TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

TABLE 7 Logical Equivalences Involving Conditional Statements.

Conditional Statements.

$$p \to q \equiv \neg p \lor q$$
 $p \to q \equiv \neg q \to \neg p$
 $p \lor q \equiv \neg p \to q$
 $p \land q \equiv \neg (p \to \neg q)$
 $\neg (p \to q) \equiv p \land \neg q$
 $(p \to q) \land (p \to r) \equiv p \to (q \land r)$
 $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
 $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

TABLE 8 Logical Equivalences Involving Biconditional Statements. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$

 $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$