Math Logic

Если что пишите @TheMifik

June 2022

Содержание:

- 1.1) Исчисление высказываний
- 1.2) Общезначимость
- 1.3) Следование
- 1.4) Доказуемость (Выводимость)
- 1.5) Корректность
- 1.6) Полнота
- 1.7) Непротиворечивость
- 1.8) Теорема о дедукции для исчисления высказываний
- 2.1) Теорема о полноте исчисления высказываний
- 3.1) Интуиционистское исчисление выказываний
- 3.2) Вывод в Гильбертовском стиле и натуральный вывод
- 3.3) ВНК интерпретация
- 3.4) Решетки
- 3.5) Булевы и псевдобулевы алгебры
- 4.1) Алгебра Линденбаума
- 4.2) Полнота И И В в псевдобулевых алгебрах
- 4.3) Модели Крипке
- 4.5) Нетабличность И И В
- 5.1) Гёделева Алгебра
- 5.2) Операция $\Gamma(A)$
- 5.3) Дизъюнктивность И И В
- 6.1) Исчисление предикатов
- 6.2) Общезначимость, следование, выводимость
- 6.3) Теорема о дедукции для И Π
- 6.4) Теорема о корректности И Π
- 7.1) Непротиворечивые множества формул
- 7.2) Доказательства существования моделей у непротиворечивых множестсв формул в бескванторном И П
- 7.3) Теорема Гёделя о полноте И П
- 7.4) Доказательство полноты И П
- 8.1) Машина Тьюринга
- 8.2) Задача об остонове, её неразрешимость
- 8.3) Доказательство неразрешимости И П
- 9.1) Порядок теории (0, 1, 2)

- 9.2) Теори первого порядка, структуры и модели
- 9.3) Аксиоматика Пеано
- 9.4) Арифметические операции
- 9.5) Формальная Арифметика
- 10.1) Примитивно-рекурсивные и рекурсивные функции
- 10.2) Примитивная рекурсивность арифметических функций, функция вычисления простых чисел, частичного логорифма
- 10.3) Выразимость отношений и представимость функций в Ф А
- 10.4) Харктеристические функции
- 10.5) Представимость примитивов N, Z, S, U в Ф А
- 11.1) Бетта-функция Гёделя
- 11.2) Представимость примитивов R и M и рекурсивных функций в Ф А
- 11.3) Гёделева нумерация
- 11.4) Рекурсивность представимых в Ф А функций
- 12.1) Непротиворечивость (эквивалентные определения, доказательство эквивалентности) и ω - непротиворечивость
- 12.2) Первая теорема о неполноте арифметики
- 12.3) Формулировка первой теоремы Гёделя о неполноте арифметики в Форме Россера
- 12.4) Неполнота арифметики. Формулировка второй теоремы Гёделя о неполноте арифетики. Consis
- 12.5) Неформальное пояснение метода доказательств
- 13.1) Теория множест
- 13.2) Определения равенства
- 13.3) Аксиоматика Цермело-Френкеля
- 13.4) Частичный, линейный, полный порядок
- 13.5) Ординальные числа аксиома бесконечности
- 13.6) Конечные ординалы
- 13.7) Существования ординала ω
- 13.8) Операции над ординалами
- 14.1) Кардинальные числа
- 14.2) Мощность множества
- 14.3) Теорема Кантора-Бернштейна
- 14.4) Теорема Кантора
- 14.5) Аксиома выбора
- 14.6) Теорема Диаконеску
- 15.1) Теорема Лёвенгейма-Сколема
- 15.2) Парадокс Сколема
- 16.1) Система S_{∞}
- 16.2) Доказательство непротиворечивости Ф А

1.1) Исчисление высказываний

(1)

а) Язык: {Предметный-язык, мета-язык}

Высказивание это либо:

- Большая латинская буква начала алфавита, возможно с индексами и штрихами.
- Выражение вида $(\alpha \& \beta)$ $(\alpha \lor \beta)$ $(\alpha \to \beta)$ $(\neg \alpha)$, где α , β высказывания.

Метапеременные: α , β , γ ;

Х, Ү, Z метапеременные для пропозициональных переменных.

Приоритеты: \neg , &, \lor , \rightarrow .

Истиностное значение $\{ \ \Pi, \ \ \Pi \ \}.$

 $\llbracket \alpha \rrbracket$ - оценка высказывания.

Аксиомы - список высказываний.

Схема аксиом - высказивание с метапеременными, при любой подстановке высказываний вместо мето переменных, получаем аксиому.

$$1) \alpha \rightarrow \beta \rightarrow \alpha$$

$$2) (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)$$

$$3) \alpha \& \beta \rightarrow \alpha$$

$$4) \alpha \& \beta \rightarrow \beta$$

$$5) \alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

$$6) \alpha \rightarrow \alpha \lor \beta$$

$$7) \beta \rightarrow \alpha \lor \beta$$

$$8) (\alpha \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma) \rightarrow (\alpha \lor \beta \rightarrow \gamma)$$

$$9) (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma\beta) \rightarrow (\neg \alpha)$$

$$10) \neg \neg \alpha \rightarrow \alpha$$

1.2) Общезначимость (2)

 α общезначима (истина), если $\llbracket \alpha \rrbracket = \mathrm{H}$, при любой оценки пропозициональных переменных $\{\models\}$.

 α невыполнима (ложна), если [[α]] = Л, при любой оценки пропозициональных переменных.

 α выполнима, если $[\![\alpha]\!]=\mathrm{H},$ при некоторой оценки пропозициональных переменных.

 α опровержима, если $\llbracket \alpha \rrbracket = \Pi$, при некоторой оценки пропозициональных переменных.

Будем говорить, что $\Gamma \models \alpha$, то есть α следует из Γ , если при всех оценках таких, что все $\gamma \in \Gamma \llbracket \gamma \rrbracket = \Pi$, выполнена $\llbracket \alpha \rrbracket = \Pi$.

