iervice Manua

Black and White Television with Radio & Digital Clock

Chassis No. 1E01-A **Main Manual**

Specifications:

Television

Power Source:

Power Consumption

Aerial impedance:

Antenna

Receiving Channel:

Intermediate

Frequency:

Integrated Circuits:

Video: Sound:

VHF:

UHF:

DC:

AC:

6V

UHF/VHF/FM Monopole

UHF/VHF External Aerial

(Antenna). 75 Ω , Unbalanced type.

Aerial (Antenna), 75Ω .

4.4W

Unbalanced type.

38.9MHz

2-13

14-83

34.4MHz (USA Standard) 33.4MHz (CCIR Standard)

U.S.A. CCIR B&G U.K.

2-12

21-69

120V, 220V~240V, 50Hz

DC: 1.8W

21-69

32.9MHz (U K Standard)

12 lc's

Semiconductor: (With Radio)

Nominal Anode Voltage:

Picture Tube: Speaker:

Automatic Circuit:

4.7 KV (Zero Beam Current) 40CB4 1.5" 36° Deflection $2.8 \mathrm{cm}$, 16Ω , Round type

21 Transistors

42 Diodes

Peak Automatic Gain Control Saw-Tooth Automatic Frequency Control

Automatic Voltage Regulator Height: 40mm

Width: 135mm Depth: 166mm

0.83kg

Radio

Weight:

Dimensions:

Radio Frequency

Audio Output:

Range:

AM: FM:

525-1605kHz 88-108MHz

0.1W

Specifications are subject to change without notice.

Matsushita Electric Trading Co., Ltd. P.O. Box 288, Central Osaka Japan CODE NO. FTD8001-030

CAUTION

The high voltage supply at the picture tube anode will give an unpleasant shock, but does not supply enough current to give a fatal burn or shock.

However, secondary human reaction to otherwise harmless shocks have been known to cause injury. Always discharge the picture tube anode to the receiver chassis before handling the tube.

Certain portions of the high voltage generating circuit are dangerous and extreme caution should be observed. The picture tube is highly evacuated and, if broken, glass fragments will be violently expelled.

WHEN HANDLING THE PICTURE TUBE, ALWAYS WEAR GOGGLES AND PROTECTIVE CLOTHING.

The electrical parts used in this model such as the resistors, the capacitors and the transistors, are smaller than the same parts used in conventional models. Very painstaking and careful servicing techniques, therefore, are necessary for this model.

VORSICHT

Die Hochspannung der Bildröhrenanode genügt für einen unangenehmen Schlag, ist aber nicht hoch genug um Verbrennungen oder tödliche Schläge zu bewirken. Sekundäre Verletzungen als Folge harmloser Schläge sind jedoch vorgekommen. Vor Hantieren an der Bildröhre sollte daher die Anode längere Zeit über einen Widerstand von 100K Ohm zum Chassis entladen werden.

Gewisse Abschnitte des Hochspannungskreises sind gefährlich; äusserste Vorsicht ist angebracht. Die Bildröhre steht unter Hochvakuum: beim Zerbrechen werden Glasstücke gefährlich umherfliegen.

BEIM HANTIEREN DER BILDRÖHRE IMMER SCHUTZ-BRILLE UND HANDSCHUHE TRAGEN!

Die elektrischen Teile dieses Modells wie Widerstände, Kondensatoren und Transistoren sind kleiner als die gleichen Teile bei herkömmlichen Geräten. Sehr vorsichtige und sorgfältige Arbeit ist daher bei den Servicearbeiten an diesem Modell erforderlich.

DISASSEMBLY INSTRUCTIONS—DEMONTAGE ANLEITUNG—

UPPER CABINET REMOVAL

- 1. Remove 2 screws (A) and 2 screws (B) as shown in Fig. 1, 2.
- 2. Lift up upper cabinet as shown the arrow in Fig. 2.

Abnahme der Gehäuse-Oberseite

- 1. Entfernen Sie die in Abb. 1 und 2 gezeigten zwei Schrauben A und B.
- 2. Heben Sie die Gehäuseoberseite in Pfeilrichtung, wie in Abb. 2 gezeigt.

Fig. 2

Abb. 2

CLOCK P.C.B. REMOVAL

Remove screw © as shown in Fig. 3.

RADIO BLOCK REMOVAL

Remove 2 screws (1) as shown in Fig. 3.

ESCUTCHEON BLOCK REMOVAL

1. Pull the escutcheon block out of the cabinet as shown the arrow in Fig. 4.

CRT REMOVAL

- 1. Remove clock P.C.B., radio block and escutcheon block.
- 2. Pull the CRT as shown in Fig. 5.

MAIN PCB REMOVAL

- 1. Remove 3 knobs barriers (E) as shown in Fig. 6.
- 2. Pull out 6 knobs (F).
- 3. Lift up the main PCB by screw driver as shown in Fig. 6 and then pull it towards you.

Fig. 3 Abb. 3

Fig. 5 Abb. 5

Uhren-Leiterplatten-Ausbau

Entfernen Sie die in Abb. 3 gezeigte Schraube C.

Radioblock-Ausbau

Entfernen Sie die beiden in Abb. 3 gezeigten Schrauben D.

Plattenblock-Ausbau

1. Ziehen Sie den Plattenblock in der in Abb. 4 gezeigten Pfeilrichtung aus dem Gehäuse.

Ausbau der Kathodenstrahlröhre

- Bauen Sie die Uhren-Leiterplatte sowie den Radio- und Plattenblock aus.
- 2. Ziehen Sie die Kathodenstrahlröhre wie in Abb. 5 gezeigt.

Haupt-Leiterplatten-Ausbau

- 1. Entfernen Sie die drei in Abb. 6 gezeigten Knopfsperren E.
- 2. Ziehen Sie die sechs Knöpfe F heraus.
- 3. Heben Sie die Haupt-Leiterplatte wie in Abb. 6 gezeigt mit einem Schraubenzieher an und ziehen Sie sie auf sich zu.

Fig. 4 Abb. 4

HOW TO REPLACE CHIPS (RESISTOR, CAPACITOR, JUMPER)

- 1. Remove solder from chip by using solder sucker.
- 2. Remove chip with tweezers by rotating it while removing solder as shown in Fig. 7.
- 3. Solder circuit board first and then solder chip in the direction of the arrow as shown in Fig. 8.

Notes:

- 1. Do not use chip again which is removed from P.C.
- 2. Use lead wire with insulator for replacement instead of chip jumper.

NOTE FOR REPLACING CHIPS

- 1. Do not heat chips more than three (3) seconds.
- 2. Be careful not to damage the electrode of chips.
- 3. Use soldering iron (less than 60 W) and tweezers for replacing chips.

AC Adaptor Operation

Make sure to set the voltage selector of the AC adaptor to correct voltage in your area. If it is not set to the correct voltage in your area, reset to voltage with a screw driver as shown in Fig. 9.

Voltage in your area Voltage selector position 110V, 120V → 120V

220V

220V, 240V →

Dry Battery Operation

Insert 4 "AA" size dry batteries to the battery case (including) as shown in Fig. 10.

Fig. 9

Abb. 9

Chip-Austausch

(Widerstände, Kondensatore, Schaltdraht)

- 1. Entfernen Sie das Lötmetall mit einem Lotsauger.
- 2. Entfernen Sie das Chip mit einer Pinzette durch Drehen, während das Lötmetall wie in Abb. 7 gezeigt, entfernt wird.
- 3. Löten Sie zuerst die Leiterplatte und dann das Chip in der in Abb. 8 gezeigten Pfeilrichtung.

Hinweise:

- 1. Das von der Leiterplatte entfernte Chip kann nicht wiederverwendet werden.
- 2. Verwenden Sie als Ersatz für den Chip-Schaltdraht einen isolierten Leitungsdraht.

Hinweis für Chip-Austausch

- 1. Erhitzen Sie die Chips nicht länger als 3 Sekunden.
- 2. Achten Sie darauf, daß die Chipelektrode nicht beschädigt wird.
- 3. Verwenden Sie einen Lötkolben (weniger als 60 W) und Pinzette für den Chip-Austausch.

Wechselstrom-Adapter-Betrieb

Achten Sie darauf, daß der Spannungswähler des Wechselstrom-Adapters auf die richtige Spannung an Ihrem Ort eingestellt ist. Wenn die Einstellung nicht richtig ist, muß die Spannung wie in Abb. 9 gezeigt mit einem Schraubenzieher entsprechend eingestellt werden.

Örtliche Spannung Spannungswähler-Stellung 110 V, 120 V \rightarrow 120 V 220 V, 240 V \rightarrow 220 V

Trockenbatterie-Betrieb

Legen Sie vier "AA" Trockenbatterien in das Batteriefach (eingeschlossen) wie in Abb. 10 gezeigt.

Fig. 10

Abb. 10

Rechargeable Battery Operation (TY-375)

To obtain maximum playing time, charge new battery for 8 hours before using. For best battery life, it is recommended to recharge the battery after each use. Recommended charging time is 4 hours charge for 1 hour of use. (8 hours charge after 2 hours of battery operation.) To attain maximum battery life, the TV set should not be operated more than 2 hours without recharging the battery. And for best battery life, batteries should not be charged more than is necessary.

Betrieb mit aufladbaren Batterien (TY-375)

Laden Sie die neue Batterie 8 Stunden vor der Benutzung, um eine möglichst lange Spielzeit zu erhalten. Zur Verlängerung der Batterielebensdauer empfiehlt es sich, die Batterie nach jedem Gebrauch aufzuladen. Die empfohlene Aufladezeit beträgt vier Stunden für eine Stunde Betriebszeit. (Acht Stunden Aufladezeit bei zwei Stunden Batteriebetrieb.) Für max. Batterielebensdauer empfiehlt es sich, das Fernsehgerät nicht länger als zwei Stunden ohne Nachladen der Batterie zu betreiben und die Batterie nicht zu überladen.

