Econometrics in action

Enterprise valuation: help from Econometrics

Giuliano Palermo giuliano.palermo@gmail.com

Table of Contents

- 1. Introduction of the session
- 2. Valuation of a company
 - a) Valuation pillars
 - b) Valuation methodologies
 - a) Precedent Transaction analysis
 - b) Comparable analysis
 - c) DCF analysis
- 3. Other examples of use of Econometrics in corporate life

Giuliano Palermo: Who am I?

"A single job for life is boring.."

Mario Monti

Valuation Pillars

"Price is what you pay, Value is what you get .."

Warren Buffett

Valuation miths

A valuation is an objective search for "true" value

A good valuation provides a precise estimate of value

The more quantitative a model, the better the valuation

Key Valuation Techniques

■ Different method are used to calculate the intrinsic value of an asset

Precedent Transaction analysis ("deals")

A control or transaction valuation assigned on the basis of multiples of net income, EBIT, EBITDA, or sales for comparable companies which have recently been acquired

Comparable company analysis ("Comps")

A public market valuation assigned on the basis of certain key ratios, or "market trading multiples" of net income, EBIT, EBITDA, or sales for comparable public companies

Estimated range of value for target

Discount Cash Flow analysis ("DCF")

The value of future free cash flows discounted to the present at an appropriate discount rate or the weighted average cost of capital ("WACC")

Football Fields or valuation map

Precedent Transaction (1/2)

- •Precedent Transaction analysis is used to derive multiples from relevant precedent transactions.
- •It is based on selected precedent transactions in the **same industry as the target company** to establish valuation benchmarks
- •The quality of comparables is far more important than the quantity of comparables
 - -Check for comparability of the business and operations in terms of product mix, revenue / operating income split, size and geographic coverage
- •The quality of a **Precedent Transaction** analysis is materially influenced by the selection of the most applicable transactions

Precedent Transaction	

Precedent Transaction (2/2)

Example: Bus Sector

Date	Target	Acquiror	Country	Stake	EV ⁽¹⁾ (\$m)	LTM EV/ EBITDA	LTM P/E	CS Assessed Relevance
Oct-05	Alsa	National Express	Spain	100%	807	9.3x	NA	111
Aug-05	National Express Australia	JV Incl. ComfortDelGro	Australia	100%	78	~9x ⁽³⁾	NA.	✓
Jul-05	ATC (National Express)	Connex	US	100%	93	5.tx	NA.	11
May-04	Keolis	31	France	53%	683	4.7x	15.6x ⁽³⁾	111
Jun-03	Citybus	Delta Pearl Limited	Hong Kong	100%	290	6.9x	18.9	11
Jul-02	Stagecoach Portugal	Vimeca Transp. Viacao	Portugal	100%	21	7.tx	NA	11
Oct-99	Swebus	Concorda	Sweden	100%	261	5.9x	25.0x	111
/ul-99	Ryder Public Transp Svcs	FirstGroup	US	100%	940	9.7x	NA	1
Jun-99	Coach USA	Stagecoach	us	100%	1,836	11.7x	24.0x	1
Dec-98	Citybus Group	Stagecoach	Hong Kong	100%	450	12.4x	17.4x	11
Oct-98	Greyhound Lines	Laidlaw	US	100%	604	7.5x	22.2x	✓
Sep-98	VSN North	Arriva	Netherlands	100%	79	3.3x	24.3x	111
Wg-98	Yellow Bus	Stagecoach	New Zealand	100%	57	0.2r	15.9x	4
Dec-97	Linjebuss	GCEC Transport	Sweden	67%	209	6.2x	25.4x	111
				Median	300	7.8x	22.2x	
				Mean	845	7.8x	21.0x	

Comparable analysis (1/3)

- Comparable Companies analysis provides a market-based valuation
- •Therefore, to the extent that the market is over- or under-valuing an asset, the Compco analysis will reflect this and will mirror these market biases (e.g. Tech boom)
- •The quality of comparables is far more important than the quantity of comparables
 - -Check for comparability of the business and operations in terms of product mix, revenue / operating income split, size and geographic coverage

Comparable analysis (2/3)