 $\{\gamma_1,\dots,\gamma_n\}$, где γ_i - либо аксиома, либо существует j, k < i, что $\gamma_k\equiv (\gamma_j\to\gamma_i)$ { \vdash }.

 ${\bf Modus\ Ponens} \ \ {\boldsymbol{\cdot}} \quad \alpha,\ \alpha \to \beta \Rightarrow \beta$

Теория корректна, если доказуемость влечет общезначимость.

Теория полна, если общезначимость влечет доказуемость.

Множество формул Γ называется непротиворечивым, если для некоторой формулы а, не имеет место одновременно и $\Gamma \vdash a, \Gamma \vdash \neg a$.

1.8) Теорема о дедукции для исчисления высказываний (8)

 Γ , $\alpha \vdash \beta$ выводится тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$.

Исчисления высказываний полно: $\models \alpha$ влечёт $\vdash \alpha$.

Рассмотрим К И В и заменим 10 схему аксиом на $\alpha \to \neg \alpha \to \beta$.

Теория моделей

Примеры моделей:

- 1) Модели К И В подходят: корректны, но не полны.
- 2) Теория в которой [α] открытое множество в топологическом пространстве. В ней определены:

$$1) \llbracket \alpha \& \beta \rrbracket = \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$$

$$2) \llbracket \alpha \lor \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$$

$$3) \llbracket \alpha \to \beta \rrbracket = ((X \setminus \llbracket \alpha \rrbracket) \cup \llbracket \beta \rrbracket)^{\circ}$$

$$4) \llbracket \bot \rrbracket = \emptyset$$

$$5) \llbracket \neg \alpha \rrbracket = (X \setminus \llbracket \alpha \rrbracket)^{\circ}$$

3.2) Вывод в Гильбертовском стиле и натуральный вывод (11)

Естественный натуральный вывод - способ доказательства в виде деревьев. Вывод вы Гилбертовском стиле (смотретие на **1.4**) доказуемость)

3.3) ВНК - интерпретация (Логических связок) (12)

- 1) α, β, γ конструкции.
- 2) $\alpha \& \beta$ умеем строить α и β .
- 3) $\alpha \vee \beta$ умеем строить α или β и знаем, что именно.
- 4) $\alpha \to \beta$ умеем перестроить α в β .
- 5) \bot не имеет построения.
- 6) $\neg \alpha \equiv \alpha \rightarrow \bot$.

3.4) Решетки (13)

X - частично упорядоченное множество отношений \leq . Множество верхних граней a, b - $\{x \mid a \leq x, b \leq x\}$. Множество нижних граней a, b - $\{x \mid x \leq a, x \leq b\}$. a+b - наименьший элемент множества верхних граней. $a \cdot b$ - наибольший элемент множества нижних граней.

Минимальный элемент - меньше которого нет.

Решетка - частичное упорядоченное множество, где для каждый двух элементов, существует a+b и $a\cdot b$.

Дистрибутивная решетка $a + (b \cdot c) = (a + b) \cdot (a + c)$. В дистрибутивной решетке $a \cdot (b + c) = a \cdot b + a \cdot c$.

Псевдодополнение - $a \to b$ - наибольший элемент $\{ \ c \mid a \cdot c \le b \}.$

Импликативная решетка - Есть псевдодополнение для всех а, b.

0 и 1

0 - элемент, что $0 \le x$, при всех x.

1 - элемент, что $x \le 1$, при всех x.

Алгебра Гейтинга - импликативная решетка с 0 (псевдобулевая алгебра).

 $\tilde{\mathbf{a}} \equiv a \to 0$ (псевдодополнение до нуля).

Булева алгебра - Алгебра Гейтинга, где $a + \tilde{a} = 1$.

lpha, eta - высказывания в И И В. $lpha \leq eta,$ если $lpha \vdash eta.$ lpha pprox eta, если $lpha \leq eta$ и $eta \leq lpha.$

Пусть Е - множество всех высказываний И И В. Тогда (факты множества Е по отношению эквиволентности) $[E]_\approx$ - Алгебра Линденбаума. Алгебра Линденбаум - Алгебра Гейтинга; Корректная модель И И В.

Алгебра Гейтинга - полная и корректная модель И И В.

 $< \Vdash$, W >

1) ⊩ - вынужденность W - множество миров.

Вынуждение переменной A - определяется моделью, при этом если $W_x \leq W_y$ и $W_x \Vdash A$, то $W_y \Vdash A$.

2) Доопределим ⊩ на всех множествах.

$$1)W \Vdash A\&B, \ if \ W \Vdash \ A \ and \ W \Vdash B.$$

$$2)W \Vdash A \lor B, \ if \ W \Vdash \ A \ or \ W \Vdash B.$$

$$3)W \Vdash \neg A, \ if \ not \ W \le W_x, \ that \ W_x \Vdash A.$$

$$4)W \Vdash A \to, \ if \ in \ all \ W \le W_x \ from \ W_x \Vdash A \ follow \ W_x \Vdash B.$$

Модель называется табличной:

- 1) V = S (V множество истинных значений).
- 2) $\llbracket \alpha * \beta \rrbracket = f_*(\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket).$
- 3) Существует истина \in S выделенная истина и $[\![\alpha]\!] =$ И тогда и только тогда, когда $\models [\![\alpha]\!]$.
- У И И В нет полной конечной таблично модели.

Алгебра Гейтинга, в которой из a+b=1, следует что a=1 или b=1.

5.2) Операция
$$\Gamma(A)$$
 (20)

Пусть А - Алгебра Гейтинга, тогда:

Добавим новый элемент $1_{\Gamma(A)}$, переименуем 1_A в ω .

Теорема - $\Gamma(A)$ - Алгебра Гейтинга и Гёделева Алгебра.

5.3) Дизъюнктивность И И В (21)

Исчисление дизъюнктно - если для любых α , $\beta \vdash \alpha \lor \beta$, влечет $\vdash \alpha$ и $\vdash \beta$.

6.1) Исчисление предикатов (22)

Предметные выражения:

- 1) Метапеременной $\theta\{a,b,c,\ldots,x,y,z\}$.
- 2) Одноместные и двухместные функциональные символы.
- 3) Нульместные функциональные символы.

