WiSe 21/22 Logik

Hausarbeit 1 Aufgabe 2

 $\textbf{Gruppe:}\ 402355,\ 392210,\ 413316,\ 457146$

Lösungen

(i)	(ii)	Form	\sum

Aufgabe 2

- (i) $\varphi_{\mathsf{T}} \coloneqq \neg(\neg X \land X \land \neg X)$, mit $\varphi_{\mathsf{T}} \in \mathrm{AL}_1$ und $X \in \mathrm{AL}_1$ für alle $X \in \mathrm{AVAR}$
- (ii) Wir zeigen per Induktion, dass für alle $\varphi \in AL$ eine äquivalente Formel $\varphi' \in AL_1$ existiert.

IA:

Es gilt $X \in AL_1$ für alle $X \in AVAR$.

Für \top benutzen wir die in Aufgabenteil (i) definierte Formel $\varphi_{\top} \in AL_1$. Für diese gilt:

$$\begin{split} \varphi_{\top} &\coloneqq \neg (\neg X \wedge X \wedge \neg X) \\ &\equiv X \vee \neg X \vee X \\ &\equiv X \vee \neg X \\ &\equiv \top \end{split}$$

Für \bot definieren wir die Formel $\varphi_{\bot} \in AL_1$ durch $\varphi_{\bot} \coloneqq \neg X \land X \land X$.

Für diese gilt:

$$\begin{split} \varphi_{\bot} &\coloneqq \neg X \wedge X \wedge X \\ &\equiv \neg X \wedge X \\ &\equiv \bot \end{split}$$

IV:

Seien $\psi_1,\,\psi_2\in AL$, und seien $\psi_1',\,\psi_2'\in AL_1$ äquivalente Formeln für diese, sodass gilt:

$$\psi_1 \equiv \psi_1' \text{ und } \psi_2 \equiv \psi_2'$$

IS:

Für
$$\varphi := \psi_1 \vee \psi_2, \ \varphi \in AL$$
 definieren wir $\varphi' := \neg(\neg \psi_1' \wedge \neg \psi_2') \wedge \varphi_\top, \ \varphi' \in AL_1$

Daraus folgt:

$$\varphi' \coloneqq \neg(\neg\psi_1' \land \neg\psi_2') \land \varphi_\top \equiv \neg(\neg\psi_1' \land \neg\psi_2') \equiv \psi_1' \lor \psi_2'$$

Durch (IV) folgt: $\varphi \equiv \varphi'$

Für
$$\varphi := \neg \psi_1, \ \varphi \in AL$$
 definieren wir $\varphi' := \neg (\psi'_1 \wedge \psi'_1 \wedge \psi'_1), \ \varphi' \in AL_1$

Daraus folgt:

$$\varphi' \coloneqq \neg(\psi_1' \land \psi_1' \land \psi_1') \equiv \neg(\psi_1' \land \psi_1') \equiv \neg\psi_1'$$

Durch (IV) folgt: $\varphi \equiv \varphi'$

Nach Korollar 2.41 im Vorlesungsskript (oder auch auf Seite 3/14 der Folien 3.5 der Woche 2) ist jede aussagenlogische Formel äquivalent zu einer Formel, die lediglich Variablen, \top , \bot , \neg und \lor beinhaltet.

Wie bereits bewiesen, existiert so eine Formel in AL_1 .

Also existiert zu jeder Formel $\varphi \in AL$ eine äquivalente Formel $\varphi' \in AL_1$. Somit ist AL_1 eine Normalform.