder besser mit alkoh. Anilinösung (Leuckar, J. pr. [2] 41, 208). — Darst. Man trägt die Lösung von 1 Mol.-Gew. Chlorschwefel im 8-fachen Volumen Petroläther allmählich in eine Lösung von 3 Mol.-Gew. Dimethylanilin in Petroläther ein, löst den erhaltenen Niederschlag in Salzsäure und kocht die Lösung mit Natronlauge, um Dimethylanilin zu entfernen; der Rückstand wird mit etwas warmem Alkohol gewaschen und aus kochendem Alkohol umkrystallisiert (M., W.). — Gelbe Nadeln (aus Alkohol). F: 118° (M., W.). Leicht löslich in Schwefelkohlenstoff, schwerer in heißem Benzol, Alkohol, Äther und Petroläther, fast unlöslich in Wasser (M., W.). Ist schwach basisch; wird aus den Lösungen in Säuren durch Wasser gefällt (L.). — Wird durch Zinn und Salzsäure oder durch Natriumamalgam zu 4-Dimethylamino-thiophenol reduziert (M., W.). Beim Erhitzen mit Kupferpulver auf 230° entstehen Schwefelkupfer und Dimethylanilin (M., W.). Wird in alkoholischer Lösung durch Ammoniak und Silbernitrat nach Merz, Weith, B. 19, 1573 in eine Verbindung C₁₂H₂₀O₂N₂ (F: 90,5°) übergeführt; nach Lecheb, Privatmitteilung, entsteht aber eine solche Verbindung nicht, sondern vielmehr 4.4'-Bis-dimethylamino-diphenylsulfid. Wird von konz. Salzsäure bei 190° kaum angegriffen (M., W.). — 2 C₁₆H₂₀N₂S₂ + 2 HCl + PtCl₄ + 4 H₂O (Holzmann, B. 20, 1639 Anm.).

Trimethyl - [4 - methylmercapto - phenyl] - ammoniumhydroxyd C₁₀H₁₇ONS = (CH₃)₂N(OH)·C₂H₄·S·CH₃. B. Das Jodid entsteht beim Erhitzen von Methyl-[4-aminophenyl]-sulfid mit Methyljodid (ZINCKE, JÖRG, B. 42, 3372). Das Jodid entsteht auch beim Erhitzen von Methyl-[4-acetamino-phenyl]-sulfid mit Methyljodid und Methylalkohol im geschlossenen Rohr auf 100° (Z., J.). — Die freie Base wurde nicht isoliert. — Das Chlorid wird durch Erhitzen auf 200° in Methyl-[4-dimethylamino-phenyl]-sulfid (S. 537) tibergeführt. — Salze. C₁₀H₁₆NS·Cl. Hygroskopische Nadeln (aus Chloroform + Benzin F: 193—194° (Zers.). Leicht löslich in Alkohol und Chloroform. — C₁₀H₁₆NS·I. Täfelchen oder Blättchen (aus heißem Wasser). Schmilzt bei 180—184° unter Abgabe von Methyljodid. Leicht löslich in heißem Wasser, löslich in kaltem Wasser, Methylalkohol und Athylalkohol. — 2 C₁₆H₁₆NS·Cl + PtCl₄. Blaßgelbes krystallinisches Pulver.

4.4' - Bis - diāthylamino - diphenylsulfid, Thiodiāthylanilin $C_{20}H_{22}N_1S = [(C_2H_2)_2N \cdot C_6H_4]_2S$. B. Beim Versetzen einer Lösung von 4 Mol.-Gew. Diāthylanilin in Petrolāther mit einer Lösung von 1 Mol.-Gew. Schwefeldichlorid SCl₂ in Petrolāther; man löst dem gebildeten Niederschlag in Salzsāure, fällt durch Alkali und entfernt überschüssiges Diāthylanilin durch Kochen des Niederschlages mit viel Wasser (Holzmann, B. 21, 2059). Durch Zersetzung der bei der Einw. von 1 Mol.-Gew. Thionylchlorid auf 2 Mol.-Gew. Diāthylanilin in Benzol entstehenden Verbindung $C_{20}H_{20}ON_2Cl_2S$ (Bd. XII, S. 166) mit Wasser (Michaelis, Schindler, A. 310, 153; vgl. M., Godchaux, B. 23, 556). — Nadeln (aus Alkohol). F: 79,5—80° (H.), 83° (M., G.). Unlöslich in Wasser, schwer in kaltem Alkohol, leicht in warmem Alkohol, Äther, Benzol und Eisessig (H.). — Geht durch Erhitzen mit alkoholischammoniakalischer Silbernitratiösung in 4.4'-Bis-diāthylamino-diphenyläther (S. 443) über (H.). — $C_{20}H_{22}N_2S + 2$ HCl. Nadeln. F: 94°; leicht löslich in Wasser (M., G.). — $C_{20}H_{22}N_2S + H_2SO_4$. Nadeln. F: 83° (M., G.). — Pikrate. $C_{20}H_{20}N_2S + C_0H_2O_7N_2$. Nadeln (aus Alkohol). F: 177° (M., G.). — $C_{20}H_{22}N_2S + 2$ HCl. + PtCl₄ (bei 100°). Gelber, flockiger Niederschlag. Unlöslich in Wasser, schwer löslich in Alkohol (H.).

4.4'-Bis-diāthylamino-diphenylsulfoxyd $C_{20}H_{20}ON_2S = [(C_3H_5)_2N\cdot C_6H_4]_3SO$. B. Beim Erwärmen der Alkalisalze der Diāthylanilin-p-sulfinsäure (Syst. No. 1921) in wäßr. Lösung mit schwefliger Säure (MICHAELIS, SCHINDLER, A. 310, 155). — Farblose Kryställchen. F: 128—129°. Sehr leicht löslich in heißem Alkohol und Chloroform. — $C_{20}H_{28}ON_2S + 2HCl + PtCl_4 + 2H_2O$. Bräunlichgelber Niederschlag. — $C_{20}H_{28}ON_2S + 2HCl + PtCl_4 + 8H_2O$. Bräunlichrote, strahlige Krystallaggregate.

44'-Bis-diāthylamino-diphenyldisulfid, Dithiodiāthylanilin $C_{20}H_{20}N_3S_3 = [(C_2H_3)_2N\cdot C_4H_4\cdot S-]_3$. B. Beim allmāhlichen Vermischen von 50 g Diāthylanilin und 20 g Chlorschwefel S_2Cl_3 , beide gelöst in dem 9-fachen Vol. Petroläther, unter guter Kühlung (HOLZMANN, B. 20, 1637). — Hellgelbe Prismen (aus Alkohol). F: 72°. Wenig löslich in warmem Äther, in kaltem Alkohol, Benzol und Petroläther, leicht in Schwefelkohlenstoff. Die Salze werden durch Wasser zerlegt. — Wird nach Holzmann in ammoniakhaltiger alkoholischer Lösung durch Silbernitrat in eine Verbindung $C_{20}H_{20}O_2N_2$ (F: 67°) übergeführt; nach LECHER, Privatmitteilung, entsteht eine solche Verbindung nicht. — Pikrat $C_{20}H_{20}N_2S_2 + C_4H_2O_7N_3$. Gelbes, amorphes Pulver. Reichlich löslich in warmem Alkohol oder Benzol. — $C_{20}H_{20}N_2S_3 + 2$ HCl + PtCl₄ + 4 H₃O. Gelbe Flocken.

4-Amino-4'-anilino-diphenyldisulfid $C_{19}H_{10}N_2S_3 = C_6H_5 \cdot NH \cdot C_6H_4 \cdot S \cdot S \cdot C_6H_4 \cdot NH_5$. B. Bei 5—6-stdg. Erhitzen von 150 g Anilin, 100 g salzsaurem Anilin und 45 g Schwefel auf 195° (Hofmann, B. 27, 3321), neben Thiodiphenylamin (Syst. No. 4198) (Ho., B. 27, 3321), 2.4'- und 4.4'-Diamino-diphenylsulfid (vgl. Hinsberg, B. 38, 1137; Ho., B. 38, 1433). — Darst. Man erhitzt 200 g Anilin mit 60 g Schwefel und 80 g 36°/øiger Salzsäure ohne Kühler 1 Stde. bis auf 170°, dann 5 Stdn. bis auf 200° (Ho., B. 27, 3321). — Gelbe Nadeln (aus absol. Alkohol). Schmilzt gegen 120° (Ho., B. 27, 3322). — Die salzsaure alkoholische Lösung wird durch Bleidioxyd erst smaragdgrün, dann blau gefärbt. Mit Zinn + Salzsäure entstehen 4-Amino-thiophenol und eine Verbindung $C_{19}H_{12}NCIS$ (Ho., B. 27, 3323). Beim Erhitzen des salzsauren Salzes mit Anilin auf 170—180° bildet sich Thiodiphenylamin (Syst. No. 4198) (Ho., B. 27, 3323). — $C_{18}H_{18}N_2S_3 + 2$ HCl. Gelbe Nadeln (Ho., B. 27, 3322).

 $\begin{array}{ll} [4\cdot(\beta.\beta.\beta-\mathrm{Trichlor}-\ddot{a}\mathrm{thylidenamino})-\mathrm{phenyl}]-\mathrm{p-tolyl-sulfid} & \mathrm{C_{15}H_{12}NCl_2S} = \mathrm{CCl_3\cdot CH:N\cdot C_2H_4\cdot S\cdot C_2H_4\cdot CH_2}. & B. & \mathrm{Aus} & [4-\mathrm{Amino-phenyl}]-\mathrm{p-tolyl-sulfid} & (S. 534) & \mathrm{und} & \mathrm{Chloralhydrat} & (E. v. Meyer, Heiduschka, J. pr. [2] 68, 271). & \mathrm{Krystalle,} & F: 107-109^{\circ}. \end{array}$

[4-Bensalamino-phenyl]-p-tolyl-sulfid $C_{20}H_{10}NS = C_0H_4 \cdot CH : N \cdot C_0H_4 \cdot S \cdot C_0H_4 \cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Bensaldehyd in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 272). — Blättchen. F: 99°. Leicht löslich in Alkohol und Äther. Färbt sich am Licht grüngelblich.

[4-(4-Chlor-bensalamino)-phenyl]-p-tolyl-sulfid $C_{se}H_{1e}NClS = C_{e}H_{4}Cl\cdot CH:N\cdot C_{e}H_{4}\cdot S\cdot C_{e}H_{4}\cdot CH_{2}.$ B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und 4-Chlor-bensaldehyd in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 273). — Gelbe Blättchen. F: 138°. Leicht löslich in Alkohol, schwer in Ather und Bensol.

[4-(8-Nitro-bensalamino)-phenyl]-p-tolyl-sulfid $C_{sg}H_{16}O_{s}N_{s}S = O_{s}N \cdot C_{s}H_{4} \cdot CH : N \cdot C_{s}H_{4} \cdot CH_{s}$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und 3-Nitro-bensaldehyd in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 272). — Gelbe Blättchen. F: 115°. Leicht löslich in Alkohol und Äther, schwer in Bensol.

[4-(4-Nitro-benzalamino)-phenyl]-p-tolyl-sulfid $C_{20}H_{16}O_2N_2S = O_2N \cdot C_0H_4 \cdot CH : N \cdot C_0H_4 \cdot S \cdot C_0H_4 \cdot CH_2$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und 4-Nitro-benzaldehyd in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 273). — Rote Blättchen. F: 109°. Löslich in Alkohol, Äther und Benzol.

4.4'-Bis-bensalamino-diphenyldisulfid $C_{38}H_{30}N_2S_2=[C_6H_5\cdot CH:N\cdot C_6H_4\cdot S-]_2$. B. Aus 4.4'-Diamino-diphenyldisulfid und 2 Mol.-Gew. Benzaldehyd in Alkohol (HINSBERG, B. 39, 2430). — Gelbe Nadeln (aus Alkohol). F: 136°. Kaum löslich in Wasser, schwer löslich in Ather, löslich in Alkohol, leicht löslich in Eisessig. Spaltet beim Erwärmen mit verd. Säuren sofort Benzaldehyd ab.

[4-Cinnamalamino-phenyl]-p-tolyl-sulfid $C_{99}H_{19}NS = C_{9}H_{5}\cdot CH:CH:CH:N\cdot C_{6}H_{4}\cdot S\cdot C_{6}H_{4}\cdot CH_{3}$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Zimtaldehyd (Bd. VII, S. 48) in siedendem Alkohol (E. v. Meyer, Heiduschka, J. pr. [2] 68, 273). — Gelbe Nadeln. F: 118°. Löslich in Alkohol und Äther.

[4-Salicylalamino-phenyl]-p-tolyl-sulfid $C_{20}H_{17}ONS = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Salicylaldehyd (Bd. VIII, S. 31) in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 272). — Gelbe Blättchen. F: 114°. Leicht löslich in Alkohol und Äther.

4.4'-Bis-äthylmercapto-benzalanilin $C_{17}H_{19}NS_2=C_2H_5$: C_5H_4 : C_6H_4 : C_6H_4 : C_8H_5 : C_8H_8 : C

[4-(4-Oxy-bensalamino)-phenyl]-p-tolyl-sulfid $C_{20}H_{17}ONS = HO \cdot C_0H_4 \cdot CH : N \cdot C_0H_4 \cdot S \cdot C_0H_4 \cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und 4-Oxy-benzaldehyd (Bd. VIII, S. 64) in siedendem Alkohol (E. v. Meyer, Heiduschka, J. pr. [2] 68, 272). — Hellgelbe Nadeln. F: 185,5°. Leicht löslich in Alkohol und Äther, schwer in Benzol.

[4-Anisalamino-phenyl]-p-tolyl-sulfid $C_{31}H_{19}ONS = CH_3 \cdot O \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Anisaldehyd in siedendem Alkohol (E. v. M., H., J. pr. [2] 68, 272). — Gelbliche Nadeln. F: 119°. Leicht löslich in Alkohol und Äther.

N.N'-Bis-[4-p-tolylmercapto-phenyl]-formamidin $C_{27}H_{24}N_2S_2 = CH_3 \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot NH \cdot CH: N \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot CH_3$. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Orthoameisensaureester (E. v. Meyer, C. 1901 I, 456). — Nadeln.

4-Acetamino-thiophenol, 4-Acetamino-phenylmercaptan C₈H₂ONS = CH₃·CO·NH·C₂H₄·SH. B. Beim Kochen des 4.4'-Bis-acetamino-diphenyldisulfids vom Schmelzpunkt 215° (S. 544) mit Aluminiumpulver in Essigsäure und etwas verd. Salzsäure (HINSEERG, B. 39, 2430). Auf gleiche Weise aus dem 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 120—122° (H., B. 41, 630). Bei der Reduktion des 4-Acetamino-benzolsulfochlorids (Syst. No. 1923) in alkoholischer Lösung mit Zinkstaub und Salzsäure (ZINCKE, JÖRG, B. 42, 3367).

Tritt in swei Formen, einer farblosen und einer gelben auf, deren Lösungen vollständig identisch sind; die Salze leiten sich von der farblosen Form ab (H., B. 39, 2431). Die farblose Form wird erhalten durch Fällen einer kalten alkal. Lösung des Rohproduktes mit verd. Salzsäure oder durch Umkrystallisieren aus gesättigter wäßriger Lösung unterhalb 70° oder aus verdünnter wäßriger Lösung; sie bildet schneeweiße Schuppen; sintert bei 145° und schmilst bei 154° zu einer gelben Flüssigkeit; löslich in Wasser, leicht löslich in Alkohol und Eisessig; die wäßr. Lösung zeigt leichten Mercaptangeruch und reagiert schwach sauer gegen Lackmus; mit Bleiacetat entsteht ein brauner, mit AgNO₂ ein gelber Niederschlag; wandelt sich beim Erhitzen oberhalb 100° oder im Sonnenlicht in die gelbe Form um (H., B. 39, 2431, 2432). Die gelbe Form wird erhalten durch Krystallisieren des Rohproduktes aus gesättigter wäßriger Lösung oberhalb 70° oder durch Verdunsten der methylalkoholischen besw. äthylalkoholischen Lösung oberhalb 15°; sie bildet gelbrote Blättchen (aus Wasser), Prismen (aus Alkohol), F: 154°; löst sich in Wasser und den organischen Lösungsmitteln farblos auf (H., B. 39, 2431).

4-Acetamino-thiophenol wird bei längerem Erhitzen an der Luft oder beim Stehen der wäßr. Lösung an der Luft zu dem 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelspunkt 215° oxydiert (H., B. 89, 2431, 2432 Anm. 2). Gibt in wäßr. Lösung mit überschüssigem Eisenchlorid und etwas Salzsäure bei 30° ein Gemisch der 4.4'-Bis-acetamino-diphenyldisulfide vom Schmelzpunkte 215° und 120—122° (S. 544) (H., B. 41, 629). Bei der Oxydation mit Eisenchlorid

in alkoh. Lösung erhielten Zincke, Jörg (B. 42, 3374) das 4.4'-Bis-acetamino-diphenylsulfid vom Schmelzpunkt 182°. Geht beim Kochen mit alkoh. Salzsaure in 4-Amino-thiophenol über (Z., J.). Geht beim Kochen mit Essigsäureanhydrid oder bei der Einw. von Essigsäureanhydrid in Gegenwart von verd. Natronlauge unter Kühlung in S.N-Diacetyl-[4-aminothiophenol] (S. 543) über (H., B. 39, 2433).

 $\begin{array}{ll} \textbf{Methyl-[4-acetamino-phenyl]-sulfid} & C_9H_{11}ONS = CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot S\cdot CH_3. & B. \\ \textbf{Beim Erwärmen der verdünnten alkoholischen Lösung des 4-Acetamino-thiophenols mit} \\ \end{array}$ Methyljodid und Natronlauge im Wasserbade (HINSBERG, B. 39, 2433). Beim Behandeln des Blei- oder Silbersalzes des 4-Acetamino-thiophenols mit Methyljodid in Alkohol in der Kälte (H.). Beim Versetzen der Lösung des 4-Acetamino-thiophenols in Pyridin mit Methyljodid (H.). Beim Erhitzen des Natriumsalzes des 4-Acetamino-thiophenols in verdünnter methylalkoholischer Lösung mit methylschwefelsaurem Kalium in geschlossenem Rohr auf 170° (H.). Beim Schütteln der Lösung des 4-Acetamino-thiophenols in überschüssiger verdünnter Natronlauge mit Dimethylsulfat (ZINCKE, JÖRG, B. 42, 3369). — Farblose Blättchen (aus Wasser oder Benzol), Nadeln (aus verd. Alkohol). F: 128° (H.; Z., J.). Leicht löslich in Alkohol, Eisessig und Äther, mäßig in Wasser (H.). — Geht bei der Oxydation mit 3% iger Wasserstoffsuperoxydlösung in Methyl-[4-acetamino-phenyl]-sulfoxyd (s. u.) über (Z., J.). Gibt mit Brom in Chloroform ein Dibromid (s. u.) (Z., J.).

Methyl-[4-acetamino-phenyl]-sulfoxyd $C_0H_{11}O_2NS = CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot SO \cdot CH_3$. B. Beim Erhitzen von 1 Tl. Methyl-[4-acetamino-phenyl]-sulfid mit 10 Tln. 3% iger Wasserstoffsuperoxydlösung im Wasserbade (ZINCKE, JÖRG, B. 42, 3370). Aus dem Dibromid des Methyl-[4-acetamino-phenyl]-sulfids und Wasser (Z., J., B. 42, 3370). — Nadeln (aus Wasser), Tafeln (aus Chloroform). F: 126°. Sehr leicht löslich in Wasser, leicht in Alkohol, Aceton und Chloroform, Isslich in Ather und Benzol. — Gibt mit Bromwasser 4-Brom-acetanilid (Bd. XII, S. 642). Beim Erhitzen mit konz. Salzsäure entsteht Methyl-[3-chlor-4-aminophenyl]-sulfid (S. 547). Liefert mit HBr in Chloroform die Verbindung 2CH₂·CO·NH·C₂H₄· BBr₂·CH₂+HBr (s. u.). Die Einw. von konz. Bromwasserstoffsäure in der Kälte führt zuerst zum Dibromid des Methyl-[4-acetamino-phenyl]-sulfids, nach längerer Zeit zu Methyl-[3-brom-4-acetamino-phenyl]-sulfid (8. 547).

Salzartige Derivate. Methyl-[4-acetamino-phenyl]-sulfiddibromid C₂H₁₁ONBr₂S = CH₃·CO·NH·C₂H₄·SBr₂·CH₃. B. Aus Methyl-[4-acetamino-phenyl]-sulfid und Brom in Chloroform unter Kühlung (Z., J., B. 42, 3369). — Orangegelbes krystallinisches Pulver. Schmilzt gegen 104° unter Zersetzung und Bromabgabe. Löslich in Eisessig, schwer löslich in Chloroform und Äther. Gibt beim Liegen an der Luft leicht Brom ab unter Bildung des Methyl-[4-acetamino-phenyl]-sulfids und -sulfoxyds. Zersetzt sich mit Wasser unter Bildung von Methyl-[4-acetamino-phenyl]-sulfoxyd.—2 C₉H₁₁ONBr₂S + HBr. B. Beim Leiten von Bromwasserstoff in die Lösung von Methyl-[4-acetamino-phenyl]-sulfoxyd in Chloroform (Z., J., B. 42, 3371). Orangegelbes, krystallinisches Pulver. Zersetzt sich beim Aufbewahren. Schmilzt etwas über 100° unter Zersetzung. Farblos löslich in Wasser unter Entwicklung von Bromwasserstoff und Rückbildung des Sulfoxyds. Gibt mit KI Methyl-[4-acetamino-phenyl]-sulfid.

Äthyl-[4-acetamino-phenyl]-sulfid $C_{10}H_{12}ONS = CH_2 \cdot CO \cdot NH \cdot C_4H_4 \cdot S \cdot C_2H_5$. Beim Erhitsen des Athyl-[4-amino-phenyl]-sulfids (S. 533) mit Essignaureanhydrid (MONIER-WILLIAMS, Soc. 89, 278). — Farblose Nadeln (aus verd. Alkohol). Unlöslich in Wasser.

- 4-Acetamino-diphenylsulfid $C_{14}H_{19}ONS = CH_{2}\cdot CO\cdot NH\cdot C_{2}H_{4}\cdot S\cdot C_{2}H_{5}$. B. Beim Erwärmen von 4-Amino-diphenylsulfid mit Essigsäureanhydrid (Kehrmann, Bauer, B. 29, 2365). Nadeln (aus Alkohol). F: 146° (K., B.), 148° (Hinsberg, B. 36, 115).
- 4'-Nitro-4-acetamino-diphenylsulfid $C_{14}H_{19}O_5N_5S=CH_5\cdot CO\cdot NH\cdot C_6H_4\cdot S\cdot C_6H_4\cdot NO_4$. B. Beim Erwärmen des 4'-Nitro-4-amino-diphenylsulfids (S. 534) mit Essigsäure-anhydrid (Кинемани, Вашив, B. 29, 2363). Nadeln (aus Alkohol). F: 193°.
- 4-Acetamino-diphenylsulfon $C_{14}H_{12}O_2NS = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot SO_2 \cdot C_6H_5$. B. Bei der Acetylierung des 4-Amino-diphenylsulfons (S. 534) (ULLMANN, PASDERMADJIAN, B. 34, 1155). - Prismen (aus Alkohol). F: 195°. Leicht löslich in Eisessig und Benzol.
- [4-Acetamino-phenyl]-p-tolyl-sulfid $C_{12}H_{12}ONS = CH_2 \cdot CO \cdot NH \cdot C_2H_4 \cdot S \cdot C_2H_4 \cdot CH_2$.

 Beim Kochen von [4-Amino-phenyl]-p-tolyl-sulfid (S. 534) mit Essigsaureanhydrid (E. v. MEYER, HEIDUSCHKA, J. pr. [2] 68, 287). — Farblose Krystallblättchen (aus Alkohol). F: 108°. Löslich in Alkohol, Ather, Benzol und Eisessig.
- [4-Acetamino-phenyl]-p-tolyl-sulfoxyd $C_{18}H_{18}O_8NS=CH_8\cdot CO\cdot NH\cdot C_6H_4\cdot SO\cdot C_6H_4\cdot CH_8$. B. Beim Eintragen von [4-Acetamino-phenyl]-p-tolyl-sulfid (s. o.) in rote rauchende Salpetersäure unter Kühlung (E. v. M., H., J. pr. [2] 68, 277). Gelbliche Blättchen (aus Alkohol). F: 182,5°. Leicht löslich in Alkohol, schwer in Ather, unlöslich in Wasser.

[4-Acetamino-phenyl]-p-tolyl-sulfon $C_{15}H_{15}O_{2}NS=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot SO_{3}\cdot C_{6}H_{4}\cdot CH_{3}$. B. Bei langem Kochen von [4-Acetamino-phenyl]-p-tolyl-sulfid mit der entsprechenden Menge wäßr. Kaliumpermanganatlösung (E. v. M., H., J. pr. [2] 68, 277). — Farblose Nädelchen. F: 195°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther.

S.N-Diacetyl-[4-amino-thiophenol], S.N-Diacetyl-[4-amino-phenylmercaptan] $C_{10}H_{11}O_2NS = CH_3 \cdot CO \cdot NH \cdot C_0H_4 \cdot S \cdot CO \cdot CH_2$. B. Aus 4-Acetamino-thiophenol (S. 541) in verd. Natronlauge beim Versetzen mit Essigsäureanhydrid unter Kühlung (HINSBERG, B. 39, 2433). Beim Kochen von 4-Acetamino-thiophenol mit Essigsäureanhydrid (H.). — Farblose Blättchen (aus Wasser), schwach gelbe Nadeln (aus Essigsäure oder Benzol). F: 144° (H., B. 39, 2433), 143—144° (ZINCKE, JÖRG, B. 42, 3368). Erhitzt man die bei 144° schmelzenden Krystalle auf 155—160°, so schmilzt der krystallinisch erstarrte Schmelzfluß bei 132° und behält diesen Schmelzpunkt auch nach wiederholtem Schmelzen und Abkühlen bei; durch Umkrystallisieren aus Wasser oder Impfen mit den bei 144° schmelzenden Krystallen geht die niedriger schmelzende Form in die höher schmelzende über (Z., J.). Ziemlich löslich in Wasser, leicht in Alkohol und Eisessig (H., B. 39, 2433). — Gibt beim Umkrystallisieren aus heißem Wasser kleine Mengen von 4.4′-Bis-acetamino-diphenyldisulfid (H., B. 41, 2837 Anm.). Liefert in Eisessiglösung mit wenig Jod im Sonnenlicht das 4.4′-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 120—122° (S. 544) neben anderen Produkten (H., B. 41, 629). Spaltet beim kurzen Erwärmen mit Natronlauge die am Schwefel befindliche Acetylgruppe ab (H., B. 39, 2433).

Dithiokohlensäure-O-äthylester-S-[4-acetamino-phenylester], Äthylkanthogensäure-[4-acetamino-phenyl]-ester $C_{11}H_{13}O_4NS_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot S \cdot CS \cdot O \cdot C_2H_5$. B. Durch Diazotierung von N-Acetyl-p-phenylendiamin in salzsaurer Lösung und allmähliches Eintragen der Diazoniumsalzlösung in eine verdünnte, auf 60—70° erwärmte Lösung von kanthogensaurem Kalium (Bd. III, S. 209); man reinigt das Produkt durch Waschen mit konz. Salzsäure, Fällen der alkoh. Lösung mit Wasser, Lösen des Niederschlages in Benzol und Fällen durch Ligroin (Leuckart, Lustig, J. pr. [2] 41, 202). — Blättchen (aus Benzol durch Ligroin). F: 151° (Leu., Lu.). Unlöslich in Wasser und Ligroin, löslich in Alkohol, Äther, Eisessig und Benzol, unverändert löslich in kalter konzentrierter Schwefelsäure (Leu., Lu.). — Geht beim Kochen mit alkoh. Salzsäure in Äthylkanthogensäure-[4-amino-phenyl]seter (S. 535) über (Zincke, Jöbg, B. 42, 3366). Bei anhaltendem Kochen mit alkoh. Kali entsteht das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215° (Leu., Lu.).

- 2-[4-Acetamino-phenylmercapto]-benzoesäure, S-[4-Acetamino-phenyl]-thiosalicylsäure, 4'-Acetamino-diphenylsulfid-carbonsäure-(2) $C_{15}H_{15}O_3NS = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot CO_5H$. B. Aus 4'-Amino-diphenylsulfid-carbonsäure-(2) (S. 535) mit Essigsäureanhydrid (F. MAYER, B. 42, 3054). Nadeln (aus Eisessig). F: 236—237°. Gibt mit wäßr. Kaliumpermanganatlösung 4'-Acetamino-diphenylsulfon-carbonsäure-(2).
- 2-[4-Acetamino-phenylsulfon]-benzoesäure, 4'-Acetamino-diphenylsulfon-carbonsäure-(2) $C_{15}H_{13}O_5NS=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot SO_2\cdot C_6H_4\cdot CO_2H$. B. Aus 4'-Acetamino-diphenylsulfid-carbonsäure-(2) durch Oxydation mit wäßr. Kaliumpermanganatlösung (F. M., B. 42, 3055). Tafeln (aus Eisessig). F: 215°. Schwer löslich in Alkohol und Eisessig, unlöslich in Wasser.
- 2.4'-Bis-acetamino-diphenylsulfid $C_{16}H_{16}O_3N_3S = (CH_3 \cdot CO \cdot NH \cdot C_6H_4)_3S$. B. Durch Acetylierung des 2.4'-Diamino-diphenylsulfids (S. 535) (HINSBERG, B. 38, 1136). Nadeln (aus verd. Essigssure). F: 208°. Wird beim Erhitzen mit Schwefelssure sulfuriert.
- 4.4'-Bis-acetamino-diphenylsulfid, Thioacetanilid $C_{1e}H_{1e}O_{4}N_{2}S=(CH_{3}\cdot CO\cdot NH\cdot C_{e}H_{4})_{2}S$. B. Bei anhaltendem Kochen von 4.4'-Diamino-diphenylsulfid (S. 535) mit Eisessig (Merz, Weith, B. 4, 390). Nadeln (aus Alkohol). F: 215° (M., W.), 216° (Hinsberg, B. 38, 1134). Leicht löslich in heißem Alkohol, sehr wenig in Äther, kaum in Wasser (M., W.). Wird beim Erhitzen mit verd. Schwefelsäure zu 4.4'-Diamino-diphenylsulfid verseift (M., W.).
- 4.4'-Bis-acetamino-diphenylsulfoxyd $C_{16}H_{16}O_3N_4S = (CH_3 \cdot CO \cdot NH \cdot C_6H_4)_2SO$. B. Bei 12-stdg. Stehen des 4.4'-Bis-acetamino-diphenylsulfids in Eisessig mit $30^{\circ}/_{\circ}$ iger Wasserstoffsuperoxydlösung (Hinsberg, B. 41, 2838). Blättchen (aus verd. Alkohol). F: 278°; zersetzt sich einige Grade höher unter Gasentwicklung. Löslich in Alkohol und Eisessig, kaum löslich in Äther.
- 4.4'-Bis-acetamino-diphenylsulfon $C_{16}H_{16}O_4N_18 = (CH_3 \cdot CO \cdot NH \cdot C_6H_4)_2SO_2$. B. Beim Kochen von 4.4'-Diamino-diphenylsulfon (S. 536) mit Essigsäureanhydrid (Fromm, Wittmann, B. 41, 2270). Aus Acetanilid bei der Einw. von Athylschwefelsäurechlorid (Bd. I, S. 327), wenn dieses schon einige Zeit gestanden hat und sich daher z. Tl. in Äthylschwefelsäure und HCl zersetzt hat (Wenghöffer, J. pr. [2] 16, 459). Weiße Nadeln (aus verd. Essigsäure oder aus Äther). F: 280° (F., Wi.). Gibt bei der Oxydation mit Braunstein und Schwefelsäure Chinon (WE.).

4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215°, Dithioacetanilid vom Schmelzpunkt 215° C₁₂H₁₂O₁N₂S₂ = [CH₂·CO·NH·C₂H₄·S-]₂. B. Beim Erhitzen von Acetanilid (BG.XII, S. 23') mit Schwefelchlorür auf 100°, neben 4.4'-Bis-acetamino-diphenyltrisulfid (SGERHDT, B. 11, 1171). Durch anhaltendes Kochen von Athyl-xanthogensäure-[4-acetamino-phenyl]-ester (S. 543) mit alkoh. Kali (LEUCKART, LUSTIG, J. pr. [2] 41, 203; vgl. Lu., G. 21 I, 215). Bei der Acetylierung von 4.4'-Diamino-diphenyldisulfid (S. 536) (HINSEERG, B. 39, 2430) mit Essigsäureanhydrid (ZINGER, JÖEG, B. 42, 3374). Aus 4-Acetamino-thiophenol (S. 541) bei der Oxydation in wäßr. Lösung mit Luftsauerstoff (H., B. 39, 2431) oder, neben dem Isomeren vom Schmelzpunkt 120—122° (s. u.), beim Behandeln der wäßr. Lösung mit Eisenchlorid und wenig Salzsäure bei 30° (H., B. 41, 629). Bei mehrmonatigem Aufbewahren des 4.4'-Bis-acetamino-diphenyldisulfids vom Schmelzpunkt 182° (s. u.) (H., B. 39, 2430). Aus dem 4.4'-Bis-acetamino-diphenyldisulfids vom Schmelzpunkt 190° (S. 545) mit Jodwasserstoffsäure und schwefliger Säure (H., B. 42, 1282). Aus 4.4'-Bis-acetamino-diphenyldisulfids vyd vom Schmelzpunkt 233° (S. 545) mit Eisessig, Jodwasserstoff und etwas schwefliger Säure (H., B. 42, 1283; vgl. Bere, Saules, Soc. 125 [1924], 2360). — Nadeln (aus Alkohol oder aus Eisessig). F: 215—217° (Sch.), 215—216° (H., B. 39, 2430), 215° (Z., J.), 213—214° (Leu., Lu.). Löst sich in Eisessig und in siedendem Alkohol, sonst wenig löslich (Sch.). — Gibt bei der Belichtung seiner Eisessiglösung als Hauptprodukte das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 162° (Pseudo-dithioacetanilid) (s. u.) (H., B. 41, 627). Liefert bei der Oxydation in Eisessiglösung mit 3°/ojem Wasserstoffsuperoxyd bei 25—30° das 4.4'-Bis-acetamino-diphenyldisulfoxyd vom Schmelzpunkt 162° (Pseudo-dithioacetanilid) (s. u.) (H., B. 41, 627). Liefert bei Mcchen mit Essigsäure + etwas verd. Schwefelsäure zu 4.4'-Diamino-diphenyldisulfid (S. 536) und Essigsäure verseift (Sch., B.

Verbindung C₁₆H₁₆O₂N₃S₂ ("Pseudodithioacetanilid"). B. Neben 4.4′-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 120—122° (s. u.) bei der Einw. des Sonnenlichts auf die Lösung des 4.4′-Bis-acetamino-diphenyldisulfids vom Schmelzpunkt 215° (Hins-berg, B. 41, 627, 631). — Alkoholhaltige Nadeln vom Schmelzpunkt 160° (aus Alkohol), wird bei 130° alkoholfrei; essigsäurehaltige Nadeln vom Schmelzpunkt 162° (aus Eisessig), wird bei 130° essigsäurefrei. Löslich in Alkohol, schwer löslich in Methylalkohol und Eisessig, spurenweise löslich in Wasser, Ather und Benzol. Geht mit Essigsäure, Aluminium und wenig Salzsäure in ein in heißem Wasser schwer lösliches Mercaptan über.

4.4'-Bis-acetamino-diphenyldisulfid vom Schmelspunkt 182°, Dithioacetanilid vom Schmelspunkt 182° $C_{16}H_{16}O_2N_8S_2=[CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot S-]_2$. Zur Konstitution vgl. Hinsberg, B. 39, 2427. — B. Aus 4.4'-Diamino-diphenyldisulfid (S. 536) beim Schütteln mit Essigsäureanhydrid und Wasser oder beim Erwärmen mit Essigsäureanhydrid (Hinsberg, B. 38, 1134, 1902; 39, 2429; vgl. Hofmann, B. 27, 2814; 38, 1433). Bei der Oxydation von 4-Acetamino-thiophenol mit Eisenchlorid in alkoh. Lösung (Zincke, Jöbg, B. 42, 3374). — Nadeln (aus Alkohol und Essigsäure) (Hi., B. 38, 1134); Blättchen (aus Alkohol) (Z., J.). F: 182° (Ho.; Hi., B. 38, 1134; 39, 2429), 179—180° (Z., J.). Kaum löslich in Wasser, löslich in Alkohol, ziemlich löslich in Eisessig (Hi., B. 38, 1134). — Geht beim Aufbewahren in geschlossenen Gefäßen in das Isomere vom Schmelzpunkt 215—216° tiber (Hi., B. 39, 2430; vgl. Z., J., B. 42, 3374). Geht beim Kochen mit Zinkstaub und Natronlauge in eine alkalilösliche Verbindung, wahrscheinlich 4-Acetamino-thiophenol, über (Hi., B. 38, 1134).

4.4'-Bis-acetamino-diphenyldisulfid vom Schmelspunkt 120—122°, Dithioacetanilid vom Schmelspunkt 120—122° $C_{19}H_{16}O_3N_3S_3=[CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot S-]_3$. B. Aus 4-Acetamino-thiophenol (S. 541) in konzentrierter wäßriger Lösung mit Eisenchlorid und wenig Salssäure bei 30°, neben dem Isomeren vom Schmelspunkt 215° (Hinsberg, B. 41, 629). Aus S.N-Diacetyl-[4-amino-thiophenol] (S. 543) in Eisessiglösung bei Gegenwart von wenig Jod unter dem Einfluß des Sonnenlichtes, neben anderen Verbindungen (H., B. 41, 629). Aus 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelspunkt 215° in Eisessig bei Einw. des Sonnenlichtes, neben amorphen Produkten und geringen Mengen einer Verbindung $C_{12}H_{16}O_2N_3S_2$ vom Schmelspunkt 162° (,,Pseudodithioacetanilid") (s. o.) (H., B. 41, 627). Beim Krhitzen der Doppelverbindung aus dem bei 215° sohmelsenden 4.4'-Bis-acetamino-diphenyldisulfid und dem bei 190° schmelsenden 4.4'-Bis-acetamino-diphenyldisulfoxyd (S. 545) über den Schmelspunkt 182° (H., B. 42, 1280). — Farbloses oder schwach gelbes, krystallinisches Pulver (aus wäßr. Methylalkohol oder wäßr. Aceton). Die durch Verdunsten der wäßrigen methylalkoholischen Lösung erhaltene Verbindung enthielt 1 Mol. H₂O, schmolz

bei 120-122° und verlor das Krystallwasser bei 130° (H., B. 41, 629); die aus wäßr. Aceton auakrystalliaierte Verbindung schmolz bei $118-120^\circ$ und verlor bei 130° 2.5-2.7% an Gewicht, entsprechend $^1/_2$ Mol. $H_2O(?)$ (H., B. 42, 1281). Reichlich löslich in kaltem Methylalkohol, Alkohol und Eisessig, kaum löslich in Benzol und Chloroform (H., B. 41, 629). — Liefert in Essignaure und wenig Salzzaure mit Aluminiumpulver 4-Acetamino-thiophenol (S. 541) (H., B. 41, 630).

4.4'-Bis-acetamino-diphenyldisulfoxyd vom Schmelspunkt 190° $C_{18}H_{18}O_4N_2S_3 =$ [CH₃·CO·NH·C₂H₄·SO-]₃·). B. Bei 4-wöchigem Stehen des 4.4'-Bis-acetamino-diphenyl-disulfids vom Schmelzpunkt 215° in Eisessig mit 3°/₀iger Wasserstoffsuperoxydlösung bei 25—30°, neben der Doppelverbindung (F: 178°) des bei 215° schmelzenden 4.4'-Bis-acetamino-diphenyldisulfids mit dem 4.4'-Bis-acetamino-diphenyldisulfoxyd vom Schmelzpunkt 190° (s. u.) (HINSBERG, B. 42, 1279, 1282). Bei ca. 2 Minuten langem Kochen dieser Doppelverbindung mit Eisessig (H., B. 42, 1282). — Gelbe Blättehen mit 2 Mol. Krystallessigsäure (aus Eisessig). F: 190° (Zers.). Wird beim Erhitzen auf 130° oder bei längerem Waschen mit warmem Wasser essigsäurefrei und stellt dann ein gelbes Krystallpulver dar, das sich in Alkohol mäßig leicht ohne Färbung löst. Gibt mit Jodwasserstoffsäure und schwefliger Säure das bei 215° schmelzende 4.4'-Bis-acetamino-diphenyldisulfid. Lieferte mit dem bei 215° schmelzenden 4.4'-Bis-acetamino-diphenyldisulfid in warmem Alkohol die Doppel-

verbindung vom Schmelzpunkt 178° (s. u.).

Verbindung des bei 190° schmelzenden 4.4'-Bis-acetamino-diphenyldisulfoxyds mit dem bei 215° schmelzenden 4.4'-Bis-acetamino-diphenyldisulfid C₃₃H₃₂O₆N₄S₄ = [CH₃·CO·NH·C₆H₄·SO-]₂ + [CH₃·CO·NH·C₆H₄·S-]₂. B. Bei 4-wöchigem Stehen des 4.4'-Bis-acetamino-diphenyldisulfids vom Schmelzpunkt 215° in Eisessig mit 3°/oiger Wasserstoffsuperoxydlösung bei 25—30° (HINSBERG, B. 42, 1279). — Farblose Blättchen. Schmilzt bei 178° zu einer dunklen Flüssigkeit, die sich einige Grade höher zersetzt. Sehr wenig löslich in heißem Alkohol, Eisessig und Aceton. Wird durch kurzes Kochen

mit Eisessig in die Komponenten zerlegt. Gibt beim Erhitzen über den Schmelzpunkt das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215°, dessen Isomeres vom Schmelzpunkt 120–122° und wahrscheinlich auch das Isomere vom Schmelzpunkt 182°, neben harzigen Produkten. Liefert beim Erhitzen mit Jodwasserstoffsäure und schwefliger Säure das

4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215°.

4.4'-Bis-acetamino-diphenyldisulfoxyd vom Schmelspunkt 233° $C_{16}H_{16}O_4N_9S_2=[CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot SO-]_3^1)$. Bei $^1/_2$ -stdg. Kochen des bei 190° schmelzenden 4.4'-Bis-acetamino-diphenyldisulfoxyds mit Eisessig (HINSBERG, B. 42, 1283). Aus dem Rohprodukt, das durch Einw. von Wasserstoffsuperoxyd auf das 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215° in Eisessig entsteht, bei ½-stdg. Kochen mit 50°/siger Essigsäure (H.).

— Gelbrote alkoholfreie Rhomboeder (aus Alkohol), farblose Nadeln mit 2 Mol. Essigsäure (aus Eisessig). Verliert bei 125° die Krystallessigsaure. F: 233° (Zers.). Löslich in Alkohol und Eisessig ohne Färbung. Beim Belichten der Eisessiglösung entsteht ein Gemisch der isomeren 4.4'-Bis-acetamino-diphenyldisulfide. Gibt beim Erwärmen mit Eisessig, Jodwasserstoff und etwas schwefliger Saure das bei 215° schmelzende 4.4'-Bis-acetaminodiphenyl-disulfid.

4.4'-Bis-acetamino-diphenyltrisulfid, Trithioacetanilid $C_{10}H_{10}O_2N_2S_2 = (CH_3)$ CO·NH·C₆H₄)₂S₂. B. Neben 4.4'-Bis-acetamino-diphenyldisulfid vom Schmelzpunkt 215° beim Erhitzen von Acetanilid mit Schwefelchlorür auf 100° (SCHMIDT, B. 11, 1170). — Blättchen (aus Eisessig). F: 213—214,5°. Löst sich in Alkohol und Eisessig, sonst unlöslich.

4-Bensamino-thiophenol, 4-Bensamino-phenylmercaptan $C_{13}H_{11}ONS = C_6H_5$. $\text{CO-NH-C}_{6}\text{H}_{4}\text{-SH}$. B. Man erwärmt 4.4'-Bis-benzamino-diphenyldisulfid (S. 546) mit Eisessig,

Aluminiumpulver und wenig konz. Salzsäure (HINSBERG, B. 39, 2434).

Tritt in zwei Formen, einer farblosen und einer gelben, auf, deren Lösungen vollständig identisch sind. — Die farblose Form wird erhalten durch Fällen einer kalten alkalischen Lösung des Rohproduktes mit Salzsäure; sie bildet Blättchen; sintert bei 165° und schmilzt bei 180° zu einer gelblichen Flüssigkeit; schwer löslich in Wasser, leicht in Alkohol und Eisessig. — Die gelbe Form wird erhalten aus der farblosen Form durch Erhitzen bis zum Schmelzen oder durch Umkrystallisieren aus Alkohol; sie bildet schwefelgelbe Nadeln; F: 182°; schwer löslich in Wasser.

4-Benzamino-thiophenol wird in wäßrig-alkoholischer Lösung durch Eisenchlorid oder

Ferricyankalium und Natronlauge zu 4.4'-Bis-benzamino-diphenyldisulfid oxydiert.

Äthyl-[4-bensamino-phenyl]-sulfid $C_{15}H_{15}ONS = C_2H_5 \cdot CO \cdot NH \cdot C_4H_4 \cdot S \cdot C_2H_5$. B. Durch Behandeln von syn-4-Äthylthio-benzophenon-oxim (Bd. VIII, S. 164) in äther. Lösung mit Phosphorpentachlorid und Zersetzung des Reaktionsproduktes mit Wasser

¹⁾ Über die Auffassung der Disulfoxyde als Thiosulfonsäureester vgl., Bd. XI, S. 3 Anm. RETT.STETN's Wandhush A Auff . TITT

- (Auwers, Beger, B. 27, 1737). Entsteht auch aus 4-Äthylthio-benzophenon (Bd. VIII, 8. 163) und salzsaurem Hydroxylamin im geschlossenen Rohr bei 120° (Au., B.). Blättchen (aus Alkohol). F: 145°.
- [4-Bensamino-phenyl]-p-tolyl-sulfid $C_{20}H_{17}ONS = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot S \cdot C_8H_4 \cdot CH_2$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid (8. 534) in Pyridinlösung mit Benzoylchlorid (E. v. Meyer, Heduschka, J. pr. [2] 68, 267). Weiße Nadeln (aus Alkohol). F: 192°. Leicht löslich in Eisessig und heißem Alkohol, schwer in kaltem Alkohol und Äther, unlöslich in Wasser.
- 4.4'-Bis-bensamino-diphenyldisulfid $C_{38}H_{20}O_{3}N_{2}S_{3}=[C_{4}H_{5}\cdot CO\cdot NH\cdot C_{4}H_{4}\cdot S-]_{3}$. B. Aus 4.4'-Diamino-diphenyldisulfid und 2 Mol.-Gew. Benzoesäureanhydrid im Wasserbad (HINSBERG, B. 39, 2433). Aus 4-Benzamino-thiophenol und Eisenchlorid oder Ferrioyankalium und Natronlauge (H.). Farbloses, krystallinisches Pulver. F: 264°. Sehr wenig löslich in den üblichen Lösungsmitteln.
- [4-Äthoxalylamino-phenyl]-p-tolyl-sulfid, [4-p-Tolylmercapto-phenyl]-oxamid-säure-äthylester C_1 , H_1 , O_2 NS = C_2 H $_5$, O_2 C·CO·NH· C_4 H $_4$ ·S· C_4 H $_4$ ·CH $_3$. B. Beim Erhitzen von [4-Amino-phenyl]-p-tolyl-sulfid mit Oxalester, neben geringen Mengen N.N'-Bis-[4-p-tolylmercapto-phenyl]-oxamid (s. u.) (E. v. Meyer, Heiduschka, J. pr. [2] 68, 268). Schwach gelb gefärbte Blätter (aus Alkohol). F: 121°. Löslich in organischen Solvenzien.
- [4-p-Tolylmercapto-phenyl]-oxamid $C_{15}H_{14}O_{2}N_{2}S = H_{2}N\cdot CO\cdot CO\cdot NH\cdot C_{5}H_{4}\cdot S\cdot C_{6}H_{4}\cdot CH_{3}$. B. Aus [4-p-Tolylmercapto-phenyl]-oxamidsäure-äthylester und alkoh. Ammoniak (E. v. M., H., J. pr. [2] 68, 268). Weiße Nadeln. F: 222°. Leicht löslich in Eisessig, sehr wenig in Alkohol und Äther.
- N.N'-Bis-[4-p-tolylmercapto-phenyl]-oxamid $C_{28}H_{34}O_2N_3S_2 = [CH_3 \cdot C_6H_4 \cdot S \cdot C_6H_4 \cdot NH \cdot CO-]_2$. B. Beim Zusammenschmelzen von äquimolekularen Mengen [4-p-Tolylmercapto-phenyl]-oxamidsäure-äthylester und [4-Amino-phenyl]-p-tolyl-sulfid (S. 534) (E. v. M., H., J. pr. [2] 68, 269). Krystallinisches Pulver. F: 242°. Leicht löslich in heißem Eisessig.
- [4-Carbäthoxyamino-phenyl]-p-tolyl-sulfid, [4-p-Tolylmercapto-phenyl]-urethan $C_{16}H_{17}O_3NS=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_4\cdot S\cdot C_6H_4\cdot CH_3$. B. Man trägt in eine mit überschüssigem Natriumdicarbonat versetzte Lösung von [4-Amino-phenyl]-p-tolyl-sulfid in Ligroin Chlorameisensäureäthylester ein und erwärmt (E. v. M., H., J. pr. [2] 68, 269). Täfelchen (aus Ligroin). F: 94°. Löslich in Alkohol, Äther und Ligroin.
- [4-Ureido-phenyl]-p-tolyl-sulfid, [4-p-Tolylmercapto-phenyl]-harnstoff $C_{14}H_{14}ON_2S=H_2N\cdot CO\cdot NH\cdot C_0H_4\cdot S\cdot C_0H_4\cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Kaliumeyanat in Eisessig (E. v. M., H., J. pr. [2] 68, 269). Nadeln (aus Eisessig). F: 168°. Löslich in Alkohol, Äther und Eisessig.
- [4-(ω -Phenyl-ureido)-phenyl]-p-tolyl-sulfid, N-Phenyl-N'-[4-p-tolylmercapto-phenyl]-harnstoff $C_{50}H_{19}ON_{2}S=C_{6}H_{5}\cdot NH\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot S\cdot C_{6}H_{4}\cdot CH_{3}$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Phenylisocyanat in Äther (E. v. M., H., J. pr. [2] 68, 270). Aus Alkohol Krystalle vom Schmelzpunkt 190°, aus Pyridin Krystalle vom Schmelzpunkt 187°. Leicht löslich in Alkohol, Äther und Pyridin.
- [4-(w-Phenyl-thioureido) phenyl] p-tolyl-sulfid, N-Phenyl-N'-[4-(p-tolyl-mercapto)-phenyl]-thioharnstoff $C_{20}H_{12}N_3\dot{S}_2'=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot S\cdot C_6H_4\cdot CH_3$. B. Aus [4-Amino-phenyl]-p-tolyl-sulfid und Phenylsenföl (E. v. M., J. pr. [2] 63, 182; C. 1901 I, 456). Nadeln. F: 161°.
- N.N'-Bis-[4-p-tolylmercapto-phenyl]-thioharnstoff $C_{27}H_{24}N_2S_3 = CS[NH\cdot C_6H_4\cdot S\cdot C_6H_4\cdot CH_3]_3$. Beim Erhitzen gleicher Teile [4-Amino-phenyl]-p-tolyl-sulfid, Alkohol und Schwefelkohlenstoff unter Zusatz von etwas Schwefel (E. v. M., H., J. pr. [2] 68, 271). Blättrige Krystalle. Schmilzt, frisch dargestellt, bei 155°, nach $^{1}/_{2}$ jährigem Aufbewahren bei 174°.
- 4.4'-Bis-thionylamino-diphenylsulfid $C_{12}H_{6}O_{2}N_{2}S_{5} = [OS:N\cdot C_{6}H_{4}]_{2}S$. B. Man kocht 4 Stdn. lang 5 g 4.4'-Diamino-diphenylsulfid (S. 535) in 15 g Benzol mit etwas über 1 Mol.-Gew. Thionylchlorid (Ruhl, A. 270, 149). Rotgelbe Prismen (aus Benzol). F: 110°. Zersetzt sich an der Luft allmählich unter Abgabe von Schwefeldioxyd. Wird durch Natronlauge in 4.4'-Diamino-diphenylsulfid und Natriumsulfit zerlegt.

Substitutions produkte des 4-Amino-thiophenols.

Methyl-[3-chlor-4-amino-phenyl]-sulfid $C_7H_8NCIS = H_2N \cdot C_8H_9Cl \cdot S \cdot CH_9$. B. Beim Erhitzen von Methyl-[4-acetamino-phenyl]-sulfoxyd mit konz. Salzsäure bis zum Sieden (ZINCEE, JÖEG, B. 42, 3371). — Öl. — $C_7H_8NCIS + HCl$. Nadeln oder Blättchen. Löslich in Methylalkohol und Alkohol. Wird von Wasser hydrolysiert.

Methyl-[3-chlor-4-acetamino-phenyl]-sulfid $C_9H_{10}ONClS = CH_3 \cdot CO \cdot NH \cdot C_6H_9Cl \cdot S \cdot CH_3$. Aus dem salzsauren Salz des Methyl-[3-chlor-4-amino-phenyl]-sulfids mit Essigsäureanhydrid und Natriumacetat (Z., J., B. 42, 3372). — Nadeln (aus heißem Wasser oder Benzin); F: 128°. Leicht löslich in Alkohol und Eisessig, schwer in Wasser.

Methyl-[3-brom-4-acetamino-phenyl]-sulfid C_9H_{10} ONBrS = $CH_3 \cdot CO \cdot NH \cdot C_6H_3Br \cdot S \cdot CH_3$. Beim Stehen von Methyl-[4-acetamino-phenyl]-sulfoxyd mit konz. Bromwasser-stoffsäure (Z., J., B. 42, 3371). — Blättchen (aus Benzol). F: 127°. Leicht löslich in Alkohol, Eisessig, heißem Benzol, löslich in Benzin.

- 2.2'-Dinitro-4.4'-diamino-diphenyldisulfid C₁₂H₁₀O₄N₄S₂ = [H₂N·C₆H₃(NO₂)·S-]₈. B. Aus [2.4-Dinitro-phenyl]-rhodanid (Bd. VI, S. 343) und alkoh. Schwefelammonium (H. A. MÜLLER, Ztschr. f. Farbenindustrie 5, 357; C. 1906 II, 1587; vgl. Ges. f. chem. Ind., D. R. P. 161462; C. 1905 II, 281). Rote Blättchen (aus Alkohol). F: 222° (H. A. M.). Liefert bei der Einw. von Zinnchlorür und Salzsäure salzsaures 2.4-Diamino-phenylmercaptan, das mit Ammoniak bei Gegenwart von Luft in 2.4.2'.4'-Tetraamino-diphenyldisulfid (S. 553) übergeführt wird (H. A. M.). Mit Zinkstaub, Eisessig und Essigsäureanhydrid entsteht 5-Acetamino-2-methyl-benzthiazol (Syst. No. 4341) (H. A. M.). Läßt sich durch Diazotieren und Verkochen der Bis-diazo-Verbindung mit Alkohol in 2.2'-Dinitrodiphenyldisulfid (Bd. VI, S. 338) überführen (H. A. M.). Die Bis-diazo-Verbindung liefert mit Aminen, Phenolen und anderen Azofarbstoffkomponenten schwefelhaltige Azofarbstoffe, die in Gegenwart von Schwefelalkalien ähnlich wie die eigentlichen Schwefelfarbstoffe auf ungebeizte Baumwolle gefärbt werden können (H. A. M.); Ges. f. chem. Ind.).
- 2.2'-Dinitro-4.4'-bis-acetamino-diphenyldisulfid $C_{16}H_{14}O_{6}N_{4}S_{2} = [CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{5}(NO_{9})\cdot S-]_{3}$. B. Bei der Einw. von Essigsäureanhydrid auf die wäßr. Lösung von 2.2'-Dinitro-4.4'-diamino-diphenyldisulfid in Nitrobenzol (H. A. MÜLLER, Ztsch. f. Farbenindustrie 5, 357; C. 1906 II, 1587). Gelbbraune Nadeln. Schmilzt noch nicht bei 260°.
- 3.3'-Dinitro 4.4' diamino diphenylsulfon $C_{12}H_{10}O_{4}N_{4}S = [H_{2}N\cdot C_{6}H_{3}(NO_{4})]_{2}SO_{3}$. B. Durch 4-stdg. Erwärmen von 4.4'-Dichlor-3.3'-dinitro-diphenylsulfon (Bd. VI, S. 341) mit alkoh. Ammoniak auf 150° (Ullmann, Korselt, B. 40, 646). Gelbe Oktaeder (aus Alkohol). F: 309°. Schwer löslich in Alkohol mit gelber Farbe, leicht in siedendem Anilin und Nitrobenzol. Gibt bei der Reduktion mit Zinnchlorür 3.4.3'.4'-Tetraamino-diphenylsulfon (S. 567).
- 8.3'-Dinitro-4.4'-dianilino-diphenylsulfon $C_{24}H_{18}O_6N_4S = [C_6H_5\cdot NH\cdot C_6H_5(NO_2)]_8SO_4$. B. Aus 4.4'-Dichlor-3.3'-dinitro-diphenylsulfon beim Kochen mit Anilin für sich oder in alkoh. Lösung (U., K., B. 40, 643). Orangerote Krystalle (aus Benzol). F: 260°. Leicht löslich in siedendem Eisessig, Toluol und Anilin, schwer löslich in Alkohol mit orangeroter Farbe. Mit Zinnehlorür und Salzsäure entsteht 3.3'-Diamino-4.4'-dianilino-diphenylsulfon (S. 567).
- 8.5.3'-Trinitro-4.4'-dianilino-diphenylsulfon $C_{24}H_{17}O_8N_5S=C_8H_5\cdot NH\cdot C_8H_8(NO_8)_8\cdot SO_8\cdot C_6H_3(NO_2)\cdot NH\cdot C_6H_5$. B. Aus 4.4'-Dichlor-3.5.3'-trinitro-diphenylsulfon (Bd. VI, S. 344) mit Anilin in siedendem Alkohol (U., K., B. 40, 647). Orange Nadeln (aus Alkohol). F: 210°. Löslich in siedendem Alkohol und Benzol, leicht löslich in Nitrobenzol.
- 3.5.3'.5'- Tetranitro 4.4'- dianilino diphenylsulfon $C_{24}H_{16}O_{10}N_6S = [C_6H_5\cdot NH\cdot C_6H_2(NO_2)_2]_8O_2$. B. Aus 4.4'-Dichlor-3.5.3'.5'-tetranitro-diphenylsulfon (Bd. VI, S. 344) und Anilin in heißem Alkohol (U., K., B. 40, 647). Orangerote Nadeln. F: 250°. Schwer löslich in Alkohol und Benzol, leicht in Anilin mit Orangefarbe.

Derivate des Selenanalogons des 4-Amino-phenols.

4.4'-Bis-dimethylamino-diphenylselenid $C_{10}H_{10}N_{2}Se=[(CH_{3})_{2}N\cdot C_{6}H_{4}]_{2}Se.$ B. Man versetzt allmählich eine gekühlte Lösung von Dimethylanilin in Ather mit einer Lösung von SeOCl₂ in Ather, löst den abfiltrierten Niederschlag in verd. Salzsäure und fällt

die Lösung durch Natron; das mitgefällte Dimethylanilin entfernt man durch Destillation mit Wasser (Godohaux, B. 24, 765). — Gelbliche Nadeln (aus Äther). F: 124°. Schwer löslich in kaitem Alkohol und Äther. — C₁₆H₂₀N₂Se + H₂SO₄. Farblose Nadeln. F: 55°. Sehr leicht löslich in Wasser. — Pikrat C₁₆H₂₀N₂Se + 2C₆H₂O₇N₃. Gelbe Blättchen. (aus Alkohol). F: 135°.

4.4'-Bis-diäthylamino-diphenylselenid $C_{20}H_{25}N_2Se = [(C_2H_5)_2N\cdot C_2H_4]_2Se$. B. Man versetzt allmählich eine Lösung von Diäthylanilin in Äther mit SeOCl₂ (GODCHAUX, B. 24, 766). — Asbestähnliche Nädelchen. F: 83°. Ziemlich leicht löslich in kaltem Alkohol und Äther. — $C_{20}H_{25}N_2Se + 2HCl$. F: 73°. — Pikrat $C_{20}H_{23}N_2Se + 2C_6H_3O_7N_2$. Gelbe Blättchen oder Nädelchen (aus Alkohol). F: 135°. Leicht löslich in heißem Alkohol.

Aminophenol-Derivate, von denen es unbestimmt ist, ob sie von 2-, 3- oder 4-Amino-phenol abzuleiten sind.

- x.x-Dinitro-x-amino-phenol $C_6H_5O_5N_3=H_5N\cdot C_6H_5(NO_5)_2\cdot OH$. B. Man nitriert 3.4-Dinitro-phenol (Bd. VI, S. 257) und behandelt das neben 3.4.6-Trinitro-phenol in geringer Menge entstehende isomere Trinitro-phenol mit Ammoniak (Henriques, A. 215, 329, 334). Rote Nadeln (aus Alkohol). F: 202°. Sublimiert leicht. Fast unlöslich in Wasser und Äther, schwer löslich in absol. Alkohol. Fast unlöslich in Mineralsäuren, sehr leicht löslich in Alkalien. $KC_6H_4O_5N_3+H_5O$. Hellgelbe Nädelchen. Leicht löslich in Wasser.
- x-Amino-diphenylsulfon $C_{12}H_{11}O_2NS = H_2N \cdot C_6H_4 \cdot SO_2 \cdot C_6H_5$. Das aus dem x-Nitro-diphenylsulfon (Bd. VI, S. 341) durch Reduktion erhaltene Amino-diphenylsulfon ist als 3(1)-Amino-diphenylsulfon (S. 426) abgehandelt.

Aminophenyl-p-tolyl-sulfon $C_{18}H_{18}O_2NS = H_2N \cdot C_6H_4 \cdot SO_2 \cdot C_6H_4 \cdot CH_3$. Die aus p-Toluolsulfinsäure (Bd. XI, S. 9) und Phenylhydroxylamin sowie aus p-Toluolsulfonsäure (Bd. XI, S. 97) und salzsaurem Anilin erhaltene Verbindung (Bamberger, Rising, B. 34, 244, 250, 251) ist von Halberkann, B. 55 [1922], 3076, 3084, als [4-Amino-phenyl]-p-tolyl-sulfon erkannt worden; sie ist daher S. 534 als solches angeordnet worden.

- x.x'-Bis-methylamino-diphenylsulfid $C_{14}H_{14}N_2S=(CH_2\cdot NH\cdot C_4H_4)_2S$. B. Durch Reduktion von x.x'-Bis-methylamino-diphenylsulfoxyd (s. u.) in Alkohol mit Natrium (MICHAELIS, GODCHAUX, B. 23, 3021). Gelbe Nadeln (aus Ather + Ligroin). F: 60°. Leicht löslich in Alkohol, Äther und Chloroform.
- w.x'-Bis-methylamino-diphenylsulfoxyd $C_{14}H_{16}ON_2S = (CH_3 \cdot NH \cdot C_6H_4)_2SO$. B. Man trägt in eine gut gekühlte Lösung von 10 g Methylanilin in 250 com Äther abwechselnd in kleinen Portionen 12—15 g AlCl₂ und eine Lösung von 5,5 g Thionylchlorid in Äther ein (Michaelb, Godelaux, B. 23, 3020). Nadeln (aus Chloroform + Ligroin). F: 154°. Sehr leicht löslich in Alkohol, Chloroform und Benzol, unlöslich in Äther und Ligroin. Wird in alkoh. Lösung von Natrium zu x.x'-Bis-methylamino-diphenylsulfid (s. o.) reduziert.
- x-Dimethylamino-diphenylsulfon $C_{14}H_{15}O_2NS = (CH_3)_2N \cdot C_6H_4 \cdot SO_3 \cdot C_6H_5$. Die von Michler, K. Meyer (B. 12, 1792) als Dimethylamino-diphenylsulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als Benzolsulfonsäure-methylanilid $C_{12}H_{12}O_2NS = C_6H_5 \cdot N(CH_8) \cdot SO_2 \cdot C_6H_5$ (Bd. XII, S. 575) aufzufassen.
- [x-Dimethylamino-phenyl]-p-tolyl-sulfon, x'-Dimethylamino-4-methyl-diphenylsulfon $C_{12}H_{17}O_2NS = (CH_2)_2N\cdot C_4H_4\cdot SO_2\cdot C_4H_4\cdot CH_2$. Die von Michler, K. Meyer (B. 12, 1793) als [Dimethylaminophenyl]-p-tolyl-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als p-Toluolsulfonsäure-methylanilid $C_{14}H_{15}O_2NS = C_2H_5\cdot N(CH_3)\cdot SO_2\cdot C_2H_4\cdot CH_3$ (Bd. XII, S. 575) aufzufassen.
- [x-Dimethylamino-phenyl]-a-naphthyl-sulfon $C_{12}H_{17}O_2NS = (CH_2)_2N \cdot C_2H_4 \cdot SO_2 \cdot C_{10}H_7$. Die von Michleb, Salathé (B. 12, 1789) als [Dimethylaminophenyl]-a-naphthyl-sulfon beschriebene Verbindung ist sufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als a-Naphthalinsulfonsäure-methylanilid $C_{17}H_{18}O_2NS = C_6H_5 \cdot N(CH_2) \cdot SO_2 \cdot C_{10}H_7$ (Bd. XII, S. 575) aufzufassen.
- [x-Dimethylamino-phenyl]- β -naphthyl-sulfon $C_{18}H_{17}O_{2}NS = (CH_{2})_{2}N \cdot C_{2}H_{4} \cdot SO_{4} \cdot C_{16}H_{7}$. Die von Michler, Salathé (B. 12, 1793) als [Dimethylaminophenyl]- β -naphthyl-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als β -Naphthalinsulfonsäure-methylanilid $C_{17}H_{15}O_{2}NS = C_{6}H_{5} \cdot N(CH_{2}) \cdot SO_{2} \cdot C_{16}H_{7}$ (Bd. XII. S. 575) aufzufassen.
- [x-Dimethylamino-phenyl]-anthryl-(2)-sulfon $C_{12}H_{19}O_2NS = (CH_2)_2N \cdot C_2H_4 \cdot SO_3 \cdot C_{14}H_9$. Die von Heffren (B. 28, 2260) als [Dimethylaminophenyl]-anthryl-(2)-sulfon

beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Bergel, Döring, B. 61 [1928], 844, als Anthracen-sulfonsäure-(2)-methylanilid $C_{21}H_{17}O_2NS = C_0H_5 \cdot N(CH_3) \cdot SO_2 \cdot C_{14}H_9$ (Bd. XII, S. 575) aufzufassen.

[x-Dimethylamino-phenyl]-anthrachinonyl-(2)-sulfon $C_{22}H_{17}O_4NS = (CH_2)_2N \cdot C_6H_4 \cdot SO_5 \cdot C_6H_5(CO)_2C_6H_4$. Die von Mac Houl (B. 13, 693) als [Dimethylaminophenyl]-anthrachinonyl-(2)-sulfon beschriebene Verbindung ist zufolge der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Beegel, Dörnig, B. 61 [1928], 844, als Anthrachinon-sulfonsäure-(2)-methylanilid $C_{21}H_{16}O_4NS = C_6H_5 \cdot N(CH_2) \cdot SO_2 \cdot C_6H_3(CO)_2C_6H_4$ (Bd. XII, S. 575) aufzufassen.

x.x'-Bis-methylnitrosamino-diphenylsulfid $C_{14}H_{14}O_2N_4S = [CH_3\cdot N(NO)\cdot C_4H_4]_8S$. Beim Versetzen der eisgekühlten salzsauren Lösung von x.x'-Bis-methylamino-diphenylsulfid (S. 548) mit Natriumnitrit (MICHAELIS, GODCHAUX, B. 23, 3022). — Gelbe Blättchen. F: 133°. Sehr schwer löslich in kaltem Alkohol.

x.x' - Bis - methylnitrosamino - diphenylsulfoxyd $C_{14}H_{14}O_{5}N_{4}S = [CH_{5}\cdot N(NO)\cdot C_{6}H_{4}]_{5}SO$. B. Beim Versetzen der eisgekühlten salzsauren Lösung von x.x'-Bis-methylamino-diphenylsulfoxyd (S. 548) mit Natriumnitrit (Michaelis, Godchaux, B. 23, 3021). — Nadeln (aus Alkohol). F: 171°. Unlöslich in kaltem Alkohol.

Diaminoderivate des Oxybenzols.

Derivat des 2.3-Diamino-phenols.

2.3-Bis-acetamino-phenol-methyläther, 2.3-Bis-acetamino-anisol $C_{11}H_{14}O_3N_2 = (CH_3 \cdot CO \cdot NH)_2C_6H_3 \cdot O \cdot CH_3$. B. Durch Reduktion von 2.3-Dinitro-anisol (Bd. VI, S. 251) mit Zinn und Salzsäure und Kochen des entstandenen salzsauren 2.3-Diamino-anisols mit Essigsäureanhydrid und Natriumacetat (Meldola, Eyre, Soc. 81, 993). — Weiße Nadeln (aus Wasser). F: 166—167°.

2.4-Diamino-phenol und seine Derivate.

2.4-Diamino-l-oxy-benzol, 2.4-Diamino-phenol $C_8H_8ON_9 = (H_2N)_2C_8H_3 \cdot OH$. Bei der elektrolytischen Reduktion von m-Dinitro-benzol (Bd. V, S. 258) in konz. Schwefelsäure (Gattermann, B. 26, 1848; Bayer & Co., D. R. P. 75260; Frdl. 3, 54). Bei der Reduktion von 2.4-Dinitro-phenol (Bd. VI, S. 251) mit Jodphosphor und Wasser (Hemilian, K. 7, 235; B. 8, 768; vgl. Gauhe, A. 147, 67) oder mit Zinn und Salzsäure (Hem.). Bei der elektrolytischen Reduktion von 3-Nitro-anilin (Bd. XII, S. 698) in konz. Schwefelsäure (Gat., B. 26, 1849; Bay. & Co., D. R. P. 78829; Frdl. 4, 55). — Darst. Man reduziert 1 Tl. 2.4-Dinitro-phenol mit 4 Tln. Zinn und 12 Tln. Salzsäure und fällt aus der filtrierten Flüssigkeit durch konz. Salzsäure das salzsaure Salz aus (Post, Stuckenberg, A. 205, 66). — Das freie 2.4-Diamino-phenol wird aus dem Hydrochlorid durch gesättigte Na₂SO₃-Lösung gefällt (A. Lummer, Seyrewetz, C. r. 116, 1204; B. 26 Ref., 493).

gefällt (A. Lumière, Sevewetz, C. r. 116, 1204; B. 26 Ref., 493).

Blättchen. F: 78—80° (Zers.). (A. Lu., Sev.). Ziemlich löslich in Alkohol, Aceton, schwer in Äther, Chloroform und Benzin, leicht in Säuren und Alkalien (A. Lu., Sev.).

Färbt sich an der Luft rasch braunschwarz (A. Lu., SEY.). Salzsaures 2.4-Diaminophenol oxydiert sich in wäßr. Lösung an der Luft, hierbei färbt sich die Lösung zunächst rot, wird dann mißfarben und scheidet schließlich braune Flocken aus (Post, Stu.). Versetzt man die wäßr. Lösung von salzsaurem 2.4-Diamino-phenol mit Eisenchlorid in geringem Überschuß, so bildet sich 2-Amino-chinon-imid-(4) (Syst. No. 1874) (Kehrmann, Prager, B. 39, 3438). Bildung von Farbstoffen, die sich in Schwefelalkalien lösen und auf Baumwolle färben lassen, durch Oxydation von salzsaurem 2.4-Diamino-phenol in wäßr. Lösung mit Ammoniumpersulfat oder Eisenchlorid: TSCHÖRNER, D. R. P. 138147; C. 1903 I, 210. 2.4-Diamino-phenol läßt sich unterhalb 0° in Gegenwart eines reichlichen Überschusses von Mineralsaure beiderseits diazotieren und dann mit Azokomponenten in Disazofarbstoffe überführen (Ges. f. chem. Ind. Basel, D. R. P. 168299; C. 1906 I, 1124). Beim Erhitzen von 1 Mol.-Gew. 2.4-Diamino-phenol mit 1 At.-Gew. Schwefel zweckmäßig unter Zusatz von Schwefelnatrium entsteht ein schwarzer Schwefelfarbstoff (VIDAL, D. R. P. 98437; C. 1898 II, 912); dieser Farbstoff liefert beim Erhitzen mit weiteren Mengen Schwefel und Schwefelnatrium einen grünlich-blauschwarzen Farbstoff (Akt.-Ges. f. Anilinf., D. R. P. 127312; C. 1902 I, Beim Erhitzen von 2.4 - Diamino - phenol mit Alkali-NH, polysulfid in waßr. Lösung unter Vermeidung eines Über-

schusses des Sulfids entsteht das Oxy-triamino-phenthiazin
der nebenstehenden Formel (Syst. No. 4382) (A.-G. f. A.,
D. R. P. 117921; C. 1901 I, 485). Verhalten der Lösung
von salzsaurem 2.4-Diamino-phenol zur Lösung von hydroschwefligsaurem Natrium Na₂S₂O₄:
A. Lumière, L. Lumière, Seyewetz, Bl. [3] 33, 67. Beim Erhitzen von 2.4-Diamino-phenol

mit Natriumdisulfitlösung unter Druck auf 150—160° wird ein Kondensationsprodukt gebildet, das sich nur schwer in Sodalösung mit violettschwarzer Farbe löst (Höchster Farbw., D. R. P. 125668; C. 1901 II, 1243). Beim Erhitzen mit wäßr. Natriumthiosulfatlösung auf 100° entsteht ein in Alkalien mit tiefblauer Farbe lösliches Produkt, das bei weiterem Erhitzen für sich oder in Gegenwart von Lösungsmitteln wie Kresol auf 200° in einen tiefschwarzen in konz. Schwefelsäure und in Anilin löslichen Schwefelfarbstoff übergeht (Deutsche Vidal-Farbst.-Akt.-Ges., D. R. P. 116354; C. 1901 I, 77). Erhitzt man 2.4-Diamino-phenol mit wäßr. Natriumthiosulfatlösung auf 160°, so erhält man einen krystallisierten schwarzen, in konz. Schwefelsäure und in Anilin unlöslichen Schwefelfarbstoff (Sandoz, D. R. P. 136016; C. 1902 II, 1287). — Beim Kochen von salzsaurem 2.4-Diamino-phenol mit 4-Chlor-1.3-dinitro-benzol in Alkohol bei Gegenwart von Natriumacetat entsteht 2'.4'-Dinitro-4-oxy-3-amino-diphenylamin (S. 551) (Kalle & Co., D. R. P. 107971; C. 1900 I, 1055). Beim Versetzen von salzsaurem 2.4-Diamino-phenol bei 50° mit Natriumacetat und 1 Mol.-Gew. Essigsäureanhydrid erhält man 2-Amino-4-acetamino-phenol (Hö. F., D. R. P. 164295; C. 1905 II, 1701). Versetzt man eine wäßr. Lösung von 2.4-Diamino-phenol mit 2 Mol.-Gew. Essigsäureanhydrid (Cassella & Co., D. R. P. 191549; C. 1908 I, 780), oder schüttelt die wäßr. Lösung von salzsaurem 2.4-Diamino-phenol mit 2,4 Mol.-Gew. Asriumsulfit und 2,4 Mol.-Gew. Essigsüpro-phydrid (A. Israelina II. Israelina Physiology 1 December 1 Israelina Physiology 2,4 Mol.-Gew. Essigsüpro-physiology 2,4 Mol.-Gew. Essigsüpro-physiology 2,4 Mol.-Gew. Essigsüpro-physiology 2,4 Mol.-Gew. säureanhydrid (A. Lumière, L. Lumière, Barbier, Bl. [3] 33, 786), so wird 2.4-Bis-acetamino-phenol gebildet. Bei kurzem Kochen von salzsaurem 2.4-Diamino-phenol mit Essigsäureanhydrid und Natriumacetat erhält man O.N.N'-Triacetyl-[2.4-diamino-phenol] (KEHB-MANN, BAHATRIAN, B. 31, 2399). Einwirkung von Benzoylchlorid auf salzsaures 2.4-Diaminophenol bei 200°: Post, Stuckenberg, A. 205, 68°). — 2.4-Diamino-phenol bezw. seine Salze färben bei der Oxydation auf der Faser diese intensiv braun (REVERDIN, DE LA HARPE, Ch. Z. 16, 46). Verwendung von 2.4-Diamino-phenol zum Färben von Haaren und Federn: ERDMANN, D. R. P. 80814; Frdl. 4, 1069. 2.4-Diamino-phenol bezw. seine Salze wirken auf das latente Bild der photographischen Platte entwickelnd (RE., DE LA HA.); die Salze sind unter der Bezeichnung Amidolals photographische Entwickler im Handel (EDEB, VALENTA,

2.4-Diamino-phenol 'gibt mit Ammoniak eine sehr intensive Gelbfärbung (MANGET, MARION, C. 1903 I, 895). Die Lösung des 2.4-Diamino-phenols in Wasser färbt sich mit Natronlauge an der Luft intensiv blau (ERD., D. R. P. 80814; Frdl. 4, 1069). Die wäßr. Lösung der Salze wird durch Eisenchlorid oder K₂Cr₂O₇ tief dunkelrot gefärbt (empfindliche Reaktion) (GAUHE, A. 147, 70; vgl. KEHEMANN, PRAGER, B. 39, 3437). — Das salzsaure Salz gibt beim Erhitzen mit 10 Th. Anilin auf die Siedetemperatur des Anilins eine dunkelblaue Färbung (Reverdin, de La Harpe, Ch. Z. 16, 46). — Verwendung von 2.4-Diaminophenol zum Nachweis von Aldehyden: MANGET, MARION, C. 1903 II, 219.

 $C_8H_8ON_2 + 2$ HCl. Nadeln (GAUHE, A. 147, 69). — $C_8H_8ON_2 + 2$ HI. Nadeln (GAU.). $C_6H_8ON_2 + H_2SO_4 + 2$ H₂O. Tafeln (GAU.). — $C_6H_8ON_2 + H_2S_2O_3 + H_2O$. Krystalle (WAHL, Bl. [3] 27, 1221). — Oxalat $C_8H_8ON_2 + C_2H_2O_4$. Krystallpulver. 1 Tl. löst sich in 2000 Tln. kaltem und in 33 Tln. kochendem Wasser (A. Lu., SEY., Bl. [3] 9, 595). — Pikrat $C_6H_8ON_2+2C_6H_3O_7N_3$. Citronengelbe Nadeln. Schmilzt gegen 120° unter Zersetzung; 1 Tl. löst sich bei 15° in 33 Tln. Wasser (A. Lu., Sey., Bl. [3] 9, 597).

1 - [2.4 - Diamino - phenoxy] - benzol - sulfonsäure - (4), 2.4-Diamino-diphenyläther-sulfonsäure-(4') $C_{12}H_{12}O_4N_2S_4$ s. nebenstehende Formel. B. Durch Kondensation von H.N. Phenol-sulfonsäure-(4) mit 4-Chlor-1.3-dinitro-benzol in wäßr. Alkali und Reduktion der erhaltenen Nitroverbindung (Cassella & Co., D. R. P. 187150; C. 1907 II, 1570). — Verwendung zur Darstellung von Azofarbstoffen: C. & Co.

- 1-[2.4-Diamino-phenoxy]-naphthalin-sulfonsäure-(4) $C_{16}H_{14}O_4N_9S = (H_9N)_9C_6H_9$ O·C₁₀H₆·SO₃H. B. Durch Kondensation von Naphthol-(1)-sulfonsaure-(4) (Bd. XI, S. 271) mit 4-Chlor-1.3-dinitro-benzol in wäßr. Alkali und Reduktion der entstandenen Nitroverbindung (Cassella & Co., D. R. P. 187150; C. 1907 II, 1570). — Verwendung zur Darstellung von Azofarbstoffen: C. & Co.
- 2-[2.4-Diamino-phenoxy]-naphthalin-sulfonsäure-(6) $C_{16}H_{14}O_4N_9S = (H_9N)_2C_8H_{12}$ O·C₁₀H₆·SO₃H. B. Durch Kondensation von Naphthol-(2) sulfonsaure-(6) (Bd. XI, S. 282) mit 4-Chlor-1.3-dinitro-benzol in wäßr. Alkali und Reduktion der entstandenen Nitroverbindung (Cassella & Co., D. R. P. 187150; C. 1907 II, 1570). — Verwendung zur Darstellung von Azofarbstoffen: C. & Co.
- 2-[2.4-Diamino-phenoxy]-naphthalin-sulfonsäure-(7) $C_{16}H_{14}O_4N_4S = (H_4N)_2C_6H_3$. O·C₁₀H₆·SO₃H. B. Durch Kondensation von Naphthol-(2)-sulfonsäure-(7) (Bd. XI, S. 285)

¹⁾ Vgl. dazu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1, I. 1910] erschienene Arbeit von MELDOLA, HOLLELY, Soc. 101 [1912], 931.

OH

 \cdot NH \cdot

 $\mathbf{H0} \cdot \mathbf{0}$

mit 4-Chlor-1.3-dinitro-benzol in wäßr. Alkali und Reduktion der entstandenen Nitro-verbindung (Cassella & Co., D. R. P. 187150; C. 1907 II, 1570). — Verwendung zur Darstellung von Azofarbstoffen: C. & Co.

Methansulfonsäure - [2.4 - diamino - phenyl] - ester $C_7H_{10}O_9N_8S = (H_2N)_9C_6H_3 \cdot O \cdot O_2S \cdot CH_2$. B. Durch Reduktion einer eisessigsauren Lösung von Methansulfonsäure-[2.4-dinitro-phenyl]-ester (Bd. VI, S. 256) mit Zinn und Salzsäure (SCHALL, J. pr. [2] 48, 249). — Nadeln (aus Äther). F: 103—104 $^{\circ}$ (schwache Bräunung).

p-Toluolsulfonsäure-[2.4-diamino-phenyl]-ester $C_{12}H_{14}O_2N_2S = (H_2N)_2C_4H_3 \cdot O \cdot O_2S \cdot C_4H_4 \cdot CH_3$. B. Durch Reduktion des p-Toluolsulfonsäure-[2.4-dinitro-phenyl]-esters (Bd. XI, S. 100) in Salzsäure (D: 1,19) mit einer alkoh. Zinnchlorürlösung (ULLMANN, NADAI, B. 41, 1873). — Blättchen (aus Benzol). F: 125°. In der Wärme leicht löslich in Alkohol, Benzol und Aceton, schwer in Äther, Ligroin.

4-Amino-2-dimethylamino-phenol $C_8H_{12}ON_2=[(CH_2)_2N](H_2N)C_8H_3\cdot OH$. B. Bei der Elektrolyse der Lösung von N.N.-Dimethyl-3-nitro-anilin (Bd. XII, S. 704) in 9½ bis 10 Tln. konz. Schwefelsäure (Gattermann, B. 27, 1932; Bayer & Co., D. R. P. 78829; Frdl. 4, 55). — Das Hydrochlorid gibt mit Eisenchlorid eine intensiv violettrote Färbung (G.). — $C_8H_{12}ON_2 + 2$ HCl. Nadeln (aus Alkohol). Leicht löslich in Wasser (G.).

Trimethyl - [2 - oxy - 5 - amino - phenyl] - ammoniumhydroxyd $C_9H_{16}O_2N_3$, s. nebenstehende Formel. B. Das Chlorid-hydrochlorid entsteht bei der Reduktion von Trimethyl-[5-nitro-2-oxy-phenyl]-ammoniumhydroxyd (S. 389) mit Zinn und Salzsäure (Griess, B. 13, 648). — Salze. Chlorid-hydrochlorid $C_9H_{18}ON_3\cdot Cl + HCl + 4H_2O$. Blättehen. Sehr leicht löslich in Wasser und Alkohol. Wird durch Eisenchlorid tief violett gefärbt. — Chloroplatinat $C_9H_{18}ON_3\cdot Cl + HCl + PtCl_4 + 2H_2O$. Prismen, schwer löslich in Wasser.

- 2'.4' Dinitro 4 oxy 3 amino diphenylamin $C_{12}H_{10}O_5N_4$, s. nebenstehende Formel. B. Aus 4-Chlor-1.3-dinitro-benzol und salzsaurem 2.4-Diamino-phenol in O_2N · NH · OH siedender alkoholischer Lösung bei Gegenwart von Natriumacetat (Kalle & Co., D. R. P. 107971; C. 1900 I, 1055). Gibt mit Schwefel und Schwefelnatrium bei 150—160° einen schwarzen Schwefelfarbstoff.
- 2.4-Dianilino-phenol $C_{18}H_{16}ON_2 = (C_6H_5\cdot NH)_2C_6H_3\cdot OH$. B. Beim Behandeln von 2.5-Dianilino-chinon-dianil (Azophenin, Syst. No. 1874) mit Zinn und Salzsäure in Eisessig (O. Fischer, Hepp, A. 256, 260). Sehr unbeständig. Oxydiert sich an der Luft wahrscheinlich zu 2-Anilino-chinon-anil-(4). $C_{18}H_{16}ON_2 + HCl$. Blättehen. F: 192°.
- 2.4'-Dioxy-5-amino-diphenylamin $C_{12}H_{12}O_2N_2$, s. nebenstehende Formel. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 434.
- 2-Amino-4-acetamino-phenol C₈H₁₀O₂N₂ = (CH₃·CO·NH)(H₂N)C₆H₃·OH. B. Man nitriert 4-Acetamino-phenol (S. 460) und reduziert die entstehende Nitroverbindung (CASSELLA & Co., D. R. P. 162069; C. 1905 II, 865). Beim Versetzen einer wäßr. Lösung von salzsaurem 2.4-Diamino-phenol bei 50° mit Natriumacetat und 1 Mol.-Gew. Essigsäureanhydrid (Höchster Farbw., D. R. P. 164295; C. 1905 II, 1701). Farblose Blättchen. F: 249° (C. & Co.), 248° (Zers.) (H. F.). Gibt mit salpetriger Säure eine gelb gefärbte Diazoverbindung, die als Komponente für die Darstellung von Azofarbstoffen dienen kann (C. & Co.; Akt. Ges. f. Anilinf., D. R. P. 172643; C. 1906 II, 986).
- [2 Dimethylamino 4 acetamino phenyl] acetat $C_{12}H_{16}O_3N_2 = (CH_3 \cdot CO \cdot NH)[(CH_2)_2N]C_2H_3 \cdot O \cdot CO \cdot CH_2$. B. Aus 4 Amino 2 dimethylamino phenol (s. o.) mit Essigsäureanhydrid nach Schotten-Baumann (Gattermann, B. 27, 1932). Blätter (aus Alkohol). F: 175°.
- 2.4-Bis-acetamino-phenol $C_{10}H_{19}O_9N_2=(CH_3\cdot CO\cdot NH)_9C_8H_3\cdot OH$. B. Beim Versetzen einer wäßr. Lösung von 2.4-Diamino-phenol mit 2 Mol.-Gew. Essigsäureanhydrid (Cassella & Co., D. R. P. 191549; C. 1908 I, 780). Durch Schütteln einer Lösung von 19,7 g salzsaurem 2.4-Diamino-phenol und 30,3 g Natriumsulfit in 250 ccm Wasser mit 24,5 g Essigsäureanhydrid (A. Lummer, L. Lummer, Barbier, Bl. [3] 33, 785). Durch Einer verdünnter Natronlauge auf O.N.N'-Triacetyl-[2.4-diamino-phenol] (S. 552) (Kehrmann, Bahtelian, B. 31, 2399). Nadeln (aus Wasser). F: 220—222° (K., Bah.), 222° (A. L., L. L., Bar.). Löslich in Alkohol, Eisessig und siedendem Wasser (K., Bah.). Wird von Natriumdichromat und verdünnter Schwefelsäure zu 2-Acetamino-chinon (Syst. No. 1874)

- oxydiert (K., Bah.). Überschüssige salpetrige Säure gibt 6-Nitro-2.4-bis-acetamino-phenol (s. u.) (C. & Co.).
- 2.4-Bis-acetamino-phenol-äthyläther, 2.4-Bis-acetamino-phenetol $C_{12}H_{16}O_2N_2 = (CH_3 \cdot CO \cdot NH)_2C_2H_3 \cdot O \cdot C_3H_5$. B. Bei der Einw. von Essigsäureanhydrid oder Eisessig oder Acetylchlorid und Natriumacetat auf 2.4-Diamino-phenetol [erhalten durch Reduktion von 2.4-Dinitro-phenetol (Bd. VI, S. 254)] oder auf dessen Hydrochlorid (Traub, Person, D. R. P. 77272; Frdl. 4, 1180). Körnige Krystalle (aus Alkohol). F: 193°. Schwer löslich in kaltem, leichter in heißem Wasser. Wirkt stark antipyretisch.
- [2.4 Bis acetamino phenyl] acetat, O.N.N'-Triacetyl [2.4 diamino phenol] $C_{13}H_{14}O_4N_3 = (CH_3 \cdot CO \cdot NH)_2C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Durch kurzes Kochen von salzsaurem 2.4-Diamino-phenol mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Bahatelan, B. 31, 2399). Prismen (aus Wasser). F: 180—182°. Leicht löslich in Alkohol, Eisessig, Benzol und siedendem Wasser. Wird von kalter verdünnter Natronlauge zu 2.4-Bisacetamino-phenol verseift.
- Methansulfonsäure [2.4 bis acetamino phenyl] ester, O Methansulfonyl-N.N'-diacetyl-[2.4-diamino-phenol] $C_{11}H_{14}O_5N_2S = (CH_3\cdot CO\cdot NH)_2C_6H_3\cdot O\cdot O_2S\cdot CH_2$. B. Aus Methansulfonsäure-[2.4-diamino-phenyl]-ester mit Essigsäureanhydrid bei 150° (SCHALL, J. pr. [2] 48, 249). Nadeln (aus Alkohol). F: 236—237° (schwache Bräunung).
- p-Toluolsulfonsäure-[2.4-bis-acetamino-phenyl]-ester, O-p-Toluolsulfonyl-N.N'-diacetyl-[2.4-diamino-phenol] $C_{17}H_{18}O_5N_8S=(CH_2\cdot CO\cdot NH)_8C_6H_3\cdot O\cdot O_3S\cdot C_6H_4\cdot CH_3$. B. Aus p-Toluolsulfonsäure-[2.4-diamino-phenyl]-ester durch Acetylieren (ULIMANN, NADAI, B. 41, 1874). Nadeln (aus Toluol). F: 167°; leicht löslich in Alkohol und Eisessig; schwer löslich in Benzol.
- [2 Dimethylamino 4 benzamino phenyl] benzoat $C_{22}H_{20}O_2N_4=(C_6H_5\cdot CO\cdot NH)[(CH_2)_2N]C_6H_3\cdot O\cdot CO\cdot C_6H_5$. B. Aus 4-Amino-2-dimethylamino-phenol durch Benzoy-lieren (Gattermann, B. 27, 1932). Nadeln (aus Alkohol). F: 213—214°.
- [2-Dimethylamino-4-(3-nitro-bensamino)-phenyl]-[3-nitro-bensoat] $C_{23}H_{19}O_7N_4=(O_2N\cdot C_6H_4\cdot CO\cdot NH)[(CH_9)_2N]C_6H_3\cdot O\cdot CO\cdot C_6H_4\cdot NO_2$. B. Aus 4-Amino-2-dimethylamino-phenol mit 3-Nitro-benzoylchlorid (Gattermann, B. 27, 1932). Nadeln (aus Eisessig). F: 197°.
- $N^2.N^4.Oder N^2.N^4.N^4.Tribensolsulfonyl-[2.4-diamino-phenol] <math>C_{84}H_{99}O_7N_5S_8 = [(C_6H_5\cdot SO_9)_2N](C_6H_5\cdot SO_3\cdot NH)C_6H_3\cdot OH.$ B. Durch Einw. von Benzolsulfochlorid auf 2.4-Diamino-phenol in alkal. Lösung neben dem Tetrabenzolsulfonyl-[2.4-diamino-phenol] (s. u.) (Georgesco, C. 1900 I, 544). F: 142—147°. Löslich in Alkalien.
- O.N².N².N²- oder O.N².N².N²- Tetrabenzolsulfonyl [2.4 diamino phenol] $C_{30}H_{24}O_{9}N_{2}S_{4} = [(C_{6}H_{5}\cdot SO_{3})_{8}N](C_{6}H_{5}\cdot SO_{3}\cdot NH)C_{6}H_{3}\cdot O\cdot SO_{3}\cdot C_{6}H_{5}.$ B. Durch Einw. von Benzolsulfochlorid auf 2.4-Diamino-phenol in alkal. Lösung, neben dem Tribenzolsulfonyl-[2.4-diamino-phenol] (s. o.) (Georgesco, C. 1900 I, 544). F: 191°. Unlöslich in Alkalien.
- 6-Nitro-2-amino-4-acetamino-phenol $C_0H_0O_4N_3=(CH_0\cdot CO\cdot NH)(H_0N)C_0H_0(NO_0)\cdot OH.$ B. Bei der partiellen Beduktion von 2.6-Dinitro-4-acetamino-phenol (S. 528) mit verd. Schwefelalkalilösung (Cassella & Co., D. R. P. 172978; C. 1906 II, 984). Braunrote Nadeln (aus Alkohol). F: 190°; schwer löslich in Wasser, Äther und Benzol, leicht in Eisesaig (C. & Co., D. R. P. 172978). Läßt sich in eine orangegelbe Diazoverbindung überführen, die zur Darstellung von Azofarbstoffen dienen kann (C. & Co., D. R. P. 167640, 179224; C. 1906 I, 1124; 1907 I, 597). Hydrochlorid. Gelbe Nadeln (C. & Co., D. R. P. 172978).
- 6-Nitro-2.4-bis-acetamino-phenol $C_{10}H_{11}O_5N_3=(CH_3\cdot CO\cdot NH)_3C_0H_3(NO_2)\cdot OH$. B. Aus 2.4-Bis-acetamino-phenol in verd. Salzsaure mit einem Überschuß von Natriumnitrit (Cassella & Co., D. R. P. 191549; C. 1908 I, 780). Gelbe Nadeln. F: 215°. In Alkohol leicht löslich; in Äther und Benzol schwer löslich. Bei der Reduktion mit Zinkstaub und Schwefelsaure entsteht das entsprechende Amino-bis-acetamino-phenol (S. 570).
- 8.5 Dinitro 2.4 diamino phenol methyläther, 8.5 Dinitro 2.4 diamino anisol $\mathbb{C}_7H_8\mathcal{O}_4N_4=(H_2N)_2\mathbb{C}_4H(N\mathcal{O}_4)_2\cdot 0\cdot \mathbb{C}H_3$. B. Aus 3.4.5-Trinitro-veratrol (Bd. VI, 8. 792) und alkoh. Ammoniak (Blakksma, R. 24, 315). Bei mehrstündigem Erhitsen von Trinitro-hydrochinon-dimethyäther (Bd. VI, 8. 858) mit alkoh. Ammoniak im geschlossenen Rohr auf 120° (Nietzki, Kubtenauker, B. 25, 282). Aus 3.5-Di-nitro-oxyhydrochinon-trimethyläther (Bd. VI, 8. 1091) und alkoh. Ammoniak (B., R. 24, 317). Blauschimmernde, rote Blättchen (aus Eisessig). F: 250° (N., K.; B.). Beim Kochen mit Kalilauge entsteht 3.5-Di-nitro-oxyhydrochinon-1-methyläther (Bd. VI, 8. 1091) (N., K.).

- 8.5-Dinitro-2.4-diamino-phenol-äthyläther, 3.5-Dinitro-2.4-diamino-phenetol $C_0H_{10}O_2N_4=(H_2N)_2C_0H(NO_2)_2\cdot O\cdot C_2H_3$. B. Aus 3.4.5-Trinitro-brenzoateohin-diāthylāther (Bd. VI, S. 792) und alkoh. Ammoniak (Blanesma, R. 24, 316). Aus Trinitrohydrochinon-diāthylāther (Bd. VI, S. 859) und alkoh. Ammoniak im geschlossenen Rohr bei 120° (Nietzki, A. 215, 153; N., Kurtenauker, B. 25, 282). Mennigerote, blauschillernde Blättohen (aus Eisessig). F: 245° (N.; B.). Sehr wenig löslich in Alkohol, schwer in Eisessig, unlöslich in Wasser (N.). Liefert beim Kochen mit verd. Kalilauge 3.5-Dinitro-oxyhydrochinon-1-āthylāther (Bd. VI, S. 1091) (N.; N., K.).
- 2.4-Diamino-diphenylsulfon $C_{12}H_{12}O_2N_2S = (H_2N)_2C_6H_3 \cdot SO_3 \cdot C_6H_5$. B. Aus 2.4-Dinitro-diphenylsulfon (Bd. VI, S. 343) durch Reduktion mit alkoh. Zinnehlorürlösung (ULL-MANN, PASDERMADJIAN, B. 34, 1152). Nadeln (aus Alkohol). F: 1886. Unlöslich in Wasser und Äther, schwer löslich in Benzol, leicht in warmem Alkohol und Eisessig. Gibt mit Natriumnitrit in saurer Lösung einen roten voluminösen Niederschlag.
- 2.4.2'.4'-Tetraamino-diphenyldisulfid $C_{12}H_{14}N_4S_2 = [(H_2N)_2C_4H_2\cdot S-]_2$. B. Man reduziert 2.2'-Dinitro-4.4'-diamino-diphenyldisulfid (S. 547) mit Zinnehlorür und Salzsäure zu 2.4-Diamino-thiophenol und versetzt dessen salzsaure Lösung mit Ammoniak; man krystallisiert aus Benzol (H. A. MÜLLER, Ztechr. f. Farbenindustrie, 5, 359; C. 1906 II, 1587). Nadeln. F: 148°. Sehr leicht löslich in Alkohol, Chloroform, Aceton, sehr wenig in Äther und Tetrachlorkohlenstoff.
- 2.4-Bis-acetamino-diphenylsulfon $C_{16}H_{16}O_4N_2S = (CH_2 \cdot CO \cdot NH)_2C_6H_3 \cdot SO_3 \cdot C_6H_5$. Beim Erhitzen von 2.4-Diamino-diphenylsulfon mit Essigsäureanhydrid und Natriumacetat (Ullmann, Pasdermadjian, B. 34, 1152). Nadeln (aus Alkohol). F: 197°. Unlöslich in Wasser und Benzol, leicht löslich in Alkohol und Eisessig.

2.5-Diamino-phenol und seine Derivate.

2.5-Diamino-1-oxy-benzol, 2.5-Diamino-phenol $C_6H_8ON_3=(H_2N)_2C_6H_3$ ·OH. B. Boi der Reduktion von 5-Nitro-2-amino-phenol (S. 390) mit Zinnehlorür und Salzsäure (Kehrmann, Betsch, B. 30, 2098). — Wird in essigsaurer Lösung durch Luft zu einem Farbsalz oxydiert, dem als Leukoverbindung 2.7-Diamino-phenoxazin (Formel I) (Syst. No. 4367) zugrunde liegt (Kehrmann, Poplawski, B. 42, 1277). Bei der Kondensation von salzsaurem 2.5-Diamino-phenol mit 2-Oxy-naphthochinon-(1.4)-imid-(4) [4-Amino-naphthochinon-(1.2), Bd. VIII, S. 302] in siedendem Alkohol entsteht das Farbsalz $C_{16}H_{13}ON_3Cl$, dem als Leukoverbindung

I.
$$H_2N$$
. NH_2 II. H_2N . NH_3

das Diamino-ang.- $\beta.a$ -naphthophenoxasin der Formel II (Syst. No. 4370) entspricht (K., B. 38, 3606). Beim Kochen des salzsauren Salzes mit Essigsäureanhydrid und Natrium-acetat entsteht O.N.N'-Triacetyl-[2.5-diamino-phenol] (S. 554) (K., B., B. 30, 2098). — $C_6H_6ON_6+2HCl$. Nadeln. Leicht löslich in Wasser, weniger in konz. Salzsäure; die wäßr. Lösung fästs sich an der Luft schnell violett (K., B.).

- 5-Amino-2-methylamino-phenol-methyläther, 5-Amino-2-methylamino-anisol $C_8H_{12}ON_2=(CH_3\cdot NH)(H_4N)C_8H_3\cdot O\cdot CH_3$. B. Durch Reduktion von 5-Nitroso-2-[methylamino]-anisol (Bd. VIII, S. 237) mit Zinn und Salzsäure (Best, A. 255, 182). Nadeln (aus Ligroin). F: 67—68°. Leicht löslich in Wasser, Alkohol, Äther, schwerer in Ligroin. Löst sich in Säuren. Die Salze färben sich in wäßr. Lösung bald blau; mit FeCl₃ wird die Lösung violett bis blau. Hydrochlorid. Nadeln (aus Alkohol).
- 2-Amino-5-dimethylamino-phenol C₈H₁₈ON₅ = [(CH₃)₂N](H₂N)C₆H₃·OH. B. Bei der Reduktion von 4-Dimethylamino-benzochinon-(1.2)-oxim-(1) (6-Nitroso-3-dimethylamino-phenol, Syst. No. 1874) mit Zinnchlorür und Salzsäure (Möhlau, B. 25, 1061; Kehrmann, Poplawski, B. 42, 1277). Liefert, in schwach essigsaurer Lösung durch Luft oxydiert,

ein Farbsalz, dem als Leukoverbindung 2.7-Bis-dimethylamino-phenoxazin (Formel I) (Syst. No. 4367) zugrunde liegt (K., P., B. 42, 1277). Wird in natronalkalischer Lösung durch Luftsauerstoff in einen Farbstoff übergeführt, dem als Leukoverbindung 2-Oxy-3-amino-7-dimethylamino-phenoxazin (Formel II) (Syst. No. 4382) entspricht (M.).

- 2-Amino-5-anilino-phenol, 8-Oxy-4-amino-diphenylamin $C_{12}H_{12}ON_2 = (C_2H_3\cdot NH)(H_2N)C_2H_3\cdot OH$. B. Durch Reduzieren von 4-Nitroso-3-oxy-diphenylamin (Bd. XII, S. 222) mit Zinn und Salzsäure (Köhler, B. 21, 910). — Blättchen (aus verd. Alkohol). F: 135°. Leicht löslich in Alkohol, Chloroform und Aceton, etwas schwerer in Äther und Benzol, sehr wenig in Ligroin.
- 2-Amino-5-p-toluidino-phenol, 3'-Oxy-4'-amino-4-methyl-diphenylamin $C_{13}N_{14}ON_2 = (CH_3 \cdot C_2H_4 \cdot NH)(H_2N)C_2H_3 \cdot OH$. B. Aus 4'-Nitroso-3'-oxy-4-methyl-diphenylamin (Bd. XII, S. 917) durch alkoh. Schwefelammonium (GNEHM, VEILLON, J. pr. [2] 65, 68). — Blättchen. F: 149°. Wird an der Luft schnell dunkelblau. In Alkohol und Äther leicht löslich, in Benzol schwer löslich. — C₁₂H₁₄ON₂ + HCl. Dunkle Nadeln. In Wasser schwer löslich.
- 2 Amino 5 p toluidino phenol äthyläther, 3'- Äthoxy 4'- amino 4 methyldiphenylamin $C_{15}H_{16}ON_9 = (CH_3 \cdot C_6H_4 \cdot NH)(H_2N)C_6H_3 \cdot O \cdot C_2H_5$. B. Aus 2'-Äthoxy-4-methyl-azobenzol (Syst. No. 2112) in Alkohol bei der Reduktion mit Zinnehlorür und Salzsäure (D: 1,19) neben anderen Produkten (JACOBSON, HUBER, A. 869, 9, 11). — Stäbchen (aus Ligroin). F: 75°. Leicht löslich in warmem Alkohol, Eisessig, schwer in Benzol und (aus Ligroin). F: 75°. Leicht löslich in warmem Alkonol, Eisessig, solwer in Benzol und Ligroin. — Gibt bei der Oxydation seines salzsauren Salzes in verd. Schwefelsäure mit Kaliumdichromat 2-Äthoxy-chinon-p-tolylimid-(4) (Bd. XII, S. 916), mit viel überschüssigem Dichromat Äthoxyohinon (Bd. VIII, S. 235). Die Lösung des salzsauren Salzes gibt mit FeCl₃ blauviolette Färbung, die mit mehr FeCl₃ in Rot umschlägt. Die salzsaure Lösung färbt sich mit Natriumnitrit zunächst tiefrotbraun, hellt bald auf und nimmt schließlich eine gelbe Färbung an. — $C_{15}H_{18}ON_3 + HCl$. Nadeln. Leicht löslich in warmem Wasser, warmem Alkohol; leicht löslich in konzentrierter, sohwer in verdünnter Salzsäure.
- 2.4'- Dioxy 4 amino diphenylamin $C_{12}H_{12}O_2N_2$, s. nebenstehende Formel. B. Aus 4'-Oxy-4-anino-diphenylamin-sulfonsäure-(2) (Syst. No. 1923) durch Erhitzen mit HO···NH···NH. Atznatron auf 190° (Höchster Farbw., D. R. P. 111891; C. 1900 II, 650). — Gibt mit Schwefel und Schwefelalkali je nach der Temperatur einen blauen oder einen schwarzen Farbstoff.
- 8.4'-Diäthoxy-4-amino-diphenylamin $C_{16}H_{20}O_2N_2$, s. nebenstehende Formel. B. Beim Behandeln von O · C'H' 2.4'-Diāthoxy-azobenzol (Syst. No. 2112) mit salzsaurem C₂H₅·O· ·NH· ·NH₂ Zinnchlorür in Gegenwart von Alkohol (Jacobson, F. Meyer, A. 287, 216). — Blätter (aus Ligroin). F: 84,5°. — Liefert beim Kochen mit 5 Tln. Alkohol und 5 Tln. Schwefelkohlenstoff den Thioharnstoff CS[NH·C₆H₃(O·C₂H₅) $(\mathbf{NH} \cdot \mathbf{C_6H_4} \cdot \mathbf{O} \cdot \mathbf{C_9H_5})]_2$ (8. 555).
- N.N'-Bis-[2-oxy-4-diäthylamino-phenyl]-glyoxaldiisoxim $C_{12}H_{20}O_4N_4 = [(C_2H_5)_2N \cdot N_4]$ $C_0H_1(OH)\cdot N(:O):CH-]_0$ bezw. $[(C_0H_0)\cdot N\cdot C_0H_0(OH)\cdot N\cdot CCH-]_0$ s. Syst. No. 4620.
- 5 p Toluidino-2-salicylalamino-phenol-O·C.H. äthyläther, 8'-Äthoxy-4'-salicylalamino-4-methyl-diphenylamin C₁₂H₂₂O₂N₂, s. neben-stehende Formel. B. Beim Erwärmen der ·N:CH·C,H,·OH methylalkoholischen Lösung von 3'-Athoxy-4'-amino-4-methyl-diphenylamin (s. o.) mit Salicylaldehyd im Kohlensäurestrom auf dem Wasserbade (Jacobson, Huber, A. 369, 12). Gelbe Täfelchen von violettrotem Oberflächenschimmer (aus Ligroin). F: 133-134°. Schwer löslich in heißem Benzol, Ligroin, Alkohol und kaltem Ather. Die orangefarbene alkoholische Lösung färbt sich mit verd. Schwefelsäure zunächst röter, wird beim Kochen nach Zusatz von Wasser entfärbt, wobei Geruch nach Salicylaldehyd auftritt.
- 5 p Toluidino 2 acetamino phenol äthyläther, 3' Äthoxy 4' acetamino 4 methyl diphenylamin $C_{17}H_{20}O_2N_2=(CH_3\cdot CO\cdot NH)(CH_2\cdot C_6H_4\cdot NH)C_6H_3\cdot O\cdot C_2H_5$. B. Beim Kochen von 3'-Äthoxy-4'-amino-4-methyl-diphenylamin mit Eisessig (J., H., A. 369, 12). — Blaulichweiße Nadeln (aus Eisessig durch Wasser). F: 168—169°. Löslich in Alkohol, Eisessig, warmem Benzol, leicht löslich in warmem Chloroform, sehr wenig in Ligroin und Ather.
- **2.5-Bis-acetamino-phenol** $C_{10}H_{12}O_2N_2 = (CH_2 \cdot CO \cdot NH)_2C_2H_2 \cdot OH$. B. Beim Auflösen des O.N.N'-Triacetyl-[2.5-diamino-phenol] (s. u.) in kalter verdünnter Natronlauge (Kermann, Betsch, B. 30, 2099). — Nadeln (aus Wasser). F: 265°. Leicht löslich in Alkohol und Eisessig, schwer in heißem Wasser. — Bräunt sich leicht an der Luft. Wird von NasCraO, in Essignaure zu 2.5-Bis-acetamino-chinon (Syst. No. 1874) oxydiert.
- [3.5 Bis scetamino phenyl] scetat, O.N.N'-Triscetyl [3.5 diamino phenol] $C_{12}H_{14}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_6H_3 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von salzsaurem 2.5-Diamino-phenol mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Betsch, B. 30,

2098). — Blättchen (aus Wasser). F: 234°. Ziemlich leicht löslich in Alkohol, Eisessig und heißem Wasser. — Löst sich langsam in kalter verdünnter Natronlauge unter Übergang in 2.5-Bis-acetamino-phenol (S. 554).

2.5-Bis-bensamino-phenol-äthyläther, 2.5-Bis-bensamino-phenetol $C_{22}H_{20}O_3N_2=(C_0H_5\cdot CO\cdot NH)_2C_0H_3\cdot O\cdot C_2H_5$. B. Durch Reduktion von 5-Nitro-2-amino-phenetol in alkoh. Lösung mit salzsaurer Zinnchlorürlösung und Behandlung des auskrystallisierten Zinndoppelsalzes des 2.5-Diamino-phenetols mit Benzoylchlorid und Alkali (JACOBSON, HÖNIGSBERGER, B. 36, 4125). Durch Reduktion von 2-Amino-5-benzolazo-phenetol (Syst. No. 2185) in alkoh. Lösung mit salzsaurer Zinnchlorürlösung und Behandlung des auskrystallisierten Zinndoppelsalzes mit Benzoylchlorid und Natronlauge (J., H., B. 36, 4098). — Nadeln (aus Alkohol durch Wasser). F: 213°. Leicht löslich in Eisessig und Benzol, schwer in Alkohol, sehr wenig in Äther, unlöslich in Ligroin.

Thioharnstoff aus 3.4'-Diäthoxy-4-amino-diphenylamin C₃₂H₃₅O₄N₄S, s. nebenstehende Formel. B. Beim Kochen von 1 Tl. 3.4'-Diäthoxy-4-amino-diphenylamin (S. 554) mit 5 Tln. Alkohol und 5 Tln. Schwefelkohlenstoff (Jacobson, F. Meyer, A. 287, 217). — Blättchen (aus Alkohol). F: 154,5—155°. Sehr wenig löslich in Äther und Ligroin, leicht löslich in heißem Alkohol und Benzol. Unlöslich in Natronlauge.

5-p-Toluidino-2-[4-nitro-a-cyan-bensalamino]-phenol, 3'-Oxy-4'-[4-nitro-a-cyan-bensalamino] - 4 - methyl - diphenylamin, [2-Oxy-4-p-toluidino-phenyl] - $[\mu$ -cyan-azo-methin] - [4'-nitro-phenyl] - $[\mu$ -cyan-azo-methyl-diphenylamin (Bd. XII, S. CH₃ · NH · N:C· NO₂ nebenstehende Formel. B. Aus 4'-Nitroso-3'-oxy-4-methyl-diphenylamin (Bd. XII, S. 917) und 4-Nitro-phenyleyanid (Bd. IX, S. 456) bei Gegenwart von Soda in siedendem Alkohol (Gnehm, Vehlon, J. pr. [2] 65, 69). — Zinnoberrote Nadeln (aus Benzol). F: 152°. In Alkohol und Ather löslich, in Petroläther schwer löslich. Löst sich in Schwefelsäure tiefgrün, in alkoh. Kali blauviolett.

8-Oxy-4'-dimethylamino-4-[4-nitroa - cyan - bensalamino] - diphenylamin C₃₂H₁₉O₂N₅, s. nebenstehende Formel. B. Aus 4-Nitroso-3 - cxy-4'-dimethylamino-diphenylamin (S. 93) und 4-Nitro-benzylcyanid (GNEHM, WEBER, J. pr. [2] 69, 239). — Rotbraune Nadeln. F: 213—214°.

4-Chlor-5-amino-2-acetamino-phenol-methyläther, 4-Chlor-5-amino-2-acetamino-anisol $C_bH_{11}O_aN_aCl=(CH_3\cdot CO\cdot NH)(H_aN)C_bH_aCl\cdot O\cdot CH_3$. B. Bei der Reduktion von 4-Chlor-5-nitro-2-acetamino-anisol (S. 392) (Akt.-Ges. f. Anilinf., D. R. P. 131963; C. 1902 II, 84). — Blättchen (aus Wasser oder Benzol), Nadeln (aus Methylalkohol). F: 145°; leicht löslich in heißem Wasser, Benzol, Methylalkohol und Alkohol, schwer in Äther und Ligroin (A.-G. f. A.). — Läßt sich in eine Diazoverbindung überführen, die als Komponente für die Darstellung von Azofarbstoffen Verwendung finden kann (A.-G. f. A.; Ges. f. chem. Ind., D. R. P. 153940; C. 1904 II, 1014).

2.5-Diamino-thiophenol, 2.5-Diamino-phenylmercaptan $C_6H_8N_9S = (H_2N)_1C_6H_3$ · SH. B. Aus 5-Nitro-2-amino-thiophenol (S. 401) durch Reduktion mit Zinn und Salzsäure (MYLIUS, Dissertation [Berlin 1883], S. 51). Beim Erwärmen von S-[2.5-Diamino-phenyl]-thioschwefelsäure ("p-Phenylendiamin-thiosulfonsäure") (S. 556) mit Zinkstaub und konz. Salzsäure; aus der Lösung wird durch Natriumacetat das Zinksalz gefällt (BERNTHSEN, A. 251, 64). — Blaßgelbe Prismen (aus Wasser). F: 145° (Zers.) (M.). Schwer löslich in Alkohol, etwas leichter in Wasser (M.). — Wird durch Luftsauerstoff in Gegenwart von Ammoniak oder durch eine Jodlösung zu 2.5.2′.5′-Tetraamino-diphenyldisulfid (S. 556) oxydiert (B.). Beim Erhitzen mit Kali entsteht p-Phenylendiamin (M.). Beim Kochen mit konz. Ameisensäure entsteht 6-Amino-benythiazol (Syst. No. 4341) (M.). — Die verdünnten Lösungen der Salze des 2.5-Diamino-thiophenols färben sich an der Luft blau (M.). Die salzsaure Lösung wird

durch verd. FeCl₂-Lösung tiefblau gefärbt (M.). Versetzt man die Lösung des Zinksalzes in möglichst wenig Salzsäure mit etwas salzsaurem Dimethylanilin, stumpft den Überschuß der Salzsäure mit Natriumsoctat ab und fügt ein Oxydationsmittel hinzu, so entsteht eine Grünfärbung, die beim Kochen in Blau umschlägt (B.). — $\operatorname{Zn}(C_0H_7N_2S)_2$. Pulveriger Niederschlag, der sich in feuchtem Zustande an der Luft bald hellblau färbt; löslich in starker Essigsäure, sehr leicht in verdünnter Salzsäure (B.). — $\operatorname{C_0H_8N_2S} + 2\operatorname{HCl}$. Nadeln. Sehr leicht löslich in Wasser (M.).

- 2.5.2′.5′-Tetraamino-diphenyldisulfid $C_{18}H_{14}N_4S_3=[(H_2N)_3C_6H_3\cdot S-]_2$. B. Aus dem Zinksalz des 2.5-Diamino-thiophenols bei der Öxydation mit Luftsauerstoff in Gegenwart von Ammoniak oder rescher bei der Einw. von Jodlösung (Berntheen, A. 251, 67). Beim Einleiten von Schwefelwasserstoff in die wäßr. Lösung der S-[2.5-Diamino-phenyl]-thioschwefelsäure (s. u.) (B.). Gelbrotes Öl (nicht rein erhalten). Pikrat $C_{12}H_{14}N_4S_3+2C_4H_3O_7N_3$. Hellgelb, krystallinisch. Sehr leicht löslich in Alkohol.
- S [2.5 Diamino phenyl] thioschwefelsäure (,,p-Phenylendiamin-thiosulfonsäure") C₆H₅O₅N₅S₅ = (H₂N)₆C₆H₅·S·SO₅H. B. Man trägt 58 g gepulvertes Aluminiumsulfat in 20 g salzsaures p-Phenylendiamin, gelöst in Wasser zu 120 ccm, ein, fügt dazu 44,4 g Natriumthiosulfat (gelöst in Wasser zu 120 ccm) und dann allmählich 11 g K₂Cr₂O₇ (gelöst in 120 ccm Wasser), rührt um und filtriert rasch (Berntheen, A. 251, 63). Blättchen (aus Wasser). Unlöslich in Äther, schwer löslich in Alkohol, Chloroform, Benzol und Ligroin, leicht in heißem Wasser. Die Salze sind sehr unbeständig. Gibt bei der Reduktion mit Zinkstaub + Salzsäure 2.5-Diamino-thiophenol. Liefert beim Sättigen der wäßr. Lösung mit Schwefelwasserstoff 2.5.2'.5'-Tetraamino-diphenyldisulfid. Überführung in schwefelhaltige Farbstoffe durch gemeinsame Oxydation mit Aminen und Kochen der Produkte mit Schwefelsäure: Clayton Aniline Co., D. R. P. 127440; C. 1902 I, 287.
- 2-Amino-5-dimethylamino-thiophenol, 2-Amino-5-dimethylamino-phenyl-mercaptan $C_8H_{11}N_9S = [(CH_3)_2N](H_2N)C_6H_3 \cdot SH$. B. Beim Behandeln von Methylenrot $C_8H_8N_2S_2Cl$ (S. 74) mit Zinkstaub und verd. Salzsäure (Bernthsen, A. 251, 23; Bad. Anilinu. Sodaf., D. R. P. 45839; Frdl. 2, 144). Aus 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (S. 557) mit Zinkstaub und Salzsäure (Be., A. 251, 27). Beim Eintragen von Zinkstaub in eine Lösung von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure ("p-Amino-dimethylanilin-thiosulfonsäure", S. 557) in Natronlauge oder in verd. Salzsäure (Be., A. 251, 26; B. A. S. F.). Neben 6-Dimethylamino-benzthiazol (Syst. No. 4341) beim Kochen der Verbindung (CH₂)₂N·C₆H₃ NH CH(SO₃H) (S. 559) mit Kalilauge in einer Wasserstoffatmosphäre (O. Schmidt, B. 39, 2412). Gelbliches Öl. Leicht löslich in Äther und Benzol (Be., A. 251, 28). Wird durch den Luftsauerstoff, besonders in Gegenwart von Ammoniak su 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid oxydiert (Be., A. 251, 34). Beim Stehen einer Lösung des Zinksalzes in überschüssiger wäßriger schwefliger Säure entsteht S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure (Be., A. 251, 52). Bei der Einw. won wäßr. Natriumnitritlösung auf die schwefelsaure Lösung des Zinksalzes entsteht 6-Dimethylamino-benzo-1.2.3-thiodiazol (Formel I) (Syst. No. 4607) (Be., A. 251, 30).

$$I. \xrightarrow{(\operatorname{CH}_3)_2 N} \cdot \underbrace{N}_{S} \times II. \xrightarrow{(\operatorname{CH}_4)_2 N} \cdot \underbrace{N}_{S} \times \operatorname{OH} \times III. \xrightarrow{(\operatorname{CH}_4)_2 N} \cdot \underbrace{N}_{S} \times \operatorname{C} \cdot \operatorname{CH}_4$$

Versetzt man eine Lösung des Zinksalzes des 2-Amino-5-dimethylamino-thiophenols mit wäßr. Phenollösung und darauf mit Kaliumdichromat und kocht auf, so entsteht Methylenviolett, dem als Leukoverbindung das 2-Oxy-7-dimethylamino-phenthiazin (Formel II) (Syst. No. 4382) zugrunde liegt (Bz., A. 251, 97). Bei der gemeinsamen Oxydation von 2-Amino-5-dimethylamino-thiophenol mit Gallussäure in warmer alkalischer Lösung durch Luftsauerstoff wird ein Thiazinfarbetoff erhalten, der als Schwefelanalogon des Gallocyanins aufzufassen ist (Nietzki, D. R. P. 73556; Frdl. 3, 361). Beim Erhitzen des Zinksalzes des 2-Amino-5-dimethylamino-thiophenols mit Acetylchlorid in Benzol im geschlossenen Rohr auf 100° entsteht 6-Dimethylamino-2-methyl-benzthiazol (Formel III) (Syst. No. 4341) (Bz., A. 251, 29). Bei der gemeinsamen Oxydation von 2-Amino-5-dimethylamino-thiophenol und Dimethylanilin in neutraler Lösung durch Kaliumdichromat entsteht Sulfidgrün (S. 560) (Bz., A. 251, 73; B. A. S. F.).

(BE., A. 251, 73; B. A. S. F.).

Versetzt man eine sehr verdünnte salzsaure Lösung des Zinksalzes des 2-Amino-5-[dimethylamino]-thiophenols mit etwas H₂S und dann tropfenweise und unter Umschütteln mit verdünnter FeCl₂-Lösung, so tritt zunächst eine bläuliche, dann aber eine feurigrote Färbung ein [Bildung von Methylenrot (S. 74); sehr empfindliche Reaktion] (BE., A. 251, 25).

ein [Bildung von Methylenrot (S. 74); sehr empfindliche Reaktion] (BE., A. 251, 25).

Zn(C₂H₁₁N₂S)₂. Krystallinisches Pulver. Leicht löelich in Salzsäure und in starker Essigsäure (BE. A. 251, 24).

2.2' - Diamino - 5.5' - bis - dimethylamino - diphenyldisulfid C₁₆H₂₃N₄S₃ = {[(CH₂)₂N](H₂N)C₆H₃·S-}₂. B. Beim Versetzen der verd. Lösung von Methylenrot (S. 74) mit Alkalien, neben etwas S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure (s. u.) (Bernyesen, A. 251, 39). Beim Leiten von Luft in die mit Ammoniak versetzte wäßr. Suspension des Zinksalzes des 2-Amino-5-dimethylamino-thiophenols (Be., A. 251, 34; vgl. Bad. Anilin- u. Sodaf., D. R. P. 45839; Frdl. 2, 144). Aus S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure beim Erwärmen mit Natronlauge auf 40—50° oder beim Kochen mit verd. Salzsäure (Be., A. 251, 37; vgl. B. A. S. F.). — Dunkelgelbes Öl. Kaum löslich in Wasser, schwer in Petroläther, leicht in Alkohol, Äther und Benzol (Be., A. 251, 35). — Wird durch Reduktionsmittel z. B. Zinkstaub + Salzsäure zu 2-Amino-5-dimethylamino-thiophenol reduziert (Be., A. 251, 27, 35). Beim Stehen mit konzentrierter wäßriger schwefliger Säure an der Luft entsteht S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure (Be., A. 251, 51). Gibt beim Digerieren seiner Benzollösung mit Schwefel das Supersulfid C32H40NgS₄ (S. 558) (Be., A. 251, 41). Bei der gemeinsamen Oxydation von 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid und Dimethylanilin in Form ihrer neutralen Hydrochloride mit Kalium-dichromat in wäßr. Lösung erhält man Sulfidgrün (S. 560) (Be., A. 251, 75). — Wäßrige Lösungen des Disulfids nehmen in Gegenwart von etwas Schwefelwasserstoff auf Zusatz von Eisenchlorid eine gegen Salzsäure beständige Rotfärbung (Bildung von Methylenrot) an (Be., A. 251, 35). — Pikrat C16H22NgS2 + 2C6H3O7N3. Grüngelbe Nadeln (aus Wasser) (Be., A. 251, 39).

 $\begin{array}{lll} \textbf{S-[2-Amino-5-dimethylamino-phenyl]-thioschwefels\"{a}ure} & \textbf{(,,Dimethyl-p-phenylendiamin-thiosulfons\~{a}ure", ,,p-Amino-dimethylanilin-thiosulfons\~{a}ure")} & \textbf{C}_{8}\textbf{H}_{18}\textbf{O}_{9}\textbf{N}_{9}\textbf{S}_{8} & = [(\textbf{CH}_{3})_{2}\textbf{N}](\textbf{H}_{2}\textbf{N})\textbf{C}_{6}\textbf{H}_{3}\cdot \textbf{S}\cdot \textbf{SO}_{3}\textbf{H}. \end{array}$

B. Durch Einw. von Natriumthiosulfatlösung auf p-Nitroso-dimethylanilin (Bd. XII, S. 677) bei Gegenwart von Essigsäure (BAYER & Co., D.R.P. 84849; Frdl. 3, 1016), oder bei der Einw. von 1 Mol.-Gew. Natriumthiosulfat auf 2 Mol.-Gew. salzsaures p-Nitroso-dimethylanilin in Wasser (WAHL, C.r. 133, 1216). Durch Oxydation von N.N-Dimethyl-p-phenylendiamin (S. 72) und Behandlung des entstandenen roten Produktes (vgl. S. 73) mit Thioschwefelsäure (BERNYHSEN, A. 251, 14, 49; vgl. WILLSTÄTTER, PIOCARD, B. 41, 1462). Bei der Einw. von Alkali und Luft auf Methylenrot (S. 74), neben 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (BE., A. 251, 22, 45). Beim Versetzen einer Lösung des Zinksalzes des 2-Amino-5-dimethylamino-thiophenols in Salzsäure mit Na₂SO₂ und dann mit der einem Atom Sauerstoff entsprechenden Menge Kaliumdichromat (BE., A. 251, 51). Beim Stehen von 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid mit konzentrierter wäßriger schwefliger Säure (BE., A. 251, 51). — Darst. In eine Lösung von 10 g neutralem schwefelsaurem N.N-Dimethyl-p-phenylendiamin in 100 com Wasser tröpfelt man allmählich ein Gemisch aus 5,5 g K₂Cr₂O₇ (gelöst in Wasser) und 4,5 g Essigsäure; zu dem entstandenen Krystallbrei fügt man die konz. Lösung von 22 g Natriumthiosulfat und 27 g Aluminiumsulfat; aus der hierbei erhaltenen klaren oder nahezu klaren Lösung scheidet sich beim Stehen die 5[2-Amino-5-dimethylamino-phenyl]-thiosulfonsäure aus; sie wird durch Lösen in kalter Sodalösung und Fällen mit Essigsäure gereinigt (BE., A. 251, 50; vgl. auch Bad. Anilinu. Sodaf., D. R. P. 45839; Frdl. 2, 145; Höchster Farbw., D. R. P. 46805; Frdl. 2, 152).

Fast farblose Tafeln oder Prismen (aus Wasser) (Bz., A. 251, 45). Schmilzt bei raschem Erhitzen bei 201—204°, bei langsamem Erhitzen bei 193—195° (Bz., A. 251, 47). Löslich in 270 Tln. kaltem und in 25—30 Tln. heißem Wasser, schwer löslich in Alkohol (Bz., A. 251, 46). In Säuren und in Alkalien leichter löslich als in Wasser (Bz., A. 251, 47).

Die wäßr. Lösung der S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure färbt sich beim Stehen bald blau (Bernthern, A. 251, 47). Die sehr verdünnte wäßrige Lösung wird durch Spuren von Jod, Eisenchlorid oder Dichromat purpurrot gefärbt (Be., A. 251, 47). S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure zerfällt bei der Reduktion mit Zink und verd. Salesäure unter Bildung von Schwefelwasserstoff, Schwefel und 2-Amino-5-dimethylamino-thiophenol (Be., A. 251, 27, 47). Dieses entsteht auch bei der Reduktion mit Zinkstaub in Natronlauge (Be., A. 251, 26). Bei der Einw. von Alkalien auf S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure entstehen schweflige Säure, Schwefelsäure, 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (als Hauptprodukt) und das Supersulfid C₂₁H₄₂N₂S₃ (S. 558) (Be., A. 251, 37, 39, 47). S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure gibt beim Kochen mit Salesäure, neben schwefliger Säure und Schwefelsäure (unreines) 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (Be., A. 251, 38, 47).

Kondensation der S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure mit 4-Chlor-1.3-dinitro-bensol (Bd. V, S. 263): Kalle & Co., D. R. P. 110987; C. 1900 II, 548. Beim 3-stdg. Erhitzen mit 2.4-Dinitro-naphthol-(1)-sulfonsäure-(7) (Bd. XI, S. 275) in Glycerin bis auf 130—140° entsteht ein blauer Thiasinfarbstoff (Höchster Farbw., D. R. P. 94502; Frdl. 4, 468; vgl. H. F., D. R. P. 95738; Frdl. 5, 351). Behandelt man S-[2-Amino-5-(dimethylamino)-phenyl]-thioschwefelsäure in mit Soda neutralisierter Lösung nach Ansäuern mit

Essigsäure mit K₂Cr₂O₇, fügt dem Oxydationsprodukt das Kaliumsalz der 1.2-Dioxynaphthalin-sulfonsäure-(6) (Bd. XI, S. 303) hinzu und erwärmt die alkalisch gemachte Lösung des entstandenen Indophenols im Wasserbade, oder oxydiert man ein Gemisch der beiden Komponenten in heißer alkalischer Lösung durch Einleiten von Luft, so erhält man einen blauen Thiazinfarbstoff (BAY. & Co., D. R. P. 87899; Frdl. 4, 457). Überführung der durch gemeinsame Oxydation mit 1.2-Dioxy-naphthalin-sulfonsäure-(6) bezw. anderen Derivaten des 1.2-Dioxy-naphthalins in verdünnter wäßriger oder essigsaurer Losung erhaltenen Produkte in blaue Thiazinfarbstoffe durch Behandlung mit konz. Mineralsäuren: B. A. S. F., D. R. P. 96690; Frdl. 4, 465; C. 1898 II, 318. Bei der gemeinsamen Oxydation mit Gallussäure (Bd. X, S. 476) in heißer alkalischer Lösung durch Luftsauerstoff entsteht ein Farbstoff, der als Schwefelanalogon des Gallooyanins aufzufassen ist; ähnliche Farbstoffe erhält man mit Derivaten der Gallussäure (NIETZKI, D. R. P. 73556; Frdl. 3, 360; vgl. N., D. R. P. 79172; Frdl. 4, 456; DUBAND, HUGUENIN & Co., D. R. P. 189479; C. 1908 I, 425). Bei der Einw. von Formaldehyd auf S-[2-Amino-5-dimethylaminophenyl]-thioschwefelsäure in neutraler oder salzsaurer Lösung entsteht zunächst monomolekulares 5-Dimethylamino-2-methylenamino-thiophenol (S. 560), das sich jedoch rasch in ein Polymeres ($C_2H_{12}N_2S$)_x (S. 560) umwandelt (O. SCHMIDT, B. 39, 2406). Beim Kochen von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure mit β -Naphthochinon (Bd. VII, S. 709) und Natriumacetat in wäßr. Lösung erfolgt Kondensation zu einem blauen Farbstoff, dem als Leukoverbindung NH. das Thiazinderivat nebenstehender Formel (Syst. No. 4382) entspricht (BAY. & Co., D. R. P. 86717; Frdl. 4, 456). Kon-HO N(CH₃)₂ densation mit Sulfonsäuren des β -Naphthochinons zu Thiazinfarbstoffen: BAY. & Co., D. R. P. 84233, 84849; Frdl. 3, 1014, 1016; Chem. Fabr. Sandoz, D. R. P. 109273, 116765; Frdl. 5, 347; 6, 508; EHRLICH, HERTER, H. 41, 387. Zur Bildung blauer Thiazinfarbstoffe durch Kondensation mit β -Nitrosoa-naphthol [Naphthochinon-(1.2)-oxim-(2), Bd. VII, S. 715] und mit α-Nitroso-β-naphthol [Naphthochinon-(1.2)-oxim-(1), Bd. VII, S. 712] bezw. mit Derivaten dieser Verbindungen vgl. Bay. & Co., D. R. P. 90176; Frdl. 4, 459; B. A. S. F., D. R. P. 97675; Frdl. 5, 344. Verwendung von Aminonaphtholen bezw. ihren Derivaten statt der Nitrosonaphthole bezw. ihren Derivate: Bay. & Co., D. R. P. 91232; Frdl. 4, 460; B. A. S. F., D. R. P. 96690; Frdl. 4, 466. Durch Kondensation mit den Verbindungen, die aus Chinon bezw. dessen Halogenderivaten durch Einw. von Thiosulfat, Schwefelalkali, Schwefelwasserstoff oder Rhodankalium entstehen, erhält man Produkte, die bei der Behandlung mit Alkali oder Schwefelalkali blaue bis blaugrüne Schwefelfarbstoffe liefern (B. A. S. F., D. R. P. 167012; C. 1906 I, 798). 8-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure gibt beim Kochen mit Ameisensäure 6-Dimethylamino-benzthiazol (CH₃)₂N·C₆H₃ $<_S$ NCH (Syst. No. 4341) (O. SCHMIDT). Bei der Oxydation eines Gemisches von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure und salzsaurem Anilin unter Zusatz von Essigsäure entsteht, Dimethylindaminthiosulfonat" (S. 561) (BE., A. 251, 89). Beim Behandeln einer neutralen Lösung des Gemisches von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure und salzsaurem Dimethylanilin mit Kalium-dichromat unter Zusatz von etwas Essigsäure erhält man das indaminartig konstituierte Sulfonsauregrün (S. 561), welches sich leicht in Leukomethylenblau bezw. Methylenblau

β-naphthyl-m-phenylendiamins (S. 43): Dahl, D. R. P. 90275; Frdl. 4, 467. 8-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure findet Verwendung zur Darstellung von Thiazinfarbstoffen wie Methylenblau (Syst. No. 4367) (Schultz, Tab. No. 659) und Brillantalizarinblau (Schultz, Tab. No. 667); vgl. ferner Schultz, Tab. No. 661, 665.

KC₂H₁₁O₂N₂S₂ + H₂O. Schwach gefärbte Blättchen (Wahl, C.r. 133, 1217). —
C₄H₁₂O₂N₂S₂ + HCl. Prismen. Leicht, aber nicht unzersetzt löslich in Wasser (Bernthsen, A. 251, 48).

(Syst. No. 4367) überführen läßt (Br., A. 251, 69; vgl. Hö. F., D. R. P. 46805; Frdl. 2, 152). Darstellung eines blauen Farbstoffs durch Kondensation mit der Disulfonsäure des N.N'-Di-

Verbindung C₃₃H₄₀N₈S₅ (,,p-Amino-dimethylanilin-supersulfid"). B. Entsteht neben 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (S. 557) beim Behandeln der Lösung von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure in verd. Ammoniak mit Schwefelammonium; aus der Lösung dieses rohen Disulfids in Benzol scheidet sich zunächst das Supersulfid aus (BERNTHSEN, A. 261, 39, 40; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 149). Beim Digerieren von 2.2' Diamino-5.5'-bis-dimethylamino-diphenyldisulfid in Benzol mit Schwefel (Bz.). — Gelbe Nadeln (aus Benzol). F: 97°; leicht löslich in Ather, Benzol, schwer in Petroläther (BE.). — Löst sich leicht in verd. Säuren unter Abscheidung von Schwefel (Bm.). Geht bei vorsichtiger Reduktion mit Zinkstaub + Essigsaure in das Disulfid, bei energischer Reduktion in 2-Amino-5-dimethylamino-thiophenol über (BE.). Vereinigt sich mit schwefliger Säure und Sauerstoff unter Schwefelabscheidung zur S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure (BE.). Verliert leicht Schwefel, schon beim Kochen mit Wasser, und geht in das 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid tiber (BE.). Die Lösung in Salzsäure wird durch Eisenchlorid unter Bildung von Methylenrot (BE.) pupurrot gefärbt, gleichzeitig entsteht ein blauer Farbstoff (BE.). Gibt mit Dimethylanilin bei der gemeinsamen Oxydation mit $K_2Cr_2O_7$ in neutraler salzsaurer Lösung Purpurfärbung (BE.).

2.5-Bis-dimethylamino-thiophenol, 2.5-Bis-dimethylamino-phenylmercaptan $C_{10}H_{16}N_2S = [(CH_3)_2N]_2C_6H_3 \cdot SH$. B. Beim Behandeln der S-[2.5-Bis-dimethylamino-phenyl]-thioschwefelsäure (s. u.) mit Zinkstaub und Salzsäure; durch Natriumacetat wird aus der Lösung das Zinksalz gefällt (Beentheen, A. 251, 61). — $Zn(C_{10}H_{15}N_2S)_2$. Leicht löslich in Mineralsäuren.

S-[2.5-Bis-dimethylamino-phenyl]-thioschwefelsäure (,, Tetramethyl-p-phenylendiamin-thiosulfonsäure") $C_{10}H_{10}O_3N_2S_2 = [(CH_3)_2N]_4C_6H_3\cdot S\cdot SO_3H$. B. Man löst 2,7 g N.N.N'.N'-Tetramethyl-p-phenylendiamin (S. 74) in 1,56 ccm $33^0/_0$ iger Salzsäure, gibt 10 g Aluminiumsulfat, 6,6 g Natriumthiosulfat (gelöst in 36 ccm Wasser) und dann 25 ccm einer 6,67°/ $_0$ igen Lösung von Kaliumdichromat hinzu; man filtriert und zieht den nach einiger Zeit entstehenden Niederschlag mit Alkohol aus (Bernthsen, A. 251, 60). — Blättchen. Schmilzt gegen 179°. Unlöslich in Äther und Benzol, schwer löslich in kaltem Alkohol, ziemlich leicht in heißem Wasser. Unlöslich in Alkalien, leicht löslich in Säuren. Die Lösungen werden durch Eisenchlorid (und etwas Natriumacetat) violett gefärbt.

2-Amino-5-diäthylamino-thiophenol, 2-Amino-5-diäthylamino-phenyl-mercaptan $C_{10}H_{10}N_1S = [(C_2H_5)_2N](H_2N)C_6H_3\cdot SH.$ Beim Behandeln von S-[2-Amino-5-diäthylamino-phenyl]-thioschwefelsäure mit Zinkstaub und Salzsäure; durch Natriumacetat fällt man das Zinksalz aus (Bernthsen, A. 251, 55; Bad. Anilin- u. Sodaf., D.R.P. 47374; Frdl. 2, 150). — $Zn(C_{10}H_{15}N_2S)_2$. Pulver (Be.).

2.2' - Diamino - 5.5' - bis - diäthylamino - diphenyldisulfid $C_{20}H_{30}N_4S_2 = \{[(C_2H_5)_2N](H_2N)C_4H_3 \cdot S_-\}_2$. B. Beim Versetzen einer Lösung von S-[2-Amino-5-diäthylaminophenyl]-thioschwefelsäure in verd. Ammoniak mit Schwefelammonium (Bernthsen, A. 251, 57; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 150). — Zähes Öl. — Pikrat $C_{20}H_{30}N_4S_2 + 2C_4H_3O_7N_3$. Grüne Nadeln (aus Wasser) (Be.).

S-[2-Amino-5-diāthylamino-phenyl]-thioschwefelsäure, ("Diāthyl-p-phenylendiamin-thiosulfon-sāure", "p-Amino-diāthylanilin-thiosulfon-sāure") C₁₀H₁₀O₃N₃S₃ = [(C₂H₃)₃N](H₂N)C₆H₃·S·SO₃H. B. Man übergießt 12 g der Zinkchloridverbindung des N.N-Diāthyl-p-phenylendiamins (C₂H₃)₃N·C₆H₄·NH₂+ZnCl₂+2H₂O (S. 75) mit 90 ccm Wasser, gibt 25 g Aluminiumsulfat und die konz. Lösung von 20 g Natriumthiosulfat und dann die konz. Lösung von 3 g Kaliumdichromat hinzu; die beim Stehen sich ausscheidende Säure reinigt man durch Lösen in Soda und Fällen mit Essigsäure (Bernthsen, A. 251, 54; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 150). — Prismen (aus Wasser). F: 228—230°; sehr schwer löslich in kaltem Wasser und Alkohol, unlöslich in Ather (Be.). Die verdünnte wäßrige Lösung wird durch Oxydationsmittel wie Eisenchlorid, Dichromat purpurrot gefärbt (Be.). — Liefert bei der Reduktion mit Zink und Salzsäure 2-Amino-5-diāthylamino-thiophenol (Be.). Beim Versetzen der ammoniakalischen Lösung mit Schwefelammonium entsteht 2.2°-Diamino-5.5′-bis-diāthylamino-diphenyldisulfid (s. o.) (Be.). Das Gemisch mit salzsaurem Dimethylanilin gibt bei der Oxydation mit Kalium-dichromat in wäßr. Lösung "Diāthyldimethylindaminthiosulfonat" (S. 562) (Be., A. 251, 83; vgl. Höchster Farbw., D. R. P. 47345; Frdl. 2, 153). — Findet Verwendung zur Herstellung von Thiazinfarbstoffen, so von Indochromogen (Schultz, Tab. No. 666); vgl. ferner Bayer & Co. D. R. P. 84233; Frdl. 3, 1014; Dahl & Co., D. R. P. 90275; Frdl. 4, 468; Höchster Farbw., D. R. P. 95738; Frdl. 5, 351.

Verbindung aus 2-Amino-5-dimethylamino-thiophenol, Formaldehyd und schwefliger Säure $C_2H_{14}O_2N_2S_3=[(HO_3S)CH_2\cdot NH][(CH_3)_2N]C_6H_3\cdot SH.$ B. Das Natriumsalz entsteht aus polymerem 5-Dimethylamino-2-methylenamino-thiophenol (S. 560) oder dessen Verbindung mit Formaldehydthioschwefelsäure (S. 560) beim Erwärmen mit Natriumdisulfitlösung auf 60° (O. Schmidt, B. 39, 2410, 2419). — Das Natriumsalz gibt in essigsaurer Lösung mit Natriumnitrit die Verbindung $(CH_3)_2N\cdot C_6H_3\underbrace{NH}_SCH(SO_3H)$. — Na $C_9H_{13}O_9N_2S_2$. Krystalle. Leicht löslich in Wasser. Zersetzt sich beim Umkrystallisieren aus Wasser.

Verbindung C₂H₁₂O₃N₂S₃, s. nebenstehende Formel.

B. Man löst das Natriumsalz der Verbindung aus 2-Amino5-dimethylamino-thiophenol, Formaldehyd und schwefliger (CH₃)₂N·
Saure (s. o.) in verd. Essigsäure und fügt 30% eige Natriumnitritlösung hinzu (O. Schmidt, B. 39, 2410). — Citronengelbe Blättchen oder Nadeln. Schmidt nicht bei 300% und geht bei weiterem Erhitzen unter Abspaltung von schwefliger Säure und Wasser in 6-[Dimethylamino]-bensthiazol (Syst. No. 4341) über. Unlöslich in Alkohol und Äther, etwas löslich in heißem Wasser mit gelber Farbe. Löst sich in starken Säuren und starken Basen zu

farblosen Salzen. Warmes Alkali verseift sehr leicht unter Bildung von 6-Dimethylaminobenzthiazol und 2-Amino-5-dimethylamino-thiophenol.

5-Dimethylamino-2-methylenamino-thiophenol, 5-Dimethylamino-2-methylenamino-phenylmercaptan $C_0H_{18}N_2S = (CH_3:N)[(CH_2)_2N]C_0H_3\cdot SH$. Bei der Einw. von Formaldehyd auf S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure (S. 557) in neutraler oder salzsaurer Lösung (O. Schmitter, B. 39, 2406, 2409). — Konnte in freiem Zustande nicht isoliert werden, da schnell Polymerisation erfolgt. Die Lösung liefert beim Behandeln mit salpetriger Säure 6-Dimethylamino-benzthiazol (Syst. No. 4341) und geringe Mengen einer in roten Nadeln krystallisierenden Verbindung vom Schmelzpunkt 128°.

Polymeres 5 - Dimethylamino - 2 - methylenamino - thiophenol $(C_0H_{12}N_2S)_X =$ {(CH₂:N)[(CH₂)₂N]C₆H₃·SH₃x. B. Bei der Einw. von Formaldehyd auf S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure in neutraler oder salzsaurer Lösung (O. Schmidt, B. 39, 2406, 2408, 2410). — Graugrüne amorphe Flocken. Läßt sich durch Oxydationsmittel nicht in 6-Dimethylamino-benzthiazol überführen. Gibt beim Erwärmen mit Natrium-disulfitlösung die Verbindung [(HO₃S)CH₃·NH][(CH₃)₈N)C₆H₃·SH (S. 559). – Formaldehyd-thioschwefelsaures Salz (vgl. Bd. I, S. 580) (C₅H₁₈N₂S + CH₄O₄S₃)_x. B. Aus der salzsauren Lösung des polymeren 5-Dimethylamino-2-methylenamino-thiophenols und einer mit Formaldehyd versetzten angesäuerten Thiosulfatlösung (O. SCHMIDT, B. 39, 2415, 2416). Man löst 20 g S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure in 20 ccm 20% jegem Ammoniak und 300 ccm Wasser, füllt auf 500 ccm auf und fügt eine Lösung von 25 g Thiosulfat in 100 ccm Wasser, 40 ccm 30% jeger Formaldehydlösung und 50 ccm 200% jeger Thiosulfat in 100 ccm Wasser, 40 ccm 30% iger Formaldehydlösung und 50 ccm 30% iger Salzsäure hinzu (O. Sch., B. 89, 2415). Blättchen. F: ca. 122° (Zers.). Fast unlöslich in kaltem Wasser, unlöslich in den gebräuchlichen organischen Lösungsmitteln. Zersetzt sich beim Umkrystallisieren aus heißem Wasser. Wird durch kalte verdünnte Alkalien in die Komponenten zerlegt. Scheidet beim Kochen mit Formaldehyd und Salzsäure Trithio-Komponenten zerlegt. Scheidet beim Kochen mit Formaldehyd und Salzsäure Trithioformaldehyd ab unter Bildung von Schwefelsäure. Gibt bei der Einw. von Natriumdisulfitlösung die Verbindung $[(HO_3S)CH_2\cdot NH][(CH_3)_2N]C_4H_3\cdot SH$ (S. 559). — Ferrocyanwasserstoffsaures Salz $[C_9H_{12}N_9S+{}^3/_3H_4Fe(CN)_6+{}^5/_3H_3O]_x$. B. Man gibt zu einer Lösung von S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure in verd. Ammoniak, $40^9/_0$ ige Formaldehydlösung und konz. Salzsäure, läßt einige Zeit stehen und fügt dann angesäuerte Ferrocyankaliumlösung hinzu (O. Sch., B. 39, 2408). Weißer Niederschlag. Zersetzt sich beim Liegen oder Erwärmen unter Entwicklung von Blausäure. Wird von Säuren zerlegt.

"Tetramethylindaminsulfid", Sulfidgrün $C_{16}H_{20}N_3ClS$, s. Formel I oder II. B. Das Zinkchloriddoppelsalz entsteht, wenn man 100 g des Zinksalzes des 2-Amino-5-[dimethylamino]-thiophenols und die äquimolekulare Menge Dimethylanilin in 160 g Salzsäure (D: 1,18) und 4 l Wasser löst, Natriumacetat bis zur völligen Neutralität, sowie 100 g Zinkchlorid und dann langsam eine Lösung von 100 g Kaliumdichromat in 1200 ccm Wasser hinzufügt (Bernthsen, A. 251, 73; vgl. Bad. Anilin- u. Sodaf., D. R. P. 45839; Frdl. 2, 147). Man löst 1 Mol.-Gew. 2.2'-Diamino-5.5'-bis-dimethylamino-diphenyldisulfid (S. 557) und 2 Mol.-Gew. Dimethylanilin unter Zusatz der zur Bildung der neutralen Hydrochloride erforderlichen Menge verd. Salzsäure in Wasser, neutralisiert völlig durch Hinzufügen von Natriumacetat und oxydiert mit Kaliumdichromat; man fällt den Farbstoff durch Hinzufügen von

I.
$$Cl(CH_2)_2N$$
 $HS \cdot V(CH_2)_2$ $II.$ $(CH_3)_2N$ $S \cdot V(CH_3)_2 + HCl$

Zinkchlorid und Kochsalz (Br., A. 251, 75; vgl. B. A. S. F., D.R.P. 45839; Frdl. 2,147).

— Zinkchloriddoppelsalz 2C₁₆H₂₀N₃SCl + ZnCl₂. Dunkelblaugrünes, rotglänzendes Pulver. Leicht löslich in kaltem Wasser mit blaugrüner bis grüner Farbe; die Lösung wird durch Alkalien blau gefärbt und gefällt (BE.). Absorptionsspektrum: Althausse, Krüss, B. 22, 2067. Geht in wäßr. Lösung beim Stehen oder rascher beim Erwärmen in Methylenblau (Syst. No. 4367) über (BE.; Bad. Anilin. u. Sodaf.). Bei 1—2-stdg. Kochen mit Zinkohlorid entsteht fast nur Leukomethylenblau (Syst. No. 4367) (BE.). Bei der Reduktivenblau (Syst. No. 4367). tion entsteht ein Produkt, das bei der Oxydation wieder Sulfidgrün liefert (BE.). Färbt mit Tannin gebeizte Baumwolle grün (BE.).

"Dimethyldiäthylindaminsulfid" $C_{18}H_{24}N_8ClS$, s. Formel III oder IV. B. Das Zinkdhloriddoppelsalz wird erhalten, wenn man 1 Mol.-Gew. 2.2'-Diamino-5.5'-bis-[dimethyl-

III.
$$Cl(C_2H_8)_2N$$
 $HS \cdot V(CH_2)_2$ $IV. (C_2H_8)_2N$ $S \cdot V(CH_2)_2 + HCl$

amino]-diphenyldisulfid und 2 Mol.-Gew. Diäthylanilin unter Zusatz der zur Bildung der neutralen Hydrochloride erforderlichen Menge verd. Salzsäure in Wasser löst, die Lösung durch Hinzufügen von Natriumscetat neutralisiert, dann mit kalter Kaliumdichromatlösung oxydiert und den Farbstoff mit Zinkohlorid und Kochsalz fällt (Bad. Anilin- u. Sodaf., D. R. P. 47874; Fröl. 2, 150; vgl. Bernthsen, A. 251, 85). Das Zinkohloriddoppelsalz bildet ein schwärzlichgrünes Pulver. Liefert beim Erwärmen der verdünnten wäßrigen Lösung einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) (Be.; B. A. S. F.).

"Dimethylindaminthiosulfonsäure" oder "Dimethylindaminthiosulfonat" $C_{12}H_{12}O_2N_1S_2$, s. Formel V oder VI. B. Bei der Oxydation eines Gemisches von S-[2-Amino-

5-dimethylamino-phenyl]-thioschwefelsäure und salzsaurem Anilin, unter Zusatz von Kesigsäure (Bernyhsen, A. 251, 89). — Grün. Unlöslich in Wasser. Wird durch heißes Wasser sersetzt.

"Tetramethylindaminthiosulfonsäure" $C_{10}H_{21}O_4N_3S_2$, s. Formel VII. — Endosalz ("Tetramethylindaminthiosulfonat", Sulfonsäuregrün) $C_{18}H_{19}O_3N_3S_2$ (Formel VIII). B. Man mischt S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure mit einer neutralen wäßrigen Lösung von salzsaurem Dimethylanilin in äquimolekularen Mengen und fügt zu dem kalten, keine freie Mineralsäure enthaltenden Gemische Kaliumdichromatlösung (Beentheem, A. 251, 69; Höchster Farbw., D. R. P. 46805; Frdl. 2, 152). — Scheidet sich aus warmem

Wasser in grünen, messingglänzenden Nadeln mit ¹/₂ H₂O aus. Unlöslich in kaltem Wasser (BE.; Hö. F.). — Zerfällt bei längerem Kochen mit Wasser in Schwefelsäure und Leukomethylenblau (Syst. No. 4367), das sich durch nachfolgende Oxydation in Methylenblau überführen läßt (BE.; Hö. F.). Beim Kochen mit konz. Zinkchloridlösung unter Zusatz von Kaliumdichromat oder anderen Oxydationsmitteln entsteht sofort Methylenblau (Hö. F.).

"Dimethyldiäthylindaminthiosulfonsäure" $C_{10}H_{85}O_4N_2S_2$, s. Formel IX. — Endosalz ("Dimethyldiäthylindaminthiosulfonat") $C_{10}H_{22}O_2N_3S_2$ (Formel X). B. Entsteht aus S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure und Diäthylanilin durch gemein-

IX.
$$(HO)(C_2H_5)_2N$$
 $HO_3S \cdot S \cdot O \cdot N(CH_3)_3$ $A \cdot (C_2H_5)_2N$ SO_3

same Oxydation nach dem beim Sulfonsäuregrün (s. o.) angegebenen Verfahren (Bernthsen, A. 251, 84; Höchster Farbw., D. R. P. 47345; Frdl. 2, 153). Bronzeglänzende Krystalle. Liefert beim Kochen mit Zinkchloridlösung in Gegenwart eines Oxydationsmittels einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) (Hö. F.; vgl. Be.).

"Diäthyldimethylindaminsulfid" C₁₈H₂₄N₂ClS, s. Formel XI oder XII. B. Aus dem Zinksalz des 2-Amino-5-diāthylamino-thiophenols (S. 559) und Dimethylanilin durch gemeinsame Oxydation nach dem beim Sulfidgrün (S. 560) angegebenen Verfahren (Bernthesen,

XI.
$$Cl(CH_2)_2N$$
 $HS \cdot Cl(C_2H_5)_2$ XII. $(CH_2)_2N$ S $N(C_2H_5)_3$ $+ HCl$

A. 251, 84; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 151). — Zinkchloriddoppelsalz 2C₁₈H₂₄N₃Cl8 + ZnCl₂ + 3H₂O. Kupferroter bis brauner Niederschlag. Geht beim Stehen in wäßr. Lösung in einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) über (Bz.; B. A. S. F.).

"Tetraäthylindaminsulfid" $C_{20}H_{20}N_3ClS$, s. Formel XIII oder XIV. B. Aus dem Zinksalz des 2-Amino-5-diāthylamino-thiophenols und Diāthylanilin durch gemeinsame Oxydation

$$(C_2H_4)_2N = \begin{pmatrix} XIV. \\ N \\ HS \cdot (C_2H_4)_2 \end{pmatrix} \cdot N(C_2H_4)_2 \qquad (C_2H_4)_2N = \begin{pmatrix} XIV. \\ N \\ S \end{pmatrix} \cdot N(C_2H_4)_2 + HCI$$

nach dem bei dem Sulfidgrün (S. 560) angegebenen Verfahren (BERNTHSEN, A. 251, 17, 88; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 151). — Das Zinkehloriddoppelsalz

562

bildet ein braungrünes Pulver. Leicht löslich in Wasser mit blaugrüner Farbe (Br.). Liefert beim Stehen oder Erwärmen der wäßr. Lösung einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) (Br.; B. A. S. F.).

"Diäthyldimethylindaminthiosulfonsäure" $C_{18}H_{32}O_4N_3S_3$ s. Formel XV. — Endosalz ("Diäthyldimethylindaminthiosulfonat") $C_{18}H_{32}O_3N_3S_3$ (Formel XVI). B. Entsteht aus S-[2-Amino-5-diäthylamino-phenyl]-thioschwefelsäure (S. 559) und Dimethylanilin

$$(HO)(CH_3)_2N = HO_3S \cdot S \cdot C \cdot N(C_2H_5)_2$$

$$(CH_3)_2N = SO_4 \cdot N(C_2H_5)_2$$

durch gemeinsame Oxydation nach dem beim Sulfonsäuregrün (S. 561) angegebenen Verfahren (Bernthsen, A. 251, 83; Höchster Farbw., D. R. P. 47345; Frdl. 2, 153).. Bronzeglänzende Nädelchen. Gibt beim Kochen mit Zinkchloridlösung in Gegenwart von Oxydationsmitteln einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) (Hö. F.; vgl. Be.).

"Tetraäthylindaminthiosulfonsäure" $C_{20}H_{20}O_2N_3S_3$, s. Formel XVII. — Endosalz ("Tetraäthylindaminthiosulfonat") $C_{20}H_{27}O_2N_3S_3$ (Formel XVIII). B. Entsteht aus S-[2-Amino-5-diāthylamino-phenyl]-thioschwefelsäure und Diāthylanilin durch gemeinsame Oxydation nach dem beim Sulfonsäuregrün (S. 561) angegebenen Verfahren (Bernthsen,

$$(HO)(C_2H_5)_2N = HO_3S \cdot S \cdot O \cdot N(C_2H_5)_2 \qquad (C_2H_5)_2N = SO_5$$

A. 251, 16, 88; Höchster Farbw., D. R. P. 47345; Frdl. 2, 153). Bronzeglänzende grüne Nadeln. In Wasser fast unlöslich (Br.). Liefert beim Kochen mit Zinkehleridlösung in Gegenwart eines Oxydationsmittels einen dem Methylenblau analogen Thiazinfarbstoff (Syst. No. 4367) (Hö. F.; vgl. Br.).

"Dimethyltoluindaminsulfid" $C_{18}H_{18}N_3SCl$, s. Formel XIX oder XX. B. Aus dem Zinksalz des 2-Amino-5-dimethylamino-thiophenols und o-Toluidin durch gemeinsame Oxydation nach dem beim Sulfidgrün (S. 560) angegebenen Verfahren (Bernthsen,

XIX.
$$CH_3$$
: HS : $N(CH_3)_2$ • XX. H_2N : S : $N(CH_3)_2$ + HCI

A. 251, 17, 92; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 151). — Zinkchlorid-doppelsalz. Grün. Leicht löslich in Wasser mit blaugrüner Farbe (Br.). — Liefert beim Stehen oder Erwärmen der wäßr. Lösung einen Thiazinfarbstoff (Syst. No. 4367) (Br.; B. A. S. F.).

"Dimethyltoluindaminthiosulfonsäure" $C_{15}H_{19}O_4N_3S_3$ s. Formel XXI. — Endosalz ("Dimethyltoluindaminthiosulfonat") $C_{15}H_{17}O_3N_3S_2$ (Formel XXII). B. Entsteht aus S-[2-Amino-5-dimethylamino-phenyl]-thioschwefelsäure und o-Toluidin durch

XXI.
$$\frac{CH_3}{(HO)H_2N}$$
 $\frac{N}{HO_2S \cdot S \cdot O \cdot N(CH_2)_2}$ $\frac{CH_3}{O - N(CH_2)_2}$ $\frac{CH_3}{O - N(CH_2)_2}$

gemeinsame Oxydation nach dem beim Sulfonsäuregrün (S. 561) angegebenen Verfahren (Bernthsen, A. 251, 91; Höchster Farbw., D. R. P. 47345; Frdl. 2, 153). Bläulichgraues Pulver. Unlöslich in Wasser (Be.). Liefert beim Kochen mit Zinkehloridlösung in Gegenwart eines Oxydationsmittels einen Thiazinfarbstoff (Syst. No. 4367) (Hö. F.; vgl. Be.).

"Diäthyltoluindaminsulfid" $C_{17}H_{28}N_3ClS$, Formel XXIII oder XXIV. B. Aus dem Zinksalz des 2-Amino-5-diäthylamino-thiophenols und o-Toluidin durch gemeinsame Oxy-

dation nach dem beim Sulfidgrün (S. 560) angegebenen Verfahren (Bernthsen, A. 251, 17, 93; vgl. Bad. Anilin- u. Sodaf., D. R. P. 47374; Frdl. 2, 151). — Zinkehloriddoppel-

salz. Dunkelgrünes Pulver. Löslich in Wasser mit blaugrüner Farbe (Br.). Liefert beim Stehen oder Erwärmen der wäßr. Lösung einen Thiazinfarbstoff (Syst. No. 4367) (Br.; B. A. S. F.).

"Diäthyltoluindaminthiosulfonsäure" $C_{17}H_{32}O_4N_3S_3$, s. Formel XXV. — Endosalz ("Diäthyltoluindaminthiosulfonat") $C_{17}H_{31}O_4N_3S_3$ (Formel XXVI). B. Entsteht aus S-[2-Amino-5-diäthylamino-phenyl]-thiosohwefelsäure und o-Toluidin bei der gemein-

XXV.
$$CH_3$$
 $HO_3S \cdot S \cdot O \cdot N(C_2H_5)_3$ XXVI. $H_3N = SO_4$ $O = SO_4$

samen Oxydation nach dem beim Sulfonsäuregrün (S. 561) angegebenen Verfahren (Bernthsen, A. 251, 17, 93; Höchster Farbw., D. R. P. 47345; Frdl. 2, 153). Schwärzlichgrünes Pulver. Unlöslich in Wasser (Be.). Liefert beim Kochen mit Zinkchloridlösung in Gegenwart eines Oxydationsmittels einen Thiazinfarbstoff (Syst. No. 4367) (Hö. F.; vgl. Be.).

Methyl-[4-chlor-2-amino-5-acetamino-phenyl]-sulfid $C_9H_{11}ON_9ClS = (CH_2 \cdot CO \cdot NH)(H_2N)C_6H_2Cl \cdot S \cdot CH_3$. B. Man führt 2.5-Dichlor-4-nitro-acetanilid (Bd. XII, S. 735) durch folgeweise Behandlung mit Natriumpolysulfid und mit Reduktionsmitteln in 4-Chlor-2-amino-5-acetamino-thiophenol über und methyliert dieses in alkal. Lösung mit Dimethylsulfat (Kalle & Co., D. R. P. 210886; C. 1909 II, 80). — Blättchen. In kaltem Wasser kaum löslich, in Alkohol, Aceton und Benzol leicht löslich (K. & Co., D. R. P. 210886). — Verwendung zur Darstellung von Azofarbstoffen: K. & Co., D. R. P. 205421; C. 1909 I, 965.

[4-Chlor-2-amino-5-acetamino-phenylmercapto]-essigsäure, S-[4-Chlor-2-amino-5-acetamino-phenyl]-thioglykolsäure $C_{10}H_{11}O_2N_3ClS = (CH_2 \cdot CO \cdot NH)(H_2N)C_4H_2Cl \cdot S \cdot CH_2 \cdot CO_2H$. B. Man führt 2.5-Dichlor-4-nitro-acetanilid durch folgeweise Behandlung mit Natriumpolysulfid und mit Reduktionsmitteln in 4-Chlor-2-amino-5-acetamino-thiophenol über und behandelt dieses mit Chloressigsäure in Gegenwart von Alkali (KALLE & Co., D. R. P. 210886; C. 1909 II, 80). — Die wäßr. Lösung des Natriumsalzes gibt beim Ansäuern das entsprechende innere Anhydrid (Nadeln) (KALLE & Co., D. R. P. 205421; C. 1909 I, 965). Verwendung zur Darstellung von Azofarbstoffen: K. & Co., D. R. P. 205421; C. 1909 I, 965.

2.6-Diamino-phenol und seine Derivate.

2.6-Diamino-1-oxy-benzol, 2.6-Diamino-phenol $C_0H_3ON_3 = (H_2N)_2C_0H_3 \cdot OH$. B. Aus 2.6-Dinitro-phenol (Bd. VI, S. 257) durch Reduktion mit Zinn und Salzsäure (Post, Stuckenberg, A. 205, 79). — Das freie 2.6-Diamino-phenol ist höchst unbeständig; die Salze werden an der Sonne rot; ihre wäßr. Lösungen scheiden rasch braune Flocken ab (P., St.). Oxydierende Substanzen erzeugen blutrote Lösungen; Silberlösung wird von den Salzen reduziert (P., St.). Zur Einw. von Benzoylchlorid vgl. P., St. und Fromm, Ebert, J. pr. [2] 108 [1924], 76. Verwendung zur Darstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 167561; C. 1906 I, 1197. — $C_0H_3ON_3 + 2HCl$. Nadeln. Sehr leicht löslich in Wasser und daraus durch konz. Salzsäure fällbar; schwer löslich in Alkohol (P., St.). — $C_0H_3ON_3 + H_2SO_4$. Hellgelbe Nadeln. Sehr leicht löslich in Wasser, sehr schwer in Alkohol (P., St.).

4-Nitro-2.6-diamino-phenol $C_6H_7O_3N_3=(H_2N)_2C_6H_3(NO_2)\cdot OH$. B. Beim Einleiten von Schwefelwasserstoff in eine Lösung von Pikrinsäure (Bd. VI, S. 265) in wäßr. Ammoniak; sobald eine Probe der Lösung nach dem Einengen und Filtrieren durch sehr verdünnte Salzsäure nicht mehr gefällt wird, engt man ein, filtriert vom Schwefel ab und fällt das Filtrat durch Essigsäure (GRIESS, A. 154, 202). — Dunkelgelbe Nadeln oder schmale Blätter mit 1 Mol. H_2O (aus Wasser). In Alkohol etwas leichter löslich als in Wasser, sehr schwer in Äther. — $Ba(C_6H_4O_2N_3)_2+2H_2O$. Fast schwarze Prismen (aus Wasser). Ziemlich leicht löslich in heißem Wasser. — $2C_6H_7O_3N_2+H_2SO_4+5H_2O$. Gelbliche Nadeln oder Säulen. Schwer löslich selbst in kochendem Wasser.

4-Nitro-2-amino-6-acetamino-phenol $C_8H_9O_4N_3=(CH_3\cdot CO\cdot NH)(H_2N)C_8H_9(NO_9)\cdot OH.$ B. Beim Behandeln von 4.6-Dinitro-2-acetamino-phenol (S. 396) mit Schwefelalkalien (CASSELLA & Co., D. R. P. 161341; C. 1905 II, 181). — Schwer löslich in Alkohol, ziemlich leicht in Äther, leicht in Eisessig. Die Alkalisalze sind leicht löslich in Wasser. — Beim Verseifen entsteht 4-Nitro-2.6-diamino-phenol.

- [5-Nitro-2-oxy-3-amino-phenyl]-harnstoff $C_7H_8O_4N_4$, s. nebenstehende Formel. B. Beim Erwärmen von [3.5-Dinitro-2-oxy-phenyl]-harnstoff (S. 396) mit Schwefelammonium (Griess, J. pr. [2] 5, 2). Rotbraune Nadeln. Schwer löslich in heißem Wasser und Alkohol, noch schwerer in Äther. Löslich in Alkalien und Mineralsäuren. Die Verbindungen mit Basen zersetzen sich nicht beim Kochen mit Wasser, jene mit Säuren aber sehr rasch. Gibt beim Kochen mit Salzsäure 5-Nitro-2-oxy-3-amino-phenylisocyanat (s. u.). $Ba(C_7H_7O_4N_4)_2 + 3^1/_2H_2O$. Stahlblaue Nadeln. Sehr schwer löslich in kaltem Wasser, ziemlich leicht in heißem. $C_7H_8O_4N_4 + HCl$. Schmutzigweiße Blättchen.
- 5-Nitro-2-oxy-3-amino-phenylisocyanat, 5-Nitro-2-oxy-OH 3-amino-phenylcarbonimid $C_7H_5O_4N_3$, s. nebenstehende Formel. B. Beim Kochen von [5-Nitro-2-oxy-3-amino-phenyl]-harnstoff (s. o.) mit H_2N -N:CO Salzsäure (GRIESS, J. pr. [2] 5, 4). Goldgelbe Nadeln (aus Wasser). Schwer löslich in heißem Wasser, leichter in Alkohol; sehr wenig löslich in Äther. $Ba(C_7H_4O_4N_2)_2 + xH_2O$. Gelbe, schwer lösliche Nadeln. $C_7H_5O_4N_3 + HCl + H_2O$. Blättchen. Verliert bei 110° das Krystallwasser und alle Säure.

3.4-Diamino-phenol und seine Derivate.

- 3.4-Diamino-1-oxy-benzol, 3.4-Diamino-phenol $C_0H_0ON_2 = (H_2N)_2C_0H_3 \cdot OH$. B. Durch Reduktion von 4-Nitroso-6-amino-phenol [2-Amino-p-chinon-oxim-(1), Syst. No. 1874] mit Zinn und Salzsäure (Bertels, B. 37, 2279). Aus 3-Nitro-4-amino-phenol (S. 521) durch Reduktion mit Zinn und Salzsäure (Hähle, J. pr. [2] 43, 70) oder mit Zinnehlorür und Salzsäure (Kehrmann, Gauhe, B. 31, 2403). Bei 2-stdg. Erhitzen von [4-Äthoxy-2-amino-phenyl]-urethan (S. 566) mit rauchender Salzsäure im Druckrohr auf 130° (Köhler, J. pr. [2] 29, 268). Schmilzt bei 167—168° unter starker Zersetzung (H.). Sehr unbeständig (Kö.). Die wäßr. Lösung des salzsauren Salzes wird durch Chlorkalk oder Eisenchlorid blutrot gefärbt (Kö.). Liefert mit Benzil 6-Oxy-2.3-diphenyl-chinoxalin (Syst. No. 3518) (B.). $C_0H_0ON_2 + 2HCl$ (Kö.; Ke., G.; B.). Blättchen. Sehr leicht löslich in Wasser, Alkohol und Eisessig (Kö.). $C_0H_0ON_2 + H_2SO_4$. Tafeln. Leicht löslich in heißem, schwerer in kaltem Wasser und Alkohol (H.). $C_0H_0ON_2 + 2HCl + SnCl_2$. Krystalle (B.).
- 8.4-Diamino-phenol-äthyläther, 8.4-Diamino-phenetol $C_8H_{18}ON_2 = (H_2N)_2C_6H_3$. O· C_2H_3 . B. Man trägt Zinkstaub ein in ein kochendes Gemisch aus 3-Nitro-4-acetamino-phenol-äthyläther, 95% gigem Alkohol und verd. Natronlauge (Autenbieth, Hinsberg, Ar. 229, 460). Blättchen (aus Äther). F: 71—72°. Kp: 294—296°. Ziemlich löslich in Wasser, leicht in Alkohol, Äther und Chloroform. $C_8H_12ON_2 + H_2SO_4$. Prismen. Ziemlich schwer löslich in kaltem Wasser. Oxalat $C_8H_{18}ON_2 + C_2H_2O_4$. Blättchen. Schwer löslich in kaltem Wasser und Alkohol.
- 4-Amino-8-anilino-phenol-methyläther, 3-Methoxy-6-amino-diphenylamin C₁₂H₁₄ON₂ = (C₆H₅·NH)(H₂N)C₆H₃·O·CH₂. B. Entsteht neben Anilin, p-Anisidin und 4-Methoxy-4'-amino-diphenylamin (S. 503) bei der Reduktion von 4-Methoxy-azobenzol (Syst. No. 2112) mit Zinnehlorür und Salzsäure in Alkohol (Jacobson, Jaenicke, F. Meyer, B. 29, 2681). Rosetten (aus Ligroin). F: 73°. Leicht löslich in heißem Ligroin und Alkohol. Die salzsaure Lösung wird durch Natriumnitrit rot bis rotviolett, durch Eisenchlorid dunkelviolett bis dunkelblau gefärbt. Spaltet beim Erhitzen mit verd. Salzsäure auf 150—160° Anilin ab.
- 4 Amino 3 anilino phenol äthyläther, 3 Äthoxy 6 amino diphenylamin $C_{14}H_{16}ON_2 = (C_6H_5 \cdot NH)(H_2N)C_6H_3 \cdot O \cdot C_2H_5$. B. Bei 6-stdg. Erhitzen von 0,5 g 4-Nitro-3-anilino-phenol-äthyläther (S. 422) mit 15 ccm Alkohol und 10 ccm 10% igem alkoh. Schwefel-ammonium im Druckrohr auf 120% (JACOBSON, FERTSCH, W. FISCHER, B. 26, 686). Man erwärmt 10 g 4-Äthoxy-azobenzol gelinde mit einer Lösung von 40 g Zinnchlorür in 100 ccm 38% iger Salzsäure und kocht zuletzt einige Minuten lang; beim Stehen der Lösung scheidet sich zunächst das Zinndoppelsalz des 4-Amino-3-anilino-phenol-äthyläthers aus (JACOBSON, W. FISCHER, B. 25, 995). Nadeln (aus verd. Alkohol). F: 95% (J., W. FI.). Leicht löslich in Alkohol und Äther, schwerer in Ligroin (J., W. FI.). Verdünnte Salzsäure spaltet bei 130% in Anilin, Ammoniak und Äthylchlorid (J., FE., W. FI.). Eisenchlorid erzeugt in der verdünnten salzsauren Lösung eine rote Färbung, die auf Zusatz von konz. Salzsäure in Dunkelblau übergeht (J., W. FI.). Salpetrige Säure erzeugt 1-Phenyl-6-äthoxy-benstriasol $C_2H_3 \cdot O \cdot C_4H_3 \cdot N(C_4H_5) N$ (Syst. No. 3832) (J., W. FI.; ZINCKE, HELMERT, J. pr. [2] 53, 97). $C_{14}H_{16}ON_2 + HCl$ (J., W. FI.).

- 3'-Brom-3-äthoxy-6-amino-diphenylamin $C_{14}H_{16}ON_sBr$, s. nebenstehende Formel. B. Bei der Reduktion von 3'-Brom-4-äthoxy-azobenzol (Syst. No. 2112) in alkoh. Lösung mit salzsaurer Zinnehlorürlösung auf dem Wasserbade (Jacobson, Franz, Zaar, B. 36, 3868). Konnte nicht zur Krystallisation gebracht werden.
- $\begin{array}{c} B_{\textbf{r}} & \underbrace{0 \cdot C_{\textbf{2}}H_{\textbf{s}}} \\ & \underbrace{NH \cdot \bigodot}_{NH_{\textbf{s}}} \end{array}$
- 4-Amino-3-o-toluidino-phenol-äthyläther, 3'-Äthoxy-6'-amino-2-methyl-diphenylamin C₁₅H₁₈ON₂, s. nebenstehende Formel. B. Bei der Reduktion von 4'-Āthoxy-2-methyl-azobenzol (Syst. No. 2112) mit Zinnchlorür in alkoh. Lösung (J., F., Z., B. 36, 3860). Blättchen (aus Ligroin). F: 82—83°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin.
- $\begin{array}{c}
 CH_3 & O \cdot C_2H_5 \\
 \hline
 & NH \cdot \\
 \hline
 & NH_2
 \end{array}$
- 4-Amino-3-m-toluidino-phenol-äthyläther, 3'-Äthoxy-6'-amino-3-methyldiphenylamin $C_{15}H_{18}ON_5=(CH_5\cdot C_6H_4\cdot NH)(H_2N)C_6H_3\cdot O\cdot C_2H_5$. B. Entsteht neben anderen Körpern beim Behandeln von 4'-Äthoxy-3-methyl-azobenzol (Syst. No. 2112) mit Zinnchlorür und Salzsäure (Jacobson, A. 287, 170). Das salzsaure Salz gibt in wäßr. Lösung mit Eisenchlorid eine intensiv rote Färbung, die mit konz. Salzsäure blauviolett wird.
- Dioxy amino diphenyl amin $C_{12}H_{13}O_2N_7$, s. nebenstehende $HO \cdot \bigcirc \cdot NH \cdot \bigcirc (NH \cdot) \cdot (NH \cdot$
- 3-Anilino-4-benzalamino-phenol-äthyläther, 3-Äthoxy-6-benzalamino-diphenylamin $C_{21}H_{20}ON_2=(C_6H_6\cdot CH:N)(C_6H_6\cdot NH)C_6H_3\cdot O\cdot C_2H_6$ oder vielleicht auch 6-Äthoxy-1.2-diphenyl-benzimidasoldihydrid $C_{21}H_{20}ON_2=$
- $C_2H_5 \cdot O \cdot C_6H_3 = N(C_6H_5) = CH \cdot C_6H_5$. Zur Konstitution vgl. Jacobson, B. 36, 3869 Anm. B. Man erwärmt 0,5 g 4-Amino-3-anilino-phenol-āthylāther (S. 564) mit 0,35 g Benzaldehyd und 3 cem Alkohol auf 100° (Jacobson, Fischer, B. 25, 1008). Nadeln (aus Ligroin + Benzol). F: 152°; leicht löslich in Alkohol, Äther und Benzol (J., F.). Die verd. Lösung des Hydrochlorids fluoresciert blauviolett (J., F.).
- 3-Anilino-4-salicylalamino-phenol-methyläther, 3-Methoxy-6-salicylalamino-diphenylamin $C_{20}H_{18}O_2N_2 = (HO \cdot C_8H_4 \cdot CH : N)(C_8H_5 \cdot NH)C_8H_3 \cdot O \cdot CH_3$ oder vielleicht auch 1-Phenyl-6-methoxy-2-[2-oxy-phenyl]-benzimidazoldihydrid $C_{20}H_{18}O_2N_2 = CH_3 \cdot O \cdot C_8H_3 \cdot N(C_8H_5) \cdot CH \cdot C_8H_4 \cdot OH$. Zur Konstitution vgl. Jacobson, Franz, Zaar, B. 36, 3869 Anm. B. Bei 4-stdg. Kochen von 0,5 g 4-Amino-3-anilino-phenol-methyläther mit 0,3 g Salicylaldehyd in alkoh. Lösung unter Durchleiten von CO_2 (Jacobson, Jaenicke, F. Meyer, B. 29, 2682). Geibe Nadeln (aus Alkohol). F:132°; leicht löslich in heißem Alkohol, Äther und Benzol, schwer in Ligroin (Ja., Jae., F. M.). Beim Kochen mit Quecksilberoxyd in Alkohol entsteht 1-Phenyl-6-methoxy-2-[2-oxy-phenyl]-benzimidazol (Syst. No. 3538) (Ja., Jae., F. M.). Wird beim Kochen mit verd. Schwefelsäure gespalten (Ja., Jae., F. M.).
- 3'-Brom-3-äthoxy-6-salicylalamino-diphenylamin $C_{21}H_{19}O_2N_2Br = (HO \cdot C_6H_4 \cdot CH : N)(C_6H_4Br \cdot NH)C_6H_3 \cdot O \cdot C_2H_5$ oder vielleicht auch 1 [3 Brom phenyl] 6 äthoxy 2-[2-oxy-phenyl]-benzimidasoldihydrid $C_{21}H_{19}O_2N_2Br =$
- C₂H₅·O·C₆H₃ N(C₆H₄Br) CH·C₆H₄·OH. B. Bei 4-stdg. Kochen von 3'-Brom-3-āthoxy-6-amino-diphenylamin (s. o.) mit 2 Mol.-Gew. Salicylaldehyd in alkoh. Lösung im CO₂-Strome (Jacobson, Franz, Zaar, B. 36, 3869). Gelbe Nadeln (aus Alkohol). F: 116°. Löslich in Alkohol, Äther und Ligroin. Wird durch kochende verdünnte Schwefelsäure gespalten.
- 3.4-Bis-acetamino-phenol $C_{10}H_{18}O_5N_2=(CH_3\cdot CO\cdot NH)_2C_6H_3\cdot OH$. B. Durch Auflösen des [3.4-Bis-acetamino-phenyl]-acetats (?) (s. u.) in kalter verdünnter Natronlauge (Kehrmann, Gauhr, B. 31, 2404). Prismen (aus Wasser). F: 205—207°. Liefert bei der Oxydation mit schwefelsaurer Chromsäurelösung 2-Acetamino-chinon (Syst. No. 1874).
- 3.4-Bis-acetamino-phenol-äthyläther, 3.4-Bis-acetamino-phenetol $C_{12}H_{16}O_{2}N_{5}=(CH_{3}\cdot CO\cdot NH)_{2}C_{2}H_{5}\cdot O\cdot C_{2}H_{5}$. B. Beim Schütteln von 3.4-Diamino-phenol-äthyläther mit überschüssigem Essigsäureanhydrid unter guter Kühlung (Autenberth, Hinsberg, Ar. 229, 465). Prismen (aus Wasser). F: 189°. Ziemlich leicht löslich in heißem Wasser, Alkohol, Äther, schwer in kaltem Wasser.
- $\begin{array}{l} \textbf{[3.4-Bis-acetamino-phenyl]-acetat (?), \ O.N.N'-Triacetyl-[3.4-diamino-phenol] (?)} \\ C_{12}H_{14}O_4N_2 = (CH_3\cdot CO\cdot NH)_2C_6H_3\cdot O\cdot CO\cdot CH_3(?). \end{array}$

a) Präparat von Hähle. B. Aus 3.4-Diamino-phenol durch Kochen mit Essigsäureanhydrid (H., J. pr. [2] 43, 71). — Hellgelbe Tafeln (aus verd. Alkohol). F: 135—136°. Leicht

löslich in Alkohol und Eisessig.

b) Präparat von Kehrmann, Gauhe. B. Aus salzsaurem 3.4-Diamino-phenol durch Erhitzen mit Essigsäureanhydrid und Natriumacetat (K., G., B. 31, 2404). — Farblose Nadeln (aus Wasser). F: 184—185°. Leicht löslich in Alkohol und Eisessig, weniger in Benzol, kaum in Petroläther. — Wird von kalter verdünnter Natronlauge zu 3.4-Bis-acetamino-phenol (S. 565) gelöst.

- 8.4-Bis-benzamino-phenol-methyläther, 8.4-Bis-benzamino-anisol $C_{11}H_{18}O_{2}N_{2}=$ (C₈H₅·CO·NH)₈C₆H₃·O·CH₃. B. Aus 3-Nitro-4-amino-anisol (S. 521) durch Reduktion mit Zinn und Salzsäure und Schütteln des (nicht näher beschriebenen) 3.4-Diamino-anisols mit Benzoylchlorid und Alkalilauge (MELDOLA, EYRE, Soc. 81, 991). — Braune Nadeln (aus Eisessig). F: 251—252°.
- 3.4-Bis-bensamino-phenol-äthyläthor, 8.4-Bis-bensamino-phenetol $C_{22}H_{20}O_3N_3=(C_6H_5\cdot CO\cdot NH)_2\cdot C_6H_3\cdot O\cdot C_2H_5$. B. Beim Schütteln der wäßr. Lösung von 3.4-Diamino-phenetol mit Benzoylchlorid und Natronlauge im Überschuß (AUTENRIETE, HINSBERG, Ar. 229, 465). Nadeln (aus Alkohol). F: 191—192°. Schwer löslich in kaltem Alkohol und in Äther.
- [3.4-Bis-benzamino-phenyl]-benzoat, O.N.N'-Tribenzoyl-[8.4-diamino-phenol] $C_{27}H_{20}O_4N_2=(C_6H_5\cdot CO\cdot NH)_2C_6H_3\cdot O\cdot CO\cdot C_6H_5$. B. Durch Einw. von Benzoylchlorid und Alkalilauge auf rohes 3.4-Diamino-phenol, erhalten aus 3-Benzolazo-4-[4-brom-benzolazo]phenol (Syst. No. 2112) durch Reduktion mit Zinnehlorür und Salzsäure in Alkohol oder aus 3-Nitro-4-amino-phenol (S. 521) mit Zinn und Salzsäure (Jacobson, Hönigsberger, B. 36, 4117, 4125). — Nadeln (aus heißem Alkohol). F: 225°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln. — Liefert durch Behandlung mit verd. Natronlauge in der Kälte ein alkalilösliches Produkt (Platten vom Schmelzpunkt 203-205°).
- [4-Åthoxy-2-amino-phenyl]-urethan $C_{11}H_{16}O_3N_2$, s. nebenstehende Formel. B. Aus [2-Nitro-4-āthoxy-phenyl]-urethan (S. 523) mit Zinn und Salzsäure (Köhler, J. pr. [2] 29, 263). Nadeln. F: 88°. Löslich in Alkohol, Äther, Eisessig, Benzol, wenig löslich in kaltem Wasser. Reduziert Silberlösung schon in der Kälte. Das Hydrochlorid wird durch Eisenchlorid oder Chlorkalk blutrot gefärbt. $C_{11}H_{16}O_3N_2 + HCl$. O·C2H5 $NH \cdot CO_2 \cdot C_2H_5$ Nadeln. F: 155-156°.
- 3.4-Bis-benzolsulfamino-phenol-äthyläther, 3.4-Bis-benzolsulfamino-phenetol $C_{20}H_{20}O_5N_2S_2=(C_6H_5\cdot SO_3\cdot NH)_2C_6H_3\cdot O\cdot C_2H_5$. Beim Schütteln von 3.4-Diamino-phenetol mit Benzolsulfochlorid und Natronlauge (Autenrieth, Hinsberg, Ar. 229, 466). - Nadeln (aus Alkohol). F: 159—160°. Ziemlich löslich in Alkohol und Äther.

NH.

- 3.4 Bis [bensolsulfonyl äthylamino] phenol äthyläther, 3.4 Bis [(bensol sulfonyl)-äthylamino] phenetol $C_{24}H_{38}O_5N_2S_3=[C_6H_5\cdot SO_3\cdot N(C_2H_5)]_2C_6H_3\cdot O\cdot C_2H_5$. B. Aus 3.4-Bis-benzolsulfonylamino-phenetol mit alkoh. Natron und Athyljodid (AUTENRIETH, HINSBERG, Ar. 229, 466). — Nadeln (aus Alkohol). F: 121°.
- 2.6-Dinitro-8-dimethylamino-4-acetamino-phenol¹) $C_{10}H_{12}O_4N_4 = (CH_2 \cdot CO \cdot NH)$ [(CH₃)₂N]C₂H(NO₂)₂·OH. B. Aus 2.3.6-Trinitro-4-acetamino-phenol (S. 533) und Dimethylamin in Alkohol (Meldola, Hay; Soc. 95, 1048). — Orangefarbene Rhomboeder (aus Alkohol). F: 2150 (Zers.). Schwer löslich in siedendem Alkohol. Die alkal. Lösung ist orange. $AgC_{10}H_{11}O_6N_4$. Orange Nadeln.
- 2.6-Dinitro-8-anilino-4-acetamino-phenol, 2.4-Dinitro-8-oxy-6-acetamino-diphenylamin 1) $C_{14}H_{12}O_6N_4=(CH_8\cdot CO\cdot NH)(C_6H_5\cdot NH)C_6H(NO_2)_3\cdot OH$. B. In geringer Menge aus 2.3.6-Trinitro-4-acetamino-phenol (S. 533) und NO₂ Anilin in siedendem Alkohol neben 1-Phenyl-5.7-dinitro-HO. $-N(C_6H_5)$ HO -5/>C.CH₃ 6-oxy-2-methyl-benzimidazol (s. nebenstehende Formel) (Syst. No. 3509) (Meldola, Soc. 89, 1940). — Rote prismatische O₂N. Nadeln (aus Eisessig). F: 179°. Löslich in Alkali mit orangeroter Farbe. 0.N
- 2.6 Dinitro 3 bensylamino 4 acetamino phenol ¹) $C_{15}H_{14}O_6N_4 = (CH_2 \cdot CO \cdot NH)(C_6H_5 \cdot CH_2 \cdot NH)C_6H(NO_2)_2 \cdot OH$. B. Aus 2.3.6-Trinitro-4-acetamino-phenol (8. 533) und Benzylamin (Bd. XII, S. 1013) in Alkohol (Meldola, Soc. 89, 1940). Grünlichgelbe Nadeln (aus Alkohol). F: 207°. Löslich in Säuren. Liefert mit Schwefelsäure bei 100° 1-Benzyl-5.7-dinitro-6-oxy-2-methyl-benzimidazol (Syst. No. 3509). — Ammoniumsalz. Orangefarbige prismatische Nadeln.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von REVERDIN MELDOLA, J. pr. [2] 88, 785.

- 3.4.3'.4'-Tetraamino-diphenylsulfon $C_{12}H_{14}O_2N_4S=[(H_2N)_2C_6H_3]_2SO_2$. B. Durch Reduktion von 3.3'-Dinitro-4.4'-diamino-diphenylsulfon (S. 547) mit Zinnchlorür (Ullmann, Korselt, B. 40, 646). Blättchen (aus siedendem Alkohol). F: 174°. Leicht löslich in siedendem Alkohol und siedendem Wasser, sehr wenig in Toluol.

3.5-Diamino-phenol und seine Derivate.

- 3.5-Diamino-l-oxy-benzol, 3.5-Diamino-phenol $C_0H_0ON_2 = (H_2N)_2C_0H_3 \cdot OH$. B. Bei 4-wöchigem Stehen von Phloroglucin (Bd. VI, S. 1092) mit bei 0^0 gesättigtem wäßrigem Ammoniak (Pollak, M. 14, 425). Prismen. F: 168—170°. Leicht löslich in Wasser, schwer in Äther.
- 3.5-Diamino-phenol-methyläther, 3.5-Diamino-anisol $C_7H_{10}ON_2=(H_2N)_2C_6H_3$: O·CH₃. B. Durch Reduktion von 3.5-Dinitro-phenol-methyläther (Bd. VI, S. 258) mit Zinn + Salzsäure unterhalb 50° (Herzig, Aigner, M. 21, 435). $C_7H_{10}ON_2+2$ HCl. Zersetzt sich bei 220° und wird beim Kochen mit Wasser unter Bildung von Phloroglucin-monomethyläther (Bd. VI, S. 1101) gespalten.
- 3.5-Diamino-phenol-äthyläther, 3.5-Diamino-phenetol $C_8H_{19}ON_2=(H_2N)_2C_8H_3$ · $O\cdot C_3H_5$. B. Durch Reduktion von 3.5-Dinitro-phenol-äthyläther mit Zinn und Salzsäure (H., A., M. 21, 444). $C_8H_{12}ON_2+2HCl$.
- 3.5-Bis-āthylamino-phenol $C_{10}H_{16}ON_2 = (C_2H_5\cdot NH)_2C_6H_3\cdot OH$. B. Bei 2-stdg. Erhitzen von reinem Phloroglucin mit etwas über 2 Mol.-Gew. $30^{\circ}/_{0}$ iger wäßr. Äthylaminlösung auf 110—120° in mit Wasserstoff gefüllten Röhren oder auch bei längerem Stehen der Komponenten bei gewöhnlicher Temperatur (POLLAK, M. 14, 403). Nadeln (aus Benzol). F: 106—108°. Leicht löslich in Wasser, Älkohol, Äther und Aceton, ziemlich schwer in siedendem Benzol. Sehr unbeständig an der Luft. Zerfällt beim Kochen mit viel Wasser in Äthylamin und Phloroglucin. $C_{10}H_{16}ON_2 + 2$ HCl. Tafeln. Triklin pinakoidal (v. Lang, Z. Kr. 40, 629; vgl. Groth, Ch. Kr. 4, 279). Schmilzt bei 199—201° unter Zersetzung. Leicht löslich in Wasser. $C_{10}H_{16}ON_2 + 2$ HCl + PtCl₄ + H₂O. Goldgelbe Nadeln. Unlöslich in Wasser.
- 3.5 Dianilino phenol $C_{18}H_{16}ON_2 = (C_6H_5\cdot NH)_2C_6H_3\cdot OH$. B. Bei 6-stdg. Erhitzen von je 10 g Phloroglucin (das vorher mit trocknem Kochsalz innig vermischt ist) mit 14,5 g Anilin im Druckrohr auf 140—150°; man verjagt das freie Anilin durch Wasserdampf, löst den Rückstand in Alkohol und fällt durch Wasserzusatz (MINUNNI, G. 20, 343). Nadeln (aus Äther + Ligroin). F: 94—95°. Leicht löslich in Alkohol, Äther und Benzol. $C_{18}H_{16}ON_2 + 2$ HCl. Gelbe Flocken. F: 85—90°. $C_{18}H_{16}ON_2 + PtCl_4$ (bei 100°). Braungelbe Blättchen. Schmilzt noch nicht bei 260°. Unlöslich in Äther, leicht löslich in kochendem Alkohol.
- 3.5-Di-p-toluidino-phenol $C_{20}H_{20}ON_2 = (CH_2 \cdot C_6H_4 \cdot NH)_2C_6H_3 \cdot OH$. B. Bei 6-stdg. Erhitzen von je 5 g Phloroglucin mit 8,5 g p-Toluidin im Druckrohr auf 140—150°; man verjagt das freie Toluidin durch Wasserdampf, löst den getrockneten Rückstand in Äther und fällt durch wenig Ligroin zunächst Beimengungen und dann durch mehr Ligroin 3.5-Dip-toluidino-phenol (MINUNNI, G. 20, 331). Nadeln. F:120—121°. Leicht löslich in Alkohol, Ather und Benzol. $C_{20}H_{20}ON_2 + PtCl_4$. Bronzeglänzende Schuppen. Unlöslich in Ather und Alkohol.
- 3.5-Bis-[acetyläthylamino]-phenol $C_{14}H_{30}O_3N_3=[CH_3\cdot CO\cdot N(C_2H_5)]_2C_6H_3\cdot OH$. B. Bei 2-stdg. Erhitzen von 1 Tl. [3.5-Bis-(acetyläthylamino)-phenyl]-acetat (s. u.) mit 10 Tln. Wasser auf 160—180° (Pollak, M. 14, 409). Nadeln (aus Wasser), Tafeln (aus Aceton). Monoklin prismatisch (v. Lang, Z. Kr. 40, 630; vgl. Groth, Ch. Kr. 4, 279). F: 195° (P.).
- 3.5 Bis [acetyläthylamino] phenol äthyläther, 3.5 Bis [acetyläthylamino]-phenetol $C_1 \in H_{24}O_3N_3 = [CH_3 \cdot CO \cdot N(C_2H_5)]_2C_6H_3 \cdot O \cdot C_2H_5$. B. Aus 3.5-Bis-[acetyläthylamino]-phenol durch Erhitzen mit der berechneten Menge alkoholischem Kali und Äthyljodid (P., M. 14, 411). F: 65—67°.
- [3.5 Bis (acetyläthylamino) phenyl] acetat, N.N'- Diäthyl O.N.N'- triacetyl- [3.5-diamino-phenol] $C_{1e}H_{3e}O_{4}N_{3}=[CH_{3}\cdot CO\cdot N(C_{2}H_{5})]_{2}C_{2}H_{3}\cdot O\cdot CO\cdot CH_{3}$. B. Durch Kochen von salzsaurem 3.5-Bis-äthylamino-phenol mit Essigsäureanhydrid (POLLAK, M. 14, 407). Platten (aus Benzol + Ligroin). Triklin pinakoidal (v. Lang, Z. Kr. 40, 630;

vgl. Groth, Ch. Kr. 4, 280). Die aus Äther krystallisierte Substanz schmilst bei 80—85°, die aus Benzol krystallisierte bei 92—95° (P.). Destilliert unzersetzt; sehr leicht löslich in Wasser und Benzol, fast gar nicht in Ligroin (P.). Gibt beim Erhitzen mit Wasser auf 160° bis 180° 3.5-Bis-[acetylathylamino]-phenol (P.).

3,5-Bis-acetylanilino-phenol C₂₂H₂₀O₂N₂ = [CH₂·CO·N(C₆H₅)]₅C₆H₂·OH B. Bei der Einw. von überschüssigem Essigsäureanhydrid auf 3.5-Dianilino-phenol (S. 567) (MINUNNI, G. 20, 346). — Mikroskopische Krystalle (aus Äther + Ligroin). F: 149—150°. Sehr schwer löslich in kaltem Alkohol, leicht in siedendem Alkohol und siedendem Benzol.

3.5-Bis-[acetyl-p-toluidino]-phenol $C_{24}H_{24}O_{9}N_{2}=[CH_{8}\cdot CO\cdot N(C_{8}H_{4}\cdot CH_{3})]_{8}C_{8}H_{8}\cdot OH$. B. Beim Erwärmen von 3.5-Di-p-toluidino-phenol (S. 567) mit Essigsäureanhydrid (M., G. 20, 333). — Prismen (aus Alkohol). F: 128—129°. Leicht löslich in Alkohol und Benzol, sehr schwer in Ather.

8.5 - Bis - bensoylanilino - phenol $C_{33}H_{34}O_3N_3=[C_4H_5\cdot CO\cdot N(C_6H_5)]_3C_6H_3\cdot OH$. Beim Erwärmen von 3.5-Dianilino - phenol (S. 567) mit überschüssigem Benzoesäureanhydrid (M., G. 20, 348). — Kanariengelbe Nadeln (aus Alkohol). F: 184—185°. Schwer löslich in der Kälte, leicht in der Wärme in den gebräuchlichen Lösungsmitteln.

[3.5-Bis-(bensoyl-p-toluidino)-phenyl]-bensoat, N.N'-Di-p-tolyl-O.N.N'-tribensoyl-[3.5-diamino-phenol] $C_{41}H_{32}O_4N_8=[C_6H_5\cdot CO\cdot N(C_6H_4\cdot CH_3)]_2C_6H_3\cdot O\cdot CO\cdot C_6H_8$. B. Aus 3.5-Di-p-toluidino-phenol (S. 567) und Benzoylchlorid (M., G. 20, 335). — Unlöslich in Ather, sehr schwer löslich in Alkohol und Benzol.

8.5-Bis-āthylnitrosamino-phenol $C_{10}H_{14}O_3N_4 = [C_2H_5 \cdot N(NO)]_2C_0H_3 \cdot OH$. B. Man trägt in die gut gekühlte wäßr. Lösung des salzsauren 3.5-Bis-äthylamino-phenols (S. 567) allmählich die berechnete Menge Kaliumnitritlösung ein (POLLAK, M. 14, 412). — Nadeln (aus Wasser). Schmilzt unter Zersetzung bei 136—138°. Schwer löslich in Wasser, ziemlich löslich in Ather, Benzol, sehr leicht in Alkohol und Chloroform. Liefert beim Erhitzen mit Salzsäure 3.5-Bis-äthylamino-phenol zurück.

3.5-Bis-phenylnitrosamino-phenol $C_{18}H_{14}O_3N_4=[C_6H_5\cdot N(NO)]_2C_9H_3\cdot OH.$ B. Bei der Einw. von Natriumnitrit und Salzsäure auf 3.5-Dianilino-phenol in alkoh. Lösung (MINUNNI, G. 20, 349). — Hellrote Nadeln (aus Eisessig). Schmilzt noch nicht bei 250°. Unlöslich in Alkohol, Äther und Benzol.

3.5-Bis-p-tolylnitrosamino-phenol $C_{20}H_{19}O_2N_4=[CH_2\cdot C_2H_4\cdot N(NO)]_2C_4H_2\cdot OH$. Bei der Einw. von Natriumnitrit und Salzsäure auf 3.5-Di-p-toluidino-phenol in alkoh. Lösung (M., G. 20, 336). — Braunrote Nadeln. Schwärzt sich bei 230°. Unlöslich in Äther, sehr schwer löslich in Alkohol und Benzol.

- 2.4.6-Trinitroso-3.5-diamino-phenol $C_eH_5O_4N_5=(H_5N)_2C_6(NO)_3\cdot OH$ ist desmotrop mit dem 2.4-Diimid-1.3.5-trioxim des Cyclohexanhexons (Trichinoyl-diimid-trioxim), Bd. VII. S. 908.
- 2.6-Dinitro-8.5-dianilino-phenol-methyläther, 2.6-Dinitro-8.5-dianilino-anisol $C_{19}H_{18}O_5N_4=(C_6H_5\cdot NH)_8C_9H(NO_9)_9\cdot O\cdot CH_9$. B. Aus 2.3.5.6-Tetranitro-anisol (Bd. VI. S. 293) und Anilin (Blanksma, R. 23, 117). Gelbe oder orangerote Krystalle. F: 234°. Sehr wenig löslich in Alkohol.
- 2.4.6-Trinitro-8.5-diamino-phenol $C_0H_2O_7N_5=(H_2N)_9C_6(NO_9)_3$ OH. B. Bei der Einw. von alkoh. Ammoniak auf 5-Chlor-2.3.4.6-tetranitro-phenol (Bd. VI, S. 293) (B., R. 27, 36), suf Pentanitro-phenol (Bd. VI, S. 293) (B., R. 21, 263) oder Tetranitroresorcin-monomethyläther (Bd. VI, S. 833) (B., R. 27, 36). — Gelbe Krystalle (aus Eisessig). F: 270°.

2.4.6-Trinitro-8.5-dianilino-phenol $C_{10}H_{10}O_{1}N_{5} = (C_{0}H_{1}\cdot NH)\cdot C_{0}(NO_{2})\cdot OH$. B. Bei der Einw. von Anilin auf 5-Chlor-2.3.4.6-tetranitro-phenol (Bd. VI, S. 293) (BLANKSMA, R. 27, 36) oder auf Pentanitrophenol (Bd. VI, S. 293) (B., R. 21, 264). — Orangerote Nadeln. F: 205° (B., R. 27, 36).

Diaminophenol-Derivate, von denen es unbestimmt ist, von welchem Diaminophenol sie abzuleiten sind.

2.4'- oder 5.4'-Diäthoxy-N-bensolsulfonyl - 5 oder 2 - bensolsulf amino-diphenylamin C₂₈H₂₈O₆N₂S₂, Formel I oder H. B. Beim Eintragen einer konzentrierten wäßrigen Jod-Jodkalium-Lösung in eine heiße Lösung von Benzolsulfonsaure - p - phenetidid (8. 507) in konz. Sodalösung (HINS-BEEG, A. 265, 185). — Nadelchen

(aus Alkohol). F: 168°. Zeigt beim Erhitzen mit konz. Schwefelsäure blaue Färbung. — KC₂₈H₂₇O₆N₂S₂. Krystallinisch. Schwer löslich in Wasser.

2.4'- oder 5.4'- Diäthoxy - N - benzolsulfonyl - 5 oder 2 - [benzolsulfonyl - benzyl-amino] - diphenylamin $C_{35}H_{34}O_6N_2S_2 = C_2H_5 \cdot O \cdot C_6H_4 \cdot N(SO_2 \cdot C_6H_5) \cdot C_6H_3 \cdot O \cdot C_2H_5 \cdot N(CH_2 \cdot C_6H_5) \cdot SO_2 \cdot C_6H_5$. B. Beim Behandeln von 2.4'- oder 5.4'- Diäthoxy - N - benzolsulfonyl-5 oder 2-benzolsulfamino-diphenylamin (S. 568) mit Benzylchlorid und Kalilauge (H., A. 265, 188). — Nädelchen (aus Alkohol). F: 158°.

Triaminoderivate des Oxybenzols.

2.3.4-Triamino-phenol-methyläther, 2.3.4-Triamino-anisol $C_7H_{11}ON_3=(H_2N)_3C_6H_2\cdot O\cdot CH_3$. B. Aus 2.3-Dinitro-4-amino-anisol (S. 525) durch Reduktion mit Zinn und Salzsäure (Meldel, Eyre, Soc. 81, 993). — Die freie Base oxydiert sich an der Luft sehr leicht und konnte nicht isoliert werden. — Das salzsaure Salz gab in essigsaurer Lösung in Gegenwart von Natriumacetat mit Benzil je nach den Mengenverhältnissen das bei ca. 214—215° schmelzende Methoxy-amino-diphenyl-chinoxalin $(H_2N)(CH_3\cdot O)C_6H_2$ $N:C\cdot C_6H_5$ (Syst. No.

3773) oder eine Verbindung C₃₅H₂₅O₂N₃(?) (s. u.).
Verbindung C₃₅H₂₅O₂N₃(?). B. Aus salzsaurem 2.3.4-Triamino-anisol mit überschüssigem Benzil in essigsaurer Lösung in Gegenwart von Natriumacetat (Meldola, Eyre, Soc. 81, 994). — Rotes krystallinisches Pulver (aus Toluol). F: 258—259°. Sehr wenig löslich in den meisten Lösungsmitteln.

2.4.6-Triamino-1-oxy-benzol, 2.4.6-Triamino-phenol $C_6H_9ON_3 = (H_2N)_3C_6H_2 \cdot OH$. B. Bei der Reduktion von Pikrinsäure mit Jodphosphor und Wasser (LAUTEMANN, A. 125, 1; HEINTZEL, J. pr. [1] 100, 209; J. 1867, 626; vgl. HEPP, A. 215, 351; BAMBERGER, B. 16, 2401) oder mit Zinn und Salzsäure (Beilstein, A. 130, 244; Hei., J. pr. [1] 100, 196; J. 1867, 623; vgl. BAM.). Bei der Reduktion von 2.4.6-Trinitro-anilin (Bd. XII, S. 763) mit Zinn und Salzsäure (HEFP, A. 215, 350 Anm.). Bei der Reduktion von N-Methyl-N.2.4.6-tetranitro-anilin (Bd. XII, S. 770) mit Zinn und Salzsäure (VAN ROMBURGH, R. 2, 114). — Das freie 2.4.6-Triamino-phenol ist höchst unbeständig (LAU.; HEI.). Bei vorsichtigem Hinzufügen von Kalilauge zu einer konzentrierten wäßrigen oder alkoholischen Lösung eines Triaminophenol-Salzes färbt sich die Lösung blau und scheidet metallisch blauglänzende Krystalle ab; bei einem geringen Überschuß von Alkali färbt sich die Lösung rot; erhitzt man dieselbe, so scheiden sich unter Ammoniakentwicklung braune Flocken ab (HEI.). Die Salze oxydieren sich äußerst leicht; Silberlösung wird von ihnen reduziert (HEI.). Eine verdünnte Lösung der Salze färbt sich auf Zusatz von Eisenchlorid intensiv blau durch Bildung von 2.6-Diamino-p-chinon-imid-(4) (Syst. No. 1874) (Hell; vgl. Hepp, A. 215, 351 Anm.). Das salzsaure Salz gibt in wäßr. Lösung, mit roher Salzsäure und Kaliumchlorat versetzt, symm. Tetrachlor-aceton (Bd. I, S. 656) und Oxalsäure neben anderen Produkten (LEVY, Сиконор, A. 252, 332). Beim Eintröpfeln von Brom in eine Lösung von salzsaurem 2.4.6-Triamino-phenol entsteht zunächst Bromdichromazin (S. 570) und dann Perbromaceton (Bd. I, S. 660) (Weidel, Gruber, B. 10, 1137). 2.4.6-Triamino-phenol gibt bei Einw. von siedendem Wasser sehr geringe Mengen eines stickstofffreien Körpers vom Schmelzpunkt 164° (1.2.3.5-Tetraoxy-benzol?) (KOHNER, M. 20, 927). Beim Kochen des salzsauren Salzes mit Wasser im Wasserstoffstrome entsteht ein Trioxy-amino-benzol (Syst. No. 1870) (Oettinger, M. 16, 249). Verhalten der Lösung von salzsaurem 2.4.6-Triamino-phenol zur Lösung von hydroschwefligsaurem Natrium Na₂S₂O₄: A. Lumière, L. Lumière, Seyewetz, Bl. [3] 33, 69. — C₆H₆ON₃ + 3 HCl. Nadeln (Hei., J. pr. [1] 100, 201, 213). Blätter (Bam.). Leicht löslich in kaltem Wasser, wird aus der wäßr. Lösung durch konz. Salzsäure gefällt (Hei.; Heff; Bam.). — C₆H₆ON₃ + 3 HI. Nadeln. Sehr leicht löslich in kaltem Wasser; leicht löslich in Alkohol. wird aus der kongentrierten wäßrigen Lösung durch Lodwasserstoffsäure löslich in Alkohol; wird aus der konzentrierten wäßrigen Lösung durch Jodwasserstoffsäure gefällt. Zerfließt in feuchter Luft unter Braunfärbung und Verharzung; färbt sich am Licht gefällt. Zerfließt in feuchter Luft unter Braunfärbung und Verharzung; färbt sich am Licht auch in trockner Luft braungelb (HeI.). — $C_6H_9ON_3 + H_3SO_3$. B. Aus dem Hydrochlorid und Na₂SO₃ (Lumière, Seyewetz, C. r. 116, 1204). Schwer lösliche Blättchen. F: 120° bis 121°. — $2C_6H_9ON_3 + 3H_2SO_4$. B. Man versetzt die wäßr. Lösung des salzsauren Salzes mit verdünnter Schwefelsäure und Alkohol (HeI.; Hepp). Amorph. Leicht löslich in Wasser, fast unlöslich in absol. Alkohol (HeI.). — Pikrat $C_6H_9ON_3 + 3C_6H_3O_7N_3$. Citronengelbe Nadeln. F: 96—97°; löst sich bei 15° in 500 Tln. Wasser (Lumière, Seyewetz, Bl. [3] 9, 599). — $C_6H_9ON_3 + 2HCl + SnCl_2$. Dunkelgelbes Pulver. Sehr hygroskopisch, färbt sich in feuchtem Zustand rasch grünschwarz unter Abscheidung von Zinnoxydul (HeI.). — $C_6H_9ON_3 + 3HCl + SnCl_2$. Blättchen. Ziemlich beständig; leicht läslich in Wasser, löslich in Alkohol und Ather (HeI.). — $C_6H_9ON_3 + 3HCl + SnCl_2 + 1^1/2H_2O$. Krystalle (HeI.). — $2C_6H_9ON_3 + 4HCN + Fe(CN)_2$ (HeI.). Bromdichromazin C₁₈H₂O₂N₂Br₁₁. B. und Darst. Man löst 100 g salzsaures 2.4.6-Triamino-phenol in 5 l Wasser von 16° und setzt tropfenweise 85—90 ccm Brom hinzu, bis die Flüssigkeit braungelb geworden ist; man filtriert und läßt das Filtrat in der Kälte stehen; das hierbei ausgeschiedene rohe Bromdichromazin wird mit Chloroform ausgekocht und aus Alkohol umkrystallisiert. Das wäßr. Filtrat des rohen Bromdichromazins gibt an Äther noch etwas Bromdichromazin ab (Weidel, Gruber, B. 10, 1137). — Gelbe Tafeln oder Prismen mit schwachem violettem Dichroismus (aus Alkohol). Rhombisch (Ditscheiner, B. 10, 1139). Unlöslich in Wasser, Benzol, Chloroform, Schwefelkohlenstoff; sehr schwer löslich in Äther; schwer löslich in kaltem Alkohol und Eisessig (W., G.). Färbt sich beim Erhitzen graugrün, dann braun und zersetzt sich, ohne vorher zu schmelzen (W., G.). Gibt in alkoh. Lösung mit alkoh. Bleiacetat und mit wäßr. Silbersalzlösungen zersetzliche gelbe Niederschläge, mit alkoh. Quecksilberacetat die Verbindung Hg(C₁₈H₇O₇N₃Br₁₁)₂ + 6 Hg(C₂H₂O₃)₂ (W., G.). — Löst sich in wäßr. Lösungen von Atzalkalien und von kohlensauren Alkalien mit braungelber Farbe, die beim Erwärmen unter Entwicklung von Ammoniak in Dunkelbraun übergeht (W., G.). Beim Schmelzen mit Kaliumhydroxyd entsteht Oxalsäure (W., G.). Wird in Wasser durch Brom bei gewöhnlicher Temperatur langsam, beim Erhitzen im geschlosenen Rohr auf 100° schnell unter Bildung von Kohlensäure, Ammoniumbromid und Perbromaceton (Bd. I, S. 660) zersetzt (W., G.). Bromdichromazin löst sich in konz. Schwefelsäure unverändert (W., G.). Beim Kochen mit einem Gemisch aus gleichen Teilen konz. Schwefelsäure und Wasser entsteht Bromdichroinsäure (s. u.) (W., G.). Reagiert nicht mit Acetylchlorid (W., G.). — Verbindung mit Queck silberacetat Hg(C₁₈H₇O₇N₃Br₁₁)₂ + 6Hg(C₂H₃O₃)₃. Hellgelbe Krystalle; zersetzt sich beim Erhitzen auf 100° unter Abgabe von Brom und verpufft bei raschem Erhitzen auf höhere Temperatur (W., G.).

Bromdichroinsäure C₁₈H₇O₁₁Br₁₁. B. Bei längerem Kochen von Bromdichromazin (s. o.) mit einem Gemisch aus gleichen Teilen konz. Schwefelsäure und Wasser (WEIDEL, GEUBER, B. 10, 1141). — Tafeln (aus einer Mischung gleicher Teile von absol. Äther und Schwefelkohlenstoff oder Benzol). Rhombisch (DITSCHEINER, B. 10, 1142). Zersetzt sich schon unter 100°; sehr leicht löslich in Wasser, leicht in Alkohol und Äther, schwer in Benzol und CS₂, unlöslich in Chloroform (W., G.). Reagiert stark sauer (W., G.). Die Salze der Alkalien färben sich an der Luft rasch braun (W., G.). Acetylchlorid ist ohne Wirkung auf Bromdichroinsäure (W., G.). Behandelt man letztere mit Natriumamalgam, so entsteht ein Sirup, der beim Schmelzen mit Ätzkali Resorein liefert (W., G.). — Ca₃(C₁₈H₄O₁₁Br₁₁)₂. Nadeln. Färbt sich an der Luft braungelb (W., G.). — Ba₃(C₁₈H₄O₁₁Br₁₁)₂. Hellgelb, krystallinisch sehr hygroakopisch (W., G.). — Das Bleisalz und das Silbersalz sind krystallinische Niederschläge, die sich rasch unter Abscheidung von Brommetall zerlegen (W., G.).

- 2-Amino-4.6-bis-acetamino-phenol $C_{10}H_{12}O_3N_3=(CH_2\cdot CO\cdot NH)_2(H_2N)C_6H_2\cdot OH.$ B. Aus 6-Nitro-2.4-bis-acetamino-phenol durch Reduktion mit Zinkstaub und Schwefelsäure (Cassella & Co., D. R. P. 191549; C. 1908 I, 780). Nadeln. F: 205°; in Wasser ziemlich leicht löslich; in Alkohol sehr leicht löslich (C. & Co., D. R. P. 191549). Färbt sich an der Luft rasch dunkel (C. & Co., D. R. P. 191549). Verwendung zur Darstellung von Azofarbstoffen: C. & Co., D. R. P. 191862; C. 1908 I, 501. Hydrochlorid. Sehr leicht löslich in Wasser (C. & Co., D. R. P. 191549). Sulfat. Sehr wenig löslich in Wasser (C. & Co., D. R. P. 191549).
- 2.4.6-Tris-acetamino-phenol C₁₂H₁₅O₄N₃ = (CH₃·CO·NH)₃C₆H₂·OH. B. Entsteht in geringer Menge neben Tetraacetyl- und Hexascetyl-[2.4.6-triamino-phenol] bei 8-stdg. Erhitzen von 50 g salzsaurem 2.4.6-Triamino-phenol mit 500 g Essigsäureanhydrid auf 140—150°; man destilliert das überschüssige Essigsäureanhydrid im Vakuum ab und läßt den zerkleinerten Destillationsrückstand längere Zeit mit wenig Wasser stehen; hierbei bleibt das Hexascetylderivat ungelöst; aus der vom Hexascetylderivat abfiltrierten Lösung scheiden sich nach dem Einengen im Vakuum das Triacetylderivat und das Tetraacetylderivat aus; man trennt diese durch systematische fraktionierte Krystallisation aus Wasser, in welchem das Triacetylderivat schwerer löslich ist als das Tetraacetylderivat (OETINGER, M. 16, 260; vgl. BAMBERGER, B. 16, 2401). Aus Tetraacetyl- oder Hexascetyl-[2.4.6-triamino-phenol] beim Auflösen in verd. Kalilauge (OE.). Tafeln (aus Wasser). F: 279° (OE.). Sehr wenig löslich in heißem Äther, Bensol und Chloroform (OE.). Leicht löslich in Ammoniak, Natronlauge und starken Säuren (B.). Wird durch Salzsäure leicht verseift (B.). Liefert bei der Oxydation mit Eisenchlorid, konz. Salpetersäure oder Chromsäuregemisch 2.6-Bisacetamino-p-chinon (Syst. No. 1874) (B.).

[3.4.6-Tris-acetamino-phenyl]-acetat, O.N.N'.N''-Tetraacetyl-[3.4.6-triamino-phenol] $C_{14}H_{17}O_{4}N_{3}=(CH_{3}\cdot CO\cdot NH)_{5}O_{6}H_{2}\cdot O\cdot CO\cdot CH_{6}$. B. s. im vorhergehenden Artikel. — Prismen (aus Wasser). F: 255° (Zers.). Leichter löslich in Wasser und Alkohol als 2.4.6-Trisacetamino-phenol (Official M. 16, 265). — Geht beim Auflösen in verd. Kalilauge in 2.4.6-Tris-acetamino-phenol über (Official M. 16, 265).

- [2 oder 4-Acetamino-4.6- oder 2.6-bis-(diacetylamino)-phenyl]-acetat, Hexaacetyl-[2.4.6-triamino-phenol] $C_{18}H_{21}O_7N_3=[(CH_3\cdot CO)_2N]_8(CH_3\cdot CO\cdot NH)C_6H_3\cdot O\cdot CO\cdot CH_3$. B. s. im Artikel 2.4.6-Tris-acetamino-phenol. Prismen (aus Alkohol). F: 184°; leicht löslich in Alkohol und heißem Wasser, schwer in Benzol (Oettinger, M. 16, 261). Löst sich langsam in verd. Kalilauge, dabei in 2.4.6-Tris-acetamino-phenol übergehend (Oe.).
- [3.4.6-Tris-bensamino-phenyl]-bensoat, O.N.N'.N"-Tetrabensoyl-[2.4.6-triamino-phenol] $C_{34}H_{25}O_{5}N_{3} = (C_{6}H_{5}\cdot CO\cdot NH)_{2}C_{6}H_{2}\cdot O\cdot CO\cdot C_{6}H_{5}$. Aus salzsaurem 2.4.6-Triamino-phenol mit Benzoylchlorid und 10% jeger Natronlauge (HINSBERG, v. UDRÁNSZKY, A. 254, 257. Aus dem Zinndoppelsalz des 2.4.6-Triamino-phenols mit Benzoylchlorid in Pyridin (Heller, Nötzel, J. pr. [2] 76, 59). Nadeln (aus Eisessig). F: 256°; kaum löslich in Alkohol; wird von starken Mineralsäuren nicht verändert (Hi., v. U.).
- **2.4.6 Tris [2 carboxy benza**mino] phenol $C_{30}H_{31}O_{10}N_3 = (HO_2C \cdot C_6H_4 \cdot CO \cdot NH)_3C_6H_1 \cdot OH$. B. Beim Auflösen von 2.4.6-Triphthalimido-phenol $[C_6H_4(CO)_2N]_3C_6H_2 \cdot OH$ (Syst. No. 3218) in Kalilauge; man fällt die Lösung durch Salzsäure (Piutti, G. 16, 254). Nadeln (aus Alkohol). Schmilzt oberhalb 300° unter Abspaltung von Wasser und Bildung von Phthalsäureanhydrid und 2.4.6-Triphthalimido-phenol.
- 2-Oxy-3.5-diamino-phenylisocyanat, 2-Oxy-3.5-diamino-phenylcarbonimid $C_7H_7O_2N_3$, s. nebenstehende Formel. B. Aus 5-Nitro-2-oxy-3-amino-phenylisocyanat (S. 564) mit Zinn und Salzsäure (Griess, J. pr. [2] 5, 5). Nadeln. Bräunt sich im feuchten Zustande an der Luft. Sehr wenig lösilen in kochendem Wasser und noch weniger in Alkohol oder Äther. Löst sich in Kalilauge oder Barytwasser, wird aus diesen Lösungen durch Kohlensäure gefällt. $C_7H_7O_2N_3+HCl$. Blättchen.
- 2.3.4 oder 2.3.6 Triamino 1 oxy benzol, 2.3.4 oder 2.3.6 Triamino phenol $C_0H_0ON_3 = (H_2N)_3C_0H_2 \cdot OH$. B. Durch vorsichtige Reduktion von Dichinoyltrioxim (Bd. VII, S. 886) mit Zinnchlorür und Salzsäure (Nietzki, Blumenthal, B. 30, 183). Gibt mit Eisenchlorid eine blaue Färbung. $C_0H_0ON_3 + H_2SO_4$. Krystalle. Sehr wenig löslich in Wasser, leicht in verd. Salzsäure, aus dieser Lösung durch Alkohol + etwas Schwefelsäure fällbar. Pikrat $C_0H_0ON_3 + C_0H_3O_7N_3$.

Triacetylderivat $C_{12}H_{15}O_4N_5=C_6H_5ON_5(CO\cdot CH_3)_3$. B. Beim Behandeln des 2.3.4-oder 2.3.6-Triamino-phenols (s. o.) mit Essigssureanhydrid und Natriumacetat (N., B., B. 30, 183). — F: 230°. Schwer löslich in heißem Alkohol und Wasser.

Tetraacetylderivat $C_{14}H_{17}O_5N_3 = C_6H_5ON_3(CO\cdot CH_3)_4$. B. Beim Behandeln des Triacetylderivats mit Essigsäureanhydrid (N., B., B. 30, 183). — F: 211°. Ziemlich löslich in Alkohol.

[x.x-Diamino-4-äthoxy-phenyl]-urethan¹) $C_{11}H_{17}O_3N_3 = (C_2H_5 \cdot O_3C \cdot NH)(H_2N)_2C_6H_3 \cdot O \cdot C_2H_5$. B. Beim Behandeln des [x.x-Dinitro-4-äthoxy-phenyl]-urethans vom Schmelzpunkt 141° (S. 532) mit Zinn und Salzsäure (Köhler, J. pr. [2] 29, 277). — Nadeln. Sehr schwer löslich in Wasser und Alkohol. — $C_{11}H_{17}O_3N_3 + HCl$. Sechsseitige Blättchen. Schmilzt bei 238° zu einer schwarzbraunen Masse.

Tetraaminoderivate des Oxybenzols.

- **2.3.4.5-Tetraamino-phenol-methyläther**, **2.3.4.5-Tetraamino-anisol** $C_7H_{13}ON_4=(H_2N)_4C_6H\cdot O\cdot CH_3$. Bei der Reduktion von 3.5-Dinitro-2.4-diamino-anisol (S. 552) durch Zinnehlorür und Salzsäure (Nietzki, Kurtenacker, B. 25, 283). $2C_7H_{13}ON_4+3H_4SO_4$. Sohwer lösliche Blättehen.
- 2.3.4.5-Tetraamino-phenol-äthyläther, 2.3.4.5-Tetraamino-phenetol $C_8H_{14}ON_4 = (H_2N)_4C_6H \cdot O \cdot C_2H_5$. B. Wurde aus dem Produkt, das aus [2.3.6-Trinitro-4-āthoxy-phenyl]-urethan mit Schwefelsäure (D: 1,14) bei 100° gewonnen wurde (und offenbar ein Gemisch von Trinitro-amino-phenetol mit viel unverändertem Trinitroäthoxyphenylurethan war, vgl. den Artikel 2.3.5-Trinitro-4-amino-phenetol, S. 532) durch Behandeln mit Zinn und Salssäure erhalten (Köhler, J. pr. [2] 29, 285). Die wäßt. Lösung des salssauren Salzes wird durch Zusatz von Chlorkalk oder Eisenchlorid nacheinander dunkelgrün, rot, braun und gelb gefärbt und wird zuletzt farblos. $C_2H_{14}ON_4 + 2HCl$ (bei 100°). Blättehen oder flache Prismen. Wird bei 360° schwarz, ohne zu schmelzen. Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol.

¹) Vgl. die Anmerkung 1 auf S. 532, wonach diese Verbindung vielleicht als [2.6-Diamino-4-äthoxy-phenyl]-urethan aufzufassen ist.

[2.3.6 - Triamino - 4 - äthoxy - phenyl] - urethan $C_{11}H_{18}O_3N_4$, s. nebenstehende Formel. B. Beim Behandeln von [2.3.6 - Trinitro-4-äthoxy-phenyl] - urethan (5.33) mit Zinn und Sazaure Köhler, Joseph en der Luft ovydieren

 $\begin{array}{c} O \cdot C_2H_5 \\ \vdots \\ NH_2 \\ NH \cdot CO_2 \cdot C_2H_5 \end{array}$

4-āthoxy-phenyl]-urethan (S. 533) mit Zinn und Salzsäure (Köhler, J. pr. [2] 29, 281). — Nadeln, die sich rasch an der Luft oxydieren. — C₁₁H₁₈O₂N₄ + HCl. Nadeln (aus wäßr. Alkohol). Schmilzt gegen 233° unter Zersetzung. Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol.

2. Aminoderivate der Monooxy-Verbindungen C_7H_8O .

4195) (A. W. Ho., v. M.).

1. Aminoderivate des 2 - Oxy - 1 - methyl - benzols $C_7H_8O=CH_3\cdot C_0H_4\cdot OH$ (Bd. VI, S. 349). Vgl. auch No. 4 auf S. 614.

Monoaminoderivate des 2-Oxy-1-methyl-benzols.

3-Amino-2-oxy-1-methyl-benzol und seine Derivate.

- 3 Amino 2 oxy 1 methyl benzol, NH 6-Amino-o-kresol¹) C,H,ON, s. Formel I. CH, NH. Bei der Reduktion von 3-Nitro-2-oxy-1-methyl- I. OH OH benzol (Bd. VI, S. 365) mit Zinn und Salzsäure ·NH. CH, (A. W. HOFMANN, v. MILLER, B. 14, 570). — Bei der Oxydation in wäßriger, schwach alkalischer Lösung mit Luft entsteht Aminodimethylphenoxazon (s. bei der entsprechenden Leukoverbindung, dem 3-Amino-2-oxy-1.8-dimethylphenoxazin der Formel II, Syst. No. 4382) (KEHEMANN, URECH, B. 39, 136). Dieses entsteht auch bei der Einw. von Chinon auf 3-Amino-2-oxy-1-methyl-benzol in alkoh. Lösung (ZINCKE, HEBEBRAND, A. 226, 73; vgl. O. FISCHER, HEPP, B. 28, 297). Das salzsaure Salz liefert bei der Destillation mit Natriumformiat 7-Methyl-benzoxazol CH₃·C₆H₃<0>CH (Syst. No.
- 3 Amino 2 methoxy 1 methyl bengol, 6 Amino 0 kresol methyläther $C_8H_{11}ON = H_2N \cdot C_6H_3(CH_3) \cdot O \cdot CH_2$. B. Bei der Reduktion von 3-Nitro-2-methoxy-1-methylbenzol (Bd. VI, S. 365) mit Zinn und Salzsäure (A. W. Hofmann, v. Miller, B. 14, 569; Spiegel, Munblit, Kaufmann, B. 39, 3242). Flüssig. Kp: 223°; unlöslich in Wasser (A. W. Ho., v. Mi.). $C_6H_{11}ON + HCl$. Weiße, an der Luft sich bläulich färbende Krystallmasse (aus Alkohol durch Ather). F: 168°; sehr leicht löslich in Wasser und Alkohol (Sp., Mu., K.).
- 3-Amino-2-äthoxy-1-methyl-benzol, 6-Amino-o-kresol-äthyläther $C_0H_{13}ON=H_2N\cdot C_0H_3(CH_2)\cdot O\cdot C_2H_5$. B. Bei der Reduktion von 3-Nitro-2-äthoxy-1-methyl-benzol (Bd. VI, S. 365) mit Zinn und Salzsäure (Spiegel, Munblit, Kaufmann, B. 39, 3243). Ol. Flüchtig mit Wasserdampf. $C_0H_{12}ON+HCl.$ F: 189°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther. Färbt sich an der Luft rötlich.
- 8 Amino 2 propyloxy 1 methyl bensol, 6 Amino o kresol propyläther $C_{10}H_{16}ON = H_{\bullet}N \cdot C_{\bullet}H_{\bullet}(CH_{\bullet}) \cdot O \cdot CH_{\bullet} \cdot CH_{\bullet} \cdot CH_{\bullet}$. B. Analog derjenigen des 3-Amino-2-āthoxy-1-methyl-benzols (Sp., M., K., B. 39, 3244). Öl. Färbt sich an der Luft schwach rötlich. $C_{10}H_{15}ON + HCl$. F: 178°.
- 3-Amino-2-allyloxy-1-methyl-benzol, 6-Amino-o-kresol-allyläther $C_{10}H_{13}ON=H_2N\cdot C_eH_3(CH_3)\cdot O\cdot CH_2\cdot CH: CH_2$. B. Analog derjenigen des 3-Amino-2-āthoxy-1-methylbenzols (Sp., M., K., B. 39, 3245). Öl. Flüchtig mit Wasserdampf. Leicht löslich in Alkohol und Äther, sehr wenig in Wasser. $C_{10}H_{13}ON+HCl$. Krystalle (aus Alkohol durch Äther). F: 160°. Sehr leicht löslich in Wasser und Alkohol.
- 3 Amino 2 benzyloxy 1 methyl benzol, 6 Amino o kresol benzyläther $C_{14}H_{15}ON = H_2N \cdot C_6H_3(CH_3) \cdot O \cdot CH_2 \cdot C_6H_5$. B. Beim mehrstündigen Kochen von [6-Nitro-2-methyl-phenyl]-benzyläther (Bd. VI, S. 434) mit Eisen und 1° /oiger Essigsäure (Sp., M., K., B. 39, 3246). Öl. Ziemlich sohwer flüchtig mit Wasserdampf. $C_{14}H_{15}ON + HCl$. Krystalle (aus Alkohol durch Äther). F: 178°. Ziemlich leicht löslich in Alkohol. Kann mit Alkohol auf 80° ohne Zersetzung erwärmt werden. Dissoziiert beim Erwärmen mit Wasser.

[6-Amino-2-methyl-phenyl]-kohlensäure-äthylester $C_{10}H_{18}O_3N$, CH_3 s. nebenstehende Formel. B. Bei der Reduktion von Kohlensäure-äthylester-[6-nitro-2-methyl-phenyl]-ester (Bd. VI, S. 365) mit Zinn und Salzsäure (Urson, Am. 32, 21). — Über die Affinitätskonstante und

¹⁾ Besifferung der vom Namen o-Kresel" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

- über die Umlagerung in [2-Oxy-3-methyl-phenyl]-urethan (s. u.) vgl. STIEGLITZ, UPSON, Am. 31, 492, 501. $C_{10}H_{13}O_3N+HCl$. Weißer Niederschlag. Leicht löslich in Wasser, löslich in Alkohol, unlöslich in Äther (U.). $2C_{10}H_{13}O_3N+2HCl+PtCl_4$ (U.).
- [2-Oxy-3-methyl-phenyl]-urethan $C_{10}H_{13}O_3N$, s. nebenstehende Formel. B. Aus. dem salzsauren [6-Amino-2-methyl-phenyl]-kohlensäure-äthylester (S. 572) durch Umlagerung in wäßr. Lösung (Urson, Am. 32, 22). Nadeln (aus Wasser). F: 74—76°. Löslich in Alkohol, Äther; unlöslich in Säuren, löslich in Alkali.
- [2-Methoxy-3-methyl-phenyl]-harnstoff $C_9H_{12}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_8H_3(CH_3)\cdot O\cdot CH_3$. B. Beim Erwärmen von salzsaurem 3-Amino-2-methoxy-1-methyl-benzol in Wasser mit Harnstoff auf dem Wasserbade (Spiegel, Munblit, Kaufmann, B. 39, 3242). Blättchen (aus Alkohol durch heißes Wasser). F: 150°. Leicht löslich in Alkohol und heißem Wasser, fast unlöslich in kaltem Wasser. Schmeckt nicht süß.
- [2 Methoxy 3 methyl phenyl] thioharnstoff $C_9H_{12}ON_2S = H_2N \cdot CS \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CH_3$. B. Beim allmählichen Versetzen einer wäßr. Lösung von salzsaurem 3 Amino 2 methoxy 1 methyl benzol mit wäßr. Ammoniumrhodanid unter Schütteln (Sp., M., K., B. 39, 3242). Krystalle (aus Alkohol durch heißes Wasser). F: 137°. Leicht löslich in Alkohol, fast unlöslich in Wasser.
- [2-Äthoxy-3-methyl-phenyl]-harnstoff $C_{10}H_{14}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Beim Erwärmen von salzsaurem 3-Amino-2-äthoxy-1-methyl-benzol in Wasser mit Harnstoff auf dem Wasserbade (Sp., M., K., B. 39, 3243). Nädelchen. F: 183°. Fast unlöslich in kaltem Wasser. Hat keinen süßen Geschmack.
- [2-Äthoxy-3-methyl-phenyl]-thioharnstoff $C_{10}H_{14}ON_2S = H_2N \cdot CS \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$. Krystalle. F: 140°; leicht löslich in Alkohol, fast unlöslich in Wasser (Sp., M., K., B. 39, 3243).
- [2-Propyloxy-3-methyl-phenyl]-harnstoff $C_{11}H_{16}O_2N_2 = H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH_3$. Nadeln (aus wäßr. Alkohol); sehr leicht löslich in Alkohol, fast unlöslich in kaltem Wasser; schmeckt nicht süß (Sr., M., K., B. 39, 3244).
- [2 Propyloxy 3 methyl phenyl] thioharnstoff $C_{11}H_{16}ON_2S = H_2N \cdot CS \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CH_2 \cdot CH_3 \cdot CH_3$. Krystalle. F: 124°; leicht löslich in Alkohol, sehr wenig in Wasser (Sp., M., K., B. 39, 3244).
- [2-Allyloxy-3-methyl-phenyl]-harnstoff $C_{11}H_{14}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CH_2\cdot CH: CH_2$. B. Beim Behandeln von salzsaurem 3-Amino-2-allyloxy-1-methyl-benzol mit Kaliumcyanat in wäßr. Lösung (Sp., M., K., B. 39, 3245). Nadeln (aus Alkohol durch heißes Wasser). F: 137°. Fast unlöslich in kaltem Wasser, löslich in heißem Wasser und Alkohol.
- [2-Allyloxy-3-methyl-phenyl]-thibharnstoff $C_{11}H_{14}ON_2S = H_2N \cdot CS \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CH_2 \cdot CH \cdot CH_2$. Nadeln (aus Wasser). F: 130°; ziemlich leicht löslich in heißem Wasser (Sp., M., K., B. 39, 3245).
- [2-Benzyloxy-3-methyl-phenyl]-harnstoff $C_{15}H_{16}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CH_2\cdot C_6H_5$. B. Bei 12-stdg. Erhitzen einer alkoh. Lösung von salzsaurem 3-Amino-2-benzyloxy-1-methyl-benzol (S. 572) mit einer wäßr. Lösung von Kaliumoyanat auf 65° (Sp., M., K., B. 39, 3247). Krystalle (aus Alkohol durch Wasser). F: 113°. Hat keinen süßen Geschmack.
- 5-Brom-3-amino-2-oxy-1-methyl-benzol, 4-Brom-6-amino-o-kresol 1) $C_7H_8ONBr=H_2N\cdot C_8H_2Br(CH_3)\cdot OH$. B. Beim Kochen einer alkoh. Lösung von 5-Brom-3-nitro-2-oxy-1-methyl-benzol (Bd. VI, S. 367) mit Zinnchlorür und Salzsäure (CLAUS, JACKSON, J. pr. [2] 38, 324). Sublimiert in Nadeln. F:110°. $C_7H_8ONBr+HCl$. Blättchen (aus Wasser). Wird durch Eisenchlorid intensiv rot gefärbt. Ziemlich schwer löslich in kaltem Wasser.
- 5-Brom-3-amino-2-benzyloxy-1-methyl-benzol, 4-Brom-6-amino-o-kresol-benzyläther $C_{14}H_{14}ONBr = H_1N \cdot C_eH_2Br(CH_3) \cdot O \cdot CH_2 \cdot C_eH_5$. B. Aus [4-Brom-6-nitro-2-methyl-phenyl]-benzyl-äther (Bd. VI, S. 434) durch Reduktion (Höchster Farbw., D. R. P. 142899; C. 1908 II, 83). Hydrochlorid. F: 245—250°. Findet Verwendung zur Darstellung von Azofarbstoffen (H. F.).

¹) Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

- [4 Brom 6 amino 2 methyl phenyl] kohlensäure äthylester $C_{10}H_{12}O_3NBr$, s. nebenstehende Formel. B. Aus Kohlensäure-äthylester [4 brom 6 nitro 2 methyl phenyl] ester (Bd. VI, S. 367) durch Zinn und Salzsäure (Urson, Am. 32, 34). $C_{10}H_{12}O_3NBr$ NH₂ + HCl. F: 173—178° (Zers.); löslich in Alkohol, unlöslich in Wasser (U.). Über die Umwandlung in [5-Brom-2-oxy-3-methyl-phenyl]-urethan vgl. STEEGLITZ, U., Am. 31, 501.
- [5-Brom-2-oxy-3-methyl-phenyl]-urethan $C_{10}H_{19}O_{3}NBr$, s. nebenstehende Formel. B. Beim Erwärmen des salzsauren [4-Brom-6-amino-2-methyl-phenyl]-kohlensäure-äthylesters mit Wasser (UPSON, Am. 32, 34; vgl. STEEGLITZ, U., Am. 31, 501). Br. NH·CO₂·C₂H₅ F: 123°; löslich in Alkalien (U.).
- 5-Nitro-8-amino-2-oxy-1-methyl-bensol, 4-Nitro-6-amino-o-kresol¹) $C_7H_9O_9N_3=H_9N\cdot C_9H_9(NO_9)(CH_9)\cdot OH$. B. Beim Kochen von 3.5-Dinitro-2-oxy-1-methylbenzol (Bd. VI, S. 368) mit wäßr. Schwefelammonium (Cazeneuve, Bl. [3] 17, 206). Rotbraune Nadeln (aus Benzol). F: 165° (Zers.) (C.). Verwendung zur Darstellung von Azofarbstoffen: Chem. Fabr. Sandoz, D. R. P. 175625; C. 1906 Π , 1748.

4-Amino-2-oxy-1-methyl-benzol und seine Derivate.

- 4-Amino-2-oxy-1-methyl-benzol, 5-Amino-o-kresol¹) C₇H₉ON, s. nebenstehende Formel. B. Bei der Reduktion von 4-Nitro-2-oxy-1-methyl-benzol (Bd. VI, 8. 365) mit Zinn und Salzsäure (Noellting, Collin, B. 17, 270). Beim Kochen von 4-Acetamino-2-oxy-1-methyl-benzol (s. u.) mit 10 Tln. 25°/oiger Salzsäure (Wallace, B. 15, 2832). Farblose Blättchen oder Nadeln (aus Wasser). F: 159° bis 161° (W.). Sublimiert bei vorsichtigem Erhitzen unzersetzt in Blättchen (W.). Ziemlich schwer löslich in kaltem Wasser, leicht in heißem, sehr leicht in Alkohol und Äther (W.). Gibt beim Erwärmen mit Benz-
- β-Naphthol bei 210° zu Oxy-methyl-phenyl-naphthacridin-dihydrid,
 s. nebenstehende Formel (Syst. No. 3123) kondensiert, das infolge
 der hohen Temperatur sich teilweise zu Oxy-methyl-phenylnaphthacridin (Syst. No. 3124) oxydiert (ULLMANN, FITZENKAM, B. 38, 3787). Beim
 Erhitzen mit Schwefel auf 260° entsteht ein brauner Schwefelfarbstoff (VIDAL, D. R. P. 107236;
 C. 1900 I, 880). Durch Erhitzen mit Schwefelchlorür entsteht ein schwarzer Schwefelfarbstoff

aldehyd eine Benzalverbindung, die sich beim Verschmelzen mit

- C. 1900 I, 880). Durch Erhitzen mit Schwefelchlorür entsteht ein schwarzer Schwefelfarbstoff (Cassella & Co., D. R. P. 103646; Frdl. 5, 468; C. 1899 II, 639). Verwendung der Äther zur Darstellung von Azofarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 84772; Frdl. 4, 790. C,H₆ON + HCl. Blättchen oder Nadeln (N., Co.).
- 4-Amino-2-methoxy-1-methyl-bensol, 5-Amino-o-kresol-methyläther $C_8H_{11}ON=H_2N\cdot C_8H_2(CH_2)\cdot O\cdot CH_2$. B. Durch Reduktion von 4-Nitro-2-methoxy-1-methyl-benzol (Bd. VI, S. 365) mit Zinnehlorür + Salzsäure in Gegenwart von etwas Alkohol (Ullmann, Fitzenkam, B. 38, 3790). Krystalle. F: 55°. Kp: 250—252°. Gut löslich in Alkohol, Benzol und Ligroin. $C_9H_{11}ON+HCl$. Nadeln. F: 269—270°. Ziemlich löslich in heißem Wasser, Alkohol, Eisessig. $2C_9H_{11}ON+2HCl+SnCl_4$. Nadeln.
- 4-Amino-2-āthoxy-1-methyl-benzol, 5-Amino-o-kresol-āthylāther $C_0H_{13}ON=H_2N\cdot C_0H_2(CH_2)\cdot O\cdot C_2H_3$. B. Bei der Reduktion von 4-Nitro-2-āthoxy-1-methyl-benzol (Bd. VI, S. 366) in Alkohol mit Zinnehlorür und Salzsäure (Sfiegel, Munblit, Kaufmann, B. 39, 3248). Öl. Erstarrt in einer Eis-Kochsalz-Mischung. Kp: 249—250°. Flüchtig mit Wasserdampf. Leicht löslich in Alkohol und Äther. Färbt sich an der Luft dunkel. $C_0H_{12}ON+HCl$. Nadeln. F: 245°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther.
- Athylenglykol bis [5 amino 2 methyl phenyläther]

 C₁₈H₂₀O₂N₂, s. nebenstehende Formel. B. Bei der Reduktion von Athylenglykol-bis-[5-nitro-2-methyl-phenyläther] (Bd. VI, S. 366) in alkoh. Lösung durch Zinnohlorür und Salzsäure (Sr., M., K., B. 39, 3251). Nadeln (aus Benzol). F: 129°. Nicht flüchtig mit Wasserdampf. Unlöslich in Wasser, ziemlich schwer löslich in Alkohol und Ather, löslich in Benzol.
- 4-Acetamino-2-oxy-1-methyl-benzol, 5-Acetamino-o-kresol $C_2H_{11}O_2N=CH_2\cdot CO\cdot NH\cdot C_2H_3(CH_2)\cdot OH$. B. Durch Eintragen von 1 Mol.-Gew. Natriumnitrit in eine Lösung von 2-Amino-4-acetamino-toluol (S. 133) in 2 Mol.-Gew. Salzsäure und Verkochen der erhaltenen Diasoniumsalzlösung (Wallach, B. 15, 2831). Durch 2—3-stdg. Kochen von

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

- 4-Amino-2-oxy-1-methyl-benzol mit Essigsäureanhydrid und Behandeln des Produktes mit wäßr. Alkali (Maassen, B. 17, 609). — Prismen (aus verd. Alkohol). F: 224—225° (W.). Sublimiert unzersetzt in Blättchen (W.). Schwer löslich in kaltem Wasser, sehr leicht in Alkohol; leicht löslich in Natronlauge (W.).
- $\begin{array}{lll} \textbf{4-Acetamino-2-methoxy-l-methyl-benzol}\,, & \textbf{5-Acetamino-o-kresol-methyläther}\,\\ \textbf{C}_{10}\textbf{H}_{13}\textbf{O}_{2}\textbf{N} &= \textbf{C}\textbf{H}_{3}\cdot\textbf{CO}\cdot\textbf{NH}\cdot\textbf{C}_{6}\textbf{H}_{3}(\textbf{CH}_{3})\cdot\textbf{O}\cdot\textbf{CH}_{3}. & \textbf{B. Aus 4-Amino-2-methoxy-1-methyl-benzol } \end{array}$ in wenig Eisessig und Essigsäureanhydrid (ULLMANN, FITZENKAM, B. 38, 3791). — Blättchen. F: 1320. Ziemlich löslich in heißem Wasser, Alkohol, Eisessig.
- 4-Acetamino-2-acetoxy-1-methyl-benzol, O.N.-Diacetyl-[5-amino-o-kresol] $C_{11}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch längere Einw. von Essigsäureanhydrid auf 4-Amino-2-oxy-1-methyl-benzol (Maassen, B. 17, 609). Beim vorsichtigen Erwärmen von trocknem 4-Acetamino-1-methyl-benzol-diazoniumbromid-(2) (Syst. No. 2203) mit Essigsäureanhydrid (WALLACH, A. 235, 249). — Prismen (aus Äther-Alkohol). F: 132,50 (W.). — Geht bei kurzem Kochen mit Natronlauge in 4-Acetamino-2-oxy-1-methyl-benzol über (W.).
- [8-Athoxy-4-methyl-phenyl]-urethan $C_{12}H_{17}O_3N$, s. nebenstehende Formel. B. Aus 4-Amino-2-athoxy-1-methyl-benzol und Chlorameisensäureester (Bd. III, S. 10) in Ather (Spiegel, Munblit, Kaufmann, B. 39, 3250). — Nadeln (aus Äther). F: 68°. Unlöslich in Wasser, sehr leicht löslich in Alkohol, Äther und Aceton.
 - $\dot{N}H \cdot CO_2 \cdot C_2H_5$
- [3 Äthoxy 4 methyl-phenyl]-harnstoff $C_{10}H_{14}O_2N_2=H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Aussalzsaurem 4-Amino-2-äthoxy-1-methyl-benzol und Kaliumcyanat in wäßr. Lösung (Sp., M., K., B. 39, 3249). — Nadeln (aus wenig Methylalkohol). F: 161°. Leicht löslich in Methylalkohol, sehr leicht in Alkohol, unlöslich in Wasser und Äther. Geschmacklos.
- [3-Athoxy-4-methyl-phenyl]-thioharnstoff $C_{10}H_{14}ON_2S = H_2N \cdot CS \cdot NH \cdot C_6H_3(CH_3)$ O·C₂H₅. B. Bei 8-stdg. Erhitzen von salzsaurem 4-Amino-2-äthoxy-1-methyl-benzol mit Rhodankalium und wenig Wasser auf 120° (Sp., M., K., B. 39, 3249). — Nadeln (aus Methylalkohol). F: 198°. Leicht löslich in Methylalkohol und Alkohol, schwer in Wasser. Schmeckt intensiv bitter.

Äthylenglykol-bis-[5-ureido-2-methyl-phenyläther] $C_{18}H_{22}O_4N_4$, s. nebenstehende Formel. B. Beim Kochen von salzsaurem Äthylenglykol-bis-[5-amino-2-methyl-phenyläther] (S. 574) in wäßr. Lösung mit Kaliumcyanat (Sp., M., K., B. 39, 3251). — Gelbes Krystallpulver. F: 218°. Fast unlöslich in Wasser, leicht löslich in Alkohol und Eisessig. NH. CO. NH. Schmeckt schwach bitter.

- 3.5-Dinitro-4-methylamino-2-oxy-1-methyl-benzol, 4.6-Dinitro-5-methylamino-o-kresol 1) $C_8H_9O_5N_3=CH_3\cdot NH\cdot C_6H(NO_2)_2(CH_3)\cdot OH$. B. Das Methylaminsalz entsteht beim Versetzen einer Lösung von 3.4.5-Trinitro-2-oxy-1-methyl-benzol (Bd. VI, S. 369) in heißem Alkohol mit 33% jeer Methylaminlösung; man versetzt die wäßr. Lösung des Salzes mit verd. Schwefelsäure (SOMMER, J. pr. [2] 67, 557). — Rote Nadeln (aus Alkohol). F: 151°. — Silbersalz. Blutroter Niederschlag. — Methylaminsalz. Goldgelbe Nädelchen. Zersetzt sich bei etwa 208°. Löslich in kaltem Wasser.
- 3.5-Dinitro-4-methylamino-2-methoxy-1-methyl-benzol, 4.6-Dinitro-5-[methylamino]-o-kresol-methyläther $C_9H_{11}O_5N_3=CH_3\cdot NH\cdot C_6H(NO_2)_2(CH_3)\cdot O\cdot CH_3$. B. Beim Erwärmen des Silbersalzes des 3.5-Dinitro-4-methylamino-2-oxy-1-methyl-benzols in Methylalkohol mit Methyljodid auf 40° (Sommer, J. pr. [2] 67, 558). — Hellgelbe Nadeln (aus Alkohol). F: 117.50. Leicht löslich in Alkohol und Ather.
- 3.5-Dinitro-4-methylamino-2-athoxy-1-methyl-benzol, 4.6-Dinitro-5-[methylamino]-o-kresol-äthyläther $C_{10}H_{13}O_5N_3=CH_3\cdot NH\cdot C_6H(NO_5)_3(CH_3)\cdot O\cdot C_2H_5$. Alkoholhaltige Krystalle (aus Alkohol). Schmilzt alkoholhaltig bei ca. 95°, wird wieder fest und schmilzt dann bei 160° (Sommer, J. pr. [2] 67, 559). — Liefert mit konzentriertem absolut-alkoholischem Ammoniak im Einschlußrohr bei 100° 3.5-Dinitro-2-amino-4-methylamino-1-methylbenzol (S. 142) (S.).
- 4-Amino-2-sulfhydryl-1-methyl-benzol, 4-Amino-2-mercapto-1-methyl-benzol, 5-Amino-thio-o-kresol, 5-Amino-2-methyl-phenylmercaptan $C_7H_9NS=H_2N\cdot C_6H_3(CH_3)\cdot SH$. B. Aus 4-Nitro-toluol-sulfonsaure-(2)-chlorid (Bd. XI, S. 92) mit Zinn

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, 8. 349.

und Salzsäure (HESS, B. 14, 488). — F: 42°. Löslich in Alkohol und Äther, löslich in Alkalien und Säuren. — Oxydiert sich langsam an der Luft, schneller beim Kochen mit Eisenchlorid und Salzsaure zu dem (nicht näher beschriebenen) Disulfid. — C. H. NS + HCl. Prismen oder sechsseitige Tafeln.

5-Amino-2-methyl-diphenylsulfon C₁₈H₁₃O₂NS, s. nebenstehende Formel. B. Bei der Reduktion von 5-Nitro-2-methyl-diphenylsulfon (Bd. VI, S. 373) in alkoh. Lösung mit Schwefelammonium (NORRIS, Am. CH₃ 24, 480) oder mit Zinnchlorür und Salzsäure (ULLMANN, LEHNER, B. 38, 737). — Platten (aus Alkohol oder Wasser). F: 156 (N.). Leicht löslich in Alkohol und Aceton, schwer in heißem Wasser (N.).

CH, 5.5'-Diamino-2.2'-dimethyl-diphenylsulfid C₁₄H₁₆N₂S, s. nebenstehende Formel. Das von Purgotti, G. 20, 31, als solches aufgefaßte Thio-p-toluidin ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] von Bogert, Mandelbaum, Am. Soc. 45, 3045, als 6.6'-Diamino - 3.3'-dimethyl-diphenylsulfid (S. 591) erkannt worden.

4-Acetamino-2-sulfhydryl-1-methyl-bensol, 5-Acetamino-thio-o-kresol, $\textbf{5-Acetamino-2-methyl-phenylmercaptan} \quad C_9H_{11}ONS = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot SH.$ Beim längeren Kochen von 4-Amino-2-sulfhydryl-1-methyl-benzol mit Essigsäureanhydrid (HESS, B. 14, 489). — Nadeln (aus Alkohol). F: 1956.

5 - Acetamino - 2 - methyl - diphenylsulfon $C_{15}H_{15}O_2NS$, CH, s. nebenstehende Formel. B. Beim Behandeln von 5-Amino-·SO2· 2-methyl-diphenylsulfon mit einem Gemisch aus Eisessig und Essigsäureanhydrid (ULLMANN, LEHNER, B. 38, 737). — Nadeln. CH₃·CO·NH F: 183°. Sehr wenig löslich in siedendem Wasser, schwer in Äther, leicht in siedendem Alkohol, Benzol und in Eisessig. — Wird durch wäßr. Kaliumpermanganat zu 5-Acetamino-diphenylsulfon-carbonsäure-(2) (Syst. No. 1911) oxydiert.

5-Amino-2-oxy-1-methyl-benzol und seine Derivate.

5-Amino-2-oxy-1-methyl-benzol, 4-Amino-o-kresol¹) C₂H₅ON, s. nebenstehende Formel. B. Bei der Elektrolyse einer Lösung von 3-Nitro-CH₃ $\mathbf{o}\mathbf{H}$ toluol (Bd. V, S. 321) in konz. Schwefelsäure (Gatteemann, B. 27, 1930; Bayer & Co., D. R. P. 75260; Frdl. 3, 53). Bei der Einw. von Salzsäure H.N. auf m-Tolylhydroxylamin (Syst. No. 1933) neben anderen Produkten (BAMBERGER, B. 35, 3700). Durch Behandeln von 5-Nitro-2-oxy-1-methyl-benzol (Bd. VI, S. 366) mit Zinn und Salzsaure (Neville, Winther, B. 15, 2979). Beim Behandeln von 4-Oxy-3-methyl-azobenzol (Syst. No. 2113) mit Zinn und Salzsäure (Noelting, Kohn, B. 17, 365). Bei der Reduktion von 5-Nitroso-2-oxy-1-methyl-benzol (Toluchinon-oxim-(4); Bd. VII, S. 647) (Noel, Ko., B. 17, 371). — Blättchen (aus Benzol). Schmilzt bei 172—173° und nach dem Sublimieren bei 174—175° (NOE., Ko.). Leicht löslich in Alkohol und Äther, schwerer in Wasser und Benzol (Nom., Ko.). Das salzsaure Salz wird durch Eisenchlorid nicht gefärbt (Nom., Ko.). — Wird von Chromsäure zu Toluchinon (Bd. VII, S. 645) oxydiert (Nom., Ko.). Verwendung als Azokomponente: BAYER & Co., D. R. P. 79165; Frdl. 4, 750. Verwendung der Äther zur Darstellung von Azofarbstoffen: Akt. Ges. f. Anilinf., D. R. P. 84772; Frdl. 4, 790. Beim Erhitzen mit Schwefel und den Acetylverbindungen aromatischer Amine entstehen unter Entwicklung von Schwefelwasserstoff und wenig Ammoniak schwarze Schwefelfarbstoffe (GEIGY & Co., D. R. P. 128361; C. 1902 I, 508). Liefert beim Erhitzen mit dem Natriumsalz der 6-Chlor-3-nitro-benzol-sulfonsäure-(1), Natriumacetat und Wasser im geschlossenen Rohr auf 120° das Natriumsalz der 4'-Nitro-4-oxy-3-methyl-diphenylamin-sulfonsaure-(2') (Syst. No. 1923) (Höchster Farbw., D. R. P. 113516; Frdl. 6, 650; C. 1900 II, 796). Wird durch Erhitzen mit Benzolazo-aryl-naphthylamin-(1) in Alkohol in ein Rosindulinderivat übergeführt (Kalle & Co., D. R. P. 163239; C. 1905 II, 999), das in einen roten Schwefelfarbstoff überführbar ist (Ka. & Co., D. R. P. 165007; C. 1906 I, 110). — C,H,ON + HCl. Krystall-pulver. Leicht löslich in Wasser und Alkohol (Noz., Ko.).

5-Amino-2- \ddot{a} thoxy-1-methyl-bensol, 4-Amino-o-kresol- \ddot{a} thyl \ddot{a} ther $C_aH_{12}ON=$ 5-Amino-2-athoxy-1-methyl-benzol, 4-Amino-o-kresol-athylather $C_0H_{12}ON = H_2N \cdot C_0H_3(CH_2) \cdot O \cdot C_2H_5$. B. Bei der Reduktion von 5-Nitro-2-athoxy-1-methyl-benzol (Bd. VI, S. 366) mit Zinn und Salzsaure (Stardel, A. 217, 217). — Flüssig. Mit Wasserdämpfen flüchtig (St.). — $C_0H_{12}ON + HCl$. Krystalle. F: 210° (Stiegel, Munblit, Kaufmann, B. 39, 3247). — $C_0H_{12}ON + HCl + 1^1/9H_2O$. Blättchen (St.). — $2C_0H_{12}ON + H_2SO_4$. Leicht lösliche Nadeln (St.). — $C_0H_{12}ON + HNO_2$. Leicht lösliche Nadeln (St.). — Oxalat $2C_0H_{12}ON + C_0H_2O_4$. Blätter (St.). — $2C_0H_{13}ON + 2HCl + PtCl_4$. Hellgelber krystallinischer Niederschlag (St.).

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349

- **2'.4'** Dinitro 4 oxy 3 methyl diphenylamin $C_{13}H_{11}O_5N_3$, s. nebenstehende Formel. B. Bei der Kondensation von 5-Amino-2-oxy-1-methyl-benzol mit 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) (Cassella & Co., D. R. P. 104283; Frdl. 5, 424). Liefert beim Erhitzen mit Schwefel und Schwefelalkalien einen schwarzen Baumwollfarbstoff.
- 5-Acetamino-2-oxy-1-methyl-benzol, 4-Acetamino-o-kresol $C_0H_{11}O_2N=CH_3$ · $CO\cdot NH\cdot C_6H_3$ (CH_3)· OH. B. Bei der Einw. von Essigsäureanhydrid auf 5-Amino-2-oxy-1-methyl-benzol (Dahl & Co., D. R. P. 147530; C. 1904 I, 233). Nadeln (aus Wasser). F: 179°. Verwendung zur Darstellung von Azofarbstoffen: D. & Co.,
- 5-Acetamino-2-äthoxy-1-methyl-benzol, 4-Acetamino-o-kresol-äthyläther $C_{11}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. Beim Übergießen von 5-Amino-2-äthoxy-1-methyl-benzol mit Essigsäureanhydrid (STAEDEL, A. 217, 218). Blätter (aus Wasser), Würfel (aus Benzol). F: 108°. Schwer löslich in Wasser.
- 5-Benzamino-2-benzoyloxy-1-methyl-benzol, O.N-Dibenzoyl-[4-amino-o-kresol] $C_{21}H_{17}O_3N = C_6H_5 \cdot \text{CO} \cdot \text{NH} \cdot \text{C}_6H_3 (\text{CH}_3) \cdot \text{O} \cdot \text{CO} \cdot \text{C}_6H_5$. B. Beim Schütteln von 5-Amino-2-oxy-1-methyl-benzol mit Benzoylchlorid und Natronlauge (Friedländer, Stange, B. 26, 2264; F., Zeitlin, B. 27, 194). Nadeln (aus Eisessig). F: 194°; sehr schwer löslich in Alkohol und Äther (F., St.).
- [4-Äthoxy-3-methyl-phenyl]-harnstoff $C_{10}H_{14}O_2N_2$, s. nebenstehende Formel. B. Beim Erwärmen von salzsaurem 5-Amino-2-åthoxy-1-methyl-benzol in wäßr. Lösung mit Harnstoff (SPIEGEL, MUNBLIT, KAUFMANN, B. 39, 3247). Nadeln (aus Wasser oder verd. Alkohol). F: 158°. Schwer löslich in kaltem Wasser, reichlicher beim Erwärmen, löslich in Alkohol. Besitzt keinen süßlichen Geschmack.
- **4-Oxy-4'-dimethylamino-3-methyl-diphenylamin** $C_{15}H_{18}ON_2 = (CH_3)_2N\cdot C_6H_4\cdot NH\cdot C_6H_3(CH_3)\cdot OH$. B. Beim Erhitzen von salzsaurem 5-Amino-2-oxy-1-methyl-benzol mit N.N-Dimethyl-p-phenylendiamin (S. 72) (Cassella & Co., D. R. P. 140733; C. **1903** I, 1011). Durch Reduktion des Produktes der gemeinsamen Oxydation von N.N-Dimethyl-p-phenylendiamin und o-Kresol (C. & ('o.). Nadeln (aus Wasser). F: 153—154°. Schwer löslich in Wasser, leicht in Säuren und Ätzalkalien. Alkalische Lösungen färben sich an der Luft blau.
- N-Phenyl-N'-[4-oxy-3-methyl-phenyl]-p-phenylendiamin, 4-Oxy-4'-anilino-3-methyl-diphenylamin $C_{19}H_{18}ON_2=C_0H_5\cdot NH\cdot C_6H_4\cdot NH\cdot C_6H_3(CH_3)\cdot OH$. B. Man oxydiert ein Gemisch von salzsaurem 4-Amino-diphenylamin und o-Kresol in wäßr. Lösung mit Natriumdichromat und Essigsäure, macht mit Soda schwach alkalisch und reduziert durch Erwärmen mit Natriumsulfidlösung (Cassella & Co., Deutsche Patentanmeldung C. 10964 [1902]; Franz. Patent 323 202; Frill. 7, 74; A. Winther, Zusammenstellung der Patente auf dem Gebiete der organ. Chemie, Bd. I [Gießen 1908], S. 383). Krystalle. F: 144—145° (C. & Co., Deutsche Patentanm.). Beim Erhitzen mit Polysulfiden entsteht ein blauer schwefelhaltiger Farbstoff (C. & Co., D. R. P. 150553; C. 1904 I, 1467).
- **4-Äthoxy-4'-amino-3-methyl-diphenylamin** $C_{15}H_{18}ON_2 = H_2N \cdot C_6H_4 \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$. B. Entsteht in geringer Menge beim Behandeln von 4-Äthoxy-3-methyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure in Gegenwart von Alkohol als Nebenprodukt (Jacobson, Fertsch, Marsden, Schkolnik, A. **287**, 153). Nädelchen (aus Ligroin). F: 110—111°. Schwer löslich in Ligroin, sehr leicht in Alkohol, Äther und Benzol.
- 4-Äthoxy-4'-acetamino-8-methyl-diphenylamin $C_{17}H_{20}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$. B. Beim Kochen von 4-Äthoxy-4'-amino-3-methyl-diphenylamin mit Eisessig (J., F., M., Sch., A. 287, 154). Nädelchen (aus verdünntem Alkohol). F: 173°. Sehr leicht löslich in Alkohol und Eisessig.

- 4'-Äthoxy-4-amino-2.3'-dimethyl-diphenylamin CH₃ CH₃ C_{1s}H₂₀ON₂, s. nebenstehende Formel. B. Als Nebenprodukt bei der Reduktion von 4-Äthoxy-3.3'-dimethyl-azobenzol mit Zinnchlorür und Salzsäure (JACOBSON, HEBER, HENRICH, SCHWARZ, A. 287, 199). Nadeln (aus Ligroin). F: 99—100°. Leicht löslich in Alkohol.
- 4-Äthoxy-4'-amino-8.3'-dimethyl-diphenylamin CH₃ CH₃ CH₃ CCH₃ CH₂₀ON₂, s. nebenstehende Formel. B. Bei der Reduktion von 4'-Äthoxy-2.3'-dimethyl-azobenzol mit Zinnchlorür und Salzsäure neben anderen Produkten (J., Heb., Hen., Sch., A. 287, 193). Blätter. F: 86°. Leicht löslich in Äther und Benzol.
- 4-Äthoxy-4'-acetamino-3.3'-dimethyl-diphenylamin $C_{18}H_{22}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_4H_3(CH_3) \cdot NH \cdot C_4H_3(CH_3) \cdot O \cdot C_2H_5$. B. Beim Kochen von 4-Äthoxy-4'-amino-3.3'-dimethyl-diphenylamin mit Eisessig (J., Heb., Hen., Soh., A. 287, 194). Nådelchen (aus verd. Alkohol). F: 143°. Leicht löslich in Alkohol, Äther und Benzol.

- 4-Äthoxy-4'-formamino-3.3'-dimethyl-N-formyl-diphenylamin $C_{18}H_{20}O_3N_2=OHC\cdot NH\cdot C_6H_3(CH_3)\cdot N(CHO)\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Beim Kochen von 4-Äthoxy-4'-amino-3.3'-dimethyl-diphenylamin mit Ameisensäure (J., Heb., Hen., Sch., A. 287, 194). Nädelchen (aus Äther). F: 146—147°. Leicht löslich in Alkohol.
- 4-Brom-5-amino-2-oxy-1-methyl-bensol, 5-Brom-4-amino-o-kresol¹) $C_7H_8ONBr=H_8N\cdot C_6H_2Br(CH_9)\cdot OH$. B. Bei der Elektrolyse einer Lösung von 4-Brom-3-nitro-toluol (Bd. V, S. 333) in konz. Schwefelsäure (Gattermann, B. 27, 1931). Nadeln (aus Alkohol). F: 180°.
- 4-Brom-5-benzamino-2-benzoyloxy-1-methyl-benzol, O.N-Dibenzoyl-[5-brom-4-amino-0-kresol] $C_{21}H_{16}O_{2}NBr=C_{6}H_{5}\cdot CO\cdot NH\cdot C_{6}H_{2}Br(CH_{3})\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus 4-Brom-5-amino-2-oxy-1-methyl-benzol durch Benzoylierung (G., B. 27, 1931). Nadeln (aus Alkohol). F: 200°.
- 3.4.6 Tribrom 5 amino 2 oxy 1 methyl benzol , 3.5.6 Tribrom 4 amino o-kresol ¹) $C_7H_6ONBr_8 = H_4N \cdot C_9Br_9(CH_2) \cdot OH$. B. Bei der Reduktion von 3.4.6-Tribrom 5-nitro-2-oxy-1-methyl-benzol (Bd. VI, S. 368) mit Zinn und Salzsäure in alkoh. Lösung (ZINCKE, KLOSTERMANN, B. 40, 683). Nadeln. Wird von Eisenchlorid zu 3.5.6-Tribrom toluchinon (Bd. VII, S. 652) oxydiert.
- 8-Nitro-5-amino-2-oxy-1-methyl-benzol, 6-Nitro-4-amine-o-kresol 1) $C_7H_8O_3N_2=H_2N\cdot C_8H_8(NO_3)(CH_3)\cdot OH$. Beim Kochen von 3-Nitro-5-acetamino-2-oxy-1-methylbenzol (s. u.) mit verd. Schwefelsäure (Nietzki, Ruppert, B. 23, 3477). Braunrote Nadeln (aus Alkohol). F: 118°.
- 8-Nitro-5-acetamino-2-oxy-1-methyl-benzol, 6-Nitro-4-acetamino-o-kresol $C_0H_{10}O_4N_3=CH_3\cdot CO\cdot NH\cdot C_4H_2(NO_2)(CH_3)\cdot OH$. B. Man tröpfelt zu einer warmen Lösung von 5-Acetamino-2-oxy-3-methyl-benzoesäure (Syst. No. 1911) in Eisessig rauchende Salpetersäure (Nietzki, Ruppert, B. 23, 3477). Gelbe Nadeln (aus Alkohol). F: 217°.
- 4-Amino-2.4'-dimethyl-diphenylsulfid C₁₄H₁₈NS, s. nebenstehende Formel. B. Beim Erhitzen von p-toluolsulfinseurem m-Toluidin (Bd. XII, S. 856) auf 200°, neben p-toluolsulfonsaurem m-Toluidin und einem blauen Farbstoff (E. v. MEYER, E. MEYER, J. pr. [2] 68, 290). Hydrochlorid. Sehr leicht dissoziierende Nädelchen. Sehr wenig löslich selbst in konz. Salzsäure. Sulfat. Blättchen. F: 196°. Etwas leichter löslich in Säuren als das Hydrochlorid.

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

4-Äthoxalylamino-2.4'-dimethyl-diphenylsulfid, [4-p-Tolylmercapto-3-methylphenyl]-oxamidsäure-äthylester $C_{18}H_{19}O_3NS = C_2H_5 \cdot O_2C \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot S \cdot C_6H_4 \cdot CH_3$. B. Neben wenig N.N'-Bis-[4-p-tolylmercapto-3-methyl-phenyl]-oxamid beim Digerieren von 4-Amino-2.4'-dimethyl-diphenylsulfid in wenig Alkohol mit überschüssigem Oxalester (E. v. Meyer, E. Meyer, J. pr. [2] 68, 292). — Prismen oder Nadeln (aus Benzol + Petroläther). F: 113°. Löslich in Alkohol, Äther oder Eisessig.

N.N' - Bis - [4 - p - tolylmercapto - 3 - methyl - phenyl] - oxamid $C_{20}H_{28}O_2N_2S_2$, s. nebenstehende Formel. B. s. im vorangehenden Artikel. — Blättchen (aus Alkohol). F: 207° (E. v. M., E. M., J. pr. $\begin{bmatrix} CH_3 \\ -CO \cdot NH \cdot \\ \end{bmatrix}$

4 - $[\omega$ - Phenyl - ureido] - 2.4′ - dimethyl - CH₃ diphenylsulfid, N - Phenyl - N′ - [4 - (p - tolyl - mercapto) - 3 - methyl - phenyl] - harnstoff $C_6H_5 \cdot NH \cdot CO \cdot NH \cdot S \cdot CH_3$ $C_{21}H_{20}ON_2S$, s. nebenstehende Formel. B. Aus 4-Amino-2.4′-dimethyl-diphenylsulfid und Phenylisocyanat in Äther (E. v. M., E. M., J. pr. [2] 68, 292). — Nadeln (aus Alkohol). F: 227°. Schwer löslich in heißem Alkohol oder Äther.

4-[ω -Phenyl-thioureido]-2.4'-dimethyl-diphenylsulfid, N-Phenyl-N'-[4-(p-tolyl-mercapto)-3-methyl-phenyl]-thioharnstoff $C_{21}H_{20}N_2S_2=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3(CH_3)\cdot S\cdot C_6H_4\cdot CH_3$. B. Aus 4-Amino-2.4'-dimethyl-diphenylsulfid und Phenylsenföl in Äther (E. v. M., E. M., J. pr. [2] 68, 293). — F: 147°.

6-Amino-2-oxy-1-methyl-benzol.

6-Amino-2-oxy-1-methyl-benzol, 3-Amino-o-kresol¹) C₇H₉ON, s. nebenstehende Formel. B. Beim Erhitzen von 6-Nitro-2-oxy-1-methylbenzol mit Zinn und Salzsäure unter Zusatz von Zinnehlorürlösung auf dem Wasserbade; man zersetzt das hierbei erhaltene salzsaure Salz mit Natriumdicarbonat in konz. wäßr. Lösung (Ullmann, B. 17, 1962) oder mit Natriumdisulfit (Noelting, B. 37, 1021) und schüttelt mit Äther aus (U.; N.). — Nädelchen. F: 129° (N.), 124—128° (U.). Schwer löslich in kaltem Wasser und Äther (U.). Färbt sich an der Luft rasch rötlich bis bräunlich (U.). — Gibt bei der Kondensation mit Phthalsäure-

I.
$$\begin{array}{c} CO \\ C_0H_4 < O \\ \vdots \\ H_2N \cdot \begin{array}{c} CO \\ \\ C \\ \end{array} \\ \begin{array}{c} C_0H_4 \cdot CO_2H \\ \\ \vdots \\ NH_2 \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ CH_3 \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C \\ \vdots \\ \vdots \\ \end{array} \\ \begin{array}{c} C $

anhydrid in Gegenwart von konz. Schwefelsäure bei 180—190° Dimethylrhodamin (Formel I bezw. II) (Syst. No. 2933) (N., Dziewoński, B. 38, 3518). — $C_7H_9ON + HCl$. Nadeln. Ungemein leicht löslich in Wasser und Alkohol, unlöslich in Äther (U.).

2-Oxy-benzylamin (11-Amino-2-oxy-1-methyl-benzol) und seine Derivate.

2 - Oxy - benzylamin, o - Oxy - benzylamin, Salicylamin C₇H₉ON = HO·C₆H₄·CH₂·NH₂. B. Aus Salicylaldoxim (Bd. VIII, S. 49) durch Reduktion mit Natriumamalgam in alkoh. Lösung, die durch verd. Schwefelsäure stets schwach sauer gehalten wird (Tiemann, B. 23, 3018). Der Methyläther (S. 580) entsteht, wenn man zu einer alkoholischen, auf ca. 60° erwärmten Lösung von 2-Methoxy-benzaldoxim (Bd. VIII, S. 49) allmählich 2¹/₂°/₀iges Natriumamalgam und Eisessig so hinzufügt, daß die Lösung stets schwach sauer reagiert; aus dem salzsauren Salz des Methyläthers erhält man durch Erhitzen mit konz. Salzsäure im Bombenrohr auf 150° das 2-Oxy-benzylamin (Goldschmidt, Ernst, B. 23, 2742, 2744). Durch Reduktion von Salicylsäure-nitril (Bd. X, S. 96) (Auwers, Walker, B. 31, 3038). Entsteht neben 3-Amino-benzoesäure beim Erhitzen von 3-[Salicylalhydrazino]-benzoesäure (Syst. No. 2080) mit Zinkstaub und 5°/₀iger Schwefelsäure (Tiemann, B. 23, 3017). — Nädelchen (aus Äther). F: 125° (T.), 121° (G., E.). Sublimiert sehr leicht (T.). Unlöslich in Ligroin, löslich in Wasser, Alkohol (T.) und in Äther (G., E.). Löslich in Alkali (G., E.). Die wäßr. Lösung wird durch Eisenchlorid violettblau gefärbt; die Färbung geht beim Erwärmen in Dunkelrot über (T.). — Beim Kochen von 2-Oxy-benzylamin mit Essigsäure-anhydrid entsteht N-[2-Oxy-benzyl]-acetamid (S. 582) (G., E.). Beim Erwärmen des salzsauren Salzes mit Kaliumoyanat erhält man [2-Oxy-benzyl]-harnstoff (S. 583) (G., E.). — C₇H₉ON + HCl. Nadeln (aus Alkohol). Äußerst leicht löslich in Wasser (G., E.).

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

- $2C_7H_9ON + 2HCl + PtCl_4 + 2H_2O$. Goldgelbe Nädelchen. Schmilzt bei 197° (Zers.); ziemlich leicht löslich in Wasser (G., E.).
- 2-Methoxy-benzylamin $C_8H_{11}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_3 \cdot NH_2$. B. Aus 2-Methoxy-benzaldoxim (Bd. VIII, S. 49) durch Reduktion in alkoholischer, schwach essigsauer erhaltener Lösung mit Natriumamalgam (Goldschmidt, Ernst, B. 23, 2742). Entsteht auch aus [2-Methoxy-phenyl]-[a-amino-2-methoxy-benzyl]-carbinol (Syst. No. 1870) durch vorsichtiges Erwärmen und schwaches Erwärmen des Reaktionsproduktes mit konz. Salzsäure, neben 2-Methoxy-benzaldehyd (Erlenmeyer, Bade, A. 387, 233). Flüssig. Kp₇₂₄: 224°; leicht löslich in Wasser und organischen Lösungsmitteln (G., Ernst). Zieht CO₂ aus der leicht löslich in Vasser und organischen Lösungsmitteln (G., Ernst). Zieht CO₂ aus der Luft an (G., Ernst). — C₈H₁₁ON+HCl. Prismen (aus Alkohol). F:150°; sehr leicht löslich in Wasser (G., Ernst). — 2C₈H₁₁ON+2HCl+PtCl₄. Goldgelbe Blättchen (aus Wasser) mit 2H₂O (G., Ernst) oder 2¹/₂H₂O (Erl., B.). F: 187° (G., Ernst), 189° (Erl., B.).
- 2-Athoxy-benzylamin $C_0H_{15}ON = C_2H_5 \cdot O \cdot C_0H_4 \cdot CH_2 \cdot NH_2$. B. Durch Reduktion von 2-Athoxy-benzaldoxim (Bd. VIII, S. 50) mit Natriumamalgam in alkoholischer, durch Essigsäure schwach sauer gehaltener Lösung (Löw, M. 12, 397). — Ol. — 2C₉H₁₃ON + 2 HCl+PtCl4. Gelber krystallinischer Niederschlag. F: 182°.
- [2-Oxy-benzyl]-dimethylamin ¹) $C_0H_{13}ON = HO \cdot C_0H_4 \cdot CH_2 \cdot N(CH_3)_2$. B. Aus Phenol, Dimethylamin und $40^0/_0$ iger Formaldehydlösung durch 4-6-stdg. Kochen in Alkohol (BAYER & Co., D. R. P. 92309; Frdl. 4, 103). Ol. Siedet gegen 200^0 unter teilweiser Zersetzung; leicht löslich in Säuren und Alkalien (B. & Co.).
- [2-Oxy-benzyl]-anilin $C_{13}H_{13}ON = HO \cdot C_0H_4 \cdot CH_2 \cdot NH \cdot C_0H_5$. B. Bei kurzem Kochen von 1 Tl. Saligenin (Bd. VI, S. 891) mit 5 Tln. Anilin (Paal, Senninger, B. 27, 1802). Beim Erhitzen von 1 Mol.-Gew. Methylen-dianilin (Bd. XII, S. 184) mit 2 oder 3 Mol.-Gew. Phenol auf 200°, neben [4-Oxy-benzyl]-anilin (BISCHOFF, FRÖHLICH, B. 39, 3967). Aus 1 Mol.-Gew. Methylen-dianilin und 2 Mol. Gew. Phenol in siedender Xylollösung (BI., Fro.). Neben Oxanilid aus äquimolekularen Mengen Methylen-dianilin und Oxalsäurediphenylester (Bd. VI, S. 155) beim 3-stdg. Kochen in Xylol (BI., FRÖ.). Aus Methylen-dianilin und Oxalsäurediphenylester in siedendem Benzol in Gegenwart von Natriumäthylat (BI., FRÖ.). Durch allmähliches Eintragen von 200 g 2% oigem Natriumamalgam in die Lösung von 12 g Salicylalanilin (Bd. XII, S. 217) in 120 g absol. Alkohol (EMMERICH, A. 241, 344). Aus Salicylalanilin (Bd. XII, S. 217) in 120 g absol. Alkohol (EMMERICH, A. 241, 344). phenylhydrazin durch Reduktion mit Zinkstaub und Eisessig in Alkohol beim Kochen (FBANZEN, J. pr. [2] 72, 217). Aus Anhydroformaldehydanilin (Syst. No. 3796) und Phenol auf dem Wasserbade oder in Gegenwart von Zinkchlorid bei gewöhnlicher Temperatur (Höchster Farbw., D. R. P. 109498; C. 1900 II, 457). — Blättchen (aus Alkohol oder Ligroin). F: 112—113° (Fra.), 112,5—113° (BAMBERGER, MÜLLER, A. 313, 105), 113° (Bl., Frö.). Schwer löslich in Wasser und Ligroin, leicht in Alkohol und Äther (EMM.; P., S.). Löslich in Säuren und in Alkalien; wird aus der alkalischen Lösung durch Kohlensäure gefällt (P., S.). Färbt sich an der Luft gelb (BI., FRÖ.). — $C_{13}H_{13}ON + HCl$ (P., S.). Nadeln (aus alkoh. Salzsäure). F: 131° (EMM.). Wird in wäßr. Lösung dissoziiert (P., S.). — $2C_{13}H_{13}ON + 2HCl + PtCl_4$. Rotgelbe Nadeln (aus Wasser). F: 184° (Zers.) (EMM.).
- x.x.x.Tetranitro-[(2-oxy-benzyl)-anilin] C₁₈H₆O₆N₅. B. Beim Eintragen von [2-Oxy-benzyl]-anilin in ein Gemenge aus 2 Tln. Schwefelsäure und 1 Tl. Salpetersäure (EMMERICH, A. 241, 346). Gelbe Nadeln (aus Benzol). F: 66° (Zers.). Löslich in Alkohol, Eisessig und Ligroin, unlöslich in Wasser.
- N-[3-Oxy-bensyl]-2-chlor-anilin $C_{13}H_{19}ONCl = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot Cl$. B. Durch Erhitzen äquimolekularer Mengen von Saligenin (Bd. VI, S. 891) und 2-Chlor-anilin in alkoh. Lösung im Druckrohr auf 150° (PAAL, Ar. 240, 689). — Nadeln (aus alkoholhaltigem Petroläther). F: 118°.
- N-[2-Oxy-benzyl]-4-chlor-anilin $C_{13}H_{13}ONCl = HO \cdot C_0H_4 \cdot CH_3 \cdot NH \cdot C_0H_4Cl$. B. Durch Erhitzen aquimolekularer Mengen Saligenin und 4-Chlor-anilin in alkoh. Lösung im Druckrohr auf 150° oder ohne Alkohol auf 150—160° (Paal, Ar. 240, 684). — Nadeln (aus verd. Alkohol). F: 121°.
- N-[2-Oxy-bensyl]-4-brom-anilin $C_{13}H_{12}ONBr = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4Br$. Analog der entsprechenden Chlorverbindung (s. o.). — Nadeln oder Tafeln (aus verd. Alkohol), F: 126°; ziemlich schwer löslich in heißem Ligroin, leicht in Alkohol, Äther, Chloroform, Benzol (PAAL, Ar. 240, 685).
- $N-[2-Oxy-bensyl]-2-nitro-anilin C₁₈H₁₈O₈N₂ = HO \cdot C₆H₄ \cdot CH₂ \cdot NH \cdot C₆H₄ \cdot NO₂. B.$ Durch 1-stdg. Erhitzen von Saligenin mit überschüssigem 2-Nitro-anilin unter Zusatz von

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches erschienenen Abhandlung von Madinavritia, Anales de la Sociedad Española de Física y Química 19, Teil I [1921], 259.

- etwas absol. Alkohol im Druckrohr auf 140—150° (Paal, Härtel, B. 32, 2059). Dunkelrote Tafeln oder flache Nadeln. F: 125°. Sehr leicht löslich in Aceton, Chloroform und Benzol, etwas weniger in Alkohol. Aus der rotgelben Lösung in verd. Natronlauge fällt konz. Lauge das Natriumsalz in roten krystallinischen Flocken. N-[2-Oxy-benzyl]-2-nitro-anilin bleibt bei kurzem Erhitzen mit Essigsäureanhydrid fast unverändert; bei 1-stdg. Erhitzen wird N-[2-Acetoxy-benzyl]-2-nitro-anilin (s. u.) gebildet.
- N-[2-Oxy-benzyl]-3-nitro-anilin $C_{13}H_{12}O_3N_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NO_2$. B. Aus Saligenin und 3-Nitro-anilin durch Erhitzen auf 140—150° (P., H., B. 32, 2060). Orangefarbene Nadeln oder goldglänzende, flache Nadeln und Blättehen (aus Alkohol). F: 115°.
- N-[2-Oxy-benzyl]-4-nitro-anilin $C_{13}H_{12}O_3N_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NO_2$. B. Durch 10—15 Minuten langes Erhitzen von Saligenin mit 4-Nitro-anilin auf 150—160° (P., H., B. 32, 2061). Goldglänzende Tafeln und Flitter (aus verd. Alkohol), Nadeln (aus anderen Solvenzien). F: 138°. Leicht löslich außer in Ligroin. Wird bei kurzem Koehen mit Essigsäureanhydrid nicht angegriffen; bei längerer Einw. entsteht N-[2-Acetoxy-benzyl]-N-acetyl-4-nitro-anilin (S. 583).
- [2-Acetoxy-benzyl]-anilin $C_{15}H_{15}O_2N=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_8H_5$. B. Durch Kochen von [2-Oxy-benzyl]-anilin (S. 580) mit Essigsäureanhydrid (Paal, Senninger, B. 27, 1803). Blåtter (aus verd. Alkohol). F: 96°. Destilliert unzersetzt. Schwer löslich in Ligroin, leicht in Alkohol, Benzol und Essigester. Unlöslich in verd. Alkalien.
- N [2 Acetoxy benzyl] 2 nitro anilin $C_{15}H_{14}O_4N_2 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NO_2$. B. Durch 1-stdg. Kochen von N-[2-Oxy-benzyl]-2-nitro-anilin (S. 580) mit Essigsäureanhydrid unter Rückfluß (Paal, Härtel, B. 32, 2059). Gelbe Nadeln (aus verd. Alkohol). F: 93°. Leicht löslich in Äther, fast unlöslich in Ligroin. Unlöslich in verd. Ätzalkalien.
- [2-Oxy-benzyl]-methylanilin $C_{14}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_5$. B. Durch vorsichtiges Erhitzen von Saligenin mit überschüssigem Methylanilin bis zum beginnenden Sieden (Paal, Ar. 240, 690). Gelblich gefärbtes Öl. Sehr wenig löslich in Wasser und Ligroin, leicht löslich in Alkohol, Äther, Chloroform und Benzol.
- [2-Oxy-benzyl]-p-toluidin $C_{14}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Durch Reduktion von Salicylal-p-toluidin (Bd. XII, S. 915) mit Natriumamalgam in absol. Alkohol (EMMERICH, A. 241, 346). Durch kurzes Kochen von 1 Tl. Saligenin mit 3—4 Tln. p-Toluidin (Paal, Senninger, B. 27, 1804). Aus Methylen-di-p-toluidin (Bd. XII, S. 908) und Phenol in siedendem Xylol (Bischoff, Fröhlich, B. 39, 3971). Aus Anhydroformaldehyd-p-toluidin (Syst. No. 3796) und Phenol (Höchster Farbw., D. R. P. 109498; C. 1900 II, 457). Flache Nadeln oder sechsseitige Tafeln (aus verd. Alkohol). F: 116° (E.), 119,5° (Bamberger, Müller, A. 313, 116), 121° (Bi., F.); löslich in Alkohol, Äther, Chloroform, Aceton, Eisessig, unlöslich in Ligroin und Wasser (Bi., F.). Färbt sich an der Luft gelb (Bi., F.). Hydrochlorid. Nadeln. F: 147° (E.). 2 $C_{14}H_{15}ON + 2 HCl + PtCl_4$. Rotgelbe Nadeln (aus Wasser) (E.).
- x.x.x.x-Tetranitro-[(2-oxy-benzyl)-p-toluidin] C₁₄H₁₁O₉N₅. B. Aus [2-Oxy-benzyl]-p-toluidin und Salpeterschwefelsäure (Emmerich, A. 241, 348). Gelbe Nadeln (aus Benzol). F: 168°. Löslich in Alkohol, Benzol, Eisessig, unlöslich in Wasser. Explodiert beim Erhitzen.
- [2-Methoxy-benzyl]-p-toluidin $C_{15}H_{17}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus [2-Oxy-benzyl]-p-toluidin mit der äquimolekularen Menge Methyljodid und Ätzkali in Alkohol beim Erhitzen am Rückflußkühler (Emmerich, A. 241, 347). Nadeln und Blättchen (aus verd. Alkohol). F: 110°. Unlöslich in Wasser, löslich in Alkohol, Äther und Benzol.
- [2-Oxy-benzyl]-asymm.-m-xylidin $C_{15}H_{17}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_3(CH_3)_2$. B. Durch kurzes Erhitzen von Saligenin mit der dreifachen Menge asymm. m-Xylidin (Bd. XII, S. 1111) zum Sieden (Paal, Ar. 240, 687). Amorph. F: 114° .
- [2-Oxy-benzyl]-pseudocumidin $C_{16}H_{19}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_2(CH_3)_3$. B. Durch kurzes, vorsichtiges Erhitzen äquimolekularer Mengen von Saligenin und Pseudocumidin (Bd. XII, S. 1150) über freier Flamme (Paal, Ar. 240, 688). Nadeln (aus verd. Alkohol). F: 172—173°. Fast unlöslich in Wasser, leicht löslich in den meisten organischen Lösungsmitteln in der Wärme. $C_{16}H_{19}ON + HCl$. Nadeln.
- [2-Oxy-benzyl]- β -naphthylamin $C_{17}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Aus Salicylal- β -naphthylamin (Bd. XII, S. 1283) in absol. Alkohol durch Reduktion mit Natrium-amalgam (Emmerich, A. 241, 352). Blättchen und Nadeln (aus Alkohol). F: 147°. Unlöslich in Wasser, löslich in Alkohol, Äther, Ligroin und Benzol. Die alkoh. Lösung fluoresciert rotviolett. Das Hydrochlorid schmilzt bei 188°.

- [2-Methoxy-benzyl]- β -naphthylamin $C_{10}H_{17}ON = CH_{2} \cdot O \cdot C_{0}H_{4} \cdot CH_{2} \cdot NH \cdot C_{10}H_{7}$. B. Aus [2-Oxy-benzyl]- β -naphthylamin mit Methyljodid und Ätzkali in Alkohol beim Erhitzen am Rückflußkühler (EMMERICH, A. 241, 354). Nadeln (aus Ligroin). F: 92°. Siedet nicht unzersetzt bei 220—225°. Unlöslich in Wasser, löslich in Ligroin, leicht löslich in Alkohol und Äther. Die alkoh. Lösung fluoresciert rotviolett.
- [2-Oxy-bensyl]-o-anisidin C₁₄H₁₅O₂N = HO·C₆H₄·CH₂·NH·C₆H₄·O·CH₂. B. Durch ¹/₅-stdg. Erhitzen äquimolekularer Mengen von Saligenin und o-Anisidin in absol. Alkohol im geschlossenen Rohr auf 150—160° (Paal, Ar. 240, 689). Aus Methylen-di-o-anisidin (S. 368) und Phenol in siedendem Benzol (Bischoff, Fröhlich, B. 39, 3973). Sechsseitige Prismen (aus Alkohol), Nadeln (aus Alkohol-Ligroin). F: 70—71° (P.; B., F.). Meist leicht löslich; färbt sich an der Luft gelb (B., F.).
- 4-[2-Oxy-bensylamino]-phenol $C_{13}H_{13}O_2N=H0\cdot C_6H_4\cdot CH_3\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Reduktion des 4-Salioylalamino-phenols (S. 457) mit Zinkstaub und Natronlauge (Chem. Fabr. Schering, D. R. P. 211869; C. 1909 II, 392). Krystalle (aus Benzol). F: 122° bis 123°. Sehr leicht löslich in Alkohol und Methylalkohol, leicht in heißem Benzol, schwer in kaltem Benzol und Wasser.
- [2-Oxy-bensyl]-p-anisidin C₁₄H₁₅O₂N = HO·C₆H₄·CH₂·NH·C₂H₄·O·CH₃. B. Aus Salicylal-p-anisidin (S. 457) durch Reduktion mit Natriumamalgam in absolut-alkoholischer Lösung (Hantzsch, Wechsler, A. 325, 248). Beim Erhitzen von Methylen-di-p-anisidin (S. 452) mit Phenol auf 180° oder beim Kochen der Lösung der beiden Verbindungen in Xylol (Bischoff, Fröhlich, B. 39, 3974). Neben Oxalsäure-di-p-anisidid aus Methylen-di-p-anisidin und Oxalsäure-diphenylester in siedendem Xylol (B., F.). Durch ½-stdg. Erhitzen äquimole-kularer Mengen Saligenin und p-Anisidin in Gegenwart von wenig absolutem Alkohol im Druckrohr auf 150—160° (Paal, Ar. 240, 681). Nadeln oder sechsseitige Tafeln (aus mit etwas Essigsäure angesäuertem Alkohol). F: 128° (Paal), 127—128° (B., F.), 127° (H., W.). Leicht löslich in fast allen organischen Lösungsmitteln (Paal; H., W.).
- [2-Oxy-bensyl]-p-phenetidin $C_{15}H_{17}O_2N=HO\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Durch Erhitzen von Saligenin mit p-Phenetidin in alkoh. Lösung im Druckrohr auf 150—160° (Paal, Ar. 240, 683). Nadeln (aus verd. Alkohol). F: 145—146°. Ziemlich löslich in heißem Ligroin, leicht in den meisten organischen Lösungsmitteln. Natriumsalz. Blättchen. Wird durch Wasser teilweise gespalten.
- Bis-[2-oxy-benzyl]-amin, 2.2'-Dioxy-dibenzylamin $C_{14}H_{15}O_2N=(HO\cdot C_6H_4\cdot CH_4)_2NH$. B. Beim allmählichen Eintragen von 1 Tl. Natrium in eine Lösung von 1 Tl. Hydrosalicylamid (Bd. VIII, 8. 48) in absol. Alkohol (Emmerich, A. 241, 349). Bei 3-stdg. Erhitzen von 1 Tl. Saligenin mit 3 Tln. konzentriertem alkoholischem Ammoniak im Druckrohr auf 140—145° (Paal, Senninger, B. 27, 1800.) Nadeln (aus Alkohol). F: 170° (E.), 168° (P., S.). Fast unlöslich in Wasser, löslich in Alkohol, Äther, Benzol und Ligroin (E.). $C_{14}H_{15}O_2N+HCl$. Nädelchen. F: 190° (P., S.). $2\,C_{14}H_{15}O_2N+2\,HCl+PtCl_4$. Rotgelbe Nadeln (E.).
- N-[2-Oxy-bensyl]-acetamid $C_9H_{11}O_2N=HO\cdot C_8H_4\cdot CH_3\cdot NH\cdot CO\cdot CH_9$. B. Durch Kochen von 2-Oxy-benzylamin mit Essigsäureanhydrid (Goldschmidt, Ernst, B. 28, 2745). Nadeln. F: 140°. Löslich in Alkalien. Gibt mit Eisenchlorid Blaufärbung.
- N-[2-Methoxy-benzyl]-acetamid $C_{10}H_{19}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot CO\cdot CH_2$. B. Bei der Einw. von Essigeäureanhydrid auf 2-Methoxy-benzylamin (S. 580) (Goldschmidt, Ernst, B. 23, 2743). Nadeln (aus Alkohol). F: 97°. Leicht löslich in Alkohol und Äther.
- N-[2-Bensoyloxy-bensyl]-acetamid $C_{16}H_{15}O_5N=C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot CO\cdot CH_4$. B. Aus N-[2-Oxy-bensyl]-acetamid (s. o.) mit Bensoylchlorid und Pyridin (Auwers, Eisenlohe, A. 369, 236). Krystalle (aus Bensol + Ligroin). F: 108—109°. Liefert bei der Verseifung mit kaltem alkoholischem Natron N-[2-Oxy-bensyl]-acetamid.
- N-[2-Oxy-benzyl]-acetanilid C₁₈H₁₈O₂N = HO·C₆H₄·CH₅·N(C₆H₅)·CO·CH₈. B. Neben N-[2-Acetoxy-benzyl]-acetanilid (8. 583) bei längerem Kochen von [2-Oxy-benzyl]-anilin (8. 580) mit Essigsäureanhydrid; man trennt das Gemisch durch verdünnte kalte Natronlauge (Paal, Härtel, B. 32, 2062). Nadeln (aus verd. Alkohol). F: 132°. Löslich in verd. Alkali.
- N-[2-Oxy-benzyl]-N-acetyl-4-chlor-anilin $C_{18}H_{14}O_4NCl=HO\cdot C_6H_4\cdot CH_2\cdot N(C_6H_4Cl)\cdot CO\cdot CH_3$. B. Durch einmaliges Aufkochen einer Lösung von N-[2-Oxy-benzyl]-4-chlor-anilin (S. 580) in Essigsäureanhydrid (Paal, Ar. 240, 685). Tafeln (aus verd. Alkohol). F: 95°. Löslich in verd. Alkali.
- N-[2-Oxy-bensyl]-N-acetyl-4-brom-anilin $C_{15}H_{14}O_2NBr = HO \cdot C_6H_4 \cdot CH_2 \cdot N(C_6H_4Br) \cdot CO \cdot CH_3$. Tafeln (aus Alkohol). F: 108°; löslich in verd. Alkali (PAAL, Ar. 240, 686).

- N-[2-Oxy-benzyl]-N-acetyl-3-nitro-anilin $C_{15}H_{14}O_4N_2=HO\cdot C_6H_4\cdot CH_2\cdot N(C_8H_4\cdot N(O_2)\cdot CO\cdot CH_3$. B. Durch kurzes Aufkochen von N-[2-Oxy-benzyl]-3-nitro-anilin (S. 581) mit Essigsäureanhydrid (Paal, Härtel, B. 32, 2060). Prismen (aus verd. Alkohol). F: 126°. Leicht löslich in Alkohol, Benzol, Chloroform. Löslich in Alkali.
- N-[2-Acetoxy-benzyl]-acetanilid $C_{17}H_{17}O_3N=CH_3\cdot CO\cdot O\cdot C_8H_4\cdot CH_2\cdot N(C_8H_5)\cdot C(I)\cdot CH_3$. B. s. bei N-[2-Oxy-benzyl]-acetanilid (S. 582). Tafeln (aus Alkohol). F: 98—99°; leicht löslich außer in Ligroin (Paal, Härtel, B. 32, 2062).
- N-[2-Acetoxy-benzyl]-N-acetyl-4-chlor-anilin $C_{17}H_{16}O_3NCl = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_5 \cdot N(C_6H_4Cl) \cdot CO \cdot CH_3$. B. Durch längeres Kochen von N-[2-Oxy-benzyl]-4-chlor-anilin (S. 580) mit Essigsäureanhydrid unter Zusatz von etwas entwässertem Natriumacetat (Paal, Ar. 240, 685). Farblose, glasige Masse.
- N-[2-Acetoxy-benzyl]-N-acetyl-4-brom-anilin $C_{17}H_{16}O_3NBr = CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot N(C_6H_4Br)\cdot CO\cdot CH_3$. Amorph. Leicht löslich in gebräuchlichen organischen Lösungsmitteln (Paal, Ar. 240, 686).
- N-[2-Acetoxy-benzyl]-N-acetyl-3-nitro-anilin $C_{17}H_{16}O_5N_2=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot N(C_6H_4\cdot NO_2)\cdot CO\cdot CH_3$. B. Durch $^1/_4$ -stdg. Kochen von N-[2-Oxy-benzyl]-3-nitro-anilin (S. 581) oder N-[2-Oxy-benzyl]-N-acetyl-3-nitro-anilin (s. o.) mit Essigsäureanhydrid (Paal, Härtel, B. 32, 2060). Nadeln (aus Alkohol durch Wasser). F: 99°. Ziemlich leicht löslich in warmem Alkohol, Chloroform und Benzol; unlöslich in verd. Natronlauge.
- N-[2-Acetoxy-benzyl]-N-acetyl-4-nitro-anilin $C_{17}H_{16}O_5N_2=CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot N(C_6H_4\cdot NO_2)\cdot CO\cdot CH_3$. B. Durch längeres Kochen von N-[2-Oxy-benzyl]-4-nitro-anilin (S. 581) mit Essigsäureanhydrid (PAAL, Härtel, B. 32, 2061). Nadeln (aus Alkohol). F: 79°. Leicht löslich in heißem Chloroform, Eisessig und Benzol.
- N-[2-Oxy-benzyl]-[acet-p-anisidid] $C_{16}H_{17}O_3N = HO \cdot C_6H_4 \cdot CH_2 \cdot N(C_6H_4 \cdot O \cdot CH_3) \cdot CO \cdot CH_3$. B. Aus [2-Oxy-benzyl]-p-anisidin und überschüssigem Essigsäureanhydrid in der Kälte (Paal, Ar. 240, 682). Tafeln (aus verd. Alkohol oder Ligroin). F: 98°. Löslich in verd. Alkali.
- N [2 Oxy benzyl] [acet p phenetidid] $C_{17}H_{19}O_3N = HO \cdot C_6H_4 \cdot CH_2 \cdot N(C_6H_4 \cdot O \cdot C_2H_5) \cdot CO \cdot CH_3$. B. Aus [2-Oxy-benzyl]-p-phenetidin und Essigsäureanhydrid in der Kälte (Paal, Ar. 240, 683). Nadeln oder Blättchen (aus Ligroin oder verd. Alkohol). F: 101°. Löslich in verd. Alkali.
- N-[2-Acetoxy-benzyl]-[acet-p-anisidid] $C_{18}H_{19}O_4N = CH_3 \cdot CO \cdot C \cdot C_8H_4 \cdot CH_2 \cdot N(C_8H_4 \cdot CH_3 \cdot CO \cdot CH_3) \cdot CO \cdot CH_3$. B. Durch kurzes Kochen von [2-Oxy-benzyl]-p-anisidin mit überschüssigem Essigsäureanhydrid (PAAL, Ar. 240, 682). Krystallinisch. Leicht löslich in den meisten organischen Lösungsmitteln.
- N-[2-Oxy-benzyl]-benzamid $C_{14}H_{13}O_2N = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Aufkochen einer wäßr. Lösung von salzsaurem Benzoylbenzotriazindihydrid $C_{14} \cdot CH_2 \cdot N \cdot CO \cdot C_6H_5$. $C_{14} \cdot N \cdot CO \cdot C_6H_5$. $C_{15} \cdot N \cdot CO \cdot C_6H_5$.
- C_6H_4 N=N (Syst. No. 3804) (Busch, J. pr. [2] 51, 283). Nadeln (aus Essigester). F: 139-140°. Sehr leicht löslich in Alkohol, Äther und Benzol.
- [2-Oxy-bensyl]-harnstoff $C_8H_{10}O_2N_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CO \cdot NH_2$. B. Aus salz-saurem 2-Oxy-benzylamin und Kaliumcyanat beim Erwärmen in wäßr. Lösung (Goldschmidt, Ernst, B. 23, 2745). Durch Reduktion von N-Carbaminyl-isosalicylaldoxim $HO \cdot C_6H_4 \cdot HC \longrightarrow N \cdot CO \cdot NH_2$ bezw. $HO \cdot C_6H_4 \cdot CH : N(:O) \cdot CO \cdot NH_2$ (Syst. No. 4221) in Alkohol mit Aluminiumamalgam (Conduché, A. ch. [8] 13, 45). Nadeln. F: 174° (C.), 170° (G., E.). Löslich in Alkohol, schwer löslich in Ather und kaltem Wasser, sehr wenig in Benzol (C.).
- N-Phenyl-N'-[2-oxy-bensyl]-harnstoff $C_{14}H_{14}O_{2}N_{2}=HO\cdot C_{6}H_{4}\cdot CH_{2}\cdot NH\cdot CO\cdot NH\cdot C_{6}H_{5}$. B. Aus 2-Oxy-benzylamin und Phenylisocyanat (Bd. XII, S. 437) in Benzol beim Erwärmen (Goldschmidt, Ernst, B. 23, 2746). Nadeln (aus Alkohol). F: 155°. Löslich in Alkohol, Äther, Benzol und Alkalien. Gibt mit Eisenchlorid Blaufärbung.
- [2-Methoxy-benzyl]-harnstoff $C_0H_{10}O_2N_2=CH_3\cdot O\cdot C_0H_4\cdot CH_2\cdot NH\cdot CO\cdot NH_2$. B. Aus salzsaurem 2-Methoxy-benzylamin und Kaliumcyanat beim Erwärmen der wäßr. Lösung (G., E., B. 23, 2743). Nadeln (aus Wasser). F: 127°.
- N-Phenyl-N'-[2-methoxy-bensyl]-harnstoff $C_{15}H_{16}O_2N_2=CH_3\cdot O\cdot C_6H_4\cdot CH_3\cdot NH\cdot CO\cdot NH\cdot C_6H_5$. B. Aus 2-Methoxy-benzylamin und Phenylisocyanat (G., E., B. 23, 2743). Nadeln (aus Alkohol). F: 145°. Leicht löslich in Alkohol und Äther, schwerer in Benzol.
- N-[2-Oxy-bensyl]-o-phenylendiamin $C_{12}H_{14}ON_2 = HO \cdot C_2H_4 \cdot CH_2 \cdot NH \cdot C_4H_4 \cdot NH_2$. B. Aus 1 Mol.-Gew. o-Phenylendiamin (S. 6) mit 1 Mol.-Gew. Saligenin bei $^{1}/_{2}$ -stdg. Erhitzen ohne Solvens auf 140° oder in alkoh. Lösung bei 1-stdg. Erhitzen im Druckrohr

auf 170—180° (PAAL, RECKLEBEN, B. 28, 934). — Nadeln (aus Alkohol). F: 157°. Schwer löslich in Wasser und Ligroin, leicht in den meisten anderen organischen Lösungsmitteln. Leicht löslich in verd. Alkalien und Mineralsäuren.

