Individual Rationality and Preferences

PS 171B - Week 1

Derek Holliday

4/4/2019

Introductions

- Name
- Year
- Hometown
- Interest in Class
 - Problem you want to solve?
 - Interesting application?
 - New way of thinking?

Administration

- Attend your assigned section
- Section participation is 10% of total grade
 - Can't participate if you don't attend
 - ONE unexcused absence permitted without penalty
- Office Hours:
 - Wednesday/Thursday 1-2 PM Bunche 4337
- Website: github.com/deholliday/PS171B

Purpose/Format of Section

Review of Preference Notation

Strict Preference:

 $x \succ y \text{ or } xPy$

Weak Preference:

 $x \succeq y \text{ or } xRy$

Indifference:

 $x\sim y$ or xIy

Review of Rationality

Preference orderings must be **complete** and **transitive** in order to be rational.

- Completeness: $\forall x \in X$ and $\forall y \in X$, either xRy or yRx
- Transitivity: $\forall x \in X$, $\forall y \in X$, and $\forall z \in X$ if xRy and yRz then xRz

Usually we don't have issues with completeness. When might preferences be intransitive?

Practice Problem (Shepsle 2.4)

Two actors hold the following preferences over outcomes w, x, y, and z:

- Mr. i: xPw, xPy, zPx, yPz, wPy, and wPz
- Ms. j: xIy, xPz, xPw, yPz, yPw, and wIz

When presented with a choice over any subset of 3 or more outcomes...

- For which subsets can the actor identify their most-preferred choice(s)?
- Do any of the subsets contain a preference intransitivity among all outcomes in the subset?