- **153.** False; $e^x = 0$ has no solutions.
- **155.** The error is that both sides of the equation should be divided by 2 before taking the natural log of both sides.

$$2e^x = 10$$

$$e^x = 5$$

$$\ln e^x = \ln 5$$

$$x = \ln 5$$

157. Inverse Property. You would take the natural log of both sides, which would give you $x \ln 5 = \ln 34$. So,

$$x = \frac{\ln 34}{\ln 5}.$$

159. Yes. The investment will double every $\frac{\ln 2}{r}$ years.

161.

163.

\$100,000.00

165.

Section 3.5 (page 228)

- **1.** (a) iv (b) i (c) iii (d) vi (e) ii (f) v
- **3.** sigmoidal **5.** Exponential decay

4.5%

7. c **8.** e **9.** b **10.** a **11.** d **12.** f Initial Annual Time to Amount After Investment % Rate Double 10 Years **13.** \$10,000 3.5% 19.8 yr \$14,190.68 **15.** \$7500 \$10,432.26 3.30% 21 yr **17.** \$5000 1.25% 55.45 yr \$5665.74

21.	r	2%	4%	6%	8%	10%	12%
	t	54.93	27.47	18.31	13.73	10.99	9.16

19. \$63,762.82

23.

Continuous compounding

15.40 yr

Isotope	Half-Life (years)	Initial Quantity	Amount After 1000 Years
25. ²²⁶ Ra	1599	10 g	6.48 g
27. ¹⁴ C	5700	3 g	2.66 g
29. $y = e^{0.768x}$	31. $y = 4e^{-3}$	$e^{-0.2773x}$	

- **33.** (a) Decreasing. The negative exponent indicates that the model is decreasing.
 - (b) 333,680 people; 317,565 people; 308,272 people
 - (c) 2014
- **35.** (a) 0.0189 (b) About 1,534,104 people
- **37.** About 15,601 yr ago
- **39.** (a) $V = -8305t + 49{,}200$ (b) $V = 49{,}200e^{-0.2059t}$

(c) 50,000

- (d) Exponential model (e) 0 < t < 2; $t \ge 2$
- **41.** (a) 0.05
- **43.** (a) About 203 animals (b) About 13 mo
 - (c) 1300

The horizontal asymptotes occur at p = 1000 and p = 0. The asymptote at p = 1000 means there will not be more than 1000 animals in the preserve.

(b) 100

- **45.** (a) 10,000,000 (b) 125,892,541 (c) 1,258,925
- **47.** (a) 20 dB (b) 70 dB (c) 120 dB
- **49.** 97.49% **51.** 4.64 **53.** About 31,623 times
- 55. (a) 120,000 (b) 21.20 yr; yes
- **57.** 3:00 A.M. **59.** False. The domain can be all real numbers.
- **61.** No. Any *x*-value in the Gaussian model will give a positive *y*-value.
- **63.** Gaussian model **65.** Exponential growth model
- **67.** a; (0, -3), $(\frac{9}{4}, 0)$ **68.** b; (0, 2), (5, 0)
- **69.** d; $(0, 25), (\frac{100}{9}, 0)$ **70.** c; (0, 4), (2, 0)
- **71.** Falls to the left and rises to the right
- 73. Rises to the left, falls to the right
- **75.** $2x^2 + 3 + \frac{3}{x-4}$ **77.** Answers will vary.

Section 3.6 (page 238)

- **1.** $y = ax^b$ **3.** Scatter plot **5.** Logarithmic model
- **7.** Quadratic model **9.** Exponential model
- 11. Quadratic model

Logarithmic model

Exponential model

17.

Linear model

- **19.** $y = 4.752(1.2607)^x$; 0.96773
- 0.86639

21. $y = 8.463(0.7775)^x$;

- **25.** $y = 9.826 4.097 \ln x$; 0.93704

23. $y = 2.083 + 1.257 \ln x$;

27. $y = 1.985x^{0.760}$: 0.99686

- **31.** (a) Exponential model: $S = 1876.645(1.1980)^{t}$ Power model: $S = 1905.844t^{0.6018}$

- (c) Exponential model
- **33.** (a) Linear model: P = 2.89t + 252.9; $r^2 \approx 0.9987$

(b) Power model: $P = 222.94t^{0.1048}$; $r^2 \approx 0.9850$

(c) Exponential model: $P = 254.445(1.0102)^t$; $r^2 \approx 0.9972$

(d) Logarithmic model: $P = 29.813 \ln t + 215.36$; $r^2 \approx 0.9803$

- (e) The linear model is the best fit because its coefficient of determination is closest to 1.
- (f) Linear:

Year	2009	2010	2011	2012	2013	2014
Population (in millions)	307.8	310.7	313.6	316.5	319.4	322.3

Power:

Year	2009	2010	2011	2012	2013	2014
Population (in millions)	303.5	305.2	306.7	308.2	309.7	311.1

Exponential:

Year	2009	2010	2011	2012	2013	2014
Population (in millions)	308.6	311.7	314.9	318.1	321.3	324.6

Logarithmic:

Year	2009	2010	2011	2012	2013	2014
Population (in millions)	303.1	304.7	306.1	307.5	308.8	310.1

- (g) and (h) Answers will vary.
- **35.** (a) $y = 1315.584(1.0644)^t$ (b) $y = 1315.584e^{0.0624t}$
 - (c) About 2307 stores; Answers will vary.

37. (a)
$$y = \frac{91.3686}{1 + 765.5440e^{-0.2547x}}$$

The model fits the data well.

39. True. See page 221. **41.** Answers will vary. **43.** Slope: $-\frac{2}{5}$ y-intercept: (0, 2)

45. Slope: $-\frac{12}{35}$ y-intercept: (0, 3)

- **47.** $y = -(x + 1)^2 + 2$
- **49.** $y = -2(x-3)^2 + 2$

Review Exercises (page 244)

- 1. 10.3254
- **3.** 0.0001
- **5.** c
- **6.** d
- **7.** b **8.** a

Horizontal asymptote: y = 0

y-intercept: (0, 1)

Increasing on $(-\infty, \infty)$

11.

Horizontal asymptote: y = 0

y-intercept: (0, 1)

Decreasing on $(-\infty, \infty)$

13.

x	0	1	2	3	4
h(x)	0.37	1	2.72	7.39	20.09

Horizontal asymptote: y = 0

15.

х	-2	-1	0	1	2
h(x)	-0.14	-0.37	-1	-2.72	-7.39

Horizontal asymptote: y = 0

17.	х	-1	0	1	2	3	4
	f(x)	6.59	4	2.43	1.47	0.89	0.54

Horizontal asymptote: y = 0

19. 10 20 \$10,832.87 \$22,255.41 \$49,530.32

t	30	40	50
A	\$110,231.76	\$245,325.30	\$545,981.50

- (b) \$18,000
- (c) When it is first sold; Yes; Answers will vary.
- **23.** $5^3 = 125$
- **25.** $64^{1/6} = 2$
 - **27.** $\log_4 64 = 3$
- **29.** $\log_{125} 25 = \frac{2}{3}$
- **31.** $\log_{1/2} 8 = -3$
 - **33.** 3 **35.** −1
- **37.** Domain: $(0, \infty)$
- **39.** Domain: $(1, \infty)$

Vertical asymptote: x = 0x-intercept: (32, 0)

Vertical asymptote: x = 1*x*-intercept: (1.016, 0)

41. 3.068 **43.** 0.896

45.

47.

Domain: $(0, \infty)$

Vertical asymptote: x = 0x-intercept: (0.05, 0)

Domain: $(0, \infty)$

Vertical asymptote: x = 0x-intercept: (1,0)

49. (a) $0 \le h < 18,000$

Asymptote: h = 18,000

- (c) The time required to increase its altitude further increases.
- (d) 5.46 min
- **51.** 1.585 **53.** 2.235

- **61.** 0.41 **59.** 1.13
- **63.** $\ln 5 2$
- **65.** $2 + \log_{10} 2$

- **67.** $1 + 2 \log_5 x$
- **69.** $\log_{10} 5 + \frac{1}{2} \log_{10} y 2 \log_{10} x$
- **71.** $\ln(x+3) \ln x \ln y$ **73.** $\log_2 9x$
- 77. $\ln \frac{3\sqrt[3]{4-x^2}}{x^2}$

(b)	h	4	6	8	10	12	14
	s	38	33	30	27	25	23

- (c) The decrease in productivity starts to level off.
- **81.** 4
- **83.** −3
- **85.** −5
- **87.** 4096
- **89.** 9

- **91.** e^4
- **93.** $e^2 + 1$
- **95.** -0.757
- **97.** 4.459

- **99.** 1.760
- **101.** 3.916
- **103.** 1.609, 0.693
- **105.** 200.615
- **107.** 36.945
- **109.** 53.598
- 111. No solution
- **113.** 0.9
- **115.** −1 **117.** 0.368
- **119.** 10.05 yr **121.** e **122.** b **123.** f
- **124.** d **125.** a **126.** c
- **127.** k = 0.0177; 11,407,330
- **129.** (a) 9.52 weeks (b) 21.20 weeks
- **131.** Logistic model
- **133.** (a) Linear model: N = 41.5t + 2722.1; $r^2 \approx 0.9785$

Exponential model: $N = 2728(1.0142)^t$; $r^2 \approx 0.9818$ Power model: $N = 2727.6t^{0.0497}$; $r^2 \approx 0.8398$

(b) Linear model:

Exponential model:

Power model:

- (c) The exponential model is the best fit because its coefficient of determination is closest to 1.
- (d) 3,141,090 (e) 2021–2022
- **135.** True. $e^{x-1} = e^x \cdot e^{-1} = \frac{e^x}{e^x}$
- **137.** False. x > 0
- **139.** Because $1 < \sqrt{2} < 2$, then $2^1 < 2^{\sqrt{2}} < 2^2$.

Chapter Test (page 248)

1.	x	-2	-1	0	1	2
	f(x)	100	10	1	0.1	0.01

Horizontal asymptote: y = 0

y-intercept: (0, 1)

2.	x	0	2	3	4
	f(x)	-0.03	-1	-6	-36

Horizontal asymptote: y = 0y-intercept: $\left(0, -\frac{1}{36}\right)$

3.	x	-2	-1	0	1	2
	f(x)	0.9817	0.8647	0	-6.3891	-53.5982

Horizontal asymptote: y = 1Intercept: (0,0)

4. -0.89

Domain: $(0, \infty)$

Vertical asymptote:
$$x = 0$$

ymptote:
$$x = 0$$

Domain: $(4, \infty)$

Vertical asymptote:
$$x = 4$$
 x-intercept: $(5, 0)$

x-intercept: $(10^{-6}, 0)$ 9.

Domain: $(-6, \infty)$ Vertical asymptote: x = -6x-intercept: (-5.63, 0)

- **10.** 1.945 **11.** 0.115 **12.** 1.674
- 13. $\log_2 3 + 4 \log_2 a$ **14.** $\ln 5 + \frac{1}{2} \ln x - \ln 6$
- **15.** $\ln x + \frac{1}{2} \ln(x+1) \ln 2 4$ **16.** log₃ 13y
- **20.** 2.431 **22.** 100,004 **21.** 343 **23.** 1.321
- **26.** 1.649 **25.** 1.597 **27.** 54.96% **28.** (a) Logarithmic model: $R = 200.7 \ln t + 57.835$ Exponential model: $R = 115.47(1.227)^{t}$
 - Power model: $R = 119.22t^{0.6703}$ Exponential model:

(b) Logarithmic model:

Power model:

(c) Exponential model; \$2483.9 million

Cumulative Test for Chapters 1–3 (page 249)

- **1.** (a) y = -x + 3
 - (b) Answers will vary. Sample answer: (0, 3), (1, 2), (2, 1)
- **2.** (a) y = -2x
 - (b) Answers will vary. Sample answer: (0, 0), (1, -2), (2, -4)
- 3. (a) $x = -\frac{3}{7}$
 - (b) Answers will vary. Sample answer: $(-\frac{3}{7}, 0), (-\frac{3}{7}, 1), (-\frac{3}{7}, -3)$
- (b) Undefined (c) $\frac{5+4s}{3+4s}$
- **5.** (a) -32 (b) 4 (c) 20
- 6. No. It doesn't pass the Vertical Line Test.

Decreasing on $(-\infty, 5)$ Increasing on $(5, \infty)$

- 8. (a) Vertical shrink
 - (b) Vertical shift
 - (c) Horizontal shift and reflection in the x-axis

11. -79

10. $\frac{197}{16}$ **13.** $h^{-1}(x) = \frac{x+2}{5}$

- **19.** $4x + 2 \frac{15}{x+3}$ 17. $x = -2, \pm 2i$ **18.** 1.424
- **20.** $2x^2 + 7x + 48 + \frac{268}{x 6}$
- 22. Answers will vary. Sample answer: $f(x) = x^4 + x^3 + 18x$

23.

24.

Asymptotes:

$$x = 3, y = 2$$

Asymptotes:

$$x = -3, x = 2, y = 0$$

25.

Asymptotes: x = 2, y = x - 1

- **26.** 6.733
- **27.** 8772.934
- **28.** 0.202
- **29.** 51.743

30.

31.

32.

33.

- **34.** 1.723
- **35.** 0.872
- **36.** 0.585
- 37. $\ln(x+2) + \ln(x-2) \ln(x^2+1)$
- **38.** $\ln \frac{x^2(x+1)}{x^2}$
 - **39.** 1.242 **43.** 0, 1
- **40.** 6.585
- **41.** 12.8

- **42.** 152.018
- **45.** (a) A = x(273 x)

0 < x < 273

44. No solution

- (c) $76.23 \text{ ft} \times 196.77 \text{ ft}$
- **46.** (a) Quadratic model:

$$y = 0.0178t^2 - 0.130t + 1.26; r^2 \approx 0.9778$$

Exponential model: $y = 1.002(1.025)^t; r^2 \approx 0.4009$

Power model: $y = 1.041t^{0.0564}$; $r^2 \approx 0.1686$

(b) Quadratic model:

Exponential model:

Power model:

- (c) The quadratic model is the best fit because its coefficient of determination is closest to 1.
- (d) \$1.74; Answers will vary.

Chapter 4

Section 4.1 (page 261)

- 1. Trigonometry
- 3. standard position **11.** 2
- 5. radian **7.** 180° 13. (a) Quadrant I
- **9.** No (b) Quadrant III
- 15. (a) Quadrant IV
- (b) Quadrant II
- 17. (a) Quadrant IV
- (b) Quadrant III

19. (a)

(b)

21. (a)

23. (a)

- **25.** (a) $\frac{13\pi}{6}$, $-\frac{11\pi}{6}$ (b) $\frac{8\pi}{3}$, $-\frac{4\pi}{3}$
- **27.** (a) $\frac{7\pi}{4}$, $-\frac{\pi}{4}$ (b) $\frac{28\pi}{15}$, $-\frac{32\pi}{15}$
- **29.** 210°

- **31.** (a) Quadrant I (b) Quadrant III
- 33. (a) Quadrant II (b) Quadrant IV
- 35. (a) Quadrant III (b) Quadrant I
- **37.** (a)

39. (a)

- **43.** (a) 412° , -308° (b) 324° , -396°
- **45.** (a) 660° , -60° (b) 590° , -130°
- **47.** (a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ **49.** (a) $-\frac{\pi}{9}$ (b) $-\frac{4\pi}{3}$
- **51.** (a) 270° (b) -210° **53.** (a) 420° (b) -39°
- **57.** -3.776 **59.** -0.014 **55.** 2.007 **61.** 25.714° **63.** 1170° **65.** −114.592° **67.** 64.75° **69.** 85.308°
- **71.** −125.01° **73.** 280° 36′ **75.** -345° 7′ 12″
- **77.** $-20^{\circ} 20' 24''$ **79.** Complement: 66° ; supplement: 156°
- **81.** Complement: 3°; supplement: 93°
- **83.** Complement: $\frac{\pi}{6}$; supplement: $\frac{2\pi}{3}$
- **85.** Complement: $\frac{\pi}{3}$; supplement: $\frac{5\pi}{6}$ **87.** $\frac{6}{5}$ rad
- **91.** $\frac{70}{29}$ rad **89.** $\frac{8}{15}$ rad **93.** 14π in. **95.** 18π m
- **97.** 22.92 ft **99.** 34.80 mi **101.** 591.32 mi
- **103.** 4° 2′33″ **105.** 275.02° 107. 436.97 km/min
- **109.** (a) $80\pi \text{ rad/sec}$ (b) $25\pi \text{ ft/sec}$
- **111.** (a) $400\pi \text{ rad/min}$ to $1000\pi \text{ rad/min}$ (b) $6000\pi \text{ cm/min}$
- 113. False. A radian is larger: 1 rad $\approx 57.3^{\circ}$.
- 115. True. The sum of the angles of a triangle must equal

$$180^{\circ} = \pi \text{ radians, and } \frac{2\pi}{3} + \frac{\pi}{4} + \frac{\pi}{12} = \pi.$$

117.
$$\frac{50\pi}{3}$$
 m²

119. (a) $A = 0.4r^2$, r > 0; s = 0.8r, r > 0

The area function changes more rapidly for r > 1 because it is quadratic and the arc length function is linear.

(b) $A = 50\theta$, $0 < \theta < 2\pi$; $s = 10\theta$, $0 < \theta < 2\pi$

- 121. Answers will vary.

Horizontal shift one unit to the right

- 125.
- Reflection in the x-axis, vertical shift two units upward
- Horizontal shift one unit to the left, vertical shift three units downward

Section 4.2 (page 270)

- 1. unit circle 3. odd, even
- 5. Even: cos, sec; Odd: sin, csc, tan, cot
- **9.** $\sin \theta = \frac{15}{17}$
- **11.** $\sin \theta = -\frac{5}{13}$
- $\cos \theta = \frac{8}{17}$ $\cos \theta = -\frac{8}{17}$ $\tan \theta = -\frac{15}{8}$ $\csc \theta = \frac{17}{15}$ $\sec \theta = -\frac{17}{8}$ $\cot \theta = -\frac{8}{15}$
- $\cos \theta = \frac{12}{13}$ $\tan \theta = -\frac{5}{12}$ $\csc \theta = -\frac{13}{5}$ $\sec \theta = \frac{13}{12}$ $\cot \theta = -\frac{12}{5}$

- **13.** $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ **15.** $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$ **17.** $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
- **19.** (0,-1) **21.** $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$
- 23. $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\cos \left(-\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$ $\cos \left(-\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$

 - $\tan \frac{\pi}{4} = 1$

- 27. $\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$ $\cos\frac{2\pi}{3} = -\frac{1}{2}$
- **29.** $\sin\left(-\frac{5\pi}{3}\right) = \frac{\sqrt{3}}{3}$ $\cos\left(-\frac{5\pi}{3}\right) = \frac{1}{2}$
- $\tan\frac{2\pi}{3} = -\sqrt{3}$
- $\tan\left(-\frac{5\pi}{3}\right) = \sqrt{3}$
- **31.** $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$ $\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$
 - $\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$
- 33. $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$
- **35.** $\sin \frac{\pi}{2} = 1$
- $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$
- $\cos\frac{\pi}{2}=0$
- $\tan \frac{3\pi}{4} = -1$
- $\tan \frac{\pi}{2}$ is undefined.
- $\csc \frac{3\pi}{4} = \sqrt{2}$
- $\sec \frac{3\pi}{4} = -\sqrt{2}$
- $\sec \frac{\pi}{2}$ is undefined.
- $\cot\frac{3\pi}{4} = -1$
- $\cot \frac{\pi}{2} = 0$
- 37. $\sin\left(-\frac{4\pi}{3}\right) = \frac{\sqrt{3}}{3}$
- $\csc\left(-\frac{4\pi}{3}\right) = \frac{2\sqrt{3}}{3}$
- $\cos\left(-\frac{4\pi}{3}\right) = -\frac{1}{2} \qquad \sec\left(-\frac{4\pi}{3}\right) = -2$
- $\tan\left(-\frac{4\pi}{3}\right) = -\sqrt{3} \qquad \cot\left(-\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{3}$
- **39.** 0 **41.** $-\frac{1}{2}$ **43.** $\frac{\sqrt{3}}{2}$ **45.** $-\frac{\sqrt{2}}{2}$
- **47.** (a) $-\frac{1}{3}$ (b) -3 **49.** (a) $-\frac{1}{5}$ (b) -5

- **51.** (a) $\frac{4}{5}$ (b) $-\frac{4}{5}$ **53.** 0.4339 **55.** 0.8090
- **57.** 1.0378
- **59.** −0.1288
- **61.** 1.3940
- **63.** -1.4486

- **65.** −1.3386 **67.** −1.0025
- **69.** −2.4950
- **71.** (a) -0.9 (b) -0.4
- **73.** (a) 0.25, 2.89 (b) 1.82, 4.46
- **75.** 0.79 amp **77.** (a) 0.25 ft (b) 0.02 ft (c) -0.25 ft
- **79.** False. $\sin(-t) = -\sin t$ means that the function is odd, not that the sine of a negative angle is a negative number.
- **81.** True. $a 6\pi$ is coterminal with a.
- 83. True. The values are the same.
- **85.** (a) Origin (b) $\sin(t_1 + \pi) = -\sin t_1$
 - (c) $\cos(t_1 + \pi) = -\cos t_1$
- **87.** Answers will vary.
- **89.** It is an even function.

91.

Section 4.3 (page 280)

- **1.** (a) iii (b) vi (c) ii (d) v (e) i (f) iv

3. elevation, depression

7.
$$\sin \theta = \frac{9}{41}$$

- $\cos \theta = \frac{40}{41}$
- $\tan \theta = \frac{9}{40}$
- $\csc \theta = \frac{41}{9}$
- $\sec \theta = \frac{41}{46}$
- $\cot \theta = \frac{40}{9}$ **11.** $\sin \theta = \frac{3}{5}$

$$\cos \theta = \frac{4}{5}$$
 $\sec \theta = \frac{5}{4}$
 $\tan \theta = \frac{3}{4}$ $\cot \theta = \frac{4}{3}$

The triangles are similar and corresponding sides are proportional.

 $\csc \theta = \frac{5}{3}$

5. 12

9. $\sin \theta = \frac{8}{17}$

 $\cos \theta = \frac{15}{17}$

 $\tan \theta = \frac{8}{15}$

 $\csc \theta = \frac{17}{8}$

 $\sec \theta = \frac{17}{15}$

 $\cot \theta = \frac{15}{8}$

13. $\cos \theta = \frac{\sqrt{11}}{2}$

$$\tan \theta = \frac{5\sqrt{11}}{11}$$

- $\csc\,\theta = \frac{6}{5}$
- $\sec \theta = \frac{6\sqrt{11}}{11}$
- $\cot \theta = \frac{\sqrt{11}}{5}$
- **15.** $\sin \theta = \frac{\sqrt{15}}{4}$
 - $\cos \theta = \frac{1}{4}$
 - $\tan \theta = \sqrt{15}$
 - $\csc \theta = \frac{4\sqrt{15}}{15}$
 - $\cot \theta = \frac{\sqrt{15}}{15}$
- **17.** $\sin \theta = \frac{3\sqrt{10}}{10}$
 - $\cos \theta = \frac{\sqrt{10}}{10}$
 - $\csc \theta = \frac{\sqrt{10}}{3}$
 - $\sec \theta = \sqrt{10}$
 - $\cot \theta = \frac{1}{2}$
- **19.** $\sin \theta = \frac{2\sqrt{13}}{13}$
 - $\cos\theta = \frac{3\sqrt{13}}{13}$
 - $\tan \theta = \frac{2}{3}$
 - $\sec \theta = \frac{\sqrt{13}}{3}$
 - $\csc \theta = \frac{\sqrt{13}}{2}$
- **21.** $\frac{\pi}{6}, \frac{1}{2}$ **23.** 60°, $\sqrt{3}$ **25.** 60°, $\frac{\pi}{3}$ **27.** 30°, $\frac{\sqrt{3}}{2}$
- **29.** $45^{\circ}, \frac{\pi}{4}$ **31.** (a) 0.1736
- **33.** (a) 1.3499 (b) 1.3432
- (b) 0.1736
 - **35.** (a) 5.0273
- (b) 0.4142

- **37.** $\csc \theta$
- **39.** $\cot \theta$
- **41.** $\cos \theta$
- - **45.** 1

- **47.** $\cos \theta$ **49.** $\cot \theta$ **51.** $\csc \theta$
- **53.** (a) $\sqrt{3}$ (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{\sqrt{3}}{3}$
- 55. (a) $\frac{1}{3}$ (b) $\frac{2\sqrt{2}}{3}$ (c) $\frac{\sqrt{2}}{4}$ (d) 3 57. (a) 3 (b) $\frac{2\sqrt{2}}{3}$ (c) $\frac{\sqrt{2}}{4}$ (d) $\frac{1}{3}$
- **59–65.** Answers will vary.
- **67.** (a) $30^{\circ} = \frac{\pi}{6}$ (b) $30^{\circ} = \frac{\pi}{6}$
- 69. (a) $60^{\circ} = \frac{\pi}{3}$ (b) $45^{\circ} = \frac{\pi}{4}$ 71. (a) $60^{\circ} = \frac{\pi}{3}$ (b) $45^{\circ} = \frac{\pi}{4}$
- **73.** $y = 35\sqrt{3}, r = 70\sqrt{3}$ **75.** $x = 8, y = 8\sqrt{3}$

77. (a)

- - (b) $50\sqrt{2}$ ft
 - (c) $\frac{25\sqrt{2}}{3}$ ft/sec; $\frac{25}{3}$ ft/sec
- (b) $\tan \theta = \frac{h}{21}$
- (c) h = 25.2 ft
- **81.** 160 ft
- **83.** (a)

- (b) $\sin 85^{\circ} = \frac{h}{20}$
- (c) 19.9 m
- (d) The side of the triangle labeled h will become shorter.

(e)	Angle, θ	80°	70°	60°	50°
	Height	19.7	18.8	17.3	15.3

Angle, θ	40°	30°	20°	10°
Height	12.9	10.0	6.8	3.5

(f) As $\theta \rightarrow 0^{\circ}$, $h \rightarrow 0$.

- **85.** False. $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \neq 1$
- 87. Yes, with the Pythagorean Theorem. Answers will vary.
- **89.** (a)

θ	0°	20°	40°	60°	80°
$\sin \theta$	0	0.3420	0.6428	0.8660	0.9848
$\cos \theta$	1	0.9397	0.7660	0.5	0.1736
$\tan \theta$	0	0.3640	0.8391	1.7321	5.6713

- (b) Sine: increasing; cosine: decreasing; tangent: increasing
- (c) Answers will vary.

91.	x	-1	0	1	2
	f(x)	0.05	1	20.09	403.43

93.	х	-1	0	1	2
	f(x)	2.05	3	22.09	405.43

Domain: $(0, \infty)$ Vertical asymptote: x = 0*x*-intercept: (1,0)

Domain: $(0, \infty)$ Vertical asymptote: x = 0x-intercept: (1,0)

9. 0, π

Section 4.4 (page 289)

1. $\frac{y}{r}$ **3.** $\frac{y}{x}$ **5.** $\cos \theta$

 $\cos \theta = \frac{4}{5}$

 $\csc \theta = \frac{5}{3}$

 $\cot \theta = \frac{4}{3}$

11. (a) $\sin \theta = \frac{3}{5}$

- 7. reference angle
- (b) $\sin \theta = -\frac{15}{17}$ $\cos \theta = -\frac{8}{17}$ $\tan \theta = \frac{15}{8}$
- $\tan \theta = \frac{3}{4}$ $\csc \theta = -\frac{17}{15}$ $\sec \theta = -\frac{17}{8}$ $\sec \theta = \frac{5}{4}$ $\cot \theta = \frac{8}{15}$
- (b) $\sin \theta = \frac{\sqrt{2}}{2}$ **13.** (a) $\sin \theta = -\frac{1}{2}$ $\cos \theta = -\frac{\sqrt{3}}{2}$ $\cos \theta = -\frac{\sqrt{2}}{2}$ $\tan \theta = \frac{\sqrt{3}}{3}$ $\csc \theta = -2$ $\tan \theta = -1$ $\csc \theta = \sqrt{2}$ $\sec \theta = -\sqrt{2}$ $\cot \theta = -1$

17.
$$\sin \theta = -\frac{12}{13}$$

$$\cos \theta = \frac{5}{13}$$

$$\tan \theta = -\frac{12}{5}$$

$$\csc \theta = -\frac{13}{12}$$

$$\sec \theta = \frac{13}{5}$$

$$\cot \theta = -\frac{5}{12}$$

 $\cot \theta = \frac{7}{24}$ **19.** $\sin \theta = \frac{5\sqrt{29}}{29}$

21.
$$\sin \theta = \frac{4\sqrt{41}}{41}$$
 $\cos \theta = -\frac{5\sqrt{41}}{41}$

$$\cos \theta = -\frac{2\sqrt{29}}{29}$$
$$\tan \theta = -\frac{5}{2}$$

$$\tan \theta = -\frac{4}{5}$$

$$\csc \theta = \frac{\sqrt{29}}{5}$$

$$\csc \theta = \frac{\sqrt{41}}{4}$$

$$\sec \theta = -\frac{\sqrt{29}}{2}$$

$$\sec \theta = -\frac{\sqrt{41}}{5}$$

$$\cot \theta = -\frac{2}{5}$$

$$\cot \theta = -\frac{5}{4}$$

- 23. Quadrant III
- 25. Quadrant I

27.
$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = -\frac{4}{5}$

29.
$$\sin \theta = -\frac{15}{17}$$

$$\cos \theta = -\frac{3}{5}$$

$$\tan \theta = -\frac{3}{4}$$

$$\cos \theta = \frac{8}{17}$$
$$\tan \theta = -\frac{1}{8}$$

$$\csc \theta = \frac{5}{3}$$

$$\tan \theta = -\frac{17}{8}$$

$$\csc \theta = -\frac{17}{15}$$

$$\sec \theta = -\frac{5}{4}$$
$$\cot \theta = -\frac{4}{3}$$

$$\sec \theta = \frac{17}{8}$$

$$\cot \theta = -\frac{8}{15}$$

31.
$$\sin \theta = \frac{\sqrt{3}}{2}$$

$$\csc \theta = \frac{2\sqrt{3}}{3}$$

$$\cos \theta = -\frac{1}{2}$$
 $\sec \theta = -2$

$$a = 0$$

$$\tan \theta = -\sqrt{3}$$

$$\tan \theta = -\sqrt{3} \qquad \cot \theta = -\frac{\sqrt{3}}{3}$$

33.
$$\sin \theta = 0$$

35.
$$\sin \theta = \frac{\sqrt{2}}{2}$$

$$\cos \theta = -1$$
$$\tan \theta = 0$$

$$\cos \theta = -\frac{\sqrt{2}}{2}$$

$$\csc \theta$$
 is undefined.

$$\tan \theta = -1$$

$$\sec \theta = -1$$

$$\cos \theta = \sqrt{2}$$

$$\csc \theta = \sqrt{2}$$

$$\cot \theta$$
 is undefined.

$$\sec \theta = -\sqrt{2}$$
$$\cot \theta = -1$$

$$\cot \theta$$
 is undefined.

$$\sqrt{5}$$

37.
$$\sin \theta = -\frac{2\sqrt{5}}{5}$$
 $\csc \theta = -\frac{\sqrt{5}}{2}$ $\cos \theta = -\frac{\sqrt{5}}{5}$ $\sec \theta = -\sqrt{5}$

$$\tan \theta =$$

$$\cot \theta = \frac{1}{2}$$

43. 1

- **39.** −1 **41.** 0
- 45. Undefined

47.
$$\theta' = 60^{\circ}$$

49.
$$\theta' = 30^{\circ}$$

51.
$$\theta' = 45^{\circ}$$

53.
$$\theta' = \frac{\pi}{3}$$

55.
$$\theta' = \frac{\pi}{6}$$

57.
$$\theta' = \frac{\pi}{6}$$

59.
$$\theta' = 28^{\circ}$$

61.
$$\theta' = 68^{\circ}$$

63.
$$\theta' = \frac{\pi}{5}$$

65.
$$\theta' \approx 1.342$$

67.
$$\sin 225^\circ = -\frac{\sqrt{2}}{2}$$

$$\cos 225^\circ = -\frac{\sqrt{2}}{2}$$

69.
$$\sin(-750^\circ) = -\frac{1}{2}$$

 $\cos(-750^\circ) = \frac{\sqrt{3}}{2}$

$$\tan 225^{\circ} = 1$$

$$\tan(-750^\circ) = -\frac{\sqrt{3}}{3}$$

71.
$$\sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$

$$\cos \frac{5\pi}{3} = \frac{1}{2}$$

$$\tan\frac{5\pi}{3} = -\sqrt{3}$$

73.
$$\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$$

$$\cos\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$\tan\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$$

75. $\sin \frac{11\pi}{4} = \frac{\sqrt{2}}{2}$	77. $\sin\left(-\frac{17\pi}{6}\right) = -\frac{1}{2}$
$\cos\frac{11\pi}{4} = -\frac{\sqrt{2}}{2}$	$\cos\left(-\frac{17\pi}{6}\right) = -\frac{\sqrt{3}}{2}$
$\tan\frac{11\pi}{4} = -1$	$\tan\left(-\frac{17\pi}{6}\right) = \frac{\sqrt{3}}{3}$

79.
$$\frac{4}{5}$$
 81. $-\sqrt{3}$ **83.** $\frac{\sqrt{65}}{4}$

85.
$$\cos \theta = -\frac{\sqrt{21}}{5}$$

$$\tan \theta = -\frac{2\sqrt{21}}{21}$$

$$\csc \theta = \frac{5}{2}$$

$$\sec \theta = -\frac{5\sqrt{21}}{21}$$

$$\cot \theta = -\frac{\sqrt{21}}{2}$$

$$\cot \theta = -\frac{\sqrt{21}}{2}$$

$$\cot \theta = -\frac{1}{4}$$
87. $\sin \theta = \frac{4\sqrt{17}}{17}$

$$\csc \theta = \frac{\sqrt{17}}{17}$$

$$\csc \theta = \frac{\sqrt{17}}{4}$$

$$\sec \theta = -\sqrt{17}$$

$$\cot \theta = -\frac{1}{4}$$

89.
$$\sin \theta = -\frac{2}{3}$$
 $\sec \theta = \frac{3\sqrt{5}}{5}$

$$\cos \theta = \frac{\sqrt{5}}{3}$$
 $\cot \theta = -\frac{\sqrt{5}}{2}$

$$\tan \theta = -\frac{2\sqrt{5}}{5}$$

- **91.** 0.1736 **93.** 2.1445 **95.** -0.3420
- **97.** 5.7588 **99.** 0.8391 **101.** -2.9238

103. (a)
$$30^{\circ} = \frac{\pi}{6}$$
, $150^{\circ} = \frac{5\pi}{6}$ (b) $210^{\circ} = \frac{7\pi}{6}$, $330^{\circ} = \frac{11\pi}{6}$

105. (a)
$$60^{\circ} = \frac{\pi}{3}$$
, $120^{\circ} = \frac{2\pi}{3}$ (b) $135^{\circ} = \frac{3\pi}{4}$, $315^{\circ} = \frac{7\pi}{4}$

107. (a)
$$150^{\circ} = \frac{5\pi}{6}$$
, $210^{\circ} = \frac{7\pi}{6}$ (b) $120^{\circ} = \frac{2\pi}{3}$, $240^{\circ} = \frac{4\pi}{3}$

109. (a)
$$\frac{1+\sqrt{3}}{2}$$
 (b) $\frac{\sqrt{3}-1}{2}$ (c) $\frac{3}{4}$ (d) $\frac{\sqrt{3}}{4}$ (e) $\frac{\sqrt{3}}{2}$ (f) $\frac{\sqrt{3}}{2}$

111. (a) 0 (b)
$$\sqrt{2}$$
 (c) $\frac{1}{2}$ (d) $-\frac{1}{2}$ (e) -1 (f) $\frac{\sqrt{2}}{2}$

113. (a)
$$\frac{1-\sqrt{3}}{2}$$
 (b) $-\frac{1+\sqrt{3}}{2}$ (c) $\frac{3}{4}$ (d) $-\frac{\sqrt{3}}{4}$ (e) $-\frac{\sqrt{3}}{2}$ (f) $-\frac{\sqrt{3}}{2}$

115. (a)
$$-\frac{1+\sqrt{3}}{2}$$
 (b) $\frac{1-\sqrt{3}}{2}$ (c) $\frac{3}{4}$ (d) $\frac{\sqrt{3}}{4}$ (e) $\frac{\sqrt{3}}{2}$ (f) $-\frac{\sqrt{3}}{2}$

117. (a)
$$-\frac{1+\sqrt{3}}{2}$$
 (b) $\frac{-1+\sqrt{3}}{2}$ (c) $\frac{1}{4}$

(d)
$$\frac{\sqrt{3}}{4}$$
 (e) $\frac{\sqrt{3}}{2}$ (f) $-\frac{1}{2}$

- **119.** (a) -1 (b) 1 (c) 0 (d) 0 (e) 0 (f) 0
- **121.** (a) -1 (b) 1 (c) 0 (d) 0 (e) 0 (f)
- **123.** (a) 60.4°F (b) 92.3°F (c) 76.35°F
- **125.** (a) 12 mi (b) 6 mi (c) 6.93 mi
- **127.** True. $0 < \cos \theta < 1$ in Quadrant I, so $\sin \theta < \frac{\sin \theta}{\cos \theta} = \tan \theta$.

- 129. False. Sine is positive in Quadrant II.
- 131. (a) θ 0° 20° 40° $\sin \theta$ 0 0.3420 0.6428 $\sin(180^\circ \theta)$ 0 0.3420 0.6428

θ	60°	80°
$\sin \theta$	0.8660	0.9848
$\sin(180^{\circ} - \theta)$	0.8660	0.9848

- (b) $\sin \theta = \sin(180^{\circ} \theta)$
- **133.** The calculator mode is in degrees instead of radians.
- **35.** 7 **137.** 3.449, -1.449 **139.** 4.908, -5.908

Section 4.5 (page 299)

- **1.** amplitude **3.** $\frac{2\pi}{b}$ **5.** 2π
- 7. It vertically shifts the graph d units.
- **9.** (a) $x = -2\pi, -\pi, 0, \pi, 2\pi$ (b) y = 0

(c) Increasing:
$$\left(-2\pi, -\frac{3\pi}{2}\right)$$
, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\left(\frac{3\pi}{2}, 2\pi\right)$
Decreasing: $\left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, -\frac{3\pi}{2}\right)$

- (d) Relative maxima: $\left(-\frac{3\pi}{2}, 1\right), \left(\frac{\pi}{2}, 1\right)$ Relative minima: $\left(-\frac{\pi}{2}, -1\right), \left(\frac{3\pi}{2}, -1\right)$
- Relative minima: $\left(-\frac{1}{2}, -1\right)$, $\left(\frac{1}{2}, -1\right)$. Period: π 13. Period: 4π
- Amplitude: 3 Amplitude: $\frac{5}{2}$ **15.** Period: 2 **17.** Period: 2π **19.** Manual Man
 - 19. Period: 3π 2 Amplitude: $\frac{1}{4}$
- **21.** g is a shift of f π units to the right.
- **23.** g is a reflection of f in the x-axis.
- **25.** g is a reflection of f in the x-axis and has five times the amplitude of f.
- **27.** g is a shift of f three units upward.
- **29.** g has twice the amplitude of f.
- **31.** g is a horizontal shift of f π units to the right.

