Санкт-Петербургский Политехнический Университет Петра Великого

Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе №3

Курс: «Методы оптимизации и принятия решений»

Тема: «Марковские модели принятия решений»

Выполнил студент:

Медведев Михаил Анатольевич

Группа: 13541/3

Проверил:

Сиднев Александр Георгиевич

Содержание

1	Лаб	бораторная работа №3	2
	1.1	Индивидуальное задание	2
	1.2	Ход работы	3
	1.3	Вывод	Ĉ
	1.4	Список использованных источников	Ç

Лабораторная работа №3

1.1 Индивидуальное задание

Задача 40, построенную модель снабдить разумными численными данными и найти оптимальную стратегию для $N=\infty$ методом итераций по стратегиям.

Капитан Р., служащий в одной судоходной компании, командует судном, совершающим регулярные рейсы между двумя портами А и В. Предположим, что продолжительность рейса составляет 1 сутки. Каждое утро капитан должен решить, стоит ли ему загружать судно имеющимся в наличии грузом и отправляться в порт назначения или обождать сутки в надежде, что на следующий день может подвернуться более выгодный груз. Пусть затраты на один рейс составляют c_1 , а затраты, связанные с суточным простоем судна в порту, составляют c_2 , где $c_1 > c_2$. Предположим, что в порту А имеется два вида грузов, стоимостью a_1 и a_2 , где $a_1 > a_2$. Обзначим вероятость того, что имеется груз вида a_1 имеется в наличии, символом p_a (откуда $1-p_a$ есть вероятность того, что имеется только груз вида a_2). Предположим также, что наличие груза в рассматриваемый день не зависит от его наличия в предыдущие дни (таким образом, если капитан не уходит в рейс, то все равно сохраняется вероятность p_a получения груза a_1 на следующий день). Аналогично пусть стоимость грузов в порту В составляет b_1 и b_1 , где $b_1 > b_2$, и пусть p_b - вероятность наличия груза b_1 .

1.2 Ход работы

Имеется 4 состояния:

- Sa1 судно находится в порту A и в наличии имеется груз a_1
- Sa2 судно находится в порту A и в наличии имеется груз a_2
- Sb1 судно находится в порту B и в наличии имеется груз b_1
- Sb1 судно находится в порту B и в наличии имеется груз b_2

Для данных состояний имеется 2 решения:

- \bullet x_1 капитан принимает решение отправляться в порт назначения с имеющимся грузом
- \bullet x_2 капитан принимает решение ждать сутки в надежде, что придет более ценный груз

Множество допустимых решений для каждого из 4-х состояний:

- Sa1: x_1
- Sb1: x_1, x_2
- Sa2: x_1
- Sb2: x_1, x_2

Обозначения:

- a_1 стоимость ценного груза
- a_2 стоимость малоценного груза
- c_1 затраты на один рейс
- c_2 затраты суточного простоя

На основе данной информации составим матрицы переходных вероятностей P_1, P_2 соответсвующие стратегиям X_1, X_2 :

$$P_1 = \begin{pmatrix} 0 & 0 & p_b & 1 - p_b \\ 0 & 0 & p_b & 1 - p_b \\ p_a & 1 - p_a & 0 & 0 \\ p_a & 1 - p_a & 0 & 0 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ p_a & 1 - p_a & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & p_b & 1 - p_b \end{pmatrix}$$

Также составим матрицы доходов R_1, R_2 :

$$R_1 = \begin{pmatrix} 0 & 0 & a_1 - c_1 & a_1 - c_1 \\ 0 & 0 & a_2 - c_1 & a_2 - c_1 \\ b_1 - c_1 & b_1 - c_1 & 0 & 0 \\ b_2 - c_1 & b_2 - c_1 & 0 & 0 \end{pmatrix}$$

$$R_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -c_2 & -c_2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -c_2 & -c_2 \end{pmatrix}$$