DIAL STRINGING

TV BLOCK

- 1. Turn the TV tuning shaft fully clockwise.
- 2. Follow steps ① to ③ for correct stringing as shown in Fig. 12.
- 3. Wind the dial string to the tention roller (A) several turns, then turn the tention roller (B) counterclockwise seven times for getting appropriate tention.
- 4. Fix the dial string on the Tention roller (A) and TV pulley with bond as shown in Fig. 11.
- 5. Insert the tention roller (B) to groove on the TV bracket as shown in Fig. 12.
- 6. Mount the TV tuning knob and turn it fully counterclockwise.
- 7. Mount the TV Dial pointer at the start point on the TV bracket as shown in Fig. 13.
- 8. Fix the TV dial pointer on the string with bond as shown in Fig. 14.

Fig. 12

Fig. 11

Abb. 12

Fernsehblock

1. Drehen Sie die Fernseh-Abstimmwelle ganz im Uhrzeiaersinn

SKALENSCHNUR -

- 2. Gehen Sie für richtige Schnuranbringung entsprechend den in Abb. 12 gezeigten Schritten 1 bis 3 vor.
- 3. Wickeln Sie die Skalenschnur mehrmals um die Spannrolle A und drehen Sie dann die Spannrolle B sieben Mal entgegen dem Uhrzeigersinn, um die richtige Spannung zu erhalten.
- 4. Kleben Sie die Skalenschnur an der Spannrolle A sowie an der Fernsehtreibrolle mit Kleber an, wie in Abb. 11
- 5. Schieben Sie die Spannrolle B in die Ausnehmung der Fernsehstütze, wie in Abb. 12 gezeigt.
- 6. Bringen Sie den Fernsehabstimmknopf an und drehen Sie ihn voll entgegen dem Uhrzeigersinn.
- 7. Bringen Sie den Fernsehskalenzeiger am Startpunkt der Fernsehstütze an, wie in Abb. 13 gezeigt.
- 8. Kleben Sie den Fernsehskalenzeiger auf der Schnur, wie in Abb. 14 gezeigt, mit Kleber an.

Abb. 14

RADIO BLOCK

- 1. Turn the pulley fully clockwise.
- 2. Follow the steps ① to ⑥ for correct stringing as shown in Fig. 16.
- 3. Mount the Radio tuning knob and turn it fully counterclockwise.
- 4. Mount the Radio Dial pointer at the start point on the Radio bracket as shown in Fig. 17.
- 5. Fix the Radio dial pointer on the string with bond as shown in Fig. 18.

Radioblock

- 1. Drehen Sie die Treibrolle voll im Uhrzeigersinn.
- 2. Gehen Sie für die richtige Schnuranbringung entsprechend den in Abb. 16 gezeigten Schritten 1 bis 6 vor.
- 3. Bringen Sie den Radioabstimmknopf an und drehen Sie in voll entgegen dem Uhrzeigersinn.
- 4. Bringen Sie den Radioskalenzeiger am Startpunkt der Radiostütze, wie in Abb. 17 gezeigt, an.
- Kleben Sie den Radioskalenzeiger auf der Schnur, wie in Abb. 18 gezeigt, mit Kleber an.

TELEVISION INDICATOR ALIGNMENT

TELEVISION INDICATOR ALIGNMENT

- Set the function selector to TV position and set the band selector to UHF position.
- 2. Set the system switch to USA position.
- 3. Set the pointer to the station of which is the lowest receivable channel in your area.
- 4. Adjust VR92 to get the best picture.
- 5. Set the pointer to the station of which is the highest receivable channel in your area.
- 6. Adjust VR93 to get the best picture.
- 7. Set the pointer same as step 3.
- 8. Readjust VR92 if necessary.
- 9. Set the band selector to VHF position.
- 10. Set the pointer to the station of which is the lowest receivable channel in your area.
- 11. Adjust the VR94 to get the best picture.
- 12. Set the pointer to the station of which is the highest receivable channel in your area.
- 13. Adjust the VR96 to get the best picture.

Fernsehanzeige-Einstellung

- 1. Stellen Sie den Betriebswahlschalter auf die Stellung "TV" und den Bandwähler auf UHF.
- 2. Stellen Sie den Systemschalter auf USA.
- 3. Stellen Sie den Zeiger auf den Sender mit dem niedrigsten noch empfangbaren Kanal Ihres Ortes ein.
- 4. Stellen Sie den VR92 auf das beste Bild ein.
- 5. Stellen Sie den Zeiger auf den Sender mit dem höchsten noch empfangbaren Kanal Ihres Ortes ein.
- 6. Stellen Sie den VR93 auf das beste Bild ein.
- 7. Stellen Sie den Zeiger wie bei Pos. 3 ein.
- 8. Stellen Sie, falls erforderlicch, den VR92 nach.
- 9. Stellen Sie den Bandwähler auf VHF.
- Stellen Sie den Zeiger auf den Sender mit dem niedrigsten noch empfangbaren Sender Ihres ortes ein.
- 11. Stellen Sie den VR94 auf das beste Bild ein.
- 12. Stellen Sie den Zeiger auf den Sender mit den höchsten noch empfangbaren Sender Ihres Ortes ein.
- 13. Stellen Sie den VR96 auf das beste Bild ein.

- ADJUSTMENTS -

AVR (AUTOMATIC VOLTAGE REGULATOR)

Connect a voltmeter across TP91 and ground. Make certain the B+ supply voltage is $+4.8V \pm 0.05V$. Adjust the AVR control VR71 if necessary.

YOKE POSITION

The yoke is secured to the neck of the picture tube with a angular clamp and screw. To Adjust the yoke and correct for picture tilt: Loosen the clamp screw, correct tilt, and retighten the clamp screw.

CENTERING

The picture centering device consists of two rings located at the rear of the yoke assembly. Each ring has a tab for ease of adjustment.

The tabs should be rotated and moved towards or away from each other until the picture is properly centered on the picture tube screen.

TO ADJUST THE R-F AGC PROPERLY

- 1. Tune in strong local station.
- 2. Turn the R-F AGC control VR19 fully counterclockwise.
- 3. Observe the input signal, turn the R-F AGC control VR19 clockwise to the point where the snow noise disappears in the picture.
- 4. Check the reception with all channels. If the set does not get, clear picture on all channels.

VERTICAL HEIGHT

Adjust the V-Height control VR32 until picture becomes from top to bottonm.

-ABSTIMMUNGEN

AVR (AUTOMATISCHER SPANNUNGS-REGLER)

Einen Spannungsmesser über TP91 anschließen und erden. Sicherstellen, daß die B+ Versorgungsspannung +4.8V ±0.05V beträgt. Den automatischen Spannungsregler erforderlichenfalls neueinstellen.

POSITION DES ABLENKJOCHS

Das Ablenkjoch ist mit Hilfe einer Winkelschelle und Schraube am Hals der Bildröhre befestigt. Um das Ablenkjoch einzustellen und eine Korrektur der Bildlage vorzunehmen, muß die Klemmschraube gelöst und nach vorgenommener Korrektur wieder festgezogen werden.

ZENTRIEREN

Die Bildzentrierungseinheit besteht aus zwei Ringen, die sich am Ende der Ablenkjocheinheit befinden. Jeder Ring weist einen Streifen zum Vereinfachen der Einstellung auf.

Die Streifen sind durch Drehen zu- oder voneinander zu bewegen, bis sich das Bild genau in der Bildröhrenmitte befindet.

RICHTIGE EINSTELLUNG DER HF-SCHWUNDAUSGLEICHAUTOMATIK (AGC)

- 1. Einen starken Ortssender einstellen.
- 2. Den HF-AGC-Regler VR19 bis zum Anschlag entgegen dem Uhrzeigersinn drehen.
- 3. Den Bildschirm beobachten und den HF-AGC-Regler VR19 im Uhrzeigersinn drehen, bis das Bild schneefrei d.h. ohne weiße Flecken ist.
- 4. Den Empfang auf allen Kanälen überprüfen, falls das Bild nicht klar ist

BILDHÖHE

Den Bildhöhenregler VR32 drehen, bis das Bild den ganzen

ALIGNMENT OF RADIO

AM I-F & R-F ALIGNMENT (Equipment Required: Signal Generator, 16 ohm speaker or dummy load, output meter.)

Output of signal generator should be no higher than necessary to obtain an output reading. Maintain line voltage at 220 ~ 240 volts. Set Volume control to maximum. Set selector to AM **RADIO** SIGNAL . SIGNAL REMARKS **ADJUST** DIAL CONNECT **GENERATOR GENERATOR** COUPLING FREQUENCY SETTING 455 kHz Point of non-1 L1110 (30% Mod. with interference (on/about 400 Hz) L1111 600 kHz) Fashion loop of several Output meter 600 kHz turns of wire and Adjust for maximum output. 2 L1101 (OSC coil) Marked radiate signal into loop (30% Mod. with across L1100 (ANT coil) Repeat steps (2) and (3). 600 kHz 400 Hz) earphone jack. of receiver. (O) (OSC trim-1400 kHz Marked mer) (30% Mod. with (A) (ANT trim-1400 kHz 3 400 Hz) mer)

Note: 1. Cement antenna coil with wax after completing alignment.

2. Make certain that speaker or dummy resistor (16 Ω) is connected to the earphone jack when aligning.

Poly, variable capacitor

Fig. 22

FM I-F ALIGNMENT

(Bar antenna side)

EQUIPMENT REQUIRED

Signal generator that provides 10.7 MHz marker.

Sweep generator that provides 10.7 MHz and 400 kHz sweep width.

OSCILLOSCOPE

Set sweep selector of oscilloscope to EXTERNAL SWEEP.

Apply 50 Hz sweep signal from sweep generator to horizontal input terminals of oscilloscope.

Set selector to FM.

Set Volume control to minimum.

Maintain line voltage at 220 ~ 240 volts.

- 1	Mairitairin	no vortage at ===					
	SWEEP GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	CONNECT	AD- JUST	WAVE FORM	REMARKS
1	Connect to TP102 through FM DUMMY. Common to chassis $0.1\mu\text{F }10\text{K}\Omega$ $0.1\mu\text{F }10\text{K}\Omega$ To TP106 FM Dummy	10.7 MHz	Point of non- interference (on/about 90 MHz).	Connect vert. amp of scope to TP103. Common to chassis.	L1006 L1007	10.7MHz	Adjust for maximum amplitude and proper linearity. Adjust for proper linearity.