Логические выражения:

Метапеременные $\alpha, \beta, \gamma, \dots$

Предикатные символы.

Оценка И П

 ${f D}$ - преметное множество.

 ${\bf F}$ - оценка для функциональных символов: Пусть f_n-n - местный функциональный символ $F_{f_n}:D^n\to {\bf D}.$

T - оценка для предикатных символов: Пусть P_n-n - местный предикатный символ: $T_{p_n}:D^n\to {\rm V},$ где ${\rm V}=\{{\rm H},\,{\rm II}\}.$

 ${\bf E}$ - оценка для свободных переменных $E(x)\in D.$

6.2) Общезначимость, следование, выводимость (23)

Формула И Π общезначима, если истина при любой оценке $\{\models\}$. Доказуемость, выводимость, полнота, корректность аналагично И B.

Схема аксиом такая же как и в И В с дополнением:

- 11) $\forall x. \phi[x := \theta] \to \phi$
- 12) $\phi[x := \theta] \to \exists x. \phi$ (везде θ свободен для подстановки х в ϕ).

Добавим еще два правила вывода (здесь везде x не входит свободно в ϕ):

Введение ∀

$$\frac{\phi \to \psi}{\phi \to \forall x.\psi}$$

Введение \exists

$$\frac{\psi \to \phi}{(\exists x. \psi) \to \phi}$$

 $\{\gamma_1,\;\ldots\;,\gamma_n\}\models \alpha\;(\alpha$ следует из $\{\gamma_1,\;\ldots\;,\gamma_n\}),$ если выполнено два условия:

- 1) α выполнено всегда, когда выполнено $\{\gamma_1, \ldots, \gamma_n\}$.
- 2) α не использует кванторов по переменным, входящих свободно в $\{\gamma_1, \ldots, \gamma_n\}$.

Свободные вхождения

 $(\forall x.\phi)$ или $(\exists x.\phi)$. Здесь переменная х связана в ϕ . Все вхождения переменной х в ϕ связаны.

Переменная х входит свободно в ϕ , если не находится в области действия никакого квантора по х. Все её вхождения в ϕ свободны.

Подстановка, свободна для подстановки

Терм θ свободен для подстановки вместо х в ϕ ($\phi[x] := \theta$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть

$$(\forall x. P(y))[y := z]$$
$$(\forall y. \forall x. P(x))[x := y]$$

Свободы нет

$$(\forall x.P(y))[y := x]$$
$$(\forall y.\forall x.P(t))[t := y]$$

6.3) Теорема о дедукции для И
$$\Pi$$
 (24)

Если $\Gamma \vdash \alpha \to \beta$, то Γ , $\alpha \vdash \beta$, и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

6.4) Теорема о корректности И П
$$(25)$$

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$.

Непротиворечивые множества формул это такое из которого не выводится противоречие.

$$\Gamma = \{A \to B \to A\}$$
 (непротиворечивое множество). $\Gamma = \{P \to \neg P, \ \neg P \to P\}$ (противоречивое множество).

textbfПолное непротиворечивое множество (бескванторных) формул

- 1) Г содержит только замкнутые (бескванторные) формулы.
- 2) Если α некотороя замкнутая (бескванторная) формула, то $\alpha \in \Gamma$ или $\neg \alpha \in \Gamma$.

Теорема

Пусть Γ - непротиворечивое множество замкнутых (бескванторных) формул. Тогда какова бы ни была замкнутая (бескванторная) формула ϕ , хотя бы $\Gamma \cup \{\phi\}$ или $\Gamma \cup \neg \{\phi\}$ - непротиворечиво.

Теорема

Пусть Γ - непротиворечивое множество замкнутых (бескванторных) формул. Тогда найдется полное непротиворечивое множество замкнутых (бескванторных) формул \triangle , что $\Gamma \subseteq \triangle$.

7.2) Доказательства существования моделей у непротиворечивых множестсв формул в бескванторном И Π

Теорема - Если у множества формул М есть модель М', оно непротиворечиво.

Определение

У множество есть модель, если любая его формула истина в данной модели.

Теорема

Любое непротиворечивое множество замкнутых бесквантореых формул имеет модель.

Определение

Пусть M - полное непротиворечивое множество замкнутых бескванторных формул. Тогда модель M' задаётся так:

1) D - множество всевохможных предметных выражений без предметных переменных и дополниткльная строка "ошибка".

2)
$$[\![f(\theta_1, \ldots, \theta_n)]\!] = "f(" + [\![\theta_1]\!] + ", " + \ldots + [\![\theta_n]\!] + ")".$$

3)
$$\llbracket P(\theta_1, \ldots, \theta_n) \rrbracket = \begin{cases} True & \text{если } "P(" + \llbracket \theta_1 \rrbracket + ", " + \ldots + \llbracket \theta_n \rrbracket + ")" \in M \\ False & \text{иначе} \end{cases}$$

4) $[\![x]\!] =$ "ошибка", так как формулы замкнуты.

Лемма

Пусть ϕ - бескванторная формула тогда $M' \models \phi$ тогда и только тогда, когда $\phi \in M$.

Доказательство

Пусть M - непротиворечивое множество замкнутых бескванторных формул. По теореме о пополнении сузествует M^1 - полное непротиворечивое множество замкнутых бескванторных формул, что $M\subseteq M^1$. По лемме M^1 имеет модель, это модель подойдет для M.

7.3) Теорема Гёделя о полноте И П (27)

Если ${\rm M}$ - непротиворечивое множество замкнутых формул, то она имеет модель.

Определение

Формула имеет поверхностные кванторы, если соответсвует грамматике:

$$\phi ::= \forall x. \phi \mid \exists x. \phi \mid r$$

r - формула без кванторов.

Теорема

Для любых замкнутых формул ψ найдется такая формула ϕ с поверхностными кванторами, что

$$\vdash \psi \rightarrow \phi \ and \ \vdash \phi \rightarrow \psi$$

Лемма - Если M - непротиворечиво, то каждое множество из M_k - непротиворечиво.