3

Мощность множества стационарных решений = $1 \cdot 2 \cdot 2 \cdot 1 = 4$

$$\begin{pmatrix} X_1 & X_1 & X_1 & X_1 \\ X_1 & X_2 & X_1 & X_2 \\ X_1 & X_1 & X_1 & X_1 \\ X_1 & X_1 & X_2 & X_2 \end{pmatrix}$$

Зададим численные данные для модели:

- $a_1 = 80$
- $a_2 = 60$
- $b_1 = 70$
- $b_2 = 50$
- $c_1 = 10$
- $c_2 = 5$
- $p_a = 0.5$
- $p_b = 0.6$

Горизонт планирования N=3

Элементы матриц переходных вероятностей и доходов не зависят от номера этапа. Рассмотрим каждую из четырех стратегий:

Стратегия 1 $\{X_1, X_1, X_1, X_1\}$ из A -> В с грузом а1

- $S_{a1} > B$ с грузом a_1
- $S_{a2} > B$ с грузом a_2
- $S_{b1} > A$ с грузом b_1
- $S_{b2} > A$ с грузом b_2

$$P_1 = \begin{pmatrix} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.6 & 0.4 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix}, R_1 = \begin{pmatrix} 0 & 0 & 70 & 70 \\ 0 & 0 & 50 & 50 \\ 60 & 60 & 0 & 0 \\ 40 & 40 & 0 & 0 \end{pmatrix}$$

Стратегия 2 $\{X_1, X_2, X_1, X_1\}$ из A -> В с грузом а2

- $S_{a1} -> B$ с грузом a_1
- S_{a2} -> суточное ожидание груза a_1
- $S_{b1} > A$ с грузом b_1
- $S_{b2} > A$ с грузом b_2

$$P_2 = \begin{pmatrix} 0 & 0 & 0.6 & 0.4 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix}, R_2 = \begin{pmatrix} 0 & 0 & 70 & 70 \\ -5 & -5 & 0 & 0 \\ 60 & 60 & 0 & 0 \\ 40 & 40 & 0 & 0 \end{pmatrix}$$

Стратегия $3\{X_1, X_1, X_1, X_2\}$ из B -> A с грузом b1

- $S_{a1} > B$ с грузом a_1
- $S_{a2} > B$ с грузом a_2
- $S_{b1} > A$ с грузом b_1
- S_{b2} -> суточное ожидание груза b_1

$$P_3 = \begin{pmatrix} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.6 & 0.4 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}, R_3 = \begin{pmatrix} 0 & 0 & 70 & 70 \\ 0 & 0 & 70 & 70 \\ 60 & 60 & 0 & 0 \\ 0 & 0 & -5 & -5 \end{pmatrix}$$

Стратегия 4 $\{X_1, X_2, X_1, X_2\}$ из В -> А с грузом b2

- $S_{a1} > B$ с грузом a_1
- S_{a2} -> суточное ожидание груза a_1
- $S_{b1} > A$ с грузом b_1
- ullet S_{b2} -> суточное ожидание груза b_1

$$P_4 = \begin{pmatrix} 0 & 0 & 0.6 & 0.4 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}, R_4 = \begin{pmatrix} 0 & 0 & 70 & 70 \\ -5 & -5 & 0 & 0 \\ 60 & 60 & 0 & 0 \\ 0 & 0 & -5 & -5 \end{pmatrix}$$

Выбираем стратегию 1:

$$P_1 = \begin{pmatrix} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.6 & 0.4 \\ 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{pmatrix}, R_1 = \begin{pmatrix} 0 & 0 & 70 & 70 \\ 0 & 0 & 50 & 50 \\ 60 & 60 & 0 & 0 \\ 40 & 40 & 0 & 0 \end{pmatrix}$$

