

BUSINESS REPORT

Statistical Methods for Decision Making
Prepared by: Dhruv Dosad

Agenda

Content	Page No
Problem I	1-8
1.1.1 Use methods of descriptive statistics to summarize data	2
1.1.2 Which Region and which Channel spent the most?	3
1.1.3 Which Region and which Channel spent the least?	3
1.2 There are 6 different varieties of items that are considered. Describe and comment/explain all the varieties across Region and Channel? Provide a detailed justification for your answer.	4
1.3 On the basis of a descriptive measure of variability, which item shows the most inconsistent behaviour? Which items show the least inconsistent behaviour?	5
1.4 Are there any outliers in the data? Back up your answer with a suitable plot/technique with the help of detailed comments.	6
1.5 On the basis of your analysis, what are your recommendations for the business? How can your analysis help the business to solve its problem? Answer from the business perspective.	7
Problem II:	8-16
2.1 Perform Exploratory Data Analysis [Univariate, Bivariate, and Multivariate analysis to be performed]. What insight do you draw from the EDA?	8

List of Figures

- Fig 1.1 Total Spending across Channels
- Fig 1.2 Avg Spending across Channels
- Fig 1.3 Total Spending across Region
- Fig 1.4 Avg Spending across Region
- Fig 1.5 Total Spending across Channels & Regions
- Fig 1.6 Varieties of items across Region & Channel
- Fig 1.7 Outliers identification using boxplot
- Fig 1.8 Outliers for each variable across Channels & Regions
- Fig 2.1 Univariate Analysis using histogram
- Fig 2.2 Interaction between Application vs Accept
- Fig 2.3 Interaction between Application vs Enroll
- Fig 2.4 Interaction between Application vs Grad.Rate
- Fig 2.5 Top 10 Names with highest Application
- Fig 2.6 Top 10 Names with Highest Accept
- Fig 2.7 Top 10 Names with highest full time Undergraduates
- Fig 2.8 Top 10 Names with highest PHD ratio
- Fig 2.9 Pairplot
- Fig 2.10 Correlation Heatmap
- Fig 2.11 Outlier check using boxplot

List of Tables

- Table 1.1 Sample of Dataset
- Table 1.2 Information about Dataset
- Table 1.3 Null values
- Table 1.4 Statistical summary of the dataset
- Table 1.5 Summary of the Spendings across Channels & Regions
- Table 1.6 Descriptive measure of variability
- Table 2.1 Sample of Dataset
- Table 2.2 Information about Dataset
- Table 2.3 Null values
- Table 2.4 Statistical summary of the dataset

Problem Statement 1:

A wholesale distributor operating in different regions of Portugal has information on annual spending of several items in their stores across different regions and channels. The data consists of 440 large retailers' annual spending on 6 different varieties of products in 3 different regions (Lisbon, Oporto, Other) and across different sales channel (Hotel, Retail).

Data dictionary:-

Sr No	Column Name	Description
1	Buyer/Spender	Buyer/Spender's id
2	Channel	Sales channel- Hotel or Retail
3	Region	Region of sales- Lisbon, Oporto, Other
4	Fresh	Variety of products
5	Milk	Variety of products
6	Grocery	Variety of products
7	Frozen	Variety of products
8	Detergents_Paper	Variety of products
9	Delicatessen	Variety of products

Dimensions of the dataset

• The dataset have 440 rows & 9 column

First & last 5 rows of the dataset

	Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
0	1	Retail	Other	12669	9656	7561	214	2674	1338
1	2	Retail	Other	7057	9810	9568	1762	3293	1776
2	3	Retail	Other	6353	8808	7684	2405	3516	7844
3	4	Hotel	Other	13265	1196	4221	6404	507	1788
4	5	Retail	Other	22615	5410	7198	3915	1777	5185
		lees.			•••			•••	***
435	436	Hotel	Other	29703	12051	16027	13135	182	2204
436	437	Hotel	Other	39228	1431	764	4510	93	2346
437	438	Retail	Other	14531	15488	30243	437	14841	1867
438	439	Hotel	Other	10290	1981	2232	1038	168	2125
439	440	Hotel	Other	2787	1698	2510	65	477	52

