Balanza de Corriente

Estudiante de Física

April 8, 2025

1 Objetivo

- Estudiar la **ley de Laplace** aplicada a la interacción entre corrientes eléctricas y campos magnéticos.
- Determinar experimentalmente el **módulo del campo magnético** generado por un imán permanente.
- Observar y analizar el principio de acción y reacción de Newton en un sistema magnético.

2 Materiales

- Generador de corriente continua: Para suministrar una corriente estable.
- Balanza digital: Medir variaciones de masa debido a fuerzas magnéticas.
- Soporte y barra metálica: Estructura para fijar componentes.
- Set de circuitos impresos (6 modelos): Diferentes longitudes de conductores para variar el parámetro L.
- Unidad de sujeción: Dispositivo para fijar los circuitos impresos cerca del imán.
- Cables y amperímetro: Conectar y medir la corriente en el circuito.
- Imán permanente: Fuente del campo magnético.

3 Fundamentos Teóricos

3.1 Ley de Laplace

Cuando un conductor de longitud L, por el que circula una corriente I, se coloca en un campo magnético \vec{B} , experimenta una fuerza magnética \vec{F} . Esta fuerza

es perpendicular al plano formado por \vec{B} y el vector longitud \vec{L} , y se expresa como:

$$\vec{F} = I \cdot (\vec{L} \times \vec{B}) \quad (1)$$

Donde:

- \vec{L} : Vector con magnitud igual a la longitud del conductor y dirección igual al sentido de la corriente.
- \vec{B} : Campo magnético del imán.

4 Procedimiento Experimental

4.1 Montaje Inicial

1. Fijación de componentes:

- Unir la barra metálica a la base del soporte.
- Enroscar la unidad de sujeción en la barra.
- Acoplar el circuito impreso seleccionado en la parte frontal de la unidad de sujeción.

2. Configuración eléctrica:

- Conectar el generador en modo corriente continua.
- Colocar el amperímetro en serie entre el generador y la unidad de sujeción.
- Asegurar que el circuito esté abierto hasta comenzar las mediciones.

4.2 Medición de la Masa del Imán

• Pesar el imán con la balanza y registrar su masa (m) junto con la precisión del instrumento.

4.3 Colocación del Circuito Impreso

- Posicionar el circuito impreso entre los polos del imán **sin contacto físico** (Figura
- Asegurar que solo la sección horizontal del circuito esté expuesta al campo magnético.

4.4 Ejecución del Experimento

- 1. Encender el generador para establecer una corriente ${\cal I}$ en el circuito.
- 2. Registrar la masa aparente (m') mostrada por la balanza, que disminuirá debido a la fuerza de reacción magnética $\vec{F_r}$.

4.5 Análisis de Fuerzas

En equilibrio estático, las fuerzas sobre el imán cumplen:

$$\sum \vec{F}_i = \vec{F}_N + \vec{P} + \vec{F}_r = \vec{0} \quad (2)$$

Donde:

- \vec{F}_N : Fuerza normal de la balanza.
- $\vec{P} = m \cdot \vec{q}$: Peso del imán.
- $\vec{F}_r = I \cdot L \cdot |\vec{B}|$: Fuerza de reacción (módulo igual a la fuerza magnética).

La relación entre la masa aparente y el campo magnético se obtiene de:

$$m' \cdot g = m \cdot g - I \cdot L \cdot |\vec{B}| \quad (6)$$

5 Tratamiento de datos

5.1 Intensidad constante

Teniendo en cuenta la anterior dependencia

$$F_N = m'g$$

podemos desarrollar la propagación de errores

$$\Delta F_N = \left| \frac{\partial F_N}{\partial m'} \right| \Delta m' + \left| \frac{\partial F_N}{\partial g} \right| \Delta g = g \Delta m' + m' \Delta g$$

sabiendo que $\Delta g = 10^{-7}$ y que $\Delta m' = 10^{-6}$, este error acaba siendo apróximadamente $\Delta F_N = 10^{-4}$ (N). Además, la longitud de los circuitos L se midió con un pie de rey que tenía una precisión de $\Delta L = 10^{-5}$. Con esto tenemos los siguientes datos:

I(A)	m (kg)	$F_N(N)$	L(m)	Circuito
1.5 ± 0.01	$(160.27 \pm 0.01)e-3$	1.5706 ± 0.0001	$(7.80 \pm 0.01)e-3$	SF40
1.5 ± 0.01	$(160.11 \pm 0.01)e-3$	1.5690 ± 0.0001	$(20.10 \pm 0.01)e-3$	SF37
1.5 ± 0.01	$(160.03 \pm 0.01)e-3$	1.5682 ± 0.0001	$(27.52 \pm 0.01)e-3$	SF39
1.5 ± 0.01	$(159.76 \pm 0.01)e-3$	1.5655 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
1.5 ± 0.01	$(159.65 \pm 0.01)e-3$	1.5645 ± 0.0001	$(37.75 \pm 0.01)e-3$	SF41
1.5 ± 0.01	$(159.13 \pm 0.01)e-3$	1.5594 ± 0.0001	$(40.00 \pm 0.01)e-3$	SF42

