Exponential Sums and Enumeration of Permutation Polynomials

Francesco Pappalardi

Conference on Zeta Functions in honor of Prof. K. Ramachandra on his 70th birthday

National Institute of Advanced Studies
NIAS

Bangalore December 13 - 15, 2003

Ramachandra's birthday

 $oxed{Notations}$

[Notations]

 \mathbb{F}_q

Finite field,
$$q = p^n$$

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

[Notations]

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{\sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{If} \sigma \in \mathcal{S}(\mathbb{F}_q)$$

Notations |

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{If} \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{If} \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

$$\partial f_{\sigma} \leq q-2 \text{ if } q>2$$

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

$$\partial f_{\sigma} \leq q-2 \text{ if } q>2$$

$$f_{\sigma}(c) = \sigma(c) \qquad \forall c \in \mathbb{F}_q$$

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q - 1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

$$\triangle \partial f_{\sigma} \leq q-2 \text{ if } q>2$$

$$f_{\sigma}(c) = \sigma(c) \qquad \forall c \in \mathbb{F}_q$$

Definition.

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

$$\triangle \partial f_{\sigma} \leq q-2 \text{ if } q>2$$

$$f_{\sigma}(c) = \sigma(c) \qquad \forall c \in \mathbb{F}_q$$

Definition.

 $f \in \mathbb{F}_q[x]$ is a permutation polynomial (PP) if $\exists \sigma \in \mathcal{S}(\mathbb{F}_q)$ such that

Finite field,
$$q = p^n$$

$$\mathcal{S}(\mathbb{F}_q) = \{ \sigma : \mathbb{F}_q \to \mathbb{F}_q \mid \sigma \text{ permutes } \mathbb{F}_q \}$$

$$\operatorname{\mathbb{F}} \ \operatorname{If} \ \sigma \in \mathcal{S}(\mathbb{F}_q)$$

$$f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1} \right) \in \mathbb{F}_q[x]$$

is called permutation polynomial of σ

Note:

$$\triangle \partial f_{\sigma} \leq q-2 \text{ if } q>2$$

$$f_{\sigma}(c) = \sigma(c) \qquad \forall c \in \mathbb{F}_q$$

Definition.

 $f \in \mathbb{F}_q[x]$ is a permutation polynomial (PP) if $\exists \sigma \in \mathcal{S}(\mathbb{F}_q)$ such that

$$f \equiv f_{\sigma} \bmod x^q - x$$

$$ax + b, a, b \in \mathbb{F}_q, a \neq 0$$

Examples of Permutation Polynomial:

$$ax + b, \quad a, b \in \mathbb{F}_q, a \neq 0$$

 \bigcirc Composition $f \circ g$ is a PP if f and g are PP

Examples of Permutation Polynomial:

$$ax + b, a, b \in \mathbb{F}_q, a \neq 0$$

 \bigcirc Composition $f \circ g$ is a PP if f and g are PP

$$x^{(q+m-1)/m} + ax$$
 is a PP if $m|q-1$

$$ax + b, a, b \in \mathbb{F}_q, a \neq 0$$

- \bigcirc Composition $f \circ g$ is a PP if f and g are PP
- $x^{(q+m-1)/m} + ax$ is a PP if m|q-1
- Dickson polynomials $a \in \mathbb{F}_q, k \in \mathbb{N}$

$$ax + b, a, b \in \mathbb{F}_q, a \neq 0$$

$$x^k$$
, $(k, q - 1) = 1$

- \bigcirc Composition $f \circ g$ is a PP if f and g are PP
- $x^{(q+m-1)/m} + ax$ is a PP if m|q-1
- Dickson polynomials $a \in \mathbb{F}_q, k \in \mathbb{N}$

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

Ramachandra's birthday

Properties

$$x^k$$
, $(k, q - 1) = 1$

- \bigcirc Composition $f \circ g$ is a PP if f and g are PP
- $x^{(q+m-1)/m} + ax$ is a PP if m|q-1
- Dickson polynomials $a \in \mathbb{F}_q, k \in \mathbb{N}$

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

$$\longrightarrow$$
 If $a \neq 0$, $D_k(x, a)$ is a PP $\Leftrightarrow (k, q^2 - 1) = 1$

- \bigcirc Composition $f \circ g$ is a PP if f and g are PP
- $x^{(q+m-1)/m} + ax$ is a PP if m|q-1
- \bigcirc Dickson polynomials $a \in \mathbb{F}_q, k \in \mathbb{N}$