N-[2-Acetoxy-benzyl]-N'-acetyl-o-phenylendiamin $C_{17}H_{18}O_3N_2 = CH_3 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Aus N-[2-Oxy-benzyl]-o-phenylendiamin mit Essigsäureanhydrid in der Kälte oder mit Eisessig in der Wärme (Paal, Reckleben, B. 28, 935). — Nadeln (aus Alkohol). F: 162°. Löst sich nur langsam in verd. Alkalien und Mineralsäuren.

N-[2-Acetoxy-benzyl]-N.N'-diacetyl-o-phenylendiamin $C_{19}H_{20}O_4N_2=CH_3\cdot CO\cdot O\cdot C_8H_4\cdot CH_2\cdot N(CO\cdot CH_3)\cdot C_8H_4\cdot NH\cdot CO\cdot CH_3$. B. Beim Kochen von N-[2-Oxy-benzyl]-o-phenylendiamin mit Essigsäureanhydrid (Paal, Reckleben, B. 28, 935). — Krystalle. F: 133°. Leicht löslich in Äther, Alkohol und Essigsster. Unlöslich in Alkalien und Mineralsäuren. — Wird durch längeres Erwärmen mit verd. Alkalilaugen unter gleichzeitiger Lösung verseift.

N-[2-Oxy-benzyl]-p-phenylendiamin $C_{13}H_{14}ON_3 = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot NH_2$. B. Analog dem N-[2-Oxy-benzyl]-o-phenylendiamin (S. 583). — Nadeln (aus absol. Alkohol). F: 119° (Paal, Reckleben, B. 28, 936).

Mono-[2-oxy-benzyl]-asymm.-o-toluylendiamin $C_{14}H_{16}ON_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_3(CH_3) \cdot NH_2$. B. Analog dem N-[2-Oxy-benzyl]-o-phenylendiamin (S. 583). — Nädelchen F: 167° (Paal, Reckleben, B. 28, 935).

N-Nitroso-N-[2-oxy-benzyl]-anilin, [2-Oxy-benzyl]-phenyl-nitrosamin $C_{13}H_{12}O_2N_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot N(NO) \cdot C_6H_5$. B. Aus [2-Oxy-benzyl]-anilin in überschüssiger verdünnter Schwefelsäure mit $10^9/_0$ iger Natriumnitritlösung bei ca. 40^9 (Bamberger, Müller, A. 313, 105; vgl. Paal, Senninger, B. 27, 1803). — Hellgelbe oder fast farblose Prismen (aus verdünntem Methylalkohol). F: $131^9,5^9$ (Ba., Mü.). Sehr leicht löslich in Aceton, ziemlich leicht in Chloroform, Eisessig, Alkohol und Methylalkohol, schwerer in Benzol und Äther, sehr schwer in kaltem Ligroin (Ba., Mü.). — Geht durch Reduktion mit Zinkstaub in essigsaurer Lösung bei $30-40^9$ in das asymm. [2-Oxy-benzyl]-phenylhydrazin (Syst. No. 2078) über. Verdünnte Natronlauge spaltet es sehr langsam bei Zimmertemperatur, schnell beim Erwärmen in Natrium-benzol-anti-diazotat und 2-Oxy-benzylalkohol (Bd. VI, S. 891) (Ba., Mü.; vgl. Hantzsch, Wechsler, A. 325, 234). Wird weder von Kaliumcyanid noch von Kaliumsulfit angegriffen (Hantzsch, Wechsler, A. 325, 247). — $KC_{13}H_{11}O_2N_3$. B. Aus [2-Oxy-benzyl]-phenyl-nitrosamin und Kaliumäthylat in äther. Lösung (H., W.). Gelber Niederschlag. Leicht löslich in Wasser. Zeigt in wäßr. Lösung keine Diazoreaktionen und wird durch Säuren unter Rückbildung ven [2-Oxy-benzyl]-phenyl-nitrosamin zerlegt.

N-Nitroso-N-[2-oxy-benzyl]-p-toluidin, [2-Oxy-benzyl]-p-tolyl-nitrosamin $C_{14}H_{14}O_2N_2=HO\cdot C_6H_4\cdot CH_2\cdot N(NO)\cdot C_6H_4\cdot CH_3$. B. Aus [2-Oxy-benzyl]-p-toluidin in überschüssiger verdünnter Salzsäure mit $10^0/_0$ iger Natriumnitritlösung bei 40^0 (Bamberger, Müller, A. 313, 116). — Fast farblose Nadeln (aus verd. Eisessig). F: 74,5—75°. Sehr leicht löslich in Aceton und Chloroform, leicht in Alkohol, Äther und Essigester, schwer löslich in Ligroin.

N-Nitroso-N-[2-oxy-benzyl]- β -naphthylamin, [2-Oxy-benzyl]- β -naphthyl-nitrosamin $C_{17}H_{14}O_2N_3=HO\cdot C_6H_4\cdot CH_2\cdot N(NO)\cdot C_{10}H_7$. B. Aus [2-Oxy-benzyl]- β -naphthylamin in alkoholisch-schwefelsaurer Lösung mit wäßriger Natriumnitritlösung (EMMERICH, A. 241, 353). — Blättchen (aus Alkohol). F: 165° (Zers.). Löslich in Alkohol und Äther, unlöslich in Wasser. Verändert sich an der Luft.

N-Nitroso-N-[2-oxy-bensyl]-p-anisidin, [2-Oxy-bensyl]-[4-methoxy-phenyl]-nitrosamin $C_{14}H_{14}O_3N_2=HO\cdot C_8H_4\cdot CH_5\cdot N(NO)\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Eintragen einer wäßr. Lösung von 1 Mol.-Gew. Natriumnitrit in eine salzsaure Lösung von 1 Mol.-Gew. [2-Oxy-benzyl]-p-anisidin bei 5° (Hantzsch, Wechsler, A. 325, 249). — Rote Krystalle (aus Benzol + Ligroin). F: 91°. Leicht löslich in Alkohol, Äther, Benzol und Aceton, kaum in Ligroin.

[5-Brom-2-oxy-bensyl]-anilin $C_{13}H_{12}ONBr = HO \cdot C_6H_3Br \cdot CH_3 \cdot NH \cdot C_6H_5$. B. Aus 1 Mol.-Gew. 5-Brom-2-oxy-benzylbromid (Bd. VI, S. 361) und 2 Mol.-Gew. Anilin in Benzol (Auwers, Büttner, A. 302, 144). — Krystalle. F: 114—115°. Leicht löslich in Äther, ziemlich schwer in Benzol, Alkohol und Essigester, schwer in Ligroin.

[3.5 - Dibrom - 2 - oxy - benzyl] - diäthylamin $C_{11}H_{15}ONBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_3 \cdot N(C_2H_5)_2$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid (Bd. VI, S. 362) und Diäthylamin (Bd. IV, S. 95) in Benzol bei 100° oder ohne Lösungsmittel bei gewöhnlicher Temperatur (Auwers, A. 332, 221). — Nadeln (aus Benzol). F: 141—142°. Leicht löslich, außer in Schwefelkohlenstoff, Ligroin, Petroläther. Löslich in verd. Natronlauge.

- [3.5-Dibrom-2-acetoxy-bensyl]-diāthylamin $C_{13}H_{17}O_2NBr_2=CH_2\cdot CO\cdot O\cdot C_6H_2Br_2\cdot CH_2\cdot N(C_2H_3)_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und Diāthylamin in Benzol bei 40^o (Auwers, A. 332, 220). Gelbes Öl. Leicht löslich in Benzol, Äther, ziemlich schwer in kaltem Alkohol, Ligroin.
- [3.5-Dibrom-2-oxy-bensyl]-diisoamylamin $C_{17}H_{27}ONBr_{3} = HO \cdot C_{6}H_{2}Br_{2} \cdot CH_{3} \cdot N(C_{5}H_{11})_{2}$. B. Aus 3.5-Dibrom-2-oxy-benzylbromid (Bd. VI, S. 361) und Diisoamylamin (Auwers, Schroeter, A. 344, 145). Das salzsaure Salz liefert beim Kochen mit Eisessig und Natriumacetat [3.5-Dibrom-2-oxy-benzyl]-acetat (Bd. VI, S. 894). $C_{17}H_{27}ONBr_{2} + HCl$. Weiße Masse.
- [3.5-Dibrom-2-oxy-benzyl]-anilin $C_{13}H_{11}ONBr_2 = HO \cdot C_0H_2Br_2 \cdot CH_2 \cdot NH \cdot C_0H_5$. B. Aus 1 Mol.-Gew. 3.5-Dibrom-2-oxy-benzylbromid (Bd. VI, S. 361) mit 2 Mol.-Gew. Anilin in Benzol (Auwers, Büttner, A. 302, 149). Nadeln. F: 98—99°. Ziemlich schwer löslich in kaltem Alkohol und heißem Ligroin, leicht in den übrigen organischen Lösungsmitteln.
- [3.5-Dibrom-2-oxy-bensyl]-methylanilin $C_{14}H_{13}ONBr_2 = HO \cdot C_6H_2Br_3 \cdot CH_3 \cdot N(CH_3) \cdot C_6H_5$. B. Aus [3.5-Dibrom-2-acetoxy-benzyl]-methylanilin (s. u.) durch alkoh. Kalilauge (Auwers, A. 332, 225). Krystalle (aus Petroläther). F: 67—68°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln, schwer in Petroläther.
- [3.5-Dibrom-2-acetoxy-bensyl]-methylanilin $C_{18}H_{15}O_2NBr_3 = CH_3 \cdot CO \cdot O \cdot C_4H_3Br_5 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_5$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und Methylanilin (Bd. XII, S. 135) in Benzol im Wasserbade (Auwers, A. 332, 225). Durch Acetylierung von [3.5-Dibrom-2-oxy-benzyl]-methylanilin (Au., A. 332, 226). Nadeln (aus Alkohol). F: 91°. Leicht löslich in Benzol, mäßig löslich in heißem Alkohol, Ligroin, schwer in Petroläther.
- [3.5 Dibrom 2 oxy bensyl] bensylamin, 8.5 Dibrom 2 oxy dibensylamin $C_{14}H_{18}ONBr_8 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5$. B. Aus 1 Mol.-Gew. 3.5-Dibrom-2-oxy-benzylbromid (Bd. VI, S. 361) und 2 Mol.-Gew. Benzylamin (Bd. XII, S. 1013) in Benzollösung (Auwers, Schroeter, A. 344, 144). Nadeln (aus Methylalkohol). F: 129—130°. Leicht löslich in Benzol und Chloroform, ziemlich schwer in Alkohol und Ligroin. Wird von siedendem Eisessig und Essigsäureanhydrid zersetzt.
- N-Isoamyl-N-[3.5-dibrom-2-oxy-benzyl]-acetamid $C_{14}H_{19}O_2NBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N(C_5H_{11}) \cdot CO \cdot CH_2$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid (Bd. VI, S. 362) und Isoamylamin (Bd. IV, S. 180) in siedendem Benzol (Auwers, Ulrich, A. 332, 187). Nadeln (aus Alkohol). F: 150°. Leicht löslich in Äther, Chloroform, Benzol, mäßig löslich in heißem Ligroin, schwer in Alkohol.
- N-[3.5-Dibrom-2-oxy-benzyl]-acetanilid $C_{15}H_{13}O_2NBr_2=H0\cdot C_6H_2Br_2\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim Erhitzen von 1 Mol.-Gew. 3.5-Dibrom-2-acetoxy-benzylbromid mit 2 Mol.-Gew. Anilin in Benzol (Auwers, B, 33, 1923; Au., Anselmino, Richter, A. 332, 177). Durch Einw. von Essigsäureanhydrid auf [3.5-Dibrom-2-oxy-benzyl]-anilin (s. o.) (Au.; Au., An., R.). Entsteht auch durch Digestion des N-[3.5-Dibrom-2-acetoxy-benzyl]-acetanilids (s. u.) mit alkoh. Natronlauge (Au., An., R.; Au.). Nadeln (aus Alkohol). F: 152°. Leicht löslich in Äther, Benzol, ziemlich in heißem Ligroin, Alkohol, schwer in Petroläther. Leicht löslich in verd. Natronlauge.
- N-[3.5-Dibrom-2-oxy-bensyl]-N-acetyl-2-chlor-anilin C₁₅H₁₂O₂NClBr₂ = HO·C₆H₂Br₂·CH₂·N(C₆H₄Cl)·CO·CH₃. B. Durch 4-stdg. Erhitzen von 1 Mol.-Gew. 3.5-Dibrom-2-acetoxy-benzylbromid mit 2 Mol.-Gew. 2-Chlor-anilin (Bd. XII, S. 597) in Alkohol (Auwers, Ulrich, A. 332, 187). Schräg abgestumpfte Prismen (aus Methylalkohol). F: 129—130°. Leicht löslich in kaltem Benzol, heißem Eisessig, Alkohol, sehr wenig in Ligroin.
- N-[3.5-Dibrom-2-oxy-bensyl]-N-acetyl-2.4-dichlor-anilin $C_{15}H_{11}O_2NCl_2Br_2 = HO \cdot C_4H_3Br_3 \cdot CH_4 \cdot N(C_4H_3Cl_3) \cdot CO \cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und 2.4-Dichlor-anilin in Alkohol bei 100° (Au., U., A. 332, 188). Nadeln (aus Methylalkohol). F: 141,5—143,5°. Leicht löslich in verd. Alkali.
- N-[3.5-Dibrom-2-oxy-benzyl]-N-acetyl-3-nitro-anilin $C_{15}H_{12}O_4N_2Br_3=HO\cdot C_4H_3Br_3\cdot CH_2\cdot N(C_6H_4\cdot NO_2)\cdot CO\cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und 3-Nitro-anilin (Bd. XII, S. 698) in Alkohol bei 100° (Au., U., A. 332, 189). Krystalle (aus Aceton + Methylalkohol). F: 158—159°. Leicht löslich in Aceton, mäßig in Benzol, Eisessig, Alkohol, unlöslich in Ligroin. Löslich in verd. Natronlauge.
- N-[3.5-Dibrom-2-oxy-bensyl]-N-acetyl-4-nitro-anilin $C_{15}H_{12}O_4N_2Br_2=HO$: $C_4H_2Br_2\cdot CH_3\cdot N(C_4H_4\cdot NO_3)\cdot CO\cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-bensylbromid und 4-Nitro-anilin in Alkohol bei 100° (Au., U., A. 332, 190). Krystalle (aus Methylalkohol). F: 155—157° (Au., Eisenlohr, A. 369, 237). Löelich in heißem Methylalkohol und in viel kaltem Benzol, unlöelich in Ather, Ligroin (Au., U.).
- N-[8.5-Dibrom-2-acetoxy-bensyl]-acetanilid $C_{17}H_{15}O_3NBr_3=CH_3\cdot CO\cdot C\cdot C_6H_2Br_3\cdot CH_2\cdot N(C_6H_3)\cdot CO\cdot CH_4\cdot B$. Aus dem N-[3.5-Dibrom-2-oxy-benzyl]-acetanilid (s. o.)

durch Kochen mit Essigsäureanhydrid (Auwers, Anselmino, Richter, A. 332, 178). — Nadeln (aus Alkohol). Leicht löslich in den meisten organischen Mitteln. — Liefert bei der Behandlung mit alkoh. Natronlauge wieder N-[3.5-Dibrom-2-oxy-benzyl]-acetanilid.

N-[3.5-Dibrom-2-benzoyloxy-benzyl]-acetanilid $C_{23}H_{17}O_3NBr_2 = C_6H_5\cdot CO\cdot O\cdot C_6H_2Br_2\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Aus N-[3.5-Dibrom-2-oxy-benzyl]-acetanilid (S. 585) mit Benzoylchlorid in Pyridin (Auwers, Eisenlohe, A. 369, 237). — Prismen (aus Alkohol). F: 147°. Schwer löslich in Alkohol, ziemlich leicht in Eisessig und Benzol. — Liefert bei der Verseifung mit kalter alkoholischer Kalilauge wieder N-[3.5-Dibrom-2-oxy-benzyl]-acetanilid.

N - [3.5 - Dibrom-2-benzoyloxy-benzyl]-N-acetyl-4-nitro-anilin $C_{22}H_{16}O_5N_3Br_2 = C_6H_5\cdot CO\cdot O\cdot C_6H_2Br_2\cdot CH_2\cdot N(C_6H_4\cdot NO_2)\cdot CO\cdot CH_3$. B. Aus N-[3.5-Dibrom-2-oxy-benzyl]-N-acetyl-4-nitro-anilin (S. 585) mit Benzoylchlorid und Pyridin (Au., Ei., A. 369, 237). — Gelbliche krystallinische Masse (aus Benzol + Ligroin). F: 153,5—154°. — Liefert bei der Verseifung mit kalter alkoholischer Natronlauge wieder N-[3.5-Dibrom-2-oxy-benzyl]-N-acetyl-4-nitro-anilin.

N-[3.5-Dibrom-2-oxy-benzyl]-[acet-o-toluidid] $C_{16}H_{15}O_2NBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N(C_6H_4 \cdot CH_3) \cdot CO \cdot CH_5$. B. Beim Erhitzen von 1 Mol.-Gew. 3.5-Dibrom-2-acetoxy-benzylbromid (Bd. VI, S. 362) mit 2 Mol.-Gew. o-Toluidin in Benzol (Auwers, Ulrich, A. 332, 186). — Nadeln (aus Alkohol). F: 115°. Leicht löslich in Benzol, mäßig in Ligroin, Alkohol, schwer in Petroläther. Löslich in verd. Natronlauge.

N - [4 - Nitro - 2 - methyl - phenyl] - N - [3.5 - dibrom - 2 - oxy - bensyl] - acetamid $C_{16}H_{16}O_4N_3Br_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N[C_6H_3(NO_3) \cdot CH_3] \cdot CO \cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und 4-Nitro-2-methyl-anilin (Bd. XII, S. 846) durch Kochen in alkoh. Lösung (Auwers, Ulrich, A. 332, 191). — Nadeln und Prismen (aus Methylalkohol). F: 161—162°. Leicht löslich in Chloroform, Eisessig, schwer in Alkohol und Ligroin.

N-[3-Nitro-4-methyl-phenyl]-N-[3.5-dibrom-2-oxy-benzyl]-acetamid $C_{16}H_{14}O_4N_9Br_2=HO\cdot C_6H_2Br_2\cdot CH_2\cdot N[C_6H_3(NO_2)\cdot CH_3]\cdot CO\cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und 3-Nitro-4-methyl-anilin (Bd. XII, S. 996) (Au., U., A. 332, 192). — Gelbliche rechteckige Tafeln (aus Benzol+Methylalkohol). F: 179—180,5°. Leicht löslich in den organischen Lösungsmitteln, außer in Methylalkohol und Ligroin.

N-[3.5-Dibrom-2-oxy-benzyl]-[acet-vic.-m-xylidid] $C_{17}H_{17}O_2NBr_3 = HO \cdot C_6H_3Br_2 \cdot CH_2 \cdot N[C_6H_3(CH_3)_2] \cdot CO \cdot CH_3$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und vic.-m-Xylidin (Bd. XII, S. 1107) beim Kochen in Alkohol (Auwers, A. 365, 279 Anm. 2). — Nadeln (aus Alkohol oder Eisessig). F: 169—170° (Auwers, Privatmitteilung). Sehr leicht löslich in Chloroform, ziemlich leicht in Alkohol und Äther, schwer in Ligroin.

N-[3.5-Dibrom-2-oxy-benzyl]-acetpseudocumidid $C_{18}H_{19}O_{2}NBr_{2}=HO\cdot C_{8}H_{2}Br_{2}\cdot CH_{2}\cdot N[C_{6}H_{3}(CH_{3})_{3}]\cdot CO\cdot CH_{2}$. B. Aus 3.5-Dibrom-2-acetoxy-benzylbromid und Pseudocumidin (Bd. XII, S. 1150) in Alkohol (Auwers, Ulrich, A. 332, 198). — Krystalle (aus Alkohol). F: 120—121°. Ziemlich leicht löslich, außer in Ligroin, Petroläther. Löslich in verd. Natronlauge.

N-[3.5-Dibrom-2-oxy-benzyl]-N- β -naphthyl-acetamid $C_{10}H_{15}O_2NBr_2=HO\cdot C_6H_2Br_2\cdot CH_3\cdot N(C_{10}H_7)\cdot CO\cdot CH_3$. B. Beim Kochen von 1 Mol.-Gew. 3.5-Dibrom-2-acetoxy-benzylbromid mit 2 Mol.-Gew. β -Naphthylamin (Bd. XII, S. 1265) in Benzol (Au., U., A. 332, 187). — Nadeln. F: 137°. Löslich in verd. Natronlauge.

N-[3.5-Dibrom-2-oxy-benzyl]-[acet-o-anisidid] $C_{16}H_{15}O_3NBr_2 = HO \cdot C_6H_2Br_3 \cdot CH_2 \cdot N(C_6H_4 \cdot O \cdot CH_3) \cdot CO \cdot CH_4$. B. Beim Kochen der alkoh. Lösung von 3.5-Dibrom-2-acet-oxy-benzylbromid und o-Anisidin (S. 358) (Au., U., A. 332, 192). — Krystalle (aus Alkohol). F: 102—103°. Leicht löslich in Eisessig, Benzol, heißem Methylalkohol, unlöslich in Ligroin. Löslich in verd. Natronlauge.

N-[3.5-Dibrom-2-oxy-bensyl]-[acet-p-anisidid] $C_{16}H_{15}O_{3}NBr_{2} = HO \cdot C_{6}H_{2}Br_{2} \cdot CH_{2} \cdot N(C_{6}H_{4} \cdot O \cdot CH_{3}) \cdot CO \cdot CH_{3}$. Beim Kochen der alkoh, Lösung von 3.5-Dibrom-2-acetoxy-benzylbromid mit p-Anisidin (S. 435) (Au., U., A. 332, 193). — Nadeln (aus verd. Methylalkohol). F: 114—115°. Leicht löslich in Benzol, Äther, Eisessig, Alkohol, sehr wenig in Ligroin.

Laurinsäure - [(3.5 - dibrom-2-oxy-benzyl)-anilid] $C_{2g}H_{2g}O_{2}NBr_{g} = H0 \cdot C_{g}H_{2}Br_{g} \cdot CH_{2} \cdot N(C_{g}H_{g}) \cdot CO \cdot [CH_{2}]_{10} \cdot CH_{2} \cdot B$. Beim Kochen von 1 Mol.-Gew. 3.5-Dibrom-2-[laurinoyl-oxy]-benzylbromid (Laurinsäure-[4.6-dibrom-2-brommethyl-phenyl]-ester, Bd. VI, S. 362) mit 2 Mol.-Gew. Anilin in Benzol (Auwers, Bergs, Winternitz, A. 832, 202). — Nadeln (aus Alkohol). F: 50—51°. Leicht löslich außer in Ligroin und Petroläther.

Palmitinsäure-[(3.5-dibrom-2-oxy-bensyl)-anilid] $C_{19}H_{41}O_{2}NBr_{1} = HO \cdot C_{6}H_{2}Br_{2} \cdot CH_{2} \cdot N(C_{6}H_{2}) \cdot CO \cdot [CH_{2}]_{14} \cdot CH_{3}$. B. Beim Kochen von 1 Mol.-Gew. 3.5-Dibrom-2-[palmitoyloxy]-benzylbromid (Palmitinsäure-[4.6-dibrom-2-brommethyl-phenyl]-ester, Bd. VI, S. 362)

mit 2 Mol.-Gew. Anilin in Benzol (Au., B., W., A. 332, 203). Aus dem Palmitinsäure-[(3.5-di-brom-2-acetoxy-benzyl)-anilid] (s. u.) durch Erhitzen mit alkoh. Kalilauge (Au., B., W., A. 332, 204). — Krystalle (aus Alkohol). F: 56—57°.

Palmitinsäure-[(3.5-dibrom-2-acetoxy-bensyl)-anilid] $C_{11}H_{43}O_{3}NBr_{3} = CH_{3} \cdot CO \cdot C_{4}H_{4}Br_{5} \cdot CH_{5} \cdot N(C_{6}H_{5}) \cdot CO \cdot [CH_{3}]_{14} \cdot CH_{5}$. B. Aus Palmitinsäure-[(3.5-dibrom-2-oxy-benzyl)-anilid] und Essigsäureanhydrid (Au., B., W., A. 382, 203). — Krystalle (aus Alkohol). F: 64° bis 65°. Leicht löslich in den gewöhnlichen organischen Lösungsmitteln.

N-[3.5-Dibrom-2-oxy-bensyl]-bensanilid $C_{20}H_{15}O_2NBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N(C_6H_4) \cdot CO \cdot C_6H_5$. B. Aus 3.5-Dibrom-2-benzylbromid (Benzoesäure-[4.6-dibrom-2-brommethyl-phenyl]-ester, Bd. IX, S. 120) und Anilin in Äther (Au., B., W., A. 382, 200). Aus [3.5-Dibrom-2-oxy-benzyl]-anilin (S. 585) und Benzoylchlorid beim Erwärmen (Au., B., W.) oder in Pyridinlösung bei gewöhnlicher Temperatur (Au., Sonnenstuhl, B. 37, 3940). — Prismen und Tafeln (aus Alkohol). F: 167—168° (Au., S.), 163° (Au., B., W.). Sehr leicht löslich in Äther und Benzol, ziemlich leicht in heißem Eisessig, schwer in kaltem Alkohol und Ligroin (Au., S.).

[3.4.5.6-Tetrabrom-2-oxy-bensyl]-diisoamylamin $C_{17}H_{15}ONBr_4 = HO \cdot C_6Br_4 \cdot CH_2 \cdot N(C_5H_{11})_8$. B. Aus Diisoamylamin (Bd. IV, S. 182) und 3.4.5.6-Tetrabrom-2-oxy-benzylbromid (Bd. VI, S. 364) in Benzol (Auwers, Schröter, A. 344, 152). — Öl. — Liefert beim Kochen mit Eisessig [3.4.5.6-Tetrabrom-2-oxy-benzyl]-acetat (Bd. VI, S. 895). Wird auch beim Kochen mit Essigsäureanhydrid zersetzt. — $C_{17}H_{25}ONBr_4 + HCl$.

[3.4.5.6-Tetrabrom-2-oxy-benzyl]-anilin C₁₃H₂ONBr₄ = HO·C₆Br₄·CH₂·NH·C₆H₅.

B. Aus 3.4.5.6-Tetrabrom-2-oxy-benzylbromid und Anilin in Benzol (Auwers, Anselmino, Richter, A. 332, 179). — Nadeln (aus Benzol). F: 165—170°. Leicht löslich in Eisessig, Chloroform, heißem Benzol, schwer in kaltem Alkohol, sehr wenig in Ligroin.

[3.4.5.6 - Tetrabrom - 2 - oxy - bensyl] - bensylamin, 3.4.5.6 - Tetrabrom - 2 - oxy-dibensylamin $C_{14}H_{11}ONBr_4 = HO \cdot C_6Br_4 \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5 \cdot B$. Aus 3.4.5.6-Tetrabrom-2-oxy-bensylbromid und Bensylamin (Bd. XII, S. 1013) in Bensol (Auwers, Schröter, A. 344, 150). — Blättchen (aus Ligroin, Bensol oder Methylalkohol). F: 170—171°. Leicht löslich in Bensol und Eisessig, schwer in Alkohol, Ligroin, Petroläther. — Liefert beim Kochen mit Eisessig [3.4.5.6-Tetrabrom-2-oxy-bensyl]-acetat (Bd. VI, S. 895), mit Essigsäureanhydrid dagegen ein Produkt, wahrscheinlich das O.N-Diacetylderivat, das beim Erwärmen mit alkoh. Alkalilauge N-Bensyl-N-[3.4.5.6-tetrabrom-2-oxy-bensyl]-acetamid (s. u.) gibt.

Bis - [3.4.5.6 - tetrabrom - 2 - oxy - benzyl] - methylamin $C_{15}H_{\bullet}O_{2}NBr_{\delta} = (HO \cdot C_{\delta}Br_{\delta} \cdot CH_{2})_{2}N \cdot CH_{2}$. Aus 3.4.5.6-Tetrabrom-2-oxy-benzylbromid in Benzol beim Schütteln mit wäßr. Methylaminlösung (Auwers, Schröter, A. 344, 147). — Läßt sich nicht umkrystallisieren. F: 205—207°. Leicht löslich in Eisessig, Benzol, Chloroform, schwer in Alkohol. — Liefert mit Essigsäureanhydrid Bis-[3.4.5.6-tetrabrom-2-acetoxy-benzyl]-methylamin (s. u.).

Bis-[3.4.5.6-tetrabrom-2-acetoxy-bensyl]-methylamin $C_{10}H_{12}O_4NBr_8 = (CH_3 \cdot CO \cdot O \cdot C_6Br_4 \cdot CH_2)_2N \cdot CH_2$. B. Beim Kochen von Bis-[3.4.5.6-tetrabrom-2-oxy-benzyl]-methylamin (s. o.) mit Essigsäureanhydrid (Auwers, Schröter, A. 344, 148). — Krystalle (aus Eisessig). Schmilzt unscharf zwischen 145—150°.

N-[3.4.5.6-Tetrabrom-2-oxy-benzyl]-acetanilid $C_{15}H_{11}O_2NBr_4 = HO \cdot C_6Br_4 \cdot CH_2 \cdot N(C_6H_5) \cdot CO \cdot CH_5$. B. Aus 3.4.5.6-Tetrabrom-2-acetoxy-benzylbromid (Bd. VI, S. 364) und Anilin beim Erhitzen in Benzol (Auwers, Anselmino, Richter, A. 332, 178). Entsteht auch durch partielle Verseifung von N-[3.4.5.6-Tetrabrom-2-acetoxy-benzyl]-acetanilid (s. u.), sowie aus [3.4.5.6-Tetrabrom-2-oxy-benzyl]-anilin (s. o.) und Essigsäureanhydrid (Au., An., R.). — Nadeln (aus Alkohol). F: 157—158°. Leicht löslich in Benzol, Essigester, ziemlich in Alkohol, Eisessig, sehr wenig in Ligroin.

N-[3.4.5.6-Tetrabrom-2-acetoxy-benzyl]-acetanilid $C_{17}H_{12}O_{2}NBr_{4} = CH_{2}\cdot CO\cdot O\cdot C_{6}Br_{4}\cdot CH_{2}\cdot N(C_{6}H_{5})\cdot CO\cdot CH_{3}$. B. Durch Kochen von N-[3.4.5.6-Tetrabrom-2-oxy-benzyl]-acetanilid (s. o.) mit Essigsäureanhydrid (Au., An., R., A. 332, 180). — Blättehen (aus Alkohol). F: 161—162°. Ziemlich löslich in Benzol, Eisessig, schwer in Alkohol, fast unlöslich in Ligroin. — Liefert bei der Verseifung wieder N-[3.4.5.6-Tetrabrom-2-oxy-benzyl]-acetanilid.

N-Bensyl-N-[8.4.5.6-tetrabrom-2-oxy-bensyl]-acetamid $C_{16}H_{16}O_2NBr_4 = HO \cdot C_6Br_4 \cdot CH_2 \cdot N(CH_2 \cdot C_6H_3) \cdot CO \cdot CH_3$. B. Man kocht 3.4.5.6-Tetrabrom-2-oxy-dibenzylamin (s. o.) mit Essigsäureanhydrid und verseift das Acetylierungsprodukt mit alkoh. Alkalilauge (Auwers, Schröter, A. 344, 151). — Prismen (aus Ligroin). F: 150°. Leicht löslich in Benzol und Eisessig, ziemlich leicht in Äther, ziemlich schwer in Alkohol und Ligroin.

5 - Nitro - 2 - oxy - bensylamin $C_2H_3O_3N_2 = HO \cdot C_6H_3(NO_2) \cdot CH_2 \cdot NH_2$. B. Aus N-[5-Nitro-2-oxy-benzyl]-benzamid (8. 588) beim Erhitzen mit alkoh. Salzsäure (Einhorn, Bischkofff, Szelinski, A. 343, 243). Aus N-[5-Nitro-2-oxy-benzyl]-phthalimid (Syst. No.

3210), erhalten aus N-Oxymethyl-phthalimid (Syst. No. 3211) und 4-Nitro-phenol in Gegenwart von konz. Schwefelsäure, durch Erhitzen mit konz. Salzsäure auf 180° (TSCHERNIAC, D. R. P. 134979; C. 1902 II, 1084). — Gelbe Nadeln oder Blättchen (aus Wasser), gelbe Nadeln (aus verd. Ammoniak). F: 253° (Zers.) (T.), 250° (Zers.) (E., B., Sz.). — Gibt mit salpetriger Säure 5-Nitro-2-oxy-benzylalkohol (Bd. VI, S. 895) (E., B., Sz.). — Hydrochlorid. Gelbliche Nadeln. F: 250° (E., B., Sz.).

[5-Nitro-2-oxy-benzyl]-diäthylamin $C_{11}H_{16}O_3N_2 = HO \cdot C_6H_3(NO_2) \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 1 g 5-Nitro-2-oxy-benzylchlorid (Bd. VI, S. 367) und 0,75 g Diäthylamin (Bd. IV, S. 95) (in Alkohol oder Benzol beim Erwärmen (Einhorn, Bischkopff, Szelinski, A. 343, 247). — Hellgelbe Nadeln (aus verd. Alkohol). F: 68—69°. — Hydrochlorid. Krystalle (aus Alkohol). F: 197° (Zers.).

[5-Nitro-2-oxy-benzyl]-äthylanilin $C_{15}H_{16}O_3N_2 = HO \cdot C_6H_3(NO_9) \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_5$. B. Aus 1 g 5-Nitro-2-oxy-benzylchlorid und 3 g Athylanilin (Bd. XII, S. 159) in Benzol beim Kochen (E., B., Sz., A. 343, 247). — Gelbe Prismen (aus Alkohol). F: 126°.

N-[5-Nitro-2-oxy-benzyl]-formamid $C_8H_8O_4N_2=HO\cdot C_6H_3(NO_2)\cdot CH_2\cdot NH\cdot CHO$. Aus 9,26 g 4-Nitro-phenol (Bd. VI, S. 226) in 50 g konz. Schwefelsäure und 5 g N-Oxymethylformamid (Bd. II, S. 27) (EINHORN, LADISCH, A. 343, 265). — Gelbliche prismatische Nädelchen (aus verd. Alkohol). F: 236° (Zers.).

N-[5-Nitro-2-oxy-benzyl]-chloracetamid C₃H₃O₄N₂Cl = H₀·C₈H₃(NO₂)·CH₂·NH·C₀·CH₃Cl. B. Aus 4-Nitro-phenol (Bd. VI, S. 226) und N-Oxymethyl-chloracetamid (Bd. II, S. 200) mit 50 g konz. Schwefelsäure (Einhorn, Mauermayer, A. 343, 286; E., D. R. P. 156398; C. 1905 I, 55). — Hellgelbe Nadeln (aus Aceton). F: 185—186°. Leicht löslich in Alkohol, schwer in Benzol und Äther; löst sich in Alkalien hellgelb (E., M.).

N-[5-Nitro-2-oxy-benzyl]-benzamid C₁₄H₁₂O₄N₂=HO·C₆H₃(NO₂)·CH₂·NH·CO·C₆H₅.

B. Aus 10 g 4-Nitro-phenol (Bd. VI, S. 226), 50 g konz. Schwefelsäure und 10 g N-Oxymethylbenzamid (Bd. IX, S. 207) unter Kühlung (Einhorn, Bischkofff, Szelinski, A. 343, 242; E., D. R. P. 156398; C. 1905 I, 55). — Gelbliche Nadeln (aus Aceton). F: 217—218°. Ziemlich leicht löslich in Alkohol, unlöslich in Wasser.

N.N'-Bis-[5-nitro-2-oxy-benzyl]-succinamid C₁₈H₁₈O₈N₄ = [HO·C₆H₃(NO₂)·CH₂·NH·CO·CH₂-]₂. B. Aus 5 g 4-Nitro-phenol (Bd. VI, S. 226) in konz. Schwefelsäure und 3,2 g N.N'-Bis-[oxymethyl]-succinamid (Bd. II, S. 615) (EINHORN, LADISCH, A. 343, 278; E., D. R. P. 156398; C. 1905 I, 55). — Weiße Kryställchen. F: 257° (Zers.) (E., L.; E.). — Spaltet sich beim Erhitzen mit konz. Salzsäure in Bernsteinsäure und 5-Nitro-2-oxybenzylamin (E., L.).

Diäthylaminoessigsäure - [5 - nitro - 2 - oxy - bensylamid], [N.N-Diäthyl-glycin]-[5-nitro-2-oxy-bensylamid] $C_{13}H_{19}O_4N_3 = HO \cdot C_6H_3(NO_2) \cdot CH_2 \cdot NH \cdot CO \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus N - [5 - Nitro-2 - oxy - bensyl] - chloracetamid (s. o.) und Diäthylamin in Alkohol beim Erwärmen (Einhorn, Mauermayer, A. 343, 287). — Gelbe Nädelchen (aus Alkohol). F: 150°. Leicht löslich in Wasser und Alkohol, sonst schwer löslich. — $C_{13}H_{19}O_4N_3 + HCl$. Nadeln (aus absol. Alkohol). F: 199°. Sehr leicht löslich in Wasser, leicht in Alkohol, unlöslich in Ather.

Diaminoderivate des 2-Oxy-1-methyl-benzols.

3.5 - Diamino - 2 - oxy - 1 - methyl - benzol, 4.6 - Diamino - o-kresol 1)

C₇H₁₀ON₂, s. nebenstehende Formel. B. Aus 3.5 - Dinitro - 2 - oxy - 1 - methylbenzol (Bd. VI, S. 368) mit Zinn und Salzsäure (Cazeneuve, Bl. [3] 17, 206).

— Bei der Oxydation des salzsauren Salzes mit Eisenchlorid entsteht je nach H₂N. NH₂ den Bedingungen ein hellrotes (vielleicht parachinoides) oder ein dunkelrotes (vielleicht orthochinoides) Salz CH₃·C₆H₂(NH₂)(:O)(:NH) + HCl (Syst. No. 1874) (Piccard, B. 42, 4339; vgl. Kehrmann, Prager, B. 39, 3439). — C₇H₁₀ON₂ + 2 HCl (C.).

3.5 - Diamino - 2 - äthoxy - 1 - methyl - benzol, 4.6 - Diamino - o - kresol - äthyläther $C_0H_{14}ON_2=(H_2N)_2C_6H_2(CH_3)\cdot O\cdot C_2H_5$. B. Aus 3.5-Dinitro-2-äthoxy-1-methyl-benzol (Bd. VI, S. 369) mit Zinn und Salzsäure (Noelting, Salis, A. ch. [6] 4, 112). — Sehr leicht zersetzbar. — $C_9H_{14}ON_2+2HCl$. Nadeln. Leicht löslich in Wasser.

5-Amino-4-anilino-2-äthoxy-1-methyl-benzol, 4-Amino-5-anilino-o-kresol-äthyläther¹), 3-Äthoxy-6-amino-4-methyl-diphenylamin C₁₅H₁₈ON₂, s. nebenstchende Formel. B. Bei allmählichem Eintragen von 10 g 4-Äthoxy-3-methyl-azobenzol (Syst. No. H₂N. 2113) in 180 g einer gelinde erwärmten Zinnchlorürlösung (40 g Zinn-chlorür in 100 ccm 38% eiger Salzsäure) (Jacobson, A. 287, 147).

$$\begin{array}{c} \operatorname{CH_3} \\ \\ \operatorname{H_2N} \cdot \bigodot \\ \operatorname{NH} \cdot \operatorname{C_6H_5} \end{array}$$

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

- 5-Amino-4-o-toluidino-2-äthoxy-1-methyl-benzol, 4-Amino-5-o-toluidino-o-kresol-äthyläther, 3'-Äthoxy-6'-amino-2.4'-dimethyl-diphenylamin $C_{16}H_{20}ON_2=(CH_3\cdot C_6H_4\cdot NH)(H_3N)C_6H_2(CH_3)\cdot O\cdot C_2H_5$. B. Durch Reduktion von 4'-Äthoxy-2.3'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure (Jacobson, A. 287, 190). Prismen (aus Ligroin). F: 78°.
- 5 Amino 4 m toluidino 2 äthoxy 1-methyl-benzol, 4-Amino 5-m-toluidino o-kresol-äthyläther, 3'- Äthoxy-6'- amino 3.4'-dimethyl-diphenylamin $C_{16}H_{20}ON_2 = (CH_3 \cdot C_6H_4 \cdot NH)(H_2N)C_6H_2(CH_3) \cdot O \cdot C_2H_5$. B. Durch Reduktion von 4-Äthoxy-3.3'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure (J., A. 287, 196). Nadeln (aus Ligroin). F: 91—91,5°.
- 5-Amino-4-p-toluidino-2-äthoxy-1-methyl-benzol, 4-Amino-5-p-toluidino-o-kresol-äthyläther, 3-Äthoxy-6-amino-4.4'-dimethyl-diphenylamin $C_{10}H_{20}ON_2=(CH_3\cdot C_0H_4\cdot NH)(H_2N)C_0H_2(CH_3)\cdot O\cdot C_2H_5$. B. Durch Reduktion von 4-Äthoxy-3.4'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure (J., A. 287, 201). Nädelchen (aus Ligroin). F: 76°.
- 2-Oxy-5-amino-benzylamin C₇H₁₀ON₂, s. nebenstehende Formel.

 B. Beim Erhitzen von N-[2-Oxy-5-amino-benzyl]-benzamid (s. u.) mit konz.
 Salzsäure am Rückflußkühler (Einhorn, Bischkofff, Szelinski, A. 343, 249). Aus 5-Nitro-2-oxy-benzylamin (S. 587) durch Reduktion mit Zinn H₂N.

 Und Salzsäure (E., B., Sz.; E., D. R. P. 167572; C. 1906 I, 1069).

 Die freie Base ist nicht bekannt. C₇H₁₀ON₂ + 2 HCl. Weiße Nädelchen. Schmilzt nicht unter 300°. Sehr leicht löslich in Wasser und Alkohol. Reduziert Silbersalzlösung und ist ein photographischer Entwickler.
- **N-[2-Oxy-5-amino-benzyl]-bensamid** $C_{14}H_{14}O_{9}N_{9} = \text{Ho} \cdot \text{C}_{6}H_{3}(\text{NH}_{2}) \cdot \text{CH}_{9} \cdot \text{NH} \cdot \text{CO} \cdot \text{C}_{6}H_{5}$. B. Aus 10 g N-[5-Nitro-2-oxy-benzyl]-benzamid (S. 588) durch Reduktion mit 15 g Zinn und 50 g konz. Salzsäure (E., B., Sz., A. 343, 248; E., D. R. P. 167572; C. 1906 I, 1069). Nadeln. F: 186° (E., B., Sz.; E.). Schwer löslich (E., B., Sz.). Hydrochlorid. Wärzohen. F: 157° (Zers.) (E., B., Sz.). $C_{14}H_{14}O_{2}N_{2} + \text{HCl} + \text{SnCl}_{2}$. Krystalle (aus Wasser) (E., B., Sz.).
- 2. Aminoderivate des 3 Oxy 1 methyl benzols $C_7H_8O = CH_3 \cdot C_6H_4 \cdot OH$ (Bd. VI, S. 373). Vgl. auch No. 4 auf S. 614.

Monoaminoderivate des 3-Oxy-1-methyl-benzols.

2-Amino-3-oxy-1-methyl-benzol und seine Derivate.

2-Amino-3-oxy-1-methyl-benzol, 2-Amino-m-kresol¹) C₇H₉ON, s. CH₃ nebenstehende Formel. B. Durch Erhitzen von Carbonyl-[2-amino-3-oxy-1-methyl-benzol] CH₃·C₆H₃ NH₂ CO (F: 158—159) (Syst. No. 4278) mit NH₃ OH auf 130—140° (JAFFÉ, HILBERT, H. 12, 313). — Blättchen. F: 148—150°. Sublimierbar.

^{&#}x27;) Besifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

[4-Nitro-6-oxy-2-methyl-phenyl]-harnstoff $C_8H_9O_4N_3$, s. Formel I¹). B. Durch Kochen der Verbindung $C_{11}H_{11}O_5N_3$ der Formel II¹) (Syst. No. 4588) [erhalten bei der Einw. von salpetriger Säure auf Oxalsäure-äthylester-o-toluididoxim (Bd. XII, S. 798)] mit der 6 Mol.-Gew. Alkali entsprechenden Menge $^{\rm n/_{10}}$ -Alkalilauge (Jowitschitsch, B. 39, 3829). Durch Kochen der Verbindung $C_8H_7O_3N_3$ der Formel III¹) (Syst. No. 4491) [erhalten aus

der Verbindung $C_{11}H_{11}O_5N_3$ durch Einw. einer 2 Mol.-Gew. Alkali entsprechenden Menge $n/_{10}$ -Alkalilauge] mit der 6 Mol.-Gew. Alkali entsprechenden Menge $n/_{10}$ -Alkalilauge (J.). — Goldgelbe Schuppen (aus Wasser). F: 178°. Ziemlich löslich in siedendem Alkohol, schwer in Äther, unlöslich in kalten Säuren. Gibt mit Alkalien Salze, die durch CO_2 nicht zersetzt werden. Beim Kochen mit Säuren entsteht eine Verbindung vom Schmelzpunkt 254°.

4-Amino-3-oxy-1-methyl-benzol und seine Derivate.

4-Amino-3-oxy-1-methyl-benzol, 6-Amino-m-kresol³) C₇H₉ON, s. nebenstehende Formel. B. Aus 4-Nitro-3-oxy-1-methyl-benzol (Bd. VI, S. 385) durch Reduktion mit Zinnchlorür und Salzsäure im Wasserbad (Kehrmann, Stampa, A. 322, 18). — Blättrige Krystalle. — Bei der Oxydation in neutraler wäßriger Lösung mit Luft entsteht 5-Amino-2-methyl-p-chinon-[2-oxy-4-methyl-phenylimid]-(1) (Syst. No. 1874) (Kehrmann, Bühler, B. 39, 137; v. Auwers, Borsche, Weller, B. 54 [1921], 1315). Beim Erhitzen mit Homobrenzcatechin (Bd. VI, S. 878) im Einschlußrohr auf 240—250° entstehen 2.6-Dimethyl-phenoxazin (Formel I) und 2.7-Dimethyl-phenoxazin (Formel II) (Syst. No. 4198) (K., St.). 4-Amino-3-oxy-1-methyl-benzol kondensiert sich in Benzol mit Phenanthrenchinon

I.
$$CH_3$$
· CH_3 II. CH_3 · CH_3

(Bd. VII, S. 796) zu einer farblosen Pseudobase $C_{21}H_{15}O_{2}N$ (Zersetzungspunkt: ca. 200°) (Syst. No. 4204), die mit starken Säuren in blaue Methylphenanthrophenazoxoniumsalze $C_{6}H_{4}\cdot C = N$ ($C_{6}H_{4}\cdot C = O(Ac)$) $C_{6}H_{3}\cdot CH_{3}$ übergeht (Kehrmann, Winkelmann, B. 40, 614; vgl. Hantzsch, B. 39, 158).

4-Amino-3-methoxy-1-methyl-benzol, 6-Amino-m-kresol-methyläther $C_8H_{11}ON=H_2N\cdot C_6H_3(CH_3)\cdot O\cdot CH_3$. B. Aus 4-Nitro-3-methoxy-1-methyl-benzol (Bd. VI, S. 385) durch Kochen mit Schwefel und alkoh. Natronlauge, neben 4-Amino-3-methoxy-benzaldehyd (Syst. No. 1877) (Khotinsky, Jacopson-Jacopmann, B. 42, 3103). — Hellgelbe Flüssigkeit. Kp: 237—239°. Löslich in den üblichen organischen Solvenzien. Flüchtig mit Wasserdampf. — Läßt sich diazotieren.

[6-Amino-3-methyl-phenyl]-kohlensäure-äthylester $C_{10}H_{13}O_3N$, s. nebenstehende Formel. B. Das Hydrochlorid entsteht durch Reduktion von [6-Nitro-3-methyl-phenyl]-kohlensäure-äthylester (Bd. VI, S. 385) mit Zinn und Salzsäure (UPson, Am. 32, 20). — Die freie Base ist nicht isoliert worden. Über die Affinitätskonstante und über die Umlagerung in [2-Oxy-4-methyl-phenyl]-urethan (S. 591) vgl. STIEGLITZ, UPSON, Am. 31, 490. — $C_{10}H_{13}O_3N + HCl$. Weißer Niederschlag (U.). — $2 C_{10}H_{13}O_3N + HCl + PtCl_4$. Gelber Niederschlag (U.).

4-Acetamino-3-methoxy-1-methyl-benzol, 6-Acetamino-m-kresol-methyläther $C_{10}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CH_3$. Beim Erhitzen von 4-Amino-3-methoxy-1-methyl-benzol mit Essigsäureanhydrid in Gegenwart von Natriumacetat (Khotinsky, Jacopson-Jacopmann, B. 42, 3103). — Krystalle (aus Alkohol). F: 131°.

²) Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von SFMPER, LICHTENSTADT, A. 400 [1913], 302.

[2-Oxy-4-methyl-phenyl]-urethan $C_{10}H_{13}O_3N$, s. nebenstehende Formel. B. Durch Einw. von Wasser auf salzsauren [6-Amino-3-methyl-phenyl]-kohlensäure-äthylester (S. 590) (UPSON, Am. 32, 20). — Krystalle (aus Wasser). F: 95°. Löslich in Alkohol, Äther, Chloroform, unlöslich in Säuren, löslich in Alkalien.

CH₃
OH
NH·CO₂·C₂H₄

2.6-Dinitro-4-amino-3-oxy-1-methyl-benzol, 2.4-Dinitro-6-amino-m-kresol¹) $C_7H_7O_2N_3=H_2N\cdot C_6H(CH_3)(NO_2)_2\cdot OH$. Zur Konstitution vgl. Borsche, Heyde, B. 39, 4092. — B. Durch Erwärmen von 2.4.6-Trinitro-3-oxy-1-methyl-benzol (Bd. VI. S. 387) mit alkoh. Schwefelammonium (Kellner, Bellstein, A. 128, 166). — Gelbe Nadeln. F: 151° (Liebermann, van Dorp, A. 163, 104), 156° (Oppenheim, Emmerling, B. 9, 1094). Zersetzt sich nur wenige Grade höher (L., v. D.; O., E.). Unlöslich in kaltem Wasser; leicht löslich in Alkohol und noch leichter in Ather (K., Bel.). — Beim Erhitzen mit Schwefel und Schwefelalkalien entsteht ein brauner Schwefelfarbstoff (Chem. Fabr. v. Heyden, D. R. P. 129283; C. 1902 I, 690). — Magnesiumsalz. Spieße (aus heißem Wasser) (K., Bel.).

4-Amino-3-sulfhydryl-1-methyl-benzol, 4-Amino-3-mercapto-1-methyl-benzol, 6-Amino-thio-m-kresol, 6-Amino-3-methyl-phenylmercaptan $C_7H_5NS=H_2N-C_6H_5(CH_3)\cdot SH$. B. Durch Reduktion von 4-Amino-1-methyl-benzol-sulfonsäure-(3)-chlorid mit Zinn und Salzsäure (Hess, B. 14, 492). — Dickflüssiges Öl. Oxydiert sich langsam an der Luft. Liefert beim Kochen mit Ameisensäure 6-Methyl-benzthiazol $CH_3\cdot C_6H_3 < S > CH$ (Syst. No. 4195). — $C_7H_5NS+HCl$. Nadeln.

6.6'- Diamino - 3.3'- dimethyl - diphenylsulfid, Thio - p - toluidin CH₃ CI₄H₁₆N₂S, s. nebenstehende Formel. Zur Konstitution vgl. Bogert, Mandelbaum, Am. Soc. 45 [1923], 3045. — B. Beim Erhitzen von P-Toluidin mit Schwefel unter Zusatz von Bleiglätte auf 140° (Merz, NH₂ NH₂ NH₂ CIBUHLAR, B. 4, 393). — Blätter oder Nadeln (aus Alkohol). F: 103° (Truhlar, B. 20, 664). Wenig löslich in heißem Wasser, leicht in Äther, ziemlich leicht in Alkohol (Me., W.). — Gibt durch Diazotieren und Verkochen der Diazoverbindung 3.3'-Dimethyl-diphenylsulfid (Bd. VI, S. 388) (B., Ma.). — Verwendung zur Darstellung von Azofarbstoffen: Dahl. & Co., D. R. P. 34299; Frdl. 1, 534. — C14 H16 N2 S + 2 HCl. Prismen (Me., W.). — C14 H16 N2 S + 2 HBr. Nadeln (aus Alkohol). Sehr leicht löslich in Wasser, leicht in heißem Alkohol, wenig in Äther (T.). — C14 H16 N2 S + 2 H I. Nadeln (aus Alkohol). Zersetzt sich bei 100° unter Jodabscheidung (T.). — C14 H16 N2 S + H2 SO4. Krystalle (aus Alkohol) (Me., W.). Wird beim Kochen mit Wasser dissoziiert (Me., W.). Beim Umkrystallisieren aus schwefelsäurehaltigem Wasser scheiden sich Nadeln von der Zusammensetzung C14 H16 N2 S + H2 SO4 + 2 H2 O aus (Me., W.). — Pikrat C14 H6 N2 S + 2 C14 H16 N2 S + 2 HCl + PtCl4. Gelbe Nadeln (Me., W.).

Verbindung $(C_{15}H_{14}ON_2S)_x$. B. Beim Einleiten von Phosgen in eine Benzollösung von 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid (Truhlar, B. 20, 671). — Amorphes Pulver. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Etwas löslich in Alkohol, wenig in Äther, kaum in Benzol.

Verbindung $(C_{18}H_{14}N_1S_2)_x$. B. Beim Kochen von 6.6'-Diamino-3.3'-dimethyl-diphenyl-sulfid mit Schwefelkohlenstoff und Alkohol (T., B. 20, 672). — Pulver. F: 228—231°. Fast unlöslich in den gewöhnlichen Lösungsmitteln.

Verbindung $(C_{15}H_{15}N_3S)_x$. B. Bei 3-stdg. Erwärmen der Verbindung $(C_{15}H_{14}N_2S_3)_x$ (s. o.) mit überschüssigem alkoholischem Ammoniak und Quecksilberoxyd auf dem Wasserbade; man fällt die filtrierte Lösung durch Wasser und NaCl (T., B. 20, 673). — Amorphes Pulver. Schmilzt bei 194—196° unter Zersetzung. Leicht löslich in Benzol und in heißem Alkohol, schwerer in Äther. — Platinchloriddoppelsalz. Braunes amorphes Pulver. Etwas löslich in Alkohol.

Verbindung $(C_{21}H_{19}N_2S)_x$. B. Aus der Verbindung $(C_{15}H_{14}N_2S_2)_x$ (s. o.) mit überschüssigem Anilin und Quecksilberoxyd (T., B. 20, 674). — Harzig. F: 118–119°. Sehr leicht löslich in Alkohol, Äther und Benzol.

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI S. 373.

- 592
- **6.6'-Diamino-3.3'-dimethyl-diphenyldisulfid** $C_{14}H_{16}N_2S_2$, s. nebenstehende Formel. B. Beim Einleiten von Luft in eine ammoniakalische Lösung von 4-Amino-3-sulfhydryl-1-methyl-benzol (Jacobson, Ney, B. **22**, 908). Schwach grünlichgelb gefärbte Nadeln (aus Alkohol). F: 89°. Leicht löslich in Alkohol.

$$\begin{array}{cccc}
CH_3 & CH_3 \\
& & \\
\hline
NH_2 & NH_2
\end{array}$$

- **6.6'-Bis-acetamino-3.3'-dimethyl-diphenyldisulfid** $C_{18}H_{20}O_2N_2S_2 = [CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot S-]_2$. B. Beim Erwärmen von 6.6'-Diamino-3.3'-dimethyl-diphenyldisulfid (s. o.) mit Acetylchlorid (J., N., B. 22, 908). Nadeln (aus Alkohol). F: 204—206°. Schwer löslich in Alkohol.
- **6.6'** Bis benzamino 3.3' dimethyl diphenylsulfid $C_{28}H_{24}O_2N_2S = [C_6H_5\cdot CO\cdot NH\cdot C_6H_3(CH_3)]_2S$. B. Beim Erwärmen von 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid mit überschüssigem Benzoylchlorid auf dem Wasserbade (Truhlar, B. 20, 668). Nadeln (aus Alkohol). F: 185—186°. Löslich in Alkohol und Benzol, weniger in Ather.
- 6.6'-Bis-carbäthoxyamino-3.3'-dimethy1-diphenylsulfid $C_{20}H_{24}O_4N_2S = [C_2H_5\cdot O_2C\cdot NH\cdot C_6H_3(CH_3)]_2S$. B. Beim Eintragen von Chlorameisensäureäthylester (Bd. III, S. 10) in eine Benzollösung von 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid (T., B. 20, 668). Nadeln. F: 113°. Leicht löslich in Alkohol, Äther und Benzol.
- **6.6' Diureido 3.3' dimethyl diphenylsulfid** $C_{16}H_{16}O_2N_4S = [H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)]_2S$. B. Man trägt allmählich in die kalte wäßr. Lösung von salzsaurem 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid die berechnete Menge Kaliumcyanat ein und erwärmt den hierbei erhaltenen gelben Niederschlag längere Zeit auf dem Wasserbade (T., B. 20, 669). Nadeln mit 1 Mol. Krystallbenzol (aus Benzol). F: 150—151°. Bei 100—110° entweicht nur $^{1}/_{4}$ des Benzols. Ziemlich leicht löslich in warmem Wasser, leicht in warmem Alkohol und Äther; leicht löslich in verd. Säuren.
- 6.6'-Bis-[ω -phenyl-guanidino]-3.3'-dimethyl-diphenylsulfid $C_{28}H_{28}N_6S = [C_6H_5 \cdot NH \cdot C(:NH) \cdot NH \cdot C_6H_3(CH_3)]_2S$ bezw. desmotrope Formen. B. Beim Erhitzen von 6.6'-Bis-[ω -phenyl-thioureido]-3.3'-dimethyl-diphenylsulfid mit alkoh. Ammoniak und Quecksilber-oxyd (T., B. 20, 675). Nadeln (aus Äther + Ligroin). F: 152—153°. Leicht löslich in Alkohol, Äther und Benzol. $C_{28}H_{28}N_6S+2$ HCl+PtCl4. Gelbeş, amorphes Pulver. Sehr schwer löslich in Alkohol, unlöslich in Äther und Benzol.
- 6.6'-Bis- $[\omega.\omega'$ -diphenyl-guanidino]-3.3'-dimethyl-diphenylsulfid $C_{40}H_{30}N_6S = [C_6H_5\cdot NH\cdot C(:N\cdot C_6H_5)\cdot NH\cdot C_6H_3(CH_3)]_2S$ bezw. desmotrope Formen. B. Beim Erwärmen einer alkoh. Lösung von 6.6'-Bis- $[\omega$ -phenyl-thioureido]-3.3'-dimethyl-diphenylsulfid mit Anilin und Quecksilberoxyd (T., B. 20, 675). Graues, amorphes Pulver. F: 106°. Sehr leicht löslich in Alkohol, Äther und Benzol.
- **6.6'-Bis-thioureido-3.3'-dimethyl-diphenylsulfid** $C_{1c}H_{18}N_4S_3 = [H_2N\cdot CS\cdot NH\cdot C_6H_3(CH_3)]_{2}S$. B. Beim Abdampfen von salzsaurem 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid mit Ammoniumrhodanid (T., B. 20, 669). Amorphes Pulver (aus Benzol durch Ligroin). F: 120—121°. Leicht löslich in heißem Benzol und Alkohol, schwer in Ather, unlöslich in Ligroin; schwer löslich in verd. Säuren.
- 6.6'-Bis- $[\omega$ -phenyl-thioureido]-3.3'-dimethyl-diphenylsulfid $C_{28}H_{26}N_4S_3 = [C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3(CH_3)]_2S$. B. Durch Versetzen der Benzollösung von 6.6'-Diamino-3.3'-dimethyl-diphenylsulfid mit der berechneten Menge Phenylsenföl und Abdampfen auf dem Wasserbade (T., B. 20, 670). Prismatische Nadeln (aus Benzol + Ligroin). F: 134°. Leicht löslich in Alkohol und Benzol, sehr leicht in Ahher, leicht in verdünnten Säuren. Bei der Destillation wird N.N'-Diphenyl-thioharnstoff (Bd. XII, S. 394) gebildet.

Derivat des 5-Amino-3-oxy-1-methyl-benzols.

5-Anilino-3-oxy-1-methyl-benzol, 5-Anilino-m-kresol 1), 5-Oxy-3-methyl-diphenylamin $C_{13}H_{13}ON$, s. nebenstehende Formel. B. Bei 8-stdg. Erhitzen von 1 Tl. Orein (Bd. VI, S. 882) mit 2 Tln. Anilin und 1 Tl. CaCl₂ auf 260—270°; man fraktioniert das Produkt und catalliert den bei 330—370° siedenden Anteil mit Wasserdämpfen (Zega, Buch, J. pr. [2] 33, 539). — Nadeln (aus Alkohol). F: 79°; Kp: 345°. Leicht löslich in Alkohol, Ather, Aceton und Benzol, schwer in Petroläther. — Wird durch Glühen mit Zinkstaub in 3-Methyl-diphenylamin (Bd. XII, S. 857) umgewandelt. — $C_{13}H_{13}ON + HCl$. Krystallpulver. Wird durch Wasser sofort zersetzt.

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

6-Amino-3-oxy-1-methyl-benzol und seine Derivate.

- 6-Amino-3-oxy-1-methyl-benzol, 4-Amino-m-kresol 1) C₇H₉ON, s. nebenstehende Formel. B. Beim Behandeln von 4-Oxy-2-methyl-azobenzol (Syst. No. 2113) mit Zinn und Salzsäure (Noelting, Kohn, B. 17, 367). Aus 6-Nitro-3-oxy-1-methyl-benzol (Bd. VI, S. 386) mit Zinn und Salzsäure (Staedel, Kolb, A. 259, 217). In geringer Menge beim Kochen des aus o-Toluoldiazoniumperbromid darstellbaren o-Diazotoluolimids mit verdünnter Schwefelsäure (Friedländer, Zeitlin, B. 27, 194). Bei der Elektrolyse einer Lösung von 2-Nitrotoluol (Bd. V, S. 318) in konz. Schwefelsäure entsteht eine Sulfonsäure des 6-Amino-3-oxy-1-methyl-benzols, aus welcher beim Erhitzen mit Salzsäure auf 160° 6-Amino-3-oxy-1-methyl-benzol erhalten wird (Gattermann, B. 27, 1930). Warzen (aus Benzol). F: 174° (Zers.) (St., Kolb), 173—174° (F., Z.), 173° (G.). Chlorkalklösung erzeugt Toluchinon-chlorimid-(1) (Bd. VII, S. 647) (St., Kolb). Liefert mit Chromsäure Toluchinon (Bd. VII, S. 645) (N., Kohn). Gibt ein Dibenzoylderivat (Prismen aus Eisessig. F: 161°) (F., Z.). C₇H₉ON + HCl. Viereckige Plättchen (St., Kolb).
- 6-Amino-3-äthoxy-1-methyl-benzol, 4-Amino-m-kresol-äthyläther $C_0H_{13}ON = H_2N \cdot C_0H_3(CH_3) \cdot O \cdot C_2H_5$. B. Durch Behandeln von 6-Nitro-3-äthoxy-1-methyl-benzol (Bd. VI, S. 386) mit Zinn und Salzsäure (STAEDEL, A. 217, 219). Öl. Hydrochlorid. Blätter. Sulfat. Quadratische Tafeln. Oxalat 2 $C_0H_{13}ON + C_2H_2O_4$. Rötliche Tafeln.
- 6-Benzylamino-3-oxy-1-methyl-benzol, 4-Benzylamino-m-kresol $C_{14}H_{15}ON = C_6H_5\cdot CH_2\cdot NH\cdot C_6H_3(CH_2)\cdot OH$. B. Durch Reduktion von 6-Benzalamino-3-oxy-1-methylbenzol (s. u.) mit Zinkstaub und $20^{\circ}/_{\circ}$ iger Natronlauge bei 50° (Chem. Fabr. Schering, D. R. P. 213592; C. 1909 II, 1097). Läßt sich aus einem Gemisch von Benzol und Petroläther umlösen. F: 84°. Leicht löslich in Alkohol und Äther. Hydrochlorid. F: 220° (geringe Zersetzung). Leicht löslich in heißem Wasser, schwer in kaltem.
- 6-Benzalamino-3-oxy-1-methyl-benzol, 4-Benzalamino-m-kresol $C_{14}H_{13}ON=C_8H_5\cdot CH:N\cdot C_8H_3(CH_3)\cdot OH$. B. Durch Einw. von Benzaldehyd auf schwefelsaures 6-Amino-3-oxy-1-methyl-benzol (s. o.) in Gegenwart von wäßr. Kaliumacetatlösung (Chem. Fabr. Schering, D. R. P. 213592; C. 1909 II, 1097). Läßt sich gut aus heißem Alkohol umlösen. F: 133°. Geht bei der Reduktion mit Zinkstaub und Natronlauge in 6-Benzylamino-3-oxy-1-methyl-benzol (s. o.) über.
- 6-Acetamino-3-oxy-1-methyl-benzol, 4-Acetamino-m-kresol $C_0H_{11}O_0N=CH_3$ · $CO\cdot NH\cdot C_0H_3(CH_3)\cdot OH$. B. Beim Erwärmen von 6-Amino-3-oxy-1-methyl-benzol mit Essigsäureanhydrid (STAEDEL, Koch, A. 259, 217). Blättchen mit 1 Mol. H_4O (aus Wasser). Schmilzt wasserhaltig bei 80° und wird bei $110-120^{\circ}$ wasserfrei. Die wasserfreie Verbindung krystallisiert aus Benzol in Blättchen und schmilzt bei 125° .
- 6-Acetamino-3-äthoxy-1-methyl-benzol, 4-Acetamino-m-kresol-äthyläther $C_{11}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Durch Acetylierung von 6-Amino-3-äthoxy-1-methyl-benzol (s. o.) (STAEDEL, A. 217, 220). Nadeln (aus Wasser). F: 114°. Ziemlich leicht löslich in heißem Wasser.
- 4-Äthoxy-4'-amino-2-methyl-diphenylamin CH₃
 C₁₅H₁₆ON₂, s. nebenstehende Formel. B. Neben
 Anilin, 6-Amino-3-āthoxy-1-methyl-benzol und einem H₂N··NH···NH···O·C₂H₅
 (nicht näher beschriebenen) o-Semidin (JACOBSON, B. 31,
 890 Anm. 5) beim Behandeln von 4-Äthoxy-2-methyl-azobenzol (Syst. No. 2113) mit SnCl₂
 und Salzsäure (J., A. 287, 156).— Prismen (aus Ligroin). F: 61°; mäßig löslich in Ligroin, leicht in Alkohol, Äther und Benzol (J., A. 287, 157).
- 4-Äthoxy-4'-acetamino-2-methyl-diphenylamin C_1 , $H_{20}O_2N_2 = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H_4 \cdot C_6H_3 \cdot C_5H_5 \cdot B$. Beim Kochen von 4-Äthoxy-4'-amino-2-methyl-diphenylamin (s. o.) mit der 5-fachen Menge Eisessig (J., A. 287, 158). Nadeln (aus Alkohol durch Wasser). F: 97—98°. Leicht löslich in fast allen Lösungsmitteln.

Thioharnstoff aus 4-Äthoxy-4'-amino-2-methyl-diphenylamin $C_{31}H_{34}O_3N_4S = CS[NH \cdot C_4H_4 \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5]_2$. B. Beim Kochen von 0,2 g 4-Äthoxy-4'-amino-2-methyl-diphenylamin (s. o.) mit 1 ccm Alkohol und 1 ccm Schwefelkohlenstoff (J., A. 287, 159). — Rhomboeder oder Blättchen (aus Alkohol). F: 181,5°. Unlöslich in wäßr. Natronlauge.

4-Äthoxy-4'-acetamino-2-methyl-N-acetyl-diphenylamin $C_{19}H_{29}O_2N_8 = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot N(CO \cdot CH_2) \cdot C_6H_6(CH_3) \cdot O \cdot C_2H_5$. B. Beim Erhitzen von 1 g 4-Äthoxy-4'-amino-2-methyl-diphenylamin (s. o.) mit 10 ccm Acetylchlorid auf dem Wasserbade (J., A. 287, 158). — Prismen. F: 153°. Leicht löslich in Alkohol und Äther, schwer in Benzol.

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

- 4-Äthoxy-4'-amino-2.2'-dimethyl-diphenylamin $C_{16}H_{20}ON_2=H_2N\cdot C_6H_3(CH_3)\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Durch Behandeln von 4-Äthoxy-2.3'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure (J., A. 287, 207). Prismen (aus ligroinhaltigem Benzol). F: 95—96°. Sehr wenig löslich in Ligroin, leicht in Alkohol und Äther. Die salzsaure Lösung wird durch Eisenchlorid tiefblau gefärbt.
- 4-Äthoxy-4'-acetamino-2.2'-dimethyl-diphenylamin $C_{18}H_{22}O_2N_2=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot NH\cdot C_6H_3(CH_2)\cdot O\cdot C_2H_5$. B. Durch Kochen von 4-Äthoxy-4'-amino-2.2'-dimethyl-diphenylamin (s. o.) mit Eisessig (J., A. 287, 208). Nadeln (aus verd. Alkohol). F: 116°. Unlöslich in Ligroin, leicht löslich in Alkohol, Äther und Benzol.

Thioharnstoff aus 4-Äthoxy-4'-amino-2.2'-dimethyl-diphenylamin $C_{33}H_{38}O_2N_4S=CS[NH\cdot C_6H_3(CH_3)\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot C_2H_5]_2$. B. Durch Kochen von 4-Äthoxy-4'-amino-2.2'-dimethyl-diphenylamin (s. o.) mit überschüssigem Schwefelkohlenstoff in alkoh. Lösung (J., A. 287, 208). — Krystalle (aus Methylalkohol). Schmilzt bei 70—72° zu einer zähflüssigen Masse, die erst etwa 100° höher dünnflüssig wird.

- 4-Äthoxy-4'-amino-2-3'-dimethyl-diphenylamin C₁₆H₂₀ON₂, s. nebenstehende Formel. B. Beim Behandeln einer alkoh. Lösung von 4-Äthoxy-2.2'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnehloriur und Salzsäure (J., A. 287, 204). Blättchen (aus Benzol + Petroläther). F: 86°. Schwer löslich in Ligroin, leicht in Alkohol, Äther und Benzol. Die salzsaure Lösung gibt mit Eisenehlorid eine tiefviolette Färbung. 2C₁₆H₂₀ON₂ + H₂SO₄. Nadeln (aus verd. Alkohol).
- 4-Äthoxy-4'-acetamino-2.3'-dimethyl-diphenylamin $C_{18}H_{22}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$. B. Durch Kochen von 4-Äthoxy-4'-amino-2.3'-dimethyl-diphenylamin (s. o.) mit der 10-fachen Gewichtsmenge Eisessig (J., A. 287, 206). Stäbchen (aus verd. Alkohol). F: 144°. Leicht löslich in Alkohol und Benzol, schwerer in Äther und Ligroin.
- 4-Äthoxy-4'-acetamino-2.3'-dimethyl-N-acetyl-diphenylamin $C_{20}H_{24}O_3N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot N(CO \cdot CH_3) \cdot C_6H_3(CH_3) \cdot O \cdot C_2H_5$. B. Durch Erhitzen von 4-Äthoxy-4'-amino-2.3'-dimethyl-diphenylamin (s. o.) mit der 10-fachen Gewichtsmenge Acetylchlorid (J., A. 287, 206). Kryställchen (aus Benzol mit Petroläther). Schmilzt bei etwa 115°.
- **2-Chlor-6-amino-3-oxy-1-methyl-benzol, 2-Chlor-4-amino-m-kresol** 1) $C_7H_8ONCl = H_2N \cdot C_9H_4Cl(CH_3) \cdot OH$. Zur Konstitution vgl. Raiford, Am. **46** [1911], **437**. B. Durch Chlorierung von 6-Nitro-3-oxy-1-methyl-benzol (Bd. VI, S. 386) in Eisessig mit Chlorgas und Reduktion des hierbei entstandenen Chlorierungsproduktes mit Zinnchlorür und Salzsäure (Kehrmann, Tichwinski, A. **303**, 22). F: 166—167° (R.).
- **4-Chlor-6-amino-8-oxy-1-methyl-benzol, 6-Chlor-4-amino-m-kresol** 1) $C_7H_8ONCl = H_2N \cdot C_0H_3Cl(CH_3) \cdot OH$. *B.* Aus den beiden stereoisomeren Formen des 5-Chlor-toluchinonoxims-(1) (Bd. VII, S. 650) durch Zinnehlorür und Salzsäure (Kehrmann, Tichwinski, *A.* **303,** 20). Krystallblätter. F: 204—205°.
- 4-Chlor-6-acetamino-3-acetoxy-1-methyl-benzol, O.N-Diacetyl-[6-chlor-4-amino-m-kresol] $C_{11}H_{12}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_6H_2Cl(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Erhitzen von 4-Chlor-6-amino-3-oxy-1-methyl-benzol (s. o.) mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Tichwinski, A. 303, 20). Nadeln (aus Benzol). F: 162°.
- **4-Brom-6-amino-3-oxy-1-methyl-benzol, 6-Brom-4-amino-m-kresol** 1) C_7H_8 ONBr = $H_2N \cdot C_6H_2$ Br(CH_3)·OH. B. Bei der Elektrolyse einer Lösung von 4-Brom-2-nitro-toluol (Bd. V, S. 333) in konz. Schwefelsäure (Gattermann, B. 27, 1931). Aus den beiden stereoisomeren Formen des 5-Brom-toluchinon-oxims-(1) (Bd. VII, S. 652) durch Zinnchlorür und Salzsäure (Kehrmann, Rüst, A. 303, 28). Nadeln (aus Alkohol). Zersetzt sich bei 205° bis 208° (K., R.), schmilzt bei 215° (G.). Schwer löslich in Wasser, leicht in Alkohol (K., R.).
- 4-Brom-6-acetamino-3-acetoxy-1-methyl-benzol, 0.N-Diacetyl-[6-brom-4-amino-m-kresol] $C_{11}H_{12}O_3NBr=CH_3\cdot CO\cdot NH\cdot C_6H_3Br(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Aus 4-Brom-6-amino-3-oxy-1-methyl-benzol (s. o.) mit Essigsäureanhydrid und Natriumacetat (K., R., A. 303, 29). Prismen (aus Toluol). F: 171—172°.
- 4-Brom-6-benzamino-3-benzoyloxy-1-methyl-benzol, O.N-Dibenzoyl-[6-brom-4-amino-m-kresol] $C_{21}H_{16}O_3NBr = C_6H_5\cdot CO\cdot NH\cdot C_6H_2Br(CH_3)\cdot O\cdot CO\cdot C_6H_5$. B. Aus 4-Brom-6-amino-3-oxy-1-methyl-benzol durch Benzoylierung (Gattermann, B. 27, 1931). Nadeln (aus Eisessig). F: 229°.

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

- **2.4 Dibrom 6 amino-3-oxy-1-methyl-benzol**, **2.6 Dibrom 4 amino-m-kresol** (C₇H₇ONBr₂ = H₂N·C₆HBr₂(CH₃)·OH. B. Durch Reduktion von 2.4 Dibrom 6 nitro-3-oxy-1-methyl-benzol (Bd. VI, S. 386) (ZINCKE, J. pr. [2] 61, 564). F: $116^{0.2}$).
- 2-Nitro-6-amino-3-oxy-1-methyl-benzol, 2-Nitro-4-amino-m-kresol 1) (', H_sO₃N₂ H_sN·C₆H_s(NO₃)(CH₃)·OH. B. Aus 2.6-Dinitro-toluol (Bd. V, S. 341) durch Reduktion mit H_sS in alkoh. Ammoniak und nachfolgende Behandlung mit verd. Salzsäure (Cohen, Marshall, Soc. 85, 527). Beim Erwärmen von 6-Nitro-2-hydroxylamino-1-methyl-benzol (Syst. No. 1933) mit 60% iger Schwefelsäure auf dem Wasserbade (Brand, Zöller, B. 40, 3332). Rotbraune Nadeln (aus Alkohol). F: 201% (B., Z.). Leicht löslich in verd. Säuren und Alkalien (C., M.). Wird durch Bleidioxyd und Schwefelsäure zu 3-Nitro-toluchinon (Bd. VII, S. 653), durch Chlorkalk und Salzsäure zu 5 oder 6-Chlor-3-nitro-toluchinon (Bd. VII, S. 653) oxydiert (C., M.). Hydrochlorid. Prismen (C., M.). Sulfat. Nadeln (C., M.). Nitrat. Nadeln (C., M.).
- 2-Nitro-6-acetamino-3-acetoxy-1-methyl-benzol, O.N-Diacetyl-[2-nitro-4-amino-m-kresol] 1) $C_{11}H_{12}O_5N_2=CH_3\cdot CO\cdot NH\cdot C_6H_2(NO_2)(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen des 2-Nitro-6-amino-3-oxy-1-methyl-benzols mit Eisessig (Brand, Zöller, B. 40, 3332). Nadeln. F: 127—128°.
- 2.4 Dinitro 6 amino 3 oxy 1-methyl-benzol, 2.6 Dinitro 4 amino m-kresol $C_7H_7O_5N_3=H_2N\cdot C_6H(NO_2)_2(CH_3)\cdot OH$. B. Man führt die 5-Amino-2-oxy-4-methyl-benzoesäure (Syst. No. 1911) mit Essigsäureanhydrid und Natriumacetat in die (nicht näher beschriebene) O.N-Diacetylverbindung über, spaltet das am Hydroxyl befindliche Acetyl durch Behandlung mit verd. Natronlauge ab, tröpfelt sodann zu der Lösung der (ebenfalls nicht näher beschriebenen) 5-Acetamino-2-oxy-4-methyl-benzoesäure in Eissesig rauchende Salpetersäure und kocht das erhaltene 2.4-Dinitro-6-acetamino-3-oxy-1-methyl-benzol (gelbe Krystalle, F: 225°) mit verd. Schwefelsäure (NIETZKI, RUPPERT, B. 23, 3479). Rubinrote Nadeln (aus Alkohol). F: 160°. Bildet mit Essigsäureanhydrid ein bei 175° schmelzendes Diacetylderivat.
- 4 Amino 8.4' dimethyl diphenylsulfid C₁₄H₁₅NS, s. nebenstehende Formel. B. Beim Erhitzen von p-toluolsulfinsaurem o-Toluidin (Bd. XII, S. 783) auf 220° neben p-toluolsulfinsulfonsaurem o-Toluidin (Bd. XII, S. 783) auf 220° neben p-toluol H₂N. CH₃ sulfonsaurem o-Toluidin (Bd. XII, S. 783) (E. v. Meyer, E. Meyer, J. pr. [2] 68, 279). Nadeln oder prismenartige Krystalle (aus Benzol + Petroläther). F: 48-49°. C₁₄H₁₅NS + HCl. Krystallpulver. F: 212°. Wird leicht dissoziiert. 2 C₁₄H₁₅NS + H₂SO₄. Blättchen. F: 191°. Oxalat 2 C₁₄H₁₅NS + C₂H₂O₄. Nadeln (aus absol. Alkohol). F: 128°. Pikrat C₁₄H₁₅NS + C₆H₃O₇N₃. Nadeln. F: 210°.
- **4-Bensalamino-3.4'-dimethyl-diphenylsulfid** $C_{11}H_{19}NS = C_{6}H_{5} \cdot CH: N \cdot C_{6}H_{3}(CH_{3}) \cdot S \cdot C_{6}H_{4} \cdot CH_{3}$. B. Die Verbindung mit HCl entsteht aus salzsaurem 4-Amino-3.4'-dimethyl-diphenylsulfid (s. o.) und Benzaldehyd in Alkohol oder Eisessig (E. v. M., E. M., J. pr. [2] 68, 288). Verbindung $C_{11}H_{19}NS + HCl$. Prismen (aus Alkohol). F: 204°.
- 4 Cinnamalamino 3.4' dimethyl diphenylsulfid $C_{23}H_{21}NS = C_6H_5 \cdot CH : CH \cdot CH : N \cdot C_6H_3(CH_3) \cdot S \cdot C_6H_4 \cdot CH_2$. B. Die Verbindung mit HCl entsteht aus dem salzsauren 4-Amino-3.4'-dimethyl-diphenylsulfid und Zimtaldehyd in Alkohol oder Eisessig (E. v. M., E. M., J. pr. [2] 68, 288). Verbindung $C_{23}H_{21}NS + HCl$. Ziegelrote Blättchen oder Nädelchen. F: 171°.
- **4-Salicylalamino-3.4'-dimethyl-diphenylsulfid** $C_{21}H_{19}ONS = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_3(CH_3) \cdot S \cdot C_6H_4 \cdot CH_3$. B. Die Verbindung mit HCl entsteht aus dem salzsauren 4-Amino-3.4'-dimethyl-diphenylsulfid in Alkohol oder Eisessig und Salicylaldehyd (E. v. M., E. M., J. pr. [2] 68, 288). Verbindung $C_{21}H_{19}ONS + HCl$. Goldgelbe Nadeln. F: 203°.

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 373.

³) In der nach dem Literatur-Schlußtermin der 4. Auflage dieses Handbuches [1. I. 1910] erschienenen Arbeit von RAIFORD (Am. 46, 428) wird für das 2.4-Dibrom-6-amino-3-oxy-1-methylbenzol der Schmelzpunkt 175—176°, für das 2.6-Dibrom-4-amino-3-oxy-1-methyl-benzol der Schmelzpunkt 116—117° angegeben. RAIFORD weist nach, daß bei der Behandlung von 2.4.6-Tribrom-3-oxy-1-methyl-benzol in Eisessig mit Natriumnitrit nicht nur, wie ZINCER angibt, das 2.4-Dibrom-6-nitro-3-oxy-1-methyl-benzol (Bd. VI, S. 386), sondern auch das 2.6-Dibrom-4-nitro-3-oxy-1-methyl-benzol entsteht. Vermutlich hat daher ZINCER ein Gemisch der beiden Dibromnitroverbindungen reduziert. Redaktion dieses Handbuches.

CH: N·C₆H₃(CH₃)·S·C₆H₄·CH₃. B. Die Verbindung mit HCl entsteht aus sazsaurem 4-Amino-3.4'-dimethyl-diphenylsulfid in Alkohol oder Eisessig und Vanillin (E. v. M., E. M., J. pr. [2] 68, 288). — Verbindung C₂₂H₂₁O₂NS + HCl. Weiße Nädelchen. F: 200⁶.

4-Acetamino-3.4'-dimethyl-diphenylsulfid C₁₆H₁₇ONS = CH₃·CO·NH·C₆H₃(CH₃)·S·C₆H₄·CH₃. B. Aus dem salzsauren 4-Amino-3.4'-dimethyl-diphenylsulfid in Eisessig beim Erhitzen mit Essigsäureanhydrid (E. v. M., E. M., J. pr. [2] 68, 282). — Prismen oder schiefwinklige Tafeln (aus Aceton). F: 135—136⁶. Leicht löslich in heißem Alkohol, Eisessig, Aceton, unlöslich in Wasser, Äther, Benzol oder Ligroin. Beständig gegen Alkalien selbst in alkoh. Lösung in alkoh. Lösung.

4-Benzamino-3.4'-dimethyl-diphenylsulfid $C_{21}H_{19}ONS = C_6H_5 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot CO \cdot NH \cdot C_6H_6(CH_3) \cdot CO \cdot NH \cdot C_6H_6(CH_3) \cdot CO \cdot NH \cdot$ S·C₆H₄·CH₃. B. Aus 4-Amino-3.4'-dimethyl-diphenylsulfid und Benzoylchlorid in Pyridin (E. v. M., E. M., J. pr. [2] 68, 282). — Prismen (aus Alkohol). F: 133°. Löslich in Alkohol, Aceton, Benzol oder Eisessig, sehr wenig löslich in Äther, unlöslich in Wasser, Ligroin oder Petroläther.

4-Äthoxalylamino-3.4'-dimethyl-diphenylsulfid, [4-p-Tolylmercapto-2-methylphenyl]-oxamidsäure-äthylester $C_{18}H_{19}O_3NS = C_2H_5 \cdot O_2C \cdot CO \cdot NH \cdot C_6H_3 \cdot CH_3 \cdot S \cdot C_6H_4 \cdot CH_2$. B. Aus 4-Amino-3.4'-dimethyl-diphenylsulfid und Oxalester (Bd. II, S. 535) (E. v. M., E. M., J. pr. [2] 68, 283). — Täfelchen (aus absol. Alkohol). F: 113—114°.

N-Phenyl-N'-[4-p-tolylmercapto-2-methyl-phenyl]-oxamid $C_{22}H_{20}O_2N_2S$, s. nebenstehende Formel. B. Aus 4-[Äthoxalylamino]-3.4'-dimethyl-diphenylsulfid(s.o.) durch >NH·CO·CO·NH· Erhitzen mit Anilin (E. v. M., E. M., J. pr. [2] 68, 284). — Nadeln (aus Eisessig mit Äther). F: 238°. Leicht löslich in heißem Eisessig oder Benzol.

N.N' - Bis - [4 - p - tolylmercapto - 2 - methyl - phenyl] - oxamid $C_{30}H_{28}O_2N_2S_2 =$ diphenylsulfid bei etwa 180° (E. v. M., E. M., J. pr. [2] 68, 284). — Blättchen (aus Eisessig mit Äther). F: 198—199°.

4-Carbäthoxyamino - 3.4'-dimethyl-diphenylsulfid, [4-p-Tolylmercapto-2-methyl-phenyl]-urethan $C_{17}H_{19}O_2NS=C_2H_5\cdot O_2C\cdot NH\cdot C_6H_3(CH_3)\cdot S\cdot C_6H_4\cdot CH_3$. B. Aus 4-Amino-3.4'-dimethyl-diphenylsulfid, Chlorameisensäureäthylester (Bd. III, S. 10) und Sodalösung (E. v. M., E. M., J. pr. [2] 68, 285). – Prismen. F: 81°. Löslich in Alkohol, Äther.

4-Ureido-3.4'-dimethyl-diphenylsulfid, [4-p-Tolylmercapto-2-methyl-phenyl]-harnstoff $C_{15}H_{16}ON_2S = H_2N\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot S\cdot C_6H_4\cdot CH_3$. B. Aus salzsaurem 4-Amino-3.4'-dimethyl-diphenylsulfid in heißem Eisessig und Kaliumoyanat (E. v. M., E. M., J. pr. [2] 68, 285). — Nadeln (aus Alkohol). F: 175°. Löslich in Alkohol, Äther, Benzol, Eisessig oder Petroläther.

4-[ω -Phenyl-ureido]-3.4'-dimethyl-diphenylsulfid, N-Phenyl-N'-[4-(p-tolyl-mercapto)-2-methyl-phenyl]-harnstoff $C_{21}H_{20}ON_2S = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot S \cdot C_6H_4 \cdot CH_3$. B. Aus 4-Amino-3.4'-dimethyl-diphenylsulfid und Phenylisocyanat (Bd. XII, S. 437) in Ather (E. v. M., E. M., J. pr. [2] 68, 286). — Nadeln (aus Alkohol). F: 187°. Löslich in Alkohol, Eisessig oder Aceton, unlöslich in Petroläther, Benzol, Äther oder Ligroin.

4-[ω -Phenyl-thioureido]-3.4'-dimethyl-diphenylsulfid, N-Phenyl-N'-[4-(p-tolyl-mercapto)-2-methyl-phenyl]-thioharnstoff $C_{21}H_{20}N_2S_2=C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3(CH_3)\cdot S\cdot C_6H_4\cdot CH_3$. B. Aus 4-Amino-3.4'-dimethyl-diphenylsulfid und Phenylsenföl (Bd. XII, S. 453) in Åther (E. v. M., E. M., J. pr. [2] 68, 287). — Prismen oder Nadeln (aus Aceton). F: 143°. Leicht löslich in siedendem Alkohol, Eisessig oder Aceton, unlöslich in Åther, Petroläther und Ligroin.

N.N'-Bis-[4-p-tolylmercapto-2-methyl-phenyl] thioharnstoff C₂₉H₂₈N₂S₃, s. nebenstehende Formel. B.
Aus 2 Mol.-Gew. 4-Amino-3.4'-dimethyl-diphenylsulfid und
CS
HN. 1 Mol.-Gew. Schwefelkohlenstoff in Ather bei Gegenwart von ca. 1 Mol.-Gew. Wasserstoffperoxyd in 3% iger Lösung (E. v. M., E. M., J. pr. [2] 68, 286). — Nadeln (aus Alkohol). F: 151°. Leicht löslich in siedendem Alkohol, Benzol oder Eisessig, unlöslich in Ligroin oder Petroläther.

Derivat eines eso-Amino-3-oxy-1-methyl-benzols.

Bis - [x - amino - 3 - methyl - phenyl] - äther, x.x' - Diamino - 3.3' - dimethyl-diphenyläther $C_{14}H_{16}ON_2 = [H_2N \cdot C_6H_3(CH_3)]_2O$. B. Aus x.x'-Dinitro-3.3'-dimethyl-diphenyläther (Bd. VI, S. 386) in Alkohol durch Reduktion mit Zinn und Salzsäure auf dem Wasserbade (COOK, Am. 36, 551). — Löslich in Alkohol, Ather, unlöslich in Wasser. — $C_{14}H_{16}ON_2 + 2$ HCl. Krystalle (aus konz. Salzsäure).

Derivate des 3-Oxy-benzylamins (11-Amino-3-oxy-1-methyl-benzols).

[3-Oxy-benzyl]-anilin C₁₃H₁₃ON, s. nebenstehende Formel. B. Aus [3-Oxy-benzal]-anilin (Bd. XII, S. 217) durch Reduktion mit Natrium-amalgam in alkoh. Lösung (Bamberger, Müller, A. 313, 113). — Prismen (aus verd. Alkohol). F: 103—104°. Sehr leicht löslich in Aceton, leicht löslich in Alkohol, Benzol, Chloroform, fast unlöslich in kaltem Ligroin und Wasser.

N-Nitroso-N-[3-oxy-benzyl]-anilin, [3-Oxy-benzyl]-phenyl-nitrosamin $C_{13}H_{19}O_2N_2=H0\cdot C_6H_4\cdot CH_2\cdot N(NO)\cdot C_6H_5$. B. Durch Zusatz einer $10^0/_0$ igen Natriumnitritlösung zu einer salzsauren Lösung von [3-Oxy-benzyl]-anilin (s. o.) (B., M., A. 313, 114). — Nadeln (aus Benzol). F: 87,5—88°. Sehr leicht löslich in Aceton, ziemlich leicht in Äther, Alkohol und Eisessig, schwer in kaltem Benzol, sehr wenig in Ligroin.

[2.4.6-Tribrom-3-oxy-bensyl]-anilin $C_{13}H_{10}ONBr_3 = HO \cdot C_6HBr_3 \cdot CH_3 \cdot NH \cdot C_6H_5$. B. Man kocht 1 Mol.-Gew. 2.4.6-Tribrom-3-acetoxy-benzylbromid (Bd. VI, S. 384) mit 2 Mol.-Gew. Anilin in benzolischer Lösung auf dem Wasserbade und verseift das hierbei entstandene [2.4.6-Tribrom-3-acetoxy-benzyl]-anilin durch Behandlung mit alkoholischer Kalilauge (Auwers, Anselmino, Richter, A. 332, 181, 182). — Nadeln (aus Alkohol). F: 96°.

[2.4.6-Tribrom-3-acetoxy-benzyl]-anilin $C_{15}H_{12}O_2NBr_3 = CH_3 \cdot CO \cdot O \cdot C_8HBr_3 \cdot CH_2 \cdot NH \cdot C_8H_8$. S. s. im vorangehenden Artikel. — Krystalle (aus Ligroin). F: 99—100°. Leicht löslich in Benzol, heißem Alkohol, ziemlich in Ligroin, sehr wenig in Petroläther; unlöslich in wäßr. Alkali (Auw., Ans., R., A. 332, 182).

N-[2.4.6-Tribrom-3-oxy-benzyl]-acetanilid $C_{15}H_{12}O_2NBr_3 = HO \cdot C_0HBr_3 \cdot CH_2 \cdot N(C_0H_5) \cdot CO \cdot CH_3$. Beim Verreiben von [2.4.6-Tribrom-3-oxy-benzyl]-anilin mit Essigsäureanhydrid (Auw., Ans., R., A. 332, 182). — Prismen (aus Alkohol). F: 180°. Löslich in verd. Alkali.

[2.4.5.6-Tetrabrom-3-oxy-benzyl]-diisoamylamin $C_{17}H_{45}ONBr_4 = HO \cdot C_4Br_4 \cdot CH_2 \cdot N(C_5H_{11})_2$. B. Beim Kochen von 1 Mol.-Gew. 2.4.5.6-Tetrabrom-3-oxy-benzylbromid (Bd. VI, S. 384) mit 2 Mol.-Gew. Diisoamylamin (Bd. IV, S. 182) in Benzol (Auwers, Schröter, A. 344, 156). — Nädelchen (aus Benzol). F: 167—168°. Ziemlich leicht löslich in Chloroform, ziemlich schwer in Alkohol und Äther, sehr wenig in Ligroin und Petroläther.

Diaminoderivate des 3-Oxy-1-methyl-benzols.

4.6 - Diamino - 3 - oxy - 1 - methyl - bensol, 4.6 - Diamino - m-kresol 1)

C₇H₁₀ON₂, s. nebenstehende Formel. B. Bei der Elektrolyse von 2.4 - Dinitrotoluol (Bd. V, S. 339) in konz. Schwefelsäure (Gattermann, B. 26, 1849;

Bayer & Co., D. R. P. 75280; Frdl. 3, 54). Bei der Elektrolyse einer Lösung von 4-Nitro-2-amino-toluol (Bd. XII, S. 844) oder 2-Nitro-4-amino-toluol (Bd. XII, S. 996) in 7 Tln. konz. Schwefelsäure (G.). — Sehr unbeständige

Nadeln. Schmilzt bei 170° unter Bräunung (G). — Das Hydrochlorid geht durch Einw. von FeCl₃ in das 5-Amino-toluchinon-imid-(1) (Syst. No. 1874) über (Kehrmann, Prager, B. 39,

Eine mit diesem 4.6-Diamino-3-oxy-1-methyl-benzol vielleicht identische Verbindung entsteht neben 2.4-Diamino-toluol (S. 124), wenn man das aus 3.3'-Diamino-4.4'-dimethyl-azoxybenzol durch Umlagerung entstehende Oxydiaminodimethylazobenzol $CH_3 \cdot C_6H_5(NH_2) \cdot N:N \cdot C_6H_5(NH_2) \cdot OH$ (Syst. No. 2185) mit Zinnchlorür und Salzsäure kocht (GRAEFF, A. 229, 349). — Sehr unbeständig; verharzt sofort. — $C_7H_{10}ON_2 + H_2SO_6 + H_3O$. Nadeln. Leicht löslich in Wasser und Alkohol. schwer in Alkohol.

4.6-Diamino-3-sulfhydryl-1-methyl-bensol, 4.6-Diamino-3-mercapto-1-methylbensol, 4.6-Diamino-thio-m-kresol, 4.6-Diamino-3-methyl-phenylmercaptan C₇H₁₀N₃S = (H₂N)₂C₄H₃(CH₂)·SH. B. Beim Einleiten von Schwefelwasserstoff in die salzsaure Lösung des 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenyldisulfids (S. 598) (SCHULTZ, BEYSCHLAG, B. 42, 751). Aus 4.6.4'.6'-Tetranitro-3.3'-dimethyl-diphenyldisulfid (Bd. VI, S. 389) mit Zinnchlorür und Salzsäure (Sch., B., B. 42, 748). — Hellgelbe Nädelchen. Löslich in Wasser. Oxydiert sich in Berührung mit Luft zum 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenyldisulfid (Sch., B., B. 42, 752). Gibt bei der Einw. von Schwefel in siedender alkoholischer Lösung höher geschwefelte Produkte (Sch., B., B. 42, 755). — C₇H₁₀N₂S + 2 HCl. Weiße Nadeln. Leicht löslich in Wasser und verd. Alkohol, schwer in konz. Salzsäure (Sch., B., B. 42, 752).

¹⁾ Bezifferung der vom Namen "m-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI S. 373.

- $\textbf{4.6.4'.6'-Tetraamino-8.8'-dimethyl-diphenyldisulfid} \ C_{14} H_{18} N_4 S_2,$ s. nebenstehende Formel. B. Aus asymm. m. Toluylendiamin (S. 124) und Schwefel in siedender alkoholischer Lösung neben anderen Produkten (Schultz, Beyschlag, B. 42, 746). Man reduziert das 4.6.4'.6'-Tetranitro-3.3'-dimethyl-diphenyldisulfid (Bd. VI, S. 389) mit Zinnchlorür und konz. Salzsäure und oxydiert das erhaltene Mercaptan mit Luftsauer-

$$\begin{bmatrix} \mathbf{CH_3} \\ \mathbf{H_2N} \cdot \bigodot \\ \mathbf{NH_2} \end{bmatrix}_{\mathbf{I}}$$

stoff (Sch., B., B. 42, 748). — Gelbe Nädelchen (aus Alkohol). Schmilzt bei raschem Erhitzen gegen 215° (Sch., B., B. 42, 750). — Gibt mit Zinkstaub, Eisessig und Essigsäureanhydrid 5-Acetamino-2.6-dimethyl-benzthiazol $CH_3 \cdot CO \cdot NH \cdot C_6H_2(CH_3) < N > C \cdot CH_3$ (Syst. No. 4341) (Sch., B., B. 42, 751). Gibt bei der Einw. von Schwefel in siedender alkoholischer Lösung höher geschwefelte Produkte (Sch., B., B. 42, 754).

- 4.6.4'.6'- Tetrakis benzalamino 3.3'- dimethyl diphenyldisulfid $C_{42}H_{34}N_4S_2 =$ [(C₃H₅·CH:N)₂C₆H₂(CH₃)·S-]₂. B. Beim Kochen von 4.6.4'.6'-Tetraamino-3.3'-dimethyldiphenyldisulfid (s. o.) mit Benzaldehyd in alkoh. Lösung (Sch., B., B. 42, 751). — Schwach gelbstichige Nadeln (aus Ligroin). F: 152—153°. Sehr leicht löslich in den gewöhnlichen Lösungsmitteln.
- 4.6.4'.6'-Tetrakis-benzamino-3.3'-dimethyl-diphenyldisulfid $C_{42}H_{34}O_4N_4S_2 =$ $[(C_6H_5\cdot \mathrm{CO}\cdot \mathrm{NH})_2C_6H_2(\mathrm{CH}_3)\cdot \mathrm{S}-]_2$. B. Durch Benzoylierung von 4.6.4°.6′-Tetraamino-3.3′-dimethyl-diphenyldisulfid (Sch., B., B. 42, 750). — Nadeln (aus Eisessig). Schwer löslich in den niedrig siedenden Lösungsmitteln.
- Aminoderivate des 4 Oxy 1 methyl benzols $C_7H_8O = CH_7 \cdot C_8H_8 \cdot OH$ (Bd. VI, S. 389). Vgl. auch No. 4, S. 614.

Monoaminoderivate des 4-Oxy-1-methyl-benzols.

2-Amino-4-oxy-1-methyl-benzol und seine Derivate.

2-Amino-4-oxy-1-methyl-benzol, 3-Amino-p-kresol ¹) C₇H₉ON, s. nebenstehende Formel. B. Aus 2-Nitro-4-oxy-1-methyl-benzol (Bd. VI, S. 411) mit Zinnehlorür und Salzsäure (KNECHT, A. 215, 91; WALLACH, B. 15, 2833). — Krystalle (aus Wasser oder aus Äther). F: 144,5° (MAASSEN, B. 17, 610). Subli- CH_3 NH₂ miert in Blättchen (WA.). Schwer löslich in kaltem Wasser (WA.). - Läßt OH sich durch Diazotieren in verdünnt-schwefelsaurer Lösung und Kochen der erhaltenen Diazoniumsalzlösung in Kresorcin (Bd. VI, S. 872) überführen (Kn.; Nevile, WINTHER, B. 15, 2981). Beim Erhitzen mit Schwefel auf 260° entsteht ein brauner Schwefelfarbstoff (VIDAL, D. R. P. 107236; C. 1900 I, 880). — Beim Kochen mit Essigsäureanhydrid entstehen je nach der Dauer der Einw. 2-Acetamino-4-oxy-1-methyl-benzol oder 2-Acetamino-4-acetoxy-1-methyl-benzol (M., B. 17, 608). Bei der Einw. von Formaldehyd auf die Lösung von 2-Amino-4-oxy-1-methyl-benzol in verd. Salzsäure entsteht 4.4'-Diamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan (Syst. No. 1869) (Leonhardt & Co., D. R. P. 75373; Frdl. 3, 93). Bei der Kondensation mit Naphthochinon-(1.4)-bis-chlorimid (Bd. VII, S. 727) in siedendem Methylalkohol erhält man einen blauen Oxazinfarbstoff (L. & Co., D. R. P. 82233;

$$\begin{array}{c} C_6H_4 \overset{CO}{\longleftrightarrow} O \\ I. \\ (C_2H_5)_2N \overset{C}{\longleftrightarrow} O \\ \\ O \overset{C}{\longleftrightarrow} NH_2 \end{array} \qquad \begin{array}{c} C_6H_4 \cdot CO_2H \\ II. \\ (C_2H_5)_2N \overset{C}{\longleftrightarrow} O \\ \\ O \overset{C}{\longleftrightarrow} NH \end{array}$$

Frdl. 4, 470). Überführung von 2-Amino-4-oxy-1-methyl-benzol in blaue Oxazinfarbstoffe durch Einw. von salzsaurem 4-Nitroso-diäthylanilin (Bd. XII, S. 684), durch Einw. von salzsaurem 4-Dimethylamino-azobenzol (Syst. No. 2172), durch gemeinsame Oxydation mit salzsaurem p-Toluylendiamin (S. 144) bei Gegenwart von Natriumacetat in wäßr. Lösung durch FeCl₃: L. & Co., D. R. P. 82233; Frdl. 4, 470, durch Einw. von salzsaurem 6-Nitroso-3-dimethylamino-phenol [4-Dimethylamino-o-chinon-oxim-(1), Syst. No. 1874] oder analogen Verbindungen in siedendem Alkohol: L. & Co., D. R. P. 81242; Frdl. 4, 476. 2-Amino-4-oxy-1-methyl-benzol läßt sich durch Kondensation mit 2-[4-Diäthylamino-2-oxy-benzoyl]benzoesäure (Syst. No. 1920) in Gegenwart von konz. Schwefelsäure in Diäthylhomorhodamin (Formel I bezw. II) (Syst. No. 2933) überführen (Noelting, Dziewoński, B. 38, 3521). Kondensation mit den Alkylestern der 2-[4-Dialkylamino-2-oxy-benzoyl]-benzoesäuren

¹⁾ Bezifferung der vom Namen "p-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 389.

zu Rhodaminfarbstoffen: Basler Chem. Fabrik, D. R. P. 132066; C. 1902 II, 171; vgl. Schultz, Tab. No. 576. 2-Amino-4-oxy-1-methyl-benzol läßt sich durch Kuppelung mit Diazoniumverbindungen in alkalischer oder schwach essigsaurer Lösung in Azoverbindungen überführen; diese Azoderivate können zur Herstellung von Oxazinfarbstoffen verwendet werden, z. B. durch Erhitzen mit Tetramethyl-m-phenylendiamin in Gegenwart von Salzsäure (L. & Co., D. R. P. 80737; Frdl. 4, 473), durch Erhitzen mit salzsaurem a-Naphthylamin (L. & Co., D. R. P. 77885; Frdl. 4, 477), durch Erhitzen mit 2-Amino-4-oxy-1-methyl-benzol (L. & Co., D. R. P. 82921; Frdl. 4, 474). Verwendung der O-Alkylderivate des 2-Amino-4-oxy-1-methyl-benzols zur Darstellung von Azofarbstoffen: Bayer & Co., D. R. P. 74516, 78493; Frdl. 3, 779; 4, 793; Akt.-Ges. f. Anilinf., D. R. P. 84772; Frdl. 4, 790; Ges. f. chem. Ind., D. R. P. 83244; Frdl. 4, 972; vgl. auch Schultz, Tab. No. 439, 440.

C₇H₉ON + HCl. Blättchen (WA.). Sublimiert in Flocken (KN.). Sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther (KN.).

2-Amino-4-methoxy-1-methyl-benzol, 3-Amino-p-kresol-methyläther $C_8H_{11}ON = H_2N \cdot C_6H_3(CH_3) \cdot O \cdot CH_3$. B. Aus 2-Nitro-4-methoxy-1-methyl-benzol (Bd. VI, S. 411) mit Zinn und Salzsäure (KNECHT, A. 215, 89). Aus 6-Nitro-3-amino-4-methoxy-1-methylbenzol (S. 606) durch Eliminierung der Aminogruppe und darauffolgende Reduktion (LIMPACH, B. 22, 791; vgl. B. 24, 4140 Anm.). — Nadeln (aus Wasser). F: 47° (K.; L., B. 24, 4140). Kp: 253° (L., B. 24, 4140). Leicht flüchtig mit Wasserdämpfen; ziemlich löslich in heißem Wasser, sehr leicht in Äther (K.). — Verwendung zur Darstellung von Azofarbstoffen: Ges. f. chem. Ind., D. R. P. 83244; Frdl. 4, 972.

2-Methylamino -4-oxy -1-methyl-benzol, 3-Methylamino-p-kresol $C_8H_{11}ON=CH_3\cdot NH\cdot C_6H_3(CH_3)\cdot OH$. B. Beim mehrstündigen Erhitzen des Natriumsalzes der 2-[Methylamino]-toluol-sulfonsäure-(4) (Syst. No. 1923) mit 2—3 Tln. KOH unter Luftabschluß auf 220—260° (Bad. Anilin- u. Sodaf., D. R. P. 69074; Frdl. 3, 169; D. R. P. 69596; Frdl. 3, 60). — Krystalle (aus Benzol + Ligroin). F: cs. 108° (B. A. S. F.). — Überführung in rote basische Pyroninfarbstoffe durch Kondensation mit aromatischen Aldehyden, Behandlung der Produkte mit wasserentziehenden Mitteln und Oxydation der entstandenen Leukobasen: BAYER & Co., D. R. P. 150440; C. 1904 I, 1115. Überführung in einen Rhodaminfarbstoff durch Erhitzen mit Phthalsäureanhydrid in Gegenwart oder Abwesenheit eines Kondensationsmittels: B. A. S. F., D. R. P. 69074. Überführung in Oxzzinfarbstoffe durch Kondensation mit 6-Nitroso-3-dimethylamino-phenol [4-Dimethylamin-o-chinon-oxim-(1), Syst. No. 1874]: Leonhardt & Co., D. R. P. 81242; Frdl. 4, 476.

2-Dimethylamino-4-oxy-1-methyl-benzol, 3-Dimethylamino-p-kresol $C_9H_{13}ON = (CH_3)_2N \cdot C_6H_3(CH_3) \cdot OH$. B. Man diazotiert 4-Amino-2-dimethylamino-toluol (S. 129) in schwefelsaurer Lösung und verkocht die Diazoniumsalzlösung mit bei 140° siedender Schwefelsäure (Möhlau, Klimmer, Kahl, C. 1902 II, 377). Aus 2-Dimethylamino-toluolsulfonsäure-(4) (Syst. No. 1923) durch Kalischmelze (M., Kl., Ka.). — F: 46°; Kp: 253°; schwer löslich in Wasser, leicht in organischen Mitteln (M., Kl., Ka.). — Liefert bei der Einw. von Natriumnitrit in saurer Lösung Dinitrosokresorein (Bd. VII, S. 887); durch Vereinigung äquimolekularer Mengen von salzsaurem 2-Dimethylamino-4-oxy-1-methyl-benzol und Natriumnitrit in kalter wäßriger Lösung entsteht 5-Nitroso-2-dimethylamino-4-oxy-1-methyl-benzol [5-Dimethylamino-4-methyl-o-chinon-oxim-(2), Syst. No. 1874]; aus dem Natriumsalz des 2-Dimethylamino-4-oxy-1-methyl-benzols und Amylnitrit in Alkohol entsteht das Natriumsalz des 5-Nitroso-2-dimethylamino-4-oxy-1-methyl-benzols (Leonhardt & Co., D. R. P. 78924; Frdl. 3, 60; M., Kl.., Ka.). Beim Kochen der natronalkalischen Lösung von 2 Mol.-Gew. 2-Dimethylamino-4-oxy-1-methyl-benzol mit 1 Mol.-Gew. Formaldehyd entsteht 4.4'-Bis-dimethylamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan (Syst. No. 1869) (L. & Co., D. R. P. 103645; C. 1899 II, 638). Beim Erwärmen von 2-Dimethylamino-4-oxy-1-methyl-benzol mit p-Chinon-bis-chlorimid (Bd. VII, S. 621) in Alkohol wird ein Farbsalz C₁₅H₁₆ON₃Cl gebildet, dem als Leukoverbindung das $\cdot CH_3$ 7-Amino-2-dimethylamino-3-methyl-phenoxazin der nebenstehenden Formel (Syst. No. 4367) entspricht (L. & Co., H₂N· N(CH₃)₂ D. R. P. 62367; Frdl. 8, 382; M., KL., KA., C. 1902 II, 458). Beim Erhitzen mit salzsaurem 4-Nitroso-dimethylanilin (Bd. XII, S. 677) in Methylalkohol (L. & Co., D. R. P. 62367) oder in Eisessig (M., Kl., Ka., C. 1902 II, 378) erhält man Capriblau, dem als Leukoverbindung 2.7-Bis-dimethylamino-3-methyl-phenoxazin (Syst. No. 4367) zugrunde liegt; analoge Farbstoffe erhält man mit 4-Nitroso-diäthylanilin (M., KL., KA., C. 1902 II, 378) und mit den 4-Nitroso-Derivaten sekundärer Amine, z. B. mit 4-Nitroso-N-āthyl-anilin (Bd. VII, S. 626) (L. & Co., D. R. P. 68558; Frdl. 3, 384) oder 4-Nitroso-diphenylamin (Bd. XII, S. 207) (M., Kl., Ka., C. 1902 II, 458). Dieselben bezw. analogen Farbstoffe erhält man auch, wenn man anstatt der Nitrosoverbindung p-Diamine bezw. deren Alkylderivate in Gegenwart eines Oxydationsmittels auf 2-Dimethylamino-4-oxy1-methyl-benzol einwirken läßt (L. & Co., D. R. P. 69820; Frdl. 3, 386), oder wenn man 2-Dimethylamino-4-oxy-1-methyl-benzol mit p-Amino-azoverbindungen in Gegenwart von Salzsäure erhitzt (L. & Co., D. R. P. 71250; Frdl. 3, 386).

C₉H₁₃ON + HCl. Krystalle (aus Alkohol). F: 213°; leicht löslich in Wasser, Alkohol,

unlöslich in Chloroform und Aceton (M., Kl., Ka., C. 1902 II, 377).

- 2-Dimethylamino -4-acetoxy-1-methyl-benzol, [3-Dimethylamino-4-methyl-pheny]-acetat $C_{11}H_{18}O_2N=(CH_3)_2N\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von 2-Dimethylamino -4-oxy-1-methyl-benzol mit Essigsäureanhydrid (Möhlau, Klimmer, Kahl, Zischr. f. Farben- u. Textilchemie 1, 318; C. 1902 II, 377). Öl. Kp₆₀: 195°. Leicht löslich.
- 2-Dimethylamino-4-benzoyloxy-1-methyl-benzol, [3-Dimethylamino-4-methyl-phenyl]-benzoat $C_{16}H_{17}O_2N=(CH_3)_2N\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot C_6H_5$. B. Beim Schütteln der natronalkalischen Lösung von 2-Dimethylamino-4-oxy-1-methyl-benzol mit Benzoylchlorid (M., Kl., Ztschr. f. Farben- u. Textilchemie 1, 318; C. 1902 II, 377). Vierseitige Blätter (aus Alkohol). F: 46°. Leicht löslich.
- 2-Äthylamino-4-oxy-1-methyl-benzol, 3-Äthylamino-p-kresol $C_0H_{13}ON = C_0H_5$. NH· $C_0H_3(CH_3)$ ·OH. B. Beim Verschmelzen des Natriumsalzes der 2-Äthylamino-toluolsulfonsäure-(4) (erhalten aus Äthyl-o-toluidin und rauchender Schwefelsäure von ca. $40^{\circ}/_{\circ}$ Anhydridgehalt bei $40-70^{\circ}$) mit 2-3 Tln. KOH unter Luftabschluß bei $220-260^{\circ}$ (Bad. Anilin- u. Sodaf., D. R. P. 69074; Frdl. 3, 169; D. R. P. 69596; Frdl. 3, 60). Krystalle (aus Benzol + Ligroin). F: ca. 87° (B. A. S. F.). Liefert beim Erhitzen mit Formaldehyd in alkal. Lösung 4.4° -Bis-šthylamino-6.6'-oxy-3.3'-dimethyl-diphenylmethan (Syst. No. 1869) (Leonhardt & Co., D. R. P. 84988; Frdl. 4, 176). Überführung in einen Rhodaminfarbstoff durch Erhitzen mit Phthalsäureanhydrid in Gegenwart oder Abwesenheit eines Kondensationsmittels: B. A. S. F., D. R. P. 69074; Frdl. 3, 169. Überführung in Oxazinfarbstoffe durch Kondensation mit 6-Nitroso-3-dialkylamino-phenolen: L. & Co., D. R. P. 81242; Frdl. 4, 476, oder durch Einw. von 5-Benzolazo-2-äthylamino-4-oxy-1-methyl-benzol: L. & Co., D. R. P. 82921; Frdl. 4, 474.
- 2 Diäthylamino 4 oxy-1-methyl-benzol, 3-Diäthylamino-p-kresol C₁₁H₁₇ON = (C₂H₃)₂N·C₄H₃(CH₃)·OH. B. Durch Diazotierung von 4-Amino-2-diāthylamino-toluol (8. 130) in saurer Lösung und Verkochen der Diazoniumssalzlösung mit Schwefelsäure (Möhlau, Klimmer, Kahl., Zischr. f. Farben- u. Textilchemie 1, 321; C. 1902 II, 378). Beim Verschmelzen von 2-Diäthylamino-toluol-sulfonsäure-(4) (Syst. No. 1923) mit Kali bei 270—280° (M., Kl., Ka.). Krystalle (aus Benzol). F: 49°; Kp: 259°; flüchtig mit Wasserdämpfen; leicht löslich in organischen Mitteln und in Säuren (M., Kl., Ka.). Liefert beim Erhitzen mit salzsaurem 4-Nitroso-dimethylanilin in Alkohol (Leonhardt & Co., D. R. P. 63238; Frdl. 3, 383) oder in Eisessig (M., Kl., Ka.). einen Farbstoff der Capriblau-Gruppe, dem als Leukoververbindung 7-Dimethylamino-2-diāthylamino-3-methylphenoxazin der nebenstehenden Formel (Syst. No. 4367) entspricht. C₁₁H₁₇ON + HCl. Krystalle (aus Alkohol). F: 187° (Zers.); leicht löslich in Wasser und Alkohol (Mö., Kl., Ka.).
- 2-Diäthylamino-4-benzoyloxy-1-methyl-benzol, [3-Diäthylamino-4-methyl-phenyl]-benzoat $C_{18}H_{91}O_{9}N=(C_{9}H_{8})_{8}N\cdot C_{6}H_{3}(CH_{9})\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Beim Schütteln der natronalkalischen Lösung von 2-Diäthylamino-4-oxy-1-methyl-benzol mit Benzoylchlorid (Möhlau, Klimmer, Kahl, Zischr. f. Farben- u. Textilchemie 1, 322; C. 1902 II, 378). Prismen. F: 36°.
- 2-Acetamino-4-oxy-1-methyl-benzol, 3-Acetamino-p-kresol $C_9H_{11}O_2N=CH_2\cdot C\dot{O}\cdot NH\cdot C_9H_3(CH_3)\cdot OH$. B. Bei kurzem Kochen von 2-Amino-4-oxy-1-methyl-benzol mit Essigsäureanhydrid (Maassen, B. 17, 609). Krystalle (aus wäßr. Alkohol). F: 178°. Löslich in Natronlauge.
- 2 Acetamino 4 acetoxy 1 methyl benzol, O.N Diacetyl [3-amino p-kresol] $C_{11}H_{13}O_3N = CH_3 \cdot CO \cdot NH \cdot C_4H_3(CH_3) \cdot O \cdot CO \cdot CH_3$. B. Bei 2—3-stdg. Kochen von 2-Amino 4-oxy-1-methyl-benzol mit Essigsäureanhydrid (Maassen, B. 17, 609). Krystalle. F: 128° bis 129°.
 - 2 Benzolsulfamino 4 oxy 1 methyl benzol, 3 Benzolsulfamino p kresol $C_{13}H_{13}O_3NS = C_4H_4\cdot SO_2\cdot NH\cdot C_4H_3(CH_2)\cdot OH$. B. Aus 4-Amino-2-benzolsulfamino-toluol (S. 139) durch Diazotieren in salzsaurer Lösung und Behandeln der Diazoniumsalzlösung mit Natriumacetat (Moegan, Micklethwart, Soc. 89, 1295). Läßt sich aus Alkohol oder Benzol nur sohwer umkrystallisieren; wird durch Lösen in Natronlauge und Fällen mit Essigsäure gereinigt. F: 183°.

- 5-Chlor-2-amino-4-methoxy-1-methyl-benzol, 6-Chlor-3-amino-p-kresol-methyl-äther ¹) C_8H_{10} ONCl = $H_2N\cdot C_8H_2$ Cl(CH₃)·O·CH₃. B. Aus 5-Chlor-2-nitro-4-methoxy-1-methyl-benzol (Bd. VI, S. 413) durch Reduktion mit Eisen und verd. Essigsäure (DE VRIES, R. 28, 402). Blättchen (aus verd. Alkohol). F: 116° (korr.).
- 5-Chlor-2-acetamino-4-methoxy-1-methyl-benzol, 6-Chlor-3-acetamino-p-kresol-methyläther $C_{10}H_{12}O_2NCl = CH_3 \cdot CO \cdot NH \cdot C_6H_2Cl(CH_3) \cdot O \cdot CH_3$. B. Beim Kochen von 5-Chlor-2-amino-4-methoxy-1-methyl-benzol mit Eisessig und Essigsäureanhydrid (DE VRIES, R. 28, 402). Nadeln (aus verd. Alkohol). F: 184°.
- **5-Nitroso-2-methylamino-4-oxy-1-methyl-benzol**, **6-Nitroso-3-methylamino-p-kresol**) $C_8H_{10}O_2N_2=CH_3\cdot NH\cdot C_6H_2(NO)(CH_3)\cdot OH$ ist demotrop mit 5-Oxy-2-methyl-p-chinon-methylimid-(1)-oxim-(4) $CH_3\cdot N:C_8H_2(:N\cdot OH)(CH_3)\cdot OH$, Bd. VIII, S. 263.
- 5-Nitroso-2-dimethylamino-4-oxy-1-methyl-benzol, 6-Nitroso-3-dimethylamino-p-kresol $C_9H_{12}O_2N_2=(CH_3)_2N\cdot C_6H_2(NO)(CH_3)\cdot OH$ ist demotrop mit 5-Dimethylamino-4-methyl-o-chinon-oxim-(2) $(CH_3)_2N\cdot C_6H_2(:N\cdot OH)(CH_3):O$, Syst. No. 1874.
- $\begin{array}{l} \textbf{5-Nitroso-2-$\ddot{a}thylamino-4-oxy-1-methyl-benzol, 6-Nitroso-3-$\ddot{a}thylamino-p-kresol $C_9H_{12}O_2N_2=C_2H_5\cdot NH\cdot C_6H_2(NO)(CH_3)\cdot OH$ ist desmotrop mit 5-Oxy-2-methyl-p-chinon-$\ddot{a}thylimid-(1)-oxim-(4) $C_2H_5\cdot N:C_6H_2(:N\cdot OH)(CH_3)\cdot OH$, $Bd.$ VIII, $S.$ 264.} \end{array}$
- 5-Nitroso-2-diäthylamino-4-oxy-1-methyl-benzol, 6-Nitroso-3-diäthylamino-p-kresol $C_{11}H_{16}O_2N_2=(C_2H_5)_2N\cdot C_6H_2(NO)(CH_3)\cdot OH$ ist desmotrop mit 5-Diäthylamino-4-methyl-o-chinon-oxim-(2) $(C_2H_5)_2N\cdot C_6H_2(:N\cdot OH)(CH_3)\cdot O$, Syst. No. 1874.
- **3.5-Dinitro-2-amino-4-oxy-1-methyl-benzol**, **2.6-Dinitro-3-amino-p-kresol** ¹) $C_7H_7O_5N_3 = H_2N \cdot C_6H(NO_2)_2(CH_3) \cdot OH$. B. Bei kurzem Erhitzen von 3.5-Dinitro-2-amino-4-methylamino-toluol (S. 142) mit wäßr. Natronlauge (Sommer, J. pr. [2] 67, 551). Braunrote Nadeln (aus Alkohol). F: 141—142°.
- 3.5-Dinitro-2-methylamino-4-oxy-1-methyl-benzol, 2.6-Dinitro-3-methylamino-p-kresol $C_8H_9O_5N_3=CH_3\cdot NH\cdot C_6H(NO_2)_2(CH_3)\cdot OH$. Bei kurzem Erhitzen von 3.5-Dinitro-2.4-bis-methylamino-toluol (S. 142) mit wäßr. Kalilauge (So., J. pr. [2] 67, 550). Gelbe Nadeln mit bläulichem Reflex (aus Alkohol). F: 177°.
- 2-Amino-4-sulfhydryl-1-methyl-benzol, 2-Amino-4-mercapto-1-methyl-benzol, 3-Amino-thio-p-kresol, 3-Amino-4-methyl-phenylmercaptan $C_7H_9NS=H_2N\cdot C_6H_3(CH_2)\cdot SH$. B. Aus 2-Nitro-tolul-sulfonsāure-(4)-chlorid (Bd. XI, S. 111) durch Reduktion mit Zinn und Salzsäure (Hess, B. 14, 489) oder durch elektrolytische Reduktion in schwefelsaurer Lösung (Fightfuhr Bennoulli, B. 42, 4310). Öl. Löslich in Alkohol, Äther, Alkalien und Säuren (H.). $C_7H_9NS+HCl+H_2O$. Tafeln (H.).
- 3.3'-Bis-acetamino-4.4'-dimethyl-diphenyldisulfid $C_{18}H_{20}O_2N_2S_3=[CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot S-]_8$. Beim Vermischen des Sulfats des 3.3'-Diamino-4.4'-dimethyl-diphenyldisulfids mit wasserfreiem Natriumacetat und Essigsäureanhydrid (F., B., B. 42, 4310). Nadeln (aus Eisessig oder Alkohol). F: 239°.

3-Amino-4-oxy-1-methyl-benzol und seine Derivate.

3-Amino-4-oxy-1-methyl-benzol, 2-Amino-p-kresol¹) C₇H₉ON, s. nebenstehende Formel. B. Aus 3-Nitro-4-oxy-1-methyl-benzol (Bd. VI, S. 412) bei der Reduktion mit Zinn und Salzsäure (Wagner, B. 7, 1270). Bei der elektrolytischen Reduktion von 3-Nitro-4-oxy-1-methyl-benzol in natronalkalischer Lösung an einer Nickelkathode (Auwers, Eisenlohr, A. 369, 223). Aus 6-Oxy-3-methyl-azobenzol (Syst. No. 2113) bei der Reduktion mit Zinn und Salzsäure (Noelting, Kohn, B. 17, 359) oder mit Phenylhydrazin (Oddo, Puxeddu, B. 38, 2754).

Blättchen (aus Benzol oder Äther). Rhombisch bipyramidal (Hintze, B. 7, 1271; vgl. Groth, Ch. Kr. 4, 388). F: 135° (N., Ko.). Sublimiert leicht in Blättchen oder Nadeln (N., Ko.). In kaltem Wasser fast unlöslich, leicht löslich in Alkohol, Äther (Wa.) und Chloroform,

¹⁾ Bezifferung der vom Namen "p-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 389.

viel schwerer in Benzol (N., Ko.). Die wäßr. Lösung von salzsaurem 3-Amino-4-oxy-1-methylbenzol wird durch Eisenchlorid rot gefärbt (N., Ko.). — Durch Sättigen der Suspension von salzsaurem 3-Amino-4-oxy-1-methyl-benzol in Eisessig mit Chlor entsteht eso-Pentachlor-1-methyl-cyclohexen-(x)-dion-(3.4) (Bd. VII, S. 578) (Bergmann, Francke, A. 296, 160). Bei der Einw. von Phenanthrenchinon in siedendem Benzol entsteht die farblose Pseudoform des Methylphenanthrophenazoxoniumhydroxyds C₂₁H₁₅O₂N [F: ca. 195° (Zers.)] (Syst. No. 4204) (Kehrmann, Winkelmann, B. 40, 617; vgl. Hantzsch, B. 39, 158). Bei der Destillation des salzsauren Salzes mit Natriumformiat entsteht 5-Methyl-benzoxazol (Syst. No. 4195) (Hofmann, v. Miller, B. 14, 572). Analog erhält man mit wasserfreiem Natriumacetat und überschüssigem Essigsäurenhydrid 2.5-Dimethyl-benzoxazol (Syst. No. 4195) (N., Ko., B. 17, 361). Beim Vermischen von 3-Amino-4-oxy-1-methyl-benzol mit Essigsäureanhydrid entsteht 3-Acetamino-4-oxy-1-methyl-benzol, beim Kochen mit überschüssigem Essigsäureanhydrid und etwas Natriumacetat 3-Acetamino-4-oxy-1-methyl-benzol zur Herstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 174789; C. 1906 II, 1540. Verwendung der Alkyläther des 3-Amino-4-oxy-1-methyl-benzols für Azofarbstoffe: Bayer & Co., D. R. P. 74516, 78493; Frdl. 3, 779; 4, 793. — C₇H₉ON + HCl. Nadeln. Leicht löslich in Wasser und Alkohol (Wa.).

- 3 Amino 4 methoxy 1 methyl benzol, 2 Amino p kresol methyläther $C_8H_{11}ON = H_2N \cdot C_6H_3(CH_3) \cdot O \cdot CH_3$. B. Beim Kochen von 10 g 3-Nitro-4-methoxy-1-methylbenzol (Bd. VI, S. 412) mit 10 g Eisen und 60 g Essigsäure (1:5) (DE VRIES, R. 28, 288; vgl. HOFMANN, v. MILLER, B. 14, 573).—Nadeln oder Blätter (aus Ligroin oder Alkohol). F: 51,5° (LIMPACH, B. 22, 348; DE V.). Kp: 235° (L.). Leicht löslich in Alkohol, Äther und Benzol, schwerer in kaltem Wasser (L.). Über Verwendung zur Herstellung von Azofarbstoffen vgl. Schultz, Tab. No. 100, 101. $C_8H_{11}ON + HCl + H_2O$. Prismen. Sehr leicht löslich in Wasser (L.).
- 3-Amino-4-äthoxy-1-methyl-benzol, 2-Amino-p-kresol-äthyläther $C_pH_{13}ON=H_2N\cdot C_eH_3(CH_3)\cdot O\cdot C_2H_5$. B. Bei der Reduktion von 3-Nitro-4-äthoxy-1-methyl-benzol (Bd. VI, S. 412) mit Zinn und Salzsäure (Staedel, A. 217, 220). Bei der Reduktion von 6-Äthoxy-3.4'-dimethyl-azobenzol (Syst. No. 2113) mit salzsaurem Zinnchlorür, neben anderen Produkten (Jacobson, Piepenbennk, B. 27, 2712). Nadeln (aus Wasser), F: 40° bis 41° (St.). Kp: 240° (korr.) (J., P.). In Wasser nicht leicht löslich; sehr leicht in Alkohol, Ather und Benzol (St.). Verwendung zur Herstellung von Azofarbstoffen: Bayer & Co., D. R. P. 78493; Frdl. 4, 793. $C_9H_{13}ON + HCl + 1^l/2H_2O$. Nadeln (St.). Nitrat. Blättchen (St.). $C_9H_{13}ON + H_2SO_4 + 2H_2O$. Nadeln (St.).
- 3-Amino-4-[2-chlor-benzyloxy]-1-methyl-benzol, 2-Amino-p-kresol-[2-chlor-benzyl]-äther $C_{14}H_{14}ONCl = H_2N \cdot C_6H_3(CH_3) \cdot O \cdot CH_2 \cdot C_6H_4Cl$. B. Bei der Reduktion des [2-Nitro-4-methyl-phenyl]-[2-chlor-benzyl]-äthers (Bd. VI, S. 444) (Höchster Farbw., D. R. P. 142061; C. 1903 II, 82). Verwendung zur Darstellung von Azofarbstoffen: H. F. Hydrochlorid. F: 208° .
- 3-Amino-4-[4-chlor-benzyloxy]-1-methyl-benzol, 2-Amino-p-kresol-[4-chlor-benzyl]-äther $C_{14}H_{14}ONCl = H_2N \cdot C_0H_3(CH_3) \cdot O \cdot CH_2 \cdot C_0H_4Cl$. B. Bei der Reduktion des [2-Nitro-4-methyl-phenyl]-[4-chlor-benzyl]-äthers (Bd. VI, S. 445) (Höchster Farbw., D. R. P. 142061; C. 1903 II, 82). Verwendung für Azofarbstoffe: H. F. Hydrochlorid. F: 195—200°.
- [3-Amino-4-methyl-phenyl]-kohlensäure-äthylester $C_{10}H_{13}O_3N$, c. nebenstehende Formel. B. Bei der Reduktion von [2-Nitro-4-methyl-phenyl]-kohlensäure-äthylester (Bd. VI, S. 412) mit Zinn und Salzsäure (Urson, Am. 32, 18). Über die Affinitätskonstante und über die Umlagerung in [6-Oxy-3-methyl-phenyl]-urethan (S. 604) vgl. STIEGLITZ, Urson, Am. 31, 485, 501. $C_{10}H_{13}O_3N + HCl$. Weißer Niederschlag. F: 135—1370 O· $CO_2 \cdot C_2H_5$ (Zers.); löslich in Alkohol, alkoholhaltigem Äther und verdünnten Säuren (U.). $2C_{10}H_{13}O_3N + 2HCl_4$. Gelber Niederschlag. F: 1710 (Schwärzung); löslich in Alkohol, unlöslich in Äther (U.).
- [2-Amino-4-methyl-phenyl]-kohlensäure-anilid, Carbanilsäure-[2-amino-4-methyl-phenyl]-ester $C_{14}H_{14}O_2N_2=H_2N\cdot C_0H_3(CH_3)\cdot O\cdot CO\cdot NH\cdot C_0H_5$. B. Aus Carbanilsäure-[2-nitro-4-methyl-phenyl]-ester (Bd. XII, S. 328) in Alkohol mit Zinkstaub und etwas Eisessig unter Kühlung (Auwers, A. 364, 176). Krystalle (aus Äther). F: 169°.
- 3-Amino-4-p-toluolsulfonyloxy-1-methyl-bensol, p-Toluolsulfonsäure-[2-amino-4-methyl-phenyl]-ester $C_{14}H_{18}O_3NS = H_4N\cdot C_8H_3(CH_3)\cdot O\cdot SO_3\cdot C_4H_4\cdot CH_3$. B. Aus dem (nicht näher beschriebenen) p-Toluolsulfonsäure-[2-nitro-4-methyl-phenyl]-ester durch Reduktion (Geigy & Co., D. R. P. 201377; C. 1908 II, 999). Prismatische Krystalle (aus Alkohol). F: 788. Verwendung zur Darstellung von Azofarbstoffen: G. & Co.

- **2'.4'** Dinitro 6 oxy 3 methyl diphenylamin $C_{13}H_{11}O_5N_3$, s. nebenstehende Formel. B. Aus 3-Amino-4-oxy-1-methyl-benzol und 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) (Akt.-Ges. f. Anilinf., D. R. P. 194199; C. 1908 I, 1014). Bei der Einw. von Natriumpolysulfid in Gegenwart von Kupfersalzen entsteht ein gelbbrauner Farbstoff.
- 3-Formamino-4-methoxy-1-methyl-benzol, 2-Formamino-p-kresol-methyläther $C_9H_{11}O_2N=OHC\cdot NH\cdot C_6H_{3}(CH_3)\cdot O\cdot CH_3$. B. Beim Kochen von 3-Amino-4-methoxy-1-methyl-benzol mit Ameisensäure (Limpach, B. 22, 349). Prismen (aus verd. Alkohol). F: 86°.
- 3-Acetamino-4-oxy-1-methyl-benzol, 2-Acetamino-p-kresol $C_9H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot OH$. B. Man verreibt 3-Amino-4-oxy-1-methyl-benzol mit Essigsäure-anhydrid und dann mit $80/_0$ iger Natronlauge (Auwers, Eisenlohe, A. 369, 223). Bei kurzem Digerieren von 3-Acetamino-4-acetoxy-1-methyl-benzol in alkoh. Lösung mit etwas konz. Natronlauge (A., E., A. 369, 224). Beim Erwärmen von 2.5-Dimethyl-benzoxazol (Syst. No. 4195) mit verd. Schwefelsäure auf 100° (Noelling, Kohn, B. 17, 361). Nadeln (aus Wasser). F: 159—160°; sehr wenig löslich in kaltem Wasser, Alkohol, Äther und Benzol (N., K.).
- 3-Acetamino 4 methoxy 1 methyl-benzol, 2-Acetamino p-kresol-methyläther $C_{10}H_{13}O_2N = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CH_3$. B. Beim Kochen von 3-Amino 4-methoxy 1-methyl-benzol mit Eisessig (Limpach, B. 22, 349). Blättehen. F: 110°.
- 3-Acetamino-4-äthoxy-1-methyl-benzol, 2-Acetamino-p-kresol-äthyläther $C_{11}H_{15}O_2N=CH_3\cdot ('O\cdot NH\cdot C_6H_3((H_3)\cdot O\cdot C_2H_5),B.$ Beim Digerieren von 3-Amino-4-äthoxy-1-methyl-benzol mit Essigsäureanhydrid (Staedel, A. 217, 221). Blätter (aus Wasser). F: 106.5° .
- 3-Acetamino-4-acetoxy-1-methyl-benzol, O.N-Diacetyl-[2-amino-p-kresol] $C_{11}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Bei 3-stdg. Kochen von 3-Amino-4-oxy-1-methyl-benzol mit überschüssigem Essigsäureanhydrid und etwas Natriumacetat (Auwers, Eisenlohr, A. 369, 224). Blätter oder flache Nadeln. F: 145°. Leicht löslich in den üblichen Lösungsmitteln.
- 3-Acetamino-4-propionyloxy-1-methyl-benzol, N-Acetyl-O-propionyl-[2-amino-p-kresol] $C_{12}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CO\cdot C_2H_5$. B. Aus dem Natriumsalz des 3-Acetamino-4-oxy-1-methyl-benzols mit Pottasche und Propionylchlorid in trocknem Äther auf dem Wasserbade (Au., El., A. 369, 231). Nadeln (aus Benzol + Ligroin). F: $104-105^{\circ}$. Liefert bei der Verseifung mit Alkalien in der Kälte ein Gemisch von 3-Acetamino-4-oxy-1-methyl-benzol und 3-Propionylamino-4-oxy-1-methyl-benzol.
- **3 Acetamino 4 benzoyloxy 1 methyl benzol, N-Acetyl-O-benzoyl-[2-aminop-kresol]** $C_{16}H_{15}O_3N = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CO \cdot C_6H_5$. *B.* Aus dem Natriumsalz des 3-Acetamino-4-oxy-1-methyl-benzols mit Pottasche und Benzoylchlorid in trocknem Ather auf dem Wasserbade (Au., El., A. **369**, 226). Bei der Reduktion von Benzoesäure-[2-nitro-4-methyl-phenyl]-ester (Bd. IX, S. 121) mit Zinkstaub und Eisessig in Gegenwart von Essigsäureanhydrid (Au., El., A. **369**, 229). Nadeln (aus Methylalkohol), Prismen (aus Benzol). F: 146°. Liefert bei der Verseifung mit alkoh. Alkali 3-Benzamino-4-oxy-1-methyl-benzol und 3-Benzamino-4-oxy-1-methyl-benzol und 3-Benzamino-4-oxy-1-methyl-benzol und 3-Benzamino-4-oxy-1-methyl-benzol (Au., El., A. **369**, 232). Gibt beim Kochen mit Essigsäureanhydrid 3-Acetylbenzoylamino-4-acetoxy-1-methyl-benzol (S. 604) (Au., El., A. **369**, 228).
- 3-Propionylamino-4-oxy-1-methyl-benzol, 2-Propionylamino-p-kresol $C_{10}H_{13}O_2N=C_2H_5\cdot C\bar{O}\cdot NH\cdot C_0H_3(CH_3)\cdot OH$. B. Aus 3-Amino-4-oxy-1-methyl-benzol mit 1 Mol.-Gew. Propionylchlorid in Pyridin (A., E., A. 369, 230). Nadeln (aus Benzol + Ligroin). F: 95° bis 96°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Ligroin.
- **3-Propionylamino-4-propionyloxy-1-methyl-benzol, O.N-Dipropionyl-[2-amino-p-kresol]** $C_{13}H_{17}O_3N = C_2H_5 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot O \cdot CO \cdot C_2H_5$. B. Aus 3-Amino-4-oxy-1-methyl-benzol mit 4—5 Mol.-Gew. Propionylchlorid in Pyridin (A., E., A. **369**, 231). Blättchen (aus Benzol + Ligroin). F: 91—92°. Sehr leicht löslich in Methylalkohol.
- 3-Isovalerylamino-4-oxy-1-methyl-benzol, 2-Isovalerylamino-p-kresol $C_{12}H_{17}O_2N$ = $(CH_3)_2CH\cdot CH_2\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot OH$. B. Aus 3-Amino-4-oxy-1-methyl-benzol und Isovalerylchlorid in Pyridin (A., E., A. 369, 233). Nadeln (aus Benzol + Ligroin). F: 106°.

¹⁾ Vgl. hierzu nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] RAIFORD, COUTURE, Am. Soc. 46 [1924], 2305.

- 3-Isovalerylamino 4-bensoyloxy 1-methyl-bensol, N-Isovaleryl-O-bensoyl-[2-amino-p-kresol] $C_{10}H_{21}O_3N = (CH_2)_2CH \cdot CH_2 \cdot CO \cdot NH \cdot C_0H_2(CH_2) \cdot O \cdot CO \cdot C_0H_0$. Aus dem Natriumsalz des 3-Isovalerylamino-4-oxy-1-methyl-benzols mit Benzoylchlorid und Pottasche in Ather (A., E., A. 369, 233). — Nadeln (aus verd. Alkohol). F: 1420. — Liefert bei der Verseifung mit alkoh. Natronlauge in der Kälte 3-Isovalerylamino-4-oxy-1-methylbenzol und 3-Benzamino-4-oxy-1-methyl-benzol.
- 8-Önanthoylamino-4-oxy-1-methyl-benzol, 2-Önanthoylamino-p-kresol $C_{14}H_{21}O_2N$ = $CH_3 \cdot [CH_3]_5 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot OH$. B. Aus aquimolekularen Mengen 3-Amino-4-oxy-1-methyl-benzol und Onanthsaurechlorid in Pyridin (A., E., A. 369, 234). — Undeutliche Krystalle (aus Ligroin). F: 103-104°. Leicht löslich.
- 3-Önanthoylamino 4-benzoyloxy 1-methyl-benzol, N-Önanthoyl-O-benzoyl-[2-amino-p-kresol] $C_{11}H_{15}O_{2}N=CH_{3}\cdot [CH_{2}]_{5}\cdot CO\cdot NH\cdot C_{6}H_{3}(CH_{3})\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus 3-Önanthoylamino-4-oxy-1-methyl-benzol mit Benzoylchlorid und Pottasche in Ather (A., E., A. 369, 235). — Krystalle (aus Benzol + Ligroin). F: 87—89°. Leicht löslich. — Liefert bei der Verseifung mit kalter alkoholischer Natronlauge 3-Onanthoylamino-4-oxy-1-methyl-
- 3-Benzamino-4-oxy-1-methyl-benzol, 2-Benzamino-p-kresol $C_{14}H_{13}O_{2}N=C_{0}H_{5}$. CO·NH· $C_{6}H_{3}(CH_{8})$ ·OH. B. Aus Benzoesaure-[2-nitro-4-methyl-phenyl]-ester (Bd. IX, S. 121) durch Reduktion mit Zinkstaub in kalter essigsaurer Lösung (AUWERS, A. 360, 13 Anm. 6). Aus 3-Amino-4-oxy-1-methyl-benzol in Pyridin mit 1 Mol.-Gew. Benzoylchlorid (Auwers, Eisemlohe, A. 369, 224). Beim Lösen von 3-Benzamino-4-benzoyloxy-1-methylbenzol in verd. Natronlauge (Auwers, Czerny, B. 31, 2695). — Blättchen (aus Alkohol). F: 191°; löslich in Alkali (A., Cz.). — Geht bei kurzem Kochen für sich (A., Cz.) oder beim Digerieren mit Acetylchlorid (A., E.) in 5-Methyl-2-phenyl-benzoxazol (Syst. No. 4199) über. Gibt mit überschüssigem Acetylchlorid in Pyridin bei gewöhnlicher Temperatur 3-Benzamino-4-acetoxy-1-methyl-benzol (A., E.). Liefert beim Kochen mit Essigsäureanhydrid und Eisessig 3-Benzamino-4-acetoxy-1-methyl-benzol und 3-Acetylbenzoylamino-4-acetoxy-1-methyl-benzol (A., E.).
- 3-Benzamino-4-acetoxy-1-methyl-benzol,O-Acetyl-N-benzoyl-[2-amino-p-kresol] $C_{16}H_{16}O_{5}N = C_{6}H_{5}\cdot CO\cdot NH\cdot C_{6}H_{2}(CH_{3})\cdot O\cdot CO\cdot CH_{3}$. B. Aus 3-Benzamino-4-oxy-1-methylbenzol mit überschüssigem Acetylchlorid in Pyridin bei gewöhnlicher Temperatur (Auwers, EBENLOHR, A. 369, 225). — Blåttchen oder flache Nadeln (aus Benzol + Ligroin). F: 134°. - Liefert beim Verreiben mit kalter 1% iger Natronlauge 3-Benzamino-4-oxy-1-methylbenzol 1).
- 3-Bensamino-4-bensoyloxy-l-methyl-bensol, O.N-Dibensoyl-[2-amino-p-kresol] C₁₁H₁₇O₂N = C₆H₅·CO·NH·C₆H₃(CH₂)·O·CO·C₆H₅. B. Durch Erwärmen von 3-Amino-4-oxy-1-methyl-benzol mit der dreifschen Menge Benzoylchlorid (Auwers, Czerny, B. 31, 2695). — Blättchen (aus Alkohol). F: 190—191°. — Geht beim Kochen in 5-Methyl-2-phenylbenzoxazol (Syst. No. 4199) über.
- 3-Acetylbenzoylamino-4-acetoxy-1-methyl-benzol, O.N-Diacetyl-N-benzoyl-[2-amino-p-kresol] $C_{18}H_{17}O_4N=C_6H_5\cdot CO\cdot N(CO\cdot CH_2)\cdot C_6H_3(CH_2)\cdot O\cdot CO\cdot CH_3$. B. Aus 3-Benzamino-4-oxy-1-methyl-benzol beim Kochen mit Essigsäureanhydrid und Eisessig neben 3-Benzamino-4-acetoxy-1-methyl-benzol (Auwers, Eisenlohe, A. 369, 227). Aus 3-Acetamino-4-benzoyloxy-1-methyl-benzol beim Kochen mit Essigsaureanhydrid (A., E.). - Krystalle (aus Benzol oder Ather). F: 101—102°.
- [6-Oxy-3-methyl-phenyl]-urethan $C_{10}H_{12}O_3N$, s. nebenstehende Formel. B. Durch Reduktion des [2-Nitro-4-methyl-phenyl]-kohlen-CH, säure-äthylesters (Bd. VI, S. 412) mit Zinn und Salzsäure und Umlagerung des entstandenen [2-Amino-4-methyl-phenyl]-kohlensäure-NH · CO₂ · C₂H₅ äthylesters (S. 602) durch Stehenlassen in wäßrig-salzsaurer Lösung (UPSON, Am. 32, 16, 19). Aus 3-Amino-4-oxy-1-methyl-benzol und OH Chlorameisensäureäthylester (Bd. III, S. 10) (U., Am. 32, 17). — Nadeln (aus Alkohol). F: 101°. Löslich in Alkalien, unlöslich in Säuren.

N-Phenyl-N'-[6-oxy-3-methyl-phenyl]-harnstoff $C_{14}H_{14}O_2N_2 = C_4H_5 \cdot NH \cdot CO \cdot NH \cdot C_4H_5(CH_2) \cdot OH$. B. Aus 3-Amino-4-oxy-1-methyl-benzol und Phenylisocyanat (Bd. XII, S. 437) bei gewöhnlicher Temperatur (Auwers, A. 364, 176). Bei der Reduktion des Carbanil-saure-[2-nitro-4-methyl-phenyl]-esters (Bd. XII, S. 328) mit Zinkstaub und Eisessig ohne Kühlung (A.). — Nadeln (aus Benzol). F: 158—159°.

N-p-Tolyl-N'-[6-athoxy-3-methyl-phenyl]-thioharnstoff C_1 , $H_{20}ON_6S = CH_2 \cdot C_6H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_2(CH_2) \cdot O \cdot C_8H_6$. B. Durch Erhitzen von 6-Athoxy-3.4'-dimethyl-hydrasobenzol (Syst. No. 2078) mit Schwefelkohlenstoff auf 160° (Jacobson, Hugershoff, B. 36,

¹⁾ Vgl. die Anmerkung auf S. 603.

3856). Aus 3-Amino-4-äthoxy-1-methyl-benzol und p-Tolylsenföl (Bd. XII, S. 956) (J., H.). — Prismatische Tafeln (aus Alkohol). F: 158°. Schwer löslich in Alkohol.

3-p-Toluolsulfamino-4-methoxy-1-methyl-benzol, 2-p-Toluolsulfamino-p-kresolmethyläther $C_{15}H_{17}O_3NS=CH_3\cdot C_6H_4\cdot SO_2\cdot NH\cdot C_6H_3(CH_3)\cdot O\cdot CH_2$. B. Aus p-Toluolsulfochlorid (Bd. XI, S. 103) und 3-Amino-4-methoxy-1-methyl-benzol (Akt.-Ges. f. Anilinf., D. R. P. 157859; C. 1905 I, 415). — Nadeln. F: 112°. — Liefert beim Erwärmen mit verd. Salpetersäure 6-Nitro-3-p-toluolsulfamino-4-methoxy-1-methyl-benzol (S. 606).

- 5-Chlor-3-amino-4-oxy-1-methyl-benzol, 6-Chlor-2-amino-p-kresol 1) $C_7H_8ONCl=H_2N\cdot C_8H_2Cl(CH_3)\cdot OH$. B. Bei der Reduktion von 5-Chlor-3-nitro-4-oxy-1-methyl-benzol (Bd. VI, S. 413) in alkoh. Lösung mit Zinn und Salzsäure (Zincke, Schneider, Emmerich, A. 328, 313). Nadeln (aus verd. Alkohol). F: 89—90°. In Alkali mit bräunlicher Farbe löslich. Geht beim Chlorieren in Eisessiglösung in das eso-Pentachlor-1-methyl-cyclohexen-(x)-dion-(3.4) vom Schmelzpunkt 90° (Bd. VII, S. 578) über. $C_7H_8ONCl+HCl$. Blättchen. Leicht löslich in Wasser.
- 5-Chlor-3-acetamino-4-acetoxy-1-methyl-benzol, O.N-Diacetyl-[6-chlor-2-amino-p-kresol] $C_{11}H_{12}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_6H_2Cl(CH_3)\cdot O\cdot CO\cdot CH_3$. B. Aus 5-Chlor-3-amino-4-oxy-1-methyl-benzol mit Essigsäureanhydrid und Natriumacetat (Z., Sch., E., A. 328, 313). Nadeln (aus verd. Eisessig). F: 162—163°.
- 6-Chlor-3-amino-4-methoxy-1-methyl-benzol, 5-Chlor-2-amino-p-kresol-methyläther ¹) $C_8H_{10}ONCl = H_2N \cdot C_6H_2Cl(CH_3) \cdot O \cdot CH_2$. B. Aus 3-Nitro-4-methoxy-1-methyl-benzol (Bd. VI, S. 412) bei der Reduktion mit Zinn und Salzsäure, neben 3-Amino-4-methoxy-1-methyl-benzol (DE VRIES, C. 1910 I, 260; R. 28, 396, 398). Nadeln (aus Ligroin). F: 106° (korr.).
- 6-Chlor-3-acetamino-4-methoxy-1-methyl-benzol, 5-Chlor-2-acetamino-p-kresol-methyläther $C_{10}H_{12}O_2NCl=CH_3\cdot CO\cdot NH\cdot C_eH_2Cl(CH_3)\cdot O\cdot CH_3$. B. Beim Kochen von 6-Chlor-3-amino-4-methoxy-1-methyl-benzol mit Eisessig und Essigsäureanhydrid (DE VRIES, R. 28, 398). Nadeln (aus verd. Alkohol). F: 115°.
- 5-Brom-3-amino-4-oxy-1-methyl-benzol, 6-Brom-2-amino-p-kresol 1) $C_7H_8ONBr=H_2N\cdot C_8H_2Br(CH_3)\cdot OH$. B. Aus 5-Brom-3-nitro-4-oxy-1-methyl-benzol durch Reduktion mit salzsaurem Zinnchlorür in Eisessiglösung (Thiele, Eichwede, A. 311, 375). Nadeln (aus Alkohol). F: 93°. Löslich in Alkohol, Äther und Benzol, schwer löslich in kaltem Wasser. $C_7H_8ONBr+HCl$. Blättchen, die sich bei 240—250° schwärzen.
- [6-Brom-2-amino-4-methyl-phenyl]-kohlensäure-äthylester $C_{10}H_{12}O_3NBr$, s. nebenstehende Formel. B_{\bullet} Bei der Reduktion von [6-Brom-2-nitro-4-methyl-phenyl]-kohlensäure-äthylester (Bd. VI, S.413) durch Zinn und Salzsäure (Urson, Am. 32, 35). Lagert sich beim Erwärmen seines Hydrochlorids mit Wasser in [5-Brom-6-oxy-3-methyl-phenyl]-urethan (s. u.) um (U.). Über Geschwindigkeit dieser Umwandlung vgl. Stieglitz, U., Am. 31, 501. $C_{10}H_{12}O_3NBr+HCl$. F: 142—143° (Zers.); löslich in alkoholhaltigem Äther, unlöslich in Wasser (U.).
- [5-Brom-6-oxy-3-methyl-phenyl]-urethan $C_{10}H_{12}O_3NBr$, s. nebenstehende Formel. B. Beim Erwärmen des Hydrochlorids des [6-Brom-2-amino-4-methyl-phenyl]-kohlensäure-äthylesters (s. o.) mit Wasser (Upson, Am. 32, 36; vgl. Stieglitz, U., Am. 31, 501). F: 83°; löslich in Alkohol, Äther, Alkalien; unlöslich in Säuren (U.). OH
- 5-Nitro-3-amino-4-oxy-1-methyl-benzol, 6-Nitro-2-amino-p-kresol 1) $C_7H_8O_3N_8=H_2N\cdot C_6H_2(NO_2)(CH_3)\cdot OH$. B. Durch Reduktion von 3.5-Dinitro-4-oxy-1-methyl-benzol (Bd. VI, 8. 414) in verd. Ammoniak mit Schwefelwasserstoff (Kehrmann, Winkelmann, B. 40, 618). Rotbraune Krystalle (aus Alkohol). F: 110° (K., W.). Gibt mit Phenanthrenchinon in siedendem Benzol die farblose Pseudoform des Nitromethyl-phenanthrophenazoxoniumhydroxyds $C_{21}H_{14}O_4N_2$ (Syst. No. 4204) (K., W.; vgl. Hantzsch, B. 39, 158). Verwendung zur Darstellung von Azofarbstoffen: Höchster Farbw., D. R. P. 139213; C. 1903 I, 679; Chem. Fabr. Sandoz, D.R. P. 175625; C. 1906 II, 1748.
- 6-Nitro-3-amino-4-oxy-1-methyl-benzol, 5-Nitro-2-amino-p-kresol 1) $C_7H_8O_2N_2=H_2N\cdot C_6H_2(NO_2)(CH_3)\cdot OH$. B. Aus dem durch Einw. von Phosgen auf 3-Amino-4-oxy-1-methyl-benzol entstehenden 5-Methyl-benzoxazolon-(2) (Syst. No. 4278) durch Nitrieren

¹⁾ Bezifferung der vom Namen "p-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 389.

und nachfolgende Verseifung mit Calciumhydroxyd oder Soda (Höchster Farbw., D.R.P. 184689; C. 1907 II, 764). — Gelb. Löslich in heißem Wasser und in verd. Salzsäure. Die Lösung in Alkalien ist rotbraun. Verwendung für Azofarbstoffe: H. F., D.R.P. 184689, 188819; C. 1907 II, 764, 1571.

- 6-Nitro-3-amino-4-methoxy-1-methyl-benzol, 5-Nitro-2-amino-p-kresol-methyl-äther $C_8H_{10}O_3N_3=H_8N\cdot C_6H_3(NO_2)(CH_3)\cdot O\cdot CH_3$. B. Aus 6-Nitro-3-acetamino-4-methoxy-1-methyl-benzol (s. u.) beim Kochen mit Natronlauge (Limpach, B. 22, 790). Gelbe Nadeln. F: 132⁶. Verwendung zur Darstellung von Azofarbstoffen: Akt. Ges. f. Anilinf., D.R.P. 126174, 126676, 215371; C. 1901 II, 1374; 1902 I, 85; 1909 II, 1951; Ges. f. chem. Ind., D.R.P. 153939; C. 1904 II, 1013.
- 6-Nitro-8-acetamino-4-methoxy-1-methyl-benzol, 5-Nitro-2-acetamino-p-kresol-methyläther $C_{10}H_{12}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H_2(NO_4)(CH_3)\cdot O\cdot CH_3$. B. Beim Versetzen einer gekühlten Lösung von 3-Acetamino-4-methoxy-1-methyl-benzol in Eisessig mit Salpetersäure (D: 1,48) (LIMPACH, B. 22, 790). Nadeln (aus verd. Alkohol). F: 156°.
- 6-Nitro-3-p-toluolsulfamino-4-methoxy-1-methyl-benzol, 5-Nitro-2-[p-toluolsulfamino]-p-kresol-methyläther $C_{16}H_{16}O_5N_3S=CH_3\cdot C_6H_4\cdot SO_2\cdot NH\cdot C_6H_3(NO_2)(CH_2)\cdot O\cdot CH_3$. B. Aus 3-p-Toluolsulfamino-4-methoxy-1-methyl-benzol beim Erwärmen mit verd. Salpetersäure (Akt. Ges. f. Anilinf., D.R.P. 157859; C. 1905 I, 415). Gelbe Prismen. F: 150°.

4-Oxy-benzylamin (11-Amino-4-oxy-1-methyl-benzol) und seine Derivate.

- 4-Oxy-bensylamin, p-Oxy-bensylamin $C_7H_9ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH_2$. B. Beim Erwärmen einer stark salzsauren Lösung von 4-Amino-benzylamin (S. 174) mit 1 Mol.-Gew. Natriumnitrit (Salkowski, B. 22, 2142). Täfelchen mit 1 H_2O (aus Wasser). Schmilzt unter Zersetzung oberhalb 95°. $C_7H_9ON + HCl$. Tafeln (aus Alkohol). $2C_7H_9ON + 2HCl + PtCl_4 + 2H_2O$. Nadeln.
- 4-Methoxy-benzylamin, Anisylamin $C_8H_{11}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_3 \cdot NH_3$. B. Neben Bis-[4-methoxy-benzyl]-amin (S. 608), aus 4-Methoxy-benzylchlorid (Bd. VI, S. 403) und konzentiert-alkoholischem Ammoniak (Cannizzaro, A. 117, 240). Durch Reduktion einer essigsauer gehaltenen Lösung von a-Anisaldoxim (Bd. VIII, S. 76) in Alkohol mit Natrium-amalgam (Goldschmidt, Polonowska, B. 20, 2407). Neben Bis-[4-methoxy-benzyl]-amin bei 24—30-stündigem Stehen von 20 g Hydroanisamid (Bd. VIII, S. 75), gelöst in absol. Alkohol, mit 400 g 3°/ajgem Natriumamalgam (Steinhart, A. 241, 332). Man trennt 4-Methoxy-benzylamin und Bis-[4-methoxy-benzyl]-amin durch Destillation mit Wasserdampf (nur 4-Methoxy-benzylamin ist flüchtig) (St.) oder durch Behandeln der Hydrochloride mit kaltem Wasser, in welchem das des Bis-[4-methoxy-benzyl]-amins schwerer löslich ist als das des 4-Methoxy-benzylamins (C.; St.). Flüssig. Kp: 220—223° (St.), Kp_{7,14}: 234—235° (G., P.). Leicht löslich in Wasser, Alkohol und Ather, flüchtig mit Wasserdampf (St.). Zieht an der Luft CO₂ an (St.; G., P.). $C_8H_{11}ON + HCl$. Blättchen (St.), Prismen (G., P.). F: 230° (St.), 231° (G., P.). Sehr leicht löslich in Wasser (C.; St.) und Alkohol (St.). $C_8H_{11}ON + HCl + HgCl_2 + H_2O$. Blättchen. Schmilzt bei 200° unter Zersetzung; ziemlich schwer löslich in Wasser (G., P.). 2 $C_8H_{11}ON + 2 HCl + PtCl_4$. Hellgelbe Nadeln (St.), goldgelbe Blättchen (G., P.). F: 210° (St.).

[4-Oxy-bensyl]-anilin $C_{18}H_{18}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5$.

Praparat von Emmerich. B. Beim Behandeln von [4-Oxy-benzal]-anilin (Bd. XII, S. 218) mit Natriumamalgam und absol. Alkohol (E., A. 241, 355). — Nadeln (aus Alkohol). F: 208°. — 2C₁₃H₁₃ON+2HCl+PtCl₄. Rotgelbe Nadeln.

Praparat von Bamberger, Müller. B. In geringer Menge beim Behandeln von [4-Oxy-benzal]-anilin mit Natriumamalgam und absol. Alkohol (Ba., M., A. 313, 110). —

Konnte nicht krystallisiert erhalten werden.

Praparat von Bischoff, Fröhlich. B. Neben [2-Oxy-benzyl]-anilin (8. 580) beim Erhitzen von Methylendianilin (Bd. XII, S. 184) und Phenol auf 200° (Br., F., B. 39, 3966.) — Prismen (aus Benzol). F: 156°.

[4-Methoxy-bensyl]-anilin $C_{14}H_{15}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_5$. B. Beim allmählichen Eintragen von 170 g 3^0 gigem Natriumamalgam in eine Lösung von 5 g Anisalanilin (Bd. XII, S. 218) in 60 g absol. Alkohol (Steinhart, A. 241, 337). Bei der elektrochemischen Reduktion von Anisalanilin in verd. Alkohol in Gegenwart von Natriumacetat unter Anwendung von konz. Sodalösung als Anodenflüssigkeit bei 80° (Brand, B. 43, 3462). Man trägt Anhydroformaldehydanilin $C_6H_5 \cdot N \cdot CH_2 \cdot N(C_6H_5) \cdot CH_2$ (Syst. No. 3796) allmählich in ein Gemisch von Anisol und Schwefelsäure ein, oder man läßt eine durch Schütteln von Anilin und Anisol mit käuflicher Formaldehydlösung hergestellte Lösung des Anhydroformaldehydanilins in Anisol in gekühlte Schwefelsäure eintropfen (Fritsch, A. 315, 140). —

- Prismen (aus Methylalkohol oder Äthylalkohol). F: 64,5° (St.). Leicht löslich in Äther, Chloroform, Benzol und Ligroin (St.). Liefert bei der Oxydation mit Kaliumdichromat und verd. Schwefelsäure Anisaldehyd (F.). $C_{14}H_{15}ON + HCl$. Blättchen. F: 163° (St.). $2C_{14}H_{15}ON + 2HCl + PtCl_4$. Hellgelbe Nadeln (St.).
- [4-Äthoxy-benzyl]-anilin C₁₅H₁₇ON = C₂H₅·O·C₆H₄·CH₂·NH·C₆H₅. B. Man trägt Anhydroformaldehydanilin (Syst. No. 3796) allmählich in ein Gemisch von Phenetol und Schwefelsäure ein oder man läßt eine durch Schütteln von Anilin und Phenetol mit käuflicher Formaldehydlösung hergestellte Lösung des Anhydroformaldehydanilins in Phenetol in gekühlte Schwefelsäure eintropfen (Fritsch, A. 315, 140, 142). Blättchen (aus Methylalkohol). F: 65°. Liefert ein öliges Nitrosamin und eine ölige Acetylverbindung.
- [4-Oxy-benzyl]-methylanilin $C_{14}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_5$. B. Durch Verschmelzen des Kaliumsalzes der ω -Methylanilino-toluol-sulfonsäure-(4) $HO_3S \cdot C_6H_4 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_5$ (Syst. No. 1923) mit KOH (GNEHM, SCHÖNHOLZER, J. pr. [2] **76**, 503). Krystallinische Masse. F: 40—41°.
- [4-Oxy-benzyl]-äthylanilin $C_{15}H_{17}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_5$. B. Durch Verschmelzen des Kaliumsalzes der ω -Äthylanilino-toluol-sulfonsäure-(4) $HO_3S \cdot C_6H_4 \cdot CH_2 \cdot N(C_2H_5) \cdot C_6H_5$ (Syst. No. 1923) mit KOH (G., Sch., J. pr. [2] 76, 497). Krystalle (aus Ligroin). F: 62—63°.
- [4-Methoxy-benzyl]-o-toluidin C₁₅H₁₇ON = CH₃·O·C₆H₄·CH₂·NH·C₆H₄·CH₃. B. Aus Anisal-o-toluidin (Bd. XII, S. 790) mit Natriumamalgam und absol. Alkohol (STEINHART, A. 241, 340). Man trägt Anhydroformaldehyd-o-toluidin CH₃·C₆H₄·N

 CH₂·N(C₆H₄·CH₃) CH₂
 CH₂·N(C₆H₄·CH₃) CH₂
- (Syst. No. 3796) allmählich in ein Gemisch von Anisol und Schwefelsäure ein oder man läßt eine durch Schütteln von o-Toluidin und Anisol mit käuflicher Formaldehydlösung hergestellte Lösung des Anhydroformaldehyd-o-toluidins in Anisol in gekühlte Schwefelsäure eintropfen (Fritsch, A. 315, 140, 142). Dreieckige Blättchen (aus Alkohol). F: 55° (St.). Liefert ein öliges Nitrosamin (St.) und eine ölige Acetylverbindung (F.).
- [4-Äthoxy-benzyl]-o-toluidin $C_{16}H_{19}ON = C_2H_5 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Man trägt Anhydroformaldehyd-o-toluidin allmählich in ein Gemisch von Phenetol und Schwefelsäure ein oder man läßt eine durch Schütteln von o-Toluidin und Phenetol mit käuflicher Formaldehydlösung hergestellte Lösung des Anhydroformaldehyd-o-toluidins in Phenetol in gekühlte Schwefelsäure eintropfen (Fritsch, A. 315, 140, 142). Blättchen (aus Methylalkohol). F: 53°. Liefert ein öliges Nitrosamin und eine ölige Acetylverbindung.
- [4-Oxy-benzyl]-p-toluidin $C_{14}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus [4-Oxy-benzal]-p-toluidin (Bd. XII, S. 916) mit Natriumamalgam und absol. Alkohol (EMMERICH, A. 241, 356). Nadeln (aus Alkohol). F: 186° . $2C_{14}H_{15}ON + 2HCl + PtCl_4$. Rote Nadeln.
- [4-Methoxy-benzyl]-p-toluidin $C_{15}H_{17}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus Anisal-p-toluidin (Bd. XII, S. 916) mit Natriumamalgam und absol. Alkohol (Steinhart, A. 241, 339). Säulen (aus Alkohol). F: 68°. $C_{15}H_{17}ON + HCl$. Blättchen. F: 160°.
- [4-Oxy-benzyl]- β -naphthylamin $C_{17}H_{15}ON = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Aus [4-Oxy-benzal]- β -naphthylamin (Bd. XII, S. 1283) mit Natriumamalgam und absol. Alkohol (Emmerich, A. 241, 357). Nadeln (aus Alkohol). F: 117°.
- [4-Methoxy-benzyl]- β -naphthylamin $C_{16}H_{17}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_{10}H_7$. B. Beim Behandeln von Anisal- β -naphthylamin (Bd. XII, S. 1283) mit Natriumamalgam und absol. Alkohol (Steinhart, A. 241, 341). Blättchen (aus Alkohol). F: 101°. Leicht löslich in Ligroin, Benzol und Alkohol. Hydrochlorid. F: 195°.
- [4 (?) Oxy benzyl] o anisidin $C_{14}H_{15}O_2N = HO \cdot C_8H_4 \cdot CH_2 \cdot NH \cdot C_8H_4 \cdot O \cdot CH_3$. B. Aus Methylen-di-o-anisidin (S. 368) und Phenol bei 180—200° (BISCHOFF, FRÖHLICH, B. 39, 3972). Stäbchen (aus Benzol). F: 125°. Löslich in Äther, Aceton, Benzol, heißem Chloroform, schwer löslich in Ligroin. Färbt sich an der Luft rot.
- [4 (?)-Oxy-benzyl]-p-phenetidin $C_{15}H_{17}O_3N = HO \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$. B. Aus Methylen-di-p-phenetidin (S. 452) und Phenol in siedendem Benzol (Bischoff, Fröhlich, B. 39, 3976). Neben Oxalsäure-di-p-phenetidid (S. 473) aus Methylen-di-p-phenetidin und Oxalsäure-di-phenylester in siedendem Xylol (B., F.). Prismen (aus heißem Alkohol durch heißes Wasser). F: 106°. Löslich in Alkohol, Äther, Chloroform, Aceton, Eisessig, schwer löslich in Wasser und Ligroin.
- 4-[4-Methoxy-benzylamino]-phenol $C_{14}H_{15}O_2\dot{N}=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot C_6H_4\cdot OH$. B. Durch Reduktion von 4-Anisalamino-phenol (S. 458) mit Zinkstaub und Natronlauge in Gegenwart von Alkohol (Chem. Fabr. Schering, D.R.P. 211869; C. 1909 II, 392). Krystalle (aus Methylalkohol). F: 102—103°.

- Bis-[4-methoxy-benzyl]-amin, 4.4'-Dimethoxy-dibenzylamin, Dianisylamin $C_{18}H_{19}O_2N = (CH_3 \cdot O \cdot C_8H_4 \cdot CH_9)_2NH$. B. s. im Artikel 4-Methoxy-benzylamin (S. 606). Nadeln. F: 34°; unlöslich in Wasser, mischt sich mit Alkohol und Äther; nicht flüchtig mit Wasserdampf (STEINHART, A. 241, 333). $C_{18}H_{19}O_2N + HCl$. Prismen. F: 243°; fast unlöslich in kaltem Wasser, leicht löslich in Alkohol (St.). $2C_{18}H_{19}O_2N + 2HCl + PtCl_4$. Gelbe Nadeln (St.). Krystallisiert auch mit $2H_2O$ (Cannizzaro, A. 117, 243).
- 4-Methoxy-benzylaminoacetaldehyd $C_{10}H_{13}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot CH_2\cdot CHO$. B. Das Hydrochlorid entsteht bei $^3/_4$ -stdg. Erhitzen einer Lösung von 1 Tl. 4-Methoxy-benzylaminoacetaldehyd-diäthylacetal (s. u.) in 6 Tln. Salzsäure (D: 1,19) auf 50° (Heller, B. 27, 3098). Amorph. Schwer löslich in Wasser. $C_{10}H_{13}O_2N+HCl+^1/_2H_2O$. Krystalle. Leicht löslich in Wasser und Alkohol.
- 4-Methoxy-bensylaminoacetaldehyd-diäthylacetal $C_{14}H_{23}O_3N = CH_2 \cdot O \cdot C_8H_4 \cdot CH_2 \cdot NH \cdot CH_2 \cdot CH(O \cdot C_2H_5)_2$. B. Aus Anisalaminoacetal (Bd. VIII, S. 75) mit Natrium und Alkohol (H., B. 27, 3098). Öl. Kp_{12} : 187° (korr.). Bildet ein bei 174° schmelzendes Oxalat.
- N-[4-Methoxy-benzyl]-acetamid $C_{10}H_{13}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot NH\cdot CO\cdot CH_3$. B. Aus 4-Methoxy-benzylamin (S. 606) und Essigsäureanhydrid (Goldschmidt, Polonowska, B. 20, 2409). Nadeln (aus Alkohol). F: 96°.
- N-[4-Methoxy-benzyl]-acetanilid $C_{16}H_{17}O_2N=CH_2\cdot O\cdot C_6H_4\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Aus [4-Methoxy-benzyl]-anilin (S. 606) und Essigsäureanhydrid bei Wasserbadtemperatur (Fritsch, A. 315, 141). Krystalle (aus Äther + Ligroin). F: 54°.
- [4-Methoxy-benzyl]-harnstoff $C_9H_{12}O_2N_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_3 \cdot NH \cdot CO \cdot NH_2$. B. Aus salzsaurem 4-Methoxy-benzylamin und der äquimolekularen Menge Kaliumcyanat in Wasser auf dem Wasserbad (Goldschmidt, Polonowska, B. 20, 2409). Durch Reduktion von N-Carbaminyl-isoanisaldoxim $CH_3 \cdot O \cdot C_6H_4 \cdot HC_{\bigcirc \bigcirc} N \cdot CO \cdot NH_2$ bezw. $CH_3 \cdot O \cdot C_6H_4 \cdot CH$: N(:O)·CO·NH₂ (Syst. No. 4221) in Alkohol mit Aluminiumamalgam (Conducté, A. ch. [8] 13, 30). Nadeln. F: 167° (G., P.), 160° (C.).
- [4-Methoxy-benzyl]-thioharnstoff $C_9H_{12}ON_2S = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot CS \cdot NH_2$. B. Man dampft die wäßr. Lösung äquimolekularer Mengen von salzsaurem 4-Methoxy-benzylamin und Ammoniumrhodanid ein (Goldschmidt, Polonowska, B. 20, 2409). Nadeln (aus Alkohol). F: 95°. Leicht löslich in Wasser.
- N.N'-Bis-[4-methoxy-benzyl]-thioharnstoff $C_{17}H_{20}O_3N_2S=(CH_3\cdot O\cdot C_4H_4\cdot CH_2\cdot NH)_2CS$. B. Man mischt 4-Methoxy-benzylamin mit Schwefelkohlenstoff und kocht das Additionsprodukt mit Alkohol, solange Schwefelwasserstoff entweicht (G., P., B. 20, 2409). Nadeln (aus Alkohol). F: 149—150°.
- 4-Oxy-benzylisothiocyanat, 4-Oxy-benzylsenföl, Sinalbinsenföl $C_8H_7ONS = HO \cdot C_8H_4 \cdot CH_2 \cdot N \cdot CS$. Bei der Spaltung des Sinalbins (Syst. No. 4776) in wäßr. Lösung durch Myrosin; wird dem gebildeten Niederschlage durch Alkohol entzogen (WILL, LAUBENHEIMER, A. 199, 163). Gelbes Öl. Schmeckt sehr scharf; zieht auf der Haut Blasen, aber lange nicht so energisch wie Allylsenföl. Fast unlöslich in Wasser, sehr leicht löslich in Alkohol und Äther. Zersetzt sich beim Erhitzen.
- N.N-Dimethyl-N'-[4-methoxy-bensyl]-p-phenylendiamin $C_{16}H_{20}ON_3 = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot N(CH_3)_2$. B. Beim Behandeln von N.N-Dimethyl-N'-anisal-p-phenylendiamin (S. 93) mit Natriumamalgam und absol. Alkohol (STEINHART, A. 241, 343). Blättchen. F: 104° .
- N Nitroso N [4 oxy benzyl] anilin, [4 Oxy benzyl] phenyl nitrosamin $C_{13}H_{13}O_2N_2 = HO \cdot C_0H_4 \cdot CH_3 \cdot N(NO) \cdot C_0H_5$. B. Aus [4-Oxy-benzyl]-anilin (8. 606) in sohwefelsaurer Lösung mit Natriumnitrit (Bamberger, Müller, A. 313, 110). Weißgelbe Nädelchen (aus hochsiedendem Ligroin) oder strohgelbe Prismen (aus Alkohol). F: 120°. Sehr leicht löslich in Äthylalkohol und Methylalkohol, ziemlich leicht in Eisessig und Chloroform, sehr wenig in kaltem Ligroin. Wird langsam bei Zimmertemperatur, schneller beim Erwärmen durch Ätzlaugen unter Bildung von Benzolantidiazotat (Syst. No. 2193) verseift.
- N-Nitroso-N-[4-methoxy-bensyl]-anilin, [4-Methoxy-bensyl]-phenyl-nitrosamin 1 C₁₄H₁₄O₂N₂ = CH₃·O·C₆H₄·CH₂·N(NO)·C₆H₅. B. Aus [4-Methoxy-benzyl]-anilin (8. 606) in verd. Schwefelsäure mit Natriumnitrit unter Kühlen (Steinhabt, A. 241, 338). Prismen (aus Äther und Alkohol). F: 104° (Sr.), 100—100,5° (Fritsch, A. 315, 141).
- N-Nitroso-N-[4-methoxy-benzyl]-p-toluidin, [4-Methoxy-benzyl]-p-tolyl-nitrosamin $C_{15}H_{14}O_2N_3=CH_3\cdot O\cdot C_2H_4\cdot CH_2\cdot N(NO)\cdot C_2H_4\cdot CH_3$. B. Aus [4-Methoxy-benzyl]-p-toluidin (8. 607) in schwefelsaurer Lösung mit Natriumnitrit unter Kühlung (Sr., A. 241, 340). Prismen (aus Alkohol). F: 108°.

- N-Nitroso-N-[4-oxy-benzyl]- β -naphthylamin, [4-Oxy-benzyl]- β -naphthylnitrosamin $C_{17}H_{14}O_2N_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot N(NO) \cdot C_{10}H_7$. B. Aus schwefelsaurem [4-Oxybenzyl]- β -naphthylamin (S. 607) in Alkohol mit Natriumnitrit (Emmerich, A. 241, 358). Nadeln (aus Alkohol). F: 142°.
- N-Nitroso-N-[4-methoxy-benzyl]- β -naphthylamin, [4-Methoxy-benzyl]- β -naphthyl-nitrosamin $C_{18}H_{16}O_{2}N_{3}=CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH_{3}\cdot N(NO)\cdot C_{10}H_{7}$. B. Aus salz-saurem oder schwefelsaurem [4-Methoxy-benzyl]- β -naphthylamin (S. 607) in Alkohol mit Natriumnitrit (STEINHART, A. 241, 342). Blätter (aus Alkohol). F: 133°.
- Bis-[4-methoxy-benzyl]-nitrosamin, Dianisylnitrosamin $C_{16}H_{18}O_3N_2 = (CH_3 \cdot O \cdot C_6H_4 \cdot CH_2)_2N \cdot NO$. B. Aus salzsaurem Bis-[4-methoxy-benzyl]-amin (S. 608) und Natriumnitrit (St., A. 241, 335). Nadeln (aus Alkohol). F: 80°.
- Betainartiges Anhydrid des Trimethyl [2.3.5.6 tetrachlor 4 oxy benzyl] ammoniumhydroxyds $C_{10}H_{11}ONCl_4 = O\cdot C_6Cl_4\cdot CH_2\cdot N(CH_3)_3$. B. Aus 2.3.5.6-Tetrachlor-4-oxy-benzylbromid (Bd. VI, S. 406) in Ather mit der berechneten Menge Trimethylamin in $30^{\circ}/_{\circ}$ iger wäßr. Lösung (Zincke, Hunke, A. 349, 91). Weißes krystallinisches Pulver. F: 186° (Zers.). Schwer löslich in Ather, Alkohol, Wasser, löslich in heißem Eisessig. Sehr beständig gegen Alkali. Liefert beim Kochen mit alkoh. Kali Athyl-[2.3.5.6-tetrachlor-4-oxy-benzyl]-äther (Bd. VI, S. 898).
- [3.5 Dibrom 4 oxy benzyl] diisoamylamin $C_{17}H_{27}ONBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N(C_5H_{11})_2$. B. Aus Diisoamylamin und 3.5-Dibrom-4-oxy-benzylbromid (Bd. VI, S. 408) in Benzol (Auwers, Schröter, A. 844, 162). Nicht ganz rein erhalten. Beginnt bei 70° zu erweichen, ist bei 97° vollständig geschmolzen. Liefert beim Kochen mit Eisessig 3.5.3'.5'-Tetrabrom-4.4'-dioxy-diphenylmethan (Bd. VI, S. 996). Wird durch siedendes Essigsüreanhydrid zersetzt.
- [3.5-Dibrom-4-oxy-bensyl]-o-toluidin $C_{14}H_{13}ONBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus 3.5-Dibrom-4-oxy-benzylbromid und 2 Mol.-Gew. o-Toluidin in Äther bei 1—2-tägigem Stehen (Auwers, Dombrowski, B. 41, 1056). Krystallpulver (aus Ligroin). F: 117,5—119°. Leicht löslich in den meisten Lösungsmitteln.
- [3.5-Dibrom-4-acetoxy-benzyl]-p-toluidin $C_{16}H_{15}O_2NBr_2 = CH_3 \cdot CO \cdot O \cdot C_6H_2Br_2 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus 3.5-Dibrom-4-acetoxy-benzylbromid (Bd. VI, S. 409) und p-Toluidin in siedender benzolischer Lösung, neben (nicht näher beschriebenem) Bis-[3.5-dibrom-4-acetoxy-benzyl]-p-toluidin (Auwers, Dombrowski, B. 41, 1057). F: 109°. Liefert bei der Verseifung Bis-[3.5-dibrom-4-oxy-benzyl]-p-toluidin (s. u.).
- [3.5 Dibrom 4 oxy benzyl] benzylamin, 3.5 Dibrom 4 oxy dibenzylamin $C_{14}H_{13}ONBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5 \cdot B$. Das salzsaure Salz wird erhalten, wenn man 3.5-Dibrom-4-oxy-benzylbromid mit Benzylamin in Benzol behandelt und die erhaltene Base aus absol. Äther durch Chlorwasserstoff fällt (Auwers, Schröter, A. 344, 160). $C_{14}H_{13}ONBr_2 + HCl$. Gibt beim Kochen mit Eisessig und Natriumacetat 3.5.3'.5'-Tetrabrom-4.4'-dioxy-diphenylmethan (Bd. VI, S. 996).
- [3.5-Dibrom-4-oxy-bensyl]-pseudocumidin $C_{16}H_{17}ONBr_2 = HO \cdot C_6H_2Br_6 \cdot CH_2 \cdot NH \cdot C_6H_2(CH_3)_3$. B. Aus 3.5-Dibrom-4-oxy-benzylbromid und Pseudocumidin (Bd. XII, S. 1150) in Äther (Auwers, Dombrowski, B. 41, 1057). Nadeln (aus Ligroin). F: 123-125°. Leicht löslich in den meisten organischen Lösungsmitteln.
- Bis [3.5 dibrom 4 oxy bensyl] methylamin $C_{15}H_{13}O_2NBr_4 = (HO \cdot C_6H_2Br_2 \cdot CH_3)_2N \cdot CH_3$. B. Aus 3.5-Dibrom-4-oxy-benzylbromid in Benzol mit 33% jer wäßr. Methylaminlösung (AUWERS, SCHRÖTER, A. 344, 158). Krystallinisches Pulver (aus Xylol). F: 180%. Leicht löslich in Eisessig, schwer in Alkohol, Äther, Benzol. Liefert beim Kochen mit Eisessig [3.5-Dibrom-4-oxy-benzyl]-acetat (Bd. VI, S. 899), mit Essigsäureanhydrid [3.5-Dibrom-4-acetoxy-benzyl]-acetat (Bd. VI, S. 899).
- Bis-[3.5-dibrom-4-oxy-bensyl]-p-toluidin $C_{21}H_{17}O_2NBr_4 = (HO \cdot C_6H_2Br_2 \cdot CH_2)_2N \cdot C_6H_4 \cdot CH_3$. B. Aus 3.5-Dibrom-4-oxy-benzylbromid und p-Toluidin in Benzol in der Kälte (Auwers, Dombrowski, B. 41, 1057). Krystalle (aus verd. Alkohol). Schmilzt bei 134° bis 135° nach vorherigem Erweichen.
- N-[3.5-Dibrom-4-oxy-benzyl]-[acet-o-toluidid] $C_{16}H_{16}O_8NBr_2 = HO \cdot C_4H_2Br_2 \cdot CH_2 \cdot N(C_6H_4 \cdot CH_3) \cdot CO \cdot CH_3$. B. Aus [3.5-Dibrom-4-oxy-benzyl]-o-toluidin (s. o.) und Essigsäureanhydrid (Auwers, Domerowski, B. 41, 1056). Nadeln. Leicht löslich in Aceton, Chloroform, schwer in Alkohol, Eisessig, Benzol, sehr schwer in Ligroin und Petroläther.
- N [3.5 Dibrom 4 oxy benzyl] [acet asymm. m xylidid] $C_{17}H_{17}O_2NBr_2 = HO \cdot C_6H_2Br_2 \cdot CH_2 \cdot N[C_6H_3(CH_3)_2] \cdot CO \cdot CH_2$. B. Man läßt 3.5-Dibrom-4-oxy-benzylbromid BEILSTEIN's Handbuch. 4. Aufl. XIII.

auf asymm. m-Xylidin (Bd. XII, S. 1111) in Äther einwirken und setzt das Reaktionsprodukt mit kaltem Essigsäurcanhydrid um (Auwers, Dombrowski, B. 41, 1056). — Krystallpulver (aus Alkohol + Methylalkohol), Blättchen (aus Eisessig). F: 175°.

N-[3.5-Dibrom-4-oxy-benzyl]-[acet-p-xylidid] $C_{17}H_{17}O_2NBr_2 = HO \cdot C_6H_2Br_3 \cdot CH_2 \cdot N[C_6H_3(CH_3)_2] \cdot CO \cdot CH_3$. B. Man läßt 3.5-Dibrom-4-oxy-benzylbromid auf p-Xylidin (Bd. XII, S. 1135) einwirken und setzt das Reaktionsprodukt mit kaltem Essigsäureanhydrid um (A., D., B. 41, 1056). — Krystalle (aus Xylol). F: 240—241°. Sehr wenig löslich in den meisten Lösungsmitteln.

N-[3.5-Dibrom-4-oxy-benzyl]-acetpseudocumidid $C_{18}H_{19}O_2NBr_2 = HO \cdot C_8H_3Br_3 \cdot CH_2 \cdot N[C_6H_2(CH_3)_3] \cdot CO \cdot CH_3$. B. Aus [3.5-Dibrom-4-oxy-benzyl]-pseudocumidin durch Acetylierung (A., D., B. 41, 1057). — Krystalle (aus Benzol). F: 205°; schwer löslich in den meisten Lösungsmitteln.

[2.3.5.6-Tetrabrom-4-oxy-benzyl]-anilin C₁₃H₆ONBr₄ = HO·C₆Br₄·CH₂·NH·C₆H₅. B. Aus Anilin und 2.3.5.6-Tetrabrom-4-oxy-benzylchlorid (Bd. VI, S. 410) in heißem Benzol (AUWERS, DOMBROWSKI, B. 41, 1058). Aus 2.3.5.6-Tetrabrom-4-oxy-benzylbromid (Bd. VI, S. 410) in 25 Tln. Benzol mit 2 Mol.-Gew. Anilin in Benzollösung in der Kälte (ZINCKE, BÖTTOHER, A. 343, 111). Aus "Tetrabrom-p-methylenchinon" [2.3.5.6-Tetrabrom-chinon-methid-(1), Bd. VII, S. 271] und Anilin in Aceton beim Erhitzen (Z., B., A. 343, 126). — Krystalle (aus Benzol + Ligroin). F: 120—122° (Z., B.); 126—127° (Au., D.). Leicht löslich in Äther (Z., B.) und Chloroform, ziemlich schwer in Alkohol, schwer in Ligroin (Au., D.). Löslich in Soda und in Alkalien (Z., B.). — Liefert beim Kochen mit Alkohol Anilin und Bis-[2.3.5.6-tetrabrom-4-oxy-benzyl]-anilin (s. u.), dessen Bildung durch Zusatz von etwas Eisessig erheblich begünstigt wird (Au., D.).

Eisessig erheblich begünstigt wird (Au., D.). Verbindung $C_{13}H_9ONBr_4 = OC < \frac{CBr:CBr}{CBr:CBr} > CH \cdot CH_2 \cdot NH \cdot C_6H_5(?)$ s. Syst. No. 1873.

[2.3.5.6 - Tetrabrom - 4 - oxy - benzyl] - benzylamin, 2.3.5.6 - Tetrabrom - 4 - oxy - dibenzylamin $C_{14}H_{11}ONBr_4 = HO \cdot C_6Br_4 \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5$. B. Aus 2.3.5.6-Tetrabrom-4-oxy-benzylbromid (Bd. VI, S. 410) und Benzylamin in Benzol (Auwers, Schröter, A. 344, 166). — Krystalle (aus Toluol). Schmilzt bei 163° nach vorherigem Erweichen. Sehr wenig löslich in den meisten Lösungsmitteln. — Liefert beim Kochen mit Eisessig 2.3.5.6.2'.3'.5'.6'-Oktabrom-4-4'-dioxy-diphenylmethan (Bd. VI, S. 997) neben dem [2.3.5.6-Tetrabrom-4-oxy-benzyl]-acetat (Bd. VI, S. 900), mit Essigsäureanhydrid N-Benzyl-N-[2.3.5.6-tetrabrom-4-acetoxy-benzyl]-acetamid (s. u.).

Bis - [2.3.5.6 - tetrabrom - 4 - oxy - benzyl] - methylamin $C_{15}H_9O_2NBr_8 = (HO \cdot C_6Br_4 \cdot CH_2)_2N \cdot CH_3$. B. Aus 2.3.5.6 - Tetrabrom - 4 - oxy - benzylbromid in Benzol mit 33% jeiger wäßriger Methylaminlösung (A., Sch., A. 344, 164). — Nadeln. F: 215%. Schwer löslich in den gebräuchlichen Lösungsmitteln. — Liefert beim Kochen mit Eisessig [2.3.5.6 - Tetrabrom - 4 - oxy - benzyl] - acetat, mit Essigsäureanhydrid [2.3.5.6 - Tetrabrom - 4 - acetoxy - benzyl] - acetat (Bd. VI, S. 900).

Bis-[2.3.5.6-tetrabrom-4-oxy-benzyl]-anilin $C_{20}H_{11}O_{2}NBr_{8} = (HO \cdot C_{8}Br_{4} \cdot CH_{2})_{2}N \cdot C_{6}H_{5}$. B. Beim Kochen der alkoh. Lösung von [2.3.5.6-Tetrabrom-4-oxy-benzyl]-anilin (s. o.) unter Zusatz von etwas Eisessig (Auwers, Dombrowski, B. 41, 1058). — Pulver. Läßt sich aus Eisessig, Xylol oder Nitrobenzol umkrystallisieren. F: 212°. Schwer löslich in den meisten Lösungsmitteln.

N-Benzyl-N-[2.3.5.6-tetrabrom-4-oxy-benzyl]-acetamid $C_{16}H_{13}O_{2}NBr_{4}=HO\cdot C_{6}Br_{4}\cdot CH_{2}\cdot N(CH_{2}\cdot C_{6}H_{5})\cdot CO\cdot CH_{2}$. B. Aus N-Benzyl-N-[2.3.5.6-tetrabrom-4-acetoxy-benzyl]-acetamid (s. u.) beim Kochen mit alkoh. Kali (Auwers, Schröter, A. 344, 169).

N-Bensyl-N-[2.3.5.6-tetrabrom-4-acetoxy-bensyl]-acetamid $C_{18}H_{15}O_3NBr_4=CH_3\cdot CO\cdot O\cdot C_6Br_4\cdot CH_2\cdot C_6H_5\cdot CO\cdot CH_3$. B. Aus [2.3.5.6-Tetrabrom-4-oxy-benzyl]-benzylamin (s. o.) beim Kochen mit Essigsäureanhydrid (A., Sch., A. 344, 168). — Nadeln (aus Methylalkohol). F: 146—147°. Leicht löslich in Chloroform und Benzol, ziemlich leicht in Alkohol, ziemlich schwer in Äther. — Liefert beim Kochen mit alkoh. Kali N-Benzyl-N-[2.3.5.6-tetrabrom-4-oxy-benzyl]-acetamid (s. o.).

3-Nitro-4-oxy-benzylamin $C_7H_3O_3N_2=HO\cdot C_6H_3(NO_3)\cdot CH_2\cdot NH_2$. B. Aus N-[3-Nitro-4-oxy-benzyl]-benzamid (S. 611) mit konz. Salzsaure bei 150° (Einhorn, Bischkofff, Szelinski, A. 343, 240). — Orangerote Nadeln mit 1 Mol. H_2O (aus Wasser). Wird bei 115° unter Wasserverlust hellgelb und schmilzt dann bei 225°. — Hydrochlorid. F: 242° (Zers.).

N-[3-Nitro-4-oxy-bensyl]-chloracetamid (?) $C_9H_9O_4N_9Cl=HO\cdot C_6H_3(NO_2)\cdot CH_2\cdot NH\cdot CO\cdot CH_2Cl$ (?). B. Aus 16,9 g 2-Nitro-phenol, 100 g konz. Schwefelsäure und 15 g N-Methylol-chloracetamid (Bd. II, S. 200) unter Kühlung (Einhorn, Mauermayer, A. 348,

286). — Hellgelbe Nädelchen (aus Alkohol). F: 106—107°. Leicht löslich in heißem Alkohol, schwer in Äther. Löst sich in Alkalien rotgelb.

N-[3-Nitro-4-methoxy-benzyl]-acetamid $C_{10}H_{12}O_4N_2=CH_3\cdot O\cdot C_6H_3(NO_2)\cdot CH_4\cdot NH\cdot CO\cdot CH_3$. B. Beim Auflösen von N-[4-Methoxy-benzyl]-acetamid (S. 608) in stark abgekühlter rauchender Salpetersäure (Goldschmidt, Polonowska, B. 20, 2410). — Prismen (aus Alkohol). F: 137°. Sehr schwer löslich in heißem Wasser, Äther und Benzol. — Liefert bei der Oxydation mit Chromsäuregemisch 3-Nitro-anissäure (Bd. X, S. 181).

N-[3-Nitro-4-oxy-benzyl]-benzamid $C_{14}H_{12}O_4N_5 = HO \cdot C_6H_3(NO_2) \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 14 g 2-Nitro-phenol und 15 g N-Methylol-benzamid (Bd. IX, S. 207) in 70 g konz. Schwefelsäure unter Eiskühlung (Einhorn, Bischkopff, Szelinski, A. 343, 238). — Gelbe Nadeln (aus Alkohol). F: 137°. Fast unlöslich in kaltem Wasser. Löslich in Alkali mit orangeroter Farbe.

[5-Brom-8-nitro-4-oxy-benzyl]-diāthylamin $C_{11}H_{16}O_3N_2Br = HO \cdot C_8H_2Br(NO_2) \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 5-Brom-3-nitro-4-oxy-benzylbromid (Bd. VI, S. 414) und Diāthylamin in Benzol (Auwers, Schröter, A. 344, 268). — Orangegelbe Prismen oder Blättchen (aus Alkohol). F: 164—165°. Leicht löslich in Aceton, ziemlich leicht in Benzol und Alkohol, schwer in Chloroform und Ligroin. — Liefert mit siedendem Eisessig [5-Brom-3-nitro-4-oxy-benzyl]-acetat (Bd. VI, S. 901).

[5-Brom-3-nitro-4-oxy-benzyl]-diisoamylamin $C_{17}H_{27}O_3N_2Br = HO \cdot C_6H_2Br(NO_8) \cdot CH_8 \cdot N(C_6H_{11})_8$. B. Aus 5-Brom-3-nitro-4-oxy-benzylbromid und Diisoamylamin in Benzol (A., Sch., A. 344, 270). — Orangegelbe Blättchen (aus Alkohol). F: 129—129,5°. Leicht löslich in kaltem Benzol und Eisessig, ziemlich leicht in Chloroform, ziemlich schwer in Alkohol und Ligroin. — Beim Kochen mit Eisessig entsteht [5-Brom-3-nitro-4-oxy-benzyl]-acetat (Bd. VI, S. 901), mit Essigsäureanhydrid [5-Brom-3-nitro-4-acetoxy-benzyl]-acetat (Bd. VI, S. 901).

Bis - [5 - brom - 3 - nitro - 4 - oxy - benzyl] - methylamin $C_{15}H_{18}O_6N_3Br_2=[H0\cdot C_6H_2Br(NO_2)\cdot CH_2]_2N\cdot CH_3$. B. Aus 5-Brom-3-nitro-4-oxy-benzylbromid in Benzol mit wåßr. Methylaminlösung (A., Sch., A. 344, 267). — Orangerotes Pulver. F: 184—185°. Schwer löslich in den meisten organischen Lösungsmitteln.

Diaminoderivate des 4-Oxy-1-methyl-benzols.

2.3 - Diamino - 4 - methoxy - 1 - methyl - benzol, 2.3 - Diamino - p-kresol-methyläther ¹) C₈H₁₃ON₂, s. nebenstehende Formel. B. Durch Reduktion von 2.3 - Dinitro - 4 - methoxy - 1 - methyl - benzol (Bd. VI, S. 414) mit Zinn und Salzsäure (KAUFLER, WENZEL, B. 34, 2239). — Prismen (aus Ather + Benzol). F: 72—73°. Leicht löslich in Alkohol und Ather; schwer löslich in Wasser und Benzol. — Kondensiert sich mit Diacetyl zu 8 - Methoxy - 2.3.5 - trimethylchinoxalin (Syst. No. 3510), mit Phenanthrenchinon zu Methoxymethylphenanthrophenazin (Syst. No. 3519).

2.5-Diamino-4-methoxy-1-methyl-benzol, 2.5-Diamino-p-kresol-methyläther 1) C₈H₁₂ON₂, s. nebenstehende Formel. B. Aus 6-Nitro-3-amino-4-methoxy-1-methyl-benzol (S. 606) mit Zinn und Salzsäure (LIM-PACH, B. 22, 791). — Schmilzt unter Zersetzung bei 166°; die wäßr. Lösung H₂N· O·CH₃ O·CH₃ O·CH₃

5-Amino-2-p-toluidino-4-äthoxy-1-methyl-benzol, 2-Amino-5-p-toluidino-p-kresol-äthyläther, 5-Äthoxy-4-amino-2.4'-dimethyl-diphenylamin $C_{18}H_{20}ON_2=(CH_3\cdot C_8H_4\cdot NH)(H_2N)C_8H_2(CH_3)\cdot O\cdot C_2H_5$. B. Das Hydrochlorid entsteht beim Eintragen eines Gemenges von 10 g 6-Äthoxy-3.4'-dimethyl-azobenzol (Syst. No. 2113) und 80 g Alkohol in 160 g schwach erwärmte Zinnchlorürlösung (40 g SnCl₂+100 g 38% e Salzsäure) (Jacobson, Plepenberne, B. 27, 2707). — Schuppen (aus Ligroin + Benzol). F: 108—109°; leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin (Jac., P.). — Bei der Oxydation mit Kalium-dichromat und Schwefelsäure entsteht je nach der Menge des Oxydationsmittels 5-Äthoxy-2-methyl-chinon-[p-tolylimid]-(1) (Bd. XII, S. 917) (Jac., P.) oder 5-Äthoxy-2-methyl-chinon (Bd. VIII, S. 263) (Jac., Jankowski, A. 369, 20).

Bezifferung der vom Namen "p-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI S. 389.

- 5-Amino-2-[asymm.-m-xylidino]-4-äthoxy-1-methyl-bensol, 2-Amino-5-[asymm.-m-xylidino]-p-kresol-äthyläther, 5'-Äthoxy-4'-amino-2.4.2'-trimethyl-diphenylamin $C_{17}H_{12}ON_2=[(CH_3)_2C_6H_3\cdot NH](H_2N)C_6H_3(CH_3)\cdot O\cdot C_2H_5$. B. Aus 6'-Athoxy-2.4.3'-trimethylazobenzol (Syst. No. 2113) bei der Reduktion in Alkohol mit einer wäßr. Lösung von Zinnthylazobenzol (Lösung von Zinnthylazobenzol (Lösu chlorür in Salzsäure (Jacobson, Fabian, A. 369, 34). — Ist in Form seines Salicylalderivats und seines Acetylderivats (s. u.) isoliert. — Gibt bei der Oxydation mit Kaliumdichromat und Schwefelsäure unter Kühlung 5-Athoxy-2-methyl-chinon-[2.4-dimethyl-anil]-(1) (Bd. XII, S. 1117).
- 2-p-Toluidino-5-salicylalamino-4-äthoxy-l-methyl-benzol, 5-p-Toluidino-2-salicylalamino-p-kresol-äthyläther, 5-Åthoxy-4-salicylalamino-2.4'-dimethyl-diphenylamin $C_{23}H_{24}O_{2}N_{2}=(HO\cdot C_{6}H_{4}\cdot CH:N)C_{6}H_{4}(CH_{3})(NH\cdot C_{6}H_{4}\cdot CH_{3})\cdot O\cdot C_{2}H_{5}$. B. Aus 1 Mol.-Gew. 5-Åthoxy-4-amino-2.4'-dimethyl-diphenylamin (S. 611) und 2 Mol.-Gew. Salicylaldehyd in Alkohol (Jacobson, Piepenbrink, B. 27, 2708). — Täfelchen (aus Alkohol). F: 157°. Unlöslich in Ligroin.
- 2-[asymm.-m-Xylidino]-5-salicylalamino-4-äthoxy-1-methyl-benzol, 5-[asymm.m-Xylidinoj-2-salicylalamino-p-kresol-äthyläther, 5'-Äthoxy-4'-salicylalamino-2.4.2'-trimethyl-diphenylamin $C_{24}H_{26}O_2N_2 = (HO \cdot C_6H_4 \cdot CH : N)[(CH_3)_2C_6H_3 \cdot NH]C_6H_2$ (CH₃)·O·C₃H₅. B. Aus 5'-Athoxy-4'-amino-2.4.2'-trimethyl-diphenylamin (s. o.) und Salicylaldehyd in siedendem Alkohol (Jacobson, Fabian, A. 369, 35). — Orangefarbene National Company of the salicylaldehyd in Salicylalamino-2.4.2'-trimethyl-diphenylamin (s. o.) und Salicylaldehyd in Nadeln (aus Alkohol). F: 116°. Leicht löslich in Äther, heißem Alkohol, Benzol, heißem Ligroin, schwer in kaltem Ligroin, sehr wenig in kaltem Alkohol.
- 2-Amino-5-acetamino-4-methoxy-1-methyl-benzol, 5-Amino-2-acetamino-p-kresol-methyläther $C_{10}H_{14}O_2N_3=(CH_3\cdot CO\cdot NH)(H_2N)C_2H_2(CH_3)\cdot O\cdot CH_3$. B. Aus 6-Nitro-3-acetamino-4-methoxy-1-methyl-benzol (S. 606) durch Reduktion (Akt.-Ges. f. Anilinf, D. R. P. 126172, 126173; C. 1901 II, 1374). Läßt sich zur Herstellung von Azofarbstoffen verwenden
- (JACOBSON, PIEPENBRINK, B. 27, 2708). — Täfelchen (aus Ligroin). F: 125°. Leicht löslich in Benzol, schwer in Ligroin.
- 2-[asymm.-m-Xylidino]-5-acetamino-4-äthoxy-1-methyl-benzol, 5 - [asymm. m-Xylidino]-2-acetamino-p-kresol-äthyläther, 5-Äthoxy-4'-acetamino-2.4.2'-trimethyl-diphenylamin $C_{19}H_{24}O_2N_2=(CH_3\cdot CO\cdot NH)[(CH_3)_2C_6H_3\cdot NH]C_6H_4(CH_3)\cdot O\cdot C_2H_5$. B. Durch 4-stdg. Kochen von 1 Tl. 5'-Äthoxy-4'-amino-2.4.2'-trimethyl-diphenylamin (s. o.) mit 4 Tln. Eisessig (Jacobson, Fabian, A. 369, 35). – Nadeln (aus Ligroin). F: 114°. Leicht löslich in kaltem Alkohol und Benzol, schwer in kaltem Ligroin.
- 5-Acetamino-2-[acetyl-p-toluidino]-4-äthoxy-1-methyl-benzol, 2-Acetamino-5-[acetyl-p-toluidino]-p-kresol-äthyläther, 5-Äthoxy-4-acetamino-2.4'-dimethyl-N-acetyl-diphenylamin $C_{20}H_{24}O_3N_3=[CH_3\cdot CO\cdot N(C_6H_4\cdot CH_3)](CH_3\cdot CO\cdot NH)C_6H_2(CH_3)\cdot O\cdot C_2H_5$. B. Bei 1-stdg. Erwärmen von 1 Tl. 5-Äthoxy-4-amino-2.4'-dimethyl-diphenylamin mit 5 Tln. Acetylchlorid (Jacobson, Piepenberink, B. 27, 2709). Stäbchen (aus Eisessig). F: 165°. Löslich in Alkohol und Benzol, schwer löslich in Ligroin, unlöslich in Äther.

Thioharnstoff aus 5-Athoxy-4-amino-2.4'dimethyl - diphenylamin C₃₃H₃₈O₂N₄S, s. nebenstehende Formel. B. Durch 6-stdg. Kochen von 1 Tl. CS 5-Athoxy-4-amino-2.4'-dimethyl-diphenyl-amin mit 5 Tin. Alkohol und 5 Tin. Schwefelkohlenstoff (J., P., B. 27, 2708). — Tafeln (aus Benzol). F: 176,5°. Schwer löslich in Alkohol.

- S-[2-Amino-5-methylamino-4-methyl-phenyl] thioschwefel-CH, säure ("Methyl-p-toluylendiamin-thiosulfonsäure", "Aminomethyl-o-toluidin-thiosulfonsäure") C₈H₁₂O₈N₂S₂, s. neben-NH·CH₃ stehende Formel. B. Man gibt zu einer wäßr. Lösung des neutralen H.N. Sulfats des 5-Amino-2-methylamino-toluols (S. 144) Aluminium sulfat 8.80.Hund Natriumthiosulfat und fügt dann eine wäßrige, mit Essigsäure versetzte Lösung von Kaliumdichromat hinzu (GNEHM, SCHRÖTER, J. pr. [2] 78, 15). — Schwach grüne Kryställchen. F: 212-213°.
- S [2 Amino 5 dimethylamino 4 methyl phenyl] thioschwefelsäure ("Dimethyl-p-toluylendiamin-thiosulfonsăure", "Amino - dimethyl - o - toluidin - thiosulfonsăure") $C_0H_{14}O_3N_2S_2$, s. nebenstehende Formel. B. Man gibt zu einer Lösung des neutralen schwefelsauren 5-Amino-2-dimethylamino-toluols (S. 144)

$$\begin{array}{c} CH_{s} \\ \vdots \\ N(CH_{s})_{s} \end{array}$$

$$\dot{S} \cdot SO_{s}H$$

eine schwach essigsaure Lösung von Kaliumdichromat und fügt dann eine konzentrierte, mit Aluminiumsulfat versetzte Lösung von Natriumthiosulfat hinzu (Bernthsen, B. 25, 3135; vgl. dazu B., A. 251, 50). — Prismen (aus Wasser). Schmilzt gegen 240° unter Zersetzung. Fast unlöslich in kaltem Wasser. — Das Gemisch mit salzsaurem Dimethylanilin gibt bei der Oxydation mit Kaliumdichromat "Tetramethylhomoindamin-thiosulfonat" (s. u.).

- S-[2-Amino-5-äthylamino-4-methyl-phenyl]-thio-schwefelsäure ("Äthyl-p-toluylendiamin-thiosulfonsäure", "Amino-äthyl-o-toluidin-thiosulfonsäure" $C_9H_{14}O_3N_2S_2$, s. nebenstehende Formel. B. Man gibt zu einer Lösung von neutralem schwefelsaurem 5-Amino-2-äthylamino-toluol (S. 145) eine schwach essigsaure Lösung von Kaliumdichromat und dann eine konzentrierte, mit Aluminiumsulfat versetzte Lösung von Natriumthiosulfat (Weinberg, B. 25, 1614; vgl. dazu Bernthsen, A. 251, 50). Prismen. Fast unlöslich in Wasser (W.)
- S-[2-Amino-5-diäthylamino-4-methyl-phenyl]-thioschwefelsäure ("Diäthyl-p-toluylendiamin-thiosulfonsäure", "Aminodiäthyl-o-toluidin-thiosulfonsäure") $C_{11}H_{18}O_3N_2S_3$, s. nebenstehende Formel. B. Man gibt zu einer Lösung von neutralem schwefelsaurem 5-Amino-2-diäthylamino-toluol (S. 145) eine schwach essigsaure Lösung von Kaliumdichromat und dann eine konzentrierte, mit Aluminiumsulfat versetzte Lösung von Natriumthiosulfat (Bernthsen, B. 25, 3139; vgl. dazu B., A. 251, 50). Prismen. F: 210—215°.

"Tetramethylhomoindamin-thiosulfonsäure" $C_{17}H_{23}O_4N_3S_3$, s. Formel I. B. Entsteht als Endosalz $C_{17}H_{21}O_3N_3S_2$ (Formel II) beim Versetzen eines Gemisches aus S-[2-Amino-5-dimethylamino-4-methyl-phenyl]-thioschwefelsäure (S. 612) und Dimethylamilin mit

I.
$$(HO)(CH_3)_2N$$
 $HO_3S \cdot S \cdot \bigcirc \cdot N(CH_3)_2$ $(CH_3)_2N$ $O \longrightarrow SO_3$

Kaliumdichromat (Bernthsen, B. 25, 3136). — Endosalz, "Tetramethylhomoindaminthiosulfonat" $C_{17}H_{21}O_3N_3S_2$. Grüne messingglänzende Nadeln mit 1(?) H_2O ; wird bei 95° wasserfrei.

3.5 - Diamino-4-äthoxy-1-methyl-benzol, 2.6-Diamino-p-kresoläthyläther 1) C₉H₁₄ON₂, s. nebenstehende Formel. B. Durch Behandeln von 3.5-Dinitro-4-äthoxy-1-methyl-benzol (Bd. VI, S. 415) mit Zinn und Salzsäure (Staedel, A. 217, 221). — Flüssig. Destilliert unzersetzt (St.). — Gibt die Chrysoidinreaktion (Noelting, De Salis, B. 14, 986; 15, 1859). — C₂H₁₄ON₂ + HCl. Nadeln. Sehr leicht löslich in Wasser (St.).

$$\begin{array}{c} CH_{3} \\ \\ H_{2}N \cdot \bigodot \cdot NH_{2} \\ \\ O \cdot C_{2}H_{5} \end{array}$$

- 4-Oxy-3-amino-benzylamin $C_7H_{10}ON_2$, s. nebenstehende Formel. B. Aus 3-Nitro-4-oxy-benzylamin (S. 610) durch Reduktion mit Zinn und Salzsäure (EINHOBN, BISCHKOPFF, SZELINSKI, A. 343, 241). Durch Kochen von salzsaurem N-[4-Oxy-3-amino-benzyl]-benzamid (S. 614) mit konz. Salzsäure (EI., B., Sz.). $C_7H_{10}ON_2 + 2$ HCl. Hellgraue Kryställehen (aus Salzsäure). Sehr leicht löslich in Wasser, ziemlich leicht in Alkohol.
- 4-Methoxy-3-amino-benzylamin $C_8H_{19}ON_2=CH_3\cdot O\cdot C_8H_3(NH_2)\cdot CH_2\cdot NH_3$. B. Beim Behandeln von N-[3-Nitro-4-methoxy-benzyl]-acetamid (S. 611) mit Zinn und Salzsäure (Goldschmidt, Polonowska, B. 20, 2412). Flüssig. Kaum flüchtig mit Wasserdämpfen. Schwer löslich in Äther. Zieht aus der Luft CO_2 an. $2\ C_8H_{12}ON_2+4\ HCl+PtCl_4$. Orangegelbe Blättchen.
- N-[4-Methoxy-3-acetamino-benzyl]-acetamid $C_{12}H_{16}O_3N_2=CH_3\cdot O\cdot C_6H_3(NH\cdot CO\cdot CH_3)\cdot CH_2\cdot NH\cdot CO\cdot CH_3$. B. Aus 4-Methoxy-3-amino-benzylamin (s. o.) und Essigsäure-anhydrid (G., P., B. 20, 2412). Nadeln (aus Alkohol). F: 185°. Löslich in verd. Säuren und daraus durch Alkalien wieder fällbar.

¹⁾ Bezifferung der vom Namen "p-Krésol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 389.

- N-[4-Oxy-3-amino-bensyl]-bensamid $C_{14}H_{14}O_2N_3=HO\cdot C_6H_5(NH_2)\cdot CH_3\cdot NH\cdot CO\cdot C_6H_5$. B. Aus N-[3-Nitro-4-oxy-benzyl]-benzamid (S. 611) durch Reduktion mit Zinn und Salzsäure (Einhobn, Bischkofff, Szelinski, A. 343, 239). $C_{14}H_{14}O_2N_2+HCl$. Nadeln (aus Alkohol + Essigester). F: 215° (Zers.). Ziemlich leicht löslich in Wasser.
- 4. Aminoderivate, von denen es unbestimmt ist, ob sie vom o-, m- oder p-Kresol abzuleiten sind.
- 3.5 Dinitro 6 amino 2 oxy-1-methyl-benzol , 4.6 Dinitro 3 amino o-kresol 1) oder 3.5 Dinitro 2 amino 4-oxy-1-methyl-benzol , 2.6 Dinitro 3 amino p-kresol 3) $C_7H_7O_5N_3=H_5N\cdot C_6H(NO_2)_2(CH_3)\cdot OH$. B. Beim Eintragen von 3.5 Dinitro 2 azido 1-methyl-benzol (Bd. V, S, 350) in konz. Schwefelsäure (Drost, A. 313, 315). Gelbe Nadeln (aus Wasser).
- x.x-Dinitro-x-amino-x-oxy-methyl-benzol, eso-Dinitro-eso-amino-kresol $C_7H_7O_5N_3=H_2N\cdot C_6H(NO_2)_2(CH_3)\cdot OH$. B. Beim Eintragen des bei 97° schmelzenden 3.5(?)-Dinitro-4-azido-1-methyl-benzols (Bd. V, S. 351) in konz. Schwefelsäure (Drost, A. 313, 314). Rote Nadeln (aus Wasser). F: 172° (Zers.). Liefert mit Essigsäureanhydrid ein bei 171° schmelzendes Acetylderivat $C_9H_9O_6N_3$.
- 4.6-Bis-äthylamino-2-oxy-1-methyl-benzol, 3.5-Bis-äthylamino-o-kresol $^1)$ oder 2.6-Bis-äthylamino-4-oxy-1-methyl-benzol, 3.5-Bis-äthylamino-p-kresol 2) $C_{11}H_{18}ON_8=(C_2H_5\cdot NH)_2C_6H_2(CH_3)\cdot OH$. B. Aus 5 g 2-Methyl-phloroglucin (Bd. VI, S. 1109) und 14 g 33°/oiger wäßriger Athylaminlösung im geschlossenen Rohr unter Luftausschluß bei 130° (Friedl, M. 21, 493). Hellgelbe Krystallmasse, die sich an der Luft sogleich dunkelgrün färbt. $C_{11}H_{18}ON_3+2\,HCl.$ Nadeln. F: 226—228° (unter Zersetzung). Leicht löslich in Wasser unter Dissoziation. Leicht löslich in Alkohol.
- 5-Acetamino-4-[acetylmethylamino]-2-oxy-1-methyl-benzol oder 6-Acetamino-4-[acetylmethylamino]-3-oxy-1-methyl-benzol $C_{12}H_{16}O_3N_2=[CH_3\cdot CO\cdot N(CH_3)](CH_3\cdot CO\cdot NH)C_6H_8(CH_3)\cdot OH$. B. Man reduziert 2.5-Dinitro-4-methylamino-toluol (Bd. XII, S. 1008) mit Zinn und heißer Salzsäure, erhitzt das Reaktionsprodukt mit Salzsäure (D: 1,19) im geschlossenen Rohr auf 149—154° und acetyliert das so erhaltene Amino-methylamino-kresol mit Soda, Natriumacetat und Acetanhydrid (Pinnow, J. pr. [2] 62, 513). Nadeln (aus Methylalkohol + Essigester). F: 151—152°. Wird bei 120° wasserfrei. Ziemlich leicht löslich in heißem Alkohol, leicht in heißem Wasser. Leicht löslich in verd. Natronlauge.
- [2-Oxy-5-acetamino-benzyl]-dimethylamin oder [3-Oxy-6-acetamino-benzyl]-dimethylamin $C_{11}H_{16}O_2N_2 = (HO)C_0H_3(NH\cdot CO\cdot CH_3)\cdot CH_2\cdot N(CH_3)_2$. B. Durch 5-stdg. Kochen von 4-Acetamino-phenol mit Dimethylamin und Formaldehyd in Alkohol (BAYER & Co., D. R. P. 92309; Frdl. 4, 103). F: 110°.
- 2-Äthoxy-5-amino-benzylamin oder 3-Äthoxy-6-amino-benzylamin $C_0H_{14}ON_3=C_2H_5\cdot O\cdot C_0H_3(NH_2)\cdot CH_2\cdot NH_2$. B. Aus Chloressigsäure-[äthoxy-acetamino-benzylamid] (s. u.) beim Kochen mit Salzsäure (Einhoen, Mauermayer, A. 343, 301). Öl. Kp: ca. 300° (Zers.). Absorbiert CO_2 . $C_0H_{14}ON_3+2$ HCl. Nadeln (aus Methylalkohol + Aceton). F: 276° (Zers.). Sehr leicht löslich in Wasser.

Chloressigsäure - [2 - äthoxy - 5 - acetamino - benzylamid] oder Chloressigsäure-[3-äthoxy-6-acetamino-benzylamid] $C_{13}H_{17}O_3N_3Cl = C_2H_5\cdot O\cdot C_6H_3(NH\cdot CO\cdot CH_3)\cdot CH_2\cdot NH\cdot CO\cdot CH_3Cl.$ B. Aus 14,6 g Acet-p-phenetidid (S. 461) und 10 g N-Methylol-chloracetamid (Bd. II, S. 200) in 50 g konz. Schwefelsäure (El., M., A. 343, 301). — Nadeln (aus verd. Alkohol). F: 179°. Leicht löslich in Alkohol, sehr wenig in Äther und Benzol.

Chloressigsäure-[2-äthoxy-5-lactylamino-benzylamid] oder Chloressigsäure-[3-äthoxy-6-lactylamino-benzylamid] $C_{14}H_{19}O_4N_2Cl = C_3H_5\cdot O\cdot C_6H_3[NH\cdot CO\cdot CH(OH)\cdot CH_2]\cdot CH_2\cdot NH\cdot CO\cdot CH_2Cl.$ B. Aus 33,8 g Milchsäure-p-phenetidid (S. 491) und 20 g N-Methylol-chloracetamid in 150 g konz. Schwefelsäure (El., M., A. 343, 303). — Nadeln (aus Alkohol). F: 116°. Leicht löslich in Alkohol und Chloroform, unlöslich in Äther und Benzol. — Liefert beim Kochen mit verd. Salzsäure 2 oder 3-Äthoxy-5 oder 6-amino-benzylamin (s. o.).

¹⁾ Bezifferung der vom Namen "o-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 349.

²) Bezifferung der vom Namen "p-Kresol" abgeleiteten Namen in diesem Handbuch s. Bd. VI S. 389.

Diäthylaminoessigsäure - [2 - äthoxy - 5 - acetamino - benzylamid], [N.N-Diäthylglycin] - [2-äthoxy - 5 - acetamino-benzylamid] oder Diäthylaminoessigsäure - [3 - äthoxy - 6 - acetamino - benzylamid], [N.N-Diäthyl-glycin] - [3 - äthoxy - 6 - acetamino - benzylamid] $C_{17}H_{27}O_3N_3 = C_2H_5 \cdot O \cdot C_6H_3 \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot CO \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 10 g Chloressigsäure - [äthoxy - acetamino - benzylamid] (S. 614) und 8,3 g Diäthylamin in absol. Alkohol (EI., M., A. 343, 302). — Blättchen (aus Essigester). F: 122°. — Hydrochlorid. Hygroskopische Blättchen.

Diäthylaminoessigsäure-[2-äthoxy-5-lactylamino-benzylamid], [N.N-Diäthylglycin] - [2-äthoxy-5-lactylamino-benzylamid] oder Diäthylaminoessigsäure-[3-äthoxy-6-lactylamino-benzylamid], [N.N-Diäthyl-glycin] - [3-äthoxy-6-lactylamino-benzylamid], [N.N-Diäthyl-glycin] - [3-äthoxy-6-lactylamino-benzylamid] $C_{18}H_{29}O_4N_3 = C_2H_5 \cdot 0 \cdot C_6H_3[NH \cdot CO \cdot CH(OH) \cdot CH_3] \cdot CH_2 \cdot NH \cdot CO \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 10 g Chloressigsäure-[äthoxy-lactylamino-benzylamid] (S. 614) und 4,7 g Diäthylamin in 25 g Alkohol (E1., M., A. 343, 303). — Schuppen (aus Essigester). F: 131—132°. Leicht löslich in Alkohol, Chloroform und Benzol, schwer in Äther.

5. Aminoderivate des 1'-Oxy-1-methyl-benzols (Benzylalkohols) $C_7H_8O = C_6H_5 \cdot CH_2 \cdot OH$ (Bd. VI, S. 428).

2-Amino-benzylalkohol und seine Derivate.

2-Amino-benzylalkohol, o-Amino-benzylalkohol $C_7H_9ON = H_2N \cdot C_6H_4 \cdot CH_2 \cdot OH$. B. Beim Behandeln von 2-Nitro-benzylalkohol (Bd. VI, S. 447) in alkoh. Lösung mit Zink und Salzsäure unter Kühlung (Friedländer, Henriques, B. 15, 2109). Neben anderen Produkten in geringer Menge bei der Reduktion von 2-Nitro-benzylalkohol mit Zinkstaub und Natronlauge in Alkohol auf dem Wasserbade (FREUNDLER, C. r. 136, 371; 138, 1425; Bl. [3] 31, 880), sowie beim Erhitzen von 2-Nitro-benzylalkohol mit alkoh. Natronlauge oder mit Natriumäthylat (CARRÉ, C. r. 140, 664; Bl. [3] 33, 1165; A. ch. [8] 6, 413). Entsteht in kleiner Menge beim Behandeln von 2-Nitro-benzaldehyd (Bd. VII, S. 243) mit Zink und Salzsäure (FRIE., H., B. 15, 2109). Durch Reduktion von Anthranilsäure (Syst. No. 1889) mit Natriumamalgam in salzsaurer Lösung (Langguth, В. 38, 2064). Durch elektrolytische Reduktion von Anthranilsäure (Syst. No. 1889) in gekühlter 15% jeer Schwefelsäure (METTLER, B. 38, 1751). — Darst. Man versetzt eine Lösung von 60 g 2-Nitro-benzylalkohol in 240 ccm Alkohol mit 320 ccm Salzsäure (D: 1,19), trägt unter Kühlung 120 g Zinkstreifen (je 30 g Nachel nach einer halben Stunde) ein und läßt 4 Stdn. stehen (Gabriel, Posner, B. 27, 3512). — Nachel (aus Benzol). F: 81—82° (Freu.), 82° (Frie., H.), 84° (M.). Siedet unter Atmosphärendruck zum größten Teil unzersetzt bei 270—280°, unter vermindertem Druck (5—10 mm) unzersetzt bei 160° (Paal, Laudenheimer, B. 25, 2968). Verflüchtigt sich nur schwer mit Wasserdampf (Frie., H.). Ziemlich leicht löslich in Wasser und Ather, leicht in Alkohol, Benzol, Chloroform und Eisessig (FRIE., H.). — Bei der Reduktion mit Natrium und Alkohol entsteht ausschließlich o-Toluidin (PAAL, SENNINGER, B. 27, 1084). Läßt sich durch Diazotierung in verd. Schwefelsäure mit Natriumnitrit und nachfolgendes Erwärmen der Diazoniumsalzlösung auf dem Wasserbade in Saligenin (Bd. VI, S. 891) überführen (PAAL, SENN.). Liefert, in absol. Alkohol und konz. Schwefelsäure gelöst, mit Amylnitrit 1¹-Oxy-toluol-diazoniumsulfat-(2) (Syst. No. 2199) (Paal., Senn.). Kondensiert sich in Gegenwart von Schwefelsäure mit Resorcin zu 2′-Amino-2.4-dioxy-diphenylmethan (Syst. No. 1869), mit Phloroglucin zu 2′-Amino-2.4.6-trioxy-diphenylmethan (Syst. No. 1870) (FRIEDLÄNDER, M. 23, 984). Liefert beim Erhitzen mit β-Naphthol oder β-Naphthylamin auf 200—210° 1.2-Benzo-soridin (s. nebenstehende Formel) (Syst. No. 3091) (Ullmann, Baezner, B. 35, 2670). Reagiert mit Acetaldehyd unter Bildung von 2-Athylidenamino-benzylalkohol (S. 617); analog verläuft die Reaktion mit anderen Aldehyden (PAAL, LAU.). Beim Kochen mit Schwefelkohlenstoff (Bd. III, S. 197) und Alkohol entsteht 2-Thion-4.5-benzo-1.3-oxazindihydrid (Thiocumazon) C₆H₄ CH₂· 0 $NH \cdot CS$ (Syst. No. 4278) (Paal, Lau.; Paal, Commerell, B. 27, 1866). Beim Kochen mit Schwefelkohlenstoff und alkoh. Kali entsteht das Kalium- $\mathbf{NH} \cdot \mathbf{CS}$ (Syst. No. 4278) (PAAL, COMM., B. 27, 2430). salz des Thiocumothiazons CaH Beim Erhitzen mit Epichlorhydrin (Syst. No. 2362) entsteht 2-[γ -Chlor- β -oxy-propylamino]-benzylalkohol(?) (S. 617) (Paal, Senn.). — $C_7H_9ON + HCl$. Tafeln (aus Äther-Alkohol). F: 108°; leicht löslich in Wasser und Alkohol (Paal, Lau.). — $2C_7H_9ON + H_2SO_4$. Krystall-pulver. F: 114°; schwer löslich in Alkohol, leicht in Wasser (Paal, Lau.). — Oxalat $C_7H_9ON + C_2H_2O_4$. Nadeln. F: 130°; leicht löslich in Wasser und heißem Alkohol, schwer in Äther (Paal, Senn.). — Pikrat $C_7H_9ON + C_6H_3O_7N_2$. Gelbe Nadeln. F: 110° (Paal,

SENN.). $-2C_7H_9ON + 2HCl + PtCl_4$. Nadeln; ziemlich leicht löslich in Wasser, Alkohol (AUWERS, B. 37, 2260).

Polymeres o-Benzylenimid $(C_7H_7N)_x = \begin{bmatrix} C_6H_4 & CH_2 \\ NH & N \end{bmatrix}_x$ (?). B. Bei der Behandlung von 2-Nitro-benzylchlorid (Bd. V, S. 327) mit der theoretischen Menge (3 Mol.-Gew.) (vgl. E. Thiele, Weil, B. 28, 1650; J. Thiele, Dimboth, A. 305, 106, 116) Zinnchlorür in Salzsäure (Lellmann, Stickel, B. 19, 1611). Beim Erhitzen von salzsaurem N-[2-Amino-benzul] puridiniumahlorid (Sept. N. 2014). benzyl]-pyridiniumchlorid (Syst. No. 3051) auf 210-2200 (Lellmann, Pekrun, A. 259, 58). — Graugelbes oder rotbraunes Pulver. Schmilzt noch nicht bei 2900 (L., P.). Löslich in Chloroform, Eisessig (L., St.). Die Lösung in Salzsäure ist dunkelrot und fluoresciert (L., Sr.). — (2C₇H₇N+2HCl+PtCl₄)_x. Amorphes rotbraunes Pulver (L., Sr.).

Methyl-[2-amino-benzyl]-äther $C_8H_{11}ON = H_2N \cdot C_8H_4 \cdot CH_2 \cdot O \cdot CH_3$. B. Man gibt eine methylalkoholische Lösung von 2-Nitro-benzylchlorid (Bd. V, S. 327) allmählich unter Kühlung (die Reaktionstemperatur darf 40—50° nicht übersteigen) zu einer Lösung von Zinnchlorür in methylalkoholischer Salzsäure (J. Thiele, Dimroth, A. 305, 110). Aus Methyl-[2-nitro-benzyl]-äther (Bd. VI, S. 448) durch Reduktion mit Ferrosulfat und Natronlauge (J. Th., D., A. 305, 109). Bei der Reduktion von Methyl-[2-nitro-benzyl]-äther mit Zinkstaub und alkoh. Natronlauge, neben anderen Produkten (FREUNDLER, C. r. 137, 522; Bl. [3] 31, 41). — Farbloses, an der Luft rasch braun werdendes Ol (J. Tn., D.). Verharzt zum größten Teil bei der Destillation unter Atmosphärendruck (J. Th., D.); Kp₃₀: 123—124°; Dⁿ: 1,0499 (J. Th., D.). Wird durch Säuren leicht verharzt (J. Th., D.). Alkoholische Oxalsäure fällt aus der alkoh. Lösung ein Oxalat vom Schmelzpunkt 124° (J. Th., D.).

Äthyl-[2-amino-benzyl]-äther $C_0H_{13}ON=H_2N\cdot C_0H_4\cdot CH_2\cdot O\cdot C_2H_5$. B. Äthyl-[2-nitro-benzyl]-äther (Bd. VI, S. 448) wird in Natronlauge suspendiert und mit überschüssiger warmer Ferrosulfatlösung vermischt (THIELE, DIMEOTH, A. 305, 111). Entsteht auch, wenn eine alkoh. Lösung von 2-Nitro-benzylchlorid (Bd. V, S. 327) unter Kühlung zu einer Lösung von Zinnchlorür in alkoh. Salzsäure allmählich zufließt, so daß die Temperatur nicht über 40—50° steigt (TH., D., A. 305, 112). — Gelbliches Öl. Verharzt beim Destillieren unter gewöhnlichem Druck wie auch beim Kochen mit Säuren. Kp₂₅: 123—129°. — C₂H₁₃ON + HCl. Krystalle. F: 82—83°. — Oxalat 2C₂H₁₃ON + C₂H₂O₄. Nadeln (aus Alkohol). F: 136°. Schwer löslich in Alkohol und Wasser.

Phenyl-[2-amino-benzyl]-äther $C_{13}H_{13}ON = H_2N \cdot C_0H_4 \cdot CH_2 \cdot O \cdot C_0H_5$. B. Man läßt Phenyl-[2-nitro-benzyl]-ather (Bd. VI, S. 449), fein zerrieben, mit auf 0° abgekühlter Zinn-chlorür-Eisessiglösung 2 Tage bei 0° stehen (There, Dimboth, A. 305, 114). — Kleinkörnige Krystalle (aus Alkohol). F: 81—82°. Leicht löslich in heißem, schwer in kaltem Alkohol.

[2-Amino-benzyl]-acetat $C_9H_{11}O_9N=H_9N\cdot C_6H_4\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Durch Reduktion von [2-Nitro-benzyl]-acetat (Bd. VI, S. 449) bei niederer Temperatur; längere Berührung des Reduktionsproduktes mit Säuren oder Alkalien ist zu vermeiden (Auwers, B. 87, 2251). Bei 4-stdg. Stehen von [2-Acetamino-benzyl]-acetat (S. 618) mit verd. Salzsäure in der Kälte (SÖDERBAUM, WIDMAN, B. 22, 1667). Das Hydrobromid entsteht bei 1/2-stdg. Erhitzen der wäßr.

Lösung des bromwasserstoffsauren 2-Methyl-4.5-benzo-1.3-oxazins C₆H₄ N C·CH₃ (Syst.

No. 4195) (Gabriel, Posner, B. 27, 3517). — Farbloses, anilinartig riechendes Öl. Schwer löslich in Wasser, leicht in verd. Säuren (AU.). Geht beim Aufbewahren innerhalb einiger Tage in 2-Acetamino-benzylalkohol über (Au.). Durch Erwärmen wird dieser Übergang beschleunigt (Au.). Die Salze sind in trocknem Zustande beständig; in Lösung werden sie bei Gegenwart überschüssiger Säure leicht verseift (Au.). — C₂H₃₁O₂N + HCl. Nadeln (S., W.). F: 116° (Au.). — C₂H₃₁O₂N + HBr. Blättchen (aus Ather-Alkohol) (G., P.). Prismen (Au.). — Pikrat C₂H₁₁O₂N + C₄H₂O₇N₃. Gelbrote Krystalle (aus verd. Alkohol). Krystallographisches: Deecke, B. 37, 2252 Anm. F: 105° (Au.). — 2 C₂H₃₁O₂N + 2 HCl + PtCl₄. Tafeln oder Nadeln (S., W.). Eigelbe, radial angeordnete Krystalle; schrumpft beim Erhitzen zusammen, ohne zu schmelzen (Au.).

[2-Amino-bensyl]-bensoat $C_{14}H_{13}O_{2}N=H_{2}N\cdot C_{4}H_{4}\cdot CH_{3}\cdot O\cdot CO\cdot C_{6}H_{4}$. B. Durch Reduktion von Benzoesäure-[2-nitro-benzyl]-ester (Bd. IX, S. 121) mit Zinkstaub und Salzsäure (Paal, Bodewig, B. 25, 2964; vgl. dazu Auwers, B. 37, 2250). — Krystallinisch erstarrendes Ol. Schwer löslich in Ligroin. — $C_{14}H_{13}O_{2}N+HCl$. Prismen (aus Äther-Alkohol), Nadeln (aus heißer verdünnter Salzsäure). F: 143° (P., B.; Au.). Unlöslich in Äther, leicht löslich in Alkohol (P., B.).

[2-Amino-phenyl]-[2-amino-bensyl]-äther $C_{12}H_{14}ON_2=H_2N\cdot C_4H_4\cdot CH_2\cdot O\cdot C_4H_4\cdot NH_1$. B. Man laßt [2-Nitro-phenyl]-[2-nitro-bensyl]-äther (Bd. VI, S. 449) mit auf 0⁵ abgekühlter Zinnehlorür-Eisessiglösung zwei Tage bei 0⁵ stehen (THIELE, DIMBOTH, A. 305,

- 115). Säulenförmige Krystalle (aus Alkohol). F: 118°. Unlöslich in Wasser, schwer löslich in Äther und kaltem Alkohol, leicht in Benzol und heißem Alkohol.
- 2-Isopropylamino-benzylalkohol $C_{10}H_{15}ON = (CH_3)_2CH \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot OH$. B. Bei allmählichem Eintragen von $2^4/_3$ Tln. Natrium in eine siedende alkoholische Lösung von 1 Tl. 2-Isopropylidenamino-benzylalkohol (s. u.) (Paal, Laudenheimer, B. 25, 2976). Öl. Siedet nicht unzersetzt bei 250—260°. Kp₄₅: ca. 170°. Zerfällt beim Kochen in 2.2-Dimethylindolin $C_6H_4 < \frac{CH_2}{NH} > C(CH_3)_2$ (Syst. No. 3063) und Wasser.
- 2-[y-Chlor- β -oxy-propylamino]-benzylalkohol (?) $C_{10}H_{14}O_{2}NCl = CH_{2}Cl\cdot CH(OH)\cdot CH_{2}\cdot NH\cdot C_{4}H_{4}\cdot CH_{2}\cdot OH(?)^{-1}$). B. Bei kurzem Kochen von 1 Tl. 2-Amino-benzylalkohol mit 2,5 Tln. Epichlorhydrin (Syst. No. 2362) (Paal, Senninger, B. 27, 1087). Nadeln (aus Benzol + Ligroin). F: 95°. Ziemlich schwer löslich in Wasser, leicht in den üblichen organischen Lösungsmitteln.
- 2-Äthylidenamino-benzylalkohol $C_9H_{11}ON=CH_3\cdot CH:N\cdot C_6H_4\cdot CH_9\cdot OH.$ B. Man löst 2-Amino-benzylalkohol in Acetaldehyd bei 0^0 (Paal, Laudenheimer, B. 25, 2969). Ol. Kp₅: 135—137°. Beständig gegen Alkalien. Wird von Säuren leicht in die Komponenten zerlegt.
- **2-**[β , β , β -Trichlor-äthylidenamino]-benzylalkohol $C_9H_8ONCl_3 = CCl_3 \cdot CH : N \cdot C_8H_4 \cdot CH_3 \cdot OH$. Bei kurzem Erhitzen äquimolekularer Mengen 2-Amino-benzylalkohol und Chloral (P., L., B. **25**, 2970). Blättchen (aus verd. Alkohol). F: 92°. Leicht löslich in Alkohol und Äther.
- **2-Isopropylidenamino-benzylalkohol** $C_{10}H_{13}ON = (CH_3)_2C:N\cdot C_6H_4\cdot CH_2\cdot OH.$ B. Aus 2-Amino-benzylalkohol und Aceton (P., L., B. 25, 2973). Tafeln oder flache Nadeln (aus verd. Alkohol). F: 120°. Schwer löslich in heißem Wasser und Ligroin, leichter in Alkohol, Äther, Aceton, Benzol und Essigester. Wird von Alkalien nicht verändert. Wird von Säuren in die Komponenten gespalten.
- 2-Bensalamino-bensylalkohol $C_{14}H_{13}ON = C_6H_5 \cdot CH : N \cdot C_6H_4 \cdot CH_2 \cdot OH$. B. Beim Erhitzen äquimolekularer Mengen von 2-Amino-benzylalkohol und Benzaldehyd auf dem Wasserbade (P., L., B. 25, 2970). Blättchen (aus verd. Alkohol). F: 115°. Sehr schwer löslich in Ligroin.
- 2-[3-Nitro-bensalamino]-bensylalkohol $C_{14}H_{12}O_3N_2=O_3N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot CH_2\cdot OH.$ B. Beim Erhitzen äquimolekularer Mengen von 3-Nitro-benzaldehyd und 2-Aminobenzylalkohol auf dem Wasserbade (P., L., B. 25, 2971). Gelbe Nadeln (aus verd. Alkohol). F: 93°. Leicht löslich in Alkohol, Äther, Eisessig und Benzol, schwer in Ligroin.
- **2-Cuminalamino-benzylalkohol** $C_{17}H_{19}ON = (CH_3)_2CH \cdot C_6H_4 \cdot CH : N \cdot C_6H_4 \cdot CH_2 \cdot OH$. B. Man erwärmt äquimolekulare Mengen von 2-Amino-benzylalkohol und Cuminol kurze Zeit auf 100° (P., L., B. 25, 2972). Blätter (aus verd. Alkohol). F: 103°. Leicht löslich in Alkohol, Äther, Benzol und Essigester.
- **2-Salicylalamino-benzylalkohol** $C_{14}H_{18}O_{2}N=HO\cdot C_{6}H_{4}\cdot CH:N\cdot C_{6}H_{4}\cdot CH_{2}\cdot OH.$ Beim Erhitzen von 2-Amino-benzylalkohol und Salicylaldehyd auf dem Wasserbade (P., L., B. 25, 2971). Nadeln. F: 117°. Schwer löslich in Ligroin, sonst leicht löslich.
- 2-[4-Oxy-benzalamino]-benzylalkohol $C_{14}H_{13}O_2N=H0\cdot C_6H_4\cdot CH:N\cdot C_8H_4\cdot CH_2\cdot OH.$ B. Beim Erhitzen von 2-Amino-benzylalkohol und 4-Oxy-benzaldehyd auf 100° (P., L., B. 25, 2971). Nadeln (aus Benzol + Ligroin). F: 137° . Leicht löslich in der Wärme in den gebräuchlichen organischen Lösungsmitteln.
- 2-Vanillalamino-bensylalkohol $C_{15}H_{15}O_3N=CH_3\cdot O\cdot C_6H_3(OH)\cdot CH:N\cdot C_6H_4\cdot CH_2\cdot OH.$ B. Beim Erwärmen eines Gemisches aus äquimolekularen Mengen von 2-Amino-benzylalkohol und Vanillin in konzentrierter alkoholischer Lösung im geschlossenen Rohr auf $50-60^\circ$ (P., L., B. 25, 2972). Nadeln (aus Alkohol). F: 119°. Leicht löslich in Alkohol, Äther, Eisessig und Benzol, kaum löslich in Ligroin.
- 2-Acetamino-benzylalkohol C₉H₁₁O₂N = CH₃·CO·NH·C₈H₄·CH₂·OH. B. Aus 2-Amino-benzylalkohol mit Essigsäureanhydrid in der Kälte (Söderbaum, Widman, B. 22, 1667). Aus [2-Amino-benzyl]-acetat (S. 616) durch spontane Umlagerung (Auwebs, B. 37, 2252, 2261). Nadeln (aus Benzol). F: 114° (S., W.), 115—116° (Au.). Ziemlich löslich in Wasser, leicht in verd. Säuren (Au.). Aus den sauren Lösungen wird bei sofortigem Zusatz von Alkali die Verbindung wiedergewonnen; dagegen wird nach kurzer Einw. der Säure durch

Alkalien ein Gemenge von 2-Methyl-4.5-benzo-1.3-oxazin C_eH_4 $CH_3 \cdot O$ (Syst. No. 4195) und [2-Amino-benzyl]-acetat $H_2N \cdot C_eH_4 \cdot CH_3 \cdot O \cdot CO \cdot CH_3$ gefällt (Au.). Leitet man in die

¹⁾ Zur Formulierung vgl. Bd. XII, S. 908 Anm. 1.

absolut-ätherische Lösung des 2-Acetamino-benzylalkohols unter Kühlung Halogenwasserstoff, so scheiden sich Verbindungen CaH1.OaNHIg ab, denen vielleicht die Konstitution

NH—C(OH)·CH₃ zukommt (AU.). CH2-0

Verbindung CoH₁₂O₂NCl. B. Beim Einleiten von trocknem Chlorwasserstoff in die gekühlte absolut-atherische Lösung von 2-Acetamino-benzylakohol (Auwers, B. 37, 2254, 2262). — Weiße Nadeln. F: 120—125°. Leicht löslich in Wasser unter Bildung von salz-

saurem 2-Methyl-4.5-benzo-1.3-oxazin C₀H₄ N=C·CH₃ OCH₃ O (Syst. No. 4195), das alsbald in

salzsaures [2-Amino-benzyl]-acetat verwandelt wird. Wird die Verbindung CoH12O2NCl in äther. Suspension mit Diathylamin behandelt, so entsteht 2-Methyl-4.5-benzo-1.3-oxazin. Verbindung C₀H₁₂O₂NBr. B. Analog der Verbindung C₀H₁₂O₂NCl (s. o.). — Weiße Krystalle. F: 166—170⁰ (Auwers, B. 37, 2254, 2266).

[2-Acetamino-benzyl]-acetat $C_1H_{12}O_2N=CH_2\cdot CO\cdot NH\cdot C_6H_4\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Bei kurzem Erhitzen von 2-Amino-benzylalkohol mit überschüssigem Essigeäureanhydrid (Söder-kurzem Erhitzen von 2-Amino-benzylalkohol mit überschüssigem Essigeäureanhydrid von 2-Amino-benzylalkohol mit überschüssigem Essigem E BAUM, WIDMAN, B. 22, 1667). — Nadeln (aus Benzol). F: 91°. Sehr leicht löslich in Benzol. — Liefert mit verdünnter kalter Salzsäure [2-Amino-benzyl]-acetat (S. 616).

[2-Diacetylamino-bensyl]-acetat $C_{13}H_{16}O_4N = (CH_3 \cdot CO)_2N \cdot C_6H_4 \cdot CH_3 \cdot O \cdot CO \cdot CH_3$. B. Bei 2-stdg. Kochen von 2-Amino-bensylalkohol mit überschüssigem Essigsäureanhydrid

(SÖDERBAUM, WIDMAN, B. 22, 1668). — Zähes Öl.

2-Bensamino-bensylalkohol $C_{14}H_{13}O_2N = C_6H_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_8 \cdot OH$. B. Durch Digerieren aquimolekularer Mengen von 2-Amino-benzylalkohol, Benzoylchlorid und Kalium-dicarbonat in Ather (Auwers, B. 87, 2250, 2261). — Nadeln (aus Ligroin). F: 132—133°. Leicht löslich in Alkohol, Ather, Eisessig, Benzol, schwer in Ligroin.

[3-Oxymethyl-phenyl]-harnstoff $C_aH_{10}O_2N_2 = H_2N \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_3 \cdot OH$. B. Aus 2-Amino-benzylalkohol, Kaliumcyanat und Salzsäure (Söderbaum, Widman, B. 22, 1668). — Vierseitige Tafeln oder Prismen. Schmilzt gegen 180° unter Entwicklung von Ammoniak und Bildung von N.N'-Bis-[2-oxymethyl-phenyl]-harnstoff (S., W.). Ziemlich leicht löslich in kochendem Wasser, sehr schwer in Alkohol, Aceton, Benzol (S., W.). — Beim Erwärmen mit Salzsäure entsteht 2-Imino-4.5-benzo-1.3-oxazindihydrid C₆H₄ NH—C:NH
(Syst. No. 4278) (S. W.: PAAT, VANYOT TOTAL P. C. CH₂—O

4278) (S., W.; PAAL, VANVOLXEM, B. 27, 2415).

 $N - Phenyl - N' - [2 - oxymethyl - phenyl] - harnstoff <math>C_{14}H_{14}O_2N_3 = C_4H_5 \cdot NH \cdot CO$ NH·C₀H₄·CH₅·OH. B. Beim Vermischen gleicher Teile 2-Amino-benzylalkohol und Phenylisocyanat (Bd. XII, S. 437), beide gelöst in Benzol (Söderbaum, Widman, B. 22, 1670).

— Nadeln (aus Aceton). F: 191°; sehr schwer löslich (S., W.). — Geht beim Erwärmen mit 4278) über (S., W.; Paal, Vanvolkem, B. 27, 2415).

N.N'-Bis-[2-oxymethyl-phenyl]-harnstoff $C_{15}H_{16}O_{2}N_{3}=(HO\cdot CH_{3}\cdot C_{6}H_{4}\cdot NH)_{2}CO$. B. Beim Erhitzen von [2-Oxymethyl-phenyl]-harnstoff (s. o.) auf 180° (Söderbaum, Widman, B. 22, 1669). — Nadeln (aus Benzol). F: 108° .

N-Phenyl-N'-[2-oxymethyl-phenyl]-thioharnstoff $C_{14}H_{14}ON_2S=C_4H_4\cdot NH\cdot CS\cdot NH\cdot C_4H_4\cdot CH_4\cdot OH$. B. Aus 2-Amino-benzylalkohol und Phenylsenföl (Bd. XII, S. 453) (Söderbaum, Widman, B. 22, 1671). — Vierseitige Prismen (aus Alkohol). F: 136° (S., W.). — Beim Erwähmen mit Salzsäure entsteht 2-Phenylimino-4.5-benzo-1.3-thiazindihydrid C_eH₄ CH₂·S (Syst. No. 4278) (S., W.; Paal, Vanvolxem, B. 27, 2420).

2-Amino-bensylmercaptan C₂H₂NS = H_2 N·C₂H₄·CH₂·SH. B. Das Hydrochlorid entsteht beim Erhitzen von 5 g 2.2'-Dinitro-dibenzyldisulfid (Bd. VI, S. 468) mit 50 com rauchender Salzsäure und viel Zinngranalien (GABRIEL, POSNER, B. 28, 1026). — C₇H₂NS + HCl. Schuppen (aus Amylalkohol). F: 170—172° (Zers.). Sehr leicht löslich in Wasser.

Methyl-[2-amino-bensyl]-sulfid $C_8H_{11}NS = H_2N \cdot C_8H_4 \cdot CH_2 \cdot S \cdot CH_3$. B. Bei all-mählichem Eintragen von Methyl-[2-nitro-benzyl]-sulfid (Bd. VI, S. 467) in mit wenig Eisessig verrührten Zinkstaub unter Kühlung (Gabriel, Stelzner, B. 29, 164). — Widerlich riechendes Öl. Ersterrt nicht bei —18°. Kp₇₅₁: 277—278°. — Mit Methyljodid entsteht Trimethyl-under in Stellen in Ste sulfonium jodid (Bd. I, S. 290).

- 2.2'-Diamino-dibensylsulfid $C_{14}H_{16}N_2S = (H_2N\cdot C_6H_4\cdot CH_2)_2S$. B. Man reduziert 2-Nitro-benzylchlorid (Bd. V, S. 327) bei ca. $40-50^{\circ}$ mit überschüssiger salzsaurer Zinnchlorürlösung, entzinnt die Lösung mit Schwefelwasserstoff und dampft die entzinnte Lösung ein (Thiele, Dimboth, B. 28, 915; A. 305, 122). Beim Kochen von 2.2'-Dinitro-dibenzylsulfid (Bd. VI, S. 468) mit Zinnchlorür und Salzsäure (Jahoda, M. 10, 879). Beim Behandeln einer Aufschlämmung von 2.2'-Dinitro-dibenzylsulfid in warmem absolutem Alkohol mit Zink und rauchender Salzsäure (Gabriel, Posner, B. 27, 3521). Bei 2-stdg. Erhitzen von 3 g 2-Methyl-4.5-benzo-1.3-thiazin C_6H_4 (Syst. No. 4195) mit 12 ccm Salzsäure (D: 1,19) auf 180° (G., P., B. 27, 3520). Nadeln oder Blättchen. F: 81—82° (G., P.), 80° bis 81° (Th., D.). Leicht löslich in Alkohol und Äther (Ja.). Liefert beim Erhitzen mit β -Naphthol auf 250° das Benzoacridin der nebenstehenden Formel (Syst. No. 3091) (Ullmann, Baezner, B. 35, 2672). $C_{14}H_{16}N_2S + 2HCl + 2H_2O$ (Th., D.). Farblose (G., P.) Krystalle (aus Alkohol). Pikrat. Schmilzt bei 203—204° unter Zersetzung (G., P.).
- 2.2'-Diamino-dibenzyldisulfid $C_{14}H_{16}N_2S_2 = [H_2N \cdot C_6H_4 \cdot CH_3 \cdot S_-]_2$. B. Beim Eintragen von Jodjodkaliumlösung in eine Lösung von salzsaurem 2-Amino-benzylmercaptan (S. 618) (Gabriel, Posner, B. 28, 1026). Krystallkörner (aus Ligroin + Essigester). F: 90—91°.
- 2.2'-Bis-formamino-dibenzylsulfid $C_{16}H_{16}O_2N_2S = (OHC \cdot NH \cdot C_6H_4 \cdot CH_2)_2S$. B. Bei 1-stdg. Erhitzen von 2.2'-Diamino-dibenzylsulfid (s. o.) mit Ameisensäureäthylester auf 100° (G., P., B. 27, 3522). Nädelchen. F: 163°.
- Methyl-[2-acetamino-benzyl]-sulfid $C_{10}H_{13}ONS = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot S \cdot CH_3$. B. Aus Methyl-[2-amino-benzyl]-sulfid durch Acetylierung (Gabriel, Posner, B. 29, 164). Nädelchen (aus siedendem Ligroin). F: 102° .
- 2.2'-Bis-acetamino-dibenzylsulfid $C_{18}H_{20}O_2N_2S = (CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2)_2S$. B. Beim Eindampfen von 2.2'-Diamino-dibenzylsulfid (s. o.) mit Essigsäureanhydrid (Gabriel, Posner, B. 27, 3522). Nadeln. F: 209°. Sehr wenig löslich in Alkohol. Liefert mit P_2S_5 2-Methyl-4.5-benzo-1.3-thiazin C_6H_4 $N=C \cdot CH_3$ (Syst. No. 4195).
- 2.2'-Bis-propionylamino-dibenzyldisulfid $C_{20}H_{24}O_2N_2S_2 = [CH_3 \cdot CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot S_-]_2$. B. Aus 2.2'-Diamino-dibenzyldisulfid und Propionsäureanhydrid (KIPPEN-BERG, B. 30, 1146). Man läßt auf 2-Äthyl-4.5-benzo-1.3-thiazin $C_6H_4 \cdot \frac{N C \cdot C_2H_5}{CH_2 \cdot S}$ (Syst. No. 4195) in der Wärme feuchte Luft einwirken (K.). Nadeln (aus Alkohol). F: 190—191°. Leicht löslich in Benzol, Aceton und Eisessig, ziemlich schwer löslich in heißem Alkohol und Ligroin, unlöslich in Wasser.
- Methyl-[2-benzamino-benzyl]-sulfid $C_{15}H_{15}ONS = C_{0}H_{5}\cdot CO\cdot NH\cdot C_{5}H_{4}\cdot CH_{2}\cdot S\cdot CH_{3}$. B. Aus Methyl-[2-amino-benzyl]-sulfid durch Benzoylierung (Gabriel, Stellner, B. 29, 164). Nadeln (aus Alkohol). F: 118°.

3-Amino-benzylalkohol und seine Derivate.

3-Amino-benzylalkohol, m-Amino-benzylalkohol $C_7H_9ON = H_2N \cdot C_6H_4 \cdot CH_2 \cdot OH$. B. Aus 3-Nitro-benzylalkohol (Bd. VI, S. 449) durch Reduktion mit Zink und alkoh. Salzsäure (Lutter, B. 30, 1065). Durch elektrolytische Reduktion von 3-Nitro-benzoesäure (Bd. IX, S. 376) in alkoholisch-schwefelsaurer Lösung (Mettler, B. 38, 1751). Durch Reduktion von 3-Amino-benzoesäure (Syst. No. 1905) mit $4^9/_0$ igem Natriumamalgam in heißer, sehr verdünnter Salzsäure (Langguth, B. 38, 2062). — Lange Tafeln oder Nadeln (aus Benzol). F: 97° (Lu.; La.). Im Vakuum unzersetzt destillierbar (La.). Sehr leicht löslich in Alkohol, Chloroform, heißem Wasser, löslich in Ather, schwer in Benzol; sehr leicht löslich in Mineralsäuren (Lu.). — Bräunt sich allmählich an der Luft (Lu.). — $C_7H_9ON + HCl$. Krystallinisch. F: 121°. Leicht löslich in Wasser und Alkohol, schwer löslich in Ather (M.).

Polymeres m.Benzylenimid $(C_7H_7N)_x = \begin{bmatrix} C_6H_4 & C_{NH} \\ NH \end{bmatrix}_x$ (?). B. Man erwärmt das salzsaure Salz des N-[3-Amino-benzyl]-pyridiniumchlorids $C_{12}H_{13}N_2Cl + HCl$ (Syst. No. 3051) auf 230° (Lellmann, Pekrun, A. 259, 60). — Gelbes, amorphes Pulver. Schmilzt zwischen 120° und 145°. — $[2C_7H_7N + 2HCl + PtCl_4]_x$.

3-Acetamino-benzylalkohol $C_9H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_9H_4\cdot CH_3\cdot OH$. Zur Konstitution vgl. Auwers, B. 37, 2253 Anm. 1. — B. Aus 3-Amino-benzylalkohol durch Essig-

säureanhydrid bei gewöhnlicher Temperatur (LUTTER, B. 30, 1066). — Nadeln (aus Benzol). F: 106—107°: leicht löslich in Alkohol, schwer in Benzol (L.). Unlöslich in wäßr. Salzsäure (Av.).

- [3-Acetamino-benzyl]-acetat (?) $C_{11}H_{12}O_3N=CH_2\cdot CO\cdot NH\cdot C_0H_4\cdot CH_2\cdot O\cdot CO\cdot CH_2$ (?) Beim Erhitzen von 3-Amino-benzylalkohol mit Essigsäureanhydrid (LUTTER, B. 30, 1066). — Nadeln (aus Benzol + Ligroin). F: 67°. Sehr leicht löslich in Benzol, leicht in Alkohol und Chloroform, schwer in Ather und Ligroin.
- 3-Benzamino-benzylalkohol $C_{14}H_{15}O_2N=C_4H_5\cdot CO\cdot NH\cdot C_4H_4\cdot CH_2\cdot OH$. B. Aus [3-Benzamino-benzyl]-benzoat (s. u.) durch kurze Digestion mit alkoh. Natronlauge (Auwers, Sonnenstuhl, B. 37, 3942). Nädelchen (aus verd. Alkohol). F: 115°. Leicht löslich in Alkohol, Ather und Eisessig, maßig löslich in Benzol, sehr wenig in heißem Ligroin.
- [3-Bensamino-bensyl]-bensoat $C_{s1}H_{17}O_{s}N = C_{e}H_{s}\cdot CO\cdot NH\cdot C_{e}H_{4}\cdot CH_{5}\cdot O\cdot CO\cdot C_{e}H_{5}$. B. Aus 3-Amino-benzylalkohol und Benzoylchlorid in Pyridin (Au., 8., B. 37, 3941). Nädelchen (aus Alkohol). F: 113—114°. Sehr leicht löslich in Äther und Benzol, leicht löslich in Eisessig, mäßig löslich in Alkohol, kaum löslich in Ligroin. Unlöslich in wäßr. Alkalien. – Gibt bei kurzem Erwärmen mit alkoh. Natronlauge 3-Benzamino-benzylalkohol.
- 3-Amino-bensylmercaptan $C_1H_2NS = H_2N \cdot C_4H_4 \cdot CH_3 \cdot SH$. Bei der Reduktion von 3-Nitro-bensylmercaptan (Bd. VI, S. 468) mit Zinn und Salzsäure (Lutter, B. 30, 1069). - C, H, NS + H Cl. Krystalle (aus konz. Salzsäure). Schmilzt bei 167° unter Zersetzung. Leicht löslich in Wasser, ziemlich leicht in Salzsäure. Schmeckt bitter mit brennendem Nachgeschmack. Wird von alkoh. Jodlösung zu 3.3'-Diamino-dibenzyldisulfid oxydiert.

Methyl-[3-amino-benzyl]-sulfid $C_8H_{11}NS = H_2N \cdot C_8H_4 \cdot CH_2 \cdot S \cdot CH_2$. B. Bei der Reduktion von Methyl-[3-nitro-benzyl]-sulfid (Bd. VI, S. 468) mit Zinkstaub und Eisessig (L., B. 30, 1071). — Gelbliches Öl. — $C_8H_{11}NS + HCl$. Nadeln (aus Salzsäure). Leicht löslich in Äthylalkohol und Amylalkohol, sehr wenig in Benzol und Äther.

3.3'-Diamino-dibensyldisulfid $C_{14}H_{16}N_{9}S_{3}=[H_{2}N\cdot C_{6}H_{4}\cdot CH_{2}\cdot S-]_{2}$. B. Bei der Oxydation von salzsaurem 3-Amino-benzylmercaptan mit alkoh. Jodlösung (L., B. 30, 1070). — $C_{14}H_{16}N_{3}S_{2}+2$ HCl. Schuppen (aus Salzsaure). Färbt sich bei ca. 170° grau, bei 212° schwarz. In Wasser und Salzsaure schwerer löslich als salzsaures 3-Amino-benzyl-

4-Amino-benzylalkohol und seine Derlvate.

4-Amino-bensylalkohol, p-Amino-bensylalkohol C,H₂ON = H₂N·C₂H₄·CH₂·OH.

B. Man trägt allmählich 10 g 4-Nitro-benzylalkohol (Bd. VI, S. 450) in ein siedendes Gemisch aus 40 Tln. Zinkstaub, 4 Tln. Calciumchlorid und 200 Tln. Wasser ein und kocht eine halbe Stunde; die mit wenig Soda versetzte Lösung wird filtriert und eingeengt (O. FISCHER, G. FISCHER, B. 28, 880; KALLE & Co., D. R. P. 83544; Frdl. 4, 50). Durch Reduktion von 4-Nitro-benzylalkohol mit Ferrosulfat und Alkali (J. THELE, DIRECTE, A. 305, 119; K. & Co.). Entsteht in kleiner Menge bei der Reduktion von 4-Amino-benzoessure (Syst. No. 1905) mit Natriumamalgam in saurer Lösung (Langgutte, B. 88, 2064). — Blätter und Tafeln (aus Benzol). F: 65° (O. F., G. F.). 63—64° (J. Th., D.). Sehr leicht löslich in Wasser, leicht in Alkohol, Äther, Benzol (K. & Co.). — Wird durch überschüssiges Zinnehlorür in der Kälte nicht verändert, bei Wasserbadtemperatur aber unter sehr reichlicher Bildung von p-Toluidin reduziert (J. Th., D., A. 805, 121). Mit H₂S in saurer Lösung entsteht 4.4'-Diamino-dibenzyldisulfid (S. 623) (J. THELE, DIMBOTH, A. 805, 119). Beim Erhitzen mit p-Nitrotoluol und Schwefelsäure entsteht 5-Nitro-4'-amino-2-methyl-diphenylmethan (Bd. XII, S. 1328) (GATTERMANN, KOFFERT, B. 26, 2811). Kondensiert sich in schwach schwefelsaurer Lösung mit Resorcin zu 4'-Amino-2.4-dioxy-diphenylmethan (Syst. No. 1869) und zu 4.6-Bis-[4-amino-benzyl]-resorcin (Syst. No. 1869), kondensiert sich in schwach angesäuerter Lösung mit a-Naphthol zu [4-Amino-phenyl]-[4-oxy-naphthyl-(1)]-methan (S. 731) (Fried-Länder, v. Horváte, M. 23, 979). Beim Erwärmen mit verdännter Salssäure und Benzolsulfinsäure (Bd. XI, S. 2) entsteht Phenyl-[4-amino-benzyl]-sulfon (S. 623) (Hinseerg, Hinseerg, B. 29, 2022; Hinseerg, B. 50 [1917], 470; Thorgen, Nolte, J. pr. [2] 101 [1920], 140).

Tetra meres (?) p-Benzylenimid $C_{20}H_{20}N_4$ (?) = $\begin{bmatrix} C_0H_4 \\ NH \end{bmatrix}_4$ (?). B. Man reduziert 1 Mol.-Gew. 4-Nitro-benzylehlorid (Bd. V, S. 329), gelöst in Salzsäure, mit 3 Mol.-Gew. Zinnehlorür, zerlegt das dabei erhaltene Zinndoppelsalz in wäßr. Lösung mit Natronlauge und zieht den Niederschlag nach dem Trocknen mit Chloroform aus (E. Teierla, Weil, B. 28, 1650; J. Thiele, Dimboth, A. 805, 116; vgl. Lellmann, Stickel, B. 19, 1612). Beim Erhitzen von salzsaurem N-[4-Amino-benzyl]-pyridiniumchlorid (Syst. No. 3051) auf 210-220° (Lellmann, Pekrun, A. 259, 55). — Hellgelbes, amorphes Pulver (aus Chloroform + Äther). F: 110—115° (E. Th., W.). Leicht löslich in Chloroform, wenig in warmem Toluol, Benzol und Alkohol, fast unlöslich in kaltem Alkohol und Ligroin (E. Th., W.). Nimmt beim Behandeln mit Säuren 1 Mol. H₂O auf und bildet Säurederivate C₂₈H₂₆N₄(Ac)₂ + H₂O und C₂₈H₂₄N₄(Ac)₄ + H₂O (E. Th., W.). Verbindet sich mit 4-Nitro-benzaldehyd (E. Th., W.). Verwendung zur Darstellung von Farbstoffen durch Kondensation mit hydroxylhaltigen Farbstoffen: Höchster Farbw., D. R. P. 128726; C. 1902 I, 612.

Verbindung $C_{28}H_{30}ON_4 = C_{28}H_{28}N_4 + H_2O$. B. Man leitet Chlorwasserstoff in die Lösung des tetrameren (?) p-Benzylenimids (S. 620) in Chloroform ein und zerlegt das gefällte orangegelbe Salz durch Soda (E. Thiele, Well, B. 28, 1651). — F: 130—135°.

Verbindung C₄₉H₃₇O₅N₇. B. Bei längerem Stehenlassen in der Kälte von tetramerem (?) p-Benzylenimid, gelöst in Chloroform, mit überschüssigem 4-Nitro-benzaldehyd; man fällt durch Äther (E. THIELE, WEIL, B. 28, 1654). — Orangegelbe, krystallinische Masse. Schmilzt gegen 175°.

Verbindung C₄₉H₃₉O₇N₇. B. Bei längerem Kochen von tetramerem (?) p-Benzylenimid, gelöst in Chloroform, mit überschüssigem 4-Nitro-benzaldehyd (E. Thiele, Weil, B. 28, 1654). — Orangegelb. Schmilzt gegen 150°.

Polymerer Anhydro-[4-amino-benzylalkohol] (C₇H₇N)_x = $\begin{bmatrix} C_6H_4 \\ CH_2 \end{bmatrix}_x$. B. Durch Einwirkenlassen von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. Anilin bei Gegenwart überschüssiger starker Mineralsäure (Salzsäure oder Schwefelsäure) (KALLE & Co., D. R. P. 95600; C. 1898 I, 812). Durch Einwirkenlassen eines Anilinsalzes auf die äquimolekulare Menge Formaldehyd in wäßr. Lösung; aus salzsaurem Anilin entsteht zunächst Chlormethylanilin (Bd. XII, S. 184), das bei längerem Stehen, rascher beim Kochen mit Wasser oder verdünnten Säuren, beim Behandeln mit Alkali schon in der Kälte, Salzsäure abspaltet und in den polymeren Anhydro-[4-amino-benzylalkohol] übergeht (K. & Co., D. R. P. 96851; C. 1898 II, 159). Bei der elektrolytischen Reduktion von Nitrobenzol in Alkohol in Gegenwart von Formaldehyd und rauchender Salzsäure (Löß, B. 31, 2038). Durch Erwärmen von 4-Amino-benzylalkohol mit wenig Essigsäure (K. & Co., D. R. P. 83544; Frdl. 4, 51). Durch Einw. von kalter konzentrierter Schwefelsäure auf N-p-Tolyl-hydroxylamin (Syst. No. 1933) (K. & Co., D. R. P. 93540; Frdl. 4, 179). Durch Behandeln von Anhydroformaldehydanilin C_6H_5 · N(C_6H_5) > CH₂ (Syst. No. 3796) mit Säuren (z. B. starker Salzsäure) in der Kälte (K. & Co., D. R. P. 95184; C. 1898 I, 541). — Körnig-krystallinische Masse. F: 214—216°; leicht löslich in verdünnten Säuren, unlöslich in Wasser und organischen Solvenzien (K. & Co., D. R. P. 83544). Liefert beim Erhitzen mit Schwefel eine geschwefelte Base, die sich diazotieren und sulfurieren läßt (K. & Co., D. R. P. 98813; C. 1898 II, 1152). Bei der Kondensation mit aromatischen Aminen bilden sich Diphenylmethanderivate (K. & Co., D. R. P. 83544). Verwendung zur Verbesserung der aus 4-Nitro-toluol-sulfonsäure-(2) (Bd. XI, S. 90) durch Einw. von Alkalien entstehenden Farbstoffe: Höchster Farbw.,

von Farbstoffen der Fluoresceinreihe: Höchster Farbw., D. R. P. 123613; C. 1901 II, 875. Methyl-[4-amino-bensyl]-äther $C_8H_{11}ON = H_1N \cdot C_6H_4 \cdot CH_3 \cdot O \cdot CH_3$. B. Zu einer wäßr. Lösung von 10 g Methyl-[4-nitro-benzyl]-äther (Bd. VI, S. 450) in 250 ccm 10°/oiger Natronlauge fügt man allmählich bis zum Verschwinden der alkal. Reaktion 20°/oige Ferrosulfatlösung, dann weitere 50 ccm Natronlauge (ROMEO, G. 35 I, 113). — Dickes, fast farbloses Öl. Kp40: 164—167°. Löslich in Wasser, Alkohol, Äther. Das Oxalat schmilzt bei 116°.

D. R. P. 122353; C. 1901 II, 327. Verwendung zur Verbesserung von Oxyazofarbstoffen sowie

Dimerer (P) Anhydro - [4-methylamino - benzylalkohol] $C_{16}N_1(P) = C_6H_4 < N(CH_3) \cdot C_6H_4(P)$. B. Das salzsaure Salz entsteht, wenn man Methylanilin in verd. Salzsäure bis zum ganz geringen Vorwalten derselben löst, die abgekühlte Lösung mit der äquimolekularen Menge $40^{\circ}/_{\circ}$ iger wäßr. Formaldehydlösung versetzt und mehrere Stunden stehen läßt; man zerlegt das salzsaure Salz mit Natronlauge (FRIEDLÄNDER, M. 28, 987; vgl. Kalle & Co., D. R. P. 97710; C. 1898 II, 694; Goldsommot, Ch. Z. 24, 284).— Krystalle. Schmilzt bei 205—210°, nachdem schon vorher unter Gelbfärbung Zersetzung eingetreten ist; sehr leicht löslich in Benzol, leicht in Äther, unlöslich in Wasser (F.). — Wird beim Kochen mit Alkohol in ein weißes, unlösliches Produkt, anscheinend ein hochmolekulares Polymerisationsprodukt, umgewandelt; die gleiche Umwandlung erfährt das Hydrochlorid unter der Einw. von Ammoniak (F.). Zinkstaub und Salzsäure reduzieren zu Methyl-ptoluidin (F.). Kondensiert sich mit Resorcin zu 4'-Methylamino-2.4-dioxy-diphenylmethan (Syst. No. 1869) und zu 4.6-Bis-[4-methylamino-benzyl]-resorcin (Syst. No. 1869). — $C_{16}H_{18}N_2 + 2$ HCl. Nadeln. Ziemlich leicht löslich in Wasser und verd. Säuren, weniger

löslich in konz. Salzsäure (F.). — $C_{16}H_{18}N_2+2$ HBr. Schmilzt oberhalb 250°; leicht löslich in Wasser (G., Ch.Z. 26, 967).

4-Dimethylamino-benzylalkohol $C_0H_{15}ON = (CH_3)_2N \cdot C_0H_4 \cdot CH_2 \cdot OH$ und [4-Dimethylamino-benzyl]-acetat $C_{11}H_{15}O_2N = (CH_3)_2N \cdot C_0H_4 \cdot CH_2 \cdot O \cdot CO \cdot CH_3$. Die Angaben von Rousset, Bl. [3] 11, 318—320, über Bildung und Eigenschaften dieser Verbindungen sind von v. Braun, Kruer, B. 45 [1912], 2991, als unrichtig erkannt worden. Über den wirklichen 4-Dimethylamino-benzylalkohol vgl. Clemo, Smith, Soc. 1928, 2423, 2424.

Dimerer (?) Anhydro - [4 - äthylamino - bensylalkohol] $C_{18}H_{28}N_3(?) = C_8H_4 < N(C_2H_5) \cdot C_8H_4(?)$. B. Das salzsaure Salz entsteht, wenn man Äthylanilin in verd. Salzsäure bis zum geringen Vorwalten derselben löst, die abgekühlte Lösung mit der äquimolekularen Menge $40^{\circ}/_{\circ}$ iger wäßr. Formaldehydlösung versetzt und mehrere Stunden stehen läßt; man zerlegt das salzsaure Salz mit Natronlauge (FRIEDLÄNDER, M. 23, 987, 990; vgl. Kalle & Co., D. R. P. 97710; C. 1898 II, 694). — Nadeln (aus Alkohol, dem einige Tropfen Natronlauge zugefügt sind). F: 79—80° (F.). — Zeigt analoge Zersetzungserscheinungen wie der dimere (?) Anhydro-[4-methylamino-benzylalkohol] (F.). — $C_{18}H_{28}N_2 + 2$ HCl. Nadeln (F.).

- 4-Bensylamino-bensylalkohol $C_{14}H_{15}ON = C_{6}H_{5} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4} \cdot CH_{6} \cdot OH$. B. Man löst 10 g Benzylanilin (Bd. XII, S. 1023) in 40 g Alkohol, gibt 12 g Salzsäure (21° Bé) und 40 g Wasser hinzu, rührt in den entstehenden Krystallbrei 4 g $40^{\circ}/_{\circ}$ ige Formaldehydlösung ein und läßt 12 Stdn. stehen (Kalle & Co., D. R. P. 97710; Frdl. 5, 95; C. 1898 II, 694). Nadeln (aus Benzol). F: 161°.
- 4-Benzalamino-benzylalkohol $C_{14}H_{13}ON = C_0H_5 \cdot CH : N \cdot C_0H_4 \cdot CH_2 \cdot OH$. B. Aus 4-Amino-benzylalkohol in Wasser und Benzaldehyd (Ö. FISCHER, G. FISCHER, B. 28, 881). Blättehen (aus Ligroin). F: 67—68°.
- **4-Salicylalamino-bensylalkohol** $C_{14}H_{13}O_2N=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot CH_2\cdot OH.$ B. Aus 4-Amino-benzylalkohol in Wasser und Salicylaldehyd (Bd. VIII, S. 31) (O. FISCHER, G. FISCHER, B. 28, 881). Goldgelbe Tafeln und Prismen (aus Methylalkohol). F: 155°.
- 4-Bensamino-bensylaikohol $C_{14}H_{12}O_2N=C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot CH_2\cdot OH$. B. Aus 4-Amino-bensylaikohol durch Bensoylieren (O. Fischer, G. Fischer, B. 28, 881). Krystalle (aus Wasser). F: 150—151°.
- Methyl-[4-bensamino-bensyl]-äther $C_{15}H_{15}O_5N=C_6H_5\cdot CO\cdot NH\cdot C_5H_4\cdot CH_2\cdot O\cdot CH_3$. B. Aus Methyl-[4-amino-bensyl]-äther in alkal. Lösung durch Benzoylchlorid (Romeo, G. 35 I, 114). Schuppen (aus sehr verd. Alkohol oder aus Benzol + Petroläther). F: 111° bis 113°. Leicht löslich in Alkohol und Benzol, sehr wenig in Petroläther und Wasser.
- N-Phenyl-N'-[4-oxymethyl-phenyl]-thioharnstoff $C_{14}H_{14}ON_2S = C_2H_5 \cdot NH \cdot CS \cdot NH \cdot C_6H_4 \cdot CH_5 \cdot OH$. B. Aus 4-Amino-benzylalkohol und Phenylsenföl (Bd. XII, S. 453) in Alkohol (SCHALL, J. pr. [2] 64, 264). Nädelchen (aus verd. Alkohol). F: 157—158°.
- 2-Chlor-4-amino-bensylalkohol C_7H_6 ONCl = $H_6N\cdot C_6H_5Cl\cdot CH_5\cdot OH$. B. Aus 2-Chlor-4-nitro-bensylalkohol erhalten aus Äthyl-[2-chlor-4-nitro-bensyl]-āther (Bd. VI, S. 453) durch Verseifung mit Salssäure bei 100° oder aus 3.3'-Diohlor-4.4'-bis-oxymethyl-hydrazobenzol (Syst. No. 2078) mit Zinn und Salssäure (Witt, B. 25, 83, 86, 86). Öl. C_7H_6 ONCl + HCl. Nadeln. Sublimiert bei 254° unter partieller Zersetzung.

8-Nitro-4-amino-bennylalkohol $C_7H_8O_8N_8=H_8N\cdot C_9H_8(NO_8)\cdot CH_8\cdot OH$. B. Durch Zufügen von Wasser zur Lösung des polymeren Anhydro-[3-nitro-4-amino-benzylalkohols] (s. u.) in konz. Schwefelsäure (J. Meyer, Rohner, B. 88, 254). — Gelbes, amorphes Pulyer. — Geht in lufttrocknem Zustand bei gewöhnlicher Temperatur langsam, schneller im Vakuum, sofort beim Erhitsen mit Eisessig wieder in den polymeren Anhydro-[3-nitro-4-amino-benzylalkohol] über. Durch Reduktion mit Zinn und konz. Salzsäure auf dem Wasserbade entsteht zunächst

eine gelbe Lösung, aus welcher eine amorphe Verbindung $H_2N \cdot C_0H_3 \subset H_2 \subset CH_2 \subset CH_3 \subset$

Polymerer Anhydro - [3 - nitro - 4 - amino - bensylalkohol] $(C_tH_0O_2N_0)_x = \begin{bmatrix} O_2N \cdot C_0H_0 & NH \\ CH_2 & D_2 \end{bmatrix}_x$. B. Durch 1-stdg. Erwärmen von 1 Tl. N.N'-Methylen-bis-[2-nitro-anilin] (Bd. XII, S. 690) mit 10 Tln. kons. Salzsäure auf 40° (J. MEYER, ROHMER, B. 83, 253). Zu

einer Lösung von 30 g 2-Nitro-anilin in der 10-fachen Menge konz. Salzsäure werden 22 g 40% jeer Formaldehydlösung gegeben und die Flüssigkeit unter Kühlung mit Chlorwasserstoff gesättigt; sobald durch vorsichtiges Erwärmen Lösung eingetreten ist, wird durch Eiswasser abgekühlt (J. M., R.). In beiden Fällen scheidet sich als dunkelgelber, krystallinischer Niederschlag eine Salzsäureverbindung ab, aus welcher durch Digerieren mit heißem Wasser und Auskochen mit Eisessig der polymere Anhydro-[3-nitro-4-amino-benzylalkohol] nahezu quantitativ erhalten wird. — Rotes Pulver oder rotbraune Kügelchen (aus Nitrobenzol). Schmilzt bei raschem Erhitzen bei 265—270° unter Zersetzung. Sehr wenig löslich in siedendem Anilin, Chinolin, Pyridin und Nitrobenzol, sonst unlöslich; unlöslich in verdünnten Mineralsäuren. — Aus der Lösung in konz. Schwefelsäure wird durch Wasser 3-Nitro-4-amino-benzylalkohol (S. 622) gefällt.

Phenyl-[4-amino-benzyl]-sulfon $C_{13}H_{13}O_2NS = H_2N \cdot C_6H_4 \cdot CH_2 \cdot SO_2 \cdot C_6H_5^{-1}$). B. Man erwärmt 4-Amino-benzylalkohol mit verdünnter Salzsäure und versetzt die Lösung mit einer konzentrierten wäßrigen Lösung von Benzolsulfinsäure (Bd. XI, S. 2) (HINSBERG, HIMMELSCHEIN, B. 29, 2022). — Gelbe Nädelchen (aus Wasser). F: 176°. Ziemlich schwer löslich in Alkohol und Eisessig.

- 4.4'-Diamino-dibenzylsulfid $C_{14}H_{16}N_{2}S = (H_{2}N \cdot C_{6}H_{4} \cdot CH_{2})_{2}S$. B. Durch Eintragen von [4-Nitro-benzyl]-acetat (Bd. VI, S. 451) in salzsaures Zinnchlorür und Behandeln des Produktes mit Schwefelwasserstoff (O. FISCHER, G. FISCHER, B. 24, 724; 28, 879; vgl. DIMROTH, J. THIELE, B. 28, 915; A. 305, 105, 107; KALLE & Co., D. R. P. 87059; Frdl. 4, 1056). Bei der Reduktion von 4.4'-Dinitro-dibenzylsulfid (Bd. VI, S. 469) mit Zinnchlorür und konz. Salzsäure (O. F., B. 28, 1338). Blättchen. F: 104—105° (O. F., G. F., B. 28, 880), 105° (D., J. Th.). Reagiert beim Erwärmen mit Silberlösung unter reichlicher Bildung von Silbersulfid (D., J. Th., B. 28, 915). Mit Natrium und Amylalkohol entsteht p-Toluidin (O. F., B. 28, 1340). Gibt beim Kochen mit Schwefelkohlenstoff und Alkohol die Verbindung $SC < NH \cdot C_{6}H_{4} \cdot CH_{2} > S$ (Syst. No. 4551) (O. F., B. 28, 1339). Liefert beim Erhitzen mit Anilin und Zinkchlorid 4.4'-Diamino-diphenylmethan (S. 238) (O. F., B. 28, 1341). $C_{14}H_{16}N_{2}S + 2$ HCl. Nadeln (O. F., G. F., B. 24, 725). $C_{14}H_{16}N_{2}S + 2$ HBr. Nadeln (O. F., G. F., B. 24, 725).
- 4.4'-Diamino-dibenzyldisulfid $C_{14}H_{16}N_2S_3=[H_2N\cdot C_8H_4\cdot CH_3\cdot S-]_2$. B. 4-Aminobenzylalkohol wird in saurer Lösung zuerst in der Kälte, dann bei Wasserbadtemperatur mit Schwefelwasserstoff behandelt (J. Thiele, Dimroth, A. 305, 119). Krystalle (aus Alkohol). F: 96—98°. Liefert beim Behandeln mit Essigsäureanhydrid ein bei 173—174° schmelzendes Acetylderivat. $C_{14}H_{16}N_2S_3+2$ HCl. Mikroskopische Blättchen.
- 4.4'-Bis-dimethylamino-dibensylsulfon $C_{18}H_{24}O_2N_2S=[(CH_3)_2N\cdot C_6H_4\cdot CH_3]_2SO_2^2)$. B. Beim Erwärmen von formaldehydsulfoxylsaurem Natrium ("Rongalit C", Bd. I, S. 577) mit salzsaurem Dimethylanilin und Formaldehyd in wäßr. Lösung (Binz, Isaac, B. 41, 3386). Nadeln (aus Alkohol oder Benzol). F: 199° (B., I.). Einw. von salpetriger Säure: Binz, B. 42, 385.
- 4.4'-Bis è dimethylamino dibenzyldisulfid $C_{18}H_{24}N_2S_2 = [(CH_3)_2N \cdot C_8H_4 \cdot CH_2 \cdot S -]_2$. B. Aus 4-Dimethylamino-benzaldehyd und alkoh. Ammoniumsulfidlösung bei mehrtägigem Schütteln oder bei zweistündigem Erhitzen im geschlossenen Rohr auf $100-120^{\circ}$ (Manchot, Zahn, Kränzlein, A. 345, 324). Prismen (aus Alkohol). F: 83,5°. Schwer löslich in kaltem Alkohol, leicht in heißem Alkohol und den meisten übrigen Solvenzien. HgCl₂ fällt aus alkoh. Lösung einen weißen, beständigen Niederschlag. Bei der Reduktion mit Zinkstaub und Eisessig oder Salzsäure entweicht viel Schwefelwasserstoff, mit Natriumamalgam erhält man das entsprechende Mercaptan. HgO gibt beim Kochen mit der alkoh. Lösung schwarzes Quecksilbersulfid, beim Erhitzen mit Kupferpulver entsteht 4.4'-Bisdimethylamino-dibenzyl (S. 248). $C_{18}H_{24}N_2S_2 + 2$ HCl. F: 211°. Leicht löslich in Wasser mit saurer Reaktion.
- 4.4'-Bis-benzalamino-dibenzylsulfid $C_{28}H_{24}N_{2}S = (C_{6}H_{5}\cdot CH:N\cdot C_{6}H_{4}\cdot CH_{9})_{2}S$. Beim Digerieren von 4.4'-Diamino-dibenzylsulfid und Benzaldehyd auf dem Wasserbade (O. Fischer, G. Fischer, B. 24, 726; O. F., B. 28, 1338). Nadeln (aus Alkohol). F: 95°.

So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches
 I. I. 1910] erschienenen Arbeiten von HINSBERG, B. 50, 470 und TROEGER, NOLTE, J. pr. [2]
 101. 140

<sup>101, 140.
2)</sup> So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches
[1. I. 1910] erschienenen Arbeit von BINZ, LIMPACH, JANSSEN, B. 48, 1070, 1072.

- 4.4'-Bis [4-nitro-bensalamino] dibensylsulfid $C_{28}H_{24}O_4N_4S=(O_2N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot CH_2)_2S$. B. Bei $^1/_2$ -stdg. Erhitzen von 1 Mol.-Gew. 4.4'-Diamino-dibenzylsulfid mit 2 Mol.-Gew. 4-Nitro-benzaldehyd auf 120° (O. FISCHER, B. 28, 1339). Gelbe Nadeln (aus Eisessig). F: 173°. Schwer löslich in Alkohol, Äther und Benzol.
- 44'-Bis-cinnamalamino-dibensylsulfid C₃₂H₂₈N₂S = (C₆H₅·CH:CH:CH:N·C₈H₄·CH₂)₂S. B. Beim Digerieren von 4.4'-Diamino-dibensylsulfid mit Zimtaldehyd (Bd. VII, S. 348) auf dem Wasserbade (O. FISCHER, G. FISCHER, B. 24, 727; O. F., B. 28, 1339). Blättchen (aus Chloroform + Alkohol). F: 158—159° (O. F.). Löslich in siedendem Chloroform, schwer löslich in Wasser, Alkohol, Äther und Benzol (O. F., G. F.).
- 4.4' Bis salicylalamino dibenzylsulfid C₃₈H₃₄O₂N₃S = (HO·C₆H₄·CH:N·C₄H₄·CH₂)₃S. B. Beim Digerieren von 4.4'-Diamino-dibenzylsulfid mit Salicylaldehyd (Bd. VIII, S. 31) auf dem Wasserbade (O. Fischer, G. Fischer, B. 24, 727; O. F., B. 28, 1339). Goldgelbe Nadeln (aus Chloroform + Alkohol). F: 176—177°.
- Phenyl-[4-acetamino-benzyl]-sulfon ¹) $C_{15}H_{15}O_3NS = CH_5 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot SO_5 \cdot C_6H_5$. B. Aus Phenyl-[4-amino-benzyl]-sulfon (8. 623) und Essigsäureanhydrid (HINSBERG, HIMMELSCHEIN, B. 29, 2023). Nadeln (aus Alkohol). F: 201°. Mäßig löslich in Alkohol und Eisessig.
- 4.4'-Bis-acetamino-dibensylsulfid C₁₈H₉₀O₂N₂S = (CH₃·CO·NH·C₆H₄·CH₂)₂S. B. Beim Kochen der alkoh. Lösung von 4.4'-Diamino-dibenzylsulfid mit überschüssigem Essigsäureanhydrid (O. FISCHER, G. FISCHER, B. 24, 726; O. F., B. 28, 1337). Nadeln. F: 188⁶ (O. F., G. F.; DIMBOTH, THIELE, B. 28, 915). Schwer löslich in Wasser, Äther, Benzol, Chloroform, leicht in Alkohol und Eisessig (O. F., G. F.).
- 4.4'-Bis-bensamino-dibensylsulfid $C_{28}H_{34}O_2N_2S = (C_0H_5\cdot CO\cdot NH\cdot C_0H_4\cdot CH_2)_2S$. B. Aus 4.4'-Diamino-dibenzylsulfid mit Benzoylchlorid und Natronlauge (O. FISCHER, G. FISCHER, B. 24, 726; O. F., B. 28, 1337). Blättchen (aus Eisessig). F: 223° (O. F., G. F.), 224° (DIMBOTH, THIELE, B. 28, 915). Fast unlöslich in Wasser, Alkohol, Äther, Benzol, Ligroin, Chloroform (O. F., G. F.).

3. Aminoderivate der Monooxy-Verbindungen $C_8H_{10}O$.

- 1. Aminoderivate des 2-Oxy-1-āthyl-benzols $C_8H_{10}O=C_2H_5\cdot C_6H_4\cdot OH$ (Bd. VI, S. 470). Vgl. auch No. 3 auf S. 628.
- [a-(2-Methoxy-phenyl)-äthyl]-anilin $C_{15}H_{17}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH(CH_3) \cdot NH \cdot C_6H_5$. B. Aus [2-Methoxy-benzal]-anilin (Bd. XII, S. 217) und Methylmagnesiumjodid (Anselmino, B. 40, 3474). Krystalle (aus Petroläther). Rhombisch bipyramidal (Jäger, B. 40, 3474). F: 46°; D: 1,141 (A.).
- β-[2-Oxy-phenyl]-äthylamin $C_8H_{11}ON = HO \cdot C_8H_4 \cdot CH_2 \cdot CH_2 \cdot NH_3$. B. Bei 4-stdg. Erhitzen des N.N'-Bis-[β-(2-oxy-phenyl)-äthyl]-harnstoffs (s. u.) mit alkoh. Salzsäure im geschlossenen Rohr auf 150—160° (PSCHORB, EINBECK, B. 38, 2072). $C_8H_{11}ON + HCl$. Rhombenförmige Blättchen (aus Alkohol-Äther). F: 152—153°.
- β-[2-Methoxy-phenyl]-šthylamin $C_0H_{13}ON = CH_3 \cdot O \cdot C_0H_4 \cdot CH_3 \cdot CH_3 \cdot NH_3$. B. Bei 5-stdg. Erhitzen von [β-(2-Methoxy-phenyl)-šthyl]-urethan (S. 625) mit 3 Tin. Alkohol und 10 Tin. konzentriertem wäßrigem Ammoniak im geschlossenen Rohr auf 180° (P., Ei., B. 38, 2076). Flüssigkeit. Kp: 236—237° (korr.). Leicht löslich in Äther. $C_0H_{13}ON + HCl$. Prismatische Tafeln (aus Alkohol-Äther). F: 141°.
- Trimethyl-[β -(2-oxy-phenyl)-äthyl]-ammoniumjodid $C_{11}H_{18}ONI = HO \cdot C_8H_4 \cdot CH_2 \cdot CH_2 \cdot N(CH_3)_8I$. B. Aus salzsaurem β -[2-Oxy-phenyl]-äthylamin, Methyljodid und Natriumäthylat in siedender alkoholischer Lösung (P., EI., B. 38, 2073). Prismen (aus absol. Alkohol). F: 217—218°. Gibt bei der Destillation mit konz. Natronlauge Cumaran (Syst. No. 2366) und Trimethylamin.
- Trimethyl [β -(2-methoxy phenyl)-äthyl] ammoniumjodid $C_{12}H_{20}ONI = CH_2 \cdot O \cdot C_4H_4 \cdot CH_2 \cdot CH_3 \cdot N(CH_3)_3I$. B. Durch Erhitzen von salzsaurem β -[2-Methoxy-phenyl]-äthylamin mit Methyljodid und Natriumäthylat in Alkohol (P., El., B. 38, 2076). Nadeln. F: 209°. Gibt beim Erhitzen mit alkoh. Natriumäthylat im geschlossenen Rohr Trimethylamin und 2-Methoxy-styrol (Bd. VI, S. 560).
- N.N'-Bis- $[\beta$ -(2-oxy-phenyl)-äthyl]-harnstoff $C_{17}H_{20}O_2N_2 = (HO \cdot C_0H_4 \cdot CH_3 \cdot CH$

¹⁾ Vgl. die Anm. 1 auf S. 628.

die äther. Lösung des entstandenen Azids 3 Stdn. mit dem $1^{1}/_{3}$ -fachen Volumen Alkohol, verjagt den Alkohol, destilliert unter ca. 30—40 mm Druck bei 180—220° das gebildete Hydrocumarin und unter 15 mm Druck bei 250—280° den N.N´-Bis- $[\beta$ -(2-oxy-phenyl)-äthyl]-harnstoff über (P., El., B. 38, 2071). — Viereckige Blättchen (aus Eisessig). F: 187—188°. Leicht löslich in Alkohol, schwerer in Eisessig, unlöslich in Äther und Wasser. — Beim Erhitzen mit alkoh. Salzsäure im geschlossenen Rohr auf 150—160° entsteht β -[2-Oxy-phenyl]-äthylamin (S. 624).

- [β-(2-Methoxy-phenyl)-äthyl]-urethan $C_{12}H_{17}O_3N=CH_2\cdot O\cdot C_8H_4\cdot CH_2\cdot CH_2\cdot NH\cdot CO_2\cdot C_2H_5$. B. Durch Hinzufügen einer konz. Natriumnitritlösung zu der mit Äther überschichteten wäßr. Lösung des salzsauren β-[2-Methoxy-phenyl]-propionsäure-hydrazids und nachfolgendes 4-stdg. Kochen der äther. Lösung des entstandenen Azids mit dem $1^1/2$ -fachen Volumen, absol. Alkohols (P., Ei., B. 38, 2075). Dickflüssiges Öl. Kp₁₂: 200^0 .
- 2. Aminoderivate des 4-Oxy-1-āthyl-benzols $C_8H_{10}O=C_2H_5\cdot C_6H_4\cdot OH$ (Bd. VI, S. 472). Vgl. auch No. 3 auf S. 628.

α -[4-Oxy-phenyl]-athylamin (11-Amino-4-oxy-1-athyl-benzol) und seine Derivate.

- a-[4-Oxy-phenyl]-äthylamin $C_8H_{11}ON = HO \cdot C_8H_4 \cdot CH(CH_3) \cdot NH_2$. B. Bei der Reduktion von 4-Oxy-acetophenon-oxim (Bd. VIII, S. 88) mit Natriumamalgam in methylalkoholisch-essigsaurer Lösung (Tutin, Caton, Hann, Soc. 95, 2123). Gummiähnliche Masse, schwer löslich in Wasser, Alkohol, unlöslich in Äther, Chloroform. Durch Erhitzen des salpetrigsauren Salzes im CO_2 -Strom und Behandeln des Reaktionsproduktes mit Essigsäureanhydrid erhält man das Monoacetat des a-[4-Oxy-phenyl]-äthylalkohols (Bd. VI, S. 904). $C_8H_{11}ON + HCl$. Prismen (aus Wasser). Erweicht beim Erhitzen allmählich und färbt sich zwischen 200° und 280° dunkel.
- a-[4-Methoxy-phenyl]-äthylamin $C_9H_{13}ON=CH_3\cdot O\cdot C_6H_4\cdot CH(CH_3)\cdot NH_2$. B. Aus Anishydramid (Bd. VIII, S. 75) und Methylmagnesiumjodid in Äther (Busch, Leefhelm, J. pr. [2] 77, 17). Wasserhelles, angenehm gewürzartig riechendes Öl. Kp₁₂: 127—131°. Zieht CO_2 an. $C_9H_{13}ON+HCl$. Nadeln. F: 157°. Sehr leicht löslich in Wasser und Alkohol. $C_9H_{13}ON+HNO_3$. Nadeln (aus Wasser). F: 114°.
- N-[a-(4-Oxy-phenyl)-āthyl]-benzamid $C_{15}H_{15}O_2N=H_0\cdot C_8H_4\cdot CH(CH_2)\cdot NH\cdot CO\cdot C_8H_5$. B. Aus N-[a-(4-Benzoyloxy-phenyl)-āthyl]-benzamid (s. u.) durch Kochen mit 5^0 /oiger alkoholischer Kalilauge (Tutin, Caton, Hann, Soc. 95, 2123). Prismen (aus Alkohol). F: 156^0 .
- N-[a-(4-Benzoyloxy-phenyl)-äthyl]-benzamid $C_{22}H_{19}O_3N=C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CH$ (CH₃)·NH·CO·C₆H₅. B. Aus a-[4-Oxy-phenyl]-äthylamin durch Benzoylierung nach Schotten-Baumann (T., C., H., Soc. 95, 2123). Nadeln (aus verd. Alkohol). F: 187° bis 188°. Liefert beim Kochen mit 5°/oiger alkoholischer Kalilauge N-[a-(4-Oxy-phenyl)-äthyl]-benzamid (s. o.).
- N-Phenyl-N'-[a-(4-methoxy-phenyl)-äthyl]-thioharnstoff $C_{16}H_{16}ON_2S=CH_3\cdot O\cdot C_6H_4\cdot CH(CH_3)\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus a-[4-Methoxy-phenyl]-äthylamin und Phenylsenföl in Alkohol (Busch, Leefhelm, J. pr. [2] 77, 18). Blättchen (aus verd. Alkohol). F: 125,5°.

eta-[4-0xy-phenyl]-äthylamin (13-Amino-4-oxy-1-äthyl-benzol) und seine Derivate.

β-[4-Oxy-phenyl]-äthylamin C₈H₁₁ON = HO·C₆H₄·CH₂·CH₃·NH₂. V. Im Mutter-korn zu ca. 0,01 bis 0,1% (Barger, Soc. 95, 1125; Barger, Dalb, A. Pth. 61, 115). — B. Bei der Fäulnis von Pferdefleisch (Barger, Walpole, C. 1909 I, 1591), von Dorschleber (Gautier, Bl. [3] 35, 1195), von menschlicher Placenta (Rosenheim, C. 1909 I, 1591). Bei der Selbstverdauung von Rinderpankreas (Emerson, B. Ph. P. 1, 501). Bei sehr protrahierter (12-monatiger) peptischer Verdauung von (koaguliertem) Eiweiß aus Pferdeblutserum (Langstein, B. Ph. P. 1, 507). Entsteht bei der Fäulnis von Tyrosin (Syst. No. 1911) in Gegenwart von Fleischbrühe (Barger, W., C. 1909 I, 1591). Beim Erhitzen von Tyrosin in kleinen Mengen auf 270° (Schmitt, Nasse, A. 133, 214). Durch Kochen von 4-Oxy-phenylessigsäure-nitril (Bd. X, S. 191) mit Natrium und Alkohol (Barger, Soc. 95, 1127). Aus β-[4-Methoxy-phenyl]-äthylamin (S. 626.) beim Kochen mit starker, entfärbter Jodwasserstoffsäure im CO₂-Strom (Rosenmund, B. 42, 4782) oder bei 4-stdg. Erhitzen mit Bromwasserstoffsäure (D: 1,4) im geschlossenen Rohr auf 160° (Barger, W., Soc. 95, 1724). Aus N-[β-(4-Oxy-phenyl)-äthyl]-benzamid (S. 627) beim Erhitzen mit 20°/ojeer Salzääure im geschlossenen Rohr auf 140° (Barger, W., Soc. 95, 1722). — Blättchen oder Nadeln (aus Benzol). F: 160° (Rosenm.), 161° (Barger, Soc. 95, 1128). Beginnt gegen 220° sich unter geringer Zersetzung zu verflüchtigen (Gau.). Kpg.: 175—181°; Kpg.: 161—163° (Barger, Soc. 95, 1128). Löslich in 95 Tln. Wasser von 15° (Gau.). Löslich in ca. 10 Tln. siedendem Alkohol, weniger löslich in siedendem Wasser, sohwer in siedendem, sehr wenig in kaltem

Xylol (BARGER, Soc. 95, 1128). Die wäßr. Lösung reagiert stark alkalisch (Sch., N.). Beim Schmelzen mit Kali entstehen NH, und 4-Oxy-benzoesäure (Barth, A. 152, 101).

— Riecht angenehm süßlich, schmeckt bitter (Gau.). Wirkt blutdrucksteigernd und erzeugt Uteruskontraktion; es ist der wirksame Bestandteil der wäßr. Mutterkorn-Auszüge (DALE, DIXON, C. 1909 II, 1143; BARGER, DALE, A. Pth. 61, 118, 130). — $C_8H_{11}ON + HCl$. Nadeln; leicht löslich in kaltem Wasser und Alkohol (Soh., N.). — Pikrat. Prismen; F: 2000 (BARGER, Soc. 95, 1128). — 2 C₈H₁₁ON + 2 HCl + PtCl₄. Plättchen (aus Alkohol) (E.). Gelb, ziemlich leicht löslich (GAU.).

