

SEQUENCE LISTING

<110>	Martin,	Catherine	R
	Michael,	Anthony	
	Niggeweg	, Ricarda	

- <120> Plant-Derived Transferase Genes
- <130> 0380-P03542US0
- <140> US 10/518,884
- <141> 2004-12-20
- <150> PCT/GB2003/002645
- <151> 2003-06-17
- <150> GB 0214406.1
- <151> 2002-06-21
- <160> 23
- <170> PatentIn version 3.1
- <210> 1
- <211> 430
- <212> PRT
- <213> Lycopersicon esculentum
- <400> 1
- Met Gly Ser Glu Lys Met Met Lys Ile Asn Ile Lys Glu Ser Thr Leu
 1 10 15
- Val Lys Pro Ser Lys Pro Thr Pro Thr Lys Arg Ile Trp Ser Ser Asn 20 25 30
- Leu Asp Leu Ile Val Gly Arg Ile His Leu Leu Thr Val Tyr Phe Tyr 35 40 45
- Lys Pro Asn Gly Ser Ser Asn Phe Phe Asp Asn Lys Val Ile Lys Glu 50 60
- Ala Leu Ser Asn Val Leu Val Ser Phe Tyr Pro Met Ala Gly Arg Leu 65 70 75 80
- Gly Arg Asp Glu Gln Gly Arg Ile Glu Val Asn Cys Asn Gly Glu Gly 85 90 95
- Val Leu Phe Val Glu Ala Glu Ser Asp Ser Cys Val Asp Asp Phe Gly 100 105 110
- Asp Phe Thr Pro Ser Leu Glu Leu Arg Lys Leu Ile Pro Ser Val Glu 115 120 125
- Thr Ser Gly Asp Ile Ser Thr Phe Pro Leu Val Ile Phe Gln Ile Thr 130 135 140
- Arg Phe Lys Cys Gly Gly Val Ala Leu Gly Gly Gly Val Phe His Thr 145 150 155 160

Leu Ser Asp Gly Leu Ser Ser Ile His Phe Ile Asn Thr Trp Ser Asp Ile Ala Arg Gly Leu Ser Val Ala Val Pro Pro Phe Ile Asp Arg Thr 185 Leu Leu Arg Ala Arg Asp Pro Pro Thr Tyr Ser Phe Glu His Val Glu Tyr His Pro Pro Pro Thr Leu Asn Ser Ser Lys Asn Arg Glu Ser Ser Thr Thr Thr Met Leu Lys Phe Ser Ser Glu Gln Leu Gly Leu Leu Lys Ser Lys Ser Lys Asn Glu Gly Ser Thr Tyr Glu Ile Leu Ala Ala His Ile Trp Arg Cys Thr Cys Lys Ala Arg Gly Leu Pro Glu Asp Gln Leu Thr Lys Leu His Val Ala Thr Asp Gly Arg Ser Arg Leu Cys Pro Pro 280 Leu Pro Pro Gly Tyr Leu Gly Asn Val Val Phe Thr Ala Thr Pro Ile Ala Lys Ser Cys Glu Leu Gln Ser Glu Pro Leu Thr Asn Ser Val Lys Arg Ile His Asn Glu Leu Ile Lys Met Asp Asp Asn Tyr Leu Arg Ser Ala Leu Asp Tyr Leu Glu Leu Gln Pro Asp Leu Ser Thr Leu Ile Arg Gly Pro Ala Tyr Phe Ala Ser Pro Asn Leu Asn Ile Asn Ser Trp Thr Arg Leu Pro Val His Glu Cys Asp Phe Gly Trp Gly Arg Pro Ile His 370 Met Gly Pro Ala Cys Ile Leu Tyr Glu Gly Thr Ile Tyr Ile Ile Pro Ser Pro Asn Ser Lys Asp Arg Asn Leu Arg Leu Ala Val Cys Leu Asp 410 Ala Gly His Met Ser Leu Phe Glu Lys Tyr Leu Tyr Glu Leu