Table 1.1 Sample of Dataset

Information about the dataset & datatype

```
<class
            'pandas.core.frame.DataFrame'>
RangeIndex: 440 entries, 0 to 439
Data columns (total 9 columns):
                                        Non-Null Count Dtype
        Column
        _____
       Buyer/Spender 440 non-null int64
Channel 440 non-null object
Region 440 non-null object
Fresh 440 non-null int64
Milk 440 non-null int64
Grocery 440 non-null int64
Frozen 440 non-null int64
Detergents_Paper 440 non-null int64
Delicatessen 440 non-null int64
es: int64(7), object(2)
                                        -----
      Buyer/Spender
 0
  1
 2
 3
      Milk
 4
 5
 6
 7
 8
dtypes: int64(7), object(2)
memory usage: 31.1+ KB
```

Table 1.2 Information about Dataset

- There are 7 Integer/Numeric and 2 Object data types
- All the data types are not null
- There seems to be no missing values

Buyer/Spender	0
Channel	0
Region	0
Fresh	0
Milk	0
Grocery	0
Frozen	0
Detergents_Paper	0
Delicatessen	0
dtype: int64	

Table 1.3 Null values

1.1.1 Use methods of descriptive statistics to summarize data.

			•						
	Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
count	440.000000	440	440	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000
unique	NaN	2	3	NaN	NaN	NaN	NaN	NaN	NaN
top	NaN	Hotel	Other	NaN	NaN	NaN	NaN	NaN	NaN
freq	NaN	298	316	NaN	NaN	NaN	NaN	NaN	NaN
mean	220.500000	NaN	NaN	12000.297727	5796.265909	7951.277273	3071.931818	2881.493182	1524.870455
std	127.161315	NaN	NaN	12647.328865	7380.377175	9503.162829	4854.673333	4767.854448	2820.105937
min	1.000000	NaN	NaN	3.000000	55.000000	3.000000	25.000000	3.000000	3.000000
25%	110.750000	NaN	NaN	3127.750000	1533.000000	2153.000000	742.250000	256.750000	408.250000
50%	220.500000	NaN	NaN	8504.000000	3627.000000	4755.500000	1526.000000	816.500000	965.500000
75%	330.250000	NaN	NaN	16933.750000	7190.250000	10655.750000	3554.250000	3922.000000	1820.250000
max	440.000000	NaN	NaN	112151.000000	73498.000000	92780.000000	60869.000000	40827.000000	47943.000000

Table 1.4 Statistical summary of the dataset

- The dataset contains 440 entries representing buyers or spenders.
- The **majority** of buyers are associated with the **hotel channel**.

- Most buyers come from the "Other" region.
- Average spending varies across different product categories.
- Fresh products have an average spending of approximately 12,000 units.
- Milk and grocery items have average spendings of around 5,800 and 7,950 units, respectively.
- The dataset shows a wide range of values with some extreme values in certain categories.

1.1.2 Which Region and which Channel spent the most?

1.1.3 Which Region and which Channel spent the least?

Fig 1.1 Total Spending across Channels

Fig 1.2 Avg Spending across Channels

Fig 1.4 Avg Spending across Region

Fig 1.5 Total Spending across Channels & Regions

Among the two Channels,

- The Hotel channel had the highest total spending, amounting to 6,882,590.
- On the other hand, the **Retail** channel had a relatively **lower** total spending of **6,385,260**.
- However, when we check average spent, retailer spends more than hotel
- Hotels, in general, spend more than retailers. However, in the Oporto region, retailers spend more than hotels.

Among the Region,

- The **Other** region has the **highest** total spending among the three, amounting to **9,747,107**.
- The **lowest** is for the **Oporto** region having a total spending of **1,364,956**.
- On an average all regions spend almost same Lisbon being the least

1.2 There are 6 different varieties of items that are considered. Describe and comment/explain all the varieties across Region and Channel? Provide a detailed justification for your answer.

