

UNIT 15

Reduction of State Tables State Assignment

This chapter includes:

- 15.1 Elimination of Redundant States
- 15.2 Equivalent States
- 15.3 Determination of State Equivalence Using an Implication Table
- 15.4 Equivalent Sequential Circuits
- 15.5 Reducing Incompletely Specified State Tables
- 15.6 Derivation of Flip-Flop Input Equations
- 15.7 Equivalent State Assignments
- 15.8 Guidelines for State Assignment
- 15.9 Using a One-Hot State Assignment

Learning Objectives

- 1. Define equivalent states, state several ways of testing for state equivalence, and determine if two states are equivalent.
- 2. Define equivalent sequential circuits and determine if two circuits are equivalent.
- 3. Reduce a state table to a minimum number of rows.
- 4. Specify a suitable set of state assignments for a state table, eliminating those assignments which are equivalent with respect to the cost of realizing the circuit.

Learning Objectives

- 5. State three guidelines which are useful in making state assignments, and apply these to making a good state assignment for a given state table.
- 6. Given a state table and assignment, form the transition table and derive flip-flop input equations.
- 7. Make a one-hot state assignment for a state graph and write the next-state and output equations by inspection.

TABLE 15-1 State Table for Sequence Detector

				Pres	ent
Input	Present	Next	Next State		put
Sequence	State	X = 0	X = 1	X = 0	X = 1
reset	Α	В	C	0	0
0	В	D	E	0	0
1	C	F	G	0	0
00	D	Н	1	0	0
01	E	J	K	0	0
10	F	L	M	0	0
11	G	N	P	0	0
000	Н	A	Α	0	0
001	1	A	A	0	0
010	J	A	A	0	1
011	K	A	A	0	0
100	L	A	A	0	1
101	M	A	A	0	0
110	N	A	A	0	0
111	Р	A	Α	0	0

Eliminating Redundant States from Table 15-1:

- ❖Looking at the table, we see that there is no way of telling states H and I apart. That is, if we start in state H, the next state is A and the output is 0; similarly, if we start in state I, the next state is A and the output is 0. We say that H is equivalent to $I(H \equiv I)$.
- Similarly, rows K, M, N, and P have the same next state and output as H, so K, M, N, and P can be replaced by H, and these rows can be deleted.
- Also, the next states and outputs are the same for rows J and L, so J≡L. Thus, L can be replaced with J and eliminated from the table. The result is shown in Table 15-2.
- ❖Having made these changes in the table, rows D and G are identical and so are rows E and F. Therefore, D≡G, and E≡F, so states F and G can be eliminated.

TABLE 15-2 State Table for Sequence Detector

			Pres	ent
Present	Next	State	Out	put
State	X = 0	X = 1	X = 0	<i>X</i> = 1
A	В	C	0	0
В	D	Ε	0	0
C	ÆΕ	GD	0	0
D	Н	ХH	0	0
E	J	ΚH	0	0
F	Ł.J	M.H	-0-	0
-G	N.H	RH	0	0
Н	Α	Α	0	0
-	A	— <u>A</u> —	0	0
J	A	A	0	1
-K	A	A	-0	0
-L	A	A	0	
M			0	0
N	A	A	0	0
P	A	<u>A</u>	<u>ō</u>	<u>ō</u> _

FIGURE 15-1 Reduced State

Table and Graph for Sequence Detector

Present State	X = 0		Out X = 0	•	
A	В	С	0	0	
В	D	Ε	0	0	
C	Ε	D	0	0	
D	Н	Н	0	0	
E	J	Н	0	0	
Н	Α	Α	0	0	
J	Α	Α	0	1	
(a)					

Equivalent States

State Equivalence:

*Two states are equivalent if there is no way of telling them apart through observation of the circuit inputs and outputs.

We can then state formally the definition of state equivalence as follows:

Definition 15.1

Let N_1 and N_2 be sequential circuits (not necessarily different). Let \underline{X} represent a sequence of inputs of arbitrary length. Then state p in N_1 is equivalent to state q in N_2 iff $\lambda_1(p, \underline{X}) = \lambda_2(q, \underline{X})$ for every possible input sequence \underline{X} .

Equivalent States

Theorem15.1 Two states p and q of a sequential circuit are equivalent iff for every single input X, the outputs are the same and the next states are equivalent, that is,

$$\lambda(p, X) = \lambda(q, X)$$
 and $\delta(p, X) \equiv \delta(q, X)$

where $\lambda(p, X)$ is the output given the present state p and input X, and $\delta(p, X)$ is the next state given the present state p and input X. Note that the next states do not have to be equal, just equivalent. For example, in Table 15-1, $D \equiv G$, but the next states (H and N for X = 0, and I and P for X = 1) are not equal.