 β -[4-Methoxy-phenyl]-äthylamin C₃H₁₃ON = CH₂·O·C₆H₄·CH₂·CH₃·NH₃. B. Aus 4-Methoxy-phenylacetaldoxim (Bd. VIII, S. 95) mit 3% egem Natriumamalgam in alkoh. Eisessig (ROSENMUND, B. 42, 4782). Aus β -[4-Methoxy-phenyl]-propionsaure-amid (Bd. X, S. 246) mit Brom und Natronlauge bei höchstens 55° (BARGER, WALPOLE, Soc. 95, 1724). - Fischig riechendes Öl. Kp₃₀: 138—140° (B., W.); Kp₁₈: 136—138° (R.). Sehr wenig löslich in Wasser (B., W.). Verwandelt sich an der Luft in das schwer lösliche Carbonat (R.). — Liefert beim Kochen mit starker, entfärbter Jodwasserstoffsäure im CO_2 -Strom (R.) oder bei 4-stdg. Erhitzen mit Bromwasserstoffsäure (D: 1,4) im geschlossenen Gefäß auf 160° (B., W.) β -[4-Oxy-phenyl]-äthylamin. — $C_9H_{13}ON + HCl$. Weiße Schuppen. F: 206° (B., W.), 207° (R.). Ziemlich leicht löslich in Wasser und heißem Alkohol, schwer in Aceton und kaltem Alkohol (R.).

 $[\beta - (4 - Oxy - phenyl) - \ddot{a}thyl] - dimethylamin, Hordenin <math>C_{10}H_{15}ON = HO \cdot C_6H_4 \cdot CH_3 \cdot CH_5$ CH₂·N(CH₂)₂. V. In den Malzkeimen der Gerste (Lecer, C. r. 142, 108; C. 1906 I, 941; Bl. [3] 35, 235)¹). — B. Man reduziert oxalsaures Dimethyl-[β -(4-nitro-phenyl)-äthyl]-amin (Bd. XII, S. 1100) mit Zinn und Salzsäure und kocht das gebildete Amin mit verd. Schwefelsäure unter allmählichem Zusatz von NaNO, (BARGER, Soc. 95, 2196). — Darst. Man erschöpft 3 kg lufttrockne Malzkeime mit 96% alkohol, filtriert den Auszug nach eintägigem Stehen, dampft das Filtrat zur Sirupdicke ein, versetzt den Rückstand mit 1 l Wasser, filtriert nach eintägigem Stehen, macht das Filtrat mit KaCO, alkalisch, entfernt den größten Teil des störenden Farbstoffes durch wenig Äther und entzieht der Flüssigkeit das Hordenin durch häufig wiederholtes Ausschütteln mit größeren Mengen Äther; der Rückstand des äther. Auszuges wird unter Zusatz von Tierkohle aus Äther umkrystallisiert (GAEBEL, Ar. 244, 436). — Farblose, nahezu geschmacklose Prismen (aus Alkohol). Rhombisch (Wyboubow, C. r. 142, 109; Bl. [3] 35, 235). F: 117,5° (Gae.; Ba.), 117,8° (korr.) (Lé., C. r. 142, 108; Bl. [3] 35, 236). Kp₁₁: 173—174° (Ba.). Sublimiert unzersetzt bei ca. 140—150° (Lé., C. r. 142, 108; Bl. [3] 35, 236). Leicht löslich in Alkohol, Chloroform, Ather, schwerer in Benzol, schwer in Toluol, sehr wenig in Xylol, fast unlöslich in kaltem Petroläther (Lž., C. r. 142, 109; Bl. [3] 35, 236). Ziemlich leicht löslich in Wasser (GAE.). — Wird durch KMnO4 in saurer und alkalischer Lösung, ebenso durch Chromsäure zu Oxalsäure oxydiert; liefert bei der Oxydation mit HNO₂ in der Hitze ein Gemisch von Pikrinsäure und Oxalsäure (L \dot{x} ., C. r. 148, 234; Bl. [3] 35, 869). Liefert nach vorausgegangener Methylierung durch Dimethylsulfat (und Kali) bei der Oxydation mit KMnO, Anissaure (GAE.). Farbreaktionen und Mikroreaktionen: Lt., C. r. 144, 490; C. 1907 I, 1435; LABAT, C. 1909 I, 2029; DENIGES, Bl. [4] 3, 786. — Hordenin ist wenig giftig (CAMUS, C. r. 142, 110). Wirkung auf die Blutzirkulation: C., C. r. 142, 237. Therapeutische Eigenschaften: SABRAZÈS, GUÉRIVE, C. r. 147, 1076. Die Wirkung des Pepsins, Trypsins und des Labs wird durch Hordeninsulfat gehemmt, ebenso das Wachstum von Bacterium coli und anderen Mikroben (C., C. r. 142, 350). — C₁₀H₁₅ON + HCl. tum von Bacterium coli und anderen Mikroben (C., C. r. 142, 350). — $C_{10}H_{15}ON + HCI$. Nadeln (aus 90%,igem Alkohol); sehr leicht löslich in Wasser (Lé., C. r. 142, 109; Bl. [3] 35, 237). — $C_{10}H_{15}ON + HBr$. Prismatische Nadeln; leicht löslich in Wasser, weniger in Alkohol (Lé., C. r. 142, 109; Bl. [3] 35, 238). — $C_{10}H_{15}ON + HI$. Prismen; etwas schwerer in Wasser löslich als das Hydrobromid, schwer löslich in Alkohol (Lé., C. r. 142, 109; Bl. [3] 35, 238). — $2 C_{10}H_{15}ON + H_{2}SO_{4} + H_{2}O$. Prismatische Nadeln; leicht löslich in Wasser, sehr wenig in Alkohol (Lé., C. r. 142, 109; Bl. [3] 35, 237). — Neutrales Tartrat $2 C_{10}H_{15}ON + C_{4}H_{2}O_{6}$. Nadeln (aus 95%,igem Alkohol); leicht löslich in Wasser (Lé., C. r. 144, 208; C. 1907 I, 1435). — Saures Tartrat $C_{10}H_{15}ON + C_{4}H_{2}O_{6}$. Nadeln (aus 85%,igem Alkohol); in Wasser etwas schwerer löslich als das neutrale Tartrat (Lé., C. r. 144, 208; C. 1907 I 1435). C. 1907 I, 1435).

[β -(4-Acetoxy-phenyl) - äthyl] - dimethylamin, Acetylhordenin $C_{12}H_{17}O_2N=CH_3$ · $CO \cdot O \cdot C_4H_4 \cdot CH_2 \cdot CH_2 \cdot N(CH_2)_2$. B. Durch 3—4-stdg. Erhitzen von Hordenin mit Essigsäureanhydrid auf 100° (Leger, C. r. 142, 110; C. 1906 I, 941; Bl. [3] 35, 238). — Sirupõse Flüssigkeit. — C₁₉H₁₇O₂N + HI. Tafeln; sehr wenig löslich in kaltem Wasser, leicht in Alkohol. — Sulfat. Krystallisiert nicht. Sehr leicht löslich in Wasser und Alkohol.

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] hat SPÄTH (M. 40, 138; 42, 263) festgestellt, daß das in Auhalonium fissuratum vorkommende Alkaloid Anhalin (Syst. No. 4790) identisch mit Hordenin ist.

[β -(4-Benzoyloxy-phenyl)-äthyl]-dimethylamin, Benzoylhordenin $C_{17}H_{19}O_2N=C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_2$. B. Aus Hordenin und Benzoylchlorid in Gegenwart von Pyridin (Légers, C.r. 144, 209; C. 1907 I, 1435). — $C_{17}H_{19}O_3N+HCl$. Nadeln (aus 95%)-gigem Alkohol); leicht löslich in Wasser, weit weniger in Alkohol. — $C_{17}H_{19}O_2N+HBr$. Rechtwinklige Blättchen (aus 95%)-gigem Alkohol); schwer löslich in kaltem Wasser und absol. Alkohol, leichter in der Hitze.

 $[β-(4-Cinnamoyloxy-phenyl)-äthyl]-dimethylamin, Cinnamoylhordenin <math>C_{19}H_{21}O_2N=C_0H_5\cdot CH:CH\cdot CO\cdot O\cdot C_0H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_2$. B. Aus Hordenin und Cinnamoylchlorid in Gegenwart von Pyridin (Léger, C. r. 144, 209; C. 1907 I, 1435). — Nadeln (aus 60% gigen Alkohol). F: 55,8% (korr.). Nimmt rasch einen Geruch nach bitteren Mandeln an. — $C_{19}H_{21}O_2N+HCl+H_2O$. Prismatische Nadeln (aus 90% gigen Alkohol); leicht löslich in Wasser. — Nitrat. Sehr wenig lösliches Krystallpulver.

[β -(4-Anisoyloxy-phenyl)-äthyl]-dimethylamin, Anisoylhordenin $C_{18}H_{21}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_2$. B. Aus Hordenin und Anisoylchlorid in Gegenwart von Pyridin (Léger, $C.\tau$. 144, 210; C. 1907 I, 1435). — $C_{18}H_{21}O_3N+HCl+H_2O$. Verwitternde Tafeln (aus Wasser).

Trimethyl- $[\beta$ -(4-oxy-phenyl)-äthyl]-ammoniumhydroxyd, Hordenin-hydroxymethylat $C_{11}H_{10}O_2N=HO\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_3\cdot OH$. B. Das Chlorid entsteht aus 5 g Hordenin, gelöst in 10 g Methylalkohol, und 2,5—3 g Methylchlorid bei gewöhnlicher Temperatur (Léger, C. r. 144, 208; C. 1907 I, 1435), das Jodid aus Hordenin und Methyloidid im geschlossenen Rohr bei 110° oder beim Stehen in alkoholischer oder ätherischer Lösung bei gewöhnlicher Temperatur (L., C. r. 142, 109; C. 1906 I, 941; Bl. [3] 35, 238), ferner aus β -[4-Oxy-phenyl]-äthylamin in Methylalkohol beim Erhitzen mit überschüssigem Methyljodid (Barger, Soc. 95, 2197). Aus der wäßr. Lösung des Jodids erhält man mit Silberoxyd die freie Base (L., C. r. 143, 235; Bl. [3] 35, 869). — Nadeln. Zersetzt sich bei der Destillation unter Bildung von Trimethylamin (L., C. r. 143, 235; Bl. [3] 35, 870). — Chlorid $C_{11}H_{18}ON\cdot Cl$. Nadeln (aus Methylalkohol); leicht löslich in Wasser, schwer in kaltem Methylalkohol (L., C. r. 144, 209). — Jodid $C_{11}H_{18}ON\cdot I$. Prismen (aus Wasser). F: 230° bis 231° (B.). In heißem Wasser viel leichter löslich als in kaltem (L., C. r. 142, 110).

Trimethyl-[β -(4-methoxy-phenyl)-äthyl]-ammoniumhydroxyd, Hordeninmethyläther-hydroxymethylat $C_{12}H_{21}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_3\cdot OH$. B. Das Jodid entsteht aus Hordenin-jodmethylat und Dimethylsulfat in Gegenwart von Natronlauge; es liefert in wäßr. Lösung mit Silberoxyd die freie Base (Léger, C. r. 144, 210, 489; C. 1907 I, 1435). — Die Base zerfällt bei der Destillation in Trimethylamin und 4-Methoxy-styrol (Bd. VI, S. 561) (L., C. r. 144, 489; C. 1907 I, 1435). — Jodid $C_{12}H_{20}ON\cdot I$. Nadeln (aus Wasser) mit $1^1/2$ H_2O (L., C. r. 144, 210).

Trimethyl-[β -(4-benzoyloxy-phenyl)-äthyl]-ammoniumjodid, Benzoylhordeninjodmethylat $C_{18}H_{22}O_2NI = C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot N(CH_3)_3I$. B. Durch Benzoylieren von Hordenin-jodmethylat (Barger, Soc. 95, 2197). — Sechsseitige Blättchen (aus Wasser). F: 252—254°.

Dimethyl - äthyl - $[\beta - [(4 - oxy - phenyl) - äthyl] - ammoniumhydroxyd, Hordeninhydroxyäthylat <math>C_{12}H_{21}O_2N = HO \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot N(CH_3)_2(C_2H_5) \cdot OH$. B. Das Chlorid entsteht durch 2-stdg. Erhitzen von 2 g Hordenin, 8 g absol. Alkohol und 4 g Äthylchlorid im geschlossenen Rohr auf 100—110°, das Bromid durch 3-stdg. Erhitzen von 4 g Hordenin, 8 g absol. Alkohol und 5 g Äthylbromid am Rückflußkühler, das Jodid durch $\frac{1}{2}$ -stdg. Erhitzen von 4 g Hordenin, 8 g absol. Alkohol und 5 g Äthyljodid am Rückflußkühler (Leger, C. r. 144, 209; C. 1907 I, 1435). — Chlorid $C_{12}H_{30}ON \cdot Cl$. Prismen (aus Alkohol); leicht löslich in kaltem Wasser, weniger in kaltem Alkohol. — Bromid $C_{12}H_{30}ON \cdot Br$. Quadratische Tafeln (aus $90^0/_{0}$ igem Alkohol); leicht löslich in kaltem und heißem Wasser, schwer in Alkohol. — Jodid $C_{12}H_{30}ON \cdot I$. Prismatische Nadeln (aus Wasser); leicht löslich in heißem, schwer in kaltem Wasser.

N-[β -(4-Oxy-phenyl)-äthyl]-benzamid $C_{15}H_{15}O_2N=HO\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot NH\cdot CO\cdot C_6H_5$. B. Aus β -[4-Oxy-phenyl]-äthylamin und 1 Mol.-Gew. Benzoylchlorid in Gegenwart von Alkali (Barger, Soc. 95, 1128). Aus N-[β -(4-Amino-phenyl)-äthyl]-benzamid (S. 177) durch Diazotieren und Verkochen (Barger, Walpole, Soc. 95, 1722). — Tafeln (aus Alkohol). F: 162° (B.; B., W.). — Beim Erhitzen mit 20°/oiger Salzsäure im geschlossenen Rohr auf 140° entsteht β -[4-Oxy-phenyl]-äthylamin (B., W.).

N-[β -(4-Benzoyloxy-phenyl)-äthyl]-benzamid $C_{32}H_{12}O_3N = C_6H_5 \cdot CO \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus β -[4-Oxy-phenyl]-äthylamin (Barger, Soc. 95, 1128; vgl. EMERSON, B. Ph. P. 1, 503) oder N-[β -(4-Oxy-phenyl)-äthyl]-benzamid (Barger, Walfole, Soc. 95, 1722) mit Benzoylchlorid und verd. Natronlauge. — Krystalle (aus Alkohol). F: 169° (E.), 170° (B.; B., W.).

4.6-Diamino-2-oxy-1-äthyl-bensol, 3.5-Diamino-2-äthyl-phenol $C_2H_{12}ON_2$, Formel I, oder 2.6-Diamino-4-oxy-1-äthyl-bensol, 3.5-Diamino-4-àthyl-phenol $C_2H_{12}ON_2$, Formel II. B. Aus I. 2.4.6-Trinitro-1-äthyl-benzol (Bd. V, S. 360) mit Zinn und Salzsäure (Weisweiller, M. 21, 46). — Durch längeres Sieden des salzsauren Salzes mit Wasser entsteht 2-Äthyl-phloroglucin (Bd. VI, S. 1113). — $C_2H_{12}ON_2 + 2HCl$. Krystalle.

O.N.N'-Triacetylderivat $C_{14}H_{18}O_4N_3=(CH_3\cdot CO\cdot NH)_2C_6H_3(C_2H_5)\cdot O\cdot CO\cdot CH_8$. B. Durch längeres Kochen von salzsaurem Diamino-äthyl-phenol (s. o.) mit Essigsäureanhydrid (Weisweiller, M. 21, 47). — Nädelchen (aus Alkohol). F: 259—262°. Leicht löslich in Alkohol, schwer in Essigester, unlöslich in Wasser, Äther, Benzol und Ligroin.

4. Aminoderivate des 1¹-Oxy-1-äthyl-benzols (Methylphenylcarbinols) $C_8H_{10}O=C_6H_5\cdot CH(OH)\cdot CH_3$ (Bd. VI, S. 475).

Methyl-[4-amino-phenyl]-carbinol (4-Amino-11-oxy-1-Athyl-benzol) und seine Derivate.

Methyl-[4-amino-phenyl]-carbinol $C_8H_{11}ON = H_2N \cdot C_8H_4 \cdot CH(OH) \cdot CH_3$. B. Beim Behandeln von 4-Amino-acetophenon (Syst. No. 1873) in wäßrig-alkoholischer Lösung mit Natriumamalgam (Rousser, Bl. [3] 11, 321). — Krystalle (aus Wasser). F: 93°. Kp₁₈: 190°. Löslich in Wasser, Alkohol, Ather, Chloroform, Benzol. — Färbt sich am Licht gelb. — $2 C_8 H_{11}ON + 2 HCl + PtCl_4$. Gelbe Nadeln.

Methyl-[4-dimethylamino-phenyl]-carbinol $C_{10}H_{15}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH(OH) \cdot CH_3$. B. Aus 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. Methylmagnesiumjodid in Ather (F. Sachs, L. Sachs, B. 38, 512). — Citronengelbe Blättchen (aus Petroläther). F: $60^1/4^0$; leicht löslich in Wasser und den gebräuchlichen organischen Lösungsmitteln; die gelbe Lösung in Eisessig wird in der Wärme grün. Löslich in konz. Schwefelsäure mit gelber Farbe. Zersetzt sich beim Aufbewahren und beim Erhitzen. — Chloroplatinat. Schwer krystallisierende, braungelbe Masse.

[Methyl-(4-acetamino-phenyl)-carbin]-acetat $C_{12}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot CH(O\cdot CO\cdot CH_3)\cdot CH_3$. Beim Kochen von Methyl-[4-amino-phenyl]-carbinol mit Essigsäureanhydrid (Rousser, Bl. [3] 11, 322). — Krystalle. F: 192°. Leicht löslich in Alkohol, Ather, Benzol, sehr wenig in Wasser.

Trichlormethyl-[4-methylamino-phenyl]-carbinol $C_9H_{10}ONCl_2=CH_3\cdot NH\cdot C_9H_4\cdot CH(OH)\cdot CCl_3$. B. Beim Erwärmen von Chloralhydrat mit 1 Mol.-Gew. Methylanilin (Boessneck, B. 21, 782). — Krystalle (aus Alkohol). F: 112° (Zers.). — $C_9H_{10}ONCl_3+HCl$. Dicke Prismen (aus verd. Salssäure). Sehr schwer löslich in kaltem, leicht in heißem Wasser.

Trichlormethyl-[4-dimethylamino-phenyl]-carbinol $C_{10}H_{13}ONCl_3 = (CH_2)_8N \cdot C_8H_4$. $CH(OH) \cdot CCl_3$. B. Aus Chlorsf und Dimethylanilin in Phenol bei Zimmertemperatur (ZIEROLD, D. R. P. 61551; Frdl. 3, 109). Bei mehrwöchigem Stehen äquimolekularer Mengen von Chloralhydrat und Dimethylanilin in Gegenwart von Zinkchlorid (KNÖFLER, BOESSNECK, B. 20, 3193; vgl. BOESSNECK, B. 18, 1519). — Blättchen (aus verd. Alkohol). F: 111° (Zers.) (B.). — Zersetzt sich beim Kochen mit Kalilauge in Chloroform und 4-Dimethylamino-benzaldehyd (B.). — $C_{10}H_{13}ONCl_3 + HCl$. Nadeln (aus Wasser). Schwer löslich in Wasser (B.).

[Trichlormethyl-(4-dimethylamino-phenyl)-carbin]-scetat $C_{19}H_{14}O_{2}NCl_{3}=(CH_{9})_{2}N\cdot C_{6}H_{4}\cdot CH(O\cdot CO\cdot CH_{2})\cdot CCl_{3}.$ B. Durch Kochen des Trichlormethyl-[4-dimethylamino-phenyl]-carbinols mit Essigsäureanhydrid (Boessneck, B. 18, 1518). — F: 84—85°.

Trichlormethyl-[4-sthylamino-phenyl]-carbinol $C_{10}H_{12}ONCl_2 = C_2H_5 \cdot NH \cdot C_4H_4 \cdot CH(OH) \cdot CCl_2$. B. Aus Chloralhydrat und Athylanilin (Boessneck, B. 21, 783). — Krystalle (aus Alkohol). F: 98°. — $C_{10}H_{12}ONCl_2 + HCl$. Nadeln.

Trichlormethyl - [4-diäthylamino-phenyl]-carbinol $C_{12}H_{18}ONCl_3 = (C_2H_5)_2N \cdot C_8H_4 \cdot CH(OH) \cdot CCl_3$. B. Bei 2-tägigem Stehen von 20 g Chloralhydrat mit 60 g Diäthylanilin und 10 g ZnCl₂ bei 40⁶ (Boessneck, B. 19, 368). — Öl. Wird durch alkoholisches Kali in Chloroform und 4-Diäthylamino-benzaldehyd gespalten. — $C_{18}H_{16}ONCl_3 + HCl$. Würfel (aus Wasser).

Trichlormethyl-[4-methylnitrosamino-phenyl]-carbinol $C_0H_0O_2N_3Cl_0 = ON-N(CH_2)\cdot C_0H_4\cdot CH(OH)\cdot CCl_3$. B. Aus salzsaurem Trichlormethyl-[4-methylamino-phenyl]-carbinol in verd. Salzsaure mit NaNO₂ (Boessneck, B. 21, 783). — Nadeln (aus Alkohol). F: 117—118°. Löslich in Alkohol, Äther, Eisessig.

CH,

 $\textbf{Trichlormethyl-[4-athylnitrosamino-phenyl]-carbinol} \quad C_{10}H_{11}O_{2}N_{2}Cl_{3} \ = \ ON\cdot \\$ N(C₂H₅)·C₆H₄·CH(OH)·CCl₃. B. Aus salzsaurem Trichlormethyl-[4-äthylamino-phenyl]carbinol in verd. Salzsaure mit NaNO, (Boessneck, B. 21, 783). — Krystalle (aus Wasser oder Alkohol). F: 138° (Zers.).

Aminomethyl-phenyl-carbinol (12-Amino-11-oxy-1-äthyl-benzol) und seine Derivate.

Aminomethyl-phenyl-carbinol $C_8H_{11}ON = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot NH_2$. B. Aus Isonitroso-acetophenon (Bd. VII, S. 671) in verd. Alkohol mit Natriumamalagam und Salzsäure (Kolshorn, B. 37, 2482). Aus Benzaldehydcyanhydrin (Bd. X, S. 206) in alkoh. Lösung mit Natriumamalgam und verd. Essigsäure unter guter Kühlung (Höchster Farbw., D. R. P. 193634; C. 1908 I, 430). — Krystallinisch erstarrendes, farbloses Öl. — Hydrochlorid. Farblose Krystalle. F: 176—177°; leicht löslich in Wasser (H. F.). — Pikrat $C_8H_{11}ON+C_6H_3O_7N_3$ (K.). Prismatische Blättchen (aus Alkohol). F: 146—147° (K.), 153—154° (H. F.); zersetzt sich bei ca. 2050 unter Aufschäumen (K.). — Chloroplatinat 2CgH11ON+2HCl +PtCl₄. Hellgelbe Schuppen (aus Wasser); bräunt sich bei etwa 195°, wird oberhalb 200° schwarz und ist bei 260° noch nicht geschmolzen (K.).

 $[Aminomethyl-phenyl-carbin]-benzoat C_{15}H_{15}O_2N-C_6H_5\cdot CH(O\cdot CO\cdot C_6H_5)\cdot CH_2\cdot NH_2.\\ B.\ Aus\ salzsaurem\ Aminomethyl-phenyl-carbinol\ mit\ Benzoylchlorid\ und\ "übersch" üssiger\ Natron.$ lauge (Kolshorn, B. 37, 2484). — Schuppenartige Blättchen (aus Alkohol). F: 144—145,5°.

Dimethylaminomethyl-phenyl-carbinol $C_{10}H_{15}ON = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot N(CH_3)_2$. Aus Jodmethyl-phenyl-carbinol (Bd. VI, S. 476) und überschüssigem Dimethylamin (TIFFENEAU, A. ch. [8] 10, 348). Durch Erhitzen von Styroloxyd (Syst. No. 2366) mit Dimethylamin in Benzol (TIFFENEAU, FOURNEAU, C. r. 146, 699). Aus Dimethylphenacylamin (Syst. No. 1873) durch Reduktion (T.). — Kp₂₀: 120° (T.). — Hydrojodid. F: 159° (T.).

[Dimethylaminomethyl - phenyl - carbin] - benzoat $C_{17}H_{19}O_2N = C_6H_5 \cdot CH(O \cdot C() \cdot C_6H_5) \cdot CH_2 \cdot N(CH_3)_2$. B. Das Hydrochlorid entsteht aus Dimethylaminomethyl-phenylcarbinol und Benzoylchlorid (TIFFENEAU, A. ch. [8] 10, 348). — Hydrochlorid. F: 2100.

Benzylaminomethyl-phenyl-carbinol $C_{15}H_{17}ON = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5$. B. Bei allmählichem Eintragen von 200 g Natrium in die siedende Lösung von 80 g

salzsaurem 2.5-Diphenyl-oxazol C_6H_5 $C \cdot C_6H_5$ (Syst. No. 4200) in 2,5 l absol. Alkohol

(E. FISCHER, B. 29, 210). — Nadeln (aus Ligroin). F: 104° (korr.). Destilliert in kleinen Mengen unzersetzt. Sehr schwer flüchtig mit Wasserdampf. Leicht löslich in warmem Alkohol und Benzol, ziemlich leicht in heißem Wasser, löslich in ca. 200 Tln. Ligroin. -Hydrochlorid. Blättchen. F: 2260 (korr.). Leicht löslich in heißem, ziemlich schwer in kaltem Wasser, sehr wenig in Salzsäure.

Phenacetaminomethyl-phenyl-carbinol $C_{16}H_{17}O_2N=C_6H_5\cdot CH(OH)\cdot CH_2\cdot NH\cdot CO\cdot CH_2\cdot C_6H_5$. B. Aus ω -Phenacetamino-acetophenon (Syst. No. 1873) in wäßt. Methylalkohol mit Natriumamalgam unter Einleiten von CO₂ (Robinson, Soc. 95, 2171). — Farblose Prismen (aus Äther). F: 990.

N-Phenyl-N'-[β-oxy-β-phenyl-äthyl]-thioharnstoff $C_{15}H_{16}ON_2S = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Aus Aminomethyl-phenyl-carbinol und Phenylsenföl (Bd. XII, S. 465) (Kolshorn, B. 37, 2484). — Nädelchen oder Blättchen (aus Alkohol). F: 131—132°. Leicht löslich in Alkohol, Äther, schwerer in heißem Benzol. — Beim Erhitzen mit rauchender Bromwasserstoffsäure im geschlossenen Rohr auf 100° entsteht 2-Phenylimino-5-phenyl- H_2C —NH Schnossenen Kohr auf 100 $C_6H_5 \cdot HC$ —S $C: N \cdot C_6H_5$ (Syst. No. 4278).

thiazolidin

Benzylnitrosaminomethyl - phenyl - carbinol $C_{15}H_{16}O_2N_2 = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot$ N(NO) · CH₂ · C₆H₅. B. Aus Benzylaminomethyl-phenyl-carbinol in verd. Essigsaure mit Natriumnitrit (E. FISCHER, B. 29, 211). — Nadeln (aus Ligroin). F: 95° (korr.). Leicht löslich in Alkohol, Ather und Aceton, ziemlich schwer in warmem Ligroin.

Aminoderivate des 4-Oxy-1.2-dimethyl-benzols $C_8H_{10}O = (CH_3)_2C_6H_3 \cdot OH$ (Bd. VI, S. 480).

CH₃ 5-Amino-4-oxy-1.2-dimethyl-benzol, 6-Amino-asymm.-o-xylenol1) $C_8H_{11}ON$, s. nebenstehende Formel. B. Aus 5-Nitro-4-oxy-1.2-dimethylbenzol (Bd. VI, S. 484) oder aus dem Phenylhydrazon des 4.5-Dimethylbenzochinons-(1.2) (Syst. No. 2114) mit Zinn und Salzsäure unter Zusatz von Eisessig (DIEPOLDER, B. 42, 2920). - Blättchen (aus Äther). Bräunt

¹⁾ Bezifferung der vom Namen "asymm. o-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 480.

630

sich oberhalb 165°; F: 173—175°. Sublimiert in farblosen, anscheinend triklinen Rhomben. Langsam flüchtig mit Wasserdampf. 100 g Äther lösen cs. 1,3 g. Gut löslich in Alkohol, ziemlich schwer in Benzol, sehr wenig in Wasser und Petroläther. — Gibt mit $K_1Cr_2O_7$ in verd. Schwefelsäure 4.5-Dimethyl-benzochinon-(1.2) (Bd. VII, S. 656). — $C_2H_{11}ON+HCl.$ Weiße Nadeln (aus Wasser). F: 250° (Zers.). Sehr leicht löslich in Wasser und Alkohol. PtCl₄ oxydiert unter Blaufärbung, FeCl₂ färbt dunkelgrün.

[3.5.6-Tribrom-4-oxy-2-methyl-bensyl]-anilin $C_{14}H_{12}ONBr_s$, s. nebenstehende Formel. B. Aus 3.5.6.1\(^1\)-Tetrabrom-4-oxy-1.2-dimethyl-benzol (Bd. VI, S. 482) und 2 Mol.-Gew. Anilin in lauwarmem Benzol (Auwers, Rovaart, A. 302, 103). — Krystalle (aus Alkohol). F: 120—125\(^0\). Leicht löslich in Benzol, schwerer in Alkohol und Eisessig, sehr wenig in Ligroin.

3.5.6-Tribrom-1¹.2¹-dianilino-4-oxy-1.2-dimethyl-bensol $C_{20}H_{17}ON_2Br_3$, s. nebenstehende Formel. B. Aus 3.5.6.1¹.2¹-Pentabrom-4-oxy-1.2-dimethyl-bensol (Bd. VI, S. 483) und Anilin in Chloroform (Auwers, B. 32, 3000; A., v. Erggellet, B. 32, 3026). — Lichtbraunes Pulver. Leicht löslich in organischen Mitteln und verd. Alkali.

3.5.6-Tribrom -1¹.2¹-dianilino -4-äthoxy-1.2-dimethyl-benzol $C_{ab}H_{a1}ON_{a}Br_{a}=C_{a}H_{a}\cdot O\cdot C_{b}Br_{a}(CH_{a}\cdot NH\cdot C_{b}H_{a})_{a}$. B. Aus 3.5.6.1¹.2¹-Pentabrom-4-äthoxy-1.2-dimethyl-benzol (Bd. VI, S. 483) und Anilin in Benzol (A., v. E., B. 32, 3027). — Gelbes Pulver.

3.5.6 - Tribrom -1¹.2¹-di - o - toluidino - 4 - oxy-1.2-dimethyl-bensol $C_{sp}H_{s1}ON_sBr_s = HO \cdot C_sBr_s(CH_s \cdot NH \cdot C_sH_4 \cdot CH_s)_s$. B. Aus 3.5.6.1¹.2¹-Pentabrom-4-oxy-1.2-dimethyl-benzol und 4 Mol.-Gew. o-Toluidin in kaltem Benzol (A., v. E., B. 32, 3025). — Nadeln oder krystallinisches Pulver (aus Alkohol). F: 153°. Leicht löslich in heißem Alkohol und Eisessig.

3.5.6-Tribrom-1¹.2¹-di-o-toluidino-4-äthoxy-1.2-dimethyl-bensol $C_{24}H_{25}ON_{2}Br_{3}=C_{2}H_{5}\cdot O\cdot C_{4}Br_{3}(CH_{2}\cdot NH\cdot C_{4}H_{4}\cdot CH_{3})_{2}$. B. Aus 3.5.6.1¹.2¹-Pentabrom-4-äthoxy-1.2-dimethyl-benzol und o-Toluidin in heißem Benzol (A., v. E., B. 32, 3026). — Krystallinisches Pulver (aus Alkohol). F: 121—123°. Schwer löslich in den meisten Mitteln.

3.5.6-Tribrom-1·2·di-p-toluidino-4-äthoxy-1.2-dimethyl-bensol $C_{24}H_{35}ON_3Br_3 = C_2H_5\cdot O\cdot C_8Br_3(CH_5\cdot NH\cdot C_6H_4\cdot CH_3)_3$. B. Aus 3.5.6.1·2·Pentabrom-4-äthoxy-1.2-dimethyl-benzol und p-Toluidin beim Stehen in kaltem Chloroform (A., v. E., B. 32, 3027). — Amorphes Pulver.

6. Aminoderivate des 4-Oxy-1.3-dimethyl-benzols $C_0H_{10}O = (CH_2)_3C_0H_3 \cdot OH$ (Bd. VI, S. 486).

5-Amino-4-oxy-1.3-dimethyl-benzol, 6-Amino-asymm.-m-xyle-nol ¹) C₈H₁₁ON, s. nebenstehende Formel. B. Aus 5-Nitro-4-oxy-1.3-dimethyl-benzol (Bd. VI, S. 490) mit Zinn und Salzsäure (Francke, A. 296, 200). — Blättchen (aus Benzol oder Alkohol). F: 133—134°. Leicht löslich in Alkohol und Äther, schwer in Benzol, fast unlöslich in Wasser und Benzin.

— Gibt beim Chlorieren in Eisessig eso-Tetrachlor-1.3-dimethyl-cyclohexen-(x)-dion-(4.5) (Bd. VII, S. 579). — Hydrochlorid. Blättchen. Leicht löslich in Wasser und heißem Alkohol, schwerer in Salzsäure.

5-Amino-4-methoxy-l.3-dimethyl-benzol, 6-Amino-asymm.-m-xylenol-methyl-äther $C_9H_{12}ON=H_4N\cdot C_9H_4(CH_2)_2\cdot O\cdot CH_2$. B. Entsteht in geringer Ausbeute aus 5-Nitro-4-methoxy-1.3-dimethyl-benzol (Bd. VI, S. 490) mit Zinn und Salzzäure oder mit Eisen und Essigsäure (Hodgkinson, Limpach, Soc. 63, 106). — Farblose, an der Luft dunkel werdende Flüssigkeit. Bleibt bei -10^9 flüssig. Kp: 239,5° (korr.). — Hydrochlorid. Tafeln. — 2 $C_9H_{13}ON+2HCl+PtCl_4$. Gelbe Prismen.

5-Amino-4-äthoxy-1.8-dimethyl-bensol, 6-Amino-asymm.-m-xylenol-äthyläther $C_{10}H_{15}ON = H_2N \cdot C_2H_3(CH_2)_2 \cdot O \cdot C_2H_5$. B. Aus 3.5.4'-Trimethyl-2-äthoxy-azobenzol (Syst. No. 2114) in Alkohol mit Zinnehlorür und Salzsäure neben anderen Produkten (Jacobson, A. 369, 26). — Kp₂₀: ca. 146°.

5-Formamino - 4 - oxy - 1.3 - dimethyl - bensol, 6 - Formamino - asymm.-m-xylenol $C_0H_{11}O_2N = OHC \cdot NH \cdot C_0H_{21}(CH_{2})_2 \cdot OH$. B. Man dampft 5-Amino-4-oxy-1.3-dimethyl-

¹⁾ Bezifferung der vom Namen "asymm. m-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 486.

benzol mit überschüssiger Ameisensäure zur Trockne und destilliert das entstandene Formiat (Hodgkinson, Limpach, Soc. 63, 107). — Nadeln oder Prismen (aus verd. Alkohol). F: 68°.

- **5-Acetamino-4-oxy-1.8-dimethyl-benzol**, 6-Acetamino-asymm.-m-xylenol $C_{10}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_2(CH_2)_2\cdot OH$. Krystalle (aus verd. Alkohol). F: 96° (H., L., Soc. 68, 107).
- 5-Acetamino-4-äthoxy-1.3-dimethyl-benzol, 6-Acetamino-asymm.-m-xylenol-äthyläther $C_{12}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_2(CH_3)_2\cdot O\cdot C_2H_5$. B. Aus 5-Amino-4-äthoxy-1.3-dimethyl-benzol und Essigsäureanhydrid (JACOBSON, A. 369, 26). F: 65—66°. Leicht löslich in kaltem Alkohol und warmem Petroläther.
- 5-Benzamino-4-benzoyloxy-1.3-dimethyl-benzol, O.N-Dibenzoyl-[6-amino-asymm.-m-xylenol] $C_{22}H_{12}O_2N=C_6H_5\cdot CO\cdot NH\cdot C_6H_2(CH_3)_2\cdot O\cdot CO\cdot C_6H_5$. Aus salz-saurem 5-Amino-4-oxy-1.3-dimethyl-benzol mit überschüssigem Benzoylchlorid und Alkali (Auwers, A. 365, 295, 297). F: 153,5°.

N.N'-Bis-[2-äthoxy-8.5-dimethyl-phenyl]-thioharnstoff
C₂₁H₂₉O₂N₂S, s. nebenstehende Formel. Prismatische Krystalle
(aus Alkohol); F: 141—142°; sehr wenig löslich in Ligroin, leicht in CS
Benzol und Alkohol (Jacobson, A. 869, 26).

- 6 Amino 4 oxy 1.3 dimethyl benzol , 5 Amino asymm.m-xylenol 1) C₂H₁₁ON, s. nebenstehende Formel. B. Aus 6-Nitro-4-oxy1.3-dimethyl-benzol (Bd. VI, S. 490) mit Zinnchlorür und konz. Salzsäure
 (Bamberger, Reber, B. 40, 2267), mit Zinn und Salzsäure (Pfaff, B. 16,
 1137) oder mit Eisenfeile und verd. Essigsäure (B., R.). Durch Erhitzen
 von 5 Oxy 2.4 dimethyl azobenzol (Syst. No. 2114) in Ligroin mit
 Aluminiumamalgam und Wasser (B., R.). Weiße Nadeln oder Schüppchen (aus Alkohol).
 F: 166,5—167° (B., R.). Schwer löslich in siedendem Ligroin und Benzol, ziemlich
 schwer in kaltem, mäßig in heißem Wasser, ziemlich leicht in kaltem, sehr leicht in heißem
 Alkohol (B., R.) und Äther (P.). Leicht löslich in Mineralsäuren und Ätzalkalien (B., R.). —
 Durch Diazotieren in schwefelsaurer Lösung und Verkochen der mit wäßr. Schwefelsäure
 verdünnten Diazoniumsalzlösung erhält man m-Xylorein (Bd. VI, S. 912) (P.). C₃H₁₁ON + HCl.
 Blättchen. Leicht löslich in Wasser, Alkohol und Äther (P.).
- 6-Benzolsulfamino-4-oxy-1.3-dimethyl-benzol, 5-Benzolsulfamino-asymm.m-xylenol $C_{14}H_{15}O_{2}NS=C_{6}H_{5}\cdot SO_{2}\cdot NH\cdot C_{6}H_{2}(CH_{2})_{2}\cdot OH.$ B. Aus diazotiertem 4-Amino-6-benzolsulfamino-m-xylol (S. 184) bei Zusatz von Natriumacetat (MORGAN, MICKLE-THWAIT, Soc. 89, 1297). Amorph, gelb. F: 136—143°. Gibt ein bei 179—182° schmelzendes Benzoylderivat $C_{21}H_{19}O_{4}NS$.
- [3.5.6 Tribrom 4 oxy 3 methyl benzyl] diisoamylamin $C_{18}H_{38}ONBr_3$, s. nebenstehende Formel. B. Aus 2.5.6.1¹-Tetrabrom-4-oxy-1.3-dimethyl-benzol (Bd. VI, S. 489) und Diisoamylamin (Bd. IV, S. 182) (Auwers, A. 344, 180). Verfilzte Nådelchen (aus Petroläther). Br. CH₃ · Br · CH₃ · Br · CH₃ - [2.5.6 Tribrom 4 oxy 3 -methyl benzyl] benzylamin $C_{18}H_{14}ONBr_3 = HO \cdot C_6Br_8(CH_2) \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5$. B. Aus 2.5.6.1¹-Tetrabrom-4-oxy-1.3-dimethyl-benzol und Benzylamin in Benzol (Auwers, A. 344, 179). Prismen (aus Benzol-Ligroin). F: 138°. Leicht löslich in Eisessig, ziemlich leicht in Benzol und Chloroform, ziemlich schwer in Alkohol, schwer in Ligroin und Äther. Wird von siedendem Eisessig zersetzt unter Bildung von 2.5.6-Tribrom-4-oxy-1³-acetoxy-1.3-dimethyl-benzol (Bd. VI, S. 914).

Bis-[2.5.6-tribrom-4-oxy-3-methyl-bensyl]-methylamin $C_{17}H_{12}O_2NBr_6 = [HO\cdot C_6Br_5(CH_2)\cdot CH_2]_N\cdot CH_2$. B. Beim Durchschütteln einer Benzollösung des 2.5.6.1¹-Tetrabrom-4-oxy-1.3-dimethyl-benzols mit 33°/oiger wäßriger Methylaminlösung (Auwers, A. 344, 177). — Läßt sich nicht umkrystallisieren. Erweicht bei 155°, ist bei 161° geschmolzen. Schwer löslich in kaltem Eisessig und Ligroin, ziemlich schwer in Chloroform und Alkohol, ziemlich leicht in Benzol. — Liefert beim Kochen mit Eisessig 2.5.6-Tribrom-4-oxy-1¹-acet-oxy-1.3-dimethyl-benzol, beim Kochen mit Essigsäureanhydrid 2.5.6-Tribrom-4.1¹-diacet-oxy-1.3-dimethyl-benzol.

¹⁾ Besifferung der vom Namen "asymm. m-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 486.

N-Benzyl-N-[2.5.6-tribrom-4-acetoxy-3-methyl-benzyl]-acetamid $C_{19}H_{18}O_3NBr_3=CH_3\cdot CO\cdot O\cdot C_6Br_8(CH_3)\cdot CH_5\cdot N(CH_2\cdot C_6H_8)\cdot CO\cdot CH_3$. Aus 2.5.6-Tribrom-1¹-benzylamino-4-oxy-1.3-dimethyl-benzol beim Kochen mit Essigsäureanhydrid (Auwers, A. 344, 180). — Blättchen (aus Methylalkohol). F: 118—120°.

[6-Oxy-3-methyl-benzyl]-anilin $C_{14}H_{15}ON$, s. nebenstehende Formel. B. Durch Reduktion von [6-Oxy-3-methyl-benzal]-anilin (Bd. XII, S. 218) mit Natrium und siedendem absolutem Alkohol oder mit Zinkstaub und Eisessig bei mittlerer Temperatur (Anselmino, B. 41, 622). Aus 6-Oxy-3-methyl-benzylalkohol (Bd. VI, S. 914) durch Kochen mit Anilin (A.). — Nädelchen (aus Ligroin). F: 101°. Leicht löslich in Benzol und Alkohol.

[6-Oxy-3-methyl-benzyl]-p-toluidin $C_{15}H_{17}ON = HO \cdot C_6H_3(CH_3) \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus dem Methyl-p-tolyl-benzotriazindihydrid $C_{13} \cdot CH_3 \cdot N \cdot C_6H_4 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot N \cdot C_6H_4 \cdot CH_3 \cdot$

N-[6-Oxy-3-methyl-benzyl]-acetanilid $C_{16}H_{17}O_2N=HO\cdot C_6H_3(CH_3)\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Durch Erhitzen von [6-Oxy-3-methyl-benzyl]-anilin mit Essigsäureanhydrid (Anselmino, B. 41, 622). — Nadeln (aus Ligroin). F: 102° .

5-Amino-2-p-toluidino-4-äthoxy-1.3-dimethyl-benzol, 6-Amino-3-p-toluidino-asymm.-m-xylenol-äthyläther¹), 3-Äthoxy-4-amino-2.6.4'-trimethyl-diphenylamino-1,74₁₂ON₂, s. nebenstehende Formel. B. Aus 3.5.4'-Trimethyl-2-äthoxy-azobenzol (Syst. No. 2114) in Alkohol mit Zinnchlorür und Salzsäure neben anderen Produkten (Jacobson, A. 369, 27).

$$\begin{array}{c} CH_3 \\ \vdots \\ H_2N \cdot \bigcirc \cdot NH \cdot C_6H_4 \cdot CH_3 \\ \vdots \\ O \cdot C_3H_5 \end{array}$$

— Öl. — Gibt mit Kaliumdichromat und H₂SO₄ unter Eiskühlung 3-Äthoxy-2.6-dimethylchinon (Bd. VIII, S. 279).

2-p-Toluidino-5-salicylalamino-4-äthoxy-1.3-dimethyl-benzol, 3-p-Toluidino-6-salicylalamino-asymm. - m-xylenol-äthyläther, 3-Äthoxy-4-salicylalamino-2.6.4'-trimethyl-diphenylamin $C_{24}H_{26}O_2N_2=(HO\cdot C_6H_4\cdot CH:N)(CH_3\cdot C_6H_4\cdot NH)C_6H$ (CH₃)₂·O·C₂H₃. B. Aus 3-Äthoxy-4-amino-2.6.4'-trimethyl-diphenylamin und Salicylaldehyd in warmem Alkohol (Jacobson, A. 369, 28). — Gelbe Nadeln (aus Alkohol). F: 147—148°.

2.5.6 - Tribrom-1¹.3¹-dianilino-4-oxy-1.3-dimethyl-benzol C₂₀H₁₇ON₂Br₃, s. nebenstehende Formel. B. Durch Einw. von Anilin auf 2.5.6.1¹.3¹-Pentabrom-4-oxy-1.3-dimethyl-benzol (Bd.VI, S. 490) (Auwers, Hampe, B. 32, 3012). — Gelbliches, krystallinisches Pulver (aus Alkohol + etwas Chloroform). F: 118^o bis 121^o. Leicht löslich in Chloroform und Benzol, ziemlich schwer in Alkohol.

$$\begin{array}{c} \mathbf{CH_2 \cdot NH \cdot C_0H_5} \\ \mathbf{Br \cdot \bigodot \cdot Br} \\ \mathbf{Br \cdot \bigodot \cdot CH_2 \cdot NH \cdot C_0H_5} \\ \mathbf{OH} \end{array}$$

2.5.6-Tribrom-1¹-anilino-3¹-acetylanilino-4-oxy-1.3-dimethyl-benzol $C_{93}H_{19}O_{2}N_{1}Br_{3}=HO\cdot C_{6}Br_{3}(CH_{2}\cdot NH\cdot C_{6}H_{5})\cdot CH_{2}\cdot N(C_{6}H_{5})\cdot CO\cdot CH_{2}$. Zur Konstitution vgl. Auwers, Angelmino, Richter, A. 332, 180. — B. Durch Einw. von Anilin auf 2.5.6.1¹-3¹-Pentabrom-4-acetoxy-1.3-dimethyl-benzol (Bd. VI, S. 490) (Au., Hampe, B. 32, 3013; vgl. Au., B. 32, 2991). — Nadeln (aus Alkohol + Benzol). F: 209°. Leicht löslich in Chloroform, mäßig in Benzol, Alkohol und Eisessig, schwer in Ligroin; wird von Alkalien leicht gelöst (Au., H.). Gibt beim Kochen mit Acetanhydrid und Natriumacetat 2.5.6-Tribrom-1¹-3¹-bisacetylanilino-4-acetoxy-1.3-dimethyl-benzol (S. 633); mit Acetylchlorid in Pyridin entsteht ein Gemisch von 2.5.6-Tribrom-1¹-3¹-bis-acetylanilino-4-acetoxy-1.3-dimethyl-benzol und 2.5.6-Tribrom-1¹-anilino-3¹-acetylanilino-4-acetoxy-1.3-dimethyl-benzol (Au., Bondy, B. 37, 3907, 3909).

2.5.6 - Tribrom - 1^1 - anilino - 3^1 - acetylanilino - 4 - acetoxy - 1.3 - dimethyl - bensol $C_{24}H_{31}O_3N_2Br_3 = CH_3 \cdot CO \cdot O \cdot C_6Br_3(CH_2 \cdot NH \cdot C_6H_5) \cdot CH_2 \cdot N(C_6H_5) \cdot CO \cdot CH_3$. B. Aus 2.5.6-Tribrom - 1^1 - anilino - 3^1 - acetylanilino - 4 - oxy - 1.3 - dimethyl - benzol (s. o.) und Acetylchlorid in Pyridin in Gegenwart von etwas Eisessig (Auwers, Bondy, B. 37, 3909). — Blättchen (aus Alkohol). F: $200-201^0$; leicht löslich in Benzol und Chloroform, ziemlich schwer in Eisessig

¹⁾ Bezifferung der vom Namen "asymm. m-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 486.

und Essigester, schwer in Alkohol und Methylalkohol; unlöslich in Alkalien. — Gibt beim Kochen mit Acetanhydrid 2.5.6-Tribrom-11.31-bis-acetylanilino-4-acetoxy-1.3-dimethyl-benzol.

- 2.5.6-Tribrom-1¹.8¹-bis-acetylanilino-4-oxy-1.3-dimethyl-benzol $C_{24}H_{21}O_3N_2Br_3 = HO \cdot C_6Br_3[CH_2 \cdot N(C_6H_5) \cdot CO \cdot CH_3]_2$. B. Aus 2.5.6-Tribrom-1¹.3¹-bis-acetylanilino-4-acetoxy-1.3-dimethyl-benzol (s. u.) durch Schmelzen mit Atznatron bei 200° (Auwers, Bondy, B. 37, 3908). Täfelchen (aus Alkohol). F: 207—208°. Ziemlich schwer löslich in Benzol, Alkohol und Eisessig, schwer in Ather und Ligroin, leicht in wäßr. Alkalien. Gibt beim Kochen mit alkoh. Kalilauge 2.5.6-Tribrom-1¹-anilino-3¹-acetylanilino-4-oxy-1.3-dimethyl-benzol.
- 2.5.6 Tribrom $1^1.3^1$ bis acetylanilino 4 acetoxy 1.3 dimethyl bensol $C_{26}H_{23}O_4N_2Br_3 = CH_3 \cdot CO \cdot C \cdot C_6Br_3[CH_2 \cdot N(C_6H_5) \cdot CO \cdot CH_3]_3$. B. Durch Kochen von 2.5.6-Tribrom-1¹-anilino-3¹-acetylanilino-4-oxy-1.3-dimethyl-benzol (S. 632) mit Essigsäure-anhydrid und wasserfreiem Natriumacetat (Auwers, Bondy, B. 37, 3907). Nadeln (aus Ligroin und Benzol). F: 145°. Geht beim Schmelzen mit Natriumhydroxyd bei 200° in 2.5.6-Tribrom-1¹.3¹-bis-acetylanilino-4-oxy-1.3-dimethyl-benzol (s. o.) über.
- 2.5.6 Tribrom 1¹-o toluidino-3¹-[acetyl-o-toluidino]-4-oxy-1.8-dimethyl-benzol $C_{24}H_{23}O_2N_2Br_3=HO\cdot C_6Br_3(CH_2\cdot NH\cdot C_6H_4\cdot CH_3)\cdot CH_2\cdot N(C_6H_4\cdot CH_3)\cdot CO\cdot CH_3$. B. Aus 2.5.6.1².3¹-Pentabrom-4-acetoxy-1.3-dimethyl-benzol (Bd. VI, S. 490) und o-Toluidin in heißem Benzol (Auwers, Bondy, B. 37, 3912). Prismen (aus Benzol). F: 190—191°; leicht löslich in Chloroform, Toluol und Xylol, schwer in Ligroin, Alkohol und Methylalkohol. Gibt mit Acetylchlorid in Pyridinlösung 2.5.6-Tribrom-1¹-o-toluidino-3¹-[acetyl-o-toluidino]-4-acetoxy-1.3-dimethyl-benzol (s. u.).
- **2.5.6-Tribrom-1**¹-o-toluidino-3¹-[acetyl-o-toluidino]-4-acetoxy-1.3-dimethyl-benzol $C_{26}H_{25}O_3N_2Br_3 = CH_3 \cdot CO \cdot O \cdot C_6Br_3(CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3) \cdot CH_2 \cdot N(C_6H_4 \cdot CH_3) \cdot CO \cdot CH_3$. B. Aus 2.5.6-Tribrom-1¹-o-toluidino-3¹-[acetyl-o-toluidino]-4-oxy-1.3-dimethyl-benzol und Acetyl-chlorid in Pyridin (Auwers, Bondy, B. 37, 3912). Blättchen (aus Alkohol). F: 193°.
- 2.5.6-Tribrom-1¹-p-toluidino-3¹-[acetyl-p-toluidino]-4-oxy-1.3-dimethyl-benzol $C_{24}H_{23}O_2N_2Br_3=HO\cdot C_6Br_3(CH_2\cdot NH\cdot C_6H_4\cdot CH_3)\cdot CH_2\cdot N(C_6H_4\cdot CH_3)\cdot CO\cdot CH_3$. B. Durch Kochen von 2.5.6.1¹.3¹-Pentabrom-4-acetoxy-1.3-dimethyl-benzol mit 4 Mol.-Gew. p-Toluidin in Benzol (Auwers, Bondy, B. 37, 3910). Nadeln (aus Toluol oder Xylol). F: 206°. Leicht löslich in Eisessig, Chloroform, mäßig löslich in Benzol, Alkohol, Methylalkohol, schwer in Ligroin; löslich in Alkalien. Gibt beim Kochen mit Acetanhydrid und Natriumacetat 2.5.6-Tribrom-1¹.3¹-bis-[acetyl-p-toluidino]-4-acetoxy-1.3-dimethyl-benzol (s. u.); mit Acetyl-chlorid in Pyridin bei Gegenwart von etwas Eisessig entsteht 2.5.6-Tribrom-1¹-p-toluidino-3¹-[acetyl-p-toluidino]-4-acetoxy-1.3-dimethyl-benzol (s. u.).
- 2.5.6 -Tribrom 1¹-p toluidino 3¹-[acetyl-p toluidino]-4-acetoxy-1.3 dimethylbensol $C_{36}H_{25}O_3N_2Br_5 = CH_3 \cdot CO \cdot C \cdot C_6Br_3(CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3) \cdot CH_1 \cdot N(C_6H_4 \cdot CH_3) \cdot CO \cdot CH_2$. B. Aus 2.5.6-Tribrom-1¹-p-toluidino-3¹-[acetyl-p-toluidino]-4-oxy-1.3-dimethyl-benzol durch Acetylchlorid in Pyridin in Gegenwart von etwas Eisessig (Auwers, Bondy, B. 37, 3911). Blättechen (aus Alkohol). F: 187—188°. Leicht löslich in Chloroform, schwer in Alkohol und Methylalkohol; unlöslich in Alkalien.
- 2.5.6 Tribrom 1².8²-bis [acetyl p toluidino] 4 acetoxy 1.3 dimethyl bensol $C_{28}H_{47}O_4N_3Br_3 = CH_3 \cdot CO \cdot O \cdot C_4Br_3[CH_2 \cdot N(C_8H_4 \cdot CH_3) \cdot CO \cdot CH_3]_3$. B. Durch Kochen von 2.5.6 Tribrom 1²-p toluidino 3²-[acetyl p toluidino] 4 oxy 1.3 dimethyl benzol mit Essigsaureanhydrid und Natriumacetat (Arwers, Bondy, B. 37, 3910). Prismen (aus Ligroin + Benzol). F: 154°. Leicht löslich in Alkohol, Methylalkohol, Eisessig, ziemlich schwer in Benzol und Toluol, schwer in Ligroin.
- 7. Aminoderivate des 5-Oxy-1.3-dimethyl-benzols $C_8H_{10}O=(CH_3)_1C_4H_3\cdot OH$ (Bd. VI, S. 492).
- 2-Amino-5-oxy-1.3-dimethyl-benzol, 4-Amino-symm.-m-xylenol¹)
 C₈H₁₁ON, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Einw. stark verdünnter eiskalter Schwefelsäure auf 2.6-Dimethyl-phenylhydroxylamin (Syst. No. 1935) (Bamberger, Rising, A. 316, 300). HO. CH₃
 Weiße Nadeln (aus Wasser oder Chloroform). F: 180,5—181,5°. Sehr leicht löslich in Alkohol, schwer in Äther, sehr wenig in Ligroin, kaltem Wasser und Chloroform. Die anfangs farblose Lösung in Natronlauge färbt sich beim Schütteln mit Luft bräunlich-violett, beim Kochen dunkelbraun; die mit a-Naphthol versetzte alkal. Lösung wird beim Schütteln mit Luft blau (Indophenolbildung), beim Stehen wird sie mißfarbig. Färbt sich mit FeCl₂-Lösung in der Kälte nicht, beim Kochen damit tritt Xylochinongeruch auf. Gibt beim Kochen mit verd. Schwefelsäure 2.6-Dimethyl-hydrochinon (Bd. VI, S. 911).

¹⁾ Bezifferung der vom Namen "symm. m-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 492.

- 2 C₈H₁₁ON + H₂SO₄. Weiße Blättchen. F: 268°; ziemlich leicht löslich in kaltem, sehr leicht in heißem Wasser.
- 2-Amino-5-methoxy-1.3-dimethyl-benzol, 4-Amino-symm.-m-xylenol-methyl-äther $C_0H_{13}ON=H_2N\cdot C_0H_3(CH_3)_2\cdot O\cdot CH_3$. B. Aus 2.6-Dimethyl-phenylhydroxylamin durch Einw. von Methylalkohol und konz. Schwefelsäure (Bamberger, B. 36, 2039). Blättchen (aus Petroläther). F: 42,5—43°. Flüchtig mit Dampf. Leicht löslich in organischen Mitteln außer in Petroläther; leicht löslich in heißem, mäßig leicht in kaltem Wasser. FeCl_s färbt die wäßr. Lösung zuerst bräunlich grün, bald darauf blauviolett; nach kurzer Zeit beginnt die Ausscheidung von Flocken; in der Wärme entsteht 2.6-Dimethyl-chinon (Bd. VII, S. 657).
- 4.4' Diamino 8.5.8'.5' tetramethyl diphenyläther $C_{16}H_{20}ON_2$, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Einw. eiskalter, stark verdünnter Schwefelsäure auf 2.6-Dimethyl-phenylhydroxylamin (Bam-BERGER, RISING, A. 316, 305). — Farblose Nadeln oder $m CH_3$ Blättchen. F: 156,5—157°. Leicht löslich in Alkohol, Benzol, ziemlich schwer in Äther, schwer in Petroläther, unlöslich in Wasser und Alkalien. — $C_{16}H_{20}ON_3+2$ HCl. Weiße Blätter (aus Wasser). F: 320°. Schwer löslich in Alkohol, ziemlich leicht in Wasser und stark verdünnter Salzsäure.
- N.N'-Diacetylderivat $C_{30}H_{34}O_3N_2 = [CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3)_2]_3O$. B. Aus 4.4'-Diamino-3.5.3'.5'-tetramethyl-diphenyläther beim Erwärmen mit Essigsäureanhydrid oder bei mehrstündigem Kochen mit Eisessig (B., R., A. 316, 307). Weiße Nadeln (aus Alkohol). F: 283°. Leicht löslich in siedendem Alkohol, schwer in Äther und Benzol, sehr wenig in Ligroin.
- 8. Aminoderivat des 1^1 0xy 1.3 dimethyl benzols (3 Methyl benzylalkohols) $C_8H_{10}O = CH_3 \cdot C_6H_4 \cdot CH_2 \cdot OH$ (Bd. VI, S. 494).
- **4-Amino-3-methyl-benzylalkohol** $C_8H_{11}ON$, s. nebenstehende Formel. Polymerer Anhydro-[4-amino-3-methyl-benzylalkohol] $(C_8H_9N)_x$ $CH \cdot OH$ $= \left[\mathrm{CH^3 \cdot C^6 H^3} \Big]_{x}^{0}$ B. Durch Auflösen von Anhydroformaldehydo-toluidin (Syst. No. 3796) in kalter konzentrierter Salzsaure (KALLE & Co., D. R. P. 95184; C. 1898 I, 541). Durch Einw. von 1 Mol.-Gew. Formaldehyd auf 1 Mol.-Gew. o-Toluidin bei Gegenwart überschüssiger starker Mineralsäure (K. & Co., D. R. P. 95600; C. 1898 I, 812). — Amorphes, gelbes Pulver. Unlöslich in organischen Lösungsmitteln, löslich in Säuren, aus denen es durch Alkalien unverändert ausgefällt wird (K. & Co., D. R. P. 95184; C. 1898 I, 541).
- Aminoderivate des 2-Oxy-1.4-dimethyl-benzols $C_8H_{10}O = (CH_3)_8C_4H_3 \cdot OH$ (Bd. VI, S. 494).
- 5-Amino-2-oxy-1.4-dimethyl-benzol, 4-Amino-p-xylenol\(^1\)) $C_8H_{11}ON$, s. nebenstehende Formel. B. Aus 2-Nitro-1.4-dimethyl-benzol (Bd. V, S. 387) durch elektrolytische Reduktion in konzentriert-schwefelsaurer OH Lösung (GATTERMANN, B. 27, 1930). Aus p-Xylochinon-monoxim (Bd. VII, S. 658) mit Zinn und Salzsäure (Goldschmidt, Schmid, B. 18, 570; Sutkowski, B. 20, 979). — Blättchen (aus Alkohol). F: 242° (Zers.) (Su.), 238° (Zers.) (Ga.). — Bei der Oxydation mit wäßr. Eisenchloridiösung (Ga.) oder beim Behandeln des salzsauren Salzes mit verd. Chromsäuremischung (Go., Sch.) entsteht p-Xylochinon (Bd. VII, S. 658). Liefert mit Chloranil in wäßr. Eisessig ein rotes Produkt der Zusammensetzung $C_{24}H_{26}O_3N_3$ (Su.). — $C_8H_{11}ON + HCl$. Nadeln (aus Wasser) (Su.).
- 5-Amino-2-methoxy-1.4-dimethyl-benzol, 4-Amino-p-xylenol-methyläther $C_9H_{18}ON = H_2N \cdot C_9H_9(CH_3)_2 \cdot O \cdot CH_3$. B. Durch Einw. von methylalkoholischer Schwefelsaure auf 2.5-Dimethyl-phenylhydroxylamin (Syst. No. 1935) (BAMBERGER, FREI, B. 40, 1945). — Gibt beim Diazotieren und Verkochen der Diazoniumsalzlösung p-Xylohydrochinon-monomethyläther (Bd. VI, S. 915).
- 5-Amino 2- äthoxy 1.4 dimethyl benzol, 4-Amino p-xylenol äthyläther $C_{10}H_{15}ON = H_{1}N \cdot C_{2}H_{2}(CH_{3})_{2} \cdot O \cdot C_{2}H_{3}$. B. Aus 2.5-Dimethyl-phenylhydroxylamin und äthylalkoholischer Schwefelsäure (Bamberger, Baum, B. 40, 1941). F: 69,5°. Gibt beim Diazotieren und Verkochen der Diazoniumsalzlösung p-Xylohydrochinon-monoathyläther (Bd. VI, S. 915).

¹⁾ Bezifferung der vom Namen "p-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, 8. 494.

4.4'-Dioxy-2.5-dimethyl-diphenylamin $C_{14}H_{18}O_2N$, s. nebenstehende Formel. B. Durch Reduktion des aus p-Xylenol (Bd. VI, S. 494) und 4-Amino-phenol erhältlichen Indophenols (S. 435) (Cassella & Co., D. R. P. 191863; C. 1908 I, 574). — Farblos. F: 158°. Schwer löslich in kaltem CH₂ Wasser und Ligroin, leicht in Alkohol und Äther; leicht löslich in verd. Säuren und Alkalien. - Gibt mit Polysulfiden einen violetten Schwefelfarbstoff. Chinon-mono-[4-oxy-2.5-dimethyl-anil] $C_{14}H_{18}O_2N = O: C_4H_4: N \cdot C_4H_2(CH_2)_2 \cdot OH.$ Vgl. das Indophenol $C_{14}H_{18}O_{2}N$, S. 435. N-Phenyl-N'-[4-oxy-2.5-dimethyl-phenyl]-CH, p-phenylendiamin, 4-Oxy-4'-anilino-2.5-dimethyl-diphenylamin C₂₀H₂₀ON₂, s. neben-· NH · ‹ stehende Formel. B. Man oxydiert ein Gemisch von salzsaurem 4 - Amino - diphenylamin (S. 76) und p-Xylenol in wäßr. Lösung mit Natriumdichromat und Essigsäure, macht mit Soda schwach alkalisch und reduziert durch Erwärmen mit Natriumsulfidlösung (Cassella & Co., Deutsche Patentanmeldung C. 10964 [1902]; Frdl. 7, 74; A. WINTHER, Zusammenstellung der Patente auf dem Gebiete der organ. Chemie, Bd. I [Gießen 1908], S. 383). — Krystalle. F: 171--172°. 8-Nitro-5-amino-2-methoxy-1.4-dimethyl-bensol, 6-Nitro-4-amino-p-xylenol-methyläther¹) $C_9H_{18}O_9N_9=H_8N\cdot C_8H(NO_9)(CH_9)_9\cdot O\cdot CH_2$. B. Durch Erhitzen der 3-Nitro-5-amino-2-methoxy-1.4-dimethyl-benzol-sulfonsaure-(6) (Syst. No. 1926) mit Wasser im geschlossenen Rohr auf 180° (Blanksma, R. 24, 50). — F: 98°. [3.5.6 - Tribrom - 2 - oxy - 4 - brommethyl - benzyl] - anilin $C_{14}H_{11}ONBr_4$, s. nebenstehende Formel. B. Aus 3.5.6.1 1 .4 1 -Penta- $CH_2 \cdot NH \cdot C_6H_5$ brom-2-oxy-1.4-dimethyl-benzol (Bd. VI, S. 496) und Anilin in Benzol $\mathbf{Br} \cdot$ (Anselmino, B. 35, 148). — Nadeln (aus Benzol). Erweicht bei 1386 bis 140° und verharzt, ohne zu schmelzen. Leicht löslich in Chloroform und heißem Benzol, mäßig löslich in Eisessig und warmem Alkohol, schwer in kaltem Benzol, kaum in Ligroin. Ziemlich beständig gegen wäßr. Alkalien. [3.5.6-Tribrom-2-oxy-4-brommethyl-bensyl]-o-toluidin $C_{15}H_{15}ONBr_4 = CH_5Br \cdot C_6Br_4(OH) \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus 3.5.6.1\(^1.4^1\)-Pentabrom-2-oxy-1.4-dimethyl-benzol und o-Toluidin in Benzol (Anselmino, B. 35, 149). — Orangerotes Pulver. Erweicht bei 120° bis 125° und verharzt dabei. Löslich in Chloroform, schwer löslich in Benzol, Eisessig und Alkohol, fast unlöslich in Ligroin. Ziemlich beständig gegen wäßr. Alkalien. [2.5.6 - Tribrom - 3 - oxy - 4 - methyl - bensyl] - diisoamylamin $C_{18}H_{18}ONBr_{3}$, s. nebenstehende Formel. B. Aus 3.5.6.4¹-Tetrabrom-2-oxy-1.4-dimethyl-benzol (Bd. VI, S. 496) und Diisoamylamin in Benzol (Auwers, A. 344, 188). — Weiße Nädelchen (aus Ligroin + Benzol). F: 81—81,5°. Leicht löslich in organischen Lösungsmitteln $\cdot \mathbf{Br}$ $CH_2 \cdot N(C_5H_{11})_3$ außer Ligroin und Petroläther. - Liefert beim Erhitzen für sich, mit Alkali, Eisessig oder mit Essigsäureanhydrid 2.5.6.2'.5'.6'-Hexabrom-3.3'-dioxy-4.4'-di-methyl-diphenylmethan (Bd. VI, S. 1013).

Bis - [2.5.6 - tribrom - 3 - oxy - 4 - methyl - bensyl] - methylamin $C_{17}H_{18}O_{2}NBr_{6} = [HO \cdot C_{6}Br_{3}(CH_{2}) \cdot CH_{3}]_{2}N \cdot CH_{3}$. B. Beim Durchschütteln einer Benzolösung des 3.5.6.41-Tetrabrom-2-oxy-1.4-dimethyl-benzols (Bd. VI, S. 496) mit 33% jeger wäßr. Methylaminlösung (AU., A. 344, 184). — Weißes amorphes Pulver. F: 151—152%. Unlöslich in Ligroin, Benzol, Chloroform, sehr wenig löslich in Äther, ziemlich leicht in siedendem Alkohol, leicht in Eisessig. — Mit siedender Natronlauge entsteht 2.5.6.2'.5'.6'-Hexabrom-3.3'-dioxy-4.4'dimethyl-diphenylmethan (Bd. VI, S. 1013).

Bis - [2.5.6 - tribrom - 3 - acetoxy - 4 - methyl - bensyl] - methylamin $C_{21}H_{19}O_2NBr_6 = [CH_2\cdot CO\cdot O\cdot C_6Br_8(CH_2)\cdot CH_2]_2N\cdot CH_3$. B. Aus Bis-[2.5.6-tribrom-3-oxy-4-methyl-benzyl]-methylamin beim Kochen mit Essigsäureanhydrid (Au., A. 344, 186). — Blättchen (aus Benzol). F: 132—133°. Unlöslich in Ligroin, sehr wenig löslich in Benzol, leicht in Alkohol.

10. Aminoderivat des I^1 -Oxy-1.4-dimethyl-benzols (4-Methyl-benzyl-alkohols) $C_8H_{10}O = CH_3 \cdot C_8H_4 \cdot CH_2 \cdot OH$ (Bd. VI, S. 498). $CH_2 \cdot OH$

8-Amino-4-methyl-bensylalkohol C₂H₁₁ON, s. nebenstehende Formel.

B. Aus 3-Nitro-1¹-oxy-1.4-dimethyl-benzol (Bd. VI, S. 498) durch Reduktion mit Zink und HCl in alkoh. Lösung (Auwers, A. 344, 184 Anm.). — Nadeln (aus Benzol + Ligroin). F: 106—107°. Schwer löslich in Ather und Wasser.

CH.

¹⁾ Besifferung der vom Namen "p-Xylenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 494.

- Aminoderivate von Oxydimethylbenzolen (Dimethylphenolen) $C_aH_{10}O =$ (CH₃)₂C₄H₃·OH mit unbekannter Stellung der Methylgruppen.
- 4-Nitro-x.x-bis-[scetamino-methyl]-phenol C₁₂H₁₆O₅N₃ = HO·C₆H₂(NO₂)(CH₂·NH·CO·CH₂)₂. B. Aus 9,36 g 4-Nitro-phenol (Bd. VI, S. 226) und 6 g N-Oxymethyl-acetamid (Bd. II, S. 178) und 60 g konz. Schwefelsäure (Einhorn, Ladisch, A. 343, 266). Gelbe Prismen oder Blättchen (aus verd. Alkohol). F: 196°.
- 4-Nitro-x.x-bis-aminomethyl-phenetol $C_{10}H_{15}O_3N_3=C_2H_5\cdot O\cdot C_8H_3(NO_3)(CH_2\cdot NH_3)_3$. B. Aus 4-Nitro-x.x-bis-[chloracetamino-methyl]-phenetol (s. u.) beim Kochen mit verd. Salzsäure (Einhorn, Mauermayer, A. 343, 289). $C_{10}H_{15}O_3N_3+2$ HCl. Nädelchen (aus verd. Alkohol). Verkohlt beim Erhitzen, ohne zu schmelzen.
- 4 Nitro x.x bis [chloracetamino methyl] phenetol $C_{14}H_{17}O_5N_3Cl_2 = C_2H_5 \cdot O \cdot C_6H_2(NO_2)(CH_2 \cdot NH \cdot CO \cdot CH_2Cl)_2$. B. Aus 6,8 g 4-Nitro-phenetol und 10 g N-Oxymethyl-chloracetamid (Bd. II, S. 200) mit 50 g konz. H_2SO_4 (E1., M., A. 343, 288). Nädelchen (aus Alkohol). F: 1840. Ziemlich leicht löslich in Alkohol, schwer in Chloroform, sehr wenig in Äther. — Spaltet beim Kochen mit Salzsäure die Chloracetylreste ab.
- 4-Nitro-x.x-bis-[diathylaminoacetamino-methyl]-phenetol $C_{22}H_{27}O_5N_5=C_2H_5\cdot O\cdot$ C₆H₂(NO₂)·[CH₂·NH·CO·CH₂·N(C₂H₅)₂]₂. B. Aus 10 g 4-Nitro-x.x-bis-[chloracetamino-methyl]-phenetol und 15 g Diāthylamin in Alkohol beim Kochen (EI., M., A. 343, 289). — Nadeln (aus Essigester und Äther). F: 118—119°. Sehr leicht löslich in Alkohol, Chloroform, Benzol, löslich in heißem Wasser, sehr wenig in Äther.

4. Aminoderivate der Monooxy-Verbindungen $C_9H_{12}O$.

- 1. Aminoderivate des 4 Oxy 1 propyl benzols $C_0H_{12}O = CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot$ $C_6H_4 \cdot OH$ (Bd. VI, S. 500).
- a-[4-Methoxy-phenyl]-propylamin $C_{10}H_{15}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH(NH_2) \cdot CH_2 \cdot CH_3$. B. Aus Anishydramid (Bd. VIII, S. 75) und Athylmagnesiumjodid in Ather (Busch, Leffhelm, J. pr. [2] 77, 18). Wasserhelles, angenehm gewürzartig riechendes Öl. Kp₁₃: 136° bis 140°. $C_{10}H_{15}ON + HCl$. Nadeln (aus Alkohol-Ather). F: 217—218°; sehr leicht löslich in Alkohol und Wasser. $C_{10}H_{15}ON + H_2SO_4$. Nadeln (aus verd. Schwefelsäure). F: 214°. $C_{10}H_{15}ON + HNO_3$. Blättchen. F: 176°.
- Monobenzoylderivat $C_{17}H_{19}O_2N = CH_3 \cdot O \cdot C_6H_4 \cdot CH(NH \cdot CO \cdot C_6H_8) \cdot CH_2 \cdot CH_3$. B. Aus a-[4-Methoxy-phenyl]-propylamin durch Benzoylierung nach Schotten-Baumann (B., L., J. pr. [2] 77, 19). — Nadeln (aus verd. Alkohol). F: 118°. Leicht löslich in Alkohol und Benzol, ziemlich leicht in Äther, unlöslich in Wasser.
- 2. Aminoderivate des 1¹-Oxy-1-propyl-benzols (Äthylphenylcarbinols) $C_9H_{12}O=C_6H_5\cdot CH(OH)\cdot CH_2\cdot CH_3$ (Bd. VI, S. 502).
- Äthyl-[4-dimethylamino-phenyl]-carbinol $C_{11}H_{17}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH(OH)$ CH₂ CH₃. B. Aus 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. Athylmagnesiumbromid in Ather (F. Sachs, L. Sachs, B. 38, 514). — Nädelchen (aus Petroläther). F: 46°. Schwer löslich in Wasser, leicht in den gebräuchlichen organischen Lösungsmitteln.

 — Zersetzt sich beim Aufbewahren. Gibt bei der Destillation unter 10 mm Druck 4-[Dimethylamino]-1-propenyl-benzol (Bd. XII, S. 1188).
- [a-Methylamino-äthyl]-phenyl-carbinol, Ephedrin und Pseudoephedrin $C_{10}H_{15}ON = C_6H_5 \cdot CH(OH) \cdot CH(CH_3) \cdot NH \cdot CH_3$. Zur Konstitution vgl.: E. SCHMIDT, Ar. 247, 149; RABE, B. 44 [1911], 824. Von Verbindungen dieser Konstitution sind entsprechend dem Vorhandensein zweier asymmetrischer Kohlenstoffatome zwei diastereoisomere Reihen möglich, jede zwei enantiostereomere optisch aktive Formen und die zugehörige inakt. Form umfassend. Bis zum Literatur-Schlußtermin der 4. Aufl. dieses Handbuches (1. I. 1910) sind beschrieben: zwei aktive Formen, die nicht derselben Reihe angehören, l-Ephedrin und d-Pseudoephedrin, und ein inaktives Präparat (s. S. 637 unter c), das nach Späth, Göhring, M. 41 [1920], 320, weder mit dl-Ephedrin noch mit dl-Pseudoephedrin identisch ist und dessen Einheitlichkeit daher fraglich ist. Über die weiteren stereoisomeren Formen s. Späth, Göhring, M. 41 [1920], 319; Nagai, Kanao, A. 470 [1929], 157. Zur Konfiguration der Diastereoisomeren vgl. Emde. Ar. 245, 662; Gadamer, Ar. 246, 566; E. Sch., Ar. 252 [1914], 136; Em., Helv. chim. Acta 12 [1929], 365.
 a) l-Ephedrin. V. Im Kraut von chinesischer Ephedra vulgaris (Nagai, C. 1888,
- 130; Ch. Z. 14, 441; Merck, C. 1894 I, 470). B. Aus d-Pseudoephedrin durch partielle Umlagerung bei 12-stdg. Erhitzen des Hydrochlorids mit 25% iger Salzsaure in geschlossenem Rohr im Wasserbad (E. Schmidt, Ar. 246, 210). – Strahlig krystallinisch (aus verdunstendem Äther). F: 40° (Miller, Ar. 240, 486), 38—40° (E. Sch., Ar. 246, 211; Gadamer, Ar. 246,

- 574). Kp: 255° (Merck, C. 1894 I, 470). Langsam flüchtig mit Wasserdampf (MI.). Leicht löslich in Wasser, Alkohol, Äther, Chloroform (MI.). [a]_D²: -6,3° (in absol. Alkohol; 1,7914 g in 49,862 ccm Lösung) (GA., Ar. 246, 574). Die wäßr. Lösung reagiert stark alkalisch (MI.). Lagert sich beim Erhitzen mit Salzsäure in geschlossenem Rohr im Wasserbad zum Teil in d-Pseudoephedrin um (E. SCH., Ar. 244, 239; EMDE, Ar. 244, 241; vgl. Na.. Ch. Z. 14, 441; Flaecher, Ar. 242, 380). Bei der Destillation des Hydrochlorids im CO₃-Strom entstehen Propiophenon und salzsaures Methylamin (E. SCH., Ar. 247, 147). Bei der Oxydation mit Ferricyankalium und Natronlauge, sowie auch mit Bromwasser oder KMnO₄ wurden Benzaldehyd und Methylamin erhalten (E. SCH., Ar. 247, 149). C₁₀H₁₅ON + HCl. Säulen oder Tafeln (aus Alkohol). F: 215—216° (E. SCH., Ar. 246, 211; GA., Ar. 246, 573), 216° (MI.; EMDE, Ar. 244, 243). [a]₂²: —36,66° (in Wasser; c = 5) (MI.); [a]₂²: —35,3° (in Wasser; 2,0796 g in 49,862 ccm Lösung) (GA., Ar. 246, 574). Hydrojodid. Krystalle, erhalten aus 1-Ephedrin in Alkohol mit HI beim Verdunsten der Lösung. Rhombisch bisphenoidisch (SCHWANTKE, Ar. 244, 249; Z. Kr. 46, 78; vgl. Groth, Ch. Kr. 4, 576). Sintert von ca. 140° ab, schmilzt bei 155—156° (EM., Ar. 244, 249). C₁₀H₁₅ON + HCl + AuCl₃. Gelbe Blättchen oder Nadeln. F: 128—131° (Merck, C. 1894 I, 470), 130—131° (E. SCH., Ar. 246, 211). 2 C₁₀H₁₅ON + 2 HCl + PtCl₄. Gelbe Nadeln. F: 183—184° (Merck, C. 1894 I, 470), 186° (MI.; E. SCH., Ar. 246, 211).
- b) d-Pseudoephedrin (von Nagai d-Isoephedrin genannt). V. Im Kraut von (europäischer?; vgl. Chen, Kao, Journ. Am. Pharm. Assoc. 15 [1926], 625) Ephedra vulgaris (Merck, vgl. Ladenburg, Oelschlägel, B. 22, 1823; Miller, Ar. 240, 482). B. Aus 1-Ephedrin (S. 636) durch partielle Umlagerung bei 12-stdg. Erhitzen des Hydrochlorids mit 25% iger Salzsäure im geschlossenen Rohr im Wasserbad (E. Schmidt, Ar. 244, 239; Emde, Ar. 244, 241; vgl. Nagai, Ch. Z. 14, 441; Flarcher, Ar. 242, 380). Darst. Man extrahiert das Kraut der Pflanze mit Alkohol, versetzt den Abdampfrückstand des Extrakts mit Ammoniak, schüttelt mit Chloroform aus, führt die nach Abdestillieren des Chloroforms zurückbleibende Base in das Hydrochlorid über und reinigt dieses durch mehrmaliges Umkrystallisieren aus Äther + Alkohol (Merck, vgl. La., Oe.). Angenehm riechende Tafeln (aus verdunstendem Äther). Rhombisch bisphenoidisch (Schwanner, Ar. 244, 244; Z. Kr. 48, 75; vgl. Groth, Ch. Kr. 4, 576). F: 114—115° (La., Oe.). 116° bis 117° (Mi.), 117° (Fl.), 117,5° (Em., Ar. 244, 243), 117—118° (Gadamer, Ar. 246, 574). Schwer löslich in kaltem, etwas leichter in heißem Wasser, leicht in Äther und Alkohol (La., Oe.). [2]%: +49,83° (1g in 20 ccm absol. Alkohol) (Fl.), +51,2° (in absol. Alkohol; 2,0274 g in 49,862 ccm Lösung) (Ga.), +51,24° (in absol. Alkohol), 0,1250 g in 20,0670 g Lösung) (Em., Ar. 244, 243). Lagert sich beim Erhitzen mit Salzsäure im geschlossenen Rohr im Wasserbad zum Teil in l-Ephedrin um (E. Sch., Ar. 246, 210). Bei der Destillation des Hydrochlorids im CO₂-Strom entstehen Propiophenon, salzsaures Methylamin und Nh₄Cl (E. Sch., Ar. 247, 149), mit KMnO₄ Benzoesäure (La., Oe.). d-Pseudoephedrin ist giftig und wirkt eingenommen mydriatisch (La., Oe.). C₁₀H₁₅ON + HCl. Nadeln (aus Alkohol). Sehr leicht löslich in Wasser, Alkohol (La., Oe.) und Aceton (Mi.). [a]⁸: +61,73° (in Wasser; 0,1250 g in 25,1287 g Lösung) (Em., Ar. 244, 243), +62,05° (1 g in 20 ccm Wasser) (Fl.). C₁₀H₁₅ON + HBr. F: 174—175° (La., Oe.). C₁
- o) Inaktives [a-Methylamino-āthyl]-phenyl-carbinol(?) (vgl. die Vorbemerkung auf S. 636, Zeile 11 v. u.). B. Man behandelt a-Phenyl-a-propylen mit Jod und gelbem HgO und läßt auf das so gebildete β -Jod-a-oxy-a-phenyl-propan (Bd. VI, S. 503) alkoh. Methylamin einwirken (Fourneau, C. 1905 I, 233). Angenehm pseudoephedrinähnlich riechende Prismen. F: 60°. Leicht löslich in Äther und Alkohol, schwer in niedrig siedendem Petroläther. Hydrochlorid. Blättchen. F: 178°; schwer löslich in kaltem absolutem Alkohol.

[a - Dimethylamino - äthyl] - phenyl - carbinol $C_{11}H_{17}ON = C_6H_5 \cdot CH(OH) \cdot CH(CH_3) \cdot N(CH_3)_s$.

a) Sterisch dem l-Ephedrin (S. 636) entsprechende Form, N-Methyl-[l-ephedrin]. B. Neben Trimethyl-[β-oxy-β-phenyl-isopropyl]-ammoniumjodid (S. 638) bei der Einw. von überschüssigem Methyljodid auf l-Ephedrin in Methylalkohol (MILLER, Ar. 240, 492). — Strahlig krystallinisch. F: 59—62° (Mī.), 87—87,5° (NAGAI, KANAO, A. 470 [1929], 179). — C₁₁H₁₇ON + HCl + AuCl₃. Gelbe Nadeln. F: 121—123° (MI.), 126° (EMDE, Ar. 244, 253), 128—129° (N., K.). — 2,C₁₁H₁₇ON + 2 HCl + PtCl₄. Orangerote Nadeln. F: 198° (Zers.) (E., Ar. 244, 254).

b) Sterisch dem d-Pseudoephedrin (s. o.) entsprechende Form, N-Methyl-[d-pseudoephedrin]. B. Durch Erwärmen von 2 g d-Pseudoephedrin mit 15 g Methyljodid in Methylalkohol (EMDE, Ar. 244, 246). — Dickes, blumenartig riechendes Öl (E.); erstarrt zu Nadeln vom Schmelzpunkt 28—28,5° (Nagai, Kanao, A. 470 [1929], 181. — C₁₁H₁₇ON + HCl + AuCl₃. Goldgelbe Blättchen (aus salzsäurehaltigem Wasser); erweicht bei 119°; F: 123° (E.), 127° (N., K.).

c) Inaktives [α-Dimethylamino-āthyl]-phenyl-carbinol(?). B. Analog dem inakt. [α-Methylamino-āthyl]-phenyl-carbinol (?) (S. 637) (FOURNEAU, C. 1905 I, 233). — Prismatische Nadeln. F: 47°. Kp₃₁: 151—152°. — Hydrochlerid. F: 180°; schwer löslich in Aceton. - Pikrat. F: 80°.

Trimethyl - $[\beta - oxy - \beta - phenyl - isopropyl]$ - ammoniumhydroxyd $C_{12}H_{11}O_2N =$

 $C_0H_5 \cdot CH(OH) \cdot CH(CH_3) \cdot N(CH_3)_3 \cdot OH$.

- a) Sterisch dem 1-Ephedrin (S. 636) entsprechende Form, N-Methyl-[l-ephedrin]-hydroxymethylat. B. Das Jodid entsteht bei der Einw. von überschüssigem Methyljodid auf l-Ephedrin in Methylalkohol; es liefert mit feuchtem Silberoxyd die freie Base (MILLER, Ar. 240, 492). — Die freie Base gibt beim Destillieren Trimethylamin (MILLER, Ar. 240, 495), ein Methylphenyläthylenoxyd vom Siedepunkt 201—207° (Syst. No. 2366) Cabe, 8. 44 [1911], 826) und Propiophenon (E. Schmidt, 201—201° (Syst. No. 2300) (Cabe, B. 44 [1911], 826) und Propiophenon (E. Schmidt, Ar. 249 [1911], 309). — Jodid Cabe, ON·I. Säulen und Tafeln. Rhombisch bisphenoidisch (Schwantke, Ar. 244, 249; Z. Kr. 46, 81; vgl. Groth, Ch. Kr. 4, 577). F: 199° (Emde, Ar. 244, 249), 203° (Mi.). — Chloroaurat Cabe, ON·Cl + AuCla. Gelbe Nadeln. F: 188—190° (Mi.), 190—191° (E.); ziemlich schwer löslich (E.). — Chloroplatinat 2 Cabe, ON·Cl + PtCla. Rötliche Nadeln. F: 247° (Mi.), 250° (E.). Ziemlich schwer löslich (E.).
- b) Sterisch dem d-Pseudoephedrin (S. 637) entsprechende Form, N-Methyl-[d-pseudoephedrin]-hydroxymethylat. B. Das Jodid entsteht aus N-Methyl-[d-pseudoephedrin] und Methyljodid in siedendem Methylalkohol; es liefert mit feuchtem Silberoxyd die freie Base (EMDE, Ar. 244, 247, 250). — Die freie Base gibt beim Destillieren Trimethylamin (E.) und Methylphenyläthylenoxyd vom Siedepunkt 197–199° (Syst. No. 2366) (RABE, B. 44 [1911], 826). — Jodid C₁₂H₃₀ON·I. Derbe Krystalle (aus Methylalkohol). Rhombisch bisphenoidisch (SCHWANTKE, Ar. 244, 249; Z. Kr. 46, 83; vgl. Groth, Ch. Kr. 4, 578). F: 205° (E.). — Chloroaurat C₁₂H₃₀ON·Cl + AuCl₃. Goldgelbe Nadeln (aus viel Wasser); F: 194—195° (E.). — Chloroplatinat 2C₁₂H₃₀ON·Cl + PtCl₄. Rötliche Nadeln. F: 204—205°; beträchtlich leichter löslich als das sterisch dem l-Ephedrin entsprechende analoge Salz (E.).

Trimethyl- $[\beta$ -acetoxy- β -phenyl-isopropyl]-ammoniumhydroxyd $C_{14}H_{23}O_3N=C_6H_5\cdot CH(O\cdot CO\cdot CH_3)\cdot CH(CH_3)\cdot N(CH_3)_3\cdot OH$. Sterisch dem l-Ephedrin entsprechende Form, O-Acetyl-N-methyl-[1-ephedrin]-hydroxymethylat. B. Man kocht Trimethyl- $[\beta$ -oxy- β -phenyl-isopropyl]-ammoniumjodid aus l-Ephedrin (s. o.) 2 Stdn. mit Essigsaureanhydrid und Silberacetat und führt das Reaktionsprodukt in das Chloroplatinat über (Miller, Ar. 240, 491). — Chloroplatinat $2C_{14}H_{22}O_2N \cdot Cl + PtCl_4$. Nadeln. F: 186° bis 188°.

- a (Acetylmethylamino) \ddot{a} thyl] phenyl carbinol $C_{12}H_{17}O_{2}N = C_{6}H_{5}\cdot CH(OH)\cdot C_{12}H_{13}O_{2}N$ CH(CH₃) N(CH₃) CO CH₃. Sterisch dem d-Pseudoephedrin (S. 637) entsprechende Form, N-Acetyl-[d-pseudoephedrin]. Zur Konstitution vgl. E. SCHMIDT, Ar. 252 [1914], 120; zur Konfiguration E. SCH., CALLIESS, Ar. 250 [1912], 163. — B. Das salzsaure Salz wird erhalten, wenn man salzsaures l-Ephedrin oder salzsaures d-Pseudoephedrin 4 Stdn. mit 10 Tln. Essigsäureanhydrid kocht (C., C. 1910 II, 1480; E. Sch., C.; vgl. Miller, Ar. 240, 487); man zerlegt das salzsaure Salz durch Soda (E. Sch., C.). — Krystalle (aus Alkohol). F: 101° (E. Sch., C.). — Salze: E. Sch., C. — $C_{12}H_{17}O_2N + HCl$. Säulen oder Tafeln (aus Aceton). F: 176°. [a] $_{5}^{5}$: +96,8° (0,62 g in 14,875 ccm Wasser). — $C_{12}H_{17}O_2N + HCl + AuCl_{2}$. Gelbe Nadeln. F: 165°. — 2 $C_{12}H_{17}O_2N + 2 HCl + PtCl_{4}$. Rotgelbe Nadeln. F: 184°.
- [a-Bensamino-äthyl]-phenyl-carbinol $C_{16}H_{17}O_2N = C_6H_5 \cdot CH(OH) \cdot CH(CH_2) \cdot NH \cdot CH(OH) \cdot CH(CH_2) \cdot CH$ CO·C₆H₅. B. Beim Schütteln der Lösung von a-Benzamino-propiophenon (Syst. No. 1873) in verd. Alkohol mit Natriumamalgam (Behe-Bregowski, B. 30, 1524). — Nädelchen (aus verd. Alkohol). F: 136—138°. Sehr leicht löslich.

- a) Sterisch dem 1-Ephedrin (S. 636) entsprechende Form, O.N.-Dibenzoyl-[l-ephedrin]. B. Aus salzsaurem l-Ephedrin mit Benzoylchlorid und Natronlauge (Miller, Ar. 240, 489). — Säulen (aus Alkohol). F: 115—116°. Fast unlöslich in Wasser.
- b) Sterisch dem d-Pseudoephedrin (S. 637) entsprechende Form, O.N-Dibenzoyl-[d-pseudoephedrin]. B. Aus d-Pseudoephedrin mit Benzoylchlorid und Natronlauge (LADENEURG, ORLSCHLÄGEL, B. 22, 1826). Nadelbüschel (aus absol. Alkohol). F: 119-120°.

 $\label{eq:normalized} \begin{aligned} \mathbf{N-Methyl-N'-phenyl-N-[\beta-oxy-\beta-phenyl-isopropyl]-thioharnstoff} \ \ \mathbf{C_{17}H_{20}ON_2S} = \\ \mathbf{C_6H_5\cdot CH(OH)\cdot CH(CH_3)\cdot N(CH_3)\cdot CS\cdot NH\cdot C_9H_5}. \end{aligned}$

a) Sterisch dem 1-Ephedrin (S. 636) entsprechende Form, N-Anilinothioformyl-[l-ephedrin]. B. Aus l-Ephedrin und Phenylsenföl in alkoh. Lösung (GADAMER, Ar. 246, 574). — Prismen (aus Alkohol). F: 115° (Zers.). [a]. —105,1° (in absol. Alkohol;

0,9678 g in 24,9554 ccm Lösung).
b) Sterisch dem d-Pseudoephedrin (S. 637) entsprechende Form, N-[Anilinothioformyl]-[d-pseudoephedrin]. B. Aus d-Pseudoephedrin und Phenylsenföl in alkoh. Lösung (Gadamer, Ar. 246, 574). — Tafeln (aus Alkohol). Schmilzt unzersetzt bei 122°.

 $[a]_{0}^{\infty}$: $+22.8^{\circ}$ (in absol. Alkohol; 1,0336 g in 24,9554 ccm Lösung).

[a - Methylnitrosamino - \ddot{a} thyl] - phenyl - carbinol $C_{10}H_{14}O_{2}N_{2}=C_{6}H_{5}\cdot CH(OH)\cdot CH(CH_{2})\cdot N(NO)\cdot CH_{2}$. Sterisch dem d-Pseudoephedrin (S. 637) entsprechende Form, N-Nitroso-[d-pseudoephedrin] (vgl. E. Schmidt, Calliess, Ar. 250 [1912], 169). — B. Aus salzsaurem d-Pseudoephedrin mit wäßr. Kaliumnitrit auf dem Wasserbad (LADENBURG, ORLSCHLÄGEL, B. 22, 1824). — F: 80-82°.

[β -Methylamino-äthyl]-phenyl-carbinol $C_{10}H_{15}ON = C_{\phi}H_{5}\cdot CH_{(OH)}\cdot CH_{2}\cdot CH_{3}\cdot NH\cdot CH_{3}$. B. Aus γ -Chlor- α -oxy- α -phenyl-propan (Bd. VI, S. 502) und Methylamin (FOURNEAU, C. 1907 II, 1086). — Krystallisiert aus Petroläther in Prismen vom Schmelzpunkt 70°, die beim Trocknen im Vakuum matt werden und verschmieren. Kp₃₁: 170°. — Hydrochlorid. Blättchen (aus Alkohol + Aceton). F: 130°. Schwer löslich in Aceton. — Chloroaurat. F: 108-110°. Schwer löslich in Wasser.

[\$\beta\$-Dimethylamino-\text{athyl}]-phenyl-carbinol $C_{11}H_{17}ON = C_{6}H_{5}\cdot CH(OH)\cdot CH_{3}\cdot CH_{2}\cdot N(CH_{3})_{5}$. B. Aus \$\gamma\$-Chlor-a-oxy-a-phenyl-propan (Bd. VI, S. 502) und Dimethylamin (F., C. 1907 II, 1087). — Sechsseitige Tafeln (aus Petrol\text{\text{ather}}) F: 55°. Kp_{44}: 182°. — $C_{11}H_{17}ON + HCl$. Bl\text{\text{Bl\text{tchen}}} (aus absol. Alkohol). F: 128°. Solwer l\text{\text{chen}} in Aceton, leicht in siedendern Alkohol dem absolutem Alkohol. — Chloroaurat. Nadeln. F: 120°. Zersetzt sich bei 160°. Schwer löslich in Wasser, leicht in Alkohol. — Chloroplatinat. F: 130° (Zers.). Leicht löslich in Wasser.

Benzoylderivat $C_{18}H_{21}O_2N = C_6H_5 \cdot CH(O \cdot CO \cdot C_6H_5) \cdot CH_2 \cdot CH_2 \cdot N(CH_3)_2$. — Hydrochlorid $C_{18}H_{21}O_2N + HCl$. Nadeln (aus Alkohol + Äther). F: 167°. Leicht löslich in Aceton und Alkohol (F., C. 1907 II, 1087).

Cinnamoylderivat $C_{30}H_{22}O_3N=C_0H_5\cdot CH(O\cdot CO\cdot CH:CH\cdot C_0H_5)\cdot CH_3\cdot CH_3\cdot N(CH_3)_2.$ — Hydrochlorid. Nadeln (aus Alkohol + Ather). F: 179° (F., C. 1907 II, 1°37).

Trimethyl- $[\gamma \cdot \text{oxy} \cdot \gamma \cdot \text{phenyl-propyl}]$ -ammoniumhydroxyd $C_{12}H_{21}O_2N = C_6H_5$ · $CH(OH) \cdot CH_2 \cdot CH_2 \cdot N(CH_3)_3 \cdot OH$. B. Salze dieser Base entstehen durch Erhitzen von γ -Chlor- α -oxy- α -phenyl-propan (Bd. VI, S. 502) mit etwas mehr als der äquimolekularen Menge Trimethylamin in Gegenwart von Benzol auf 126° (FOURNEAU, C. 1907 II, 1086), durch Einw. von Zink und verd. Schwefelsaure auf Trimethyl- $[\beta$ -brom- γ -oxy- γ -phenyl-propyllamin von Zink und verd. Schwefelsaure auf Trimethyl- $[\beta$ -brom- γ -oxy- γ -phenyl-propyllamin von Zink und verd. Schwefelsaure auf Trimethyl- $[\beta$ -brom- γ -oxy- γ -phenylpropyl]-ammoniumchlorid (s. u.) (E. SCHMIDT, FLAECHER, Ar. 243, 77), aus [β -(Dimethylamino)-āthyl]-phenyl-carbinol (s. o.) und Methyljodid (Fou.), aus Trimethyl-cinnamyl-ammoniumchlorid C₈H₈·CH·CH·CH₉·N(CH₉)₈·Cl (Bd. XII, S. 1189) durch 8-tägiges Stehenlassen mit Jodwasserstoffsäure (D: 1,27) und Behandeln des Reaktionsproduktes in verd. Alkohol mit Silbernitrat (EMDE, Ar. 244, 284; vgl. Fourneau, C. 1907 II, 1086; EMDE, Ar. 245, 665). Aus dem Chlorid erhält man die Base mit feuchtem Silberoxyd (Fou.). — Die Base zersetzt sich bei der Destillation im Vakuum in Trimethylamin und ein Produkt der Zusammensetzung C₂H₁₀O vom Kp₂₁: 101—102° (Fou.). — Chlorid C₁₂H₂₀ON·Cl. Prismen (aus absol. Alkohol). F: 210° (Zers.) (Fou.). — Jodid C₁₂H₂₀ON·I. Nadeln (aus Alkohol + Äther). F: 118° (Fou.). — Chloroaurat C₁₂H₂₀ON·Cl + AuCl₂. Gelbe Blättchen (aus verd. Alkohol) (E. Sch., Fl.). F: 151° (Em., Ar. 244, 285), 155° (Fou.). Zersetzt sich bei 400° (Fou.). Sahr wenig Beich in Wasser giemlich in Alkohol (FOU.) — Chloronlatinat. bei 190° (Fou.). Sehr wenig löslich in Wasser, ziemlich in Alkohol (Fou.). — Chloroplatinat. Blättchen. Zersetzt sich bei 230°, ohne zu schmelzen; sehr wenig löslich in Wasser, leicht in Alkohol (Fou.).

Trimethyl- $[\beta$ -brom- γ -oxy- γ -phenyl-propyl]-ammoniumehlorid $C_{12}H_{12}$ ONClBr = $C_{0}H_{12}\cdot CH(OH)\cdot CHBr\cdot CH_{2}\cdot N(CH_{2})$ Cl. B. Durch Kochen von Trimethyl- $[\beta,\gamma$ -dibrom- γ -phenyl-propyl]-ammoniumehlorid (Bd. XII, S. 1147) mit Wasser (E. Schmidt, Flakecher, Ar. 243, 76). — Gibt bei der Reduktion mit Zink und verd. Schwefelsäure Trimethyl-[y-oxyp-phenyl-propyl]-ammoniumchlorid (s. o.). — $2 C_{12} H_{19} OBr N \cdot Cl + Pt Cl_4$. Sehr wenig löslich.

3. Aminoderivate des 1¹-Oxy-1-propyl-benzols (Methylbenzylcarbinols) $C_0H_{12}O = C_0H_5 \cdot CH_2 \cdot CH(OH) \cdot CH_3$ (Bd. VI, 8. 503).

 $\textbf{Methyl-[a-amino-bensyl]-carbinol} \ C_{\mathfrak{g}}H_{18}ON = C_{\mathfrak{g}}H_{\mathfrak{g}} \cdot CH(NH_{\mathfrak{g}}) \cdot CH(OH) \cdot CH_{\mathfrak{g}}. \ B. \ Das$ Hydrochlorid entsteht aus salzsaurem a-Amino-a-phenyl-aceton (Syst. No. 1873) in schwach

salzsaurer Lösung mit Natriumamalgam bei einer 5° nicht übersteigenden Temperatur; es liefert in absol. Alkohol mit 1 Mol.-Gew. alkoh. Natronlauge das freie Aminocarbinol (EMDE, Ar. 247, 136). — Krystalle (aus Ather). Sintert von 83° ab, schmilzt bei 85°. Ziemlich leicht löslich in Wasser, mäßig in Ather. — C₀H₁₃ON + HCl. Blättchen (aus absol. Alkohol). Schmilzt bei 170—171° unter Rötung und Zersetzung. Sehr leicht löslich in wäßr. Salzsäure. — Pikrat. Nädelchen. Schmilzt bei 180—181° unter Schwärzung. Ziemlich leicht löslich in heißem Wasser, schwerer in kaltem Wasser. — 2 C₉H₁₃O N + 2 HCl + PtCl₄. Orangerote Täfelchen (aus Wasser), tiefrote Säulen (aus Alkohol + Ather). F: 189º (Zers.).

Methylaminomethyl-bensyl-carbinol $C_{10}H_{18}ON = C_6H_5 \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CH_3 \cdot B$. Durch Einw. von Methylamin auf γ-Chlor-β-oxy-α-phenyl-propan (Bd. VI, S. 503) (FOURNEAU, C. 1905 I, 233; vgl. F., Tiffeneau, Bl. [4] 1, 1229). Durch Anlagerung von unterjodiger Säure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure an Allylbenzol und Behandeln des Reaktionsproduktes mit Methylamin (Frankliche Saure and Frankliche Saure and F (F.; vgl. EMDE, Ar. 245, 666). — Zähe Masse. Kp₂₂: 148°, Kp₄₀: 169°; löslich in viel Wasser; die Salze sind schwer krystallisierbar (F.).

Dimethylaminomethyl - benzyl - carbinol $C_{11}H_{17}ON = C_6H_6 \cdot CH_2 \cdot CH(OH) \cdot CH_2 \cdot N(CH_3)_8$. B. Analog derjenigen des Methylaminomethyl-benzyl-carbinols (s. o.) (FOURNEAU, C. 1905 I, 233; vgl. F., TIFFENEAU, Bl. [4] 1, 1231). — Kp_{24} : 136°; Kp_{44} : 153° (F.). — Hydrochlorid. F: 288° (F.). — Chloroaurat. Plättchen. F: 126—127° (F.).

 C_0H_5)· CH_3 · $N(CH_3)_3$. B. Aus Dimethylaminomethyl-benzyl-carbinol (s. o.) durch Benzoylierung (F., C. 1905 I, 233). — Hydrochlorid. F: 175°.

Trimethyl- $[\beta$ -oxy- γ -phenyl-propyl]-ammoniumhydroxyd $C_{12}H_{21}O_2N=C_8H_5\cdot CH_2\cdot CH(OH)\cdot CH_2\cdot N(CH_3)_3\cdot OH$. Zur Konstitution vgl. Fourneau, C. 1907 II, 1086; Emde, Ar. 245, 666. — B. Das Chlorid wurde erhalten aus Trimethyl- $[\gamma$ -chlor- β -oxy- γ -phenyl-propyl]-ammonium-chlorid (s. u.) mit Natriumamalgam (EMDE, Ar. 244, 297), das Jodid aus Monomethyl- oder Dimethylaminomethyl-benzyl-carbinol (s. o.) mit Methyljodid (FOURNEAU, C. 1907 II, 1086). — Chlorid. Sirupos (F.). — Jodid. F: 148° (F.). — Pikrat. Dunkelgelbe Nadeln (aus Wasser). F: 143°; zersetzt sich erst weit oberhalb dieser Temperatur; schwer löslich in kaltem Wasser, ziemlich in heißem Wasser (F.). — Chloroaurat $C_{12}H_{20}ON\cdot Cl$ + AuCl₃. Blättchen (aus Wasser oder verd. Alkohol). F: 103° (E., Ar. 244, 297), 103—104° (F.). Sehr wenig löslich in Wasser, leicht in Alkohol (F.). — Chloroplatinat $2C_{12}H_{20}ON\cdot Cl+PtCl_4$. Orangerote Krystalle (aus salzsäurehaltigem Wasser). F: 216—218° (Zers.) (E., Ar. 244, 297), 219—220° (F.). Sehr wenig löslich in Alkohol, ziemlich leicht in heißem salzsäurehaltigem Wasser (F.).

[(Benzoylmethylamino)-methyl-benzyl-carbin]-benzoat $C_{24}H_{23}O_3N=C_8H_5\cdot CO\cdot O\cdot CH(CH_9\cdot C_6H_5)\cdot CH_2\cdot N(CH_9)\cdot CO\cdot C_6H_5$. Aus Methylaminomethyl-benzyl-carbinol (s. o) durch Benzoylierung nach Schotten-Baumann (Fourneau, C. 1905 I, 233). — Krystalle (aus Petroläther). F: 42—43°.

Trimethyl-[γ -chlor- β -oxy- γ -phenyl-propyl]-ammoniumchlorid $C_{12}H_{19}ONCl_2=C_4H_5\cdot CHCl\cdot CH(OH)\cdot CH_2\cdot N(CH_3)_3Cl$. Zur Konstitution vgl. EMDE, Ar. 245, 664. — B. Durch Einw. einer wäßr. Lösung von unterchloriger Säure auf Trimethyl-cinnamyl-ammoniumchlorid $C_6H_5\cdot CH: CH\cdot CH_2\cdot N(CH_3)_3Cl$ (Bd. XII, S. 1189) (EMDE, Ar. 244, 291). — Gibt mit Natriumamalgam Trimethyl-[β -oxy- γ -phenyl-propyl]-ammoniumchlorid (s. o.) (E., Ar. 244, 297). — $C_{12}H_{19}OClN\cdot Cl + AuCl_3$. Goldgelbe Blättchen und Nadeln (aus salzsäurehaltigem Wasser). F: 130—132° (E., Ar. 244, 292). — 2 $C_{12}H_{19}OClN\cdot Cl + PtCl_4$. Rote Warzen und Krusten. Erweicht bei etwa 200° und schmilzt bei 210—212° unter Zersteung (E. Ar. 244, 292). setzung (E., Ar. 244, 292).

4. Aminoderivate des 11-Oxy-1-isopropyl-benzols (Dimethylphenylcar**binols**) $C_9H_{12}O = C_6H_5 \cdot C(CH_3)_2 \cdot OH'(Bd. VI, S. 506).$

 $\textbf{Methyl-aminomethyl-phenyl-carbinol} \ \ C_{\mathfrak{b}}H_{13}ON = C_{\mathfrak{b}}H_{\mathfrak{z}} \cdot C(CH_{\mathfrak{z}})(OH) \cdot CH_{\mathfrak{z}} \cdot NH_{\mathfrak{z}}.$ Entsteht neben Bis- $[\beta$ -oxy- β -phenyl-propyl]-amin (8. 641) durch Erhitzen von a-Chlor β -oxy- β -phenyl-propan (Bd. VI, S. 507) mit alkoholischem oder wäßrigem Ammoniak in geschlossenem Gefäß auf 125° (RIEDEL, D.R.P. 189481, 194051; C. 1907 II, 2004; 1908 I, 1222) oder durch Einw. von überschüssigem wäßrigem Ammoniak auf das Methylphenyläthylenoxyd (C₆H₅)(CH₃)C CH₂ (Syst. No. 2366) (Poulenc frères, D. R. P. 203082; C. 1908 II, 1706). — Kp_{40} : 175° (R.).

Methyl-methylaminomethyl-phenyl-carbinol $C_{10}H_{15}ON = C_6H_5 \cdot C(CH_3)(OH) \cdot CH_2 \cdot NH \cdot CH_3$. B. Man erhitzt a-Chlor $\cdot \beta$ -oxy- β -phenyl-propan (Bd. VI, S. 507) oder die entsprechende nicht näher beschriebene Jodverbindung mit Methylamin auf 130° im Autoklaven (Fourneau, C. 1905 I, 232; Riedel, D.R.P. 169746; C. 1906 I, 1585). Durch

Methyl-dimethylaminomethyl-phenyl-carbinol C₁₁H₁₇ON=C₆H₅·C(CH₃)(OH)·CH₂·N(CH₂)₂. B. Durch Erhitzen des α-Chlor-β-oxy-β-phenyl-propans (Bd. VI, S. 507) oder der entsprechenden (nicht näher beschriebenen) Jodverbindung mit etwas mehr als 2 Mol.-Gew. Dimethylamin oder Trimethylamin in Gegenwart von Alkohol oder Benzol (Fourneau, C.r. 138, 767; Tiffeneau, A. ch. [8] 10, 181, 190). Aus Phenylmagnesiumbromid und Dimethylamino-aceton (Bd. IV, S. 314) oder aus Methylmagnesiumjodid und ω-Dimethylamino-acetophenon (Syst. No. 1873) (Riedel, D. R. P. 169819; Frdl. 8, 1032; C. 1906 I, 1586). Beim Behandeln von Methylphenyläthylenoxyd (C₆H₅)(CH₃)C C CH₂ (Syst. No. 2366) mit Dimethylamin (Riedel, D. R. P. 199148; C. 1908 II, 122). — Kp₃₂: 135—136° (F., C. r. 138, 767). — Liefert mit Methyljodid eine bei 157° (F., C. 1905 I, 233), auf dem Quecksilberbade bei 170° (T., A. ch. [8] 11, 144) schmelzende Verbindung. — Hydrochlorid. Blättehen (aus Aceton). F: 159—160° (F., C. r. 138, 767; R., D. R. P. 169746).

Isovalerylderivat $C_{16}H_{25}O_2N=(CH_3)_2CH\cdot CH_2\cdot CO\cdot O\cdot C(CH_3)(C_6H_5)\cdot CH_2\cdot N(CH_3)_2$. B. Aus Methyl-dimethylaminomethyl-phenyl-carbinol und Isovalerylchlorid in Benzol (Riedel, D.R.P. 169787; C. 1906 I, 1682). — $C_{16}H_{25}O_2N+HCl$. Nadeln (aus Alkohol+Äther). F: 180°.

Benzoylderivat $C_{18}H_{21}O_2N = C_6H_5 \cdot CO \cdot O \cdot C(CH_3)(C_6H_5) \cdot CH_2 \cdot N(CH_3)_2$. B. Durch Benzoylieren des Methyl-dimethylaminomethyl-phenyl-carbinols (FOURNEAU, C. r. 138, 767; RIEDEL, D.R. P. 169787; C. 1906 I, 1682). — Zur Bestimmung der Affinitätskonstante vgl. Veley, Soc. 93, 2132; 95, 763. — Hydrochlorid. Tafeln (aus Methylalkohol). Schmilzt bei 205—206° (F.; R.), auf dem Quecksilberbad bei 232° (Tiffeneau, A. ch. [8] 10, 190; 11, 144). Sehr wenig löslich in absol. Alkohol und kaltem Wasser (F.).

Trimethyl-[β -oxy- β -phenyl-propyl]-ammoniumjodid $C_{12}H_{20}ONI=C_6H_5 \cdot C(CH_3)(OH) \cdot CH_2 \cdot N(CH_3)_3I$. B. Aus Methyl-dimethylaminomethyl-phenyl-carbinol (s. o.) und Methyljodid (FOURNEAU, C. 1905 I, 233). — Schmilzt bei 157° (F.), auf dem Quecksilberbade bei 170° (TIFFENEAU, A. ch. [8] 11, 144).

Methyl-diäthylaminomethyl-phenyl-carbinol $C_{13}H_{21}ON = C_6H_5 \cdot C(CH_3)(OH) \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus α-Chlor-β-oxy-β-phenyl-propan (Bd. VI, S. 507) oder der entsprechenden (nicht näher beschriebenen) Jodverbindung und Diäthylamin in Benzol im geschlossenen Gefäß bei 110° (RIEDEL, D.R.P. 169746; C. 1906 I, 1585; TIFFENEAU, A. ch. [8] 10, 181, 190). Aus Diäthylamino-aceton (Bd. IV, S. 316) und Phenylmagnesiumbromid (RIEDEL, D.R.P. 169819; C. 1906 I, 1586). — Dicke Flüssigkeit. Kp: ca. 244—247°; Kp₂₂: 138—140° (T.); Kp₂₄: 147—149° (R., D. R. P. 169746).

Cinnamoylderivat $C_{22}H_{27}O_2N = C_6H_5 \cdot CH : CH : CO \cdot O \cdot C(CH_3)(C_6H_5) \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus Methyl-diathylaminomethyl-phenyl-carbinol und Cinnamoylchlorid in Benzol (TIFFENEAU, A. ch. [8] 10, 182). — $C_{22}H_{27}O_2N + HCl$. Krystalle (aus Aceton + Åther). F: 190–192°.

Bis-[β-oxy-β-phenyl-propyl]-amin $C_{18}H_{23}O_4N=[C_8H_5\cdot C(CH_3)(OH)\cdot CH_2]_8NH$. B. Entsteht neben Methyl-aminomethyl-phenyl-carbinol (S. 640) beim Erhitzen von α-Chlor-β-oxy-β-phenyl-propan (Bd. VI, S. 507) mit alkoholischem oder wäßrigem Ammoniak in geschlossenem Gefäß auf 125° (RIEDEL, D.R.P. 189481, 194051; C. 1907 II, 2004; 1908 II, 1222) oder durch Einw. von überschüssigem wäßrigem Ammoniak auf Methylphenyläthylenoxyd (C₆H₅)(CH₃)C CH₂ (Syst. No. 2366) (Poulenc frères, D.R.P. 203082; C. 1908 II, 1706). — Kp₄₆: 258° (R., D. R. P. 189481). — Salze: R., D.R.P. 189481. Hydrochlorid. Blättchen (aus absol. Alkohol). F: 228—229°; schwer löslich in Wasser. — Hydrobromid. Blättchen. — Hydrojodid. Blättchen. Fast unlöslich in kaltem Wasser.

[Methyl-benzaminomethyl-phenyl-carbin]-benzoat $C_{23}H_{21}O_2N=C_0H_5\cdot CO\cdot O\cdot C(CH_2)(C_0H_5)\cdot CH_2\cdot NH\cdot CO\cdot C_0H_5$. B. Aus Methyl-aminomethyl-phenyl-carbinol (8. 640) durch Benzoylierung (RIEDEL, D.R.P. 194051; C. 1908 I, 1222). — Prismen (aus Benzol + Äther). F: 110°. Löslich in Wasser, schwer löslich in Äther.

 $\label{eq:methyl-carbin} $$ $\{ \mathbf{Methyl-[(bensoylmethylamino)-methyl]-phenyl-carbin} \}$ - bensoat $C_{24}H_{22}O_3N = C_cH_s\cdot CO\cdot C\cdot C(cH_s)(C_cH_s)\cdot CH_s\cdot N(CH_s)\cdot CO\cdot C_cH_s.$$ $B.$$ Aus Methyl-methylaminomethyl-phenyl-carbinol (S. 640) durch Bensoylchlorid (RIEDEL, D. R. P. 181175; $C. 1907 I, 1002).$$ - Prismen (aus Petrolather). $F: 122^o$ (R., D. R. P. 169746; $C. 1906 I, 1585).$

Bis - dimethylaminomethyl - phenyl - carbinol $C_{13}H_{22}ON_2 = C_6H_5 \cdot C(OH)[CH_2 \cdot N(CH_3)_2]_2$. B. Aus a.y-Dichlor- β -oxy- β -phenyl-propan (Bd. VI, S. 507) und Dimethylamin (BAYER & Co., D.R.P. 173610; C. 1906 II, 932). — Ol. Kp₁₁: 139,5°.

[Bis - dimethylaminomethyl - phenyl - carbin] - benzoat $\mathrm{C_{20}H_{26}O_2N_2} = \mathrm{C_6H_5 \cdot CO \cdot O}$ C(C₂H₃)[CH₂·N(CH₃)₂]₂. B. Aus Bis-dimethylaminomethyl-phenyl-carbinol (s. o.) und Benzoyl-chlorid (Bayer & Co., D.R. P. 173631; C. 1906 II, 933). — Öl. — Hydrochlorid. Krystall-pulver. F: 187°. Sehr leicht löslich in Wasser und Alkohol. Die wäßr. Lösung reagiert neutral. Wirkt stark anästhesierend.

5. Aminoderivate des 4-Oxy-1-methyl-3-äthyl- CH_3 benzols $C_9H_{12}O = (CH_3)(C_2H_5)C_6H_3 \cdot OH$.

[a-(6-Oxy-8-methyl-phenyl)-athyl]-anilin $C_{15}H_{17}ON$, s. nebenstehende Formel. B. Durch Einw. einer wäßr. Benzol-·CH(CH₃)·NH·C₆H₅ lösung von [6-Oxy-3-methyl-benzal]-anilin (Bd. XII, S. 218) auf eine siedende ätherische Lösung von Methylmagnesiumjodid und Zersetzung des Reaktionsproduktes mit Wasser (Anselmino, B. 40, 3472). — Krystalle (aus Ligroin). Monoklin prismatisch (Jäger, B. 40, 3473). F: 98°; D: 1,107 (A.).

[a-(6-Methoxy-3-methyl-phenyl)-äthyl]-anilin $C_{16}H_{19}ON = CH_3 \cdot O \cdot C_6H_3 \cdot (CH_3) \cdot CH(CH_3) \cdot NH \cdot C_6H_5$. B. Aus [6-Methoxy-3-methyl-benzal]-anilin (Bd. XII, S. 219) und Methylmagnesiumjodid (A., B. 40, 3473). — Krystalle (aus Petroläther). Rhombisch bipyramidal (Jäger, B. 40, 3473). F: 78°; D: 1,098 (A.).

 $\begin{array}{l} \textbf{N-[a-(6-Oxy-3-methyl-phenyl)-\ddot{a}thyl]-acetanilid} \ \ C_{17}H_{19}O_2N = HO\cdot C_6H_3(CH_3)\cdot CH(CH_3)\cdot N(C_6H_5)\cdot CO\cdot CH_3. \quad B. \quad Man \ \ kocht \ \ [a-(6-Oxy-3-methyl-phenyl)-\ddot{a}thyl]-anilin \ \ (s.\ o.) \end{array}$ mit Acetanhydrid und verseift die hierbei erhaltene flüssige Diacetylverbindung mit Natronlauge (A., B. 40, 3473). — Krystallwarzen (aus Ligroin). F: 123°.

 $N - [a - (6 - Methoxy - 8 - methyl - phenyl) - athyl] - acetanilid <math>C_{18}H_{21}O_2N = CH_3 \cdot O \cdot$ $C_0H_3(CH_3)\cdot CH(CH_3)\cdot N(C_0H_5)\cdot CO\cdot CH_3$. B. Aus N-[a-(6-Oxy-3-methyl-phenyl)-āthyl]-acet. anilid (s. o.) durch Methylieren oder aus [a-(6-Methoxy-3-methyl-phenyl)-āthyl]-anilin (s. o.) durch Acetylieren (A., B. 40, 3473). — Sirup.

6. Aminoderivate des 5 - Oxy - 1.2.3 - trimethyl benzols $C_0H_{12}O = (CH_2)_3C_0H_2 \cdot OH \text{ (Bd. VI, S. 509)}.$

CH₃ $\cdot \mathrm{CH_2} \cdot \mathrm{N}(\mathrm{C_5H_{11}})_{2}$ Br $\cdot CH_3$

 $\mathbf{CH_{8}}$

[8.5-Dibrom-4-oxy-2.6-dimethyl-benzyl]-diisoamylamin C₁₉H₃₁ONBr₂, s. nebenstehende Formel. B. Aus 4.6.2¹-Tribrom-5-oxy-1.2.3-trimethyl-benzol (Bd. VI, S. 509) und Diisoamylamin in ather. Lösung (Auwers, A. 344, 191). — Feste Masse.

Schmilzt beim Eintauchen in ein 81° heißes Bad bei dieser Temperatur, erstarrt aber alsbald unter Übergang in das bei 246° schmelzende 3.5.3'.5'-Tetrabrom-4.4'-dioxy-2.6.2'.6'-tetramethyl-diphenylmethan (Bd. VI, S. 1017). Sehr leicht löslich in Äther, Benzol, Chloroform, leicht in Alkohol und Eisessig, ziemlich schwer in Petroläther. — Gibt beim Erhitzen für sich oder mit Alkali 3.5.3'.5'-Tetrabrom-4.4'-dioxy-2.6.2'.6'-tetramethyl-diphenylmethan.

[8.5-Dibrom-4-oxy-2.6-dimethyl-bensyl]-anilin $C_{15}H_{15}ONBr_2 = HO \cdot C_6Br_2(CH_2)_3 \cdot CH_2 \cdot NH \cdot C_6H_5$. B. Beim Kochen von 4.6.2¹-Tribrom-5-oxy-1.2.3-trimethyl-benzol mit Anilin in Benzol (Au., A. 344, 275). Beim Verseifen von [3.5-Dibrom-4-acetoxy-2.6-dimethylbenzyl]-anilin mit alkoh. Kalilauge (Au.). — Nädelchen (aus verd. Alkohol oder Ligroin). F: 146,5°. Leicht löslich in Benzol, ziemlich leicht in Alkohol, ziemlich schwer in Ligroin.

[3.5-Dibrom-4-acetoxy-2.6-dimethyl-bensyl]-anilin $C_{17}H_{17}O_2NBr_2 = CH_2 \cdot CO \cdot O \cdot C$ $C_8Br_a(CH_a)_a\cdot CH_a\cdot NH\cdot C_aH_a$. B. Beim Kochen von 4.6.2\(^1\)-Tribrom-5-acetoxy-1.2.3-trimethylbenzol (Bd. VI, 8. 509) mit Anilin in Benzollösung (Au., A. 344, 274). — Tafeln (aus Alkohol). F: 145-146°. Unlöslich in wäßr. Alkali. - Wird von alkoh. Kalilauge leicht verseift.

7. Aminoderivate des 5 - Oxy - 1.2.4 - trimethyl - benzols ${}^{\dagger}C_{9}H_{19}O = (CH_{2})_{2}C_{6}H_{2} \cdot OH \text{ (Bd. VI, S. 509)}.$

CH₂ H,N 6-Amino-5-oxy-1.2.4-trimethyl-benzol, 6-Amino-pseudo-cumenol¹) C₂H₁₃ON, s. nebenstehende Formel. B. Neben Anilin beim HO Behandeln von 6-Oxy-2.3.5-trimethyl-azobenzol (Syst. No. 2115) mit Zinn CH,

¹⁾ Besifferung der vom Namen "Pseudocumenol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 509.

und Salzsäure in Gegenwart von Alkohol (Liebermann, v. Kostanecki, B. 17, 886). Beim Behandeln einer essigsauren Lösung von Nitro-trimethyl-chinitrol aus Pseudocumenol (Bd. VI, S. 510) mit Zinn und Salzsäure (Auwers, B. 17, 2980). — Sublimiert in Nadeln (L., v. K.). F: 166—167° (L., v. K.), 164—165° (Au.). Löst sich in salpetersäurehaltiger konzentrierter Schwefelsäure mit rotvioletter Farbe (L., v. K.). Das salzsaure Salz wird durch Eisenchlorid vorübergehend rot gefärbt (L., v. K.).

- 6-Acetamino-5-acetoxy-1.2.4-trimethyl-benzol, O.N-Diacetyl-[6-amino-pseudocumenol] $C_{18}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot C_4H(CH_3)_3\cdot O\cdot CO\cdot CH_3$. B. Durch Behandeln von 6-Amino-5-oxy-1.2.4-trimethyl-benzol mit Essigsäureanhydrid und Natriumacetat (Lieber-MANN, v. Kostanecki, B. 17, 886). — Nadeln (aus Benzol). F: 184—186°. Sublimiert leicht.
- [5-Oxy-2.4-dimethyl-bensyl]-anilin $C_{15}H_{17}ON$, s. nebenstehende Formel. B. Beim Behandeln von [3.6-Dibrom-5-oxy-2.4-dimethyl-benzyl]-anilin mit Natriumamalgam in verdünnter schwach alkalischer Lösung unter zeitweiligem Zusatz von verd. Schwefelsäure (Auwers, Anselmino, B. 35, 136). — Die nicht ganz rein erhaltene Verbindung krystallisiert aus Benzol + Ligroin in Nadeln vom Schmelzpunkt 109-110°. Leicht löslich in Alkohol und Benzol, sehr wenig in heißem Ligroin.

- [3.6-Dibrom-5-oxy-2.4-dimethyl-benzyl]-anilin $C_{18}H_{15}ONBr_2 = HO \cdot C_6Br_4(CH_2)_8 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot B$. Beim Digerieren von 3.6.1\(^1\)-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) mit Anilin in Benzol (Au., An., B. 35, 135). — Schuppen (aus Alkohol). F: 148—149°. Sehr leicht löslich in Benzol, leicht in warmem verdünntem Alkohol, schwer in Ligroin; löslich in Säuren und Alkalien.
- N-[3.6-Dibrom-5-oxy-2.4-dimethyl-benzyl]-acetanilid $C_{17}H_{17}O_2NBr_3=HO\cdot C_6Br_4(CH_3)_3\cdot CH_3\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim kurzen Erwärmen einer mit einigen Tropfen Natronlauge versetzten heißen alkoh. Lösung von N-[3.6-Dibrom-5-acetoxy-2.4-dimethylbenzyl]-acetanilid (Au., An., B. 35, 136). — Blättchen (aus Alkohol). F: 216—218°. Unlöslich in Ligroin, leicht in den gewöhnlichen organischen Mitteln.
- N-[3.6-Dibrom-5-acetoxy-2.4-dimethyl-bensyl]-acetanilid $C_{18}H_{19}O_3NBr_2=CH_3\cdot CO\cdot O\cdot C_6Br_3(CH_3)_3\cdot CH_2\cdot N(C_6H_8)\cdot CO\cdot CH_3$. Bei halbstündigem Kochen von [3.6-Dibrom-5-oxy-2.4-dimethyl-benzyl]-anilin mit Essigsäureanhydrid (Au., An., B. 35, 136). Platten (aus Methylalkohol). F: 167—168°. Ziemlich löslich in Alkohol, schwer in Ligroin und Benzol.
- [4-Oxy-2.5-dimethyl-benzyl]-anilin $C_{15}H_{17}ON$, s. nebenstehende Formel. B. In schlechter Ausbeute beim Digerieren von 4-Oxy-2.5-dimethyl-benzylalkohol (Bd. VI, S. 933) mit der 5-fachen Menge Anilin in Eisessig auf dem Wasserbade (AUWERS, HO Anselmino, B. 85, 139). Man reduziert [4-Oxy-2.5-dimethylbenzal]-anilin (Bd. XII, S. 220) mit Natriumamalgam in absolut-

- alkoholischer Lösung (Au., An.). Prismen (aus Alkohol). Erweicht bei 201—202° und schmilzt bei 203—204°. Fast unlöslich in Ligroin, leicht löslich in Eisessig und Benzol; leicht löslich in Säuren und Alkalien.
- [3 Brom 4 oxy 2.5 dimethyl bensyl] diisoamylamin $C_{19}H_{12}ONBr = HO \cdot C_{4}HBr(CH_{3})_{2} \cdot CH_{3} \cdot N(C_{5}H_{11})_{3}$. B. Das salzsaure Salz entsteht, wenn man 6.2 Dibrom-5-oxy-1.2 4-trimethyl-benzol (Bd. VI, S. 512) in absol. Ather mit Diisoamylamin behandelt und in die erhaltene Lösung Chlorwasserstoff einleitet (Auwers, Kipke, A. 344, 203). — $C_{19}H_{22}ONBr$ + HCl.
- [3-Brom-4-oxy-2.5-dimethyl-bensyl]-anilin $C_{15}H_{16}ONBr = HO \cdot C_{4}HBr(CH_{2})_{4} \cdot CH_{2} \cdot NH \cdot C_{6}H_{5}$. B. Aus 6.2¹-Dibrom-5-oxy-1.2.4-trimethyl-benzol und Anilin in Benzol (Auwers, Ercklentz, A. 302, 121). Blättchen (aus Ligroin). F: 75°. Leicht löslich in kalten organischen Mitteln mit Ausnahme von Petroläther; löslich in wäßr. Alkalien.
- Bis [3 brom -4 oxy -2.5 dimethyl bensyl] methylamin C₁₉H₂₃O₂NBr₂ = [HO·C₄HBr(CH₂)₂·CH₂]₂N·CH₂. B. Beim Schütteln der benzolischen Lösung von 6.2¹-Dibrom-5-oxy-1.2.4-trimethyl-benzol mit einer wäßr. Lösung von Methylamin (Auwers, Kipke, A. 344, 199). Tafeln oder Nadeln (aus Ligroin + Benzol). F: 150—151°. Leicht löslich in Benzol und Chloroform siemlich achmen in Ligroin + Ligroin Kochen mit sent der School und Chloroform siemlich achmen in Ligroin + Ligroi in Benzol und Chloroform, ziemlich schwer in Ligroin. - Liefert beim Kochen mit verd. Alkali 3.3'-Dibrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1016). Liefert beim Kochen mit Eisesaig 6-Brom-5-oxy-2\frac{1}{2}-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 933); beim Kochen mit Essigs\u00e4ureanhydrid entsteht 6-Brom-5.2\frac{1}{2}-diacetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 933).

- Bis [3 brom 4 oxy 2.5 dimethyl bensyl] bensylamin $C_{25}H_{27}O_2NBr_2 == [HO\cdot C_6HBr(CH_5)_2\cdot CH_3]_8N\cdot CH_5\cdot C_6H_5$. B. Aus 6.2-Dibrom 5-oxy-1.2.4-trimethyl-benzol und Benzylamin (Au., K., A. 344, 202). Nadeln (aus Ligroin). F: 132—133°. Ziemlich leicht löslich in Benzol und heißem Ligroin, schwer in Petroläther.
- 3.6-Dibrom-4-oxy-2.5-dimethyl-benzylamin $C_9H_{11}ONBr_2=HO\cdot C_6Br_2(CH_3)_2\cdot CH_2\cdot NH_4$. B. Bei stundenlangem Einleiten von trocknem Ammoniak in die Lösung von 3.6.2'-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) in Benzol (Auwers, Hor, B. 29, 1111). Prismen (aus Chloroform + Ligroin). F: 106°. Leicht löslich in Äther und Benzol, schwer in kaltem Ligroin. Beim Umkrystallisieren aus Eisessig entsteht 3.6.3'.6'-Tetrabrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1016). Beim Versetzen der Lösung in Essigsäure mit Wasser fällt [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-acetat (Bd. VI, S. 935) ans. $C_9H_{11}ONBr_2 + HBr$. Nadeln (aus bromwasserstoffhaltigem Eisessig). Schmilzt gegen 159—161°.
- [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-diäthylamin $C_{13}H_{19}ONBr_2 = HO \cdot C_6Br_9(CH_2)_2 \cdot CH_2 \cdot N(C_2H_5)_2$. B. Beim Vermischen der Benzollösungen von 3.6.2\ldot Tribrom-5-oxy-1.2.4-trimethyl-benzol und Diäthylamin (Au., H., B. 29, 1114). Krystalle (aus Chloroform). F: 87\(\text{6}\text{Au., H.}\). Gibt bei der Einw. von siedender $10^9/_0$ iger Natronlauge oder von Eisessig 3.6.3'.6'-Tetrabrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, 8. 1016) (Au., Kipke, A. 344, 215). Beim Kochen mit Essigs\(\text{8}\text{ureanhydrid entsteht 3.6-Dibrom-5.2\ldot -diacetoxy-1.2.4-trimethyl-benzol (Bd. VI, 8. 937) (Au., K.). $C_{13}H_{19}ONBr_2 + HBr$. Nadeln (aus Chloroform). F: 182\(\text{0}\text{ (Au., H.)}.
- [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-diisoamylamin $C_{19}H_{31}ONBr_2=HO\cdot C_6Br_8(CH_3)_8\cdot CH_2\cdot N(C_5H_{11})_2$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und Diisoamylamin in Benzol unter Eiskühlung (Auwers, Kipke, A. 344, 216). Krystalle (aus Petroläther). F: 43—46°. Sehr zersetzlich. Leicht löslich in Alkohol, Benzol, Chloroform, ziemlich schwer in Ligroin und Petroläther.
- [3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-diisoamylamin $C_{21}H_{33}O_{2}NBr_{2}=CH_{3}\cdot CO\cdot O\cdot C_{6}Br_{8}(CH_{3})_{2}\cdot CH_{2}\cdot N(C_{5}H_{11})_{2}$. B. Bei 6-stdg. Erhitzen von 3.6.2¹-Tribrom-5-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 515) mit Diisoamylamin in Benzol auf 50—55° (Au., K., A. 344, 225). Kryställchen (aus verd. Methylalkohol). F: 45—46°. Schwer löslich in Benzol und Petroläther, ziemlich schwer in Alkohol, leicht in Chloroform und Eisessig.
- [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-anilin $C_{15}H_{15}ONBr_2 = HO \cdot C_6Br_2(CH_3)_2 \cdot CH_3 \cdot NH \cdot C_6H_5$. B. Aus 1 Mol.-Gew. 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513), gelöst in Benzol, und 2 Mol.-Gew. Anilin (AUWERS, MARWELL, B. 28, 2905). Rhombenförmige Krystalle (aus heißem Alkohol). F: 134—134,5°; sehr wenig löslich in kaltem Ligroin, mäßig in kaltem Alkohol, leicht in Benzol und Äther, löslich in Alkalien (Au., M.). Verbindet sich nicht mit Methyljodid (Au., Senter, B. 29, 1127). Liefert bei der Einw. von Eisessig sowohl in der Kälte als auch in der Wärme (Au., Kipke, A. 344, 223) oder beim Erwärmen mit Essigsäureanhydrid (Au., M.) N-[3.6-Dibrom-4-oxy-2.5-dimethylbenzyl]-acetanilid (S. 647); beim Kochen mit Essigsäureanhydrid entsteht N-[3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-acetanilid (S. 647) (Au., Ki.). Hydrochlorid. F: 205° (Au., M.). $C_{15}H_{15}ONBr_2 + HBr + H_2O$. Nädelchen. F: 200° (Au., M.). $C_{15}H_{15}ONBr_2 + HI$. Nadeln oder Prismen. F: 182° (Au., S.).
- [3.6 Dibrom 4 methoxy 2.5 dimethyl benzyl] anilin $C_{16}H_{17}ONBr_{3} = CH_{3}\cdot O \cdot C_{6}Br_{3}(CH_{3})_{2}\cdot CH_{2}\cdot NH\cdot C_{6}H_{5}$. B. Beim Kochen von Anilin mit 3.6-Dibrom-2¹-jod-5-methoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 516) in Benzollösung (Auwers, Reichel, A. 384, 303). Nadeln (aus Alkohol). F: 115—116°. Leicht löslich in Äther, Ligroin, Aceton und Benzol, weniger löslich in Eisessig, Alkohol und Methylalkohol.
- [3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-anilin $C_{17}H_{17}O_2NBr_3=CH_3\cdot CO\cdot O\cdot C_6Br_5(CH_3)_2\cdot CH_3\cdot NH\cdot C_6H_5$. B. Beim Kochen von 3.6.2\(^1\)-Tribrom-5-acetoxy-1.2.4-trimethylbenzol (Bd. VI, S. 515) mit 2 Mol.-Gew. Anilin in Benzollösung (Auwers, Sheldon, A. 301, 271). Krystalle von oktaedrischem Habitus (aus Ligroin). F: 120\(^0\). Schwer löslich in Petroläther, mäßig in Ligroin und Alkohol, leicht in den übrigen organischen Lösungsmitteln.
- [3.6-Dibrom-4-benzoyloxy-2.5-dimethyl-benzyl]-anilin $C_{12}H_{19}O_2NBr_2 = C_6H_5 \cdot CO \cdot C_6Br_4(CH_5)_2 \cdot CH_5 \cdot NH \cdot C_6H_5$. B. Aus [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-anilin und Benzoylchlorid in Pyridin (Auwers, Sonnenstum, B. 37, 3939). Krystalle (aus Eisessig). F: 174—175°. Leicht löslich in heißem Eisessig und Benzol, löslich in Alkohol, unlöslich in Ather, Ligroin und Petroläther.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] methylanilin $C_{16}H_{17}ONBr_{8} = HO \cdot C_{6}Br_{2}(CH_{3})_{8} \cdot CH_{2} \cdot N(CH_{8}) \cdot C_{6}H_{5}$. B. Man verreibt 3.6.2 Tribrom 5 oxy 1.2.4 trimethyl benzol (Bd. VI, S. 513) mit Methylanilin zu einem Brei und läßt unter stetem Umrühren verd. Salzsäure zutropfen; das abgeschiedene Hydrochlorid wird mit Soda zerlegt (Auwers, Senter, B. 29, 1121). Nädelchen (aus heißem Ligroin). F: 99°; sehr leicht löslich in

Eisessig und Aceton, leicht in heißem Ligroin und Alkohol (Au., S.). — Gibt beim Kochen mit wäßr. Natronlauge 3.6.3'.6'-Tetrabrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1016); das gleiche Produkt entsteht beim Kochen mit Eisessig (Auwers, Kipke, A. 344, 217). Kochendes Essigsäureanhydrid liefert 3.6-Dibrom-5.2'-diacetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 937) (Au., K.). — $C_{16}H_{17}ONBr_2 + HBr$. Pulver. Entwickelt gegen 60° Bromwasserstoff (Au., S.).

- [3.6-Dibrom-4-methoxy-2.5-dimethyl-benzyl]-methylanilin $C_{17}H_{19}ONBr_2 = CH_3 \cdot O \cdot C_6Br_8(CH_8)_3 \cdot CH_2 \cdot N(CH_3) \cdot C_6H_5$. B. Beim Kochen von Methylanilin mit 3.6-Dibrom-2¹-jod-5-methoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 516) in Benzol (Auwers, Reichel, A. 334, 304). Prismen (aus wenig siedendem Methylalkohol). F: 90—91°. Leicht löslich in den üblichen organischen Lösungsmitteln. Gibt beim Erhitzen mit Methyljodid und Benzol in Gegenwart von Quecksilber im geschlossenen Rohr auf dem Wasserbade 3.6-Dibrom-2¹-jod-5-methoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 516) und Trimethylphenyl-ammoniumjodid.
- [3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-methylanilin $C_{18}H_{19}O_3NBr_8=CH_3\cdot CO\cdot O\cdot C_8Br_8(CH_3)_3\cdot CH_2\cdot N(CH_3)\cdot C_8H_5\cdot B$. Beim Kochen von 3.6.2³-Tribrom-5-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 515) mit Methylanilin in Benzollösung (Au., R., A. 334, 305). Prismen (aus Methylalkohol). F: 102—103⁵. Leicht löslich in den üblichen organischen Lösungsmitteln. Gibt beim Kochen mit Methyljodid und Benzol in Gegenwart von Quecksilber im geschlossenen Rohr auf dem Wasserbade 3.6-Dibrom-2³-jod-5-acetoxy-1.2.4-trimethylbenzol (Bd. VI, S. 516) und Trimethylphenylammoniumjodid.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] o toluidin $C_{16}H_{17}ONBr_{1} = HO \cdot C_{6}Br_{2}(CH_{3})_{2} \cdot CH_{2} \cdot NH \cdot C_{6}H_{4} \cdot CH_{3}$. B. Beim Zutropfen einer absolut-åtherischen Lösung von o-Toluidin zu der absolut-åtherischen Lösung von 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethylbenzol (Bd. VI, S. 513) (Auwers, Dombrowski, A. 344, 293). Weißes krystallinisches Pulver (aus Alkohol). F: 154—154,5°.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] m toluidin $C_{16}H_{17}ONBr_2 = HO \cdot C_6Br_5(CH_5)_2 \cdot CH_5 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und m-Toluidin in absol. Äther (Au., D., A. 344, 293). Weißes krystallinisches Pulver (aus Ligroin). F: 123,5—125°.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] p toluidin $C_{16}H_{17}ONBr_2 = HO \cdot C_6Br_5(CH_3)_2 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot CH_3$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und p-Toluidin in absol. Äther (Au., D., A. 344, 293). Prismen (aus Alkohol). F: 96—98°.
- [3.6-Dibrom -4-oxy-2.5-dimethyl-benzyl] -vic.-o-xylidin $C_{17}H_{19}ONBr_2 = HO \cdot C_8Br_8(CH_3)_2 \cdot CH_2 \cdot NH \cdot C_6H_3(CH_3)_4 \cdot B$. Aus 3.6.2\(^1\)-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) und vic.-o-Xylidin (Bd. XII, S. 1101) in absol. Ather (Au., D., A. 344, 294). Krystallpulver (aus Alkohol). F: 158\(^0\).
- [3.6-Dibrom-4-oxy-2.5-dimethyl-bensyl]-asymm.-o-xylidin $C_{17}H_{19}ONBr_3 = HO \cdot C_6Br_5(CH_2)_8 \cdot CH_2 \cdot NH \cdot C_6H_3(CH_3)_2 \cdot B$. Aus 3.6.2\(^1\)-Tribrom-5-oxy-1.2.4-trimethyl-benzol und asymm. o-Xylidin (Bd. XII, S. 1103) in absol. \(^1\)Ather (Au., D., A. 344, 294). Gelbliches Pulver (aus Alkohol). F: 120\(^0\).
- [3.6 Dibrom -4 oxy 2.5 dimethyl benzyl] vic.- m xylidin $C_{17}H_{19}ONBr_2 = HO \cdot C_6Br_8(CH_3)_2 \cdot CH_3 \cdot NH \cdot C_6H_3(CH_3)_8$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und vic.-m-Xylidin (Bd. XII, S. 1107) in absol. Äther, neben Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-benzyl]-vic.-m-xylidin (S. 646) (Au., D., A. 344, 295). Krystalle (aus Benzol). F:144,5—146°.
- [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-asymm.-m-xylidin $C_{17}H_{19}ONBr_2 = HO \cdot C_6Br_5(CH_3)_2 \cdot CH_3 \cdot NH \cdot C_6H_3(CH_2)_2$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und asymm. m-Xylidin (Bd. XII, S. 1111) in absol. Äther (Au., D., A. 344, 294). Nädelchen (aus Alkohol). F: 144,5—145,5°.
- [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-symm.-m-xylidin $C_{17}H_{19}ONBr_1 = HO-C_0Br_2(CH_0)_1\cdot CH_1\cdot NH\cdot C_0H_2(CH_0)_2\cdot B$. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und symm. m-Xylidin (Bd. XII, S. 1131) in absol. Äther (A., D., A. 344, 296). Nädelchen (aus Alkohol). F: 153,5—155°.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] p xylidin $C_{17}H_{19}ONBr_2 = HO \cdot C_0Br_2(CH_2)_2 \cdot CH_2 \cdot NH \cdot C_0H_3(CH_2)_2$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und p-Xylidin (Bd. XII, S. 1135) in absol. Äther (Au., D., A. 344, 296). Nädelchen (aus Ligroin). Schmilzt beim Eintauchen in ein auf 155—160° erwärmtes Bad bei 155,5—157°, erstarrt dann wieder zu einer höher schmelzenden Masse.
- [3.6 Dibrom 4 oxy 2.5 dimethyl benzyl] pseudocumidin $C_{16}H_{31}ONBr_{3}=HO\cdot C_{6}Br_{4}(CH_{2})_{3}\cdot CH_{2}\cdot NH\cdot C_{6}H_{4}(CH_{2})_{3}.$ B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) und Pseudocumidin (Bd. XII, S. 1150) in absol. Äther (Au., D., A. 344, 297). Nädelchen oder Prismen (aus Alkohol). F: 140—141,5°.

[3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-a-naphthylamin $C_{19}H_{17}ONBr_9 = HO \cdot C_6Br_9(CH_9)_8 \cdot CH_1 \cdot NH \cdot C_{10}H_7$. B. Beim Behandeln von 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethylbenzol mit a-Naphthylamin in Benzol unter Kühlung (Auwers, Kipee, A. 344, 214; vgl. dazu Au., Senter, B. 29, 1120). — Nadeln (aus Benzol + Ligroin). F: 196—197°; sehr leicht löslich in Chloroform und Benzol, ziemlich leicht in Alkohol, schwer in Ligroin.

[3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]- β -naphthylamin $C_{19}H_{17}ONBr_8=HO-C_6Br_9(CH_3)_8\cdot CH_3\cdot NH\cdot C_{10}H_7$. B. Beim Schütteln der Benzollösungen von 1 Mol.-Gew. 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und etwas mehr als 2 Mol.-Gew. β -Naphthylamin unter Kühlung (Auwers, Senter, B. 29, 1120). — Blättchen (aus Benzol). F: 181° bis 182°; unlöslich in Wasser, Äther und Ligroin, schwer löslich in siedendem Alkohol, leicht in heißem Benzol (Au., S.). — Wird bei längerem Kochen mit verdünnter Natronlauge nicht verändert (Au., S.). Liefert beim Kochen mit Eisessig N-[3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-N- β -naphthyl-acetamid, mit Essigsäureanhydrid N-[3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-N- β -naphthyl-acetamid (Au., KIPKE, A. 344, 212).

Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-bensyl]-methylamin $C_{19}H_{21}O_{2}NBr_{4} = [HO\cdot C_{6}Br_{2}(CH_{2})_{2}\cdot CH_{2}]_{2}N\cdot CH_{3}$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513), gelöst in Benzol, und überschüssiger wäßriger 33%-jiger Methylaminlösung (AUWERS, HoF, B. 29, 1113; Au., Kiper, A. 344, 207). — Nadeln (aus Chloroform). Schmilzt, sehr langsam erwärmt, bei 168-169°, rasch erhitzt, bei 173°; leicht löslich in Chloroform und Äther, schwer in siedendem Ligroin (Au., H.). — Liefert beim Kochen mit verd. Natronlauge 3.6.3'.6'-Tetrabrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1016), beim Kochen mit Eisessig 3.6-Dibrom-5-oxy-2¹-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 935) (Au., K.). Kochen mit Essigsäureanhydrid führt zu 3.6-Dibrom-5.2¹-diacetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 937) (Au., K.). Erhitzt man jedoch das Hydrobromid mit Essigsäureanhydrid, so erhält man 3.6.2¹-Tribrom-5-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 515) (Au., K.). — $C_{19}H_{21}O_{2}NBr_{4}+HBr$. Krystalle (aus Chloroform). F: 195° (Au., H.).

Bis-[3.6-dibrom-4-methoxy-2.5-dimethyl-bensyl]-methylamin $C_{31}H_{35}O_3NBr_4 = [CH_3\cdot O\cdot C_8Br_4(CH_3)_3\cdot CH_3]_3N\cdot CH_3$. Aus 3.6.2'-Tribrom-5-methoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 515) in Benzol beim Schütteln mit 33°/oigem wäßr. Methylamin bei 50° (Auwers, Kipke, A. 344, 223). — Krystalle (aus Alkohol + Eisessig). Schmilzt nach vorherigem Erweichen bei 149°. Leicht löslich in Eisessig und Benzol, schwer löslich in Alkohol. — Wird beim Kochen mit verd. Alkali, mit Eisessig oder Essigsäureanhydrid nicht angegriffen.

Bis - [3.6 - dibrom - 4 - anilinoformyloxy - 2.5 - dimethyl - bensyl] - methylamin $C_{33}H_{31}O_4N_3Br_4 = [C_6H_5\cdot NH\cdot CO\cdot O\cdot C_6Br_4(CH_3)_2\cdot CH_2]_2N\cdot CH_3$. B. Bei 4-stdg. Erhitzen von 1 Mol.-Gew. Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-benzyl]-methylamin mit 2 Mol.-Gew. Phenylisocyanat im geschlossenen Rohr auf 100° (Auwers, Hof, B. 29, 1113). — Prismen (aus Chloroform + Ligroin). F: 202°. Schwer löslich in den gebräuchlichen Lösungsmitteln.

Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-bensyl]-äthylamin C₂₀H₂₃O₂NBr₄ = [HO·C₆Br₂(CH₃)₂·CH₂]₂N·C₂H₅. B. Aus 3.6.2¹·Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513), gelöst in Benzol, und überschüssiger wäßriger 33°/oiger Äthylaminlösung (Au., H., B. 29, 1114). — Prismen (aus Chloroform + Ligroin). F: 165,5° (Au., H.). — Wird durch kalte verd. Natronlauge in 3.6.3′.6′·Tetrabrom-4.4′-dioxy-2.5.2′.5′·tetramethyl-diphenylmethan (Bd. VI, S. 1016) übergeführt (Au., Kifke, A. 344, 209). Verhält sich gegen Eisessig und Essigsäureanhydrid wie Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-benzyl]-methylamin (Au., K.). Beim Kochen mit absol. Alkohol entsteht 3.6-Dibrom-5-oxy-2¹-āthoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 934) (Au., K.). — C₂₀H₂₃O₂NBr₄ + HBr. Nadeln (aus Eisessig + Bromwasserstoffsäure). Beginnt bei 130° zu sintern und zersetzt sich gegen 218° (Au., H.).

Bis-[3.6-dibrom-4-oxy-2.5-dimethyl-benzyl]-benzylamin $C_{25}H_{35}O_2NBr_4=[HO\cdot C_6Br_9(CH_3)_2\cdot CH_3]_2N\cdot CH_3\cdot C_6H_5$. B. Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) und Benzylamin (Bd. XII, S. 1013) in Benzol (Auwers, Kipke, A. 344, 210). — Nadeln (aus Benzol und Toluol). F: 183—184°. Ziemlich schwer löslich in heißem Benzol und Chloroform, schwer in Ligroin.

Bis-[8.6-dibrom-4-oxy-2.6-dimethyl-bensyl]-vic.-m-xylidin $C_{ab}H_{a7}O_{a}NBr_{4} = [HO\cdot C_{a}Br_{a}(CH_{a})_{a}\cdot CH_{a}]_{a}N\cdot C_{a}H_{a}(CH_{a})_{a}$. B. Aus $3.6.2^{1}$ -Tribrom-5-oxy-1.2.4-trimethyl-bensol und vic.-m-Xylidin in absol. Ather, neben [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-vic.-m-xylidin (Auwers, Dombrowski, A. 844, 295). — Krystalle (aus Benzol). F: 207—208°. Schwer löslich in allen Lösungsmitteln.

Tris - [3.6 - dibrom - 4 - oxy - 2.5 - dimethyl - bensyl] - amin $C_{17}H_{17}O_{2}NBr_{6} = [HO \cdot C_{6}Br_{6}(CH_{2})_{2}\cdot CH_{2}]_{2}N$. B. Beim Schüttein von 3.6.2\text{-Tribrom-5-oxy-1.2.4-trimethyl-benzol} (Bd. VI, S. 513), gelöst in Benzol, mit konz. Ammoniak (Auwers, Hof, B. 29, 1110). Aus 2\text{-Chlor-3.6-dibrom-5-oxy-1.2.4-trimethyl-benzol} (Bd. VI, S. 513) und Ammoniak (Au., H., B. 29, 1119). — Nadeln (aus siedendem Xylol). Schmilzt bei langsamem Erhitzen bei 218\text{0} bis 219\text{0}, bei raschem Erhitzen bei 223—224\text{0} (Au., H.). Leicht löslich in Äther, sehr wenig

in Chloroform, fast unlöslich in Ligroin (Au., H.). — Wird durch 1-stdg. Kochen mit $10^{\circ}/_{\circ}$ iger Natronlauge nur wenig zersetzt (Au., Kiper, A. 344, 205). Wird von Methyljodid im geschlossenen Rohr bei 100° nicht verändert (Au., H.). Liefert mit siedendem Eisessig 3.6.3'.6'-Tetrabrom-4.4'-dioxy-2.5.2'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1016) (Au., K.). Fügt man zur heißen essigsauren Lösung Wasser, so erhält man 3.6-Dibrom-5-oxy-2'-acetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 935) (Au., K.). Kochendes Essigsaureanhydrid verwandelt in 3.6-Dibrom-5.2'-diacetoxy-1.2.4-trimethyl-benzol (Bd. VI, S. 937) (Au., K.). — $C_{27}H_{27}O_3NBr_6+HBr.$ Schmilzt bei 236° unter Zersetzung (Au., H.).

Tris-[3.6-dibrom-4-äthoxy-2.5-dimethyl-benzyl]-amin $C_{33}H_{39}O_3NBr_6 = [C_3H_5\cdot O\cdot C_6Br_9(CH_3)_3\cdot CH_3]_8N$. B. Beim 2-stdg. Erhitzen von Tris-[3.6-tribrom-4-oxy-2.5-dimethyl-benzyl]-amin mit Äthyljodid und Natriumäthylat im geschlossenen Rohr auf 100° (Auwers, Hoff, B. 29, 1111). — Prismen (aus Eisessig). F: 196—197°. Leicht löslich in Äther und Benzol.

N-[3.6-Dibrom-4-oxy-2.5-dimethyl-bensyl]-acetanilid $C_{17}H_{17}O_2NBr_2 = HO \cdot C_8Br_8(CH_3)_2 \cdot CH_2 \cdot N(C_8H_5) \cdot CO \cdot CH_3$. B. Aus [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-anilin (8. 644) mit Eisessig in der Kälte oder beim Erhitzen (Auwers, Kipke, A. 344, 223) oder mit Essigsäureanhydrid bei gelindem Erwärmen (Au., Marwedel, B. 28, 2907). — Prismen (aus heißem Benzol). F: 223—225°; mäßig löslich in Alkohol, Äther und Ligroin, schwer in Benzol (Au., M.).

N-[3.6-Dibrom-4-acetoxy-2.5-dimethyl-bensyl]-acetanilid $C_{19}H_{19}O_{2}NBr_{2}=CH_{3}\cdot CO\cdot O\cdot C_{6}Br_{2}(CH_{3})\cdot CH_{2}\cdot N(C_{6}H_{5})\cdot CO\cdot CH_{3}$. B. Beim Kochen von [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-anilin (S. 644) (Auwers, Kipke, A. 344, 223), von [3.6-Dibrom-4-acetoxy-2.5-dimethyl-benzyl]-anilin (S. 644) oder N-[3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-acetanilid (s. o.) (Au., Anselmino, Richter, A. 332, 184) mit Essigsäureanhydrid. — Nadeln (aus Alkohol). F: 140°; sehr leicht löslich in Benzol und Chloroform, ziemlich in Alkohol, Äther, Eisessig, schwer in Ligroin (Au., An., R.). — Bei der Verseifung mit alkoh. Kali entsteht N-[3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]-acetanilid (Au., An., R.).

N - [3.6 - Dibrom - 4 - oxy - 2.5 - dimethyl - bensyl] - N - β - naphthyl - acetamid $C_{21}H_{19}O_2NBr_3 = HO \cdot C_8Br_9(CH_3)_3 \cdot CH_2 \cdot N(C_{10}H_7) \cdot CO \cdot CH_3$. B. Beim Kochen von [3.6-Dibrom-4-oxy-2.5-dimethyl-benzyl]- β -naphthylamin (S. 646) mit Eisessig (Auwers, Kipke, A. 344, 212). — Prismen (aus Toluol). F: 226—227,5°. Leicht löslich in Chloroform, ziemlich leicht in Alkohol, schwer in Ather, Benzol und Ligroin; löslich in Alkali.

N - [3.6 - Dibrom - 4 - acetoxy - 2.5 - dimethyl - bensyl] - N - β - naphthyl - acetamid $C_{23}H_{21}O_3NBr_2=CH_3\cdot CO\cdot O\cdot C_8Br_2(CH_2)\cdot CH_2\cdot N(C_{10}H_7)\cdot CO\cdot CH_3$. B. Beim Kochen von [3.6-Dibrom 4-oxy-2.5-dimethyl-benzyl]- β -naphthylamin mit Essigsäureanhydrid (Au., K., A. 344, 213). — Nädelchen (aus Methylakohol). F: 148,5—151,5°. Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Ligroin und Petroläther. — Gibt beim Erwärmen mit alkoh. Kalilauge N-[3.6-Dibrom 4-oxy-2.5-dimethyl-benzyl]-N- β -naphthylacetamid.

N-[3.6-Dibrom-4-oxy-3.5-dimethyl-bensyl]-bensanilid $C_{22}H_{19}O_2NBr_2 = HO \cdot C_6Br_2(CH_3)_2\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot C_6H_5$. Aus [3.6-Dibrom-4-oxy-2.5-dimethyl-bensyl]-anilin, Benzoylchlorid und Pottasche in wasserfreiem Äther (Auwebs, Sonnenstuhl, B. 37, 3940). — Krystalle (aus Benzol+Ligroin). F: 163—165°. Leicht löslich in Äther und Benzol, löslich in Eisessig, Alkohol und Methylalkohol, kaum löslich in Ligroin und Petroläther.

[6-Oxy-3.4-dimethyl-bensyl]-anilin $C_{15}H_{17}ON$, s. nebenstehende Formel. B. Aus 6-Oxy-3.4-dimethyl-bensylalkohol (Bd. VI, S. 939) und Anilin in der Siedehitze oder in Eisessig auf dem Wasserbade (Auwers, Anselmino, B. 35, 137). — Nadeln (aus Ligroin-Benzol). F: 139—140°. Sehr leicht löslich in Benzol und Alkohol, unlöslich in Ligroin.

N-[6-Oxy-3.4-dimethyl-benzyl]-acetanilid $C_{17}H_{19}O_2N=HO\cdot C_2H_2(CH_2)$, $CH_2\cdot N(C_2H_3)\cdot CO\cdot CH_2$. B. Durch Verseifung von N-[6-Acetoxy-3.4-dimethyl-benzyl]-acetanilid mit alkoh. Kali oder warmen wäßrigen Alkalien (Au., An., B. 35, 139). Beim Verreiben von [6-Oxy-3.4-dimethyl-benzyl]-anilin mit Essigsäureanhydrid (Au., An.). — Krystalle (aus Ligroin). F: 137—138°. Leicht löslich in Benzol, Chloroform, Eisessig, Alkohol, schwer in Ligroin. Löslich in Alkalien.

N-[6-Acetoxy-3.4-dimethyl-bensyl]-acetanilid $C_{19}H_{21}O_3N=CH_3\cdot CO\cdot O\cdot C_6H_8(CH_3)_2\cdot CH_3\cdot N(C_6H_6)\cdot CO\cdot CH_6$. B. Beim Kochen von [6-Oxy-3.4-dimethyl-benzyl]-anilin mit Essigsäureanhydrid (Au., An., B. 35, 138). — Krystallwasserhaltige Nadeln (aus sehr verdünntem Alkohol oder Essigsäure); Nadeln (aus Ligroin oder Petroläther). Schmilzt krystallwasserhaltig bei 68°, wasserfrei bei 85°. Leicht löslich in organischen Mitteln.

Bis - [5 - brom - 6 - oxy - 3.4 - dimethyl - benzyl] - methylamin $C_{19}H_{23}O_{2}NBr_{9}=[HO-C_{6}HBr(CH_{3})_{2}\cdot CH_{3}]_{2}N\cdot CH_{3}$. B. Aus 6.4*-Dibrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 512) in Benzol durch wäßr. Methylaminlösung (Auwers, Kiffer, A. 344, 195). — Tafeln (aus Methylalkohol). F: 116—117°. Leicht löslich in Chloroform, Eisessig, Benzol, ziemlich schwer in Alkohol und Ligroin. — Wird durch Natronlauge nicht zersetzt, wohl aber durch siedendes Essigsäureanhydrid.

Bis - [5 - brom - 6 - oxy - 3.4 - dimethyl - benzyl] - benzylamin $C_{85}H_{27}O_{2}NBr_{2} = [H0 \cdot C_{6}HBr(CH_{3})_{3} \cdot CH_{3}]_{2}N \cdot CH_{3} \cdot C_{6}H_{5}$. B. Aus 6.4¹-Dibrom-5-oxy-1.2.4-trimethyl-benzol und Benzylamin in Benzol (Au., K., A. 344, 197). — Nadeln (aus Alkohol). F: 147—148°. Sehr leicht löslich in Chloroform, Eisessig, Benzol, ziemlich leicht in Alkohol, schwer in Ligroin.

- 8. Aminoderivate des 2-Oxy-1.3.5-trimethyl-benzols $C_9H_{12}O = (CH_3)_3C_9H_3 \cdot OH$ (Bd. VI, S. 518).
- 4-Amino-2-oxy-1.3.5-trimethyl-benzol, 3-Amino-mesitol¹) C₉H₁₃ON, s. nebenstehende Formel. B. Beim Behandeln von 4-Nitro-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 521) mit Zinn und Salzsäure (KNECHT, A. 215, 99). — Leicht verharzende Krystalle. — C₉H₁₃ON+HCl. Nadeln.
- 4 Benzolsulfamino 2 oxy 1.3.5 trimethyl benzol, 3-Benzolsulfamino-mesitol $C_{15}H_{17}O_3NS = C_6H_5 \cdot SO_2 \cdot NH \cdot C_6H(CH_3)_3 \cdot OH$. B. Man diazotiert 2-Amino-4-benzolsulfamino-1.3.5-trimethyl-benzol (S. 191) in Salzsäure und behandelt die erhaltene Lösung mit Natriumacetat (Morgan, Micklethwait, Soc. 89, 1299). Nadeln (aus verd. Alkohol). F: 178—179°. Löslich in Alkali, unlöslich in Säuren.
- [2.6 Dibrom 4 oxy 3.5 dimethyl benzyl] diäthylamin

 C₁₃H₁₉ONBr₂, s. nebenstehende Formel. B. Beim Mischen der benzolischen Lösungen von 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol

 (Bd. VI, S. 520) und Diäthylamin (Auwers, Schrenk, A. 344, 237). (C₂H₅)₂N·CH₂·······CH₃

 Nadeln (aus Chloroform). F: 115—116°. Leicht löslich in Benzol,
 Eisessig und Chloroform, ziemlich schwer in Alkohol und Äther,
 schwer in Ligroin. Zersetzt sich beim Aufbewahren. Wird durch Kochen mit Alkalilauge vollständig zersetzt. Beim Erhitzen mit Äthylalkohol entsteht 4.6-Dibrom-2-oxy-5¹-āthoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 940). Wird von Eisessig in 2.6.2′.6′-Tetrabrom-4.4′-dioxy-3.5.3′.5′-tetramethyl-diphenylmethan (Bd. VI, S. 1017), 4.6-Dibrom-2-oxy-5¹-acetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 941) und 4.6-Dibrom-2.5¹-diacetoxy-1.3.5-trimethyl-benzol.
- [2.6-Dibrom-4-acetoxy-3.5-dimethyl-bensyl]-diäthylamin $C_{12}H_{21}O_2NBr_2 = CH_3 \cdot CO \cdot O \cdot C_6Br_2(CH_3)_2 \cdot CH_2 \cdot N(C_2H_5)_2$. B. Beim Behandeln des 4.6.5\(^1\)-Tribrom-2-acetoxy-1.3.5-trimethyl-benzols (Bd. VI, S. 520) in benzolischer Lösung mit Diäthylamin bei ca. 50—55\(^0\) (Au., Sch., A. 344, 250). Rhomboeder (aus Ligroin). F: 94\(^0\). Leicht löslich in allen organischen Lösungsmitteln außer in Petroläther und Ligroin.
- [2.6 Dibrom 4 oxy 3.5 dimethyl bensyl] diisoamylamin $C_{19}H_{31}ONBr_{2} = HO \cdot C_{6}Br_{3}(CH_{3})_{3} \cdot CH_{2} \cdot N(C_{5}H_{11})_{2}$. B. Aus 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, 8. 520) und Diisoamylamin in Benzol unter Kühlung (Au., Sch., A. 344, 238). Prismen (aus Ligroin). F: 94°. Leicht löslich in den meisten organischen Lösungsmitteln. Geht beim Erhitzen für sich, mit Lösungsmitteln oder mit heißem Alkali leicht in 2.6.2′.6′-Tetrabrom-4.4′-dioxy-3.5.3′.5′-tetramethyl-diphenylmethan (Bd. VI, S. 1017) über. Erhitzen mit Eisesig führt zu 4.6-Dibrom-2.5¹-diacetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 942), mit Essigsäureanhydrid zu einem Gemisch dieser Verbindung mit 2.6.2′.6′-Tetrabrom-4.4′-diacetoxy-3.5.3′.5′-tetramethyl-diphenylmethan.
- [2.6-Dibrom-4-methoxy-3.5-dimethyl-bensyl]-diisoamylamin $C_{20}H_{22}ONBr_3=CH_3\cdot O\cdot C_4Br_3(CH_3)_3\cdot CH_3\cdot N(C_4H_{11})_3$. B. Beim Behandeln einer konzentrierten benzolischen Lösung des 4.6.5¹.Tribrom-2-methoxy-1.3.5-trimethyl-benzols (Bd. VI, S. 520) mit Diisoamylamin bei ca. 60° (Au., Sch., A. 344, 252). Prismen (aus Ligroin + Benzol). F: 164°. Sehr wenig löslich in Ligroin und Äther, leichter in Alkohol, ziemlich leicht in heißem Benzol und Eisessig.
- [3.6 · Dibrom · 4 · acetoxy · 3.5 · dimethyl · benzyl] · diisoamylamin $C_{21}H_{22}O_2NBr_2 = CH_2 \cdot CO \cdot O \cdot C_8Br_8(CH_2)_2 \cdot CH_2 \cdot N(C_8H_{11})_2$. B. Beim 5—6-stdg. Kochen des 4.6.5 Tribrom-2-acetoxy-1.3.5-trimethyl-benzols (Bd. VI, S. 520) in benzolischer Lösung mit Diisoamylamin (Au., Sch., A. 344, 250). Prismen (aus Petroläther). F: 63°. Leicht löslich in allen organischen Lösungsmitteln außer in Petroläther.

¹⁾ Besifferung der vom Namen "Mesitol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 518.

[2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-anilin $C_{15}H_{15}ONBr_2 = HO \cdot C_6Br_6(CH_3)_5 \cdot CH_3 \cdot NH \cdot C_6H_5$. B. Aus 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) und Anilin in kalter Benzollösung (Auwers, Allendorff, A. 302, 81). Bei der Digestion von [2.6-Dibrom-4-anilinoformyloxy-3.5-dimethyl-benzyl]-anilin (s. u.) mit alkoh. Kalilauge (Au., Traun, Welde, B. 32, 3307). — Gelbliche Prismen (aus Alkohol), Blättchen (aus Ligroin). F: 136—137°; leicht löslich in Alkohol, Ähre, Benzol und Eisessig, schwer in Ligroin (Au., All.). — Wird durch heiße Natronlauge teilweise zersetzt (Au., Schenne, A. 344, 248). Gibt beim Kochen mit Eisessig N-[2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-acetanilid; gleichzeitig erfolgt in geringem Grade Spaltung unter Bildung von Anilin (Au., Sch.). Beim Kochen mit Essigsäureanhydrid entsteht N-[2.6-Dibrom-4-acetoxy-3.5-dimethyl-benzyl]-acetanilid (S. 650) (Au., Sch.).

[3.6-Dibrom-4-anilinoformyloxy-3.5-dimethyl-benzyl]-anilin $C_{23}H_{20}O_2N_2Br_2 = C_6H_5\cdot NH\cdot CO\cdot O\cdot C_6Br_2(CH_3)_2\cdot CH_2\cdot NH\cdot C_6H_5$. B. Aus dem Carbanilsäureester des 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzols (3.5.4¹-Tribrom-mesitols) (Bd. XII, S. 329) und 2 Mol.-Gew. Anilin in heißem Xylol (Auwers, Traun, Welder, B. 32, 3307). — Nädelchen (aus Xylol). F: 190—194°. Schwer löslich in Alkohol, Äther und Ligroin, mäßig in heißem Eisessig und Benzol. — Wird durch Digestion mit alkoh. Kalilauge leicht zum [2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-anilin verseift.

 $\begin{array}{llll} & \textbf{[2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-methylanilin} & C_{16}H_{17}ONBr_{8} = HO\cdot C_{6}Br_{8}(CH_{3})_{2}\cdot CH_{2}\cdot N(CH_{2})\cdot C_{6}H_{5}. & B. & Aus & 4.6.5^{1}-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) und Methylanilin in Benzol (Auwers, Schrenk, A. 344, 240). — F: 103—104°. Sehr zersetzlich. Leicht löslich in Alkohol, weniger löslich in Chloroform, Ligroin, Benzol. — Geht bei der Einw. von Natronlauge oder beim Erwärmen für sich auf 100° teilweise in 2.6.2'.6'-Tetrabrom-4.4'-dioxy-3.5.3'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1017) über. Die gleiche Verbindung entsteht mit kaltem Eisessig im Gemisch mit 4.6-Dibrom-2-oxy-5¹-acetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 941). Beim Kochen mit Eisessig oder Essigsäureanhydrid entsteht 4.6-Dibrom-2.5¹-diacetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 942). \\ \end{array}$

[2.6 - Dibrom - 4 - oxy - 3.5 - dimethyl - bensyl] - bensylamin $C_{1e}H_{17}ONBr_2 = HO \cdot C_6Br_2(CH_3)_2 \cdot CH_2 \cdot NH \cdot CH_2 \cdot C_6H_5$. Aus Benzylamin und 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) in Benzol (Au., Sch., A. 344, 233). — Prismen (aus Ligroin + Benzol). F: 127°. Unlöslich in Wasser und Ligroin, schwer löslich in Ather und Alkohol, leicht in Benzol, Eisessig und Chloroform. — Spaltet mit Natronlauge in der Kälte spurenweise, in der Wärme reichlicher Benzylamin ab. Eisessig wirkt in der Kälte nur wenig ein, in der Wärme entsteht 2.6.2'.6'-Tetrabrom-4.4'-dioxy-3.5.3'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1017). Beim Kochen mit Essigsäureanhydrid entsteht N-Benzyl-N-[2.6-dibrom-4-acetoxy-3.5-dimethyl-benzyl]-acetamid (S. 650).

[2.6-Dibrom -4-oxy-3.5-dimethyl-benzyl]- β -naphthylamin $C_{19}H_{17}ONBr_{2}=HO\cdot C_{4}Br_{9}(CH_{2})_{3}\cdot CH_{2}\cdot NH\cdot C_{10}H_{7}.$ B. Aus 1 Mol.-Gew. 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethylbenzol (Bd. VI, S. 520) und 2 Mol.-Gew. β -Naphthylamin in Benzol unter Kühlung (Au., Sch., A. 344, 235). — Blätter (aus Benzol). F: 233°. Unlöslich in Wasser, Ligroin, Ather, sehr wenig löslich in Chloroform, schwer in Alkohol, ziemlich leicht in Benzol und Eisessig. — Gibt beim Kochen mit Eisessig N-[2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-N- β -naphthyl-acetamid (S. 650); beim Kochen mit Essigsäureanhydrid entsteht N-[2.6-Dibrom-4-acetoxy-3.5-dimethyl-benzyl]-N- β -naphthyl-acetamid (S. 650).

Bis - [2.6 - dibrom - 4 - oxy - 3.5 - dimethyl - benzyl] - methylamin $C_{10}H_{21}O_{2}NBr_{4} = [HO \cdot C_{6}Br_{4}(CH_{6})_{2} \cdot CH_{2}]_{2} \cdot N \cdot CH_{3}$. As 4.6.6³-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) in benzolischer Lösung und Methylamin (Au., Soh., A. 344, 230). — Krystalle (aus verd. Alkohol). F: 154°. Unlöslich in Äther und Ligroin, sehr wenig in Benzol, schwer in Chloroform, ziemlich schwer in Eisessig und Alkohol. — Liefert beim Kochen mit $5^{\circ}/_{0}$ iger Alkalilauge 2.6.2'.6'-Tetrabrom-4.4'-dioxy-3.5.3'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1017). Mit Eisessig entstehen bei gewöhnlicher Temperatur 4.6-Dibrom-2-oxy-5'-acetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 941) und andere Produkte; beim Kochen mit Eisessig entsteht 4.6-Dibrom-2.5'-diacetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 942). Beim Erhitzen des Hydrobromids mit Essigsäureanhydrid entsteht 4.6-5'-Tribrom-2-acetoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520).

Bis-[2.6-dibrom-4-methoxy-3.5-dimethyl-bensyl]-methylamin $C_{21}H_{25}O_2NBr_4 = [CH_2 \cdot O \cdot C_2Br_2(CH_2)_2 \cdot CH_2]_2 \cdot N \cdot CH_3 \cdot B$. Aus 4.6.5¹-Tribrom-2-methoxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) in Benzol und Methylamin bei 60° (Au., Som., A. 344, 251). — Tafeln (aus Ligroin). F: 180°. Sehr wenig löslich in Ligroin, Äther, Alkohol, ziemlich leicht in Benzol und Eisessig.

Bis-[2.6-dibrom-4-acetoxy-8.5-dimethyl-bensyl]-methylamin $C_{23}H_{25}O_4NBr_4 = [CH_2 \cdot CO \cdot O \cdot C_2Br_2(CH_2)_2 \cdot CH_3]_2 \cdot N \cdot CH_3$. B. Aus 4.6.5¹-Tribrom-2-acetoxy-1.3.5-trimethyl-

benzol (Bd. VI, S. 520) in Benzol und Methylamin bei 50—55° (Au., Sch., A. 344, 249). — Tafeln (aus Benzol). F: 218°. Sehr wenig löslich in Ligroin und Äther, sehwer in Alkohol und Benzol, leicht in Eisessig und Chloroform.

Bis-[2.6-dibrom-4-oxy-3.5-dimethyl-bensyl]-äthylamin $C_{50}H_{12}O_{2}NBr_{4}=[H0\cdot C_{6}Br_{4}(CH_{3})_{2}\cdot CH_{3}]_{2}N\cdot C_{3}H_{5}$. B. Aus 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) in benzolischer Lösung und Athylamin (Au., Sch., A. 344, 232). — Nädelchen (aus verd. Alkohol). F: 152°. Sehr wenig löslich in Ather, Ligroin und Benzol, ziemlich schwer in Eisessig, leicht in Alkohol. Zersetzt sich beim Liegen. — Beim Erhitzen auf 100° sowie bei der Einw. von verd. Alkali in der Kälte entsteht 2.6.2'.6'-Tetrabrom-4.4'-dioxy-3.5.3'.5'-tetramethyl-diphenylmethan (Bd. VI, S. 1017). Verhält sich gegen Eisessig und Essigsäureanhydrid wie das analoge Methylaminderivat.

Tris - [2.6 - dibrom - 4 - oxy - 3.5 - dimethyl - benzyl] - amin $C_{a7}H_{a7}O_{a}NBr_{a} = [HO \cdot C_{6}Br_{a}(CH_{a})_{a}\cdot CH_{a}]_{a}N$. B. Beim Schütteln einer Benzollösung von 4.6.5¹-Tribrom - 2 - oxy - 1.3.5-trimethyl-benzol (Bd. VI, S. 520) mit konzentriertem wäßrigem Ammoniak (Au., Sch., A. 344, 228). — Amorphe Masse. F: 250°. Unlöslich in Wasser, Äther, Benzol, sehr wenig löslich in Alkohol und Chloroform, schwer in Eisessig. — Gibt beim Kochen mit 10°/0 iger Natronlauge 2.6.2′.6′-Tetrabrom-4.4′-dioxy-3.5.3′.5′-tetramethyl-diphenylmethan (Bd. VI, S. 1017).

Tris-[2.6-dibrom-4-acetoxy-3.5-dimethyl-bensyl]-amin $C_{33}H_{35}O_{6}NBr_{6}=[CH_{3}\cdot CO\cdot O\cdot C_{6}Br_{9}(CH_{3})_{2}\cdot CH_{3}]_{2}N$. B. Beim Kochen von Tris-[2.6-dibrom-4-oxy-3.5-dimethyl-benzyl]-amin (s. o.) mit Essigsäureanhydrid (Au., Sch., A. 344, 229). — Prismen (aus Benzol). F: 223—224°. Unlöslich in Wasser, Ligroin, Äther, schwer in Alkohol und Benzol, leicht in Eisessig und Chloroform.

N-[2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-acetanilid $C_{17}H_{17}O_2NBr_3=HO\cdot C_6Br_3(CH_3)\cdot CH_2\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim Kochen von [2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-anilin (S. 649) mit Eisessig (Au., Soh., A. 344, 248). — F: 238°.

N-[2.6-Dibrom-4-acetoxy-3.5-dimethyl-benzyl]-acetanilid $C_{19}H_{19}O_3NBr_3=CH_3\cdot CO\cdot O\cdot C_6Br_3(CH_3)_3\cdot CH_3\cdot N(C_6H_5)\cdot CO\cdot CH_3$. B. Beim Kochen von [2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-anilin mit Essigsäureanhydrid (Au., Sch., A. 344, 248). — F: 168—169,5°.

N - Bensyl - N - [2.6 - dibrom - 4 - acetoxy - 3.5 - dimethyl - bensyl] - acetamid $C_{20}H_{31}O_2NBr_3=CH_3\cdot CO\cdot O\cdot C_6Br_4(CH_3)_3\cdot CH_2\cdot N(CH_3\cdot C_6H_3)\cdot CO\cdot CH_3$. B. Beim Kochen von [2.6-Dibrom 4-oxy-3.5-dimethyl-benzyl]-benzylamin (8. 649) mit Essigsäureanhydrid (Au., Sch., A. 344, 234). — Nadeln (aus Ligroin). F: 117—118°. Leicht löslich in organischen Lösungsmitteln außer Ligroin und Petroläther.

N - [2.6 - Dibrom - 4 - oxy - 3.5 - dimethyl - benzyl] - N - β - naphthyl - acetamid $C_{21}H_{19}O_2NBr_8 = HO \cdot C_6Br_8(CH_9)_3 \cdot CH_2 \cdot N(C_{10}H_7) \cdot CO \cdot CH_3$. B. Beim Kochen von [2.6-Dibrom 4-oxy -3.5-dimethyl-benzyl]- β -naphthylamin (8. 649) mit Eisessig (Au., Sch., A. 344, 236). — Prismen (aus Benzol). F: 207—208°. Unlöslich in Wasser, Ather, Ligroin, schwer löslich in Benzol, ziemlich leicht in Alkohol und Eisessig.

N - [2.6 - Dibrom - 4 - acetoxy - 3.5 - dimethyl - bensyl] - N - β - naphthyl - acetamid $C_{23}H_{31}O_3NBr_3=CH_3\cdot CO\cdot O\cdot C_4Br_3(CH_3)_3\cdot CH_3\cdot N(C_{10}H_7)\cdot CO\cdot CH_3$. B. Beim Kochen von [2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]- β -naphthylamin mit Essigsäureanhydrid (Au., Sch., A. 344, 236). — Hellgelbe Nadeln (aus Alkohol). F: 182—184°. Schwer löslich in Äther, Alkohol, Ligroin, leicht in Benzol.

N.N' - Diphenyl - N - [2.6 - dibrom - 4 - oxy - 3.5 - dimethyl - benzyl] - harnstoff $C_{22}H_{20}O_2N_2Br_2 = HO \cdot C_6Br_2(CH_3)_2 \cdot CH_2 \cdot N(C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$. B. Aus [2.6-Dibrom-4-oxy-3.5-dimethyl-benzyl]-anilin (S. 649) mit Phenylisocyanat in benzolischer Lösung bei 100° (Auwers, Allendorff, A. 302, 82; Au., Traun, Welde, B. 32, 3301). — Nadeln (aus Benzol). F: 183°; sehr leicht löslich in Chloroform, leicht in Alkohol und Äther, schwer in Ligroin, löslich in Eisessig und Benzol(Au., All.); unzersetzt löslich in wäßr. Alkali (Au., T., W.).

4.6-Diamino-2-oxy-1.3.5-trimethyl-benzol, 8.5-Diamino-mesitol 1)

C₃H₁₄ON₂, s. nebenstehende Formel. B. Das salzsaure Salz entsteht durch
4-stdg. Kochen von 20 g fein zerriebenem salzsaurem 2.4.6-Triamino1.3.5-trimethyl-benzol (S. 304) mit 100 com Eiseesig (Wenzer, M. 22, 985).

Durch Kochen von 4.6-Bis-acetamino-2-acetoxy-1.3.5-trimethyl-benzol(S. 651)
mit konz. Salzsaure (Wender, Wenzer, M. 19, 256). — Nadeln (aus Benzol).

F: 94—96°; sehr wenig löslich in Äther, Benzol und Wasser, leichter in Alkohol (Wen.). —
C₂H₁₄ON₂+2HCl. Nadeln (aus Salzsaure). Zersetzt sich beim Erhitzen, ohne zu schmelzen.

Besifferung der vom Namen "Mesitol" abgeleiteten Namen in diesem Handbuch s. Bd. VI S. 518.

- 4.6 Bis carbylamino 2 oxy 1.8.5 trimethyl bensol, 8.5 Diisocyan mesitol $C_{11}H_{10}ON_3 = (>C:N)_3C_6(CH_4)_3 \cdot OH$. B. Durch Einw. von Chloroform und Kali suf 2.4.6-Triamino-1.3.5-trimethyl-benzol (Kaufler, M. 22, 1081). Hellgelbe Krystalle (aus verd. Alkohol). Unlöslich in Alkali.
- 4.6 Bis acetamino 2 acetoxy 1.3.5 trimethyl benzol , O.N.N' Triacetyl-[3.5-diamino-mesitol] $C_{16}H_{20}O_4N_2=(CH_3\cdot CO\cdot NH)_2C_6(CH_3)_3\cdot O\cdot CO\cdot CH_3$. B. Durch Kochen von salzsaurem 2.4.6-Triamino-1.3.5-trimethyl-benzol mit Essigsäureanhydrid (Weidel, Wenzel, M. 19, 253). Nadeln (aus Benzol oder Xylol). Prismen (aus verd. Alkohol). Rhombisch (v. Lang, Z. Kr. 40, 634). F: 204—205° (Weil, Wenl).

5. Aminoderivate der Monooxy-Verbindungen $C_{10}H_{14}O$.

1. Aminoderivate des 1¹-Oxy-1-butyl-benzols (Propylphenylcarbinols) $C_{10}H_{14}O=C_6H_5\cdot CH(OH)\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH$

Propyl-[4-dimethylamino-phenyl]-carbinol C₁₂H₁₂ON = (CH₃)₂N·C₆H₄·CH(OH)·CH₂·CH₅·CH₆·CH₆. B. Aus Propylmagnesiumbromid und 4-Dimethylamino-benzaldehyd (Syst. No. 1873) in Ather (Sachs, Weigert, B. 40, 4362).— F: 35°. Leicht löslich in organischen Lösungsmitteln.—Geht beim Kochen mit Wasser oder bei der Destillation unter vermindertem Druck in das 4-Dimethylamino-1-butenyl-benzol (Bd. XII, S. 1196) über.

Jodmethylat $C_{13}H_{23}ONI = (CH_3)_3NI \cdot C_6H_4 \cdot CH(OH) \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot B$. Beim Stehen der absolut-ätherischen Lösung von Propyl-[4-dimethylamino-phenyl]-carbinol (s. o.) und überschüssigem Methyljodid in der Kälte (S., W., B. 40, 4363). — Blättchen (aus Alkohol durch Äther). F: 161°.

2. Aminoderivate des 1³-Oxy-1-butyl-benzols (Methyl- β -phenäthyl-carbinols) $C_{10}H_{14}O=C_8H_8\cdot CH_2\cdot CH_2\cdot CH(OH)\cdot CH_3$ (Bd. VI, S. 522).

Methyl-[β-methylamino-β-phenyl-äthyl]-carbinol $C_{11}H_{17}ON = C_eH_5 \cdot CH(NH \cdot CH_3)$. CH₃·CH(OH)·CH₃. B. Man gibt zu Benzalaceton (Bd. VII, S. 364) eine 33% jeige Methylaminlösung und reduziert das Reaktionsprodukt mit Natriumamalgam in verdünnter salzsaurer Lösung (ΚοΗΝ, M. 28, 432). — Nādelchen (aus Ligroin). F: 56—57%. Ziemlich leicht löslich in Wasser; die kalt bereitete wäßr. Lösung trübt sich beim Erwärmen. — Gibt mit Kaliumnitrit und verd. Schwefelsäure eine Nitrosoverbindung (s. u.). Gibt mit Formaldehyd die Verbindung CH₃·N<CH(C₂H₃)·CH₃·CH₃ (Syst. No. 4194). — Pikrat C₁₁H₁₇ON + C₆H₃O₇N₃. Körnige Kryställchen (aus verd. Alkohol). Erweicht bei 114% und ist bei 140% völlig geschmolzen.

Trimethyl - $[\gamma \cdot oxy \cdot a \cdot phenyl - butyl]$ - ammoniumchlorid $C_{12}H_{22}ONCl = C_8H_5$ · $CH[N(CH_3)_2Cl] \cdot CH_3$ · $CH(OH) \cdot CH_3$. B. Man löst Methyl- $[\beta$ -methylamino- β -phenyl-āthyl]-carbinol (s. o.) in Methyl-jodid und schüttelt das entstandene Jodid in wäßr. Lösung mit Chlorsilber (K., M. 28, 435). — $C_{12}H_{22}ONCl + AuCl_3$. Lichtgelbe Blättchen. F: 131—134°.

Methyl- $[\beta$ -methylnitrosamino- β -phenyl-äthyl]-carbinol $C_{11}H_{16}O_2N_2=C_6H_5$ · $CH[N(NO)\cdot CH_3]\cdot CH_3\cdot CH(OH)\cdot CH_3$. B. Aus Methyl- $[\beta$ -methylamino- β -phenyl-äthyl]-carbinol (s. o.) in verd. Schwefelsäure mit Kaliumnitrit (K., M. 28, 435). — Gelbliches, schwach aromatisch riechendes Öl.

3. Aminoderivate des 1^1 -Oxy-1-isobutyl-benzols (Isopropylphenyl-carbinols) $C_{10}H_{14}O = C_4H_5 \cdot CH(OH) \cdot CH(CH_2)_2$ (Bd. VI, S. 523).

Isopropyl - [4 - dimethylamino - phenyl] - carbinol $C_{12}H_{19}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH(OH) \cdot CH(CH_2)_2$. B. Aus Isopropylmagnesiumbromid und 4-Dimethylamino-benzaldehyd (Syst. No. 1873) in Äther (Sachs, Weigert, B. 40, 4365). — Krystalle (aus wenig Ligroin). F: 39°. Gibt bei der Destillation unter vermindertem Druck N.N-Dimethyl-4-[β . β -dimethyl-vinyl]-anilin (Bd. XII, S. 1196).

Jodmethylat $C_{13}H_{32}ONI = (CH_3)_3NI \cdot C_4H_4 \cdot CH(OH) \cdot CH(CH_3)_3$. B. Aus Isopropyl-[4-dimethylamino-phenyl]-carbinol und Methyljodid (S., W., B. 40, 4366). — F: 118°.

4. Aminoderivate des I^* - Oxy - 1 - isobutyl - benzols (Dimethylbenzyl - carbinols) $C_{10}H_{14}O = C_6H_5 \cdot CH_2 \cdot C(CH_3)_2 \cdot OH$ (Bd. VI, S. 523).

Methyl-dimethylaminomethyl-bensyl-carbinol $C_{12}H_{19}ON = C_4H_5 \cdot CH_4 \cdot C(CH_3)(OH) \cdot CH_2 \cdot N(CH_3)_2$. B. Durch Erhitzen von Dimethylamin mit a-Chlor- β -oxy- β -benzyl-propan (Bd. VI, S. 523) in Gegenwart von Benzol oder Alkohol (RIEDEL, D.R.P. 169746; C.11906 I, 1584; FOURNEAU, C. r. 188, 768). Aus Dimethylamino-aceton (Bd. IV, S. 314) und Benzylmagnesiumohlorid (RIEDEL, D.R.P. 169819; C. 1906 I, 1586). — Flüssigkeit. Kp₃₄: 1440 (R., D.R.P. 169746; F.).

[Methyl-dimethylaminomethyl-bensyl-carbin]-bensoat $C_{15}H_{12}O_2N=C_5H_5\cdot CH_2\cdot C(CH_3)(O\cdot CO\cdot C_5H_5)\cdot CH_2\cdot N(CH_3)_2$. B. Durch Benzoylierung von Methyl-[dimethylaminomethyl]-benzyl-carbinol (S. 651) (RIEDEL, D.R.P. 169787; C. 1906 I, 1682; FOURNEAU, C. r. 188, 768). — Hydrochlorid. Nadeln (aus Alkohol). F: 195° (R.; F.).

[Methyl-dimethylaminomethyl-bensyl-carbin]-cinnamat $C_{21}H_{25}O_2N = C_6H_5 \cdot CH_2 \cdot C(CH_3)(O \cdot CO \cdot CH : CH \cdot C_6H_5) \cdot CH_2 \cdot N(CH_3)_2$. B. Aus Methyl-dimethylaminomethyl-benzyl-carbinol (S. 651) und Zimtsäurechlorid (Bd. IX, S. 587) in Benzol (RIEDEL, D.R.P. 169787; C. 1906 I, 1682). — Hydrochlorid. Blättchen. F: 150°. Sehr leicht löslich in Alkohol und Aceton.

- 5. Aminoderivate des 2-Oxy-1-methyl-4-isopropyl-benzols $C_{10}H_{14}O=(CH_3)_3CH\cdot C_4H_3(CH_3)\cdot OH$ (Bd. VI, S. 527).
- 5 Amino 2 oxy 1 methyl 4 isopropyl benzol, 4 Amino carvacrol 1) C₁₀H₁₅ON, s. nebenstehende Formel. B. Aus 5 Nitroso-2-oxy-1-methyl-4-isopropyl-benzol [Thymochinon-oxim-(4), Bd.VII, S.664] durch Reduktion mit Zinn und Salzsäure (Patenno, Camzoneri, G. 8, 502) oder mit Phenylhydrazin (Plancher, G. 25 II, 391). Durch Reduktion von Benzolazocarvacrol (Syst. No. 2115) mit Phenylhydrazin (Oddo, Puxeddu, B. 88, 2755). Krystalle (aus Methylalkohol). F: 134° (Pa., Ca.; Wallach, Neumann, B. 28, 1661). Bei der Oxydation entsteht Thymochinon (Bd. VII, S. 662) (W., N.). Hydrochlorid. F: 214—215° (W., N.).
- 5-Amino-2-methoxy-1-methyl-4-isopropyl-bensol, 4-Amino-carvacrol-methyl-äther $C_{11}H_{17}ON=H_{2}N\cdot C_{6}H_{3}(CH_{3})[CH(CH_{3})_{2}]\cdot O\cdot CH_{3}$. B. Das Hydrochlorid entsteht beim Kochen von 5-Acetamino-2-methoxy-1-methyl-4-isopropyl-benzol (s. u.) mit Salzsäure (W., N., B. 28, 1662). $C_{11}H_{17}ON+HCl$. F: 229°.
- 5-Acetamino-2-oxy-1-methyl-4-isopropyl-benzol, 4-Acetamino-carvacrol $C_{12}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_2(CH_3)[CH(CH_3)_2]\cdot OH$. B. Bei 20 Minuten langem Kochen von 5-Diacetylamino-2-acetoxy-1-methyl-4-isopropyl-benzol (s. u.) mit 2 Mol.-Gew. Natronlauge (W., N., B. 28, 1662). Bei Einw. von Essigsäureanhydrid auf 5-Amino-2-oxy-1-methyl-4-isopropyl-benzol in der Kälte (Plancher, G. 25 II, 392). Krystalle (aus verd. Alkohol). F: 176—177° (W., N.; Pl.).
- 5-Acetamino-2-methoxy-1-methyl-4-isopropyl-benzol, 4-Acetamino-carvacrol-methyläther $C_{12}H_{19}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_4(CH_3)[CH(CH_3)_2]\cdot O\cdot CH_3$. B. Durch Methylierung von 5-Acetamino-2-oxy-1-methyl-4-isopropyl-benzol (W., N., B. 28, 1662). Nädelchen. F: 140°. Löslich in Wasser und Alkohol.
- 5-Diacetylamino-2-methoxy-1-methyl-4-isopropyl-benzol, 4-Diacetylamino-carvacrol-methyläther $C_{15}H_{21}O_5N=(CH_2\cdot CO)_2N\cdot C_6H_2(CH_3)[CH(CH_3)_2]\cdot O\cdot CH_3$. B. Beim Kochen von salzsaurem 5-Amino-2-methoxy-1-methyl-4-isopropyl-benzol (s. o.) mit Essigsäureanhydrid und Natriumacetat (W., N., B. 28, 1662). Nädelchen. F: 104°.
- 5-Diacetylamino 2 acetoxy 1 methyl 4 isopropyl-benzol, O.N.N-Triacetyl-[4-amino-carvacrol] $C_{16}H_{31}O_4N=(CH_3\cdot CO)_4N\cdot C_6H_3(CH_3)[CH(CH_3)_3]\cdot O\cdot CO\cdot CH_3$. B. Beim Erhitzen von salzsaurem 5-Amino-2-oxy-1-methyl-4-isopropyl-benzol mit Essigsäureanhydrid und wasserfreiem Natriumacetat (W., N., B. 28, 1661). Krystalle (aus Petroläther). F: 75,5°. Beim Kochen mit 2 Mol.-Gew. Natronlauge entsteht 5-Acetamino-2-oxy-1-methyl-4-isopropyl-benzol.
- 3-Chlor-5-amino-2-oxy-1-methyl-4-isopropyl-benzol, 6-Chlor-4-amino-carvacrol ¹) C₁₀H₁₄ONCl = H₂N·C₆HCl(CH₂)[CH(CH₂)₂]·OH. B. Durch Reduktion von 3-Chlor-5-nitroso-2-oxy-1-methyl-4-isopropyl-benzol [6-Chlor-thymochinon-oxim-(4), Bd. VII, S. 666] in alkoh. Lösung mit salzsaurem Zinnohlorür (Kehrmann, Schön, A. 310, 108). Aus 5-Nitro-2-oxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 531) durch Chlorierung und Reduktion der entstandenen Chlornitroverbindung mit salzsaurem Zinnohlorür in alkoh. Lösung (K., Sch.). Hydrochlorid. Nadeln.
- 3-Chlor-5-acetamino-2-acetoxy-1-methyl-4-isopropyl-bensol, O.N-Diacetyl-[6-chlor-4-amino-carvacrol] $C_{14}H_{18}O_3NCl=CH_3\cdot CO\cdot NH\cdot C_6HCl(CH_3)[CH(CH_3)_2]\cdot O\cdot CO\cdot CH_3$. B. Durch Erhitzen von salzsaurem 3-Chlor-5-amino-2-oxy-1-methyl-4-isopropyl-benzol (s. o.) mit 1 Mol.-Gew. entwässertem Natriumacetat und der 5-fachen Menge Essigsäure-anhydrid (K., Sch., A. 310, 109). Nadeln (aus Wasser). F: 175°. Leicht löslich in siedendem Wasser, Alkohol und Benzol, kaum löslich in kaltem Wasser.

Bezifferung der vom Namen "Carvacrol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 527.

8-Brom-5-amino-2-oxy-1-methyl-4-isopropyl-benzol, 6-Brom-4-amino-carvacrol 1) $C_{10}H_{14}ONBr=H_2N\cdot C_6HBr(CH_3)[CH(CH_3)_3]\cdot OH.$ B. Durch Reduktion von 3-Brom-5-nitroso-2-oxy-1-methyl-4-isopropyl-benzol [6-Brom-thymochinon-oxim-(4), Bd. VII, S. 667] in alkoh. Lösung mit salzsaurem Zinnehlorür (K., Soh., A. 310, 110). Aus 5-Nitro-2-oxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 531) durch Bromieren und Reduktion der entstehenden Bromnitroverbindung (K., Sch.). — Beim Erhitzen des salzsauren Salzes mit Natriumacetat und Essigsäureanhydrid entsteht 3-Brom-5-acetamino-2-acetoxy-1-methyl-4-isopropyl-benzol.

Möglicherweise identisch mit 3-Brom-5-amino-2-oxy-1-methyl-4-isopropyl-benzol ist die Verbindung, die sich beim Erhitzen von 5-Nitroso-2-oxy-1-methyl-4-isopropyl-benzol [Thymochinon-oxim-(4), Bd. VII, S. 664] mit rauchender Bromwasserstoffsäure auf 100° bildet (vgl. MAZZARA, G. 21 II, 379). — Gelbe Nadeln (aus Petroläther). F: 136—137°.

 $\textbf{3-Brom-5-acetamino-2-acetoxy-1-methyl-4-isopropyl-benzol}, \quad \textbf{O.N-Diacetyl-1} \textbf{[6-brom-4-amino-carvacrol]} \\ \textbf{C}_{14}\textbf{H}_{18}\textbf{O}_{3}\textbf{NBr} = \textbf{CH}_{3} \cdot \textbf{CO} \cdot \textbf{NH} \cdot \textbf{C}_{8}\textbf{HBr}(\textbf{CH}_{3}) \textbf{[CH}(\textbf{CH}_{3})_{1}) \cdot \textbf{O} \cdot \textbf{CO} \cdot \textbf{$ CH₂. B. Durch Erhitzen von salzzaurem 3-Brom-5-amino-2-oxy-1-methyl-4-isopropyl-benzol (s. č.) mit entwässertem Natriumacetat und Essigsäureanhydrid (K., Sč \mathbf{n} ., A. 310, 111). Farblose Nadeln. F: 157-158°. Fast unlöslich in Wasser, leicht löslich in Alkohol, Eisessig und Benzol.

- 3-Nitro-5-amino-2-oxy-1-methyl-4-isopropyl-benzol, 6-Nitro-4-amino-carvacrol 1) $C_{10}H_{14}O_3N_2=H_2N\cdot C_8H(NO_2)(CH_3)[CH(CH_3)_2]\cdot OH.$ B. Beim Kochen von 3-Nitro-5-amino-2-benzoyloxy-1-methyl-4-isopropyl-benzol (s. u.) mit alkoh. Kali (Soderi, G. 25 II, 406). — Gelbe Krystalle (aus Alkohol). F: 134—135°.
- 3-Nitro-5-amino-2-benzoyloxy-1-methyl-4-isopropyl-benzol, [6-Nitro-4-amino-2-methyl-5-isopropyl-phenyl]-benzoat $C_{17}H_{18}O_4N_8=H_8N\cdot C_6H(NO_8)(CH_3)[CH(CH_3)_8]\cdot O\cdot CO\cdot C_6H_8$. B. Bei 1-stdg. Erwärmen von 10 g 3.5-Dinitro-2-benzoyloxy-1-methyl-4-isopropyl-benzol [Benzoesäure-(4.6-dinitro-2-methyl-5-isopropyl-phenyl)-ester, Bd. IX, S. 123] mit 22 g Zinn und 70 g rauchender Salzsäure (MAZZARA, G. 20, 186). — Schuppen. Erweicht bei ca. 230° und schmilzt bei ca. 280—283°. Sehr schwer löslich in Petroläther. — $2C_{17}H_{18}O_4N_3+$ 2HCl+PtCl4. Gelbe Nädelchen (aus absol. Alkohol).
- 8-Nitro-5-acetamino-2-acetoxy-1-methyl-4-isopropyl-benzol, O.N - Diacetyl -[6-nitro-4-amino-carvacrol] $C_{14}H_{18}O_{5}N_{2}=CH_{3}\cdot CO\cdot NH\cdot C_{6}H(NO_{2})(CH_{3})[CH(CH_{3})_{3}]\cdot O\cdot CO\cdot CH_{2}$. B. Aus 3-Nitro-5-amino-2-oxy-1-methyl-4-isopropyl-benzol und Essigsäureanhydrid (Soderi, G. 25 II, 406). — Nadeln (aus Benzol). F: 222—225°. Unlöslich in verd. Kalilauge.
- CH, 3.5-Diamino-2-oxy-1-methyl-4-isopropyl-benzol, 4.6-Diaminocarvacrol 1) C₁₀H₁₆ON₂, s. nebenstehende Formel. B. Durch Reduktion von 3.5-Dinitro-2-oxy.1-methyl-4-isopropyl-benzol (Bd. VI, S. 531) mit OH NH. Zinn und Salzsäure (MAZZARA, G. 20, 186). — Amorph. Erweicht gegen CH(CH₃)₃ 190°. Schwer löslich in Petroläther.
- 6. Aminoderivate des 3-Oxy-1-methyl-4-isopropyl-benzols $C_{10}H_{14}O=(CH_3)_3CH\cdot C_4H_3(CH_3)\cdot OH$ (Bd. VI, S. 532).
- 2-Amino-3-athoxy-1-methyl-4-isopropyl-benzol, 2-Amino-thymol-CH, äthyläther³) C₁₂H₁₉ON, s. nebenstehende Formel. B. Durch 1¹/₂-stdg. Erwärmen von 2-Nitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 542) NH. mit Zinn und Salzsäure in verd. Alkohol (GAEBEL, B. 35, 2798). — C₁₈H₁₉ON + HCl. Nadeln (aus sehr verd. Salzsäure). F: ca. 204° (Zers.). — 2 C₁₉H₁₉ON + 2 HCl + PtCl₄. Rötlichgelbe Nadeln. F: 169—170° (Zers.). Wird von O·C₂H₅ CH(CH₂)₂ heißem Wasser zersetzt.
- 2-Acetamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 2-Acetamino-thymoläthyläther $C_{14}H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_2H_3(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Durch Erhitzen von salzsaurem 2-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol mit Essigsäureanhydrid und trocknem Natriumacetat auf dem Wasserbade (GAE., B. 35, 2799). Nadeln (aus verd. Natriumacetat auf dem Wasserbade (GAE., B. 35, 2799). Alkohol). F: 109°. Leicht löslich in Äther, sehr wenig in Wasser.
- 2-Bensamino-3-ëthoxy-1-methyl-4-isopropyl-bensol, 2-Bensamino-thymolëthylëther $C_{12}H_{23}O_2N=C_4H_5$. $C_0\cdot NH\cdot C_0H_2(CH_3)[CH(CH_2)_2]\cdot O\cdot C_2H_5$. B. Aus 2-Amino-3-ëthoxy-1-methyl-4-isopropyl-benzol durch Benzoylierung (Gae., B. 35, 2799). Blättchen (aus verd. Alkohol). F: 144°.

¹⁾ Besifferung der vom Namen "Carvacrol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, 8. 527.

⁹⁾ Bezifferung der vom Namen "Thymol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, 8. 532.

6-Amino-8-methoxy-1-methyl-4-isopropyl-benzol, 4-Amino-thymol-methyläther $C_{11}H_{17}ON=H_2N\cdot C_0H_2(CH_3)[CH(CH_3)_3]\cdot 0\cdot CH_3$. B. Das Hydrochlorid entsteht beim Kochen von 6-Acetamino-3-methoxy-1-methyl-4-isopropyl-benzol (S. 657) mit Salzsäure (Wallach, Neumann, B. 28, 1663). — $C_{11}H_{17}ON+HCl$. F: 250° (Zers.).

6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol, 4-Amino-thymol-äthyläther $C_{12}H_{19}ON = H_2N \cdot C_2H_3 (CH_3)[CH(CH_3)_2] \cdot O \cdot C_2H_5$. B. Durch Reduktion von 6-Nitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 542) mit Zinn und Salzsäure in alkoh. Lösung (Marquart & Schulz, D.R.P. 71159; Frdl. 3, 910; Gaebel, B. 35, 2798). Neben Thymochinon, durch Eintragen von Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) (S. 656) in heißer 50% iger Schwefelsäure (Decker, Ssolonina, B. 36, 2891). — Leicht zersetzliches Ol. — $C_{12}H_{19}ON + HCl$. Nadeln (aus viel stark verd. Salzsäure). F: 227—230° (Zers.) (G.).

4.4' - Dioxy - 2.2' - dimethyl - 5.5' - diisopropyl - diphenylamin C₂₀H₂₇O₂N, s. nebenstehende Formel. B. Durch Kochen des Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anils]-(1) (S. 656) (Decker, Ssolonina, B. 35, 3225) oder des 4.4'-Diāthoxy-2.2'dimethyl-5.5'-diisopropyl-diphenylamins (s. u.) (D., S., B. 36, 2892) mit konz. Jodwasserstoffsäure. — Äußerst leicht zu Thymochinon-[4-oxy-2-methyl-5-isopropyl-anil]-(1) (S. 655) oxydierbar; die Lösung in Alkalien bläut sich rasch (D., S., B. 35, 3225; 36, 2892). — C₂₀H₂₇O₂N + HI. Farblose Krystalle. Unlöslich in Wasser; leicht löslich in Alkohol unter Rotfärbung (D., S., B. 35, 3225; 36, 2892).

4.4 - Dimethoxy - 2.2' - dimethyl - 5.5' - diisopropyl - diphenylamin $C_{22}H_{31}O_2N=CH_3\cdot O\cdot C_8H_3(CH_3)[CH(CH_3)_2]\cdot NH\cdot C_8H_3(CH_3)[CH(CH_3)_2]\cdot O\cdot CH_3$. B. Die aus Thymolmethyläther (Bd. VI, S. 536) und roter Salpetersäure in essigsaurer Lösung entstehende blaue Flüssigkeit wird bei 0° mit Zinnehlorür und Salzsäure behandelt (D., S., B. 38, 64). — Krystalle (aus Alkohol). Rhombisch bipyramidal (Fersmann, Z. Kr. 46, 219; vgi. Groth, Ch. Kr. 5, 56). F: 88,5—89°. — Liefert bei der Oxydation mit Eisenchlorid das Thymochinon-[4-methoxy-2-methyl-5-isopropyl-anil]-(1) (S. 656). — $C_{22}H_{31}O_3N + HCl$. Nadeln. Beginnt bei 140° zu schmelzen (D., S.). — $C_{22}H_{31}O_3N + HI$. Nadeln. Schmilzt unscharf bei 136° (D., S.).

4-Oxy-4'-äthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin $C_{22}H_{21}O_2N=HO\cdot C_2H_2(CH_2)[CH(CH_2)_2]\cdot NH\cdot C_2H_2(CH_2)[CH(CH_3)_2]\cdot \tilde{O}\cdot C_2H_3$. B. Durch Reduktion von Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) (S. 656) mit Zinnehlorür und Salzsäure in Alkohol oder Eisessig (D., S., B. 36, 2891). — Oxydiert sich in saurer oder alkal. Lösung wieder zum Ausgangsmaterial.

4.4'-Diäthoxy-9.2'-dimethyl-5.5'-diisopropyl-diphenylamin $C_{24}H_{25}O_{2}N=C_{2}H_{5}\cdot O\cdot C_{6}H_{2}(CH_{3})[CH(CH_{3})_{2}]\cdot NH\cdot C_{6}H_{2}(CH_{3})[CH(CH_{3})_{3}]\cdot O\cdot C_{2}H_{5}$. Durch Reduktion der Ver-CH.

bindung
$$C_{\bullet,N}^{CH}>0:$$
 $:N(:O)\cdot \longrightarrow O\cdot C_{\bullet}H_{\bullet}+HNO_{\bullet}$ (S. 656) mit Schwefeldioxyd, $(CH_{\bullet})_{\bullet}CH$ $CH(CH_{\bullet})_{\bullet}$

¹⁾ Bezifferung der vom Namen "Thymol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 532.

Schwefelwasserstoff oder Zinnchlorür und Salzsäure (D., S., B. 35, 3222). — Krystalle (aus Alkohol). Triklin (Jerschow, C. 1905 I, 504). F: 70—71°; teilweise unzersetzt destillierbar (D., S., B. 35, 3223). — Die Lösung in gut gekühlter konzentrierter Schwefelsäure oxydiert sich unter Blaufärbung zu Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) und färbt sich beim Verdünnen mit Eiswasser rot; beim Erwärmen der Lösung in konz. Schwefelsäure wird auch die zweite Äthoxylgruppe verseift und beim Zufügen von Wasser + Alkali entsteht eine dunkelblaue Lösung von Thymochinon-[4-oxy-2-methyl-5-isopropyl-anil]-(1) (D., S., B. 36, 2887). Wird von Eisenchlorid zu Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) oxydiert (D., S., B. 35, 3223; 36, 2889). — C₂₄H₃₅O₂N + HCl. Gelbliche Krystalle. Rötet sich an der Luft, wird von Wasser zersetzt (D., S., B. 35, 3222). — C₂₄H₃₅O₂N + HI. Nädelchen. Rötet sich leicht (D., S., B. 36, 2887). — C₂₄H₃₅O₂N + HCl + SnCl₂ + 3 H₃O. Nadeln (D., S., B. 36, 2887).

4.4'-Dibutyloxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin $C_{28}H_{43}O_2N=CH_3\cdot CH_2\cdot CH_2\cdot C\cdot C_6H_2(CH_3)[CH(CH_3)_3]\cdot NH\cdot C_6H_2(CH_3)[CH(CH_3)_3]\cdot O\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot B$. Die aus Butyl-thymyl-åther (Bd. VI, S. 536) und roter Salpetersäure in essigsaurer Lösung entstehende Flüssigkeit wird bei 0° mit Zinnehlorür und Salzsäure behandelt (D., S., B. 38, 68). — Hellgelbe Krystalle. F: 69,5°. — $C_{28}H_{43}O_2N+HCl.$ Nadeln. F: 107°. Unlöslich in verd. Salzsäure.

tion der Verbindung
$$C_6H_5 \cdot CH_2 > O : CH_3 \cdot C(CH_3) $

Schwefelwasserstoff, Schwefeldioxyd oder mit Zinnchlorür und Salzsäure (Ssolonina, Ж. 39, 756). — Nadeln. F: 141,5°. — C₂₄H₃₉O₂N + HCl. F: 142°.

- 4-Äthoxy-4'-acetoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin $C_{24}H_{33}O_3N=C_2H_5\cdot O\cdot C_6H_6(CH_3)[CH(CH_3)_3]\cdot NH\cdot C_6H_2(CH_3)[CH(CH_3)_1]\cdot O\cdot CO\cdot CH_3.$ B. Bei kurzem Kochen des 4.4'-Diāthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamins (8. 654) oder seines salzsauren Salzes mit Essigsäureanhydrid und Natriumacetat, neben 4.4'-Diāthoxy-2.2'-dimethyl-5.5'-diisopropyl-N-acetyl-diphenylamin (8. 657) (Decker, Ssolonina, B. 36, 2888). Platten (aus Essigester und Alkohol). Monoklin prismatisch (Jerschow, C. 1905 I, 504; vgl. Groth, Ch. Kr. 5, 56). F: 122—123° (D., S.). Wird von Eisenchlorid zu Thymochinon-[4-acetoxy-2-methyl-5-isopropyl-anil]-(1) (8. 657) oxydiert (D., S.).
- 6-Benzalamino-3-oxy-1-methyl-4-isopropyl-benzol, 4-Benzalamino-thymol $C_{17}H_{19}ON=C_6H_5\cdot CH:N\cdot C_6H_3(CH_3)[CH(CH_3)_2]\cdot OH.$ B. Durch 2-stdg. Erhitzen von 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol (S. 654) mit Benzaldehyd (Plancher, G. 25 II, 390). Nadeln (aus Petroläther). F: 148—150°.
- 6-Cuminalamino-8-oxy-1-methyl-4-isopropyl-benzol, 4-Cuminalamino-thymol $C_{20}H_{35}ON = (CH_3)_2CH \cdot C_6H_4 \cdot CH : N \cdot C_6H_3[CH_(CH_3)_2] \cdot OH$. B. Bei 2-stdg. Erhitzen von 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol (S. 654) mit Cuminaldehyd (Bd. VII, S. 318) (P., G. 25 II, 391). F: 153—154°.

Thymochinon - [4 - oxy - 2 - methyl - 5 - isopropyl - anil]-(1) ¹) C₂₀H₂₆O₃N, s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl. Decker, Ssolonina, O: N·OH B. 35, 3225; 36, 2893. — B. Man mischt 10 g Thymol (CH₃)₂CH CH(CH₃)₂(Bd. VI, S. 532) mit 10 g konz. Schwefelsäure und gibt (CH₃)₂CH CH(CH₃)₃(CH₃CH) (CH₃)₄CH (CH₃)₅CH (CH₃)₅CH) (CH₃)₅CH (CH₃)₅CH) (CH₃)₅C

¹⁾ Besifferung der vom Namen "Thymochinon" abgeleiteten Namen in diesem Handbuch s. Bd. VII, S. 662.

Liefert beim Schütteln mit Dimethylsulfat in alkal. Lösung den Methyläther (s. u.) (D., S., B. 38, 66), beim Schütteln der alkal. Lösungen mit Diäthylsulfat den Äthyläther (s. u.) (D., S., B. 36, 2893), beim Schütteln mit Acetylchlorid in alkal. Lösung das Thymochinon-[4-acetoxy-2-methyl-5-isopropyl-anil]-(1) (S. 657), beim Schütteln mit Benzoylchlorid das entsprechende Benzoylderivat (D., S., B. 36, 2893).

Thymochinon - [4 - methoxy - 2 - methyl - 5 - isopropyl - anil] - (1) $C_{21}H_{27}O_2N = 0:C_6H_3(CH_2)[CH(CH_3)_2]:N\cdot C_8H_4(CH_3)[CH(CH_2)_2]\cdot O\cdot CH_3$. B. Durch Oxydation von 4.4'-Dimethoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 654) mit Eisenchlorid in alkoh. Lösung (Decker, Ssolonina, B. 38, 66). Aus Thymochinon-[4-oxy-2-methyl-5-isopropylanil]-(1) (s. o.) und Dimethylsulfat in alkal. Lösung (D., S.). — Rote Nadeln (aus Methylalkohol). F: 66—67°. — Liefert mit Jodwasserstoffsäure das Hydrojodid des 4.4'-Dioxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamins (S. 654).

Thymochinon - [4 - äthoxy - 2 - methyl - 5 - isopropyl - anil] - (1) $C_{32}H_{39}O_3N = 0$: $C_6H_3(CH_3)[CH(CH_3)_2]$: $N \cdot C_6H_3(CH_3)[CH(CH_3)_2] \cdot O \cdot C_2H_5$. B. Aus 4.4'-Diāthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 654) oder seinem Hydrochlorid mit alkoholisch-salzsaurer Eisenchloridlösung (D., S., B. 35, 3223; 36, 2889). Durch 10-stdg. Schütteln einer alkal. Lösung von Thymochinon-[4-oxy-2-methyl-5-isopropyl-anil]-(1) (S. 655) mit Diāthylsulfat (D., S., B. 36, 2893). — Dunkelrote Krystalle (aus Alkohol). Triklin pinakoidal (Jerschow, C. 1905 I, 504; vgl. Groth, Ch. Kr. 5, 57). F: 96—97° (D., S., B. 35, 3223). In Alkohol, Ather, Benzol, Chloroform mit intensiv violetter Farbe leicht löslich; unlöslich in Wasser (D., S., B. 35, 3224). — Wird von Reduktionsmitteln entfärbt unter Bildung von 4-Oxy-4'-āthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 654); gibt mit konz. Schwefelsäure die Indophenolreaktion (D., S., B. 35, 3224). Beim Kochen mit konz. Jodwasserstoffsäure entsteht zuerst die Leukoverbindung, dann tritt Verseifung zu 4.4'-Dioxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 654) ein (D., S., B. 35, 3225). Wird von heißer 50% gespalten (D., S., B. 35, 3225; 36, 2891).

Verbindung
$$C_{24}H_{35}O_{9}N_{3} = \frac{C_{2}H_{5}}{O_{3}N} > 0 : \underbrace{CH_{3}}{CH_{3}} \cdot N(:0) \cdot \underbrace{CH_{5}} \cdot O \cdot C_{2}H_{5} + HNO_{3}$$
. B. Durch $(CH_{3})_{2}CH$

langsames Zufügen einer Lösung von 5 g roter Salpetersäure (D: 1,47) in 25 g Eisessig zu einer eisgekühlten Lösung von 6 g Thymol-äthyläther (Bd. VI, S. 536) in 24 g Eisessig (D., S., B. 35, 3219). — Dunkelblaue, gelbglänzende Blättchen. Rhombisch (Jerschow, C. 1905 I, 504). F: 79° (D., S., B. 36, 2886). Sehr zersetzlich. Zerfließt an der Luft; die wäßr. Lösung scheidet bald ein rotes Produkt ab; Alkalien färben die Lösung hellgelb, dann rot; Säuren regenerieren die blaue Färbung, so lange noch nicht alles in das rote Produkt übergegangen ist (D., S., B. 35, 3220). — Reduktionsmittel entfärben unter Bildung von 4.4'-Diäthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 654) (D., S., B. 35, 3222).

Thymochinon-oxim-(4)-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) $C_{22}H_{30}O_2N_2=HO\cdot N:C_8H_4(CH_3)[CH(CH_3)_2]:N\cdot C_6H_2(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5.$ B. Aus Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) (s. o.) und Hydroxylamin in essigsaurer Lösung (D., S., B. 36, 2890). — Hellgelbe Nadeln (aus verd. Alkohol). F: 124—125°. — Wird von siedendem Alkohol in Thymochinon-[4-āthoxy-2-methyl-5-isopropyl-anil]-(1) zurückverwandelt.

Thymochinon - [4 - butyloxy - 2 - methyl - 5 - isopropyl - anil] - (1) $C_{34}H_{33}O_{2}N = O:C_{6}H_{3}(CH_{3})[CH(CH_{3})_{2}]:N\cdot C_{6}H_{2}(CH_{3})[CH(CH_{3})_{2}]\cdot O\cdot CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot CH_{3}$. Be der Oxydation von 4.4'-Dibutyloxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (8. 655) mit alkoh. Ferrichloridlösung (D., S., B. 38, 68). — Rote Prismen. F: 55°.

Verbindung $C_{28}H_{43}O_{9}N_{3} =$

$$\begin{array}{c} \text{CH}_3 \cdot \text{CH}_3 \cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{CH}_3 + \text{HNO}_3. \quad B. \quad \text{Aus} \\ \text{(CH}_3)_2 \text{CH} \quad \text{CH}(\text{CH}_3)_2 \\ \end{array}$$

Thymol-butyläther (Bd. VI, S. 536) und Salpetersäure in essigsaurer Lösung (D., S., B. 38, 67). — Bronzefarbene Tafeln. F: 66°.

Thymochinon - [4 - benzyloxy - 2 - methyl - 5 - isopropyl - anil] - (1) $C_{27}H_{31}O_2N = 0:C_6H_2(CH_3)[CH(CH_3)_3]:N\cdot C_6H_3(CH_3)[CH(CH_3)_3]\cdot O\cdot CH_2\cdot C_6H_5$. B. Durch Oxydation des 4.4'-Dibenzyloxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamins (S. 655) mit Eisenchlorid in alkoholisch-ätherischer Lösung (SSOLONINA, Ж. 39, 758). — Rote Krystalle. F: 81,5°. Leicht löslich in Alkohol und Äther.

Verbindung
$$C_{34}H_{39}O_9N_8 = C_6H_5 \cdot CH_9 > O : (CH_3) \cdot CH(:O) \cdot (CH_4 \cdot C_6H_5 + HNO_3) \cdot (CH_3) \cdot CH(:O) \cdot (CH_5) \cdot (CH_$$

(CH₃)₂CH CH(CH₃)₂

B. Zur essigsauren Lösung des Benzyl-thymyl-åthers (Bd. VI, S. 536) gießt man unter Eiskühlung eine Lösung von Salpetersäure (D: 1,4) in Eisessig (S., Ж. 89, 753). — Kupferfarbene Täfelchen. F: 68°. Löslich in Alkohol und Eisessig. — Zersetzt sich allmählich unter Bildung einer rotbraunen Verbindung.

Thymochinon - [4 - acetoxy - 2 - methyl - 5 - isopropyl - anil] - (1) $C_{32}H_{27}O_3N = 0:C_6H_2(CH_3)[CH(CH_3)_3]:N\cdot C_6H_3(CH_3)[CH(CH_3)_3]:O\cdot CO\cdot CH_3$. B. Durch Oxydieren von 4-Äthoxy-4'-acetoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (8. 655) mit alkoh. Eisenchlorid (Deckee, Ssolonina, B. 36, 2889). Durch Behandeln einer alkal. Lösung des Thymochinon-[4-oxy-2-methyl-5-isopropyl-anils]-(1) (8. 655) mit Acetylchlorid (D., S.). — Ziegelrot. — Löst sich in heißer Natronlauge mit blauer Farbe unter Bildung von Thymochinon-[4-oxy-2-methyl-5-isopropyl-anil]-(1).

- 6-Acetamino-3-oxy-1-methyl-4-isopropyl-benzol, 4-Acetamino-thymol $C_{12}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot C_0H_2(CH_3)[CH(CH_3)_2]\cdot OH$. B. Beim Verseifen von 6-[Diacetylamino]-3-acetoxy-1-methyl-4-isopropyl-benzol (s. u.) mit konz. Salzsäure (Wallach, Neumann, B. 28, 1663). Aus 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol und Essigsäureanhydrid in der Kälte (Plancher, G. 25 II, 388). F: 174,5° (W., N.). Schwer löslich in Benzol und Petroläther, leicht in Kalilauge (Pl.).
- 6-Acetamino-3-methoxy-1-methyl-4-isopropyl-benzol, 4-Acetamino-thymol-methyläther $C_{13}H_{19}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_2(CH_2)[CH(CH_3)_2]\cdot O\cdot CH_3$. B. Durch Methylierung von 6-Acetamino-3-oxy-1-methyl-4-isopropyl-benzol (s. o.) (Wallach, Neumann, B. 28, 1663). Krystalle (aus Alkohol). F: 139°.
- 6-Acetamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 4-Acetamino-thymoläthyläther $C_{14}H_{21}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_2(CH_3)[CH(CH_3)_3]\cdot O\cdot C_2H_5$. B. Durch Erhitzen von 6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol mit Eisessig (Decker, Ssolonina, B. 36, 2891) oder von salzsaurem 6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol mit Essigsäure-anhydrid und Natriumacetat (Gaebel, B. 35, 2799). Durch Reduktion von 6-Nitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 542) mit Zinn und Eisessig (L. Hoffmann, E. Hoffmann, D.R.P. 67568; Frdl. 3, 909). Nadeln (aus Alkohol). F: 136° (L. H., E. H.; G.), 135° (D., S.). Leicht löslich in Alkohol, weniger in Äther, unlöslich in Wasser (L. H., E. H.).
- 6-Chloracetamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 4-Chloracetamino-thymol-äthyläther $C_{14}H_{20}O_2NCl=CH_2Cl\cdot CO\cdot NH\cdot C_6H_2(CH_2)[CH(CH_2)_2]\cdot O\cdot C_4H_5$. B. Durch Einw. von Chloracetylchlorid (Bd. II, S. 199) auf in Toluol gelöstes 6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol (S. 654) (Marquart & Schulz, D.R. P. 71159; Frdl. 8, 910). Krystalle (aus Alkohol). F: 154°.
- 6-Bromacetamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 4-Bromacetamino-thymol-äthyläther $C_{14}H_{20}O_2NBr = CH_2Br\cdot CO\cdot NH\cdot C_4H_3(CH_2)[CH(CH_2)_2]\cdot O\cdot C_2H_3$. B. Aus 6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol (S. 654) und Bromacetylbromid (Bd. II, S. 215) in Toluollösung (M. & Soh., D.R.P. 71159; Frdl. 3, 911). F: 145°.
- 4.4'-Diäthoxy-2.2'-dimethyl-5.5'-diiso-propyl-N-acetyl-diphenylamin C₁₈H₅₇O₂N, s. nebenstehende Formel. B. Durch kurzes C₂H₅·O·—N(CO·CH₃)—·O·C₂H₅ Kochen des 4.4'-Diāthoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamins (S. 654) oder seines salzsauren Salzes mit Essigsäureanhydrid und Natriumacetat, neben 4-Äthoxy-4'-acetoxy-2.2'-dimethyl-5.5'-diisopropyl-diphenylamin (S. 655) (Decker, Ssolonina, B. 36, 2888).

 Krystalle (aus Alkohol + Essigester). F: 89—90°. Leicht löslich in Essigester, schwerer in Alkohol.
- 6-Diacetylamino-3-acetoxy-1-methyl-4-isopropyl-benzol, O.N.N-Triacetyl-[4-amino-thymol] $C_{1e}H_{21}O_4N = (CH_3 \cdot CO)_2N \cdot C_6H_4(CH_3)[CH(CH_3)_2] \cdot O \cdot CO \cdot CH_3$. Beim Kochen von salzsaurem 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol (S. 654) mit Essigsäureanhydrid und Natriumacetat (Wallach, Neumann, B. 28, 1663). Beim Erhitzen von 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol mit einem Überschuß von Essigsäureanhydrid im Einschlußrohr auf 180—200° (Plancher, G. 25 II, 388). Blättchen (aus Alkohol). F: 91° (W., N.), 88—90° (Pl.). Löslich in Alkohol, Benzol und Petroläther (Pl.). Liefert mit konz. Salzsäure 6-Acetamino-3-oxy-1-methyl-4-isopropyl-benzol (s. 0.).
- 6 Bensamino 3 oxy 1 methyl 4 isopropyl benzol, 4 Bensamino thymol $C_{17}H_{19}O_2N=C_4H_5\cdot CO\cdot NH\cdot C_4H_4(CH_3)[CH(CH_2)_2]\cdot OH$. B. Bei kurzem Erwärmen von 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol (S. 654), gelöst in Benzol, mit Benzoesäure-

- anhydrid (Bd. IX, S. 464) auf 70—80° (PLANCHEB, G. 25 II, 389). Nådelchen (aus verd. Alkohol). F: 178—179°.
- 6-Bensamino 3- äthoxy 1-methyl-4-isopropyl-bensol, 4-Bensamino-thymoläthyläther $C_{19}H_{32}O_2N=C_0H_5$: $C_0\cdot NH\cdot C_0H_2(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Aus 6-Amino-3-äthoxy-1-methyl-4-isopropyl-benzol (S. 654) durch Benzoylierung (GAEBEL, B. 35, 2800). Nadeln (aus verd. Alkohol). F: 151—152°.
- 6-Bensamino-3-bensoyloxy-1-methyl-4-isopropyl-bensol, O.N-Dibensoyl-[4-amino-thymol] $C_{24}H_{25}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_6H_2(CH_3)$ [CH(CH₃)₂]·O·CO·C₆H₅. B. Durch Erhitzen von 6-Amino-3-oxy-1-methyl-4-isopropyl-benzol (S. 654) mit etwas mehr als 2 Mol.-Gew. Benzoylchlorid auf 160—170° (Plancher, G. 25 II, 389). Nadeln (aus verd. Alkohol). F: 166—167°.
- 6-Glycylamino-8-äthoxy-1-methyl-4-isopropyl-benzol, 4-Glycylamino-thymoläthyläther $C_{14}H_{22}O_2N_3=H_2N\cdot CH_2\cdot CO\cdot NH\cdot C_6H_2(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Durch Einw. von konz. alkoh. Ammoniak auf 6-Chloracetamino-3-äthoxy-1-methyl-4-isopropyl-benzol (S. 657) (Marquart & Schulz, D. R. P. 71159; Frdl. 3, 911). Nädelchen (aus Alkohol). F: 104—105°. Unlöslich in kaltem Wasser, sonst leicht löslich.
- 2-Chlor-6-amino-3-oxy-1-methyl-4-isopropyl-benzol, 2-Chlor-4-amino-thymol 1) C₁₀H₁₄ONCl = H₂N·C₆HCl(CH₃)[CH(CH₃)]·OH. B: Das salzsaure Salz entsteht neben 3.6-Dichlor-thymochinon (Bd. VII, S. 666) und anderen Produkten beim Erwärmen von Thymochinon-chlorimid-(1) (Bd. VII, S. 663) mit rauchender Salzsäure (Andresen, J. pr. [2] 23. 175). Aus 6-Nitroso-3-oxy-1-methyl-4-isopropyl-benzol [Thymochinon-oxim-(1), Bd. VII, S. 664] beim Stehen mit konz. Salzsäure, neben 3.6-Dichlor-thymochinon (Surkowski, B. 19, 2315). Nadeln oder Prismen (aus heißem Wasser). F: 100,5° (A.), 102—103° (S.). Unlöslich in kaltem Wasser, löslich in heißem, leicht in Alkohol und Äther; löst sich leicht in kohlensauren Alkalien (A.). Verändert sich sehr leicht an der Luft (A.). Chlorkalk erzeugt in salzsaurer Lösung 3-Chlor-thymochinon-chlorimid-(1) (Bd. VII, S. 665) (A.). Oxydation durch Chloranil: S.; vgl. dazu Decker, Ssolonina, B. 36, 2892. C₁₀H₁₄ONCl + HCl. Nadeln oder Prismen; sublimiert bei vorsichtigem Erhitzen unzersetzt in Nadeln; löslich in Alkohol; wird aus der wäßr. Lösung durch Salzsäure gefällt (A.).
- 2-Brom-6-amino-3-oxy-1-methyl-4-isopropyl-benzol, 2-Brom-4-amino-thymol¹) $C_{10}H_{14}ONBr = H_1N \cdot C_4HBr(CH_3)[CH(CH_3)_2] \cdot OH$. Zur Konstitution vgl. Kehrmann, B. 22, 3267. B. Das bromwasserstoffsaure Salz entsteht neben 3.6-Dibrom-thymochinon (Bd. VII, S. 668) beim Erwärmen von Thymochinon-chlorimid-(1) (Bd. VII, S. 663) mit mäßig starker Bromwasserstoffsäure (Andresen, J. pr. [2] 23, 183). Aus 2-Brom-6-nitroso-3-oxy-1-methyl-4-isopropyl-benzol (Bd. VII, S. 667) in Alkohol durch Zinkstaub und Salzsäure (Mazzara, Discalzo, G. 16, 196) oder durch Zinnchlorür und Salzsäure (K., B. 22, 3267). Aus 2-Brom-6-nitro-3-oxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 542) in Alkohol durch Zinn und rauchende Salzsäure (M., 'G. 19, 64). Schuppen (aus Petroläther). F: 94—950 (M.). Färbt sich an der Luft rasch intensiv violett (A.). Bei der Oxydation des salzsauren Salzes mit salpetriger Säure (M., D.) oder des Zinndoppelsalzes mit salpetriger Säure, Eisenchlorid oder Chromsäure (K.) entsteht 3-Brom-thymochinon (Bd. VII, S. 666). Hydrochlorid. Blätter (aus Alkohol). F: 185°; löslich in warmem Alkohol (M.). $C_{10}H_{14}$ ON Br + HBr. Nadeln (aus Wasser durch Bromwasserstoffsäure). Löslich in Wasser und Alkohol, unlöslich in Äther (A.).
- 2-Brom-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol, 2-Brom-4-amino-thymol-äthyläther $C_{12}H_{18}ONBr = H_2N \cdot C_8HBr(CH_3)[CH(CH_3)_3] \cdot 0 \cdot C_2H_5$. B. Durch Reduktion von 2-Brom-6-nitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 543) mit Zinn und Salzsäure (Mazzara, Vighi, G. 19, 335). Öl. Durch Entamidierung entsteht 2-Brom-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 540). Hydrochlorid. Prismen (aus Alkohol). F: 200—201°.
- **2-Brom-6-diacetylamino-3-acetoxy-1-methyl-4-isopropyl-benzol**, O.N.N-Triacetyl-[2-brom-4-amino-thymol] $C_{18}H_{20}O_4NBr = (CH_3\cdot CO)_2N\cdot C_6HBr(CH_3)[CH(CH_3)_4]\cdot O\cdot CO\cdot CH_2$. B. Aus 2-Brom-6-amino-3-oxy-1-methyl-4-isopropyl-benzol (s. o.) und überschüssigem Essigsäureanhydrid (MAZZARA, G. 19, 66). Tafeln (aus Alkohol). F: 136—137°. Sehr leicht löslich in Benzol.
- **2-Brom-6-bengamino-8-oxy-1-methyl-4-isopropyl-benzol, 2-Brom-4-bengamino-thymol** $C_{17}H_{18}O_3NBr = C_6H_5\cdot CO\cdot NH\cdot C_6HBr(CH_3)[CH(CH_3)_3]\cdot OH$. B. Aus 1 Mol.-Gew. 2-Brom-6-amino-3-oxy-1-methyl-4-isopropyl-benzol (s. o.) und 1 Mol.-Gew. Benzoylchlorid (M., G. 19, 67). Warzen (aus Alkohol). F: 162—164°. Löslich in Alkohol und Benzol sowie in verdünnten Alkalien.

¹⁾ Bezifferung der vom Namen "Thymol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 532.

- 2-Nitro-6-amino-3-oxy-1-methyl-4-isopropyl-benzol, 2-Nitro-4-amino-thymol¹) $C_{10}H_{14}O_2N_2 = H_2N \cdot C_4H(NO_2)(CH_3)[CH(CH_3)_2] \cdot OH$. B. Beim Kochen von 2-Nitro-6-amino-3-benzoyloxy-1-methyl-4-isopropyl-benzol (s. u.) mit alkoh. Kali (Soderi, G. 25 II, 404). Rotbraune Nadeln (aus Alkohol). Sehr leicht löslich in Alkohol.
- 2-Nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol, 2-Nitro-4-amino-thymol-äthyläther $C_{12}H_{18}O_3N_3=H_2N\cdot C_6H(NO_3)(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Aus 2.6-Dinitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 543) durch Reduktion mit der berechneten Menge Zinnchlorür und alkoh. Salzsäure oder alkoh. Schwefelammonium (GAEBEL, B. 35, 2794, 2800). Tafeln (aus absol. Alkohol). F: 111—112°. Leicht löslich in Äther und Schwefelkohlenstoff. Die Salze werden von Wasser zerlegt. Durch Entamidierung entsteht 2-Nitro-3-äthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 542). $C_{12}H_{10}O_3N_3+HCl$. Nadeln. Schmilzt unscharf bei 195°, zersetzt sich bei 200°. Löslich in Alkohol, unlöslich in Äther. Sulfat. Nadeln.
- 2-Nitro-6-amino-3-benzoyloxy-1-methyl-4-isopropyl-benzol, [6-Nitro-4-amino-5-methyl-2-isopropyl-phenyl]-benzoat $C_{17}H_{18}O_4N_2=H_2N\cdot C_6H(NO_2)(CH_3)[CH(CH_3)_2]\cdot O\cdot CO\cdot C_6H_5$. B. Entsteht in geringer Ausbeute neben 5-Amino-4-methyl-7-isopropyl-phenyl-benzoxazol (Syst. No. 4345) beim Vermischen von 10 g [4.6-Dinitro-5-methyl-2-isopropyl-phenyl]-benzoat (Bd. IX, S. 123) mit 11 g granuliertem Zinn und 35—40 g rauchender Salzsäure (Soden, G. 25 II, 401). Gelbe Nadeln (aus Ligroin). F: 158—160°. Schwer löslich in Ligroin, löslich in Alkohol, Benzol und Toluol.
- 2-Nitro-6-acetamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 2-Nitro-4-acetamino-thymol-äthyläther $C_{14}H_{20}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_6H(NO_2)(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Beim Erwärmen von 2-Nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol (s. o.) mit Essigsäureanhydrid auf dem Wasserbade (Gaebel, B. 35, 2795). Nadeln (aus verd. Alkohol). F: 119°.
- 2-Nitro-6-acetamino-3-acetoxy-1-methyl-4-isopropyl-benzol, O.N-Diacetyl-[2-nitro-4-amino-thymol] $C_{14}H_{18}O_5N_3=CH_3\cdot CO\cdot NH\cdot C_4H(NO_2)(CH_3)[CH(CH_3)_2]\cdot O\cdot CO\cdot CH_3$. B. Aus 2-Nitro-6-amino-3-oxy-1-methyl-4-isopropyl-benzol (s. o.) und Essigsäure-anhydrid (Soder, G. 25 II, 404). Gelbe Prismen (aus Benzol). F: 157—159°.
- 2-Nitro-6-bensamino-8-äthoxy-1-methyl-4-isopropyl-benzol, 2-Nitro-4-benz-amino-thymol-äthyläther $C_{19}H_{12}O_4N_3=C_6H_5\cdot C\ddot{O}\cdot NH\cdot C_6H(NO_3)(CH_3)[CH(CH_3)_3]\cdot O\cdot C_2H_5$. B. Beim Erwärmen von 2-Nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol (s. o.) mit Benzoylchlorid auf dem Wasserbade (Gaebel, B. 35, 2795). Nadeln (aus verd. Alkohol). F: 138°. Löslich in Äther.
- 5-Brom-2-nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol, 5-Brom-2-nitro-4-amino-thymol-äthyläther ¹) $C_{12}H_{17}O_3N_2Br = H_2N\cdot C_6Br(NO_2)(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Das Hydrobromid entsteht durch Einw. von 2 At.-Gew. Brom auf 1 Mol.-Gew. 2-Nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol (s. o.) in Schwefelkohlenstoff (G.; B. 35, 2796). Goldgelbe Tafeln (aus verd. Alkohol). F: 75°. Löslich in Äther und CS_2 . Hydrochlorid. Nadeln. Schmilzt gegen 156° unter Zersetzung. Wird von Wasser zerlegt. Hydrobromid. Nadeln (aus Chloroform).
- 5-Brom-2-nitro-6-bensamino-3-äthoxy-1-methyl-4-isopropyl-bensol, 5-Brom-2-nitro-4-bensamino-thymol-äthyläther $C_{19}H_{21}O_4N_2Br=C_6H_5\cdot CO\cdot NH\cdot C_6Br(NO_2)(CH_3)$ [CH(CH₃)₂]·O·C₂H₅. B. Beim Erwärmen von 5-Brom-2-nitro-6-amino-3-äthoxy-1-methyl-4-isopropyl-benzol (s. o.) mit Benzoylchlorid (G., B. 35, 2796). Quadratische Blättchen (aus verd. Alkohol). F: 171°.
- 2.6-Diamino-3-oxy-1-methyl-4-isopropyl-benzol, 2.4-Diamino-thymol ¹) C₁₀H₁₆ON₂, s. nebenstehende Formel. B. Durch Reduktion von 2.6-Dinitro-3-oxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 543) mit Zinn und Salzsäure (Kehemann, Prager, B. 39, 3440). Das Hydrochlorid geht durch Einw. von Eisenchlorid bei gewöhnlicher Temperatur in 3-Amino-2-methyl-5-isopropyl-chinon-imid-(1) [3-Amino-thymochinon-imid-(1), Syst. No. 1874] über (K., P.). Bei der Destillation mit Eisenchloridlösung liefert es 3-Oxy-2-methyl-5-isopropyl-chinon [3-Oxy-thymochinon, Bd. VIII, S. 284] (Carstanjen, J. pr. [2] 3, 58; 15, 399).
- **2.6 Diamino 3 äthoxy 1 methyl 4 isopropyl bensol, 2.4 Diamino thymol-äthyläther** $C_{18}H_{20}ON_3 = (H_2N)_3C_6H(CH_3)[CH(CH_2)_3]\cdot O\cdot C_4H_5$. *B.* Durch Reduktion von 2.6-Dinitro-3-āthoxy-1-methyl-4-isopropyl-benzol (Bd. VI, S. 543) mit überschüssigem Zinn

¹⁾ Besifferung der vom Namen "Thymol" abgeleiteten Namen in diesem Handbuch s. Bd. VI, S. 532.

und Salzsäure in Alkohol (GAEBEL, B. 35, 2801; vgl. CAESTANJEN, J. pr. [2] 15, 405; LADENBUEG, ENGELBRECHT, B. 10, 1219). — Das salzsaure Salz liefert bei der Destillation seiner wäßr. Lösung mit Eisenchlorid 3-Oxy-2-methyl-5-isopropyl-chinon (Bd. VIII, S. 284) und 3.6-Dioxy-2-methyl-5-isopropyl-chinon (Bd. VIII, S. 399) (C.; L., E.). — C₁₈H₂₀ON₂ + 2HCl. Pulver (aus alkoh. Salzsäure durch Äther). Schwärzt sich bei 215°, zersetzt sich bei etwa 230° unter Gasentwicklung; färbt sich leicht violett (G.).

- 2.6 Bis acetamino 3 oxy 1 methyl 4 isopropyl benzol, 2.4-Bis acetamino-thymol $C_{14}H_{20}O_3N_2=(CH_3\cdot C0\cdot NH)_2C_6H(CH_3)[CH(CH_3)_2]\cdot OH$. B. Entsteht neben dem 2 oder 6-Acetamino-6 oder 2-diacetylamino-3-oxy-1-methyl-4-isopropyl-benzol, dem 2.6-Bis-diacetylamino-3-oxy-1-methyl-4-isopropyl-benzol und anderen Produkten bei 3-stdg. Erhitzen tüberschüssigem salzsaurem 2.6-Diamino-3-oxy-1-methyl-4-isopropyl-benzol mit Essigsaureanhydrid auf 160° (Mazzara, G. 20, 425). Schuppen. F: 260—262°. Löslich in verd. Kalilauge.
- 2 oder 6-Acetamino-6 oder 2-diacetylamino-3-oxy-1-methyl-4-isopropylbensol, $N^3.N^4.N^4$ oder $N^3.N^3.N^4$ Triacetyl-[2.4-diamino-thymol] $C_{16}H_{22}O_4N_8=[(CH_3\cdot CO)_2N](CH_2\cdot CO\cdot NH)C_6H(CH_3)[CH(CH_3)_2]\cdot OH$. B. s. im vorangehenden Artikel.—Schuppen. F: 238—240°; löst sich in Kalilauge, dabei in das 2.6-Bis-acetamino-3-oxy-1-methyl-4-isopropyl-benzol übergehend (M., G. 20, 425).
- 2.6-Bis-diacetylamino-3-oxy-1-methyl-4-isopropyl-benzol, 2.4-Bis-[diacetylamino]-thymol $C_{18}H_{24}O_5N_3=[(CH_3\cdot CO)_2N]_2C_6H(CH_3)[CH(CH_3)_2]\cdot OH$. B. s. im Artikel 2.6-Bis-acetamino-3-oxy-1-methyl-4-isopropyl-benzol (s. o.). Schmilzt bei 216—222°; löslich in Kalilauge (M., G. 20, 425).
- 2.6-Bis-diacetylamino-3-äthoxy-1-methyl-4-isopropyl-benzol, 2.4-Bis-[diacetylamino]-thymol-äthyläther $C_{20}H_{28}O_5N_2=[(CH_3\cdot CO)_2N]_2C_6H(CH_3)[CH(CH_3)_2]\cdot O\cdot C_2H_5$. B. Durch 2-stdg. Kochen von salzsaurem 2.6-Diamino-3-äthoxy-1-methyl-4-isopropyl-benzol (S. 659) mit Natriumacetat und Essigsäureanhydrid (Gaebel, B. 35, 2802). Schuppen (aus verd. Alkohol). F: 146°.
- 2.6 Bis diacetylamino 3 acetoxy-1-methyl-4 isopropyl-benzol, O.N.N.N'.N'-Pentaacetyl [2.4 diamino thymol] $C_{20}H_{26}O_6N_2 = [(CH_3 \cdot CO)_2N]_sC_6H(CH_3)[CH(CH_3)_s] \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von salzsaurem 2.6 Diamino 3 oxy 1 methyl 4 isopropyl-benzol (S. 659) mit überschüssigem Essigsäureanhydrid (MAZZARA, G. 20, 418). Schuppen (aus verd. Alkohol). F: 184—186°. Zerfällt oberhalb 200° in Essigsäureanhydrid und 5-Diacetylamino 2.4-dimethyl 7-isopropyl-benzoxazol (Syst. No. 4341).
- 7. Aminoderivate des 4¹-Oxy-1-methyl-4-isopropyl-benzols (Dimethyl-p-tolyl-carbinols) $C_{10}H_{14}O=CH_{1}\cdot C_{6}H_{4}\cdot C(CH_{3})_{1}\cdot OH$ (Bd. VI, S. 544).

Dimethyl - [3 - amino - 4 - methyl - phenyl] - carbinol, Carvolin C₁₀H₁₅ON, s. nebenstehende Formel. Zur Konstitution vgl. Wallach, A. 346, 268. — B. Entsteht neben Carvacrol (Bd. VI, S. 527) beim Erhitzen von Isocarvoxim (Bd. VII, S. 152) mit verd. Schwefelsäure (Goldschmidt, Kisser, B. 20, 2075; W., Lautsch, A. 346, 278). — Nadeln oder Prismen (aus Äther + Ligroin). F: 94° (G., K.; W., L.). Kp: 289—290°; Kp₁₂: (CH₃)₂C·OH 158—163°; löslich in Äther, unlöslich in Ligroin, nicht flüchtig mit Wasserdampf (W., L.). Unlöslich in Alkali; liefert beim Kochen mit konz. Jodwasserstoffsäure Carvacrylamin (Bd. XII, S. 1171) (W., L.). — Hydrochlorid. F: 189—190° (W., L.).

Methyl - dimethylaminomethyl - p - tolyl - carbinol C₁₂H₁₂ON, s. nebenstehende Formel. B. Durch Einw. von Dimethylamin (Bd. IV, S. 39) auf das (nicht näher beschriebene) Methyl-jodmethyl-p-tolyl-carbinol, erhalten aus 1-Methyl-4-isopropenyl-benzol (Bd. V, S. 490) durch Einw. von unterjodiger Säure (TISTENDAU, A. ch. [8] 10, 198). — Kp: 253—255°; Kp₁₈: CH₃·C(OH)·CH₂·N(CH₃)₂ 135—136°; D°: 0,982.

1 6. Aminoderivate der Monooxy-Verbindungen $C_{11}H_{16}O$.

1. Aminoderivat des 1¹-Oxy-1-isoamyl-benzols (Isobutylphenylcarbinols) $C_{11}H_{16}O = C_{6}H_{4} \cdot CH(OH) \cdot CH_{2} \cdot CH(CH_{2})_{2}$ (Bd. VI, S. 548).

Isobutyl-[4-dimethylamino-phenyl]-carbinol $C_{12}H_{21}ON = (CH_2)_2N \cdot C_4H_4 \cdot CH(OH) \cdot CH_2 \cdot CH(CH_2)_2$. B. Aus 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. Isobutylmagnesiumbromid in Åther (Sachs, Weigert, B. 40, 4364). — Nadeln

(aus Ligroin). F: 77°. Leicht löslich außer in Ligroin und Petroläther. — Gibt bei der Destillation unter vermindertem Druck N.N-Dimethyl-4-[β-isopropyl-vinyl]-anilin (Bd. XII, 8. 1207).

Jodmethylat $C_{14}H_{24}ONI = (CH_3)_3NI \cdot C_0H_4 \cdot CH(OH) \cdot CH_2 \cdot CH(CH_3)_2$. B. Aus Isobutyl-[4-dimethylamino-phenyl]-carbinol und Methyljodid (S., W., B. 40, 4364). — F: 150°.

- 2. Aminoderivate des 5-0xy-1.2-dimethyl-4-isopropyl-benzols $C_{11}H_{16}O =$ $(CH_3)_2CH \cdot C_6H_2(CH_3)_2 \cdot OH.$
- $\begin{array}{llll} & \textbf{[4-Oxy-2-methyl-5-isopropyl-benzyl]-diathylamin} \\ \textbf{C}_{15}\textbf{H}_{25}\textbf{ON}, & s. & nebenstehende & Formel. & \textit{B.} & \textbf{Aus} & \textbf{Diathylamin} \\ \textbf{(Bd. IV, S. 95), Thymol (Bd. VI, S. 532)} & und & Formaldehyd in \\ \end{array}$ CH₃ $\cdot \mathrm{CH_2} \cdot \mathrm{N}(\mathrm{C_2H_5})_2$ molekularen Mengen in Gegenwart von alkoh. Kali (HILDE- HO BRANDT, A. Pth. 54, 126). — Derbe Krystalle (aus verd. Alkohol). CH(CH_a)_a F: 86°. — Physiologische Wirkung: H.
- [4 Oxy 2 methyl 5 isopropyl benzyl] dipropylamin $C_{17}H_{29}ON = HO \cdot C_6H_2(CH_3)[CH(CH_3)_2] \cdot CH_2 \cdot N(CH_2 \cdot CH_3 \cdot CH_3)_2$. B. Aus Dipropylamin, Formaldehyd und Thymol (H., A. Pth. 54, 131). Stumpfe Nadeln. F: 76°. Physiologische Wirkung: H.
- [4 Oxy 2 methyl 5 isopropyl benzyl] diisobutylamin $C_{19}H_{33}ON = HO \cdot C_{6}H_{2}(CH_{3})[CH(CH_{3})_{2}] \cdot CH_{2} \cdot N[CH_{2} \cdot CH(CH_{3})_{2}]_{2}$. B. Aus Diisobutylamin, Thymol und Formaldehyd (H., A. Pth. 54, 132). F: 92°.
- N [4 Oxy 2 methyl 5 isopropyl benzyl] chloracetamid $C_{13}H_{18}O_2NCl = HO$ C₆H₂(CH₃)[CH(CH₃)₂] CH₂ NH · CO · CH₂Cl. B. Aus 12,1 g Thymol (Bd. VI, S. 532) und 10 g N-Methylol-chloracetamid (Bd. II, S. 200) in Alkohol unter Zusatz von wenig konz. Salzsäure (EINHORN, MAUERMAYER, A. 343, 285). — Nädelchen (aus Chloroform + Benzol). F: 152–153°. Sehr leicht löslich in heißem Alkohol, leicht in Eisessig und Chloroform, schwer in Benzol.
- N [4 Oxy 2 methyl 5 isopropyl benzyl] benzamid $C_{18}H_{21}O_2N=HO\cdot C_6H_2(CH_3)[CH(CH_3)_2]\cdot CH_2\cdot NH\cdot CO\cdot C_6H_5$. B. Aus 4 g Thymol und 4 g N-Methylol-benzamid (Bd. IX, S. 207) in Alkohol unter Zusatz von 2,5 g konz. Salzsäure bei mehrtägigem Stehen (EINHORN, BISCHKOFFF, SZELINSKI, A. 343, 234.) Nädelchen (aus verd. Alkohol). F: 1680 bis 169°. Leicht löslich in Alkohol, ziemlich schwer in Benzol, sehr wenig in Wasser. Leicht löslich in Alkali.
- N-[4-Oxy-2-methyl-5-isopropyl-benzyl]-salicylamid $C_{18}H_{21}O_{2}N=HO\cdot C_{6}H_{2}(CH_{3})[CH(CH_{3})_{2}]\cdot CH_{2}\cdot NH\cdot CO\cdot C_{6}H_{4}\cdot OH.$ B. Aus 8 g N-Methylol-salicylamid (Bd. X, S. 90) und 8 g Thymol in 30 ccm Alkohol und 16 ccm konz. Salzsäure (Einhorn, Schupp, A. 343, 261). Nadeln (aus Xylol). F: 170—172°. Löslich in den meisten organischen Lösungsmitteln; löslich in Alkalien, unlöslich in Soda.
- 7. Aminoderivate des 1¹-0xy-1-[1⁴-metho-pentyl]-benzols (Isoamylphenylcarbinols) $C_{12}H_{18}O = C_6H_5 \cdot CH(OH) \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$ (Bd. VI, S. 551).

Isoamyl-[4-dimethylamino-phenyl]-carbinol $C_{14}H_{23}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH(OH) \cdot C_{14}H_{23}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH(OH) \cdot C_{14}H_4 \cdot$ CH₂·CH₂·CH(CH₃)₂. B. Aus 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. Isoamylmagnesiumbromid in Äther (Sachs, Weigert, B. 40, 4365). — Weißer Niederschlag (aus Alkohol durch Eiswasser). F: 48°. — Gibt bei der Destillation unter vermindertem Druck das N.N-Dimethyl-4-[β-isobutyl-vinyl]-anilin (Bd. XII, S. 1209).

Jodmethylat $C_{15}H_{26}ONI = (CH_3)_3NI \cdot C_6H_4 \cdot CH(OH) \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$. B. Au Isoamyl-[4-dimethylamino-phenyl]-carbinol und Methyljodid (S., W., B. 40, 4365). – C. W. August Marchyljodid (S., W., B. 40, 4365). Gelbliche Krystalle (aus Alkohol + Ather). F: 141°.

- Aminoderivat des 1¹-0xy-1-heptyl-benzols (n-Hexyl-phenyl-carbinols) $C_{13}H_{20}O = C_6H_5 \cdot CH(OH) \cdot [CH_2]_5 \cdot CH_3$
- [ζ -Amino-hexyl]-phenyl-carbinol $C_{12}H_{21}ON=C_0H_5\cdot CH(OH)\cdot [CH_2]_5\cdot CH_2\cdot NH_2$. B. Aus ζ -Amino-önanthophenon (Syst. No. 1873) durch Reduktion mit Natrium und Alkohol (Gabriel, B. 42, 4057). Öl. Durch Einw. von Jodwasserstoffsäure entsteht das Hydro-Johnson (Gabriel) auf Gabriel (Gabriel) auf Gabriel (Gabriel (jodid des η -Jod- η -phenyl-n-heptylamins (Bd. XII, S. 1184). — 2 $C_{18}H_{21}ON+2HCl+PtCl_4$. Bräunlichgelb. Schmilzt gegen 206° unter Zersetzung.

e) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-8}O$.

1. Aminoderivate der Monooxy-Verbindungen $C_2H_{10}O$.

- 1. Aminoderivate des 1-Oxy-hydrindens $C_0H_{10}O=C_0H_4$ $CH_{(OH)}$ CH_2 (Bd. VI, S. 574).
- 2 Amino 1 oxy hydrinden, 1 Oxy hydrindamin (2) C₀H₁₁ON = C₀H₄ CH·NH₂ ¹). B. Entsteht neben Bis-[1-oxy-hydrindyl-(2)]-amin (s. u.) bei ca. 2-tägigem Stehen von Indenoxybromid (vgl. untenstehende Anmerkung) mit wäßrigalkoholischem Ammoniak (Spilker, B. 26, 1542). Blättchen (aus verdunstendem Äther). F: 132—133°; äußerst leicht löslich in Wasser und Alkohol, schwerer in Benzol und Äther; zieht begierig CO₂ an, wird aus seinen Salzen durch Ammoniak nicht frei gemacht (Sp.). Gibt in mineralsaurer Lösung mit Natriumnitrit Hydrindenglykol (Sp.; vgl. Heusler, Schieffer, B. 32, 30, Anm. 2). C₂H₁₁ON + HCl. Blättchen (Sp.).

Bis-[1-oxy-hydrindyl-(2)]-amin $C_{16}H_{19}O_2N = \begin{bmatrix} C_0H_4 & CH_{10} & CH_1 \\ CH_{10}H_1 & CH_2 \end{bmatrix}$ NH ¹). Enthält geringe Mengen einer diastereoisomeren Form beigemischt (Pope, Read, Soc. 99 [1911], 2074). — B. s. im vorangehenden Artikel. — Breite Nadeln oder Blättchen (aus verd. Alkohol). F: 188,5° (korr.); sehr schwer löslich in Wasser, leicht in Alkohol, Äther und Benzol; wird aus seinen Salzen durch NH₃ gefällt (Spilker, B. 26, 1542). — Liefert beim Erwärmen mit Essigsäureanhydrid ein bei 220° schmelzendes Acetylderivat (Sp.).

Bis-[1-oxy-hydrindyl-(2)]-nitrosamin $C_{18}H_{18}O_{5}N_{2}=(C_{9}H_{9}O)_{2}N\cdot NO$. B. Aus Bis-[1-oxy-hydrindyl-(2)]-amin in salzsaurer Lösung mit salpetriger Säure (Spilker, B. 26, 1542). — Wird aus Benzol durch Petroläther amorph gefällt. Leicht löslich in Alkohol, Äther und Benzol.

- 2. Aminoderivate des 2-Oxy-hydrindens $C_9H_{10}O = C_6H_4 < \frac{CH_9}{CH_9} > CH \cdot OH$ (Bd. VI, S. 574). Die im Artikel 1-Brom-2-oxy-hydrinden, Bd. VI, S. 574 unter No. 11, als $C_9H_4 < \frac{CH_9}{CH(NH_9)} > CH \cdot OH$ und $\left[C_9H_4 < \frac{CH}{CH} > CH \cdot OH \right]_2$ NH formulierten Verbindungen sind entsprechend der Umformulierung des Ausgangsproduktes (vgl. die untenstehende Anmerkung) als Aminoderivate des 1-Oxy-hydrindens (s. No. 1) aufzufassen.
- 3. Aminoderivat des 5 Oxy hydrindens $C_0H_{10}O = \frac{HO}{CH_1}CH_1$ (Bd. VI, S. 575).
- x-Amino-5-оху-hydrinden C₉H₁₁ON = (H₂N)(HO)C₆H₂ CH₂ CH₂ CH₂. Zur Konstitution vgl. Borsche, John, B. 57 [1924], 657. B. Aus x-Nitro-5-оху-hydrinden (Bd. VI, S. 575) mit Zinn und Salzsäure (DÜNKELSBÜHLER, B. 33, 2896). Nädelchen. F: 184^o (Zers.). Ziemlich leicht löslich in Alkohol und heißem Benzol, schwer in Wasser, Petroläther und kaltem Benzol.

2. Aminoderivate der Monooxy-Verbindungen ${ m C_{10}H_{12}O.}$

- 1. Aminoderivate des 5-Oxy-naphthalin-tetrahydrids-(1.2.3.4) $C_{10}H_{12}O=C_{10}H_{11}\cdot OH$ (Bd. VI, S. 578).
- 8 Amino 5 äthoxy naphthalin tetrahydrid (1.2.8.4), 4-Amino-5.6.7.8-tetrahydro-naphthol-(1)-äthyläther C₁₂H₁₇ON, s. nebenstehende Formel. B. Entsteht neben anderen Produkten, wenn man 4-Benzolazo-5.6.7.8-tetrahydro-naphthol-(1)-äthyläther (Syst. No. 2116) in alkoh. Suspension mit Zinnehlorür und Salzsäure behandelt (Jacobson, Turnbull, B. 31, 900). Nadeln (aus Petroläther). F: 60°. Leicht löslich in Alkohol, Äther, Benzol, Chloroform und Petroläther. Chlorkalk färbt die wäßr. Lösung rötlich.

4-[4-Amino-anilino]-5.6.7.8-tetrahydro-naphthol-(1)-äthyläther, N-[4-Äthoxy-5.6.7.8-tetrahydro-naphthyl-(1)]-p-phenylendiamin $C_{18}H_{12}ON_2=H_1N\cdot C_4H_4\cdot NH\cdot C_{10}H_{10}\cdot O\cdot C_2H_5$. B. Wird neben anderen Produkten erhalten, wenn man 4-Benzolazo-5.6.7.8-

¹⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von ISHIWARA, J. pr. [2] 108, 194. Indenoxychlorid und Indenoxybromid (Bd. VI, S. 574) sind dementsprechend als 2-Chlor-besw. 2-Brom-1-oxy-hydrinden su formulieren.

tetrahydro-naphthol-(1)-äthyläther (Syst. No. 2116) in alkoh. Suspension mit Zinnchlorür behandelt und dann das Reaktionsgemisch mit überschüssiger verdünnter Salzsäure stehen läßt (Jacobson, Turnbull, B. 31, 904). — Stäbchen (aus Ligroin). F: 87-88°. Schr leicht löslich in Benzol, leicht in Alkohol, mäßig löslich in Äther, ziemlich schwer in Ligroin. -Färbt sich an der Luft bläulich. FeCl₃ färbt die verdünnte salzsaure Lösung tiefblau; auf Zusatz von konz. Salzsäure geht diese Farbe durch Grün in Goldgelb über. PbO₂ erzeugt in der äther. Lösung ein rotes Oxydationsprodukt, dessen tiefblaue Lösung in Eisessig durch Zinkstaub entfärbt wird, sich bei Luftzutritt aber wieder bläut.

Acetylderivat $C_{20}H_{24}O_2N_2=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot NH\cdot C_{10}H_{10}\cdot O\cdot C_2H_5$. B. Durch 10-stdg. Kochen der Base mit 3—4 Tln. Eisessig (JACOBSON, TURNBULL, B. 31, 905). — Blättehen (aus Alkohol). F: 177—178°. Sehr leicht löslich in Eisessig und Chloroform, leicht in Alkohol, schwer in Äther und Ligroin.

Thioharnstoff aus N-[4-Äthoxy-5.6.7.8-tetrahydro-naphthyl-(1)]-p-phenylendiamin $C_{37}H_{42}O_2N_4S=CS(NH\cdot C_6H_4\cdot NH\cdot C_{10}H_{10}\cdot O\cdot C_2H_5)_2$. B. Durch mehrstündiges Kochen der Base mit Schwefelkohlenstoff und Alkohol (Jacobson, Turnbull, B. 31, 905). — Blättehen (aus Chloroform + Alkohol). F: 201°. Sehr wenig löslich in Alkohol, sehwer in Ligroin und Äther, mäßig in Benzol, leicht in Chloroform.

hydro-naphthylendiamins-(1.5) (S. 195) in rauchender Salzsäure, $H_2(C\cdot CH(NH_2))$ versetzt bei -5° bis 0° tropfenweise mit 1 Mol.-Gew. NaNO₂ in konzentrierter wäßriger Lösung, verdünnt mit Wasser und erwärmt nach Zusatz von Tierkohle bis zum Aufhören der Stickstoffentwicklung (Bamberger, Bammann, B. 22, 960). – Scharf ammoniakalisch riechendes Öl. Unlöslich in wäßr. Alkalien. — $C_{10}H_{13}ON+HCl$. Nadeln (aus Wasser). F:220°. – Pikrat. Nadeln (aus Wasser). Leicht löslich in heißem Wasser.

O.N.-Diacetylderivat $C_{14}H_{17}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_{10}\cdot O\cdot CO\cdot CH_3$. B. Durch Kochen von 5-Amino-5.6.7.8-tetrahydro-naphthol-(1) mit Essigsäureanhydrid und Natriumacetat (Bamberger, Bammann, B. 22, 962). — Nadeln (aus verd. Essigsäure). F: 151—151,5°. Fast unlöslich in Ather, schwer löslich in kaltem, leichter in heißem Wasser, sehr leicht löslich in Alkohol.

hydrid-(1.2.3.4), 4-Amino-3-anilino-5.6.7.8-tetrahydro-naphthol-(1)-äthyläther $C_{18}H_{22}ON_2$, s. nebenstehende Formel. B. Aus 4-Benzolazo-5.6.7.8-tetrahydro-naphthol-(1)-äthyläther (Syst. No. 2116) durch Einw. von Zinnehlorür in Alkohol und Stehenlassen des Reaktionsgemisches mit überschüssiger verdünnter Salzsäure (Jacobson, Turnbull, B. 31, 901). — Blättehen oder Nadeln (aus Ligroin), die sich an der Luft allmählich rosa färben. F: 168-169°. Leicht löslich in Benzol, ziemlich in Alkohol, ziemlich schwer in Äther und Ligroin. — FeCl₃ ruft in der wäßr. Lösung eine rotviolette Färbung hervor, die auf Zusatz von konz. Salzsäure in Orange übergeht, während sich allmählich 2-Anilino-5.6.7.8-tetrahydro-naphthochinon-(1.4)

(Syst. No. 1874) abscheidet. Salicylalderivat $C_{25}H_{26}O_2N_2 = (HO \cdot C_6H_4 \cdot CH : N)$ $(C_6H_5 \cdot NH)C_{10}H_9 \cdot O \cdot C_2H_5$ oder vielleicht nebenstehende Formel. Zur Konstitution vgl. Jacobson, B. 36, 3869 Anm. — B. Durch 4-stdg. Kochen von 4-Amino-N H_2C CH_2 N H_3C CH_4 N H_4C CH_4 N H_4C CH_4 HSalicylaidehyd in alkoh. Lösung (JACOBSON, TURNBULL, B. 31, 903). — Gelbe, schräg abgestumpfte Stäbchen. F: 130—131°. Sehr leicht löslich in Benzol, leicht in Ather, ziemlich leicht in kaltem Alkohol und Ligroin.

(Syst. No. 1874) abscheidet.

2. Aminoderivate des 2-Oxy-naphthalin-tetrahydrids-(1.2.3.4) $C_{10}H_{12}O=$ $C_{10}H_{11} \cdot OH$ (Bd. VI, S. 579).

3-Amino-2-oxy-naphthalin-tetrahydrid-(1.2.3.4), 3-Amino-1.2.3.4-tetrahydro-naphthol-(2) $C_{10}H_{13}ON = C_{0}H_{4} CH_{2} CH \cdot OH$ Phthalylderivates $C_{0}H_{4} < \frac{CO}{CO} > N \cdot C_{10}H_{10} \cdot OH$ (Syst. No. 3210) mit rauchender Salzsäure

(BAMBERGER, LODTEB, DEICKE, A. 288, 132; vgl. B. 26, 1838). — Öl. Flüchtig mit Wasserdämpfen. Ziemlich leicht löslich in Wasser. — $C_{10}H_{18}ON + HCl$. Nadeln (aus Alkohol + Äther).

F: 265°. Leicht löslich in Wasser. — 2C₁₀H₁₃ON + 2HCl + PtCl₄. Rotgelbe Prismen. Leicht löslich in heißem Wasser und heißem Alkohol.

3-Dimethylamino-1.2.3.4-tetrahydro-naphthol-(2) $C_{12}H_{17}ON = (CH_{3})_2N \cdot C_{10}H_{10} \cdot OH$. Durch 10-stdg. Erhitzen von 3-Chlor-1.2.3.4-tetrahydro-naphthol-(2) (Bd. VI, S. 580) mit 1 Tl. 21% iger wäßr. Dimethylaminlösung im geschlossenen Rohr auf 130—140% (B., L., D., A. 288, 117; vgl. B. 28, 1837). — Unangenehm basisch riechendes Öl. Kp₂₇: 183%. Schwer löslich in Wasser, leicht in organischen Mitteln. — Färbt sich an der Luft rasch benwer löslich in Wasser, leicht in organischen Mitteln. — Färbt sich an der Luft rasch gelb. — $C_{12}H_{17}ON+HCl$. Nadeln mit 1 Mol. Alkohol (aus Alkohol mit Ather); wird über H_2SO_4 in Vakuum alkoholfrei. F: 180—181°. Leicht löslich in Wasser und Alkohol. Schmeckt widerlich bitter. — Pikrat $C_{12}H_{17}ON+C_6H_3O_7N_3$. Flache Nadeln (aus Wasser). F: 182°. Schwer löslich in kaltem Wasser. — $C_{12}H_{17}ON+HCl+AuCl_3$. Gelbe Nadeln. Schmilzt unschaff zu roter Flüssigkeit. Schwer löslich in heißem Wasser. — 2 $C_{12}H_{17}ON+2HCl+PtCl_4$. Orangerote Blättchen. Ziemlich schwer löslich in kaltem, leichter in heißem Wasser.

[3-Dimethylamino-1.2.3.4-tetrahydro-naphthyl-(2)]-benzoat $C_{19}H_{21}O_2N = (CH_3)_2N \cdot CH_{31}O_3N = (CH_3)_2N \cdot CH_{3$ $C_{10}H_{10} \cdot O \cdot CO \cdot C_0H_5$. B. Aus der Base mit 2 Mol.-Gew. Benzoylchlorid (B., L., D., A. 288, 119). — Öl. — $C_{10}H_{21}O_2N + HCl$. Nadeln (aus Alkohol). In Wasser etwas leichter löslich als in Alkohol. Schmeckt intensiv bitter, ist stark giftig.

Trimethyl - [3 - oxy - 1.2.3.4 - tetrahydro - naphthyl - (2)] - ammoniumhydroxyd $C_{13}H_{21}O_2N=(CH_3)_3N(OH)\cdot C_{10}H_{10}\cdot OH.$ B. Das Chlorid wurde erhalten bei 3—4-stdg. Erhitzen von 1 Tl. 3-Chlor-1.2.3.4-tetrahydro-naphthol-(2) (Bd. VI, S. 580) mit 1 Tl. 33% jeer wäßr. Trimethylaminlösung im geschlossenen Rohr auf 1200 (BAMBERGER, LODTER, DEICKE, A. 288, 124), das Jodid wurde erhalten aus 3-Dimethylamino-1.2.3.4-tetrahydro-naphthol-(2) und Methyljodid (B., L., D., A. 288, 119); durch Behandeln des Chlorids mit Ag₂O erhält man die freie Base (B., L., D., A. 288, 127). — Schwierig krystallisierender (Nadeln), zerfließlicher Sirup. Äußerst leicht löslich in Wasser und Alkohol (B., L., D., B. 26, 1838). — Chlorid C₁₃H₂₀ON·Cl. Krystalle (aus Alkohol). Monoklin prismatisch (HAUSHOFER, A. 288, 125; vgl. Groth, Ch. Kr. 5, 388). F: 243° (Zers.); sehr leicht löslich in Wasser, viel schwerer in Alkohol; verhält sich gegen Alkaloidreagenzien ähnlich wie Cholin (vgl. Bd. IV, S. 280) (B., L., D., A. 288, 125). Zeigt curareartige Wirkung (FILEHNE, A. 288, 126). — Jodid C₁₃H₂₀ON·I. Prismen (aus Wasser). F: 201°; schwer löslich in kaltem Wasser; schmeckt widerlich bitter (B., L., D., A. 288, 119). — Pikrat C₁₃H₂₀ON·O·C₆H₂O₆N₃. Flache Nadeln mit 1 H₂O (aus Wasser); F: 161—162° (wasserfrei); leicht löslich in heißem Wasser (B., L., D., A. 288, 127). — Chloroaurat C₁₃H₂₀ON·Cl+AuCl₃. Goldgelbe Blättchen oder Nadeln (aus Wasser). F: 152—154°; leicht löslich in heißem, sehr wenig in kaltem Wasser (B., L., D., A. 288, 427). — Chloroaurat C₁₃H₂₀ON·Cl+PuCl₃. Goldgelbe Blättchen oder Nadeln (aus Wasser). F: 152—154°; leicht löslich in heißem, sehr wenig in kaltem Wasser (B., L., D., A. 288, 427). A. 288, 127). — Chloroplatinat $2C_{18}H_{20}ON \cdot Cl + PtCl_4$. Orange Nadeln. F: 222—223,5°; schwer löslich in kaltem Wasser (B., L., D., A. 288, 127).

3-Diäthylamino-1.2.3.4-tetrahydro-naphthol-(2) $C_{14}H_{31}ON = (C_2H_5)_2N \cdot C_{10}H_{10} \cdot OH$. B. Durch 10-stdg. Erhitzen von 3-Chlor-1.2.3.4-tetrahydro-naphthol-(2) (Bd. VI, S. 580) mit 33°/oiger wäßr. Diäthylaminlösung im geschlossenen Rohr auf 130—140° (B., L., D., A. 288, 120; vgl. B. 26, 1837). — Fischig riechendes Öl. Kp₃₈: 202°. Flüchtig mit Wasserdampf. Schwer löslich in Wasser, leicht in organischen Mitteln. — $C_{14}H_{10}ON + HCl$. Prismen. F: 167—170°. Leicht löslich in Wasser und Alkohol. Schmeckt bitter. — Pikrat C14H21ON +C₆H₃O₇N₃. Nadeln (aus Wasser). F: 170,5—171°. Schwer löslich in Wasser. — C₁₄H₂₁ON +HCl+AuCl₃. Gelbe Blättchen und Nadeln. — 2C₁₄H₂₁ON+2HCl+PtCl₄. Orangerote Knollen. Schwer löslich in heißem Wasser.

[3-Diäthylamino-1.2.3.4-tetrahydro-naphthyl-(2)]-bensoat $C_{21}H_{25}O_2N = (C_2H_5)_2N$. $C_{10}H_{10} \cdot O \cdot CO \cdot C_0H_5$. B. Aus der Base mit 2 Mol.-Gew. Benzoylchlorid (B., L., D., A. 288, 122). — Pikrat $C_{21}H_{25}O_3N + C_0H_3O_7N_3$ (bei 105°). Kanariengelbe Nädelchen (aus Wasser), Krystalle (aus benzolhaltigem Aceton). — 2C₂₁H₂₅O₂N+2HCl+PtCl₄. Rotgelbe Nadeln (aus Alkohol).

Methyl - diäthyl - [3 - oxy - 1.2.3.4 - tetrahydro - naphthyl - (2)] - ammoniumjodid $C_{16}H_{24}ONI = (C_2H_6)_2(CH_3)NI \cdot C_{10}H_{10} \cdot OH$. B. Aus 3-Diäthylamino-1.2.3.4-tetrahydro-naphthol-(2) und Methyljodid (B., L., D., A. 288, 122). — Blättchen (aus Alkohol). F: 151,5°. Ziemlich leicht löslich in Wasser und heißem Alkohol.

Bis-[8-oxy-l.2.3.4-tetrahydro-maphthyl-(2)]-amin C₁₀H₁₂O₂N = HN(C₁₀H₁₀·OH)₂.

B. Durch 10-stdg. Erhitzen von 3-Chlor-1.2.3.4-tetrahydro-naphthol-(2) (Bd. VI, 8. 580) mit konzentriertem wäßrigem Ammoniak im geschlossenen Rohr auf 120—125° (B., L., D., A. 288, 129; vgl. B. 26, 1838). — Nadeln (aus Alkohol). F: 165—166°. Flüchtig mit Wasserdämpfen. Leicht löslich in Aceton, Benzol und Chloroform, sehr wenig in Ligroin. — C₂₀H₂₂O₂N + HCl. Nadeln (aus Alkohol mit Äther). Schwer löslich in warmem Wasser. — 2C₂₀H₂₂O₂N + 2HCl + PtCl₄. Hellorangefarbige Nadeln. F: 235° (nach Schwärzung). Sehr wenig löslich in kaltem, leichter in heißem Wasser.

N.N'-Bis-[3-oxy-1.2.3.4-tetrahydro-naphthyl-(2)]-äthylendiamin $C_{22}H_{28}O_2N_2 =$ $\text{HO} \cdot \text{C}_{10}\text{H}_{10} \cdot \text{NH} \cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{NH} \cdot \text{C}_{10}\text{H}_{10} \cdot \text{OH}$. B. Durch ca. 10-stdg. Erhitzen von 3-Chlor-1.2.3.4-tetrahydro-naphthol-(2) mit wäßr. Athylendiamin im geschlossenen Rohr auf 120° (B., L., D., A. 288, 128; vgl. B. 26, 1838). — Nadelbüschel (aus Alkohol). F: 201°. Leicht löslich in kochendem Alkohol, schwer in Äther, fast unlöslich in Wasser. — Pikrat C₂₂H₂₈O₂N₂ +2C₆H₃O₇N₃ (bei 120°). Gelbes Krystallpulver (aus Wasser). Sehr wenig löslich in kaltem, etwas leichter in siedendem Wasser.

3. Aminoderivat des Cyclohexyl-phenyl-carbinols $C_{13}H_{18}O = C_6H_{11}$. $CH(OH) \cdot C_5H_5$ (Bd. VI, S. 584).

Cyclohexyl-[4-dimethylamino-phenyl]-carbinol $C_{15}H_{23}ON = C_6H_{11}\cdot CH(OH)\cdot C_6H_4\cdot N(CH_3)_2$. B. Aus 4-Dimethylamino-benzaldehyd (Syst. No. 1873) durch Einw. von Cyclohexylmagnesiumbromid in Äther; man zersetzt das Reaktionsprodukt mit verd. Salzsäure (Schmidlin, v. Escher, B. 41, 449). — Krystalle (aus Petroläther). F: 86—87° (korr.). Sehr leicht löslich in Benzol, Äther, Chloroform, ziemlich leicht in warmem Petroläther und

- 4. Aminoderivat des 1-Methyl-4-methoäthyl-2-benzyl-cyclohexanols-(3) [2-Benzyl-p-menthanols-(3)] $C_{12}H_{24}O = C_6H_5 \cdot CH_2 \cdot C_6H_8(CH_3)[CH(CH_3)_2] \cdot OH$ (Bd. VI, S. 585).
- 2-[a-Amino-benzyl]-p-menthanol-(3), 2-[a-Amino-benzyl]-menthol $C_{17}H_{27}ON = CH_3 \cdot HC < \frac{CH[CH(NH_2) \cdot C_6H_5] \cdot CH(OH)}{CH_2} > CH \cdot CH(CH_3)_2.$ a) Präparat von Semmler. B. Aus dem durch Einw. von Hydroxylamin auf aktives öliges 2-Benzal-menthon (Bd. VII, S. 397) erhaltenen Hydroxylamin benzylmenthon (Syst. No. 1978) and No. 1978 an
- 1938) mit Natrium und Alkohol (S., B. 37, 235). Flüssigkeit. Kp₁₅: 202—206°. D²⁰: 1,013. n_D²⁰: 1,5255.
- b) Präparat von Martine. B. Aus dem durch Einw. von Hydroxylamin auf inaktives öliges 2-Benzal-menthon (Bd. VII, S. 397) erhaltenen Hydroxylaminobenzylmenthon (Syst. No. 1938) mit Natrium und Alkohol (M., A. ch. [8] 3, 77; vgl. Wallach, A. 305, 265). — Kp₁₅: 205-208° (M.).
 - f) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-12} O$.
- 1. Aminoderivate der Monooxy-Verbindungen $C_{10}H_8O$.
 - 1. Aminoderivate des 1-Oxy-naphthalins $C_{10}H_8O = C_{10}H_7 \cdot OH$ (Bd. VI, S. 596).

Monoaminoderivate des 1-Oxy-naphthalins.

2-Amino-1-oxy-naphthalin, 2-Amino-naphthol-(1) $C_{10}H_9ON$, s. nebenstehende Formel. B. Bei der Reduktion von 2-Nitro-naphthol-(1) (Bd. VI, S. 615) mit Zinn und Salzsäure (LIEBERMANN, DITTLER, B. 7, 243; ·NH2 A. 183, 248). Bei der Reduktion von 2-Nitroso-naphthol-(1) [Naphthochinon-(1.2)-oxim-(2), Bd. VII, S. 715] in salzsaurer Suspension mit salzsaurer Zinnehlorürlösung unter Kühlung (Liebermann, Jacobson, A. 211, 55; Grandmougin, Michel, B. 25, 974; REVERDIN, DE LA HARPE, B. 26, 1281). Bei der Reduktion von 2-Nitroso-naphthol-(1) mit Phenylhydrazin in Benzol (Plancher, G. 25 II, 393). Bei allmählichem Eintragen von überschüssigem 4% jegem Natriumamalgam unter Durchleiten von Schwefeldioxyd, in die Lösung von 2-Amino-naphthol-(1)-sulfonsäure-(5) (Syst. No. 1926) in Natriumsulfitlösung (Gattermann, Schultze, B. 30, 51). Bei der Reduktion von 2-Benzolazo-naphthol-(1) (Syst. No. 2119) mit Zinnchlorür (ZINCKE, RATHGEN, B. 19, 248; vgl. auch Gr., MI., B. 25, No. 2149) with schwyfeldioxydhaltigam Wasser (Ga 975). — Nadeln (aus schwefeldioxydhaltigem Wasser). Schwer löslich in kaltem Wasser (GA., Sch.). — Beim Behandeln des salzsauren Salzes mit Oxydationsmitteln (Eisenchlorid, Chromsäure) entsteht Di-β-naphthochinon (Bd. VII, S. 901) (Z., RA.). Schüttelt man die ammoniakalische Lösung von 2-Amino-naphthol-(1) mit Luft, so färbt sie sich grün und scheidet auf der Oberfläche violette, metallglänzende Häute einer Ver bind ung $[C_{10}H_2ON]_x^{-1}$) aus, die sich

1) AUWBRS (Fortschritte der Chemie, Physik und physik. Chemie 18 [1924], Heft 2, S. 15, 45) faßt diese Verbindung als dimeres Naphtochinonimid der nebenstehenden Formel auf.

in Alkohol mit violetter Farbe löst und sich aus der Lösung als dunkelviolettes, sammetartiges Pulver abscheidet (L., J.). Beim Versetzen einer eiskalten salzsauren Lösung von 2-Amino-naphthol-(1) mit Chlorkalklösung entsteht Naphthochinon -(1.2) -chlorimid -(2) (Bd. VII, S. 712) (FRIEDLÄNDER, REINHABDT, B. 27, 241). Bei der Einw. von Natriumnitrit auf salzsaures 2-Amino-naphthol-(1) in wäßr. Lösung bei Gegenwart von Kupfersulfat erhält man 2-Diazonaphthol-(1) C₁₀H₄ON₄ (Syst. No. 2199) (GEIGY, D. R. P. 172446; C. 1906 II, 477). Sulfurierung des 2-Amino-naphthols-(1): Rev., de La H., B. 26, 1281; Kern & Sandoz, D. R. P. 69228; Frdl. 3, 1000. Überführung von Sulfonsäuren des 2-Amino-naphthols-(1) in violettschwarze Farbstoffe durch Einw. von Luft auf ihre alkal. Lösungen: Rev., de La H., B. 25, 1400; 26, 1280; D. R. P. 63043; Frdl. 3, 999; K. & Sa., D. R. P. 69228. Über blaue Oxazinfarbstoffe aus 2-Amino-naphthol-(1) bezw. dessen Sulfonsäuren und 6-Nitroso-3-dialkylamino-phenol: BAYER & Co., D. R. P. 77120, 80744; Frdl. 3, 395; 4, 485. — C₁₀H₉ON + HCl. Blättchen (aus Wasser durch Salzsäure) (L., D.). — Pikrat C₁₀H₉ON + C₆H₃O₇N₃. Gelbes schwer lösliches Krystallpulver (L., D.).

- 2-Amino-naphthol-(1)-methyläther $C_{11}H_{11}ON = H_2N \cdot C_{10}H_6 \cdot O \cdot CH_3$. B. Bei der Reduktion des 2-Benzolazo-naphthol-(1)-methyläthers (Syst. No. 2119) in alkoh. Lösung mit Zinnchlorür und Salzsäure (Noelting, Grandmougin, Freimann, B. 42, 1383). Blättehen. F: 48—49°. Leicht flüchtig. Schwer löslich in warmem Wasser, leicht in organischen Lösungsmitteln mit blauer Fluorescenz. Löslich in Säuren.
- **2-Amino-naphthol-(1)-äthyläther** $C_{12}H_{13}ON = H_2N \cdot C_{10}H_5 \cdot O \cdot C_2H_5$. B. Bei der Reduktion des 2-Benzolazo-naphthol-(1)-äthyläthers (Syst. No. 2119) in Alkohol mit Zinnchlorür und Salzsäure (N., G., F., B. **42**, 1385). Blättchen. F: 48—49°. Löslich in Säuren.
- Benzolsulfonsäure [2 amino naphthyl (1)] ester $C_{16}H_{15}O_3NS = H_2N \cdot C_{10}H_6 \cdot O \cdot SO_2 \cdot C_6H_5$. B. Aus 2-Amino-naphthol-(1) und Benzolsulfochlorid in schwach alkal. Lösung (Georgesco, Bulet. 8, 680; C. 1900 I, 544). Prismen (aus verd. Alkohol). F: 118—119°
- 2-[4-Nitro-benzalamino]-naphthol-(1) $C_{17}H_{12}O_3N_3=O_2N\cdot C_6H_4\cdot CH:N\cdot C_{10}H_6\cdot OH.$ B. Aus 4-Nitro-benzaldehyd und 2-Amino-naphthol-(1) (Möhlau, B. 31, 2259). Rotorange, verfilzte Nadeln (aus Alkohol). F: 187°. Fast unlöslich in kalter verdünnter Natronlauge. Die alkoh. Lösung wird durch Natronlauge blauviolett gefärbt. Konz. Schwefelsäure löst mit bräunlich roter Farbe.
- **2-Acetamino-naphthol-(1)** $C_{12}H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH.$ B. Aus [2-Acetamino-naphthyl-(1)]-acetat (s. u.) durch partielle Verseifung (Grandmough, B. 39, 2496). Durch Reduktion von [2-Nitro-naphthyl-(1)]-acetat (Bd. VI, S. 615) (unter Wanderung der Acetylgruppe) (G.). Nadeln (aus verd. Alkohol oder Ligroin). F: 128—129° (G.), 129,5—130° (Auwers, Eckardt, A. 359, 381; vgl. A. 364, 352). Leicht löslich in Alkohol, Äther, schwer in kaltem Ligroin, löslich in Alkalien, unlöslich in Säuren (G.).
- 2-Acetamino-naphthol-(1)-methyläther $C_{19}H_{13}O_{2}N = CH_{3} \cdot CO \cdot NH \cdot C_{10}H_{6} \cdot O \cdot CH_{3}$. B. Aus 2-Amino-naphthol-(1)-methyläther durch Kochen mit Essigsäureanhydrid (NOELITING, GRANDMOUGIN, FREIMANN, B. 42, 1384). Krystalle (aus verd. Alkohol). F: 132°.
- **2-Acetamino-naphthol-(1)-äthyläther** $C_{14}H_{15}O_2N = CH_3 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot O \cdot C_2H_5 \cdot B$. Aus 2-Amino-naphthol-(1)-äthyläther mit Essigsäureanhydrid (N., G., F., B. 42, 1385). F: 148—149°.
- [2-Acetamino-naphthyl-(1)]-acetat, O.N-Diacetyl-[2-amino-naphthol-(1)] C₁₄H₁₃O₃N = CH₃·CO·NH·C₁₀H₆·O·CO·CH₃. B. Beim Kochen von salzsaurem 2-Amino-naphthol-(1) mit Essigsäureanhydrid und Natriumacetat (Grandmougin, B. 39, 2496).

 Nadeln (aus verd. Alkohol oder Ligroin). F: 116° (G.), 117,5° (Auwers, Eckard, A. 359, 381; vgl. A. 364, 352). Leicht löslich in Benzol und heißem Alkohol; unlöslich in Säuren und Alkalien (G.).
- [2-Acetamino-naphthyl-(1)]-beneoat, N-Acetyl-Q-beneoyl-[2-amino-naphthol-(1)] $C_{19}H_{15}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus 2-Acetamino-naphthol-(1) mit Benzoylchlorid und Natronlauge (Auwers, Eckardt, A. 359, 381). Farblose Nadeln (aus Methylalkohol oder Benzol). F: 185°.
- 2-Bensamino-naphthol-(1) $C_{17}H_{19}O_2N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH$. B. Beim Eintragen von Zinkstaub in eine siedende Lösung von [2-Benzolazo-naphthyl-(1)]-benzoat (Syst. No. 2119) in Eisessig (Au., E., A. 359, 378). Aus [2-Benzamino-naphthyl-(1)]-benzoat mit Natronlauge (Au., E., A. 359, 382). Blättchen (aus Eisessig). F: 191°.
 - [3-Bensamino-naphthyl-(1)]-bensoat, O.N-Dibensoyl-[2-amino-naphthol-(1)] $C_{34}H_{17}O_3N=C_4H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Aus 2-Amino-naphthol-(1) beim Erwärmen mit überschüssigem Bensoylchlorid im Wasserbad (Au., E., A. 359, 381). Nadeln (aus Alkohol). F: 180—180,5°. Leicht löslich in Bensol und Eisessig, schwer in Alkohol. Liefert bei der partiellen Verseifung mit Natronlauge 2-Bensamino-naphthol-(1).

4 (?) - Nitro-2 (?)-amino-naphthol-(1) $C_{10}H_8O_2N_2=H_2N\cdot C_{10}H_5(NO_2)\cdot OH$. B. Beim Behandeln von 2.4-Dinitro-naphthol-(1) (Bd. VI, S. 617) mit Schwefelammonium (EBELL, B. **8**, 564). — Gelbliche Nadeln. F: 130°. Unlöslich in Wasser, löslich in Alkohol.

N-Benzoylderivat $C_{17}H_{12}O_4N_2=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_5(NO_2)\cdot OH$. B. Durch Benzoylierung des 4(?)-Nitro-2(?)-amino-naphthols-(1) (s. o.) (EBELL, B. 8, 564). — Rote Nadeln (aus Alkohol).

Bis - [2 - amino - naphthyl - (1)] - disulfid $C_{20}H_{16}N_2S_2 = [H_2N \cdot C_{10}H_6 \cdot S -]_2$. B. Man erhitzt 1g des Naphthothiazolons der nebenstehenden Formel (Syst. No. 4281) mit 3 g Kaliumhydroxyd und 3 cem Alkohol 3—4 Stunden lang auf 180° und leitet darauf durch die wäßr. Lösung des Rohrinhaltes Luft (JACOBSON, KLEIN, B. 26, 2367). — Gelbe Flocken. Leicht löslich in Alkohol. — $C_{20}H_{16}N_2S_2 + HCl$. Dunkelgelbe Nadeln.

4-Amino-1-oxy-naphthalin, 4-Amino-naphthol-(1) C₁₀H₂ON, s. neben- \mathbf{OH} stehende Formel. B. Aus 4-Nitroso-naphthol-(1) [Naphthochinon-(1.4)-monoxim; Bd. VII, S. 727] bei der Reduktion mit Zinnchlorur und Salzsäure (GRANDmough, Michel, B. 25, 976). Aus 4-Nitroso-naphthol-(1) durch Reduktion mit Phenylhydrazin in Benzol (Plancher, G. 25 II, 393). Bei der Reduktion von 4-Nitro-naphthol-(1) (Bd. VI, S. 615) mit Zinn und Salzsäure (Liebermann, NH₂ Dittler, B. 7, 243; A. 183, 247). Aus 4-Amino-1-oxy-naphthoesäure-(2) (Syst. No. 1911) durch Erhitzen im Chlorwasserstoffstrom auf 230° (Nietzki, Guiterman, B. 20, 1276). Bei anhaltender Einw. von Natriumamalgam auf 4-Amino-naphthol-(1)-disulfonsäure-(2.5) (Syst. No. 1926) in der Wärme (FRIEDLÄNDER, B. 28, 1536). Bei der Reduktion von 4-[4-Sulfo-benzolazo]-naphthol-(1) HO₃S·C₆H₄·N:N·C₁₀H₆·OH (Syst. No. 2152) mit Zinn-chlorür und Salzsäure (Liebermann, Jacobson, A. 211, 61; Seidel, B. 25, 423; Russig, J. pr. [2] 62, 31). — Nadeln. Färbt sich in feuchtem Zustande bald blau (S., B. 25, 424). Bei der Oxydation von salzsaurem 4-Amino-naphthol-(1) mit Alkalidichromat in verd. Schwefelsäure (L., D., A. 183, 248; L., B. 14, 1796; ZINCKE, WIEGAND, A. 286, 70; Ru., J. pr. [2] 62, 31) oder mit Eisenchloridlösung (L., D., B. 7, 243; A. 183, 248; Z., W., A. 286, 70) entsteht a-Naphthochinon (Bd. VII, S. 724). Auch durch Einleiten von salpetriger Säure in die salpetersaure Suspension von salzsaurem 4-Amino-naphthol-(1) und Verkochen der mit Wasser verdünnten Lösung (L., D., B. 7, 243; A. 183, 248) oder durch Einw. von Nitrit auf die saure Lösung von 4-Amino-naphthol-(1) (Gr., MI., B. 25, 977) erhält man a-Naphthochinon. Beim Schütteln der ammoniakalischen Lösung des 4-Amino-naphthols-(1) mit Luft entsteht eine schmutziggrüne, bald in Gelb übergehende Färbung (L., D., A. 183, 249). Beim Versetzen der mit Salzsaure angesäuerten Lösung von salzsaurem 4-Amino-naphthol-(1) bei 0° mit Chlorkalklösung entsteht Naphthochinon-(1.4)-monochlorimid (Bd. VII, S. 726) (FRIEDLÄNDER, REINHARDT, B. 27, 239; vgl. Hirsch, B. 13, 1910). Beim Verreiben des salzsauren Salzes mit 10°/0 iger rauchender Schwefelsäure wird 4-Amino-naphthol-(1)-sulfonsäure-(2) (Syst. No. 1926) gebildet (S., B. 25, 424). Überführung des 4-Amino-naphthols-(1) in Schwefelfarbstoffe durch Erhitzen mit Schwefel und Schwefelalkali: Soc. St. Denis, VIDAL, D. R. P. 90369; Frdl. 4, 1051. — $C_{10}H_9ON + HCl$. Nadeln. Sehr leicht löslich in Wasser (L., D.,

4-Amino-naphthol-(1)-äthyläther C₁₂H₁₃ON = H₂N·C₁₀H₆·O·C₂H₆. B. Aus 4-Nitronaphthol-(1)-āthylāther (Bd. VI, S. 616) mit Zinn und Salzsäure (Grandmougin, Michel, B. 25, 379) oder mit Eisenfeile und wenig Salzsäure (Heermann, J. pr. [2] 45, 545). Bei der Reduktion von 4-Benzolazo-naphthol-(1)-äthyläther (Syst. No. 2119) in Alkohol mit salzsaurer Zinnchlorürlösung, neben 4-Amino-3-anilino-naphthol-(1)-äthyläther (S. 675) (Witt, Schmidt, B. 25, 1013; Witt, v. Helmolt, B. 27, 2351; vgl. auch Jacobson, Turnbull, B. 31, 895). — Nādelchen (aus verd. Alkohol). F: 96°; leicht löslich in den üblichen organischen Lösungsmitteln, etwas löslich in Wasser (Hee.). — Eisenchlorid erzeugt einen indigoblauen Niederschlag (Henelques, B. 25, 3059). Bei der Einw. von verdünnter Salpetersäure (20° Bé) auf das salzsaure Salz des 4-Amino-naphthol-(1)-äthyläthers bei Zimmertemperatur entstehen α-Naphthochinon und eine Base, die mit Eisenchlorid, Quecksilberchlorid und Chromsäure gut krystallisierende Salze liefert (Hen.). Beim Versetzen der alkoholischessigsauren Lösung von salzsaurem 4-Amino-naphthol-(1)-äthyläther und Natriumacetat mit wäßr. Natriumnitritlösung erhält man 4.4′-Diäthoxy-1′-amino-[1.2′-azonaphthalin] (Syst. No. 2185) (Hen.). — Das salzsaure Salz krystallisiert in Nadeln, die sich bei ca. 275° zersetzen; sublimiert unzersetzt; sehr wenig löslich in den meisten Lösungsmitteln, am leichtesten in heißem Alkohol und Wasser (Hee.). — Das Sulfat krystallisiert in Prismen vom Schmelzpunkt ca. 240° (Hee.).

4-[8.5-Dibrom-4-oxy-anilino]-naphthol-(1) $C_{16}H_{11}O_{5}NBr_{2} = HO \cdot C_{6}H_{2}Br_{2} \cdot NH \cdot C_{16}H_{6} \cdot OH$. B. Bei der Reduktion von 2.6-Dibrom-benzochinon-(1.4)-[4-oxy-naphthyl-(1)-imid]-(4)

- bezw. Naphthochinon-(1.4)-mono-[3.5-dibrom-4-oxy-phenyl-imid] (Bd. VII, S. 641, Zeile 1 v. o.; VIII, S. 615) in heißem verd. Alkohol mit Traubenzucker und verd. Natronlauge; man zerlegt das entstandene Natriumsalz durch Einleiten von Schwefeldioxyd in dessen siedende Lösung (Möhlau, Uhlmann, A. 289, 108). Blättchen oder Nadeln. Zersetzt sich gegen 152°, ohne zu schmelzen. Leicht löslich in Alkohol und Äther.
- 4-Bensalamino-naphthol-(1) C₁₇H₁₈ON = C₆H₅·CH:N·C₁₀H₆·OH. B. Man löst 4 g salzsaures 4-Amino-naphthol-(1) in 50 ccm Wasser, fügt eine konz. Lösung von 3 g Natriumacetat hinzu und schüttelt die ausgefällte Base mit einer Lösung von 2,2 g Benzaldehyd in wenig Ligroin (Möhlau, Adam, Ztschr. f. Farbenindustrie 5, 403; C. 1907 I, 107). Gelbe Nadeln (aus Chloroform + Petroläther). F: 137°. In konz. Schwefelsäure hellgelb löslich.
- 4-[2-Nitro-bensalamino]-naphthol-(1) $C_{17}H_{12}O_3N_8=O_2N\cdot C_6H_4\cdot CH:N\cdot C_{10}H_6\cdot OH.$ B. Aus einer Lösung von 2-Nitro-benzaldehyd in Toluol und einer durch Fällen der wäßr. Lösung von salzsaurem 4-Amino-naphthol-(1) mit Natriumacetat erhaltenen Suspension des 4-Amino-naphthols-(1) in der Kälte (M., A., Zischr. f. Farbenindustrie 5, 405; C. 1907 I, 108). Gelbe Nadeln (aus Chloroform). F: 148°. In konz. Schwefelsäure rotorange löslich.
- 4-[3-Nitro-bensalamino]-naphthol-(1) $C_{17}H_{12}O_3N_8 = O_2N \cdot C_6H_4 \cdot CH : N \cdot C_{10}H_6 \cdot OH$. B. Man läßt in eine mit Natriumacetat versetzte wäßrige Lösung von salzsaurem 4-Aminonaphthol-(1) eine Lösung von 3-Nitro-benzaldehyd in Ligroin oder Toluol einlaufen (M., A., Ztschr. f. Farbenindustrie 5, 406; C. 1907 I, 108). Krystalle (aus Xylol + Toluol). F: 184°. In konz. Schwefelsäure hellorange löslich.
- 4-[4-Nitro-benzalamino]-naphthol-(1) $C_{17}H_{12}O_3N_2 = O_2N\cdot C_6H_4\cdot CH:N\cdot C_{10}H_6\cdot OH.$ B. Man läßt in die heiße alkoholische Lösung von 4-Nitro-benzaldehyd und Natriumacetat eine heiße wäßrige Lösung von salzsaurem 4-Amino-naphthol-(1) einlaufen (Möhlau, B. 31, 2258). Scharlachrote, goldglänzende Blättchen (aus Alkohol). F: 171° (M.). Absorptionsspektrum: Pope, Soc. 93, 537. In verdünntem Alkali mit kirschroter Farbe leicht löslich (M.). Natronlauge färbt die alkoholische Lösung tief violett (M.). Die Lösung in konz. Schwefelsäure ist rot (M., Adam, Zischr. f. Farbenindustrie 5, 408; C. 1907 I, 108); auf Zusatz von Wasser entfärbt sie sich (M.).
- 4-[2.4-Dinitro-benzalamino]-naphthol-(1) $C_{17}H_{11}O_5N_3=(O_2N)_2C_6H_3\cdot CH:N\cdot C_{10}H_6\cdot OH.$ B. Aus 2.4-Dinitro-benzaldehyd und 4-Amino-naphthol-(1) in Essigsäure (Sachs, Brunetti, B. 40, 3233). Rotbraune Nadeln (aus Eisessig). F: 216° (Zers.). Löslich in warmem Eisessig (1:45), Aceton, weniger löslich in Alkoholen, sehr wenig in Benzol, Äther, Petroläther; löslich in alkoh. Alkalien mit tiefblauer Farbe.
- [4-(2.4-Dinitro-benzalamino)-naphthyl-(1)]-acetat $C_{19}H_{13}O_6N_3 = (O_2N)_2C_6H_3 \cdot CH:N \cdot C_{10}H_4 \cdot O \cdot CO \cdot CH_3$. B. Aus 4-[2.4-Dinitro-benzalamino]-naphthol-(1) durch Kochen mit Essigsäureanhydrid und Natriumacetat (S., B., B. 40, 3233). Gelbe sechsseitige Prismen (aus Essigester). F: 210°. Leicht löslich in Eisessig und warmem Chloroform, schwerer in Alkohol, Benzol, Äther, Petroläther.
- 4-Cinnamalamino-naphthol-(1) C₁₉H₁₅ON = C₆H₅·CH:CH:CH:N·C₁₀H₆·OH. B. Man löst 4 g salzsaures 4-Amino-naphthol-(1) in 50 ccm Wasser, fällt mit einer konz. Lösung von 3 g Natriumacetat und schüttelt dann mit einer Lösung von 2,6 g Zimtaldehyd in wenig Ligroin (Möhlau, Adam, Zischr. f. Farbenindustrie 5, 404; C. 1907 I, 107). Gelbe Nadeln (aus Aceton). F: 187°. Leicht löslich. In konz. Schwefelsäure orange löslich. Zersetzt sich leicht.
- 4-[2-Nitro-cinnamalamino]-naphthol-(1) $C_{10}H_{14}O_3N_2 = O_4N \cdot C_6H_4 \cdot CH : CH \cdot CH : N \cdot C_{10}H_4 \cdot OH$. B. Beim Verrühren der mit Natriumscetat gefällten wäßr. Lösung von salzsaurem 4-Amino-naphthol-(1) mit einer Lösung von 2-Nitro-zimtaldehyd in Toluol + Ligroin (M., A., Ztschr. f. Farbenindustrie 5, 405; C. 1907 I, 108). Braungelbe Tafeln (aus Aceton + Ligroin). F: 173°. Leicht löslich. In konz. Schwefelsäure dunkelorange löslich.
- 4-[3-Nitro-cinnamalamino]-naphthol-(1) $C_{19}H_{14}O_9N_8 = O_9N \cdot C_9H_4 \cdot CH : CH \cdot CH : N \cdot C_{10}H_6 \cdot OH$. B. Beim Schütteln der mit Natriumacetat gefällten wäßr. Lösung von salzsaurem 4-Amino-naphthol-(1) mit einer Lösung von 3-Nitro-zimtaldehyd in Toluol + Ligroin (M., A., Ztschr. f. Farbenindustrie 5, 407; C. 1907 I, 108). Gelbe Rhomben (aus Alkohol + Xylol). F: 204°. Schwer löslich in Aceton, Essigester, Ligroin. In konz. Schwefelsäure orange löslich.
- 4-[4-Nitro-cinnamalamino]-naphthol-(1) C₁₀H₁₄O₃N₂ = O₃N·C₆H₄·CH·CH·CH·N·C₁₀H₆·OH. B. Beim Versetzen der heißen alkoholischen Lösung von 4-Nitro-zimtaldehyd und Natriumacetat mit der heißen wäßrigen Lösung von salzsaurem 4-Amino-naphthol-(1) (M., A., Zischr. f. Farbenindustrie 5, 409; C. 1907 I, 108). Rote Nadeln (aus Eisessig oder Chloroform). F: 210°. Schwer löslich in Ligroin, Äther. In konz. Schwefelsäure rot löslich.
- 2.6 Dibrom bensochinon (1.4) [4 oxy naphthyl (1) imid] (4) $C_{16}H_6O_8NBr_6=0:C_6H_6Br_6:N\cdot C_{10}H_6\cdot OH.$ Vgl. hiersu Bd. VII, S. 641, Zeile 1 v. o., sowie Bd. VIII, S. 615.