41.

43.

45.

47.

49.

51.

53.

55.

57.

Amplitude: 2 Period: 3

59.

61.

63.

Amplitude: 2

Period: $\frac{\pi}{2}$

Amplitude: $\frac{2}{3}$ Period: 4π

Period: 1

67.

69.

Amplitude: 5

Period:
$$\pi$$

71. a = -4, d = 4

Period:
$$\frac{1}{60}$$
 73. $a = -6, d = 1$

75. a = -3, b = 2, c = 0

$$= 0 77. \ a = 1, b = 1, c = \frac{\pi}{4}$$

79.

 $5\pi 7\pi 11\pi$ 6

81. (a)

(b) 6 sec

- (c) 10 cycles/min
- (d) The period of the model would decrease because the time for a respiratory cycle would decrease.
- (b) Minimum height: 5 ft Maximum height: 55 ft
- **83.** (a)
- **85.** (a) 365 days. The cycle is 1 year.
 - (b) 30.3 gallons per day. The average is the constant term of the model.

(c)

Consumption exceeds 40 gallons per day from the beginning of May through part of September.

87. (a) and (c)

The model fits the data well.

- (b) $y = 0.493 \sin(0.209x 0.114) + 0.472$
- (d) 30 days (e) 12.9%
- **89.** True. The period of $\sin x$ is 2π . Adding 2π moves the graph one period to the right.
- **91.** False. The function $y = \frac{1}{2}\cos 2x$ has an amplitude that is one-half that of the function $y = \cos x$.

The value of *b* affects the period of the graph.

$$b = \frac{1}{2} \rightarrow \frac{1}{2}$$
 cycle

$$b = 2 \rightarrow 2$$
 cycles

$$b = 3 \rightarrow 3$$
 cycles

95. e **97.** c

Even

Even

Odd

х	-1	-0.1	-0.01
$\frac{\sin x}{x}$	0.8415	0.9983	1.0000

х	-0.001	0	0.001
$\frac{\sin x}{x}$	1.0000	Undefined	1.0000

x	0.01	0.1	1
$\frac{\sin x}{x}$	1.0000	0.9983	0.8415

$$f \rightarrow 1$$
 as $x \rightarrow 0$

(c) The ratio approaches 1 as x approaches 0.

The polynomial function is a good approximation of the sine function when x is close to 0.

The polynomial function is a good approximation of the cosine function when x is close to 0.

(c)
$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

$$\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

The accuracy increased.

105.

107. 487.014° 109. Answers will vary.

Section 4.6 (page 311)

1. vertical 3. tangent, cotangent

5. (a)
$$x = -2\pi, -\pi, 0, \pi, 2\pi$$
 (b) $y = 0$

(c) Increasing on
$$\left(-2\pi, -\frac{3\pi}{2}\right)$$
, $\left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right)$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, $\left(\frac{3\pi}{2}, 2\pi\right)$

(d) No relative extrema

(e)
$$x = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$$

7. (a) No x-intercepts (b) y = 1

(c) Increasing on
$$\left(-2\pi, -\frac{3\pi}{2}\right)$$
, $\left(-\frac{3\pi}{2}, -\pi\right)$, $\left(0, \frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, \pi\right)$

Decreasing on
$$\left(-\pi, -\frac{\pi}{2}\right)$$
, $\left(-\frac{\pi}{2}, 0\right)$, $\left(\pi, \frac{3\pi}{2}\right)$, $\left(\frac{3\pi}{2}, 2\pi\right)$

(d) Relative minima: $(-2\pi, 1)$, (0, 1), $(2\pi, 1)$

Relative maxima: $(-\pi, -1), (\pi, -1)$

(e)
$$x = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$$

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

Answers will vary.

Answers will vary.

Answers will vary.

- **35.** -5.498, -2.356, 0.785, 3.927
- **37.** -4.189, -2.094, 2.094, 4.189
- **39.** -5.236, -2.094, 1.047, 4.189
- **41.** Even
- **43.** Odd
- **45.** Odd

47.

49.

Not equivalent;

Equivalent

 y_1 is undefined at x = 0.

- **51.** d; as x approaches 0, f(x) approaches 0.
- **52.** a; as x approaches 0, f(x) approaches 0.
- **53.** b; as x approaches 0, g(x) approaches 0.
- **54.** c; as x approaches 0, g(x) approaches 0.

55.

 $-e^{-x} \le e^{-x} \cos x \le e^{-x}$

Touches
$$y = \pm e^{-x}$$
 at $x = n\pi$

Intercepts at
$$x = \frac{\pi}{2} + n\pi$$

57.

 $-e^{-x^2/4} \le e^{-x^2/4} \cos x \le e^{-x^2/4}$

Touches
$$y = \pm e^{-x}$$
 at $x = n\pi$

Intercepts at $x = \frac{\pi}{2} + n\pi$

59. (a) $f \rightarrow -\infty$ (b) $f \rightarrow \infty$

(b) $f \rightarrow -\infty$

- (c) $f \rightarrow \infty$ (d) $f \rightarrow -\infty$
- **61.** (a) $f \to \infty$ **63.** $d = 5 \cot x$

65. (a)

- (b) Not periodic and damped; approaches 0 as t increases.
- 67. (a) Yes. To each t there corresponds one and only one value of y.
 - (b) 1.3 oscillations/sec
- (c) $y = 12(0.221)^t \cos(8.2t)$
 - (d) $y = 12e^{-1.5t}\cos(8.2t)$

Answers will vary.

- **69.** True. The sine function is damped.
- **71.** True. $\sec x = \csc\left(x \frac{\pi}{2}\right) = \frac{1}{\sin\left(x \frac{\pi}{2}\right)}$

CHAPTER 4

73. (a) . 3

- (b) $\left(-1,\frac{1}{3}\right)$ (c) $\left(-1,\frac{1}{3}\right)$; The intervals are the same.
- **75.** (a)

x	-1	-0.1	-0.01
$\frac{\tan x}{x}$	1.5574	1.0033	1.0000

x	-0.001	0	0.001
$\frac{\tan x}{x}$	1.0000	Undefined	1.0000

х	0.01	0.1	1
$\frac{\tan x}{x}$	1.0000	1.0033	1.5574

$$f \rightarrow 1$$
 as $x \rightarrow 0$

- (c) The ratio approaches 1 as x approaches 0.
- 77.

- The polynomial function is a good approximation of the tangent function when x is close to 0.
- **79.** Distributive Property
- **81.** Additive Identity Property
- **83.** Not one-to-one **85.** One-to-one. $f^{-1}(x) = \frac{x^2 + 14}{3}, x \ge 0$
- **87.** Domain: all real numbers *x*

Intercepts: (-4, 0), (1, 0), (0, -4)

No asymptotes

89. Domain: all real numbers *x*

Intercept: (0, 5) Asymptote: y = 2

Section 4.7 (page 322)

- **1.** $y = \sin^{-1} x$, $-1 \le x \le 1$ **3.** $\sin^{-1} x$ or $\arcsin x$

- **5.** (a) $\frac{\pi}{6}$ (b) 0 **7.** (a) $\frac{\pi}{2}$ (b) 0

- 9. (a) $\frac{\pi}{6}$ (b) $-\frac{\pi}{4}$ 11. (a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ 13. (a) $\frac{\pi}{3}$ (b) $-\frac{\pi}{6}$

15. (a)

х	-1	-0.8	-0.6	-0.4	-0.2
у	-1.571	-0.927	-0.644	-0.412	-0.201

х	0	0.2	0.4	0.6	0.8	1
y	0	0.201	0.412	0.644	0.927	1.571

(c)

They are the same.

(d) Intercept: (0, 0); symmetric about the origin

17.
$$\left(-\sqrt{3}, -\frac{\pi}{3}\right), \left(-\frac{\sqrt{3}}{3}, -\frac{\pi}{6}\right), \left(1, \frac{\pi}{4}\right)$$

- **23.** 0.72
- **25.** -0.85

- **27.** −1.41
- **29.** 0.85
- **31.** 1.29

33.

35.

g is a horizontal shift of f three units to the left.

g is a reflection of f in the y-axis.

37.

39.

g is a horizontal shift of $f \pi$ units to the left.

g is a reflection of f in the y-axis and a horizontal shift of f two units to the left.

41.

g is a horizontal shift of f one unit to the left.

g is a reflection of f in the y-axis.

- **45.** $\theta = \arctan \frac{x}{8}$ **47.** $\theta = \arcsin \frac{x+2}{5}$
- **49.** $\sqrt{4-x^2}$; $\theta = \arcsin \frac{x}{2}$, $\theta = \arccos \frac{\sqrt{4-x^2}}{2}$,
 - $\theta = \arctan \frac{x}{\sqrt{4 x^2}}$
- **51.** $\sqrt{x^2 + 2x + 5}$; $\theta = \arcsin \frac{x + 1}{\sqrt{x^2 + 2x + 5}}$ $\theta = \arccos \frac{2}{\sqrt{x^2 + 2x + 5}}, \ \theta = \arctan \frac{x + 1}{2}$
- 53. 0.7 55. -0.3 57. 0 59. $-\frac{\pi}{6}$ 61. $\frac{\pi}{2}$ 63. $\frac{\pi}{2}$ 65. $\frac{4}{5}$ 67. $\frac{7}{25}$ 69. $\frac{\sqrt{34}}{5}$ 71. $\frac{\sqrt{5}}{3}$
- 73. $\frac{1}{x}$ 75. $\sqrt{-x^2-4x-3}$ 77. $\frac{\sqrt{25-x^2}}{x}$
- **79.** $\frac{\sqrt{x^2+7}}{x}$ **81.** $\frac{14}{\sqrt{x^2+196}}$ **83.** $\frac{|x-1|}{\sqrt{x^2-2x+10}}$

- 89.
- **91.** $3\sqrt{2}\sin\left(2t + \frac{\pi}{4}\right)$
 - The two forms are equivalent.
- 93. $\frac{\pi}{2}$ 95. $\frac{\pi}{2}$ **97.** π
- **99.** (a)
- (b) 0.574 rad
- (c) 12.94 ft
- **101.** (a)
 - (b) 2 ft
 - (c) $\beta = 0$; As the camera moves farther from the picture, the angle subtended by the camera approaches zero.
- **103.** (a) $\theta = \arctan \frac{x}{20}$ (b) 0.245 rad, 0.540 rad
- **105.** False. $\arctan 1 = \frac{\pi}{4}$

- 107. 109. $\frac{\pi}{2}$
- 111. $\frac{\pi}{4}$ 113. $\frac{5\pi}{6}$ **115 and 117.** Proofs
- 119. $\frac{\sqrt{2}}{2}$ 121. $\frac{\sqrt{3}}{3}$
- **123.** $\cos \theta = \frac{\sqrt{11}}{6}$

$$\tan \theta = \frac{5\sqrt{11}}{11}$$

$$\csc \theta = \frac{6}{5}$$

125. $\cos \theta = \frac{\sqrt{7}}{4}$

$$\tan \theta = \frac{3\sqrt{7}}{7}$$

$$\csc \theta = \frac{4}{3}$$
$$\sec \theta = \frac{4\sqrt{7}}{7}$$

$$\cot \theta = \frac{7}{3}$$

Section 4.8 (page 332)

- 1. harmonic motion **3.** No
- **5.** $B = 60^{\circ}$ $a \approx 5.77$
- 7. $A = 19^{\circ}$ $a \approx 4.82$
- **9.** $A \approx 26.57^{\circ}$ $B \approx 63.43^{\circ}$

- $c \approx 11.55$
 - $c \approx 14.81$
- $c \approx 13.42$

- **11.** $A \approx 72.76^{\circ}$ $B \approx 17.24^{\circ}$
- **13.** $B = 77^{\circ}45'$ a ≈ 91.34
- a ≈ 51.58
- $b \approx 420.70$
- **15.** 5.12 in.
- **17.** 8.21 ft **19.** 19.70 ft
- 21. 109.63 ft

- 23. 2089.99 ft
- **25.** (a)
 - (b) $h = 50(\tan 47^{\circ} 40' \tan 35^{\circ})$ (c) 19.87 ft
- **27.** (a) $l = \sqrt{h^2 + 28h + 10{,}196}$ (b) $\theta = \arccos \frac{100}{l}$
- - (c) $h \approx 56 \text{ ft}$
- **29.** 70.35°

- **31.** 75.97° **33.** 5098.78 ft **35.** 0.66 mi
- 37. 104.95 nm south, 58.18 nm west
- **39.** (a) N 58° E (b) 68.82 m
- **41.** N 56.31° W
- **43.** 1933.32 ft
- **45.** 3.23 mi
- **47.** (a) 61.82°; 15.64°
- (b) 31.10 ft

- **49.** 78.69° **51.** 35.26° **53.** $y = \sqrt{3}r$
- **55.** $d = 8 \sin \pi t$ **57.** $d = 3 \cos \frac{4\pi t}{3}$
- **59.** (a) 4 (b) 4 (c) 4 (d) $\frac{1}{16}$
- **61.** (a) $\frac{1}{16}$
- (b) 70 (c) 0 (d) $\frac{1}{140}$
 - **63.** $\omega = 528\pi$

(b) $\frac{\pi}{8} \sec$ (c) $\frac{\pi}{32} \sec$

- **65.** (a) 0.5

67.	(a)

l)	Base 1	Base 2	Altitude	Area
	8	$8 + 16 \cos 10^{\circ}$	8 sin 10°	22.06
	8	$8 + 16\cos 20^{\circ}$	8 sin 20°	42.46
	8	$8 + 16\cos 30^{\circ}$	8 sin 30°	59.71
	8	$8 + 16\cos 40^{\circ}$	8 sin 40°	72.65
	8	$8 + 16\cos 50^{\circ}$	8 sin 50°	80.54
	8	$8 + 16 \cos 60^{\circ}$	8 sin 60°	83.14
	8	$8 + 16 \cos 70^{\circ}$	8 sin 70°	80.71

b)	Base 1	Base 2	Altitude	Area
	8	$8 + 16 \cos 56^{\circ}$	8 sin 56°	82.73
	8	$8+16\cos 58^{\circ}$	8 sin 58°	83.04
	8	$8 + 16\cos 59^{\circ}$	8 sin 59°	83.11
	8	$8 + 16 \cos 60^{\circ}$	8 sin 60°	83.14
	8	$8 + 16\cos 61^{\circ}$	8 sin 61°	83.11
	8	$8 + 16 \cos 62^{\circ}$	8 sin 62°	83.04

83.14 ft²

- (c) $A = 64(1 + \cos \theta)(\sin \theta)$

 - 83.14 ft²; They are the same.
- **69.** (a)

- (b) 12 mo; Yes, there are 12 months in a year.
- (c) 2.77; The maximum change in the number of hours of daylight
- **71.** True. In $a \sin \omega t$ or $a \cos \omega t$, a is a real number.
- **73.** False. The ampitude is equal to a.

- 75. Answers will vary.
- **77.** 4x y + 6 = 0
- **79.** 4x + 5y 22 = 0
- **81.** All real numbers *x*
- **83.** All real numbers x

Review Exercises (page 340)

- **1.** 1 rad
- **3.** (a)

7. (a)

- (b) Quadrant III
- (c) $\frac{10\pi}{3}$, $-\frac{2\pi}{3}$
- (b) Quadrant III **5.** (a) (c) $\frac{7\pi}{6}$, $-\frac{17\pi}{6}$

- (b) Quadrant I
- (c) 405° , -315°
- **9.** (a) (b) Quadrant III (c) 225° , -495° . 135°

45°

- **11.** 135.279° **13.** 6.572°
- **15.** 135° 17′24″ **21.** 7.243
- 17. $-85^{\circ}21'36''$ **23.** 128.571°
 - **19.** 1.641
- **25.** −200.535° 27. Complement: $\frac{3\pi}{8}$; supplement: $\frac{7\pi}{8}$
- **29.** Complement: $\frac{\pi}{5}$; supplement: $\frac{7\pi}{10}$
- **31.** Complement: 85°; supplement: 175°
- 33. Complement: none; supplement: 23°
- 35. $\frac{25}{12}$ rad 37. $\frac{46\pi}{3}$ m 39. 6000π cm/min
- **41.** $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ **43.** $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ **45.** $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$ **47.** $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

49. $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\tan \frac{\pi}{4} = 1$ $\csc \frac{\pi}{4} = \sqrt{2}$ 51. $\sin 2\pi = 0$ $\cos 2\pi = 1$ $\csc 2\pi \text{ is undefined.}$ $\sec 2\pi = 1$ $\cot 2\pi \text{ is undefined.}$

 $\sec \frac{\pi}{4} = \sqrt{2}$

- $\cot \frac{\pi}{4} = 1$ $53. \sin\left(-\frac{11\pi}{6}\right) = \frac{1}{2}$ $\cos\left(-\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}$ $\tan\left(-\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{3}$ $\csc\left(-\frac{11\pi}{6}\right) = 2$ $\sec\left(-\frac{11\pi}{6}\right) = 2$ $\sec\left(-\frac{11\pi}{6}\right) = \frac{2\sqrt{3}}{3}$ $\cot\left(-\frac{11\pi}{6}\right) = \frac{2\sqrt{3}}{3}$ $\cot\left(-\frac{\pi}{2}\right) = 0$ $\cot\left(-\frac{\pi}{2}\right) = 0$ $\cot\left(-\frac{\pi}{2}\right) = 0$
- 57. 1 59. $-\frac{1}{2}$ 61. (a) $-\frac{3}{5}$ (b) $-\frac{5}{3}$ 63. (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ 65. -0.8935 67. 0.5 69. $\sin \theta = \frac{\sqrt{65}}{9}$ 71. $\sin \theta = \frac{5\sqrt{61}}{61}$ $\cos \theta = \frac{4}{9}$ $\cos \theta = \frac{6\sqrt{61}}{61}$ $\tan \theta = \frac{\sqrt{65}}{4}$ $\cot \theta = \frac{9\sqrt{65}}{65}$ $\csc \theta = \frac{9\sqrt{65}}{65}$ $\sec \theta = \frac{9}{4}$ $\sec \theta = \frac{9}{4}$ $\sec \theta = \frac{\sqrt{61}}{6}$
- $\cot \theta = \frac{4\sqrt{65}}{65}$ $\cot \theta = \frac{6}{5}$ 73. $\sin \theta = \frac{7}{24}$ $\cos \theta = \frac{\sqrt{527}}{24}$ $\tan \theta = \frac{7\sqrt{527}}{527}$ $\csc \theta = \frac{24}{7}$ $\sec \theta = \frac{24\sqrt{527}}{527}$ $\cot \theta = \frac{\sqrt{527}}{7}$ $\cot \theta = \frac{\sqrt{527}}{7}$ $\cot \theta = 4$
- **77.** (a) 0.1045 (b) 0.1045 **79.** (a) 0.7071 (b) 1.4142
- **81.** Answers will vary. **83.** 235 ft

- 85. $\sin \theta = \frac{4}{5}$ $\cos \theta = \frac{3}{5}$ $\tan \theta = \frac{4}{3}$ $\csc \theta = \frac{5}{4}$ $\sec \theta = \frac{5}{3}$ $\cot \theta = \frac{3}{4}$ 87. $\sin \theta = \frac{2\sqrt{53}}{53}$ $\tan \theta = -\frac{7\sqrt{53}}{53}$ $\csc \theta = -\frac{7}{7}$ $\cot \theta = \frac{3}{4}$ $\cot \theta = -\frac{7}{2}$
- **89.** $\sin \theta = \frac{15\sqrt{481}}{481}$ **91.** $\sin \theta = -\frac{\sqrt{11}}{6}$ $\cos \theta = \frac{16\sqrt{481}}{481}$ $\cos \theta = \frac{5}{6}$ $\tan \theta = \frac{15}{16}$ $\tan \theta = -\frac{\sqrt{11}}{5}$ $\csc \theta = \frac{\sqrt{481}}{15}$ $\csc \theta = -\frac{6\sqrt{11}}{11}$ $\cot \theta = \frac{16}{15}$ $\cot \theta = \frac{16}{15}$
- $\cot \theta = \frac{15}{15}$ $\mathbf{93.} \ \cos \theta = -\frac{\sqrt{55}}{8} \qquad \sec \theta = -\frac{8\sqrt{55}}{55}$ $\tan \theta = -\frac{3\sqrt{55}}{55} \qquad \cot \theta = -\frac{\sqrt{55}}{3}$ $\csc \theta = \frac{8}{3}$
- **95.** $\theta' = 30^{\circ}$ $\theta = 330^{\circ}$ $\theta = \frac{5\pi}{4}$ $\theta' = \frac{\pi}{4}$
- **99.** $\theta' = 84^{\circ}$ $\theta = 264^{\circ}$ $\theta' = 84^{\circ}$ $\theta = -\frac{6\pi}{5}$
- 103. $\sin 240^{\circ} = -\frac{\sqrt{3}}{2}$ $\cos 240^{\circ} = -\frac{1}{2}$ $\tan 240^{\circ} = \sqrt{3}$ $\tan 240^{\circ} = \sqrt{3}$ 105. $\sin(-210^{\circ}) = \frac{1}{2}$ $\cos(-210^{\circ}) = -\frac{\sqrt{3}}{2}$ $\tan(-210^{\circ}) = -\frac{\sqrt{3}}{3}$

107.
$$\sin\left(-\frac{9\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\cos\left(-\frac{9\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

109.
$$\sin 4\pi = 0$$

 $\cos 4\pi = 1$
 $\tan 4\pi = 0$

- **111.** 0.6494
- **113.** 3.2361
- 115.

- 119. Period: 2; amplitude: 5
- **121.** Period: π ; amplitude: 3.4
- 123.

127.

131.

135.
$$a = -2, b = 1, c = \frac{\pi}{4}$$

135.
$$a = -2, b = 1, c = \frac{\pi}{4}$$
 137. $a = -4, b = 2, c = \frac{\pi}{2}$

139.

Maximum sales: June

Minimum sales: December

145.

149.

153.

155.

157.

Answers will vary.

Answers will vary.

Answers will vary.

Answers will vary.

$$-e^{x} \le e^{x} \sin 2x \le e^{x}$$
Touches $y = \pm e^{x}$ at $x = \frac{\pi}{4} + \frac{n\pi}{2}$

Intercepts at $x = \frac{n\pi}{2}$

 $-2x \le 2x \cos x \le 2x$ Touches $y = \pm 2x$ at $x = n\pi$

Intercepts at $x = \frac{\pi}{2} + n\pi$

167. (a)
$$-\frac{\pi}{2}$$
 (b) 0 **169.** (a) $\frac{\pi}{4}$ (b) $\frac{5\pi}{6}$

179.
$$\theta = \arcsin \frac{x}{16}$$
 181. $\frac{1}{\sqrt{2x - x^2}}$ **183.** $\frac{2\sqrt{4 - 2x^2}}{4 - x^2}$

185. 0.071 km **187.** 9.47 mi **189.**
$$d = 3 \cos \frac{2\pi t}{15}$$

- **191.** False. *y* is a function but is not one-to-one on $30^{\circ} \le \theta \le 150^{\circ}$.
- 193. False. Sine or cosine is used to model harmonic motion.
- **195.** (a)

S	10	20	30
θ	0.0224	0.0894	0.1989
S	40	50	60
θ	0.3441	0.5105	0.6786

(b) θ is not a linear function of s.

197. (a)

The polynomial function is a good approximation for the arctangent function when x is close to 0.

(b)
$$\arctan x \approx x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9}$$

The accuracy of the approximation increases as additional terms are added.

Chapter Test (page 345)

1. (a)

(b) Answers will vary. Sample answer:

$$\frac{13\pi}{4}, -\frac{3\pi}{4}$$

(c) 225°

2.
$$44\frac{4}{9} \approx 44.44 \text{ rad/sec}$$

3.
$$\sin \theta = \frac{4\sqrt{17}}{17}$$

$$\cos \theta = -\frac{\sqrt{17}}{17}$$

$$\tan \theta = -4$$

$$\csc\theta = \frac{\sqrt{17}}{4}$$

$$\sec \theta = -\sqrt{17}$$

$$\cot \theta = -\frac{1}{4}$$
5. $\theta' = 75^{\circ}$

5.
$$\theta' = 75$$

6. Quadrant II

4. $\sin \theta = \frac{7\sqrt{53}}{53}$

 $\cos \theta = \frac{2\sqrt{53}}{53}$

 $\csc \theta = \frac{\sqrt{53}}{7}$

 $\sec \theta = \frac{\sqrt{53}}{2}$

 $\cot \theta = \frac{2}{7}$

- 7. 135°, 225°
- **8.** 1.33, 1.81

$$9. \sin \theta = \frac{4}{5}$$

$$\tan \theta = -\frac{4}{3}$$

$$\csc \theta = \frac{5}{4}$$

$$\sec \theta = -\frac{5}{3}$$

$$\cot \theta = -\frac{3}{4}$$

10.

11.

12.

13.

14.

15.

Period: 2

18.
$$a = -2, b = \frac{1}{2}, c = -\frac{\pi}{4}$$

N	ot periodic
19.	$\frac{\sqrt{5}}{2}$

22.

23. 231.34°

Chapter 5

(page 354) Section 5.1

1. (a) iii (b) i (c) ii

3. $\sin u$ **5.** $\cos u$

7.
$$\tan x = \frac{\sqrt{3}}{3}$$

$$9. \cos \theta = \frac{\sqrt{2}}{2}$$

$$\csc x = 2$$

$$\sec x = \frac{2\sqrt{3}}{3}$$

$$\tan \theta = -1$$
$$\csc \theta = -\sqrt{2}$$

$$\cot x = \sqrt{3}$$

$$\cot \theta = -1$$

11.
$$\sin x = -\frac{7}{25}$$

 $\cos x = -\frac{24}{25}$

13.
$$\cos \phi = -\frac{15}{17}$$

 $\tan \phi = -\frac{8}{15}$
 $\csc \phi = \frac{17}{8}$

$$\csc x = -\frac{25}{7}$$
$$\cot x = \frac{24}{7}$$

$$\cot \phi = -\frac{15}{8}$$

15.
$$\sin x = \frac{2}{3}$$

$$\cot \phi = -\frac{15}{8}$$
17. $\sin \theta = -\frac{2\sqrt{5}}{5}$

$$\cos x = -\frac{\sqrt{5}}{3}$$

$$\cos\theta = -\frac{\sqrt{5}}{5}$$

$$\csc x = \frac{3}{2}$$

$$\csc\theta = -\frac{\sqrt{5}}{2}$$

$$\sec x = -\frac{3\sqrt{5}}{5}$$

$$\sec \theta = -\sqrt{5}$$

$$\cot x = -\frac{\sqrt{5}}{2}$$

$$\cot \theta = \frac{1}{2}$$

$$\mathbf{19.} \ \sin \theta = 0 \\
\cos \theta = -1$$

22. a

$$\sec \theta = -1$$

 $\cot \theta$ is undefined.

 $\tan \theta = 0$

23. b

- **24.** f **25.** e **26.** c
- **27.** b **28.** c
- **29.** f

- **30.** a
- **31.** e
- **35.** $\cos^2 \phi$ **37.** sec *x*
- 33. $\cos x$ **41.** cot *x*

21. d

- - **47.** $\cos x + 2$
- **49.** $\sec^4 x$ **51.** $\sin^2 x \cos^2 x$
- **43.** $1 + \sin y$ **45.** $\cos^2 x$

- **53.** $(\csc x 1) \cot^2 x$

32. d

- **55.** $1 + 2 \sin x \cos x$ **57.** $\cot^2 x$ **59.** $2 \csc^2 x$
- **61.** $-\cot x$ **63.** $\sec x$ **65.** $1 + \cos y$ **67.** $\cos x$
- **69.** $3(\sec x + \tan x)$

71. 0.2 0.4 0.8 x 0.6 0.1987 0.3894 0.5646 0.7174 y_1 0.19870.3894 0.5646 0.7174 y_2

х	1.0	1.2	1.4	
y_1	0.8415	0.9320	0.9854	
<i>y</i> ₂	0.8415	0.9320	0.9854	c

73.	х	0.2	0.4	0.6	0.8
	<i>y</i> ₁	1.2230	1.5085	1.8958	2.4650
	<i>y</i> ₂	1.2230	1.5085	1.8958	2.4650

x	1.0	1.2	1.4	12
y_1	3.4082	5.3319	11.6814	
<i>y</i> ₂	3.4082	5.3319	11.6814	•

- **81.** $3 \tan \theta$ **75.** csc *x* **77.** $\tan x$ **79.** $5 \cos \theta$
- **83.** $3\cos\theta$ **85.** $3\sec\theta$ **87.** $3\tan\theta$
- 89. $\sqrt{2}\cos\theta$

99. $\ln |\tan x|$

- **91.** $0 \le \theta \le \pi$ **93.** $0 \le \theta < \frac{\pi}{2}, \frac{3\pi}{2} < \theta < 2\pi$
- **95.** $\ln|\cot \theta|$ **97.** $\ln|(\cos x)(1 + \sin x)|$
- **101.** The identity is not true when $\theta = \frac{7\pi}{6}$.
- **103.** The identity is not true when $\theta = \frac{5\pi}{3}$
- **105.** The identity is not true when $\theta = \frac{7\pi}{4}$
- 107. (a) and (b) Answers will vary.
- 109. (a) and (b) Answers will vary.
- 111. $\mu = \tan \theta$ 113. Answers will vary.
- **115.** False. $\cos 0 \cdot \sec \frac{\pi}{4} \neq 1$ **117.** 1, 1
- **121.** $\cos \theta = \pm \sqrt{1 \sin^2 \theta}$ $\sec \theta = \pm \frac{1}{\sqrt{1 \sin^2 \theta}}$ $\tan \theta = \pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} \qquad \cot \theta = \pm \frac{\sqrt{1 - \sin^2 \theta}}{\sin \theta}$

$$\csc \theta = \frac{1}{\sin \theta}$$

The sign depends on the choice of θ .

125. $\frac{-5x^2 + 8x + 28}{(x^2 - 4)(x + 4)}$

Section 5.2 (page 362)

- 5. $\cos^2 u$ **1.** cot *u* **3.** tan *u*
- 7. $-\sin u$
- 77. (a) Answers will vary.

- 11-19. Answers will vary.
 - 0.2 0.4 0.6 0.8 4.8348 2.1785 1.2064 0.6767 y_1 4.8348 2.1785 1.2064 0.6767 y_2

x	1.0	1.2	1.4	
<i>y</i> ₁	0.3469	0.1409	0.0293	
<i>y</i> ₂	0.3469	0.1409	0.0293	

9. No

23. 0.2 0.4 0.6 0.8 χ 4.8348 2.1785 1.2064 0.6767 y_1 4.8348 2.1785 1.2064 0.6767

x	1.0	1.2	1.4
y_1	0.3469	0.1409	0.0293
y_2	0.3469	0.1409	0.0293

25. х 0.2 0.4 0.6 0.8 5.0335 2.5679 1.7710 1.3940 y_1 5.0335 2.5679 1.7710 1.3940 y_2

х	1.0	1.2	1.4
y_1	1.1884	1.0729	1.0148
<i>y</i> ₂	1.1884	1.0729	1.0148

27.	х	0.2	0.4	0.6	0.8
	y_1	5.1359	2.7880	2.1458	2.0009
	<i>y</i> ₂	5.1359	2.7880	2.1458	2.0009

x 1.0		1.2	1.4	
y_1	2.1995	2.9609	5.9704	
y_2	2.1995	2.9609	5.9704	

- **29.** $\cot(-x) = -\cot(x)$ **31.** $(\tan^2 x)^2$
- 33–57. Answers will vary.

- 63. Answers will vary.
- **65.** 1
- $y = \sin x$ **67.** 2

- 69-75. Answers will vary.

(b)	θ	15°	30°	45°	60°	75°	90°
	S	18.66	8.66	5	2.88	1.34	0

- (c) Maximum: 15° (d) Noon Minimum: 90°
- **79.** True. For instance, $(\sec^2 \theta 1)/\sec^2 \theta = \sin^2 \theta$ was verified two different ways on page 358.
- **81.** False. $\sin^2\left(\frac{\pi}{4}\right) + \cos^2\left(\frac{\pi}{4}\right) \neq 1 + \tan^2\left(\frac{\pi}{4}\right)$
- 83. (a) Answers will vary. (b) No. Division by zero.
- **85.** $a\cos\theta$ **87.** $a \sec \theta$
- **89.** $\sqrt{\tan^2 x} = |\tan x|$; $\frac{3\pi}{4}$ **91.** $|\tan \theta| = \sqrt{\sec^2 \theta 1}$; $\frac{3\pi}{4}$
- 93. Answers will vary.

95.	х	-4	-2	0	2	3
	у	3.0625	3.25	4	7	11

Section 5.3 (page 373)

- 1. general **3.** No **5–9.** Answers will vary.
- **11.** 30°, 150° **13.** 120°, 240° **15.** 45°, 225°
- 17. $\frac{5\pi}{6}, \frac{7\pi}{6}$ 19. $\frac{3\pi}{4}, \frac{7\pi}{4}$ 21. $\frac{5\pi}{6}, \frac{11\pi}{6}$ 23. $\frac{7\pi}{6}, \frac{11\pi}{6}$
- **25.** $\frac{\pi}{6}, \frac{7\pi}{6}$ **27.** $\frac{3\pi}{4}, \frac{7\pi}{4}$ **29.** $\frac{7\pi}{6} + 2n\pi, \frac{11\pi}{6} + 2n\pi$
- 31. $\frac{\pi}{6} + 2n\pi$, $\frac{11\pi}{6} + 2n\pi$ 33. $\frac{\pi}{6} + n\pi$, $\frac{5\pi}{6} + n\pi$
- **35.** $\frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$ **37.** $\frac{2\pi}{3}, \frac{5\pi}{3}$
- **39.** $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ **41.** $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$

- 43. $\frac{\pi}{3}$, π , $\frac{5\pi}{3}$ 45. No solution 47. $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$
- **49.** 3.6652, 4.7124, 5.7596
- **51.** 0.8614, 5.4218
- **53.** 1.5708
- **55.** 0.5236, 2.6180
- **57.** (a)
- (b) $\sin 2x = x^2 2x$
- (c) (0,0), (1.7757, -0.3984)
- **59.** (a)
- (b) $\sin^2 x = e^x 4x$
- (c) (0.3194, 0.0986). (2.2680, 0.5878)

- **61.** $2\pi + 4n\pi$ **63.** $\frac{\pi}{8} + \frac{n\pi}{2}$ **65.** $\frac{2\pi}{3} + n\pi, \frac{5\pi}{6} + n\pi$
- **67.** $\frac{\pi}{2} + 4n\pi, \frac{7\pi}{2} + 4n\pi$ **69.** x = -1, 3 **71.** $x = \pm 2$
- **73.** 1.1071, 4.2487 **75.** 0.8603, 3.4256
- **77.** 0, 2.6779, 3.1416, 5.8195
- **79.** 0.3398, 0.8481, 2.2935, 2.8018
- **81.** $\frac{\pi}{4}$, $\frac{5\pi}{4}$, arctan 5, arctan 5 + π
- **83.** -1.154, 0.534 **85.** 1.110
- **87.** (a)

Maxima: (0.7854, 1), (3.9270, 1)

Minima: (2.3562, -1), (5.4978, -1)

- $\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- **89.** (a)

Maxima: (1.0472, 1.25), (5.2360, 1.25)

Minima: (0, 1), (3.1416, -1), (6.2832, 1)

- (b) $0, \frac{\pi}{2}, \pi, \frac{5\pi}{2}, 2\pi$
- **91.** (a)

Maximum: (0.7854, 1.4142)

Minimum: (3.9270, -1.4142)

- **93.** 1 95. May, June, July
- **97.** (a) All real numbers x except x = 0
 - (b) y-axis symmetry; horizontal asymptote: y = 1
 - (c) Oscillates
 - (d) Infinite number of solutions
 - (e) Yes. 0.6366
- **99.** 0.04 sec, 0.43 sec, 0.83 sec **101.** 36.87°, 53.13°
 - (b) 0.6100 < x < 1.0980
- **103.** (a)
 - $x \approx 0.86, A \approx 1.12$
- **107.** False. $\sin x x = 0$ has one solution, x = 0.
- 109. False. The range of the sine function does not include 3.4.
- **111.** Answers will varv. **113.** 2.164 rad
- **115.** -0.007 rad 117. Answers will vary.

Section 5.4 (page 381)

- 1. $\sin u \cos v \cos u \sin v$ 3. $\frac{\tan u + \tan v}{1 \tan u \tan v}$
- 5. $\cos u \cos v + \sin u \sin v$
- 7. Sample answer: $\sin(45^{\circ} + 60^{\circ})$
- **9.** (a) $-\frac{1}{2}$ (b) $-\frac{3}{2}$ **11.** (a) $\frac{\sqrt{2}-\sqrt{6}}{4}$ (b) $\frac{1+\sqrt{2}}{2}$
- **13.** (a) $\frac{\sqrt{2} + \sqrt{6}}{4}$ (b) $\frac{\sqrt{2} 1}{2}$
- 15. $\sin 105^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4}$ $\cos 105^{\circ} = \frac{\sqrt{2} \sqrt{6}}{4}$ $\cos 105^{\circ} = \frac{\sqrt{2} \sqrt{6}}{4}$ $\cos 195^{\circ} = -\frac{\sqrt{2} + \sqrt{6}}{4}$ $\tan 105^{\circ} = -2 \sqrt{3}$ $\tan 195^{\circ} = 2 \sqrt{3}$ 19. $\sin \frac{11\pi}{12} = \frac{\sqrt{6} \sqrt{2}}{4}$ 21. $\sin \left(-\frac{\pi}{12}\right) = \frac{\sqrt{2} \sqrt{6}}{4}$

- $\cos\frac{11\pi}{12} = -\frac{\sqrt{2} + \sqrt{6}}{4} \qquad \cos\left(-\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$

- $\tan \frac{11\pi}{12} = -2 + \sqrt{3} \qquad \tan \left(-\frac{\pi}{12}\right) = \sqrt{3} 2$ **23.** $\sin 75^\circ = \frac{\sqrt{2} + \sqrt{6}}{4}$ $\cos 75^\circ = \frac{\sqrt{6} \sqrt{2}}{4}$ $\cos (-285^\circ) = \frac{\sqrt{6} \sqrt{2}}{4}$
 - $\tan 75^{\circ} = 2 + \sqrt{3}$
- $\tan(-285^\circ) = \sqrt{3} +$
- $\tan \frac{13\pi}{12} = \frac{13\pi}{4} = \frac{13\pi}{4$

 - $\cos\frac{13\pi}{12} = -\frac{\sqrt{2} + \sqrt{6}}{4} \qquad \cos\left(-\frac{7\pi}{12}\right) = \frac{\sqrt{2} \sqrt{6}}{4}$

 - $\tan \frac{13\pi}{12} = 2 \sqrt{3}$ $\tan \left(-\frac{7\pi}{12}\right) = 2 + \sqrt{3}$

- 37. $\cos \frac{16\pi}{63}$ 39. $\frac{\sqrt{3}}{2}$ 41. $\frac{\sqrt{3}}{2}$ 43. $-\sqrt{3}$

45.	x	0.2	0.4	0.6	0.8
	y_1	0.6621	0.7978	0.9017	0.9696
	y ₂	0.6621	0.7978	0.9017	0.9696

x	1.0	1.2	1.4	2
<i>y</i> ₁	0.9989	0.9883	0.9384	y ₁
<i>y</i> ₂	0.9989	0.9883	0.9384	

A	1.0	1.2	1.7			
y_1	0.9989	0.9883	0.9384		y ₁ = y ₂	
<i>y</i> ₂	0.9989	0.9883	0.9384	0		1.5
					0	
	<i>y</i> ₁	y ₁ 0.9989	y ₁ 0.9989 0.9883	y ₁ 0.9989 0.9883 0.9384	y ₁ 0.9989 0.9883 0.9384	y ₁ 0.9989 0.9883 0.9384 y ₂ 0.9989 0.9883 0.9384

	c	1.0	1.2	1.4	
у	, ₁	0.2919	0.1313	0.0289	$y_1 = y_2$
У	, ₂	0.2919	0.1313	0.0289	1.9

49.
$$-\frac{56}{65}$$
 51. $-\frac{56}{33}$ **53.** $\frac{13}{85}$ **55.** $\frac{36}{85}$ **57.** 1 **59.** $\frac{2x^2 - \sqrt{1 - x^2}}{\sqrt{4x^2 + 1}}$ **61.** 0 **63.** 0 **65.** 1 **67.** -1 **69.** $\frac{33}{65}$ **71.** $\frac{24}{25}$ **73-79.** Answers will vary.

