Advanced Topics in Numerical Analysis, High Performance Computing: Assignment 2

 $Mariya \ Savinov, \ mariyasavinov@nyu.edu$

Repo location: https://github.com/mariyasavinov/HPC_Spring_22.git

1 Optimizing matrix-matrix multiplication

1.1 Loop arrangement

We test three options for loop ordering, which give the slowest performance, moderate performance, and the fastest performance. The options are:

	Outmost loop	Middle loop	Innermost loop
Option 1	j = 1 : n	i = 1 : m	p = 1 : k
Option 2	p = 1 : k	i = 1 : m	j = 1 : n
Option 3	j = 1 : n	p = 1 : k	i = 1 : m

For Option 1, we have

Dimension	Time	Gflop/s	GB/s	Error
1504	6.489317	1.048515	8.393695	0.000000e+00
1552	7.891938	0.947374	7.583876	0.000000e+00
1600	9.993178	0.819759	6.562173	0.000000e+00
1648	11.725248	0.763448	6.111292	0.000000e+00
1696	14.251409	0.684620	5.480191	0.000000e+00
1744	16.235304	0.653445	5.230557	0.000000e+00
1792	20.011666	0.575123	4.603552	0.000000e+00
1840	21.165341	0.588651	4.711771	0.000000e+00
1888	22.683473	0.593371	4.749483	0.000000e+00
1936	26.042871	0.557259	4.460376	0.000000e+00
1984	28.581064	0.546483	4.374067	0.000000e+00

For Option 2, we have

Dimension	Time	Gflop/s	GB/s	Error
1504	25.810046	0.263624	2.110393	0.000000e+00
1552	28.633573	0.261114	2.090255	0.000000e+00
1600	31.235441	0.262266	2.099441	0.000000e+00
1648	34.974984	0.255943	2.048790	0.000000e+00
1696	38.173253	0.255593	2.045947	0.000000e+00
1744	42.253155	0.251079	2.009783	0.000000e+00
1792	43.364373	0.265406	2.124434	0.000000e+00
1840	50.433227	0.247040	1.977391	0.000000e+00
1888	53.705776	0.250620	2.006018	0.000000e+00
1936	59.156877	0.245324	1.963609	0.000000e+00
1984	61.772022	0.252850	2.023821	0.000000e+00

For Option 3, we have

Dimension	Time	Gflop/s	GB/s	Error
1504	1.333713	5.101657	40.840390	0.000000e+00
1552	1.458239	5.127155	41.043666	0.000000e+00
1600	1.619741	5.057599	40.486077	0.000000e+00
1648	1.756028	5.097653	40.805968	0.000000e+00
1696	1.920342	5.080763	40.670069	0.000000e+00
1744	2.091468	5.072456	40.602912	0.000000e+00
1792	2.260437	5.091568	40.755278	0.000000e+00
1840	2.463966	5.056485	40.473867	0.000000e+00

```
1888 2.676593 5.028676 40.250714 0.000000e+00
1936 2.889958 5.021744 40.194701 0.000000e+00
1984 3.100063 5.038305 40.326753 0.000000e+00
```

There are other options also, but we will now explain why Option 3 is the fastest of ALL possible choices (and thus inherently also explaining why Option 2 is the slowest of the options we tested). Recall that at the inside of the three loops, elements of A, B, and C are accessed by:

```
A_ip = a[i+pm];
B_pj = b[p+jk];
C_ij = c[i+jm];
```

Notice that a loop over i would access elements of A and C which are sequential in storage. A loop over p would access elements of B which are sequential in storage and elements of A which are m storage elements apart. Meanwhile, a loop over j would access elements of B and C which are k or m storage elements apart, respectively. To optimize memory access, it makes sense to try to access elements close together (sequentially ordered) as the matrix is loaded into the cache in chunks which are > 1 storage element in size.

Thus, the innermost loop should be over i to access elements of A and C, then the next inner loop should be over p to access elements of B close to each other. The loop over j should always be on the outermost loop as it provides no benefits with respect to chunk memory access. This explains why Option 3 is the fastest (as it follows our loop recommendation), as well as why Option 2 is the slowest of the tested choices since the loop over j is placed in the innermost loop (the least ideal location). An even slower option would be to swap the first two loops in Option 2.

