CMPT 210: Probability and Computing

Lecture 3

Sharan Vaswani

January 12, 2023

Recap - Counting

Product Rule: For sets A_1 , A_2 ..., A_m , $|A_1 \times A_2 \times ... \times A_m| = \prod_{i=1}^m |A_i|$ (E.g. Selecting one course each from every subject.)

Sum rule: If $A_1, A_2 ... A_m$ are disjoint sets, then, $|A_1 \cup A_2 \cup ... \cup A_m| = \sum_{i=1}^m |A_i|$ (E.g Number of rainy, snowy or hot days in the year).

Generalized product rule: If S is the set of length k sequences such that the first entry can be selected in n_1 ways, after the first entry is chosen, the second one can be chosen in n_2 ways, and so on, then $|S| = n_1 \times n_2 \times \dots n_k$. (E.g Number of ways n people can be arranged in a line = n!)

Division rule: $f: A \to B$ is a k-to-1 function, then, |A| = k|B|. (E.g. For arranging people around a round table, f: seatings \to arrangements is an n-to-1 function).

Number of ways of choosing size k-subsets from a size n-set: $\binom{n}{k}$ (E.g. Number of n-bit sequences with exactly k ones).

1

Counting subsets - Example

Q: How many m-bit binary sequences contain exactly k ones?

Consider set $A = \{1, 2, ..., m\}$ and selecting S, a subset of size k. For example, say m = 10, k = 3 and $S = \{1, 3, 7\}$, then S records the positions of the 1's, and can mapped to the sequence 001 0001 001. Similarly, every m-bit sequence with exactly k ones can be mapped to a subset of size k. Hence, there is a bijection:

f: m-bit sequence with exactly k ones \to subsets of size k from size m-set, and |m-bit sequence with exactly k ones|=|subsets of size $k|={m \choose k}$.

Q: Suppose we want to buy 10 donuts. There are 5 donut varieties – chocolate, lemon-filled, sugar, glazed, plain. What is the number of ways to select the 10 donuts?

Recall that the number of ways of selecting 10 donuts with 5 varieties = number of 14-bit sequences with exactly 4 ones = $\binom{14}{4}$ = 1001.

Q: What is the number of ways of choosing n things with k varieties?

Counting subsets - Example

- Q: What is the number of n-bit binary sequences with at least k ones?
- Q: What is the number of n-bit binary sequences with less than k ones?
- Q: What is the total number of n-bit binary sequences?

Binomial Theorem

For all $n \in \mathbb{N}$ and $a, b \in \mathbb{R}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Example: If a = b = 1, then $\sum_{k=0}^{n} {n \choose k} = 2^{n}$ (result from previous slide).

If
$$n=2$$
, then $(a+b)^2=\binom{2}{0}a^2+\binom{2}{1}ab+\binom{2}{2}b^2=a^2+2ab+b^2$.

Q: What is the coefficient of the terms with ab^3 and a^2b^3 in $(a+b)^4$?.

Q: For a, b > 0, what is the coefficient of $a^{2n-7}b^7$ and $a^{2n-8}b^8$ in $(a+b)^{2n} + (a-b)^{2n}$?

4

Generalization to Multinomials

We saw how to split a set into two subsets - one that contains some elements, while the other does not. Can generalize the arguments to split a set into more than two subsets.

A $(k_1, k_2, ..., k_m)$ -split of set A is a sequence of sets $(A_1, A_2, ..., A_m)$ s.t. sets A_i form a partition $(A_1 \cup A_2 \cup ... = A$ and for $i \neq j$, $A_i \cap A_j = \emptyset)$ and $|A_i| = k_i$.

An example of a (2,1,3)-split of $A=\{1,2,3,4,5,6\}$ is $(\{2,4\},\{1\},\{3,5,6\})$. Here, m=3, $A_1=\{2,4\}$, $A_2=\{1\}$, $A_3=\{3,5,6\}$ s.t. $|A_1|=2$, $|A_2|=1$, $|A_3|=3$, $A_1\cup A_2\cup A_3=A$ and for $i\neq j$, $A_i\cap A_j=\emptyset$.