		Delicatessen	Detergents_Paper	Fresh	Frozen	Grocery	Milk
Region	Channel						
Lisbon	Hotel	70632	56081	761233	184512	237542	228342
	Retail	33695	148055	93600	46514	332495	194112
Oporto	Hotel	30965	13516	326215	160861	123074	64519
	Retail	23541	159795	138506	29271	310200	174625
Other	Hotel	320358	165990	2928269	771606	820101	735753
	Retail	191752	724420	1032308	158886	1675150	1153006
	Retail	191752	724420	1032308	158886	1675150	115300

Table 1.5 Summary of the Spendings across Channels & Regions

Fig 1.6 Varieties of items across Region & Channel

- Fresh category has high spending across all regions and channels.
- Retailers in Lisbon and Oporto spend more on Grocery items compared to hotels.
- Hotels in the Other region have significantly higher spending across all categories.
- Retailers have higher spending on Detergents_Paper compared to hotels.
- Hotels in the Other region spend significantly more on Delicatessen.

1.3 On the basis of a descriptive measure of variability, which item shows the most inconsistent behaviour? Which items show the least inconsistent behaviour?

count	mean	std	min	25%	50%	75%	max	IQR/median
440.0	12000.297727	12647.328865	3.0	3127.75	8504.0	16933.75	112151.0	1.623471
440.0	5796.265909	7380.377175	55.0	1533.00	3627.0	7190.25	73498.0	1.559760
440.0	7951.277273	9503.162829	3.0	2153.00	4755.5	10655.75	92780.0	1.787982
440.0	3071.931818	4854.673333	25.0	742.25	1526.0	3554.25	60869.0	1.842726
440.0	2881.493182	4767.854448	3.0	256.75	816.5	3922.00	40827.0	4.488977
440.0	1524.870455	2820.105937	3.0	408.25	965.5	1820.25	47943.0	1.462455
	440.0 440.0 440.0 440.0 440.0	440.012000.297727440.05796.265909440.07951.277273440.03071.931818440.02881.493182	440.0 12000.297727 12647.328865 440.0 5796.265909 7380.377175 440.0 7951.277273 9503.162829 440.0 3071.931818 4854.673333 440.0 2881.493182 4767.854448	440.0 12000.297727 12647.328865 3.0 440.0 5796.265909 7380.377175 55.0 440.0 7951.277273 9503.162829 3.0 440.0 3071.931818 4854.673333 25.0 440.0 2881.493182 4767.854448 3.0	440.0 12000.297727 12647.328865 3.0 3127.75 440.0 5796.265909 7380.377175 55.0 1533.00 440.0 7951.277273 9503.162829 3.0 2153.00 440.0 3071.931818 4854.673333 25.0 742.25 440.0 2881.493182 4767.854448 3.0 256.75	440.0 12000.297727 12647.328865 3.0 3127.75 8504.0 440.0 5796.265909 7380.377175 55.0 1533.00 3627.0 440.0 7951.277273 9503.162829 3.0 2153.00 4755.5 440.0 3071.931818 4854.673333 25.0 742.25 1526.0 440.0 2881.493182 4767.854448 3.0 256.75 816.5	440.0 12000.297727 12647.328865 3.0 3127.75 8504.0 16933.75 440.0 5796.265909 7380.377175 55.0 1533.00 3627.0 7190.25 440.0 7951.277273 9503.162829 3.0 2153.00 4755.5 10655.75 440.0 3071.931818 4854.673333 25.0 742.25 1526.0 3554.25 440.0 2881.493182 4767.854448 3.0 256.75 816.5 3922.00	440.0 12000.297727 12647.328865 3.0 3127.75 8504.0 16933.75 112151.0 440.0 5796.265909 7380.377175 55.0 1533.00 3627.0 7190.25 73498.0 440.0 7951.277273 9503.162829 3.0 2153.00 4755.5 10655.75 92780.0 440.0 3071.931818 4854.673333 25.0 742.25 1526.0 3554.25 60869.0 440.0 2881.493182 4767.854448 3.0 256.75 816.5 3922.00 40827.0

Table 1.6 Descriptive measure of variability

- The item **Detergents_Paper** exhibits the **highest** level of inconsistency, with a relatively high IQR/median value of **4.488977**.
- **Delicatessen** and **Milk** show the **least** inconsistency, with lower IQR/median values of **1.462455** and **1.559760** respectively.
- **Higher** IQR/median values indicate **greater variability** and **inconsistency** in the data, while lower values suggest more consistency and less spread.