Comparison of Forward Multiples Over Time

Comparable analysis (3/3) - Relative valuation

- Relative valuation is theoretically correlated to the growth prospects of a company (or margin capability, etc..)
- All other things being equal, if the target company has growth comparable to the high end of the comparables set, it should logically enjoy a valuation towards the high end of the comparables set
- E.g. A regression analysis of the 2 year forecast EBITDA Compound Annual Growth Rate ("CAGR") versus valuation multiple would typically show a strong correlation (high R2)

Discounted Cash Flow ("DCF")

- The value of an asset is the present value of the expected cash flows on the asset
- Philosophical Basis: Every asset has an intrinsic value that can be estimated, based upon its characteristics in terms of cash flows, growth and risk
- Information Needed: To use discounted cash flow valuation, you need to estimate the olife of the asset
 - ocash flows during the life of the asset
 - odiscount rate to apply to these cash flows to get present value
- Market Inefficiency: Markets are assumed to make mistakes in pricing assets across time, and are assumed to correct themselves over time, as new information comes out about assets

$$PV = \frac{CF_1}{(+r)^1 - \frac{7}{12}} + \frac{CF_2}{(+r)^2 - \frac{7}{12}} + \text{etc.}$$
 where $r = \text{cost of capital}$ WACC: Weighted Average Cost Of Capital

Cash Flow Build Up

Detailed Cash flows

Free Cash Flow Calculation

(\$m)	2011E	2012E	2013E	2014E	2015E	2016E	2017E	2018E	2019E	2020E
Revenue (\$)	100	105	110	115	120	125	130	134	138	142
% growth		5.0	4.8	4.5	4.3	4.2	4.0	3.1	3.0	2.9
EBITDA (\$)	40	43	46	49	51	53	55	57	59	61
% margin	40.0	41.0	41.8	42.6	42.5	42.4	<i>4</i> 2.3	<i>4</i> 2.5	42.8	43.0
% growth		7.5	7.0	6.5	4.1	3.9	3.8	3.6	3.5	3.4
Less: Depreciation (\$)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)
Less: Amortisation	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)
EBIT (\$)	28	31	34	37	39	41	43	45	47	49
Less: Taxes	(11)	(12)	(13)	(14)	(15)	(16)	(16)	(17)	(18)	(19)
Unlevered net income (\$)	17	19	21	23	24	25	27	28	29	30
% growth		10.7	9.7	8.8	5.4	5.1	4.9	4.7	4.4	4.3
Plus: Depreciation and amortisation (\$)	12	12	12	12	12	12	12	12	12	12
Less: Capital expenditures	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)	(7)
Less: Change in working capital	0	0	0	0	0	0	0	0	0	0
Unlevered free cash flow (\$)	22	24	26	28	29	30	32	33	34	35

Discount Factor: WACC (1/3)

■ WACC reflects the opportunity cost of capital to all capital providers, weighted by their relative contributions to the total capitalisation of the company

■ IF the firm has no debt, i.e., it is equityfinanced, then investors require compensation only for bearing the business risk

■ IF the firm has **debt**, then the underlying business risk is enhanced by the leverage effect

Discount Factor: WACC (2/3)

■ WACC has two main components: Weighted cost of equity and weighted cost of debt

Cost of equity can be calculated using the Capital Asset Pricing Model (CAPM) as follows

			Input	Source
Ке	$K_e = r_f + \beta [r_m - r_f]$	r_f β r_m $r_m - r_f$	= Risk Free Rate= Company Beta (Levered)= Market Return= Equity Risk Premium	10 Year UK / US Government Bond Yield Barra Beta / Bloomberg Bloomberg Bloomberg / ECM

Cost of debt should be the marginal cost, i.e., not just the average from the company's annual report

Kd

$$K_d = (r_f + m)(1-t)$$
 = Marginal spread on debt

Public Debt - Bloomberg / Bondware Check with DCM / Lev Fin

WACC =
$$(E / E + D) * Ke + (D / E + D) * Kd$$

Discount Factor: WACC (3/3)

Betas

- The company's capital structure is represented in the discount rate used the WACC
- A company's beta measures its risk in terms of volatility as compared to the market
- It is important to note that beta **does not measure non-systematic risks**, i.e., those specific to the firm. It measures only systematic risks that affect the market as a whole, e.g., oil prices and changes in interest rates