EM R.E ALIGNMENT (Equipment Required: Signal Generator)

LI	R-F ALIGNINENT	(Equipment negu	neu. Signai C	ichici ator /		
	SIGNAL GENERATOR COUPLING	SIGNAL GENERATOR FREQUENCY	RADIO DIAL SETTING	CONNECT	ADJUST	REMARKS
3	Connect to EXT FMantenna terminal through FM dummy antenna. Common to chassis.	90 MHz (30% Mod. with 400 Hz)		Output meter across earphone	L1005 (FM OSC coil) L1004 (FM collector coil)	Adjust for maximum output.
4	0.1μF To EXT FM antenna terminal	106 MHz Marked (30% Mod. with 106 MHz		jack	FC1 (FM OSC trimmer) FC2 (FM collector trimmer)	Repeat step (3) and (4).

EINSTEIIEN DES RADIOS

AM-ZF- & HF-ABGLEICH (Benötigte Geräte: Prüfgenerator; 16Ω Lautsprecher oder Blindwiderstand, ausgangsmesser.)

Die Ausgangsleistung vom Prüfgenerator sollte nicht höher sein, als zur Erzielung einer Ausgangsanzeige nötig ist.

Den Lautstärkeregler in ganz aufdrehen.

Den wahlschalter in die "AM"-Position stellen.

Die Netzspannung auf 220~240 V konstant halten.

	PRÜF- GENERATOR- ANKOPPELUNG	PRÜF- GENERATOR- FREQUENZ	RADIO- SKALEN- EINSTELLUNG	ANSCHLUSS	ABSTIMMUNG	BEMERKUNGEN
1	Kippgenerator	455 kHz (30% Mod. mit 400 Hz)	Störungsfreie Einstellung (auf/um 600 kHz)		L1110 L1111	Auf maximalen
2	strahlt Ausgangssignal an Schleifenantenne aus.	gssignal an (30% Mod. 600 kHz		Ausgangsmes- ser parallel an Ohrhörer Buchse.	L1101 (Schwing-spule) L1100 (Antennen-spule)	Ausgang abstimmen. Schritte (2) und (3) wiederholen.
3	- 440.	1400 kHz (30% Mod. mit 400 Hz)	1400 kHz		(O) (Schwing-trimmer) (A) (Antennen-trimmer)	(e) Westernolon.

Anmerkungen: 1. Die Antennenspule nach Beenden des Abgleichs mit Wachs verkleben.

2. Sicherstellen, daß der Lautsprecher oder Blindwiderstand (16 Ω) beim Abgleich an die Ohrhörer-Buchse angeschlossen ist.

Poly-drehkondensator

Abb. 22

UKW-ZF-ABGLEICH

BENÖTIGTE GERÄTE

Prüfgenerator, der 10.7 MHz-Markierer aufweist.

Kippgenerator, der 10.7 MHz und 400 kHz Kippbreite aufweist.

OSZILLOSGRAPH

Den Kipp-Wahlschalter am Oszillograph auf EXTERNAL SWEEP einstellen.

50 Hz-Kippsignal vom Kippgenerator den horizontalen Eingangsanschlüsse des Oszillograph zuleiten.

Den Wahlschalter auf FM stellen.

Den Lautstärkeregler in die Minimum Position stellen.

Die Netzspannung auf 220~240 V konstant halten.

	KIPP- GENERATOR- ANKOPPELUNG	PRÜF- GENERATOR- FREQUENZ	RADIO- SKALEN- EINSTELLUNG	ANSCHLUSS	ABSTIM- MUNG	WELLEN- FORM	BEMERKUNGEN
1	Über UKW-Ersatzantenne an TP102 anschließen Anschluß an Chassiserdung. O 1μF 10ΚΩ To TP106 Über UKW	10.7 MHz	Störungsfreie Einstellung. (um/aug 90 MHz)	Vert. Verst. des Oszillgraph an TP103. — Anschluß an Chassiserdung.	L1006 L1007	10.7MHz	Auf maximale Amplitude und saubere Liniariät abstimmen. Zur Erzielung sau berer Linearität

UKW-HF-ABGLEICH

	PRÜF- GENERATOR- ANKOPPELUNG	PRÜF- GENERATOR- FREQUENZ	RADIO- SKALEN- EINSTELLUNG	ANSCHLUSS	ABSTIMMUNG	BEMERKUNGEN
3	EXT UKW-Antennen- anschluß über UKW- Ersatzantenne anschlie- ßen — Anschluß an chassiserdung.	90 MHz (30% Mod. mit 400 Hz)	90 MHz	Ausgangsmesser parallel an	L1005 (FM UKW-Sehwing spule) L1004 (UKW- Kollektorspule)	Auf maximalen Ausgang
4	0.1μF O Zu FM- Außenantennen- Anschluß	106 MHz (30% Mod. mit 400 Hz)	106 MHz	Ohrhörer Buchse.	FC1 (UKW- Schwing-trimmer) FC2 (UKW- Kollektor-trimmer)	abstimmen. Schritte (3) und (4) wiederholen.

- 9 -

TIMER ALARM CIRCUIT

• Normal Use (SW4 OFF)

- 1. When the power switch is pushed to the ON position, a voltage is applied to the base of Q301 through R1301 and C1302 to bias Q301 in the forward direction so that Q301 is energized and its collector voltage falls.
- 2. NAND gates 1 and 2 form a flip-flop circuit, whose terminal S goes low so that output Q goes high. \overline{Q} goes low.
- 3. C1302 is charged increasingly with time until it is fully charged. Q301 becomes independent of the subsequent operations.
- 4. As output Q is at high level, the base voltages of Q302 and Q303 rise to energize these transistors.
- 5. The output of Q303 is applied to the base of Q71 through C704 and D76 (which is provided for preventing reverse current flow) to energize the transistor.
- 6. Since Q302 is also energized, Q72 and Q73 become energized so that the AVR circuit starts operating to drive the circuits of the TV and radio.
- 7. Since output \overline{Q} is at low level, the base voltage of Q304 falls to energize it. As a result, a voltage is applied to the base of Q74 to energize the transistor, thus operating the low-frequency output circuit.
- 8. As switch 4 is open, the input level of inverter 4 goes high so that the inverter output goes low. This inverter output makes one of the terminals of NAND gate 3 low so that the output of NAND gate 3 goes high. Thus NAND gate 2 will not be reset.

Note:

The switches are function switches, which are closed (ON) when at ALARM, or open (OFF) at other positions. H signifies high; and L, low.

• TV/Radio Timer (SW4 ON)

- 1. When SW4 is pushed to the ON position, input to inverter 4 goes low and its output goes high. This output is applied to one terminal of NAND gate 3.
- 2. Since C1303 has already been charged by R1312, the other terminal of NAND gate 3 goes high, and the output of NAND gate 3 goes low. This makes terminal R of NAND gate 2 low so that this reset-set flip-flop circuit's output condition is reversed. That is, output $\overline{\Omega}$ goes low, and output Ω goes high.
- Q303, Q302 and Q304 all become deenergized so that the low-frequency output circuit of the TV/radio will not operate.
- 4. This is a standby state, which is maintained until an alarm signal (negative pulse) is inputted to the clock input terminal from the clock circuit.
- 5. When the input pulse is applied to the clock input terminal, terminal S goes low at the decay portion of the first pulse so that the output of the flip-flop circuit is reversed. Thus output Q goes high and output \overline{Q} goes low to drive each circuit.

H J O ON O SW4

Alarm Operation

- 1. Keep switch 4 in the ON position.
- 2. When an alarm signal is applied from the clock circuit, C1303 discharges through diode D304 to make one of the input terminals of NAND gate 3 low.

Therefore, the output of NAND gate 3 goes high, and the output of the flip-flop circuit remains unchanged.

circuit remains unchanged.

3. The output of inverter 4 is at high level at this time, and is applied to D301 through R1313. D301 is energized when the alarm signal is at low level. This change is fed to the low-frequency output to produce the alarm sound from the speaker.

- 4. Output Q from the reset-set flip-flop circuit is at high level at this time, but the base voltage of Q302 is lowered by D305 and switch 4 to deenergize it after output Q runs through R1306.
 - So that AVR circuit still does not start operating thus does not operate circuits of the TV and Radio.
- 5. After one minute of alarm output signals, C1303 becomes charged again through R1312 so that the input terminals of NAND gate 3 go high.
- 6. As switch 4 is in the ON position, the output of inverter 4 goes high, and both inputs to the NAND gate are at high level so that its outputs go low.
- 7. Thus terminal R goes low, and the output of the reset-set flip-flop circuit changes to open the low-frequency output circuit. Thus the timer alarm circuit returns to the standby condition.

Note: 1. The chirp alarm sound will stop automatically within one minute.

After stop the chirp sound, the receiver works into the wake-up operation again.

2. After set the FUNCTION switch to "ALARM" position (include wake-up operation), wish to enjoy TV or radio program, set the volume control to stand-by position and the FUNCTION switch to UHF or VHF position then turn the receiver on again.