In sum, the best performance is for the order presented in Option 3.

1.2 -O3 versus -O2 in case of Loop arrangement problem

The above results are with an -O3 optimization level flag. We now will also test with a -O2 optimization level flag specifically for the case of the fastest loop ordering (Option 3, j outermost, p middle loop, i innermost). For the same dimension sizes, we find that we get:

Dimension	Time	Gflop/s	GB/s	Error
1504	2.635640	2.581591	20.666462	0.000000e+00
1552	2.903790	2.574779	20.611505	0.000000e+00
1600	3.186875	2.570543	20.577196	0.000000e+00
1648	3.497229	2.559632	20.489483	0.000000e+00
1696	3.815919	2.556869	20.467011	0.000000e+00
1744	4.164501	2.547455	20.391323	0.000000e+00
1792	4.522243	2.545013	20.371469	0.000000e+00
1840	4.897135	2.544142	20.364200	0.000000e+00
1888	5.300973	2.539103	20.323585	0.000000e+00
1936	5.723151	2.535776	20.296686	0.000000e+00
1984	6.159435	2.535795	20.296583	0.000000e+00

This is approximately two times slower than using the -O3 optimization level flag. After implementing blocking and the parallel section, we find that this trend for optimization level flags still holds, so all further numbers are reported using the -O3 case.

1.3 Block size optimization

My particular machine Linux machine with 64-bit kernel architecture and Intel i7-8700 processor with 6 CPUs, 12 total threads, CPU speed 3.20 GHz. The command 1scpu reports that the L1d and L1i caches are 32kB abd the L2 cache is 256kB – we suspect these sizes will determine the limit on timings for blocks of different sizes. In the blocking version of MMult1, a matrix-matrix multiplication of the form $\tilde{C} = \tilde{C} + \tilde{A}\tilde{B}$ is computed in the manner of MMult0. The idea is that these block portions of full matrices A, B, and C should be loaded into

the cache all at once, and should not exceed the size of the L2 cache so they are the most quickly accessible. If 3 matrices of sizes $b \times b$ are stored in the L2 cache, that is a total of $3b^2 \times 8$ bytes. If the cap is 256kB, this suggests that at most we should use a block size $b \le 103$.

So, we try b = 20, 40, 60, 80, 100, 104 block sizes and compare their timings as well as Gflop/s.

For b = 20, the first few dimensions and last few dimensions yield timings and Glop/s of

Dimension	Time	Gflop/s
20	0.282320	7.084212
60	0.285106	7.015496
100	0.283738	7.055814
260	0.284007	7.054970
300	0.294731	6.962292
1700	1.436145	6.841928
1740	1.533879	6.868889
1900	2.007400	6.833716
1940	2.144940	6.808008
1980	2.281362	6.805051

For b = 40, the Glop/s increase:

Dimension	Time	Gflop/s
40	0.242918	8.233760
80	0.243210	8.227041
200	0.244202	8.255465
240	0.246442	8.189766
280	0.245296	8.233242
1720	1.300703	7.824148
1760	1.395504	7.813346
1800	1.496530	7.794029
1840	1.618860	7.696163
1880	1.691526	7.856422
1920	1.767604	8.008453
1960	1.926979	7.814859

and further for b = 60:

Dimension	Time	Gflop/s
60	0.229838	8.702470
120	0.232589	8.603264
180	0.232828	8.616711
240	0.234660	8.600958
300	0.238282	8.611650
1740	1.253615	8.404533
1800	1.384800	8.422878
1860	1.541226	8.350307
1920	1.683825	8.406919
1980	1.849099	8.395865

There is an increase still for b = 80:

Dimension	Time	Gflop/s
80	0.222690	8.985124
160	0.226050	8.878726
240	0.230100	8.771413
320	0.235119	8.640808
1760	1.262699	8.635116
1840	1.446757	8.611682
1920	1.645600	8.602199