59.
$$\frac{2x^2 - \sqrt{1 - x^2}}{\sqrt{4x^2 + 1}}$$
 61. 0 **63.** 0 **65.**

67.
$$-1$$
 69. $\frac{33}{65}$ **71.** $\frac{24}{25}$ **73–79.** Answers will vary

81.
$$\frac{\pi}{2}$$
 83. $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$ **85.** 0.7854, 5.4978

87.
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$ **89.** Answers will vary.

91. False.
$$cos(u \pm v) = cos u cos v \mp sin u sin v$$

93 and 95. Answers will vary.

97. (a)
$$\sqrt{2} \sin \left(\theta + \frac{\pi}{4}\right)$$
 (b) $\sqrt{2} \cos \left(\theta - \frac{\pi}{4}\right)$

99. (a)
$$13\sin(3\theta + 0.3948)$$
 (b) $13\cos(3\theta - 1.1760)$

101. $2\cos\theta$ **103.** Answers will vary.

105. u + v = w. Answers will vary.

107.
$$\cos(u + v + w) =$$

 $\cos u \cos v \cos w - \sin u \sin v \cos w$

 $-\sin u \cos v \sin w - \cos u \sin v \sin w$

109. (0, 19), (38, 0) **111.** (0, 4), (2, 0), (7, 0)

Section 5.5 (page 390)

1.
$$\frac{1+\cos 2u}{2}$$
 3. $-2\sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$

5.
$$\tan \frac{u}{2}$$
 7. (a) ii (b) i (c) iii

9. (a)
$$\frac{3}{5}$$
 (b) $\frac{4}{5}$ (c) $\frac{3}{4}$ (d) $\frac{24}{25}$ (e) $\frac{7}{25}$ (f) $\frac{25}{7}$ (g) $\frac{25}{24}$ (h) $\frac{7}{24}$

11. 0, 1.0472, 3.1416, 5.2360; 0,
$$\frac{\pi}{3}$$
, π , $\frac{5\pi}{3}$

13. 0.2618, 1.3090, 3.4034, 4.4506;
$$\frac{\pi}{12}$$
, $\frac{5\pi}{12}$, $\frac{13\pi}{12}$, $\frac{17\pi}{12}$

15. 0, 2.0944, 4.1888; 0,
$$\frac{2\pi}{3}$$
, $\frac{4\pi}{3}$

17. 0, 1.5708, 3.1416, 4.7124; 0,
$$\frac{\pi}{2}$$
, π , $\frac{3\pi}{2}$

19. 1.5708, 3.6652, 5.7596;
$$\frac{\pi}{2}$$
, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$

21.
$$\sin 2u = \frac{24}{25}$$
 23. $\sin 2u = \frac{4}{5}$ $\cos 2u = \frac{7}{25}$ $\cos 2u = \frac{3}{5}$ $\tan 2u = \frac{24}{7}$ $\tan 2u = \frac{4}{3}$

25.
$$\sin 2u = -\frac{\sqrt{3}}{2}$$

$$\cos 2u = -\frac{1}{2}$$

$$\tan 2u = \sqrt{3}$$

27.
$$4 \sin 2x$$
 29. $4 \cos 2x$ **31.** $\frac{1}{8}(3 + 4 \cos 2x + \cos 4x)$

33.
$$\frac{1}{8}(1 - \cos 4x)$$
 35. $\frac{1}{32}(2 + \cos 2x - 2\cos 4x - \cos 6x)$ 37. $\frac{1}{2}(1 - \cos 4x)$ 39. $\frac{1}{2}(1 + \cos x)$

37.
$$\frac{1}{2}(1 - \cos 4x)$$
 39. $\frac{1}{2}(1 + \cos x)$

41.
$$\frac{1-\cos 4x}{1+\cos 4x}$$
 43. $\frac{1}{8}(3-4\cos x+\cos 2x)$

45. (a)
$$\frac{4\sqrt{17}}{17}$$
 (b) $\frac{\sqrt{17}}{17}$ (c) $\frac{1}{4}$ (d) $\frac{\sqrt{17}}{4}$

(e)
$$\sqrt{17}$$
 (f) 4 (g) $\frac{8}{17}$ (h) $\frac{2\sqrt{17}}{17}$
47. $\sin 75^\circ = \frac{\sqrt{2 + \sqrt{3}}}{2}$ **49.** $\sin 67^\circ 30' = \frac{\sqrt{2 + \sqrt{2}}}{2}$

47.
$$\sin 75^{\circ} = \frac{\sqrt{2 + \sqrt{3}}}{2}$$

$$\cos 75^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{2}$$

$$\tan 75^{\circ} = \sqrt{3} + 2$$
49. $\sin 67^{\circ} 30' = \frac{\sqrt{2 + \sqrt{2}}}{2}$

$$\cos 67^{\circ} 30' = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

$$\tan 67^{\circ} 30' = 1 + \sqrt{2}$$

$$\tan 75^{\circ} = \sqrt{3} + 2$$

$$\tan 67^{\circ} 30' = 1 + \sqrt{2}$$

$$51. \sin \frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

$$\cos \frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

$$\tan \frac{3\pi}{8} = \sqrt{2 - \sqrt{2}}$$

$$\tan \frac{3\pi}{8} = \sqrt{2} + 1$$

55.
$$\sin \frac{u}{2} = \frac{5\sqrt{26}}{26}$$

$$\cos \frac{u}{2} = \frac{\sqrt{26}}{26}$$

$$\tan \frac{u}{2} = 5$$
57. $\sin \frac{u}{2} = \sqrt{\frac{89 - 5\sqrt{89}}{178}}$

$$\cos \frac{u}{2} = -\sqrt{\frac{89 + 5\sqrt{89}}{178}}$$

$$\tan \frac{u}{2} = 5$$

$$\tan \frac{u}{2} = \frac{5 - \sqrt{89}}{8}$$

59.
$$\sin \frac{u}{2} = \frac{3\sqrt{10}}{10}$$

$$\cos \frac{u}{2} = -\frac{\sqrt{10}}{10}$$

$$\tan \frac{u}{2} = -3$$

61.
$$|\sin 3x|$$
 63. $-|\tan 4x|$ **65.** 7

67.
$$\frac{\pi}{3}$$
, π , $\frac{5\pi}{3}$ **69.** $3\left(\sin\frac{2\pi}{3} + \sin 0\right)$

71.
$$\frac{1}{2}(\sin 8\theta + \sin 2\theta)$$
 73. $5(\cos 60^{\circ} + \cos 90^{\circ})$ 75. $\frac{1}{2}(\cos 2y - \cos 2x)$ 77. $2\cos 3\theta \sin 2\theta$

75.
$$\frac{1}{2}(\cos 2y - \cos 2x)$$
 77. $2\cos 3\theta \sin 2\theta$

79. $2\cos 4x\cos 2x$ **81.** $2\cos \alpha\sin \beta$

83.
$$-2 \sin \theta \sin \frac{\pi}{2}$$
 85. $\frac{\sqrt{2}}{2}$ **87.** $\frac{\sqrt{6}}{2}$

89.
$$0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}$$
 91. $\frac{\pi}{6}, \frac{5\pi}{6}$ **93.** $\frac{25}{169}$ **95.** $\frac{4}{13}$ **97–109.** Answers will vary.

93.
$$\frac{25}{169}$$
 95. $\frac{4}{13}$ **97–109.** Answers will vary

111.
$$\frac{1-\cos 2x}{2}$$

113.
$$\frac{3+4\cos 2x+\cos 4x}{8}$$

115.
$$2x\sqrt{1-x^2}$$
 117. $1-2x^2$

117.
$$1 - 2x^2$$

119.
$$\frac{1-x^2}{1+x^2}$$

121. (a)
$$x = 0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}, 2\pi$$

(b)
$$x = \arccos \frac{1 \pm \sqrt{33}}{8}, 2\pi - \arccos \frac{1 \pm \sqrt{33}}{8}$$

123. 23.85° **125.**
$$x = 2r(1 - \cos \theta)$$

127. False.
$$\sin \frac{x}{2} = -\sqrt{\frac{1 - \cos x}{2}}$$
 for $\pi \le \frac{x}{2} \le 2\pi$.

(c) Answers will vary.

131. (a)
$$(-1,4)$$
 (b) $2\sqrt{10}$ (c) $(2,3)$

- 135. (a) Complement: 35°; supplement: 125°
 - (b) Complement: none; supplement: 18°
- 137. (a) Complement: $\frac{4\pi}{9}$; supplement: $\frac{17\pi}{18}$
 - (b) Complement: $\frac{\pi}{20}$; supplement: $\frac{11\pi}{20}$

139. 0.4667 rad

Review Exercises (page 396)

- **1.** sec *x*
- 3. $\cos x$
- 5. $|\sin x|$
- **7.** sec *x*
- **9.** sec *x*

11.
$$\tan x = \frac{4}{3}$$

 $\csc x = \frac{5}{4}$
 $\sec x = \frac{5}{3}$
 $\cot x = \frac{3}{4}$

13. $\cos x = \frac{\sqrt{2}}{2}$
 $\tan x = -1$
 $\csc x = -\sqrt{2}$
 $\sec x = \sqrt{2}$
 $\cot x = -1$

- **15.** $\cos^2 x$ **17.** $\csc \theta$ **19.** 1
- 25–37. Answers will vary.

39.
$$\frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$$
 41. $\frac{\pi}{3} + 2n\pi, \frac{2\pi}{3} + 2n\pi$

43.
$$\frac{\pi}{6} + n\pi$$
 45. $\frac{\pi}{3} + n\pi, \frac{2\pi}{3} + n\pi$

47.
$$\frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$$
 49. $n\pi$ **51.** $0, \frac{2\pi}{3}, \frac{4\pi}{3}$

53.
$$0, \frac{\pi}{2}, \pi$$
 55. $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}$

57.
$$0, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$$

59.
$$\frac{\pi}{12} + n\pi, \frac{5\pi}{12} + n\pi$$
 61. $\frac{\pi}{12} + \frac{n\pi}{6}$ **63.** 0, π

65. $\arctan(-4) + \pi$, $\arctan 3$, $\arctan(-4) + 2\pi$, $\arctan 3 + \pi$

67.
$$\sin 285^\circ = -\frac{\sqrt{2} + \sqrt{6}}{4}$$
 69. $\sin \frac{31\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$ $\cos 285^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$ $\cos \frac{31\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}$

$$\tan 285^\circ = -2 - \sqrt{3} \qquad \tan \frac{31\pi}{12} = -2 - \sqrt{3}$$

- **71.** $\sin 180^\circ$ **73.** $\tan 75^\circ$ **75.** $-\frac{4}{5}$ **77.** $\frac{44}{117}$
- **79.** $-\frac{3}{5}$ **81–85.** Answers will vary. **87.** $\frac{\pi}{4}, \frac{7\pi}{4}$

89.
$$\sin 2u = \frac{20\sqrt{6}}{49}$$
 91. $\sin 2u = -\frac{36}{85}$

$$\cos 2u = -\frac{1}{49} \qquad \qquad \cos 2u = \frac{77}{85}$$

$$\tan 2u = -20\sqrt{6}$$
 $\tan 2u = -\frac{36}{77}$

- **93 and 95.** Answers will vary. **97.** 15°, 75°
- **99.** $\frac{1}{32}(10 15\cos 2x + 6\cos 4x \cos 6x)$

101.
$$\frac{1}{8}(3 + 4\cos 4x + \cos 8x)$$
 103. $\frac{1 - \cos 8x}{1 + \cos 8x}$

101.
$$\frac{1}{8}(3 + 4\cos 4x + \cos 8x)$$
 103. $\frac{1 - \cos 8x}{1 + \cos 8x}$
105. $\sin 15^\circ = \frac{\sqrt{2 - \sqrt{3}}}{2}$ 107. $\sin \frac{7\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}$
 $\cos 15^\circ = \frac{\sqrt{2 + \sqrt{3}}}{2}$ $\cos \frac{7\pi}{8} = -\frac{\sqrt{2 + \sqrt{2}}}{2}$
 $\tan 15^\circ = 2 - \sqrt{3}$ $\tan \frac{7\pi}{8} = 1 - \sqrt{2}$

109.
$$\sin \frac{u}{2} = \frac{\sqrt{10}}{10}$$

$$\cos \frac{u}{2} = \frac{3\sqrt{10}}{10}$$

$$\tan \frac{u}{2} = \frac{1}{3}$$
111. $\sin \frac{u}{2} = \frac{3\sqrt{14}}{14}$

$$\cos \frac{u}{2} = \frac{\sqrt{70}}{14}$$

$$\tan \frac{u}{2} = \frac{3\sqrt{5}}{5}$$

113.
$$-|\cos 4x|$$
 115. $\tan 5x$ **117.** $V = \sin \frac{\theta}{2} \cos \frac{\theta}{2} \, \text{m}^3$

- **119.** $3\left(\sin\frac{\pi}{2} + \sin 0\right)$ **121.** $\frac{1}{2}(\cos \alpha \cos 9\alpha)$
- **123.** $2\cos\left(\frac{9\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$ **125.** $2\cos x \sin\frac{\pi}{4}$
- **127.** $y = \frac{1}{2} \sqrt[3]{10} \sin(8t \arctan \frac{1}{3})$
- **129.** $\frac{\sqrt{10}}{2}$ ft **131.** False. $\cos \frac{\theta}{2} > 0$
- **133.** True. Answers will vary. **135.** Answers will vary.
- **137.** No. $\sin \theta = \frac{1}{2}$ has an infinite number of solutions but is not an identity.
- **139.** $y_3 = y_2 + 1$

Chapter Test (page 399)

- **1.** $\sin \theta = \frac{-3\sqrt{13}}{13}$ **2.** 1 **3.** 1 $\cos\theta = \frac{-2\sqrt{13}}{12}$ $\csc \theta = \frac{-\sqrt{13}}{3}$ $\sec \theta = \frac{-\sqrt{13}}{2}$ $\cot \theta = \frac{2}{2}$
- **4.** $\csc \theta \sec \theta$ **5.** $0, \frac{\pi}{2} < \theta \le \pi, \frac{3\pi}{2} < \theta < 2\pi$
- **7–12.** Answers will vary. **13.** $\sqrt{3} + 2$
- **14.** $\frac{1}{16} \left(\frac{10 15\cos 2x + 6\cos 4x \cos 6x}{1 + \cos 2x} \right)$
- **15.** $\tan 2\theta$ **16.** $2(\sin 6\theta + \sin 2\theta)$
- 17. $-2\cos\frac{7\theta}{2}\sin\frac{\theta}{2}$ 18. $0, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}$
- **19.** $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$ **20.** $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$
- **21.** $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$ **22.** -2.938, -2.663, 1.170

24. 76.52°

23. $\sin 2u = \frac{4}{5}$ $\cos 2u = -\frac{3}{5}$ $\tan 2u = -\frac{4}{3}$

Chapter 6

Section 6.1 (page 410)

- **3.** $\frac{1}{2}bc \sin A$; $\frac{1}{2}ab \sin C$; $\frac{1}{2}ac \sin B$ 1. oblique
- 5. AAS (or ASA) and SSA
- 7. $C = 95^{\circ}, b \approx 24.59 \text{ in.}, c \approx 28.29 \text{ in.}$
- **9.** $A = 40^{\circ}$, $a \approx 15.69$ cm, $b \approx 6.32$ cm
- **11.** $C = 74^{\circ} 15'$, $a \approx 6.41$ km, $c \approx 6.26$ km
- **13.** $B \approx 21.55^{\circ}, C \approx 122.45^{\circ}, c \approx 11.49$
- **15.** $B = 60.9^{\circ}, b \approx 19.32, c \approx 6.36$
- **17.** $B \approx 18^{\circ} \, 13', C \approx 51^{\circ} \, 32', c \approx 40.05$
- **19.** $B \approx 48.74^{\circ}$, $C \approx 21.26^{\circ}$, $c \approx 48.23$

- **21.** $A = 48^{\circ}, b \approx 2.29, c \approx 4.73$
- **23.** $A = 35^{\circ}, a \approx 36.50, b \approx 11.05$
- **25.** $A \approx 44^{\circ} \, 14', B \approx 50^{\circ} \, 26', b \approx 38.67$ 27. No solution
- 29. Two solutions

$$B \approx 72.21^{\circ}, C \approx 49.79^{\circ}, c \approx 10.27$$

$$B \approx 107.79^{\circ}, C \approx 14.21^{\circ}, c \approx 3.30$$

- **31.** Given: $A = 36^{\circ}$, a = 5
 - (a) One solution if $b \le 5$ or $b = \frac{5}{\sin 36^{\circ}}$
 - (b) Two solutions if $5 < b < \frac{5}{\sin 36^{\circ}}$
 - (c) No solution if $b > \frac{5}{\sin 36^{\circ}}$
- **33.** Given: $A = 10^{\circ}$, a = 10.8
 - (a) One solution if $b \le 10.8$ or $b = \frac{10.8}{\sin 10^{\circ}}$
 - (b) Two solutions if $10.8 < b < \frac{10.8}{\sin 10^{\circ}}$
 - (c) No solution if $b > \frac{10.8}{\sin 10^{\circ}}$
- **35.** 28.19 square units **37.** 1782.32 square units
- **39.** 2888.57 square units

- **43.** 240.03°
- 45. 15.53 km from Colt Station; 42.43 km from Pine Knob
- **47.** $\theta \approx 16.08^{\circ}$
- **49.** (a) $\alpha \approx 5.36^{\circ}$

(b)
$$\beta = \arcsin\left(\frac{d\sin\theta}{58.36}\right)$$
 (c) $d = \sin(84.64 - \theta)\left[\frac{58.36}{\sin\theta}\right]$

•							
	θ	10°	20°	30°	40°	50°	60°
	d	324.08	154.19	95.19	63.80	43.30	28.10

- 51. False. The triangle cannot be solved if only three angles are known.
- 53. False. AAS and ASA cases have unique solutions.
- **55.** (a) Answers will vary; Sample answer: b = 4
 - (b) Answers will vary; Sample answer: b = 7
 - (c) Answers will vary; Sample answer: b = 10
- **57.** $\tan \theta = -\frac{12}{5}$; $\csc \theta = -\frac{13}{12}$; $\sec \theta = \frac{13}{5}$; $\cot \theta = -\frac{5}{12}$
- **59.** $3(\sin 11\theta + \sin 5\theta)$ **61.** $\frac{3}{2}(\sin \frac{11\pi}{6} + \sin \frac{3\pi}{2})$

Section 6.2 (page 417)

- 1. $c^2 = a^2 + b^2 2ab \cos C$ **3.** No
- 7. $A \approx 40.80^{\circ}, B \approx 60.61^{\circ}, C \approx 78.59^{\circ}$
- **9.** $A \approx 49.51^{\circ}, B \approx 55.40^{\circ}, C \approx 75.09^{\circ}$
- **11.** $A \approx 31.40^{\circ}, C \approx 128.60^{\circ}, b \approx 6.56 \text{ mm}$
- **13.** $A \approx 26.38^{\circ}, B \approx 36.34^{\circ}, C \approx 117.28^{\circ}$
- **15.** $B \approx 29.44^{\circ}, C \approx 100.56^{\circ}, a \approx 23.38$

- **19.** $A \approx 103.52^{\circ}, B \approx 38.24^{\circ}, C \approx 38.24^{\circ}$
- **21.** $A \approx 154^{\circ} 14', C \approx 17^{\circ} 31', b \approx 8.58$
- **23.** $A \approx 37^{\circ} 6' 7'', C \approx 67^{\circ} 33' 53'', b \approx 9.94$

	a	b	c	d	θ	ϕ
25.	4	8	11.64	4.96	30°	150°

- **27.** 10 20 13.86 68.20° 111.80° 14
- 25 **29.** 15 16.96 20 77.22° 102.78°
- **31.** Law of Cosines; $A \approx 102.44^{\circ}$, $C \approx 37.56^{\circ}$, $b \approx 5.26$
- 33. Law of Sines; no solution
- **35.** Law of Sines; $C = 103^{\circ}$, $a \approx 0.82$, $b \approx 0.71$ **37.** 104.57
- **39.** 19.81 **41.** 0.27 ft² **43.** 15.52 **45.** 35.19
- **47.** 483.40 m **49.** (a) N 59.7° E (b) N 72.8° E
- **51.** 72.28° **53.** $PQ \approx 9.43, QS = 5, RS \approx 12.81$
- **55.** 18,617.66 ft²
- **57.** (a) $49 = 2.25 + x^2 3x \cos \theta$
 - (b) $x = \frac{1}{2} (3 \cos \theta + \sqrt{9 \cos^2 \theta + 187})$

- (d) 6 in.
- **59.** True **61.** Proof
- 63. To solve the triangle using the Law of Cosines, substitute values into $a^2 = b^2 + c^2 - 2bc \cos A$.

Simplify the equation so that you have a quadratic equation in terms of c. Then, find the two values of c, and find the two triangles that model the given information.

Using the Law of Sines will give the same result as using the Law of Cosines.

Sample answer: An advantage of using the Law of Cosines is that it is easier to choose the correct value to avoid the ambiguous case, but its disadvantage is that there are more computations. The opposite is true for the Law of Sines.

- 65. Proof
- 67. $-\frac{\pi}{2}$ 69. $\frac{\pi}{3}$

Section 6.3 (page 429)

- 1. directed line segment 3. magnitude
- 5. standard position 7. resultant
- **9.** magnitude and direction 11. Answers will vary.
- **13.** $\langle 1, 3 \rangle$, $\|\mathbf{v}\| = \sqrt{10}$
- **15.** $\langle -3, 2 \rangle$, $\|\mathbf{v}\| = \sqrt{13}$
- **17.** $\langle 0, 5 \rangle$, $\|\mathbf{v}\| = 5$
- **19.** $\langle 8, 6 \rangle, \|\mathbf{v}\| = 10$
- $\left\langle \frac{3}{5}, -\frac{3}{5} \right\rangle, \|\mathbf{v}\| = \frac{3\sqrt{2}}{5}$
- **23.** $\left\langle \frac{7}{6}, \frac{9}{5} \right\rangle$, $\|\mathbf{v}\|$

29.

31.

A107

35.

37. (a) $\langle 11, 3 \rangle$

(b) $\langle -3, 1 \rangle$

(c) $\langle -13, 1 \rangle$

(d) (23, 9)

CHAPTER 6

39. (a) $\langle -4, -4 \rangle$

(c) $\langle -18, -28 \rangle$

(d) $\langle -22, -28 \rangle$

(b)
$$-i + 4j$$

(c)
$$-4i + 11j$$

(d)
$$6i + j$$

43.
$$u + v$$
 45. $w - v$

13.
$$\mathbf{u} + \mathbf{v}$$
 45. $\mathbf{w} - \mathbf{v}$ **47.** $\langle 1, 0 \rangle$ **19.** $\langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$ **51.** $\langle -\frac{24}{25}, -\frac{7}{25} \rangle$ **53.** $\frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$

53.
$$\frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$$

55. j 57.
$$\frac{40\sqrt{61}}{61}$$
i + $\frac{48\sqrt{61}}{61}$ j 59. $\frac{21}{5}$ i + $\frac{28}{5}$ j

59.
$$\frac{21}{5}$$
i + $\frac{28}{5}$ **j**

61.
$$-8i$$
 63. $7i + 4j$

67.
$$\mathbf{v} = \langle 3, -\frac{3}{2} \rangle$$

65.
$$3\mathbf{i} + 8\mathbf{j}$$
 69. $\mathbf{v} = \langle 4, 3 \rangle$

71.
$$\mathbf{v} = \langle \frac{7}{2}, -\frac{1}{2} \rangle$$

73.
$$\|\mathbf{v}\| = 5, \ \theta = 30^{\circ}$$

77.
$$\|\mathbf{v}\| = \sqrt{29}, \ \theta \approx 111.80^{\circ}$$

79.
$$\mathbf{v} = \langle 3, 0 \rangle$$

83.
$$\mathbf{v} = \left\langle -\frac{3\sqrt{6}}{2}, \frac{3\sqrt{2}}{2} \right\rangle$$

87.
$$\left\langle \frac{5}{2}, \frac{10 + 5\sqrt{3}}{2} \right\rangle$$

89.
$$\langle 10\sqrt{2} - 25\sqrt{3}, 25 + 10\sqrt{2} \rangle$$

$$\|\mathbf{v}\| \approx 647.85, \ \theta \approx 44.11^{\circ}$$

97. Horizontal component: about 53.62 ft/sec Vertical component: about 45.00 ft/sec

99.
$$T_{AC} \approx 3611.1$$
 lb, $T_{BC} \approx 2169.5$ lb

99. $T_{AC} \approx 3611.1$ lb, $T_{BC} \approx 2169.5$ lb **101.** (a) T = 3000 sec θ ; Domain: $0^{\circ} \le \theta < 90^{\circ}$

		,		
(b)	θ	10°	20°	30°
	Т	3046.28	3192.53	3464.10
	θ	40°	50°	60°

θ	40°	50°	60°
T	3916.22	4667.17	6000

(d) The component in the direction of the motion of the barge decreases.

103. (a) 12.10°, 357.85 N

(b)
$$M = 10\sqrt{660\cos\theta + 709}$$

$$\alpha = \arctan \frac{15 \sin \theta}{15 \cos \theta + 22}$$

(c)	θ	0°	30°	60°	90°
	М	370°	357.85°	322.34°	266.27°
	α	0°	12.10°	23.77°	34.29°

θ	120°	150°	180°
M	194.68°	117.23°	70°
α	41.86°	39.78°	0°

- (e) For increasing θ , the two vectors tend to work against each other, resulting in a decrease in the magnitude of the resultant.
- **105.** N 26.67° E, 130.35 km/h
 - **107.** True by definition
- **109.** True. a = b = 0
- 111. True. The magnitudes are equal and the directions are opposite.
- 113. True. a b = c and u = -b
- 115. True. a = -d, w = -d
- 117. False. $\mathbf{u} \mathbf{v} = -(\mathbf{b} + \mathbf{t})$
- **119.** (a) 0°
 - (b) 180°
 - (c) No. The magnitude is equal to the sum when the angle between the vectors is 0° .
- **121.** Proof **123.** Answers will vary.
- **125.** $\langle 1, 3 \rangle$ or $\langle -1, -3 \rangle$ **127.** $12x^3y^7$, $x \neq 0$, $y \neq 0$
- **129.** $48xy^2$, $x \neq 0$ **131.** 7.14×10^5
- 133. $\frac{\pi}{2} + n\pi$, $\pi + 2n\pi$ 135. $\frac{\pi}{3} + 2n\pi$, $\frac{5\pi}{3} + 2n\pi$

Section 6.4 (page 440)

- 1. Yes 3. scalar
- $5. \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right) \mathbf{v}$
- **11.** 8, scalar **13.** 4, scalar **15.** $\langle -114, -114 \rangle$, vector
- **17.** 13
- **19.** $5\sqrt{41}$ **21.** 4 **23.** 90° **25.** 70.56°
- **29.** $\frac{5\pi}{12}$ **27.** 90°

 $\theta \approx 4.40^{\circ}$

- $\theta \approx 13.57^{\circ}$
- **35.** 26.57°, 63.43°, 90° **37.** 41.63°, 53.13°, 85.24°
- **39.** $-162\sqrt{2}$
- **41.** -20 43. Orthogonal
- **45.** Not orthogonal 47. Neither
- 49. Parallel
- **51.** 3 **53.** 10 **55.** 0
- **57.** $\frac{16}{17}\langle 4, 1 \rangle$, $\mathbf{u} = \left\langle \frac{64}{17}, \frac{16}{17} \right\rangle + \left\langle -\frac{13}{17}, \frac{52}{17} \right\rangle$
- **59.** $\frac{45}{229}\langle 2, 15 \rangle$, $\mathbf{u} = \langle \frac{90}{229}, \frac{675}{229} \rangle + \langle -\frac{90}{229}, \frac{12}{229} \rangle$
- 61. u
- 67. $-\frac{3}{4}\mathbf{i} \frac{1}{2}\mathbf{j}, \frac{3}{4}\mathbf{i} + \frac{1}{2}\mathbf{j}$ **65.** (3, -1), (-3, 1)
- 71. (a) 35,727.50; It is the total dollar amount paid to the employees.
 - (b) Multiply v by 1.02.

73. (a) Force = $30,000 \sin d$

()										
(b)	d	0°	1°		2°		3°		4°	
	Force	0	523.	57	1046.9	98	1570.0	80	2092.6	59
										ı
	d	-	5°		6°		7°		8°	
	Force	261	4.67	31	35.85	36	556.08	41	75.19	
	1	()°		10°					
	d				10					
	Force	469	3.03	52	09.45					

- (c) 29,885.84 lb
- **75.** (a) Work = $125\sqrt{3}d$

(b)	d	25	50	100	
	Work	5412.66	10,825.32	21,650.64	

- **77.** 10,282,651.78 N-m
- **79.** True. The zero vector is orthogonal to every vector.
- **81.** Orthogonal. $\mathbf{u} \cdot \mathbf{v} = 0$
- 83. 1. The angle between **u** and itself is 0. Then, using the equation

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{u}}{\|\mathbf{u}\| \|\mathbf{u}\|}$$

and substituting 0 for θ , you see that $\cos 0 = 1$.

- **85.** (a) **u** and **v** are parallel. (b) **u** and **v** are orthogonal.
- 87 and 89. Proofs
- **91.** *g* is a horizontal shift of *f* four units to the right.
- **93.** g is a vertical shift of f six units upward.
- **95.** 15 + 12*i* **97.** 10 **99.** $\frac{47}{26} - \frac{27}{26}i$

(page 452) Section 6.5

- 1. absolute value 3. *n*th root
- **5.** The distance from the origin to the point (a, b)

11.

 $4\sqrt{2}$

15.
$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 1

17.
$$4(\cos \pi + i \sin \pi)$$

19.
$$3\sqrt{2}\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$

21.
$$2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

23.

$$8\left(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2}\right)$$

$$5\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

27.

31.

35.

 $3(\cos 0 + i \sin 0)$

39.

$$\sqrt{5}(\cos 4.249 + i \sin 4.249)$$

43.

 $\sqrt{29}(\cos 0.381 + i \sin 0.381)$

51.

$$3 + 3\sqrt{3}$$

55.

$$2.8408 + 0.9643i$$

The absolute value of each is 1.

67.
$$6(\cos \pi + i \sin \pi)$$

69.
$$\frac{10}{9}(\cos 200^{\circ} + i \sin 200^{\circ})$$

71.
$$\frac{11}{50}(\cos 130^\circ + i \sin 130^\circ)$$
 73. $\cos 30^\circ + i \sin 30^\circ$

73.
$$\cos 30^{\circ} + i \sin 30^{\circ}$$

75
$$\frac{1}{2}(\cos 80^{\circ} + i \sin 80^{\circ})$$

75.
$$\frac{1}{2}(\cos 80^{\circ} + i \sin 80^{\circ})$$
 77. $6(\cos 312^{\circ} + i \sin 312^{\circ})$

79. (a)
$$2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
 (b) and (c) $4\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

81. (a)
$$2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
 (b) and (c) $4\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$

83. (a)
$$2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$
 (b) and (c) $2 - 2i$ $\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

85. (a)
$$2\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$
 (b) and (c) $-2 - 2\sqrt{3}i$ $2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$

87. (a)
$$2(\cos 0 + i \sin 0)$$
 (b) and (c) $2 - 2i$ $\sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4}\right)$

89. (a)
$$5(\cos 0.93 + i \sin 0.93)$$

 $2\left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}\right)$
(b) and (c) $\left(\frac{3}{4} - \sqrt{3}\right) + \left(\frac{3\sqrt{3}}{4} + 1\right)i$

91. (a)
$$5(\cos 0 + i \sin 0)$$
 (b) and (c) $\frac{5}{4} - \frac{5}{4}i$ $2\sqrt{2}\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right)$

93. (a)
$$4\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 (b) and (c) $2 - 2i$ $\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$

107.
$$-2 + 2i$$
 109. $8i$ **111.** $-32\sqrt{3} + 32i$

113.
$$\frac{125}{2} + \frac{125\sqrt{3}}{2}i$$
 115. i **117.** $4.5386 - 15.3428i$

119. 256 **121.**
$$-597 - 122i$$
 123. $2048 + 2048\sqrt{3}i$

125.
$$\frac{9\sqrt{2}}{2} + \frac{9\sqrt{2}}{2}i$$
 127. Answers will vary.