<210> 2

<211> 436

<212> PRT

<213> Nicotiana tabacum

<400> 2

Met Gly Ser Glu Lys Met Met Lys Ile Asn Ile Lys Glu Ser Thr Leu 5 10 15

Val Lys Pro Ser Lys Pro Thr Pro Thr Lys Arg Leu Trp Ser Ser Asn 20 25 30

Leu Asp Leu Ile Val Gly Arg Ile His Leu Leu Thr Val Tyr Phe Tyr 35 40 45

Lys Pro Asn Gly Ser Ser Asn Phe Phe Asp Ser Lys Ile Met Lys Glu 50 55 60

Ala Leu Ser Asn Val Leu Val Ser Phe Tyr Pro Met Ala Gly Arg Leu 65 70 75 80

Ala Arg Asp Glu Gln Gly Arg Ile Glu Ile Asn Cys Asn Gly Glu Gly 85 90 95

Val Leu Phe Val Glu Ala Glu Ser Asp Ala Phe Val Asp Asp Phe Gly
100 105 110

Asp Phe Thr Pro Ser Leu Glu Leu Arg Lys Leu Ile Pro Thr Val Asp 115 120 125

Thr Ser Gly Asp Ile Ser Thr Phe Pro Leu Ile Ile Phe Gln Val Thr 130 135 140

Arg Phe Lys Cys Gly Gly Val Ser Leu Gly Gly Gly Val Phe His Thr 145 150 155 160

Leu Ser Asp Gly Leu Ser Ser Ile His Phe Ile Asn Thr Trp Ser Asp 165 170 175

Ile Ala Arg Gly Leu Ser Val Ala Ile Pro Pro Phe Ile Asp Arg Thr 180 185 190

Leu Leu Arg Ala Arg Asp Pro Pro Thr Ser Ser Phe Glu His Val Glu 195 200 205

Tyr His Pro Pro Pro Ser Leu Ile Ser Ser Ser Lys Ser Leu Glu Ser 210 215 220

Thr Ser Pro Lys Pro Ser Thr Thr Thr Met Leu Lys Phe Ser Ser Asp 225 230 235 240

Gln	Leu	Gly	Leu	Leu 245	Lys	Ser	Lys	Ser	Lys 250	His	Asp	Gly	Ser	Thr 255	Tyr
Glu	Ile	Leu	Ala 260	Ala	His	Ile	Trp	Arg 265	Cys	Thr	Cys	Lys	Ala 270	Arg	Ala
Leu	Ser	Asp 275	Asp	Gln	Leu	Thr	Lys 280	Leu	His	Val	Ala	Thr 285	Asp	Gly	Arg
Ser	Arg 290	Leu	Cys	Pro	Pro	Leu 295	Pro	Pro	Gly	Tyr	Leu 300	Gly	Asn	Val	Val
Phe 305	Thr	Gly	Thr	Pro	Met 310	Ala	Lys	Ser	Ser	Glu 315	Leu	Leu	Gln	Glu	Pro 320
Leu	Thr	Asn	Ser	Ala 325	Lys	Arg	Ile	His	ser 330	Ala	Leu	Ser	Lys	Met 335	Asp
Asp	Asn	Tyr	Leu 340	Arg	Ser	Ala	Leu	Asp 345	туг	Leu	Glu	Leu	Leu 350	Pro	Asp
Leu	Ser	Ala 355	Leu	Ile	Arg	Gly	Pro 360	Thr	Tyr	Phe	Ala	Ser 365	Pro	Asn	Leu
Asn	Ile 370	Asn	Ser	Trp	Thr	Arg 375	Leu	Pro	Val	His	Asp 380	Ser	Asp	Phe	Gly
Trp 385		Arg	Pro	Ile	His 390	Met	Gly	Pro	Ala	Cys 395	Ile	Leu	Tyr	Glu	Gly 400
Thr	Val	Tyr	Ile	Leu 405	Pro	Ser	Pro	Asn	Ser 410	Lys	Asp	Arg	Asn	Leu 415	Arg
Leu	Ala	Val	Cys 420	Leu	Asp	Ala	Asp	His 425	Met	Pro	Leu	Phe	Glu 430	Lys	Tyr
Leu	Tyr	Glu 435													
<210> 3 <211> 1456 <212> DNA <213> Nicotiana tabacum															
<40 atg		3 gtg	aaaa	aatg	at g	aaaa	ttaa	t at	caag	gaat	caa	catt	agt	aaaa	ccatca
_															agaatt
cat	cttt	taa	cagt	atat	tt c	tata	aacc	a aa	tgga	tctt	caa	attt	ctt	tgat	tcaaaa
ata	atga	aag	aagc	atta	ag t	aatg	ttct	t gt	ttca	tttt	acc	caat	ggc	tgga	agatta