Лемма - Если $M_k \vdash \gamma \to W$, и $\gamma \in M_{k+1} \setminus M_k$, то $M_k \vdash W$.

Определение - $M^* = \cup_k M_k$

Теорема - M^* - непротиворечиво.

Определение

 M^b - множество всех бескванторных формул из M^* . По непротиворечивому множеству M можем построить M^b и для него простроить модель M'.

Лемма - M' есть модель для M^* .

Теорема Гёделя о полноте И Π - И Π полно.

7.4) Доказательство полноты И
$$\Pi$$
 (28)

- 1) Построим по M, множество формул с поверхностными кванторами M^1 .
- 2) По M^1 построим непротиворечивое множество замкнутых бескванторных формул M^b ($M^b \subseteq M^*$, теорема о непротиворечимости M^*).
- 3) Дополним его до полного построим для него модель M' (теорема о существовании модели).
- 4) М' будет моделью и для M^1 . ($M^1 \subseteq M^*$, лемма о модели для M^*), и, очевидно для М.

8.1) Машина Тьюринга (29)

Упорядоченная тройка:

- 1) Внешний алфавит. $q_1, ..., q_n$.
- 2) Внутренний алфавит (состояния) s_s, \dots, s_f (s_s начальное s_f конечное).
- 3) Таблица переходов $\langle k, s \rangle \Rightarrow \langle k', s', \leftrightarrows \rangle$.

Состояния машины Тьюринга

Упорядоченная тройка.

- 1) Бесконечная лента с символом заполнителем q_e , текст конечной длины.
- 2) Головка над определенным символом.
- 3) Символ состояния символ внутреннего алфавита.

Язык - множество строк.

Разрешимость языка

Язык L разрешим, если существует машина Тьюринга, которая для любого слово w возаращает ответ "да", если $w \in L$, и "нет", если иначе.

Рассмотрим всевозможные описания машин Тьюринга. Составим упорядоченные пары: описание машины Тьюринга и входная строка. Из них выделим язык остонавливающихся на данном входе машин Тьюринга.

Теорема - Язык всех остоновливающихся машин Тьюринга неразрешим.

8.3) Доказательство неразрешимости И
$$\Pi$$
 (31)

Ящык всех доказаумых формул И П неразрешимю То есть нет машины Тьюринга, которая бы по любой формуле s определяла, доказуема ли она.

Порядок	Кванторы	Формализует суждения о	Пример
нулевой	запрещены	об отдельных значениях	И.В.
первый	по предметным переменным	о множествах	И.П.
		$S = \{t \mid \psi[x := t]\}$	
второй	по предикатным переменным	о множествах множеств	
		$S = \{ \{ t \mid P(t) \} \mid \varphi[p := P] \}$	

9.2) Теори первого порядка, структуры и модели (33)

Теорией первого порядка назовем И Π с дополненительными "нелогическими или "математическими".

- 1) Предикатными функциональными символами.
- 2) аксиомами.

Сущности взятые из исходного И П, назовем логическими.

Структура

Назовем структурой теории первого порядка такую модель И Π , что для всех нелогическиъ функциональныъ и предикатных символов теории в ней задана оценка.

Модель

Назовём моделью теории первого порядка такую структуру, что все нелогичские аксиомы данной теоремы в ней истины.

N соответсвует аксиоматике Пеано, если следующее выполнено:

- 1) Операция "'": $N \to N$, причем нет $a, b \in N$, что $a \neq b$, но a' = b'. Если x = y', то x назовем следующим за y, а y предыдущим за x.
- 2) Константа $0 \in \mathbb{N}$, что x' = 0.
- 3) Индукция. Какова бы не было семейство $P: N \in V$, если P(0) и при любов $x \in N$ из P(x) следует P(x), то при любом $x \in N$ выполнимо P(x).

Теорема

0 - единственнен: если t таков, что при лбом у выполнено $y' \neq t$, то t = 0.

9.4) Арифметические операции (35)

$$1=0",\,2=0",\,\dots,\,9=0""""".$$

$$a+b=\begin{cases} a & \text{если b}=0\\ (a+c)' & \text{если b}=c" \end{cases}$$

$$a\cdot b=\begin{cases} 0 & \text{если b}=0\\ a\cdot c+a & \text{если b}=c" \end{cases}$$

$$a^b=\begin{cases} 1 & \text{если b}=0\\ a^c\cdot a & \text{если b}=c" \end{cases}$$

Теорема a + b = b + a.

Формальная Арифметика - теория первого порядка, со следующими добовлениями нелогическими.

- 1) Двуместными функциональными символами (+), (\cdot) ; Одноместными функциональными символами ('); Нульместными функциональными символами (0).
- 2) Двуместными предикатными символами (=).
- 3) Восемью нелогическими аксиомами:

$$1)a = b \rightarrow a = c \rightarrow b = c$$

$$2)a = b \rightarrow a' = b'$$

$$3)a' = b' \rightarrow a = b$$

$$4)\neg a' = 0$$

$$5)a + 0 = a$$

$$6)a + b' = (a + b)'$$

$$7)a \cdot 0 = 0$$

$$8)a \cdot b' = a \cdot b + a$$

4) Нелогической съемой аксиом индукции (с метапеременными x и ψ).

$$\psi[x := 0] \& (\forall x . \psi \to \psi[x := x']) \to \psi$$

10.1) Примитивно-рекурсивные и рекурсивные функции (37)

Примитивы (Z, N, U, S).

