A uniform bijection between nonnesting and noncrossing partitions

Drew Armstrong, Christian Stump*, Hugh Thomas

AMS Spring Meeting, Worcester, April 9, 2011

What am I going to talk about?

I will talk about

- noncrossing partitions, which are certain elements in a finite Coxeter group W
 - * they generalize noncrossing set partitions
- nonnesting partitions, which are antichains in the root poset associated to a finite, crystallographic Coxeter group W
 - * they generalize nonnesting set partitions
- o connections between noncrossing and nonnesting partitions
- a uniform bijection between both and some of its properties
- the proof of its existence, which is type-dependent and which leads to new combinatorics in the classical types

Noncrossing partitions

Let W be a finite Coxeter group with reflections T and a Coxeter element c. The **noncrossing partition lattice** NC(W,c) is the interval $[\mathbf{1},c]$ in the **Cayley graph** of (W,T).

A cyclic action on noncrossing partitions

Kreweras defined a cyclic action on NC(W, c) given by

$$\mathcal{K}: \sigma \mapsto c\sigma^{-1}$$
.

Observe that K^2 is the conjugation with the Coxeter element c.

Nonnesting partitions

Let W be a finite crystallographic Coxeter group with root system Φ . Let $\Delta \subseteq \Phi^+ \subseteq \Phi$ be collections of simple and positive roots.

Definition

The **root poset structure** on Φ^+ is given by

$$\alpha \leq \beta \Leftrightarrow \beta - \alpha \in \mathbb{N}\Delta.$$

$$[ij] = e_i - e_j \in \mathbb{R}^n$$

A cyclic action on nonnesting partitions

Definition

A **nonnesting partition** is an antichain in Φ^+ . Let

$$\mathit{NN}(W) := \{A \subseteq \Phi^+ : A \text{ antichain}\}.$$

Panyushev defined a cyclic action on NN(W) given by

$$\mathcal{P}: A \mapsto \min \left\{ \beta \in \Phi^+ : \beta \notin \mathcal{I}(A) \right\}.$$

Connections between noncrossing and nonnesting partitions

 Noncrossing and nonnesting partitions are both counted by the Catalan numbers for finite Coxeter groups,

$$|\mathit{NC}(W,c)| = |\mathit{NN}(W)| = \mathsf{Cat}(W) := \prod_{i=1}^\ell rac{d_i + h}{d_i},$$

- * for nonnesting partitions this formula is proved uniformly,
- * for noncrossing partitions this formula is proved case-by-case,
- several bijections between both are known in the classical types but no type-independent bijection was known,
- both where conjectured to exhibit a "cyclic sieving" with the same q-Catalan numbers for the Kreweras and the Panyushev map.

A uniform connection between NN(W) and NC(W, c)

Let

- o $S = L \sqcup R$ be a bipartition of the simple reflections such that the elements in L and in R pairwise commute,
- $\Delta = \Delta_L \sqcup \Delta_R$ be the bipartition of the simple roots,
- $c = c_L c_R$ be the bipartite Coxeter element.

Theorem (AST 2011)

There exists a unique bijection ψ from NN(W) to NC(W, c) satisfying the following three properties:

*
$$\psi(\Delta_L) = \mathbf{1}$$
, (initial condition)

$$* \ \psi \circ \mathsf{Pan} = \mathsf{Krew} \circ \psi, \tag{\mathsf{Pan} = \mathsf{Krew}}$$

*
$$\psi(I) = c_L \big|_{L \setminus \text{supp}(I)} \quad \psi \big|_{\text{supp}(I)}(I).$$
 (parabolic recursion)

A case-by-case realization of the bijection

$$\psi_A: NN(\mathfrak{S}_n) \xrightarrow{\sim} NC(\mathfrak{S}_n, c = (1, 2, \dots, n))$$

Implications of the constructions

Theorem (AST 2011, conjectured by Panyushev)

The Panyushev map \mathcal{P} has the following properties:

- $\circ \mathcal{P}^{2h}$ acts as the identity on NN(W),
- $\circ~\mathcal{P}^{h}$ acts as $-\omega_{0}$ on $\mathit{NN}(W)$,
- the average number of positive roots in an antichain in a Panyushev orbit equals half the rank of the group,

$$\frac{1}{|\mathcal{O}|} \sum_{A \in \mathcal{O}} |A| = \ell/2,$$

 \circ ${\cal P}$ exhibits a "cyclic sieving" on nonnesting partitions.