We see the maximum Glop/s (and least runtime) for b = 100 block size:

Time	Gflop/s
0.220060	9.097522
0.227445	8.863682
0.234741	8.741544
1.156547	8.495983
1.359572	8.579170
1.592443	8.614438
	0.220060 0.227445 0.234741 1.156547 1.359572

As soon as the block size is increased past the limit determined by the L2 cache size, i.e. increasing b to b = 104 (just slightly larger than the limit), we see an instant drop in the Glop/s from the numbers seen in the b = 100 case:

Dimension	Time	Gflop/s
104	0.232813	8.590607
208	0.238537	8.450496
312	0.239662	8.363906
1768	1.350214	8.186045
1872	1.600589	8.197240
1976	1.894955	8.143139

Therefore, we conclude that the optimal value for BLOCK_SIZE is 100, for this machine as determined by the size of the L2 cache and observed in the output of MMul1.cpp.

1.4 Parallelization of blocking with OpenMP

After implementing a parallel version of MMult1, we find that the differences between the timings and Glop/s of the blocked and blocked+parallel code is minimal at the optimal block size b = 100 (In fact, for small blocks the OpenMP version is worse because the overhead is high). However, for larger block sizes b = 104 and b = 120, we see that the parallel version yields a speedup (quite dramatically for b = 120):

Block size	Dimension	timing	Gflops/s	parallel timing	parallel Gflops/s
100	1900	1.592443	8.614438	1.601912	8.563516
104	1976	1.894955	8.143139	1.850938	8.336790
120	1920	2.430863	5.823353	1.706006	8.297612

Note that the parallel

section in these cases utilizes 6 threads at a time.

The theoretical peak Gflop/s for a machine with a single CPU can be found by finding the product of: (CPU speed) \times (number of cores) \times (CPU instructions per cycle). In our case this is

$$3.20\mathrm{GHz} \times 6 \times 4 = 76.8Gflops/s$$

So we find that at best, the parallel blocking code achieves approximately 11.15% of the peak flop rate.

2 OpenMP version of 2D Jacobi/Gauss-Seidel smoothing

2.1 Reporting timings

The Linux kernel architecture is 64-bit and the processor used for these timings is the Intel i7-8700 with 6 CPUs, 12 total threads, CPU speed 3.20 GHz.

We expect that Gauss-Seidel converges faster, so Gauss-Seidel should have overall shorter run-times over the Jacobi method. In both cases, using OpenMP should greatly decrease the runtime—in particular, as one goes from 1 to 6 threads, the runtime decreases with each additional thread. We test both methods for different choices of N (where the 2D grid is $(N+2) \times (N+2)$ in size) and for 1, 3, and 6 threads, reporting a few cases where the maximum number of iterations does not exceed 50,000 (the set maximum) for the Jacobi method.

	Jacobi, iterations	residual	runtime (s)	Gauss Seidel, iterations	residual	runtime (s)
N=50, 1 threads	7176	9.99e - 7	5.59	3679	9.99e - 7	2.71
N=50, 3 threads	7176	9.99e - 7	2.05	3679	9.99e - 7	0.98
N=50, 6 threads	7176	9.99e - 7	1.18	3679	9.99e - 7	0.55
N=80 , 1 threads	18100	1.00e - 6	51.63	9280	1e-6	24.62
N=80, 3 threads	18100	1.00e - 6	18.96	9280	1e-6	8.75
N=80, 6 threads	18100	1.00e - 6	10.55	9280	1e - 6	4.66
N=120 , 1 threads	40385	1.00e - 6	365.64	20707	9.99e - 7	170.93
N=120, 3 threads	40385	1.00e - 6	133.81	20707	9.99e - 7	60.28
N=120, 6 threads	40385	1.00e - 6	70.02	20707	9.99e - 7	31.36

As expected, Gauss-Seidel converges in less iterations and thus faster than Jacobi. For both methods with various N, as the number of available threads for the parallel sections increases, the runtime decreases drastically (for large N, the decrease appears to be by a factor close to $\frac{1 \text{ thread}}{\text{n threads}}$, though not exact and confirming something like this would require more testing).