- 1) Примитив "ноль" (Z) $Z: \mathbb{N} \to \mathbb{N}_0 Z(x_1) = 0.$
- 2) Примитив "инкремент" (N) $N: \mathbb{N}_0 \to \mathbb{N}_0 N(x_1) = x_1 + 1.$
- 3) Примитв "проекция" (U) семейство функций: пусть $k,n\in\mathbb{N}_0,\ k\le n\ U_n^k:\mathbb{N}_0^n\to\mathbb{N}_0\ U_n^k(x^\to)=x_k.$ 4) Примитив "подстановка" (S) семейство функций; пусть $g:\mathbb{N}_0^k\to$
- $\mathbb{N}_0, f_1, \dots, f_k : \mathbb{N}_0^n \to \mathbb{N}_0.$ $S < g, f_1, \dots, f_k > (x^{\to}) = g(f_1(x^{\to}), \dots, f_k(x^{\to}))$

Примитивная рекурсия (R) Пусть $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$. Тогда $R < f,\ g>:\mathbb{N}_0^{n+1} \to \mathbb{N}_0,$

$$R < f,g > (x^{
ightarrow},y) = egin{cases} f(x^{
ightarrow}) & ext{ если } \mathrm{y} = 0 \ g(x^{
ightarrow},y-1,R < f,g > (x^{
ightarrow},y-1)) & ext{ если } \mathrm{y} > 0 \end{cases}$$

Примитивно-рекурсивные функции

Все функции, которые могут быть выражены как композиция примитивов <Z, N, U, S, R>.

Теорема x + 2 примитивно-рекурсивна.

Лемма f(a, b) = a + b примитивно-рекурсивна.

Общерекурсивные функции

Функция общерекурсивна если может быть построена при помощи примитивов <Z, N, U, S, R> и примитива минимизации (M) $M < f > (x_1, \ldots, x_n) = min\{y : f(x_1, \ldots, x_n, y) = 0\}$. Если $f(x_1, \ldots, x_n, y) > 0$ 0 при любом у, результат неопроделен.

Функция Аккурмана

$$A(m,n) = egin{cases} n+1 & ext{ если m} = 0 \ A(m-1,1) & ext{ если m} > 0, \ \mathrm{n} = 0 \ A(m-1,A(m,n-1)) & ext{ если m} > 0, \ \mathrm{n} > 0 \end{cases}$$

теорема - Функция Аккермана общерекурсивна, но не примитивно-рекурсивна.

Тезис Чёрча

Для общерекурсивных функций: любая эффективно-вычислимая функция $\mathbb{N}^k_0 \to \mathbb{N}_0$ является общерекурсивной.

Определение

Запись вида $\psi(\theta_1,\ldots,\theta_n)$ означает $\psi[x_1:=\theta_1,\ldots,x_n:=\theta_n].$

Литерал числа

$$\overline{a} = egin{cases} 0 & ext{ если } \mathbf{a} = 0 \ (\overline{b})' & ext{ если } \mathbf{a} = \mathbf{b} + 1 \end{cases}$$

10.2) Примитивная рекурсивность арифметических функций, функция вычисления простых чисел, частичного логорифма

 $(+),\ (\cdot),\ (x^y),\ (:),\ (\sqrt{)},\ (деление с остатком)$ - примитивно-рекурсивные функции.

Лемма

 $p_1 \dots$ – простые числа

 $p(i): \mathbb{N} \to \mathbb{N}, \ p(i)-p_i$ - примитивно-рекурсивная функция.

 $p\log_n k = maxt$: $n^t|k$ - примитивно-рекурсивная функция.

10.3) Выразимость отношений и представимость функций в Ф А

Выразимость отношений в Ф А

Будем говорить, что отношени $R\subseteq\mathbb{N}_0^n$ выразимо в Φ A, есть существует формула ρ , что:

- 1) если $\langle a_1, \ldots, a_n \rangle \in R$, то $\vdash \rho(\overline{a_1}, \ldots, \overline{a_n})$.
- 2) если $\langle a_1, \ldots, a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1}, \ldots, \overline{a_n})$.

Теорема

Отношение "равно" выразимо в Ф А: $R = \{ < x, x > | x \in \mathbb{N}_0 \}.$

Представимость функций в Ф А

Будем говорить, что функция $f:\mathbb{N}_0^n\to\mathbb{N}_0$ представима в Φ A, если существует формула ϕ , что:

- 1) если $f(a_1,\ldots,a_n)=\mathrm{u}, \ \mathrm{ro}\vdash\phi(\overline{a_1},\ldots,a_n,\ \overline{u}).$
- 2) если $f(a_1,\ldots,a_n) \neq \mathbf{u}$, то $\vdash \neg \phi(\overline{a_1},\ldots,a_n,\overline{u})$.

3)
$$\vdash (\exists x.\phi(\overline{a_1},\ldots,a_n,\overline{x})) \& (\forall p.\forall q.\phi(\overline{a_1},\ldots,a_n,p) \& \phi(\overline{a_1},\ldots,a_n,q) \rightarrow p=q).$$

Теорема - любая рекурсивная функция представима в Ф А.

Теорема - любая представимая функция в Ф А рекурсивна.

Теорема - Z,N, и $U_n^k,$ предаставимы в Φ А.

Теорема

Пусть фикции f, g_1, \ldots, g_k представимы в Ф А. Тогда $S < f, g_1, \ldots, g_k >$ представима в Ф А.

Назовем харктеристически отношением c_f для функции $f: \mathbb{N}^n/to\mathbb{N}$ такое отношение $c_f \subseteq \mathbb{N}^{n+1}$, что $< k_1, \ldots, \ k_n > \in c_f$ тогда и только тогда, когда $f(k_1, \ldots, \ k_n) = k_{n+1}$

Лемма

Если функция представима в Φ A, то её харктеристическое отношени вырозимо в Φ A.

10.5) Представимость примитивов
$$N, Z, S, U в \Phi A$$
 (39)

Примитивы Z, N, S, U представимы в Ф А.

$$\beta(b, c, i) := b\%(1 + (i + 1) \cdot c).$$

Теорема

Бета-функция Гёделя представима в Ф А формулой:

$$\beta(b, c, i, d) := \exists q.(b = q \cdot (1 + c \cdot (i + 1)) + d) \& (d < 1 + c \cdot (i + 1))$$

Деление на x с остатком: найдутся частное (q) и остаток (d), что b = q \cdot x + d и $0 \le d < x$.

