Module 6: End of Topology, Start of Linear Algebra Operational math bootcamp

Emma Kroell

University of Toronto

July 20, 2022

Outline

- Finish topology
 - Dense subsets
 - Compactness
 - Continuity
- Start linear algebra
 - Vector spaces and subspaces

2/1

Last time

Definition (Topology)

Let $\mathcal{T} \subseteq \mathcal{P}(X)$. We call \mathcal{T} a *topology* on X if the following holds:

- (i) $\emptyset, X \in \mathcal{T}$
- (ii) Let A be an arbitrary index set. If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$ (\mathcal{T} is closed under taking arbitrary unions)
- (iii) Let $n \in \mathbb{N}$. If $U_1, \ldots, U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$ (\mathcal{T} is closed under taking finite intersections)
- If $U \in \mathcal{T}$, we call U open. We call $U \subseteq X$ closed, if $U^c \in \mathcal{T}$. We call (X, \mathcal{T}) a topological space.

Definition

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be any subset.

- The *interior* of A is $\overset{\circ}{A} := \{ a \in A \colon \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U \}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The boundary of A is $\partial A := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, \ U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset\}.$

Density

Definition

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Using the definition of closure, we see that $A \subseteq X$ is dense if and only if for all non-empty $U \in \mathcal{T}$, $U \cap A \neq \emptyset$.

- The rationals \mathbb{Q} are dense in the reals \mathbb{R} .
- The only dense subset in $(X, \mathcal{P}(X))$ is X itself.
- Any non-empty subset is dense in $(X, \{\emptyset, X\})$.

Separability

Definition

A topological space (X, \mathcal{T}) is *separable* if it contains a countable dense subset.

Example

Hausdorff space

Definition

A topological space (X, \mathcal{T}) is called *Hausdorff* if for all $x \neq y \in X$ there exist open sets U_x, U_y with $x \in U_x$ and $y \in U_y$ such that $U_x \cap U_y = \emptyset$.

So in a Hausdorff space, we can separate any two elements using open sets.

Example

Let (X, d) be a metric space. Then (X, \mathcal{T}_d) is Hausdorff, where \mathcal{T}_d is the topology induced by the metric d.

Example

Let X be an infinite set and $\mathcal{T} = \{U \subseteq X : U^c \text{ is finite}\} \cup \emptyset$. Then (X, \mathcal{T}) is not Hausdorff.

Compactness

Definition

Let (X, \mathcal{T}) be a topological space and $K \subseteq X$.

A collection $\{U_i\}_{i\in I}$ of open sets is called *open cover* of K if $K\subseteq \cup_{i\in I}U_i$.

The set K is called *compact* if for all open covers $\{U_i\}_{i\in I}$ there exists a finite subcover, meaning there exists an $n \in \mathbb{N}$ and $\{U_1, \ldots, U_n\} \subseteq \{U_i\}_{i\in I}$ such that $K \subseteq \bigcup_{i=1}^n U_i$.

Example

Let $S \subseteq X$ where (X, \mathcal{T}) is a topological space. If S is finite, then it is compact.

Example

(0,1) is not compact.

Proposition

Let (X, \mathcal{T}) be a topological space and take a non-empty subset $K \subseteq X$. The following holds:

- f 1 If X is compact and K is closed, then K is compact (i.e. closed subsets of compact sets are compact).
- 2 If (X, \mathcal{T}) is Hausdorff, then K being compact implies that K is closed.

Proof.

(1) If X is compact and $K \subseteq X$ is closed, then K is compact

Proof.

(2) If (X, \mathcal{T}) is Hausdorff, then $K \subseteq X$ compact $\Leftrightarrow K$ is closed.

Proof continued

Compactness on \mathbb{R}^n

Theorem (Heine-Borel Theorem)

Let $K \subseteq \mathbb{R}^n$. Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.

Just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (X, d) be a metric space. Then $K \subset X$ is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.

A corollary of this statement together with Heine-Borel is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

Continuity on a topological space

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* if for all $U \in \mathcal{T}_Y$, $f^{-1}(U) \in \mathcal{T}_X$, i.e. the pre-image of open sets is open.

We can also specify continuity at a point $x_0 \in X$.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* at $x_0 \in X$ if for all $U \in \mathcal{T}_Y$ with $f(x_0) \in U$, $f^{-1}(U) \in \mathcal{T}_X$, i.e. the preimage of open sets containing $f(x_0)$ is open (and contains x_0).

Proposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Suppose $K \subset X$ is compact and let $f : K \to Y$ be continuous. Then f(K) is compact.