- **4-Formamino-naphthol-(1)** $C_{11}H_0O_2N=OHC\cdot NH\cdot C_{10}H_6\cdot OH$. B. Beim Kochen von salzsaurem 4-Amino-naphthol-(1) mit Natriumformiat und $90^0/_0$ iger Ameisensäure (Gaess, D. R. P. 149022; C. 1904 I, 769). Nadeln (aus heißem Wasser). F: 168°. Leicht löslich in Alkohol; schwer löslich in kaltem Wasser.
- 4-Acetamino-naphthol-(1), Naphthacetol $C_{12}H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH.$ B. Beim Eintragen eines Gemisches aus 50 g Essigsäureanhydrid und 100 g Eisessig in ein inniges Gemenge aus 100 g trocknem salzsaurem 4-Amino-naphthol-(1) und 50 g gepulvertem entwässertem Natriumacetat (WITT, DEDICHEN, B. 29, 2948; WITT, D. R. P. 90596; Frdl. 4, 582). Entsteht auch beim Erwärmen von [4-Acetamino-naphthyl-(1)]-acetat mit konz. Kalilauge (W., D., B. 29, 2947). Nadeln (aus Alkohol). F: 187° (W., D.). Leicht löslich in Alkohol, ziemlich löslich in heißem Wasser; löslich in Soda und Ammoniak (W., D.). Versetzt man die Lösung von 4-Acetamino-naphthol-(1) in verd. Natronlauge

I.
$$CH_3 \cdot CO \cdot HN \cdot V$$

II. O

NH $\cdot CO \cdot CH_3$

mit Natriumnitrit und säuert dann mit Salzsäure an, so erhält man 2-Nitroso-4-acctamino-naphthol-(1) [4-Acetamino-naphthochinon-(1.2)-oxim-(2), Syst. No. 1874] (W., D.; vgl. Kehrmann, Kissine, B. 47 [1914], 3098). 4-Acetamino-naphthol-(1) liefert mit o-Phenylendiamin und Eisenchlorid in Essigsäure das Acetamino-ang.-naphthophenazin der Formel I (Syst. No. 3722) (W., D.). Gibt in alkoholischer Lösung mit Benzoldiazoniumchlorid und Natriumacetatlösung 2-Benzolazo-4-acetamino-naphthol-(1) (Syst. No. 2185) (W., D.). Zur Verwendung als Komponente von Azofarbstoffen vgl. auch Witt, D. R. P. 93312; Frdl. 4, 699. Liefert mit Isatin-a-anil (Syst. No. 3206) in heißem Essigsäureanhydrid den Farbstoff der Formel II (Syst. No. 3427) (Bezdzik, Friedländer, M. 30, 277).

- 4-Acetamino-naphthol-(1)-äthyläther, Naphthacetin $C_{14}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot C_2H_5$. B. Beim Aufkochen der Salze des 4-Amino-naphthol-(1)-äthyläthers mit Natriumacetat, Eisessig und einigen Tropfen Essigsäureanhydrid (Heermann, J. pr. [2] 45, 547). Aus 4-Amino-naphthol-(1)-äthyläther mit überschüssigem Essigsäureanhydrid (Henriques, B. 25, 3059). Beim Fällen der alkoh. Lösung von 4-Diacetylamino-naphthol-(1)-äthyläther mit wäßr. Ammoniak in der Wärme (Hee.). Blättchen (aus verd. Alkohol) (Hee.); Nadeln (aus Alkohol oder Eisessig) (Hen.). F: 192° (Hee.), 189° (Hen.). Bei der Nitrierung in Eisessiglösung mit Salpetersäure (D: 1,36 bis 1,48) in der Kälte entsteht als Hauptprodukt a-Naphthochinon, daneben 3-Nitro-4-acetamino-naphthol-(1)-äthyläther (S. 670) (Hee.; vgl. Hen.).
- [4-Acetamino-naphthyl-(1)]-acetat, O.N-Diacetyl-[4-amino-naphthol-(1)] $C_{14}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot CH_3$. B. Bei der Einw. von Essigsäureanhydrid und geschmolzenem Natriumacetat auf salzsaures 4-Amino-naphthol-(1) (Grandmougin, Michel, B. 25, 978). Prismatische Krystalle (aus Wasser). F:158°. Sublimierbar. Unlöslich in Alkali.
- 4-Diacetylamino-naphthol-(1)-äthyläther $C_{16}H_{17}O_3N=(CH_3\cdot CO)_2N\cdot C_{10}H_6\cdot O\cdot C_2H_5$. B. Beim Kochen von 4-Amino-naphthol-(1)-äthyläther mit Essigsäureanhydrid (Heermann, J. pr. [2] 45, 549). Schwer lösliche Blättchen oder Prismen. F: 138°. Gibt mit wäßr. Ammoniak oder Natron 4-Acetamino-naphthol-(1)-äthyläther (s. o.).
- 4-Butyrylamino-naphthol-(1) $C_{14}H_{15}O_2N = CH_3 \cdot CH_2 \cdot CH_2 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot OH$. B. Beim Erwärmen von 30 g salzsaurem 4-Amino-naphthol-(1) und 15 g Natriumacetat mit einer Lösung von 23 g Buttersäureanhydrid in 100 g Eisessig im Wasserbade (Witt, Dedichen, B. 29, 2954; Witt, D. R. P. 90596; Frdl. 4, 582). Nadeln (aus Alkohol). F: 160° bis 161°; löslich in Alkalien (W., D.). Verwendung als Azofarbstoff-Komponente: Witt, D. R. P. 93312; Frdl. 4, 700.
- 4-Isovalerylamino-naphthol-(1) $C_{15}H_{17}O_2N = (CH_3)_2CH \cdot CH_2 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot OH$. B. Aus salzsaurem 4-Amino-naphthol-(1), Natriumacetat und Isovaleriansäureanhydrid in Eisessig im Wasserbade (Witt, Dedichen, B. 29, 2954; Witt, D. R. P. 90596; Frdl. 4, 583). Krystalle. F: 204—205°; löslich in Alkalien (W., D.). Verwendung als Azofarbstoff-Komponente: W., D. R. P. 93312; Frdl. 4, 700.
- 4 Bensamino naphthol (1) C₁₇H₁₈O₂N = C₆H₅ · CO · NH · C₁₀H₆ · OH. B. Beim Erwärmen von 30 g salzsaurem 4 Amino naphthol (1) mit 15 g Natriumacetat, 30 g Benzoesäureanhydrid und 100 g Eisessig im Wasserbade (Witt, Dedichen, B. 29, 2954; W., D. R. P. 90596; Frdl. 4, 583). Beim Eintröpfeln von Alkali in die wäßrige, mit 1 Mol.-Gew. Benzoylchlorid versetzte Lösung von salzsaurem 4-Amino-naphthol-(1) (W., D.). Nadeln (aus Alkohel). F: 228—229°; iöslich in Alkali (W., D.). Verwendung als Azofarbstoff-Komponente: W., D. R. P. 93312; Frdl. 4, 700.

[4-Bensamino-naphthyl-(1)]-bensoat, O.N-Dibensoyl-[4-amino-naphthol-(1)] $C_{a4}H_{17}O_{a}N=C_{6}H_{5}\cdot CO\cdot NH\cdot C_{16}H_{4}\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus salzsaurem 4-Amino-naphthol-(1) in alkal. Lösung mit Benzoylchlorid unter Einleiten von Leuchtgas (SCHÄDEL, Dissert. [Berlin 1907], S. 56). — Krystalle (aus Benzol). F: 215°; leicht löslich in Aceton, Eisessig, heißem Chloroform und Alkohol (SCH.; SACHS, B. 39, 3026).

2-Nitroso-4-acetamino-naphthol-(1) $C_{12}H_{10}O_3N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 4-Acetamino-naphthochinon-(1.2)-oxim-(2) $CH_3\cdot CO\cdot NH\cdot C_{10}H_5\cdot (:N\cdot OH):O$, Syst. No. 1874.

3-Nitro-4-acetamino-naphthol-(1)-äthyläther $C_{14}H_{14}O_4N_3 = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5(NO_2) \cdot O \cdot C_2H_5$. B. Durch Nitrieren von 4-Acetamino-naphthol-(1)-äthyläther in Eisessiglösung mit Salpetersäure (D: 1,36—1,48) in der Kälte, neben viel a-Naphthochinon (Hermann, J. pr. [2] 45, 550). — Gelbe Nädelchen (aus Alkohol). F: 221°. Schwer löslich in Alkohol. — Liefert bei der Reduktion mit Eisen und Salzsäure oder Essigsäure das Athoxy-methyl-naphthimidazol der nebenstehenden Formel (Syst. NH) C·CH₃ NO. 3512).

3-Nitro-4-diacetylamino-naphthol-(1)-äthyläther $C_{16}H_{16}O_5N_2=(CH_3\cdot CO)_2N\cdot C_{10}H_5(NO_2)\cdot O\cdot C_2H_5$. B. Bei der Einw. von Essigsäureanhydrid auf 3-Nitro-4-acetaminonaphthol-(1)-äthyläther (Hee., J. pr. [2] 45, 551). — F: 143°. — Wird durch wäßr. Ammoniak glatt in 3-Nitro-4-acetamino-naphthol-(1)-äthyläther zurück verwandelt.

OH 5-Amino-1-oxy-naphthalin, 5-Amino-naphthol-(1) $C_{10}H_0ON$, s. nebenstehende Formel. B. Bei 1-stdg. Erhitzen von a-Naphthol mit Natriumamid und Naphthalin auf 190—220° (SACHS, B. 39, 3021; D.R.P. 181333; C. 1907 I, 1651). Bei ½, stdg. Erhitzen des Natriumsalzes der Naphthol-(1)-sulfonsäure-(5) (Bd. XI, S. 273) mit Natriumamid und Naphthalin auf 230° (S., B. 39, 3018; H₂N D.R.P. 173522; C. 1906 II, 931). Durch Kochen von Naphthylendiamin-(1.5) (Bd. XIII, 203) mit Natriumdisulfitlösung und Behandeln des Produktes mit Alkali (Bucherer, J. pr. [2] 69, 84; 70, 348; vgl. Bad. Anilin- u. Sodaf., D.R.P. 120690; C. 1901 I, 1395). Bei 8—10-stdg. Erhitzen des Natriumsalzes der Naphthylamin-(1)-sulfonsäure-(5) (Syst. No. 1923) mit Atznatron und wenig Wasser im Autoklaven auf 240—250° (Akt.-Ges. f. Anilinf., D. R. P. 49448; Frdl. 2, 280). Aus 5-Amino-naphthol-(1)-sulfonsäure-(4) (Syst. No. 1926) mit 20% iger Salzsäure im Wasserbade (Bu., Uhlmann, J. pr. [2] 80, 228). — Krystalle. Beginnt bei 170° sich zu zersetzen (Bu., U., J. pr. [2] 80, 229). Gibt beim Schütteln der ammoniakalischen Lösung mit Luft eine schwach rotviolett gefärbte Lösung (Akt.-Ges. f. Anilinf., D.R.P. 49448). — Bei der Einw. von Schwefelsäure (66° Bé) auf schwefelsaures 5-Aminonaphthol-(1) erhält man eine 5-Amino-naphthol-(1)-sulfonsäure-(2?) (Syst. No. 1926) (A.-G. f. A., D.R.P. 68564; Frdl. 8, 486). Durch Erwärmen von 5-Amino-naphthol-(1) mit Natrium-disulfitlösung im Wasserbade und Behandeln des Produkts mit Alkali entsteht 1.5-Dioxynaphthalin (Bd. VI, S. 980) (Bu., U., J. pr. [2] 80, 229). Aus 5-Amino-naphthol-(1) und dem Natriumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) in heißem Wasser wird 2 · Oxy - naphthochinon - (1.4) · [5 · oxy - naphthyl - (1) - imid] - (4) bezw. 4 - [5 · Oxy - naphthyl - (1) amino]-naphthochinon-(1.2) (S. 671) gebildet (Sachs, Berthold, Zaar, C. 1907 I, 1130). Aus 5-Amino-naphthol-(1) und Isatin-a-anil (Syst. No. 3206) in heißem Acetanhydrid bildet sich der Farbstoff nebenstehender Formel (Syst. No. 3427) (Bezdzik, Friedländer, M. 30, 276). 5-Aminonaphthol-(1) verbindet sich mit 4-Diazo-naphthalin-sulfonsäure-(1) (Syst. No. 2202) zu einem kornblumenblauen Farbstoff (A.-G. f. A. NH·CO·CH, D.R.P. 49448). Aus diazotierter 8-Amino-naphthol-(1)-disulfonsäure-(3.6) und 5-Amino-naphthol-(1) entsteht der Farbstoff Lanacylblau (Cassella & Co., D. R. P. 95190; C. 1898 I, 588; vgl. Schultz, Tab. No. 187). Über Verwendung des 5-Aminonaphthols-(1) zur Herstellung von Azofarbstoffen vgl. ferner BAYER & Co., D.R.P. 66688, 79166; Frdl. 3, 578; 4, 751; D.R.P. 174557, 180481; C. 1906 II, 1540; 1907 I, 1368; CASSELLA & Co., D.R.P. 78875; Frdl. 4, 803; D.R.P. 97284; C. 1898 II, 589.

5-Dimethylamino-naphthol-(1) $C_{19}H_{19}ON = (CH_9)_{\bullet}N \cdot C_{10}H_{\bullet} \cdot OH$. B. Aus N.N-Dimethyl-naphthylamin-(1)-sulfonsäure-(5) (Syst. No. 1923) durch Kalischmelze (Fussgänger, B. 35, 979; vgl. Ges. f. chem. Ind., D.R.P. 50142; Frdl. 2, 279). — Sechsseitige Blättchen (aus Alkohol oder Schwefelkohlenstoff), Nadeln (aus Chloroform). F: 110 $^{\circ}$ (F.),

- 112° (G. f. ch. I.). Leicht löslich in Alkohol, Schwefelkohlenstoff, Eisessig, schwerer in Benzol, Ligroin und Äther, schr wenig in siedendem Wasser; leicht löslich in Säuren und Alkalien (F.). Bei der Behandlung des salzsauren Salzes in Eisessig mit Natriumnitritlösung entsteht 2-Nitroso-5-dimethylamino-naphthol-(1) bezw. 5-Dimethylamino-naphthochinon-(1.2)-oxim-(2) (Syst. No. 1874) (F.). 5-Dimethylamino-naphthol-(1) liefert mit 4-Nitroso-dimethylamilin (Bd. XII, S. 677) in Eisessiglösung grünlichblaue Farbstoffe, mit 6-Nitroso-3-[dimethylamino]-phenol (Syst. No. 1874) einen rein blauen Farbstoff (F.). C₁₂H₁₃ON + HCl. Sechsseitige Täfelchen (F.).
- 5 [2.4 Dinitro benzalamino] naphthol (1) $C_{17}H_{11}O_5N_3 = (O_2N)_2C_6H_3 \cdot CH:N \cdot C_{10}H_6 \cdot OH$. B. Aus 2.4-Dinitro-benzaldehyd und 5-Amino-naphthol-(1) in essigsaurer Lösung (Sachs, Brunetti, B. 40, 3234). Tafeln (aus Essigester). F: 219° (Zers.). Löslich in 25 Tln. warmem Essigester; löslich in Alkohol, Eisessig und Aceton mit orangeroter Farbe. Die Lösung in alkoh. Alkalien ist dunkelviolett.
- 2-Oxy-naphthochinon-(1.4)-[5-oxy-naphthyl-(1)-imid]-(4) bezw. 4-[5-Oxy-naphthyl-(1)-amino]-naphthochinon-(1.2) $C_{20}H_{13}O_3N$, Formel I bezw. Formel II. B. Aus 5-Amino-naphthol-(1) und dem Natriumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) in heißem Wasser (Sachs, Berthold, Zaar, C. 1907 I, 1130). Rote Krystalle (aus Alkohol). In der Wärme löslich in Alkohol, Eisessig, Aceton, sonst schwer löslich oder unlöslich. Löslich in Alkalien mit braunroter, in konz. Schwefelsäure mit dunkelroter Farbe.

- [5-Benzamino-naphthyl-(1)]-benzoat, O.N-Dibenzoyl-[5-amino-naphthol-(1)] $C_{24}H_{17}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Aus 5-Amino-naphthol-(1) in alkalischer Lösung und Benzoylchlorid (Schädel, Dissert. [Berlin 1907], S. 57). Blättchen (aus viel Eisessig). F: 276°; leicht löslich in Aceton, Eisessig, heißem Chloroform und Alkohol (Sch.; Sachs, B. 39, 3026).
- **2-Nitroso-5-dimethylamino-naphthol-(1)** $C_{12}H_{12}O_2N_2=(CH_3)_2N\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 5-Dimethylamino-naphthochinon-(1.2)-oxim-(2) $(CH_3)_2N\cdot C_{10}H_5(:N\cdot OH):O$, Syst. No. 1874.

Bis-[5-amino-naphthyl-(1)]-disulfid $C_{20}H_{16}N_2S_2=[H_2N\cdot C_{10}H_6\cdot S-]_2$. B. Bei der Reduktion von Bis-[5-nitro-naphthyl-(1)]-disulfid (Bd. VI, S. 626) mit Jodwasserstoffsäure (D: 1,5) und rotem Phosphor oder von 5-Nitro-naphthalin-sulfonsäure-(1)-amid (Bd. XI, S. 168) mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor (Ekbom, B. 23, 1121). — Schuppen (aus warmem Alkohol). F: 192—193°. Schwer löslich in kaltem Alkohol, sehr leicht in Eisessig. — $C_{20}H_{16}N_2S_2+2$ HCl. Nadeln. Wird durch Wasser und Alkohol zersetzt.

Bis-[5-acetamino-naphthyl-(1)]-disulfid $C_{24}H_{20}O_{2}N_{2}S_{2}=[CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{6}\cdot S-]_{2}$. B. Bei gelindem Erwärmen von Bis-[5-amino-naphthyl-(1)]-disulfid mit Essigsäureanhydrid (E., B. 23, 1123). — Schuppen (aus Eisessig). Schmilzt unter Verkohlung bei 274°. Schwer löslich in Alkohol.

Bis-[5-propionylamino-naphthyl-(1)]-disulfid $C_{26}H_{24}O_2N_2S_2=[CH_3\cdot CH_2\cdot CO\cdot NH\cdot C_{10}H_4\cdot S-]_2$. B. Beim Kochen von Bis-[5-amino-naphthyl-(1)]-disulfid mit Propionsäure-anhydrid (E., B. 23, 1123). — Schuppen (aus Eisessig). F: 242°.

7-Amino-1-oxy-naphthalin, 7-Amino-naphthol-(1) C₁₀H₉ON, oH s. nebenstehende Formel. B. Beim Erhitzen von 1.7-Dioxy-naphthoesäure-(2) (Bd. X, S. 443) mit konz. Ammoniak auf 170—180° (FRIEDLÄNDER, ZINBERG, B. 29, 40). — Krystalle (aus Chloroform + Ligroin). Wird durch Eisenchlorid schmutzig violett gefärbt. Verwendung zur Herstellung von Azofarbstoffen: BAYER & Co., D.R.P. 129388, 131513; C. 1902 I, 1083, 1383.

7-Acetamino-naphthol-(1) $C_{12}H_{11}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH$. B. Beim Erwärmen von 7-Amino-naphthol-(1) mit Essigsäureanhydrid (F., Z., B. 29, 41). — Nadeln (aus Essigsäure). F: 210—211°. Löslich in Alkalien.

8-Amino-1-oxy-naphthalin, 8-Amino-naphthol-(1) C₁₀H₉ON, s. neben-H₂N OH stehende Formel. B. Beim Erhitzen des Natriumsalzes der Naphthol-(1)-sulfonsäure-(8) (Bd. XI, S. 275) mit Natriumamid und Naphthalin auf 230° (Sachs, B. 39, 3018; D.R.P. 173522, C. 1906 II, 931). Durch Einw. von Natriumdisulfit-

lösung auf Naphthylendiamin-(1.8) (S. 205) und Behandlung des Reaktionsproduktes mit Alkali (Bucherer, J. pr. [2] 69, 58; 70, 348; vgl. Bad. Anilin- u. Sodaf., D.R.P. 120690; C. 1901 I, 1395). Beim Erhitzen von Naphthylamin-(1)-sulfonsäure-(8) (Syst. No. 1923) mit Atzalkali und etwas Wasser auf 200—210° (B. A. S. F., D.R.P. 54662; Frdl. 2, 400), mit Atzkali + Atznatron und etwas Wasser auf 230—240° (B. A. S. F., D.R.P. 54662; Frdl. 2, 400), mit Atzkali + Atznatron und etwas Wasser auf 230—240° (B. A. S. F., D.R.P. 55404, 62289; Frdl. 2, 281; 3, 457), auf 260—280° (Fighter, Gageur, B. 39, 3331). Durch Erhitzen von Naphthylendiamin-(1.8)-sulfonsäure-(4) (Syst. No. 1923) oder 8-Amino-naphthol-(1)-sulfonsäure-(4) (Syst. No. 1926) mit verd. Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). Durch Schwefelsäure unter Druck auf 140° (Cassella & Co., D.R.P. 73381; Frdl. 3, 446). nebenstehenden Formel (Syst. No. 4197) mit Kaliumhydroxyd (DANNERTH, Am. Soc. 29, 1320). — Weiße Nadeln (aus Benzol + Ligroin), die sich an der Luft grau färben. F: 95-97° (Zers.) (B. A. S. F., D.R.P. 55404), 94-97° (Schwärzung) (FRIEDLÄNDER, SILBERSTEEN, M. 23, 516). Leicht löslich in heißem Wasser, in Alkalien und in Salzsäure (B. A. S. F., D. R. P. 55404). — Die ammoniakalische Lösung scheidet beim Schütteln mit Luft rasch grünliche Häute und Flocken ab (B. A. S. F., D. R. P. 55404). Bei der Sulfurierung von 8-Amino-naphthol-(1) mit konz. Schwefelsäure bei gewöhnlicher Temperatur entsteht als Hauptprodukt 8-Amino-naphthol-(1)-sulfonsäure-(4) (Syst. No. 1926) (B. A. S. F., D.R.P. 54662, 62289, 77937; Frdl. 2, 400; 3, 458; 4, 551), neben 8-Aminonaphthol-(1)-sulfonsäure-(2) (Syst. No. 1926) (B. A. S. F., D. R. P. 84951; Frdl. 4, 554). Die 8-Āmino-naphthol-(1)-sulfonsäure-(2) erhält man auch beim Erhitzen von 8-Amino-naphthol-(1) mit 75% iger Schwefelsaure auf 130—160° (B. A. S. F., D. R. P. 82900; Frdl. 4, 552); mit konz. Schwefelsäure im Wasserbade entsteht 8-Amino-naphthol-(1)-disulfonsäure-(2.4) (Syst. No. 1926) (B. A. S. F., D. R. P. 62289; vgl. D. R. P. 82900). Beim Verschmelzen von 8-Aminonaphthol-(1) mit Schwefel und Schwefelalkali erhält man ein Produkt, das sich durch Extrahieren mit warmem Wasser in einen blauen und einen braunen Baumwollfarbstoff zerlegen LEST (BAYER & Co., D.R.P. 113334; C. 1900 II, 656). Überführung in einen blauen Schwefelfarbstoff durch Erhitzen mit Schwefel und Schwefelalkali in Gegenwart von Zinkchlorid: BAYER & Co., D.R.P. 116655; C. 1901 I, 77. 8-Amino-naphthol-(1) läßt sich diazotieren (B. A. S. F., D. R. P. 55404). Durch Diazotierung in alkoh. Lösung in Gegenwart von Schwefelsäure und Verkochen erhält man a-Naphthol; bei der Einw. nitroser Gase in konzentrierter, stark saurer Lösung entsteht 2-Nitroso-8-amino-naphthol-(1) [8-Amino-naphthochinon-(1.2)-oxim-(2), Syst. No. 1874] (Fi., Ga., B. 39, 3337). Verwendung der aus 8-Amino-naphthol-(1) oder seinen O-Acylderivaten hergestellten Diazoverbindungen zur Darstellung von Azofarbstoffen durch Kuppelung mit Aminen oder Phenolen: B. A. S. F., D.R.P. 55404; Frdl. 2, 281; D.R.P. 120690; C. 1901 I, 1395; BAYER & Co., D.R.P. 199175, 200115, 202116, 202117. 211381; C. 1908 II, 214, 362, 1224; 1909 II, 394. Darstellung von Azofarbstoffen durch Kuppelung von diazotierten Safraninen mit 8-Amino-naphthol-(1): Cassella & Co., D.R.P.

78875; Frill. 4, 804.

C₁₀H₂ON + HCl. Farblose Krystalle. Schwer löslich in konz. Salzsäure (Fr., Sr.). —
2 C₁₀H₂ON + H₂SO₄. Krystalle (aus heißem Wasser). Schwer löslich in heißem Wasser
(B. A. S. F., D.R.P. 55404; Fr., Si.). — Pikrat. F: 163—164° (Sachs, D.R.P. 173522).

8-Amino-naphthol-(1)-methyläther $C_{11}H_{11}ON = H_2N \cdot C_{10}H_6 \cdot O \cdot CH_3$. B. Durch Kochen des 8-Acetamino-naphthol-(1)-methyläthers (S. 673) mit Salzsäure (FIGHTER, GAGEUR, B. 39, 3336). — Öl. Kp₁₄: 180–185°. Färbt sich rasch dunkel. — Liefert durch Diazotierung und Verkochen der Diazoverbindung in schwefelsaurer Lösung 1-Oxy-8-methoxy-naphthalin (Bd. VI, S. 982). — $C_{11}H_{11}ON + HCl$. Krystalle (aus Alkohol). — Pikrat $C_{11}H_{11}ON + C_6H_3O_7N_3$. Grüngelbe Nadeln (aus Benzol). F: 172°.

8-Formamino-naphthol-(1) $C_{11}H_0O_2N=OHC\cdot NH\cdot C_{10}H_0\cdot OH$. B. Durch Erwärmen von salzsaurem 8-Amino-naphthol-(1) mit Ameisensäure und Natriumformiat im Wasserbade (F., G., B. 39, 3332). — Nadeln (aus verd. Alkohol). Färbt sich bei 140—150° dunkel und zersetzt sich dann.

¹) Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] wird von RAIFORD, CLARK, Am. Soc. 48 [1926], 487 der Schmelzpunkt 181° angegeben.

- 8-Acetamino-naphthol-(1)-methyläther $C_{13}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_{16}H_6\cdot O\cdot CH_3$. B. Aus 8-Acetamino-naphthol-(1) und Dimethylsulfat in $1^0/_0$ iger Natronlauge (FICHTER, GAGEUR, B. 39, 3336). Nadeln (aus verd. Alkohol). F: 128°; Kp₁₄: 138—140°. Löslich in Alkohol und Benzol, ziemlich in Ather. Liefert mit Brom in Eisessig ein Monobromderivat (s. u.).
- 8-Acetamino-naphthol-(1)-äthyläther $C_{14}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot C_2H_5$. B. Durch Erhitzen von 8-Acetamino-naphthol-(1) mit $10^0/_0$ iger Kalilauge und Äthyljodid in einer Leuchtgas-Atmosphäre (Fichter, Kühnel, B. 42, 4752). Blättchen (aus verd. Alkohol). F: 154°.
- [8-Acetamino-naphthyl-(1)]-acetat, O.N-Diacetyl-[8-amino-naphthol-(1)] $C_{14}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen von salzsaurem 8-Aminonaphthol-(1) mit Natriumacetat und Acetanhydrid (Fichter, Gageur, B. 39, 3334). Nadeln (aus verd. Alkohol). F: 118,5°. Leicht löslich in Benzol und Toluol, schwer in Äther und Petroläther. Wird durch verd. Natronlauge zu 8-Acetamino-naphthol-(1) verseift.
- [8-Acetamino-naphthyl-(1)]-oxyessigsäure $C_{14}H_{13}O_4N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CH_2\cdot CO_2H$. B. Durch Kochen von 8-Acetamino-naphthol-(1) mit Chloressigsäure in wäßr. Kalilauge im Leuchtgasstrom (Fichter, Kühnel, B. 42, 4750). Nadeln (aus Eisessig). F: 245°. Ist gegen heiße konzentrierte Laugen sowie gegen heiße $50^{\circ}/_{\circ}$ ige Schwefelsäure beständig. $Cu(C_{14}H_{12}O_4N)_2$. Blaßblaue Nädelchen.
- 8-Benzamino-naphthol-(1) $C_{17}H_{13}O_2N=C_6H_6\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH.$ B. Durch Erwärmen von salzsaurem 8-Amino-naphthol-(1) mit Benzoesäureanhydrid, Natriumacetat und Eisessig (FICHTER, GAGEUR, B. 39, 3332). Nädelchen (aus heißem verdünntem Alkohol). F: 193° bis 194°. Gibt mit Brom in Eisessiglösung die Verbindung der nebenstehenden Formel (Syst. No. 4198).
- [8-Benzamino-naphthyl-(1)]-benzoat, O.N-Dibenzoyl-[8-amino-naphthol-(1)] $C_{24}H_{17}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Bei längerem Erhitzen von salzsaurem 8-Amino-naphthol-(1) mit Natriumacetat und Benzoesäureanhydrid (F., G., B. 39, 3335). Nadeln (aus verd. Alkohol). F: 206—207°.
- 8-p-Toluolsulfamino-naphthol-(1) $C_{17}H_{15}O_3NS = CH_3 \cdot C_8H_4 \cdot SO_2 \cdot NH \cdot C_{10}H_6 \cdot OH$. B. Durch Erwärmen von schwefelsaurem 8-Amino-naphthol-(1) mit p-Toluolsulfochlorid, entwässertem Natriumacetat und etwas Eisessig (Fichter, Kühnel, B. 42, 4752). Schuppen (aus verd. Alkohol). F: 189°. In sehr verdünnten Laugen löslich.
- **x-Brom-8-acetamino-naphthol-(1)-methyläther** $C_{13}H_{12}O_2NBr = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5Br \cdot O \cdot CH_3$. B. Durch Einw. von 2 At.-Gew. Brom in Eisessig auf 8-Acetamino-naphthol-(1)-methyläther bei Zimmertemperatur (Fichter, Gageur, B. 39, 3336). Krystalle (aus Petroläther). F: 124°.
- [x-Brom-8-acetamino-naphthyl-(1)]-acetat, O.N Diacetyl [x brom 8 amino-naphthol-(1)] $C_{14}H_{12}O_3NBr = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5Br \cdot O \cdot CO \cdot CH_3$. B. Durch Einw. von Brom in Eisessig auf [8-Acetamino-naphthyl-(1)]-acetat bei Zimmertemperatur (F., G., B. 39, 3335). F: 203°.
- **2-Nitroso-8-amino-naphthol-(1)** $C_{10}H_8O_2N_2=H_2N\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 8-Amino-naphthochinon-(1.2)-oxim-(2) $H_2N\cdot C_{10}H_5(:N\cdot OH):O$, Syst. No. 1874.
- 2 (?)-Nitroso-8-acetamino-naphthol-(1) $C_{12}H_{10}O_3N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 8-Acetamino-naphthochinon-(1.2?)-oxim-(2?) $CH_3\cdot CO\cdot NH\cdot C_{10}H_5(:N\cdot OH):O$, Syst. No. 1874.
- 5-Nitro-8-amino-naphthol-(1)-methyläther $C_{11}H_{10}O_3N_2=H_2N\cdot C_{10}H_5(NO_2)\cdot O\cdot CH_3$. B. Aus 5-Nitro-8-acetamino-naphthol-(1) und Dimethylsulfat in wäßr. Natronlauge (FICHTER, KÜHNEL, B. 42, 4751). Rötlichbraune Krystalle (aus Alkohol). F: 193°. Schwer löslich in Wasser, leichter in verdünnten Säuren. Die Lösung in konz. Schwefelsäure fluoresciert blaugrün. Läßt sich durch Diazotierung mit Äthylnitrit in Alkohol in Gegenwart von konz. Schwefelsäure und Verkochen der Lösung in 5-Nitro-naphthol-(1)-methyläther (Bd. VI, S. 616) überführen.
- 5-Nitro-8-acetamino-naphthol-(1) $C_{12}H_{10}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO_2)\cdot OH$. Zur Konstitution vgl. Fichter, Kühnel, B. 42, 4748. B. Durch Kochen von [5-Nitro-8-acetamino-naphthyl-(1)]-acetat mit verd. Natronlauge (Fichter, Gageur, B. 39, 3335). Rote Nadeln (aus verd. Alkohol). Färbt sich bei 192° dunkel, schmilzt bei 240° (F., K.). Leicht löslich in Alkohol, schwer in Äther, Benzol und Chloroform (F., G.). Liefert durch Einw. von Zinnchlorür und Salzsäure ein leicht oxydables Diaminonaphthol (F., G.).

[5-Nitro-8-acetamino-naphthyl-(1)]-acetat, O.N-Diacetyl-[5-nitro-8-amino-naphthol-(1)] $C_{14}H_{12}O_{5}N_{3}=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{5}(NO_{5})\cdot O\cdot CO\cdot CH_{3}$. B. Durch Behandeln von [8-Acetamino-naphthyl-(1)]-acetat mit eiskalter Salpetersäure (Fichter, Gageur, B. 39, 3335). — Nadeln (aus Alkohol). F: 224°. Wird durch verd. Natronlauge zu 5-Nitro-8-acetamino-naphthol-(1) verseift.

Diaminoderivate des 1-Oxy-naphthalins.

OH

NH.

NH,

- 2.4 Diamino 1 oxy naphthalin, 2.4 Diamino naphthol (1) C₁₀H₁₀ON₂, s. nebenstehende Formel. B. Man erwärmt in einer geräumigen Schale 1 Tl. 2.4-Dinitro-naphthol-(1) (Bd. VI, S. 617) mit 2 Tln. granuliertem Zinn und 7,5 Tln. konz. Salzsäure und filtriert die heiße Lösung; beim Erkalten krystallisiert das Zinnchlorürdoppelsalz des Diaminonaphthols (GRIESS, MARTIUS, A. 184, 376; GRAEBE, LUDWIG, A. 154, 307). Das freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt das sa freie 2.4-Diamino-naphthol-(1) ist unbekannt das sa freie 2.4-Diamino-naphthol
- freie 2.4-Diamino-naphthol-(1) ist unbekannt; seine Salze namentlich das salzsaure sind in Lösung unbeständig und oxydieren sich schon an der Luft zu 2-Amino-naphthochinon-(1.4)-imid-(4) (Syst. No. 1874) (Grie, Ma.; Grae, L.). Beim Erhitzen mit verd. Salzsäure im geschlossenen Rohr auf 180° entsteht 1.2.4-Trioxy-naphthalin (Bd. VI,-S. 1132), das sich an der Luft zu 2-Oxy-naphthochinon-(1.4) (Bd. VIII, S. 300) oxydiert (Diehl, Merz, B. 11, 1315). $C_{10}H_{10}ON_2 + HCl$ (bei 100°). Blättchen (Meerson, B. 21, 1195). $C_{10}H_{10}ON_2 + HCl$ (bei 100°). Blättchen (Meerson, B. 21, 1195). $C_{10}H_{10}ON_2 + HCl$ (bei 100°). Blättchen (Meerson, B. 21, 1195). $C_{10}H_{10}ON_2 + HCl$ (Syst. No. 1874) mit Zinn und Salzsäurem 2-Aminonaphthochinon-(1.4)-imid-(4) (Syst. No. 1874) mit Zinn und Salzsäure (Grae, L.). $C_{10}H_{10}ON_2 + 2HCl + SnCl_2 + 2H_3O$. Prismen. Monoklin prismatisch (Groth, A. 154, 308; vgl. Groth, Ch. Kr. 5, 392). Leicht löslich in heißem Wasser und in Alkohol; unlöslich in konzentrierter Salzsäure (Grae, L.).
- [2.4 Bis acetamino naphthyl (1)] acetat, O.N.N'-Triacetyl [2.4 diamino-naphthol-(1)] $C_{16}H_{16}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_3$. B. Beim Versetzen von 1 Tl. salzsaurem 2.4-Diamino-naphthol-(1) mit 1 Tl. Natriumacetat und 3 Tln. Essigsäure-anhydrid (Meerson, B. 21, 1196). Nadeln (aus Eisessig). Schmilzt bei 280° unter Zersetzung. Schwer löslich in siedendem Alkohol. Wird das Triacetat in verd. Kalilauge gelöst und zur Lösung Salzsäure und Eisenchlorid zugesetzt, so entsteht 2-Acetamino-naphthochinon-(1.4) (Syst. No. 1874).
- [3-Nitro-2.4-bis-acetamino-naphthyl-(1)]-acetat, O.N.N'-Triacetyl-[3-nitro-2.4-diamino-naphthol-(1)] $C_{16}H_{15}O_6N_3=(CH_3\cdot CO\cdot NH)_2C_{10}H_4(NO_2)\cdot O\cdot CO\cdot CH_3$. B. Man tröpfelt Salpetersäure (D: 1,48) in ein abgekühltes Gemisch aus O.N.N'-Triacetyl-[2.4-diamino-naphthol-(1)] und Eisessig unter Kühlung (M., B. 21, 1197). Gelbes Pulver (aus Eisessig). Schmilzt bei 235° unter Zersetzung. Bei der Oxydation durch Kaliumpermanganat entsteht Phthalsäure. Wird von heißer rauchender Salzsäure und das Nitro-amino-methyl-naphthoxazol der nebenstehenden Formel (Syst. No. 4344) gespalten.
- **2.6 Diamino 1 oxy naphthalin**, **2.6 Diamino naphthol (1)** OH $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Beim Behandeln von 6-Nitro-2-diazo-naphthol (1) $O_2N\cdot C_{10}H_2ON_2$ (Syst. No. 2199) mit Zinnehlorür und Salzsäure (GAESS, AMMELBURG, B. 27, 2213). Das salzsaure $H_2N\cdot NH_2$ Salz ist in Wasser leicht löslich und wird durch konz. Salzsäure wieder gefällt. Das Zinndoppelsalz krystallisiert in leicht löslichen Nadeln.
- [2.6 Bis acetamino naphthyl (1)] acetat, O.N.N' Triacetyl [2.6 diamino-naphthol-(1)] $C_{16}H_{16}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_3$. B. Aus dem Zinndoppelsalz des 2.6-Diamino-naphthols-(1) mit Essigsäureanhydrid und Natriumacetat (G., A., B. 27, 2213). Nädelchen (aus Alkohol). Zersetzt sich von 242—245° an und schmilzt bei 261°.
- 2.8 Diamino 1 oxy naphthalin, 2.8 Diamino naphthol (1) $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Aus 2-Nitroso-8-amino-naphthol-(1) H_2N OH [8-Amino-naphthochinon-(1.2)-oxim-(2), Syst. No. 1874] mit Zinnehlorür und Salzsäure (Fighter, B. 39, 3338). $C_{10}H_{10}ON_2 + 2HCl$. Nadeln (aus Wasser durch Salzsäure).
- 2 oder 8-Amino-8 oder 2-bensalamino-naphthol-(1) $C_{17}H_{14}ON_2 = (C_6H_5\cdot CH:N)$ $(H_2N)C_{10}H_5\cdot OH.$ B. Das Hydrochlorid entsteht aus salzsaurem 2.8-Diamino-naphthol-(1) und Benzaldehyd (F., G., B. 39, 3338). $C_{17}H_{14}ON_2 + HCl.$ Gelbe Nadeln (aus Alkohol).

- [2.8 Bis acetamino naphthyl (1)] acetat, O.N.N' Triacetyl [2.8 diamino-naphthol-(1)] $C_{16}H_{16}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_3$. B. Durch Acetylierung von 2.8-Diamino-naphthol-(1) (F., G., B. 39, 3338). Nadeln (aus Amylalkohol). F: 234°.
- 4-Amino-3-anilino-naphthol-(1)-äthyläther C₁₈H₁₈ON₂, s. Formel I. B. Man erwärmt gelinde 25 g 4-Benzolazo-naphthol-(1)-äthyläther (Syst. No. 2119) mit 50 ccm Alkohol und 45 g Zinnchlorür, vermischt nach Beendigung der Reaktion mit 200 ccm 12°/ojger Salzsäure und läßt 12 Stdn. stehen (Witt, v. Helmolt, B. 27, 2352; vgl. Witt, Schmidt, B. 25, 1013; Jacobson, Turnbull, B. 31, 895). Blätter (aus Alkohol). F: 167°; schwer löslich in Alkohol; die verdünnte alkoholische Lösung fluoresciert graugrün (W., Sch.). —

Bei der Oxydation mit verd. Salpetersäure oder mit Eisenchlorid in Eisessig + Salzsäure entsteht 2-Anilino-naphthochinon-(1.4) (Syst. No. 1874) (W., Sch.). Durch Erwärmen mit Amylnitrit und Alkohol und Ansäuern mit Essigsäure erhält man das Äthoxy-phenyl-naphthotriazol der Formel II (Syst. No. 3835) (W., Sch.). Durch Erwärmen mit Benzil und Eisessig und Behandeln des Produktes mit salzsäurehaltigem Wasser entsteht das Chinoxalinderivat der Formel III (Syst. No. 3521) (W., Sch.). — $C_{18}H_{18}ON_2 + HCl$. Unlöslich in Wasser (W., Sch.).

- 4-Amino-8-p-toluidino-naphthol-(1)-äthyläther $C_{19}H_{20}ON_2 = (CH_3 \cdot C_6H_4 \cdot NH)(H_2N) \cdot C_{10}H_5 \cdot O \cdot C_2H_5$. B. Durch Erwärmen von 4-p-Toluolazo-1-äthoxy-naphthalin (Syst. No. 2119) in alkoh. Lösung mit Zinnchlorür und Stehenlassen der Lösung mit verd. Salzsäure (WITT, v. Helmolt, B. 27, 2354). Nadeln (aus Petroläther). F: 118—119°.
- 4-Amino-3-[4-äthoxy-anilino]-naphthol-(1)-äthyläther $C_{20}H_{22}O_2N_2=(C_2H_5\cdot O\cdot C_6H_4\cdot NH)(H_2N)C_{10}H_5\cdot O\cdot C_2H_5$. B. Man kocht ein Gemisch von 4 g 4-[4-Äthoxy-benzolazo]-naphthol-(1)-äthyläther (Syst. No. 2119) und 12 g Zinnchlorür mit Alkohol bis zur Entfärbung und fällt durch 300 g siedende 12 $^{\circ}$ /oige Salzsäure das Hydrochlorid (WITT, BUNTROCK, B. 27, 2361). Nadeln (aus Ligroin). F: 103 $^{\circ}$.
- 3.4-Bis-acetamino-naphthol-(1)-äthyläther $C_{16}H_{16}O_3N_2=(CH_3\cdot CO\cdot NH)_2\cdot C_{16}H_5\cdot O\cdot C_2H_5$. B. Man reduziert 4.4'-Diäthoxy-1'-amino-[1.2'-azo-naphthalin] (Syst. No. 2185) mit Zinnchlorür + Salzsäure in Alkohol und krystallisiert das erhaltene Gemisch von Hydrochloriden mehrmals aus verd. Essigsäure unter Zusatz von Zinnchlorür um; das in verd. Essigsäure leichter lösliche Hydrochlorid erhitzt man mit Natriumacetat und Essigsäureanhydrid (Henriques, B. 25, 3067). Krystalle (aus Essigsäure). F: 254°. Schwer löslich in Alkohol und Essigsäure.
- 4.5-Diamino-1-oxy-naphthalin, 4.5-Diamino-naphthol-(1) $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Durch Reduktion des 4-Nitroso-5-nitro-naphthols-(1) [5-Nitro-naphthochinon-(1.4)-oxims-(4), Bd. VII, S. 732] mit Zinn-chlorür und Salzsäure in der Kälte (Friedländer, v. Scherzer, C. 1900 I, 411; Graebe, Oser, A. 335, 152). Oxydiert sich sehr leicht an der Luft H_2N NH_2 (F., v. Sch.). Durch Einw. von Eisenchlorid in salzsaurer Lösung entsteht 5-Amino-naphthochinon-(1.4) (Syst. No. 1874) (F., v. Sch.). $C_{10}H_{10}ON_2 + 2$ HCl. Leicht löslich in Wasser, durch konz. Salzsäure fällbar (F., v. Sch.); G., O.). $C_{10}H_{10}ON_2 + H_2SO_4$. Schwer löslich in Wasser (F., v. Sch.).
- 4.8-Diamino-1-oxy-naphthalin, 4.8-Diamino-naphthol-(1) $C_{10}H_{10}ON_2$, H_2N OH s. nebenstehende Formel. B. Bei der Reduktion des 4-Nitroso-8-nitro-naphthols-(1) [8-Nitro-naphthochinon-(1.4)-oxims-(4), Bd. VII, S. 732] mit Zinn-chlorür und Salzsäure (FRIEDLÄNDER, v. SCHERZER, C. 1900 I, 411; GRAEBE, OSER, A. 335, 155). Bei der Reduktion von 4-Benzolazo-8-acetamino-naphthol-(1) (Syst. No. 2185) mit Zinnchlorür und Salzsäure (FICHTER, GAGEUR, B. 39, 3333). Oxydiert sich sehr leicht an der Luft (FR., v. SCH.). $C_{10}H_{10}ON_2 + 2$ HCl. Nadeln. Leicht löslich in Wasser (FR., v. SCH.); aus der wäßr. Lösung durch Salzsäure fällbar (GR., O.; FI., GA.). $C_{10}H_{10}ON_2 + H_2SO_4$. Tafeln. Schwer löslich in Wasser (FR., v. SCH.).

- 4.8-Bis-acetamino-naphthol-(1) $C_{14}H_{14}O_3N_3 = (CH_3 \cdot CO \cdot NH)_5C_{10}H_5 \cdot OH$. B. Durch Lösen des beim Acetylieren des 4.8-Diamino-naphthols-(1) zunächst entstehenden O.N.N'-Triacetyl-[4.8-diamino-naphthols-(1)] in warmer Natronlauge (FICHTER, GAGEUR, B. 39, 3333). Nadeln (aus wasserhaltigem Alkohol) mit 1 H_2O . F: 247°.
- [4.8 Bis acetamino naphthyl (1)] acetat, O.N.N'- Triacetyl [4.8 diamino-naphthol-(1)] $C_{16}H_{16}O_4N_5 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_5$. B. Beim Behandeln von 4.8-Bis-acetamino-naphthol-(1) mit Essigsäureanhydrid (F., G., B. 39, 3333). Nadelsterne (aus Eisessig). F: 258°.
- 7.8 Diamino 1 oxy naphthalin, 7.8 Diamino naphthol (1) C₁₀H₁₀ON₂, s. Formel I. B. Man kuppelt diazotierte Sulfanilsäure mit 7 Amino naphthol (1) in essigsaurer Lösung und reduziert den so erhaltenen Farbstoff mit Zinkstaub in neutraler oder schwach essigsaurer Lösung (Bad. Aniling)

oder schwach essigsaurer Lösung (Bad. Anilin- u. Sodaf., D. R. P. 90212; Frdl. 4, 400). — Kondensiert sich mit Phenanthrenchinon zu dem Oxynaphthophenanthrazin der Formel II (Syst. No. 3522). Verwendung der Sulfonsäuren des 7.8-Diamino-naphthols-(1) zur Herstellung von Azinfarbstoffen: B. A. S. F.

Triaminoderivate des 1-0xy-naphthalins.

2.4.5-Triamino-1-oxy-naphthalin, 2.4.5-Triamino-naphthol-(1) OH $C_{10}H_{11}ON_3$, s. nebenstehende Formel. B. Durch Behandeln von 2.4.5-Trinitro-naphthol-(1) (Bd. VI, S. 619) mit Zinn und Salzsäure (Ekstrand, B. 11, 164). — Nicht in freiem Zustande bekannt. Die Salze oxydieren sich leicht an der Luft, noch rascher durch Einw. von Eisenchlorid zu 2.5-Diamino-naphthochinon-(1.4)-imid-(4) (Syst. No. 1874) (Diehi, Merz, B. 11, 1663, 1666; vgl. Kehrmann, Steiner, B. 33, 3281). — $C_{10}H_{11}ON_3 + 3HCl + SnCl_2 + H_2O$. Kugelige Aggregate von Prismen (E.; D., M.). — $C_{10}H_{11}ON_3 + H_2SO_4 + H_2O$. Krystallschuppen (D., M.).

2.4.7-Triamino-l-oxy-naphthalin, 2.4.7-Triamino-naphthol-(1) $C_{10}H_{11}ON_3$, s. nebenstehende Formel. B. Durch Reduktion des 2.4.7-Trinitro-naphthols-(1) (Bd. VI, S. 620) mit Zinnchlorür + Salzsäure H₂N·

in Alkohol (Kehrmann, Haberkant, B. 31, 2423; vgl. K., Steiner, B. 33, 3287). — Das salzsaure Salz oxydiert sich leicht unter Violettfärbung; wird von Eisenchlorid in wäßr. Lösung in 2.7-Diamino-naphthochinon-(1.4)-imid-(4) (Syst. No. 1874) übergeführt (K., H.). — $C_{10}H_{11}ON_3 + 3$ HCl + H₂O. Nadeln. Leicht löslich in Wasser (K., H.).

2. Aminoderivate des 2-Oxy-naphthalins $C_{10}H_8O = C_{10}H_7 \cdot OH$ (Bd. VI, S. 627).

Monoaminoderivate des 2-Oxy-naphthalins.

1-Amino-2-oxy-naphthalin, 1-Amino-naphthol-(2) C₁₀H₆ON, s. nebenstehende Formel. B. Man verteilt die Natriumverbindung des 1-Nitrosonaphthols-(2) [Naphthochinon-(1.2)-oxims-(1), Bd. VII, S. 712] in Wasser, fügt etwas Ammoniak oder Sodalösung hinzu und leitet bei 40°, zuletzt bei 100° Sohwefelwasserstoff ein (Groves, Soc. 45, 296; vgl. Stenhouse, Gro., Soc. 32, 52; A. 189, 153; B. 10, 1597). Entsteht ferner aus 1-Nitroso-naphthol-(2) durch Reduktion mit Zinnchlorür und Salzsäure (Paul, Z. Ang. 10, 48) oder mit Phenylhydrazin in Benzol (Plancher, G. 25 II, 392). Aus 1-Nitro-naphthol-(2) (Bd. VI, S. 653) mit Zinn und Salzsäure (Jacobson, B. 14, 806) oder mit Zinnchlorür und Salzsäure (Liebermann, Ja., A. 211, 48). Bei der Reduktion von 1-Benzolazo-naphthol-(2) (Syst. No. 2120) mit Zinn und Salzsäure unter Erwärmen (Lie., B. 16, 2861). Bei der Reduktion von 1-Benzolazo-2-acetoxy-naphthalin (Syst. No. 2120) mit Zinkstaub und Essigsäure in alkoh. Lösung (Goldschmdt, Brubacher, B. 24, 2306) oder mit Zinn und Salzsäure in alkoh. Lösung oder mit alkoh. Zinnchlorürlösung (Meldola, Morgan, Soc. 55, 117). Aus 1-Benzolazo-2-benzoyloxy-naphthalin mit Zinkstaub und Essigsäure in alkoh. Lösung oder mit Zinn und Salzsäure oder mit alkoh. Zinnchlorürlösung (Meldola, Morgan, Soc. 55, 124). Bei der elektrolytischen Reduktion von 1-[4-Sulfobenzolazo]-naphthol-(2) in Salzsäure bei Gegenwart von etwas Zinn (Boeheinger & Söhne, D. R. P. 121835; C. 1901 II, 152). Bei der Reduktion von 1-[4-Sulfobenzolazo]-naphthol-(2)

mit Zinn und Salzsäure (Grandmougin, Michel, B. 25, 981) oder mit Zinnehlorür und Salzsäure (Witt, B. 21, 3471, 3472; Paul; Russig, J. pr. [2] 62, 55) oder mit hydroschwefligsaurem Natrium Na₂S₂O₄ (Grandmougin, B. 39, 3561). — Darst. Man bringt die Natriumverbindung des 1-Nitroso-naphthols-(2), dargestellt aus 4 Tln. Naphthol, mit Wasser auf 80 Tle. und trägt allmählich unter fortwährendem Umrühren dies Gemisch in eine Mischung von 15 Tln. Salzsäure (D: 1,16) und 14 Tln. Zinnchlorürlösung (40 g Sn in 100 ccm enthaltend) ein; zuletzt erhitzt man, bis sich alles löst, und läßt langsam erkalten; nach 24 Stdn. saugt man das ausgeschiedene salzsaure 1-Amino-naphthol-(2) ab und wäscht es mit verdünnter Salzsäure; das Filtrat liefert beim Eindampfen weitere Mengen des Salzes. Man löst es in 8Tln. heißem Wasser, gibt etwas SO₂-Lösung hinzu und fällt die heiß filtrierte Lösung durch Zusatz von 1/20 des Volumens konz. Salzsäure (Groves, Soc. 45, 296; vgl. Paul, Z. Ang. 10, 48). In die Lösung von 200 g des käuflichen Natriumsalzes des 1-[4-Sulfo-benzolazo]-naphthols-(2) (Orange II) in 2 l siedendem Wasser trägt man 200 g Zinkstaub ein und dann unter stetem Kochen allmählich 1 l rohe Salzsäure; die farblos gewordene Lösung wird heiß filtriert und mit 200—300 ccm roher Salzsäure versetzt; noch vor völligem Erkalten saugt man das abgeschiedene salzsaure Salz ab (ZINCKE, A. 278, 188). Man mischt 1 Tl. des käuflichen Natriumsalzes des 1-[4-Sulfobenzolazo]-naphthols-(2) mit 3 Tln. Zinnchlorür und fügt soviel Salzsäure — etwa die 6-fache Menge des Farbstoffs — unter Erwärmen und Umrühren hinzu, daß das Ganze einen sich allmählich entfärbenden krystallinischen Brei bildet, saugt das gefällte Zinndoppelsalz in der Kälte ab und zerlegt es mit Schwefelwasserstoff; beim Verdampfen der vom Schwefelzinn in der Hitze abfiltrierten Lösung scheidet sich in der Hauptsache salzsaures 1-Amino-naphthol-(2) ab; das Filtrat hiervon gibt beim Abdampfen im Schwefelwasserstoffstrome ein Gemenge von salzsaurem 1-Amino-naphthol-(2) und Sulfanilsäure, das man nach dem Filtrieren mit Soda bis zur alkal. Reaktion versetzt und dann wiederholt mit alkoholfreiem Ather ausschüttelt; in dem Ather löst sich nur 1-Amino-naphthol-(2) (Lie., Ja., B. 14, 1311; A. 211, 53). Man übergießt 60 g käufliches Natriumsalz des 1-[4-Sulfo-benzolazo]-naphthols-(2) mit einer Mischung von 100 ccm Zinnchlorürlösung (40 g Zinn enthaltend) und 110 ccm Salzsäure (D: 1,16), schüttelt gut um, gießt nach 10 Minuten 300 ccm kochendes Wasser hinzu und filtriert kochend heiß; das beim Erkalten auskrystallisierte und das durch Eindampfen des Filtrates und Zusatz von Salzsäure erhaltene weitere Produkt löst man in 180 ccm kochendem Wasser, gibt 8 g NaOH (gelöst in 20 ccm Wasser) hinzu und nach 10 Minuten noch 10 g NaHCO₃; nach 10 Minuten filtriert man das freie 1-Amino-naphthol-(2) ab und wäscht es mit 180 ccm schwefelwasserstoffhaltigem Wasser (Groves, Soc. 45, 292). Krystallisiert beim Verdunsten der ather. Lösung in Blättchen, die im feuchten Zustande sehr unbeständig sind (Lie., Ja., A. 211, 54). Sehr schwer löslich in siedendem Wasser, wenig löslich in Ather (Lie., Ja., A. 211, 54). Löst sich in Ammoniak mit gelber Farbe, die beim Schütteln mit Luft dunkelbraun wird (LIE., Ja., A. 211, 54). Liefert bei der Oxydation mit Kaliumdichromat in verd. Schwefelsäure (STEN., GBO., Soc. 32, 52; A. 189, 153; B. 10, 1598; A. 194, 202; Lie., Ja., A. 211, 49) oder bei der Oxydation des salzsauren Salzes mit Eisenchlorid (Gro., Soc. 45, 298; Zi., A. 268, 274; Paul) Naphthochinon-(1.2) (Bd. VII, S. 709). Beim Einleiten von Chlor in die nicht gekühlte Suspension von salzsaurem 1-Aminonaphthol-(2) in Eisessig entsteht 3.4-Dichlor-naphthochinon-(1.2) (Bd. VII, S. 721) (ZINCKE, B. 19, 2499; Zi., Engelhardt, A. 283, 347); bleibt die mit Chlor gesättigte eisessigsaure Lösung 1-2 Tage stehen, so wird durch Wasser 3.3.4.4-Tetrachlor-1.2-dioxo-naphthalintetrahydrid-(1.2.3.4) als Trihydrat (Bd. VII, S. 700) gefällt (Zi., B. 21, 495; Zi., Arnst, A. 267, 328). Beim Versetzen der Lösung von 1-Amino-naphthol-(2) in überschüssiger Salzsäure mit Chlorkalklösung bei 0° entsteht Naphthochinon -(1.2) -chlorimid -(1) (Bd. VII, S. 712) (Friedländer, Reinhardt, B. 27, 240). Bei der Einw. von Brom auf 1-Amino-naphthol-(2) oder sein Sulfat erhält man 3.4-Dibrom-naphthochinon-(1.2) (Bd. VII, S. 722) (Zi., B. 19, 2496). Gibt in essigsaurer Lösung mit 2.4-Dinitro-benzaldehyd die Verbindung $C_{10}H_6 < NH > CH \cdot C_6H_3(NO_2)_2$ (Syst. No. 4201) (Sachs, Brunetti, B. 40, 3234). Überführung des 1-Amino-naphthols-(2) bezw. seiner Sulfonsäuren in Thiazinfarbstoffe durch Behandlung mit Nitrosoverbindungen sekundärer oder tertiärer aromatischer Amine in Gegenwart von Natriumthiosulfat: BAYER & Co., D.R.P. 90176; Frdl. 4, 459, oder durch Behandlung mit "Dialkyl-p-phenylendiamin-thiosulfonsaure" (S. 557 und 559) in Gegenwart von Oxydationsmitteln: BAYER & Co., D.R.P. 91232; Frdl. 4, 460. Umwandlung des 1-Amino-naphthols-(2) oder seiner Sulfonsäuren in Oxazinfarbstoffe durch Einw. von 6-Nitroso-3-dialkylamino-phenol: BAYER & Co., D. R. P. 77120; Frdl. 3, 394, bezw. durch Einw. von 2-Amino-5-dialkylaminophenol und einem Oxydationsmittel: BAYER & Co., D. R. P. 80744; Frdl. 4, 485. Darstellung von Azofarbstoffen durch Kuppelung von Diazoverbindungen mit 1-Amino-naphthol-(2): Akt. Ges. f. Anilinf., D. R. P. 77256, 79103; Frdl. 4, 800. — C₁₀H₂ON + HCl. Nadeln

(JA., B. 14, 806). Löslich in 15 Tln. kochendem Alkohol; wenig löslich in verdünnter Salzsäure (Gro., Soc. 45, 297). — Pikrat. Gelber Niederschlag. F: 109—110° (Goldschmidt, Schmid, B. 18, 572).

- 1-Amino-naphthol-(2)-methyläther $C_{11}H_{11}ON = H_2N \cdot C_{10}H_6 \cdot O \cdot CH_3$. B. Beim Behandeln der entsprechenden Nitroverbindung (Bd. VI, S. 653) mit Zinkstaub und Salzsäure (Paul, Z. Ang. 9, 622) oder mit Zinn und Salzsäure (Davis, P. Ch. S. No. 171; Chem. N. 74, 302). — Nadeln (aus Benzin). F: 54° (SCHROETER, A. 426 [1922], 137; vgl. auch CHARRIER, FERRERI, G. 42 II [1912], 121). — Liefert als Farbstoffkomponente wesentlich blauer nüanzierte Farbstoffe als a-Naphthylamin (P.).
- 1-Amino-naphthol-(2)-äthyläther $C_{12}H_{13}ON = H_2N \cdot C_{10}H_3 \cdot O \cdot C_2H_5$. B. Aus der enteprechenden Nitroverbindung (Bd. VI, S. 653) durch elektrolytische Reduktion in Gegenwart von Natriumacetat (ROHDE, Z. El. Ch. 7, 340) oder durch Reduktion mit Zinkstaub und wart von Natriumacetat (ROHDE, Z. Et. Ch. 7, 340) oder durch Reduktion mit Zinkstaud und Salzsäure (PAUL, Z. Ang. 9, 621). — Tafeln oder Prismen (aus Petroläther). F: 51°; Kp: 300° bis 302° (GAESS, J. pr. [2] 43, 27). Sehr leicht löslich in den gewöhnlichen Lösungsmitteln, etwas weniger in Petroläther (G.). Das salzsaure Salz gibt mit Eisenchlorid intensive Blaufärbung (R.). — Liefert beim Kochen mit Eisessig und etwas Essigsäureanhydrid (G.) oder beim Versetzen der Benzollösung mit Essigsäureanhydrid bei 30—40° (P.) 1-Acetaminonaphthol-(2)-äthyläther. Verwendung zur Darstellung von Azofarbstoffen: Cassella & Co., D. R. P. 82702; Frdl. 4, 875; Schultz, Tab. No. 268, 271). — C₁₂H₁₃ON + HCl. Blättshan (P.) chen (R.).
- [1-Amino-naphthyl-(2)]-oxyessigsäure $C_{19}H_{11}O_3N = H_2N \cdot C_{10}H_4 \cdot O \cdot CH_2 \cdot CO_2H$. B. Durch Lösen des zugehörigen inneren Anhydrids $C_{10}H_6$ Durch Lösen des zugehörigen inneren Anhydrids C₁₀H₆ O—CH₂ (Syst. No. 4281) in Alkalien und vorsichtiges Ansäuern mit Essigsäure (Bad. Anilin- u. Sodaf., D. R. P. 58614; Frdl. 3, 438). — Flocken. Geht leicht wieder in das innere Anhydrid über. Verwendung zur Darstellung von Azofarbstoffen: B. A. S. F., D. R. P. 58868; Frdl. 3, 543; BAYER & Co., D. R. P. 75356, 75357; Frdl. 3, 570, 574. — Natriumsalz. Nädelchen. Mäßig löslich in kaltem Wasser (B. A. S. F., D. R. P. 58614).
- 1-Methyläthylamino-naphthol-(2) $C_{18}H_{15}ON = C_2H_5 \cdot N(CH_3) \cdot C_{10}H_6 \cdot OH$. Bei der elektrolytischen Reduktion der Verbinndung C₁₀H₆ N(CH₉)·CO (Syst. No. 4281) in schwefelsaurer Lösung (Lees, Shedden, Soc. 83, 761). — Nadeln. F: 25—27°. Kp₄₀: 193°. CH_{N-3-1} (Syst. No. 4281) in schwefel-Leicht löslich in verdünnten wäßrigen Alkalien. Gibt in alkoholischer Lösung mit Eisenchlorid eine dunkelbraune Färbung. Wird durch Schütteln mit wäßrigen Lösungen von Eisenchlorid, Kaliumferricyanid oder Silbernitrat in β -Naphthochinon und Methyläthylamin übergeführt. — $C_{13}H_{18}ON + HI$. Nadeln (aus Aceton + Äther). Schmilzt bei 183° unter Jodwasserstoffentwicklung. — Salz der Sulfocamphylsäure (Bd. XI, S. 368) $C_{13}H_{18}ON + C_{9}H_{14}O_{5}S + H_{2}O$. Nadeln (aus Wasser). Leicht löslich in Alkohol. Wird aus alkohe Lösung durch äther in wassersteine Brismen von Schmilztunkt 202, 2040 mit Lie alkoh. Lösung durch Äther in wasserfreien Prismen vom Schmelzpunkt 203—204° niedergeschlagen.
- [1 Methyläthylamino naphthyl (2)] acetat $C_{15}H_{17}O_2N = C_2H_5 \cdot N(CH_3) \cdot C_{10}H_6 \cdot O$ CO·CH₃. B. Aus 1-Methyläthylamino-naphthol-(2) durch Acetylierung (L., SH., Soc. 83, 761). — Farbloses Ol. Kp₄₀: 212—215°.
- 1-Anilino-naphthol-(2) $C_{16}H_{18}ON = C_{6}H_{5}\cdot NH\cdot C_{10}H_{6}\cdot OH$. Zur Formulierung vgl. Wahl, Lantz, C.r. 175 [1922], 173; 180 [1925], 1352. B. Aus Naphthochinon-(1.2)-anil-(1) (Bd. XII, S. 209) bei kurzem Erwärmen in trocknem Zustand auf 80° oder beim Verdunsten der Lösungen, neben viel Harz (H. Euler, B. 89, 1040).. Man versetzt allmählich eine eiskalte Lösung von 5 g Nitrosobenzol in 20 g Aceton mit einer Mischung von 7 g β -Naphthol in 10 g Aceton und 4 g Salmiak + 4 g Natron in 30 g Wasser (A. EULER, H. EULER, B. 39, 1041; vgl. W., L., C. r. 180, 1352). — Schuppen (aus Benzol). F: 156°; sehr leicht löslich in Alkohol, Äther, Benzol. Unlöslich in Säuren, löslich in Alkalien (A. E., H. E.).
- 1-Bensalamino-naphthol-(2) $C_{17}H_{13}ON = C_0H_0\cdot CH:N\cdot C_{10}H_0\cdot OH$. B. Man gibt zu der abgekühlten Lösung von salzsaurem 1-Amino-naphthol-(2) in Wasser eine konzentrierte wäßrige Natriumacetatlösung und schüttelt das hierdurch in feiner Suspension erhaltene 1-Amino-naphthol-(2) mit einer Lösung von Benzaldehyd in wenig Ligroin oder Toluol (Möhlau, Adam, Zeitschr. f. Farbenindustrie 5, 403; C. 1907 I, 107). — Hellgelbe Nadeln aus Chloroform + Petroläther). F: 129°. In konz. Schwefelsäure gelb löslich.
- 1-[2-Nitro-benzalamino]-naphthol-(2) $C_{17}H_{11}O_{7}N_{2} = O_{2}N \cdot C_{6}H_{4} \cdot CH : N \cdot C_{10}H_{6} \cdot OH$. B. Analog 1-Benzalamino-naphthol-(2) (M., A., Zeitschr. f. Farbenindustrie 5, 405; C. 1907 I, 108). Gelbe Nadeln (aus Toluol). F. 123°. Leicht löslich in allen organ. Lösungsmitteln; in konz. Schwefelsäure rotorange löslich.
- 1-[3-Nitro-benzalamino]-naphthol-(2) $C_{17}H_{12}O_3N_2 = O_2N\cdot C_6H_4\cdot CH:N\cdot C_{16}H_6\cdot OH.$ B. Analog 1-Benzalmino-naphthol-(2) (M., A., Zeitschr. f. Farbenindustrie 5, 407; C. 1907 I, 108). — Gelbe Nadeln (aus Chloroform + Petroläther). F: 105°. In konz. Schwefelsäure orange löslich.

- 1-[4-Nitro-benzalamino]-naphthol-(2) C₁₇H₁₂O₃N₂ = O₂N·C₆H₄·CH:N·C₁₀H₆·OH. B. Beim Eingießen einer heißen wäßrigen Lösung von salzsaurem 1-Amino-naphthol-(2) in die heiße Lösung von 4-Nitro-benzaldehyd und Natriumacetat in 95% gem Alkohol (Möhlau, B. 31, 2258). Scharlachrote Prismen (aus Alkohol). F: 174° (M.; M., Adam, Zeitschr. f. Farbenindustrie 5, 408; C. 1907 I, 108). In kalter verdünnter Natronlauge mit kirschroter Farbe löslich; Natronlauge färbt die alkoholische Lösung violett (M.). Die Lösung in konz. Schwefelsäure ist dunkelorange (M.; M., A.). C₁₇H₁₂O₃N₂ + HCl. Bräunliche Nadeln. Zersetzt sich bei 230—235° (POPE, FLEMMING, Soc. 93, 1918).
- 1-Cinnamalamino-naphthol-(2) $C_{19}H_{15}ON = C_{8}H_{5}\cdot CH:CH:CH:N\cdot C_{10}H_{8}\cdot OH$. B. Man mischt eine Lösung von salzsaurem 1-Amino-naphthol-(2) in Wasser mit Natriumacetat und schüttelt das hierdurch in feiner Suspension erhaltene 1-Amino-naphthol-(2) mit einer Lösung von Zimtaldehyd in wenig Ligroin (Möhlau, Adam, Zeitschr. f. Farbenindustrie 5, 404; 1907 I, 107). Dunkelgelbe Nadeln (aus Ligroin). F: 128°. In konz. Schwefelsäure dunkelorange löslich.
- 1-[2-Nitro-cinnamalamino]-naphthol-(2) $C_{19}H_{14}O_3N_3=O_5N\cdot C_6H_4\cdot CH:CH:CH:N\cdot C_{10}H_6\cdot OH.$ B. Man läßt eine alkoh. Lösung von 2-Nitro-zimtaldehyd und Natriumacetat in eine erkaltete wäßrige Lösung von salzsaurem 1-Amino-naphthol-(2) einlaufen (M., A., Zeitschr. f. Farbenindustrie 5, 406; C. 1907 I, 108). Gelblichbraune Nadeln (aus Chloroform + Ligroin). F: 100°. Leicht löslich in den gewöhnlichen Solvenzien. In konz. Schwefelsäure rotorange löslich.
- 1-[3-Nitro-cinnamalamino]-naphthol-(2) $C_{1b}H_{14}O_3N_2 = O_2N\cdot C_6H_4\cdot CH: CH: CH: N\cdot C_{10}H_6\cdot OH.$ B. Man läßt eine Lösung von 3-Nitro-zintaldehyd in Chloroform in eine durch Versetzen einer wäßrigen Lösung von salzsaurem 1-Amino-naphthol-(2) mit Natriumacetat erhaltene Suspension der Base einfließen (M., A., Zeitechr. f. Farbenindustrie 5, 407; C. 1907 I, 108). Dunkelgelbe Krystalle (aus Chloroform oder Tetrachlorkohlenstoff). F: 164°. Leicht löslich in Ligroin, Alkohol, Toluol. In konz. Schwefelsäure dunkelorange löslich.
- 1-[4-Nitro-cinnamalamino]-naphthol-(2) $C_{10}H_{14}O_3N_3=O_2N\cdot C_0H_4\cdot CH:CH:CH:N\cdot C_{10}H_6\cdot OH.$ B. Beim Mischen einer heißen Lösung von 4-Nitro-zimtaldehyd und Natriumacetat in Alkohol mit einer heißen wäßrigen Lösung von salzsaurem 1-Amino-naphthol-(2) (M., A., Zeitschr. f. Farbenindustrie 5, 409; C. 1907 I, 108). Hellrote Tafeln (aus Alkohol + Aceton). F: 164°. Leicht löslich in Chloroform, Toluol, Essigester, schwer in Petroläther und Ligroin. In konz. Schwefelsäure dunkelrot löslich.
- 1-Formamino-naphthol-(2) $C_{11}H_0O_2N = OHC\cdot NH\cdot C_{10}H_6\cdot OH$. B. Durch Erhitzen von Methenyl-1-amino-naphthol-(2) $C_{10}H_6 < O$ CH (Syst. No. 4198) mit Wasser unter Rückfluß (O. Fischer, Römer, J. pr. [2] 78, 440). Nadeln (aus Alkohol). F: 204°. Schwer löslich in Wasser und Alkohol; leicht löslich in Alkalien.
- 1-Acetamino-naphthol-(2) C₁₂H₁₁O₂N = CH₃·CO·NH·C₁₀H₄·OH. B. Beim Erwärmen von N·a·Naphthyl-isoanisaldoxim C₁₀H₇·N·CH·C₆H₄·O·CH₃ (Syst. No. 4221) mit Essigsäureanhydrid (Scheiber, Brandt, J. pr. [2] 78, 91). Entsteht neben Äthenyl-1-amino-naphthol-(2) C₁₀H₆·O·CH₃ (Syst. No. 4198) beim Kochen von [1-Nitro-naphthyl-(2)]-acetat (Bd. VI, S. 654) mit Zinkstaub und Eisessig; man fällt die filtrierte Lösung mit Wasser und behandelt den erhaltenen Niederschlag mit verd. Natronlauge, welche 1-Acetamino-naphthol-(2) löst und die Äthenylverbindung zurückläßt (Böttcher, B. 16, 1938). Entsteht neben [1-Acetamino-naphthyl-(2)]-acetat und Äthenyl-1-amino-naphthol-(2) bei 3½-stdg. Erhitzen von 1-Amino-naphthol-(2)-hydrochlorid mit Essigsäureanhydrid und Natriumacetat; beim Eingießen in Wasser bleibt nur 1-Acetamino-naphthol-(2) in Lösung; den Niederschlag löst man in heißem Alkohol; beim Erkalten scheidet sich [4-Acetamino-naphthyl-(2)]-acetat aus (MICHEL, GRANDMOUGIN, B. 25, 3430). Blättchen (aus sehr verd. Alkohol oder aus Methylalkohol). Schmilzt unter Bräunung bei 235° (M., G.), 235,5° (SCH., Br.). Sublimiert zum Teil unzersetzt (Bö.; M., G.). Löslich in Alkohol, Benzol, Schwefelkohlenstoff, Äther, Aceton, leichter in siedendem Eisessig; sehr leicht löslich in verd. Natronlauge (M., G.). Geht bei der Destillation in Äthenyl-1-amino-naphthol-(2) über (Bö.; M., G.).
- 1-Acetamino-naphthol-(2)-methyläther $C_{13}H_{13}O_{2}N = CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{6}\cdot O\cdot CH_{3}$. Monokline Krystalle; F: 175°; gibt mit Sulfurylchlorid ein Monochlorderivat (8. 680); mit Brom bei 0° 6-Brom-1-acetamino-naphthol-(2)-methyläther (Davis, P. Ch. S. No. 171; Chem. N. 74, 302f.
- 1-Acetamino-naphthol-(2)-äthyläther $C_{16}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot C_2H_5$. B. Beim Versetzen der Benzollösung von 1-Amino-naphthol-(2)-äthyläther mit Essigsäure-anhydrid bei 30—40° (Paul, Z. Ang. 9, 621). Beim Kochen von 1-Amino-naphthol-(2)-äthyläther mit Eisessig und etwas Essigsäureanhydrid (Gaes, J. pr. [2] 43, 27). Nadeln (aus

- Wasser). F: 144° (P.), 145° (G.). Bei der Einw. von Brom bei 0° entsteht 6-Brom-1-acetamino-naphthol-(2)-äthyläther (Davis, P. Ch. S. No. 171; Chem. N. 74, 302).
- [1-Acetamino-naphthyl-(2)]-acetat, O.N.-Diacetyl-[1-amino-naphthol-(2)] $C_{14}H_{12}O_3N = CH_3 \cdot CO \cdot NH \cdot C_{10}H_4 \cdot O \cdot CO \cdot CH_3$. B. Man erhitzt 1 Tl. salzsaures 1-Amino-naphthol-(2) mit ca. 2 Tln. Essigsäureanhydrid bis zur Lösung (Michel, Grandmougin, B. 25, 3432). Entsteht ferner beim Kochen von salzsaurem 1-Amino-naphthol-(2) mit Eisessig, Natriumacetat und Essigsäureanhydrid (Meldola, Morgan, Soc. 55, 121). Prismen (aus Alkohol). F: 206° (Me., Mo.). Sublimiert unzersetzt; leicht löslich in heißem Alkohol (Me., Mo.).
- [1-Acetamino-naphthyl-(2)]-oxyessigsäure $C_{14}H_{13}O_4N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CH_3\cdot CO_2H$. B. Beim Erwärmen von 1-Acetamino-naphthol-(2) mit Chloressigsäure und Kalilauge (Spitzer, B. 34, 3201). Krystalle. F: 234—235°. Schwer löslich in Alkohol. Wird durch Kochen mit Kalilauge nur schwer verseift.

Äthylester $C_{16}H_{17}O_4N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CH_2\cdot CO_4\cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Suspension von [1-Acetamino-naphthyl-(2)]-oxyessigsäure (Sp., B. 34, 3202). — Nadeln. F: 128°. Leicht löslich in Alkohol.

- 1-Benzamino-naphthol-(2) C₁₇H₁₃O₅N = C₆H₅·CO·NH·C₁₀H₆·OH. B. Bei längerem Kochen von Benzoesäure-[1-nitro-naphthyl-(2)]-ester (Bd. IX, S. 125) mit Eisessig und Zinkstaub (Böttoher, B. 16, 1935). Bei der Reduktion von 1-Benzolazo-2-benzoyloxy-naphthalin (Syst. No. 2120) mit Zinkstaub und Eisessig (Auwers, Eisenlohe, B. 41, 421) in alkoh. Lösung (H. Goldschmidt, Eokardt, J. pr. [2] 80, 139). Beim Kochen von salzsaurem 1-Amino-naphthol-(2) mit Benzoesäureanhydrid und Natriumacetat in Eisessig (Scheier, Brandt, J. pr. [2] 78, 92). Beim Kochen von O.N-Dibenzoyl-[1-amino-naphthol-(2)] mit alkoh. Natronlauge (Au., El.). Bei der Einw. von Benzoesäureanhydrid auf N-α-Naphthylhydroxylamin (Syst. No. 1935) in Alkohol (Sch., Br., J. pr. [2] 78, 90). Entsteht auch bei der Einw. von Benzoesäureanhydrid auf N-α-Naphthyl-isobenzaldoxim C₁₀H₇·N OCH·C₆H₄·O·CH₃ (Syst. No. 4221) (Sch., Br., J. pr. [2] 78, 86, 87). Blättchen (aus Methylalkohol oder verd. Äthylalkohol). Rhombisch bipyramidal (V. M. Goldschmidt, J. pr. [2] 80, 140). F: 245° (Bö.), 245—246° (H. G., E.), 248—249° (Soh., Br.). Unlöslich in Ammoniak, löslich in Natronlauge (Bö.). Zerfällt beim Erhitzen in Wasser und Benzenyl-1-amino-naphthol-(2) C₁₀H₆ No. C·C₆H₅ (Syst. No. 4202) (Bö.).
- [1-Bensamino-naphthyl-(2)]-bensoat, .O.N-Dibensoyl-[1-amino-naphthol-(2)] $C_{34}H_{17}O_3N=C_4H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Aus 1-Amino-naphthol-(2) mit Benzoylchlorid und Natronlauge (Sachs, B. 39, 3024), Durch Kochen von salzsaurem 1-Amino-naphthol-(2) mit Natriumbenzoat und Benzoylchlorid (Meldola, Mobgan, Soc. 55, 121). Nadeln (aus Alkohol). F: 226,5° (Me., Mo.), 235,5° (S.). Wenig löslich in Alkohol (Me., Mo.), löslich in Aceton, heißem Eisessig, Benzol und Chloroform (S.).
- [1-Bensamino-naphthyl-(2)]-anisat, N-Bensoyl-O-anisoyl-[1-amino-naphthol-(2)] $C_{22}H_{12}O_4N=C_0H_1\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CO\cdot C_0H_4\cdot O\cdot CH_2$. B. Aus 1-Bensamino-naphthol-(2) mit Anisoylchlorid (Bd. X, S. 163) und Natronlauge (Scheiber, Brandt, J. pr. [2] 78, 94). F: 181°.
- 1-Anisoylamino-naphthol-(2) $C_{10}H_{18}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CO\cdot NH\cdot C_{10}H_4\cdot OH.$ B. Beim Behandeln von O.N-Dianisoyl-[1-amino-naphthol-(2)] mit alkoh. Natriumäthylatlösung (SCH., B., J. pr. [2] 78, 94). Blättchem. F: 241—243°. Liefert beim Erhitzen mit Benzoesäureanhydrid auf 200° [1-Anisoylamino-naphthol-(2)]-benzoat und 1-Benzamino-naphthol-(2) (SCH., B., J. pr. [2] 78, 89).
- [1 Anisoylamino naphthyl (2)] bensoat, O Bensoyl N anisoyl [1 amino naphthol-(2)] C₁₂H₁₃O₄N = CH₃·O·C₄H₄·CO·NH·C₁₂H₄·O·CO·C₄H₄. B. Beim Erhitzen von 1-Anisoylamino-naphthol-(2) mit Bensossäureanhydrid auf 200⁶ (Sch., B., J. pr. 12] 78, 89, 95). F: 189⁶. Löslich in den gebräuchlichen organischen Lösungsmitteln außer in Ather und Petroläther.
- [1-Anisoylamino-naphthyl-(2)]-anisat, O.N.-Dianisoyl-[1-amino-naphthol-(2)] $C_{2a}H_{21}O_{z}N=CH_{z}\cdot O\cdot C_{a}H_{z}\cdot CO\cdot NH\cdot C_{1a}H_{z}\cdot O\cdot CO\cdot C_{a}H_{z}\cdot O\cdot CH_{z}$. B. Aus 1-Amino-naphthol-(2) mit Anisoylchlorid und Natroniauge (Schulber, Brandt, J. pr. [2] 78, 93). Krystalle (aus Methylalkohol). F: 215°. Löslich in den üblichen organischen Lösungsmitteln außer in Ather und Petroläther.
- x-Chlor-1-acetamino-naphthol-(2)-methyläther $C_{10}H_{12}O_{2}NCl=CH_{2}\cdot CO\cdot NH\cdot C_{10}H_{1}Cl\cdot O\cdot CH_{2}$. Bei der Einw. von $SO_{2}Cl_{2}$ auf 1-Acetamino-naphthol-(2)-methyläther (DAVIS, P. Ch. S. No. 171; Chem. N. 74, 302). Krystalle. F: 167°.

- **6-Brom-1-amino-naphthol-(2)-methyläther** $C_{11}H_{10}ONBr = H_2N \cdot C_{10}H_4Br \cdot O \cdot CH_3$. B. Aus 1-Nitro-naphthol-(2)-methyläther (Bd. VI, S. 653) durch sukzessive Bromierung und Reduktion (D., P. Ch. S. No. 171; Chem. N. 74, 302). F: 73°.
- **6-Brom-1-amino-naphthol-(2)-äthyläther** $C_{18}H_{12}ONBr = H_2N \cdot C_{10}H_5Br \cdot O \cdot C_2H_5$. B. Aus 1-Nitro-naphthol-(2)-äthyläther (Bd. VI, S. 653) durch sukzessive Bromierung und Reduktion (D., P. Ch. S. No. 171; Chem. N. 74, 302). Aus 6-Brom-1-nitro-naphthol-(2) (Bd. VI, S. 655) durch sukzessive Äthylierung und Reduktion (D.). F: 84°.
- **6-Brom-1-acetamino-naphthol-(2)-methyläther** $C_{13}H_{12}O_3NBr = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5Br \cdot O \cdot CH_3$. B. Bei der Einw. von Brom auf 1-Acetamino-naphthol-(2)-methyläther bei 0° (D., P. Ch. S. No. 171; Chem. N. 74, 302). Aus 6-Brom-1-amino-naphthol-(2)-methyläther durch Acetylierung (D.). F: 252°.
- 6 Brom 1 acetamino naphthol (2) äthyläther $C_{14}H_{14}O_2NBr = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5Br \cdot O \cdot C_2H_5$. B. Bei der Einw. von Brom auf 1-Acetamino-naphthol (2)-äthyläther bei 0° (D., P. Ch. S. No. 171; Chem. N. 74, 302). Aus 6-Brom 1-amino-naphthol (2)-äthyläther durch Acetylierung (D.). F: 246°.
- **4-Nitro-1-acetamino-naphthol-(2)** $C_{12}H_{10}O_4N_8 = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5(NO_9) \cdot OH$. B. Beim Verseifen von O.N-Diacetyl-[4-nitro-1-amino-naphthol-(2)] mit Alkali (NIETZKI, BECKEB, B. **40**, 3397). F: 210°.
- [4-Nitro-1-acetamino-naphthyl-(2)]-acetat, O.N-Diacetyl-[4-nitro-1-amino-naphthol-(2)] $C_{14}H_{12}O_5N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO_2)\cdot O\cdot CO\cdot CH_3$. B. Beim Nitrieren von O.N-Diacetyl-[1-amino-naphthol-(2)] (NIETZKI, BECKER, B. 40, 3397). F: 200° (N., B.). Gibt bei der Reduktion 1.4-Diamino-naphthol-(2) (N., B.; vgl. Kalle & Co., D. R. P. 195901; Frdl. 9, 233; C. 1908 I, 1229).
- 1 Amino thionaphthol (2), [1 Amino naphthyl (2)] mercaptan $C_{10}H_6NS = H_1N \cdot C_{10}H_6 \cdot SH$. B. Beim Schmelzen von Bis-naphthothiazolyl $C_{10}H_6 < \frac{N}{S} > C \cdot C < \frac{N}{S} > C_{10}H_6$ (Syst. No. 4635) mit Ätzkali (A. W. Hofmann, B. 20, 1802). Bei 4-stdg. Erhitzen von 4 g Benzenyl-1-amino-thionaphthol-(2) $C_{10}H_6 < \frac{N}{S} > C \cdot C_6H_5$ (Syst. No. 4202) mit 12 g Ätzkali und ca. 15 ccm Alkohol im geschlossenen Rohr auf 190—200° (Jacobson, B. 20, 1899; 21, 2625). Außerst leicht oxydierbar und daher nicht rein dargestellt (A. W. H.). Bei der Oxydation entsteht Bis-[1-amino-naphthyl-(2)]-disulfid (J.).
- Bis-[1-amino-naphthyl-(2)]-disulfid $C_{20}H_{16}N_2S_2=[H_2N\cdot C_{10}H_6\cdot S-]_2$. B. Beim Einleiten von Luft in eine Lösung von 1-Amino-thionaphthol-(2) in alkoh. Kali (JACOBSON, B. 20, 1899; 21, 2625). Gelbe Blättchen (aus Alkohol). F: 131—132°; ziemlich schwer löslich in Alkohol; schwache Base (J., B. 20, 1900). Liefert beim Kochen mit Essigsäureanhydrid S.N-Diacetyl-[1-amino-thionaphthol-(2)] (J., B. 20, 1900). Liefert bei 3—4-stdg. Erhitzen mit Schwefelkohlenstoff im geschlossenen Rohr auf 110—130° die Verbindung $C_{10}H_4 < \frac{NH}{8}$ —CS (Syst. No. 4281) (J., B. 21, 2626).
- 8.N-Diacetyl-[1-amino-thionaphthol-(2)], 8.N-Diacetyl-[1-amino-naphthyl-(2)]-mercaptan} $C_{14}H_{13}O_3NS = CH_3 \cdot CO \cdot NH \cdot C_{10}H_4 \cdot S \cdot CO \cdot CH_3$. Beim Kochen von Bis-[1-amino-naphthyl-(2)]-disulfid mit Essigsäureanhydrid (J., B. 20, 1900). Spieße (aus Alkohol). F: 173,5—175°. Ziemlich schwer löslich in Alkohol. Zerfällt beim Erhitzen mit konz. Salzsäure auf 200—220° teilweise in Essigsäure und Äthenyl-1-amino-thionaphthol-(2) $C_{10}H_6 < N > C \cdot CH_3$ (Syst. No. 4198).
- 8-Amino-2-oxy-naphthalin, 3-Amino-naphthol-(2) C₁₀H₉ON = OH NH₂.

 B. Bei mehrstündigem Erhitzen von 1 Tl. 2.3-Dioxy-naphthalin (Bd. VI, S. 982) mit 5 Tln. 30% (igem Ammoniak auf 140—150% (Höchster Farbw., D. R. P. 73076; Frdl. 3, 496; vgl. Friedländer, v. Zakrzewski, B. 27, 763). Beim Erhitzen von 2.3-Dioxy-naphthalin mit Ammoniumsulfit und Ammoniak (Bad. Anilin- u. Sodaf., D. R. P. 117471; C. 1901 I, 349).

 Nädelchen (aus Wasser). F: 234%; leicht löslich in Alkohol, schwer in Äther und Benzol (F., v. Z.). Verwendung zur Herstellung von Azofarbstoffen auf der Faser: Bayer & Co., D. R. P. 99468; C. 1899 I, 156.
- 8-[24-Dinitro-benzalamino]-naphthol-(2) $C_{17}H_{11}O_5N_3=(O_2N)_2C_6H_8\cdot CH:N\cdot C_{10}H_4\cdot OH.$ B. Aus 2.4-Dinitro-benzaldehyd und 3-Amino-naphthol-(2) in essigsaurer Lösung (Saches, Brunetti, B. 40, 3233). Gelbe Nadeln (aus Essigester). F: 204° (Zers.). Leicht löslich in kaltem Pyridin, in der Wärme in Eisessig, Benzol (1:80), Essigester (1:50); löslich in alkoh. Kalilauge mit rotbrauner Farbe.

- 3 [(2.4 Dinitro bensalamino) naphthyl (2)] bensoat $C_{24}H_{15}O_6N_3 = (O_2N)_2C_6H_3$. $CH: N \cdot C_{10}H_5 \cdot O \cdot CO \cdot C_6H_5$. B. Aus 3-[2.4-Dinitro-benzalamino]-naphthol-(2) durch Benzoy-lieren in Pyridin (S., B., B. 40, 3234). — Farbt sich bei 185°, schmilzt bei 243° unter Zersetzung. Löslich in Essigester (1:45), Benzol (1:60), Eisessig, weniger in Alkoholen und Ather.
- [8-Acetamino-naphthyl-(2)]-acetat, O.N-Diacetyl-[8-amino-naphthol-(2)] $C_{14}H_{18}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CO\cdot CH_3$. B. Beim Erwärmen von 3-Amino-naphthol-(2) mit Essigsäureanhydrid (FRIEDLÄNDER, v. ZAKRZEWSKI, B. 27, 764).
- 3-Bensamino-naphthol-(2) $C_{17}H_{12}O_2N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH$. B. Aus 3-Aminonaphthol-(2) mit Benzoylchlorid und Natronlauge (Sachs, B. 39, 3024). Sechsseitige Blättchen (aus Alkohol). F: 233,5°. Löslich in Aceton und heißem Eisessig, schwer löslich in Benzol; löslich in Alkalien.
- 4-Amino-2-oxy-naphthalin, 4-Amino-naphthol-(2) $C_{10}H_0ON$, s. nebenstehende Formel. B. Beim Erhitzen von 1 Tl. Naphthylamin-(1)-OH sulfonsäure-(3) (Syst. No. 1923) mit 4-5 Tln. Atzkali auf 250-260° (FRIED-LÄNDER, B. 28, 1952). — Nadeln (aus Alkohol). Zersetzt sich bei 1850. NH. löslich in Benzol und Chloroform, löslich in Alkohol und heißem Xylol.
- 4-Acetamino-naphthol-(2) $C_{12}H_{11}O_2N=CH_2\cdot CO\cdot NH\cdot C_{10}H_6\cdot OH$. Nadeln (aus Essigsäure). F: 179° (F., B. 28, 1953). Verwendung zur Darstellung von Oxazinfarbstoffen durch Kondensation mit Nitrosoverbindungen: BAYER & Co., D. R. P. 77802; Frdl. 4, 481.
- [4-Bensamino-naphthyl-(2)]-bensoat, O.N-Dibensoyl-[4-amino-naphthol-(2)] $C_{24}H_{17}O_3N=C_4H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. Beim Behandeln von oxalsaurem 4-Amino-naphthol-(2) mit Benzoylchlorid und Kalilauge (SCHÄDEL, Dissertation [Berlin 1907], 8. 54; SACHS, B. 39, 3024). Schwach gelbliche Blättohen (aus Eisessig). F: 309—310°. Löslich in Aceton, heißem Eisessig, Benzol und Chloroform.
- 1.3-Dichlor-4-anilino-naphthol-(2) $C_{16}H_{11}ONCl_2=C_6H_5\cdot NH\cdot C_{10}H_4Cl_2\cdot OH.$ B. Beim Versetzen der alkoh. Lösung von 1 Tl. 1.1.3-Trichlor-2-oxo-naphthalin-dihydrid-(1.2) (Bd. VII, S. 386) mit 2 Tln. Anilin; man filtriert nach 2 Tagen das ausgeschiedene 3-Chlor-2-oxy-naphthochinon-(1.4)-anil-(4) (Bd. XII, S. 225) ab und fällt das Filtrat mit salzsäurehaltigem Wasser (ZINCKE, KEGEL, B. 21, 3546; Z., EGLY, A. 300, 190). — Krystalle (aus Chloroform), Nadeln (aus Eisessig). F: 162°; leicht löslich in heißem Eisessig (Z., K.). — Liefert durch Einw. von Chlor in eisessig-salzsaurer Lösung 2.2.4.4-Tetrachlor-1.3-dioxo-naphthalin-tetra-hydrid-(1.2.3.4) (als Hydrat) (Bd. VII, S. 702) (ZINOKE, EGLY, A. 800, 190).

Monoacetylderivat $C_{18}H_{18}O_8NCl_2=C_{10}H_8ONCl_2(C_8H_8)(CO\cdot CH_8)$. B. Beim Erhitzen von 1.3-Dichlor-4-anilino-naphthol-(2) mit Essigsäureanhydrid (ZINCKE, KEGEL, B. 21, 3546). — Prismen (aus Alkohol oder Eisessig). F: 164°.

- 1-Nitroso-4-amino-naphthol-(2) $C_{10}H_2O_2N_2 = H_2N \cdot C_{10}H_3(NO) \cdot OH$ ist desmotrop mit 2-Oxy - naphthochinon - (1.4)-imid - (4) - oxim - (1) bezw. 4-Amino-naphthochinon-(1.2)-oxim-(1), Bd. VIII, S. 304.
- 5 Amino 2 oxy naphthalin, 5 Amino naphthol (2) $C_{10}H_{2}ON$, s. nebenstehende Formel. B. Durch Erhitzen von β -Naphthol oder β -Naphtholnstrium mit Natriumamid in Naphthalin auf 220° (Sachs, D. R. P. OH Naphthol-(2)-sulfonsaure-(8) (Bd. XI, S. 282) oder Naphthol-(2)-sulfonsaure-(8) mit Natriumamid und Naphthalin auf 230—240° (Sa., B. 39, 3014; D. R. P. 173522; C. 1906 II, 931). Bei vorsichtiger Reduktion von 5-Nitro-naphthol-(2) (Bd. VI, S. 654) mit Zinnehlorür, Zinn und Salzsaure (FRIEDLÄNDER, SZYMANSKI, B. 25, 2079). Aus 5-Amino-naphthol-(2)-sulfonsaure-(8) (Syst. No. 1926) und Natriumamalgam bei mehrstingiger Einw. unter Durchleiten von CO₃ (F., Kielbasinski, B. 29, 1979). — Nadeln (aus Wasser). F: 186° (Sa., B. 39, 3016). Leicht löslich in den gebräuchlichen Lösungsmitteln (F., Sz.); F: 186° (SA., B. 89, 3016). Leicht löslich in den gebräuchlichen Lösungsmitteln (F., Sz.); löslich in Ammoniak mit bläulicher Fluorescenz; sehr empfindlich gegen Oxydationsmittel; färbt sich mit Eisenchlorid, Kaliumpermanganat und Kaliumdichromat dunkelviolettschwarx; gibt mit Chlorkalk gelbe, schnell dunkler werdende Flocken; läßt sich leicht diazotieren und mit β -Naphthol kuppeln (Sa., B. 89, 3016). Herstellung von Azofarbstoffen durch Kuppelung von Diazoverbindungen mit 5-Amino-naphthol-(2): Cassella & Co., D. R. P. 78875, 86848; Fröl. 4, 697, 863. — Pikrat $C_{16}H_{2}ON + C_{6}H_{2}O_{7}N_{2}$. Gelbe Nadeln (aus ganz verd. Pikrinsäurelösung). F: 183° (Sa., B. 39, 3025), 186° (Sa., D. R. P. 173522)).

¹⁾ Nach Brown, Hebden, Withhow (Am. Soc. 51 [1929], 1768) ist der Schmelspunkt des Pikrats 170° (korr.).

- 5 [2.4 Dinitro beneslamino] naphthol (2) $C_{17}H_{11}O_5N_3 = (O_2N)_2C_6H_3 \cdot CH:N \cdot C_{10}H_6 \cdot OH$. B. Aus 2.4-Dinitro-benzaldehyd und 5-Amino-naphthol (2) in essigsaurer Lösung (Sachs, Brunetti, B. 40, 3234). Orangefarbene Nadeln (aus Essigester), sechsseitige Prismen (aus Nitrobenzol). F: 201° (Zers.). Löslich in 15 Tln. warmem Essigester, löslich in Aceton und Eisessig; löslich in alkoh. Alkalien mit dunkelroter Farbe.
- 5-Acetamino-naphthol-(2) C₁₂H₁₁O₂N = CH₃·CO·NH·C₁₀H₅·OH. B. Durch Übergießen von 5-Amino-naphthol-(2) mit Acetanhydrid (Kehrmann, Denk, B. 33, 3296; Sachs, B. 39, 3025). Nadeln (aus verd. Alkohol). F: 213—214° (K., D.), 215—216° (S., B. 39, 3025), 218° (S., D. R. P. 173522; C. 1906 II, 931). Gut löslich in Alkohol, Eisessig und siedendem Wasser (K., D.).
- 5-Acetamino-naphthol-(2) methyläther $C_{13}H_{12}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CH_3$. B. Aus 5-Acetamino-naphthol-(2) und Dimethylsulfat (Sachs, B. 39, 3025). Verfilzte Nadeln (aus verd. Alkohol). F: 140°.
- [5-Acetamino-naphthyl-(2)]-acetat, O.N-Diacetyl-[5-amino-naphthol-(2)] $C_{14}H_{19}O_3N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CO\cdot CH_3$. B. Bei 8-stdg. Kochen von 5-Amino-naphthol-(2) mit Acetanhydrid und einem Tropfen konz. Schwefelsäure (S., B. 39, 3025). Krystalle (aus Eisessig).
- 5-Bensamino-naphthol-(2) $C_{17}H_{13}O_2N = C_6H_5 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot OH$. B. Beim Kochen von O.N-Dibenzoyl-[5-amino-naphthol-(2)] mit der berechneten Menge Alkali (S., B. 39, 3025). Nädelchen (aus verd. Alkohol). F: 152°.
- [5-Bensamino-naphthyl-(2)]-bensoat, O.N-Dibensoyl-[5-amino-naphthol-(2)] $C_{34}H_{17}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Aus 5-Amino-naphthol-(2) mit Benzoylchlorid und Natronlauge (S., B. 39, 3025). Nadeln (aus Alkohol). F: 223°.
- 1-Nitroso-5-acetamino-naphthol-(2) $C_{13}H_{10}O_3N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 5-Acetamino-naphthochinon-(1.2)-oxim-(1) $CH_3\cdot CO\cdot NH\cdot C_{10}H_5(:N\cdot OH):O$, Syst. No. 1874.
- Bis-[5-amino-naphthyl-(2)]-disulfid $C_{30}H_{16}N_{3}S_{3} = [H_{3}N \cdot C_{10}H_{4} \cdot S_{-}]_{2}$. B. Bei 3-stdg. Kochen von 5-Nitro-naphthalin-sulfonsäure-(2)-amid (Bd. XI, S. 186) mit überschüssiger Jodwasserstoffsäure (D: 1,96) und rotem Phosphor (Ekbom, B. 24, 332). Aus Bis-[5-nitro-naphthyl-(2)]-disulfid (Bd. VI, S. 664) durch Jodwasserstoffsäure (D: 1,5) und rotem Phosphor (Ekbom). Nadeln (aus Alkohol). F: 1669. Leicht löslich in Alkohol und Benzol, schwerer in Ather, sehr sohwer in Ligroin. $C_{30}H_{16}N_{3}S_{3} + 2$ HCl. Nädelchen. Spaltet beim Kochen mit Wasser Salzsäure ab. $C_{30}H_{16}N_{3}S_{3} + 2$ HI. Gelbe Nadeln.
- Bis-[5-acetamino-naphthyl-(2)]-disulfid $C_{24}H_{30}O_2N_2S_2 = [CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot S-]_g$. B. Aus Bis-[5-amino-naphthyl-(2)]-disulfid und Essigsäureanhydrid in der Wärme (E., B. 24, 335). Nädelchen (aus Eisessig). Schmilzt unter Verkohlung bei 276°.
 - θ -Amino-2-oxy-naphthalin, θ -Amino-naphthol-(2) $C_{10}H_0ON = H_1N$.
- B. Aus 6-Amino-naphthol-(2)-sulfonsäure-(8) durch Einw. von Natriumamalgam in Gegenwart von Natriumdisulfit (JACCHIA, A. 823, 127). Schuppen (aus heißem Wasser), die sich an der Luft schnell bläulich färben; schmilzt bei langsamem Erhitzen bei 190—195° unter Zersetzung (J.). Gibt mit Kaliumnitrit in essigsaurer Lösung einen grünen Niederschlag, in schwefelsaurer Lösung eine gelbichgrüne Lösung, die mit β-Naphthol einen bordeauxroten Farbstoff liefert (Sachs, B. 39, 3028). Darstellung von Azofarbstoffen durch Kuppelung von Diazoverbindungen mit 6-Amino-naphthol-(2): Bayer & Co., D. R. P. 164516; C. 1905 II, 1565.
- 6-Amino-naphthol-(2)-methyläther $C_{11}H_{11}ON = H_2N \cdot C_{10}H_3 \cdot O \cdot CH_3$. B. Bei der Behandlung von 6-Nitro-naphthol-(2)-methyläther (der in sehr geringer Menge durch Nitrieren von Naphthol-(2)-methyläther entsteht) mit Zinn und Salzsäure (Davis, P. Ch. S. No. 171; Chem. N. 74, 302). F: 98°.
- 6-Amino-naphthol-(2)-äthyläther $C_{12}H_{12}ON = H_2N \cdot C_{10}H_4 \cdot O \cdot C_2H_5$. B. Bei der Reduktion von 6-Nitro-naphthol-(2)-äthyläther (GAESS, J. pr. [2] 43, 28). Krystalle (aus Petroläther). F: 90—91°; Kp: 330°. Leicht löslich in den gewöhnlichen Lösungsmitteln, weniger in Petroläther.
- 6-Acetamino-naphthol-(2)-methyläther $C_{13}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot CH_3$. F: 183° (Davis, P. Ch. S. No. 171; Chem. N. 74, 302).
- 6-Acetamino-naphthol-(2)-äthyläther $C_{14}H_{15}O_{2}N=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{4}\cdot O\cdot C_{2}H_{5}$. B. Beim Koohen von 6-Amino-naphthol-(2)-äthyläther mit Eisessig und wenig Essigsäure-

anhydrid (GAESS, J. pr. [2] 43, 28). — Nadeln (aus Alkohol). F: 184,5°. Schwer löslich in Wasser, leicht in heißem Alkohol.

[6-Bensamino-naphthyl-(2)]-bensoat, O.N-Dibensoyl-[6-amino-naphthol-(2)] $C_{34}H_{17}O_{2}N=C_{4}H_{5}\cdot CO\cdot NH\cdot C_{10}H_{4}\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Beim Behandeln von 6-Amino-naphthol-(2) mit Benzoylchlorid und Alkali (SCHADEL, Dissertation [Berlin 1907], S. 54; SACHS, B. 39, 3025). — Stäbohen (aus Eisessig). F: 232°; löslich in Aceton und heißem Chloroform.

7-Amino-2-oxy-naphthalin, 7-Amino-naphthol-(2) $C_{10}H_{2}ON = H_{2}N \cdot OH$

B. In geringer Menge beim Erhitzen von β-Naphthol bezw. β-Naphtholnatrium mit Natriumamid und Naphthalin auf 220° neben anderen Produkten (Sachs, B. 39, 3020). Beim Behandeln von 2.7-Dioxy-naphthalin (Bd. VI, S. 985) mit wäßr. Ammoniak unter Druck (Ges. f. chem. Ind., D. R. P. 55059; Frdl. 2, 185). Beim Kochen von 2.7-Dioxy-naphthalin mit Ammoniumsulfit und verd. Ammoniak (Franzen, Deibel, J. pr. [2] 78, 155). Aus 2.7-Diamino-naphthalin (S. 308) durch Kochen mit viel wäßr. Disulfitlösung und Behandeln des Reaktionsproduktes mit Alkali (Bad. Anilin- u. Sodaf., D. R. P. 134401; C. 1902 II, 868). Beim Erhitzen des Natriumsalzes der Naphthol-(2)-sulfonsäure-(7) (Bd. XI, S. 285) mit Natriumamid und Naphthalin auf 230°, neben anderen Produkten (S., B. 39, 3017; D. R. P. 173522; C. 1906 II, 931). Beim Verschmelzen des Natriumsalzes der Naphthylamin-(2)-sulfonsäure-(7) mit Atznatron bei 260—300° (Ges. f. chem. Ind., D. R. P. 47816; Frdl. 2, 278). — Nädelchen (aus Alkohol). F: 201° (Fe., Deil.). Leicht löslich in Alkohol und Äther, schwer in Wasser (Ges. f. chem. Ind., D. R. P. 47816). — Läßt sich durch Erhitzen mit Ammoniumsulfit-Lösung + Ammoniak in 2.7-Diamino-naphthalin überführen (Buchere, J. pr. [2] 69, 89). Gibt mit dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) in heißem Wasser das 2-Oxynaphthochinon-(1.4)-[7-oxy-naphthyl-(2)-imid]-(4) (S. 685) (Sachs, Berthold, Zaar, C. 1907 I, 130). Verwendung zur Darstellung von Azofarbstoffen: Bayer & Co., D. R. P. 71329, 78875; Frdl. 4, 751; D. R. P. 116872; C. 1901 I, 153; Cassella & Co., D. R. P. 71329, 78875; Frdl. 3, 550; 4, 803.

Trimethyl - [7 - oxy - naphthyl - (2)] - ammoniumehlorid $C_{19}H_{16}ONCl = (CH_{3})_8NCl \cdot C_{19}H_{4} \cdot OH$. B. Beim Behandeln einer alkalisch-alkoholischen Lösung von 7-Amino-naphthol-(2) mit Methylchlorid bei 110° (Geigy & Co., D. R. P. 90310; Frdl. 4, 816). — Farblose Blätter. Wird durch Soda nicht gefällt (G. & Co.). Verwendung als Azokomponente: G. & Co.; Höchster Farbw., D. R. P. 97244; C. 1898 II, 589.

7-Anilino-naphthol-(3) $C_{16}H_{19}ON=C_{6}H_{5}\cdot NH\cdot C_{10}H_{6}\cdot OH$. B. Beim Erhitzen von 2.7-Dioxy-naphthalin mit Anilin (Kalle & Co., D. R. P. 60103; Frdl. 3, 517; Fischer, Schütte, Heff, B. 26, 3087) unter Zusatz von Calciumchlorid (Clausius, B. 23, 529). — Nadeln (aus Ligroin + Benzol). F: 160° (F., Sch., H.), 163° (Cl.). Leicht löslich in Alkohol, Ather, Eisessig, Chloroform, fast unlöslich in Wasser; leicht löslich in verd. Natronlauge (F., Sch., H.).

7-Anilino-naphthol-(2)-methyläther $C_{17}H_{15}ON = C_{6}H_{5}\cdot NH\cdot C_{10}H_{6}\cdot O\cdot CH_{3}$. B. Aus 7-Anilino-naphthol-(2) durch Methylierung (Fischer, Schütte, B. 26, 3088). — Nadeln (aus Methylalkohol). F: 137—138°.

7-Anilino-naphthol-(2)-āthylāther $C_{18}H_{17}ON=C_6H_8\cdot NH\cdot C_{10}H_6\cdot O\cdot C_8H_8$. Nadeln (aus Alkohol). F: 164° (F., Son., B. 26, 3088).

[7-Anilino-naphthyl-(2)]-acetat $C_{19}H_{18}O_{2}N=C_{6}H_{6}\cdot NH\cdot C_{10}H_{4}\cdot O\cdot CO\cdot CH_{2}$. B. Aus 7-Anilino-naphthol-(2) durch Erhitzen mit Acetylchlorid auf dem Wasserbade (F., Sch., B. 26, 3088). — Nadeln (aus verd. Alkohol). F: 162°.

[7-Anilino-naphthyl-(2)]-bensoat $C_{ab}H_{17}O_aN = C_aH_a \cdot NH \cdot C_{10}H_a \cdot O \cdot CO \cdot C_aH_a$. B. Aus 7-Anilino-naphthol-(2) and Bensoylchlorid nach Schotten-Baumann (F., Soh., B. 26, 3088). — Nadeln (aus Bensol + Ligroin). F: 137°.

7 - [2.4 - Dinitro - hensalamino] - naphthol - (2) $C_{17}H_{11}O_{k}N_{8} = (O_{8}N)_{8}C_{6}H_{8} \cdot CH:N \cdot C_{10}H_{6} \cdot OH.$ B. Aus 2.4-Dinitro-benzaldehyd und 7-Amino-naphthol-(2) in essignaurer Lösung (Sacus, Beunstri, B. 40, 3232). — Gelbe Nadeln (aus Aceton). Zereetst sich bei 189°. Löslich in kaltem Aceton und Risessig, in der Wärme in Alkohol und Äther, schwer löslich in Benzol und Petroläther, unlöslich in Wasser; löslich in konz. Schwefelsture mit roter Farbe, in alkoh. Alkalien mit dunkelroter Farbe. Färbt sich am Licht orange und dann rotbraun.

7-[2.4-Dinitro-bensalamino]-naphthol-(2)-methyläther $C_{10}H_{10}O_{0}N_{0} = (O_{2}N)_{1}C_{0}H_{0}$ · $CH:N\cdot C_{10}H_{0}\cdot O\cdot CH_{0}$. B. Aus 7-[2.4-Dinitro-bensalamino]-naphthol-(2) mit Dimethylsulfat und Natronlauge in Aceton (8., B., B. 40, 3233). — Ockerfarbener Niederschlag. Sintert bei 203,5°, schmilst bei 206—207°. Löslich in warmem Aceton (1:12), Eisessig, Chloroform, weniger löslich in Alkohol, sehr wenig in Bensol, Äther, Petroläther.

2-Oxy-naphthochinon-(1.4)-[7-oxy-naphthyl-(2)-imid]-(4) bezw. 4-[7-Oxy-naphthyl-(2)-amino]-naphthochinon-(1.2) $C_{80}H_{13}O_{8}N$, Formel I bezw. Formel II. B. Aus dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) und 7-Amino-

I.
$$\bigcirc$$
 OH II. \bigcirc OH \bigcirc OH

naphthol-(2) in heißem Wasser (Sachs, Berthold, Zaar, C. 1907 I, 1130). — Krystalle (aus Alkohol durch Wasser). F: ca. 290°. Löslich in heißem Alkohol, Eisessig, Aceton, Essigester, sonst fast unlöslich; löslich in Alkalien und konz. Schwefelsäure mit roter Farbe.

7-Acetamino-naphthol-(2) $C_{19}H_{11}O_{2}N=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{4}\cdot OH$. B. Aus 7-Amino-naphthol-(2) mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Wolff, B. 33, 1538). — Blättchen (aus Alkohol oder Wasser). F: 220°.

[7-Benzamino-naphthyl-(2)]-benzoat, O.N.-Dibenzoyl-[7-amino-naphthol-(2)] $C_{24}H_{17}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_5$. B. Beim Behandeln von 7-Amino-naphthol-(2) mit Benzoylchlorid und Alkali (SCHÄDEL, Dissertation [Berlin 1907], S. 55; SACHS, B. 39, 3026). — Nadeln (aus Eisessig). F: 187,5°. Leicht löslich in Aceton, löslich in heißem Benzol und Alkohol.

N.N'-Bis-[7-oxy-naphthyl-(2)]-harnstoff $C_{21}H_{16}O_3N_2=CO(NH\cdot C_{10}H_6\cdot OH)_2$. B. Aus 7-Amino-naphthol-(2) und Phosgen in alkal. Lösung (BAYER & Co., D.R.P. 116200; C. 1901 I, 70). — Sehr wenig löslich in Wasser, verd. Säuren und Alkalien. — Die wäßrige alkalische Suspension gibt mit diazotierter Sulfanilsäure einen orangefarbenen Baumwollfarbstoff.

N.N'-Bis-[7-oxy-naphthyl-(2)]-thioharnstoff $C_{21}H_{16}O_2N_2S=CS(NH\cdot C_{10}H_6\cdot OH)_2$. B. Aus 7-Amino-naphthol-(2) durch Behandlung mit Thiophosgen in alkal. Lösung (Bayer & Co., D.R.P. 116201; C. 1901 I, 70) oder durch Erhitzen mit Schwefelkohlenstoff und Schwefel in alkalisch-alkoholischer Lösung (B. & Co., D.R.P. 122286; C. 1901 II, 380). — Sehr wenig löslich in Wasser, verd. Säuren und kohlensauren Alkalien, löslich in kalter verdünnter Natronlauge (B. & Co., D.R.P. 116201).

7 - [4 - Dimethylamino - anilino] - naphthol - (2), N.N - Dimethyl - N' - [7 - oxynaphthyl-(2)]-p-phenylendiamin $C_{18}H_{18}ON_3 = (CH_3)_2N \cdot C_6H_4 \cdot NH \cdot C_{10}H_6 \cdot OH$. B. Man versetzt geschmolzenes 2.7-Dioxy-naphthalin (Bd. VI, S. 985) allmählich mit N.N-Dimethyl-p-phenylendiamin (S. 72) und erhitzt unter Einleiten von Kohlendioxyd ca. 3—4 Stunden auf 180° (GNEHM, Weber, J. pr. [2] 69, 242; B. 35, 3088). — Blättchen (aus verd. Alkohol). F: 126—127°. Leicht löslich in Alkohol, Petroläther, Aceton, Essigester, schwerer in Äther, Benzol, Chloroform, unlöslich in Ligroin.

N.N - Dimethyl - N' - [7 - acetoxy - naphthyl - (2)] - N' - acetyl - p - phenylendiamin $C_{22}H_{22}O_3N_2 = (CH_2)_8N \cdot C_6H_4 \cdot N(CO \cdot CH_2) \cdot C_{10}H_4 \cdot O \cdot CO \cdot CH_3$. B. Aus N.N-Dimethyl-N'-[7-oxynaphthyl-(2)]-p-phenylendiamin und Acetylchlorid in Äther bei Gegenwart von Pottasche (GNEHM, WEBER, J. pr. [2] 69, 243). — Nadeln (aus Alkohol + Wasser). F: 100°. Leicht löslich in Alkohol, Petroläther, schwer in Benzol, Äther, Ligroin.

1-Nitroso-7-acetamino-naphthol-(2) $C_{19}H_{10}O_3N_2 = CH_3 \cdot CO \cdot NH \cdot C_{10}H_5(NO) \cdot OH$ ist desmotrop mit 7-Acetamino-naphthochinon-(1.2)-oxim-(1) $CH_3 \cdot CO \cdot NH \cdot C_{10}H_5(:N \cdot OH) : O$, Syst. No. 1874.

8-Amino-2-oxy-naphthalin, 8-Amino-naphthol-(2) C₁₀H₈ON, NH₂
s. nebenstehende Formel. B. Bei der Reduktion von 8-Nitro-naphthol-(2)
(Bd. VI, S. 655) mit Zinnehlorür, Zinn und Salzsäure (FRIEDLÄNDER, SZYMANSKI, B. 25, 2082). Beim Erhitzen von Naphthylamin-(1)-sulfonsäure-(7) (Syst. No. 1923) mit Ätznatron und wenig Wasser auf 250—260° (FRIEDLÄNDER, ZINBERG, B. 29, 41; CASSELLA & Co., D.R.P. 69458; Frdl. 3, 476). — Nadeln (aus Alkohol oder Wasser). F: 205—207° (Keirmmann, Engelke, B. 42, 351), 206° (Ca. & Co., D.R.P. 69458). Zersetzt sich oberhalb, 200°, ohne zu schmelzen (F., Z.). Sublimierbar (Ca. & Co., D.R.P. 69458). Leicht löslich in heißem Wasser, Alkohol, schwerer in Äther, sehr schwer in Benzol (F., Z.). Die Salzlösungen fluorescieren violett (Ca. & Co., D.R.P. 69458). Wird durch wenig Eisenchlorid grünblau gefärbt (F., Z.). — Verwendung zur Darstellung von Azofarbstoffen: Ca. & Co., D.R.P. 78875, 84610, 86848; Frdl. 4, 697, 803, 867; BAYER & Co., D.R.P. 164319, 197034; C. 1905 II, 1565; 1908 I, 1507.

8-Amino-naphthol-(2)-äthyläther $C_{12}H_{13}ON = H_2N \cdot C_{10}H_6 \cdot O \cdot C_2H_5$. Bei der Reduktion von 8-Nitro-naphthol-(2)-äthyläther (Bd. VI, 8. 655) (GAESS, J. pr. [2] 43, 28). — Prismen (aus Petroläther). F: 67°. Kp: 315°. Leicht löslich in den gewöhnlichen Lösungsmitteln, weniger in Petroläther.

8 - [2.4 - Dinitro - bensalamino] - naphthol - (2) $C_{17}H_{11}O_5N_3 = (O_2N)_8C_6H_3 \cdot CH:N \cdot C_{10}H_6 \cdot OH$. B. Aus 2.4-Dinitro-benzaldehyd und 8-Amino-naphthol-(2) in essigsaurer Lösung (Sachs, Brunetti, B. 40, 3235). — Orangerote Krystalle; rotgelbe Nadeln (aus Benzol), die 1 Mol. Krystallbenzol enthalten. Verliert das Krystallbenzol bei 105°. F: 216° (Zers.). Leicht löslich in Pyridin mit dunkelroter Farbe, löslich in Essigester (1:14) mit orangeroter Farbe, löslich in Benzol (1:25), Alkohol (1:50), weniger löslich in Äther (1:180). Die Lösung in alkoh. Alkalien ist violett gefärbt.

8-Acetamino-naphthol-(2) C₁₂H₁₁O₂N = CH₃·CO·NH·C₁₀H₆·OH. B. Aus 8-Amino-naphthol-(2) durch Einw. von Acetanhydrid (FRIEDLÄNDER, ZINBERG, B. 29, 41; KEHRMANN, ENGELEE, B. 42, 351). — Nadeln (aus siedendem Wasser oder verd. Essigsäure). F: 164° bis 165° (K., E.), 165° (F., Z.). Schwer löslich in kaltem Wasser, leicht in Alkohol; leicht löslich in verd. Lauge; die Lösungen fluorescieren nicht (K., E.). — Wird durch Einw. von salpetriger Säure in 8-Acetamino-naphthochinon-(1.2)-oxim-(1) (Syst. No. 1874) verwandelt (K., E.).

8-Acetamino-naphthol-(2)-methyläther $C_{13}H_{13}O_2N = CH_3 \cdot CO \cdot NH \cdot C_{10}H_6 \cdot O \cdot CH_3$. F: 145° (Davis, *P. Ch. S.* No. 171; *Chem. N.* 74, 302).

8-Acetamino-naphthol-(2)-äthyläther $C_{14}H_{15}O_2N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4\cdot O\cdot C_2H_5$. Bei der Einw. von Eisessig und etwas Essigsäureanhydrid auf 8-Amino-naphthol-(2)-äthyläther (GAESS, J. pr. [2] 43, 28). — Nadeln (aus verd. Alkohol). F: 139°. Ziemlich leicht löslich in heißem Wasser, leicht in Alkohol.

[8-Bensamino-naphthyl-(2)]-bensoat, O.N-Dibensoyl-[8-amino-naphthol-(2)] $C_{24}H_{17}O_3N=C_4H_5\cdot CO\cdot NH\cdot C_{10}H_6\cdot O\cdot CO\cdot C_6H_8$. B. Beim Behandeln von 8-Amino-naphthol-(2) mit Benzoylchlorid und Alkali (SCHADEL, Dissertation [Berlin 1907], S. 55; SACHS, B. 39, 3026). — Stäbchen (aus Eisessig). F: 208°. Leicht löslich in Aceton und Chloroform.

1-Nitroso-8-acetamino-naphthol-(2) $C_{12}H_{10}O_5N_2=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(NO)\cdot OH$ ist desmotrop mit 8-Acetamino-naphthochinon-(1.2)-oxim-(1) $CH_3\cdot CO\cdot NH\cdot C_{10}H_5(:N\cdot OH):O$, Syst. No. 1874.

8-Amino-thionaphthol-(2), [8-Amino-naphthyl-(2)]-mercaptan $C_{10}H_{\bullet}NS=H_{\bullet}N\cdot C_{10}H_{\bullet}\cdot SH$. B. Beim Erhitzen von 8-Nitro-naphthalin-sulfonsäure-(2)-amid (Bd. XI, S. 187) mit Jodwasserstoffsäure und Phosphor im geschlossenen Rohr (CLEVE, B. 21, 3267). — Nadeln (aus Alkohol) mit $^{1}/_{2}$ Mol. $C_{2}H_{5}\cdot OH$. F: 127°. Schwer löslich in Alkohol.

x-Amino-2-oxy-naphthalin, x-Amino-naphthol-(2) $C_{10}H_{2}ON = H_{2}N \cdot C_{10}H_{4} \cdot OH$. B. Beim Erhitzen des Dinatriumsalzes der Naphthol-(2)-sulfonsaure-(1) (Bd. XI, S. 281) mit Natriumamid und Naphthalin auf 230° (Sachs, B. 39, 3018). Beim Erhitzen von β -Naphthol bezw. β -Naphtholnatrium mit Natriumamid und Naphthalin auf 220° (S.).

Diaminoderivate des 2-Oxy-naphthalins.

1.4-Diamino-2-oxy-naphthalin, 1.4-Diamino-naphthol-(2) C₁₀H₁₀ON₂, s. nebenstehende Formel. B. Bei der Reduktion von O.N-Diacetyl-[4-nitro-1-amino-naphthol-(2)] (NIETZKI, BECKER, B. 40, 3397; vgl. KALLE & Co., D.R.P. 195901; C. 1908 I, 1229). Durch Reduktion des aus 1-Amino-naphthol-(2) mit diazotierter Sulfanilsäure entstehenden Azofarbstoffes (N., B.; KA. & Co.). Beim Erwärmen von 2-Oxy-naphthochinon-(1.4)-imid-(4)-oxim-(1) (Bd. VIII, S. 304), suspendiert in Alkohol, mit Zinnehlortir und Salsäure (Khermann, Hertz, B. 29, 1417). — Das Hydrochlorid oxydiert sich in wäßr. Lösung sehon an der Luft su 2-Oxy-naphthochinon-(1.4)-diimid (Bd. VIII, S. 303) (Kr., H.). Beim ½-stdg. Kochen der alkoh. Suspension des Hydrochlorids mit Natriumacetat, am besten unter Durchleiten von Luft, entsteht die Verbindung der nebenstehenden Formel (s. bei der entsprechenden Leukoverbindung, dem Diamino-dinaphthoxazin, Syst. No. 4373) (N., B.; KA. & Co.). — C₁₀H₁₀ON₂ + 2 HCl. Nadeln (aus verd. Salzsaure) (Kr., H.).

- 1.4-Bis-acetamino-naphthol-(2) $C_{14}H_{14}O_3N_3=(CH_3\cdot CO\cdot NH)_3C_{10}H_5\cdot OH$. B. Beim Erwärmen von salzsaurem 1.4-Diamino-naphthol-(2) mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Hertz, B. 29, 1418). Körner (aus Eisessig). Schmilzt bei 250—260° unter Zersetzung. Löslich in verd. Natronlauge.
- 1-Amino-5-acetamino-naphthol-(2) C₁₂H₁₂O₂N₂, s. nebenstehende Formel. B. Durch Reduktion von mit Wasser verriebenem 5-Acetamino-naphthochinon-(1.2)-oxim-(1) (Syst. No. 1874) mit Zinnchlorür in 20%/oiger Salzsäure unter Kühlung (Kehrmann, Denk, B. 33, 3297). Zinndoppelsalz. Hellgraue Nadeln.
- 1.6-Diamino-2-oxy-naphthalin, 1.6-Diamino-naphthol-(2) $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Bei der Reduktion von 1.6-Dinitro-naphthol-(2) (Bd. VI, S. 655) mit Zinn und Salzsäure (Loewe, B. 23, 2543). Flocken. $C_{10}H_{10}ON_2 + HCl$. Nädelchen.
- 1.6-Bis-acetamino-naphthol-(2) $C_{14}H_{14}O_3N_3 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot OH$. B. Durch Einw. von kalter verdünnter Natronlauge auf O.N.N'-Triacetyl-[1.6-diamino-naphthol-(2)] bis zur Lösung (Kehrmann, Matis, B. 31, 2413). Nadeln (aus Alkohol). F: 235°. Fast unlöslich in Wasser, gut löslich in heißem Alkohol und Eisessig; löslich in Alkalien.
- [1.6 Bis acetamino naphthyl (2)] acetat, O.N.N'-Triacetyl [1.6 diamino-naphthol-(2)] $C_{16}H_{16}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 1.6-Diamino-naphthol-(2) mit entwässertem Natriumacetat und Essigsäureanhydrid (LOEWE, B. 23, 2543; vgl. Kehrmann, Matis, B. 31, 2413). Nädelchen (aus verd. Essigsäure). F: 203° (L.). Schwer löslich in Alkohol (L.).
- [1.6-Bis-benzamino-naphthyl-(2)]-benzoat, O.N.N'-Tribenzoyl-[1.6-diamino-naphthol-(2)] $C_{31}H_{23}O_4N_3=(\hat{C}_5H_5\cdot CO\cdot NH)_2C_{10}H_5\cdot O\cdot CO\cdot C_6H_5$. B. Beim Behandeln von 1.6-Diamino-naphthol-(2) mit Benzoylchlorid und Natronlauge unter Kühlung (LOEWE, B. 23, 2543). Blätter (aus Eisessig). F: 265°. Schwer löslich in Alkohol.
- 1.7-Diamino-2-oxy-naphthalin, 1.7-Diamino-naphthol-(2) NH₂
 C₁₀H₁₀ON₂, s. nebenstehende Formel. B. Man diazotiert 7-Amino-naphthol-(2) in salzsaurer Lösung mit Natriumnitrit, fügt zur Lösung überschüssige Soda und reduziert den entstandenen Azofarbstoff mit Zinnehlorür und Salzsäure (Cassella & Co., D.R.P. 117298; C. 1901 I, 348). Man kuppelt 7-Amino-naphthol-(2) mit Benzoldiazoniumchlorid bei Gegenwart von Soda und reduziert den entstandenen Azofarbstoff mit Eisenfeile und Salzsäure (C. & Co.). Durch Reduktion des 7-Acetamino-naphthol-(2) (Kehemann, Wolleff, B. 33, 1539). Blättchen. F: 220°; leicht löslich in heißem Wasser (C. & Co.). Die Lösung der Salze färbt sich mit Nitrit violett; die Salze färben Wolle bei Zusatz von Dichromat tiefbraun (C. & Co.). Hydrochlorid. Nadeln (K., W.). Sulfat. Nadeln (C. & Co.).
- 1-Amino-7-acetamino-naphthol-(2) $C_{12}H_{12}O_2N_2 = (CH_3 \cdot CO \cdot NH)(H_2N)C_{10}H_5 \cdot OH$. B. Durch Reduktion des 7-Acetamino-naphthochinon-(1.2)-oxims-(1) mit Zinnchlorür und Salzsäure, neben 1.7-Diamino-naphthol-(2) (Kehrmann, Wolff, B. 33, 1539). Zinndoppelsalz. Mikroskopische Nadeln.
- 1.7-Bis-acetamino-naphthol-(2) $C_{14}H_{14}O_3N_3 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot OH$. B. Durch Lösen des beim Erwärmen von salzsaurem 1.7-Diamino-naphthol-(2) mit Essigsäureanhydrid + Natriumacetat entstehenden Triacetylprodukts in kalter verdünnter Natronlauge (K., W., B. 33, 1540). Nädelchen. F: 226°. Ziemlich löslich in Alkohol, Essigsäure und heißem Wasser.
- 7.8 Diamino 2 oxy naphthalin , 7.8 Diamino naphthol (2) $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Bei der Reduktion von 7-Oxy-naphthochinon-(1.2)-dioxim (Bd. VIII, S. 300) mit Zinnehlorür und Salzsäure (Nietzki, Knapp, B. 30, 1124). $C_{10}H_{10}ON_2 + 2HCl$.
- [7.8 Bis acetamino naphthyl (2)] acetat, O.N.N'-Triacetyl [7.8 diamino naphthol-(2)] $C_{16}H_{16}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_{10}H_5 \cdot O \cdot CO \cdot CH_3$. B. Beim Behandeln von 7.8-Diamino-naphthol-(2) mit Essigsäureanhydrid + Natriumacetat (N., K., B. 30, 1124). F: 244—245°.

- 2. Aminoderivate des 2-0xy-1-methyl-naphthalins [1-Methyl-naphthols-(2)] $C_{11}H_{10}O=CH_3\cdot C_{10}H_6\cdot OH$ (Bd. VI, S. 664).
- 6-Brom-3-amino-1-methyl-naphthol-(2) C₁₁H₁₀ONBr, s. nebenstehende Formel. B. Durch Reduktion des 6-Brom-3-nitro-1-methyl-naphthols-(2) (Bd. VI, S. 667) mit Zink und Salzsäure (FRIES, HÜBNER, B. 39, 450). Aus 6-Brom-3-nitro-1-methyl-1.2-naphthochinol (Bd. VIII, Br. NH₂ S. 140) mit Zink und Salzsäure (F., Hü.) oder mit Zinkchlorür in Eisessig (FRIES, HEMPEL-MANN, B. 42, 3383). Nadeln (aus Benzol). F: 163°; leicht löslich in Äther, Aceton, etwas schwerer in Alkohol, löslich in heißem Benzol, Chloroform, kaum löslich in Wasser, Benzin; löslich in Alkalien (F., Hü.). Wird durch Chlor in Eisessig-Salzsäure in 1.4.4-Trichlor-6-brom-2.3-dioxo-1-methyl-naphthalin-tetrahydrid-(1.2.3.4) (Bd. VII, S. 705) übergeführt (F., HEM.).
- 6 Brom 3 acetamino 1 methyl naphthol (2) $C_{18}H_{12}O_8NBr = CH_3 \cdot CO \cdot NH \cdot C_{10}H_4Br(CH_3) \cdot OH$. B. Aus 6-Brom-3-amino-1-methyl-naphthol-(2) und Essigsäureanhydrid (FRIES, HÜBNER, B. 39, 450). Nadeln (aus Benzol + Benzin). F: 183°. Löslich in Alkalien.
- [6-Brom-3-acetamino-1-methyl-naphthyl-(2)]-acetat, O.N-Diacetyl-[6-brom-3-amino-1-methyl-naphthol-(2)] $C_{1b}H_{14}O_3NBr=CH_3\cdot CO\cdot NH\cdot C_{10}H_4Br(CH_2)\cdot O\cdot CO\cdot CH_3$. B. Aus 6-Brom-3-amino-1-methyl-naphthol-(2), Essigsäureanhydrid und Natrium-acetat (Fries, Hübner, B. 39, 450). Nadeln (aus Benzol). F: 240°.
- 1-Aminomethyl-naphthol-(2), [2-Oxy-naphthyl-(1)-methyl]-amin CH₂·NH₂ C₁₁H₁₁ON, s. nebenstehende Formel. B. Entsteht in ca. 80% ger Ausbeute, wenn geringe Mengen (3—4 g) N-[2-Oxy-naphthyl-(1)-methyl]-isoformaldoxim (Syst. No. 4190), gelöst in Alkohol, mit überschüssigem Zinkstaub und nicht zu viel Salzsäure in nicht zu starker Konzentration bei gewöhnlicher bezw. wenig erhöhter Temperatur (höchstens 40%) reduziert werden (Betti, G. 36 I, 396). Aus 1-[Chloracetamino-methyl]-naphthol-(2) beim Kochen mit 10% ger wäßrig-alkoholischer Salzsäure (Einhorn, Spröngerts, A. 361, 162). Blättchen (aus Ligroin), Nadeln (aus Aceton + Ligroin). F: 115—116% (B.), 112—113% (EI., S.). C₁₁H₁₁ON + HCl. Nädelchen (aus wäßrig-alkoholischer Salzsäure), Blättchen (aus Wasser). Schmilzt unter Zersetzung bei 226—227% (B.), bei ca. 225% (EI., S.). Ziemlich schwer löslich in Wasser, sehr wenig in Alkohol (EI., S.).

Methyläther $C_{12}H_{13}ON = CH_3 \cdot O \cdot C_{10}H_6 \cdot CH_2 \cdot NH_2$. B. Aus 1-[Chloracetamino-methyl]-naphthol-(2)-methyläther beim Kochen mit alkoh. Salzsäure (Einhobn, Spröngerts, A. 361, 163). — Nädelchen. F: ca. 100°. Leicht löslich in organischen Lösungsmitteln. — Hydrochlorid. Undeutliche Krystalle (aus Methylalkohol + Aceton). F: 233° (Zers.). Leicht löslich in Wasser und Alkohol. — $C_{12}H_{13}ON + HBr$. Krystalle (aus absol. Alkohol). F: 242° (Zers.). Löslich in Wasser und Alkohol.

Verbindung C₁₂H₁₁O₂N. B. Aus dem Hydrochlorid des 1-Aminomethyl-naphthol-(2)-methyläthers (s. o.) mit Essigsäure und Natriumnitrit (E1., S., A. 361, 164). — Krystalle (aus Alkohol). F: 112°. Löslich in Benzol, Äther, Alkohol.

1-Dimethylaminomethyl-naphthol-(2), [2-Oxy-naphthyl-(1)-methyl]-dimethylamin C₁₂H₁₅ON = HO·C₁₀H₆·CH₂·N(CH₃), Zur Konstitution vgl. Auwers, Dombrowski, A. 344, 281, 290. — B. Aus β-Naphthol, Formaldehyd und Dimethylamin in verd. Alkohol (Bayer & Co., D.R.P. 89979; Frdl. 4, 99). Durch Erwärmen von β-Naphthol mit Bisdimethylamino-methan (Bd. IV, S. 54) (B. & Co., D.R.P. 90907; Frdl. 4, 101) oder mit Dimethylaminomethylalkohol (Bd. IV, S. 54) (B. & Co., D.R.P. 90908; Frdl. 4, 102). — Blätter. F: 76° (B. & Co.), 74—75° (Au., D.). Leicht löslich in verd. Säuren (B. & Co.)

Bis-[2-oxy-naphthyl-(1)-methyl]-amin $C_{22}H_{19}O_2N=(H0\cdot C_{10}H_6\cdot CH_2)_2NH$. B. Entsteht in sehr guter Ausbeute, wenn man 7 g N-[2-Oxy-naphthyl-(1)-methyl]-isoformaldoxim (Syst. No. 4190) in ca. 80 ccm Alkohol mit überschüssigem Zinkstaub unter allmählicher Zugabe von Salzsäure (10 ccm konz. Salzsäure + 10 ccm Wasser) kurze Zeit kocht und die Lösung nach $^1/_2$ -stdg. Stehenlassen filtriert und weitere 12 Stdn. stehen läßt (Betti, G. 36 I, 399). — Prismatische Nadeln. F: 163°. — $C_{22}H_{19}O_2N + HCl$. Rhomboedrische Krystalle (aus Alkohol). F: 220° (Zers.).

Tris-[2-oxy-naphthyl-(1)-methyl]-amin $C_{23}H_{27}O_3N=(HO\cdot C_{10}H_4\cdot CH_2)_3N$. B. Aus β -Naphthol in Alkohol mit Formaldehyd und überschüssigem alkoholischem Ammoniak (B., G. 84 I, 213). — Nadeln. F: 164°. Leicht löslich in siedendem Essigester. — $C_{23}H_{27}O_3N+HCl$. Blättchen (aus siedendem Alkohol). F: 220° (Zers.). — Essigsaures Salz $C_{33}H_{27}O_3N+C_2H_4O_2$. Schuppen (aus siedendem Alkohol). F: 190—191°.

Verbindung mit Formaldehyd $C_{72}H_{66}O_{12}N_2 = 2C_{32}H_{27}O_3N + 6CH_2O + H_2O$. B. Entsteht als Nebenprodukt bei der Reaktion zwischen β -Naphthol, Formaldehyd und alkoh. Ammoniak (S. 688) (B., G. 34 I, 215). — Rhomboedrische Krystalle. F: 158—160°. Schwer löslich in Athylacetat. — Zerfällt beim Erhitzen (sowie beim Kochen in Athylacetat) in Formaldehyd und Tris-[2-oxy-naphthyl-(1)-methyl]-amin.

Verbindung mit Benzoylchlorid und Chlorwasserstoff $C_{40}H_{35}O_4NCl_s = C_{35}H_{37}O_3N + C_7H_5OCl + HCl.$ B. Durch Erhitzen von Tris-[2-oxy-naphthyl-(1)-methyl-amin mit Benzoylchlorid und Zersetzen des überschüssigen Benzoylchlorids mit etwas Alkohol (B., G. 34 I, 220). — Rhomboeder (aus Eisessig). F: 210° (Zers.).

 $\begin{array}{l} \textbf{N-[2-Oxy-naphthyl-(l)-methyl]-isoformaldoxim} \ C_{19}H_{11}O_2N = HO\cdot C_{10}H_4\cdot CH_3\cdot N(:O): CH_2 \ \ bezw. \ \ HO\cdot C_{10}H_4\cdot CH_2\cdot N \\ \hline OCH_2 \ \ s. \ \ Syst. \ \ No. \ \ 4190. \end{array}$

1-[Chloracetamino-methyl]-naphthol-(2), N-Chloracetyl-{[2-oxy-naphthyl-(1)-methyl]-amin} $C_{19}H_{19}O_{2}NCl = HO \cdot C_{10}H_{4} \cdot CH_{2} \cdot NH \cdot CO \cdot CH_{2}Cl$. B. Aus 10 g β -Naphthol in 60 g gesättigter alkoholischer Salzsäure mit 9 g N-Oxymethyl-chloracetamid (Bd. II, S. 200) bei 6-stdg. Stehen (Einhorn, Spröngerts, A. 361, 161). — Nädelchen (aus Methylalkohol). F: 132°. Löslich in Äther, Benzol, Alkohol, unlöslich in Wasser.

Methyläther $C_{14}H_{14}O_3NCl = CH_3 \cdot O \cdot C_{10}H_4 \cdot CH_2 \cdot NH \cdot CO \cdot CH_3Cl$. B. Aus 1-[Chloracetamino-methyl]-naphthol-(2) mit Dimethylsulfat und Alkali in Methylalkohol (El., S., A. 361, 163). Aus β -Naphthol-methyläther und N-Oxymethyl-chloracetamid in Gegenwart von alkoh. Salzsäure (El., S.). — Nädelchen (aus Alkohol). F: 170°. Löslich in Methylalkohol und Äther.

1-Bensaminomethyl-naphthol-(2), N-Bensoyl-{[2-oxy-naphthyl-(1)-methyl]-amin} $C_{18}H_{18}O_{2}N=HO\cdot C_{19}H_{6}\cdot CH_{5}\cdot NH\cdot CO\cdot C_{6}H_{8}$. B. Aus 5 g β -Naphthol und 5,2 g N-Oxymethyl-bensamid (Bd. IX, S. 207) in Alkohol mit 2 ccm konz. Salzsäure (Einhorn, Bischkopff, Szelinski, A. 343, 250; Ei., D. R. P. 156398; C. 1905 I, 55). — Prismen (aus Essigester oder Alkohol). F: 186°; unlöslich in Wasser; gibt mit Natronlauge ein Natriumsalz, das leicht löslich in Wasser, aber schwer löslich in Natronlauge ist (Ei., B., Sz.).

N.N'-Bis-[2-oxy-naphthyl-(1)-methyl]-succinamid $C_{10}H_{4}O_{4}N_{5}=[HO\cdot C_{10}H_{4}\cdot CH_{5}\cdot NH\cdot CO\cdot CH_{2}-]_{5}$. B. Aus 3,5 g β -Naphthol und 2 g N.N'-Bis-oxymethyl-succinamid (Bd. II, S. 615) in verd. Alkohol mit konz. Salzsäure (Einhorn, Ladisch, A. 343, 279; El., D. R. P. 156398; C. 1905 I, 55). — Nadeln (aus Alkohol). F: 222—224°.

3. A minoderivat des 2-0xy-1-isoamyl-naphthalins [1-lsoamyl-naphthols-(2)] $C_{15}H_{18}O=(CH_2)_2CH\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot OH$.

1-[a-Amino-isoamyl]-naphthol-(2), a-[2-Oxy-naphthyl-(1)]-isoamylamin $C_{15}H_{19}ON$, s. nebenstehende Formel.

B. Das Hydrochlorid entsteht aus 1-[a-(Isoamylidenamino)-isoamyl]-naphthol-(2) (s. u.) beim Kochen mit 10% ger Salzsäure (Bett, Torrictli, G. 33 I, 12).

Nadeln. F: 114°. Gibt in Benzollösung mit Eisenchlorid in Äther intensive Rotviolettfärbung. $C_{15}H_{19}ON + HCl$. Nadeln. — Pikrat $C_{15}H_{19}ON + C_{4}H_{2}O_{7}N_{3}$. Gelbe Krystalle.

1-[a-Isoamylidenamino-isoamyl]-naphthol-(2), N-Isoamyliden- $\{a$ -[3-oxy-naphthyl-(1)]-isoamylamin} $C_{20}H_{27}ON = HO \cdot C_{10}H_{8} \cdot CH[CH_{2} \cdot CH(CH_{3})_{2}] \cdot N \cdot CH \cdot CH_{2} \cdot CH(CH_{3})_{3}$. Zur Konstitution vgl. Betti, G. 33 I, 17. — B. Bei der Kondensation von β -Naphthol, Isovaleraldehyd und Ammoniak in alkoh. Lösung bei gewöhnlicher Temperatur (B., G. 30 II, 316). — Nadeln (aus Alkohol). F: 92°; gibt in Benzinlösung mit äther. Eisenchloridlösung eine intensive Violettfärbung (B., G. 30 II, 316). — Spaltet beim Kochen mit $10^{\circ}/_{0}$ iger Salzsäure Isovaleraldehyd ab unter Bildung des Hydrochlorids des 1-[a-Amino-isoamyl]-naphthols-(2) (B., Torricelli, G. 33 I, 11).

1-[a-Bensalamino-isoamyl]-naphthol-(2), N-Bensal-{a-[2-oxy-naphthyl-(1)]-isoamylamin} $C_{22}H_{23}ON = HO \cdot C_{10}H_{6} \cdot CH[CH_{2} \cdot CH(CH_{3})_{2}] \cdot N \cdot CH \cdot C_{4}H_{5}$. B. Entsteht beim Kochen einer alkoh. Lösung von 1-[a-Amino-isoamyl]-naphthol-(2) mit überschüssigem Benzaldehyd (B., G. 33 I, 22). — Gelbliche Nadeln (aus Alkohel). F: 154°. Gibt in Benzollösung in der Kälte mit Eisenchlorid intensive Rotviolettfärbung. — Spaltet beim Kochen mit verd. Salzsäure Benzaldehyd ab.

g) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-14}O$.

1. Aminoderivate der Monooxy-Verbindungen $C_{12}H_{10}O$.

1. Aminoderivate des 2-Oxy-diphenyls $C_{12}H_{10}O = C_{6}H_{5} \cdot C_{6}H_{4} \cdot OH$ (Bd. VI, S. 672).

5-Amino-2-oxy-diphenyl C₁₂H₁₁ON, s. nebenstehende Formel.

B. Durch Reduktion von 5-Nitroso-2-oxy-diphenyl bezw. 2-Phenylchinon-oxim-(4) (Bd. VII, S. 740) mit Zinn und Salzsäure (Borsche, B. 32, 2936; A. 312, 219). Durch Reduktion von 5-Nitro-2-oxy-diphenyl \mathbf{OH} (Bd. VI, S. 672) in Alkohol mit Zinn und Salzsäure (Hill, Hale, Am. 33, 11). — Nadeln (aus Alkohol). F: 192° (B.), 198—199° (korr.) (Hill, Hale). Löslich in heißem Alkohol und Benzol, schwer löslich in Äther und Chloroform, unlöslich in Ligroin, Wasser (Hill, Hale). — Durch Oxydation mit Kaliumdichromat und Schwefelsäure (B.) oder Natriumdichromat und Schwefelsäure (HILL, HALE) entsteht 2-Phenyl-chinon (Bd. VII, S. 740). — C₁₂H₁₁ON + HCl. Krystalle, die sich an der Luft grünlich färben; F: 214^o (B.).

3.5-Diamino-2-oxy-diphenyl $C_{12}H_{12}ON_3$, s. nebenstehende Formel. B. Durch Reduktion von 3.5-Dinitro-2-oxy-diphenyl (Bd. VI, S. 672) in Alkohol mit Zinn und Salzsäure (Hill, Hale, Am. 83, 14). — Rotbraunes HO NH, Pulver. Löslich in Alkohol und Eisessig, unlöslich in Äther und Wasser. NH, - Hydrochlorid. Farblose Krystalle.

4.4'- Diamino - 2 - oxy - diphenyl, 2 - Oxy - benzidin $C_{12}H_{12}ON_2$, s. nebenstehende Formel. B. Durch Reduktion von 3-Oxy-azobenzol (Syst. No. 2112) mit salzsaurer Zinn-OH \cdot NH. $H_*N \cdot \langle$ chlorürlösung (JACOBSON, HÖNIGSBERGER, B. 36, 4113). —

Blättchen (aus Wasser). F: 226—227°. Ziemlich löslich in heißem Alkohol und heißem Wasser, sehr wenig in Benzol und Äther. — Sulfat. Nadeln. Schwer löslich.

4.4'-Diamino-2-methoxy-diphenyl, 2-Methoxy-benzidin $C_{12}H_{14}ON_2 = H_2N \cdot C_6H_4$. C₆H₃(NH₂)·O·CH₃. B. Entsteht neben anderen Verbindungen bei der Reduktion von 3.4 - Dimethoxy-azobenzol (Syst. No. 2126) in Alkohol mit Zinnehlorür und Salzsäure (Jacobson, JÄNICKE, F. MEYER, B. 29, 2687). Aus 3-Methoxy-azobenzol in Alkohol beim Eintragen von krystallisiertem Zinnchlorür als Hauptprodukt, neben geringen Mengen eines Orthosemidins (Jacobson, Hönigsberger, B. 36, 4077). — Tafeln (aus Benzol-Ligroin). F: 103—103,3°; ziemlich löslich in Wasser und Äther (Jac., Hö.). Gibt mit Chlorkalk einen rotbraunen Niederschlag, in verd. Schwefelkohlenstofflösung mit Bromwasser geschüttelt Blaufärbung, die nach einiger Zeit unter Abscheidung eines Niederschlages verschwindet (JAC., HÖ.). — Läßt sich durch Entamidierung in 2-Methoxy-diphenyl (Bd. VI, S. 672) überführen (JAC., HÖ.). — C₁₃H₁₄ON₃ + 2 HCl. Sechsseitige Tafeln; schwer löslich in Wasser. (JAC., HÖ.). — Pikrat C₁₃H₁₄ON₂ + C₆H₃O₇N₃. Gelbe Nadeln. F: 220° (Zers.) (JAC., HÖ.).

44'-Bis-anisalamino-2-oxy-diphenyl C₂₈H₂₄O₃N₂ = CH₃·O·C₆H₄·CH:N·C₆H₄·C₆H₃·(N:CH·C₆H₄·O·CH₃)·OH. B. Aus 1 Mol.-Gew. 2-Oxy-benzidin und 2,2 Mol.-Gew. Anisaldehyd in Alkohol (JAc., Hö., B. 36, 4114). — Gelbe Nadeln (aus Xylol). F: 200°. Schwer löslich in den gebräuchlichen organischen Lösungsmitteln.

4.4'-Bis-anisalamino-2-methoxy-diphenyl $C_{ab}H_{ab}$, S_{ab} ,

4.4'-Bis-acetamino-2-methoxy-diphenyl $C_{17}H_{18}O_5N_8=CH_8\cdot CO\cdot NH\cdot C_6H_4\cdot C_6H_3$ (NH·CO·CH₂)·O·CH₃. B. Durch 4—5-stdg. Kochen von 1 Tl. 2-Methoxy-benzidin mit 10 Tln. Eisessig (Jac., Hö., B. 36, 4079). — Schmilzt oberhalb 285°, nachdem es sich schon vorher dunkel gefärbt hat.

Aminoderivate des 3-Oxy-diphenyls $C_{12}H_{10}O = C_{4}H_{4} \cdot C_{4}H_{4} \cdot OH$ (Bd. VI, S. 673).

4.4' - Diamino - 3 - oxy - diphenyl, 3 - Oxy - benzidin

C₁₉H₁₈ON₂, s. nebenstehende Formel. B. Beim Erhitzen von
salzsaurer 4.4'-Diamino-3-oxy-diphenyl-sulfonsäure-(6) (Syst. No.
1926) mit Wasser auf 180° (Weinberg, B. 20, 3173; Cassella
& Co., D. R. P. 44770; Frdl. 2, 418). — Blätter (aus Wasser). F: 185°; schwer löslich in
Wasser, kaltem Alkohol, Äther und Benzol; die alkal. Lösungen oxydieren sich rasch an der

Luft (W) — C. H. ON — H. SO. Fast, unlöslich in Wasser, siemlich leicht löslich in Luft (W.). — C₁₂H₁₂ON₂ + H₂SO₄. Fast unlöslich in Wasser; ziemlich leicht löslich in

warmer verdünnter Salzsäure (W.). — $C_{12}H_{12}ON_2 + 2HCl + PtCl_4 + 5H_2O$. Gelblich. Unlöslich in Alkohol und Äther (W.).

4.4'-Diamino - 3 - äthoxy - diphenyl, 3 - Äthoxy-bensidin C₁₄H₁₆ON₅ = H₂N·C₆H₄·C₆H₃(NH₂)·O·C₂H₅. B. Beim Erhitzen von 4.4'-Diamino-3-äthoxy-diphenyl-sulfonsäure-(6) (Syst. No. 1926) mit Wasser im geschlossenen Gefäß auf 170° (Weinberg, B. 20, 3176; vgl. Cassella & Co., D. R. P. 44209; Frdl. 2, 417). Durch Reduktion von 2-Äthoxy-azobenzol (Syst. No. 2112) in alkoh. Suspension mit krystallisiertem Zinnchlorür unter Zugabe von 12° oiger Salzsäure (Jacobson, Franz, B. 36, 4072). — Nadeln (aus Wasser). F: 134—135° (W.), 139° (J., F.). Schwer löslich in Wasser, Äther und Benzol, leicht in heißem Alkohol (W.). — Gibt in verd. salzsaurer Lösung mit Eisenchlorid eine intensiv orangerote Färbung, mit Chromsäure Rotfärbung (J., F.). — Läßt sich in salzsaurer Lösung durch Natriumnitrit diazotieren; die Diazoniumsalzlösung gibt, mit Schwefelsäure versetzt, beim Kochen über freier Flamme oder beim Einleiten von Wasserdampf 4'-Oxy-3-äthoxy-diphenyl-diazoniumsulfat-(4) HO·C₆H₄·C₆H₂(O·CH₃)·N₂·SO₄H (Syst. No. 2199) (CAIN, Soc. 87, 7). Gibt man zu einer mit Schwefelsäure versetzten, absolut alkoholischen Lösung von 3-Äthoxy-benzidin bei Siedetemperatur Natriumnitrit und kocht dann noch 1—2 Stdn., so erhält man 3-Äthoxy-diphenyl (Bd. VI, S. 674) (J., F.). Zur Verwendung zur Herstellung von Azofarbstoffen vgl.: Cassella & Co., D. R. P. 46134; Frdl. 2, 420; Bayer & Co., D. R. P. 56500; Frdl. 2, 396; Schultz, Tab. No. 401, 402, 403, 404. — Sulfat. Schwer löslich (J., F.).

4.4'-Bis-[4-nitro-benzalamino]-8-äthoxy-diphenyl $C_{28}H_{22}O_5N_4=O_2N\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot C_6H_3(N:CH\cdot C_6H_4\cdot NO_2)\cdot O\cdot C_2H_5$. B. Durch Kondensation von 3-Äthoxybenzidin mit 4-Nitro-benzaldehyd (Jacobson, Franz, B. 36, 4073). — Dunkelrote Nadeln (aus Benzol). F: 182—183°.

4.4'-Bis-cinnamalamino-3-äthoxy-diphenyl $C_{32}H_{28}ON_2=C_6H_5\cdot CH:CH:CH:CH:N\cdot C_6H_4\cdot C_6H_3(N:CH:CH:CH:C_6H_5)\cdot O\cdot C_2H_5$. B. Durch Kondensation von 3-Athoxy-benzidin mit Zimtaldehyd (J., F., B. 36, 4073). — Gelbe Nadeln (aus Benzol-Ligroin). F: 167—168°.

4.4'-Bis-salicylalamino-8-äthoxy-diphenyl $C_{gg}H_{g4}O_3N_g=HO\cdot C_gH_g\cdot CH:N\cdot C_gH_g\cdot C_g$

4.4'-Bis-anisalamino-3-äthoxy-diphenyl $C_{30}H_{28}O_3N_3=CH_3\cdot O\cdot C_9H_4\cdot CH:N\cdot C_9H_4\cdot C_9H_9(N:CH\cdot C_9H_4\cdot O\cdot CH_9)\cdot O\cdot C_2H_5$. B. Aus 1 Mol.-Gew. 3-Athoxy-benzidin und 2,2 Mol.-Gew. Anisaldehyd in Alkohol (J., F., B. 36, 4073). — Nadeln (aus Benzol-Ligroin). F: 146-147°.

4.4'-Bis-[ω -phenyl-thioureido]-8-äthoxy-diphenyl, [3-Äthoxy-diphenylen-(4.4')]-bis-[ω -phenyl-thioharnstoff] $C_{28}H_{26}ON_4S_2 = C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_4\cdot C_6H_3\cdot NH\cdot CS\cdot NH$

6.4' - Diamino - 3 - oxy - diphenyl, 5 - Oxy - diphenylin 1)

C₁₂H₁₂ON₂, s. nebenstehende Formel. B. Entsteht als hauptsächliches

Umlagerungsprodukt bei der Reduktion von 4-Acetoxy-azobenzol

(Syst. No. 2112) mit salzsaurer Zinnchlorürlösung bei Temperaturen

unter 40° (Jacobson, Troges, A. 303, 344; vgl. Cassella & Co.,

D. R. P. 90960; Frdl. 4, 75). — Nadeln (aus Benzol). F: 148°; ziemlich leicht löslich in Alkohol,
sehr leicht in Aceton, schwerer in Benzol, fast unlöslich in Äther und Ligroin, leicht in heißem

Wasser (J., T.). Die salzsaure Lösung gibt mit Eisenchlorid schmutzig rotviolette Färbung;
nach kurzer Zeit scheidet sich ein schwarzer amorpher Bodensatz ab (J., T.). Die alkal. Lösung
bräunt sich bald (J., T.). — Wurde als photographischer Entwickler ("Diphenal") vorgeschlagen (Precett, C. 1898 I, 99).

6.4'-Diamino-3-äthoxy-diphenyl, 5-Äthoxy-diphenylin $C_{14}H_{16}ON_8 = H_2N \cdot C_6H_4 \cdot C_6H_4(NH_2) \cdot O \cdot C_2H_3$. B. Man äthyliert 6.4'-Bis-anisalamino-3-oxy-diphenyl (S. 692) oder 6.4'-Bis-acetamino-3-oxy-diphenyl (S. 692) und spaltet darauf die Anisalgruppen mit verdünnter Schwefelsäure bezw. die Acetylgruppen mit konzentrierter alkoholischer Kalilauge ab (Jacobson, Loeb, A. 303, 350). — Blättchen (aus heißem Wasser und wenig Alkohol). F: 97°; sehr leicht löslich in Alkohol und Benzol, schwerer in Ligroin; die stark verdünnte salzsaure Lösung färbt sich mit Eisenchlorid nach längerem Stehen violettrot, die konz. salzsaure Lösung sofort tief blaurot; beim Erwärmen geht die Färbung in Gelbrot über; die schwefelsaure Lösung wird durch Kaliumdichromatlösung gelbrot gefärbt (J., L., A. 303, 351). — Läßt sich durch Entamidierung in 3-Äthoxy-diphenyl (Bd. VI, S. 674) überführen (J., L., B. 36, 4087). — $C_{14}H_{16}ON_2 + 2HCl$. Nadeln. Außerst leicht löslich in Wasser, leicht in Alkohol, fällbar durch Äther (J., L., A. 303, 351).

¹⁾ Bezifferung der vom Namen "Diphenylin" abgeleiteten Namen in diesem Handbuch s. S. 211.

- 6.4'-Bis-[4-nitro-benzalamino]-3-oxy-diphenyl $C_{26}H_{18}O_{5}N_{4}=O_{2}N\cdot C_{6}H_{4}\cdot CH:N\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot NO_{2})\cdot OH$. B. Aus 6.4'-Diamino-3-oxy-diphenyl und 2 Mol.-Gew. 4-Nitro-benzaldehyd in alkoh. Lösung (Jacobson, Tigges, A. 803, 346). Orangerotes, flockiges Pulver. F: 218°. Sehr wenig löslich in Alkohol, Äther und Benzol, unlöslich in Ligroin.
- 6.4'- Bis salicylalamino 3 oxy diphenyl $C_{26}H_{20}O_3N_2 = HO \cdot C_4H_4 \cdot CH : N \cdot C_2H_4 \cdot C_4H_4 \cdot CH \cdot C_2H_4 \cdot CH \cdot C_2H_4 \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot CH \cdot C_3H_4 \cdot CH \cdot CH \cdot C_3H$
- 6.4'-Bis-anisələmino-3-oxy-diphenyl $C_{28}H_{24}O_3N_2=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot C_6H_3(N:CH\cdot C_6H_4\cdot O\cdot CH_3)\cdot OH$. B. Aus 5 g 6.4'-Diamino-3-oxy-diphenyl und 7 g Anisəldehyd (Bd. VIII, S. 67) in alkoh. Lösung (J., T., A. 303, 346). Hellgelbe Nädelchen (aus siedendem Alkohol). F: 184—185°. Fast unlöslich in Ligroin, schwer löslich in Benzol.
- 6.4'-Bis-anisalamino-3-äthoxy-diphenyl $C_{30}H_{28}O_3N_3=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot C_6H_3\cdot O\cdot C_6H_4\cdot CH:N\cdot C_6H_4\cdot C_6H_3\cdot O\cdot C_6H_5\cdot O\cdot C_8H_6$. B. Durch Athylierung des 6.4'-Bis-anisalamino-3-oxy-diphenyls in alkoh. Lösung mit Athylbromid und Natriumathylat (J., Loeb, A. 303, 349). Hellgelbe Nadeln (aus Alkohol). F: 124°. Leicht löslich in Benzol, schwer in Ligroin. Wird durch verdünnte Schwefelsäure in Anisaldehyd und 6.4'-Diamino-3-äthoxy-diphenyl gespalten.
- 6.4'-Bis-formamino-3-oxy-diphenyl $C_{14}H_{12}O_3N_3=OHC\cdot NH\cdot C_6H_4\cdot C_6H_3(NH\cdot CHO)\cdot OH$. B. Durch Kochen von 6.4'-Diamino-3-oxy-diphenyl mit der 10-fachen Menge wasserfreier Ameisensäure (J., Tigges, A. 303, 346). Mikrokrystallinisches Pulver (aus Wasser). F: 243° (Gasentwicklung). Löslich in Alkohol, Eisessig und heißem Wasser, unlöslich in Äther, Benzol und Ligroin.
- 6.4'-Bis-acetamino-3-oxy-diphenyl $C_{16}H_{16}O_3N_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot C_6H_3(NH\cdot CO\cdot CH_3)\cdot OH$. B. Durch mehrstündiges Kochen von 6.4'-Diamino-3-oxy-diphenyl mit der 10-fachen Menge Eisessig (J., T., A. 303, 347). Krystalle (aus Alkohol). F: 269° (J., T.). Liefert durch Oxydation mit Kaliumpermanganat in alkal. Lösung 4-Acetamino-benzoesäure (Syst. No. 1905) (J., Loeb, B. 36, 4088).
- 6.4'-Bis-acetamino-3-äthoxy-diphenyl $C_{18}H_{20}O_3N_3=CH_3\cdot CO\cdot NH\cdot C_8H_4\cdot C_6H_3(NH\cdot CO\cdot CH_3)\cdot O\cdot C_2H_5$. B. Man erhitzt 20 g 6.4'-Bis-acetamino-3-oxy-diphenyl mit 300 g absol. Alkohol und 11,5 g Athylbromid zum Sieden und läßt eine Lösung von 1,65 g Natrium in 16,5 g absol. Alkohol zutropfen (J., L., A. 303, 349). Bei 10-stdg. Kochen von 6.4'-Diamino-3-äthoxy-diphenyl mit 10 Tln. Eisessig (J., L.). Sechsseitige Tafeln (aus Wasser und wenig Alkohol). F: 190—191's sehr leicht löslich in Alkohol, sehr wenig in Benzol und Ligroin, löslich in Eisessig (J., L.). Wirkt in größeren Dosen antipyretisch (GOTTLIEB, A. 303, 352).
- 6.4'-Bis-benzamino-3-äthoxy-diphenyl $C_{ss}H_{ss}O_sN_s=C_sH_s\cdot CO\cdot NH\cdot C_sH_s\cdot C_sH_s(NH\cdot CO\cdot C_sH_s)\cdot O\cdot C_sH_s$. B. Durch Schütteln einer mit 80 ccm $10^0/_0$ iger Natronlauge versetzten Lösung von 1 g 6.4'-Diamino-3-äthoxy-diphenyl in Salzsäure mit 10 ccm Benzoylchlofid unter Kühlung (J., Tigors, A. 303, 352). Nadeln (aus Alkohol). F: 221°.
- 6.4'-Bis-bensamino-3-bensoyloxy-diphenyl $C_{33}H_{24}O_4N_3=C_6H_5\cdot CO\cdot NH\cdot C_6H_4\cdot C_6H_3(NH\cdot CO\cdot C_6H_5)\cdot O\cdot CO\cdot C_6H_5.$ B. Durch Schütteln einer Lösung von 1 g 6.4'-Diamino-3-oxy-diphenyl in 120 ccm $10^9/_0$ iger Natronlauge mit 10 ccm Benzoylchlorid unter Kühlung (J., T., A. 303, 347). Nadeln (aus verdünntem Alkohol). F: 177—178°. Leicht löslich in Alkohol und Eisessig, fast unlöslich in Benzol.
- 3. Aminoderivate des 4-Oxy-diphenyls $C_{18}H_{10}O=C_6H_5\cdot C_6H_4\cdot OH$ (Bd. VI, S. 674).
- 4'-Amino-4-oxy-diphenyl C₁₂H₁₁ON = H₂N·OH. B. Man stellt eine Lösung von 4-Amino-diphenyl-diazoniumchlorid-(4') her, indem man 250 g Benzidin (S. 214) in 3,5 l Wasser und 470 g 22%/eiger Salzsäure löst, nach dem Erkalten nochmals 470 g Salzsäure hinzugibt, mit 200 g 94%/eigem Natriumnitrit, gelöst in 1 l Wasser, unter Kühlen diazotiert, die so erhaltene Lösung von Diphenyl-bis-diazoniumchlorid-(4.4') mit einer Lösung von 250 g Benzidin in 3,5 l Wasser und 500 g 22%/eiger Salzsäure vereinigt und 2—3 Tage unter zeitweiligem Umrühren bei 10—20° stehen läßt; diese Lösung von 4-Amino-diphenyl-diazoniumchlorid-(4') trägt man zur Umwandlung in 4'-Amino-4-oxy-diphenyl in 1—2 l kochendes Wasser allmählich ein (Tiuber, B. 27, 2629; vgl. Bayer & Co., D.R.P. 51576; Frdl. 2, 469; Bad. Anilin- und Sodaf., D.R.P. 52661; Frdl. 2, 470). Man diazotiert [4'-Amino-diphenylyl-(4)]-oxamidsäure (S. 228), verkocht das Diazoniumsalz mit Wasser und verseift die dabei erhaltene [4'-Oxy-diphenylyl-(4)]-oxamidsäure (S. 693) mit 60%/eiger Sohwefelsäure (Gelmo, B. 39, 4180, 4181). Blättchen (aus verd. Alkohol). F: 273° (T.), 273° (korr.)

(G.). Nahezu unlöslich in Wasser und Äther, schwer löslich in Benzol (T.). -- Liefert mit Natriumhypochlorit und Salzsaure Diphenochinon-(4.4')-mono-chlorimid (Bd. VII, S. 741) (Schlenk, A. 363, 322). Azofarbstoffe aus diazotiertem 4'-Amino-4-oxy-diphenyl: B.A.S.F.; vgl. dazu auch BAYER & Co., D.R.P. 60373; Frdl. 3, 641.

4'-Acetamino-4-oxy-diphenyl $C_{14}H_{13}O_{3}N = CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot OH$. B. Durch 5-stdg. Kochen von 4'-Amino-4-oxy-diphenyl mit der 5-fachen Menge Eisessig (Täuber, B. 27, 2630; D.R.P. 85988; Frdl. 4, 1167). — Blättchen oder Prismen (aus verd. Alkohol). F: 225°. Fast unlöslich in Wasser, leicht löslich in Alkohol; leicht löslich in Alkalien.

4'-Acetamino-4-methoxy-diphenyl $C_{15}H_{15}O_2N = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot C_6H_4 \cdot O \cdot CH_3$ B. Durch Methylierung des 4'-Acetamino-4-oxy-diphenyls (Täuber, D. R. P. 85988; Frdl. 4, 1167). — Kryställchen (aus Eisessig oder Alkohol). F: 193°. Sehr wenig löslich in Wasser und Benzol.

4'-Acetamino-4-ëthoxy-diphenyl $C_{16}H_{17}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot C_6H_4\cdot O\cdot C_5H_5$. B. Man löst 4'-Acetamino-4-oxy-diphenyl in der 6-fachen Menge 70% igen Alkohols unter Zuhilfenahme von 1 Mol.-Gew. Kali, fügt 1 Mol.-Gew. Äthylbromid oder Äthyljodid hinzu und läßt bei gewöhnlicher Temperatur eine Woche im geschlossenen Gefäß stehen oder erhitzt 2 Stdn. am Rückflußkühler (TÄUBER, B. 27, 2630; D.R.P. 85988; Frdl. 4, 1167). — Nadeln (aus Alkohol). F: 210°. Schwer löslich in Alkohol.

4'-Acetamino-4-[β -brom-äthoxy]-diphenyl $C_{16}H_{16}O_{2}NBr=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot C\cdot CH_{2}\cdot CH_{2}Br$. Kryställchen. F: 202° (Täuber, D.R.P. 85988; Frdl. 4, 1167).

 $[4'-Oxy-diphenylyl-(4)]-oxamidsäure \ C_{14}H_{11}O_4N=HO_2C\cdot CO\cdot NH\cdot C_6H_4\cdot C_6H_4\cdot OH.$ B. Man diazotiert [4'-Amino-diphenylyl-(4)]-oxamidsäure (S. 228), suspendiert das Diazoniumchlorid in Wasser und verkocht (Gelmo, B. 39, 4181). — Nadeln (aus Alkohol). Zersetzt sich oberhalb 270°. In der Wärme löslich in Alkohol und Benzol. Bei der Verseifung mit 66°/oiger Schwefelsäure entsteht 4'-Amino-4-oxy-diphenyl (S. 692).

4'-Amino-4-sulfhydryl-diphenyl, 4'-Amino-4-mercapto-diphenyl, [4'-Amino-diphenylyl-(4)]-mercaptan $C_{12}H_{11}NS = H_2N \cdot C_6H_4 \cdot C_6H_4 \cdot SH$. B. Durch Kochen von 4'-Nitro-diphenyl-sulfochlorid-(4) (Bd. XI, S. 193) mit Zinn und Salzsäure (Gabriel, Dambergis, B. 13, 1410). — $C_{12}H_{11}NS + HCl$. Blättchen. Wird durch Wasser unter Abscheidung einer amorphen Masse zersetzt.

 $\label{eq:continuous} \begin{tabular}{ll} $\{[4'-Amino-diphenylyl-(4)]-mercapto\}$-essigsäure, $S-[4'-Amino-diphenylyl-(4)]-thioglykolsäure $C_{14}H_{13}O_1NS = H_2N\cdot C_0H_4\cdot C_0H_4\cdot S\cdot CH_2\cdot CO_2H.$$ $B.$$ Durch Versetzen einer alkal. Lösung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem Alkali (G., D., L., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan mit chloressigsaurem (G., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan (G., Losung von $[4'-Amino-diphenylyl-(4)]-mercaptan (G., Losung von $[4'-Amino-dipheny$ B. 13, 1411). — Körnig-krystallinische Masse. Schmilzt oberhalb 2000. Schwer löslich in heißem Wasser.

2. Aminoderivate der Monooxy-Verbindungen $C_{13}H_{12}O$.

1. Aminoderivate des 2-Oxy-diphenylmethans $C_{13}H_{11}O = C_6H_5 \cdot CH_1 \cdot C_6H_4 \cdot OH$. OH Br 8.4.5.6 - Tetrabrom - 4' - dimethylamino - 2 - oxy diphenylmethan $C_{18}H_{18}ONBr_4$, s. nebenstehende Formel. B. Aus 3.4.5.6-Tetrabrom-2-oxy-benzylbromid (Bd. VI, (CH₃)₂N· S. 364) und Dimethylanilin in Benzol (Auwers,

ZAUBITZER, A. 384, 327). — Säulen (aus Ligroin +

Benzol). F: 121—123°. Leicht löslich in Chloroform, Eisessig, Äther und heißem Alkohol, schwer in kaltem Alkohol, Methylalkohol und Ligroin. — C₁₅H₁₃ONBr₄ + HBr. Nadeln (aus bromwasserstoffhaltigem Eisessig). F: 213—214°. Leicht löslich in Alkohol, schwer

in kaltem Eisessig und Ligroin.

 $\textbf{Jodmethylat} \ C_{16}H_{16}ONBr_4I = (CH_3)_3NI \cdot C_6H_4 \cdot CH_3 \cdot C_6Br_4 \cdot OH. \ B. \ Beim \ Stehen \ einer$ Lösung von 3.4.5.6-Tetrabrom-4'-dimethylamino-2-oxy-diphenylmethan in überschüssigem Methyljodid (Au., Z., A. 384, 328). — Krystalle (aus Eisessig). F: 165—166°. Sehr wenig löslich in Benzol und Ligroin, leicht in Alkohol, Ather und heißem Eisessig.

a-Amino-2-oxy-diphenylmethan, 2-Oxy-benzhydrylamin \mathbf{OH} C₁₃H₁₃ON, s. nebenstehende Formel. B. Beim Eintragen von 20—25 g Natrium in die siedende Lösung von 20 g 3-Phenyl-·CH(NH₂)· indoxazen C₈H₄ C(C₆H₅) N (Syst. No. 4199) in 250 ccm absol. Alkohol (P. Cohn, M. 15, 655). — Krystalle (aus Alkohol). F: 102—103°; leicht löslich in Äther und Chloroform; löslich in Säuren und verd. Alkalien (P. C., M. 15, 656). — Zerfällt beim Erhitzen mit Alkalien oder verd. Säuren in Ammoniak und die Verbindung C₁₃H₁₀O (S. 694) (P. C., M. 16, 273). Gibt beim Erhitzen mit rauchender Jodwasserstoffsäure und rotem Pharman im Angelein erholen im Angelein erholen in Angelein erholen in Angelein erholen erhol Phosphor im geschlossenen Rohr auf 140—150° a.β.γ-Triphenyl-propan (Bd. V, S. 711) und andere Kohlenwasserstoffe (P. C., C. 1898 II, 284). — Salze: P. C., M. 15, 658.

Na $C_{13}H_{13}ON + 2 H_2O$. Nadeln. Sehr leicht löslich in Wasser. — $C_{13}H_{13}ON + HCl$. Prismen. F: 194—196°. — $C_{13}H_{13}ON + HI$. Nadeln. — $2 C_{13}H_{13}ON + H_2SO_4$. Nadeln. — $C_{13}H_{13}ON + HNO_3 + H_2O$. Würfel. F: 98°. Ziemlich schwer löslich in kaltem Wasser. — Oxalat $C_{13}H_{13}ON + C_2H_2O_4$. Krystallinisch. Schmilzt bei 214°, nachdem es sich vorher orangerot verfärbt hat. — Tartrat $2C_{13}H_{13}ON + C_4H_6O_6$. Prismen. Zersetzt sich bei 245° bis 250°. Schwer löslich in kaltem Wasser. — Pikrat $C_{13}H_{18}ON + C_6H_3O_7N_3$. Krystallinisch. — $2 C_{13}H_{13}ON + 2 HCl + PtCl_4$ (bei 110°). Orangegelbe Nadeln (aus Wasser). Verbindung $C_{13}H_{10}O$. B. Man erhitzt 5 g a-Amino-2-oxy-diphenylmethan mit 5 g konz. Salzsäure und 15 ccm Wasser im geschlossenen Rohr 3—4 Stdn. auf 130—140° und dann 6—8 Stdn. auf 150° (P. COHN. M. 16, 273). — Gelbe Krystalle. Erweicht gegen 170°, schwärzt

6—8 Stdn. auf 150° (Р. Сонн, М. 16, 273). — Gelbe Krystalle. Erweicht gegen 170°, schwärzt sich bei 2000 und ist bei 2100 dickflüssig; leicht löslich in Alkohol, Äther und Chloroform, schwer in Petroläther und Wasser; schwer löslich in verd. Säuren, löslich in verd. Alkalien schwer in Petrolather und Wasser; schwer losiich in verd. Sauren, losiich in verd. Alkalien (P. C., M. 16, 275). — Gibt beim Erhitzen mit rauchender Jodwasserstoffsäure und rotem Phosphor im geschlossenen Rohr auf 140—150° α.β.γ-Triphenyl-propan (Bd. V, S. 711) und andere Kohlenwasserstoffe (P. C., C. 1898 II, 284). — Na C₁₃H₁₀O. B. Man fügt zu der Lösung der Verbindung C₁₃H₁₀O in absol. Alkohol die berechnete Menge Natriumalkoholat und gießt in wasserfreien Ather (P. C., M. 16, 282). Braunes Pulver.

Verbindung C₁₅H₁₄O = C₁₃H₀O·C₂H₅. B. Aus der Verbindung C₁₃H₁₀O in Alkohol mit überschüssigem Athyljodid und Kali am Rückflußkühler (P. C., M. 16, 279). — Kaum gefärbte Kryställchen. Wird bei 168—170° dickflüssig. Leicht löslich in heißem Benzol und Chloroform, unlöslich in Alkohol. Unlöslich in Alkalien.

Verbindung C.-H.-O. = C.-H.O. CO·CH., B. Aus der Verbindung C.-H.-O und Essig-

Verbindung $C_{15}H_{12}O_2 = C_{13}H_{9}O \cdot CO \cdot CH_3$. B. Aus der Verbindung $C_{13}H_{10}O$ und Essigsäureanhydrid (P. C., M. 16, 281). — Weiße Nädelchen. Ist bei 190° dickflüssig. Leicht löslich in Chloroform und Benzol, sehr wenig in Äther, fast unlöslich in Alkohol und Petroläther. Unlöslich in Alkalien.

Verbindung $C_{20}H_{14}O_2 = C_{13}H_9O \cdot CO \cdot C_6H_5$. B. Aus der Verbindung $C_{13}H_{10}O$ in verd. Natronlauge und Benzoylchlorid (P. C., M. 16, 279). — Weißes bis schwach gelb gefärbtes Krystallpulver. Wird bei 1900 dickflüssig. Unlöslich in Alkohol und Petroläther, leicht löslich in Chloroform.

- a-Amino 2 \ddot{a} thoxy diphenylmethan, 2 \ddot{A} thoxy benzhydrylamin $C_{18}H_{17}ON =$ $C_0H_5 \cdot CH(NH_2) \cdot C_0H_4 \cdot O \cdot C_2H_5$. B. Man erhitzt a-Amino-2-oxy-diphenylmethan, Athylchlorid, Kali und Alkohol im geschlossenen Rohr 1-2 Stdn. auf 100° (P. Cohn, M. 16, 269). – Hydrochlorid. Krystalle. — $2 \, \mathrm{C_{16} \, H_{17}ON} + 2 \, \mathrm{HCl} + \mathrm{PtCl_4}$. Rasch krystallinisch erstarrender Niederschlag.
- a-Bensamino-2-oxy-diphenylmethan $C_{20}H_{17}O_{2}N = C_{6}H_{5} \cdot CH(NH \cdot CO \cdot C_{6}H_{5}) \cdot C_{6}H_{4} \cdot OH$. B. Bei 2-stdg. Kochen von a-Benzamino-2-benzoyloxy-diphenylmethan (s. u.) mit Natronlauge und wenig Alkohol (P. C., M. 15, 664). — Kryställchen (aus Eisessig). F: 208°. Sehr wenig löslich in verd. Alkohol und Eisessig.
- $\begin{array}{ll} \text{$\alpha$-Benzamino-2-benzoyloxy-diphenylmethan $C_{27}H_{21}O_3N=C_6H_5\cdot CH(NH\cdot CO\cdot C_6H_5)$.}\\ C_8H_4\cdot O\cdot CO\cdot C_8H_6. & B. & Aus dem Natriumsalz des α-Amino-2-oxy-diphenylmethans in Wasser $A_{12}^{(1)}$ and $A_{13}^{(2)}$ are the sum of the sum$ und etwas Kalilauge mit Benzoylchlorid (P. C., M. 15, 663; 16, 269). — Nadeln (aus verd. Alkohol). F: 176°. Sehr wenig löslich in Alkohol.
 - Aminoderivate des 3-Oxy-diphenylmethans $C_{13}H_{12}O = C_4H_5 \cdot CH_2 \cdot C_4H_4 \cdot OH$.
- 4.4'-Bis-dimethylamino-3-oxy-diphenyl- \mathbf{OH} methan $C_{17}H_{23}ON_2$, s. nebenstehende Formel. B. Aus 4.4'-Bis-dimethylamino-diphenylmethan-dioxyd (CH₂)₂N· \cdot CH $_{ullet}$ \cdot N(CH₂)₂ (S. 242) beim Erwärmen mit Essigsäureanhydrid und konz. Schwefelsäure, neben 4.4'-Bis-dimethylamino-3.3'-dioxy-diphenylmethan (S. 813) (BAMBERGER, RUDOLF, B. 41, 3302). — Nadeln (aus Alkohol). F: 111—111,5° (korr.). Sehr schwer löslich in Wasser, schwer in Petroläther, leicht in heißem Ligroin, sehr leicht in Aceton, Chloroform und heißem Alkohol. Leicht löslich in Mineralsäuren, weniger leicht in Essigsäure. Ist in frisch gefälltem Zustand in verd. Natronlauge löslich. Die schwach salzsaure Lösung wird mit Eisenchlorid braunrot, die essigsaure Lösung mit Bleidioxyd gelb, dann violettrot gefärbt.
- 4.4' Bis dimethylamino 3(?) phenylsulfon diphenylmethan $C_{23}H_{26}O_{2}N_{2}S =$ (CH₃)₃N·C₆H₄·CH₃·C₆H₃[N(CH₃)₂]·SO₃·C₆H₅. Eine Verbindung, der früher diese Konstitution erteilt wurde, ist von HINSBERG (B. 50 [1917], 471) als Phenyl-[4.4'-bis-dimethylaminobenzhydryl]-sulfon erkannt worden und als solches S. 704 aufgeführt.
- 3. Aminoderivate des 4 Oxy diphenylmethans $C_{13}H_{12}O=C_0H_5\cdot CH_2\cdot C_0H_4\cdot OH$ (Bd. VI, S. 675). NH, 3-Amino-4-oxy-diphenylmethan $C_{13}H_{13}ON$, s. nebenstehende Formel. B. Aus 3-Nitro-4-oxy-diphenylmethan (Bd. VI, CH2. S. 677) mit Zinn und Salzsäure (Rennie, Soc. 41, 221). — Schuppen. — C₁₃H₁₃ON + HCl.

- 4'-Dimethylamino-4-oxy-diphenylmethan $C_{18}H_{17}ON =$
- (CH₃)₂N·CH₂·CH₂·OH. B. Aus dem Hydrobromid des 3.5-Dibrom-4'-[dimethylamino] - 4 - oxy - diphenylmethans (s. u.) durch Natrium und siedenden Alkohol (Auwers, STRECKER, A. 334, 339). Man leitet in die verdünnte schwefelsaure Lösung des 4-Amino-4'-dimethylamino-diphenylmethans (S. 239) einen lebhaften Dampfstrom und läßt gleichzeitig eine wäßr. Natriumnitritlösung hinzutropfen (Au., Str., A. 334, 341). — Prismen (aus Ligroin). F: 108-109°. Leicht löslich in Alkohol, Äther, Benzol, löslich in Essigsäure, schwer löslich in heißem Ligroin.
- 4'-Dimethylamino-4-benzoyloxy-diphenylmethan $C_{22}H_{21}O_2N = (CH_3)_2N \cdot C_6H_4 \cdot CH_2 \cdot CH_3$ $C_6H_4\cdot O\cdot CO\cdot C_6H_5$. B. Aus 4'-Dimethylamino-4-oxy-diphenylmethan, Benzoylchlorid und Natronlauge (Au., Str., A. 334, 340). — Blättchen (aus Alkohol). F: 118—118,5°. Leicht löslich in Benzol und heißem Alkohol.
- 2.3.5.6-Tetrachlor-4'-diäthylamino-4-oxy-diphenylmethan $C_{17}H_{17}ONCl_4 = (C_2H_5)_2N$. C₆H₄·CH₄·C₆Cl₄·OH. B. Aus 2.3.5.6-Tetrachlor-4-oxy-benzylbromid (Bd. VI, S. 406) mit der berechneten Menge Diathylanilin in Ather (ZINCKE, HUNKE, A. 349, 92). — Würfel (aus Benzin). F: 135°. Leicht löslich in Eisessig, Alkohol, Äther, Benzol, schwer in Benzin. — C₁₇H₁₇ONCl₄ + HBr. Nadeln (aus Eisessig). F: 257—258° (Zers.). Ziemlich leicht löslich in heißem Alkohol, ziemlich schwer in heißem Eisessig, schwer in Wasser.
- **2.3.5.6-Tetrachlor-4**'-diäthylamino-4-acetoxy-diphenylmethan $C_{19}H_{19}O_2NCl_4 = (C_2H_5)_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6Cl_4 \cdot O \cdot CO \cdot CH_3$. B. Aus 2.3.5.6-Tetrachlor-4'-diäthylamino-4-oxydiphenylmethan oder dessen Hydrobromid beim Kochen mit Essigsäureanhydrid und Natriumacetat (Z., H., A. 349, 93). — Nädelchen (aus Benzin). F: 120°. Leicht löslich in Äther, Alkohol und Eisessig.
- 3.5-Dibrom-4'-dimethylamino-4-oxy-diphenylmethan $C_{15}H_{15}ONBr_2 = (CH_3)_2N$. C₆H₄·CH₂·C₆H₂Br₂·OH. B. Aus 3.5-Dibrom-4-oxy-benzylbromid (Bd. VI, S. 408) und Dimethylanilin in Benzol (Auwers, Strecker, A. 334, 338). — Nicht rein erhalten. Braunes Ol. Leicht löslich in Alkalien. — Gibt mit Natrium und siedendem Alkohol 4'-Dimethylamino-4-oxy-diphenylmethan. — $C_{15}H_{16}ONBr_2+HBr$. Nicht rein erhalten. Krystallinisch. F:118–122°. Leicht löslich in Eisessig und Alkohol, sehr wenig in siedendem Benzol und Xylol.
- $\textbf{Jodmethylat} \ C_{16}H_{18}ONBr_2I = (CH_3)_3NI \cdot C_6H_4 \cdot CH_2 \cdot C_6H_2Br_2 \cdot OH. \ B. \ Beim \ Erwärmen$ von 3.5-Dibrom-4'-dimethylamino-4-oxy-diphenylmethan mit überschüssigem Methyljodid (Au., Str., A. 334, 338). — Gelbe Blättchen und Nadeln. Schmilzt bei 165—170°, zersetzt sich bei 175°. Leicht löslich in heißem Eisessig und Alkohol, sehr wenig in heißem Benzol und Chloroform.
- 2.3.5-Tribrom-4'-dimethylamino-4-oxy-diphenylmethan $C_{15}H_{14}ONBr_3=(CH_3)_2N\cdot C_0H_4\cdot CH_3\cdot C_5HBr_5\cdot OH$. B. Aus 2.3.5-Tribrom-4-oxy-benzylbromid (Bd. VI, S. 409) und Dimethylanilin in Benzol (Au., Str., A. 334, 331). Nadeln (aus Alkohol). F: 127°. Leicht oder mäßig löslich in Benzol, Chloroform, Äther, Alkohol und Methylalkohol, sehr wenig löslich in Ligroin und Petroläther. $C_{15}H_{14}ONBr_3+HBr$. Blättchen (aus Eisessig). F: 224° bis 225°. Unlöslich in Benzol, Chloroform und Ligroin, mäßig löslich in heißem Eisessig.
- 2.3.5 Tribrom 4' dimethylamino 4 oxy diphenylmethan hydroxymethylat $C_{16}H_{18}O_3NBr_3=(CH_3)_3N(OH)\cdot C_6H_4\cdot CH_2\cdot C_6HBr_3\cdot OH$. B. Das Jodid entsteht beim Erwärmen einer Benzollösung des 2.3.5 Tribrom-4'- dimethylamino 4-oxy-diphenylmethans mit Methyljodid auf dem Wasserbade; beim Erwärmen des Jodids mit Natronlauge auf dem Wasserbad entsteht das freie 2.3.5-Tribrom-4'-dimethylamino-4-oxy-diphenylmethan-hydroxymethylat (Au., Stb., A. 334, 332). — Krystallpulver. F: 210—212°. Löslich in siedendem Wasser mit alkal. Reaktion; sehr leicht löslich in verd. Schwefelsäure. — Jodid C₁₆H₁₇ONBr₃·I. Gelbliches Krystallpulver. F: 171—173°. Unlöslich in Benzol, löslich in Alkohol. — Sulfat. Schwer löslich in verd. Schwefelsäure.
- a-Amino-4-methoxy-diphenylmethan, 4-Methoxy-benzhydrylamin $C_{14}H_{15}ON =$ > O · CH₃. B. Durch Reduktion der beiden 4-Methoxy-benzophenon-oxime (Bd. VIII, S. 160, 161) mit Natriumamalgam (Hantzsch, Kraft, B. 24, 3512). Aus Anishydramid (Bd. VIII, S. 75) und Phenylmagnesium (Hantzsch, Kraft, B. 24, 3512). Helm, J. pr. [2] 77, 19). — Öl. Kp_{1s}: 202—206°; leicht löslich in Alkohol und Ather, schwer in Wasser (B., L.). — Hydrochforid. Nadeln. F: 191° (H., K.), 194° (B., L.). — Nitrat. Blätter (aus Wasser). F: 164° (B., L.).
- a-Acetamino-4-methoxy-diphenylmethan $C_{16}H_{17}O_{5}N=C_{6}H_{5}\cdot CH(NH\cdot CO\cdot CH_{3})\cdot C_{6}H_{4}\cdot O\cdot CH_{8}$. Krystalle. F: 159° (Hantzsch, Kraft, B. 24, 3513).
- a-Bensamino-4-methoxy-diphenylmethan $C_{21}H_{12}O_2N=C_8H_5\cdot CH(NH\cdot CO\cdot C_8H_5)\cdot C_9H_4\cdot O\cdot CH_3$. Nådelchen (aus verd. Alkohol). F: 174°; leicht löslich in Alkohol und Ather (Busch, LEEFHELM, J. pr. [2] 77, 20).

4. Aminoderivate des a-Oxy-diphenylmethans (Diphenylcarbinols) $C_{13}H_{12}O=(C_6H_8)_2CH\cdot OH$ (Bd. VI, S. 678).

Monoaminoderivate des Diphenylcarbinols.

- 2 Amino diphenylcarbinol, 2 Amino benzhydrol $C_{13}H_{13}ON$, s. nebenstehende Formel. B. Bei $^{1}/_{4}$ -stdg. Schütteln von 10 g 2-Amino-benzophenon (Syst. No. 1873), gelöst in 150 ccm Alkohol und 50 ccm Wasser, mit 150 g 2,5% gelöst in 150 ccm Natriumamalgam (Gabriel, Stellarbe, B. 29, 1304). Farblose Prismen (aus Alkohol). F: 120%. Leicht löslich in den gewöhnlichen organischen Lösungsmitteln; leicht löslich in verd. Säuren. Beim Erhitzen mit 1 Tl. Harnstoff auf 175% entsteht 2-Oxo-4-phenyl-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3571). Verbindet sich mit Rhodanwasserstoff zu 2-Thion-4-phenyl-chinazolin-tetrahydrid-(1.2.3.4) (Syst. No. 3571).
- 2-Acetamino-benzhydrol $C_{15}H_{16}O_2N=C_6H_5\cdot CH(OH)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Beim Erwärmen von 2-Amino-benzhydrol mit Essigsäureanhydrid auf dem Wasserbade (G., St., B. 29, 1305). Farblose Nadeln (aus Alkohol). F: 118°.
- 3-Dimethylamino-benzhydrol $C_{18}H_{17}ON$, s. nebenstehende Formel. B. Bei der Reduktion von 3-[Dimethylamino]-benzophenon (Syst. No. 1873) mit Natriumamalgam in verd. Alkohol (Bayer, A. 354, 189). Farblose Nadeln (aus Alkohol). F: 102° . Löslich in konz. Schwefelsäure mit orangeroter Farbe, in anderen Säuren farblos.
- 4 Amino diphenylcarbinol, 4 Amino benzhydrol C₁₃H₁₃ON =
 CH (OH) · NH₂. B. Bei der Reduktion von 4-Amino-benzophenon (Syst. No. 1873) mit Natriumamalgam in wäßrig-alkoholischer Lösung (Kippenberg, B. 30, 1136). Nadeln (aus Wasser oder Benzol). F: 121°. Sehr leicht löslich in Methylalkohol und Äthylalkohol sowie in Essigester, schwer in Äther, sehr wenig in Ligroin. Die Lösung in Eisessig färbt sich bald rot bis violett und scheidet dann einen grünlichen, später dunkelbraunen Körper ab. Aus verd. Essigsäure scheidet sich ein wahrscheinlich polymeres Anhydro-[4-amino-benzhydrol] (s. u.) ab. Fügt man zur verdünnten wäßrigen Lösung des Hydrols eine geringe Menge Säure, so färbt sich die Flüssigkeit gelb und scheidet dann eine außer in Nitrobenzol unlösliche amorphe Fällung ab, die durch mehr Säure in der Wärme mit gelber Farbe gelöst wird. Fügt man zur konzentrierten alkoholischen Lösung des Hydrols konz. Salzsäure, so scheiden sich rötlichweiße chlorhaltige Krystalle (F: 115°) ab, die in Wasser leicht löslich sind (in der Wärme gelb, in der Kälte farblos). Beim Einleiten von Schwefelwasserstoff in die Lösung des Hydrols in verd. Salzsäure bildet sich Bis-[4-amino-benzhydryl]-sulfid (S. 697). Beim Erhitzen mit Dimethylanilin in Gegenwart von ZnCl₂ entsteht 4-Amino-4'-dimethylamino-triphenylmethan (S. 275). Hydrochlorid. B. Beim Leiten von trocknem Chlorwasserstoff in die absolut-ätherische Lösung des 4-Amino-benzhydrols (K.). Weiße, an der Luft sich gelbfärbende Krystalle. F: 270—273° (Zers.).

Polymeres Anhydro-[4-amino-benzhydrol] $(C_{18}H_{11}N)_x = \begin{bmatrix} C_0H_0 \\ CH \cdot C_0H_5 \end{bmatrix}_x^N B$. Beim Lösen von 4-Amino-benzhydrol in verdünnter kalter Essigsäure (K., B. 30, 1137). — Zunächst weißer, dann orangefarbener Niederschlag. Bräunt sich bei 200° und schmilzt bei 220—225° unter Zersetzung.

4-Dimethylamino-benzhydrol C₁₅H₁₇ON = C₄H₅·CH(OH)·C₄H₄·N(CH₃)₃. B. Bei 50-stdg. Erwärmen von 1 Mol.-Gew. Benzaldehyd (Bd. VII, S. 174) mit 1 Mol.-Gew. Dimethylanilin (Bd. XII, S. 141) und 20 Tln. konz. Salzsäure auf dem Wasserbade, neben 4.4'-Bisdimethylamino-triphenylmethan (S. 275) (Alberohy, B. 21, 3293; vgl. Kalle & Co., D. R. P. 45-806; Frdl. 2, 27). Aus Phenylmagnesiumbromid (Syst. No. 2337) und 4-Dimethylamino-benzaldehyd (Syst. No. 1873) in Ather (Sachs, Steiner, B. 37, 1742). Beim Behandeln von 4-Dimethylamino-benzophenon (Syst. No. 1873), gelöst in Alkohol, mit der 10-fachen Menge 3°/oigen Natriumamalgams (A.). — Nadeln (aus verd. Alkohol). F: 69—70° (A.; Sachs, St.), 70° (K. & Co.). Unlöslich in Wasser, sehr leicht löslich in den meisten Lösungsmitteln, etwas schwerer in Ligroin (A.). — Beim Erwärmen mit Dimethylanilin in Gegenwart von Zinkohlorid entsteht 4.4'-Bis-dimethylamino-triphenylmethan (A.). Kondensiert sich mit Acetylaceton (Bd. I, S. 777) zu ms-[4-Dimethylamino-benzhydryl]-acetylaceton (Syst. No. 1874) (Fosse, C.r. 145, 1290; Bl. [4] 3, 1079). Bei der Einw. von Malonsäure entsteht 4-[Dimethylamino]-benzhydrylessigsäure (Syst. No. 1907) (F., C.r. 143, 915).

- **4-Dimethylamino-benzhydrol-äthyläther** $C_{17}H_{21}ON = C_6H_5 \cdot CH(O \cdot C_2H_5) \cdot C_6H_4 \cdot N(CH_3)_8$. B. Bei der Einw. von Alkohol auf 4-Dimethylamino-benzhydrol in Gegenwart von Säure (Willstätter, Goldmann, B. 39, 3772). Farblose schwach benzaldchydartig riechende Nadeln (aus niedrig siedendem Petroläther). F: 37—37,5°. Kp₁₄: 206—208°. Sehr leicht löslich in den üblichen Lösungsmitteln; löst sich in kalter konzentrierter Salzsäure farblos, in heißer intensiv gelb; gibt mit konz. Schwefelsäure intensive Rotfärbung.
- **4-Benzamino-benzhydrol** $C_{80}H_{17}O_2N = C_6H_5 \cdot CH(OH) \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von freiem oder salzsaurem 4-Amino-benzhydrol mit Benzoylchlorid (KIPPENBERG, B. 30, 1138). Nadeln (aus absol. Alkohol). F: 145°.
- 2'-Chlor-4-amino-benzhydrol $C_{13}H_{13}$ ONCl = C_6H_4 Cl·CH(OH)· C_6H_4 ·NH $_2$. B. Bei der Einw. von Anilin und salzsaurem Anilin auf 2-Chlor-benzaldehyd bei Gegenwart von Alkohol (KALLE & Co., D.R.P. 119461; C. 1901 I, 866). Nur in Form der polymeren Anhydroverbindung bekannt. Diese bildet eine spröde Masse. Gibt beim Übergießen mit starker Salzsäure ein scharlachrot gefärbtes Salz, das von Wasser sofort unter Entfärbung dissoziiert wird.
- 3'-Nitro-4-dimethylamino-benzhydrol $C_{15}H_{16}O_3N_2=O_2N\cdot C_6H_4\cdot (^{\circ}H(OH)\cdot C_6H_4\cdot N(CH_2)_2$. B. Bei der Einw. von Dimethylanilin auf 3-Nitro-benzaldehyd in Gegenwart von überschüssiger Mineralsäure (Kalle & Co., D. R. P. 45806; Frdl. 2, 27). Gelbe Krystalle. F: 74°. Leicht löslich in Alkohol, unlöslich in Wasser.
- 3'- Nitro 4 diäthylamino benzhydrol $C_{17}H_{20}O_3N_2=O_2N\cdot C_6H_4\cdot CH(OH)\cdot ({}^6_6H_4\cdot N(C_2H_5)_2$. Bei der Einw. von Diäthylanilin auf 3-Nitro-benzaldehyd in Gegenwart von überschüssiger Mineralsäure (K. & Co., D.R. P. 45 806; Frdl. 2, 27). Gelbe Krystalle. F: 65°. Leicht löslich in Alkohol, unlöslich in Wasser.
- 4'-Nitro-4-amino-benshydrol $C_{13}H_{12}O_3N_2 = O_2N \cdot C_6H_4 \cdot CH(OH) \cdot C_6H_1 \cdot NH_2$. B. Aus 4-Nitro-benzaldehyd, Anilin und salzsaurem Anilin in Gegenwart von Alkohol oder aus [4-Nitro-benzal]-anilin (Bd. XII, S. 198) beim Kochen mit Salzsäure und Alkohol (K. & Co., D.R.P. 119461; C. 1901 I, 866). Nur in Form der polymerisierten Anhydroverbindung bekannt. Diese bildet ein gelbes Pulvef. F: ca. 240° (Gasentwicklung). Fast unlöslich in Alkohol, Äther, Benzol und Eisessig, leicht löslich in einem Gemisch von Eisessig und Salzsäure. Bei der Reduktion mit Zinkstaub in Eisessig entsteht 4.4'-Diamino-benzhydrol (S. 698).
- 4'-Nitro-4-methylamino-benzhydrol $C_{14}H_{14}O_3N_2=O_2N\cdot C_6H_4\cdot CH(OH)\cdot C_6H_4\cdot NH\cdot CH_3$. B. Bei der Einw. von Methylanilin auf 4-Nitro-benzaldehyd in Gegenwart von überschüssiger Mineralsäure (K. & Co., D.R.P. 45806; Frdl. 2, 27). Gelbe Krystalle. F: 108°. Leicht löslich in Alkohol, unlöslich in Wasser.
- 4'-Nitro-4-dimethylamino-benzhydrol $C_{15}H_{16}O_3N_2=O_3N\cdot C_6H_4\cdot CH(OH)\cdot C_6H_4\cdot N(CH_2)_2$. B. Bei 40-stdg. Erwärmen von 151 g 4-Nitro-benzaldehyd mit 121 g Dimethylanilin und 3 kg konz. Salzsäure am Rückflußkühler (Albbecht, B. 21, 3294; vgl. Kalle & Co., D.R.P. 45806; Frdl. 2, 26). Gelbe Nadeln (aus verd. Alkohol). F: 95° (K. & Co.), 96° (A.). Unlöslich in Wasser und Ligroin, sehr leicht löslich in den meisten Lösungsmitteln (A.). Bei vorsichtiger Reduktion mit Zinkstaub und Salzsäure bildet sich 4-Amino-4'-dimethylamino-benzhydrol (S. 698), beim Kochen mit Zinkstaub und Salzsäure erhält man 4-Amino-4'-dimethylamino-diphenylmethan (S. 239) (A.). Bei kurzem Erwärmen mit Dimethylanilin und Zinkchlorid entsteht 4"-Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 280) (A.; K. & Co.). 2 $C_{15}H_{16}O_3N_3+2$ HCl + PtCl4. Nadeln (A.).
- 4'-Nitro-4-dimethylamino-benzhydrol-jodmethylat $C_{16}H_{19}O_3N_2I=O_3N\cdot C_6H_4\cdot CH(OH)\cdot C_6H_4\cdot N(CH_3)_3I$. B. Beim Kochen von 4'-Nitro-4-dimethylamino-benzhydrol mit etwas mehr als der berechneten Menge Methyljodid in methylalkoholischer Lösung am Rückflußkühler (Albrecht, B. 21, 3295). Harte Krystallmasse. F: 175° (Zers.).
- 4'-Nitro-4-äthylamino-benghydrol $C_{15}H_{16}O_3N_2=O_2N\cdot C_6H_4\cdot CH(OH)\cdot C_6H_4\cdot NH\cdot C_9H_5$. B. Aus 4-Nitro-benzaldehyd und Athylanilin in Gegenwart von überschüssiger Mineralsäure (Kalle & Co., D.R.P. 45806; Frdl. 2, 27). Gelbe Krystalle. F: 99°. Unlöslich in Wasser, sehr leicht in Alkohol.
- 4'-Nitro-4-diäthylamino-benzhydrol $C_{17}H_{20}O_3N_2=O_2N\cdot C_6H_4\cdot CH(OH)\cdot C_6H_4\cdot N(C_2H_5)_2$. B. Aus 4-Nitro-benzaldehyd und Diäthylanilin in Gegenwart von überschüssiger Mineralsäure (K. & Co., D.R.P. 45806; Frdl. 2, 27). Gelbe Krystalle. F: 92°. Unlöslich in Wasser, sehr leicht in Alkohol.
- Bis-[4-amino-benshydryl]-sulfid $C_{26}H_{24}N_1S=S[CH(C_0H_5)\cdot C_0H_4\cdot NH_1]_2$. B. Beim Einleiten von Schwefelwasserstoff in eine Lösung von 4-Amino-benzhydrol in verd. Salzsäure zuerst in der Kälte, dann auf dem Wasserbade (KIPPENBERG, B. 30, 1139). Amorphe Flocken. Leicht löslich in organischen Solvenzien. $C_{26}H_{24}N_2S+2HCl+H_2O$ (bei 100°). Krystalle, die sich gegen 190° bräunen und bei 263° unter Zersetzung schmelzen.

Diaminoderivate des Diphenylcarbinols.

3.3'-Bis-dimethylamino-benzhydrol, Tetramethyl-3.3'-diamino-benzhydrol $C_{17}H_{22}ON_2=[(CH_3)_2N\cdot C_4H_4]_2CH\cdot OH$. B. Bei der Reduktion von 3.3'-Bis-dimethylamino-benzophenon mit Natriumamalgam in alkoh. Lösung (BAEYER, A. 354, 194). — Prismen (aus Åther). F: 72-73°. Farblos löslich in Säuren.

8.4'-Bis-dimethylamino-benzhydrol, Tetra-N(CH₃)₂ methyl - 3.4' - diamino - benzhydrol C₁₇H₂₂ON₂, s. nebenstehende Formel. B. Bei der Reduktion $(CH_3)_2N\cdot\langle$ > CH(OH) • von 3.4'-Bis-dimethylamino-benzophenon (Syst. No. 1873) mit Natriumamalgam (B., A. 354, 191). — Nadeln (aus Alkohol). F: 100—101°. Löslich in heißem Eisessig mit gelbgrüner, in konz. Schwefelsäure mit gelber Farbe, in anderen Mineralsäuren farblos löslich.

- 4.4' Diamino diphenylcarbinol, 4.4' Diamino benzhydrol $C_{13}H_{14}ON_2 =$ CH(OH)· NH₂. B. Bei der Reduktion von 4'-Nitro-4-amino-benz- $H_{2}N \cdot \langle$ hydrol (S. 697) mit Zinkstaub in Eisessig (KALLE & Co., D.R.P. 119461; C. 1901 I, 866). Beim Eintragen von Natriumamalgam in eine Lösung von 4.4'-Diamino-benzophenon (Syst. No. 1873) in absol. Alkohol (Wighelhaus, B. 22, 988).— Krystallpulver. F: 98° (W.; Vongerichten, Bock, Ztechr. f. Farben- u. Textilchemie 2, 250; C. 1903 II, 441). Leicht löslich in kaltem Methylalkohol, Äthylalkohol und Aceton, schwerer in Chloroform, Benzol und Äther; in Essigsäure in der Wärme fuchsinrot, in der Kälte farbles löslich (Vo., B.). – Liefert beim Erwärmen mit salzsaurem Anilin in wäßr. Lösung auf dem Wasserbade quantitativ 4.4'.4"-Triamino-triphenylmethan (S. 313) (Vo., B.). Über Azofarbstoffe aus diazotiertem 4.4'-Diamino-diphenylcarbinol vgl. Wichelhaus, D. R. P. 39958; Frdl. 1, 527. Kondensation mit aromatischen Hydrazinen in Gegenwart von konz. Schwefelsäure zu fuchsinähnlichen Farbstoffen: VIDAL Fixed Aniline Dyes Limited, HAAS, D.R.P. 116566; C. 1901 I, 74.
- $\textbf{4-Amino-4'-dimethylamino-benzhydrol} \quad C_{15}H_{18}ON_2 = H_2N \cdot C_6H_4 \cdot CH(OH) N(CH₂)₂. B. Durch vorsichtige Reduktion von 4'-Nitro-4-dimethylamino-benzhydrol (S. 697) mit Zinkstaub und Salzsäure (Albrecht, B. 21, 3295). — Krystallisiert aus Benzol in benzolhaltigen Nadeln, die bei 142° unter Benzolverlust schmelzen. Die benzolfreie Verbindung schmilzt bei 165°. Spaltet beim Erhitzen über seinen Schmelzpunkt 1 Mol. Wasser ab; löst man die geschmolzene Base in Salzsäure und versetzt die Lösung mit Alkali, so fällt wieder 4-Amino-4'-dimethylamino-benzhydrol aus. Löst sich in Essigsäure mit blauer Farbe. Beim Kochen mit Zinkstaub und Salzsäure entsteht 4-Amino-4'-dimethylamino-diphenylmethan (S. 239).
- 4.4'-Bis-dimethylamino-benshydrol, Tetramethyl-4.4'-diamino-benshydrol, Michlersches Hydrol $C_{17}H_{22}ON_2=[(CH_3)_2N\cdot C_0H_4]_2CH\cdot OH$.

Aus 4.4'-Bis-dimethylamino-diphenylmethan (S. 239) durch Versetzen der eisessigsalzsauren Lösung mit Bleidioxyd unter Kühlung (Möhlau, Heinze, B. 35, 359) oder durch elektrolytische Oxydation an Bleielektroden in Gegenwart von verd. Schwefelsäure (Esome-RICH, MOEST, Z. El. Ch. 8, 851; vgl. D.R.P. 133896; C. 1902 II, 834). Beim Erwärmen von 4.4'-Bis-dimethylamino-benzhydrylamin (Leukauramin, S. 307) mit verd. Salzsaure (Rosen-STIEHL, Bl. [3] 11, 405). Aus 4.4-Bis-dimethylamino-benzophenon (MICHLERS Keton; Syst. No. 1873) bei der Reduktion mit Natriumamalgam in alkoh. Lösung (MICHLER, DUPERTUIS, B. 9, 1900; NATHANSOHN, P. MÜLLER, B. 22, 1879), mit Natrium in Alkohol (Klages, Allendorff, B. 31, 1002) oder Amylalkohol (Möhlau, Kloffer, B. 32, 2148), oder mit Zinkstaub in amylalkoholisch-alkalischer Lösung (Bad. Anilin- u. Sodaf., D.R.P. 27032; Frdl. 1, 76) ferner durch elektrolytische Reduktion an einer Bleikathode in alkoholischalkalischer Lösung (Elbs, Brand, Z. El. Ch. 8, 786) oder in verdünnter schwefelsaurer Lösung
(Eson., Moest, Z. El. Ch. 8, 850) oder an Nickelelektroden in schwefelsaurer Lösung in Gegenwart von Titanverbindungen (Höchster Farbw., D.R.P. 168273; Frdl. 8, 117).

Darstellung.

Man trägt allmählich 80 Tle. Zinkstaub in eine 120—130° heiße Mischung von 100 Tln. 4.4'-Bis-dimethylamino-benzophenon, 1000 Tln. Amylalkohol und 50 Tln. NaOH ein und erhitzt 48 Stdn. (Bad. Anilin- u. Sodaf., D.R.P. 27032; Frdl. 1, 76). Man kocht 50 g 4.4'-Bis-dimethylamino-benzophenon mit 31 Alkohol (96 Vol.-%) und 350 g 3% igem Natrium-amalgam 3—4 Stdn. am Rückfluß, filtriert und gießt in Wasser (Ausbeute quantitativ) (BIELECKI, KOLENIEW, Anzeiger Akad. Wies. Krakau 1908, 303; C. 1908 II, 877; vgl. MÖHLAU, HEINZE, B. 35, 360).

Physikalische Eigenschaften.

Krystalle (aus Ather), Prismen (aus Benzol). Triklin pinakoidal (Schall, B. 22, 1881; vgl. Groth, Ch. Kr. 5, 99). F: 95—96° (Möhlau, Heinze, B. 35, 361), 96° (Michler, Dupertuis, B. 9, 1900; Nathansohn, P. Müller, B. 22, 1879), 97° (Klages, Allendorff, B. 31, 1002), 102—103° (O. Fischer, Weiss, Ztschr. f. Farben- u. Textilchemie 1, 1). Leicht löslich in heißem Alkohol, Eisessig, Benzol und Ather (Na., P. Mü.). Die Lösungen in Alkohol und Eisessig sind intensiv blau 1; die blaue Farbe verschwindet auf Zusatz von Alkali (Mi., Du.; Na., P. Mü.; vgl. Rosenstiehl, Bl. [3] 9, 127).

Chemisches Verhalten.

Beim Erhitzen von Michlerschem Hydrol auf 105° entsteht Bis-[4.4'-bis-(dimethylamino)-benzhydryl]-ather (S. 703) (Möhlau, Heinze, B. 35, 361). Beim Schütteln der Lösung in der theoretischen Menge Salzsäure und überschüssiger Essigsäure mit Bleidioxyd in der Kälte wird N.N.N'.N'-Tetramethyl-benzidin (S. 221) gebildet (Rosenstiehl, Bl. [3] 18, 273). Beim Erwärmen mit konz. Schwefelsäure auf 125° bildet sich 4.4′-Bis-dimethylamino-benzophenon (Ro., Bl. [3] 13, 273). Michlersches Hydrol absorbiert 3 Mol. Chlorwasserstoff
unter Bildung einer Verbindung C₁₇H₂₃N₂Cl₃ (Ro., Bl. [3] 9, 127). Zerfällt beim Kochen
mit verd. Säuren zunächst in 4-Dimethylamino-benzaldehyd und Dimethylanilin; hierauf
entsteht Leukokrystallviolet (S. 315) (Weil, B. 27, 3316; Ro., Bl. [3] 13, 276). Bei der Einw. von Schwefelwasserstoff auf in Alkohol gelöstes Michlersches Hydrol bei Gegenwart von Essigsäure erhält man 4.4'-Bis-dimethylamino-thiobenzhydrol (S. 703) (Bad. Anilinu. Sodaf., D.R.P. 58198, 58277; Frdl. 3, 87; Möhlau, Heinze, Zimmermann, B. 35, 383). Beim Erwärmen von Michlerschem Hydrol mit wäßriger schwefliger Säure (Höchster Farbw., D.R.P. 69948; Frdl. 3, 81; WEIL, B. 27, 1406) oder bei kurzem Kochen mit Natriumdisulfitlösung am Rückflußkühler (Hö. F., D.R.P. 67434; Frdl. 8, 80; WEIL, B. 27, 1405) entsteht 4.4'-Bis-dimethylamino-diphenylmethan-a-sulfonsaure (Syst. No. 1923). Beim Kochen mit einer schwach ammoniakalisch gehaltenen Lösung von Ammoniumacetat entsteht Bis-[4.4'-bis-dimethylamino-benzhydryl]-amin (S. 309) (Well, B. 27, 1408; vgl. Möh., Hel., ZIMMERMANN, B. 35, 376). Beim Erhitzen von Michlerschem Hydrol mit Schwefel, Natriumchlorid und Ammoniumchlorid auf 170° (B. A. S. F., D.R.P. 58277; Frdl. 3, 88) oder im Ammoniakstrome bei Gegenwart von Chloranil, Nitrobenzol oder ähnlichen Oxydationsmitteln auf 150° (B. A. S. F., D.R.P. 70908; Frdl. 3, 88) wird 4.4'-Bis-dimethylaminobenzophenon-imid (Auramin; Syst. No. 1873) erhalten. Beim Erwarmen mit salzsaurem Hydroxylamin und Natriumdicarbonat in verd. Alkohol wird 4.4'-Bis-dimethylamino-α-hydroxylamino-diphenylmethan [(CH₂)₂N·C₂H₄]₂CH·NH·OH (Syst. No. 1939) erhalten (Well, B. 27, 1404).

Beim Erhitzen von Michlerschem Hydrol mit Methyljodid und überschüssigem Methylalkohol auf ca. 120° bildet sich [4.4'-Bis-dimethylamino-benzhydrol]-bis-jodmethylat (S. 703) (Nathansohn, P. Müller, B. 22, 1882). Durch Erhitzen von Michlerschem Hydrol mit 4-Nitro-toluol und Schwefelsäuremonohydrat auf 150—160° und Oxydation des erhaltenen Triphenylmethanderivates mit Bleidioxyd in saurer Lösung erhält man Türkisblau; analog verlaufen die Kondensationen mit anderen Halogen- oder Nitro-Derivaten aromatischer Kohlenwasserstoffe (Bayer & Co., D.R.P. 63743; Frdl. 3, 128). Michlersches Hydrol kondensiert sich mit 1 Mol.-Gew. m-Xylol entweder in Gegenwart von konz. Schwefelsäure bei 0—10° oder in Gegenwart von 65°/6 iger Schwefelsäure bei Wasserbadtemperatur zu 4'.4"-Bisdimethylamino-2.4-dimethyl-triphenylmethan (S. 283) (Geigy & Co., D. R. P. 178769; C. 1907 I, 776). Durch Einw. von rauchender Schwefelsäure auf ein Gemisch von Michlerschem Hydrol mit Naphthalin, 1-Chlor-naphthalin oder 2-Chlor-naphthalin und Oxydation der Reaktionsprodukte erhält man grüne Säurefarbstoffe der Diphenylnaphthylmethanreihe (Hö. F., D. R. P. 108129, 111506; C. 1900 I, 1079; 1900 II, 609; vgl. auch Bay. & Co., D.R.P. 58969; Frdl. 3, 124; Hö. F., D. R. P. 11086; Frdl. 5, 199; C. 1900 II, 300). MICHLERsches Hydrol läßt sich leicht ätherifizieren, schon beim Kochen mit Methylalkohol wird 4.4'-Bis-dimethylamino-benzhydrol-methyläther (S. 702) erhalten; analog verläuft die Reaktion mit Äthylalkohol und Benzylalkohol (O. Fischer, Weiss, Ziechr. f. Farben- u.

¹⁾ Zur Isolierung von Farbsalzen des MICHLERschen Hydrols vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von MADELUNG, VÖLKER, J. pr. [2] 115, 30, 31, 38, 39.

Textilchemie 1, 2; C. 1903 I, 471). MICHLERsches Hydrol liefert beim Erwärmen mit Phenol und konz. Salzsäure auf dem Wasserbade 4'.4"-Bis-dimethylamino-4-oxy-triphenylmethan (S. 737) (VOTOČEK, Ch. Z. 20 Repertorium, 4; vgl. VOT., KRAUZ, B. 42, 1604 Anm.; Bay. & Co., D.R.P. 58483; Frdl. 3, 120). Auch beim Erwärmen von MICHLERS Hydrol mit Anisol und konz. Salzsäure auf dem Wasserbade erhält man 4-0xy-4'.4"-bis-[dimethylamino]-triphenylmethan (Votoček, Jelínek, B. 40, 408; Vot., Krauz, B. 42, 1606; Vot., Köhler, B. 46 [1913], 1763). Bei der Kondensation von Michlerschem Hydrol mit Nitrophenoläthern mittels konz. Schwefelsäure entstehen Leukoverbindungen gelbgrüner bis grüner Triphenylmethanfarbstoffe (BAY. & Co., D.R.P. 64306; Frdl. 3, 129). Durch Kondensation von Michlerschem Hydrol mit α -Naphthol in konz. Schwefelsäure, Sulfurierung und Oxydation entsteht ein blauer Wollfarbstoff, mit β -Naphthol auf analoge Weise ein grüner Wollfarbstoff (BAY. & Co., D.R.P. 58483; Frdl. 8, 121). Beim Erwärmen von MICHLERschem Hydrol mit β -Naphthol und konz. Salzsäure bildet sich Bis-[4-dimethylamino-phenyl]-[2-oxy-naphthyl-(1)]-methan (S. 773) (Vot., Jelínek, B. 40, 409). Michiersches Hydrol kondensiert sich mit Chinon beim Erwärmen in alkoh. Lösung unter Bildung von 2.5-Bis-[4.4'-bis-(dimethylamino)-benzhydryl]-p-chinon (Syst. No. 1874), mit a-Naphthochinon unter Bildung von 2-[4.4'-Bis-dimethylamino-benzhydryl]-naphthochinon-(1.4) (Syst. No. 1874) (Мöнгач, В. 31, 2351; Möh., Klopfer, B. 32, 2146). Durch Erhitzen von Michlerschem Hydrol mit wasserfreier Ameisensaure und etwas Zinkchlorid auf ca. 120° entsteht 4.4'-Bis-dimethylaminodiphenylmethan (S. 239) (Vot., Krauz, B. 42, 1604). Bei eintägigem Stehen einer alkoh. Lösung von Michierschem Hydrol mit verdünnt-wäßriger Blausaure entsteht 4.4'-Bisdimethylamino-diphenylessigsäure-nitril (Syst. No. 1907) (Well, B. 27, 1406). MICHLERSches Hydrol kondensiert sich mit Benzoesäure in Gegenwart von konz. Schwefelsäure zu einem carboxylierten Triphenylmethanderivat, das bei der Oxydation mit Bleidioxyd einen grünen Beizenfarbstoff (Chromgrün) liefert (BAY. & Co., D.R.P. 60606; Frdl. 3, 125). Die Kondensation mit parasubstituierten Benzoesäuren wie 4-Chlor-benzoesäure oder p-Toluylsäure liefert Leukoverbindungen von grünblauen Beizenfarbstoffen (BAY. & Co., D.R.P. 90881; Frdl. 4, 211). MICHLEBSCHES Hydrol bildet bei der Einw. von Malonsäure je nach den Bedingungen 4.4'-Bis-dimethylamino-benzhydrylessigsäure (Syst. No. 1907) oder 4.4'-Bisdimethylamino-benzhydrylmalonsaure (Syst. No. 1908) (Fosse, C. r. 143, 916; 146, 1042; Bl. [3] 35, 1016). Beim Erhitzen von 2 Mol.-Gew. Michierschem Hydrol mit 1 Mol.-Gew. Harnstoff in alkoh. Lösung entsteht Carbonyldileukauramin (S. 308) (Möh., Heinze, B. 35, 374). Durch Kondensation von Michlerschem Hydrol mit Salicylsäure in Gegenwart von konz. Schwefelsäure und Oxydation der entstandenen Leukoverbindung mit Bleidioxyd in Essigsäure entsteht der Triphenylmethanfarbstoff Chromviolett; analog erhält man mit 1-Oxy-naphthoesäure-(2) den Diphenylnaphthylmethanfarbstoff Chromblau (BAY. & Co., D. R. P. 58483; Frdl. 8, 122, 124). Zur Kondensation von Michleschem Hydrol mit Oxy-carbonsauren vgl. ferner BAY. & Co., D.R.P. 66072, 67429; Frdl. 3, 126. Bei der Einw. von 3-Athoxy-benzoesäure auf MICHLERsches Hydrol in Gegenwart von 90% iger Schwefelsäure entsteht 4'.4"-Bisdimethylamino-4-athoxy-triphenylmethan-carbonsaure-(2) (Syst. No. 1911) (Fritsch, A. 329, 73). Kondensation von Michlerschem Hydrol mit 4-Alkyloxy-benzoesäuren: BAY. & Co., D.R.P. 72898; Frdl. 3, 127. Die Kondensation von MICHLERschem Hydrol mit Acetessigester führt zur Bildung von a-[4.4'-Bis-dimethylamino-benzhydryl]-acetessigester (Syst. No. 1916); analog reagieren andere Verbindungen mit sauren Methylengruppen (Fosse, C.r. 144, 643; 146, 1039, 1278; Bl. [4] 8, 1078; A. ch. [8] 18, 403, 503, 531). Michlersches Hydrol vereinigt sich in salzsaurer Lösung mit Benzolsulfinsäure (Bd. XI, S. 2) zu Phenyl-[4.4'-bis-(dimethylamino)-benzhydryl]-sulfon (S. 704) (HINSBERG, B. 30, 2804; vgl. HIN., B. 50 [1917], 468). Durch Kondensation von Michlerschem Hydrol mit m-Toluolsulfonsäure (Bd. XI, S. 94) in Schwefelsauremonohydrat und Oxydation des Reaktionsproduktes mit Kaliumdichromat bildet sich 4'.4"-Bis-dimethylamino-4-methyl-triphenylcarbinol-sulfonsäure-(2) (Syst. No. 1926) (GEIGY & Co., D.R.P. 87176; Frdl. 4, 213). Bei der Kondensation von Michlerschem Hydrol mit p-Toluolsulfonsäure mittels konz. Schwefelsäure erhält man 4'.4"-Bis-[dimethylamino]-2-methyl-triphenylmethan-sulfonsaure-(5) (Syst. No. 1923) (Leonhardt & Co., D.R.P. 128086; C. 1902 I, 447). MICHLERsches Hydrol kondensiert sich mit Mono- und Polysulfonsäuren des Phenols, a-Naphthols und β -Naphthols zu Leukoverbindungen von violetten, blauen oder grünen Farbstoffen (BAY. & Co., D.R.P. 58483; Frdl. 8, 120; D.R.P. 206334; C. 1909 I, 1058; CASSELLA & Co., D.R.P. 148031; C. 1904 I, 330).

MICHLERSches Hydrol liefert mit Anilin in siedender alkoholischer Lösung N-Phenylleukauramin (S. 307) (MÖHLAU, HEINZE, B. 35, 358, 361). Bei längerem Erwärmen von MICHLERSchem Hydrol mit Anilin in salzsaurer Lösung auf dem Wasserbade entsteht dagegen 4-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 314) (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 75; NOELTING, SCHWARTZ, B. 24, 3140; vgl. auch BAEYER, VILLIGER, B. 36, 2776 Anm.; REITZENSTEIN, RUNGE, J. pr. [2] 71, 91). Die Kondensation von MICHLERSchem Hydrol mit Dimethylanilin in schwefelsaurer Lösung liefert Leukokrystallviolett (S. 315) B. A. S. F., D. R. P. 27032). Kondensation von MICHLERSchem Hydrol mit orthosubstituierten

Anilinen zu Leukobasen von Triphenylmethanfarbstoffen: Akt.-Ges. f. Anilinf., D. R. P. 112175; C. 1900 II, 651. MICHLERSches Hydrol liefert mit 4-Nitro-anilin sowohl beim Kochen in alkoh. Lösung (vgl. Mön., Hei., B. 35, 369), als auch bei 1-stdg. Erhitzen in salzsaurer Lösung N-[4-Nitro-phenyl]-leukauramin (S. 308); bei längerem Erhitzen in salzsaurer Lösung entsteht N-[4-Dimethylamino-benzal]-4-nitro-anilin (Syst. No. 1873) neben Dimethylanilin und Leukokrystallviolett (GUYOT, GRANDERYE, C. r. 184, 549). Bei 12-stdg. Stehen äquimolekularer Mengen von Michlerschem Hydrol und o-Toluidin in Alkohol bildet sich N-o-Tolylleukauramin (S. 308) (Möhlau, Heinze, B. 35, 363). Beim Erwärmen von Michlerschem Hydrol mit o-Toluidin und verdünnter Salzsäure auf dem Wasserbade erhält man 4-Amino-4'.4"-bis-dimethylamino-3-methyl-triphenylmethan (S. 322) (BIELECKI, KOLENIEW, C. 1908 II, 877; vgl. B.A. S.F., D.R. P. 27032; Frdl. 1, 77). Erhitzt man aber Michlersches Hydrol mit o-Toluidin und konz. Schwefelsäure auf 50—60°, so entsteht 3-Amino-4'.4"-bis-[dimethylamino]-4-methyl-triphenylmethan (S. 324) (Akt.-Ges. f. Anilinf., D. R. P. 109664; Frdl. 5, 194; C. 1900 II, 459; REITZENSTEIN, RUNGE, J. pr. [2] 71, 67, 104; Bie., Ko.). Bei der Kondensation von Michlerschem Hydrol mit Dimethyl-o-toluidin mittels Salzsäure erhält man 4.4'.4"-Tris-dimethylamino-3-methyl-triphenylmethan (S. 322) (Rei., Ru., J. pr. [2] 71, 68, 105; Bie., Ko.), bei der Kondensation mittels konz. Schwefelsäure 3.4'.4"-Tris-dimethylamino-4-methyl-triphenylmethan (S. 324) (Rei., Ru., J. pr. [2] 71, 69, 106; Bie., Ko.; vgl. Åkt.-Ges. f. Anilinf., D.R.P. 109664). Die Kondensation von Michlerschem Hydrol mit m-Toluidin mittels Salzsäure liefert 4-Amino-4'.4"-bis-dimethylamino-2-methyl-triphenylmethan (S. 318) (RIEGLER, Dissertation [Basel 1892], S. 44; Rei., Ru., J. pr. [2] 71, 66, 104). Die Kondensation mit Dimethyl-m-toluidin führt sowohl bei Gegenwart von Salzsäure als auch bei Gegenwart von konz. Schwefelsäure zur Bildung von 4.4'.4"-Tris-dimethylamino-2-methyltriphenylmethan (S. 318) (Bie., Ko.; vgl. Rei., Ru., J. pr. [2] 71, 106). Bei der Einw. von p-Toluidin auf Michlersches Hydrol erhält man in Gegenwart von Salzsäure (Soc. St. Denis, D. R. P. 54113; Frdl. 2, 30; Noe., Polonowsky, B. 24, 3130) oder von 50% iger Essigsaure (BAE., VIL., B. 36, 2782) 6-Amino-4'.4"-bis-dimethylamino-3-methyl-triphenylmethan (S. 323); bei Gegenwart von konz. Schwefelsäure 5-Amino-4'.4"-bis-dimethylamino-2-methyltriphenylmethan (S. 320) (Soc. St. Denis, D. R. P. 54113; Noz., Pol., B. 24, 3127). Durch Kondensation von Michlerschem Hydrol mit Dimethyl-p-toluidin in Gegenwart von Salzsäure erhält man 6.4'.4"-Tris-dimethylamino-3-methyl-triphenylmethan (S. 323) (Rei., Ru., J. pr. [2] 71, 70, 107; Bie., Ko.), in Gegenwart von Schwefelsäuremonohydrat 5.4'.4"-Tris-[dimethylamino]-2-methyl-triphenylmethan (S. 320) (Cassella & Co., D.R.P. 149322; C. 1904 I, 770; Bie., Ko.). Zur Kondensation von Michlerschem Hydrol mit chlorierten und nitrierten Toluidinen zu Triphenylmethanderivaten vgl. Rei., Ru., J. pr. [2] 71, 86, 88; Rei., Schwerdt, J. pr. [2] 75, 378. Beim Erwärmen äquimolekularer Mengen von Michlerschem Hydrol mit α-Naphthylamin in alkoh. Lösung erhält man N-a-Naphthyl-leukauramin (S. 308) (Mö., Hei., B. 35, 367). Nimmt man die Reaktion bei Gegenwart von Salzsäure vor, so resultiert Bis-[4-(dimethylamino)-phenyl]-[4-amino-naphthyl-(1)]-methan) S. 335) (B. A. S. F., D. R. P. 27032; Frdl. 1, 75; Noz., Bull. Soc. ind. Mulhouse 72, 223; C. 1903 I, 87; B. 37, 1908). Durch Kondensation von Michlerschem Hydrol mit Äthyl-a-naphthylamin in Gegenwart von Salzsäure entsteht Bis-[4-dimethylamino-phenyl]-[4-athylamino-naphthyl-(1)]-methan (S. 333) (Noe., Bull. Soc. ind. Mulhouse 72, 224; C. 1908 I, 87; B. 37, 1908), mit Phenyl-a-naphthylamin in Gegenwart von Salzsäure Bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-methan (S. 334) (BAY. & Co., D. R. P. 66712; Frdl. 8, 134). Beim Erhitzen von 2 Mol.-Gew. MICHLERschem Hydrol mit 1 Mol.-Gew. m-Phenylendiamin in alkoh. Lösung erhält man m-Phenylendileukauramin (S. 308) (Mö., Hei., B. 35, 370). Bei der Kondensation äquimolekularer Mengen von Michlerschem Hydrol und m-Phenylendiamin in essigsaurer oder verdünnt mineralsaurer Lösung entsteht 2.4 - Diamino - 4'.4" - bis - dimethylamino - triphenylmethan (BAY. & Co., D. R. P. 82634; Frdl. 4, 207; B. A. S. F., D. R. P. 85199; Frdl. 4, 1043). Die Kondensation von N.N-Diäthyl-N'-acetyl-m-phenylendiamin (S. 45) mit MICHLERSchem Hydrol in verdünnter Essigsäure liefert eine Leukoverbindung, die bei der Oxydation mit Bleidioxyd einen blauen Triphenylmethanfarbstoff gibt (BAY. & Co., D. R. P. 81374; Frdl. 4, 204). Beim Erwärmen von 2 Mol.-Gew. Michilerschem Hydrol mit 1 Mol.-Gew. p-Phenylendiamin in alkoh. Lösung entsteht p-Phenylendileukauramin (S. 308) (Mö., Hel., B. 35, 369). Bei Gegenwart von Salzsäure wird mit p-Phenylendiamin in geringer Menge N-[4-Dimethylamino-benzal]-p-phenylendiamin (Syst. No. 1873) erhalten (Guyot, Granderye, C. r. 134, 551). Bei mehrstündigem Erhitzen von Michlerschem Hydrol mit 3 Mol.-Gew. Leukauramin (S. 307) in alkoh. Lösung am Rückflußkühler wird Bis-[4.4'-bis-dimethylamino-benzhydryl]-amin (S. 309) erhalten (Möhlau, Heinze, Zimmermann, B. 35, 376). Über Kondensation von Michlebschem Hydrol mit m-Alkoxy-diarylaminen, z. B. 3'-Methoxy-4-methyl-diphenylamin (S. 413), zu Leukobasen von blauvioletten Farbstoffen vgl. Bad. Anilin- u. Sodaf., D. R. P. 64217; Frdl. 3, 144. Michlersches Hydrol liefert mit 4-Oxy-diphenylamin (S. 444) auf der Faser oxydiert, einen blauen Farbstoff (Höchster Farbw., D. R. P. 168080; C. 1906 I, 1300). Beim Kochen von Michierschem Hydrol mit Anilin-sulfonsäure-(3) und verd. Schwefelsäure

am Rückflußkühler entsteht 4-Amino-4'.4"-bis-dimethylamino-triphenylmethan-sulfonsaure-(2) (Syst. No. 1923) (Grigy & Co., D. R. P. 80982; Frdl. 4, 212; Fritsch, B. 29, 2300; vgl. SUAIS, Bl. [3] 17, 518). Kondensation von MICHLERschem Hydrol mit Dialkylanilin-sulfonsaure (3) zu Leukoverbindungen von Triphenylmethanfarbstoffen: BAY. & Co., D. R. P. 68291, 68865, 69645; Frdl. 3, 130, 132, 133. Zur Einw. von Michlerschem Hydrol auf Sulfanil-05 291, 05 505, 09 640; Frd. 3, 130, 132, 133. Zur Einw. von Michlerschem Hydrol auf Sulfanlisäure vgl.: Suais, Bl. [3] 17, 517; Guyot, Granderye, C. r. 134, 550. Über Kondensationen von Michlerschem Hydrol mit 2-Amino-toluol-sulfonsäure-(4) vgl. Geigy & Co., D. R. P. 80982; Frdl. 4, 213; Bay. & Co., D. R. P. 97106; Frdl. 5, 200; Reitzenstein, Schwerdt, J. pr. [2] 75, 406; mit 4-Amino-toluol-sulfonsäure-(2) vgl. Rei., Schwerdt; mit Äthyl-[3-sulfophenyl]-benzylamin-sulfonsäure-(4) (Syst. No. 1923) vgl. Bay. & Co., D. R. P. 68291; Frdl. 3, 131; mit Naphthylamin-(1)-sulfonsäure-(2) (Syst. No. 1923), Naphthylamin-(1)-disulfonsäure-(2.7) und Naphthylamin-(1)-trisulfonsäure-(2.4.7) vgl. Bay. & Co., D. R. P. 76073; Frdl. 4, 209; Bay. & Co., D. R. P. 80510; Frdl. 4, 210; Geigy & Co., D. R. P. 80982; Frdl. 4, 212. Bei der Einw von Michlerscham Hydrol auf Naphthylamin-(1)-silfonsäure-(5) Frdl. 4, 212. Bei der Einw. von Michlerschem Hydrol auf Naphthylamin-(1)-sulfonsäure-(5) in verdünnter Schwefelsäure entsteht 1-Amino-2-[4.4'-bis-dimethylamino-benzhydryl]-naphthalin-sulfonsäure-(5) (Syst. No. 1923) (BAY. & Co., D. R. P. 97286, 98546; Frdl. 5, 202, 204). Über Kondensation von Michlerschem Hydrol mit Monosulfonsäuren des 1-Aminonaphthols-(2) vgl. B. A. S. F., D. R. P. 76931, 79320; Frdl. 4, 214, 215. Beim Erhitzen äqui-molekularer Mengen von Michlerschem Hydrol und Phenylhydrazin in alkoh. Lösung am Rückflußkühler entsteht N-Anilino-leukauramin (Syst. No. 2083) (MÖHLAU, HEINZE, B. 35, 365). Bei der Kondensation mit aromatischen Hydrazinen unter dem Einfluß von konz. Schwefelsäure bilden sich unter Ammoniakabsplatung rotviolette, blaue bis grünlichgelbe Farbstoffe der Triphenylmethanreihe (VIDAL Fixed Aniline Dyes Limited, HAAS, D. R. P. 106721, 116352; Frdl. 5, 188; 6, 246; C. 1900 I, 703; 1901 I, 74). MICHLERSCHES Hydrol vereinigt sich in absolut-alkoholischer Lösung mit 4-Oxy-azobenzol (Syst. No. 2112) glatt zu 4-Oxy-2-[4.4'-bis-dimethylamino-benzhydryl]-azobenzol C₆H₅·N:N· ziemlich $C_6H_3(OH) \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$ (Syst. No. 2185) (Möhlau, Kegel, B. 33, 2861, 2872). Liefert beim Erwärmen mit 4-Amino-azobenzol (Syst. No. 2172) in alkoh. Lösung N-[4-Benzol-azo-phenyl]-leukauramin $C_6H_5\cdot N: N\cdot C_6H_4\cdot NH\cdot CH[C_6H_4\cdot N(CH_9)_2]_2$ (Syst. No. 2172); mit 6-Amino-3.4'-dimethyl-azobenzol (Syst. No. 2173) in alkoh. Lösung entsteht in gelinder Wärme (bei höchstens 40°) das entsprechende Leukauramin (Syst. No. 2173), bei höherer Temperatur das entsprechende Auramin (Syst. No. 2173) (Mö., Hei., B. 34, 881, 886). Bei der Einw. von 4-Nitro-benzoldiazoniumchlorid auf MICHLERsches Hydrol, gelöst in Alkohol unter Zusatz von Eisessig, entsteht 4'-Nitro-4-dimethylamino-azobenzol (Syst. No. 2172) (GNEHM, WRIGHT, Ztschr. f. Farben- u. Textilchemie 2, 7; C. 1903 I, 400). MICHLERSches Hydrol gibt beim Erhitzen mit Meldolas Blau (Syst. No. 4347) in alkoh. Lösung einen tannierte Baumwolle blaufärbenden Farbstoff (s. bei der Leukoverbindung der nebenstehenden (CH₃)₂N·C₃H₄ CH·Formel; Syst. No. 4381), der durch Oxy-(CH₃)₂N·C₃H₄ CH·dation mit Bleidioxyd in Essigsäure in \cdot N(CH₃)₈

den intensiver färbenden Farbstoff Neuechtblau (Neuindigblau) übergeht (BAYER & Co., D. R. P. 68381; Frdl. 3, 137; Möhlau, B. 31, 2352; Mö., Klopfer, B. 32, 2157; vgl. Friedländer, Frdl. 3, 138 Anm.; BAY. & Co., D. R. P. 73112; Frdl. 3, 138). Über Kondensation von Michlerschem Hydrol mit anderen Oxazinfarbstoffen s. BAY. & Co., D. R. P. 80282; Frdl. 4, 216; Mö., Kl., B. 32, 2158.

Verwendung.

Das MICHLERsche Hydrol ist eine wichtige Farbstoffkomponente. Es findet hauptsächlich Verwendung zur Darstellung von Triphenylmethanfarbstoffen, z. B. Türkisblau (Schultz, Tab. No. 498), Krystallviolett (S. 756; Schultz, Tab. No. 516), Echtsäureviolett (Schultz, Tab. No. 528) und von Diphenylnaphthylmethanfarbstoffen, z. B. Viktoriablau R (S. 775; Schultz, Tab. No. 558), Viktoriablau B (S. 775; Schultz, Tab. No. 559), Neupatentblau (Schultz, Tab. No. 563), Wollgrün (Schultz, Tab. No. 566).

Salze des 4.4'-Bis-dimethylamino-benzhydrols.

C₁₇H₂₂ON₂ + HCl. Farblose Nadeln (aus Alkohol durch Ather + Petroläther), die an der Luft grün werden und dann unter Blaufärbung ganz zerfließen; sehr leicht löslich in Alkohol (Nathansohn, P. Müller, B. 22, 1879). Wird durch Wasser zersetzt (Na., P. Mü.; Hantzsch, Osswald, B. 33, 283). — Pikrat C₁₇H₂₂ON₂ + C₂H₂O₇N₃. Dunkelgrüne Krystallkörner (aus Alkohol durch Äther + Petroläther). Unlöslich in Äther, schwer löslich in Benzol, reichlich löslich in heißem Alkohol (Na., P. Mü.). — 2 C₁₇H₂₂ON₃ + 2 HCl + PtCl₄. Gelbe Nadeln, die an der Luft blau werden; reichlich löslich in heißem Alkohol (Na., P. Mü.).

4.4'-Bis-dimethylamino-benzhydrol-methyläther $C_{18}H_{24}ON_2 = [(CH_3)_1N \cdot C_8H_4]_2CH \cdot O \cdot CH_3$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit Methylalkohol am Rückflußkühler (O. FISCHER, Weiss, Ztechr. f. Farben- u. Textilchemie 1, 2; C. 1902 I, 471). — Krystalle (aus Ligroin). F: 71—72°. Ziemlich leicht löslich in Alkohol, Äther und Benzol,

schwerer in Ligroin. — Ist in trocknem Zustande beständig. Wird durch Säuren in 4.4'-Bisdimethylamino-benzhydrol zurückverwandelt.

4.4'-Bis-dimethylamino-benzhydrol-äthyläther $C_{19}H_{26}ON_2 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot O\cdot C_2H_5$. B. Beim Kochen von 4.4'-Bis-dimethylamino-benzhydrol mit Athylalkohol (Ö. F., W., Ztechr. f. Farben- und Textilchemie 1, 2; 1902 I, 471). — Öl. Sehr leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin. — Ist an säurefreier Luft beständig; bei der Einw. von Säuren entsteht 4.4'-Bis-dimethylamino-benzhydrol. Bei mehrmonatigem Stehen erhält man Bis-[4.4'-bis-dimethylamino-benzhydryl]-äther (s. u.).

4.4'-Bis-dimethylamino-benzhydrol-benzyläther $C_{24}H_{28}ON_2 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot O \cdot CH_3 \cdot C_6H_5$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit dem 4—5-fachen Gewicht Benzylalkohol auf 110—120° (O. FI., W., Ztschr. f. Farben- u. Textilchemie 1, 2; C. 1902 I, 471). — Vierseitige Tafeln (aus Ligroin). F: 102—103°. In Ligroin schwerer löslich als 4.4'-Bis-dimethylamino-benzhydrol. — In trocknem Zustande beständig; wird durch Säuren in 4.4'-Bis-dimethylamino-benzhydrol übergeführt.

Bis-[4.4′-bis-dimethylamino-benzhydryl]-äther $C_{34}H_{42}ON_4 = [(CH_{5})_2N \cdot C_6H_4]_2CH \cdot O \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 4.4′-Bis-dimethylamino-benzhydrol auf 105° (MÖHLAU, HEINZE, B. 35, 361). Bei mehrmonatigem Stehen von 4.4′-Bis-dimethylamino-benzhydrol-äthyläther (O. FISCHER, WEISS, Ztschr. f. Farben- u. Textilchemie 1, 2; C. 1902 I, 471). — Prismen (aus Chloroform + Alkohol). F: 195° (M., H.), 200—201° (O. FI., W.). Leicht löslich in Chloroform und heißem Benzol, sehr wenig in Alkohol, Äther und Ligroin (M., H.). — Wird durch Säuren in 4.4′-Bis-dimethylamino-benzhydrol zurückverwandelt (M., H.; O. F., W.).

4.4'-Bis-dimethylamino-benzhydrol-bis-jodmethylat $C_{19}H_{28}ON_2I_3 = [(CH_3)_3NI \cdot C_0H_4]_2CH \cdot OH$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit Methyljodid und überschüssigem Methylalkohol auf ca. 120° (Nathansohn, P. Müller, B. 22, 1882). — Blättchen (aus Alkohol). F: 195°. Wenig löslich in Wasser und Alkohol in der Kältereichlich in der Wärme, unlöslich in Benzol und Äther. — Spaltet gegen 240° Methyljodid ab.

4.4' - Bis - diäthylamino - benzhydrol, Tetraäthyl - 4.4' - diamino - benzhydrol $C_{21}H_{30}ON_2=[(C_2H_5)_2N\cdot C_6H_4]_2CH\cdot OH$. B. Bei der Reduktion von 4.4'-Bis-diäthylamino-benzophenon (Syst. No. 1873) mit Natrium und Alkohol (Klages, Allendorff, B. 31, 1002) oder mit Zinkstaub in amylalkoholisch-alkalischer Lösung (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 76). — Krystalle (aus verd. Alkohol + etwas Ammoniak). F: 78° (K., A.). — Liefert mit salzsaurem Hydroxylamin und Natriumdicarbonat in alkoh. Lösung 4.4'-Bis-diāthylamino-a-hydroxylamino-diphenylmethan $[(C_2H_5)_2N \cdot C_6H_4]_2CH \cdot NH \cdot OH$ (Syst. No. 1939) (K., A.). Durch Erhitzen von 4.4'-Bis-diathylamino-benzhydrol mit 4-Nitrotoluol und Schwefelsäuremonohydrat auf 150—160° und Oxydation des erhaltenen Triphenylmethanderivates mit Bleidioxyd in saurer Lösung erhält man Türkisblau (BAYER & Co., D. R. P. 63743; Frdl. 3, 128; vgl. Schultz, Tab. No. 498). Durch Kondensation mit Naphthalindisulfonsäure-(2.7) (Bd. XI, S. 216) in Schwefelsäuremonohydrat und Oxydation des entstandenen Diphenylnaphthylmethanderivates erhält man Naphthalingrün V (Eriogrün) (Höchster Farbw., D. R. P. 110086; Frdl. 5, 200; vgl. Schultz, Tab. No. 564; H. E. FIERZ-DAVID, Künstliche organische Farbstoffe [Berlin 1926], S. 235). Kondensation mit Naphthol (2)disulfonsäure-(3.6) (Bd. XI, S. 288) und Naphthol-(2)-disulfonsäure-(6.8) (Bd. XI, S. 290): Cassella & Co., D. R. P. 148031; C. 1904 I, 330. Durch Kondensation von 4.4'-Bis-diäthylamino-benzhydrol mit Dimethyl- oder Diäthyl-p-toluidin in Schwefelsäuremonohydrat und Oxydation der Reaktionsprodukte mit Bleidioxyd erhält man blaugrüne Triphenylmethanfarbstoffe (Ca. & Co., D. R. P. 149322; C. 1904 I, 770). 4.4'-Bis-diäthylamino-benzhydrol
gibt, zusammen mit 4-Oxy-diphenylamin (S. 444) auf der Faser oxydiert, einen blauen Farbstoff (Höchster Farbw., D. R. P. 168080; C. 1906 I, 1300). — C₂₁H₃₀ON₂ + 2 HCl +
ZnCl₂. B. Man rührt 6,5 g 4.4'-Bis-diäthylamino-benzhydrol mit 50 ccm Wasser an, versetzt
mit der konz. Lösung von 3 g Zinkchlorid und dann mit 6,5 ccm 38°/oiger Salzsäure; nachdem alles gelöst, konzentriert man etwas auf dem Wasserbade und läßt erkalten (LAMBRECHT, Well, B. 37, 3061). Farblose Krystalle. Schmilzt bei 230° unter Zersetzung, nachdem zwischen 110 und 200º Blaufärbung aufgetreten ist. Löst sich in kaltem Wasser hellblau; beim Erhitzen wird die Lösung tiefblau; beim Abkühlen erfolgt wieder Entfärbung.

4.4'-Bis-dimethylamino-thiobenzhydrol, Tetramethyl-4.4'-diamino-thiobenzhydrol C₁₇H₃₂N₂S = [(CH₃)₂N·C₄H₄]₂CH·SH. B. Durch Einw. von Schwefelwasserstoff auf in Alkohol gelöstes 4.4'-Bis-dimethylamino-benzhydrol bei Gegenwart von Essigsäure (Bad. Anilin- u. Sodaf., D.R.P. 58198, 58277; Frdl. 3, 87; Möhlat, Heinze, Zimmermann, B. 35, 383). — Krystalle (aus Alkohol oder Ligroin). F: 81° (B. A. S. F., D. R. P. 58198, 58277), 82° (M., H., Z.). Sehr leicht löslich in Chloroform, leicht in warmen Ligroin, ziemlich löslich in Alkohol und Åther (M., H., Z.). — Geht beim Erwärmen mit verd. Säuren in 4.4'-Bisdimethylamino-benzhydrol über (B. A. S. F., D. R. P. 58198, 58277; M., H., Z.). Beim Erhitzen

mit Schwefel, Natriumchlorid und Ammoniumchlorid auf 170° (B. A. S. F., D. R. P. 58277) oder im Ammoniakstrome bei Gegenwart von Chinonen, Nitrobenzol, Chloranil oder ähnlichen Oxydationsmitteln auf 150° (B. A. S. F., D. R. P. 70908; Frdl. 3, 88) wird 4.4′-Bis-dimethylamino-benzophenon-imid (Auramin; Syst. No. 1873) erhalten. Beim Kochen mit Alkohol entsteht Bis-[4.4′-bis-dimethylamino-benzhydryl]-sulfid (s. u.) (M., H., Z.). Bei Zusatz der berechneten Menge alkoholischer Jodlösung zur alkoholisch-alkalischen Lösung des Thiohydrols entsteht Bis-[4.4′-bis-dimethylamino-benzhydryl]-disulfid (s. u.) (M., H., Z.).

Phenyl-[4.4'-bis-dimethylamino-benzhydryl]-sulfon ¹) $C_{33}H_{36}O_{3}N_{2}S = [(CH_{3})_{3}N \cdot C_{6}H_{4}]_{2}CH \cdot SO_{2} \cdot C_{6}H_{5}$. B. Beim Versetzen einer Lösung von 4.4'-Bis-dimethylamino-benzhydrol in kalter verdünnter Salzsäure mit einer konzentrierten wäßrigen Lösung von Benzolsulfinsäure (HINSBERG, B. 30, 2804). — Nadeln (aus Benzol). F: 204° (H., B. 50 [1917], 471). Kaum löslich in Wasser und Äther, schwer in Alkohol, leicht in heißem Benzol (H., B. 30, 2804). Löst sich in heißen verdünnten Mineralsäuren mit blauer Farbe (H., B. 30, 2804; vgl. H., B. 50 [1917], 469). — Beim Behandeln mit Zinkstaub in salzsaurer Lösung erfolgt unter Wasserstoffaufnahme Zerlegung in 4.4'-Bis-dimethylamino-diphenylmethan und Phenylmercaptan (H., B. 50 [1917], 468, 471). Beim Erwärmen mit Methylalkohol und Natronlauge erhält man 4.4'-Bis-dimethylamino-benzhydrol und Benzolsulfinsäure zurück (H., B. 50 [1917], 468, 471). Beim Erwärmen mit Dimethylanilin in Eisessiglösung auf dem Wasserbade entsteht Leukokrystallviolett (S. 315) (H., B. 50 [1917], 468, 471).

[4.4'-Bis-dimethylamino-benzhydryl]-dithiocarbamidsäure-[4.4'-bis-(dimethylamino)-benzhydryl]-ester, Leukauramin-N-dithiocarbonsäure-[4.4'-bis-(dimethylamino)-benzhydryl]-ester $C_{35}H_{43}N_5S_2=[(CH_3)_2N\cdot C_6H_4]_2CH\cdot S\cdot CS\cdot NH\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Man erhitzt das Leukauraminsalz der Leukauramin-N-dithiocarbonsäure (S. 308) mit Alkohol (Möhlau, Heinze, Zimmermann, B. 35, 381). — Nadeln (aus Chloroform + Alkohol). F: 168°. Leicht löslich in Benzol, Schwefelkohlenstoff und Chloroform, unlöslich in Äther und Alkohol; leicht löslich in verdünnten Säuren.

Bis-[4.4'-bis-dimethylamino-benzhydryl]-sulfid $C_{34}H_{42}N_4S = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot S\cdot CH[C_6H_4\cdot N(CH_3)_2]_2$. B. Bei der Einw. von Schwefelwasserstoff oder Einfachschwefelammonium auf die warme alkoholische Lösung von Leukauramin (S. 307) oder N-Aryl-leukauraminen (M., H., Z., B. 35, 378, 379). Entsteht auch beim Erhitzen von Leukauramin mit Schwefelkohlenstoff in alkoh. Lösung unter Druck (M., H., Z., B. 35, 381). Beim Kochen von 4.4'-Bis-dimethylamino-thiobenzhydrol mit Alkohol (M., H., Z., B. 35, 383). — Tafeln (aus Chloroform + Alkohol). F: 172°. Leicht löslich in Chloroform und heißem Benzol, sehr wenig in Alkohol und Äther. — Zersetzt sich beim Erhitzen auf 200°. Wird durch verd. Mineralsäuren und durch warmen Eisessig in 4.4'-Bis-dimethylamino-benzhydrol verwandelt.

Bis - [4.4' - bis - dimethylamino - benzhydryl] - disulfid $C_{34}H_{49}N_4S_2 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot S \cdot S \cdot CH[C_6H_4 \cdot N(CH_2)_2]_2$. B. Bei der Einw. von gelbem Schwefelammonium auf N-Aryl-leukauramine in siedender alkoholischer Lösung oder beim Erhitzen der N-Aryl-leukauramine mit Schwefelahlenstoff unter Druck (Möhlau, Heinze, Zimmermann, B. 35, 379). Bei der Einw. alkoh. Jodlösung auf 4.4'-Bis-dimethylamino-thiobenzhydrol in alkoholisch-alkalischer Lösung (M., H., Z., B. 35, 883). — Prismen (aus Chloroform + Äther). Schmilzt rasch erhitzt bei 207°. Leicht löslich in Chloroform und heißem Benzol, sehr wenig in Alkohol, Äther und Aceton. — Beim Erwärmen mit Säuren entsteht 4.4'-Bis-[dimethyl-amino]-benzhydrol.

Triaminoderivate des Diphenylcarbinols.

4.4'-Bis - dimethylamino - 2 - acetamino - benshydrol C₁₀H₂₈O₂N₃, s. nebenstehende

Formel. B. Bei der Oxydation von 4.4'-Bis- (CH₃)₂N· CH(OH)· N(CH₃)₂ dimethylamino-2-acetamino-diphenylmethan
(S. 307) mit Bleidioxyd in Schwefelsäure + Essigsäure (Bayer & Co., D. R. P. 79250; Frdl. 4, 203). Bei der Reduktion einer salzsauren Lösung von 4.4'-Bis-dimethylamino-2-acetamino-benzophenon (Syst. No. 1873) mit Zinkstaub unter Eiskühlung (KLIEGL, B. 39, 1275). —

Täfelchen (aus Alkohol); Spieße (aus Aceton + Wasser). F: 162° (B. & Co., D. R. P. 79250). Schmilzt unscharf zwischen 165—169° unter Grünfärbung und Zersetzung; ziemlich leicht löslich, besonders beim Erwärmen, in Chloroform und unter Blaufärbung in Eisessig; schwer löslich in Alkohol, Aceton und Essigester auch beim Erwärmen; sehr wenig löslich in Benzol und Ather, fast unlöslich in Ligroin (K.). — Gibt durch Kondensation mit p-Toluidin, p-Phenetidin, β-Naphthylamin, m-Phenylendiamin, 3-Amino-dialkylanilin Basen, die beim Erhitzen mit verdünnten Säuren in gelbe bis braune Acridinfarbstoffe übergehen (B. & Co., D. R. P. 114261; C. 1900 II, 931). Verwendung zur Herstellung von blauen Triphenylmethanfarbstoffen: B. & Co., D. R. P. 82270; Frdl. 4, 206.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von HINSBERG, B. 50, 468.

4.4'-Bis-dimethylamino-3-acetamino-benzhydrol C₁₉H₂₅O₂N₃, s. nebenstehende
Formel. B. Bei der Reduktion von 4.4'-Bisdimethylamino - 3 - acetamino - benzophenon
(Syst. No. 1873) in salzsaurer Lösung mit Zinkstaub unter Eiskühlung (KLIEGL, B. 39, 1271). — Prismen (aus Aceton + Wasser). F: 145,5—146°. Sehr leicht löslich in Chloroform, sehr wenig in Alkohol und heißem Ligroin, sonst in der Wärme leicht löslich. Die Eisessiglösung färbt sich beim Erwärmen blau.

4.4'-Bis-dimethylamino-3-benzamino-benzhydrol $C_{24}H_{27}O_2N_3 = (CH_3)_2N \cdot C_8H_4 \cdot CH(OH) \cdot C_6H_3(NH \cdot CO \cdot C_6H_5) \cdot N(CH_3)_2$. B. Bei der Reduktion von 4.4'-Bis-dimethylamino-3-benzamino-benzophenon (Syst. No. 1873) in salzsaurer Lösung mit Zinkstaub unter Eiskühlung (K., B. 39, 1271). — Prismen (aus Alkohol oder Aceton + Wasser). F: 180,5—181,5°. Ziemlich schwer löslich in heißem Alkohol, etwas leichter in warmem Aceton, Benzol und Essigester, sehr wenig in Äther und Ligroin, ziemlich löslich in Chloroform.

5. Aminoderivate des 5-Oxy-2-methyl-diphenyls $C_{13}H_{12}O = C_6H_5 \cdot C_6H_3(CH_3) \cdot OH$.

- 4.4' Diamino 5 methoxy 2 methyl diphenyl, 5-Methoxy-2-methyl-benzidin $C_{14}H_{16}ON_2$, s. nebenstehende Formel. B. Man erhitzt 6-Oxy-3-methyl-azobenzol (Syst. No. 2113) in Alkohol mit Methylchlorid und Natronlauge einige Stunden auf 100° und behandelt das Reaktionsprodukt mit O·CH₃ Zinnchlorür und Salzsäure (GEIGY & Co., D. R. P. 42006; Frdl. 1, 463). Nädelchen. F: 82°. $C_{14}H_{16}ON_2 + 2$ HCl. Leicht löslich. Sulfat. Schwer löslich.
- 4.4'-Diamino-5-äthoxy-2-methyl-diphenyl, 5-Äthoxy-2-methyl-benzidin C₁₅H₁₈ON₃ = H₂N·C₆H₄·C₆H₂(CH₃)(NH₂)·O·C₂H₅. B. Beim Eintragen von 6-Äthoxy-3-methyl-hydrazobenzol (Syst. No. 2078) in mäßig konzentrierte Salzsäure oder kochende verdünnte Schwefelsäure (Noelting, Werner, B. 23, 3263). Man erhitzt 6-Oxy-3-methylazobenzol (Syst. No. 2113) in Alkohol mit Äthylchlorid oder Äthylbromid und Natronlauge einige Stunden auf 100° und behandelt das Reaktionsprodukt mit Zinnchlorür und Salzsäure (Geigy & Co., D. R. P. 42006; Frdl. 1, 463). Nädelchen (aus Wasser). F: 103—104° (G. & Co.), 107° (N., W.). Sehr schwer löslich in Wasser, leicht in Alkohol und Äther (N., W.).
- 4.4'-Diamino-5-anilinoformyloxy-2-methyl-diphenyl, 5-Anilinoformyloxy-2-methyl-benzidin $C_{20}H_{19}O_2N_3 = H_2N \cdot C_6H_4 \cdot C_6H_3 \cdot (CH_3) \cdot (NH_2) \cdot O \cdot CO \cdot NH \cdot C_6H_5$. B. Aus 6-Anilinoformyloxy-3-methyl-hydrazobenzol (Syst. No. 2078) in kaltem Alkohol in Gegenwart von konz. Salzsäure (GOLDSCHMIDT, Löw-Beer, B. 38, 1110). Wässerhaltige Krystalle. Wird bei 80° wasserfrei und schmilzt dann bei 143—145°. Leicht löslich in Säuren, unlöslich in kalten Alkalien. $C_{20}H_{19}O_2N_3 + 2$ HCl. Nadeln (aus Alkohol). F: 291°.
- 2'-Chlor-4.4'-diamino-5-anilinoformyloxy-2-methyl-diphenyl, 2'-Chlor-5-anilinoformyloxy-2-methyl-bensidin $C_{20}H_{18}O_2N_3Cl=H_2N\cdot C_6H_3Cl\cdot C_6H_2(CH_2)(NH_2)\cdot O\cdot CO\cdot NH\cdot C_6H_5$. B. Aus 3'-Chlor-6-anilinoformyloxy-3-methyl-hydrazobenzol (Syst. No. 2078) in kaltem Alkohol in Gegenwart von konz. Salzsäure (G., L.-B., B. 38, 1111; Auwers, A. 364, 174). Nadeln (aus Benzol). F: 134° (G., L.-B.). Verbraucht auf 1 Mol.-Gew Niritlösung, entsprechend der Diazotierung von zwei Aminogruppen (Au.). Geht beim Kochen mit Eissesig in eine alkalische, krystallinische Verbindung über, in der vielleicht die Verbindung $H_2N\cdot C_6H_3Cl\cdot C_6H_6(CH_3)(NH\cdot CO\cdot NH\cdot C_6H_5)\cdot OH$ vorliegt (Au.).
- 6. Aminoderivate des 3'-Oxy-3-methyl-diphenyls $C_{13}H_{12}O=CH_3\cdot C_6H_4\cdot C_6H_4\cdot OH$.
- 4.4'-Diamino 8'-Oxy 8-methyl diphenyl, 8'-Oxy HO CH₈ 8-methyl be nxidin $C_{13}H_{14}ON_3$, s. nebenstehende Formel. B. Beim Krhitzen von 4.4'-Diamino-3'-oxy-3-methyl-diphenyl-sulfonsaure-(6') (Syst. No. 1926) mit Wasser auf 180° (Weinberg, B. 20, 3175). Blätter (aus Wasser). F: 177°. Schwer löslich in Äther und Benzol. $C_{13}H_{14}ON_3 + H_3SO_4$. Fast unlöslich in Wasser.
- 4.4'-Diamino-8'-āthoxy-8-methyl-diphenyl, 3'-Āthoxy-8-methyl-benzidin $C_{15}H_{16}ON_8=H_4N\cdot C_6H_6(CH_4)\cdot C_6H_6(NH_4)\cdot O\cdot C_6H_6$. B. Durch Erhitzen von 4.4'-Diamino-3'-āthoxy-3-methyl-diphenyl-sulfonsāuro-(6') (Syst. No. 1926) mit Wasser auf 170° (Weinberg, B. 20; 3177). Nadeln (aus Wasser). F: 117,5°. Schwer löslich in kaltem Wasser, Alkohol, Āther und Benzol. $C_{16}H_{18}ON_8+H_2SO_4$. Krystalle.

- CH₃ 6.4'-Diamino-3'-äthoxy-3-methyl-diphenyl, 3'-Äthoxy- $C_2H_5\cdot O$ 5-methyl-diphenylin 1) $C_{15}H_{16}ON_2$, s. nebenstehende Formel. B. Aus 2'-Athoxy-4-methyl-azobenzol (Syst. No. 2112) in Alkohol mit H_2N Zinnehlorür und Salzsäure (D: 1,19), neben anderen Produkten (JACOBSON, HUBER, A. 369, 14). — Gelblichweiße Nadeln (aus verd. Alkohol). F: 88-89°. Löslich in Ligroin, Benzol, Methylalkohol.
- **6.4'-Bis-[4-nitro-benzalamino]-3'-äthoxy-3-methyl-diphenyl** $C_{29}H_{24}O_5N_4 = O_9N\cdot C_6H_4\cdot CH:N\cdot C_6H_3(CH_3)\cdot C_6H_3(N:CH\cdot C_6H_4\cdot NO_2)\cdot O\cdot C_2H_5$. B. Aus 6.4'-Diamino-3'-äthoxy-3-methyl-diphenyl und 2 Mol.-Gew. 4-Nitro-benzaldehyd in Methylalkohol auf dem Wasserbad (J., H., A. 369, 15). Gelbichrote Nadeln (aus Pyrk'in). F: 204—205°. Sehr wenig löslich in Alkohol und warmem Benzol.
- **6.4'-Bis-benzamino-3'-äthoxy-3-methyl-diphenyl** $C_{26}H_{26}O_3N_2=C_6H_5\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot C_6H_5(NH\cdot CO\cdot C_6H_5)\cdot O\cdot C_2H_5$. B. Aus 6.4'-Diamino-3'-äthoxy-3-methyl-diphenyl durch Benzoylierung nach Schotten-Baumann (J., H., A. 369, 16). — Weiße Stäbchen (aus Alkohol). F: 174°. Schwer löslich in Ligroin und Äther, löslich in warmem Benzol, leicht löslich in kaltem Chloroform.

3. Aminoderivate der Monooxy-Verbindungen $C_{14}H_{14}O$.

1. Aminoderivate des a-Oxy-a. β -diphenyl-äthans (Phenylbenzylcarbinols) $C_{14}H_{14}O = C_{6}H_{5} \cdot CH_{2} \cdot CH(OH) \cdot C_{6}H_{5}$ (Bd. VI, S. 683).

[4 Dimethylamino - phenyl] - benzyl - carbinol $C_{16}H_{19}ON = C_6H_5 \cdot CH_2 \cdot CH(OH) \cdot C_6H_4 \cdot N(CH_3)_6$. B. Aus 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. Benzylmagnesiumchlorid (Syst. No. 2337) in absol. Ather (F. Sachs, L. Sachs, B. 38, 515). — Nadeln (aus Ligroin). F: 59—60°. Unlöslich in Wasser, löslich in Alkohol und Petrolather, sehr leicht löslich in den übrigen gebräuchlichen Lösungsmitteln. — Geht beim längerem Kochen mit Alkohol sowie bei der Destillation unter 10 mm Druck in 4-Dimethylamino-stilben (Bd. XII, S. 1332) über.

 $\begin{array}{lll} \textbf{Phenyl-[a-amino-benzyl]-carbinol} & \textbf{(Diphenyloxathylamin und Isodiphenyloxathylamin)} & \textbf{C}_{16}\textbf{H}_{15}\textbf{ON} = \textbf{C}_{6}\textbf{H}_{5} \cdot \textbf{CH(NH}_{2}) \cdot \textbf{CH(OH)} \cdot \textbf{C}_{6}\textbf{H}_{5}. & \textbf{Infolge des Vorhandenseins} \\ \end{array}$ zweier asymmetrischer Kohlenstoffatome sind von Verbindungen dieser Konstitution zwei diastereoisomere Reihen denkbar (Reihe des Diphenyloxäthylamins und Reihe des Isodiphenyloxathylamins), jede zwei enantiostereoisomere optisch aktive Formen und die zugehörige inaktive Form umfassend. Bekannt geworden sind bis zum Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] das Diphenyloxathylamin nur in der inaktiven Form, das Isodiphenyloxathylamin dagegen in der inaktiven und den beiden aktiven Formen. Nach dem Literatur-Schlußtermin ist auch das Diphenyloxäthylamin in seinen beiden aktiven Formen erhalten worden. Zur Spaltung von Diphenyloxäthylamin und Isodiphenyloxäthylamin in die aktiven Komponenten vgl. nach dem Literatur-Schlußtermin: Read, Steele, Soc. 1927, 910; INGERSOLL, Am. Soc. 50 [1928], 2264; READ, CAMPBELL, BARKER, Soc. 1929, 2305.

a) Diphenyloxäthylamin $C_{14}H_{15}ON = C_6H_5 \cdot CH(NH_2) \cdot CH(OH) \cdot C_6H_5$. Vgl. auch c auf S. 712. B. Entsteht neben geringen Mengen Isodiphenyloxäthylamin (S. 710) (SÖDERBAUM, B. 28, 2523; ERLENMEYER jun., B. 29, 297; 30, 1525), wenn man in eine 500 warme Lösung von 5 g a-Bruzinoxiii (Bl. VIII, S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. 175) in 30 ccm Alkohol allmählich 400 g $2^{1/2}$ 0/piges von 5 g a-Bruzinoxiii (S. Natriumamalgam und 10 g Eisessig in der Weise einträgt, daß die Lösung stets sauer reagiert Natriumamaigam und 10 g Eisessig in der Weise einträgt, daß die Lösung stets sauer reagiert (Goldschmidt, Polonowska, B. 20, 493). Neben wenig Isodiphenyloxäthylamin bei der Reduktion von a-Benzilmonoxim (Bd. VII, S. 757) in alkoh. Lösung mit $2^1/2^0/_{0}$ [gem Natriumamaigam in Gegenwart von Essigsäure (Polonowska, B. 21, 488; E. jun., B. 29, 295). Diphenyloxäthylamin bildet sich auch, wenn β -Benzilmonoxim (Bd. VII, S. 758) in der eben genannten Art (vgl. Kraft, B. 28, 2784) oder in absolut-alkoholischer Lösung mit Natrium (Zanetti, G. 20, 689) reduziert wird. Entsteht neben Tetraphenylpyrazin (Syst. No. 3497) bei der Reduktion von β -Benzildioxim (Bd. VII, S. 761) in alkoh. Lösung mit Natriumamalgam in Gegenwart von Essigsäure (Frist, B. 27, 213). Bei der Reduktion von β -Benzildioxim mit Natrium und absol. Alkohol, neben Tetraphenylpyrazin, a.a'-Diphenyl-äthylendiamin (F: 90—92°) (S. 249) und einem indolartig riechenden Produkt (Frist. Arnstein. diamin (F: 90-92°) (S. 249) und einem indolartig riechenden Produkt (FEIST, ARNSTEIN, B. 28, 3168; vgl. Frist, B. 27, 214). Wird im Gemisch mit Isodiphenyloxäthylamin erhalten, wenn man 2 Mol.-Gew. Benzaldehyd mit 1 Mol.-Gew. Benzylamin und wäßrig-alkoholischer Natronlauge 10 Monate stehen läßt und das Reaktionsprodukt mit Säure zerlegt (E. jun., B. 30, 1529; A. 307, 93). N-Benzal-diphenyloxathylamin entsteht in geringer Menge neben

¹⁾ Bezifferung der vom Namen "Diphenylin" abgeleiteten Namen in diesem Handbuch s. S. 211.

N-Benzal-isodiphenyloxāthylamin (S. 711) und den Natriumsalzen zweier diastereoisomerer a-Benzalamino- β -oxy- β -phenyl-propionsāuren $C_8H_5\cdot CH(OH)\cdot CH(N:CH\cdot C_6H_5)\cdot CO_2H$ (Syst. No. 1911) bei der Kondensation von Benzaldehyd mit Glycin in wäßrig-alkoholischer Lösung bei Gegenwart von Natronlauge bei Zimmertemperatur; zur Trennung des N-Benzal-diphenyloxāthylamins vom N-Benzal-isodiphenyloxāthylamin löst man das Gemisch beider in möglichst wenig absol. Alkohol in der Wärme; beim Erkalten scheidet sich nur das N-Benzalisodiphenyloxāthylamin ab; man destilliert dann von der Mutterlauge Alkohol ab, wodurch eine weitere krystallinische Ausscheidung erhalten wind, und fährt so fort, bis schließlich keine Krystallausscheidung mehr stattfindet; schließlich hinterbleibt ein sehr klebriger Sirup, der das N-Benzal-diphenyloxāthylamin enthält; man erhält das Diphenyloxāthylamin aus seiner N-Benzalverbindung durch Erwärmen mit verd. Salzsāure (E. jun., Fritstück, A. 284, 36, 41; E. jun., A. 307, 80, 84, 97, 99, 114, 132; A. 337, 212).

Nadeln (aus absol. Alkohol). Monoklin prismatisch (Bruhns, A. 307, 134; vgl. Groth, Ch. Kr. 5, 201). F: 165° (Z.), 163° (E. jun., B. 30, 1526; A. 307, 134), 162,5° (S., B. 28, 2522 Anm.), 161° (G., P.). Unlöslich in Wasser, schwer löslich in Äther, ziemlich schwer in kaltem, leicht in heißem Alkohol (G., P.). — Wird beim Erhitzen über seinen Schmelzpunkt in Benzylamin und Benzaldehyd gespalten (E. jun., A. 307, 135). Durch Einw. von salpetriger Säure bildet sich vorwiegend Isohydrobenzoin (Bd. VI, S. 1004) (E. jun., A. 307, 136). Beim Versetzen einer Lösung von Diphenyloxäthylamin in Toluol mit Phosgen in Toluol wird

2-Oxo-4.5-diphenyl-oxazoltetrahydrid C_8H_5 ·HC—NH CO (Syst. No. 4282) gebildet (S., B. 29, 1210). Beim Kochen mit Schwefelkohlenstoff und Alkohol auf dem Wasserbade ent-

B. 29, 1210). Beim Kochen mit Schwefelkohlenstoff und Alkohol auf dem Wasserbade entsteht 2-Thion-4.5-diphenyl-oxazoltetrahydrid (Syst. No. 4282) (S., B. 29, 1212). Beim Lösen von Diphenyloxäthylamin in siedendem Benzoylchlorid entstehen O.N-Dibenzoyl-[diphenyloxäthylamin] (S. 708) und O.N-Dibenzoyl-isodiphenyloxäthylamin (S. 712) (S., B. 29, 1215).

C₁₄H₁₅ON + HCl (G., P.). Dreiseitige spießige Krystalle, bisweilen sechsseitige Säulen (E. jun., A. 307, 132). Hexagonal oder trigonal (BBUHNS, A. 307, 132; vgl. Groth, Ch. Kr. 5, 202). Die Krystalle gehen bei längerem Stehen in der Mutterlauge oder beim Erwärmen in langgestreckte, scheinbar rechtwinklig begrenzte, monokline Blättchen über (E. jun., A. 307, 133). Unter gewissen Bedingungen wird das Salz in kleinen, nicht meßbaren Krystallen erhalten, die dem rhombischen System anzugehören scheinen (E. jun., A. 307, 133). Aus Lösungen bestimmter Konzentration scheidet sich das salzsaure Salz in gelatinösen Gebilden ab, die bald in harte, dreikantige Krystalle übergehen (E. jun., A. 307, 133). Schmilzt unter Zersetzung bei 210° (G., P.; Z.); zersetzt sich bei 234° (E. jun., A. 307, 133). Leicht löslich in Wasser (G., P.). — C₁₄H₁₅ON + HCl + CH₃·OH. Nadeln (aus Methylalkohol) (E. jun., A. 307, 133). — Formiat C₁₄H₁₅ON + CH₂O₃. Blättchen (aus Wasser). Schmilzt bei 182° unter Abspaltung von Wasser und Bildung von N-Formyl-diphenyloxäthylamin; leicht löslich in Wasser (S., B. 29, 1213). — Pikrat. Erweicht und bräunt sich bei 175°, schmilzt unter Zersetzung bei 178—179° (Z.). — 2 C₁₄H₁₅ON + 2 HCl + PtCl₄ + 2 H₂O. Goldgelbe Blättchen. Wird bei 110° wasserfrei (G., P.). — 2 C₁₄H₁₅ON + 2 HCl + PtCl₄ + PtCl₄ + 4(?)H₃O. Hochgelbe Nadeln. Zersetzt sich gegen 198—199°; verliert bei 105° annähernd 3 Mol. Wasser (S., B. 28, 2524). — 2 C₁₄H₁₅ON + 2 HCl + PtCl₄ + 6 H₂O. Strohgelbe Nadeln. Schmilzt bei etwa 190° unter Zersetzung; verliert beim Erhitzen auf 115° 5 Mol. Wasser; leicht löslich in heißem Wasser (S., B. 28, 2523).

N.N-Dimethyl-diphenyloxäthylamin $C_{16}H_{19}ON = C_6H_5 \cdot CH[N(CH_3)_3] \cdot CH(OH) \cdot C_6H_5$. B. Beim Kochen von Diphenyloxäthylamin mit überschüssigem Methyljodid und Alkohol (Goldschmidt, Polonowska, B. 20, 494). — Nadeln (aus Äther). F: 108—110°. — $2C_{16}H_{19}ON + 2HCl + PtCl_4 + \frac{1}{2}H_3O$.

N-Benzal-diphenyloxäthylamin $C_{21}H_{19}ON = C_6H_5 \cdot CH(N:CH \cdot C_6H_6) \cdot CH(OH) \cdot C_6H_5$. B. Beim Erwärmen äquimolekularer Mengen Diphenyloxäthylamin und Benzaldehyd in alkoh. Lösung (Erlenmener jun., A. 307, 99). Eine weitere Bildung siehe im Artikel Diphenyloxäthylamin. — Krystalle. F: 115°. Sehr leicht löslich in Alkohol.

N-Formyl-diphenyloxäthylamin $C_{15}H_{15}O_3N = C_6H_5 \cdot CH(NH \cdot CHO) \cdot CH(OH) \cdot C_6H_5$. B. Beim Schmelzen von ameisensaurem Diphenyloxäthylamin (s. o.) (SÖDERBAUM, B. 29, 1213). — Nadeln (aus Alkohol). Erweicht bei 179° und schmilzt bei 182—183°. Leicht löslich in heißem Alkohol, schwer in Benzol.

O.N - Diformyl - diphenyloxäthylamin $C_{16}H_{15}O_3N=C_6H_5\cdot CH(NH\cdot CHO)\cdot CH(O\cdot CHO)\cdot C_6H_5$. B. Entsteht neben wenig Monoformylderivat (s. o.) bei anhaltendem Kochen von Diphenyloxäthylamin mit überschüssiger wasserfreier Ameisensäure (S., B. 29, 1213). — Nadeln (aus Alkohol). Schmilzt bei 208° unter Gasentwicklung. Leicht löslich in Alkohol und Aceton, weniger in Benzol, kaum in Äther und Ligroin.

N-Acetyl-diphenyloxäthylamin $C_{10}H_{17}O_{2}N=C_{6}H_{5}\cdot CH(NH\cdot CO\cdot CH_{3})\cdot CH(OH)\cdot C_{6}H_{5}$. B. Aus Diphenyloxäthylamin und Acetylchlorid in Benzol (S., B. 29, 1214). Beim Erwärmen

von Diphenyloxäthylamin mit überschüssigem Essigsäureanhydrid, bis eben Lösung erfolgt ist (S.). — Nadeln (aus Alkohol). F: 196—197°; leicht löslich in Aceton, sehr schwer in Äther und Benzol, unlöslich in Wasser, Säuren und Alkalien.

O.N-Diacetyl-diphenyloxäthylamin $C_{18}H_{19}O_3N=C_4H_5\cdot CH(NH\cdot CO\cdot CH_9)\cdot CH(O\cdot CO\cdot CH_9)\cdot C_4H_5$. B. Aus Diphenyloxäthylamin und überschüssigem Acetylchlorid (SÖDERBAUM, B. 29, 1214). Aus Diphenyloxäthylamin und überschüssigem Essigsäureanhydrid beim anhaltenden Kochen, neben dem Monoacetylderivat (S.). — Tafeln (aus Alkohol). F: 212—213°. Leicht löslich in Aceton, heißem Alkohol und Benzol, schwer in Äther.

N-Bensoyl-diphenyloxäthylamin $C_{21}H_{19}O_2N=C_4H_5\cdot CH(NH\cdot CO\cdot C_4H_4)\cdot CH(OH)\cdot C_4H_5$. Zur Konstitution vgl. Auwers, Sonnenstuhl, B. 37, 3942. — B. Durch Hinzufügen von Benzoylchlorid zu einer Lösung von Diphenyloxäthylamin in Benzol (Söderbaum, B. 29, 1215). Aus Diphenyloxäthylamin, gelöst in Pyridin, und Benzoylchlorid (Au., Sonn., B. 37, 3942). Durch partielle Verseifung von O.N-Dibenzoyl-diphenyloxäthylamin (s. u.) (Au., Sonn.). — Nadeln. F: 235—236° (Au., Sonn.), 236—237° (Sö.). Leicht löslich in siedendem Aceton, sonst sehr wenig löslich (Sö.).

O.N-Dibensoyl-diphenyloxäthylamin $C_{88}H_{28}O_3N=C_9H_8\cdot CH(NH\cdot CO\cdot C_9H_8)\cdot CH(O\cdot CO\cdot C_9H_8)\cdot C_9H_8\cdot CH(NH\cdot CO\cdot C_9H_8)\cdot C_9H_8\cdot CH(NH\cdot CO\cdot C_9H_8)\cdot C_9H_8\cdot CH(NH\cdot CO\cdot C_9H_8)\cdot C_9H_8\cdot CH(NH\cdot CO\cdot C_9H_8)\cdot CH(NH\cdot CO\cdot CO\cdot C_9H_8)\cdot CH(NH\cdot CO\cdot CO\cdot C_9H_8)\cdot CH(NH\cdot CO\cdot CO\cdot C_9H_8)\cdot CH(NH\cdot CO\cdot CO\cdot C_9H_8)$

N- Carbäthoxy-diphenyloxäthylamin, Diphenyloxäthylurethan $C_{17}H_{19}O_3N=C_6H_5\cdot CH(NH\cdot CO_2\cdot C_2H_5)\cdot CH(OH)\cdot C_6H_5$. B. Beim Eintragen von 1 Tl. Chlorameisensäureäthylester in eine heiße Lösung von 2 Tln. Diphenyloxäthylamin in Benzol (Söderbaum, B. 29, 1211). — Nädelchen (aus 50%) giger Essigsäure). F: 148—148,5%. Leicht löslich in Alkohol, Eisessig und heißem Benzol, sehr wenig in Ligroin. — Gibt beim Erhitzen auf 275% unter Abspaltung von Alkohol 2-Oxo-4.5-diphenyl-oxazoltetrahydrid $C_6H_5\cdot HC-NH$ (Syst. No. 4282).

N-Anilinoformyl-diphenyloxäthylamin, N-Phenyl-N'-diphenyloxäthyl-harnstoff $C_{21}H_{20}O_5N_2=C_6H_5\cdot CH(NH\cdot CO\cdot NH\cdot C_6H_5)\cdot CH(OH)\cdot C_6H_5$. B. Aus Diphenyloxäthylamin und Phenylisocyanat (Bd. XII, S. 437) in Benzol (S., B. 28, 1902). — Tafeln oder Prismen (aus Alkohol). F: 1766. Schwer löslich in Äther, Benzol und Ligroin, leicht in Aceton und heißem Alkohol. — Wird von Säuren nur langsam angegriffen.

N-Methylaminothioformyl-diphenyloxäthylamin, N-Methyl-N'-[diphenyloxäthyl]-thioharnstoff $C_{18}H_{18}ON_8S=C_8H_8\cdot CH(NH\cdot CS\cdot NH\cdot CH_3)\cdot CH(OH)\cdot C_8H_5$. B. Beim Erwärmen von Diphenyloxäthylamin mit Methylsenföl in Benzol (S., B. 28, 1899). — Blättchen (aus Benzol). F: 136°. Leicht löslich in Alkohol, Aceton und warmem Benzol, sehr schwer in siedendem Ligroin, unlöslich in Wasser. — Liefert beim Kochen mit überschüssiger Salz-

saure (D: 1,05) 2-Methylimino-4.5-diphenyl-thiazoltetrahydrid C_6H_5 ·HC—S>C: N·CH₃ (Syst. No. 4282). Gibt in siedender alkoholischer Lösung mit Quecksilberoxyd 2-[Methylimino]-4.5-diphenyl-oxazoltetrahydrid (Syst. No. 4282).

N-Äthylaminothioformyl-diphenyloxäthylamin, N-Äthyl-N'-diphenyloxäthylthioharnstoff $C_{17}H_{20}ON_2S = C_0H_5 \cdot CH(NH \cdot CS \cdot NH \cdot C_2H_5) \cdot CH(OH) \cdot C_0H_5$. B. Aus Diphenyloxäthylamin und Äthylsenföl in Benzol (S., B. 28, 1901). — Nädelchen (aus Benzol). F: 148 bis 149°. Leicht löslich in kaltem Aceton, in heißem Alkohol, Benzol und Eisessig, weniger in heißem Äther, sehr wenig in kochendem Ligroin.

N-Anilinothioformyl-diphenyloxäthylamin, N-Phenyl-N'-diphenyloxäthylthioharnstoff $C_{31}H_{30}ON_2S=C_0H_5\cdot CH(NH\cdot CS\cdot NH\cdot C_0H_5)\cdot CH(OH)\cdot C_0H_5$. B. Aus Diphenyloxäthylamin und Phenylsenföl (Bd. XII, S. 453) in Benzol (S., B. 28, 1902). — Nadeln oder Prismen (aus Alkohol). F: 171°. Löslich in Aceton und siedendem Alkohol, weniger leicht in Benzol, schwer löslich in Äther. — Wird von Säuren nur langsam angegriffen. Mit Quecksilberoxyd und Alkohol entsteht 2-Phenylimino-4.5-diphenyl-oxazoltetrahydrid (Syst. No. 4282).

- N-o-Toluidinothioformyl-diphenyloxäthylamin, N-o-Tolyl-N'-diphenyloxäthylthioharnstoff $C_{92}H_{22}ON_2S=C_6H_5\cdot CH(NH\cdot CS\cdot NH\cdot C_6H_4\cdot CH_3)\cdot CH(OH)\cdot C_6H_5$. B. Aus Diphenyloxäthylamin und o-Tolylsenföl (Bd. XII, S. 772) in Benzol (S., B. 28, 1903). Nadeln (aus Toluol). F: 156—157°. Leicht löslich in Alkohol und Aceton, ziemlich schwer in Benzol, fast unlöslich in Ather und Ligroin.
- b) Isodiphenyloxâthylamin $C_{16}H_{15}ON = C_6H_5 \cdot CH(NH_2) \cdot CH(OH) \cdot C_6H_5$. Vgl. such c auf S. 712.
- a) Rechtsdrehendes Isodiphenyloxäthylamin, d-Isodiphenyloxäthylamin \$\text{C}_{14}\text{H}_{15}\text{ON} = \text{C}_6\text{H}_5\cdot \text{CH}(\text{NH}_2)\cdot \text{CH}(\text{OH})\cdot \text{C}_6\text{H}_5\$. B. Man spaltet dl-Isodiphenyloxäthylamin \$(S. 710) in wäßrig-alkoholischer Lösung mit Hilfe von d-Weinsäure; das d-Tartrat des l-Isodiphenyloxäthylamins scheidet sich zuerst ab; aus den Mutterlaugen dieses Salzes gewinnt man durch Eindampfen, Aufnehmen des Rückstandes mit Alkohol und Fällen mit Ather das d-Tartrat des d-Isodiphenyloxäthylamins (Erlenmeyer jun., B. 32, 2378; E. jun., Arnold, A. 337, 321). Man mischt eine wäßrig-alkoholische Lösung von dl-Isodiphenyloxäthylamin mit einer wäßrig-alkoholischen Lösung von Helicin (Syst. No. 4776) und engt die erhaltene Lösung im Vakuum ein; hierbei scheidet sich die bei 189° schmelzende Helicinverbindung des d-Isodiphenyloxäthylamins krystallinisch ab; man erhält das d-Isodiphenyloxäthylamin aus seiner Helicinverbindung durch Erwärmen mit sehr verd. Salzsäure auf dem Wasserbade (E. jun., A.). Nadeln (aus Benzol). F: 114° (E. jun., A.). 9,715 g d-Isodiphenyloxäthylamin lösen sich in 100 g absol. Alkohol (E. jun., A.). [a]_0: +109,69° (2,744 g in 100 ccm Alkohol) (E. jun.). Hydrochlorid. Krystalle (aus absol. Alkohol). F: 228°; [a]_0: +79,57° (in Wasser; p = 1,2568) (E. jun., A.). d-Tartrat. Krystallinisch. F: 133—134°; [a]_0: +54,33° (3,092 g in 100 ccm Wasser) (E. jun.). Über zimtsaure Salze vgl. E. jun., B. 39, 289.
- O-Acetyl-d-isodiphenyloxäthylamin $C_{16}H_{17}O_2N=C_6H_5\cdot CH(NH_2)\cdot CH(O\cdot CO\cdot CH_3)\cdot C_6H_5$. B. Durch Erwärmen von d-Isodiphenyloxäthylamin in Benzol mit überschüssigem Acetylchlorid (Erlenmeyer jun., Arnold, A. 337, 349). F: 159°. [a]_D: +11,99° (in Alkohol; p = 1,1122). Salzsaures Salz. F: 196—197°.
- N-Benzal-d-isodiphenyloxäthylamin $C_{21}H_{19}ON = C_6H_5 \cdot CH(N:CH\cdot C_6H_5) \cdot CH(OH) \cdot C_6H_5$. B. Aus Benzaldehyd und d-Isodiphenyloxäthylamin in absol. Alkohol bei 30° (ERLENMEYER jun., ARNOLD, A. 337, 343). Nadeln. F: 137°. $[\alpha]_D: +55,97°$ (in absol. Alkohol; p=1,3995).
- N-Cinnamal-d-isodiphenyloxäthylamin $C_{13}H_{21}ON = C_6H_5 \cdot CH(N:CH:CH:CH:CH:C_6H_5) \cdot CH(OH) \cdot C_6H_5$. B. Wird in einer höher schmelzenden und einer niedriger schmelzenden Form beim Mischen der warmen benzolischen Lösungen von Zimtaldehyd und d-Isodiphenyloxäthylamin erhalten; aus der Lösung scheidet sich beim Erkalten die höherschmelzende Form aus, durch Eindampfen der Mutterlauge im Vakuum und Ausziehen des Rückstandes mit heißem Ligroin wird die niedrigerschmelzende gewonnen (Erlenmeyer jun., Arnold, A. 337, 340; vgl. E. jun., B. 36, 2340).

Höherschmelzende Form. F: 190°. Sehr wenig löslich. Gleicht völlig der höherschmelzenden Form des N-Cinnamal-l-isodiphenyloxäthylamins (S. 710), doch ist ihre heiße alkoholische Lösung linksdrehend. 0,178 g lösen sich in 100 g absol. Alkohol.

Niedrigerschmelzende Form. F: 130–131°. Gleicht völlig der niedrigerschmelzenden Form des N-Cinnamal-l-isodiphenyloxäthylamins (S. 710). $[a]_{\rm p}$: —52,44° (in absol. Alkohol; p=1,303).

- N Benzoyl d isodiphenyloxäthylamin $C_{21}H_{19}O_2N = C_6H_5 \cdot CH(NH \cdot CO \cdot C_6H_5) \cdot CH(OH) \cdot C_6H_5$. Zur Konstitution vgl. Auwers, Sonnenstuhl, B. 37, 3943. B. Aus d-Isodiphenyloxäthylamin in Benzol und Benzoylchlorid (Erlenmeyer jun., Arnold, A. 337, 350). Nadeln (aus Alkohol). F: 215°; schwer löslich in Äther und Benzol, leichter in Alkohol; $[a]_0$: +29,63° (in Methylalkohol; $[a]_0$: +29,63° (in Methylalkohol); $[a]_0$: +29,63° (in Methylalko
- N-[a-Carboxy-äthyliden]-d-isodiphenyloxäthylamin, Brenztraubensäure-d-isodiphenyloxäthylimid $C_{17}H_{17}O_3N=C_6H_6\cdot CH[N:C(CH_3)\cdot CO_2H]\cdot CH(OH)\cdot C_6H_6$. B. Aus äquimolekularen Mengen Brenztraubensäure und d-Isodiphenyloxäthylamin in absol. Alkohol (Erlenmeyer jun., Arnold, A. 837, 347). F: 161°. Schwer löslich in den gewöhnlichen Lösungsmitteln. [a] $_{\rm o}$: +89,74° (in Alkohol; p = 0,9100).
- β) Linksdrehendes Isodiphenyloxäthylamin, l-Isodiphenyloxäthylamin $C_{14}H_{15}ON = C_{4}H_{5} \cdot CH(NH_{2}) \cdot CH(OH) \cdot C_{4}H_{5}$. B. Man spaltet dl-Isodiphenyloxäthylamin (S. 710) in wäßrig-alkoholischer Lösung mit Hilfe von d-Weinsäure; das d-Tartrat des l-Isodiphenyloxäthylamins scheidet sich zuerst aus (Erlenmeyer jun., B. 32, 2377; E. jun., Arnold, A. 337, 321). Man mischt eine warme alkoholische Lösung von dl-Isodiphenyloxäthylamin mit einer wäßrig-alkoholischen Lösung von Helicin (Syst. No. 4776) und engt die erhaltene Lösung im Vakuum ein; hierbei scheidet sich die Helicinverbindung des

d-Isodiphenyloxāthylamins in Krystallen aus, die abfiltriert werden; die Mutterlauge dieser Krystalle wird im Vakuum weiter eingeengt, wobei wiederum Krystalle ausgeschieden werden; das gleiche Verfahren setzt man solange fort, bis keine Krystalle mehr abgeschieden werden; die letzte Mutterlauge wird vollständig eingedunstet; der Rückstand erstarrt beim Umrühren zu einer amorphen hornartigen Masse (Helicinverbindung des l-Isodiphenyloxāthylamins); diese gibt beim Erwärmen mit sehr verd. Salzsāure das l-Isodiphenyloxāthylamin (E. jun., A.). — Krystalle (aus Benzol). F: 114° (E. jun., A.). 9,392 g l-Isodiphenyloxāthylamin lösen sich in 100 g absol. Alkohol (E. jun., A.). [a]_D: —109,66° (3,684 g in 100 ccm Alkohol) (E. jun.). — Hydrochlorid. Krystalle (aus absol. Alkohol). F: 228°; [a]_D: —79,38° (in Wasser; p = 0,9868) (E. jun., A.). — d-Tartrat $C_{14}H_{15}ON + C_4H_6O_6$. Nadeln. F: 177°; schwer löslich in absol. Alkohol, leichter in Wasser (E. jun., A.). [a]_D: —37,57° (2,382 g in 100 ccm Wasser) (E. jun.). — Über zimtsaure Salze vgl. E. jun., B. 39, 289.

O-Acetyl-1-isodiphenyloxäthylamin $C_{16}H_{17}O_2N=C_6H_5\cdot CH(NH_2)\cdot CH(O\cdot CO\cdot CH_3)\cdot C_6H_5$. B. Beim Erwärmen von 1-Isodiphenyloxäthylamin in Benzol mit überschüssigem Acetylchlorid (Erlenmeyer jun., Arnold, A. 337, 349). — F: 159°. $[\alpha]_p$: —12,39° (in Alkohol; p = 1,2615). — Salzsaures Salz. F: 196°.

N-Benzal-1-isodiphenyloxäthylamin $C_{21}H_{19}ON = C_6H_5 \cdot CH(N:CH\cdot C_6H_5) \cdot CH(OH) \cdot C_6H_5$. B. Aus l-Isodiphenyloxäthylamin und Benzaldehyd in absol. Alkohol bei 30° (E. jun., A., A. 337, 343). F: 137°. [α]_D: -55,57° (in absol. Alkohol; p = 1,4696).

N-Cinnamal-1-isodiphenyloxäthylamin $C_{23}H_{21}ON = C_6H_5 \cdot CH(N:CH:CH:CH:C_6H_5) \cdot CH(OH) \cdot C_6H_5$. B. Wird in einer höherschmelzenden und einer niedrigerschmelzenden Form beim Mischen der warmen benzolischen Lösungen von 1-Isodiphenyloxäthylamin und Zimtaldehyd erhalten; aus der Lösung scheidet sich beim Erkalten die höherschmelzende Form aus; durch Eindampfen der Mutterlauge im Vakuum und Ausziehen des Rückstandes mit heißem Ligroin wird die niedrigerschmelzende Form gewonnen (E. jun., A., A. 337, 338; vgl. E. jun., B. 36, 2340).

Höherschmelzende Form. Krystalle (aus Benzol). F: 190° (Zers.). Sehr wenig löslich in allen gebräuchlichen kalten Lösungsmitteln; 0,174 g lösen sich in 100 g absol. Alkohol; unlöslich in Wasser, Äther, Ligroin. Die heiße alkoholische Lösung ist rechtsdrehend.

Niedrigerschmelzende Form. Krystalle (aus Ligroin). F: 131°. Unlöslich in Wasser, sehr leicht löslich in Alkohol, Äther, Benzol und heißem Ligroin. $[a]_{\nu}$: +53,23° (in absol. Alkohol; p=1,2524).

N-Benzoyl-1-isodiphenyloxäthylamin $C_{21}H_{19}O_2N=C_6H_5\cdot CH(NH\cdot CO\cdot C_6H_5)\cdot CH(OH)\cdot C_6H_5$. Zur Konstitution vgl. Auwers, Sonnenstuhl, B. 37, 3943. — B. Aus l-Isodiphenyloxäthylamin und Benzoylchlorid in Benzol (Erlenmeyer jun., Arnold, A. 337, 351). — F: 214—215°; [a]_D: —29,42° (in Methylalkohol; p = 0,9914).

N-[a-Carboxy-äthyliden]-l-isodiphenyloxäthylamin, Brenztraubensäure-l-isodiphenyloxäthylimid $C_{17}H_{17}O_3N=C_6H_5\cdot CH[N:C(CH_2)\cdot CO_2H]\cdot CH(OH)\cdot C_6H_5$. B. Aus l-Isodiphenyloxäthylamin und Brenztraubensäure in absol. Alkohol (ERLENMEYER jun., Arnold, A. 337, 348). — F: 161°. Wenig löslich. [a]_D: —88,05° (in Alkohol; p = 1,2304).

7) Inakt. Isodiphenyloxäthylamin, dl-Isodiphenyloxäthylamin C₁₄H₁₅ON = C₆H₅·CH(NH₃)·CH(OH)·C₆H₅. Vgl. auch c auf S. 712. B. In geringer Menge neben anderen Produkten bei der Einw. von salpetriger Säure auf das inaktive spaltbare a.a. Diphenyläthylendiamin (S. 249) (Feist, Arnstein, B. 28, 3181). Bei der Einw. von salpetriger Säure auf das inaktive nicht spaltbare a.a. Diphenyläthylendiamin (S. 250) (Japp, Moir, Soc. 77, 644). Aus N-Benzal-dl-isodiphenyloxäthylamin (S. 711) beim Erwärmen mit verd. Salzsäure auf dem Wasserbade (Erlenmeyer jun., A. 307, 124). Weitere Bildungen siehe im Artikel Diphenyloxäthylamin. — Tafelförmige Krystalle (aus Methylalkohol). Monoklin [prismatisch(?)] (Bruns, A. 307, 126; vgl. Groth, Ch. Kr. 5, 202). F: 129—130° (E. jun., B. 29, 295; A. 307, 125), 129° (Söderbaum, B. 28, 2522). 3,22 glösen sich in 100 g absol. Alkohol (E. jun., Arnold, A. 337, 328). Leicht löslich in heißem Alkohol und heißem Benzol leichter löslich als Diphenyloxäthylamin (E. jun., A. 307, 132). — dl-Isodiphenyloxäthylamin läßt sich in wäßrig-alkoholischer Lösung mit d-Weinsäure in seine optisch aktiven Komponenten spalten (E. jun., A. A. 337, 325). dl-Isodiphenyloxäthylamin zerfällt beim Erhitzen über den Schmelzpunkt in Benzylamin und Benzaldehyd (E. jun., A. 307, 131). Liefert bei der Oxydation mit Salpetersäure Benzil (E. jun., B. 28, 1867; A. 307, 87). Beim Destillieren mit Zinkstaub entstehen Ammoniak und Stilben (E. jun., B. 28, 1867; A. 307, 87). Durch Einw. von salpetriger Säure entsteht vorwiegend Isohydrobenzoin (Bd. VI, S. 1004) (E. jun., A. 307, 129).

