Distributed Systems Advanced Course - ID2203 Homework 01

Students:

Rahim Delaviz, rahimda@kth.se

Tryggvi Larusson, larusson@kth.se

Exercise 1

To check the impact of changing latency on the Flooding Message, We have done two runs on two topologies with same structure but different latency. Our topologies are as below:

Figure1: Topology of run 1

Figure2: Topology of run number 2

the numbers show the latency of each edge. The result of running algorithm with above topology has been shown below:

	Node	e Ending Time	Difference	Source Node	Destination Node	Latency	DirectionType				
	0	1202152059265		0	1	1000	Bidirectional				
Run 1	1	1202152060437		1	2	2000	Bidirectional				
	2	1202152062359		2	0	3000	Bidirectional				
			-		-						
	0 1202152309218			0	1	1000	Bidirectional				
Run 2	1	1202152310390		1	2	2000	Bidirectional				
		1202152312296		2	0	3000	Bidirectional				
		1202102012200	1000	_		0000	<u> </u>				
	As it is obvious the node number 2 has sent FloodDone message after other node										
	the reason is that the sum of latencies associated with this node (2000+3000) is										
	greater that than other nodes. Also the sum of associated latencies of node 1 (
	1000+2000) is less than node number 0 (1000+3000) but node 0 has finished earlier										
Result											
	than node 1. The reason for this unusual output can be processing time and the										
	difference between latencies is not so high that covers processing time. Because										
	node 0 sends the first message so it is acceptable that with low latency difference										
	rate, it finishes before others.										
	2	1202152494609		0	1	4000	Bidirectional				
Run 1	0	1202152494843	234	1	2	3000	Bidirectional				
	1	1202152497703	2860	2	0	200	Bidirectional				
	0	1202152742734		0	1	4000	Bidirectional				
Run 2	2	1202152743093	359	1	2	3000	Bidirectional				
	1	1202152746203	3110	2	0	200	Bidirectional				
	1	4		ID			J. Th.				
	In both runs node 1 has sent FloodDone message after all other nodes. Th										
	is obvious because the sum up of incoming edges latencies(3000+ 4000) is greater										
	than others. In the run 1 node 2 has finished before node 0 and in the run 2 vice										
	versa. The reason is same as previous latency rates run. Node 2 finished before										
Result	node 1 because sum of its edges latency (3000+200) is less than others. Node 0 has										
	finished before other nodes because it has send the first message and may be has										
	received all messages before others. And it is acceptable that in different runs one										
	time node 0 finishes before node 2 and other time node 2 but deterministically node										
	•										
	1 will be finished after other nodes.										

Exercise 2

We set up another different topology, this time with link loss on all the links, which changed the results considerably.

We ran this twice and we see that in the second time there is a case where the FloodDoneEvent is never received at nodes 1 and 2. This is because the loss makes some messages not be delivered at all which of course makes the FloodComponent not detect all incoming FloodMessages so in some cases FloodDoneEvent may never be raised.

Figure 3: A topology with loss rates greater than zero.

Run Num			Diffe renc	Source	Destina tion	Late	Loss		
Italii	Node	Ending Time	е	Node	Node	ncy	Rate	Туре	
	0	1202149225032		0	1	1000	20%	Bidirectional	
Run 1	1	1202149226111	1079	1	2	2000	30%	Bidirectional	
	2	1202149227077	2045	2	0	3000	50%	Bidirectional	
Run 2	0	1202150010271		0	1	1000	20%	Bidirectional	
	1	Never		1	2	2000	30%	Bidirectional	
	2	Never		2	0	3000	50%	Bidirectional	
	In some cases FloodDoneEvent may never be raised be cause of dropped								
Result	messa	ges							

Exercise 3

If a topology is set up that is unidirectional for some links between nodes the result will be that some nodes will not be able to receive messages from their neighbors. The flood algorithm could not work in these cases because the flood algorithm requires that all nodes can receive messages from all other nodes.

Figure 3: A topology with loss rates greater than zero.

Run Num	Node	Ending Time	Diffe renc e	Source Node	Destina tion Node	Late ncy	Loss Rate	Туре		
Run 1	0	never		0	1	1000	0	unidirectional		
	1	never		1	2	2000	0	unidirectional		
	2	never		2	0	3000	0	unidirectional		
	With the topology of Figure3 , none of the nodes finished. That is reasonable be									
	for example for node number 1. When node 1 parses the topology it finds out									
	the it should send message to node 2 and also receive message from node 2									
Result	but in reality there is no way for node 1 to receive message from node 2 so it									
	waits for a message from node 2 and never ends. There is similar case for other									
	nodes.									

In the topology below we relax some of the constrains on edges and prepare conditions for some of the nodes to finish, that lucky nodes are node 0 and 1.

Figure4: Topology with relaxed edges

Lets see what happens?

	Nod e	Ending Time	Differe nce	Sou rce Nod e	Destina tion Node	Late ncy	Loss Rate	Туре
Run 1	0 1	1202247888593 1202247891671	3078	0 1	1 2	1000	0	unidirectional unidirectional
Result	2 never 2 0 3000 0 bidirectional As it was predictable from the topology , node 2 never ends. Because it expects that it receive a message from node 0 , but there is not an edge from node 0 to it. Node 0 finishes before node 1 because it need to receive just one message from node 1 and the edge latency is just 1000. To send a FloodDone message , node 1 needs to receive two message from 0 and 1 with total Latency of 3000 (with average 1500) .							