САРМ

- The Capital Asset Pricing Model (CAPM) was developed in the 1960s by William Sharpe
 - CAPM aims to determine the pricing of different assets investors can choose from

 $B = \frac{\text{Cov } (r_a, r_m)}{\text{Var } (r_m)}$

B reflects how much market risk an investment carries to how much extra return will be required from the investment to compensate the investor

Discounted Cash Flow - Outputs

Mid-point valuation

_E ãF=	mÉêéÉíì∼ä= ÖêçïíÜ	bñáí=b_fqa^= ãì äíáéäÉ
qÉệãáå~ä=î~äì É=	SIQQP	SIQTM
mêÉëÉåí=î ~äì É=		
∨É~êë=OMMUbÓOMNRb=	NIQTU	NIQTU
qÉêãáå~i=î~iì É=EÇáëÅçì åíÉÇF=	PITSM	PITTR
bảí Éê é ê áë É = î ~ ãì É =	RIOPU	RIORP
qÉêãåå~ä-î~äì É=~ë=B=çÑ=bs=	TNKU	TNKV

Valuation ranges

TV based on PGR methodology

=	=	mÉêéÉíì~ä=Öêçï íÜ=ê~íÉ=ÐF=						
=	= _	MKUB=	NKMB=	NKPB=	NKRB=	NKUB=		
	TKR	RIPTV	RIRPU	RITMV	RIUVR	SIMVS=		
ê~íÉ	TKU=	RINSP=	RIPMU	RIQSQ=	RISPP	RIUNS=		
aáëÅçì åí÷≎∼íÉ∍ EBF⊧	UKM=	QIVSN=	RIMVQ	RIOPU=	RIPV0	RIRRU=		
aáëÅç	UKP=	QITTP=	QIUVS	RIMOT=	RINSU	RIPON=		
	UKR	QIRVT	QITNM	QIUPN	QIVSN	RINMM=		

TV based on exit EBITDA multiple

=			-	bñáí=b_fqa^=ãì äíáéäÉ=EñF							
=		= _	TKMñ=	TKPñ=	TKRñ=	TKUñ=	UKMñ=				
11		TKR=	RINRR=	RIOUR	RIQNR=	RIRQR	RISTR=				
ê~íÉ		TKU=	RIMTU=	RIOMR	RIPPP=	RIQSN	RIRUV=				
a≀ëÅçì åí÷ê∼íÉ∍	EBF₌	UKM=	RIMMO=	RINOU	RIORP=	RIPTV	RIRMR=				
aáëÅç		UKP=	QIVOT=	RIMRN	RINTR=	RIOVV	RIQOO=				
•		UKR=	QIURQ=	QIVTS	RIMVU=	RIONV	RIPQN=				

More Complex DCF - The use of Distribution

More Complex DCF - Risk Adjusted Analysis

Risk Adjusted Analysis - New Line Terminal NPV Distribution

Ultimate Output: valuation range - A real Case

Business plan valuation summary

Equity value calculation

<u></u> [ãf		
fåÇåÅ~íáî É=Äì ëáåÉëë=éä~å=ÉåíÉêéêáëÉ=î ~äì É=	=	QIOMMÓRIMMM
= åÉëëW-åÉí=ÇÉÄí=EPNJaÉÅJMTF°=	=	EPMPF
=ãÉëë₩-qco-éêçî áëáçå=	=	M
`çêÉ=Éèì áíó=î ~ãì É		PIUVT0QISVT
= éiì ëW=` çêÉ=~ëëÉíë=åçí=áåÅiì ÇÉÇ=iå=Äì ëiåÉëë= éi~å=~í=Äççâ=î~iì É=	=	xNPSz
= éãì ë⊯çíÜÉê=åÉí=ã~êâÉí=î~ãì É=E"∣kjsÒF=	=	ñ
qçí~ä=Éèì áíó=î~äì É EÉñÅäì ÇáåÖ=l kj sf		QIMPPÓQIUPP
= éãì ëW-ëì êéãì ë=~ëëÉſë=	=	xNUTz
= 1ÜÉê=	=	VS
= ——kçåJiåëíêì ãÉåí~i÷É-*i÷Éëí~íÉ=~ëëÉíë=	=	хVNz
qçí~ä=Éèì áíó=î~äì É=EñÅäì ÇáåÖ=l kj sF=	=	QIOOMÓRIMOM