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

- \longrightarrow If $a \neq 0$, $D_k(x, a)$ is a PP $\Leftrightarrow (k, q^2 1) = 1$
- riangleq Linearized Polynomials $q=p^m, \alpha_1, \ldots, \alpha_s \in \mathbb{F}_{p^m}$

- \bigcirc Composition $f \circ g$ is a PP if f and g are PP
- $x^{(q+m-1)/m} + ax$ is a PP if m|q-1
- \bigcirc Dickson polynomials $a \in \mathbb{F}_q, k \in \mathbb{N}$

$$D_k(x,a) = \sum_{j=0}^{[k/2]} \frac{k}{k-j} {k-j \choose j} (-a)^j x^{k-2j}$$

- \longrightarrow If $a \neq 0$, $D_k(x, a)$ is a PP $\Leftrightarrow (k, q^2 1) = 1$
- riangle Linearized Polynomials $q=p^m, \alpha_1, \ldots, \alpha_s \in \mathbb{F}_{p^m}$

$$L(x) = \sum_{s=0}^{r-1} \alpha_s x^{q^s}$$
 is a PP \Leftrightarrow $\det(\alpha_{i-j}^{q^j}) \neq 0$

① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret

 Balu chooses $b \in [0, q^2 1]$ secret

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret

 Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha := D_a(\gamma, \pm 1)$

- $ext{ } ext{ } ext$
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha := D_a(\gamma, \pm 1)$ Balu computes and publish $\beta := D_b(\gamma, \pm 1)$

- $ext{ } ext{ } ext$
- 2 Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- 4 The common secret key is

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- 4 The common secret key is $D_{ab}(\gamma,\pm 1)=D_a(D_b(\gamma,\pm 1),\pm 1)=D_b(D_a(\gamma,\pm 1),\pm 1)$

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret

 Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- The common secret key is $D_{ab}(\gamma,\pm 1) = D_a(D_b(\gamma,\pm 1),\pm 1) = D_b(D_a(\gamma,\pm 1),\pm 1)$
- 5 To find the secret key Ramki has to solve

Dickson-Diffie-Hellmann Key Exchange

- $ext{ } ext{ } ext$
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- The common secret key is $D_{ab}(\gamma,\pm 1) = D_a(D_b(\gamma,\pm 1),\pm 1) = D_b(D_a(\gamma,\pm 1),\pm 1))$

Dickson-Diffie-Hellmann Key Exchange

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- 4 The common secret key is $D_{ab}(\gamma,\pm 1)=D_a(D_b(\gamma,\pm 1),\pm 1)=D_b(D_a(\gamma,\pm 1),\pm 1))$

NOTE There exists a fast algorithm to compute $D_a(\gamma, c) \in \mathbb{F}_q$

Dickson-Diffie-Hellmann Key Exchange

- ① $\operatorname{\mathbf{Adhikari}}$ and $\operatorname{\mathbf{Balu}}$ choose \mathbb{F}_q and $\gamma \in \mathbb{F}_q$ generator
- ② Adhikari chooses $a \in [0, q^2 1]$ secret Balu chooses $b \in [0, q^2 1]$ secret
- 3 Adhikari computes and publish $\alpha:=D_a(\gamma,\pm 1)$ Balu computes and publish $\beta:=D_b(\gamma,\pm 1)$
- The common secret key is $D_{ab}(\gamma,\pm 1) = D_a(D_b(\gamma,\pm 1),\pm 1) = D_b(D_a(\gamma,\pm 1),\pm 1))$

NOTE There exists a fast algorithm to compute $D_a(\gamma, c) \in \mathbb{F}_q$

Problem Find new classes of PP

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

$$\sum_{d < q-2} N_d(q) = q!$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

(linear PP)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

(linear PP)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

(linear PP)

-31

Enumeration of PP with given degree

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

$$N_d(q)$$
 is known for $d < 6$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

Ramachandra's birthday

(linear PP)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

 $N_d(q)$ is known for d < 6

Almost all PP have degree q-2

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

(linear PP)

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

(if
$$q > 2$$
, $\partial f_{\sigma} \le q - 2$)

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

- $N_d(q)$ is known for d < 6
- Almost all PP have degree q-2

$$M_q = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial f_\sigma < q - 2 \}$$

$$N_d(q) = \#\{\sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) = d\}$$

Problem: Compute $N_d(q)$

$$\sum_{d \le q-2} N_d(q) = q!$$

(if
$$q > 2$$
, $\partial f_{\sigma} \leq q - 2$)

$$N_1(q) = q(q-1)$$

$$N_d(q) = 0 \text{ if } d|q-1$$

$$N_d(q)$$
 is known for $d < 6$

Almost all PP have degree q-2

$$M_q = \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial f_\sigma < q - 2 \}$$

S. Konyagin, FP (2002), P. Das (2002)

$$|\#M_q - (q-1)!| \le \sqrt{2e/\pi}q^{q/2}$$

Ramachandra's birthday

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

 $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

- $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)
- $\mathcal{C} \subset \mathcal{S}(\mathbb{F}_q)$ conjugation class

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

- $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)
- $\mathcal{C} \subset \mathcal{S}(\mathbb{F}_q)$ conjugation class
- Natural functions:

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

- $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)
- $\mathcal{C} \subset \mathcal{S}(\mathbb{F}_q)$ conjugation class
- Natural functions:

$$\mathbf{X}$$
 $m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q - c_{\mathcal{C}}\}$

(minimal degree)

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

- $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)
- $\mathcal{C} \subset \mathcal{S}(\mathbb{F}_q)$ conjugation class
- Natural functions:

$$\mathbf{X} \ m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q - c_{\mathcal{C}}\}\$$

 $M_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} < q - 2\}$

(minimal degree)

(non-maximal degree)

$$q - c_{\sigma} \le \partial f_{\sigma} \le q - 2 \qquad \Leftarrow \qquad \sigma \in \mathcal{S}(\mathbb{F}_q) \setminus \{id\} \quad \text{and } q > 2$$

where
$$c_{\sigma} = \#\{a \in \mathbb{F}_q \mid \sigma(a) \neq a\}$$

- $c_{\sigma_1} = c_{\sigma_2}$ if σ_1 and σ_2 are conjugate (i.e. $c_{\sigma} = c_{\mathcal{C}(\sigma)}$)
- $\mathcal{C} \subset \mathcal{S}(\mathbb{F}_q)$ conjugation class
- Natural functions:

$$\mathbf{X} \ m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q - c_{\mathcal{C}}\}\$$

 $M_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} < q - 2\}$

(minimal degree)

(non-maximal degree)

Theorem C. Malvenuto, FP (2002)

- If $C \neq [2], [3], [2\ 2], \text{ then}$ $M_{C}(q) = \frac{\#C}{q} + O_{C}\left(\frac{1}{q^{2}}\right) \quad \text{if} \quad \operatorname{char} \mathbb{F}_{q} \to \infty$
- Explicit Formulas for $M_{\mathcal{C}}(q)$ if $c_{\mathcal{C}} \leq 6$

$$\begin{array}{rcl} M_{[4]}(q) & = & \frac{1}{4}q(q-1)\left(q-5-2\eta(-1)-4\eta(-3)\right) \\ M_{[2\ 2]}(q) & = & \frac{1}{8}q(q-1)(q-4)\left\{1+\eta(-1)\right\} \\ M_{[5]}(q) & = & \frac{1}{5}q(q-1) \ q^2-(9-\eta(5)-5\eta(-1)+5\eta(-9))\,q++26+5\eta(-7)+15\eta(-3)+15\eta(-1) \\ M_{[2\ 3]}(q) & = & \frac{1}{6}q(q-1) \ q^2-(9+\eta(-3)+3\eta(-1))q+(24+6\eta(-3)+18\eta(-1)+6\eta(-7)) \\ M_{[6]}(q) & = & \frac{q(q-1)}{6}\left\{q^3-14\ q^2+\left[68-6\ \eta(5)-6\ \eta(50)\right]q-\left[154+66\ \eta(-3)+93\ \eta(-1)\right.\right. \\ & & +12\eta(-2)+54\eta(-7)\right]\right\} \\ M_{[4\ 2]}(q) & = & \frac{q(q-1)}{8}\left(q^3-\left[14-\eta(2)\right]q^2+\left[71+12\eta(-1)+\eta(-2)+4\eta(-3)-8\eta(50)\right]q \\ & & -\left[148+100\eta(-1)+24\eta(-2)+44\eta(-3)+40\eta(-7)\right]\right) \\ M_{[3\ 3]}(q) & = & \frac{q(q-1)}{18}\left(q^3-13\ q^2+\left[62+9\eta(-1)+4\eta(-3)\right]q-\left[150+99\eta(-1)+42\eta(-3)+72\eta(-7)\right]\right) \\ M_{[2\ 2\ 2]}(q) & = & \frac{q(q-1)}{48}\left(q^3-\left[14+3\eta(-1)\right]q^2+\left[70+36\eta(-1)+6\eta(-2)\right]q-\left[136+120\eta(-1)+48\eta(-2)+8\eta(-2)+8\eta(-3)\right]\right) \end{array}$$

 $\operatorname{char}(\mathbb{F}_q) > 3$ and η is the quadratic character


```
\begin{array}{rcl} M_{[4]}(q) & = & \frac{1}{4}q(q-1)\left(q-5-2\eta(-1)-4\eta(-3)\right) \\ M_{[2\ 2]}(q) & = & \frac{1}{8}q(q-1)(q-4)\left\{1+\eta(-1)\right\} \\ M_{[5]}(q) & = & \frac{1}{5}q(q-1) \ q^2-(9-\eta(5)-5\eta(-1)+5\eta(-9))\,q++26+5\eta(-7)+15\eta(-3)+15\eta(-1) \\ M_{[2\ 3]}(q) & = & \frac{1}{6}q(q-1) \ q^2-(9+\eta(-3)+3\eta(-1))q+(24+6\eta(-3)+18\eta(-1)+6\eta(-7)) \\ M_{[6]}(q) & = & \frac{q(q-1)}{6}\left\{q^3-14\ q^2+\left[68-6\ \eta(5)-6\ \eta(50)\right]q-\left[154+66\ \eta(-3)+93\ \eta(-1)\right.\right. \\ & & +12\eta(-2)+54\eta(-7)\right]\} \\ M_{[4\ 2]}(q) & = & \frac{q(q-1)}{8}\left(q^3-\left[14-\eta(2)\right]q^2+\left[71+12\eta(-1)+\eta(-2)+4\eta(-3)-8\eta(50)\right]q \\ & & -\left[148+100\eta(-1)+24\eta(-2)+44\eta(-3)+40\eta(-7)\right]) \\ M_{[3\ 3]}(q) & = & \frac{q(q-1)}{18}\left(q^3-13\ q^2+\left[62+9\eta(-1)+4\eta(-3)\right]q-\left[150+99\eta(-1)+42\eta(-3)+72\eta(-7)\right]) \\ M_{[2\ 2\ 2]}(q) & = & \frac{q(q-1)}{48}\left(q^3-\left[14+3\eta(-1)\right]q^2+\left[70+36\eta(-1)+6\eta(-2)\right]q-\left[136+120\eta(-1)+48\eta(-2)+8\eta(-3)\right]) \end{array}
```

 $\operatorname{char}(\mathbb{F}_q) > 3$ and η is the quadratic character

PP with minimal degree

$$\begin{array}{rcl} M_{[4]}(q) & = & \frac{1}{4}q(q-1)\left(q-5-2\eta(-1)-4\eta(-3)\right) \\ M_{[2\ 2]}(q) & = & \frac{1}{8}q(q-1)(q-4)\left\{1+\eta(-1)\right\} \\ M_{[5]}(q) & = & \frac{1}{5}q(q-1) \ q^2-(9-\eta(5)-5\eta(-1)+5\eta(-9)) \ q++26+5\eta(-7)+15\eta(-3)+15\eta(-1) \\ M_{[2\ 3]}(q) & = & \frac{1}{6}q(q-1) \ q^2-(9+\eta(-3)+3\eta(-1))q+(24+6\eta(-3)+18\eta(-1)+6\eta(-7)) \\ M_{[6]}(q) & = & \frac{q(q-1)}{6}\left\{q^3-14\ q^2+\left[68-6\ \eta(5)-6\ \eta(50)\right]q-\left[154+66\ \eta(-3)+93\ \eta(-1)\right.\right. \\ & & +12\eta(-2)+54\eta(-7)\right]\} \\ M_{[4\ 2]}(q) & = & \frac{q(q-1)}{8}\left(q^3-\left[14-\eta(2)\right]q^2+\left[71+12\eta(-1)+\eta(-2)+4\eta(-3)-8\eta(50)\right]q \\ & & -\left[148+100\eta(-1)+24\eta(-2)+44\eta(-3)+40\eta(-7)\right]) \\ M_{[3\ 3]}(q) & = & \frac{q(q-1)}{18}\left(q^3-13\ q^2+\left[62+9\eta(-1)+4\eta(-3)\right]q-\left[150+99\eta(-1)+42\eta(-3)+72\eta(-7)\right]) \\ M_{[2\ 2\ 2]}(q) & = & \frac{q(q-1)}{48}\left(q^3-\left[14+3\eta(-1)\right]q^2+\left[70+36\eta(-1)+6\eta(-2)\right]q-\left[136+120\eta(-1)+48\eta(-2)+8\eta(-3)\right]) \end{array}$$

 $\operatorname{char}(\mathbb{F}_q) > 3$ and η is the quadratic character

PP with minimal degree

$$\mathsf{X} \ m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q - c_{\mathcal{C}}\}$$

$$\begin{array}{rcl} M_{[4]}(q) & = & \frac{1}{4}q(q-1)\left(q-5-2\eta(-1)-4\eta(-3)\right) \\ M_{[2\ 2]}(q) & = & \frac{1}{8}q(q-1)(q-4)\left\{1+\eta(-1)\right\} \\ M_{[5]}(q) & = & \frac{1}{5}q(q-1) \ q^2-(9-\eta(5)-5\eta(-1)+5\eta(-9))\,q++26+5\eta(-7)+15\eta(-3)+15\eta(-1) \\ M_{[2\ 3]}(q) & = & \frac{1}{6}q(q-1) \ q^2-(9+\eta(-3)+3\eta(-1))q+(24+6\eta(-3)+18\eta(-1)+6\eta(-7)) \\ M_{[6]}(q) & = & \frac{q(q-1)}{6}\left\{q^3-14\ q^2+\left[68-6\ \eta(5)-6\ \eta(50)\right]q-\left[154+66\ \eta(-3)+93\ \eta(-1)\right.\right. \\ & & +12\eta(-2)+54\eta(-7)\right]\} \\ M_{[4\ 2]}(q) & = & \frac{q(q-1)}{8}\left(q^3-\left[14-\eta(2)\right]q^2+\left[71+12\eta(-1)+\eta(-2)+4\eta(-3)-8\eta(50)\right]q \\ & & -\left[148+100\eta(-1)+24\eta(-2)+44\eta(-3)+40\eta(-7)\right]) \\ M_{[3\ 3]}(q) & = & \frac{q(q-1)}{18}\left(q^3-13\ q^2+\left[62+9\eta(-1)+4\eta(-3)\right]q-\left[150+99\eta(-1)+42\eta(-3)+72\eta(-7)\right]) \\ M_{[2\ 2\ 2]}(q) & = & \frac{q(q-1)}{48}\left(q^3-\left[14+3\eta(-1)\right]q^2+\left[70+36\eta(-1)+6\eta(-2)\right]q-\left[136+120\eta(-1)+48\eta(-2)+8\eta(-3)\right]) \end{array}$$

 $\operatorname{char}(\mathbb{F}_q) > 3$ and η is the quadratic character

PP with minimal degree

$$\mathsf{X} \ m_{\mathcal{C}}(q) = \#\{\sigma \in \mathcal{C}, \partial f_{\sigma} = q - c_{\mathcal{C}}\}$$

Theorem C. Malvenuto, FP (to appear)

• If
$$q \equiv 1 \mod k$$

then
$$m_{[k]}(q) \ge \frac{\varphi(k)}{k} q(q-1)$$

• If
$$\operatorname{char}(\mathbb{F}_q) \geq 2 \cdot 3^{[k/3]-1}$$

then
$$m_{[k]}(q) \le \frac{(k-1)!}{k} q(q-1)$$

$$\mathcal{N}_d = \# \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \}$$

$$\mathcal{N}_d = \# \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \}$$

Theorem S. Konyagin, FP

Let $\alpha = (e-2)/3e = 0.08808 \cdots$ and $d < \alpha q$. Then

$$\left| \mathcal{N}_d - \frac{q!}{q^d} \right| \le 2^d dq^{2+q-d} \binom{q}{d} \left(\frac{2d}{q-d} \right)^{(q-d)/2}$$

It follows that

$$\mathcal{N}_d \sim rac{q!}{q^d}$$

if $d \leq \alpha q$ and $\alpha < 0.03983$

$$\mathcal{N}_d = \# \{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \}$$

Theorem S. Konyagin, FP

Let $\alpha = (e-2)/3e = 0.08808 \cdots$ and $d < \alpha q$. Then

$$\left| \mathcal{N}_d - \frac{q!}{q^d} \right| \le 2^d dq^{2+q-d} \binom{q}{d} \left(\frac{2d}{q-d} \right)^{(q-d)/2}$$

It follows that

$$\mathcal{N}_d \sim rac{q!}{q^d}$$

if $d \leq \alpha q$ and $\alpha < 0.03983$

Note: The best possible value for α in the theorem is 0.5. In fact $\partial f_{\sigma} \neq (q-1)/2$ if q is odd. Therefore

$$\mathcal{N}_{(q-1)/2} = 0$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

$$\forall S \subseteq \mathbb{F}_q$$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

$$\forall S \subseteq \mathbb{F}_q$$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

$$\mathcal{N}_d = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \right\} = \sum_{S \subset \mathbb{F}_q} (-1)^{q - |S|} n \tag{1}$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

$$\forall S \subseteq \mathbb{F}_q$$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

$$\mathcal{N}_d = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \right\} = \sum_{S \subseteq \mathbb{F}_q} (-1)^{q - |S|} n \tag{1}$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

 $\forall S \subseteq \mathbb{F}_q$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

$$\mathcal{N}_d = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \right\} = \sum_{S \subset \mathbb{F}_q} (-1)^{q - |S|} \tag{1}$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

 $\forall S \subseteq \mathbb{F}_q$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

$$\mathcal{N}_d = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \right\} = \sum_{S \subseteq \mathbb{F}_q} (-1)^{q - |S|} n_S \tag{1}$$

The coefficient of x^j in $f_{\sigma}(x) := \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right)$ is 0 if and only if

$$\sum_{c \in \mathbb{F}_q} c^{q-j-1} \sigma(c) = 0.$$

 $\forall S \subseteq \mathbb{F}_q$

$$n_S := \# \left\{ f \mid f : \mathbb{F}_q \longrightarrow S, \sum_{c \in \mathbb{F}_q} c^{q-i-1} f(c) = 0, \forall i = 1, \dots, d \right\}.$$

"Inclusion-Exclusion" implies

$$\mathcal{N}_d = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \mid \partial(f_\sigma) < q - d - 1 \right\} = \sum_{S \subseteq \mathbb{F}_q} (-1)^{q - |S|} n_S \tag{1}$$

Need to evaluate n_S . Let $e_p(u) = e^{\frac{2\pi i u}{p}}$ and $\text{Tr}(\alpha) \in \mathbb{F}_p$ be the trace of $\alpha \in \mathbb{F}_q$.

$$n_{S} = \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \sum_{f:\mathbb{F}_{q} \to S} e_{p} \left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(f(c) \sum_{i=1}^{d} a_{i} c^{q-i-1}) \right)$$

$$= \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p} (\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1}))$$

$$= \frac{|S|^{q}}{q^{d}} + R_{S}$$

$$(2)$$

$$n_{S} = \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \sum_{f:\mathbb{F}_{q} \longrightarrow S} e_{p} \left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(f(c) \sum_{i=1}^{d} a_{i} c^{q-i-1}) \right)$$

$$= \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p} (\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1}))$$

$$= \frac{|S|^{q}}{q^{d}} + R_{S}$$

$$(2)$$

$$n_{S} = \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \sum_{f:\mathbb{F}_{q} \longrightarrow S} e_{p} \left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(f(c) \sum_{i=1}^{d} a_{i} c^{q-i-1}) \right)$$

$$= \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p} (\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1}))$$

$$= \frac{|S|^{q}}{a^{d}} + R_{S}$$

$$(2)$$

$$n_{S} = \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \sum_{f:\mathbb{F}_{q} \longrightarrow S} e_{p} \left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(f(c) \sum_{i=1}^{d} a_{i} c^{q-i-1}) \right)$$

$$= \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p} (\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1}))$$

$$= \frac{|S|^{q}}{q^{d}} + R_{S}$$

$$(2)$$

$$n_{S} = \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \sum_{f:\mathbb{F}_{q} \longrightarrow S} e_{p} \left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(f(c) \sum_{i=1}^{d} a_{i} c^{q-i-1}) \right)$$

$$= \frac{1}{q^{d}} \sum_{(a_{1},...,a_{d}) \in \mathbb{F}_{q}^{d}} \prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p} (\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1}))$$

$$= \frac{|S|^{q}}{q^{d}} + R_{S}$$

$$(2)$$

where

$$|R_S| \le \frac{q^d - 1}{q^d} \max_{(a_1, \dots, a_d) \in \mathbb{F}_q^d \setminus \{\underline{0}\}} \prod_{c \in \mathbb{F}_q} \left| \sum_{t \in S} e_p(\operatorname{Tr}(t \sum_{i=1}^d a_i c^{q-i-1})) \right|$$

3

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2))$$
(3)

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2)) .$$
 (3)

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq$$

$$\max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq$$

$$\left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2) . (3)$$

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2)).$$
(3)

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2)|S|)^{q/2}.$$
(3)

$$|R_{S}| \leq \max_{(a_{1},\dots,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},\dots,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2)|S|)^{q/2}.$$
(3)

Replace the estimate for $|R_S|$ in (2) and then in (1) obtaining:

$$|R_{S}| \leq \max_{(a_{1},...,a_{d})} \prod_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right| \leq \max_{(a_{1},...,a_{d})} \left(\frac{1}{q} \sum_{c \in \mathbb{F}_{q}} \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(t \sum_{i=1}^{d} a_{i} c^{q-i-1})) \right|^{2} \right)^{q/2} \leq \left(\frac{1}{q} \sum_{f \in \mathbb{F}_{q}} (q-2) \left| \sum_{t \in S} e_{p}(\operatorname{Tr}(tf)) \right|^{2} \right)^{q/2} = ((q-2)|S|)^{q/2}.$$
(3)

Replace the estimate for $|R_S|$ in (2) and then in (1) obtaining:

$$\left| n_S - \frac{|S|^q}{q^d} \right| \le ((q-2)|S|)^{q/2}$$

Ļ

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$\leq 2^q ((q-2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$\leq 2^q ((q-2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q - |S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q - |S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q - 2)|S|)^{q/2}$$

$$\leq 2^q ((q - 2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$< 2^q ((q-2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q - |S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q - |S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q - 2)|S|)^{q/2}$$

$$\leq 2^q ((q - 2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$\leq 2^q ((q-2)q)^{q/2}$$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$\leq 2^q ((q-2)q)^{q/2}$$

This shows that

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$\leq 2^q ((q-2)q)^{q/2}$$

This shows that $\mathcal{N}_d \sim \frac{q!}{q^d}$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$< 2^q ((q-2)q)^{q/2}$$

This shows that $N_d \sim \frac{q!}{q^d}$ if $d < \frac{q}{\log q} \left(\frac{1}{2} \log \log q - \log \log \log q \right)$

$$\left| \mathcal{N}_d - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q^d} |S|^q \right| = \left| \mathcal{N}_d - \frac{q!}{q^d} \right|$$

$$= \left| \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \left(n_S - \frac{|S|^q}{q^d} \right) \right|$$

$$\leq \frac{q^d - 1}{q^d} \sum_{S \subseteq \mathbb{F}_q} ((q-2)|S|)^{q/2}$$

$$< 2^q ((q-2)q)^{q/2}$$

This shows that $\mathcal{N}_d \sim \frac{q!}{q^d}$ if $d < \frac{q}{\log q} \left(\frac{1}{2} \log \log q - \log \log \log q \right)$

The proof of the Theorem is an evolution of this method.

[Key Lemmas 1/2]

Key Lemmas 1/2

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

Università Roma Tre

Lemma 1. If
$$\mu \in \mathbb{N}$$
. Then
$$|\{P \in \mathbb{F}_q[x] \mid \partial P = d, \mu(P) = \mu\}| \le q^{\mu} \frac{\mu^d}{\mu!} \binom{q}{d}.$$

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

Lemma 1. If
$$\mu \in \mathbb{N}$$
. Then $|\{P \in \mathbb{F}_q[x] \mid \partial P = d, \mu(P) = \mu\}| \leq q^{\mu} \frac{\mu^d}{\mu!} \binom{q}{d}$.

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

Lemma 1. If
$$\mu \in \mathbb{N}$$
. Then $|\{P \in \mathbb{F}_q[x] \mid \partial P = d, \mu(P) = \mu\}| \leq q^{\mu} \frac{\mu^d}{\mu!} \binom{q}{d}$.

$$\sum_{\substack{P \in \mathbb{F}_q[x], \\ P(0)=0, \partial(P)=d}} \prod_{\substack{c \in \mathbb{F}_q \\ t \in S}} \sum_{\substack{t \in S \\ \theta_p(\text{Tr}(tP(c))) = \sum_{\mu \le d} \\ \partial(P)=d, \mu(P)=\mu}} \prod_{\substack{c \in \mathbb{F}_q \\ t \in S}} \sum_{\substack{t \in S \\ \theta_p(\text{Tr}(t)) = \mu}} \sum_{\substack{t \in S \\ \theta_p(\text{Tr}(t)) = \mu}} e_p(\text{Tr}(t))$$

$$(4)$$

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

Lemma 1. If
$$\mu \in \mathbb{N}$$
. Then $|\{P \in \mathbb{F}_q[x] \mid \partial P = d, \mu(P) = \mu\}| \leq q^{\mu} \frac{\mu^d}{\mu!} \binom{q}{d}$.

$$\sum_{\substack{P \in \mathbb{F}_q[x], \\ P(0)=0, \partial(P)=d}} \prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\operatorname{Tr}(tP(c))) = \sum_{\substack{\mu \leq d \\ \partial(P)=d, \mu(P)=\mu}} \prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\operatorname{Tr}(tP(c)))$$
(4)

If
$$P(x) \in \mathbb{F}_q[x]$$
, $\mu(P) := \min_{T \subset \mathbb{F}_q, |T| = d} |P(T)|$.

Lemma 1. If
$$\mu \in \mathbb{N}$$
. Then $|\{P \in \mathbb{F}_q[x] \mid \partial P = d, \mu(P) = \mu\}| \leq q^{\mu} \frac{\mu^d}{\mu!} \binom{q}{d}$.

$$\sum_{\substack{P \in \mathbb{F}_q[x], \\ P(0)=0, \partial(P)=d}} \prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\operatorname{Tr}(tP(c))) = \sum_{\substack{\mu \leq d \\ \partial(P)=d, \mu(P)=\mu}} \prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\operatorname{Tr}(tP(c)))$$
(4)

Lemma 2. If
$$d \le q/3$$
, $P \in \mathbb{F}_q[x]$, $\partial(P) = d$ and $\mu(P) \ge \mu \ge 2$, then
$$\prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\operatorname{Tr}(tP(c))) \le \left(\frac{q}{2}\right)^{(q+d)/2} \left(\frac{d}{\mu-1} \frac{q}{q-d}\right)^{(q-d)/2}$$

The condition $d \leq \alpha q$ and $\alpha < 0.03983$ in Today's statement cames from

The condition $d \leq \alpha q$ and $\alpha < 0.03983$ in Today's statement cames from

$$-1 = \log(2^{\alpha}) - \log(\alpha^{\alpha}(1-\alpha)^{1-\alpha}) + \log\left(\left(\frac{2\alpha}{1-\alpha}\right)^{\frac{1-\alpha}{2}}\right)$$

The condition $d \leq \alpha q$ and $\alpha < 0.03983$ in Today's statement cames from

$$-1 = \log(2^{\alpha}) - \log(\alpha^{\alpha}(1-\alpha)^{1-\alpha}) + \log\left(\left(\frac{2\alpha}{1-\alpha}\right)^{\frac{1-\alpha}{2}}\right)$$

with root $\alpha \approx 0.03983478542171344979957755901$

$ig({f Corollaries} ig)$

Fix
$$k_1, \ldots, k_d \in \mathbb{N}, k_1 < \cdots < k_d$$
,

Corollaries

Fix
$$k_1, \ldots, k_d \in \mathbb{N}, k_1 < \cdots < k_d$$
,

$$N_q(k_1, \dots, k_d) = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \middle| \begin{array}{l} \forall i = 1, \dots, d, \text{ the } k_i\text{-th} \\ \text{coefficient of } f_\sigma \text{ is } 0 \end{array} \right\}.$$

Corollaries |

Fix $k_1, \ldots, k_d \in \mathbb{N}, k_1 < \cdots < k_d$,

$$N_q(k_1, \dots, k_d) = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \; \middle| \; egin{array}{l} \forall i = 1, \dots, d, \; ext{the } k_i - ext{th} \\ ext{coefficient of } f_\sigma \; ext{is } 0 \end{array}
ight\}.$$

Then

$$\left| N_q(k_1, \dots, k_d) - \frac{q!}{q^d} \right| \le 2^q ((q - k_1 - 1)q)^{q/2}$$

Corollaries

Fix $k_1, \ldots, k_d \in \mathbb{N}, k_1 < \cdots < k_d$,

$$N_q(k_1, \dots, k_d) = \# \left\{ \sigma \in \mathcal{S}(\mathbb{F}_q) \; \middle| \; egin{array}{l} \forall i = 1, \dots, d, \; ext{the } k_i - ext{th} \\ ext{coefficient of } f_\sigma \; ext{is } 0 \end{array}
ight\}.$$

Then

$$\left| N_q(k_1, \dots, k_d) - \frac{q!}{q^d} \right| \le 2^q ((q - k_1 - 1)q)^{q/2}$$

Planning to adopt the method of for arbitrary k_1, \ldots, k_d where d grows slowly as $q \to \infty$