SCHALTUHRALARMSCHALTUNG

Normale Verwendung (SW4 Aus)

- Beim Drücken des Netzschalters auf ON (Ein) wird der Basis von Q301 über R1301 und C1302 eine Spannung zugeleitet, um Q301 in Vorwärtsrichtnng zu betreiben, so daß Q301 einge schaltet wird und dessen Kollektorspannung abfällt.
- 2. Die NICHT-UND-Glieder 1 und 2 bilden eine Flip-Flop-Schaltung, deren Klemme S niederpegelig, um den Ausgang Q hochpegelig zu machen. \overline{Q} wird niederpegelig.
- 3. C1302 wird allmählich ganz aufgeladen. Q301 wird durch die folgenden Vorgänge nicht mehr beeinflußt.
- 4. Da der Ausgang Q hochpegelig ist, steigen die Basisspannungen von Q302 und Q303 an, um diese Transistoren einzuschalten.
- Der Ausgang von Q303 wird über C704 und D76 (dient zur Verhinderung von Rückwärtsstromfluß) der Basis von Q71 zugeleitet, um den Transistor einzuschalten
- 6. Da Q302 ebenfalls eingeschaltet ist, werden Q72 und Q73 eingeschaltet, so daß die Spannungsgleichhalterschaltung in Funktion tritt, um die Fernseh- und Radioschaltung zu betreiben.
- 7. Da der Ausgang Q niederpegelig ist, fällt die Basisspannung von Q304 ab, um diesen einzuschalten. Dadurch wird der Basis von Q74 eine Spannung zugeleitet, um den Transistor einzuschalten und somit die Niederfrequenzausgangsschaltung in Betrieb zu setzen.
- 8. Da der Schalter 4 geöffnet ist, wird der Pegel der Umkehrstufe so hoch, daß der Ausgang der Umkehrstufe niederpegelig wird. Durch diesen Ausgang der Umkehrstufe wird eine der Klemmen des NICHT-UND-Glieds 3 niederpegelig um den Ausgang des NICHT-UND-Glieds 3 hochpegelig zu machen. Das NICHT-UND-Glied 2 wird daher nicht zurückgestellt.

• Fernseh-/Radio-Schaltuhr (SW4 Ein)

- Beim Drücken des Schalters SW4 auf ON (Ein) wird der Eingang zur Umkehrstufe
 niederpegelig und deren Ausgang hochpegelig. Dieser Ausgang wird einer Klemme des NICHT-UND-Glieds 3 zugeleitet.
- 2. Da C1303 bereits durch R1312 aufgeladen worden ist, wird die andere Klemme des NICHT-UND-Glieds 3 hochpegelig und der Ausgang des NICHT-UND-Glieds 3 niederpegelig. Dadurch wird die Klemme R des NICHT-UND-Glieds 2 niederpegelig, so daß der Ausgang dieser Flip-Flop-Schaltung für Einstellung/Rückstellung umgekehrt wird. Der Ausgang Q wird daher niederpegelig und der Ausgang Q hochpegelig.
- 3. Q303, Q302 und Q304 werden eingeschaltet, so daß die Niederfrequenzausgangsschaltung des Fernsehers/Radios nicht funktioniert.
- 4. Hierbei handelt es sich um einen Bereitschaftszustand, der beibehalten wird, bis ein Alarmsignal (negativer Impuls) von der Uhrschaltung der Uhreingangsklemme zugeleitet wird.
- 5. Bei Zuleitung des Eingangsimpulses zur Uhreingangsklemme, wird die Klemme S beim Abklingteil des ersten Impulses niederpegelig, so daß der Ausgang der Flip-Flop-Schaltung umgekehrt wird. Der Ausgang Q wird daher hochpegelig und der Ausgang Q niederpegelig, um die einzelnen Schaltungen zu betreiben.

Alarmbetrieb

- 1. Den Schalter 4 auf ON (Ein) lassen.
- Bei Zuleitung eines Alarmsignals zur Uhrschaltung wird C1303 über die Diode D304 entladen, um eine der Eingangsklemmen des NICHT-UND-Glieds 3 niederpegelig zu machen.
 - Der Ausgang des NICHT-UND-Glieds 3 wird daher hochpegelig und der Ausgang der Flip-Flop-Schaltung bleibt unverändert.

Zur Beachtung:

Bei den Schaltern handelt es sich um Funktionsschalter, die bei Einstellung auf ALARM geschlossen (Ein) und bei anderen Stellungen geöffnet (Aus) sind. H bedeutet hochpegelig und L niederpegelig.

- 3. Der Ausgang der Umkehrstufe 4 ist dabei hochpegelig; er wird über R1313 den Dioden D301 zugeleitet. D301 wird eingeschaltet, wenn das Alarm-signal niederpegelig ist. Diese Änderung wird dem Niederfrequenzausgang zugeleitet, um den Alarmton über den Lautsprecher wiederzugeben.
- 4. Dabei ist der Ausgang Q von der Flip-Flop-Schaltung für Einstellung/Rückstellung hochpegelig, die Basisspannung von Q302 wird jedoch durch D305 und Schalter 4 verringert, um diesen auszuschalten, wenn der Ausgang Q durch R1306 fließt, so daß die AVR-Schaltung noch nicht arbeitet und somit nicht die Radio-und Fernsehschaltungen tätig werden.
- 5. Nach einer Minute von Alarmausgangssignalen wird C1303 durch R1312 wieder aufgeladen, so daß die Eingangsklemmen des NICHT-UND-Glieds 3 hochpegelig werden.
- 6. Da sich der Schalter 4 auf ON (Ein) befindet, wird der Ausgang der Umkehrstufe 4 hochpegelig; da beide Eingänge zum NICHT-UND-Glied hochpegelig sind, werden dessen Ausgänge niederpegelig.
- 7. Daher wird die Klemme R niederpegelig und der Ausgang der Ausgangder Flip-Flop-Schaltung für Einstellung/Rückstellung ändert sich, um die Niederfrequenzausgangsschaltung zu öffnen. Auf diese Weise kehrt die Schaltuhralarmschaltung zum Bereitschaftszustand zurück.

Hinweise

- 1. Der Zwitscher-Weckton stoppt automatisch nach einer Minute. Danach schaltet der Empfänger wieder auf Wecken.
- 2. Um ein Fernseh- oder Rundfunkprogramm zu empfangen, zunächst den Funktionsschalter (10) auf ALARM (einschließlich) Wecken stellen, dann den Lautstärkeregler (11) auf Bereitschaftsposition und den Funktionsschalter (10) wieder auf UHF oder VHF stellen. Zum Schluß den Empfänger wieder einschalten.

IN CIRCUIT RESISTANCE

WIDERSTAND IM SCHALTKREIS

resistor No.	resistance	resistor No.	resistance	resistor No.	resistance	resistor No.	resistance	resistor No.	resistance	
TV		R185	1.1ΚΩ	R360	820Ω	R703	зкΩ	R1050	330 K Ω	
R88	16ΚΩ	R186	330Ω	R361	56K Ω	R704	470Ω	R1051	1ΚΩ	
R89	2.2K Ω	R187	1.4ΚΩ	R401	560Ω	R705	4.7KΩ	R1052	1ΚΩ	
R90	16KΩ	R188	4.5 K Ω	R402	39 Ω		Ω 086	R ₁₀₅₃	330Ω	
R _. 91	6.8KΩ	R201	100Ω	R403	10ΚΩ	R.707	10Ω	R1054	360Ω	
R92	1ΚΩ	R202	5.6K Ω	R404	2.2ΚΩ	R710	50Ω	R1055	330Ω	
R93	255KΩ	R203	5.6KΩ	R405	2.2KΩ	R711	50Ω	R1056	1KΩ	
R94	22ΚΩ	R204	5.6KΩ	R406	47Ω	R712	50Ω	R1057	1ΚΩ	
R95	8.2ΚΩ	R206	12KΩ	R407	2.7ΚΩ	R713	50Ω	R1058	10ΚΩ	
R96	1ΜΩ	11200	21100	R408	470Ω	R714	50Ω	R1059	39Ω	
	,	,	. 0		17.000			117000	0011	
R97	10ΚΩ	R207	12ΚΩ	R409	140ΚΩ	R715	50Ω	R1060	33КΩ	
R98	10ΚΩ	R208	12ΚΩ	R440	3.9K Ω	R716	50Ω	R1061	43Ω	
R99	10ΚΩ	R212	2.7ΚΩ	R441	250ΚΩ	R717	50Ω	R1062	0Ω	
R101	56Ω	R213	31Ω	R442	330K Ω	RADIO		R1100	100Ω	
R111	0Ω	R301	15ΚΩ	R443	1ΜΩ	R81	1ΚΩ	R1101	620Ω	
R141	20ΚΩ	R302	18ΚΩ	R444	4.7ΚΩ	R82	2.2ΚΩ	R1102	680KΩ	
R142	10ΚΩ	R303	48ΚΩ	R445	1ΚΩ	R83	7.5K Ω	R1130	1ΚΩ	
R143	10ΚΩ	R304	60K Ω	R502	68Ω	R84	7.5KΩ	R1131	10KΩ·	
R144	1ΚΩ	R305	15K Ω	R504	1.8K Ω	R85	7.5KΩ	R1132	11 KΩ	
R145	330Ω	R306	3.9K Ω	R505	47ΚΩ	R86	7.5K Ω	R1133	8.5K Ω	
				R601	$1 M\Omega$					
R180	1.2ΚΩ	R307	.3КΩ	R602	1.5K Ω	R1001	47Ω	R1134	100Ω	
R181	17KΩ	R308	6.8KΩ	R614	$2.2 \mathrm{M}\Omega$	R1002	68Ω	R1135	4ΚΩ	
R182	23ΚΩ	R309	3.5K Ω	R615	1ΜΩ	R1003	100Ω	R1136	18ΚΩ	
R183	14ΚΩ	R310	2.7Ω	R701	390Ω	R1004	39K Ω	R1137	33K Ω	
R184	1ΚΩ	R313	22Ω	R702	3.5 K Ω	R1005	47Ω	R1138	470Ω	

CLOCK					
R1301	1kΩ	R1305	100kΩ	R1311	160kΩ
R1302	200kΩ	R1306	9kΩ	R1312	160kΩ
R1303	220kΩ	R1309	680Ω	R1313	470kΩ
R1304	47kΩ	R1310	90kΩ		

Note: 1. Set power switch to OFF position.

2. When measure the resistor on the solder circuit board by ohm meter, it indicates difference value depend on the polality. In this case should be read high resistance value.

- Hinweis: 1. Stellen Sie den Betriebsschalter auf AUS (OFF).
 - 2. Wenn Sie den Widerstand auf der Leiterplatte mit einem Ohmmeter messen, wird dieses unterschiedliche Werte entsprechend der Polarität anzeigen. In diesem Fall ist ein hoher Widerstandswert abzulesen.

