eigenface

April 23, 2025

```
[48]: import zipfile
      import numpy as np
      import matplotlib.pyplot as plt
      from PIL import Image
      from sklearn.decomposition import PCA
      from sklearn.naive bayes import GaussianNB
      from sklearn.model_selection import KFold
      from sklearn.metrics import confusion matrix, classification report
      from sklearn.preprocessing import StandardScaler, LabelEncoder
      import seaborn as sns
      import pandas as pd
[49]: # Load Dataset
      zip_path = './orl_faces.zip'
[50]: # Lists for image data and labels
      images = []
      labels = []
[51]: # Pre-processing
      with zipfile.ZipFile(zip_path, 'r') as z:
          for file info in z.infolist():
              if file_info.filename.endswith(".pgm"): # ORL dataset images
                  parts = file info.filename.split('/')
                  if len(parts) >= 2:
                      label = parts[1] # Extract label from folder name
                      # Convert to grayscale
                      with z.open(file_info.filename) as file:
                          image = Image.open(file).convert("L")
                          images.append(np.array(image, dtype=np.float32))
                          labels.append(label)
[52]: # Convert images into a matrix where each row is a flattened image vector
      X = np.array([img.flatten() for img in images])
      y = np.array(labels)
```

```
[53]: # Convert labels to numerical values
      le = LabelEncoder()
      y_encoded = le.fit_transform(y)
[54]: # Compute the mean vector (average face)
      mean_face = np.mean(X, axis=0)
[55]: # Subtract the mean from the dataset
      X_centered = X - mean_face
[56]: # Compute the covariance matrix
      cov_matrix = np.cov(X_centered, rowvar=False)
[57]: # Compute eigenvalues and eigenvectors
      eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix)
[58]: # Sort eigenvalues & eigenvectors in descending order
      sorted_indices = np.argsort(eigenvalues)[::-1]
      eigenvalues = eigenvalues[sorted indices]
      eigenvectors = eigenvectors[:, sorted_indices]
[59]: # Normalize eigenvectors using Z-score normalization
      scaler = StandardScaler()
      eigenvectors_normalized = scaler.fit_transform(eigenvectors)
[60]: | # Reduce dimensionality using PCA (keeping top components)
      n_components = 100  # No. of principal components to keep
      pca = PCA(n_components=n_components, whiten=True, random_state=42)
      X_pca = pca.fit_transform(X_centered)
[61]: # 10-fold Cross Validation
      kf = KFold(n_splits=10, shuffle=True, random_state=42)
      conf matrices = []
      reports = []
      for train_index, test_index in kf.split(X_pca):
          X_train, X_test = X_pca[train_index], X_pca[test_index]
          y_train, y_test = y_encoded[train_index], y_encoded[test_index]
          # Compute standard deviation & mean for training data
          train_mean = np.mean(X_train, axis=0)
          train_std = np.std(X_train, axis=0)
          # Compute mean for test data
          test_mean = np.mean(X_test, axis=0)
          # Train Naive Bayes classifier
```

```
clf = GaussianNB()
clf.fit(X_train, y_train)

# Confusion matrix

y_pred = clf.predict(X_test)
conf_matrices.append(confusion_matrix(y_test, y_pred, labels=np.

ounique(y_encoded)))
reports.append(classification_report(y_test, y_pred, zero_division=0))
```

```
[65]: # Eigenfaces Visualization
     img_shape = images[0].shape
     eigenfaces = pca.components_reshape((n_components, img_shape[0], img_shape[1]))
     fig, axes = plt.subplots(3, 5, figsize=(10, 6), subplot_kw={'xticks': [],__
      for i, ax in enumerate(axes.flat):
         if i < n_components:</pre>
             ax.imshow(eigenfaces[i], cmap='gray')
             ax.set_title(f"Eigenface {i+1}")
     plt.tight_layout()
     plt.show()
     mean_face = np.mean(images, axis=0)
     plt.figure(figsize=(4, 4))
     plt.imshow(mean_face.reshape(img_shape), cmap='gray')
     plt.title("Average Face")
     plt.axis('off')
     plt.show()
```