Implication Table Method Procedure:

- 1. Construct a chart which contains a square for each pair of states.
- 2. Compare each pair of rows in the state table. If the outputs associated with states i and j are different, place an X in square i-j to indicate that $i \not\equiv j$. If the outputs are the same, place the implied pairs in square i-j. (If the next states of i and j are m and m for some input m, then m-m is an implied pair.) If the outputs and next states are the same (or if i-j only implies itself), place a check (E) in square i-j to indicate that i=j.

Implication Table Procedure (continued):

- 3. Go through the table square-by-square. If square i-j contains the implied pair m-n, and square m-n contains an X, then $i \not\equiv j$, and an X should be placed in square i-j.
- 4. If any X's were added in step 3, repeat step 3 until no more X's are added.
- 5. For each square i-j which does not contain an X, i \equiv j.

© Cengage Learning 2014

TABLE 15-3

Present	Next St	Present	
State	X = 0	1	Output
a	d	С	0
b	f	h	0
C	e	d	1
d	a	e	0
e	С	a	1
f	f	b	1
g	b	h	0
h	С	g	1

FIGURE 15-3

Implication Chart for Table 15-3

© Cengage Learning 2014

TA	BL	E 1	5-

Present	Next State		
State	X = 0 1		Output
a	a	C	0
ь	f	h	0
c	С	a	1
f	f	Ь	1
\boldsymbol{g}	b	h	0
h	C	g	1

FIGURE 15-4 Implication Chart After First Pass

FIGURE 15-5

Implication Chart After Secong Pass

Equivalent Sequential Circuits

Equivalent Sequential Circuits Formal Definition:

Definition 15.2

Sequential circuit N_1 is equivalent to sequential circuit N_2 if for each state p in N_1 , there is a state q in N_2 such that $p \equiv q$, and conversely, for each state s in s, there is a state s in s, such that $s \equiv t$.

FIGURE 15-6

Tables and Graphs for Equivalent Circuits

		N_1		
	X = 0	1	X = 0	1
A	В	Α	0	0
В	С	D	0	1
C	Α	C	0	1
D	С	В	0	0

		N_2		
	X = 0	1	X = 0	1
S ₀	S ₃	S ₁	0	1
S_1	S ₃	S_0	0	0
S_2	S ₀	S_2	0	0
S ₃	S ₂	S ₃	0	1

Equivalent Sequential Circuits

FIGURE 15-7

Implication Tables for Determining Circuit Equivalence

Cengage Learning 2014

S_0	X	C–S ₃ D–S ₁	A-S ₃ C-S ₁	X			
S_1	$_{A-S_{0}}^{B-S_{3}}$	X	X	$\begin{array}{c} C-S_3 \\ B-S_0 \end{array}$			
S_2	B-S ₀ A-S ₂	\times	X	$\begin{array}{c} C-S_0 \\ B-S_2 \end{array}$			
S_3	X	C-S ₂ D-S ₃	A-S ₂ C-S ₃	X			
•	A	B	C	D			
	(a)						

Equivalent State pairs:

$$A \equiv S_2$$
 $B \equiv S_0$ $C \equiv S_3$ $D \equiv S_1$

Since each state in N_1 has an equivalent state in N_2 and conversely, $N_1 \equiv N_2$.

Incompletely Specified Examples:

TABLE 15-5
Incompletely
Specified
Examples

© Cengage Learning 2014

LIESELL	wext state		Out	Jul
State	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
S ₀	S ₁	S ₃	0	_2
S_1	S_2	S_3	_1	0
S_2	S ₁	S_0	1	0
S ₃	S_2	S_3	0	1
		(a)		

Procent | Novt State | Output

Present	Next State		Out	out		
State	X = 0	<i>X</i> = 1	X = 0	X = 1		
S ₀	S ₂	S ₁	0	1		
S_1	S_1	S_0	_	1		
S_2	S ₂	S ₁	1	1		
/b)						

(b)

FIGURE 15-8 Implication Charts

for Table 15-5(a)

© Cengage Learning 2014

TAB	LE	15-6
M	od	ified
Table	15	-5(b)

Present	Next	State	Output		
State	X = 0	X = 1	X = 0	<i>X</i> = 1	
S ₀	S ₂	S ₁	0	1	
S ₁	S ₁ ²	S_0	0	1	
S ₁ ²	S ₁ ²	S_0	1	1	
S_2	S ₂	S_1^1	1	1	

Procedure to Reduce an Incompletely Specified Table:

- *To reduce an incompletely specified table, a minimum of the maximal compatibles are selected, say C_1 , C_2 , . . . , C_k , so that
- (1) each state of the table appears in at least one of the C_i , and
- (2) for each input combination x and each C_i , the next states of the states in C_i are contained in some C_j . (It may be that j=i.)