129.
$$1 + i, -1 - i$$
 131. $-\frac{\sqrt{6}}{2} + \frac{\sqrt{6}}{2}i, \frac{\sqrt{6}}{2} - \frac{\sqrt{6}}{2}i$

133.
$$-1.5538 + 0.6436i$$
, $1.5538 - 0.6436i$

135.
$$\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i, -\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i$$

137. (a)
$$\sqrt{5}(\cos 60^{\circ} + i \sin 60^{\circ})$$

 $\sqrt{5}(\cos 240^{\circ} + i \sin 240^{\circ})$

(c)
$$\frac{\sqrt{5}}{2} + \frac{\sqrt{15}}{2}i, -\frac{\sqrt{5}}{2} - \frac{\sqrt{15}}{2}i$$

139. (a)
$$\sqrt[4]{8} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

 $\sqrt[4]{8} \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$
 $\sqrt[4]{8} \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right)$
 $\sqrt[4]{8} \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right)$

(c) 1, 0.3090 + 0.9511i, -0.8090 + 0.5878i, -0.8090 - 0.5878i, 0.3090 - 0.9511i

151. (a)
$$2\sqrt{2}\left(\cos\frac{3\pi}{20} + i\sin\frac{3\pi}{20}\right)$$

 $2\sqrt{2}\left(\cos\frac{11\pi}{20} + i\sin\frac{11\pi}{20}\right)$
 $2\sqrt{2}\left(\cos\frac{19\pi}{20} + i\sin\frac{19\pi}{20}\right)$
 $2\sqrt{2}\left(\cos\frac{27\pi}{20} + i\sin\frac{27\pi}{20}\right)$
 $2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$

- (c) 2.5201 + 1.2841i, -0.4425 + 2.7936i, -2.7936 + 0.4425i, -1.2841 - 2.5201i, 2 - 2i
- 153. $\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}$ $\cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8}$ $\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}$ $\cos\frac{13\pi}{8} + i\sin\frac{13\pi}{8}$

155. $3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$ $3\left(\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right)$ $3(\cos\pi + i\sin\pi)$ $3\left(\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}\right)$ $3\left(\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}\right)$

157. $2\left(\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}\right)$ $2\left(\cos\frac{7\pi}{8} + i\sin\frac{7\pi}{8}\right)$ $2\left(\cos\frac{11\pi}{8} + i\sin\frac{11\pi}{8}\right)$ $2\left(\cos\frac{15\pi}{8} + i\sin\frac{15\pi}{8}\right)$

159. $\sqrt[6]{2} \left(\cos \frac{7\pi}{12} + i \sin \frac{7\pi}{12} \right)$ $\sqrt[6]{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$ $\sqrt[6]{2} \left(\cos \frac{23\pi}{12} + i \sin \frac{23\pi}{12} \right)$

- **161.** E = 34 + 38i **163.** $Z = \frac{3}{2} \frac{1}{2}i$ **165.** $I = \frac{39}{34} + \frac{3}{34}i$
- **167.** True. $\left[\frac{1}{2}(1-\sqrt{3}i)\right]^9=-1$
- **169.** True. $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)] = 0$ if and only if $r_1 = 0$ and/or $r_2 = 0$.
- 171. Answers will vary. 173. (a) r^2 (b) $\cos 2\theta + i \sin 2\theta$
- 175. Answers will vary.
- **177.** Maximum displacement: 16; t = 2
- **179.** Maximum displacement: $\frac{1}{8}$; $t = \frac{1}{24}$

Review Exercises (page 458)

- **1.** $C = 98^{\circ}, b \approx 23.13, c \approx 29.90$
- **3.** $A = 50^{\circ}, a \approx 19.83, b \approx 10.94$
- **5.** $C = 74^{\circ} 15', a \approx 5.84, c \approx 6.48$
- **7.** No solution **9.** $A \approx 34.23^{\circ}, C \approx 30.77^{\circ}, c \approx 8.18$
- **11.** 19.06
 - **13.** 221.34 **15.** 31.01 ft
- **17.** $A \approx 27.81^{\circ}, B \approx 54.75^{\circ}, C \approx 97.44^{\circ}$
- **19.** $A \approx 15.29^{\circ}, B \approx 20.59^{\circ}, C \approx 144.11^{\circ}$
- **21.** $A \approx 13.19^{\circ}, B \approx 20.98^{\circ}, C \approx 145.83^{\circ}$
- **23.** $A \approx 86.38^{\circ}, B \approx 28.62^{\circ}, c \approx 22.70$
- **25.** 4.29 ft, 12.63 ft
- **27.** 7.64 square units
- **29.** 511.71 square units
- **31.** $\langle 7, -5 \rangle, \|\mathbf{v}\| = \sqrt{74}$
- **33.** $\langle 7, -7 \rangle, \|\mathbf{v}\| = 7\sqrt{2}$
- **35.** (a) $\langle -4, 3 \rangle$
- (b) $\langle 2, -9 \rangle$

- (c) $\langle -3, -9 \rangle$
- (d) $\langle -11, -3 \rangle$

- **37.** (a) $\langle -1, 6 \rangle$
- (b) $\langle -9, -2 \rangle$

- **47.** $\frac{\sqrt{29}}{29}\langle 5, -2 \rangle$ **45.** ⟨0, −1⟩
- **49.** 9i 8j

65. 25

- **51.** $\|\mathbf{v}\| = 7$; $\theta = 60^{\circ}$ **53.** $\|\mathbf{v}\| = \sqrt{41}$; $\theta = 38.7^{\circ}$
- **55.** $\|\mathbf{v}\| = 3\sqrt{2}$; $\theta = 225^{\circ}$
- **57.** 133.92 lb, 5.55° from the 85-lb force
- **59.** 115.47 lb
- **61.** −20
- **63.** 7
- **67.** −40
- **69.** 2.802
- 11π

- 12

- **77.** Parallel 79. Neither
 - **81.** $\frac{1}{2}$ **83.** -1
- **85.** $\frac{13}{17}\langle -4, -1 \rangle$, $\langle -\frac{52}{17}, -\frac{13}{17} \rangle + \langle -\frac{16}{17}, \frac{64}{17} \rangle$
- **87.** $\frac{5}{2}\langle -1, 1 \rangle, \langle -\frac{5}{2}, \frac{5}{2} \rangle + \langle \frac{9}{2}, \frac{9}{2} \rangle$
- 89. 72,000 ft-lb

95.
$$2\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
 97. $2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$

97.
$$2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

99.
$$10\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 101. $4(\cos 240^\circ + i\sin 240^\circ)$

101.
$$4(\cos 240^\circ + i \sin 240^\circ)$$

103. (a)
$$2\sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4}\right)$$
 (b) and (c) 12 $3\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$

105. (a)
$$3\sqrt{2}\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$
 (b) and (c) $-\frac{3}{2}i$

$$2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

107.
$$\frac{625}{2} + \frac{625\sqrt{3}}{2}i$$
 109. 2035 - 828*i*

111.
$$\pm (0.3660 + 1.3660i)$$

113.
$$-1 + i$$
, $1 - i$

115. (a)
$$3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

 $3\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$
 $3\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right)$
 $3\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$
 $3\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)$
 $3\left(\cos\frac{23\pi}{12} + i\sin\frac{23\pi}{12}\right)$

(c) 2.1213 + 2.1213i, -0.7765 + 2.8978i, -2.8978 + 0.7765i, -2.1213 - 2.1213i, 0.7765 - 2.8978i, 2.8978 - 0.7765i

117. (a)
$$2(\cos 0 + i \sin 0)$$

 $2(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$

$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
$$2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right)$$

(c)
$$2, -1 + \sqrt{3}i, -1 - \sqrt{3}i$$

119.
$$4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$
$$4\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
$$4\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$$
$$4\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$$

121.
$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
$$2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$
$$2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

123. True. sin 90° is defined in the Law of Sines.

Chapter Test (page 461)

1.
$$C = 46^{\circ}, a \approx 13.07, b \approx 22.03$$

2.
$$A \approx 22.33^{\circ}, B \approx 49.46^{\circ}, C \approx 108.21^{\circ}$$

3.
$$B \approx 40.11^{\circ}, C \approx 104.89^{\circ}, a \approx 7.12$$

$$B \approx 41.10^{\circ}, C \approx 113.90^{\circ}, c \approx 38.94$$

 $B \approx 138.90^{\circ}, C \approx 16.10^{\circ}, c \approx 11.81$

$$B \approx 138.90^{\circ}, C \approx 16.10^{\circ}, c \approx 11.81$$

5. No solution **6.**
$$B \approx 14.79^{\circ}, C \approx 15.21^{\circ}, c \approx 4.93$$

7. 675 ft **8.** 2337 m² **9.**
$$\mathbf{w} = \langle 12, 13 \rangle, ||\mathbf{w}|| \approx \sqrt{313}$$
 10. (a) $\langle 8, 8 \rangle$ (b) $\langle -12, -22 \rangle$ (c) $\langle -4, -26 \rangle$

11. (a)
$$\langle -7, -18 \rangle$$
 (b) $\langle -2, 32 \rangle$ (c) $\langle -24, 20 \rangle$

12. (a)
$$13\mathbf{i} + 17\mathbf{j}$$
 (b) $-17\mathbf{i} - 28\mathbf{j}$ (c) $-\mathbf{i} - 14\mathbf{j}$

13. (a)
$$-\mathbf{j}$$
 (b) $5\mathbf{i} + 9\mathbf{j}$ (c) $11\mathbf{i} + 17\mathbf{j}$

14.
$$\left\langle \frac{3\sqrt{13}}{13}, -\frac{2\sqrt{13}}{13} \right\rangle$$
 15. $\left\langle \frac{18\sqrt{34}}{17}, -\frac{30\sqrt{34}}{17} \right\rangle$

16.
$$\theta \approx 14.87^{\circ}$$
, 250.15 lb **17.** -1 **18.** 105.95°

19. Yes.
$$\mathbf{u} \cdot \mathbf{v} = 0$$
 20. $\left\langle \frac{185}{26}, \frac{37}{26} \right\rangle$, $\mathbf{u} = \left\langle \frac{185}{26}, \frac{37}{26} \right\rangle + \left\langle -\frac{29}{26}, \frac{145}{26} \right\rangle$

21.
$$z = 6\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 22. $-50 - 50\sqrt{3}i$

23.
$$-\frac{6561}{2} + \frac{6561\sqrt{3}}{2}i$$
 2

25.
$$4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

 $4\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$
 $4\left(\cos\frac{13\pi}{12} + i\sin\frac{13\pi}{12}\right)$
 $4\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)$

26.
$$5\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$$
$$5\left(\cos\frac{5\pi}{8} + i\sin\frac{5\pi}{8}\right)$$
$$5\left(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}\right)$$
$$5\left(\cos\frac{13\pi}{8} + i\sin\frac{13\pi}{8}\right)$$

Cumulative Test for Chapters 4–6 (page 462)

1. (a)

- (b) 210°

(d) 30°

(e)
$$\sin(-150^\circ) = -\frac{1}{2}$$

 $\cos(-150^\circ) = -\frac{\sqrt{3}}{2}$
 $\tan(-150^\circ) = \frac{\sqrt{3}}{3}$
 $\csc(-150^\circ) = -2$
 $\sec(-150^\circ) = -\frac{2\sqrt{3}}{3}$
 $\cot(-150^\circ) = \sqrt{3}$

- **2.** 146.1° **3.** $\cos \theta = -\frac{5}{13}$

7. $a = 3, b = \pi, c = \pi$

6.

- - **9.** $-\frac{\sqrt{3}}{3}$ **10.** $\frac{2x}{\sqrt{4x^2+1}}$ **11.** $2 \tan \theta$
- **12–14.** Answers will vary.
- 15. $\frac{3\pi}{2} + 2n\pi$
- **16.** $\frac{\pi}{6} + n\pi, \frac{5\pi}{6} + n\pi$ **17.** 1.7646, 4.5186
- - $\frac{\pi}{3}, \frac{5\pi}{3}$
- **20.** $\frac{16}{63}$ **21.** $\frac{4}{3}$ **22.** $\frac{2\sqrt{5}}{5}$
- 19.

- **23.** $2 \cos 6x \cos 2x$ 24-27. Answers will vary.
- **28.** $B \approx 14.89^{\circ}$
- **29.** $B \approx 52.82^{\circ}$
- $C \approx 119.11^{\circ}$
- $C \approx 95.18^{\circ}$
- $c \approx 17.00$ **30.** $B = 55^{\circ}$
- $a \approx 5.32$ **31.** $A \approx 26.07^{\circ}$
- $b \approx 20.14$
- $B \approx 33.33^{\circ}$ $C \approx 120.60^{\circ}$
- $c \approx 24.13$ **32.** 131.71 in.²
- **33.** 94.10 in.² **34.** 3i + 5j
- 35. $\frac{\sqrt{5}}{5}$ **i** $-\frac{2\sqrt{5}}{5}$ **j** 36. -5 37. 1
- **38.** $\left\langle -\frac{1}{13}, -\frac{5}{13} \right\rangle$; $\mathbf{u} = \left\langle \frac{105}{13}, -\frac{21}{13} \right\rangle + \left\langle -\frac{1}{13}, -\frac{5}{13} \right\rangle$
- **39.** $3\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ **40.** $-9 + 3\sqrt{3}i$
- **41.** $-12\sqrt{3} + 12i$
- **42.** 1.4553 + 0.3436*i*, -1.4553 0.3436*i*
- **43.** 1, $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $-\frac{1}{2} \frac{\sqrt{3}}{2}i$
- **44.** $5\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$ **45.** 5 ft $5\left(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\right)$
 - $5\left(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\right)$
 - $5\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)$
- **46.** $d = 7 \sin \frac{\pi}{4} t$ **47.** 54.34°; 489.45 km/h

Chapter 7

(page 476) Section 7.1

- 3. substitution 1. system, equations
- 5. Break-even point
- **7.** (a) No (b) No (c) No (d) Yes
- **9.** (a) No (b) Yes (c) No (d) No
- **11.** (2, 2) **13.** (2, 6), (-1, 3)
- **15.** $(0,2), (\sqrt{3},2-3\sqrt{3}), (-\sqrt{3},2+3\sqrt{3})$
- **21.** $(\frac{1}{2}, 3)$ **23.** (1, 1) **25.** $(\frac{20}{3}, \frac{40}{3})$ **19.** (5, 5)
- **27.** No solution **29.** \$4000 at 4%, \$14,000 at 6%
- **31.** \$3500 at 7.6%, \$14,500 at 8.8% **33.** (-2,0),(3,5)
- **35.** No real solution **37.** (0, 0), (1, 1), (-1, -1)
- **41.** $(\frac{5}{2}, \frac{3}{2})$ **39.** (4, 3) **43.** No real solution
- **45.** (3, 6), (-3, 0) **47.** (4, -0.5)**49.** (8, 3), (3, -2)
- **51.** (±1.540, 2.372) **53.** (0, 1) **55.** (2.318, 2.841)
- **57.** (2.25, 5.5) **59.** $(0, -13), (\pm 12, 5)$ **61.** (1, 2)
- **63.** (-2,0), $(\frac{29}{10},\frac{21}{10})$ **65.** No real solution **67.** (0.25, 1.5)
- 73. $(-4, -\frac{1}{4}), (\frac{1}{2}, 2)$ **69.** (0.287, 1.751) **71.** (0, 1), (1, 0)
- **75.** 3,500,000

- 192 units; \$1,910,400
- 3133 units; \$10,308
- **79.** $6 \text{ m} \times 9 \text{ m}$

Week	Animated	Horror
1	336	42
2	312	60
3	288	78
4	264	96
5	240	114
6	216	132
7	192	150
8	168	168
9	144	186
10	120	204
11	96	222
12	72	240

- (b) and (c) x = 8 (d) The answers are the same.
- (e) During week 8 the same number of animated and horror films were rented.
- **83.** (a) C = 9.45x + 16,000R = 55.95x
 - (b) 344 units

85. 8 mi × 12 mi

89. (a)

y = 20,000x +**87.** (a) 0.055x + 0.075y = 1300

(c) \$10,000. The solution is (10,000, 10,000).

(b) 2008

Year Arizona Indiana 0 2000 5118 6080 1 2001 5289.9 6115.7 2 2002 5461.8 6151.4 3 2003 6187.1 5633.7 4 2004 5805.6 6222.8 5 2005 5977.5 6258.5 2006 6149.4 6294.2 6 7 2007 6321.3 6329.9

8

2008

6493.2

6365.6

- (d) (7.06, 6332.15)
- (7.06, 6332.15)
- (e) At one point in 2007, the populations of Arizona and Indiana were equal.
- **91.** False. You can solve for either variable before back-substituting.
- 93. For a linear system, the result will be a contradictory equation such as 0 = N, where N is a nonzero real number. For a nonlinear system, there may be an equation with imaginary roots.
- **95.** (a) $\int 3x + y = 3$ (b) |3x + y = 4|(c) 6x + 3y = 92x + y = 23x + y = 5
- **97.** (a)

|2x + y| = 3

- (b) There are three points of intersection when b is even.
- **99.** $y = -\frac{2}{7}x + \frac{45}{7}$
- **101.** y = 3
- **103.** $y = \frac{30}{17}x \frac{18}{17}$
- **105.** Domain: All real numbers x except x = 6Asymptotes: y = 0, x = 6
- **107.** Domain: All real numbers x except $x = \pm 4$ Asymptotes: $y = 1, x = \pm 4$
- **109.** Domain: All real numbers x Asymptote: y = 0

Section 7.2 (page 485)

- 1. method, elimination
- **7.** (2, 1)
- 3. Inconsistent **9.** (1, -1)
 - x + v = 0

5. Yes

11. Inconsistent

- 13. $(2,\frac{1}{2})$ **15.** (3, 4) **17.** (4, −1) **19.** $(\frac{12}{7}, \frac{18}{7})$
- **21.** Inconsistent 23. b; One solution, consistent
- 24. a; Infinitely many solutions, consistent
- 25. c; One solution, consistent
- **26.** d; No solutions, inconsistent **27.** $(\frac{3}{2}, -\frac{1}{2})$
- **29.** Inconsistent **31.** All points on 6x + 8y 1 = 0
- **33.** (5, -2) **35.** All points on -5x + 6y = -3
- **37.** All points on 5x 6y 3 = 0 **39.** (101, 96)
- **41.** $(\frac{90}{31}, -\frac{67}{31})$ **43.** (-1, 1) **45.** $(1, \frac{1}{2})$

105. ln 6*x*

49.

Consistent; (5, 2)

(3.833, 7)

Consistent; all points

61. (4, 1) **63.** (2, -1) **65.** (6, -3) **67.** $\left(\frac{49}{4}, \frac{33}{4}\right)$

69.
$$\begin{cases} 3x + \frac{1}{2}y = 4 \\ x + 3y = 24 \end{cases}$$

(-4, 5)

71.
$$\begin{cases} 2x + 2y = 11 \\ x - 4y = -7 \end{cases}$$

- **75.** (2,000,000, 100) **73.** (240, 404)
- 77. Plane: 550 mi/hr; wind: 50 mi/hr
- **79.** (a) 5.00A + 3.50C = 5087.50A + C = 1175(b) A = 650, C = 525; Answers will vary.

(c) A = 650, C = 525

- **81.** 9 oranges, 7 grapefruit **83.** 185 movies, 125 video games
- **85.** y = 0.97x + 2.1 **87.** y = -2.5x + 5.54
- **89.** (a) and (b) y = 14x + 19

- (d) 41.4 bushels per acre
- 91. True. A linear system can have only one solution, no solution, or infinitely many solutions.
- 93. False. Sometimes you will be able to get only a close approximation.
- **95.** (a) $\begin{cases} x + y = 10 \\ x + y = 20 \end{cases}$ (b) $\begin{cases} x + y = 4 \\ 3x + 3y = 12 \end{cases}$
- **97.** u = 1; $v = -\tan x$
- **99.** $x \leq -\frac{22}{3}$

103. $-5 < x < \frac{7}{2}$

107. $\log_9 \frac{12}{r}$ **109.** $\ln \frac{x^2}{r+2}$ 111. Answers will vary.

Section 7.3 (page 499)

- 1. row-echelon 3. Gaussian 5. three-dimensional
- 7. Independent **9.** (a) No (b) Yes (c) No (d) No
- **11.** (a) No (b) No (c) Yes (d) No
- **17.** $\left(\frac{11}{4}, 7, 11\right)$ **13.** (2, -2, 2) **15.** (3, 10, 2)

19.
$$\begin{cases} x - 2y + 3z = 5 \\ y - 2z = 9 \\ 2x - 3z = 0 \end{cases}$$

It removed the *x*-term from Equation 2.

- **23.** (-4, 8, 5)**21.** (1, 2, 3) **25.** (2, -3, -2)
- **29.** $(1, -\frac{3}{2}, \frac{1}{2})$ **31.** (-a + 3, a + 1, a)**27.** Inconsistent
- **33.** Inconsistent **35.** Inconsistent **37.** (-1, 1, 0)
- **39.** (2a, 21a 1, 8a) **41.** $\left(-\frac{3}{2}a + \frac{1}{2}, -\frac{2}{3}a + 1, a\right)$
- **43.** $\begin{cases} x + y + z = 1 \\ 2x + y + z = 4 \end{cases}$ **45.** $\begin{cases} x + y + 2z = -10 \\ -x + 12y + 8z = -14 \end{cases}$ $\begin{cases} x + 14y - 4z = -6 \end{cases}$

- **51.** $\frac{A}{x} + \frac{B}{x 14}$ **53.** $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x 10}$
- **55.** $\frac{A}{x-5} + \frac{B}{(x-5)^2} + \frac{C}{(x-5)^3}$ **57.** $\frac{1}{2} \left(\frac{1}{x-1} \frac{1}{x+1} \right)$
- **59.** $\frac{1}{x} \frac{1}{x+1}$ **61.** $\frac{3}{2x-1} \frac{2}{x+1}$
- **63.** $-\frac{3}{x} \frac{1}{x+2} + \frac{5}{x-2}$ **65.** $\frac{3}{x} \frac{1}{x^2} + \frac{1}{x+1}$
- **67.** $2x 7 + \frac{17}{x+2} + \frac{1}{x+1}$
- **69.** $x + 3 + \frac{6}{x 1} + \frac{4}{(x 1)^2} + \frac{1}{(x 1)^3}$
- **71.** $\frac{3}{x} \frac{2}{x 4}$

The vertical asymptotes are the same.

- **73.** $s = -16t^2 + 144$ **75.** $s = -16t^2 32t + 400$
- **77.** $y = \frac{1}{2}x^2 2x$ **79.** $y = x^2 6x + 8$
- **81.** $x^2 + y^2 10x = 0$ **83.** $x^2 + y^2 + 6x 8y = 0$
- **85.** \$300,000 at 8%, \$400,000 at 9%, and \$75,000 at 10%
- 87. 187,500 + s in certificates of deposit
 - 187,500 s in municipal bonds
 - 125,000 s in blue-chip stocks
 - s in growth stocks
- 89. 13 two-point baskets, 6 three-point baskets, 9 free throws
- **91.** $I_1 = 1, I_2 = 2, I_3 = 1$
- **93.** $y = -\frac{5}{24}x^2 \frac{3}{10}x + \frac{41}{6}$ **95.** $y = x^2 - x$
- **97.** (a) $\int 900a + 30b + c = 55$ 1600a + 40b + c = 1052500a + 50b + c = 188 $y = 0.165x^2 - 6.55x + 103$
- (c) 453 ft
- **99.** (a) $\frac{2000}{7 4x} \frac{2000}{11 7x}$, $0 \le x \le 1$

- **101.** False. The leading coefficients are not all 1.
- 103. The student did not work the problem correctly. Because $\frac{x}{x(x-1)}$ is an improper fraction, the student should have divided before decomposing.
- 105. No. There are two arithmetic errors. The constant in the second equation should be -11 and the coefficient of z in the third equation should be 2.
- **107.** $x = 5, y = 5, \lambda = -5$
- **109.** (a) −4, 0, 3
- **111.** (a) -4, $-\frac{3}{2}$, 3

(b)

- (b)
- 113. $\frac{\pi}{6} + n\pi$ 115. Answers will vary.
- **Section 7.4** (page 513)
 - **1.** matrix **3.** Gauss-Jordan elimination **5.** No
 - **7.** 1×2 **9.** 3×1 **11.** 2×2

- 15. $\begin{bmatrix} 1 & 10 & -2 & \vdots & 2 \\ 5 & -3 & 4 & \vdots & 0 \\ 2 & 1 & 0 & \vdots & 6 \end{bmatrix} \quad 3 \times 4$ 17. $\begin{bmatrix} 7 & -5 & 1 & \vdots & 13 \\ 19 & 0 & -8 & \vdots & 10 \end{bmatrix} \quad 2 \times 4$ 19. $\begin{cases} 3x + 4y = 9 \\ x y = -3 \end{cases} \qquad 21. \quad \begin{cases} 9x + 12y + 3z = 0 \\ -2x + 18y + 5z = 10 \\ x + 7y 8z = -4 \end{cases}$ 25. Interchange R_1 and
- **23.** Add -3 times R_2 to R_1 . **25.** Interchange R_1 and R_2 .
- **29.** $\begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 5 & -2 & 6 \\ 0 & 3 & 20 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 1 & -\frac{2}{5} & \frac{6}{5} \\ 0 & 3 & 20 & 4 \end{bmatrix}$
- **31.** (a) i) $\begin{bmatrix} 3 & 0 & \vdots & -6 \\ 6 & -4 & \vdots & -28 \end{bmatrix}$ ii) $\begin{bmatrix} 3 & 0 & \vdots & -6 \\ 0 & -4 & \vdots & -16 \end{bmatrix}$
 - iii) $\begin{bmatrix} 3 & 0 & \vdots & -6 \\ 0 & 1 & \vdots & 4 \end{bmatrix}$ iv) $\begin{bmatrix} 1 & 0 & \vdots & -2 \\ 0 & 1 & \vdots & 4 \end{bmatrix}$
 - (b) x = -2, y = 4 (c) Answers will vary.
- 33. i) [13.9 16.1 | 11] | 4 | 12.1 | 12.1 | 12.1 | 13.9 | 16.1 | 12.1 | 13.9 | 16.1 | 14.1 | 16.1 |
- **35.** Reduced row-echelon form **37.** Not in row-echelon form
- **39.** Not in row-echelon form
- $\begin{bmatrix} 3 & \overline{2} & 5 \\ 1 & \frac{3}{14} & 0 \\ 0 & 1 & -\frac{35}{12} \end{bmatrix} \qquad \textbf{43.} \begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- **49.** $\begin{cases} x 2y = 4 \\ y = -3 \end{cases}$ **51.** $\begin{cases} x y + 2z = 4 \\ y z = 2 \\ z = -2 \end{cases}$
- **53.** (7, -5) **55.** (-4, -8, 2) **57.** (3, 2)
- **59.** Inconsistent **61.** (3, -2, 5, 0) **63.** (4, -3, 2)
- **65.** (2a + 1, 3a + 2, a) **67.** (7, -3, 4)
- **69.** (0, 2 4a, a) **71.** (-5a, a, 3)
- **73.** Yes; (-1, 1, -3) **75.** No **77.** $y = x^2 + 2x + 5$
- **79.** $y = 2x^2 x + 1$ **81.** $f(x) = -9x^2 5x + 11$
- **83.** $f(x) = x^3 2x^2 4x + 1$ **85.** $I_1 = \frac{13}{10}, I_2 = \frac{11}{5}, I_3 = \frac{9}{10}$
- **87.** $\int x + 5y + 10z + 20w = 95$ $\int x + y + z + w = 26$ y - 4z = 0 -2y = -1
 - 15 \$1 bills, 8 \$5 bills, 2 \$10 bills, 1 \$20 bill

89.
$$\frac{8x^2}{(x-1)^2(x+1)} = \frac{2}{x+1} + \frac{6}{x-1} + \frac{4}{(x-1)^2}$$

91. (a)
$$y = -0.01t^2 + 3.08t + 47.7$$

- (c) 2010: \$77.50, 2015: \$91.65. 2020: \$105.30
- (d) Answers will vary.

93. (a)
$$x_1 = s$$
, $x_2 = t$, $x_3 = 600 - s$, $x_4 = s - t$, $x_5 = 500 - t$, $x_6 = s$, $x_7 = t$ (b) $x_1 = 0$, $x_2 = 0$, $x_3 = 600$, $x_4 = 0$, $x_5 = 500$, $x_6 = 0$, $x_7 = 0$ (c) $x_1 = 500$, $x_2 = 100$, $x_3 = 100$, $x_4 = 400$,

- $x_5 = 400, x_6 = 500, x_7 = 100$
- **95.** True. See Example 7.

97.
$$\begin{cases} x + y + 7z = -1 \\ x + 2y + 11z = 0 \\ 2x + y + 10z = -3 \end{cases}$$

(Answer is not unique.)

99. No; Answers will vary.

Asymptotes: x = -1, y = 0

Asymptotes: x = 4, y = x + 2

Section 7.5 (page 527)

- 1. equal **3.** zero, *O*
- **5.** (a) iii (b) i (c) iv (d) v (e) ii
- **7.** No, not in general. **9.** x = 5, y = -8
- **11.** x = -1, y = 4, z = 6

13. (a)
$$\begin{bmatrix} 8 & -1 \\ 1 & 7 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -3 \\ 5 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 15 & -6 \\ 9 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 9 & -8 \\ 13 & -9 \end{bmatrix}$

15. (a)
$$\begin{bmatrix} 9 & 5 \\ 1 & -2 \\ -3 & 15 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 7 & -7 \\ 3 & 8 \\ -5 & -5 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 24 & -3 \\ 6 & 9 \\ -12 & 15 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 22 & -15 \\ 8 & 19 \\ -14 & -5 \end{bmatrix}$$

17. (a)
$$\begin{bmatrix} 5 & 5 & -2 & 4 & 4 \\ -5 & 10 & 0 & -4 & -7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & 5 & 0 & 2 & 4 \\ 7 & -6 & -4 & 2 & 7 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 10 & 15 & -1 & 7 & 12 \\ 15 & -10 & -10 & 3 & 14 \end{bmatrix}$$

19. (a) Not possible (b) Not possible

(c)
$$\begin{bmatrix} 18 & 0 & 9 \\ -3 & -12 & 0 \end{bmatrix}$$
 (d) Not possible

21.
$$\begin{bmatrix} -8 & -7 \\ 15 & -1 \end{bmatrix}$$
 23. $\begin{bmatrix} -24 & -4 & 12 \\ -12 & 32 & 12 \end{bmatrix}$

25.
$$\begin{bmatrix} -17.143 & 2.143 \\ 11.571 & 10.286 \end{bmatrix}$$
 27. $\begin{bmatrix} -4.841 & -3.739 \\ -4.252 & -13.249 \\ 9.713 & -0.362 \end{bmatrix}$

29.
$$\begin{bmatrix} -6 & -9 \\ -1 & 0 \\ 17 & -10 \end{bmatrix}$$
 31. $\begin{bmatrix} 3 & 3 \\ -\frac{1}{2} & 0 \\ -\frac{13}{2} & \frac{11}{2} \end{bmatrix}$ **33.** Not possible

35.
$$\begin{bmatrix} -2 & 51 \\ -8 & 33 \\ 0 & 27 \end{bmatrix}$$
 37.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{7}{2} \end{bmatrix}$$

39.
$$\begin{bmatrix} -15 & -5 & -25 & -45 \\ -18 & -6 & -30 & -54 \end{bmatrix}$$

41. (a)
$$\begin{bmatrix} 0 & 15 \\ 6 & 12 \end{bmatrix}$$
 (b) $\begin{bmatrix} -2 & 2 \\ 31 & 14 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & 6 \\ 12 & 12 \end{bmatrix}$

43. (a)
$$\begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & -10 \\ 10 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & -6 \\ 6 & 8 \end{bmatrix}$

45. (a)
$$\begin{bmatrix} 10 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 10 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & 8 \end{bmatrix}$
45. (a) $\begin{bmatrix} 7 & 7 & 14 \\ 8 & 8 & 16 \\ -1 & -1 & -2 \end{bmatrix}$ (b) $\begin{bmatrix} 13 \end{bmatrix}$ (c) Not possible

47.
$$\begin{bmatrix} 70 & -17 & 73 \\ 32 & 11 & 6 \\ 16 & -38 & 70 \end{bmatrix}$$
 49.
$$\begin{bmatrix} 151 & 25 & 48 \\ 516 & 279 & 387 \\ 47 & -20 & 87 \end{bmatrix}$$

51.
$$\begin{bmatrix} 5 & 8 \\ -4 & -16 \end{bmatrix}$$
 53. $\begin{bmatrix} -4 & 10 \\ 3 & 14 \end{bmatrix}$

- **55.** (a) No (b) Yes (c) No (d) No
- **57.** (a) No (b) Yes (c) No (d) No

59. (a)
$$\begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 \\ 8 \end{bmatrix}$

61. (a)
$$\begin{bmatrix} -2 & -3 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4 \\ -36 \end{bmatrix}$$
 (b) $\begin{bmatrix} -7 \\ 6 \end{bmatrix}$

63. (a)
$$\begin{bmatrix} 1 & -2 & 3 \\ -1 & 3 & -1 \\ 2 & -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ -6 \\ 17 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

65. (a)
$$\begin{bmatrix} 1 & -5 & 2 \\ -3 & 1 & -1 \\ 0 & -2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -20 \\ 8 \\ -16 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$

67. (a)
$$\begin{bmatrix} 7 & -2 & 5 \\ -6 & 13 & -8 \\ 16 & 11 & -3 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 7 & -2 & 5 \\ -6 & 13 & -8 \\ 16 & 11 & -3 \end{bmatrix}$$

The answers are the same.

69. (a)
$$\begin{bmatrix} 26 & 11 & 0 \\ 11 & 20 & -3 \\ 11 & 14 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 26 & 11 & 0 \\ 11 & 20 & -3 \\ 11 & 14 & 0 \end{bmatrix}$$

The answers are the same.

71. (a)
$$\begin{bmatrix} 25 & -34 & 28 \\ -53 & 34 & -7 \\ -76 & 30 & 21 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 25 & -34 & 28 \\ -53 & 34 & -7 \\ -76 & 30 & 21 \end{bmatrix}$$

The answers are the same

- **73.** (a) and (b) $\begin{bmatrix} 3 & -6 & 0 \\ 3 & 3 & 0 \end{bmatrix}$ **75.** Not possible, undefined
- 77. Not possible, undefined
- **79.** (a) and (b) $\begin{bmatrix} 6 & 12 & -12 \\ -6 & 6 & 0 \end{bmatrix}$ **81.** $\begin{bmatrix} -4 & 0 \\ 8 & 2 \end{bmatrix}$ **83.** $\begin{bmatrix} 84 & 60 & 30 \\ 42 & 120 & 84 \end{bmatrix}$ **85.** $\begin{bmatrix} 90 & 108 & 54 & 36 \\ 126 & 144 & 180 & 72 \end{bmatrix}$
- **87.** [\$1037.50 \$1400.00 \$1012.50]

The entries represent the total profits made at the three outlets.

- \$23.20 \$20.50 The entries represent labor costs at **89.** | \$38.20 | \$33.80 | the two plants for the three boat \$76.90 \$68.50 sizes.
- 0.40 0.15 0.15 P^2 represents the proportion of **91.** 0.28 0.53 0.17 changes in party affiliations after two elections. 0.32 0.32 0.68
- 93. True. To add two matrices, you add corresponding entries.
- **95.** Not possible **97.** Not possible **99.** 2 × 2
- **101.** 2 × 3 **103 and 105.** Answers will vary.

107.
$$AC = BC = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}, A \neq B$$

109. (a)
$$A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, A^3 = \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}, A^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The entries on the main diagonal are i^2 in A^2 , i^3 in A^3 . and i^4 in A^4 .

(b)
$$B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 B^2 is the identity matrix.

111. (a) $A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

(Answers are not unique.)

(b) A^2 and B^3 are zero matrices.

(c)
$$A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 A^4 is the zero matrix.

- (d) A^n is the zero matrix.
- 113. $\ln \frac{64}{\sqrt[3]{x^2+3}}$

Section 7.6 (page 538)

- 1. inverse **3.** No **5–9.** Answers will vary.
- 11. $\begin{vmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{vmatrix}$ 13. $\begin{bmatrix} -3 & 2 \\ -2 & 1 \end{bmatrix}$
- 17. $\begin{bmatrix} 1 & 1 & -1 \\ -3 & 2 & -1 \\ 3 & -3 & 2 \end{bmatrix}$ 19. $\begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{4} & \frac{1}{4} & 0 \\ \frac{7}{20} & -\frac{1}{4} & \frac{1}{5} \end{bmatrix}$
- **21.** $\begin{bmatrix} -\frac{3}{2} & \frac{3}{2} & 1\\ \frac{9}{2} & -\frac{7}{2} & -3\\ -1 & 1 & 1 \end{bmatrix}$ **23.** $\begin{bmatrix} -12 & -5 & -9\\ -4 & -2 & -4\\ -8 & -4 & -6 \end{bmatrix}$

- **25.** $\frac{5}{11} \begin{bmatrix} 0 & -4 & 2 \\ -22 & 11 & 11 \\ 22 & -6 & -8 \end{bmatrix}$ **27.** $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$
- **29.** $\begin{bmatrix} \frac{1}{4} & \frac{1}{8} \\ -\frac{1}{3} & -\frac{5}{3} \end{bmatrix}$ **31.** $\frac{1}{59} \begin{bmatrix} 16 & 15 \\ -4 & 70 \end{bmatrix}$ **33.** $\begin{bmatrix} \frac{5}{13} & -\frac{3}{13} \\ \frac{1}{12} & \frac{2}{23} \end{bmatrix}$
- **35.** k = 0 **37.** (5,0) **39.** (-8,-6) **41.** (3,8,-11)
- **43.** (2, 1, 0, 0) **45.** (2, -2)
- **47.** Not possible, because A is not invertible. **49.** (-4, -8)
- **51.** (-1, 3, 2) **53.** (0.3125t + 0.8125, 1.1875t + 0.6875, t)
- **55.** (5, 0, -2, 3)
- 57. \$7000 in AAA-rated bonds, \$1000 in A-rated bonds, and \$2000 in B-rated bonds
- **59.** \$9000 in AAA-rated bonds, \$1000 in A-rated bonds, and \$2000 in B-rated bonds
- **61.** $I_1 = \frac{1}{2}$ ampere, $I_2 = 3$ amperes, $I_3 = 3.5$ amperes
- 63. 100 bags for seedlings, 100 bags for general potting, 100 bags for hardwood plants
- - (b) $\begin{bmatrix} 2.5 & 4 & 2 \\ -1 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} r \\ l \\ i \end{bmatrix} = \begin{bmatrix} 300 \\ 0 \\ 120 \end{bmatrix}$
 - (c) 80 roses, 10 lilies, 30 irises
- **67.** True, $AA^{-1} = I = A^{-1}A$. **69.** Answers will vary.
- **71.** (a) Answers will vary.

(b)
$$A^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & 0 & 0 & \dots & 0\\ 0 & \frac{1}{a_{22}} & 0 & 0 & \dots & 0\\ 0 & 0 & \frac{1}{a_{33}} & 0 & \dots & 0\\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$$

- **73.** $\ln 3 \approx 1.099$ **75.** $\frac{e^{12/7}}{3} \approx 1.851$
- 77. Answers will vary.

Section 7.7 (page 545)

- **1.** determinant **3.** -5 **5.** 4 **7.** 16
- **9.** 28 **11.** -24 **13.** -0.002
- **15.** (a) $M_{11} = -5, M_{12} = 2, M_{21} = 4, M_{22} = 3$
 - (b) $C_{11} = -5$, $C_{12} = -2$, $C_{21} = -4$, $C_{22} = 3$
- **17.** (a) $M_{11} = 10, M_{12} = -43, M_{13} = 2, M_{21} = -30,$ $M_{22} = 17, M_{23} = -6, M_{31} = 54, M_{32} = -53,$
 - (b) $C_{11} = 10$, $C_{12} = 43$, $C_{13} = 2$, $C_{21} = 30$, $C_{22} = 17$, $C_{23} = 6$, $C_{31} = 54$, $C_{32} = 53$, $C_{33} = -34$
- **19.** (a) -75 (b) -75 **21.** (a) 170 (b) 170
- **23.** -58 **25.** 0 **27.** -9 **29.** -168
- **31.** 412 **33.** -336
- **37.** (a) -3 (b) -2
 - (c) $\begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}$ (d) 6; $|AB| = |A| \cdot |B|$

(c)
$$\begin{bmatrix} 1 & 4 & 3 \\ -1 & 0 & 3 \\ 0 & 2 & 0 \end{bmatrix}$$
 (d) -12 ; $|AB| = |A| \cdot |B|$

c)
$$\begin{bmatrix} -7 & -16 & -1 & -28 \\ -4 & -14 & -11 & 8 \\ 13 & 4 & 4 & -4 \\ -2 & 3 & 2 & 2 \end{bmatrix}$$
 (d) 5500; $|AB| = |A| \cdot |B|$

- **43–47.** Answers will vary. **49.** $x = \pm 2$ **51.** $x = \pm \frac{3}{2}$
- **53.** $x = 1 \pm \sqrt{2}$ **55.** x = -4, -1 **57.** $x = 1, \frac{1}{2}$
- **59.** x = 3 **61.** 8uv 1 **63.** e^{5x} **65.** $1 \ln x$
- **67.** True. Expansion by cofactors on a row of zeros is zero.
- 69. Answers will vary. Sample answer:

$$A = \begin{bmatrix} 1 & 0 & -3 \\ 6 & -2 & 7 \\ 9 & 5 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 & 5 \\ -8 & 1 & 0 \\ -7 & 6 & -2 \end{bmatrix}$$
$$|A + B| = -328, |A| + |B| = -404$$

- **71.** (a) 6 (b) $\begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} \end{bmatrix}$ (c) $\frac{1}{6}$ (d) They are reciprocals.
- **73.** (a) 2 (b) $\begin{bmatrix} -4 & -5 & 1.5 \\ -1 & -1 & 0.5 \\ -1 & -1 & 0 \end{bmatrix}$
 - (c) $\frac{1}{2}$ (d) They are reciprocals.
- **75.** (a) Columns 2 and 3 are interchanged.
 - (b) Rows 1 and 3 are interchanged.
- **77.** (a) 3 is factored from the second row.
 - (b) 2 and 4 are factored from the first and second columns, respectively.
- **79.** (a) 15 (b) -75 (c) -120

The determinant of a triangular matrix is the product of the numbers along the main diagonal.

- **81.** Answers will vary. **83.** (x-2)(x-1)
- **85.** $(2y 3)^2$ **87.** (2, -4)

Section 7.8 (page 556)

- **1.** Cramer's Rule **3.** $-\frac{1}{2}$ **5.** $\frac{5}{2}$ **7.** $\frac{33}{8}$ **9.** 24
- **11.** $x = 0, -\frac{16}{5}$ **13.** Collinear **15.** Not collinear
- **17.** x = 3 **19.** (-3, -2) **21.** Not possible
- **23.** (-1, 3, 2) **25.** (a) and (b) $(0, -\frac{1}{2}, \frac{1}{2})$
- **27.** (a) $y = -1.086t^2 + 15.949t + 25.326$

The model fits the data well.

- **29.** (a) [20 5 24], [20 0 13], [5 0 1], [20 0 23], [15 18 11] (b) -119 28 67 -58 6 39 -1 -3 3
 - (b) -119 28 67 -58 6 39 -1 -3 3 -118 26 69 -33 7 15
- **31.** 1 -43 -108 49 91 91 1 -29 -73 33 42 15 7 14 14
- **33.** HAPPY NEW YEAR
- 35. IF YOU CANT BE KIND BE VAGUE
- 37. True. Cramer's Rule divides by the determinant.
- **39.** Answers will vary. **41.** x + 4y 19 = 0

43. 2x - 7y - 27 = 0

Review Exercises (page 560)

- **1.** (1, 1) **3.** $(\frac{3}{2}, 5)$ **5.** (0.25, 0.625) **7.** (5, 4)
- **9.** (0,0), (2,8), (-2,8) **11.** (2,-0.5)
- **13.** (0, 0), (4, -4) **15.** (-1, 2), (0.67, 2.56) **17.** (4, 4)
- **19.** 800 plants **21.** 96 m × 144 m **23.** $(\frac{5}{2}, 3)$
- **25.** (-0.5, 0.8) **27.** $\left(-\frac{1}{2}, \frac{4}{5}\right)$ **29.** (0, 0)
- **31.** $\left(\frac{14}{5} + \frac{8}{5}a, a\right)$

Consistent; (1.6, -2.4)

Inconsistent

Consistent; (-4.6, -8.6)

- **39.** $\left(\frac{500,000}{7}, \frac{159}{7}\right)$ **41.** 218.75 mi/h; 193.75 mi/h
- **43.** (2, -4, -5) **45.** $(\frac{38}{17}, \frac{40}{17}, -\frac{63}{17})$
- **47.** (3a + 4, 2a + 5, a) **49.** $\left(-\frac{19}{6}, \frac{17}{12}, \frac{1}{3}\right)$
- **51.** (a-4, a-3, a)

53.