1.4 Are there any outliers in the data? Back up your answer with a suitable plot/technique with the help of detailed comments.

Fig 1.7 Outliers identification using boxplot

• From above, we can see the presence of outliers across all varieties.

Fig 1.7 Outliers for each variable across Channels & Regions

1.5 On the basis of your analysis, what are your recommendations for the business? How can your analysis help the business to solve its problem? Answer from the business perspective.

- Retailers spend more than hotels. This means that we can increase our revenue by targeting more retailers. We can do this by expanding our reach to new retailers or by increasing our marketing efforts to existing retailers.
- 2. **There are customers in other regions**. Currently, we are only focused on Oporto and Lisbon. However, there are customers in other regions as well. We should focus on expanding our reach to these regions.
- 3. **Hotels buy fresh food, retailers buy grocery & milk**. This means that we can maximize our sales by focusing on these items in each channel. For example, we can offer discounts on fresh food to hotels or we can offer loyalty programs for grocery & milk purchases to retailers.
- 4. **Frozen foods, delicatessen & detergents_paper are least popular**. This means that we may not be able to sell these items as well in the current channels. We can look for other channels or industries that have demand for these items. For example, we could sell frozen foods to restaurants or delicatessen items to grocery stores.

Problem Statement 2:

The dataset Education - Post 12th Standard.csv contains information on various colleges. The data dictionary of the 'Education - Post 12th Standard.csv' can be found in the following file: Data Dictionary.xlsx.

Data Dictionary

- 1. Names: Names of various university and colleges
- 2. Apps: Number of applications received
- 3. Accept: Number of applications accepted
- 4. Enroll: Number of new students enrolled
- 5. Top10perc: Percentage of new students from top 10% of Higher Secondary class
- 6. Top25perc: Percentage of new students from top 25% of Higher Secondary class
- 7. F.Undergrad: Number of full-time undergraduate students
- 8. P.Undergrad: Number of part-time undergraduate students
- 9. Outstate: Number of students for whom the particular college or university is Out-of-state tuition
- 10. Room.Board: Cost of Room and board
- 11. Books: Estimated book costs for a student
- 12. Personal: Estimated personal spending for a student
- 13. PhD: Percentage of faculties with Ph.D.'s
- 14. Terminal: Percentage of faculties with terminal degree
- 15. S.F.Ratio: Student/faculty ratio
- 16. perc.alumni: Percentage of alumni who donate
- 17. Expend: The Instructional expenditure per student
- 18. Grad.Rate: Graduation rate

2.1 Perform Exploratory Data Analysis [Univariate, Bivariate, and Multivariate analysis to be performed]. What insight do you draw from the EDA?

Dimensions of the dataset

The dataset have 777 rows & 18 column

First & last 5 rows of the dataset

	Names	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
0	Abilene Christian University	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	78	18.1	12	7041	60
1	Adelphi University	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	30	12.2	16	10527	56
2	Adrian College	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	66	12.9	30	8735	54
3	Agnes Scott College	417	349	137	60	89	510	63	12960	5450	450	875	92	97	7.7	37	19016	59
4	Alaska Pacific University	193	146	55	16	44	249	869	7560	4120	800	1500	76	72	11.9	2	10922	15
																		111
772	Worcester State College	2197	1515	543	4	26	3089	2029	6797	3900	500	1200	60	60	21.0	14	4469	40
773	Xavier University	1959	1805	695	24	47	2849	1107	11520	4960	600	1250	73	75	13.3	31	9189	83
774	Xavier University of Louisiana	2097	1915	695	34	61	2793	166	6900	4200	617	781	67	75	14.4	20	8323	49
775	Yale University	10705	2453	1317	95	99	5217	83	19840	6510	630	2115	96	96	5.8	49	40386	99
776	York College of Pennsylvania	2989	1855	691	28	63	2988	1726	4990	3560	500	1250	75	75	18.1	28	4509	99

