Optimal dislocation with persistent errors in subquadratic time

Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, Paolo Penna

ETH Zurich

Sorting with erroneous comparisons

Sorting with erroneous comparisons

Sorting with erroneous comparisons

error probability p constant

- error probability p constant
- independent for each pair

- error probability p constant
- independent for each pair
- persistent errors

- error probability p constant
- independent for each pair
- persistent errors

Repeating does not help

- error probability p constant
- independent for each pair
- persistent errors

Repeating does not help

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16

Approx Sorted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16

Approx Sorted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 11 12 10 13 14 15 16

Dislocation

What can be done?

MAX	Dislocation	TOTAL
$O(\log n)$		O(n)

Braverman & Mossel (SODA'08)

Time: 3+C

MAX Dislocation TOTAL
$$O(\log n) \qquad O(n)$$

Braverman & Mossel (SODA'08)

Braverman & Mossel (SODA'08)

Time:	MAX	Dislocation TOTAL
$O(n^{3+C})$	$O(\log n)$	O(n)
$O(n^2)$	$O(\log n)$	

Braverman & Mossel (SODA'08) Klein, Penninger, Sohler, Woodruff (ESA'11)

Time:	MAX	Dislocation	TOTAL
$O(n^{3+C})$	$O(\log n)$		O(n)
$O(n^2)$	$O(\log n)$		
$O(n^2)$	$O(\log n)$		O(n)

Braverman & Mossel (SODA'08) Klein, Penninger, Sohler, Woodruff (ESA'11) Geissmann, Leucci, Liu, Penna (ISAAC'17)

Time:	MAX	Dislocation	TOTAL
$O(n^{3+C})$	$O(\log n)$		O(n)
$O(n^2)$	$O(\log n)$		
$O(n^2)$	$O(\log n)$		O(n)
	$\Omega(\log n)$		$\Omega(n)$

Braverman & Mossel (SODA'08) Klein, Penninger, Sohler, Woodruff (ESA'11) Geissmann, Leucci, Liu, Penna (ISAAC'17)

Subquadratic time?

Our Contribution

YES

Our Contribution

YES

Time:

 $O(n^{3/2})$

MAX Dislocation TOTAL

 $O(\log n)$ O(n)

Our Contribution

YES

Time:

$$O(n^{3/2})$$

MAX Dislocation TOTAL

 $O(\log n)$ O(n)

randomized algorithm ——— "derandomized" algorithm

errors well-spread \Rightarrow success

errors well-spread \Rightarrow success initial dislocation $D \Rightarrow$ time O(Dn)

errors well-spread \Rightarrow success initial dislocation $D \Rightarrow$ time O(Dn)

initial dislocation $D \Rightarrow \text{time } O(Dn)$

$O(n^2)$ -Time Algorithm

initial dislocation $D \Rightarrow \text{time } O(Dn)$

Geissmann, Leucci, Liu, Penna (ISAAC'17)

errors well-spread \Rightarrow success initial dislocation $D \Rightarrow$ time O(Dn)

Geissmann, Leucci, Liu, Penna (ISAAC'17)

errors well-spread \Rightarrow success initial dislocation $D \Rightarrow$ time O(Dn)

Geissmann, Leucci, Liu, Penna (ISAAC'17)

Simple Faster Algo New Algo Window Sort

NOT ENOUGH!

NOT ENOUGH!

That was the **simple** version...

Part II: Derandomization

Comparisons \Rightarrow Randomness

Comparisons

One random bit

REINSERT

Time: MAX Dislocation TOTAL
$$O(n^{3+C})$$
 $O(\log n)$ $O(n)$ $O(n)$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^3/2)$ $O(\log n)$ $O(n)$

Time: MAX Dislocation TOTAL
$$O(n^{3+C})$$
 $O(\log n)$ $O(n)$ $p < 1/16$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^3/2)$ $O(\log n)$ $O(n)$

Time: MAX Dislocation TOTAL
$$O(n^{3+C})$$
 $O(\log n)$ $O(n)$ $p < 1/16$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^3/2)$ $O(\log n)$ $O(n)$

Any
$$p < 1/2$$
?

Time: MAX Dislocation TOTAL
$$O(n^{3+C})$$
 $O(\log n)$ $O(n)$ $p < 1/16$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^2)$ $O(\log n)$ $O(n)$ $O(n^{3/2})$ $O(\log n)$ $O(n)$ $O(n)$ $O(n)$ $O(n)$

Time: MAX Dislocation TOTAL
$$O(n^{3+C}) \quad O(\log n) \quad O(n)$$

$$O(n^2) \quad O(\log n)$$

$$O(n^2) \quad O(\log n) \quad O(n)$$

$$O(n^3/2) \quad O(\log n) \quad O(n)$$

Other error models?

Tahnk You