Example: Consider strings of length 6 of a's, b's and c's such that number of a's = 2; number of b's = 1 and number of c's = 3. Possible strings: abaccc, ccbaac, bacacc, cbacac.

Each possible string, e.g. bacacc can be written as a (2,1,3)-split of $A = \{1,2,3,4,5,6\}$ as $(\{2,4\},\{1\},\{3,5,6\})$ where A_1 records the positions of a, A_2 records the positions of b and a records the positions of a.

Generalization to Multinomials

Q: Show that the number of ways to obtain an $(k_1, k_2, ..., k_m)$ split of A with |A| = n is $\binom{n}{k_1, k_2, ..., k_m} = \frac{n!}{k_1! k_2! ... k_m!}$ where $\sum_i k_i = n$.

Can map any permutation $(a_1, a_2, \dots a_n)$ into a split by selecting the first k_1 elements to form set A_1 , next k_2 to form set A_2 and so on. For the same split, the order of the elements in each subset does not matter. Hence f: number of permutations \rightarrow number of splits is a $k_1! k_2! \dots k_m!$ -to-1 function.

Hence,
$$|\text{number of splits}| = \frac{|\text{number of permutations}|}{k_1! \ k_2! \ ... k_m!} = \frac{n!}{k_1! \ k_2! \ ... k_m!}$$
.

Generalization to Multinomials - Example

Q: Count the number of permutations of the letters in the word BOOKKEEPER.

We want to count sequences of the form (1E, 1P, 2E, 1B, 1K, 1R, 2O, 1K) = EPEEBKROOK. There is a bijection between such sequences and (1, 2, 2, 3, 1, 1) split of $A = \{1, 2, ..., 10\}$ where A_1 is the set of positions of B's, A_2 is the set of positions of O's, A_3 is set of positions of K and so on.

For example, the above sequence maps to the following split:

$$({5}, {8,9}, {6, 10}, {1,3,4}, {2}, {7})$$

Hence, the total number of sequences that can be formed from the letters in BOOKKEEPER = number of (1, 2, 2, 3, 1, 1) splits of $A = [10] = \{1, 2, \dots, 10\} = \frac{10!}{1! \cdot 2! \cdot 2! \cdot 3! \cdot 1! \cdot 1!}$.

Q: Count the number of permutations of the letters in the word (i) ABBA (ii) A_1BBA_2 and (iii) $A_1B_1B_2A_2$?

Generalization to Multinomials - Example

Q: Suppose we are planning a 20 km walk, which should include 5 northward km, 5 eastward km, 5 southward km, and 5 westward km. How many different walks are possible?

Multinomial Theorem

For all $m, n \in \mathbb{N}$ and $z_1, z_2, \ldots z_m \in \mathbb{R}$,

$$(z_1+z_2+\ldots+z_m)^n = \sum_{\substack{k_1,k_2,\ldots,k_m\\k_1+k_2+\ldots k_m=n}} \binom{n}{k_1,k_2,\ldots,k_m} z_1^{k_1} z_2^{k_2} \ldots z_m^{k_m}$$

where
$$\binom{n}{k_1,k_2,...,k_m} = \frac{n!}{k_1!k_2!...k_m!}$$
.

Example 1: If m = 2, $k_1 = k$, $k_2 = n - k$ and $z_1 = a$, $z_2 = b$, recover the Binomial theorem.

Example 2: If n = 4, m = 3, then the coefficient of abc^2 in $(a + b + c)^4$ is $\binom{4}{1,1,2} = \frac{4!}{1!1!2!}$.

9

Inclusion-Exclusion Principle

Recall that if A, B, C are disjoint subsets, then, $|A \cup B \cup C| = |A| + |B| + |C|$ (this is the Sum rule from Lecture 1).

For two general sets A, B, $|A \cup B| = |A| + |B| - |A \cap B|$. The last term fixes the "double counting".