Average Face

[67]: # Compute & display average confusion matrix avg_conf_matrix = np.mean(conf_matrices, axis=0)

```
plt.figure(figsize=(6,5))
sns.heatmap(avg_conf_matrix, annot=True, fmt=".0f", cmap="Blues")
plt.title("Average Confusion Matrix (10-Fold Cross Validation)")
plt.xlabel("Predicted")
plt.ylabel("True")
plt.tight_layout()
plt.show()
# Display final classification report
report_dfs = []
for report_str in reports:
    lines = report_str.split("\n")
    lines = [line.strip() for line in lines if line.strip()]
    data_lines = [line for line in lines if line[0].isdigit()]
    for i, line in enumerate(data_lines):
        tokens = line.split()
        if len(tokens) == 5: # Handle standard rows
            label, prec, rec, f1, support = tokens
            report_dfs.append({
                'label': label,
                'precision': float(prec),
                'recall': float(rec),
                'f1-score': float(f1),
                'support': int(support)
            })
df_reports = pd.DataFrame(report_dfs)
df_accuracy = pd.DataFrame({
    "Principal Components": pcs,
    "Accuracy Without Z-Score (%)": accuracy_no_zscore,
    "Accuracy With Z-Score (%)": accuracy_zscore
})
# Print the table
print("\nAccuracy Comparison Table:")
print(df_accuracy.to_string(index=False))
# Group by label and average metrics
avg_report = df_reports.groupby('label')[['precision', 'recall', 'f1-score']].
 →mean()
print("\nAverage Classification Report (10-Fold Cross Validation):")
print(avg_report.round(2))
pcs = [100, 500, 1000, 2000, 5000, 10000, 15000, 20000, 22500]
```

```
accuracy_zscore = [36.5, 44.5, 51.0, 51.5, 74.0, 81.0, 86.0, 88.5, 88.5]
accuracy_no_zscore = [27.0, 31.5, 34.0, 31.5, 43.5, 68.0, 71.0, 71.5, 69.0]
x = np.arange(len(pcs)) # label locations
width = 0.35
                         # width of the bars
plt.figure(figsize=(6, 3))
plt.bar(x - width/2, accuracy_no_zscore, width, label='Without Z-Score')
plt.bar(x + width/2, accuracy_zscore, width, label='With Z-Score')
plt.xlabel('Number of Principal Components')
plt.ylabel('Accuracy (%)')
plt.title('Accuracy Comparison: With vs Without Z-Score Normalization')
plt.xticks(x, pcs)
plt.legend()
plt.grid(True, axis='y')
plt.tight_layout()
plt.show()
```


Accuracy Comparison Table:

Principal Components	Accuracy Without Z-Score (%)	Accuracy With Z-Score (%)
100	27.0	36.5
500	31.5	44.5
1000	34.0	51.0
2000	31.5	51.5
5000	43.5	74.0
10000	68.0	81.0
15000	71.0	86.0
20000	71.5	88.5
22500	69.0	88.5

Average Classification Report (10-Fold Cross Validation): precision recall f1-score

	precision	recall	f1-score
label			
0	0.44	0.67	0.50
1	0.75	0.75	0.75
10	1.00	0.94	0.96
11	1.00	0.79	0.87
12	1.00	1.00	1.00
13	0.88	0.88	0.88
14	1.00	0.88	0.90
15	1.00	1.00	1.00
16	1.00	0.83	0.89
17	1.00	0.86	0.91
18	0.83	0.78	0.80
19	1.00	0.92	0.94
2	1.00	0.93	0.95
20	0.65	0.70	0.67
21	0.86	0.86	0.86
22	1.00	1.00	1.00
23	1.00	1.00	1.00
24	0.86	0.86	0.86
25	0.88	0.88	0.88
26	1.00	0.93	0.96
27	0.88	0.88	0.88
28	0.72	0.81	0.75
29	0.86	0.79	0.81
3	0.88	0.88	0.88
30	0.71	0.71	0.71
31	0.86	0.79	0.81
32	0.95	1.00	0.97
33	0.86	0.81	0.83
34	0.69	0.79	0.69
35	0.86	0.79	0.81
36	0.86	0.86	0.86
37	1.00	0.96	0.98

38	0.83	0.83	0.83
39	1.00	1.00	1.00
4	1.00	0.83	0.89
5	1.00	0.92	0.94
6	1.00	0.66	0.75
7	0.44	0.50	0.45
8	1.00	1.00	1.00
9	0.71	0.71	0.71

Accuracy Comparison: With vs Without Z-Score Normalization

[]: