(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-115425

(43)公開日 平成8年(1996)5月7日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

G06T 7/00

1/00

G06F 15/62

460

15/ 64

G

審査請求 未請求 請求項の数3 OL (全 16 頁)

(21)出願番号

(22)出願日

特願平6-249876

平成6年(1994)10月17日

(71) 出願人 000210986

中央発條株式会社

愛知県名古屋市緑区鳴海町字上汐田68番地

(72)発明者 阿部 正勝

愛知県海部郡大治町大字西條字壱町田83番

地1

(74)代理人 弁理士 石黒 健二

(54) 【発明の名称】 指紋照合装置

(57) 【要約】

【目的】 指紋の照合精度に優れる指紋照合装置の提 供。

【構成】 特定指の指紋を光学的に取り込み、指紋隆線 濃淡像を得る指紋画像採取手段1と、指紋隆線濃淡像を ディジタル濃淡データにA/D変換するアナログ・ディ ジタル変換手段2と、A/D変換されたディジタル濃淡 データの有効性を判別する大きさチェック手段3と、登 録動作時に、大きさチェック手段3が有効であると判別 した場合、そのディジタル濃淡データに所定の処理を施 した後、識別対象者の指紋データとして登録する指紋デ ータ登録手段4と、照合動作時に、大きさチェック手段 で有効であると判別した場合、ディジタル濃淡データに 所定の処理を施した後、登録済のディジタル濃淡データ と照合する指紋データ照合手段5と、照合結果を報知す る報知手段6とを具備する。

30

【特許請求の範囲】

【請求項1】 採取面に押し当てた、識別対象者の特定 指の指紋を光学的に取り込み、指紋隆線の濃淡画像を得 る指紋画像採取手段と、

採取した指紋画像を、ディジタル濃淡データにA/D変換するアナログ・ディジタル変換手段と、

A/D変換されたディジタル濃淡データに基づいて、採取した前記濃淡画像の指紋部分の大きさを把握し、その大きさから前記ディジタル濃淡データの有効性を判別する大きさチェック手段と、

登録動作時に、前記大きさチェック手段が有効であると 判別した場合、そのディジタル改派データに所定の処理 を施した後、識別対象者の指紋データとして登録する指 紋データ登録手段と、

照合動作時に、前記大きさチェック手段が有効であると 判別した場合、そのディジタル濃淡データに所定の処理 を施した指紋データを、登録済の指紋データと照合する 指紋データ照合手段と、

照合結果を報知する報知手段とを具備する指紋照合装 個-

【請求項2】 採取面に押し当てた、識別対象者の特定 指の指紋を光学的に取り込み、指紋隆線の濃淡画像を得 る指紋画像採取手段と、

採取した指紋画像を、ディジタル濃淡データにA/D変換するアナログ・ディジタル変換手段と、

A/D変換されたディジタル濃淡データに基づいて、前 記濃淡画像の指紋隆線の採取具合を判定し、その採取具 合から前記ディジタル濃淡データの有効性を判別する指 先状態チェック手段と、

登録動作時に、前記指先状態チェック手段が有効である と判別した場合、そのディジタル濃淡データに所定の処 理を施した後、識別対象者の指紋データとして登録する 指紋データ登録手段と、

照合動作時に、前記指先状態チェック手段が有効である と判別した場合、そのディジタル濃淡データに所定の処 理を施した指紋データを、登録済の指紋データと照合す る指紋データ照合手段と、

照合結果を報知する報知手段とを具備する指紋照合装 置。

【請求項3】 採取面に押し当てた、識別対象者の特定 指の指紋を光学的に取り込み、指紋隆線の濃淡画像を得 る指紋画像採取手段と、

採取した指紋画像を、ディジタル濃淡データにA/D変換するアナログ・ディジタル変換手段と、

A/D変換されたディジタル濃淡データに基づいて、採取した前記濃淡画像の指紋部分の大きさを把握し、その大きさから前記ディジタル濃淡データの有効性を判別する大きさチェック手段と、

A/D変換された前記ディジタル濃淡データに基づき、 前記濃淡画像の指紋隆線の採取具合を判定し、その採取 50 具合から前記ディジタル濃淡データの有効性を判別する 指先状態チェック手段と、

登録動作時に、前記大きさチェック手段及び指先状態チェック手段の両方が有効であると判別した場合、そのディジタル磯淡データに所定の処理を施した後、識別対象者の指紋データとして登録する指紋データ登録手段と、照合動作時に、前記大きさチェック手段及び指先状態チェック手段の両方が有効であると判別した場合、そのディジタル磯淡データに所定の処理を施した指紋データを、登録済の指紋データと照合する指紋データ照合手段

照合結果を報知する報知手段とを具備する指紋照合装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、指紋の照合を行なう指 紋照合装置に関する。

[0002]

【従来の技術】指の腹側(指紋側)をプリズムの斜面に押し当て、一方端面から光を透光し、斜面で全反射する反射光を他方端面側で捕捉して原画像(指紋像)を採取し、①~④の手法を用いて指紋照合を行なう技術が従来より知られている。

【0003】 ①原画像から指紋特徴点(指紋隆線の端点や分岐点等)を探し、指紋特徴点の位置関係を個人毎の特徴データとして蓄積し、これを照合する。

②原画像から上記特徴点間の隆線数を計数し、これを個 人毎の特徴データとして蓄積し、これを照合する。

③原画像を個人毎の特徴データとして蓄積し、原画像同士でパターン照合する。

④原画像にFFT等の周波数解析を行ない、この解析結果を個人毎の特徴データとして蓄積し、これを照合する。

【0004】上記従来の技術において、以下の状態下で、指紋照合の照合精度が低下する。

(1) 指押圧力の過大・過少、指先の斜面への押し当て 不良に伴う、原画像の指紋部分面積の狭小、発汗、又は 指の傾き等により、採取される原画像の品位が悪化した 時。

(2) 照合動作時の、指押圧力、原画像の指紋部分面 積、発汗の有無、又は指の傾き(水平/垂直)が、登録 時のものと異なって、原画像の再現性が悪い時。

【0005】指紋照合の照合精度を上げる技術として、以下のものが提案されている。上面に指紋入力面を形成し、前面を斜面とし、該斜面上にセンサを配し、指の中腹が所定位置に位置したことを検出した時のみ、指紋の読み取りを行なう(特開平2-167139号公報)。読み取り手段に、押捺時の指の圧力を検出する圧力検出手段を設け、登録に際し、押捺時の指の圧力を押圧データとして指紋データと共に登録手段に登録するととも

2

に、照合に際し、指の圧力が登録手段に記憶されている 登録動作時の押圧データと同じ、或いは所定の範囲内に なった時、指紋像の読み取り照合を開始する(特開平2 -191083号公報)。

[0006]

【発明が解決しようとする課題】 しかしながら、上記従来の技術は、以下の様な欠点がある。

(ア) 指の中腹を所定位置に位置させ、且つ指の圧力を登録手段に記憶されている登録動作時の押圧データと略同じにした場合は、原画像の品位や再現性は改善される。しかし、指の状態が設定状態になる様にしているにすぎず、高品位の原画像や、再現性に優れた原画像が常に得られるとは限らない。例えば、登録動作時に、過度に発汗又は乾燥していると高品位の原画像が得られない。又、登録動作時又は照合動作時の何れかにおいて、過度に発汗又は乾燥していると各原画像が異なってしまう。例えば、指紋位置の指先の状態を故意又は無意識に変えると、原画像の品位が低下したり、再現性が悪化する。

(イ) 指の中腹が所定位置に位置したことを検出するセンサ、又は指の圧力を検出するセンサの何れかが必要となり、構造が複雑となり、コスト高となる。

【0007】本発明の目的は、指紋の照合精度に優れる指紋照合装置の提供にある。

[0008]

【課題を解決するための手段】上記課題を解決する為、 本発明は以下の構成を採用した。

[1] 採取面に押し当てた、識別対象者の特定指の指紋 を光学的に取り込み、指紋隆線の濃淡画像を得る指紋画 像採取手段と、採取した指紋画像を、ディジタル濃淡デ ータにA/D変換するアナログ・ディジタル変換手段 と、A/D変換されたディジタル濃淡データに基づい て、採取した前記濃淡画像の指紋部分の大きさを把握 し、その大きさから前記ディジタル濃淡データの有効性 を判別する大きさチェック手段と、登録動作時に、前記 大きさチェック手段が有効であると判別した場合、その ディジタル濃淡データに所定の処理を施した後、識別対 象者の指紋データとして登録する指紋データ登録手段 と、照合動作時に、前記大きさチェック手段が有効であ ると判別した場合、そのディジタル濃淡データに所定の 処理を施した指紋データを、登録済の指紋データと照合 する指紋データ照合手段と、照合結果を報知する報知手 段とを具備する。

【0009】 [2] 採取面に押し当てた、識別対象者の特定指の指紋を光学的に取り込み、指紋隆線の濃淡画像を得る指紋画像採取手段と、採取した指紋画像を、ディジタル濃淡データにA/D変換するアナログ・ディジタル変換手段と、A/D変換されたディジタル濃淡データに基づいて、前記濃淡画像の指紋隆線の採取具合を判定し、その採取具合から前記ディジタル濃淡データの有効 50

性を判別する指先状態チェック手段と、登録動作時に、前記指先状態チェック手段が有効であると判別した場合、そのディジタル濃淡データに所定の処理を施した後、識別対象者の指紋データとして登録する指紋データ登録手段と、照合動作時に、前記指先状態チェック手段が有効であると判別した場合、そのディジタル濃淡データに所定の処理を施した指紋データを、登録済の指紋データと照合する指紋データ照合手段と、照合結果を報知する報知手段とを具備する。

【0010】[3]採取面に押し当てた、識別対象者の 特定指の指紋を光学的に取り込み、指紋隆線の濃淡画像 を得る指紋画像採取手段と、採取した指紋画像を、ディ ジタル濃淡データにA/D変換するアナログ・ディジタ ル変換手段と、A/D変換されたディジタル濃淡データ に基づいて、採取した前記濃淡画像の指紋部分の大きさ を把握し、その大きさから前記ディジタル濃淡データの 有効性を判別する大きさチェック手段と、A/D変換さ れた前記ディジタル濃淡データに基づき、前記濃淡画像 の指紋隆線の採取具合を判定し、その採取具合から前記 ディジタル濃淡データの有効性を判別する指先状態チェ ック手段と、登録動作時に、前記大きさチェック手段及 び指先状態チェック手段の両方が有効であると判別した 場合、そのディジタル濃淡データに所定の処理を施した 後、識別対象者の指紋データとして登録する指紋データ 登録手段と、照合動作時に、前記大きさチェック手段及 び指先状態チェック手段の両方が有効であると判別した 場合、そのディジタル濃淡データに所定の処理を施した 指紋データを、登録済の指紋データと照合する指紋デー 夕照合手段と、照合結果を報知する報知手段とを具備す る。

[0011]

30

【作用および発明の効果】

{請求項1について} 指紋画像採取手段は、採取面に押し当てた識別対象者の特定指の指紋を光学的に取り込み、指紋隆線の状態を濃淡模様で表現した濃淡画像を得る。アナログ・ディジタル変換手段は、濃淡画像をA/D変換してディジタル濃淡データにする。

【0012】大きさチェック手段は、A/D変換されたディジタル濃淡データに基づいて、採取した濃淡画像の指紋部分の大きさを把握し、その大きさからディジタル濃淡データの有効性を判別する。指が採取面に水平に、且つ適度な押圧力で押し当てられていると、採取した濃淡画像の指紋部分が適正な大きさとなり、大きさチェック手段は、ディジタル濃淡データが有効であると判別する。又、指が採取面に水平ではなく斜めに押し当てられていたり、押圧力が不足していると、採取した濃淡画像の指紋部分が小さくなり、大きさチェック手段は、ディジタル濃淡データが有効でないと判別する。

【0013】登録動作時に、大きさチェック手段が有効であると判別した場合、指紋データ登録手段は、そのデ

ィジタル機次データに所定の処理を施した後、識別対象者の指紋データとして登録する。照合動作時に、大きさチェック手段が有効であると判別した場合、指紋データ照合手段は、そのディジタル機淡データに所定の処理を施した指紋データを、多数の登録済の指紋データと照合して合致するものを探す。報知手段は、照合結果を報知する。

【0014】大きさチェック手段が有効であると判別した場合(採取面に指先が正しく押し当てられ、指紋隆線のデータ量が多く品位が良い場合)のディジタル濃淡データに所定の処理を施して登録や照合に用いる構成であるので指紋の照合精度に優れる。

【0015】 {請求項2について} 指紋画像採取手段は、採取面に押し当てた識別対象者の特定指の指紋を光学的に取り込み、指紋隆線の状態を濃淡模様で表現した 濃淡画像を得る。アナログ・ディジタル変換手段は、採取した濃淡画像を、A/D変換してディジタル濃淡データにする。

【0016】指先状態チェック手段は、A/D変換されたディジタル濃淡データに基づいて、濃淡画像の指紋隆 20線の採取具合を判定し、その採取具合からディジタル濃淡データの有効性を判別する。例えば、指の採取面への押し当て力が適正であり、且つ、適度に湿っている場合は、濃淡画像の指紋隆線の採取具合が良好であると判定し、指先状態チェック手段は、ディジタル濃淡データが有効であると判別する。

【0017】又、例えば、指先が過度に乾燥している場合は、指紋隆線が掠れたり{指紋の特徴が欠落する}、 薄い濃淡画像{背景に埋没する}となり、照合精度の低下を招くので、指先状態チェック手段は、ディジタル濃 淡データが有効でないと判別する。更に、例えば、指先 が過度に湿っている場合は、指紋隆線谷部が水分で埋まって指紋隆線が太くなり、隣り合う指紋隆線が結合した 濃淡画像となり、照合精度の低下を招くので、指先状態 チェック手段は、ディジタル濃淡データが有効でないと 判別する。

【0018】登録動作時に、指先状態チェック手段が有効であると判別した場合、指紋データ登録手段は、そのディジタル濃淡データに所定の処理を施した後、識別対象者の指紋データとして登録する。照合動作時に、指先状態チェック手段が有効であると判別した場合、指紋データ照合手段は、そのディジタル濃淡データに所定の処理を施した指紋データを、多数の登録済の指紋データと照合して合致するものを探す。報知手段は、照合結果を報知する。

【0019】指先状態チェック手段が有効であると判別した場合{指の採取面への押し当て力が適正であり、且つ適度に湿っており、指紋隆線の濃淡画像が高品位となる}のディジタル濃淡データに所定の処理を施して登録や照合に用いる構成であるので指紋の照合精度に優れ

る。

【0020】 {請求項3について} 指紋画像採取手段は、識別対象者の特定指の指紋を光学的に取り込み、指紋隆線の状態を濃淡模様で表現した濃淡画像を得る。アナログ・ディジタル変換手段は、採取した濃淡画像を、A/D変換してディジタル濃淡データにする。

【0021】大きさチェック手段は、A/D変換されたディジタル機談データに基づいて、採取した機談画像の指紋部分の大きさを把握し、その大きさからディジタル機談データの有効性を判別する。例えば、指が採取面に水平に、且つ適度な押圧力で押し当てられていると、採取した機談画像の指紋部分が適正な大きさとなり、大きさチェック手段は、ディジタル機談データが有効であると判別する。又、例えば、指が採取面に水平ではなく斜めに押し当てられていたり、押圧力が不足していると、採取した機談画像の指紋部分が小さくなり、大きさチェック手段は、ディジタル機談データが有効でないと判別する。

【0022】指先状態チェック手段は、A/D変換され たディジタル濃淡データに基づいて、濃淡画像の指紋隆 線の採取具合を判定し、その採取具合からディジタル濃 淡データの有効性を判別する。例えば、指の採取面への 押し当て力が適正であり、且つ、適度に湿っている場合 は、濃淡画像の指紋隆線の採取具合が良好であると判定 し、指先状態チェック手段は、ディジタル濃淡データが 有効であると判別する。又、例えば、指先が過度に乾燥 している場合は、指紋隆線が掠れたり {指紋の特徴が欠 落する } 、薄い濃淡画像 {背景に埋没する } となり、照 合精度の低下を招くので、指先状態チェック手段は、デ ィジタル濃淡データが有効でないと判別する。更に、例 えば、指先が過度に湿っている場合は、指紋隆線谷部が 水分で埋まって指紋隆線が太くなり、隣り合う指紋隆線 が結合した濃淡画像となり、照合精度の低下を招くの で、指先状態チェック手段は、ディジタル濃淡データが 有効でないと判別する。

【0023】登録動作時に、大きさチェック手段及び指 先状態チェック手段の両方が有効であると判別した場 合、指紋データ登録手段は、そのディジタル濃淡データ に所定の処理を施した後、識別対象者の指紋データとし て登録する。報知手段は、照合結果を報知する。

【0024】A/D変換されたディジタル濃淡データが、大きさチェック手段及び指先状態チェック手段の両方でもって有効であると判別される場合{濃淡画像の大きさが大きく、指の採取面への押し当て力が適正であり、且つ、適度に湿っている場合}のディジタル濃淡データに所定の処理を施して登録や照合に用いる構成であるので指紋の照合精度に優れる。

[0025]

【実施例】本発明の第1実施例(請求項1に対応)を図 1~図7、及び表1に基づいて説明する。指紋照合装置

.

【0028】 [検出ラインを設定する]

- (1) 全ラインを検出ラインとする。
- (2) 等間隔に検出ラインを設定する。
- (3) 重み付けを行ない、特定部分(例えば中央部分)の検出ラインの間隔を狭く設定する(図6参照)。

【0029】 [指紋部分の長さを求める;探索は検出ラインの片端又は両端の何方でも良い]

- 10 (1) 濃度値に閾値を設定し、濃度値が閾値以上となる部分を切り出す。
 - (2) 濃度値の傾きに閾値を設定し、傾きが閾値以上となる部分を切り出す。

【0030】 [指紋部分の大きさ(面積) から有効性を判別する]

- (1) 各検出ラインの指紋部分の長さ {又は幅、又は長さと幅の両方} を加算 {又は各々加算} し、加算値が閾値以上であれば、二次元のディジタル濃淡データ10が有効であると判別する。
- 20 (2) 指紋部分の長さ {又は幅、又は長さと幅の両方} に 関値を設定し、各検出ラインにおける指紋部分の長さ {又は幅、又は長さと幅の両方} が関値以上となる検出 ライン数が一定数以上であれば、二次元のディジタル濃 淡データ10が有効であると判別する。
 - (3) 図7に示す様に、各検出ラインにおける指紋部分の 長さ{又は幅、又は長さと幅の両方}から近似的に面積 を求め、求めた面積が閾値以上であれば、二次元のディ ジタル濃淡データ10が有効であると判別する。

[0031]

【表1】

Aは、図1に示すように、識別対象者の特定指の指紋を 光学的に取り込み、指紋隆線濃淡像を得る指紋画像採取 手段1と、指紋隆線濃淡像をディジタル濃淡データ10 にA/D変換するアナログ・ディジタル震淡データ10 にA/D変換されたディジタル濃淡データ10の有効性を 判別する大きさチェック手段3と、登録動作時に、大き さチェック手段3が有効であると判別した場合、そのディジタル濃淡データ10に所定の処理を施した後、識別 対象者の指紋データとして登録する指紋データ登録手段 4と、照合動作時に、大きさチェック手段3が有効であ ると判別した場合、ディジタル濃淡データ10に所定の 処理を施した後、登録済のディジタル濃淡データ10と 既合する指紋データ照合手段5と、照合結果を報知する 報知手段6とを具備する。

【0026】指紋画像採取手段1は、例えば、図2に示すように、指11の指紋面112がプリズム面121に押圧される直角プリズム12と、端面122に垂直に照明光131を投光する光源13と、プリズム面121で反射する反射光132を垂直に捕捉できる様に斜面123と平行に配され、指紋隆線山部に対応する反射光132を暗い像として取り込むCCD素子14とで構成され、CCD素子14は電気出力(指紋隆線の濃淡画像)をアナログ・ディジタル変換手段2に転送する。アナログ・ディジタル変換手段2に転送する。アナログ・ディジタル変換手段2に転送する。アナログ・ディジタル変換手段2に転送する。アナログ・ディジタル変換手段2に転送する。アナログ・ディジタル変換手段2は、指紋画像採取手段1から転送された電気出力をA/D変換した二次元のディジタル濃淡データ10(図3のaに示す)を内蔵メモリに格納する

【0027】大きさチェック手段3は、以下に示す様に、A/D変換した二次元のディジタル濃淡データ10 30に対して、検出ラインを設定し、指紋部分の長さを求 *

大きさチェック手段による二次元のディジタル設次データの有効性判別(ラインで検出)

検出ラインの設定		全ライン			等間所に聞引き				重み付けして間引き								
指紋部分の大き から有効性を		tan .	#	M	쇝	<i>t</i> n	Ħ	M	値	近	似	tro	*	H	催	近	Ø
指紋部分の 長さの求め方	農民値に関値					A.	D					·					
	傾きに脳値*																

(検出ラインの設定)

- (1) 全ラインを検出ラインとする。
- (2) 等間隔に検出ラインを設定する。
- (3) 重み付けを行ない、特定部分(例えば中央部分)の 検出ラインの間隔を狭く設定する。

(有効性の判別)

- (1) 各検出ラインの指紋部分の長さ {又は幅、又は長さと幅の両方} を加算 (又は各々加算) し、加算値が開催以上であれば、二次元のディジタル混談 データ か存効であると利用する。
- (2) 指紋部分の長さ(又は幅、又は長さと幅の両方)に関値を設定し、各検出 ラインにおける指紋部分の長さ(又は幅、又は長さと幅の両方)が関値以 上となる検出ライン数が一定数以上であれば、二次元のディジタル濃淡デ ータが有効であると利別する。
- (8)各検出ラインにおける指紋部分の長さ【又は幅、又は長さと幅の両方】から近似的に面積を求め、求めた面積が関値以上であれば、二次元のディジタル濃淡データが有効であると判別する。

(俗紋部分の長さの求め方)

- (1) 濃度値に関値を設定し、濃度値が関値以上となる部分を切り出す。
- (2) 濃度値の傾きに関値を設定し、傾きが関値以上となる部分を切り出す。

【0032】上述したことを組み合わせると、表1に示す16通りの方法が考えられるが、本実施例では、精度やアルゴリズムの簡素化等により、表1中に"A"で示す方法を採用している。具体的には、y軸を等間隔(例えば8毎)に区切り、検出ラインを設定(例えば16本)する。

【0033】つぎに、各検出ライン毎に、0~127の x 座標位置における濃淡度合を0~255迄の濃度値に変換し、図3の(b)に示す濃度値カーブを得る。そして、この濃度値カーブの片端 (x=0 or x=127) 又は両端 (x=0) 及び(x=1) から探索して、(x=0) ないで、最初に関値以上(例えば、濃度値=90以上)となるディジタル濃淡データ10の(x=1) なるではいて、最初に関値以上を、各検出ライン毎に切り出す。切り出した指紋部分の長さを、各検出ラインについて加算(積算)し、この加算値が関値以上である場合、二次元のディジタル濃淡データ10が有効性有りとする。

【0034】例えば、図5の(b)に示す様に、指11 40をプリズム面121に水平で且つ適度な押圧力で押し当てた場合、矢印で示す様に濃淡画像を十分大きく採取でき、大きさチェック手段3は、ディジタル濃淡データ1 0が有効であると判別する。又、例えば、図4に示す様に、指11をプリズム面121に軽めに押し当てた場合、又は、図5の(a)に示す様に、指11をプリズム面121に軽く押し当てた場合は、十分な大きさの濃淡面像を採取することができず、大きさチェック手段3は、ディジタル濃淡データ10が無効であると判別する。尚、この場合は、指紋画像採取手段1を再動作させ 50

るべく指示する。

【0035】指紋データ登録手段4は、登録操作時に、採取したディジタル濃淡データ10が有効であると大きさチェック手段3が判別した場合、そのディジタル濃淡データ10に所定の処理{例えば、マニューシャ等の特徴点を抽出、FFT等の周波数解析を実施}を施した後、識別対象者の指紋データとして指紋データ格納用の記憶装置(E²PROM、ハードディスク、フロッピー等)に登録する。

【0036】指紋データ照合手段5は、照合操作時に、 採取したディジタル濃淡データ10が有効であると大き さチェック手段3が判別した場合、そのディジタル濃淡 データ10に上述した所定の処理を施した指紋データ を、記憶装置に登録されている多数のディジタル濃淡データと照合して合致するものを探す。

【0037】報知手段6は、合致するものがあると指紋 データ照合手段5が判別した場合、その指紋データを登 録した者の氏名や認識番号をディスプレイ上に表示し、 合致するものがないと判別された場合は、"該当者無 し"と表示する。

【0038】つぎに、本実施例に係る指紋照合装置Aの利点を述べる。図4に示す様に指先のみをプリズム面121に押し当てた場合や、図5の(a)に示す様にプリズム面121への押し当て力が不足する場合は、図3の(b)に示すx方向における濃淡画像の指紋部分の長さが短くなり、指紋隆線のデータ量が少なく(品位が悪い)、照合に適さない場合は指紋データが記憶装置に格納されず(指紋データの登録動作時)、合致するものがあるか否かの照合を行なわない(指紋照合動作時)構成

である。この為、x方向における濃淡画像の指紋部分の

長さが長く、指紋隆線111のデータ量が多い(品位が

良い)、有効な指紋データを用いて照合が行なわれるの

で、照合精度の向上が図れる。尚、ディジタル濃淡デー

タ10のy方向における濃淡画像の指紋部分の幅につい

ても {幅のみでも良い} 、有効か無効かを、大きさチェック手段3が判別する構成であっても良い。この場合

は、指の水平状態のチェックもできるので、更に照合精

【0039】本発明の第2実施例(請求項1に対応)を

図1、図2、図4、図5、図8~図10、及び表2に基づいて説明する。指紋照合装置Bは、図1に示す様に、

指紋画像採取手段1と、アナログ・ディジタル変換手段 2と、大きさチェック手段3と、指紋データ登録手段4

と、指紋データ照合手段5と、報知手段6とを具備し、

大きさチェック手段3以外の構成は、第1実施例と同一

【0040】アナログ・ディジタル変換手段2は、指紋

画像採取手段1のCCD素子14 (図2に示す) から転

送される電気出力をA/D変換して、二次元のディジタ

(x方向が0~127、y方向が0~127のメモリ空

【0041】大きさチェック手段3は、以下に示す様

に、A/D変換した二次元のディジタル濃淡データ10 に対して、二次元のディジタル濃淡データ10を特定方

法で分割し、検出区画を決定して、指紋部分を検出し、*

ル濃淡データ10(図8のaに示す)を、内蔵メモリ

度が向上する。

である。

* 指紋部分の大きさを把握して、二次元のディジタル機談 データ10の有効性を判別する。

【0042】〔分割方法〕

- (1) 図8の (a) に示す様に、二次元のディジタル濃淡 データ10を等間隔に分割する。
- (2) 図10に示す様に、特定部分(例えば中央部)を細かく分割する。

【0043】〔検出区画〕

- (1) 検出区画を全区画とする。
- 0 (2) 区画を間引きして検出区画を設定する。

【0044】 [指紋部分の検出方法]

- (1) 平均濃度値に閾値を設定し、調べる検出区画の平均 濃度が閾値以上ならば、その検出区画に指紋部分が存在 すると見なす。
- (2) 濃度値の中央値に閾値を設定し、調べる検出区画の中央値 {最大濃度値と最小濃度値の中間に最も近い、実在する濃度値} が閾値以上ならば、その検出区画に指紋部分が存在すると見なす。
- (3) 濃度値の合計値 {濃度値の累積加算値} に閾値を設定し、調べる検出区画の合計値が閾値以上ならば、その検出区画に指紋部分が存在すると見なす。

【0045】 [指紋部分の大きさ(面積)による有効性の判別) 指紋部分と判定される区画数が一定数以上であるか否かにより、ディジタル濃淡データ10の有効性を判別する。

[0046]

【表 2 】

大きさチェック手段による二次元のディジタル議談データの有効性判別 (分割した各区国で検出)

分割方法	等面隔に分	} 割	重み付けして分割		
検出区置	全区面	間引き	全区西	間引き	
	平均值		В		
指紋部分の検出方法	中央値				
	合計值				

(分割方法)

間を有する) に格納する。

- (1) 二次元のディジタル議談データを等間隔に分割する。
- (2)特定部分(例えば中央部)を細かく分割する。

(検出区画)

- (1)検出区画を全区面とする。
- (2) 区箇を問引きして検出区箇とする。

(指紋部分の検出方法)

- (1) 平均譲度値に関値を設定し、関べる検出区面の平均濃度が関値以上ならば、その検出区画に指数部分が存在すると見なす。
- (2) 濃度値の中央値に関値を設定し、調べる検出区画の中央値(最大機 度値と最小機度値の中間に最も近い、実在する濃度値)が開催以上 ならば、その検出区間に指紋部分が存在すると見なす。
- (3) 農度値の合計値 [累積加算値] に関値を設定し、調べる検出区間の合 計値が関値以上ならば、その検出区圏に指紋部分が存在すると見なす

(有効性の判別)

指紋部分と判定される区面数が一定数以上であるか否かにより、ディジ タル義族データの有効性を判別する。

【0047】上述したことを組み合わせると、表2に示す12通りの方法が考えられるが、本実施例では、計算量の少なさ等により、表2中に"B"で示す方法を採用している。

【0048】本実施例では、大きさチェック手段3は、図9のフローチャートに示す様に、採取したディジタル 濃淡データ10に基づいて濃淡画像の指紋隆線111の

50 採取具合を調べ、ディジタル濃淡データ10の有効性を

判別している。

【0049】先ず、図8の(a)に示す様に、二次元のディジタル磯淡データ10を、等間隔に16分割する。 そして、区画を間引きして、検出区画を例えば、中央の 四個に設定する。

【0050】ステップs1で、検出対象の、各区画の平均濃度(濃部分の面積割合)を各区画毎に求め(図8のb参照)、ステップs2に進む。ステップs2で、平均濃度≧所定値である区画数Kをカウントし、ステップs3に進む。ステップs3で、平均濃度≧所定値である区10画数Kが閾値以上(例えば3以上)であるか否か判別し、K≧閾値の場合(YES)はステップs4に進み、K<閾値の場合(NO)はステップs5に進む。

【0051】ステップs4で、採取したディジタル濃淡データ10が、登録・照合に適したものであると判別する。又、ステップs5で、採取したディジタル濃淡データ10が無効であると判別し、指紋画像採取手段1を再動作させるべく指示する。

【0052】つぎに、本実施例に係る指紋照合装置Bの利点を述べる。図4に示す様に指先のみをプリズム面121に押し当てた場合、又は、図5に示す様に、指11をプリズム面121に軽く押し当てた場合は、平均濃度≧所定値となる区画数Kが3未満となり(図9のステップs3でNO)、そのディジタル濃淡データに係る指紋データは記憶装置に格納されず{指紋データの登録動作時}、合致するものがあるか否かの照合を行なわない

{指紋照合動作時}。そして、指11全体をプリズム面 121に適圧で押し当てることにより採取された、区画 数Kが多く(3以上)、指紋隆線111のデータ量が多い(品位が良い)、照合に適した指紋データを用いて照 30 合を行なう構成であるので、照合精度が高い。

【0053】本発明の第3実施例(請求項2に対応)を図2、図6、図11~図13、及び表3に基づいて説明する。指紋照合装置Cは、図11に示すように、指紋画像採取手段1と、アナログ・ディジタル変換手段2と、指先状態チェック手段7と、指紋データ登録手段4と、指紋データ照合手段5と、報知手段6とを具備し、指先状態チェック手段7以外の構成は第1実施例と同一である。

*【0054】アナログ・ディジタル変換手段2は、転送された電気出力をA/D変換して、二次元のディジタル 濃淡データ10(図12に示す)を内蔵メモリに格納する。

【0055】指先状態チェック手段7は、以下に示す様に、A/D変換した二次元のディジタル濃淡データ10に対して、検出ラインを設定し、探索範囲を設定し、指紋部分の濃度値に基づき、二次元のディジタル濃淡データ10の有効性を判別する。

[0 【0056】 [検出ラインを設定する]

- (1) 全ラインを検出ラインとする。
- (2) 等間隔に検出ラインを設定する。
- (3) 重み付けを行ない、特定部分(例えば中央部分)の 検出ラインの間隔を狭く設定する(図6参照)。

【0057】〔探索範囲を設定する〕

- (1) 検出ラインの全てを探索範囲とする {例えば、x = 0~127}。
- (2) 検出ラインの特定部分 {例えば、x=10~12
- 0 } を探索範囲とする。

) 【 O O 5 8 】 [指紋部分の濃度値に基づく有効性の判別]

- (1) 全検出ラインの平均濃度値を算出し、算出した平均 濃度値が所定範囲内にあるか否かで判別する。
- (2) 各検出ラインの平均濃度値を算出し、閾値範囲内の 検出ライン数が一定値以上であるか否かにより判別す る。
- (3) 全検出ラインの濃度値の中央値を算出し、算出した中央値が所定範囲内にあるか否かで判別する。
- (4) 各検出ラインの濃度値の中央値を算出し、算出した中央値が所定範囲内におさまる検出ライン数が一定数以上であるか否かにより判別する。
- (5) 全検出ラインの濃度値の合計値を算出し、算出した合計値が所定範囲内にあるか否かで判別する。
- (6) 各検出ラインの濃度値の合計値を算出し、算出した 合計値が所定範囲内におさまる検出ライン数が一定数以 上であるか否かにより判別する。

[0059]

【表3】

指先チェック手段による二次元のディジタル震流データの有効性特別(ラインで検出)

ŧ	検出ラインの設定 探索範囲の設定		全ライン		に問引き	重み付け聞引き	
			特定範囲	全て	特定範囲	全て	特定範囲
	全ラインの平均値			С	D		
有	各ラインの平均値						
始性	全ラインの中央値						
の 料	各ラインの中央値						
8 1	全ラインの合計値						
	各ラインの合計値						

(検出ラインの設定)

- (1) 全ラインを検出ラインとする。
- (2) 等間隔に検出ラインを設定する。
- (3) 重み付けを行ない、特定部分の検出ラインの 問題を狭く設定する。 (探索範囲の数定)
- (1) 検出ラインの全てを探索範囲とする。
- (2) 検出ラインの特定部分を採案範囲とする。

(指紋部分の幾度値に基づく有効性の判別)

- (1) 全校出ラインの平均連度値を算出し、算出した平均譲度値が所定範囲内にあるか否かで利別する。
- (2) 各検出ラインの平均譲度値を算出し、閾値範囲内の検出ライン数が一定値以上であるか否かにより判別する。
- (3)全検出ラインの課度位の中央値を算出し、算出した中央値が所定範囲内にあるか否かで判別する。
- (4) 各検出ラインの機度値の中央値を算出し、算出した中央値が所定範囲内にお さまる検出ライン教が一定数以上であるか否かにより判別する。
- (5) 全検出ラインの譲渡値の合計値を算出し、算出した合計値が所定範囲内にあるか否かで判別する。
- (6) 各検出ラインの譲渡値の合計値を算出し、算出した合計値が所定範囲内にお さまる検出ライン数が一定数以上であるか否かにより報別する。

【0060】上述したことを組み合わせると、表3に示す36通りの方法が考えられるが、本実施例では、判定時間の短縮、計算量の低減等により、表3中に"C"で示す方法を採用している。

【0061】本実施例では、指先状態チェック手段7は、内蔵メモリに格納されたディジタル濃淡データ10の特定部分の平均濃淡値が所定範囲内であるか無いかを、等間隔(例えば4毎)に検出ラインを設定し、図12に示す様に、各検出ラインの全て(x=0~127)について濃淡度合を0~255迄の濃度値に変換して濃淡度合を合計し、128で割った値を各ラインの平均濃度値とする。そして、各ラインの平均濃度値を加算したものをライン数で割って、全検出ラインの平均濃度値を算出し、これが所定範囲内であれば、ディジタル濃淡データ10が有効であると判別している。

【0062】例えば、指11の指紋面112の、プリズム面121への押し当て力が適正であり {図13の

【0063】一方、指11が過度に乾燥している場合は、図13の(a)に示す様に、ディジタル濃淡データ10の指紋隆線相当部分が掠れたり{指紋の特像が欠落する}、薄い濃淡画像{背景に埋没する}となり、濃度値が下がるので、指先状態チェック手段7は、ディジタル濃淡データ10が無効であると判別する。

【0064】又、発汗等により指が過度に湿っている場合は、図13の(c)に示す様に、指紋隆線谷部が水分

で埋まって指紋隆線が太くなり、隣り合う指紋隆線が結合した濃淡画像となり、濃度値が上がって所定範囲を逸脱する。尚、これらの場合は、指紋画像採取手段1を再動作させるべく指示する。

【0065】つぎに、本実施例に係る指紋照合装置Cの利点を述べる。指11が過度に乾燥していたり、過度に湿っている場合に採取したディジタル濃淡データに係る指紋データは記憶装置に格納されず (指紋データの登録動作時)、且つ合致するものがあるか否かの照合を行なわない {指紋照合動作時}構成である。そして、指11の指紋面112の、プリズム面121への押し当て力が適正であり、且つ適度に湿っている場合は、ディジタル濃淡データ10の指紋隆線相当部分が掠れたり潰れたりしない高品位のディジタル濃淡データに係る指紋データを登録や照合に用いる構成であるので指紋の照合精度に優れる。

【0066】本発明の第4実施例(請求項3に対応)を図2、図3、図4、図5、図14、、図15、表1、及び表3に基づいて説明する。本実施例の指紋照合装置Dは、図14に示すように、指紋画像採取手段1と、アナログ・ディジタル変換手段2と、大きさチェック手段3と、指紋データ登録手段4と、指紋データ照合手段5と、報知手段6と、指先状態チェック手段7とを具備し、図15に示すフローチャート(ステップS1~6)に従って、ディジタル濃淡データ10を有効にするか無効にするか決定する。

【0067】本実施例では、大きさチェック手段3は、 表1中に"D"で示す方法を採用し、内蔵メモリに格納 されたディジタル澱淡データ10の有効性を判別してい

20

40

)

らの場合は、指紋画像採取手段1を再動作させるべく指示する。

【0073】つぎに、本実施例に係る指紋照合装置Dの利点を述べる。図4に示す様に指先のみをプリズム面121に押し当てた場合、又は図5に示す様に指11をプリズム面121に軽く押し当てた場合の、濃淡画像が小さく、指紋隆線111のデータ量が少ないディジタル濃淡データや、指11の湿り具合が悪い場合のディジタル濃淡データに係る指紋データは、記憶装置に格納されず{指紋データの登録時}、合致するものがあるかるいの照合も行なわない{指紋照合動作時}構成である。そして、指11全体がプリズム面121へ、適度に押し当てられ、且つ指11の状態が良好であり、指紋隆線111のデータ量が多く、指紋隆線111の濃淡画像が滲んだり掠れたりしない高品位のディジタル濃淡データ10に係る指紋データを登録や照合に用いる構成であるので指紋の照合精度が更に向上する。

【0074】尚、本実施例の様に、大きさチェック手段 3及び指先状態チェック手段7の両方でディジタル濃淡 データ10の有効性を判定する構成の場合、大きさチェ ック手段3と指先状態チェック手段7の検出方法 {ライ ンで検出、N×Mに分割}を合わせるのが好ましい。

【0075】本発明は、上記実施例以外に、つぎの実施 態様を含む。

a. ディジタル濃淡データに基づき、濃淡画像の大きさの有効・無効を判別する閾値や、濃淡画像の指紋隆線の採取具合を判別する閾値を、登録動作時と照合動作時とで異なる(例えば、登録動作時の方を厳しくする)様にしても良い。

【0076】b. 大きさチェック手段がA/D変換されたディジタル濃淡データに基づいて採取した濃淡画像の大きさを把握する際、その大きさからディジタル濃淡データの有効性を判別する方法として以下のものを用いても良い。

①所定の y 座標位置で x 方向に走査し、0~127の x 座標位置における濃淡度合を0~255迄の濃淡値に変換し、濃淡値カーブの傾きが、最初に閾値以上となるディジタル濃淡データ10の x 方向における濃淡画像の指の部分の長さを求める {表1の*印参照}。

②x 方向に走査する所定の y 座標位置を複数設定し、これら各 y 座標位置において夫々、同様の方法で x 方向における濃淡画像の指紋部分の長さを求めて加算し、加算値が関値以上の場合、濃淡画像の大きさが適正であるとする。

【0077】c. 指先状態チェック手段7は、A/D変換した二次元のディジタル濃淡データ10をN×Mに分割して有効性を判定する方法を採用しても良く、この場合、二次元のディジタル濃淡データ10を特定方法で分割し、検出区画を決定して、指紋部分の濃度値を特定方法で測定する、以下に示す方法を組み合わせた表4の何

る。具体的には、y軸を等間隔(例えば8毎)に区切り、検出ラインを設定(例えば16本)する。

【0068】つぎに、各検出ライン毎に、0~127の x 座標位置における濃淡度合を0~255迄の濃度値に 変換し、図3の(b)に示す濃度値カーブを得る。そして、この濃度値カーブの片端(x=0 or x=127)又は両端(x=0及びx=127)から探索して、 x=0側及びx=127側において、最初に関値以上 (例えば、濃度値=90以上)となるディジタル濃淡データ10のx 方向における濃淡画像の指紋部分の長さを、各検出ライン毎に切り出す。切り出した指紋部分の長さを、各検出ラインについて加算(積算)し、この加算値が関値以上である場合、二次元のディジタル濃淡データ10が有効性有りとする。

【0069】そして、図5の(b)に示す様に、指11をプリズム面121に水平で且つ適度な押圧力で押し当てた場合、図5の(b)に示す様に濃淡画像の指紋部分を十分大きく採取でき、x方向における濃淡画像の指の部分の長さが所定値以上となった場合、大きさチェック手段3は、ディジタル濃淡データ10が有効であると判別する{図15のステップS3でYES}。又、図5の(a)に示す様に、x方向における濃淡画像の指の部分の長さが、例えば所定値未満の場合、大きさチェック手段3は、ディジタル濃淡データ10が無効であると判別する。尚、この場合は、指紋画像採取手段1を再動作させるべく指示する{図15のステップS3でNO}。

【0070】又、本実施例では、指先状態チェック手段7は、表3中に"D"で示す方法を採用している。

【0071】本実施例では、指先状態チェック手段7は、内蔵メモリに格納されたディジタル濃淡データ10の特定部分の平均濃淡値が所定範囲内であるか無いかを、等間隔(例えば4毎)に検出ラインを設定し、図3に示す様に、先に大きさチェック手段3が求めた、指紋隆線111の濃淡画像が存在する範囲{例えば、図3の(a)の検出ラインの時は、x=10~120}について濃淡度合を0~255迄の濃度値に変換して濃淡の合を合計し、濃淡画像が存在する長さ{図3の(a)の検出ラインの時は111}で割った値を各ラインの平均濃度値とする。そして、各ラインの平均濃度値を加算したものをライン数で割って、全検出ラインの平均濃度値を類出し、これが所定範囲内であれば、ディジタル濃淡データ10が有効であると判別している。

【0072】そして、指11の指紋面112の、プリズム面121への押し当て力が適正であり、且つ、適度に湿っている場合は、濃度値が所定範囲内となる {図15のステップS4でYES}。又、指11が発汗等により過度に湿っている場合 {図15のステップS4でNO}は濃度値が上がって所定範囲を逸脱する。又、指11が過度に乾燥している場合 {図15のステップS4でNO}は濃度値が下がって所定範囲を逸脱する。尚、これ 50

れかを用いても良い。

【0078】〔分割方法〕

- (1) 図8の(a) に示す様に、二次元のディジタル濃淡 データ10を等間隔に分割する。
- (2) 図10に示す様に、特定部分(例えば中央部)を細かく分割する。

【0079】〔検出区画〕

- (1) 検出区画を全区画とする。
- (2) 区画を等間隔に間引きして検出区画を設定する。
- (3) 区画の、ある部分を細かく間引きして検出区画を設定する。

【0080】 [指紋部分の濃度値に基づく有効性の判別]

- (1) 全検出区画の平均濃度値を算出し、算出した平均濃度値が所定範囲内におさまっているか否かで判別する。
- (2) 各検出区画の平均濃度値を算出し、所定範囲内におさまる検出区画数が一定値以上であるか否かにより判別する。

*(3)全ての検出区画の濃度値を求め、求めた濃度値の、 最大と最小との中間に最も近い濃度値を中央値とし、こ の中央値が所定範囲内におさまっているか否かで判別す る。

- (4) 各検出区画の濃度値を各々求め、求めた濃度値の、 最大と最小との中間に最も近い濃度値を中央値とし、こ の中央値が所定範囲内におさまっている検出区画数が一 定数以上であるか否かで判別する。
- (5) 全検出区画の濃度値の合計値を算出し、算出した合計値が所定範囲内におさまっているか否かで判別する。
- (6) 各検出区画の合計値を算出し、所定範囲内におさまる検出区画数が一定数以上であるか否かにより判別する。

【0081】上述したことを組み合わせると、表4に示す36通りの方法が考えられる。

[0082]

【表4】

指先チェック手段による二次元のディジタル議決データの有効性特別(分割した各区国で検出)

	分割方法	全ライ	イン	等間	新に関引き	重み付け関引き		
•	検出区面	等分割	重み付け	等分割	重多付け	等分割	重み付け	
	全区圏の平均値			0				
有効性の特別	各区画の平均値			1				
	全区面の中央値							
	各区面の中央値							
	全区面の合計値							
	各区画の合計位							

(分割方法)

- (1) 二次元のディジタル機族データを等間隔に分割す よ。
- (2) 特定部分を細かく分割する。 [韓田区画] 、
- (1) 検出区間を全区間とする。
- (2) 区面を等間隔に同引きして検出区面を設定する。
- (8) 区画の、ある部分を細かく聞引きして検出区画を 数定する。

(指紋部分の濃度値に基づく有効性の判別)

- (1)全検出区面の平均適度値を算出し、算出した平均適度値が所定範囲内におきまっているか否かで利別する。
- (2) 各検出区面の平均温度値を算出し、所定範囲内におさまる検出区面数が一定 値以上であるか否かにより判別する。
- (3)全ての検出区面の濃度値を求め、求めた濃度値の、最大と最小との中間に最も近い濃度値を中央値とし、この中央値が所定範囲内におさまっているか否かで判別する。
- (4) 各核出区画の設度値を各々求め、求めた設度値の、最大と最小との中間に最も近い設度値を中央値とし、この中央値が所定範囲内におさまっている検出 区画数が一定数以上であるか否かで刊別する。
- (5)全検出区面の濃度値の合計値を算出し、算出した合計値が所定既期内におきまっているか否かで判別する。
- (6) 各機出区面の合計値を算出し、所定範囲内におさまる検出区画数が一定数以上であるか否かにより判別する。

【図面の簡単な説明】

【図1】本発明の第1、第2実施例に係る指紋照合装置 のブロック図である。

【図2】本発明の第1~第4実施例に係る指紋照合装置が有する指紋画像採取手段の構成図である。

【図3】アナログ・ディジタル変換手段によりA/D変換されたディジタル微淡データを示す説明図(a)、及びそのディジタル微淡データを所定ラインでx方向に走査し、0~127のx座標位置における微淡度合を0~255迄の濃度値に変換して作成した濃度値カーブを示すグラフ(b)である。

【図4】指先のみをプリズム面に押し当てた状態を示す 説明図である。

【図5】指先を軽くプリズム面に押し当てた状態とその 時のディジタル濃淡データを示す説明図(a)、及び指 先を適度にプリズム面に押し当てた状態とその時のディ ジタル濃淡データを示す説明図(b)である。

【図6】中央部分の間隔を狭くした検出ラインの設定を示す説明図である。

【図7】指紋部分の長さから近似的に面積を求める方法を示す説明図である。

50 【図8】アナログ・ディジタル変換手段が、ディジタル

機談データを内蔵メモリに格納した状態を示す説明図 (a)、及びその拡大図(b)である。

【図9】本発明の第2実施例に係る指紋照合装置の有する大きさチェック手段が、登録・照合に適したディジタル濃淡データであるか否かを判別するフローチャートである。

【図10】中央部分を細かく分割する分割方法を示す説明図である。

【図11】本発明の第3実施例に係る指紋照合装置のブロック図である。

【図12】ディジタル濃淡データを所定ラインで x 方向に走査する様子を示す説明図である。

【図13】指先の状態に応じた、ディジタル濃淡データ の比較図である。

【図14】本発明の第4実施例に係る指紋照合装置のブロック図である。

【図15】本発明の第4実施例に係る指紋照合装置の有*

* する、大きさチェック手段及び指先状態チェック手段 が、登録・照合に適したディジタル濃淡データであるか 否かを判別するフローチャートである。

【符号の説明】

- 1 指紋画像採取手段
- 2 アナログ・ディジタル変換手段
- 3 大きさチェック手段
- 4 指紋データ登録手段
- 5 指紋データ照合手段
- 10 6 報知手段
 - 7 指先状態チェック手段
 - 10 ディジタル濃淡データ
 - 11 指(特定指)
 - 111 指紋隆線
 - 112 指紋
 - 121 プリズム面 (採取面)
 - A~D 指紋照合装置

【図 1】

【図9】

【図13】

【図14】

【図15】