AREAS MAIN RECEPTION

Broadcasting	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	CCIR B & G standard	
Area		:	

Frequency Range Übertragungssystem VS-Gebiet VHF UHF AM FM USA 54-88 MHz 174-216 MHz EUR 470-890 MHz 47-68 MHz 47-68 MHz 470-862 MHz 525-1605 kHz 525-1605 kHz 88-108 MHz 88-108 MHz 470-862 MHz U.K. 470-862 MHz 525-1605 kHz 88-108 MHz 88-108 MHz	FINLAND GERMANY NORMANY NORMANY NORMANY NORMANY NORMANY NORMAN NATSC CAMBODIA KOREA PHILIPINES TAIWAN GUAM SAMOA NATED ARAB REPUBLIC SAMOA SUDAN SEPUBLIC SAMOA SALDI ARABIA SERUBLIC SAMOA SAMOA SERUBLIC SAMOA SERUBLIC SAMOA SERUBLIC SAMOA SERUBLIC SER	
AREAS Selector position ndard	CCIR AUSTRIA RELGIUM CYPRUS DENNMARK GERECE ICELAND ITALY MALTA METHERLAND PORTUGAL SPAIN SWEDEN SWEDEN SWITZERLAND GANARY EBANON CANARY EBANON CANARY EBANON CHBRIA GHANA GIBRATTAR MALAYSIA INDONESIA MALAYSIA INDONESIA MAURTIUS INDIA MAURT INDIA MAU	
MAIN RECEPTION AREAS Broadcasting system VS Area Area Broadcasting STATE MINIMALE CCIR B & G standard U.K. standard	NTSC ARUBA BERMUDA BRAZIL CANADA CHILE COLOMBIA CHILE COLOMBIA COSTA RICA COSTA RICA CUBA CUBA CUBA CUBA CUBA CUBA CUBA CU	VENEZUELA

-15 -

C41 1000P

3 BT 0.5~28V

C40 1000P

2 BM 4.5V

1 IF

C43 1000P

AGC Bv 1.0~3.5V 4.5V

Bs VHF Low 20V VHF High 0V UHF 4.5V

7 Bu 4.5V

EXPLODED VII

LODED VIEW

73 2SB743 974 2SD601 07 1 C408 015 1 EVIO 16VIO 2.2K .06 <u>)</u>1G **∄**⊢ ₩ (Chassis ₹8,702 76,8K R703 TP12 # 0,01 -Wr--- R--- 8 K SW1 C703 6 v 470 C301 C302 C 134 D 24 \$R204 77 5.5M R201 TH C183 P & R183 Model ¥ IC102 ₹ AM C205 4.8V 0V IC 12 AN 5720 6V470 C140 22V4.7. 8 5 R408 470 - RI80 0.6V 0.6V 10 No. 1E01-A 2 SW2 TSE80329 4.6V 8 <u>-1</u> 5 ω 8 # c209 R206 12K 4.9V 8 2.2V 12 R207 12K 2 R208 I2K ¥390 €390 0.7V 8 13 9 0.5V 4.3V 14 9 2 6 MAISIK Chassis 4.9V 8 4.3V 2 15 رسس C(14) + 470P SVIDO P R 144 S 0.6V 9 3.1V 16 2 # C505 # I GVIO + IC101 (AN7213) **Family** RF RF EHT BRIGHT C501 16VI0 RF FM 220 220 # NR60 No. TNP81873HIZ 1E01) NOTE 1. CHIPS -R602 Color Black Brown SPEAKER (161) EAS2 POISH IC102 (AN7218) Original Parts Name Chip Resistor Chip Capacitor Chip Jumper

All capacitors are ceramic 50V capacitor, unless of Unit of capacitance is μ F, unless otherwise noted.

① Polyester capacitor

② P unless otherwise noted the following marks. Polystyrene capacitor Tantal Electrolytic capacitor

Electrolytic capacitor

is measured by a volt ohm meter with DC 20K OHM/V receiving normal

easily found along with the direction of an arrow.

ne of printing and subject to change without notice

REPLACEMENT PARTS LIST --- RESATZTEIL LISTE

- Note: 1. Main board (TNP81873-22H) is not available as a complete printed circuit board.
 - 2. The symbol marks (o) on the Replacement Parts List indicate chip parts.
 - 3. Tye symbol S is used in the schematic diagram and replacement parts list to indicate for safety resons, it is essential to use an approved replacement part.

- Bemerkung: 1. TNP81873-22H die gedruckte schaltung ist als komplet bestücket einheit lieferber.
 - 2. Das Symbol (o) auf der Ersatzteilliste steht für Chip-
 - 3. Das Symbol S wird im Blockschaubild und in der Ersatzteilliste als Hinweis dafür, daß aus Sicherheitsgründen vorgeschriebene Teile verwendet werden müssen angegeben.

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
	CARINET AND	MAIN CHASSIS PARTS		TXANQ11000P	Radio P.C.B. Complete
	OADINE! AND	MAIN CHASSIS FARTS		EAS2P01SH	Speaker
	I - :			TSA800015	Rod Antenna
				TSX8371B	Car Cord (TR-1001S Only)
	TKY806003-2H	Upper Cabinet Complete	.	TSX8371-1B	Car Cord (TR-1001G Only)
	TKY806103-1H	Bottom Cabinet Complete		TNQ8110	Clock
	TKV000400 OLL	(TR-1001S Only)		TNQ8306	Antenna Matching Box $(75\Omega - 75\Omega)$
	TKY806103-2H	Bottom Cabinet Complete (TR-1001G Only)		TY-AC35S	AC Adaptor (TR-1001S Only)
	TKE811903-1	Escutcheon Complete		TY-AC35G	AC Adaptor (TR-1001G Only)
	=0.,000	236d terreon Complete	VR51	EVLM3BT12A14	On-Off, Volume Control 10ΚΩΑ
	TKG809667	Front Protector (Window)			
	TKK800242	Hand Clip	VR91	EVJLBAF01B15	Tuning Control 100KΩB
	TKK800546-1	Lens Hood	L1100	TLR80126	AM Bar Antenna
	TKK800716-1H	Front Protector		TJB80919	Battery Case
	TKK804903	Accessory Bag	ii .	TJC80340	Battery Terminal (Clock)
				TJS828281	Earphone Socket
	TKK804904	Clock Adj. Stick			
	TKK809381-1	Dial Guide		TJS898200	C-A Plug (TR-1001S Only)
	TKK809382-3	Dial Indication Plate		TJS898190	C-A Plug (TR-1001G Only)
	TKK809428-1H	Set Leg		TXAJT2P003	2-P Mini. Connector Ass'y
	TKK809542-2	Battery Cover		TV A ITOROOA	(Earphone Socket)
				TXAJT2P004	2-P Mini, Connector Ass'y (Volume Control)
	TKK809546-1	Knob Barrier		TXAJT3P301	3-P Mini, Connector Ass'y
	TKK809712	Battery Cover (Clock)			(Volume Control)
	TKP8054521	Speaker Panel			
	TKX821102-1	TV Bracket		TXAJT4P132	4-P Mini. Connector Ass'y
	TKX821201	Radio Bracket			(Tuning Control)
				XEH15A2-B1	Earphone
	TKZ800309	Picture Tube Bracket	11 .	XSS26+8BN	Cabinet Mounting Screw
	TKZ800504	Set Leg Holder		XTN26+6B	Radio Bracket Mounting Screw
	TUX80830	Set Leg Spring		XTN26+8B	Set Leg, TV Bracket Mounting Screw
- 1	TBM80098-1	Model Plate (TR-1001S Only)			
.	TBM80099-	Model Plate (TR-1001G Only)		XSN17+2	Radio Knob Mounting Screw
				XSN17+4	On-Off Volume Knob Mounting Screw
	TBX80674	On-Off Switch, Volume Knob		XSN26+4	Tuning Knob, Radio Pulley Mounting
	TBX80675	TV/Radio Tuning Knob		VTNO: 4D	Screw
	TBX80676-1	Selector Switch Knob		XTN2+4B	On-Off Switch Control Mounting Screen
	TBX80677-1	Control Knob		XUC5FT	Tuning Shaft Mounting Spring
	TBX80810	Clock Button		TDC012041	Out (1) (TD 10010 Out
	TDV00011			TPC812841 TPC812851	Outer Carton (1 set) (TR-1001S Only
	TBX80811	Clock Mode Button	1		Outer Carton (1 set) (TR-1001G Only
	TEK80474	Tention Roller (A)		TPG801431	Outer Carbon (4 sets) (TR-1001S Only
	TEK80475	Tention Roller (B)		TPG801441 TXAPD11001S	Outer Carbon (4 sets) (TR-1001G Only
	TEK80476	TV Pulley		IXAPDITUUIS	Filler Complete
	TEK80477	Radio Pulley		TQE8580	Sat Cours
	TEK80478	Tuning Shaft		TQB811348	Set Cover Fan Bag (TR-1001S Only)
I	TEK80478	Roller		TQB811349	
- 1	TEK80480	Roller Shaft		TQB811349	Fan Bag (TR-1001G Only) Instruction Book (TR-1001S Only)
	TES8317	Radio Coil Spring		TQB810349	Instruction Book (TR-1001S Only)
1	TES8318	TV Coil Spring		, 20010048	mandenon Book (1 n-1001G Only)
	. =00010	TV Con Spring		TQD8111359	Sales Card (TR-1001S Only)
S	40CB4	Picture Tube	11	TQD8111360	Sales Card (TR-10013 Only)
	TLY80601A	Deflection Yoke	11 1	TQD8111249	Power Cord Tag (TR-1001G Only)
	TNP81873-22H	Main P.C.B. Complete	11	TQD8118117	Warranty Card (TR-1001G Only)
- 1	TNP81873H1Y	Clock P.C.B. Complete			
	TNP81873H1Z	Picture Tube Socket P.C.B. Complete		,	
		Total of abo occupied			

