Math 415 - Lecture 35

Quadratic forms

Monday November 30th 2015

Textbook reading: Chapter 6.1

Suggested practice exercises: Chapter 6.1, # 2, 3, 17

Strang lecture: Lecture 27: Positive definite matrices and minima

1 Review

Spectral theorem:

- A is a symmetric matrix if $A^T = A$. e.g. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 5 \end{bmatrix}$
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write

$$A = QDQ^T$$

where

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \text{ and } Q = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix}$$

2 Quadratic forms

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function with critical point at **0**. This means that all partial derivatives at **0** vanish. Is **0** a max, min, or neither?

Definition. A quadratic form $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial (in n variables) with every term degree two.

e.g., for
$$n=2$$

$$f(x,y) = 3x^2 + 4xy - 5y^2$$

Example 1. Let

$$f(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Expand f(x, y) as a polynomial in x and y. The dot denotes the dot product!

Solution.

Theorem 1. Any quadratic form $f(x_1, x_2, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$ can be written

$$f(\mathbf{x}) = \mathbf{x} \cdot A\mathbf{x} = \mathbf{x}^T A\mathbf{x}$$

for a symmetric matrix A.

We see symmetric matrices show up "in the wild!"

Example 2. Write $f(x, y, z) = 5x^2 + 7y^2 + 3z^2 + 2xy - 2yz$ as $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \cdot A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ where A is symmetric.

Solution.

2.1 Principal axes for a quadratic form

Intermezzo: From Eigenbasis to Standard Basis and back.

- A symmetric, so $A = QDQ^T$.
- If $x \in \mathbb{R}^n$ and $x_Q = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ is the coordinate vector of x in the Q basis, then $x = c_1q_1 + c_2q_2 + \cdots + c_nq_n = Qx_Q$.
- This means that to find the Q coordinate vector for x, multiply by $Q^{-1} = Q^T$:

$$x_Q = Q^T x$$

There is always a "nicest possible" coordinate system for each quadratic form. Just use an eigenbasis of A.

Theorem 2. Let A be a symmetric matrix, $\mathbf{v}_1, \dots, \mathbf{v}_n$ an orthonormal basis of eigenvectors with eigenvalues $\lambda_1, \dots, \lambda_n$. Write

$$\mathbf{x} = c_1 \mathbf{v}_n + \dots + c_n \mathbf{v}_n$$

Then,

$$q(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} = \lambda_1 (c_1)^2 + \dots + \lambda_n (c_n)^2$$

Proof.

Example 3. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

- Find the eigenvalues λ_1, λ_2 and **orthonormal** eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ for A.
- Compute $q(\mathbf{x})$ using the formula $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.
- Compute $q(\mathbf{x})$ using the theorem $(q(\mathbf{x}) = \lambda_1(c_1)^2 + \lambda_2(c_2)^2)$.

Solution.

We have $\mathbf{x} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$ and

$$q(\mathbf{x}) = \lambda_1(c_1)^2 + \dots + \lambda_n(c_n)^2$$

- So up to coordinate change, q is a weighted sum of squares
- The eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are called principal axes
- Three cases:
 - 1. If all $\lambda_i > 0$, then $q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - 2. If all $\lambda_i < 0$, then $q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - 3. If some $\lambda_i > 0$, some $\lambda_j < 0$, $q(\mathbf{x})$ will have both positive and negative values.

2.2 Completing the squares

Basic Question. Let A be a symmetric matrix, and $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Is $q(\mathbf{x})$ always ≥ 0 ? Or always ≤ 0 ? How to decide? Write $q(\mathbf{x})$ as a sum of squares!

Example 4. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, so that $q(\mathbf{x}) = x^2 + 4xy + y^2$. Write $q(\mathbf{x})$ as a sum of squares. Is $q(\mathbf{x})$ always positive?

Solution.

There are many ways of writing $q(\mathbf{x})$ as a sum of squares. Today we are using eigenvalues to do this.

^{*} $q(\mathbf{x}) = x^2 + 4xy + y^2 = (x+2y)^2 - 3y^2$.

^{*} Sometimes you get something positive, sometimes something negative.