National University of Computer and Emerging Sciences, Lahore Campus

Course: Social Network Analysis
Program: MS(Data Science)
Duration: 90 Minutes
Paper Date: 19-March-19
Section: ALL
Exam: Midterm

Course Code: DS5115
Semester: Spring 2019
Total Marks: 50
Weight 25%
Page(s): 5

Instruction/Notes:

Attempt the examination on the question paper and write concise answers. You can use extra sheet for rough work. Do not attach extra sheets used for rough with the question paper. Don't fill the table titled Questions/Marks.

Question	1	2	3	4	Total
Marks	/ 20	/ 10	/ 5	/15	/ 50

Q1) Below is equation to compute the stochastic matrix for personalized page rank where each elements in the teleport set has equal weight.

$$A_{ij} = \begin{cases} \beta \ M_{ij} + (1 - \beta)/|S| & if \ i \in S \\ \beta \ M_{ij} + 0 & otherwise \end{cases}$$

Consider the following Graph

a) Compute the stochastic matrix if S={1, 2} [5 Marks]

Name:	Roll #:	Section:
b)	Suppose we want to assign different weight weight to node 1 and 80 % weight to node 2.	s to elements of the teleport set $S = \{1, 2\}$ i.e. 20%
c)	Give the rank vector for the first two iteration computed in part (b). Show complete working	ns of page rank algorithm using the stochastic matrix g [10 Marks]

Name:	Roll #: Section:	
Q2) Co	onsider a network with N nodes placed on a circle, so that each node connects to m neighbors on either	side
(consec	quently each node has degree 2m). For simplicity assume that N and m are chosen such that $(N-1)/2m$ is	an
integer		
a)	Calculate the average clustering coefficient (C) of this network. The clustering coefficient of i is $C_i = \frac{2e_i}{k_i(k_i-1)}$. Average clustering coefficient of the network is $C = \frac{1}{N} \sum_{i=1}^{N} C_i$ [5 Marks]	node
b)	Calculate the average shortest path (d) of this network. $\bar{h} = \frac{1}{N(N-1)} \sum_{i,j} h_{i,j}$, where $h_{i,j} = is the distance from node i to node j and N(N-1) is all possible vertex pairs. [5 Marks]$)

Name:	Roll #:	
		briefly but specifically (1-2 sentences)
why this is true, and how one can use	node2vec to simulate DeepWalk [5	Marks]
one edge between any two cliques. Su	appose the first phase of Louvain mo	h arranged in a ring. There exists exactly dularity optimization algorithm detects e community aggregation phase, the new
a. What is the weight of any edge	between two distinct nodes in H	? [5 Marks]
		-

Na	nme:	Roll #:	Section:
b.	What is the weight of a	any self-edge in H? Explian your answer	. [5 Marks]
c.	What is the modularity	of H (with each node in its own commu	nity)? Show complete working [5
<u> </u>	Marks]	of 11 (with each node in its own commu	inity): Snow complete working. [5
<u> </u>			