ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

MICROARCHITETTURA ARM

Istruzioni di memoria

Modi di indirizzamento

Indirizzamento diretto

Indirizzamento diretto con registro

Indirizzamento indiretto

Indirizzamento indiretto con registro

4. Si consideri il seguente programma assembly:

MOVE R0, #5
MOVE R1, #0x28
LOOP
CMP R1, R0
BLT DONE
SUB R0, R1, R0
SUB R1, R1, #4
B LOOP
DONE
ADD R1, R1, R0

Indicare esadecimale il valore di R1 al termine dell'esecuzione.

R1: _____

1. A cosa è uguale la espressione (B+C*)(A*+C*)(A+B)

Risposta:						

2. Riportare la espressione SOP minima relativa alla seguente mappa di Karnaugh:

AB CD	00	01	11	10
00	0	1	1	Х
01	1	0	0	1
11	1	1	0	Х
10	Х	Х	Х	0

 Il seguente diagramma di transizione per una macchina di Moore ha due input A e B e un output X. Indicare le formule SOP minime relative alle due variabili di stato (S₁ e S₀).

codifica					
stato	S ₁	S ₀			
SO	0	0			
S1	0	1			
52	1	0			
53	1	1			

S'₁: ___(per la formattazione si vedano le regole a fine traccia)_____ S'₀: _____