REPLICATION

AN ALTERNATIVE SOFTMAX OPERATOR FOR REINFORCEMENT LEARNING

簡右群 | 黃宇裼 | 邱俊耀 | 陳筱霓

SOFTMAX BACKGROUND

WHAT MAKES A SOFTMAX OPERATOR IDEAL

- Approximates maximization to perform reward-seeking behavior
- Non-expansion
 to ensure convergence to a unique fixed point
- Differentiable
 to work with gradient-based optimization
- Avoids starvation of non-maximizing actions

POPULAR SOFTMAX OPERATORS AND THEIR DRAWBACKS

1.
$$max(\mathbf{X}) = \max_{i \in \{1,...,n\}} x_i$$

2.
$$mean(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

3.
$$eps_{\epsilon}(\mathbf{X}) = (\epsilon) mean(\mathbf{X}) + (1 - \epsilon) max(\mathbf{X})$$

4.
$$boltz_{eta}(\mathbf{X}) = rac{\sum_{i=1}^{n} x_i e^{eta x_i}}{\sum_{i=1}^{n} e^{eta x_i}}$$

HOW DOES MELLOMAX SOLVE THESE PROBLEM

MELLOWMAX SOFTMAX OPERATOR

$$mm_{\omega} = rac{\log(rac{1}{n}\sum_{i=1}^{n}\exp^{\omega x_i})}{\omega}$$

PROPERTIES OF MELLOWMAX

1. NON-EXPANSION

$$|mm_{\omega}(\mathbf{X}) - mm_{\omega}(\mathbf{Y})| = \max_i |x_i - y_i|$$

2. MAXIMIZATION

$$\lim_{\omega o \infty} m m_{\omega}(\mathbf{X}) = \max(\mathbf{X})$$

3. DIFFERENTIABLE

$$rac{\partial n_{\omega}(\mathbf{X})}{\partial \omega} = rac{e^{\omega x_i}}{\sum_{i=1}^n e^{\omega x_i}}$$

4. AVERAGING

$$\lim_{\omega o 0} mm_{\omega}(\mathbf{X}) = mean(\mathbf{X})$$

 ω can't be 0

UNIQUE FIXED POINT?

GVI UNDER $boltz_{\beta}$ HAS MULTIPLE FIXED POINTS

GVI UNDER mm_{ω}

LEARNING WITH MELLOWMAX

$$\pi_{mm}(a|s) = rac{e^{eta\hat{Q}(s,a)}}{\sum_{a\in\mathcal{A}}e^{eta\hat{Q}(s,a)}}$$

where β is the root for:

$$\sum_{a\in\mathcal{A}}e^{eta(\hat{Q}(s,a)-mm_{\omega}\hat{Q}(s,\cdot))}(\hat{Q}(s,a)-mm_{\omega}\hat{Q}(s,\cdot))=0$$

EXPERIMENTS AND RESULTS

ENVIRONMENT: SIMPLE MDP

- S_1 is the initial state and S_2 is the terminal state.
- The unsigned numbers denote the transition probabilities.
- The signed numbers denote the rewards.

ALGORITHM: GENERALIZED VALUE ITERATION (GVI)

Algorithm 1 GVI algorithm

NUMBER OF ITERATION TO CONVERGE

Simple MDP with GVI Algorithm

Figure 7. Number of iterations before termination of GVI on the example MDP. GVI under mm_{ω} outperforms the alternatives.

NUMBER OF ITERATION TO CONVERGE

Simple MDP with GVI Algorithm

ALGORITHM: SARSA

Algorithm 2 SARSA Algorithm

```
Require: initial \hat{Q}(s,a) \ \forall s \in \mathcal{S} \ \forall a \in \mathcal{A}, \ \alpha, \ \text{and policy} \ \pi(s,\hat{Q}(s,\cdot)) for each episode do Initialize s a \sim \operatorname{policy} \pi(s,\hat{Q}(s,\cdot)) repeat Take action a, observe r,s' a \sim \operatorname{policy} \pi(s,\hat{Q}(s',\cdot)) \hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha[r + \gamma\hat{Q}(s',a') - \hat{Q}(s,a)] s \leftarrow s', \ a \leftarrow a' until s is terminal end for
```

STABILITY OF Q-FUNCTION

Q-function is unstable when using Boltzmax

Simple MDP with SARSA Algorithm

STABILITY OF Q-FUNCTION

When using Mellowmax

Simple MDP with SARSA Algorithm

ENVIRONMENT: RANDOM MDP

- $|S| \in \{2, 3, \dots, 10\}$
- $ullet |A| \in \{2,3,4,5\}$
- ullet Transition probabilities $p \sim U[0, 0.01]$
- ullet Add 2 noise to transition probabilities p
 - $lacksquare \epsilon_1 \sim \mathcal{N}(1,0.1) imes \mathcal{B}(1,0.5)$
 - ullet $\epsilon_2 \sim \mathcal{N}(100,1) imes \mathcal{B}(1,0.1)$

MULTIPLE FIX POINT

Random MDP with GVI algorithm

	MDPs, no terminate	MDPs, > 1 fixed points	average iterations
$boltz_{\beta}$	8 of 200	3 of 200	231.65
mm_{ω}	0	0	201.32

MULTIPLE FIX POINT

Random MDP with GVI algorithm

Policy	MDPs, no terminate	MDPs, >1 fixed points	average iterations
$boltz_{eta}$	3 of 200	5 of 200	181.00
mm_{ω}	0 of 200	4 of 200	178.72

ENVIRONMENT: LUNARLANDER-V2

ALGORITHM: REINFORCE

Algorithm 3 REINFORCE Algorithm

```
Require: initialize \theta, discount factor \gamma and step size \alpha repeat

Sample trajectory \tau \sim P_{\mu}^{\pi_{\theta}}

\theta \leftarrow \theta + \alpha(\sum_{t=0}^{\infty} \gamma^{t} G_{t}(\tau) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}))

until termination
```

LUNARLANDER-V2 WITH REINFORCE

LUNARLANDER-V2 WITH REINFORCE

CONCLUSION

- Computationally expensive (need to solve β)
- Does not improve significantly

THANKS FOR LISTENING