Table 2.1 Sample of Dataset

Information about the dataset & datatype

Data	columns (tot	al 18	B columns):	
#	Column	Non-	-Null Count	Dtype
0	Names	777	non-null	object
1	Apps	777	non-null	int64
2	Accept	777	non-null	int64
3	Enroll	777	non-null	int64
4	Top10perc	777	non-null	int64
5	Top25perc	777	non-null	int64
6	F. Undergrad	777	non-null	int64
7	P. Undergrad	777	non-null	int64
8	Outstate	777	non-null	int64
9	Room.Board	777	non-null	int64
10	Books	777	non-null	int64
11	Personal	777	non-null	int64
12	PhD	777	non-null	int64
13	Terminal	777	non-null	int64
14	S.F.Ratio	777	non-null	float64
15	perc.alumni	777	non-null	int64
16	Expend	777	non-null	int64
17	Grad.Rate	777	non-null	int64
	es: float64(1 ory usage: 109			ject(1)

Names	0
Apps	О
Accept	0
Enroll	О
Top10perc	0
Top25perc	O
F. Undergrad	0
P. Undergrad	0
Outstate	0
Room.Board	O
Books	0
Personal	0
PhD	0
Terminal	О
S.F.Ratio	0
perc.alumni	0
Expend	0
Grad.Rate	0
dtype: int64	

Table 2.2 Information about Dataset

Table 2.3 Null values

- The dataset provides insights into applications, acceptance, enrollment, student performance, expenses, faculty qualifications, and more.
- The dataset contains information on 777 educational institutions.
- It consists of **18 columns** representing various aspects of these institutions.
- The data is complete, with **no missing** values.
- There are no duplicate values

Descriptive statistics to summarize data

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Names	777	777	Abilene Christian University	1	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Apps	777.0	NaN	NaN	NaN	3001.638353	3870.201484	81.0	776.0	1558.0	3624.0	48094.0
Accept	777.0	NaN	NaN	NaN	2018.804376	2451.113971	72.0	604.0	1110.0	2424.0	26330.0
Enroll	777.0	NaN	NaN	NaN	779.972973	929.17619	35.0	242.0	434.0	902.0	6392.0
Top10perc	777.0	NaN	NaN	NaN	27.558559	17.640364	1.0	15.0	23.0	35.0	96.0
Top25perc	777.0	NaN	NaN	NaN	55.796654	19.804778	9.0	41.0	54.0	69.0	100.0
F.Undergrad	777.0	NaN	NaN	NaN	3699.907336	4850.420531	139.0	992.0	1707.0	4005.0	31643.0
P.Undergrad	777.0	NaN	NaN	NaN	855.298584	1522.431887	1.0	95.0	353.0	967.0	21836.0
Outstate	777.0	NaN	NaN	NaN	10440.669241	4023.016484	2340.0	7320.0	9990.0	12925.0	21700.0
Room.Board	777.0	NaN	NaN	NaN	4357.526384	1096.696416	1780.0	3597.0	4200.0	5050.0	8124.0
Books	777.0	NaN	NaN	NaN	549.380952	165.10536	96.0	470.0	500.0	600.0	2340.0
Personal	777.0	NaN	NaN	NaN	1340.642214	677.071454	250.0	850.0	1200.0	1700.0	6800.0
PhD	777.0	NaN	NaN	NaN	72.660232	16.328155	8.0	62.0	75.0	85.0	103.0
Terminal	777.0	NaN	NaN	NaN	79.702703	14.722359	24.0	71.0	82.0	92.0	100.0
S.F.Ratio	777.0	NaN	NaN	NaN	14.089704	3.958349	2.5	11.5	13.6	16.5	39.8
perc.alumni	777.0	NaN	NaN	NaN	22.743887	12.391801	0.0	13.0	21.0	31.0	64.0
Expend	777.0	NaN	NaN	NaN	9660.171171	5221.76844	3186.0	6751.0	8377.0	10830.0	56233.0
Grad.Rate	777.0	NaN	NaN	NaN	65.46332	17.17771	10.0	53.0	65.0	78.0	118.0