Теорема

Если $a_0, \ldots, a_n \in \mathbb{N}_0$, то найдутся такие b, $c \in \mathbb{N}_0$, что $a_i = \beta(b, c, i)$.

Китайская теорема об остатках

Если $u_0,\dots,\ u_n$ - попарно взаимно-просты и $0\leq a_i< u_i$, то существует такой b, что $a_i=b\%u_i$. Положим, что $c=max(a_0,\dots,\ a_n,\ n)$ и $u_i=1+c\cdot(i+1)$. Тогда $\mathrm{HOД}(u_i,u_j)=1$, если $i\neq j$. Пусть p - простое число, u_i : p и u_j : p(i< j). Заметим что $u_j-u_i=c\cdot(j-i)$. Значит, c : p или (j-i) : p. Так как $j-i\leq n$, то c : (j-i), потому, если и (j-i) : p, всё равно c : p. Но и $(1+c\cdot(i+1))$: p, отсюда 1 : p - что невозможно. $0\leq a_i< u_i$

Условия китайской теоремы об остатках выполнены и найдётся b, что

$$a_i = b\%(1 + c \cdot (i+1)) = \beta(b, c, i)$$

11.2) Представимость примитивов R и M и рекурсивных функций в Φ A

Примитив R < f, g > представим в Φ А формулой $\rho(x_1, \ldots, x_n, y, a)$

$$\exists b. \exists c. (\exists a_0, \ \beta(b, c, 0, a_0) \& \phi(x_1, \dots, x_n, a_n))$$

$$\& \forall k. k \ k < y \to \exists d. \exists e. \ \beta(b, c, k, d) \& \beta(b, c, k', e)$$

$$\& \gamma(x_1, \dots, x_n, k, d, e) \& \beta(b, c, y, a).$$

Пусть функция $f:\mathbb{N}_0^{n+1}\to\mathbb{N}_0$ представима в Ф А формулой $\phi(x_1,\dots,\ x_n,\ y)$. Тогда примитив M<f> представим в Ф А формулой.

$$\mu(x_1, \ldots, x_n, y) := \phi(x_1, \ldots, x_n, y, 0) \& \forall u, u < y \to \neg \phi(x_1, \ldots, x_n, u, 0).$$

Если f - рекурсивная функция, то она представима в Ф A.

(41)

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0	0,0	27 + 6
5)	19	\forall	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	3	(+)	0, 2	$27 + 6 \cdot 9$
9		23	-	(\cdot)	1, 2	$27 + 6 \cdot 2 \cdot 9$
11	\neg	$25 + 6 \cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$27 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	\vee	$29 + 6 \cdot 2^k \cdot 3^n$	P_k^n			

11.4) Рекурсивность представимых в Φ A функций (42)

Если $f:\mathbb{N}^n_0 \to \mathbb{N}_0$ и f представима в Ф A формулой ϕ , то f - рекурсивна.

Теорема

Существует формула w_1 со свободными переменными x_1 и x_2 такая что:

- 1) $\vdash w_1(\lceil \overline{\phi} \rceil, \overline{\rho})$, если ρ гёделев номер доказательства самоприменения ϕ .
- 2) $\vdash \neg w_1(\overline{\ulcorner \phi \urcorner}, \overline{\rho})$ иначе.

12.1) Непротиворечивость (эквивалентные определения, доказательство эквивалентности) и ω - непротиворечивость

Если для любой формулы $\phi(x)$ из $\vdash \phi(0)$, $\vdash \phi(\overline{1})$, $\vdash \phi(\overline{2})$, ... выполнено $\not\vdash \exists x. \neg \phi(x)$, то теория ω - непротиворечива.

12.2) Первая теорема о неполноте арифметики (43)

Если формальная арифметика непротиворечива, то $\not\vdash \sigma(\ulcorner \sigma \urcorner)$. Если формальная арифметика ω -непротиворечива, то $\not\vdash \neg \sigma(\ulcorner \sigma \urcorner)$.

12.3) Формулировка первой теоремы Гёделя о неполноте арифметики в Форме Россера

$$\theta_1 \leq \theta_2 \equiv \exists p.p + \theta_1 = \theta_2$$
 $\theta_1 < \theta_2 \equiv \theta_1 \leq \theta_2 \neg \theta_1 = \theta_2$ Пусть $\langle \ulcorner \xi \urcorner, p \rangle \in W_2$, если $\vdash \neg \xi(\ulcorner \overline{\xi} \urcorner)$. Пусть ω_2 выражает W_2 в формальной арифметике.

12.4) Неполнота арифметики. Формулировка второй теоремы Гёделя о неполноте арифетики. Consis

Ф А с классической моделью неполна.

Обозначим за $\psi(x,p)$ формулу, выражающую в формальной арифметике рекурсивное отношение Proof: $\langle \ulcorner \xi \urcorner, p \rangle \in \text{Proof}$, если p — гёделев номер доказательства ξ .

Обозначим $\pi(x) \equiv \exists p. \psi(x, p)$ Формулой Consis назовём формулу $\neg \pi(\overline{1} = 0 \overline{})$ Неформальный смысл: «формальная арифметика непротиворечива»

Теорема

Если Consis доказуем, то Ф A противоречива.

12.5) Неформальное пояснение метода доказательств (44)

(неформально) Формулировка 1 теоремы Гёделя о неполноте арифметики: «если Ф.А. непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$ ». То есть, $\forall p. \neg \omega_1(\lceil \overline{\sigma} \rceil, p)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. То есть, если Consis, то $\sigma(\lceil \overline{\sigma} \rceil)$. Однако, если формальная арифметика непротиворечива, то $\not\vdash \sigma(\lceil \overline{\sigma} \rceil)$.

Теория множеств — теория первого порядка, с дополнительным нелогическим двуместным функциональным символом ∈, и следующими дополнительными нелогическими аксиомами и схемами аксиом.

Равенство «по Лейбницу»: объекты равны, если неразличимы. Принцип объёмности: объекты равны, если состоят из одинаковых частей. $A\subseteq B\equiv \forall x.x\in A\to x\in B$ $A=B\equiv A\subseteq BB\subseteq A$

13.3) Аксиоматика Цермело-Френкеля

(47)

1) Аксиома равенства: равные множества содержатся в одних и тех же множествах.