•
$$F_{\tau}(1) - (0.6 * F_{\tau}(3) + 0.4 * F_{\tau}(4)) = 70$$

•
$$F_{\tau}(2) - (0.6 * F_{\tau}(3) + 0.4 * F_{\tau}(4)) = 50$$

•
$$F_{\tau}(3) - (0.5 * F_{\tau}(1) + 0.5 * F_{\tau}(2)) = 60$$

•
$$F_{\tau}(4) - (0.5 * F_{\tau}(1) + 0.5 * F_{\tau}(2)) = 40$$

Результаты:

- $F_{\tau}(1) = 572$
- $F_{\tau}(2) = 552$
- $F_{\tau}(3) = 566$
- $F_{\tau}(4) = 546$

	$\varphi_j(X_i) = \nu_j(X_i) + \alpha \sum_{k=1}^4 p_{jk}(X_i) F_{\tau}(k)$			X•j	
	i = 1	i = 2			
S1	70+ (0.6*566+0.4*546) =628	70+(0.6*566+0.4*546)=628	628	X1	
S2	50+ (0.6*566+0.4*546) =620	-5+(0.5*572+0.5*552) =557	620	X1	
S3	60+(0.5*572+0.5*552) =622	60+(0.5*572+0.5*552) =622	622	X1	
S4	40+(0.5*572+0.5*552) =602	40+(0.5*572+0.5*552) =602	602	X1	

Исходя из того, что стратегия выбрана самостоятельно, а также полученного результата, следует, что при $N=\infty$ капитану следует отправляться в противоположный порт без простоев.

Метод итераций по стратегиям при N=3

Оптимальный ожидаемый доход fi(j) на каждом из этапов определяется составляющей, определяемой по формуле

$$f_{i}(j) = \max_{X_{l_{i}} \in G} \left(\nu_{j}(X_{l_{i}}) + \alpha \sum_{k=1}^{m} p_{jk}(i+1|X_{l_{i}}) f_{i+1}(k) \right)$$

Где

$$v_{j}(X_{l_{i}}) = \sum_{k=1}^{m} p_{jk}(i+1 \mid X_{l_{i}})r_{jk}(i+1 \mid X_{l_{i}}) /$$

P1, R1, P2, R2 не зависят от номера этапа. Ниже приведены ожидаемые доходы с учетом перехода системы из одного состояния в другое:

Для X_1

- $\nu_1(X_1) = 0,6 * 70 + 0,4 * 70 = 70$
- $\nu_2(X_1) = 0, 6 * 50 + 0, 4 * 50 = 50$
- $\nu_2(X_1) = 0, 5 * 60 + 0, 5 * 60 = 60$
- $\nu_2(X_1) = 0, 5 * 40 + 0, 5 * 40 = 40$

Для X_2

- $\nu_1(X_2) = 0, 6 * 70 + 0, 4 * 70 = 70$
- $\nu_2(X_2) = -5 * 0, 5 5 * 0, 5 = -5$
- $\nu_2(X_2) = 0,5 * 60 + 0,5 * 60 = 60$
- $\nu_2(X_2) = 0, 5 * 40 + 0, 5 * 40 = 40$

Для X_3

- $\nu_1(X_3) = 0, 6 * 70 + 0, 4 * 70 = 70$
- $\nu_2(X_3) = 0, 6 * 70 + 0, 4 * 70 = 70$
- $\nu_2(X_3) = 0, 5 * 60 + 0, 5 * 60 = 60$
- $\nu_2(X_3) = -5 * 0, 6 5 * 0, 4 = -5$

Для X_4

- $\nu_1(X_4) = 0,6 * 70 + 0,4 * 70 = 70$
- $\nu_2(X_4) = -5 * 0, 5 5 * 0, 5 = -5$
- $\nu_2(X_4) = 0,5 * 60 + 0,5 * 60 = 60$
- $\nu_2(X_4) = -5 * 0, 6 5 * 0, 4 = -5$