Table 2.4 Statistical summary of the dataset

- The dataset contains information on 777 educational institutions, providing a comprehensive view of the higher education landscape.
- The average number of applications received by institutions is around 3001, indicating a
 competitive admissions process.
- The mean student-to-faculty ratio is approximately **14**, suggesting a **relatively balanced student-teacher interaction** in these institutions.

- The average graduation rate across the institutions is approximately 65%, reflecting the
 percentage of students who successfully complete their degree programs.
- The **average instructional expenditure** per student is **around \$9660**, indicating the financial resources allocated to supporting education and academic programs in these institutions.

Univariate Analysis

Fig 2.1 Univariate Analysis using histogram

Basis the above univariate Analysis:

- Most of the columns such as top25perc, top10perc, outstate, Room.Board, Books, Personal tend to relatively distribute normally with skewness in some.
- Variables such as Apps, Accept, Enroll etc are highly skewed towards left while Terminal, PHD etc are skewed towards right.

Bivariate Analysis

Fig 2.2 Interaction between Application vs Accept

Fig 2.3 Interaction between Application vs Enroll

Fig 2.4 Interaction between Application vs Grad.Rate

Fig 2.5 Top 10 Names with highest Application

Fig 2.6 Top 10 Names with Highest Accept

Fig 2.7 Top 10 Names with highest full time Undergraduates

Fig 2.8 Top 10 Names with highest PHD ratio

Multivariate Analysis

Fig 2.9 Pairplot

Correlation Heatmap

Fig 2.10 Correlation Heatmap

Basis the Multivariate Analysis above, we can infer that:-

- There is a strong positive correlation between the number of applications, acceptances, and enrollments.
- The presence of top-performing students is associated with higher values in various variables.
- Higher student-to-faculty ratios are linked to lower out-of-state tuition, room and board expenses, expenditure per student, and graduation rates.
- Institutions with a higher percentage of faculty holding PhD and terminal degrees tend to have a strong positive correlation.
- Higher instructional expenditures per student are associated with increased out-of-state tuition, room and board expenses, spending on books, personal expenses, faculty with advanced degrees, and graduation rates.

Outlier Check Using Boxplot

Fig 2.11 Outlier check using Boxplot

- Outliers are present in all variables except for Top25perc
- The outliers can be treated as per the business use case by different methods such as removal, imputing the outliers with the mean, median, or mode of the variable, Winsorization etc basis the data.

Overall Insights:

- The dataset provides insights into applications, acceptance, enrollment, student performance, expenses, and faculty qualifications among 777 educational institutions.
- The dataset is **complete**, with **no missing** values and **no duplicate** values.
- The average number of applications received by institutions is around 3001, indicating a competitive admissions process.
- The **mean student-to-faculty ratio** is approximately **14**, suggesting a balanced student-teacher interaction.
- The average graduation rate across institutions is around 65%, reflecting successful degree program completion.
- The **average instructional expenditure** per student is approximately **\$9660**, indicating the allocation of financial resources to support education.
- Most variables follow a **relatively normal distribution** with some skewness.
- The analysis shows a strong positive correlation between applications, acceptances, and enrollments.
- Higher student-to-faculty ratios are linked to lower tuition, room and board expenses, expenditure per student, and graduation rates.
- Institutions with a higher percentage of faculty holding PhD and terminal degrees have a strong
 positive correlation.
- Higher instructional expenditures per student are associated with increased tuition, room and board expenses, spending on books, personal expenses, faculty with advanced degrees, and graduation rates.
- Outliers are present in all variables except for Top25per.