Q.1)

Why is it necessary to normalize the data?		✓ c	heckboxes
It helps to reduce variance			
To ensure that the neural network considers all input features to	o a simila	ar extent.	✓
To make the optimization process of cost function faster.			✓
For consistency for comparing results across models.			✓
Q.2)			
You are making a classifier to classify different speci of birds. Suppose your classifier obtains a training se error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier?	et		Checkboxes
Increase regularization			~
Train on more data			✓
Decrease regularization			
Increase learning rate			

Q.3)

Which of the following techniques are used to reduce variance?	Multiple choice
O Dropout	
L2 Regularization	
O Data Augmentation	
All of the above	✓
Q.4)	
Which algorithm follows a straight path towards the minimum?	Multiple choice
Batch Gradient Descent	~
Stochastic Gradien Descent	
Mini Batch Gradien Descent	
None of the above	

Q.5)

Which of the following statements is true about the learning rate alpha in gradient descent?		Multiple choice		
If alpha is very small, gradient descent will be fast to converge.	If alpha i	s too large, gradie		
O If alpha is very small, gradient descent will be fast to converge. If alpha is too large, gradie				
If alpha is very small, gradient descent can be slow to converge	e. If alpha	is too large, gradi		
If alpha is very small, gradient descent can be slow to converge	e. If alpha	is too large 🗸		
Q.6)				
If searching among a large number of hyperparameters, you should try random values rather than values in a grid , because you don't know which hyperparameters are more important than others. True or False?	<u>⊾</u>	Multiple choice		
○ True		~		
○ False				

Q.7)

Let us assume we implement an AND function to a single neuron. Below is a tabular representation of an AND function:

What would be the weights and bias?

(Hint: For which values of w1, w2 and b does our neuron implement an AND function?)

Multiple choice

X1	X2	X1 AND X2
0	0	0
0	1	0
1	0	0
1	1	1

The activation function of our neuron is denoted as:

$$f(x) = \begin{cases} 0, & for \ x < 0 \\ 1, & for \ x \ge 0 \end{cases}$$

- Bias = 1, w1 = 1.5, w2 = 1.5
- Bias = 1.5, w1 = 2, w2 = 2
- Bias = -1.5, w1 = 1, w2 = 1
- None of the above

Q.8)

Checkboxes Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function J(W[1],b[1],...,W[L],b[L]). Which of the following techniques could help find parameter values that attain a small value forJ? Try using Adam Try tuning the learning rate α Try Stochastic gradient descent Try initializing all the weights to zero Try better random initialization for the weights Q.9) Multiple choice Complete the following sentence:-Neural networks _____ Optimize a convex cost function Always output values between 0 and 1 Can be used for regression as classification. All of the above

Q.10)

What is back propagation?		•	Multiple choice
it is another name given to the curvy function in the perceptron	ı		
it is the transmission of error back through the network to allow weights to be adjus			
it is the transmission of error back through the network to adjust the inputs			
All of the above			
Q.11)			
Complete the following sentence :-		•	Multiple choice
The dev and test set should			
Come from different distributions.			
Be identical to each other same (x,y) pairs.			
Have the same number of examples.			
Come from same distributions.			~

Q.12)

A 3-input neuron is trained to output a zero when the input is 010 and a one when the input is 110. After generalization, the output will be zero when and only when the input is:	<u></u>	Multiple choice
O10 or 100 or 110 or 101		
O00 or 010 or 110 or 100		
100 or 111 or 101 or 001		
O00 or 010 or 011 or 001		~
Q.13)		
A 4-input neuron has weights 5, 4, 3 and 2. The transfer function is linear with the constant of proportionality being equal to 3. The inputs are 4, 5, 6 and 10 respectively. The output will be:	<u></u>	Multiple choice
O 124		
O 189		
O 234		~
O 270		

Q.14)

Why is the XOR problem exceptionally interesting to neural network researchers?		Multiple choice	
neural network researchers?			
O because it can be expressed in a way that allows you to use a	neural net	work	
because it is complex binary operation that cannot be solved using neural networks			
because it can be solved by a single layer perceptron			
○ because it is the simplest linearly inseparable problem that exists			
Q.15)			
An auto-associative network is:	<u></u>	✓ Checkboxes	
a neural network that contains no loops	_		
a neural network that contains feedback		~	
a neural network that contains 1 loop			
a single layer feed-forward neural network with pre-processing	g		