gctagagatg aacaaggaag aattgagata aattgtaatg gagaaggagt tttatttgtt

gaagctgaaa	gtgatgcttt	tgttgatgat	tttggtgatt	ttactccaag	tttggaactt	360
aggaaactta	ttcctactgt	tgacacttct	ggtgatattt	ctactttccc	cctcatcatc	420
tttcaggtta	ctcgtttcaa	atgtggtgga	gtttcacttg	gtggaggagt	attccacact	480
ttatcagatg	gtctctcatc	aattcacttc	atcaacacat	ggtccgatat	agcccgaggc	540
ctctccgtcg	ccatcccgcc	gttcatcgac	cggaccctcc	tccgtgcacg	ggacccacca	600
acatcgtctt	tcgagcacgt	cgagtatcat	cctcctccat	ctctaatttc	atcatcaaaa	660
agcttagaat	ccactagccc	aaagcctagt	accacaacca	tgttaaaatt	ctctagtgac	720
caacttgggc	ttctaaagtc	caagtccaaa	catgatggta	gcacttacga	aatcctcgcg	780
gcccatattt	ggcgttgcac	gtgcaaggca	cgtgcactgt	ccgacgatca	attgaccaaa	840
ttacatgtgg	ccactgatgg	taggtctagg	ctttgccctc	ctttgccacc	aggttactta	900
ggaaatgttg	tgttcacagg	cacacctatg	gcaaaatcaa	gtgaactttt	acaagaacca	960
ttgacaaatt	cagccaagag	aattcatagt	gcattatcaa	aaatggatga	caattaccta	1020
agatcagctc	tcgattacct	cgaattactg	cccgatttat	cggctttaat	ccgtggaccg	1080
acgtactttg	ctagccctaa	tcttaatatt	aatagttgga	ctagattgcc	tgttcatgat	1140
tcagattttg	gatggggaag	gccaattcat	atgggaccag	cttgcatttt	atatgaaggg	1200
acagtttata	tattgccaag	tccaaatagt	aaagatagga	acttgcgttt	ggctgtttgt	1260
ttagatgctg	atcacatgcc	actatttgag	aagtatttgt	atgaattttg	agaggttgaa	1320
aaaaaaatca	agaatgttcc	aacacttgag	aattatctta	ggtgtgggtg	gttttggatt	1380
aaggcatttt	gtaacttgtt	ttctattgtt	tttttggggg	gtcagtttgt	tttcaaaaaa	1440
aaaaaaaaa	aaaaaa					1456

<210> 4 <211> 1293 <212> DNA

<213> Lycopersicon esculentum

<400> 4 60 atgggaagtg aaaaaatgat gaaaattaat atcaaagaat caacactagt gaaaccatca 120 aaaccaacac caacaaagag aatttggagt tctaatttgg atttaattgt tggaagaatt 180 catcttttga ctgtttattt ttataaacca aatggatctt caaatttttt tgataataaa 240 gttattaaag aagcattaag taatgtttta gtttcatttt atccaatggc tggaagatta 300 gaggctgaaa gtgattcatg tgttgatgat tttggtgatt ttacaccatc tttggaactt 360 agaaaactca ttccaagtgt tgaaacctct ggagatatct caactttccc actagttata 420 480 tttcagatta ctcgtttcaa gtgtggcgga gtcgctcttg gtggtggagt attccacacg ttatccgatg gtctctcatc catccacttc atcaacacgt ggtcggacat cgcccgtggc 540 ctctccgtcg cagtcccgcc gttcatcgat cggacgctcc tccgtgcaag ggacccaccg 600 acatattett tegageaegt tgagtaceat cetecaceta ceetaaaete ategaaaaat 660