Businesses deemed of strategic / operational interest to Mercury

Valuation Myths and Truth

Myth

A valuation is an objective search for "true" value

A good valuation provides a precise estimate of value

The more quantitative a model, the better the valuation

Truth

All valuations are biased. The only questions are how much and in which direction

The direction and magnitude of the bias in your valuation is directly proportional to who pays you and how much you are paid

There are no precise valuations

The payoff to valuation is greatest when valuation is least precise

One's understanding of a valuation model is inversely proportional to the number of inputs required for the model

Simpler valuation models do much better than complex ones

Other Examples of using Econometrics - Hedge for paper cost (1/3)

- Pulp index as a way to hedge paper costs for bags
- R² is quite high, therefore Pulp Index could be used to hedge position on paper costs

Other Examples of using Econometrics - Hedge on currencies (2/3)

FOREIGN CURRENCY ANALYSIS VOLATILITY & CORRELATION

	EUR/ FOREIGN CURRENCY 1 Y ROLLING 30/09/2010 - 30/09/2011						
	MIN (*)	MAX (*)	MEAN (*)	Annual Historical Volatility (**)			
AMERICAN DOLLAR	1.29	1.48	1.39	11.09%			
EGYPTIAN POUND	7.49	8.82	8.21	11.15%			
CHINESE RENMINBI	8.54	9.64	9.12	10.52%			
KAZAKHSTAN TENGE	189.87	216.07	204.33	11.17%			
THAILAND BAHT	39.07	44.62	42.11	9.72%			
INDIAN RUPEE	58.53	66.91	62.92	9.61%			
MOROCCAN DIRHAM	11.09	11.39	11.24	4.30%			
SWISS FRANC	1.03	1.38	1.26	15.51%			

USD/ FOREIGN CURRENCY 1 Y ROLLING 30/09/2010 - 30/09/2011						
MIN (*)	MAX (*)	MEAN (*)	Annual Historical Volatility (**)			
0.00	0.00	0.00	0.00%			
5.69	5.98	5.85	2.36%			
6.38	6.69	6.54	2.06%			
145.19	148.10	146.51	3.18%			
29.48	31.17	30.21	4.69%			
43.90	49.57	45.12	6.67%			
7.66	8.60	8.07	8.47%			
0.72	1.00	0.90	15.38%			

Delta	Correlation	
volatility	% Vs USD	R ²
-11.09%	100%	100%
-8.79%	98%	96%
-8.46%	98%	97%
-7.99%	96%	92%
-5.03%	91%	82%
-2.94%	80%	64%
4.16%	74%	55%
-0.14%	37%	14%

- Dollar is a natural hedge for different currencies
- R2 shows the "pegged" currencies
- Dollar is liquid, and hedge could be done with dollar derivatives

Other Examples of using Econometrics (3/3) - Use of residuals

Stock price analysis—HVB

Comments

- HVB's volumes showed a steep increase on 26 May 2005
- The increase in volume was a consequence of a persistent rumours during that day on the merger between UCI and HVB Group
- Volumes steadily increased up to when the official offer from UCI was published

- The analysis of the residuals of the regression of HVB over MSCI Bank index shows the specific performance of HVB during the last six months
- The graph shows the abnormal distortions of HVB's price on 26 May 2005, caused by the rumours generated in the market
- We believe that we should consider HVB's 25 May price as a reference price for the transaction

Source: Datastream

... that there was no significant takeover speculation in the HVB share price prior to 25 May 2005

A 3 year regression between HVE and MSCI Baris index has been performed. Analysing the residuals of this regression for the last 6 month, we can supraise the stock-specificity compared to the index. This visual highlight any exceptional behaviour of HVE's stock price performance.

In the job environment, you can decide if you want to be a teddy bear, or an aggressive bear ...

...and everything depends on how you use your knowledge and tools