

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$x_{1}$$

$$y_{2} = \omega_{1}x_{1} + \omega_{2}x_{2} + b$$

$$y_{3} = \omega_{2} + \delta(z)$$

$$y_{4} = \omega_{1}x_{1} + \omega_{2}x_{2} + b$$

Logistic regression derivatives

deeplearning.ai

Basics of Neural Network Programming

Gradient descent on *m* examples

Logistic regression on m examples

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{J(\omega,b)}{J(\omega^{(i)})} = G(z^{(i)}) = G(\omega^{T} x^{(i)} + b)$$

$$\frac{J(\omega,b)}{J(\omega,b)} = \frac{1}{m} \sum_{i=1}^{m} \frac{J(\alpha^{(i)}, y^{(i)})}{J(\alpha^{(i)}, y^{(i)})}$$

Logistic regression on m examples

$$J=0$$
; $d\omega_{1}=0$; $d\omega_{2}=0$; $db=0$

For $c=1$ to m
 $z^{(i)}=\omega^{T}x^{(i)}+b$
 $a^{(i)}=6(z^{(i)})$
 $J+=-[y^{(i)}(\log a^{(i)}+(1-y^{(i)})\log(1-a^{(i)})]$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $d\omega_{1}+=x^{(i)}dz^{(i)}$
 $d\omega_{2}+=x^{(i)}dz^{(i)}$
 $d\omega_{2}+=x^{(i)}dz^{(i)}$
 $d\omega_{3}+=dz^{(i)}$
 $d\omega_{4}+=dz^{(i)}$
 $d\omega_{1}/=m$
 $d\omega_{1}/=m$; $d\omega_{2}/=m$; $d\omega_{2}/=m$.

$$d\omega_1 = \frac{\partial u}{\partial \omega}$$

Vectorization