	ο.	Part No.	Description	F	Ref. N	lo.	Part No.	D	escriptio	n ·	
		7781	D01070U17		C1307	-	ECKD1H681KB9	Ceramic	680PF 0.01µF	±10%	50V
	,		P81873H1Z	- 11	C1304 C1305	0	ECUX1H103MD ECUX1H560KC	Chip Chip		±20% ±10%	50V 50V
C601		ECKD2H102KB2	Ceramic Capacitor 1000pF ±10% 50	10V	C1305		LCOXTIBOORC	CITIP		-10%	
R602	0	RRD18XK152	Chip Resistor 1.5K ±10% 1/8	11			R	ESISTORS			
R614	0	RRD18XK225	Chip Resistor 2.2M ±10% 1/8		R1301	0	RRD18XK102	Chip	1ΚΩ	±10%	$^{1}/_{8}W$
R615	0	RRD18XK105		14	R1302	0		Chip	220ΚΩ	±10%	1/8 W
VR64	-	EVTK0CA00B26	Focus Control $2M\Omega B$		R1303	0	RRD18XK105	Chip	1ΜΩ	±10%	1/8 W
VR65		EVNK0BA00B55	Aux. Bright. Control 500KΩB	11	R1304 R1305	0	RRD18XK473 RRD18XK104	Chip Chip	47KΩ 100KΩ	±10% ±10%	1/8 W 1/8 W
		TJ\$825050	Picture Tube Socket		R1306	0	RRD18XK103	Chip	10ΚΩ	±10%	1/8 W
		CAR C	ORD PARTS	F	R1309	0	RRD18XK681	Chip	680Ω	±10%	1/8 W
		XBA2F05NU100	Fuse 0.5A (TR-1001S Only)	11	R1310	0	RRD18XK104	Chip	100 K Ω	±10%	1/8 W
		XBA1C05NS5	Fuse 0.5A (TR-1001G Only)	- 11	R1311	0	RRD18XK474	Chip	470ΚΩ	±10%	1/8 W
		TRF10SJ150 EYP2AS129	Non Flame Resistor $15\Omega \pm 5\% 10\%$ Temperature Fuse 129° C	/ f	R1312	0	RRD18XK334	Chip	330KΩ	±10%	1/8 W
				F	R1313	0	RRD18XK474	Chip	470ΚΩ	±10%	1/8 W
	1		APTOR PARTS	-				1			
		TKK819804-1H TKK819804-2H	AC Adaptor Upper Case Complete (TR-1001S Only) AC Adaptor Upper Case Complete				TNF	81873-22F	Η		
		T N N N 19004-211	(TR-1001G Only)					TUNER			
		TKK819805 TBM80122	AC Adaptor Bottom Case AC Adaptor Model Plate				TNV77101F1	U/V Combo.	Tuner		
		TD1400400	(TR-1001S Only)			IC					
	-	TBM80123	AC Adaptor Model Plate (TR-1001G Only)		IC11		AN5710	V-IF Amp./A	AGC		
			(1	IC12		AN5720	V-IF Det./Vi	deo Amp.		
		TLP81250W	Power Trans.	11	IC21		AN5730	S-IF Amp./D			
		TSX8178	AC Cord (TR-1001S Only)	- 11	IC31		AN5760	Vert. Osc./Ar			- D :
	- 1	TSX8179	AC Cord (TR-1001G Only)	1	IC41		AN5750	Sync. Sep. A	mp./Horiz A	AFC. Us	c. Drive
		TSX8925	DC Cord With 1-P Plug	Ⅱ,	IC42		TVSMPC574J	Zener			
		TSE80135	Power Selector Switch	11	C51		TVSBA526	Audio			
		TMM81608	Cord Bushing (AC)	- 11	C91		AN5700	Channel Selec	ctor		
		TMM81609	Cord Bushing (DC)								
		XBA2C080TR0	Fuse 80mA 25	0V				ANSISTORS			
		TJC3316	Fuse Holder	11	214.	0		Video Outpu	•		
	- 1	SVB10-100NCA	Power Rectifier	11	244 271	8	2SC2264Q 2SD601	Horiz, Oùtpu AVR	ι		
		ECVD1H100DE0	Coromio Conseites	11	271	0	2SB709	AVR			
		ECKD1H103PF2	Ceramic Capacitor $0.01\mu\text{F} \stackrel{+100}{-}_{0}\% = 50$	11	273	0	2SB743	AVR			
		ECEA1CV172Z	Electrolytic Capacitor							,	
			1700µF 16	11 ~	274	0	2SD601	AVR			
	l			- 11	291	0	2SD601	Switching			
		TNF	P81873H1Y		292	0	2\$D601A	Switching			
			IC	\dashv				DIODES			
IC301	1	TVSMPD4011C	Nand Gate	11	015	1	MA151K	Video			
		F V SIVII D4011C	Ivanu Gate	11	D22 D23	0	MA57 MA57	Switching Switching			;
		RE	SISTORS	- 11	D23	0	MA57	Switching			
Q301	0	2SD601	Switching	- 11)2 4)25	0	MA57	Switching			4
Q302	1	2SD601	Switching] =,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4
O303	- 1	2SD601	Switching		D26	0	MA57	Switching			
Q304	0	2SB709	Switching	11	027	0	MA57	Switching			
			DIODES	33	028	0	MA151K	Switching			
D301	لم	MA151K	Switching	11	D31	0	MA151K	Switching			
D301		MA151K	Switching		D38	0	MA151K	Blanking			
D305	- 1	MA151K	Switching	c	041	0	MA151K	Pulse Clipper			
			DACITORS	- 11	043	0	TVS08V-100	Damper			
			PACITORS	- 11	D44	0	MA152K	Rectifier			
C1301	- 1	ECEA1HK010EJ	Electrolytic 1μ F 50	"	045	0	MA152K	Rectifier			
1 1 2/11/2		ECEA1EK4R7EJ	Electrolytic 4.7μ F 25	11 -	046	S	TVSBB10	Rectifier			
C1302 C1303	- 1	ECEA1EK4R7EJ	Electrolytic 4.7µF 25								

Ref.N	lo.	Part No.	De	escriptio	n		Ref. N	lo.	Part No.	D	escriptio	n	
D47		TVSRD4R7EB	Zener				C307	0	ECUX1H102MD	Chip	1000pF	±20%	50V
D75		TVSRD3R3EB	Zener				C308		ECEA0JK330	Electrolytic	33µF		6.3V
D76	0	MA151K	Switching				C309		ECEA0JV471W	Electrolytic	470µF		6.3V
D77	Ŭ	TVSRD7R5JB	Zener				C311		ECEA1AS101SW	Electrolytic	100µF		10V
D91	0	MA151K	Switching				C312		ECEA0JV471W	Electrolytic	470µF		6.3V
D92	0	MA151WK	Switching				C361	0	ECUX1H103MD	Chip	0.01μF	±20%	50V
			L	AEDC			C362	0	ECUX1H181K	Chip	180pF	±10%	50V
	,		TRANSFORM	VIEKS			C401 C402	0	ECUX1H333ZF ECEA1HK010EJ	Chip Electrolytic	0.033μF 1μF	+80%	50∨ 50∨
L101 L131		TLI801358 TLQ391K146C	V-IF Trans. Peaking Coil				C402	0	ECUX1H101K	Chip	100pF	±10%	50V
L132		TLQ391K146C	Peaking Coil				0 100		2007(11110111	0,p			•••
L202		TLQ100K146	Peaking Coil				C404	0	ECUX1H472MD	Chip	4700pF	±20%	50V
L301		TLQ391K146C	Peaking Coil				C405	0	ECUX1H153MD	Chip	0.015µF	±20%	50V
2001							C407	0	ECUX1H153MD	Chip	0.015µF	±20%	50V
T401	8	TLF80957	Flyback Trans				C408		ECEA1CK100	Electrolytic	10μF		16V
	1	0.0	APACITORS				C409		ECSZ10EF22N	Tantalum	22 µ F		10V
CO1	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C410	0	ECUX1H153ZF	Chip	0.015µF	+80%	50V
C91 C92	0	ECUX1H103ZF	Chip	0.01µF	+80% -20%	50V	C411		ECQK1103JZ	Polyestel Poly	•		
C93	0	ECUX1H103ZF	Chip	0.01µF	+80 % -20 %	50V					0.01µF	±5%	100V
C94	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C413		ECEA1HK010EJ	Electrolytic	1μF		50V
C95	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C414		ECQM2103KZ	Polyester	0.01μ F	±10%	200V
000					20		C415	0	ECUX1H102MD	Chip	1,000pF	±20%	50V
C96	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C418		ECEA0JV221W	Electrolytic	220µF		6.3V
C97	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C416	0	ECUX1H333ZF	Chip	0.033µF	+80% -20%	50V
C98	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C417	0	ECUX1H222MD	Chip	2200pF		50V
C101	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C440	0	ECUX1H333ZF	Chip	0.033μF		50V
C102	0	ECUX1H103ZF	Chip	0.01μ F	+80%	50V	C441		ECKD2H391KB9	Ceramic	390pF	±10%	500V
					1.80		C442		ECEA2AS3R3	Electrolytic	3.3µF		100V
C103	0	ECUX1H103ZF	Chip	0.01μF	+80%	50V	C443		ECKC3A182MD	Ceramic	1800pF	±20%	5KV
C105	0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	C444		ECEA1CK100	Electrolytic	10μF	-2070	16∨
C106	0	ECUX1H103ZF	Chip	0.01µF 470µF	+80 %	50V 6.3V	C445	0	ECUX1H333ZF	Chip	0.033µF	+80%	50V
C131 C132	0	ECEA0JV471W ECUX1H103ZF	Electrolytic Chip	470μF 0.01μF	+80 %	50V	C501		ECSF1VM473	Tantalum	0.047µF		35V
C132		ECOX 1111032F	Cnip	0.01μ	-20 /0	30 V	C502	0	ECUX1H152MD	Chip	1.500pF	±20%	50V
C133		ECSZ10EF22N	Tantalum	22µF		10V	0500		505 40 11 /00411/	El	۰		C 0) /
C134	0	ECUX1H103ZF	Chip	0.01µF	+80 % -20 %	50V	C503		ECEA0JV221W	Electrolytic	220µF		6.3V
C140		ECEA1EK4R7EJ	Electrolytic	4.7μ F		25V	C504		ECEA0JK220EJ	Electrolytic	22µF		6.3V
C141		ECEA0JK101	Electrolytic	100µF		6.3V	C505 C506		ECEA1CK100 ECEA1CK100	Electrolytic Electrolytic	10μF 10μF		16V 16V
C142	0	ECUX1H102MD	Chip	1000pF	±20%	50V	C506		ECEAOJK470	Electrolytic	47μF		6.3V
C143	0	ECUX1H333ZF	Chip	0.033µF	+80 % -20 %	50V							
C144	0	ECUX1H333ZF	Chip	0.033µF	+80%	50V	C508		ECSF1VM473	Tantalum	0.047µF		35V
C145	0	ECUX1H471MD	Chip	470pF	±20%	50V	C701	_	ECEA1CV101W	Electrolytic	100µF 100pF	+100/	16V 50V
C181		ECEA0JK101	Electrolytic	100μF		6.3V	C702 C703	0	ECUX1H101K ECEA0JV471W	Chip Electrolytic	470μF	±10%	6.3V
C183		ECSF1AM475C	Tantalum	4.7µF		10V	C704A		ECEAUV471W ECEA1EK4R7EJ	Electrolytic	4.7µF		25V
C184	0	ECUX1H102MD	Chip	1000pF		50V			F074440404	Flactural	100μF		10V
C205	0	ECUX1H153MD	Chip	0.015µF		50V	C705		ECEA1AS101	Electrolytic	•	+200/	
C207	0	ECUX1H333ZF	Chip	0.033µF	+80 %	50V	C706	0	ECUX1H153MD	Chip	0.015µF	±20%	50V
C208		ECEAOJK101	Electrolytic	100μF		6.3V			RI	ESISTORS			
C209	0	ECUX1H103ZF	Chip	0.01µF	+80 % -20 %	50V	R91	0		Chip	6.8K Ω	±10%	1/8W
C210	_	ECHV1U1007F	Chin	0.01	+80 % -20 %	50V	R92	0	RRD18XK102	Chip	1ΚΩ	±10%	1/8W
C210 C211	0	ECUX1H103ZF ECUX1H103ZF	Chip Chip	0.01µF 0.01µF		50V	R93	0	RRD18XK274	Chip	270ΚΩ	±10%	1/8W
C211	0	ECUX1H103ZF	Chip	0.01μF		50V	R94	0	RRD18XK223	Chip	22ΚΩ	±10%	1/8W
C212	0	ECUX1H103ZF	Chip		±10%	50V	R95	0	RRD18XK822	Chip	8.2 K Ω	±10%	1/8W
C301	0	ECUX1H103MD	Chip	0.01 µ F		50V							1/
							R96	0	RRD18XK105	Chip	1ΜΩ	±10%	1/8W
C302	0	ECUX1H153MD	Chip	0.015 µ F	±20%	50V	R97	0	RRD18XK103	Chip	10KΩ	±10%	1/8W
C303		ECEA1HK010EJ	Electrolytic	1μF		50V	R98	0	RRD18XK103	Chip	10KΩ	±10%	1/8W
C304		ECSF1VM334C	Tantalum	0.33 µ F		35V	R101	0	RRD18XK560	Chip	56Ω 1 8KΩ	±10%	1/8W
		ECSF1AM475C	Tantalum	4.7μ F	•	10V	R111	Ó	RRD18XK182	Chip	1.8K Ω	±10%	1/8 W
C305 C306		ECSF1AM225C	Tantalum	2.2µF		10V			i .				

