CSCE 156/156H/RAIK 184H – Assignment 4 Rubric

Name(s):	Total:	_/100 (115)
CSE Login:	Grader:	

What needs to be turned in:

- Your design document (hardcopy) one week prior to this assignment being due
- Turn in your SQL files (portfolioDB.sql, portfolioQueries.sql) using webhandin
- Turn in this rubric (hardcopy) in class on the due date

Grading will be based on the following items.

1. Database Design Style

Items	Grader Notes	Points	Score
 Meaningful table and column names Consistent naming conventions Proper Indentation in your DDL files 		10	
Comments provided in the DDL files		5	
Subtotal		15	

2. Correctness & Database Design

Items	Grader Notes	Points	Score
Correct file names		5	
 Instructions followed 			
 SQL scripts execute on cse as specified 			
Database is well-designed:		20	
 Primary and non-primary keys are properly defined 			
 Column types make sense and properly model the problem 			
 Data integrity is enforced by database definitions (nullity and key definitions) 			
 Design allows for extensibility and flexibility 			
• Design supports but does not restrict the business model			

Primary & Foreign Keys:	10	
A Maria and could define a	10	
Keys are well-defined		
Non-relational or external data are		
not used as internal keys		
Foreign keys define a proper		
relationship between tables		
Keys correspond to a sensible		
column type		
Key names follow a good, consistent		
naming convention		
DDL file properly inserts some non-	10	
trivial test case data		
Each of the required queries	30	
performs the operation(s) as		
specified		
Subtotal	75	

3. Misc & Honors

Items	Grader Notes	Points	Score
Misc – If there are notable problems with		10	
your program not enumerated in this			
rubric, points may be deducted,			
otherwise full credit will be given.			
Database design prevents duplicate		(5)	
portfolio/asset and records			
Geographical data is normalized		(10)	
Subtotal		10	
		(25)	

Bonus/Honors Items

For those in the main section, the following items will be considered as bonus points. For those in the honors section(s) they are required and are part of your point total.

- 1. Some designs will allow "duplicate" records for the same portfolio/asset combination. This type of bad data may be prevented in-code or through some other mechanism. Your database design should prevent such duplication.
- 2. Normalize geographical data such that (for example) locations in the same state refer to only one state record. To receive full credit, at a minimum the state and country fields should be normalized (for cities and zip codes, the modeling becomes more complex as there is not a clear parent-child relationship). In fact, most assumptions about geographical data are false: https://www.mjt.me.uk/posts/falsehoods-programmers-believe-about-addresses/