 $\forall x. \forall y. \forall z. x = y \& x \in z \rightarrow y \in z.$

- 2) Аксиома пустого. Существует пустое множество \varnothing . $\exists s. \forall t. \neg t \in s.$
- 3) Аксиома пары. Существует $\{a,b\}$. Каковы бы ни были два множества a и b, существует множество, состоящее в точности из них. $\forall a. \forall b. \exists s. a \in s \ \& \ b \in s \ \& \ \forall c. c \in s \to c = a \lor c = b.$
- 4) Аксиома объединения: существует $\cup x$. Для любого непустого множества x найдется такое множество, которое состоит в точности из тех элементов, из которых состоят элементы x.

 $\forall x. (\exists y. y \in x) \to \exists p. \forall y. y \in p \leftrightarrow \exists s. y \in s \& s \in x.$

5) Аксиома степени: существует $\mathcal{P}(x)$. Каково бы ни было множество x, существует множество, содержащее в точности все возможные подмножества множества x.

 $\forall x. \exists p. \forall y. y \in p \leftrightarrow y \subseteq x.$

) Схема аксиом выделения: существует $\{t \in x | \varphi(t)\}$. Для любого множества x и любой формулы от одного аргумента $\varphi(y)$ (b не входит свободно в φ), найдется b, в которое входят те и только те элементы из множества x, что $\varphi(y)$ истинно.

 $\forall x. \exists b. \forall y. y \in b \leftrightarrow (y \in x \& \varphi(y)).$

Теорема

Для любого множества х существует с множество $\{x\}$, содержащее в точности х.

Теорема - Пустое множество единственно.

Теорема

Для двух множеств s и t существует множество являющейся их пересечением.

Упорядоченная пара

Упорядоченной парой двух множеств a и b назовём $\{\{a\},\{a,b\}\}$, или $\langle a,b\rangle$.

Теорема

Упорядоченную пару можно построить для любых множеств.

Теорема

<a, b> = <c, d> тогда и только тогда, когда а = b т c = d.

Инкремент - $x' \equiv x \cup \{x\}$.

Частичный: рефлексивность $(a \leq a)$, антисимметричность $(a \leq b \rightarrow b \leq a \rightarrow a = b)$, транзитивность $(a \leq b \rightarrow b \leq c \rightarrow a \leq c)$.

Линейный: частичный $+ \forall a. \forall b. a \leq b \lor b \leq a.$

Полный: линейный + в любом непустом подмножестве есть наименьший элемент.

13.5) Ординальные числа аксиома бесконечности (49)

Аксиома бесконечности - Существует $N: \varnothing \in N \& \forall x.x \in N \to x' \in N$.

Транзитивные множества - элемент его элемента, его элемент.

Ординал - Вполне упорядоченное отношением (\in) , транзитивное множество.

Предельный ординал - такой x, что $x \neq \emptyset$ и нет y: y' = x.

Ординальные числа

$$\overline{1} = \varnothing.
\overline{2} = \varnothing' = \{\varnothing\}.
\overline{3} = \{\varnothing\}' = \{\varnothing, \{\varnothing\}\}.$$

13.6) Конечные ординалы (50)

Конечный ординал - если меньше любого предельного.

Теорема - x, y - ординалы, то $x \in y$ или $y \in x$.

13.7) Существования ординала
$$\omega$$
 (51)

 ω - наименьший предельный ординал.

Теорема - ω существует.

 $\sup \mathbf{x}$ - наименьнший ординал, содержащий $x: x \subseteq \sup x$.

13.8) Операции над ординалами (52)
$$a+b = \begin{cases} a & \text{если b} = 0 \\ (a+c)' & \text{если b} = c' \\ sup\{a+c \mid c < b\} & \text{если b предельный ординал} \end{cases}$$

$$a \cdot b = \begin{cases} 0 & \text{если b} \equiv \varnothing \\ (a \cdot c) + a' & \text{если b} \equiv c' \\ sup\{a \cdot c \mid c < b\} & \text{если b предельный ординал} \end{cases}$$

$$a^b = \begin{cases} 1 & \text{если b} \equiv \varnothing \\ (a^c) \cdot a & \text{если b} \equiv c' \\ sup\{a^c \mid c < b\} & \text{если b предельный ординал} \end{cases}$$

Дизъюнкьное множество - множество, элементы которого не пересекаются.

$$Dj(x) \equiv \forall y. \forall z. (y \in x \ \& \ z \in x \ \& \ \neg y = z) \rightarrow \neg \exists t. t \in y \ \& \ t \in z$$

Прямое произведение дизъюнктного множества

Прямое произведение дизъюнктного множества а - множество $\times a$ всех таких множеств b, что:

- 1) b пересекается с каждым из элементов множества a в точности в одном элементе.
- 2) b содержит элементы только из $\cup a$.

14.1) Кардинальные числа (53)

t - ординал х: для всех $y \in x: |y| \neq |x|$ ординальное число у которого нет меньшего его равномощного.

 $|\mathbf{a}| = |\mathbf{b}|$, если существует биекция $a \to b$.

 $|\mathbf{a}| \leq |\mathbf{b}|$, если существует инъекция $a \to b$.

Кардинальное число - множество всех равномощных ординальных чисел.

Мощность множества |x| - такое кардинальное число t, что |t|=|x|.

 $|\mathbf{x}| < |\mathbf{y}|$, если $|\mathbf{x}| \le |\mathbf{y}| \& |\mathbf{x}| \ne |\mathbf{y}|$.

14.3) Теорема Кантора-Бернштейна (55)

Если $|x| \le |y| \& |y| \le |x|$, то |x| = |y|.

Если x - некоторое множество, то |X|<|P(x)|

- 1) На любом семействе непустых множеств $\{A_S\}_{S\in \mathbb{S}}$ можно определить функцию $f:S\to \cup_S A_s$, которая по множеству возвращает его элемент.
- 2) Любое множество можно вполне упорядочить.
- 3) Для любых сюрьективной функции $f:A\to B,$ найдется частично обратная $g:B\to A,$ g(f(x))=x.

