Holmusk - Data Science Task

Combining CSVs

On carefully eyeballing the four CSVs, the 4 tables were joined (LEFT JOIN) in the following manner to create a consolidated dataset. The blue arrows show the columns on which the tables were joined. The red arrows indicate the columns on which the consolidated table formed from bill_amount, bill_id and demographics, was joined with clinical_data table.

Data Cleaning

The data was cleaned by renaming categories in the following categorical variables to maintain consistency.

- gender Replace "m" by "Male" and "f" by "Female".
- race Replace "India" by "Indian" and "chinese" by "Chinese"
- resident_status Replace "Singapore citizen" by "Singaporean"
- medical_history_3 Replace "No" by "0" and "Yes" by "1"

Handling Missing Values

Missing values were handled in the following manner:

- medical_history_2 932 missing values Replaced blank entry by "Not Specified"
- medical_history_5 1216 missing values Replaced blank entry by "Not Specified"

Feature Engineering

Four new features were engineered to make the analysis more comprehensive. Also, these features helped in delving deeper into the data.

- **number_of_days** equal to (date_of_discharge date_of_admission)
- age_at_admission equal to (date_of_admission date_of_birth)
- **bmi** equal to (weight/(height^2))
- weight_classification As per following table:

BMI	WEIGHT_CLASSIFICATION
LESS THAN 18.5	Underweight
18.5 TO 24.9	Normal
24.9 TO 29.9	Overweight
29.9 TO 39.9	Obese
MORE THAN 39.9	Extremely obese

Final Columns Data Types

COLUMNS			
Categorical	Numerical	Others	
gender	amount	bill_id	
race	lab_result_1	patient_id	
resident_status	lab_result_2	date_of_admission	
medical_history_1	lab_result_3	date_of_birth	
medical_history_2	weight	date_of_discharge	
medical_history_3	height		
medical_history_4	number_of_days		
medical_history_5	age_at_admission		
medical_history_6	bmi		
medical_history_7			
preop_medication_1			
preop_medication_2			
preop_medication_3			
preop_medication_4			
preop_medication_5			
preop_medication_6			
symptom_1			
symptom_2			
symptom_3			
symptom_4			
symptom_5			
weight_classification			

BRIEF OVERVIEW

- 1. In the combined dataset, each row is a unique bill having bill amounts, date of birth, admission and discharge. There are 13600 bills spread across 3000 unique patients and the time horizon in terms of date of admission is from January 2011 till December 2015.
- 2. The patients are spread across 2 genders male and female, 4 races Indian, Malay, Chinese and Others, 3 resident statuses Singaporean, PR and Foreigner and 5 weight_classifications underweight, normal, overweight, obese and extremely obese.
- 3. Lab results, weight and height of each patient with respect to a particular bill are also listed.
- 4. Finally, we have binary responses (Yes/No = 1/0) of 7 questions related to medical history, 6 questions related to preop medication and 5 questions related to symptom.

ANALYSIS

First we perform our analysis at patient level.

We draw a count plot of different races of patients across different resident_statuses.

Fig1.

We see that more than half of the total patients have "Singaporean" resident_status and belong to "Chinese" race. Also, across all resident_statuses, count of Chinese is highest, followed by Malay.

Next, we inspect further whether this trend continues across different weight classifications.

Fig2.

Next, we see that majority of total patients are either overweight or obese. Also, across different weight classifications, in different resident_statuses, the count of Chinese is highest, followed by Malay. Hence the trend is similar.

Now as we see that a particular patients can have multiple bills. Here we see that a patient either has 4, 8 12 or 16 bills.

Fig3.

We see that majority of patients have 4 bills and across different bill counts, in different resident_statuses, the count of Chinese is highest, followed by Malay.

Next, we create a boxplot depicting how bill amount varies across races and resident statuses.

Fig4.

We can clearly see that the range of amount, as well as median amount is higher for foreigners than PRs and Singaporeans even though we saw earlier in Fig1. that count of foreigners is quite low as compared to PRs and Singaporeans. Thus we can hypothesize that foreigners are charged at a premium as compared to other resident statuses.

Next, we plot a boxplot depicting how bill amount varies across different weight classifications and genders.

Fig 5.

Here, we clearly see that the median amount does not vary significantly across genders and weight classifications.

Next, we plot a boxplot depicting how bill amount varies across gender and different resident statuses.

We clearly observe that foreigners have higher median bill amount but there is no significant difference in bill amount with respect to gender.

Next, we plot a scatter plot of amount versus bmi.

We observe that for underweight, normal and overweight patients, the bill amount increases with increment in bmi. But, for obese patients, the bill amount decreases with increase in bmi.

Next, we plot a scatter plot of amount versus number of days in hospital.

We see that from 2 till 12 days, the bill amount increases with number of days in hospital.

Next, we plot a scatter plot of amount versus age_at_admission.

As expected, we do not see any trend. Hence bill amount does not depend significantly on age at admission.