- $C_{14}H_{15}ON+HCl$ (E. jun., A. 307, 127). Blättchen (aus Wasser oder verd. Salzsäure). Triklin [pinakoidal (?)] (Bruhns, A. 307, 128; vgl. Groth, Ch. Kr. 5, 202). F: 211° (Zers.) (E. jun., A. 307, 127). Ziemlich leicht löslich in kaltem Wasser, heißem Alkohol und heißem Methylalkohol, schwerer in heißem Benzol (E. jun., A. 307, 127). $C_{14}H_{15}ON+HCl+CH_{3}\cdot OH$. Sechsseitige Tafeln (E. jun., A. 307, 127, 129). Monoklin (Bruhns, A. 307, 129; Groth, Ch. Kr. 5, 203). Formiat $C_{14}H_{16}ON+CH_{2}O_{2}$. Schuppen. F: 172—173° (Söderbaum, Öf. Sv. 1896, 272). d-Tartrat $2C_{14}H_{15}ON+C_{4}H_{6}O_{5}$. B. Aus dl-Isodiphenyloxäthylamin in absol. Alkohol mit d-Weinsäure auf dem Wasserbad (E. jun., Arn., A. 337, 324). Krystalle (aus Wasser). Zersetzt sich bei 212—214°. $2C_{14}H_{15}ON+2HCl+PtCl_{4}$. Täfelchen oder Rhomboeder. Schmilzt gegen 213° unter Zersetzung (Söderbaum, B. 28, 2523); wird bei 215° grau und schmilzt bei 226° (Japp, Moir).
- O-Acetyl-dl-isodiphenyloxäthylamin $C_{16}H_{17}O_2N=C_6H_5\cdot CH(NH_2)\cdot CH(O\cdot CO\cdot CH_3)\cdot C_6H_5$. B. Beim Erwärmen von dl-Isodiphenyloxäthylamin mit überschüssigem Essigsäureanhydrid bis zur Lösung (Söderbaum, B. 29, 1215). Beim Erwärmen von dl-Isodiphenyloxäthylamin in Benzol mit überschüssigem Acetylchlorid (Erlenmeyer jun., Arnold, A. 337, 348). Prismen (aus Alkohol), Nädelchen (aus Benzol). F: 152—153° (Sö.), 152° (E. jun., A.). Sehr leicht löslich in Alkohol (E. jun., A.). Salzsaures Salz. F: 193°; löslich in heißem Wasser (E. jun., A.).
- N-Benzal-dl-isodiphenyloxäthylamin $C_{21}H_{19}ON = C_6H_5 \cdot CH(N:CH\cdot C_6H_5) \cdot CH(OH) \cdot C_6H_5$. B. Entsteht als Hauptprodukt bei der Kondensation von Glykokoll mit Benzaldehyd in verdünnter alkoholisch-alkalischer Lösung bei etwa 50° (Erlenmeyer jun., A. 307, 121). Beim Kochen von Benzaldehyd mit dl-Isodiphenyloxäthylamin und Alkohol (E. jun., B. 28, 1868; A. 307, 125). Nadeln (aus Alkohol). Monoklin prismatisch (Bruhns, A. 307, 122; vgl. Groth, Ch. Kr. 5, 337). F: 134° (E. jun., A. 307, 121). Unlöslich in Wasser, schwer löslich in kaltem Alkohol, Äther und Ligroin, ziemlich in heißem Alkohol, leicht in Aceton (E. jun., A. 307, 121). Ist gegen Alkalien auch in der Hitze beständig; durch Mineralsäuren wird es langsam in der Kälte, schneller beim Erhitzen in Benzaldehyd und dl-Isodiphenyloxäthylamin gespalten (E. jun., A. 307, 121).
- N-[4-Nitro-benzal]-dl-isodiphenyloxäthylamin $C_{21}H_{18}O_3N_2=C_6H_5\cdot CH(N:CH\cdot C_6H_4\cdot NO_2)\cdot CH(OH)\cdot C_6H_5$. Aus äquimolekularen Mengen dl-Isodiphenyloxäthylamin und 4-Nitro-benzaldehyd in absol. Alkohol (Erlenmeyer jun., Arnold, A. 337, 346). Gelbliche Nädelchen (aus absol. Alkohol). F: 132°. Löslich in Alkohol, Äther, Benzol, Chloroform, unlöslich in Wasser und Ligroin.
- N-Benzal-O-acetyl-dl-isodiphenyloxäthylamin $C_{23}H_{21}O_4N=C_6H_5\cdot CH(N:CH\cdot C_6H_5)\cdot CH(O\cdot CO\cdot CH_3)\cdot C_6H_6$. B. Aus N-Benzal-isodiphenyloxäthylamin beim Lösen in warmem Essigsäureanhydrid (E. jun., A. 307, 124). Krystalle (aus Alkohol). F: 117°. Wird bei anhaltendem Kochen mit Salzsäure unter Abspaltung von Benzaldehyd zersetzt.
- N-Cinnamal-dl-isodiphenyloxäthylamin $C_{23}H_{21}ON=C_0H_5\cdot CH(N:CH\cdot CH\cdot CH\cdot CH\cdot C_0H_5)\cdot CH(OH)\cdot C_0H_5$. B. Aus äquimolekularen Mengen dl-Isodiphenyloxäthylamin und Zimtaldehyd in absolut-alkoholischer Lösung (Erlenmeyer jun., Arnold, A. 337, 337; vgl. E. jun., B. 36, 2340). Nädelchen (aus Benzol). F: 185° (Zers.); sehr wenig löslich in Alkohol, Benzol, Chloroform, Äther und Ligroin, unlöslich in Wasser; 100 g absol. Alkohol lösen 0,12 g (E. jun., A.). Wird beim Erhitzen mit Salzsäure schwer, leichter mit Schwefelsäure zersetzt (E. jun., A.).
- N-Salicylal-dl-isodiphenyloxäthylamin $C_{21}H_{19}O_2N=C_6H_5\cdot CH(N:CH\cdot C_6H_4\cdot OH)\cdot CH(OH)\cdot C_6H_5$. B. Aus dl-Isodiphenyloxäthylamin und Salicylaldehyd in absol. Alkohol (Erlenmeyer jun., Arnold, A. 337, 344). Hellgelbe Krystalle. F: 113°. Löslich in Alkohol, Benzol und Äther, unlöslich in Wasser. Spaltet beim Kochen mit Wasser Benzaldehyd ab und wird durch Säuren vollständig zersetzt.
- N-Anisal-dl-isodiphenyloxäthylamin C₂₂H₃₁O₂N = C₆H₅·CH(N:CH·C₆H₄·O·CH₃)·CH(OH)·C₆H₅. B. Aus dl-Isodiphenyloxäthylamin und Anisaldehyd in absol. Alkohol (E. jun., Ab., A. 337, 344). Farblose Nädelchen. F: 145°. Löslich in Alkohol, Benzol und Chloroform, schwer löslich in Ather, Ligroin und Wasser.
- N-Vanillal-dl-isodiphenyloxäthylamin $C_{23}H_{21}O_{3}N = C_{6}H_{5} \cdot CH[N:CH\cdot C_{6}H_{3}(OH)\cdot O\cdot CH_{3}\cdot CH(OH)\cdot C_{6}H_{5}$. Aus dl-Isodiphenyloxäthylamin und Vanillin in absol. Alkohol (E. jun., Ar., A. 337, 345). Gelbe würfelähnliche Krystalle. F: 148°. Löslich in Alkohol, Benzol und Chloroform, schwer löslich in Äther, unlöslich in Ligroin und Wasser.
- N-Benzoyl-dl-isodiphenyloxäthylamin $C_{a1}H_{19}O_{a}N = C_{e}H_{5} \cdot CH(NH \cdot CO \cdot C_{e}H_{5}) \cdot CH$ (OH) $\cdot C_{e}H_{5}$. B. Aus dl-Isodiphenyloxäthylamin in Benzol mit Benzoylchlorid (E. jun., Ar., A. 337, 350). Aus O.N-Dibenzoyl-dl-isodiphenyloxäthylamin (S. 712) durch partielle Verseifung (Auwers, Sonnenstuhl, B. 37, 3943). Nadeln (aus Alkohol). F: 223° (E. jun., Ar.; Au., S.). Löslich in Alkohol, Benzol und Chloroform, schwer löslich in Ather, unlöslich in Ligroin und Wasser (E. jun., Ar.).

N-Aminoformyl-dl-isodiphenyloxäthylamin, dl-Isodiphenyloxäthylharnstoff $C_{15}H_{16}O_2N_2=C_6H_5\cdot CH(NH\cdot CO\cdot NH_2)\cdot CH(OH)\cdot C_6H_5$. B. Aus salzsaurem dl-Isodiphenyloxäthylamin und Kaliumcyanat in wäßr. Lösung beim Erwärmen (Erlenmeyer jun., Arnold, A. 337, 352). — Nadeln mit Krystallaceton (aus Aceton). F: 157°. Leicht löslich in Alkohol, schwer in Wasser, Benzol und Chloroform.

 $N-[a-Carboxy-äthyliden]-dl-isodiphenyloxäthylamin, Brenztraubensäuredl-isodiphenyloxäthylimid <math>C_{17}H_{17}O_8N=C_6H_5\cdot CH[N:C(CH_3)\cdot CO_2H]\cdot CH(OH)\cdot C_6H_5$. B. Aus Brenztraubensäure und dl-Isodiphenyloxäthylamin in absol. Alkohol (Erlenmeyer jun., Arnold, A. 337, 347). — Krystalle. F: 152° (Zers.). Schwer löslich in Alkohol, fast unlöslich in Benzol, Chloroform, Ligroin, Äther und Wasser.

N-[β -Carbäthoxy-isopropyliden]-dl-isodiphenyloxäthylamin, Acetessigsäureäthylester-dl-isodiphenyloxäthylimid $C_{20}H_{23}O_3N=C_6H_5\cdot CH[N:C(CH_3)\cdot CH_2\cdot CO_2\cdot C_2H_5]\cdot CH(OH)\cdot C_6H_5$. B. Aus Acetessigester und dl-Isodiphenyloxäthylamin in absol. Alkohol (Erlenmeyer jun., Arnold, A. 337, 346). — Gelbliche Krystalle (aus Alkohol). F: 145°. Löslich in Alkohol, Benzol, Äther und Chloroform, unlöslich in Ligroin und Wasser.

c) Derivate des Phenyl - [a - amino - benzyl] - carbinols $C_{14}H_{15}ON = C_{6}H_{5}$ · $CH(NH_{2})\cdot CH(OH)\cdot C_{6}H_{5}$, von denen nicht feststeht, ob sie sterisch dem Diphenyl-oxäthylamin (S. 706) oder dem Isodiphenyloxäthylamin (S. 709) zuzuordnen sind.

Phenyl-[a-anilino-bensyl]-carbinol, "Hydrobenzoinanilid" $C_{20}H_{10}ON = C_6H_5$ · $CH(OH)\cdot CH(NH\cdot C_6H_5)\cdot C_6H_5$. B. Beim Eintragen von Natriumamalgam in eine auf 70° gehaltene Lösung von Desylanilin $C_6H_5\cdot CO\cdot CH(NH\cdot C_6H_5)\cdot C_6H_5$ (Syst. No. 1873) in 90°/ojgem Alkohol (Voior, J. pr. [2] 34, 13). — Nadeln (aus Alkohol). F: 119°. Sehr leicht löslich in heißem Alkohol, weniger in Äther und Benzol, sehr wenig in heißem Wasser. — Liefert ein ziemlich beständiges, bei 177° schmelzendes Sulfat.

Phenýl-[a-p-toluidino-bensyl]-carbinol, "p-Hydrobenzointoluidid" $C_{21}H_{21}ON = C_0H_5 \cdot CH(OH) \cdot CH(NH \cdot C_0H_4 \cdot CH_3) \cdot C_0H_5$. Beim Eintragen von Natriumamalgam in ein warmes Gemisch aus Desyl-p-toluidin und Alkohol (Voiot, J. pr. [2] **84**, 21). — Nädelchen (aus Alkohol). F: 140°. Schwer löslich in kaltem Alkohol, ziemlich leicht in Äther.

2. Aminoderivat des a-Phenyl-a-[4-oxy-phenyl]-äthans $C_{14}H_{14}O=C_6H_6\cdot CH(CH_5)\cdot C_6H_4\cdot OH$ (Bd. VI, S. 685).

a-[4-Dimethylamino-phenyl]-a-[2.3.5-tri-brom-4-oxy-phenyl]-äthan C₁₆H₁₆ONBr₃, s. nebenstehende Formel. B. Aus 2.3.5.1Tetrabrom-4-oxy-thenyl (CH₃)₂N· CH(CH₃)· OH 1-äthyl-benzol (Bd. VI, S. 473) und Dimethylanilin in kaltem Benzol (AUWERS, STRECKER, A. 334, 333). — Nadeln (aus Alkohol). F: 108\textsuperscript{. Leicht löslich in Benzol und Eisessig, mäßig löslich in Alkohol, fast unlöslich in Ligroin. Wird aus den Lösungen in verd. Laugen durch Kohlendioxyd oder Essigsäure gefällt. — C₁₆H₁₆ONBr₃ + HBr. Sandiges Pulver. Schmilzt zwischen 202. Mig-16 und 207. C16 H₁₆ONBr₃ + HI. Gelbe Krystalle. F: 183—185\textsuperscript{. Leicht löslich in heißem Eisessig, schwer in Alkohol, unlöslich in Benzol und Ather.

3. Aminoderivate des a-Oxy-a.a-diphenyl-āthans, (Methyldiphenyl-carbinols) $C_{14}H_{14}O=(C_4H_5)_2C(CH_3)\cdot OH$ (Bd. VI, S. 685).

Methyl-phenyl-[2-amino-phenyl]-carbinol C₁₄H₁₈ON, s. nebenstehende Formel. B. Man läßt auf 1 Mol.-Gew. 2-Amino-benzophenon (Syst. No. 1873) 4 Mol.-Gew. Methylmagnesiumjodid in Ather einwirken und zersetzt das Reaktionsprodukt mit Eis, Ammoniumchlorid und etwas Ammoniak (STOERMER, FINCKE, B. 42, 3119). — Fast farblose Krystalle (aus heißem Ligroin oder aus wenig Benzol durch Ligroin). F: 84—85°. Leicht löslich in Alkohol, Äther, Benzol, schwer in Ligroin. — Liefert beim Kochen mit ca. 35% jeger Schwefelsäure α-Phenyl-α-[2-amino-phenyl]-äthylen (Bd. XII, S. 1333). Mit Acetanhydrid und Natriumacetat entsteht bei längerem Kochen α-Phenyl-α-[2-acetamino-phenyl]-äthylen, bei kurzer Einw. von Acetanhydrid bildet sich [Methyl-phenyl-(2-acetamino-phenyl)-carbin]-acetat (s. u.).

[Methyl-phenyl-(2-acetamino-phenyl)-carbin]-acetat $C_{18}H_{19}O_3N=C_6H_6$: $C(CH_3)(O\cdot CO\cdot CH_9)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Durch kurze Behandlung von Methyl-phenyl-[2-amino-phenyl]-carbinol (S. 712) mit Acetanhydrid (Stoermer, Fincke, B. 42, 3120). — Fast farblose Krystalle. F: 160—162°.

Methyl-phenyl-[4-dimethylamino-phenyl]-carbinol $C_{16}H_{16}ON = C_6H_5 \cdot C(CH_3)(OH) \cdot C_6H_4 \cdot N(CH_3)_2$. B. Man trägt 1 Mol.-Gew. 4-Dimethylamino-benzophenon (Syst. No. 1873) in benzolischer Lösung in eine äther. Lösung von 1 Mol.-Gew. Methylmagnesiumjodid ein und zersetzt das Reaktionsprodukt mit Säure (Feorr, B. 40, 3902). — Öl 1). Kp₁₄: 202°. — Geht bei 130° unter Wasserabspaltung in a-Phenyl-a-[4-dimethylamino-phenyl]-äthylen (Bd. XII, S. 1333) über.

Aminomethyl-diphenyl-carbinol C₁₄H₁₅ON = (C₆H₅)₂C(OH)·CH₃·NH₂. B. Durch Reduktion der entsprechenden Nitroverbindung (des β-Nitro-α-oxy-α-α-diphenyl-āthans, Bd. VI, S. 685) mit Zinkstaub und Eisessig (Konowalow, Jatzewitsch, Ж. 37, 544; C. 1905 II, 825). Aus Aminoessigsäureāthylester und Phenylmagnesiumbromid nach der Geignarden Methode (Paal, Weidenkaff, B. 38, 1687). — Nadeln (aus Wasser). F: 110° bis 111° (P., W., B. 38, 1688), 107—108° (K., J.). Sehr leicht löslich in Alkohol, Essigester, Chloroform, Aceton und Benzol, schwer in kaltem Petroläther und kaltem Wasser, reichlicher beim Erwärmen (P., W., B. 38, 1688). — Spaltet bei längerem Erhitzen auf 100° und bei der Destillation Wasser ab unter Bildung eines amorphen Produktes (P., W., B. 38, 1688). Gibt beim Kochen mit Natriumnitrit und verd. Essigsäure das Diphenyl-āthylenoxyd (C₆H₅)₂C — CH₂ (Syst. No. 2370) (P., W., B. 39, 2062). — C₁₄H₁₅ON + HCl (K., J.; P., W., B. 38, 1688). Nadeln. F: 192—193°; leicht löslich in Wasser und Alkohol (P., W.). — C₁₄H₁₅ON + HNO₃. Nadeln. F: 203—204°; schwer löslich in kaltem, löslich in siedendem Wasser, Alkohol und Aceton (P., W.). — Pikrat C₁₄H₁₅ON + C₆H₃O₇N₃. Gelbe Nādelchen. F: 183°; schwer löslich in kaltem, leichter in siedendem Wasser, Alkohol, Aceton (P., W.). — C₁₄H₁₅ON + HCl + AuCl₃ + H₂O. Gelbe Blättchen. Schmilzt wasserhaltig bei 103°, wasserfrei bei 119—120°; leicht löslich in Alkohol und heißem Wasser (P., W.). — 2 C₁₄H₁₅ON + 2 HCl + PtCl₄ + 2 H₂O (P., W.) oder + 3 H₂O (K., J.). Gelbe Nadeln. Schmilzt wasserhaltig bei 146—149° (K., J.), bei 155° (P., W.), wasserfrei bei 161°; leicht löslich in heißem Wasser und Alkohol (P., W.).

Aminomethyl - diphenyl - carbinol - äthyläther $C_{16}H_{19}ON = (C_6H_5)_9C(O\cdot C_2H_5)\cdot CH_3\cdot NH_2$. B. Durch Reduktion der entsprechenden Nitroverbindung (des β -Nitro-a-āthoxy-a.a-diphenyl-āthans, Bd. VI, S. 685) in essigsaurer Lösung mit Zinkstaub (Konowalow, Jatzewitsch, Ж. 37, 545; C. 1905 II, 825). — Wurde nicht näher beschrieben. — $2\,C_{16}H_{19}ON + 2\,HCl + PtCl_4 + 2\,H_2O$.

Diäthylaminomethyl-diphenyl-carbinol C₁₈H₂₅ON = (C₂H₅)₂C(OH)·CH₂·N(C₂H₅)₂.

B. Man zersetzt das aus Diäthylaminoessigester (Bd. IV, S. 350) und Phenylmagnesiumbromid entstehende Produkt mit Wasser (Paal, Weidenkaff, B. 39, 812). Aus β-Chlora-oxy-a.a-diphenyl-āthan (Bd. VI, S. 685) und Diāthylamin in Alkohol bei längerem Erhitzen auf 100° (Klages, Kessler, B. 39, 1754). — F: 49° (K., K.), 47—49° (P., W.). Kp₄₀: 197° (P., W.). Leicht löslich in Alkohol und Äther (K., K.), schwer in Wasser und Petroläther (P., W.). — C₁₈H₂₅ON + HCl. Blättchen. F: 166—167°; sehr leicht löslich in Wasser und Alkohol (P., W.). — Pikrat C₁₈H₂₅ON + C₂H₃O₇N₅. F: 140° (K., K.). — C₁₈H₂₅ON + HCl + AuCl₃. Krystallinisch. F: 125—126°; leicht löslich in Alkohol, schwer in kaltem Wasser; wird von siedendem Wasser zersetzt (P., W.). — 2 C₁₈H₂₅ON + 2 HCl + PtCl₄. Gelbrote Tafeln. F: 185—186°; schwer löslich in kaltem, leicht in heißem Wasser und Alkohol (P., W.).

Methyl - bis - [4 - dimethylamino - phenyl] - carbinol $C_{16}H_{24}ON_2 = [(CH_3)_2N \cdot C_6H_4]_2C(CH_4) \cdot OH$. Uber eine von Feort (B. 40, 3902) aus Michlers Keton und Methylmagnesiumjodid erhaltene, unter dieser Formel beschriebene Verbindung vgl. die nach dem Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von Lemoult, C. r. 157 [1913], 724 und Madelung, Völker, J. pr. [2] 115 [1927], 29, 41.

¹⁾ Nach einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von CLARKE, PATCH (Am. Soc. 34, 915) konnte diese Verbindung in Krystallen vom Schmelspunkt 67° erhalten werden.

- 4. Aminoderivate des 4-Oxy-3-methyl-diphenylmethans $C_{14}H_{14}O=C_6H_5\cdot C_8H_3\cdot C_8H_3\cdot CH_3\cdot OH$.
- 2.5.6 Tribrom 4' dimethylamino 4 oxy3 methyl diphenylmethan $C_{16}H_{16}ONBr_3$, s. nebenstehende Formel. Zur Konstitution vgl. Auwers, A.
 334, 264, 281. B. Das Hydrobromid entsteht beim Vermischen der verdünnten Benzollösungen von 2.5.6.1'-Tetrabrom-4-oxy-1.3-dimethyl-benzol (Bd. VI, S. 489) und Dimethylanilin (Auwers, Ziegler, B. 29, 2352). Krystalle (aus Alkohol). F: 121—122°; unlöslich in Wasser, leicht löslich in organischen Lösungsmitteln und in verd. Alkali (A., Z.). Beim Kochen mit Methyljodid entsteht das entsprechende Jodmethylat (s. u.) (A., Z.). C₁₆H₁₆ONBr₃ + HBr. Nadeln (aus HBr-haltigem Eisessig). Schmilzt, rasch erhitzt, bei 231—233°; unlöslich in Chloroform, Essigester und Ligroin, schwer löslich in Äther und Benzol, leichter in Eisessig (A., Z.).
- 2.5.6-Tribrom -4'-dimethylamino -4-oxy-3-methyl-diphenylmethan-hydroxy-methylat $C_{17}H_{20}O_2NBr_3=(CH_3)_3N(OH)\cdot C_6H_4\cdot CH_2\cdot C_8Br_3(CH_3)\cdot OH$. B. Das Jodid entsteht beim Kochen von 2.5.6-Tribrom-4'-dimethylamino-4-oxy-3-methyl-diphenylmethan (s. o.) in Benzol mit Methyljodid auf dem Wasserbade; man erhalt die freie Base aus dem Jodid durch kurzes Kochen mit verd. Alkali (Auwers, Ziegler, B. 29, 2353). Blättehen (aus Wasser). F: 179°. Leicht löslich in Alkohol und Eisessig, sehr wenig in Benzol, Chloroform, Essigester, Ligroin und kaltem Wasser. Jodid $C_{17}H_{19}OBr_3N\cdot I$. Krystalle. F: 154°. Leicht löslich in Aceton, sehwer in den übrigen organischen Lösungsmitteln.
- 5. Aminoderivat des a-Oxy-3-methyl-diphenylmethans (3-Methyl-diphenylcarbinols, Phenyl-m-tolyl-carbinols) $C_{14}H_{14}O=CH_3\cdot C_6H_4\cdot CH(OH)\cdot C_6H_5$.
- 6-Amino-3-methyl-diphenyl-carbinol, 6-Amino-3-methyl-benzhydrol $C_{14}H_{16}ON$, s. nebenstehende Formel. B. Durch Reduktion von 6-Amino-3-methyl-benzophenon (Syst. No. 1873) mit $2^{1/2}{}^0/_0$ igem Natriumamalgam in $75^{0}/_0$ igem NH2 (HANSCHKE, B. 32, 2026). Undeutliche Krystalle (aus verd. Alkohol). F: 82—84°. Leicht löslich in Salzsäure. Zersetzt sich beim Kochen mit Salzsäure unter Bildung von Benzaldehyd.
- 6. Aminoderivat des a-Oxy-4-methyl-diphenylmethans (4-Methyl-diphenylcarbinols, Phenyl-p-tolyl-carbinols) $C_{14}H_{14}O=CH_3\cdot C_6H_4\cdot CH(OH)\cdot C_6H_5$ (Bd. VI, S. 686).
- [2-Amino-phenyl]-p-tolyl-carbinol, 2'-Amino-4-methyl-benzhydrol C₁₄H₁₅ON, s. nebenstehende Formel.

 B. Bei der Reduktion von 2'-Amino-4-methyl-benzophenon (Syst. No. 1873) mit 2¹/₂⁰/₀igem Natriumamalgam in wäßrig-alkoholischer Lösung (KIPPENBERG, B. 30, 1134). Nädelchen (aus Benzol + Ligroin).

 F: 99,5—101°. Schwer löslich in Amylalkohol und Ligroin, sonst leicht löslich. Gibt mit Harnstoff 2-Oxo-4-p-tolyl-chinazolintetrahydrid (Syst. No. 3571), mit Rhodanwasserstoffsäure 2-Thion-4-p-tolyl-chinazolintetrahydrid (Syst. No. 3571).
- 7. Aminoderivate des 5-Oxy-2.2'-dimethyl-diphenyls $C_{14}H_{14}O=CH_3\cdot C_6H_4\cdot C_6H_3(CH_3)\cdot OH$.
- 4.4'-Diamino 5 äthoxy 2.2' dimethyl diphenyl (?), 5-Äthoxy 2.2'-dimethyl-benzidin (?) $C_{18}H_{20}ON_2$, s. nebenstehende Formel. B. Beim Eintragen eines Gemenges von 10 g 6-Äthoxy 3.3' dimethyl-azobenzol (Syst. No. 2113) und 80 g Alkohol in 160 g schwach erwärmte SnCl₂-Lösung (40 g SnCl₂ + 100g 38% jege Salzsäure) (JACOBSON, PIEPENBRINK, B. 27, 2704). $C_{18}H_{20}ON_2 + 2HCl$. Krystallaggregate. Leicht löslich in Wasser, schwer in Salzsäure.

Disalicylalderivat $C_{30}H_{28}O_3N_2 = HO \cdot C_6H_4 \cdot CH : N \cdot C_6H_3(CH_3) \cdot C_6H_2(CH_3)(N : CH \cdot C_6H_4 \cdot OH) \cdot O \cdot C_2H_5$. B. Durch Erwärmen von 4.4'-Diamino-5-äthoxy-2.2'-dimethyl-diphenyl(?) in alkoh. Lösung mit 2 Mol.-Gew. Salicylaldehyd (JACOBSON, PIEPENBRINK, B. 27, 2705). — Goldgelbe Krystalle (aus Alkohol). F: 127°.

- Aminoderivate des 5-0xy-2.3'-dimethyl-diphenyls $C_{14}H_{14}O = CH_3 \cdot C_4H_4 \cdot C_4H_4$ $C_{\bullet}H_{\bullet}(CH_{\bullet})\cdot OH.$
- 4.4' Diamino 5 äthoxy 2.3' dimethyl diphenyl, 5-Åthoxy-2.3'-dimethyl-benzidin C₁₆H₂₀ON₂, s. nebenstehende Formel. B. Beim Eintragen von 6'-Åthoxy-2.3'-dimethyl-hydr-CH₂ CH₃ \cdot NH, azobenzol (Syst. No. 2078) in heiße verd. Schwefelsäure (Norl-Ting, Werner, B. 23, 3264). In besserer Ausbeute beim Behandeln von 6'-Athoxy-2.3'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnehlorür und Salzsaure oder mit einer alkoh. Lösung von Schwefeldioxyd bei 140° (N., W.; Geigy, D. R. P. 42006; Frdl. 1, 463). — Nadeln. F: 75°; schwer löslich in Wasser, leicht in Alkohol, Ather und Chloroform (N., W.).
- 4.6'-Diamino-5-äthoxy-2.3'-dimethyl-diphenyl, 5'-Äthoxy- CH, CH_a **5.2'-dimethyl-diphenylin'**) $C_{16}H_{20}ON_2$, s. nebenstehende Formel. B. Entsteht neben anderen Verbindungen bei der Reduktion von 6-Åthoxy-NH. 3.4'-dimethyl-azobenzol (Syst. No. 2113) mit Zinnchlorür und Salzsäure (Jacobson, Piepenberink, B. 27, 2713; Jac., Jankowski, A. 369, 22).

 — Spröde Masse. Kp₃₅: 237—243° (Jac., P.). Leicht löslich in heißem Alkohol, Benzol, Ather, fast unlöslich in Ligroin (Jac., Jan.).

Disalicylalderivat $C_{30}H_{23}O_{3}N_{2} = HO \cdot C_{8}H_{4} \cdot CH : N \cdot C_{8}H_{3}(CH_{3}) \cdot C_{8}H_{1}(CH_{3})(N : CH \cdot C_{8}H_{4} \cdot CH \cdot N \cdot C_{8}H_{5} \cdot B$. Durch Kochen einer methylalkoh. Lösung von 4.6'-Diamino-5-āthoxy-2.3'-dimethyl-diphenyl mit Salicylaldehyd (Jacobson, Piepenbrink, B. 27, 2713; Jac., Jankowski, A. 369, 22). — Goldgelbe Krystalle (aus Methylalkohol). F: 110° (Jac., Jan.). Leicht löslich in Alkohol und Benzol, wenig löslich in Äther und Ligroin (JAC., Pie.).

4. Aminoderivate der Monooxy-Verbindungen $C_{16}H_{16}O$.

- 1. Aminoderivat des β -Phenyl-a-[4-oxy-phenyl]-propans $C_{15}H_{16}O = HO$. $C_aH_a \cdot CH_a \cdot CH(C_aH_a) \cdot CH_a$.
- β-Phenyl-γ-[4-methoxy-phenyl]-propylamin, β-Phenyl-β-anisyl-äthylamin $C_{16}H_{19}ON = CH_3 \cdot O \cdot C_6H_4 \cdot CH_2 \cdot CH(C_6H_5) \cdot CH_2 \cdot NH_2$. B. Beim Übergießen eines Gemisches aus 30 g 4-Methoxy-α-phenyl-zimtsäure-nitril (Bd. X, S. 359) und 75 g Natrium mit 300 g absol. Alkohol; man fügt weiter Alkohol hinzu bis zur völligen Lösung des Natriums (FREUND, REMSE, B. 23, 2864). Dickflüssig. Zersetzt sich oberhalb 253°. Sohwer flüchtig mit Wasserdampf. $C_{16}H_{19}ON + HCl + AuCl_3$. Goldgelbe Blättchen. F: 87°. $2C_{16}H_{19}ON + 2HCl + PtCl_4$ (bei 100°). Gelbe Nädelchen. Schmilzt bei 195° unter Zersetzung.
- 2. Aminoderivat des a Oxy a.a diphenyl propans (Äthyldiphenyl-carbinols) $C_{15}H_{16}O=C_{6}H_{5}\cdot C(C_{2}H_{5})(OH)\cdot C_{6}H_{5}$ (Bd. VI, S. 687).

Äthyl-phenyl-[2-amino-phenyl]-carbinol $C_{15}H_{17}ON = C_6H_5 \cdot C(C_2H_5)(OH) \cdot C_5H_4 \cdot NH_2$. B. Aus 2-Amino-benzophenon (Syst. No. 1873) und Äthylmagnesiumjodid in Äther (STORRMER, FINOKE, B. 42, 3123). — Blättchen (aus Alkohol). F: 101—102°. Leicht löslich in Äther, Benzol, Schwefelkohlenstoff, heißem Alkohol, sehr wenig in Ligroin. — Gibt beim Kochen mit 30% iger Schwefelsäure a-Phenyl-a-[2-amino-phenyl]-a-propylen (Bd. XII, S. 1334).

3. Aminoderivat des a-Oxy-a-phenyl-a-p-tolyl-āthans (Methyl-phenyl-p-tolyl-carbinols) $C_{15}H_{16}O=CH_5\cdot C_5H_4\cdot C(CH_3)(OH)\cdot C_6H_5$ (Bd. VI, S. 688).

Methyl-[2-amino-phenyl]-p-tolyl-carbinol $C_{18}H_{17}ON=CH_3\cdot C_6H_4\cdot C(CH_3)(OH)\cdot C_6H_4\cdot NH_3$. B. Aus [2-Amino-phenyl]-p-tolyl-keton (Syst. No. 1873) und Methylmagnesium-jodid in Ather (Stoermer, Fincke, B. 42, 3122). — Krystalle (aus Alkohol). F: 92—93°. Ziemlich leicht löslich in Alkohol, Äther, Benzol, schwerer in Ligroin. — Liefert beim Kochen mit 35% iger Schwefelsäure a-[2-Amino-phenyl]-a-p-tolyl-äthylen (Bd. XII, S. 1334).

- 4. Aminoderivate des a-Oxy-2.4-dimethyl-diphenylmethans (2.4-Dimethyl-diphenylcarbinols) $C_{15}H_{16}O = (CH_3)_2C_6H_3 \cdot CH(OH) \cdot C_6H_6$ (Bd. VI, S. 688).
- 2'-Amino-2.4-dimethyl-diphenylcarbinol, 2'-Amino-2.4-dimethyl-benzhydrol C₁₂H₁₇ON = (CH₂)₂C₂H₂·CH(OH)·C₂H₄·NH₂. B. Durch Reduktion von 2'-Amino-2.4-dimethyl-benzophenon (Syst. No. 1873) mit Natriumamalgam und verdünntem Alkohol (Drawert, B. 32, 1262). Prismen (aus 70% igem Alkohol). F: 103%. Leicht löslich in Alkohol, Ather und Benzol. Schwer löslich in starker Salzsaure.

¹⁾ Bezifferung der vom Namen "Diphenylin" abgeleiteten Namen in diesem Handbuch s. S. 211.

- säureanhydrid (D., B. 32, 1263). Nadeln (aus Alkohol). F: 165°.

 5. Aminoderivate des 4-Oxy-2.5-dimethyl-diphenylmethans C₁₈H₁₆O =
- $\begin{array}{c} C_{c}H_{5}\cdot CH_{3}\cdot C_{c}H_{2}(CH_{3})_{3}\cdot OH. \\ \textbf{4'-Dimethylamino-4-oxy-2.5-dimethyl-di-phenylmethan } C_{17}H_{21}ON, \text{ s. nebenstehende Formel.} \\ B. \text{ Aus } 3.6\text{-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan (s. u.) durch Natrium und siedenden Alkohol (Auwers, Strecker, A. 884, 337).} \\ & CH_{3} \\ \end{array}$

Krystalle (aus heißem Alkohol). Schmilzt bei 153—155° nach vorangehendem Erweichen. Leicht löslich in heißem Alkohol und Benzol, kaltem Äther und Eisessig, fast unlöslich in Ligroin und Wasser.

- 6-Brom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan $C_{17}H_{20}ONBr=(CH_3)_2N\cdot C_6H_4\cdot CH_3\cdot C_6HBr(CH_3)_2\cdot OH$. B. Aus 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan durch 10-stdg. Kochen mit Zinkstaub und Eisessig am Rückflußkühler oder durch 2 Monate langes Behandeln mit $2^1/_2^0/_0$ igem Natriumamalgam in Gegenwart von stark verdünnter Natronlauge bei Zimmertemperatur (Au., St., A. 334, 335, 336). Nadeln (aus Alkohol). F: 155—157°. Leicht löslich in den üblichen organischen Lösungsmitteln außer Ligroin und Petroläther.
- 3.6 Dibrom 4' dimethylamino 4 oxy 2.5 dimethyl diphenylmethan C₁,H₁₉ONBr₂ = (CH₂)₂N·C₆H₄·CH₂·C₆Br₂(CH₃)₂·OH. Zur Konstitution vgl. Auwers, A. 334, 273, 281. B. Beim Vermischen der Lösungen von 1 Mol.-Gew. 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) und 1 Mol.-Gew. Dimethylanilin in Benzol (Au., Avery, B. 28, 2910; Au., JAcob, A. 334, 287). Aus 3.6-Dibrom-2¹-jod-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 516) und Dimethylanilin (Au., Reichel, A. 334, 307). Beim Kochen des 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-jodmethylats (S. 717) mit Xylol (Au., J., A. 334, 293). Nadeln (aus Alkohol). F: 124°; sehr leicht löslich in Benzol, leicht in heißem Alkohol, Eisessig, Ligroin und Essigester; leicht löslich in Alkalien (Au., Av.). Gibt bei der Reduktion mit Zinkstaub und siedendem Eisessig sowie mit Natriumamalgam in schwach alkalischer Lösung 6-Brom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan (s. o.) (Au., Strecker, A. 334, 335). Hydro-chlorid. F: 216—220° (Au., Av.). C₁₇H₁₉ONBr₂ + HBr. Blätter aus Eisessig. Schmilzt, langsam erhitzt, bei 226—230°, rasch erhitzt, bei 234—236°; unlöslich in Chloroform und Essigester, sehr wenig löslich in Ahrer und Benzol, leicht in heißem Eisessig; zersetzt sich beim Kochen mit Wasser (Au., Av.). C₁₇H₁₉ONBr₂ + HI. Blättohen (aus Eisessig). F: 220°; leicht löslich in heißem Eisessig, Äthylalkohol und Methylalkohol, unlöslich in Benzol und Ligroin (Au., R.). Nitrat. F: 200° (Au., Av.).
- 3.6 Dibrom 4' dimethylamino 4 acetoxy 2.5 dimethyl diphenylmethan C₁₈H₂₁O₂NBr₂ = (CH₃)₂N·C₆H₄·CH₂·C₆Br₂(CH₃)₃·O·CO·CH₃. B. Beim Erhitzen des 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethans mit Acetylchlorid im geschlossenen Rohr auf 150° oder bei ¹/₈·stdg. Kochen der Base mit Essigsäureanhydrid (AUWERS, JACOB, A. 334, 287, 288). Bei 1-stdg. Kochen des 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-jodmethylats (S. 717) oder bei 15 Minuten langem Kochen des 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-hydroxymethylats (S. 717) mit Essigsäureanhydrid (AU., J., A. 334, 289, 294). Beim Kochen des 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan-hydroxymethylats (S. 717) mit Essigester oder Xylol, sowie beim Erhitzen des essigsauren Salzes des 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan-hydroxymethylats (S. 717) auf 150—165° (AU., J., A. 334, 294, 297). Nadelbüschel (aus siedendem Alkohol). F: 144—145°. Ziemlich schwer löslich in Äther, leicht in Benzol und Eisessig, schwer in heißem Alkohol und Ligroin. Wird durch mehrstündiges Erhitzen mit wäßr. Alkalien nicht verändert, dagegen von alkoh. Kalilauge leicht verseift. Hydrochlorid. Nadeln. F: 270—273°.
- 3.6 Dibrom 4'- dimethylamino 4 bensoyloxy 2.5 dimethyl diphenylmethan $C_{24}H_{22}O_{2}NBr_{2}=(CH_{3})_{2}N\cdot C_{6}H_{4}\cdot CH_{2}\cdot C_{6}Br_{3}(CH_{3})_{2}\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Aus 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan mit Benzoylchlorid und Natronlauge (Au., Avery, B. 28, 2911). Krystalle (aus Aceton). F: 156—158°. Fast unlöslich in Ligroin und Essigester, leicht löslich in heißem Benzol, Eisessig, Alkohol und Aceton.
- 3.6-Dibrom-4'-dimethylamino-4-anilinoformyloxy-2.5-dimethyl-diphenylmethan $C_{24}H_{24}O_2N_2Br_2=(CH_3)_2N\cdot C_4H_4\cdot CH_2\cdot C_4Br_3(CH_3)_2\cdot O\cdot CO\cdot NH\cdot C_4H_5$. B. Bei mehrstündigem Erhitzen von 1 Mol.-Gew. 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan mit 1 Mol.-Gew. Phenylisocyanat in Benzol im geschlossenen Rohr auf 100° (Au.,

Av., B. 28, 2912). — Krystallinisch. F: 186—189°. Sehr leicht löslich in Eisessig, mäßig in heißem Alkohol, Benzol und Aceton, fast unlöslich in Ligroin und Essigester.

3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-hydroxy-methylat $C_{18}H_{23}O_3NBr_2=(CH_2)_3N(OH)\cdot C_6H_4\cdot CH_2\cdot C_6Br_2(CH_3)_2\cdot OH$. B. Das Jodid entsteht bei mehrstündigem Kochen des 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyldiphenylmethans mit überschüssigem Methyljodid und Benzol (Auwers, Senter, B. 29, 1124). Man erhält das freie 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenyl methan-hydroxymethylat beim Kochen des Jodids mit Natronlauge oder beim mehrtägigen Stehen mit feuchtem Silberoxyd (Au., S.). — Prismatische Säulen (aus stark verdünntem Alkohol) (Auwers, Jacob, A. 334, 291); Krystalle (aus Wasser) mit 3 H₂O (Au., S.). F: 208° (Au., J.). Unlöslich in Benzol, Aceton, Chloroform, Essigester und Äther, schwer löslich in kaltem Wasser, leicht löslich in Eisessig und Alkohol (Au., S.). Unlöslich in verd. Salzbei kurzem Aufkochen mit Essigsäureanhydrid nicht verändert; bei 15 Minuten langem Kochen mit Essigsäureanhydrid nicht verändert; bei 15 Minuten langem Kochen mit Essigsäureanhydrid entsteht 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan (S. 716); läßt man eine Lösung der Ammoniumbase in Essigsäureanhydrid bei gewöhnlicher Temperatur verdunsten, so resultiert das essigsaure Salz des 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan-hydroxymethylats (s. u.) (Av., J.). Das Jodid liefert beim Kochen mit Xylol 3.6-Dibrom-4'-[dimethylamino] - 4-oxy - 2.5 - dimethyl - diphenylmethan (S. 716), mit Essigsäureanhydrid entsteht bei kurzem Aufkochen 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethanjodmethylat (s. u.), bei 1-stdg. Kochen 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan (S. 716) (Au., J.). — Chlorid. Nädelchen. F: 225—226°; leicht löslich in Eisessig, ziemlich in Alkohol, sehr wenig in Chloroform, unlöslich in Äther, Benzol, Ligroin (Au., J.). — Jodid C₁₈H₂₂OBr₂N·I. Kryställchen (aus Chloroform-Ligroin). F: 190° bis 191° (bei raschem Erhitzen) (Au., J.). Unlöslich in Benzol und Äther (Au., S.), löslich in kaltem Chloroform und heißem Wasser (Au., J.), leicht löslich in Aceton und Eisessig, sehr leicht in Alkohol (Au. S.) Wird bei M. Kochen mit Wasser micht gegent der T. leicht in Alkohol (Au., S.). Wird beim Kochen mit Wasser nicht zersetzt (Au., J.). Sulfat. Nädelchen (Au., J.). — Nitrat C₁₈H₂₂OBr₂N·NO₃. Nädelchen. F: 212—214° (Zers.) (Au., J.).

3.6 - Dibrom - 4' - dimethylamino - 4 - acetoxy - 2.5 - dimethyl - diphenylmethan hydroxymethylat $C_{20}H_{25}O_2NBr_2 = (CH_3)_2N(OH) \cdot C_6H_4 \cdot CH_3 \cdot C_6Br_3(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Das Jodid entsteht bei mehrstündigem Kochen von 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan (S. 716) mit Methyljodid in Benzol (Auwers, Jacob, A. 334, 289). Das Jodid entsteht ferner durch kurzes Aufkochen des 3.6-Dibrom-4'-[dimethylamino] - 4 - oxy - 2.5 - dimethyl - diphenylmethan-jodmethylats (s. o.) mit Essigsäureanhydrid (Au., J., A. 334, 290). Das essigsaure Salz entsteht aus 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-hydroxymethylat und Essigsäureanhydrid in der Kälte (Au., J., A. 834, 294). Das freie 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan-hydroxymethylat entsteht aus seinem Chlorid in wenig Wasser durch Silberoxyd (Au., J., A. 884, 296). — Gelbliche, krystallinisch-blättrige, sehr hygroskopische Masse. Sintert bei 95° und zersetzt sich bei 120°. Unlöslich in Ather, Ligroin, kaltem Aceton und kaltem Essigester, sehr wenig löslich in Benzol, ziemlich leicht in heißem Aceton, Xylol, Essigester, Eisessig, sehr leicht in Chloroform. Zersetzt sich beim Umkrystallisieren aus heißen Lösungsmitteln. — Wird beim Erhitzen mit Alkalien verseift. Geht beim Kochen mit Essigester oder Xylol in 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan (S. 716) über. — Chlorid C₂₀H₂₄O₂Br₂N·Cl. Krystalle. F: 205—207°. Unlöslich in Ather, Ligroin, Benzol, schwer löslich in kaltem Wasser, leicht in Alkohol und Eisessig. - Jodid C₂₀H₂₄O₂Br₂N·I. Kryställchen (aus Chloroform + Ligroin). F: 169—171°. Leicht löalich in Eisessig, schwer in Alkohol, heißem Wasser und Chloroform, unlöslich in Benzol, Ather und Ligroin. — Essigsaures Salz. Blättchen (aus Benzol), die Essigsaure oder Essigsaureanhydrid enthalten. F: 65—66°. Leicht löslich in Wasser. Gibt beim Erhitzen bei 90—100° Essigsaure ab und geht bei 150—165° in 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan über.

8.6 - Dibrom - 4' - methyläthylamino - 4 - oxy - 2.5 - dimethyl - diphenylmethan hydroxymethylat, 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan-hydroxyäthylat $C_{10}H_{45}O_{2}NBr_{2}=(C_{2}H_{5})(CH_{3})_{2}N(OH)\cdot C_{6}H_{4}\cdot CH_{2}\cdot C_{6}Br_{8}(CH_{3})_{2}\cdot OH$. B. Das Bromid entsteht, wenn man 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyldiphenylmethan mit einem großen Überschuß von Äthylbromid 5 Stdn. im geschlossenen Rohr auf 100° erhitzt (Auwers, Senter, B. 29, 1125). Das Jodid entsteht beim Kochen von 3.6-Dibrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan mit Åthyljodid in Benzol (Auwers, Wehr, A. 884, 316). Aus den Salzen läßt sich durch Atzalkalien die freie Base erhalten (AU., W.). — Blättchen mit Krystallwasser. F: 189—190°; unlöslich in Äther, Benzol, Ligroin, Chloroform, Aceton und Xylol, schwer in heißem Wasser, leicht in Alkohol,

Eisessig und Essigester (Au., W.). — Bromid C₁₉H₂₄OBr₂N·Br. Hellbräunliche Nädelchen; schmilzt bei 189—192° unter Gasentwicklung; unlöslich in Benzol und Ligroin, schwer löslich in heißem Alkohol, leicht in heißem Eisessig, Chloroform und heißem Wasser (Au., S.). — Jodid C₁₉H₂₄OBr₂N·I. Gelblich weißes Krystallpulver. Schmilzt bei raschem Erhitzen bei 175—176°, bei langsamem Erhitzen bei 172—173°; unlöslich in Äther, Benzol, Ligroin; leicht löslich in Alkohol und Chloroform (Au., W.).

- 3.6-Dibrom-4'-diäthylamino-4-oxy-2.5-dimethyl-diphenylmethan C₁₈H₂₃ONBr₂=(C₂H₃)₂N·C₆H₄·CH₅·C₆Br₃(CH₅)₂·OH. Zur Konstitution vgl. Auwers, A. 334, 281. B. Beim Schütteln von 3.6.2\ddot-Tribrom-5-oxy-1.2.4-trimethyl-benzol (Bd. VI, S. 513) mit Diäthylanilin in Benzollösung (Auwers, Senter, B. 29, 1123). Nadeln (aus Alkohol). F: 89—90°; leicht löslich in Eisessig und heißem Alkohol, sehr leicht in Ligroin, Essigester und Chloroform (Au., S.). C₁₈H₂₃ONBr₂ + HBr. Nadeln (aus Eisessig). Schmilzt, langsam erhitzt, bei 245-246°, rasch erhitzt, bei 256—257°; unlöslich in Wasser, Benzol und Chloroform, leicht löslich in heißem Alkohol und Eisessig (Au., S.).
- 3.6 Dibrom 4' diäthylamino 4 acetoxy 2.5 dimethyl diphenylmethan $C_{21}H_{25}O_2NBr_2 = (C_2H_5)_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6Br_3(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Beim Kochen von 3.6-Dibrom-4'-diäthylamino-4-oxy-2.5-dimethyl-diphenylmethan mit Essigsäureanhydrid (Auwers, Wehr, A. 334, 317). Schüppchen (aus siedendem Alkohol). F: 139—140°. Leicht löslich in Äther, Eisessig, heißem Alkohol und heißem Ligroin, sehr leicht in Benzol und Chloroform.
- 3.6-Dibrom-4'-diäthylamino-4-oxy-2.5-dimethyl-diphenylmethan-jo dmethylat $C_{20}H_{26}ONBr_2I=(C_2H_5)_2(CH_3)NI\cdot C_6H_4\cdot CH_2\cdot C_6Br_2(CH_3)_2\cdot OH$. B. Durch vielstündiges Erhitzen von 3.6-Dibrom-4'-diäthylamino-4-oxy-2.5-dimethyl-diphenylmethan mit Methyljodid in Benzol auf dem Wasserbad (Auwers, Senter, B. 29, 1127). F: 177—178°. Unlöslich in Benzol, leicht löslich in Alkohol.
- 3.6 Dibrom 4' diäthylamino 4 acetoxy 2.5 dimethyl diphenylmethan jodmethylat $C_{22}H_{23}O_2NBr_2I = (C_2H_5)_2(CH_3)NI \cdot C_6H_4 \cdot CH_2 \cdot C_6Br_2(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Bei stundenlangem Kochen von 3.6-Dibrom-4'-diäthylamino-4-acetoxy-2.5-dimethyl-diphenylmethan mit Methyljodid in Benzollösung (Auwers, Wehr, A. 334, 317). Blättchen (aus Benzol). F: 191—192°. Unlöslich in Äther, Benzol und Ligroin, leicht löslich in Alkohol, Chloroform, Eisessig.
- 3.6.3' Tribrom 4' dimethylamino 4 oxy 2.5 dimethyl diphenylmethan $C_{17}H_{18}ONBr_3 = (CH_3)_2N \cdot C_6H_3Br \cdot CH_3 \cdot C_6Br_8(CH_3)_3 \cdot OH$. B. Aus 3.6-Dibrom-4'-[dimethylamino]-4-oxy-2.5-dimethyl-diphenylmethan und Brom in Eisessig (Auwers, Jacob, A. 334, 297). Nådelchen (aus wenig Alkohol). F: 99—100°. Sehr leicht löslich in Äther und Chloroform, leicht in heißem Alkohol, Benzol, Eisessig, Essigester und Aceton, schwer in Ligroin. $C_{17}H_{18}ONBr_3 + HBr$. Nådelchen und Blättchen (aus Eisessig). F: 204°. Unlöslich in Äther, Benzol, Ligroin und kaltem Essigester, sehr wenig löslich in kaltem Eisessig und heißem Chloroform, ziemlich leicht in Alkohol, leicht in heißem Essigester und heißem Eisessig.
- 3.6.3'-Tribrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan $C_{19}H_{29}O_2NBr_2 = (CH_3)_2N\cdot C_6H_3Br\cdot CH_2\cdot C_6Br_2(CH_3)_2\cdot O\cdot CO\cdot CH_3$. B. Aus 3.6-Dibrom-4'-dimethylamino-4-acetoxy-2.5-dimethyl-diphenylmethan und Brom in Eisessig (Au., J., A. 334, 300). Durch Kochen des 3.6.3'-Tribrom-4'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethans mit Essigsäureanhydrid (Au., J., A. 334, 300). Blättchen (aus Alkohol). F: 156—157°. Leicht löslich in Benzol, Eisessig, Chloroform und heißem Alkohol, mäßig in Ather, schwer in kaltem Alkohol. Hydrobromid. Nädelchen (aus heißem Benzol). F: 176°.
- 3.6.3' Tribrom 4' diäthylamino 4 oxy 2.5 dimethyl diphenylmethan $C_{19}H_{29}ONBr_3 = (C_2H_5)_2N\cdot C_4H_3Br\cdot CH_2\cdot C_6Br_3(CH_3)_2\cdot OH$. B. Aus 3.6-Dibrom-4'-[diāthylamino]-4-oxy-2.5-dimethyl-diphenylmethan und Brom in Eisessig (Auwers, Wehr, A. 334, 318). Krümelige, beim Aufbewahren verharzende Masse. Hydrobromid. Wird durch Wasser hydrolytisch gespalten.
- 3.6 Dibrom 5' amino 2' dimethylamino 4 oxy N(CH₃)₂ CH₃ Br

 2.5 dimethyl diphenylmethan C₁₇H₂₀ON₂Br₂, s. nebenstehende Formel. B. Aus 3.6.2'-Tribrom-5-oxy-1.2.4-trimethylbenzol (Bd. VI, S. 513) und N.N-Dimethyl-p-phenylendiamin in Benzol (Au., W., A. 334, 313). Schmutziggelbes Pulver. F: 141—142°. Unlöslich in Wasser, schwer löslich in Äther und heißem Ligroin, leicht in heißem Alkohol, Benzol, Chloroform und Eisessig. C₁₇H₂₀ON₂Br₂ + HBr. Krystallmasse. F: 189—190°. Unlöslich in Wasser, Äther, Benzol und Ligroin, schwer löslich in heißem Chloroform, leicht in Alkohol und heißem Eisessig.
- $\begin{array}{lll} \textbf{3.6-Dibrom-2'-dimethylamino-5'-acetamino-4-oxy-2.5-dimethyl-diphenyl-methan} & C_{10}H_{32}O_{2}N_{2}Br_{2} & CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{3}[N(CH_{3})_{2}]\cdot CH_{2}\cdot C_{6}Br_{2}(CH_{3})_{2}\cdot OH. & B. & Aus \end{array}$

- 3.6-Dibrom-5'-amino-2'-dimethylamino-4-oxy-2.5-dimethyl-diphenylmethan und Essigsäure-anhydrid (Au., W., A. 334, 314). Aus 3.6.2¹-Tribrom-5-oxy-1.2.4-trimethyl-benzol und N.N-Dimethyl-N'-acetyl-p-phenylendiamin (S. 95) in Benzol (Au., W., A. 334, 314). Gelbe Schüppchen oder Blättchen (aus heißem Eisessig). F: 223—224°. Unlöslich in Wasser und Äther, schwer löslich in heißem Benzol, leicht in Chloroform, heißem Alkohol, Ligroin und Eisessig.
- 3.6-Dibrom-2'-dimethylamino-5'-acetamino-4-acetoxy-2.5-dimethyl-diphenylmethan $C_{11}H_{24}O_3N_1Br_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3[N(CH_3)_2] \cdot CH_2 \cdot C_6Br_2(CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Bei längerem Kochen des 3.6-Dibrom-2'-dimethylamino-5'-acetamino-4-oxy-2.5-dimethyldiphenylmethans mit Essigsäureanhydrid (Au., W., A. 334, 315). Gelbliche Blättchen (aus heißem Alkohol). F: 138—139°. Leicht löslich in Eisessig, heißem Alkohol, Äther und Ligroin, sehr leicht in Benzol und Chloroform. Unlöslich in Alkalien. Gibt mit alkoh. Kalilauge wieder 3.6-Dibrom-2'-dimethylamino-5'-acetamino-4-oxy-2.5-dimethyl-diphenylmethan.
- 6. Aminoderivat des a-Oxy-2.2'-dimethyl-diphenylmethans (2.2'-Dimethyl-diphenylcarbinols, Di-o-tolyl-carbinols) $\hat{C}_{18}H_{16}O=(CH_3\cdot C_6H_4)_2CH\cdot OH$.
- 7. Aminoderivate des 4-Oxy-3.5-dimethyl-diphenylmethans $C_{15}H_{16}O=C_6H_5\cdot CH_2\cdot C_6H_2(CH_3)_2\cdot OH$.
- 2.6 Dibrom 4' dimethylamino 4 acetoxy 3.5 dimethyl diphenylmethan $C_{19}H_{31}O_2NBr_2=(CH_3)_2N\cdot C_6H_4\cdot CH_2\cdot C_6Br_3(CH_3)_2\cdot O\cdot CO\cdot CH_3$. B. Beim Kochen des 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethans mit Essigsäureanhydrid (Au., H., A. 334, 320). Nadeln (aus Alkohol). F: 145—146,5°. Unlöslich in Wasser, schwer löslich in Ligroin und kaltem Alkohol, löslich in Äther, leicht löslich in Benzol, sehr leicht in Eisessig.
- 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethan-hydroxymethylat $C_{18}H_{38}O_2NBr_3=(CH_3)_2N(OH)\cdot C_6H_4\cdot CH_2\cdot C_6Br_3(CH_3)_2\cdot OH$. B. Das Jodid entsteht aus 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethan und Methyljodid in siedendem Benzol; die freie Base erhält man aus dem Jodid durch Kochen mit verd. Natronlauge (Au., H., A. 334, 321). Blättchen oder Nadeln (aus verd. Alkohol). Erweicht bei 160°, sintert allmählich zusammen und schmilzt bei 188—191°. Unlöslich in Äther, Benzol, Ligroin und Chloroform, schwer löslich in Wasser, leicht in Alkohol und Eisessig. Jodid $C_{18}H_{29}OBr_3N\cdot I$. Gelbe Krystalle (aus Eisessig). F: 193—196°. Leicht löslich in heißem Eisessig und Alkohol, fast unlöslich in Wasser, Benzol, Äther, Ligroin und Chloroform. Gibt beim Kochen mit Xylol 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenyl-methan.
- 2.6 Dibrom 4' dimethylamino 4 acetoxy 3.5 dimethyl diphenylmethan-jodmethylat $C_{90}H_{4}O_{2}NBr_{2}I = (CH_{3})_{3}NI \cdot C_{6}H_{4} \cdot CH_{2} \cdot C_{6}Br_{2}(CH_{3})_{2} \cdot O \cdot CO \cdot CH_{3}$. B. Beim Erhitzen von 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethan-jodmethylat mit Essigsäureanhydrid (Au., H., A. 334, 321). Weißes Pulver. F: 184—185° (Zers.).
- **2.6-Dibrom-4'-diäthylamino-4-oxy-3.5-dimethyl-diphenylmethan** $C_{19}H_{29}ONBr_2 = (C_2H_5)_2N\cdot C_6H_4\cdot CH_2\cdot C_6Br_2(CH_3)_2\cdot OH$. B. Aus 4.6.5¹-Tribrom-2-oxy-1.3.5-trimethyl-benzol (Bd. VI, S. 520) und Diäthylanilin in Benzol (Au., H., A. 334, 325). Tafeln (aus verd. Alkohol). Schmilzt bei 132—133° nach vorangehendem Erweichen. Unlöslich in Wasser,

sehr wenig löslich in Ligroin, leicht in Alkohol, Äther, Benzol; sehr leicht löslich in Eisessig und Chloroform. — C₁₉H₂₃ONBr₂ + HBr. Nadeln (aus bromwasserstoffhaltigem Eisessig). F: 278—279° (Zers.). Unlöslich in Wasser, Äther, Ligroin und Benzol, sehr schwer löslich in Chloroform und kaltem Eisessig, schwer in heißem Eisessig, löslich in Alkohol.

- 2.6.3' Tribrom 4' dimethylamino 4 oxy 3.5 dimethyl diphenylmethan $(^{\circ}_{17}H_{18}\mathrm{ONBr_3} = (\mathrm{CH_3})_2\mathrm{N}\cdot\mathrm{C_6}H_3\mathrm{Br}\cdot\mathrm{CH_3}\cdot\mathrm{C_6}\mathrm{Br_2}(\mathrm{CH_3})_2\cdot\mathrm{OH}$. B. Aus 2.6-Dibrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethan und Brom in Eisessig (Au., H., A. 334, 323). Krystallwarzen (aus Ligroin), Nadeln (aus verdünntem Alkohol). F: 135°. Unlöslich in Wasser, schwer löslich in kaltem, mäßig in heißem Ligroin, leicht in Alkohol, Eisessig und Benzol, sehr leicht in Äther und Chloroform. $\mathrm{C_{17}}H_{18}\mathrm{ONBr_3} + \mathrm{HBr}$. Blättchen (aus Eisessig). Schmilzt bei sehr langsamem Erhitzen bei 224—224,5°.
- 2.6.3'-Tribrom-4'-dimethylamino-4-acetoxy-3.5-dimethyl-diphenylmethan $C_{19}H_{20}O_2NBr_3=(CH_3)_2N\cdot C_6H_3Br\cdot CH_3\cdot C_6Br_3(CH_3)_2\cdot O\cdot CO\cdot CH_2$. B. Durch 1-stdg. Kochen von 2.6.3'-Tribrom-4'-dimethylamino-4-oxy-3.5-dimethyl-diphenylmethan mit Essigsäureanhydrid (Au., H., A. 334, 324). Nadeln (aus Alkohol). F: 150—151,5°. Unlöslich in Wasser, schwer löslich in kaltem, mäßig in heißem Alkohol, leicht in Äther, Ligroin, Eisessig, sehr leicht in Benzol und Chloroform.
- 2.6.3' Tribrom 4' dimethylamino 4 oxy 3.5 dimethyl diphenylmethan-jodmethylat $C_{18}H_{21}ONBr_3I = (CH_3)_3NI \cdot C_6H_3Br \cdot CH_2 \cdot C_6Br_2(CH_3)_2 \cdot OH$. B. Bei 2-tägigem Erhitzen von 2.6.3' Tribrom -4' dimethylamino -4 oxy 3.5 dimethyl diphenylmethan mit Methyljodid in Benzol (Au., H., A. 334, 324). Gelbe Nadeln. Schmilzt bei 172—173° unter Zersetzung. Spaltet bei anhaltendem Kochen mit Xylol Methyljodid ab.
- 8. Aminoderivate des a-Oxy-3.3'-dimethyl-diphenylmethans (3.3'-Dimethyl-diphenylcarbinols, Di-m-tolyl-carbinols) $C_{18}H_{16}O = (CH_3 \cdot C_6H_4)_2CH \cdot OH$.
- 4.4'-Diamino-3.3'-dimethyl-diphenylcarbinol,
 4.4'-Diamino-3.3'-dimethyl-benzhydrol C₁₅H₁₈ON₂,
 s. nebenstehende Formel. B. Durch Reduktion von
 4.4'-Diamino-3.3'-dimethyl-benzophenon (Syst. No.
 1873) mit Natriumamalgam (Vongerichten, Bock, Ztechr. f. Farben- u. Textilchemie 2, 250;
 C. 1903 II, 441). F: 135°. Leicht löslich in Äthylalkohol und Methylalkohol. Liefert mit salzsaurem o-Toluidin in wäßr. Lösung 4.4'.4'/-Triamino-3.3'.3''-trimethyl-triphenylmethan (S. 331). Die Acetylverbindung schmilzt bei 153°.
- 4.4′ Bis methylamino 3.3′ dimethyl benzhydrol $C_{17}H_{23}ON_2=[CH_3\cdot NH\cdot C_6H_3(CH_3)]_2CH\cdot OH$. B. Aus 4.4′-Bis-methylamino-3.3′-dimethyl-benzophenon (Syst. No. 1873) durch Natriumamalgam in alkoh. Lösung (Gnehm, Wright, B. 35, 913; C. 1903 I, 399). Farblose Nadeln (aus Aceton). F: 160—161°; löslich in Eisessig mit tiefblauer Farbe (Gn., Wr., B. 35, 913). Liefert bei der Einw. von Schwefelwasserstoff in alkoholischessigsaurer Lösung Bis-[4.4′-bis-methylamino-3.3′-dimethyl-benzhydryl]-sulfid (s. u.) (Gn., Wr., C. 1903 I, 399). Bei der Einw. von 4-Nitro-benzoldiazoniumchlorid (Syst. No. 2193) entstehen 4.4′-Bis-[4-nitro-benzoldiazomethylamino]-3.3′-dimethyl-benzhydrol [O₂N·C₆H₄·N·N·N(CH₃)·C₆H₅(CH₃)]₂CH·OH (Syst. No. 2234) und in geringerer Menge 4′-Nitro-4-methylamino-3-methyl-azobenzol O₂N·C₆H₄·N·N·C₆H₃(CH₃)·NH·CH₃ (Syst. No. 2173) (Gn., Wr., C. 1903 I, 399). Mit 4-Amino-azobenzol (Syst. No. 2172) entsteht 4.4′-Bis-methyl-amino-a-[4-benzolazo-anilino]-3.3′-dimethyl-diphenylmethan (N-[4-Benzolazo-phenyl]-leukauramin, Syst. No. 2172), mit Benzolazo-a-naphthylamin analog N-[4-Benzolazo-naphthyl-(1)]-leukauramin (Syst. No. 2180) (Gn., Wr., B. 35, 914).

Bis-[4.4'-bis-methylamino-3.3'-dimethyl-benzhydryl]-sulfid $C_{34}H_{43}N_4S = \{[CH_3 \cdot NH \cdot C_8H_3(CH_3)]_2CH\}_2S$. B. Man leitet Schwefelwasserstoff unter Erwärmen in eine Lösung von 12 g 4.4'-Bis-methylamino-3.3'-dimethyl-benzhydrol in 60 g Alkohol, welche mit 10—12 Tropfen Eisessig versetzt ist (GN., WB., C. 1903 I, 399). — Nadeln (aus Essigester). F: 214° bis 215°. Leicht löslich in Chloroform, sonst schwer löslich. Löst sich in Eisessig mit violetter Farbe. Beim Kochen wird 4.4'-Bis-methylamino-3.3'-dimethyl-benzhydrol zurückgebildet. Beim Zusatz von alkoh. Salzsäure zur Eisessiglösung tritt Entfärbung ein, beim Erhitzen erscheint die violette Farbe wieder.

9. Aminoderivate des 3-Oxy-2.6.3'-trimethyl-diphenyls $C_{15}H_{16}O = CH_3 \cdot C_5H_4 \cdot C_8H_3(CH_3)_2 \cdot OH$. 4.6' - Diamino - 3 - äthoxy - 2.6.3' - trimethyl - diphenyl, 3'-Äthoxy-5.2'.6'-trimethyl-diphenylin'l) $C_{17}H_{32}ON_2$, s. nebenstehende Formel. B. Bei der Reduktion von 2-Åthoxy-3.5.4'-tri-

¹⁾ Bezifferung der vom Namen "Diphenylin" abgeleiteten Namen in diesem Handbuch s. S. 211.

methyl-azobenzol (Syst. No. 2114) in Alkohol mit Zinnchlorür und Salzsäure, neben anderen Produkten (Jacobson, Fulda, A. 369, 29). — Krystalle (aus Alkohol). F: 117—118°. Sehr leicht löslich in Ligroin, Äther, schwerer in Benzol, leicht in Alkohol. — Gibt beim Kochen mit wasserfreier Ameisensäure 4.6′-Bis-formamino-3-äthoxy-2.6.3′-trimethyl-diphenyl (s. u.).

- 4.6'-Bis-salicylalamino-3-äthoxy-2.6.3'-trimethyl-diphenyl $C_{31}H_{30}O_3N_3=HO\cdot C_6H_4\cdot CH:N\cdot C_6H_3(CH_3)\cdot C_6H(CH_3)_2(O\cdot C_2H_3)\cdot N:CH\cdot C_6H_4\cdot OH.$ B. Durch 2-stdg. Kochen von 1 g 4.6'-Diamino-3-äthoxy-2.6.3'-trimethyl-diphenyl mit 2 g Salicylaldehyd in 10 g Alkohol im Kohlensäurestrom auf dem Wasserbade (J., F., A. 369, 30). Gelbe, schiefwinklig-tafelförmige Krystalle (aus Alkohol). F: 201—202°. Schwer löslich in Alkohol.
- 4.6'-Bis-formamino-3-äthoxy-2.6.3'-trimethyl-diphenyl $C_{19}H_{12}O_3N_3 = OHC \cdot NH \cdot C_0H_3(CH_3) \cdot C_0H(CH_3)_2(O \cdot C_2H_3) \cdot NH \cdot CHO$. B. Aus 4.6'-Diamino-3-äthoxy-2.6.3'-trimethyl-diphenyl und 10 Tln. wasserfreier Ameisensäure (J., F., A. 369, 31). Prismen (aus Alkohol). F: 189°.
- 10. Aminoderivate des 5 Oxy 2.3'.5' trimethyl diphenyls $C_{16}H_{16}O = (CH_3)_2C_4H_3 \cdot C_6H_3(CH_3) \cdot OH$.
- 4.2' Diamino 5 äthoxy 2.3'.5' trimethyl diphenyl, CH₃ NH₂ CH₃
 5'-Äthoxy-3.5.2'-trimethyl-diphenylin¹) C₁₇H₂₇ON₂, s. nebenstehende Formel. B. Bei der Reduktion von 6'-Äthoxy-2.4.3'-trimethyl-azobenzol (Syst. No. 2113) in Alkohol mit Zinnchlorür in Salzsäure, neben anderen Produkten (JACOBSON, FABIAN, A. 369, 39). Ist in Form seines Salicylaldehydderivates (s. den folgenden Artikel) isoliert.
- 4.2'-Bis-salicylalamino-5-äthoxy-2.3'.5'-trimethyl-diphenyl $C_{31}H_{30}O_3N_3=HO\cdot C_8H_4\cdot CH:N\cdot C_8H_3(CH_3)_2\cdot C_8H_3(CH_5)\cdot N:CH\cdot C_6H_4\cdot OH.$ B. Aus 4.2'-Diamino-5-äthoxy-2.3'.5'-trimethyl-diphenyl mit $2^{1}/_{4}$ Mol.-Gew. Salicylaldehyd in Methylalkohol beim Erhitzen am Rückflußkühler (J., F., A. 369, 39). Krystalle (aus Ligroin). F: 161—162°. Leicht löslich in Benzol, ziemlich leicht in heißem Ligroin, kaum löslich in heißem Alkohol und Äther. Wird durch Säuren in seine Komponenten zerlegt.

h) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-16}O$.

1. Aminoderivate des 9-0 xy-fluorens $C_{18}H_{10}O=C_{18}H_{9}\cdot OH$ (Bd. VI, S. 691).

1-Amino-9-oxy-fluoren C₁₃H₁₁ON, s. nebenstehende Formel. B. Aus 20 g 1.8-Dinitro-fluorenon (Bd. VII, S. 470) in 600 ccm siedendem Eisessig mit 100 g Zinnchlorür in 200 ccm rauchender Salzsäure (Schmidt, Stützel, A. 370, 30). — Bordeauxrote Nadeln (aus viel Wasser). F: 142°. Leicht löslich in Alkohol, Äther, Eisessig, schwer in Benzol. Löst sich in konz. Schwefelsäure mit dunkelroter Farbe. — Liefert durch Diazotieren und Verkochen 1.9-Dioxy-fluoren (Bd. VI, S. 1021). — C₁₃H₁₁ON + HCl. Braungelbe Kryställchen. Schmilzt bei 290° unter Zersetzung. — C₁₃H₁₁ON + HNO₃. Braune Nädelchen (aus Alkohol). Schmilzt oberhalb 300°.

Monoacetylderivat $C_{15}H_{13}O_2N=H_2N\cdot C_{15}H_5\cdot O\cdot CO\cdot CH_3$ oder $CH_3\cdot CO\cdot NH\cdot C_{13}H_5\cdot OH$. B. Durch Kochen von 0,8 g 1-Amino-9-oxy-fluoren mit 40 cem Essigsäureanhydrid (Sch., St., A. 370, 33). — Braungelbe Kryställchen (aus Benzol). F: 200°.

Monobenzoylderivat $C_{20}H_{18}O_{2}N = H_{2}N \cdot C_{13}H_{8} \cdot O \cdot CO \cdot C_{6}H_{5}$ oder $C_{6}H_{5} \cdot CO \cdot NH \cdot C_{13}H_{8} \cdot OH$. B. Man schüttelt 0,8 g 1-Amino-9-oxy-fluoren in 200 ccm Ather unter allmählichem Zusatz von 2 g Benzoylchlorid und 100 ccm starker Natronlauge (Sch., St., A. 370, 33). — Nadeln (aus Alkohol). F: 260°.

[9-Oxy-fluorenyl-(1)]-harnstoff $C_{14}H_{12}O_2N_2 = H_2N\cdot CO\cdot NH\cdot C_{13}H_3\cdot OH$. B. Aus dem Hydrochlorid des 1-Amino-9-oxy-fluorens und Kaliumcyanat in wäßr. Lösung beim Erhitzen (Sch., St., A. 370, 35). — Dunkelbraune Krystalle (aus Alkohol). Schmilzt oberhalb 300°.

N-Phenyl-N'-[9-anilinoformyloxy-fluorenyl-(1)]-harnstoff $C_{27}H_{21}O_3N_3=C_6H_5$ ·NH·CO·NH· $C_{18}H_8$ ·O·CO·NH· C_6H_5 . B. Aus 0,6 g 1-Amino-9-oxy-fluoren (s. o.) in 100 com absol. Ather und 0,5 g Phenylisocyanat (Bd. XII, S. 437) (Sch., St., A. 370, 32). — Rote Krystalle. F: 262°.

¹⁾ Bezifferung der vom Namen "Diphenylin" abgeleiteten Namen in diesem Handbuch s. S. 211.

2-Amino-9-oxy-fluoren C₁₃H₁₁ON, s. nebenstehende Formel.

B. Man kocht 5 g 2-Nitro-fluorenon (Bd. VII, S. 469) in 250 cem
Alkohol (D: 0,87) mit 3 g Chlorcalcium, gelöst in 5 cem Wasser, und
20 g Zinkstaub, bis die Flüssigkeit farblos geworden ist (DIELS, B. 34,
1767). — Irisierende Nadeln (aus Alkohol). Sintert bei 192°, schmilzt
bei 200° (korr.). Sehr wenig löslich in Äther, ziemlich leicht in heißem Alkohol, Chloroform, Eisessig. Die tiefblaue Lösung in konz. Schwefelsäure färbt sich auf Zusatz von wenig Wasser grün. — Hydrochlorid. Prismen. Schwer löslich in Salzsäure.

2.3.7 - Triamino - 9 - oxy - fluoren $C_{13}H_{13}ON_3$, s. nebenstehende Formel. B. Durch Eintragen von 12 g Zinn in die auf dem Wasserbade erwärmte Lösung von 5 g 2.3.7-Trinitrofluorenon (Bd. VII, S. 471) in 75 ccm konz. Salzsäure, Eindampfen der Lösung auf dem Wasserbade und Zerlegung des Rückstandes in wäßr. Lösung mit Schwefelwasserstoff (Schmidt, Bauer, B. 38, 3762). — $C_{13}H_{13}ON_3 + 3$ HCl. Blättrige Masse. Schmilzt nicht unterhalb 360°. Leicht löslich in Wasser, unlöslich in Alkohol. — Pikrat $C_{13}H_{13}ON_3 + 3C_6H_3O_7N_3$. Gelb. Zersetzt sich von 175° an.

2. Aminoderivate der Monooxy-Verbindungen $C_{14}H_{12}O$.

1. Aminoderivat des a-Phenyl- β -[3-oxy-phenyl]-äthylens $C_{14}H_{12}O=C_6H_5\cdot C_6\cdot C_6H_4\cdot OH$ (Bd. VI, S. 693).

2. Aminoderivat des 1-Oxy- oder des 9-Oxy-anthracen-dihydrids-(9.10) $C_{14}H_{13}O=C_{14}H_{11}$ OH (Bd. VI, S. 696 bezw. 697).

9 oder 10 - Äthylamino - 1 - oxy - anthracen - dihydrid - (9.10) $C_{16}H_{17}ON = C_6H_4 \underbrace{CH(NH \cdot C_2H_5)}_{CH_3} \cdot C_6H_3 \cdot OH$ oder 1 oder 4 - Äthylamino - 9 - oxy - anthracen - di -

hydrid-(9.10) C₁₆H₁₇ON=C₆H₄CH(OH) C₆H₃·NH·C₂H₅. B. Beim Kochen von 1.9- oder 1.10-Dioxy-anthracen-dihydrid-(9.10) (Bd. VI, S. 1027) mit 20—30% iger wäßr. Äthylaminlösung (Liebermann, Giesel, A. 212, 18; vgl. B. 10, 610). — Citronengelbe Nadeln (aus Alkohol). F: 172%. Sublimiert unter teilweiser Zersetzung. Leicht löslich in Alkohol; die Lösung fluoresciert. Löst sich unzersetzt in kalter konzentrierter Schwefelsäure. Entwickelt beim Kochen mit Alkalien Äthylamin. — Schwache Base; die Salze werden durch viel Wasser zersetzt.

3. Aminoderivat des γ -Oxy- α - γ -diphenyl- α -propylens (Phenylstyryl-carbinols) $C_{15}H_{14}O=C_6H_5\cdot CH:CH\cdot CH(OH)\cdot C_6H_5$.

Phenyl-[4-dimethylamino-styryl]-carbinol $C_{17}H_{19}ON = (CH_3)_2N \cdot C_6H_4 \cdot CH \cdot CH \cdot CH(OH) \cdot C_6H_5$. B. Aus 2 Mol.-Gew. Phenylmagnesiumbromid und 1 Mol.-Gew. 4-Dimethylamino-zimtaldehyd (Syst. No. 1873) (Sachs, Weigert, B. 40, 4369). — Brauner Niederschlag. Färbt sich bei 130° schwarz, schmilzt bei 160°. Löslich in Äther mit gelber, in Eisessig mit roter, in Chloroform und Alkohol mit brauner Farbe. Gibt mit Platinchlorid und mit Methyljodid gefärbte Niederschläge.

i) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-18} O$.

1. Aminoderivate der Monooxy-Verbindungen $C_{14}H_{10}O$.

- 1. Aminoderivate des 1-Oxy-anthracens C₁₄H₁₀O = C₁₄H₉·OH (Bd. VI, S. 702).
- 2-Amino-1-oxy-anthracen, 2-Amino-anthrol-(1) C₁₄H₁₁ON, s. nebenstehende Formel. B. Dås salzsaure Salz entsteht durch Reduktion des 2-Nitroso-anthrols-(1) [Anthrachinon-(1.2)-oxims-(2), Bd. VII, S. 781] mit salzsaurer Zinnehlorürlösung (Diebel, B. 39, 930). C₁₄H₁₁ON + HCl. Blättchen. In feuchtem Zustande leicht oxydabel. Eisenchlorid liefert in salzsaurer Lösung Anthrachinon-(1.2) (Bd. VII, S. 780).
- **2-Diacetylamino-1-acetoxy-anthracen**, O.N.N-Triacetyl-[2-amino-anthrol-(1)] $C_{50}H_{17}O_4N=(CH_5\cdot CO)_5N\cdot C_{14}H_8\cdot O\cdot CO\cdot CH_3$. B. Durch Behandeln des salzsauren 2-Amino-anthrols-(1) mit Essigsäureanhydrid und Natriumacetat (Dienel, B. 39, 930). Blättchen oder Nädelchen (aus Essigsäure). F: 161°. Bei der Oxydation mit Eisenchlorid unter Zusatz von Salzsäure entsteht Anthrachinon-(1.2).
 - 2. Aminoderivate des 2-Oxy-anthracens $C_{14}H_{10}O = C_{14}H_{9} \cdot OH$ (Bd. VI, S. 702).
- 1-Amino-2-oxy-anthracen, 1-Amino-anthrol-(2) $C_{14}H_{11}ON$, s. nebenstehende Formel. B. Aus 1-Nitroso-anthrol-(2) [Anthrachinon-(1.2)-oxim-(1), Bd. VII, S. 780] durch Reduktion mit salzsaurer Zinn-chlorürlösung oder mit Schwefelwasserstoff in alkal. Lösung (Lago-derivation of Lago-derivation) and Lago-derivation of Lago-derivation (Lago-derivation) and Lago-derivation
- 1-Acetamino-2-oxy-anthracen, 1-Acetamino-anthrol-(2) $C_{16}H_{13}O_2N=CH_3\cdot CO\cdot NH\cdot C_{14}H_8\cdot OH$. B. Aus O.N.N-Triacetyl-[1-amino-anthrol-(2)] (s. u.) beim Kochen mit wäßrig-alkoholischer Kalilauge (L., A. 342, 79). Blättchen (aus Alkohol). Die alkoh. Lösung fluoresciert blaugrün. Zersetzt sich bei ca. 200—220°.
- 1-Diacetylamino-2-acetoxy-anthracen, O.N.N-Triacetyl-[1-amino-anthrol-(2)] $C_{30}H_{17}O_4N=(CH_3\cdot CO)_5N\cdot C_{14}H_8\cdot O\cdot CO\cdot CH_3$. B. Bei kurzem Erwärmen von 1-Amino-anthrol-(2) mit Essigsäureanhydrid und Natriumacetat (L., B. 28, 1422; A. 342, 78). Blättchen (aus Alkohol). F: 165°. Die alkoh. Lösung fluoresciert bläulich. Wird beim Kochen mit Chromsäure in Eisessig zu 1-Diacetylamino-2-acetoxy-anthrachinon-(9.10) (Syst. No. 1879) oxydiert. Beim Kochen mit wäßrig-alkoholischen Alkalien entsteht 1-Acetamino-anthrol-(2) (s. o.).
- 3. Aminoderivate des 9-Oxy-anthracens $C_{14}H_{10}O$ (Bd. VI, S. 703) sind desmotrop mit den entsprechenden Aminoderivaten des 9-Oxo-anthracendihydrids (Anthrons), Syst. No. 1873.
 - 4. Aminoderivat des 2-Oxy-phenanthrens $C_{14}H_{10}O = C_{14}H_{9}$ OH (Bd VI, S. 704).
- x Amino 2 äthoxy phenanthren, x Amino phenanthrol (2) äthyläther $C_{16}H_{15}ON = H_2N \cdot C_{14}H_8 \cdot O \cdot C_2H_5$. B. Aus 10 g x-Nitro-2-äthoxy-phenanthren (Bd. VI, S. 705) beim Erhitzen mit 50 g Zinn und 300 ccm konz. Salzsäure (Henstock, Soc. 89, 1529). Nadeln (aus Petroleum). F: 127°.
- 5. Aminoderivate des 3 Oxy phenanthrens $C_{14}H_{10}O=C_{14}H_{9}\cdot OH$ (Bd. VI, S. 705).
- 4 Amino 3 oxy phenanthren, 4 Amino phenanthrol (3)

 C₁₄H₁₁ON, s. nebenstehende Formel ¹). B. Durch Spaltung des Natriumsalzes des 4 [4 Sulfo benzolazo] phenanthrols (3) (Syst. No. 2152) mit

 Zinnchlorür und konz. Salzsäure (Werner, A. 321, 295). Weiße, an der

 Luft sich allmählich grau färbende Nadeln oder Blättchen (aus Alkohol

 + wenig Wasser). F: 159—1610 (Zers.). Leicht löslich in Alkohol, Äther. Benzol und Aceton.

+ wenig Wasser). F: 159—161° (Zers.). Leicht löslich in Alkohol, Äther, Benzol und Aceton.

— Gibt beim Behandeln mit salpetriger Säure eine in Äther sehr leicht lösliche gelbe Ver-

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von FIESER, Am. Soc. 51 [1929], 941.

bindung. — Hydrochlorid. Weiße Blättchen. Färbt sich an der Luft bald grau, dann grün; wird auch schon durch wäßr. Salzsäure verändert.

4 - Diacetylamino - 3 - acetoxy - phenanthren, O.N.N - Triacetyl - [4 - amino - phenanthrol-(3)] C₅₀H₁₇O₄N = (CH₃·CO)₂N·C₁₄H₈·O·CO·CH₃. B. Aus 4-Amino-phenanthrol-(3) und Essigsäureanhydrid bei 150° (WERNER, A. 321, 298). — Nadeln (aus Alkohol). F:. 169—170°. Leicht löslich in Äther, Benzol, Alkohol und Aceton, schwer in Ligroin.

9 oder 10-Amino-3-methoxy-phenanthren, 9 oder 10-Amino-phenanthrol-(3)-methyläther $C_{15}H_{13}ON$, Formel I oder Formel II. B. Aus dem 9 oder 10-Nitro-3-methoxy-

phenanthren (F: 136,5—137°) (in Bd. VI, S. 706 als x-Nitro-3-methoxy-phenanthren aufgeführt) durch Reduktion mit Zinn und rauchender Salzsäure (Werner, A. 321, 286). — Nadeln. F: 117—118°. — Liefert mit Salzsäure ein unlösliches Hydrochlorid. Ist diazotierbar.

9 oder 10 - Amino - 3 - äthoxy - phenanthren, 9 oder 10 - Amino - phenanthrol - (3)-äthyläther $C_{16}H_{16}ON = H_{9}N \cdot C_{14}H_{8} \cdot O \cdot C_{2}H_{5}$. B. Aus 9 oder 10 - Nitro - 3 - äthoxy - phenanthren (in Bd. VI, S. 706 als x - Nitro - 3 - äthoxy - phenanthren aufgeführt) beim Erhitzen mit Zinn und Salzsäure (Henstock, Soc. 89, 1531). — Nadeln (aus Petroleum). F: 94°.

9 oder 10 - Acetamino - 3 - methoxy - phenanthren, 9 oder 10 - Acetamino - phenanthrol - (3) - methyläther $C_{17}H_{16}O_2N = CH_3 \cdot CO \cdot NH \cdot C_{14}H_8 \cdot O \cdot CH_3$. B. Aus 9 oder 10-Amino-phenanthrol - (3)-methyläther und Acetanhydrid beim Kochen (Werner, A. 321, 287). — Blätter (aus Alkohol). F: 150°. — Geht bei der Oxydation mit Chromsäure und Eisessig in 3-Methoxy-phenanthrenchinon (Bd. VIII, S. 347) über.

6. Aminoderivate des 9 - Oxy - phenanthrens $C_{14}H_{10}O=C_{14}H_{9}\cdot OH$ (Bd. VI, S. 706).

10-Chlor-3 oder 6-amino-9-oxy-phenanthren, 10-Chlor-3 oder 6-amino-phenanthrol-(9) (" β -3-Amino-9.10-chloroxyphenanthren") $C_{14}H_{10}ONCl$, Formel I oder Formel II. B. Das salzsaure Salz entsteht bei der Reduktion des niedrigschmelzen-

den Diehlornitrophenanthrons (Bd. VII, S. 477) mit Zinn und Salzsäure (J. SCHMIDT, SÖLL, B. 41. 3693). — $C_{14}H_{10}ONCl+HCl$.

10-Chlor-6 oder 3-amino 9-oxy-phenanthren, 10-Chlor-6 oder 3-amino-phenanthrol-(9) ("a-3-Amino-9.10-chloroxyphenanthren") $C_{14}H_{10}$ ONCl, Formel II oder Formel I. B. Das salzsaure Salz entsteht bei der Reduktion des hochschmelzenden Dichlornitrophenanthrons (Bd. VII, S. 477) mit Zinn und Salzsäure (J. Sch., Söll, B. 41, 3693). — $C_{14}H_{10}$ ONCl + HCl. Nadeln.

10-Amino-9-oxy-phenanthren, 10-Amino-phenanthrol-(9), Morphigenin C₁₄H₁₁ON, s. nebenstehende Formel. B. Das salzsaure Salz entsteht bei der Reduktion von Phenanthrenchinon-monoimid (Bd. VII, S. 802) (Pschorr, B. 35, 2734), Phenanthrenchinon-monoxim (Bd. VII, S. 803) (P.; J. Schmidt, D. R. P. 141422; C. 1903 I, 1197), Phenanthrenchinon-monophenylhydrazon [10-Benzolazo-phenanthrol-(9), Syst. No. 2121] (Vahlen, A. Pth. 47, 379; P.) in Eisessig mit Zinnchlorür und Salzsäure; man erhält die freie Base aus dem salzsauren Salz durch Zerlegen mit einer Lösung von Natriumsulfit, Natriumacetat oder Natriumcarbonat in Gegenwart von Äther in einer Kohlensäure-atmosphäre (P.). Man leitet 15—20 Minuten lang Schwefelwasserstoff in eine heiße alkoh. Suspension von Phenanthrenchinon-monoxim ein, filtriert vom Schwefel ab und fällt aus der Lösung durch Zufügen von konz. Salzsäure das salzsaure Salz (J. Sch., B. 35, 3130; D. R. P. 141422). — Gelbbraun gefärbte Nadeln. Färbt sich bei ca. 100° rot, beginnt bei ca. 150° zu sintern, ein Zusammenfließen tritt erst bei 417° ein (P.). Beginnt bereits bei mehrtägigem Stehen sich zu zersetzen (P.). Ist unter Luftabschluß ohne Zersetzung in kalter Alkalilauge löslich (P.). Geht beim Kochen mit alkal. Lösung im Wasserstoffstrom oder beim Erhitzen in essigsaurer Suspension unter Luftabschluß in 9.10-Dioxy-phenanthren

(Bd. VI, S. 1035) über (P.). Geht beim Erwärmen in alkal. Lösung unter Luftzutritt in Phenanthrenchinon über (P.). Phenanthrenchinon entsteht auch aus salzsaurem 10-Amino-phenanthrol-(9) bei der Einw. von Oxydationsmitteln wie Salpetersäure, salpetrige Säure (P.; J. SCH.) oder Chromsäure (J. SCH.). Erhitzen des salzsauren Salzes mit konz. Schwefelsäure auf 140° führt zur Bildung stickstoffreier Produkte (P.; vgl. dazu V., B. 35, 3045; H. 39, 97; BERGELL, PSCHORE, H. 38, 31 Anm. 3). — C₁₄H₁₁ON + HCl ("Morphigeninchlorid"). Farblose Nadeln. Färbt sich bei 180° (V., A. Pth. 47, 380), 120° (P.; J. SCH.) rötlich, ist bei 290° noch nicht geschmolzen (V., A. Pth. 47, 380). Zersetzt sich bei hoher Temperatur unter Verkohlung (P.; J. SCH.). Gibt beim Erhitzen mit Wasser oder verd. Salzsäure 9.10-Dioxy-phenanthren (P.; J. SCH.).

Bis-[10-oxy-phenanthryl-(9)]-amin C₂₈H₁₉O₂N = NH(C₁₄H₂·OH)₂. B. Entsteht neben Phenanthrenchinon, wenn man Phenanthrenchinon-monoxim in Alkohol mit Schwefelwasserstoff reduziert, die vom Schwefel abfiltrierte Lösung mit luftfreiem Wasser fällt, die sich abscheidenden Nädelchen von 10-Amino-9-oxy-phenanthren abfiltriert und an der Luft auf Ton trocknet, wobei Ammoniak abgespalten wird (J. SCHMIDT, B. 35, 3131). Beim Kochen von 10-Chlor-phenanthrol-(9) (Bd. VI, S. 707) mit konzentriertem wäßrigem Ammoniak (J. SCH., LUMPP, B. 41, 4222). — Grünbraune Prismen (aus Alkohol). F: ca. 230° (Zers.) (J. SCH., L.). Die äther. Lösung ist braunrot, wird unter dem Einfluß von Sonnenlicht hellgelb und nimmt im Dunkeln wieder die ursprüngliche Farbe an; sie zeigt deutliche Fluorescenz (J. SCH., L.). — Die kornblumenblaue Lösung in konz. Schwefelsäure gibt mit der Lösung eines Nitrits oder Nitrats an der Berührungsfläche eine braune Zone (J. SCH., L.). Liefert beim Kochen mit Essigsäureanhydrid das Phenanthroxazin C₆H₄·C·NH·C·C₆H₄ L.). Liefert beim Kochen mit Essigsäureanhydrid das Phenanthroxazin

(Syst. No. 4210) (J. Sch., L.).

10-Acetamino-9-oxy-phenanthren, 10-Acetamino-phenanthrol-(9) $C_{16}H_{13}O_{2}N =$

 ${
m CH_3:CO\cdot NH\cdot C_{14}H_3\cdot OH.}$ B. Durch kurzes Erwärmen von 10-Amino-phenanthrol-(9) mit Essigsäureanhydrid im Wasserbade (F3CHORR, B. 35, 2737). — Farblose Nadeln (aus Eisessig). F: 223—224° (korr.). Zersetzt sich in alkal. Lösung unter Abscheidung gelber Flocken (P.). — Physiologische Wirkung: BERGELL, PSCHORR, H. 38, 38.

10-Acetamino-9-acetoxy-phenanthren, O.N-Diacetyl-[10-amino-phenanthrol-(9)] $C_{18}H_{15}O_3N = CH_3 \cdot CO \cdot NH \cdot C_{14}H_3 \cdot O \cdot CO \cdot CH_3$. B. Durch Kochen von 10-Amino-phenanthrol-(9) mit Essigsäureanhydrid (PSCHORE, B. 35, 2737). — Farblose sechsseitige Prismen. F:242° (korr.). Leicht löslich in Aceton und Chloroform, sehr wenig in Benzol, unlöslich in Äther.

N-Phenyl-N'-[10-oxy-phenanthryl-(9)]-harnstoff $C_{21}H_{16}O_8N_8=C_6H_5\cdot NH\cdot CO\cdot NH\cdot C_{14}H_8\cdot OH$. B. Durch Zusatz von Phenylisocyanat zur äther. Lösung des 10-Amino-phenanthrols-(9) (Psohore, B. 35, 2738). — Farblose Nadeln (aus Isoamylalkohol). F: 2416 (korr.).

3 oder 6 - Nitro - 10 - amino - 9 - oxy - phenanthren , 3 oder 6 - Nitro - 10 - amino phenanthrol - (9) $C_{14}H_{10}O_3N_3=H_2N\cdot C_{14}H_7(NO_2)\cdot OH$. B. Das Hydrochlorid entsteht durch 30—40 Minuten langes Einleiten von Schwefelwasserstoff in eine siedende alkoh. Suspension von 3-Nitro-phenanthrenchinon-monoxim (Bd. VII, S. 806) und Fällen der vom Schwefel abfiltrierten Lösung mit rauchender Salzsäure (J. Schmidt, B. 35, 3131). — $C_{14}H_{10}O_2N_3+H$ Cl. Gelbe Nädelchen. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Geht bei der Einw. wasserhaltiger Lösungsmittel leicht in 3-Nitro-9.10-dioxy-phenanthren (Bd. VI, S. 1036) über. Die dunkelrote Lösung in konz. Schwefelsäure färbt sich nach dem Verdünnen mit Wasser beim Übersättigen mit Alkali blau.

3.10- oder 6.10-Diamino-9-oxy-phenanthren, 3.10 oder 6.10-Diamino-phenanthrol-(9) C₁₄H₁₄ON₂, s. nebenstehende Formeln. B. Durch Lösen von 1 Tl. 3-Nitrophenanthrenchinon-monoxim in heißem Eisessig und Eintragen von 16 Tln. einer warmen salzsauren Zinnchlorürlösung (1:1) (J. SCHMIDT, B. 35, 313

HO NH₂

Oder

NH₂

HO NH₃

salzsauren Zinnehlorürlösung (1:1) (J. Schmidt, B. 35, 3132). — Rotgelbe Nadeln (aus $40^{\circ}/_{\circ}$ igem Alkohol). F: $264-265^{\circ}$.

2. Aminoderivat des 9-0xy-2-methyl-anthracens oder des 10-0xy-2-methyl-anthracens $C_{15}H_{19}O=CH_8\cdot C_{14}H_8\cdot OH$ (Bd. VII, S. 484).

1-Amino-9 oder 10-oxy-2-methyl-anthracen, 1-Amino-2-methyl- oder 4-Amino-8-methyl-anthranol-(9) $C_{15}H_{15}ON = C_6H_4 {C(OH) \atop CH} C_6H_5(NH_5) \cdot CH_5$ ist desmotrop mit 1-Amino-9 oder 10-oxo-2-methyl-anthracen-dihydrid-(9.10), 1-Amino-2-methyl- oder 4-Amino-3-methyl-anthron-(9), Syst. No. 1873.

k) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-20}O$.

1. Aminoderivate der Monooxy-Verbindungen $C_{16}H_{12}O$.

- 1. Aminoderivate des 3-Oxy-1-phenyl-naphthalins $C_{16}H_{12}O=C_6H_5\cdot C_{10}H_6\cdot OH.$
- 4-Amino-3-äthoxy-1-[4-amino-phenyl]-naphthalin $C_{18}H_{18}ON_2$, s. nebenstehende Formel. B. Beim Behandeln einer alkoh. Lösung von 1-Benzolazo-naphthol-(2)-äthyläther (Syst. No. 2120) mit salzsaurem Zinnchlorür (Weinberg, B. 20, 3178). Flocken. F: 72°. Leicht löslich in Alkohol, Äther und Benzol. Die alkoh. Lösung fluoresciert grünblau. $C_{18}H_{18}ON_2 + 2HCl$. Nadeln (aus Wasser).
- 4-Acetamino-8-äthoxy-1-[4-acetamino-phenyl]-naphthalin $C_{22}H_{22}O_3N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot C_{10}H_5(NH \cdot CO \cdot CH_3) \cdot O \cdot C_2H_5$. B. Beim Kochen von schwefelsaurem 4-Amino-3-äthoxy-1-[4-amino-phenyl]-naphthalins mit Eisessig, Essigsäureanhydrid und Natriumacetat (Meldola, Morgan, Soc. 55, 604). Nadeln (aus Alkohol). Schmilzt oberhalb 288°.
- 4-Acetamino-3-acetoxy-1-[4-acetamino-phenyl]-naphthalin $C_{32}H_{20}O_4N_3=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot C_{10}H_5(NH\cdot CO\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Man kocht die salzsauren Salze, die man durch Reduktion des 1-Benzolazo-2-acetoxy-naphthalins (Syst. No. 2120) mit Zinnchlorür in mäßig warmem Alkohol erhält, mit Eisessig, Essigsäureanhydrid und Natriumacetat (Meldola, Morgan, Soc. 55, 123). Nadeln (aus Alkohol). F: 252°.
- 4-Benzamino-3-oxy-1-[4-amino-phenyl]-naphthalin, 1-Benzamino-4-[4-amino-phenyl]-naphthol-(2) $C_{23}H_{18}O_2N_2=H_2N\cdot C_6H_4\cdot C_{10}H_5(NH\cdot CO\cdot C_6H_8)\cdot OH$. B. Neben anderen Produkten bei der Reduktion von 1-Benzolazo-2-benzoyloxy-naphthalin (Syst. No. 2120) in alkoh. Lösung mit salzsaurem Zinnehlorür in der Kälte (Mz., Mo., Soc. 55, 124). Nadeln (aus Alkohol). F: 172—173°. Ziemlich schwer löslich in Alkohol. Unlöslich in verd. Säuren und in wäßr. Alkali.
- 2. Aminoderivate des 1-Oxy-2-phenyl-naphthalins $C_{16}H_{12}O = C_6H_5 \cdot C_{10}H_6 \cdot OH$ (Bd. VI, S. 710).
- 3-Amino-1-oxy-2-phenyl-naphthalin, 3-Amino-2-phenyl-naphthol-(1) C₁₆H₁₃ON, s. nebenstehende Formel. B. Beim Kochen des 3-Acetamino-1-oxy-2-phenyl-naphthalins (s. u.) mit 20% jeger Kalilauge (Lees, Thorfe, Soc. 91, 1303). Nadeln (aus Benzol + Alkohol). F: 185°. Leicht löslich in Alkalien, die alkalische Lösung färbt sich an der Luft schnell rot. Die Salze mit Säuren sind in konzentrierter saurer Lösung beständig, werden aber durch Wasser zersetzt.
- 3-Acetamino-1-oxy-2-phenyl-naphthalin, 3-Acetamino-2-phenyl-naphthol-(1) $C_{18}H_{15}O_2N=C_8H_5\cdot C_{16}H_5(NH\cdot CO\cdot CH_3)\cdot OH$. B. Man diazotiert 1-Amino-3-acetamino-2-phenyl-naphthalin (S. 271) in verd. Schwefelsäure bei 0° und kocht bis zum Aufhören der Stickstoffentwicklung (L., Th., Soc. 91, 1303). Platten (aus Benzol + Alkohol). F: 203°. Löslich in verd. Alkalien.
 - 3. Aminoderivat des 3-Oxy-2-phenyl-naphthalins $C_{16}H_{12}O = C_6H_5 \cdot C_{10}H_6 \cdot OH$.
- 1 Amino 3 oxy 2 phenyl naphthalin, 4 Amino 3 phenyl naphthol-(2) C₁₆H₁₈ON, s. nebenstehende Formel. B. Man erhitzt das Monohydrochlorid des 1.3-Diamino-2-phenyl-naphthalins (S. 271) mit Wasser im geschlossenen Rohr 18 Stdn. auf 140° (Lees, Thorre, Soc. 91, 1304). Platten (aus Benzol). F: 208°. Löslich in Alkalien. Bildet mit starken Säuren Salze, die durch Wasser zersetzt werden. Oxydiert sich leicht an der Luft.

2. Aminoderivate der Monooxy-Verbindungen $C_{17}H_{14}O$.

1. Aminoderivate des 2-Oxy-1-benzyl-naphthalins (Phenyl-[2-oxy-naphthyl-(1)]-methans) $C_{17}H_{14}O=C_0H_5\cdot CH_2\cdot C_{10}H_6\cdot OH$.

Derivate des 2-Oxy-1-[4-amino-benzyl]-naphthalins ([4-Amino-phenyl]-[2-oxy-naphthyl-(1)]-methans).

[4 - Methylamino - phenyl] - [2 - oxy - naphthyl - (1)] - methan $C_{18}H_{17}ON$, s. nebenstehende Formel. B. Beim Erhitzen von salzsaurem dimerem(?) Anhydro-[4-methylamino-benzylalkohol] (S. 621) mit einer essigsauren Lösung von β -Naphthol in Gegenwart von verd. Schwefelsäure (FRIEDLÄNDER, M. 23,

998). — Prismen (aus Benzol). F: 142°. Leicht löslich in Alkohol, Äther, fast unlöslich in Wasser. Wird von Bleidioxyd zu einem rotvioletten Farbstoff oxydiert. — $C_{18}H_{17}ON + HCl$. Blättchen. — $2C_{18}H_{17}ON + H_2SO_4$. Nadeln (aus Wasser). Leicht löslich in Alkohol und Äther.

[4-Äthylamino-phenyl]-[2-oxy-naphthyl-(1)]-methan $C_{19}H_{19}ON=C_2H_5\cdot NH\cdot C_6H_4\cdot CH_2\cdot C_{10}H_6\cdot OH.$ B. Beim Erhitzen von salzsaurem dimerem(?) Anhydro-[4-äthylaminobenzylalkohol] (S. 622) mit einer essigsauren Lösung von β -Naphthol in Gegenwart von verd. Schwefelsäure (Friedländer, M. 23, 999). — Nadeln (aus Schwefelkohlenstoff). F: 99—100°. — $C_{19}H_{19}ON+HCl.$ Nadeln (aus verd. Alkohol). Schwer löslich in Wasser und in konz. Salzsäure, leicht in Alkohol. — $2C_{19}H_{19}ON+H_2SO_4$. Schwach gelbliche Nadeln, leicht löslich in heißem Wasser.

2-Oxy-1-[a-amino-benzyl]-naphthaline und ihre Derivate.

2-Oxy-1-[a-amino-benzyl]-naphthalin, 1-[a-Amino-benzyl]-naphthol-(2), a-[2-Oxy-naphthyl-(1)]-benzylamin $C_{17}H_{15}ON$, s. nebenstehende Formel.

a) Rechtsdrehendes 2-Oxy-1-[a-amino-benzyl]-naphthalin, rechts-drehendes 1-[a-Amino-benzyl]-naphthol-(2), d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} C₁₇H₁₆ON = H₂N·CH(C₈H₈)·C₁₀H₆·OH. B. Man versetzt die Lösung von 22 g dl-a-[2-Oxy-naphthyl-(1)]-benzylamin (S. 729) in 700 ccm 95% jigem Alkohol mit einer Lösung von 13,4 g d-Weinsäure in 40 ccm Alkohol; das in Alkohol schwer lösliche Tartrat der d-Base krystallisiert zuerst aus; durch Einengen der Mutterlauge kann man das Tartrat der l-Base gewinnen; die erhaltenen Tartrate zersetzt man mit verd. Natronlauge (Betti, G. 36 II, 392). Man erwärmt die Lösung von 15 g des dl-a-[2-Oxy-naphthyl-(1)]-benzylamins in 450 ccm Alkohol mit einer Lösung von 13,2 g krystallwasserhaltiger d-Glykose in 20 ccm Wasser + 150 ccm Alkohol kurze Zeit im Wasserbade und trennt die entstandenen Glykosederivate durch fraktionierte Krystallisation aus Alkohol; das Derivat der d-Base ist das weniger lösliche; man verseift mit verd. Salzsäure (B., G. 36 II, 666). — Nadeln (aus Ather). F: 137°; [a]₁₇¹⁷⁻¹⁸: +58,84° (1 g Substanz in 20 g Benzol) (B., G. 36 II, 393); [a]₁₅¹⁸: +58,92° (in Benzol; p = 3,846) (B., G. 36 II, 669). — Hydrochlorid. Nadeln. [a]₁₇¹⁸⁻¹⁸: +52,89° (1 g Substanz in 20 g absol. Alkohol) (B., G. 36 II, 394). — d-Tartrat. Krystalle. Wird bei 180° gelb und sintert oberhalb 240° unter Zersetzung; schwer löslich selbst in siedendem Alkohol (B., G. 36 II, 392).

Rechtsdrehendes 1-[a-Benzalamino-benzyl]-naphthol-(2), N-Benzal-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{19}ON = C_6H_5 \cdot CH: N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH.$ B. Bei kurzem Erwärmen von d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} mit Benzaldehyd in Alkohol (B., G. 37 I, 63, 64). — Nadeln (aus Alkohol). F: 158°. [a]₁₀: + 110,72° (in Benzol; p = 4,734).

Linksdrehendes 1-[a-(2-Nitro-bensalamino)-benzyl]-naphthol-(2), N-[2-Nitro-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{18}O_3N_3=O_2N\cdot C_6H_4\cdot CH:N\cdot CH(C_6H_5)\cdot C_{16}H_4\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 2-Nitro-benzaldehyd in Alkohol (B., G. 37 II, 7, 9). — Nadeln (aus Alkohol). F: 138°. [a] $_{5}^{6+}$: —259,36° (in Benzol; p = 2,094).

Rechtsdrehendes 1-[a-(3-Nitro-benzalamino)-benzyl]-naphthol-(2), N-[3-Nitro-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{18}O_3N_2 = O_3N\cdot C_6H_4\cdot CH:N\cdot CH(C_6H_5)\cdot C_{16}H_4\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 3-Nitro-benzaldehyd in Alkohol (B., G. 37 II, 7, 9). — Nadeln (aus Alkohol). F: 185°. Schwer löslich in Benzin und in kaltem Alkohol. [a]₀^{4,5}: +43,88° (in Benzol; p = 1,101).

Rechtsdrehendes 1-[a-(4-Nitro-benzalamino)-benzyl]-naphthol-(2), N-[4-Nitro-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{18}O_3N_2 = O_2N\cdot C_6H_4\cdot CH:N\cdot CH(C_6H_5)\cdot C_{16}H_4\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 4-Nitro-benzaldehyd in Alkohol (B., G. 37 II, 7, 10). — Gelbliche Nadeln (aus Alkohol). F: 196°. Schwer löslich in Alkohol, ziemlich in Benzin. [a] $_5^{6,4}$: +54,29° (in Benzol; p = 1,528).

Rechtsdrehendes 1 - [a - Cuminalamino - bensyl] - naphthol - (2), N - Cuminal - d-{a-[2-oxy-naphthyl-(1)]-bensylamin} $C_{27}H_{25}ON = (CH_3)_2CH \cdot C_6H_4 \cdot CH : N \cdot CH(C_6H_6) \cdot C_{10}H_6 \cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-bensylamin} und Cuminaldehyd in Alkohol (B., G. 37 I, 63, 64). — Nadeln (aus Alkohol). F: 155—156°. [a]₀°: +196,97° (in Benzol; p = 7.363).

Linksdrehendes 1 - [a - Salicylalamino - bensyl] - naphthol - (2), N - Salicylal - d - {a - [2 - oxy - naphthyl - (1)] - bensylamin} $C_{24}H_{19}O_2N = HO \cdot C_6H_4 \cdot CH : N \cdot CH \cdot (C_6H_6) \cdot C_{10}H_6 \cdot OH$. B. Aus d-{a - [2 - Oxy - naphthyl - (1)] - bensylamin} und Salicylaldehyd (Bd. VIII, 8.31) in Alkohol (B., G. 37 I, 63, 64). — Gelbe Nådelchen (aus Alkohol). F: 164°. [a]_D: -15,65° (in Benzol; p = 6,238).

728

Rechtsdrehendes 1 - [a - (2 - Methoxy - benzalamino) - benzyl] - naphthol - (2), N - [2 - Methoxy - benzal] - d - {a - [2 - oxy - naphthyl - (1)] - benzylamin} $C_{s_t}H_{s_1}O_sN = CH_3 \cdot O \cdot C_0H_4 \cdot CH : N \cdot CH(C_0H_5) \cdot C_{10}H_4 \cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 2-Methoxy-benzaldehyd (Bd. VIII, S. 43) in Alkohol (B., G. 37 I, 63, 65). — Nadeln (aus Alkohol). F: 152°. [a] $_0^{\infty}$: +243,60° (in Benzol; p = 6,254).

Linksdrehendes 1-[a-(5-Brom-2-oxy-benzalamino)-benzyl]-naphthol-(2), N-[5-Brom-2-oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{44}H_{16}O_{2}NBr = HO \cdot C_{6}H_{3}Br \cdot CH : N \cdot CH(C_{6}H_{5}) \cdot C_{10}H_{6} \cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 5-Brom-2-oxy-benzaldehyd in Alkohol (B., G. 37 II, 7). — Krystalle (aus Alkohol). F: 150—151°. [a] $_{6}^{\text{tr}}$: —76,37° (in Benzol; p = 1,308).

Rechtsdrehendes 1-[a-(5-Brom-2-methoxy-benzalamino)-benzyl]-naphthol-(2), N-[5-Brom-2-methoxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{45}H_{20}O_4NBr = CH_3 \cdot O \cdot C_6H_3Br \cdot CH : N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH$. B. Aus d-{a-[2-0xy-naphthyl-(1)]-benzylamin} und 5-Brom-2-methoxy-benzaldehyd in Alkohol (B., G. 87 II, 7, 8). — Nadeln (aus Alkohol). F: 119°. [a]₅^{4,5}: +39,45° (in Benzol; p = 4,118).

Rechtsdrehendes 1-[a-(3-Nitro-2-oxy-benzalamino)-benzyl]-naphthol-(2), N-[3-Nitro-2-oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{a}H_{18}O_{4}N_{3}=HO$ - $C_{4}H_{3}(N_{2})$ -CH:N·CH($C_{6}H_{5}$)·Cl₀H₄·OH. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 3-Nitro-2-oxy-benzaldehyd in Alkohol (B., G. 37 II, 7, 8). — Gelbe Krystalle (aus Alkohol). F: 193°. Schwer löslich in Alkohol, Benzin, Ather, Chloroform mit gelber Farbe. [a]_b^a: + 38,83° (in Benzol; p = 0,232).

Linksdrehendes 1-[a-(5-Nitro-2-oxy-benzalamino)-benzyl]-naphthol-(2), N-[5-Nitro-2-oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{18}O_4N_2 = HO \cdot C_6H_3(NO_2)\cdot CH:N\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 5-Nitro-2-oxy-benzaldehyd in Alkohol (B., G. 37 II, 7, 8). — Gelbliche Nadeln (aus Alkohol). F: 197°. [a]₀^{4.5}: —132,37° (in Benzol; p = 0,1873).

Rechtsdrehendes 1-[a-(4-Oxy-benzalamino)-benzyl]-naphthol-(2), N-[4-Oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{19}O_{2}N=HO\cdot C_{6}H_{4}\cdot CH:N\cdot CH(C_{6}H_{5})\cdot C_{10}H_{6}\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 4-Oxy-benzaldehyd (Bd. VIII, S. 64) in Alkohol (B., G. 37 I, 63, 64). — Nadeln (aus Alkohol). F: 181-182°. [a] $_{5}^{m}$: +297,31° (in Benzol; p = 0,985).

Rechtsdrehendes 1-[a-Anisalamino-benzyl]-naphthol-(2), N-Anisal-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{25}H_{21}O_2N=CH_3\cdot O\cdot C_6H_4\cdot CH:N\cdot CH(C_6H_5)\cdot C_{10}H_5\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und Anisaldehyd (Bd. VIII, S. 67) in Alkohol (B., G. 37 I, 63, 65). — Nadeln (aus Alkohol). F: 137—139°. [a]³⁰: +314,48° (in Benzol; p = 7,390).

Rechtsdrehendes 1-[a-(3-Brom-4-oxy-benzalamino)-benzyl]-naphthol-(2), N-[3-Brom-4-oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{16}O_4NBr=HO\cdot C_6H_3Br\cdot CH:N\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 3-Brom-4-oxy-benzaldehyd in Alkohol (B., G. 37 II, 7, 8). — Krystalle (aus Alkohol). F: 167°. [a]₅^{4,2}: +150,1° (in Benzol; p = 0,8848).

Rechtsdrehendes 1-[a-(3.5-Dibrom-4-oxy-benzalamino)-benzyl]-naphthol-(2), N-[3.5-Dibrom-4-oxy-benzal]-d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{24}H_{17}O_{2}NBr_{3} \doteq HO \cdot C_{6}H_{2}Br_{3} \cdot CH : N \cdot CH(C_{6}H_{5}) \cdot C_{10}H_{6} \cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und 3.5-Dibrom-4-oxy-benzaldehyd in Alkohol (B., G. 37 II, 7, 9). — Krystalle (aus Alkohol). F: 180°. [a]₅^{1,1}: +92,18° (in Benzol; p = 1,292).

Rechtsdrehendes 1-[a-(3-Nitro-4-methoxy-bensalamino)-bensyl]-naphthol-(2), N-[3-Nitro-4-methoxy-bensal]-d-{a-[2-oxy-naphthyl-(1)]-bensylamin} $C_{ss}H_{sp}O_4N_2=CH_s\cdot O\cdot C_6H_3(NO_s)\cdot CH:N\cdot CH(C_6H_5)\cdot C_{10}H_4\cdot OH.$ B. Aus d-{a-[2-Oxy-naphthyl-(1)]-bensylamin} und 3-Nitro-4-methoxy-bensaldehyd in Alkohol (B., G. 87 II, 7, 9). — Krystalle (aus Alkohol). F: 140°. Sehr leicht löslich in Bensol. [a]₆. + 135,83° (in Bensol; p=0,7287).

Linksdrehendes 1-{a-[2-Oxy-naphthyl-(1)-methylenamino]-bensyl}-naphthol-(2), N - [2 - Oxy - naphthyl - (1) - methylen] - d - {a - [2 - oxy - naphthyl - (1)] - bensylamin} $C_{28}H_{21}O_2N = HO \cdot C_{10}H_6 \cdot CH : N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH$. B. Aus d-(a-[2-Oxy-naphthyl-(1)]-benzylamin} und 2-Oxy-naphthaldehyd-(1) (Bd. VIII, S. 143) in Alkohol (B., G. 37 I, 63, 65). — Gelbliche Krystalle (aus Alkohol). F: 218°. [a]_D: —232,34° (in Benzol; p = 1,054).

Rechtsdrehendes $1-\{a-[2-Methoxy-naphthyl-(1)-methylenamino]-bensyl}-naphthol-(2), N-[2-Methoxy-naphthyl-(1)-methylen]-d-\{a-[2-oxy-naphthyl-(1)]-bensylamin} C_{10}H_{10}O_{1}N-CH_{10}H_{10}\cdot CH_{11}N\cdot CH_{10}H_{10}\cdot C_{10}H_{10}\cdot CH_{10}H_{10}\cdot CH_{10}\cdot CH_{10}H_{10}\cdot CH_{10}\cdot CH_{10$

Rechtsdrehendes $1 - [\alpha - (3.4 - Dioxy - benzalamino) - benzyl] - naphthol - (2),$ N-[3.4-Dioxy-benzal]-d- $\{a$ -[2-oxy-naphthyl-(l)]-benzylamin $\}$ $C_{24}H_{19}O_3N = (HO)_2C_6H_3$. CH: $N \cdot CH(C_6H_8) \cdot C_{10}H_6 \cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und Protocatechualdehyd (Bd. VIII, S. 246) in Alkohol (B., G. 37 1, 63, 66). — Strohgelbe Nadeln (aus Alkohol). F: 149°. [a] $^{10}_{0}$: +159,57° (in Benzol; p = 1,105).

Rechtsdrehendes 1 - [a - Vanillalamino - benzyl] - naphthol - (2), N - Vanillal d-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{25}H_{21}O_3N = (CH_3\cdot O)(HO)C_6H_3\cdot CH:N\cdot CH(C_6H_5)\cdot CH_6H_6\cdot OH$. B. Aus d-{a-[2-Oxy-naphthyl-(1)]-benzylamin} und Vanillin (Bd. VIII, S. 247) in C₁₈H₆·OH. B. Aus d- $\{a$ -[2-Uxy-napntnyr- $\{1\}$]-benzylamin, and constantly $\{a\}$ (in Benzol; $\{p\}$ = 4,096). Alkohol (B., G. 37 I, 63, 66). — Nadeln (aus Alkohol). $\{a\}$: A mind hangell - naphthols - (2).

Glykosederivat des rechtsdrehenden 1 - [a - Amino-benzyl] - naphthols - (2),Glykosederivat des d-{a-[2-Oxy-naphthyl-(1)]-benzylamins} $C_{23}H_{25}O_cN-(C_6H_{12}O_5):N-(C_6H_{12}O_5)$ $CH(C_6H_6) \cdot C_{10}H_6 \cdot OH$ bezw. $(C_6H_{11}O_5)NH \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH$. B. s. im Artikel d- $\{\alpha$ -[2-O)xynaphthyl-(1)]-benzylamin (S. 727). — Nadeln (aus viel Alkohol). F: 1920 (Zers.); schwer löslich in Alkohol; wird beim Erwärmen mit verd. Salzsäure in Glykose und d-(a-[2-Oxynaphthyl-(1)]-benzylamin) gespalten; gibt in alkoh. Lösung mit FeCl, intensive Violettfärbung, die schnell in Braun übergeht (B., G. 36 II, 667).

b) Linksdrehendes 2-Oxy-1-[a-amino-benzyl]-naphthalin, linksdrehendes 1-[a-Amino-benzyl]-naphthol-(2), l-[a-[2-Oxy-naphthyl-(1)]-benzyl-amin] $C_{17}H_{18}ON = H_2N \cdot CH(C_0H_3) \cdot C_{10}H_6 \cdot OH$. B. s. im Artikel d-[a-[2-Oxy-naphthyl-(1)]-benzylamin] (S. 727). — Nadeln (aus Ather). F: 136—137°; [a] $_{17}^{17-18}$: —58,96° (1 g Substanz in 20 g Benzol) (Betti, G. 36 II, 393). — Hydrochlorid. Nadeln. [a] $_{17}^{17-18}$: —52,51° (1 g Substanz in 20 g absol. Alkohol) (B.). — d-Tartrat. Prismen. Löslich in Alkohol (B.).

Glykosederivat $C_{28}H_{26}O_6N = (C_6H_{13}O_5):N\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$ bezw. $(C_6H_{11}O_5)NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$. B. s. im Artikel d-{ α -[2-Oxy-naphthyl-(1)]-benzylamin}, S. 727. — Nadeln (aus siedendem Alkohol). F: 163—165° (Zers.) (B., G. 36 II, 668). Leicht löslich in Alkohol. Wird beim Erwärmen mit verd. Salzsäure in Glykose und 1-(a-[2-Oxy-naphthyl-(1)]-benzylamin) gespalten (B.). — Gibt in alkoh. Lösung mit FeCl₃ intensive Violettfärbung, die schnell in Braun übergeht (B.).

c) Inakt. 2 - Oxy - 1 - [a - amino - benzyl] - naphthalin, inakt. 1-[a-Aminobenzylj-naphthol-(2), dl-a-[2-Oxy-naphthyl-(1)]-benzylamin $C_{17}H_{15}ON=H_sN\cdot CH(C_sH_s)\cdot C_{16}H_s\cdot OH.$ B. Das Hydrochlorid entsteht bei kurzem Kochen von N-Benzaldl-{a-[2-oxy-naphthyl-(1)]-benzylamin} (S. 730) mit māßig konzentrierter Salzsäure; man erhält die freie Base aus dem Hydrochlorid durch Lösen in möglichst wenig 25% iger Kalilauge unter Wasserkühlung und sofortiges Ausschütteln der erhaltenen Lösung mit Äther (Berti, G. 31 I, 384, 386). — Nadeln (aus Äther). F: 125° (Zers.) (B., G. 31 I, 387). Leicht löslich in Benzol, Aceton und Chloroform, löslich in Alkohol, unlöslich in Wasser und Ligroin (B., G. 31 I, 387). Kann durch d-Weinsaure (B., G. 36 II, 392) oder d-Glykose in die beiden optisch aktiven Formen zerlegt werden (B., G. 36 II, 666). — Wird beim Kochen mit Wasser oder Alkohol zersetzt (B., G. 31 I, 387). Die Lösungen in Ather und in Benzol zeigen gegen Lackmuspapier eine alkal. Reaktion, wahrscheinlich infolge Abspaltung von Ammoniak (B., G. 31 I, 388). a-[2-Oxy-naphthyl-(1)]-benzylamin gibt beim Erwärmen mit 20° /oiger Kalilauge unter Ammoniakentwicklung N-Benzal-dl- $\{a$ -[2-oxy-naphthyl-(1)]-benzylamin} und β-Naphthol (B., G. 38 I, 2). Liefert in alkoh. Lösung mit Formaldehyd eine Verbindung C₂₀H₁₉O₂N (s. u.) (B., G. 38 I, 28). Gibt in alkoh. Lösung mit Benzaldehyd N-Benzaldl-{a-[2-oxy-naphthyl-(1)]-benzylamin} (B., G. 31 I, 389). Analoge Verbindungen entstehen mit anderen aromatischen Aldehyden, sowie mit Ketonen (B., G. 33 I, 32). Bei der Einw. von Essigester auf a-[2-oxy-naphthyl-(1)]-benzylamin entstehen N-Benzal-dl-{a-[2-oxy-naphthyl-(1)]-benzylamin entstehen N-Benzal-dl-{a-[2-oxy-naphthyl-(1) naphthyl-(1)]-benzylamin), β -Naphthol und Ammoniak bezw. Acetamid (B., G. 81 I, 390). Die Benzollösung gibt mit wenigen Tropfen einer äther. Eisenchloridlösung einen flockigen braunen Niederschlag und eine intensive weinrote Färbung (B., G. 31 I, 388). — C₁₇H₁₅ON + HCl. Nadeln. Beginnt bei 190° sich zu röten, ist aber bei 220° noch nicht vollständig geschmolzen; löslich in siedendem Wasser unter geringer Zersetzung, leicht löslich in Alkohol und Essigsäure, löslich in wäßr. Kalilauge in der Kälte (B., G. 31 I, 385). — Pikrat C₁₇H₁₈ON + C₆H₂O₇N₃. Orangegelbe Krystalle. Schmilzt oberhalb 200° unter Zersetzung (B., G. 38 I, 3). — C₁₇H₁₈ON + HCl + HgCl₂. Nadeln (B., G. 38 I, 4). — 2 C₁₇H₁₈ON + 2 HCl + PtCl₄. Gelbe Krystalle (B., G. 38 I, 3).

Verbindung C₂₀H₁₈O₈N. B. Bei kurzem Kochen der alkoh. Lösung von dl-{a-[2-Oxy-pablibet] (4)} henrylemin wit etwas überrehäusigen wäßriger Formaldehyd lösung (B. G. 39 I

naphthyl-(1)]-benzylamin) mit etwas überschüssiger wäßriger Formaldehydlösung (B., G. 33 I, 28). — Tafeln (aus Ligroin + Benzol). F: 103°. Löslich in Ather,

Ligroin und siedendem Aceton. Geht beim Kochen der Lösung in Alkohol, Benzol oder Essigester in das Phenyl-naphthometoxazin-dihydrid der nebenstehenden Formel (Syst. No. 4201) über. — Die Lösung in Benzol gibt mit Eisenchlorid in der Wärme eine rotviolette Färbung, die

CH_NH

 $C_{\bullet}H_{\kappa}$

beim Erkalten verschwindet.

Inakt. 1-[a-Isoamylamino-bensyl]-naphthol-(2), dl-{a-[2-Oxy-naphthyl-(1)]-bensyl}-isoamylamin $C_{22}H_{25}ON = C_5H_{11}\cdot NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$. B. Entsteht in geringer Menge bei der Kondensation von β -Naphthol mit Benzaldehyd und Isoamylamin in Alkohol (B., G. 31 II, 179, 181). — Nadeln (aus Alkohol). F: 120°. Gibt mit FeCl₃ in der Kälte intensive Violettfärbung.

Inakt. 1-[a-Anilino-bensyl]-naphthol-(2), dl-{a-[2-Oxy-naphthyl-(1)]-bensyl}-anilin $C_{23}H_{19}ON=C_6H_5\cdot NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$. B. Bei mehrtägigem Stehen einer Lösung äquimolekularer Mengen von β -Naphthol und Benzalanilin (Bd. XII, S. 195) in möglichst wenig Benzol bei gewöhnlicher Temperatur; Zusatz eines Tropfens Piperidins wirkt beschleunigend auf die Reaktion (Betti, G. 30 II, 303). — Nadeln (aus siedendem Alkohol). F:170°; verdünnte Säuren greifen bereits in der Kälte an, Alkalien selbst nicht in der Siedehitze (B., G. 30 II, 304). Beim Erhitzen mit Benzaldehyd auf 110° (B., G. 31 I, 392) oder mit Eisessig und Alkohol auf dem Wasserbade (B., G. 31 II, 198) entsteht das Triphenyl-naphthometoxazin-dihydrid der nebenstehenden Formel (Syst. No. 4205). Beim Kochen der alkoh. Lösung mit Phenylhydrazin wird 1-[a-Phenylhydrazino-benzyl]-naphthol-(2) (Syst. No. 2078) gebildet (B., G. 31 II, 189). — Gibt in Benzollösung mit äther. Eisenchlorid eine Rotfärbung, die auf Zusatz von überschüssigem FeCl₃ verschwindet (B., G. 30 II, 307).

Inakt. 1 - [a - Benzylamino - benzyl] - naphthol - (2), dl-{a-[2-Oxy-naphthyl-(1)]-benzyl} - benzylamin $C_{24}H_{21}ON = C_6H_5 \cdot CH_2 \cdot NH \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH$. B. Aus β -Naphthol, Benzaldehyd und Benzylamin in Alkohol (B., G. 31 II, 176, 177). — Nadeln (aus Alkohol). F:145°. — Wird durch Erhitzen mit Benzaldehyd in das Diphenyl-benzylnaphthometoxazin-dihydrid der nebenstehenden Formel (Syst. No. 4205) verwandelt. — Gibt mit Eisenchlorid in der Kälte Dunkelviolettfärbung.

Inakt. 1-[a-(β -Naphthylamino)-bensyl]-naphthol-(2), dl-{a-[2-Oxy-naphthyl-(1)]-bensyl}- β -naphthylamin $C_{27}H_{21}ON = C_{10}H_{7}\cdot NH\cdot CH(C_{6}H_{5})\cdot C_{10}H_{6}\cdot OH$. B. Bei mehrtägigem Stehen von äquimolekularen Mengen β -Naphthol und Benzal- β -naphthylamin (Bd. XII, S. 1281) in Benzollösung (B., G. 30 II, 305). — Krystallinisches, weißes Pulver (aus Alkohol). F: 175°.

Inakt. 1 - [a - Isopropylidenamino - benzyl] - naphthol - (2), N - Isopropyliden - dl-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{20}H_{19}ON = (CH_3)_2C:N\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH.$ B. Bei kurzem Kochen der alkoh. Lösung von dl-a-[2-Oxy-naphthyl-(1)]-benzylamin mit überschüssigem Aceton (B., G. 33 I, 33). — Krystalle (aus Alkohol). F: 124°. Zersetzt sich bereits beim Kochen mit 20°/oiger Kalilauge unter Bildung von Ammoniak und Aceton. Gibt in Benzollösung mit Eisenchlorid in der Kälte Violettfärbung.

Inakt. 1-[α-Benzalamino-benzyl]-naphthol-(2), N-Benzal-dl-{α-[2-oxy-naphthyl-(1)]-benzylamin} C₂₄H₁₉ON = C₆H₅·CH:N·CH(C₆H₅)·C₁₀H₆·OH. Zur Konstitution vgl. Betti, G. 33 I, 18. — B. Bei mehrstündigem Stehen einer mit überschüssigem alkoholischem Ammoniak versetzten Lösung von 1 Mol.-Gew. β-Naphthol und 2 Mol.-Gew. Benzaldehyd in 95-volumprozentigem Alkohol (B., G. 30 II, 312). Aus dl-α-[2-Oxy-naphthyl-(1)]-benzylamin durch Benzaldehyd in alkoh. Lösung (B., G. 31 I, 389) oder aus dessen Hydrochlorid durch Erhitzen mit 20% iger Kalilauge (B., G. 33 I, 2). — Nadeln (aus Alkohol). F: 150%. Ziemlich löslich in Benzol (B., G. 30 II, 313). Wird von Alkalien erst beim Schmelzen angegriffen (B., G. 30 II, 313). Spaltet sich beim Kochen mit Salzsäure in Benzaldehyd und dl-α-[2-Oxy-naphthyl-(1)]-benzylamin (B., G. 31 I, 385). Gibt bei längerem Erhitzen mit Athyljodid und wenig Alkohol im Bombenrohr auf 120%

das ms-Phenyl-dinaphthopyran der nebenstehenden Formel (Syst. No. 2377) (B., G. 33 I, 26). Die Benzollösung färbt sich mit ätherischer FeCl₃-Lösung intensiv rotviolett (B., G. 30 II, 313).

Inakt. 2-Acetoxy-l-[a-bensalamino-bensyl]-naphthalin, N-Bensal-O-acetyl-dl-{a-[2-oxy-naphthyl-(1)]-bensylamin} $C_{26}H_{21}O_2N = C_6H_5 \cdot CH : N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot O \cdot CO \cdot CH_3$. B. Durch Kochen von N-Bensal-dl-{a-[2-oxy-naphthyl-(1)]-bensylamin} mit Essigsäureanhydrid (B., G. 30 II, 313). — Krystalle (aus Alkohol). F: 188—189°. Gibt mit Eisenchlorid keine Farbreaktion.

Inakt. 2-Bensoyloxy-1-[a-bensalamino-bensyl]-naphthalin, N-Bensal-O-bensoyldl-{a-[2-oxy-naphthyl-(1)]-bensylamin} $C_{21}H_{23}O_2N = C_6H_5 \cdot CH : N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot O \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von N-Benzal-dl-{a-[2-oxy-naphthyl-(1)]-benzylamin} mit Benzoylchlorid im Wasserbade (B., G. 33 I, 20). — Nadeln (aus Alkohol). F: 224—225°. Gibt mit Eisenchlorid keine Farbreaktion.

Inakt. 1-[α -Cinnamalamino-benzyl]-naphthol-(2), N-Cinnamal-dl-{ α -[2-oxy-naphthyl-(1)]-benzylamin} $C_{26}H_{21}ON = C_6H_5 \cdot CH \cdot CH \cdot CH \cdot N \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot OH$. B. Aus dl- α -[2-Oxy-naphthyl-(1)]-benzylamin und Zimtaldehyd in heißem Alkohol (B., G. 33 I, 33). — Gelbliche Krystalle (aus Alkohol). F: 174°. Gibt in Benzollösung mit Eisenchlorid in der Kälte eine rotbraune Färbung.

Inakt. 1-[a-Salicylalamino-benzyl]-naphthol-(2), N-Salicylal-dl-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{44}H_{19}O_{2}N=HO\cdot C_{6}H_{4}\cdot CH:N\cdot CH(C_{6}H_{5})\cdot C_{10}H_{6}\cdot OH.$ B. Man crhitzt dl-a-[2-Oxy-naphthyl-(1)]-benzylamin mit Salicylaldehyd (Bd. VIII, S. 31) in Alkohol zum Sieden (B., G. 33 I, 32). — Gelbe Krystalle (aus Alkohol). F: 174°. Gibt in Benzollösung mit Eisenchlorid in der Kälte Violettfärbung.

Inakt. 1-[a-Acetamino-benzyl]-naphthol-(2), N-Acetyl-dl-{a-[2-oxy-naphthyl-(1)]-benzylamin} $C_{19}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$. B. Bei kurzem Kochen von 1 Mol.-Gew. β -Naphthol in überschüssigem Benzaldehyd mit 1 Mol.-Gew. Acetamid (Betti, G. 33 I, 6). Aus dl-a-[2-Oxy-naphthyl-(1)]-benzylamin mit etwas überschüssigem Essigsäureanthyl-du unter Wasserkühlung (B., G. 33 I, 5). Aus O.N-Diacetyl-dl-{a-[2-oxy-naphthyl-(1)]-benzylamin} (s. u.) mit 20% (by Kalilauge bei 40% (B., G. 33 I, 6). — Krystalle (aus Alkohol + Eisessig). F: 236—237%. Beständig gegen verd. Salzsäure; wird durch siedende 20% (by Kalilauge zersetzt.

Inakt. 2-Acetoxy-1-[a-acetamino-benzyl]-naphthalin, O.N-Diacetyl-dl-{a-[2-oxy-naphthyl-(l)]-benzylamin} $C_{21}H_{19}O_3N = CH_3 \cdot CO \cdot NH \cdot CH(C_6H_5) \cdot C_{10}H_6 \cdot O \cdot CO \cdot CH_3$. B. Bei Einw. von überschüssigem Essigsäureanhydrid auf dl-a-[2-Oxy-naphthyl-(1)]-benzylamin, zuletzt in der Wärme (B., G. 31 I, 388). — Prismen (aus Alkohol durch Wasser). F: 162°.

Inakt. 2-Acetoxy-1-[a-(acetylbenzylamino)-benzyl]-naphthalin, O.N-Diacetyldl-{a-[2-oxy-naphthyl-(1)]-benzyl}-benzylamin $C_{2s}H_{15}O_3N=CH_3\cdot CO\cdot N(CH_2\cdot C_6H_5)\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot O\cdot CO\cdot CH_3$. B. Durch Kochen von dl-{a-[2-Oxy-naphthyl-(1)]-benzyl}-benzylamin mit Essigsäureanhydrid (B., G. 31 II, 178). — F: 166°.

Inakt. 1-[a-Bensamino-bensyl]-naphthol-(2), N-Bensoyl-dl- $\{a-[2-oxy-naph-thyl-(1)]-bensylamin\}$ $C_{24}H_{10}O_2N=C_6H_5\cdot CO\cdot NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH.$ B. Aus dl-a-[2-Oxy-naphthyl-(1)]-bensylamin und Bensoylchlorid unter Wasserkühlung (Betti, G. 33 I, 8). — Nadeln (aus Alkohol). F: 225°. Sehr wenig löslich in Ligroin.

Acetessigesterderivat des inakt. 1-[a-Amino-bensyl]-naphthols-(2), Acetessigesterderivat des dl-a-[2-Oxy-naphthyl-(1)]-bensylamins $C_{32}H_{32}O_3N=C_2H_5$: $O_4C\cdot CH_2\cdot C(CH_3):N\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$ bezw. $C_2H_5\cdot O_3C\cdot CH:C(CH_3)\cdot NH\cdot CH(C_6H_5)\cdot C_{10}H_6\cdot OH$. B. Bei kurzem Kochen von dl-a-[2-Oxy-naphthyl-(1)]-benzylamin in Alkohol mit überschüssigem Acetessigester (B., G. 33 I, 34). — Nadeln (aus Alkohol). F: 165°. Gibt in Benzollösung in der Kälte mit Eisenchlorid Violettfärbung.

Inakt. 1-[3-Nitro-a-anilino-bensyl]-naphthol-(2), {3-Nitro-dl-a-[2-oxy-naphthyl-(1)]-bensyl}-anilin $C_{23}H_{18}O_3N_2=C_6H_5\cdot NH\cdot CH(C_6H_4\cdot NO_2)\cdot C_{10}H_6\cdot OH$. B. Bei mehrtägigem Stehen einer Lösung äquimolekularer Mengen von β -Naphthol und [3-Nitrobenzal]-anilin (Bd. XII, S. 198) in möglichst wenig Benzol (Betti, G. 30 II, 304). – Hellgelbes, krystallinisches Pulver (aus Benzol + Ligroin). F: 152°.

2. Aminoderivate des 4-Oxy-1-benzyl-naphthalins (Phenyl-[4-oxy-naphthyl-(1)]-methans) $C_{17}H_{14}O=C_6H_5\cdot CH_2\cdot C_{10}H_6\cdot OH$.

[4-Amino-phenyl]-[4-oxy-naphthyl-(1)]-methan C₁₇H₁₈ON, s. nebenstehende Formel. B. Beim Erhitzen einer verdünnten, mit Salzsäure schwach angesäuerten Lösung von 4-Amino-benzylalkohol (S. 620) und a-Naphthol (FRIEDLÄNDER, v. HORVÁTH, M. 23, 982). — Nadeln (aus Alkohol). F: 174—175°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther, löslich in Natronlauge. — C₁₇H₁₈ON + HCl. Nadeln. Ziemlich leicht löslich in Wasser, schwer in Salzsäure.

[4-Methylamino-phenyl]-[4-oxy-naphthyl-(1)]-methan $C_{18}H_{17}ON = CH_3 \cdot NH \cdot C_6H_4 \cdot CH_2 \cdot C_{10}H_6 \cdot OH$. B. Beim Erhitzen von salzsaurem dimerem (?) Anhydro-[4-methylamino-benzylalkohol] (S. 621) mit a-Naphthol in Wasser unter Zusatz von etwas Schwefelsäure (Friedländer, M. 23, 996). — Prismen (aus Benzol). F: 141—142°. Leicht löslich in Alkohol, Ather, Eisessig, Chloroform, fast unlöslich in Wasser und Ligroin. Löslich in verd. Mineralsäuren und in Natronlauge, unlöslich in Sodalösung. — Reduziert ammoniakalische Silberlösung. PbO₃ erzeugt in eisessigsaurer Lösung eine intensiv rotviolette Färbung. — $C_{18}H_{17}ON + HCl$. Nadeln. Schwer löslich in Wasser, leicht in Alkohol und Äther. — $2C_{18}H_{17}ON + H_2SO_4$. Prismen (aus verd. Alkohol). Schwer löslich in Wasser, leicht in Alkohol.

[4-Åthylamino-phenyl]-[4-oxy-naphthyl-(1)]-methan $C_{19}H_{19}ON=C_{9}H_{6}\cdot NH\cdot C_{6}H_{4}\cdot CH_{2}\cdot C_{10}H_{6}\cdot OH$. B. Beim Erhitzen von salzsaurem dimerem(?) Anhydro-[4-(åthylamino)-benzylalkohol] (S. 622) mit a-Naphthol in Gegenwart von verd. Schwefelsäure (Fried-

LÄNDER, M. 23, 998). — Prismen (aus Benzol). F: 169°. Leicht löslich in Alkohol, Äther, fast unlöslich in Wasser. Löslich in verd. Mineralsäuren und in Natronlauge, unlöslich in Sodalösung. — $2 C_{19} H_{19} ON + H_2 SO_4$. Krystalle (aus Wasser).

[4-Acetamino-phenyl]-[4-oxy-naphthyl-(1)]-methan $C_{19}H_{17}O_2N=CH_3\cdot CO\cdot NH\cdot C_6H_4\cdot CH_9\cdot C_{10}H_6\cdot OH$. Be ikurzem Erwärmen von [4-Amino-phenyl]-[4-oxy-naphthyl-(1)]-methan mit Essigsäureanhydrid (FRIEDLÄNDER, v. HORVÁTH, M. 23, 983). — Nadeln (aus verd. Alkohol). F: 124—126°. Unlöslich in Wasser und verd. Mineralsäuren, leicht löslich in Alkohol, Äther, Eisessig, heißem Benzol und Natronlauge.

3. Aminoderivat des 1-fa-Oxy-benzylf-naphthalins (Phenyl-a-naphthyl-carbinols) $C_{17}H_{14}O=C_4H_5\cdot CH(OH)\cdot C_{10}H_7$ (Bd. VI, S. 710).

[4-Dimethylamino-phenyl]-a-naphthyl-carbinol C₁₉H₁₉ON, s. nebenstehende Formel. B. Durch Einw. von 4-Dimethylamino-benzaldehyd (Syst. No. 1873) auf a-Naphthylmagnesiumbromid (Syst. No. 2337) in Ather (F. Sachs, L. Sachs, B. 38, 516). — Prismen (aus Benzol durch Petrol-

äther). F: 97—98°. Sehr wenig löslich in Wasser und Petroläther, leichter in Alkohol und Äther, sehr leicht in den übrigen gebräuchlichen Lösungsmitteln. Zeigt starke Halochromie. — Chloroplatinat. Blättchen. Bleibt bis 230° unverändert.

4. Aminoderivat des 1-Oxy-2-benzyl-naphthalins $C_{17}H_{14}O=C_0H_5\cdot CH_2\cdot C_{10}H_4\cdot OH$.

2-[a-Anilino-bensyl]-naphthol-(1), {a-[1-Oxy-naphthyl-(2)]-bensyl}-anilin $C_{23}H_{19}ON$, s. Formel I. Zur Konstitution vgl. Bettri, G. 31 II, 193. — B. Bei mehrtägigem Stehen äquimolekularer Mengen Benzalanilin (Bd. XII, S. 195) und a-Naphthol in wenig Benzol (Bettri, G. 30 II, 306). — Krystalle (aus Benzol + Ligroin). F: 142 $^{\circ}$; schwer löslich

in siedendem Alkohol, leicht in Benzol (B., G. 30 II, 306). Durch Erhitzen mit Benzaldehyd entsteht das Triphenyl-naphtometoxazin-dihydrid der Formel II (Syst. No. 4205) (B., G. 31 II, 197). Durch Kochen mit Phenylhydrazin in Alkohol entsteht 2-[a-Phenylhydrazinobenzyl]-naphthol-(1) (Syst. No. 2078) (B., G. 31 II, 199). Gibt in Benzollösung mit äther. Eisenchloridlösung intensive Rotviolettfärbung (B., G. 30 II, 307).

l) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-22}O$.

In diese Klasse von Verbindungen sind die basischen Triphenylmethanfarbstoffe als Abkömmlinge von Aminoderivaten des Triphenylcarbinols und seiner Homologen eingeordnet.

Geschichtliches. Im Jahre 1856 beobachtete Natanson, A. 98, 297 gelegentlich der Einw. von Äthylenchlorid auf Anilinöl das Auftreten blutroter Färbungen. A. W. Hofmann, Proceedings Royal Soc. London 9, 284; C. r. 47, 492; J. 1858, 351 erhielt beim Erhitzen von Anilinöl mit Tetrachlorkohlenstoff neben anderen Verbindungen einen mit prachtvoll karmoisinroter Farbe löslichen Farbstoff, der nach diesem Verfahren auch technisch dargestellt wurde (vgl. Dollfus-Galline, D. 159 [1861], 390; Monner, Duer, D. 159, 392). Verguin (vgl. Schlumberger, J. 1859, 757) erhielt durch Erhitzen von rohem Anilin mit Zinntetrachlorid einen roten Farbstoff, der von der Firma Renard frères et Franc in Lyon (vgl. Franz. Patent No. 22706 vom 8. 4. 1859) unter dem Namen Fuchsin in den Handel gebracht wurde. Daß die von Natanson beobachtete Rotfärbung auf Fuchsinbildung beruht, wurde von Bolley, J. 1860, 733, Anm. 1 erkannt; die Identität des von Hofmann hergestellten Farbstoffs mit Fuchsin wurde von Köchlin, Schneider, Schützenberger festgestellt (vgl. Dollfus-Galline, D. 159, 390). Wichtige Verbesserungen der Fuchsin-Herstellung waren das Verfahren von Medlock (Engl. Patent No. 126 vom 18. 1. 1860; D. 158, 146; J. 1860, 721, Anm. 2), Erhitzen von rohem Anilin mit Arsensäure, und das Verfahren von Coupter (vgl. Schützenberger, J. 1869, 1162), Erhitzen von toluidinhaltigem Anilin mit Chohmann, im Coupter (vgl. Schützenberger, J. 1869, 1162), Erhitzen von toluidinhaltigem Anilin mit Chohmann, litrobenzol in Gegenwart von Salzsäure und etwas Eisen. Die Bildung violetter Farbstoffe durch Alkylierung von Fuchsin wurde von E. Koff, A. ch. [3] 62 [1861], 230; C. r. 52, 363; J. pr. [1] 82, 461 und von A. W. Hofmann, Proceedinge Royal Soc. London 18, 13; C. r. 57, 30; J. 1868,

418 aufgefunden. LAUTH, Moniteur scientifique 3 [1861], 336 gewann violette Farbstoffe der gleichen Art durch Oxydation von N-methyliertem Anilin. GIRARD, DE LAIRE, J. 1862, 696 erhielten durch Erhitzen von Fuchsin mit Anilin das Anilinblau (vgl. auch A. W. Hoymann, Proceedings Royal Soc. London 12, 578; 13, 9; C. r. 56, 945; 57, 25; J. 1863, 417). Das Malachitgrün wurde im Jahre 1877 von O. FISCHER, B. 10, 1625 durch Kondensation von Dimethylanilin mit Benzaldehyd und Oxydation der entstandenen Leukoverbindung, im Jahre 1878 von Doebner, B. 11, 1236 (vgl. Akt.-Ges. f. Anilinf., D. R. P. 4322; Fril. 1, 40) durch Kondensation von Dimethylanilin mit Benzotrichlorid erhalten.

Die wissenschaftliche Erforschung der auf empirischem Wege gewonnenen Farbstoffe gründet sich auf die von A. W. Hofmann, Proceedings Royal Soc. London 12, 2; C. r. 54, 428; J. 1862, 347 bewerkstelligte Isolierung der dem Fuchsin zugrunde liegenden Base, von Hofmann Rosanilin benannt, und die Ermittlung der Bruttoformel C₂₀H₂₁ON₃ für diese Base. Für die aus dem (farblosen) Rosanilin wieder herstellbaren Farbsalze ermittelte Hofmann gleichzeitig die Bruttoformel (C₂₀H₂₀N₃)(Ac). Im Jahre 1876 stellte Rosenstiehl, A. ch. [5] 8, 192, 232 ein niedrigeres Homologes des Rosanilins dar, für das von E. und O. Fischer, A. 194, 266, 285; B. 13, 2207 die Bezeichnung Pararosanilin eingeführt und die Zusammensetzung C₁₀H₁₀ON₃ festgestellt wurde. Die Untersuchungen von E. und O. Fischer, der führten weiter zur Erkennung des Rosanilins bezw. Pararosanilins als 4.4'.4"-Triamino-3-methyl-triphenylcarbinol bezw. 4.4'.4"-Triamino-triphenylcarbinol. Dem Malachitgrün entspricht als Base das 4.4'-Bis-dimethylamino-triphenylcarbinol (E. Fischer, O. Fischer, B. 12, 2346; 13, 2207; O. Fischer, B. 13, 807). Als Bedingung für die Ausprägung des Farbstoffcharakters wurde die Anwesenheit von mindestens zwei paraständigen Aminogruppen erkannt; das Farbsalz des 4-Amino-triphenylcarbinols ist nur orange und kann nicht zu den eigentlichen Farbstoffen der Triphenylmethanreihe gerechnet werden (vgl. Baeyer, A. 854, 453).

Während die Konstitution der aus den Triphenvlmethanfarbstoffen abscheidbaren farb. losen Carbinolbasen feststeht, sind die Auffassungen bezüglich der Formulierung der Far bstoffe selbst noch nicht geklärt. E. und O. FISCHER, B. 11, 1080; A. 194, 285; NIETZEI, Chemie der organischen Farbstoffe, 1. Aufl. [Berlin 1889], S. 88; 2. Aufl. [Berlin 1894], S. 108, sowie BAEYER, VILLIGER, B. 37, 2850 nahmen eine chinoide Struktur an, wonach z. B. dem salzsauren Pararosanilin (Parafuchsin) die Formel (H₂N·C₆H₄)₂C: :NH₂Cl zukäme. Demgegenüber gab ROSENSTIEHL, Bl. [2] 38, 342; C. r. 116, 194; Bl. [3] 9, 117 dem Parafuchsin die Formel (H₂N·C₆H₄)₅CCl, wonach die Triphenylmethanfarbstoffe nicht mehr als salzartige Verbindungen, sondern als Säureester tertiärer Alkohole erscheinen. Diese Auffassung wurde durch Untersuchungen von MIOLATI, B. 26, 1788; 28, 1696 und von Hantzsch, Osswald, B. 83, 278 unwahrscheinlich; durch elektrische Leitfähigkeitsmessungen konnte von ihnen die Salznatur der Triphenylmethanfarbstoffe nachgewiesen werden. Die chinoide Formulierung, wonach die Farbstoffe als Imoniumsalze erscheinen, stand hiermit besser im Einklang. Die starke Abweichung zwischen Farbsalz und Carbinolbase in der Farbs führte zu der Frage, wie sich der Übergang der chinoiden Farbstoffe in die farblosen Carbinolbasen vollzieht. Nach HANTZSCH, OSSWALD, B. 33, 278, 757 erfolgt er nicht momentan, vielmehr entsteht zunächst eine den Farbstoffen konstitutiv analoge, stark leitende Imoniumbase, z. B. $(\mathbf{H_2N \cdot C_0H_4})_2\mathbf{C}:\langle$:NHa·OH, deren Umlagerung zur farblosen Carbinolbase ("Pseudobase") durch elektrische Leitfähigkeitsmessungen zeitlich verfolgbar ist. Über den zeitlichen Verlauf dieser Umlagerung vgl. auch Geblinger, B. 37, 3959; Sidgwick, Moore, Ph. Ch. 58, 390; W. J. MÜLLER, B. 48 [1910], 2609. Diese intermediär entstehenden, bisher nicht isolierten Imoniumbasen wurden von Hantzsch, Osswald als die wahren Farbbasen der chinoiden Farbstoffe angesehen. Dieser Auffassung traten BAEYER, VILLIGER, B. 37, 2851 entgegen, nachdem gefunden worden war, daß sich unter geeigneten Bedingungen aus den Farbsalzen die ihnen entsprechenden Chinonimide ("Homolkasche Basen"1)) abscheiden lassen; so entspricht dem Parafuchsin die "Homolkasche Base" (H2N·CaH4)2C: diese und nicht die Imoniumbase wäre als erstes Produkt der Einw. von Alkali auf das Farbsalz angusehen und die Entstehung der Carbinolbase durch Anlagerung von Wasser an die Homolkasche Base zu erklären (vgl. hiergegen Hantzsch, B. 37, 3434). Durch seine Untersuchungen über die salzartigen Verbindungen der 4.4'.4"-Trihalogen-triphenylcarbinole wurde aber Barre, B. 38, 569, 578 dazu geführt, die Rosenstiehlsche Formel (H₂N·C₂H₄)₂OCl für die Triphenylmethanfarbstoffe als mindestens gleichberechtigt mit der chinoiden Formulierung ansuerkennen. Um die Salznatur der Farbstoffe und das Auftreten der Farbe zu erklären, modifizierte Barven diese Formel derart, daß er eine neue Bindungsart, eine ionisierbare Valenz (vgl. hierzu Gomberg, B. 40, 1869, 1870), zwischen dem Methankohlenstoffatom

¹⁾ Zu dieser Bezeichnung vgl. NIETZKI, Chemie der organischen Farbstoffe, 2. Aufl. [Berlin 1894], S. 110.

und dem Säurerest annimmt, die er als "Carboniumvalenz" bezeichnet; das Parafuchsin erhält nach seiner Schreibweise die Formel $(H_2N \cdot C_0H_4)_3C \cdot Cl$. Nach Gomberg, B. 40, 1878 würde sich durch die Carboniumvalenz wohl die Ionisation erklären lassen, zur Erklärung der Farbe müßte aber die chinoide Formulierung beibehalten werden. Er deutet deshalb die Umwandlung des chinoiden Farbsalzes in die Carbinolbase in der Weise, daß zuerst die dem Farbsalz entsprechende farbige Imoniumbase, z. B. $(H_2N \cdot C_0H_4)_2C : \longrightarrow :NH_2 \cdot OH$, entsteht, diese darauf durch Wasserabspaltung in das Chinonimid $(H_2N \cdot C_0H_4)_2C : \longrightarrow :NH$ und dieses durch Wasseraufnahme in eine chinolartige Verbindung, die "Chinocarboniumbase" $(H_2N \cdot C_0H_4)_2C : \longrightarrow :NH_2$ übergeht, die sich dann in ihre tautomere Form, die Carbinolbase, umlagert. In der Folge wurde Baeyer, A. 354, 152, 163 auf Grund vergleichender Untersuchungen über Fuchsinfarbstoffe und Aurine zur Aufgabe seiner Carboniumvalenztheorie und zur Aufstellung von Oszillationsformeln (s.

niumvalenztheorie und zur Aufstellung von Oszillationsformeln (s. z. B. die nebenstehende Formel) geführt, in denen zwar wieder benzoide und chinoide Gruppen (diese im Sinne der Graebeschen Chinon-Brückenformel) eingeführt, deren funktionelle Gleichartigkeit aber durch Wechseln des chinoiden Zustandes von einem Kern zum anderen dargetan werden soll. Im Anschluß hieranist die Konstitutioner der State der

tutionsauffassung von WILLSTÄTTER, PICCARD, B. 41, 1467 zu erwähnen, die einen merichinoiden Zustand des Farbstoffmoleküls (d. h. die Verteilung des teilweise chinoiden Zustandes in der ganzen Verbindung) annehmen.

ďι

standes in der ganzen Verbindung) annehmen.

Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] sind für die Farbsalze der basischen Triphenylmethanfarbstoffe noch die folgenden Formulierungen erörtert worden. Gebhard, J. pr. [2] 84 [1911], 586 erteilt dem Malachitgrün die Formel I, in welcher durch die Wellenlinien Bruchteile einer Valenz (Partialvalenzen) ausgedrückt werden. KAUFFMANN, B. 45 [1912], 781 formuliert das Parafuchsin durch

I.
$$C_0H_5 \cdot C$$

$$CI$$

$$-N(CH_3)_2$$

$$-N(CH_3)_2$$

$$II. C C_0H_4 - (NH_2)$$

$$CC_0H_4 - (NH_2)$$

$$CC_0H_4 - (NH_2)$$

$$CC_0H_4 - (NH_2)$$

$$CC_0H_4 - (NH_2)$$

Formel II, in welcher die vom Anion Cl ausgehenden punktierten Linien die Zersplitterung seiner Valenz ausdrücken. Vgl. hierzu Hantzsch, B. 52 [1919], 516; Kehrmann, Helv. chim. Acta 4 [1921], 535. Kehrmann, B. 51 [1918], 473; 55 [1922], 507 behält für das Parafuchsin die chinoide Imoniumformel $(H_2N \cdot C_0H_4)_2C$: $:NH_2Cl$ bei, betrachtet aber die gelben viersäurigen Salze als chinolide Carboniumsalze, welche das vierte Säuremolekül am Zentralkohlenstoffatom fixiert tragen: $(AcH_3N \cdot C_0H_4)_2C$: $:NH_2$. Vgl. hierzu

HANTZSCH, B. 54 [1921], 2569. FIERZ, KÖCHLIN, Helv. chim. Acta 1 [1918], 210; FIERZ, B. 55 [1922], 429 betrachten das Parafuchsin als Komplexsalz und formulieren es [(H₂N·C₂H₄),C]Cl, wobei über den feineren Bau des komplexen Kations [C₁₈H₁₈N₃] nichts ausgesagt sein soll. Vgl. hierzu Hantzsch, B. 52 [1919], 529; v. Georgievics, Ch. Z. 44 [1920], 41; Kehrmann, Helv. chim. Acta 4 [1921], 535; Wieland, B. 55 [1922], 1822; Brand, J. pr. [2] 109 [1925], 28. Hantzsch, B. 52 [1919], 515; J. pr. [2] 113 [1926], 187 gibt dem Parafuchsin die "konjugiert-chinoide" Formel III, in welcher das Säureion an zwei, aber auch nur an zwei Stickstoffe des Farbstoffkations gebunden erscheint. Nach Dilthey, B. 55 [1922], 1279; J. pr. [2] 109 [1929], 295; Dilthey, Dinklage,

B. 62 [1929], 1834 ist Parafuchsin als Carbeniumsalz [(H₂N·C₀H₄)₃C]Cl aufzufassen; die Bezeichnung Carbenium und das Zeichen ● sollen bedeuten, daß das Zentralkohlenstoffatom des Farbkations koordinativ ungesättigt ist. Kehrmann, Helv. chim. Acta 10 [1927], 676 sucht die Formulierung als koordinativ ungesättigtes Komplexsalz mit der chinoiden

Formulierung zu vereinigen; danach wäre das Parafuchsin [(H₂N·C₆H₄)₂Č: : NH₂]Cl zu schreiben; die koordinativen Lücken am Kohlenstoff und am Stickstoff rühren daher, daß Doppelbindungen koordinativ einfach wirken. Deutung der Beziehung zwischen Chinonimonium- und Carbonium-Zustand des Farbkations (bezw. des Übergangs dieser Zustände ineinander) durch Elektronenverschiebung: MADELUNG, J. pr. [2] 111 [1925], 122; 114 [1926], 1.

Über Konstitutionsauffassungen der mehrsäurigen Salze der basischen Triphenylmethanfarbstoffe vgl.: Green, Zeitschrift für Farben- und Textilchemie 1, 414; C. 1902 II, 684; v. Georgievics, Zeitschrift für Farben- und Textilindustrie 3, 37; C. 1904 I, 663; Kauffmann, Zeitschrift für Farben- und Textilindustrie 3, 117; C. 1904 I, 1269; Schmidlin, C. r. 139, 604; A. ch. [8] 7, 257; Kehrmann, Wentzel, B. 34, 3817; K., B. 51 [1918], 471; K., Sandoz, B. 51, 915; Hantzsch, B. 54 [1921], 2569, 2607.

Uber den Einfluß von kernständigen Substituenten (Chloratomen, Nitrogruppen und Methylgruppen) auf den Farbcharakter der Triphenylmethanfarbstoffe vgl.: Reitzenstein, Runge, J. pr. [2] 71, 57; Rei., Schwerdt, J. pr. [2] 75, 369; Noelting,

GERLINGER, B. 39, 2041.

Lichtabsorption verschiedener Triphenylmethanfarbstoffe im sichtbaren Spektralgebiet: Lemoult, C. r. 131, 839; 132, 784; Formánek, Zeitschrift für Farben- und Textilchemie 2, 473; Formánek, Spektralanalytischer Nachweis künstlicher organischer Farbstoffe [Berlin 1900]. Lichtabsorption im Ultraviolett: Krüss, Ph. Ch. 51, 281.

1. Aminoderivate der Monooxy-Verbindungen $C_{18}H_{14}O$.

1. Aminoderivat des 4-Oxy-1.2-diphenyl-benzols $C_{18}H_{14}O = (C_0H_5)_2C_8H_3 \cdot OH$.

5-Amino-4-äthoxy-1-phenyl-2-[4-amino-phenyl]-benzol,
5-Äthoxy-2-phenyl-benzidin C₂₀H₂₀ON₂, s. nebenstehende
Formel. B. Durch Behandeln von 3-Benzolazo-4-äthoxydiphenyl (Syst. No. 2121) mit Zinn und Salzsäure (Hrsch,
D. R. P. 58 295; Frdl. 3, 25). — Weiße, amorphe Flocken. Leicht
löslich in Alkohol, Äther, Eisessig und Benzol, unlöslich in Wasser. — Hydrochlorid. Sehr schwer löslich in Wasser. — Sulfat. Nadeln (aus Wasser). Ziemlich löslich in Wasser.

2. Aminoderivat des 2-Oxy-1.3-diphenyl-benzols $C_{18}H_{14}O = (C_6H_5)_2C_6H_3 \cdot OH$ (Bd. VI, S. 711).

5-Amino-2-oxy-1.3-diphenyl-benzol, 4-Amino-2.6-diphenyl-phenol $C_{18}H_{15}ON$, s. nebenstehende Formel. B. Beim Behandeln von 5-Nitroso-2-oxy-1.3-diphenyl-benzol [2.6-Diphenyl-chinon-oxim-(4), Bd.VII, S. 825] (Borsche, B. 32, 2938; A. 312, 229) oder von 5-Nitro-2-oxy-1.3-diphenyl-benzol (Bd. VI, S. 711) (Hull, Am. 24, 7) mit Zinn und Salzaäure. — Blättchen (aus Alkohol). F: 146—147° (B.), 149—150° (korr.) (H.). Leicht löslich in Alkohol und heißem Benzol, weniger in Ather, ziemlich schwer in Ligroin (H.). — Beim Kochen mit Alkalidichromat und verd. Schwefelsäure entsteht 2.6-Diphenyl-chinon (Bd. VII, S. 825) (B.; H.). — $C_{18}H_{15}ON + HCl$. Nadeln (aus Wasser). Färbt sich oberhalb 180° und ist bei 240° völlig zersetzt (B.). Wenig löslich in kaltem, besser in heißem Wasser (H.).

2. Aminoderivate der Monooxy-Verbindungen $C_{19}H_{16}O$.

1. Aminoderivate des 2-Oxy-triphenylmethans $C_{19}H_{16}O=(C_6H_5)_2CH\cdot C_6H_4\cdot OH$ (Bd. VI, S. 712). Vgl. auch No. 3 auf S. 737.

a-Anilino-2-methoxy-triphenylmethan $C_{26}H_{23}ON = (C_6H_5)_2C(NH \cdot C_6H_5) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Bei der Einw. von a-Chlor-2-methoxy-triphenylmethan (Bd. VI, S. 712) auf Anilin in äther. Lösung (Baeyer, A. 354, 169). — Würfelartige Krystalle. F: 151°. Färbt sich nicht beim Erhitzen.

4'.4" - Diamino - 2 - oxy - triphenylmethan C₁₈H₁₈ON₂,
s. nebenstehende Formel. B. Bei 30—40-stdg. Erhitzen von 6 g
Salicylaldehyd (Bd. VIII, S. 31) mit 14 g Anilinsulfat und 10 g
Zinkchlorid auf 110—120° (RENOUF, B. 16, 1307). — Nadeln
(aus Benzol) mit 1 Mol. Benzol.

4'.4" - Bis - dimethylamino - 2 - oxy - triphenylmethan
C₂₈H₂₈ON₂ = [(CH₃)₂N·C₆H₄]₂CH·C₆H₄·OH. B. Bei 7—8-stdg.

Erhitzen von 10 Tln. Salicylaldehyd mit 22—25 Tln. Dimethylanilin und 20 Tln. ZnCl₂ auf dem Wasserbade (O. Fischeb, B. 14, 2522). Durch Erwärmen von Salicylsäure-anilid (Bd. XII, 8. 500) mit Dimethylanilin und Phosphoroxychlorid und Reduzieren des erhaltenen grünen
Farbstoffes ("Salicylaldehydgrüns") (Noelting, B. 30, 2589). — Nadeln (aus Alkohol).
F: 127—128°; kaum löslich in Wasser, ziemlich schwer in kaltem Alkohol, sehr schwer in Ligroin, leicht in Benzol und in siedendem Alkohol (O. Fi.). — Wird bei der Oxydation mit Bleidioxyd oder Mangandioxyd in schwach saurer Lösung wieder in "Salicylaldehydgrün" übergeführt (O. Fi.). Verbindet sich mit Säuren nnd mit Basen (O. Fi.).

- 4'.4"-Bis-dimethylamino-2-methoxy-triphenylmethan $C_{34}H_{38}ON_2=[(CH_3)_3N\cdot C_6H_4]_2CH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Kochen von 2-Methoxy-benzaldehyd (Bd. VIII, S. 43) mit Dimethylanilin, konz. Salzsäure und Alkohol (Noelfing, Gerlinger, B. 39, 2049; VOTOČEK, KRAUZ, B. 42, 1606). — Nädelchen (aus Alkohol). F: 146° (N., G.), 155° (V., K.), 153—154° (V., Матёлка, В. 46 [1913], 1758). Schwer löslich in kaltem Alkohol, reichlicher in der Warme; ziemlich schwer löslich in Äther, leichter in Ligroin, leicht in Benzol, Toluol, Aceton, Schwefelkohlenstoff und Chloroform (N., G.). — Durch Oxydation mit Bleidioxyd entsteht eine grüne Lösung, aus der das Chlorzinkdoppelsalz eines blaustichig grün färbenden, gegen Alkalien beständigen Farbstoffes als dunkelrotbraunes Pulver abgeschieden wird (N. G.; vgl. V., K.). Liefert beim Erwärmen mit 2 Tln. konz. Schwefelsäure und 1 Tl. rauchender Schwefelsäure von 25% Anhydridgehalt auf dem Wasserbade eine 4'.4"-Bisdimethylamino-2-methoxy-triphenylmethan-sulfonsäure (Syst. No. 1926) (N., G.).
- 4'.4"-Bis-dimethylamino-2-äthoxy-triphenylmethan $C_{23}H_{20}ON_3=[(CH_3)_2N\cdot C_0H_4]_3CH\cdot C_0H_4\cdot O\cdot C_2H_5$. Beim Erhitzen von 2-Äthoxy-benzaldehyd mit Dimethylanilin und konz. Salzsäure unter Zusatz von etwas Alkohol auf 130° (Votoček, Krauz, B. 42, 1608). — F: 119°. Leicht löslich in Methylalkohol und Äthylalkohol, sowie in Aceton, weniger in Benzol, sehr wenig in Ligroin. — Liefert bei der Oxydation mit Chloranil oder Bleidioxyd einen grünen, gegen Alkalien beständigen Farbstoff.
- **4′.4″** Bis dimethylamino 2 acetoxy triphenylmethan $C_{22}H_{28}O_2N_2=[(CH_3)_2N\cdot$ CeH412CH·CeH4·O·CO·CH3. B. Bei längerem Kochen von 4'.4"-Bis-dimethylamino-2-oxytriphenylmethan mit Essigsäureanhydrid (O. FISCHER, B. 14, 2523). — Irisierende Blättchen (aus Alkohol). F: 144°. — Gibt bei der Oxydation einen grünen Farbstoff.
- **4.4'.4"** Tris dimethylamino 2 oxy triphenylmethan $C_{2n}H_{31}ON_3 = [(CH_3)_2N \cdot$ $C_6H_4]_2CH \cdot C_6H_3[N(CH_3)_2] \cdot OH$. B. Bei 6—7-stdg. Erwärmen von 4.4'-Bis-dimethylaminobenzhydrol (S. 698) mit 3-Dimethylamino-phenol (S. 405), konz. Salzsäure und etwas Alkohol auf dem Wasserbade (Norlting, Gerlinger, B. 39, 2053). Durch Diazotieren von 2-Amino-4.4'.4"-tris-dimethylamino-triphenylmethan (S. 342) in sehr verdünnter salzsaurer oder schwefelsaurer Lösung und Verkochen der Diazoniumsalzlösung (HALLER, GUYOT, Bl. [3] 25, 752). — Nadeln (aus Alkohol), die sich an der Luft rötlich färben (N., GE.). F: 172—174° (Zers.) (N., Gz.), 1736 (H., Gv.). Leicht löslich in Alkohol, Äther und den übrigen organischen Solvenzien (N., GE.). — Läßt sich nur unvollkommen zu einem blauen Farbstoff oxydieren (N., GE.).
- 4.4'.4"-Tris-dimethylamino-2-acetoxy-triphenylmethan $C_{27}H_{33}O_2N_3 = [(CH_3)_2N \cdot C_{37}H_{33}O_2N_3]$ C_6H_4] $CH \cdot C_6H_3$ [N(CH₂)₂] · O·CO·CH₃. B. Beim Behandeln von 4.4'.4". Tris-[dimethylamino] -2-oxy-triphenylmethan mit heißem Essigsäureanhydrid (NOELTING, GERLINGER, B. 39, 2054). — Nädelchen (aus Alkohol). F: 171—173° (Zers.). — Färbt sich an der Luft blaßviolett. Gibt mit Bleidioxyd einen violettstichig blau färbenden Farbstoff, dessen Chlorzinkdoppelsalz ein dunkelviolettes Pulver bildet und sich in Wasser mit violettstichig blauer Farbe löst, die mit Mineralsäuren in Orange umschlägt.
- 2. Aminoderivate des 3-Oxy-triphenylmethans $C_{19}H_{16}O = (C_6H_5)_2CH \cdot C_6H_4 \cdot OH$ (Bd. VI, S. 712). Vgl. auch No. 3 auf S. 737.

O·CH.

N(CH₃)₂

4'.4"-Bis-dimethylamino-8-methoxy-triphenylmethan C₂₄H₂₈ON₂, s. nebenstehende Formel. B. Bei 10-stdg. Kochen von 3-Methoxy-benzaldehyd (Bd. VIII, (CH₃₎₂N·< S. 59) mit Dimethylanilin und konz. Salzsäure unter Zusatz von Alkohol am Rückflußkühler (Norlting, Gerlinger, B. 39, 2051; vgl. Höchster Farbw., D. R. P. 46384; Frdl. 2, 34). — Blättehen (aus Alkohol). F: 123°;

ziemlich löslich in Alkohol und Äther, leicht in Benzol,
Toluol, Aceton, Schwefelkohlenstoff und Chloroform (N., G.). — Der durch Bleidioxyd erhaltene Farbstoff gibt ein in kupferroten Körnern ausfallendes Chlorzinkdoppelsalz, dessen grüne Lösung durch Mineralsäuren orangefarben wird und auf der Faser grüne Töne erzeugt (N., G.). Durch Sulfurierung und Oxydation des Reaktionsproduktes wird ein blauer, alkaliechter Farbstoff erhalten (H. F.).

4'.4" - Bis - dimethylamino - 8 - athoxy - triphenylmethan $C_{25}H_{20}ON_2 = [(CH_2)_2N \cdot$ C₆H₄]₂CH·C₆H₄·O·C₅H₅. B. Bei 12-stdg. Erhitzen von 3-Athoxy-benzaldehyd mit Dimethylanilin, konz. Salzsaure und etwas Alkohol auf 130° (Votoček, Krauz, B. 42, 1608; vgl. Höchster Farbw., D. R. P. 46384; Frdl. 2, 34). — Krystalle (aus Alkohol). F: 120° (V., K.). — Durch Sulfurierung und Oxydation des Reaktionsproduktes entsteht ein blauer, alkali-echter Farbstoff (H. F.). 4'.4''-Bis-diäthylamino-3-oxy-triphenylmethan $C_{27}H_{34}ON_2 = [(C_2H_5)_2N\cdot C_6H_4]_2CH\cdot C_6H_4\cdot OH.$ B. Beim Erhitzen von 3-Oxy-benzaldehyd mit Diäthylanilin in konz. Schwefelsäure auf 130° (Höchster Farbw., D. R. P. 46384; Frdl. 2, 32). Durch Reduktion von 3''-Nitro-4.4'-bis-diäthylamino-triphenylmethan (S. 279), Diazotieren des (nicht näher beschriebenen) 3-Amino-4'-4''-bis-diäthylamino-triphenylmethans in salzsaurer Lösung und Verkochen der Diazoniumsalzlösung (H. F.). — Farbloses krystallinisches Pulver, das sich an der Luft rasch färbt. Schr leicht löslich in Äther, Benzol und Toluol, etwas schwerer in Alkohol, unlöslich in Wasser und verd. Alkalien. — Beim Behandeln mit Mangandioxyd oder Bleidioxyd in verdünnt saurer Lösung entsteht ein gelbgrüner Farbstoff. Durch Behandeln mit rauchender Schwefelsäure (10°/0 SO₃-Gehalt) und Oxydation des Reaktionsproduktes erhält man den Farbstoff Patentblau V (Syst. No. 1927) (vgl. Schultz, Tab. No. 543).

4'.4"- Bis-äthylbenzylamino - 3-oxy-triphenylmethan $C_{37}H_{38}ON_{2}=[C_{4}H_{5}\cdot CH_{3}\cdot N(C_{2}H_{5})\cdot C_{6}H_{4}]_{2}CH\cdot C_{6}H_{4}\cdot OH$. B. Beim Erhitzen von 3-Oxy-benzaldehyd mit Athylbenzylanilin (Bd. XII, S. 1026) in konz. Schwefelsäure auf 130° (Höchster Farbw., D. R. P. 46384; Frill. 2, 32). Durch Kondensation von 3-Nitro-benzaldehyd mit Athylbenzylanilin, Reduktion des Kondensationsproduktes, Diazotieren des entstandenen 3-Amino-4'.4"-bis-[āthylbenzylamino]-triphenylmethans in verd. Schwefelsäure und Verkochen der Diazoniumsalz-lösung (H. F.). — Krystallinisch. Leicht löslich in Ather, Benzol und Toluol, etwas schwerer in Alkohol, unlöslich in Wasser und in verd. Alkalien. — Durch Sulfurieren und Oxydation des Reaktionsproduktes erhält man den Farbstoff Patentblau A (Syst. No. 1927) (vgl. Schultz, Tab. No. 545).

3. Aminoderivat des 2- oder des 3-Oxy-triphenylmethans $C_{19}H_{14}O=(C_{6}H_{5})_{2}CH\cdot C_{6}H_{4}\cdot OH.$

5 oder 6 - Nitroso - 4'.4" - bis - dimethylamino - 2 oder 3 - oxy - triphenylmethan $C_{23}H_{25}O_2N_3=[(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_3(NO)\cdot OH$ ist desmotrop mit 2-[4.4'-Bis-(dimethylamino)-benzhydryl]-chinon-oxim-(1 oder 4) $[(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_3(:O):N\cdot OH$, Syst. No. 1874

4. Aminoderivate des 4-Oxy-triphenylmethans $C_{19}H_{16}O = (C_{0}H_{5})_{2}CH \cdot C_{0}H_{4} \cdot OH$ (Bd. VI, S. 712).

a-Anilino-4-methoxy-triphenylmethan $C_{28}H_{23}ON = (C_8H_8)_2C(NH \cdot C_8H_8) \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Hinzufügen von Anilin zu einer Benzollösung von a-Chlor-4-methoxy-triphenylmethan (Bd. VI, S. 713) (BAEYER, VILLIGER, B. 37, 608). — Warzenförmig verwachsene Täfelchen (aus Äther). F: 138—139°. Schwer löslich in Alkohol und Ligroin, leichter in Äther, leicht löslich in den anderen Lösungsmitteln. — Wird von Mineralsäuren in a-Oxy-4-methoxy-triphenylmethan (Bd. VI, S. 1044), durch Erhitzen mit Benzoesäure in Anhydro-[4-anilino-triphenylcarbinol] (S. 741) übergeführt.

4'.4" - Diamino - 4 - methoxy - triphenylmethan H₂N. C₂₀H₂₀ON₂, s. nebenstehende Formel. B. Beim Erhitzen von 50 g Anisaldehyd (Bd. VIII, S. 67) mit 45 g Anilin und 100 g Salzsäure (MAZZARA, POSSETTO, G. 15, 57). — Krystallkrusten (aus Toluol) mit 1 Mol. Toluol, das bei 70° entweicht. F: 65°.

4'.4"-Bis-dimethylamino-4-oxy-triphenylmethan C₂,H₃eON₂=[(CH₃)₂N·C₂H₄]₂CH·C₆H₄·OH. B. Beim Erhitzen von 4-Oxy-benzaldehyd (Bd. VIII, S. 64) mit Dimethylanilin und Chlorzink auf dem Wasserbade (O. FISCHER, B. 14, 2523). Durch Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol (S. 698) mit Phenol und konz. Salzsäure auf dem Wasserbade (Votoček, Ob. Z. 20 Repertorium, S. 4; vgl. V., Krauz, B. 42, 1604 Anm. 2). Entsteht auch durch Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol mit Anisol oder Phenetol und konz. Salzsäure auf dem Wasserbade (V., Jelínek, B. 40, 408, 409; vgl. V., K., B. 42, 1607, 1609)¹). — Krystalle (aus Alkohol). F: 163° (O. FI.), 162° (V.). Färbt sich beim Schmelzen rot (O. FI.). Sehr schwer löslich in Ligroin, spurenweise löslich in Wasser, leicht in Benzol und Toluol; löst sich in sehr verdünntem Alkali (O. FI.). — Kocht man die alkoh. Lösung mit Chloranil, so färbt sie sich violettrot und auf Zusatz von Essigsäure oder sehr verdünnten Mineralsäuren intensiv grün; die Lösung ist im auffallenden Lichte grün, im durchfallenden rotviolett; durch Ammoniak wird die grüne Lösung wieder rotviolett (O. FI.).

4'.4''-Bis - dimethylamino - 4 - methoxy - triphenylmethan $C_{24}H_{26}ON_2 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Erhitzen von Anisaldehyd mit Dimethylanilin in Gegenwart von Chlorzink auf dem Wasserbade (Votoček, Jelínek, B. 40, 407) oder in Gegenwart

¹⁾ Vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Votoček, Köhler, B. 48, 1760.

von konz. Salzsäure und etwas Alkohol auf 110—120° (Noelting, Gerlinger, B. 39, 2051; V., Krauz, B. 42, 1607). — Nädelchen (aus Alkohol), Prismen (aus Äther). F: 105° (N., G.), 106° (V., J.; V., K.). Leicht löslich in Alkohol, sehr leicht in Äther, Benzol, Toluol, Ligroin, Schwefelkohlenstoff und Chloroform (N., G.). — Wird durch Chloranil in alkoholisch-essigsaurer oder durch Bleidioxyd in essigsaurer Lösung zu einem grünen, alkalibeständigen (V., J.), durch Kochsalz in stahlblauen Blättchen fällbaren (N., G.) Farbstoff oxydiert, dessen Lösung in auffallendem Licht grün, in durchfallendem Licht rot erscheint (V., J.) und durch Mineralsäuren carminrot gefärbt wird (N., G.). Liefert mit konz. Salzsäure bei 120° 4′.4″-Bisdimethylamino-4-oxy-triphenylmethan (V., K., B. 42, 1610)¹). Beim Erwärmen mit 2 Tln. konz. Schwefelsäure und 1 Tl. rauchender Schwefelsäure von 25°/0 Anhydridgehalt auf dem Wasserbade entsteht 4′.4″-Bis-dimethylamino-4-methoxy-triphenylmethan-sulfonsäure-(3?) (Syst. No. 1926) (N., G.). — Pikrat. Schwer löslich in kaltem 90°/0 gem Alkohol, Benzol und Toluol (V., J.).

4'.4"- Bis - dimethylamino - 4 - šthoxy - triphenylmethan $C_{35}H_{30}ON_3=[(CH_3)_2N\cdot C_6H_4]_3CH\cdot C_6H_4\cdot O\cdot C_2H_5$. B. Beim Erhitzen von 4-Äthoxy-benzaldehyd mit Dimethylanilin in Gegenwart von Chlorzink auf dem Wasserbade (Feitsch, A. 329, 81; Votoček, Jelínek, B. 40, 407) oder in Gegenwart von konz. Salzsäure und etwas Alkohol auf 130° (V., Krauz, B. 42, 1608). Durch trockne Destillation von 4'.4"-Bis-dimethylamino-4-šthoxy-triphenylmethan-carbonsšure-(2) (Syst. No. 1911) mit Barythydrat im luftverdünnten Raum und Wasserstoffstrom (F.). — Nadeln (aus Alkohol). F: 125° (F.; V., J.). Leicht löslich in heißem Alkohol, schwer in kaltem Benzol und Ligroin (V., J.). — Wird durch Chloranil in alkoholisch-essigaurer Lösung oder durch Bleidioxyd in verd. Essigsäure zu einem grünen, alkaliechten Farbstoff oxydiert, dessen Lösung im auffallenden Lichte grün durchfallenden Licht rot erscheint (V., J.; V., K.). Geht beim Erhitzen mit konz. Salzsäure auf 120° in 4'.4"-Bis-dimethylamino-4-oxy-triphenylmethan über (V., K., B. 42, 1610)¹). — Pikrat. Schwer löslich in kaltem Alkohol und Benzol (V., J.).

4'.4"-Bis-dimethylamino-4-acetoxy-triphenylmethan $C_{25}H_{26}O_3N_2=[(CH_3)_2N\cdot C_4H_4]_2CH\cdot C_6H_4\cdot O\cdot CO\cdot CH_3$. B. Bei längerem Kochen von 4'.4"-Bis-dimethylamino-4-oxy-triphenylmethan mit Essigsäureanhydrid (O. FISCHER, B. 14, 2523). — Prismen (aus Alkohol). F:146°. — Liefert bei der Oxydation einen grünen Farbstoff, dessen Lösungen keinen Dichroismus zeigen.

5. Aminoderivate des a - Oxy - triphenylmethans (Triphenylcarbinols) $C_{10}H_{10}O=(C_6H_5)_3C\cdot OH$ (Bd. VI, S. 713).

Monoaminoderivate des Triphenylcarbinols.

2-Amino-triphenylcarbinol und seine Derivate.

2-Amino-triphenylearbinol $C_{19}H_{17}ON$, s. nebenstehende Formel.

B. Beim Behandeln von Anthranilsäuremethylester (Syst. No. 1891)

mit Phenylmagnesiumbromid in Äther; man zersetzt das mit Eis $(C_9H_5)_2C(OH)$ gekühlte Produkt mit Essigsäure (Bafyrr, VILLIGER, B. 37, 3192).

Weiße Nadeln (aus Benzol), weiße Tafeln (aus Äther). F: 121,5°. Leicht löslich in Benzol, Alkohol und Pyridin, schwerer in Äther und Ligroin. — Liefert beim Erhitzen über die Schmelztemperatur 9-Phenyl-acridin (Syst. No. 3092). Bei der Reduktion mit Zinkstaub in essigsaurer Lösung entsteht 2-Acetamino-triphenylmethan (Bd. XII, S. 1341). Bei längerem Kochen mit Salzsäure entsteht eine gelbe, grün fluorescierende Lösung, die ein leicht flüchtiges, nicht basisches Öl vom Geruch des Diphenyls abscheidet. Leitet man Chlorwasserstoff in eine Lösung von 1 Tl. des Carbinols in 12 Tln. trocknem Äther, so entsteht zunächst das salzsaure Salz des Carbinols (s. u.), das bei längerem (12 Stdn.) Einleiten von Chlorwasserstoff in das salzsaure Salz des a-Chlor-2-amino-triphenylmethans (Bd. XII, S. 1341) übergeht. Behandelt man 2-Amino-triphenylcarbinol mit Essigsäureanhydrid unter Zusatz von wasserfreiem Natriumacetat und fällt dann mit Wasser, so erhält man 2-Methyl-6.6-diphenyl-4.5-benzo-1.3-oxazin C_9H_4 (Syst. No. 4203), beim Behandeln mit Essigsäureanhydrid ohne Zusatz von Natriumacetat entsteht 2-Acetamino-triphenylcarbinol (S. 739). — $C_{19}H_{17}ON + HCl + \frac{1}{2}H_2O$. B. Man löst 2-Amino-triphenylcarbinol in verd. Salzsäure und fällt mit konz. Salzsäure (B., V.). Weiße Nadeln. Färbt sich von ca. 140° an braun und schmilzt unter Zersetzung um 164° (bei raschem Erhitzen bei 170°). Löslich in verd. Salzsäure und Alkohol, unlöslich in konz. Salzsäure. — Pikrat $C_{19}H_{17}ON + C_6H_9O_7N_3$.

B. Man versetzt eine heiße benzolische Lösung des Carbinols mit einem Überschuß von

¹⁾ Vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Votoček, Köhler, B. 46, 1760.

Pikrinsäure in Benzól (B., V.). Hellgelbe Platten mit ½ Mol. Krystallbenzol (aus Benzol). F: 122,5—123,5° (Zers.). Leicht löslich in Alkohol, wenig in Benzol.

Dimeres Anhydro-[2-amino-triphenylcarbinol], dimeres o-Chinon-diphenylmethid-imid C₃₈H₃₀N₂. Das Molekulargewicht ist ebullioskopisch in Pyridin bestimmt (B., V., B. 37, 3196). — B. Beim Kochen von 1 Tl. salzsaurem a-Chlor-2-amino-triphenylmethid-(B.) (B.) methan (Bd. XII, S. 1341) mit 2½ In. trocknem Pyridin (B., V.). — Weiße Prismen (aus Pyridin). F: ca. 250° (Zers.). Fast unlöslich in den gewöhnlichen indifferenten Lösungsmitteln,

leichter löslich in heißem Pyridin. - Bei längerem Erwärmen mit verd. Salzsäure entsteht 2-Amino-triphenylcarbinol. Gibt mit Eisessig-Bromwasserstoff eine hellgrüne Lösung, die durch Zugabe eines Tropfen Wassers unter vorübergehendem Erscheinen einer intensiv blauen Färbung entfärbt wird.

- 2-Dimethylamino-triphenylcarbinol C₂₁H₂₁ON = (CH₃)₂N·C₈H₄·C(C₆H₅)₂·OH. B. Bei der Einw. von Phenylmagnesiumbromid auf N.N-Dimethyl-anthranilsäure-methylester (Syst. No. 1894) in Äther; man zersetzt das Produkt mit Essigsäure (BAEYER VILLIGER, B. 37, 3204). Farblose tafelförmige Prismen (aus Ligroin oder Alkohol). F: 156—160°. Leicht löslich in Bengal und Pyridin, mäßig in Alkohol, schwierig in Äther und Ligroin. Beim Einleiten von Chlorwesertoff in die äther Lösung der Carbinels entsteht sunächt enkennen. Einleiten von Chlorwasserstoff in die äther. Lösung des Carbinols entsteht zunächst salzsaures 2-Dimethylamino-triphenylcarbinol (s. u.), das bei mehrstündigem Einleiten von Chlorwasserstoff in das – nicht analysierte – sirupöse salzsaure a-Chlor-2-dimethylamino-triphenylmethan übergeht. Läßt man die ätherisch-salzsaure Lösung längere Zeit an der Luft stehen, so bildet sich unter Entwicklung von Formaldehyd das salzsaure Salz des 2-Methylamino-triphenylmethans (Bd. XII, S. 1341). Gießt man eine Lösung des Carbinols in konz. Eisessig-Bromwasserstoff in viel Wasser oder Alkohol, so färbt sich die Flüssigkeit im ersten Moment blauviolett, verblaßt rasch, ist aber erst nach 5-10 Sekunden farblos geworden; die Lösung liefert dann auf Zusatz von Natronlauge das reine Carbinol zurück. — $C_{21}H_{21}ON + HCl + H_{2}O$. B. Beim Behandeln des Carbinols mit warmer verdünnter Salzsäure (B., V.). Farblose Prismen, die etwas oberhalb 100° das Krystallwasser verlieren. Schmilzt wasserhaltig bei 149—157° unter Dampfentwicklung, wasserfrei bei 187° unter Zersetzung. Gibt mit Alkalien das Carbinol zurück. — Pikrat C₂₁H₂₁ON + C₆H₃O₇N₃. B. Beim Behandeln einer heißen alkoholischen Lösung des Carbinols mit Pikrinsäurelösung (B., V.). Gelbe Täfelchen.
- **2-Anilino-triphenylcarbinol** $C_{25}H_{21}ON = C_6H_5 \cdot NH \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot OH$. Kochen von N-Phenyl-anthranilsäure-methylester mit Phenylmagnesiumbromid in Äther auf dem Wasserbade; man zersetzt das Reaktionsprodukt durch Zusatz von Wasser und Essigsäure (B., V., B. 37, 3202). — Farblose Prismen (aus Ligroin). F: 127,5—128,5°. Leicht löslich in Benzol, Äther und Alkohol, wenig in Ligroin. Besitzt keine basischen Eigenschaften; geht schon beim Behandeln mit sehr schwachen Säuren (z. B. Pikrinsäure) in 9.9-Diphenylacridindihydrid (Syst. No. 3095) über.
- **2-Acetamino-triphenyloarbinol** $C_{a1}H_{19}O_{a}N=CH_{3}\cdot CO\cdot NH\cdot C_{6}H_{4}\cdot C(C_{6}H_{5})_{2}\cdot OH.$ Beim Behandeln von 2-Amino-triphenyloarbinol mit Essigsäureanhydrid (B., V., B. 37, 3198). Aus 2-Methyl-6.6-diphenyl-4.5-benzo-1.3-oxazin C_0H_4 $N = C \cdot CH_3$ (Syst. No. 4203) beim Behandeln mit wäßrig-methylalkoholischer Salzsäure oder beim Versetzen einer siedendheißen Lösung in Eisessig mit Wasser bis zur beginnenden Trübung (B., V.). — Tafelförmige Prismen. Schmilzt, rasch erhitzt, bei 1920 unter Zersetzung.

3-Amino-triphenylcarbinol und seine Derivate.

8-Amino-triphenylcarbinol $C_{10}H_{17}ON$, s. nebenstehende NH, Formel. B. Beim Behandeln von 3-Nitro-triphenylcarbinol (Bd. VI, S. 720) mit Zinkstaub in Eisessig (Tschacher, B. 21, 190). — Farblose Krystalle (aus Äther). F: 155° . — $C_{19}H_{17}ON + HCl$.

8-Dimethylamino-triphenylcarbinol $C_{21}H_{21}ON = (CH_3)_2N \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot OH$. B. Beim Behandeln von 1 Mol.-Gew. 3-Dimethylamino-benzoesäure-methylester (Syst. No. 1905) mit 1½ Mol.-Gew. Phenylmagnesiumbromid in Äther; man zersetzt das Reaktionsprodukt mit Essigsäure (BAEYER, A. 354, 175). — Farblose Tafeln (aus Äther oder Ligroin). F: 110°. Löst sich farblos in konz. Schwefelsäure, mit schwach gelber Farbe in rauchender Salzsäure. - Beim Einleiten von Chlorwasserstoff in die äther. Lösung des Carbinols entsteht zunächst sein salzsaures Salz $C_{21}H_{21}ON + HCl$, darauf salzsaures a-Chlor-3-dimethylamino-triphenylmethan (Bd. XII, S. 1342). — $C_{21}H_{21}ON + HCl$. Farblose Blättchen (aus Wasser). F: 181° (Bräunung).

Methyläther $C_{22}H_{33}ON = (CH_3)_2N \cdot C_2H_4 \cdot C(C_2H_5)_2 \cdot O \cdot CH_3$. Beim Behandeln des salzsauren Salzes des a-Chlor-3-dimethylamino-triphenylmethans (Bd. XII, S. 1342) in methylmet alkoholischer Lösung mit Natriummethylat (B., A. 354, 176). — Tafeln und Prismen (aus Ligroin). F: 81°.

 $\textbf{3-Acetamino-triphenylcarbinol} \quad C_{22}H_{19}O_{2}N = CH_{3}\underline{\cdot}CO\cdot NH\cdot C_{6}H_{4}\cdot C(C_{6}H_{\underline{5}})_{3}\cdot OH. \quad \textit{B.}$ Beim Behandeln von 3-Amino-triphenylcarbinol mit Essigsäureanhydrid (TSCHACHER, B. 21, 191). — Farblose Blättchen (aus Äther). F: 1640.

4-Amino-triphenylcarbinol und seine Derivate.

NH₂. B. Bei der Re-**4-Amino-triphenylcarbinol** $C_{19}H_{17}ON = (C_6H_5)_2C(OH) \cdot \langle$ duktion von 4-Nitro-triphenylcarbinol (Bd. VI, S. 720) mit Zinnfolie in Eisessiglösung in der Kälte (BAEYER, VILLIGER, B. 37, 607). Beim Verseifen von 4-Acetamino-triphenvicarbinol (S. 741) mit verd. Schwefelsäure (BAEYER, LÖHR, B. 23, 1625; B., V., B. 37, 600). Das Salz [C₁₉H₁₄N]Cl (s. u.) entsteht beim Erhitzen von salzsaurem a-Chlor-4-amino-triphenylmethan (Bd. XII, S. 1343) im trocknen Wasserstoffstrom auf 100° (Baeyer, Villiger, B. 37, 601). Salze vom Typus [C₁₉H₁₆N]Ac entstehen auch bei Behandlung von dimerem Anhydro-[4-amino-triphenylcarbinol] (s. u.) mit wasserfreien Säuren, z. B. Chlorwasserstoff oder Oxalsäure (B., V., B. 36, 2795). — 4-Amino-triphenylcarbinol bildet farblose Krystalle (aus Ather + Ligroin oder aus Toluol) (B., L., vgl. indessen B., V., B. 37, 600). F: 116° (B., L.). Löslich in Alkohol, Ather und Benzol, sehr wenig in Ligroin (B., L.). Bei allmählichem Hinzufügen emer benzousenen Losung des Carbinols zu einer Lösung von Pikrinsäure in Benzol entsteht das orangefarbene Pikrat des 4-Amino-triphenylcarbinols (s. u.), beim Behandeln mit alkoh. Pikrinsäure in der Siedehitze bildet sich das rote Pikrat [C₁₉H₁₆N]C₆H₂O₇N₃ (s. u.) (B., V., B. 37, 602). Beim Sättigen einer äther. Suspension von salzsaurem 4-Amino-triphenylcarbinol C₁₉H₁₇ON+HCl mit Chlorwasserstoff entsteht salzsaures a-Chlor-4-amino-triphenylmethan (Bd. XII, S. 1343) (B., V., B. 37, 601). Beim Hinzufügen von Salzsäure zu einer Lösung von salzsaurem 4-Amino-triphenylcarbinol C₁₉H₁₇ON+HCl und Ammoniumrhodanid in 90% gigem Alkohol erhält man das salzsaure Salz des [4-Amino-triphenylcarbin]-rhodanids (S. 741) (B., V., B. 37, 602). Die Salze vom Typus [C₁₉H₁₆N]Ac geben beim Behandeln mit trocknem Pyridin oder beim Schütteln mit Ammoniak und Benzol dimeres Anhydroeiner benzolischen Lösung des Carbinols zu einer Lösung von Pikrinsäure in Benzol entsteht mit trocknem Pyridin oder beim Schütteln mit Ammoniak und Benzol dimeres Anhydro-[4-amino-triphenylcarbinol] (B., V., B. 37, 601, 602). — Färbt tannierte Baumwolle

ockergelb (B., V., B. 37, 2858).

Salze vom Typus C₁₈H₁₇ON + HAc. C₁₉H₁₇ON + HCl. Wurde in hellorangefarbenen (vgl. B., V., B. 37, 3209) Blättchen erhalten (B., V., B. 37, 600). Spaltet beim Erhitzen im Wasserstoffstrome auf 130° unter Dunkelfärbung langsam Wasser ab und schmilzt bei 150° unter teilweiser Zersetzung zu einem roten Sirup (B., V., B. 37, 600). — 2C₁₈H₁₇ON + H₂SO₄ + H₂O. Wurde in roten (vgl. B., V., B. 37, 600) Tafeln (aus verd. Schwefelsäure) H₂SO₄ + H₂O. Wurde in roten (vgl. B., V., B. 37, 600) Tafein (aus verd. Schwefelsaure) erhalten; leicht löslich in Alkohol, unlöslich in Ather; verliert bei 100° das Krystallwasser; wird gegen 120° unter teilweiser Zersetzung schwarz (B., L.). — Pikrat. Orangefarbene Blättchen (aus Benzol), die Krystallbenzol enthalten; leicht löslich in Alkohol; liefert, mit Pyridin behandelt, 4-Amino-triphenylcarbinol (B., V., B. 37, 602).

Salze vom Typus [C₁₀H₁₀N]Ac. [C₁₀H₁₀N]Cl. Orangerotes Pulver; leicht löslich in Chloroform mit roter Farbe (B., V., B. 37, 601). — Pikrat [C₁₀H₁₀N]C₄H₂O₇N₃. Rote Krystalle (B., V., B. 36, 2794). Schwer löslich in Alkohol (B., V., B. 37, 602).

Dimeres Anhydro (4-amino-triphenylcarbinol), dimeres n.Chinon-dinhe.

Dimeres Anhydro-[4-amino-triphenylcarbinol], dimeres p-Chinon-diphenylmeres Annydro-[4-amino-tripnenylcaribinol], dimeres p-Uninon-dipnenylmethid-imid, dimeres Fuchson-imid C₃₆H₃₀N₂. Das Molekulargewicht ist ebullioskopisch bestimmt (Baryer, Villger, B. 37, 604). — Zur Konstitution vgl. B., V., B. 37, 2878. — B. Bei der Einw. von Phenylmagnesiumbromid auf 4-Amino-benzophenon (Syst. No. 1873) in Äther; man zersetzt mit Wasser unter Zugabe von Essigsäure (B., V., B. 36, 2794). Beim Behandeln des Pikrates [C₁₉H₁₆N]C₆H₂O₇N₃ (s. o.) mit trocknem Pyridin (B., V., B. 37, 603). — Farblose Blättchen oder Prismen aus Benzol, die häufig Krystallbenzol enthalten, farblose Nadeln aus Pyridin mit 3 Mol. Krystallbenzidin. Fig. 22 3008 benzol enthalten; farblose Nadeln aus Pyridin mit 3 Mol. Krystallpyridin; F: ca. 300° (Zers.); schwer löslich außer in Pyridin (B., V., B. 36, 2795; 37, 604). — Bei der Behandlung mit wasserfreien Säuren, z. B. Oxalsäure oder Chlorwasserstoff, entstehen die roten Salze vom Typus [C_{1,}H_{1e}N]Ac, mit wasserhaltigen Säuren bilden sich die wenig gefärbten Salze vom Typus $C_{19}H_{17}ON + HAc$ (B., V., B. 86, 2795; 87, 604).

- **4-Methylamino-triphenylearbinol** $C_{30}H_{19}ON = CH_3 \cdot NH \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot OH$. Man kondensiert Benzhydrol mit Monomethylanilin zu 4-Methylamino-triphenylmethan, acetyliert dieses und oxydiert das erhaltene 4-Acetylmethylamino-triphenylmethan mit Braunstein in mit etwas verd. Schwefelsäure versetzter Eisessiglösung bei Wasserbadtemperatur; darauf verseift man das gebildete 4-Acetylmethylamino-triphenylcarbinol mit 30% jeer Schwefelsäure (Baryer, Villiger, B. 37, 2859). — Löst sich in Mineralsäuren mit Orangefarbe. Beim Kochen mit alkoh. Pikrinsäurelösung erhält man je nach den Bedingungen ein in orangefarbigen Blättchen oder in roten Nadeln krystallisierendes Pikrat.
- 4-Dimethylamino-triphenylcarbinol $C_{21}H_{32}ON = (CH_3)_2N \cdot C_2H_4 \cdot C(C_2H_5)_2 \cdot OH$. B. Durch Einw. von Dimethylanilin auf Benzophenonchlorid (Bd. V, S. 590) in Gegenwart von Chlorzink und Behandlung des Reaktionsproduktes mit Natronlauge (BAEYER, VILLIGER, B. 37, 2857) oder durch Einw. von Dimethylanilin auf Benzophenon (Bd. VII, S. 410) in

Gegenwart von Aluminiumchlorid und Zersetzung des Reaktionsproduktes mit Eis (HALLER, GUYOT, C. r. 144, 949). — Farblose Nadeln (aus Äther + Ligroin). F: 92—93°; leicht löslich in Benzol und Chloroform, etwas schwerer in Alkohol und Äther, noch weniger in Ligroin (B., V.). Löst sich in Säuren mit orangeroter Farbe; färbt tannierte Baumwolle orangerot (B., V.). — Saures Oxalat C₂₁H₂₁ON+C₂H₂O₄. Weiße Blättchen (B., V.).

4-Anilino-triphenylcarbinol $C_{25}H_{20}NN = C_5H_5 \cdot NH \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot OH$. B. Die dunkelfarbigen Salze vom Typus $[C_{25}H_{20}N]$ Ac entstehen aus Anhydro-[4-anilino-triphenylcarbinol] (s. u.) bei Behandlung mit Säuren (BAEYER, VILLIGER, B. 37, 609). Das freie 4-Anilino-triphenylcarbinol erhält man beim Schütteln einer äther. Lösung des Anhydro-[4-anilino-triphenylcarbinols] mit Wasser, das eine Spur Salzsäure enthält (B., V., B. 37, 611). — Konnte nur als farbloser Sirup erhalten werden. — Beim Erhitzen über 100° tritt tiefgehende Zersetzung ein. Beim Behandeln mit Säuren werden wieder die dunkelfarbigen Salze vom Typus $[C_{25}H_{20}N]$ Ac erhalten.

Typus [C₂₅H₂₀N]Ac erhalten.

Salze vom Typus [C₂₅H₂₀N]Ac. [C₂₅H₂₀N]Cl (bei 90° getrocknet). Dunkle Blättchen (B., V., B. 37, 611). — Sulfat. Schwarze Nadeln (B., V.). — Pikrat [C₂₅H₂₀N]C₃H₃O₇N₃ + 1/2C₃H₃. Schwarzviolette Nadeln (aus Benzol); verliert das Krystallbenzol beim Erhitzen

im Wasserstoffstrom auf 120° (B., V.).

Anhydro-[4-anilino-triphenylcarbinol], p-Chinon-diphenylmethid-anil, Fuchson-anil $C_{25}H_{19}N = C_6H_5 \cdot N \cdot C < CH \cdot CH > C \cdot C(C_6H_5)_2$. Das Molekulargewicht ist ebullioskopisch bestimmt (Baeyer, Villiger, B. 37, 610). — B. Bei 20-stdg. Erwärmen von 1 Mol.-Gew. a-Anilino-4-methoxy-triphenylmethan (S. 736) mit $^{1}/_{2}$ Mol.-Gew. Benzoesäure und etwas Benzol im Wasserbade (B., V.). — Rote Prismen (aus Ather). Schmilzt unscharf bei 133—138°. Leicht löslich in Benzol und Chloroform, schwerer in Ather und Ligroin. Die Lösung in Eisessig ist rubinrot, die Lösung in indifferenten Lösungsmitteln ist braunrot; die alkoh. Lösungen werden aber allmählich farblos, indem sich Ather des 4-Anilino-triphenylcarbinols bilden. Wird durch Zinkstaub und Eisessig leicht reduziert. Verbindet sich mit Wasser zu 4-Anilino-triphenylcarbinol. Mit Natriumdisulfit in Eisessig entsteht ein

4-Anilino-tripheaylcarbinol-methyläther $C_{26}H_{23}ON = C_6H_5 \cdot NH \cdot C_6H_4 \cdot C(C_6H_5)_8 \cdot O \cdot CH_3$. B. Beim Stehen einer methylalkoholischen Lösung des Anhydro-[4-anilino-triphenylcarbinols] (B., V., B. 37, 612). — Farblose Tafeln (aus Methylalkohol). F: 127°. Leicht löslich in Benzol und Chloroform, ziemlich leicht in Äther, schwieriger in kaltem Methylalkohol. — Wird durch Säuren, selbst durch Eisessig, zu den Salzen vom Typus $[C_{26}H_{20}N]$ Ac (s. den Artikel 4-Anilino-triphenylcarbinol) verseift.

krystallisiertes farbloses Salz; mit Anilin ein farbloses Additionsprodukt.

- 4-Acetamino-triphenylcarbinol $C_{21}H_{19}O_2N=CH_3\cdot CO\cdot NH\cdot C_4H_4\cdot C(C_4H_5)_2\cdot OH$. B. Durch vorsichtige Oxydation von 4-Acetamino-triphenylmethan (Bd. XII, S. 1343) mit Chromsäure in Eisessiglösung (Baeyer, Löhr, B. 23, 1624; B., Villiger, B. 37, 599). Nadeln (aus Benzol + Ligroin). F: 176° (B., L.).
- 3-Nitro-4-benzamino-triphenylcarbinol $C_{26}H_{20}O_4N_2=C_6H_5\cdot CO\cdot NH\cdot C_6H_3(NO_2)\cdot C(C_6H_5)_2\cdot OH$. B. Bei langsamem Eintropfen einer Lösung von 1,5 g Chromsäure in Eisessig in eine siedende Lösung von 2,5 g 3-Nitro-4-benzamino-triphenylmethan (Bd. XII, S. 1343) in wenig Eisessig (Thomar, J. pr. [2] 71, 576). Hellgelbe Nadeln (aus Alkohol). F: 169°. Gibt mit Alkalien eine bei 129° schmelzende Verbindung.
- [4-Amino-triphenylcarbin]-rhodanid $C_{20}H_{16}N_2S = H_2N \cdot C_6H_4 \cdot C(C_6H_5)_2 \cdot S \cdot CN$. B. Das salzsaure Salz wird erhalten durch Eingießen einer Lösung von 3 g salzsaurem 4-Aminotriphenylcarbinol und 3 g Ammoniumrhodanid in 40 g 90°/eigem Alkohol in 50 g Salzsäure (1:1) und weiteren Zusatz von verd. Salzsäure (BAEYER, VILLIGER, B. 37, 602). $C_{20}H_{16}N_2S + HCl$. Farblose Nadeln.

Diaminoderivate des Triphenylcarbinols.

2.2'-Bis-dimethylamino-triphenylcarbinol, Tetramethyl-2.2'-diamino-triphenylcarbinol $C_{23}H_{26}ON_2$, s. nebenstehende Formel. B. Bei der Einw. von [2-Dimethylamino-phenyl]-magnesiumjodid (Syst. No. 2337) in Ather + Benzol auf eine benzolische Lösung von Benzoesäureester; man zersetzt mit Wasser und Salzsäure (Baeyer, A. 354, 198). Aus 2.2'-Bis-dimethylamino-benzophenon (Syst. No. 1873) durch Einw. von Phenylmagnesiumbromid (Syst. No. 2337) in Ather und Zersetzen des Reaktionsproduktes mit Wasser und Salzsäure (B.). — Farblose Prismen (aus Ligroin). F: 105°. Leicht löslich in den meisten Lösungsmitteln, schwerer in Ather und Ligroin. Farblos löslich in Säuren.

hydrisieren (D.; B., V.) und ist bei 180° annähernd vollständig anhydrisiert (B., V.). Liefert beim Erhitzen mit Zinkstaub und Salzsäure 4.4'-Diamino-triphenylmethan (S. 274) (D., B. 15, 236; A. 217, 246). Beim Erhitzen mit salzsaurem Anilin auf 180—200° entsteht Diphenyl-

amingrün (S. 747) (D., B. 15, 237; vgl. A. 217, 248).

Farbsalze. Salzaures Salz, Doebnersches Violett [C₁₉H₁₇N₂]Cl. Grünmetallischglänzende Krystalle; die Krystallform ähnelt derjenigen des Kaliumpermanganats (BAEYER, VILLIGER, B. 37, 2863). Ziemlich löslich in kaltem, leichter in siedendem Wasser mit rotvioletter Farbe, leicht löslich in Alkohol mit violetter Farbe (Doebner, B. 15, 235; A. 217, 245). Absorptionsspektrum: Formanek, Zeitschr. f. Farben u. Textilchemie 2, 475; B., V.; B., A. 354, 159, 161. Durch Kochen mit Wasser tritt teilweise Zersetzung ein unter Abscheidung der Carbinolbase (D.). Durch Zusatz von überschüssigen Mineralsäuren geht die rotviolette Farbe der Lösungen in Orange über (B., V.). Überschüssige konzentrierte Mineralsäuren entfärben die Lösungen (D.). Durch Zusatz von Natronlauge zu einer wäßr. Lösung des Violetts entsteht je nach den Versuchsbedingungen 44'-Diamino-triphenylcarbinol (D.; B., V.) oder Anhydro-[4,4'-diamino-triphenylcarbinol] (s. u.) (B., V.). Über die Geschwindigkeit der Reaktionen des Doebnerschen Violetts mit Säuren und Alkalien vgl. Sidwick, Rivett, Soc. 95, 899, 903. Färbt Wolle und Seide violett; die Färbung ist aber unecht (D.). — Pikrinsaures Salz [C₁₉H₁₇N₂]C₂H₂O₇N₃. Schwarze Prismen (B., V.).

Anhydro-[4.4'-diamino-triphenylcarbinol], 4'-Amino-fuchson-imid1)

C₁₀H₁₆N₂ = HN:C CH:CH C:C(C₆H₅)·C₆H₄·NH₂. B. Durch Zusatz von Natronlauge zu einer mit Äther oder Benzol überschichteten wäßr. Lösung des Doebnebschen Violetts (s. o.) (Baeyer, Villiger, B. 37, 2864). — Löst sich in Äther oder Benzol mit gelber Farbe. Die Lösung färbt Papier violett; sie liefert beim Einleiten von Kohlensäure einen blauvioletten Niederschlag des kohlensauren Farbsalzes des 4.4'-Diamino-triphenylcarbinols; bei der Einw. von Säuren entstehen sofort die Farbsalze [C₁₀H₁₇N₁]Ac, ebenfalls bei Zusatz von Kochsalzlösung. Ist in Lösung ziemlich beständig und polymerisiert sich in trocknem Benzol erst innerhalb eines Tages; nach einigen Tagen ist die Lösung entfärbt unter Abscheidung eines violetten Pulvers, das mit Säuren die Farbsalze des 4.4'-Diamino-triphenylcarbinols liefert. Die gelben Lösungen des Anhydro-[4.4'-diamino-triphenylcarbinol] in Äther oder Benzol entfärben sich auf Zusatz von Wasser unter Bildung von 4.4'-Diamino-triphenylcarbinol, auf Zusatz von Methylalkohol rasch unter Bildung des 4.4'-Diamino-triphenylcarbinol-methyläthers.

- 4.4'-Diamino-triphenylcarbinol-methyläther $C_{20}H_{20}ON_2=(H_2N\cdot C_6H_4)_2C(C_6H_5)\cdot O\cdot CH_3$. B. Beim Behandeln des pikrinsauren Farbsalzes des 4.4'-Diamino-triphenylcarbinols $[C_{10}H_{17}N_2]C_6H_2O_7N_3$ mit einer methylalkoholischen Lösung von Natriummethylat (B., V., B. 37, 2863). Farblose Tafeln oder Stäbchen (aus Methylalkohol). F: 161—163°. Leicht löslich in warmem Methylalkohol und Benzol, schwer in Äther. Löst sich in verd. Säuren fast farblos auf, beim Erwärmen entstehen die Farbsalze des 4.4'-Diamino-triphenylcarbinols $[C_{19}H_{17}N_7]Ac$.
- 4.4'-Bis-methylamino-triphenylcarbinol $C_{21}H_{22}ON_2 = (CH_2 \cdot NH \cdot C_0H_4)_2C(C_0H_5) \cdot OH$. B. Beim Kochen von 4.4'-Bis-[methyl-cyan-amino]-triphenylcarbinol (S. 747) mit $20^9/_0$ iger Salzsäure (v. Braun, Röver, B. 37, 643). Schmilzt unscharf bei 95°. Leicht löslich in Alkohol, Ather und Benzol, schwer in Petroläther. Löst sich in verd. Säuren in der Kälte farblos auf, die Lösungen werden beim Erwärmen grün, auf Zusatz von konz. Säuren rot. Farbsalz $2[C_{21}H_{21}N_2]Cl + ZnCl_2 + H_2O$. Dunkelgrüne Krystalle (aus Wasser). F: 120°.

4.4'-Bis-dimethylamino-triphenylcarbinol, Tetramethyl-4.4'-diamino-triphenylcarbinol, Carbinolbase des Malachitgrüns $C_{23}H_{26}ON_2 = [(CH_3)_2N \cdot C_6H_4]_2C(C_6H_5) \cdot OH.$ B. bezw. Darst. Entsteht in Form eines Farbsalzes beim Erwärmen von 2 Mol.-Gew.

B. bezw. Darst. Entsteht in Form eines Farbsalzes beim Erwärmen von 2 Mol.-Gew. Dimethylanilin und dem halben Gewicht Chlorzink mit 1 Mol.-Gew. Benzotrichlorid (Bd. V, S. 300) auf dem Wasserbade (Doebner, B. 13, 2222; A. 217, 250; Akt.-Ges. f. Anilinf., D. R. P. 4322; Frdl. 1, 40), beim Erwärmen von Dimethylanilin mit Benzoesäureanhydrid in Gegenwart von Chlorzink auf dem Wasserbade (O. Fischer, B. 13, 809; A. 206, 137), bei der Einw. von 1 Tl. Benzoylchlorid auf 2 Tle. Dimethylanilin in Gegenwart von Chlorzink, neben anderen Produkten (E. Fischer, O. Fischer, B. 12, 797) oder beim Behandeln des aus 4-[Dimethylanino]-benzophenon (Syst. No. 1873) und der gleichen Gewichtsmenge Phosphortrichlorid bei 60—70° erhältlichen Produktes mit Dimethylanilin auf dem Wasserbade (Bad. Anilinus Sodaf., D. R. P. 27789; Frdl. 1, 84). Entsteht ferner in Form von Farbsalzen bei der Behandlung von 4.4'-Bis-dimethylamino-triphenylmethan (S. 275) mit Braunstein oder Bleidioxyd in saurer Lösung in der Kälte (E. Fi., O. Fr., B. 11, 950; 12, 796) oder mit Chloranil in alkoh.

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, S. 520.

Lösung (O. Fi., A. 206, 130). Zur Isolierung der Carbinolbase versetzt man die verdünnte wäßrige Lösung eines Farbsalzes allmählich mit stark verdünnter Natronlauge oder Sodalösung (VILLIGEB, KOPETSCHNI, B. 45 [1912], 2916, 2919; vgl. O. Fi., A. 206, 130; DOE.).

(VILLIGER, KOPETSCHNI, B. 45 [1912], 2916, 2919; vgl. O. FI., A. 206, 130; DOE.).

Zur technischen Darstellung von Malachitgrün kondensiert man Dimethylanilin und Benzaldehyd mittels Schwefelsäure (60—65° Bé) (vgl. FRIEDLÄNDER, Frdl. 1, 44; FIERZ-DAVID, Künstliche organische Farbstoffe [Berlin 1926], S. 227) und oxydiert die Leukobase mit Bleidioxydpaste in salzsaurer Lösung (Mühlhäuser, D. 263, 297; vgl. Schultz, Tab. No. 495). Beinigung und Krystallisation des Farbstoffes: Mü.

mit Bleidioxydpaste in salzsaurer Lösung (Mühlhäuser, D. 263, 297; vgl. Schultz. Tab. No. 495). Reinigung und Krystallisation des Farbstoffes: Mü.

Die Carbinolbase des Malachitgrüns bildet farblose Krystalle (aus Äther, Benzol oder Ligroin) vom Schmelzpunkt 107—107,5° (Meisenheimer, v. Budkewicz, Kananow, A. 423 [1921], 100; vgl. Doebner, B. 13, 2223; A. 217, 251; Villiger, Kopetschni, B. 45 [1912], 2916). Sie löst sich in Säuren zunächst fast farblos auf (Bildung von Salzen des Typus C₂₃H₂₆ON₂ + HAc), erst bei längerem Stehen oder rascher beim Erhitzen zeigt die Lösung die intensiv grüne Färbung der entstandenen (einsäurigen) Farbsalze [C₂₃H₂₅N₂]Ac (E. FISCHER, O. FISCHER, B. 12, 2348; O. FI., A. 206, 131; DOE.); bei vorsichtigem Behandeln der Carbinolbase mit bei 0° gesättigter eiskalter Oxalsäurelösung läßt sich ein farbloses oxalsaures Carbinolsalz (s. u.) isolieren (Lambrecht, Weil, B. 37, 3059; vgl. Schmidlin, C. r. 139, 676; A. ch. [8] 7, 239). Wärmetönung bei der Neutralisation der Carbinolbase mit Schwefelsäure: Sch., C. r. 139, 542; A. ch. [8] 7, 241. Geschwindigkeit der Reaktionen der Carbinolbase mit Säuren: Sidgwick, Moore, Soc. 95, 895, 896. — Die Carbinolbase zerfällt beim Erhitzen auf 200—250° in Formaldehyd und eine Verbindung $C_{22}H_{24}N_2$ (4-[Methylamino]-4'-dimethylamino-triphenylmethan?) (S. 745) (Well, B. 28, 213). Beim Behandeln mit Zinkstaub und Salzsäure entsteht 4.4'-Bis-dimethylamino-triphenylmethan (Leukomalachitgrün) (S. 275) (DDE.; vgl. PRUD'HOMME, Bl. [3] 17, 376). Einw. von Chlor und Brom: Chem. Fabr. Griesheim, DITTLER & Co., D. R. P. 27275; Frdl. 1, 43. Einw. von rauchender Salpetersäure: DOE. Bei der Einw. von Schwefelwasserstoff oder von Schwefelalkalien auf schwach saure, am besten alkoh. Lösungen von Malachitgrün entsteht 4.4'-Bisdimethylamino-triphenylcarbinthiol (S. 749), bei andauernder Einw. bildet sich Leukomalachitgrün (Lambrecht, Weil, B. 38, 270). Bildung eines farbigen Niederschlags bei der Einw. von Kaliumpolysulfid auf Malachitgrün: Pelet, Grand, C. 1907 II, 1529. Beim Einleiten von Schwefeldioxyd in eine Suspension der Carbinolbase in möglichst wenig Wasser entsteht 4.4'-Bis-dimethylamino-triphenylmethan-a-sulfonsäure (Syst. No. 1923) (Dürrschnabel, Weil, B. 38, 3495; vgl. Wieland, Scheuing, B. 54 [1921], 2527). Erwärmt man die Carbinolbase mit einem Überschuß von konzentrierter oder rauchender Schwefelgen der Schwefelgen de säure, bis eine Probe durch Natronlauge nicht mehr gefällt wird, und neutralisiert nach Verdünnen mit Wasser mit Natriumcarbonat, so erhält man das Natriumsalz der 4'.4"-Bis-dimethylamino-triphenylcarbinol-sulfonsäure-(4) (Helvetiagrün; Syst. No. 1926) neben höher sulfurierten Produkten (Dor.; Akt.-Ges. f. Anilinf., D. R. P. 6714; Frdl. 1, 117; vgl. Akt.-Ges. f. Anilinf., D. R. P. 25373; Frdl. 1, 119). Die Carbinolbase bleibt beim Erhitzen mit Wasser auf 200° unzersetzt; beim Erhitzen mit konz. Salzsäure auf 180° entstehen Dimethylanilin und 4-Dimethylamino-benzophenon (Syst. No. 1873) (Doe.). Bei kurzem Kochen einer alkoh. Lösung der Carbinolbase mit einer konzentriert-wäßrigen Lösung von Hydroxylamin bildet sich 4.4'-Bis-dimethylamino-a-hydroxylamino-triphenylmethan (Syst. No. 1939); in gleicher Weise entsteht mit Phenylhydrazin 4.4'-Bis-dimethylamino-a-[ω -phenyl-hydrazino]-triphenylmethan (Syst. No. 2083) (Weil, B. 28, 211; vgl. La., Weil, B. 38, 275). Bei mehrstündigem Erhitzen der Carbinolbase mit überschüssigem Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100° erhielt DOEBNER (B. 13, 2225; A. 217, 254) 4.4'-Bis-[dimethylamino]-triphenylcarbinol-bis-jodmethylat, während O. Fischer (A. 206, 134) bei 100-1100 unter sonst gleichen Versuchsbedingungen [4.4'-Bis-dimethylamino-triphenylcarbinol-methyläther]-bis-jodmethylat erhielt. Bei 130—140° erhielt O. FISCHER (A. 206, 135) neben dieser Verbindung 4.4'-Bis-dimethylamino-triphenylmethan-bis-jodmethylat (S. 276). Die Carbinolbase verbindet sich äußerst leicht mit Alkoholen zu den entsprechenden Äthern, z. B. mit Äthylalkohol zu $[(CH_s)_2N\cdot C_sH_s]_2C(C_sH_s)\cdot O\cdot C_2H_s$ (O. Fi., A. 206, 132; B. 33, 3356). Durch Behandeln einer Lösung von Malachitgrün mit Kaliumcyanid in der Kälte erhält man 4.4'-Bisdimethylamino-triphenylessigsäure-nitril (Syst. No. 1907) (HANTZSCH, OSSWALD, B. 83, 287,

Oxalat der Carbinolbase C₂₃H₂₆ON₂ + 2C₂H₂O₄ + 3H₂O. Zur Konstitution vgl. Schmidlin, C. r. 139, 676; A. ch. [8] 7, 239. B. Beim Verrühren von 3.46 g 4.4'-Bis-[dimethylamino]-triphenylcarbinol mit 60 ccm einer bei 0° gesättigten eiskalten Oxalsäurelösung (Lambrecher, Weil, B. 37, 3059). Farblose Krystalle. F: 78°; wird vor dem Schmelzen metallglänzend und schmilzt dann nochmals bei 110° (L., W.). Bei mehrstündigem Erhitzen auf 70° entweichen 4 Mol. Wasser unter Bildung des oxalsauren Farbsalzes; diese Umwandlung erfolgt auch beim Aufbewahren, sowie rasch beim Erhitzen der wäßr. Lösung (L., W.).

Far bs alze. Malachitgrün kommt als oxalsaures Salz und als Zinkchloriddoppelsalz in den Handel. Brechungsindices von festem Malachitgrün, bestimmt mit dem oxalsauren Salz, im Gebiet des sichtbaren Spektrums: Priticer, Ann. d. Physik [N. F.] 56, 430; vgl. Pfi., Ann. d. Physik [N. F.] 65, 192 Anm. Brechungsvermögen wäßr. Malachitgrünstung im Ultraviolett: FRICKE, Ann. d. Physik [4] 16, 881. Über anomale Dispersion des Malachitgrüns im sichtbaren Spektralgebiet, bestimmt mit dem oxalsauren Salz: Liemoult, C. r. 131, 840; 132, 785, bestimmt mit dem salzsauren Salz: Liemoult, C. r. 131, 840; 132, 785, bestimmt mit dem salzsauren Salz: Liemoult, C. r. 131, 840; 132, 785, bestimmt mit dem salzsauren Salz: Krüss, Ph. Ch. 51, 231. Die grüne Löung der einsäurigen Farbsalze wird durch Zusatz von konz. Mineralsäuren rotgelb unter Bildung mehrsäuriger Salze, die bei Zusatz von Wasser wieder in die grünen einsäurigen Farbsalze übergehen (Doebner, B. 13, 2223; A. 217, 252). Geschwindigkeit der Reaktionen der (einsäurigen) Farbsalze mit Säuren und Alkalien: Sidwick, Moore, Soc. 95, 893, 894, 895. Physiologisches Verhalten des Malachitgrüns: Fühner, B. 39, 2437.

— Schwefelsaure Salze. (C₁₂H₁₅N₂|HSO₄. Grüne Krystalle (O. Fischer, A. 206, 132; Sommidin, A. ch. [8] 7, 205). — [C₁₂H₁₅N₃|HSO₄. Grüne Krystalle (O. Fischer, A. 206, 132; Sommidin, A. ch. [8] 7, 205). — [C₁₂H₁₅N₃|HSO₄. + H₃O. Cantharidengrüne Prismen. Leicht löslich in wasser (O. Fi., A. 206, 132). — Oxalsaure Salze. 2[C₁₃H₁₅N₃]C₃HO₄ + C₃H₃O₄. Grüne Frismen. Leicht löslich in heißem, schwerer in kaltem Wasser, leicht in in Alkohol (Doebner, B. 13, 2224; A. 217, 253; O. Fi., B. 14, 2520). — 2[C₁₃H₁₅N₃]C₃HO₄ + C₃H₃O₄ + 2 H₂O. Titrimetrische Bestimmung mit Titantrichlorid: Knecht, Hibbert, Weil, B. 37, 3060). — Pikrinsaures Salz [C₁₂H₂₅N₃]C₆H₃O₇N₃. Goldglänzende Nadeln oder Prismen (aus Benzol) (O. Fi., A. 206, 134; Doe.). Fast unlöslich in Wasser, schwer löslich in Alkohol, leichter in heißem Alkohol (Doe.). — Zinkehlorid-doppelsalze. 3[C₁₃H₁₅N₃]Cl + 2 ZnCl₃ + 2 H₂O. Dunkelgrüne, cantharidenglänzende Prismen (aus verd. Alkohol). Leicht löslich in Wasser (O. Fi

Verbindung $C_{32}H_{54}N_{5}$, vielleicht 4-Methylamino-4'-dimethylamino-triphenylmethan $CH_{3}\cdot NH\cdot C_{6}H_{4}\cdot CH(C_{6}H_{5})\cdot C_{6}H_{4}\cdot N(CH_{5})_{2}$. B. Bei $^{1}/_{3}$ -stdg. Erhitzen von 4.4'-Bisdimethylamino-triphenylcarbinol auf 200° (Well, B. 28, 213). — Krystallpulver (aus Benzol + Ligroin). F: 155—156°. Leicht löslich in Chloroform, Benzol und Anilin, schwer in Alkohol und Ligroin.

- 4.4'-Bis-dimethylamino-triphenylcarbinol-methyläther $C_{24}H_{28}ON_2 = [(CH_3)_2N \cdot C_6H_4]_2C(C_6H_5) \cdot O \cdot CH_3$. B. Beim Stehenlassen von 4.4'-Bis-dimethylamino-triphenylcarbinol in konzentrierter methylalkoholischer Lösung (O. FISCHER, B. 33, 3356). Beim Behandeln von Malachitgrün (Farbsalz) mit Natriummethylat in Methylalkohol (BAEYER, VILLIGER, B. 37, 2867). Farblose Blättchen (aus Methylalkohol + etwas Ätzkali) (vgl. Herzig, Wengraf, M. 22, 608). F: 150—151°; sehr leicht löslich in Benzol, schwerer in Ligroin und Äther (O. FI.). Wird von Eisessig und anderen Säuren unter Bildung von Malachitgrün (Farbsalzen) zersetzt (O. FI.).
- 4.4'-Bis-dimethylamino-triphenylcarbinol-äthyläther $C_{25}H_{30}ON_2 = [(CH_3)_2N \cdot C_6H_4]_9C(C_6H_8) \cdot O \cdot C_9H_8$. B: Beim Erhitzen von 4.4'-Bis-dimethylamino-triphenylcarbinol mit überschüssigem Alkohol unter Druck auf 110—120° (O. FISCHER, A. 206, 132; B. 38, 3356). Farblose Blättchen oder Warzen. F: 162°.
- 4.4'-Bis-dimethylamino-triphenylcarbinol-benzyläther $C_{30}H_{32}ON_3=[(CH_3)_2N\cdot C_4H_4]_2C(C_4H_5)\cdot O\cdot CH_3\cdot C_4H_5$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-triphenylcarbinol mit überschüssigem Benzylalkohol auf etwa 170° (O. FI., B. 33, 3357). Weiße Nädelchen (aus Benzol + Methylalkohol). Erweicht bei 195° und schmilzt bei 198°. Spaltet bei der Einw. von Säuren Benzylalkohol ab unter Bildung von Malachitgrün (Farbsalzen).
- 4.4'- Bis dimethylamino triphenylcarbinol bis jodmethylat $C_{25}H_{32}ON_2I_2 = [(CH_2)_2NI \cdot C_2H_4]_2C(C_2H_4) \cdot OH$. B. Bei mehrstündigem Erhitzen von 4.4'-Diamino-triphenylcarbinol mit überschüssigem Methyljodid in methylalkoholischer Lösung auf 120° (DOEBNER, B. 15, 236). Bei mehrstündigem Erhitzen von 4.4'-Bis-dimethylamino-triphenylcarbinol mit überschüssigem Methyljodid in methylalkoholischer Lösung im Druckrohr auf 100° (D., B. 18, 2225; A. 217, 254). Blättchen (aus Wasser). Verliert bei 100° nichts an Gewicht, schmilzt bei 171—172° unter Grünfärbung und Abspaltung von Methyljodid; sehr wenig löslich in Alkohal, Äther, Benzol, Schwefelkohlenstoff, kaltem Wasser, leicht in heißem Wasser; färbt die Faser nicht an (D., B. 18, 2225; A. 217, 255).

[4.4'-Bis-dimethylamino-triphenylcarbinol-methyläther]-bis-jodmethylat $C_{26}H_{24}ON_3I_2=[(CH_3)_3NI\cdot C_6H_4]_3C(C_6H_5)\cdot O\cdot CH_3$. B. Bei mehrstündigem Erhitzen von 4.4'-Bis-dimethylamino-triphenylcarbinol mit überschüssigem Methyljodid in methylalkoholischer Lösung im geschlossenen Rohr auf 100—110° (O. FISCHEB, A. 206, 134). — Farblose Nadeln mit $2H_2O$ (aus Wasser). Ziemlich schwer löslich in Wasser. Verliert bei 100° Wasser und Methyljodid; bei 160° tritt vollkommene Zersetzung ein unter teilweiser Rückbildung von 4.4'-Bis-dimethylamino-triphenylcarbinol.

4.4'-Bis-diäthylamino-triphenylcarbinol, Tetraäthyl-4.4'-diamino-triphenylcarbinol, Carbinolbase des Brillantgrüns $C_{27}H_{34}ON_2=[(C_2H_5)_2N\cdot C_6H_4]_2C(C_6H_5)\cdot OH$. B. bezw. Darst. Entsteht in Form eines Farbsalzes beim Erwärmen von 2 Mol.-Gew. Diäthylanilin mit 1 Mol.-Gew. Benzotrichlorid (Bd. V, S. 300) in Gegenwart von Zinkchlorid (Doebner, A. 217, 261), ferner bei der Oxydation von 4.4'-Bis-diäthylamino-triphenylmethan (S. 276) mit Bleidioxyd oder Braunstein in saurer Lösung (O. Fircher, B. 14, 2521). Zur Isolierung der Carbinolbase versetzt man die wäßr. Lösung der Farbsalze mit Alkalien (Doe.).

Die technische Darstellung des Brillantgrüns erfolgt analog derjenigen des Malachitgrüns (S. 744). Reinigung und Krystallisation des Farbstoffes: MÜHLHÄUSER, D. 263, 302. Die Carbinolbase wurde aus äther. Lösung als ein rotbraunes Öl erhalten, das allmählich fest wurde (D., A. 217, 263). Wenig löslich in Wasser, leicht in Alkohol mit grüner Farbe; löslich in verd. Säuren mit blaßgrüner Färbung, die beim Erhitzen unter Bildung der Farbsalze intensiv grün wird (D.). Geschwindigkeit der Reaktionen der Carbinolbase mit Säuren: Siddwick, Moore, Ph. Ch. 58, 400; Soc. 95, 892. — Beim Erwärmen mit Zinkstaub und Salzsäure in wäßr. Lösung entsteht 4.4'-Bis-diäthylamino-triphenylmethan (D.). Beim Einleiten von Schwefeldioxyd in eine wäßr. Suspension von Brillantgrün entsteht das schwefelsaure Salz der 4.4'-Bis-diäthylamino-triphenylmethan-a-sulfonsäure (Syst. No. 1923) (HANTZSCH, OSSWALD, B. 33, 309; vgl. WIELAND, SCHEUING, B. 54 [1921], 2527). Durch 4—5-stdg. Erhitzen von Brillantgrün mit einem Überschuß von konz. Salzsäure im geschlossenen Rohr auf 180° erhält man Diäthylanilin und 4-Diäthylamino-benzophenon (D.). Beim Behandeln einer Lösung von Brillantgrün mit Kaliumcyanid in der Kälte bildet sich

4.4'-Bis-diäthylamino-triphenylessigsäure-nitril (Syst. No. 1907) (H., O.). Durch Behandeln von Brillantgrün mit Äthylmagnesiumbromid in Äther und Zersetzen des Reaktionsproduktes mit Wasser erhält man a-Phenyl-a.a-bis-[4-diäthylamino-phenyl]-propan (S. 283) (FREUND, RICHARD, B. 42, 1120).

Farbsalze. Als Brillantgrün kommt das schwefelsaure Salz in den Handel. Lichtabsorption im sichtbaren Spektralgebiet, bestimmt mit dem salzsauren und schwefelsauren Salz: Lemoult, C. r. 131, 340; 132, 785; Formánek, Zeitechr. f. Farben- u. Textilchemie 2, 475; im Ultraviolett, bestimmt mit dem schwefelsauren Salz: Krüs, Ph. Ch. 51, 281. Die grüne Lösung der einsäurigen Farbsalze wird auf Zusatz von konz. Mineralsäuren gelbbraun; durch Verdünnen mit Wasser werden die einsäurigen Farbsalze regeneriert (Doebner, A. 217, 263). Geschwindigkeit der Reaktionen der (einsäurigen) Farbsalze mit Säuren: Siduwick, Moore, Ph. Ch. 58, 395; Soc. 95, 890; mit Alkali: Hantzsch, Osswald, B. 33, 298; Si., Mo., Ph. Ch. 58, 390. Die Farbsalze färben grün mit einem gelblicheren Ton als Malachitgrün (D.).

— Schwefelsaures Salz, Brillantgrün [C₂₇H₃₃N₂]HSO₄. Goldglänzende Krystalle (D.). Rhombisch (Haushoffer, Z. Kr. 9, 534; J. 1884, 760; Liweh, Z. Kr. 17, 389). Reichlich löslich in kaltem, noch leichter in heißem Wasser (D.; vgl. Mühlhäuser, D. 263, 302 Anm.), ebenso in Alkohol mit smaragdgrüner Farbe (D.). Elektrische Leitfähigkeit: Hantzsch, Osswald, B. 33, 298; vgl. Siduwick, Moore, Ph. Ch. 58, 393 Anm. — Oxalsaures Salz (C₂₇H₂₃N₂]C₂HO₄+H₂O. Goldglänzende Prismen, die beim Trocknen ihren Goldglanz verlieren und mattblaugrün werden; ziemlich leicht löslich in Wasser (O. Fischer, B. 14, 2521). — Salz der Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) [C₂₇H₂₃N₂] C₁₀H₂O₃S. B. Aus dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) und Brillantgrün in Wasser (Sachs, Beethold), Zeitechr. f. Farbenindustrie 6, 142; C. 1907 I, 1749). Rotviolette Krystalle (aus Aceton). F: 118—120°. Zerfließt in heißem Wasser zu einem dunkelgrünen Öl, fast unlöslich in kaltem Wasser, leicht in Alkohol, Aceton, Chloroform und Eisessig. — Zinkchloriddoppelsalz 2 [C₂₇H₃₅N₃]Cl + ZnCl₂ + 2 H₂O. Rotbraune Nadeln oder goldglänzende Prismen; leicht löslich in kaltem Wasser mit grüner Farbe (D.).

4.4'-Dianilino-triphenylcarbinol, Carbinolbase des Diphenylamingrüns, Carbinolbase des Viridins $C_{81}H_{26}ON_2 = (C_8H_5 \cdot NH \cdot C_8H_4)_2C(C_8H_5) \cdot OH$. B. Das Farbsalz $[C_{21}H_{26}N_2]Cl$ (S. 747) entsteht beim Erwärmen von 1 Mol.-Gew. Diphenylamin mit 1 Mol.-Gew. Benzotrichlorid oder Benzoylchlorid in Gegenwart von Zinkchlorid auf dem Wasserbade (MELDOLA, Soc. 41, 193). Es entsteht auch beim Erhitzen von 4.4'-Diamino-triphenylcarbinol mit salzsaurem Anilin auf 180—200° (DOEBNER, B. 15, 237; vgl. A. 217, 248). Es bildet sich ferner bei der Oxydation von 4.4'-Dianilino-triphenylmethan (S. 276) in Salzsäure (M., Soc. 41, 190, 192). Die Farbsalze bilden sich auch beim Behandeln von Anhydro-[4.4'-dianilino-triphenylcarbinol] (S. 747) mit Säuren (BAEYER, VILLIGER, B. 37, 2866). Um die Carbinolbase zu erhalten,

isoliert man aus den Farbsalzen durch Schütteln mit Äther und Natronlauge die Anhydrobase und schüttelt diese mit Wasser in Gegenwart einer sehr geringen Menge Säure (B., V., B. 37, 2866, 2867). — Die Carbinolbase konnte nicht in krystallisierter Form erhalten werden (B., V.). — Erwärmt man das Farbsalz $[C_{31}H_{25}N_{2}]Cl$ einige Minuten mit konz. Schwefelsäure auf dem Wasserbade, bis eine Probe des Gemisches auf Zusatz von Wasser einen in kochender Sodalösung löslichen Niederschlag liefert, so erhält man die Sulfonsäure $C_{31}H_{34}O_3N_2S$ (s. u.); erwärmt man länger mit konz. Schwefelsäure, bis eine Probe der Lösung keinen Niederschlag auf Zusatz von Wasser liefert, so entsteht wahrscheinlich ein höher sulfuriertes Produkt, das Seide dunkelgrün färbt (M.).

Farbsalze. Salzsaures Salz, Diphenylamingrun, Viridin [CalHasNa]Cl. Bronzefarbene Körner (Meldola, Soc. 41, 193); Warzen oder Nadeln (Baeyer, Villiger, B. 37, 2867). Unlöslich in Wasser, löslich in Alkohol (M.). Färbt aus alkoh. Lösung Seide und (B., V.). — Salpetersaures Salz. Goldglänzende Täfelchen oder Prismen (B., V.). — Salpetersaures Salz. Warzenförmig verwachsene Prismen (B., V.). — Pikrinsaures Salz [C₂₁H₂₂N₂]C₂H₂O₇N₃. Bronzefarbige Täfelchen (aus Benzol), die etwa ½ Mol. Krystallbenzol enthalten, das beim Erhitzen auf 140° im Wasserstoffstrom entweicht (B., V.).

Anhydro-[4.4'-dianilino-triphenylcarbinol], 4'-Anilino-fuchson-anil')

 $C_{s_1}H_{s_4}N_s = C_{\bullet}H_s \cdot N : C < \frac{CH : CH}{CH : CH} > C : C(C_{\bullet}H_s) \cdot C_{\bullet}H_4 \cdot NH \cdot C_{\bullet}H_s, \quad B. \quad \text{Beim Erhitzen gleicher}$ Mengen 4.4'-Dimethoxy-triphenylcarbinol (Bd. VI, S. 1145), Anilin und Benzoesäure im Wasserbade; man reinigt das Rohprodukt durch Überführen in das pikrinsaure Farbsalz [C₃₁H₂₁N₂]C₆H₂O₇N₂ (s. o.) und schüttelt dieses mit Äther und verdünnter Natronlauge (BAEYER, VILLIGER, B. 37, 2866). — Die Anhydrobase krystallisiert in bräunlichen Täfelchen vom Schmelzpunkt 166—168° oder in schwarzen Nadeln, die einige Grade tiefer schmelzen; beide Formen sind schwer löslich in Äther und kaltem Benzol, leichter in heißem Benzol mit braunroter Farbe (B., V.). — Beim Behandeln der Anhydrobase mit Alkoholen Benzol mit braunroter Farbe (B., V.). — Beim Behandeln der Anhydrobase mit Alkoholen tritt Entfärbung der Lösung ein unter Bildung von Alkyläthern der Carbinolbase; beim Schütteln mit Wasser in Gegenwart einer sehr geringen Menge Säure entsteht 4.4'-Dianilinotriphenylcarbinol; Reduktionsmittel erzeugen 4.4'-Dianilinotriphenylmethan (S. 276) (B., V.). Sulfonsäure C₃₁H₂₄O₂N₂S. B. Man erwärmt das Farbsalz [C₃₁H₂₅N₂]Cl (Diphenylamingrün; s. o.) einige Minuten mit konz. Schwefelsäure auf dem Wasserbade, bis eine Probe des Gemisches auf Zusatz von Wasser einen in kochender Sodalösung löslichen Niederschlag liefert (MELDOLA, Soc. 41, 194). — Dunkelgrüne Flocken.

4.4'-Bis-acetamino-triphenylcarbinol $C_{22}H_{22}O_3N_2 = (CH_2 \cdot CO \cdot NH \cdot C_8H_4)_2C(C_8H_5)$ OH. B. Man versetzt eine Lösung von 4.4'-Bis-acetamino-triphenylmethan (S. 277) in 12 Tln. Eisessig mit 5 Tln. Schwefelsaure (D: 1,23), fügt zu der eisgekühlten Mischung die berechnete Menge Braunstein und gibt Natronlauge bis zur Trübung hinzu (BAEYER, VILLIGER, B. 37, 2860). — Prismen (aus verd. Eisessig). F: 266—267°. Schwer löslich in den gewöhnlichen Solvenzien; löst sich in konz. Salzsäure oder warmem Eisessig mit roter Farbe.

- 4.4' Bis [methyl cyan amino] triphenylcarbinol $C_{12}H_{10}ON_4 = [NC \cdot N(CH_3) \cdot A_{12}H_{12}ON_4]$ C.H. I. (C(C.H.) · OH. B. Beim Erwärmen von 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan (S. 277) mit Kaliumpermanganat in Acetonlösung auf dem Wasserbade (v. Braun, Röver, B. 37, 641). — Weißes Krystallpulver (aus Alkohol oder Aceton). F: 168°. Löslich in Benzol, Chloroform, heißem Alkohol und Eisessig, unlöslich in Ligroin. Ist in verd. Säuren unlöslich; löst sich schwer in konz. Mineralsäuren mit tiefroter Farbe; die Lösung in kaltem Eisessig ist farblos, beim Erwärmen wird sie violettrot, auf Zusatz von Mineralsäuren tiefrot. Die sauren Lösungen werden durch Zusatz von Wasser unter Abscheidung des 4.4'-Bis-[methylcyan-amino]-triphenylcarbinols entfarbt. — Bei der Reduktion mit Zinkstaub + Eisessig entsteht 4.4'-Bis-[methyl-cyan-amino]-triphenylmethan. Kochende 20% ige Salzsäure verseift zu 4.4'-Bis-methylamino-triphenylcarbinol (S. 743). Reagiert mit Phenol in Eisessig-Schwefelsäure unter Bildung von 4'.4"-Bis-[methyl-cyan-amino]-4-oxy-tetraphenylmethan (8.776).
- 4.4'- Bis [anilinothioformyl methylamino] triphenylcarbinol $C_{34}H_{32}ON_4S_3 = [C_6H_5\cdot NH\cdot CS\cdot N(CH_3)\cdot C_6H_4]_2C(C_6H_5)\cdot OH$. B. Bei der Einw. von Phenylsenföl auf 4.4'-Bismethylamino-triphenylcarbinol (S. 743) (v. B., R., B. 37, 644). Krystalle (aus Alkohol). F: 136°. Unlöslich in verd. Säuren, löst sich in konz. Säuren mit roter Farbe.
- **4.4'** Bis methylnitrosamino triphenylcarbinol $C_{21}H_{20}O_2N_4 = [ON \cdot N(CH_3) \cdot C_2H_4]_{\mathfrak{g}}(C(C_2H_3) \cdot OH$. B. Bei der Einw. von Natriumnitrit auf eine salzsaure Lösung des **4.4'**-Bis-methylamino-triphenylcarbinols (S. 743) (v. B., R., B. 87, 644). Krystalle (aus Alkohol). F: 159° (Zers.). Unlöslich in verd. Säuren, löslich in konz. Säuren mit roter Farbe.

¹⁾ Besifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, **8.** 52Ó.

2"-Chlor-4.4'-bis-dimethylamino-triphenylcarbinol, Carbinolbase des Setoglaucins C₂₅H₂₅ON₂Cl = [(CH₃)₂N·C₆H₄]₂C(C₆H₄Cl)·OH. B. Das Farbsalz "Setoglaucin" (s. u.) entsteht bei der Oxydation von 2"-Chlor-4.4'-bis-dimethylamino-triphenylmethan (S. 277) in salzsaurer Lösung unter Zusatz von Essigsäure mit Bleidioxyd (Geigy & Co., D. R. P. 94126; Frdl. 4, 189; Noelting, Gerlinger, B. 39, 2047); zur Isolierung der Carbinolbase versetzt man eine verdünnte essigsaure Lösung des Setoglaucins mit Ammoniak in der Kälte (G. & Co.; N., Philipp, B. 41, 3911; vgl. indessen Villiger, Kopetschni, B. 45 [1912], 2910). — Die Carbinolbase bildet schwachgelbe Krystalle vom Schmelzpunkt 155°; ist löslich in Äther mit ganz schwachgelber Farbe und wird aus dieser Lösung durch Säuren zunächst farblos aufgenommen; die saure Lösung färbt sich nach einiger Zeit in der Kälte, schnell in der Wärme blau (N., Ph.). — Bei der Einw. von Natriummethylat auf eine methylalkoholische Lösung des Setoglaucins in der Kälte entsteht 2"-Chlor-4.4'-bis-[dimethylamino]-triphenylcarbinol-methyläther (s. u.) (N., Ph.).

Farbsalze. Salzsaures Salz, Setoglaucin. Kupferrotes Pulver; in Wasser mit blauer Farbe löslich (G. & Co.; D. R. P. 94126). Absorptionsspektrum: Formaner, Zeitschr. für Farben- u. Textilchemie 1, 508, 519. Färbt in blaugrünen Nuancen (G. & Co.). — Zink-chloriddoppelsalz. Dunkelbraunes Pulver, dessen blaue Lösung durch Mineralsäuren gelbgrün gefärbt wird (N., G.).

2"-Chlor-4.4'-bis-dimethylamino-triphenylcarbinol-methyläther $C_{24}H_{27}ON_2Cl = [(CH_3)_2N\cdot C_6H_4]_2C(C_6H_4Cl)\cdot O\cdot CH_3$. B. Bei der Einw. von Natriummethylat auf eine methylalkoholische Lösung von Setoglaucin (s. o.) in der Kälte (Noelting, Philipp, B. 41, 3911). — Schwach gelbe Krystalle (aus Methylalkohol). F: 138°.

4"-Chlor-4.4'-bis-dimethylamino-triphenylcarbinol $C_{23}H_{25}ON_2Cl = [(CH_3)_2N\cdot C_6H_4]_2C(C_6H_4Cl)\cdot OH$. B. Durch Oxydation von 4"-Chlor-4.4'-bis-dimethylamino-triphenylmethan (S. 278) mit Mangandioxydhydrat und $25^{\circ}/_{\circ}$ iger Schwefelsäure bei 40—60° (Kaeswurm, B. 19, 744) oder besser mit Bleidioxyd in üblicher Weise bei 40° (Norlting, Gerlinger, B. 39, 2049); man zersetzt das erhaltene Farbsalz mit Alkali (K.).

Farbsalz. Zinkchloriddoppelsalz. Granatrotes Pulver, dessen Lösung durch Mineralsäuren orange gefärbt wird (N., G.). Erzeugt auf der Faser ein gelbstichiges Grün (N., G.).

4"-Chlor - 4.4'- bis - diäthylamino - triphenylcarbinol $C_{27}H_{33}ON_3Cl = [(C_2H_5)_2N \cdot C_6H_4]_2C(C_6H_4Cl) \cdot OH$. B. Beim Erwärmen von 4"-Chlor-4.4'-bis-diäthylamino-triphenylmethan (S. 278) mit Mangandioxydhydrat in 25% giger Schwefelsäure; man zersetzt das erhaltene Farbsalz mit Alkali (KAESWURM, B. 19, 745). — Schwach rosafarbene Tafeln (aus wasserfreiem Ather). F: 120—121%.

2".5"-Dichlor-4.4'-bis-dimethylamino-triphenylcarbinol, Carbinolbase des Neusolidgrüns $C_{23}H_{24}ON_2Cl_2=[(CH_3)_2N\cdot C_6H_4]_2C(C_6H_3Cl_2)\cdot OH$. B. Beim Behandeln von 2".5"-Dichlor-4.4'-bis-dimethylamino-triphenylmethan (S. 278) mit der berechneten Menge Bleidioxyd in salzsaurer Lösung unter Zusatz von Essigsäure in der Kälte; man zersetzt das gebildete Farbsalz mit verd. Natronlauge (GNEHM, BÄNZIGER, A. 296, 72, 81). — Die Carbinolbase wurde als rotbraunes Pulver erhalten. F: 169—172°. Kaum löslich in Wasser. — Das in den Handel kommende "Neusolidgrün" ist ein metallisch grünglänzendes Krystallgemisch, das aus $80^{\circ}/_{\circ}$ salpetersaurem und $20^{\circ}/_{\circ}$ salzsaurem Farbsalz besteht (G., B.). Absorptionsspektrum des Farbstoffs: Formánek, Zeitschr. f. Farben- u. Textilchemie 1, 508, 518, 519.

2".4".5"-Trichlor - 4.4'- bis - dimethylamino - triphenylcarbinol $C_{33}H_{12}ON_2Cl_3 = [(CH_3)_2N\cdot C_8H_4]_2C(C_6H_2Cl_3)\cdot OH$. B. Entsteht in Form eines Farbsalzes bei der Oxydation von 2".4".5"-Trichlor-4.4'-bis-dimethylamino-triphenylmethan (S. 278) mit Bleidioxyd in saurer Lösung (O. FISCHER, D. R. P. 25827; Frdl. 1, 42). — Die Farbsalze krystallisieren und färben blaugrün.

2"- Nitro - 4.4'- bis - dimethylamino - triphenylearbinol $C_{23}H_{35}O_3N_3=[(CH_3)_2N\cdot C_6H_4]_2C(C_6H_4\cdot NO_2)\cdot OH$. B. Beim Erhitzen von 2"-Nitro-4.4'-bis-dimethylamino-triphenylmethan (S. 278) mit etwas mehr als der berechneten Menge Bleidioxyd in 50% iger Schwefelsäure auf dem Wasserbade; man zersetzt das gebildete Farbsalz mit Natronlauge (O. FISCHER, C. SCHMIDT, B. 17, 1890). — Wurde aus absol. Äther in rotgelben Krystallen erhalten. F: 163°; leicht löslich in Benzol, ziemlich leicht in Alkohol und Äther, schwer in Ligroin (O. FI., C. SCH.). — Die Farbsalze zeigen ein intensives Grün mit bläulicher Nuance (O. FI., C. SCH.). Absorptionsspektrum: Lemoult, $C.\tau$. 131, 840.

3"- Nitro - 4.4' - bis - dimethylamino - triphenylcarbinol $C_{23}H_{25}O_3N_3=[(CH_3)_2N\cdot C_6H_4]_2C(C_6H_4\cdot NO_2)\cdot OH$. B. Entsteht in Form eines Farbsalzes beim Behandeln von 3"-Nitro-4.4' - bis - dimethylamino - triphenylmethan (S. 279) mit Braunstein und Schwefelsäure

(E. FISCHER, O. FISCHER, B. 12, 802) oder mit Chloranil (O. FISCHER, ZIEGLER, B. 13, 672).

— Die freie Carbinolbase krystallisiert schwer (E. Fl., O. Fl.). — Bei der Reduktion mit Zinkstaub und Salzsäure entsteht 3-Amino-4'.4''-bis-dimethylamino-triphenylmethan (S. 312) (E. Fl., O. Fl.).

Farbsalze. Absorptionsspektrum: LEMOULT, C. r. 131, 840. Die Farbsalze färben grün (E. Fr., O. Fr.). — Pikrinsaures Salz [C₂₃H₂₄O₂N₃]C₆H₂O₇N₃. Grüne Nadem (aus Alkohol oder Benzol) (E. Fr., O. Fr.).

4"-Nitro - 4.4'- bis - dimethylamino - triphenylcarbinol C₂₃H₂₅O₃N₃ = [(CH₃)₂N·C₆H₄]₂C(C₆H₄·NO₂)·OH. B. Durch Erwärmen von 1 Mol.-Gew. 4-Nitro-benzoylchlorid mit 2 Mol.-Gew. Dimethylanilin in Gegenwart von Zinkchlorid auf dem Wasserbade und Zersetzen des gebildeten Farbsalzes mit Natronlauge (E. Fischer, O. Fischer, B. 12, 800). Beim Erwärmen einer Lösung von 4"-Nitro · 4.4' - bis - dimethylamino - triphenylmethan (S. 280) in verd. Schwefelsäure mit Braunstein; man zersetzt das gebildete Farbsalz mit Ammoniak (O. Fischer, B. 14, 2528). — Wurde aus Alkohol in gelben, goldglänzenden Prismen oder granatroten Rosetten erhalten (O. Fi.). Löslich in verd. Mineralsäuren unter Bildung der grünen Farbsalze (E. Fi., O. Fi.). — Liefert bei der Behandlung mit Zinkstaub und Salzsäure in alkoh. Lösung zuerst einen violetten Farbstoff (Farbsalz des 4-Amino-4'.4"-bis-dimethylamino-triphenylcarbinols) und dann 4-Amino-4'.4"-bis-dimethylamino-triphenylmethan (S. 314) (E. Fi., O. Fi.).

Farbsalze. Die grüne Lösung der Farbsalze geht bei Zusatz von konz. Säuren in Dunkelgelb über (E. Fi., O. Fi.). Die Farbsalze färben gelbstichig grün (O. Fi.). — Pikrinsaures Salz. Nädelchen. Sehr schwer löslich in Benzol, etwas leichter in siedendem Alkohol (E. Fi., O. Fi.).

4.4′- Bis - dimethylamino - triphenylcarbinthiol, Tetramethyl - 4.4′- diamino-triphenylcarbinthiol $C_{23}H_{26}N_2S=[(CH_3)_2N\cdot C_6H_4]_2C(C_6H_5)\cdot SH$. B. Bei der Einw. von Schwefelwasserstoff oder von Schwefelalkalien auf schwach essigsaure Lösungen von Malachitgrün (Lambrecht, Well., B. 38, 270, 276). — Farblose Krystalle (aus Benzol + Alkohol). F: 153°; an der Luft beständig; schwer löslich in Alkohol; unlöslich in Alkalien; ist bei Gegenwart überschüssiger Mineralsäure selbst beim Erwärmen längere Zeit beständig, wird dagegen von der theoretischen Menge Mineralsäure oder von überschüssiger verdünnter Essigsäure in Malachitgrünsalze verwandelt; bei längerem Erhitzen mit konz. Mineralsäuren entstehen die orangefarbenen zweisäurigen Malachitgrünsalze (L., W., B. 38, 270). Bei andauernder Einw. von Schwefelwasserstoff oder von Schwefelkaleine netsteht Leukomalachitgrün (S. 275) (L., W., B. 38, 271, 277). — Oxalat $3C_{23}H_{26}N_3S+2C_2H_2O_4$. B. Beim Verrühren von 5,43 g 4.4′-Bis-dimethylamino-triphenylcarbinthiol mit 30 ccm 6°/0 ger wäßriger Oxalsäurelösung bei ca. 10° (L., W., B. 37, 3060). Fast farblos, färbt sich aber bald hellgrün. F: 140° (Zers.). Schwer löslich in kaltem Wasser. Geht beim Aufbewahren, sowie beim Erhitzen der wäßr. Lösung unter Schwefelwasserstoffentwicklung in oxalsaures Malachitgrün über. — $C_{23}H_{26}N_2S+2HCl+SnCl_4+l/_2H_2O$. Farblose Krystalle; bei trocknem Erwärmen wird Krystallwasser abgespalten unter gleichzeitiger Entwicklung von Schwefelwasserstoff und Grünfärbung (L., W., B. 38, 279).

Triaminoderivate des Triphenylcarbinols.

2.2'.2"- Tris - dimethylamino - triphenylcarbinol, Hexa-

 $N(CH_3)_2$

 $N(CH_3)_2$

methyl - 2.2'.2" - triamino - triphenylcarbinol C₂₅H₃₁ON₃, s. nebenstehende Formel. B. Bei der Einw. von [2-Dimethylaminophenyl]-magnesiumjodid im Überschuß auf 2.2'-Bis-[dimethylamino]-benzophenon (Syst. No. 1873) in äther. Lösung; man zersetzt das Reaktionsprodukt mit Wasser (BAEYER, A. 354, 202). Bei längerem Kochen von viel überschüssigem [2-Dimethylamino-phenyl]-magnesiumjodid mit N.N-Dimethyl-anthranilsäureester in Äther (B.). Aus [2-Dimethylamino-phenyl]-magnesiumjodid und Orthokohlensäureester in Äther (B.). — Prismen oder Tafeln (aus Ligroin). F: 107°

N.N-Dimethyl-anthranilsäureester in Äther (B.). Aus [2-Dimethylamino-phenyl]-magnesiumjodid und Orthokohlensäureester in Äther (B.). — Prismen oder Tafeln (aus Ligroin). F: 1076
bis 1086. Leicht löslich in allen Lösungsmitteln, löslich in allen Säuren ohne Färbung.

2.2'.3"-Tris-dimethylamino-triphenylcarbinol, Hexamethyl-2.2'.3"-triamino-triphenylcarbinol $C_{25}H_{31}ON_3$, s. nebenstehende Formel. B. Bei der Einw. von [2-Dimethylamino-phenyl]-magnesiumjodid auf 3-Dimethylamino-benzoesäuremethylester in Äther; man zersetzt das Reaktionsprodukt mit Wasser (B., A. 354, 203). — Farblose schiefwinklige Tafeln (aus Alkohol). F: 151—152°. Ziemlich leicht löslich in Alkohol und Äther.

2.2'.4"-Tris-dimethylamino-triphenylcarbinol, Hexamethyl - 2.2'.4" - triamino - triphenylcarbinol $C_{28}H_{31}ON_3$, s. nebenstehende Formel. B. Bei der Einw. von [2-Dimethylamino-phenyl] - magnesiumjodid auf 4 - Dimethylamino - benzoesäuremethylester in Ather; man zersetzt das Reaktionsprodukt mit Wasser (B., A. 354, 201). — Farblose Krystalle (aus Alkohol). F: 172-173°. Leicht löslich in Benzol, ziemlich schwer in Alkohol und Äther.

2.8'.8"-Tris-dimethylamino-triphenylcarbinol, Hexamethyl-2.3'.8"-triamino-triphenylcarbinol C₂₅H₃₁ON₃, s. nebenstehende Formel. B. Bei der Einw. von [2-(Dimethylamino)-phenyl]-magnesiumjodid auf 3.3'-Bis-dimethylaminobenzophenon in Äther; man zersetzt das Reaktionsprodukt mit Wasser (B., A. 354, 204). — Rechtwinklige Prismen (aus Benzol + Alkohol). F: 207—208°. Schwer löslich in Äther, sehr wenig in Alkohol.

2.8'.4"-Tris-dimethylamino-tripbenylcarbinol, Hexamethyl-2.3'.4"-triamino-triphenylearbinol C₂₅H₃₁ON₃, s. nebenstehende Formel. B. Bei der Einw. von [2-(Dimethylamino)-phenyl]-magnesiumjodid auf 3.4'-Bis-dimethylaminobenzophenon in Ather; man zersetzt das Reaktionsprodukt mit Wasser (B., A. 354, 202). – Schiefwinklige Tafeln (aus Alkohol). F: 148-150°. Ziemlich leicht löslich in Alkohol und Ather.

$$N(CH_3)_2 \qquad N(CH_3)_2$$

$$C(OH) - \qquad \qquad$$

$$N(CH_3)_2$$

2 - Amino - 4'.4" - bis - dimethylamino - triphenylcarbinol C₂₃H₂₇ON₃, s. nebenstehende Formel. B. Bei kurzem Kochen von 4'.4"-Bis-dimethylamino-2-[carbathoxyamino]-triphenylcarbinol-athylather (s. u.) mit Barytwasser bei Gegenwart von Pyridin am Rückflußkühler (BAEYER, VILLIGER, B. 36, 2786). — Farblose Blättchen (aus Alkohol). F: ca. 160° (Zers.). Löst sich farblos in kalter Essigsäure; die essigsaure Lösung bläut sich beim Erwärmen;

die blauen Lösungen in Mineralsäuren zersetzen sich bald und fluorescieren dann grün. — Die Farbsalze färben rein blau.

4'.4"-Bis-dimethylamino-2-acetamino-triphenylcarbinol-äthyläther $C_{27}H_{33}O_2N_3=$ $[(CH_3)_2N \cdot C_4H_4]_2C(C_6H_4 \cdot NH \cdot CO \cdot CH_3) \cdot O \cdot C_2H_5. \quad B. \text{ Bei der Einw. von Alkohol auf 2-Methyl-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazin} \quad C_6H_4 < N = C(CH_3) C(CH_3)_3 C(CH_3) C(CH_3) C(CH_3)_3 C(CH_3) C(CH_3)_3 C(CH_3) C(CH_3)_3 C(C$ No. 4372) (BAEYER, VILLIGER, B. 36, 2785). — Schmilzt bei ca. 158° unter Zersetzung, erstarrt dann wieder und zeigt nunmehr den Schmelzpunkt 190° des 2-Methyl-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazins.

4'.4'' - Bis - dimethylamino - 2 - carbäthoxyamino - triphenylcarbinol - äthyläther $C_{28}H_{35}O_{2}N_{3} = [(CH_{3})_{2}N \cdot C_{6}H_{4}]_{3}C(C_{6}H_{4} \cdot NH \cdot CO_{3} \cdot C_{2}H_{5}) \cdot O \cdot C_{2}H_{5}$. B. Durch Behandeln von 4'.4"-Bis-dimethylamino-2-carbāthoxyamino-triphenylmethan (S. 311) mit Braunstein in eisgekühlter schwefelsaurer Lösung und Umkrystallisieren des zunächst erhaltenen 2-Athoxy-6.6 - bis - [4 - dimethylamino - phenyl] - 4.5 - benzo - 1.3 - oxazins $C_0H_4 < C[C_0H_4 \cdot N(CH_3)_4] > 0$ (Syst. No. 4382) aus Alkohol (B., V., B. 36, 2785). — Farblose Nadeln (aus Alkohol). F: 161—1620 (Gasentwicklung). Löst sich farblos in Säuren in der Kälte. — Durch Aufkochen der essigsauren Lösung erhält man wieder 2-Athoxy-6.6-bis-[4-dimethylamino-phenyl]-4.5-benzo-1.3-oxazin. Bei kurzem Kochen mit Barytwasser in Gegenwart von Pyridin entsteht 2-Amino-4'.4"-bis-dimethylamino-triphenylcarbinol (s. o.).

4.4'.4"-Triamino-triphenylearbinol, Pararosanilin, Carbinolbase des Parafuchsins C₁₉H₁₉ON₃, s. nebenstehende Formel. B. bezw. Darst. Die Carbinolbase entsteht beim Er-hitzen von Aurin (Bd. VIII, S. 361) mit wäßr. Ammoniak auf 120° (Dale, Schoblemmer, B. 10, 1016, 1123). Farbsalze des Pararosanilins entstehen beim Erhitzen von Anilin und salzsaurem Anilin mit Methylchlorid unter Zusatz von Nitro-

benzol und Eisenchlorür unter Druck auf 120—200° (Akt.-Ges. f. Anilinf., D. R. P. 66125; Frdl. 3, 104). Beim Erhitzen von Anilin mit methylschwefelsaurem Natrium und Arsensäure oder von Anilin, salzsaurem Anilin, methylschwefelsaurem Natrium, Nitrobenzol und Eisenfeilspänen im offenen oder geschlossenen Gefäß auf 110—220° (Cassella & Co., D. R. P. 67128; Frdl. 3, 105); beim Arbeiten in geschlossenen Gefäßen läßt sich die Methylschwefelsäure durch Methylalkohol ersetzen (Ca. & Co., D. R. P. 68464; Frdl. 3, 105). Farbsalze des Pararosanilins entstehen ferner beim Erhitzen von Anilin und salzsaurem Anilin mit 4-Nitro-toluol unter Zusatz von etwas Eisenchlorür auf 195—200°, neben Chrysanilin (Syst. No. 3414), Indulinfarbstoffen und anderen Produkten (Lange, B. 18, 1921). Beim Erhitzen von [4-Nitro-benzyl]-anilin (Bd. XII, S. 1085) mit salzsaurem Anilin und Eisenchlorür auf 140° (Baum, D. R. P. 41929; Frdl. 1, 50). Beim Erhitzen von Anilin mit 4-Nitro-benzalchlorid (Bd. V, S. 332) (ZIMMERMANN, A. MÜLLER, B. 18, 997) oder 4-Nitro-benzalbromid (Bd. V, S. 336) (ZI., A. MÜ., B. 17, 2936). Beim Erhitzen von Methylen-dianilin (Bd. XII, S. 184) mit Anilin und salzsaurem Anilin in Gegenwart von Eisen und einem Oxydationsmittel (EBERHARDT, WELTER, B. 27, 1814). Beim Erhitzen von Anhydroformaldehydanilin (Syst. No. 3796) mit überschüssigem Anilin und salzsaurem Anilin unter Zusatz von Eisenchlorür und Nitrobenzol auf ca. 170° (Höchster Farbw., D. R. P. 61146; Frdl. 3, 112). Bei der Oxydation eines Gemenges von Anilin und p-Toluidin durch Erhitzen mit Arsensäure (Rosenstiehl, A. ch. [5] 8, 192; E. Fischer, O. Fischer, B. 13, 2205) oder mit Jod (Ostrogovich, Silbermann, Bulet. 15, 303; 16, 125; C. 1907 I, 1197; 1908 I, 266). Über den Mechanismus der Bildung aus Anilin und p-Toluidin vgl. Ost., Sn., Bulet. 15, 292; C. 1907 I, 1195. Farbsalze des Pararosanilins entstehen ferner beim Erhitzen von 4.4'-Diamino-diphenylmethan (S. 238) mit überschüssigem Anilin und salzsaurem Anilin bei Gegenwart von Oxydationsmitteln (Arsensäure, Azobenzol) (Höchster Farbw., D. R. P. 61146; Frdl. 3, 112). Durch Erhitzen von 4-Amino-benzylalkohol (S. 620) bezw. polymerem Anhydro-[4-amino-benzylalkohol] ($C_7H_7N)_x$ (S. 621) mit überschüssigem Anilin und salzsaurem Anilin in Gegenwart von Nitrobenzol und Eisenchlorür auf 150-170° (KALLE & Co., D. R. P. 93540; Frdl. 4, 179). Beim Erhitzen des sauren Kaliumsalzes der 4-Amino-phenyltartronsäure (Syst. No. 1913) mit Anilin und Salzsäure unter Zusatz von Nitrobenzol und Eisenchlorür auf 110° bis 130° (BOEHEINGER & Söhne, D. R. P. 120465; C. 1901 I, 1129). Farbsalze des Pararosanilins erhält man ferner aus 4.4'.4". Trinitro-triphenylcarbinol (Bd. VI, S. 720) beim Behandeln mit Zinkstaub und Essigsäure (E. FISCHER, O. FISCHER, A. 194, 274). Aus 4"-Nitro-4.4'-diamino-triphenylmethan (S. 279) beim Erhitzen mit 2 Tln. festem Eisenchlorür auf 160—180° (O. Fl., B. 15, 678; D. R. P. 16750; Frdl. 1, 57). Aus 4"-Nitro-4.4"-diamino-triphenylmethan durch elektrolytische Reduktion in konz. Schwefelsäure (Ges. f. chem. Ind., D. R. P. 84607; Frdl. 4, 182). Durch Kochen von 4"-Nitro-4.4'-diamino-triphenylmethan mit Natronlauge und verd. Alkohol und Reduktion des erhaltenen Produktes in saurer Lösung (PRUD'HOMME, Bl. [3] 17, 654). Aus 4.4'.4"-Triamino-triphenylmethan (Paraleukanilin, S. 313) durch Erhitzen mit Quecksilberchlorid, durch Erhitzen mit Salzsäure auf 150° (O. FISCHER, GREIFF, B. 13, 671), durch Versetzen der heißen alkoholischen Lösung mit Chloranil (O. Fi., Greiff; Höchster Farbw., D. R. P. 11412; Frdl. 1, 64), durch kurzes Erhitzen mit sirupöser Arsensäurelösung auf 130—140° (E. Fr., O. Fr., A. 194, 273), durch Behandeln mit Mangandioxyd und Essigsäure bei Gegenwart von Natriumchloridlösung in Aceton, Methyläthylketon (Höchster Farbw., D. R. P. 70905; Frdl. 3, 110), Methylalkohol oder Athylalkohol (Höchster Farbw., D. R. P. 72032; Frdl. 3, 111), durch Erhitzen des salzsauren Salzes mit Eisenoxydhydrat auf 120—160º (Höchster Farbw., D. R. P. 19484; Frdl. 1, 65). — Zur Isolierung der Carbinolbase kocht man die Farbsalze mit Alkalilauge und überläßt die klar filtrierte Lösung der Krystallisation (v. Georgievics, M. 17, 5; Jennings, B. 36, 4025).
4.4'.4"-Triamino-triphenylcarbinol bildet farblose Blättchen. Färbt sich an der Luft

4.4'.4"-Triamino-triphenylcarbinol bildet farblose Blättchen. Färbt sich an der Luft rötlich (Rosenstiehl, A. ch. [5] 8, 193). Schmilzt beim Erhitzen im Wasserstoffstrom unter Wasserdampfentwicklung gegen 205° (Jennings, B. 36, 4025) und gibt bei 1-stdg. Erhitzen auf 215—220° ein Gemisch verschiedener Carbinolanhydride (Baeyer, Villiger, B. 37, 2879; vgl. Jen.). Sehr schwer löslich in Wasser, fast unlöslich in Ather, leicht löslich in Alkohol (Rosenstiehl, A. ch. [5] 8, 193). Absorptionsspektrum in alkoh. Lösung: Baker, Soc. 91, 1498. Molekulare Verbrennungswärme bei konstantem Volumen: 2481,0 Cal.; bei konstantem Druck: 2483,5 Cal. (Schmidlin, C. r. 139, 732; A. ch. [8] 7, 251). Elektrische Leitfähigkeit in Alkohol: Baker. Bei der Einw. von 1 Mol. Säure auf die Carbinolbase entstehen die (einsäurigen) Farbsalze [C₁₉H₁₈N₃]Ac (S. 752) (Ro., A. ch. [5] 8, 194). Wärmetönung bei der Neutralisation mit Säuren: Schmidlin, C. r. 137, 331; 139, 542; A. ch. [8] 7, 241.

Bei der Reduktion von Pararosanilin mit Zinkstaub und Salzsäure (E. Fischer,

Bei der Reduktion von Pararosanilin mit Zinkstaub und Salzsäure (E. FISCHER, O. FISCHER, A. 194, 268), mit Schwefelammonium oder mit hydroschwefligsaurem Natrium Na₂S₂O₄ und etwas Zinkstaub in alkoh. Lösung (O. FI., FRITZEN, J. pr. [2] 79, 563) entsteht Paraleukanilin (S. 313). Zur Reduktion von Parafuchsin durch Zinkstaub und verd. Essigäure in der Kälte vgl. Paud'homme, Bl. [3] 17, 377. Beim Erhitzen von Parafuchsin mit bei 0° gesättigter Jodwasserstoffsäure im geschlossenen Rohr auf 180—200° erhält man neben

Pararosanilin findet Verwendung zur Darstellung blauer Triphenylmethanfarbstoffe wie Diphenylaminblau (S. 760).

Nachweis von Pararosanilin in Rosanilin: Man löst die Carbinolbase in 20 Volumteilen ca. 30% jeer Salzsäure und läßt 12 Stunden stehen; schon bei Anwesenheit von ½% Pararosanilin erfolgt binnen 12 Stunden Krystallausscheidung von schwer löslichen salzsauren Salzen des Pararosanilins (Lambrecht, Weil, B. 37, 3031, 4326). Nachweis von Parafuchsin im käuflichen Fuchsin: Bei Anwesenheit von Parafuchsin färbt sich die Lösung in konz. Salzsäure auf Zusatz von Kaliumchlorat intensiv grün und scheidet beim Eingießen in Wasser blauviolette Krystalle ab (Höchster Farbw., D. R. P. 59775; Frdl. 3, 113). — Titrimetrische Bestimmung des Parafuchsins mit Titantrichlorid: Knecht, Hibbert, B. 38, 3321.

Farbsalze. Fluorwasserstoffsaures Salz. Grüne Nadeln. Leicht löslich in Wasser (O. Fischer, G. Schmidt, Zischr. f. Farben-i u. Textilindustrie 3, 2; C. 1904 I, 460). — Einfach salzsaules Salz, Parafuchsin [C₁₀H₁₆N₃]Cl. Metallisch grünglänzende Krystalle (aus Wasser). Nach Schultz (Die Chemie des Steinkohlenteers, 2. Aufl., Bd. II, Die Farbstoffe [Braunschweig 1887/90], S. 414) enthalten die Krystalle 4 Mol. Wasser, das bei 120° bis 130° entweicht; nach Schmidlin (A. ch. [8] 7, 201) dagegen ist das Salz hygroskopisch, sein Wassergehalt schwankt mit der Luftfeuchtigkeit; die bei 130° getrockneten Krystalle enthalten nach Schmidlin noch 1 Mol. H₂O (vgl. dazu Kehrmann, Wentzel, B. 34, 3816), das bei 250°, aber unter Zersetzung des Salzes abgegeben wird. 1000 Tle. Wasser lösen bei 6° 1,85 Tle., bei 22° 3,1 Tle. des bei 130° getrockneten Salzes (Rosenstiehl, A. ch. [5] 8,

194). Ebullioskopisches Verhalten wäßr. Parafuchsinlösungen: MIOLATI, B. 28, 1697. Lichtabsorption des Parafuchsins im sichtbaren Spektralgebiet: FORMANEK, Ztechr. f. Farbenu. Textilchemie 2, 474, 475; BAKER, Soc. 91, 1498; BAEYER, VILLIGER, B. 37, 2863; BAEYER, A. 354, 162; im Ultraviolett: Krüss, Ph. Ch. 51, 281. Beim Abkühlen einer alkoh. Lösung von Parafuchsin durch flüssige Luft nimmt die Intensität der roten Farbe stark ab, während gleichzeitig eine gelbgrüne Fluorescenz erscheint (SCHMIDLIN, C. r. 139, 731; A. ch. [8] 7, 256). Molekulare Verbrennungswärme bei konstantem Volumen: 2468,6 Cal., bei konstantem Druck: 2471,1 Cal. (SCHMIDLIN, C. r. 139, 732; A. ch. [8] 7, 251). Elektrische Leitfähigkeit: MIOLATI, B. 26, 1789; 28, 1696; HANTZSCH, OSSWALD, B. 38, 302. Durch Lösen von Parafuchsin in nicht zu konz. Salzsäure und Trocknen der erhaltenen Krystalle im Vakuum über Ätzkali erhält man das dreisäurige Salz $[C_{19}H_{18}N_3]Cl + 2HCl$ (s. u.) (Schmidlin, $C.\tau$. 138, 1509; A. ch. [8] 7, 207). Parafuchsin vermag bei der Einw. von trocknem Chlorwasserstoff unter starker Kühlung noch 6 bis 7 Mol. HCl zu binden unter Entstehung eines farblosen Additionsproduktes, welches bei gewöhnlicher Temperatur wieder Chlorwasserstoff abgibt und im Vakuum in das dreifach salzsaure Salz [C₁₈H₁₈N₃]Cl+2 HCl übergeht (SCHMIDLIN, C. r. 138, 1509, 1615; A. ch. [8] 7, 210, 218, 272). Über farblose Additionsprodukte aus Parafuchsin, Chlorwasserstoff und Wasser s. SCHMIDLIN, C. r. 139, 506, 522; A. ch. [8] 7, 225, 244, 273. Parafuchsin löst sich in kalter konzentrierter Schwefelsäure mit goldgelber Farbe [Bildung eines viersäurigen Salzes 1)] (KEHRMANN, WENTZEL, B. 34, 3817). Verhalten dieser schwefelsauren Lösung beim Verdünnen mit Wasser: KE., WE., B. 34, 3817, und beim Verdünnen mit Alkohol: O. FISCHER, O. 1902 II, 91; GREEN, C. 1902 II, 684. Über farblose Additionsprodukte aus Parafuchsin und Ammoniak s. Schmidlin, C. r. 138, 1709; A. ch. [8] 7, 221, 273. Beim Hinzufügen von Natronlauge zu einer wäßr. Lösung von Parafuchsin entsteht 4'.4"-Diamino-fuchson-imid (S. 754); verreibt man trocknes Parafuchsin mit Natronlauge, so erhält man ein Kondensationsprodukt des 4'.4"-Diamino-fuchson-imids (bräunliches, körniges Pulver, sehr wenig löslich außer in Alkoholen und Pyridin) (BAEYER, VILLIGER, B. 37, 1183, 2869, 2879). Parafuchsin färbt die Faser gelbstichiger rot als Fuchsin (O. FISCHER, B. 15, 680). — Dreifach salzsaures Salz [C₁₀H₁₈N₃]Cl+2HCl. B. Man löst Parafuchsin in nicht zu konz. Salzsäure und trocknet die ausgeschiedenen Krystalle über Atzkali im Vakuum bis zum Verschwinden des Salzsäuregeruchs (SCHMIDLIN, C. r. 138, 1509; A. ch. [8] 7, 207). Schwarze, grünschimmernde Krystalle. Löslich in Alkohol mit bläulichroter Farbe; unlöslich in konz. Salzsäure (SCH.). Elektrische Leitfähigkeit: MIOLATI, B. 28, 1698; HANTZSCH, B. 33, 757. — Bromwasserstoffsaures Salz [C₁₉H₁₈N₃]Br+3H₂O. Grüne Nadeln (aus verd. Alkohol). Wird bei 130° wasserfrei (O. Fischer, G. Schmidt, Ztecht. f. Farben- u. Textilindustrie 3, 2; C. 1904 I, 460). — Jodwasserstoffsaures Salz [C₁₉H₁₈N₃]I. Schillernde Nadeln (aus 25°/oigem Alkohol) (O. Fi., G. Schmidt), Krystalle (aus Wasser) (Ostrogovich, Silbermann, Bulet. 15, 303; C. 1907 I, 1197). Schwer löslich (aus Wasser) (OSTROGOVICH, SILBERMANN, Butet. 15, 303; C. 1907 I, 1197). Schwer Ioshich in kaltem Wasser (Tortelli, B. 28, 1703). Elektrische Leitfähigkeit: To. — Schwefelsaure Salze. [C₁₉H₁₈N₃]₂SO₄. Dunkelgrüne Nadeln mit 3 H₂O (aus Wasser). Das Krystallwasser entweicht bei 130°; wenig löslich in kaltem Wasser (O. FI., G. SCHMIDT). — [C₁₉H₁₈N₃]₂SO₄ + 8 H₂O. Sehr wenig löslich in kaltem Wasser (To.). Elektrische Leitfähigkeit: To. — Dichromsaures Salz [C₁₉H₁₈N₃]₂Cr₂O₇ (Kehrmann, Wentzel, B. 34, 3816). — Salpetersaures Salz [C₁₉H₁₈N₃]NO₃. Dunkelgrüne Nadeln (aus Wasser). In kaltem Wasser reichlich löslich (O. FI., G. SCHMIDT). — Palmitinsaures Salz. Metallisch grünes Pulver, E. 85°, Löslich in Alterda Acctor (Chloroform, unlöslich in Bargol Ligroin, und Pulver. F: 85°. Löslich in Alkohol, Aceton, Chloroform, unlöslich in Benzol, Ligroin und Schwefelkohlenstoff (Gnehm, Röthell, Z. Ang. 11, 488). — Stearinsaures Salz. Metallisch grünes Pulver. F: 98°; unlöslich in Benzol (Gn., Rö., Z. Ang. 11, 487, 501). — Bernsteinsaures Salz. Grüne Nadeln (O. Fl., G. Schmidt). — Weinsaures Salz. Grüne Nadeln (O. Fl., G., Schmidt). — Weinsaures Salz. Grüne Nadeln (O. Fl., G., Schmidt). — Salz der 2-Oxy-naphthalin-sulfonsäure-(6) (Bd. XI, S. 282) [C₁₉H₁₈N₃]SO₃: C₁₀H₆·OH. Grüne Krystalle (Bucherer, Stohmann, Ztschr. f. Farbenu. Textilindustrie 3, 80; C. 1904 I, 1012).

2[C. H. N. CN + Hg(CN). R. Beim Einleiten von Blausäure in eine Mischung

2 [C₁₉ H₁₈ N₃ | CN + Hg (CN)₂. B. Beim Einleiten von Blausäure in eine Mischung von Pararosanilin und Quecksilbercyanid in Alkohol unter 0° (Tortelli, B. 28, 1705). Grünes, rötliches Krystallpulver. Schwer löslich in Wasser; löslich in Alkohol mit Fuchsinfarbe. Wird durch siedendes Wasser unter Bildung von 4.4′.4″-Triamino-triphenylessigsäure-nitril (Syst. No. 1907) zersetzt. — [C₁₉ H₁₈N₃]Cl + HgCl₂. B. Bei der Einw. von Quecksilberchlorid auf Parafuchsin in verdünnter wäßriger Lösung (O. Fischer, G. Schmidt, Tstehr. f. Farbenu. Textilindustrie 3, 2; C. 1904 I, 460; To.). Braune Nadeln oder Tafeln (aus Alkohol). In Wasser schwer löslich (O. Fi., G. Schmidt). — [C₁₉ H₁₈N₃]CN + HgCl₂. B. Beim Einleiten von Blausäure in eine Mischung von Pararosanilin und Quecksilberchlorid in Alkohol in der Kälte (To.). Grüne Krystalle. Schwer löslich in kaltem, leichter in warmem Wasser und

48

¹⁾ Vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von Kehrmann, B. 51, 473; Kehrmann, Sandoz, B. 51, 917; Hantzsch, B. 55, 2047 Ann. 1; Kehrmann, Helv. chim. Acta 7, 1057.

in Alkohol. — [C₁₉H₁₆N₂]Cl + Hg(CN)₂. B. Beim Erhitzen von 1 Mol.-Gew. Parafuchsin mit 1 Mol.-Gew. Quecksilbercyanid in wäßrig-alkoholischer Lösung (To.). Grünmetallischglänzende Nädelchen. Schwer löslich in kaltem Wasser, leichter in heißem. — [C₁₉H₁₈N₂]CN + Hg(CN)₂. B. Wurde einmal beim Einleiten von Blausäure in eine Mischung von Pararosanilin und Quecksilbercyanid in Alkohol unter 0° erhalten (To.). Grüne, bronzefarbig reflektierende Tafeln. Wird durch siedendes Wasser unter Bildung von 4.4'.4". Triaminotriphenylessigsäure-nitril zersetzt (To.). — Ferrocyanwasserstoffsaures Salz. Hellgrüne Nadeln (aus verd. Alkohol). Schwer löslich in Wasser (O. Fl., G. SCHMIDT). Anhydro-[4.4'.4"-triamino-triphenylcarbinol], 4'.4"-Diamino-fuchson-

imid ') $C_{19}H_{17}N_3 = HN:C < \frac{CH:CH}{CH:CH} > C:C(C_6H_4\cdot NH_2)_3$. B. Beim Hinzufügen von Natronlauge zu einer wäßrigen Lösung von Parafuchsin (S. 752) (BAEYER, VILLIGER, B. 37, 1183, 2867). — Ist in Lösung beständiger als 4'-Amino-fuchson-imid (S. 743), läßt sich in seiner Lösung in Benzol noch tagelang nachweisen, ehe Polymerisation (bezw. Kondensation) eintritt. Leicht löslich in Wasser, Äther und Benzol mit brauner Farbe; wird aus der wäßr. Lösung durch größere Mengen Natronlauge ausgesalzen. Ist eine starke Base. — Beim Versetzen einer benzolischen Lösung mit Kochsalz findet momentan Rückbildung von Parafuchsin statt. Die Umwandlung in 4.4'.4"-Triamino-triphenylcarbinol durch Wasser erfolgt langsam, dagegen die Addition von Alkoholen zu den farblosen Alkyläthern des 4.4'.4"-Tri-

amino-triphenyl-carbinols in wenigen Minuten.

Verbindung $C_{31}H_{33}O_3N_3$, vielleicht Bis- $[4-(\gamma-oxy-butylidenamino)-phenyl]$ - $[2-methyl-chinolyl-(6)]-carbinol [CH₃·CH(OH)·CH₂·CH:N·C₆H₄]₂C(OH)·C₁₀H₈N. B. Entsteht in Form eines Farbsalzes ("schwefelfreies Aldehydgrün"), neben einem blauen Farbstoff, beim Erhitzen einer Lösung von 8 g Pararosanilin in 22 g konz. Schwefelsäure und 30 g Wasser mit 40 g Aldehyd auf 50°; man verdünnt, sobald eine Probe der Mischung mit Alkohol eine grünblaue Färbung gibt, mit Wasser auf <math>1^1$ /2 Liter, beseitigt den blauen Farbstoff durch Ausselzen mit Kochestz, fültriert, und sehlägt aus dem grünen Filtrat des Farbstoff durch Aussalzen mit Kochsalz, filtriert und schlägt aus dem grünen Filtrat das "schwefelfreie Aldehydgrün" mit Natriumacetat nieder; zur Isolierung der Base schüttelt man das durch Lösen in Alkohol und Ausfällen mit Äther gereinigte "schwefelfreie Aldehydgrün" mit verd. Ammoniak (v. MILLER, PLÖCHL, B. 24, 1708). — Die Base ist nicht näher beschrieben. — Das "schwefelfreie Aldehydgrün" ist wenig lichtecht; es geht beim Behandeln mit Schwefelwasserstoff + schwefliger Säure in der Wärme in das lichtechtere "schwefelhaltige Aldehydgrün" (s. u.) über. Verbindung $C_{31}H_{35}O_3N_3S_2$. B. Entsteht in Form eines Farbsalzes (,,schwefelhaltiges

Aldehydgrün aus Pararosanilin"), wenn man eine Lösung von 8 g Pararosanilin in 22 g konz. Schwefelsäure und 30 g Wasser mit 40 g Aldehyd 3 Stunden auf 50° erhitzt, die einen blauen Farbstoff und das "schwefelfreie Aldehydgrün" (s. o.) enthaltende Lösung in 3 Liter gesättigtes Schwefelwasserstoffwasser gießt, auf 90° erhitzt, 200 g Schwefligsäurelösung zugibt und einige Zeit kocht; die erkaltete Lösung versetzt man zum Ausfällen des blauen Farbstoffes mit 300 g Kochsalz, filtriert und fällt aus dem Filtrat das "schwefelhaltige Aldehydgrün" durch Natriumacetat aus; zur Isolierung der Base behandelt man das gereinigte "schwefelhaltige Aldehydgrün" mit Ammoniak (v. Miller, Plöchl, B. 24, 1711; vgl. B. 29, 61). — Die Base ist nicht näher beschrieben. — Der Farbstoff ist beständiger als das

, schwefelfreie Aldehydgrün".

Verbindung C₁₁H₃₇O₃N₃Cl₂(?), "Aldehydblau aus Pararosanilin". B. Bei 24-stdg. Stehen von 10 g Pararosanilin mit 25 g konz. Salzsäure, 16 g Wasser und 20 g Paraldehyd, neben anderen Produkten; man verdünnt mit Wasser auf 1 Liter und fällt das Aldehydblau mit Kochsalz aus (Gattermann, Wichmann, B. 22, 229; vgl. v. Miller, Plöchl, B. 24, 1703). — Dunkelblaue, bronzeglänzende Krusten. Äußerst leicht löslich in Wasser und Alkohol, unlöslich in Äther, Benzol und Ligroin (G., W.).

Funktionelle Derivate des Pararosanilins.

4.4'.4"- Triamino - triphenylcarbinol - methyläther $C_{20}H_{31}ON_3 = (H_2N \cdot C_6H_4)_3 \cdot C \cdot O \cdot CH_3$. B. Zu einer Lösung von 1,5 g Natrium in 30 g Methylalkohol fügt man eine methylalkoholische Lösung von 5 g Parafuchsin (Baryer, Villiger, B. 87, 2874). — Scheidet sich aus Methylalkohol nach Zusatz von Ather und Wasser in farblosen Blättern aus, die 1 Mol. Krystalläther enthalten und bei 105° schmelzen. Aus Benzol krystallisiert die Verbindung in benzolhaltigen Blättern vom Schmelzpunkt 135°.

4-Amino-4'.4"-bis-dimethylamino-triphenylcarbinol, N.N.N'.N'-Tetramethylpararosanilin $C_{23}H_{27}ON_3 = [(\tilde{C}H_3)_2N \cdot C_6H_4]_2C(C_6H_4 \cdot NH_2) \cdot OH$. B. Entsteht in Form

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, S. 520.

von Farbsalzen bei der elektrolytischen Reduktion von 4"-Nitro-4.4'-bis-dimethylaminotriphenylmethan (S. 280) in konz. Schwefelsäure oder 50% geer Essigsäure (Ges. f. chem. Ind., D. R. P. 84607; Frdl. 4, 183); bei der Oxydation von 4-Amino-4'.4"-bis-[dimethylamino]-triphenylmethan (S. 314) mit Mangandioxyd oder Bleidioxyd in schwach saurer Lösung (O. Fischer, B. 14, 2527) oder mit Chloranil (O. Fi., German, B. 16, 709); durch Oxydation von 4-4'-Bis-dimethylamino-4"-acetamino-triphenylmethan (S. 317) mit Mangandioxyd oder Bleidioxyd in schwach saurer Lösung und Kochen des entstandenen grünen Farbstoffes mit Salzsäure (O. Fi., Ge.; O. Fi., Körner, B. 16, 2904 Anm.). Die Carbinolbase scheidet man aus den Farbsalzen durch Alkali ab (O. Fi., K.). — Die Carbinolbase bildet farblose Krystalle (aus Äther). — Die Farbsalze sind in Wasser löslich und färben violett (O. Fi.). Das essigsaure Farbsalz krystallisiert aus verd. Essigsäure in grünschimmernden Nadeln (Ges. f. chem. Ind.).

4-Methylamino-4'.4"-bis-dimethylamino-triphenylcarbinol, N.N.N'.N".N"-Pentamethyl-pararosanilin C₃₄H₃₉ON₃ = [(CH₂)₂N·C₄H₄]₅C(C₄H₄·NH·CH₃)·OH. B. bezw. Darst. Entsteht in Form von Farbsalzen, neben anderen Methylierungsstufen des Pararosanilins (vgl. O. Fischer, Körner, B. 16, 2909), bei der Oxydation von Dimethylanilin mit Kalium-chlorat + Kupfersulfat oder mit Kupfernitrat + Natriumchlorid (A. W. Hofmann, B. 6, 357; vgl. Graebe, Caro, A. 179, 189; E. Fischer, O. Fischer, A. 194, 295; B. 12, 799) oder mit Chloranil (Bd. VII, S. 636) (Greeff, B. 12, 1610; Höchster Farbw., D. R. P. 8251, 1811; Frdl. 1, 66, 67; Wichelhaus, B. 14, 1952; 16, 2005; 19, 107; O. Fischer, German, B. 16, 710) oder (neben einer Verbindung C₂₂H₃₅O₃N₃(?), Bd. XII, S. 155) beim Erhitzen mit 4-Nitro-benzylchlorid über freier Flamme (Wederind, Gonswa, A. 307, 283, 288). Läßt sich ferner in Form von Farbsalzen bei der Oxydation von N.N.N'.N'.N''-Pentamethyl-paraleukanilin (S. 314) erhalten (O. Fi., Kö., B. 16, 2907). — Die Carbinolbase wurde nicht isoliert.

Die Farbsalze des Pentamethylpararosanilins bilden neben den Farbsalzen des Hexamethylpararosanilins (S. 756) einen Hauptbestandteil des technischen Methylvioletts (vgl. O. FI., Kö., B. 16, 2904). Zur Darstellung von Methylviolett durch Oxydation von Dimethylanilin mit einem Gemisch von Kupfersulfat, Natriumchlorid, wenig Wasser und Phenol vgl. Mühlhäuser, D. 264, 37; Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 250, 251; Schultz, Tab. No. 515. Je nach der Durchführung der Oxydation des Dimethylanilins entstehen bald rotstichige, bald blaustichige Violette (O. FI., Kö., B. 16, 2909). — Lichtabsorption verschiedener Methylviolette im sichtbaren Spektralgebiet: Formaner, Ziechr. f. Farben- u. Textilchemie 1, 670. Absorptionsspektrum von Methylviolett in Ultraviolett: Krüss, Ph. Ch. 51, 282. Empfindlichkeit als Indicator: Friedenthal, Z. El. Ch. 10, 116; Salessky, Z. El. Ch. 10, 206; Fels, Z. El. Ch. 10, 213. Überführung von Methylviolett in Sulfonsäuren ("Säureviolette"): Bad. Anilin- und Sodaf., D. R. P. 2096; Frdl. 1, 108; Soc. St. Denis, D. R. P. 28884; Frdl. 1, 113. Benzylierung von Methylviolett zu dem Farbstoff Benzylviolett: O. FI., Kö., B. 16, 2910; Schultz, Tab. No. 517. — Physiologisches Verhalten von Methylviolett: Fühner, A. Pth. 59, 163. — Methylviolett in großen Mengen zur Herstellung von Kopiertinten, Kopierstiften usw. gebraucht, in kleineren Mengen auch als Beizenfarbstoff angewandt (vgl. Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 252).

4.4.4"-Tris-dimethylamino-triphenylcarbinol, Hexamethyl-4.4.4"-triamino-triphenylcarbinol, N.N.N'.N'.N".N"-Hexamethyl-pararosanilin, Carbinolbase des Krystallvioletts C_{2,}H₂₁ON₃ = [(CH₂)₈N·C₆H₄]₈C·OH. B. bezw. Darst. Entsteht in Form von Farbsalzen beim Erhitzen von Dimethylanilin mit Tetrachlorkohlenstoff in Gegenwart von Aluminiumehlorid unter Rückfluß auf 100—110° (Heumann, D. R. P. 66511; Frdl. 3, 102), beim Behandeln von Dimethylanilin mit Phosgen in Gegenwart von Aluminiumehlorid bei 20—30° (Bad. Anilin- u. Sodaf., D.R. P. 26016; Frdl. 1, 78) oder von Zinkchlorid bei 50° (B. A. S. F., D. R. P. 29943; Frdl. 1, 79), bei der Einw. von Chlorameisensäure-trichlormethylester (Bd. III, S. 18) auf Dimethylanilin in Gegenwart von Kondensationsmitteln (ZnCl₂, AlCl₂) (Akt.-Ges. f. Anilinf., D. R. P. 29960; Frdl. 1, 92; Höchster Farbw., D. R. P. 34607; Frdl. 1, 92; vgl. A. W. Hofmann, B. 18, 767), beim Erwärmen von 2 Tln. Dimethylanilin mit 1 Tl. Perchlormethylmercaptan (Bd. III, S. 135) in geringer Menge, neben 4.4'-Bisdimethylamino-diphenylsulfid (S. 538) und anderen Produkten (RATHKE, B. 19, 397; vgl. BAYER & Co., D. R. P. 32829; Frdl. 1, 98), beim Hinzufügen von Dimethylanilin zu einer Lösung der ohinoiden Form des Tetramethyldiaminobenzophenonchlorids (S. 245) in Dichlorathylen (Staudinorer, B. 42, 3983), bei der Kondensation von Dimethylanilin mit 4.4'-Bis-dimethylamino-benzophenon (Michlerschem Keton, Syst. No. 1873) in Gegenwart von Phosphorohloriden, Aluminiumchlorid, Phosgen usw. (Bad. Anilin- u. Sodaf., D. R. P. 27789; Frdl. 1, 81) oder chlorierten Chlorameisensäureestern (B. A. S. F., D. R. P. 29962; Frdl. 1, 86). Entsteht ferner in Form von Farbsalzen bei der Oxydation von Leukokrystallviolett (S. 315) mit Bleidioxyd in salzsaurer Lösung (Bad. Anilin- u. Sodaf., D. R. P. 27032; Frdl. 1, 77), beim Erwärmen einer konzentriert schwefelsauren Lösung von 4.4'.4"-

Tris-dimethylamino-triphenylessigsäure (Syst. No. 1907) auf 60° (Guyot, Bl. [4] 1, 945) oder der konzentriert schwefelsauren Lösung des Athylesters dieser Säure auf 140° (Guyot, C. r. 144, 1052, 1122; Bl. [4] 1, 935, 945). Bildung von Farbsalzen des Hexamethylpararosanilins s. auch bei Methylviolett (S. 755). — Zur Isolierung der Carbinolbase versetzt man die wäßr. Lösung der Farbsalze mit einem Überschuß von Natronlauge (KOVACHE, A. ch. [9]

Prismen, die sich an der Luft leicht violett färben; F: 219° (korr.) (KOVACHE, A. ch. [9] 10 [1918], 247; vgl. VILLIGER, KOPETSCHNI, B. 45 [1912], 2920; NOELTING, SAAS, B. 46 [1913], 954). Krystallmessungen an einem im durchfallenden Lichte rötlich dunkelviolett, im auf fallenden Licht metallisch kupferrot erscheinenden (daher nicht reinen) Präparat: Grünling, B. 18, 1271; vgl. Groth, Ch. Kr. 5, 299. Unlöslich in Wasser, löslich in Chloroform, Schwefelkohlenstoff, Benzol, Ather, Aceton und Petroläther, schwerer in Alkohol (Wichelhaus, B. 19, 109). Beim Zusatz von Säuren zu den farblosen Lösungen der Carbinolbase in Benzol und Äther tritt nur schwache Färbung ein; erst beim Erwärmen wird die Farbe unter Bildung der (einsäurigen) Farbsalze intensiv (Noelting, Philipp, B. 41, 3910). Beim Einleiten von trocknem Bromwasserstoff in eine Lösung der Carbinolbase in Äther + Aceton bei —15° läßt sich das farblose Carbinolsalz $C_{20}H_{31}ON_3 + 3\,\mathrm{HBr}$ (s. u.) isolieren, leitet man dagegen den Bromwasserstoff in eine erwärmte Lösung der Carbinolbase in Chloroform ein, so fällt das dreifach bromwasserstoffsaure Farbsalz $[C_{as}H_{30}N_3]Br + 2HBr (S. 757)$ aus (Hantzsch, B. 33, 753, 754). Wärmetönung bei der Neutralisation der Carbinolbase mit Säuren: Schmidlin, C. r. 139, 542; A. ch. [8] 7, 242. — Bei der Reduktion von Krystallviolett mit wäßr. Schwefelammonium im geschlossenen Rohr bei 120° (A. W. Hofmann, B. 18, 769) oder mit hydroschwefligsaurem Natrium Na₂S₂O₄ und etwas Zinkstaub in heißem Alkohol (O. FISCHER, FRITZEN, J. pr. [2] 79, 563) wird Leukokrystallviolett (S. 315) erhalten. Über Nitrierung von Krystallviolett mit Salpeterschwefelsäure vgl. Soc. St. Denis, D. R. P. 59220; Frdl. 2, 49; 8, 67. Löst man die Carbinolbase des Krystallvioletts in Alkohol unter Zusatz von Essigsäure und behandelt die Lösung mit Schwefelwasserstoff oder Schwefelalkalien bis zur Entfärbung, so entsteht 4.4'.4"-Tris-dimethylamino-triphenylcarbinthiol (S. 762), bei andauernder Einw. bildet sich Leukokrystallviolett (LAMBRECHT, WEIL, B. 38, 270, 276). Einw. von Kaliumpolysulfid auf Krystallviolett: Pelet, Grand, C. 1907 II, 1529; vgl. La., Weil. Beim Einleiten von Schwefeldioxyd in eine Suspension von 4.4'.4"-Tris-dimethylaminotriphenylcarbinol in wenig Wasser entsteht 4.4'.4"-Tris-dimethylamino-triphenylmethana-sulfonsäure (Syst. No. 1923) (DÜRRSCHNABEL, WEIL, B. 38, 3495; vgl. WIELAND, SCHEUING, B. 54 [1921], 2543). Krystallviolett wird durch Kochen mit Salzsäure in Dimethylanilin und 4.4'-Bis-dimethylamino-benzophenon (Michlersches Keton) gespalten (Wichelhaus, B. 19, 109); letzteres entsteht schon bei gewöhnlicher Temperatur beim Versetzen von Krystallviolettlösungen mit Natronlauge in Gegenwart von Wasserstoffsuperoxyd (v. Georgievics, B. 38, 886). Beim Behandeln von 10 g der Carbinolbase mit 25 g Methyljodid und 100 g Wasser in der Kälte erhält man 4.4′.4″-Tris-dimethylamino-triphenylcarbinol-tris-jodmethylat (S. 759) (ROSENSTIEHL, Bl. [3] 13, 556). Die Carbinolbase wird schon bei längerem Stehen mit Alkoholen ätherifiziert; schneller verläuft die Reaktion beim Kochen (O. FISCHER, WEISS, Ztschr. f. Farben- u. Textilchemie 1, 1; C. 1902 I, 471). Bei gelindem Erwärmen der Carbinolbase mit überschüssigem Phenol entsteht ein carbolsaures Salz C₄₃H₄₉O₄N₃ (S. 757) (O. Fl., Weiss). Beim Versetzen einer Krystallviolettlösung mit überschüssiger Kaliumcyanidlösung erhält man allmählich einen farblosen Niederschlag des 4.4'.4"-Tris-dimethylaminotriphenylessigsäure-nitrils (Syst. No. 1907) (Hantzsch, Osswald, B. 33, 287, 304, 306). Durch Behandeln von Krystallviolett mit Benzylmagnesiumchlorid in absol. Äther und Zersetzen des Reaktionsproduktes mit Wasser erhält man a-Phenyl- β , β , β -tris-[4-dimethylamino-

phenyl]-āthan (S. 334) (FREUND, BECK, B. 87, 4679). — Titrimetrische Bestimmung des Krystallvioletts mit Titantrichlorid: KNECHT, HIBBERT, B. 88, 3322.

Farbloses Trishydrobromid des 4.4'.4"-Tris-dimethylamino-triphenylcarbinols C₂₅H₃₁ON₃ + 3HBr. B. Beim Einleiten von trocknem Bromwasserstoff in eine Lösung von 4.4'.4"-Tris-dimethylamino-triphenylcarbinols in Ather + Aceton bei —15° (Hantzsch, B. 33, 753). Farblos, nach dem Trocknen hellgelb; in Wasser von 0° fast farblos löslich; beim Anwärmen wird die Lösung infolge Bildung von einsäurigem Farbsalz rasch violett (H.). Geschwindigkeit der Zersetzung in wäßr. Lösung: Sand, B. 38, 3642. Elektrische

Leitfähigkeit: H.

Far bsalze. Einfach salzsaures Salz, Krystallviolett [C₂₅H₃₀N₃]Cl. Hexagonale (Wada, B. 18, 767; Grünling, B. 18, 1271) Krystalle mit grünlichbraunem Metaliglanz (aus Wasser) (A. W. Hofmann, B. 18, 767); krystalliert aus Wasser mit 9 H₂O (Knecht, Hibbert, B. 38, 3322) und enthält, bei 70—80° getrocknet, noch 1 H₂O (Schmidlin, A. ch. [8] 7, 204; vgl. A. W. Hofmann, B. 18, 768); wird im Vakuum über Schwefelsäure und Phosepharten aust noch maken Stahen wassenfrei (Hannigeri Osswald R. 38). phorpentoxyd erst nach mehrwöchigem Stehen wasserfrei (HANTZSCH, OSSWALD, B. 33, 299). Löslich in Wasser und Alkohol mit violettblauer Farbe (A. W. Hofmann, B. 18, 767),

leicht löslich in Chloroform (HANTZSCH, B. 33, 757) und Dichloräthylen (STAUDINGER, B. 42, 3981). Ebullioskopisches Verhalten in Wasser und Alkohol: Krafft, B. 32, 1610. Lichtabsorption des Krystallvioletts im sichtbaren Spektralgebiet: Lemoult, C. r. 131, 840; Formanen, Zischr. f. Farben- u. Textilchemie 1, 670; 2, 476; Kalandek, C. 1908 I, 1024; im Ultraviolett: Krüss, Ph. Ch. 51, 282. Beim Abkühlen einer alkoh. Lösung von Krystallviolett mit flüssiger Luft nimmt die Intensität der violetten Farbe stark ab, während gleichzeitig eine braune Fluorescenz auftritt (Schmidlin, C.r. 139, 731; A.ch. [8] 7, 256). Adsorption durch Kohle und durch Fasern: Freundlich, Losev, Ph. Ch. 59, 288. Molekulare Verbrennungswärme bei konst. Vol.: 3446 Cal., bei konstantem Druck: 3450,2 Cal. (Schmidlin, C. r. 139, 732; A. ch. [8] 7, 251). Elektrische Leitfähigkeit: Hantzsch, Osswald, B. 33, 299; Hantzsch, B. 33, 756. Krystallviolett läßt sich in ähnlicher Weise wie Parafuchsin durch Anlagerung von Chlorwasserstoff, Ammoniak oder Wasser in farblose Additionsverbindungen überführen (Schmidlin, A. ch. [8] 7, 220, 224, 229). Beim Versetzen mit 1 Mol.-Gew. NaOH trübt sich die Lösung des Krystallvioletts allmählich unter Abscheidung von 4.4'.4"-Trisdimethylamino-triphenylcarbinol (HANTZSCH, OSSWALD, B. 83, 300). Beim Verreiben von Krystallviolett mit konz. Natronlauge entsteht ein braunviolettes, in Wasser schwer lösliches amorphes Kondensationsprodukt (Fr., Lo., Ph. Ch. 59, 303). Physiologisches Verhalten des Krystallviolette: Fühner, B. 39, 2437; A. Pth. 59, 163. Kommt als Antisepticum unter dem Namen "Pyoktaninum coeruleum" in den Handel (Stilling, A. Pth. 28, 352; Fränkel, Die Arzneimittel-Synthese, 6. Aufl. [Berlin 1927], S. 635). Krystallviolett färbt blauviolett (Wichelhaus, B. 19, 109). — Dreifach salzsaures Salz [C₂₅H₂₀N₃]Cl+2HCl. B. Man leitet Chlorwasserstoff auf fein pulverisiertes, zuvor im Vakuum bei 130° getrocknetes Krystallviolett. bis das Produkt, rot geworden ist und bewehrt es 130° getrocknetes Krystallviolett, bis das Produkt rot geworden ist, und bewahrt es dann im Vakuum bis zum Verschwinden des Salzsäuregeruchs (Schmidlin, C.r. 138, 1509; A. ch. [8] 7, 209). Violettschwarzes Pulver; zerfließt an feuchter Luft unter Entfärbung; löst sich in Wasser mit fast der gleichen Farbe wie Krystallviolett (Schmiden). Elektrische Leitfähigkeit: Hantzsch, B. 33, 755. — Dreifach bromwasserstoffsaures Salz $[C_{25}H_{30}N_3]Br + 2HBr$. B. Beim Leiten von Bromwasserstoff in eine erwärmte Lösung von 4.4'.4''-Tris-dimethylamino-triphenylcarbinol in Chloroform (Hantzsch, B. 33, 754). Gelb- bis feuerrotes Pulver; verliert beim Trocknen Bromwasserstoff; ist in Wasser infolge hydrolytischer Dissoziation in Krystallviolett und freie Säure mit tiefvioletter Farbe löslich (H.); dieser Zerfall in einsäuriges Farbsalz und freie Säure beim Lösen in Wasser erfolgt augenblicklich (Sand, B. **88**, 3643). — Jodwasserstoffsaures Salz [C₃₂H₃₀N₃]I. Goldkäferglänzende Nadeln; 1 Liter Wasser löst 0,2 g (Rosenstiehl, Bl. [3] **15**, 1300). — [C₃₂H₃₀N₃]I + I₃. B. Bei der Einw. einer Jodjodkaliumlösung auf eine Lösung von Krystallviolett (Pelet, Gilliebon, C. **1907** I, 1259). Dunkelgefärbter Niederschlag. Sehr schwer löslich in kaltem, schwer in heißem Wasser, fast unlöslich in Benzol, schwer löslich in CS2, etwas leichter in Aceton, Alkohol und Chloroform. — Palmitinsaures Salz. B. Man trägt 11/4 Mol.-Gew. geschmolzene Palmitinsäure in 1 Mol.-Gew. fein pulverisiertes 4.4'.4"-Tris-dimethylamino-triphenylcarbinol ein und erhält die Schmelze einige Zeit in dünnflüssigem Zustand (GNEHM, RÖTHELI, Z. Ang. 11, 487). Violettes, metallglänzendes Pulver. F: 140°; leicht löslich in Alkohol, Aceton, Chloroform mit violetter Farbe. — Stearinsaures Salz. B. Analog der Bildung des palmitinsauren Salzes. Metallischglänzendes Pulver. F: 153°; löslich in Benzol (GNEHM, RÖTHELI, Z. Ang. 11, 487, 501). — Carbolsaures Salz C₄₃H₄₉O₄N₃ (= [C₂₅H₂₀N₃]C₂H₅O + 2C₆H₆O + H₂O?). B. Bei gelindem Erwärmen von 4.4′.4″-Tris-dimethylamino-triphenylarbinol mit überschüssigem Phenol (O Frechter Weiser Leichen und Leic (O. FISCHER, WEISS, Ztochr. f. Farben- u. Textilchemie 1, 2; C. 1902 I, 471). Cantharidenfarbene Nadeln. F: ca. 120°. Leicht löslich in Alkohol und Benzol, schwer in Äther und Ligroin mit blauer Farbe. — Salz der Naphthochinon-(1.2)-sulfonsäure-(4) (Bd. XI, S. 330) [C₂₅H₃₀N₃]C₁₀H₅O₅S. B. Aus Krystallviolett und dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) in Wasser bei 30° (Sachs, Berthold, Ztschr. f. Farbenindustrie 6, 142; C. 1907 I, 1749, 1750). Grünschillernde Nadeln (aus Alkohol + Äther). Sehr leicht löslich in Alkohol, Aceton, Chloroform und Eisessig, fast unlöslich in Benzol, Petroläther und Äther;

in Aikonoi, Aceton, Chloroform und Eisessig, fast unioshen in Benzoi, Petrolather und Ather; die wäßr. Lösung ist tiefviolettblau gefärbt. $[C_{28}H_{30}N_3]Cl + HCl + ZnCl_2 + 3H_3O$. B. Man löst 4 g Krystaliviolett in 40 com heißem Wasser und einem Tropfen Salzsäure, fügt 1,4 g Zinkchlorid, in wenig Wasser gelöst, hinzu und darauf tropfenweise etwa 4 ccm $30^{\circ}/_{\rm oige}$ Salzsäure (Lambrecht, Well, B. 38, 281). Grasgrüne Krystalle. In sehr wenig Wasser mit grüner Farbe löslich. — $[C_{35}H_{30}N_3]Cl + 2HCl + 2SnCl_4 + 2H_3O$. B. Man erwärmt 1,6 g 4.4'.4"-Tris-dimethylamino-triphenyl-carbinol, gelöst in 80 ccm $30^{\circ}/_{\rm oiger}$ Salzsäure, auf 50° und fügt 15 ccm einer Zinnchloridlösung (enthaltend 25 g Zinnchlorid in $30^{\circ}/_{\rm oiger}$ Salzsäure auf 150° ccm verdünnt) hinzu (Lambrecht) (enthaltend 25 g Zinnehlorid in 30% iger Salzsaure auf 150 ccm verdünnt) hinzu (LAMBRECHT, Well, B. 38, 280). Orangerote Krystalle. Zersetzt sich bei 100° unter Bildung eines grünen Pulvers. Die Lösungen sind in Gegenwart von Säure bei geeigneter Temperatur intensiv orange. — $2[C_{35}H_{30}N_3]Cl + 3 PtCl_4$. Ziegelroter krystallinischer Niederschlag; wird von Wasser unter starker Blaufärbung zersetzt (A. W. Hofmann, B. 18, 768).

- 4.4'.4"-Tris-dimethylamino-triphenylcarbinol-methyläther C₈₈H₃₂ON₃ = [(CH₃)₃N·C₆H₄]₃C·O·CH₃. B. Beim Erhitzen von 4.4'.4"-Tris-dimethylamino-triphenylcarbinol mit 4—5 Tln. Methylalkohol unter Druck auf 110° (O. FISCHER, Weiss, Zischr. j. Farben-u. Textilchemie 1, 1; C. 1902 I, 471). Beim Eintröpfeln von Natronlauge von 40° Bé in die Lösung von 1 Tl. Krystallviolett in 6 Tln. Methylalkohol (Rosenstiehl, Bl. [3] 13, 564) oder beim Versetzen der methylalkoholischen Lösung von Krystallviolett mit methylalkoholischer Natriummethylallösung (Baeyer, Villiger, B. 37, 2875). Farblose Krystalle (aus Methylalkohol oder Ligroin), farblose Tafeln (aus Benzol beim Verdunsten im luftverdünnten Raum). F: 158—159° (O. Fi., W.), 159—160° (B., V.), 165° (Zers.) (R.). Sehr leicht löslich in Benzol und Ather, weniger löslich in Alkohol und Ligroin (O. Fi., W.). Wird durch Säuren, auch Kohlensäure, leicht zerlegt (O. Fi., W.). Absorbiert 3 Mol. Chlorwasserstoff, doch erfolgt gleichzeitig teilweise Spaltung in Krystallviolett und Methylalkohol (R.).
- 4.4',4"-Tris-dimethylamino-triphenylcarbinol-äthyläther $C_{97}H_{25}ON_3 = [(CH_3)_2N \cdot C_6H_4]_3C \cdot O \cdot C_2H_5$. B. Beim Erhitzen von 4.4'.4"-Tris-dimethylamino-triphenylcarbinol mit 4—5 Tln. Äthylalkohol unter Druck auf 110° (O. FISCHER, Weiss, Ztechr. f. Farbenu. Textilchemie 1, 1; C. 1902 I, 471). Beim Hinzufügen von Natronlauge zu einer Lösung von Krystallviolett in 6 Tln. 96°/eigem Äthylalkohol oder bei der Einw. von Natriumäthylat auf eine Lösung von Krystallviolett in absol. Alkohol (Rosenstiehl., Bl. [3] 13, 564, 565). Farblose Krystalle (aus Ligroin oder alkalihaltigem Alkohol). F: 143° (Zers.) (R.), 143° bis 144° (O. Fl., Weiss), 143—145° (Herzig, Wengraf, M. 22, 609). Leicht löslich in Benzol, weniger löslich in Alkohol und Ligroin (O. Fl., Weiss). Wird durch Säuren, auch Kohlensäure, leicht zerlegt (O. Fl., Weiss).
- 4.4'.4" Tris dimethylamino triphenylcarbinol isoamyläther $C_{30}H_{41}ON_3 = [(CH_3)_2N\cdot C_0H_4]_3C\cdot O\cdot C_5H_{11}$. B. Bei der Einw. von Natrium in Isoamylalkohol auf eine Lösung von Krystallviolett in absol. Isoamylalkohol (Rosenstiehl, Bl. [3] 13, 565). Zähflüssig.
- 4.4'.4"-Tris-dimethylamino-triphenylcarbinol-benzyläther $C_{32}H_{37}ON_3=[(CH_3)_2N\cdot C_6H_4]_3C\cdot O\cdot CH_2\cdot C_6H_8$. B. Beim Erhitzen von 1 Tl. 4.4'.4"-Tris-dimethylamino-triphenylcarbinol mit 4 Tln. Benzylalkohol auf 140° (O. FISCHER, Weiss, Ztechr. f. Farben- u. Textilchemie, 1, 1; C. 1902 I, 471). Farblose Krystalle (aus Ligroin). F: 174—175°. Leicht löslich in Äther und Benzol. Wird durch Säuren, auch Kohlensäure, leicht zerlegt.
- 4.4'.4" Tris dimethylamino triphenylcarbinol mono hydroxymethylat, N.N.N'.N'.N".N".- Hexamethyl pararosanilin mono hydroxymethylat, Base des Methylgrüns oder Lichtgrüns $C_{26}H_{36}O_3N_3 = [(CH_3)_2N\cdot C_6H_4]_2C[C_6H_4\cdot N(CH_3)_3\cdot OH]\cdot OH.$ Zur Konstitution vgl. O. Fischer, German, B. 16, 707, 709; O. Fi., Körner, B. 16, 2910; Lefevre, Bl. [3] 13, 247. B. Entsteht in Form des salzsauren Farbsalzes bei der Einw. von Methylchlorid auf Methylviolett in methylalkoholisch-alkalischer Lösung (Monnet, Reverdin, C. r. 85, 1181; Moniteur scientifique [3] 8 [1878], 124; vgl. auch A. W. Hofmann, B. 6, 363; Lauth, Baubigny, C. r. 76, 1497). Das Farbsalz $C_{26}H_{35}N_3I_3$ entsteht durch Erwärmen von 20 g [4.4'.4".-Tris-dimethylamino-triphenylcarbinol-methyläther]-mono-jodmethylat (s. u.) mit 20 ccm $40^{\circ}/_{\circ}$ jger Essigsäure und 200 ccm Wasser auf 50° und Fällen der Lösung mit 20 g Kaliumjodid (Rosenstiehl, Bl. [3] 13, 573). Die Base wurde nicht isoliert.

Farbsalze. Absorptionsspektrum des Methylgrüns: Formánek, Spektralanalytischer Nachweis künstlicher organischer Farbstoffe [Berlin 1900], S. 44. Die grünen Farbsalze gehen schon bei gelindem Erwärmen unter Abspaltung von 1 Mol. Methylhalogenid in die violetten Farbsalze des Hexamethylpararosanilins über (O. FISCHER, KÖRNER, B. 16, 2910; ROSENSTIEHL, Bl. [3] 13, 573). Das Methylgrün kam vor Entdeckung des Malachitgrüns als schön krystallisiertes Chlorzinkdoppelsalz in den Handel (O. FI., Kö.; vgl. Schultz, Tab. No. 519). Physiologisches Verhalten und histologische Verwendung des Methylgrüns: FÜHNER, A. Pth. 59, 161. — Jodwasserstoffsaures Salz C₂₅H₃₂N₃I₃ + H₃O. Metallgrünglänzende Nadeln (aus wäßr. Lösung), die beim Erhitzen in einem Strom von trocknen Methyljodid-dämpfen das Krystallwasser verlieren (R.). Fast unlöslich in Lösungsmitteln, die eine Spur Kaliumjodid enthalten (R.).

[4.4'.4"-Tris-dimethylamino-triphenylcarbinol-methyläther]-mono-jodmethylat $C_{27}H_{38}ON_3I = [(CH_3)_2N\cdot C_6H_4]_2C[C_8H_4\cdot N(CH_3)_3I]\cdot O\cdot CH_3$. B. Bei vorsichtigem Mischen von 20 g 4.4'.4"-Tris-dimethylamino-triphenylcarbinol-methyläther mit 25 g Wasser und 37,5 g Methyljodid; man entfernt das gleichzeitig gebildete wasserlösliche Trisjodmethylat (S. 759) durch Behandeln des Reaktionsproduktes mit heißem Wasser (ROSENSTIEHL, Bl. [3] 13, 567, 572). — Farblose Nadeln. Färbt sich bei ca. 140° blau und schmilzt gegen 195° unter Zersetzung. Löslich in heißem Methylalkohol, unlöslich in Wasser. — Läßt sich durch Erwärmen mit Essigsäure und Zusatz von Kaliumjodid in das jodwasserstoffsaure Farbsalz $C_{26}H_{23}N_3I_2$ (s. im vorangehenden Artikel) überführen.

- 4.4'.4" Tris dimethylamino triphenylcarbinol tris jodmethylat , N.N.N'.N".N".- Hexamethyl pararosanilin tris jodmethylat $C_{19}H_{40}ON_2I_3 = [(CH_3)_3NI\cdot C_9H_4]_3C\cdot OH$. B. Bei eintägigem Stehen von 10 g 4.4'.4"-Tris-dimethylamino-triphenylcarbinol mit 25 g Methyljodid und 100 g Wasser in der Kälte, neben dem Farbsalz $[C_{25}H_{20}N_2]I$ des 4.4'.4"-Tris-dimethylamino-triphenylcarbinols (R., Bl. [3] 13, 556). Farblose Krystalle (aus Wasser) mit 3 H.O. Läßt sich in einer Atmosphäre von Methyljodiddämpfen bei 100—150° entwässern. 100 Tle. Wasser lösen bei 16° 16,08 Tle.; ziemlich schwer löslich in Alkohol. Färbt sich beim Zusatz von Säuren nur schwach grün; beim Erwärmen wird die Färbung intensiv grün unter Verlust von 2 Mol.-Gew. Methyljodid. Beim Kochen mit alkoh. Kalilauge entsteht 4.4'.4"-Tris-dimethylamino-triphenylcarbinol.
- [4.4'.4"-Tris-dimethylamino-triphenylcarbinol-methyläther]-tris-jodmethylat $C_{29}H_{42}ON_3I_3=[(CH_2)_2NI\cdot C_0H_4]_2C\cdot O\cdot CH_2$. B. s. im Artikel [4.4'.4"-Tris-dimethylamino-triphenylcarbinol-methyläther]-mono-jodmethylat, S. 758. Krystallinisch; enthält $3H_2O$; läßt sich durch Erhitzen in einem Strom von Methyljodiddämpfen auf 150° wasserfrei erhalten; 100 Tle. Wasser lösen bei 18° 24,22 Tle. (R., Bl. [3] 13, 568).
- [4.4'.4"-Tris-dimethylamino-triphenylcarbinol-äthyläther]-tris-jodmethylat $C_{30}H_{44}ON_3I_3=[(CH_3)_8NI\cdot C_6H_4]_8C\cdot O\cdot C_9H_8$. Bei der Einw. von Methyljodid auf. 4.4'.4"-Tris-dimethylamino-triphenylcarbinol-äthyläther in Wasser oder Alkohol (R., Bl. [3] 13, 569). Prismen. 100 Tle. Wasser lösen bei 18° 30,5 Tle. und bei 98° 65,6 Tle.
- [4.4'.4''-Tris-dimethylamino-triphenylcarbinol-isoamyläther]-tris-jodmethylat $C_{33}H_{50}ON_3I_3=[(CH_2)_3NI\cdot C_6H_4]_5C\cdot O\cdot C_5H_{11}$. B. Bei 2-tägigem Stehen von 17 g 4.4'.4''-Tris-dimethylamino-triphenylcarbinol-isoamyläther mit 50 g Methyljodid und Wasser in der Kälte (R., Bl. [3] 18, 570). Nadeln (aus Wasser). 100 Tle. Wasser lösen bei 18° 48 Tle. und bei 90° 200 Tle. Zerfällt bei 4-stdg. Kochen mit alkoh. Natronlauge unter Bildung von Isoamylalkohol und 4.4'.4''-Tris-dimethylamino-triphenylcarbinol.
- 4.4'.4"-Tris-diāthylamino-triphenylcarbinol, Hexaāthyl-4.4'.4"-triamino-triphenylcarbinol, N.N.N'.N''.N''.N''. Hexaāthyl-pararosanilin, Carbinolbase des Äthylvioletts C_MH₄₉ON₃ = [(C₂H₄)₃N·C₆H₄]₅C·OH. B. Entsteht in Form von Farbalzen beim Erhitzen von Diāthylanilin mit Tetrachlorkohlenstoff in Gegenwart von Aluminium-chlorid zunāchst auf 70—80°, dann auf 100—110° am Rückflußkühler (HEUMARK, D. R. P. 66511; Frdl. 3, 102). Beim Behandeln von Diāthylanilin mit Phoesgen in Gegenwart von Aluminiumchlorid bei 20—30° (Bad. Anilin- u. Sodaf., D. R. P. 26016; Frdl. 1, 78) oder Zinkchlorid bei 50° (B. A. S. F., D. R. P. 29943; Frdl. 1, 79), bei der Einw. von Chlorameisensäure-trichlormethylester (Bd. III, S. 18) auf Diāthylanilin in Gegenwart von Kondensationsmitteln wie Zinkchlorid (Höchster Farbw., D. R. P. 34607; Frdl. 1, 92; vgl. Akt.-Ges. f. Anilinf., D. R. P. 28318, 29960; Frdl. 1, 91, 92), bei der Kondensation von Diāthylanilin und 4.4'-Bisdiāthylamino-benzophenon in Gegenwart von Phosphorchloriden, Aluminiumchlorid, Phoesgen usw. (B. A. S. F., D. R. P. 27789; Frdl. 1, 81) oder chlorierten Chlorameisensäureestern (B. A. S. F., D. R. P. 29962; Frdl. 1, 86), beim Behandeln von 4.4'-Bis-diāthylamino-diphenylmethan (S. 242) mit Diāthylanilin in Gegenwart von Kupfersulfat (H. Sommir, sitiert bei Schultz, Tab. No. 518), bei der Oxydation von 4.4'-A'-Tris-diāthylamino-triphenylmethan (S. 260). Denis, D. R. P. 61815; Frdl. 3, 102).

Salzsaures Farbsalz, Athylviolett (vgl. Heumann, D. R. P. 66511). Absorptions-spektrum: Lemoult, C. r. 181, 840; 182, 784; Formánek, Ztechr. f. Farben- u. Textilohomie 1, 668; 2, 476. Färbt bläulich violett (Bad. Anilin- u. Sodaf., D. R. P. 27789). Verwendung als Antisepticum: Stilling, A. Pth. 28, 352; Frankel, Die Arzneimittel-Synthese, 6, Aufl. [Berlin 1927], S. 644.

- 4.4'-Bis-dimethylamino-4"-anilino-triphenylcarbinol, N.N.N'.N'-Tetramethyl-N"-phenyl-pararosanilin $C_{28}H_{21}ON_3=[(CH_2)_3N\cdot C_2H_4]_2C(C_2H_4\cdot NH\cdot C_2H_3)\cdot OH$. B. Das Farbsals $[C_{28}H_{20}N_3]Cl$ entsteht bei der Oxydation von 4.4'-Bis-dimethylamino-4"-anilino-triphenylmethan (8.316) mit Mangandioxyd in schwefelsaurer Lösung (MICHABLIS, A. 274, 216).
- Salzsaures Farbsalz [C₂₉H₂₆N₂]Cl. Cantharidengrine Krystallmasse (M.). Absorptionsspektrum: FORMANEK, Zischr. J. Farben- u. Textilchemie 2, 480.
- 4-Amino-4'.4"-dianilino-triphenylcarbinol, N.N'-Diphenyl-pararosanilin C₃₁H₄₇ON₂ = (C₆H₅·NH·C₆H₄)₂C(C₆H₄·NH₂)·OH. B. Entsteht in Form von Farbsalsen, wenn man 4-Nitro-bensaldehyd mit Diphenylamin in Gegenwart von Zinkehlorid kondensiert, das erhaltene 4"-Nitro-4.4'-dianilino-triphenylmethan mit kons. Zinnehlorürlösung redusiert und das so gewonnene N.N'-Diphenyl-paraleukanilin mit Arsensäure oder Nitro-bensol und Eisenehlorür oxydiert (O. Fischer, D. R. P. 16707; Frdl. 1, 55). Farbsalse des Diphenylpararosanilins entstehen auch beim Erhitzen eines Gemisches von 1 Mol.-Gew. p-Toluidin mit 2 Mol.-Gew. Diphenylamin in Eisessiglösung in Gegenwart von Oxydationsmitteln wie As₂O₅ (Meldolla, Ühem. N. 47, 133). Die Farbsalze sind in Alkohol löslich und färben violett (O. F.).

760

4.4'.4" - Trianilino - triphenylearbinol, N.N'.N'' - Triphenyl - pararosanilin, Carbinolbase des Diphenylaminblaus $C_{27}H_{31}ON_3 = (C_0H_4 \cdot NH \cdot C_0H_4)_2C \cdot OH$. B. Entsteht in Form von Farbsalzen beim Erhitzen von 4.4'.4"-Triohlor-triphenylearbinol (Bd. VI, 8.718) mit Anilin und salzsaurem Anilin auf 140° (Bayer, B. 38, 587), beim Erwärmen von Handelbergen auf Bayer, B. 38, 587), beim Erwärmen von Handelbergen auf Bayer, B. 38, 587, beim Erwärmen von Bayer, B. 38, 587 4.4'.4''-Trimethoxy-triphenylcarbinol (Bd. VI, S. 1180) mit Anilin und Benzoesäure im Wasserbade (BAEYER, VILLIGER, B. 35, 3030; 37, 2870), beim Erhitzen von Aurin (Bd. VIII, S. 361) mit Anilin unter Zusatz von etwas Eisessig (DALE, SCHOBLEMMER, A. 166, 294; 196, 91; vgl. E. Fischer, O. Fischer, A. 194, 302; Erhart, Ar. 211, 503; J. 1877, 1233), beim Erhitzen von 20 g 4-Nitro-benzylchlorid mit 19 g Diphenylamin (Bd. XII, S. 174) bezw. 23 g N-Nitrosodiphenylamin (Bd. XII, S. 580), neben einem einfacheren Kondensationsprodukt (Wede-kind, Gonswa, A. 307, 285, 291), durch Hinzufügen von 200 g wasserhaltiger Oxalsäure zu 100 g auf 110° erhitztem Diphenylamin innerhalb 1 Stde. und 8-stdg. Erhitzen auf 130° bis 132° (Schoop Ch. I. 10, 515; Hausdöffer, B. 23, 1963; vgl. auch Willm, Girardo, P. 24 (195), durch 2 stdg. Erhitzen der sur Diphenylamin und Formeldelber. Bl. [2] 24, 99; B. 8, 1195), durch 3-stdg. Erhitzen des aus Diphenylamin und Formaldehyd in Gegenwart von Salzsäure entstehenden Reaktionsproduktes (vgl. Friedländer, Frdl. 8, 79, Anm. zu D. R. P. 58072) mit Diphenylamin, salzsaurem Diphenylamin, o-Nitro-toluol und Eisenchlorür oder Eisenfeile auf 170° (Höchster Farbw., D. R. P. 67013; Frdl. 8, 114), bei 6-stdg. Erhitzen von 16 Tln. des sauren Kaliumsalzes der 4-Anilino-phenyltartronsäure (Syst. No. 1913) mit einer Mischung von 25 Tln. Diphenylamin, 12 Tln. Salzsäure (D:1,19), 30 Tln. Nitrobenzol und 10 Tln. Eisenchlorür auf 110—130° (Boehringer & Söhne, D. R. P. 120465; Frdl. 6, 234), beim Erhitzen von Pararosanilin mit einem Überschuß von Anilin unter Zusatz von Benzoesäure bei ca. 180^o (vgl. Schultz, Tab. No. 520; HAUSDÖRFER, B. 23, 1961). Zur Isolierung der Carbinolbase führt man die Farbsalze in 4'.4".-Dianilino-fuchson-anil (s. u.) über, versetzt dessen Pyridinlösung mit einer Spur Benzoesäure und mit Wasser und läßt die Lösung stehen, bis ihre braune Farbe verschwunden ist (BAE., V., B. 37, 2873). Die Carbinolbase bildet farblose Nädelchen (aus Benzol), die Krystallbenzol enthalten; F: ca. 85°; leicht löslich in den gewöhnlichen Lösungsmitteln, schwer in Ligroin; färbt sich am Licht hellblau; wird durch Säuren in die Farbsalze übergeführt (BAE., V., B. 37, 2873). Verwendung zur Darstellung sulfurierter blauer Triphenylmethanfarbstoffe: Schultz, Tab. No. 535, 537, 538.

Farbsalze. Salzsaures Salz, Diphenylaminblau [C₃₇H₃₀N₃]Cl. Rotmetallisch-glänzende Nadeln (aus Pyridin) (Baryer, Villiger, B. 37, 2872). Löslich in Methylalkohol bei 23° zu 0,447%, in Alkohol zu 0,285%, in Amylalkohol zu 0,11%, in Aceton zu 0,19%, in Anilin zu 0,518% (v. Szathmáry de Szachmár, C. 1908 II, 510). Unlöslich in Wasser (Formánek, Zischr. f. Farben-u. Textilchemie 2, 481), in Ather und Benzol, schwer löslich in Chloroform und Äthylenbromid, leicht löslich in heißem Anilin und Nitrobenzol, schwerer in heißem Eisessig und Aceton (HAUSDÖRFER, B. 28, 1963; WEDEKIND, GONSWA, A. 307, 292). Absorptionsspektrum der alkoh. Lösung: Formánek; Bae., V., B. 87, 2872. Beim Schütteln mit Äther und Natronlauge wird 4'.4". Dianilino-fuchson-anil (s. u.) erhalten (Bae., V., B. 87, 1183, 2871). Färbt in tiefblauen Tönen (W., G.). Zur Frage der Einheitlichkeit des in den Handel gebrachten Diphenylaminblaus vgl. Bae., V., B. 87, 2870; Lambrecht, B. 40, 249. — Pikrinsaures Salz [C₃₇H₃₀N₃]C₆H₃O₇N₃. Fast unlösliche bronzeglänzende Blätter (aus Benzol), die 1 Mol. Krystalbenzol enthalten, welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim Erhitzen im Wasserstoffstrom auf 130° entweight (Bae. V. R. 87, 2872) — Welches Beim E strom auf 130° entweicht (Bar., V., B. 37, 2872). — Benzoesaures Salz. Goldglänzende, blättrige Krystalle (BAE., V., B. 37, 2870).
Anhydro-[4.4'.4"-trianilino-triphenylcarbinol], 4'.4"-Dianilino-fuchson-

 $anil^{1}) \quad C_{37}H_{39}N_{3} = C_{6}H_{5} \cdot N : C < \underbrace{CH : CH}_{CH : CH} > C : C(C_{6}H_{4} \cdot NH \cdot C_{6}H_{5})_{3}. \quad \textit{B.} \quad \text{Man, schüttelt das}$ benzoesaure Farbsalz des 4.4'.4"-Trianilino-triphenylcarbinols (s. o.) mit der 10-fachen Menge Äther und verdünnter Natronlauge (BAEYER, VILLIGER, B. 37, 2871). — Schwarze stäbchenförmige Krystalle (aus Äther) oder Täfelchen (aus siedendem Kylol). F: 237—238°. Leicht löslich in Pyridin, schwer in den gewöhnlichen indifferenten Lösungsmitteln mit rotbrauner Farbe; löst sich in Alkoholen zunächst mit brauner Farbe, die allmählich unter Bildung von Alkyläthern des 4.4'.4"-Trianilino-triphenylearbinols verschwindet. Wird durch Reduktion mit Zinkstaub und Eisessig in 4.4'.4"-Trianilino-triphenylmethan (S. 316) übergeführt. Geht in wasserhaltigen Solvenzien bei Gegenwart einer Spur Säure in 4.4'.4"-Trianilino-triphenylearbinol über; mit Säuren bilden sich die Farbsalze desselben.

4.4'.4"-Tris-diphenylamino-triphenylearbinol, Hexaphenyl-4.4'.4"-triamino-triphenylearbinol, N.N.N'.N".N"-Hexaphenyl-pararosanilin $C_{16}H_{43}ON_3 = [(C_6H_5)_N\cdot C_6H_4]_2C\cdot OH$. B. Entsteht in Form des Farbsalzes $[C_{16}H_{42}N_3]Cl$ (8. 761) bei 4-stdg. Erhitzen von Triphenylamin (Bd. XII, S. 181) mit Phosgen auf 180—200°; die Carbinolbase erhält man durch Versetzen der alkoh. Lösung des Farbsalzes mit Ammoniak (HEYDRICE,

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, 8. 520.

B. 19, 758). — Die Carbinolbase bildet weiße Flocken (aus Benzol durch Alkohol); löst sich in konz. Schwefelsäure mit blauvioletter Farbe (H.).

Salzsaures Farbsalz. $[C_{ss}H_{4}N_{3}]Cl$. Rotmetallisch glänzende Masse; unlöslich in Wasser, leicht löslich in Aceton und heißem Alkohol; ist ein blauer Farbstoff (H.).

- 4 Dimethylamino 4'.4" bis äthylbensylamino triphenylcarbinol, N.N Dimethyl N'.N" diäthyl N'.N" dibensyl pararosanilin C₂₈H₄₂ON₂ = [C₆H₅·CH₃·N(C₆H₄)·C₆H₄]·C[C₄H₄·N(CH₃)₂]·OH. B. Entsteht in Form von Farbsalzen bei 6-stdg, Erhitzen von 15 Tln. des sauren Kaliumsalzes der 4-Dimethylamino-phenyltartronsäure (Syst. No. 1913) mit 40 Tln. Äthylbenzylanilin (Bd. XII, S. 1026), 12 Tln. Salzsäure (D: 1,19), 30 Tln. Nitrobenzol und 10 Tln. Eisenchlorür auf 110—130°; die Carbinolbase isoliert man aus den Farbsalzen durch Alkali (BOEHEINGEE & Söhne, D. R. P. 120465; Fndl. 6, 234). Die Carbinolbase konnte nicht in krystallisierter Form erhalten werden; sie ist in Wasser unlöslich, leicht löslich in Alkohol und färbt sich leicht an der Luft. Durch Behandeln der Carbinolbase oder ihrer Farbsalze mit schwach rauchender Schwefelsäure entsteht ein violetter, in Wasser leicht löslicher Säurefarbstoff. Die Farbsalze bilden cantharidenglänzende Krystalle, die in Wasser schwer, in Alkohol leicht mit violetter Farbe löslich sind; Mineralsäure färbt die wäßr. Lösungen grün; die Farbsalze färben Seide, Wolle und ungebeizte Baumwolle in neutralem Bade violett.
- 4.4'.4"-Tris-a-naphthylamino-triphenylearbinol, N.N'.N"-Tri-a-naphthylpararosanilin $C_{49}H_{27}ON_3 = (C_{10}H_7\cdot NH\cdot C_9H_4)_3C\cdot OH$. B. Entsteht in Form eines Farbsalzes beim Erhitzen von Phenyl-a-naphthylamin (Bd. XII, S. 1224) mit Oxalsäure auf 130° (HAUSDÖRFER, B. 23, 1965). Das salzsaure Farbsalz bildet ein blauviolettes bis dunkelrotbraunes Pulver; wurde einmal in bronzeglänzenden Tafeln (aus verd. Acetonlösung) erhalten; ist leicht löslich in heißem Anilin, schwerer in heißem Eisessig und Aceton, schwer in kaltem Alkohol und in Chloroform, unlöslich in Äther und Benzol.
- 4.4'-Bis-dimethylamino-4"-[methyl-a-naphthylamino]-triphenylcarbinol, N.N.N'.N'.N"-Pentamethyl-N"-a-naphthyl-pararosanilin, Carbinolbase des Viktoriablaus 4 R C₂₄H₂₅ON₃ = [(CH₃)₂N·C̄₂H₄]₂C[C̄₂H₄·N(CH₃)·C̄₁₀H₇]·OH. Zur Formulierung vgl. FRIEDLÄNDER, Frdl. 1, 73; FIEEZ-DAVID, Künstliche organische Farbstoffe [Berlin 1926], S. 260. B. Das Farbsalz [C₂₄H₂₄N₃]Cl (Viktoriablau 4 R) entsteht bei der Kondensation von 4.4'-Bis-dimethylamino-benzophenon (Syst. No. 1873) mit dem (nicht näher beschriebenem) Methyl-phenyl-a-naphthylamin in Gegenwart von Phosphoroxychlorid (Bad. Anilin- u. Sodaf., D. R. P. 27789; Frdl. 1, 80; NATHANSOHN, P. MÜLLER, B. 23, 1891); die Carbinolbase erhält man durch Versetzen der wäßr. Farbsalzlösung mit Soda (N., P. M.). Wurde in ziegelroten Flocken erhalten; F: 77°; schwer löslich in Benzol, leicht in Alkohol (N., P. M.). Bei der Reduktion mit Zinkstaub und Salzsäure entsteht N.N.N'.N'.Pentamethyl-N''-a-naphthyl-paraleukanilin (S. 316) (N., P. M.).

(N., F. M.). — Wurde in Elegeroten Flocken ernalten; F: 17; schwer Rahlen in Benzol, leicht in Alkohol (N., P. M.). — Bei der Reduktion mit Zinkstaub und Salzsäure entsteht N.N.N.'N.'N.'N" Pentamethyl-N"-a-naphthyl-paraleukanilin (S. 316) (N., P. M.).

Farbsalze. Salzsaures Salz, Viktoriablau 4 R [C₂₄H₂₄N₃]Cl. Metallglänzende Blättchen (aus Alkohol + Benzol); leicht löslich in heißem Wasser und Alkohol, schwerer in Benzol, weniger noch in Ather (N., P. M.). Absorptionsspektrum: Formanek, Zischr. f. Farben-u. Textichemie 1, 670. Färbt stark rotstichigblau (Friedländer, Frdl. 1, 73).

— Palmitinsaures Salz. Rötlichblaues Pulver; F: 80°; löslich in Benzol (Gnehm, Röthell). Z. Ang. 11, 488). — Stearinsaures Salz. Metallglänzendes Pulver; löslich in Benzol (Gn., Rö., Z. Ang. 11, 487, 501). — Pikrinsaures Salz [C₂₄H₂₄N₃]C₄H₂O₇N₃ (bei 100° getrocknet). Dunkelviolette bis dunkelblaue Nadeln (N., P. M.). — Platinchloriddoppelsalz 2 [C₃₄H₂₄N₃]Cl+PtCl₄. Violetter krystallinischer Niederschlag; wenig löslich in kaltem, reichlich in heißem Alkohol, schwer in Benzol und Ather (N., P. M.).

- **4.4'.4"- Tris acetamino triphenylcarbinol, N.N'.N"- Triacetyl pararosanilin** $C_{2}H_{2}O_{2}N_{3}=(CH_{2}\cdot CO\cdot NH\cdot C_{2}H_{4})_{2}C\cdot OH.$ B. Durch mehrstündiges Schütteln von N.N'.N''-Triacetyl-paraleukanilin (S. 317) in Eisessiglösung mit Bleidioxyd in der Kälte; man filtriert und versetzt die Lösung mit Wasser bis zur beginnenden Trübung (O. Fischer, G. Schmidt, Ziecht. f. Farben- u. Textilindustrie 3, 2; C. 1904 I, 460). Fast farblose Nadeln (aus Aceton + Äther). F: 192°. Die alkoh. Lösung färbt sich auf Zusatz von verd. Mineralsäuren schwach rot, beim Kochen entstehen Farbsalze des Pararosanilins.
- [4.4'-Bis-dimethylamino-4"-(acetylmethylamino)-triphenylcarbin]-acetat $C_{28}H_{28}O_{8}N_{3}=[(CH_{2})_{8}N\cdot C_{6}H_{4}]_{2}C[C_{5}H_{4}\cdot N(CH_{3})\cdot CO\cdot CH_{3}]\cdot O\cdot CO\cdot CH_{3}$. B. Man erhitzt Methylviolett (S. 755) mit einem Überschuß von Essigsäureanhydrid in Gegenwart von geschmolzenem Natriumacetat mehrere Stunden auf dem Wasserbade, löst die Schmelze in Wasser, fällt die Farbstoffe mit Kochsalz und Zinkohlorid, löst sie in Wasser, fällt mit Kochsalz Krystallviolett aus und versetzt die von letzterem abfiltrierte grüne Lösung mit Alkali (O. Fischer, B. 16, 2905). Derbe Kryställchen (aus Alkohol). F: 223° bis 225°. Unlöslich in Wasser, sohwer löslich in Alkohol. Die alkoh. Lösung färbt sich an der Luft violett, auf Zusatz von Essigsäure tritt beim Erwärmen sofort Bildung eines grünen

Farbstoffes ein, der bei der Reduktion mit Zinkstaub in essigsaurer Lösung 4.4'-Bis-[dimethylamino]-4"-[acetylmethylamino]-triphenylmethan (S. 317) liefert.

Substitutions produkt des Pararosanilins.

3.3'-Dichlor-4.4'.4"-triamino-triphenylcarbinol, 3.3'-Dichlor-pararosanilin C₁₂H₁₇ON₂Cl₂ = (H₂N·C₄H₂Cl)₂C(C₄H₄·NH₄)·OH. B. Entsteht in Form eines Farbsalzes bei mehrstfindigem Erhitzen eines Gemisches aus 20,9 g p-Toluidin, 50 g 2-Chlor-anilin (Bd. XII, S. 597) und 106 g 75% eiger Arsensäurelösung auf 190°; man fällt die Carbinolbase aus der Farbsalzlösung mit Ammoniak (Heumann, Heidleberg, B. 19, 1989; vgl. hierzu VILIGER, KOPETSCHNI, B. 45 [1912], 2910). — Die Carbinolbase wurde in rötlichen Flocken erhalten; löst sich in Alkohol, sehr wenig in Ather, ist unlöslich in Wasser; löst sich in wenig Salzsture mit bleuveter in mehr Salzsture mit beungelber Farbe (Haw, Har). — Dag Salzsäure mit blauroter, in mehr Salzsäure mit braungelber Farbe (HEU., HEI.). — Das salzsaure Farbsalz bildet eine goldgrünglänzende krystallinische Masse (aus verdunstendem Alkohol); beim Erhitzen seiner Lösung tritt Zersetzung ein unter Abscheidung der Carbinolbase; das Farbsalz erzeugt auf Seide ein Rot von stark blauer Nuance (HEU., HEI.).

Schwefelanalogon des Pararosanilins und sein Derivat.

4.4'.4"-Triamino-triphenylearbinthiol $C_{10}H_{10}N_{2}S = (H_{2}N \cdot C_{0}H_{4})_{2}C \cdot SH$. Beim Versetzen einer essigsauren wäßrigen Lösung von 4.4.4."-Triamino-triphenylearbinol mit überschüssiger Ammoniumhydrosulfidlösung (Lamberecht, B. 40, 250). — An der Luft beständig. Liefert beim Erhitzen auf 140° ein metallisch-grünrotes Produkt. Löst sich in überschüssigen Mineralsäuren farblos auf. Beim Erwärmen mit Essigsäure und Alkohol erfolgt unter Schwefelwasserstoffentwicklung Farbsalzbildung. Gibt mit siedenden Alkalien 4.4′.4″-Triamino-triphenylcarbinol.

4.4'.4"-Tris-dimethylamino-triphenylearbinthiol, Hexamethyl-4.4'.4"-triamino-triphenylearbinthiol $C_{45}H_{41}N_{1}S = [(CH_{4})_{1}N\cdot C_{6}H_{4}]_{3}C\cdot SH.$ B. Bei der Einw. von Schwefelwasserstoff oder von Schwefelalkalien auf die schwach essigsaure Lösung von Krystallviolett (LAMBRECHT, WEIL, B. 38, 270, 276). — Farblose Krystalle (aus Benzol + Alkohol). F: 159°. An der Luft beständig. Schwer löslich in Alkohol. Unlöslich in Alkalien. Ist bei Gegenwart von überschüssiger Mineralsäure selbst beim Erwärmen längere Zeit beständig, wird dagegen von der theoretischen Menge Mineralsäure oder überschüssiger verdünnter Essigsäure in die einsäurigen Farbsalze des $4.4'.4''.Tris-dimethylamino-triphenylcarbinols verwandelt; bei längerem Erhitzen mit konz. Mineralsäuren entstehen die orangefarbenen dreisäurigen Farbsalze. Bei andauernder Einw. von Schwefelwasserstoff oder Schwefelalkalien entsteht Leukokrystallviolett. — <math>C_{ss}H_{s1}N_sS+3HCl+1'/sSnCl_s+1'/sH_sO$. Farblose Krystalle. Liefert beim Erhitzen für sich oder mit Wasser Krystallviolettsalz.

3. Aminoderivate der Monooxy-Verbindungen $C_{20}H_{18}O$.

1. Aminoderivat des a-Oxy-a.a. β -triphenyl-āthans (Diphenylbenzyl-carbinols) $C_{2a}H_{1e}O=C_{e}H_{5}\cdot CH_{2}\cdot C(OH)(C_{e}H_{5})_{2}$ (Bd. VI, S. 721).

Phenyl-[4-dimethylamino-phenyl]-benzyl-carbinol $C_{22}H_{22}ON = (CH_3)_2N \cdot C_0H_4$ C(C_eH_e)(CH_e·C_eH_e) OH. B. Bei der Einw. von Benzylmagnesiumchlorid auf 4-[Dimethylamino] benzophenon (Syst. No. 1873) in Gegenwart von Ather (Busignies, C. r. 149, 349). - F: 131—132°.

2. Aminoderivate des 5 - Oxy - 2 - methyl - $triphenylmethans <math>C_mH_{10}O$ = $(C_0H_0)_0CH \cdot C_0H_0(CH_0) \cdot OH.$

4'.4"-Bis-dimethylamino-5-oxy-2-methyl-triphenylmethan C_MH₂₈ON₂, s. nebenstehende Formel. B. Durch Diasotieren von 5-Amino-4'.4"-bis-dimethylamino-2-methyl-tri- (CH₂)₂N· phenylmethan (S. 320) mit Natriumnitrit in verdünnter schwefelsaurer Lösung unter Kühlung und Verkochen der Diazoniumsalzlösung (Norleting, Polonowsky, B. 24, 3130).

— Weiße Nadeln (aus Äther + Ligroin). F: 158°. Unlöslich in Wasser, schwer löslich in Ligroin, leicht löslich in Äther, Alkohol, Benzol; leicht löslich in Säuren, sehr schwer löslich in Alkalien. — Beim Behandeln mit Oxydationsmitteln entsteht ein blaugrüner basischer Farbstoff.

4-Amino-4'.4"- bis-dimethylamino-5-methoxy-2-methyl-triphenylmethan $C_2H_2ON_3 = [(CH_a)_2N \cdot C_2H_4]_2CH \cdot C_2H_4(CH_2)(NH_2) \cdot O \cdot CH_3$. Bei 4-stdg. Erhitzen von 10 g 4.4'-Bis-dimethylamino-benzhydrol (S. 698) mit 5,3 g 3-Amino-4-methoxy-1-methyl-benzol

(S. 602) und 10,3 g 36%-iger Salssaure auf dem Wasserbade (Nobliting, Schwartz, B. 24, 3142). — Weiße Nadeln (aus Alkohol). F: 158—1596. Ziemlich schwer löslich in Alkohol und Äther, sehr leicht in Benzol. — Durch Oxydation entsteht ein blauer Farbstoff. Liefert beim Erhitzen mit Glycerin, kons. Schwefelsaure und Pikrinsaure auf 140—1506 Bis-[4-dimethylamino-phenyl]-[8-methoxy-5-methyl-chinolyl-(6)]-methan (Syst. No. 3425).

3. Aminoderivat des 6 - Oxy - 3 - methyl - triphenylmethans $C_mH_{18}O = (C_nH_n)\cdot CH \cdot C_nH_n(CH_n)\cdot OH$.

4'.4"-Bis - dimethylamino - 6-oxy-3-methyl-triphenylmethan C₂₄H₂₆ON₂, s. nebenstehende Formel. B. Bei der Kondensstion von Dimethylanilin mit 6-Oxy-3-methyl-benzaldehyd (Bd. VIII, S. 100) in Gegenwart von ZnCl₂ (NOELTING, POLONOWSKY, B. 24, 3132). Durch Diazotieren von 6-Amino-4'.4"-bis-dimethylamino-3-methyltriphenylmethan (S. 323) in verdünnter schwefelsaurer Lösung unter Kühlung mit Natriumnitrit und Verkochen

4.4'.4"- Triamino-8-methyl-triphenylcarbinol, Ros-

von Farbsalzen bei der Oxydation eines Gemisches von Anilin,

anilin, Carbinolbase des Fuchsins $C_{10}H_{11}ON_3$, s. nebenstehende Formel. B. bezw. Darst. Rosanilin entsteht in Form H_1N

$$(CH_3)_3N \cdot \bigcirc -CH - \bigcirc OH$$

$$\dot{O}H$$

$$\dot{N}(CH_3)_3$$

CH₃

 \cdot NH.

OH

der Diszoniumsalzlösung (N., P.; vgl. Guyot, Granderye, Bl. [3] 33, 202). — Weiße Nadeln (aus Äther + Ligroin). F: 129—130° (N., P.). — Gibt bei der Oxydation mit Bleidioxyd einen schwachen, blaustichig grünen Farbstoff (N., P.).

4. Aminoderivate des a-Oxy-3-methyl-triphenylmethans (3-Methyl-triphenylcarbinols) $C_{20}H_{10}O=(C_{2}H_{5})_{2}C(C_{4}H_{4}\cdot CH_{5})\cdot OH$ (Bd. VI, S. 722).

4.4'.4"-Triamino-3-methyl-triphenylcarbinol und seine Derivate.

p-Toluidin und o-Toluidin (vgl. E. FISCHER, O. FISCHER, A. 194, 290; B. 13, 2204) durch Erhitzen mit Arsensäure (Medicoux, J. 1860, 721 Anm. 2; GIRARD, DE LAIRE, J. 1860, NH, 721 Anm. 2), Salpetersäure (Depouilly, Lauth, J. 1860, 721 Anm. 1; HUGHES, J. 1860, 721 Anm. 1; NICHOLSON, J. 1860, 721 Anm. 1), Jod (FIELD, D. 177 [1865], 410; OSTROGOVICE, SILBERMANN, Bulet. 15, 305), Quecksilberohlorid (SCHNITZER, J. 1861, 951), Quecksilberoxydulnitrat (SCHLUMBERGER, J. 1859, 758; PERKIN, J. 1860, 720 Anm. 3; BÉCHAMP, A. ch. [3] 59, 404; J. 1860, 724), Quecksilberoxydnitrat (GMERGER-KELLER, J. 1860, 720 Anm. 3; Zinntetrachlorid (Verguin, s. Schlumberger, J. 1859, 757; 1860, 720 Anm. 3; Renard, Franc, J. 1859, 757; Brooman, J. 1859, 757; Brohamp, A. ch. [3] 59, 404; J. 1860, 724). Das Farbeals des Rosanilins entsteht ferner beim Erhitzen eines Gemisches von Anilin, o-Toluidin und p-Toluidin mit rohem Nitrobenzol oder Nitrotoluol bei Gegenwart von Salzsäure und etwas Eisen auf ca. 200° (COUPIER, s. SCHÜTZENBERGER, J. 1869, 1162; vgl. BRÜNING, B. 6, 25; COUPIER, B. 6, 423); zweckmäßiger ist es, das Basengemisch, nachdem es zur Hälfte mit Salzsaure in das Salz übergeführt und entwässert worden ist, unter Zusatz von etwas Eisenchlorür oder vanadinsaurem Ammonium (vgl. Schmid, Baldensferger, D. 283, 339; J. 1879, 1159) auf 180—190° zu erhitzen (Lange, B. 18, 1919). Das Nitrobensol kann durch o-Chlor-nitrobenzol, m-Dinitro-benzol oder m-Nitro-anilin ersetzt werden (LANGE, B. 18, 1919). Als Erestz des Eisenchlorürs sind Doppelsalze des Aluminiumchlorids oder Eisenchlorids mit Magnesium-, Mangan-, Zink-, Calciumchlorid usw. vorgeschlagen worden (vgl. Herran, Chaude, D. R. P. 7991; Frdl. 1, 48). Als Nebenprodukte bei der Gewinnung der Farbsalze des Rosanilins aus Gemischen von Anilin, o- und p-Toluidin wurden nachgewiesen: Diphenylamin (Bd. XII, S. 174) (LANGE, B. 18, 1919), 4.4'.4"-Triamino-triphenylmethan (S. 313) (Graebe, Diehl, B. 12, 2241), Pararosanilin (S. 750) (Pabst, Bl. [2] 37, 185), Chrysanilin (Syst. No. 3414) (A. W. Hofmann, C. r. 55, 817; J. 1862, 346; vgl. Graebe, Diehl, B. 12, 2241; O. Fischeb, Körneb, A. 226, 178), Violanilin (Bd. XII, S. 129) (G. Schultz, Die Chemie des Steinkohlenteers, S. Arthu, Bd. II, Die Farbstoffe (Braunschweig 4904), S. 464, vgl. ph. Lyppe, Graeben, Characterity, C. 63, 965; J. 1268, 433; Z. 1267 1901], S. 161; vgl. DE LAIRE, GIBARD, CHAPOTEAUT, C. r. 63, 965; J. 1866, 433; Z. 1867, 19), Mauvanilin (Bd. XII, S. 131) (DE LAIRE, GIBARD, CHAPOTEAUT, C. r. 64, 416; J. 1867, 507; Z. 1867, 236) und Induline (LANGE, B. 18, 1919). Farbsalze des Rosanilins entstehen auch bei 6. 7 stdg. Fritzen auch 20 Mills and 20 Mi auch bei 6-7-stdg. Erhitzen von 20 Tln. Anilin und 20 Tln. o-Toluidin mit 13,4 Tln. des sauren Kaliumsalzes der 4-Amino-phenyltartronsäure (Syst. No. 1913) in Gegenwart von 30 Tln. Nitrobenzol, 30 Tln. Eisenchlorür und 42 Tln. 10 vol.-proz. Salzsäure (Bonneligum & Söhne, D. R. P. 120465; Frdl. 6, 234; C. 1901 I, 1129), beim Erhitzen eines Gemenges von 6,5 Tln. Anilin und 3,5 Tln. asymm. m-Xylidin mit 16 Tln. 75% iger Arsensäurelösung

(Rosenstiehl, Gerber, A. ch. [6] 2, 340), ferner beim Behandeln von salzsaurem Leukanilin (S. 321) mit Oxydationsmitteln (A. W. HOFMANN, Proceedings Royal Soc. London 12, 12; C. r. 54, 438; J. 1862, 350), am besten beim Behandeln von Leukanilin mit Mangandioxyd und Essigsaure in Lösungsmitteln wie Aceton, Methylathylketon, Methylalkohol oder Athylalkohol unter Zusatz von Kochsalz (Höchster Farbw., D. R. P. 70905, 72032; Frdl. 3, 110, 111). — Zur Isolierung der Carbinolbase gießt man die Lösung eines Farbsalzes in siedende verdünnte Natronlauge und überläßt die klar filtrierte Lösung der Krystallisation (JEMMINGS, B. 86, 4024).

Die technische Darstellung der Rosanilinfarbsalze geschieht durch Oxydation eines Gemisches von Anilin, p- und o-Toluidin nach dem Nitrobenzolverfahren (vgl. hierzu HEUMANN, Die Anilinfarben und ihre Fabrikation, 1. Tl., Triphenylmethanfarbstoffe [Braunschweig 1888], S. 190; SCHULTZ, Die Chemie des Steinkohlenteers, Bd. II, Die Farbstoffe [Braunschweig 1901], S. 161; FIERZ-DAVID, Künstliche organische Farbstoffe [Berlin 1926], S. 247). Näheres über das früher übliche Arsensäureverfahren s. MÜHLHÄUSER, D. 266, 455, 503, 547 sowie die angeführten Werke.

4.4.4. Triamino-3-methyl-triphenylcarbinol krystallisiert aus Wasser in farblosen Nadeln oder Tafeln, die sich an der Luft rötlich färben (A. W. HOFMANN, Proc. Royal Soc. London 12, 5; C. r. 54, 431; J. 1862, 347). Es schmilzt beim Erhitzen im Wasserstoffstrom unter Wasserdampfentwicklung bei 186° (Jennings, B. 36, 4024). Bei höherem Erhitzen entstehen verschiedene Carbinolanhydride (Jenn; Baryer, Villiger, B. 37, 2879). Unlöslich in Äther, sehr wenig löslich in Wasser, etwas löslicher in Alkohol (A. W. Hoff., Proceedings Royal Soc. London 12, 6; C. r. 54, 431; J. 1862, 347). Absorptionsspektrum: Haetley, Soc. 51, 165; vgl. Barer, Soc. 91, 1497. Bei der Einw. von 1 Mol. Säure auf die Carbinolbase entstehen die einsäurigen Farbsalze [C₂₀H₂₀N₃]Ac (S. 765) (A. W. Hoff, Proceedings Royal Soc. London 12, 6; C. r. 54, 432; J. 1862, 348). Wärmetönung bei der Neutralisation mit Sauren: Schmidlin, C. r. 137, 331; 139, 542; A. ch. [8] 7, 242. Läßt sich mit sauren Farbstoffen, z. B. mit Martiusgelb (Bd. VI, S. 618), Aurin (Bd. VIII, S. 361), Alizaringelb A (Bd. VIII, S. 417), Alizarinrot S (Bd. XI, S. 355), Eosin (Syst. No. 2835) (Seyewetz, Bl. [3] 23, 618; C.r. 130, 1770; Pelet-Jolivet, C.r. 145, 1182), mit sulfonierten Azofarbstoffen, wie z. B. Orange II (Syst. No. 2152), Krystallponceau (Syst. No. 2160), Kongorot (Syst. No. 2187) (SEY., Bl. [3] 28, 772; C. r. 181, 472; Ps.-Jo.), mit sulfonierten Oxazin- und Azinfarbstoffen usw. (SEY., Bl. [3] 23, 771, 780, 781) zu salzartigen Verbindungen kombinieren. Mit Tannin entsteht ein in Wasser völlig unlöslicher, in Alkohol und Essigsaure löslicher carminfarbener Niederschlag (Kopp, J. 1862, 694). — Rosanilin gibt bei 2-stdg. Erhitzen im Wasserstoffstrom auf 200° ein Gemisch verschiedener Carbinolanhydride (JENNINGS, B. 86, 4024; BAEYER, VILLIGER, B. 37, 2879). Liefert bei der trocknen Destillation neben anderen Produkten Anilin und Ammoniak (A. W. Hof., Proceedings Royal Soc. London 13, 344; A. 132, 163). Bei der Reduktion mit Zink und Salzsäure (A. W. Hof., Proceedings Royal Soc. London 12, 9; C. r. 54, 435; J. 1862, 349; RENOUF, B. 16, 1303; SCHMIDLIN, B. 39, 4208), Zinn und Salzsäure (Rosenstiehl, Gerber, A. ch. [6] 2, 341) oder mit Schwefelammonium (A. W. Hor., Proceedings Royal Soc. London 12, 9; C. r. 54, 435; J. 1862, 349) entsteht Leukanilin (S. 321). Einw. von Brom auf Rosanilinfarbsalze: GRAEBE, CABO, A. 179, 203. Beim Behandeln von 1 Mol.-Gew. Fuchsin in Salzsäure mit 3 Mol.-Gew. salpetriger Säure entsteht 3-Methyl-triphenylcarbinol-tris-diazoniumchlorid-(4.4.4") (Syst. No., 2199), das beim Verkochen seiner Lösung in Rosolsäure (Bd. VIII, S. 365) übergeführt wird (Cabo, Wanklyn, Proceedings Royal Soc. London 15, 210; Chem. N. 14, 37; J. pr. [1] 100, 49; Grabbe, Caro, A. 179, 192; vgl. E. Fischer, O. Fischer, A. 194, 277). Über Bildung einer Diazoniumverbindung(?) bei Einw. von 3 Mol.-Gew. salpetriger Säure auf 2 Mol.-Gew. Fuchsin unter Redingunger, a. Phys. R. 121, 21, 24, 44. There die Finne von selbetriger geeigneten Bedingungen s. Peler, Redard, Bl. (3) 31, 644. Über die Einw. von salpetriger Säure auf technisches Fuchsin s. ferner Zulkowski, M. 16, 395. Über Nitrierung des Rosanilins mit Salpeterschwefelsäure vgl. Soc. St. Denis, D. R. P. 59220; Frdl. 2, 49. Beim Einleiten von Schwefeldioxyd in eine wäßr. Fuchsinlösung tritt Entfärbung ein unter Bildung des salzsauren Salzes der 4.4.4."-Triamino-3-methyl-triphenylmethan-a-sulfonsäure (Syst. No. 1923) (KASTLE, Am. 42, 296). Nachweis von normalen schwefligsauren Salzen neben Thiosulfaten mittels Fuchsins: VOTOČEK, B. 40, 415. Rosanilin läßt sich beim Behandeln mit rauchender Schwefelsäure (20%, Anhydridgehalt) in ein Gemisch von Rosanilinsulfonsäuren (Säurefuchsin) überführen (Bad. Anilin- u. Sodaf., D. R. P. 2096; Frdl. 1, 108; vgl. Jacobsen, D. R. P. 8764; Frdl. 1, 110; Kalle & Co., D. R. P. 19715, 19721; Frdl. 1, 111, 112; Oebler, D. R. P. 19847; Frdl. 1, 112; Schults, Tab. No. 524). Bei anhaltendem Koohen von Rosanilin mit überschüssiger Salzsäure am Rückflußkühler werden o-Toluidin und 4.4 Diamino-benzophenon erhalten (Wichelbaus, B. 19, 110). Beim Erhitzen von Fuchsin mit Wasser im geschlossenen Gefäß auf 270° werden Ammoniak, Phenol, 4.4 Dioxybenzophenon (Bd. VIII, S. 316), 4.4 Diamino-3 methyl-benzophenon (Syst. No. 1873), ein Amino-oxy-methyl-benzophenon (Syst. No. 1877) und andere Produkte gebildet (Lieben-MANN, B. 5, 144; 6, 951; 11, 1435; 16, 1927).

Beim Behandeln von Rosanilin mit Methyljodid unter verschiedenen Bedingungen entstehen Farbsalze des — nicht näher beschriebenen — Mono- und Dimethylrosanilins (A. W. HOFMANN, GIBARD, B. 2, 451), ferner des Trimethylrosanilins (Bestandteil des Hofmannvioletts) (S. 768) (A. W. HOFMANN, DE LAIRE, GIBARD, Matières colorantes dérivées de la houille [Paris 1867], S. 40), Tetramethylrosanilins (S. 767), Tetramethylrosanilinmono-jodmethylats (Jodgrun; S. 767) und Hexamethylrosanilins (S. 767) (A. W. Hoff, Gl., B. 2, 440; A. W. Hop., B. 6, 356; vgl. Graebe, Caro, A. 179, 188; E. Fischer, O. Fischer, A. 194, 293; LEFÈVRE, Bl. [3] 13, 247; ROSENSTIEHL, Bl. [3] 13, 557 Anm.). Beim Erhitzen von Rosanilin mit 4-Chlor-1.3-dinitro-benzol unter Zusatz von Eisessig auf 180—200° entsteht ein violettbrauner Farbstoff, indem eine Dinitrophenylgruppe in das Molekül des Rosanilins eintritt (NOBLITING, Bl. [2] 37, 390). Über die Einw. von Benzylchlorid auf Rosanilin und Überführung der erhaltenen benzylierten Rosaniline in Sulfonsäuren ("Säureviolette") vgl. Dahl. & Co., D. R. P. 37931; Frdl. 1, 116. Über farbige Produkte, die bei der Einw. von Aldehyden auf Rosanilinfarbsalze entstehen, vgl. Schiff, C. r. 61, 45; Z. 1865, 549; A. 140, 102. Bei der Behandlung von Fuchsin mit Formaldehyd und Natriumdisulfit in saurer Lösung entsteht ein sehr leicht löslicher violetter Farbstoff, welcher keine basischen Eigenschaften mehr besitzt (Рвир'номме, D. R. Р. 105862; С. 1900 I, 493; 1900 II, 264; Вl. [3] 23, 456). Bei 24-stdg. Stehen von Rosanilin mit konz. Salzsäure, etwas Wasser und Paraldehyd bildet sich Aldehydblau C₃₂H₃₂O₂N₃Cl₂(?) (S. 766) (GATTERMANN, WICHMANN, B. 22, 233; vgl. Lauth, Wagners Jahresbericht über die Fortschritte und Leistungen der chem. Technologie 1861, 534; 1862, 565). Behandelt man eine Lösung von Fuchsin in mäßig verdünnter Schwefelsäure mit Aldehyd und kocht die Reaktionsmasse einige Zeit mit einer Lösung von Natriumthiosulfat, so erhält man neben anderen Produkten "schwefelhaltiges Aldehydgrün" (S. 766) (BUFF, zitiert bei v. Miller, Plöchl, B. 24, 1713). Bei der Einw. von Aldehyden auf eine mit schwefliger Saure entfarbte Lösung eines Rosanilinfarbsalzes entstehen violette Farbstoffe (Schiff, C. r. 64, 182; Z. 1867, 175)¹). Verwendung dieser Reaktion zum Nachweis von Aldehyden: SCHMIDT, B. 18, 2343 Anm.; 14, 1848. Beim Kochen von Rosanilin oder seinem essigsauren Farbsalz mit 4-Nitro-benzaldehyd in alkoh. Lösung entsteht Bis-[4-nitro-benzal]-rosanilin (S. 769) (Well, B. 28, 208). Beim Versetzen einer Rosanilinfarbsalzlösung mit Kalium-cyanid scheidet sich unter Entfärbung der Lösung 4.4.4"-Triamino-3-methyl-triphenylessigsäure-nitril (Syst. No. 1907) ab (H. Müller, Z. 1866, 2). Bei 2-stdg. Kochen von 10 g Rosanilin mit 50 g Essigsäureanhydrid am Rückflußkühler entsteht [4.4.4"-Tris-acetamino-3-methyl-triphenylcarbin]-acetat (S. 769) (RENOUF, B. 16, 1303). Durch Erhitzen von 200 g Fuchsin mit 40 g Acetamid auf 180—185° und Fällung der alkoholischen Lösung des Reaktionsproduktes mit Salzsaure erhalt man das salzsaure Farbsalz des Monoacetylrosanilins (S. 769) (BROKERHINN, Sitzungsber. K. Akad. Wiss. Wien [math.-naturwiss. Klasse] 62 II, 413; J. 1870, 768. Darstellung blauer Farbstoffe durch Erhitzen von Fuchain mit Naphthol (2)-sulfonsäure (6) (Bd. XI, S. 282) oder mit Naphthylamin (2)-sulfonsäure (6) (Syst. No. 1923) und Natriumdisulfit und Kochen des Reaktionsproduktes mit Salzsäure: Bad. Anilin- u. Sodaf., D. R. P. 125589; C. 1901 II, 1244. Beim Erhitzen von Anilin mit Farbsalzen des Rosanilins erhält man sunächst die — nicht näher beschriebenen — Farbsalze des Monound Diphenylrosanilins (A. W. HOFMANN, DE LAIBE, GIBARD, Matières colorantes dérivées de la houille [Paris 1867], S. 33 Anm. 1, 39; FEHLING, Neues Handwörterbuch der Chemie, Bd. I [Braunschweig 1871], S. 626), dann die Farbsalze des N.N'N"-Triphenyl-rosanilins (S. 768) (GIRARD, DE LAIRE, J. 1862, 696; A. W. HOF., Proceedings Royal Soc. London 13, 9; C. r. 57, 25; Z. 1863, 437; J. 1863, 417; vgl. hierzu Lamerrehr, B. 40, 249; Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 262). Durch Erhitzen von Rosanilin mit rohem (?) Pyridin oder Chinolin in Gegenwart von etwas Benzoesaure entstehen violette basische Farbstoffe (Bad. Anilin- u. Sodaf., D. R. P. 49008; Frdl. 2, 48; vgl. Erdmann, Ch. I. 13, 73). Nachweis von Pararosanilin in käuflichem Rosanilin siehe im Artikel Pararosanilin,

8. 752. Fuchsin läßt sich mit Hilfe von sauren Farbstoffen wie Alkaliblau, Helvetiablau (Syst. No. 1923) oder Säuregrün (Syst. No. 1926) titrimetrisch bestimmen (PELET, GABUTI, C. 1908 I, 303). Über verschiedene Methoden zur Trennung des Rosanilins vom Para-

rosanilin vgl. Paser, Bl. [2] 87, 185.

Farbsalze. Die im folgenden aufgeführten Farbsalze sind in vielen Fällen mit Handelsware hergestellt und daher im wesentlichen dem Rosanilin C20H21ON3 als Hauptprodukt der technischen Darstellung aus Anilin, o- und p-Toluidin zuzuordnen; da aber dem technischen Rosanilin kleine Menge Pararosanilin C₁₉H₁₉ON₂ und vielleicht auch der Base C₂₁H₂₉ON₃ (4.4'.4"-Triamino-3.3'-dimethyl-triphenyloarbinol) (8. 770) beigemengt sein können (vgl. E. FISCHER, O: FISCHER, A. 194, 276; B. 18, 2206), bleibt es in den meisten Fällen dahingestellt, ob die analysierten Praparate wirklich homogen waren. — Einfach salzsaures Salz, Fuchsin [C₂₀H₂₀N₃]Cl. Metallischgrünglanzende, im durchfallenden Lichte rot

¹⁾ Über den Mechanismus dieser Reaktion vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Wirland, Schmuing, B. 54, 2527.

erscheinende, tetragonale (vgl. Groth, Ch. Kr. 5, 285) Krystelle (A. W. Hofmann, Proceedings Royal Soc. London 12, 7; C. r. 54, 433; J. 1862, 348). Ist krystallwasserhaltig; der Wassergehalt hängt von der Luftfeuchtigkeit ab (SCHMIDLIN, A. ch. [8] 7, 201). Wird nach A. W. Hof-MANN bei 130° wasserfrei, nach SCHMIDLIN erst oberhalb 200° unter Zersetzung. 1000 Tle. Wasser lösen 2,65 Tle. Fuchsin (ROSENSTIEHL, GERBER, A. ch. [6] 2, 341); unlöslich in Äther, löslich in Alkohol mit karmoisinroter Farbe; löslich in nicht zu starker Salzsäure, beim Erwärmen dieser Lösung mit konz. Salzsäure scheidet sich das dreifach salzsaure Salz [C₂₀H₂₀N₂]Cl +2HCl (s. u.) ab (Hor., Proceedings Royal Soc. London 12, 7; C. r. 54, 433; J. 1862, 348). Ebullioskopisches Verhalten in Wasser und Alkohol: KRAFFT, B. 82, 1610. Brechungsindices für festes Fuchsin im sichtbaren Spektralgebiet: Pflüger, Ann. d. Physik [N. F.] 56, 421; Walter, Ann. d. Physik [N. F.] 57, 394; Caetmel, Philosophical Magazine [6] 6, 213; C. 1903 II, 575, im Ultraviolett: Pflü, Ann. d. Physik [N. F.] 65, 202, für Fuchsin in alkoh. Lösung, namentlich im Ultraviolett: Felcke, Ann. d. Physik [4] 16, 879. Über die anomale Dispersion des Fuchsins im sichtbaren Spektrum und im Ültraviolett vgl. FRICKE. Absorptionsspektrum für festes Fuchsin: Vogel, B. 11, 622, 1363. Absorptionsspektrum des Fuchsins im sichtbaren Spektralgebiet in wäßr. Lösung: Vogel; Formanek, Ziechr. f. Farben-Fuchsins im sichtbaren Spektralgebiet in wäßr. Lösung: Vogel; Forminek, Zischr. f. Farbens. Textilchemis 2, 478; Spektralanalytischer Nachweis künstlicher organischer Farbstoffe [Berlin 1900], S. 120; Wieland, B. 41, 3498; in alkoh. Lösung: Vogel; Form.; Hartley, Soc. 51, 169, 170, 171; Kalandek, C. 1908 I, 1024; in Anilin: Ka. Absorptionsspektrum im Ultraviolett in alkoh. Lösung: Krüss, Ph. Ch. 51, 282. Elektrische Leitfähigkeit: Vignon, C. r. 144, 81; Bl. [4] 1, 277; [4] 5, 499. Über farblose additionelle Verbindungen des Fuchsins mit Chlorwasserstoff und mit Wasser vgl. Schmidlin, A. ch. [8] 7, 220, 225; Lambrechtt, Weil., B. 37, 4326. Fuchsin färbt Wolle, Seide und gebeizte Baumwolle karmoisinrot (vgl. Schultz, Die Chemie des Steinkohlenteers, 3. Aufl., Bd. II, Die Farbstoffe [Braunschweig 1901], S. 167). Über die Farbstärke des Fuchsins vgl. A. W. Hofmann, B. 3, 662. Färbevermögen gegenüber Wolle: Vignon, Bl. [4] 5, 499. — Dreifach salzsaures Salz [C₂₀H₂₀N₃]Cl + 2 HCl. B. Man löst Fuchsin in nicht zu konzentrierter Salzsäure und trocknet die ausgeschiedenen Krystalle über Ätzkali im Vakuum bis zum Verschwinden des Salzsäurgerichs (Hof., Proceedings Royal Soc. London 12, 7; C. r. 54, 433; J. 1862, 348; Schmidlin, C. r. 188, 1509; A. ch. [8] 7, 208). Braune Nadeln (Hof.), schwarze grünschimmernde Krystalle (Sch.). Löslicher in Wasser Braune Nadeln (Hof.), schwarze grünschimmernde Krystalle (Sch.). Löslicher in Wasser und Alkohol als das einfach salzsaure Salz (Hor.), etwas löslicher in konz. Salzsaure als das entsprechende dreifach salzsaure Salz des Pararosanilins (SCH.). Liefert beim Erhitzen and 100° oder beim Behandeln mit Wasser das einfach salzsaure Salz (Hop.). Bromwasserstoffsaures Salz [$C_{20}H_{20}N_2$]Br (bei 130°). Schwerer löslich als das salzsaure Salz [$C_{20}H_{20}N_2$]Cl (Hop., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 348). — Jodwasserstoffsaures Salz [$C_{20}H_{20}N_2$]I. Grüne, sehr schwer lösliche Nadeln (Hop., Proceedings Royal Soc. London 12, 8). — Schwefelsaures Salz [$C_{20}H_{20}N_2$]SO₄ (bei 130°). Metallischgrüne Krystalle (Hop., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 449; J. 1861; in Kather and Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 449; J. 1861; in Kather and Royal Soc. London 13, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 14, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 15, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 15, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and Royal Soc. London 18, 8; C. r. 54, 434; J. 1862; in Kather and 1862, 348). Unlöslich in Äther, schwer löslich in Wasser, etwas leichter in Alkohol (Hor., C.r. 54, 434; J. 1862, 349). — Essigsaures Salz [C₂₀H₂₀N₃]C₂H₃O₂. Metallischgrünglänzende Krystalle. Ist eins der in Wasser und Alkohol am leichtesten löslichen Rosanilinsalze (Hor., Proceedings Royal Soc. London 12, 9; C. r. 54, 434; J. 1862, 349). — Oxalsaures Salz [C₂₀H₂₀N₃]₂C₃O₄ + H₂O (bei 100°). Metallischgrünglänzende Krystalle. Zersetzt sich beim Erhitzen über 100° (Hor., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 349). — Oxalsaures Salz [C₂₀H₂₀N₃]₂C₃O₄ + H₂O (bei 100°). Metallischgrünglänzende Krystalle. Zersetzt sich beim Erhitzen über 100° (Hor., Proceedings Royal Soc. London 13, 8; C. r. 54, 434; J. 1862, 349). beim kriitzen uoer 100° (Hoff., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 349). — Carbolsaures Salz [C₂₀H₂₀N₃]C₄H₂O s. Dyson, Soc. 43, 470. — Pikrinsaures Salz [C₂₀H₂₀N₃]C₄H₂O,N₃. In Wasser sehr schwer lösliche rote Nadeln (Hoff., Proceedings Royal Soc. London 12, 9; C. r. 54, 435; J. 1862, 349).

2 [C₂₀H₂₀N₃]Cl + PtCl₄ (Hoff., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 348). — 2 [C₂₀H₂₀N₃]Cl + 4 HCl + 3 PtCl₄ (Hoff., Proceedings Royal Soc. London 12, 8; C. r. 54, 434; J. 1862, 348).

Verbindung C₂₂H₂₅O₂N₃S. B. Entsteht in Form eines Farbsalzes ("schwefelhaltiges Aldehydgrün aus Bossnilin"), wenn man 1 kg Fundsin in einem erkalteten Gemisch aus 1.6 kg kong. Schwefelsäure und 0.6 kg Wasser löst und diese Lösung worsichtig mit 4 kg

aus 1,5 kg konz. Schwefelsäure und 0,5 kg Wasser löst und diese Lösung vorsichtig mit 4 kg Aldehyd vermischt; man gießt darauf die Reaktionsmasse in eine siedende verdünnte Lösung von 2 kg Natriumthiosulfat, kocht einige Zeit, filtriert und versetzt das Filtrat mit 4 kg Natriumacetat (Buff, zitiert bei v. Miller, Plöchl., B. 24, 1713); zur Isolierung der Base behandelt man den gereinigten Farbstoff mit Ammoniak (v. M., P., B. 24, 1714). — Die Base wurde in grünen Flocken erhalten. — Der Farbstoff färbt ein beständiges Grün (v. M., P., B. 24, 1700).

Verbindung C32H29O2N3Cl2(?), "Aldehydblau aus Rosanilin". B. Bei 24-stdg. Stehen von Rosanilin mit konz. Salzsäure, etwas Wasser und Paraldehyd (GATTERMANN, WICHMANN, B. 22, 233; vgl. LAUTH, Wagners Jahresbericht über die Fortschritte und Leistungen der chem. Technologie 1981, 534; 1862, 565). — Gleicht in seinen Eigenschaften dem "Aldehydblau aus Pararosanilin" (S. 754) (G., W.).

Funktionelle Derivate des Rosanilins.

4.4'.4"-Tris-methylamino-3-methyl-triphenylcarbinol, N.N'.N"-Trimethyl-rosanilin C₂₃H₂₇ON₃ = CH₃·NH·C₆H₃(CH₂)·C(C₆H₄·NH·CH₃)₂·OH. B. Entsteht in Form des jodwasserstoffsauren Farbsalzes bei der Einw. von Methyljodid auf Rosanilin, neben anderen Produkten (A. W. HOFMANN, DE LAIBE, GIRABD, Matières colorantes dérivées de la houille [Paris 1867], S. 40; Fehling, Neues Handwörterbuch der Chemie, Bd. I [Braunschweig 1871], S. 624; HEUMANN, Die Anilinfarben und ihre Fabrikation, 1. Tl., Triphenylmethanfarbstoffe [Braunschweig 1888], S. 253, 254, 275; SCHULTZ, Die Chemie des Steinkohlenteers, 3. Aufl. Bd. II, Die Farbstoffe [Braunschweig 1901], S. 171, 183).

Farbsalze. Die wasserlöslichen Farbsalze (das salzsaure oder essigsaure Farbsalz) kamen als violette Farbstoffe in den Handel und bildeten einen Bestandteil des Hofmann-violetts (Heumann, S. 275; Schultz, S. 183; vgl. Schultz, Tab. No. 514). Absorptionsspektrum des Hofmannvioletts (salzsaures Salz): Hartley, Soc. 51, 155, 171. — Jodwasserstoffsaures Salz [C₂₃H₂₆N₃]I. Grünglänzende Krystalle; schwer löslich in Wasser, löslich in Alkohol (Hof., De L., G., S. 43) mit violetter Farbe (Fehling, S. 624; Schultz, S. 184).

Tetramethylrosanilin $C_{24}H_{25}ON_2 = (CH_3)_2N \cdot C_6H_2(CH_3) \cdot C(C_6H_4 \cdot NH \cdot CH_3)_2 \cdot OH$ oder $CH_2 \cdot NH \cdot C_4H_3(CH_3) \cdot C(C_6H_4 \cdot NH \cdot CH_3)_2[C_6H_4 \cdot N(CH_3)_2] \cdot OH$. B. Entsteht in Form des jodwasserstoffsauren Farbsalzes beim Erhitzen von Jodgrün (s. u.) auf 130—150° (A. W. Hofmann, Girard, B. 23, 445; vgl. Lephver, Bl. [3] 18, 250) oder, neben anderen Produkten, bei der Einw. von Methyljodid auf Rosanilin (A. W. H., B. 6, 356). Die Carbinolbase erhält man durch Fällen der alkoh. Farbsalzlösung mit verd. Alkali als weißen, in Wasser unlöslichen Niederschlag (A. W. H., G.).

Jodwasserstoffsaures Farbsalz $[C_{24}H_{28}N_3]I$. Blauviolette Nadeln (aus verdunstendem Alkohol). Äußerst löslich in Alkohol, fast unlöslich in Wasser; färbt blauviolett (A. W. HOFMANN, GIRARD, B. 2, 447, 450).

Tetramethylrosanilin-mono-hydroxymethylat, Base des Jodgrüns $C_{28}H_{38}O_{2}N_{3}=(CH_{2})_{3}N(OH)\cdot C_{6}H_{3}(CH_{2})\cdot C(C_{6}H_{4}\cdot NH\cdot CH_{2})_{2}\cdot OH$ oder $CH_{3}\cdot NH\cdot C_{6}H_{3}(CH_{2})\cdot C(C_{6}H_{4}\cdot NH\cdot CH_{3})$ [C₆H₄·N(CH₂)₂·OH]·OH. B. Entsteht, neben anderen Produkten, in der Form des jodwasserstoffsauren Farbsalzes (Jodgrün) bei 8—10-stdg. Erhitzen von 1 Tl. essigsaurem Rosanilin, 2 Tln. Methyljodid und 2 Tln. Methylalkohol im Autoklaven auf 100°; die freie Base erhält man durch Fällen der Farbsalzlösung mit Alkali (A. W. Hoffmann, Girard, B. 2, 441; vgl. A. W. H., B. 6, 356; Lefèvee, Bl. [3] 13, 247; Rosenstieht, Bl. [3] 13, 557 Anm.). — Die freie Base ist nicht näher beschrieben. — Das Jodgrün zerfällt beim Erhitzen auf 130—150° in Methyloidid und das jodwasserstoffsaurer Farbsalz [C₂₄H₂₈N₃]I des Tetramethylrosanilins (s. o.) (A. W. H., G.; L.). Beim Erhitzen mit Methylalkohol im geschlossenen Rohr auf 100° geht das Jodgrün in die jodwasserstoffsauren Farbsalze des Tetramethylrosanilins [C₂₄H₂₈N₃]I und des Hexamethylrosanilins [C₂₆H₂₈N₃]I + 2HI (s. u.) über (A. W. H., G.; L.).

Farbsalze. Jodwasserstoffsaures Salz, Jodgrün C₂₅H₃₁N₃l₂+H₃O. Cantharidenglänzende Prismen (aus Alkohol). Gibt im Vakuum erst das Krystallwasser, alsdann allmählich 1 Mol. Methyljodid ab; löslich in Alkohol und Wasser, unlöslich in Ather (A. W. H., G.). Absorptionsspektrum: HARTLEY, Soc. 51, 175. Färbt rein grün (A. W. H., G.). — Pikrinsaures Salz. C₂₅H₃₁N₃(C₂H₂O₇N₃)₃. Gelbgrüne kupferglänzende Prismen (aus Alkohol). Fast unlöslich in Wasser; sehr schwer in Alkohol (A. W. H., G.). — Zinkchloriddoppelsalz C₂₅H₃₁N₃Cl₂ + ZnCl₂ + H₃O. Krystalle. In Wasser mit grüner Farbe löslich; die Lösung wird durch Säuren gelbbraun (Appendenden B. 6, 965). — Platinchloriddoppelsalz C₂₅H₃₁N₃Cl₂ + PtCl₄. Brauner Niederschlag. Unlöslich in Wasser, Alkohol und Ather (A. W. H., G.).

4.4'.4"-Tris-dimethylamino-3-methyl-triphenylcarbinol, N.N.N'.N''.N''.Hexamethyl-rosanilin $C_{26}H_{22}ON_3 = (CH_2)_2N\cdot C_6H_3(CH_3)\cdot C[C_6H_4\cdot N(CH_3)_2]_2\cdot OH$. B. Entsteht in Form des jodwasserstoffsauren Farbsalzes $[C_{26}H_{22}N_3]I+2HI$, neben anderen Produkten, bei der Einw. von Methyljodid auf Rosanilin (A. W. Hofmann, B. 6, 356) oder Trimethylrosanilin (A. W. H., Girabd, B. 2, 446); ferner beim Erhitzen von Jodgrün (s. o.) mit Methylalkohol im geschlossenen Rohr auf 100°, neben dem jodwasserstoffsauren Farbsalz des Tetramethylrosanilins $[C_{24}H_{25}N_3]I$ (s. o.) (A. W. H., G., B. 2, 447; vgl. Leffèrer, Bl. [3] 13, 251). Die Carbinolbase erhält man aus der alkoh. Farbsalzlösung durch Alkali + Wasser als weißen, in Wasser unlöslichen Niederschlag (A. W. H., G.).

Jodwasserstoffsaures Farbsalz [C₃₈H₃₈N₃]I+2HI. Cantharidenglänzende Nadeln (aus Methylalkohol). Sehr wenig löslich in Alkohol, die Lösung ist blaustichig violett; leichter löslich in Methylalkohol; fast unlöslich in Wasser (A. W. H., G.). Verliert beim Erhitzen auf 150—160° allmählich Methyljodid (A. W. H.).

4.4'.4" - Tris - äthylamino - 3 - methyl - triphenylcarbinol , N.N'.N'' - Triäthyl - rosanilin $C_{26}H_{25}ON_3=C_3H_3\cdot NH\cdot C_4H_3(CH_3)\cdot C(C_4H_4\cdot NH\cdot C_3H_3)_3\cdot OH$. B. Entsteht in Form des jodwasserstoffsauren Farbsalzes (S. 768) bei der Einw. von Athyljodid auf Rosanilin, neben

anderen Produkten (A. W. HOFMANN, DE LAIRE, GIRARD, Matières colorantes dérivées de la houille [Paris 1867], S. 40; FEHLING, Neues Handwörterbuch der Chemie, Bd. I [Braunschweig

stoffe [Braunschweig 1888], S. 253, 254, 277; Schultz, Die Chemie des Steinkohlenteers, 3. Aufl., Bd. II, Die Farbstoffe [Braunschweig 1901], S. 171, 183).

Farbsalze. Die wasserlöslichen Farbsalze (salzsaures oder essigsaures Farbsalz) bildeten einen Bestandteil des Hofmannvioletts (Heumann, S. 278; Schultz, S. 183; vgl. Schultz, Tab. No. 514). — Jodwasserstoffsaures Salz [C₁₉H₂₂N₂]I+HI. Grüngianzende Krystalle. Fast unlöslich in Wasser, löslich in Alkohol (Hof., de L., G., S. 43) mit violetter Farbe (Heumann, S. 278; Schultz, S. 184).

1871], S. 626; HEUMANN, Die Anilinfarben und ihre Fabrikation, 1 Tl., Triphenylmethanfarb-

Tetraëthylrosanilin $C_{99}H_{97}ON_2 = (C_9H_5)_2N \cdot C_6H_3(CH_3) \cdot C(C_6H_4 \cdot NH \cdot C_2H_5)_2 \cdot OH$ oder $C_2H_5 \cdot NH \cdot C_6H_3(CH_3) \cdot C(C_6H_4 \cdot NH \cdot C_2H_5)[C_6H_4 \cdot N(C_2H_5)_2] \cdot OH$. B. Entsteht in Form des jodwasserstoffsauren Farbsalzes, wenn man Rosanilin mit Athyljodid in alkoh. Lösung bei 100° behandelt, das erhaltene Produkt mit Alkali zerlegt und die Athylierung noch zweimal wiederholt (A. W. Hofmann, Proceedings Royal Soc. London 13, 13; C. r. 57, 30; J. 1863, 418).

Jodwasserstoffsaures Farbsalz [C₂₈H₃₈N₃]I. Metallischglänzende Krystalle (aus verd. Alkohol) (A. W. H.). Violetter Farbstoff (A. W. H., Girard, B. 2, 440).

4.4'.4"-Trianilino - 3 - methyl - triphenylcarbinol, N.N'.N"-Triphenyl - rosanilin, Carbinolbase des Anilinblaus oder Spritblaus $C_{38}H_{33}ON_3 = C_6H_5 \cdot NH \cdot C_6H_3(CH_3) \cdot C(C_6H_4 \cdot NH \cdot C_6H_5)_2 \cdot OH$. B. bezw. Darst. Entsteht in Form von Farbsalzen beim Erhitzen von Farbsalzen des Rosanilins mit überschüssigem Anilin oder von Anilinsalzen mit Rosanilin (GIBARD, DE LAIRE, J. 1862, 696; A. W. HOFMANN, Proceedings Royal Soc. London 12, 578; 18, 9; C. r. 56, 945; 57, 25; Z. 1863, 437; J. 1863, 417). Wurde in Form des salzsauren Farbsalzes auch beim Erhitzen von rohem Diphenylamin (Gemisch von Diphenylamin mit Ditolylamin) mit Hexachlorathan auf ca. 160° erhalten (GIRARD, DE LAIRE, J. 1867, 963). Farbsalze entstehen ferner bei der Oxydation von 4.4'.4"-Trianilino-3-methyl-triphenylmethan (S. 322), z. B. durch Platinchlorid (A. W. Hof., Proceedings Royal Soc. London 18, 12; C. r. 57, 29; Z. 1863, 440; J. 1863, 418). — Zur technischen Darstellung des Anilinblaus aus Rosanilin und Anilin in Gegenwart einer organischen Säure (Benzoesäure, Oxalsäure, Essigsäure) vgl. Fierz-David, Künstliche organische Farbstoffe [Berlin 1926], S. 262.

Bei der trocknen Dettillation von Triphenylrosanilin entsteht Diphenylamin (A. W. Hor., Proceedings Royal Soc. London 13, 344; C. r. 58, 1132; J. 1864, 427; A. 182, 163). Bei der Reduktion mit Zink und Salzsäure oder mit Schwefelammonium entsteht 4.4'.4"-Trianilino-3-methyl-triphenylmethan (A. W. Hor., Proceedings Royal Soc. London 13, 12; C. r. 57, 28; Z. 1863, 439; J. 1863, 418). Bei der Einw. von konzentrierter oder rauchender Schwefelsäure läßt sich Triphenylrosanilin je nach den Bedingungen in Triphenylrosanilin-mono-, di-, tri- und tetrasulfonsaure überführen (Bulk, B. 5, 417), deren wasserlösliche Salze als Alkaliblau (vgl. Schultz, Tab. No. 536) bezw. Wasserblau (vgl. Schultz, Tab. No. 539) in den

Handel kommen. Farbsalze. Salzsaures Salz, Anilinblau, Spritblau [C38H32N3]Cl. Bläulichbraune Krystallkörner; völlig unlöslich in Wasser und Ather, schwer löslich mit tiefblauer Farbe in Alkohol (A. W. HOFMANN, Proceedings Royal Soc. London 13, 10, 342; C. r. 57, 27; Z. 1863, 438; J. 1863, 417; A. 182, 162). Absorptionsspektrum: Formánek, Ztechr. f. Farben-u. Textilchemie 2, 478. Färbt aus alkoh. Lösung Seide grünlichblau (vgl. Schuttz, Tab. No. 521). Zur Frage der Einheitlichkeit des Anilinblaus des Handels vgl. Baever, Villiger, B. 37, 2849; LAMBRECHT, B. 40, 249. — Bromwasserstoffsaures Salz $[C_{38}H_{32}N_3]$ Br (A. W. Hof.). — Jodwasserstoffsaures Salz $[C_{38}H_{32}N_3]$ I (A. W. Hof.). — Salpetersaures Salz $[C_{38}H_{32}N_3]$ NO₃ (A. W. Hof.). — Schwefelsaures Salz $[C_{38}H_{32}N_3]_2$ SO₄ (A. W. Hof.).

4.4'.4" - Tris - [2 - chlor - anilino] - 8 - methyl - triphenylcarbinol, N.N'.N" - Tris -[3-chlor-phenyl]-rosanilin $C_{28}H_{20}ON_3Cl_3 = C_4H_4Cl \cdot NH \cdot C_8H_8(CH_3) \cdot C(C_6H_4 \cdot NH \cdot C_6H_4Cl)_3 \cdot OH.$ B. Entsteht in Form des salzsauren Farbsalzes durch Erhitzen von 10 g Rosanilin mit 100 g 2-Chlor-anilin und 1,2 g Benzoeszure und Behandeln des Reaktionsproduktes mit Salzsauren (Harriston Benzoeszuren 1998) der Benzoeszuren 1998 des Benzelles Benzoeszuren 1998 des Benzoeszuren mit Salzsaure (HEUMANN, HEIDLBERG, B. 19, 1992). — Das salzsaure Farbsalz bildet ein in Wasser unlösliches, in Alkohol mit blauer Farbe lösliches, dunkelblaues Pulver, das Seide blauviolett färbt.

4.4'.4"-Tris-[3-chlor-anilino]-3-methyl-triphenylcarbinol, N.N'.N"-Tris-[3-chlor-phenyl]-rosanilin $C_{29}H_{20}ON_3Cl_3=C_6H_4Cl\cdot NH\cdot C_6H_3(CH_3)\cdot C(C_9H_4\cdot NH\cdot C_6H_4Cl)_2\cdot OH.$ B. Analog der vorhergehenden Verbindung (HEUMANN, HEIDLBERG, B. 19, 1993). — Die Farbsalze färben auf Seide ein stärker blaues Violett als diejenigen der vorhergehenden Verbindung.

4.4'.4"-Tris-[4-chlor-anilino]-3-methyl-triphenylcarbinol, N.N'.N"-Tris[4-chlor-phenyl]-rosanilin C₂₄H₂₆ON₃Cl₃ = C₄H₄Cl·NH·C₄H₃(CH₃)·C(C₄H₄·NH·C₄H₄Cl)₃·OH. B. Analog der vorhergehenden Verbindung (Heumann, Heidlberg, B. 19, 1993).

— Die Farbsalze färben Seide blauviolett.

4.4'.4"-Tri-p-toluidino-3-methyl-triphenylearbinol, N.N'.N"-Tri-p-tolyl-rosanilin $C_{41}H_{20}ON_3=CH_2\cdot C_4H_4\cdot NH\cdot C_4H_3(CH_2)\cdot C(C_4H_4\cdot NH\cdot C_4H_4\cdot CH_3)_3\cdot OH$. B. Entsteht in Form von Farbsalzen beim Erhitzen von Farbsalzen des Rosanilins mit dem doppelten Gewicht p-Toluidin (A. W. HOFMANN, Proceedings Royal Soc. London 18, 486; A. 182, 290). — Bei der trocknen Destillation eines Farbsalzes entstehen Phenyl-p-toluidin

Farbsalze. Die Farbsalze sind meist löslicher als diejenigen des Triphenylrosanilins (A. W. H.). — [C41H38N3]Cl (bei 100°). Blaue Krystalle (aus Alkohol). In Wasser unlöslich (A. W. H.).

Methyltribensylrosanilin $C_{49}H_{41}ON_3 = C_4H_4 \cdot CH_3 \cdot N(CH_3) \cdot C_6H_6(CH_4) \cdot C(C_4H_4 \cdot NH \cdot CH_3 \cdot C_6H_5) \cdot OH$ oder $C_4H_4 \cdot CH_3 \cdot CH_5 \cdot CH_$ Wasserbade (A. W. HOFMANN, B. 6, 263).

Jodwasserstoffsaures Farbsalz [$C_{48}H_{46}N_{3}$]I. Metallisch-grünglänzende Nadeln (aus Alkohol). Fast unlöslich in Wasser, schwer löslich in kaltem Alkohol, etwas löslicher in

heißem; färbt violett (Hor.).

4.4'.4" - Tris - β - naphthylamino - β - methyl - triphenylcarbinol , 4.4'.4" - Tri - β -naphthyl-rosanilin $C_{10}H_{12}ON_3=C_{10}H_7\cdot NH\cdot C_2H_3(CH_3)\cdot C(C_2H_4\cdot NH\cdot C_{10}H_7)_3\cdot OH$. Entsteht in Form des benzoesauren Farbealzes beim Erhitzen von Rosanilin mit β -Naphthylamin in Gegenwart von Bensoesaure (Norliting, Collin, B. 17, 259). — Die Farbsalze färben blau. — Verwendung zur Darstellung eines sulfurierten, wasserlöslichen Farbstoffes: Schultz, Tab. No. 541.

Bis-[4-nitro-bensal]-rosanilin $C_{2s}H_{27}O_{2}N_{5} = O_{2}N \cdot C_{2}H_{4} \cdot CH : N \cdot C_{2}H_{4}(CH_{2}) \cdot C(C_{4}H_{4} \cdot NH_{2})(C_{4}H_{4} \cdot N : CH \cdot C_{4}H_{4} \cdot NO_{2}) \cdot OH$ oder $H_{2}N \cdot C_{4}H_{4}(CH_{2}) \cdot C(C_{4}H_{4} \cdot N : CH \cdot C_{4}H_{4} \cdot NO_{2}) \cdot OH$. Be kurzem Kochen von 2 g Rosanilin mit 0,5 g Eisessig, 40 com Alkohol und 3,5 g 4-Nitro-benzaldehyd (Well, B. 28, 208). — Eigelbe Kryställchen (aus Benzol). F: 240°. Sehr leicht löslich in Chloroform, sehr schwer in Alkohol. Löst sich in kons. Schwefelsäure mit tiefer Orangefärbung; wird durch überschüssige verdünnte Mineralsäuren oder auch Eisessig in die Komponenten gespalten.

Monoscetylrosanilin $C_{23}H_{23}O_2N_3 = CH_3 \cdot CO \cdot NH \cdot C_8H_8(CH_2) \cdot C(C_8H_4 \cdot NH_3)_2 \cdot OH$ oder $H_2N \cdot C_8H_8(CH_3) \cdot C(C_8H_4 \cdot NH_3)(C_8H_4 \cdot NH \cdot CO \cdot CH_3) \cdot OH$. B. Entsteht in Form des salzsauren Farbsalzes beim Erhitzen von 200 g Fuchsin mit 40 g Acetamid auf 180—185° (BECKERHINN, Sitzungsber. K. Akad. Wiss. Wien [math.-naturwiss. Klasse] 62 II, 413; J. 1870, 768). Salzsaures Farbsalz [C₂₃H₂₂ON₃|Cl. Dunkelblaues, metallglänzendes Pulver. Löslich in Alkohol, Chloroform und Schwefelkohlenstoff mit violetter Farbe, wird aus seinen

Lösungen durch Äther und Wasser gefällt (B.).

[4.4'.4"-Tris-acetamino-8-methyl-triphenylcarbin]-acetat, O.N.N'.N"-Tetra-acetyl-rosanilin $C_{s_0}H_{s_0}O_sN_s=CH_s\cdot CO\cdot NH\cdot C_sH_s(CH_s)\cdot C(C_sH_s\cdot NH\cdot CO\cdot CH_s)_s\cdot O\cdot CO\cdot CH_s$. B. Bei 2-stdg. Kochen von 10 g Rosanilin mit 50 g Essigsäureanhydrid am Rückflußkühler (RENOUF, B. 16, 1303). Beim Eintragen von Kaliumdichromat in eine kochende eisessigsaure Lösung von N.N'.N"-Triacetyl-leukanilin (S. 323) (R.). — Amorphes Pulver. F: 153—155°. Liefert beim Kochen mit konz. Salzsäure Fuchsin.

Derivate des 6.4'.4"-Triamine-3-methyl-triphenylcarbinols.

6 - Amino - 4'.4" - bis - dimethylamino - 8 - methyl - tri -CH, OH phenylearbinol $C_{24}H_{25}ON_2$, s. nebenstehende Formel. B. Durch 10 Minuten langes Kochen einer Lösung des 4'.4"-Bis- (CH₂)₂N·· dimethylamino - 6-carbathoxyamino - 3 - methyl - triphenylcarbi -ŇH, nol-āthylāthers (s. u.) in Pyridin mit Barytwasser (BAEYER, VILLIGEE, B. 36, 2783). — Farblose, sechsseitige Tāfelchen (aus Pyridin + Methylalkohol). F: ca. 200° (Zers.). Die farb-N(CH₂). lose Lösung in Essigsäure wird beim Erwärmen blau und färbt blau. Beim Erwärmen mit Mineralsäuren entstehen grün fluorescierende, wahrscheinlich zu den Acridinen gehörige Substanzen.

4'.4" - Bis - dimethylamino - 6 - carbäthoxyamino - 3 - methyl - triphenylcarbinol äthyläther $C_{49}H_{47}O_{2}N_{3} = C_{4}H_{5}\cdot O_{2}C\cdot NH\cdot C_{6}H_{3}(CH_{4})\cdot C[C_{6}H_{4}\cdot N(CH_{3})_{2}]_{3}\cdot O\cdot C_{4}H_{5}$. B. Durch Behanden von 4'.4"-Bis-dimethylamino-6-carbāthoxyamino-3-methyl-triphenylmethan (S. 323) mit Braunstein in eisgekühlter, verdünnter schwefelsaurer Lösung und Behandeln der zunächst erhaltenen (nicht näher beschriebenen) Verbindung

 $\begin{array}{c} CH_2 \cdot C_6H_3 < \begin{array}{c} C[C_6H_4 \cdot N(CH_2)_2]_3 \\ C(O \cdot C_2H_3) \end{array} > O \text{ mit Alkohol (B., V., } B. 36, 2783). - Farblose Tafeln \end{array}$

BEILSTEIN's Handbuch. 4. Aufl. XIII.

(aus Alkohol). F: 170—172° (Zers.). Die farblosen sauren Lösungen färben sich beim Erwärmen grün. Durch Verseifen mit Barytwasser in Gegenwart von Pyridin entsteht 6-Amino-4'.4"-bis-dimethylamino-3-methyl-triphenylcarbinol (S. 769).

5. Aminoderivate des 2-Bensyl-benzhydrols $C_{50}H_{16}O=C_0H_5\cdot CH(OH)\cdot C_0H_4\cdot CH_2\cdot C_4H_5$.

4 - Dimethylamino - 2 - [4-dimethylamino-bensyl]-benshydrol, 1 - [4 - Dimethylamino - bensyl] - 2 - [4 - dimethylamino-a-oxy-bensyl]-bensol C_MH₂₈ON₃, s. nebensethende Formel. B. Bei der Reduktion von 4'-[Dimethylamino-bensyl]-bensophenon (Syst. No. 1873) mit Natriumamalgam in Alkohol (Guyot, Pignet, C. r. 146, 985; G., Haller, A. ch. [8] 19, 331). — Farblose, stark lichtbrechende, an der Luft sich rasch bräunende Prismen. Schmilzt unscharf bei 98°. — Wird durch Zink und Salzsäure zu 1.2-Bis-[4-dimethylamino-benzyl]-benzol (S. 282) reduziert. Geht bei der Einw. von kalter konzentrierter Schwefelsäure unter vorübergehender Orangefärbung in 2-Dimethylamino-9-[4-dimethylamino-phenyl]-anthracen-dihydrid-(9.10) (S. 288) über.

4'-Diäthylamino-2-[4-dimethylamino-bensyl]-benshydrol, 1-[4-Dimethylamino-bensyl]-2-[4-diäthylamino-a-oxy-bensyl]-bensol $C_{24}H_{22}ON_2=(C_2H_3)_2N\cdot C_0H_4\cdot CH(OH)\cdot C_6H_4\cdot CH_3\cdot C_0H_4\cdot N(CH_3)_3$. B. Analog der vorhergehenden Verbindung (Guyot, Pignet, C. r. 146, 986; G., Haller, A. ch. [8] 19, 332). — Farblose Krystalle. F: 73°.

4. Aminoderivate des α -0xy-3.3'-dimethyl-triphenylmethans (3.3'-Dimethyl-triphenylcarbinols) $C_{21}H_{20}O = (CH_3 \cdot C_6H_4)_2C(C_6H_5) \cdot OH$.

2"-Chlor-4.4'-bis-äthylamino-3.8'-dimethyl-triphenylcarbinol, Carbinolbase des Setocyanins C₂₅H₂₅ON₂Cl, s. nebenstehende Formel. B. Der Farbstoff Setocyanin entsteht durch Kochen von Athyl-o-toluidin mit 2-Chlorbenzaldehyd, Alkohol und Zinkchlorid und Oxy $C_{2}H_{5}\cdot HN\cdot \underbrace{CH_{3}}_{Cl} \underbrace{OH}_{Cl} \underbrace{CH_{3}}_{Cl}$

dation der gewonnenen — nicht näher beschriebenen — Leukobase in essigsaurer-salzsaurer Lösung mit Bleidioxyd (Geigy & Co., D. R. P. 94126; Frdl. 4, 189; Schultz, Tab. No. 500). — Der Farbstoff Setocyanin bildet ein kupferrotes Pulver, das sich mit blauer Farbe in Wasser löst (Gei. & Co.). Absorptionsspektrum: Formánek, Ztechr. f. Farben- u. Textilchemie 1, 330. Färbt mit blaugrüner Nuance (Gei. & Co.).

2".5"-Dichlor-4.4'-bis-methylamino-8.3'-dimethyl-triphenylcarbinol, Carbinolbase des Firnblaus $C_{33}H_{24}ON_2Cl_2 = [CH_3 \cdot NH \cdot C_6H_3(CH_3)]_2C(C_6H_3Cl_2) \cdot OH$. B. Entsteht in Form von Farbsalzen durch Kondensation von Methyl-o-toluidin mit 2.5-Dichlor-benzaldehyd in Gegenwart von Schwefelsäure, Salzsäure oder Zinkchlorid und Oxydation der entstandenen Leukobase mit Bleidioxyd oder Mangandioxyd in salzsaurer Lösung (Ges. f. Chem. Ind., D. R. P. 71370; Frdl. 3, 107; GNEHM, BÄNZIGER, B. 29, 878); die Carbinolbase erhält man aus der Lösung der Farbsalze durch Fällen mit Ammoniak (G., B., A. 296, 83; vgl. VILLIGER, KOPETSCHNI, B. 45 [1912], 2910). — Wurde als gelbbrauner, käsiger Niederschlag erhalten. F: 140°; leicht löslich in Alkohol und Chloroform (G., B., A. 296, 83). — Salzsaures Farbsalz, Firnblau. Zur Zusammensetzung vgl. GNEHM, BÄNZIGER, B. 29, 878; A. 296, 84. Färbt in äußerst reiner blaugrüner Nuance (Ges. f. Chem. Ind., D. R. P. 71370; G., B.).

4.4'.4"-Triamino - 8.3'- dimethyl - triphenylcarbinol C₂₁H₂₂ON₂, s. nebenstehende Formel. B: Entsteht in Form von Farbsalzen bei der Oxydation eines Gemenges von 1 Tl. H₂N. p-Toluidin und 2 Tln. o-Toluidin mit Arsensäure (Rosenstehen, Geber, A.ch. [6] 2, 348; vgl. Coupler, Bull. soc. ind. Mulhouse 36, 259), beim Erhitzen von polymerem Anhydro-[4-amino-benzylalkohol] (C,H₂N)_x (S. 621) mit überschlusigem o-Toluidin und salzsaurem o-Toluidin in Gegenstehen von Nijerschlusius der Affon 4708.

wart von Nitrotoluol und Eisenchlorür auf 150—170° (KALIE & Co., D. R. P. 93540; Frdl. 4, 180), bei der Oxydation von 4.4'.4".Triamine-3.3'-dimethyl-triphenylmethan (S. 327) (O. FISCHER, B. 15, 679) mit Braunstein in essigsaurer Lösung unter Verwendung von Aceton, Methyläthylketon (Höchster Farbw., D. R. P. 70905; Frdl. 3, 110), Methylälkohol oder Athylälkohol (Hö. Fa., D. R. P. 72032; Frdl. 3, 111) als Lösungsmittel für die Leukobase.

— Die Carbinolbase ist schwer krystallisierbar; 1000 Tle. Äther lösen 0,840 Tle. (R., G.). Wärmetönung bei der Neutralisation mit Salzsäure: Schmidlin, C. r. 139, 542. — Das salzsaure Farbsalz bildet körnige Krystalle; 1000 Tle. kalten Wassers lösen 5,55 Tle. (R., G.). Die orangegelbe Lösung in kons. Salzsaure scheidet beim Stehen ein farbloses Additionsprodukt ab (Höchster Farbw., D. R. P. 163104; Frill. 8, 192). Die Farbsalze färben ein blaustichiges Rot (O. FI.). Über die Färbekraft der Farbsalze vgl. Courier.

5. Aminoderivate des α -0xy-3.3'.3''-trimethyl-triphenylmethans (3.3'.3"-Trimethyl-triphenylcarbinols) $C_{\mathbf{m}}H_{\mathbf{m}}O = (CH_{\mathbf{n}} \cdot C_{\mathbf{n}}H_{\mathbf{d}})_{\mathbf{n}}C \cdot OH$.

4.4'.4" - Triamino - 8.3'.8" - trimethyl - triphenyl carbinol, Carbinolbase des Neufuchsins $C_{22}H_{15}ON_3$, s. nebenstehende Formel. B. Entsteht in Form von Farbsalzen beim Erhitzen von o-Toluidin und salzsaurem o-Toluidin mit Methylchlorid unter Zusatz von 2-Nitro-toluol und Eisenchlorür im geschlossenen Rohr auf cs. 150° (Akt.-Ges. f. Anilinf., D. R. P. 66125; Frdl. 8, 104), beim Erhitzen von o-Toluidin mit methylschwefelsaurem Natrium und Arsensäure auf 180° oder von o-Toluidin und salzsaurem o-Toluidin mit methylschwefelsaurem

Natrium, 2-Nitro-toluol und Eisenfeilspänen im offenen oder geschlossenen Gefäß auf 120° (Cassella & Co., D. R. P. 67128; Frdl. 8, 105); beim Arbeiten im geschlossenen Gefäß läßt sich die Methylschwefelsaure durch Methylskohol ersetzen (Ca. & Co., D. R. P. 68464; Frdl. 3, 105). Entsteht ferner in Form von Farbsalzen bei der Oxydation eines Gemisches von 1 Mol.-Gew. asymm. m-Xylidin (Bd. XII, S. 1111) und 2 Mol.-Gew. o-Toluidin mit Arsensäure (Rosenstiehl, Gerber, A. ch. [6] 2, 352), beim Erhitzen von Methylen-di-o-toluidin (Bd. XII, S. 788) mit o-Toluidin und salzsaurem o-Toluidin in Gegenwart von Nitrotoluol und Eisenchlorür auf 140—150° (EBERHARDT, WELTER, B. 27, 1814), beim Erhitzen von 4.4'-Diamino-3.3'-dimethyl-diphenylmethan (S. 262) mit o-Toluidin und salzsaurem o-Toluidin unter Zusatz von Nitrotoluol und Eisenfeile (Höchster Farbw., D. R. P. 59775; Frdl. 3, 114), bei der Oxydation von 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylmethan (S. 331) mit Braunstein und Essigsäure unter Verwendung von Lösungsmitteln wie Aceton, Methyläthylketon (Hö. Fa., D. R. P. 70905; Frdl. 3, 110), Methyläkohol oder Äthyläkohol (Hö. Fa., D. R. P. 72032; Frdl. 3, 111), bei 6—7-stdg. Erhitzen von 80 Tln. o-Toluidin, 60 Tln. 2-Nitro-toluol, 20 Tln. Eisenchlorür, 34 Tln. 11 vol.-proz. Salzsäure und 27 Tln. Wasser mit 32 Tln. des Kaliumsalzes der 4-Amino-3-methyl-phenyltartronsäure (Syst. No. 1913) auf 110—130° (BOEHRINGER & Söhne, D. R. P. 120465; Frdl. 6, 234). — Die Carbinolbase ist unlöslich in Wasser, löslich in absol. Äther (SCHMIDLIN, A. ch. [8] 7, 232) und Benzol (Ro., Gr.). Wärmetönung beim Neutralisieren mit Salzsäure: Sch., C. r. 139, 542; A. ch. [8] 7, 242. — Bei der Reduktion mit Zinkstaub (SCHMIDLIN, B. 39, 4208) oder Zinn und Salzsäure (Ro., Gr.) entsteht 4.4.4."-Triamino-3.3.3."-trimethyl-triphenylmethan. Bei der Einw. von Ammoniumhydrosulfidlösung auf eine wäßrige, mit Natriumacetat versetzte Lösung von Neufuchsin entsteht 4.4'.4''-Triamino-3.3'.3''-trimethyl-triphenylcarbinthiol (S. 772) (LAMBRECHT, B. 40, 250). Einw. von Kaliumpolysulfid auf Neufuchsin: Pelet, Grand, C. 1907 II, 1529; vgl. LAMBRECHT, Well., B. 38, 271. Beim Behandeln mit Salzsäure tritt Spaltung in o-Toluidin und 4.4'-Diamino-3.3'-dimethyl-benzophenon ein (Hö. Fa., D. R. P. 59775; Frdl. 8, 114). — Nachweis neben Rosanilin und Pararosanilin: La., Well., B. 87, 3031, 4327.

Farbsalze. Einfach salzsaures Salz, Neufuchsin [C₂₂H₂₄N₃]Cl. Grüne Nadeln (aus Alkohol) (EBERHARDT, WELTER, B. 27, 1814). Enthält, bei 130⁶ getrocknet, 1 Mol. Krystallwasser (SCHMIDLIN, A. ch. [8] 7, 204). 1 Liter Wasser von 20⁶ löst 17 g, 1000 g Äther lösen 0,875 g (Rosenstiehl, Gerber, A. ch. [6] 2, 352). Absorptionsspektrum im sichtbaren Spektralgebiet: Formánek, Ziechr. f. Farben-u. Textilchemie 2, 478; im Ultraviolett: Krüss, Ph. Ch. 51, 282. Adsorption durch Kohle und durch Fassern: Freundlich, Losev, Ph. Ch. 62, 283. In St. in March 18 de Chlemen aucht of been. Wesser in farblese Additions. 59, 288. Läßt sich durch Addition von Chlorwasserstoff bezw. Wasser in farblose Additionsverbindungen, z. B. C₂₂H₂₄O₄N₃Cl₃ überführen (Schmidlin, A. ch. [8] 7, 228; Höchster Farbw., D. R. P. 163104; C. 1905 II, 1063). Liefert beim Hinzufügen von Natronlauge zu der wäßr. Lösung 4'.4"-Diamino-3.3'.3"-trimethyl-fuchson-imid (S. 772) (Baryer, Villiger, B. 87, 1184, 288). Färbt Wolle violettstichig rot (Ro., Ge.). — Dreifach salzsaures Salz [C₃₂H₂₄N₃]Cl. +2HCl. B. Durch Erhitzen der farblosen Additionsverbindung C₃₂H₃₄O₄N₃Cl₃ (s. c.) auf 50—60° oder durch Sättigen einer absolut-ätherischen Lösung von 4.4'.4"-Triamino-3.3'.3"-trimethyl-triphenylcarbinol mit Chlorwasserstoff (Schmidlin, A. ch. [8] 7, 208). Schwarzes, außerordentlich hygroskopisches Krystallpulver. Sehr leicht löslich in konz. Salzsäure. — [C₃₂H₃₄N₃]I + 2 I. B. Auf Zusatz von Jodjodkaliumlösung zu einer Lösung von Neufuchsin (Pellet, Ghllikon, C. 1907 I, 1259). — Propionsaures Salz. Grünes, metallglänzendes Pulver; löslich in Alkohol, Aceton und Chloroform, unlöslich in Benzol 59, 288. Last sich durch Addition von Chlorwasserstoff bezw. Wasser in farblose Additions-

(GNEHM, RÖTHEIJ, Z. Ang. 11, 487, 501). — Palmitinsaures Sals. Metallischgrünes Pulver; F: 79°; leicht löslich in Alkohol, Aceton und Chloroform, unlöslich in Ligroin und Benzol (Gn., Rö.). — Stearinsaures Salz. Metallischgrünes Pulver; F: 93°; unlöslich in Benzol (Gw., Rö.).

Anhydro - [4.4'.4" - triamino - 3.3'.3" - trimethyl - triphenylcarbinol], 4'.4" - Diamino-3.3'.3"-trimethyl-fuchson-imid 1) CasH23N3 =

 $HN: C < C(CH_3): CH > C: C[C_0H_3(CH_3) \cdot NH_3]_3$. B. Entsteht beim Hinzufügen von Natronlauge zu einer wäßr. Lösung von Neufuchsin (S. 771) (BAEYER, VILLIGER, B. 37, 1184, 2868). — Leicht löelich in Wasser, Äther und Benzol mit brauner Farbe; wird aus der wäßr. Lösung durch größere Mengen Natronlauge ausgesalzen. Ist eine starke Base. — Bei längerem Stehen einer mit Atakali getrockneten Lösung scheiden sich Kondensationsprodukte ab. Beim Versetzen einer Benzollösung mit Kochsalz findet momentan Rückbildung von Neufuchsin statt. Die Umwandlung in 4.4'.4". Triamino-3.3'.3"-trimethyl-triphenylcarbinol durch Wasser erfolgt langsam, dagegen die Addition von Alkoholen zu Alkyläthern der Carbinolbase in wenigen Minuten.

wengen minuon.

4.4'.4''-Triamino-8.3'.3''-trimethyl-triphenylcarbinol-methyläther $C_{23}H_{27}ON_3 = [H_sN\cdot C_sH_3(CH_s)]_sC\cdot O\cdot CH_s$. B. Beim Versetzen einer methylalkoholischen Lösung von Versetzen einer methylalkoholischen Natriummethylatlösung (BAEYER, VILLIGER, B. 37, Neufuchsin mit methylalkoholischer Natriummethylatlösung (BAEYER, VILLIGER, 2875). — Blätter (aus Benzol). Schmilzt nach vorhergegangenem Sintern bei ca. 178° unter Dampfentwicklung. Schwer löslich in Äther und kaltem Benzol; leicht löslich in heißem Benzol und Methylalkohol.

4.4'.4"-Triamino - 8.8',8"- trimethyl - triphenylcarbinthiol C₂₂H₂₅N₂S = [H₂N·C₆H₂(CH₂)]₂C·SH. B. Bei der Einw. von Ammoniumhydrosulfidlösung auf eine wäßrige, mit Natriumacetat versetzte Lösung von Neufuchsin (S. 771) (LAMBRECHT, B. 40, 250). — Hellross. Sehr elektrisch. Ziemlich leicht löslich in Benzol. Wird von heißem Alkohol mit fuchsinroter Farbe gelöst; beim Eindampfen der alkoh. Lösung auf dem Wasserbade entsteht eine metallglänzende, grünrote Substanz. Mit siedenden Alkalien entsteht 4.4'.4"-Triamino-3.3',3"-trimethyl-triphenylcarbinol.

6. Aminoderivate des α -Oxy- β . β -dimethyl- α . α . γ -triphenyl-propans (Diphenyl- $[\alpha.\alpha$ -dimethyl- β -phenyl- α -thyl]-carbinols) $C_{28}H_{24}O = C_8H_5 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C$ $C(CH_a)_a \cdot C(C_aH_a)_a \cdot OH.$

Bis-[4-dimethylamino-phenyl]-[a.a-dimethyl- β - (4 - dimethylamino - phenyl) - athyl] - carbinol C₂₂H₂₆ON₂, s. nebenstehende Formel. B. Entsteht in Form von Farbsalzen bei der Oxydation von $\beta.\beta$ -Dimethyl - α.α.γ - tris - [4 - dimethylamino - phenyl] - propan (S. 831) mit Bleidioxyd in salzsaurer-essigsaurer Lösung; die Carbinolbase erhält man aus der Lösung der Farbsalse durch Fällen mit überschüssigem Alkali (SAMEC, M. 26, 394). — Farblose bis schwach rosa gefärbte, sehr hygroskopische Krystalle (aus Äther), die über N(CH₂), Schwefelsäure, rascher beim Erwärmen unter Abgabe von Wasser in eine blaue krystallinische

Masse übergehen.

Farbsalze. Dreifach salzsaures Salz $[C_{29}H_{32}N_3]Cl+2HCl$. B. Man läßt die Carbinolbase zunächst in eine blaue krystallinische Masse (s. o.) sich verwandeln und behandelt diese in äther. Lösung mit Chlorwasserstoff, bis der Ather klar geworden ist und der Niederschlag sich abgesetzt hat (SAMEC, M. 26, 405). Entsteht auch, wenn man die Carbinolbase in Ather unter Kühlung mit Chlorwasserstoff behandelt und das so entstehende weiße Salz im Exsicoator über Schwefelsäure stehen läßt (S.). Smaragdgrüne Krystalle. Löst sich in wenig Wasser mit grüner, in viel Wasser oder Alkohol mit blauroter Farbe. Auf Zusatz von Mineralsäure werden die Lösungen grün. Absorptionsspektrum: S. — Vierfach salz-saures Salz [C₂₉H₂₀N₂]Cl + 3 HCl. B. Man läßt die Carbinolbase sich in eine blaue krystallinische Masse (s. o.) verwandeln und behandelt diese in äther. Lösung mit Chlorwasserstoff im Uberschuß (S.). Gelbbraune krystallinische Masse. Zerfließt an der Luft schnell unter Blaufarbung. Löst sich in ganz wenig Wasser mit braungelber Farbe; die Lösung wird beim Verdünnen erst grün, dann blau. — Oxalsaures Salz $[C_{10}H_{20}N_3]HC_3O_4 + 2H_4C_3O_4$. Blaue Krystalle; sehr hygroakopisch; löst sich in wenig Wasser mit grüner, in viel Wasser mit blauer Farbe; löslich in Alkohol (S.).

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, 8. 520.

Äthyläther $C_{31}H_{43}ON_2 = (CH_3)_2N \cdot C_6H_4 \cdot CH_2 \cdot C(CH_3)_2 \cdot C[C_6H_4 \cdot N(CH_3)_2]_3 \cdot O \cdot C_2H_5$. B. Beim Behandeln des vierfach salzsauren Farbsalzes des Bis-[4-dimethylamino-phenyl]-[a.a-dimethyl- β -(4-dimethylamino-phenyl)-āthyl]-carbinols mit Natriumāthylat in alkoh. Lösung (Samec, M. 26, 407). — Dunkelziegelrote Krystalle (aus Äther). F: 65°.

m) Aminoderivate einer Monooxy-Verbindung $C_nH_{2n-24}O$.

3-Dimethylamino-9-oxy-9-[4-dimethylamino-phenyl]fluoren C₃₃H₂₄ON₃, s. nebenstehende Formel. B. Entsteht in
Form des salzsauren Farbsalzes durch Oxydation von 3-[Dimethylamino]-9-[4-dimethylamino-phenyl]-fluoren (S. 288) mit Bleidoxyd in verdünnt-salzsaurer Lösung (GUYOT, GRANDERYE, C. r.
137, 414; Bl. [3] 33, 201). — Die freie Base ist nicht isoliert worden.

Farbsalze. Salzsaures Salz. Schwarze metallglänzende Nadeln. Leicht löslich in siedendem Wasser, löslich in Alkohol; färbt Wolle und tannierte Baumwolle glanzlos violett (Gu., Ga.). — Salpetersaures Salz [C₂₃H₂₃N₂]NO₃. Krystalle (aus Alkohol) (Gu., Ga.).

3.6-Bis-dimethylamino - 9 - 0xy - 9 - [4 - dimethylamino - phenyl] - fluoren, Base des Fluorenblaus (C₃₄H₂₉ON₃, s. nebenstehende Formel. B. Entsteht in Form von Farbsalzen bei der Oxydation von 3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl] - fluoren B. (CH₃)₂N·(CH₃)₂N·(CH₃)₃ methylamino-9-[4-dimethylamino-phenyl] - fluoren B. (21 95, 756)

Form von Farbsalzen bei der Oxydation von 3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl]-fluoren (S. 332)
methylamino-9-[4-dimethylamino-phenyl]-fluoren (S. 332)
mit Bleidioxyd in saurer Lösung (Haller, Guyot, Bl. [3] 25, 756).
Salzsaures Farbsalz, Fluorenblau [C₂₅H₂₅N₃]Cl+2\sqrt{2}\sqrt{2}\sqrt{1}\sqrt{2}\cdot Nadeln mit starkem
Kupferglanz (aus Äther-Alkohol). Verliert 1\sqrt{2}\sqrt{3} Mol. Wasser bei 100\sqrt{0}, das letzte Mol. Wasser
erst bei 160\sqrt{0} unter Zersetzung; ziemlich löslich in heißem Wasser, unlöslich in Kochsalzlösung; löslich in Wasser mit violettblauer, in Alkohol mit grünlichblauer Farbe; besitzt
ziemlich den gleichen Farbstoffcharakter wie das Krystallviolett; die Nuance ist etwas
nach Blau verschoben (H., G.).

n) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-28}O$.

Aminoderivate der Monooxy-Verbindungen $C_{23}H_{18}O$.

1. Aminoderivate des Diphenyl-[2-oxy-naphthyl-(1)]-methans $C_{23}H_{18}O = (C_0H_5)_2CH \cdot C_{10}H_6 \cdot OH$.

naphthyl-(1)]-methan $C_{27}H_{38}ON_2$, s. nebenstehende Formel. B. Beim Erhitzen von 4.4°-Bis-[dimethyl-amino]-benzhydrol mit β -Naphthol und konz. Salz-

säure im Wasserbade (Votoček, Jelínek, B. 40, 409). Beim Erwärmen von Leukauramin (S. 307) mit β -Naphthol in 90°/piger Essigsäure (Sandoz & Co., D. R. P. 81677; Frdl. 4, 220). — Prismen. F: 131—133°; leicht löslich in Äther und Benzol, unlöslich in Natronlauge (S. & Co.). — Gibt mit Chloranil in alkoholisch-essigsaurer Lösung eine blaue Lösung (V., J.).

Bis-[4-dimethylamino-phenyl]-[2-acetoxy-naphthyl-(1)]-methan $C_{39}H_{20}O_3N_3=[(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_{10}H_4\cdot O\cdot CO\cdot CH_3$. Bei der Einw. von Essigsäureanhydrid auf Bis-[4-dimethylamino-phenyl]-[2-oxy-naphthyl-(1)]-methan (VOTOČEK, JELÍNEK, B. 40, 409). — Krystalle (aus Alkohol). F: 136°. — Gibt mit Chloranil in alkoholisch-essigsaurer Lösung eine grüne Lösung.

2. Aminoderivat des Diphenyl-[4-oxy-naphthyl-(1)]-methans $C_{22}H_{18}O=(C_6H_5)_CH\cdot C_{10}H_6\cdot OH$.

Bis - [4 - dimethylamino - phenyl] - [4 - oxy-naphthyl-(1)]-methan C₂₇H₂₆ON₂, s. nebenstehende Formel. B. Beim Erwärmen von Leukauramin (S. 307) mit a-Naphthol in 90°/kiger Essigsäure (Sandoz & Co., D. R. P. 81677; Frdl. 4, 220).

Blättchen. F: 195—197° (San. & Co.), 188,5—189° (Norlting, Saas, B. 46 [1913], 963). Leicht löglich in Äther und Benzol, unlöslich in Natron-

(NOELTING, SAAS, B. 46 [1913], 963). Leicht löslich in Äther und Benzol, unlöslich in Natronlauge (SAN. & Co.).

3. Aminoderivate des Diphenyl - a - naphthyl - carbinols $C_{22}H_{14}O=(C_0H_1)\cdot OH$ (Bd. VI, S. 729).

Bis - [4 - dimethylamino - phenyl] - [4 - (methylamino) - naphthyl-(1)] - carbinol C₃₂H₃₁ON₃, s. nebenstehende Formel. B. Entsteht in Form von Farbsalzen bei der Oxydation von Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)] - methan (S. 333) (NOELTING, B. 37, 1912) oder bei der Kondensation von 4.4' - Bis - dimethylamino - benzophenon (MICHLERschem Keton) mit Methylamino (N. Bull Soc. and

$$(CH_3)_2N \cdot \bigcirc -C - \bigcirc \cdot N(CH_3)_2$$

$$NH \cdot CH_3$$

Keton) mit Methyl-a-naphthylamin (N., Bull. Soc. ind.

Mulhouse 72, 231; C. 1903 I, 87; B. 37, 1912); die Carbinolbase erhält man durch
Kochen der Farbsalzlösung mit Ammoniak (N., Philipp, B. 41, 3909). Die Carbinolbase
entsteht ferner bei 1-stdg. Kochen einer Lösung von Anhydro-{bis-[4-dimethylaminophenyl]-[4-methylamino-naphthyl-(1)]-carbinol} (s. u.) in 40—50% igem Alkohol unter
Zusatz von etwas Kalilauge (N., Ph.). — Die Carbinolbase bildet farblose Krystalle (aus
Ather). F: 171—172°; leicht löslich in Benzol und Toluol, ziemlich schwer in Alkohol
(N., Ph.). — Die Carbinolbase geht durch Erhitzen in Glycerin unter Zusatz von etwas Kalilauge wieder in die Anhydroverbindung CasHsp.Ns über; diese entsteht auch aus der Lösung
eines Farbsalzes in heißem Wasser und etwas Essigsäure beim Fällen mit Natronlauge (N., Ph.).

Salzsaures Farbsalz [C₃₈H₃₀N₃]Cl. Grünschillernde Krystalle. Schwer löslich (NOELTING, PHILIPP, B. 41, 3908). Ist ein blauer Farbstoff (N., Bull. Soc. ind. Mulhouse 72, 231; B. 37, 1912).

Anhydro - (bis - [4-dimethylamino - phenyl] - [4-methylamino - naphthyl-(1)]-car binol, Naphthochinon - (1.4) - [bis - (4-dimethylamino - phenyl) - methid] - methylimid C₁₈H₁₈N₂ = [(CH₃)₂N·C₄H₄]₂C:C₁₀H₄:N·CH₂. B. Beim Fällen des salzsauren, in heißem Wasser unter Zusatz von etwas Essigsäure gelösten Farbsalzes des Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)]-carbinols (s. o.) mit Natronlauge (NOELTING, PHLIFF, B. 41, 3908). Beim Erhitzen von Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)]-carbinol in Glycerin und etwas Kalilauge (N., Ph.). — Rotbraune Blättchen (aus Äther). F: 195—196°. Löslich in Alkohol mit gelber Farbe. — Geht durch Kochen mit verd. Alkohol und etwas Kalilauge in Bis-[4-dimethylamino-phenyl]-[4-methylamino-naphthyl-(1)]-carbinol über.

Bis - [4 - dimethylamino - phenyl] - [4 - dimethylamino - naphthyl - (1)] - carbinol, Carbinolbase des Naphthoblaus C₃₀H₃₀ON₃ = [(CH₃)₂N·C₂H₄]₂C[C₁₀H₆·N(CH₃)₂]·OH. B. Entsteht in Form von Farbsalz bei der Oxydation von Bis-[4-dimethylamino-phenyl]-[4-dimethylamino-naphthyl-(1)]-methan (S. 333) mit Chloranil in alkoholisch-essigsaurer Lösung (NOELTING, PHILIPP, B. 41, 582). Entsteht ferner in Form des salzsauren Farbsalzes (Naphthoblau) bei 10-stdg. Erhitzen von 10 g 4.4'-Bis-dimethylamino-benzophenon (Michlersches Keton) mit 25 g Dimethyl-a-naphthylamin in Gegenwart von 7,5 g Phosphoroxychlorid auf dem Wasserbade (Bad. Anilin- u. Sodaf., D. R. P. 27789; Frdl. 1, 83; NOELTING, PHILIPP, B. 41, 580); zur Isolierung der Carbinolbase wird die in Wasser unter Salzsaurezusatz gelöste Schmelze mit Alkali in der Kälte gefällt (N., Saas, B. 46 [1913], 965, 966). — Die Carbinolbase bildet farblose Nadeln (aus absol. Äther). F: 153°; löslich in Äther ohne Färbung (N., Ph.). — Beim Erhitzen eines Farbsalzes mit verd. Schwefelsäure tritt Zerfall in Michlersches Keton und Dimethyl-a-naphthylamin ein (N., Ph.). — Salzsaures Farbsalz, Naphthoblau. In Wasser äußerst leicht löslich; die Farbnuance liegt zwischen den Nuancen des Viktoriablaus R und B (NOELTING, PHILIPP, B. 41, 582). Gibt beim Fällen mit Alkali in der Kälte die Carbinolbase, in der Hitze daneben oder auschließlich das Naphthochinon-(1.4)-mono-[bis-(4-dimethylamino-phenyl)-methid] (Syst. No. 1873) (N., S.; vgl. N., Ph.).

Bis-[4-dimethylamino-phenyl]-[4-šthylamino-naphthyl-(1)]-carbinol, Carbinolbase des Viktoriablaus R C₂₈H₂₃ON₃ = [(CH₂)₂N·C₄H₄]₂C(C₁₀H₄·NH·C₂H₅)·OH. B. In Form von Farbsalzen bei der Öxydation von Bis-[4-dimethylamino-phenyl]-[4-šthylamino-naphthyl-(1)]-methan (S. 333) in Gegenwart von Säure, bei der Kondensation von 4.4'-Bisdimethylamino-benzophenon mit Äthyl-a-naphthylamin mittels Phosphoroxychlorids (Nobl-Ting, Bull. Soc. ind. Mulkouse 72, 231; C. 1903 I, 87; B. 37, 1913) oder bei der Kondensation von [4-Dimethylamino-phenyl]-[4-šthylamino-naphthyl-(1)]-keton (Syst. No. 1873) mit Dimethylanilin mittels Phosphoroxychlorids (N., B. 37, 1913); zur Isolierung der Carbinolbase läßt man die heiße Lösung eines Farbsalzes in überschüssiges Ammoniak einfließen (N., Philipp, B. 41, 584). — Die Carbinolbase bildet weiße Nadeln (aus Äther), die sich in Äther, Benzol usw. farblos lösen (N., Ph.). Bei langsamem Erhitzen tritt bei 150° finolge beginnender Anhydrisierung Rotfärbung ein, die immer intensiver wird, bis die Substanz zwischen 159° und 162° schmilzt; schmilzt beim Erhitzen in einem auf 160° vorgewärmten Bade bei 167° bis 170° (N., Ph.). — Beim Kochen der Carbinolbase mit Glycerin entsteht glatt die Anhydrobase C₂₈H₂₁N₂ (S. 775); diese entsteht auch beim Fällen der wäßrig-essigsauren oder der alkoh.

Lösung eines Farbsalzes mit Kalilauge (N., Ph.). Beim Erhitzen der Farbsalze mit verd. Schwefelsäure tritt Spaltung in Michilersches Keton und Äthyl-a-naphthylamin ein (N., Ph.). Beim Acetylieren entsteht ein grüner Farbstoff (N., Bull. Soc. ind. Mulhouse 72, 232). Salzsaures Farbsalz, Viktoriablau R [C₂₈H₂₈N₃]Cl. Grüne Nadeln, ziemlich schwer löslich in Wasser (Noelting, Philipp, B. 41, 583). Absorptionsspektrum: Formánek, Zischw.

f. Farben- u. Textilchemie 1, 672.

Anhydro {bis [4-dimethylamino-phenyl] [4-šthylamino-naphthyl-(1)] carbinol}, Naphthochinon - (1.4) [bis (4-dimethylamino-phenyl) - methid] - šthylimid C₁₉H₃₁N₃ = [(CH₃)₂N·C₆H₄]₂C·C₁₀H₃: N·C₂H₅. B. Beim Erhitzen von Bis [4-dimethylamino-phenyl] [4-šthylamino-naphthyl-(1)] carbinol mit Glycerin oder bei der Einw. von Kalilauge auf die heiße Lösung von Viktoriablau R (s. o.) in wäßr. Essigäure öder in Allela (Norman Burken) E. 1282 584). Betherne Kratella (sun Sthon) E. 140 59 Alkohol (Norling, Philipp, B. 41, 583, 584). — Rotbraune Krystalle (aus Ather). F: 192,5°. Die Lösung in Äther ist intensiv orangegelb.

Bis - [4 - dimethylamino - phenyl] - [4 - āthylamino - naphthyl-(1)] - carbinol-methyl-äther $C_{30}H_{35}ON_3 = [(CH_3)_3N\cdot C_6H_4]_2C(C_{10}H_6\cdot NH\cdot C_2H_5)\cdot O\cdot CH_3$. B. Durch Einw. von Natriummethylat auf eine Lösung von Viktoriablau R in überschüssigem Methylalkohol unter Eiskühlung (N., Ph., B. 41, 584). — Farblose Nädelchen (aus Benzol und Ligroin). F: 178°. Sehr wenig löslich in Methylalkohol, Äther und Ligroin, leichter in Benzol und Toluol. — Wird durch verd. Säuren unter Rückbildung von Viktoriablau R verseift.

Bis-[4-dimethylamino-phenyl]-[4-äthylamino-naphthyl-(1)]-carbinol-äthyläther $C_{31}H_{87}ON_3 = [(CH_3)_2N \cdot C_6H_4]_2C(C_{10}H_6 \cdot NH \cdot C_2H_3) \cdot O \cdot C_2H_5$. B. Durch Erhitzen einer alkoh. Lösung von Viktoriablau R mit Natriumäthylatlösung am Rückflußkühler (N., Ph., B. 41, 585). — Krystalle (aus Ather). F: 153°.

Bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-carbinol, Carbinolbase des Viktoriablaus B C₃₂H₃₂ON₃ = [(CH₃)₂N·C₆H₄]₂C(C₁₆H₆·NH·C₆H₅)·OH. B. In Form von Farbsalzen durch Oxydation von Bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-methan (S. 334) (NOELTING, Bull. Soc. ind. Mulhouse 72, 232; B. 37, 1913), besser durch Oxydation des N-Nitrosoderivates des Bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-methans und Abspaltung der Nitrosogruppe (BAYER & Co., D. R. P. 66712; Frdl. 3, 134). Entsteht ferner in Form des salzsauren Farbsalzes (Viktoriablau B) bei der Kondensation von 44' Bis dimethylamino beneschbergen mit Phenyl a nashthylamin in Gegenwart von von 4.4'-Bis-dimethylamino-benzophenon mit Phenyl-a-naphthylamin in Gegenwart von Phosphoroxychlorid (Bad. Anilin u. Sodaf., D. R. P. 27789; Frdl. 1, 80; NATHANSOHN, P. MÜLLER, B. 22, 1889) oder bei der Kondensation von [4-Dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-keton (Syst. No. 1873) mit Dimethylanilin und Phosphoroxychlorid (Noe., Bull. Soc. ind. Mulhouse 72, 232; C. 1903 I, 87; B. 37, 1913). — Beim Erhitzen von Viktoriablau B für sich, mit Natronkalk oder mit Zinkstaub entstehen Dimethylanilin und Phenyla-naphthylamin (Na., P. M.). Beim Erhitzen mit konz. Salzsäure im geschlossenen Rohr auf 230—250° entstehen Methylchlorid, Dimethylanilin und [4-Amino-phenyl]-[4-anilino-naphthyl-(1)]-keton (Syst. No. 1873) (Na., P. M.). Einw. von Natronlauge auf Viktoriablau B: Pelet, Grand, C. 1907 H. 4500 C. 1907 II, 1529.

Farbsalze. Salzsaures Salz, Viktoriablau B [C₂₃H₂₅N₃]Cl. Kupfer- bis bronze-glänzende Blättchen (aus Benzol + Alkohol). Leicht löslich in heißem Wasser und Alkohol, weniger in Benzol, schwer in Ather (NATHANSOHN, P. MÜLLER, B. 22, 1889). Lichtabsorption im weinger in Denzol, schwer in Ather (NATHANSOHN, P. MULLER, B. 223, 1889). Lichtabsorption im sichtbaren Spektralgebiet: Lemoult, C. r. 131, 840; Formánek, Ztechr. f. Farben- u. Textilchemie 1, 672, im Ultraviolett: Krüss, Ph. Ch. 51, 285. — Palmitinsaures Salz. Dunkelblaues Pulver. F: 99°; Isalich in Alkohol mit blauer Farbe, Isalich in Chloroform, Aceton, Benzol und Ligroin (Gnehm, Röthell, Z. Ang. 11, 488). — Stearinsaures Salz. Metallglänzendes Pulver. F: 113°; Isalich in Benzol (G., R., Z. Ang. 11, 487, 501). — Pikrinsaures Salz [C₂₈H₂₈N₃]C, H₂O₇N₃. Dunkelblauer Niederschlag (Na., P. M.). — Chloroplatinat 2[C₂₈H₂₈N₃]C, + PtCl₄. Violette Nädelchen. Fast unlöslich in kaltem Alkohol, Äther und Benzol (Na., P. M.). Benzol (NA., P. M.).

Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-carbinol $C_{24}H_{35}ON_{9} = [(CH_{9})_{9}N \cdot C_{4}H_{4}]_{2}C(C_{10}H_{5} \cdot NH \cdot C_{4}H_{4} \cdot CH_{3}) \cdot OH$. B. In Form von Farbsalzen durch Oxydation des Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-methans (S. 334) (NOMLTING, Bull. Soc. and. Mulhouse 72, 233; B. 37, 1913), besser durch Oxydation des N-Nitrosoderivates des Bis-[4-dimethylamino-phenyl] (A - chl. dimethylamino-phenyl) (A) methans and Absoluting des des Bis-[4-dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-methans und Abspaltung der

¹⁾ Zusolge der nach dem Literatur-Schlußtermin der 4. Ausl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von NOELTING, SAAS, B. 46, 959, war das von NATHAMSOHN, MÜLLER aus Viktoriablau B mit Soda erhaltene, bei 95° schmelzende und für die Carbinolbase des Farbetoffes angesehene Produkt C22H23ON2 sehr unrein; nach NOELTING, SAAS läßt sich aus Viktoriablau B durch Alkali nur Anhydro-{bis-[4-dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]carbinol} C38H31N3 in dunkelvioletten Tafeln vom Schmelspunkt 247—249° isolieren.

Nitrosogruppe (BAYER & Co., D. R. P. 66712; Frdl. 3, 134), ferner bei der Kondensation von 4.4'-Bis-dimethylamino-benzophenon mit p-Tolyl-a-naphthylamin mittels Phosphoroxychlorids oder bei der Kondensation von [4-Dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-keton (Syst. No. 1873) mit Dimethylanilin mittels Phosphoroxychlorids (N., Bull. Soc. ind. Mulhouse 72, 233; C. 1903 I, 87; B. 37, 1913).

Salzsaures Farbsalz [C₂₄H₂₄N₃|Cl. Goldglänzende Krystalle. Schwer löslich in Wasser, leichter in Alkohol (N., Bull. Soc. ind. Mulhouse 72, 233; B. 37, 1913). Färbt grünstichie blau (Bayer & Co. D. R. P. 68742).

stichig blau (BAYER & Co., D. R. P. 66712).

Bis - [4 - dimethylamino - phenyl] - [4 - (carbāthoxymethyl - amino) - naphthyl - (1)] - carbinol $C_{31}H_{35}O_3N_3 = [(CH_2)_3N \cdot C_6H_4]_3C(C_{10}H_4 \cdot NH \cdot CH_2 \cdot CO_3 \cdot C_4H_5) \cdot OH$. B. Das Farbsalz $C_{31}H_{34}O_3N_3Cl$ entsteht bei der Kondensation von a-Naphthylaminoessigsäure-äthylester (Bd. XII, S. 1245) mit 4.4'-Bis-dimethylamino-benzophenon in Benzol in Gegenwart von

Phosphoroxychlorid (Mason, D. R. P. 128176; C. 1902 I, 507).
Salzsaures Farbsalz [C₃₁H₂₄O₄N₃]Cl. Glänzende Nädelchen. Schwer löslich in kaltem, löslich in heißem Wasser, leicht löslich in Alkohol und Essigsäure mit tiefblauer Farbe; ist

cin blauer Farbstoff.

Aminoderivate des Diphenyl-[4-oxy-naphthyl-(2)]-methans $C_{23}H_{12}O=$ $(C_{\bullet}H_{\bullet})_{\bullet}CH \cdot C_{10}H_{\bullet} \cdot OH.$

Bis - [4 - dimethylamino - phenyl] - [1 - amino - $(CH_3)_2N$. 4-oxy-naphthyl-(2)]-methan C₂₇H₂₅ON₃, s. nebenstehende Formel. B. Durch Behandeln von Bis-[4-dimethylamino-phenyl]-[1-benzolazo-4-oxy-naph-thyl-(2)]-methan (Syst. No. 2185) mit Zinkstaub in Eisessig (MÖHLAU, KEGEL, B. 88, 2864). - Farb-

$$CH_3)_3N \cdot \bigcirc -CH - \bigcirc \cdot N(CH_3)_3$$
 OH

lose Prismen (aus Essigester), die sich an feuchter Luft sofort bläulichrot färben. Schmilzt unscharf bei 109—110°. Leicht löslich in Benzol, Äther, Alkohol und Eisessig; die ersteren Lösungen färben sich durch Oxydation gelbrot, die Eisessiglösung bläulich. Unlöslich in Wasser und Alkalien, leicht in Mineralsäuren. Liefert durch kurzes Kochen mit Salzsaure Bis-[4-dimethylamino-phenyl]-[1.4-dioxy-naphthyl-(2)]-methan (S. 823).

O-Acetylderivat $C_{39}H_{31}O_3N_3=[(CH_3)_sN\cdot C_6H_4]_sCH\cdot C_{10}H_5(NH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Behandeln von Bis-[4-dimethylamino-phenyl]-[1-benzolazo-4-acetoxy-naphthyl-(2)]-methan (Syst. No. 2185) mit Zinkstaub in heißer verdünnter Essigsäure, neben Anllin (MÖHLAU, B. 41, 990). — Amorph. Farbt sich beim Erhitzen von 115° ab dunkler, sintert bei 131—132° und zersetzt sich bei höherem Erhitzen.

o) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-30}O$.

1. Aminoderivat des 4-0xy-tetraphenylmethans $C_{ab}H_{ab}O = (C_{a}H_{b})_{a}C \cdot C_{a}H_{a} \cdot OH \text{ (Bd. VI, 8. 731)}.$

4'.4"-Bis-[methyl-cyan-amino]-4-oxy-tetraphenylmethan $C_{33}H_{34}ON_4$, s. nebenstehende Formel. B. Bei der Einw. von Phenol auf 4.4'-Bis-[methyl-cyan-amino]-triphenylcarbinol (S. 747) in Eisessig-Schwefelsäure (v. Braun, Röver, B. 37, 643). — Weiß. F: 205°. Löslich in Alkalien, durch Säuren fällbar.

2. Aminoderivate der Monooxy-Verbindungen $C_{ne}H_{ne}O$.

1. Aminoderivate des a-Oxy-2-benzyl-triphenylmethans (2-Benzyl-triphenylcarbinols) $C_mH_{11}O=(C_eH_e)_LC(C_eH_e\cdot CH_1\cdot C_eH_e)\cdot OH$.

4'.4" - Bis - dimethylamino - 2 - [4 - dimethylamino - bensyl] - triphenylcarbinol C₃₉H₃₉ON₃₉, s. nebenstehende Formel. B. In Form des salzsauren Farbsalzes durch C(OH) 1-stdg. Erhitzen eines Gemisches von 14 g 4'-[Dimethylamino-lenzyl]-benzophenon (Syst. No. 1873), 25 g Dimethylamino-benzyl]-benzophenon (Syst. No. 1873), 25 g Dimethylamilin und 15 g Phosphoroxychlorid auf dem Wasserbade (Guyor, Pigner, C. r. 146, 1044; G., Haller, A. ch. [8] 19, 337). — Die Carbinolbese konnte in festem Zustande nicht erhalten werden. — Durch Reduktion mit Zink und Salzsäure entsteht 4'.4"-Bis-dimethylamino-2-[4-dimethylamino-benzyl]-triphenylmethan (S. 334).

Farbsalze. Die Farbsalze lösen sich in konz. Schwefelsäure mit orangeroter Farbe, die bald infolge Bildung von 2-Dimethylamino-9.9-bis-[4-dimethylamino-phenyl]-anthracendibydrid-(9.10) (S. 335) verschwindet; sie farben Wolle und gebeizte Baumwolle blau und sind gegen Alkalien beständig (G., P., C. r. 146, 1044; G., H., A. ch. [8] 19, 338, 340). — [C₃₂H₂₆N₃]NO₃ + NaNO₃. Metallisch reflektierende Blättchen. — [C₃₂H₂₆N₃]NO₃ + KNO₃. Goldkäterfarbene Prismen. Löslich ohne Zersetzung in absol. Alkohol. — [C₃₂H₃₆N₃]Cl + ZnCl. Goldkäferfarbene Nadeln.

4'-Dimethylamino - 4''-diäthylamino - 2-[4-dimethylamino - bensyl] - triphenylcarbinol $C_{24}H_4:ON_3 = (CH_3)_2N \cdot C_4H_4 \cdot CH_3 \cdot C_6H_4 \cdot C(OH)[C_6H_4 \cdot N(CH_3)_2] \cdot C_6H_4 \cdot N(C_4H_5)_3$. B. In Form des salzsauren Farbsalzes bei der Kondensation von Diäthylanilin mit 4'-[Dimethylamino]-2-[4-dimethylamino-benzyl]-benzophenon (Syst. No. 1873) oder von Dimethylanilin mit 4'-Diäthylamino-2-[4-dimethylamino-benzyl]-benzophenon (Syst. No. 1873) in Gegenwart von Phosphoroxychlorid (Guyot, Pignet, C. r. 148, 1045; G., Haller, A. ch. [8] 19, 338).—
Reduktion mit Zink und Salzsäure liefert 4'-Dimethylamino-4''-diäthylamino-2-[4-(dimethylamino)-benzyl]-triphenylmethan (S. 334).

Farbsalze. Die Farbsalze färben Wolle und gebeizte Baumwolle blau und sind gegen Alkalien beständig (G., H., A. ch. [8] 19, 338). — $[C_{24}H_{40}N_3]NO_3 + NaNO_3$. Goldkäferfarbige Blättchen (G., P., C. r. 146, 1045; G., H., A. ch. [8] 19, 338). — $[C_{24}H_{40}N_3]NO_3 + KNO_3$. Goldkäferfarbige Blättchen. — $[C_{24}H_{40}N_3]Cl + ZnCl_3$. Goldkäferfarbige Nadeln.

4'.4" - Bis - diäthylamino - 2 - [4 - dimethylamino - bensyl] - triphenylcarbinol 4'.4"- Bis - diāthylamino - 2 - [4 - dimethylamino - bensyl] - triphenyloardinoi C₃₈H₄₈ON₃ = [(C₃H₃)₄N·C₄H₄]₅C[C₄H₄·CH₃·CH₃·C₄H₄·N(CH₃)₂]·OH. B. In Form des salzsauren Farbsalzes bei der Kondensation von Diāthylanilin mit 4'-Diāthylamino-2-[4-(dimethylamino)-benzyl]-benzophenon (Syst. No. 1873) in Gegenwart von Phosphoroxychlorid (Guvor, Pignet, C. r. 143, 1045; G., Halles, A. ch. [8] 19, 338). — Reduktion mit Zink und Salzsäure liefert 4'.4"-Bis-diāthylamino-2-[4-dimethylamino-benzyl]-triphenylmethan (S. 334). Farbsalze. Die Farbsalze färben Wolle und gebeizte Baumwolle blau und sind gegen Alkalien beständig (G., H., A. ch. [8] 19, 338). — [C₃₆H₄₄N₃]NO₃ + NaNO₃. Goldkäferfarbene Nadeln (G., P., C. r. 148, 1045; G., H., A. ch. [8] 19, 338). — [C₃₆H₄₄N₃]NO₃ + NaNO₃.

KNO₃. Goldkäferfarbene Nadeln.

2. Aminoderivat des $2 - fa - Oxy - benzylj - triphenylmethans <math>C_{10}H_{11}O = (C_0H_5)_2CH \cdot C_0H_4 \cdot CH(OH) \cdot C_0H_4$.

4'.4''. Bis-dimethylamino - 2 - [4 - dimethylamino - α -oxy-bensyl]-triphenylmethan $C_{33}H_{37}ON_3 = [(CH_3)_8N \cdot C_6H_4]_3CH \cdot C_6H_4 \cdot CH(OH) \cdot C_6H_4 \cdot N(CH_2)_3$. B. Bei kurzem Erwärmen von 1.2-Bis-[4-dimethylamino- α -oxy-benzyl] - benzol (S. 822) mit Dimethylamilin in Gegenwart von verd. Salzsäure auf dem Wasserbade (GUYOT, HALLER, A. ch. [8] 19, 352). — Weiße Nadeln (aus Benzol + Alkohol). F: 147°. Nahezu farblos löslich in verd. Mineralsäuren.

p) Aminoderivate einer Monooxy-Verbindung $C_n H_{2n-34} O$.

[4 - Dimethylamino - phenyl] - bis - [4 - methylamino - naphthyl - (1)] - carbinol $C_{ij}H_{ij}ON_{ij}$, s. nebenstehende Formel. B. In Form eines Farbsalzes bei der Oxydation von [4-(Dimethyl-N(CH₃), amino)-phenyl]-bis-[4-methylamino-naphthyl-(1)]-methan (S. 335) oder bei der Kondensation von [4-Dimethylamino-phenyl]-[4-methylamino-nanhthyl-(1)]-keton (Syst. No. 1873) mit Methylthylamino-naphthyl-(1)]-keton (Syst. No. 1873) mit Methyla-a-naphthylamin in Gegenwart von Phosphoroxychlorid (Noel-ting, Bull. Soc. ind. Mulhouse 72, 234; C. 1903 I, 87; B. 37, 1913). — Das salzsaure Farbsalz ist ein blaues, in Wasser OH NH·CH, CH, NH ziemlich leicht lösliches Pulver; es geht bei der Behandlung mit Acetanhydrid in eisessig-saurer Lösung in einen grünen Farbstoff über, indem eine der sekundaren Aminogruppen aoetyliert wird, bei Behandlung mit Acetanhydrid in Gegenwart von etwas Schwefelsäure entsteht unter Acetylierung beider sekundärer Aminogruppen ein roter Farbstoff; analog bildet sich mit 1 Mol.-Gew. Nitrit in saurer Lösung ein grüner, mit 2 Mol.-Gew. Nitrit ein roter Farbstoff. Färbt blauviolett.

[4-Dimethylamino-phenyl]-bis-[4-āthylamino-naphthyl-(1)]-carbinol $C_{33}H_{35}ON_3 = (C_3H_5\cdot NH\cdot C_{16}H_6)_0C[C_4H_4\cdot N(CH_8)_9]\cdot OH.$ B. In Form eines Farbsalzes bei der Oxydation von [4-Dimethylamino-phenyl]-bis-[4-āthylamino-naphthyl-(1)]-methan (S. 335) oder beim Erwärmen von [4-Dimethylamino-phenyl]-[4-āthylamino-naphthyl-(1)]-keton (Syst. No. 1873) mit Athyl-a-naphthylamin in Gegenwart von Phosphoroxychlorid auf dem Wasserbade (N., Bull. Soc. ind. Mulkoues 72, 234; C. 1903 I, 87; B. 37, 1914, 1918).

Salzsaures Farbsalz [C₂₃H₂₄N₃]Cl. Grünblaue, metallglänzende Nadeh. (aus salzsäurehaltigem Alkohol). Fast unlöslich in Wasser, löslich in Alkohol und Eisessig; verhält sich

bei der Acetylierung und Nitrosierung wie die vorhergehende Verbindung; färbt Wolle, Seide und tannierte Baumwolle blau (N.).

[4-Dimethylamino-phenyl]-bis-[4-anilino-naphthyl-(1)]-carbinol C_{4i}H₃₅ON₃ = (C₅H₅·NH·C₁₉H₆)_cC[C₆H₆·N(CH₃)₂]·OH. B. In Form eines Farbsalzes bei der Oxydation von [4-Dimethylamino-phenyl]-bis-[4-anilino-naphthyl-(1)]-methan (S. 335) oder beim Erwärmen von [4-Dimethylamino-phenyl]-[4-anilino-naphthyl-(1)]-keton (Syst. No. 1873) mit Phenyl-a-naphthylamin in Gegenwart von Phosphoroxychlorid auf dem Wasserbade (N., Bull. Soc. ind. Mulhouse 73, 235; C. 1903 I, 87; B. 87, 1914, 1918).

Salzsaures Farbsalz [C₄H₂₆N₃]Cl. Grünblaue metallglänzende Nadeln (aus salzsäurehaltigem Alkohol). Fast unlöslich in Wasser, löslich in Alkohol und Eisessig; färbt Seide, Wolle und tannierte Baumwelle mit tiefblauer Nuance (N.).

Wolle und tannierte Baumwolle mit tiefblauer Nuance (N.).

[4-Dimethylamino-phenyl]-bis-[4-p-toluidino-naphthyl-(1)]-carbinol $C_{48}H_{49}ON_3 = (CH_3 \cdot C_6H_4 \cdot NH \cdot C_{16}H_4)_2C[C_6H_4 \cdot N(CH_3)_3] \cdot OH$. B. In Form eines Farbsalzes bei der Oxydation von [4-Dimethylamino-phenyl]-bis-[4-p-toluidino-naphthyl-(1)]-methan (8. 335) oder beim Erhitzen von [4-Dimethylamino-phenyl]-[4-p-toluidino-naphthyl-(1)]-keton (Syst. No. 1873) mit p-Tolyl-a-naphthylamin in Gegenwart von Phosphoroxyohlorid auf dem Wasserbade (No., Bull. Soc. ind. Mulkouse 72, 235; C. 1903 I, 87; B. 87, 1914, 1918).

Salzsaures Farbsalz [C₄₂H₂₆N₃]Cl. Dunkelblaue, metallglänzende Nadeln. Unlöslich in Wasser, ziemlich schwer löslich in Alkohol, leicht in Eisessig; färbt Wolle, Seide und tannierte

Baumwolle dunkelblau (N.).

q) Aminoderivat einer Monooxy-Verbindung $C_n H_{2n-38} O$.

4-Methoxy-1-methyl-8.5-bis-[4.4'bis - dimethylamino - benzhydryl] - benzol C₄₂H₅₀ON₄, s. nebenstehende Formel. В. Beim Erwarmen von Methoxyuvitinaldehyd [(CH₂)₂N·C₄H₄]₂CH·(Bd. VIII, S. 290) mit Dimethylanilin in ·CH[C,H,·N(CH,),], Gegenwart von Zinkehlorid auf dem Wasserbade (Ullmann, Brittner, B. 42, 2547). — Nadeln (aus Benzol + Ligroin). Beginnt gegen 235° zu sintern und schmilzt bei 252°. Leicht löslich in Eisessig und Benzol, sehr wenig in Alkohol und Ligroin selbst in der Warme. — Liefert bei der Oxydation einen grünen Farbstoff.

r) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-40} O$.

1. Aminoderivat des $\alpha.\alpha.\alpha$ -Trinaphthylcarbinols $C_{31}H_{22}O = (C_{10}H_{2})_3C \cdot OH$ (Bd. VI, S. 737).

Tris-[4-8thylamino-naphthyl-(1)]-carbinol $C_{37}H_{37}ON_3 = (C_3H_5 \cdot NH \cdot C_{10}H_6)_3C \cdot OH$. Entsteht in Form von Farbealzen bei der Oxydation von Tris-[4-8thylamino-naphthyl-(1)]-carbinol $C_{37}H_{37}ON_3 = (C_3H_5 \cdot NH \cdot C_{10}H_6)_3C \cdot OH$. thyl-(1)] methan (S. 336) mit Chloranil in Eisessig oder bei 6-stdg. Erhitzen von 45 g Athyla-naphthylamin, 11 g Tetrachlorkohlenstoff und 10 g Aluminiumchlorid am Rückflußkühler (Noelfing, Bull. Soc. ind. Mulhouse 72, 235; C. 1903 I, 87; B. 37, 1914, 1917).

Salzsaures Farbsalz [C₂₇H₃₆N₃]Cl. Blaue metallglänzende Nadeln. Unlöslich in Wasser, sohwer löslich in Alkohol, leichter in Eisessig; färbt grünstichig blau; beim Behandeln mit

Acetanhydrid entsteht je nach den Bedingungen unter Acetylierung einer oder zweier Aminogruppen ein grüner bezw. roter Farbstoff; analog verläuft die Nitrosierung unter Bildung eines grünen bezw. roten Farbstoffes (N.).

2. Aminoderivat des 10-0xy-9.9.10-triphenyl-anthracen-dihydrids-(9.10) $C_{ab}H_{ad}O = (C_{e}H_{e})_{a}C_{1d}H_{e} \cdot OH \text{ (Bd. VI, S. 738)}.$

10-Oxy - 9.10 - diphenyl-9-[4-dimethylamino-phenyl]-anthracen-dihydrid-(9.10), 9.10-Diphenyl-10-[4-dimethylamino-phenyl]-9.10-dihydro-anthranol-(9) CaH a ON C_0H_4 $C(C_0H_4)$ $[C_0H_4]$ $N(CH_9)_9$ C_0H_4 . B. Bei der Einw. von konz. Schwefelsäure auf

1.1.3 - Triphenyl - 3 - [4 - dimethylamino-phenyl] - phthalan $C_eH_a = C(C_eH_a)[C_aH_4 \cdot N(CH_a)_e] = C(C_eH_a)[C_aH_4 \cdot N(CH_a)_e]$ (Syst. No. 2640) in siedendem Benzol (Guyor, Catel, C. r. 140, 1462; Bl. [3] 35, 566). — Weißes krystallinisches Pulver. F: 206°. — Liefert beim Erhitzen mit einem geringen Überschuß von Dimethylanilin in essignaurer Lösung ein Gemisch schuß von Dimethylanilin in essigsaurer Lösung ein Gemisch von zwei diastereoisomeren 9.10-Diphenyl-9.10-bis-[4-dimethylamino-phenyl]-anthracen-dihydriden-(9.10) (8, 293).

2. Aminoderivate der Dioxy-Verbindungen.

a) Aminoderivat einer Dioxy-Verbindung $C_n H_{2n-4} O_3$.

2.4 - Bis - bensamino - cyclobutadien - (1.3) - diol - (1.3) $C_{18}H_{14}O_4N_2 = C_6H_5 \cdot CO \cdot NH \cdot C \cdot C_6OH_5 \cdot CO \cdot C_6H_5$. Eine Verbindung, der vielleicht diese Formel zukommt, s. Bd. IX, S. 230.

b) Aminoderivate der Dioxy-Verbindungen C_nH_{2n-5}O₂.

1. Aminoderivate der Dioxy-Verbindungen $C_eH_eO_2$.

- 1. Aminoderivate des 1.2 Dioxy benzols (Brenzcatechins) $C_6H_6O_2=C_6H_4(OH)_8$ (Bd. VI, S. 759). Vgl. such No. 4 suf S. 793.
- 3 Amino brenzcatechin 2 methyläther¹), Aminoguajacol von OH Meldola, Streatfeild C,H₂O₂N, s. nebenstehende Formel. B. Durch Reduktion des Benzoats des 3-Nitro-brenzcatechin-2-methyläthers (in Bd. IX, S. 131 als Benzoat des 3(?)-Nitro-brenzcatechin-1-methyläthers beschrieben) mit Zinn vnd Salssäure (Meldola, Streatfeild, Soc. 73, 690). Unbeständig. C,H₂O₂N + HCl. Nadeln.
- 8-Acetamino-brenzcatechin-2-methyläther 1) $C_0H_{11}O_0N=CH_0\cdot CO\cdot NH\cdot C_0H_0(OH)\cdot O\cdot CH_1$. B. Beim Erhitzen von salzsaurem 3-Amino-brenzcatechin-2-methyläther (s. o.) mit Natriumacetat und Essigsäureanhydrid (Meldola, Streatfeild, Soc. 78, 690). Nadeln mit 1 H_2O (aus Wasser). F: 122—123° (Zers.).
- 5 Nitro 3 amino brenzcatechin 1 methyläther, Nitroaminoguajacol vom Schmelspunkt 182° $C_7H_8O_4N_9=H_8N\cdot C_6H_8(NO_9)(OH)\cdot O\cdot CH_8$. B. Beim Kochen von 3.5-Dinitro-brenzcatechin-1-methyläther (Bd. VI, S. 791) mit Schwefelammonium (Meldola, Woolcott, Wray, Soc. 69, 1331). Braune Nadeln (aus Wasser). F: 182° (Zers.).
- 5-Nitro-3-acetamino-brenzcatechin-1-methyläther $C_9H_{10}O_5N_3=CH_3\cdot CO\cdot NH\cdot C_9H_9(NO_2)(OH)\cdot O\cdot CH_3$. B. Aus 5-Nitro-3-amino-brenzcatechin-1-methyläther (s. o.) mit Eisessig und Essigsäureanhydrid (M., Wo., Wr., Soc. 69, 1331). Nadeln mit 1 H_3O (aus Wasser). F: $224-226^\circ$ (Zers.).
- 5-Nitro-3-acetamino-brenzcatechin-1-methyläther-2-acetat $C_{11}H_{12}O_8N_8 = CH_3 \cdot CO \cdot NH \cdot C_8H_8(NO_9)(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. Beim Kochen von 5-Nitro-3-acetamino-brenzcatechin-1-methyläther (s. o.) mit Essigsäureanhydrid und Natriumacetat (M., Wo., We., Soc. 69, 1331). Nadeln (aus Wasser). Zersetzt sich gegen 204°.
- 4-Amino-1.2-dioxy-bensol, 4-Amino-brenscatechin C₆H,O₂N, s. nebenstehende Formel. B. Aus 4-Nitro-brenscatechin (Bd. VI, S. 788) durch Reduktion mit Zinn und Salzsäure (Benedier, B. 11, 363). Das freie Aminobrenscatechin färbt sich an der Luft sofort dunkelviolett. C₂H₂O₂N + HCl. Nadeln.
- 4-Amino-brenscatechin-2-methyläther, Aminoguajacol von der Chem. Fabrik Schering und von Rupe C₁H₂O₂N = H₂N·C₂H₃(OH)·O·CH₃. B. Bei der Reduktion des durch Kombination von diazotierter Sulfanilsäure (Syst. No. 2202) und Guajacol entstehenden Azofarbstoffes mit Zinn und Salzsäure (Rupe, B. 30, 2447). Durch Reduktion von 4-Nitroso-brenzcatechin-2-methyläther (2-Methoxy-chinonoxim-(4), Bd. VIII, S. 235) (R., B. 30, 2447; Pfob, M. 18, 474) oder von 4-Nitro-brenzcatechin-2-methyläther (Bd. VI, S. 788) (Chem. Fabr. Schering, D. R. P. 76771; Frdl. 4, 125). Durch Reduktion von 1 Mol.-Gew. 4-Oxy-3-methoxy-azobenzol (Syst. No. 2126) mit 2 Mol.-Gew. Phenylhydraxin bei 115° bis 120° (Mameli, Pinna, C. 1907 II, 2044). Prismen (aus Wasser). F: '176—177° (Zers.) (R.), 178—180° (M., Pl.), 184° (Zers.) (Ch. F. Sch.). Ziemlich schwer löslich in kaltem Alkoholund Wasser, unlöslich in Benzol (R.) und Äther (M., Pl.). Wird an der Luft rasch violett oder braun (R.). Eisenchlorid färbt die alkoh. Lösung schmutzig braunrot (R.). C.H., O.N + HCl. Hellgrüng Platten (aus Salzsäure). Monoklin prismatisch (Beckenkamp, Thesmar,

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von Jona, R. A. L. [5] 21 II, 207, und von Oxford, Soc. 1926, 2007.

- B. 30, 2448; vgl. Groth, Ch. Kr. 4, 190). F: 242° (Ch. F. Sch.). Gibt auf Zusatz von verdünnter Alkalilösung eine intensive violette Farbenreaktion (Pr.).
- 4-Amino-brenscatechin-dimethyläther, 4-Amino-veratrol $C_pH_{11}O_pN=H_pN\cdot C_eH_p(O\cdot CH_2)_2$. B. Aus 4-Nitro-veratrol (Bd. VI, 8. 789) (Heinisch, M. 15, 232; Moureu, Bl. [3] 15, 647) oder 6-Nitro-veratrumsäure (Bd. X, 8. 402) (H., M. 15, 230) durch Reduktion mit salzsaurem Zinnchlorür. Entsteht neben anderen Körpern bei der Reduktion von 3.4-Dimethoxy-azobenzol (Syst. No. 2126) mit Zinnchlorür und Salzsäure (Jacobson, Jaenicke, F. Meyer, B. 29, 2689). F: 85—86° (Mou). Kpg: 174—176° (Mou). Beim Austausch von NH2 gegen CN entsteht Veratrumsäure-nitril (Bd. X, S. 398) (Mou). Die salzsaure Lösung wird durch Eisenchlorid erst rotviolett, dann blau gefärbt; Kaliumdichromat färbt die schwefelsaure Lösung erst blau, dann rotbraun (Jac., Jae., F. Mey). $C_pH_{11}O_pN$ + HCl (H.). $2C_pH_{11}O_pN$ + 2 HCl + PtCl4. Gelbe Krystalle. F: 208° (H.), 220° (Zers.) (Mou).
- 4-Acetamino brenscatechin 2 methyläther $C_bH_{11}O_2N=CH_2\cdot CO\cdot NH\cdot C_bH_3(OH)\cdot O\cdot CH_3$. B. Aus 4-Acetamino-brenzcatechin-2-methyläther-1-acetat (s. u.) durch Kochen mit Natriumcarbonat (Fighter, Schwab, B. 39, 3340). Aus 3'-Methoxy-4'-acetoxy-2-methylazobenzol (Syst. No. 2126) durch Reduktion mit Phenylhydrazin (Colombano, Leonardi, R. A. L. [5] 18 II, 648; G. 37 II, 471). Krystalle (aus Wasser). F: 118° (F., Sch.), 118° bis 122° (C., L.).
- 4-Acetamino-brenzcatechin-dimethyläther, 4-Acetamino-veratrol $C_{10}H_{12}O_3N=CH_3\cdot CO\cdot NH\cdot C_eH_3(O\cdot CH_3)_2$. B. Aus 4-Amino-veratrol durch Acetylierung (Jacobson, Jaenicke, F. Meyer, B. 29, 2690). Blätter (aus Benzol). F: 132,5—133°.
- 4-Acetamino-brenzcatechin-2-methyläther-1-äthyläther $C_{11}H_{15}O_{3}N=CH_{3}\cdot CO\cdot NH\cdot C_{4}H_{3}(O\cdot CH_{3})\cdot O\cdot C_{5}H_{5}$. B. Aus 4-Nitro-brenzcatechin-2-methyläther-1-äthyläther (Bd. VI, S. 789) durch Reduktion und darsuf folgende Acetylierung (Freyss, C. 1901 I, 738). F: 145—146°.
- 4 Acetamino brenzcatechin 1 methyläther 2 äthyläther , ,, β Acetamino brenzcatechinmethyläthyläther " $C_{11}H_{15}O_3N = CH_2 \cdot CO \cdot NH \cdot C_6H_3(O \cdot CH_2) \cdot O \cdot C_3H_5$. B. Durch Kochen von 4 Diacetylamino brenzcatechin 1 methyläther 2 äthyläther (s. u.) mit Wasser in Gegenwart von Calciumcarbonat (Wisinger, M. 21, 1014). Blättchen (aus Wasser). F: 142—143°.
- 4-Acetamino-brenzcatechin-diäthyläther $C_{12}H_{17}O_3N = CH_3 \cdot CO \cdot NH \cdot C_6H_3(O \cdot C_9H_5)_2$. B. Durch Kochen von 4-Diacetylamino-brenzcatechin-diäthyläther (s. u.) mit Wasser in Gegenwart von Calciumcarbonat (Wisinger, M. 21, 1015). — F: 125—126°.
- 4-Acetamino-brenzcatechin-2-methyläther-1-acetat $C_{11}H_{12}O_4N=CH_3\cdot CO\cdot NH\cdot C_4H_3(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Aus 4-Amino-brenzcatechin-2-methyläther (8. 779) durch Acetylieren (Fighter, Schwar, B. 39, 3339). Flitter (aus Wasser). F: 149°. Liefert beim Eintragen in kalte konzentrierte Salpetersäure 3-Nitro-4-acetamino-brenzcatechin-2-methyläther-1-acetat (S. 781).
- 4-Diacetylamino-brenzcatechin-1-methyläther-2-äthyläther, " β -Diacetylaminobrenzcatechinmethyläthyläther" $C_{13}H_{17}O_4N=(CH_3\cdot CO)_2N\cdot C_6H_3(O\cdot CH_3)\cdot O\cdot C_2H_6$. B. Man reduziert 4-Nitro-brenzcatechin-1-methyläther-2-äthyläther (Bd. VI, S. 789) mit Zinn und Salzsäure zu dem entsprechenden Amin und erwärmt das salzsaure Salz der Base mit überschüssigem Essigsäureanhydrid (WISINGER, M. 21, 1010). Krystalle (aus Benzol). F: 135—137°.
- 4-Diacetylamino-brenzcatechin-diäthyläther $C_{14}H_{19}O_4N=(CH_3\cdot CO)_2N\cdot C_4H_3(O\cdot C_2H_3)_2$. B. Durch Behandlung des Hydrochlorids des entsprechenden Amins, das aus 4-Nitro-brenzcatechin-diāthyläther (Bd. VI, S. 789) durch Reduktion gewonnen wird, mit siedendem überschüssigem Essigsäureanhydrid (WISINGER, M. 21, 1014). F: 120—121°.
- 4 Diacetylamino brenscatechin 2 methyläther 1 acetat $C_{12}H_{11}O_5N = (CH_3 \cdot CO)_2N \cdot C_2H_3(O \cdot CH_3) \cdot O \cdot CO \cdot CH_3$. B. Aus dem Hydrochlorid des 4-Amno-brenzcatechin-2-methyläthers (S. 779) und Essigsäureanhydrid bei 130—140° (Prob, M. 18, 475). Blättchen. F: 101°. Leicht löslich in Alkohol, schwer in Ather.
- 4-Benzamino-brenzcatechin-dimethyläther, 4-Benzamino-veratrol $C_{15}H_{16}O_2N=$ $C_6H_5\cdot CO\cdot NH\cdot C_6H_5(O\cdot CH_3)_2$. B. Aus 4-Amino-brenzcatechin-dimethyläther in Ather und Benzoylchlorid (Moureu, Bl. [3] 15, 649). Nadeln (aus Alkohol). F: 177°.
- 3-Nitro-4-amino-brenzcatechin-2-methyläther, Nitroaminoguajacol vom Schmelspunkt 169—171° $C_7H_3O_3N_3=H_2N\cdot C_8H_8(NO_3)(OH)\cdot O\cdot CH_3$. B. Aus 3-Nitro-4-acetamino-brenzcatechin-2-methyläther-1-acetat (S. 781) durch Kochen mit alkoh. Kali (Schwab, Dissertation [Basel 1904], S. 43). Hellrote Nädelchen (aus Benzol oder Wasser). F: 169—171° (Fighter, Schwab, B. 39, 3340). Durch Reduktion mit Zinnchlorür und Salssaure entsteht der leicht oxydable 3.4-Diamino-brenzcatechin-2-methyläther (S. 781) (F., Sch.).

3-Nitro-4-acetamino-brenzcatechin-2-methyläther $C_9H_{10}O_5N_4=CH_3\cdot CO\cdot NH\cdot C_9H_9(NO_2)(OH)\cdot O\cdot CH_3$. B. Aus 3-Nitro-4-acetamino-brenzcatechin-2-methyläther-1-acetat (s. u.) durch Aufkochen mit Sodalösung (Schwab, Dissertation [Basel 1904], S. 41). — Orangerote Säulen (aus Alkohol). F: 223° (Fighter, Schwab, B. 39, 3340).

3-Nitro-4-acetamino-brenzcatechin-2-methyläther-1-acetat $C_{11}H_{12}O_6N_9 = CH_3$ · $CO\cdot NH\cdot C_6H_9(NO_9)(O\cdot CH_2)\cdot O\cdot CO\cdot CH_3$. B. Beim Eintragen von 4-Acetamino-brenzcatechin-2-methyläther-1-acetat (S. 780) in eiskalte konzentrierte Salpetersäure (Fichter, Schwab, B. 39, 3340). — Gelbe Tafeln oder Nadeln (aus Wasser oder Alkohol). F: 158°.

3-Nitro-4-bensamino-brenzcatechin-2-methyläther-1-benzoat $C_{11}H_{16}O_{6}N_{2}=C_{6}H_{5}$: $CO\cdot NH\cdot C_{6}H_{1}(NO_{2})(O\cdot CH_{3})\cdot O\cdot CO\cdot C_{6}H_{5}$. B. Beim Erhitzen von 3-Nitro-4-amino-brenzcatechin 2-methyläther mit Benzoesäureanhydrid (SCHWAB, Dissertation [Basel 1904], S. 44). — Gelbe Nadeln (aus Alkohol). F: 177° (FIGHTER, SCHWAB, B. 39, 3340).

Gelbe Nadeln (aus Alkohol). F: 177° (FIGHTER, SCHWAB, B. 39, 3340).

6-Nitro-4-amino-brenscatechin¹) C_eH_eO₄N₂ = H₂N·C_eH₂(NO₂)(OH)₂. B. Aus 3.5-Dinitro-brenscatechin (Bd. VI, S. 791) und Schwefelammonium (Meldola, Woolcott, Wray, Soc. 69, 1334). — Ockerfarbene Nadeln (aus Wasser). Zersetzt sich bei 220—221°. Äußerst leicht löslich in Alkohol.

3.5 - Dinitro - 4 - anilino - brenscatechin - dimethyläther, 3.5 - Dinitro - 4 - anilino-veratrol, 2.6 - Dinitro - 3.4 - dimethoxy - diphenylamin $C_{14}H_{12}O_{6}N_{3} = C_{6}H_{5} \cdot NH \cdot C_{6}H(NO_{2})_{2}(O \cdot CH_{3})_{2}$. B. Aus 3.4.5-Trinitro-veratrol (Bd. VI, S. 792) mit Anilin in alkoh. Lösung (Blanksma, R. 24, 318). — Tiefrote Krystalle. F: 136°.

- x-Acetamino-brenzcatechin-methyläthyläther, "a-Acetamino brenzcatechin-methyläthyläther" $C_{11}H_{15}O_2N=CH_2\cdot CO\cdot NH\cdot C_6H_6(O\cdot CH_2)\cdot O\cdot C_2H_5$. B. Durch Kochen von x-Diacetylamino-brenzcatechin-methyläthyläther (s. u.) mit Wasser in Gegenwart von etwas Calciumcarbonat (Wisinger, M. 21, 1012). Blättchen (aus Wasser). F: 136—138°.
- x Diacetylamino brenscatechin methyläthyläther, "a-Diacetylamino brenscatechinmethyläthyläther" $C_{12}H_{17}O_4N = (CH_2 \cdot CO)_4N \cdot C_6H_3(O \cdot CH_3) \cdot O \cdot C_2H_5$. B. Man reduziert x-Nitro-brenscatechin-methyläthyläther (Bd. VI, S. 789) mit Zinn und Salzsäure zu dem entsprechenden Amin und erwärmt das salzsaure Salz der Base mit überschüssigem Essigsäureanhydrid (WISINGEB, M. 21, 1010, 1011, 1012). F: 117—119°.
- x-Amino-brenscatechin-methyläther-O-carbonsäure-äthylester, [2-Methoxy-x-amino-phenyl]-kohlensäure-äthylester $C_{10}H_{13}O_4N = H_2N \cdot C_6H_3(O \cdot CH_3) \cdot O \cdot CO_2 \cdot C_3H_5$. B. Durch Reduktion des x-Nitro-brenscatechin-methyläther-O-carbonsäure-äthylesters (Bd. VI, S. 789) mit Zinnchlorür und Salzsäure (A. Lumière, L. Lumière, Perrin, Bl. [3] 83, 711). Schwach gelbliche Krystalle. F: 69—70°.
- x-Acetamino-brenzcatechin-methyläther-O-carbonsäure-äthylester, [2-Methoxy-x-acetamino-phenyl]-kohlensäure-äthylester $C_{12}H_{18}O_5N=CH_3\cdot CO\cdot NH\cdot C_6H_3(O\cdot CH_3)\cdot O\cdot CO_2\cdot C_2H_3$. F: 118° (A. Lu., L. Lu., P., Bl. [3] 38, 711).
- x-Ureido-brenscatechin-methyläther-O-carbonsäure-äthylester, [2-Methoxy-x-ureido-phenyl]-kohlensäure-äthylester $C_{11}H_{14}O_5N_3=H_4N\cdot \mathrm{CO}\cdot \mathrm{NH}\cdot \mathrm{C_6}H_3(\mathrm{O}\cdot \mathrm{CH_3})\cdot \mathrm{O}\cdot \mathrm{CO_2}\cdot \mathrm{C_2}H_5$. F: 161—162° (A. Lu., L. Lu., P., Bl. [3] 38, 712).
- x-Amino-brenzcatechin-methyläther-O-carbonsäure-diäthylamid, [2-Methoxy-x-amino-phenyl]-kohlensäure-diäthylamid $C_{12}H_{18}O_2N_8=H_2N\cdot C_4H_3(O\cdot CH_3)\cdot O\cdot CO\cdot N(C_2H_3)_2$. B. Durch Reduktion der entsprechenden Nitroverbindung (Bd. VI, S. 789) mit Zinnchlorür und Salzsäure (A. Lu., L. Lu., P., Bl. [3] 38, 713). Sirupöse Flüssigkeit.
- x-Acetamino-brenzcatechin-methyläther-O-carbonsäure-diäthylamid, [2-Methoxy-x-acetamino-phenyl]-kohlensäure-diäthylamid $C_{14}H_{20}O_4N_2=CH_3\cdot CO\cdot NH\cdot C_0H_3(O\cdot CH_2)\cdot O\cdot CO\cdot N(C_2H_3)_2$. B. Aus x-Amino-brenzcatechin-methyläther-O-carbonsäure-diäthylamid durch Acetylierung (A. Lu., L. Lu., P., Bl. [3] 88, 713). F: 122—123°.
- x-Ureido-brenzcatechin-methyläther-O-carbonsäure-diäthylamid, [3-Methoxyx-ureido-phenyl]-kohlensäure-diäthylamid $C_{13}H_{19}O_4N_3=H_3N\cdot CO\cdot NH\cdot C_4H_3(O\cdot CH_3)\cdot O\cdot CO\cdot N(C_3H_3)_2$. F: 170—171° (A. Lu., L. Lu., P., Bl. [3] 38, 713).
- 3.4-Diamino-brenzcatechin-2-methyläther, Diaminoguajacol von Fichter, Schwab C₇H₁₀O₈N₂, s. nebenstehende Formel. B. Durch Reduktion von 3-Nitro-4-amino- oder 3-Nitro-4-acetamino-brenzcatechin-2-methyläther (S. 780 und oben) mit Zinnehlorür und Salzsäure (Fighter, Schwab, B. 89, 3340).

 Nur in Form des leicht oxydablen Hydrochlorids erhalten. Wird Luft in die NH₂

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Heller, Lindher, Georgi, B. 56, 1869.

782

ammoniakalisch gemachte wäßr. Lösung des Hydrochlorids geleitet, so entsteht 6.7-Diamino-2-oxy-1.8-dimethoxy-phenszin (Formel I) (Syst. No. 3773a). Behandelt man das Hydrochlorid

in Alkohol bei Gegenwart von Natriumacetat mit Benzil, so entsteht 6-Oxy-5-methoxy-2.3-diphenyl-chinoxalin (Formel II) (Syst. No. 3543).

- 3.5 Diamino 1.2 dioxy bensol, 3.5 Diamino brenscatechin $C_0H_0O_2N_3$, s. nebenstehende Formel. B. Durch Reduktion des 3.5-Dinitrobrenscatechins (Bd. VI, S. 791) oder besser seines Diacetats mit salzsaurem Zinnchlorid (NIETZKI, MOLL, B. 26, 2184). Geht, aus dem Hydrochlorid $C_0H_0O_2N_3 + 2HCl$ (über Schwefelsaure).
- 3.5 Diamino brenzcatechin 1 methyläther, Diaminoguaiacol von Herzig $C_7H_{10}O_2N_2=(H_2N)_2C_2H_2(OH)\cdot O\cdot CH_2$. B. Beim Behandeln von 3.5-Dinitro-brenzcatechin-1-methyläther (Bd. VI, S. 791) mit Zinn und Salzsäure (Herzig, M. 3, 827). Das freie Diamin ist äußerst unbeständig. Die wäßrige Lösung des salzsauren Salzes färbt sich an der Luft rot und durch Eisenchlorid violettrot. In der konzentrierten wäßrigen Lösung werden durch Eisenchlorid braunrote, metallglänzende Blättchen gefällt. Brom bewirkt eine Ausscheidung von Hexabromaceton (Bd. I, S. 660) und einem dem Bromdichromazin (S. 570) ähnlichen Produkt. $C_7H_{10}O_2N_2+2HCl+SnCl_2+H_2O$. Nadeln (H.).
- 4.5 Diamino brenscatechin dimethyläther, 4.5 Diamino veratrol C₂H₁₂O₂N₂, s. nebenstehende Formel. B. Aus 4.5-Dinitroveratrol (Bd. VI, S. 792) bei der Reduktion mit Zinn und Salzsäure (Heinisch, M. 15, 233; Moureu, C. r. 125, 32). Prismen. F: 131° bis 132°; leicht löslich in Alkohol, Wasser und Chloroform, schwer in Tolucl, kaum in Äther (M.). Die Lösungen färben sich an der Luft schwarz (M.). C₂H₁₂O₂N₂ + 2HCl. Krystallflitter. Verliert bereits im Exsiccator allmählich 1 Mol. HCl (H.).
- 4-Amino-5-anilino-brenscatechin-dimethyläther, 4-Amino-5-anilino-veratrol, 8.4-Dimethoxy-6-amino-diphenylamin $C_{14}H_{16}O_2N_2=C_6H_5\cdot NH\cdot C_6H_8(NH_2)(0\cdot CH_2)_2$. B. Entsteht bei der Reduktion von 3.4-Dimethoxy-axobenzol (Syst. No. 2126) in Alkohol mit SnCl₂ und Salzsäure, neben anderen Produkten (JACOBSON, JAENICKE, F. MEYER, B. 29, 2687). Blättchen (aus Benzol). F: 151°. Leicht löslich in Alkohol und Benzol, schwer in Ather, sehr wenig in Ligroin. Die salzsaure Lösung wird durch Eisenchlorid kirschrot gefärbt. Spaltet beim Erhitzen mit Salzsäure im Druckrohr Anilin ab.
- 2. Aminoderivate des 1.3 Dioxy benzols (Resorcins) $C_0H_0O_2=C_0H_4(OH)_2$ (Bd. VI, S. 796). Vgl. auch No. 4 auf S. 793.
- 2 Amino 1.3 dioxy bensol, 2 Amino resordin C₆H₇O₈N, s. nebenstehende Formel. B. Durch Eintragen von 1\(^1/2\) At.-Gew. Zinn und 1 Mol.-Gew. 2-Nitro-resordin (Bd. VI, S. 823) in 8 Mol.-Gew. auf 85° erwärmte konz. Salzsure (Kauffmann, de Pay, B. 39, 323). Nur in Form des Hydrochlorids erhalten. C₆H₇O₈N + HCl. Krystalle. Wirkt stark reduzierend. Bei der Diazotierung entsteht das Dichinoyl-monoxim-monodiazid (4-Nitroso-2-diazo-resordin) HO·N:C\(^{CO} \cdot \cdot C(N_2)\) CO (Syst. No. 2200).
- 2-Amino-resorcin-dimethyläther $C_0H_{11}O_2N=H_2N\cdot C_0H_3(O\cdot CH_3)_2$. B. Durch Reduktion des 2-Nitro-resorcin-dimethyläthers (Bd. VI, S. 823) mit Zinn und Salzsäure (KAUFF-MANN, FRANCK, B. 40, 4006). Blättchen (aus Alkohol). —F: 75°. Kp₁₈: 146°. Sehr leicht löslich in Alkohol, Äther, Bensol, Eisessig, leicht löslich in Ligroin, schwer löslich in Wasser.
- 2-Amino-resorcin-monošthylšther $C_8H_{11}O_8N = H_2N \cdot C_4H_4(OH)(O \cdot C_4H_6)$. B. Durch Reduktion des 2-Nitroso-resorcin-monošthylšthers (Bd. VIII, S. 232) mit Zinn und Salzsäure (Kietaiel, M. 19, 546; vgl. dazu Henrich, J. pr. [2] 70, 334 Anm.). FeCl₃ färbt die währ. Lösung des salzsauren Salzes nicht, KOH färbt sie rot (K.). $C_8H_{11}O_2N + HCl$. Prismen, die sich an der Luft violett färben. Leicht löslich in Wasser, Alkohol und verdünnter Salzsäure, sehr wenig in kons. Salzsäure (K.).

- 2-Amino-resorcin-diāthylāther $C_{10}H_{15}O_{2}N=H_{2}N\cdot C_{4}H_{3}(0\cdot C_{2}H_{5})_{2}$. Als 2-Amino-resorcin-diāthylāther wurde von Pukall, B. 20, 1148, die bei der Reduktion von 2.6-Diāthoxy-azobenzol (Syst. No: 2126) mit Zinnchlorür und Salzsäure entstehende Verbindung vom Schmelzpunkt 124° angesehen. Nach Turner, Soc. 107 [1915], 469, 471, muß die bei 124° schmelzende Verbindung eine andere Konstitution gehabt haben. Der wirkliche 2-Amino-resorcin-diāthylāther schmilzt nach Turner bei 57°.
- 2-Diäthylamino-resorcin-dimethyläther $C_{12}H_{19}O_2N = (C_2H_3)_2N \cdot C_4H_3(O \cdot CH_3)_2$. B. Beim Kochen von 2-Amino-resorcin-dimethyläther (S. 782) mit Athyljodid (Kauffmann, Franck, B. 40, 4009). Fast farbloses Öl. Kp_{13} : 130° . $2 C_{12}H_{19}O_2N + 2 HCl + PtCl_4$. Gelbe Krystalle (aus salzsäurehaltigem Wasser).
- 2-Acetamino-resorcin-dimethyläther $C_{10}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_8H_8(O\cdot CH_3)_2$. B. Durch 10-stdg. Erhitzen des 2-Amino-resorcin-dimethyläthers (S. 782) mit Essigsäureanhydrid im Einschlußrohr auf 150—160° (K., Fr., B. 40, 4007). Blättchen (aus Wasser oder Essigsäure). F: 81°. Unlöslich in Wasser und in Eisessig. Wird beim Kochen mit Salzsäure verseift.
- **2-Benzamino-resorcin** $C_{19}H_{11}O_3N = C_6H_5 \cdot \text{CO·NH} \cdot C_6H_3(OH)_9$. B. Entsteht neben 4-Benzoyloxy-2-phenyl-benzoxazol (Syst. No. 4226) bei der Reduktion des Dibenzoats des 2-Nitro-resorcins (Bd. IX, S. 132) in Eisessig mit Eisenpulver (Kauffmann, der Pay, B. 39, 326). Blättchen (aus Alkohol). F: 187°. Löslich in Alkalien. Liefert mit salpetriger Säure 4-Nitroso-2-benzamino-resorcin bezw. 3-Benzamino-2-oxy-p-chinon-oxim-(1) (Syst. No. 1878).
- 2-[ω -Phenyl-thioureido]-resorcin-dimethyläther, N-Phenyl-N'-[2.6-dimethoxyphenyl]-thioharnstoff $C_{15}H_{16}O_5N_8S=C_8H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3(O\cdot CH_3)_2$. B. Aus 2-Aminoresorcin-dimethyläther (S. 782) und Phenylsenföl (Bd. XII, S. 453) (Kauffmann, Franck, B. 40, 4008). Krystalle (aus Alkohol). F: 150°. Ziemlich leicht löslich in Aceton, Chloroform, löslich in Alkohol, Benzol, Eisessig, sehr wenig löslich in Äther, Ligroin.
- N.N'-Bis-[2.6-dimethoxy-phenyl]-thioharnstoff $C_{17}H_{20}O_4N_2S = CS[NH\cdot C_4H_3(O\cdot CH_3)_2]_2$. B. Durch 24-stdg. Erhitzen von 2-Amino-resorcin-dimethyläther (S. 782), Schwefelkohlenstoff, Alkohol und Schwefel auf dem Wasserbade (K., Fr., B. 40, 4008). Krystalle. F: 170°. Ziemlich löslich in Benzol, Eisessig, Chloroform, schwer löslich in Alkohol, Aceton, sehr wenig löslich in Ligroin und Äther.
- **4-Nitroso-2-benzamino-resorcin** $C_{13}H_{10}O_4N_2=C_6H_6\cdot CO\cdot NH\cdot C_6H_2(NO)(OH)_3$ ist desmotrop mit 3-Benzamino-2-oxy-p-chinon-oxim-(1), Syst. No. 1878.
- 4-Nitro-2-amino-resorcin $C_6H_6O_4N_2=H_2N\cdot C_6H_2(NO_2)(OH)_9$. Zur Konstitution vgl. v. Kostanecki, Feinstein, B. 21, 3123. B. Man löst 50 g 2.4-Dinitro-resorcin (Bd. VI, S. 827) in 350 ccm absol. Alkohol, gibt 150 ccm wäßr. Ammoniak hinzu, erwärmt auf 70° und leitet Schwefelwasserstoff ein (Benedikt, v. Hübl, M. 2, 324). Schwarzbraune Krystalle (aus verd. Alkohol). F: 182° (Heller, Lindner, Georgi, B. 56 [1923], 1868). Schwer löslich in Wasser, leicht in Alkohol und Äther (B., v. H.). Reduziert schon in der Kälte ammoniakalische Silberlösung (B., v. H.). Ammoniawaliz. Dunkelviolette Krystalle (B., v. H.). Bariumsalz. Schwarzer krystallinischer Niederschlag (B., v. H.). 2C₆H₆O₄N₂ + H₂SO₄. Bräunliche Nadeln. Leicht löslich in Wasser (B., v. H.).
- 4.6-Dinitro-2-amino-resorcin C₆H₅O₆N₃ = H₂N·C₆H(NO₂)₂(OH)₂. Zur Konstitution vgl. v. Kostanecki, Feinstein, B. 21, 3123. B. Durch Reduktion von Styphninsäure (Bd. VI, S. 830) mit alkoh. Schwefelammonium (Benedikt, v. Hübl, M. 2, 326) oder mit Natriumferropyrophosphat Na₅Fe₂(P₂O₇)₂ (Pascal, A. ch. [8] 16, 396). Kupferrote Blättchen (aus absol. Alkohol). F: 190° (B., v. H.; P.). Fast unlöslich in Wasser, ziemlich schwer löslich in Alkohol; schwer löslich in verd. Säuren, leicht in konz. Schwefelsäure und in Alkalien; aus der Lösung in konz. Schwefelsäure wird durch Wasser freies 4.6-Dinitro-2-amino-resorcin gefällt (B., v. H.).
- 4-Amino-1.3-dioxy-beneol, 4-Amino-resorcin C₄H₇O₅N, s. nebenstehende Formel. B. Aus 4-Nitro-resorcin (Bd. VI, S. 823) mit Zinn und Salzsäure (Weselsky, A. 164, 6). Durch Reduktion von 4-Nitroso-resorcin (Bd. VIII, S. 325) mit Zinn-chlorür und Salzsäure (Henrich, B. 35, 4193; H., Wagner, B. 35, 4199). Durch Erhitzen von salzsaurem 4-Amino-resorcin-3-āthylāther (S. 785) mit konz. Salzsäure NH₂ auf 150° (H., B. 35, 4194). Beim Behandeln von 2.4-Dioxy-azobenzol (Syst. No. 2126) mit Zinnchlorür und Salzsäure (R. Meyer, Kreis, B. 16, 1330). Das freie 4-Amino-resorcin ist sehr unbeständig (Wes.). Die bei der Zerlegung des salzsauren Salzes in Wasser durch Natronlauge erhaltene Lösung färbt sich an der Luft erst blau, dann grün und gelbbraun (Wes.). Die wäßrige konzentrierte Lösung des salzsauren Salzes gibt mit konz. Eisenchlorid eine tiefbraune Färbung und dann einen fast schwarzen Niederschlag (Wes.). Über-

784

führung von 4-Amino-resorein in schwefelhaltige Baumwollfarbstoffe durch Verschmelzen mit Schwefel und Schwefelalkali: VIDAL, D. R. P. 102069; C. 1899 I, 1230. Bei der Einw. von Essigsäureanhydrid und wasserfreiem Natriumacetat auf salzsaures 4-Amino-resorein bei 150° entsteht 4-Diacetylamino-resorein-diacetat (S. 785) (H., WAG., B. 35, 4204). Bei der Einw. von Benzoylchlorid und Natronlauge in der Kälte entsteht 4-Benzamino-resorein-dibenzoat (S. 786); bei der Einw. von Benzoylchlorid auf salzsaures 4-Amino-resorein in der Hitze erhält man 6-Benzoyloxy-2-phenyl-benzoxazol (Syst. No. 4226) (H., WAG., B. 35, 4200). Salzsaures 4-Amino-resorein reagiert mit Alloxan (Syst. No. 3627) unter Bildung einer Verbindung C₁₀H₁O₅N₃ (Syst. No. 3637); analog verläuft die Reaktion mit N.N'-Dimethyl-alloxan (Piloty, Finckh, A. 333, 48). — C₆H₇O₂N + HCl + 2 H₂O. Krystalle (WES.).

4-Amino-resorcin-1-methyläther C₇H₉O₂N = H₂N·C₆H₂(OH)·O·CH₃. B. Beim Behandeln einer alkoh. Lösung von 2-Oxy-4-methoxy-azobenzol (Syst. No. 2126) mit salzsaurem Zinnchlorür (BECHROLD, B. 22, 2382)¹). Durch Reduktion der beiden Formen des 4-Nitroso-resorcin-1-methyläthers (Bd. VIII, S. 232) mit Zinnchlorür und Salzsäure (HENRICH, RHODIUS, B. 35, 1479; H., EISENACH, J. pr. [2] 70, 333). — Flockiger, sehr oxydabler Niederschlag. — Das salzsaure Salz gibt in wäßr. Lösung mit Eisenchlorid zuerst eine rötliche

Färbung, dann einen dunkel gefärbten Niederschlag (H., RH.). Wird in alkal. Lösung durch Luftsauerstoff zu einem Phenoxazon $C_{13}H_{10}O_3N_3$ oxydiert, dem als Leukoverbindung das Amino-oxy-methoxy-phenoxazin der Formel I oder II (Syst. No. 4382) entspricht (H., RH.; vgl. H., Schlerenberg, J. pr. [2] 70, 329, 330). — $C_7H_9O_3N + HCl.$ F: 214°; wenig löslich in organischen Mitteln (H., RH.). — Pikrat $C_7H_9O_3N + C_6H_9O_7N_3$. Gelbgrüne Krystalle Schwer löslich in Benzol, Chloroform und kaltem Wasser (H., RH.).

- 4-Amino-resorcin-3-methyläther $C_7H_9O_2N=H_2N\cdot C_6H_3(OH)\cdot O\cdot CH_3$. B. Bei der Reduktion des salzsauren 4-Nitroso-resorcin-3-methyläthers (Bd. VIII, S. 236) mit Zinn-chlorür und Salzsäure (Henrich, Rhodius, B. 35, 1485). Das salzsaure Salz gibt in wäßr. Lösung mit Eisenchlorid eine rotviolette Färbung. Durch Oxydation des salzsauren Salzes mit Kaliumdichromat und Schwefelsäure entsteht Methoxychinon (Bd. VIII, S. 234). $C_7H_9O_2N+HCl$. Graublaue Krystalle (aus konz. Salzsäure).
- 4-Amino-resorcin-dimethyläther $C_8H_{11}O_2N=H_2N\cdot C_6H_3(0\cdot CH_3)_2$. B. Beim Behandeln einer alkoh. Lösung von 2.4-Dimethoxy-azobenzol (Syst. No. 2126) mit salzsaurem Zinnohlorür (Bechhold, B. 22, 2378). F: 39—40°. Mit Wasserdämpfen flüchtig. Etwas löslich in Wasser, leicht in Alkohol, Äther und Benzol. Die alkoh. Lösung wird durch Eisenchlorid smaragdgrün gefärbt. Wird von Chromsäuregemisch zu Methoxychinon (Bd. VIII, 8. 234) oxydiert. $C_8H_{11}O_2N+HCl$. Sublimiert bei 100—110° in Nadeln. Schmilzt bei 224° unter Zersetzung.
- 4-Amino-resorcin-1-äthyläther $C_8H_{11}O_3N=H_1N\cdot C_8H_3(OH)\cdot O\cdot C_1H_5$. B. Aus stabilem (Kietaibl, M. 19, 541; Henrich, Schierenberg, J. pr. [2] 70, 325) oder aus labilem (H., Sch.) 4-Nitroso-resorcin-1-äthyläther (Bd. VIII, S. 232) durch Zinnchlorür und Salzsäure. Aus dem 4-Äthoxy-benzochinon-(1.2)-oxim-(1)-äthyläther $C_2H_5\cdot O\cdot N:C_8H_3(O\cdot C_2H_5)(:O)$ (Bd. VIII, S. 233) durch Zinnchlorür und Salzsäure (H., J. pr. [2] 70, 323). Beim Behandeln von 2-Oxy-4-äthoxy-azobenzol (Syst. No. 2126) in alkoh. Lösung mit salzsaurem Zinnchlorür (Will, Purall, B. 20, 1135) 1). Nadeln. F: 148°; schwer löslich in kaltem Wasser, leicht

$$I. \quad \underset{C_2H_5\cdot O}{\overset{NH}} \cdot \underset{O}{\overset{O}} \cdots \underset{O}{\overset{NH_2}} \qquad \qquad II. \quad \underset{C_2H_5\cdot O}{\overset{O}} \cdots \underset{O}{\overset{NH}} \cdots \underset{NH_2}{\overset{O}} \cdots \underset{NH_2}{\overset{N}} \cdots \underset{NH_2}{\overset{N}} \cdots \underset{NH_2}{\overset{N}} \cdots \underset{NH_2}{\overset{N}} \cdots \underset{NH_2}{\overset{N}} \cdots \underset{N}{\overset{N}} \cdots \underset$$

in Alkohol und Äther (W., P.). Die Lösungen der Salze färben sich an der Luft schnell violettrot (W., P.). Liefert bei der Oxydation mit Luft in alkal. Lösung ein Phenoxazon $C_{14}H_{12}O_3N_2$, dem als Leukoverbindung das Amino-oxy-åthoxy-phenoxazin der Formel I oder II (Syst. No. 4382) entspricht (H., Sch.). Beim Erhitzen mit konz. Salzsäure auf 150° entsteht 4-Aminoresoroin (H., Sch.). Beim Kochen des salzsauren int Essigsäureanhydrid entsteht 4-Acetamino-resoroin-1-åthylåther-3- tat (H., Sch.). Läßt sich durch Benzoylchlorid in 6-Äthoxy-2-phenyl-benzoxazol (Syst. 10. 4226) überführen (H., Sch.). — $C_8H_{11}O_2N + HCl$. Zerfließliche Prismen, die sich an der Luft violett färben (K.).

¹⁾ Vgl. dazu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von HRNEICH, BIRKNER, B. 46, 3380.

- 4-Amino-resorcin-3-āthylāther $C_8H_{11}O_2N=H_2N\cdot C_8H_3(OH)\cdot O\cdot C_2H_5$. B. Durch Reduktion von 4-Nitroso-resorcin-3-āthylāther (Bd. VIII, S. 236) mit Zinnchlorür und Salzsāure (Kietaible, M. 19, 551). Liefert bei der Oxydation mit Natriumdichromat Āthoxychinon (Bd. VIII, S. 235) (K.). FeCl₂ färbt die wäßr. Lösung des salzsauren Salzes violett (K.). $C_2H_{11}O_2N+HCl$. Nadeln, die sich an der Luft violett färben (K.). Rhombisch (v. Lang, M. 19, 551).
- 4-Amino-resorcin-diāthylāther $C_{10}H_{15}O_2N=H_2N\cdot C_4H_3(O\cdot C_2H_5)_3$. B. Man behandelt eine alkoh. Lösung von 2.4-Diāthoxy-azobenzol (Syst. No. 2126) mit salzsaurem Zinnchlorür; man entfernt das gelöste Zinn durch Schwefelwasserstoff, übersättigt die entzinnte Lösung mit Soda und schüttelt mit Äther aus; die äther. Lösung wird verdunstet und der Rückstand mit Wasserdämpfen destilliert, so lange noch Anilin übergeht; das zurückbleibende Öl nimmt man mit Äther auf, verdunstet den Äther und übergießt den Rückstand mit konz. Salzsäure, wobei er zu dem salzsauren 4-Amino-resorcin-diāthyläther erstarrt; das salzsaure Salz zerlegt man in einer Schwefelwasserstoffatmosphäre durch Soda (WILL, PUKALL, B. 20, 1124). Nadeln. F: 32°; Kp: 250—252°. Die Salze oxydieren sich in wäßr. Lösung sehr rasch an der Luft. Mit Eisenchlorid entsteht die Verbindung $C_{18}H_{21}O_5N$ (s. u.). Chromsäure oxydiert zu Äthoxychinon (Bd. VIII, S. 235). Die Salze sind in Wasser äußerst löslich. $C_{10}H_{15}O_2N$ + HCl. Krystalle. F: 198°. $2C_{10}H_{15}O_2N$ + 2HCl + $PtCl_4$ + $2H_2O$. Grüngelbe Nadeln. F: 169,5°.

Ver bind ung C₁₈H₂₁O₅N. B. Beim Versetzen einer Lösung von 5 g salzsaurem 4-Aminoresorein-diäthyläther in 2 l Wasser mit einer verd. Eisenchloridlösung (WILL, PUKALL, B. 20, 1129). — Dunkelstahlblaue Nadeln. F: 170°. Sublimiert teilweise unzersetzt. Unlöslich in Wasser, schwer löslich in Ather, leicht in heißem Alkohol und Eisessig mit tiefblauer Farbe. Unlöslich in wäßr. Alkalien und Säuren. — Wird durch Schwefelwasserstoff, schweflige Säure oder Zinnehlorür und Salzsäure in ein sehr leicht oxydierbares Reduktionsprodukt umgewandelt. Beim Kochen mit Alkohol und verd. Schwefelsäure wird 4-Aminoresorein-diäthyläther abgespalten. Chromsäure oxydiert zu Äthoxychinon (Bd. VIII, S. 235).

- 2'.4'-Dinitro-2.4-dioxy-diphenylamin C₁₂H₂O₂N₂, s. nebenstehende Formel. B. Aus 4-Amino-resorcin (8. 783) gelöst in Alkohol, 4-Chlor-1.3-dinitro-benzol (Bd. V, S. 263) und Natriumacetat (Nietzki, Schündelen, B. 24, 3589).

 — Braune Nadeln. F: 183°.
- 4-Acetamino-resorcin-1-methyläther C₂H₁₁O₂N = CH₂·CO·NH·C₆H₃(OH)·O·CH₂.

 B. Durch Reduktion von 4-Nitro-resorcin-1-methyläther (Bd. VI; S. 824) mit Zinkstaub und Essigsäure bei Gegenwart von Essigsäureanhydrid (Meldola, Eyre, Chem. N. 83, 286).

 Weiße Nadeln (aus Wasser). F: 164—165°.
- 4-Acetamino-resorcin-dimethyläther $C_{10}H_{12}O_{2}N=CH_{3}\cdot CO\cdot NH\cdot C_{4}H_{3}(O\cdot CH_{3})_{2}$. B. Aus salzsaurem 4-Amino-resorcin-dimethyläther (S. 784) und Essigsäureanhydrid (Bechhold), B. 22, 2379). Krystalle (aus verd. Alkohol). F: 115—116°.
- 4-Acetamino-resorcin-diäthyläther $C_{19}H_{17}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_3\cdot (O\cdot C_9H_8)_9$. B. Aus salzsaurem 4-Amino-resorcin-diäthyläther (s. o.) und Essigsäureanhydrid (WILL, PURALL, B. 20, 1127). Nadeln. F: 120,5°.
- 4-Acetamino-resorcin-1-äthyläther-3-acetat $C_{13}H_{15}O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_3$ ($O\cdot C_2H_5)\cdot O\cdot CO\cdot CH_3$. B. Aus salzsaurem 4-Amino-resorcin-1-äthyläther und siedendem Essigsäureanhydrid (Henrich, Schierenberg, J. pr. [2] 70, 328). Prismen (aus Ligroin), Schmilzt nach vorherigem Sintern bei 91—93°.
- 4-Diacetylamino-resorcin-1-methyläther-3-acetat $C_{19}H_{18}O_5N=(CH_3\cdot CO)_2N\cdot C_6H_3$ (O·CH₃)·O·CO·CH₅. B. Aus salzsaurem 4-Amino-resorcin-1-methyläther (S. 784) und Essigsäureanhydrid bei 140—150° (Henrich, Rhodius, B. 35, 1479). Würfel (aus Benzollösung). F: 92°. Schwer löslich in kaltem Wasser und Ligroin, sonst leicht löslich. Liefert bei der Destillation bei 200—240° 6-Methoxy-2-methyl-benzoxazol (Syst. No. 4222).
- 4 Diacetylamino resorcin diacetat $C_{14}H_{14}O_4N = (CH_3 \cdot CO)_2N \cdot C_4H_3(O \cdot CO \cdot CH_3)_2$. B. Durch Erhitzen von salzsaurem 4-Amino-resorcin mit Essigsäureanhydrid und wasserfreiem Natriumacetat (Henrich, B. 35, 4193; H., Waoner, B. 35, 4204). Krystalle (aus Benzol + Ligroin). F: 106—1080 (H.; H., W.). Leicht löslich in Äther, Benzol, Chloroform, Eisessig, schwer löslich in kaltem Ligroin (H., W.). Löst sich in konz. Schwefelsäure mit violetter Farbe (H., W.). Alkoholische Alkalien verseifen schon in der Kälte (H., W.). Liefert bei der trocknen Destillation 6-Acetoxy-2-methyl-benzoxazol (Syst. No. 4222) (H., W.).
- 4-Bensamino-resorcin-1-methyläther $C_{14}H_{12}O_3N=C_6H_5\cdot CO\cdot NH\cdot C_4H_3(OH)\cdot O\cdot CH_3$. B. Aus salzsaurem 4-Amino-resorcin-1-methyläther (S. 784) und Benzoylchlorid in Gegenwart von Natronlauge (Henrich, Rhodius, B. 35, 1480). Krystalle (aus Benzol). F: 163°. Schwer löslich in Ligroin und CS_4 . Liefert bei der trocknen Destillation 6-Methoxy-2-phenyl-benzoxazol (Syst. No. 4226).

- 4-Bensamino-resorcin-dimethyläther $C_{15}H_{15}O_5N=C_6H_5\cdot CO\cdot NH\cdot C_6H_5(O\cdot CH_2)_5$. B. Aus salzsaurem 4-Amino-resorcin-dimethyläther (S. 784) und Benzoylchlorid (Bechhold, B. 22, 2380). Krystalle (aus Alkohol). Sublimiert in Nadeln. F: 173°. Sehr wenig löslich in kaltem Alkohol.
- 4-Bensamino-resorcin-1-äthyläther $C_{12}H_{15}O_2N = C_6H_5 \cdot CO \cdot NH \cdot C_6H_3(OH) \cdot O \cdot C_8H_5$. B. Aus dem Hydrochlorid des 4-Amino-resorcin-1-äthyläthers (S. 784) und Benzoylchlorid in Gegenwart von Natronlauge (Henrich, Schlerbenger, J. pr. [2] 70, 326). Krystalle (aus Benzol). F: 187°. Sehr leicht löslich in Äther, Essigester, Chloroform, schwer in CS₂, Ligroin. Löslich in kalter Natronlauge. Bei der trocknen Destillation entsteht 6-Äthoxy-2-phenylbenzoxazol (Syst. No. 4226).
- 4-Bensamino-resorcin-diäthyläther $C_{17}H_{19}O_9N=C_0H_5\cdot CO\cdot NH\cdot C_0H_5(O\cdot C_2H_5)_2$. B. Neben 4-Dibenzoylamino-resorcin-diäthyläther (s. u.) aus salzsaurem 4-Amino-resorcin-diäthyläther (S. 785) und Benzoylchlorid (Will, Purall, B. 20, 1127). Nadeln. F: 113,5°.
- 4-Bensamino-resorcin-dibensoat $C_{27}H_{19}O_5N=C_6H_5\cdot CO\cdot NH\cdot C_6H_5(O\cdot CO\cdot C_6H_5)_8$. Aus salzaaurem 4-Amino-resorcin (S. 783) und Benzoylchlorid in Gegenwart von Natronlauge (Heneich, Wagner, B. 35, 4200). Nadeln. F: 172°. Schwer löslich in Ligroin und kaltem Äther, sonst leicht löslich. Löslich in konz. Schwefelsäure mit blauvioletter Farbe. Liefert bei der trocknen Destillation 6-Benzoyloxy-2-phenyl-benzoxazol (Syst. No. 4226).
- 4 [2 Nitro bensamino] resorcin bis [2 nitro bensoat] $C_{27}H_{10}O_{11}N_4 = O_2N \cdot C_0H_4 \cdot CO \cdot NH \cdot C_0H_6 \cdot CO \cdot C_0H_4 \cdot NO_3)_8$. B. Aus salzsaurem 4-Amino-resorcin (S. 783) mit 2-Nitro-benzoylchlorid (Bd. IX, S. 373) nach Schotten-Baumann (H., W., B. 35, 4204). Krystalle. F: 128°.
- 4-[3-Nitro-bensamino]-resorcin-bis-[3-nitro-bensoat] $C_{27}H_{16}O_{11}N_4 = O_{2}N \cdot C_{6}H_{4} \cdot CO \cdot NH \cdot C_{6}H_{4} \cdot NO_{2})_{2}$. B. Beim Schütteln von salzsaurem 4-Aminoresorcin (S. 783) in Wasser mit 3-Nitro-benzoylchlorid (Bd. IX, S. 381) in Äther in Gegenwart von Natronlauge (H., W., B. 85, 4203). Krystalle (aus Eisessig). F: 231°.
- 4 [4 Nitro bensamino] resorcin bis [4 nitro bensoat] $C_{97}H_{16}O_{11}N_4 = O_9N \cdot C_6H_4 \cdot CO \cdot NH \cdot C_6H_3 \cdot (O \cdot CO \cdot C_6H_4 \cdot NO_9)_9$. B. Durch Schütteln von salzsaurem 4-Aminoresorcin (S. 783) in Wasser mit 4-Nitro-benzoylchlorid (Bd. IX, S. 394) in Äther in Gegenwart von Natronlauge (H., W., B. 85, 4203). Gelbe Krystalle (aus Nitrobenzol). F: 266°.
- 4-Dibensoylamino-resorcin-diäthyläther $C_{24}H_{25}O_4N = (C_6H_5\cdot CO)_2N\cdot C_6H_3(O\cdot C_2H_5)_2$. B. Neben 4-Benzamino-resorcin-diäthyläther (s. o.) beim Erwärmen von salzsaurem 4-Amino-resorcin-diäthyläther (S. 785) mit überschüssigem Benzoylchlorid (WILL, PURALL, B. 20, 1127). Prismen (aus Eisessig). F: 171°. Schwer löslich in Alkohol.
- N.N'-Bis-[2.4-dimethoxy-phenyl]-thioharnstoff $C_{17}H_{20}O_4N_2S = CS[NH\cdot C_6H_2(O\cdot CH_3)_2]_9$. B. Entsteht, neben 2.4-Dimethoxy-phenylsenföl (s. u.), bei 12-stdg. Kochen einer alkoh. Lösung von salzsaurem 4-Amino-resorcin-dimethyläther (S. 784) mit 1 Mol.-Gew. KOH und überschüssigem Schwefelkohlenstoff (Bechhold, B. 22, 2380). F: 159—160°. Kaum löslich in den gewöhnlichen Lösungsmitteln.
- 4-Thiocarbonylamino-resorcin-dimethyläther, 2.4-Dimethoxy-phenylsenföl $C_0H_0O_2NS=SC:N\cdot C_0H_0(O\cdot CH_0)_2$. B. Durch 10-stdg. Erhitzen von N.N'-Bis-[2.4-dimethoxy-phenyl]-thioharnstoff mit konz. Salzsäure auf dem Wasserbade (Bechhold, B. 22, 2381). Eine weitere Bildung s. im vorhergehenden Artikel. Gelbe, metallglänzende Blättchen (aus Äther-Alkohol). F: 57°. Ist mit Wasserdampf flüchtig.
- 6-Chlor-4-amino-resorcin-dimethyläther C₈H₁₀O₅NCl = H₂N·C₆H₂Cl(O·CH₂)₂. B. Durch Reduktion von 6-Chlor-4-nitro-resorcin-dimethyläther ¹) (Bd. VI, S. 825) mit Eisen und Essigsäure (Bad. Anilin- u. Sodaf., D. R. P. 135331; C. 1902 II, 1351). Rötlichbraune Krystalle (aus Alkohol). F: 90°. Die Lösung in Mineralsäuren gibt mit Nitrit leicht lösliche, beständige Diazoverbindungen. Gibt eine bei 136—137° schmelzende Acetylverbindung.
- 6-Chlor-4-amino-resorcin-diäthyläther $C_{10}H_{10}O_{2}NCl=H_{2}N\cdot C_{6}H_{2}Cl(O\cdot C_{2}H_{5})_{2}$. B. Durch Reduktion von 6-Chlor-4-nitro-resorcin-diäthyläther 1) (Bd. VI, 8. 825) mit Eisen und Essigsäure (B. A. S. F., D. R. P. 135331; C. 1902 II, 1351). Krystalle (aus Alkohol). F: 63—64°. Gibt eine bei 136° schmelzende Acetylverbindung.
- 2.6-Dibrom-4-amino-resorcin C₂H₅O₂NBr₂ = H₂N·C₂HBr₃(OH)₂. B. Durch Reduktion von 2.6-Dibrom-4-nitro-resorcin (Bd. VI, S. 826) mit Zinn und Salzsäure (Dahmer, A. 333, 361). Das Hydrochlorid gibt mit FeCl₃ in wäßr. Lösung einen schwarzen, eisenhaltigen Niederschlag. C₆H₅O₂NBr₂ + HCl. Weiße Nadeln. Färbt sich am Licht violett.

¹⁾ Zu dieser Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von HOLLEMAN, R. 39, 461.

- 2.6 Dibrom 4 diacetylamino resorcin diacetat $C_{14}H_{12}O_{\bullet}NBr_{2}=(CH_{2}\cdot CO)_{2}N\cdot C_{\bullet}HBr_{2}(O\cdot CO\cdot CH_{2})_{2}.$ B. Aus salzsaurem 2.6-Dibrom-4-amino-resorcin, Natriumacetat und Essigsäureanhydrid (Daemer, A. 333, 362). Gelblichweißes Krystallpulver (aus Benzol-Benzin). F: 123—125°.
- x.x Dibrom 4 amino resorcin diāthylāther $C_{10}H_{12}O_2NBr_2 = H_2N \cdot C_2HBr_2(O \cdot C_2H_3)_2$. B. Aus salzsaurem 4-Amino-resorcin-diāthylāther und Brom, beide gelöst in Eisessig (Will, Pukall, B. 20, 1128). Brāunliche Nadeln oder Blättchen (aus Alkohol). F: 112°. Wird von Eisenchlorid und alkoh. Kali nicht angegriffen.
- 5-Amino-1.3-dioxy-bensol, 5-Amino-resorcin (Phloramin) OH C₆H₇O₂N, s. nebenstehende Formel. B. Bei 2—3-tägigem Stehen von 10 g entwässertem Phloroglucin (Bd. VI, S. 1092) mit 45 ccm bei 0° gesättigtem wäßrigem Ammoniak in einem mit Wasserstoff gefüllten Bombenrohr H₂N. OH (POLLAK, M. 14, 419; vgl. HLASIWETZ, A. 119, 202). Nadeln. F: 146—152° (P.). Schwer lösli ch in kaltem Wasser, leicht in Alkohol, fast unlöslich in Ather (H.; P.). Oxydiert sich in Lösung rasch an der Luft (H.; P.). Zerfällt bei längerem Kochen mit Wasser in Ammoniak und Phloroglucin (P.). C₆H₇O₂N + HCl + H₂O. Nadeln (H.). C₆H₇O₂N + HNO₃ (bei 100°). Bronzefarbene Blättchen oder Nadeln (H.). 2 C₆H₇O₂N + H₂SO₄ + 2 H₂O. Nadeln (H.).
- 5- Acetamino-resorcin-diacetat $C_{19}H_{13}O_5N=CH_3\cdot CO\cdot NH\cdot C_6H_3(O\cdot CO\cdot CH_3)_8$. B. Aus 5-Amino-resorcin und Essigsäureanhydrid (Pollak, M. 14, 422). Krystallpulver. F: 119—121°. Fast unlöslich in Ligroin.
- **3.4.6-Trinitroso-5-amino-resorcin** $C_0H_0O_5N_4=H_2N\cdot C_6(NO)_3(OH)_3$ ist desmotrop mit dem 2-Imid-1.3.5-trioxim des Cyclohexanhexons (Trichinoyl-monoimid-trioxim), Bd. VII, S. 907.
- 4.6-Dinitro-5-amino-resorcin-dimethyläther C₂H₂O₂N₃ = H₂N·C₂H(NO₂)₃(O·CH₂)₃.

 B. Aus 4.5.6-Trinitro-resorcin-dimethyläther (Bd. VI, 8. 833) und alkoh. Ammoniak (Blanksma, R. 27, 252). Gelbe Krystalle. F: 223°. Gibt beim Diazotieren und nachfolgendem Kochen mit Alkohol 4.6-Dinitro-resorcin-dimethyläther (Bd. VI, S. 828).
- **4.6** Dinitro 5 methylamino resorcin dimethyläther $C_8H_{11}O_4N_3 = CH_3 \cdot NH \cdot C_4H(NO_9)_9(O \cdot CH_9)_2$. B. Aus 4.5.6-Trinitro-resorcin-dimethyläther und Methylamin in Alkohol (Blanksma, R. 27, 253). Gelbe Krystalle. F: 191°. Gibt bei Nitrierung 2.4.6-Trinitro-5-methylnitramino-resorcin-dimethyläther (s. u.).
- 4.6 Dinitro 5 anilino resorcin dimethyläther, 2.6 Dinitro 3.5 dimethoxy-diphenylamin $C_{14}H_{13}O_6N_3=C_6H_5\cdot NH\cdot C_6H(NO_3)_5(O\cdot CH_3)_2$. B. Aus 4.5.6-Trinitro-resorcindimethyläther (Bd. VI, S. 833) und Anilin in Alkohol (Blanksma, R. 27, 253). Gelbe Krystalle (aus Alkohol). F: 190%
- 2.4- oder 4.6-Dinitro-5-anilino-resorcin-dimethyläther, 2.4- oder 2.6-Dinitro-3.5-dimethoxy-diphenylamin C₁₄H₁₂O₆N₃ = C₆H₅·NH·C₆H(NO₃)₂(O·CH₃)₃. B. Bei 12-stdg. Erhitzen von 5-Brom-2.4- oder 4.6-dinitro-resorcin-dimethyläther (F: 237—238°) (Bd. VI, S. 830) mit überschüssigem Anilin oberhalb 100° (JACKSON, WARREN, Am. 13, 177). Hellgelbe Nadeh. F: 196°. Schwer löslich in Äther, unlöslich in Ligroin.
- 2.4.6 Trinitro 5 methylnitramino resorcin dimethyläther $C_0H_2O_{10}N_5 = CH_3$ · $N(NO_2)\cdot C_6(NO_2)_3(O\cdot CH_2)_2$. B. Aus 4.6-Dinitro-5-methylamino-resorcin-dimethyläther (s. o.) durch Nitrierung mit Salpeterschwefelsäure oder mit Salpetersäure (D: 1,52) (BLANESMA, R. 27, 253). Krystalle (aus Alkohol). F: 176°.
- 2.4-Diamino -1.3-dioxy-benzol, 2.4-Diamino -resorcin C₆H₈O₂N₃, OH s. nebenstehende Formel. B. Aus 2.4-Dinitroso-resorcin (Bd. VII, S. 885) (Firz, B. 8, 633), aus 4-Nitroso-2-nitro-resorcin (Bd. VIII, S. 240) (DE LA HABPE, REVERDIN, B. 21, 1405) oder aus 2.4-Bis-benzolazo-resorcin (Syst. No. 2126) (Liebermann, v. Kostanecki, B. 17, 881; vgl. v. K., B. 20, 3137) mit Zinn und Salzsaure. Das freie 2.4-Diamino-resorcin färbt sich an der Luft rasch braun (F.). Die Salze färben sich mit Eisenchlorid violettblau, dann braun (F.; Typer, B. 16, 556). Die ammoniakalische Lösung von 2.4-Diamino-resorcin wird durch Luft violett gefärbt, scheidet aber zum Unterschied von 4.6-Diamino-resorcin (S. 788) keine Krystalle ab (T.). Schüttelt man eine kleine Menge des in Chloroform suspendierten salzsauren Salzes mit 2—3 Tropfen Natronlauge und gibt dann Wasser hinzu, so fäsch die Lösung kornblumenblau (Lie., v. K.). Verhalten der Lösung von salzsaurem 2.4-Diamino-resorcin zur Lösung von hydroschwefligsaurem Natrium Na₂S₁O₂: A. Lumière, L. Lumière, Seyewetz, Bl. [3] 23, 68. C₆H₈O₂N₃ + 2 HCl (Lie., v. K.). C₆H₈O₂N₃ + H₂SO₄ + 1½₂H₂O. Nadeln. Wird aus der wäßr. Lösung durch Alkohol gefällt (F.).

50*

4.6-Bis-acetamino-resorcin-monoacetat $C_{12}H_{14}O_5N_2 = (CH_3 \cdot CO \cdot NH)_2C_6H_2(OH) \cdot O \cdot CO \cdot CH_2$. B. Durch Kochen von salzsaurem oder schwefelsaurem 4.6-Diamino-resorcin mit Natriumacetat und Essigsäureanhydrid (N., SCHM., B. 22, 1657; KE., B., B. 30, 2102). — Nadeln. F: 225°. — Läßt sich durch Erwärmen mit Sodalösung, Ansäuern der Lösung und Oxydation mit Eisenchlorid in 5-Acetamino-2-oxy-chinon (Syst. No. 1878) überführen (N., SCHM.; KE., B.). Fortgesetztes Kochen mit Essigsäureanhydrid liefert 4.6-Bis-acetamino-resorcin-diacetat (s. u.) (KE., B.).

4.6 - Bis - acetamino - resorcin - diacetat $C_{14}H_{10}O_8N_8 = (CH_3 \cdot CO \cdot NH)_2C_8H_8(O \cdot CO \cdot CH_3)_2$. B. Beim anhaltenden Kochen von salzsaurem 4.6-Diamino-resorcin mit einem Überschuß von Essigsäureanhydrid und mit Natriumacetat (Kz., B., B. 30, 2102). — Nadeln (aus Essigsäure). F: 180°.

2-Chlor-4.6-diamino-resorcin $C_6H_7O_2N_3Cl = (H_9N)_3C_6HCl(OH)_9$. B. Aus 2-Chlor-4.6-dinitro-resorcin (Bd. VI, S. 829) mit salzsaurem Zinnchlorür (Kehrmann, J. pr. [2] 40, 495). Beim Behandeln von 3-Chlor-5-hydroxylamino-2-oxy-p-chinon-oxim-(1) (Syst. No. 1938) mit salzsaurem Zinnchlorür (Ke., Tiesler, J. pr. [2] 41, 90). — Oxydiert sich leicht zu 3-Chlor-5-amino-2-oxy-p-chinon-imid-(1) (Syst. No. 1878) (Ke.).

2.4.6 - Triamino - resorcin $C_0H_0O_2N_3$, s. nebenstehende Formel. B. Aus 2.4.6 - Trinitro - resorcin (Bd. VI, \S_1 8.30) mit Zinn und Salzsäure (SCHREDER, A. 158, 247). — Das freie Triaminoresorcin ist höchst unbeständig. Durch Oxydation des salzsauren Salzes in Wasser mit Luft oder Eisenchlorid erhält man 3.5-Diamino-2-oxy-p-chinon-imid-(1) (Syst. No. 1878). — $C_0H_0O_2N_3+3HCl+H_0O$. Nadeln. Sehr leicht löslich in Wasser. — $C_0H_0O_2N_3+3HCl+SnCl_2+H_0O$. Prismen.

2.4.6-Triamino-resorcin-diāthyläther $C_{10}H_{17}O_2N_3 = (H_2N)_3C_6H(0\cdot C_2H_6)_3$. B. Durch Reduktion von 2.4.6-Trinitro-resorcin-diāthyläther mit Zinn und Salzsäure (Wenzel, Weidel, C. 1903 II, 829). — Wird durch Kochen mit Wasser und Verseifen des Reaktionsproduktes mit Jodwasserstoffsäure in Pentaoxybenzol (Bd. VI, S. 1189) verwandelt (W., W.; vgl. indessen Einhorn, Cobliner, B. 37, 105).

3. Aminoderivate des 1.4-Dioxy-benzols (Hydrochinons) $C_aH_aO_2=C_aH_a(OH)_2$ (Bd. VI, S. 836). Vgl. auch No. 4 auf S. 793.

Aminohydrochinon-dimethyläther C₈H₁₁O₂N, s. nebenstehende Formel.

B. Durch Reduktion von Nitrohydrochinon-dimethyläther (Bd. VI, S. 857) mit

Zinn und Salzsäure (Magatti, B. 14, 71; G. 11, 354; MÜHLHÄUSER, A. 207, 254)
oder mit Natriumamalgam (Barssler, B. 17, 2119). — Schuppen (aus Petroläther). F: 80° (Ma., G. 11, 354), 81° (Mü.), 81—82° (B.). Siedet unter teilweiser
Zersetzung bei 270° (Ma., B. 14, 71). Ziemlich leicht löslich in Wasser (Ma., B.
14, 71), kaum löslich in kaltem Petroläther, sehr leicht in heißem und in Alkohol (Mü.). —
Verwendung für Azofarbstoffe: Höchster Farbw., D. R. P. 109491; C. 1900 II, 298. —
C₂H₁₁O₂N + HCl. Nadeln. Schwer löslich in kaltem Wasser und Alkohol (Mü.).

Aminohydrochinon-monoäthyläther $C_8H_{11}O_2N = H_2N \cdot C_6H_5(OH) \cdot O \cdot C_2H_5$. B. Durch Reduktion von Nitrohydrochinon-monoäthyläther (Bd. VI, S. 857) (Weselsky, Benedikt, M. 2, 370). — $C_8H_{11}O_2N + HCl$. Krystalle.

Hydroxymethylat des Dimethylaminohydrochinon-dimethyläthers, Trimethyl-[2.5-dimethoxy-phenyl]-ammoniumhydroxyd $C_{11}H_{19}O_3N = (CH_3)_N(OH) \cdot C_4H_3(O \cdot CH_3)_3$. B. Das Jodid entsteht bei 5-stdg. Erhitzen von 1 Tl. Aminohydrochinon-dimethyläther mit 1 Tl. Methyljodid und etwas Methylalkohol im geschlossenen Robr auf 150°; man erhält die freie Base durch Zerlegung des Jodids in Wasser mit Silberoxyd (Baessler, B. 17, 2122). — Nadeln. Ungemein löslich in Wasser. — Chlorid $C_{11}H_{18}O_3N \cdot Cl$. Nadeln. F: 172°. Leicht löslich in Wasser. — Jodid $C_{11}H_{18}O_3N \cdot I$. Nadeln (aus Wasser). F: 202°. Leicht löslich in Wasser, schwer in absol. Alkohol, fast unlöslich in Chloroform, Benzol und Ligroin. — Chloroplatinat $2C_{11}H_{18}O_3N \cdot Cl + PtCl_4$ (bei 100°). Gelbe Krystalle.

Acetaminohydrochinon C₈H₂O₂N = CH₂·CO·NH·C₆H₃(OH)₂. B. Durch Einw. von schwefliger Säure auf die wäßr. Suspension von Acetaminochinon (Syst. No. 1874) (Kehrmann, Bahatrian, B. 31, 2400). — Grauweiße körnige Krystalle (aus Ather). F: 100°. Leicht löslich in Wasser und den gebräuchlichen organischen Lösungsmitteln.

Dimethyläther $C_{10}H_{13}O_3N=CH_3\cdot CO\cdot NH\cdot C_6H_3(O\cdot CH_3)_3$. B. Aus Aminohydrochinon-dimethyläther und Essigsäureanhydrid (BAESSLER, B. 17, 2121). — Schuppen (aus Wasser). F: 91°. Löslich in Wasser, Alkohol, Benzol, Ligroin, Chloroform und Schwefelkohlenstoff.

[ω-Phenyl-thioureido]-hydrochinon-dimethyläther, N-Phenyl-N'-[2.5-dimethoxy-phenyl]-thioharnstoff $C_{15}H_{16}O_2N_2S = C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3(O\cdot CH_2)_2$. B. Man gibt zu einer gelinde erwärmten alkoh. Lösung des Aminohydrochinon-dimethyläthers überschüssiges Phenylsenföl (BAESSLER, B. 17, 2123). — Nadeln (aus Alkohol). F: 137°. Unlöslich in Wasser und Ligroin, leicht löslich in warmem Alkohol oder Benzol; löslich in Salzsäure.

N.N'-Bis-[2.5-dimethoxy-phenyl]-thioharnstoff $C_{17}H_{20}O_4N_2S=CS[NH\cdot C_6H_3(O\cdot CH_3)_2]_2$. B. Bei mehrstündigem Kochen einer alkoh. Lösung von Aminohydrochinon-dimethyläther mit KOH und überschüssigem Schwefelkohlenstoff (Baessler, B. 17, 2123). — Nadeln (aus Alkohol). F: 109°. Fast unlöslich in Wasser, schwer löslich in Ligroin, leicht in warmem Alkohol, Chloroform und Benzol.

[2.5 - Dimethoxy - benzamino] - hydrochinon - dimethyläther $C_{17}H_{19}O_5N = (CH_3 \cdot O)_2C_6H_3 \cdot CO \cdot NH \cdot C_6H_3(O \cdot CH_3)_2$. B. Aus 2.5.2'.5'-Tetramethoxy-benzophenon-oxim (Bd. VIII, S. 497) durch Umlagerung mit Phosphorpentachlorid in Ather (Kauffmann, Grombach, A. 344, 75). — Nadeln (aus Alkohol). F: 120°.

5-Nitro-2-amino-hydrochinon-dimethyläther $C_0H_{10}O_4N_2=H_4N\cdot C_6H_1(NO_4)(0\cdot CH_2)_2$. B. Aus 5-Nitro-2-acetamino-hydrochinon-dimethyläther (s. u.) durch Verseifen (Bad. Anilinu. Sodaf., D.R.P. 141398; C. 1903 I, 1163). Aus 4-Chlor-5-nitro-2-amino-phenol-methyläther (S. 392) durch methylakholisches Kali (Bad. Anilin- u. Sodaf., D.R.P. 141975; C. 1903 I, 1380). — Gelbe blättrige Prismen (aus Benzol). I: 158°.

5-Nitro-2-amino-hydrochinon-1-methyläther-4-äthyläther $C_9H_{12}O_4N_9=H_2N\cdot C_9H_4(NO_2)(O\cdot CH_3)\cdot O\cdot C_2H_5$. B. Aus 4-Chlor-5-nitro-2-amino-phenol-methyläther durch äthylalkoholisches Kali (Bad. Anilin- u. Sodaf., D. R. P. 141975; C. 1903 I, 1380). — Gelbbraune Krystallaggregate (aus Benzol). F: 148°.

5-Nitro-2-acetamino-hydrochinon-dimethyläther $C_{10}H_{12}O_5N_2=CH_2\cdot CO\cdot NH\cdot C_6H_2(NO_2)(O\cdot CH_3)_2$. Zur Konstitution vgl. Bad. Anilin- u. Sodaf., D.R. P. 141398, 141975; C. 1903 I, 1163, 1380. — B. Beim Eintröpfeln von rauchender Salpetersäure in eine gesättigte wäßr. Lösung von Acetaminohydrochinon-dimethyläther (BAESSLER, B. 17, 2121). — Gelbe Nadeln. F: 164° (B.). Löslich in Alkohol und Benzol mit roter Farbe (B.).

3.5-Dinitro-2-anilino-hydrochinon-1-methyläther, 4.6-Dinitro-5-oxy-2-methoxy-diphenylamin $C_{13}H_{11}O_{e}N_{4}=C_{e}H_{5}\cdot NH\cdot C_{e}H(NO_{4})_{3}(OH)\cdot O\cdot CH_{3}$. B. Beim Kochen von 4.6-Dinitro-2.5-dimethoxy-diphenylamin (s. u.) mit Alkali (Blanksma, R. 24, 318). — Gelbe Krystalle (aus Wasser). F: 177°.

3.5-Dinitro-2-anilino-hydrochinon-dimethyläther, 4.6-Dinitro-2.5-dimethoxy-diphenylamin $C_{14}H_{13}O_{4}N_{3}=C_{4}H_{5}\cdot NH\cdot C_{4}H(NO_{3})_{5}(O\cdot CH_{3})_{2}$. B. Aus Trinitrohydrochinon-dimethyläther (Bd. VI, S. 858) mit Anilin in alkoh. Lösung (Blanksma, R. 24, 317). — Gelbe Krystalle. F: 143°. — Beim Kochen mit Ätzalkalien entsteht 4.6-Dinitro-5-oxy-2-methoxy-diphenylamin (s. o.).

3.5-Dinitro-2-anilino-hydrochinon-l-āthylāther, 4.6-Dinitro-5-oxy-2-āthoxy-diphenylamin $C_{14}H_{18}O_{4}N_{3} = C_{4}H_{5} \cdot NH \cdot C_{4}H(NO_{4})_{4}(OH) \cdot O \cdot C_{2}H_{5}$. B. Beim Kochen von 4.6-Dinitro-2.5-diāthoxy-diphenylamin (S. 790) mit Kalilauge (NIETZKI, KAUFMANN, B. 24, 3824). — Gelbe Nadeln (aus Alkohol). F: 152° (N., K.). — $KC_{14}H_{18}O_{4}N_{3}$. Rote Nädelchen. Leicht löelich in Wasser, schwer in kaltem Alkohol (K., Dissertation [Basel 1891], S. 11).

- 3.5 Dinitro 2 anilino hydrochinon diäthyläther, 4.6 Dinitro 2.5 diäthoxydiphenylamin $C_{1e}H_{17}O_eN_3 = C_eH_5 \cdot \text{NH} \cdot C_eH(\text{NO}_2)_2(\text{O} \cdot C_2H_2)_2$. B. Man erwärmt Trinitrohydrochinon-diäthyläther (Bd. VI, S. 859) einige Stunden mit überschüssigem Anilin auf dem Wasserbade und übersättigt dann mit Salzsäure; man kocht den entstandenen Niederschlag mit salzsäurehaltigem Wasser zur Entfernung des gleichzeitig gebildeten Aminoazobenzols (NIETZKI, A. 215, 156). Alizarinrote Nadeln (aus Alkohol). F: 133° (N.). Gibt beim Kochen mit verd. Kalilauge 4.6-Dinitro-5-oxy-2-āthoxy-diphenylamin (S. 789) (N., Kaufmann, B. 24, 3824).
- 8.5-Dinitro-2-a-naphthylaminc-hydrochinon-diäthyläther, [4.6-Dinitro-2.5-diäthoxy-phenyl]-a-naphthylamin $C_{20}H_{12}O_6N_3=C_{10}H_7\cdot NH\cdot C_6H(NO_2)_3(O\cdot C_2H_5)_2$. B. Entsteht neben Aminoazonaphthalin beim Kochen von a-Naphthylamin mit Trinitrohydrochinon-diäthyläther in alkoh. Lösung (Nietzei, Kaufmann, B. 24, 3830). Gelbe Nadeln. F: 128°. Schwer löslich in kaltem Alkohol.
- 4.6 Dinitro 2.5 diäthoxy 3' dimethylamino diphenylamin $C_{18}H_{22}O_8N_4$, s. nebenstehende Formel. B. Aus salzsaurem N.N-Dimethyl-m-phenylendiamin mit Trinitro-hydrochinon-diäthyläther und Natriumacetat in alkoh. Lösung (Nietzki, Kaufmann, B. 24, 3830). Orangegelbe Nadeln. F: 106°. Leicht löslich in heißem Alkohol, Ather und Benzol. $(CH_3)_2N$ O· C_2H_5
- 4.6 Dinitro 2 oder 5 oxy 5 oder 2 äthoxy 4' acetamino diphenylamin $C_{16}H_{16}O_7N_4 = CH_3 \cdot CO \cdot NH \cdot C_8H_4 \cdot NH \cdot C_6H(NO_2)_3(OH) \cdot O \cdot C_2H_5$. B. Beim Kochen des 4.6-Dinitro 2.5-diāthoxy 4'-acetamino-diphenylamins (s. u.) mit verdünntem alkoholischem Kali (NIETZKI, KAUFMANN, B. 24, 3829). Gelbbraune Nadeln. F: 206°. Leicht löslich in Alkohol.
- 4.6 Dinitro 2.5 diäthoxy 4' dimethylamino-diphenylamin $C_{1b}H_{25}O_6N_4$, s. nebenstehende Formel.

 B. Beim Kochen von 2 Mol.-Gew. salzsaurem N.N-Dimethyl-p-phenylendiamin mit 1 Mol.-Gew. Trinitro-hydrochinon-diäthyläther und Natriumacetat in alkoh.

 Lösung (Nietzki, Kaufmann, B. 24, 3826). Rote Nadeln (aus Alkohol). F: 148°.
- 4.6-Dinitro-2.5-diāthoxy-4'-acetamino-diphenylamin $C_{18}H_{20}O_7N_4 = CH_2 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot C_6H(NO_2)_2(O \cdot C_2H_5)_2$. B. Aus salzsaurem (KAUFMANN, Dissertation [Basel 1891], S. 25) N-Acetyl-p-phenylendiamin, Trinitrohydrochinon-diāthylāther und Natriumacetat in alkoh. Lösung (Nietzki, Kaufmann, B. 24, 3828). Gelbe Nadeln. F: 199°. Schwer löslich in kaltem Alkohol. Beim Kochen mit verdünntem alkoholischem Kali wird eine Äthylgruppe eliminiert. Beim Kochen mit 20% eiger wäßr. Kalilauge entsteht 3.5-Dinitrooxyhydrochinon-4-āthylāther (Bd. VI, S. 1091).
- 2-Amino-4-thio-hydrochinon-O-methyläther, 4-Methoxy-3-amino-phenylmercaptan C₇H₂ONS, s. nebenstehende Formel. B. Aus 2-Nitro-anisolsulfonsäure-(4)-chlorid (Bd. XI, S. 247) mit Zinn und Salzsäure (GNEHM, KNECHT, J. pr. [2] 74, 99). Weiße, rasch verharzende Flocken. Das Hydrochlorid gibt mit Jod in alkal. Lösung 4.4'-Dimethoxy-3.3'-diamino-diphenyldisulfid (S. 791). Einw. von salpetriger Säure auf das salzsäure Salz: G., K. Quecksilbersalz. Citronengelber Niederschlag. Leicht löslich in verd. Salpetersäure. Bleisalz. Gelbe Flocken. Leicht löslich in verd. Salpetersäure. C. H. ONS + HCl. Geruchlose Nadeln. Wird bei 170° bräunlich, schmilzt zwischen 230° und 235° zu einer roten Flüssigkeit. Sehr leicht löslich in Wasser, löslich in luftfreiem NaOH.
- 4.4'-Dioxy-3.8'-diamino-diphenylsulfon $C_{12}H_{12}O_4N_2S=[H_2N\cdot C_6H_3(OH)]_2SO_2$. B. Aus 3.3'-Dinitro-4.4'-dioxy-diphenylsulfon (Bd. VI, S. 865) durch Reduktion mit Jodphosphor und Wasser oder mit Zinn und Salzsäure (Annahem, B. 7, 436; 8, 1063). Krystalle (aus Wasser). Das salzsaure Salz liefert bei der Einw. von Isoamylnitrit in Alkohol die Bisdiazoverbindung $O_2S(C_6H_2ON_2)_2$ (Syst. No. 2199). $C_{12}H_{12}O_4N_2S+2HCl+2H_2O$. Nadeln (aus siedender Salzsäure). Leicht löslich in Wasser und Alkohol. $C_{12}H_{12}O_4N_2S+2HI$ +2 H_2O . Nadeln (aus Wasser). Verliert das Krystallwasser bei 110—115°. Leicht löslich in Wasser und Alkohol. $C_{12}H_{12}O_4N_2S+H_2SO_4+2H_2O$. Prismen (aus Wasser). Schwer löslich in kaltem Wasser und Alkohol.
- 4.4' Dimethoxy 8.3' diamino diphenylsulfon $C_{14}H_{16}O_4N_5S = [H_2N \cdot C_5H_5(O \cdot CH_3)]_5SO_5$. B. Aus 3.3'-Dinitro-4.4'-dimethoxy-diphenylsulfon (Bd. VI, S. 866) durch Reduktion mit Jodphosphor und Wasser (Annahem, A. 172, 51). Nadeln. $C_{14}H_{16}O_4N_2S + 2HI$. Nadeln. Leicht löslich in Wasser und Alkohol.
- 4.4'-Diäthoxy-8.3'-diamino-diphenylsulfon $C_{15}H_{20}O_4N_3S=[H_2N\cdot C_5H_3(O\cdot C_5H_5)]_3SO_5$. Aus 3.3'-Dinitro-4.4'-diāthoxy-diphenylsulfon (Bd. VI, S. 866) durch Reduktion mit

- Jodphosphor und Wasser (Annaheim, A. 172, 54). Krystalle. $C_{16}H_{20}O_4N_2S+2HI$. Nadeln. Leicht löslich in Wasser und Alkohol.
- 4.4'- Dimethoxy 3.3'- diamino diphenyldisulfid $C_{14}H_{16}O_2N_2S_2 = [H_2N\cdot C_gH_3(O\cdot CH_3)\cdot S-]_2$. B. Aus dem salzsaurem 4-Methoxy-3-amino-phenylmercaptan (S. 790) in Natronlauge mit Jod (GNEHM, KNECHT, J. pr. [2] 74, 100). Weiße Krystalle (aus Toluol + Ligroin). Leicht löslich in heißem Toluol. Färbt sich an der Luft violett. Löslich in konz. Schwefelsäure mit hellgrüner Farbe, die beim Erwärmen durch Dunkelgrün in Dunkelblau übergeht. Hydrochlorid. Krystalle. Ziemlich leicht löslich in Wasser. Die Lösung färbt sich mit Eisenchlorid grün.
- 4.4'-Dimethoxy-3.8'-bis-pikrylamino-diphenyldisulfid $C_{26}H_{18}O_{14}N_6S_2 = [(O_2N)_3C_6H_3 \cdot NH \cdot C_6H_3(O \cdot CH_3) \cdot S-]_2$. B. Aus dem Hydrochlorid des 4-Methoxy-3-amino-phenylmercaptans, Pikrylchlorid und Natriumacetat in siedendem Alkohol (GNEHM, KNECHT, J. pr. [2] 74, 101). Blaustichig rote Nadeln (aus Toluol + Ligroin). Sehr leicht löslich in Benzol, Toluol, Tetrachlorkohlenstoff, Isoamylalkohol, Anisol; ziemlich schwer löslich in siedendem Alkohol. Schmilzt zu einer roten Flüssigkeit, die bei höherem Erhitzen schwarz wird und verpufft.
- 2-Acetamino-4-thio-hydrochinon-O-methyläther-S-acetat $C_{11}H_{13}O_3NS = CH_3 \cdot CO \cdot NH \cdot C_6H_3 \cdot CO \cdot CH_3 \cdot S \cdot CO \cdot CH_3$. B. Aus dem Hydrochlorid des 4-Methoxy-3-amino-phenylmercaptans mit Zinkstaub, Essigsäureanhydrid und Natriumacetat (GNEHM, KNECHT, J. pr. [2] 74, 102). Tafelige oder keilförmige Krystalle (aus Ligroin). F: 85—86°. Schwer löslich in kaltem Ligroin, leicht löslich in Alkohol, Äther, Benzol, Chloroform.
- 2.5 Diamino 1.4 dioxy benzol, 2.5 Diamino hydrochinon C₆H₈O₂N₂, s. nebenstehende Formel. B. Bei der Reduktion des 2.5-Diamino-chinons (Syst. No. 1874) mit Zinnchlorür und Salzsäure (Kehrmann, Betsch, B. 30, 2101). Weiß. Krystallinisch. Hydrochlorid. Farblose Nadeln, deren wäßr. Lösung sich an der Luft schnell violett färbt.
- 2.5-Bis-acetamino-hydrochinon $C_{10}H_{12}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_6H_3(OH)_2$. B. Beim Kochen der alkoh. Lösung von 2.5-Bis-acetamino-chinon (Syst. No. 1874) mit Zinnchlorür und wenig Salzsäure (Kehrmann, Betsch, B. 30, 2101). Krystallinisches Pulver. Beginnt zwischen 285° und 290° zu sublimieren und verkohlt bei ca. 310°. Sehr wenig löslich in den meisten organischen Lösungsmitteln; leicht löslich in verd. Alkalilaugen.
- 2.5 Bis acetamino hydrochinon diacetat $C_{14}H_{16}O_eN_2 = (CH_s \cdot CO \cdot NH)_sC_sH_s(O \cdot CO \cdot CH_s)_2$. B. Man kocht 2.5-Bis-acetamino-hydrochinon mit Essigsäureanhydrid und etwas Natriumacetat, bis alles in Lösung gegangen ist (Kehrmann, Betsch, B. 30, 2101). Nadeln. F: 190°.
- 3-Chlor-2.5-diamino-hydrochinon $C_6H_7O_2N_2Cl = (H_2N)_2C_6HCl(OH)_2$. B. Beim Behandeln von 3-Chlor-2.5-dioxy-chinon-diimid (Bd. VIII, S. 379) mit Zinnchlorür und Salzsäure (Kehrmann, Tiesler, J. pr. [2] 40, 489). Höchst unbeständig. $C_6H_7O_2N_2Cl + 2HCl$ (exsiccatortrocken). Krystallisiert beim Verdunsten einer konzentrierten wäßrigen Lösung in großen krystallwasserhaltigen Prismen oder Oktaedern, die an der Luft verwittern. Sehr leicht löslich in Wasser.
- **3-Chlor-2.5-bis-acetamino-hydrochinon** $C_{10}H_{11}O_4N_2Cl = (CH_3 \cdot CO \cdot NH)_2C_6HCl(OH)_2$. B. Beim Schütteln einer äther. Suspension von 3-Chlor-2.5-bis-acetamino-chinon (Syst. No. 1874) mit Zinnchlorür und Salzsäure (Kehrmann, Tiesler, J. pr. [2] **40**, 492). Prismen (aus verdünntem Alkohol). Schmilzt gegen **300°**. Sehr leicht löslich in Alkohol und Äther.
- 3-Chlor-2.5-bis-acetamino-hydrochinon-diacetat $C_{14}H_{15}O_6N_1Cl = (CH_3\cdot CO\cdot NH)_1C_6HCl(O\cdot CO\cdot CH_2)_2$. B. Durch $^1/_2$ -stdg. Kochen von salzsaurem 3-Chlor-2.5-diamino-hydrochinon mit Essigsäureanhydrid und Natriumacetat (Kehrmann, Tiesleb, J. pr. [2] 40, 490). Täfelchen (aus Eisessig). F: 255°. Sehr wenig löslich in Wasser, etwas leichter in siedendem Alkohol, ziemlich leicht löslich in Eisessig. Löst sich in verd. Alkalien unter Bildung von 3-Chlor-2.5-bis-acetamino-hydrochinon, das sich in der alkal. Lösung an der Luft allmählich unter Violettfärbung oxydiert.
- 8.6-Dichlor-2.5-diamino-hydrochinon $C_6H_6O_2N_3Cl_2=(H_2N)_3C_6Cl_2(OH)_2$. B. Beim Kochen von 3.6-Dichlor-2.5-diamino-chinon (Syst. No. 1874) mit sehr konzentrierter Zinn-chlorürlösung (Knapp, Schultz, A. 210, 185). Nadeln. Sehr löslich in Wasser. Oxydiert sich in wäßr. Lösung rasch zu 3.6-Dichlor-2.5-diamino-chinon. Liefert beim Kochen mit Essigsäureanhydrid neben anderen Produkten geringe Mengen einer Ver bindung $C_{18}H_{20}O_8N_3$ (Nadeln. F: 255°. Sehr wenig löslich in Alkohol).

3.6-Dichlor-2.5-dianilino-hydrochinon $C_{18}H_{14}O_2N_3Cl_2=(C_8H_6\cdot NH)_2C_6Cl_1(OH)_3$. B. Beim Kochen von 3.6-Dichlor-2.5-dianilino-chinon (Syst. No. 1874) mit konz. Zinnchlorürlösung und Alkohol (KNAPP, SCHULTZ, A. 210, 188). — Nädelchen (aus Alkohol). — Oxydiert sich sehr leicht zu 3.6-Dichlor-2.5-dianilino-chinon.

2.5 - Diamino - dithiohydrochinon, 2.5 - Disulfhydryl - phenylendiamin - (1.4), 2.5-Dimercapto-phenylendiamin-(1.4) $C_6H_8N_2S_2=(H_2N)_2C_6H_2(SH)_2$. B. Aus "Phenylendiamin-(1.4)-bis-thiosulfonsäure-(2.5)" (s. u.) durch Reduktion mit Zinkstaub und Salzsäure (Green, Perkin, Soc. 83, 1209). — Blättchen. F: 178—181° (Zers.). Schwer löslich in siedendem Wasser. — HO·Zn· $C_6H_7N_2S_2$. Prismen. Wird an der Luft hellblau. Unlöslich in Wasser und Alkohol. — $C_6H_6N_2S_2$ + 2 HCl. Blättchen. Leicht löslich in Wasser, fast unlöslich in wäßr. Salzsäure.

2.5-Bis-phenylsulfon-phenylendiamin-(1.4) $C_{18}H_{16}O_4N_3S_2$, s. nebenstehende Formel. B. Aus 1 g p-Phenylendiamin (S. 61), 5 g Benzolsulfinsäure (Bd. XI, S. 2) und 2 g Eisessig, gelöst in 100—200 ccm Wasser, und überschüssiger Kaliumdichromatlösung unter Kühlung (HINSBERG, HIMMELSCHEIN, B. 29, 2027). — Gelbe Nadeln (aus Chloroform + Ligroin). $\dot{SO}_3 \cdot C_6H_5$ $\dot{SO}_3 \cdot C_6H_5$

"Phenylendiamin - (1.4) - bis - thiosulfonsäure - (2.5)" $C_8H_8O_8N_2S_4$, s. nebenstehende Formel. B. Man löst 54 g p-Phenylendiamin in 250 ccm Wasser und 268 g Eisessig und gibt zu der eisgekühlten Lösung schnell eine schwach alkal. Lösung von Natriumdichromat und Natriumthiosulfat, NH₂: NH₂ die durch Mischen einer mit Natronlauge neutralisierten Lösung von 133 g Natriumdichromat in 250 ccm Wasser mit einer Lösung von 500 g Natriumthiosulfat in 750 ccm Wasser erhalten wird (Green, Perkin, Soc. 83, 1204; vgl. Clayton Aniline Co., D. R. P. 120560; C. 1901 I, 1187). — Fast farblose, 2 Mol. Krystallwasser enthaltende Prismen (G., P.). Leicht löslich in kaltem Wasser (G., P.). — Wird von Zinkstaub und Salzsäure zu 2.5-Disulfhydryl-phenylendiamin-(1.4) (s. o.) reduziert (G., P.). Beim Erhitzen der wäßr. Lösung mit überschüssigen Mineralsäuren scheiden sich unter Entwicklung von schwefliger Säure und Bildung von Schwefelsäure hellgelbe bis farblose Salze des 2.5-Diamino-

dithiochinons (Syst. No. 1874) ab (G., P.). Wird durch salpetrige Säure in Benzo-bis-[1.2.3-thiodiazol] (Formel I) (Syst. No. 4707) verwandelt (G., P.). Läßt sich durch Behandeln mit Benzaldehyd und Erhitzen des Reaktionsproduktes auf 230—240° in Dibenzenyl-[2.5-diamino-dithiohydrochinon] (Benzo-bis-[2-phenyl-thiazol]) (Formel II) (Syst. No. 4634) überführen (G., P.). Liefert, mit Essigsäureanhydrid und etwas Schwefelsäure erhitzt, Diäthenyl-[2.5-diamino-dithiohydrochinon] (Benzo-bis-[2-methyl-thiazol]) (Syst. No. 4626) (G., P.). — $K_2C_6H_6O_6N_2S_4+2H_2O$. Gelbe prismatische Nadeln. Ziemlich leicht löslich in Wasser (G., P.).

2.5 - Bis - phenylsulfon - N.N - dimethyl - phenylendiamin - (1.4) $C_{20}H_{20}O_4N_2S_3 = [(CH_3)_2N](H_2N)C_2H_2(SO_2\cdot C_2H_3)_3$. B. Aus 2 Mol.-Gew. Benzolsulfinsäure (Bd. XI, S. 2) und 1 Mol.-Gew. p-Nitroso-dimethylanilin (Bd. XII, S. 677) in Gegenwart von überschüssiger Salzsäure (HINSEERG, B. 27, 3260). Aus p-Amino-dimethylanilin (S. 72), Benzolsulfinsäure und Kaliumdichromat (HIN., HIMMELSCHEIN, B. 29, 2028). — Gelbe haarförmige Krystalle (aus Eisessig). F: 223° (unkorr.) (HIN.). Unlöslich in Wasser, schwer löslich in Alkohol (HIN.).

"N.N-Dimethyl-phenylendiamin-(1.4)-bis-thiosulfonsäure-(2.5)" $C_0H_{12}O_0N_2S_4 = [(CH_2)_2N](H_2N)C_2H_3(S\cdot SO_2H)_2$. B. Aus N.N-Dimethyl-p-phenylendiamin in Essignäure durch gleichzeitige Einw. von Natriumthiosulfat und Natriumdichromat in Wasser (Green, Perkin, Soc. 88, 1212; vgl. Clayton Aniline Co., D. R. P. 120560; C. 1901 I, 1187). — Farblos. — Die essignaure Lösung gibt mit Nitrit keine Fällung (G., P.). — Kaliumsalz. Gelbe, durchsichtige Platten (G., P.).

2.6 - Diamino - 1.4 - dioxy - bensol, C₀H₂O₂N₃, s. nebenstehende Formel. B. Das Bishydrochlorid entsteht durch Erhitzen von 2.6-Dinitro-hydrochinon oder dessen Discottat (Bd. VI, B. 858) mit einem Gemisch von Zinnehlorür, Salzsäure und Zinn und Sättigen der Lösung mit Chlorwasserstoff (NIETZKI, PREUSSER, B. 19, 2247). — Oxydiert sich rasch an der Luft. — C₂H₂O₂N₃+2HCl. Nadeln. Äußerst leicht löslich in Wasser, schwer in kons. Salzsäure.

- 2.6-Bis-acetamino-hydrochinon $C_{10}H_{12}O_4N_2 = (CH_3 \cdot CO \cdot NH)_2C_8H_2(OH)_2$. B. Aus 2.6-Bis-acetamino-chinon (Syst. No. 1874) durch Zinnehlorür (NIETZKI, PREUSSER, B. 19, 2249). Nadeln (aus verd. Alkohol). F: ca. 240° (Zers.). Gibt in alkoh. Lösung mit FeCl₃ 2.6-Bis-acetamino-chinon.
- 2.6 Bis acetamino hydrochinon diacetat $C_{14}H_{16}O_6N_2 = (CH_3 \cdot CO \cdot NH)_2C_6H_2(U \cdot CO \cdot CH_3)_2$. B. Durch Erhitzen von salzsaurem 2.6-Diamino-hydrochinon mit Essigsäure-anhydrid und Natriumacetat (NIETZKI, PREUSSER, B. 19, 2248). Nadeln oder Blättchen (aus verd. Alkohol). F: 216°. Wenig löslich in Wasser oder Äther, leicht in Alkohol und Eisessig. Die Lösung in verdünnten Alkalien scheidet beim Einblasen von Luft 2.6-Bis-acetamino-chinon (Syst. No. 1874) aus.
- 3.5-Diamino-2-anilino-hydrochinon-diäthyläther, 2.5-Diäthoxy-4.6-diamino-diphenylamin $C_{16}H_{21}O_2N_3$, s. nebenstehende Formel. B. Durch Reduktion von 4.6-Dinitro-2.5-diäthoxy-diphenylamin (S. 790) mit Zinnehlorür und Salzsäure (NIETZKI, KAUFMANN, B. 24, 3825) in Gegenwart von Alkohol (K., Dissertation [Basel 1891], S. 12). Nadeln. F: 77° (N., K.; K.). $C_{16}H_{21}O_2N_3 + 2$ HCl. Nadeln (N., K.; K.).

$$\begin{array}{c} O \cdot C_2H_5 \\ \vdots \\ H_2N \cdot O \cdot C_2H_5 \\ O \cdot C_2H_5 \end{array}$$

- 2.3.5.6 Tetraamino 1.4 dioxy benzol, Tetraaminohydrochinon $C_6H_{10}O_2N_4$, s. nebenstehende Formel. B. Beim Erwärmen von 3.6-Dinitro-2.5-diamino-chinon mit salzsaurer Zinnchlorürlösung (NIETZKI, B. 20, 2117). Die freie Base färbt sich an der Luft schnell violett. Beim Kochen der alkal. Lösung mit Mangandioxyd entsteht Krokonsäure (Bd. VIII, S. 488). $C_2H_{10}O_2N_4 + 4$ HCl. Blättchen.
- 4. Aminoderivate von Dioxybenzolen $C_6H_4(OH)_2$, von denen es ungewiß ist, ob sie dem Brenzcatechin, Resorcin oder Hydrochinon zuzuordnen sind.
- 3.5 Diamino brenzcatechin 2 methyläther oder 2.6 Diamino hydrochinon-1-methyläther $C_7H_{10}O_2N_2=(H_2N)_2C_8H_3(OH)\cdot O\cdot CH_3$. B. Das Hydrochlorid entsteht bei der Reduktion des Pikrinsäuremethyläthers (Bd. VI, S. 288) mit Zinn und verdünnter Salzsäure bei höchstens 75° (Kohner, M. 20, 928). $C_7H_{10}O_2N_3+2HCl$. Nädelchen (aus 4% jeger Salzsäure), die bei längerem Verweilen an feuchter Luft sich in eine schmierige, gelbbraune Masse verwandeln und sich in wäßr. Lösung mit Eisenchlorid nicht färben. Gibt bei 24-stdg. Kochen mit Wasser, dem etwas Zinnchlorür zugesetzt ist, unter Einleiten von Kohlendioxyd, den 2-Methyläther des 1.2.3.5-Tetraoxy-benzols (Iretol, Bd. VI, S. 1154).
- 3.5 Diamino brenscatechin 2 äthyläther oder 2.6 Diamine hydrochinon-1-äthyläther $C_8H_{12}O_2N_8=(H_2N)_8C_8H_8(OH)\cdot O\cdot C_2H_5$. B. Bei der Reduktion des Pikrinsäureäthyläthers (Bd. VI, S. 290) mit Zinn und verd. Salzsäure (K., M. 20, 936). $C_8H_{12}O_2N_2+2HCl+H_2O$. Geht bei längerem Erhitzen mit Wasser in den 2-Äthyläther des 1.2.3.5-Tetraoxy-benzols (Bd. VI, S. 1154) über.
- 3.5 Bis acetamino brenscatechin 2 methyläther 1 acetat oder 2.6 Bis acetamino-hydrochinon-1-methyläther-4-acetat $C_{13}H_{16}O_5N_2=(CH_3\cdot CO\cdot NH)_2C_6H_3(O\cdot CH_3)\cdot O\cdot CO\cdot CH_3$. B. Durch Einw. von Acetanhydrid auf das aus Pikrinsäuremethyläther bei der Reduktion mit Zinn und Salzsäure entstehende Hydrochlorid $(H_2N)_2C_6H_2(OH)\cdot O\cdot CH_3+2HCl$ bei 100° (K., M. 20, 932). Nadeln (aus verdünntem Alkohol). F: 194—196° (unkorr.). Schwer löslich in kaltem Wasser, ziemlich leicht in heißem Wasser und Alkohol, sehr wenig in Benzol.

8-Chlor-1-amino-x.x-disulfhydryl-benzol, 3-Chlor-1-amino-x.x-dimercapto-benzol $C_6H_6NClS_2=H_2N\cdot C_6H_2Cl(SH)_8$. B. Bei der Reduktion des 3-Chlor-1-nitro-benzol-disulfonsäure-(x.x)-dichlorids (Bd. XI, S. 204) mit Zinn und Salzsäure (Allert, B. 14, 1436). — Das salzsaure Salz bildet fleischfarbene Krystallwarzen.

2. Aminoderivate der Dioxy-Verbindungen $\mathrm{C_7H_8O_2}$.

1. Aminoderivate des 2.4-Dioxy-1-methyl-benzols $C_7H_8O_2=CH_3\cdot C_9H_3(OH)_2$ (Bd. VI, S. 872). Vgl. auch No. 3, S. 795.

[2.4 - Dioxy - bensyl] - anilin $C_{13}H_{13}O_2N$, s. nebenstehende Formel. B. Aus Methylendianilin (Bd. XII, S. 184) und Resorcin (Bd. VI, S. 796)

CH2·NH·C6H5

-он

ÓН

in Benzol und wenig Aceton (BISCHOFF, FRÖHLICH, B. 39, 3968). — Stäbehen (aus Aceton + Ligroin). Färbt sich bei 150° braun, schmilzt bei 159°. Löslich in kaltem Aceton, Alkohol, Äther, in heißem Benzol und Xylol; unlöslich in Wasser und Ligroin.

- [2.4-Dioxy-bensyl]-p-toluidin C₁₄H₁₅O₂N = (HO)₂C₆H₂·CH₂·NH·C₆H₄·CH₂. B. Aus Methylen-di-p-toluidin (Bd. XII, S. 908) und Resorcin in siedendem Benzol (B., F., B. 39, 3971).—Stäbchen und Platten (aus Ligroin und Aceton). F: 165°. Löslich in Aceton, warmem Benzol, Alkohol, Chloroform, Ather und Xylol, schwer in Ligroin und Wasser. Färbt sich an der Luft gelb.
- [3.4-Dioxy-bensyl]-p-anisidin $C_{16}H_{15}O_5N=(HO)_5C_6H_5\cdot CH_2\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus Methylen-di-p-anisidin (S. 452) und Resorcin in Benzol (B., F., B. 39, 3975). Blättehen (aus Alkohol). Färbt sich bei 140° rot, schmilzt bei 149°. Löslich in Alkohol, warmem Aceton, Ather, Eisessig, schwer in Benzol und Ligroin.
- [3.4-Dioxy-bensyl]-p-phenetidin $C_{18}H_{17}O_2N = (HO)_2C_6H_3 \cdot CH_2 \cdot NH \cdot C_6H_4 \cdot O \cdot C_2H_5$.

 B. Aus Methylen-di-p-phenetidin (S. 452) und Resoroin in Benzol (B., F., B. 39, 3977).

 Blättchen (aus Aceton durch Ligroin gefällt). F: 156°. Löslich in Alkohol, Eisessig, schwer löslich in Ligroin, Äther, Benzol. Färbt sich an der Luft gelb.
- 2. Aminoderivate des 2.5-Dioxy-1-methyl-benzols $C_7H_8O_2=CH_3\cdot C_4H_3(OH)_2$ (Bd. VI, S. 874).
- 6 oder 4-Chlor-4 oder 6-amino-2.5-dioxy-1-methyl-benzol, 3 oder 5-Chlor-5 oder 3-amino-2-methyl-hydrochinon C₇H₈O₂NCl, Formel I oder II. I. B. Aus dem 5 oder 3-Chlor-3 oder 5-nitro-2-methyl-p-chinon (Bd. VII, S. 654) in Alkohol mit Zinn und Salvağura (ZINGUE J. m. [2] 63. 186: ZINGUE.

I.
$$\overset{\text{CH}_3}{\underset{\text{NH}_4}{\text{II.}}} \overset{\text{CH}_3}{\underset{\text{HO}}{\text{II.}}} \overset{\text{CH}_3}{\underset{\text{HO}}{\text{CI}}} \cdot \overset{\text{OH}}{\underset{\text{CI}}{\text{OH}}}$$

Salzsāure (ZINCKE, J. pr. [2] 63, 186; ZINCKE,
SCHNEIDER, EMMERICH, A. 328, 317). — Farblose Nadeln (aus verd. Alkohol), die sich leicht bräunlich färben. F: 160—162°. — Oxydiert sich in ätzalkalischer oder sodaalkalischer Lösung sofort an der Luft unter Dunkelfärbung. Bei der Einw. von Chlor entsteht 2.5.5-Trichlor-1-methyl-cyclohexen-(1)-trion-(3.4.6) (?) (Bd. VII, S. 863) (Z., SCH., E.). Eisenchlorid oxydiert zu der Verbindung C,H₆O₂NCl (s. u.) (Z., SCH., E.). — C,H₈O₂NCl + HCl. Nadeln oder Blättchen.

 $\label{eq:condition} \begin{array}{lll} \mbox{Verbindung C_7H$$$_6O_2$NCl, vielleicht 3-Chlor-5-oxy-4-methyl-o-chinon-imid-(1) $CH$$$_3$-$CCl$$$CC:NH$$$$$ oder 6-Chlor-4-oxy-3-methyl-o-chinon-imid-(2) $$$

- CH₃·CC(OH)—CH. CCl. B. Aus salzsaurem 6 oder 4-Chlor-4 oder 6-amino-2.5-dioxy-1-methyl-benzol (s. o.) in konzentrierter wäßriger Lösung und Eisenchlorid (Z., Sch., E., A. 328, 273, 318). Schwarze Nadeln oder Prismen (aus Alkohol). In Alkohol mit amethystroter Farbe löslich. Gibt mit konz. Schwefelsäure Blaufärbung. Alkali macht Ammoniak frei. Wird von Zinnchlorür wieder in das Chloraminodioxymethylbenzol zurückverwandelt.
- 6 oder 4-Chlor-4 oder 6-acetamino-2.5-bis-acetoxy-1-methyl-benzol $C_{13}H_{14}O_4NCl=CH_3\cdot CO\cdot NH\cdot C_6HCl(CH_3)(O\cdot CO\cdot CH_3)_8$. Aus 6 oder 4-Chlor-4 oder 6-amino-2.5-dioxy-1-methyl-benzol und Essigsäureanhydrid (Z., J. pr. [2] 63, 186; Z., Sch., E., A. 328, 318). Nadeln (aus verd. Eisessig). F: 197—198°. Leicht löslich in Alkohol und Eisessig, schwerer in Benzol und Benzin.
- 6 oder 4-Brom-4 oder 6-amino-2.5-dioxy-1-methyl-bensol, 8 oder 5-Brom-5 oder 3-amino-2-methyl-hydrochinon $C_7H_8O_2NBr = H_2N \cdot C_6HBr(CH_2)(OH)_2$. B. Aus 5 oder 3-Brom-3 oder 5-nitro-2-methyl-p-chinon (Bd. VII, 8. 654) in Alkohol mit Zinn und Salzsäure (ZINCKE, J. pr. [2] 63, 187; ZINCKE, EMMERICH, A. 341, 315). Nådelchen (aus verd. Alkohol). F: 148—149°. Leicht löslich in Alkohol, Äther, Eisesig, schwerer in Benzol (Z., E.). Gibt bei der Oxydation mit Eisenchlorid die Verbindung $C_2H_2O_2NBr$ (s. u.) (Z., E.). Hydrochlorid. Farblose Nadeln. Leicht löslich in Wasser (Z., E.).

Verbindung C.H.O.NBr, vielleicht 3-Brom-5-oxy-4-methyl-o-chinon-imid-(1) CH₈·C.CCBr—CO.C:NH oder 6-Brom-4-oxy-3-methyl-o-chinon-imid-(2)

- CH_s·C C(0H)—CH CBr. B. Aus salzsaurem 6 oder 4-Brom-4 oder 6-amino-2.5-dioxy-1-methyl-benzol (s. o.) und Eisenchlorid (Z., E., A. 841, 316). Metallglänzende schwarze Nadeln (aus Alkohol). Löslich in konz. Schwefelsäure mit blauer Farbe. Alkali spaltet Ammoniak ab. Wird von Zinnehlorür wieder in das Bromaminodioxymethylbenzol zurückverwandelt.
- 6 oder 4 Brom 4 oder 6 acetamino 2.5 bis acetoxy 1 methyl bensol $C_{12}H_{14}O_5NBr = CH_8 \cdot CO \cdot NH \cdot C_6HBr(CH_2)(O \cdot CO \cdot CH_2)_2$. B. Aus 6 oder 4-Brom-4 oder 6-amino-2.5-dioxy-1-methyl-bensol und Essignāureanhydrid (Z., J. pr. [2] 68, 187; Z., E.,

A. 341, 316). — Nadelbüschel (aus verd. Eisessig). F: 203—204°. Leicht löslich in Alkohol, Ather. Eisessig.

6 oder 4-Nitro-4 oder 6-amino-2.5-dioxy-1-methyl-benzol, 3 oder 5-Nitro-5 oder 3-amino-2-methyl-hydrochinon $C_7H_8O_4N_9=H_9N\cdot C_6H(NO_9)(CH_3)(OH)_9$. B. Bei der Reduktion von 1 Mol.-Gew. 4.6-Dinitro-2.5-dioxy-1-methyl-benzol (Bd. VI, S. 877), gelöst in alkoh. Salzsäure, mit 3 Mol.-Gew. Zinnchlorür (KEHRMANN, BRASCH, J. pr. [2] 39, 389). — C₂H₈O₄N₂ + HCl. Goldbraune Nadeln (aus heißer verdünnter Salzsäure).

N-[2.5-Dioxy-benzyl]-benzamid $C_{14}H_{13}O_3N$, s. nebenstehende Formel. B. Aus 1,1 g Hydrochinon (Bd. VI, S. 836) und 1,5 g N-Methylol-benzamid (Bd. IX, S. 207) in Alkohol bei Zusatz von 1 ccm konz. Salzsäure unter Abkühlung (Einhorn, Bischkopff, HO. Szelinski, A. 343, 237). — Kryställchen. F: 270° (Zers.). Sehr wenig löslich in den üblichen Lösungsmitteln. Leicht löslich in verd. Natronlauge.

 $CH_{\bullet} \cdot NH \cdot CO \cdot C_{\bullet}H_{\bullet}$ \mathbf{OH}

4.6-Diamino-2.5-dioxy-1-methyl-benzol, Diaminotoluhydrochinon C, H₁₀O₂N₂, s. nebenstehende Formel. B. Aus 4.6-Dinitro-2.5-dioxy-1-methylbenzol (Bd. VI, S. 877), überschüssigem Zinnchlorür und wäßr. Salzsäure (Kehrmann, Brasch, J. pr. [2] 39, 389). — $C_7H_{10}O_2N_2+2HCl$. Prismen mit Krystallwasser (aus Wasser). Sehr leicht löslich in Wasser und Salzsäure.

CH₂ H,N ٠он

- Aminoderivate des 2.4- oder des 2.6-Dioxy-1-methyl-benzols $C_2H_2O_2$ $CH_3 \cdot C_6H_3(OH)_2$. Vgl. auch No. 1, S. 793.
- 6 Amino 2.4 dioxy 1 methyl benzol oder 4-Amino - 2.6 - dioxy - 1 - methyl - benzol, Methylphloramin $C_7H_9O_2N$ Formel I oder II. B. OH H,N T. Aus 5 g 2-Methyl-phloroglucin (Bd. VI, S. 1109) und 20 ccm bei 0° gesättigter Ammoniaklösung in einer Wasserstoffatmosphäre bei gewöhnlicher Temperatur (FRIEDL, M. 21, 487). — Gelbliche Blättchen (aus Essigester). F: 149—150°; verändert sich sehr bald an der Luft (F.). — C₇H₂O₂N + HCl + H₂O. Gelbe Prismen (F.). Monoklin prismatisch (v. Lang, Z. Kr. 40, 631; vgl. Groth, Ch. Kr. 4, 388). F: 202° (Zers.) (F.).
- O.O.N Triacetylderivat $C_{13}H_{15}O_5N = CH_3 \cdot CO \cdot NH \cdot C_6H_2(CH_3)(O \cdot CO \cdot CH_3)_2$. B. Man erhitzt 1 Tl. Methylphloramin mit 15 Tln. Essigsäureanhydrid 5-Stdn. am Rückflußkühler (F., M. 21, 490). Nadeln (aus Alkohol). F: 165—166°. Leicht löslich in Essigester, warmem Wasser und Benzol.
- 3.5.6 Triamino-2.4-dioxy-1-mothyl-benzol CH, CH₃ oder 3.4.5-Triamino-2.6-dioxy-1-methyl-benzol H,N· \cdot OH но. \cdot OH C₇H₁₁O₈N₃, Formel I oder II. B. Durch Reduktion I. von 1-Methyl-cyclohexandion-(4.6 oder 2.6)-tri-·NH. H.N $\cdot \mathbf{NH}$. oxim-(2.3.5 oder 3.4.5) (S. 902, Berichtigung zu Bd. VII, S. 906) mit Zinnehlorür und Salzsäure (Weidel, Pollar, M. 21, 60). — $C_7H_{11}O_2N_3 + 2HCl$. Nadeln. Schmilzt nicht bei 350°.
- Aminoderivate des 3.4-Dioxy-1-methyl-benzols $C_2H_3O_2 = CH_3 \cdot C_0H_3(OH)_2$ (Bd. VI. S. 878).
- 4'-Oxy-5'-äthoxy-2.4.2'-trimethyl-diphenylamin C₁₇H₂₁O₂N, s. nebenstehende Formel. B. Aus 5-Athoxy-tolu- \cdot OH CH₂· chinon-[2.4-dimethyl-anil]-(1) (Bd. XII, S. 1117) bei der Reduktion mit Zinkstaub in Alkohol und wenig Eisessig (JACOBSON, FABIAN, A. 369, 38). — Sechsseitige Tafeln (aus Petroläther). F: 103°. Löslich in heißem Alkohol, in Äther, Benzol, mäßig leicht löslich in kaltem Petroläther und Alkohol. Leicht löslich in verd. Alkalien. — Wird in alkalischer oder alkoholischer Lösung durch Luftsauerstoff wieder zu 5-Äthoxy-toluchinon-[2.4-dimethyl-anil]-(1) oxydiert. Dieses entsteht schnell bei der Einw. von Chromsäuregemisch. Spaltet mit konz. Salzsäure bei 240° im geschlossenen Rohr asymm. m-Xylidin ab.
- 6-Amino-3.4-disulfhydryl-1-methyl-benzol, 6-Amino-3.4-dimercapto-1-methyl-benzol C,H,NS, s. nebenstehende Formel. B. Bei der Reduktion des 5.5'-Dinitro-4.4'-dimethyl-diphenyldisulfid-disulfochlorids-(2.2') (Bd. XI, S. 260) mit Zinn und Salzsäure (Fichter, Fröh-LICH, JALON, B. 40, 4422). — Aus der Lösung des Hydrochlorids fällt durch Alkali ein im Überschuß löslicher Niederschlag (FI., FR., J.). Oxydiert sich

in alkal. Lösung sehr leicht an der Luft zu der Verbindung $(C_7H_7NS_3)_X$ (s. u.) (FI., FR., J.). Beim Erhitzen des Hydrochlorids mit Athyljodid in alkoholisch-alkalischer Lösung entsteht 6-Amino-3.4-bis-āthylmercapto-1-methyl-benzol (s. u.) (FI., FR., J.). Gibt mit Pikrylchlorid (Bd. V. S. 273) 5.7- oder 6.8-Dinitro-3-amino-2-methyl-thianthren (Syst. No. 2917) (FRÖHLICH, B. 40, 2489). Gibt mit heißem Essigsäureanhydrid und Natriumacetat 6-[Diacetyl-amino]-3.4-bis-acetylmercapto-1-methyl-benzol (s. u.) (FR.; FI., FR., J.). Liefert, diazotiert und mit β -Naphthylamin gekuppelt, eine rote Azoverbindung, die in Schwefelalkalien löslich ist und aus dieser Lösung auf ungebeizter Baumwolle fixiert werden kann (FI., FR., J.). — Bleisalz. Orangerot (FI., FR., J.). — $C_7H_9NS_3 + HCl.$ Weiß; krystallinisch; beständig; nur in angesäuertem Wasser ohne Zersetzung löslich (FI., FR., J.).

Verbindung (C, H, NS_s)_x. B. Man versetzt die Lösung des salzsauren 6-Amino-3.4-disulfhydryl-1-methyl-benzols mit Ammoniak bis zur alkal. Reaktion und überläßt sie der Einw. der Luft (F1., F2., J., B. 40, 4423). — Gelbes amorphes Pulver. Unlöslich in den üblichen Lösungsmitteln. Wird aus der gelben Lösung in konz. Schwefelsäure durch Wasser unver-

ändert gefällt.

- 6-Amino-3.4-bis-äthylmercapto-1-methyl-bensol $C_{11}H_{17}NS_2 = H_2N \cdot C_0H_2(CH_3)(S \cdot C_2H_5)_2$. B. Durch Erhitzen des salzsauren 6-Amino-3.4-dimercapto-1-methyl-benzols mit Athyljodi in alkoholisch-alkalischer Lösung im geschlossenen Rohr auf 80° (FI., FB., J., B. 40, 4423). Dickflüssiges Öl von basischen Eigenschaften. Kp₂₅: 225—227°; zersetzt sich beim Erhitzen unter gewöhnlichem Druck. $2C_{11}H_{17}NS_2 + H_2SO_4$. Nadeln (aus schwefelsäurehaltigem Wasser).
- 6 Diacetylamino 3.4 bis acetylmercapto 1 methyl benzol $C_{18}H_{17}O_4NS_2 = (CH_3 \cdot CO)_2N \cdot C_8H_3(CH_2)(S \cdot CO \cdot CH_2)_2$. B. Durch 6-stdg. Erhitzen von salzsaurem 6-Amino-3.4-dimercapto-1-methyl-benzol mit Essigsäureanhydrid und Natriumacetat (FRÖHLICH, B. 40, 2491; FICHYER, FRÖHLICH, JALON, B. 40, 4423). Bräunliche Täfelchen (aus Toluol + Petroläther). F: 114,5°; unlöslich in Petroläther und Wasser, sonst leicht löslich (FI., FR., J.). Wird bei längerem Kochen mit Wasser teilweise verseift; löst sich beim Kochen mit verd. Natronlauge unter Verseifung der Acetylmercaptogruppen glatt auf (FI., FR., J.).
- 3.4 Dioxy benzylamin 1) C₇H₂O₂N, s. nebenstehende Formel. B. Aus N-[3.4-Dioxy-benzyl]-chloracetamid (s. u.) beim Kochen mit verd. Salzsäure (EINHORN, MAUERMAYER, A. 343, 291). C₇H₂O₂N + HCl. Nadeln (aus Methylalkohol). F: 169°. Sehr leicht löslich in Wasser.
- 3.4-Dimethoxy-benzylamin, Veratrylamin $C_9H_{13}O_9N=(CH_3\cdot O)_9C_9H_3\cdot CH_3\cdot NH_2$. B. Aus 3.4-Dimethoxy-benzaldoxim (Bd. VIII, S. 259) mit Natriumamalgam und Essigsäure (JULIUSBERG, B. 40, 120) oder besser mit Zinkstaub und $50^9/_9$ iger Essigsäure (Rügheimer, Schön, B. 41, 18). Stark basisches Ol. Kp₁₄: ca. 160^9 ; wenig flüchtig mit Wasserdämpfen (R., Sch.). $C_9H_{13}O_9N+H$ Cl. Krystalle (aus Alkohol). F: $257-258^9$ (J.).
- 8.4 Dimethoxy bensylaminoacetaldehyd diäthylacetal, Veratrylaminoacetal C₁₂H₂₂O₄N = (CH₂·O)₂C₄H₃·CH₂·NH·CH₂·CH(O·C₂H₄)₂. B. Aus Veratrylamin und Chloracetal (Bd. I, S. 611) in siedendem Wasserbade (Rügheimer, Schön, B. 41, 18). Kp₁₁: 197° (R., Sch., B. 42, 2376). Beim Eintragen von 2 Tln. Veratrylaminoacetal in ein Gemisch von 4,5 Tln. konz. Schwefelsäure und 2 Tln. Arsensäure entsteht 6.7-Dimethoxy-isochinolin (Syst. No. 3137) (R., Sch., B. 42, 2376).
- N-[3.4-Dioxy-bensyl]-chloracetamid ¹) C₂H₁₀O₃NCl = (HO)₂C₄H₃·CH₂·NH·CO·CH₄Cl. B. Zur Lösung von 26 g Brenzcatechin und 30 g N-Methylol-chloracetamid (Bd. II, S. 200) in 100 g Wasser gibt man unter Kühlung 10 ccm konz. Salzsäure (Einhorn, Mauermayer, A. 343, 290). Prismen (aus Wasser). F: 140—141°. Sehr leicht löslich in Alkohol, ziemlich leicht in heißem Wasser, sehr wenig in Ather, Chloroform und Benzol. Liefert beim Kochen mit verd. Salzsäure 3.4-Dioxy-benzylamin (s. o.).
- N-[4-Oxy-3-methoxy-bensyl]-chloracetamid, N-Vanillyl-chloracetamid 1) $C_{10}H_{12}O_3NCl=(HO)(CH_3\cdot O)C_0H_3\cdot CH_2\cdot NH\cdot CO\cdot CH_3Cl.$ B. Zur Lösung von 5 g Guajacol und 5 g N-Methylol-chloracetamid (Bd. II, S. 200) in 15 ccm Alkohol gibt man unter Kühlung 2 ccm Schwefelsäure (El., Mau., A. 343, 292). Nadeln (aus Wasser). F: 116 bis 119 6. Sehr leicht löslich in Alkohol, Chloroform, ziemlich schwer in Wasser.
- N-[8.4-Dioxy-bensyl]-bensamid 1) $C_{14}H_{12}O_8N = (HO)_2C_6H_3 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_3$. B. Man trägt unter Kühlung 1 ocm kons. Salzsäure in die Lösung von 1,1 g Brenzcatechin und 1,5 g N-Methylol-benzamid (Bd. IX, S. 207) in Alkohol ein und läßt mehrere Tage stehen (Ennhorn, Bischkopff, Szelinski, A. 343, 235). Nädelchen (aus $50^6/_6$ iger Essigsäure) F: 270 6 (Zers.). Schwer löslich in Wasser. Leicht löslich in Alkali.

¹) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von JONES, PYMAN, Soc. 127 [1925], 2589.

N-[4-Oxy-3-methoxy-bensyl]-bensamid, N-Vanillyl-bensamid¹) $C_{15}H_{15}O_3N=(HO)(CH_3\cdot O)C_6H_3\cdot CH_2\cdot NH\cdot CO\cdot C_6H_3$. B. Man trägt unter Kühlung 1 ccm konz. Salzsäure in die Lösung von 2,5 g Guajacol und 3 g N-Methylol-benzamid in Alkohol ein, läßt einige Tage stehen und erwärmt kurz auf dem Wasserbad (El., Bl., Sz., A. 343, 235). — Nadeln (aus Benzol) oder Tafeln (aus Alkohol). F: 148°. Unlöslich in Wasser, ziemlich leicht löslich in Alkohol, Äther und Benzol.

N-[3-Methoxy-4-acetoxy-bensyl]-bensamid $C_{17}H_{17}O_4N=(CH_3\cdot CO\cdot O)(CH_3\cdot O)C_8H_3\cdot CH_1\cdot NH\cdot CO\cdot C_9H_5$. B. Durch 20 Minuten langes Kochen von 1 g N-[4-Oxy-3-methoxy-benzyl]-benzamid und 1 g trocknem Natriumacetat mit 10 g Essigsäureanhydrid (El., Bl., Sz., A. 343, 236). — Tafeln (aus Essigester). F: 161°. Leicht löslich in Alkohol, Benzol und Chloroform.

Diäthylaminoessigsäure - [3.4 - dioxy - benzylamid], [N.N - Diäthyl - glycin] - [3.4-dioxy-benzylamid] $C_{13}H_{20}O_3N_2 = (HO)_2C_8H_3 \cdot CH_2 \cdot NH \cdot CO \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 10 g N-[3.4-Dioxy-benzyl]-chloracetamid (S. 796) und 7 g Diäthylamin beim Erwärmen in 30 g Essigester (Einhorn, Mauermayer, A. 343, 291). — Öl. — Metaborat $C_{13}H_{20}O_3N_2 + HBO_2$. Amorphes weißes Pulver. Zersetzt sich ohne zu schmelzen.

5. Aminoderivate des 3.5-Dioxy-1-methyl-benzols $C_7H_8O_2=CH_3\cdot C_6H_3(OH)_2$ (Bd. VI, S. 882).

2-Amino-3.5-dioxy-1-methyl-benzol, β -Aminoorein $C_7H_9O_2N$, s. nebenstehende Formel. Zur Konstitution vgl. Henrich, B. 36, 885. — B. CH₃ Bei allmählichem Eintragen von 10 g der a-Form oder der β -Form des Nitrosooreins (Bd. VIII, S. 264—265) in die Lösung von 40 g Zinnehlorür in 100 ccm konz. Salzsäure bei 40° (Henrich, M. 18, 164; B. 36, 885). Durch Reduk-·NH₂ tion von 2-Nitro-3.5-dioxy-1-methyl-benzol (β-Nitroorcin, Bd. VI, S. 889) mit Zinnehlorür und Salzsäure (HENRICH, W. MEYER, B. 36, 888). Beim Erhitzen von 3-Amino-4.6-dioxy-2-methyl-benzoesäure-äthylester (Aminoorsellinsäure-äthylester, Syst. No. 1912) mit Salzsäure auf 160° (HENRICH, DORSCHKY, B. 37, 1420). Beim Erwärmen von 3-Benzolazo-4.6-dioxy-2-methyl-benzoesaure (Benzolazoorsellinsaure, Syst. No. 2144) mit Zinnchlorur und Salzsäure (H., D., B. 37, 1423). — Nädelchen. Sehr unbeständig (H., M. 18, 165). — Oxydiert sich in alkal. Lösung an der Luft unter Entwicklung von Ammoniak zu violettroten bezw. rotgelben Farbstoffen (H., B. 30, 1109; M. 19, 493; vgl. H., W. M., C. 1903 I, 24, 25). Die Lösung des Hydrochlorids färbt sich beim Zutropfen von Eisenchloridlösung zuerst dunkelbraunrot, dann hellbraungelb; von Kaliumdichromat wird sie granatrot gefärbt (H., W. M., B. 36, 888). Die Einw. von Chlorkalk auf das Hydrochlorid führt zu der Verbindung C, H, O, Cl, (s. u.) und der Verbindung C₇H₈O₄Cl₂ (s. u.). (H., W. M., D., B. 37, 1427). Bei der Einw. von Brom auf das Hydrochlorid in Eisessiglösung entsteht 4.6-Dibrom-2-amino-3.5-dioxy-1-methyl-benzol (S. 798) (H., W. M., D., B. 37, 1426). Gibt beim Kochen mit Essigsäureanhydrid und Natriumacetat 2-Acetamino-3.5-diacetoxy-1-methyl-benzol (S. 798), (H., B. 30, 1106; M. 19, 508). Beim Kochen mit Benzoylchlorid entsteht 6-Benzoyloxy-4-methyl-2-phenylbenzoxazol $C_6H_5 \cdot CO \cdot O \cdot C_6H_2(CH_3) < N > C \cdot C_6H_5$ (Syst. No. 4226) (H., B. 30, 1104; M. 19, 483). — $C_7H_9O_3N + HCl + 2H_9O$ (H., M. 18, 164). Rhomboederähnliche Krystalle; in verd. Salzsäure (2:3) weniger löslich als das salzsaure 4-Amino-3.5-dioxy-1-methyl-benzol (H., W. M., B. 36, 888). — $C_7H_9O_3N + H_9SO_4$ (H., W. M., D., B. 37, 1425). — Neutrales Oxalat $2C_7H_9O_2N + C_2H_2O_4$. Prismatische Nadeln (H., W. M., D., B. 37, 1425). — Pikrat $C_7H_9O_3N + C_4H_3O_7N_3 + H_9O$. Nadeln. Wird bei 105° wasserfrei; färbt sich bei 140° dunkel, wird bei 190° zersetzt (H., W., M., D., B. 37, 1425). — Ferrocyan wasserstoffsaures Salz $4C_7H_9O_2N + 4HCN + Fe(CN)_2$ (H., W. M., D., B. 37, 1425).

Verbindung C₇H₇O₄Cl₃. B. Bei der Einw. von Chlorkalk auf salzsaures 2-Amino-3.5-dioxy-1-methyl-benzol, neben anderen Produkten (Henrich, W. Meyer, Dorschky, B. 37, 1427). — Nadeln. F: 97°. Leicht löslich in Äther, Benzol, schwerer in Ligroin. Wird beim Kochen mit Wasser zersetzt. In Soda und Ammoniak mit roter Farbe löslich.

Verbindung C,H₆O,Cl₈. B. Bei der Einw. von Chlorkalk auf salzsaures 2-Amino-3.5-dioxy-1-methyl-benzol, neben anderen Produkten (Henrich, W. Meyer, Dobschky, B. 87, 1427). — Krystalle (aus Benzol + Ligroin). F: 117°. Leicht löslich in Alkohol, Äther, Benzol, schwerer in Ligroin, löslich in kaltem Wasser. In Alkali unter Braunfärbung löslich.

2-Amino-5-oxy-3-methoxy-1-methyl-benzol $C_8H_{11}O_2N = H_2N \cdot C_6H_3(CH_3)(OH) \cdot O \cdot CH_3$. B. Durch Reduktion von 2-Nitro-5-oxy-3-methoxy-1-methyl-benzol (Bd. VI, S. 889) in Alkohol mit Zinnchlorür und Salzsäure (Henrich, Nachtigal, B. 36, 893). — Beim Hinzufügen von Natronlauge zu der wäßr. Lösung des Hydrochlorids scheidet sich zunächst die freie Base aus, die aber sofort wieder gelöst wird; in der alkal. Lösung oxydiert sich die

¹⁾ Vgl. die Anm. auf S. 796.

798

Base sehr schnell, wobei sich die Lösung zunächst braun färbt und dann bordeauxrote Flocken abscheidet (H., N.). Gibt in alkal. Lösung bei 4-tägigem Stehen an der Luft das Aminomethoxydimethylphenoxazon der Formel I oder der Formel II (s. bei der entsprechenden Leukoverbindung, Syst. No. 4382) (Henrich, Roters, B. 41, 4213). Durch Oxydation des

salzsauren Salzes mit Kaliumdichromat und Schwefelsäure bei 12° entsteht 6-Methoxytoluchinon (Bd. VIII, S. 264) (H., N.). Liefert bei der Spaltung mit konz. Salzsäure salzsaures 2-Amino-3.5-dioxy-1-methyl-benzol (S. 797) (H., N.). — $C_8H_{11}O_2N + HCl$. Nadeln. In verd. Salzsäure weniger löslich als das salzsaure 2-Amino-3-oxy-5-methoxy-1-methylbenzol (s. u.) (H., N.).

- 2-Amino-3-oxy-5-methoxy-1-methyl-benzol C₆H₁₁O₅N=H₂N·C₄H₂(CH₂)(OH)·O·CH₃. Zur Konstitution vgl. Henrich, Nachtigall, B. 36, 892. B. Aus 5-Methoxy-3-methyl-benzochinon-(1.2)-oxim-(2) (Bd. VIII, S. 263) oder aus 5-Methoxy-3-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzochinon-(1.2)-oxim-(2)-methyl-benzol (Bd. VIII, S. 263) durch Reduktion mit Zinnchlorür und Salzsäure (H., 1-methyl-benzol (Bd. VI, S. 889) durch Reduktion mit Zinnchlorür und Salzsäure (H., N.). Krystalle. Löslich in Natronlauge (H., M. 18, 182). Reduziert ammoniakalische Silberlösung (H., M. 18, 183). Bei der Oxydation mit Luft in alkal. Lösung entsteht das Phenoxazon C₁₅H₁₄O₃N₃ nebenstehender Formel (s. bei der entsprechenden Leukoverbindung; Syst. No. 4382) (H., B. 30, 1107; Henrich, Schierenberg, J. pr. [2] 70, 365). Das salzsaures Salz liefert beim Erhitzen mit konz. Salzsäure auf O: CH₃ NH₃ 160° salzsaures 2-Amino-3.5-dioxy-1-methyl-benzol (H., N.). NH₃
- 2-Formamino-3.5-dioxy-1-methyl-benzol C₈H₂O₂N = OHC·NH·C₆H₂(CH₃)(OH)₂.

 B. Man erhitzt 5 g salzsaures 2-Amino-3.5-dioxy-1-methyl-benzol mit 3 g Natriumformiat und 5 g wasserfreier Ameisensäure 2—3 Stunden zum Sieden (H., M. 19, 514). Krystalle (aus Eisessig). F: 195—198°. Bei 180° Sinterung, bei 208° Zersetzung. Löslich in heißem Eisessig, leicht löslich in Alkohol, ziemlich schwer in Äther, Benzol und Chloroform. Geht bei der trocknen Destillation in 6-Oxy-4-methyl-benzoxazol (Syst. No. 4222) über.
- 2-Acetamino-3-oxy-5-methoxy-1-methyl-benzol $C_{10}H_{12}O_3N=CH_3\cdot CO\cdot NH\cdot C_0H_3(CH_2)(OH)\cdot O\cdot CH_3$. B. Durch Einw. von Essigsäureanhydrid auf 2-Amino-3-oxy-5-methoxy-1-methyl-benzol (s. o.) (H., B. 32, 3420; M. 22, 244). Nädelchen (aus Alkohol). F: 156—157°. Löslich in verd. Sodalösung.
- 2-Acetamino-5-methoxy-3-acetoxy-1-methyl-bensol $C_{12}H_{15}O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_6(CH_3)\cdot O\cdot CO\cdot CH_3$. Beim Kochen von salzsaurem 2-Amino-3-oxy-5-methoxy-1-methyl-benzol mit Essigsäureanhydrid und Natriumscetat (H., B. 80, 1106). Blätter (aus verdünntem Alkohol). F: 108—109°. Leicht löslich in Eisessig, schwer in kaltem Alkohol und Petroläther.
- 2-Acetamino-3.5-diacetoxy-1-methyl-bensol $C_{12}H_{18}O_5N=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)(O\cdot CO\cdot CH_2)_8$. Beim Kochen von salzsaurem 2-Amino-3.5-dioxy-1-methyl-benzol mit Essigsaurenhydrid und Natriumacetat (H., B. 30, 1106; M. 19, 508). Blättchen (aus verd. Alkohol). F: 98—99°. Leicht löslich in Alkohol, ziemlich in heißem Wasser, schwer in kaltem Patroläther.
- 2-Bensamino-3-oxy-5-methoxy-1-methyl-bensol $C_{15}H_{15}O_2N = C_2H_5 \cdot CO \cdot NH \cdot C_0H_4(CH_4) \cdot (OH) \cdot O \cdot CH_4$. B. Aus 1 Mol.-Gew. 2-Amino-3-oxy-5-methoxy-1-methyl-benzol mit 2 Mol.-Gew. Benzoylchlorid und überschüssiger 10% iger Natronlauge (H., M. 22, 247).

 Nadeln. F: 219—220 (Henrich, Nachtigall, B. 36, 891). Sehr wenig löslich in kaltem Alkohol, Äther und Benzol (H.).
- 2-Benzamino-8.5-dibensoyloxy-1-methyl-benzol $C_{28}H_{21}O_{4}N=C_{4}H_{5}\cdot CO\cdot NH\cdot C_{4}H_{5}(CH_{2})(O\cdot CO\cdot C_{4}H_{5})_{2}$. B. Aus salzsaurem 2-Amino-3.5-dioxy-1-methyl-benzol und Benzoylchlorid in alkal. Lösung (H., M. 19, 495). Nadeln (aus absol. Alkohol). F: 165—166°. Sehr leicht löslich in Chloroform, leicht in Benzol, schwer in Äther. Durch Destillation und darauffolgende Verseifung entsteht 6-Oxy-4-methyl-2-phenyl-senzoxazol (Syst. No. 4226).
- 4.6 Dibrom 2 amino 3.5 dioxy 1 methyl benzol $C_7H_7O_8NBr_8 = H_8N \cdot C_8Br_8(CH_2)(OH)_8$. B. Bei der Einw. von Brom auf salzsaures 2-Amino-3.5-dioxy-1-methylbenzol in Eisessiglösung (Henrich, W. Meyer, Dorschky, B. 37, 1426). $C_7H_7O_8NBr_8 + HCl$. Mäßig löslich in kaltem Wasser.

- 4-Amino-8.5-dioxy-1-methyl-benzol, a-Aminoorcin $C_7H_9O_2N$, s. nebenstehende Formel. B. Durch Reduktion von 4-Nitro-3.5-dioxy-1-methyl-benzol (a-Nitroorcin, Bd. VI, S. 889) mit Zinnehlorür und Salzsäure in der Riedehitze (Henrich, W. Meyer, B. 36, 888). Das salzsaure Salz gibt mit überschüssiger Natronlauge zuerst eine grünliche Färbung, dann dunkelgrüne Schlieren und schließlich eine dunkelbraungelbe Flüssigkeit.

 Das salzsaure Salz gibt mit Kaliumdichromatlösung eine grüngelbe Färbung, die in Braungelb übergeht, mit Eisenchlorid eine hellgelbe, dann hellbraungelbe Färbung. $C_7H_9O_4N+HCl$. Weiße, schief abgeschnittene Nadeln. Ist in verd. Salzsäure (2:3) leichter löslich als das salzsaure 2-Amino-3.5-dioxy-1-methyl-benzol.
- 2.4 Diamino 3.5 dioxy 1 methyl benzol, Diaminoorein aus Orsellinsäureäthylester $C_7H_{10}O_2N_2$, s. nebenstehende Formel. B. Man kombiniert Orsellinsäureäthylester (Bd. X, S. 414) mit 2 Mol.-Gew. Diazobenzol zu Bis-benzolazo-orsellinsäure-äthylester (Syst. No. 2144), spaltet diesen Howard urch Reduktion mit Zinnchlorür und Salzsäure und erhitzt das Spaltungsprodukt mit konz. Salzsäure auf 160° (Henrich, B. 37, 1410). Entsteht auch durch Reduktion von Dinitrosoorcin (Bd. VII, S. 887) mit Zinnchlorür und Salzsäure (H., B. 37, 1412). $C_7H_{10}O_2N_2 + 2$ HCl. Prismatische Krystalle. Zeigt in wäßr. Lösung folgende Farbenreaktionen: Eisenchlorid erzeugt eine blaue, bald violett werdende Farbe; Dichromat erzeugt eine blaue, bald verschwindende Farbe; Chlorkalk färbt die angesäuerte Lösung vorübergehend blau; Natriumnitrit färbt die angesäuerte Lösung vorübergehend blau; Ammoniak bewirkt schmutzig violette Fällung; Natronlauge färbt bei Gegenwart von Luftsauerstoff kornblumenblau.
- 2.6 Diamino 3.5 dioxy 1 methyl benzol, Diaminoorcin aus Paraorsellinsäure $C_7H_{10}O_2N_2$, s. nebenstehende Formel. B. Man kombiniert Pararosellinsäure (Bd. X, S. 422) mit 2 Mol.-Gew. Diazobenzol zu einem H_2N : NH2 Disazokörper und erhitzt diesen mit Zinnchlorür und Salzsäure (Henrich, HO: OH B. 37, 1413). $C_7H_{10}O_2N_2+2$ HCl. Nadelförmige Krystalle. Zeigt in wäßr. Lösung folgende Farbenreaktionen: Eisenchlorid erzeugt eine hochrote, ziemlich beständige Färbung; Dichromat färbt ähnlich; Nitrit erzeugt in der angesäuerten Lösung eine bräunliche, bald dunkelgrün werdende Färbung; Chlorkalklösung erzeugt in der angesäuerten Lösung eine Trübung; Natronlauge erzeugt zuerst eine gelbrote Färbung, beim Schütteln wird die Flüssigkeit rot.
- 2.4.6 Triamino 3.5 dioxy 1 methyl benzol, Triaminoorcin C₇H₁₁O₂N₃, s. nebenstehende Formel. B. Bei der Reduktion von Trinitroorcin (Bd. VI, S. 890) mit Zinn und Salzsäure (STENHOUSE, A. 167, 170).

 Aus 3.5-Diamino-6-oxy-2-methyl-p-chinon-imid-(1) (Syst. No. 1878) durch H₂N·OH Natriumamalgam oder in Ammoniumsulfhydrat durch Schwefelwasserstoff (St.). Krystallpulver. Geht an der Luft sofort in 3.5-Diamino-6-oxy-2-methyl-p-chinon-imid-(1) über. Salzsaures Salz. Zerfließliche Nadeln.
- 6. Aminoderivate des 2.1¹ Dioxy 1 methyl benzols (2 Oxy benzyl alkohols) $C_7H_8O_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot OH$ (Bd. VI, S. 891).
- 4-p-Toluidino-2-oxy-benzylalkohol, 3'-Oxy4-methyl-4'-oxymethyl-diphenylamin C₁₄H₁₅O₂N,
 s. nebenstehende Formel. B. Man läßt eine Lösung von
 10 g 3'-Oxy-4-methyl-diphenylamin (S. 412) und 5 g konz.
 CH₃··NH····CH₂·OH
 2 Alkohol in ein Gemisch von 4,7 ccm 32°/oiger Formaldehydlösung und 40 g
 2 Alkohol langsam einfließen (GNEHM, VEILLON, J. pr. [2] 65, 76). Eigelbes amorphes
 3 Pulver. Schmilzt bei 300° noch nicht. In allen gewöhnlichen Mitteln unlöslich. Alkoholisches
 3 Kali löst mit hellbrauner Farbe. Läßt sich in 4.4'-Di-p-toluidino-2.2'-dioxy-diphenylmethan
 3 (S. 812) überführen.

5-Amino-2-oxy-benzylalkohol, Aminosaligenin C₇H₂O₂N, s. nebenstehende Formel. B. Aus 5-Nitro-2-oxy-benzylalkohol (Bd. VI, S. 895) durch Reduktion mit Zinn und Salzsäure (Bayer & Co., D.R.P. 148977; C. 1904 I, 699; vgl. ΕΙCHENGEÜN, C. 1902 II, 894). — Blättchen. H₂N. Schmilzt bei 135—142° unter Bräunung (B. & Co., D.R.P. 148977). —

Das Hydrochlorid wird unter dem Namen "Edinol" als photographischer Entwickler benutzt (E.; B. & Co., D.R.P. 149123; C. 1904 I, 701).

Methyl-[5-amino-2-oxy-benzyl]-äther $C_9H_{11}O_4N=H_4N\cdot C_6H_4(OH)\cdot CH_4\cdot O\cdot CH_3$. B. Man reduziert den durch Kochen von 5-Nitro-2-oxy-benzylchlorid (Bd. VI, S. 367) mit Methylalkohol in Gegenwart von Soda oder Calciumcarbonat erhältlichen Methyl-[5-nitro-2-oxy-benzyl]-äther (vgl. Bayer & Co., D.R.P. 136680; C. 1902 II, 1439) durch Kochen seiner wäßrig-alkoholischen Lösung mit Zinkstaub (Bayer & Co., D.R.P. 148977; C. 1904 I, 699). — Farblose Blättchen. F: 124—126°; schwer löslich in kaltem Wasser, leicht in heißem Wasser, Alkohol, ziemlich schwer in Äther (B. & Co., D.R.P. 148977). — Wurde als photographischer Entwickler vorgeschlagen (B. & Co., D.R.P. 157667; C. 1905 I, 639).

Äthyl-[5-amino-2-oxy-bensyl]-äther $C_9H_{18}O_2N=H_8N\cdot C_6H_8(OH)\cdot CH_2\cdot O\cdot C_2H_5$. B. Man reduziert den durch Kochen von 5-Nitro-2-oxy-benzylchlorid mit Alkohol in Gegenwart von Soda oder Calciumcarbonat erhältlichen Äthyl-[5-nitro-2-oxy-benzyl]-äther (vgl. Bayer & Co., D.R.P. 136680; C. 1902 II, 1439) durch Kochen seiner wäßrig-alkoholischen Lösung mit Zinkstaub (Bayer & Co., D.R.P. 148977; C. 1904 I, 699). — Blättchen. F: 76—78°. Leicht löslich in Alkohol, Äther und Wasser.

[5-Amino-2-oxy-benzyl]-acetat $C_0H_{11}O_3N=H_2N\cdot C_0H_3(OH)\cdot CH_3\cdot O\cdot CO\cdot CH_3$. B. Aus [5-Nitro-2-oxy-benzyl]-acetat (Bd. VI, S. 896) durch Reduktion in verd. Essigsäure mit Zinkstaub (Bayer & Co., D. R. P. 148977; C. 1904 I, 699). — Blättchen oder Nadeln. F: 136° bis 137°; leicht lösilch in heißem Wasser und Alkohol, ziemlich schwer in Äther (B. & Co., D. R. P. 148977). — Wurde als photographischer Entwickler vorgeschlagen (B. & Co., D. R. P. 157667; C. 1905 I, 639).

7. Aminoderivate des 3.1¹ - Dioxy - 1 - methyl - benzols (3 - Oxy - benzyl - alkohols) $C_7H_4O_2 = HO \cdot C_6H_4 \cdot CH_2 \cdot OH$ (Bd. VI, S. 896).

Polymerer Anhydro - [4 - amino - 3 - methoxy - benzylalkohol] $(C_8H_9ON)_x = \begin{bmatrix} CH_3 \cdot O \cdot C_6H_3 \\ CH_2 \end{bmatrix}$. B. Bei Einwirkung der äquivalenten Menge o-Anisidin (S. 359) auf Formaldehyd in Gegenwart von Säuren (Kalle & Co., D. R. P. 96852; C. 1898 II, 159). — Farbloser, körniger Niederschlag, dessen Schmelzpunkt in rohem Zustande bei ca. 160°, in gereinigtem Zustande bei 205° liegt. Unlöslich in Alkohol und Äther, sehr wenig löslich in Benzol. Die Lösung in verd. Säuren ist intensiv gelb. Nitritlösung erzeugt einen dicken, farblosen Niederschlag eines Nitrosamins.

Polymerer Anhydro - [4 - amino - 3 - äthoxy - bensylalkohol] $(C_9H_{11}ON)_x = \begin{bmatrix} C_2H_5 \cdot O \cdot C_9H_3 \\ CH_5 \end{bmatrix}_x$. B. Aus aquimolekularen Mengen o-Phenetidin (S. 359) und Formaldehyd bezw. Methylal in Gegenwart von Säuren (Kalle & Co., D.R.P. 96852; Frdl. 5, 93; C. 1898 II, 159). — Farbloser Niederschlag.

- 8. Aminoderivat des 4.11-Dioxy-1-methyl-benzols (4-Oxy-benzyl-alkohols) $C_7H_4O_1 = HO \cdot C_4H_4 \cdot CH_2 \cdot OH$ (Bd. VI, S. 897).
- 3 Amino 4 oxy bensylalkohol C₇H₉O₂N, s. nebenstehende Formel.

 B. Aus 3-Nitro-4-oxy-bensylalkohol (Bd. VI, S. 901) durch Kochen mit Zinkstaub in verd. Alkohol (BAYER & Co., D.R. P. 148977; C. 1904 I, 699). Nadeln. Schmilzt unscharf bei 112—114°. Schwer löslich in Wasser, ziemlich schwer in Äther, löslich in Alkohol.

 CH₂·OH

3. Aminoderivate der Dioxy-Verbindungen $C_{e}H_{10}O_{2}$.

- 1. Aminoderivate des 3.4-Dioxy-1-āthyl-benzols $C_8H_{10}O_2=C_2H_8\cdot C_6H_3(OH)_2$ (Bd. VI, 8. 902).
- β [3.4 Dimethoxy phenyl] äthylamin, Homoveratrylamin $C_{10}H_{10}O_2N$, s. nebenstehende Formel. B. Aus Dimethylätherhydrokaffeesäureamid (3.4-Dimethoxy-hydrozimtsäure-amid, Bd. X, S. 424) beim Eintragen in eine wäßr. Kaliumhypobromitlösung auf dem Wasserbade (Pioter, Finkelstein, C. e. 148, 926; B. 42, 1986; C. 1910 I, 1621). Hydrochlorid. Zerfließliche Nadeln (aus Alkohol). Chloroplatinat, Orangerote Nadeln (aus Wasser). Zersetzt sich bei 173—174°.

N-[β-(3.4-Dimethoxy-phenyl)-äthyl]-[3.4-dimethoxy-phenylessigsäure-amid], Homoveratroylhomoveratrylamin C₂₀H₂₅O₅N = (CH₂·O)₂C₆H₃·CH₂·CH₂·NH·CO·CH₂·C₆H₃(O·CH₃)₈. B. Aus Homoveratrylamin und Homovertroylchlorid (Bd. X, S. 409) in alkal. Lösung (Pictet, Finkelstein, C. r. 148, 926; B. 42, 1986; C. 1910 I, 1621). — Nadeln (aus verd. Essigsäure oder aus Chloroform + Petroläther). F: 124°. Unlöslich in Petroläther, ziemlich leicht löslich in warmem Wasser, sehr leicht in Chloroform, Eisessig. Leicht löslich in konz. Salzsäure, fällt mit Wasser daraus unverändert aus; farblos löslich in kalter konzentrierter Schwefelsäure; die Lösung wird beim Erwärmen zuerst gelb, dann braun. — Gibt beim Kochen mit 2 Tln. Phosphorsäureanhydrid in 10 Tln. Xylol Dihydropapaverin (Syst. No. 3176).

2. Aminoderivat des 2.4- oder des 2.6- oder des 3.5-Dioxy-1-āthylbenzols $C_8H_{10}O_2=C_2H_5\cdot C_6H_3(OH)_2$.

x-Amino-x-oxy-x-äthoxy-1-äthyl-benzol, x-Amino-x-äthyl-resorcin-mono-äthyläther $C_{10}H_{15}O_2N=H_2N\cdot C_6H_2(C_2H_5)(OH)\cdot O\cdot C_2H_5$. B. Aus x-Äthoxy-2-äthyl-benzochinon-(1.4)-monoxim bezw. x-Nitroso-x-äthyl-resorcin-monoäthyläther (Bd. VIII, S. 275) mit Zinn und Salzsäure (Kraus, M. 12, 377). — Krystallinische Flocken. — $C_{10}H_{15}O_2N+HCl$. Blättchen.

3. Aminoderivate des 4.1°-Dioxy-1-āthyl-benzols (Methyl-[4-oxy-phenyl]-carbinols) $C_8H_{10}O_2=HO\cdot C_6H_4\cdot CH(OH)\cdot CH_3$ (Bd. VI, S. 903).

Aminomethyl-[4-oxy-phenyl]-carbinol $C_8H_{11}O_2N = HO \cdot C_8H_4 \cdot CH(OH) \cdot CH_2 \cdot NH_2$. B. Bei der Reduktion von salzsaurem ω -Amino-4-oxy-acetophenon (Syst. No. 1877) mit Natrium und Alkohol (Tutin, Caton, Hann, Soc. 95, 2120). — Die freie Base krystallisiert nicht und ist nur in Form ihrer Benzoylverbindungen charakterisiert.

Benzaminomethyl-[4-benzoyloxy-phenyl]-carbinol $C_{22}H_{19}O_4N = C_6H_5 \cdot CO \cdot O \cdot C_6H_4 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus Aminomethyl-[4-oxy-phenyl]-carbinol durch Benzoylierung nach Schotten-Baumann, neben [Benzaminomethyl-(4-benzoyloxy-phenyl)-carbin]-benzoat (Tutin, Caton, Hann, Soc. 95, 2121). Aus [Benzaminomethyl-(4-benzoyloxy-phenyl)-carbin]-benzoat durch Kochen mit $80^0/_0$ igem Alkohol (T., C., H.). — Blättchen (aus Benzol). F: 210°. Sehr wenig löslich in Benzol.

[Benzaminomethyl-(4-benzoyloxy-phenyl)-carbin]-benzoat $C_{29}Hz_3O_5N = C_6H_5$ · $CO \cdot O \cdot C_6H_4 \cdot CH(O \cdot CO \cdot C_6H_5) \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus Aminomethyl-[4-oxy-phenyl]-carbinol oder aus Benzaminomethyl-[4-benzoyloxy-phenyl]-carbinol durch Benzoylierung (T., C., H., Soc. 95, 2121). — Nadeln (aus Benzol). F: 182°.

4. Aminoderivate des 4.1¹-Dioxy-1.2-dimethyl-benzols (4-Oxy-2-methyl-benzylalkohols) $C_8H_{10}O_2 = CH_3 \cdot C_6H_3(OH) \cdot CH_2 \cdot OH$ (Bd. VI, S. 909).

3.5.6 - Tribrom - 4 - oxy - 2 - anilinomethyl - bensylalkohol $C_{14}H_{12}O_2NBr_3$, s. nebenstehende Formel. B. Durch 5—6-stdg. Erwärmen des 3.5.6-Tribrom-4-oxy-2-brommethyl-benzylalkohols (Bd. VI, S. 909) mit Anilin in Benzol (Auwers, v. Erggellet, B. 32, 3027). — Nädelchen (aus Benzol). Schmilzt bei 171° unter Zersetzung. Leicht löslich in heißem Alkohol, Benzol, Eisessig, unlöslich in Ligroin. Leicht löslich in Alkalien.

$$\begin{array}{c} \operatorname{CH}_2 \cdot \operatorname{OH} \\ \operatorname{Br} \cdot \\ \\ \operatorname{CH}_2 \cdot \operatorname{NH} \cdot \operatorname{C}_0 \operatorname{H}_5 \\ \\ \operatorname{OH} \end{array}$$

[3.5.6-Tribrom-4-acetoxy-2-(acetylanilino-methyl)-benzyl]-acetat $C_{20}H_{18}O_{\delta}NBr_3=CH_3\cdot CO\cdot N(C_{\delta}H_{\delta})\cdot CH_2\cdot C_{\delta}Br_3(O\cdot CO\cdot CH_3)\cdot CH_2\cdot O\cdot CO\cdot CH_3$. B. Durch 2-stdg. gelindes Sieden von 1 Tl. 3.5.6-Tribrom-4-oxy-2-anilinomethyl-benzylalkohol mit 4 Tln. Essigsäure-anhydrid (A., v. E., B. 32, 3028). — Prismen (aus Eisessig). Schmilzt bei 179—181° unter Zersetzung. Leicht löslich in kaltem Benzol, heißem Alkohol und Aceton.

5. Aminoderivat von Dioxy-dimethyl-benzolen $C_8H_{10}O_2=(CH_3)_2C_6H_2(OH)_2$ ungewisser Konstitution.

x-Amino-x.x-dioxy-1.3-dimethyl-benzol $C_8H_{11}O_2N=H_2N\cdot C_6H(CH_3)_2(OH)_2$. B. Entstand in geringer Menge neben 2.4-Dimethyl-phloroglucin (Bd. VI, S. 1116), als m-Xylol in Trinitro-m-xylol übergeführt, dieses reduziert und das salzsaure Salz des Reduktionsproduktes mit Wasser unter Einleiten von Kohlendioxyd gekocht wurde (WEIDEL, WENZEL, M. 19, 237, 247). — $C_8H_{11}O_2N+HCl$. Nadeln (aus salzsäurehaltigem Wasser), die sich bald rosenrot färben und mit Eisenchlorid eine grünlichbraune Färbung geben. Wird beim Kochen mit Wasser nicht in 2.4-Dimethyl-phloroglucin übergeführt.

4.x-Bis-[salicoylamino-methyl]-brenzcatechin $C_{22}H_{20}O_6N_2 = (HO)_2C_6H_2(CH_2\cdot NH\cdot CO\cdot C_6H_4\cdot OH)_2$. B. Man gibt zu einer Lösung von 3 g N-Methylol-salicylamid (Bd. X, S. 90) BEILSTEIN's Handbuch. 4. Aufl. XIII.

und 2 g Brenzcatechin in Alkohol 6 g konz. Salzsäure (EINHORN, SCHUPP, A. 343, 261). — Mikrokrystallinisches Pulver (aus Aceton und Wasser). F: 200—203° (Zers.). Löslich in Natronlauge und Soda unter Gelbfärbung. Eisenchlorid gibt in Alkohol gelbrote Färbung.

2.x-Bis-[chloracetamino-methy]]-hydrochinon $C_{12}H_{14}O_4N_3Cl_2 = (HO)_3C_3H_3(CH_2\cdot NH\cdot CO\cdot CH_3Cl)_2$. B. Man gießt 3 ccm konz. Salzsäure zu der Lösung von 9 g Hydrochinon und 20 g N-Methylol-chloracetamid (Bd. II, S. 200) in 100 g Alkohol (EINHORN, MAUERMAYER, A. 343, 293). — Bräunliche Nadeln (aus verd. Eisessig). F: 235°. Leicht löslich in Eisessig, schwer in Alkohol.

2.x-Bis-[salicoylamino-methyl]-hydrochinon $C_{22}H_{20}O_6N_2=(HO)_2C_6H_3(CH_2\cdot NH\cdot CO\cdot C_6H_4\cdot OH)_2$. B. Man gibt zur Lösung von 3 g N-Methylol-salicylamid 2 g Hydrochinon in Alkohol 6 g konz. Salzsäure und läßt 2 Tage stehen (Einhorn, Schupp, A. 343, 262). — Mikrokrystallinisches Pulver (aus Aceton und Wasser). Zersetzt sich bei 250—252°. Löslich in den üblichen Lösungsmitteln, außer Ather.

4. Aminoderivate der Dioxy-Verbindungen C₂H₁₂O₂.

- 1. Aminoderivate des 2.5-Dioxy-1-propyl-benzols $C_9H_{18}O_9=CH_3\cdot CH_2\cdot CH_2\cdot C_9H_3(OH)_2$ (Bd. VI, S. 920).
- 4-Amino-2.5-dimethoxy-1-propyl-bensol C₁₁H₁₂O₂N, s. nebenstehende Formel. B. Durch Reduktion des 4-Nitro-2.5-dimethoxy-1-propyl-benzols (Bd. VI, S. 920) mit Aluminiumamalgam (Thoms, B. 36, 857). — Nadeln. F: 94°.

CH, CH, CH,

- **4 Acetamino 2.5 dimethoxy 1 propyl bensol** $C_{13}H_{19}O_3N = CH_3 \cdot CO \cdot NH \cdot C_{6}H_{5}(CH_{2} \cdot CH_{2})(O \cdot CH_{3})_{2}$. Nadeln. F: 104° (Thoms, B. 36, 857).
- 2. Aminoderivate des 3.4 Dioxy 1 propyl benzols $C_0H_{12}O_2 = CH_3 \cdot CH_2 \cdot CH_3 \cdot C_4H_3(OH)_2$ (Bd. VI, S. 920).

1° oder 1°-Chlor - 5 - amino - 4 - oxy-8-methoxy-1-propyl-bensol C₁₀H₁₄O₂NCl, s. nebenstehende Formel. B. Beim Behandeln von 5-Nitro-4-oxy-3-methoxy-1-allyl-benzol (Nitroeugenol, Bd. VI, S. 968) mit Zinn oht und Salzsäure (Weselsky, Benediky, M. 8, 389). — Blättchen (aus Alkohol). F: 97°. Destillierbar. Löst sich in siedendem Wasser unter teilweiser Zersetzung. — C₁₀H₁₄O₂NCl + HCl + H₂O. Nadeln oder Blättchen.

- 6 Amino 3.4 dimethoxy 1 propyl benzol C₁₁H₁₇O₂N, s. nebenstehende Formel. B. Durch Reduktion des 6-Nitro-3.4-dimethoxy-1-propyl-benzols (Bd. VI, S. 924) mit Aluminiumamalgam (Thoms, B. 36, 860). — F: 59°. Kp₁₀: 169°. — Liefert in schwefelsaurer Lösung mit Natriumnitrit 5-Methoxy-2-propyl-chinon (Bd. VIII, S. 929)
- 6-Acetamino-3.4-dimethoxy-1-propyl-bensol $C_{18}H_{18}O_3N=CH_8\cdot CO\cdot NH\cdot C_8H_8(CH_8\cdot CH_8\cdot CH_8)(O\cdot CH_8)_8$. F: 1446 (Thoms, B. 36, 860).
- 3. Aminoderivate des 4.1°-Dioxy-1-propyl-benzols [Methyl-(4-oxybensyl)-carbinols] $C_0H_{18}O_2=HO\cdot C_0H_4\cdot CH_2\cdot CH(OH)\cdot CH_4$ (Bd. VI, S. 927).

Dimethylaminomethyl-[4-methoxy-bensyl]-carbinol $C_{12}H_{19}O_2N=CH_2\cdot O\cdot C_eH_4\cdot CH_2\cdot CH_3\cdot N(CH_2)_2$. B. Aus Chlormethyl-[4-methoxy-bensyl]-carbinol (Chlormethyl-anisyl-carbinol, Bd. VI, S. 927) und Dimethylamin (FOURNEAU, TIFFENEAU, Bl. [4] 1, 1232). Aus Jodmethyl-anisyl-carbinol (Bd. VI, S. 928) und Dimethylamin in Benzol-lösung (Daufresne, C. r. 145, 876; Bl. [4] 3, 324; A. ch. [8] 13, 419). — Kp₁₈: 166—167°; D°: 1,038 (D.).

[Dimethylaminomethyl-(4-methoxy-bensyl)-carbin]-bensoat $C_{19}H_{22}O_{2}N=CH_{3}\cdot C\cdot C_{6}H_{4}\cdot CH_{4}\cdot CH_{4}\cdot CH_{5}\cdot CH_{5}\cdot CH_{5}\cdot N(CH_{5})_{3}$. B. Aus Dimethylaminomethyl-[4-methoxy-bensyl]-carbinol in Bensol und Bensoylchlorid (Dauffessne, C. r. 145, 876; Bl. [4] 3, 324; A. ch. [8] 13, 420). — Hydrochlorid. F: 98°.

Diäthylaminomethyl-[4-methoxy-bensyl]-carbinol $C_{14}H_{25}O_2N = CH_2 \cdot O \cdot C_4H_4 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot N(C_2H_3)_2$. B. Aus Jodmethyl-[4-methoxy-bensyl]-carbinol (Bd. VI, 8. 928) und Diäthylamin in Toluol (Daufresne, C. τ . 145, 876; Bl. [4] 8, 325; A. ch. [8] 13, 421). — Kp_{785} : 308—310°; Kp_{15} : 187—189°. D° : 0,946.

c) Aminoderivat einer Dioxy-Verbindung $C_nH_{2n-8}O_2$.

Aminoderivat des 3.4-Dioxy-1-allyl-benzols $C_9H_{10}O_2=CH_2:CH\cdot CH_2\cdot C_6H_8(OH)_8$ (Bd. VI, S. 961).

5-Amino-4-oxy-3-methoxy-1-allyl-benzol, Aminoeugenol $C_{10}H_{13}O_2N$, s. nebenstehende Formel. B. Man reduziert Benzolazoeugenol (Syst. No. 2127) mit Zink und Essigsäure (Oddo, Puxeddu, G. 35 I, 64) oder mit Zinn und Salzsäure (O., P., G. 35 I, 74) oder mit Phenylhydrazin (O., P., B. 38, 2753; G. 35 II, 601). — Schuppen (aus Ligroin oder Wasser). F: 114°; sehr wenig löslich in kaltem Wasser, leicht in organischen Lösungsmitteln (O., P., G. 35 I, 74).

$$\begin{array}{c} \operatorname{CH_3\cdot CH} : \operatorname{CH_2} \\ \operatorname{H_2N} \cdot \bigodot \cdot \operatorname{O\cdot CH_3} \\ \operatorname{OH} \end{array}$$

Monoacetylderivat $C_{12}H_{15}O_3N=C_{10}H_{12}O_2N\cdot CO\cdot CH_3$. B. Bei 2-stdg. Kochen von Aminoeugenol mit Essigsäureanhydrid (O., P., G. 35 I, 77). — Nadeln (aus Wasser). F: 132°. Leicht löslich in den üblichen organischen Lösungsmitteln, löslich in siedendem Wasser, sehr wenig löslich in kaltem Wasser. Unlöslich in verd. Alkalien.

d) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n-12} O_2$.

1. Aminoderivate der Dioxy-Verbindungen $C_{10}H_8O_9$.

- 1. Aminoderivate des 1.2-Dioxy-naphthalins $C_{10}H_8O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 975). Vgl. auch No. 3, S. 805.
- 3-Amino-1.2-dioxy-naphthalin $C_{10}H_0O_2N$, s. nebenstehende Formel.

 B. Beim Behandeln von 3-Nitro-naphthochinon-(1.2) (Bd. VII, S. 723)
 mit Zinnchlorür und Salzsäure (Korn, B. 17, 907). Aus 3-Nitro-1.2-dioxy-naphthalin (Bd. VI, S. 976) durch Reduktion mit Zinn und Salzsäure (Groves, Soc. 45, 300; Zinoke, Noack, A. 295, 13). F: 164° (Zers.) (Z., N.).

 Leicht löslich in Alkohol und Aceton, sehr wenig in Ather und Benzol (Z., N.), löslich in Alkalien und kohlensauren Alkalien mit gelblicher Farbe (Z., N.). Wird von Oxydationsmitteln energisch angegriffen (K.; Z., N.). Die Lösungen in Alkalien färben sich an der Luft rasch braun und scheiden stark gefärbte Produkte ab (Z., N.). Das salzsaure Salz gibt mit Eisenchlorid einen schwarzblauen Niederschlag (K.; Z., N.). Durch Einw. von Chlor entsteht 4.4-Dichlor-1.2.3-trioxo-naphthalintetrahydrid (Bd. VII, S. 867) (Z., N.). Das salzsaure Salz wird durch Erhitzen mit verdünnter Salzsäure auf 140° nicht verändert (K.). $C_{10}H_{\bullet}O_2N$ + HCl (K.). Blättchen (Z., N.).
- 3-Acetamino 1.2 dioxy naphthalin $C_{12}H_{11}O_3N = CH_3 \cdot CO \cdot NH \cdot C_{10}H_4(OH)_4$. B. Durch Zufügen von 2 Mol.-Gew. verdünnter Natronlauge zur siedenden Suspension von 3-Acetamino-1.2-diacetoxy-naphthalin in der 20-fachen Menge Wasser, kurzes Kochen bis zur Lösung und sofortiges Fällen mit Essigsäure (Kehrmann, Zimmerli, B. 31, 2405). Krystalle. Zersetzt sich gegen 170°. Leicht löslich in heißem Wasser, Alkohol und Essigsäure. Oxydiert sich leicht.
- 3-Acetamino-1 oder 2-oxy-2 oder 1-acetoxy-naphthalin $C_{14}H_{18}O_4N=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(OH)\cdot O\cdot CO\cdot CH_3$. B. Durch mehrstündiges Erhitzen von salzsaurem 3-Amino-1.2-dioxy-naphthalin mit Acetylchlorid auf 100° (ZINCKE, NOACK, A. 295, 14). Krystalle (aus Alkohol), Nadeln (aus Aceton). F: 195° (Zers.). Wird von Alkali mit grüner Farbe unter Abscheidung blauer Flocken gelöst, welche auf Zusatz von Wasser verschwinden.
- 3-Acetamino-1.2-diacetoxy-naphthalin $C_{16}H_{15}O_5N=CH_2\cdot CO\cdot NH\cdot C_{10}H_5(O\cdot CO\cdot CH_3)_2$. B. Durch Erhitzen von salzsaurem 3-Amino-1.2-dioxy-naphthalin mit Essigsäure-anhydrid und essigsaurem Natrium (ZINCKE, NOACE, A. 295, 15). Aus 3-Acetamino-1 oder 2-oxy-2 oder 1-acetoxy-naphthalin (s. o.) durch Erhitzen mit Essigsäureanhydrid (Z., N.). Nadeln (aus Eisessig). Zersetzt sich über 200°. Schwer löslich in Alkohol.
- 4-Amino-1.2-dioxy-naphthalin C₁₀H₉O₂N, s. nebenstehende Formel. B. Bei der Reduktion von 2-Oxy-naphthochinon-(1.4)-imid-(4) (Bd. VIII, S. 302) mit Zinn und Salzsäure (Graebe, Ludwig, A. 154, 320) oder mit Zinnehlorür in konz. Salzsäure (Kehemann, B. 27, 3340). Oxydiert sich in ammoniakalischer Lösung an der Luft zu 2-Oxy-naphthochinon-(1.4)-imid-(4) (G., L.; K.). C₁₀H₉O₂N + HOl. Tafeln oder Nadeln. Sehr leicht löslich in Wasser (G., L.; K.). Oxydiert sich schnell an der Luft (G., L.; K.).

[7-Acetoxy-naphthyl-(2)]-[8.4-diacet-oxy-naphthyl-(1)]-amin C₂₀H₂₁O₂N, s. nebenstehende Formel. B. Man erhitzt 2-Oxy-naphthyl-(2)-amino]-naphthochinon - (1.4) - [7 - oxy - naphthyl - (2)-inid]-(4) bezw. 4-[7-Oxy-naphthyl-(2)-amino]-naphthochinon-(1.2) (8. 685) mit Eisessig, Acetanhydrid und Natriumacetat und gibt Zinkstaub hinzu (Saces, Berthold, Zaar, C. 1907 I, 1130). — Nadeln (aus Eisessig). F: 204° bis 205°. Löslich in Aceton, Chloroform, heißem Alkohol, Eisessig, Essigester und Benzol mit bläulicher Fluorescenz; löslich in konz. Schwefelsäure mit gelbbrauner Farbe.

- 4-Acetamino-1.2-dioxy-naphthalin C₁₂H₁₁O₃N = CH₃·CO·NH·C₁₀H₄(OH)₂. B. Beim Erhitzen von 4-Acetamino-1.2-diacetoxy-naphthalin mit Natronlauge (Kehrmann, B. 27, 3341). Aus 2-Oxy-naphthochinon-(1.4)-acetimid-(4) bezw. 4-Acetamino-naphthochinon-(1.2) (Bd. VIII, S. 303) und wäßriger, schwefliger Säure (Witt, Dedichen, B. 29, 2951). Nadeln (aus Wasser). F: 187° (Zers.) (W., D.). Gut löslich in heißem Wasser, Alkohol und Finensie (K)
- 4-Acetamino-1.2-diacetoxy-naphthalin $C_{10}H_{15}O_5N=CH_2\cdot CO\cdot NH\cdot C_{10}H_5(O\cdot CO\cdot CH_2)_2$. B. Aus salzsaurem 4-Amino-1.2-dioxy-naphthalin mit Natriumacetat und Essigsaureanhydrid (Kehrmann, B. 27, 3339, 3341). Prismen (aus Alkohol). F: 193°. Schwer löslich in kaltem Alkohol, leicht in Eisessig.
- 3.4-Diamino-1.2-dioxy-naphthalin $C_{10}H_{10}O_3N_3$, s. Formel I. B. Eine eiskalte, schwach angesäuerte wäßr. Lösung von salzsaurem 3-Amino-1.2-dioxynaphthalin wird mit Benzoldiazoniumchloridlösung vermischt, die ausfallende, dunkelrote Azoverbindung mit Zinnehlorür und Salzsäure reduziert

Eisessig (K.).

I. OH II. OH NH, HN—N

(ZINOKE, NOACK, A. 295, 23). — Die freie Base ist wenig beständig, oxydiert sich rasch an der Luft. Gibt mit salpetriger Säure 3.4-Azimino-naphthochinon-(1.2) der Formel II (Syst. No. 3888). $-C_{10}H_{10}O_2N_2+2HCl+2H_2O$. Gelbliche Nadeln. Sehr leicht löslich in Wasser.

- 2. Aminoderivate des 1.3-Dioxy-naphthalins $C_{10}H_8O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 978). Vgl. such No. 3, S. 805.
- 4-Amino-1.3-dioxy-naphthalin C₁₀H₂O₂N, s. nebenstehende Formel. OH Beim Kochen von 3-Jod-2-oxy-naphthochinon-(1.4)-oxim-(1) (Bd. VIII, 8. 307), gelöst in Alkohol, mit Zinnchlorür und Salzsäure (Kehrmann, Mascioni, B. 28, 351). Bei der Reduktion von 2-Amino-naphthochinon-(1.4)-oxim-(1) (Syst. No. 1874) in Alkohol mit Zinnchlorür und Salzsäure (Kehr- $\mathbf{o}\mathbf{H}$ MANN, HERTZ, B. 29, 1419). Neben Acetanilid durch Behandeln einer heißen alkoh. Lösung von 4-Benzolazo-1.3-diacetoxy-naphthalin (Syst. No. 2129) mit Zinkstaub und Essigsäure und Zusatz von konz. Salzsäure zum Filtrat (Zincke, Wiegand, A. 286, 89). — Krystalle. Wird bei 130° violett und schmilzt bei 162° zu einer blauen Flüssigkeit (Z., W.). Farbt sich beim Liegen an der Luft blau; auch die Lösungen in Alkohol, Aceton und Eisessig nehmen an der Luft rasch eine blaue Färbung an (J., W.). Leitet man durch eine wäßrige, mit etwas Ammoniak oder überschüssigem Natriumacetat versetzte Lösung von salzsaurem 4-Amino-1.3-dioxy-naphthalin Luft, so erhält man ein Oxy-dinaphthoxazon C_{so}H₁₁O_sN (s. bei der entsprechenden Leukoverbindung, dem Dioxy-dinaphthoxazin der nebenstehenden Formel, Syst. No. 4257) (K., B. 28, 357). HO. 4-Amino-1.3-dioxy-naphthalin liefert in stark alkal. Lösung \mathbf{NH} ·OH durch die Luftoxydation 2-Oxy-naphthochinon-(1.4) (Bd. VIII, S. 300) (K., M.). Dieses entsteht stets bei der Einw. von Oxydationsmitteln auf salzsaures 4-Amino-1.3-dioxynaphthalin in wäßr. Lösung (Z_i, W_i) . — $C_{10}H_1O_2N+HCl$. Nadeln oder Blättchen. Leicht löslich in Wasser und Alkohol $(K_i, M_i; Z_i, W_i)$.
- 4-Acetamino-1.8-diacetoxy-naphthalin $C_{18}H_{15}O_{18}N=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{16}(O\cdot CO\cdot CH_{3})_{2}$. B. Beim Erhitzen von salzsaurem 4-Amino-1.3-dioxy-naphthalin mit Essigsäure-anhydrid und Natriumacetat (Kehrmann, Mascioni, B. 28, 351). Tafeln (aus Benzol). F: 155—156°. Leicht löslich in Alkohol und Benzol.
- 2.4 Diamino 1.3 dioxy naphthalin C₁₀H₁₀O₂N₂, s. nebenstehende Formel. B. Das Hydrochlorid entsteht beim Eintragen von 3-Amino-2-oxy-naphthochinon-(1.4)-oxim-(1) (Syst. No. 1878) in eine kalte, verdünnte, salzsaure Zinnchlorürlösung (Kehrmann, Weichardt, J. pr. [2] 40, 186). Die Lösung von 2.4-Diamino-1.3-dioxy-naphthalin in Alkalien

färbt sich an der Luft karmoisinrot; die rote Lösung entwickelt beim Kochen Ammoniak, färbt sich blau und scheidet dann beim Zusatz von Salzsäure 3-Amino-2-oxy-naphthochinon-(1.4) (Syst. No. 1878) ab. — $C_{10}H_{10}O_2N_2+2HCl$. Nadeln. Unbeständig.

- 3. Aminoderivat des 1.2- oder des 1.3-Dioxy-naphthalins $\mathrm{C_{10}H_8O_2}=\mathrm{C_{10}H_6(OH)_2}.$
- **4-[4-Dimethylamino anilino] 1 oxy 2** oder **3 phenylsulfon naphthalin** $C_{24}H_{22}O_3N_2S$, Formel I oder II. B. Aus 1 Mol.-Gew. fein gepulvertem a-Naphtholblau (Syst. No. 1769) und 1 Mol.-Gew. Benzolsulfinsäure (Bd. XI, S. 2) in Wasser (Hinsberg,

OH

I.
$$OH$$
 $SO_3 \cdot C_6H_5$
 $NH \cdot C_6H_4 \cdot N(CH_3)_2$

II. $SO_3 \cdot C_6H_5$
 $NH \cdot C_6H_4 \cdot N(CH_3)_3$

- B. 28, 1317). Blättchen. $C_{24}H_{22}O_3N_2S + HCl$. Schwach gelbliche Prismen (aus Alkohol + Äther). Zersetzt sich, rasch erhitzt, gegen 220°. Leicht löslich in Alkohol, kaum n Äther und Wasser.
- ¹ 4. Aminoderivate des 1.4-Dioxy-naphthalins $C_{10}H_8O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 979).
- 2-Amino-1.4-dioxy-naphthalin C₁₀H₂O₂N, s. nebenstehende Formel.

 B. Bei der Reduktion von 2-Amino-naphthochinon-(1.4) mit Zinnchlorür und Salzsäure (Kehrmann, B. 27, 3343). Hydrochlorid. Nadeln. Sehr leicht löslich in Wasser. Die mit Ammoniak versetzte wäßr. Lösung gibt beim Schütteln mit Luft 2-Amino-naphthochinon-(1.4).
- 2-Acetamino-1.4-diacetoxy-naphthalin $C_{16}H_{15}O_5N=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(O\cdot CO\cdot CH_3)_2$. B. Aus salzsaurem 2-Amino-1.4-dioxy-naphthalin mit Essigsäureanhydrid und Natriumacetat (Kehrmann, B. 27, 3344). Nadeln. F: 259—260°. Fast unlöslich in Alkohol und Wasser, ziemlich löslich in siedender Essigsäure.
- 3-Chlor-2-anilino-1.4-dioxy-naphthalin $C_{16}H_{18}O_{2}NCl=C_{6}H_{5}\cdot NH\cdot C_{10}H_{4}Cl(OH)_{2}$. B. Beim Kochen von 3-Chlor-2-anilino-naphthochinon-(1.4) (Syst. No. 1874) mit konz. Zinn-chlorürlösung (KNAPP, SCHULTZ, A. 210, 190). Krystalle (aus Benzol). F: 170—1710 (Zers.). Oxydiert sich in alkoh. Lösung rasch zu Chloranilinonaphthochinon. Gibt beim Kochen mit Essigsäureanhydrid ein bei 168—1690 schmelzendes Acetylderivat.
- 5-Amino-1.4-dioxy-naphthalin $C_{10}H_0O_2N$, s. nebenstehende Formel.

 B. Durch Reduktion von 4-Nitroso-5-nitro-naphthol-(1) (bezw. 5-Nitronaphthochinon-(1.4)-oxim-(4), Bd. VII, S. 732) mit Zinn und Salzsäure (Graebe, B. 32, 2878; G., Oser, A. 335, 149). $C_{10}H_0O_2N + HCl$. Nadeln. Ist im trocknen Zustand beständig; sehr leicht löslich in Wasser (G., O.).

 Die Lösungen färben sich an der Luft rasch rot und geben mit FeCl₃ einen rotschwarzen Niederschlag (G.; G., O.).
- 5-Acetamino-1.4-diacetoxy-naphthalin $C_{16}H_{16}O_5N=CH_3\cdot CO\cdot NH\cdot C_{10}H_5(O\cdot CO\cdot CH_3)_2$ B. Aus salzsaurem 5-Amino-1.4-dioxy-naphthalin mit Essigsäureanhydrid auf dem Wasserbade (Graebe, B. 32, 2878; G., Oser, A. 335, 150). Nadeln (aus Alkohol). F: 165° (G.; G., O.).
- 5. Aminoderivat des 1.5-Dioxy-naphthalins $C_{10}H_6O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 980).
- 4.8 Diamino 1.5 dioxy naphthalin ("Leukoverbindung des Naphthazarinzwischenproduktes") $C_{10}H_{10}O_2N_3$, s. nebenstehende Formel. Zur Auffassung vgl. Feiedländer, Fortschritte der Teerfarbenfabrikation und verwandter Industriezweige Bd. V [Berlin 1901], S. 241, sowie die nach Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von Dimkoth, Ruck, A. 446 [1926], 123 über die Formulierung des Naphthazarins als 5.8-Dioxy-naphthochinon-(1.4). B. Man löst 10 Tle. 1.5-Dinitro-naphthalin in 200 Tln. Schwefelsäuremonohydrat, fügt unterhalb 40° eine Lösung von 5 Tln. Schwefel in 50 Tln. rauchender Schwefelsäure von 45—60°/0 SO₃ hinzu; wenn alles klar gelöst ist, gießt man in Wasser. Die blaue Lösung wird nun mit konzentriert salzsaurer Zinnchlorürlösung versetzt; es tritt Entfärbung ein und ein dunkler Körper fälls aus, der abfiltriert und in eine konzentrierte salzsaure Lösung von Zinnchlorür bei gewöhnlicher Temperatur eingerührt wird. Bei der hierbei sich vollendenden Reduktion wird der Körper farblos. Man saugt den Brei ab, löst den Rückstand in Wasser und entzinnt die Lösung mit

Schwefelwasserstoff (FRIEDLÄNDER, v. SCHERZER, Mitt. Technol. Gewerbe-Mus. Wien 1900, 31; C 1900 I, 411). Aus 8-Amino-5-oxy-naphthochinon-(1.4)-imid-(4) ("Naphthazarin-Zwischenprodukt aus 1.5-Dinitro-naphthalin"; Syst. No. 1878) in Eiswasser durch Reduktion mit einer Lösung von Zinnsalz in Salzsäure (Bad. Anilin- und Sodaf., D. R. P. 101371; Frdl. 5, 317).—In feuchtem Zustande helle Nadeln, in trocknem Zustande bläuliche Nadeln (B. A. S. F., D. R. P. 101371). Wird in natronalkalischer Lösung unter Eiskühlung durch Luftsauerstoff zu 8-Amino-5-oxy-naphthochinon-(1.4)-imid-(4) oxydiert (B. A. S. F., D. R. P. 108551; Frdl. 5, 318).

6. Aminoderivat des 1.7-Dioxy-naphthalins $C_{10}H_8O_3 = C_{10}H_8(OH)_2$.

4.8-Diamino-1.7-dioxy-naphthalin $C_{10}H_{10}O_3N_2$, s. nebenstehende
Formel. Die früher als 4.8-Diamino-1.7-dioxy-naphthalin aufgefaßte
"Leukoverbindung des Naphthazarinzwischenproduktes" ist jetzt auf
Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von DIMBOTH, RUCK, A. 446
[1926], 123 als 4.8-Diamino-1.5-dioxy-naphthalin zu formulieren. Vgl. S. 805, No. 5.

- 7. Aminoderivate des 2.3-Dioxy-naphthalins $C_{10}H_8O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 982).
- 1-Amino-2,3-dioxy-naphthalin $C_{10}H_0O_2N$, s. nebenstehende Formel.

 B. Man kombiniert 2.3-Dioxy-naphthalin mit 1 Mol.-Gew. diazotierter Sulfanilsäure und reduziert die erhaltene Azoverbindung mit Zinnchlorür und Salzsäure (Friedländer, Silberstern, M. 23, 521). Krystalle (aus Wasser). Zersetzt sich bei ca. 230° unter Dunkelfärbung; löslich in Säuren und Alkalien (F., S., M. 23, 522). Wird durch FeCl₂ zu Bis-[2-oxy-3.4-dioxo-3.4-dihydronaphthyl-(1)]-äther(?) (Bd. VIII, S. 411) oxydiert (F., S., M. 23, 522; C. 1902 I, 934). Hydrochlorid. Nadeln. Leicht löslich in Wasser (F., S., M. 23, 521).
- 1.4-Diamino-2.3-dioxy-naphthalin $C_{10}H_{10}O_2N_2$, s. nebenstehende Formel. B. Man kombiniert 2.3-Dioxy-naphthalin mit 2 Mol.-Gew. diazotierter Sulfanilsäure und reduziert die Bisazoverbindung mit Zinnehlorür und Salzsäure (Friedländer, Silberstern, M. 23, 524). Die freie Base oxydiert sich außerordentlich leicht. Löslich in Alkalien und Säuren. Wird durch Eisenchlorid zu Isonaphthazarin (Bd. VIII, S. 411) oxydiert. Das Sulfat färbt sich, an der Luft in wäßr. Lösung erwärmt, blau und scheidet einen azurblauen Niederschlag ab. $C_{10}H_{10}O_2N_2+H_2SO_4$. Fast farblose Blättchen.
- 8. Aminoderivate des 2.7-Dioxy-naphthalins $C_{10}H_8O_2=C_{10}H_6(OH)_2$ (Bd. VI, S. 985).
- 1 Amino 2.7 dioxy naphthalin $C_{10}H_9O_2N$, s. nebenstehende Formel. B. Beim Behandeln von 1-Nitroso-2.7-dioxy-naphthalin (bezw. 7-Oxy-naphthochinon-(1.2)-oxim-(1), Bd. VIII, S. 300) mit salzsaurem Zinnchlorür (Clausius, B. 23, 521). $C_{10}H_9O_2N+HCl$. Nadeln oder Blätter.
- 1-Acetamino-2.7-diacetoxy-naphthalin $C_{1e}H_{1b}O_5N=CH_3\cdot CO\cdot NH\cdot C_{10}H_6(O\cdot CO\cdot CH_3)_8$. B. Beim Erwärmen von salzsaurem 1-Amino-2.7-dioxy-naphthalin mit Essigsäure-anhydrid und Natriumacetat (NIETZKI, KNAPP, B. 30, 1123). F: 183°.
- 1-Diacetylamino-2.7-diacetoxy-naphthalin $C_{18}H_{17}O_6N = (CH_3 \cdot CO)_2N \cdot C_{10}H_5(O \cdot CO \cdot CH_3)_2$. B. Beim Kochen von 1-Acetamino-2.7-diacetoxy-naphthalin mit Essigsäureanhydrid (N., K., B. 30, 1123). F: 135°.
- 1.8-Diamino-2.7-dioxy-naphthalin $C_{10}H_{10}O_{2}N_{3}$, s. nebenstehende Formel. B. Aus Bis-azoderivaten des 2.7-Dioxy-naphthalins durch Reduktionsmittel (Cassella & Co., D.R.P. 108166; C. 1900 I, 1116). Färbt Wolle mit Hilfe von Chrombeizen intensiv schwarz. Sulfat. Gelblichweiße Nadeln. Löslich in Alkalien mit blauer Farbe.

2. Aminoderivat des 2.7-Dioxy-1-methyl-naphthalins $CH_3 \cdot N(CH_3)_8$ $C_{11}H_{10}O_2 = CH_3 \cdot C_{10}H_5(OH)_2$.

2.7-Dioxy-1-dimethylaminomethyl-naphthalin $C_{13}H_{14}O_2N$,
s. nebenstehende Formel. Zur Konstitution vgl. Auwers, Dom-Browski, A. 344, 281. — B. Aus 2.7-Dioxy-naphthalin, Dimethylamin und Formaldehyd in verd. Alkohol (Bayer & Co., D.R.P. 89979; Frdl. 4, 99). — Krystalle (aus Alkohol). Schmilzt gegen 160°; löslich in Säuren und Alkalien (B. & Co.).

e) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n-14} O_2$.

1. Aminoderivate der Dioxy-Verbindungen $C_{12}H_{10}O_2$.

- 1. Aminoderivate des 2.2'-Dioxy-diphenyls $C_{12}H_{10}O_2 = HO \cdot C_0H_4 \cdot C_0H_4 \cdot OH$ (Bd. VI, S. 989).
- 3.3'-Diamino-2.2'-dioxy-diphenyl $C_{12}H_{12}O_2N_2$, s. nebenstehende Formel. B. Durch Reduktion der alkoh. Lösung von 3.3'-Dinitro-2.2'-dioxy-diphenyl (Bd. VI, S. 990) mit Zinn und Salzsäure (DIELS, BIEBERGEIL, B. 35, 308). Nadeln. Bräunt sich bei ca. 190°, schmilzt unter Zersetzung bei 227° (korr.). $C_{12}H_{12}O_2N_2 + 2$ HCl + 2 H $_2$ O. Sehr leicht löslich in Wasser und Alkohol, schwer in konz. Salzsäure.
- $\begin{array}{lll} \textbf{3.3'-Bis-acetamino-2.2'-diacetoxy-diphenyl} & C_{20}H_{30}O_6N_2 = [-C_6H_3(O\cdot CO\cdot CH_3)\cdot NH\cdot CO\cdot CH_3]_3. & B. & Man kocht das salzsaure Salz des 3.3'-Diamino-2.2'-dioxy-diphenyls mit Essigsäureanhydrid und Natriumacetat (D., B., B. 35, 309). Krystalle. F: 242° (korr.). Schwer löslich in Äther. Bei der trocknen Destillation entsteht O.N.O'.N'-Diäthenyl-[3.3'-diamino-2.2'-dioxy-diphenyl] & CH_3\cdot C<_O^N > C_6H_3\cdot C_6H_3<_O^N > C\cdot CH_3 & (Syst. No. 4630). \end{array}$
- 4.4' Diamino 2.2' dioxy diphenyl, 2.2' Dioxy benzidin $C_{12}H_{12}O_2N_2$, s. nebenstehende Formel. B. Man kocht 3.3'-Dioxy-azobenzol (Syst. No. 2112) mit Zinkstaub und Wasser bis zur Entfärbung und gießt die siedende Lösung rasch in rauchende Salzsäure (Elbs, Kirson, J. pr. [2] 67, 270). Hydrochlorid. Farblose Nadeln.
- 4.4'-Bis-acetamino-2.2'-diacetoxy-diphenyl $C_{50}H_{50}O_5N_2 = [-C_6H_3(0\cdot C0\cdot CH_3)\cdot NH\cdot C0\cdot CH_3]_s$. B. Beim Kochen von salzsaurem 4.4'-Diamino-2.2'-dioxy-diphenyl mit Acetanhydrid (E., K., J. pr. [2] 67, 271). Blättchen (aus verd. Alkohol). F: 128°. Leicht löslich in heißem Alkohol, sehr wenig in Wasser.
- 5.5' Diamino 2.2' dioxy diphenyl C₁₂H₁₃O₂N₃, s. nebenstehende Formel. B. Durch Reduktion von 5.5'-Dinitro-2.2'-dioxy-diphenyl (Bd. VI, S. 990) in alkoh. Lösung mit Zinn und Salzsäure (DIELS, Brebergeri, B. 35, 310; Hale, Robertson, Am. 39, 692). Nadeln. Bräunt sich bei 200°, schmilzt bei 246° (korr.) (D., B.). Wenig löslich heißem Alkohol, unlöslich in fast allen gebräuchlichen Lösungsmitteln (H., R.). Geht beim gelinden Erwärmen mit Natriumdichromat in schwefelsaurer Lösung in Di-p-chinon (Bd. VII, S. 892) über (H., R.). Hydrochlorid. Prismen. Leicht löslich in Wasser; schwer löslich in konz. Salzsäure (D., B.).
- 4.5 (?).4'-Triamino 2.2'-dioxy-diphenyl $C_{12}H_{12}O_2N_3$, OH HO s. nebenstehende Formel. B. Man kocht 6-Nitro-3.3'-dioxy-azobenzol mit Zinkstaub und Wasser bis zur Entfärbung und gießt die Lösung dann möglichst rasch in konz. Salzsäure (ELBs, KIRSOH, J. pr. [2] 67, 272). $C_{12}H_{13}O_2N_3 + 2$ HCl. Verfülzte Nadeln, die sich bei 340° noch nicht zersetzen. Sehr leicht löslich in Wasser.
- 8.5.3'.5'-Tetraamino-2.2'-dioxy-diphenyl $C_{12}H_{14}O_{2}N_{4}$, s. nebenstehende Formel. B. Durch Reduktion von 3.5.3'.5'-Tetranitro-2.2'-dioxy-diphenyl in alkoh. Suspension mit Zinn und Salzsäure (Diels, Biebergeil, B. 35, 311). Nadeln, die sich an der Luft schnell zersetzen. $C_{12}H_{14}O_{2}N_{4}+4$ HCl.
- 2. Aminoderivate des 3.3'-Dioxy-diphenyls $C_{12}H_{10}O_2 = HO \cdot C_0H_4 \cdot C_0H_4 \cdot OH$ (Bd. VI, S. 991).
- 4.4'-Diamino-8.8'-dimethoxy-diphenyl, 3.8'-Dimethoxy-benzidin, o-Dianisidin $C_{14}H_{16}O_2N_3$, s. nebenstehende Formel. B. Durch Reduktion von 2.2'-Dimethoxy-azobenzol (Syst. No. 2112), suspendiert in wäßr. Salzzäure, mit schwefliger Säure und Jod (Bodenstein, D.R.P. 172569; C. 1906 II, 479). Man läßt 2.2'-Dimethoxy-hydrazobenzol (Syst. No. 2078) mit Salzzäure stehen (Starke, J. pr. [2] 59, 211). Farblose Blättchen, die sich violett färben (St.). F: 131,5° (St.). Leicht löslich in Äther, Alkohol und Benzol (St.). Gibt man zu einer neutralen oder essigsauren Lösung von 1 Mol.-Gew.

salzsaurem o-Dianisidin 1 Mol.-Gew. Natriumnitzit bei 10—15°, so erhält man ein braunes in Wasser unlösiches Produkt, das beim Behandeln mit Salzsäure als salzsaures 3.3°-Dimethoxy-4-amino-diphenyl-diazoniumschlorid-(4') in Lösung geht (Bayer & Co., D. R. P. 51576; Frdl. 2, 469). Bei der Einw. von salpetriger Säure auf das salzsaure bezw. sohwefelsaure o-Dianisidin in Gegenwart von Mineralsäuren entstehen die entsprechenden 3.3°-Dimethoxy-diphenyl-bis-diazoniumsalze (Syst. No. 2199) (Sr.). Erhitzt man eine wäßr. Lösung des aus o-Dianisidin zu gewinnenden Bis-diazoniumsalzes, so erhält man die Verbindung Ch₂H₁₈O₄ (s. u.) (Cain, Soc. 83, 692). o-Dianisidin liefert, in viel Schwefelsäure gelöst, beim Nitrieren mit Salpeterschwefelsäure bei -5° 6.6°-Dinitro-3.3°-dimethoxy-benzidin (Ullmann, Dieternia, B. 37, 35); die gleiche Dinitroverbindung entsteht beim vorsichtigen Versetzen der schwefelsauren Lösung des o-Dianisidins mit Kalisalpeter bei 5° (Sr.). Sulfurierung mit rauchender Schwefelsäure bei höchstens +4° liefert 3.3°-Dimethoxy-benzidin-disulfonsäure-(6.6°) (Syst. No. 1927) (Akt.-Ges. f. Anilin-Fabr., D.R.P. 172106; C. 1906 II, 479). Über Produkte der Kondensation von o-Dianisidin mit Formaldehyd allein, sowie mit Formaldehyd und Basen vgl. Duband, Huguering & Co., D.R.P. 68920, 72431, 74386, 74642; Frdl. 3, 28—31; D.R.P. 80625, 80626, 82820; Frdl. 4, 977—980. Einw. von Dicyan (Bd. II, S. 549) auf o-Dianisidin Merves, J. pr. [2] 61, 473. Beim Einleiten von Phosgen (Bd. III, S. 13) in die benzolische Lösung von o-Dianisidin erhält man eine Verbindung C₁₂H₁₄O₂N₃ (N-Carbonyl-o-dianisidin) oder C₁₂H₁₄O₂N₃ (N-Carbonyl-o-dianisidin) (s. u.) oder höher molekulare Verbindungen (Sr.). Mit Thiophosgen reagiert o-Dianisidin in Chloroform in Gegenwart von Natronlauge unter Bildung von N.N. Bis-thiocarbonyl-o-dianisidin (S. 809) (Gattermann, J. pr. [2] 59, 589, 593). Beim Kochen von o-Dianisidin mit Schwefelkohlenstoff, Kalilauge und Alkohol entsteht N-Thiocarbonyl-o-dianisidin in Gegenwart von Natro

Salze: Starr, J. pr. [2] 59, 212. — $C_{14}H_{16}O_2N_2 + 2$ HCl. Prismen. Leicht löslich in Wasser, schwer in Alkohol; beim Kochen mit Wasser entsteht ein schwer lösliches basisches Salz. — $C_{14}H_{16}O_2N_3 + H_2SO_4$. Nadeln (aus Wasser). Wasser löst bei 100^6 4,17%, bei 20^6 1,12%. — $C_{14}H_{16}O_2N_3 + H_2CrO_4$. Krystallinischer brauner Niederschlag. Unlöslich in Wasser. — Oxalat $C_{14}H_{16}O_2N_3 + C_2H_2O_4$. Prismen. Leicht löslich in heißem, schwer in kaltem Wasser. — $C_{14}H_{16}O_2N_3 + 2$ HCl + PtCl4. Prismen. Schwer löslich in Wasser.

Verbindung $C_{14}H_{11}O_4$. B. Man diazotiert o-Dianisidin in salzsaurer Lösung und erhitzt die verd. Lösung des Bis-diazoniumsalzes (CAIN, Soc. 83, 692). — Dunkelbraun, amorph.

Unlöslich in den gewöhnlichen Lösungsmitteln; unlöslich in Alkali.

N-Carbonyl-o-dianisidin, [4'-Amino-3.3'-dimethoxy-diphenylyl-(4)]-iso-cyanat, [4'-Amino-3.3'-dimethoxy-diphenylyl-(4)]-carbonimid $C_{12}H_{14}O_2N_3 = H_0N\cdot C_0H_3(O\cdot CH_3)\cdot C_0H_4(O\cdot CH_2)\cdot N:CO$ oder Carbonyl-bis-o-dianisidin, N.N'-Bis-[4'-amino-3.3'-dimethoxy-diphenylyl-(4)]-harnstoff $C_{22}H_{20}O_2N_4 = [H_2N\cdot C_2H_4(O\cdot CH_3)\cdot NH]_2CO$ oder höhermolekulare Verbindung. Zur Frage der Konstitution vgl. Le Fryre, Turner, Soc. 1926, 2478; Le F., Soc. 1929, 733, 735. — B. Beim Einleiten von Phosgen in eine Lösung von o-Dianisidin in Benzol (STARKE, J. pr. [2] 59, 216). — Amorph. Zersetzt sich beim Erhitzen; unlöslich in den gebräuchlichen Solvenzien (St.).

4.4'-Diamino-3.3'-diāthoxy-diphenyl, 3.3'-Diāthoxy-benzidin, c-Diphenetidin $C_{18}H_{20}O_2N_2=[-C_0H_3(0\cdot C_2H_3)\cdot NH_2]_2$. B. Beim Behandeln von 2.2'-Diāthoxy-hydraxobenzol (Syst. No. 2078) mit konz. Salssāure (Schmiff, Möhlau, J. pr. [2] 18, 203; Möhlau, J. pr. [2] 19, 383). — Nadeln oder Blāttohen. F: 117° (M.). Destilliert nicht unzersetzt (M.). Unlöslich in kaltem Wasser, etwas löslich in viel siedendem, sehr leicht in Alkohol, Ather und Chloroform (M.). Die wäßr. Lösung des salssauren Salzes färbt sich rot auf Zusatz von Eisenchlorid, Permanganat, Brom oder Chlorkalk (M.). Sulfurierung mit rauchender Schwefelsäure bei höchstens $+4^0$ liefert 3.3'-Diāthoxy-benzidin-disulfonsäure-(6.6') (Syst. No. 1927) (Akt.-Ges. f. Anilin-Fabr., D. R. P. 174497; Frdl. 8, 120; C. 1906 II, 1224). — $C_{16}H_{20}O_2N_3 + 2$ HCl. Tafeln oder Nadeln (aus Wasser). Ziemlich leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther; unlöslich in kalter, konzentrierter Salzsäure (M.). — $C_{16}H_{20}O_2N_3 + 2$ HNO3. Nadeln (M.). — $C_{16}H_{20}O_2N_3 + 2$ HNO3. Nadeln (M.). — $C_{16}H_{20}O_2N_3 + 2$ HCl + 2 SnCl₂. Blättchen. Leicht löslich in Wasser, schwerer in Alkohol (M.). — $C_{16}H_{20}O_2N_3 + 2$ HCl + 2 SnCl₂. Blättchen. Leicht löslich in Wasser, schwerer in Alkohol (M.). — $C_{16}H_{20}O_2N_3 + 2$ HCl + 2 HCl + PtCl₄. Gelbliche Krystalle. Unlöslich in Alkohol, Äther und kalter konz. Salzsäure (M.).

 $[4.4'-Diamino-diphenylen-8.8']-bis-glykolsäure C_{1e}H_{1e}O_{e}N_{2}=[-C_{e}H_{3}(O\cdot CH_{2}\cdot CO_{2}H)\cdot NH_{2}]_{2}. \quad B. \quad Beim \quad längeren \quad Erhitzen \quad des \quad Dilactams \quad \begin{array}{c} H_{2}C - O \\ OC\cdot NH \end{array} \\ C_{e}H_{3}\cdot C_{e}H_{3}\cdot C_{e}H_{3} \\ NH\cdot CO \end{array} \\ (Syst.$

Nr. 4641) mit Natronlauge (Bad. Anilin- u. Sodaf., D. R. P. 55506; Froll. 2, 457). — Verwendung zur Darstellung von Disazofarbstoffen: B. A. S. F., D. R. P. 61053; Froll. 3, 725. — Natriumsalz. Undeutlich krystallinische Masse; sehr leicht löslich in Wasser, unlöslich in Alkohol; sehwer löslich in Natronlauge; wird von warmen Mineralsäuren in das Anhydrid zurückverwandelt (B. A. S. F., D. R. P. 55506).

N.N'-Diacetyl-o-dianisidin $C_{18}H_{20}O_4N_3 = [-C_8H_3(O\cdot CH_3)\cdot NH\cdot CO\cdot CH_3]_2$. B. Beim Kochen von o-Dianisidin mit Essigsäureanhydrid (Starke, J. pr. [2] 59, 214). Beim Erwärmen von o-Dianisidin mit Thioessigsäure in Benzol (Pawlewski, B. 35, 112). — Prismen (aus Eisessig), Blättchen (aus Alkohol). F: 242—243° (P.), 231° (St.). Unlöslich in Wasser und Äther, schwer löslich in Alkohol und Benzol, löslich in Chloroform und Eisessig (St.).

N.N'-Dibensoyl-o-dianisidin $C_{28}H_{24}O_4N_3 = [-C_8H_3(O \cdot CH_3) \cdot NH \cdot CO \cdot C_8H_5]_2$. B. Aus o-Dianisidin beim Schütteln mit Benzoylchlorid und Natronlauge (STARKE, J. pr. [2] 59, 215). — Prismen (aus Eisessig). F: 236°. Leicht löslich in Aceton, schwer in Alkohol, Benzol. Chloroform und Eisessig, unlöslich in Wasser und Äther.

 $\begin{array}{lll} \textbf{N.N} - \textbf{Phthalyl} - \textbf{o} - \textbf{diamisidin} & C_{22} \textbf{H}_{18} \textbf{O}_4 \textbf{N}_3 \\ \textbf{H}_2 \textbf{N} \cdot \textbf{C}_6 \textbf{H}_5 (\textbf{O} \cdot \textbf{CH}_5) \cdot \textbf{C}_6 \textbf{H}_5 (\textbf{O} \cdot \textbf{CH}_5) \cdot \textbf{N} < & \textbf{CO} \\ \textbf{CO} > \textbf{C}_6 \textbf{H}_4 & \textbf{s.} & \textbf{Syst. No. 3218.} \end{array}$

 $\textbf{N.N.N'.N'-Diphthalyl-o-dianisidin} \quad C_{30}H_{30}O_6N_3 = \left[-C_6H_3(O\cdot CH_3)\cdot N < \begin{matrix} CO \\ CO \end{matrix} > C_6H_4 \right]_3$ s. Syst. No. 3218.

[8.3'-Dimethoxy-diphenylen-(4.4')]-bis-[8-äthyl-N-benzoyl-isothioharnstoff] $C_{24}H_{24}O_4N_4S_3 = C_6H_5 \cdot CO \cdot N : C(8 \cdot C_2H_5) \cdot NH \cdot C_6H_3(O \cdot CH_3) \cdot C_6H_3(O \cdot CH_2) \cdot NH \cdot C(8 \cdot C_2H_5) : N \cdot CO \cdot C_6H_5$. B. Aus Dithiokohlensäure-diäthylester-benzoylimid (Bd. IX, S. 224) und o-Dianisidin (Wheeler, Johnson, Am. 26, 416). — Nadeln (aus Benzol + Alkohol). F: 170—1710.

N-Carbonyl-o-dianisidin, [4'-Amino-8.8'-dimethoxy-diphenylyl-(4)]-isocyanat, [4'-Amino-8.8'-dimethoxy-diphenylyl-(4)]-carbonimid $C_{18}H_{14}O_3N_2=H_2N\cdot C_8H_3(O\cdot CH_3)\cdot C_8H_3(O\cdot CH_3)\cdot N:CO$. Eine Verbindung, der vielleicht diese Konstitution zukommt s. S. 808.

N-Thiocarbonyl-o-dianisidin, [4'-Amino-8.8'-dimethoxy-diphenylyl-(4)]-isothiocyanat, [4'-Amino-8.8'-dimethoxy-diphenylyl-(4)]-senföl $C_{18}H_{14}O_{2}N_{2}S=H_{2}N\cdot C_{6}H_{5}(O\cdot CH_{3})\cdot C_{6}H_{5}(O\cdot CH_{3})\cdot N:CS$. Das Mol.-Gew. ist ebullioskopisch bestimmt (Kaufler, Borel, B. 40, 3254). Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1926, 2479; vgl. hierzu auch Le Fè., Soc. 1929, 735). — B. Beim Kochen von o-Dianisidin mit CS₂, Kalilauge und Alkohol (Starke, J. pr. [2] 59, 217). — Amorph. Unlöslich in den meisten Lösungsmitteln (St.), leicht löslich in Nitrobenzol (K., B.).

N.N'-Bis-thiocarbonyl-o-dianisidin, [8.8'-Dimethoxy-diphenylen-(4.4')]-disothiocyanat, [8.8'-Dimethoxy-diphenylen-(4.4')]-di-senföl $C_{19}H_{19}O_{2}N_{2}S_{3}=[-C_{6}H_{3}(O\cdot CH_{2})\cdot N:CS]_{2}$. B. Aus o-Dianisidin und Thiophosgen in Chloroform in Gegenwart von Natronlauge (Gattermann, J. pr. [2] 59, 594). — Gelbliche Blättchen (aus Nitrobenzol). F: 192—194°.

N.N'-Bis-[4-methoxy-thiobensoyl]-o-dianisidin, N.N'-Bis-thioanisoyl-o-dianisidin $C_{20}H_{30}O_4N_2S_2=[-C_4H_3(O\cdot CH_2)\cdot NH\cdot CS\cdot C_4H_4\cdot O\cdot CH_2]_2$. B. Aus Anisol (Bd. VI, S. 138), [3.3'-Dimethoxy-diphenylen-(4.4')]-di-senfol (s. o.) und AlCl₃ (G., J. pr. [2] 59, 594). — Gelbe Nädelchen (aus Nitrobenzol + Alkohol). F: 222—224°.

N.N'-Bis-[4-āthoxy-thiobensoyl]-o-dianisidin $C_{22}H_{22}O_4N_2S_2=[-C_4H_4(O\cdot CH_2)\cdot NH\cdot CS\cdot C_4H_4\cdot O\cdot C_2H_4]_2$. B. Aus Phenetol, [3.3'-Dimethoxy-diphenylen-(4.4')]-di-senföl und AlCl₂ (G., J. pr. [2] 59, 594). — Gelbe Blättchen (aus Nitrobenzol + Alkohol). F: 233—235°.

N.N'-Bis-[4.4'-bis-dimethylamino-benshydryl]-o-dianisidin, [8.8'-Dimethoxy-diphenylen-(4.4')]-dileukauramin $C_{48}H_{56}O_3N_6 = [(CH_3)_2N \cdot C_6H_4]_2CH \cdot NH \cdot C_6H_5(O \cdot CH_3) \cdot C_6H_5(O \cdot CH_3) \cdot NH \cdot CH[C_6H_4 \cdot N(CH_3)_3]_3$. B. Beim Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol (S. 698) mit o-Dianisidin in alkoh. Lösung (Möhlau, Heinze, B. 35, 373). — Prismen (aus Chloroform). F: 259—260°. Sehr wenig löslich in Alkohol, Äther, Aceton und Benzol.

8.6'-Dinitro-4.4'-diamino-8.8'-dimethoxy-diphenyl, 6.6'-Dinitro-8.8'-dimethoxy-bensidin, Dinitro-o-dianisidin $C_{14}H_{14}O_{2}N_{4} = [-C_{6}H_{14}(NO_{2})(O\cdot CH_{3})\cdot NH_{2}]_{3}$. B. Durch Nitrieren von o-Dianisidin in viel Schwefelsäure mit Salpeterschwefelsäure bei -5° (ULL-MANN, DIETERLE, B. 37, 35). Entsteht ferner beim vorsichtigen Versetzen der schwefelsauren Lösung von o-Dianisidin mit Kalisalpeter bei 5° (STAREE, J.pr. [2] 59, 220). Beim

N.N'-Diacetylderivat $C_{16}H_{16}O_{6}N_{4} = [-C_{6}H_{16}(NO_{2})(O\cdot CH_{3})\cdot NH\cdot CO\cdot CH_{3}]_{2}$. B. In die Mischung von N.N'-Diacetyl-o-dianisidin mit der doppelten Menge Eisessig wird bei 10—15° Salpetersäure (D: 1,4) eingetragen (Starke, J. pr. [2] 59, 219). — Gelbe Prismen (aus Eisessig). Zersetzt sich bei 220°. Unlöslich in Benzol, schwer löslich in Chloroform, leicht in Alkohol, Äther und Eisessig.

4.4'-Diamino - 3.3'-bis - methylmercapto - diphenyl, 3.3'-Bis - methylmercapto - bensidin, Dithio-o-dianisidin $C_{14}H_{14}N_3S_3=[-C_4H_2(8\cdot CH_3)\cdot NH_2]_3$. B. Aus 2.2'-Bismethylmercapto-hydrazobenzol (Syst. No. 2078) mit 30% iger Salzsäure (Brand, B. 42, 3468). — Nadeln (aus verd. Alkohol). F: 110—112°. Färbt sich an der Luft und am Licht blaugrün. — $C_{14}H_{16}N_3S_2+2$ HCl. Nadeln. Schmilzt gegen 260° unter Zersetzung.

N.N'-Diacetylderivat $C_{12}H_{20}O_2N_2S_2 = [-C_0H_2(S \cdot CH_2) \cdot NH \cdot CO \cdot CH_2]_2$. Farblose, sich bald bläuende Nadeln. F: 245—247°; schwer löslich in heißem Alkohol, löslich in heißem Eisessig (Brand, B. 42, 3468).

3. Aminoderivate des 4.4'-Dioxy-diphenyls $C_{12}H_{10}O_2=HO\cdot C_0H_4\cdot C_0H_4\cdot OH$ (Bd. VI, S. 991).

2 oder 3-Amino-4.4'-disulfhydryl-diphenyl, 2 oder 3-Amino-4.4'-dimercapto-diphenyl $C_{12}H_{11}NS_2 = HS \cdot C_2H_4 \cdot C_2H_3(SH) \cdot NH_2$. Bei der Reduktion des 2 oder 3-Nitro-diphenyl-disulfonsäure-(4.4')-dichlorids (Bd. XI, S. 220) mit Zinn und Salzsäure (Gabriel, Dambergis, B. 13, 1411). — Nadeln (aus wäßr. Alkohol). F: 153°.

3.3'-Diamino - 4.4'- dioxy - diphenyl $C_{19}H_{12}O_{2}N_{2}$, s. nebenstehende Formel. B. Bei der Reduktion von 3.3'-Dinitro-4.4'-dioxy-diphenyl (Bd. VI, S. 992) mit Sn und HCl (Kunze, B. 21, 3332). — Nådelchen (aus verd. Alkohol). Schmilzt oberhalb 300° (Schürz, B. 21, 3531). Die Lösung in alkoh. Ammoniak farbt sich intensiv grün (K.). — $C_{18}H_{12}O_{2}N_{2}+2$ HCl. Nadeln oder Warzen (K.; Sch.). Leicht löslich in Wasser (Sch.). — $C_{19}H_{12}O_{2}N_{2}+H_{2}SO_{4}$. Nådelchen (Sch.). — Pikrat $C_{12}H_{12}O_{2}N_{2}+2$ $C_{4}H_{2}O_{7}N_{3}$. Nadeln (aus Alkohol) (Sch.).

3.3'-Bis-acetamino-4.4'-dioxy-diphenyl $C_{16}H_{16}O_4N_2 = [-C_6H_3(OH)\cdot NH\cdot CO\cdot CH_3]_2$. B. Bei der Einw. von Essigsäureanhydrid auf 3.3'-Diamino-4.4'-dioxy-diphenyl (SCHÜTZ, B. 21, 3532). — Nadeln. F: 210°. Löslich in Alkalien.

3.3'-Bis-acetamino-4.4'-diacetoxy-diphenyl $C_{3e}H_{30}O_{e}N_{3}=[-C_{e}H_{3}(O\cdot CO\cdot CH_{3})\cdot NH\cdot CO\cdot CH_{3}]_{e}$. B. Beim Kochen von 3.3'-Diamino-4.4'-dioxy-diphenyl mit Essigsäureanhydrid (Kunze, B. 21, 3332). — Nadeln. F: 225°. — Zerfällt beim Erhitzen in Essigsäure und O.N; O'.N'-Diäthenyl-[3.3'-diamino-4.4'-dioxy-diphenyl] $CH_{3}\cdot C<\frac{N}{O}>C_{e}H_{3}\cdot C_{e}H_{3}<\frac{N}{O}>C\cdot CH_{3}$ (Syst. No. 4630).

3.5.3'.5'-Tetraamino - 4.4'-dioxy - diphenyl C₁₂H₁₄O₂N₄,
s. nebenst. Formel. B. Beim Behandeln von 3.5.3'.5'-Tetranitro-4.4'-dioxy-diphenyl (in Bd. VI, S. 992 als 3.x.3'.x'-Tetranitro-4.4'-dioxy-diphenyl aufgeführt) mit Zinn und Salzsäure (Kunze, B. 21, 3334). — Nadeln. Verkohlt beim Erhitzen ohne zu schmelzen (K.). — Beim Durchleiten von Luft durch eine Lösung in alkoh. Ammoniak fällt eine in blauschwarzen bronzeglänzenden Nadeln krystallisierende Ver bindung C₁₂H₁₂O₂N₄ aus (K.). — C₁₂H₁₄O₂N₄ + 2 HCl (K.). — C₁₂H₁₄O₂N₄ + 4 HCl + 4 H₂O (SCHÜTZ, B. 21, 3532). — C₂H₁₄O₂N₄ + H₂SO₂. Nadeln (SCH.).

aus (K.). — $C_{12}H_{14}O_{2}N_{4} + 2HCl$ (K.). — $C_{12}H_{14}O_{2}N_{4} + 4HCl + 4H_{2}O$ (Schürz, B. 21, 3532). — $C_{12}H_{14}O_{2}N_{4} + H_{2}SO_{4}$. Nadeln (Sch.). Verbindung $C_{12}H_{14}O_{2}N_{4}$. B. Bei der Einw. von Acetylchlorid auf 3.5.3'.5'-Tetraamino-4.4'-dioxy-diphenyl (Schürz, B. 21, 3533). — Wird von Alkalien gelöst. Bei längerem Kochen mit Salzsäure wird 3.5.3'.5'-Tetraamino-4.4'-dioxy-diphenyl abgespalten.

1) Zur Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von G. VAN ROMBURGH, R. 41 [1922], 40.

- 3.5.3'.5'-Tetrakis-acetamino-4.4'-dioxy-diphenyl $C_{30}H_{23}O_{6}N_{4}=[-C_{6}H_{2}(OH)(NH\cdot CO\cdot CH_{3})_{2}]_{2}$. B. Beim Erwärmen von 3.5.3'.5'-Tetrakis-acetamino-4.4'-diacetoxy-diphenyl mit Natronlauge (Schütz, B. 21, 3532). Nädelchen. F: 280°.
- **3.5.3'.5'-Tetrakis-acetamino-4.4'**-diacetoxy-diphenyl $C_{24}H_{16}O_3N_4 = [-C_6H_3(O\cdot CO\cdot CH_3)(NH\cdot CO\cdot CH_3)_2]_2$. B. Beim längerem Kochen von 3.5.3'.5'-Tetraamino-4.4'-dioxy-diphenyl und Essigsäureanhydrid (SCHÜTZ, B. 21, 3532). Krystallpulver. Schmilzt gegen 300°.
 - 4. Aminoderivat eines x.x-Dioxy-diphenyls C₁₂H₁₀O₂.
- 4.4' Diamino x.x dioxy diphenyl, x.x Dioxy bensidin C₁₂H₁₂O₂N₂ = (H₂N)₂C₁₂H₄(OH)₂. B. Tritt nach Verfütterung von Benzidin an Kaninchen im Harn der Tiere auf. Man zieht das Sediment des Harns mit Alkohol aus, verdunstet die alkoh. Lösung und krystallisiert den Rückstand aus Wasser (Adler, A. Pth. 58, 190). Schüppchen. Schmilzt zwischen 130 und 138°. Löslich in Alkohol, sehr wenig löslich in kaltem, leicht in heißem Wasser; fast unlöslich in Sodalösung, leicht löslich in starkem Ammoniak. Gibt mit FeCl₂ Grünfärbung.

2. Aminoderivate der Dioxy-Verbindungen $C_{13}H_{12}O_{2}$.

- 1. Aminoderivate des 2.4 Dioxy diphenylmethans $C_{13}H_{12}O_2 = C_0H_5 \cdot CH_2 \cdot C_0H_3(OH)_2$.
- 2'-Amino-2.4-dioxy-diphenylmethan $C_{13}H_{13}O_{2}N$, s. nebenstehende Formel. B. Bei kurzem Kochen gleicher Teile von 2-Amino-benzylalkohol (S. 615) und Resorcin (Bd. VI, S. 796) in wäßr. Lösung unter Zusatz von wenig verd. Schwefelsäure (Friedländer, M. 23, 984). Nadeln (aus Wasser). F: 158—159°. Schwer löslich in Benzol, Ligroin, Chloroform und kaltem Wasser, leicht in Alkohol, Äther, Eisessig und heißem Wasser. Beim Erwärmen mit Essigsäureanhydrid entsteht eine alkalilösliche Acetylverbindung. Hydrochlorid. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser und Salzsäure, leicht in Alkohol. $2C_{13}H_{13}O_{2}N + H_{2}SO_{4}$. Nadeln. Schwer löslich in kaltem Wasser.
- 4'-Amino 2.4 dioxy diphenylmethan C₁₃H₁₃O₂N,
 s. nebenstehende Formel. B. Entsteht als Hauptprodukt bei
 der Kondensation von 4-Amino-benzylalkohol (S. 620) mit
 H₂N· CH₂· OH
 der äquimolekularen Menge Resoroin in wäßr. Lösung unter
 Zusatz von etwas Schwefelsäure, neben etwas 4.6-Dioxy-1.3-bis-[4-amino-benzyl]-benzol
 (S. 822) (FRIEDLÄNDER, v. HORVÁTH, M. 28, 979). Farblose Tafeln (aus Essigester). F: 160°
 bis 161°. Leicht löslich in Alkohol und Äther, ziemlich löslich in heißem Wasser, schwer in
 kaltem Wasser, Benzol und Ligroin. Besitzt basische und gleichzeitig schwach saure
 Eigenschaften; die Salze mit Säuren sind leicht löslich, nur das Oxalat ist ein schwer löslicher
 Niederschlag.
- 4'-Methylamino 2.4 dioxy diphenylmethan $C_{14}H_{15}O_{2}N = CH_{3} \cdot NH \cdot C_{6}H_{4} \cdot CH_{3} \cdot C_{6}H_{3}(OH)_{2}$. B. Entsteht neben 4.6-Dioxy-1.3-bis-[4-methylamino-benzyl]-benzol (8. 822) bei der Kondensation von salzsaurem dimerem (!) Anhydro-[4-methylamino-benzylalkohol] (8. 621) mit Resorcin in schwach schwefelsaurer Lösung (Friedländer, M. 23, 992). Krystalle (aus Wasser). F: 111—112°. Sehr leicht löslich in heißem Wasser, Alkohol und Äther, schwer in Benzol, Chloroform und Schwefelkohlenstoff; löslich in verd. Natronlauge und in verd. Mineralsäuren. Wird von Oxydationsmitteln sehr leicht angegriffen; reduziert beim Erwärmen ammoniakalische Silbersalzlösung; wird durch Bleidioxyd in Eisessig in einen rotvioletten Farbstoff übergeführt. Liefert mit salpetriger Säure ein festes, alkalilösliches Nitrosoderivat, mit Essigsäureanhydrid eine ölige, alkalilösliche Acetylverbindung. $C_{14}H_{15}O_{2}N+HCl$. Krystalle. Sehr leicht löslich in Wasser. Nitrat. Weiße Blätter (aus Wasser).
- 4'-Äthylamino 2.4 dioxy diphenylmethan $C_{18}H_{17}O_{3}N = C_{2}H_{5}\cdot NH\cdot C_{6}H_{4}\cdot CH_{3}\cdot C_{6}H_{3}(OH)_{2}$. B. Neben 4.6-Dioxy-1.3-bis-[4-āthylamino-benzyl]-benzol (S. 823), bei der Kondensation von salzsaurem dimerem (?) Anhydro-[4-āthylamino-benzylalkohol] (S. 622) mit Resorcin in schwach schwefelsaurer Lösung (Friedländer, M. 23, 995). Rosafarbene Nadeln (aus Wasser). F: 154—155°. Leicht löslich in heißem Wasser, Alkohol und Äther, schwer in Benzol.
- 2. Aminoderivate des 2.2'-Dioxy-diphenylmethans $C_{13}H_{13}O_3=HO\cdot C_4H_4\cdot CH_2\cdot C_6H_4\cdot OH$ (Bd. VI, S. 994).
- 4.4'-Bis-dimethylamino-2.2'-dioxy-diphenylmethan $C_{17}H_{28}O_2N_2$, s. nebenstehende Formel. B. Beim Erhitzen von 3-Dimethylamino-phenol (S. 405) mit Methylenchlorid im Autoklaven auf 130—140° (CH₃)₂N· CH_3 · $N(CH_3)_2$

- (BAYER & Co., D.R.P. 54190; Frdl. 2, 61). Durch Eintragen von 16 ccm einer 40% igen Formaldehydlösung in eine Lösung von 56 g 3-Dimethylamino-phenol in 120 ccm Alkohol (Leonhardt & Co., D.R.P. 58955; Frdl. 3, 92; Möhlau, Koch, B. 27, 2896; Biehrieger, J. pr. [2] 54, 223; vgl. auch Liebermann, B. 37, 205 Anm.) oder besser durch Einw. von Formaldehyd auf die Salze des 3-Dimethylamino-phenols mit Säuren oder Alkalien in kalter wäßriger Lösung (Lzo. & Co., D.R.P. 63081; Frdl. 3, 93). Beim Behandeln von 2.2'-Diamino-**A4'-bis-dimethylamino-diphenylmethan (S. 340) mit Nitritlösung in sehr verd. Salzsäure bei 5—10° (Biz., J. pr. [2] 54, 246). — Farblose Blättchen (aus Benzol), die sich an der Luft schnell rosa färben (Biz.). F: 178° (Biz.), 180° (Leo. & Co., D.R.P. 58955). Leicht löslich in Aceton, heißem Alkohol, Äther und Benzol, schwer in Ligroin (Biz.). Leicht löslich in Säuren und Alkalien (Biz.). — Redusiert ammoniakalische Silberlösung beim Erwärmen (Biz.). Liefert beim Digerieren mit konz. Schwefelsäure 3.6-Bis-dimethylamino-xanthen (Leuko-methylamino-xanthen (pyronin; Syst. No. 2641) (Leo. & Co., Disch. Patentanmeldung L. 5765; Frdl. 2, 63; Bie.). — $C_{17}H_{28}O_2N_2 + 2HCl + H_2O$. Tafeln. Verliert schon bei Wasserbadtemperatur Salzsäure (Bie.). — $C_{17}H_{28}O_2N_2 + 2HCl + PtCl_4$. Gelbe Tafeln (Bie.).
- 4.4' Bis dimethylamino 2.2' dibenzoyloxy diphenylmethan $C_{31}H_{20}O_4N_3 = CH_3[C_6H_3(O\cdot CO\cdot C_6H_3)\cdot N(CH_3)_2]_3$. B. Beim Schütteln von 4.4'-Bis-dimethylamino-2.2'-dioxy-diphenylmethan mit Benzoylohlorid in alkal. Lösung (Bisheringer, J. pr. [2] 54, 225). Gibt mit Bleidioxyd in Eisessig eine blaue Färbung, die auf Zusatz von Alkali verschwindet. $C_{31}H_{20}O_4N_3 + 2$ HCl. Weiße Nadeln (aus sehr verd. Salzsäure). Ist sehr hygroskopisch; wird an der Luft bläulich. Schmilzt bei 72—73°; zersetzt sich bei 125°.
- 4.4'-Bis-diäthylamino-2.2'-dioxy-diphenylmethan $C_{m}H_{s0}O_{s}N_{s}=CH_{s}[C_{s}H_{s}(OH)-N(C_{s}H_{s})_{s}]_{s}$. B. Man versetzt unter Kühlung ein Gemisch aus 11 g 3-Diäthylamino-phenol (8. 408), 3 ccm rauchender Salzsäure und 25 ccm Methylalkohol mit 2,5 ccm $40^{\circ}/_{o}$ iger Formaldehydlösung, läßt einige Stunden unter Kühlung stehen und versetzt mit 4,5 g krystallisiertem Natriumacetat, gelöst in 9 g Methylalkohol (Bieheinger, J. pr. [2] 54, 226; vgl. Leon-Hardt & Co., D. R. P. 58955, 63081; Frdl. 3, 92, 93). — Krystalle (aus Alkohol). F: 168° (B.), 165° (L. & Co.). Schwer löslich in heißem Methylalkohol, leicht in heißem Alkohol und Xylol (B.). — $C_{11}H_{20}O_2N_2 + H_2SO_4$ (bei 100°). Prismen (aus Alkohol) (B.).
- 4.4'-Di-p-toluidino-2.2'-dioxy-diphenylmethan $C_{17}H_{26}O_{2}N_{2} = CH_{2}[C_{4}H_{3}(OH)\cdot NH\cdot C_{4}H_{4}\cdot CH_{3}]_{2}$. B. Bei der Einw. von 4,7 ccm einer $32^{9}/_{9}$ igen Formaldehydlösung auf eine Lösung von 20 g 3-p-Toluidino-phenol (8. 412) in Alkohol und 10 g konz. Salzsäure bei 40—50° (GNEHM, VEILLON, J. pr. [2] 65, 77). Bei gelindem Erwärmen von 1 Mol.-Gew. 3-p-Toluidinophenol mit 1 Mol.-Gew. 4-p-Toluidino-2-oxy-benzylalkohol (S. 799) in konz. Salzsäure (G., V.). — Hellgraues Pulver, das sich am Licht grauviolett färbt. Schmilzt unscharf bei 118° nach vorherigem Sintern. Zersetzt sich bei der Destillation im Vakuum unter Rückbildung von 3-p-Toluidino-phenol. Leicht löslich in Methylalkohol, Äthylalkohol, Aceton, Chloroform, Äther, schwerer in Benzol, Toluol, Schwefelkohlenstoff, unlöslich in Wasser und Ligroin. Unlöslich in wäßr. Alkalien. Konz. Schwefelsäure löst in der Kälte mit grünlicher, in der Wärme mit bläulicher Karbe, beim Erhitzen der abwerfelsauren Lägung auf 420. 4400 in der Warme mit bläulicher Farbe; beim Erhitzen der schwefelsauren Lösung auf 120—1406 entsteht ein in Wasser lösliches dunkelviolettes Produkt. — C27 H26 O2 N2 + 2 HCl. Amorphes Pulver. Verliert beim Stehen Salzsäure. F: 213°.
- 4.4'-Bis [4-dimethylamino anilino] -2.2'-dioxy-diphenylmethan $C_{ab}H_{ab}O_{a}N_{d}=CH_{a}[C_{a}H_{d}(OH)\cdot NH\cdot C_{a}H_{d}\cdot N(CH_{a})_{a}]_{a}$. B. Beim Erwärmen einer Lösung von 4,5 g 3-Oxy-4'-dimethylamino-diphenylamin (S. 418) in 50 ccm Alkohol und 2 ccm Salzsäure (D: 1,19) mit 0,8 ccm einer 40° eigen Formaldehydlösung auf ca. $40-50^{\circ}$ (GNEHM, WEBER, J. pr. [2] 69, 240). — Gelbliches amorphes Pulver (aus Benzol + Ligroin). Schmiltt unscharf bei 150° nach vorhergehendem Sintern. Leicht löslich in Chloroform, Aceton, Pyridin, heißem Alkohol, heißem Benzol, heißem Essigester, unlöslich in Ather. — Löst sich in konz. Schwefelsaure mit rötlichbrauner Farbe; erwärmt man diese Lösung im Wasserbade, gießt dann in Wasser und oxydiert mit FeCl., so entsteht eine rote Färbung.
- Aminoderivate des 3.3'-Dioxy-diphenylmethans $C_{13}H_{13}O_{1} = H_{0} \cdot C_{4}H_{4}$ $CH_1 \cdot C_0H_4 \cdot OH$ (Bd. VI, S. 995).
- 4.4' Diamino 3.3' dimethoxy diphenylmethan C₁₂H₁₃O₂N₂, s. nebenstehende Formel. B. Beim Kochen won Methylen-di-o-anisidin (S. 368) mit o-Anisidin (S. 358) H₂N·< $0.CH_{\bullet}$ · CH.· < und salssaurem o-Anisidin in alkoh. Lösung am Rückflußkühler (FINGER, J. pr. [2] 79, 495). — Krystalle (aus Alkohol). F: 100°. — Kondensation mit o-Anisidin zu einem Triphenylmethaniarbstoff: FINGER.
- 4.4'-Diamino-8.8'-diäthoxy-diphenylmethan $C_{17}H_{28}O_1N_2=CH_3[C_0H_3(O\cdot C_9H_5)\cdot NH_3]_2$. B. Beim Erwärmen von 2 Mol.-Gew. o-Phenetidin (S. 359) mit 1 Mol.-Gew. Formaldehyd in wäßrig-salzsaurer oder -schwefelsaurer Lösung auf dem Wasserbade (Höchster Farbw., D.R.P. 70402; Frdl. 8, 80; vgl. Kalle & Co., D.R.P. 96852; Frdl. 5, 93). — Ol,

das beim Stehen fest wird; ziemlich leicht löslich in Alkohol, Äther und Benzol (H. F.). — $C_{17}H_{23}O_3N_3+2$ HCl. Krystelle. Leicht löslich in Wasser; FeCl₃ färbt die wäßr. Lösung violett (H. F.).

- 4.4'-Bis-dimethylamino-3.3'-dioxy-diphenylmethan $C_{17}H_{22}O_2N_2 = CH_2[C_6H_3(OH)\cdot N(CH_3)_2]_2$. B. Beim Erwärmen von 4.4'-Bis-dimethylamino-diphenylmethan-dioxyd (S. 242) mit Acetanhydrid und konz. Schwefelsäure auf 70°, neben 4.4'-Bis-dimethylamino-3-oxy-diphenylmethan (S. 694) (Bamberger, Rudolf, B. 41, 3301). Farblose Prismen (aus Alkohol). F: 114,5—115° (korr.). Leicht löslich in Säuren und Ätzalkalien; die alkalische Lösung wird bald braun. Die salzsaure Lösung wird mit FeCl₃ beim Erwärmen dunkelrotbraun, die essigsaure Lösung mit PbO₂ gelb, dann braunrot.
- **4.4'-Bis-acetamino-3.3'-dimethoxy-diphenylmethan** $C_{19}H_{21}O_4N_3 = CH_2[C_0H_3(O\cdot CH_3)\cdot NH\cdot CO\cdot CH_3]_3$. B. Bei der Einw. von Acetanhydrid auf 4.4'-Diamino-3.3'-dimethoxy-diphenylmethan in Eisessig und etwas Schwefelsäure (FINGER, J. pr. [2] 79, 495). Krystalle (aus Alkohol). F: 180,5°. Bei der Oxydation mit Dichromat und Schwefelsäure entsteht 4.4'-Bis-acetamino-3.3'-dimethoxy-benzophenon (Syst. No. 1878).
- 4. Aminoderivate des 4.4' Dioxy diphenylmethans $C_{13}H_{12}O_2 = HO \cdot C_0H_4 \cdot CH_2 \cdot C_0H_4 \cdot OH$ (Bd. VI, 8. 995).
- a-Amino-4.4'-dimethoxy-diphenylmethan, 4.4'-Dimethoxy-benshydrylamin $C_{18}H_{17}O_2N = CH_2 \cdot O \cdot CH(NH_2) \cdot O \cdot CH_3$. B. Durch Erwärmen von salzsaurem Dichlormethyl-formamidin (Bd. II, S. 90) mit Anisol (Bd. VI, S. 138) in Gegenwart von AlCl₃ auf 90° und Verseifen des Reaktionsproduktes (BAYER & Co., D.R.P. 103858; Frdl. 5, 72; C. 1899 II, 949). Farbloses Öl. Hydrochlorid. Nädelchen. F: 200°.
- 3.3'-Diamino -4.4'-dimethoxy-diphenylmethan $C_{18}H_{18}O_2N_3$, s. nebenstehende Formel. B. Man kondensiert 2-Nitro-anisol (Bd. VI, S. 217) und Formaldehyd $CH_3 \cdot O \cdot CH_2 \cdot O \cdot CH_3$ bei Gegenwart von Schwefelsäure (66° Bé) und reduziert das erhaltene 3.3'-Dinitro-4.4'-dimethoxy-diphenylmethan (F: ca. 160°) mit Eisen und Essigsäure (Bad. Anilin- u. Sodaf., D.R.P. 140690; C. 1903 I, 1010). Weiße Nädelchen (aus Ligroin). F: 107°. Leicht löslich in Benzol, Chloroform, Alkohol und in verd. Säuren, sehr wenig in Ligroin, unlöslich in Wasser.

3. Aminoderivate der Dioxy-Verbindungen $C_{14}H_{14}O_2$.

1. Aminoderivate des a. β -Bis-[2-oxy-phenyl] - āthans $C_{14}H_{14}O_3=HO\cdot C_6H_4\cdot CH_3\cdot CO_9H_4\cdot OH$ (Bd. VI, 8. 999).

a.a'-Bis-[2-oxy-phenyl]-šthylendiamin $C_{14}H_{16}O_2N_3=[H0\cdot C_2H_4\cdot CH(NH_2)-]_3$. B. Durch Erhitzen von N.N'-Dibenzoyl-a.a'-bis-[2-oxy-phenyl]-šthylendiamin mit verd. Salzsäure auf 210°; man fällt die Lösung mit Ammoniak und krystallisiert den Niederschlag aus Benzol um (JAPP, HOOKER, B. 17, 2404; Soc. 45, 675). — Blätchen (aus Benzol). F: 180,5°. Löslich in Alkohol, Äther, Chloroform, fast unlöslich in Wasser. Löslich in kaustischen Alkalien. Liefert beim Schmelzen mit Natron Salicylsäure. — Hydrochlorid. Tafeln. — Sulfat. Prismen. — Pikrat. Gelbe Nadeln. In kochendem Wasser sehr wenig löslich. — $C_{14}H_{16}O_2N_3+2HCl+PtCl_4+4H_2O$. Orangerote Tafeln.

N.N'-Diacetyl-a.a'-bis-[2-oxy-phenyl]-äthylendiamin $C_{18}H_{20}O_4N_3=[HO\cdot C_6H_4\cdot CH(NH\cdot CO\cdot CH_2)-]_3$. B. Aus a.a'-Bis-[2-oxy-phenyl]-āthylendiamin und Essigsäureanhydrid in der Kälte (J., H., B. 17, 2409; Soc. 45, 663). Man kocht N.N'-Diacetyl-a.a'-bis-[2-acetoxy-phenyl]-āthylendiamin einige Minuten mit verd. Kalilauge (J., H.). — Krystallpulver. Schmilst oberhalb 300°. Unlöslich in den gewöhnlichen Lösungsmitteln. Löslich in Phenol und in Kalilauge.

N.N'-Diacetyl-a.a'-bis-[2-acetoxy-phenyl]-āthylendiamin $C_{22}H_{24}O_4N_2=[CH_3\cdot CO\cdot C_4H_4\cdot CH(NH\cdot CO\cdot CH_3)-]_2$. B. Aus a.a'-Bis-[2-oxy-phenyl]-āthylendiamin oder N.N'-Dibenzoyl-a.a'-bis-[2-oxy-phenyl]-āthylendiamin und Essigsäureanhydrid bei 150° (J., H., B. 17, 2406, 2409; Soc. 45, 679). — Krystallisiert aus Alkohol in Prismen mit 1 Mol. C_2H_4O und aus Eisessig in essigsäurehaltigen Prismen. F: 216—219°. Leicht löslich in Alkohol. — Läßt sich sowohl durch Kalilauge als auch durch Salzsäure stufenweise zu N.N'-Diacetyl-a.a'-bis-[2-oxy-phenyl]-āthylendiamin und a.a'-Bis-[2-oxy-phenyl]-āthylendiamin verseifen.

N.N'-Dibensoyl-a.a'-bis-[2-oxy-phenyl]-äthylendiamin $C_{a}H_{a4}O_{a}N_{a} = [Ho \cdot C_{b}H_{a} \cdot CH(NH \cdot CO \cdot C_{b}H_{a})-]_{a}$. B. Beim Einleiten von Ammoniak in eine alkoh. Lösung von 1 Tl. Bensil und 1 Tl. Salicylaldehyd (J., H., B. 17, 2403; Soc. 45, 673). — Aus mikroskopischen Platten bestehendes Pulver (aus heißem Phenol durch Alkohol). Färbt sich gegen 260° dunkel

814

und schmilzt oberhalb 300°. Fast unlöslich in den gewöhnlichen Lösungsmitteln. Löslich in Alkalien. Wird beim Kochen mit wäßr. Alkalien nur wenig angegriffen. Beim Schmelzen mit Kali entstehen Benzoesäure und Salicylsäure. Beim Kochen mit Essigsäureanhydrid entsteht zunächst N.N'-Dibenzoyl-a.a'-bis-[2-acetoxy-phenyl]-āthylendiamin und dann N.N'-Diacetyl-a.a'-bis-[2-acetoxy-phenyl]-āthylendiamin.

N.N'-Dibensoyl-a.a'-bis-[2-acetoxy-phenyl] - äthylendiamin $C_{33}H_{23}O_6N_2=[CH_3\cdot CO\cdot O\cdot C_6H_4\cdot CH(NH\cdot CO\cdot C_6H_5)-]_3$. B. Bei 6-stdg. Kochen von N.N'-Dibenzoyl-a.a'-bis-[2-oxy-phenyl]-āthylendiamin mit 2 Tln. Essigsäureanhydrid (J., H., B. 17, 2405; Soc. 45, 678). — Blättchen. F: 225—227°. Löst sich in heißer Kalilauge unter Rückbildung von N.N'-Dibenzoyl-a.a'-bis-[2-oxy-phenyl]-äthylendiamin.

N.N'-Dibensoyl-aa'-bis-[2-bensoyloxy-phenyl]-äthylendiamin $C_{42}H_{32}O_6N_2=[C_6H_5\cdot CO\cdot O\cdot C_6H_4\cdot CH(NH\cdot CO\cdot C_6H_5)-]_2$. B. Aus aa'-Bis-[2-oxy-phenyl]-äthylendiamin oder N.N'-Dibenzoyl-aa'-bis-[2-oxy-phenyl]-äthylendiamin und Benzoesäureanhydrid bei 150° (J., H., B. 17, 2408; Soc. 45, 682). — Platten (aus Eisessig). F: 246—248°.

- 2. Aminoderivate des a. β -Bis-[4-oxy-phenyl]-āthans $C_{14}H_{14}O_2=HO\cdot C_6H_4\cdot CH_1\cdot CH_2\cdot C_6H_4\cdot OH$ (Bd. VI, S. 999).
- aa'-Bis-[4-methoxy-phenyl]-äthylendiamin $C_{16}H_{20}O_2N_2=[CH_3\cdot O\cdot C_6H_4\cdot CH(NH_2)-]_2$. B. Aus N.N'-Dianisal-a.a'-bis-[4-methoxy-phenyl]-äthylendiamin durch Übergießen mit verd. Schwefelsäure und Behandeln mit Wasserdampf (O. FISCHER, PRAUSE, J. pr. [2] 77, 131). Nadeln (aus Ligroin). F: 151°. Sehr wenig löslich in Wasser, schwer in kaltem Ligroin, leicht in Alkohol, Benzol, Äther. Gibt in schwefelsaurer Lösung mit Natriumnitritlösung [4-Methoxy-phenyl]-[a-amino-4-methoxy-benzyl]-carbinol (S. 837). $C_{16}H_{20}O_2N_3+2HC$]. Nadeln (aus Alkohol). Zersetzt sich bei ca. 260°. Schwer löslich in kaltem Wasser. Pikrat $C_{16}H_{20}O_2N_3+2C_6H_3O_7N_3+H_2O$. Gelbe Säulen (aus Alkohol). F: ca. 215° (Zers.). Leicht löslich in absol. Alkohol.
- N.N'-Dibensal-aa'-bis-[4-methoxy-phenyl]-äthylendiamin $C_{20}H_{20}O_2N_2 = [CH_3 \cdot O \cdot C_0H_4 \cdot CH(N : CH \cdot C_0H_3)-]_2$. B. Aus a.a'-Bis-[4-methoxy-phenyl]-äthylendiamin mit 2 Mol.-Gew. Benzaldehyd auf dem Wasserbade (O. F., P., J. pr. [2] 77, 133). Säulen. F: 148°. Leicht löslich in Äther, ziemlich schwer in kaltem Alkohol und Ligroin.

N.N'-Dianisal-a.a'-bis-[4-methoxy-phenyl]-äthylendiamin $C_{22}H_{32}O_4N_2 = [CH_3 \cdot O \cdot C_6H_4 \cdot CH(N : CH \cdot C_6H_4 \cdot O \cdot CH_3)_-]_2$. B. Aus 2.4.5-Tris-[4-methoxy-phenyl]-imidazoldihydrid (Anisin, Syst. No. 3553) durch Reduktion mit Natrium und Alkohol (O. F., P., J. pr. [2] 77, 130). — Blättchen (aus Benzol). F: 183°.

N.N'-Diformyl-a.a'-bis-[4-methoxy-phenyl]-äthylendiamin $C_{18}H_{20}O_4N_3=[CH_3\cdot O\cdot C_0H_4\cdot CH(NH\cdot CHO)-]_4$. Beim Kochen von a.a'-Bis-[4-methoxy-phenyl]-äthylendiamin mit Ameisensäure (O. F., P., J. pr. [2] 77, 132). — Blättchen (aus Ameisensäure). Schmilzt gegen 290° unter Zersetzung.

N.N'-Diacetyl-a.a'-bis-[4-methoxy-phenyl]-äthylendiamin $C_{20}H_{24}O_4N_3=[CH_3\cdot O\cdot C_4H_4\cdot CH(NH\cdot CO\cdot CH_3)-]_3$. B. Beim Kochen von a.a'-Bis-[4-methoxy-phenyl]-äthylendiamin mit Essigsäureanhydrid (O. F., P., J. pr. [2] 77, 132). — Säulen (aus Eisessig). F: ca. 330° (Zers.). Sehr wenig löslich in den meisten Lösungsmitteln.

N.N'-Diphenyl-a.a'-bis-[8.5-dichlor-4-oxy-phenyl]-äthylendiamin $C_{26}H_{20}O_4N_2Cl_4=[HO\cdot C_6H_2Cl_2\cdot CH(NH\cdot C_6H_4)-]_3$. B. Aus 3.5.3'.5'-Tetrachlor-stilbenchinon (Bd. VII, S. 767) und Anilin in der Kälte (ZINOKE, FRIES, A. 325, 64). — Gelbliches amorphes Pulver (aus Eisessig + Wasser). F: 158° (Zers.). Leicht löslich in Alkohol, Aceton und Eisessig, schwer in Äther, Benzin und Benzol. Leicht löslich in Sodalösung und in Alkalien.

- 3. Aminoderivat des $a.\beta$ Dioxy $a.\beta$ diphenyl äthans (a.a' Diphenyl-dihylenglykols) $C_{14}H_{14}O_{2} = C_{4}H_{5} \cdot CH(OH) \cdot CH(OH) \cdot C_{4}H_{5}$ (Bd. VI, S. 1003).
- a.a'-Bis-[4-amino-phenyl]-äthylenglykol-dimethyläther $C_{10}H_{20}O_2N_2 = [H_2N\cdot C_6H_4\cdot CH(0\cdot CH_2)-]_2$. B. Man leitet in eine Lösung von 4.4'-Diamino-stilben (S. 267) in Eisessig ohne Zusatz von Selzsäure 10—15 Minuten mäßig rasch Chlor ein, läßt dann 3—4 Stdn. stehen, verreibt das weiße amorphe Reaktionsprodukt mit Wasser und kocht das hierbei erhaltene braune Produkt mit Methylalkohol (ZINCKE, FRIES, MECHLENBURG, A. 325, 48 Anm.) Blättohen (aus Methylalkohol). F: 203—204°. $C_{10}H_{20}O_2N_2 + 2$ HCl. Gelbe Blättohen (aus Methylalkohol). Leicht löslich in Wasser.
- 4. Aminoderivat des a.a Bis [2 oxy phenyl] āthans $C_{14}H_{14}O_2=CH_3\cdot CH(C_4H_4\cdot OH)_5$.
- a.a- \dot{B} is-[4-dimethylamino-2-oxy-phenyl] \dot{B} than $C_{18}H_{24}O_2N_2=CH_2\cdot CH[C_2H_2(OH)\cdot N(CH_2)_2]_3$. B. Bei 1-stdg. Erhitzen von 3-Dimethylamino-phenol (S. 405) mit Salzasure und Acetaldehyd auf 100° (Möhlau, Koch, B. 27, 2895). Beim Stehen von 28 g 3-[Dimethyl-

amino]-phenol, gelöst in 60 ccm Alkohol, mit 4,6 g Acetsldehyd und 6 ccm rauchender Salzsäure (Biehringer, J. pr. [2] 54, 227). — Prismen (aus Alkohol). F: 167°; leicht löslich in warmem Alkohol, heißem Benzol, Aceton, schwer in heißem Ligroin (B.).

5. Aminoderivat des a.a - Bis - [4 - oxy - phenyl] - äthans $C_{14}H_{14}O_2 = CH_3 \cdot CH(C_4H_4 \cdot OH)_2$ (Bd. VI, S. 1006).

 $\beta.\beta.\beta$ -Trichlor-a.a-bis-[3-amino-4-oxy-phenyl]-äthan $C_{14}H_{13}O_2N_3Cl_3=CCl_3$ · $CH[C_6H_3(OH)\cdot NH_2]_a$. B. Bei der Reduktion von $\beta.\beta.\beta$ -Trichlor-a.a-bis-[3-nitro-4-oxy-phenyl]-äthan (Bd. VI, S. 1007), gelöst in Alkohol, mit Zinn und Salzsäure (Elbs, Hörmann, J. pr. [2] 39, 501; Elbs, J. pr. [2] 47, 65). — Nadeln (aus wäßr. Alkohol). Schwärzt sich bei 95 6 ; verkohlt in der Hitze, ohne zu schmelzen (E., H.). Fast unlöslich in Wasser, leicht löslich in Alkohol und Äther, schwer in Chloroform und Petroläther (E.).

- 6. Aminoderivat des 5.5' Dioxy 2.2' dimethyl-diphenyls $C_{14}H_{14}O_2 = HO \cdot C_4H_4(CH_3) \cdot C_4H_4(CH_3) \cdot OH$.
- 4.'4-Diamino -5.5'-dimethoxy-2.2'-dimethyl diphenyl, 5.5'-Dimethoxy 2.2'-dimethyl benzidin $C_{1e}H_{50}O_{2}N_{2}$, s. nebenstehende Formel. B. Durch Reduktion von 6.6'-Dimethoxy-3.3'-dimethyl-azobenzol (Syst. No. 2113), gelöst in Benzol, mit Zinnehlorür (Brasch, Freyse, B. 24, 1965). Blättchen (aus verd. Alkohol). F: 156—157°. Sehr leicht löslich in Alkohol.

$$\begin{array}{c} CH_3 \quad CH_3 \\ H_2N \cdot \bigodot \\ O \cdot CH_3 \quad O \cdot CH_3 \end{array}$$

4. Aminoderivate der Dioxy-Verbindungen $C_{15}H_{16}O_2$.

- 1. Aminoderivate des $\beta.\beta$ -Bis-[4-oxy-phenyl]-propans $C_{15}H_{16}O_2=(CH_3)_2C(C_6H_4\cdot OH)_2$ (Bd. VI, S. 1011).
- β .β-Bis-[x-amino-4-oxy-phenyl]-propan $C_{15}H_{18}O_2N_2=(CH_3)_2C[C_6H_3(OH)\cdot NH_2]_2$. B. Aus β .β-Bis-[x-nitro-4-oxy-phenyl]-propan (Bd. VI, S. 1012) oder dessen Diacetat durch Reduktion mit Zinn und konz. Salzsäure (Széky, C. 1904 II, 1737). Grauweiße Nadeln (aus Alkohol). F: 218—219°. Leicht löslich in heißem Alkohol, schwer in Eisessig, unlöslich in Wasser.
- N.N'-Disalicylalderivat $C_{29}H_{26}O_4N_2=(CH_3)_2C[C_6H_3(OH)\cdot N:CH\cdot C_6H_4\cdot OH]_2$. B. Aus $\beta.\beta$ -Bis-[x-amino-4-oxy-phenyl]-propan und 2 Mol.-Gew. Salicylaldehyd in alkoh. Lösung (Széky, C. 1904 II, 1737). Orangerote Nadeln. Sehr wenig löslich in organischen Lösungsmitteln.

N.N'-Diacetylderivat $C_{19}H_{29}O_4N_2 = (CH_3)_2C[C_6H_3(OH)\cdot NH\cdot CO\cdot CH_3]_2$. B. Aus $\beta.\beta$ -Bis-[x-amino-4-oxy-phenyl]-propan, Essigsäureanhydrid und Natriumacetat (Széky, C. 1904 II, 1737). — Leicht löslich in Alkalien.

- 2. Aminoderivate des 6.6' Dioxy 3.3' dimethyl diphenylmethans $C_{18}H_{16}O_2 = CH_2[C_6H_3(CH_3)(OH)]_2$.
- 4.4'-Bis-dimethylamino-6.6'-dioxy-3.3'-dimethyl-diphenylmethan $C_{19}H_{26}O_2N_2 = CH_2[C_6H_4(CH_3)(OH)\cdot N(CH_3)_2]_2$. B. Beim Kochen der natronalkalischen Lösung von 2 Mol.-Gew. 2-Dimethylamino-4-oxy-1-methyl-benzol (S. 599) mit 1 Mol.-Gew. Formaldehyd (Leonhardt & Co., D. R. P. 103645; C. 1899 II, 638). Weißer Niederschlag. Liefert beim Erhitzen mit konz. Schwefelsäure auf 120° 3.6-Bis-dimethylamino-2.7-dimethyl-xanthen (Syst. No. 2641) (L. & Co., D. R. P. 99613; C. 1899 I, 400).
- 4.4'- Bis äthylamino 6.6'- dioxy 3.3' dimethyl diphenylmethan $C_{19}H_{26}O_2N_2 = CH_2[C_6H_2(CH_3)(OH)\cdot NH\cdot C_2H_5]_2$. B. Aus 2-Athylamino-4-oxy-1-methyl-benzol (S. 600), Formaldehyd und Natronlauge (L. & Co., D. R. P. 84988; Frdl. 4, 176). Blättchen (aus Alkohol). F: 169°; löslich in Säuren und Alkalien (L. & Co., D. R. P. 84988). Geht durch Erhitzen mit konz. Schwefelsäure in 3.6-Bis-āthylamino-2.7-dimethyl-xanthen (Syst. No. 2641) über (L. & Co., D. R. P. 86967; Frdl. 4, 176).

5. Aminoderivate der Dioxy-Verbindungen $C_{10}H_{10}O_{2}$.

1. Aminoderivate des $\beta.\gamma$ - Dioxy - $\beta.\gamma$ - diphenyl-butans $C_{1e}H_{1e}O_{2}=[C_{e}H_{5}\cdot C(CH_{e})(OH)-]_{2}$ (Bd. VI, S. 1013).

β.γ-Dioxy-β.γ-bis-[2-amino-phenyl]-butan $C_{10}H_{10}O_2N_3=[H_2N\cdot C_0H_4\cdot C(CH_2)(OH)-]_2$. B. Bei der Reduktion von 2-Amino-acetophenon (Syst. No. 1873) mit Natriumamalgam in wäßrig-alkoholischer Lösung (ΚΙΡΡΕΝΕΚΕΘ, B. 30, 1130). — Prismen (aus verd. Alkohol). F: 169—170°.

2. Aminoderivate des a. β -Bis-[6-oxy-3-methyl-phenyl]-āthans $C_{10}H_{10}O_{2} = [HO \cdot C_{0}H_{2}(CH_{2}) \cdot CH_{2}-]_{2}$.

N.N. Diphenyl-a.a'-bis-[6-oxy-8-methyl-phenyl]-sthylendiamin $C_{25}H_{25}O_{2}N_{2}=[HO\cdot C_{2}H_{2}(CH_{3})\cdot CH(NH\cdot C_{2}H_{5})-]_{2}$. B. Beim Behandeln von [6-Oxy-3-methyl-benzal]-anilin (Bd. XII, S. 218) mit Aluminiumamalgam in Ather (ANSELMINO, B. 41, 623). — Krystalle (aus Ligroin + Ather). F: 169°. Schwer löslich in kaltem Ather.

N.N'-Diphenyl-N.N'-diacetyl-a.a'-bis-[6-acetoxy-3-methyl-phenyl]-äthylendiamin $C_{2a}H_{ae}O_{e}N_{2}=\{CH_{3}\cdot CO\cdot O\cdot C_{6}H_{3}(CH_{3})\cdot CH[N(C_{e}H_{5})\cdot CO\cdot CH_{3}]-\}_{2}$. B. Beim Kochen von N.N'-Diphenyl-a.a'-bis-[6-oxy-3-methyl-phenyl]-äthylendiamin mit Essigsäureanhydrid (A., B. 41, 623). — F: 262°. Sehr wenig löslich in Benzol.

f) Aminoderivat einer Dioxy-Verbindung $C_nH_{2n-16}O_2$.

Descrykodomethin $C_{19}H_{23}O_2N=(CH_3\cdot O)(OH)\cdot C_{14}H_9\cdot CH_2\cdot CH_3\cdot N(CH_3)_2$ s. bei Morphin, Syst. No. 4785.

g) Aminoderivate der Dioxy-Verbindungen C_nH_{2n-18}O₂.

1. Aminoderivate der Dioxy-Verbindungen C14H10O2.

- 1. Aminoderivate des 9.10-Dioxy-anthracens $C_{14}H_{10}O_2 = C_{14}H_8(OH)_2$ (Bd. VI, S. 1034) sind desmotrop mit den entsprechenden Aminoderivaten des 10-Oxy-9-oxo-anthracendhydrids (ms-Oxy-anthrons) $HO \cdot O_{14}H_2 : O$, Syst. No. 1877.
- 2. Aminoderivate des 3.4-Dioxy-phenanthrens $C_{14}H_{10}O_2=C_{14}H_8(OH)_2$ (Bd. VI, S. 1034.
- 2(?) Diacetylamino 8 methoxy 4 acetoxy phenanthren $C_{11}H_{19}O_5N$, s. nebenstehende Formel.

 B. Man kocht 2 Stdn. die Lösung des Jodmethylats des Diacetylaminokodeins (Syst. No. 4784) in Acetahydrid mit Silberacetat und erhitzt dann 36 Stdn. die CH₃·CO·Ó O·CH₃ anhydrid mit Silberacetat und erhitzt dann 36 Stdn. die Druckrohr auf 160—170° (Vongerieheren, Weillinger, B. 38, 1858). Schwach gelbliche Nadeln (aus Methylalkohol). F: 178—179°. Löslich in alkoh. Natronlauge mit bräunlicher Farbe. Liefert bei der Oxydation ein stickstoffhaltiges Chinon und eine aus Eisessig in roten Nadeln krystallisierende Verbindung vom Schmelzpunkt 240°.
- 8-Amino-3.4-dimethoxy-phenanthren C₁₆H₁₈O₃N, s. nebenstehende Formel. B. Bei 3-stündigem Erhitsen von 8-[Carbāthoxy-amino]-3.4-dimethoxy-phenanthren (s. u.) mit alkoh. Ammoniak auf 180° (Pschorb, Einbeck, Spangenberg, B. 40, 2000).—
 Nadeln. Läßt sich durch Diazotierung des salzsauren Salzes in essigsaurer-schwefelsaurer Lösung und Zersetzung der Diazoniumverbindung in 1-Oxy-5.6-dimethoxy-phenanthren (Bd. VI, S. 1140) überführen.— C₁₈H₁₈O₂N + HCl. Nadeln (aus Wasser). Schwärzt sich bei 275° und schmilst gegen 290°.
- 8-Carbäthoxyamino 8.4-dimethoxy-phenanthren $C_{19}H_{19}O_4N=C_2H_5\cdot O_2C\cdot NH\cdot C_{14}H_7(O\cdot CH_2)_2$. B. Man leitet Chlorwasserstoff in die alkoh. Suspension des 5.6-Dimethoxy-phenanthren-carbonsäure-(1)-hydrazids (Bd. X, S. 450) ein, gibt Amylnitrit zu und erwärmt die entstandene Suspension von 5.6-Dimethoxy-phenanthren-carbonsäure-(1)-azid (P., El., Sp., B. 40, 1999). Nadeln (aus Alkohol). F: 164—165° (korr.).

¹⁾ Zur Stellung der Aminogruppe vgl. die nach Schlußtermin der 4. Aufl. dieses Handbuchs
[1. I. 1910] erschienene Dissertation von KOPPELMEIER [München 1911], S. 19, 35, 48.

9-Amino-8.4-dimethoxy-phenanthren C_{1e}H₁₅O₂N, s. nebenstehende Formel. B. Beim Kochen des 9-Carbathoxyamino-3.4-dimethoxy-phenanthrens (s. u.) mit alkoh. Kali (KNORR, HÖRLEIN, B. 40, 2042). — Öl. Löslich in Äther. — $C_{10}H_{15}O_2N+HCl$. Nadeln (aus Alkohol). Fast unlöslich in heißem Wasser.

9-Carbäthoxyamino -8.4-dimethoxy-phenanthren $C_{10}H_{10}O_4N=C_0H_5\cdot O_3O\cdot NH\cdot C_{14}H_7(O\cdot CH_9)_2$. B. Durch Kochen von 3.4-Dimethoxy-phenanthren-carbonsaure (9)-azid (Bd. X, S. 451) in absol. Alkohol, bis kein Stickstoff mehr entweicht (K., H., B. 40, 2041). - Nädelchen (aus absol. Alkohol). F: 145°.

- 3. Aminoderivate des 9.10 Dioxy phenanthrens $C_{14}H_{10}O_3 = C_{14}H_{6}(OH)_3$ (Bd. VI, S. 1035).
- 2 Amino 9.10 dioxy phenanthren $C_{14}H_{11}O_2N$, s. nebenstehende Formel. B. Beim Kochen von 2-Nitro-phenanthrenchinon (Bd. VII, S. 806) mit Zinn und Salzsäure (Anschütz, P. MEYER, B. 18, 1943). — Wird in salzsaurer Lösung durch Eisenchlorid zu 2-Aminophenanthrenchinon (Syst. No. 1874) oxydiert. — Das Hydrochlorid krystallisiert in weißen Nadeln.

HO OH NH.

5-Nitro-2-amino-9.10-dioxy-phenanthren¹) $C_{14}H_{10}O_4N_2 = H_2N \cdot C_{14}H_6(NO_2)(OH)_8$. Bei der Reduktion einer Lösung von 10 g 2.5-Dinitro-phenanthrenchinon²) in 500 cem Eisessig mit einer Lösung von 42 g 68%/sigem Zinnehlorür in 200 cem rauchender Salzsäure bei 30° (J. SCHMIDT, LEIPPRAND, B. 38, 3734). — Beim Leiten von Luft durch das mit Natriumdicarbonatlösung verriebene Hydrochlorid erfolgt Oxydation zu 5-Nitro-2-amino-phenanthrenchinon (Syst. No. 1874). — Hydrochlorid. Gelbrote Krystalle. Leicht löslich in Wasser Reist im trocknen Zustande hettig zum Niceon in Wasser. Reizt im trocknen Zustande heftig zum Niesen.

2.5-Diamino-9.10-dioxy-phenanthren 1) $C_{14}H_{12}O_2N_2$, s. nebenstehende Formel. B. Beim Erwärmen von 2.5-Dinitro-phenanthrenchinon s) mit Zinn und Salzsäure (J. SCHMIDT, KÄMPF, B. 36, 3749). – Die freie Base oxydiert sich leicht zu 2.5-Diamino-phenanthrenchinon (Syst. No. 1874). — $C_{14}H_{18}O_{2}N_{2}+2$ HCl. Nadeln. Sehr leicht löslich in Wasser. Greift die Schleimhäute an.

2.7 - Diamino - 9.10 - dioxy - phenanthren $C_{14}H_{12}O_2N_3$, s. nebenstehende Formel. B. Beim Behandeln von 2.7-Dinitro-phenanthrenchinon (Bd. VII, S. 807) mit Zinn und Salzsäure (Anschütz, P. Meyer, B. 18, 1944; Kleemann, Wense, B. 18, 2168). — Läßt sich leicht zu 2.7-Diamino-phenanthrenchinon (Syst. No. 1874) oxydieren (K. W.). Das Hydrochlorid zeigt keine morphinähnliche Wirkung (J. Schmidt, B. 36, 3729). — $C_{14}H_{12}O_2N_2 + 2 HCl + 3 H_2O$. Nadeln (K., W.).

2.7-Bis-acetamino-9.10-diacetoxy-phenanthren $C_{23}H_{20}O_6N_2=(CH_3\cdot CO\cdot NH)_2C_{14}H_6$ (O·CO·CH₃)₂. B. Beim Erwärmen des salzsauren 2.7-Diamino-9.10-dioxy-phenanthren mit

1 Tl. Natriumacetat und 6 Tln. Essigsäureanhydrid (KLEEMANN, WENSE, B. 18, 2169). -Nadeln. Schmilzt noch nicht bei 300°. Schwer löslich in Alkohol und Eisessig.

2. Aminoderivate des 5.6-Dioxy-1-äthyl-phenanthrens $m C_{16}H_{14}O_2 =$ $(HO)_2C_{14}H_7 \cdot C_2H_5$ (Bd. VI, S. 1038).

12 - Dimethylamino - 5.6 - dimethoxy - 1 - äthyl phenanthren, 5.6-Dimethoxy-1- $[\beta$ -dimethylaminoäthyl]-phenanthren, Apomorphimethin-dimethyl-

äther $C_{20}H_{25}O_2N$, s. nebenstehende Formel. Zur Koncht-Ch₃·O·CH₃ stitution vgl. Pschore, B. 40, 1992. — B. Durch 2-stdg. Kochen einer Lösung von 3 g Apomorphin-dimethyläther-jodmethylat (Syst. No. 3140) in 200 com Wasser mit 100 ccm 30% iger Kalilauge (Pschore, Jarokel, Fecht, B. 35, 4390).

КUHH, ALBRECHT, A. 455 [1927], 281, und einer Privatmitteilung von J. SCHMIDT.

3) In Bd. VII, S. 808, auf Grund der damaligen Konstitutionsauffassung als 4.5-Dinitro-

phenanthrenchinon aufgeführt.

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeiten von Christie, Holderness, Kenner, Soc. 1926, 671;

Man löst salzsaures Apomorphin (Syst. No. 3140) in Natronlauge, behandelt die Lösung mit Dimethylsulfat und kocht das entstandene Sulfat der Ammoniumbase mit Natronlauge (Рэсповв, В. 89, 3126). — Ol. Leicht löslich in Alkohol, Äther; kaum löslich in Benzol, Chloroform und Ligroin (Р., J., F.). — Liefert bei der Destillation mit Zinkstaub zwei Äthylphenanthrene (F: 109—110° bezw. 172—173°) (Bd. V, S. 680); daneben treten Blausaure, Trimethylamin und Ammoniak auf (P.). — C₂₀H₂₂O₂N + HCl. Nadeln. F: 220—221° (korr.) (Zers.); sehr leicht löslich in Wasser; optisch inaktiv (P., J., F.).

Jodmethylat $C_{21}H_{22}O_2NI = (CH_3 \cdot O)_2C_{14}H_7 \cdot CH_3 \cdot CH_3 \cdot N(CH_2)_3I$. B. Beim Versetzen der 15°/oigen Lösung von Apomorphimethin-dimethyläther mit überschüssigem Methyljodid (PSCHOBR, JAECKEL, FECHT, B. 35, 4390; P., B. 39, 3126). — Tafeln (aus Wasser, Aceton oder Alkohol). Schmilzt rasch erhitzt bei 242—244° (korr.); unlöslich in Chloroform, Ather, Benzol, Ligroin (P., J., F.). Liefert beim Kochen mit Kalilauge unter Entwicklung von Trimethylamin 5.6-Dimethoxy-1-vinyl-phenanthren (Bd. VI, S. 1040) (P., J., F.).

18-[Acetylmethylamino]-6-methoxy-5-acetoxy-1-äthyl-phenanthren, 6-Methoxy-5-acetoxy-1-[β -acetylmethylamino-äthyl]-phenanthren, "Methyldiacetylapomorphin" $C_{32}H_{43}O_4N=(CH_3\cdot CO\cdot O)(CH_3\cdot O)C_{14}H_7\cdot CH_2\cdot CH_2\cdot N(CH_3)\cdot CO\cdot CH_3$. Zur Konstitution vgl. PSCHORE, B. 40, 1991; PSCHORE, SPANGENBERG, B. 40, 1995. — B. Durch 2-stdg. Kochen von Apomorphin-monomethyläther (Syst. No. 3140) mit der 5-fachen Menge Essigsäureanhydrid (PSCHORR, JAECKEL, FECHT. B. 35, 4389; KNORR, ROTH, B. 40, 3358; K., RAABE, B. 41, 3053). — Blättchen (aus Alkohol). Schmilzt nach vorhergehendem Sintern bei 130° (K., RAABE), 135° (K., ROTH).

18-[Acetylmethylamino]-5.6-dibenzoyloxy-1-äthyl-phenanthren, 5.6-Dibenzoyloxy-1-[β -acetylmethylamino-äthyl]-phenanthren, "Acetyldibenzoylapomorphin" $C_{33}H_{47}O_5N=(C_6H_5\cdot CO\cdot O)_2C_{14}H_7\cdot CH_2\cdot CH_3\cdot N(CH_2)\cdot CO\cdot CH_3$. Zur Konstitution vgl. PSCHORR, B. 40, 1991; PSCHORR, SPANGENBERG, B. 40, 1995. — B. Durch 2-stdg. Kochen von 1 g Dibenzoylapomorphin (Syst. No. 3140) mit 5 ccm Essigsäureanhydrid (PSCHORR, JAECKEL, FECHT, B. 35, 4385). — Nadeln (aus Benzol). F: 156—158° (korr.); leicht löslich in Alkohol, Chloroform, Eisessig, Benzol; schwer löslich in Äther; fast unlöslich in Wasser und Ligroin (P., J., F.).

12-[Bensoylmethylamino]-5.6-dibensoyloxy-1-athyl-phenanthren, 5.6-Dibensoyloxy-1-[β -benzoylmethylamino-athyll-phenanthren, "Tribenzoylapomorphin" $C_{35}H_{49}O_5N=(C_6H_5\cdot CO\cdot O)_2C_{14}H_7\cdot CH_2\cdot CH_3\cdot N(CH_3)\cdot CO\cdot C_6H_5$. Zur Konstitution vgl. Pschork, B. 40, 1991; Pschork, Spangenberg, B. 40, 1995. — B. Durch 1-stdg. Kochen von salzsaurem Apomorphin (Syst. No. 3140) oder von Dibenzoylapomorphin mit Benzoylchlorid (PSCHORR, JAECKEL, FECHT, B. 35, 4385). — Nadeln (aus Chloroform). F: 217—2186 (korr.); leicht löslich in Chloroform, Eisessig, schwerer in Alkohol; unlöslich in Wasser, Ather, Ligroin; optisch inaktiv (P., J., F.). — Verbindet sich nicht mit Methyljodid (P., J., F.). Liefert bei der Oxydation mit Chromsaure in Eisessig 1º-[Benzoylmethylamino]-5.6-dibenzoyloxy-1-athyl-phenanthrenchinon ("Tribenzoylapomorphinchinon", Syst. No. 1879) (P., Sp., B. 40, 1989, 1996).

h) Aminoderivate der Dioxy-Verbindungen $C_nH_{2n-20}O_2$.

Aminoderivate der Dioxy-Verbindungen $C_{12}H_{14}O_{2}$.

1. Aminoderivat des 2.3-Dioxy-1-benzyl-naphthalins (Phenyl-[2.3-dioxynaphthyl-(1)]-methans) $C_{17}H_{14}O_2 = C_6H_5 \cdot CH_2 \cdot C_{10}H_5(OH)_2$.

[4-Methylamino-phenyl]-[2.3-dioxy-naphthyl-(1)]-CH₂·< $> NH \cdot CH_3$ methan C18H17O2N, s. nebenstehende Formel. B. Durch Kochen von salzsaurem dimerem (?) Anhydro-[4-methylamino-benzyl-OH alkohol] (S. 621) mit 2.3-Dioxy-naphthalin (Bd. VI, S. 982) ·OH in schwach schwefelsaurer Lösung (Friedländer, M. 28, 1001). Prismen (aus Xylol). F: 185—186°. Unlöslich in Wasser, Äther, leicht löslich in kaltem Alkohol. — 2 C₁₈H₁₇O₂N + H₂SO₄. Weiße Prismen (aus Wasser).

2. Aminoderivate des 2.7-Dioxy-1-benzyl-naphthalins (Phenyl-f2.7-dioxy-

naphthyl-(1)]-methans) $C_{17}H_{14}O_3 = C_6H_5 \cdot CH_2 \cdot C_{10}H_5(OH)_2$. [4-Methylamino-phenyl]-[2.7-dioxy-naphthyl-(1)]-CH₂·< · NH · CH₂ methan C_{1e}H₁₇O₂N, s. nebenstehende Formel. B. Durch OH Kochen von salzsaurem dimerem (?) Anhydro-[4-(methylно amino)-benzylalkohol] (S. 621) mit 2.7 - Dioxy - naphthalin

(Bd. VI, S. 985) in schwach schwefelsaurer Lösung (FRIEDLÄNDER, M. 23, 1000). — Nadeln (aus Xylol oder verd. Alkohol). F: 179—180°. Unlöslich in Wasser, leicht löslich in Alkohol, Eisessig.

[4-Äthylamino-phenyl]-[2.7-dioxy-naphthyl-(1)]-methan $C_{10}H_{10}O_2N=C_2H_5\cdot NH\cdot C_6H_4\cdot CH_5\cdot C_{10}H_5(OH)_2$. B. Durch Kochen von salzsaurem dimerem (?) Anhydro-[4-(āthylamino)-benzylalkohol] (S. 622) mit 2.7-Dioxy-naphthalin in schwach schwefelsaurer Lösung (F., M. 23, 1001). — F: 153—154°. Unlöslich in Wasser, leicht löslich in Alkohol und Eisessig. — Die Salze sind ölig und ziemlich schwer löslich in Wasser und verd. Mineralsäuren.

3. Aminoderivate des 2-Oxy-1-[2-oxy-benzyl]-naphthalins $C_{17}H_{14}O_1 = HO \cdot C_4H_4 \cdot CH_3 \cdot C_{10}H_4 \cdot OH$.

2-Oxy-1-[a-amino-2-oxy-benzyl]-naphthalin, 1-[a-Amino-2-oxy-benzyl]-naphthol-(2), 2-Oxy-a-[2-oxy-naphthyl-(1)]-benzylamin $C_{17}H_{15}O_2N$, s. nebenstehende Formet. B. Bei der Einw. von Salzsäure auf das N-Salicylalderivat (s. u.) (Betti, G. 33 I, 14). — $C_{17}H_{15}O_2N + HCl$. Krystalle.

N-Salicylalderivat $C_{24}H_{10}O_3N=HO\cdot C_0H_4\cdot CH(N:CH\cdot C_6H_4\cdot OH)\cdot C_{10}H_6\cdot OH$. B. Aus 1 Mol.-Gew. β -Naphthol, 2 Mol.-Gew. Salicylaldehyd und Ammoniak in alkoh. Lösung (B., G. 33 I, 14). — F: 162°. Gibt in Benzollösung mit äther. Eisenchloridlösung intensive Violettfärbung.

i) Aminoderivate der Dioxy-Verbindungen $C_nH_{2n-22}O_2$.

1. Aminoderivate der Dioxy-Verbindungen $C_{19}H_{16}O_{2}$.

1. Aminoderivat des 2.4 - Dioxy - triphenylmethans $C_{19}H_{16}O_2=(C_6H_5)_2CH\cdot C_6H_3(OH)_2$.

4'.4"-Bis-dimethylamino-2.4-dioxy-triphenylmethan C₂₃H₂₆O₂N₂, s. nebenstehende Formel. B. Bei der Kondensation von Resorcylaldehyd (Bd. VIII, S. 241) mit Dimethylanilin in Gegenwart von rauchender Salzsäure (Vottoček, Kbauz, B. 42, 1604). Aus 4.4'-Bisdimethylamino-benzhydrol (S. 698) und Resorcin (Bd. VI, S. 796) durch Behandeln mit konz. Schwefelsäure unter Kühlung (Bayer & Co., D.R.P. 58483; Frdl. 8, 120)

Kühlung (BAYER & Co., D.R.P. 58483; Frdl. 3, 120)
oder durch Erhitzen mit konz. Salzsäure auf dem Wasserbade (Votoček, Ch. Z. 20 Repertorium, 4; vgl. V., K., B. 42, 1604, Anm. 2). Bei kurzem Erwärmen von Leukauramin (S. 307) mit Resorcin in essigsaurer Lösung (Sandoz & Co., D.R.P. 81677; Frdl. 4, 220). — Blättchen (aus Toluol). F: 204—205° (V., K.), 205—207° (S. & Co.). Ziemlich schwer löslich in Toluol (S. & Co.), 4öslich in 50°/ciger Essigsäure (B. & Co.). — Liefert bei der Oxydation einen blaugrünen Farbstoff (B. & Co.).

2. Aminoderivate des 2.5 - Dioxy - triphenylmethans $C_{19}H_{16}O_2=(C_6H_5)_2CH\cdot C_6H_3(OH)_2$ (Bd. VI, S. 1041).

4 - Bensamino - 2.5 - dioxy - triphenylmethan $C_{36}H_{31}O_3N$, s. nebenstehende Formel. B. Man versetzt eine alkoh. Lösung von 5-Benzamino-2-benzhydryl-p-chinon (Syst. No. 1874) mit wäßriger schwefliger Säure und erwärmt unter Einleiten von schwefliger Säure auf dem Wasserbade bis zur Entfärbung (Thomae, J. pr. [2] 71, 573).

$$(C_6H_5)_2CH \cdot \underbrace{\overset{\circ}{\bigodot}}_{OH} \cdot NH \cdot CO \cdot C_6H_5$$

dem Wasserbade bis zur Entfärbung (THOMAE, J. pr. [2] 71, 573). — Farblose Nadeln. F: ca. 230°. — Reduziert ammoniakalische Silberlösung beim Erwärmen.

4'-Dimethylamino-2.5-dimethoxy-triphenylmethan $C_{23}H_{25}O_2N$, s. nebenstehende Formel. B. Bei 1-stdg. Erhitzen von 16 g Dimethylanilin mit 10 g a.a-Dichlor-2.5-dimethoxy-diphenylmethan (Bd. VI, S. 994) auf dem Wasserbade (KAUFFMANN, GROMBACH, A. 844, 53). — Krystalle (aus Alkohol). F: 112°. Löslich in verd. Mineralsäuren.

4'.4"- Bis - dimethylamino - 2.5 - dioxy - triphenyl - methan C₂₂H₂₄O₂N₂, s. nebenstehende Formel. B. Durch Erhitzen von Gentisinaldehyd (Bd. VIII, S. 244) und Dimethylanilin mit konz. Salzzāure und etwas Alkohol auf 120° (VOTOČEK, KRAUZ, B. 42, 1605) 1). — Krystalle (aus Alkohol) vom Schmelzpunkt 165°; Krystalle (aus Benzol) mit Krystallbenzol, die bei 130° schmelzen, darauf erstarren und dann wieder bei 165° schmelzen. — Liefert bei der Oxydation mit Chloranil einen blauen Farbstoff, der Seide blaugrün anfärbt.

$$(CH_3)_2N\cdot \bigcirc -CH- \bigcirc OH$$

$$N(CH_3)_2$$

- 3. Aminoderivate des 2.2' Dioxy triphenylmethans $C_{10}H_{10}O_2 = C_0H_5 \cdot CH(C_0H_4 \cdot OH)_2$ (Bd. VI, S. 1042).
- 4.4 Bis dimethylamino 2.2 dioxy triphenylmethan $C_{23}H_{26}O_{2}N_{3}$, s. nebenstehende Formel. B. Beim Erwärmen von 5,7 g Benz-aldehyd, gelöst in 120 ccm Alkohol, mit einem Gemisch aus 16 g 3-Dimethylamino-phenol (S. 405), 20 g konz. Schwefelsäure und 120 g Wasser auf dem Wasserbade (Bieheinger, J. pr. [2] 54, 251; vgl. auch Bayer & Co., D.R.P. 62574; Frdl. 3, 98). Tafeln (aus Benzol). Schmilzt bei 176° unter Rötung; ziemlich schwer löslich in heißem Alkohol und heißem Benzol, leicht in heißem Aceton, Essigester und Xylol; löslich in Säuren und Alkalien (Bie.). Bei der Oxydation mit Chloranil in alkoh. Lösung entsteht Tetramethylrosamin C23H220N2Cl (s. bei der entsprechenden Carbinolbase, dem 3.6-Bis-dimethylamino-9-phenyl-xanthydrols der nebenstehenden Formel; Syst. No. 2642) (Bie.). Bei allmählichem Eintragen in die fünffache Menge konz. Schwefelsäure entsteht 3.6-Bis-dimethylamino-9-sulfophenyl-xanthen (Syst. No. 2650) (Bie.; Liebermann, Glawe, B. 37, 208).
- 2".5"-Dichlor-4.4'-bis-diāthylamino-2.2'-dioxy-triphenylmethan $C_{27}H_{24}O_{2}N_{2}Cl_{2}=C_{6}H_{3}Cl_{2}\cdot CH[C_{6}H_{4}(OH)\cdot N(C_{2}H_{5})_{2}]_{2}$. B. Beim Erwärmen von 2 g 2.5-Dichlor-benzaldehyd und 4 g 3-Diāthylamino-phenol (S. 408) mit einer Lösung von 4 g Zinkchlorid in 20 ccm Eisessig auf 130° (GNEHM, Schülle, A. 299, 356). Amorphes, schwach rötliches Pulver. Leicht löslich in Alkohol; löslich in verd. Säuren und konz. Natronlauge. Läßt sich durch Erwärmen mit konz. Schwefelsäure und Oxydation des Reaktionsproduktes mit Eisenchlorid in einen Farbstoff der Rosaminreihe überführen.
- 4"-Nitro-4.4'-diamino-2.2'-dimethoxy-triphenylmethan $C_{a_1}H_{a_1}O_4N_3=O_5N\cdot C_6H_4\cdot CH[C_6H_3(O\cdot CH_2)\cdot NH_2]_2$. B. Beim Erhitzen von 4-Nitro-benzaldehyd mit m-Anisidin (S. 404) (Kock, B. 20, 1565). Gelbbraune Blättchen (aus Benzol). F: 189°.
- 4.4'.4"- Tris dimethylamino 2.2' dioxy-triphenylmethan C₂₂H₃₁O₂N₃, s. nebenstehende Formel. B. Bei 5-stdg. Erwärmen von 13,6 g 4-Dimethylamino-benzaldehyd (Syst. No. 1873) mit einer alkoh. Lösung von 25 g 3-Dimethylamino-phenol (S. 406) und 50 ccm kons. Salzsäure am Rückflußkühler auf dem Wasserbade (Noeltring, Gerlinger, B. 39, 2054). Weiße, an der Luft sich rötende

$$\begin{array}{cccc}
OH & OH \\
-CH - & & \\
\hline
OH & OH \\
-CH - & & \\
\hline
OH & OH \\
-CH_3)_2
\end{array}$$

Nädelchen (aus verd. Alkohol). Schmilzt bei ca. 175° unter Wasserabspaltung. Leicht löslich in den gebräuchlichen Lösungsmitteln; löslich in verd. Alkalien. — Gibt bei der Oxydation mit Bleidioxyd in Eisessig einen Farbstoff, dessen Lösung blau und rot dichroitisch ist und die Faser nach dem Verdünnen mit Wasser violettstichig blau färbt. Beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbade entsteht 3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl]-xanthen (Syst. No. 2641).

- 4.4'.4"- Tris-dimethylamino 2.2'-diacetoxy triphenylmethan $C_{19}H_{36}O_4N_3 = (CH_3)_3N \cdot C_4H_4 \cdot CH[C_9H_3(O \cdot CO \cdot CH_3) \cdot N(CH_3)_3]_2$. B. Bei der Einw. von Acetanhydrid auf 4.4'.4"-Tris-dimethylamino-2.2'-dioxy-triphenylmethan (N., G., B. 39, 2055). Amorpher blaßroter Niederschlag, der sich an der Luft blau färbt. Oxydiert sich glatt zu dem entsprechenden Triphenylmethanfarbstoff, der ein ziemlich stark violettes Blau färbt,
- 4. Aminoderivate des 3.4 Dioxy tripheny lmethans $C_{19}H_{16}O_2 = (C_0H_5)_2CH \cdot C_0H_3(OH)_2$ (Bd. VI, S. 1042).

¹⁾ Vgl. hierzu die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienene Arbeit von VOTOČEK, KÖHLER, B. 46 [1913], 1760.

4'.4"-Bis-dimethylamino-3.4-dioxy-triphenylmethan, Leukoprotoblau C₂₃H₂₆O₂N₃, s. nebenstehende Formel. B. Bei der Kondensation von Protocatechualdehyd (Bd. VIII, S. 246) mit Dimethylanilin in Gegenwart von Zinkchlorid in alkoh. Lösung (LIEBERMANN, B. 36, 2917) oder in Gegenwart von rauchender Salzsäure (Votoček, Krauz, B. 42, 1604). Durch Erhitzen von 4.4'-Bis-dimethylamino-benzylhydrol (S. 698) mit

$$(CH_3)_2N \cdot \bigcirc -CH - \bigcirc \cdot OH$$

$$N(CH_3)_2$$

Brenzcatechin und konz. Salzsäure auf dem Wasserbade (Votoček, Ch. Z. 20 Repertorium, 4; vgl. V., K., B. 42, 1604, Anm. 2). — Fast farblose Nadeln (aus Benzol oder Methylalkohol + Wasser). F: 164° (L.), 165° (V.; V., K.). Schwer löslich in Alkalien (L.). — Liefert mit Oxydationsmitteln den Farbstoff Protoblau (S. 841) (L.).

4'.4"-Bis-dimethylamino-4-oxy-3-methoxy-triphenylmethan $C_{24}H_{28}O_2N_2 = [(CH_{3})_2N\cdot C_6H_4]_2CH\cdot C_6H_3(OH)\cdot O\cdot CH_3$. B. Man setzt zu einer warmen Lösung von Vanillin (Bd. VIII, S. 247) in überschüssigem Dimethylanilin langsam Zinkchlorid, erwärmt 15 bis 20 Stunden auf dem Wasserbade und dann 2—3 Stunden auf 105—110° (O. Fischer, Schmidt, B. 17, 1895). Bei der Kondensation von 4.4'-Bis-dimethylamino-benzhydrol (S. 698) mit Guajacol (Bd. VI, S. 768) in Gegenwart von konz. Salzsäure (Votoček, Jelínek, B. 40, 409). — Krystalle (aus Benzol-Ligroin oder absol. Äther). F: 134—135° (V., J.), 135—136° (F., Sch.). Leicht löslich in Alkohol und Benzol, schwer in kaltem Äther (F., Sch.). — Gibt bei der Oxydation mit Chloranil in Alkohol + Essigsäure eine blaugrüne Farbstofflösung (V., J.; vgl. indessen F., Sch.).

4'.4"-Bis-dimethylamino-3.4-diacetoxy-triphenylmethan $C_{27}H_{20}O_4N_2 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_3(O\cdot CO\cdot CH_3)_2$. B. Beim Erwärmen von 4'.4"-Bis-dimethylamino-3.4-dioxy-triphenylmethan mit überschüssigem Acetylchlorid im geschlossenen Rohr auf 70-80° (LIEBERMANN, B. 36, 2918). — Nadeln (aus Methylalkohol + Wasser). F: 141°. — Liefert bei der Oxydation einen grünen Farbstoff.

4.4"- Bis - dimethylamino - 3.4 - dibenzoyloxy - triphenylmethan $C_{37}H_{34}O_4N_2 = [(CH_3)_2N\cdot C_6H_4]_2CH\cdot C_6H_3(O\cdot CO\cdot C_6H_5)_2$. B. Beim Erhitzen von 2 Tln. 3.4-Dibenzoyloxy-benzaldehyd (Bd. IX, S. 155) mit 3 Tln. Dimethylanilin in Gegenwart von 1,5 Tln. Zinkchlorid zunächst im Wasserbade, dann auf 110° (L., B. 36, 2918). — Nadeln (aus Aceton + Wasser). F: 154°. — Liefert bei der Oxydation einen grünen Farbstoff.

5. Aminoderivate des 3.3' - Dioxy - triphenylmethans $C_{10}H_{16}O_2 = C_6H_5 \cdot CH(C_6H_4 \cdot OH)_2$.

4.4 - Bis - dimethylamino - 3.3' - dioxy-triphenylmethan $C_{23}H_{26}O_2N_2$, s. nebenstehende Formel. B. Durch Eintragen von 4.4'-Bis-dimethylamino-triphenylmethan-N.N'-dioxyd (S. 276) in eine eisgekühlte Mischung von Essigsäureanhydrid und konz. Schwefelsäure und Erwärmen der Lösung auf 50° (Bamberger, Rudolf, B. 41, 3310). — Farblose Nadeln (aus Alkohol). F: 183—184° (korr.; Bad 170°). Außerst schwer löslich selbst in siedendem Wasser, sehr wenig löslich in kaltem Alkohol, schwer in kaltem Benzol, kaltem Ligroin

Naden (aus Alkohol). F: 183—184° (korr.; Bad 170°). Auberst schwer löslich seinen seinen siehen dem Wasser, sehr wenig löslich in kaltem Alkohol, schwer in kaltem Benzol, kaltem Ligroin und heißem Petroläther, ziemlich leicht löslich in heißem Alkohol, heißem Ligroin und heißem Benzol, leicht in kaltem Aceton. Leicht löslich in Säuren; frisch gefällt, auch leicht löslich in Alkalien. Die Lösung in Salzsäure wird mit warmer Eisenchloridlösung tief braunrot, die Eisessiglösung mit Bleidioxyd in der Kälte grünlichgelb, beim Erhitzen rot.

4"-Nitro-4.4'-diamino-3.3'-dimethoxy-triphenylmethan $C_{21}H_{21}O_4N_3 = O_4N \cdot C_6H_4$. $CH[C_6H_3(O\cdot CH_3)\cdot NH_2]_2$. B. Beim Erwärmen von 4-Nitro-benzaldehyd mit schwefelsaurem o-Anisidin (S. 358) in Gegenwart von Zinkchlorid auf dem Wasserbade (O. FISCHER, B. 15, 680). — Goldglänzende Nadeln (aus Benzol) mit 1 Mol. Krystallbenzol, die bei 107—1080 unter vorhergehendem Erweichen schmelzen und in Ligroin sehr schwer löslich sind. — Wird die alkoh. Lösung mit Chloranil und etwas Essigsäure erwärmt, so entsteht ein gelbgrüner Farbstoff; gibt man zu der erhaltenen Lösung etwas Zinkstaub und Essigsäure, so wird die Lösung rotviolett unter Bildung des Farbsalzes des 4.4'.4"-Triamino-3.3'-dimethoxy-triphenylcarbinols (S. 841), schließlich bildet sich 4.4'.4"-Triamino-3.3'-dimethoxy-triphenylmethan (s. u.).

4.4'.4"-Triamino-3.3'-dimethoxy-triphenylmethan, 3.3'-Dimethoxy-paraleukanilin $C_{11}H_{23}O_{2}N_{3}$, s. nebenstehende Formel. B. Bei der Reduktion von 4"-Nitro-4.4'-diamino-3.3'-dimethoxy-triphenylmethan (s. o.) mit Zinkstaub in verd. Salzsäure (O. FISCHER, B. 15, 681). — Farblose Plättchen oder Tafeln (aus absol. Alkohol), die

an der Luft rot werden. F: 182—183°. Fast unlöslich in Wasser, sehr leicht löslich in absol. Alkohol. — Hydrochlorid. Krystelle. Sehr leicht löslich in Wasser und konz. Salz-

säure. — Chloroplatinat. Gelb, krystallinisch. Ziemlich schwer löslich in verd. Salzsäure. \mathbf{OH} Aminoderivat des 3.a-Dioxy-triphenylmethans (3-Oxy-triphenylcarbinols) $C_{19}H_{16}O_{2} = (C_{6}H_{5})_{2}C(OH)$

C.H. OH (Bd. VI, S. 1044). 4'.4" - Bis - diäthylamino - 3 - oxy - triphenylcarbinol C₃₇H₂₄O₂N₂, s. nebenstehende Formel. B. Durch längeres Erhitzen des Farbstoffes Patentblau V (Syst. No. 1927) mit starker Salzsäure und Fällen mit Natronlauge (E. ERDMANN, H. ERDMANN, A. 294, 377). — Wurde als grünes, in Wasser unlösliches Pulver erhalten.

 $(C_{\bullet}H_{\kappa})_{\bullet}N$

 $N(C_2H_8)_2$

7. Aminoderivate des 4.a-Dioxy-triphenylmethans (4-Oxy-triphenyl-carbinols) $C_{19}H_{16}O_{2}=(C_{6}H_{5})_{2}C(OH)\cdot C_{6}H_{4}\cdot OH$ (Bd. VI, S. 1044).

4'.4''-Bis-dimethylamino-4-oxy-triphenylcarbinol $C_{23}H_{26}O_2N_2$, s. nebenstehende Formel. Die entsprechende (CH₃)₂N·Anhydroverbindung, Anhydro - [4'.4" - bis - dimethylamino - 4 - oxy - triphenyloarbinol], 4'.4" - Bis - dimethylamino-fuchson 1) $C_{23}H_{24}ON_3 = [(CH_3)_2N \cdot C_6H_4]_3$ C:C₆H₄:O s. Syst. No. 1873.

 \mathbf{OH} \cdot OH $N(CH_{a})_{a}$

2 - Amino - 4'.4" - bis - dimethylamino - 4 - oxy -OH NH, triphenylcarbinol $C_{23}H_{27}O_2N_3$, s. nebenstehende Formel. B. Das essigsaure Farbsalz entsteht beim Behandeln $(CH_3)_2N \cdot (CH_3)_2N \cdot (CH_3)_3N \cdot (CH_3)_3$ OH dioxyd in essigsaurer Lösung (Danailla, C. r. 149, 794).

— Das essigsaure Farbsalz liefert beim Behandeln mit

Ammoniak die (amorphe) Anhydrobase, 2-Amino-4'.4"-bis-dimethylamino-fuchson¹) C23 H25 ON2, die sich in Essigsäure wieder mit grünlichblauer Farbe löst.

2. Aminoderivate der Dioxy-Verbindungen $C_{20}H_{18}O_{2}$.

1. Aminoderivat des 1.2-Bis-fa-oxy-benzylj-benzols $C_{30}H_{18}O_{5}=C_{6}H_{5}\cdot CH(OH)\cdot C_{6}H_{4}\cdot CH(OH)\cdot C_{6}H_{5}\cdot (Bd.\ VI,\ S.\ 1047).$

1.2 - Bis - [4 - dimethylamino - a - oxy - benzyl] - benzyl - benzyl - c H_1 : $O_2N_2 = (CH_3)_*N \cdot C_4H_4 \cdot CH(OH) \cdot C_4H_4 \cdot N(CH_3)_2$. B. Bei der Einw. von Natriumamalgam auf 1.2-Bis-[4-dimethylamino-benzyl]-benzyl (Syst. No. 1874) in der Wärme (Guyor, Pigner, 1.2-Bis-[4-dimethylamino-benkoy]-benkoi (cyst. No. 16/2) in der warme (Grover, Flesser, C. r. 146, 986; G., Haller, A. ch. [8] 19, 350). — Weiße Krystalle. F: 124°. Löslich in verd. Mineralsäuren mit gelber Farbe. — Beim Behandeln mit Phosphoroxychlorid in der Wärme entsteht 1.3-Bis-[4-dimethylamino-phenyl]-phthalan C₂H₄ CH[C₂H₄·N(CH₂)₂]>O (Syst. No. 2641). Kondensiert sich mit Dimethylamin in Gegenwart von verd. Salzsäure zu 4'.4"-Bis-dimethylamino-2-[4-dimethylamino-a-oxy-benzyl]-triphenylmethan (S. 777).

Aminoderivate des 4.6 - Dioxy - 1.3 - dibenzyl - benzols $C_{\text{so}}H_{1*}O_{\text{s}} =$ $(C_6H_5\cdot CH_2)_2C_6H_2(OH)_2.$

4.6-Dioxy-1.3-bis-[4-amino-bensyl]-bensol, 4.6-Bis-[4-amino-bensyl]-resorcin $C_{20}H_{20}O_2N_2=H_2N\cdot\langle$ ·CH₂ $\cdot \mathbf{CH_2} \cdot \langle$ NH₂. B. Durch Kondensation von 2 Mol.-HO. \cdot OH Gew. 4-Amino-benzylalkohol (S. 620) und 1 Mol.-Gew. Resorcin in schwach schwefelsaurer Lösung (FRIEDLÄNDER, v. HORVÁTH, M. 23, 980). — Weiße Nadeln. F: 212—213°. Fast unlöslich in Benzol, Ligroin und Chloroform, schwer löslich in heißem Wasser, leicht in Eisessig und heißem Alkohol. — $C_{20}H_{20}O_2N_2 + H_2SO_4$. Nadeln. Sehr wenig löslich in Wasser. — $C_{20}H_{20}O_3N_3 + 2$ HCl + PtCl₄. Bräunlichgelbe Prismen.

4.6 - Dioxy - 1.8 - bis - [4 - methylamino - bensyl] - bensol, 4.6 - Bis - [4 - methylamino - bensyl] - resorcin $C_{32}H_{24}O_2N_3 = (CH_3 \cdot NH \cdot C_6H_4 \cdot CH_2)_2C_6H_4(OH)_3$. B. Entsteht, neben 4'-Methylamino - 2.4-dioxy-diphenylmethan (S. 811), beim Erhitzen von salzsaurem dimerem (?) Anhydro-[4-methylamino-benzylalkohol] (S. 621) mit Resoroin in Gegenwart von verdünnter Schwefelsäure (F., M. 23, 993). — Blätter (aus Alkohol). F: 174—175°. Kaum löslich in

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch a. Bd. VII, 8. 520.

Ligroin und kaltem Wasser, schwer in heißem Wasser, Äther, Benzol und Chloroform, leicht in Alkohol und Eisessig. — Die alkal. Lösung färbt sich an der Luft rot; mit Bleidioxyd in Eisessig entsteht eine rotviolette Färbung. — $C_{22}H_{24}O_2N_2+2$ HCl. Weiße Blättchen. Leicht löslich in heißem Wasser, schwer in konz. Salzsäure. — $C_{22}H_{24}O_2N_2+H_2SO_4$. Krystalle. Schwer löslich in heißem Wasser, leichter in verd. Schwefelsäure. — Nitrat. Farblose Blätter. F: 174° (Zers.). Leicht löslich in heißem Wasser.

4.6-Dioxy-1.3-bis-[4-āthylamino-bensyl]-bensol, 4.6-Bis-[4-āthylamino-bensyl]-resorcin $C_{24}H_{25}O_2N_2=(C_2H_5\cdot NH\cdot C_6H_4\cdot CH_2)_2C_6H_3(OH)_2$. B. Neben 4'Athylamino-2.4-dioxy-diphenylmethan (S. 811), beim Erhitzen von salzsaurem dimerem(?) Anhydro-[4-(āthylamino)-benzylalkohol] (S. 622) mit Resorcin in Gegenwart von verd. Schwefelsäure (F., M. 23, 995). — Krystalle (aus Xylol). F: 101°. — $C_{24}H_{36}O_2N_2 + H_2SO_4$. Weiße Prismen. Schwer löslich in kaltem Wasser.

k) Aminoderivat einer Dioxy-Verbindung $C_nH_{2n-26}O_2$.

4.4'-Diamino-1.1'-dioxy-dinaphthyl-(2.2') $C_{20}H_{16}O_2N_2$, s. OH one benst. Formel. B. Bei der Reduktion von 4.4'-Bis-benzolazo-1.1'-dioxy-dinaphthyl-(2.2') (Syst. No. 2130) mit Zinnchlorür und Salzsäure (Witt, Dedichen, B. 30, 2662). — Oxydiert sich sehr leicht. Wird durch Salpetersäure (D: 1,4) in Di-a-naphthochinon (Bd. VII, S. 902) umgewandelt. — $C_{20}H_{16}O_2N_2 + 2$ HCl $+ 3H_2O. - 2C_{20}H_{16}O_2N_2 + 4$ HCl $+ SnCl_4 + 6H_2O$ (?). Krystalle.

l) Aminoderivate der Dioxy-Verbindungen $C_nH_{2n-28}O_2$.

1. Aminoderivate der Dioxy-Verbindungen $C_{23}H_{18}O_{2}$.

1. Aminoderivat des Diphenyl-[4-oxy-naph-thyl-(1)]-carbinols $C_{23}H_{18}O_3=(C_6H_6)_2C(OH)\cdot C_{10}H_6\cdot OH$. (CH₃)₂N·CH₃)₂N·CH₃ Sis - [4 - dimethylamino - phenyl] - [4 - oxy - naph-thyl-(1)]-carbinol $C_{27}H_{28}O_2N_3$, s. nebenstehende Formel. Die entsprechende Anhydroverbindung, Anhydro- $\{bis-[4-dimethylamino-phenyl] - [4-oxy-naphthyl-(1)]-carbinol\}$ $C_{27}H_{36}ON_3 = [(CH_2)_2N\cdot C_6H_4]_2C:C_{10}H_4:O$ s. Syst. No. 1873.

2. Aminoderivat des Diphenyl - [1.4 - dioxy - naphthyl - (2)] - methans $C_{23}H_{16}O_9 = (HO)_8C_{10}H_3 \cdot CH(C_9H_8)_9$.

Bis - [4 - dimethylamino - phenyl] - [1.4-dioxy-naphthyl - (2)] - methan C₂₇H₂₈O₂N₂, s. nebenstehende Formel.

B. Durch kurzes Kochen von Bis-[4-dimethylamino-phenyl][1-amino-4-oxy-naphthyl-(2)]-methan (8. 776) mit Salzssure
(Möhlau, Kegel, B. 33, 2865). Bei der Reduktion von
Bis-[4-dimethylamino-phenyl] - [naphthochinon-(1.4)-yl-(2)]methan (Syst. No. 1874) in alkoh. Lösung mit Schwefelammonium (M., Klopfer, B. 32, 2151).

Weiße Flocken. Leicht löslich in Alkohol, Ather und Benzol (M., Kr.). Die Lösungen

methan (Syst. No. 1874) in alkoh. Lösung mit Schwefelammonium (M., Klopfer, B. 32, 2151).

— Weiße Flocken. Leicht löslich in Alkohol, Äther und Benzol (M., Kz.). Die Lösungen färben sich durch Oxydation schnell rot (M., Kz.). Wird in ammoniakalischer Lösung durch Luftsauerstoff zu Bis-[4-dimethylamino-phenyl]-[naphthochinon-(1.4)-yl-(2)]-methan oxydiert (M., Kz.).

— C₂₇H₂₈O₂N₂ + 2 HCl. Krystalle von Tetraederform (aus Salzsäure) (M., Kz.).

2. Aminoderivat des 2.7-Dioxy-1.8-dibenzyl-naphthalins $C_{24}H_{20}O_2=(HO)_2C_{10}H_4(CH_2\cdot C_0H_5)_2$.

2.7 - Dioxy - 1.8 - bis - [a - (a - oxy - bensylamino) - bensyl] - naphthalin $C_{ab}H_{ab}O_{b}N_{a}$, s. Formel I. B. Aus 2.7-Dioxy-naphthalin (Bd. VI, S. 985) mit Benzaldehyd und alkoh. Ammoniak (Beschke, A. 369, 157, 165). — Tafeln (aus Alkohol). F: 125°. Liefert beim Auf-

$$I. \underbrace{\bigcirc \text{CH}(C_0H_0) \cdot \text{NH} \cdot \text{CH}(\text{OH}) \cdot C_0H_0}_{\text{OH}} \qquad II. \underbrace{\bigcirc \text{CH}(C_0H_0) \cdot \text{CH}(C_0H_0)}_{\text{OH}} \text{NH}$$

kochen mit Wasser oder beim Lösen in schwach erwärmten verdünnten Alkalien unter Abspaltung von Benzaldehyd und Ammoniak die Verbindung $C_{24}H_{19}O_2N$ der Formel II (Syst. No. 3146).

m) Aminoderivate der Dioxy-Verbindungen C_nH_{2n-80}O₂.

1. Aminoderivat des 3.8-Dioxy-1.2-diphenyl-acenaphthens¹) $C_{24}H_{18}O_2 = (C_6H_5)_2C_{12}H_0(OH)_2$ (Bd. VI, S. 1057).

1-Dimethylamino-3.8-dimethoxy-1.2-diphenyl-acenaphthen $C_{28}H_{27}O_2N$, s. Formel I. B. Beim Erhitzen der Verbindung $C_{28}H_{21}O_4NS$ der Formel II (Syst. No. 3146) mit $40^{\circ}/_{\circ}$ iger

$$I. \underbrace{\begin{array}{c} O \cdot CH_3 \\ \cdot CH \cdot C_eH_5 \\ \cdot C(C_eH_5) \cdot N(CH_3)_2 \\ \hline O \cdot CH_3 \\ \end{array}}_{O \cdot CH_3} II. \underbrace{\begin{array}{c} O \cdot CH_3 \\ \cdot CH(C_eH_5) \\ \cdot CH(C_eH_5) \\ \hline O \cdot CH_3 \\ \end{array}}_{O \cdot CH_3} N(CH_3)_2 \cdot O \cdot SO_2 \cdot O \cdot CH_3$$

Natronlauge (Beschke, A. 369, 170). — Nadeln (aus Alkohol). Schmilzt bei 173° unter Gasentwicklung. — Liefert beim Erhitzen auf den Schmelzpunkt oder beim Kochen mit Eisessig 3.8-Dimethoxy-1.2-diphenyl-acenaphthylen (Bd. VI, S. 1061) und Dimethylamin.

2. Aminoderivate der Dioxy-Verbindungen $C_{26}H_{22}O_2$.

1. Aminoderivate des a. β -Dioxy-a.a. β - β -tetraphenyl-äthans (a.a.a'.a'-Tetraphenyl-äthylenglykols) $C_{12}H_{12}O_2=(C_0H_5)_2C(OH)\cdot C(OH)(C_0H_5)_2$ (Bd. VI, S. 1058).

a.a'- Diphenyl-a.a'- bis - [4-dimethylamino-phenyl] - äthylenglykol $C_{30}H_{32}O_{3}N_{2} = [-C(OH)(C_{6}H_{5})\cdot C_{6}H_{4}\cdot N(CH_{3})_{2}]_{2}$. B. Durch Reduktion von 10 g 4-Dimethylamino-benzophenon (Syst. No. 1873) in 100 ccm Eisessig mit 20 g Zinkstaub (Willstätter, Goldmann, B. 39, 3770). — Spieße (aus Chloroform + Alkohol). Schmilzt bei 186—187°, anscheinend unter Zersetzung. Sehr wenig löslich in Alkohol, Äther, Petroläther, löslich in Benzol, Toluol und Amylalkohol, leicht löslich in Chloroform, Eisessig und Pyridin. Färbt sich am Licht oberflächlich gelb. Die farblose Lösung in konz. Salzsäure oder 50% ger Schwefelsäure wird beim Stehen, rascher beim Erwärmen rot. Färbt sich beim Eintragen in konz. Schwefelsäure zunächst oberflächlich rot und geht dann mit schwach gelber Farbe in Lösung; beim Verdünnen und Neutralisieren dieser Lösung scheidet sich [4-Dimethylamino-phenyl]-[4-dimethylamino-triphenylmethyl]-keton 3) (Syst. No. 1873) aus. Die gleiche Verbindung wird als Nebenprodukt bei der Reduktion von a.a'-Diphenyl-a.a'-bis-[4-dimethylamino-phenyl]-äthylenglykol in alkoholhaltiger Salzsäure mit Zinn erhalten; als Hauptprodukt entsteht hierbei $a.\beta$ -Diphenyl- $a.\beta$ -bis-[4-dimethylamino-phenyl]-äthylen (S. 292). a.a'-Diphenyl-a.a'-bis-[4-dimethylamino-phenyl]-äthylenglykol geht beim Kochen mit Alkohol in Phenyl-[4.4'-bis-dimethylamino-triphenylmethyl]-keton 3) (Syst. No. 1873) über.

Tetrakis - [4 - dimethylamino - phenyl] - äthylenglykol $C_{34}H_{49}O_2N_4 = [(CH_3)_2N \cdot C_6H_4]_6C(OH) \cdot C(OH)[C_6H_4 \cdot N(CH_3)_2]_3$. B. Durch elektrolytische Reduktion von 4.4'-Bisdimethylamino-benzophenon (Syst. No. 1873) in schwefelsaurer Lösung an einer Kupferkathode (Escherich, Moest, Z. El. Ch. 8, 849). — Farblose Nadeln (aus heißem Benzol). F: 210—211°. Unlöslich in Alkohol und Wasser, sehr leicht löslich in heißem Benzol.

2. Aminoderivat des a - Oxy - 2 - [a - oxy - benzyl] - triphenylmethans (2 - [a - Oxy - benzyl] - triphenylcarbinols) $C_{26}H_{22}O_3 = (C_6H_5)_2C(OH)\cdot C_6H_4\cdot CH(OH)\cdot C_6H_5$ (Bd. VI, S. 1058).

2-[4-Dimethylamino -a-oxy - bensyl] - triphenyl - carbinol $C_{38}H_{37}O_3N$, s. nebenstehende Formel³). B. Durch Reduktion von 2-[4-Dimethylamino - bensoyl] - triphenyl - carbinol bezw. 5-Oxy-2.2-diphenyl-5-[4-dimethylamino-phenyl]-3.4-benzo-furandihydrid (Syst. No. 1877) mit Natriumamalgam in siedendem Alkohol (Pérard, C, r, 143, 238). —

¹) Bezifferung der vom Namen "Acenaphthen" abgeleiteten Namen in diesem Handbuch s. Bd. V. S. 586.

³) So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von MADELUNG, OBERWEGNEE, B. 60 [1927], 2484.

³) Diese Konstitution ist auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von PÉRARD (A. ch. [9] C(OH)(C₆H₈)· N(CH₈)₉, 370) der früher (C. r. 143, 238) von ihm als 4'-Dimethylamino-2-[a-oxy-benzyl]-triphenyl-carbinol (s. nebenstehende Formel) aufgefaßten Verbindung zu erteilen.

Krystalle (aus Alkohol + Äther). F: 145°. Leicht löslich in Alkohol, weniger in Äther, fast unlöslich in Benzol. — Geht in kalter Benzollösung bei Gegenwart von etwas konz. Schwefelsäure in 9-Phenyl-10-[4-dimethylamino-phenyl]-anthracen (Bd. XII, S. 1349), in siedender Eisessiglösung auf Zusatz einiger Tropfen konz. Schwefelsäure in 2.2-Diphenyl-5-[4-dimethylamino-phenyl]-3.4-benzo-furandihydrid $C_eH_e \xrightarrow{CH[C_eH_4 \cdot N(CH_2)_2]} O$ (Syst. No. 2640) über.

3. Aminoderivat des $\alpha.\delta$ -Dioxy- $\alpha.\alpha.\delta.\delta$ -tetraphenyl-butans $(\alpha.\alpha.\alpha'.\alpha'$ -Tetraphenyl-tetramethylenglykols) $C_{29}H_{26}O_{2} = HO \cdot (C_{6}H_{5})_{2}C \cdot CH_{2} \cdot CH_{2} \cdot C(C_{6}H_{5})_{2} \cdot OH$ (Bd. VI, S. 1059).

β-Amino-a.a.a'.a'-tetraphenyl-tetramethylenglykol $C_{28}H_{27}O_{2}N = HO \cdot (C_{8}H_{5})_{2}C \cdot CH(NH_{2}) \cdot CH_{2} \cdot C(C_{6}H_{5})_{3} \cdot OH$. B. Durch Einw. von Phenylmagnesiumbromid auf Asparaginsäurediäthylester (Bd. IV, S. 484) in Äther und Zersetzung des Reaktionsproduktes mit Eis und verd. Essigsäure (Paal, Weidenkaff, B. 39, 4345). — Blättchen (aus verd. Alkohol). F: 149—150°. Ziemlich leicht löslich in Alkohol, Äther, Benzol, sehr wenig in Wasser und Petroläther, leicht löslich in Essigsäure. Die Salze mit Mineralsäuren sind schwer löslich. — $C_{28}H_{27}O_{2}N + HCl$. Krystallkörnchen (aus viel siedendem Äther). F: 235°. Löslich in heißem Alkohol, schwer löslich in siedendem Wasser, sehr wenig in kaltem Wasser. — $C_{28}H_{27}O_{2}N + HNO_{3}$. Amorphes Pulver. F: 168—171°. Löslich in siedendem Alkohol, schwer löslich in heißem Wasser, fast unlöslich in kaltem Wasser.

n) Aminoderivat einer Dioxy-Verbindung $C_nH_{2n-34}O_2$.

[4-Dimethylamino-phenyl]-bis-[3-oxy-naphthyl-(1)]-methan $C_{29}H_{25}O_{2}N$, Formel I. B. Aus 1 Mol.-Gew. 4-Dimethylamino-benzaldehyd (Syst. No. 1873) und 2 Mol.-Gew. β -Naphthol in kalter Eisessiglösung durch Hinzufügen von konz. Salzsäure (Hewitt, Tuener, Bradley, Soc. 81, 1208). — $C_{29}H_{25}O_{2}N+H$ Cl. Prismen (aus Eisessig). Schwärzt

I.
$$\dot{C}H$$
 $\dot{C}H$
 $\dot{C}H$
 $\dot{C}H$
 $\dot{C}H$
 $\dot{C}H$
 $\dot{C}H$

sich etwas bei ca. 150°, schmilzt bei 215° unter Zersetzung. Die heiße konzentrierte Lösung in Eisessig ist blau, wird aber nach dem Auskrystallisieren des größten Teils der Verbindung beim Abkühlen rot und zeigt grüne Fluorescenz. — Beim Kochen mit Essigsäure und Salzsäure entsteht das Hydrochlorid des Dimethylaminophenyldibenzoxanthens der Formel II (Syst. No. 2640).

3. Aminoderivate der Trioxy-Verbindungen.

- a) Aminoderivate der Trioxy-Verbindungen $C_nH_{2n-6}O_8$.
- 1. Aminoderivate der Trioxy-Verbindungen CeH.O.
- 1. Aminoderivate des 1.2.3 Trioxy benzols (Pyrogallols) $C_6H_6O_3=C_6H_3(OH)_3$ (Bd. VI, S. 1071). Vgl. auch No. 3, S. 827 und No. 5, S. 828.
- 4-Amino-1.2.8-trioxy-bensol, 4-Amino-pyrogallol C_cH₇O₂N, s. nebenstehende Formel. B. Aus 4-Nitro-pyrogallol (Bd. VI, S. 1086) durch Zinn und Salzsäure (Einhorn, Cobliner, Preiffer, B. 37, 118). Das salzsaure Salz gibt beim Kochen mit Wasser unter Einleiten von Kohlendioxyd 1.2.3.4-Tetraoxy-benzol (Bd. VI, S. 1153). Das salzsaure Salz liefert beim Erhitzen mit Benzoylchlorid 6.7-Bis-benzoyloxy-2-phenyl-benzoxazol (Syst. No. 4252). C_cH₇O₃N NH₂ + HCl. Nadeln. Leicht löslich in Wasser, löslich in Alkohol, schwer löslich in Essigester.

- 4 Amino pyrogallol trimethyläther $C_9H_{19}O_9N = H_9N \cdot C_9H_4(O \cdot CH_2)_9$. B. Aus 2.3.4-Trimethoxy-bensamid (Bd. X, S. 467) und Hypochlorit (Graebs, Sutter, A. 340, 227). Öl. Leicht löslich in Alkohol, Äther, Benzol. $C_9H_{13}O_9N + HCl$. Nadeln (aus Äther). F: 181°.
- 5 Amino 1.2.3 trioxy bensol, 5 Amino pyrogallol C₆H₁O₂N, s. nebenstehende Formel. B. Aus 5-Nitro-pyrogallol (Bd. VI, S. 1086) mit Zinn und Salzsäure (Babth, M. 1, 884). Oxydiert sich äußerst leicht. Schüttelt man die Lösung des salzsauren Salzes mit etwas Natronlauge, H₂N. OH so entsteht eine intensiv blaue Färbung. C₆H₁O₃N + HCl. Bräunliche Nadeln. Zersetzt sich in wäßr. Lösung rasch unter Abscheidung blauer Flocken.
- 5-Amino-pyrogallol-trimethyläther C₂H₁₈O₃N=H₂N·C₄H₂(O·CH₂)₃. B. Aus 5-Nitropyrogallol-trimethyläther (Bd. VI, S. 1086) mit Zinnehlorür und Salzsäure (WILL, B. 21, 613). Aus Trimethyläthergallussäure-amid (Bd. X, S. 488) beim Verreiben mit Hypochlorit und Natriumhydroxyd unter Eiszusatz (Graebe, Sutter, A. 340, 224). Krystalle. F: 114° (W.), 113—114° (G., S.). Leicht löslich in Alkohol, Äther und heißem Wasser, schwer in kaltem Wasser (G., S.). Diazotiert man 5-Amino-pyrogallol-trimethyläther in verd. Schwefelsäure mit Natriumnitrit unter Eiskühlung und trägt die Diazoniumsalzlösung in siedend heiße 50°/oige Schwefelsäure ein, so erhält man Antiarol (Bd. VI, S. 1154) (G., S.). BIGINELLI (G. 27 II, 354) erhielt, als er zu einer Suspension von 5-Amino-pyrogallol-trimethyläther in wäßr. Natriumnitritlösung verd. Essigsäure fügte und dann allmählich zum Sieden erhitzte, neben geringen Mengen einer Verbindung C₁₆H₁₆O₃ [braune Nadeln; F: 243—244°; löslich in Äther; löslich in Alkalien] eine schwarze, unlösliche, stickstoffhaltige Substanz.
- 5-Amino-pyrogallol-triäthyläther $C_{12}H_{19}O_2N=H_2N\cdot C_6H_2(O\cdot C_9H_8)_3$. B. Durch Reduktion von 5-Nitro-pyrogallol-triäthyläther (Bd. VI, S. 1086) mit Zinn und Salzsäure (Schlyfer, B. 25, 724). Nädelchen. F: 104°. Sehr schwer löslich in heißem Wasser, leicht in Alkohol und Äther. $2C_{12}H_{19}O_3N+2HCl+PtCl_4$. Krystalle.
- 5-Acetamino-pyrogallol-trimethyläther $C_{11}H_{15}O_4N=CH_3\cdot CO\cdot NH\cdot C_4H_3(O\cdot CH_3)_3$. B. Aus 5-Amino-pyrogallol-trimethyläther durch Acetylierung (Graebe, Suter, A. 840, 224). Nadeln. F: 1246.
- 4.6 Diamino 1.2.3 trioxy bensol, 4.6 Diamino pyrogallol C₂H₂O₃N₃, Formel I. B. Durch Reduktion von 4.6-Dinitro-pyrogallol (Bd. VI, S. 1087) mit Zinn und Salzsäure (Einhorn, Cobliner, Pfeiffer, B. 37, 121). Das salzsaure Salz gibt beim Erhitzen mit

I.
$$\begin{array}{c} OH \\ OH \\ OH \\ NH. \end{array}$$

$$\begin{array}{c} OH \\ O \cdot CO \cdot C_{\bullet}H_{\bullet} \\ OC \cdot CO \cdot CO \cdot C_{\bullet}H_{\bullet} \\ OC \cdot CO \cdot CO \cdot C_{\bullet} \\ OC \cdot CO \cdot CO$$

Benzoylchlorid die Verbindung der Formel II (Syst. No. 4637). — $C_6H_8O_3N_2+2$ HCl. Nadeln. Schwer löslich in Alkohol, unlöslich in Essigester. Unlöslich in konz. Salzsäure. Oxydiert sich in wäßr. Lösung an der Luft.

- 2. Aminoderivate des 1.2.4-Trioxy-benzols (Oxyhydrochinons) $C_0H_0O_3=C_0H_3(OH)_3$ (Bd. VI, S. 1087). Vgl. such No. 3, S. 827 und No. 5, S. 828.
- 5-Amino-oxyhydrodhinon-l.2-dimethyläther C_sH₁₁O_sN, s. nebenstehende Formel. B. Durch Reduktion von 4.5-Dimethoxy-o-chinonoxim-(1) (Bd. VIII, S. 376) mit Zinn und Salzsäure (FARNYI, SZÉKI, B. 39, 3684). Fast farblose Krystalle (aus Alkohol). F: 152°. Die wäßr. Lösung wird durch Alkalien bräunlichblau. Leicht löslich in Alkalien und in Säuren. Wird durch Oxydation an der Luft mißfarbig.
- 5-Amino-oxyhydrochinon-trimethyläther C₂H₁₂O₂N = H₂N·C₂H₂(O·CH₂)₂. B. Durch Reduktion des 5-Nitro-oxyhydrochinon-trimethyläthers (Bd. VI, S. 1090) mit Zinn und Salzsäure (Farinyi, Szäki, B. 39, 3681; Schüler, Ar. 245, 268, 277). Nadeln (aus Bensol + Ligroin). F: 94,5—95° (Sch.), 95° (F., Sz.). Sehr leicht löslich in Benzol, leicht in Alkohol, Chloroform, Aceton, löslich in Äther, schwerer löslich in Wasser, sehr wenig in heißem Ligroin (Sch.). Nur in trocknem Zustande unverändert haltbar; färbt sich an feuchter Luft blau (Sch.). Die Lösung in kons. Schwefelsäure ist farblos (F., Sz.). Färbt sich mit Eisenchorid schwarz (Sch.). Wird durch salpetrige Säure oder 50°/oige Salpetersäure in 2.5-Dimethoxychinon (Bd. VIII, S. 378) tibergeführt (Sch.). Co H₁₃O₂N + HCl. Nadeln (aus Alkohol + Äther). F: 210° (Zers.) (Sch.). Wird leicht oxydiert (Sch.).

- 5-[3.4.5-Trimethoxy-benzalamino]-oxyhydrochinon-trimethyläther $C_{12}H_{22}O_0N=(CH_3\cdot O)_2C_0H_2\cdot CH:N\cdot C_2H_3(O\cdot CH_2)_3$. B. Aus 5-Amino-oxyhydrochinon-trimethyläther und Asarylaldehyd (Bd. VIII, S. 389) in Alkohol bei Gegenwart von kons. Salzzäure (Fabinyi, Sziki, B. 39, 3682). Grünlichgelbe Nadeln (aus Alkohol). F: 142,5°. $C_{19}H_{22}O_6N+HCl$. Rote Nädelchen (aus verd. Salzzäure).
- 5 Bensamino oxyhydrochinon trimethyläther $C_{10}H_{17}O_4N=C_0H_1\cdot CO\cdot NH\cdot C_0H_2(O\cdot CH_2)_2$. B. Aus 5-Amino-oxyhydrochinon-trimethyläther mit Benzoylchlorid und Natronlauge (Fabinyi, Széki, B. 89, 3682; Schüler, Ar. 245, 278). Krystelle. F: 139,5° (Sch.), 138° (F., Sz.). Leicht löslich in Benzol, unlöslich in Ather (Sch.).
- 5-Bensamino-oxyhydrochinon-1.2-dimethyläther-4-bensoat $C_{32}H_{19}O_2N=C_4H_5$: $CO\cdot NH\cdot C_6H_6(O\cdot CH_5)_2\cdot O\cdot CO\cdot C_6H_5$. B. Beim Schütteln von 5-Amino-oxyhydrochinon-1.2-dimethyläther mit überschüssigem Benzoylchlorid und konz. Natronlauge (Fabinyi, Száki, B. 39, 3685). Blättchen (aus Eisessig). Schmilzt bei 209° unter Zersetzung. Ziemlich leicht löslich in siedendem Alkohol. Wird durch siedende Alkalien schwer zersetzt.
- 3. Aminoderivate des 1.2.3 oder des 1.2.4 Trioxy benzols $C_0H_4O_3=C_0H_2(OH)_3$. Vgl. such No. 5, 8.828.
- 5-Amino-1.2.8-trioxy-benzol oder 6-Amino-1.2.4-trioxy-benzol $C_eH_7O_2N=H_2N\cdot C_0H_8(OH)_3$. B. Das salzsaure Salz entsteht bei 4—5-stdg. Kochen von 50 g salzsaurem 2.4.6-Triamino-phenol (8. 569) mit 1000—1500 ccm Wasser im Wasserstoffstrom; man engt im Vakuum ein, erwärmt das dabei sich ausscheidende Gemisch von Salmiak und salzsaurem Amino-trioxy-benzol mit Essigsäureanhydrid und zerlegt die gebildeten Acetylderivate mit verd. Salzsäure im Druckrohr bei 100—110° (Oettinger, M. 16, 249). Beim Erhitzen mit Wasser in einer Wasserstoffatmosphäre auf 150—160° entsteht 1.2.3.5-Tetraoxy-benzol (Bd. VI, S. 1154). $C_0H_7O_2N+HCl$. Kryställchen. Äußerst leicht löslich in Wasser und Alkohol. Wird durch FeCl₃ intensiv rot gefärbt.

Triacetylderivat $C_{12}H_{13}O_{\bullet}N=C_{\bullet}H_{\bullet}O_{3}N(CO\cdot CH_{2})_{3}$. B. Entsteht neben dem Tetraacetylderivat bei gelindem Erwärmen von 1 Tl. rohem, salzsaurem Aminotrioxybensol (s. den vorangehenden Artikel) mit 10 Tln. Essigsäureanhydrid; man verdunstet die vom $NH_{\bullet}Cl$ abgesaugte Lösung im Vakuum und krystallisiert den Rückstand aus heißem Wasser um; die erhaltenen Krystalle trennt man durch Benzol, in welchem das Triacetylderivat schwer löslich ist (Os., M. 16, 252). — Nadeln (aus Alkohol). F: 182—184°. Leicht löslich in Alkohol, ziemlich leicht in warmem Wasser, schwer in Benzol.

- Tetraacetylderivat $C_{14}H_{15}O_7N = C_6H_3O_2N(CO\cdot CH_3)_4$. B. Siehe das Triacetylderivat. Krystallkörner (aus Benzol). F: 182°; leicht löelich in heißem Alkohol und Benzol (OE.)
- 4. Aminoderivate des 1.3.5 Trioxy benzols (Phloroglucius) $C_0H_0O_3=C_0H_3(OH)_3$ (Bd. VI, S. 1092). Vgl. such No. 5, S. 828.
- 2-Amino-phloroglucin-1-methyläther C₇H₀O₂N, s. nebenstehende Formel. B. Aus 2-Oxy-6-methoxy-p-chinon-oxim-(1) (Bd. VIII, S. 386) durch Reduktion mit Zinnchlorür und Salzsäure (Pollak, Gans, M. 23, 951). Krystallmasse. Färbt sich bei Luftzutritt und beim Lösen in HO. OH Wasser grün und dann rot. Eisenchlorid oxydiert zu 2-Oxy-6-methoxy-chinon (Bd. VIII, S. 385). Verschmilzt man das Hydrochlorid des 2-Amino-phloroglucin-1-methyläthers mit Harnstoff bei etwa 100° und erwärnt die Schmelze auf 205° bis zum Aufhören der Ammoniakentwicklung, so entsteht 6-Oxy-4-methoxy-benzoxasolon (Syst. No. 4300). C₇H₂O₂N + HCl. Nadeln. Leicht löslich in Wasser und Alkohol.
- 2-Amino-phloroglucin-1.3-dimethyläther $C_0H_{11}O_2N=H_0N\cdot C_0H_2(OH)(O\cdot CH_2)_2$. B. Durch Reduktion von 2.6-Dimethoxy-p-chinon-oxim-(1) (Bd. VIII, 8. 386) mit Zinnchlorür und Salzsäure (Weidel, Pollak, M. 21, 32). $C_0H_{11}O_2N+HCl+H_2O$. Nadeln. Zersetzt sich bei 171—173°.
- 2-Amino-phloroglucin-1.5-dimethyläther $C_8H_{11}O_8N=H_2N\cdot C_6H_6(OH)(O\cdot CH_8)_8$. B. Durch Reduktion von 3.5-Dimethoxy-o-chinon-oxim-(2) (Bd. VIII, S. 376) mit Zinnchlorür und Salzsäure (W., P., M. 21, 30). $C_8H_{11}O_8N+HCl$. Nadeln. F: 205—206°.
- 2-Amino-phloroglucin-1.3-diäthyläther $C_{10}H_{15}O_{2}N=H_{2}N\cdot C_{2}H_{2}(OH)(O\cdot C_{2}H_{5})_{2}$. B. Durch Reduktion von 2.6-Diäthoxy-p-chinon-oxim-(1) (Bd. VIII, S. 386) mittels Zinnehlorür (W., P., M. 18, 362). $C_{10}H_{15}O_{3}N+HCl+H_{3}O$. Zersetzt sich über 140°. Gibt mit FeCl₃ keine Farbreaktion.
- 2-Amino-phloroglucin-l.5-diäthyläther $C_{10}H_{15}O_{2}N=H_{2}N\cdot C_{4}H_{2}(OH)(O\cdot C_{2}H_{5})_{2}$. B. Aus 3.5-Diäthoxy-o-chinon-oxim-(2) (Bd. VIII, S. 376) durch Reduktion mit Zinnchlorür (W., P., M. 18, 360). $C_{10}H_{15}O_{2}N+HCl$. Zersetst sich über 130°, ohne zu schmelsen. Gibt in wäßr. Lösung mit FeCl₃ tiefkirschrote Färbung.

2.4.6.2'.4'.6' - Hexamethoxy - diphenylamin O·CH₃ O·CH₃ O·CH₃ C_{1s}H_{2n}O₆N, s. nebenstehende Formel. B. Durch Reduktion des aus Phloroglueintrimethyläther und 33°/ojeer Salpetersäure entstehenden blauen Farbstoffes (vgl. Bd. VI, S. 1102 Anm.) mit wäßriger schwefliger O·CH₃ O·CH₃ Säure (Mannich, Ar. 242, 508). — Krystalle (aus Alkohol). F: 142°. — Liefert bei der Oxydation mit Chromsäure glatt 2.6-Dimethoxy-chinon. Bildet ein Nitrosamin (s. u.). Färbt sich nicht mit verd. Säuren, wohl aber mit konz. Schwefelsäure und konz. Salpetersäure blau.

- 2-Acetamino-phloroglucin-1.5-diäthyläther $C_{12}H_{17}O_4N=CH_3\cdot CO\cdot NH\cdot C_6H_8(OH)(O\cdot C_2H_5)_2$. B. Aus 4.6-Diäthoxy-2-methyl-benzoxazol (Syst. No. 4248) durch Einw. von Natriumamalgam in wäßrig-alkoholischer Lösung (Weidel, Pollak, M. 18, 373). Nadeln. F: 122,5° bis 123,5°.
- 2-Diacetylamino-phloroglucin-3.5-diäthyläther-1-acetat $C_{1e}H_{21}O_{e}N = (CH_{3}\cdot CO)_{2}N\cdot (C_{e}H_{2}(O\cdot C_{2}H_{5})_{2}\cdot O\cdot CO\cdot CH_{3}.$ B. Aus salzsaurem 2-Amino-phloroglucin-1.5-diäthyläther mit Essigsaureanhydrid (W., P., M. 18, 361). F: 110—112° (unkorr.).
- 2 Diacetylamino phloroglucin 1.3 diäthyläther 5 acetat $C_{16}H_{11}O_6N=(CH_3\cdot C'(0))_2N\cdot C'_4H_2(O\cdot C_2H_6)_2\cdot O\cdot CO\cdot CH_3$. B. Aus salzsaurem 2-Amino-phloroglucin-1.3-diäthyläther mit Essigsäureanhydrid (W., P., M. 18, 363). F: 81—83° (unkorr.).
- 2 Diacetylamino phloroglucin 1 methyläther 3.5 diacetat $C_{15}H_{17}O_7N = (CH_3 \cdot (CO)_2N \cdot (G_3H_2(O \cdot CH_3)(O \cdot CO \cdot CH_3)_2$. B. Durch Kochen von 2-Amino-phloroglucin-1-methyläther mit Essigsäureanhydrid und Natriumacetat (Pollak, Gans, M. 23, 953). Nadeln (aus verd. Alkohol). F: 127—129°.
- [4-Oxy-2.6-diāthoxy-phenyl]-harnstoff $C_{11}H_{16}O_4N_2$, s. nebenstehende Formel. B. Durch Zusammenschmelzen des salzsauren 2-Amino-phloroglucin-1.3-diāthylāthers mit Harnstoff (Weidel, Pollak, M. 18, 366). F: 199,5—201°.
- N Nitroso 2.4.6.2'.4'.6'-hexamethoxy-diphenylamin, Bis [2.4.6 trimethoxy-phenyl]-nitrosamin $C_{18}H_{22}O_7N_2=[(CH_3\cdot O)_8C_4H_3]_2N\cdot NO$. B. Aus 2.4.6.2'.4'.6'-Hexamethoxy-diphenylamin (s. o.) in verd. Schwefelsäure mit Natriumnitrit (Mannich, Ar. 242, 509). Farblose Nadeln (aus Alkohol). F: 193° (Zers.).
- 2.4 Diamino phloroglucin 1 methyläther C, H₁₀O₃N₂, s. nebenstehende Formel. B. Aus 2.4 Dinitroso-phloroglucin-1 methyläther (Bd.VIII, S. 492) durch Reduktion mit Zinnehlorür und Salzsäure (Weidel, Pollak, M. 21, 26). Hydrochlorid. Äußerst luftempfindliche Nadeln.
- 2.4 Bis diacetylamino phloroglucin 5 methyläther 1.3 diacetat $C_{19}H_{22}O_9N_9 = [((^1H_3\cdot(^1))_2N]_2C_9H(()\cdot CH_9)(()\cdot CO\cdot CH_9)_3$. Beim Erhitzen des salzsauren 2.4-Diamino-phloroglucin 1 methyläthers mit überschüssigem Essigsäureanhydrid auf 100° (WEIDEL, Pollak, M. 21, 27). Nadeln. F: 160°. Leicht löslich in siedendem Methylalkohol, unlöslich in Benzol.
- 2.4.6 Triamino 1.3.5 trioxy benzol, Triaminophloroglucin $C_6H_9O_3N_3=(H_2N)_8C_6(OH)_3$. B. Durch Reduktion von Trinitrophloroglucin (Bd. VI, S. 1106) mit Zinnchlorür und Salzsäure (Nietzki, Moll, B. 26, 2185). Beim Kochen mit Mangandioxyd und Soda entsteht Krokonsäure (Bd. VIII, S. 488). $C_6H_9O_3N_3+3$ HCl. Nadeln.
- 5. Aminoderivat des 1.2.3- oder des 1.2.4- oder des 1.3.5-Trioxy-benzols $C_6H_6O_3=C_4H_3(OH)_3$.
- 2-Amino-x.x-bis-phenylsulfon-phenol $C_{18}H_{16}O_5NS_3=H_2N\cdot C_6H_3(OH)(SO_3\cdot C_6H_5)_8$. Beim Hinzufügen einer Lösung von Kaliumdichromat zu einer Lösung von 1 Mol.-Gew. 2-Amino-phenol und 4 Mol.-Gew. Benzolsulfinsäure in Essigsäure (HINSBERG, HIMMELSCHEIN, B. 29, 2029). Krystallinisch. Schmilzt bei 115° unter Dunkelfärbung. Leicht löslich in Alkohol und Eisessig. Natriumsalz. Löslich in Wasser mit gelber Farbe.

2. Aminoderivate der Trioxy-Verbindungen $\mathrm{C_7H_8O_3}$.

- 1. Aminoderivate des 2.4.6 Trioxy 1 methyl benzols ${\rm C_7H_8O_3=CH_3\cdot C_6H_2(OH)_3}$ (Bd. VI, S. 1109).
- 3-Amino-2.4.6-trioxy-1-methyl-benzol, 4-Amino-2-methyl-phloroglucin C₇H₂O₂N, s. nebenstehende Formel. B. Bei der Reduktion von 6-Benzolazo-2-methyl-4-butyryl-phloroglucin (Syst. No. 2137) in alkoh.

Lösung mit Zinnchlorür und Salzsäure (Boehm, A. 318, 291). — $C_7H_9O_3N+HCl+2H_2O$. Zersetzt sich gegen 200—230° ohne zu schmelzen. Sehr leicht löslich in Alkohol, ziemlich leicht in Wasser. Sodalösung oder Kalilauge färbt die wäßrige Lösung erst rot, dann blau.

- 4-Amino-2-methyl-phloroglucin-5-methyläther $C_8H_{11}O_3N=H_2N\cdot C_6H(CH_3)(OH)_2\cdot O\cdot CH_3$. B. Das Hydrochlorid entsteht bei der Redukticn von 4-Nitroso-2-methyl-phloroglucin-5-methyläther [3-Oxy-5-methoxy-toluchinon-oxim-(4), Bd. VIII, S. 392] mit Zinnchlorür und Salzsäure (Konya, M. 21, 426). $C_8H_{11}O_3N+HCl$. Nadeln (aus Salzsäure). Sehr leicht löslich in Wasser und Alkohol.
- 4-Amino 2 methyl phloroglucin 1.5-dimethyläther $C_0H_{13}O_3N=H_2N\cdot C_0H(CH_3)$ (OH)(O·CH₃)₂. B. Das Hydrochlorid entsteht bei der Reduktion von 4-Nitroso-2-methylphloroglucin-1.5-dimethyläther (4.6-Dimethoxy-3-methyl-o-chinon-oxim-(1), Bd. VIII, S. 391) in alkoh. Lösung mit Zinnchlorür und Salzsäure (Pollak, Solomonica, M. 22, 1006). Liefert bei der Oxydation mit Eisenchlorid 3-Oxy-5-methoxy-toluchinon (Bd. VIII, S. 392). $C_0H_{13}O_3N+HCl.$ Nadeln. Leicht löslich in Wasser und Alkohol, fast unlöslich in Äther und Benzol. Zersetzt sich beim Erhitzen ohne zu schmelzen.
- 4-Diacetylamino-2-methyl-phloroglucin-1.5-dimethyläther-3-acetat $C_{15}H_{19}O_6N = (CH_3 \cdot CO)_2N \cdot C_0H(CH_3)(O \cdot CH_3)_2 \cdot O \cdot CO \cdot CH_3$. B. Durch 1-stdg. Erwärmen des salzsauren 4-Amino-2-methyl-phloroglucin-1.5-dimethyläthers mit der zehnfachen Gewichtsmenge Essigsäureanhydrid und etwa der gleichen Gewichtsmenge Natriumacetat (POLLAK, SOLOMONICA, M. 22, 1007). Blättchen (aus Alkohol). F: 152—155° (unkorr.).
- **4-Diacetylamino-2-methyl-phloroglucin-5-methyläther-1.3-diacetat** $C_{16}H_{19}O_7N=(CH_3\cdot CO)_8N\cdot C_6H(CH_3)(O\cdot CH_3)(O\cdot CO\cdot CH_3)_8.$ B. Aus salzsaurem 4-Amino-2-methylphloroglucin-5-methyläther durch Kochen mit Essigsäureanhydrid (Konya, M. 21, 427). Krystalle (aus Alkohol). F: 178°. Leicht löslich in Alkohol, unlöslich in Wasser und Äther.
- 3.5 Diamino 2.4.6 trioxy 1 methyl benzol , 4.6 Diamino 2-methyl-phloroglucin $C_7H_{10}O_3N_2$, s. nebenstehende Formel. B. Das salzsaure Salz entsteht bei der Reduktion des 4.6-Dinitroso-2-methyl-phloroglucins (Bd. VII, S. 906) mit Zinnehlorür und Salzsaure (Weidel, Pollak, M. 21, 56).
- 4.6 Bis acetamino 2 methyl phloroglucin triacetat $C_{17}H_{20}O_8N_2 = (CH_3 \cdot CO \cdot NH)_2C_6(CH_2)(O \cdot CO \cdot CH_3)_3$. B. Beim Erhitzen des salzsauren 4.6-Diamino-2-methyl-phloroglucins mit viel Essigsäureanhydrid (Weidel, Pollar, M. 21, 57). Nadeln. F: 217—218° (unkorr.). Unlöslich in Essigester.
- 2. Aminoderivate des 3.4.5 Trioxy 1 methyl benzols $C_7H_8O_3=CH_3\cdot C_6H_2(OH)_3$ (Bd. VI, S. 1112). Vgl. such unten No. 3.
- 3.4.5 Trimethoxy bensylamin $C_{10}H_{15}O_3N$, s. nebenstehende Formel. B. Durch Eintragen von Natriumamalgam in eine durch Zufügen von Eisessig stets sauer erhaltene alkoh. Lösung des 3.4.5-Trimethoxy-benzaldoxims (Bd. VIII, S. 391) bei 50° (Hefffers, Capellic CH3·O·CH3·Mann, B. 38, 3639). Stark alkalisch reagierendes Öl. Leicht löslich in Wasser, Alkohol, Äther. 2 $C_{10}H_{15}O_3N + H_2SO_4 + 3H_2O$. Nadeln (aus Wasser). Unlöslich in absol. Alkohol. 2 $C_{10}H_{15}O_3N + 2$ HCl + PtCl4. Goldgelbe Nadeln (aus Wasser). F: 197°.

Trimethyl - [3.45 - trimethoxy - bensyl] - ammoniumhydroxyd $C_{13}H_{23}O_4N=(CH_3)_3N(OH)\cdot CH_2\cdot C_6H_2(O\cdot CH_3)_3$. B. Das Jodid entsteht durch 2-stdg. Erwärmen von 3.4.5-Trimethoxy-benzylamin mit Methyljodid und Atzkali in Methylalkohol (Heffter, Capellmann, B. 38, 3640). — Jodid $C_{13}H_{21}O_3N\cdot I$. Platten (aus Wasser). F: 218°. Leicht löslich in Wasser, Alkohol. 100 Tle. Wasser von 26° lösen 11,76 Tle. des Salzes. — Chloroplatinat $2C_{13}H_{22}O_3NCl+PtCl_4$. Goldgelbe Nädelchen. F: 215°. Sehr wenig löslich in Wasser.

- 3. Aminoderivat des 2.3.4 oder des 3.4.5 Trioxy 1 methyl benzols $C_7H_8O_3=CH_3\cdot C_6H_8(OH)_3$.
- N-[3.3.4- oder 3.4.5-Trioxy-bensyl]-salicylamid $C_{14}H_{19}O_5N=HO\cdot C_6H_4\cdot CO\cdot NH\cdot CH_2\cdot C_6H_6(OH)_9$. B. Aus 1 g N-Methylol-salicylamid (Bd. X, S. 90) und 0,9 g Pyrogallol in Alkohol mit 2 ccm alkoh. Salzsäure (Einhorn, Schupp, A. 343, 263). Nädelchen (aus Essigester). F: 195—197°. Löslich in Natronlauge mit gelbroter, in Soda mit gelbgrüner Farbe.

3. Aminoderivate der Trioxy-Verbindungen $C_8H_{10}O_3$.

- 1. Aminoderivat des 3.4.5-Trioxy-1-äthyl-benzols $C_4H_{10}O_2=(HO)_2C_4H_1\cdot CH_2\cdot CH_3$.
- β -[3.4.5-Trimethoxy-phenyl]-äthylamin $C_{11}H_{17}O_5N$, s. nebenstehende Formel. Als solches ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. L. 1910] Mezcalin (Syst. No. 4790) von Späth, M. 40 [1919], 145, erkannt worden.

$$CH_3 \cdot O \cdot \underbrace{O \cdot CH_3}_{O \cdot CH_3}$$

2. Aminoderivate des 3.4.1¹-Trioxy-1-āthyl-benzols, (Methyl-[3.4-dioxy-phenyl]-carbinols) $C_4H_{10}O_4 = (HO)_2C_6H_3 \cdot CH(OH) \cdot CH_3$ (Bd. VI, S. 1114).

Inakt. Aminomethyl-[3.4-dioxy-phenyl]-carbinol C₈H₁₁O₂N, CH(OH)·CH₂·NH₂ s. nebenstehende Formel. B. Aus ω-Amino-3.4-dioxy-acetophenon (Syst. No. 1878) in alkal. Lösung durch Reduktion mit Natriumamalgam in einer Wasserstoffatmosphäre (Höchster Farbw., D.R.P. 157300; OH C. 1905 I, 315). Durch Reduktion von ω-Nitro-3.4-dioxy-acetophenon (4-Nitroacetyl-brenzcatechin, Bd. VIII, S. 274) (H. F., D.R.P. 195814; C. 1908 I, 1225). Durch Reduktion von Protocatechualdehyd-cyanhydrin (Bd. X, S. 494) in alkoh. Lösung mit Natriumamalgam und verd. Salzsäure unter Kühlung (H. F., D.R.P. 193634; C. 1908 I, 430). — Weißes Krystallmehl. F: 191° (Zers.); schwer löslich in Wasser, sehr wenig in Alkohol und Äther; leicht löslich in verd. Säuren und Ätzalkalien (H. F., D.R.P. 193634). Die verd. Lösung des Hydrochlorids wird durch Eisenchlorid intensiv grün gefärbt (H. F., D.R.P. 193634). Bezeichnung als "Arterenol": Zernik, C. 1909 I, 1185. — Hydrochlorid. Krystallpulver. F: 141° (Z.). Leicht löslich in Wasser (H. F., D.R.P. 157300; Z.), sohwerer in Alkohol (Z.). — Oxalat. Krystalle. F: 175°; leicht löslich in Wasser (H. F., D.R.P. 193634).

Linksdrehendes Methylaminomethyl-[3.4-dioxy-phenyl]-carbinol, 1-Adrenalin, 1-Suprarenin $C_5H_{13}O_2N=(HO)_2C_6H_3\cdot CH(OH)\cdot CH_2\cdot NH\cdot CH_3$.

Geschichliches. Das 1-Adrenalin wurde aus den Nebennieren in krystallisierter Form zuerst von Takamine (C. 1901 II, 1354) isoliert. Seine Zusammensetzung und Konstitution wurden von Aldrich (American Journal of Physiology 5 [1901], 457; Am. Soc. 27, 1074), v. Füeth (M. 24, 261), Paully (B. 36, 2944; 37, 1390), Abderhalden, Bergell (B. 37, 2022), Jowett (Soc. 85, 194), Stolz (B. 37, 4149), Bertrand (C. r. 139, 502; Bl. [3] 31, 1188) und Friedmann (B. Ph. P. 6, 92; 8, 95) festgestellt; die optische Aktivität wurde zuerst von Paully (B. 36, 2947) bestimmt. Synthetisch wurde dl-Adrenalin zuerst von den Höchster Farbwerken (D.R.P. 157300; C. 1905 I, 315; vgl. St., B. 37, 4150) hergestellt; von Flächer (H. 58, 189) wurde das synthetische Präparat in die aktiven Formen gespalten.

Vorkommen. In der Nebenniere (TAKAMINE, C. 1901 II, 1354; vgl. auch TAK., D.R.P. 131496; C. 1902 I, 1386; ALDRICH, American Journal of Physiology 5 [1901], 457; v. Fürth, H. 24, 142; 26, 15; 29, 105; B. Ph. P. 1, 243).

Darstellung. Man kocht Rindsnebennieren mit angesäuertem Wasser unter Zusatz von Zinkstaub aus; die filtrierte Flüssigkeit wird eingeengt, mit Methylalkohol und Bleiacetat gefällt und durch Schwefelwasserstoff entbleit, worsuf man durch Zusatz von konz. Ammoniak die Krystallisation einleitet (v. Fü., M. 24, 265). Man extrahiert die Nebennieren mit essigsäurehaltigem Alkohol unter Einleiten von Wasserstoff bei gewöhnlicher Temperatur, engt das Filtrat im Vakuum ein und fällt unter Einleiten von Wasserstoff mit Ammoniak; zur Reinigung wird der Niederschlag in oxalsäurehaltigem Alkohol gelöst, die Lösung filtriert, mit Wasser versetzt, vom Alkohol durch Verdampfen im Vakuum befreit; aus der wäßr. Lösung wird mit Ammoniak die Base gefällt und noch einmal als Oxalat gelöst und wieder gefällt (Abderhalden, Bergell, B. 37, 2024). Frische Nebennieren von Pferden befreit man vom Fett, zerkleinert sie und versetzt 600 g der Masse mit 5 g pulverisierter Oxalsäure, füllt mit 95% igem Alkohol auf 2 Liter auf, und preßt nach zweitägigem Macerieren die Flüssigkeit ab; letztere filtriert man, befreit sie im Vakuum vom Alkohol, wobei sich reichlich Lecithin abscheidet, setzt Petroläther zu, schüttelt gelinde, läßt absetzen, zieht die untere Schicht ab, fällt sie sorgfältig mit neutralem Bleiacetat aus und zentrifugiert; die so gewonnene klare, schwach gelb gefärbte Flüssigkeit konzentriert man im Vakuum und fällt aus ihr das Adrenalin durch einen geringen Überschuß von Ammoniak in krystallinischer Form aus (Beetraand, C. r. 139, 502; Bl. [3] 31, 1188).

Die Darstellung von l-Adrenalin aus synthetisch hergestelltem dl-Adrenalin (S. 832) erfolgt mittels d-Weinsäure; das saure d-Tartrat des l-Adrenalins ist in Methylalkohol schwerer löslich als das Salz des d-Adrenalins (Flächer, H. 58, 189).

Physikalische Eigenschaften und Salzbildungsvermögen. Krystallinisches Pulver. Zersetzt sich bei 211—221° (unkorr.) (Flächer, H. 58, 194), 216° (korr.) (Abderhalden, Bergell, B. 37, 2024). Schmilzt auf Maquenneschem Block gegen 263°; der Schmelzpunkt wird um

so niedriger gefunden, je langsamer erhitzt wird (Bertand, Bl. [3] 31, 1291). Kaum löslich in Wasser (bei 20° zu 0,0268°/_o, in der Siedehitze etwas leichter), nahezu unlöslich in Alkohol, unlöslich in Schwefelkohlenstoff, Chloroform, Petroläther, Benzol, Äther (Be., Bl. [3] 31, 1291). Leicht löslich in den Lösungen fixer Alkalien (nicht in Ammoniak und Alkalicarbonatlösungen); leicht löslich in Säuren (Takamine, C. 1901 II, 1354; Be., Bl. [3] 31, 1291). Adrenalin löst sich in Wasser in Gegenwart einer kleineren als molekularen Menge Salzsäure (Guna, Harrison, C. 1908 I, 2045). Über Einflüsse verschiedener Art, welche in Adrenalinlösungen Färbung und Zersetzung hervorrufen, vgl. Gu., Ha., C. 1907 II, 849; 1908 I, 2045. Ultraviolettes Absorptionsspektrum: Dhéré, Bl. [4] 1, 834. [a]¹⁰₁₀:—50,72° (0,3067 g in 1,56 ccm n-Salzsäure und 2,44 ccm Wasser) (Abderhalden, Guggenheim, H. 57, 329); [a]¹⁰₁₀: —51,4° (0,7915 g in Wasser mit Hilfe von 6,4 ccm n-Salzsäure zu 25 ccm gelöst) (Flächer, H. 58, 189); [a]¹⁰₁₀:—53,3° (0,25 g gelöst in n/10-Schwefelsäure zu 25 ccm) (Beetrand, Bl. [3] 31, 1289). Das essigsaure Salz zeigt in 2,82°/_oiger wäßr. Lösung [a]¹⁰₁₀:—43° (Paully, B. 36, 2947). Gibt mit Borsäure oder Arylborsäuren in Wasser leicht lösliche, beständige Verbindungen (Höchster Farbw., D. R. P. 160397, 167317; C. 1905 II, 798; 1906 I, 881).

dungen (Höchster Farbw., D.R.P. 160397, 167317; C. 1905 II, 798; 1906 I, 881).

Chemisches Verhalten. Einw. des elektrischen Gleichstromes: NEUBERG, Bio. Z. 17, 278. Adrenalin zersetzt sich beim Aufbewahren unter Abgabe basischer Substanzen (v. Fürth, M. 24, 271). Die wäßr. Lösung reagiert alkalisch und oxydiert sich an der Luft leicht unter Rotfärbung (Takamine, C. 1901 II, 1354). Bei der Oxydation von Adrenalin mit Wasserstoffsuperoxyd entsteht Oxalsäure (v. Fü., M. 24, 284). Diese entsteht auch bei der Einw. von Kaliumpermanganat (v. Fü., M. 24, 284; Jowett, Soc. 85, 195), daneben werden Ameisensaure und Methylamin erhalten (Jo.). Oxydation mit Salpetersaure: ABEL, B. 37, 368; ABEL, TAVEAU, C. 1906 I, 765; vgl. dazu PAULY, B. 37, 1392 Anm. 1. Adrenalin spaltet beim Erhitzen mit Jodwasserstoffsäure und Phosphor Methylamin ab (v. Fü., M. 24, 268, 276). Zur Einw. von Mineralsäure vgl. v. Fü., M. 24, 274; Abel., B. 36, 1844; Pauly, B. 37, 1395. Adrenalin gibt beim Erhitzen mit Natronlauge (Stolz, B. 37, 4149), sowie beim Behandeln mit 10% iger Kalilauge (PAULY, B. 37, 1391) Methylamin. Beim Schmelzen mit Kali entsteht Protocatechusaure (Bd. X, S. 389) (T., C. 1901 II, 1355; v. Fü., M. 24, 288; Jowett, Soc. 85, 195) und Brenzcatechin (Bd. VI, S. 759) (T., C. 1901 II, 1355; v. Fü., M. 24, 288). Adrenalin gibt bei der Behandlung mit Brom und Natronlauge bei höchstens 60° Protocatechualdehyd (Bd. VIII, S. 246) neben anderen Verbindungen (ABEL, TAVEAT, C. 1906 I, 765). Bei der Einw. von Methyljodid und methylalkoholischer Natronlauge auf Adrenalin entsteht Vanillin (Bd. VIII, S. 247) (STOLZ, B. 37, 4149). Methyliert man Adrenalin mit Methyljodid und Natriummethylat im geschlossenen Rohr bei 100° und oxydiert das Reaktionsprodukt mit Kaliumpermanganat, so entstehen Trimethylamin und Veratrumsäure (Bd. X, S. 393) (JOWETT, Soc. 85, 195). Adrenalin gibt mit Dimethylsulfat in Gegenwart von Natriumcarbonat bei 100—130° ein Produkt, das bei der Oxydation mit Kaliumpermanganat Veratrumsaure, bei der Spaltung mit Alkali Trimethylamin liefert (Stolz, B. 37, 4149). Reaktion des Adrenalins mit Benzoesäureanhydrid bei 300—350°: v. Fürth, M. 24, 281. Adrenalin gibt, in Ather und etwas Aceton gelöst, beim Schütteln mit Benzoylchlorid und Natriumdicarbonatlösung ein Dibenzoylderivat (S. 832) (PAULY, B. 87, 1397). Liefert mit 4-Chlor-benzoylchlorid (Bd. IX, S. 341) und Natronlauge Tris-[4-chlor-benzoyl]-adrenalin (S. 832) (STOLZ, B. 87, 4151). Adrenalin wird durch Tintenbeutel-Extrakte von Sepia officinalis zu einem "Melanin" umgebildet (NEUBERG, Bio. Z. 8, 383).

Biochemisches Verhalten. 1-Adrenalin ist ein starkes Gift; die Giftwirkung ist bei intravenöser Injektion stärker als bei subcutaner. Die letale Dosis für Kaninchen liegt bei intravenöser Injektion zwischen 0,0001 g und 0,0002 g pro Kilogramm Körpergewicht (BOUCHARD, CLAUDE, C. 135, 929). 1-Adrenalin wirkt bei subcutaner Injektion in viel kleineren Dosen tödlich als d-Adrenalin (Abderhalden, Slavu, H. 59, 129; vgl. Cushny, C. 1909 I, 1494). Bereits eine minimale Menge 1-Adrenalin, intravenös gegeben, bewirkt einen mächtigen, jedoch nur kurz andauernden Anstieg des Blutdruckes infolge einer Kontraktion peripherer Gefäße und einer Verstärkung der Herzaktion. Noch 0,000001 gl-Adrenalin pro 1 Kilogramm Körpergewicht bewirkt eine Blutdrucksteigerung (Aldrich, Amer. Journ. Physiol. 5, 457). 1-Adrenalin übt auf den Blutdruck einen ungefähr doppelt so starken Einfluß aus als dl-Adrenalin (Cushny, C. 1908 II, 961). 1-Adrenalin ist etwa 12—15 mal so wirksam als d-Adrenalin (Cushny, C. 1909 I, 778; Abderhalden, Müller, H. 58, 185). Wirkung des 1-Adrenalins auf die Gefäße: Läwen, A. Pth. 51, 415, 439; O. B. Meyer, Z. B. 48, 352, 396; 50, 93. Die durch intravenöse Injektion von 1-Adrenalin hervorgerufene Blutdrucksteigerung ist nur von kurzer Dauer; sie übersteigt, selbst bei Anwendung großer Gaben, nicht die Dauer von wenigen Minuten (vgl. Embden, v. Fübth, B. Ph. P. 4, 421). Über die Zerstörung des 1-Adrenalins im Organismus vgl. Embden, v. Fübth, B. Ph. P. 4, 421. Über dauernde Blutdruckerhöhung durch konstante intravenöse 1-Adrenalin-Zufuhr und über den Wirkungsmechanismus des 1-Adrenalins vgl. Kertschmer, A. Pth. 53, 173; Scheidemandel, C. 1905 II, 640. 1-Adrenalin erzeugt bei Hunden und Kaninchen nach subcutaner Injektion

Glykosurie ("Nebennierendiabetes") (BLUM, C. 1902 II, 952). In bezug auf die Zuckerausscheidung beim Kaninchen ist l-Adrenalin von stärkerer Wirkung als d-Adrenalin (ABDER-HALDEN, THIES, H. 59, 22). Die glykosurische Wirkung des l-Adrenalins ist 12—18 mal so stark als diejenige des d-Adrenalins (CUSHNY, C. 1909 I, 1494). Zum biochemischen Verhalten des l-Adrenalins vgl. a. v. Füeth in Abderhaldens biochemischem Handlexikon, Bd. V [Berlin 1911], S. 498; R. Hirson in Oppenheimers Handbuch der Biochemie des Menschen und der Tiere. 1. Aufl., Bd. III, 1. Hälfte [Jena 1910], S. 308 und 2. Aufl., Bd. IX [Jena 1927], S. 256; Faust in Abderhaldens Handbuch der biologischen Arbeitsmethoden. Abt. IV, Teil 7, 1. Hälfte [Berlin und Wien 1923], S. 758; Fürth, Lehrbuch der physiologischen und pathologischen Chemie. Bd. I [Leipzig 1928], S. 476, 488.

Farbenreaktionen, Nachweis und Bestimmung. Die verdünnte wäßrige Lösung des Hydrochlorids gibt mit Eisenchlorid eine smaragdgrüne, auf Zusatz von Ammoniak in Rotbraun umschlagende Färbung; Mercuriacetatlösung färbt rosa (Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 676; vgl. TAKAMINE, C. 1901 II, 1355). Verschärfung der Eisenchlorid-Reaktion des Adrenalins durch Zusatz von Sulfanilsaure: BAYER, Bio. Z. 20, 178. Adrenalin gibt mit Kupfersulfat und Kaliumcyanid eine bleibend rote Lösung (KRULL, C. 1907 I, 131). Versetzt man einige Tropfen einer verdünnten (1:1000) wäßrigen Lösung von salzsaurem Adrenalin mit einigen Tropfen $10^{\circ}/_{\circ}$ iger Natronlauge, so tritt eine rotbraune Färbung und ein charakteristischer, an Phosphorwasserstoff erinnernder Geruch auf (GUNN, HARRISON, C. 1907 II, 1023; vgl. a. Grübler, C. 1907 II, 1424). Jodsäure resp. Kaliumdijodat und verd. Phosphorsäure setzen sich beim Anwärmen mit Adrenalinlösung unter Bildung einer prachtvollen rosaroten Färbung um (Fränkel, Allers, Bio. Z. 18, 40; vgl. Krauss, Bio. Z. 22, 131). Weitere Farbenreaktionen: Krauss, C. 1908 II, 1472. Nachweis von Adrenalin in Serum, Transsudaten usw.: Comessati, C. 1909 I, 1609; vgl. Boas, C. 1909 I, 1609; II, 760. - Colorimetrische Bestimmung von Adrenalin durch die bei der Einw. einer wäßrigen, mit Milchsäure versetzten Kaliumpermanganatlösung auftretende Rosafärbung: Zanfrognini, C. 1909 II, 2205. Quantitative Bestimmung durch Beobachtung der am isolierten Froschauge auftretenden Pupillenerweiterung: EHRMANN, A. Pth. 53, 97. Über Nachweis und Bestimmung von Adrenalin vgl. ferner: FÜHNER in ABDERHALDENS Handbuch der biochemischen Arbeitsmethoden, Bd. V, 1. Teil [Berlin u. Wien 1911], S. 106, 112; FAUST in ABDERHALDENS Handbuch der biologischen Arbeitsmethoden, Abt. IV, Teil 7, 1. Hälfte [Berlin u. Wien 1923], S. 763; GOTTLIEB, O'CONNOB, ebenda, Abt. IV, Teil 4 [Berlin u. Wien 1927], S. 787 bis 824.

Adrenalin-Hydrochlorid $C_9H_{13}O_9N+HCl$. Sehr hygroskopisch (Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 675; vgl. a. HAGERS Handbuch zur pharmazeutischen Praxis, Bd. II [Berlin 1927], S. 826).

Verbindung C₁₈H₂₇O₁₁N₂B₃. B. Aus l-Adrenalin und Borsäure (Höchster Farbw., D.R.P. 167317; C. 1906 I, 881). — Bei 260° noch unzersetzt. Auf Zusatz von Alkali scheidet sich keine Base ab. Färbt sich mit wenig Eisenchlorid violett, mit mehr Eisenchlorid grün.

Dibenzoyl-1-adrenalin (?) $C_{12}H_{21}O_5N = C_9H_{11}O_3N(CO \cdot C_9H_5)_4(?)$. B. Durch Behandeln von l-Adrenalin in äther. Acetonlösung mit Benzoylchlorid und Natriumdicarbonat (Pauly, B. 37, 1397). — Sintert um 70° und schmilzt gegen 90°. Leicht löslich in Alkohol, Aceton, schwer in Benzol, unlöslich in Wasser. Verharzt mit organischen Lösungsmitteln. Löslich in Alkalien. Unlöslich in wäßr. Mineralsäuren. Zeigt die typischen Brenzcatechinreaktionen.

Tris-[4-chlor-benzoyl]-l-adrenalin C₃₀H₂₂O₆NCl₃ = C₂H₁₀O₃N(CO·C₆H₄Cl)₃. B. Aus l-Adrenalin und 4-Chlor-benzoylchlorid (Bd. IX, S. 341) in Natronlauge (Stolz, B. 37, 4151). — F: ca. 75°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther, Benzol. Unlöslich in verd. Alkali und verd. Säuren.

Rechtsdrehendes Methylaminomethyl-[3.4-dioxy-phenyl]-carbinol, d-Adrenalin, d-Suprarenin $C_9H_{13}O_3N = (HO)_2C_6H_3 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CH_3$. B. Durch Spaltung des dl-Adrenalins (s. u.) mittels d-Weinsäure; das saure d-Tartrat des d-Adrenalins ist in Methylalkohol leichter löslich als das Salz des l-Adrenalins (FLÄCHER, H. 58, 189). — Zersetzungspunkt: 211—221° (unkort.) (FL., H. 58, 194). [a]_5^n: +50,49° (0,2982 g in 1,53 ccm n-Salzsäure und 2,47 ccm Wasser) (Abderhalden, Guggenheim, H. 57, 330). [a]_5^n: +51,88 (0,9868 g in Wasser mit Hilfe von 8 ccm n-Salzsäure zu 25 ccm gelöst) (FL., H. 58, 194). — Zum physiologischen Verhalten vgl. den Artikel l-Adrenalin. Wiederholte Injektion von d-Adrenalin erzeugt bei Mäusen eine gewisse Resistenz gegen die Wirkung des l-Adrenalins (Abderhalden, Slavu, H. 59, 133; Abderhalden, Kautzsch, H. 61, 119; vgl. auch Feöhlich, C. 1909 II, 728; Abderhalden, Kautzsch, Müller, H. 62, 404; Waterman, H. 63, 290).

Inaktives Methylaminomethyl - [3.4 - dioxy - phenyl] - carbinol, dl - Adrenalin, dl-Suprarenin $C_9H_{13}O_2N = (HO)_2C_9H_3 \cdot CH(OH) \cdot CH_2 \cdot NH \cdot CH_3$. B. Aus ω -Methylamino-3.4-dioxy-acetophenon (Syst. No. 1878) durch Reduktion mit Aluminiumspänen in Gegenwart von Mercurisulfat und Schwefelsäure (Höchster Farbw., D. R. P. 157300; C. 1905 I, 315; vgl. dazu Dakin, C. 1905 II, 57, 1458). — Wird aus der Lösung des Sulfats durch Alkali

als amorpher Niederschlag erhalten (H. F., D. R. P. 157300). Schwer löslich in Wasser und Alkohol (H. F., D. R. P. 157300). Die wäßr. Lösung des Sulfats färbt sich mit Eisenchlorid grün (H. F., D. R. P. 157300). Weitere Farbenreaktionen s. S. 832. Spaltung in die optischaktiven Komponenten durch Weinsäure: Flächer, H. 58, 189. — Wirkt blutdrucksteigernd (H. F., D. R. P. 157300), und zwar schwächer als l-Adrenalin, aber stärker als d-Adrenalin (Abderhalden, Müller, H. 58, 187). — Hydrochlorid. Farblose Krystalle (aus Alkohol). F. 157°; leicht löslich in Wasser mit neutraler Reaktion, schwer in absol. Alkohol (H. F., D. R. P. 202169; C. 1908 II, 1221). — Sulfat. Amorph; leicht löslich in Wasser, schwer in Alkohol (H. F., D. R. P. 157300).

Inakt. Methylaminomethyl - [3.4 - dimethoxy - phenyl] - carbinol $C_{11}H_{17}O_2N = (CH_3\cdot O)_2C_6H_3\cdot CH(OH)\cdot CH_2\cdot NH\cdot CH_3$. Eine früher so aufgefaßte Verbindung ist auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Mannich (Ar. 248, 144) und einer Privatmitteilung von Mannich als β -[Methylamino]- β -[3.4-dimethoxy-phenyl]-āthylalkohol (CH₃· O)₂C₆H₃· CH(NH· CH₃)· CH₂· OH (s. u.) aufgeführt.

Inakt. Dimethylaminomethyl-[3.4-dioxy-phenyl]-carbinol $C_{10}H_{18}O_3N=(HO)_2C_4H_3$ · $CH(OH)\cdot CH_2\cdot N(CH_3)_3$. B. Aus ω -Dimethylamino-3.4-dioxy-acetophenon (Syst. No. 1878) durch elektrolytische Reduktion (Höchster Farbw., D. R. P. 157300; C. 1905 I, 315). — Amorph. Schwer löslich in Wasser und Alkohol. Leicht löslich in Säuren, Alkalien oder Ammoniak. — Wirkt blutdrucksteigernd.

Inakt. Äthylaminomethyl-[8.4-dioxy-phenyl]-carbinol $C_{10}H_{16}O_8N=(HO)_{*}C_{6}H_{3}\cdot CH(OH)\cdot CH_{2}\cdot NH\cdot C_{2}H_{6}$. B. Aus ω -Äthylamino-3.4-dioxy-acetophenon durch elektrolytische Reduktion (Höchster Farbw., D. R. P. 157300; C. 1905 I, 315).

Inakt. [3.4-Dimethoxy-phenacetaminomethyl]-[3.4-dimethoxy-phenyl]-carbinol, inakt. Homoveratroylaminomethyl-[3.4-dimethoxy-phenyl]-carbinol $C_{20}H_{12}O_6N=(CH_3\cdot O)_2C_6H_3\cdot CH(OH)\cdot CH_2\cdot NH\cdot CO\cdot CH_3\cdot C_6H_3(O\cdot CH_3)_3$. B. Aus ω -Homoveratroylaminoacetoveratron (Syst. No. 1878) durch Reduktion mit Natriumamalgam bei $40-50^\circ$ in durch Eisessig neutral gehaltener alkoh. Lösung (Picter, Gams, C. r. 149, 212; B. 42, 2950). — Weiße Nadeln (aus Benzol). F: 124°. Mäßig löslich in kaltem Wasser, leichter in heißem, leicht löslich in Chloroform, Essigester, Aceton, schwer in Petroläther. — Gibt mit kalter Schwefelsäure eine rosarote Färbung, die beim Erwärmen blau, dann violett, zuletzt weinrot wird. Gibt beim Kochen mit Phosphorpentoxyd in Xylol Papaverin (Syst. No. 3176).

Linksdrehendes [Bensolsulfonylmethylamino-methyl]-[3.4-dibensolsulfonyloxyphenyl]-carbinol, Tribensolsulfonyl-1-adrenalin $C_{27}H_{25}O_8NS_2=(C_6H_5\cdot SO_2\cdot O)_2C_6H_3\cdot CH(OH)\cdot CH_2\cdot N(CH_3)\cdot SO_2\cdot C_6H_5$. B. 3 g l-Adrenalin werden mit 5 ccm Benzolsulfochlorid (Bd. XI, S. 34) und 40 ccm $10^9/_{\rm o}$ jeer Natronlauge geschüttelt, weiterhin 2 ccm und 1 ccm Benzolsulfochlorid hinzugefügt; das ausgeschiedene Reaktionsprodukt wird in Eisessig gelöst und mit Wasser gefällt (Friedmann, B. Ph. P. 8, 101; vgl. v. Fürth, M. 24, 278). — Sintert bei 49° und schmilzt dann unscharf (Fr.). Unlöslich in Wasser, ziemlich löslich in Alkohol, sehr leicht in Chloroform; unlöslich in verd. Säuren und Alkalien (v. Fü., M. 24, 279). Die Lösungen in indifferenten Mitteln ließen nur rotes Licht durch; eine Lösung von 1,3892 g in 15 ccm Chloroform, mit Eisessig auf 25 ccm aufgefüllt, zeigte [a]: —15,12°; eine Lösung von 1,0702 g in 15 ccm Pyridin, mit Alkohol auf 25 ccm aufgefüllt, zeigte [a]: —17° (Fr.). — Gibt mit Chromsäure und Eisessig Tribenzolsulfonyl-adrenalon (Syst. No. 1878) (Fr.).

Linksdrehendes [(Bensolsulfonylmethylamino-methyl)-(3.4-dibensolsulfonyloxyphenyl) - carbin] - [3 - nitro - bensoat], Tribensolsulfonyl - [3 - nitro - bensoyl] - l-adrenalin $C_{24}H_{25}\bar{O}_{12}N_3S_3 = (C_6H_5\cdot SO_3\cdot O)_3C_6H_3\cdot CH(O\cdot CO\cdot C_6H_4\cdot NO_3)\cdot CH_2\cdot N(CH_3)\cdot SO_2\cdot C_6H_5$. B. Beim Erwärmen von Tribensolsulfonyl-l-adrenalin mit 3-Nitro-benzoylchlorid (Bd.IX, S. 381) (FRIEDMANN, B. Ph. P. 8, 104). — Weißes körniges Produkt. Sintert bei 71°, schmilzt bei 80—86°.

3. Aminoderival des 3.4.1°-Trioxy-1-äthyl-benzols (β -[3.4-Dioxy-phenyl]-äthylalkohols) $C_0H_{10}O_2 = (HO)_2C_0H_2 \cdot CH_2 \cdot CH_2 \cdot OH$ (Bd. VI, 8. 1115).

β - Methylamino - β - [3.4 - dimethoxy - phenyl] - äthyl-alkohol ¹) $C_{11}H_{17}O_3N$, s. nebenstehende Formel. B. Man gewinnt aus 3.4-Dimethoxy-styrol (Bd. VI, S. 954) in Schwefelkohlenstoff mit Brom das 1¹.1³-Dibrom-3.4-dimethoxy-1-āthyl-benzol (Bd. VI, S. 902), das mit wåβr. Aceton 1³-Brom-1¹-oxy-3.4-dimethoxy-1-āthyl-benzol (Bd. VI, S. 1114) liefert; setzt man dieses mit Methyl-benzol (Bd. VI, S. 1114) liefert;

CH(NH·CH₃)·CH₂·OH
O·CH₂

¹⁾ So formuliert auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von Mannich (Ar. 248, 144) und einer Privatmitteilung von Mannich.

amin um, so erhält man ein Gemenge von im wesentlichen β-Methylamino-β-[3.4-dimethoxyphenyl]-athylalkohol mit Methylaminomethyl-[3.4-dimethoxy-phenyl]-carbinol, das man durch Behandeln der Acetonicung mit Chlorwasserstoff trennen kann (Mannich, C. 1909 I, 923; Ar. 248 [1910], 143). — F: 64—65° (Mannich, C. 1909 I, 923). — Hydrochlorid. F: 178—179° (M.).

- 4. Aminoderivate des 2.4.6 Trioxy 1.3 dimethyl benzols $C_1H_{10}O_3$ = (CH₂)₂C₂H(OH)₂ (Bd. VI, S. 1116).
- 5-Amino-2.4.6-trioxy-1.8-dimethyl-benzol, 6-Amino-2.4-dimethyl-phloroglucin C₄H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von 6-Nitroso-2.4-dimethyl-phloroglucin [3.5-Dioxy-m-xylo-chinon-oxim-(4), Bd. VIII, S. 397] mit Zinnchlorür und Salzzaure (Brunn-Line CH, \cdot OH ·CH. MAYR, M. 21, 6). — Durch Oxydation des salzsauren Salzes mit Eisenchlorid OH in Wasser bei 80° entsteht 3.5-Dioxy-m-xylochinon (Bd. VIII, S. 397). - $C_0H_1, O_2N + HCl + H_2O$. Nadeln.
- 5-Amino-2.4-dioxy-6-methoxy-1.8-dimethyl-benzol, 6-Amino-2.4-dimethyl-phloroglucin-1-methyläther $C_0H_{13}O_3N=H_2N\cdot C_6(CH_2)_2(OH)_2\cdot O\cdot CH_3$. B. Aus 6-Nitroso-2.4-dimethyl-phloroglucin-1-methyläther [3-Oxy-5-methoxy-m-xylochinon-oxim-(4), Bd. VIII, S. 397] mit Zinnehlorür und Salzsäure (Bosse, M. 21, 1026). — Durch Oxydation des salzsauren Salzes mit Eisenehlorid entsteht 3-Oxy-5-methoxy-m-xylochinon (Bd. VIII, S. 397). — $C_9H_{13}O_3N + HCl$. Nadeln.
- $CO)_2N \cdot C_6(CH_2)_2(O \cdot CH_2)(O \cdot CO \cdot CH_2)_2$. B. Durch Kochen des salzsauren 6-Âmino-2.4-dimethyl-phloroglucin-1-methyläthers mit ungefähr der fünfzehnfachen Menge Essigsäureanhydrid und sehr wenig entwässertem Natriumacetat (Bossz, M. 21, 1027). — Blättchen (aus Alkohol). F: 137°.
- 5-Diacetylamino-2.4.6-triacetoxy-1.8-dimethyl-bensol, 6-Diacetylamino-2.4-dimethyl - phloroglucintriacetat $C_{18}H_{21}O_{8}N = (CH_{3}\cdot CO)_{2}N\cdot C_{6}(CH_{3})_{2}(O\cdot CO\cdot CH_{8})_{3}$. B. Durch Kochen des salzsauren 6 - Amino - 2.4 - dimethyl - phloroglucins (s. o.) mit der zehnbis fünfzehnfachen Menge Essigsäureanhydrid (BEUNNMAYE, M. 21, 7). — Würfel (aus Essigester). F: 169° (unkorr.). Leicht löslich in heißem Äther.
- Aminoderivate des 3.4.5-Trioxy-1.2-dimethyl-benzols (4.5-Dimethylpyrogallols) oder des 4.5.6-Trioxy-1.3-dimethyl-benzols (4.6-Dimethylpyrogallols) $C_4H_{10}O_2 = (CH_2)_2C_6H(OH)_3$.
- 4.5- oder 4.6-Bis-chloracetaminomethyl-pyrogallol $C_{12}H_{14}O_5N_2Cl_2 = (HO)_2C_6H(CH_2)$ NH·CO·CH₂Cl)₂. B. Aus 5 g Pyrogallol und 10 g N-Methylol-chloracetamid (Bd. II, S. 200) in Alkohol + 2 ccm konz. Salzsäure (EINHORN, MAUERMAYER, A. 343, 294). — Weiße Nädelchen (aus Alkohol). F: 190-191°. Leicht löslich in Eisessig, schwer in Alkohol und heißem Wasser, sehr wenig in Benzol und Chloroform.
- 4.5- oder 4.6-Bis-bensaminomethyl-pyrogallol $C_{22}H_{20}O_2N_2 = (HO)_2C_2H(CH_2 \cdot NH \cdot HO)_2C_3H(CH_2 \cdot NH$ CO Co H₂)₂. B. Aus Pyrogallol und 2 Mol. Gew. N-Methylol-benzamid (Bd. IX, S. 207) in salzsäurehaltigem Alkohol (Einhorn, Bischkofff, Szelinski, A. 343, 237). — Prismen oder Nädelchen (aus Alkohol). F: 199°. Löslich in Benzol, ziemlich schwer löslich in kaltem Alkohol, unlöslich in Wasser. Löslich in verd. Natronlauge unter Violettfärbung.

4. Aminoderivate der Trioxy-Verbindungen $C_{\bullet}H_{10}O_{s}$.

1. Aminoderivate des 3.4.1¹-Trioxy-1-propyl-benzols (Äthyl-[3.4-dioxy-phenyl]-carbinols) $C_9H_{12}O_3=(HO)_3C_6H_3\cdot CH(OH)\cdot C_2H_5$ (Bd. VI, S. 1120).

[a-Methylamino-äthyl]-[3.4-dioxy-phenyl]-carbinol CH(OH)·CH(CH₂)·NH·CH₂ C10H15O2N, s. nebenstehende Formel. Eine früher so aufgetaßte und als β -Methyl-adrenalin beseichnete Verbindung ist auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen Arbeit von MANNICH (Ar. 248, 127) und einer Privatmitteilung von OH Mannice als Methyl-[a-methylamino-3.4-dioxy-benzyl]-carbinol $(HO)_{2}C_{2}H_{2}\cdot CH(NH\cdot CH_{2})$ CH(OH) CH, (S. 835) aufgeführt.

[a-Methylamino-äthyl]-[8.4-dimethoxy-phenyl]-carbinol $C_{15}H_{16}O_{2}N=(CH_{3}\cdot O)_{2}C_{6}H_{2}\cdot CH(OH)\cdot CH(CH_{2}\cdot NH\cdot CH_{2}$. Eine früher so aufgefaßte Verbindung ist auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] erschienenen

Arbeit von MANNICH (Ar. 248, 127) und einer Privatmitteilung von MANNICH als Methyl-[a-methylamino-3.4-dimethoxy-bensyl]-carbinol (s. u.) aufgeführt.

2. Aminoderivate des 3.4.1°-Trioxy-1-propyl-benzols (Methyl-[3.4-dioxy-benzyl]-carbinols) $C_bH_{1s}O_1=(HO)_sC_bH_s\cdot CH_s\cdot CH(OH)\cdot CH_{st}$

Methyl - [a - methylamino - 3.4 - dioxy - bensyl] - carbinol \(^1\) C₁₀H₁₀O₂N, s. nebenstehende Formel. B. Durch Kochen des Methyl-[a-methylamino-3.4-dimethoxy-bensyl]-carbinols (s. u.) mit Jodwasserstoffsäure (Mannich, C. 1909 I, 923).

— Gibt die Reaktionen des Adrenalins, steigert aber den Blutdruck nicht. — Hydrojodid. F: 160°.

CH(NH·CH₃)·CH(OH)·CH₃

ÓН

Methyl-[a-methylamino -3.4 - dimethoxy-bensyl]-carbinol²) $C_{18}H_{18}O_{2}N = (CH_{3}\cdot O)_{n}C_{2}H_{3}\cdot CH(NH\cdot CH_{2})\cdot CH(OH)\cdot CH_{3}^{2})$. B. Man behandelt Isoeugenolmethylätherdibromid (Bd. VI, S. 921) mit wäßr. Aceton unter Zusatz von Calciumcarbonat und setzt das entstandens β-Brom-a-oxy-a-[3.4-dimethoxy-phenyl]-propan (Bd. VI, S. 1121) mit alkoholischer Methylaminlösung um (Mannich, O. 1909 I, 924; Ar. 248 [1910], 152). — F: 63°. — Geht durch Kochen mit Jodwasserstoffsäure in Methyl-[a-methylamino-3.4-dioxy-benzyl]-carbinol (s. o.) über.

b) Aminoderivate der Trioxy-Verbindungen $C_n H_{2n-12} O_8$.

Aminoderivate der Trioxy-Verbindungen C10H2O2.

- 1. Aminoderivate des 1.2.4-Trioxy-naphthalins $C_{10}H_8O_3=C_{10}H_8(OH)_3$ (Bd. VI, S. 1132).
- 8 Amino 1.2.4 trioxy naphthalin C₁₀H₀O₂N, s. nebenstehende Formel. B. Beim Behandeln von 3-Nitro-2-oxy-naphthochinon-(1.4) (Bd.VIII, S. 308) mit Zinnchlorür und Salzsäure (Kehrmann, B. 21, 1780); man erwärmt das entstandene Produkt mit Zink, filtriert, sättigt das Filtrat unter Kühlen mit Chlorwasserstoff und saugt die ausgeschiedenen Krystalle ab (Kehrmann, Weichardt, J. pr. [2] 40, 181). Krystallinisch. Oxydiert sich rasch zu 3-Amino-2-oxy-naphthochinon-(1.4) (Syst. No. 1878) (Ke., W.). Auch bei der Einw. von Eisenchlorid auf die währ. Lösung des salzsauren Salzes erhält man 3-Amino-2-oxy-naphthochinon-(1.4) (Ke.). Beim Eintragen des salzsauren Salzes in kalte konzentrierte Salpetersäure unter Kühlung entsteht unter Entwicklung von Stickstoffoxyden die Verbindung C₁₀H₄O₄N₂(?) (s. u.) (Ke.). C₁₀H₂O₂N + HCl. Prismen (aus Salzsäure) (Ke., W.). Monoklin (v. Keaatz, J. pr. [2] 40, 181).

Verbindung $C_{10}H_4O_4N_8(?) = C_0H_4 CO \cdot CO \cdot C:N\cdot NO$ (?) 8). B. Beim Eintragen von salz-

saurem 3-Amino-1.2.4-trioxy-naphthalin in kalte konzentrierte Salpetersäure unter Kühlung (KERMANN, B. 21, 1781). — Rotgelbe Nadeln. Zersetzt sich bei 100° unter Verpuffen. Etwas löslich in heißem Wasser und Alkohol; zersetzt sich bei längerem Kochen mit diesen Mitteln. Ziemlich leicht löslich in Chloroform; sehr leicht löslich in kalter konzentrierter Salpetersäure. — Liefert bei der Reduktion mit Zinn + Salzsäure 3-Amino-1.2.4-trioxy-naphthalin.

3-Acetamino-1.2.4-tris-acetoxy-naphthalin $C_{12}H_{17}O_7N=CH_3\cdot CO\cdot NH\cdot C_{10}H_4(O\cdot CO\cdot CH_4)_3$. B. Beim Kochen von salzsaurem 3-Amino-1.2.4-trioxy-naphthalin mit Essigsaure-anhydrid und Natriumacetat unter Zusatz von etwas Zinn (Kehrmann, Weichardt, J. pr. [2] 40, 182). — Krystallinisch. F: 145°. Leicht löslich in Alkohol, Eisessig und konz. Mineral-

³) Für diese Verbindung kommt wohl auch die Summenformel C₁₀H₄O₂N₂, entsprechend den nebenstehenden Strukturformeln in Frage (Redaktion dieses Handbuches).

¹⁾ So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Mannich (Ar. 248, 127) und einer Privatmitteilung von Mannich.

³) So formuliert auf Grund einer nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Mannich (Ar. 248, 127) und einer Privatmitteilung von Mannich; nach letzterer dürfte die von Takeda, Kuroda (Journ. of the Pharm. Soc. of Japan 1921, No. 467, S. 2; C. 1921, 790) mit gleicher Formel beschriebene Verbindung als diastereoisomer mit der Verbindung von Mannich anzuschen sein.

O

säuren. — Wird von rauchender Salpetersäure und von Chromsäure in der Kälte nicht angegriffen. Liefert mit kalter konzentrierter Kalilauge bei Gegenwart von Luft 3-Acetamino-2-oxy-naphthochinon-(1.4) (Syst. No. 1878).

- 2. Aminoderivat des 1.6.7-Trioxy-naphthalins $C_{10}H_8O_3=C_{10}H_5(OH)_3$ (Bd. VI, S. 1134).
- 4 Amino 1.6.7 trioxy naphthalin C₁₀H₉O₃N, s. nebenstehende Formel. B. Durch Kuppelung von 1.6.7-Trioxy-naphthalin (Bd. VI, S. 1134) mit diazotierter Sulfanilsäure in schwach essigsaurer Lösung und Reduktion des entstandenen Monoazoderivats mit Zinnchlorür und Salzsäure unter Zusatz von etwas Zinn (Friedländer, Silberstern, C. 1902 I, 934; M. 23, 532). Bei der Oxydation mit Eisenchlorid entsteht 6.7-Dioxynaphthochinon-(1.4) (Bd. VIII, S. 414). Sulfat. Blättchen. Ziemlich schwer löslich.

c) Aminoderivate der Trioxy-Verbindungen C_nH_{2n-14}O₃.

1. Aminoderivate der Trioxy-Verbindungen $C_{13}H_{12}O_3$.

- 1. Aminoderivat des 2.4.6 Trioxy diphenylmethans $C_{13}H_{12}O_2 = C_6H_5 \cdot CH_2 \cdot C_4H_3(OH)_3$ (Bd. VI, S. 1135).
- 2'-Amino 2.4.6 trioxy diphenylmethan $C_{13}H_{13}O_3N$, s. nebenstehende Formel. B. Beim Kochen von 2-Amino-benzylalkohol (S. 615) mit Phloroglucin in konzentrierter wäßriger Lösung in Gegenwart von etwas Schwefelsäure (FRIEDLÄNDER, M. 23, 986). Weiße Nadeln. Leicht löslich in heißem Wasser. Oxydiert sich in alkal. Lösung an der Luft unter Rotfärbung. $C_{13}H_{13}O_3N + HCl$. Sehr wenig lösliche rötliche Prismen (aus Wasser).
- 2. Aminoderivat des 3.3'.a Trioxy diphenylmethans (3.3' Dioxy diphenylcarbinols) $C_{13}H_{12}O_3 = HO \cdot C_0H_4 \cdot CH(OH) \cdot C_0H_4 \cdot OH$.
- 4.4'-Diamino-3.3'-dimethoxy-diphenylcarbinol, O·CH₃ O·CH₃
 4.4'-Diamino-3.3'-dimethoxy-benshydrol
 C_{1e}H₁₈O₂N₃, s. nebenstehende Formel. B. Aus 4.4'-Diamino-3.3'-dimethoxy-benzophenon (Syst. No. 1878)
 durch Reduktion mit 5% igem Natriumamalgam in alkoh. Lösung (FINGER, J. pr. [2] 79, 496).
 Pulver. Verändert sich bei 135° und schmilzt gegen 160°. Löst sich in Eisessig mit gelber
 Farbe, die beim Erwärmen vorübergehend in Grün, dann in Violett umschlägt.

2. Aminoderivate der Trioxy-Verbindungen $C_{14}H_{14}O_8$.

1. Aminoderivate des a - Oxy - a. β - bis - [2-oxy - phenyl] - āthans ([2 - Oxy-phenyl] - [2 - oxy - benzyl] - carbinols) $C_{14}H_{14}O_3 = HO \cdot C_6H_4 \cdot CH_2 \cdot CH(OH) \cdot C_6H_4 \cdot OH$.

[2-Methoxy-phenyl]-[a-amino-2-methoxy-bensyl]-carbinol $C_{16}H_{19}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CH(NH_3)\cdot CH(OH)\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Erwärmen von [2-Methoxy-phenyl]-[a-(2-methoxy-benzalamino)-2-methoxy-benzyl]-carbinol (s. u.) mit Salzsäure im Wasserbade (Erlenmeyer, Bade, A. 337, 232). — Nadeln (aus Methylalkohol). F: 136°. Leicht löslich in Chloroform, Benzol, heißem Alkohol und Methylalkohol, sehr wenig in Wasser und Äther. — Spaltet beim Erhitzen Wasser ab; beim Erwärmen des Reaktionsproduktes mit konz. Salzsäure werden 2-Methoxy-benzylamin und Salicylaldehyd-methyläther gebildet. — $2 C_{16}H_{19}O_3N+2HCl+PtCl_4$. Dunkelgelber Niederschlag. F: 197°.

[2-Methoxy-phenyl]-[a-(2-methoxy-bensalamino)-2-methoxy-bensyl]-carbinol $C_{24}H_{25}O_4N=CH_3\cdot \dot{O}\cdot C_6H_4\cdot CH(N\cdot C_6H_4\cdot O\cdot CH_3)\cdot CH(OH)\cdot C_6H_4\cdot O\cdot CH_3$. B. Aus 1 Mol.-Gew. Glycin und 3 Mol.-Gew. Salicylaldehyd-methyläther (Bd. VIII, S. 43) in wäßrigalkoholischer Natronlauge, neben Glyoxylsäure (E., B., A. 337, 231). — Nadeln (aus $50^{\circ}/_{\circ}$ igem Alkohol). F: 134°. Unlöslich in Wasser und Äther, leicht löslich in heißem Alkohol. — Gibt beim Erhitzen mit Essigsäureanhydrid ein Acetylderivat (s. u.).

Acetat $C_{3e}H_{3r}O_{5}N = CH_{3}\cdot O\cdot C_{6}H_{4}\cdot CH(N:CH\cdot C_{6}H_{4}\cdot O\cdot CH_{3})\cdot CH(O\cdot CO\cdot CH_{3})\cdot C_{6}H_{4}\cdot O\cdot CH_{3}$. Beim Erhitzen von [2-Methoxy-phenyl]-[a-(2-methoxy-benzalamino)-2-methoxy-benzyl]-carbinol mit Essigsäureanhydrid (E., B., A. 337, 232). — Farblose Krystalle. F: 170°.

2. Aminoderivat des a-Oxy-a, β -bis-[4-oxy-phenyl]-üthans ([4-Oxy-phenyl]-[4-oxy-benzyl]-carbinols) $C_{14}H_{14}O_3 = HO \cdot C_6H_4 \cdot CH_3 \cdot CH(OH) \cdot C_6H_4 \cdot OH$ (Bd. VI, S. 1137).

[4-Methoxy-phenyl]-[a-amino-4-methoxy-benzyl]-carbinol $C_{16}H_{19}O_3N=CH_3\cdot O\cdot C_6H_4\cdot CH(NH_2)\cdot CH(OH)\cdot C_6H_4\cdot O\cdot CH_3$. B. Man versetzt eine Lösung von 0,5 g a.a'-Bis-[4-methoxy-phenyl]-äthylendiamin in verd. Schwefelsäure mit einer Lösung von 0,4 g Natriumnitrit in 15 ccm Wasser unter Eiskühlung (O. FISCHER, PRAUSE, J. pr. [2] 77, 132). — Prismen (aus Ligroin). F: 134°.

d) Aminoderivat einer Trioxy-Verbindung $C_nH_{2n-16}O_8$.

Isodihydrothebain $C_{19}H_{23}O_3N=(CH_3\cdot O)(HO)_2C_{14}H_8\cdot CH_2\cdot CH_2\cdot N(CH_3)_2$, s. bei Thebain, Syst. No. 4786.

e) Aminoderivate der Trioxy-Verbindungen C_nH_{2n-18}O₃.

1. Aminoderivate des 1.9.10-Trioxy-anthracens $C_{14}H_{10}O_3 = C_{14}H_7(OH)_3$ sind desmotrop mit den entsprechenden Aminoderivaten des 1.10-oder 4.10-Dioxy-9-oxo-anthracendihydrids [1.10-oder 4.10-Dioxy-anthrons-(9)] (HO)₂ $C_{14}H_8$: O, Syst. No. 1878.

2. Aminoderivate der Trioxy-Verbindungen $C_{1e}H_{14}O_{3}$.

- 1. Aminoderivate des 3.5.6 Trioxy 1 äthyl phenanthrens $C_{16}H_{14}O_3 = (HO)_3C_{14}H_6 \cdot C_2H_5$.
- 1²-Dimethylamino-3.5.6-trimethoxy-1-äthylphenanthren-jodmethylat, 3.5.6-Trimethoxy-1-[β-dimethylamino-äthyl]-phenanthren-jodmethylat, Dimethyl-morphothebainmethin-jodmethylat C₂₂H₂₈O₂NI, s. nebenstehende Formel.

 Zur Konstitution vgl.: Pschore, Halle, B. 40, 2004; Knore, Hörlein, B. 40, 3348¹). B. Durch 4—5-stdg. Erhitzen von salzsaurem Morphothebain (Syst. No. 3163) mit methylalkoholischer Natriummethylatlösung und Methyljodid in einem mit Stickstoff gefüllten Rohr auf 100° oder durch Behandeln von Morphothebain-jodmethylat in alkal. Lösung mit Dimethylsulfat und Eintragen von Kaliumjodid in das noch warme Produkt (Knore, Pschorer, B. 38, 3156). Blättchen (aus 50°/oiger Essigsäure). F: 266—268° (Schwärzung) (K., P.). Liefert beim Kochen mit Natronlauge Trimethylamin, 3.5.6-Trimethoxy-1-vinyl-phenanthren und anscheinend ein Polymerisationsprodukt des letzteren (K., P.).
- 12-Acetylmethylamino-6-methoxy-3.5-diacetoxy-1-äthyl-phenanthren, 6-Methoxy-3.5-diacetoxy-1- $[\beta$ -acetylmethylamino-äthyl]-phenanthren, "Triacetylmorphothebain" $C_{24}H_{25}O_6N=(CH_3\cdot CO\cdot O)_2(CH_3\cdot O)C_{14}H_6\cdot CH_2\cdot CH_9\cdot N(CH_3\cdot CO\cdot CH_9\cdot Zur Konstitution vgl.: Knorr, Pschorr, B. 38, 3155; P., Halle, B. 40, 2004; K., Hörlein, B. 40, 3348; vgl. auch die untenstehende Anmerkung. B. Aus salzsaurem Morphothebain (Syst. No. 3163) durch Erhitzen mit Natriumacetat und Acetanhydrid auf dem Sandbade (Freund, Holthof, B. 32, 190; vgl. Howard, B. 17, 531). Krystalle (aus verd. Alkohol). F: 193—194°; wird durch Säuren unter Zersetzung gelöst, unlöslich in Natronlauge (F., Hol.).$
- 1³-Benzoylmethylamino 6 methoxy 3.5-dibenzoyloxy 1 äthyl phenanthren, 6-Methoxy-3.5-dibenzoyloxy-1-[\$\beta\$-benzoylmethylamino-äthyl]-phenanthren, ,,Tribenzoylmorphothebain' $C_{39}H_{31}O_6N=(C_6H_5\cdot CO\cdot O)_8(CH_3\cdot O)C_{14}H_6\cdot CH_2\cdot CH_3\cdot N(CH_3)\cdot CO\cdot C_6H_5$. Zur Konstitution vgl. Knorr, Pschorr, B. 38, 3155; P., Halle, B. 40, 2004; K., Hörlein, B. 40, 3348; vgl. auch die untenstehende Anmerkung. B. Durch Kochen von 3 g salzsaurem Morphothebain mit 20 ccm Benzoylchlorid bis zur Beendigung der Chlorwasserstoffentwicklung (Knorr, Pschorr, B. 38, 3155). Krystalle mit 1 Mol. Åther (aus Chloroform + Äther). Die ätherhaltige Verbindung schmilzt gegen 120° (K., P.), die ätherfreie bei 184° (korr.) (P., Halle, B. 40, 2005). Liefert bei der Oxydation mit Chromsäure in Essigsäure ,,Tribenzoyl-morphothebainchinon'' (Syst. No. 1880) (P., H.).
- 2. Aminoderivate des 1.5.6 Trioxy 4 äthyl phenanthrens $C_{16}H_{14}O_3 = (HO)_5C_{14}H_6 \cdot C_2H_5$ (Bd. VI, S. 1142).

¹⁾ Der experimentelle Beweis für die obige Formel wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von PSCHORR, A. 373 [1910], 52; 382 [1911], 50, erbracht.

838

 \mathbf{OH} 4²-Methylamino-1.5-dioxy-6-methoxy-4-äthylphenanthren, 1.5-Dioxy-6-methoxy-4- $[\beta$ -(methylamino)-āthylj-phenanthren, Thebenin C₁₈H₁₉O₂N,
s. nebenstehende Formel. Zur Konstitution vgl.: CH₂·O OH CH₂·CH₂·NH·CH₃
FREUND, MICHAELS, B. 27, 2961; 30, 1359; PSCHORR, CH₃·O OH CH₂·CH₃·NH·CH₃
MASSACIU, B. 37, 2780; FREUND, B. 38, 3237; KNORR, HÖRLEIN, B. 40, 2034, 3349 Anm. 2 ¹). B. Beim Erhitzen von Thebain (Syst. No. 4786) mit verd. Salzsäure bis zum Kochen (HESSE, A. 153, 69). Durch kurzes Kochen von Kodeinon (Syst. No. 4785) mit verd. Salzsäure (K., B. 36, 3082). Triacetylthebenin (S. 840) entsteht durch Kochen von Pseudokodeinon (Syst. No. 4785) mit Acetanhydrid (K., Hö, B. 40, 2037; vgl. K., Hö., B. 40, 3342 Anm. 5, 3349 Anm. 2). — Darst. Man trägt je 10 g Thebain in je 100 com fast kochende Salzsäure (D: 1,07) ein, erhält 1½—2 Minuten im Sieden, kühlt sofort mit Eis ab und krystallisiert das nun als zähflüssige Masse abgeschiedene Hydrochlorkl aus heißem Wasser (F., Mi., B. 30, 1375). — Amorph. Unlöslich in Ather und Benzol, schwer löslich in kochendem Alkohol (HE.). Unlöslich in Ammoniak, leicht in Kalilauge (HE.). Löst sich in konz. Schwefelsäure mit blauer Farbe (charakteristisch) (HE.). — Oxydiert sich leicht, namentlich in Gegenwart von Alkali (HE.). Liefert bei der Destillation über Zinkstaub im Wasserstoffstrome Pyren (Bd. V, S. 693) und kleine Mengen Thebenidin C₁₅H₆N (s. u.) (VONGEBIOHTEN, B. 34, 768). Einw. von konz. Salzsäure bei 100°: He., A. 153, 74. Beim Kochen des salzsauren Thebenins in alkoh. Lösung mit 1 Mol.-Gew. Natriumäthylat und 1 Mol.-Gew. Methyljodid entsteht Thebeninmethin-jodmethylat (S. 839) und jodwasserstoffsaures Thebenin (F., Mr., B. 30, Athyljodid und Kochen des entstandenen Ammoniumsalzes mit 30% jeer Natrounauge erhält man Thebenol C₁₇H₁₄O₃ (Syst. No. 2407) und Methyldiäthylamin (Bd. IV, S. 99) (F., Mr. B. 30, 1360, 1380). Beim Kochen des salzsauren Salzes mit Essigsäureanhydrid und Natriumacetat wird Triacetylthebenin (S. 840) gebildet (F., MI., B. 30, 1376). — $C_{18}H_{19}O_{2}N + HCl + 3H_{2}O$. Blätter. Sintert bei 231° und schmilzt bei 235° (F., MI., B. 30, 1375). Löslich in ca. 100 Tln. kalten Wassers, leicht löslich in siedendem Wasser und Alkohol (H£., A. 153, 70). — $2C_{19}H_{19}O_3N + H_2SO_4 + H_2O$. Gelbe vierseitige Blättchen. Sintert bei 205° und schmilzt bei 209—210°; verliert das Krystallwasser noch nicht bei 130—140°; unlöslich in kaltem Wasser und Alkohol, schwer löslich in heißem Wasser (F., Mr., B. 30, 1376; vgl. He., A. 153, 71). — Oxalat $C_{15}H_{10}O_{3}N + C_{2}H_{10}O_{4} + H_{2}O$. Prismen. F: 275° bis 276° (F., Mi., B. 30, 1376). Etwas löslich in heißem Wasser, fast unlöslich in Alkohol (He., A. 153, 72; F., Mi., B. 30, 1376). — $2C_{18}H_{10}O_{2}N + 2HCl + HgCl_{2} + 2H_{2}O$. Prismen (He., A. 153, 71).

The benidin C₁₅H₂N; die Konstitution entspricht vielleicht der nebenstehenden Formel. B. Neben Pyren, durch Destillieren von Thebenin (s. o.) über Zinkstaub im Wasserstoffstrome (Vongerichten, B. 34, 768). Blättchen oder flache Nadeln (aus Benzol). Schmilzt bei 144—148°. Unlöslich in Wasser, leicht löslich in Alkohol, Äther und Benzol mit blauer Fluorescenz.

Die Lösung in verd. Salzsäure ist gelb und fluoresciert bei starker Verdünnung blaugrün.

Wird von Chromeaure in Eisessig nur wenig angegriffen, von Zinn + Salzsaure dagegen leicht reduziert. — $2C_{16}H_9N + 2HCl + PtCl_4$. Gelber Niederschlag.

The benidin-jod methylat $C_{16}H_{12}NI = C_{18}H_9N + CH_3I$. B. Beim Erhitzen von Thebenidin mit Methyljodid im Druckrohr auf 100° (V., B. 84, 769). — Gelbe Prismen. F: gegen 240°. Leicht löslich in Wasser mit gelber Farbe und grüner Fluorescenz. Gibt mit Natronlauge ein krystallisiertes, ätherlösliches Hydroxymethylat. Lagert mit Zinn + Salzsäure Wasserstoff an.

4²-Methylamino-5-oxy-1.6-dimethoxy-4-äthyl-phenanthren, 5-Oxy-1.6-dimethoxy - 4 - $[\beta$ - methylamino - äthyl] - phenanthren, Thebenin - monomethyläther, Methebenin $C_{18}H_{21}O_3N=(CH_3\cdot O)_3(HO)C_{14}H_6\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3$. B. Aus Thebain (Syst. No. 4786) und mit Chlorwasserstoff gesättigtem Methylalkohol im Druckrohr bei 100° (FREUND, HOLTHOF, B. 32, 179; PSCHORE, MASSACIU, B. 37, 2786). Durch Einw. von methylalkoholischer Salzsäure auf Kodeinon (Syst. No. 4785) (KNORE, B. 36, 3082). Die freie Base scheidet sich, aus der verdünnten wäßrigen Lösung des Hydrochlorids (1:200) mit 1 Mol.-Gew. n/10 Natronlauge gefällt, in amorphen Flocken aus, die sich bei längerem Stehen in Nadeln verwandeln; diese Umwandlung erfolgt rascher, wenn man die ausgefällte Base sehr langsam mit überschüssiger Lauge versetzt (P., M.). Sintert bei 155° und schmilzt bei 165—167° (F., H.). Zeigt schwach ausgeprägten Phenolcharakter; die frisch gefällte, amorphe Base löst sich in ca. 6 Mol.-Gew. verd. Natronlauge, die krystallinische Modifikation ist in Alkalien weit schwerer löslich; mit konz. Alkalien entstehen die leicht

¹⁾ Der experimentelle Beweis für die obige Formulierung wurde nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuches [1. I. 1910] von PSCHORE, A. 378 [1910] 56, und von GULLAND, VIRDEN, Soc. 1928, 921 erbracht.

- zersetzlichen und schwer löslichen Alkalisalze; aus der alkal. Lösung wird die Base durch Kohlendioxyd gefällt (P., M.). Wird durch Erhitzen mit verd. Salzsäure in Thebenin (S. 838) verwandelt (F., H.). Erhitzt man das salzsaure Salz mit Essigsäureanhydrid und Natriumacetat (F., H.) oder schüttelt man es in der Kälte mit Natronlauge und Essigsäureanhydrid (P., M.), so wird Diacetylmethebenin (S. 840) gebildet. $C_{19}H_{21}O_3N + HCl$. Nadeln (aus Alkohol). F: 245° (F., H.), 250° (korr.) (P., M.). $C_{19}H_{21}O_3N + HI$. Täfelchen (aus verd. Alkohol). Sintert bei 190° und schmilzt bei 195—198° (F., H.). Sulfat. Nadeln. F: 238,5° (korr.) (P., M.).
- 4°-Methylamino-5-oxy-6-methoxy-1-äthoxy-4-äthyl-phenanthren, 5-Oxy-6-methoxy-1-äthoxy-4-[β-methylamino-äthyl]-phenanthren, Thebenin-monoäthyl-äther, Äthebenin $C_{20}H_{23}O_3N = (C_2H_5\cdot O)(CH_3\cdot O)(HO)C_{14}H_6\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3$. B. Aus Thebain durch äthylalkoholische Salzsäure im geschlossenen Rohr bei 100° (Freund, Holthof, B. 32, 182). Amorphe, gelbe Substanz. $C_{20}H_{23}O_3N + HCl$. Mikroskopische, sechsseitige Blättchen (aus verd. Alkohol). Erweicht bei 245° und schmilzt bei 248°. $C_{20}H_{23}O_3N + HI + H_2O$. Täfelchen (aus Wasser). Sintert bei 200° und schmilzt bei 206—207°.
- 4²-Methylamino-5-oxy-6-methoxy-1-propyloxy-4-äthyl-phenanthren, 5-Oxy-6-methoxy-1-propyloxy-4-[β-methylamino-äthyl]-phenanthren, Thebenin-mono-propyläther, Prothebenin $C_{21}H_{25}O_3N=(CH_3\cdot CH_2\cdot CH_2\cdot O)(CH_3\cdot O)(HO)C_{14}H_6\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3$. B. Aus Thebain oder salzsaurem Thebenin durch propylalkoholische Salzsäure im Druckrohr bei 100° (F., H., B. 32, 185, 188). Nadeln (aus Alkohol). Sintert bei 167° und schmilzt bei 172—173°. $C_{21}H_{25}O_3N+HCl$. Sechsseitige Blättchen (aus Alkohol). Sintert bei 215° und schmilzt bei 220—221°. Sehr leicht löslich in Wasser. $C_{21}H_{25}O_3N+Hl$. Blättchen. Erweicht bei 210° und schmilzt bei 212—213°.
- 4³-Dimethylamino-1.5-dioxy-6-methoxy-4-äthyl-phenanthren-jodmethylat, 1.5-Dioxy-6-methoxy-4- $[\beta$ -dimethylamino-äthyl]-phenanthren-jodmethylat, Thebeninmethin-jodmethylat $C_{20}H_{24}O_3NI=(CH_3\cdot O)(HO)_2C_{14}H_4\cdot CH_2\cdot N(CH_3)_3I$. Beim Kochen von 1 Mol.-Gew. salzsaurem Thebenin (S. 838) in alkoh. Lösung mit 2 Mol.-Gew. Natriumäthylat und überschüssigem Methyljodid (Freund, B. 27, 2961; F., MICHAELS, B. 30, 1359, 1378). Krystalle (aus Alkohol). F: 206—208°. Wird durch Kochen mit wäßr. Alkali in Thebenol $C_{17}H_{14}O_3$ (Syst. No. 2407) und Trimethylamin gespalten.
- 4°-Dimethylamino-5-oxy-1.6-dimethoxy-4-äthyl-phenanthren-jodmethylat, 5-Oxy-1.6-dimethoxy-4-[β-dimethylamino-äthyl]-phenanthren-jodmethylat, Methebeninmethin-jodmethylat $C_{21}H_{46}O_3NI=(CH_2\cdot O)_4(HO)C_{14}H_6\cdot CH_2\cdot CH_2\cdot N(CH_3)_4I$. B. Aus salzsaurem Methebenin (S. 838) durch wiederholte Behandlung mit Natriumäthylatlösung und Methyljodid im Wasserbade (Freund, Holthof, B. 32, 181). Sechsseitige Säulen (aus verd. Alkohol). F: 215°. Liefert, mit Kalilauge erhitzt, Trimethylamin und Methebenol $C_{18}H_{16}O_3$ (Syst. No. 2407).
- 4*-Dimethylamino -1.5.6-trimethoxy -4-äthyl-phenanthren-hydroxymethylat, 1.5.6-Trimethoxy -4-[β -dimethylamino-äthyl]-phenanthren-hydroxymethylat, Dimethebeninmethin-hydroxymethylat $C_{32}H_{32}O_{3}N=(CH_{3}\cdot O)_{3}C_{14}H_{3}\cdot CH_{3}\cdot CH_{3}\cdot N(CH_{3})_{3}\cdot OH$. B. Das methylschwefelsaure Salz entsteht bei schwachem Erwärmen einer wäßrigalkalischen Lösung von Methebeninmethin-jodmethylat (s. o.) mit Dimethylsulfat; zur Überführung des methylschwefelsauren Salzes in das Jodid erwärmt man ersteres in wäßr. Lösung mit Kaliumjodid (Pschorr, Massaciu, B. 37, 2788). Beim Kochen des Jodids oder des methylschwefelsauren Salzes mit Kalilauge entstehen Trimethylamin und 1.5.6-Trimethoxy-4-vinyl-phenanthren (Bd. VI, S. 1143). Jodid $C_{34}H_{35}O_{3}N\cdot I$. Nadelbüschel (aus Alkohol). F. 247° (korr.). Löslich in 10 Tln. Alkohol. Methylschwefelsaures Salz $C_{32}H_{35}O_{3}N\cdot O\cdot SO_{2}\cdot O\cdot CH_{3}$. Nadeln (aus Alkohol). Methylschwefelsaures Salz $C_{23}H_{36}O_{3}N\cdot O\cdot SO_{2}\cdot O\cdot CH_{3}$. Nadeln (aus Alkohol). Sintert bei 268° und schmilzt bei 277° (korr.). Löslich in 12 Tln. warmen Alkohol).
- 4°-Dimethylamino-5-oxy-6-methoxy-1-äthoxy-4-äthyl-phenanthren-jodmethylat, 5-Oxy-6-methoxy-1-äthoxy-4-[β -dimethylamino-äthyl]-phenanthren-jodmethylat, Äthebeninmethin-jodmethylat $C_{22}H_{28}O_3NI = (C_3H_5\cdot O)(CH_3\cdot O)(CH_3\cdot O)(CH_2\cdot CH_3\cdot C$
- 4°-Dimethylamino 5 oxy 6 methoxy 1 propyloxy 4 äthyl-phenanthren jodmethylat, 5-Oxy 6 methoxy 1 propyloxy 4 [β -dimethylamino äthyl] phenanthren jodmethylat, Prothebeninmethin jodmethylat $C_{22}H_{20}O_2NI = (CH_3 \cdot CH_2 \cdot CH_3 \cdot O)(CH_3 \cdot O) \cdot (HO)C_{14}H_4 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot O)$. Beim Kochen von salzsaurem Prothebenin (s. o.) mit Natriumäthylatlösung und Methyljodid (F., H., B. 32, 187). Sechsseitige Täfelchen. Erweicht bei 200° und schmilzt bei 202°. Leicht löglich in Alkohol, ziemlich schwer in Wasser. Liefert, mit Kalilauge erhitzt, Prothebenol $C_{20}H_{20}O_2$ (Syst. No. 2407) und Trimethylamin.

- 4°- Dimethylamino -1.6 dimethoxy 5 benzoyloxy 4 äthyl phenanthren jod-methylat, 1.6 Dimethoxy 5 benzoyloxy 4 [β-dimethylamino-šthyl] phenanthren-jodmethylat, Benzoyl-methebeninmethin-jodmethylat $C_{28}H_{30}O_4NI = (C_6H_5 \cdot CO \cdot O)(CH_3 \cdot O)_2C_{14}H_6 \cdot CH_2 \cdot N(CH_3)_3I$. B. Durch Schütteln einer alkal. Lösung des Methebeninmethin-jodmethylats (S. 839) mit Benzoylchlorid (Pschore, Massaciu, B. 37, 2788). F: 271° (korr.).
- 4°- Acetylmethylamino 1.6 dimethoxy 5 acetoxy 4 äthyl phenanthren, 1.6-Dimethoxy-5-acetoxy 4 [β-acetylmethylamino-äthyl] phenanthren, Diacetylmethebenin $C_{23}H_{26}O_5N = (CH_3 \cdot CO \cdot O)(CH_3 \cdot O)_2C_{14}H_6 \cdot CH_2 \cdot CH_2 \cdot N(CH_3) \cdot CO \cdot CH_3$. B. Beim Kochen von salzsaurem Methebenin (S. 838) mit Natriumacetat und Acetanhydrid (FREUND, HOLTHOF, B. 32, 180). Beim Schütteln einer Lösung von 3 g salzsaurem Methebenin in 600 com Wasser mit 60 com n-Natronlauge und 5 g Acetanhydrid (PSCHORE, MASSACIU, B. 37, 2787). Blättchen (aus Alkohol). F: 176° (F., H.), 179° (korr.) (P., M.). Unlöslich in kalter verdünnter Kalilauge (F., H.).
- 4°-Acetylmethylamino-6-methoxy-1-äthoxy-5-acetoxy-4-äthyl-phenanthren, 6-Methoxy-1-äthoxy-5-acetoxy-4- $[\beta$ -acetylmethylamino-äthyl]-phenanthren, Diacetyl-äthebenin $C_{24}H_{27}O_5N=(CH_3\cdot CO\cdot O)(C_9H_5\cdot O)(CH_3\cdot O)C_{14}H_3\cdot CH_2\cdot CH_2\cdot N(CH_3)\cdot CO\cdot CH_3$. B. Beim Kochen von salzsaurem Äthebenin (S. 839) mit Essigsäureanhydrid und Natriumacetat (FREUND, HOLTHOF, B. 32, 183). Krystalle (aus Alkohol). F: 163°.
- 4°- Acetylmethylamino 6 methoxy 1.5 diacetoxy 4 äthyl phenanthren, 6-Methoxy-1.5-diacetoxy-4 [β-acetylmethylamino äthyl] phenanthren, Triacetylthebenin C₂₄H₂₅O₈N = (CH₃·CO·O)₂(CH₃·O)C₁₄H₅·CH₂·CH₂·N(CH₃)·CO·CH₃. B. Beim Kochen von salzsaurem Thebenin (8. 838) mit Essigsäureanhydrid und etwas Natriumacetat FREUND, MICHAELS, B. 30, 1368, 1376). Beim Kochen von Pseudokodeinon (Syst. No. 4785) mit Acetanhydrid (KNORB, HÖBLEIN, B. 40, 2037; vgl. K., H., B. 40, 3342 Anm. 5, 3349 Anm. 2). Krystallisiert aus verd. Alkohol in krystallwasserhaltigen Nadeln vom Schmelzpunkt 72—80°, aus absol. Alkohol in wasserfreien Krystallen vom Schmelzpunkt 160—161° (F., M.). Unlöslich in Wasser, leicht löslich in Alkohol und Eisessig (F., M.). Schwer löslich in verd. Säuren (K., H.), unlöslich in kalter Kalilauge (F., M.). Konnte nicht zu Thebenin verseift werden (F., M.). In konz. Schwefelsäure mit violetter Farbe löslich (F., M.).
- 4³- Bensoylmethylamino 1.6 dimethoxy 5 bensoyloxy 4 äthyl-phenanthren, 1.6 Dimethoxy 5 bensoyloxy 4 $[\beta$ bensoylmethylamino äthyl] phenanthren, Dibensoyl methebenin $C_{33}H_{29}O_5N = (C_6H_5 \cdot CO \cdot O)(CH_3 \cdot O)_2C_{14}H_6 \cdot CH_5 \cdot CH_2 \cdot N(CH_3) \cdot CO \cdot C_6H_8$. B. Durch Schütteln von salzsaurem Methebenin (S. 838) in wäßrig-alkalischer Lösung mit Benzoylchlorid (Pschorr, Massacru, B. 37, 2787). Konzentrisch gruppierte Nadeln (aus Alkohol). F: 159° (korr.).
- N-Methyl-N'-phenyl-N- $\{\beta$ -[1.5-dioxy-6-methoxy-phenanthryl-(4)]-äthyl}-thioharnstoff, N-Phenyl-N'-thebenyl-thioharnstoff $C_{25}H_{24}O_3N_2S=(CH_2\cdot O)(HO)_2C_{14}H_4\cdot CH_2\cdot N(CH_3)\cdot CS\cdot NH\cdot C_0H_5$. B. Beim Kochen von salzsaurem Thebenin (8. 838) in alkoh. Lösung mit 1 Mol.-Gew. Natriumäthylat und Phenylsenföl (Freund, Michaels, B. 30, 1360, 1377). Krystallisierte nicht. F: 85° (Zers.). Ist unlöslich in Wasser, leicht löslich in Alkohol, Äther und Eisessig.

f) Aminoderivate der Trioxy-Verbindungen C_nH_{2n-22}O₃.

Aminoderivate der Trioxy-Verbindungen C10H16O2.

- 1. Aminoderivat des 2.3.4-Trioxy-triphenylmethans $C_{19}H_{16}O_{2}=(C_{6}H_{5})_{3}CH\cdot C_{6}H_{2}(OH)_{3}$.
- 4'.4"-Bis-dimethylamino-2.3.4-trioxy-triphenylmethan $C_{22}H_{22}O_3N_3$, s. nebenstehende Formel. B. Aus Dimethylamilin und Pyrogallolaldehyd (Bd. VIII, S. 388) (CH₃)₂N. CH—OH in Gegenwart von konz. Salzsäure (Voroček, Krauz, B. 42, 1605). Durch Erhitzen von 4.4'-Bis-dimethylamino-benzhydrol (S. 698) mit Pyrogallol und konz. Salzsäure im Wasserbade (V., Ch. Z. 20 Repertorium, 4; vgl. V., Krauz, B. 42, 1604 Anm. 2). F: 172° (V.), 170—172° (V., K.). Liefert, mit Chloranil oxydiert, eine schmutzig-violette Lösung, die Seide schmutzig-blau anfärbt (V., K.).
- 2. Aminoderivat des 3.3'.3'' Trioxy triphenylmethans $C_{19}H_{16}O_{8} = CH(C_{6}H_{4}\cdot OH)_{5}$.

lich stark bläulich.

4.4'.4"-Tris-dimethylamino-3.3'.3"-trioxy-triphenylmethan $C_{25}H_{31}O_3N_3$, s. nebenstehende Formel. B. Aus 4.4'.4"-Tris-dimethylamino-triphenylmethan-N.N'.N"-trioxyd (S. 315) bei der Einw. von Acetanhydrid und konz. Schwefelsäure (BAMBERGER, RUDOLF, B. 41, 3314). — Fast farbloses, amorphes Pulver. Leicht löslich in Aceton und Alkohol, schwer in heißem Lignein- leicht Belieb in Säuren und Attellection

in heißem Ligroin; leicht löslich in Säuren und Atzalkalien. Die salzsaure Lösung wird mit Eisenchlorid rotbraun, mit Bleidioxyd violettrot gefärbt.

3. Aminoderivat des 3.4.a - Trioxy - triphenylmethans (3.4 - Dioxy - triphenylcarbinols) $C_{19}H_{16}O_3 = (C_6H_5)_2C(OH) \cdot C_6H_3(OH)_2$ (Bd. VI, S. 1144).

4'.4"-Bis-dimethylamino-8.4-dioxy-triphenylearbinol $C_{23}H_{28}O_3N_2=[(CH_3)_2N\cdot C_4H_4]_2C(OH)\cdot C_6H_3(OH)_2$, als farbige Verbindung, Protoblau, vielleicht richtiger

+ H₂O zu formulieren (vgl. Liebermann, B. 36, 2923). B. Man erhitzt 4.4'-Bis-dimethylamino-benzophenon (Michlersches Keton) mit Phosphorpentachlorid in Chloroform 2 Stdn. zum Sieden und versetzt die von Chloroform und Phosphoroxychlorid abdestillierte Füßsigkeit mit Brenzcatechin und konz. Schwefelsäure; man verdünnt, filtriert und versetzt das Filtrat mit Natriumacetat (Sachs, Thonet, B. 37, 3332). Man oxydiert 4'.4"-Bis-dimethylamino-3.4-dioxy-triphenylmethan (S. 821) mit Mangandioxydhydrat in essigsaurer Lösung, mit Bleidioxyd in salzsaurer-essigsaurer Lösung oder mit konz. Schwefelsäure bei 135—140° und fällt aus den filtrierten Lösungen das Protoblau vollständig mit Natriumacetat (Liebermann, B. 36, 2920). — Protoblau bildet blaue Flocken, bei langsamer Ausscheidung aus Chloroform durch Petroläther metallisch-grünglänzende Nadeln. Ist in frisch gefälltem Zustande ziemlich leicht löslich in siedendem Alkohol; der durch Abdampfen von alkoh. Lösungen erhaltene Farbstoff ist dagegen schwer löslich in Wasser; löst sich in Essigsäure mit blauroter Farbe, in Salzsäure mit blutroter Farbe, die durch Wasserzusatz blaurot wird; Kaliumchlorid fällt aus dieser Lösung ein blaues Kaliumsalz; dieses Salz sowie die Salze der Mineralsäuren, werden leicht dissoziiert (L.). Ist in Sodalösung unlöslich, in kaltem Alkali fast unlöslich (L.). Färbt gewöhnliche Beizen intensiv, Aluminiumbeize blauschwarz; Seide wird blauvolett gefärbt (L.).

4. Aminoderivat des 3.3'.a - Trioxy - triphenyl- $CH_3 \cdot O$ OH $O \cdot CH_3$ methans (3.3'-Dioxy-triphenylcarbinols) $C_{19}H_{16}O_3 = H_2N \cdot C(OH)(C_4H_4 \cdot OH)_2$ (Bd. VI, S. 1145).

C₆H₅·C(OH)(C₆H₄·OH)₂ (Bd. VI, S. 1145).

4.4'.4"-Triamino - 8.3'- dimethoxy - triphenylcarbinol,

8.3'-Dimethoxy-pararosanilin C₂₁H₂₃O₂N₃, s. nebenstehende

Formel. B. Entsteht in Form des salzsauren Farbsalzes beim

Erhitzen von salzsaurem 4.4'.4"-Triamino-3.3'-dimethoxytriphenylmethan (S. 821) auf 130° (O. FISCHER, B. 15, 682). — Das salzsaure Farbsalz
löst sich in Wasser und Alkohol mit rotvioletter Farbe; die Lösungen fluorescieren ziem-

g) Aminoderivat einer Trioxy-Verbindung C_nH_{2n-24}O₃.

des-N-Methyl-phenyl-dihydrothebain $C_{36}H_{39}O_3N=(CH_3\cdot O)_3(HO)C_{14}H_7(C_6H_5)\cdot CH_2\cdot CH_2\cdot N(CH_3)_3$ und dessen Derivate s. bei Thebain, Syst. No. 4786.

4. Aminoderivate der Tetraoxy-Verbindungen.

a) Aminoderivate einer Tetraoxy-Verbindung C_nH_{2n-6}O₄.

3-Amino-1.2.4.5-tetracxy-benzol $C_6H_7O_4N$, s. nebenstehende Formel. B. Beim Behandeln von 3-Nitro-2.5-dioxy-chinon (Bd. VIII, S. 384) mit salzsaurem Zinnchlorür (Nietzki, Schmidt, B. 22, 1661). — $C_6H_7O_4N+HCl+H_2O$. Flache Nadeln.

- 3-Acetamino 1.2.4.5 tetraacetoxy benzol $C_{16}H_{17}O_{\bullet}N = CH_{3} \cdot CO \cdot NH \cdot C_{\bullet}H(O \cdot CO \cdot CH_{3})_{\bullet}$. B. Beim Erwärmen von salzsaurem 3-Amino-1.2.4.5-tetraoxy-benzol mit Essigsäureanhydrid und Natriumacetat (N., Sch., B. 22, 1661). Nadeln (aus Alkohol). F: 242° (Zers.).
- 6-Nitro-3-amino-1.2.4.5-tetraoxy-benzol $C_0H_0O_0N_2=H_2N\cdot C_0(NO_2)(OH)_4$. B. Aus nitranilsaurem Kalium (Bd. VIII, S. 384) und salzsaurem Zinnchlorür (Nietzki, B. 16, 2094). Darst. Man übergießt 1 Tl. nitranilsaures Kalium mit der Lösung von 3 Tln. Zinnchlorür in 10 Tln. konz. Salzsäure und der gleichen Menge Wasser (Nietzki, Benckiser, B. 18, 500). Violettschimmernde Nadeln. Unlöslich in Alkohol, Äther, Benzol usw. (N.). Gibt bei der Reduktion mit Zinnchlorür, Zinn und Salzsäure 3.6-Diamino-1.2.4.5-tetraoxy-benzol (N., B.). Wird durch Alkalien oder kochendes Wasser unter Zersetzung gelöst (N.). Aus der Lösung in Kaliumcarbonat scheidet sich an der Luft das Kaliumsalz des 6-Nitro-3-amino-2.5-dioxy-chinons (Syst. No. 1879) ab (N., B.). Durch salpetrige Säure, nitrose Schwefelsäure oder kalte, mäßig verdünnte Salpetersäure wird das Anhydrid des 6-Nitro-2.5-dioxy-chinon-diazoniumhydroxyds-(3) (Syst. No. 2200) gebildet (N., B.; Henle, A. 350, 360).
- 8.6 Diamino 1.2.4.5 tetraoxy benzol $C_6H_8O_4N_2$, s. nebenstehende $\mathbf{0H}$ Formel. B. Beim Erwärmen von nitranilsaurem Kalium (Bd. VIII, S. 384) mit salzsaurer Zinnehlorürlösung unter Zusatz von Zinn (Nietzki, B. 16, H.N. \cdot OH 2004; NIETZKI, BENOKISER, B. 18, 503; HENLE, A. 350, 334). Auf gleiche HO-·NH. Weise aus 6-Nitro-3-amino-1.2.4.5-tetraoxy-benzol (s. o.) (N., B.). — Die freie Base oxydiert sich an der Luft rasch unter Braunfärbung (N., B., B. 18, 503). Bei der Einw. von Luft auf eine mit Natriumacetat versetzte wäßr. Lösung von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol entsteht 3.6-Diamino-2.5-dioxy-chinon (Syst. No. 1879) (NIETZKI, SCHMIDT, B. 21, 1850). Beim Kochen von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol mit Kaliumcarbonatlösung und frisch gefälltem Mangandioxyd entsteht Krokonsäure (Bd. VIII, S. 488) (N., B., B. 19, 294). Bei der Oxydation von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol mit Eisenchlorid (N., B. 16, 2094) oder Platinchlorid (N., B., B. 18, 503) entsteht Rhodizonsäure-diimid (Bd. VIII, S. 536). Bei der Einw. von salpetriger Säure auf salzsaures 3.6-Diamino-1.2.4.5-tetraoxy-benzol bildet sich zuerst 3.6-Diamino-2.5-dioxy-chinon (N., Sch., B. 21, 1850) und weiterhin Rhodizonsäure-diimid (N., B., B. 18, 503). Trägt man salzsaures 3.6-Diamino-1.2.4.5-tetraoxy-benzol in wasserhaltige nitrose Schwefelsäure ein, so läßt sich das Dianhydrid des 2.5-Dioxy-chinon-bis-diazoniumhydroxyds-(3.6) (Syst. No. 2200) erhalten (HE., A. 350, 353). Durch Behandeln von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol mit Salpetersäure (D: 1,4) bei 20—25° erhält man Trichinoyl-hydrat C₆O₆+8H₂O (Bd. VII, S. 907) und das Dianhydrid des 2.5-Dioxy-chinon-bis-diazoniumhydroxyds-(3.6) (N., B., B. 18, 504; N., Son.; HE., A. 350, 285, 285). Bein Glüber von selessium 2.6 Diamino 4.2 4 5 tetrayy benzel mit Zipkstan 335, 352). Beim Glühen von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol mit Zinkstaub entsteht eine kleine Menge p-Phenylendiamin (N., B. 19, 2727). — $C_6H_8O_4N_2+2$ HCl. Nadeln. Sehr leicht löslich in Wasser und daraus durch Chlorwasserstoff fällbar (N., B., B. 18, 503).
- 3.6-Bis-acetamino-1.2.4.5-tetraoxy-benzol $C_{10}H_{12}O_{e}N_{2}=(CH_{2}\cdot CO\cdot NH)_{2}C_{6}(OH)_{d}$. B. Beim Behandeln von 3.6-Bis-acetamino-2.5-dioxy-chinon (Syst. No. 1879) mit Zinnchlorür und Salzsäure (Nietzki, Schmidt, B. 21, 1852). Nadeln (aus verd. Alkohol). Oxydiert sich in alkal. Lösung an der Luft rasch zu 3.6-Bis-acetamino-2.5-dioxy-chinon.
- 3.6-Bis-acetamino-1.2.4.5-tetraacetoxy-benzol $C_{19}H_{20}O_{10}N_9 = (CH_3 \cdot CO \cdot NH)_9C(O \cdot CO \cdot CH_9)_4$. B. Beim Kochen von salzsaurem 3.6-Diamino-1.2.4.5-tetraoxy-benzol mit Essigsäureanhydrid und etwas Natriumacetat (Nietzki, Benckiser, B. 18, 503). Tafeln (aus Eisessig). Schmilzt unter teilweiser Zersetzung bei 240°. Schwer löslich in heißem Eisessig.
- "p-Phenylendiamin-tetrakis-thiosulfonsäure-(2.3.5.6)" $C_6H_8O_{18}N_2S_8 = (H_2N)_2C_6(S \cdot SO_2H)_4$. B. Auf p-Phenylendiamin in verd. Eisessig läßt man Natriumthiosulfat und Natriumdichromat in wäßr. Lösung einwirken (Clayton Aniline Co., D. R. P. 127856; C. 1902 I, 386; Green, Perkin, Soc. 83, 1210). Die freie Säure ist farblos. Leicht löslich in Wasser (G., P.). Wird durch salpetrige Säure in eine gelbe, krystallinische, in Wasser leicht lösliche Tetrazoverbindung verwandelt, die mit Natriumsulfid zunächst eine scharlachrote und dann eine violettblaue Färbung liefert (Cl. A. Co.; G., P.). Beim Kochen mit konz. Salssäure wurde ein dunkelindigoblaues Pulver der Zusammensetzung $C_8H_4N_2S_4$ erhalten (G., P.). $K_4C_9H_4O_{12}N_2S_8$. Gelbe oder orangerote Nadeln (aus Wasser). Die orangerote Form geht rasch in die gelbe über (Cl. A. Co.; G., P.).

b) Aminoderivate der Tetraoxy-Verbindungen C_nH_{2n-14}O₄.

Aminoderivate der Tetraoxy-Verbindungen C12H10O4.

- 1. Aminoderivate des 2.5.2'.5'-Tetraoxy-diphenyls $C_{12}H_{10}O_4=(HO)_2C_6H_8\cdot C_6H_3(OH)_2$ (Bd. VI, S. 1164).
- 4.4' Diamino 2.5.2'.5' tetramethoxy diphenyl,
 2.5.2'.5'-Tetramethoxy-benzidin $C_{1e}H_{20}O_4N_2$, s. nebenstehende
 Formel. B. Beim Versetzen von 2.5.2'.5'-Tetramethoxy-hydrazobenzol (Syst. No. 2078) mit Salzsäure (Baessler, B. 17, 2126).

 Darst. Man übergießt 10 g 2.5.2'.5'-Tetramethoxy-azobenzol (Syst. No. 2126) mit 100 g Alkohol, versetzt mit 100 ccm einer Zinnchlorürlösung (200 g Zinn in 1 l konz. Salzsäure) und einigen Tropfen Schwefelsäure, läßt mehrere Stunden stehen, gibt dann Wasser und Salzsäure bis zu völliger Klärung hinzu und fällt mit Natronlauge (B.).