Similarly,
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$
.
In general.

$$|\cup_{i=1,2,...n} A_i| = \sum_{i} |A_i| - \sum_{i,j \text{ s.t. } 1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k \text{ s.t. } 1 \le i < j < k \le n} |A_i \cap A_j \cap A_k|$$

$$+ \ldots + (-1)^{n-1} |\cap_{i=1,2,...n} A_i|$$

Inclusion-Exclusion Principle - Example

Q: Suppose there are 60 math majors, 200 EECS majors, and 40 physics majors. A student is allowed to double or even triple major. There are 4 math-EECS double majors, 3 math-physics double majors, 11 EECS-physics double majors and 2-triple majors. What is the total number of students across these three departments?

If
$$M, E, P$$
 are the sets of Math, EECS and physics majors, then we wish to compute $|M \cup E \cup P| = |M| + |E| + |P| - |M \cap E| - |M \cap P| - |E \cap P| + |M \cap E \cap P| = 300 - |M \cap E| - |M \cap P| - |E \cap P| + |M \cap E \cap P|$.

$$|M \cap E| = 4 + 2 = 6$$
, $|M \cap P| = 3 + 2 = 5$, $|P \cap E| = 11 + 2 = 13$. $|M \cap E \cap P| = 2$
 $|M \cup E \cup P| = 300 - 6 - 5 - 13 + 2 = 278$.

Inclusion-Exclusion Principle - Example

Q: In how many permutations of the set $\{0,1,2,\ldots,9\}$ do either 4 and 2, 0 and 4, or 6 and 0 appear consecutively? For example, in the following permutation $\underline{42}$ 067891235, 4 and 2 appear consecutively, but 6 and 0 do not (the order matters).

Let P_{42} be the set of sequences such that 4 and 2 appear consecutively. Similarly, we define P_{60} and P_{04} . So we want to compute

$$|P_{42} \cup P_{60} \cup P_{04}| = |P_{42}| + |P_{60}| + |P_{04}| - |P_{42} \cap P_{60}| - |P_{42} \cap P_{04}| - |P_{60} \cap P_{04}| + |P_{42} \cap P_{60} \cap P_{04}|.$$

Let us first compute $|P_{42}| = 9!$. Similarly, $|P_{60}| = |P_{04}| = 9!$.

What about intersections? $|P_{42} \cap P_{60}| = \text{Number of sequences of the form}$ (42,60,1,3,5,7,8,9) = 8!. Similarly, $|P_{60} \cap P_{04}| = |P_{42} \cap P_{04}| = 8!$.

 $|P_{42} \cap P_{60} \cap P_{04}| = \text{Number of sequences of the form } (6042, 1, 3, 5, 7, 8, 9) = 7!.$

By the inclusion-exclusion principle, $|P_{42} \cup P_{60} \cup P_{04}| = 3 \times 9! - 3 \times 8! + 7!$.

Combinatorial Proofs

Recall that if we have to choose k elements out of a size n set. Number of ways to do this is $\binom{n}{k}$. But this is equivalent to saying, we want to find the number of ways to throw away n-k elements $=\binom{n}{n-k}$. Hence, $\binom{n}{k}=\binom{n}{n-k}$. Can prove algebraic statements using combinatorial arguments.

Q: Prove Pascal's identity using a combinatorial proof: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Consider *n* students in this class. What is the number of ways of selecting *k* students? $\binom{n}{k}$.

What is the number of ways of selecting k students if we have to ensure to include a particular student? $\binom{n-1}{k-1}$.

What is the number of ways of selecting k students if we have to ensure to NOT include a particular student? $\binom{n-1}{k}$.

Number of ways to select k students = number of ways of selecting k students to include a particular student + number of ways of selecting k students to NOT include a particular student. Hence, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$.

Counting Practice

Q: How many ways can I select 5 toppings for my pizza if there are 14 available toppings? What is the total number of different pizzas I can make?

Q: How many different solutions over $\mathbb N$ are there to the following equation: $x_1+x_2+x_3=100$

Counting Practice

Q: In how many ways can we place (i) two identical black rooks (ii) a black rook and a white rook such that they do not share the same row or column?

Figure 15.2 Two ways to place 2 rooks (Ξ) on a chessboard. The configuration in (b) is invalid because the rooks are in the same column.