Рассмотрим аксиоматику Цермело Френкеля поверх И И П, если добавим аксиому выбора то $\vdash \alpha \lor \neg \alpha$.

Номер вещественного числа

Номер вещественного числа - первое упоминание в литературе <j, y, n, p, r, c>

ј - гёделев номер;

у - год издания;

n - номер;

р - страница;

r - страна;

с - позиция;

Пусть задана модель $< D, F_n, P_n >$, для некоторой теории первого порядка. Её мощьностью будем считать, мощьность D.

Пусть задана формальная теория с аксиомами a_n . Её мощьность - мощьность множества $\{a_n\}$.

 $M^\prime = < D^\prime, F_n^\prime, P_n^\prime >$ - элементарная подмодель

 $M = < D, F_n, P_n >$, если:

- 1) $D' \subseteq D, F'_n, P'_n$ сужение F_n, P_n (замкнутая на D').
- 2) $M'\models\phi(x_1,\ldots,\ x_n)$ тогда и только тогда, когда $M'\models\phi(x_1,\ldots,\ x_n)$, при $x_i\in D'.$

Теорема

Пусть Т - множество всех фопмул теории первого порядка. Пусть теория имеет некоторую модель М'. Тогда найдется элементарная подмодель М', причем $|''|=\max(\aleph_0,\;|T|).$

15.2) Парадокс Сколема (60)

- 1) Как известно $\mathbb{R} = |P(\mathbb{N})| > |\mathbb{N}| = \aleph_0$. Однако ZFC-счетно-аксиматизируемая теория. Значит, существует счетная модель ZFC, то есть $|\mathbb{R}| = \aleph_0$. В чем опибка?
- 2) У равенств разный смысл, первое в предметном языке, второе в метаязыке. Внутри теории не выразить все способы нумерации, которые возможны.

16.1) Система
$$S_{\infty}$$
 (61)

- 1) Язык: связки \neg , \lor , \forall ; нелогические символы: $(+),(\cdot),('),0,(=)$.
- 2) Аксиомы: все истинные формулы вида $\theta_1 = \theta_2$; все истинные отрицания формул вида $\neg \theta_1 = \theta_2$ (θ_i термы без переменных).
- 3) Структурные (слабые) правила:

$$\frac{\zeta \vee \alpha \vee \beta \vee \delta}{\zeta \vee \beta \vee \alpha \vee \delta} \qquad \frac{\alpha \vee \alpha \vee \delta}{\alpha \vee \delta}$$

сильные правила

$$\frac{\delta}{\alpha \vee \delta} \quad \frac{\neg \alpha \vee \delta \quad \neg \beta \vee \delta}{\neg (\alpha \vee \beta) \vee \delta} \quad \frac{\alpha \vee \delta}{\neg \neg \alpha \vee \delta} \quad \frac{\neg \alpha[x := \theta] \vee \delta}{(\neg \forall x . \alpha) \vee \delta}$$

и ещё два правила . . .

бесконечная индукция

$$\frac{\alpha[x:=\overline{0}]\vee\delta\quad\alpha[x:=\overline{1}]\vee\delta\quad\alpha[x:=\overline{2}]\vee\delta\quad\dots}{(\forall x.\alpha)\vee\delta}$$

сечение

$$\frac{\zeta \vee \alpha \qquad \neg \alpha \vee \delta}{\zeta \vee \delta}$$

Здесь:

 α — секущая формула

Число связок в $\neg \alpha$ — степень сечения.

Дерево доказательства

- 1) Доказательства образуют деревья.
- 2) Каждой формуле в дереве сопоставим порядковое число (ординал).
- 3) Порядковое число заключения любого неструктурного правила строго больше порядкового числа его посылок (больше или равно в случае структурного правила).
- 4) Существует конечная максимальная степень сечения в дереве (назовём её степенью вывода).

Теорема - Если $\vdash_{\Phi^a} \alpha$, то $\vdash_{\infty} |\alpha|_{\infty}$.

Теорема - Если Ф.А. противоречива, то противоречива и S_{∞} .

Обратимость правил Теорема

Если формула α доказана и имеет вид, похожий на заключение правил де Моргана, отрицания и бесконечной индукции - то посылки соответствующих правил могут быть получены из самой формулы α доказательством, причём доказательством с не большей степенью и не большим порядком.

Устранение сечений Теорема

Если α имеет вывод степени m>0 порядка t, то можно найти вывод степени строго меньшей m с порядком 2^t .

Итерационная экспонента

$$(a\uparrow)^m(t) = \begin{cases} t, & m=0\\ a^{(a\uparrow)^{m-1}(t)}, & m>0 \end{cases}$$

Теорема

Если $\vdash_{\infty} \sigma$ степени m порядка t, то найдётся доказательство без сечений порядка $(2 \uparrow)^m(t)$

16.2) Доказательство непротиворечивости Φ **A** (62)

Два вида индукции

1) (Принцип математической индукции) Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.
2) (Принцип полной математической индукции) Какое бы ни было $\psi(x)$,

если $\psi(0)$ и при всех x выполнено $(\forall t.x < t \to \psi(x)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема - Приципы математической индукции эквивалентны.

Теорема

Принцип трансфинитной индукции. Если для $\varphi(x)$ - некоторого утверждения теории множеств — выполнено:

1)
$$\varphi(\varnothing)$$

2) Если $\forall u.u \in v \rightarrow \varphi(u)$, то $\varphi(v)$ (где v – это ординал)

то $\forall u.\varphi(u)$.

Лемма

Свойство индукции выполнено для натуральных чисел: если $\varphi(0)$ и $\forall x \in \mathbb{N}_0.f(x) \to f(x')$, то $\forall x \in \mathbb{N}_0.f(x)$.

Теорема - Система S_{∞} непротиворечива ($\Rightarrow \Phi$ А непротиворечива).