

### LABORATÓRIO DE SISTEMAS DIGITAIS

Prof. Jamil Kalil Naufal Jr. Prof. Wilian França Costa

#### LABORATÓRIO №11

### "SOMADORES E SUBTRATORES BINÁRIOS"

#### Grupo

Nome: Augusto Esteves Carrera

**RA:** 32114842

Nome: Enrique Granado Novaes

**RA:** 32107803

Nome: Larissa Rafaela R. Nepomuceno

RA: 32195311

Nome: Matteo Domiciano Varnier

**RA:** 32158238



1. Resumo teórico: Somadores e Subtratores binários.

#### 1.2 Circuito somador

### **CIRCUITOS ARITMÉTICOS**

São os componentes básicos para a construção de uma ULA (Unidade Lógica e Aritmética)
em microprocessadores e encontram-se disponíveis em circuitos integrados comerciais.

#### **MEIO SOMADOR**

- Operação de soma entre dois números binários.
- Somas binárias:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

1 + 1 = 0 e vai um (transporte ou transbordo)

1 + 1 + 1 = 1 e vai um (transporte ou transbordo)

#### **Bloco Funcional - Meio Somador**



#### Bloco Funcional - Somador Completo de 1 bit





#### **SOMADOR COMPLETO DE 4 BITS**



#### 1.3 Circuito subtrator

### SUBTRAÇÃO EM BINÁRIOS

- A operação de subtração em binário pode ser realizada de duas maneiras.
  - Somador completo, sendo que o segundo binário faz previamente o complemento de 2.
  - o Circuito dedicado para a subtração.
- Subtração binária:
  - 0 0 = 0
  - 0 1 = 1 e empresta um do bit 1 superior (Ts)
  - 1 0 = 1
  - 1 1 = 0

**Bloco Funcional - Meio Subtrator** 





#### **SUBTRATOR COMPLETO**

- Operação de subtração considerando o vem um solicitado pelo bit inferior (T<sub>E</sub>) ou solicitando o vem um do bit superior (T<sub>S</sub>).
- Subtração binária:

0 - 0 - 0 = 0

0 - 1 - 0 = 1 e empresta um do bit 1 superior (T<sub>S</sub>)

1 - 1 - 0 = 0

1 - 0 - 1 = 0, vem 1 do bit inferior (T<sub>E</sub>)

1 - 1 - 1 = 1, vem 1 do bit inferior (T<sub>E</sub>) e empresa 1 do bit superior (T<sub>S</sub>)

#### Bloco Funcional – Subtrator Completo de 1 bit



#### SUBTRATOR COMPLETO DE n BITS





#### **SUBTRATOR EM COMPLETO DE 2**

- Subtrai um número binário (subtraendo) de outro número binário (minuendo) seguindo os passos:
  - o 1. Complemente de 1 o subtraendo: mude o subtraendo complementando cada bit que compõem o subtraendo.
  - o 2: Adicione 1 ao subtraendo.
  - o 3: Some minuendo e subtraendo: o resultado será a diferença entre o subtraendo e minuendo.

O overflow indica que a resposta é positiva. Ignore o overflow. Se não houver overflow, a resposta é negativa.

#### Subtrator paralelo de 4 bits em completo de 2





### 2. Prática de Laboratório

### 2.1 Somador completo

1) Implemente no CEDAR o somador completo apresentado a seguir.



2) Simule o comportamento do somador completo a partir do preenchimento da tabela verdade a seguir.

| A | В | $T_{\rm E}$ | S | Ts |
|---|---|-------------|---|----|
| 0 | 0 | 0           | 0 | 0  |
| 1 | 0 | 0           | 1 | 0  |
| 0 | 1 | 0           | 1 | 0  |
| 0 | 0 | 1           | 1 | 0  |
| 1 | 0 | 1           | 1 | 1  |
| 1 | 1 | 0           | 0 | 1  |



Apresente o printscreen de forma organizada de pelo menos quatro simulações realizada na sequência da tabela verdade criada.



### 2.2 Somador completo de 4 bits



1) Dado o somador completo de 4 bits a seguir, implemente o mesmo no CEDAR. Observe que o CEDAR possui um de seus blocos componentes a opção "add & compare". Utilizar este bloco funcional do CEDAR para implementar o somador solicitado. Apresente a sua montagem no CEDAR.