Sample answer: (0, 0, 8), (0, -2, 0), (4, 0, 0), (1, -1, 2)

- **55.** $\frac{3}{x+2} \frac{4}{x+4}$ **57.** $\frac{1}{2} \left(\frac{3}{x-1} \frac{x-3}{x^2+1} \right)$
- **59.** $\frac{2x-1}{x^2+1} + \frac{-1}{x+2}$ **61.** $y = 2x^2 + x 5$
- **63.** 4 par-3 holes, 10 par-4 holes, 4 par-5 holes
- **65.** 3×1 **67.** 1×1
- **69.** $\begin{bmatrix} 6 & -7 & \vdots & 11 \\ -2 & 5 & \vdots & -1 \end{bmatrix}$ **71.** $\begin{bmatrix} 8 & -7 & 4 & \vdots & 12 \\ 3 & -5 & 2 & \vdots & 20 \\ 5 & 3 & -3 & \vdots & 26 \end{bmatrix}$
- 73. $\begin{cases} 5x + y + 7z = -9 \\ 4x + 2y = 10 \\ 9x + 4y + 2z = 3 \end{cases}$ 75. $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$
- 77. $\begin{bmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & 4 & -3 \end{bmatrix}$ 79. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- **81.** (10, -12) **83.** (-0.2, 0.7) **85.** $(\frac{1}{2}, -\frac{1}{3}, 1)$
- **87.** (3a + 1, -a, a) **89.** (2, -3, 3) **91.** $(1, 2, \frac{1}{2})$
- **93.** (1, 2, 2) **95.** (3, 0, -4) **97.** (2, 6, -10, -3)
- **99.** x = 12, y = -7 **101.** x = 1, y = 11

103. (a)
$$\begin{bmatrix} 17 & -17 \\ 13 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} -3 & 23 \\ -15 & 8 \end{bmatrix}$

(c)
$$\begin{bmatrix} 14 & 6 \\ -2 & 10 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 37 & -57 \\ 41 & -4 \end{bmatrix}$$

105. (a)
$$\begin{bmatrix} 6 & 5 & 8 \\ 1 & 7 & 8 \\ 5 & 1 & 4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 6 & -5 & 6 \\ 9 & -9 & -4 \\ 1 & 3 & 2 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 12 & 0 & 14 \\ 10 & -2 & 4 \\ 6 & 4 & 6 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 6 & 15 & 10 \\ -7 & 23 & 20 \\ 9 & -1 & 6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 12 & 0 & 14 \\ 10 & -2 & 4 \\ 6 & 4 & 6 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 6 & 15 & 10 \\ -7 & 23 & 20 \\ 9 & -1 & 6 \end{bmatrix}$$

107.
$$\begin{bmatrix} -13 & -8 & 18 \\ 0 & 11 & -19 \end{bmatrix}$$
 109. $\begin{bmatrix} 9 & -7 \\ -9 & 4 \end{bmatrix}$

111.
$$\begin{bmatrix} 48 & -18 & -3 \\ 15 & 51 & 33 \end{bmatrix}$$
 113.
$$\begin{bmatrix} -8 & -4 \\ 7 & -17 \\ -17 & -2 \end{bmatrix}$$

115.
$$\frac{1}{3}$$
 $\begin{bmatrix} 6 & 2 \\ -4 & 11 \\ 10 & 0 \end{bmatrix}$ **117.** $\begin{bmatrix} 14 & -2 & 8 \\ 14 & -10 & 40 \\ 36 & -12 & 48 \end{bmatrix}$

119. [30] **121.**
$$\begin{bmatrix} 14 & -22 & 22 \\ 19 & -41 & 80 \\ 42 & -66 & 66 \end{bmatrix}$$
 123.
$$\begin{bmatrix} 1 & 17 \\ 12 & 36 \end{bmatrix}$$

125. (a)
$$\begin{bmatrix} 525.88 & 47.40 \\ 734.94 & 66.20 \\ 861.76 & 77.20 \end{bmatrix}$$

The entries represent the dairy mart's sales and profits on milk for Friday, Saturday, and Sunday.

(b) \$190.80

127. Answers will vary. 129.
$$\begin{bmatrix} 4 & -5 \\ 5 & -6 \end{bmatrix}$$

131.
$$\begin{bmatrix} \frac{1}{2} & -1 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{2}{3} & -\frac{5}{6} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 133.
$$\begin{bmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{1}{10} & -\frac{1}{15} \end{bmatrix}$$

135.
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & -1 \\ 1 & 1 & 3 \end{bmatrix}$$
 137.
$$\begin{bmatrix} 1 & -1 \\ 4 & -\frac{7}{2} \end{bmatrix}$$
 139.
$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{4} \\ \frac{1}{20} & \frac{1}{40} \end{bmatrix}$$

155. (a)
$$M_{11} = 4, M_{12} = 7, M_{21} = -1, M_{22} = 2$$

(b)
$$C_{11} = 4$$
, $C_{12} = -7$, $C_{21} = 1$, $C_{22} = 2$

157. (a)
$$M_{11} = 30, M_{12} = -12, M_{13} = -21, M_{21} = 20,$$
 $M_{22} = 19, M_{23} = 22, M_{31} = 5, M_{32} = -2,$ $M_{33} = 19$

(b)
$$C_{11} = 30$$
, $C_{12} = 12$, $C_{13} = -21$, $C_{21} = -20$, $C_{22} = 19$, $C_{23} = -22$, $C_{31} = 5$, $C_{32} = 2$, $C_{33} = 19$ 130 **161.** 6 **163.** -3 **165.** 279 **167.** 16

169. 1.75 **171.**
$$\frac{13}{2}$$
 173. 48 **175.** Collinear

183.
$$(0, -2.4, -2.6)$$
 185. (a) and (b) $(\frac{53}{33}, -\frac{17}{33}, \frac{61}{66})$

189. I WILL BE BACK **191.** THAT IS MY FINAL ANSWER

193. (a)
$$y = 0.275t + 16.2$$

(c) and (d)
$$t \approx 13.8$$
 or 2013

195. True. This is the correct sum of the two determinants.

197. An $n \times n$ matrix A has an inverse A^{-1} if $det(A) \neq 0$.

Chapter Test (page 566)

1.
$$(4, -2)$$
 2. $(0, -1), (1, 0), (2, 1)$

3.
$$(8, 5), (2, -1)$$
 4. $(\frac{28}{9}, -\frac{31}{9})$ 5. $(-\frac{2}{3}, -\frac{1}{2}, 1)$

6.
$$(1,0,-2)$$
 7. $y=-\frac{1}{2}x^2+x+6$

8.
$$\frac{5}{x-1} + \frac{3}{(x-1)^2}$$
 9. $\frac{1}{x} + \frac{2}{x^2} - \frac{1}{x^2+1}$

10.
$$(-2a + 1.5, 2a + 1, a)$$
 11. $(5, 2, -6)$

12. (a)
$$\begin{bmatrix} 1 & 0 & 4 \\ -7 & -6 & -1 \\ 0 & 4 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 15 & 12 & 12 \\ -12 & -12 & 0 \\ 3 & 6 & 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 7 & 6 & 12 \\ -18 & -16 & -2 \\ 1 & 10 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 36 & 20 & 4 \\ -28 & -24 & -4 \\ 10 & 8 & 2 \end{bmatrix}$$

13.
$$\begin{bmatrix} -\frac{4}{3} & -\frac{5}{3} & 1 \\ -\frac{4}{3} & -\frac{8}{3} & 1 \\ \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix}, (-2, 3, -1)$$
 14. 67 **15.** -2

16. 30 **17.**
$$(1, -\frac{1}{2})$$

18.
$$x_1 = 700 - s - t$$
, $x_2 = 300 - s - t$, $x_3 = s$, $x_4 = 100 - t$, $x_5 = t$

Chapter 8

Section 8.1 (page 577)

- 3. index, upper limit, lower limit
- **5.** (a) Finite sequence (b) Infinite sequence
- **7.** 7, 9, 11, 13, 15
 - **9.** 3, 9, 27, 81, 243
- **11.** $-\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}, -\frac{1}{32}$ **13.** $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}$ **17.** (a) 0, 1, 0, 0.5, 0 (b) 0, 1, 0, $\frac{1}{2}$, 0
- **19.** (a) 0.5, 0.75, 0.875, 0.938, 0.969 (b) $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$
- **21.** (a) 1, 0.354, 0.192, 0.125, 0.089 (b) 1, $\frac{1}{2^{3/2}}$, $\frac{1}{3^{3/2}}$, $\frac{1}{8}$, $\frac{1}{5^{3/2}}$

23. (a)
$$-1, 0.25, -0.111, 0.063, -0.04$$

(b) $-1, \frac{1}{4}, -\frac{1}{9}, \frac{1}{16}, -\frac{1}{25}$

- **25.** (a) and (b) 3, 15, 35, 63, 99
- **27.** 9, 15, 21, 27, 33, 39, 45, 51, 57, 63
- **29.** $3, \frac{5}{2}, \frac{7}{3}, \frac{9}{4}, \frac{11}{5}, \frac{13}{6}, \frac{15}{7}, \frac{17}{8}, \frac{19}{9}, \frac{21}{10}$
- **31.** 0, 2, 0, 2, 0, 2, 0, 2, 0, 2 **33.** $\frac{100}{101}$

37.
$$\frac{64}{65}$$
 39. $a_n = 3n - 2$ **41.** $a_n = n^2 - 1$ **43.** $a_n = \frac{n+1}{n+2}$ **45.** $a_n = \frac{(-1)^{n+1}}{2^n}$ **47.** $a_n = 1 + \frac{1}{n}$

49.
$$a_n = \frac{1}{n!}$$
 51. $a_n = (-1)^n + 2(1)^n = (-1)^n + 2$

- **53.** 28, 24, 20, 16, 12 **55.** 3, 4, 6, 10, 18
- **57.** 1, 3, 4, 7, 11 **59.** 6, 8, 10, 12, 14; $a_n = 2n + 4$
- **61.** 81, 27, 9, 3, 1; $a_n = \frac{243}{3^n}$
- **63.** (a) 1, 1, 0.5, 0.167, 0.042 (b) 1, 1, $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{24}$
- **65.** (a) 1, 0.333, 0.4, 0.857, 2.667 (b) $1, \frac{1}{3}, \frac{2}{5}, \frac{6}{7}, \frac{8}{3}$
- **67.** (a) 1, 0.5, 0.042, 0.001, 2.480×10^{-5} (b) $1, \frac{1}{2}, \frac{1}{24}, \frac{1}{720}, \frac{1}{40.320}$
- **71.** 495 **73.** n+1 **75.** $\frac{1}{2n(2n+1)}$
- **79.** d **77.** c
- **78.** b **80.** a 81. 83. 20
- 85.
- **87.** 35 **89.** 40 **91.** 30 **93.** $\frac{9}{5}$
- **99.** 81 **101.** $\frac{47}{60}$
- **103.** $\sum_{i=1}^{9} \frac{1}{3i} \approx 0.94299$ **105.** $\sum_{i=1}^{8} \left[2\left(\frac{i}{8}\right) + 3 \right] = 33$ **107.** $\sum_{i=1}^{6} (-1)^{i+1} 3^i = -546$ **109.** $\sum_{i=1}^{20} \frac{(-1)^{i+1}}{i^2} \approx 0.821$
- **111.** $\sum_{i=1}^{5} \frac{2^i 1}{2^{i+1}} \approx 2.0156$ **113.** $\frac{75}{16}$ **115.** $-\frac{3}{2}$
- **117.** (a) $\frac{3333}{5000}$ (b) $\frac{2}{3}$ **119.** (a) $\frac{1111}{10000}$
- **121.** (a) $A_1 = $5037.50, A_2 = $5075.28,$ $A_3 = \$5113.35, A_4 = \$5151.70,$ $A_5 = \$5190.33, A_6 = \$5229.26,$ $A_7 = $5268.48, A_8 = 5307.99
 - (b) \$6741.74
- **123.** \$72,443 million **125.** True by the Properties of Sums
- **127.** 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144; $1, 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \frac{21}{13}, \frac{34}{21}, \frac{55}{34}, \frac{89}{55}$
- **129.** 1, 1, 2, 3, 5
- **131.** $a_{n+1} = \frac{1}{2}a_n + \frac{\left(1 + \sqrt{5}\right)^n + \left(1 \sqrt{5}\right)^n}{2^{n+1}}$ $a_{n+2} = \frac{3}{2}a_n + \frac{\left(1 + \sqrt{5}\right)^n + \left(1 - \sqrt{5}\right)^n}{2^{n+1}}$
- **133.** $x, \frac{x^2}{2}, \frac{x^3}{6}, \frac{x^4}{24}, \frac{x^5}{120}$ **135.** $-\frac{x^3}{3}, \frac{x^5}{5}, -\frac{x^7}{7}, \frac{x^9}{9}, -\frac{x^{11}}{11}$ **137.** $-\frac{x^2}{2}, \frac{x^4}{24}, -\frac{x^6}{720}, \frac{x^8}{40,320}, -\frac{x^{10}}{3,628,800}$
- **139.** $-x, \frac{x^2}{2}, -\frac{x^3}{6}, \frac{x^4}{24}, -\frac{x^5}{120}$
- **141.** $x + 1, -\frac{(x+1)^2}{2}, \frac{(x+1)^3}{6}, -\frac{(x+1)^4}{24}, \frac{(x+1)^5}{120}$
- **143.** $\frac{1}{4}$, $\frac{1}{12}$, $\frac{1}{24}$, $\frac{1}{40}$, $\frac{1}{60}$; $\frac{1}{2} \frac{1}{2n+2}$

- **145.** $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{20}$, $\frac{1}{30}$, $\frac{1}{42}$; $\frac{1}{2} \frac{1}{n+2}$
- 147. Yes, if there is a finite number of integer terms, you can always find a sum.
- **149.** (a) $\begin{bmatrix} 0 & 1 \\ -3 & 7 \end{bmatrix}$
- (c) $\begin{bmatrix} 18 & 9 \\ 18 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 6 \\ 27 & 18 \end{bmatrix}$ 151. (a) $\begin{bmatrix} -3 & -7 & 4 \\ 4 & 4 & 1 \\ 1 & 4 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 8 & 17 & -14 \\ -12 & -13 & -9 \\ -3 & -15 & -10 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & 7 & -16 \\ 4 & 42 & 45 \\ 1 & 23 & 48 \end{bmatrix}$ (d) $\begin{bmatrix} 16 & 31 & 42 \\ 10 & 47 & 31 \\ 13 & 22 & 25 \end{bmatrix}$

Section 8.2 (page 586)

- **1.** $a_n = a_1 + (n-1)d$
- 3. A sequence is arithmetic when the differences between consecutive terms are the same.
- **5.** Arithmetic sequence, d = -2
- 7. Arithmetic sequence, $d = -\frac{1}{2}$
- **9.** Arithmetic sequence, d = 0.6
- **11.** 21, 34, 47, 60, 73 Arithmetic sequence, d = 13
- **13.** $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$ Not an arithmetic sequence
- **15.** 143, 136, 129, 122, 115 Arithmetic sequence, d = -7
- **17.** 1, 5, 1, 5, 1 Not an arithmetic sequence
- **19.** -1, 1, -1, 1, -1Not an arithmetic sequence
- **21.** $a_n = -2 + 3n$ **23.** $a_n = 108 8n$ **25.** $a_n = \frac{13}{2} \frac{5}{2}n$ **27.** $a_n = \frac{10}{3}n + \frac{5}{3}$
- **29.** $a_n = 103 3n$ **31.** 5, 11, 17, 23, 29
- **33.** -10, -22, -34, -46, -58 35. -2, 2, 6, 10, 14
- **37.** 22.45, 20.725, 19, 17.275, 15.55
- **39.** 15, 19, 23, 27, 31; d = 4; $a_n = 11 + 4n$
- **41.** $\frac{3}{5}, \frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{1}{5}; d = -\frac{1}{10}; a_n = -\frac{1}{10}n + \frac{7}{10}$
- **43.** 59 **45.** 18.6
- **47.** 16

- **51.** -1, 3, 7, 11, 15, 19, 23, 27, 31, 35
- **53.** 19.25, 18.5, 17.75, 17, 16.25, 15.5, 14.75, 14, 13.25, 12.5
- **55.** 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2
- **57.** 110 **59.** −25 **61.** 5050 **63.** -4585
- **65.** 620 **67.** 41 **69.** 4000 **71.** 1275
- **73.** 355 **75.** 129,250 **77.** 440 **79.** 2575
- **81.** 14,268 **83.** 405 bricks **85.** \$200,000
- **87.** (a) $a_n = 0.84n + 14.9$

(b)	Year	2001	2002	2003	2004
	Sales (in billions of dollars)	15.7	16.6	17.4	18.3
	Year	2005	2006	2007	2008

Year	2005	2006	2007	2008
Sales (in billions of dollars)	19.1	19.9	20.8	21.6

The model fits the data well.

- (c) \$149.5 billion (d) \$203.2 billion; Answers will vary.
- **89.** True. Use the recursion formula, $a_{n+1} = a_n + d$.
- **91.** *x*, 3*x*, 5*x*, 7*x*, 9*x*, 11*x*, 13*x*, 15*x*, 17*x*, 19*x*
- **93.** 4 **95.** $S_n + 5n$
- 97. Answers will vary. Sample answer: Gauss saw that the sum of the first and last numbers was 101, the sum of the second and second-last numbers was 101, and so on. Seeing that there were 50 such pairs of numbers, Gauss simply multiplied 50 by 101 to get the summation 5050.

 $a_n = (n+1)\left(\frac{n}{2}\right)$, where *n* is the total number of natural numbers.

- **99.** 20,100 **101.** 2601
- **103.** (1, 5, -1) **105.** Answers will vary.

Section 8.3 (page 595)

- 5. |r| < 1**1.** geometric, common **3.** geometric series
- 7. Geometric sequence, r = 3**9.** Not a geometric sequence
- 11. Geometric sequence, $r = -\frac{1}{2}$
- 13. Geometric sequence, r = 2
- **15.** Not a geometric sequence **17.** 6, 18, 54, 162, 486
- **19.** $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ **21.** $5, -\frac{1}{2}, \frac{1}{20}, -\frac{1}{200}, \frac{1}{2000}$
- **23.** 1, e, e^2 , e^3 , e^4 **25.** 64, 32, 16, 8, 4; $r = \frac{1}{2}$; $a_n = 64(\frac{1}{2})^{n-1}$
- **27.** 9, 18, 36, 72, 144; r = 2; $a_n = 9(2)^{n-1}$ **29.** 6, -9, $\frac{27}{2}$, $-\frac{81}{4}$, $\frac{243}{8}$; $r = -\frac{3}{2}$; $a_n = 6(-\frac{3}{2})^{n-1}$
- **31.** (a) 0.000034 (b) $\frac{2}{59.049}$ **33.** (a) 44.949
- **35.** (a) and (b) -243**37.** (a) and (b) -646.803
- **39.** $a_n = 7(3)^{n-1}$; 45,927 **41.** $a_n = 5(6)^{n-1}$; 50,388,480
- **43.** $\frac{1}{128}$

51. 8, 4, 6, 5, $\frac{11}{2}$ 16 2 24 3 28 4 30 5 31 6 31.5 7 31.75 31.875 9 31.9375 10 31.96875

- **55.** 511 **57.** 43 **59.** 29,921.31
- **63.** 2092.60 **65.** $\sum_{n=1}^{7} 5(3)^{n-1}$ **67.** $\sum_{n=1}^{7} 2(-\frac{1}{4})^{n-1}$
- **69.** 50 **71.** $\frac{10}{2}$
- **73.** Series does not have a finite sum because $\left|\frac{7}{3}\right| > 1$.
- 77. $-\frac{30}{19}$ **81.** $\frac{9}{4}$ **83.** $\frac{4}{11}$ **79.** 27
- **87.** Geometric; r = 2; 262,136 **89.** Geometric; $r = \frac{1}{3}$; 135
- **91.** Arithmetic; d = 6; 720 **93.** Geometric; r = 0.8; 28.944 **95.** (a) \$1343.92 (b) \$1346.86 (c) \$1348.35
 - (d) \$1349.35 (e) \$1349.84
- **97.** Answers will vary. **99.** (a) \$26,198.27 (b) \$26,263.88
- **101.** (a) \$153,237.86 (b) \$153,657.02 **103.** 126 in.²
- **105.** (a) $T_n = 70(0.8)^n$ (b) 18.4°F ; 4.8°F

- 3.5 h
- **107.** (a) $a_n = 1269.10(1.006)^n$
 - (b) The population is growing at a rate of 0.6% per year.
 - (c) 1388.2 million. This value is close to the prediction.
 - (d) 2010
- **109.** 42 ft **111.** True. The terms all equal a_1 .
- **113.** $3, \frac{3x}{2}, \frac{3x^2}{4}, \frac{3x^3}{8}, \frac{3x^4}{16}$ 115. $100e^{8x}$
- **117.** (a) (b)

- Horizontal asymptote:
- y = 12
- Corresponds to the sum of the series
- Horizontal asymptote:
- y = 10
- Corresponds to the sum of the series.
- 119. Divide the second term by the first to obtain the common ratio. The nth term is the first term times the common ratio raised to the (n-1)th power.
- **123.** -102 **121.** 45.65 mi/h **125.** Answers will vary.

Section 8.4 (page 604)

- **1.** ${}_{n}C_{r}$ or $\binom{n}{r}$ 3. Binomial Theorem, Pascal's Triangle
- **5.** 21 **7.** 15,504 **9.** 14 **11.** 1 **13.** 210
- **17.** 749,398 **19.** 1225 **15.** 4950 **21.** 31.125
- **23.** $x^4 + 8x^3 + 24x^2 + 32x + 16$
- **25.** $a^3 + 9a^2 + 27a + 27$ **27.** $y^3 12y^2 + 48y 64$
- **29.** $x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$
- **31.** $r^6 + 18r^5s + 135r^4s^2 + 540r^3s^3 + 1215r^2s^4$ $+ 1458rs^5 + 729s^6$
- **33.** $x^5 5x^4y + 10x^3y^2 10x^2y^3 + 5xy^4 y^5$
- **35.** $1 12x + 48x^2 64x^3$
- **37.** $x^8 + 8x^6 + 24x^4 + 32x^2 + 16$
- **39.** $x^{10} 25x^8 + 250x^6 1250x^4 + 3125x^2 3125$
- **41.** $x^8 + 4x^6y^2 + 6x^4y^4 + 4x^2y^6 + y^8$
- **43.** $x^{18} 6x^{15}y + 15x^{12}y^2 20x^9y^3 + 15x^6y^4 6x^3y^5 + y^6$

- **45.** $\frac{1}{r^5} + \frac{5y}{r^4} + \frac{10y^2}{r^3} + \frac{10y^3}{r^2} + \frac{5y^4}{r} + y^5$
- **47.** $\frac{16}{x^4} \frac{32y}{x^3} + \frac{24y^2}{x^2} \frac{8y^3}{x} + y^4$
- **49.** $-512x^4 + 576x^3 240x^2 + 44x 3$
- **51.** $2x^4 24x^3 + 113x^2 246x + 207$
- **53.** $-4x^6 24x^5 60x^4 83x^3 42x^2 60x + 20$
- **57.** $360x^3y^2$ **59.** $1,259,712x^2y^7$ **55.** $61,440x^7$
- **61.** $-4,330,260,000x^3y^9$ **63.** 1,737,104 **65.** 180
- **67.** −489,888 **69.** 210 **71.** 35 **73.** 6
- **75.** $81t^4 216t^3v + 216t^2v^2 96tv^3 + 16v^4$
- **77.** $32x^5 240x^4y + 720x^3y^2 1080x^2y^3 + 810xy^4 243y^5$
- **79.** $x^5 + 10x^4y + 40x^3y^2 + 80x^2y^3 + 80xy^4 + 32y^5$
- **81.** $x^{3/2} + 15x + 75\sqrt{x} + 125$
- **83.** $x^2 3x^{4/3}y^{1/3} + 3x^{2/3}y^{2/3} y$
- **85.** $3x^2 + 3xh + h^2$, $h \neq 0$
- **87.** $6x^5 + 15x^4h + 20x^3h^2 + 15x^2h^3 + 6xh^4 + h^5$, $h \neq 0$

89.
$$\frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{1}{\sqrt{x+h} + \sqrt{x}}, \ h \neq 0$$

- **91.** -4 **93.** 161 + 240*i* **95.** 2035 + 828*i*
- **97.** -115 + 236i **99.** $-23 + 208\sqrt{3}i$
- **103.** $-\frac{1}{8}$ **105.** 1.172 **107.** 510,568.785
- g is shifted four units to the left of *f*.

111.

- p(x) is the expansion of f(x).
- **113.** 0.273 **115.** 0.171
- **117.** (a) $g(t) = 0.044t^2 + 1.32t + 17.1$

- 119. True. Pascal's Triangle is made up of binomial coefficients.
- **121.** False. The correct term is $126,720x^4y^8$. **123.** n + 1 terms
- **125.** (a) $5(2x)^4(-3y)^1 = -240x^4y$ (b) ${}_{6}C_{3}(\frac{1}{2}x)^{3}(7y)^{3} = 857.5x^{3}y^{3}$

131. $\begin{bmatrix} 1 & 2 \\ -0.5 & -0.5 \end{bmatrix}$ 127 and 129. Answers will vary.

Section 8.5 (page 613)

- 1. Fundamental Counting Principle 3. Permutation
- **5.** 8 **7.** 6 **9.** 11 **13.** 120 **11.** 10
- **15.** 1024 **17.** (a) 900 (b) 648 (c) 180
- **19.** 16,000,000 **21.** (a) 35,152 (b) 3902
- **23.** (a) 100,000 (b) 20,000 **25.** (a) 720 (b) 48
- **27.** 24 **29.** 336 **31.** 120 **33.** 27,907,200
- **39.** 362,880 **35.** 197,149,680 **37.** 120 **41.** 11,880
- **43.** 50,653

- 45. ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, CABD, CADB, DABC, DACB, BCAD, BDAC, CBAD, CDAB, DBAC, DCAB, BCDA, BDCA, CBDA, CDBA, DBCA, DCBA
- **53.** 4 **47.** 420 **49.** 2520 **51.** 10
- **57.** 15,504 **59.** 850,668
- 61. AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF, DE, DF,
- **63.** 2.53×10^{17} **65.** 195,249,054
- **67.** (a) 17,550 (b) 1053 (c) 27,378 **69.** 24
- **71.** 462.000 **73.** 5 **75.** 20 **77.** n = 5 or n = 6
- **79.** n = 10**81.** n = 3**83.** n = 2
- **87.** For some calculators the answer is too large. **85.** False.
- 89. "P" represents the number of ways to choose and order r elements out of a collection of n elements.
- 91 and 93. Answers will vary. **95.** 35 **97.** (-2, -8)

Section 8.6 (page 622)

- 1. sample space 3. mutually exclusive
- 5. $0 \le P(E) \le 1$ 7. P(E) = 1
- **9.** $\{(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6),$ (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)
- **11.** {ABC, ACB, BAC, BCA, CAB, CBA} 13. $\frac{3}{8}$

- 17. $\frac{3}{13}$ 19. $\frac{3}{52}$ 21. $\frac{5}{36}$ 23. $\frac{11}{12}$ 25. $\frac{3}{100}$ 29. $\frac{1}{5}$ 31. $\frac{2}{5}$ 33. 0.25 35. $\frac{1}{3}$ 37. 0.88 41. $\frac{4}{13}$ 43. $\frac{4}{13}$ 45. $\frac{9}{16}$ 47. $\frac{3}{32}$ 49. $\frac{1}{8}$ 5
- **53.** $P(\{\text{Taylor wins}\}) = \frac{1}{2}$ $P(\{\text{Moore wins}\}) = P(\{\text{Perez wins}\}) = \frac{1}{4}$
- **55.** (a) 20.22 million (b) 0.294 (c) 0.866
- **57.** (a) $\frac{1}{120}$ (b) $\frac{1}{24}$ **59.** (a) $\frac{14}{55}$ (b) $\frac{12}{55}$ (c) $\frac{54}{55}$ **61.** 0.1024 **63.** (a) $\frac{1}{15,625}$ (b) $\frac{4096}{15,625}$ (c) $\frac{11,529}{15,625}$
- **65.** (a) $\frac{\pi}{4}$ (b) Answers will vary.
- **67.** True. The sum of the probabilities of all outcomes must be 1.
- **69.** (a) As you consider successive people with distinct birthdays, the probabilities must decrease to take into account the birth dates already used. Because the birth dates of people are independent events, multiply the respective probabilities of distinct birthdays.
 - (b) $\frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365}$
 - (c) Answers will vary.
 - (d) Q_n is the probability that the birthdays are *not* distinct, which is equivalent to at least two people having the same birthday.

(e)	n	10	15	20	23	30	40	50
	P_n	0.88	0.75	0.59	0.49	0.29	0.11	0.03
	Q_n	0.12	0.25	0.41	0.51	0.71	0.89	0.97

- (f) 23
- **71.** (a) No. P(A) + P(B) = 0.76 + 0.58 = 1.34 > 1. The sum of the probabilities is greater than 1, so A and B cannot be mutually exclusive.
 - (b) Yes. A' = 0.24, B' = 0.42, and A' + B' = 0.66 < 1, so A' and B' can be mutually exclusive.
 - (c) $0.76 \le P(A \cup B) \le 1$
- **73.** 15 **75.** 165

Review Exercises (page 628)

1.
$$\frac{2}{3}$$
, $\frac{4}{5}$, $\frac{8}{9}$, $\frac{16}{17}$, $\frac{32}{33}$

3.
$$a_n = 5n$$

1.
$$\frac{2}{3}$$
, $\frac{4}{5}$, $\frac{8}{9}$, $\frac{16}{17}$, $\frac{32}{33}$ **3.** $a_n = 5n$ **5.** $a_n = \frac{2}{2n-1}$ **7.** 9, 5, 1, -3, -7 **9.** $\frac{1}{380}$ **11.** $(n+1)(n)$ **13.** 30

9.
$$\frac{1}{38}$$

11
$$(n + 1)(n)$$

1.
$$(n+1)(n)$$
 13. 3

15.
$$\frac{205}{24}$$

17.
$$\sum_{k=1}^{7} \frac{1}{2}$$

15.
$$\frac{205}{24}$$
 17. $\sum_{k=1}^{20} \frac{1}{2k} \approx 1.799$ **19.** $\sum_{k=1}^{9} \frac{k}{k+1} \approx 7.071$

21. (a)
$$\frac{1111}{2000}$$
 (b) $\frac{5}{9}$ **23.** (a) $\frac{15}{8}$ (b) 2

- (b) \$3662.38
- **27.** Arithmetic sequence, d = -2
- **29.** Arithmetic sequence, $d = \frac{1}{2}$
- **31.** 3, 7, 11, 15, 19 **33.** 1, 4, 7, 10, 13 **35.** 35, 32, 29, 26, 23; d = -3; $a_n = 38 - 3n$
- **37.** $a_n = 103 3n$; 1600 **39.** 80 **41.** 6375
- **43.** (a) \$45,000 (b) \$202,500
- **45.** Geometric sequence, r = 2**47.** Geometric sequence, $r = -\frac{1}{3}$
- **51.** 9, 6, 4, $\frac{8}{3}$, $\frac{16}{9}$ or 9, -6, 4, $-\frac{8}{3}$, $\frac{16}{9}$
- **53.** 120, 40, $\frac{40}{3}$, $\frac{40}{9}$, $\frac{40}{27}$; $r = \frac{1}{3}$; $a_n = 120(\frac{1}{3})^{n-1}$
- **55.** (a) $-\frac{1}{2}$ (b) -0.5 **57.** 127 **59.** 3277
- **63.** 12 **65.** (a) $a_t = 130,000(0.7)^t$ (b) \$21,849.10
- **69.** 126 **71.** $x^4 + 20x^3 + 150x^2 + 500x + 625$
- **73.** $a^5 20a^4b + 160a^3b^2 640a^2b^3 + 1280ab^4 1024b^5$
- **77.** 70 **79.** 10
- **81.** (a) 216 (b) 108 (c) 36 **83.** 239,500,800
- **85.** 5040 **87.** *n* = 3 **89.** 28 **91.** 479,001,600
- **95.** (a) 0.416 (b) 0.8 (c) 0.074

97. True.
$$\frac{(n+2)!}{n!} = \frac{(n+2)(n+1)n!}{n!} = (n+2)(n+1)$$

- 99. (a) Each term is obtained by adding the same constant (common difference) to the preceding term.
 - (b) Each term is obtained by multiplying the same constant (common ratio) by the preceding term.

Chapter Test (page 631)

1. 1,
$$-\frac{2}{3}$$
, $\frac{4}{9}$, $-\frac{8}{27}$, $\frac{16}{81}$ **2.** 12, 16, 20, 24, 28

3.
$$-x, \frac{x^2}{2}, -\frac{x^3}{3}, \frac{x^4}{4}, -\frac{x^5}{5}$$

$$\frac{x^{2}}{4} - \frac{x^{3}}{4} - \frac{x^{5}}{4} - \frac{x^{7}}{4} -$$

4.
$$-\frac{x^3}{6}$$
, $-\frac{x^5}{120}$, $-\frac{x^7}{5040}$, $-\frac{x^9}{362,880}$, $-\frac{x^{11}}{39,916,800}$ **5.** 7920

6.
$$\frac{1}{n+1}$$
 7. $2n$ **8.** $a_n = n^2 + 1$

9.
$$a_n = 5100 - 100n$$
 10. $a_n = 4(\frac{1}{2})^{n-1}$

11.
$$\sum_{n=1}^{12} \frac{2}{3n+1}$$
 12. $\sum_{n=1}^{\infty} 2(\frac{1}{4})^{n-1}$ 13. 189 14. 28.80

15.
$$\frac{25}{7}$$
 16. $16a^4 - 160a^3b + 600a^2b^2 - 1000ab^3 + 625b^4$

- **17.** 84 **18.** 1140 **19.** 72 **20.** 328,440
- **21.** n = 3 **22.** 26,000 **23.** 12,650 **24.** $\frac{3}{26}$
- **25.** $\frac{1}{462}$ **26.** (a) $\frac{1}{4}$ (b) $\frac{121}{3600}$ (c) $\frac{1}{60}$ **27.** 0.25

Chapter 9

Section 9.1 (page 643)

- 1. conic section 3. circle, center
- **5.** The standard form of the equation of a circle; (h, k) represents the center of the circle, r represents the radius of the circle.

7.
$$x^2 + y^2 = 16$$
 9. $(x - 3)^2 + (y - 7)^2 = 53$

11.
$$(x + 3)^2 + (y + 1)^2 = 7$$

- **13.** Center: (0, 0)
- **15.** Center: (-2, 7)
 - Radius: 4
- Radius: 7 **17.** Center: (1, 0)

Radius: $\sqrt{15}$

- **19.** $x^2 + y^2 = 4$
 - Center: (0, 0)
 - Radius: 2
- **21.** $x^2 + y^2 = \frac{3}{4}$
 - Center: (0,0)
 - Radius: $\frac{\sqrt{3}}{2}$
- **23.** $(x-1)^2 + (y+3)^2 = 1$ **25.** $(x+\frac{3}{2})^2 + (y-3)^2 = 1$
 - Center: (1, -3)
 - Radius: 1
- **27.** Center: (0, 0)
 - Radius: 4
- Center: $\left(-\frac{3}{2},3\right)$
 - Radius: 1
- **29.** Center: (-2, -2)
 - Radius: 3

- **31.** Center: (7, -4)
 - Radius: 5
 - -8-10 -12 -14 -

- **35.** *x*-intercept: (2, 0)
 - y-intercepts: $(0, -3 \pm \sqrt{5})$
- **37.** *x*-intercepts: $(1 \pm 2\sqrt{7}, 0)$ y-intercepts: (0, 9), (0, -3)
- **39.** *x*-intercepts: $(6 \pm \sqrt{7}, 0)$ y-intercept: none
- **41.** (a) $x^2 + y^2 = 2704$ (b) Yes (c) 2 mi
- **43.** e **44.** b **45.** d **46.** f **47.** a
- **49.** $x^2 = \frac{3}{2}y$ **51.** $x^2 = -6y$ **53.** $y^2 = -8x$ **55.** $x^2 = -4y$ **57.** $y^2 = -8x$ **59.** $y^2 = 9x$

7. 4

- **61.** Vertex: (0, 0) Focus: $(0,\frac{1}{2})$ Directrix: $y = -\frac{1}{2}$
- Focus: $(-\frac{3}{2}, 0)$ Directrix: x =

63. Vertex: (0, 0)

- **65.** Vertex: (0, 0) Focus: $(0, -\frac{3}{2})$ Directrix: $y = \frac{3}{2}$
- Focus: (-1, -4)Directrix: y = 0-10

-12

67. Vertex: (-1, -2)

- **69.** Vertex: (-2, -3)Focus: (-4, -3)
 - Directrix: x = 0
- **71.** Vertex: $\left(-\frac{3}{2}, 2\right)$ Focus: $(-\frac{3}{2}, 3)$ Directrix: v =

73. Vertex: (1, 1) Focus: (1, 2) Directrix: y = 0

75. Vertex: (-2, 1)Focus: $(-2, -\frac{1}{2})$ Directrix: y =

77. Vertex: $(\frac{1}{4}, -\frac{1}{2})$ Focus: $(0, -\frac{1}{2})$ Directrix: $x = \frac{1}{2}$

- **79.** $(x-3)^2 = -(y-1)$ **81.** $y^2 = 4(x+4)$
- **83.** $y^2 = 2(x+2)$ **85.** $(y-2)^2 = -8(x-5)$
- **87.** $x^2 = 8(y 4)$ **89.** $(y 2)^2 = 8x$
- 91.
 - (2, 4)
- **93.** 4x y 8 = 0; (2, 0) **95.** 4x y + 2 = 0; $\left(-\frac{1}{2}, 0\right)$
- **97.** (a) $x^2 = 12,288y$ (in feet) (b) 22.6 ft
- **99.** (a) $y^2 = 6x$ (b) 2.67 in.
- (b) $x^2 = \frac{51,200}{19}y$ **101.** (a) (640, 152) (-640, 152)

(c)	х	0	200	400	500	600
	у	0	14.844	59.375	92.773	133.59

- **103.** $y^2 = 640x$ **105.** (a) $x^2 = -49(y 100)$ (b) 70 ft
- **107.** $y = \frac{3}{4}x \frac{25}{4}$ **109.** $y = \frac{\sqrt{2}}{2}x 3\sqrt{2}$
- 111. False. $x^2 + (y + 5)^2 = 25$ represents a circle with its center at (0, -5) and a radius of 5.
- 113. False. A circle is a conic section.
- 115. True. The vertex is the closest point to the directrix or focus.
- 117. True. If the axis is horizontal, then the directrix must be vertical.
- 119. -5-4-3-2-1

The intersection results in a point.