Si representamos F_N frente a L, obtenemos

Donde se puede observar una clara dependencia lineal. Para el ajuste lineal, vamos a obtener una recta de la forma

$$F_N = n + L \cdot m$$

donde n va a tener unidades de fuerza, y m va a tener unidades de fuerza por unidad de longitud. Concretamente, esta m será

$$m = IB$$

Realizando este ajuste, obtenemos que $n=1.572\pm0.001~(N)$ y que $m=-0.21\pm0.04~(\frac{N}{m})$, además de un coeficiente de correlación r=-0.9390. Para deducir el valor del campo magnético en base a la pendiente, obtenemos que:

$$B = \frac{m}{I} = -0.14 \ (T)$$

Desarrollamos la propagación de errores:

$$\Delta B = |\frac{\partial B}{\partial m}|\Delta m + |\frac{\partial B}{\partial I}|\Delta I = \frac{\Delta m}{I} + \frac{m}{I^2}\Delta I \approx 0.03$$

Finalmente, nuestro campo magnético es

$$B = -0.14 \pm 0.03 \ (T)$$

Respecto a la masa del imán, sabemos que la ordenada en el origen n es

$$n = mg$$

por lo que podemos despejar para obtener

$$m = \frac{n}{g}$$

Desarrollando la propagación del error, obtenemos que

$$\Delta m = |\frac{\partial m}{\partial n}|\Delta n + |\frac{\partial m}{\partial g}|\Delta g = \frac{\Delta n}{g} + \frac{n}{g^2}\Delta g = \frac{0.001}{9.7996413} + \frac{1.572}{9.7996413^2} \cdot 0.0000001 \approx 0.0001$$

Por lo que la masa del imán es

$$m = 0.1604 \pm 0.0001$$

Si calculamos el error porcentual en comparación con la masa medida en el laboratorio (m=0.16041), nuestro error es

$$\varepsilon_P = |\frac{m - \tilde{m}}{m}| \cdot 100 \approx 0.006\%$$

5.2 Circuito constante

Cuando se fue variando la intensidad y se mantuvo el circuito constante, se obtuvieron los siguientes datos:

I(A)	$\mid m \; (kg)$	$\mid F_N (N) \mid$	$\mid L(m) \mid$	Circuito
1.75 ± 0.01	$(159.64 \pm 0.01)e-3$	1.5644 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
2 ± 0.01	$(159.56 \pm 0.01)e-3$	1.5636 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
2.25 ± 0.01	$(159.47 \pm 0.01)e-3$	1.5627 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
2.5 ± 0.01	$(159.36 \pm 0.01)e-3$	1.5616 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
2.75 ± 0.01	$(159.26 \pm 0.01)e-3$	1.5606 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38
3.00 ± 0.01	$(159.14 \pm 0.01)e-3$	1.5595 ± 0.0001	$(30.00 \pm 0.01)e-3$	SF38

Lo que nos da la siguiente gráfica:

Donde la dependencia lineal es todavía más evidente. Realizando el ajuste de mínimos cuadrados, obtenemos una ordenada en el origen $n=1.5714\pm0.0003~(N)$, y una pendiente $m=-0.0039\pm0.0001~(\frac{N}{A})$, además de un coeficiente de correlación r=-0.9979. De nuevo, tenemos una recta de la forma

$$F_N = n + I \cdot m$$

donde en este caso m=BL. Podemos despejar B para obtener

$$B = \frac{m}{L} = -0.13 \ (T)$$

Desarrollando la propagación de errores, obtenemos

$$\Delta B = |\frac{\partial B}{\partial m}|\Delta m + |\frac{\partial B}{\partial L}|\Delta L = \frac{\Delta m}{L} + \frac{m}{L^2}\Delta L = \frac{0.0001}{0.03} + \frac{0.0039}{0.03^2} \cdot 10^{-5} \approx 0.003~(T)$$

por tanto, nuestro campo magnético es

$$B = -0.13 \pm 0.003 \ (T)$$

Para calcular la masa del imán, tenemos que $n=m^\prime g$, por lo que podemos despejar para obtener

$$m' = \frac{n}{g} = 0.16035$$

Calculamos el error:

$$\Delta m' = |\frac{\partial m'}{\partial n}|\Delta n + |\frac{\partial m'}{\partial g}|\Delta g = \frac{\Delta n}{g} + \frac{n}{g^2}\Delta g = \frac{0.0003}{9.7996413} + \frac{1.5714}{9.7996413^2} \cdot 0.0000001 \approx 0.00003$$

Por tanto, la masa es

$$m' = 0.16035 \pm 0.00003$$

Comparado con el resultado observado en el laboratorio, nuestro error porcentual es $\tilde{\ }$

$$\varepsilon_P = |\frac{m - \tilde{m}}{m}| \cdot 100 \approx 0.04\%$$