 Nadeln. F: 210°. Schwer löslich in Wasser und Ligroin, leicht in Schwefelkohlenstoff, Chloroform, heißem Benzol und siedendem Alkohol. $C_{1e}H_{20}O_4N_2 + 2$ HCl. Nadeln. Sehr leicht löslich in Wasser, fast gar nicht in konz. Salzsäure. $C_{1e}H_{20}O_4N_2 + 2$ HCl. PtCl₄ (bei 100°). Gelber Niederschlag, der sich an der Luft rasch bräunt.
- 4.4'-Diamino-2.5.2'.5'-tetraäthoxy-diphenyl, 2.5.2'.5'-Tetraäthoxy-bensidin $C_{20}H_{28}O_4N_2=[H_2N\cdot C_6H_2(O\cdot C_2H_5)_2-]_3$. B. Aus 2.5.2'.5'-Tetraäthoxy-hydrazobenzol durch Zusatz von Salzsäure (NETZKI, A. 215, 147). Blättchen (aus wäßr. Alkohol). F: 129°. $C_{20}H_{28}O_4N_2+2HCl$. Nadeln. $C_{20}H_{28}O_4N_2+2HCl+PtCl_4$. Gelber krystallinischer Niederschlag.
- 4.4'-Bis-acetamino-2.5.2'.5'-tetramethoxy-diphenyl $C_{20}H_{14}O_0N_1 = [CH_2 \cdot CO \cdot NH \cdot C_0H_2(O \cdot CH_3)_2-]_2$. B. Beim Kochen von 4.4'-Diamino-2.5.2'.5'-tetramethoxy-diphenyl mit Essigsäureanhydrid (Baesler, B. 17, 2128). Nadeln (aus verd. Alkohol). F: 251°. Sehr schwer löslich in Wasser und Ligroin, leicht in warmem Alkohol, Chloroform, Schwefelkohlenstoff und Benzol.
- 4.4'-Bis-[ω -phenyl-thioureido]-2.5.2'.5'-tetramethoxy-diphenyl $C_{30}H_{30}O_4N_4S_3=[C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_2(O\cdot CH_3)_2-]_3$. B. Beim Erwärmen einer alkoh. Lösung von 4.4'-Diamino-2.5.2'.5'-tetramethoxy-diphenyl mit Phenylsenföl auf 60° (B., B. 17, 2128). Flocken. F: 184°. Fast unlöslich in Ligroin und Wasser, löslich in heißem Alkohol und Benzol.
- 2. Aminoderivate des 3.4.3'.4'-Tetraoxy-diphenyls $C_{12}H_{10}O_4=(HO)_2C_6H_3\cdot C_6H_3(OH)_3$.
- 5.5'-Dipseudocumidino-4.4'-dioxy-3.3'-dimethoxy-diphenyl C₃₂H₃₂O₄N₃, s. nebenstehende Formel. B. Beim Kochen von 5.5'-Dipseudocumidino-3.3'-dimethoxy-diphenochinon-(4.4') (Syst. No. 1879) mit alkoholischer schwefliger Säure (CH₃)₃C₆H₃·NH NH·C₆H₂(CH₃)₃ (LIEBERMANN, CYBULSKI, B. 31, 620). Farblose Nadeln, die sich allmählich an der Luft blau färben.
- 2 oder 6 Chlor 5.5'- di p toluidino 4.4' dioxy 3.3'- dimethoxy diphenyl $C_{28}H_{47}O_4N_3Cl = (CH_3 \cdot C_6H_4 \cdot NH)(HO)(CH_3 \cdot O)C_6HCl \cdot C_6H_2(OH)(O \cdot CH_3)(NH \cdot C_6H_4 \cdot CH_3)$. B. Durch kurzes Aufkochen von 5.5'-Di-p-toluidino-3.3'-dimethoxy-diphenochinon-(4.4') (Syst. No. 1879) mit gesättigter methylalkoholischer Salzsäure (L., C., B. 31, 620). Krystallinische Flocken (aus Benzol + Ligroin), die sich an der Luft schwach blau färben und leicht löslich sind.

c) Aminoderivate einer Tetraoxy-Verbindung $C_nH_{2n-16}O_4$.

a-[3.4-Dimethoxy-phenyl]-β-[4.5-dimethoxy-2-(β-dimethylamino-äthyl)-phenyl]-äthylen, 4.5.3'.4'-Tetramethoxy-2-[β-dimethylamino-äthyl]-stilben, Laudanosomethin $C_{12}H_{19}O_4N$, s. nebenstehende Formel. B. Man kocht das aus dl-Laudanosin (Syst. No. 3176) und Dimethylsulfat entstehende Produkt mit 15% giger Kalilauge (Decker, Galatty, B. 42, 1180). — Nadeln (aus warmem Ligroin). F: 96—97°. Sehr leicht löslich in Alkohol, Aceton, Chloroform, Äther und Benzol, reichlich löslich in warmem Ligroin, schwer in kaltem Ligroin, sehr wenig

in Wasser. — Liefert bei der Oxydation mit Kaliumpermanganat oder Ozon Veratrumaldehyd (Bd. VIII, S. 255). Durch Behandeln mit Dimethylsulfat und Kochen des Reaktionsproduktes mit Kalilauge erhält man Laudanosen (Bd. VI, S. 1177). — C₂₂H₂₉O₄N + HCl. Wasserhaltige (?) Nadeln (aus Wasser). Leicht löslich in siedendem Wasser, schwer in kaltem, etwas löslich in Chloroform. — $C_{32}H_{39}O_4N+HBr$. Nadeln (aus Aceton). Bräunt sich bei cs. 203° und schmilzt bei 214°. Leicht löslich in heißem Wasser, Chloroform und Aceton. — Pikrat $C_{22}H_{29}O_4N + C_6H_3O_7N_3$. Rote Würfel (aus siedendem Alkohol). Schmilzt bei ca. 181° nach vorheriger Sinterung. — C₂₂H₂₂O₄N + HBr + HgBr₂. Citronengelbe Nadeln. F: 169—170°.

d) Aminoderivat einer Tetraoxy-Verbindung C_nH_{2n-18}O₄.

5.8-Diamino-1.4.9.10-tetraoxy-anthracen $C_{14}H_{12}O_4N_2=(H_2N)_2C_{14}H_4(OH)_4$ ist desmotrop mit 5.8-Diamino-1.4.10-trioxy-9-oxo-anthracendihydrid [5.8-Diamino-1.4.10-trioxy-9-oxo-anthracendihydrid [5.8anthron-(9)] $(H_2N)_2C_{14}H_5(:O)(OH)_3$, Syst. No. 1879.

e) Aminoderivate der Tetraoxy-Verbindungen $C_n H_{2n-22} O_4$.

Aminoderivate der Tetraoxy-Verbindungen $C_{19}H_{16}O_4$.

- 1. Aminoderivat des 2.2'.3".4" Tetraoxy triphenylmethans $C_{10}H_{16}O_4 =$ $(HO)_{\bullet}C_{\bullet}H_{\bullet}\cdot CH(C_{\bullet}H_{\bullet}\cdot OH)_{\bullet}.$
- 4.4'-Bis-dimethylamino-2.2'.3".4"-tetraoxytriphenylmethan, Leukoprotorot C33H26O4N2, s. nebenstehende Formel. B. Bei 10-stdg. Kochen von 5 g Protocatechualdehyd (Bd. VIII, S. 246) mit og 3-Dimethylamino-phenol (S. 406), gelöst in
 100 g Alkohol, unter Zusatz von 100 g Wasser
 und 20 g konz. Schwefelsäure; man fällt mit
 Natriumacetat (Liebermann, B. 36, 2919).

 Krystalle (aus Aceton oder Alkohol + Wasser). F: 213° (L.). — Liefert bei der Oxydation

mit Bleidioxyd oder Mangandioxydhydrat den Farbstoff Protorot (S. 845) (L.). Beim Erhitzen mit konz. Schwefelsäure entsteht eine Sulfonsäure der Rosaminreihe (Syst. No. 2650) (L.; vgl. L., GLAWE, B. 37, 203). Bei der Einw. von Acetylchlorid entsteht ein bei 165—167° schmelzendes Tetraacetat (L.).

- 2. Aminoderivat des 4.4'.4".a-Tetraoxy-triphenylmethans (4,4'.4"-Trioxy-triphenylcarbinols) $C_{19}H_{14}O_4 = (HO \cdot C_4H_4)_3C \cdot OH$ (Bd. VI, S. 1179).
- 2-Amino-4.4'.4"-trioxy-triphenylcarbinol $C_{10}H_{1}$ - $O_{4}N = (HO \cdot C_{4}H_{4})_{2}C(OH) \cdot C_{4}H_{2}$ (OH) NH₂. Die entsprechende Anhydroverbindung, Anhydro-[2-amino-4.4'.4"-trioxytriphenylcarbinol], 2'-Amino-4'.4"-dioxy-fuchson 1), Aminoaurin C19H18O2N = (HO·C₆H₄)[HO·C₆H₅(NH₂)]C:C₆H₄:O, s. Syst. No. 1878.

f) Aminoderivat einer Tetraoxy-Verbindung $C_n H_{2n-28} O_4$.

Bis - [4 - dimethylamino - phenyl] - [1.4.5.8 - tetraoxy - naphthyl - (2)] - methan $C_{27}H_{18}O_4N_2=[(CH_3)_8N\cdot C_6H_4]_8CH\cdot C_{10}H_3(OH)_4^{-3})$. B. Beim Behandeln einer heißen alkoh. Lösung von Bis-[4-dimethylamino - phenyl]-[5.8-dioxy-naphthochinon-(1.4)-yl-(2)] - methan (Syst. No. 1879) mit Schwefelammonium (Möhlau, Kloffer, B. 32, 2153). — Rötliche Krystalle (aus Alkohol). Sehr leicht oxydierbar.

¹⁾ Bezifferung der vom Namen "Fuchson" abgeleiteten Namen in diesem Handbuch s. Bd. VII, 8. 520.

²⁾ Zur Konstitution vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von DIMROTH, RUCK, A. 446 [1926], 123 und D., ROOS, A. 456 [1927], 177 über die Konstitution des Naphthazarins.

g) Aminoderivat einer Tetraoxy-Verbindung $C_n H_{2n-30} O_4$.

1 - Dimethylamino - 3.8 - dimethoxy - 1.2 - bis - [3 - methoxy - phenyl] - acenaphthen C₃₀H₃₁O₄N, s. Formel I. B. Beim Erhitzen der Verbindung der Formel II (Syst. No. 3176) mit

$$\begin{array}{c} \mathrm{CH_3 \cdot O \cdot C_6H_4 \cdot HC - C[N(\mathrm{CH_3})_2] \cdot C_6H_4 \cdot O \cdot \mathrm{CH_3}} \\ \mathrm{CH_3 \cdot O \cdot C_6H_4 \cdot HC - CH_3} \\ \mathrm{CH_3 \cdot O \cdot C_6H_4 \cdot HC - CH \cdot C_6H_4 \cdot O \cdot \mathrm{CH_3}} \\ \mathrm{I.} \end{array}$$

40% iger Natronlauge (Beschke, A. 369, 181). — Farblose Nadeln (aus Alkohol). F: 164° bis 165°. Sehr schwer löslich in heißem Alkohol. — Liefert beim Schmelzen oder beim Erhitzen mit Eisessig 3.8-Dimethoxy-1.2-bis-[3-methoxy-phenyl]-acenaphthylen (Bd. VI, S. 1183).

5. Aminoderivat einer Pentaoxy-Verbindung.

 $\begin{array}{lll} \textbf{4.4'-Bis-dimethylamino-2.2'.3''.4''-tetraoxy-triphenylcarbinol} & C_{23}H_{26}O_5N_2 & = \\ [(CH_3)_2N\cdot C_6H_3(OH)]_2C[C_6H_3(OH)_2]\cdot OH. & \text{Die entsprechende Anhydroverbindung} \\ & \text{Anhydro-[4.4'-bis-dimethylamino-2.2'.3''.4''-tetraoxy-triphenylcarbinol],} \\ & \text{Protorot} & C_{23}H_{24}O_4N_3 & = OC < CH & CH \\ & C(OH):CH < C:C[C_6H_3(OH)\cdot N(CH_3)_2]_2 & \text{oder} \\ \end{array}$

 $\begin{array}{c} O \cdot C_0H_3(OH) \cdot C \cdot C_0H_3(OH) \cdot N(CH_3)_3 \\ & C \cdot C(OH) \cdot CH \cdot CH \cdot CH \cdot CH_3)_3 \end{array} entsteht \ bei \ der \ Oxydation \ von \ 4.4' \cdot Bis \cdot [dimethyl-like] \cdot C(OH) \cdot CH \cdot CH_3 \cdot C(OH) \cdot CH_3

amino]-2.2'.3".4"-tetraoxy-triphenylmethan (Leukoprotorot, S. 844) in essigsaurer Lösung mit Bleidioxyd oder Mangandioxydhydrat (Liebermann, B. 36, 2925; C. 1903 II, 1065). Das Protorot bildet ein rotbraunes Pulver; seltener wird es in cantharidenglänzenden Nädelchen (aus Alkohol) erhalten. Es ist unlöslich in Wasser, sehr leicht löslich in Säuren mit roter Farbe; löslich in Alkali mit derselben Farbe. Die Salze, auch die mineralsauren, werden leicht dissoziiert. Protorot färbt Seide rot, Tonerdebeize rot, Eisenbeize violett.

6. Aminoderivate der Hexaoxy-Verbindungen.

Aminoderivate der Hexaoxy-Verbindungen $C_{19}H_{16}O_{6}$.

1. Aminoderivat des 2.4.6.2'.4'.6'-Hexaoxy-triphenylmethans $C_{19}H_{16}O_6 =$ $C_6H_5 \cdot CH[C_6H_9(OH)_8]_9 (Bd. VI, S. 1205).$

2".4"-Bis - dimethylamino-2.4.6.2'.4'.6'hexaoxy-triphenylmethan (?) C₃₂H₂₅O₅N₃, s. nebenstehende Formel. B. Entsteht durch Erwärmen von 2.4-Bis-dimethylamino-benzaldehyd (Syst. No. 1873) mit Phloroglucin in salzsaurer Lösung und Zersetzen des gebildeten salzsauren Salzes (s. u.) mit Ammoniak (SACHS, APPEN-ZELLER, B. 41, 104). — Wurde in braunen, nicht

$$(CH_3)_3N\cdot \overbrace{\hspace{1cm}}^{N(CH_3)_3}CH \xrightarrow{OH} OH$$

deutlich krystallinischen Krusten (aus Pyridin) erhalten. Nicht schmelzbar. Sehr wenig löslich in Alkohol und Aceton mit rosa Farbe und grüner Fluorescenz, leicht löslich in heißem Eisessig und Pyridin, unlöslich in Wasser; löslich in Alkalien mit roter Farbe. — Spaltet beim Trocknen bei 110° allmählich Wasser ab. — C₂₃H₂₀O₆N₂ + 2 HCl. Wurde in roten Krystallen erhalten. Unschmelzbar. Unlöslich außer in Eisessig und Pyridin. Verliert beim Trocknen sowie beim Kochen mit Wasser Salzsäure.

2. Aminoderivate des 3.5.3'.5'.3''.5"-Hexaoxy-triphenylmethans $C_{19}H_{18}O_{4}$ $CH[C_aH_a(OH)_a]_a$.

OH

OH

OH

·NH,

4.4'.4"-Triamino-8.5.8'.5'.3".5"-hexaoxy-triphenyl- \mathbf{OH} $\mathbf{H}\mathbf{0}$ HO ŇH, dation des salzsauren Salzes mit Chloranil in alkoholischer

oder essignaurer Lösung entsteht ein blauer Farbstoff. — $C_{19}H_{19}O_6N_3 + 3HCl + H_2O$. Weißes Krystallpulver. — $C_{19}H_{19}O_6N_3+3HI+2H_3O$. Farblose Nadeln (aus wenig Wasser). Außerst leicht löslich in Wasser.

4.4'.4"-Tris-acetamino-3.5.3'.5'.3".5"-hexaacetoxy-triphenylmethan $C_{37}H_{37}O_{15}N_3$ = CH[$C_6H_8(0\cdot CO\cdot CH_2)_6\cdot NH\cdot CO\cdot CH_2]_3$. B. Durch 10 Minuten langes Kochen von jodwasserstoffsaurem 3.5.3'.5'.3".5"-Hexaoxy-paraleukanilin (s. o.) mit Essigsäureanhydrid und Natriumacetat (L., W., B. 34, 1036). — Farblose Nädelchen (aus Alkohol). F: 172—173°. Unlöslich in kaltem Alkali und in kalter Salzsäure; beim Kochen mit Salzsäure entsteht des salzsaures salzsäures aus entsteht des salzsaures salzsaures aus entsteht des sal das salzsaure Salz des 3.5.3'.5'.3".5"-Hexaoxy-paraleukanilins (s. o.).

7. Aminoderivate einer Heptaoxy-Verbindung.

4.4'.4" - Triamino - 3.5.3'.5'.3".5" - hexamethoxy -O·CH₃ O·CH₃ OH triphenylcarbinol, 3.5.3'.5'.3".5"- Hexamethoxy pararosanilin C₂₅H₂₁O₇N₃, s. nebenstehende Formel. B. H₂N. Beim Erhitzen von Eupitton (Bd. VIII, S. 574) mit alkoh. Ammoniak im geschlossenen Rohr auf 160—170° (A. W. HOFMANN, B. 11, 1459). — Weiße Nadeln, die sich an der \cdot NH. O·CH, O·CH_a CH₃·O Luft bläuen. Sehr schwer löslich in kaltem Alkohol; löst NH. aich in konz. Säuren mit gelbroter Farbe, die beim Verdünnen der Lösung in Blau übergeht (A. W. H., B. 11, 1459, 1460). — Durch Kochen mit Jod-

wasserstoffsaure + Essigsaureanhydrid entsteht jodwasserstoffsaures 3.5.3'.5''.3''.5''-Hexaoxyparaleukanilin (Liebermann, Wiedermann, B. 84, 1035). Zerfällt beim Erhitzen mit Wasser auf 250° in Ammoniak und Eupitton (A. W. H., B. 12, 2222). — Die Farbsalze sind in Lösung tief blau gefärbt und färben Seide und Wolle blau (A. W. H., B. 11, 1460). Sie sind keine Beizenfarbstoffe (L., W.). Das essigsaure Farbsalz verliert beim Erwärmen Essigsäure unter Zurückbildung der Carbinolbase (L., W.).

MANN, B. 12, 1384). — Weißliche krystallinische Flocken, die sich an der Luft bläuen.

Register für den dreizehnten Band.

Vorbemerkungen s. Bd. I, S. 939, 941.

A .	Acetaminodiphenyl-äther 416.	Aceteminophonel methyla
Α.	— amin 95.	
Aget a such Agets und		äther 371, 416, 461.
Acet- s. auch Aceto- und	— sulfid 400, 542.	— phenacyläther 464.
Acetyl	— sulfidearbonsäure 401, 543.	— phenyläther 416.
Acetamino-acetyltoluidinos	— sulfon 401, 427, 542.	— propyläther 463.
kresoläthyläther 612.	— sulfoncarbonsäure 543.	— salicoyloxyäthyläther 464.
— äthylacetylaminotoluol	Acetamino-diphenylyloxamid	Acetaminophenoxy-aceto-
157.	säure 228.	phenon 464.
- anthrol 723.	- hydrochinon 789.	— essigsäure 465.
— benzhydrol 696.	— kresol 574, 577, 593, 600,	Acetaminophenoxycssigsäure-
Acetaminobenzyl-acetanilid	603.	phenetidid 491.
170.	- kresoläthyläther 577, 593,	— trichloroxyathylamid 465.
— acetat 618, 620.	603.	Acetaminophenyl-acetat 371,
— acettoluidid 170.	- kresolmethyläther 575,	416, 464.
— athylanilin 174.	590, 603.	— benzoat 464.
— alkohol 617, 619.	Acetaminomethyl-acetyl=	— campheramidsäure 100.
— amin 169.	aminotoluol 157.	— cyanamid 49.
— anilin 169.	— acetylaminoxylol 182.	— cyanazomethinphenyl 108.
— benzamid 170.	— benzylacettoluidid 186.	— harnstoff 49, 103.
— benzanilid 171.	- diphenylsulfon 576.	Acetaminophenylkohlensäure-
— methylanilin 174.	— nitrosaminotoluol 139.	äthylester 464.
— naphthol 731.	— nitrosaminoxylol 182.	— anilid 372.
— naphthylacetamid 170.	— phenylmercaptan 576.	— butylester 464.
— phenylnitrosamin 173.	— phenylmethylnitrosamin	— diathylamid 465.
— toluidin 169.	139.	— propylester 464.
— tolylnitrosamin 173.	— phenyloxamidsäureäthyl=	Acetaminophenyl-kresotinat
Acetaminobisdiacetylaminos	ester 135.	466.
phenylacetat 571.	— phenylurethan 136.	— mercaptan 541.
Acetaminobrenzcatechin-	Acetamino-naphthol 666, 669,	— mercaptobenzoesäure 401, 543.
diäthyläther 780.	671, 672, 679, 682, 683, 685, 686.	1
— dimethyläther 780.	— naphtholäthyläther 666,	— naphthol 726.
— methyläther 779, 780.	669, 673, 679, 683, 686.	— oxamidsäure 47, 99.
— methylätheracetat 780.		- oxynaphthylmethan 732.
— methylätheräthyläther	— naphtholmethyläther 666,	— phthalamidsäure 100.
780; s. auch 781.	673, 679, 682, 683, 686.	— salicylat 465. — schwefelsäure 466.
— methyläthercarbonsäures	Acetaminonaphthyl-acetat 666, 669, 673, 680, 682,	— sulfonbenzoesäure 543.
äthylester 781.	683.	— thiosalicylsäure 401, 543.
— methyläthercarbonsäures diäthylamid 781.	benzoat 666.	Acetaminophenyltolyl-sulfid
	— oxyessigsäure 673, 680.	542.
— methyläthyläther 780, 781. Acetamino-carvacrol 652.	Acetamino-phenanthrol 725.	— sulfon 543.
— carvacrolmethyläther 652.		— sulfoxyd 542.
Acetaminodimethyl-benzs	724.	Acetamino-phenylurethan
hydrol 716.	- phenol 370, 415, 460.	103.
— diphenylamin 146, 157.	Acetaminophenol-athylather	- phloroglucindiäthyläther
— diphenylsulfid 596.	371, 416, 461.	828.
- phenylmethylnitrosamin	- benzyläther 464.	- pyrogalloltrimethyläther
182.	— bromäthyläther 462.	826.
Acetaminodinaphthylamin	— dinitrophenyläther 463.	Acetaminoresorcinathyl=
199.	- isoamyläther 463.	ätheracetat 785.
* * *	•	•

848 Acetaminoresorcin-diacetat diäthyläther 785. -- dimethyläther 783, 785. – methyläther 785. Acetaminothio-hydrochinon methylätheracetat 791. kresol 576. phenol 541. Acetamino-thymoläthyläther 653, 657 – triphenylamin 96. triphenylcarbinol 739, 740, 741. veratrol 780. — xylenol 631. xyl~noläthyläther 631. Acetanisidid 371, 416, 461. Acetessigsäureäthylesterathoxyanil 496. isodiphenyloxathylimid 712. - methoxyanil 496. Aceto- s. auch Acet- und Acetyl-. Acetoacetylbenzidin 231. Acetophenonathoxyanil 454. Acetoxyacetamino-acetaminophenylnaphthalin 726. - benzylnaphthalin 731. — methylbenzol 575, 600, - phenanthren 725. trimethylbenzol 643. Acetoxy-acetylbenzoylaminos methylbenzol 604. - acetyldiphenylamin 467. - benzalaminobenzylnaphs thalin 730. benzaminomethylbenzol 604. -- benzoesäurephenetidid 493 Acetoxybenzyl-acetanilid 583. - acetanisidid 583. — acetylaminobenzylnaph thalin 731. acetylphenylendiamin 584. – anilin 581. diacetylphenylendiamin 584. Acetoxybis-acetan..notrimes thylbenzol 651. diacetylaminomethylisos propylbenzol 660. dimethylaminotriphenyls

methan 736, 738.

methylisopropylbenzol

Acetoxydimethylamino-ace-

tyldiphenylamin 418, 504.

Acetoxydiacetylamino-

652, 657.

anthracen 723.

phenanthren 724.

methylbenzol 600.

Acetoxy-dimethylbenzylacets anilid 647. essigsäurephenetidid 490. methylacetyldiphenylamin naphthyldiacetoxynaph= thylamin 804. Acetoxyphenyl-äthyldime. thylamin 626. brommethylphenylthio: harnstoff 485. essigsäurephenetidid 494. isothiocyanat 487. senföl 487. Acetoxy-propionsäurephenes tidid 492. trisdimethylaminotris phenylmethan 736. Acetphenetidid 371, 416, 461. Acetphenetidid-oxim 463. oximacetat 463. Acetyl- s. auch Acet- und Aceto-. Acetylaceton-methoxyanil oxyanil 414. Acetyläthylamino-phenol 467. phenolathylather 467. phenylacetat 467. phenylkohlensäureäthyl= ester 467. phenylkohlensäuremethylester 467. Acetylamino- s. Acetamino-. Acetylanilino-phenol 372. phenylacetat 467. triphenylamin 97. Acetyl-benzidin 227. benzidinoxalylsäure 228. Acetylbenzoylamino-kresol 603, 604. naphthol 666. phenol 464, 470. Acetyl-benzoyldiphenyläthys lendiamin 251. benzylaminobenzylacetanilid 170. cyanformanisididoxim 472. cyanphenylendiamin 49. dibenzoylapomorphin 818. diphenyloxäthylamin 707. glycinphenetidid 506 glykolsäurephenetidid 490. hordenin 626. isodiphenyloxäthylamin 709, 710, 711. isopropylaminophenols äthyläther 467. mandelsäurephenetidid 494. Acetylmethylamino-athyls phenylcarbinol 638. methylnitrosaminotoluol

phenylmethylnitrosamin 162. phenol 372, 466. phenoläthyläther 466. phenylacetat 466. phenyliminomalonsäure: ureid 24. phenylkohlensäureäthyl= ester 467. phenylkohlensäuremethyl= ester 467. Acetyl-methylephedrinhydr= oxymethylat 638. milchsäurephenetidid 492. naphthylendiamin 202. nitrobenzylaminophenol= methyläther 372. Acetyloxy- s. Acetoxy-. Acetyl-oxyar ilinotriphenyl= amin 381. oxynaphthylbenzylamin **731**. phenylendiamin 20, 45, 94. propionylaminokresol 603. pseudoephedrin 638. — rosanilin 769. salicoylaminophenol 465. salicylsäurephenetidid 493. tolidin 258. Acetyltoluidino-phenol 416. phenoläthyläther 416. phenylacetat 467. Acoin 487. Aconitsäurephenetidid 478. Acryloylaminophenol 372. Adipinsäurebisaminoanilid 22. Adrenalin 830, 832. Adrenalinhydrochlorid 832; s. auch 833. Apfelsäurephenetidid 494. Äthansulfonsäure-äthylphe= netidid 508. dinitroathoxyanilid 531. methylphenetidid 508. nitroathoxyanilid 523. phenetidid 507. Athansulfonyl-acetylphenetis din 509. äthoxyphenylurethan 509. – benzoylphenetidin 509. carbāthoxyphenetidin 509. - phenacetin 509. Äthebenin 839. Athebeninmethinjodmethylat Athoxalylamino-dimethyldis phenylsulfid 579, 596. methylphenyloxamid **135**. phenyltolylsulfid 546. Äthoxyacetamino-acetaminophenylnaphthalin 726. acetyldiphenylamin 503.

Acetylmethylamino-methyl=

Athoxyacetamino-acetyltoluis dinomethylbenzol 612.

 dimethylacetyldiphenyls amin 594, 612.

dimethylbenzol 631.

- dimethyldiphenylamin 578, 594, 612.

- diphenyl 693.

– diphenylamin 503.

 methylacetyldiphenyls amin 505, 593.

– methylbenzol 577, 593, 603.

- methyldiphenylamin 504. 505, 554, 577, 593.

methylisopropylbenzol 653, 657.

 trimethyldiphenylamin 612.

Athoxy-acetoxydimethyldiisos propyldiphenylamin 655. athylc phenylamin 447.

Athoxyamino-aminophenylnaphthalin 726.

anilinomethylbenzol 588. - anilinonaphthalintetras hydrid 663.

- benzylamin 614.

- dimethylbenzol 630, 634.

 dimethyldiphenylamin *578*, *589*, *594*, *611*.

diphenylamin 500, 503, 564.

- diphenylmethan 694.

– methylbenzol 572, 574, 576, 593, 602.

methyldiphenylamin 381, 504, 554, 565, 577, 588, 593.

methylisopropylbenzol 653, 654.

– naphthalintetrahydrid 662.

 phenanthren 723, 724. — phenylaminophenylbenzol

- phenylurethan 566.

 toluidinodimethylbenzol 632

 toluidinomethylbenzol 589, 611.

 trimethyldiphenylamin 612, 632.

xylidinomethylbenzol 612. Athoxyanilino-hydroxylamis

nocampher 455. pentadienaläthoxyanil 455.

Athoxybenzalamino-diphenyle amin 503, 565. methyldiphenylamin 505.

Athoxy-benzaminomethylisopropylbenzol 653, 658. benzhydrylamin 694.

- benzidin 691.

 benzoesäurephenetidid 494.

Athoxybenzyl-amin 580.

anilin 607.

toluidin 607.

Athoxybis-acetaminodiphenyl

anisalaminodiphenyl 691,

Athoxybisbenzamino-diphenyl 692.

methyldiphenyl 706.

Athoxybis-cinnamalamino. diphenyl 691.

diacetylaminomethyliso= propylbenzol 660

dimethylaminotriphenyl= methan 736, 738.

formaminotrimethyldis phenyl 721.

Athoxybisnitrobenzalaminodiphenyl 691.

methyldiphenyl 706. Athoxybis-phenylthioureidos diphenyl 691.

salicylalaminodiphenyl

salicylalaminotrimethyldi= phenyl 721.

Athoxy-bromacetaminos methylisopropylbenzol

bromphenyloxyphenylsbenzimidazoldihydrid 565.

chloracetaminomethylisos propylbenzol 657.

Äthoxydiamino-dimethyldis phenyl 714, 715.

diphenyl 691.

- methylbenzol 588, 613; s. auch Athoxyaminos benzylamin.

methyldiphenyl 705, 706.

methylisopropylbenzol 659.

phenylurethan 571.

trimethyldiphenyl 720,

Äthoxydimethyl-benzidin 714, 715.

diphenylamin 414.

diphenylin 715.

Athoxy-diphenylamin 411, 446.

diphenylbenzimidazol* dihydrid 565.

diphenylenbisphenylthio. harnstoff 691.

diphenylin 691. formaminodimethylformyldiphenylamin 578.

formaminomethylformyls diphenylamin 505.

glycylaminomethyliso: propylbenzol 658.

Athoxymethylacetyldiphes nylamin 416.

Athoxymethyl-athyldiphenyl. amin 413, 448.

- benzidin 705.

- diphenylamin 412, 413, 447.

- diphenylin 706.

Athoxymethylphenyl-harns stoff 573, 575, 577.

- thioharnstoff 573, 575. tolvlthioharnstoff 604.

- urethan 575.

Äthoxyphenylacetylcarbamid* säure-äthylester 486.

- isoamylester 486. methylester 486.

Äthoxyphenylacetyl-thio: harnstoff 483, 486.

urethan 486.

Äthoxyphenyl-äthoxyphenylacetamidin 463.

äthoxyphenylglycylharn= stoff 489.

anilinothioformylguanidin 482.

benzidin 735.

benzylphenylguanylisos thioharnstoff 483.

- biguanid 377, 482.

carbāthoxyglycinamid 489.

carbamidsäure, Ester des Brenzcatechins usw. 480.

carbamidsäuredioxy= phenylester 480.

carbonimid 487.

chlormethylphenylnitros. amin 510.

cyanamid 377, 418, 481.

dithiobiuret 377, 483.

dithiocarbamidsaure 483.

 glycin 379, 488. glycinphenetidid 506.

- glycylharnstoff 489. --- glycylurethan 488.

guanylguanidin 377, 482. harnstoff 418, 480.

Äthoxyphenyliminobutters

säure-äthylester 496. nitril 496.

Äthoxyphenylimino-campher 456.

diessigsäurephenetidid 507.

glutarsäurediäthylester 497.

methoxyphenylcyclohexa. noncarbonsaureathylester 498.

methylacetessigsäures phenetidid 497.

methylacetylaceton 369. methylmalonsaureathyl=

esterphenetidid 380.

phenetidinopentadienol 457.

phenetidinopentenon 457. phenylcyclohexanoncar= bonsäureäthylester 497.

Äthoxyphenyliminopropions saure 495.

Äthoxyphenyl-isocyanat 487.

— isothiocyanat 487.

-- isothioharnstoffessigsäure
483.

- leukauramin 506.

- malamidsäure 494.

– maleinamidsäure 477.

— malonamidsäure 474.

 malonamidsäureäthylester 474.

naphthylamin 450, 451.
nitrobenzylnitrosamin 510.

-- oxamid 473.

— oxamidsäure 473. — oxamidsäureäthylester

473. Äthoxyphenylphenyl-glycyl

harnstoff 481.

— guanylthioharnstoff 483.

— nitrosamin 509.

Äthoxyphenyl-phthalamids säure 477.

— propionylcarbamidsäures äthylester 486.

— propionylurethan 486.

 pseudothiohydantoinsäure 483.

- senföl 487.

— succinamidsäure 474.

-- thioharnstoff 377, 482.

tolylglycylharnstoff 481.
tolylnitrosamin 509.

-- tolylthioharnstoff 482.

— urethan 480.

Athoxysalicylalamino-dis methyldiphenylamin 612. -- methyldiphenylamin 505,

554.
— trimethyldiphenylamin

612, 632.

Athoxytetrahydronaphthyls phenylendiamin 662.

Athoxythiobenzoesäureanisidid 494.

— phenetidid 494.

Athoxytoluidino-acetaminomethylbenzol 612.

salicylalaminodimethyls
 benzol 632.
 salicylalaminomethyls

benzol 612. Äthoxy-triaminophenylure

Athoxy-triaminophenylures than 572.

trimethyldiphenylin 720,
 721.

Äthoxyxylidino-acetaminos methylbenzol 612.

 salicylalaminomethyls benzol 612.

Athylacetamino-benzylanilin 174.

phenylsulfid 542.
 Athylacetphenetidid 467.

Äthylacetylamino-phenol 467. Athylcarbathoxy-aminophes

— phenoläthyläther 467. — phenylacetat 467.

phenylkohlensäureäthylsester 467.

phenylkohlensäuremethylsester 467.

Athyl-acetylphenylendiamin 20.

— äthoxyphenylglycin 379. Äthylamino-anilinotoluol 131

Athylamino-anilinotoluol 131. — benzaminotoluol 146.

- benzyläther 616.

- benzylamin 166.

— benzylanilin 174. — cyclohexanol 348.

-- kresol 600.

 methyldioxyphenyls carbinol 833.

— methyldiphenylamin 131.

nitrobenzalaminotoluol
 146, 156.

-- phenol 364, 408, 443. Äthylaminophenol-äthyläther

 biscarbonsäureäthylester 486.

-- methyläther 364.

Athylaminophenylcyanazos methin-nitrophenyl 107.

— phenyl 107. Athylaminophenyl-dioxy

naphthylmethan 819.

-- oxynaphthylmethan 727,
731.

- sulfid 533.

Athylamino-salicylalaminotoluol 146, 156.

thioformyldiphenyloxs
 äthylamin 708.

Äthyl-anilinophenoläthyläther 447.

— anisidin 364.

benzaminophenylsulfid
 545.

- benzoylphenylendiamin 98.

Äthylbenzyl-acetylphenylens diamin 96.

— aminophenol 413.

- aminophenoläthyläther

 benzoyldiphenyläthylens diamin 252.

benzoylphenylendiamin 98.

-- phenetidin 414.

— phenylendiamin 82. Äthylbis-aminobenzylamin

172.

dibromoxydimethylbens
 zylamin 646, 650.

— methoxyphenylisothio= harnstoff 379.

— oxycyclohexylamin 349.

Äthylcarbäthoxy-aminophes nylkohlensäureäthylester 486.

oxyphenylurethan 486.
 Äthyl-chinondimethylaminosanil 90.

-- chloraminobenzyläther 622.

— cyanbenzalphenylendis amin 107.

 diacetylaminophenol 467.
 Äthyldimethylaminophenylcarbinol 636.

- sulfon 537.

Athyldinitro-athoxyphenylnitramin 394.

— methoxyphenylnitramin 394.

oxyphenylisoharnstoff
 396.

Äthyldiphenyl-benzylbenzoyläthylendiamin 252.

-- oxathylthioharnstoff 708. Athylenbisaminophenylsulfon

Äthylenglykol-acetaminos phenyläthersalicylat 464.

- aminophenyläther 360.
 aminophenylätherbenzosi

— aminophenylätherbenzoat 360.

bisacetaminophenyläther
 371, 464.

— bisaminomethylphenyl= äther 574.

-- bisaminophenyläther 360, 404, 439.

bisureidomethylphenyls äther 575.

Äthylensulfonsäure-nitroäthsoxyanilid 524.

phenetidid 507.

Athylensulfonyl-acetylphenestidin 509.

- phenacetin 509.

Athylidenamino-benzylalkohol 617.

— methylbenzyltoluidin 185. Äthyl-methionsäurebisäthyl= phenetidid 508.

 methoxyphenylbenzoylisos harnstoff 479.

— methoxyphenylbenzoylisos thioharnstoff 480.

— naphthylendiamin 197, 201, 210.

nitroäthoxyphenylnitrossamin 391.

nitrocyanbenzalphenylens
 diamin 107.

nitrooxybenzylanilin
 588.

— nitrosaminophenol 383. Äthyloxy-aminobenzyläther 800:

- benzylanilin 607.

Athyloxy-methylisopropyls hexahydrobenzylamin

- phenylnaphthylendiamin 505.

phenylnitrosamin 383. Athyl-phenacetin 467.

- phenetidin 364.

phenetidinoessigsäure 379.

-- phenylaminophenylcars binol 715.

– phenylendiamin 16, 41, 75, 176.

 phenylnaphthylendiamin 198.

phenylphenetidin 447.

 toluidinophenoläthyläther **413, 44**8.

 toluylendiaminthiosulfons säure 613.

tolylnaphthylendiamin 198.

tolylphenetidin 413, 448.

 violett und seine Carbincl^{*} base 759.

- xanthogenessigsäure: anisidid 380.

Athylxanthogensäure-acet= aminophenylester 543.

- aminophenylester 535.

— dimethylaminophenylester

Aldehydblau aus Pararosanilin 754; aus Rosanilin 766.

Aldehydgrün, schwefelfreies 754; schwefelhaltiges aus Pararosanilin 754, aus Rosanilin 766.

Aldehydo- s. Formyl-. Alkaliblau 768.

Allyl-athoxyphenylharnstoff 418.

aminonaphthylharnstoff 207.

— aminonaphthylthioharn≤ stoff 207.

Allylbenzyl-aminophenols äthyläther 449.

- aminophenolmethyläther 367.

— anisidin 367.

phenetidin 449.

Allyl-bisaminobenzylamin 172.

methoxyphenylharnstoff 376.

Allyloxy-aminomethylbenzol 57Ž.

 methylphenylharnstoff 573.

 methylphenylthioharnstoff **573**.

phenylharnstoff 484.

phenylthioharnstoff 375, 484.

Ameisensäure-anisidid 370, 459.

phenetidid 370, 460. Amidol 550.

Aminoacetamino-äthylbenzol 177.

diphenylamin 112.

- kresolmethyläther 612.

methylacetylaminotoluol 301.

naphthol 687.

phenol 551.

phenylnaphthalin 271.

– toluol 133, 146, 157. Aminoathoxyanilinonaphthol= äthyläther 675.

Aminoathyl-aminodimethyldiphenylmethan 263.

aminomethylphenylthio: schwefelsäure 613.

aminotoluol 130, 145, 154.

- anilinoäthylbenzol 177. resorcinäthyläther 801.

toluidinthiosulfonsäure 613.

Aminoamino-methylphenyl= naphthalin 272.

phenylnaphthalin 270. Aminoanilino-brenzcatechins dimethyläther 782.

crotonsäureäthylester 23.

crotonsäuremet hylester 23. diphenyl 213; s. auch Phenylbenzidin

diphenyldisulfid 540. diphenylmethan 247.

formylglycylaminotoluol 139.

kresoläthyläther 588.

→ methylenmalonsäuredi

» äthylester 24.

naphtholäthyläther 675. - phenol 554

- phenoläthyläther 564. — phenolmethyläther 564.

– phenoxyessigsäure 503.

tetrahydronaphtholäthyläther 662, 663. - toluol 130, 154, 155.

veratrol 782.

Amino-anisol 358, 404, 435.

anthrol 723.

Aminobenzalamino-naphthol 674.

- toluol 132.

Aminobenzamino-äthylbenzol

177. toluol 134, 158.

Aminobenzhydrol 696. Aminobenzolsulfamino-toluol 139, 148, 162.

trimethylbenzol 191. - xylol 184, 188.

Aminobenzolsulfonylmethylaminoxylol 184.

Aminobenzoyldiphenylamin

Aminobenzyl-acetamid 169.

- acetanilid 169.

acetat 616. acettoluidid 170.

--- äthylamin 166.

äthylaminophenol 419.

— äthylanilin 174.

— alkohol 615, 619, 620.

-- amin 165, 174.

Aminobenzylamino-phenols äthyläther 505.

phenolmethyläther 381, 505.

toluol 131, 145.

Aminobenzyl-anilin 166, 174, 175.

anisidin 381, 505.

benzamid 170.

benzanilid 170.

benzoat 616.

— diāthylamin 175.

— dimethylamin 175.

— formanisidid 382. — isoamylamin 175.

- menthanol 665.

— menthol 665. — mercaptan 618, 620.

— methylamin 166.

— naphthol 727, 729.

— naphthylamin 167, 176. — phenetidin 505.

— phenylendiamin 172.

— propionamid 170.

– toluidin 167, 175. tolylnitrosamin 173.

Aminobisacetamino-benzol 297.

phenol 570.

Aminobisbenzolsulfaminos naphthalin 305.

Aminobisdiäthylaminomethyltriphenylmethan

- triphenylmethan 311, 316. Aminobisdimethylaminobenzol 295.

dimethyltriphenylmethan **325**, **3**26, **327**.

diphenylmethan 307. - fuchson 822.

methyltriphenylcarbinol 769.

methyltriphenylmethan 318, 320, 322, 323, 324. tetramethyltriphenyl

methan 331, 332.

trimethyltriphenylmethan 327, 328, 329, 330.

triphenylcarbinol 750, **754.**

triphenylmethan 311, 312, 314.

852 Amino-bismethoxyphenylguanidin 376. bismethylaminodimethyldiphenylmethan 310. bistoluolsulfaminodiphenyl 306. - borneol **353**. brenzcatechin 779. Aminobrenzcatechin-dimethylather 780. – methyläther 779. methyläthercarbonsäures athylester 781. methyläthercarbonsäurediathylamid 781. Amino-butyrylaminotoluol 158. - camphanol 353. carboxyaminodiathylbenzol 193. - carvacrol 652. carvacrolmethyläther 652. - chlorbenzaminotoluol 158. chlorbenzolsulfonylaminos toluol 139. chloroxyphenanthren 724. cinnamovlaminotoluol 159. crotonoylaminotoluol 158. cyclohexanol 348, 349. - cyclohexylcarbamide sure Aminoderivate der Monooxy Verbindungen C_nH_{2n}O 348. - C_nH_{2n}—2O 351. - C_nH_{2n}—4O 354. $-- C_n H_{2n-6}O$ 354. Aminodiäthylamino-diphenylmethan 247. methyldiphenylmethan 255. methylphenylthioschwefelsäure 613. phenylmercaptan 559. - phenylthioschwefelsäure 559. - thiophenol 559. - toluol 130, 145. Aminodiathyl-anilin 41, 75. - anilinthiosulfonsäure 559. - diphenylamin 177. — toluidinthiosulfonsäure 613. Aminodianilino-benzel 296. - triphenylcarbinol 759. Amino-dibenzylamin 167. dimethylacryloylaminotoluol 158. Aminodimethylamino-anilinobenzol 296. benzhydrol 698.

diphenylamin 111, 296.

diphenylmethan 239, 246.

— methyldiphenylamin 162.

Aminodimethylamino-methyls Amino-formaminotoluol 133. diphenylmethan 254. - formyldiphenyloxathylmethylphenylthioschwefelamin 705. formylisodiphenyloxathylsaure 612. phenol 551, 553. amin 712. fuchsonimid 743. phenylmercaptan 556. guajacol 779. phenylthioschwefelsäure hexylphenylcarbinol 661. 557. Aminohydrochinon-äthyls thiophenol 556. toluol 129, 130, 144, 145, ather 789. 154. dimethyläther 788. Amino-isoamylnaphthol 689. triphenylmethan 275. isovalerylaminotoluol 158. - **xylol 183**. Aminodimethylanilin 15, 40, kresol 572, 574, 576, 579, 72. 589, 590, 59**3**, 598, 601. Aminodimethylanilin-supers Aminokresol-äthyläther 574, 576, 593, 602. sulfid 558. allyläther 572 thiosulfonsäure 557. Aminodimethyl-benzhydrol benzyläther 572. chlorbenzyläther 602. 715. benzylxylidin 191. methyläther 572, 574, 590, bicyclononanol 353. **599**, 602. 145, propyläther 572. diphenylamin 131, Amino-menthanol 350 155. diphenylcarbinol 715. - menthol 350. diphenylsulfid 578, 595. mesitol 648. phenylmethylnitrosamin Aminomethylamino-anisol phloroglucin 834. dimethylaminobenzol 295. phloroglucinmethyläther methylphenylthioschwefel. saure 612. 834. toluidinthiosulfonsäure phenolmethyläther 553. toluol 129, 144, 153. 612. Amino-dinaphthylamin 198, xylol 182, 183, 187. 202. Aminomethylanilino-crotons dinitroanilinotoluol 155; s. auch Dinitroaminos säureäthylester 161. isobuttersäurenitril 138. methyldiphenylamin. methylenmalonsäuredis dioxychinondiimid 346. äthylester 161. Aminodiphenyl ather 359, 404, Aminomethyl-anthranol 725. 438. benzhydrol 714. äthercarbonsäure 441. Aminomethylbenzyl-alkohol - amin 16, 76. 635. – aminsulfonsäure 78. amin 188. carbinol 696. benzamid 188. phenol 735. thionamidsaure 181, 187, - sulfid 399, 533. 189. sulfidearbonsăure 399, 426, toluidin 185. Aminomethyl-bicyclononanol sulfon 399, 426, 534, 548. - sulfoxyd 534. caproylaminotoluol 158. Aminodiphenylyl-aminos dimethoathylcyclopentas pentadienalaminodiphenol 350. nylylimid 226. dioxyphenylcarbinol 830. carbonimid 220. Aminomethyldiphenyl-ather isocyanat 220. 360, 438, 439. isothiocyanat 230. amin 18, 42, 80, 81, 130, mercaptan 693. **154**, **155**. mercaptoessigsäure 693. oxamidsäure 228. carbinol 713, 714. carbinoläthyläther 713. senföl 230. sulfid 534. thioglykolsäure 693. urethan 228. sulfon 534, 576. Aminomethyl-indamin 129. Amino-ditoluidinotoluol 302. methoäthylcyclopentanol - eugenol 803.

Aminomethyl-naphthol 688. - nitraminotoluol 140. — nitrosaminotoluol 139. nitrosaminoxylol 182. — oxyphenylcarbinol 801. Aminomethylphenyl-benz= amidin 134. carbinbenzoat 629. — carbinol 629. dithiocarbamidsäure 136. - harnstoff 136. - iminobuttersäureäthyl= ester 161. — iminomethylmalonsäure= diäthylester 161. – isothiocyanat 138. kohlensäureäthylester 572, 590, 602. kohlensäureanilid 602. leukauramin 309. maleinamidsäure 159. — mercaptan 575, 591, 601. — methylnitramin 140. – methylnitrosamin 139. – oxamid 135. — oxamidsäure 134. — phthalam dsäure 160. - senföl 138. succinamidsäure 159. - thioharnstoff 136. — urethan 135, 136. Aminomethyl-phloroglucin 828. phloroglucindimethyläther 829. phloroglucinmethyläther 829. toluidinthiosulfonsäure Amino-naphthol 665, 667, 670, 671, 676, 681, 682, 683, 684, 685, 686. - naphtholäthyläther 666, 667, 678, 683, 686. - naphtholmethyläther 666, 672, 678, 683, 686. Aminonaphthyl-aminotoluol – mercaptan 681, 686. – oxyessigsäure 678. Amino-nitrobenzaminotoluol 134. orcin 797, 799. Amino-oxy- s. Oxy-amino-. Aminooxy-anilinodiphenyls amin 502. hydrochinondimethyläther **826.** hydrochinontrimethyl= äther 826. Amino-phenacetaminotoluol 159. phenanthrol 723, 724. Aminophenanthroläthyläther

723, 724.

REGISTER. Aminophenanthrolmethyl= äther 724. Amino-phenetol 359, 404, 436. phenol 354, 401, 427. Aminophenol-äthyläther 359, 404, 436 allyläther 438. — aminoäthyläther 361, 441. benzoyloxyäthyläther 360. benzyläther 360, 404, 439. Aminophenolbiscarbonsäureäthylester 485. anilid 485. Aminophenolcarbonsäure= āthylestercarbonsaureamid 485. anilid 378. propylester 485. Aminophenolcarbonsäureamidcarbonsäurediäthyl= amid 485. phenylestercarbonsäures chlorid 485. Aminophenol-chlorbenzyl= äther 360. dimethylaminoäthyläther **44**1. dinitrophenyläther 438. — isoamyläther 438. isobutyläther 438. methyläther 358, 404, 435. — oxyäthyläther 360. phenacyläther 439. phenyläther 359, 404, 438. propyläther 438. tolyläther 360, 438, 439. Aminophenoxy-acetophenon 439. äthoxybenzoesäure 360. benzoesäure 441. essigsäure 361, 440. propionsäure 440. Aminophenyl-äthylamin 177. — äthylbenzamid 177. äthyldithiocarbamidsäure 178. aminobenzyläther 616. anilinophenylphenylendis amin 113. benzoat 404, 440. - biguanid 101. — campheramidsäure 100. cyanamid 101. — diaminophenyläthylen 310. dithiocarbamidsaure 23, 49, 102. formylglycin 106. glycin 50, 105. glycinnitril 105. guanylguanidin 101. harnstoff 48, 101. – iminobuttersäureäthyl=

ester 23.

ester 23.

iminobuttersäuremethyl-

Aminophenyl-iminomethylmalonsäurediäthylester isobutyrat 360. Aminophenylkohlensäureäthylester 361, 440. diäthylamid 440. - diphenylamid 361, 404. — methylanilid 361, 404, 440. methylester 361, 440. Aminophenyl-maleinamids säure 22. mercaptan 397, 425, 533. mercaptobenzoesäure 399, 426, 535. mercaptoessigsäure 399, 535. naphthol 726. oxamidsäure 47, 99. oxynaphthylmethan phthalamidsäure 22. salicylat 440. succinamidsaure 21, 48, sulfonäthylalkohol 426. — thiocarbonylaminophenyl: äthan 249. thioglykolsäure 399, 535. — thioharnstoff 23, 49, 102. — thionamidsäure 52. thiosalicylsäure 399, 426, **535**. thioschwefelsäure 400. — tolylcarbinol 714. tolylsulfid 534. tolylsulfon 534, 548. - urethan 22, 101. Aminophloroglucin-diathyläther 827. dimethyläther 827. - methyläther 827. Amino-pseudocumenol 642. pyrogallol 825, 826. Aminopyrogallol-triäthyläther 826. trimethyläther 826. Aminoresorcin 782, 783, 787. Aminoresorcin-äthyläther 782, 784, 785. diathyläther 783, 785. - dimethyläther 782, 784. methyläther 784. Aminosaligenin 800. Aminotetrahydro-naphthol 663. naphtholäthyläther 662. - naphthyldithiocarbamid= säure 195. umbellulylamin 3. Amino-tetraphenyltetras methylenglykol 825.

thiobenzaminotoluol 134.

Aminothiocarbonylamino.

dibenzyl 249.

Aminothiocarbonylaminodiphenylmethan 243.

Aminothio-hydrochinonmethyläther 790.

— kresol 575, 591, 601.

— naphthol 681, 686. — phenol 397, 425, 533.

Aminothymol 654.

Aminothymol-äthyläther 653, 654.

- methyläther 654.

Aminotoluidino-kresoläthyl= äther 589, 611.

— naphtholäthyläther 675.

- phenol 554.

— phenoläthyläther 554, 565.

— toluol 131, 145, 155.

 xylenoläthyläther 632.
 Aminotoluol-sulfaminotoluol 139, 148.

— sulfonylmethylaminos toluol 148.

sulfonylmethylaminoxylol
 184.

Aminotrichloroxyäthylaminos toluol 132, 156.

Aminotriphenyl-amin 80.

— carbinol 738, 739, 740.— carbinrhodanid 741.

Amino-trisdimethylaminotris phenylmethan 342, 343.

— veratrol 780.

— xylenol 629, 630, 631, 633, 634.

Aminoxylenol-äthyläther 630, 634.

— methyläther 630, 634. Aminoxylidinokresoläthylsäther 612.

Amylennitrolanisidin 369. Amylpropiolsäureanisidid 469. Anhalin 626.

Anhydro-äthoxyaminobenzyls alkohol, polymerer 800.

 äthylaminobenzylalkohol, dimerer 622.

- aminobenzhydrol, polymeres 696.

aminobenzylalkohol, polysmerer 621.

- aminomethylbenzylalkoshol, polymerer 634.

hol, polymerer 634.

— aminotriphenylcarbinol,

dimeres 739, 740.

— anilinotriphenylcarbinol 741.

Anhydrobisdimethylaminophenyl-äthylaminonaphthylcarbinol 775.

— anilinonaphthylcarbinol

- methylaminonaphthyls carbinol 774.

- oxynaphthylcarbinol 823.

Anhydro-diaminotriphenyls carbinol 743.

dianilinotriphenylcarbinol
 747.

- methoxyaminobenzyls alkohol, polymerer 800.

— methylaminobenzylalkohol, dimerer 621.

 nitroaminobenzylalkohol, polymerer 622.

oxybisdimethylaminotrisphenylcarbinol 822.

 tetraoxybisdimethyls aminotriphenylcarbinol 845.

triaminotrimethyltriphenylcarbinol 772.

triaminotriphenylcarbinol
 754.

— trianilinotriphenylcarbinol 760.

— trioxyaminotriphenyls carbinol 844.

Anilinblau und seine Carbinolsbase 768; (Geschichtsliches) 733.

Anilino-benzalaminophenols äthyläther 565.

benzaminotoluol 158.benzylaminotoluol 131.

benzylnaphthol 730, 732.

bisacetaminobenzol 297.
cyclohexanol 348.

 essigsäuredimethylaminos anilid 114.

Anilinoformyl-diphenyloxathylamin 708.

oxydiaminomethyldis phenyl 705.

— oxymethylbenzidin 705. Anilino-fuchsonanil 747.

- kresol 592.

— methylborneol 354.

naphthol 678, 684.
naphtholäthyläther 684.

— naphtholmethyläther 684. Anilinonaphthyl-acetat 684.

— aminotoluol 131.

-- benzoat 684.

Anilino-oxyanilinodiphenyls amin 502.

— phenol 365, 410, 444.

Anilinophenol-äthyläther 411, 446.

— isobutyläther 446. — methyläther 366, 411, 445.

Anilinophenyl-benzoat 411,

— dithiocarbamidsäure 103.

iminomalonsäureureid 24.
 oxyphenylbenzimidazols dihydrid 297.

Anilinosalicylalaminophenolmethyläther 565. Anilinothioformyl-diphenyloxathylamin 708.

— ephedrin 639.

pseudoephedrin 639.
 Anilinotriphenyl-amin 80.

— carbinol 739, 741. — carbinolmethyläther 741.

Anilinthiosulfonsäure 400. Anisalamino-benzylnaphthol 728.

- diphenylamin 93.

- phenol 369, 458.

- phenolmethyläther 458.

— phenyltolylsulfid 541. Anisal-anisidin 458.

isodiphenyloxäthylamin711.

— oxynaphthylbenzylamin 728.

Anisidin 358, 404, 435.

Anisidino-acetonitril 379. — acrylsäure 495.

— äthyldithiocarbamidsäure 381.

crotonsäureäthylester 496.
cyanacetessigsäureäthyle

ester 380.
— diphenylmethan 367, 451.

— essigsäure 379, 488.
— essigsäurenitril 379.

— essigsäurenitril 379. — isobuttersäurenitril 493.

— methylenacetessigsäures äthylester 380.

— methylenmalonsäureäthylsesteranisidid 497.

- phenylphthalid 496.

- thioformylhydrazin 480.

Anisoyl-aminonaphthol 680.
— aminonaphthylanisat 680.

- aminonaphthylbenzoat 680.

— benzoesāureanisidid 498.

 benzoesäurepseudoanisidid 498.

hordenin 627.

oxyphenyläthyldimethylamin 627.

Anissäureanisidid 493.

Anisyl- s. auch (p-) Methoxysbenzyl-.

Anisylamin 606.
Anthrachinon-dimethyls

aminoanil 91.

imiddimethylaminoanil 92.
imiddimethylaminophes

nylimid 92. Anthradiamin 269.

Antidimethylbernsteinsäurephenetidid 476.

phenetidid 476. Apomorphimethindimethylather 817.

Arabinose, Benzidinderivat der 227.

Arterenol 830.

Benzidin-bisthiocarbonsäures

Aspirophen 506. Azo-eosin 359. grenadin 94. Azurin 153.

B. Bandrowskische Base 296. Basler Blau 209. Benzalacetyl-isodiphenyl= oxathylamin 711. oxynaphthylbenzylamin **73**0. phenylendiamin 20, 96. Benzalaminoacetamino= phenylnaphthalin 271. Benzalaminobenzyl-alkohol 617, 622. anilin 168. — naphthol 727, 730. - naphthylamin 168. phenetidin 505. Benzalamino-dimethyldiphes nylamin 156. dimethyldiphenylsulfid 595. — diphenylamin 85. — isoamylnaphthol 689. — kresol 593. methylbenzyltoluidin 185. methyldiphenylamin 85. naphthol 668, 678. - phenol 368, 453. phenoläthyläther 369, 453. phenolmethyläther 453. - phenylbenzoat 454. - phenyltolylsulfid 540. — thymol 655. Benzal-anisidin 453. benzoylnaphthylendiamin 202. benzoyloxynaphthyl= benzylamin 730. bisaminophenylsulfid 535. Benzaldehydbisaminophenyls mercaptal 535. Benzal-diphenyloxathylamin 707. isodiphenyloxäthylamin 709, 710, 711. - naphthylendiamin 199. oxynaphthylbenzylamin 727, 730. – oxynaphthylisoamylamin 689. - phenetidin 369, 453. phenylendiamin 19. Benzamino-athylphenyls carbinol 638. aminophenylnaphthol 726. benzhydrol 697. - benzoyldiphenylamin 98.

Benzaminobenzylalkohol 618,

620, 622.

Benzaminobenzyl-anilin 170. benzanilid 171. - benzoat 620. — naphthol 731. Benzamino-brenzcatechindis methyläther 780. chlorbenzaminotoluol 159. dimethyldiphenylsulfid — diphenylamin 21, 98. kresol 604. Benzaminomethyl-benzoyls oxyphenylcarbinbenzoat benzoyloxyphenylcarbinol 801. - diphenylamin 21, 158. - naphthol 689. Benzamino-naphthol 666, 669, 673, 680, 682, 683. naphtholäthyläther 670. naphthylanisat 680. naphthylbenzoat 666, 670, 671, 673, 680, 682, 683, 684, 685, 686. Benzaminooxyhydrochinondimethylätherbenzoat trimethyläther 827. Benzaminophenol 372, 416, Benzaminophenol-äthyläther 469. methyläther 373, 469. phenacyläther 470. Benzaminophenoxy-acetos phenon 470. essigsäure 470. Benzaminophenyl-acetat 470. benzoat 373, 416, 470. cyanazomethinphenyl 51. kohlensäureäthylester 470. - mercaptan 545. tolylsulfid 546. urethan 103. Benzaminoresorcin 783. Benzaminoresorein-äthyläther 786. diäthyläther 786. dibenzoat 786. — dimethyläther 786. methyläther 785. Benzamino-thiophenol 545. thymol 657. thymolathylather 653, 658. veratrol 780. Benzanisidid 373, 469. Benzhydryl-aminophenols methyläther 367, 451. anisidin 367, 451. phenylendiamin 273. Benzidin 214. Benzidinbisdithiocarbonsäure

amid 229. carbonsäureäthylester 228. - dicarbonsäurediäthylester dicarbonsäurediamid 229. dicarbonsäurediphenyls ester 229. - diessigsäuredinitril 230. diisobuttersäurediamid 231. diisobuttersäuredinitril dimalonsäuretetraäthyl= ester 231. essigsäurenitril 230. — oxalylsäure 228. - sulfonsäure 233. Benzil-dimethylaminoanil 91. nitroanilinoanil 30. Benzoazurin 808. Benzochinon- s. Chinon-. Benzoesäure-anisidid 373, 469. phenetidid 469. Benzoldisulfonylbisphenylens diamin 115. Benzolsulfamino-benzolsulfos nylmethylaminoxylol 184. bisdimethylaminobenzol dimethylaminoxylol 184. — kresol 600. mesitol 648. phenol 382, 507. phenylbenzolsulfonat 382. xylenol 631. Benzolsulfonsäureaminobenzylamid 173, 174, 176. benzylanilid 173. benzyltoluidid 173. naphthylester 666. Benzolsulfonsäureanisidid 382, Benzolsulfonsäuremethylaminobenzylamid 173, 174. anisidid 382. - phenetidid 508. Benzolsulfonsäure-nitroäth oxyanilid 524. nitromethoxyanilid 391. oxyanilid 382, 507. phenetidid 507. Benzolsulfonyl-benzidin 232. - cyananisidin 509. methoxyphenylcyanamid Benzolsulfonylmethylaminodimethylaminoxylol 184. methyldibenzolsulfonyls oxyphenylcarbinnitrobenzoat 833. methyldibenzolsulfonyls oxyphenylcarbinol 833.

Benzolsulfonylmethylbenzidin 233. naphthylendiamin 207. - phenylendiamin 25, 52, Benzolsulfonyl-naphthylens diamin 203, 204, 207. — phenylendiamin 24,52,114. Benzóltrisulfonyltrisphenylens diamin 115. Benzoorange 218. Benzophenon-carbonsäures anisidid 496. carbonsaurepseudoanisidid - dimethylaminoanil 87. — oxyanil 455. Benzopurpurin 257. Benzovl-acetondimethyl= aminoanil 91. - ameisensäure . s. Phenylglyoxylsäure . . . - anilinophenol 374, 416. anilinophenylbenzoat 374, anisoylaminonaphthol 680. - benzidin 228. - benzoesäureanisidid 496. benzoesäurepseudoanisidid **4**96. - carbäthoxydiphenyläthy: lendiamin 253. - cyanid, Acetaminoanil des 108; Methylaminoanil des 107; Oxyanil des 496. – diphenyloxäthylamin 708. - essigsäurephenetidid 496. - hordenin 627. hordeninjodmethylat 627. — isodiphenyloxäthylamin 709, 710, 711 methebeninmethinjods methylat 840. Benzoylmethylamino-athylphenylcarbinbenzoat 638. methylbenzylcarbinbenzoat 640. phenol 373. phenylkohlensäureäthyls ester 373. Benzoylmethyl-pseudotropein 352. tropein 352. Benzoylnaphthylendiamin 199, 202. Benzoylnitro-benzoylaminophenol 373. benzylaminophenol 471. Benzovloxy-acetamino methylbenzol 603. benzalaminobenzylnaphthalin 730.

Benzoyloxybenzamino-dis methylbenzol 631. diphenylmethan 694. methylbenzol 577, 604. methylisopropylbenzol Benzoyloxy-benzoesäures phenetidid 493. benzoyldiphenylamin 374, benzylacetamid 582. bisbenzaminodiphenyl 692. diathylaminomethylbenzol Benzoyloxydimethylaminobenzoyldiphenylamin 418, 504. diphenylmethan 695. methylbenzol 600. Benzoyloxy-diphenylamin 411, 447. isovalerylaminomethylbenzo! 604. methylbenzoyldiphenylamin 416, 471. naphthylbenzylamin 731. - naphthylmethylamin 689. onanthoylaminomethyl= benzol 604. Benzoyloxyphenyl-äthyl benzamid 625, 627. äthyldimethylamin 627. glycin 489. tribenzoyläthylendiamin 381. urethan 377. Benzoyl-phenylendiamin 20, **4**6, 98. salicylsäurephenetidid 493. tolidin 259. toluidinophenylbenzoat 416, 471. Benzphenetidid 469. Benzylacetylaminobenzylacetanilid 170. Benzylaminobenzyl-alkohol anilin 167; Dinitrosoderis vat 173. naphthol 730. Benzylamino-diphenylyls cyanisothioharnstoff 228. kresol 593. methyldiphenylamin 131. methylphenylcarbinol 629. phenol 413, 448. phenolathylather 449. phenolmethyläther 366, 448. Benzyl-anisidin 366, 448. benzidin 281. benzovldiphenylathylens

Benzylbis-bromoxydimethyls benzylamin 644, 648. dibromoxydimethylbenzylamin 646. Benzyldi-acetylphenylendis amin 97. benzoylphenylendiamin **47. 99.** bromacetoxydimethylbenzylacetamid 650. bromoxybenzylamin 585, 609. bromoxydimethylbenzyls amin 649. phenyläthylendiamin 250. Benzylen-bisthioharnstoff 176. diharnstoff 176. imid, polymeres 616, 619, 620. Benzyliden- s. Benzal-. Benzylnitrosaminomethylphenylcarbinol 629. Benzylovy-aminomethylbenzol 572. methylphenylharnstoff naphthylbenzylamin 730. phenylharnstoff 484. Benzyl-phenetidin 449. phenylendiamin 18, 42, 82. sulfonsäurephenetidid 382. Benzyltetrabrom-acetoxy benzylacetamid 610. oxybenzylacetamid 587, **61**0. oxybenzylamin 587, 610. Benzyltribrom-acetoxymethylbenzylacetamid 632. oxymethylbenzylamin 631. Benzylviolett 755. Bernsteinsäure-anisidid 474. dianisidid 474. diphenetidid 475. phenetidid 474. Bindschedlergrün 89; Leuko base des 112. Bis- s. such Di-. Bisacetamino-äthylbenzol 177: s. auch 178. anilinomethyläther 96. anisol 549. brenzcatechinmethyl-Atheracetat 793. oyolohexan 1, 2. dibenzylsulfid 619, 624. Bisacetaminodimethyl-diphenyldisulfid 592. diphenylmethan 262. Bisacetaminodiphenylamin 110, 112, 297.

diamin 251.

Bisacetaminodiphenyl-disulfid | Bisacetyläthylamino-acetyl-Bisäthyl-anilinothioformyls 544. diphenylamin 113. aminodiphenylmethan disulfoxyd 545. phenetol 567. 243. methan 243; s. auch 238. phenol 567. benzoylaminodimethyls - phenoläthyläther 567. — sulfid 543. benzoyldiphenylamin · — sulfon 427, 543, 553. - phenylacetat 567. - sulfoxyd 543. Bisacetylanilino-phenol 568. benzovlaminonaphthyl* - trisulfid 545. - toluol 164. methan 290. Bisacetyl-mercaptodiacetylbenzylaminotriphenyl* Bisacetaminohydrochinon 791, 793. aminomethylbenzol 796. methan 277. methylaminoacetyldis mercaptoaminomethyl= Bisacetaminohydrochinonbenzol 796. phenylamin 113. diacetat 791, 793. toluidinophenol 568. methylätheracetat 793. mercaptobenzalanilin Bisäthoxy-benzalbenzidin 541. Bisacetaminomethyl-acetyl-226. nitrosaminodiphenyl. aminotoluol 303. dimethylphenylthioharns methan 244. isopropylbenzol 193. stoff 631. nitrosaminophenol 568. phloroglucintriacetat 829. methylbenzalbenzidin 226. sulfonvaleriansaurephenes Bisacetamino-naphthalin-Bisäthoxyphenyl-acetamidin tidid 496. tetrahydrid 195; s. auch 468. Bisallyl-oxyphenylthioharnstoff 484. acetylguanidin 482. - naphthol 676, 687. acetylthioharnstoff 486. thioureidoxylol 188. - naphtholäthyläther 675. äthylendiamin 499. Bisamino-acetaminophenyl-- naphthylacetat 674, 675, harnstoff 298. benzoylguanidin 482. 676, 687. carbodiimid 487. benzhydrylsulfid 697. naphthyldisulfid 671, 683. Bisaminobenzyl-äthylamin - formamidin 370, 460. phenetol 552, 565. fumaramid 476. 172. phenol 551, 554, 565. allylamin 172. guanidin 482. phenoläthyläther 552, 565. - harnstoff 481. anilin 172. phenolmethyläther 549. - iminopentanon 457. - benzidin 232. Bisacetaminophenyl-acetat - iminopentenol 457. – isobutylamin 172. 552, 554, 565. malonamid 474. - methylamin 172. acetylen 269. — oxamid 473. propylamin 172. - carbonat 464. — resorcin 822. selenoxamid 473. - diacetyläthylendiamin 51, succinamid 475. - toluidin 172. Bisaminodiphenylyl-amin 232. tartramid 495. harnstoff 103. thioharnstoff 482. - harnstoff 220. - naphthalin 271. thiooxamid 473. Bisaminomethylphenyl-äther Bisacetamino-resorcinacetat Bisäthoxythiobenzoyl-benzis 596. 788. din 231. ăthylendiamin 147, 162. resorcindiacetat 788. - harnstoff 135, 146, 160. dianisidin 809. stilben 268. phenylendiamin 51, 106. oxamid 135, 159. tetramethyldiphenyls tolidin 259. succinamid 159. methan 265. Bisaminonaphthyldisulfid Bisathylacetylamino-acetyls thymol 660. 667, 671, 681, 683. diphenylamin 113. - tolan 269. phenetol 567. Bisaminophenyl-acetamidin - toluol 133, 146, 157, 164. - trimethylbenzol 191. phenol 567. 97. acetylen 269. phenoläthyläther 567. – triphenylamin 113. – triphenylcarbinol 747. äthan 248. - phenylacetat 567. äthylen 267. Bisāthylamino-benzylresorcin triphenylmethan 277; s. äthylendiamin 51, 110. 823. auch 274. dimethyldiphenylamin athylenglykoldimethyls xylol 184; s. auch Diacetyls ather 814. xylylendiamin. dimethyldiphenylmethan butadiin 273. Bisacetoacetyl-benzidin 231. diacetylen 273. 263. diphenylamin 112. - naphthylendiamin 204. harnstoff 22, 48, 101. phenylendiamin 106. diphenylmethan 242. heptan 265. phthalamid 22. Bisacetoxyphenyl-diacetyls kresol 614. methylphenylthioharnsuccinamid 22. athylendiamin 813. stoff 146. sulfonäthan 426. dibenzoyläthylendiamin – sulfonäthylamin 426. naphthylmethan 290. 814. thioharnstoff 102. phenol 567. malonamid 474. — urethan 113. - oxamid 374, 473. toluol 154.

Bisaminotetrahydronaphthylharnstoff 195. thioharnstoff 195. Bisaminothioformylmethyls

aminotriphenylmethan

Bisanilino-benzylanthracen 292. — formylmethylaminodiphes

nylmethan 243.

naphthylmethan 290.

naphthylthioharnstoff 203.

phenylthioharnstoff 103. Bisanilinothioformyl-athylaminodiphenylmethan 243.

methylaminodiphenyls methan 243.

methylaminotriphenyls carbinol 747.

— methylaminotriphenyl≤ methan 277.

Bisbenzalamino-dibenzyls sulfid 623

diphenylamin 112.

- diphenyldisulfid 541. diphenylmethan 243.

– methylphenyläthylendis amin 147.

phenyläthylendiamin 110.

toluol 132.

Bisbenzamino-anisol 566. — benzylbenzamid 173.

cyclobutadiendiol 779.

dibenzylsulfid 624.

 dimethylcyclohexan 3. dimethyldiphenylsulfid

diphenyldisulfid 546.

menthen 6.

– methylcyclohexan 2.

methylpyrogallol 834.
naphthylbenzoat 687.

phenetol 555, 566.

phenolathylather 555, 566.

phenolmethyläther 566. phenylbenzoat 566.

- phenylcarbonat 470.

— phenylurethan 113.

– toluol 1**34,** 158.

xylol 184; s. auch Dibenzoylxylylendiamin.

Bisbenzolsulfamino-cyclo hexan 2.

phenetol 566.

phenoläthyläther 566.

toluol 139, 162.

trimethylbenzol 191.

- xylol 184.

Bisbenzolsulfonyläthylaminophenetol 566.

phenoläthyläther 566.

toluol 162.

Bisbenzolsulfonylmethylaminoxylol 184.

Bisbenzoyläthylamino-dimethylbenzoyldiphenylamin

naphthylmethan 290. Bisbenzoylanilino-phenol 568.

toluol 164.

Bisbenzoyl-methylaminodis methylbenzoyldiphenylamin 147.

oxyphenyldibenzoyläthy: lendiamin 814.

phenetidinomethan 471.

toluidinophenylbenzoat

Bisbisacetaminophenylphenylendiamin 299.

Bisbisdimethylaminobenzs hydryl-ather 703.

amin 309.

benzol 345.

- dianisidin 809. disulfid 704.

sulfid 704.

Bisbismethylaminodimethylbenzhydrylsulfid 720.

Bisb: omdimethoxy-carboxy benzalbenzidin 232.

phthalidylbenzidin 232. Bisbromnitrooxybenzyls methylamin 611.

Bisbromoxy-benzalphenylens diamin 93.

dimethylbenzylsenzyls amin 644, 648.

dimethylbenzylmethylamin 643, 648.

methoxybenzalbenzidin 226.

Bisbromphenylxylylendiamin 180.

Biscarbathoxyamino-dimethyldiphenylsulfid 592.

phenylcarbonat 485.

Biscarbomethoxyaminomethoäthylcyclopentan 3.

Biscarboxy-benzalbenzidin **232**.

benzaminotrimethylbenzol 191.

 benzoylxylylendiamin 189.

cinnamalphenylendiamin

methylaminodiphenyls methan 244.

Bischlor-acetaminomethylhydrochinon 802.

acetaminomethylpyrogallol 834.

anilinophenylthioharn. stoff 103.

Bischlor-benzalbenzidin 225.

benzalphenvlendiamin 86.

methoxyphenylthioharnstoff 385.

nitrobenzalphenylendiamin

phenylxylylendiamin 180. Biscinnamal-aminodibenzyls sulfid 624.

aminotoluol 132.

Biscinnamoylaminotoluol 159. Biscuminalaminotoluol 132. Biscyan-benzalbenzidin 231.

benzalphenylendiamin 108.

isopropyltoluylendiamin 138.

Biscyanmethyl-benzidin 230. phenylendiamin 106.

toluylendiamin 138, 147. Bisdiacetylamino-phloros glucinmethylätherdiace-

tat 828. thymol 660.

thymoläthyläther 660.

triphenylmethan 277.

Bisdiathylamino-benzhydrol 703.

dimethylaminobenzyls triphenylcarbinol 777.

dimethylaminobenzyltri* phenylmethan 334.

dimethyldiphenylmethan 263.

dinaphthyl 290.

diphenyläther 443

diphenyldisulfid 540.

diphenylmethan 242. diphenylselenid 548.

diphenylsulfid 540.

diphenylsulfoxyd 540. naphthylmethan 290.

Bisdiäthylaminophenyl-äthan 254

äthylen 268.

carbonat 410.

propan 262

propylen 268.

Bisdiäthylaminotriphenylcarbinol 746.

methan 276.

Bisdiaminophenyl-äthylen 342.

phenylendiamin 298.

Bisdianilinonaphthylmethan Bisdibenzylaminonaphthyl-

methan 290. Bisdibrom-acetoxydimethyls

benzylmethylamin 649. anilinoformyloxydimethylbenzylmethylamin 646.

methoxydimethylbenzyl= methylamin 646, 649.

Bisdibromoxy-benzylmethylamin 609.

benzyltoluidin 609.

 dimethylbenzyläthylamin 646, 650.

 dimethylbenzylsenzyls amin 646.

dimethylbenzylmethylamin 646, 649.

dimethylbenzylxylidin 646.

Bisdimethoxy-aminodiphes nylylharnstoff 808.

carboxybenzalbenzidin

phenylthioharnstoff 783, 786, 789.

phthalidylbenzidin 232. Bisdimethylaminoacetaminobenzhydrol 704, 705.

benzol 297.

— diphenylmethan 307.

— triphenylcarbinoläthyl= äther 750.

triphenylmethan 311, 317. Bisdimethylaminoathyl= amino-methyltriphenyls methan 320, 323

trimethyltriphenylmethan **329, 33**0.

Bisdimethylaminoanilinos triphenyl-carbinol 759.

methan 316.

Bisdimethylaminobenzaminobenzhydrol 705.

benzol 298.

diphenylmethan 307. Bisdimethylaminobenzhydrol

Bisdimethylaminobenzhydrol-

äthyläther 703. - benzyläther 703.

bisjodmethylat 703.

– methyläther 702. Bisdimethylaminobenzhydrylamin 307.

dithiocarbamidsaure 308.

- dithiocarbamidsāurebisdimethylaminobenz= hydrylester 704. Bisdimethylamino-benzidin

339.

benzidinbishydroxymethy. lat 339.

benzylaminomethyltris phenylmethan 324. benzylbenzol 282.

Bisdimethylaminocarbaths oxyamino-methyltris phenylcarbinoläthyläther 769.

methyltriphenylmethan 323.

Bisdimethylaminocarbath. oxyamino-triphenylcars binoläthyläther 750.

triphenylmethan 311. Bisdimethylamino-cycloheps

diathylaminomethyltris phenylmethan 319.

dibenzyl 248.

Bisdimethylaminodibenzylaminomethyltriphenylmethan 320.

disulfid 623. jodmethylat 249.

sulfon 623.

Bisdimethylaminodi amino-benzyltriphenyls carbinol 776.

benzyltriphenylmethan 334.

phenylfluoren 332.

Bisdimethylaminodimethylbenzhydrol 719.

diphenyl 261.

diphenylcarbinol 719. diphenylmethan 262, 263.

triphenylmethan 283.

Bisdimethylaminodinitroanilinomethyltriphenylmethan 319, 320, 324.

anilinotrimethyltriphenyl= methan 329.

benzalaminobenzol 296. Bisdimethylaminodiphenyl-

äther 443. amin 112.

 disulfid 539. Bisdimethylamino-diphenys

lenbistrimethylammoniumjodid 339. - diphenylin 339.

Bisdimethylaminodiphenyl-

methan 239. methanbishydroxymethy: lat 242.

methandioxyd 242.

selenid 547. sulfid 538.

sulfoxyd 538.

Bisdimethylaminoisopropyls triphenyl-methan 285.

methanbisjodmethylat 285.

Bisdimethylaminomethylacetylaminotriphenyl= carbinacetat 761.

acetylaminotriphenyls methan 317.

naphthylaminotriphenyls carbinol 761.

naphthylaminotriphenyls methan 316.

Bisdimethylaminomethylphenylcarbinbenzoat 642.

phenylcarbinol 642. triphenylmethan 282.

Bisdimethylamino-naphthyls methan 290.

nitrocyanbenzalamino= benzol 298.

oxydimethylaminobenzyls triphenylmethan 777.

phenetidinodiphenyls methan 506.

Bisdimethylaminophenylacetaminonaphthyl= methan 334.

· acetoxynaphthylmethan 773.

äthan 248, 253.

Bisdimethylaminophenyls äthylaminonaphthylcarbinol 774.

– carbinoläthyläther 775. carbinolmethyläther 775.

– methan 333.

Bisdimethylaminophenyläthylen 268.

aminonaphthylmethan 333.

anilinonaphthylcarbinol **7**75.

anilinonaphthylmethan 334.

bisacetaminonaphthyl: methan 344.

carbathoxymethylamino= naphthylcarbinol 776.

carbamidsäuremethylester

carbonat 407.

cyanazomethinnitrophenyl

diaminonaphthylmethan

dimethylaminonaphthyl* carbinol 774.

dimethylaminonaphthyl= methan 333.

dimethyldimethylamino. phenyläthylcarbinol 772.

dioxynaphthylmethan 823. harnstoff 102, 298.

heptan 265. mercaptan 559.

methylaminonaphthyl:

carbinol 774. methylaminonaphthyl=

methan 333. naphthalin 271.

naphthylendiamin 209.

oxamid 99.

oxyaminonaphthylmethan 776.

Bisdimethylaminophenylpropan 261, 262.

 propanhydroxymethylat 262.

- propylen 268.

- tetraoxynaphthylmethan 844.

— thioharnstoff 102.

thioschwefelsäure 559.

 toluidinonaphthylearbinol 775.

— toluidinonaphthylmethan 334.

Bisdimethylamino-propenylabenzol 194.

— thiobenzhydrol 703.

— thiophenol 559.

toluidinotriphenylmethan
 316.

— toluol 130, 145, 154.

 toluolhydroxymethylat bzw. jodmethylat 130, 145.

trimethyltriphenylmethan
 286.

Bisdimethylaminotriphenylcarbinol 741, 742, 743.

carbinoläthyläther 745.
carbinolbenzyläther 745.

carbinolbisjodmethylat
 745.

carbinolmethyläther 745.
carbinolmethylätherbiss

jodmethylat 746. — carbinthiol 749.

— methan 273, 274, 275.

— methanbisjodmethylat 276.

— methandioxyd 276. Bisdimethylaminoxylol 184. Bisdimethyl-benzalbenzidin

225. — phenylnaphthylendiamin 209.

— phenylxylylendiamin 180. Bisdinitro-benzalbenzidin 225.

— benzalphenylendiamin 86. — methylphenylphenylendis

- methylphenylphenylendiamin 81.

phenylaminophenol 446.
phenylbenzidin 223.

Bisdiphenyl-aminotriphenylmethan 277.
— guanidinodimethyldiphe-

nylsulfid 592. Bisformamino-dibenzylsulfid

619. — toluol 133.

- xylol 184.

Bisisoamyloxyphenylharnstoff 484.

Bisjodäthoxyphenylthioharns stoff 520.

Bisjod-benzalbenzidin 225.

— methoxyphenylthioharns
stoff 520.

Bismarckbraun 39.

Bismethoxybenzalphenylendisamin 92.

Bismethoxybenzyl-amin 608.
— nitrosamin 609.

— thioharnstoff 608.

Bismethoxymethylbenzalsbenzidin 226.

Bismethoxyphenyl-acetamis din 372, 468.

 — åthoxyphenylguanidin 487.

- äthylendiamin 814.

— benzoylguanidin 480.

— carbodiimid 378.

— diacetyläthylendiamin 814.

— dianisaläthylendiamin 814.

— dibenzaläthylendiamin 814.

— diformyläthylendiamin 814.

- formamidin 370, 460.

— fumaramid 476.

— guanidin 376, 479.— harnstoff 376, 479.

iminophenylmethoxys
 phenylbutylen 459.

- malonamid 474.

— nitrosamin 510. — oxamid 374, 472.

pentamethylendiamin
 381.

- succinamid 474.

— tartramid 495. — thioharnstoff 376, 480.

— xylylendismin 382. Bismethoxythiobenzoyl-benzidin 231.

— dianisidin 809.

— phenylendiamin 51, 106. — tolidin 259.

Bismethyl-acetonylmethylens phenylendiamin 44, 87.

acetylaminoacetyldiphesinylamin 113.

aminobenzylresorcin 822.
 Bismethylaminodimethylbenzhydrol 720.

— benzhydrylamin 310. — diphenylamin 147.

— diphenylmethan 263. Bismethylaminodiphenyl-

amin 111. --- disulfid 400.

— methan 239.

methandiessigsäure 244.

— sulfid 548.

— sulfoxyd 548.

Bismethylaminophenylnaphthalin 271. Bismethylamino-thioformylaminotriphenylmethan 277.

— toluol 153.

triphenylcarbinol 743.triphenylmethan 275.

— xylol 182, 183.

Bismethylanilinoformylaminodiphenylmethan 243.

Bismethylanilinothioformyls amino-diphenylmethan

triphenylcarbinol 747.triphenylmethan 277.

Bismethyl-anilinotoluol 164.

— benzalbenzidin 225.

 benzoylaminodimethylbenzoyldiphenylamin 147.

benzylaminodiphenylamethan 243.

carboxymethylaminodis phenylmethan 244.

Bismethylcyanamino-diphernylmethan 243.

triphenylcarbinol 747.
triphenylmethan 277.

Bismethylcyanmethylaminodiphenylmethan 244.

Bismethylmercapto-benzidin 810.

— diaminodiphenyl 810. — phenylthioharnstoff 401.

Bismethylnitrosamino-dimethyldiphenylmethan 263.

— diphenylmethan 244. — diphenylsulfid 549.

— diphenylsulfoxyd 549.

— phenylnaphthalin 272. — triphenylcarbinol 747.

— triphenylmethan 277.

— xylol 185. Bisnitrobenzal-aminodis

benzylsulfid 624.
— aminotoluol 168.

- benzidin 225.

— diphenyläthylendiamin 251.

— diphenylin 212.

— phenylendiamin 19, 86. — rosanilin 769

— rosanilin 769.

Bisnitrobenzoyl-aminophenol 373, 470. — phenylendiamin 21.

Bisnitrobenzylamino-phenol 414, 450.

phenolmethyläther 367.
toluol 156.

Bisnitrobenzyl-anisidin 367.

— benzidin 223. — diformylbenzidin 227.

— phenylendiamin 43.

Bisnitro-benzyltoluylens diamin 156.

methoxyphenylsuccinamid

oxybenzylsuccinamid 588.

- phenylbenzidin 223. - phenylxylylendiamin 180.

 toluolsulfonylphenylen≠ diamin 25, 52, 115.

Bis-onanthylidenaminotoluol 132.

oxodimethylcyclohexylidenphenylendiamin 44,

- oxophenyliminoamy lidenbenzidin 226.

Bisoxy-aminophenylpropan

- anilinodiphenylamin 502.

— benzylamin 582.

— butylidenaminophenyl= methylchinolylcarbinol

cyclohexyläthylamin 349.

 cyclohexylamin 348. Bisoxydimethylamino-benzyls

benzol 822. phenyläthan 814.

Bisoxyhydrindyl-amin 662. nitrosamin 662.

Bisoxy-methoxybenzalben= zidin 226.

methylbenzalphenylens

diamin 93. methylphenylharnstoff

618. Bisoxynaphthyl-harnstoff 685.

- methylamin 688.

methylenphenylendiamin

- methylsuccinamid 689.

thioharnstoff 685.

Bisoxyphenanthrylamin 725. Bisoxyphenyl-äthylendiamin

– äthylharnstoff 624.

- diacetyläthylendiamin

- dibenzoyläthylendiamin 813.

– fumaramid 476.

- harnstoff 375, 417, 478.

— malonamid 474. — naphthylendiamin 506.

- oxamid 374, 417, 472.

propylamin 641.

tartramid 495.

 thioharnstoff 418, 479. Bisoxytetrahydronaphthylathylendiamin 665.

amin 664.

Bisphenacetaminotoluol 159. | Bistoluolsulfonylmethyl= Bisphenyl-guanidinodimethyldiphenylsulfid 592.

nitrosaminophenol 568.

 nitrosaminotoluol 164. Bisphenylsulfon-aminophenol 828.

- cyclopentan 900.

 dimethylphenylendiamin 792.

menthan 900.

phenylendiamin 792.

Bisphenylthioureido-dime= thyldiphenylsulfid 592.

- menthan 4.

- menthen 6.

Bisphenylureido-dimethyl* cyclohexan 3.

fluoren 266.

- menthan 4.

— menthen 6.

- methylcyclohexan 3.

Bispropionylamino-dibenzyl= disulfid 619.

naphthyldisulfid 671.

phenylcarbonat 469.

toluol 158.

Bispropyloxyphenylharnstoff 484.

Bissalicoylaminomethylbrenzcatechin 801. hydrochinon 802.

Bissalicylalamino-dibenzyls sulfid 624.

phenyläthylendiamin 110.

toluol 133, 169.

Bissulfobenzalphenylens diamin 109.

Bistetrabrom-acetoxybenzyls methylamin 587.

oxybenzylanilin 610.

oxybenzylmethylamin 587, 610.

Bisthioanisovl-benzi lin 231.

dianisidin 809.

tolidin 259.

Bisthiocarbonyl-aminodiphes nylamin 112.

benzidin 230.

dianisidin 809.

diphenylin 212.

tolidin 259.

Bisthionylamino-diphenyls sulfid 546.

stilben 268.

- toluol 139.

Bis-thiopropionylbenzidin 228.

thioureidodimethyldis phenylsulfid 592.

toluidinonaphthylmethan 291.

toluolsulfaminotoluol 139.

aminodiphenyl 214; s. auch Ditoluolsulfonyl= dimethylbenzidin.

Bistolylmercapto-methyl= phenyloxamid 579, 596.

methylphenylthioharn= stoff 596.

phenylformamidin 541.

phenyloxamid 546.

phenylthioharnstoff 546.

Bistolylnitrosaminophenol 568.

Bistribrom-acetoxymethyl= benzylmethylamin 635.

oxymethylbenzylmethyl= amin 631, 635.

Bistrichlor-acetylphenylens diamin 20, 97.

oxyäthylaminotoluol 156.

– oxyäthyltoluylendiamin 156.

Bistri-methoxybenzalbenzidin 227.

methoxyphenylnitrosamin 828.

methylphenylxylylendi= amin 181.

nitrophenylphenylen= diamin 80.

Bornylendiamin 6.

Brenzcatechin, Athoxyphenyl carbamidsäureester des

Brenzcatechin-dipropion säurediphenetidid 492.

dipropionsäurephenetidid 492.

methylätherpropionsäure: phenetidid 492.

propionsäurephenetidid **492**.

Brenztraubensäure-äthoxys anil 495.

anisidid 495. $is odiphenylox \"{a}thylimid$

709, 710, 712. methoxyanil 495.

Brenzweinsäure-anisidid 475.

bisbrommethoxyanilid 516.

bisnitromethoxyanilid 523. dianisidid 475.

diphenetidid 475. phenetidid 475.

phenetididbromathoxy=

anilid 516. phenetididnitroathoxy:

anilid 523. Brillant-alizarinblau 558.

grün und seine Carbinols base 746.

Bromacetaminoanisol 516.

Bromacetamino-benzylanilin methylnaphthol 688. methylnaphthylacetat 688. – naphtholäthyläther 681. - naphtholmethyläther 673, naphthylacetat 673. - phenetol 386, 516. phenol 386, 420, 515. - phenoläthyläther 386, 463, 516. phenolmethyläther 516. - thymoläthyläther 657. Bromacetoxy-acetaminos methylbenzol 594. acetaminomethylisopropylbenzol 653 benzylacetylanilin 583. diacetylaminomethylisos propylbenzol 658. Bromathoxy-acetaminodis phenyl 693. aminodiphenylamin 503, 565. - aminomethylisopropylbenzol 658. nitrobenzalaminodiphenylamin 503. phenylsuccinamidsäure 516. salicylalaminodiphenylamin 565. Bromamino-acetaminotoluol 140, 163. anisol 386, 515. - benzylacetylanilin 170. --- benzylanilin 167. - carvacrol 653. - dimethylaminotoluol 140. - diphenylamin 28, 78. kresol 573, 578, 594, 605. – kresolbenzyläther 573. Bromaminomethyl-hydros chinon 794. - naphthol 688. phenylkohlensäureäthyls ester 574, 605. Bromamino-naphtholathylather 681. naphtholmethyläther 681. - phenetol 386, 420, 515. - phenol 386, 420, 515. Bromaminophenol-äthyläther **386, 420, 515**. benzyläther 386. methyläther 386, 515. Bromamino-phenylcamphers amidsäure 55. phenylkohlensäureäthyls ester 386. thvmol 658. thymoläthyläther 658. Brombenzalaminobenzyl-

anilin 168.

Brom-benzaminophenyls benzoat 516. benzaminothymol 658. benzolsulfaminodimethyl= aminotoluol 141. benzoyloxybenzaminos methylbenzol 578, 594. benzoylphenylendiamin 119. benzyloxyaminomethyls benzol 573. Brombis-acetaminotoluol 141, 163. acetoxyacetaminomethyl= benzol 794. benzaminotoluol 141, 163. Bromdiacetylamino-carvacrol kresol 594. methylnaphthol 688. naphthol 673. phenetol 516. phenoläthyläther 516. Bromdiacetylphenylendiamin 114. Bromdiamino-benzol 27, 55. butylbenzol 192. diphenyl 213. toluol 123, 140, 163. xylol 185. Bromdibenzoylamino-kresol 578, 594. phenol 516. Brom-dichroinsäure 570. dichromazin 570. Bromdimethyl-aminoacets aminotoluol 140. aminobenzaminotoluol 141. - phenylendiamin 28. Bromdinitro-acetoxydiphenyls amin 516. diaminobenzol 60. - diphenylphenylendiamin 60. methylaminophenylmethylnitramin 60. oxydiphenylamin 516. phenylenbismethylnitramin 60 phenylendiamin 60. trianilinobenzol 301. Brom-dioxyaminomethylbenzol 794. diphenylin 213. essigsaurephenetidid 463. Brommethoxy-benzalamino benzylnaphthol 728. benzaloxynaphthylbenzyls amin 728. phenylurethan 386. Brommethylbenzyl-aminophenolmethyläther 367. anisidin 367. Bromnitroacetaminophenol 393, 423, 525.

Bromnitro-athoxyaminomethylisopropylbenzol athoxybenzaminomethyl= isopropylbenzol 659. Bromnitroamino-anisol 392. phenol 392, 393, 423. phenolmethyläther 392. thymoläthyläther 659. Bromnitro-benzalaminos benzylanilin 168. benzaminophenol 525. benzaminothymolathyl: ather 659. diaminobenzol 58, 122. oxybenzyldiäthylamin 611. oxybenzyldiisoamylamin 611. phenylendiamin 58, 122. Bromoxy-aminomethylbenzol 573, 578, 594, 605. aminomethylisopropylbenzol 653, 658. benzalaminobenzylnaph= thol 728. benzaloxynaphthylbenzyls amin 728. benzaminomethylisopros pylbenzol 658. benzylacetylanilin 582. - benzylanilin 580, 584. dimethylaminodimethyls diphenylmethan 716. dimethylbenzylanilin 643. dimethylbenzyldiisoamyl= amin 643. hydrinden 662. methylchinonimid 794. methylphenylurethan 574, 605. - phenylurethan 386. Bromphenylendiamin 27, 55. Bromphenyl-oxyphenylbenz= imidazoldihydrid 28. phenylendiamin 28. salicylalphenylendiamin Brom-propionsäurephenetidid 468. propionylaminophenols athylather 468. salicylalaminobenzylanilin 168. tetranitrodimethylphenylendiamin 60. triacetylaminothymol 658. trinitrodimethylphenylen. diamin 60. Butyl-oxyphenylbenzoyls

carbamidsaureisoamyl-

phenylendiamin 191.

Butyrylaminonaphthol 669.

ester 487.

c.

Campherchinon-athoxyanil

methoxyanil 456. oxyanil 414, 455.

Campheroxalsaure, Benzidins derivat der 232.

Camphersäure-acetaminos anilid 100.

aminoanilid 100.

- bromaminoanilid 55.

Camphersulfonylphenylens diamin 115.

Carbathoxy-athylaminophes nylkohlensäureäthylester

aminodimethyldiphenyls sulfid 596.

Carbathoxvaminomethyl= phenyl-oxamid 136, 137.

- oxamidsäure 136. oxamidsäureäthylester

136, 137.

Carbathoxyaminophenylharnstoff 104.

 kohlensäureäthylester 485. – kohlensäurepropylester

485. – oxamid 104.

oxamidsäureäthylester

tolylsulfid 546.

Carbathoxy-diphenyloxathyl= amin 708.

— isopropylidenisodiphenyl= oxathylamin 712.

- oxyphenylcarbamidsäure= ' propylester 485.

oxyphenylharnstoff 485.

oxyphenylurethan 485.

phenetidinoacetamid 489. Carbaminyl- s. Aminoformyl-. Carbanilsäureaminomethyl=

phenylester 602. Carbonyl-benzidin 220.

-- bisdianisidin 808.

– bisoxyphenylcarbamid: säurepropylester 485.

bisoxyphenylurethan 485.

– dianisidin 808. — dibenzidin 220.

dileukauramin 308.

Carboxyäthylidenisodiphenyl= oxäthylamin 709, 712.

Carboxymethoxybenzoesäureanisidid 493.

phenetidid 493

Carboxymethyldiäthyläth oxyphenylammonium: chlorid 379.

Carvacroxyessigsäurephene tidid 490.

Carvolin 660.

Chicagoorange 218.

Chinon-acetaminoaniloxim 96.

- äthoxyaniloxim 457.

- aminoanil 88.

aminonaphthylimid 202.

anilaminoanilinoanil 112.

anilinoanil 90. aniloxyanil 456.

bisacetaminoanil 297.

bisdiaminoanil 296.

carbonsauredibromoxy: anil 518.

diaminoanil 296. diaminomethylanildime= thylimoniumchlorid 303. dibromoxyanil 518.

Chinondimethylamino-anil 88.

anildimethylimonium= hydroxyd 89.

Chinondiphenylmethid-anil 741.

imid, dimeres 739, 740. Chinon-imidaminodinitro= anilinoanil 297.

imiddiaminomethylanil

imidmethoxyanil 456.

- imidoxyanil 456.

— methoxyanil 456. — methoxyaniloxim 457.

methylimid 441.

oxyanil 456.

oxydimethylanil 635.

sulfonsäuredimethyl= aminoanil 109.

Chloracetamino-anisol 383, 384, 385, 420, 511.

benzylanilin 169.

diphenylamin 26, 95. kresolmethyläther 601, 605.

- methylnaphthol 689.

naphtholmethyläther 680. phenetol 384, 420, 511.

phenol 371, 384, 511. phenoläthyläther 384, 420,

463, 511.

phenolmethyläther 383, 384, 385, 420, 511. phenylacetat 511.

thymoläthyläther 657.

Chloracetoxy-acetaminos

methylbenzol 594, 605. acetaminomethylisopro= pylbenzol 652.

benzylacetylanilin 583. Chloracetyl-anilinotriphenyls amin 97.

oxynaphthylmethylamin

phenylendiamin 117; s. auch 53.

salicoylaminophenol 465. Chlor-athoxymethyldiphenyl= amin 448.

äthylaminophenol 368.

Chloral-phenylendiamin 19, 84. toluylendiamin 132, 156.

Chloramingrün 218.

Chloraminoacetamino-anisol

phenolmethyläther 555.

phenylmercaptoessigsäure

phenylthioglykolsäure 563. Chloramino-anilinocroton=

säureäthylester 27. anisol 383, 384, 420, 511.

benzhydrol 697.

benzylalkohol 622.

benzylanilin 166, 167. Chloraminobisdimethylaminomethyltriphenylmethan

318, 319, 321, 323, 324. trimethyl triphenyl methan

328, 329, 330.

triphenylmethan 312. Chloramino-carvacrol 652.

diphenylamin 17, 25, 26, 78.

kresol 594, 605.

— kresolmethyläther 601, 605.

methylaminotoluol 148.

methylanilinocrotonsäure= äthylester 161.

methyldiphenylamin 26.

— methylhydrochinon 794.

methylphenyliminobutter≈ säureäthylester 161.

phenanthrol 724.

— phenetol 383, 420, 511.

phenol 383, 420, 510, 511. Chloraminophenol-äthyläther **383, 420,** 511.

benzyläther 383.

chlorbenzyläther 384.

dinitrophenyläther 512. methyläther 383, 384, 420, 511.

Chloraminophenoxyessigsäure

Chloraminophenyl-acetat 384. iminobuttersäureäthyl=

ester 27.

kohlensäureäthylester 384, 385.

mercaptan 427.

– sulfamidsäure 54.

Chloraminoresorcin-diathylather 786.

dimethyläther 786. Chloramino-thiophenol 427.

thymol 658. Chloranilinoformyloxy-dis

aminomethyldiphenyl 705.

methylbenzidin 705. Chloranilinotriphenylamin 80. Chlorbenzalamino-benzyls anilin 168.

diphenylamin 85.

Chlorbenzalamino-phenol 512. | Chlordinitro-aminodiphenyl-– phényltolylsulfid 540.

Chlorbenzamino-anisol 383.

— phenol 420.

-- phenolmethyläther 383. Chlorbenzyl-aminophenol 512.

oxyaminomethylbenzol 6Ò2.

Chlorbisacetamino-hydros chinon 791.

- hydrochinondiacetat 791. — toluol 148; s. auch 140.

Chlorbisacetoxyacetamino. methylbenzol 794.

Chlorbisäthylaminodimethyls triphenylcarbinol 770.

Chlorbisdiathylaminotriphes nyl-carbinol 748.

methan 278.

Chlorbisdimethylaminotris phenyl-carbinol 748.

carbinolmethyläther 748. — methan 273, 277, 278.

Chlor-bisnitrobenzalphenylens diamin 26.

— bromaminophenylkohlen« säureäthylester 387.

 bromoxyphenylurethan 387.

— chinondimethylaminoanil

hlordiacetylamino-carvacrol 652.

— kresol 594, 605.

phenol 511.

Chlor-diacetylphenylendiamin 26, 118; s. auch 53, 54. diathylphenylendiamin

117.

Chlordiamino-benzol 25, 53, 54, 117.

- diphenyl 212.

– diphenylamin 110.

hydrochinon 791.

— naphthalin 207.

resorcin 788.

- toluol 123, 140, 148, 164.

- trimethylbenzol 190.

— xylol 183.

Chlor-dibenzalphenylendiamin

- dibenzoylphenylendiamin 26, 118; s. auch 53, 54. dibromoxybenzylacetyls

anilin 585. — dimercaptoaminobenzol

793. dimethylphenylendiamin

25, 117. Chlordinitroacetamino-anisol

397.

phenolmethyläther 397. Chlordinitroacetoxydiphenylamin 511, 512.

äther 512.

aminodiphenylamin 17. bisoxyphenylphenylendi-

amin 500. methylnitraminomethyldiphenylamin 143.

oxydiphenylamin 365, 384, **445**, 511, 512.

oxymethyldiphenylamin 511.

phenylacetylnaphthylen* diamin 199.

phenylnaphthylendiamin 198

trianilinobenzol 300.

Chlordioxy-aminomethyl* benzol 794.

anilinonaphthalin 805. benzylacetamid 796.

dimethoxyditoluidinodis phenyl 843.

Chlor-diphenylin 212.

disulfhydrylaminobenzol 793.

ditoluolsulfonylphenylens diamin 54.

Chloressigsäure-acetamino benzylamid 176.

athoxyacetaminobenzylamid 614.

äthoxylactylaminobenzyls amid 614.

phenetidid 463.

Chlorformamino-anisol 384.

formyldiphenylamin 94. phenolmethyläther 384.

Chlorformylanilino-benzyls chlorformylaminotoluol

 chlorformylbenzylaminos toluol 172.

Chlorformyloxyphenyl-carbamidsäurephenylester

- carbonimid 488.

– isocyanat 488.

Chlormethoxy-acetaminos methylbenzol 601, 605.

aminomethylbenzol 601,

Chlor-methylphenylendiamin

naphthylendiamin 207. Chlornitroacetamino-anisol

diphenylamin 96.

phenolmethyläther 392. Chlornitroamino-anisol 392,

diphenylamin 41. phenol 392, 524.

phenolmethyläther 392,

Chlornitro-benzalaminobenzylanilin 168.

benzolsulfonylaminodimes thylaminotoluol 139. bisdimethylaminotriphes

nylmethan 280. diacetylphenylendiamin

32.

diaminobenzol 58.

dibenzoylphenylendiamin 32.

dimethylphenylendiamin 32.

ditoluolsulfonylphenylens diamin 58.

oxybenzylacetamid 588. 610.

phenylendiamin 58.

Chlornitrosoathoxymethyl= diphenylamin 510.

Chloroxy-athylaminodiphes nylamin 502.

aminomethylbenzol 594, 605.

aminomethylisopropyl= benzol 652, 658.

aminophenanthren 724. - benzylacetylanilin 582.

benzylanilin 580.

hydrinden 662.

Chloroxymethoxy-aminos propylbenzol 802.

benzylacetamid 796. Chloroxymethyl-aminodis

phenylamin 502. chinonimid 794.

- isopropylbenzylacetamid 661.

Chloroxy-phenylurethan 384, 385

propylaminobenzylalkohol 617

Chlorphenyl-acetylphenylendiamin 26.

diformylphenylendiamin

Chlor-phenylendiamin 25, 53, 54, 117.

phenylphenylendiamin 25, 26.

pikrylaminophenol 511.

propionsäureanisidid 468. propionylaminophenols methyläther 468.

Chlorpropyl-athoxyphenylharnstoff 418.

methoxyphenylharnstoff

Chlorsalicylalamino-benzyls anilin 168.

diphenylamin 92.

Chlor-toluoisulfonylphenylens diamin 54, 118.

tolylphenylendiamin 26. - triaminobenzol 299.

Diacetylamino-naphthol 666,

Chlortrinitroacetamino-anisol 397. phenolmethyläther 397. Chlortrinitro-acetoxydiphes nylamin 524, 525. oxydiphenylamin 511, 524, Chlor-trisdimethylaminotris phenylmethan 317. vanillylacetamid 796. Chromechtgelb G G 359. Chromotrop 6 B 94. Chrompatentgrün 395. Chrysamin 218. Cinnamalamino-benzylnaphs thol 731. dimethyldiphenylsulfid 595. diphenylamin 87. — naphthol 668, 679. - phenol 369, 454. phenyltolylsulfid 541. Cinnamal-isodiphenyloxathylamin 709, 710, 711. oxynaphthylbenzylamin 731. Cinnamoyl-hordenin 627. oxyphenyläthyldimethyls amin 627. Cinnamyliden- s. Cinnamal-. Citraconsaureanisidid 477. Citrobenzidylsäure 220. Citronensaurediphenetidid 495. Citrophen 437. Columbiaschwarz R 128, 257. Cuminalamino-benzylalkohol - benzylnaphthol 727. – diphenylamin 86. - phenol 454. – t̃hymol **6**55. Cuminaloxynaphthylbenzylamin 727. Cuminyl-aminophenol 450. nitrosaminophenol 510. Cyan-acetonathoxyanil 496. acetonoxyanil 496. aminophenylharnstoff 49, 104. - anisidin **374, 4**72. Cyanbenzal-acetylphenylens diamin 108. aminophenol 496. benzoylphenylendiamin

REGISTER. Cyan-phenetidin 377, 418, 473, **481.** phenylendiamin 101. Cyclohexendicarbonsaureanisidid 477. oxyanilid 477. phenetidid 477. Cyclohexyl-bisdimethylaminos phenylmethan 269. dimethylaminophenyls carbinol 665. D. Deltapurpurin 257. des-Methyltropin usw. s. unter Methyltropin usw. Desoxybenzoindimethyl: aminoanil 87. Di- s. auch Bis-Diacetamino-s. Bisacetaminobezw. Diacetylamino-Diacetoxy-acetaminomethyls benzol 798. acetaminonaphthalin 803, 804, 805, 806. acetyldiphenylamin 468 bisacetaminodiphenyl 807, bisacetaminophenanthren 817. bisdimethylaminotris phenylmethan 821. diacetylaminonaphthalin 806. tetrakisacetaminodiphenyl 811. trisdimethylaminotris phenylmethan 820. Diacetyläthebenin 840. Diacetylaminobenzyl-acetat 618. naphthylacetamid 176. Diacetylaminobrenzcatechindiäthyläther 780. methylätheracetat 780. - methylätheräthyläther 780; s. auch 781. methyläthyläther 780, Diacetylaminocarvacrol: methyläther 652. Diacetylaminodimethyl: phloroglucin-methylätherdiacetat 834. triacetat 834. Diacetylaminokresol 575, 600, 603. Diacetylaminomethylphloros glucin-dimethyläther: acetat 829.

669, 673, 680, 682, 683. naphtholäthyläther 669. naphthylmercaptan 681. phenanthrol 725. - phenol 371, 416, 464. phenoläthyläther 468. phenylmercaptan 401, 543. phenylsenföl 105. Diacetylaminophloroglucindiäthylätheracetat 828. methylätherdiacetat 828. Diacetylamino-pseudocumes nol 643. recordindiacetat 785. resorcinmethylätheracetat 785. -- thionaphthol 681. - thiophenol 401, 543. Diacetyl-benzidin 227 benzoylaminokresol 604. benzyloxynaphthylbenzyls amin 731. Diacetylbis-acetoxyphenyls äthylendiamin 813. methoxyphenyläthylendiamin 814. oxyphenyläthylendiamin 813. Diacetyl-dianisidin 809. diphenyläthylendiamin 250, 251. diphenylin 212. diphenyloxathylamin 708. methebenin 840. naphthylendiamin 199, 200, 202, 208; s. auch 204, 205, 206. oxynaph thyl benzylam in731. phenetidin 468. phenylendiamin 20, 46, 97. tetrahydronaphthylen: diamin 195; s. auch 194. tolidin 255, 258. toluylendiamin 133, 146, 157, 164. xylylendiamin 181, 187. Diäthoxalyl-tolidin 259. toluylendiamin 135. Diathoxy-aminodiphenylamin 554. benzidin 808. Diathoxybenzolsulfonyl-bens zolsulfaminodiphenyl= amin 568. benzolsulfonylbenzyl= aminodiphenylamin Diäthoxydiamino-diphenyl 808. diphenylamin 793. methylätherdiacetat 829. diphenylmethan 812.

Cyanisopropylamino-phenol

Cyanisopropylanisidin 493.

Cyanmethyl-anisidin 379.

- phenylendiamin 105.

· benzidin 230.

phenolmethyläther 493.

492.

Diathoxydiamino-diphenyls sulfon 790.

Diathoxydimethyldiisopropyl-acetyldiphenylamin 657.

- diphenylamin 654.

Diathoxyoxoaminophenyls iminodimethoxyphenyls butan 19.

Diathylacetylphenylen-diamin 45.

— diaminhydroxymethylat 95.

Diathylamino-benzhydrylamin 247.

— benzylamin 175. — benzyltolyidin 175

- benzyltoluidin 175.

cyclohexanol 348.
 dimethylaminobenzylebenzhydrol 770.

Diathylaminoessigsaure-acetaminobenzylamid 176.

 äthoxyacetaminobenzyls amid 615.

— āthoxylactylaminobenzylamid 615.

— dioxybenzylamid 797.

 nitrooxybensylamid 588.
 Diäthylaminoformyl-oyanmethylenphenylendiamin 109.

— oxyphenylharnstoff 485. Diäthylaminokresol 600. Diäthylaminomethyl-diphe-

nylcarbinol 713.

— methoxybenzylcarbinol 802.

— phenylbenzoat 600. Diāthylamino-phenol 365,

— phenolathylather 365. Diathylaminophenyl-acetat 410.

- benzoat 410.

Diathylaminophenyloyanazos methin-carbonsaureamid 109.

- carbonsăurenitril 109.

- nitrophenyl 108.

— phenyl 107.

Diathylamino-phenylkohlens saurechlorid 410.

— phenylthionamidsaure s. Dialkylamino....

resorcindimethyläther 783.
tetrahydronaphthol 664.

— tetrahydronaphthylbenzoat 664.

Diäthyl-benzidin 222, 264.

— benzoyldiphenyläthylens diamin 252.

- bromnitrooxybenzylamin 611. Diathylcarbamidsaure-acets aminophenylester 465. — aminophenylester 440.

Diathyl-cyanbenzalphenylens diamin 107.

diacetylbenzidin 227.
 diacetylphenylendiamin 07

— dibenzoylbenzidin 228.

Diathyldibromacetoxy-benzylamin 585. — dimethylbenzylamin 648.

Diathyldibromoxy-benzyls amin 584.

 dimethylbenzylamin 644, 648.

Diathyldicyanmethylenphes nylendiamin 109.

Disthyldimethylindamin-sulfid 561.

— thiosulfonat 562.

 thiosulfonsāure, Endosalz 562.

Diäthyl-dinitrobenzalphenyslendiamin 85.

— diphenylbenzoyläthylens diamin 252.

Diäthylglycin-acetaminobens sylamid 176.

 āthoxyacetaminobenzyls amid 615.

äthoxylactylaminobenzyls
 amid 615.

— diòxybenzylamid 797. — nitrooxybenzylamid 588.

Diäthyl-malonsäurediphenetis did 476.

— naphthylphenylendiamin 83.

Diathylnitro-benzalphenylens diamin 85.

cyanbenzalphenylendiamin 108.

 oxybenzylamin 588.
 Diathyl-oxymethylisopropylbenzylamin 661.

— phenetidin 365. Diäthylphenylen-diamin 41,

75. — diaminchlormethylat 76.

— diaminthiosulfonsäure 559. Diäthyltoluindamin-sulfid

- thiosulfonat 563.

nol 567.

 thiosulfonsaure, Endosalz 563.

Diāthyltoluylen-diamin 154.
— diaminthiosulfonsāure 613.
Diāthyltriacetyldiaminophes

Dialkylaminophenylthions amidsäuren 115. Diaminblau 218. Diamine CnH2n+2N2 1.

- C_nH_{2n}-6N₂ 194.

 $\begin{array}{lll} & - & C_nH_{2n-10}N_2 & 196. \\ & - & C_nH_{2n-12}N_2 & 210. \end{array}$

 $- C_{n}H_{2n-18}N_{2} 270.$

 $\begin{array}{llll} & - & C_nH_{2n} - 20N_2 & 273. \\ & - & C_nH_{2n} - 22N_2 & 288. \\ & - & C_nH_{2n} - 22N_2 & 288. \end{array}$

— C_nH_{2n}—24N₂ 288. — C_nH_{2n}—28N₂ 291.

 $\begin{array}{lll} & - & C_nH_{2n-80}N_2 & 292. \\ & - & C_nH_{2n-82}N_2 & 292. \end{array}$

 $- C_{n}H_{2n} - 86N_{2} 292.$

Diamin-echtrot 218.

— grün 218.

Diaminoacenaphthen 237. Diaminoacetamino-benzol

297. — naphthalin 305.

— toluol 302.

Diaminoacetyldiphenylamin 113.

Diaminoāthyl-aminotoluol 303.

- benzol 176, 177.

— naphthalin 210.— phenol 628.

Diaminoaminoanilinoaminos naphthylaminobenzol 337.

Diaminoanilino-benzol 295.

— hydrochinondiäthyläther

hydrochinondiäthyläther
 793.

- naphthalin 304.

— toluol 302.

Diamino-anisol 567.
— anthracen 269.

- benzaminonaphthalin 305.

benzaminotoluol 303.benzhydrol 698.

— benzhydrol 698. — benzol 6, 33, 61.

— benzolsulfaminotoluol 302.

— benzyldiphenyl 281. — bisacetaminodiphenyl-

methan 341. Diaminobisamino-anilinobens zol 337.

— naphthylaminobenzol 338. Diaminobis-benzylaminodismethyldiphenylmethan

342.

— diäthylaminodiphenyldisulfid 559.

Diaminobisdimethylamino-diphenyl 339, 340.

- diphenyldisulfid 557.

diphenylmethan 340.triphenylmethan 343.

Diaminobrenzcatechin 782. Diaminobrenzcatechin-athyläther 793. dimethylather 782. - methyläther 781, 782, 793. Diamino-butylbenzol 191. - camphan 6. - carvacrol 653. - cumol 189. - cyclohexan 1, 2. - cymol 192. Diaminodiathyl-aminodiphes nylmethan 307. - benzol 193. - diphenyl 264. Diaminodianilino-benzol 337. diphenylsulfon 567. Diaminodibenzyl 248, 249. Diaminodibenzyl-amin 172, diphenyl 291. - disulfid 619, 620, 623. - sulfid 619, 623. Diaminodimethylaminobenzol 295. diphenyl 306. — diphenylamin 298. - methyldiphenylamin 303. - methyldiphenylmethan methyltriphenylmethan 318, 319. - toluol 302, 303. Diaminodimethyl-benzhydrol — benzol 178, 179, 181, 182, 183, 186, 187, 188. – cyclohexan 3. - diphenyl 255, 256, 261. diphenylather 596. diphenylcarbinol 720. – diphenyldisulfid 592, 601. – diphenylmethan 262, 263. - diphenylsulfid 576, 591. triphenylmethan 284. Diamino-dinaphthyl 289, 290. diphenyl 210, 211, 213, 214. Diaminodiphenyl-āthan 249. - äther 361, 441. — äthersulfonsäure 550. - amin 52, 110, 295. – butan 264. butylen 268.carbinol 698. - diphenyl 291. disulfid 400, 426, 536. - disulfoxyd 426. Diaminodiphenylen-bisgly kolsaure 809. bistrimethylammoniums hydroxyd 339. Diaminodiphenylhexadien, Dibenzoylderivat des 270.

Diaminodiphenyl-methan 237, | Diamino-phenanthrol 725. methandiessigsäure 244. – sulfid 399, 535. sulfon 399, 426, 536, 553. sulfoxyd 536. Diamino-ditan 237, 238. dithiohydrochinon 792. divinyldiphenyl 270. durol 193. fluoren 266. formyldiphenylamin 113. fuchsonimid 754. guajacol 781, 782; s. auch Diaminobrenzcatechin= methyläther. hydrochinon 791, 792. hydrochinonathylather 793. hydrochinonmethyläther isopropylbenzol 189. kresol 588, 597; s. auch Oxyaminobenzylamin. Diaminokresol-athylather 588, 613; s. auch Athoxys aminobenzylamin. methyläther 611. Diamino-menthan 3, 4. menthen 5. mesitol 650. mesitylen 190, 191. methoxymethylbenzol 611. methyläthylbenzol 189. Diaminomethylaminodimethylamino-diphenylmethan 340. methyldiphenylmethan 341. Diaminomethyl-aminotoluol 301, 302, 303. benzol 123, 124, 144, 148, 164, 165, 174. cyclobexan 2. dimethoathylcylopentan 4. diphenyl 247. diphenylmethan 254, 255. isopropylbenzol 192. methoäthenylcyclohexan 5. methoäthylcyclohexan 3, 4. methoäthylcyclohexen 5. naphthalin 209. phenylmercaptan 597. phloroglucin 829. tolylnaphthalin 272. Diamino-naphthalin 196, 200, 201, 203, 204, 205, 207, naphthalintetrahydrid 194. naphthol 674, 675, 676, 686, 687. orcin 799. phenanthren 270.

phenetol 564, 567. phenol 549, 553, 563, 564, phenolathylather 564, 567. phenolmethyläther 567. Diaminophenoxy-benzolsulfonsäure 550. naphthalinsulfonsaure 550. Diaminophenyl-diphenyl 273. - mercaptan 555. - naphthalin 271. thioschwefelsaure 556. Diamino-phloroglucinmethyle äther 828. pseudocumol 190. pyren 273. — pyrogallol 826. resorcin 787, 788.stilben 266, 267. - tetraäthylbenzol 194. Diaminotetramethyl-benzol 193. diphenyl 264. — diphenyläther 634. diphenylmethan 265. triphenylmethan 286. Diamino-thickresol 597. thiophenol 555. thymol 659. - thymoläthyläther 659. - tolan 269. toluhydrochinon 795. - toluol 123, 124, 144, 148, 164, 165, 174. tribenzylamin 173. Diaminotrimethyl-benzol 190, 191. bicycloheptan 6. - fuchsonimid 772. Diaminotriphenyl-amin 113. carbinol 742. - carbinolmethyläther 743. — methan 273, 274. Diamino-tritan 273, 274. veratrol 782. xylol 178, 179, 181, 182, 183, 186, 187, 188. Diamin-reinblau 808. scharlach 218. schwarz 218. Dianilino-diphenylbutylen fuchsonanil 760. phenol 551, 567. salicylalaminobenzol 297. tetraphenylxylol 292. toluol 164. triphenylcarbinol 746. - triphenylmethan 276. Dianilschwarz 38. Dianisalbismethoxyphenyls äthvlendiamin 814.

Dianisal phenylendiamin 93. Dianisidin 807. Dianisidinblau 808. Dianisidinomethan 368, 452. Dianisoylaminonaphthol 680. Dianisyl-amin 608. nitrosamin 609. Dibenzal-benzidin 224 bismethoxyphenyläthylens diamin 814. - diphenyläthylendiamin 249, 251. - phenylendiamin 19, 44, 85. – tolidin 255. - toluylendiamin 132. Dibenzamino- s. Bisbenzamino- bezw. Dibenzoylamino-Dibenzolsulfonyl-aminophenol 382. benzidin 233. bisbromäthylphenylendis amin 116. — diāthylphenylendiamin 52, 116. diäthyltoluylendiamin 162. — diisobutylxylylendiamin - dimethylbenzidin 233. - naphthylendiamin 207. - phenylendiamin 25, - toluylendiamin 139, 162. - xylylendiamin 181. Dibenzoyladrenalin 832. Dibenzoylamino-kresol 577, 604 - naphthol **666,** 670, 671, 673, 680, 682, 683, 684, 685, 686. phenol 373, 416, 470. phenylmercaptan 401. - resorcindiäthyläther 786. - thiophenol 401. — thymol 658. xylenol 631. Dibenzoyl-benzidin 228. bisacetoxyphenyläthylendiamin 814. bisbenzoyloxyphenyls äthylendiamin 814. — bisoxyphenyläthylendiamin 813. - dianisidin 809. - diphenyläthylendiamin 250, 251. diphenylin 212. – diphenyloxäthylamin 708. - ephedrin 638. isodiphenyloxäthylamin 712. methanoxyanil 415.

- methebenin 840.

Dibenzoyl-naphthylendiamin Dibromacetoxydimethylben-199, 202, 204, 207. zyl-methylanilin 645. oxybenzaminomethylbennaphthylacetamid 647,650. zol 798. Dibromäthansulfonsäurephe-Dibenzoyloxybisdimethylnetidid 508. amino-diphenylmethan Dibromamino-acetaminotoluol 141 triphenylmethan 821. anisol 387, 517. Dibenzoyloxymethyl-acetyldiphenylamin 28, 119. aminoäthylphenanthren kresol 595. phenetol 387, 420, 517. benzoylaminoäthylphes phenol 387, 517. nanthren 818. phenolathylather 387, 420, Dibenzoyl-phellandrendiamin phenolmethyläther 387, phenylendiamin 21, 47, 98. 517. pseudoephedrin 638. - resorcin 786. tolidin 259. - resorcindiäthyläther 787. toluylendiamin 134, 158. Dibromanilinoformyloxydis xvlvlendiamin 181, 189. methyl-aminodimethyl-Dibenzyl-acetylphenylendis diphenylmethan 716. benzylanilin 649. amin 45 amarin 252. Dibrombenzamino-anisol 518. aminophenol 367, 450. phenol 518. - benzidin 291. phenolmethyläther 518. Dibrombenzidin 234. benzoyldiphenyläthylens diamin 252. Dibrombenzoyl-oxybenzyldibenzoyldiphenyläthylenacetanilid 586. diamin 253. oxydimethylaminodime: diphenyläthylendiamin thyldiphenylmethan 716. oxydimethylbenzylanilin oxybenzylphenylendiamin phenylendiamin 120. oxydimethyldiisopropyls Dibrom-bernsteinsaurediphediphenylamin 655. netidid 475. phenylendiamin 19, 82. chinondimethylaminoanil Dibromacetamino-anisol 518. phenol 387, 518. chinonoxyanil 456. phenolmethyläther 518. Dibromdiacetyl-aminoresors Dibromacetoxybenzyl-acetcindiacetat 787. anilid 585. phenylendiamin diathylamin 585. 120; s. auch 28. methylanilin 585. toluidin 609. Dibromdiamino-benzol 28, 55, 119. Dibromacetoxydiathylaminos diphenyl 211; s. auch dimethyldiphenyl-Dibrombenzidin. methan 718. methylisopropylbenzol methanjodmethylat 718. 193. Dibromacetoxydimethyl= methylpropylbenzol 192. amino-acetaminodi-Dibrom-dimethylaminocyclos methyldiphenylmethan heptanol 349. 719. dimethylbenzidin 260. dimethyldiphenylmethan 716, 719. dioxyaminomethylbenzol 798. dimethyldiphenylmethandioxydiphenylamin 518. gallussäurebromäthoxys hydroxymethylat bezw. Salze 717, 719. anilid 517. Dibromacetoxydimethylben-Dibrommethoxydimethylbenzyl-anilin 644. zyl-acetanilid 643, 647, 650. diisoamylamin 648. anilin 642, 644. methylanilin 645. – diäthylamin 648. Dibrommethoxyphenylnitros. diisoamylamin 644, 648. amin 518.

methan 718 — aminomethylbenzol 595. -- anilinonaphthol 667. Dibromoxybenzal-aminoben= zylnaphthol 728. oxynaphthylbenzylamin 728. Dibromoxybenzylacet-anilid 585. – anisidid 586. -- pseudocumidid 586, 610. toluidid 586, 609.xylidid 586, 609, 610. Dibromoxybenzyl-anilin 585. benzanilid 587. - benzylamin 585, 609. - diathylamin 584. — diisoamylamin 585, 609. — methylanilin 585. - naphthylacetamid 586. -- pseudocumidin 609. – toluidin 609. Dibromoxydiäthylaminodis methyldiphenyl-methan 718, 719. methanjodmethylat 718. Dibromoxydibenzylamin 585, Dibromoxydimethylaminoacetaminodimethyldiphe= nylmethan 718. — dimethyldiphenylmethan 716, 719. dimethyldiphenylmethan= hydroxyäthylat 717. - dimethyldiphenylmethan= hydroxymethylat717,719. diphenylmethan 695. Dibromoxydimethylbenzylacetanilid 643, 647, 650. — amin 644. – anilin 642, 643, 644, 649. benzanilid 647. - benzylamin 649. – diäthylamin 644, 648. — diisoamylamin 642, 644, – methylanilin 644, 649. - naphthylacetamid 647,650. naphthylamin 646, 649. -- pseudocumidin 645. — toluidin 645. xylidin 645. Dibromoxymethyläthylamis nodimethyldiphenylme= thanhydroxymethylat 717.

phenylendiamin 59.

Dibromnitrosaminophenol=

methyläther 518.

Dibromoxy-aminodimethyl=

aminodimethyldiphenyl-

Dibromnitro-diaminobenzol 59. Dibrom-phenylendiamin 28, 55, 119. tetramethylphenylendi= amin 55. tolidin 260. Dibutyloxydimethyldiisopro= pyldiphenylamin 655. Dicarbonylbenzidin 230. Dichloracetamino-anisol 385. phenetol 512. — phenoläthyläther 512. — phenolmethyläther 385. Dichloramino-anisol 385, 513. bisdimethylaminotriphe= nylmethan 317. — diphenylamin 26. — phenetol 512, 514. - phenol 385, 512, 513. phenoläthyläther 512, 514. phenolmethyläther 385, - phenylkohlensäureäthyl= ester 385. Dichloranilinonaphthol 682. Dichlorbenzal-aminophenols äthyläther 453. phenetidin 453. Dichlor-benzidin 234. bisacetaminotriphenyl= methan 278.Dichlorbisdimethylamino-di= phenylmethan 244. triphenylcarbinol 748. triphenylmethan 278. Dichlor-bismethylaminodimes thyltriphenylcarbinol - chinonimidoxyanil 456. Dichlordiacetyl-phenylendis amin 24, 27, 52, 114, 118; s. auch 54. tolidin 260. Dichlordiamino-benzol 27, 54, 118. diphenylmethan 244. — hydrochinon 791. – naphthalin 209. toluol 165. - triphenylmethan 278. xylol 179, 182. Dichlor-dianilinohydrochinon dibenzoylbenzidin 234. Dichlordibrom-diacetylphe nvlendiamin 55. oxybenzylacetylanilin 585. Dichlordimethyl-aminodiphes nylmethan 903. benzidin 259. Dichlordinitro-acetoxydiphes nylamin 513. äthoxydiphenylamin 386.

Dichlordinitro-methoxydiphes nylamin 385. oxydiphenylamin 513. oxymethyldiphenylamin **5**13. Dichlor-dioxybisdiathyl= aminotriphenylmethan diphenylphenylendiamin 118. - naphthylendiamin 209. — nitrobisdimethylamino: triphenylmethan 280. oxyaminodiphenylamin **503**. oxydimethylaminodi= phenylamin 513. oxyphenylurethan 385. pararosanilin 762. phenylendiamin 27, 54, 118. pikrylaminophenol 513. tolidin 259. triaminotriphenylcarbinol — trinitroacetoxydiphenyls amin 525. - trinitrooxydiphenylamin **513**, **525**. Dicinnamal-benzidin 226. phenylendiamin 87. tolidin 258. – toluylendiamin 132. Dicinnamoyltoluylendiamin Dicuminal-diphenyläthylen: diamin 251. tolidin 258. - toluylendiamin 132. Dicyanphenylendiamin 50. Diformyl-benzidin 227. bismethoxyphenyläthylen= diamin 814. diphenyläthylendiamin **251**. - diphenyloxäthylamin 707. - phenylendiamin 45, 94. - tolidin 258. - toluylendiamin 133. Digalloylphenylendiamin 106. Diglykolamidsäure-dianisidid 419, 506. diphenetidid 419, 507. Dihydrocarvyldiamin 5. Diisoamylbrom-nitrooxy benzylamin 611. oxydimethylbenzylamin 643. Diisoamyldibrom-acetoxys dimethylbenzylamin 644, methoxydimethylbenzyl= amin 648.

Diisoamyldibrom-oxybenzyls amin 585, 609.

oxydimethylbenzylamin 642, 644, 648.

Diisoamyl-phenylendiamin 76.

- tetrabromoxybenzylamin 587, 597.

 tribromoxymethylbenzyls amin 631, 635.

Diisobutyl-oxymethylisos propylbenzylamin 661. - xylylendiamin 180.

Diisocvan-mesitol 651.

trimethylbenzol 190. Dijod-aminophenol 520.

diaminobenzol 56, 120. - phenylenbisphenylharn-

stoff 56. phenylendiamin 56, 120. Dimercapto-aminodiphenyl

810. aminomethylbenzol 795.

– phenylendiamin 792. Dimethebeninmethinhydroxy. methylat 839.

Dimethoxy-acetaminopropylbenzol 802.

 acetoxymethylacetyls aminoäthylphenanthren 840.

äthoxyphenyliminos methylbenzoesäure 498. Dimethoxyamino-diphenylamin 782.

– diphenylmethan 813.

 diphenylylcarbonimid 808. — diphenylylisocyanat 808.

 diphenylylisothiocyanat 809.

– diphenylylsenföl 809.

 phenanthren 816, 817. propylbenzol 802.

Dimethoxy-benzalamino phenolathylather 458.

benzaminohydrochinondimethyläther 789.

benzhydrylamin 813.

– benzidin 807.

Dimethoxybenzoyloxy-dimethylaminoathylphenanthrenjodmethylat 840.

methylbenzoylaminoathylphenanthren 840.

Dimethoxybenzyl-amin 796. aminoacetaldehyddiäthyls acetal 796.

Dimethoxy-bisacetaminodis phenylmethan 813.

bispikrylaminodiphenyls disulfid 791.

- carbāthoxyaminophenans thren 816, 817.

Dimethoxydiamino-benzs hydrol 836.

dimethyldiphenyl 815.

diphenyl 807.

diphenylcarbinol 836. diphenyldisulfid 791.

diphenylmethan 812, 813.

diphenylsulfon 790.

Dimethoxydibenzylamin 608. Dimethoxydimethylamino-

äthylphenanthren 817. bismethoxyphenylaces naphthen 845.

diphenylacenaphthen 824.

phenyliminobenzoylaceton

triphenylmethan 819.

Dimethoxydimethyl-benzidin

diisopropyldiphenylamin 654

Dimethoxydiphenylamin 451. Dimethoxydiphenylen-biss äthylbenzoylisothioharnstoff 809.

diisothiocyanat 809.

dileukauramin 809.

disenföl 809.

Dimethoxy-oxyanilinophthas lid 498.

oxyphenyliminomethylbenzoesäure 498.

paraleukanilin 821.

pararosanilin 841

phenacetaminomethyldis methoxyphenylcarbinol

phenetidinophthalid 498. Dimethoxyphenyl-athylamin

athyldimethoxyphenylessigsäureamid 801.

dimethoxydimethylaminoäthylphenyläthylen 843. senföl 786.

Dimethoxytetraathoxy-pararosanilin 846.

triaminotriphenylearbinol

Dimethoxytriamino-triphes nylcarbinol 841.

triphenylmethan 821. Dimethylacetoxy-naphthylacetylphenylendiamin

phenyläthylamin 626.

Dimethylacetyl-carbathoxy methylenphenylendis amin 108.

naphthylendiamin 202. Dimethylacetylphenylendis amin 20, 45, 95.

Dimethylacetylphenylendiaminhydroxymethylat **4**5, 95.

Dimethylathoxyphenylnaphthamidin 471.

Dimethylathyl-acetaminomethylphenylammonium. bromid 133

oxyanilinophenylammo-niumjodid 502.

oxyphenylathylammos niumhydroxyd 627.

Dimethylamarin 252.

Dimethylaminoacetaminomethylacetylaminobenzol

phenylacetat 551.

toluol 133, 146, 157.

toluoljodmethylat 157.

Dimethylaminoathylphenyls carbinol 637, 638, 639.

Dimethylaminoanilino-

chinonoxim 93. diphenylmethan 243.

essigsauredimethylamino-

anilid 114. naphthol 685.

pentadienaldimethyl: aminoanil 88.

Dimethylaminobenzaminophenylbenzoat 552.

xylol 184.

Dimethylamino-benzhydrol 696

benzhydroläthyläther 697.

benzhydrylamin 246. benzophenonchlorid 903.

Dimethylaminobenzyl-acetat 622

alkohol 622.

amin 175.

diathylaminobenzylbenzol

oxydi**šthylamin**obenzylsbenzol 770.

oxydimethylaminobenzylbenzol 770.

toluidin 175.

Dimethylaminobisacetaminobenzol 297.

diphenyl 306.

methyltriphenylmethan 319

toluol 303.

Dimethylaminobis-athylbens zylaminotriphenylcarbinol 761.

benzalaminodiphenyl 306.

diathylaminomethyltriphenylmethan 319.

dimethylaminophenylanthracendihydrid 335. Dimethylaminobis-salicylals aminodiphenyl 306.

 thiocarbonylaminodiphes nyl 306.

Dimethylamino-borneol 353.

 campherjodmethylat, Benzoesäureester seiner Enolform 354.

— cycloheptanol 349.

cycloheptenol 351.

cyclooctenol 352.

 diacetylaminoacetyldis phenylamin 113.

Dimethylaminodiathylaminodimethylaminobenzyltrisphenylcarbinol 777.

dimethylaminobenzyltrisphenylmethan 334.

— phenylanthracen 289.

phenylanthracendihydrid
 288.

Dimethylaminodimethylamino-benzylbenzhydrol 770.

— phenylanthracen 288.

— phenylanthracendihydrid 288.

- phenylbenzofluoren 291.

— phenylfluoren 288. Dimethylamino-dimethylbis cyclononanoljodmethylat

354. — diphenylamin 79.

diphenylendiisothiocyanat
 306.

- diphenylendisenföl 306.

— diphenylin 306.

diphenylsulfon 537, 548.
 Dimethylaminoformyl-benzalsphenylendiamin 107.

- cyanmethylenphenylendis

amin 109.

Dimethylamino-hydrochinondimethyläther, Hydroxymethylat des 789.

— kresol 599.

Dimethylaminomethyl-benszylcarbinbenzoat 640.

— benzylcarbinol 640.

 bicyclononanoljodmethylat 352.

 cyanmethylaminodiphes nylmethanjodmethylat 244.

 dimethylaminophenyls fluoren 288.

— dioxyphenylcarbinol 833.

 diphenylsulfon 537, 548.
 Dimethylaminomethylenamino-phenylmercaptan 560.

 thiophenol mono- und polymeres 560. Dimethylaminomethyl-methsoxybenzylcarbinbenzoat 802.

— methoxybenzylcarbinol 802.

— naphthol 688.

Dimethylaminomethylnitrosamino-diphenylmethan 244.

— phenylnaphthalin 272.

- xylol 184.

Dimethylaminomethylphenylacetat 600.

— benzoat 600.

- carbinbenzoat 629.

- carbinol 629, 660.

Dimethylamino-naphthol 670.
— naphthylaminotoluol 131.

- nitrobenzaminophenyls nitrobenzoat 552.

 oxybenzyltriphenylcarbis nol 824.

-- phenol 362, 405, 442.

Dimethylaminophenol-äthyl= äther 407, 443.

ather 407, 443. — methyläther 363, 407, 443.

- vinyläther 363.

Dimethylaminophenyl-acetat 407, 443.

— anthrachinonylsulfon 538, 549.

- anthrylsulfon 538, 548.

- benzoat 407.

Dimethylaminophenylbenzylcarbinol 706.

cyanisothioharnstoff 103.
nitrosamin 117.

Dimethylaminophenylbissäthylaminonaphthylcarbinol 777.

— methan 335.

Dimethylaminophenylbisanis linonaphthyl-carbinol 778.

methan 335.

Dimethylaminophenylbisdimethylaminonaphthylmethan 335.

methylaminonaphthyls carbinol 777.

— methylaminonaphthylmethan 335.

— oxynaphthylmethan 825.

— toluidinonaphthylcarbinol

toluidinonaphthylmethan

Dimethylaminophenylcarbaminylazomethin-nitrosphenyl 107.

- phenyl 107.

Dimethylaminophenyls cuminylnitrosamin 117.

Dimethylaminophenylcyans azomethin-carbonsäures amid 109.

— carbonsäurenitril 109.

— nitrophenyl 107. — phenyl 107.

Dimethylaminophenyl-dithiosbiuret 103.

glycin 105.

— glycinamid 105.

— glycinnitril 105.

- harnstoff 102.

Dimethylaminophenyliminoacetessigsäureäthylester 108.

- acetylaceton 92.

- benzoylaceton 92.

Dimethylaminophenylkohlensäurechlorid 408.

— mercaptan 537.

- methylnitrosamin 53, 116.

- naphthylcarbinol 732.

- naphthylsulfon 537, 538,

548.

— nitrosaminophenol 419. — oxamid 99.

— oxamidsāure 99.

 oxamidsäurehydroxys methylat 47; inneres Anshydrid 47, 99.

— phenylnitrosamin 116. — succinamidsäurehydr:

oxymethylat, inneres Anshydrid des 48.

— thioharnstoff 102.

— thionamidsaure s. Disalkylamino

— tolylsulfon 537, 548.

Dimethylamino-salicylalaminomethyldiphenylamin 162.

tetrahydronaphthol 664.
tetrahydronaphthylben-

zoat 664. — thiocarbathoxyaminothiocarbonylaminodiphenyl

- thiophenol 537.

tripĥenylcarbinol 739,
 740.

Dimethyl-anisalphenylens diamin 93.

— anisidin 363, 407, 443. — anisovlovynhenyläthyls

 anisoyloxyphenyläthyls amin 627.

benzalphenylendiamin 84.
benzidin 220, 255, 256.

Dimethylbenzidin-diessigs säuredinitril 231.

disulfonsaures Natrium
 224.

Dimethylbenzochinonoxyanil 457.

Dimethylbenzoyl-diphenyläthylendiamin 252.

oxyphenyläthylamin 627.
phenylendiamin 21, 46, 98.

phenylendiaminhydroxys
 methylat 46.

Dimethyl-benzylphenylens diamin 82.

 bernsteinsäurephenetidid 475, 476.

biscyanmethylbenzidin
 231.

 bromnitrophenylallylidenphenylendiamin 87.

 bromphenylallylidenphes nylendiamin 86.

- chinondimethylaminos anil 90.

Dimethylchlor-acetylphenyslendiamin 95.

— nitrophenylallylidens phenylendiamin 86, 87.

— phenylallylidenphenylens diamin 86.

Dimethyl-cinnamalphenylens diamin 86.

cinnamoyloxyphenyläthylamin 627.

— cuminalphenylendiamin86.

— cuminylphenylendiamin 82.

Dimethylcyan-benzalphenyslendiamin 107.

— methylphenylendiamin 105.

Dimethylcyclohexandionacetaminoanil 45, 96.

— aminoanil 44, 88. — bisaminoanil 44.

Dimethyldiacetyl-diphenyläthylendiamin 251.

— phenylendiamin 46, 97. Dimethyldiathyldibenzyls

pararosanilin 761.

Dimethyldiäthylindamin-sulfid 560.

— thiosulfonat 561.

 thiosulfonsāure, Endosalz 561.

Dimethyldiathylphenylendiamin 76.
— diaminbishydroxymethys

lat 76. Dimethyl-dibenzoyldiphenyl-

äthylendiamin 252.

dicyanmethylenphenylens diamin 109.

Dimethyldihydroresorcinacetaminoanil 45, 96.

— aminoanil 44, 88. — bisaminoanil 44. Dimethyldimethylaminos phenyl-āthylbisdimethyls aminophenylcarbinol 772.

glyoylphenylendiamin 114.
 Dimethyl-dinaphthylphenyslendiamin 83.

dinitrobenzalphenylens diamin 85.

Dimethyldiphenyl-äthylens diamin 250.

benzoyläthylendiamin 252.
diacetyläthylendiamin 251.

— diacetyläthylendiamin 251 — dibenzoyläthylendiamin

Dimethyldiphenylen-bissoxamidsäureäthylester 259.

- diharnstoff 259.

— diisothiocyanat 259.

— dileukauramin 309.

— disenfol 259.

— diurethan 259. Dimethyldiphenylin 256.

Dimethyldiphenyl-methylens phenylendiamin 87.

— oxathylamin 707.

— toluylendiamin 164.

— xylylendiamin 180. Dimethyl-ditolylphenylens

diamin 42, 81, 82.
— formylphenylendiamin 94.

— glycinphenetidid 506.

Dimethylindamin-thiosulfonat 561.

— thiosulfonsäure 561.

Dimethyl-isopropylbenzylphenylendiamin 82. — methoxybenzylphenylen-

diamin 608.
— morphotebainmethinjods

methylat 837.
— naphthylendiamin 201.

- naphthylphenylendiamin 43, 82, 83.

Dimethylnitro-aminoformylbenzalphenylendiamin

benzalphenylendiamin 84.cinnamalphenylendiamin

cyanbenzalphenylens diamin 107.

 phenylbenzimidazoldihys drid 156.

Dimethyloxy-acetaminobenszylamin 614.

benzalphenylendiamin 93.
benzylamin 580.

 methylisopropylhexahydrobenzylamin 351.

hydrobenzylamin 351.

– naphthylmethylamin 688.

Dimethyloxy-naphthylphes nylendiamin 685.

— phenyläthylamin 626. Dimethylphenetidin 407, 443. Dimethylphenyl-anisidin 414.

 benzylmethylenphenylendiamin 87.

Dimethylphenylendiamin 15, 39, 40, 71, 72, 178, 179, 181, 182, 183, 187, 188.

Dimethylphenylendiaminbisthiosulfonsaure 792.

- disulfonsaures Natrium 83—84.

hydroxymethylat bezw.
 Salze 40, 75.

— thiosulfonsäure 557. Dimethylphenylengrün 89

Dimethylphenylengrün 89. Dimethylphenyl-glycylphenylendiamin 114.

– leukauramin 308.

 methoxyphenylmethylens phenylendiamin 93.

 naphthylendiamin 271.
 nitrosaminoacetylphenylendiamin 114.

— phenetidin 414.— phenylendiamin 79.

Dimethyl-pikrylphenylendis amin 42.

— pseudogranatolin 352. — salicylalphenylendiamin

92.
Dimethyltoluindamin-sulfid

562. — thiosulfonat 562.

— thiosulfonsaure, Endosalz

Dimethyltoluylen-diamin 153.

— diaminthiosulfonsaura 612

— diaminthiosulfonsaure 612.

Dimethyl-trinitrobenzalphenylendiamin 85.

 trisdimethylaminophenylpropan 331.

Dinaphthyl-benzidin 223, 224.
— diacetylphenylendiamin

46, 97.
— dibenzoylphenylendiamin

— dibenzoyiphenylendiamin 47, 99. Dinaphthylin 290.

Dinaphthyl-phenylendiamin

43, 83. — xylylendiamin 181, 189.

Dinitroacetamino-anisol 393, 394, 425, 526, 527, 528, 530.

- diphenylather 463.

- diphenylamin 96.

— methyldiphenylamin 133.

— phenetol 394, 526. — phenol 396, 425, 526, 528,

— phenoläthyläther 394, 526.

Dinitroacetamino-phenoldis nitrophenyläther 530. - phenolmethyläther 393, 394, 425, 526, 527, 528, phenoxyessigsäure 526, **527**, **530**. - phenylacetat 530. - phenylphthalamidsäure 101. Dinitroacetoxy-diphenylamin 366, 446 methyldiphenylamin 448. Dinitroacetylbenzoylaminos phenol 530. Dinitroäthansulfonylaminophenetol 531. phenoläthyläther 531. Dinitroathoxy-diphenylamin 366, 393, 423, 424. methylaminomethylbenzol Dinitroathoxyphenyl-athyl= nitramin 394. – methylnitramin 394. - sulfoxyddiphenylamin 401. - urethan 531, 532. Dinitroathylamino-anisol 393, 424. phenetol 393. - phenoläthyläther 393. phenolmethyläther 393, Dinitroathylnitramino-anisol 394. phenetol 394. phenoläthyläther 394. - phenolmethyläther 394. Dinitroamino-anisol 393, 394, 395, 423, 424, 525, 527, 528, 529. — diphenyläther 438. - diphenylamin 41, 79. - kresol 591, 595, 601, 614. Dinitroaminomethyl-aminotoluol 142. - diphenylamin 42, 81, 131, 155. — nitraminotoluol 143. - nitrosaminotoluol 142. - phenylmethylnitramin 143. - phenylmethylnitrosamin Dinitroamino-phenetol 393, 423, 525 phenol 394, 424, 525, 527,

529, 548.

Dinitroaminophenol-athyl-

äther 393, 423, 525.

- dinitrophenyläther 529.

Dinitroaminophenolmethyläther 393, 394, 395, 423 424, 525, 527, 528, 529. Dinitroamino-phenoxyessigs saure 526, 527, 528, 529. phenylaminonaphthyl= phenylendiamin 200. phenylbenzoat 395. – resorcin 783. - resorcindimethyläther 787. Dinitroanilino-acetaminophenol 566. brenzcatechindimethyl= äther 781. formaminotoluol 133. Dinitroanilinohydrochinonāthyläther 789. diäthyläther 790. — dimethyläther 789. - methyläther 789. Dinitroanilinomethyl-nitr= aminotoluol 143. - nitresaminotoluol 143. phenylmethylnitramin143. phenylmethylnitrosamin 143. Dinitroanilino-phenoläthyls äther 393, 423, 424. phenolmethyläther 393, 423, 424. resorcindimethyläther 787. veratrol 781. Dinitrobenzalamino-naphthol 668, 671, 681, 683, 684, naphtholmethyläther 684. naphthylacetat 668. - naphthylbenzoat 682. phenoläthyläther 454. Dinitrobenzal-benzidin 224. phenetidin 454. Dinitrobenzamino-anisol 394, 526. phenol 396, 528. phenolmethyläther 394, phenylacetat 530. Dinitro-benzanthron 901. benzidin 235, 236. benzoyltoluidinophenyl= benzoat 416. benzylaminoacetamino= phenol 566. Dinitrobisacetamino.diphenyle disulfid 547. diphenylmethan 246. toluol 164. Dinitrobisamino-naphthyls phenylendiamin 200. phenylphenylendiamin 60. Dinitrobiscarboxymethyl= aminodiphenylmethan

Dinitrobisdiäthylaminodi= phenylmethan 246. Dinitrobisdimethylamino-diphenylmethan 245, 246. phenyläthan 254. triphenylmethan 280. Dinitrobismethyl-aminotoluol 142, 165. nitrosaminotoluol 143. Dinitrobis-nitrobenzoylaminos phenol 530. - oxyphenylphenylendis amin 500. Dinitrochloranilinomethylnitraminotoluol 143. - phenylmethylnitramin Dinitrodiacetyl-aminophenol 530. - benzidin 237. – phenylendiamin 59, 123; s. auch 32. Dinitrodiathoxy-acetaminos diphenylamin 790. dimethylaminodiphenyls amin 790. diphenylamin 790. phenylnaphthylamin 790. Dinitrodiamino-anisol 552. — benzol 32, 59. diphenyl 210; s. auch Dinitrobenzidin. Dinitrodiaminodiphenyl-disuls fid 401, 547 methan 245, 246. methandiessigsäure 246. sulfon 547. Dinitrodiamino-methyldiphes nylamin 32. phenetol 553. - phenoläthyläther 553. - phenolmethyläther 552. toluol 142, 165. Dinitrodianilino-anisol 568. diphenylsulfon 547. phenolmethyläther 568. - toluol 165. Dinitrodianisidin 809. Dinitrodimethoxy-benzidin 809. diaminodiphenyl 809. diphenylamin 781, 787, Dinitrodimethylamino-acets aminophenol 566. diphenylamin 18, 41, 79. - methyldiphenylamin 81. methylnitraminotoluol 143. methylphenylmethylnitr= amin 143. phenol 424.

246.

phenylendiamin 59. Dinitro-dinaphthylphenylens diamin 59. dinitrophenoxydiphenylamin 446. dioxydiphenylamin 451, Dinitrodiphenyl-diformylphenylendiamin 94. phenylendiamin 59. Dinitroformaminomethyldis phenylamin 133. Dinitromethoxy-acetaminostilben 722. 366. diphenylamin 393. 423, 424, 446. methylaminomethylbenzol methyldiphenylamin 447. Dinitromethoxyphenyl-athylnitramin 394. – methylnitramin 394. - methylnitrosamin 393. Dinitromethylamino-anilinotoluol 142. anisol 393, 423, 424. - dimethylaminotoluol 142. - dimethyldiphenylamin - diphenylamin 79. - kresol 575, 601. - kresoläthyläther 575. - kresolmethyläther 575. methyldiphenylamin 142. - methylnitrosaminotoluol 143 methylphenylmethyls nitrosamin 143. phenetol 393, 423 phenolathylather 393, 423. - phenolmethyläther 393, **123, 424**. phenylbensoat 526. - phenylnitrobensost 526. · recording ther 787. toluidinotoluol 142. Dinitromethylnitramino-ani- dimethyldiphenylamin 143. - methyldiphenylamin 143. - phenetol 394. phenoläthyläther 394. phenolmethyläther 394. Dinitromethylnitrosaminoamisol 393. - methyldiphenylamin 143. - phenolmethyläther 393.

phenylnitrosaminotoluol

Dinitrodimethyl-benzidin 260, | Dinitronaphthylamino-hydros | chinondiathylather 790. methylnitraminotoluol 143. methylphenylmethylnitramin 143. phenol 367, 450. Dinitronitrobenzamino-anisol 530. phenol 530. - phenolmethyläther 530. phenoxyessigsäure 527. Dinitronitrotoluolsulfonylnitrobenzoylaminophenol oxyanilinoessigsäure 531. oxyphenylglycin 531. Dinitrooxyacetaminodiphenylamin 566. Dinitrooxyathoxy-acetaminodiphenylamin 790. diphenylamin 789. Dinitrooxyamino-diphenyls amin 381, 500, 551. methylbenzol 591, 595, 601, 614. Dinitrooxy-anilinoessigsäure 531. diphenylamin 365, 444. mercaptodiphenylamin 427, 451. methoxydiphenylamin 789. Dinitrooxymethyl-aminomes thylbenzol 575, 601. diphenylamin 447, 577, 603. Dinitrooxyphenylcarbamidsaure-athylester 396. methylester 396. Dinitrooxyphenyl-carbonimid **397.** glycin 531. guanidin 397. harnstoff 396. isocyanat 397. naphthylamin 367, 450. oxyphenylphenylendiamin 500. urethan 396. Dimitrooxy-rhodandiphenylamin 427, 451. sulfhydryldiphenylamin 427, 451. Dinitroperibenzanthron 901. Dinitrophenyl-anisidin 366, benzidin 223. Dinitrophenylendiamin 32, 53, Dinitrophenylmethoxyacetaminophenyläthylen 722.

Dinitrophenyl-naphthylendiamin 207, 208. nitrosaminomethylnitraminotoluol 143. phenetidin 366. Dinitroso-bisnitrobenzylbens zidin 233. diathylbenzidin 233. diathylphenylendiamin dibenzyldiphenyläthylens diamín 253. Dinitrosodimethyl-diphenyls athylendiamin 253. phenylendiamin 53, 116. phenylnaphthylendiamin 272. Dinitrosodinitrodiphenylphenylendiamin 123. Dinitrosodiphenyl-dibenzyl-Athylendiamin 253. phenylendiamin 53, toluylendiamin 164. Dinitrosoditolylphenylendis amin 53, 117. Dinitrotetraäthylbenzidin 236. Dinitrotetramethyl-benzidin **235, 236**. phenylendiamin 60. Dinitrotolidin 260, 261. Dinitrotoluidinomethyl-nitraminotoluol 143. phenylmethylnitramin143. Dinitrotoluolsulfamino-anisol 527. phenol 531. phenolmethyläther 527. Dinitrotoluolsulfonyloxyanilinoessigsäure 531. diphenylamin 447. phenylglycin 531. Dinitro-triaminobenzol 300. - trianilinobenzol 300. trismethylaminobenzol 300. tritoluidinobenzol 300. Diönanthyliden-benzidin 224. toluylendiamin 132. Dioxodimethylaminophenylimino-dimethoxyphenylbutan 93. methoxyphenylbutan 93. pentan 92. phenylbutan 92. Dioxy-acetaminonaphthalin 803, 804. athylaminodiphenylmethan 811. Dioxyamino-benzol 779, 782, 783, 787. dimethylbenzol 801. diphenylamin 434. 554.

Dioxyamino-diphenylmethan

methylbenzol 795, 797, 799.

naphthalin 803, 804, 805, 806.

- phenanthren 817.

Dioxybenzalamino-benzyls naphthol 729.

phenolathylather 458.

phenolmethylather 458. Dioxybenzal-anisidin 458.

oxynaphthylbenzylamin 729.

phenetidin 458.

Dioxybenzaminotriphenyls methan 819.

Dioxybenzidin 807, 811.

Dioxybenzyl-amin 796.

anilin 793.

– anisidin 794.

benzamid 795, 796.chloracetamid 796.

- phenetidin 794.

- toluidin 794.

Dioxybisacetaminodiphenyl 810.

Dioxybisathylamino-benzyl-

benzol 823. dimethyldiphenylmethan

815. Dioxybisamino-benzylbenzol 822.

phenylbutan 816.

Dioxybisdiathylaminodiphes nylmethan 812.

Dioxybisdimethylaminoanilinodiphenylmethan 812.

 dimethyldiphenylmethan 815.

diphenylmethan 811, 813.

triphenylcarbinol 841.

– triphenylmethan 819, 820,

Dioxybismethylaminobenzylbenzol 822.

Dioxybisoxybenzylaminobenzylnaphthalin 823.

Dioxydiamino-benzol 782, 787, 788, 791, 792.

dimethyldiphenylmethan 815.

- dinaphthyl 823.

- diphenyl 807, 810, 811.

- diphenylsulfon 790.

- methylbenzol 795, 799.

— naphthalin 804, 805, 806. phenanthren 817.

Dioxy-dibenzylamin 582.

dimethoxydipseudocumidinodiphenyl 843.

Dioxydimethyl-aminomethylnaphthalin 806.

diisopropyldiphenylamin 654.

- diphenylamin 635. Dioxy-diphenylamin 414, 451.

ditoluidinodiphenyl. methan 812.

formaminomethylbenzol 798.

Dioxymethoxy-aminodimes thylbenzol 834.

dimethylaminoathylphenanthrenjodmethylat

methylaminoathylphens anthren 838.

Dioxymethylaminodiphenyls methan 811.

Dioxytetraamino-benzol 793. diphenyl 807, 810.

Dioxytetrakisacetaminodiphenyl 811.

Dioxytriamino-diphenyl 807. methylbenzol 795, 799. Dioxytrisdimethylaminotriphenylmethan 820.

Dioxy-Verbindungen C_nH_{2n-4}O₂, Amino

derivat 779. C_nH_{2n}—6O₂, Aminos derivate 779.

CnH2n-8O2, Aminos derivat 803.

C_nH_{2n-12}O₂, Amino derivate 803.

CnH2n-14O2, Aminos derivate 807.

CnH2n-18O2, Aminos derivate 816.

C_nH_{2n}—20O₂, Aminos derivate 818.

- CnH2n—22O2, Aminoderivate 819.

C_nH_{2n}—26O₂, Aminos derivate 823.

C_nH_{2n-28}O₂, Aminos derivate 823.

C_nH_{2n}—30O₂, Aminoderivate 824.

CnH2n-84O2, Amino derivat 825.

Diphenacetyl-phenylendiamin

toluylendiamin 159. Diphenblau 73.

Diphenetidin 808.

Diphenetidinosthylbernsteinsäure-diäthylester 497.

diphenetidid 498. Diphenetidinomethan 452.

Diphenylacetaminobenzylharnstoff 171.

Diphenyl-acetylbenzovls athylendiamin 251.

acetylphenylendiamin 96. athoxyphenylguanidin 481.

Diphenylathylen-bisthioharns stoff 250.

diamin 249, 250. diharnstoff 250.

Diphenylamin-blau und seine Carbinolbase 760.

grün 747; Carbinolbase **746**.

Diphenylamino-benzylharns stoff 171.

methylphenylharnstoff 160.

Diphenyl-benzaminobenzylharnstoff 171.

benzidin 223, 291.

benzoylcarbāthoxyāthy. lendiamin 253.

Diphenylbenzyl-äthylens diamin 250.

benzoyläthylendiamin 251. Diphenylbisacetoxymethylphenyldiacetyläthylendiamin 816.

Diphenylbisdiathylaminophenyläthan 291.

phenylanthracendihydrid 293

Diphenylbisdichloroxyphenyläthylendiamin 814

Diphenylbisdimethylaminophenyl-äthylen 292.

äthylenglykol 824. anthracendihydrid 293.

Diphenyl-bisnitrobenzals āthylendiamin 251.

bisoxymethylphenyläthy. lendiamin 816.

carbamidsaureaminophes nylester 361, 404, 440.

chlorphenylacetylpheny-lendiamin 97.

Diphenyldiacetyl-athylendiamin 250, 251.

bisacetoxymethylphenyläthylendiamin 816.

naphthylendiamin 209. phenylendiamin 46, 97.

toluylendiamin 164. Diphenyldibenzaläthylendi-

amin 249, 251. Diphenyldibenzoyl-athylendis amin 250, 251.

phenylendiamin 47, 98.

toluylendiamin 164.

Diphenyldibenzyl-athylendis amin 250.

benzoyläthylendiamin 252. dibenzoyläthylendiamin

Diphenyl-dibromoxydimethylbenzylharnstoff 650. dicuminalathylendiamin 251. - diformyläthylendiamin 251. diformylphenylendiamin --- dimethylaminophenyldis hydroanthranol 778. -- disalicylaläthylendiamin — dithiocarboxyäthylendi* amin 250. Diphenylenbis-āthylbenzoyl= isothioharnstoff 230. allylthioharnstoff 229. carbamidsäurephenylester cyanazomethinphenyl 231. - diisoamylthioharnstoff — diisobutylthioharnstoff dithiocarbamidsäure 230. isoamylthioharnstoff 229. isopropylthioharnstoff 229. Diphenylenbismethyl-diathylammoniumhydroxyd 222. phenylthioharnstoff 229. Diphenylenbisphenyl-harns stoff 229. thioharnstoff 212, 229. Diphenylenbis-thioharnstoff 212, 229. – tolylthioharnstoff 229. trimethylammoniumjodid Diphenylen-dicarbonimid 230. - diharnstoff 229. — diisocyanat 230. - diisothiocyanat 212, 230. — dileukauramin 309. — disenföl 212, 230. - diurethan 228. Diphenylin 211. Diphenylinbisthiocarbons säureamid 212. Diphenyl-methoxyphenyls benzamidin 374. methylenaminophenol 455. naphthimidazoldihydrid 199. – naphthylendiamin 200, 201, 208. Diphenyloxathyl-umin 706; s. auch Aminomethyldis phenylcarbinol (S. 713). - harnstoff 708. urethan 708. Diphenyloxyphenyl-acetylphenylendiamin 381.

- guanidin 375.

Diphenyl-pararosanilin 759. phenylendiamin 42, 80. Diphenylphenyl-thioureidos benzylharnstoff 171. ureidobenzylharnstoff 171. Diphenyl-tetramethylendis amin 264. toluylendiamin 164. xylylendiamin 180. Diphthalidylbenzidin 232. Dipikrylphenylendiamin 80 Dipropionyl-aminokresol 603. naphthylendiamin 199. toluylendiamin 158. Dipropyl-essigsäurephenetidid 469. - malonsäurediphenetidid oxymethylisopropylbens zylamin 661. Direktbraun 69. Disalicoylaminophenol 493. Disalicylal-benzidin 226. diphenyläthylendiamin 251. diphenylin 212. phenylendiamin 92. tolidin 255, 258. toluylendiamin 133. Diselendiglykolsäure-dianisis did 380, 489. diphenetidid 491. Distyryläthylendiamin, Dis benzoylderivat des 270. Disulfhydryl-aminodiphenyl 81Õ. aminomethylbenzol 795. phenylendiamin 792. Dithio-acetanilid 544. allophansäurephenetidid 377, 483. anilin 536. carboxydiphenyläthylen= diamin 250. diäthylanilin 540. dianisidin 810. - dimethylanilin 539. Dithiokohlensäureäthylesteracetaminophenylester aminophenylester 535. dimethylaminophenylester 538. Dithionyl-benzidin 233. naphthylendiamin 203. phenylendiamin 52, 116. tolidin 259. toluylendiamin 139. Ditoluidino-dinaphthyl 289. phenol 567. toluol 145.

Ditoluolsulfonyl-aminophenol 508. benzidin 233. dimethylbenzidin 233. dimethylphenylendiamin 115. phenylendiamin 25, 52, 115. toluylendiamin 139. Ditoluylphenylendiamin 21. Ditolyl-diacetylphenylendis amin 46, 97. dibenzoylphenylendiamin 47, 99. diformylphenylendiamin naphthylendiamin 200, 208, 209. phenylendiamin 42, 81. toluylendiamin 145. tribenzoyldiaminophenol xylylendiamin 180. Diureidodimethyldiphenylsulfid 592. Divanillalbenzidin 226. Divinylbenzidin 270. DOEBNERSches Violett 743; Carbinolbase des 742. Dulcin 480. ·E. Echtsäureviolett 702.

Edinol 800.
Emeraldin 112.
Ephedrin 636.
Essigsäure-anisidid 371, 416, 461.
— bromphenetidid 462.
— phenetidid 371, 416, 461.
Eugenolglykolsäurephenetidid

F. Firnblau und seine Carbinols

490.

base 770.
Fluorenblau und seine Base 773.
Formamino-kresolmethyläther 603.
— naphthol 669, 672, 679.
— phenol 370, 459.
— phenolathyläther 370, 460.
— phenolmethyläther 370, 459.
— xylenol 630.
Form-anisidid 370, 459.
— phenetidid 370, 460.

Formylamino- s. Formamino-.

Ditoluolsulfonylacetylamino-

phenol 509.

diphenyloxathylamin 707. Formylnitrobenzylaminophes nol-äthyläther 460. methyläther 370, 460. Formyl-phenylendiamin 45, toluidinophenol 415, 460. Fuchsin 765; (Geschichtliches) 732; Carbinolbase des

Formyl-anilinophenol 460.

763. Fuchson-anil 741. - imid dimeres 740.

Fumarsäure-dianisidid 476. diphenetidid 476.

G.

Galaktoseäthoxyanil 459. Galloylaminophenoläthyl= ather 494. Gallussäurephenetidid 494. Gluc- s. Glyk-. Glutacondialdehyd-bisathos xyanil 455. - bisaminodiphenylylimid - bisdimethylaminoanil 88. - bismethoxyanil 369, 455. — bisoxyanil 455. - dinitrooxyanil 424. Glycin (Entwickler) 488.

Glycin-anisidid 382, 419, 506. phenetidid 382, 419, 506. Glycylaminophenol-athyl= ather 382, 419, 506.

methyläther 382, 419, 506. Glycylaminothymoläthyläther

Glykose, Benzidinderivat der

Glykoseäthoxyanil 459. Glyoxalbisdimethylaminoanil

Guajacolglykolsäurephenes tidid 490.

H.

Hept- s. auch Önanth-. Heptabrom-acetoxydiphenyl= amin 519. benzoyloxydiphenylamin 519. oxydiphenylamin 519. Heptaoxy-Verb., Aminoderis vate einer 846. Hexaacetoxytrisacetaminotris phenylmethan 846. Hexascetyltriaminophenol Hexaëthyl-paraleukanilin 316. – pararosanilin 759.

Hexaäthyl-triaminotriphenyl= carbinol 759.

xylylenbisammoniumhy: droxyd, Salze 180, 188. Hexaamine 347.

Hexaaminohexabenzyläthan 348.

Hexabromoxydiphenylamin 519.

Hexachlor-benzoyloxydiphes nylamin 514.

oxydiphenylamin 514. Hexahydrophenylendiamin 1,

Hexaisoamylxylylenbisammo=

niumhydroxyd, Salze 187.

Hexamethoxy-diphenylamin 828.

pararosanilin 846.

triaminotriphenylcarbinol 846.

Hexamethyl-leukanilin 322.

— leukanilinbisjodmethylat= hydrojodid 322.

paraleukanilin 315.

paraleukanilintrioxyd 315.

paraleukanilintrishydroxy= methylat 315.

pararosanilin 755.

pararosanilinhydroxyme= thylat 758.

pararosanilintrisjodmethy: lat 759.

phellandrenbisammonium= hydroxyd und Salze 5.

phenylenbisammonium: jodid 41, 75.

rosanilin 767.

triaminotriphenylcarbinol 749, 750, 755.

triaminotriphenylcarbin= thiol 762.

xylylenbisammoniumhy= droxyd 179.

Hexanitro-bisdimethylaminotriphenylmethan 280. dimethylbenzidin 237.

Hexaoxy-bisdimethylaminotriphenylmethan 845.

paraleukanilin 846.

triaminotriphenylmethan 846.

Hexaoxy-Verbb., Aminoderis vate der 845.

Hexaphenyl-pararosanilin

triaminotriphenylcarbinol

xylylendiamin 292.

Hexapropylxylylenbisammo: niumhydroxyd, Salze 186, 188.

Hippuryltoluylendiamin 147. — anisidid 475.

Hofmannviolett 767, 768. Holocain 468.

Homolkasche Basen 733. Homoveratroyl-aminomethyldimethoxyphenylcarbinol 833.

- homoveratrylamin 801. Homoveratrylamin 800. Hordenin 626.

Hordenin-hydroxyäthylat 627.

 hydroxymethylat 627. methylätherhydroxyme=

thylat 627. Hydramin 70.

Hydrazophenin 337.

Hydrobenzoin-anilid 712. toluidid 712.

Hydrochinon-bisaminophe nyläther 439.

phenylätheraminophenyl= äther 439.

Hypnoacetin 464.

I.

Imino-bisphenylsenföl 112. - diborneol 353.

Iminodiessigsāure-dianisidid 419, 506.

diphenetidid 419, 507. Immedial-gelb 128.

orange 128.

- reinblau 501.

– schwarz 445. Indamin $C_{18}H_{14}O_4N_6$ 71.

Indenoxy-bromid 662. chlorid 662.

Indochromogen 559. Indophenol C₁₂H₁₀ON₂ 70.

— C₁₂H₁₁ON₃ 504.

— C₁₂H₇O₂NBr₂ 517.

— C₁₂H₃ON₅Cl₂ 118.

 $\begin{array}{l} - C_{13}H_{12}ON_{2} & 435. \\ - C_{14}H_{13}O_{2}N & 435. \end{array}$

Isoamylaminobenzyl-amin 175.

- naphthol 730.

Isoamvl-dibromoxybenzyl= acetamid 585.

dimethylaminophenyl= carbinol 661.

Isoamyliden-aminoisoamyl= naphthol 689.

oxynaphthylisoamylamin 689.

Isoamyloxy-naphthylbenzyl= amin 730.

phenylharnstoff 484.

phenylthioharnstoff 484. Isobernsteinsäure-äthylester= anisidid 475.

äthylesterphenetidid 475.

Isobernsteinsäure-bisaminoanilid 22

bisoxyanilid 475.

dianisidid 475.

 diphenetidid 475. phenetidid 475.

Isobutyl-bisaminobenzylamin 172.

— dimethylaminophenyls carbinol 660.

Isobutyloxy-diphenylamin

phenylharnstoff 484. phenylthioharnstoff 484. Isobutylphenylendiamin 76. Isodiphenyloxathyl-amin 706, 709, 710.

- harnstoff 712. Isoephedrin 637.

Isonitrosomalonsaureanisidid= oxim 497.

Isopikraminsäure 527.

Isopropyl-acetphenetidid 467.

acetylaminophenolathylather 467.

aminobenzylalkohol 617. benzylaminophenol 450.

 bernsteinsäurephenetidid 476.

- chinondimethylaminoanil 90.

 dimethylaminophenyls carbinol 651.

Isopropyliden-aminobenzyls alkohol 617.

- aminobenzylnaphthol 730.

- aminophenol 452.

oxynaphthylbensylamin

730. Isopropylphenacetin 467. Isovaleral- s. Isoamyliden-. Isovaleryl-aminokresol 603.

aminonaphthol 669.

benzoylaminokresol 604. Isovaleryliden- s. Isoamyliden-

J.

Janus-braun 40, 175.

rot 40.

Jodacetamino-anisol 388, 520.

phenetol 520.

phenoläthyläther 520.

- phenolmethyläther 388,

Jodamino-anisol 519.

- diphenylamin 29.

- phenetol 519.

phenolathylather 519. - phenolmethyläther 519.

Jod-diaminodiphenyl 213.

· diphenylin 213.

grün und seine Carbinols base 767.

phenylphenylendiamin 29.

K.

Keto- s. Oxo-.

Kohlensäure-bisäthoxyanil 487.

bismethoxyanil 378. Kolumbia-grün 218.

schwarz 128, 257.

Kreosolglykolsäurephenetidid 490.

Kresoxyessigsäurephenetidid **49**0.

Kresyl- s. Tolyl-.

Kryofin 490.

Kryogengelb G 137, 218; R 137.

Krystallviolett 756; Carbinols base 755.

L.

Lactophenin 492.

Lactylamino-phenol 491.

phenoläthyläther 491.

phenolmethyläther 491. phenoxyessigsäureamid

· phenylsalicylat 492.

Lactylsalicoylaminophenol 492.

Lanacylblau 670. Laudanosomethin 843. Laurinoylaminophenol 372.

Laurinsäuredibromoxybens zylanilid 586.

Laurylaminophenol 372. Lentin 38.

Leukanilin 321.

Leukauramin 307. Leukauramin G 310.

Leukauramin-dithiocarbonsaure 308.

 dithiocarbonsäurebisdis methylaminobenzhydryls ester 704.

Leuko-dimethylphenylengrün

krystallviolett 315.

– malachitgrün 275.

protoblau 821. protorot 844.

 toluylenblau 303. Lichtgrün 758.

M.

Malachitgrün 744, Carbinolbase 743; Geschichtliches über Malachitgrün 733. Maleinsäure-anisidid 477.

phenetidid 477.

Malonsaure-athylesteranisidid

- athylesterphenetidid 474.

Malonsāure-anisidid 474.

dianisidid 474.

diphenetidid 474.

phenetidid 474. Manchesterbraun 39.

Mandelsäure-carbäthoxyanilid

carbomethoxyanilid 494. Mercapto- s. auch Sulfhydryl-.

Mercapto-aminodiphenyl 693. aminomethylbenzol 575,

591, 601. diaminomethylbenzol 597.

Merichinondimethyldiimonis um-bromid 73.

nitrat 74.

Meridichlordimethyldiphenochinondiimoniumchlorid

Meridimethyldiphenochinons diimoniumchlorid 258.

Meridiphenochinon-bisdimethylimoniumchlorid

bismethylimoniumchlorid

Mesitylenbisphthalamidsaure 191.

Mesostilbendiamin 250.

Mesoxalsaure-athylesternitril, Methylaminoanil des 109.

anisididoxim, Oxim des

Metachrombraun 38, 128, 395. Methacetin 461.

Methandisulfonsäure-bisäthyl= phenetidid 508.

diphenetidid 508.

Methandisulfonylbisphenylendiamin 115.

Methansulfonsäure-acets aminophenylester 466.

aminophenylester 441. bisacetaminophenylester

diaminophenylester 551. Methansulfonyl-acetylamino-

phenol 466. diacetyldiaminophenol

552. phenylendiamin 114.

Methebenin 838.

Methebeninmethinjodmethy. lat 839.

Methionsaure-bisathylphenetis did 508.

bisaminoanilid 115.

diphenetidid 508. Methoathyl- s. Isopropyl-. Methobutyl- s. Isoamyl-.

Methopropyl- s. Isobutyl-. Methoxyacetamino-benzylacetamid 613.

diphenyl 693.

— diphenylmethan 695.

Methoxyacetamino-methylsbenzol 575, 590, 603.

— methylisopropylbenzol 652, 657.

- phenanthren 724.

phenylkohlensäureäthylsester 781.

phenylkohlensäurediäthylsamid 781.

Methoxyacetoxy-acetaminos methylbenzol 798.

— benzylbenzamid 797.

 diacetylaminophenanthren 816.

 methylacetylaminoäthyls phenanthren 818.

Methoxy-āthoxyacetoxys methylacetylaminoāthyls phenanthren 840.

 allylphenoxyessigsäures phenetidid 490.

Methoxyamino-acetaminomethylbenzol 612.

- benzylamin 613.

bisdimethylaminomethylariphenylmethan 762.

— dimethylbenzol 630, 634. — diphenylamin 381, 503,

- diphenylmethan 695.

— methylbenzol 572, 574, 590, 599, 602.

methylisopropylbenzol
 652, 654.

— phenanthren 724.

phenylkohlensäureäthylsester 781.

phenylkohlensäurediäthylsamid 781.

phenylmercaptan 790.

Methoxyanilino-pentadienals methoxyanil 369, 455.

— triphenylmethan 735, 737. Methoxybenzal- s. auch Anisal-.

Methoxy-benzalaminobenzylanaphthol 728.

- benzaloxynaphthylbenzylamin 728.

amin 728.

— benzaminodiphenylmethan 695.

benzhydrylamin 695.

- benzidin 690.

- benzoesäureanisidid 493.

Methoxybenzophenon-carbonsaureanisidid 498.

— carbonsāurepseudoanisidid 498.

 dimethylaminoanil 93.
 Methoxybenzoyl- s. Anisoyl-.
 Methoxybenzyl-acetamid 582, 608.

- acetanilid 608.

- amin 580, 606.

Methoxybenzylamino-acete

 acetaldehyddiäthylacetal 608.

— phenol 607.

Methoxybenzyl-anilin 606.

— harnstoff 583, 608.

— naphthylamin 582, 607. — naphthylnitrosamin 609.

— phenylnitrosamin 608.

— thioharnstoff 608.

- toluidin 581, 607.

— tolylnitrosamin 608. Methoxybis-acetaminodis

phenyl 690.
— anisalaminodiphenyl 690.

— dimethylaminotriphenyls methan 736, 737.

Methoxycarbāthoxyoxysbenzal-aminophenolsäthylāther 459.

aminophenolphenacyls
 äther 459.

phenetidin 459.

Methoxydiacetoxy-diacetyls aminodimethylbenzol834.

 methylacetylaminoäthyls phenanthren 837, 840.

Methoxydiacetylaminos methylisopropylbenzol 652.

Methoxydiamino-diphenyl 690.

- diphenylamin 504.

— methyldiphenyl 705.

— triphenylmethan 737.

Methoxy-dibenzoyloxys methylbenzoylaminos äthylphenanthren 837.

dimethylaminophenyls iminobenzoylaceton 93.

— dimethyldiphenylamin 414, 447.

— diphenylamin 366, 411,

— essigsaurephenetidid 489.

formaminomethylbenzol 603.

Methoxymethyl-benzidin 705.

— hishisdimethylaminobenza

bisbisdimethylaminobenzshydrylbenzol 778.

hydrylbenzol 778. — diphenylamin 412, 413,

447. — phenoxyessigsäurephenestidid 490.

phenyläthylacetanilid 642.
phenyläthylanilin 642.

— phenylharnstoff 573.

 phenylthioharnstoff 573.
 Methoxynaphthylmethylenaminobenzylnaphthol 728.

oxynaphthylbenzylamin
 728.

Methoxyphenacyloxybenzals aminophenol-äthyläther 458.

— phenacyläther 459.

Methoxy-phenacyloxybenzals phenetidin 458.

 phenoxyessigsäurephenes tidid 490.

Methoxyphenyl-acetylcarbs amidsäureäthylester 486.

- acetylurethan 486.

- äthoxyphenylacetamidin 461, 463, 468.

Methoxyphenyläthyl-amin 624, 625, 626.

— anilin 624.

Methoxyphenyl-äthylens diamin 380.

äthylphenylthioharnstoff
 625.

- äthylurethan 625.

— anilinothioformyläthylens diamin 381.

anisidinothioformylguanis
 din 376.

— anisoylharnstoff 479.

 benzoylcarbamidsäures propylester 487.

— benzoylharnstoff 479.

— biguanid 480.

- bisäthoxyphenylguanidin 487.

carbonimid 378, 487.
 cyclohexandionathoxysanil 459.

— dibenzoyläthylendiamin 381.

dihydroresorcinäthoxys
 anil. 459.

- dithiocarbamidsäures methylester 377.

formiminoäthyläther 370.

--- glycin 379, 488.

— glycylurethan 379. — guanylguanidin 480.

— guanyiguanidin 480 — harnstoff 376.

Methoxyphenylimino-butters säureäthylester 496.

- butyrophenon 457.

— campher 456.

methylacetessigsäures
 äthylester 380.

— methylmalonsäureäthylsesteranisidid 497.

— propionsäure 495. Methoxyphenyl-isocyanat 378,

487.
— isothiocyanat 378, 487.

— isotniocyanat 378, 48 — maleinamidsäure 477.

— malonamidsäure 474.

 malonamidsäureäthylester 474.

Methoxyphenylmethoxys aminobenzylcarbinol 836, 837. Methoxyphenylmethoxymethoxybenzalamino: benzylcarbinol 836.

phenylguanylthioharns stoff 376.

Methoxyphenyl-methylnitros amin 383.

- naphthylamin 367, 450.

- oxamid 472.

— oxamidsāure 374, 472.

– oxamidsäureäthylester 472.

- oxybenzylnitrosamin 584. — oxyphenylbenzimidazols

dihydrid 565.

phenylnitrosamin 509. phthalamidsaure 477.

propylamin 636.

-- senföl 378, 487.

- succinamidsāure 474.

— thioharnstoff 376.

— thiosemicarbazid 480.

--- urethan 375, 479. Methoxysalicylalaminodiphes

nylamin 565. Methoxythiobenzoesäureanisidid 494.

phenetidid 494.

Methoxytoluolsulfamino= methylbenzol 605.

Methoxyureidophenylkohlensaure-athylester 781.

- diäthylamid 781.

Methylacetamino-benzyls anilin 174.

- benzylsulfid 619.

dimethylphenylnitrosamin

methylphenylnitrosamin 139.

Methylacetaminophenylcarbinacetat 628.

sulfid 542.

- sulfiddibromid 542.

sulfoxyd 542.

Methylacetphenetidid 466. Methylacetylamino-äthylphes

nylcarbinol 638. - methylnitrosaminotoluol

- phenol 372, 466.

- phenoläthyläther 466.

phenylacetat 466.

 phenylkohlensäureäthyls ester 467.

 phenylkohlensäuremethyls ester 467.

Methyl-acetylephedrinhydroxymethylat 638.

athoxyphenylglycylharnstoff 489.

Methyläthylamino-naphthol 678.

naphthylacetat 678.

- phenol 364.

Methyläthyl-chinondimethyl= aminoanil 90.

glykolsäurephenetidid 493. nitrophenylbenzimidazoldihydrid 156.

oxyphenylbenzimidazoldihydrid 156.

phenylendiamin 189. Methylal- s. Formyl-.

Methylallyl-athoxyphenyl= benzylammoniumhydroxyd 449.

aminophenoläthyläther 444.

aminophenolmethyläther **365**, **444**

anisidin 365, 444.

methoxyphenylbenzyl* ammoniumhydroxyd 367, 449.

phenetidin 444.

Methylaminoathyl-dimethoxy. phenylcarbinol 834.

dioxyphenylcarbinol 834. phenylcarbinol 636, 637,

Methylaminobenzyl-acet=

amid 169.

- äther 616, 621.

- amin 166. - carbinol 639.

– sulfid 618, 620.

Methylaminobisdimethylamino-methyltriphenylmethan 324.

triphenylcarbinol 755. - triphenylmethan 314

Methylamino-borneol 353.

cycloheptenol 351. dimethoxyphenyläthyl=

alkohol 833.

Methylaminodimethylaminodiphenylmethan 239.

methyldiphenylmethan

phenylnaphthalin 271.

triphenylmethan 745. xylol 183.

Methylamino-dimethylphes nylnitrosamin 182.

diphenylamin 17. Methylaminoformyläthylcyanbenzalphenylens diamin 108

dicyanmethylenphenylens diamin 109.

dinitrobenzalphenylen: diamin 106.

nitrocyanbenzalphenylens diamin 108.

Methylaminoformylmethyldicyanmethylenphenylens diamin 109

nitrocyanbenzalphenylens diamin 108.

Methylaminokresol 599. Methylaminomethyl-benzyls carbinol 640.

dimethoxyphenylcarbinol

dioxyphenylcarbinol 829, 832.

phenylcarbinol 640.

phenylnitramin 140.

phenylnitrosamin 139. Methylamino-nitrobenzal= aminotoluol 156.

phenol 362, 404, 441.

phenolathyläther 442.

phenolmethyläther 362, Methylaminophenyl-benzoat

442. carbinol 628.

cyanazomethincarbon= säureäthylester 109.

cyanazomethinnitrophenyl 107.

cyanazomethinphenyl 107.

— dioxynaphthylmethan 818. - iminomalonsäureureid 24.

- oxynaphthylmethan 726, 731

– sulfid 399, 533.

- tolylcarbinol 715.

tolylsulfoniumjodid 534.

Methylamino-thioformyldi= phenyloxäthylamin 708.

triphenylcarbinol 740. Methylanilino-cyclohexanol **348**.

phenolmethyläther 447. Methyl-anisidin 362, 442.

anisidinoisopropylketoxim 369.

anisidinsulfonsaures Na= trium 368.

Methylbenzamino-benzyläther 622.

benzylsulfid 619.

methylphenylcarbinbenzoat 641.

Methyl-benzidin 247.

benzidinsulfonsaures Natrium 224.

benzochinonimidoxyanil

Methylbenzoylamino-äthyl= phenylcarbinbenzoat 638.

methylbenzylcarbinbenzoat 640.

phenol 373.

phenylkohlensäureäthylester 373.

Methylbenzoyl-nitrobenzoylaminophenol 373.

oxyphenylurethan 378. phenylendiamin 98.

pseudotropein 352.

tropein 352.

Methylbenzylamino-phenol 413.

phenoläthyläther 449.
phenolmethyläther 367,

Methylbenzyl-anisidin 367,

- phenetidin 449.

— phenylendiamin 82.

Methylbis-aminobenzylamin 172.

bromnitrooxybenzylamin
 611.

bromoxydimethylbenzyls
 amin 643, 648.

Methylbisdibrom-acetoxydimethylbenzylamin 649.

anilinoformyloxydimethylsbenzylamin 646.

methoxydimethylbenzyls
 amin 646, 649.

oxybenzylamin 609.

— oxydimethylbenzylamin 646, 649.

Methylbisdimethylaminophes nyl-amylen 269.

— carbinol 713.

Methylbismethoxyphenylisos thioharnstoff 378.

Methylbistetrabrom-acetoxysbenzylamin 587.

— oxybenzylamin 587, 610. Methylbistribrom-acetoxy:

methylbenzylamin 635. — oxymethylbenzylamin 631, 635.

Methylbrom-acetaminophes

nylsulfid 547.

— dinitromethylaminopher nylnitramin 60.

Methyl-carbāthoxycyanmethylenphenylendiamin 109.

chinondimethylaminoanil
 90.

Methylchlor-acetaminophernylsulfid 547.

 aminoacetaminophenylsuls fid 563.

— aminophenylsulfid 547. Methylcyan-äthylnitrocyanbenzalphenylendiamin 108.

- benzalphenylendiamin 107.

- methylnitrocyanbenzalphenylendiamin 108.

Methylcyclohexandion-aminoanil 44.

— trioxim 902.

Methyldiacetyl-aminophenol 466.

— apomorphin 818. Methyldiäthylacetaminophenylammoniumhydroxyd Methyldiathyl-aminomethylphenylcarbinol 641.

 aminophenylammoniums chlorid 76.

 oxytetrahydronaphthyls ammoniumjodid 664.
 Methyldibenzoylphenylendis

amin 98.
Methyldibrom-acetoxybenzyls

anilin 585.

acetoxydimethylbenzyls
 anilin 645.

methoxydimethylbenzyls
 anilin 645.

— oxybenzylanilin 585.

 oxydimethylbenzylanilin 644, 649.

Methyl-dihydroresorcinaminos anil 44.

 dimethoxymethylaminobenzylcarbinol 835.

Methyldimethylamino-mes thylbenzylcarbinbenzoat 652.

— methylbenzylcarbincins namat 652.

methylbenzylcarbinol 651.
methylphenylcarbinol 641.

— methyltolylcarbinol 660.

— phenylcarbinol 628.

phenylnitrosamin 53, 116.
phenylsulfid 537.

— phenylsulfon 537.

Methyldinitro-äthoxyphenylanitramin 394.

- aminomethylphenylnitrs amin 143.

aminomethylphenylnitross
 amin 142.

anilinomethylphenylnitramin 143.

anilinomethylphenylnistrosamin 143.

 benzalaminophenylalanins amid 106.

chloranilinomethylphes
 nylnitramin 143.

 dimethylaminomethylphes nylnitramin 143.

— methoxyphenylnitramin 394.

— methoxyphenylnitrosamin 393.

— methylaminomethylphes nylnitrosamin 143. — naphthylaminomethylphe

 naphthylaminomethylphes nylnitramin 143.

oxyphenylguanidin 397.
toluidinomethylphenyl

nitramin 143. Methyldioxy-methoxyphen: anthryläthylphenylthio:

harnstoff 840.

– methylaminobenzylcarbi

nol 835.

Methyldiphenyl-bisdimethylaminophenylanthracendihydrid 293.
— oxathylthioharnstoff 708.

Methylen-aminophenol, polysmeres 452.

— bisaminophenoläthyläther

452.

— bisaminophenolmethylather 368, 452.

- bisbenzoesāurephenetidid 471.

- dianisidin 368, 452.

diphenetidin 452.

- rot 74.

toluylendiamin, polymeres
 132.

Methyl-ephedrin 637.

- ephedrinhydroxymethylat 638.

- grün 758.

Methylisopropyl-chinondimes thylaminoanil 91.

— phenylendiamin 192. Methylmalonsäure-äthylester-

metnylmalonsaure-atnylesters anisidid 475. — äthylesterphenetidid 475.

— athylesterpheneticid 475. — anisidid 475.

— bisaminoanilid 22.

- bisaminomethylanilid 159.

— bisoxyanilid 475. — dianisidid 475.

diphenetidid 475.phenetidid 475.

Methylmercapto-phenylisothiocyanat 401.

- phenylsenföl 401.

- phenylthioharnstoff 401.

Methylmethoxyphenylnitross amin 383.

Methylmethyl-acetylaminos methylphenylnitrosamin 162.

- aminomethylphenylcarbis nol 640.

aminophenyläthylcarbinol
 651.

 benzoylaminomethylphes nylcarbinbenzoat 641.

nitrosaminophenyläthylscarbinol 651.

Methylnaphthylendiamin 209. Methylnitro-benzalphenylens diamin 19.

- benzoylaminophenol 373.

 cyanbenzalphenylendis amin 107.

dimethylaminophenylanitrosamin 58; s. auch
 122.

methoxyphenylnitross
 amin 391.

 phenylbenzimidazoldihys drid 19. Methylnitrophenyltolylbenz-imidszoldihydrid 156.

Methylnitrosamino-athylphenylcarbinol 639.

phenol 383.

Methyloxyathyl-aminophenolmethyläther 368.

anisidin 368.

Methyloxy-aminobenzyläther 800.

benzylanilin 581, 607. Methyloxyphenyl-benzimid.

azoldihydrid 19. dimethylaminophenyl-

benzimidazoldihydrid 162. isopropylphenylthioharns

stoff 639.

nitrosamin 383. tolylbenzimidazoldihydrid 157.

urethan 378.

Methyl-phenacetin 466.

phenetidin 442.

Methylphenyl-acetaminophenylcarbinacetat 713. aminophenylcarbinol 712.

- aminophenylharnstoff 48.

– anisidin 447.

– carbamidsāureaminophenylester 361, 404, 440.

 dimethylaminophenyls carbinol 713.

dioxymethoxyphenans thryläthylthioharnstoff

Methylphenylen-diamin 15, **39**, 71, 123, 124, 144, 148,

diaminsulfonsaures Natrium 83.

Methylphenyl-methoxyphenylisothioharnstoff 377.

methylenaminophenolathylather 454

methylenphenetidin 454.

- naphthylendiamin 198. oxyphenylisopropylthioharnstoff 639.

phenylendiamin 17.

tolylbenzimidazoldihydrid

Methyl-phloramin 795.

phthalsaureoxyanilid 374. pikrylphenylendiamin 79. Methylpseudo-ephedrin 637.

ephedrinhydroxymethylat 638.

tropin 351.

Methyl-salicylalphenylendis **am**in 19.

- saure- s. Carboxy-.

 sulfophenylbenzimidazols dihydrid 161.

- thio- s. Methylmercapto-.

Methyl-toluidinophenolme thyläther 447.

toluylendiaminthicsulfons saure 612.

tolylanisidin 447.

tolylnaphthylendiamin272. tribenzylrosanilin 769.

Methyltrinitro-athoxyphenyls nitramin 425.

dimethylaminophenyls

nitrosamin 61. methoxyphenylnitramin

methylaminophenylnitr-

amin 61. oxyphenylnitramin 425.

Methyltropin 351.

Methyltropin-dibromid 349. hydroxymethylat 352.

Methylviolett 755. Metochinon 442.

Metol 442

Michlersches Hydrol 698. Milchsäure-anisidid 491.

bromphenetidid 492.

chlorphenetidid 492. phenetidid 491.

Monomethylphenylendiaminsulfonsaures Natrium 83.

Monooxy-Verbindungen C_nH̃_{2n}—8O, Aminoderis vate 662.

C_nH_{2n-12}O, Aminoderis vate 665.

C_nH_{2n—14}O, Aminoderis vate 690.

C_nH_{2n-16}O, Aminoderis vate 721.

C_nH_{2n-18}O, Aminoderis vate 723.

C_nH_{2n}—20O, Aminoderisvate 726.

C_nH_{2n}—22O, Aminoderisvate 732.

C_nH_{2n—24}O, Aminoderis vate 773.

C_nH_{2n—28}O, Aminoderis

vate 773. C_nH_{2n}—30O, Aminoderis

vate 776. C_nH_{2n}—84O, Aminoderisvate 777.

C_nH_{2n—88}O, Aminoderivat

C_nH_{2n}—40O, Aminoderis vate 778.

Morphigenin 724. Morphigeninchlorid 725.

N.

Naphthacetin 669. Naphthacetol 669. Naphthalinsulfonyläthylbenzidin 233.

Naphthalinsulfonyl-benzidin

phenylendiamin 115. Naphthazarinzwischenprodukt, Leukoverbindung des 805.

Naphthidin 289.

Naphthoblau und seine Carbinolbase 774.

Naphthochinonbisdimethylaminophenylmethidäthylimid 775.

methylimid 774.

Naphthochinon-dibromoxys anil 518.

dimethylaminoanil 91.

imid, dimeres 665. imidoxyanil 457.

Naphtholblau 91.

Naphthoxyessigsäurephenetis did 490.

Naphthylacetyl-naphthylens diamin 199.

phenylendiamin 45, 96. Naphthylamino-benzyls naphthol 730.

dimethyldiphenylamin 131.

- methyldiphenylamin 131.

phenol 450.

Naphthylaminophenol-athyl= ather 450, 451.

methyläther 367, 450. Naphthyl-anisidin 367, 450.

benzidin 223.

benzoylphenylendiamin 46.

diacetylphenylendiamin

dibenzoylphenylendiamin

Naphthylenbis-allylthioharns stoff 200.

aminocrotonsäureäthyl= ester 204.

iminobuttersäureäthylester 204. oxamid 202, 204.

Naphthylenbisoxamid-säure **204**.

säureäthylester 202; s. auch 204.

Naphthylenbisphenyl-harnstoff 200.

thioharnstoff 200.

Naphthylendiamin 196, 200, 201, 203, 204, 205, 207,

Naphthyl-leukauramin 308. naphthylbenzidin 224.

naphthylendiamin 198, **202**.

naphthylphenylendiamin

oxynaphthylbenzylamin

Naphthyl-phenetidin 450, 451. | Nitroäthylamino-benzhydrol phenylendiamin 43, 82, 83. Neu-echtblau 702.

- fuchsin und seine Carbinols base 771

– indigblau 702.

- methylenblau 145.

- patentblau 702.

phosphin 175.

Neurodin 486.

Neusolidgrün und seine Cars binolbase 748.

Nitroacetamino-anisol 388, 389, 390, 422, 521, 522.

brenzcatechinmethyläther 779, 781.

brenzcatechinmethyläther: acetat 779, 781.

diphenylamin 20, 31, 95.

diphenylsulfid 542.

 hydrochinondimethyläther 789.

– kresol 578.

- kresolmethyläther 606.

– naphthol 673, 681.

 naphtholäthyläther 670. naphthylacetat 674, 681.

 phenetol 388, 389, 391, 522. phenol 422, 423, 520, 521.

Nitroacetaminophenol-athyl= äther 388, 389, 391, 522. – methyläther 388, 389, 390,

422, 521, 522. Nitroacetaminophenyl-acetat

391, 522.

– oxamidsäure 122.

phthalamidsäure 122.

Nitroacetaminothymolathyl= äther 659.

Nitroacetoxyacetamino= methyl-benzol 595.

isopropylbenzol 653, 659. Nitroacetoxybenzyl-acetyl= anilin 583.

anilin 581.

Nitroacetyl-nitrobenzoyls aminophenol 522.

phenylendiamin 121.

Nitroäthansulfonylaminophenetol 523

phenoläthyläther 523. Nitroathoxy-acetaminos

methylisopropylbenzol 659.

aminomethylisopropylbenzol 659.

benzaminomethylisopropylbenzol 659.

diphenylamin 422, 446.

- nitroanilinodiphenylsulf= oxyd 401

Nitroathoxyphenyl-athyl= nitrosamin 391.

harnstoff 523.

- urethan 523.

697.

diathylaminoxylol 185. diphenylamin 80.

Nitroathylensulfonylaminophenetol 524.

phenoläthyläther 524.

Nitroäthylnitrosamino-phenetol 391.

phenoläthyläther 391. Nitroäthylphenylphenylendis

amin 30.

Nitroaminoacetamino-dis phenylamin 110.

phenol 552, 563.

Nitroamino-äthyldiphenyl= amin **3**0.

anilinodiphenylmethan

anisol 388, 389, 390, 421, 422, 520, 521.

benzaminotoluol 163.

benzhydrol 697.

- benzylalkohol 622. Nitroaminobisdimethyl= amino-methyltriphenyl= methan 319, 321, 325.

trimethyltriphenylmethan 328.

- triphenylmethan 312. Nitroamino-brenzcatechin

781. brenzcatechinmethyläther

779, 780. carvacrol 653.

dimethylaminomethyltriphenylmethan 281, 282.

diphenylamin 17, 29, 41, 78, 79; Benzilderivat des 30.

diphenylsulfid 534.

diphenylylphthalamids säure 235.

guajacol 779, 780.

Nitroaminohydrochinondimethyläther 789.

methylätheräthyläther 789.

Nitroamino-kresol 574, 578, **595**, 605.

kresolmethyläther 606. Nitroaminomethylamino-dis methylaminotoluol 302.

toluol 141, 163, 164. Nitroaminomethyl-diphenyls

amin 30, 130. hydrochinon 795.

is opropyl phenyl benzo at653, 659.

Nitroamino-naphthol 667. naphtholmethyläther 673.

phenanthrol 725.

phenetol 388, 389, 422, 520, 521.

Nitroaminophenol 388, 390. 391, 421, 422, 520, 521. Nitroaminophenol-athylather

388, 389, 390, 422, 520,

dinitrophenyläther 521.

methylather 388, 389, 390, 421, 422, 520, 521. Nitroamino-phenoxyessig=

sāure 520, 521.

phenyloxamidsaure 122.

phenylurethan 31.

resorcin 783. thiophenol 401.

- thymol 659. thymolathylather 659.

toluidinomethyldiphenylmethan 255

xylenolmethyläther 635. Nitroanilino-benzylnaphthol

731. phenol 421.

phenoläthyläther 422.

phenylglycin 32.

Nitroanisalaminophenol 390. Nitrobenzalaminobenzyl-

alkohol 617. - anilin 168.

- naphthol 727.

Nitrobenzalamino-dimethyls diphenylamin 156.

diphenylamin 85.

methylbenzyltoluidin 185, 186.

methyldiphenylamin 85. - naphthol 666, 668, 678, 679.

phenol 368, 414, 453. Nitrobenzalaminophenol-

āthylāther 454.

methyläther 369, 453. Nitrobenzalaminophenyl-

iminobuttersäureäthylester 24. tolylsulfid 540, 541.

Nitrobenzal-anisidin 369, 453.

benzidin 224.

isodiphenyloxäthylamin

oxynaphthylbenzylamin 727.

- phenetidin 454. - phenylendiamin 19.

Nitrobenzamino-anisol 390, 391, 522.

brenzcatechinmethyläther. benzoat 781.

diphenylamin 31.

- methyldiphenylamin 31. phenol 372, 373, 390, 469.

phenolmethyläther 390, 391, 522.

phenoxyessigsäure 523.

 phenylbenzoat 523. resorcinbisnitrobenzoat **786**.

diathylaminomethyltri-

phenylmethan 281.

Nitrobenzamino-thymolathyle ather 659. triphenylcarbinol 741. Nitro-benzanthron 901. benzidin 235. Nitrobenzolsulfamino-anisol 391. phenetol 524. phenolathylather 524. phenolmethyläther 391. Nitrobenzoyl-cyanid, Bisdimethylaminoanil des methylaminophenol 373. Nitrobenzoyloxy-aminomes thylisopropylbenzol 653, phenylurethan 378. Nitrobenzoylphenylendiamin 21, 46, 98, 122. Nitrobenzyl-acetanisidid 372. acetylaminophenolmethylather 372. Nitrobenzylamino-phenol 448. phenoläthyläther 449. phenolmethyläther 366, 367, 449. phenylbenzoat 449. Nitrobenzyl-anisidin 366, 367, 449. benzoylaminophenol 471. formanisidid 370, 460. formphenetidid 460. Nitrobenzylformyl-aminos phenolmethyläther 370, phenylendiamin 20. Nitrobenzyl-phenetidin 449. phenylendiamin 19. Nitrobisacetamino-methylphenol 636. - naphthylacetat 674. phenol 552. - toluol 141, 163. Nitrobis-aminomethylphenes tol 636. benzaminobutylbenzol 192. benzaminotoluol 141, 164.
benzolsulfaminotoluol 142. chloracetaminomethyls phenetol 636. Nitrobisdiathylamino-acets aminomethylphenetol dimethyltriphenylmethan diphenylmethan 245. - triphenylmethan 279, 280. Nitrobisdimethylamino-dimethyltriphenylmethan 283. diphenylmethan 245. methyltriphenylmethan 281. toluol 163.

Nitrobisdimethylamino-tris Nitrodimethylamino-diphenylcarbinol 748, 749. methylaminophenyltriphenylmethan 278, 279, fluoren 288. phenolmethyläther 390. triphenylmethanbisjod. Nitrodimethylaminophenylmethylat 279, 280. bisathylaminonaphthylmethan 336. Nitrobis-methylaminotoluol bisanilinonaphthylmethan 163. toluolsulfaminotoluol 142. 336. bismethylaminonaphthyl-Nitrocinnamalamino-naphs thol 668, 679. phenol 369, 454. methan 335. bistoluidinonaphthylphenoläthyläther 454. methan 336. methylnitrosamin 58; s. phenolmethyläther 454. auch 122. Nitrocinnamal-anisidin 454. oxamidsäureäthylester phenetidin 454. 122. Nitrocinnamoylamino-anisol Nitrodimethyl-benzidin 260. 390. formylphenylendiamin phenolmethyläther 390. 121. Nitrodiacetylamino-carvacrol phenylendiamin 29, 57. 653. Nitrodioxyamino-methylbens kresol 595. zol 795. naphthol 674, 681. phenanthren 817. naphtholäthyläther 670. Nitrodiphenyldiacetylpheny. phenol 391, 522. lendiamin 122. thymol 659. Nitroditoluolsulfonyl-aminos Nitrodiacetyl-naphthylens phenol 524. diamin 203. benzidin 235. phenylendiamin 31, 57, phenylendiamin 58. 121; s. auch 58. Nitro-formaminodiphenyls Nitrodiäthylaminobenzhydrol amin 31. 697. formylphenylendiamin Nitrodiamino-amylbenzol 193. 121. benzol 29, 57, 58, 120. methoxyacetaminomethyl. butylbenzol 192. benzol 606. dibutyltriphenylmethan Nitromethoxyamino-dimes thylbenzol 635. dimethyltriphenylmethan methylbenzol 606. 284, 285. Nitromethoxybenzal-aminodiphenylamin 110. benzylnaphthol 728. diphenylmethan 245. phenol 563. oxynaphthylbenzylamin 728. tetramethyltriphenylmethan 286, 287. Nitromethoxy-benzylacets toluol 141, 142. amid 611. trimethylbenzol 191. diphenylamin 366, 445. - triphenylmethan 278, 279. phenylmethylnitrosamin — xylol 181, 185, 189. Nitrodibenzoyl-aminophenol 391 toluolsulfaminomethyl= 523. benzol 606. phenylendiamin 31, 57. Nitromethylamino-acetamino-Nitrodibrom-benzoyloxybens toluol 141. zylacetylanilin 586. anisol 388. oxybenzylacetylanilin 585. benzhydrol 697. Nitrodimethoxydiaminotris diphenylamin 30. phenylmethan 820, 821. phenetol 388. phenoläthyläther 388. Nitrodimethylamino-acetphenolmethyläther 388. aminotoluol 163. anisol 390. Nitromethylnitrosamnio-anibenzhydrol 697. sol 391. benzhydroljodmethylat phenolmethyläther 391. Nitromethyl-phenyldibrom

oxybenzylacetamid 586.

phenylendiamin 29, 120.

Nitromethylphenylphenylens diamin 30.

Nitronaphthyl-acetylphenyslendiamin 31.

benzoylphenylendiamin
 31.

— phenylendiamin 30.

Nitronitro-acetaminobenzyla acetylanilin 174.

aminobenzylanilin 173.
 Nitronitrobenzalamino-phenestol 520.

— phenoläthyläther 520.

Nitronitromethyl-acetylamis nobenzylacetylanilin 174.

— aminobenzylanilin 174. Nitronitrotoluolsulfonyl-aces

tylaminophenol 522.

— nitrobenzoylaminophenol 523.

Nitrooxyacetaminomethylsbenzol 578.

Nitrooxyamino-diphenylamin 499.

— methylbenzol 574, 578, 595, 605.

— methylisopropylbenzol 653, 659.

— phenanthren 725.

Nitrooxyaminophenyl-carbonsimid 564.

- harnstoff 564.

 isocyanat 564.
 Nitrooxybenzal-aminobenzylnaphthol 728.

— oxynaphthylbenzylamin 728.

Nitrooxybenzyl-acetylanilin 583.

— äthylanilin 588.

— amin 587, 610.

- anilin 580, 581.

-- benzamid 588, 611.

- chloracetamid 588, 610.

- diäthylamin 588.

— formamid 588.

Nitrooxy-diphenylamin 421, 444.

— methylphenylharnstoff 590.

- naphthylbenzylanilin 731.

— phenylharnstoff 391. Nitro-peribenzanthron 901.

 phenoxyessigsäurephenes tidid 490.

Nitrophenyl-acetylphenylens diamin 31.

- anisidin 366, 445.

benzoylphenylendiamin
 31.

- benzyläther 900.

Nitrophenylendiamin 29, 57, 58, 120.

Nitrophenylformylphenylens diamin 31.

Nitrophenyl-leukauramin 308.

— oxyphenylthioharnstoff

REGISTER.

- phenetidin 446.

— phenylendiamin 29.

Nitrosoacetamino-benzylanis lin 173.

benzyltoluidin 173.

- diphenylamin 96.

Nitrosoäthoxy-diphenylamin 457, 509.

 methyldiphenylamin 509.
 Nitrosoäthylamino- s. auch Äthylnitrosamino-.

Nitrosoäthyl-aminokresol 601.

— phenylnaphthylendiamin

- phenylnaphthylendiamin 200.

Nitrosoamino-anisol 388.

— benzyltoluidin 173.

— phenolmethyläther 388. Nitroso-anilinophenol 421.

- benzoylnaphthylendiamin 203.

benzylbenzoyldiphenylsäthylendiamin 253.

bisdimethylaminophenyls naphthalin 272.

- chlormethylphenylphenetis din 510.

- diäthylaminokresol 601.

— dibenzalphenylendiamin 57.

 dibenzylbenzoyldiphenyl= äthylendiamin 253.

dimethoxydiphenylamin510.

Nitrosodimethylamino-anislinophenol 421.

- diphenylamin 116.

--- kresol 601.

— phenetol 421.

- phenoläthyläther 421.

Nitrosodimethyl-benzoyldis phenyläthylendiamin253.

- benzylphenylendiamin 117.

 diphenylbenzoyläthylens diamin 253.

 isopropylphenylphenylens diamin 117.

phenylphenylendiamin
 116.

Nitrosodiphenyl-benzylbenszoylathylendiamin 253.

dibenzylbenzoyläthylens diamin 253.

Nitrosohexamethoxydiphenyls amin 828.

Nitrosomethoxybenzyl-anilin 608.

- naphthylamin 609.

— toluidin 608.

Nitrosomethoxydiphenylamin 457, 509.

Nitrosomethylamino- s. auch Methylnitrosamino-.

Nitrosomethyl-aminokresol 601.

— anisidin 383.

Nitrosonitro-benzylphenetidin 510.

- trimethylphenylendiamin 58, 122.

Nitrosooxyäthylaminomethylsbenzol 601.

Nitrosooxybenzyl-anilin 584, 597, 608.

anisidin 584.

— naphthylamin 584, 609.

– toluidin 584.

Nitrosooxydiäthylaminomes thylbenzol 601.

Nitrosooxydimethylamino-diphenylamin 93, 419.

— methylbenzol 601.

Nitrosooxydiphenylamin 419, 509.

Nitrosooxymethyl-aminomes thylbenzol 601.

- diphenylamin 419.

— diphenylaminsulfonsäure 412.

Nitrosophenylamino- s. Phenylnitrosamino-.

Nitrosophenyl-anisidin 457, 509.

— phenetidin 457, 509. Nitrosopseudoephedrin 639. Nitrosotetramethyl-phenylens

diamin 57.
— phenylnaphthylendiamin

Nitroso-toluidinophenol 421. — tolylphenetidin 509.

Nitrosotrimethyl-phenylendis amin 53, 116.

— phenylnaphthylendiamin 272.

Nitroso-trinitrotrimethylphes nylendiamin 61.

trisdimethylaminotriphes
 nylmethan 313.

Nitrotetra-aminodimethyltrisphenylmethan 343.

- oxyaminobenzol 842.

- phenylphenylendiamin 58, 121.

Nitrotolidin 260.

Nitrotoluolsulfamino-anisol 391, 523.

- kresolmethyläther 606.

- phenetol 524.

- phenoläthyläther 524.

— phenolmethyläther 391, 523.

— phenoxyessigsäure 524. Nitrotoluolsulfonyl-acetyl-

aminophenol 522.

— oxydiphenylamin 447.

Nitrotolyl-benzoylphenylens diamin 31.

phenylendiamin 30. Nitro-triacetyldiaminonaph= thol 674.

- triaminobenzol 294.

— trimethylphenylendiamin **120**.

Nitrotrisacetaminobenzol 294. Nitrotrisdimethylamino-mes thyltriphenylmethan 321, 325.

- triphenylmethan 317.

0.

Oct- s. Okt-. Onanthoyl-aminokresol 604.

 benzoylaminokresol 604. Oktabromoxydiphenylamin 519.

Opiansäure-äthoxyanil 498. - oxyanil 498.

Orthokohlensäuretetrakis: aminoanilid 49, 102.

Orthophosphorsäure- s. Phoss phorsaure..

Oxalsäureäthylester-anisidid 472.

— phenetidid 473.

Oxalsäureamid-anisidid 472.

– phenetidid 473.

Oxalsaure-anisidid 374, 472. bisäthoxyphenylamidin 473.

Oxalsäurebismethoxyphenylamidin 374, 472.

imidchlorid 374, 473.

Oxalsäure-dianisidid 374, 472.

- diphenetidid 473. — nitrilanisididoximacetat 472.

 phenetidid 473. Oxalvlbenzidin 220.

Oximinomalonsaureanisidid= oxim 497.

Oxodimethylcyclohexylidenacetylphenylendiamin 45,

- phenylendiamin 44, 88. Oxomethylcyclohexyliden= phenylendiamin 44.

Oxyacetamino-anthracen 723. — benzyldimethylamin 614.

— diacetylaminomethylisos propylbenzol 660.

dimethylbenzol 631. - diphenyl 693.

Oxyacetaminomethyl-acetyl= aminomethylbenzol 614.

benzol 574, 577, 593, 600,

- isopropylbenzol 652, 657.

Oxyacetamino-phenanthren

phenylnaphthalin 726. Oxyacetoxyacetaminos naphthalin 803.

Oxyacetyl-anilinotriphenyl= amin 381.

diphenylamin 372.

Oxyathoxy-aminoathylbenzol

dimethyldiisopropyldi= phenylamin 654.

trimethyldiphenylamin

Oxyäthylamino-anthracendis hydrid 722.

diphenylamin 502.

methylbenzol 600.

methyldiphenylamin 504.

phenolmethyläther 367.

phenylsulfon 426. Oxyathyl-anisidin 367.

methylanisidin 368. Oxyamine 348.

Oxyamino-äthylbenzol 625, 628, 629.

anilinodiphenylamin 502.

anthracen 723.

benzol 354, 401, 427. Oxyaminobenzyl-acetat 800.

— alkohol 800.

amin 589, 613. - benzamid 589, 614.

— naphthalin 727, 729.

– naphthol 819.

Oxyamino-bisdimethylaminotriphenylcarbinol 822.

dimethylaminodiphenyls amin 555.

dimethylbenzol 629, 630, 631, 633, 634.

diphenyl 690, 692.

Oxyaminodiphenyl-amin 499, 500, 554.

benzol 735.

methan 693, 694; s. auch Aminodiphenylcarbinol.

Oxyamino-fluoren 721, 722. hydrinden 662.

Oxyaminomethyl-anthracen

— benzol 572, 574, 576, 579, 589, 590, 593, 598, 601, 606; s. auch Aminobens zylalkohol.

diphenylamin 419, 504, 554, 577.

- isopropylbenzol 652, 654. Oxyamino-naphthalin 665,

667, 670, 671, 676, 681, 682, 683, 684, 685, 686. — naphthalintetrahydrid 663.

phenanthren 723, 724.

phenylnaphthalin 726. - trimethylbenzol 642, 648. Oxyanilino-anisidinodiphenyl= amin 503.

buttersäureäthylester 380,

campherylidenessigsäure 497.

- crotonsäurenitril 496.

- dimethyldiphenylamin

diphenylamin 502.

essigsäure 379, 488.

essigsäureoxyanilid 506. isobuttersäureäthylester

492.

isobuttersäurenitril 492. -- methylbenzol 592.

— methyldiphenylamin 577.

— methylencampher 456.

pentadienaloxyanil 455.

propionsäureäthylester 491

toluidinodiphenylamin 502.

Oxybenzal- s. auch Salicylal-. Oxybenzalaminobenzyl-alkohol 617.

naphthol 728.

Oxybenzalaminomethyl-bens zol 593.

isopropylbenzol 655. Oxybenzal-aminophenyltolyl-

oxynaphthylbenzylamin

Oxybenzamino-aminophenyl= naphthalin 726.

diphenylmethan 694; auch Benzaminobenzs hydrol.

methylbenzol 604.

methylisopropylbenzol

phenol 493.

Oxybenzhydrylamin 693. Oxybenzidin 690.

Oxybenzolsulfamino-dimes thylbenzol 631.

methylbenzol 600. trimethylbenzol 648.

Oxybenzoyl- s. auch Salicoyl-. Oxybenzoyldiphenylamin 374,

Oxybenzylacet-amid 582. - anilid 582

- anisidid 583.

phenetidid 583.

Oxybenzyl-äthylanilin 607.

- amin 579, 606.

--- aminomethylbenzol 593. aminophenol 582.

anilin 580, 597, 606.

anisidin 582, 607. benzamid 583.

dimethylamin 580. - harnstoff 583.

Oxybenzyliden- s. Oxybenzalu. Salicylal-.

Oxybenzyl-isothiocyanat 608.
— methoxyphenylnitrosamin 584.

— methylanilin 581, 607.

naphthylamin 581, 607.
naphthylnitrosamin 584,

609.

- phenetidin 582, 607.

— phenylendiamin 583, 584.

— phenylnitrosamin 584, 597, 608.

- pseudocumidin 581.

— senföl 608.

- toluidin 581, 607.

— toluylendiamin 584.

— tolylnitrosamin 584.

xylidin 581.

Oxybisacetamino-diphenyl 692.

methylisopropylbenzol 660.
 Oxybisäthyl-aminomethylsbenzol 614.

benzylaminotriphenylsmethan 737.

Oxybis-anisalaminodiphenyl 690, 692.

- carbylaminotrimethyls

benzol 651.
— diacetylaminomethylisos

propylbenzol 660. Oxybisdiathylamino-triphenylcarbinol 822.

triphenylmethan 737.

Oxybisdimethylamino-dimethylaminophenylfluoren 773.

 diphenylmethan 694; s. auch Bisdimethylaminobenzhydrol.

— methyltriphenylmethan 762, 763.

— triphenylmethan 735, 737. Oxybis-formaminodiphenyl

— methylcyanaminotetraphenylmethan 776.

— nitrobenzalaminodiphenyl 692.

— salicylalaminodiphenyl 692.

Oxy-chinondimethylaminoaniloxim 93.

 cuminalaminomethylisopropylbenzol 655.

- diathoxyphenylharnstoff 828.

 diäthylaminomethylbenzol 600.

Oxydiamino-āthylbenzol 628. — benzol 549, 553, 563, 564, 567.

- diphenyl 690, 691.

– diphenylamin 504.

Oxydiaminomethyl-benzol 588, 597; s. auch Oxyaminobenzylamin.

diphenyl 705.

— isopropylbenzol 653, 659. Oxydiamino-naphthalin 674, 675, 676, 686, 687.

- phenanthren 725.

— phenylcarbonimid 571.

— phenylisocyanat 571.

trimethylbenzol 650.triphenylmethan 735.

Oxydihydrofencholenamin 350.

Oxydimethoxy-dimethylaminoäthylphenanthrenjodmethylat 839.

— methylaminoäthylphensanthren 838.

Oxydimethylamino-anilinobenzylalkohol 799.

benzyltriphenylcarbinol
 824.

— dimethylaminophenylfluoren 773.

— dimethyldiphenylmethan

716. — diphenylamin 418, 501.

diphenylmethan 695;
 auch Dimethylaminos
 benzhydrol.

- methylbenzol 599.

- methyldiphenylamin 577.

 nitrocyanbenzalaminos diphenylamin 555.

— oxymethyldiphenylamin 799.-

Oxydimethylbenzyl-acets anilid 647.

— anilin 643, 647. Oxydiphenyl-amin 365, 410,

444.
— dimethylaminophenyl-

anthracendihydrid 778. Oxy-diphenylin 691.

— diphenylyloxamidsäure

- fluorenylharnstoff 721.

— formaminodimethylbenzol 630.

formyldiphenylamin 460.
 glutacondialdehydbisäthsoxyanil 457.

— hydrindamin 662.

— isobuttersäurephenetidid 493.

 isobutyraminophenols äthyläther 493.

 isovalerylaminomethyls benzol 603.

Oxymethoxy-acetaminos methylbenzol 798.

 äthoxydimethylaminos äthylphenanthrenjods methylat 839. Oxymethoxy-athoxymethylsaminoathylphenanthren 839.

— aminoallylbenzol 803.

- aminomethylbenzol 797, 798.

Oxymethoxybenzal- s. auch Vanillal-.

Oxymethoxybenzalaminophenol 458.

phenoläthyläther 458.

phenolmethyläther 458.
phenolphenacyläther 459.

Oxymethoxy-benzalbenzidin 226.

— benzaminomethylbenzol 798.

benzylbenzamid 797.

benzylchloracetamid 796.bisdimethylaminotris

phenylmethan 821.

— propyloxydimethylaminos

 propyloxydimethylaminoäthylphenanthrenjods methylat 839.

 propyloxymethylaminos äthylphenanthren 839.
 Oxymethylacetyl-diphenyls amin 416.

— diphenylamindisulfons

säure 416. — diphenylamintrisulfons säure 416.

Oxymethylamino-diphenylamin 501.

— methylbenzol 599. Oxymethylbenzidin 705.

Oxymethylbenzyl-acetanilid 632.

— anilin 632. — toluidin 632.

Oxymethyl-butyraminophes noläthyläther 493.

— diphenylamin 411, 412, 447, 448, 592.

Oxymethyldiphenylamin-dis sulfonsäure 412.

— sulfonsäure 412.

— trisulfonsäure 413.

Oxymethyl-formyldiphenylamin 415, 460.

hexahydrobenzylanilin
 349.

Oxymethylisopropylbenzylbenzamid 661.

- chloracetamid 661.

— diāthylamin 661.— diisobutylamin 661.

dipropylamin 661.salicylamid 661.

Oxymethylisopropylhexahydrobenzyl-äthylamin

— amin 350.

- anilin 351.

- dimethylamin 351.

Oxymethyl-oxymethyldis phenylamin 799. phenylathylacetanilid 642. phenyläthylanilin 642. phenylharnstoff 618. phenylurethan 573, 591, 604. Oxy-naphthochinonoxynaphthylimid 671, 685. naphthoesäureanisidid 494. - naphthylaminonaphthos chinon 671, 685. Oxynaphthylbenzyl-amin 727, 729. - anilin 730, 732. – benzylamin 730. — isoamylamin 730. – naphthylamin 730. Oxynaphthyl-isoamylamin methylamin 688. - methyldimethylamin 688. Oxynaphthylmethylen-aminobenzylnaphthol 728. oxynaphthylbenzylamin 728. Oxynitrocyanbenzalaminomethyldiphenylamin 555. Oxyonanthoylaminomethyls benzol 604. Oxyoxophenylmethoxyphes nylisoindolin 496. Oxyoxy-aminobenzylnaphthalin 819. - naphthylbenzylamin 819. Oxyphenylacetylcarbamids saure-athylester 486. – isoamylester 486. isobutylester 486. - methylester 486. propylester 486. Oxyphenylacetyl-glycin 489. urethan 486. Oxyphenyl-athoxyphenylacetamidin 468. äthylamin 624, 625. Oxyphenyläthyl-benzamid 625, 627. dimethylamin 626. Oxyphenyläthylendiamin 380. Oxyphenyläthyl-nitrosamin 383. phenylthioharnstoff 629. Oxyphenyl-alaninäthylester 491. aminophenylphenylendis amin 502. --- anilinophenylphenylendis amin 502. Oxyphenylbenzoylcarbamid-

saure-methylester 487.

- camphoformenamin 456.

propylester 487

Oxyphenyl-biguanid 478.

Oxyphenyl-camphoformenamincarbonsaure 497. carbathoxythioharnstoff 479. cuminylnitrosamin 510. cyanazomethinphenyl 496. dimethylaminophenylnitrosamin 419. dinitronaphthylamin 367, **45**0. glycin 379, 488. glycinamid 418; s. auch glycinoxyanilid 506. guanylguanidin 478. harnstoff 375, 417, 478. Oxyphenylimino-buttersaures nitril 496. butyrophenon 415. campher 414, 455. campherylessigsäure 497. caprophenon 415. methylcampher 456. valerophenon 415. Oxyphenyl-maleinamidsäure methoxyphenylphthalimidin 496. methylnitrosamin 383. naphthylamin 450. naphthylendiamin 505. oxamid 417, 471. oxamidsāure 417. oxamidsäureäthylester 471; s. auch 417. phenylnitrosamin 419, 509. phthalamidsäure 374, 417, Oxyphenylpropionylcarbs amidsaure-methylester 486. propylester 486. Oxyphenyl-succinamidsaure 474. sulfondimethylaminoanilinonaphthalin 805. thioallophansaureathylester 479. thioharnstoff 375, 417, 478. thioharnstoffcarbonsaures athylester 479. toluidinophenylphenylendiamin 502. - tolylnitrosamin 419. - urethan 375, 478. Oxy-propionylaminomethylbenzol 603. - rosindon 17. Oxytoluidino-benzylalkohol phenylcyanazomethin. nitrophenyl 555. Oxytriamino-benzol 569, 571. fluoren 722. - naphthalin 676.

Oxytrimethylhexahydrobenzylanilin 350. Oxytrisdimethylaminotris phenylmethan 736.

P. Palmitinsaure-dibromacets oxybenzylanilid 587. dibromoxybenzylanilid Palmitoyl-aminophenol 372, 469 naphthylendiamin 199. Para-dimethylbernsteinsäurephenetidid 476. fuchsin 752; Carbinolbase 750. leukanilin 313. phenylenblau 69. rosanilin 750; (Geschichtliches) 733. Pentascetyldiaminothymol 660. Pentaamine 345. Pentaamino-benzol 346. cyclopentadien 345. dimethyltriphenylmethan methylbenzol 346. toluol 346. Pentabrom-aminodiphenylamin 78. anilinobenzoldiazoniumbromid 78. anilinobenzoldiazoniumnitrat 78. benzoyloxydiphenylamin 519. diphenylamin 78. oxydiphenylamin 518. oxymethyldiphenylamin412. Pentakis-acetaminobenzol diathylaminophenylathan dimethylaminophenylathan 347. Pentamethyl-acetylparaleuks

anilin 317. leukanilintrisjodmethylat

naphthylperaleukanilin

316.

naphthylpararosanilin 761. paraleukanilin 314.

pararosanilin 755. Pentanitro-diathylphenylens

diamin 61. dimethyphenylendiamin

oxymethyldiphenylamin 412.

- Pentaoxy-Verbindung, Amino | Phenyläthoxyphenyl-harn derivat einer 845.
- Pentyl- s. Amyl-. Phellandrendiamin 5.
- Phenacetaminomethylphenylcarbinol 629.
- Phenacetin 461.
- Phenacyloxyphenylharnstoff 484.
- Phenetidin 359, 404, 436. Phenetidino-acrylsaure 495.
- aminoformylglutarsäures diathylester 495.
- crotonsäureäthylester 496.
- crotonsăurenitril 496.
- cyanglutarsāurediāthyls ester 495.
- essigsäure 379, 488.
- essigsäurephenetidid 506. - glutaconsäurediäthylester
- 497. methoxyphenylcyclos hexenoncarbonsaureathyl-
- ester 498. — methylenacetessigsäures
- phenetidid 497.
- methylenacetylaceton 369. methylenmalonsäureäthyls
- esterphenetidid 380.

 phenylcyclohexenoncar
- bonsäureäthylester 497. propanbiscarbonsăures äthylestercarbonsäures amid 495.
- propanbiscarbonsäureäthylestercarbonsäures nitril 495.
- propantricarbonsaure 495.
- tricarballylsäure 495.
- tricarballylsäurediäthyl= esteramid 495.
- tricarballyl¤äurediäthyl= esternitril 495.
- Phenokoll 506. Phenolblau 88.
- Phenoxy-acetaminophenol 489.
- essigsāureanisidid 489.
- essigsäurephenetidid 490.
- propionsă urephenetidid 492.
- Phenylacetamino-benzylnitrosamin 173.
- benzylsulfon 624. Phenyl-acetoxyphenylthio-harnstoff 485.
- acetylnaphthylendiamin
- 199, 202, 271.
- acetylphenylendiamin 95. āthoxalylaminomethyls
- phenylthioharnstoff 136. Phenylathoxyphenyl-acet amidin 463.
- glycylharnstoff 489.
- guanylthioharnstoff 482.

- stoff 377, 481.
- nitrosamin 509.
- phthalamidsaure 417, 478. thioharnstoff 418.
- Phenyl-athylbenzylaminos phenylthioharnstoff 103.
- athylendiamin 177.
- Phenylamino- s. Anilino-. Phenylaminobenzyl-äther 616.
- carbinol 706. sulfon 623.
- Phenylaminomethyl-phenylharnstoff 160.
- phenyloxamid 135.
- Phenylaminonaphthyl-harnstoff 199, 207.
 - thioharnstoff 207.
- Phenylaminophenyl-harnstoff **22, 48, 101**
- thioharnstoff 23, 49, 102. Phenylanilino-benzylcarbinol
- **712.** formyloxyfluorenylharn. stoff 721.
- formyloxyphenylharnstoff 485.
- methylphenylharnstoff 171.
- Phenyl-anisalphenylendiamin 93.
- anisidin 366, 411, 445.
- anisyläthylamin 715. Phenylbenzal-acetylnaphthys lendiamin 271.
- naphthylendiamin 199, 202.
- phenylendiamin 85.
- Phenyl benzidin 222 benzoylphenylendiamin
- 21, 98.
- Phenylbenzyl-athoxyphenyls guanylisothioharnstoff **482.**
- phenylendiamin 82.
- Phenylbisdiathylaminophenyl-butan 285.
- propan 283. Phenylbisdimethylamino-
- benzhydrylsulfon 704.
- naphthylmethan 292. phenyläthan 281.
- phenylharnstoff 298.
- phenylnaphthylanthracendihydrid 293.
- phenylthioharnstoff 298. Phenylcarbathoxyamino-me-
- thylphenylthioharnstoff
- phenyloxamid 104.
- Phenyl-carbamidsaureacets aminophenylester 372.
- carbaminyl- s. Anilinofors myl-.

- Phenyl-cinnamalphenylens diamin 87.
- cuminal phenylendiamin
- cyclohexandionāthoxyanil 457.
- diacetylaminophenylthioharnstoff 103.
- diacetylnaphthylendiamin
- diaminophenyläthylen
- dibenzoylphenylendiamin
- dihydroresorcināthoxyanil 457.
- dimethoxyphenylthioharnstoff 783, 789.

 Phenyldimethylamino-mes
 - thylphenylthioharnstoff
 - 160. phenylbenzylcarbinol 762.
- phenylnitrosamin 116.
- stryrylcarbinol 722. Phenyldinitro-oxyphenylharn. stoff 396.
- phenylphenylendiamin 18. Phenyldiphenylin 273.
- Phenyldiphenyl-oxathylharnstoff 708.
- oxathylthioharnstoff 708. Phenylenbis-acetylacetonimid 44, 87.
 - äthylnitrosamin 116.
- allylthioharnstoff 23, 50, **105.**
- aminocrotonsăurenitril 24. 51, 106.
- aminomethylenmalons
- säurediäthylester 51, 109. benzoylharnstoff 23.
- campherchinonimid 88.
- cinnamoylameisensäureimid 51.
- cyanamid 50.
- cyanazomethinphenyl 108.
- dimethyldihydroresorcinimid 44, 88.
 - glykosimin 20.
- iminobuttersäurenitril 24, 51, 106.
- iminocampher 88.
- iminomethylmalonsaurediathylester 51, 109.
- isosuccinamidsaureathylester 100.
- malonamidsäureäthylester
- methylnitrosamin 53, 116.
- oxamid 48, 100. oxamidsaure 47, 100.
- phenylharnstoff 49.
- phenylnitrosamin 53, 117.
- phenylthioharnstoff 23, 50,

Phenylenbis-sebacinamidsaureathylester 48. succinamidaaure 48, 100. thiocarbamidsaureathyls ester 50, 104. thioharnstoff 50, 105. - thiourethan 50, 104. – tolylnitrosamin 53, 117. trimethylammoniumjodid 41, 75. Phenylen-braun 39. diamin 6, 33, 61. Phenylendiamin-bisthiosulfonsiure 792. tetrakisthiosulfonsaure 842. – thiosulfonsäure 556. Phenylen-dicarbonimid50,105. – dicarbylamin 44, 84. - dicarbylamintetrabromid 105. diharnstoff 23, 49, 104. diglycin 51, 106.
diisocyanat 50, 105.
diisocyanid 44, 84. diisocyanidtetrabromid 105. - diisothiocyanat 23, 50, 105. – dile**uka**uramin 308. --- disenföl 23, 50, 105. - diurethan 23, 49, 104. - harnstoff, polymerer 39, thioharnstoff, polymerer 39, 71. Phenylformylphenyljodoniumjodid, Benzidinderivat des 225. Phenylglykoloylaminophenylkohlensäure- äthylester 404. – m~thylester 494. Phenyl-glyoxylsäuresmid. Dimethylaminoanil 107. leukauramin 307. Phenylmethoxybenzyl-harnstoff 583. nitrosamin 608. Phenylmethoxyphenyl-acetamidin 461. athylthioharnstoff 625. biguanid 376. - guanylguanidin` 376. - harnstoff 376. nitrobenzylharnstoff 378. - nitrosamin 509. phthalamidsaure 417, 478. propylamin 715. thioharnstoff 376, 480. Phenyl-methylnitrosaminomethylphenylthioharnstoff 140.

- naphthylendiamin 197,

201, 271.

Phenylnitrobenzalnaphthylens | diamin 202. Phenylnitrosamino-benzyls nitrosaminotoluol 173. essigsäuredimethylamineanilid 114. phenol 419, 509. Phenyloxybenzyl-harnstoff 583. nitrosamin 584, 597, 608. Phenyloxydimethylphenylphenylendiamin 635. Phenyloxymethyl-phenylharnstoff 604, 618. phenylphenylendiamin phenylthioharnstoff 618, Phenyloxyphenanthrylhams stoff 725. Phenyloxyphenyl-athylthios harnstoff 629. harnstoff 375, 417, 478. naphthimidazoldihydrid 199. nitrosamin 419, 509. phenylendiamin 502. phthalamidsaure 417, 478. thioharnstoff 375, 417, 479. Phenyl-phenetidin 411, 446. pheneticinothioformylguanidin 483. phenylendiamin 16, 76. - pikrylphenylendiamin 18. salicylalnaphthylendiamin 199, 202. salicylalphenylendiamin sulfon bisdimethylamino. diphenylmethan 694; auch Phenylbisdimethylaminobenzhydrylsulfon. sulfonessigs&urephenetidid thebenylthioharnstoff 840. Phenylthiocarbaminyl- siehe Anilinothioformyl-. Phenylthioureido-dimethyldis phenylsulfid 579, 596. hydrochinondimethylather 789. menthanol 350. menthol 350. methylnitrosaminoxylol 183. methylphenyloxamid: saureathylester 136. methylphenylurethan 137. phenyltolylsulfid 546. resorcindimethylather 783. Phenyltoluidinobenzylcarbis nol 712. Phenyltolyl-acetaminobenzyl-

harnstoff 172.

aminobenzylharnstoff 171.

Phenyltolylbenzaminobenzylharnstoff 172. Phenyltolylmercapto-methylphenylharnstoff 579, 596. methylphenyloxamid 596. methylphenylthioharn. stoff 579, 596. phenylharnstoff 546. phenylthioharnstoff 546. Phenyl-tolylnaphthylendis amin 200. tolylphenylthioureidobenzylharnstoff 172. tolylphenylureidobenzylaharnstoff 172. trinitrophenylphenylendis amin 18. trisdimethylaminophenyläthan 334 ureidodimethyldiphenylsulfid 579, 596. ureidophenylkohlensäureanilid 485. ureidophenyltolylsulfid 546. Phloramin 787. Phosphorsaure-diphenetidid 510. triphenetidid 510. trisnitrosthoxyanilid 524. Phthalsaure-anisidid 477. phenetidid 477. Pikraminsaure 394. Pikrylacetylphenylendiamin Pikrylamino-phonol 365, 411, phenylacetat 366, 446. phenylbenzoat 366, 447. thiophenol 400. Pikryl-anisidin 366, 446. naphthylendiamin 208. phenetidin 366, 446. phenylendiamin 17, 41, 79. Propandisulfonsaurebisathylphenetidid 508. Propenyl- s. Allyl-. Propionylamino-kresol 603. phenylkohlensäureäthylester 469. Propionyloxy-acetaminomethylbenzol 603. propionylaminomethylbenzol 603. Propyl-bisaminobenzylamin 172. bismethoxyphenylisothio-harnstoff 379. brenzcatechin, Athoxyphenylcarbamidaaure ester des 480. dimethylaminophenylcarbinol 651.

Propyloxyaminomethyl-

benzol 572.

Propyloxy-methylphenyls harnstoff 573. methylphenylthioharnstoff phenyiharnstoff 484. - phenylthioharnstoff 484. Propylphenylendiamin 76. Prothebenin 839. Prothebeninmethinjodmethylat 839. Protoblau 841. Protorot 845. Pseudo-dithioacetanilid 544. ephedrin 636, 637. Pyraminorange 57, 218. Pyrantin, lösliches 474. Pyrogallol, Athoxyphenyls carbamidsaureester des Pyruvylaminophenolmethylather 495.

R.

Rheonin 38.
Rhoduline 130, 131.
Rodinal 434.
Rosanilin 763; (Geschichtsliches) 733.
Rosazurin 257.

S.

Saure-alizarinbraun 38. fuchsin 764. violett 6 BN 413. violette 755, 765. Salicoylamino-phenol 493. phenolathylather 493. phenolmethyläther 493. phenylsalicylat 493. Salicoyl-benzidin 231. phenylendiamin 51, 106. Salicylalaminobenzyl-alkohol 617, 622. anilin 168. anisidin 381. naphthol 727, 731. naphthylamin 169. phenetidin 505. Salicylalaminodimethyldiphenyl-amin 146, 157. sulfid 595. Salicylalamino-diphenylamin – diphenylylurethan 228. – methylbensyltoluidin 186. - methyldiphenylamin 92. - phenol 369, 415, 457.

phenoläthyläther 369, 458.

— phenolmethyläther 457. — phenyltolylsulfid 541. Salicylalanisidin 457.

Salicylal-benzidincarbons säureäthylester 228. isodiphenyloxathylamin oxynaphthylbenzylamin 727, 731. phenetidin 369, 458. Salicylamin 579. Salicylasure-anisidid 493. anisididessigsaure 493. essigsäurephenetidid 490. phenetidid 493. phenetididessigsaure 493. Salophen 465. Sebacinsă urebisamino anilid Selencyanessigsāure-anisidid 380, 489 phenetidid 491. Selendiglykolsauredipheneti-Selenooxalsaurediphenetidid Setocyanin und seine Carbinolbase 770. Setoglaucin und seine Carbis nolbase 748. Sinalbinsenföl 608. Solidogen 175, 176. Spritblau und seine Carbinols base 768. Stearoylphenylendiamin 97. Stilbendiamin 249. Sulfhydryl-acetaminomethylbenzol 576. aminodiphenyl 693. aminomethylbenzol 575, 591, 601. diaminomethylbenzol 597. Sulfidgrün 560. Sulfoacetaminophenol-athyl-Ather 499.

T.

methyläther 499.

— phenetidid 499. Sulfondiessigsäurediphenetis

Sulfonsäuregrün 561.

Suprarenin 830, 832.

did 491.

Sulfobenzaltoluylendiamin

Sulfoessigsäure-anisidid 499.

Tanninorange 175.
Tetraacetoxy-acetaminobenszol 842.
— bisacetaminobenzol 842.
Tetraacetyl-benzidin 227.
— glykoseäthoxyanil 459.
— rosanilin 769.

— tolidin 258. — triaminophenol 570.

— xylylendiamin 189.

891 Tetraäthoxy-benzidin 843. diaminodiphenyl 843. Tetraäthyl-benzidin 222. benzidinbishydroxy: methylat 222. Tetraäthyldiamino-benzhys drol 703. diphenylmethan 242. triphenylcarbinol 746. triphenylmethan 276. Tetraathyl-indaminsulfid 561. indaminthiosulfonat 562. indaminthiosulfonsaure, Endosalz 562. paraleukanilin 316. phenylendiamin 76, 194. rosanilin 768. xylylendiamin 180. xylylendiaminbishydroxy: åthylat, Salze 180, 188. Tetraamine $C_nH_{2n-2}N_4$ 336. CnH2n-8N4 338. $C_nH_{2n-10}N_4$ 338. $C_nH_{2n-12}N_4$ 342. $C_nH_{2n-18}N_4$ 342. $C_nH_{2n-22}N_4$ 344. $C_nH_{2n-24}N_4$ 344. $C_nH_{2n-26}N_4$ 344. CnH2n-28N4 345. $C_{1}H_{2n-34}N_{4}$ 345. Tetraamino-acetaminodimes thyltriphenylmethan 347. anisol 571. benzol 336, 337. bisacetaminodimethyldis phenyl 347. evelopentadienol 354. Tetraaminodimethyl-diphenyl 341. diphenyldisulfid 598. diphenylmethan 342. triphenylmethan 343. Tetraamino-dinaphthyl 344. diphenyl 338, 339, 340. diphenyldisulfid 553, 556. diphenylmethan 340, 341. diphenylsulfon 567. ditan 340, 341. hydrochinon 793. methylbenzol 338. naphthalin 338. phenetol 571. phenoläthyläther 571. phenolmethyläther 571. stilben 342. toluol 338. trimethyltriphenylmethan triphenylbenzol 344.

Tetraanilino-benzol 337.

Tetrabenzolsulfonyl-diamino-

phenylendiamin 25, 53, 116.

naphthalin 338.

phenol 552.

Tetrabengoyltriaminophenol

Tetrabenzylphenylendiamin 43, 82.

Tetrabrom-acetoxybenzylacetanilid 587.

benzidin 234.

benzoyloxydiphenylamin 517.

diacetylphenylendiamin 56.

- diaminobenzol 56.

dimethylbenzidin 256.

Tetrabromoxy-benzylacetanis lid 587.

- benzylanilin 587, 610.

– benzylbenzylamin 587, 610.

– benzyldiisoamylamin 587,

- dibenzylamin 587, 610.

 dimethylaminodiphenyls methan 693.

- diphenylamin 517.

Tetrabrom-phenylendiamin

tetraacetylbenzidin 235.

- tolidin 256.

Tetrachlor-acetoxydiathylaminodiphenylmethan

acetylphenylendiamin 27.

 äthylacetylphenylens diamin 27.

- aminodiphenylamin 118.

– aminophenol 386.

- benzidin 234.

 benzylacetylphenylens diamin 27.

diacetylphenylendiamin

54, 118. diaminobenzol 119.

- diphenylphenylendiamin

 oxydiāthylaminodiphes nylmethan 695.

- oxydiphenylamin 514.

- phenylendiamin 119.

 salicylalaminodiphenyls amin 119. tetraacetylbenzidin 234.

Tetrahydronaphthylen-diamin 194, 195.

thioharnstoff, polymerer

Tetrahydrophthalsaure-anis sidid 477.

oxyanilid 477.

phenetidid 477.

Tetraisoamvlxvlvlen-bishydroxyisoamylat, Salze 187.

diamin 186.

Tetraisobutylxylylendiamin 180, 186, 189.

Tetrajod-diaminobenzol 120. phenylendiamin 120.

Tetrakisacetamino-benzol 337.

diphenyl 339. diphenylmethan 341.

phenylathan 345.

Tetrakis-aminophenyläthan 345.

benzalaminodimethyldis phenyldisulfid 598

benzaminodimethyldiphes nyldisulfid 598.

benzaminodiphenylmethan 341.

Tetrakisdimethylamino-dimethyldiphenylmethan 342.

phenylathan 345. phenyläthylen 345.

phenyläthylenglykol 824.

phenylxylol 345.

Tetramethoxy-benzidin 843.

bisacetaminodiphenyl 843. bisphenylthioureidodis

phenyl 843. diaminodiphenyl 843.

dimethylaminoathylstilben

Tetramethyl-acetylparaleukanilin 317.

benzidin 221.

benzidinhydroxymethylat 222.

diathylphenylenbisammos niumhydroxyd 76.

Tetramethyldiamino-benz hydrol 698.

benzophenonchlorid 244. diphenylmethan 239.

thiobenzhydrol 703.

triphenylcarbinol 741, 742, 743.

triphenylcarbinthiol 749. triphenylmethan 273, 274,

Tetramethyldiphenylin 211. Tetramethyldiphenylin-bis-

jodmethylat 212. jodmethylat 212.

Tetramethylhomoindaminthiosulfonat 613.

thiosulfonsaure 613. Tetramethylindamin-sulfid 560.

thiosulfonat 561.

thiosulfonsaure, Endosalz

Tetramethyl-indammoniums hydroxyd 89.

— paraleukanilin 314. - pararosanilin 754.

Tetramethylphenylendiamin 16, 40, 74, 193.

Tetramethylphenylendiaminbisjodmethylat 41, 75.

jodmethylat 41, 75.

thiosulfonsaure 559. Tetramethylphenyl-naphthylendiamin 271.

paraleukanilin 316.

pararosanilin 759.

Tetramethyl-propenylphenys lendiamin 194.

rosanilin 767.

rosanilinhydroxymethylat 767.

tolidin 258.

toluylendiamin 130, 145,

tolylparaleukanilin 316. xylylendiaminbishydroxy.

methylat 179. Tetranitro-acetaminodiphenvläther 530.

acetoxydiphenylamin 532.

aminodiphenyläther 529. bismethylaminodiphenylmethan 246.

bismethylnitraminodiphenylmethan 246.

dianilinodiphenylsulfon 547.

dimethylbenzidin 237.

dimethylphenylendiamin

dinitrophenoxydiphenylamin 532.

oxybenzylanilin 580. oxybenzyltoluidin 581.

oxydimethylaminodiphes nylamin 504.

oxydiphenylamin 396, 528, 531.

tetramethylbenzidin 237. toluolsulfonyloxydiphenylamin 532.

Tetraoxy-aminobenzol 841.

bisacetaminobenzol 842. bisdimethylaminotriphenylmethan 844.

diaminobenzol 842.

Tetraoxy-Verbindungen, Aminoderivate der 841. Tetraphenetidinohexandicar=

bonsäure-diäthylester 498. diphenetidid 498.

Tetraphenyl-äthylendiamin 253.

bisaminomethylphenyls xylol 294.

bisaminophenylxylol 293. bismethylaminomethyl

phenylxylol 294. diacetyläthylendiamin 253.

diaminotriphenylmethan

dibensoyläthylendiamin

Tetraphenyl-phenylendiamin **42**, 80.

xylylendiamin 180, 187,

Tetrapropylxylylendiaminbishydroxypropylat, Salze 186, 188.

Thebenidin 838.

Thebenidinjodmethylat Thebenin 838.

Thebenin-athylather 839. methinjodmethylat 839.

methylather 838.

propylather 839. Thermodin 486.

Thio-acetaminophenoläthyl= ather 463.

- acetanilid 543.

- anilin **53**5.

— anisssäureanisidid 494.

anissäurephenetidid 494.

 benzaminophenoläthyls ather 470.

 benzoesäurephenetidid **4**70.

- carbathoxythioglykol= saureanisidid 380.

Thiocarbonyl-aminoresorcindimethylather 786.

benzidin 230.

— dianisidin 809.

diphenylin 212.

Thio-diathylanilin 540. diglykolsaurediphenetidid **491.**

– dimethylanilin 538.

- essigsaurephenetidid Thionylamino-dinaphthylamin 203.

- diphenylamin 116.

phenolathylather 509.

phenolmethylather 382. Thionyl-anisidin 382.

disthylphenylendiamin 116.

dimethylphenylendiamin

methylbenzylphenylendiamin 116.

naphthylnaphthylendiamin 203

phenetidin 509.

phenylendiamin 116.

- phenylphenylendiamin

Thiooxalsaure-amidanisidid= oxim 472

diphenetidid 473. Thiophosphorsaure-diphenetidid 510.

triphenetidid 510. Thio-propions urephenetidid 468.

propionylaminophenol-Athylather 468.

Thiotoluidin 591.

Thymochinon-acetoxymethylisopropylanil 657.

athoxymethylisopropyl= anil 656.

benzyloxymethylisopropylanil 656.

butyloxymethylisopropylanil 656.

dimethylaminoanil 91.

methoxymethylisopropyls anil 656.

oximathoxymethyliso: propylanil 656.

oxymethylisopropylanil

Thymoxyessigsäurephenetidid 490.

Tolidin 255, 256.

Tolidin-bisdithiocarbonsaure 259.

dicarbonsäurediäthylester 259.

dicarbonsă urediamid 259. Toluchinon-dimethylaminoanil 90.

imidoxyanil 457.

Toluidinoacetamino-kresols äthyläther 612.

phenolathylather 554. tohuol 146, 157.

Toluidino-benzalaminotoluol

methylphenyliminomalonsăureureid 161.

naphthylaminotoluol 131.

naphthylcyanazomethin: nitrophenyl 203.

nitrobenzalaminotoluol

nitrocyanbenzalaminos phenol 555. phenol 411, 412, 447, 448.

phenoläthyläther 412, 413, 447.

phenolmethyläther 412, 413.

Toluidinosalicylalaminokresoläthyläther 612.

phenolathylather 554.

toluol 146, 157.

xylenoläthyläther 632. Toluidinothioformyldiphenyl-

oxathylamin 709. Toluolsulfamino-dimethyls

aminotohiof 139. kresolmethyläther 605.

naphthol 673.

phenol 382, 419, 507. phenoxyessigsaure 508.

Toluolsulfonsaure-acetaminophenylester 466.

aminomethylphenylester 602

aminophenylester 361, 441.

Toluolsulfonsäure-anisidid 382, 507.

benzaminophenylester 471.

bisacetaminophenylester diacetylaminophenylester `

468.

diaminophenylester 551. dinitromethoxyanilid 527.

dinitromethylaminophe: nylester 526.

dinitrooxyanilid 531.

methylaminophenylester

nitroäthoxyanilid 524.

nitromethoxyanilid 391, 523.

oxyanilid 382, 419, 507. phenetidid 382, 507.

Toluolsulfonyl-acetylamino= phenol 466, 508.

acetylanisidin 508.

benzovlaminophenol 471, 508.

diacetylaminophenol 468.

diacetyldiaminophenol 552.

oxyaminomethylbenzol 602.

oxyphenylglycin 489. phenylendiamin 52, 114.

Toluylen-bisacetylthioharn= stoff 138.

bisäthylharnstoff 137.

bisathylisothioharnstoff **138**.

bisäthylthioharnstoff 160. bisallylthioharnstoff 123,

138, 146, 160. bisaminoisobuttersäure=

nitril 138.

bisbenzamidin 134.

biscarbamidsäureäthyl= ester 137.

biscarbamidsäurephenylester 137.

bisdiphenylguanidin 137. bisglycinäthylester 138.

bisglycinnitril 138, 147.

bisglykosimin 157.

bisglykuronsäureimid 161. bismalonamidsäureäthyl: ester 135.

bisoxamid 135.

bisoxamidsaure 135.

bisphenylharnstoff 137, 160.

bisphenylnitrosamin 164. bisphenylthioharnstoff

138, 147, 160. bisthiocarbamidsäures äthylester 137.

bisthioharnstoff 137. bisthiourethan 137.

Toluylen-diamin 123, 124, 144, 148, 164. dicarbonimid 138. – diglycin 147. - diharnstoff 137, 160. diisocyanat 138.diisothiocyanat 138, 160. --- disenföl 138, 160. - diurethan 137. harnstoff, polymerer 129. -- orange 257. - oxamid, polymeres 129. - violett 127. .Toluylağureaminobenzylamid Tolyl-acetaminobenzylnitrosamin 173. acetphenetidid 416. athoxymethylphenylthiosharnstoff 604. - aminobenzylnitrosamin - aminonaphthylthioharnstoff 207. - anisidin 412, 413. - benzalphenylendiamin 85. benzoylphenylendiamin benzylacetylnaphthylen diamin 199. benzylnaphthylendiamin 198. bisdiaminomethylphenyls methan 344. diphenyloxāthylthioharns stoff 709. - leukauramin 308. Tolylmercaptomethylphenylharnstoff 596. - oxamidsäureäthylester 579, 596. urethan 596. Tolylmercaptophenyl-harnstoff 546. oxamid 546. - oxamidsaureathylester 546. urethan 546. Tolyl-methoxybenzylnitrosamin 608. - naphthylendiamin 198. nitrocyanbenzalnaphthy. lendiamin 203. nitrosaminophenol 419. Tolyloxy- s. auch Kresoxy-. Tolyl-oxybenzylnitrosamin 584. - phenetidin 412, 413, 447. phenylendiamin 18, 42, 80, 81. salicylalphenylendiamin 92. sulfonessigsä urephenetidid

Tolylthio- s. Tolylmercapto-. Triamino-phenolmethyläther Tolylureidomethylbenzylharnstoff 186. phloroglucin 828. Tri- s. auch Tris-. resorcin 788. Triacetoxydiacetylaminodis - resorcindiäthyläther 788. methylbenzol 834. stilben 310. Triacetylamino-anthrol 723. toluol 301, 302, 303. carvacrol 652. tribenzylamin 176. phenanthrol 724. trimethylbenzol 304. thymol 657. Triaminotrimethyltriphenyl-Triacetyldiamino-mesitol 651. carbinol 771. carbinolmethyläther 772. naphthol 674, 675, 676, carbinthiol 772. 687. phenol 552, 554, 565. methan 331. thymol 660. Triaminotriphenyl-amin 113. Triacetyl-gallussäurephenetis carbinol 750. carbinolmethyläther 754. did 494. carbinthiol 762. - leukanilin 323. — morphothebain 837. methan 311, 312, 313. paraleukanilin 317. Triamino-trisdimethylaminopararosanilin 761. triphenylmethan 347. thebenin 840. tritan 311, 312, 313. Triäthylrosanilin 767. xylol 303. Triamine $C_nH_{2n-3}N_3$ 294. — $C_nH_{2n-9}N_3$ 304. Trianilino-benzol 299, 301. methyltriphenylcarbinol $C_nH_{2n-11}N_8$ 306. - C_nH_{2n}—₁₈N₈ 310. - C_nH_{2n}—₁₅N₈ 310. methyltriphenylmethan 322 CnH2n-19N8 311. naphthalin 304. $C_nH_{2n-21}N_3$ 332. triphenylcarbinol 760. $C_nH_{2n-25}N_8$ 333. triphenylmethan 316. Trianisalparaleukanilin 317. - C_nH_{2n—27}N₃ 334. $C_nH_{2n-29}N_3$ 335. Tribenzalparaleukanilin 316. $C_nH_{2n-81}N_8$ 335. Tribenzolsulfonyl-adrenalin $C_nH_{2n-87}N_3$ 336. 833. Triamino-amylbenzol 304.
— anisol 569. diaminophenol 552. nitrobenzoyladrenalin 833. benzol 294, 299. Tribenzoyl-apomorphin 818. - butylbenzol 304. diaminonaphthol 687. chinon 346. diaminophenol 566. diathylaminomethyldiphemorphothebain 837. nylmethan 341. Tribenzylparaleukanilin 316. Triaminodimethyl-aminodis Tribromacetaminophenol 519. phenylmethan 340. Tribromacetoxy-acetylanilinoaminomethyldiphenylmemethylbenzylacetat 801. anilinoacetylanilinodimethan 341 diphenyl 309. diphenylmethan 310. thylbenzol 632. benzylanilin 597. triphenylcarbinol 770. bisacetylanilinodimethyls triphenylmethan 327. benzol 633. Triamino-diphenyl 306. bisacetyltoluidinodimediphenylamin 298. thylbenzol 633. diphenylmethan 306. dimethylaminodimethyldis ditan 306. phenylmethan 718, 720. mesitylen 304. toluidinoacetyltoluidinodis methyldiphenylmethan methylbenzol 633. Tribromathoxy-dianilinodimes methyltriphenylcarbinol thylbenzol 630. 763. ditoluidinodimethylbenzol methyltriphenylmethan Tribromamino-diphenylamin naphthalin 305. 78. naphthol 676. kresol 578. orcin 799. phenetol 387, 421. phenol 569, 571. phenol 421.

Tribromaminophenoläthylather 387, 421.

Tribrom-benzoyloxydiphenylamin 516.

 diacetylaminophenylacetat 421.

diacetylphenylendiamin
 56.

diaminobenzol 28, 56.
 dinitroaminomethyldiphernylamin 56.

Tribromnitroamino-anisol 423.

- phenetol 423.

— phenol 423.

— phenoläthyläther 423.

phenolmethyläther 423.
 Tribromoxy-aminomethylbens zol 578.

 anilinoacetylanilinodimes thylbenzol 632.

anilinomethylbenzylalkoshol 801.

benzylacetanilid 597.

— benzylanilin 597.

bisacetylanilinodimethylsbenzol 633.

brommethylbenzylanilin
 635.

 brommethylbenzyltos luidin 635.

diäthylaminodimethyladiphenylmethan 718.

— dianilinodimethylbenzol 630, 632.

Tribromoxydimethylaminodimethyldiphenylmethan 718, 720.

 dimethyldiphenylmethans jodmethylat 720.

- diphenylmethan 695.

diphenylmethanhydroxysmethylat 695.

— methyldiphenylmethan 714.

 methyldiphenylmethanhys droxymethylat 714.

Tribromoxy-diphenylamin 516.

ditoluidinodimethylbenzol
 630.

methylbenzylanilin 630.
 methylbenzylbenzylamin 631.

-- methylbenzyldiisoamylamin 631, 635.

phenyldimethylaminophernyläthan 712.

— toluidinoacetyltoluidinos dimethylbenzol 633.

Tribromphenylen-diamin 28, 56.

— diurethan 56.

Tribromtriacetylaminophenol 421.

Trichloracetamino-phenol 371.

— phenoläthyläther 463. Trichloracetyl-benzoylamino=

phenol 371.
- phenylendiamin 27.

Trichloräthyliden-aminobenzylalkohol 617. — aminophenyltolylsulfid

540.

bisaminophenolmethyla äther 368, 452.

— dianisidin 368, 452. Trichlor-aminophenol 420,

 bisdimethylaminotriphes nylcarbinol 748.

 bisdimethylaminotriphes nylmethan 278.

— bisoxyaminophenyläthan 815.

— chinondimethylaminoanil 89.

diaminotoluol 123, 148.
 dinitroacetoxydiphenyl

amin 514.
— dinitrooxydiphenylamin
514

514. — essigsäurephenetidid 463.

— formylphenylendiamin 27.

Trichlormethyl-athylamino phenylcarbinol 628.

- äthylnitrosaminophenyls carbinol 629.

 diäthylaminophenylears binol 628.

dimethylaminophenylcars
 binacetat 628.

- dimethylaminophenylcars binol 628.

— formylphenylendiamin 27.

— methylaminophenylcarbis nol 628.

— methylnitrosaminophenyls carbinol 628.

Trichloroxy-āthylphenylendis amin 19, 84.

dimethylaminodiphenyls
 amin 515.

Trimethoxy-benzalaminos oxyhydrochinontris methyläther 827.

- benzylamin 829.

— dimethylaminoäthylphenanthrenhydroxymethylat 839.

 dimethylaminoäthylphens anthrenjodmethylat 837.

— phenyläthylamin 830. Trimethylacetaminomethyls phenylammoniumjodid 157. Trimethylacetaminophenyla ammoniumhydroxyd 45, 95.

Trimethylacetoxyphenylammoniumjodid 443.

isopropylammoniumhydrsoxyd 638.

Trimethyl-acetylphenylendiamin 46.

 äthoxyphenylammoniums hydroxyd bezw. Salze 364, 443.

 aminophenylammoniums hydroxyd bezw. Salze 40, 75.

 benzaminophenylammoniumhydroxyd 46.

 benzoyloxyphenyläthyls ammoniumjodid 627.

 bernsteinsäurephenetidid 476.

bromoxyphenylpropylsammoniumchlorid 639.

— chloroxyphenylpropyls
 ammoniumchlorid 640.

 dimethoxyphenylammos niumhydroxyd 789.

Trimethyldimethylaminomethylphenylammoniumhydroxyd bezw. Jodid 130, 145.

phenylammoniumjodid 41,
 75.

Trimethylmethoxy-phenylsäthylammoniumhydrsoxyd bezw. Jodid 624, 627.

— phenylammoniumhydrs oxyd 364, 443.

Trimethyl-methylmercaptos phenylammoniumhydrs oxyd 539.

nitrooxyphenylammonisumhydroxyd 389.

Trimethyloxy-aminophenylammoniumhydroxyd 551.

 anilinophenylammoniums jodid 501; s. auch 418.

 cycloheptenylammoniumhydroxyd 352.

— naphthylammoniumchlos rid 684.

Trimethyloxyphenyl-äthylammoniumhydroxyd bezw. Salze 624, 627.

- ammoniumhydroxyd 363, 408, 443.

- butylammoniumchlorid 651.

isopropylammoniumhydra oxyd 638.

 propylammoniumhydrs oxyd bezw. Salze 639, 640, 641. Trimethyl-oxytetrahydronaphthylammoniumhydroxyd 664.

— phenylendiamin 40, 74, 190.

— phenylnaphthylendiamin 271.

— rosanilin 767.

 tetrachloroxybenzyls ammoniumhydroxyd, betainartiges Anhydrid des 609.

trimethoxybenzyls
 ammoniumhydroxyd 829.

vinyloxyphenylammonisumjodid 364.

Trinaphthyl-pararosanilin 761.

- rosanilin 769.

Trinitroacetamino-diphenylamin 96.

-- phenol 533.

Trinitroacetoxydiphenylamin 366, 446.

Trinitrosthoxy-diphenylamin 366, 425, 446.

phenylmethylnitramin
 425.

— phenylurethan 533. Trinitroamino-anisol 532.

Trinitroamino-anisoi 532 — diphenyläther 521.

— diphenylamin 17, 41, 61, 79, 121.

— methyldiphenylamin 30,

— phenetol 532.

— phenol 425, 533.

— phenoläthyläther 532. — phenolmethyläther 532.

Trinitroanilino-phenol 425.

— phenolathylather 425.

— phenolathylather 425.

— phenolmethylather 425.

Trinitro-benzalbenzidin 224. — benzoyloxydiphenylamin 366, 447.

- bismethylaminotoluol 165.

 bismethylnitraminotoluol 165.

bisoxyphenylphenylendisamin 500.
diacetylphenylendiamin

61.
— diäthylphenylendiamin

61. Trinitrodiamino-benzol 60.

— phènol 568. — toluol 165.

Trinitrodianilino-diphenyls sulfon 547.

— phenol 568.— toluol 165.

Trinitrodimethylamino-diphenylamin 42.

phenylmethylnitrosamin
 61.

Trinitro-dimethylphenylendis amin 60.

diphenyldibenzoylphenyslendiamin 99.

— ditoluidinotoluol 165.

-- mercaptodiphenylamin 400.

— methoxydiphenylamin 366, 425, 446.

 methoxyphenylmethyls nitramin 425.

Trinitromethylamino-diphernylamin 61, 79.

phenol 425.

phenylmethylnitramin 61.
 Trinitromethylnitramino-

anisol 425. — phenetol 425.

— phenol 425.

phenoläthyläther 425.

— phenolmethyläther 425.

— resorcindimethyläther 787. Trinitro-methylphenylphes

nylendiamin 61.
— oxydiphenylamin 365, 411,

425, 445, 520.

— oxymethyldiphenylamin

447.
— oxyphenylmethylnitramin

425. Trinitrophenyl-s. auch Pikryl-. Trinitrophenylen-bisäthyl-

nitramin 61.

bismethylnitramin 61.diamin 60.

Trinitrophenyl-naphthylendis amin 208.

— phenylendiamin 61.

Trinitroso-aminoresorein 787.
— diaminophenol 568.

Trinitro-sulfhydryldiphenyls amin 400.

- triaminobenzol 301.

— triaminotriphenylmethan 317.

— trianilinobenzol 301.

 trisdimethylaminotriphes nylmethan 317.

trismethylaminobenzol
 301.

- trismethylnitraminobenzol 301.

Trioxyamino-benzol 825, 826, 827.

dimethylbenzol 834.

— diphenylmethan 836.

— methylbenzol 828.

— naphthalin 835, 836. Trioxy-benzylsalicylamid

 bisdimethylaminotriphes nylmethan 840.

— diaminobenzol 826.

diaminomethylbenzol 829.
triaminobenzol 828.

phenylmethan 841. Trioxy-Verbindungen, Aminoderivate der 825.

Trioxytrisdimethylaminotris

Triphenyl-acetylphenylendiamin 97.

— leukanilin 322.

— methanfarbstoffe, basische 732.

— paraleukanilin 316.

pararosanilin 760.phenylendiamin 80.

— rosanilin 768.

Tris- s. auch Tri. Trisacetamino-benzol 300.

— butylbenzol 304.

 methyltriphenylcarbinaces tat 769.

— methyltriphenylmethan 323.

- naphthalin 305.

— phenol 570.

— phenylacetat 570.

- triphenylamin 114.

triphenylcarbinol 761.
triphenylmethan 317.

Trisacetoxyacetaminonaphsthalin 835.

Trisacetyl-anilinobenzol 300.
— toluidinobenzol 300.

Trisäthoxyphenylguanidin 487.

Trisäthylamino-methyltrisphenylcarbinol 767.

naphthylcarbinol 778.
naphthylmethan 336.

Trisalicylalparaleukanilin 317.

Tris-aminophenyläthan 318.

— anisalaminotriphenylmesthan 317.

Trisbenzalamino-diphenylamin 299.

— triphenylmethan 316. Trisbenzamino-benzol 298.

— naphthalin 305.

— phenylbenzoat 571.
Trishenzovl-anilinohens

Trisbenzoyl-anilinobenzol 300.
— toluidinobenzol 300.

Trisbenzylaminotriphenylmethan 316.

Triscarboxybenzaminophenol 571.

Trischlor-anilinomethyltriphes nylcarbinol 768.

benzoyladrenalin 832.
phenylrosanilin 768.

Trisdiacetylaminophenans thren 310.

Trisdiathylamino-methyltrisphenylmethan 319, 320.

— triphenylcarbinol 759.

— triphenylmethan 316. Triedibromacetoxydimethylbensylamin 650.

Triedibness Sthewardimethyle	1 Trithian actamilid EAE	Verbinden (OHN S) 90 54				
Trisdibrom-athoxydimethyl- benzylamin 647.	Trithioacetanilid 545. Tritoluidino-benzol 299.	Verbindung $(C_7H_6N_2S)_x$ 39,71. — $C_7H_7O_4Cl_2$ 797.				
— oxydimethylbenzylamin	— methyltriphenylcarbinol	$-(C_7H_7NS_2)_{x}$ 796.				
646, 650.	769.	— C ₇ H ₆ O ₈ NCl 794.				
Trisdimethylamino-benzol295.	— naphthalin 305.	— C,H,O,NBr 794.				
— benzoltrisjodmethylat 295.	Tritolylrosanilin 769.	— C,H,O,NS 452.				
 dimethyltriphenylmethan 	Türkisblau 702.	$-C_7H_{10}O_2N_2S$ 83.				
325, 326, 327.		$- (C_8 H_8 O N_8)_x$ 129.				
- hexamethyltriphenylme-		— C.H.10,NS 368.				
than 332.	U.	$$ $U_8H_{12}U_2N_2S$ 132.				
— methyltriphenylcarbinol 767.	Ureidoborneol 353.	— C ₂ H ₁₂ O ₂ N ₂ S ₂ 83.				
methyltriphenylmethan	Ureidobrenzcatechinmethyls	- (C ₂ H ₈ O ₂ N ₂) _x 129. - C ₂ H ₁₂ O ₂ NCl 618.				
318, 320, 322, 323, 324.	äthercarbonsäure-äthyls	— C.H.10.NBr 618.				
- methyltriphenylmethan:	ester 781.	— C.H.,O.N.S. 559.				
bisjodmethylat 322.	— diathylamid 781.	— C.H ₁₈ O ₄ NS 452.				
— phenyläthan 318.	Ureidodimethyldiphenylsulfid	$-C_9H_{14}O_3N_9S_9$ 559.				
— phenylsulfoniumhydroxyd	596.	$- C_0H_{14}O_6N_0S_0$ 132.				
539.	Ureidomethylphenyl-oxamid	C ₁₀ H ₁₀ N ₂ 14.				
trimethyltriphenylmethan	136.	- Ciallian 4.				
328, 329, 330.	— oxamidsaure 136.	$- C_{10}H_4O_4N_2 \text{ oder } C_{10}H_4O_3N_2$				
Trisdimethylaminotriphenyl-	Ureidophenoxy-acetophenon	835.				
amintrischlormethylat 113.	484. — essigsāure 485.	— (C ₁₀ H ₇ ON) _x 665. — C ₁₀ H ₈ ON ₂ S 206.				
— carbinol 749, 750, 755.	Ureidophenyl-cyanamid 49,	— C. H. ON. 70. 296				
— carbinoläthyläther 758.	104.	$\begin{array}{lll} & - & C_{12}H_{10}ON_2 & 70, 296. \\ & - & C_{12}H_{11}ON_2 & 504. \end{array}$				
- carbinoläthyläthertrisjods	— kohlensäureäthylester 485.	$-C_{12}H_{11}O_2N$ 688.				
methylat 759.	— kohlensäurediäthylamid	- C ₁₂ H ₁₂ O ₂ N ₄ 810.				
 carbinolbenzyläther 758. 	485.	— C ₁₂ H ₁₂ O ₂ N ₄ 810. — C ₁₂ H ₇ O ₂ NBr ₂ 517.				
 carbinolhydroxymethylat 	— oxamid 104.	$- C_{12}H_8ON_2Cl_2$ 118.				
758.	— oxamideaure 49.	C.aHaONSa 411.				
— carbinolisoamyläther 758.	- oxamidsäureäthylester	— C ₁₉ H ₁₁ O ₂ N ₂ Cl 434.				
— carbinolisoamyläthertris-	104.	— C13H13NC18 540.				
jodmethylat 759. — carbinolmethyläther 758.	— tolylsulfid 546. — urethan 104.	— C ₁₃ H ₁₀ O 694. — C. H. N. 346				
— carbinolmethylätherjod:	Ursolfärberei 69.	— C ₁₃ H ₁₃ N ₅ 346. — C ₁₃ H ₃ ON ₃ 207.				
methylat 758.	Olbolia Bold Gov	— C ₁₈ H ₁₈ ON ₂ 435.				
- carbinolmethyläthertris-		$-C_{13}H_{13}O_4NS$ 453.				
jodmethylat 759.	₹.	$- C_{12}H_{14}O_{2}N_{2}S$ 224.				
— carbinoltrisjodmethylat		$ C_{14}H_{12}O_{4} 808.$				
759.	Vanillalamino-benzylalkohol	C ₁₄ H ₄ O ₂ Cl ₁₂ 209.				
- carbinthiol 762.	617.	— C ₁₄ H ₄ O ₂ Cl ₁₄ 267.				
— methan 312, 315.	— benzylnaphthol 729.	— C ₁₄ H ₅ O ₂ Cl ₁₁ 267.				
 methantrioxyd 315. methantrishydroxymethy 	— dimethyldiphenylsulfid 596.	$\begin{array}{lll} & & C_{14}H_5O_2Cl_{12} & 269. \\ & & C_{14}H_{10}O_2N_3 & 220. \end{array}$				
lat 311, 312, 315.	phenol 458.	$-C_{14}H_{11}N_{3}S_{3}$ 230.				
Trisdiphenylaminotriphenyls	— phenolphenacyläther 459.	$-C_{14}H_{13}O_{2}N_{3}$ 14.				
carbinol 760.	— phenoxyacetophenon 459.	C ₁₄ H ₁₀ O ₂ N ₂ 15.				
Trismethoxyphenylguanidin	Vanillal-anisidin 458.	— C. H. O. N. 435.				
378, 487 .	— benzidin 226.	$- C_{14}H_{14}O_{2}N_{2}$ 220.				
Trismethylaminomethyltri-	— isodiphenyloxāthylamin	- C ₁₄ H ₁₄ O ₃ N ₂ 220. - C ₁₄ H ₁₅ O ₃ N ₃ 14. - C ₁₄ H ₁₅ O ₄ N ₃ 458.				
phenylcarbinol 767.	711.	C ₁₄ H ₁₅ O ₅ NS 458.				
Trisnaphthylamino-methyl	— oxynaphthylbenzylamin	— C ₁₄ H ₁₆ O ₃ N ₃ S 243. — C ₁₄ H ₁₆ O ₄ N ₃ S ₃ 224.				
triphenylcarbinol 769. — triphenylcarbinol 761.	729. — phenetidin 458.	$- C_{14}H_{14}O_{9}N_{2}Cl_{4}S 244.$				
Trisnitrobenzaminodiphenyl-	Vanillyl-benzamid 797.	- CHO. 694.				
amin 299.	— chloracetamid 796.	C ₁ H ₁₄ O 694.				
Trisoxynaphthylmethylamin	Veratralphenetidin 458.	— C ₁₅ H ₁₅ O ₃ 694. — C ₁₅ H ₁₄ O 694. — (C ₁₅ H ₁₆ N ₃ S ₃)x 591.				
688.	Veratryl-amin 796.	(CigHigNoS)x 591.				
Trisphenylnitrosaminobenzol	— aminoacetal 796.	$-C_{15}H_{16}ON_{2} 258.$ $-(C_{15}H_{16}ON_{2}S)_{x} 591.$				
300.	Verbindung C ₅ H ₁₅ N ₂ 1.	$ (C_{15}H_{14}ON_{2}S)_{x}$ 591.				
Trissalicylalaminotriphenyl	$-(C_0H_0ON)_{x}$ 434.	$-C_{15}H_{18}O_{2}N_{2}S$ 84, 181, 187,				
methan 317; vgl. 903.	— C.H.O.N. 346.	189.				
Tristolylnitrosaminobenzol	- (C ₇ H ₆ ON ₆) _x 39, 71.	— C ₁₆ H ₁₈ N ₄ 198.				
300.	— C ₇ H ₆ O ₄ Cl ₂ 797.	— C ₁₆ H ₁₆ N ₄ 14.				
BEILSTEIN's Handbuch. 4. A	w. all.	57				

BEILSTEIN's Handbuch. 4. Aufl. XIII.

Verbindung C ₁₀ H ₂ O ₂ N ₄ 197.	Verbindung C ₂₄ H ₂₇ ON ₂ Cl
- C.H.O.N. 103	252.
- C ₁₆ H ₁₈ O ₂ N ₅ 103.	
- C ₁₄ H ₁₄ ON ₁ 15.	- CatH10N4S 103.
- C ₁₆ H ₁₄ O ₂ N ₄ 810.	- C ₃₀ H ₁₉ ON ₃ 90. - C ₃₀ H ₁₉ O ₂ N ₃ 457. - C ₃₀ H ₃₁ O ₂ N ₃ S 323. - C ₃₀ H ₁₇ O ₃ N ₃ 471.
- C.H.O.N. 15	- C. H. O.N. 457
$\begin{array}{lll} & - & C_{10}H_{14}O_{2}N_{2} & 15. \\ & - & C_{10}H_{10}O_{2}N_{2} & 358. \end{array}$	CONTROLLY SON
- U ₁₆ H ₁₆ U ₂ N ₂ 308.	U ₂₅ H ₃₁ U ₂ N ₃ 5 323.
- C ₁₆ H ₁₆ O ₂ N ₂ S ₂ 544.	- CaH, O.N. 471.
- C.H.O.N.S 377	$\begin{array}{l} - (C_{34}H_{16}O_{3}N_{3}S_{3})_{3} & 400. \\ - C_{36}H_{31}O_{5}N_{5} & 250. \end{array}$
— C ₁₆ H ₁₇ O ₂ N ₁ S 377. — C ₁₆ H ₂₆ O ₂ N ₂ S 262, 263.	Coltrigodratoliz zoo.
- U10H20U2N20 202, 203.	- CasHatUaNs 200.
$-C_{17}H_{16}ON_{9}$ 153.	- CasHasON, 155, 156.
	- C.H.ON. 621
O'TT NY 452	- C ₃₃ H ₃₀ ON ₄ 621. - C ₃₃ H ₄₃ O ₉ N ₃ 656.
- C ₁₈ H ₁₈ O ₁₈ C	- C28 H43 C9148 000.
$-C_{10}H_{14}U_{4}N_{4}$ 71.	- C ₂₂ H ₂₆ O ₄ N ₂ 101. - C ₂₂ H ₂₆ ON ₂ 252.
- C.H.O.N. 15, 220.	- C.H.ON. 252.
- CHON 704	C H O N 499
	- C ₂₉ H ₂₉ O ₂ N ₄ 132.
$- C_{18}H_{21}O_8N$ 785.	- C ₃₀ H ₂₀ O ₂ N ₄ 220.
- C.H.ON.S 482, 483,	- CalHasOaNa 754
C H O N S 277	O'HON'S 777
- C19H 90 C8H 40 311.	- C ₃₁ H ₃₄ O ₃ N ₃ S 747.
Cleared Carrier and.	- C ₃₁ H ₃₂ O ₃ N ₃ S ₃ 754. - C ₃₁ H ₃₇ O ₃ N ₃ Cl ₃ 754.
$-C_{18}H_{87}O_{11}N_{8}B_{8}$ 832.	- C. H. O.N.Cl. 754
C TT N G 990	C II O N 000
- C ₁₉ H ₈₁ N ₈ S ₉ 230.	— C ₃₂ H ₃₄ O ₆ N ₄ 228.
- C ₁₀ H ₁₀ O ₄ N ₂ S ₂ 314.	— C ₃₂ H ₄₀ N ₈ S ₅ 558.
- C ₁₉ H ₁₉ O ₁₉ N ₂ S ₅ 314.	- C ₃₂ H ₃₂ O ₆ N ₄ S ₄ 545.
— C H O 804	CHONS 788
- C ₃₀ H ₁₄ O ₃ 694. - C ₃₀ H ₁₉ O ₃ N 729.	— C ₃₂ H ₃₅ O ₃ N ₃ S 766.
$- C_{20}H_{12}U_2N$ 729.	— C ₃₂ H ₃₉ O ₃ N ₃ Cl ₂ 766.
- C ₂₀ H ₁₉ O ₄ N ₅ 111.	— C ₃₄ H ₃₉ O ₉ N ₈ 657.
(TI (N 489	C H O N 560
- C ₂₀ H ₂₁ O ₂ N ₂ 462.	- C ₃₅ H ₃₅ O ₂ N ₃ 569. - C ₃₅ H ₃₅ N ₄ 98.
- C ₂₀ H ₂₄ O ₂ N ₂ 249.	C ₂₂ H ₂₆ N ₄ 98.
— C.H.O.N.S. 322.	— C ₃₉ H ₃₆ N ₆ 81.
- CHONS 94	C H O N KO2
- C ₃₀ H ₁₃ O ₄ N ₃ S ₃ 322. - C ₃₀ H ₃₀ O ₄ N ₃ S ₃ 84. - (C ₁ H ₁₃ N ₁ S) ₂ 594	- C ₃₉ H ₃₆ O ₃ N ₆ 503.
- (C ₁₁ H ₁₂ N ₁ S) ₂ 591. - C ₂₂ H ₃₂ N ₂ 745. - C ₃₂ H ₃₄ O ₂ N ₂ 17.	$$ $C_{20}H_{47}O_{6}N_{2}$ 410.
- C.H.N. 745.	— C ₄₄ H ₃₆ O ₄ N ₄ 220.
- C H O N 47	C H N 900
O H O N 470	- C ₄₅ H ₄₉ N ₈ 299. - C ₄₅ H ₅₇ O ₆ N ₇ 621.
Cashin UaNa 178.	C ₄₉ H ₂₇ O ₆ N ₇ 621.
— C.H.O.N.S. 331.	- C ₄₉ H ₂₉ O ₇ N ₇ 621.
- C ₃₃ H ₁₈ O ₄ N ₃ S ₂ 331. - C ₃₃ H ₃₀ O ₅ N ₃ S 291.	C W N 244 249 247
CONTRACTOR SOL	- C ₅₁ H ₅₆ N ₆ 311, 312, 317.
— C ₂₂ H ₂₁ O ₂ NS ₂ 331.	- C ₅₁ H ₅₈ N ₆ 320.
— C.H.O.N.S. 220.	$-C_{53}H_{60}N_{6}$ 319, 320, 322
- C ₁₂ H ₁₂ O ₂ N ₁ S ₃ 220. - C ₁₂ H ₁₆ N ₄ 198. - C ₁₂ H ₁₆ O ₃ N ₁ S ₃ 377.	302 20K
O TT O T C O	323, 325.
U33H23U3N3B2 377.	— C ₅₃ H ₅₉ N ₆ Cl ₂ 318, 319, 321
— C ₃₃ H ₃₂ O ₃ N ₃ S 377.	323, 324.
- C.H.N. 90	C H N 200
$-C_{34}H_{18}N_4$ 90.	— C ₅₅ H ₆₄ N ₆ 326.
$\begin{array}{lll} & - C_{34}H_{30}N_4 & 196. \\ & - C_{34}H_{13}O_2Cl_4 & 234. \end{array}$	— C ₅₇ H ₆₅ N ₆ 328, 329, 330. — C ₅₇ H ₆₆ N ₆ Cl ₂ 328, 329, 330
- C.H.O.CL 234.	- CHN.Cl. 328, 329, 330
— C ₂₄ H ₁₇ ON ₃ 90.	Vesuvin 39.
CONTROL OF	
- Ca.H. ON. 444.	Viktoriablau B und seine
— C. H. O.N. 438.	Carbinolbase 775.
— C _M H ₃₂ O ₄ N ₂ 438. — C _M H ₃₆ ON ₃ 252.	- R 775; Carbinolbase 774
CHILDON'S AUG.	
— U ₃₄ H ₃₅ U ₉ N ₃ 000.	- 4R und seine Carbinol
— C ₂₄ H ₂₀ N ₂ Cl ₂ I ₂ 220.	base 761.
	,

| Vidalschwarz 434. | Vinopyrin 437. | Viridin 747; Carbinolbase 746.

W.

Wasserblau 768.

Weinsäure-dianisidid 495.

— diphenetidid 495.

Wollgrün 702.

WURSTERSches Blau, schwefelssaures Salz 75.

— Rot, bromwasserstoffssaures Salz 73; salpeterssaures Salz 74.

X.

Xylidino-acetaminokresols äthyläther 612. - phenoläthyläther 414. phenolmethyläther 414. salicylalaminokresoläthylather 612. Xylochinon-dimethylaminos anil 90. oxyanil 457. Xylolsulfonylphenylendiamin 114. Xylyl- s. auch Dimethylphenyl-. Xylylenbis-phthalamidsäure 189. thionamidaaure 181, 187, 189. triāthylammoniumhydroxyd, Salze 180, 188. triisoamylammoniumhydr: oxyd, Salze 187. trimethylammoniumhydrs oxyd 179. tripropylammoniumhydroxyd, Salze 186, 188. Xylylen-diamin 179, 186, 188. dianisidin 382.

diurethan 187.

Berichtigungen, Verbesserungen, Zusätze.

(Siehe auch die Verzeichnisse am Schluß der früheren Bande.)

Zu Band I.

Seite 115 Zeile 21 v. o. statt: "Kp250: 790" lies: "Kp250: 1790".

Zu Band III.

- Seite 16 Zeile 30 v. u. statt: "die Verbindung [(CH₃)₂N·C₆H₄·CO]₆C₆H₅·N(CH₂)₈ (Syst. No. 1874)" lies: "N.N'-Dimethyl-N.N'-diphenyl-harnstoff (Bd. XII, S. 418)".
 - 16 ٠,,
- 29 v. u. hinter: "1900" füge zu: "; vgl. *Groth, Ch. Kr.* 5, 179". 25 v. o. statt: "Kp₃₃: 143⁶" lies: "Kp₃₃: 143⁶". 19 v. u. hinter: "1-Methyl-cyclohexen-(1)-on-(3)" schalte ein: "(Kn., Kl.;". 798 ,,

Zu Band IV.

- Seite 136 Zeile 19 v. o. hinter: "B. 14, 422)." füge ein: "Durch Einw. von Silbercyanat auf Propyljodid und Zersetzung des Reaktionsproduktes mit Kali (Silva, Z. 1869, 638; Linnemann, A. 161, 45)."
 - 136
 - 20-21 v. o. streiche: "; LINNEMANN, A. 161, 44". 29 v. o. statt: "Di-" lies: "Mono-". 157 •• ,, **42**0
 - ,,
 - 12 v. u. statt: "angekeimten" lies: "ungekeimten". 30 v. u. statt: "Äthylmagnesiumehlorid" lies: "Äthylmagnesiumhaloid".

Zu Band V.

- Seite 19 Zeile 7 v. o. statt: "Cyclopropylamin" lies: "Cyclobutylamin".
 - 1 v. u. (Anmerkung) statt: "878" lies: "874".
 - 6 v. o. hinter: "(8.51)" schalte ein: "(W., Terpene und Campher, 2. Aufl. .

 [Leipzig 1914], S. 279)".

 7 v. o. hinter: "Methylalkohol)" schalte ein: ",und Salzsäure". 91

 - 109 ,,
 - 114 ,,
 - 199 ..
 - 248
 - ., . 248
- v. o. minter: ,,methylsikonol) schalte em: ,,und Saissaure".

 4 v. u. statt: ,,[a]_b" lies: ,,[a]_s".

 16 v. u. statt: ,,45-Bis-" lies: ,,56-Bis-".

 2 v. o. statt: ,,33,912" lies: ,,33 912".

 28 v. o. statt: ,,bipyramidal" lies: ,,pyramidal".

 22 v. u. statt: ,,Wheeler, Mao Farland" lies: ,,Gattermann, B. 27, ••
- 490 6 v. u. nach: ,,p-Tolylaceton" schalte ein: ,,(T.)".
- 527 ,,
- 4—3 v. u. streiche: "Wird durch Erhitzen umgewandelt."
 5—6 v. o. statt: "1-[13.17-Dimetho-octadien-(11.1x)-yl] benzol (S. 527)" lies:
 "linksdrehendem 11-Oxy-1-[13.17-dimetho-octen-(16 oder
 17)-yl]-benzol (Bd. VI, S. 585)". 528
- 23—22 v. u. streiche: "Spez. Gew. des festen Acenaphthens: D. 0,90638 (Pellini, G. 31 I, 9)."
 19—18 v. u. streiche: "n. 1,51469; n. 1,51469 (Pellini, G. 31 I, 9)." 586
- 586
- 13 v. o. streiche: "D.": 0,89882 (PELLINI, G. 31 I, 9)."
 25 v. u. statt: "235" lies: "253". 625
- 625 ,, ,,
- 16 v. u. statt: "F: 240" lies: "F: 2400". 638
- 641
- 13 v. o. streiche: "D^{10.5}: 0,89759 (PE.)."
 46 v. o. und S. 665, Z. 16 v. o. statt: "rauchende Schwefelsäure" lies: 664 "hochprozentige rauchende Schwefelsäure bezw. reines 80.".

Seite 745 Zeile 23—24 v. o. streiche: "Verbindung mit Pikrinsäure s. Syst. No. 523."
" 775 Spalte 3 Zeile 21 v. o. statt: "144" lies: "418".

Zu Band VI.

```
Seite 113 Zeile 13 v. u. statt: "na: 1,0545; na: 1,53386" lies: "na: 1,53386; na: 1,55263".
" 228 " 22 v. u. statt: "eine Base" lies: "2.5-Dianilino-p-chinon-monoanil (Syst.
No. 1874) (Löb, Z. El. Ch. 6, 442; vgl. L., D. R. P.
116338; C. 1901; 75)".
                          27-28 v. o. statt: "9-Benzhydryl-fluoren (Bd. V, S. 745) Catha"
         275
                                                     lies: "9-Diphenylmethylen-fluoren (Bd. V, S. 748)
                                                      C26H18
                          13 v. o. statt: "-1.2-dinitro-benzol" lies: "-1.3-dinitro-benzol".
         344
                         11 v. o. statt: "[4-Nitro-phenyl]" und "4'-Nitro" lies: "[2-Nitro-phenyl]" und "2'-Nitro".

19 v. o. statt: "61—72°" lies: "61—62°".

Zoile 42 v. o. statt: "64—72°"
         371
         373
         433 nach Zeile 12 v. o. schalte ein:
        "[3-Nitro-phenyl]-bensyl-äther C<sub>18</sub>H<sub>11</sub>O<sub>3</sub>N =

C<sub>6</sub>H<sub>2</sub>·CH<sub>2</sub>·O·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub>. B. Aus dem Alkalisəls des

3-Nitro-phenols mit Benzylchlorid (Höchster Farbw.,

D. R. P. 141516; Frdl. 7, 463; C. 1903 I, 1381). — Schwach

gelbe Blättchen. F: 64°. Schwer löslich in kaltem Alkohol,
leicht in heißem Alkohol und in Benzol."

443 Zeile 6 v. o. statt: "4-Tolylsulfon-" lies: "p-Tolylsulfon-" (zweimal).

543 " 31 v. o. statt: "2.6-Dinitro-thymols" lies: "2.4-Dinitro-thymols".
         616 ,, 23 v. u. statt: ,,-8-acetamino-" lies: ,,-8-amino-".
         739 zwischen Zeile 10 und 9 v. u. schalte ein:
                                                     ,,1a. Cyclopentandiol-(1.3) C_8H_{10}O_2 = H_1C \cdot CH(OH) CH<sub>2</sub>.
                                                      H.C.CH(OH)
                                                             1.8-Bis-phenylsulfon-cyclopentan C_{12}H_{18}O_4S_8 =
                                                     \mathbf{H_{s}C \cdot CH(SO_{s} \cdot \overline{C_{s}H_{s}})}_{CH_{s}}
                                                                                                    B.
                                                                                                             Durch Oxydation des
                                                      \mathbf{H_aC \cdot CH(SO_a \cdot C_aH_a)}
                                                      Additionsproduktes aus Thiophenol und Cyclopentadien
                                                     mit Kaliumpermanganat (POSNER, B. 38, 656). — Nadeln. F: 232—233°. Unlöslich in Wasser, löslich in Eisessig, äther und heißem Alkohol."
                                                      Äther und heißem Alkohol.
         748 zwischen Zeile 13 und 12 v. u. schalte ein:
                                                         "6a. 1-Methyl-4-[methoäthylol-(4<sup>1</sup>)]-cyclo-
                                                      hexanol-(2), p-Menthandiol-(2.9) C_{10}H_{10}O_1 =
                                                     CH_3 \cdot HC < \begin{array}{c} CH_3 & CH_3 \\ CH(OH) \cdot CH_3 \\ \end{array} > CH \cdot CH(CH_3) \cdot CH_3 \cdot OH.
                                                     \begin{array}{ll} & \textbf{2.9-Bis-phenylsulfon-p-menthan (?)} & \textbf{C}_{22}\textbf{H}_{28}\textbf{O}_{4}\textbf{S}_{2} = \\ \textbf{CH}_{3}\cdot\textbf{HC} < & \textbf{CH}_{3} & \textbf{C}_{4}\textbf{H}_{5} \\ \textbf{CH}(\textbf{SO}_{3}\cdot\textbf{C}_{4}\textbf{H}_{5})\cdot\textbf{CH}_{3} & \textbf{CH}\cdot\textbf{CH}(\textbf{CH}_{3})\cdot\textbf{CH}_{3}\cdot\textbf{SO}_{3} \\ \end{array}
                                                     C.H. (?). B. Durch Oxydation des Additionsproduktes
                                                     aus Thiophenol und l-Limonen mit Kaliumpermanganat
                                                     (Posker, B. 38, 657). — Nadeln (aus Alkohol). F: 236—237°
                                                     (Zers.). Leicht löslich in Eisessig und Äther, ziemlich
        leicht in Chloroform und Alkohol, unlöslich in Wasser."
806 Zeile 30 v. o. statt: "2556" lies: "1166".
         902
                       10 v. u. statt: ,,oxy - 3.4 - dimethoxy - benzol" lies: ,,oxy - 3.4 - dimethoxy -
                                                     1-athyl-benzol"
                           1 v. u. statt: "inakt. spaltbares sowie inakt. nichtspaltbares a.\beta-Diphenyl-
         1004 ,,
                                                     a-oxy-β-amino-athan" lies: ,,die beiden diastereoisomeren
                                                     inaktiven a.\beta-Diphenyl-a-oxy-\beta-amino-athane (Diphenyl-oxathylamin, Bd. XIII, S. 706 und Isodiphenyloxathyl-
                                                     amin, Bd. XIII, S. 710)".
         1103 ,,
                           22 v. o. statt: "l-Methoxy-8.5-diathoxy-phloroglucin" lies:
                                                     "1-Methoxy-8.5-diathoxy-benzol".
         1248 Spalte 2 statt: "(Methoxy)-diathoxyphloroglucin" lies:
```

"-diathoxybenzol".

Zu Band VII.

Seite 200 Zeile 24 v. u. statt: "Erlenmeyer sen." lies: "Erlenmeyer jun.". 200 ,, 11 v. u. Die Formel ist zu ändern in:

6 v. o. statt: ,,1.5-Diphenyl-" lies: ,,1.3-Diphenyl-". 360

19 v. u. statt: ,,58° lies: ,,53°. 447

519 zwischen Zeile 13 und 12 v. u. schalte ein:

"Bal-Nitro-[l.9-bensanthron-(10)] (zur Bezifferung vgl. Scholl, B. 44 [1911], 1662—1664), Nitro-peribensanthron vom Schmelspunkt 244° NO. C₁₂H₂O₂N, s. nebenstehende Formel. Darst. Man trägt 100 Tle. Benz-anthron in 850 Tle. Nitrobenzol ein, fügt bei Raumtemperatur 66 Tle. Salpetersäure (47° Bé) zu, erwärmt 2—3 Stdn. auf 40—50°. läßt erkalten, extrahiert das krystallinisch erstarrte Gemisch mit Alkohol, filtriert und wäscht mit Alkohol (Bad. Anilin- u. Sodaf., 8. Zusatz [addition] 6435 zum franz. Patent 349531; I. G. Farbenindustrie, Privatmitteilung vom 8. XI. 1929). — Grünlichgelbe Nadeln (aus Eisessig oder Toluol). F: 244°. Löslich in den meisten organischen Lösungsmitteln mit gelber Farbe, in konz. Schwefelsäure mit goldgelber ohne Fluorescenz, in rauchender (23% SO₂) mit carminroter, beim Erwärmen in schmutziges Olivgrün übergehender Farbe.

Bz 2 - Nitro - [1.9-benzanthron-NO. (10)], Nitro-peribenzanthron vom Schmelspunkt 298° C₁₇H₂O₃N, s. nebenstehende Formel. Darst. Man kocht 20 Tle. Benzanthron mit 300 Tln. Eisessig, fügt während 2—3 Stdn. eine Lösung von 20 Tln. Salpetersäure (47° Bé) in 100 Tln. Eisessig zu und erhitzt noch 1 Stde. (B. A. S. F.; I. G. Farb.). — Gelbe Nädelchen (aus Eisessig, dann aus Nitrobenzol). F: 298°.

6.Bs l - Dinitro - [1.9 - bensanthron - (10)], Dinitroperibensanthron_vom_Schmelspunkt 268 o $\rm C_{17}H_{8}O_{5}N_{2},$ s. nebenstehende Formel. B. NO. Entsteht neben anderen Produkten, wenn man 50 Tle. Benzanthron in 300 Tle. $0^{3}N$ Salpetersäure (47° Bé) bei 5-10° einträgt und die rotgelbe Lösung 15 Stdn. stehen) läßt, oder wenn man 20 Tle. Benzanthron in 400 Tln. Schwefelsäure (66° Bé) löst und mit der berechneten Menge HNO₃ (als Salpeterschwefelsäure mit 200 g HNO₃ im Liter) bei 10-15°, dann 3-4 Stdn. bei 50-60° nitriert (B. A. S. F.; I. G. Farb.). — F: 268°.

8.Bz 1 - Dinitro - [1.9 - bensanthron - (10)], Dinitroperibensanthron vom Schmelspunkt 236 ° C17H8O5N2, s. nebenstehende Formel. B. Ent- \cdot NO. steht neben anderen Produkten, wenn man 20 Tle. Benzanthron in 400 Tln. Schwefelsäure (66° Bé) löst und mit der berechneten Menge HNO₃ (als Salpeterschwefelsäure mit 200 g HNO₃ im Liter) bei 10—15°, dann 3—4 Stdn. bei 50—60° nitriert (B. A. S. F.; I. G. Farb.). — F: 236°."

⁶⁶⁸ Zeile 13 v. o. statt: "B. 34, 1358" lies: "B. 34, 1558".
829 " 30 v. u. statt: "200" lies: "260".
902 " 6 v. o. statt: "C₃₂H₃₀O₂N₄" lies: "C₄₄H₃₀O₂N₄".

Seite 906 zwischen Zeile 11 und 10 v. u. ist einzuschalten:

"1 - Methyl - cyclohexandion - (4.6 oder 2.6) - tri-

 $\begin{array}{ll} \text{oxim-(2.3.5 oder 3.4.5)} & \text{C}_{1}\text{H}_{1}\text{O}_{2}\text{N}_{3} = \\ \text{CH}_{3} \cdot \text{HC} < \begin{array}{c} \text{CO} & \text{C}_{1} \cdot \text{CO} \\ \text{C}_{1} \cdot \text{N} \cdot \text{OH}_{1} \cdot \text{C}_{1} \cdot \text{N} \cdot \text{OH}_{1} \end{array} > & \text{CO} \quad \text{oder} \end{array}$

 $CH_{s} \cdot HC < \begin{matrix} CO \cdot C(:N \cdot OH) \\ CO \cdot C(:N \cdot OH) \end{matrix} > C \cdot N \cdot OH \quad bezw. \quad desmotrope$ B. Aus 1-Methyl-cyclohexantrion-(2.4.6)-dioxim-(3.5) und 2 Mol.-Gew. salzsaurem Hydroxylamin beim Kochen mit Alkohol (WEIDEL, POLLAR, M. 21, 58). — Gelbe krystallinische Masse. Zersetzt sich bei 189—190°. Sehr wenig löslich in Alkohol, Wasser, Benzol, Essigester."

Zu Band VIII.

Seite 456 Zeile 5 v. u. statt: ,,1332" lies: ,,1232". ,, 492 ,, 11—7 v. u. Die hier als 3.4.5- oder 3.5.6-Trioxim C₇H₇O₃N₃ des 1-Methylcyclohexen-(1)-ol-(2)-tetrons-(3.4.5.6) aufgeführte Verbindung ist identisch mit dem 1-Methyl-cyclohexandion-(4.6 oder 2.6)-trioxim-(2.3.5 oder 3.4.5) C₇H₇O₈N₈ und nach den Regeln dieses Handbuches (Bd. I, S. 36, B) in Bd. VII, S. 906 als Derivat des 1-Methyl-cyclohexantentons-(2.3.4.5.6) einzuordnen.

., 2 v. o. statt: "Frdl. 8, 122" lies: "Frdl. 2, 122". 516

Zu Band IX.

Seite 97 Zeile 29 v. u. statt: "Eljeman" lies: "Eljdman".

" 377 " 32 v. o. statt: "Syst. No. 2214" lies: "Syst. No. 1905".

" 377 " 35 v. o. hinter: "m-Azoxybenzoesäure" schalte ein: "(Syst. No. 2214)".

947 5 v. o. statt: ,,1903" lies: ,,1908".

Zu Band X.

Seite 266 Zeile 26 v. o. statt: "1908" lies: "1905". " 500 " 1 v. u. statt: "B. 11, 1092" lies: "B. 11, 1192".

22 v. u. statt: "bei 990" lies: "bei 250". 6 v. o. statt: "3.5.x-" lies: "3'.5'.x-". 549 ,, ,,

761

" 1 v. o. statt: "2-Methyl-desoxybenzoin-carbonsdure-(2)" lies: 766 - ,, "2-Methyl-desoxybenzoin-carbonsäure-(2')".

Zu Band XII.

Seite 64 Zeile 28 und 23 v. u. statt: "Wärmetönung beim Mischen" lies: "Spezif. Wärme einiger Gemische".

14 v. o. statt: "Bd. V, S. 396" lies: "Bd. V, S. 336".

28 v. u. hinter: "Anilin" schalte ein: "in Gegenwart von etwas Halogen-104 wasserstoff (vgl. JAPP, MURBAY, B. 26, 2640)".
23 v. u. statt: ,,2 Mol.-" lies: 1/2 Mol.-".

138

8 v. o. statt: "in siedendem Benzol" lies: "in Benzol". 185 .. • • 196

23 v. u. statt: "G. 30 II, 305" lies: "G. 30 II, 306". 5 v. u. statt: "D. R. P. 23874" lies: "D. R. P. 23784". ,, ,, 198 ,,

,, 22 v. o. statt: "Oxyazophenin (Syst. No. 1878) "lies: "2.5-Dianilino-p-chinon-monoanil (Syst. No. 1874) (O. FISCHER, HEPP, A. 262, 249; vgl. K.)." 222

284 zwischen Zeile 10 und 9 v. u. schalte ein: "Erwärmt man Oxanilid mit dem 6-fachen Gewicht konz. Schwefelsäure im Wasserbade, bis eine Probe sich in Wasser klar löst, so entsteht Oxaniliddisulfonsäure-(4.4') (Syst. No. 1923) (Wülfing, D. R. P. 65212; Frdl. 3, 44; vgl. auch BECKMANN, KÖSTER, A. 274, 16)."

```
Seite 414 Zeile 19 v. u. statt: "-1.2.4-thiodiazol-" lies: "-1.3.4-thiodiazol-"
                  20 v. o. statt: ",1692" lies: ",1892". 4 v. o. statt: ",a" lies: ",\beta".
       531
              ,,
                   3 v. o. nach: "von" schalte ein: "salzsaurem".
10 v. o. statt: "B. 58" lies: "G. 58".
       678
 ,,
              ,,
       713
                   1 v. o. statt: "1873" lies: "1778".
1 v. u. statt: "1873" lies: "1778".
       847
       848
                   11 v. u. statt: ,,4-Brom-x-amino-toluol-sulfonsäure-(3)" lies: ,,4-Brom-
     1013
                                        x-amino-toluol-sulfonsäure-(2)".
 ,, 1135
                   22-23 v. o. statt: "kocht ... mit Wasser" lies: "erhitzt ... mit wäßr.
                                        Schwefelsäure auf 1200".
  " 1323 zwischen Zeile 16 und 15 v. u. ist folgender Artikel einzuschalten:
```

"a.a - Dichlor - 4 - dimethylamino - diphenylmethan, 4-Dimethylamino-benzophenonchlorid $C_{15}H_{15}NCl_2 = C_6H_5 \cdot CCl_2 \cdot C_6H_4 \cdot N(CH_3)_2$. B. Das salzsaure Salz entsteht durch Kochen von 4-Dimethylamino-benzophenon

C₀H₅·CCl₂·C₀H₄·N(CH₃)₂. B. Das salzsaure Salz entsteht durch Kochen von 4-Dimethylamino-benzophenon mit einer Lösung von Oxalylchlorid in Petroläther oder in Äther und Einleiten von Chlorwasserstoff in die erhaltene Lösung (STAUDINGER, B. 42, 3980). — Die freie Base nur in Lösung erhalten. Reagiert mit Dimethylanilin sofort unter Bildung von Malachitgrün. — C₁₅H₁₅NCl₂ + HCl. Weißer Niederschlag, sehr empfindlich gegen Feuchtigkeit. Färbt sich an der Luft tief orangerot. Wird bei 90° rot und schmilzt bei 110—120° zu einer tiefroten Flüssigkeit. Löst sich in Wasser mit orangeroter Farbe, die in der Kälte langsam, rascher beim Erhitzen verschwindet, indem 4-Dimethylamino-benzophenon zurückgebildet wird."

" 1424 Spalte 2, Zeile 25 v. o. statt: "722" lies: "772".

Zu Band XIII.

Seite 317 Zeile 7 v. o. statt: "44'.4"-Tris-salicylal-triphenylmethan" lies: "44'.4"-Tris-salicylalamino-triphenylmethan".

Druck der Universitätsdruckerei H. Stürtz A. G., Würzburg.

Indian Agricultural Research Institute (Pusa) LIBRARY, NEW DELHI-110012

This book can be issued on or before

Return Date	Return Date
,	