Ref. No.	Part No. Description			Ref. No.	Part No.	Description			
	<u> </u>								
R141 o	RRD18XK104	Chip 100KΩ	±10% ¹ / ₈ W	R601 o	RRD18XK105	Chip $1M\Omega \pm 10\%$ $\frac{1}{8}W$			
R142 o	RRD18XK103	Chip 10KΩ	±10% ¹ / ₈ W	R701 o	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R143 o	RRD18XK153	Chip 15KΩ	±10% ¹ / ₈ W	R702 o	RRD18XK682	Chip $6.8K\Omega \pm 10\%$ $\frac{1}{8}W$			
R144 o	RRD18XK102	Chip 1KΩ	±10% ¹ / ₈ W	R703 o	RRD18XK472	Chip $4.7K\Omega \pm 10\% \frac{1}{8}W$			
R145 o	RRD18XK331	Chip 330 Ω	±10% ¹ / ₈ W	R704 o	RRD18XK471	Chip $470\Omega \pm 10\%$ $\frac{1}{8}$ W			
R180 o	RRD18XK122	Chip 1.2KΩ	±10% ¹ / ₈ W	R705 °	RRD18XK472	Chip $4.7 \text{K}\Omega \pm 10\% \frac{1}{8} \text{W}$			
R181 o	RRD18XK183	Chip 18KΩ	±10% 1/8W	R708	ERD10TJ101	Carbon $100\Omega \pm 5\%$ $\frac{1}{8}$ W			
R182 o	RRD18XK224	Chip 220KΩ	±10% ½W	R710 °	RRD18XK391	Chip $390\Omega \pm 10\% ^{1}/_{8}W$			
R183 o	RRD18XK183	Chip 18KΩ	±10% 1/8W	R711 °	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R184 o	RRD18XK102	Chip 1KΩ	±10% ¹ / ₈ W	R712 °	RRD18XK391	Chip 390Ω ±10% ½W			
R185 o	RRD18XK152	Chip 1.5KΩ	±10% ¹ / ₈ W	R713 0	RRD18XK391	Chip 390Ω ±10% ½W			
R186 o	RRD18XK331	Chip 330Ω	±10% 1/8W	R714 0	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R187 o	RRD18XK332	Chip 3.3KΩ	±10% ¹ / ₈ W	R715 °	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R188 o	RRD18XK273	Chip 27KΩ	±10% ½W	R716 °	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R201 o	RRD18XK101	Chip 100Ω	±10% ¹ / ₈ W	R717 °	RRD18XK391	Chip $390\Omega \pm 10\% \frac{1}{8}W$			
R202 o	RRD18XK562	Chip 5.6 K Ω	±10% ½W		CEF	RAPS			
R203 0	RRD18XK562	Chip $5.6K\Omega$	±10% ¹ / ₈ W	CF21	EFCS4R5MCM	S-IF Input Filter			
R204 o	RRD18XK562	Chip $5.6K\Omega$	±10% ¹ / ₈ W	CF22	EFCS5R5MCM	S-IF Input Filter			
R206 o	RRD18XK123	Chip 12K Ω	±10% /8W	CF23	EFCS6R0MCM	S-IF Input Filter			
R207 0	RRD18XK123	Chip $12K\Omega$		CF25	EFCS4R5MSM	Discriminator			
H207 0	HHDIOXKIZ3	Clib 12K32	±10% ¹ / ₈ W	CF26	EFCS5R5MSM	Discriminator			
R208 o	RRD18XK123	Chip 12KΩ	±10% ¹ / ₈ W	0507	FECCODOMON	Dissiplinary			
R212 o	RRD18XK272	Chip 2.7,KΩ	±10% ¹ / ₈ W	CF27	EFCS6R0MSM	Discriminator			
R213 o	RRD18XK330	Chip 33Ω	±10% ¹ / ₈ W		001	NTDOL 6			
R301 o	RRD18XK153	Chip 15KΩ	±10% ½W	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(NTROLS			
R302 o	RRD18XK183	Chip 18KΩ	±10% ½W	VR19	EVNK0BA00B53	RF AGC 5KΩB			
				VR31	EVLV0FA00B15	Vert. Hold 100KΩB			
R303 o	RRD18XK683	Chip 68KΩ	±10% ¹ / ₈ W	VR32	EVNA1AA00B54	Vert. Height 50KΩB			
R304 o	RRD18XK184	Chip 180KΩ	±10% 1/8W	VR41	EVNJ0BA00B13	Horiz, Freq. 1KΩB			
R305 o	RRD18XK183	Chip 18KΩ	±10% ½W	VR62	EVJ7KA30923X	Contrast 2KΩX			
R306 o	RRD18XK392	Chip 3.9KΩ	±10% 1/8W		E1/11/05 4 00 DEE	B.11. F00K 0 B			
R307 o	RRD18XK332	Chip 3.3KΩ	±10% 1/8W	VR63 VR71	EVLV0FA00B55 EVNA6AA00B23	Bright. $500K\Omega B$ AVR $2K\Omega B$			
D200 -	DDD10VK600	Chi-	1100/ 1/14/	VR92	EVNA1AA00B54	Sub Tuning 50KΩB			
R308 o	RRD18XK682	Chip 6.8KΩ	±10% ¹ / ₈ W	VR93	EVNA1AA00B54	Sub Tuning 50KΩB			
R309 o	RRD18XK472	Chip 4.7KΩ	±10% ½W	VR94	EVNA1AA00B25	Sub Tuning 200KΩB			
R310 o	RRD18XK2R7	Chip 2.7Ω	±10% ½W						
R313 o	RRD18XK391	Chip 390Ω Chip 820Ω	±10% ¹ / ₈ W ±10% ¹ / ₈ W	VR95	EVNA1AA00B54	Sub Tuning 50KΩB			
R360 o	RRD18XK821	Chip 820Ω	±10% /8VV						
R361 0	RRD18XK563	Chip $56K\Omega$	±10% ½W		OTHER PARTS TJC80337 Battery Terminal				
R401 °	RRD18XK561	Chip 560Ω	±10% ¹ / ₈ W		TJS828290	DC Socket			
R402 °	RRD18XK390	Chip 39Ω	±10% 1/8W		TJS868260	4-P Mini, Connector Plug			
R403 o	RRD18XK103	Chip 10KΩ	±10% ½W		TJS868420 4-F Mini, Connector Plug				
R404 °	RRD18XK222	Chip 2.2KΩ	±10% ¹ / ₈ W						
R405 o	RRD18XK273	Chip 27KΩ	±10% ¹ / ₈ W		TJS868430	3-P Mini. Connector Plug			
R406 o	RRD18XK470	Chip 47Ω	±10% ¹ / ₈ W	0.47	TXAJT5P060	5-P Mini. Connector Ass'y			
R407 o	RRD18XK272	Chip 2.7KΩ	±10% 1/8W	SW1	TSE80330	TV/FM/AM Selector Switch			
R408 o	RRD18XK471	Chip 470Ω	±10% ½W	SW2	TSE80329	A/E/G Formula Selector Switch			
R409 o	RRD18XK474	Chip 470KΩ	±10% ¹ / ₈ W	SW4	TSE80329	U/V Selector Switch			
R440 o	RRD18XK392	Chip 3.9KΩ	±10% ¹ / ₈ W						
R441 0	RRD18XK334	Chip 330KΩ	±10% /8W						
R442 0	RRD18XK394	Chip 390KΩ	±10% /8W		TNP8	2983-21			
R443 0	RRD18XK105	Chip $1M\Omega$	±10% /8 W						
R444 0	RRD18XK472	Chip $4.7K\Omega$	±10% /8W		-	C			
		:		IC101	AN7213	FM Front End			
R445 o	RRD18XK102	Chip 1KΩ	±10% ¹ / ₈ W	IC102	AN7218	AM RF, IF/FM IF			
R502 o	RRD18XK680	Chip 68Ω	±10% ¹ / ₈ W	[]	TDANK	SISTORS			
	ERD25FJ390	Carbon 39Ω	±5% ¼W	0101		t ,			
R504 o	RRD18XK221	Chip 220Ω	±10% ¹ / ₈ W	Q101 o	2SC1009	FM IF Amp. (F3, F4)			
R505 o	RRD18XK473	Chip 47KΩ	±10% ¹ / ₈ W	Q110 o	2SK160	AM RF Amp. (K5, K6)			
				<u> </u>	14				