Even Parity Detector for 0 Through 5:

IABLE 15-7
Even Parity
Detector For 0
Through 5
© Cengage Learning 2014

	Present	Next	State	Output		
	State	X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	
	S ₀	S ₁	S ₂	-	-	
0	S ₁	S_3	S_4	-	-	
1	S ₂	S_4	-	-	-	
00	S ₃	S_0	S_0	1	0	
01, 10	S ₄	S_0	S_0	0	1	

FIGURE 15-9

Implication Chart for Table 15-7

© Cengage Learning 2014

S_1	S_1, S_3 S_2, S_4			
S_2	S_1, S_4	S ₃ /S ₄		
S_3	$S_0, S_1 \\ S_0, S_2$	$S_0, S_3 \\ S_0, S_4$	S_0, S_4	
S_4	$S_0, S_1 \\ S_0, S_2$	S_0, S_3 S_0, S_4	S_0, S_4	\times
	S_0	S_1	S_2	S_3

TABLE 15-8 Reduced Table for Table 15-7

	Present	Next	State	Output		
	State		X = 1	X = 0	X = 1	
S ₀ S ₁ S ₃	Α	Α	В	1	0	
$S_0 S_2 S_4$	В	C	В	0	1	
$S_0 S_1 S_4$	C	Α	В	0	1	

Derivation of Flip-Flop Input Equations

Procedure to Derive Flip-Flop Input Equations:

- 1. Assign flip-flop state values to correspond to the states in the reduced table.
- 2. Construct a transition table which gives the next states of the flip-flops as a function of the present states and inputs.
- 3. Derive the next-state maps from the transition table.
- 4. Find flip-flop input maps from the next-state maps using the techniques developed in Unit 12 and find the flip-flop input equations from the maps.
- ❖See pages 516-520 for applications of this procedure.

Equivalent State Assignments:

Now we must assign flip-flop states to correspond to the states in the table.

TABLE 15-11 State Assignments for 3-Row Tables

© Cengage Learning 2014

So	00	00	00	00	00	00	01	 11	11	11	11	11	11
S ₁	01	01	10	10	11	11	00	00	00	01	01	10	10
S ₀ S ₁ S ₂	10	11	01	11	01	10	10	01	10	00	10	00	01

FIGURE 15-13

Equivalent Circuits Obtained by Complementing Q_k

(a) Circuit A

 (b) Circuit B
 (identical to A except leads to flip-flop Q_k are crossed)

FIGURE 15-14

Equivalent Circuits
Obatined by
Complemeting Q_k

© Cengage Learning 2014

(a) Circuit A

(b) Circuit B (identical to A except for connections to flip-flop Q_k)

TABLE 15-12

Assignments		Present	Present Next State		Output		
A_3	B_3	C_3	State	X = 0	1	0	1
00	00	11	S ₁	S ₁	S ₃	0	0
01	10	10	S ₂	S ₂	S_1	0	1
10	01	01	S ₃	S ₃	S_3	1	0

J and K Input Equations:

46						4
Α.	SSI	$\sigma \mathbf{n}$	m	e_{1}	11	A
	2200			200		4

$$J_1 = XQ'_2$$

$$K_1 = X'$$

$$J_2 = X'Q_1$$

$$K_2 = X$$

$$Z = X'Q_1 + XQ_2$$

$$D_1 = XQ'_2$$

$$D_2 = X'(Q_1 + Q_2)$$
 $D_1 = X'(Q_2 + Q_1)$ $D_2 = X + Q_1Q_2$

Assignment B

$$J_2 = XQ'_1$$

$$K_2 = X'$$

$$J_1 = X'Q_2$$

$$K_1 = X$$

$$Z = X'Q_2 + XQ_1$$

$$D_2 = XQ'_1$$

$$D_1 = X'(Q_2 + Q_1)$$

Assignment C

$$K_1 = XQ_2$$

$$J_1 = X'$$

$$K_2 = X'Q'_1$$

$$J_2 = X$$

$$Z = X'Q_1 + XQ_2$$
 $Z = X'Q_2 + XQ_1$ $Z = X'Q_1' + XQ_2'$

$$D_1 = X' + Q_2'$$

$$D_2 = X + Q_1Q_2$$

Equivalent and Distinct State Assignments:

- Two state assignments are equivalent if one can be derived from the other by permuting and complementing columns.
- Two state assignments which are not equivalent are said to be distinct.