- **121.** $y = -\sqrt{2(x-2)} 1$
- **123.** Minimum: (-0.75, -1.13)
- **125.** Minimum: (0.88, -3.11); maximum: (-0.88, 1.11)

(page 653) Section 9.2

- 1. ellipse, foci **3.** minor axis 5. Vertical
- **9.** b **10.** c **11.** a **12.** d

13. Center: (0, 0)

Vertices: $(\pm 8, 0)$

Foci: $(\pm \sqrt{55}, 0)$

Eccentricity: $\frac{\sqrt{55}}{2}$

15. Center: (4, -1)

Vertices: (4, 4), (4, -6)

Foci: (4, 2), (4, -4)

Eccentricity: $\frac{3}{5}$

17. Center: (-5, 1)

Vertices: $\left(-\frac{7}{2}, 1\right), \left(-\frac{13}{2}, 1\right)$

Foci: $\left(-5 \pm \frac{\sqrt{5}}{2}, 1\right)$

Eccentricity: $\frac{\sqrt{5}}{2}$

- **19.** $\frac{x^2}{4} + \frac{y^2}{16} = 1$ **21.** $\frac{x^2}{9} + \frac{y^2}{5} = 1$ **23.** $\frac{x^2}{49} + \frac{y^2}{24} = 1$
- **25.** $\frac{x^2}{400/21} + \frac{y^2}{25} = 1$ **27.** $\frac{(x-2)^2}{1} + \frac{(y-3)^2}{9} = 1$
- **29.** $\frac{(x-4)^2}{16} + \frac{(y-2)^2}{1} = 1$ **31.** $\frac{x^2}{308} + \frac{(y-4)^2}{324} = 1$
- 33. $\frac{(x-3)^2}{9} + \frac{(y-5)^2}{16} = 1$ 35. $\frac{x^2}{16} + \frac{(y-4)^2}{12} = 1$
- **37.** (a) $\frac{x^2}{36} + \frac{y^2}{4} = 1$
- (b) Center: (0, 0)

Vertices: $(\pm 6, 0)$

Foci: $(\pm 4\sqrt{2}, 0)$

Eccentricity: $\frac{2\sqrt{2}}{2}$

- **39.** (a) $\frac{x^2}{4} + \frac{y^2}{49} = 1$
 - (b) Center: (0, 0)

Vertices: $(0, \pm 7)$

Foci: $(0, \pm 3\sqrt{5})$

Eccentricity: $\frac{3\sqrt{5}}{7}$

- **41.** (a) $\frac{(x+2)^2}{4} + \frac{(y-3)^2}{9} = 1$
 - (b) Center: (-2, 3)

(-2, 6), (-2, 0)Foci: $(-2, 3 \pm \sqrt{5})$

Eccentricity: $\frac{\sqrt{5}}{2}$

43. (a) $\frac{\left(x+\frac{3}{2}\right)^2}{4} + \frac{\left(y-\frac{5}{2}\right)^2}{12} = 1$ (c)

(b) Center: $\left(-\frac{3}{2}, \frac{5}{2}\right)$

Vertices: $\left(-\frac{3}{2}, \frac{5 \pm 4\sqrt{3}}{2}\right)$

Foci: $\left(-\frac{3}{2}, \frac{5}{2} \pm 2\sqrt{2}\right)$

- **45.** (a) $\frac{(x-1)^2}{25/16} + (y+1)^2 = 1$ (c)
 - (b) Center: (1, -1)

Vertices:

$$\left(\frac{9}{4},-1\right),\left(-\frac{1}{4},-1\right)$$

Foci: $(\frac{7}{4}, -1), (\frac{1}{4}, -1)$

Eccentricity: $\frac{3}{5}$

47. (a) $\frac{\left(x-\frac{1}{2}\right)^2}{5} + \frac{\left(y+1\right)^2}{2} = 1$ (c)

(b) Center: $\left(\frac{1}{2}, -1\right)$

Vertices: $\left(\frac{1}{2} \pm \sqrt{5}, -1\right)$

Foci: $\left(\frac{1}{2} \pm \sqrt{2}, -1\right)$ Eccentricity: $\frac{\sqrt{10}}{5}$

- **49.** $\frac{\sqrt{5}}{2}$ **51.** $\frac{2\sqrt{2}}{3}$ **53.** $\frac{x^2}{25} + \frac{y^2}{16} = 1$
- **55.** $\frac{x^2}{225/16} + \frac{y^2}{81/16} = 1$ **57.** $(\pm \sqrt{5}, 0)$; 6 ft
- **59.** $\frac{x^2}{321.84} + \frac{y^2}{19.02} = 1$ **61.** $e = \frac{c}{a} \approx 0.052$

- **67.** True. The ellipse is more elongated when e is close to 1.
- 69. Nearly circular because its eccentricity is about 0.055, which is close to zero.

10. d

- **71.** (a) 2*a*
 - (b) The sum of the distances from the two fixed points
- **73.** $\frac{(x-6)^2}{324} + \frac{(y-2)^2}{308} = 1$ 75. Arithmetic
- **77.** Geometric

Section 9.3 (page 665)

- 1. hyperbola
- 3. $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
- 5. Horizontal: a, d; vertical: b, c
- **7.** b **8.** c **9.** a
- **11.** Center: (0, 0)
- - Vertices: $(\pm 1, 0)$

Foci: $(\pm\sqrt{2},0)$

Asymptotes: $y = \pm x$

- **15.** Center: (0, 0)
 - Vertices: $(0, \pm 5)$
 - Foci: $(0, \pm \sqrt{106})$
 - Asymptotes: $y = \pm \frac{5}{9}x$

17. Center: (1, -2)

13. Center: (0, 0)

Vertices: $(0, \pm 1)$

Foci: $(0, \pm \sqrt{5})$

Asymptotes: $y = \pm \frac{1}{2}x$

- Vertices:
- (3, -2), (-1, -2)
- Foci: $(1 \pm \sqrt{5}, -2)$
- Asymptotes:

$$y = -2 \pm \frac{1}{2}(x - 1)$$

- **19.** Center: (1, -5)
 - Vertices: $\left(1, -5 \pm \frac{1}{3}\right)$
 - Foci: $\left(1, -5 \pm \frac{\sqrt{13}}{6}\right)$

Asymptotes:

$$y = -5 \pm \frac{2}{3}(x - 1)$$

- **21.** (a) $\frac{x^2}{9} \frac{y^2}{4} = 1$
 - (b) Center: (0, 0)
 - Vertices: $(\pm 3, 0)$ Foci: $(\pm\sqrt{13},0)$

 - Asymptotes: $y = \pm \frac{2}{3}x$

- **23.** (a) $\frac{x^2}{3} \frac{y^2}{2} = 1$
 - (b) Center: (0, 0)
 - Foci: $(\pm\sqrt{5},0)$
 - Asymptotes: $y = \pm \frac{\sqrt{6}}{3}x$

(c)

- **25.** (a) $(x-2)^2 \frac{(y+3)^2}{9} = 1$
 - (b) Center: (2, -3)
 - Vertices:
 - (3, -3), (1, -3)
 - Foci: $(2 \pm \sqrt{10}, -3)$
 - Asymptotes: $y = -3 \pm 3(x - 2)$

- **27.** (a) $(x + 1)^2 9(y + 3)^2 = 0$
 - (b) It is a degenerate conic. The graph of this equation is two lines intersecting at (-1, -3).

- **29.** (a) $\frac{(y+3)^2}{2} \frac{(x-1)^2}{18} = 1$
 - (b) Center: (1, -3)
 - Vertices: $(1, -3 \pm \sqrt{2})$
 - Foci: $(1, -3 \pm 2\sqrt{5})$
 - Asymptotes: $y = -3 \pm \frac{1}{3}(x 1)$

- **31.** $\frac{y^2}{4} \frac{x^2}{12} = 1$ **33.** $\frac{x^2}{1} \frac{y^2}{25} = 1$
- 35. $\frac{17y^2}{1024} \frac{17x^2}{64} = 1$ 37. $\frac{(x-4)^2}{4} \frac{y^2}{12} = 1$ 39. $\frac{(y-5)^2}{16} \frac{(x-4)^2}{9} = 1$ 41. $\frac{y^2}{9} \frac{4(x-2)^2}{9} = 1$
- **43.** $\frac{(y-2)^2}{4} \frac{x^2}{4} = 1$ **45.** $\frac{(x-2)^2}{1} \frac{(y-2)^2}{1} = 1$
- **47.** $\frac{(x-3)^2}{9} \frac{(y-2)^2}{4} = 1$
- **49.** $\frac{x^2}{98.010.000} \frac{y^2}{13.503.600} = 1$
- **51.** (a) $x^2 \frac{y^2}{27} = 1$ (b) 1.89 ft = 22.68 in.
- **53.** $(12\sqrt{5} 12, 0) \approx (14.83, 0)$
- **55.** Ellipse 57. Hyperbola 59. Parabola
- **61.** Circle 63. Parabola
- **65.** e **66.** b **67.** f
- **68.** a **69.** d **70.** c
- **71.** (3, 0)
- **73.** $\frac{(y')^2}{2} \frac{(x')^2}{2} = 1$ **75.** $(x')^2 \frac{(y')^2}{1/3} = 1$

- 77. $\frac{(x')^2}{6} + \frac{(y')^2}{3/2} = 1$
- **79.** $x' = -(y')^2$

- 81.
- 83.
- $\theta = 45^{\circ}$:

- $\theta \approx 26.57^{\circ}$;
- Answers will vary.
- Answers will vary.

- **89.** True. For a hyperbola, $c^2 = a^2 + b^2$. The larger the ratio of b to a, the larger the eccentricity of the hyperbola, e = c/a.
- **91.** False. If D = E or D = -E, the graph is two intersecting lines. For example, the graph of $x^2 - y^2 - 2x + 2y = 0$ is two intersecting lines.
- **93.** False. The constant term F remains the same.
- **95.** The asymptotes pass through the corners of the rectangle.
- **97.** $\frac{(x-6)^2}{9} \frac{(y-2)^2}{7} = 1$ **99.** Proof
- **101.** $x^3 + x^2 + 2x 6$ **103.** $x^2 2x + 1 + \frac{2}{x + 2}$
- **105.** x(x + 4)(x 4) **107.** $2x(x 6)^2$
- **109.** $2(2x + 3)(4x^2 6x + 9)$
- 111. 113.

Section 9.4 (page 674)

- 1. plane curve, parametric equations, parameter
- 3. Eliminate the parameter.
- **5.** c **6.** d **7.** b **8.** a
- **9.** (a) 2 0 3 4 $\sqrt{2}$ $\sqrt{3}$ 2 0 -2

The curve starts at (0, 2) and moves along the right half of the parabola.

The graph is an entire parabola rather than just the right

11. b

15.

17.

19.

 $y = 16x^2$

23.

25.

$$v = \ln x$$

29.

31.

33.

35. Each curve represents a portion of the line y = 2x + 1.

Domain

(a) $(-\infty, \infty)$

Left to right

(b) [-1, 1]

Depends on θ Right to left

Orientation

(c) $(0, \infty)$ (d) $(0, \infty)$

Left to right

37.
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
 39. $\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1$

41.
$$x = 3 - 5t$$
, $y = 1 + 5t$

41. x = 3 - 5t, y = 1 + 5t **43.** $x = 5 \cos \theta$, $y = 4 \sin \theta$

45. (a)
$$x = t, y = 5t - 3$$
 (b) $x = 2 - t, y = -5t + 7$

(b)
$$x = 2 - t, y = -5t$$

47. (a)
$$x = t, y = \frac{1}{t}$$
 (b) $x = 2 - t, y = \frac{1}{2 - t}$

49. (a)
$$x = t, y = 6t^2 - 5$$

(b)
$$x = 2 - t$$
, $y = 6t^2 - 24t + 19$

51. (a)
$$x = t, y = e^t$$
 (b) $x = 2 - t, y = e^{2-t}$

53.

55.

60. a

- **57.** b **58.** c
- **59.** d **61.** (a) $x = (146.67 \cos \theta)t$

$$y = 3 + (146.67 \sin \theta)t - 16t^2$$

(b)

(c)

No

- (d) About 19.4°
- 63. True. Both sets of parametric equations correspond to
- **65.** False. The set $x = t^2$, y = t does not correspond to y as a function of *x*.
- **67.** Yes, the orientation would be reversed.
- **69.** Even 71. Neither

Section 9.5 (page 681)

1. pole

3. $x = r \cos \theta$, $y = r \sin \theta$ and $\tan \theta = \frac{y}{x}$, $r^2 = x^2 + y^2$

5.
$$(0,4)$$
 7. $\left(\frac{\sqrt{2}}{2}\right)$

$$(3, -\frac{7\pi}{6}), (-3, \frac{11\pi}{6}), (-3, -\frac{\pi}{6})$$

11.

$$\left(-1,\frac{5\pi}{3}\right),\left(1,\frac{2\pi}{3}\right),\left(1,-\frac{4\pi}{3}\right)$$

$$\left(-\sqrt{3}, \frac{11\pi}{6}\right), \left(\sqrt{3}, -\frac{7\pi}{6}\right), \left(-\sqrt{3}, -\frac{\pi}{6}\right)$$

15.

$$\left(\frac{3}{2}, \frac{\pi}{2}\right), \left(-\frac{3}{2}, \frac{3\pi}{2}\right), \left(-\frac{3}{2}, -\frac{\pi}{2}\right)$$

17.

$$(2,-2\sqrt{3})$$

$$\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

21.

(0, 0)

35.

$$(7, \pi), (-7, 0)$$

$$\left(\sqrt{2},\frac{\pi}{4}\right),\left(-\sqrt{2},\frac{5\pi}{4}\right)$$

39.

$$(5, 2.214), (-5, 5.356)$$

$$\left(\sqrt{6}, \frac{5\pi}{4}\right), \left(-\sqrt{6}, \frac{\pi}{4}\right)$$

43.

$$31 \quad r = 3$$
 53

51.
$$r = 3$$
 53. $r = 4 \csc \theta$ **55.** $r = 8 \sec \theta$

55
$$r = 8 \sec \theta$$

57.
$$r = -\frac{2}{3\cos\theta - \sin\theta}$$
 59. $r^2 = 8\csc 2\theta$

59.
$$r^2 = 8 \csc 2\theta$$

$$5 \cos \theta - 61$$
 $r^2 = 9 \cos 2\theta$

61.
$$r^2 = 9\cos 2\theta$$
 63. $r = 6\cos \theta$ **65.** $r = 2a\cos \theta$

67.
$$r = \tan^2 \theta \sec \theta$$

67.
$$r = \tan^2 \theta \sec \theta$$
 69. $x^2 + y^2 - 4y = 0$

- **71.** $y = -\sqrt{3}x$ **73.** $y = -\frac{\sqrt{3}}{3}x$ **75.** x = 0
- **77.** $x^2 + y^2 = 16$ **79.** y = -3 **81.** $(x^2 + y^2)^3 = x^2$ **83.** $(x^2 + y^2)^2 = 6x^2y 2y^3$ **85.** $y^2 = 2x + 1$
- **87.** $4x^2 5y^2 = 36y + 36$
- 89. The graph is a circle centered at the origin with a radius of

91. The graph consists of all points on the line that makes an angle of $\pi/4$ with the positive x-axis; x - y = 0.

93. The graph is a vertical line through (3, 0); x - 3 = 0.

- **95.** True. Because r is a directed distance, (r, θ) can be represented by $(-r, \theta \pm (2n + 1)\pi)$, so |r| = |-r|.
- 97. (a) Answers will vary.
 - (b) The points lie on a line passing through the pole.

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2} = |r_1 - r_2|$$

(c) $d = \sqrt{r_1^2 + r_2^2}$ (Pythagorean Theorem)

Answers will vary.

(d) Answers will vary. The Distance Formula should give the same result in both cases.

99.
$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{5}{2}$$
; A circle centered at $\left(\frac{1}{2}, \frac{3}{2}\right)$ with a radius of $\frac{\sqrt{10}}{2}$.

101. $A \approx 30.68^{\circ}$ **103.** $a \approx 16.16$ $B \approx 48.23^{\circ}$ $b \approx 19.44$ $C \approx 101.09^{\circ}$ $B \approx 86^{\circ}$

(page 689) Section 9.6

- 1. convex limaçon 3. lemniscate
- **5.** When (r, θ) can be replaced with $(r, \pi \theta)$ or $(-r, -\theta)$ and yield an equivalent equation

- 7. Rose curve
- 9. Lemniscate
- 11. Rose curve
- **13.** a

- **15.** c 17. Polar axis
- **19.** $\theta = \frac{\pi}{2}$ **21.** $\theta = \frac{\pi}{2}$
- **23.** Pole
- 25.

27.

Answers will vary.

Answers will vary.

47.

49.

53.

57.

Answers will vary.

Answers will vary.

Answers will vary.

 $0 \le \theta < 2\pi$

$$0 \le \theta < 4\pi$$

63. True. n = 565. Answers will vary.

67. (a)
$$r = 2 - \sin\left(\theta - \frac{\pi}{4}\right)$$

(b)
$$r = 2 + \cos \theta$$

(c)
$$r = 2 + \sin \theta$$

(d)
$$r = 2 - \cos \theta$$

69.

k = 0; circle

k = 1; convex limaçon

k = 2; cardioid

k = 3; limaçon with inner loop

71.
$$x = -3, 3$$

73.
$$x = \frac{13}{5}$$

Section 9.7 (page 695)

1. conic

5.

3. vertical

11. f

(a) Parabola

- (b) Ellipse
- (a) Parabola
- (b) Ellipse

(c) Hyperbola

(c) Hyperbola

9. b **10.** c

- **12.** e
- **13.** d **14.** a

- 15. Parabola
- 17. Ellipse
- 19. Ellipse 23. Hyperbola
- 21. Ellipse 25. Parabola

27. Hyperbola

29. Ellipse

31.

33.

35.

37.
$$r = \frac{1}{1 - \cos \theta}$$
 39. $r = \frac{1}{2 + \sin \theta}$

39.
$$r = \frac{1}{2 + \sin \theta}$$

41.
$$r = \frac{2}{1 + 2\cos\theta}$$

43.
$$r = \frac{2}{1 - \sin \theta}$$

45.
$$r = \frac{10}{1 - \cos \theta}$$

45.
$$r = \frac{10}{1 - \cos \theta}$$
 47. $r = \frac{10}{3 + 2\cos \theta}$

49.
$$r = \frac{20}{3 - 2\cos\theta}$$
 51. $r = \frac{16}{3 + 5\cos\theta}$

51.
$$r = \frac{16}{3 + 5\cos\theta}$$

53. Answers will vary.

55.
$$r = \frac{9.2930 \times 10^7}{1 - 0.0167 \cos \theta}$$

57.
$$r = \frac{6.7280 \times 10^7}{1 - 0.0068 \cos \theta}$$

Perihelion:

$$9.1404 \times 10^{7} \, \text{mi}$$

9.4508
$$\times 10^7 \, \text{mi}$$

 $6.6781 \times 10^7 \text{ mi}$

Aphelion:

 $6.7695\times10^7~mi$

59. (a)
$$r_{\text{Neptune}} = \frac{4.4977 \times 10^9}{1 - 0.0086 \cos \theta}$$

$$r_{\rm Pluto} = \frac{5.5404 \times 10^9}{1 - 0.2488 \cos \theta}$$

(b) Neptune: Perihelion: $4.4593 \times 10^9 \text{ km}$

Aphelion: $4.5367 \times 10^9 \text{ km}$

Pluto: Perihelion: 4.4366 × 109 km Aphelion: $7.3754 \times 10^9 \text{ km}$

- (d) Yes; because on average, Pluto is farther from the sun than
- (e) Using a graphing utility, it would appear that the orbits intersect. No, Pluto and Neptune will never collide because the orbits do not intersect in three-dimensional space.

CHAPTER 9

61. False. The equation can be rewritten as $r = \frac{-4/3}{1 + \sin \theta}$

Because ep is negative, p must be negative, and because prepresents the distance between the pole and the directrix, the directrix has to be below the pole.

- **63.** True. The graphs represent the same hyperbola.
- 65. Answers will vary.

67.
$$r^2 = \frac{24,336}{169 - 25\cos^2\theta}$$
 69. $r^2 = \frac{400}{25 - 9\cos^2\theta}$

69.
$$r^2 = \frac{400}{25 - 9\cos^2\theta}$$

71.
$$r^2 = \frac{144}{25 \sin^2 \theta - 16}$$

- 73. (a) Ellipse
 - (b) $r = \frac{4}{1 + 0.4 \cos \theta}$ is reflected about the line $\theta = \frac{\pi}{2}$.

 $r = \frac{4}{1 - 0.4 \sin \theta}$ is rotated 90° counterclockwise.

75. Circle **77.** $\frac{\sqrt{2}}{10}$ **79.** $\frac{\sqrt{2}}{10}$

77.
$$\frac{\sqrt{2}}{10}$$

79.
$$\frac{\sqrt{2}}{10}$$

Review Exercises (page 700)

- 1. Hyperbola
- 3. $x^2 + y^2 = 25$
- 5. $(x-2)^2 + (y-4)^2 = 13$
- 7. $x^2 + y^2 = 36$
- Center: (0,0)
- **9.** $\left(x \frac{1}{2}\right)^2 + \left(y + \frac{3}{4}\right)^2 = 1$ Center: $\left(\frac{1}{2}, -\frac{3}{4}\right)$
- Radius: 6
- **13.** $(3 \pm \sqrt{6}, 0)$

Center: (-2, -3)

Radius: 4

- **15.** Vertex: (0, 0)
 - Focus: (1, 0)
 - Directrix: x = -1
- Focus: (-9, 0)Directrix: x = 9

17. Vertex: (0, 0)

- **19.** $y^2 = 16x$ **21.** $(x + 6)^2 = -9(y - 4)$
- **23.** 2x + y 2 = 0; (1, 0) **25.** $8\sqrt{6}$ m

- **27.** Center: (0, 0)
 - Vertices: $(0, \pm 4)$

Foci: $(0, \pm 2\sqrt{3})$

Eccentricity: $\frac{\sqrt{3}}{2}$

- **31.** (a) $\frac{(x-1)^2}{9} + \frac{(y+4)^2}{16} = 1$
 - (b) Center: (1, -4)

Vertices: (1, 0), (1, -8)Foci: $(1, -4 \pm \sqrt{7})$

Eccentricity: $\frac{\sqrt{7}}{4}$

- **33.** (a) $\frac{(x+2)^2}{1/3} + \frac{(y-7)^2}{1/8} = 1$
 - (b) Center: (-2, 7)Vertices: $\left(-2 \pm \frac{\sqrt{3}}{3}, 7\right)$

Foci: $\left(-2 \pm \frac{\sqrt{30}}{12}, 7\right)$ Eccentricity: $\frac{\sqrt{10}}{4}$

- **35.** $\frac{x^2}{25} + \frac{y^2}{9} = 1$ **37.** $\frac{(x-2)^2}{25} + \frac{y^2}{21} = 1$
- 39. The foci should be placed 3 feet on either side of the center at the same height as the pillars.
- **41.** $e \approx 0.0543$ **43.** $\frac{x^2}{16} \frac{y^2}{20} = 1$
- **45.** $\frac{(x-4)^2}{16/5} \frac{y^2}{64/5} = 1$
- **47.** (a) $\frac{y^2}{4} \frac{x^2}{5} = 1$
 - (b) Center: (0, 0) Vertices: $(0, \pm 2)$

Foci: $(0, \pm 3)$

Eccentricity: $\frac{3}{2}$

- **49.** (a) $\frac{(x-1)^2}{16} \frac{(y+1)^2}{9} = 1$
 - (b) Center: (1, -1)

Vertices:

$$(5,-1), (-3,-1)$$

Foci: (6, -1), (-4, -1)

Eccentricity: $\frac{5}{4}$

- **51.** (a) $\frac{(x+6)^2}{101/2} \frac{(y-1)^2}{202} = 1$
 - (b) Center: (-6, 1)

Vertices:

$$\left(-6 \pm \frac{\sqrt{202}}{2}, 1\right)$$

53. About 72 mi **55.** Ellipse

59.
$$\frac{(x')^2}{6} - \frac{(y')^2}{6} = 1$$

61. $\frac{(x')^2}{3} + \frac{(y')^2}{2} = 1$

63. 0 3 -24 7 \boldsymbol{x} -8-5-21 15 11 7 3 -1-5

69.

73.

77.

- **79.**
- 81.
- **83.** (a) x = t, y = 6t + 2 (b) x = 1 t, y = 8 6t
- **85.** (a) $x = t, y = t^2 + 2$ (b) $x = 1 t, y = t^2 2t + 3$
- **87.** x = t, y = 5 **89.** x = -1 + 11t, y = 6 6t
- **91.** 54.22 ft/sec
- 93. 25

21.93 ft

95.

 $\left(-2,\frac{\pi}{6}\right),\left(2,\frac{7\pi}{6}\right),\left(2,-\frac{5\pi}{6}\right)$

99.

$$(-7, -2.09), (7, -5.23), (7, 1.05)$$

 $\frac{\pi}{2}$ **103.**

101.

$$\left(-\frac{3\sqrt{2}}{2},\frac{3\sqrt{2}}{2}\right)$$

$$\left(-9, \frac{\pi}{2}\right), \left(9, \frac{3\pi}{2}\right)$$

109.

$$\left(-5\sqrt{2}, \frac{3\pi}{4}\right), \left(5\sqrt{2}, \frac{7\pi}{4}\right)$$
111. $r = 9$ **113.** $r = 4\cos\theta$ **115.** $r^2 = 5\sec\theta\csc\theta$

115.
$$r^2 = 5 \sec \theta \csc \theta$$

117.
$$r^2 = \frac{1}{1 + 3\cos^2\theta}$$
 119. $x^2 + y^2 = 25$

119.
$$x^2 + y^2 = 2$$

121.
$$x^2 + y^2 = 3x$$

121.
$$x^2 + y^2 = 3x$$
 123. $(x^2 + y^2)^2 - x^2 + y^2 = 0$

125.
$$y = -\frac{\sqrt{3}}{3}x$$

127.

129.

131.

133. Dimpled limaçon

135. Limaçon with inner loop

Symmetry: Polar axis

Symmetry: $\theta = \frac{\pi}{2}$

Zeros of r: $\theta \approx 0.64, 2.50$

137. Rose curve

139. Lemniscate

Symmetry:

ymmetry: Symmetry: Pole Pole, polar axis,
$$\theta = \frac{\pi}{2}$$
 Zeros of r : $\theta = 0, \frac{\pi}{2}$

fore, point units,
$$\frac{\pi}{2}$$

$$\pi 3\pi 5\pi 7\pi$$

Zeros of r: $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

141. Hyperbola

143. Ellipse

145. Ellipse

147.
$$r = \frac{4}{1 - \cos \theta}$$
 149. $r = \frac{5}{3 - 2\cos \theta}$

149.
$$r = \frac{5}{3 - 2\cos\theta}$$

151.
$$r = \frac{1.512}{1 - 0.093\cos\theta}$$

Perihelion: 1.383 astronomical units

Aphelion: 1.667 astronomical units

153. False. The equation of a hyperbola is a second-degree equation.

- **155.** (a) Vertical translation
- (b) Horizontal translation
- (c) Reflection in the y-axis
- (d) Vertical shrink
- **157.** The orientation would be reversed.

Chapter Test (page 704)

1.

Vertex: (0, 0)

Vertex: (1, 0)

3.

Vertices: (0, 0), (4, 0)

Foci:
$$(2 \pm \sqrt{5}, 0)$$

5.
$$\frac{(x+6)^2}{16} + \frac{(y-3)^2}{49} = 1$$

6.
$$\frac{y^2}{9} - \frac{x^2}{4} =$$

7.

Answers will vary.

8. (a) 45°

9.

10.

$$(y + 1)^2 = \frac{1}{4}(x + 6)$$

$$(y+1)^2 = \frac{1}{4}(x+6)$$
 $\frac{x^2}{2} - \frac{y^2}{1/8} = 1, \ x \ge \sqrt{2}$

11.

$$\frac{(x-2)^2}{9} + \frac{y^2}{4} = 1$$

12. (a)
$$x = t, y = 7 - 4t$$
 (b) $x = 2 - t, y = 4t - 1$

13. (a)
$$x = t, y = \frac{3}{t}$$
 (b) $x = 2 - t, y = \frac{3}{2 - t}$
14. (a) $x = t, y = t^2 + 10$ (b) $x = t - 2, y = t^2 - 4t + 14$

14. (a)
$$x = t$$
, $y = t^2 + 10$ (b) $x = t - 2$, $y = t^2 - 4t + 14$

15.
$$(\sqrt{3}, -1)$$

16. Sample answer:
$$\left(2\sqrt{2}, \frac{7\pi}{4}\right)$$
; $\left(2\sqrt{2}, -\frac{\pi}{4}\right)$, $\left(-2\sqrt{2}, \frac{3\pi}{4}\right)$

17.
$$r = 3\cos\theta$$
 18. $x^2 + (y-1)^2 = 1$

19. Limaçon with inner loop **20.** Parabola

21. Hyperbola

22.
$$r = \frac{4}{4 + \sin \theta}$$
 23. $r = \frac{10}{4 + 5\sin \theta}$

24. Maximum:
$$|r| = 8$$

Zeros of r:
$$\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$

Cumulative Test for Chapters 7-9 (page 705)

1.
$$(4, -3)$$
 2. $(8, 4), (2, -2)$

3.
$$\left(\frac{3}{5}, -4, -\frac{1}{5}\right)$$
 4. $(1, -4, -4)$

5.
$$\begin{bmatrix} -7 & -10 & -16 \\ -6 & 18 & 9 \\ -12 & 16 & 7 \end{bmatrix}$$
 6.
$$\begin{bmatrix} -18 & 15 & -14 \\ 28 & 11 & 34 \\ -20 & 52 & -1 \end{bmatrix}$$

7.
$$\begin{bmatrix} 3 & -31 & 2 \\ 22 & 18 & 6 \\ 52 & -40 & 14 \end{bmatrix}$$
 8.
$$\begin{bmatrix} 5 & 36 & 31 \\ -36 & 12 & -36 \\ 16 & 0 & 18 \end{bmatrix}$$

9. (a)
$$\begin{bmatrix} -175 & 37 & -13 \\ 95 & -20 & 7 \\ 14 & -3 & 1 \end{bmatrix}$$
 (b) 1

10. 22 11. (a)
$$\frac{1}{5}$$
, $-\frac{1}{7}$, $\frac{1}{9}$, $-\frac{1}{11}$, $\frac{1}{13}$ (b) 3, 6, 12, 24, 48
12. 135 13. $\frac{47}{52}$ 14. 34.48 15. 66.67 16. $\frac{15}{8}$
17. $-\frac{5}{51}$ 18. $\frac{8}{3}$ 19. (a) 190 (b) 190

15. 66.67 **16.**
$$\frac{15}{8}$$

17
$$-\frac{5}{18}$$
 18 $\frac{32}{8}$ 10 (a) 100 (b) 100

20.
$$x^4 + 12x^3 + 54x^2 + 108x + 81$$

- **21.** $32x^5 + 80x^4y^2 + 80x^3y^4 + 40x^2y^6 + 10xy^8 + y^{10}$
- **22.** $x^6 12x^5y + 60x^4y^2 160x^3y^3 + 240x^2y^4 192xy^5 + 64y^6$
- **23.** $6561a^8 69,984a^7b + 326,592a^6b^2 870,912a^5b^3$ $+ 1,451,520a^4b^4 - 1,548,288a^3b^5 + 1,032,192a^2b^6$ $-393,216ab^7+65,536b^8$
- **25.** 420 **24.** 120
- **26.** 302,400 **27.** 15,120
- 28. Hyperbola

29. Ellipse

30. Hyperbola

31. Circle

33.
$$\frac{(x-1)^2}{25} + \frac{(y-4)^2}{4} = 1$$
 34. $\frac{(y+4)^2}{4} - \frac{x^2}{16/3} = 1$

- $\theta \approx 37.98^{\circ}$
- **36.** (a) and (b)

37. (a) and (b)

- (c) $y = 2 2x^2$,

38. (a) and (b)

- **39.** (a) x = t, y = 3t 2 (b) x = 2t, y = 6t 2

- **40.** (a) x = t, $y = t^2 16$ (b) x = 2t, $y = 4t^2 16$
- **41.** (a) $x = t, y = \frac{2}{t}$ (b) $x = 2t, y = \frac{1}{t}$
- **42.** (a) $x = t, y = \frac{e^{2t}}{e^{2t} + 1}$ (b) $x = 2t, y = \frac{e^{4t}}{e^{4t} + 1}$

 $\left(8, -\frac{7\pi}{6}\right), \left(-8, -\frac{\pi}{6}\right), \left(-8, \frac{11\pi}{6}\right)$

 $\left(5,\frac{5\pi}{4}\right),\left(-5,-\frac{7\pi}{4}\right),\left(-5,\frac{\pi}{4}\right)$

 $\left(-2, \frac{5\pi}{4}\right) \left(-2, -\frac{3\pi}{4}\right), \left(2, -\frac{7\pi}{4}\right), \left(2, \frac{\pi}{4}\right)$

46.

47. $r = -\frac{1}{4 \sin \theta + 4 \cos \theta}$

 $\left(-3, \frac{\pi}{6}\right), \left(3, -\frac{5\pi}{6}\right), \left(3, \frac{7\pi}{6}\right)$

- **49.** $\frac{\left(x + \frac{10}{9}\right)^2}{\frac{64}{2}} \frac{y^2}{\frac{4}{2}} = 1$
- 50. Circle

51. Dimpled limaçon

54. $\frac{1}{4}$

52. Limaçon with inner loop

- **53.** \$701,303.32 **55.** $24\sqrt{2}$ m

Chapter 10

Section 10.1 (page 716)

- 1. three-dimensional 3. Distance Formula
- **5.** surface, space
- 7. A sphere with center (h, k, j) and radius r
- **9.** A(-1, 4, 3), B(1, 3, -2), C(-3, 0, -2)
- **11.** A(-2, -1, 4), B(3, -2, 0), C(-2, 2, -3)

- **19.** (-3, 3, 5)**21.** (11, 0, 0)
- 23. Octant V 25. Octants I, II, III, and IV 27. Octants II, IV, VI, and VIII
- **29.** $3\sqrt{21}$ units 31. $\sqrt{65}$ units
- **33.** $\sqrt{114}$ units **35.** $\sqrt{105}$ units **37.** $2\sqrt{5}$, 3, $\sqrt{29}$
- **39.** 3, 6, $3\sqrt{5}$ **41.** 6, 6, $2\sqrt{10}$; isosceles triangle
- **43.** 6, 6, $2\sqrt{10}$; isosceles triangle
- **47.** (1, 0, 6) **49.** $(\frac{5}{2}, 2, 6)$ **45.** (0, -1, 7)
- **51.** $(x-3)^2 + (y-2)^2 + (z-4)^2 = 16$
- **53.** $(x + 1)^2 + (y 2)^2 + z^2 = 3$
- **55.** $x^2 + (y 4)^2 + (z 3)^2 = 16$
- **57.** $(x + 3)^2 + (y 7)^2 + (z 5)^2 = 25$
- **59.** $(x-\frac{3}{2})^2+y^2+(z-3)^2=\frac{45}{4}$
- **61.** Center: (3, 0, 0); radius: 3
- **63.** Center: (2, -1, 0); radius: $\sqrt{5}$
- **65.** Center: (2, -1, 3); radius: 2
- **67.** Center: (-2, 0, 4); radius: 1
- **69.** Center: $(1, \frac{1}{3}, 4)$; radius: 3
- **71.** Center: (1, -2, 0); radius: $\frac{\sqrt{21}}{2}$
- **73.** Center: $(\frac{1}{3}, -1, 0)$; radius: 1

77.

79.

83.