D80 o	Part No.	1				Ref. No. Part No.			1	DCC INII		Description			
				Description			٧٠.	Tarcivo,	"	Description					
		DDES				C1134		ECEA1CK100	Electrolytic	10 μ F		16V			
001	MA57 TVS1SV80	Switching Switching		•		C1135	0	ECUX1H103ZF	Chip	0.01µF		50V			
D82 o	MA57	Switching						7							
D102	OA91	FM Det.				C1136		ECUX1H102MD	Chip	1000pF		50V			
D103	OA91	FM Det.				C1137	0	ECUX1H103ZF	Chip	0.01µF	+80 %	50V			
						C1138		ECSF35ER1	Tantalum	0.01µF	180	35V			
D106 0	MA151WK	Switching				C1139	O	ECUX1H333ZF	Chip	0.033µF	-20%	50V			
D110	OA91	AM Det.							لينيا						
	COILS & TRANSFORMERS								ISTORS						
L-80	TLR809493C	RF Choke Coi				R81	0	RRD18XK102	Chip	1ΚΩ	±10%	1/8 W			
L81	TLR80127	Loading Coil				R82 R83	0	RRD18XK222 RRD18XK474	Chip	2.2KΩ	±10%	1/8W			
L1003	TLR809455C	Loading Coil				R84	Ö	RRD18XK474	Chip Chip	470KΩ 470KΩ	±10% ±10%	¹/ ₈ W ¹/ ₈ W			
L1004	TLR809445C	FM RF Coil				R85	0	RRD18XK474	Chip	470KΩ	±10%	1/8 W			
L1005	TLR809454C	FM Osc. Coil							O.II.P	17 01022	-1070	/8 * *			
L1006	EIF7S803A	FM IF Trans.				R86	0	RRD18XK474	Chip	470KΩ	±10%	1/8 W			
L1007	EIF7S804D	FM Det. Coil				R1001		RRD18XK470	Chip	47Ω	±10%	$\frac{1}{8}$ W			
	EIF7S801E	FM Det. Coil				R1002		RRD18XK680	Chip	68Ω	±10%	1/8 W			
L1101	ELL7S801A	AM Osc. Coil				R1003		RRD18XK101	Chip	100Ω	±10%	1/8 W			
L1110	EIA7S802A	AM IF Trans.				R1004	0	RRD18XK393	Chip	39ΚΩ	±10%	1/8 W			
	ELA 70000D					R1005	0	RRD18XK470	Chip	47Ω	±10%	1/8W			
L1111	EIA7S808D	AM Det. Coil				R1050		RRD18XK334	Chip	330KΩ	±10%	1/8 W			
	CAPA	CITORS				R1051	0	RRD18XK102	Chip	1ΚΩ	±10%	1/8 W			
C80 o	ECUX1H102MD	Chip	1000pF	±20%	50V	R1052	0	RRD18XK102	Chip	1ΚΩ	±10%	1/8 W			
	ECUX1H103ZF	Chip	0.01µF		50V	R1053	0	RRD18XK331	Chip	330Ω	±10%	$^{1}/_{8}W$			
	PVCLC416-1	Poly. Variable	0.01,	-2070	00 0										
C1004 0	ECUX1H103ZF	Chip	0.01µF	+80%	50V	R1054	- 1	RRD18XK681	Chip	680Ω	±10%	1/8 W			
C1005 °	ECUX1H333ZF	Chip	0.033 µ F	+80% -20%	50V	R1055 R1056		RRD18XK331 RRD18XK102	Chip	330Ω	±10%	1/ ₈ W			
						R1057	- 1	RRD18XK102	Chip Chip	1ΚΩ 1ΚΩ	±10% ±10%	¹/ ₈ W ¹/ ₈ W			
	ECUX1H180KC	Chip		±10%	50V	R1058	- 1	RRD18XK103	Chip	10ΚΩ	±10%	1/8 W			
	ECUX1H103ZF ECUX1H103ZF	Chip	0.01µF	+80% -20%	50V					70.142	-1070	/8**			
	ECUX1H103ZF	Chip Chip	0.01µF		50V	R1059	0	RRD18XK153	Chip	15K Ω	±10%	$^{1}/_{8}W$			
	ECUX1H150KC	Chip		±0.5pF ±10%	50V	R1060		RRD18XK333	Chip	33 K Ω	±10%	$\frac{1}{8}$ W			
	200XIIIIOOKO	CITIP	ТЭРТ	-10%	30 V	R1061		RRD18xk470	Chip	47Ω	±10%	1/8 W			
C1012 0	ECUX1H220KC	Chip	22pF	±10%	50V	R1062	- 1	RRD18XK222	Chip	2.2KΩ	±10%	1/8 W			
C1013 o	ECUX1H103ZF	Chip	0.01µF	+80% -20%	50V	R1100	0	RRD18XK101	Chip	100Ω	±10%	$\frac{1}{8}$ W			
	ECUX1H103ZF	Chip	$0.01 \mu F$	+80%	50V	R1101	0	RRD18XK102	Chip	1ΚΩ	±10%	1/8W			
	ECUX1H103ZF	Chip	0.01 µ F	+80%	50V	R1102		RRD18XK684	Chip	680KΩ	±10%	1/8 W			
C1050 o	ECUX1H103ZF	Chip	0.01 µ F	-20%	50V	R1130	- 1	RRD18XK102	Chip	1ΚΩ	±10%	50V			
C1051 o I	ECUX1H103ZF	Chin	0.01	+80 04	E014	R1131	0	RRD18XK103	Chip	10ΚΩ	±10%	50V			
	ECUX1H103ZF	Chip Chip	0.01μF 0.01μF		50V 50V	R1132	0	RRD18XK473	Chip	$47K\Omega$	±10%	50V			
	ECUX1H103ZF	Chip	0.01µF		50V										
	ECUX1H333ZF	•	0.033µF		50V	R1133	- 1	RRD18XK103	Chip	10 K Ω	±10%	50V			
1056	ECEA1ES4R7	Electrolytic	4.7 µ F		25V	R1134		RRD18XK101	Chip	100Ω	±10%	50V			
						R1135 R1136		RRD18XK103	Chip	10KΩ	±10%	50V			
	ECUX1H103ZF	Chip	0.01μ F	+80%	50V	R1136		RRD18XK183 RRD18XK333	Chip Chip	18KΩ 33KΩ	±10% ±10%	50V			
	ECEA1CK100	Electrolytic	10µF		16V	'''''	Ĭ	111111111111111111111111111111111111111	Citip	33K14	∸10%	50V			
	ECUX1H472MD		4700pF	±20%	50V	R1138	0	RRD18XK471	Chip	470Ω	±10%	50V			
		Electrolytic Chip	10μF 0.01μF	+800/	16V	J1011	- 1	RRD18XK000	Chip	Ω0	570	00 0			
	LCOX II I I IOOZF	CHIP	υ.υ ιμι	-20%	50V	J1012	- 1	RRD18XK000	Chip	Ω_0					
1101 o E	ECUX1H100KC	Chip	10pF	±10%	50V	J1013	0	RRD18XK000	Chip	Ω 0					
		Chip	0.01 µ F		50V			OT::-							
		Chip	0.01 µ F	+80%	50V	CE101			R PARTS			ļ			
		Chip	0.01 µ F		50V	CF101 CF102	,	TFCS10R7M-2 TFCS10R7M-2	10.7MHz Filte			į			
1105 O E	ECUX1H050DC	Chip	5pF	±0.5pF	50V	CF102		RVFCFM2455E	10.7MHz Filter	÷					
1131 E	ECE A 1 CK 100	Clastus le et s	10 5		1011		- 1	RXABPMB1	FM BPF.						
		Electrolytic Electrolytic	10μF		16V			TJS828300	Ext. Antenna S	Socket					
		Electrolytic	10μF 10μF	· •	16V							.			
	- SEATOR FOU	Lied ti Oly IIC	ιυμι		16V	1		TJS868550	5-P L-Type Mir	ni. Connect	tor Plug	-			