Descripción

Nombre: Tina_Russo (https://twitter.com/Hackers4F/status/1093990717502959616)

Related: Looney Tunes (https://looneytunes.fandom.com/wiki/Tina Russo)

Fecha de liberación: 8 de febrero de 2019

Autor: 1v4n

Dificultad: Medio-Bajo

Tina has discovered that someone has been looking at her laptop. Daffy Duck has been able to extract the traffic but it is encrypted. Can you help them?

Objetivo

Formato de flag: H4F{text}

Herramientas utilizadas

Firefox V. 60.3.0 https://www.mozilla.org/en-US/firefox/60.3.0/releasenotes/

gdown 3.6.0 https://pypi.org/project/gdown/

7z-crack https://github.com/kholia/7z-crack

SecLists https://github.com/danielmiessler/SecLists

TShark (Wireshark) 2.6.6 https://www.wireshark.org/#download

7-Zip [64] 16.02 https://www.7-zip.org/download.html

Resumen:

Comenzamos por visitar la página del reto y descargamos el archivo comprimido R3tO_18_H4F_T1n4_RussO.7z (8c6aaa1d3494d741f9fc0a51a68e9718) y que tiene la password una password desconocida.


```
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# file R3t0_18_H4F_T1n4_Russ0.
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# file
R3t0_18_H4F_T1n4_Russ0.7z
R3t0_18_H4F_T1n4_Russ0.7z: 7-zip archive data, version 0.4
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# 7z x
R3t0_18_H4F_T1n4_Russ0.7z
7-Zip [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=es_ES.UTF-8,Utf16=on,HugeFiles=on,64 bits,1 CPU
Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz (406E3),ASM,AES-NI)
Scanning the drive for archives:
1 file, 2642 bytes (3 KiB)
Extracting archive: R3t0_18_H4F_T1n4_Russ0.7z
Path = R3t0_18_H4F_T1n4_Russ0.7z
Type = 7z
Physical Size = 2642
Headers Size = 178
Method = LZMA2:14 7zAES
Solid = -
Blocks = 1
Enter password (will not be echoed):
ERROR: Data Error in encrypted file. Wrong password? :
R3t0_18_H4F_T1n4_Russ0.pcap
Sub items Errors: 1
Archives with Errors: 1
Sub items Errors: 1
```

Pasamos a utilizar la herramienta 7z-crack para cracking de archivos comprimidos .7z generando el siguiente bash

```
#! /bin/bash
cat /usr/share/wordlists/rockyou.txt | grep "looney.*" | ./7z-crack/bin/7za t
R3t0_18_H4F_T1n4_Russ0.7z
```

y lo ejecutamos obtenido la password looneytunes:

```
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# chmod +x get_pass.sh
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# ./get_pass.sh
Everything is Ok
Password Found : looneytunes
```

Pasamos a descomprimirlo y descubrimos que nos esconde un archivo de paquetes de tráfico de red lamado R3t0_18_H4F_T1n4_Russ0.pcap (9898e05ea677409f781d91f8580de228) :

```
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# 7z x
R3t0_18_H4F_T1n4_Russ0.7z
...
Everything is Ok
Size: 15364
Compressed: 2642
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# md5sum
R3t0_18_H4F_T1n4_Russ0.pcap
9898e05ea677409f781d91f8580de228 R3t0_18_H4F_T1n4_Russ0.pcap
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# file
R3t0_18_H4F_T1n4_Russ0.pcap
R3t0_18_H4F_T1n4_Russ0.pcap
R3t0_18_H4F_T1n4_Russ0.pcap: pcap capture file, microsecond ts (little-endian)
- version 2.4, capture length 262144)
```

Pasamos a analizar con Wireshark el archivo pcap y observamos que pertenece a una captura de tráfico USB

Detectamos que en la captura hay dos dispositivos USB con direcciones 1.19.1 y 1.20.1 con lo que vamos a separar las pulsaciones de cada uno a través de tshark:

```
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# tshark -r
R3t0_18_H4F_T1n4_Russ0.pcap -Y "usb.bus_id == 1 && usb.device_address == 20 &&
usb.transfer_type == 0x01" -T fields -e usb.capdata | awk -F: '{print $3}' |
grep -v 00 > data20.txt
```

```
root@kali:~/Escritorio/Desktop/C-Hackers4F/Reto18# tshark -r
R3t0_18_H4F_T1n4_Russ0.pcap -Y "usb.bus_id == 1 && usb.device_address == 19 &&
usb.transfer_type == 0x01" -T fields -e usb.capdata | awk -F: '{print $3}' |
grep -v 00 > data19.txt
```