cgcgagtcca gtaccacgac catgttgaaa ttctcgagtg aacaactcgg gcttcttaag	720
tccaagtcca aaaatgaggg tagcacctat gaaatcctcg cagcccatat ttggcgatgc	780
acgtgcaagg cacgtggatt gccagaggat caattgacca aattacacgt ggccaccgac	840
ggaaggtcaa ggctttgccc tcccttgcca ccgggttacc taggaaacgt cgtgttcacg	900
gcaaccccaa tagctaaatc atgcgaactt caatcagagc cgttgacaaa ttccgtcaag	960
agaattcaca acgagttgat caaaatggac gacaattacc taagatcagc actggattac	1020
ctcgaattac aacctgattt atcaacccta attcggggcc cggcttactt tgctagccct	1080
aacctcaata ttaatagttg gactaggttg cctgtccatg agtgtgattt tggatggggt	1140
aggccaattc atatgggacc agcttgcatt ttatatgaag ggacaattta tattatacca	1200
agtccaaatt ctaaagatag gaacttgcgt ttggctgttt gtctagatgc tggtcacatg	1260
tcactatttg aaaaatattt atatgaatta tga	1293
<210> 5 <211> 35 <212> DNA <213> Artificial sequence	
<220> <223> Oligonucleotide	
<400> 5 gactcgagtc gacatcgatt ttttttttt ttttt	35
<210> 6 <211> 35 <212> DNA <213> Artificial sequence	
<220> <223> Oligonucleotide	
<400> 6 ccatgggaag tgaaaaatg atgaaaatta atatc	35
<210> 7 <211> 35 <212> DNA <213> Artificial sequence	
<220> <223> Oligonucleotide	
<400> 7 ggatcctcat aattcatata aatatttttc aaata	35
<210> 8 <211> 29 <212> DNA <213> Artificial sequence	
<220> <223> Oligonucleotide	

<400> gagcaco	8 steg agtateatee teetecate	29
<210> <211> <212> <213>	9 32 DNA Artificial sequence	
<220> <223>	Oligonucleotide	
<400> ctaattt	9 ccat catcaaaaag cttagaatcc ac	32
<210> <211> <212> <213>	10 17 DNA Artificial sequence	
<220> <223>	Oligonucleotide	
<400> gactcga	10 agtc gacatcg	17
<210> <211> <212> <213>		
<220> <223>	Oligonucleotide	
<400> gtggat	11 tota agotttttga tgatgaaatt ag	32
<210><211><211><212><213>	12 53 DNA Artificial sequence	
<220> <223>	Oligonucleotide	
<400> ggggac	12 aagt ttgtacaaaa aagcaggctc agattactcg tttcaagtgt ggc	53
<210> <211> <212> <213>		
<220> <223>	Oligonucleotide	
<400> ggggac	13 cact ttgtacaaga aagctgggtt gataaatcag gttgtaattc gagg	54
<210><211><211><212><212><213>		

```
<220>
<223> Oligonucleotide
<400> 14
ggggacaagt ttgtacaaaa aagcaggctc aaatgtggtg gagtttcact g
                                                                        51
<210> 15
<211> 51
<212> DNA
<213> Artificial sequence
<220>
<223> Oligonucleotide
ggggaccact ttgtacaaga aagctgggtc gggcagtaat tcgaggtaat c
                                                                        51
<210>
      16
      5
<211>
<212>
      PRT
<213> Artificial sequence
<220>
<223> Motif
<400> 16
Asp Phe Gly Trp Gly
<210> 17
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Consensus sequence of the CoA-transferase family
<400> 17
Ser Asn Leu Asp
<210> 18
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223>
       Consensus sequence of the CoA-transferase family
<400> 18
Ala Gly Arg Leu
<210>
       19
<211>
<212> PRT
<213> Artificial sequence
<220>
<223> Consensus sequence of the CoA-transferase family
```

```
<400> 19
Phe Val Glu Ala
<210> 20
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> Consensus sequence of the CoA-transferase family
<400> 20
Phe Lys Cys Gly Gly
<210> 21
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Consensus sequence of the CoA-transferase family
<400> 21
Arg Ser Arg Leu
<210> 22
<211> 4
<212> PRT
<213> Artificial sequence
<220>
      Consensus sequence of the CoA-transferase family
<223>
<400> 22
Pro Pro Leu Pro
<210>
       23
<211>
<212> PRT
<213> Artificial sequence
<220>
       Consensus sequence of the CoA-transferase family
<223>
<400> 23
Tyr Leu Arg Ser
```