Recall from the set theory section:

If $f: X \to Y$:

2
$$f^{-1}(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f^{-1}(A_i)$$
, where $A_i\subseteq Y\ \forall i\in I$

3
$$f(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f(A_i)$$
, where $A_i\subseteq X\ \forall i\in I$

$$A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$$

5
$$B \subseteq Y \Rightarrow f(f^{-1}(B)) \subseteq B$$

Proof continued

Right and left continuous

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$.

Definition

Let $f: \mathbb{R} \to \mathbb{R}$.

- f is left continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 \delta < x < x_0$.
- f is right continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 < x < x_0 + \delta$.

We say that f is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Proof continued

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We call $(x_n)_{n\in\mathbb{N}}$ bounded if there exists an M>0 such that $|x_n|< M$ for all $n\in\mathbb{N}$.

Theorem (Monotone convergence theorem)

- (i) Suppose $(x_n)_{n\in\mathbb{N}}$ is an increasing sequence, i.e. $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$, and that it is bounded (above). Then the sequence converges. Furthermore, $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, where $\sup_{n\in\mathbb{N}} x_n := \sup\{x_n : n\in\mathbb{N}\}$.
- (ii) Suppose $(x_n)_{n\in\mathbb{N}}$ is a decreasing sequence, i.e. $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$, which is bounded (below). Then the sequence converges and $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n := \inf\{x_n : n\in\mathbb{N}\}.$

Convention: sup $A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and inf $A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ is non-empty, then $\inf A \le \sup A$, $\sup A \le \sup B$, and $\inf A \ge \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We define the *limit superior* of $(x_n)_{n\in\mathbb{N}}$ as

$$\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \sup_{k\geq n} x_k.$$

Similarly we define the *limit inferior* of $(x_n)_{n\in\mathbb{N}}$ as

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} \inf_{k\geq n} x_k.$$

If the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded above, then $\limsup_{n\to\infty}x_n=\infty$. Similarly, if the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded below, then $\liminf_{n\to\infty}x_n=-\infty$.

Proposition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, $s_n = \sup_{k \ge n} x_k$, is decreasing and the sequence of infima, $i_n = \inf_{k \ge n} x_k$, is increasing.
- The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Proof.

The first part is true by the previous Lemma. The second follows by the Monotone Convergence Theorem.

Theorem

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then the sequence converges to $x\in\mathbb{R}$ if and only if $\limsup_{n\to\infty}x_n=x=\liminf_{n\to\infty}x_n$.

Proof.

We can extend this easily to a sequence of functions $f_n: X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

Linear Algebra

Definition

We call *V* a **vector space** if the following hold:

- (A) Commutativity in addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$
- (B) Associativity in addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$
- (C) Existence of a neutral element, addition: There exists a vector ${\bf 0}$ such that for any ${\bf v} \in V$, ${\bf 0} + {\bf v} = {\bf v}$
- (D) Additive inverse: For every $\mathbf{v} \in V$, there exists another vector, which we denote $-\mathbf{v}$, such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- (E) Existence of a neutral element, multiplication: For any $\mathbf{v} \in V$, $1 \times \mathbf{v} = \mathbf{v}$
- (F) Associativity in multiplication: Let $\alpha, \beta \in \mathbb{F}$. For any $\mathbf{v} \in V$, $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$
- (G) Let $\alpha \in \mathbb{F}$, \mathbf{u} , $\mathbf{v} \in V$. $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- (H) Let $\alpha, \beta \in \mathbb{F}, \mathbf{v} \in V$. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$.

Elements of the vector space are called vectors. Most often we will assume $\mathbb{F} = \mathbb{C}$ or \mathbb{R} .

Example

The following are vector spaces:

- \mathbb{R}^n
- ℂⁿ
- $C(\mathbb{R}; \mathbb{R})$, continuous functions from \mathbb{R} to \mathbb{R}
- $M_{n \times m}$, matrices of size $n \times m$
- \mathbb{P}_n (polynomials of degree n, $p(x) = a_0 + a_1x + \ldots + a_nx^n$).

Lemma

For every $\mathbf{v} \in V$, $0\mathbf{v} = \mathbf{0}$.

Proof.

Statistical Sciences

Lemma

For every $\mathbf{v} \in V$, we have $-\mathbf{v} = (-1) \times \mathbf{v}$.

Proof.

Definition

A subset U of V is called a **subspace** of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Proposition

A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

- **1 0** ∈ *U*
- **2** Closed under addition: $\mathbf{u}, \mathbf{v} \in U$ implies $\mathbf{u} + \mathbf{v} \in U$
- **3** Closed under scalar multiplication: $\alpha \in \mathbb{F}$ and $\mathbf{u} \in U$ implies $\alpha \mathbf{u} \in U$

Proof. (⇒) (⇔)

References

Axler S. *Linear Algebra Done Right*. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:

https://link.springer.com/book/10.1007/978-3-319-11080-6

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Treil S. *Linear Algebra Done Wrong*. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

