Numerical Analysis of Burgers' Equation*

Andre Gormann E agormann@sfu.ca

Ethan MacDonald jem21@sfu.ca

$1 \quad Introduction^{[1]}$

1.1 The Inviscid Burgers' Equation

We have elected to study the Burgers' equation, or more correctly, the inviscid Burgers' equation. [2] Given $u \in C^1(\Omega)$, where $\Omega \subset \mathbb{R}^{n+1}$ is a domain, the general form is written as

$$\partial_t u(\boldsymbol{x}, t) + u(\boldsymbol{x}, t) \cdot \nabla_{\boldsymbol{x}} u(\boldsymbol{x}, t) = 0 \tag{1}$$

where ∇_{x} denotes the gradient with respect to the spatial variable $x \in \mathbb{R}^{n}$. For pragmatic reasons though, we will be focusing on the n = 1 case. Then (1) simplifies to

$$\partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0. (2)$$

There are two key observations to make. The first is that (2) is really a statement about the directional derivative, that is

$$\nabla u(x,t) \cdot (u(x,t),1) = 0^{[3]} \tag{3}$$

so the derivative of u in the direction of (u, 1) is 0 - in other words, u is constant in this direction. This is a consequence of (2) being first-order. While on the surface it may seem problematic that (2) is quasilinear (and so the direction (u, 1) is varied), this does not complicate the finding of an analytic solution.

1.2 The Method of Characteristics

Given data on some curve $\Gamma \subset \overline{\Omega}$, we are looking specific parametric curves (x(t), t) which connect points $(x, t) \in \Omega$ to Γ . We want these curves to be precisely those which are parallel to the vector (u, 1), that is

$$\frac{dx}{dt} = \frac{u(x(t), t)}{1} = u(x(t), t)$$

Now supposing that u solves (2), let z(t) denote the value of u along a characteristic, i.e.

$$z(t) = u(x(t), t)$$

^{*}Placeholder title!

^[1] This entire section has been modified from the content in Chapter 2 of Choksi, 2022. Specifically, sections 2.2-2.4

^[2] We may decide later on to study the viscous Burgers' equation.

^[3] Technically we should be normalizing so that this is a unit vector.

Then by the chain rule

$$\frac{dz}{dt} = \partial_x u(x(t), t) \frac{dx}{dt} u(x(t), t) + \partial_t u(x(t), t)$$

but x'(t) = u(x, t), so

$$\frac{dz}{dt} = \partial_t u(x(t), t) + u(x, t)\partial_x u(x(t), t)$$

which is precisely 0 by (2). Hence, we have the following coupled system of ODEs

$$\begin{cases} x'(t) = z(t) = u(x(t), t) \\ z'(t) = 0 \end{cases}$$

$$(4)$$

Integrating the second term, we get that

$$z(t) = z_0$$

for some $z_0 \in \mathbb{R}$. But z(t) = u(x(t), t), so then $u(x(t), t) = z_0$. This corroborates our findings with (3). Now by integrating the first term, we get

$$x(t) = z_0 t + x_0 \tag{5}$$

where $x_0 \in \mathbb{R}$. Evaluating at t = 0, we have that $x(0) = x_0$. Now assuming we are prescribed some initial condition u(x,0) = g(x), we have that (5) becomes

$$x(t) = g(x_0)t + x_0 \tag{6}$$

which are exactly those characteristic curves we initially sought.

1.3 Interpretation

For those familiar with the linear transport equation (or advection equation), the physical interpretation of (2) is quite similar; it models the space-time propagation of an initial signal u(x,0)=g(x). The major difference being that the wave-speed is not only not constant - it is proportional to the solution itself (see Figures 1 and 2), and hence can be different along the signal. A consequence of this non-linearity is that the solution to (6) is not always well-defined. Specifically, it can be shown that if g(x) is decreasing on any $E \subset \Gamma$, the solution u will become multivalued at some time t (see Figure 2). This is known as a shock or shockwave. A useful proxy for this behavior is the characteristic curves (Figure 2b); they converge to the point of discontinuity.

2 Numerical Analysis

3 Conclusion

References

Choksi, R. (2022). Partial differential equations: A first course. American Mathematical Society.

- (a) Plot of solution curves at fixed $t \in [0, 1]$ with increments of 0.2.
- (b) Characteristic curves (see (6)) at fixed $x_0 \in [-5, 5]$ with increments of 1.

Figure 1: Solution to (2) with the non-decreasing initial condition u(x,0) = x.

(a) Plot of solution curves at fixed $t \in [0, 1]$ with increments of 0.2.

(b) Characteristic curves at fixed $x_0 \in [-5, 5]$ with increments of 1.

Figure 2: Solution to (2) with the initial condition u(x,0) = -x.

- Iserles, A. (2009). A first course in the numerical analysis of differential equations. Cambridge University Press.
- Kutz, J. N. (2013). Data-driven modeling & scientific computation: Methods for complex systems & big data. Oxford University Press.
- Trefethen, L. N., & Embree, K. (2001). 51. inviscid burgers equation. In *The (unfinished)* pde coffee table book. Unpublished.