Apoyandonós en USB keymap (http://www.mindrunway.ru/IgorPIHex/USBKeyScan.pdf) pasamos a utilizar un script en python como el que se utilizó Kalrong en el reto de USB Ducker que nos facilitará la labor :

```
#!/usr/bin/python
mappings = {
        "04":["a","A"],
        "05":["b","B"],
        "06":["c","C"],
        "07":["d","D"],
        "08":["e","E"],
        "09":["f","F"],
        "0A":["g","G"],
        "0B":["h","H"],
        "0C":["i","I"],
        "0D":["j","J"],
        "0E":["k","K"],
        "0F":["1","L"],
        "10":["m","M"],
        "11":["n","N"],
        "12":["o","0"],
        "13":["p","P"],
        "14":["q","Q"],
        "15":["r","R"],
        "16":["s","S"],
        "17":["t","T"],
        "18":["u","U"],
        "19":["v","V"],
        "1A":["w","W"],
        "1B":["x","X"],
        "1C":["y","Y"],
        "1D":["z","Z"],
        "1E":["1","!"],
        "1F":["2","@"],
        "20":["3","#"],
        "21":["4","$"],
        "22":["5","%"],
        "23":["6","<sup>^</sup>"],
        "24":["7","&"],
        "25":["8","*"],
        "26":["9","("],
        "27":["0",")"],
        "28":"\n",
```

```
"29":"ESC",
  "2A": "BKSPC",
  "2B":" ",
  "2C":" ",
  "2D":["-","_"],
  "2E":["=","+"],
  "2F":["[","{"],
  "30":["]","}"],
 "31":["\\","|"],
  "32":"(INT 2)",
 "33":[";",":"],
  "34":[",",'"'],
 "35":["`","~"],
  "36":[",","<"],
  "37":[".",">"],
  "38":["/","?"],
  "39": "CAPSLOCK",
  "3A":"F1",
  "3B":"F2",
  "3C":"F3",
  "3D":"F4",
  "3E":"F5",
  "3F":"F6",
  "40":"F7",
  "41":"F8",
  "42":"F9",
  "43":"F10",
  "44":"F11",
  "45":"F12",
  "46":"PRTSCR",
  "47":"SCRLOCK",
  "48": "PAUSE",
  "49":"INS",
  "4A":"HOME",
  "4B": "PGUP",
  "4C":"DEL",
  "4D":"END",
  "4E":"PGDOWN",
 "4F":"RIGHT",
 "50":"LEFT",
  "51":"DOWN",
 "52":"UP",
  "53":"NUMLOCK",
"54":["/"],
"55":["*"],
"56":["-"],
"57":["+"],
"58":"ENTER",
"59":["1"],
```

```
"5A":["2"],
      "5B":["3"],
      "5C":["4"],
      "5D":["5"],
      "5E":["6"],
      "5F":["7"],
      "60":["8"],
      "61":["9"],
      "62":["0"]
nums = []
keys = open('data20.txt')
for line in keys:
        nums.append(line.strip().upper())
keys.close()
output = list()
for n in nums:
    push=n.split(":")
    if push[2] == "00":
        continue
    else:
        key=push[2]
    if push[0] != "02":
        islist=mappings[key]
        if type(islist) is list:
            output.append(mappings[key][0])
        else:
            output.append(mappings[key])
    else:
        output.append(mappings[key][1])
final=dict()
empty line=list()
final[0]=[]
counter=0
for i in output:
    if i == "\n":
        counter += 1
        final[counter]=["\n"]
    elif i == "DOWN":
        if counter < len(final):</pre>
            counter += 1
    elif i== "UP":
        if counter != 0:
            counter -= 1
    else:
        final[counter].append(i)
output=""
```

```
for x in final.keys():
    for y in final[x]:
        output+=y
print output
```

Las dos cadenas que obtenemos son la correspondiente:

- > H0EFE2HjMmOMnx5BMSEJMyEHDayJER55IyEBp01RFxkAITj5
- >792115c4d4ed3ea4b04a6af529a95d21

La primera cadena la desencriptamos a través de CyberChef >

https://gchq.github.io/CyberChef/#recipe=From Base64('N-ZA-Mn-za-m0-9%2B/%3D',true)From Base64('A-Za-z0-9%2B/%3D',true)&input=SDBFRkUySGpNbU9Nbng1Qk1TRUpNeUVIRGF5SkVSNTVJeUVCcDAxUkZ4a0FJVGo1 > H4F{H4b3Mu5_M0rT3rU3102K19}

La segunda cadena que identificamos como hash md5 pasamos a reversearla > https://md5hashing.net/hash/md5/792115c4d4ed3ea4b04a6af529a95d21 > FR33_M0rt3ru310CON_4j04rr13r0L4BS

La flag es: H4F{H4b3Mu5_M0rT3rU3l02K19}

Autor: 1v4n a.k.a. @1r0Dm480

Twitter: https://twitter.com/1r0Dm4480