2) Simule o comportamento do somador completo a partir do preenchimento da tabela verdade a seguir.

| A3 A2 A1A0 | B <sub>3</sub> B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> | S4S3S2S1S0 |
|------------|-------------------------------------------------------------|------------|
| 0000       | 0000                                                        | 00000      |
| 0001       | 0001                                                        | 00010      |
| 0010       | 0010                                                        | 00100      |
| 0011       | 0011                                                        | 00110      |
| 0100       | 0100                                                        | 01000      |
| 0101       | 0101                                                        | 01010      |
| 0110       | 0110                                                        | 01100      |
| 0111       | 0111                                                        | 01110      |
| 1000       | 1000                                                        | 10000      |
| 1001       | 1001                                                        | 10010      |
| 1010       | 1010                                                        | 10100      |
| 1011       | 1011                                                        | 10110      |
| 1100       | 1100                                                        | 11000      |
| 1101       | 1101                                                        | 11010      |
| 1110       | 1110                                                        | 11100      |
| 1111       | 1111                                                        | 11110      |



Apresente o printscreen de forma organizada de pelo menos seis simulações realizada na sequência da tabela verdade criada.











3) Analise a tabela obtida, o comportamento das somas está conforme esperado? Caso tenha identificado algum problema descreva-o e sugira uma solução.

O comportamento das somas está conforme o esperado sim! A tabela verdade e o circuito estão iguais.

### 2.3 Subtrator completo

1) Implemente no CEDAR o subtrator completo apresentado a seguir.





2) Simule o comportamento do subtrator completo a partir do preenchimento da tabela verdade a seguir.

| A | В | $T_{\rm E}$ | S | Ts |
|---|---|-------------|---|----|
| 0 | 0 | 0           | 0 | 0  |
| 0 | 0 | 1           | 1 | 1  |
| 0 | 1 | 0           | 1 | 1  |
| 0 | 1 | 1           | 0 | 1  |
| 1 | 0 | 0           | 1 | 0  |
| 1 | 0 | 1           | 0 | 0  |
| 1 | 1 | 0           | 0 | 0  |
| 1 | 1 | 1           | 1 | 1  |

Apresente o printscreen de forma organizada de pelo menos quatro simulações realizada na sequência da tabela verdade criada.













### 2.4 Subtrator completo em complemento de 2 de 4 bits

- Dado o somador completo de 4 bits construído no CEDAR no item 2.2, transforme-o em um subtrator completo de 4 bits em complemento de 2. Apresente a sua montagem no CEDAR.
- 2) Simule o comportamento do subtrator completo em complemento de 2 a partir do preenchimento da tabela verdade a seguir, considere  $A_3$   $A_2$   $A_1A_0$  como minuendo e  $B_3B_2B_1B_0$  como subtraendo.

| 1870 P |  |
|--------|--|
|        |  |
| E STU  |  |
| (C)    |  |

| A <sub>3</sub> A <sub>2</sub> A <sub>1</sub> A <sub>0</sub> | B3B2B1B0 | S4S3S2S1S0 |
|-------------------------------------------------------------|----------|------------|
| 0000                                                        | 0000     | 10000      |
| 1111                                                        | 0011     | 00100      |
| 0110                                                        | 0010     | 01100      |
| 1011                                                        | 1010     | 01111      |
| 1100                                                        | 0011     | 00111      |
| 0101                                                        | 0101     | 10000      |
| 0110                                                        | 0110     | 10000      |
| 1001                                                        | 1000     | 01111      |
| 1011                                                        | 0111     | 01100      |
| 0011                                                        | 0001     | 01110      |
| 1111                                                        | 1110     | 01111      |
| 1010                                                        | 1100     | 10010      |
| 1001                                                        | 1011     | 10010      |
| 0101                                                        | 1000     | 10011      |
| 1100                                                        | 1101     | 10001      |
| 0111                                                        | 1000     | 10001      |

Apresente o printscreen de forma organizada de pelo menos seis simulações realizada na sequência da tabela verdade criada.

















3) Analise a tabela obtida, o comportamento das subtrações está conforme esperado? Caso tenha identificado algum problema, descreva-o e sugira uma solução.

Está conforme esperado.