- **87.** $x^2 + y^2 + z^2 = \frac{205^2}{4}$ **85.** (3, 3, 3)
- **89.** False. z is the directed distance from the xy-plane to P.
- **91.** 0; 0; 0 **93.** $(x_2, y_2, z_2) = (2x_m x_1, 2y_m y_1, 2z_m z_1)$
- **95.** $v = -\frac{3 \pm \sqrt{17}}{2}$ **97.** $x = \frac{5 \pm \sqrt{5}}{2}$ **99.** $y = -\frac{1 \pm \sqrt{10}}{2}$

Section 10.2 (page 724)

- 5. $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$ **3.** parallel
- 7. (a) (0, 0, 4)

15. (a)

9. (a) $\langle -2, 3, 1 \rangle$

(b)

- (c) $\frac{\sqrt{11}}{33} \langle 7, -5, 5 \rangle$ **11.** (a) $\langle 7, -5, 5 \rangle$ (b) $3\sqrt{11}$
- (b) $2\sqrt{2}$ (c) $\frac{\sqrt{2}}{2}\langle 1, 1, 0 \rangle$ **13.** (a) $\langle 2, 2, 0 \rangle$

- **17.** (a) (b)
 - (c) (d)
- **19.** $z = \langle -3, 7, 6 \rangle$
- **21.** $\mathbf{z} = \langle \frac{1}{2}, 6, \frac{3}{2} \rangle$ **25.** $9\sqrt{2}$ **27.** $\sqrt{21}$ **23.** $\mathbf{z} = \left\langle -\frac{5}{2}, 12, \frac{15}{2} \right\rangle$
- **29.** $\sqrt{21}$ **31.** $\sqrt{34}$
- **33.** (a) $\frac{1}{13}(5\mathbf{i} 12\mathbf{k})$ (b) $-\frac{1}{13}(5\mathbf{i} 12\mathbf{k})$
- **35.** (a) $\frac{\sqrt{74}}{74}(8\mathbf{i} + 3\mathbf{j} \mathbf{k})$ (b) $-\frac{\sqrt{74}}{74}(8\mathbf{i} + 3\mathbf{j} \mathbf{k})$
- 41. **39.** 8.73
- **49.** Parallel
- **45.** 124.45° **47.** 109.92° **51.** Neither
- **53.** Orthogonal **55.** Not collinear 57. Collinear
- 59. Right triangle. Answers will vary.
- 61. Acute triangle. Answers will vary.
- **65.** $\left(6, \frac{5}{2}, -\frac{7}{4}\right)$ **67.** $\pm \frac{3\sqrt{14}}{14}$ **63.** (3, 1, 7)
- **69.** $(0, 2\sqrt{2}, 2\sqrt{2})$ or $(0, 2\sqrt{2}, -2\sqrt{2})$
- **71.** 3.64 lb **73.** True. $\cos^{-1} 0 = 90^{\circ}$
- **75.** Sphere of radius 4 centered at (x_1, y_1, z_1)

Section 10.3 (page 731)

- **3.** $\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$ 1. cross product 5. $\langle -1, 0, 2 \rangle$
- **7.** $\langle 1, 1, 1 \rangle$ **9.** $\langle 3, -3, -3 \rangle$ **11.** $\langle 0, 42, 0 \rangle$
- 13. -7i + 13j + 16k 15. -17i + j + 10k
- 17. $-\frac{7}{6}\mathbf{i} \frac{7}{8}\mathbf{j}$ 19. $-18\mathbf{i} 6\mathbf{j}$ 21. $-\mathbf{i} 2\mathbf{j} \mathbf{k}$
- **23.** $\langle 10, -2, -4 \rangle$ **25.** -6i 15j 6k
- 27. $-\frac{1}{4}\mathbf{i} \frac{7}{10}\mathbf{j} 2\mathbf{k}$ 29. $\frac{1}{3}\mathbf{i} \frac{2}{3}\mathbf{j} \frac{2}{3}\mathbf{k}$ 31. $\frac{\sqrt{19}}{19}(\mathbf{i} 3\mathbf{j} + 3\mathbf{k})$ 33. $\frac{\sqrt{7602}}{7602}(-71\mathbf{i} 44\mathbf{j} + 25\mathbf{k})$
- **35.** $\frac{\sqrt{2}}{2}(\mathbf{i} \mathbf{j})$ **37.** 1 **39.** $\sqrt{806}$ **41.** 56
- **43.** (a) Answers will vary. (b) $6\sqrt{10}$
 - (c) The parallelogram is not a rectangle.
- **47.** $\frac{1}{2}\sqrt{4290}$ **49.** -16
- **51.** 2 **53.** 2 **55.** 12 **57.** 84
- **59.** (a) $T(p) = \frac{p}{2} \cos 40^{\circ}$

(b)	p	15	20	25	30	35	40	45
	T	5.75	7.66	9.58	11.49	13.41	15.32	17.24

- 61. True. The cross product is defined only for three-dimensional vectors.
- **63.** Proof **65.** Proof 67. $-\frac{1}{2}$

Section 10.4 (page 740)

- **1.** direction **3.** perpendicular
- 7. (a) x = t, y = 2t, z = 3t (b) $x = \frac{y}{2} = \frac{z}{3}$
- 9. (a) x = -4 + 3t, y = 1 + 8t, z = -6t(b) $\frac{x+4}{3} = \frac{y-1}{8} = \frac{z}{-6}$
- **11.** (a) x = 2 + 2t, y = -3 3t, z = 5 + t
 - (b) $\frac{x-2}{2} = \frac{y+3}{-3} = z 5$
- **13.** (a) x = 2 t, y = 4t, z = 2 5t
 - (b) $\frac{x-2}{-1} = \frac{y}{4} = \frac{z-2}{-5}$
- **15.** (a) x = -3 + 4t, y = 8 10t, z = 15 + t(b) $\frac{x+3}{4} = \frac{y-8}{-10} = z 15$
- **17.** (a) x = 3 4t, y = 1, z = 2 + 3t (b) Not possible
- **19.** (a) $x = -\frac{1}{2} + 3t, y = 2 5t, z = \frac{1}{2} t$
 - (b) $\frac{x+\frac{1}{2}}{2} = \frac{y-2}{-5} = \frac{z-\frac{1}{2}}{-1}$

- **23.** x 2 = 0 **25.** -2x + y 2z + 10 = 0
- **27.** -x 2y + z + 2 = 0 **29.** -3x 9y + 7z = 0
- **31.** 6x 2y z 8 = 0 **33.** y 5 = 0
- **35.** y z + 2 = 0 **37.** 7x + y 11z 5 = 0
- **39.** x = 2, y = 3, z = 4 + t
- **41.** x = 2 + 3t, y = 3 + 2t, z = 4 t
- **43.** x = 5 + 2t, y = -3 t, z = -4 + 3t
- **45.** x = 2 t, y = 1 + t, z = 2 + t
- **47.** Orthogonal 49. Orthogonal
- **51.** (a) 60.67° (b) x = 2 t, y = 8t, z = 7t
- **53.** (a) 77.83° (b) x = 1 + 6t, y = t, z = 1 + 7t

- **67.** False. Lines that do not intersect and are not in the same plane may not be parallel.
- 69. The point and the vector are reversed. The correct answer should be:

$$\frac{x-1}{3} = \frac{y-2}{5} = \frac{z-6}{4}$$

71. Parallel. $\langle 10, -18, 20 \rangle$ is a scalar multiple of $\langle -15, 27, -30 \rangle$.

Review Exercises (page 744)

- **3.** (-5, 3, 0) **5.** $\sqrt{30}$
- 7. $\sqrt{29}$, $\sqrt{38}$, $\sqrt{67}$
- **9.** (0, -1, -1) **11.** (1, 1, -9)
- **13.** $(x-2)^2 + (y-3)^2 + (z-5)^2 = 1$
- **15.** $(x-1)^2 + (y-5)^2 + (z-2)^2 = 36$
- **17.** Center: (2, 3, 0); radius: 3

- **21.** (a) $\langle 1, 4, -3 \rangle$ (b) $\sqrt{26}$ (c) $\frac{\sqrt{26}}{26} \langle 1, 4, -3 \rangle$
- **23.** (a) $\langle -10, 6, 7 \rangle$ (b) $\sqrt{185}$ (c) $\frac{\sqrt{185}}{185} \langle -10, 6, 7 \rangle$
- **25.** -9 **27.** 1
- **29.** 90° **31.** 90°

- **35.** Orthogonal
- **37.** Not collinear
- 33. Orthogonal 39. Collinear
- **41.** *A*: 159.10 lb of tension
 - B: 115.58 lb of tension

 - C: 115.58 lb of tension
- **43.** $\langle -10, 0, -10 \rangle$
- **45.** $\frac{\sqrt{7602}}{7602}(-71\mathbf{i} 44\mathbf{j} + 25\mathbf{k})$
- **47.** (a) Answers will vary. (b) $2\sqrt{43}$
 - (c) The parallelogram is not a rectangle.
- **49.** 75
- **51.** (a) x = 3 + 6t, y = 11t, z = 2 + 4t

(b)
$$\frac{x-3}{6} = \frac{y}{11} = \frac{z-2}{4}$$

53. (a) x = -1 + 4t, y = 3 + 3t, z = 5 - 6t

(b)
$$\frac{x+1}{4} = \frac{y-3}{3} = \frac{z-5}{-6}$$

- **55.** (a) x = -2t, $y = \frac{5}{2}t$, z = t (b) $\frac{x}{-2} = \frac{y}{5/2} = z$
- **57.** -2x 12y + 5z = 0 **59.** z 2 = 0

61.

- 67. $\frac{\sqrt{110}}{55}$
- **69.** False. $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ **71 and 73.** Answers will vary.
- **75.** $\mathbf{u} \times \mathbf{v} = (u_2 v_3 u_3 v_2) \mathbf{i} (u_1 v_3 u_3 v_1) \mathbf{j} + (u_1 v_2 u_2 v_1) \mathbf{k}$

Chapter Test (page 746)

1.

- 2. No. Answers will vary.
- **3.** (7, 1, 2)

- **5.** $\langle 2, 5, -10 \rangle$; $\sqrt{129}$ **6.** $\langle -3, -5, 8 \rangle$; $7\sqrt{2}$
- 7. $\mathbf{u} = \langle -2, 6, -6 \rangle, \mathbf{v} = \langle -12, 5, -5 \rangle$
- **8.** (a) $\sqrt{194}$ (b) 84 (c) $\langle 0, 62, 62 \rangle$
- **9.** 46.23°
- 10. Answers will vary. Sample answer:

(a)
$$x = 8 - 2t$$
, $y = -2 + 6t$, $z = 5 - 6t$

- (b) $\frac{x-8}{-2} = \frac{y+2}{6} = \frac{z-5}{-6}$
- **11.** Neither 12. Orthogonal
- 13. Answers will vary; $2\sqrt{230}$
- **14.** 27x + 4y + 32z + 33 = 0
- 17.

15. 200

(0, -10, 0)

Chapter 11

Section 11.1 (page 757)

3. 3

1. limit

(b) Answers will vary.

(c)	х	3	3.5	3.9	4
	V	972	1011.5	1023.5	1024

х	4.1	4.5	5
V	1023.5	1012.5	980

$$\lim_{N \to \infty} V = 1024$$

7.	х	1.9	1.99	1.999	2
	f(x)	13.5	13.95	13.995	14

х	2.001	2.01	2.1
f(x)	14.005	14.05	14.5

14; Yes

9.	х	-1.1	-1.01	-1.001	-1
	f(x)	-0.3226	-0.3322	-0.3332	Error
	х	-0.999	-0.99	-0.9	
	f(x)	0.2224	0.2244	0.2449	

-0.3333; No

11.	x	-0.1	-0.01	-0.001	0
	f(x)	0.5017	0.50002	0.5000002	Error

x	0.001	0.01	0.1
f(x)	0.5000002	0.50002	0.5017

0.5; No

13.	x	-1.1	-1.01	-1.001	-1
	f(x)	-2.1	-2.01	-2.001	Error

x	-0.999	-0.99	-0.9
f(x)	-1.999	-1.99	-1.9

	_				
15.	х	0.9	0.99	0.999	1
	f(x)	0.2564	0.2506	0.2501	Error
	х	1.001	1.01	1.1	
	f(x)	0.2499	0.2494	0.2439	

0.25

17.	х	-0.1	-0.01	-0.001	0
	f(x)	0.2247	0.2237	0.2236	Error
	x	0.001	0.01	0.1	

0.2236 | 0.2235 | 0.2225

f(x)0.2236

	0.2230					
19.	х	-4.1	-4.01	-4.001	-4	
	f(x)	0.4762	0.4975	0.4998	Error	
	x	-3.999	-3.99	-3.9		
	f(x)	0.5003	0.5025	0.5263		

0.5

21.	x	-0.1	-0.01		-0.001		0
	f(x)	0.9983	0.	99998	0.	9999998	Error
	х	0.001		0.01		0.1	
	f(x)	0.99999	98	0.999	98	0.9983	

23.	x	-0.1	-0.01		-0.001	0
	f(x)	-0.0997	-0.010	0	-0.0010	Error
	х	0.001	0.01	0.1	1	

x	0.001	0.01	0.1
f(x)	0.0010	0.0100	0.0997

25.	x	-0.1	-0.01	-0.001	0
	f(x)	0.9063	0.9901	0.9990	Error

х	0.001	0.01	0.1
f(x)	1.0010	1.0101	1.1070

1

27.	х	1.9	1.99	1.999	2
	f(x)	2.2314	2.0203	2.002	Error

x	2.001	2.01	2.1
f(x)	1.998	1.9803	1.8232

29.

31.

$$\lim_{x \to 2} f(x) = 3$$

- **33.** 2
- 35. Limit does not exist; One-sided limits do not agree.
- 37. Limit does not exist; One-sided limits do not agree.
- **39.** Limit does not exist; Function oscillates between -2 and 2.

41.

43.

No

No

- **49.** (a) -16 (b) 12 (c) $\frac{1}{2}$
- **51.** (a) 8 (b) $\frac{3}{8}$ (c) 3 (d) $-\frac{61}{8}$ **53.** -15 **55.** 7 **57.** $-\frac{9}{10}$ **59.** $\frac{7}{13}$ **61.** 1
- **65.** 0
- **69.** True. See Condition 1 on page 754.
- 71. (a) and (b) Answers will vary.
- 73. (a) No. The function may approach different values from the right and left of 4.
 - (b) No. The function may approach 4 as x approaches 2, but the function could be undefined at x = 2.
- **75.** $-\frac{1}{3}$, $x \neq 5$

77.
$$\frac{5x+4}{5x+2}$$
, $x \neq \frac{1}{3}$ 79. $\frac{x^2-3x+9}{x-2}$, $x \neq -3$

Section 11.2 (page 767)

- 1. dividing out technique
- **5.** (a) 1 (b) 3 (c) 5
- $g_2(x) = -2x + 1$ **7.** (a) 2 (b) 0 (c) 0
 - $g_2(x) = x(x+1)$
- - **11.** 3 **13.** 4
- **15.** 12

3. Rationalizing technique

- 17. 80 19. $\frac{7}{2}$

- **31.** 0 **33.** 0 **35.** 0
- **37.** х -0.1-0.01-0.001f(x)1.813 1.980 1.998 Error

х	0.001	0.01	0.1
f(x)	2.002	2.020	2.214

2.000

39.	х	-0.1	-0.01	-0.001	0
	f(x)	1.056	1.005	1.001	Error

х	0.001	0.01	0.1
f(x)	0.9995	0.995	0.954

1.000

41.	x	-0.1	-0.01	-0.001	0
	f(x)	0.149	0.137	0.135	Error

х	0.001	0.01	0.1
f(x)	0.135	0.134	0.122

0.135

45.

1.000

2.000

0.333

49. y
6 + 4 - 2 + 0

Limit does not exist.

$$\lim_{x \to 1} f(x) = \frac{1}{2}$$

53.

3 2 1 -3 -1 -1 -2 -3 -3

$$\lim_{x \to 2} f(x) = 1$$

Limit does not exist.

- **57.** (a) and (b) 0.50 (c) $\frac{1}{2}$
- **59.** (a) and (b) -0.13 (c) $-\frac{1}{8}$

61.

63. $\mathbf{g} f(x) = |x| \sin x$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} f(x) = 0$$

65.

 $\lim_{x \to 0} f(x) = 0$

- **67.** (a) Direct substitution; 0 (b) 1
- **69.** -32 ft/sec
- 71. Answers will vary.

73. (a) ¹⁴⁰

(b)	x	5	5.3	5.4	5.5	5.6	5.7	6
	C(x)	105	110	110	110	110	110	110

$$\lim_{x \to 5.5} C(x) = 110$$

(c)	х	4	4.5	4.9	5	5.1	5.5	6
	C(x)	100	105	105	105	110	110	110

The limit does not exist.

- **75.** 3 **77.** $\frac{1}{2\sqrt{x}}$ **79.** 2x 3 **81.** $-\frac{1}{(x+2)^2}$
- **83.** True. See page 761. **85–87.** Answers will vary.
- **89.** Parabola **91.** Hyperbola
- **93.** Orthogonal **95.** Neither

Section 11.3 (page 777)

- 1. Calculus 3. secant line
- **5.** 2 **7.** 0 **9.** $\frac{1}{2}$ **11.** 2 **13.** -2
- **15.** -1 **17.** $\frac{1}{6}$ **19.** m = -2x; (a) 0 (b) 4
- **21.** $m = -\frac{1}{(x+4)^2}$; (a) $-\frac{1}{16}$ (b) $-\frac{1}{4}$
- **23.** $m = \frac{1}{2\sqrt{x-1}}$; (a) $\frac{1}{2}$ (b) $\frac{1}{6}$

25. 3 (1, -2)

29. 4 (1, 2) (1, 2)

- -1 **31.** -6x **33.** 0 **35.** $-\frac{1}{3}$
- 37. $-\frac{2}{x^3}$ 39. $\frac{1}{2\sqrt{x-4}}$
- **41.** $-\frac{1}{2(x-9)^{3/2}}$
- **43.** (a) 4 (b) y = 4x 5
- **45.** (a) 1 (b) y = x 2

(c)

- **47.** (a) $\frac{1}{4}$ (b) $y = \frac{1}{4}x + \frac{5}{4}$
- **49.** (a) -1 (b) y = -x 3

c)

51.

х	-2	-1.5	-1	-0.5	0
f(x)	2	1.125	0.5	0.125	0
f'(x)	-2	-1.5	-1	-0.5	0

x	0.5	1	1.5	2
f(x)	0.125	0.5	1.125	2
f'(x)	0.5	1	1.5	2

They appear to be the same.

53.

x	-2	-1.5	-1	-0.5	0
f(x)	1	1.225	1.414	1.581	1.732
f'(x)	0.5	0.408	0.354	0.316	0.289

x	0.5	1	1.5	2
f(x)	1.871	2	2.121	2.236
f'(x)	0.267	0.25	0.236	0.224

They appear to be the same.

- **55.** f'(x) = 2x 4; (2, -1)
- **57.** $f'(x) = 9x^2 9$; (-1, 6), (1, -6)
- **59.** (-1, -1), (0, 0), (1, -1)
- **63.** $(0,0), (-2,4e^{-2})$ **65.** $(e^{-1}, -e^{-1})$
- **67.** (a) $y = -0.41t^2 + 54.7t + 8529$

(b) 12,000

38; The population is increasing by approximately 38,000 people per year in 2020.

- (c) y' = -0.82t + 54.7; 38.3
- (d) Answers will vary.
- **69.** (a) $V'(r) = 4\pi r^2$ (b) About 201.06
 - (c) Cubic inches per inch; The derivative is a formula for rate of change.
- **71.** (a) s'(t) = -32t + 64 (b) 16 ft/sec
 - (c) t = 2 sec; Answers will vary. (d) -96 ft/sec

- 73. True. The graph of the derivative is a line, which is a one-to-one function.
- **76.** a **77.** d **78.** c
- 79. Answers will vary. Sample answer: A sketch of any linear function with positive slope
- 81. Answers will vary. Sample answer: A sketch of any quadratic function of the form $y = a(x - 1)^2 + k$, where a > 0

83.

Section 11.4 (page 786)

- **1.** 5 3. converge **5.** c **6.** a **7.** d **8.** b
- **9.** f **10.** g **11.** h **12.** e **13.** 0 **15.** −1
- 17. $\frac{5}{6}$ 23. $\frac{4}{3}$ **19.** −4 **21.** Limit does not exist.
- **25.** 2 **27.** −1 **29.** -4 **31.** -5
- **33.** (a) 10^{0} 10^{1} 10^{2} 10^{3} f(x)Error -3.33-3.03-3.003

)	r	104	10 ⁵	10 ⁶
f	f(x)	-3.0003	-3.00003	-3.000003

-3

(c) $\lim_{x \to \infty} f(x) = -3$

-3

35. (a) 10^{0} 10^{1} 10^{2} 10^{3} f(x)Error -0.202-0.0200-0.002

x	104	10 ⁵	106
f(x)	-0.0002	-0.00002	-0.000002

(b)

(c) $\lim_{x \to \infty} f(x) = 0$

0

37. (a)	х	100	10 ¹	10 ²	10 ³
	f(x)	-2	0.97	0.9997	0.999997

х	104	10 ⁵	10 ⁶
f(x)	0.99999997	0.9999999997	1

(b)

(c) $\lim_{x \to \infty} f(x) = 1$

	1							
39. (a)	x	100	10^{1}	10^{2}	10^{3}			
	f(x)	-0.7321	-0.0995	-0.0100	-0.0010			

x	104	10 ⁵	10^{6}
f(x)	-1.0×10^{-4}	-1.0×10^{-5}	-1.0×10^{-6}

0 (b)

0

41. (a)	x	100	10 ¹	10 ²	10 ³
	f(x)	-0.7082	-0.7454	-0.7495	-0.74995

x	10^{4}	105	10 ⁶
f(x)	-0.749995	-0.7499995	-0.7500

-0.75

43. $1, \frac{3}{5}, \frac{2}{5}, \frac{5}{17}, \frac{3}{13}$

Limit: 0

47. $\frac{1}{5}$, $\frac{1}{2}$, $\frac{9}{11}$, $\frac{8}{7}$, $\frac{25}{17}$

Limit does not exist.

- **51.** $-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}$ Limit: 0
- **45.** $\frac{1}{3}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$, $\frac{5}{11}$ Limit: $\frac{1}{2}$
- **49.** 2, 3, 4, 5, 6

Limit does not exist.

55.	n	10^{0}	10^{1}	10^{2}	10^{3}
	a_n	2	1.55	1.505	1.5005

1.5

$$\lim_{n\to\infty} a_n = \frac{3}{2}$$

55.	n	100	10^{1}	10 ²	10^{3}
	a_n	13.33	5.683	5.06683	5.0066683

$$\lim_{n\to\infty} a_n = 5$$

- **57.** (a) $\overline{C} = \frac{13.50x + 45,750}{x}$
- (b) \$471; \$59.25
- (c) \$13.50; As the number of PDAs produced gets very large, the average cost approaches \$13.50.
- **59.** (a) ¹⁴⁰⁰

The model fits the data well.

- (b) 2009: 1,092,000 2010: 1,086,000
- (c) 1,056,000; As time passes, the number of United States military reserve personnel approaches 1,056,000.
- (d) Answers will vary.
- **61.** False. $y = \frac{x^2}{x+1}$ does not have a horizontal asymptote.
- **63.** True. See page 784.
- **65.** Answers will vary. Sample answer: Let $f(x) = x^2$ and $g(x) = x^2$. Then $\lim x^2 = \infty$ and $\lim [f(x) - g(x)] = 0$.

Diverges

- Converges to 0
- **71.** The limit is $-\frac{1}{4}$.

73.

75. 60 **77.** 150

Section 11.5 (page 794)

- 3. 100 rectangles
- **5.** 420
- **7.** 44,100

- **9.** 44,140
- 11. 5850

13. (a) $S(n) = \frac{n^2 + 2n + 1}{4n^2}$

(b)	n	100	101	102	10 ³	104
	S(n)	1	0.3025	0.2550	0.2505	0.2501

- (c) $\lim_{n \to \infty} S(n) = \frac{1}{4}$ 15. (a) $S(n) = \frac{2n^2 + 3n + 7}{2n^2}$

(b)	n	100	10 ¹	102	103	104
	S(n)	6	1.185	1.0154	1.0015	1.0002

- (c) $\lim_{n \to \infty} S(n) = 1$
- 17. (a) $S(n) = \frac{14n^2 + 3n + 1}{6n^3}$

(b)	n	100	10^{1}	10 ²	10^{3}	104
	S(n)	3	0.2385	0.0234	0.0023	0.0002

- (c) $\lim_{n \to \infty} S(n) = 0$
- **19.** 14.25 **21.** 1.27

23.	n	4	8	20	50
	Approximate area	18	21	22.8	23.52

25. 20 50 Approximate 3.5156 2.8477 2.4806 2.3409 area

27.	n	4	8	20	50	100	8
	Area	40	38	36.8	36.32	36.16	36

- 29. 20 50 100 n ∞ 14.25 14.81 15.13 15.25 15.29 Area
- 31. 20 50 100 18.5 18.2 18.08 18.04 18 Area
- 37. $\frac{128}{3}$ 35. $\frac{15}{2}$ **33.** 3 **39.** $\frac{3}{4}$ **41.** $\frac{3}{4}$ **43.** 144
- 45.

105,208.33 ft²

47. True. See Formula 2 on page 789. **49.** c

Review Exercises (page 798)

1.	x	2.9	2	2.99		.999	3
	f(x)	16.4	1	6.94	1	6.994	17
	х	3.001		3.01		3.1	
	f(x)	17.00	6	17.0	6	17.6	

17; Yes

3.	x	-0.1	-0.01	-0.001	0
	f(x)	1.0517	1.0050	1.0005	Error
	х	0.001	0.01	0.1	
	f(x)	0.9995	0.9950	0.9516	

- **5.** 2 **7.** Limit does not exist.
- **9.** (a) 8 (b) 1 (c) 10 (d) $\frac{2}{5}$
- 11. 5 13. $\frac{10}{3}$ 15. -2 17. 0 19. e
- **21.** $-\frac{\pi}{6}$ **23.** $-\frac{1}{4}$ **25.** $\frac{1}{15}$ **27.** -9 **29.** -1
- **31.** $\frac{1}{4}$ **33.** (a) and (b) 0.17 **35.** Limit does not exist.
- **37.** (a) and (b) 2 **39.** (a) and (b) 0.577

41.

Limit does not exist.

Limit does not exist.

Limit does not exist.

Limit does not exist.

- **59.** m = 2x 4; (a) -4 (b) 6
- **61.** $m = -\frac{4}{(x-6)^2}$; (a) -4 (b) -1

- **63.** f'(x) = 0 **65.** $h'(x) = -\frac{1}{2}$ **67.** g'(x) = 4x
- **69.** $f'(t) = \frac{1}{2\sqrt{t+5}}$ **71.** $g'(s) = -\frac{4}{(s+5)^2}$
- 73. $g'(x) = -\frac{1}{2(x+4)^{3/2}}$

- **77.** (a) 3 (b) y = 3x + 3

- (c)
- **79.** 2 **81.** 0 **83.** Limit does not exist.
- **87.** $-\frac{1}{9}, \frac{1}{14}, \frac{3}{19}, \frac{5}{24}, \frac{7}{29}$ **89.** $-1, \frac{1}{8}, -\frac{1}{27}, \frac{1}{64}, -\frac{1}{125}$ Limit: 0
 - Limit: $\frac{2}{5}$
- **91.** $-\frac{1}{2}$, $-\frac{9}{8}$, $-\frac{7}{6}$, $-\frac{37}{32}$, $-\frac{57}{50}$

Limit: -1

93. (a) $S(n) = \frac{5n^2 + 9n + 4}{6n^2}$

(b)	n	100	101	10 ²	10 ³	104
	S(n)	3	0.99	0.8484	0.8348	0.8335

- (c) $\frac{5}{6}$
- **95.** 6.75

, , ,	0.75						
97.	n	4	8	20	50		
	Approximate area	7.5	6.375	5.74	5.4944		

- **99.** 50 **101.** 21 **103.** 68
- **105.** (a) $y = (-3.376 \times 10^{-7})x^3 + (3.753 \times 10^{-4})x^2$ -0.168x + 132

- (c) 88,700 ft²
- **107.** True. See page 775.

Chapter Test (page 801)

- -0.75 $\lim_{x \to -2} f(x) = -\frac{3}{4}$
- - Limit does not exist.

3.

Limit does not exist.

2.0000

- **6.** (a) m = 6x 5; 7 (b) $m = 6x^2 + 6$; 12

- 7. $f'(x) = -\frac{2}{5}$ 8. f'(x) = 4x + 49. $f'(x) = -\frac{1}{(x+1)^2}$ 10. 0 11. -3
- **12.** Limit does not exist.
- **13.** $0, \frac{3}{4}, \frac{14}{19}, \frac{12}{17}, \frac{36}{53}$ Limit: $\frac{1}{2}$
- **14.** 0, 1, 0, $\frac{1}{2}$, 0 Limit: 0

15. 12.5 **16.** 8 **17.** $\frac{34}{3}$ **18.** (a) $y = 8.79x^2 - 6.2x - 0.4$ (b) 81.7 ft/sec

Cumulative Test for Chapters 10 and 11 (page 802)

- **1.** (-6, 1, 2) **2.** (0, -5, 0) **3.** $\sqrt{149}$
- **4.** 3, 4, 5 **5.** $(-1, 2, \frac{1}{2})$ **6.** $(x-2)^2 + (y-2)^2 + (z-4)^2 = 24$
- - 8. $\mathbf{u} \cdot \mathbf{v} = -38$ $\mathbf{u} \times \mathbf{v} = \langle -18, -6, -14 \rangle$ xy-trace $(x-2)^2 + (y+1)^2 = 4$
- **9.** Neither **10.** Orthogonal 11. Parallel
- **13.** (a) x = -2 + 7t, y = 3 + 5t, z = 25t
 - (b) $\frac{x+2}{7} = \frac{y-3}{5} = \frac{z}{25}$
- **14.** x = -1 + 2t, y = 2 4t, z = t **15.** 75x + 50y 31z = 0
- 19. 4 20. $-\frac{1}{3}$ 21. 22. $\frac{1}{4}$ 23. -1 24. Limit does not exist. 25. $-\frac{1}{9}$ 26. $\frac{1}{8}$ 27. 28. m = -2x; 4
- **18.** 84.26°

 - **29.** $m = \frac{1}{2}(x+3)^{-1/2}; \frac{1}{2}$
- **30.** $m = -(x+3)^{-2}$; $-\frac{1}{16}$ **31.** m = 2x 1; 1
- **32.** Limit does not exist. **33.** -7 **34.** 3 **35.** 0
- **37.** Limit does not exist. **38.** -42,875**36.** 0
- **40.** 672,880 **41.** 10.5 **42.** 8.13 **39.** 8190
- **44.** 1.57 **45.** $\frac{5}{2}$ **46.** $\frac{76}{3}$ **47.** $\frac{16}{3}$ **43.** 2.69

Appendices

(page A31) Appendix B.1

- 1. Line plots 3. frequency distribution
- (b) 0.19 **7.** (a) 2.979
- 16 18 20 12 14 **Quiz Scores**

15

11. Sample answer:

5. scatter plot

13. 8000 -7000 stores 6000 5000 of 4000 3000 2000 2000 2002 2004 2006

Answers will vary. Sample answer: As time progresses from 1995 to 2008, the number of Wal-Mart stores increases at a fairly constant rate.

- 19. The price decreased slightly from 2000 to 2002.
- **21.** From 2001 to 2002

Year

Answers will vary. Sample answer: As time progresses from 1998 to 2009, the number of women in the work force increases at a fairly constant rate.

- **27.** 65 **29.** Yes
- 31. Answers will vary. Sample answer: A histogram is best because the data are percents within a year that do not relate to increasing or decreasing behavior.

- 33. A bar graph is similar to a histogram, except that the bars can be either horizontal or vertical and the labels of the bars are not necessarily numbers. Another difference between a bar graph and a histogram is that the bars in a bar graph are usually separated by spaces.
- **35.** Line plots are useful for ordering small sets. Histograms or bar graphs can be used to organize larger sets. Line graphs are used to show trends over periods of time.

Appendix B.2 (page A41)

- 1. measure, central tendency
- 3. variance, standard deviation
- **5.** Mean: About 8.86; median: 8; mode: 7
- 7. Mean: About 10.29; median: 8; mode: 7
- **9.** Mean: 9: median: 8: mode: 7
- 11. (a) The mean; Answers will vary.
 - (b) Mean: About 14.86; median: 14; mode: 13 Each is increased by 6.
 - (c) Each will increase by k.
- 13. Mean: 320; median: 320; mode: 320
- 15. (a) Jay: 199.67; Hank: 199.67; Buck: 229.33
 - (b) 209.56 (c) 202
- **17.** Answers will vary. Sample answer: {4, 4, 10}
- 19. The median
- **21.** (a) $\bar{x} = 12$; $\sigma \approx 2.83$ (b) $\bar{x} = 20$; $\sigma \approx 2.83$

 - (c) $\bar{x} = 12$; $\sigma \approx 1.41$ (d) $\bar{x} = 9$; $\sigma \approx 1.41$
- **23.** $\bar{x} = 6$, v = 10, $\sigma \approx 3.16$
- **25.** $\bar{x} = 2$, $v = \frac{4}{3}$, $\sigma \approx 1.15$ **27.** $\bar{x} = 4$, v = 4, $\sigma = 2$
- **29.** $\bar{x} = 47$, v = 226, $\sigma \approx 15.03$
- **31.** 3.42 **33.** 1.65
- **35.** $\bar{x} = 12$ and $|x_i 12| = 8$ for all x_i .
- 37. The mean will increase by 5, but the standard deviation will not change.
- **39.** [179, 291]; [151, 319] [203, 267]; [187, 283]
- **41.** (a) Upper quartile: 21.5 Lower quartile: 13

43. (a) Upper quartile: 51 Lower quartile: 47

From the plots, you can see that the lifetimes of the sample units made by the new design are greater than the lifetimes of the sample units made by the original design. (The median lifetime increased by more than 12 months.)

Appendix B.3 (page A45)

- 1. y = 1.6x + 7.5
- 3. y = 0.262x + 1.93

Index of Selected Applications

Go to this textbook's Companion Website for a complete list of applications.

Biology and Life Sciences Bacteria count, 55, 58 Calorie burning activities, 530 Calories in food, 486 Concentration of a chemical in the bloodstream, 159 Defoliation from gypsy moth, 237 Dissections, 613 Environment carbon monoxide levels, 160 removal of river pollutants, 148 spread of a lake contaminant, 58 Forest yield, 219 Fruit flies experiment, 188, 223 Genders of children, 624 Health blood pressure, 301 lithotripter machine, 654 respiratory cycle, 301 Heights of men and women, 219 Human memory model, 198, 201, 208, 246 Human range of vision, 149 IQ scores, 230 Potting soil production, 540 Surface area of a tumor, 779 Wildlife

Business

Advertising and sales, 230 Apartment demand, 14 Break-even analysis, 475, 477, 478, 500, 560 Cost, revenue, and profit, 27 Demand, 219, 246, 488 Depreciation, 230 of SUV, 244 of vehicles, 191, 629 Greeting card production, 783 Number of stores Staples, 240 Target Corporation, 78 Payroll of the Pittsburgh Steelers, 77 Point of equilibrium for demand and supply, 486, 560 Profits, 58, 82, 141 Buffalo Wild Wings, 13 for fruit crops, 530 Research In Motion, 6 Revenues, 98 from advertising, 111

Amazon.com, 579

Expedia and Priceline.com, 479

for a movie rental store, 487

Daktronics, 248

deer herd population, 149

elk herd population, 160

Yeast, population of, 230

population of fish, 173, 579

Dallas Cowboys, 12 New York Yankees, 12 Sales, 58, 82, 441, 563 AutoZone, 241 Coca-Cola Enterprises, 587 of Fossil and Aeropostale clothing, 487 Office Depot, 174 Peet's Coffee & Tea, 28 of snowboards, 301 WD-40 Company, 49 Whole Foods Market, 239

Chemistry and Physics

Astronomy

Halley's comet, 654, 694 orbits of comets, 661 orbits of planets, 652, 696, 701, 703 path of an asteroid, 703 Atmospheric pressure by altitude, 240 Bicycle pedal force and torque, 732 Braking load, 438, 441, 442, 460 Carbon dating, 224, 229, 230 Chemical reaction, 235 Crankshaft torque, 732 Crystal classification, 718 Depth of the tide, 40, 70 Earthquake intensity, 227, 230, 231, 247, 643 Experiment to approximate a mass, 149 Falling object, 85, 163, 768 Forensics, time of death, 231 Harmonic motion, 271, 272, 301, 313, 336, 344, 375, 383, 398, 455, 463 Hooke's Law, 77 Locating an explosion, 661, 666, 701 Mach number, 393 Meteorology precipitation in San Francisco, 165 temperatures Chicago and Quillayute, WA, 302 Dallas, 771 Savannah, GA, 291 thunder location, 666 Path of a ball, 22, 28, 516 Percent of moon's face illuminated, 301 pH level, 227, 231 Planetary motion, 206 Projectile motion, 95, 98, 141, 373, 392, 397 645, 646, 676, 702 Radioactive decay, 188, 190, 191, 230, 244, 248

Temperature conversion, 14 of a heated object as it cools, 220 of liquid as it cools, 209, 240 Tension in two cables supporting a load, 431, 432, 459 Thermodynamics of a diesel engine, 503 Tuning fork, 336 Vehicle stopping distance, 57 Velocity, components of, 431, 432 Vertical motion, 498, 501, 779 Work, 439, 442, 460

Construction and Engineering

Architecture

A-frame cottage, 333 archway, 700, 701, 706 church window, 700 fireplace arch, 654 spherical building, 718 Statuary Hall, 654 Automobile aerodynamics, 98 headlight, 645 Bridge length, 411 Child care safe play areas, 97 Classroom ventilation, 201 Electrical circuit, 539 impedance, 134 voltage, 455 Force against a dam, 27 Fuel tank design, 741 Golden Gate Bridge, 645 Ice rink construction, 170 Landau Building, 418 Machine shop calculations, 282, 335 Network analysis traffic flow, 517 water flow, 517 Patio design, 587 Railroad tracks, 393, 411 Road design, 645 Space vehicle communications, 624 Testing a machine part, 85 Truss rafter, 418

Consumer ATM codes (PIN), 613 Cellular phone subscriptions, 126 Cigarettes, per capita, 98 Consumption of soft drinks, 164 Cost analysis, 563 of an automobile, 59 of cable television, 86 of towing a car, 769

Resultant force, 431, 432, 459, 461, 463,

723, 725, 745

Sound intensity, 201, 208, 231

Standing wave, 382

Satellite escape velocity, 646 Satellite orbit, 655, 697

DVD player value over time, 82	Cryptography, 553-555, 557, 565	U.S. Demographics
Entertainment system, 613	Drawing cards, 617, 619, 622, 623, 624, 631	Bottled water consumption, 606
Hotel packages, 530	Earth's surface, longitude, and latitude, 718	Bus registrations, 579
Mortgage, 201, 231, 245	Education	Child support, 606
Overnight shipping, 765, 768	course schedule, 613, 630	Commercial banks, number of, 219
Payment methods, 624	Penn State enrollment, 14	Condominium sales, 39
Price, prescription drugs, 24, 516	reading rate, 247	Cruise line spending, 239
Ranking brands, 622	Election probabilities, 623	Defense personnel, 150
Rate of change of value of a product, 14	Estimating board feet in a log, 478	Education
Coonstant	Ferris wheel, 301	enrollment, 83
Geometry	Fibonacci sequence, 572, 580	level of attainment, 624
Angle of elevation, 325, 333, 335, 411, 458	Floral design, 540	number of colleges and universities, 640
Area	IRS revenue collected, 236	Employees
of circular ripples in water, 58 of an inscribed rectangle, 170, 376	Leaning Tower of Pisa, 412	cellular telephone industry, 71, 73
of a parcel of land, 461, 795, 800	License plate numbers, 613, 631	construction industry, 22
of a rectangular plot of land, 250	Marine transportation, 334 Outdoor movie screen, 335	education and health services, 127
Aviation, 344, 345	Panoramic photo, 667	FM radio stations, 174
Dimensions of a rectangular region, 158	Political party affiliations, 624	Health expenditures, 58
Flight bearing, 411	Political party analysis using a stochastic	International travelers to U.S., 540 Internet
Height	matrix, 531	as a news source, 621
of a balloon, 282, 283	Radio station call letters, 613	participation rate, 166
of a mountain, 282	Rappelling, 332	Masters Degrees, 588
of a tilted pole, 405	Recycling costs of a supermarket, 787	Military
Johnstown Inclined Plane, 283	Salary, 706, 768	procurement expenditures, 175
Length	of an accountant, 629	reserve personnel, 787
of a pond, 458, 461	School locker combinations, 614	Motor vehicles
of a shadow cast by a gnomon, 364	Seating arrangements, 614	alternative fueled, 74
Maximum volume of a box, 26, 111, 127	Shoe sizes, 69, 75	fuel use, 48
Page design, 156, 159, 173	Ski slope, 334	miles traveled, 27
Photographing a painting, 324	Sports	Newspaper reading, annual per capita, 166
Sprinkler coverage, 643	batting order, 614	Payroll of the U.S. legislative branch, 788
Submarine depth, 332	figure skating, 263	Population
Surface area	golf, 501, 561	Arizona and Indiana, 478
of a honeycomb, 372	NCAA basketball, 501, 631	California, 191
of a sphereflake fractal, 597	Olympic swimming, 79, 85	Florida, 565
Surveying, 418	Sundial Bridge, 332	New Jersey, 78, 778
Television coverage of a space shuttle lift-off, 324	Telephone numbers, 608, 613, 630	North Carolina, 246
Volume	Television coverage of a parade, 312	Pittsburgh, PA, 229
of a balloon, 779	ZIP codes, 613, 614	Raleigh, NC, 230
of a parallelepiped, 730, 732	Time and Distance	San Antonio, TX, 229
of a sphere, 21	Airplane	United States, 239, 576
Width of a river, 282, 341, 458	ascent, 245, 334	Wyoming, 78 Price of trout, 250
7,100,101,01,01,01,00	speed, 484, 486, 560	Production of crude oil and photovoltaic
Interest Rate	Angular and linear speed	energy, 112
Annuity, 190, 594, 596, 597	of a DVD disc, 264	Salaries
Borrowing, 501, 516	of wheels on a car, 260	college faculty, 628
Compound interest, 187, 190, 201, 228,	Distance	public school teachers, 77, 216, 517
229, 244, 579, 596, 628, 629	to an airplane, 312, 411	Sales
Doubling an investment, 216, 219, 246	between latitudes, 263	of family clothing stores, 556
Investment portfolio, 472, 477, 478, 501,	between pitcher's mound and first base,	of stores selling auto parts,
539, 560, 561	415	accessories, and tires, 557
Tripling an investment, 219, 228, 229	Linear speed	SAT exam
NAC and Harrison	of a satellite, 263	number of students who take, 220
Miscellaneous	of a tire spin balance machine, 264	scores, 225
Bird bath, 725	Locating a fire, 334, 411	Sports, female participation, 247
Book sales by price, 778	Navigation, 415, 428, 432, 459, 463, 666	Televisions, number in U.S. homes, 167
Computer paper sales, 516	Rate of descent on a zip line, 282	Unemployed workers, 623
Cost	Speed	Unemployment rates, 376
of an oil change, 191	of a bicycle, 264	Wireless network subscribers, 77
of seizing illegal drugs, 173	of a truck, 598	Women married at least once, 241