Этап 3

	v_j (X_i)				may	
	i = 1	i = 2	i =3		max	^_•j
S1	70	70	70	70	70	X1, X2, X3, X4
S2	50	-5	70	-5	70	Х3
S3	60	60	60	60	60	X1, X2, X3, X4
S4	40	40	-5	-5	40	X1, X2

- $f_{\tau}(1) = 70$
- $f_{\tau}(2) = 70$
- $f_{\tau}(3) = 60$
- $f_{\tau}(4) = 40$

Для стратегии S_1 лучшего решения не найдено, точнее, любое действие приведет к одинаковому результату. Для дальнейшего решения возьмем 1 значение из множества выигрышных.

Этап 2

	v_j(X_i)					v
	i = 1	i = 2	i =3	i = 4	max	X_•j
S1	70+(0.6*60 + 0.4*40) = 122	70 + (0.6*60 + 40*0.4) =122	70+ (0.6*60 + 0.4*40)=122	70+ (0.6*60 + 0.4*40)=122	122	X1, X2, X3, X4
S2	50+(0.6*60- 5*0.4) = 84	-5 +(0.5*70+ 0.5*70) = 65	70+ (0.6*60- 5*0.4)=104	-5+ (0.5*70 + 0.5*70)=65	104	Х3
S3	60+ (0.5*70 + 50*0.5)=120	60+(0.5*70 + 0.5*50)=120	60+ (0.5*70 + 0.5*50)=120	60+ (0.5*70 + 0.5*50)=120	120	X1, X2, X3, X4
S4	40+(0.5*70 + 50*0.5)=100	40 + (0.5*70 + 0.5*50)= 100	-5+ (0.6*60 + 0.4*40)=47	-5+ (0.6*60 + 0.4*40)=47	100	X1, X2

- $f_{\tau}(1) = 122$
- $f_{\tau}(2) = 104$
- $f_{\tau}(3) = 120$
- $f_{\tau}(4) = 100$

Этап 1

	v_j (X_i)					V
	i = 1	i = 2	i =3	i = 4	max	X_•j
S1	122+(0.6*120 + 0.4*100) =234	122+ (0.6*120 + 100*0.4) =234	122+ (0.6*120 + 0.4*100)=234	122+ (0.6*120 + 0.4*100)=234	234	X1,X2, X3,X4
S2	84+(0.6*120+47*0.4) = 174.8	65+(0.5*122+0.5*104) = 178	104+ (0.6*120- 47*0.4)=157.2	65+ (0.5*120 + 0.5*47)=148.5	178	X2
S3	120+ (0.5*120 + 100*0.5)=230	120+(0.5*122+0.5*84)=223	120+ (0.5*122 + 0.5*84)=223	120+ (0.5*122+0.5*84)=223	230	X1
S4	100+(0.5*120 + 100*0.5)=210	100+ (0.5*120 + 0.5*100)= 210	48+ (0.6*120 + 0.4*100)=160	48+ (0.6*120 + 0.4*100)=160	210	X1, X2

- $f_{\tau}(1) = 234$
- $f_{\tau}(2) = 178$
- $f_{\tau}(3) = 230$
- $f_{\tau}(4) = 210$

Для стратегии S_1 суммарный доход за три мсяца будет 234.

Для статегии S_2 лучшим решением являеться вариант X_3 . Суммарный доход за три месяца будет 178.

Для статегии S_3 лучшим решением являеться вариант X_1 . Суммарный доход за три месяца будет 230.

Для статегии S_4 лучшим решением являеться вариант X_1 . Суммарный доход за три месяца будет 210.

1.3 Вывод

В ходе данной лабораторной работы были изучены марковские модели принятия решений, а также решение задач метод итераций при бесконечном горизонте планирования и при введении ограничения на N.

1.4 Список использованных источников

- 1 Г.Вагнер «Основы исследования операций» Т.3. 1973 г. 493 стр.
- 2 Волков, Загоруйко «Исследование операций» 2000 436 с

