左偏树/左倾堆

Leftist Heaps

and Skew Heaps

斜堆

heap 最小堆 最大堆 查询最大和最小元素 插入元素:放在最末尾 自顶向上

删除元素:删除根节点后 将末尾元素放在根节点处

自顶向下调整

Leftist Heaps

merge 合并 选出根 并为左右子树 再调整 O(N), N为总结点数

Target: Speed up merging in O(N).

Heap: Structure Property + Order Property

Discussion 5: How fast can we merge two heaps if we simply use the original heap structure?

Leftist Heap:

顺序性质相同:小的在上

Order Property – the same

结构性质不同:高度不平衡

Structure Property - binary tree, but unbalanced

Definition The null path length, Npl(X), of any node X is the length of the shortest path from X to a node without two children. Define Npl(NULL) = -1.

Note:

 $Npl(X) = min \{ Npl(C) + 1 \text{ for all } C \text{ as children of } X \}$

【Definition】 The leftist heap property is that for every node X in the heap, the null path length of the left child is at least as large as that of the right child.

The tree is biased to get deep toward the *left*.

Theorem A leftist tree with r nodes on the right path must have at least 2r – 1 nodes.

Proof: By induction on p. 162.

Discussion 6: How long is the right path of a leftist tree of N nodes? What does this conclusion mean to us?

Trouble makers: Insert and Merge

Note: Insertion is merely a special case of merging.

Declaration:

Merge (recursive version):


```
PriorityQueue Merge ( PriorityQueue H1, PriorityQueue H2 )
{
   if ( H1 == NULL )      return H2;
   if ( H2 == NULL )      return H1;
   if ( H1->Element < H2->Element )      return Merge1( H1, H2 );
   else return Merge1( H2, H1 );
}
```

```
static PriorityQueue
Merge1( PriorityQueue H1, PriorityQueue H2)
{
   if ( H1->Left == NULL ) /* single node */
         H1->Left = H2; /* H1->Right is already NULL
                              and H1->Npl is already 0 */
  else {
         H1->Right = Merge( H1->Right, H2 );
                                               /* Step 1 & 2 */
         if ( H1->Left->Npl < H1->Right->Npl )
                  SwapChildren( H1 );
                                               /* Step 3 */
         H1->Npl = H1->Right->Npl + 1;
  } /* end else */
                                                   What if Npl is NOT
  return H1;
                                                         updated?
                   T_p = O(\log N)
```

Merge (iterative version):

Step 1: Sort the right paths without changing their left children

Step 2: Swap children if necessary

DeleteMin:

Step 1: Delete the root

Step 2: Merge the two subtrees

$$T_p = O(\log N)$$

Skew Heaps -- a simple version of the leftist heaps

Merge: Always swap the left and right children except that the largest of all the nodes on the right paths does not have its children swapped No Npl.

[Example] Insert 15

Merge (iterative version):

Note:

- Skew heaps have the advantage that no extra space is required to maintain path lengths and no tests are required to determine when to swap children.
- The second problem to determine precisely the expected right path length of both leftist and skew heaps.

Amortized Analysis for Skew Heaps

Insert & Delete are just Merge

$$T_{amortized} = O(\log N)$$
?

$$D_i$$
 = the root of the resulting tree

$$\Phi(D_i) = \text{number of } heavy \text{ nodes}$$

【Definition】 A node p is *heavy* if the number of descendants of p's right subtree is at least half of the number of descendants of p, and *light* otherwise. Note that the number of descendants of a node includes the node itself.

Leftist Heaps & Skew Heaps

The only nodes whose heavy/light status can change are nodes that are initially on the right path.

$$H_i: l_i + h_i \quad (i = 1, 2)$$

Along the right path

 $T_{worst} = l_1 + h_1 + l_2 + h_2$

Before merge:
$$\Phi_0 = h_1 + h_2 + h$$
 $T_{amortized} = T_{worst} + \Phi_N - \Phi_0$

After merge:
$$\Phi_{N} \le l_{1} + l_{2} + h$$
 $\le 2 (l_{1} + l_{2})$

$$l = O(\log N)$$
 \longrightarrow $T_{amortized} = O(\log N)$

Reference:

Data Structure and Algorithm Analysis in C (2nd Edition): Ch.5, p.161-169; Ch.11, p.435-437; M.A.Weiss 著、陈越改编,人民邮件出版社,2005