Feature Extraction with Convolutional Autoencoders

Vaggelis Lamprou

Presentation

Contents

- 1. Introduction
- 2. Graphs
- 3. Spectrograms & Conv AE
- 4. Results

1. Introduction

- Goal: Study the use of Convolutional Autoencoders as feature extraction tools when compared to hand-crafted features obtained by the PyAudioAnalysis Python library.
- Consider a scenario where the available training dataset consists of "a few" labelled points and "many" unlabelled points (of the same data source).
- Dataset: Valence class samples of "MSP Podcast"
 - classes: negative, neutral, positive
 - Split into speaker independent sets:

Training labelled data: 350 + 362 + 319 (1031 in total)

Training unlabelled data: 2781 + 2674 + 2622 (8077 in total)

Test data: 432 + 421 + 383 (1236 in total)

- All data have signal size at least 30K samples

2. Graphs

Part I - Conv AF

Part II - Features

Part III - The experiment
Per iteration (increase size by 2%):

3. Spectograms & Conv AE

- Spectograms
 - Must be of fixed size to fit into the Conv AE.
 - Take 30K length signal sizes. Ignore tails.
- Conv AE
 - Tuned Symmetric Architectures wrt number of convolutional layers, kernels, strides, bottleneck dimension, learning rate and batch size
 - Loss history:

- Encoder Summary:

Layer (type)	Output Shape	Param #
	5.00	
input_5 (InputLayer)	[(None, 74, 200, 1)]	0
conv2d_16 (Conv2D)	(None, 37, 100, 16)	80
dropout_24 (Dropout)	(None, 37, 100, 16)	0
conv2d_17 (Conv2D)	(None, 18, 50, 32)	2080
dropout_25 (Dropout)	(None, 18, 50, 32)	0
conv2d_18 (Conv2D)	(None, 6, 16, 64)	18496
dropout_26 (Dropout)	(None, 6, 16, 64)	0
conv2d_19 (Conv2D)	(None, 2, 5, 128)	73856
flatten_4 (Flatten)	(None, 1280)	0
dense_16 (Dense)	(None, 256)	327936
dense_17 (Dense)	(None, 64)	16448

Total params: 438,896 Trainable params: 438,896 Non-trainable params: 0

4. Results

Thank You!