TABLE 15-13
Nonequivalent
Assignments for
Three and Four
States

	3-Stat	e Assign	ments	4-State Assignments		
States	1	2	3	1	2	3
a	00	00	00	00	00	00
b	01	01	11	01	01	11
C	10	11	01	10	11	01
d	_	_	_	11	10	10

TABLE 15-14

Number of Distinct (Nonequivalent) State Assignments

	Minimum	Number of
Number of	Number of	Distinct
States	State Variables	Assignments
2	1	1
3	2	3
4	2	3
5	3	140
6	3	420
7	3	840
8	3	840
9	4	10,810,800
•		
16	4	$\approx 5.5 \times 10^{10}$

Guidelines:

Assignments for two states are said to be adjacent if they differ in only one variable. Thus, 010 and 011 are adjacent, but 010 and 001 are not. The following guidelines are useful in making assignments which will place 1's together (or 0's together) on the next-state maps:

- States which have the same next state for a given input should be given adjacent assignments.
- States which are the next states of the same state should be given adjacent assignments.

A third guideline is used for simplification of the output function:

States which have the same output for a given input should be given adjacent assignments.

Derivation of State Assignment:

FIGURE 15-15

© Cengage Learning 2014

ABC		X = 0	1	0	1
000	S_0	S ₁	S ₂	0	0
110	S_1	S ₃	S_2	0	0
001	S_2	S ₁	S_4	0	0
111	S_3	S ₅	S_2	0	0
011	S_4	S ₁	S_6	0	0
101	S_5	S ₅	S_2	1	0
010	S_6	S ₁	S ₆	0	1

(a) State table

BC	0	1
00	<i>S</i> ₀	
01	S_1	S_6
11	S ₃	S_4
10	S ₅	<i>S</i> ₂

(b) Assignment maps

FIGURE 15-16

Next-State Maps for Figure 15-15

© Cengage Learning 2014

(a) Next-state maps for Figure 15-15

These pairs are adjacent because S_2 and S_5 have adjacent assignments

 $B^+ = D_R = X'C' + A'C + A'B$

 $C^+ = D_C = A + XB'$

(b) Next-state maps for Figure 15-15 (cont.)

© Gengage Leaming 2014

Guidelines for State Assignment

	X = 0	1	<i>X</i> = 0	1
a	a	C	0	0
b	d	f	0	1
C	с	a	0	0
d	d	Ь	0	1
e	b	f	1	0
f	с	e	1	0
		(a)		

Q_2Q_3	0	1	
00	a	c	- 000
01		e	a = 000 b = 111 c = 100
11	d	b	d = 011 e = 101 f = 110
10		f	j=110
'	(t	b)	•

Q_2Q_3	0	1	
00	C	а	- 100
01		e	a = 100 b = 111 c = 000
11	d	b	d = 011 e = 101
10	f		f=010
'	(0	c)	1

TABLE 15-15 Transition Table for Figure 15-17(a)

	$Q_1^+Q_2^+Q_3^+$			
$Q_1Q_2Q_3$	X = 0	1	X = 0	1
1 0 0	100	000	0	0
1 1 1	011	010	0	1
0 0 0	000	100	0	0
0 1 1	011	111	0	1
1 0 1	111	010	1	0
0 1 0	000	101	1	0

(Figure 15-18) from the transition table. The D flip-flop input equations can be read directly from these maps:

$$D_1 = Q_1^+ = X'Q_1Q_2' + XQ_1'$$

$$D_2 = Q_2^+ = Q_3$$

$$D_3 = Q_3^+ = XQ_1'Q_2 + X'Q_3$$

and the output equation is

$$Z = XQ_2Q_3 + X'Q_2'Q_3 + XQ_2Q_3'$$

The cost of realizing these equations is 10 gates and 26 gate inputs.

FIGURE 15-18

Next-State and Output Maps for Table 15-15

XQ		0.4		40
Q_2Q_3	00	01	11	10
00	0	0	0	0
01	X	1	1	X
11	1	1	1	1
10	0	X	X	0
		Q‡=	= D ₂	

XQ	1			
Q_2Q_3	00	01	11	10
00	0	0	0	0
01	X	1	0	Х
11	1	1	0	1
10	0	X	X	1
		O‡=	- D-	

χQ	1			
Q_2Q_3	00	01	11	10
00	0	0	0	0
01	X	1	0	X
11	0	0	1	1)
10	1	X	X	0
		- 2	Z	

Using a One-Hot State Assignment

One-Hot State Assignment:

- ❖The one-hot assignment uses one flip-flop for each state, so a state machine with N states requires N flip-flops. Exactly one of the flip-flops is set to one in each state.
- ❖For example, a system with four states (S_0 , S_1 , S_2 , and S_3) could use four flip-flops (Q_0 , Q_1 , Q_2 , and Q_3) with the following state assignment:
- S_0 : $Q_0 Q_1 Q_2 Q_3 = 1000$, S_1 : 0100, S_2 : 0010, S_3 : 0001 The other 12 combinations are not used.
- ❖In general, when a one-hot state assignment is used, each term in the next-state equation for each flip-flop contains exactly one state variable, and the reduced equation can be written by inspecting the state graph.