Index

A	Annuity, increasing, 594	transverse, of a hyperbola, 656
Absolute value	Aphelion, 696	_
of a complex number, 443	Apogee, 651	В
function, 2, 19, 41	Arc length, 259	Back-substitution, 471
Acute angle, 255	Arccosine function, 2, 317, 319	Bar graph, A27
Addition	Arcsine function, 2, 315, 317, 319	Base, natural, 184
of complex numbers, 129	Arctangent function, 2, 317, 319	Basic
of matrices, 519	Area	Characteristics of Quadratic
properties of, 520	of an oblique triangle, 408	Functions, 91
vector, 422, 719	formula, 416	conics, 636
parallelogram law for, 422	of a plane region, 793	circle, 636
properties of, 423	problem, 792	ellipse, 636
resultant of, 422	of a region, 780	hyperbola, 636
Additive identity	of a triangle	parabola, 636
for a complex number, 129	using a determinant, 548	limits, 755
for a matrix, 520	Heron's Area Formula, 416, 466	Bearings, 328
Additive inverse, for a complex number, 129	standard formula, 416	Bell-shaped curve, 225
Adjacent side of a right triangle, 273	Argument of a complex number, 444	Biconditional statement, 88
Adjoining matrices, 534	Arithmetic	Bimodal, A35
Algebraic	combination of functions, 50	Binomial, 599
9	sequence, 581	coefficient, 599
function, 2, 180 properties of the cross product, 727, 747	common difference of, 581	expanding, 601
Alternative	nth partial sum of, 584	Theorem, 599, 634
definition of conic, 691	nth term of, 582	Bound
form of Law of Cosines, 413, 465	recursion formula, 583	lower, 122
	sum of a finite, 584, 633	upper, 122
formula for standard deviation, A38	Ask mode, A18	Box-and-whisker plot, A40
Ambiguous case (SSA), 406	Associative Property of Addition	lower quartile, A40
Amplitude of sine and cosine curves, 294	for complex numbers, 130	quartiles, A40
Analytic geometry, solid, 712	for matrices, 520	upper quartile, A40
Angle(s), 254	Associative Property of Multiplication	Branches of a hyperbola, 656
acute, 255	for complex numbers, 130	Break-even point, 475
between two planes, 736	for matrices, 524	Broak even point, 175
between two vectors, 435, 467	Associative Property of Scalar	С
in space, 720	Multiplication for matrices, 520, 524	Calculus, 770
central, 255		area of a region, 780
complementary, 258	Astronomical unit, 694	tangent line, 780
conversions between degrees and	Asymptote(s)	Cardioid, 687
radians, 257	horizontal, 143	Center
coterminal, 254	of a hyperbola, 658	of a circle, 637
degree measure of, 257	oblique, 155	of an ellipse, 647
of depression, 278	of a rational function, 144	of a hyperbola, 656
direction, of a vector, 426	slant, 155	Central
of elevation, 278	vertical, 143	angle of a circle, 255
initial side of, 254	Augmented matrix, 505	tendency, measure of, A35
measure of, 255	Average, A35	Certain event, 617
negative, 254	rate of change, 775	Change
obtuse, 255	Axis (axes)	in x, 772
positive, 254	conjugate, of a hyperbola, 658	in y, 772
radian measure of, 255	imaginary, 443	Change-of-base formula, 203
reference, 286	major, of an ellipse, 647	Characteristics of a function from set
of repose, 324	minor, of an ellipse, 647	A to set B , 16
standard position, 254	of a parabola, 90, 639	Chebychev's Theorem, A39
supplementary, 258	polar, 677	•
terminal side of, 254	real, 443	Circle, 637, 687
vertex of, 254	rotation of, 663	arc length of, 259
Angular speed, 259	of symmetry, 90	central angle of, 255

A154 Index

classifying, by general equation, 662 standard form of the equation of, 637 unit, 265	multiplication of, 446 nth root of, 449, 450	matrix, 505, 525 spring, 77 Continuous
Circular arc, length of, 259	unity, 451 polar form of, 444	compounding, 186
Classification of conics, by general	powers of, 448	function, 100, 669
	product of two, 446	Contradiction, proof by, 567
equation, 662 Coded row matrices, 553	quotient of two, 446	Contrapositive, 87
		-
Coefficient(s) binomial, 599	real part of, 128 standard form of, 128	Converge, 784 Converse, 87
	subtraction of, 129	
correlation, 75 of determination, 164	sum of, 129	Conversions between degrees and radians 257
		Convex limaçon, 687
matrix, 505, 525	trigonometric form of, 444	Coordinate
Cofactor(s)	Complex plane, 443 imaginary axis, 443	axes, reflection in, 44
expanding by, 544 of a matrix, 543	real axis, 443	conversion, 679
Cofunction identities, 350	Complex solutions of quadratic equations,	polar to rectangular, 679
	132	
Collinger points, 540, 722		rectangular to polar, 679
Collinear points, 549, 722	Complex zeros occur in conjugate pairs, 137	planes, 712
test for, 549	Component form	xy-plane, 712
Column matrix, 504	of a vector in space, 719	xz-plane, 712
Combinations	of a vector v , 421	yz-plane, 712
of functions, 50	Components	system
of n elements taken r at a time, 612	vector, 421, 437	polar, 677
Common	horizontal, 424	three-dimensional, 494, 712
difference of an arithmetic sequence, 581	vertical, 424	plane, 494
logarithmic	Composition of functions, 52	Coordinate(s), polar, 677
function, 193	Compound interest	Correlation, 72
model, 221	continuously compounded, 186	coefficient, 75
ratio of a geometric sequence, 589	formulas for, 186	negative, 72
Commonly used functions, 41	Conclusion, 87	positive, 72
Commutative Property of Addition,	Condensing logarithmic expressions, 205	Cosecant function, 2, 266, 273, 307, 310
for complex numbers, 130	Conditional	of any angle, 284
for matrices, 520	equation, 357	graph of, 307, 310
Commutative Property of Multiplication,	statement, 87	Cosine curve, amplitude of, 294
for complex numbers, 130	Conditions under which limits do not	Cosine function, 2, 266, 273, 293, 310
Complement	exist, 754	of any angle, 284
of an event, 623	Conic(s) or conic section(s), 636, 691	common angles, 287
probability of, 623	alternative definition, 691	domain of, 268
Complementary angles, 258	basic, 636	graph of, 296, 310
cofunctions of, 275	circle, 636	inverse, 2, 317, 319
Complex conjugates, 131	ellipse, 636	period of, 295
Complex number(s), 128	hyperbola, 636	range of, 268
absolute value of, 443	parabola, 636	special angles, 275
addition of, 129	classifying, by general equation, 662	Cotangent function, 2, 266, 273, 306, 310
additive identity, 129	degenerate, 636	of any angle, 284
additive inverse, 129	line, 636	graph of, 306, 310
argument of, 444	point, 636	Coterminal angle, 254
Associative Property of Addition, 130	two intersecting lines, 636	Counterexample, 87
Associative Property of	eccentricity of, 691	Counting Principle, Fundamental, 608
Multiplication, 130	locus of, 636	Cramer's Rule, 550, 551
Commutative Property of	polar equations of, 691, 709	Cross product
Addition, 130	rotation of axes, 663, 708	algebraic properties of, 727, 747
Commutative Property of	Conjugate, 137	determinant form of, 726
Multiplication, 130	axis of a hyperbola, 658	geometric properties of, 728, 748
conjugate of, 131	of a complex number, 131, 137	of two vectors in space, 726
difference of, 129	pairs, 137	Cryptogram, 553
Distributive Property, 130	complex zeros occur in, 137	Cubic function, 2, 41, 101
division of, 446	Connected mode, A11	Cumulative sum feature, A2
equality of, 128	Consistent system of linear equations, 482	Curve
imaginary part of, 128	Constant	bell-shaped, 225
modulus of, 444	function, 31, 90	logistic, 226

orientation of, 670	between a point and a plane, 739	matrices, 518
plane, 669	Formula, 637	vectors, 421
rose, 686, 687	in space, 713	Equality
sigmoidal, 226	Distinguishable permutations, 611	of complex numbers, 128
sine, 292	Distribution, frequency, A26	of vectors, in space, 719
Cycle of a sine curve, 292	Distributive Property	Equation(s)
•	for complex numbers, 130	circle, standard form, 637
D	for matrices, 520	conditional, 357
Damping factor, 309	Diverge, 784	of conics, polar, 691, 709
Data, fitting a line to, 73	Dividing out, technique for evaluating a	ellipse, standard form, 648
Decomposition of $N(x)/D(x)$ into partial	limit, 760	exponential, solving, 210
fractions, 495	Division	hyperbola, standard form, 656
Decreasing function, 31	Algorithm, 114	of a line
Defined, 23	of complex numbers, 446	general form of, 8
Degenerate conic, 636	long, of polynomials, 113	point-slope form, 5, 8
line, 636	synthetic, 116	slope-intercept form, 7, 8
point, 636	Domain	summary of, 8
two intersecting lines, 636	of the cosine function, 268	two-point form, 5
Degree, 257	of a function, 16, 23	logarithmic, solving, 210
conversion to radians, 257	implied, 20, 23	parabola, standard form, 639, 707
fractional part of, 257	of a rational function, 142	parametric, 669
measure of angles, 257	of the sine function, 268	of a line in space, 733
mode, A9	Dot mode, A11	of a plane
DeMoivre's Theorem, 448	Dot product, 434	general form, 735
Denominator, rationalizing, 360	properties of, 434, 467	standard form, 735
Dependent	of vectors in space, 719	polar, graph of, 683
system of linear equations, 491	Double subscript notation, 504	polynomial, solution of, 104
variable, 17, 23	Double-angle formulas, 384, 401	position, 498
Derivative, 775	Doyle Log Rule, 478	quadratic type, 368
Descartes's Rule of Signs, 121	Draw inverse feature, A2	sphere, standard form, 714
Determinant		symmetric, of a line in space, 733
area of a triangle using, 548	E	system of, 470
feature, A2	e, the number, 184	three variables, graph of, 494
form of the cross product, 726	Eccentricity, 691	trigonometric, solving, 365
of a square matrix, 541, 544	of a conic, 691	Equilibrium point, 486
of a 2×2 matrix, 536, 541	of an ellipse, 652, 691	Equivalent systems, 481, 490
Diagonal	of a hyperbola, 660, 691	operations that produce, 490
matrix, 531, 547	of a parabola, 691	Euler's Formula, 455
of a polygon, 615	Elementary function, 2	Evaluating trigonometric functions of any
Difference	Elementary row operations, 506	angle, 287
common, of an arithmetic sequence, 581	features, A3	Even function, 35
of complex numbers, 129	for matrices, 506	trigonometric, 269
of functions, 50	for systems of equations, 490	Even/odd identities, 350
limit of, 755	Eliminating the parameter, 672	Event(s), 616
quotient, 23, 605, 772	Elimination	certain, 617
limit of, 766	Gaussian, 490	complement of, 623
of vectors, 422	with back-substitution, 510	probability of, 623
Dimension, of a matrix, 504	Gauss-Jordan, 511	*
Diminishing returns, point of, 111	method of, 480, 481	impossible, 617
Dimpled limaçon, 687	Ellipse, 647, 691	independent, 621
Direct substitution to evaluate a limit, 755	center of, 647	probability of, 621
Directed line segment, 420	classifying, by general equation, 662	mutually exclusive, 619
initial point of, 420	eccentricity of, 652, 691	probability of, 617
length of, 420	foci of, 647	the union of two, 619
magnitude of, 420	latus rectum of, 655	Existence
terminal point of, 420	major axis of, 647	of an inverse function, 64
Direction	minor axis of, 647	of a limit, 764
angle of a vector, 426	standard form of the equation of, 648	theorems, 135
numbers, 733	vertices of, 647	Expanding
vector, 733	Entry of a matrix, 504	a binomial, 601
Directrix of a parabola, 639	main diagonal, 504	by cofactors, 544
Distance	Equal	logarithmic expressions, 205

A156 Index

Experiment, 616	sum-to-product, 388, 402	natural,
outcomes of, 616	Fractal, 597	exponential, 184
sample space of, 616	Fraction(s)	logarithmic, 196
Exponent, 182	partial, 495	nonelementary, 2
Exponential Exponential	decomposition, 495	notation, 18, 23
decay model, 221	Fractional parts of degrees	odd, 35
equations, solving, 210	minute, 257	one-to-one, 64
function, 2, 180, 182	second, 257	output value of, 18
f with base a , 180	Frequency, 329, A25	parent
graph of, 181	distribution, A26	absolute value, 2, 19, 41
natural, 184	Function(s), 2, 6, 16, 23	cosecant, 2, 307, 310
growth model, 221	absolute value, 2, 19, 41	cosine, 2, 293, 310
Exponentiating, 213	algebraic, 2, 180	cotangent, 2, 306, 310
Extrema, 104	arccosine, 2, 317, 319	cubic, 2, 41, 101
maxima, 104	arcsine, 2, 315, 317, 319	exponential, 2, 182
minima, 104	arctangent, 2, 317, 319	greatest integer, 2, 34
mining, 104	arithmetic combinations of, 50	inverse
F	characteristics of, 16	cosine, 2, 319
Factor(s)	combinations of, 50	sine, 2, 319
damping, 309	common logarithmic, 193	tangent, 2, 319
of a polynomial, 104, 138, 177	commonly used, 41	linear, 2, 6, 41
prime, 138	absolute value, 41	logarithmic, 2, 195
quadratic, 138	cubic, 41	quadratic, 2, 41, 92
scaling, 294	linear, 41	rational, 2, 41, 152
Theorem, 117, 176	quadratic, 41	secant, 2, 307, 310
Factorial, 573	rational, 41	sine, 2, 293, 310
Fibonacci sequence, 572	square root, 41	square root, 2, 20, 41
Finding	composition of, 52	tangent, 2, 304, 310
an inverse function, 65	constant, 31, 90	period of, 268
an inverse matrix, 534	continuous, 100, 669	periodic, 268
<i>n</i> th roots of a complex number, 450	cosecant, 2, 266, 273, 284, 307, 310	piecewise-defined, 19
Finite	cosine, 2, 266, 273, 284, 293, 310	polynomial, 90
sequence, 570	cotangent, 2, 266, 273, 284, 306, 310	power, 101
series, 575	cubic, 2, 41, 101	product of, 50
Fitting a line to data, 73	decreasing, 31	quadratic, 2, 41, 90, 92
Fixed point, 374	defined, 23	basic characteristics of, 91
Focal chord	derivative of, 775	quotient of, 50
latus rectum, 641	difference of, 50	radical, 20
of a parabola, 641	domain of, 16, 23	range of, 16, 23
Focus (foci)	elementary, 2	rational, 2, 41, 142, 152
of an ellipse, 647	even, 35	limits at infinity, 783
of a hyperbola, 656	exponential, 2, 180, 182	reciprocal, 152
of a parabola, 639	graph of, 29	secant, 2, 266, 273, 284, 307, 310
Formula(s)	greatest integer, 2, 34	sine, 2, 266, 273, 284, 293, 310
area of a triangle, 416	of half-angles, 384	square root, 2, 20, 41
change-of-base, 203	implied domain of, 20, 23	squaring, 92
for compound interest, 186	increasing, 31	step, 34
Distance, 637	input value of, 18	sum of, 50
in space, 713	inverse, 60, 61	summary of terminology, 23
double-angle, 384, 401	cosine, 2, 317, 319	tangent, 2, 266, 273, 284, 304, 310
Euler's, 455	existence of, 64	test
half-angle, 387	finding, 65	even, 36
Heron's Area, 416, 466	sine, 2, 315, 317, 319	odd, 36
Midpoint, in space, 713	tangent, 2, 317, 319	transcendental, 2, 180
power-reducing, 386, 401	trigonometric, 317	transformations of, 41
product-to-sum, 388	limits of, 755, 756, 804	nonrigid, 46
radian measure, 259	linear, 2, 6, 41, 90	rigid, 46
recursion, 583 reduction, 379	logarithmic, 2, 192, 195	trigonometric, 266, 273, 284
standard deviation, alternative, A38	mode, A9	undefined, 23
sum and difference, 377, 400	of multiple angles, 384	value of, 18, 23
summation, 789	name of, 18, 23	Vertical Line Test, 30
· · · · · · · · · · · · · · · · · · ·	,,	200, 00

Fundamental	maximum, A7	shrink, 46
Counting Principle, 608	mean, A8	of a trigonometric function, 295
Theorem, of Algebra, 135	median, A8	stretch, 46
trigonometric identities, 276, 350	minimum, A7	of a trigonometric function, 295
	$_{n}C_{r}$, A12	translation of a trigonometric
G	$_{n}^{n}P_{r}$, A12	function, 296
Gaussian elimination, 490	one-variable statistics, A12	Human memory model, 198
with back-substitution, 510	reduced row-echelon, A15	Hyperbola, 143, 656, 691
Gaussian model, 221	regression, A13	asymptotes of, 658
Gauss-Jordan elimination, 511	root, A22	branches of, 656
General form	row addition, A4	center of, 656
of the equation of a line, 8	row multiplication and addition, A4	classifying, by general equation, 662
of the equation of a plane, 735	row swap, A3	conjugate axis of, 658
Geometric	row-echelon, A14	eccentricity of, 660, 691
properties of the cross product, 728, 748	sequence, A15	foci of, 656
property of the triple scalar product, 730	shade, A15	standard form of the equation of, 656
sequence, 589	statistical plotting, A16	transverse axis of, 656
common ratio of, 589	store, A3	vertices of, 656
nth term of, 590	sum, A17	Hypotenuse of a right triangle, 273
sum of a finite, 592, 633	sum sequence, A17	Hypothesis, 87
series, 593	table, A17	Trypotnesis, 87
sum of an infinite, 593		1
Geometry, solid analytic, 712	tangent, A18	<i>i</i> , imaginary unit, 128
Graph	trace, A19, A23	Identities
bar, A27	value, A19	cofunction, 350
of cosecant function, 307, 310	zero, A22	even/odd, 350
of cosine function, 296, 310	zoom, A23	Pythagorean, 276, 350
of cotangent function, 306, 310	inverse matrix, A7	quotient, 276, 350
	list editor, A5	-
of an equation in three variables, 494	matrix editor, A6	reciprocal, 276, 350
of an exponential function, 181	matrix operations, A6	trigonometric
of a function, 29	mode settings, A9	fundamental, 276, 350
of inverse cosine function, 319	ask, A18	guidelines for verifying, 357
of an inverse function, 63	connected, A11	Identity, 357
of inverse sine function, 319	degree, A9	matrix of order $n \times n$, 524
of inverse tangent function, 319	dot, A11	If-then form, 87
line, A30	function, A9	Imaginary
of a logarithmic function, 194	parametric, A9	axis of the complex plane, 443
of a polar equation, 683	polar, A10	number, 128
of a polynomial function, x-intercept of,	radian, A9	pure, 128
104	sequence, A10	part of a complex number, 128
of a rational function, 151	uses of, A1	unit <i>i</i> , 128
guidelines for graphing, 151	viewing window, A20	Implied domain, 20, 23
reflecting, 44	Greatest integer function, 2, 34	Impossible event, 617
of secant function, 307, 310	Guidelines	Improper rational expression, 114
shifting, 42	for graphing rational functions, 151	Inconsistent system of linear equations,
of sine function, 296, 310	for verifying trigonometric identities, 357	482, 510
slope of, 772	11	Increasing
special polar, 687	H	annuity, 594
of tangent function, 304, 310	Half-angle	function, 31 Independent
Graphical interpretations of solutions, 482	formulas, 387	events, 621
Graphical method, for solving a system of	functions of, 384	probability of, 621
equations, 470 Graphing utility	Harmonic motion, simple, 329, 330	system of linear equations, 491
equation editor, A1	Heron's Area Formula, 416, 466	variable, 17, 23
features	Histogram, A26 Hooke's Law, 77	Indeterminate form, 761
cumulative sum, A2	Horizontal	Index
determinant, A2	asymptote, 143	of refraction, 399
draw inverse, A2	of a rational function, 144	of summation, 574
elementary row operations, A3	component of v, 424	Indirect proof, 567
intersect, A5	line, 8	Induction, mathematical, 634
list, A2	Line Test, 64	Inductive, 544
matrix, A6	shift, 42	Infinite

A158 Index

geometric series, 593	Leading 1, 508	segment, directed, 420
sum of, 593	Leading Coefficient Test, 102	slope of, 3, 4
sequence, 570	Least squares regression, A44	slope-intercept form of the equation of,
series, 575	line, 73, 487	7, 8
Infinity, limit at, 780, 781	method of, A44	in space, 733
for rational functions, 783	parabola, 502	parametric equations of, 733
Initial point, 420	Left Distributive Property, for matrices, 524	symmetric equations of, 733
Initial side of an angle, 254	Left-handed orientation, 712	summary of equations, 8
Input, 16	Lemniscate, 687	tangent, 770, 780
value of a function, 18	Length	to a parabola, 641
Instantaneous rate of change, 775	of a circular arc, 259	two-point form of the equation of, 5
Interest	of a directed line segment, 420	vertical, 8
		Linear
compound, formulas for, 186	of a vector, 421 in space, 719	
continuously compounded, 186 Intermediate Value Theorem, 108	Limaçon, 685, 687	combination of vectors, 424
	-	equation general form, 8
Intersect feature, A5	convex, 687	
Intersection, points of, 470	dimpled, 687	point-slope form, 5, 8
Inverse, 87	with inner loop, 687	slope-intercept form, 7, 8
cosine function, graph of, 319	Limit(s), 751	summary of, 8
function, 60, 61	basic, 755	two-point form, 5
cosine, 2, 317, 319	of a difference, 755	Factorization Theorem, 135, 177
existence of, 64	quotient, 766	function, 2, 6, 41, 90
finding, 65	evaluating	growth, 585
graph of, 63	direct substitution, 755	speed, 259
Horizontal Line Test, 64	dividing out technique, 760	system
sine, 2, 315, 317, 319	rationalizing technique, 762	consistent, 482
tangent, 2, 317, 319	existence of, 764	dependent, 491
of a matrix, 532	indeterminate form, 761	elementary row operations, 490
finding, 534	at infinity, 780, 781	inconsistent, 482, 510
matrix with a graphing utility, A7	for rational functions, 783	independent, 491
multiplicative, of a matrix, 532	from the left, 764	nonsquare, 493
properties	nonexistence of, 754	number of solutions, 491
of logarithms, 193	one-sided, 764	row-echelon form, 489
of natural logarithms, 196	of a polynomial function, 756, 804	square, 493
of trigonometric functions, 320	of a power, 755	List
sine function, graph of, 319	of a power function, 804	editor, A5
tangent function, graph of, 319	of a product, 755	feature, A2
trigonometric functions, 317	properties of, 755	Locus, 636
Invertible matrix, 533	of a quotient, 755	Logarithm(s)
Irreducible	of a rational function, 756	change-of-base formula, 203
over the rationals, 138	from the right, 764	natural
over the reals, 138	of a scalar multiple, 755	properties of, 196, 204, 251
V	of a sequence, 784	inverse, 196
K	of a sum, 755	one-to-one, 196
Kepler's Laws, 694	of summation	power, 204, 251
Key points of the graph of a trigonometric	lower, 574	product, 204, 251
function, 292	upper, 574	quotient, 204, 251
intercepts, 292	of summations, 789	properties of, 193, 204, 251
maximum points, 292	of a trigonometric function, 755	inverse, 193
minimum points, 292	Line(s)	one-to-one, 193
minimum points, 252	general form of the equation of, 8	power, 204, 251
L	graph, A30	product, 204, 251
Lagrange multiplier, 503	horizontal, 8	quotient, 204, 251
Latus rectum	least squares regression, 73	Logarithmic
of an ellipse, 655	parallel, 9	equations, solving, 210
of a parabola, 641	perpendicular, 9	expressions
Law of Cosines, 413, 465	in the plane, least squares regression, 487	condensing, 205
alternative form, 413, 465	plot, A25	expanding, 205
standard form, 413, 465	point-slope form of the equation	function, 2, 192, 195
Law of Sines, 404, 464	of, 5, 8	with base a , 192
Law of Tangents, 464	secant, 772	common, 193

graph of, 194	properties of, 520	of vectors, 422, 719
natural, 196	singular, 533	Multiplicative inverse, of a matrix, 532
model, 221	square, 504	Multiplicity, 105
common, 221	stochastic, 531	Multiplier, Lagrange, 503
natural, 221	subtraction, 520	Mutually exclusive events, 619
Logistic	triangular, 547	
curve, 226	uncoded row, 553	N
growth model, 221	upper triangular, 547	n factorial, 573
Long division of polynomials, 113	zero, 520	Name of a function, 18, 23
Lower	Maximum	Natural base, 184
bound, 122	feature, A7	Natural exponential function, 184
limit of summation, 574	relative, 32	Natural logarithm
quartile, A40	value of a quadratic function, 95	function, 196
triangular matrix, 547	Mean, A35	model, 221
	feature, A8	properties of, 196, 204, 251
M	Measure of an angle, 255	inverse, 196
Magnitude	degree, 257	one-to-one, 196
of a directed line segment, 420	radian, 255	power, 204, 251
of a vector, 421	Measure of central tendency, A35	product, 204, 251
in space, 719	average, A35	quotient, 204, 251
Main diagonal entries of a square matrix, 504	mean, A35	$_{n}C_{r}$, feature, A12
Major axis of an ellipse, 647	median, A35	Negation, 87
Mathematical	mode, A35	Negative
induction, 634	Measures of dispersion, A37	angle, 254
model, 71	standard deviation, A37	correlation, 72
Matrix (matrices), 504	variance, A37	number, principal square root of, 132
addition, 519	Median, A35	of a vector, 422
properties of, 520	feature, A8	Nonelementary function, 2
additive identity, 520	Method	Nonexistence of a limit, 754
adjoining, 534	of elimination, 480, 481	Nonrigid transformations, 46
augmented, 505	of least squares, A44	Nonsingular matrix, 533
coded row, 553	of substitution, 470	Nonsquare system of linear equations, 493
coefficient, 505, 525	Midpoint Formula, in space, 713	Normal vector, 735
cofactor of, 543	Minimum	Normally distributed, 225
column, 504	feature, A7	Notation
constant, 505, 525	relative, 32	double subscript, 504
determinant of, 536, 541, 544	value of a quadratic function, 95	function, 18, 23
diagonal, 531, 547	Minor axis of an ellipse, 647	sigma, 574
dimension of, 504	Minor of a matrix, 543	standard unit vector, 719
editor, A6	Minors and cofactors of a square matrix, 543	summation, 574
elementary row operations, 506	Minute, fractional part of a degree, 257	$_{n}P_{r}$, feature, A12
entry of, 504	Mode, A35	nth partial sum, 584
equal, 518	Mode settings, A9	of an arithmetic sequence, 584
feature, A6	ask, A18	nth root(s)
identity, 524	connected, A11	of a complex number, 449, 450
inverse of, 532	degree, A9	of unity, 451
finding, 534	dot, A11	nth term
invertible, 533	function, A9	of an arithmetic sequence, 582
lower triangular, 547	parametric, A9	of a geometric sequence, 590
main diagonal entries of, 504	polar, A10	Number(s)
minor of, 543	radian, A9	complex, 128
multiplication, 522	sequence, A10	direction, 733
properties of, 524	Modulus of a complex number, 444	of equally likely outcomes, 617
nonsingular, 533	Multiple angles, functions of, 384	imaginary, 128
operations with a graphing utility, A6	Multiple, scalar, 422	pure, 128
reduced row-echelon form, 508	Multiplication	negative, principal square root of, 132
representation of, 518	of complex numbers, 446	Number of combinations of <i>n</i> elements
row, 504	of matrices, 522	taken r at a time, 612
row-echelon form, 508 row-equivalent, 506	properties of, 524	Number of permutations of n elements, 609
scalar identity, 520	scalar	taken <i>r</i> at a time, 609, 610
scalar multiplication, 519	of matrices, 519	Number of solutions of a linear system, 491
r r r r		

A160 Index

0	cotangent, 2, 306, 310	initial, 420
Oblique	cubic, 2, 41, 101	of intersection, 470
asymptote, 155	exponential, 2, 182	terminal, 420
triangle, 404	greatest integer, 2, 34	Point-slope form of the equation of a line, 5, 8
area of, 408	inverse	Polar
formula, 416	cosine, 2, 319	axis, 677
Obtuse angle, 255	sine, 2, 319	coordinate system, 677
Octant, 712	tangent, 2, 319	pole (origin) of, 677
Odd/even identities, 350	linear, 2, 6, 41	coordinates, 677
Odd function, 35	logarithmic, 2, 195	conversion to rectangular, 679
trigonometric, 269	quadratic, 2, 41, 92	tests for symmetry in, 684, 685
One cycle of a sine curve, 292	rational, 2, 41, 152	equation
One-sided limit, 764	secant, 2, 307, 310	of conics, 691, 709
One-to-one	sine, 2, 293, 310	graph of, 683
function, 64	square root, 2, 20, 41	form of a complex number, 444
*	tangent, 2, 304, 310	mode, A10
property	Partial fraction, 495	Pole, 677
of logarithms, 193		
of natural logarithms, 196	decomposition, 495	Polygon, diagonal of, 615
One-variable statistics feature, A12	Partial sum, 575	Polynomial(s)
Opposite side of a right triangle, 273	nth, 584	equation, solution of, 104
Ordered triple, 489	Pascal's Triangle, 603	factors of, 104, 138, 177
Orientation of a curve, 670	Perigee, 651	function, 90
Origin	Perihelion, 696	Leading Coefficient Test, 102
of polar coordinate system, 677	Period	limit of, 756, 804
symmetric with respect to, 35	of a function, 268	real zeros of, 104
Orthogonal vectors, 436	of sine and cosine functions, 295	of x of degree n , 90
in space, 720	Periodic function, 268	x-intercept of the graph of, 104
Outcomes, 616	Permutation(s), 609	zeros of, 104
equally likely, number of, 617	distinguishable, 611	long division of, 113
Output, 16	of <i>n</i> elements, 609	prime quadratic factor, 138
value of a function, 18	taken r at a time, 609, 610	synthetic division, 116
,	Perpendicular	Position equation, 498
P	lines, 9	Positive
Parabola, 90, 639, 691	planes, 736	angle, 254
axis of, 90, 639	vectors, 436	correlation, 72
classifying, by general equation, 662	Phase shift, 296	Power
directrix of, 639	Piecewise-defined function, 19	of a complex number, 448
eccentricity of, 691	Plane(s)	function, 101
focal chord of, 641	angle between two, 736	limit of, 804
focus of, 639	coordinate, 712	limit of, 755
latus rectum of, 641	curve, 669	property
least squares regression, 502	orientation of, 670	of logarithms, 204, 251
reflective property of, 641	general form of the equation of, 735	of natural logarithms, 204, 251
standard form of the equation of, 639, 707	-	Power-reducing formulas, 386, 401
_	parallel, 736	Prime
tangent line to, 641	perpendicular, 736	
vertex of, 90, 639	region, area of, 793	factor of a polynomial, 138
Parallel	in space, 735	quadratic factor, 138
lines, 9	sketching, 738	Principal square root of a negative
planes, 736	standard form of the equation of, 735	number, 132
vectors in space, 721	three-dimensional coordinate system, 494	Probability
Parallelogram law for vector addition, 422	trace of, 738	of a complement, 623
Parameter, 669	Plot	of an event, 617
eliminating, 672	line, A25	of independent events, 621
Parametric	scatter, 71, A29	of the union of two events, 619
equations, 669	Point(s)	Product
of a line in space, 733	break-even, 475	of functions, 50
mode, A9	collinear, 549, 722	limit of, 755
Parent function	test for, 549	of trigonometric functions, 384
absolute value, 2, 19, 41	of diminishing returns, 111	triple scalar, 730
cosecant, 2, 307, 310	equilibrium, 486	of two complex numbers, 446
cosine, 2, 293, 310	fixed, 374	Product property

of logarithms, 204, 251	property	Relation, 16
of natural logarithms, 204, 251	of logarithms, 204, 251	Relative
Product-to-sum formulas, 388	of natural logarithms, 204, 251	maximum, 32
Projection of a vector, 437	of two complex numbers, 446	minimum, 32
Proof	R	Remainder
by contradiction, 567 indirect, 567	Radian, 255	using in synthetic division, 118 Theorem, 117, 176
without words, 568	conversion to degrees, 257	Repeated zero, 105
Proper rational expression, 114	measure formula, 259	Representation, of matrices, 518
Properties	mode, A9	Resultant of vector addition, 422
of the cross product	Radical function, 20	Right Distributive Property, for matrices, 524
algebraic, 727, 747	Radius, 637	Right triangle
geometric, 728, 748	Random selection	adjacent side of, 273
of the dot product, 434, 467	with replacement, 607	definitions of trigonometric functions, 273
geometric, of the triple scalar product, 730	without replacement, 607	hypotenuse of, 273
inverse, of trigonometric functions, 320	Range, A25	opposite side of, 273
of limits, 755	of the cosine function, 268	solving, 278
of logarithms, 193, 204, 251	of a function, 16, 23	Right-handed
inverse, 193	of the sine function, 268	orientation, 712
one-to-one, 193	Rate of change	system, 728
power, 204, 251	average, 775	Rigid transformations, 46
product, 204, 251	instantaneous, 775	Root feature, A22
quotient, 204, 251	Rational expression(s)	Root(s), of a complex number, 449, 450
of matrix addition and scalar	improper, 114	Rose curve, 686, 687
multiplication, 520	proper, 114	Rotation, of axes, 663
of matrix multiplication, 524	Rational function, 2, 41, 142, 152	to eliminate an xy-term, 663, 708
of natural logarithms, 196, 204, 251	asymptotes of, 144	Row addition and row multiplication and
inverse, 196	domain of, 142	addition features, A4
one-to-one, 196	graph of, guidelines for graphing, 151	Row-echelon
power, 204, 251	limit of, 756	feature, A14
product, 204, 251	at infinity, 783	form, 489
quotient, 204, 251	Rational Zero Test, 119	of a matrix, 508
reflective, of a parabola, 641	Rationalizing	reduced, 508
summation, 789	a denominator, 360	Row-equivalent matrices, 506
of sums, 574, 632	technique for evaluating a limit, 762	Row matrix, 504
of vector addition and scalar	Real	coded, 553
multiplication, 423	axis of the complex plane, 443	uncoded, 553
Pure imaginary number, 128	part of a complex number, 128	Row multiplication feature, A4
Pythagorean	zeros of a polynomial function, 104	Row operations, elementary, 506
identities, 276, 350	Reciprocal	Row swap feature, A3
Theorem, 348	function, 152	C
0	identities, 276, 350	S
Q Overdentia	Rectangular coordinates, conversion to	Sample space, 616
Quadratic equation, complex solutions of, 132	polar, 679 Recursion formula, 583	Scalar, 422, 519
factor, prime, 138	Recursive sequence, 572	Identity Property for matrices, 520
function, 2, 41, 90, 92	Reduced row-echelon	multiple, 422, 519
basic characteristics of, 91	feature, A15	limit of, 755 of a vector in space, 719
maximum value, 95	form, of a matrix, 508	•
minimum value, 95	Reducible over the reals, 138	multiplication
standard form of, 93	Reduction formulas, 379	of matrices, 519 properties of, 520
type equations, 368	Reference angle, 286	
Quartiles, A40	Reflection, 44	of a vector, 422 properties of, 423
lower, A40	of a trigonometric function, 295	Scaling factor, 294
upper, A40	Reflective property of a parabola, 641	Scatter plot, 71, A29
Quick tests for symmetry in polar	Refraction, index of, 399	Scribner Log Rule, 478
coordinates, 685	Region, plane, area of, 793	Secant
Quotient	Regression	function, 2, 266, 273, 307, 310
difference, 23, 605, 772	feature, A13	of any angle, 284
limit of, 755, 766	least squares, A44 line, 73, 487	graph of, 307, 310
of functions, 50 identities, 276, 350	parabola, 502	line, 772
1001111105, 270, 330	parabora, 502	11110, 112

A162 Index

Second, fractional part of a degree, 257	equations, 210	Standard unit vector, 424
Sequence, 570	right triangles, 278	notation in space, 719
arithmetic, 581	a system of equations, 470	Statistical plotting feature, A16
convergence of, 784	Cramer's Rule, 550, 551	Statistics, A25
divergence of, 784	Gaussian elimination, 490	Step function, 34
feature, A15	with back-substitution, 510	Stochastic matrix, 531
Fibonacci, 572	Gauss-Jordan elimination, 511	Store feature, A3
finite, 570	graphical method, 470	Strategies for solving exponential and
geometric, 589	method of elimination, 480, 481	logarithmic equations, 210
infinite, 570	method of substitution, 470	Stretch
limit of, 784	a trigonometric equation, 365	horizontal, 46
mode, A10	Space	vertical, 46
partial sum of, 575	Distance Formula in, 713	Substitution
recursive, 572	lines in, 733	direct, to evaluate a limit, 755
terms of, 570	Midpoint Formula in, 713	method of, 470
Series, 575	planes in, 735	Subtraction
finite, 575	sketching, 738	of complex numbers, 129
geometric, 593	surface in, 715	of matrices, 520
infinite, 575	vector in, 719	Sum(s)
geometric, 593	Special angles	of complex numbers, 129
Shade feature, A15	cosines of, 275	and difference formulas, 377, 400
Shifting graphs, 42	sines of, 275	feature, A17
Shrink		of a finite arithmetic sequence, 584, 633
	tangents of, 275 Speed	of a finite artifilied sequence, 584, 633 of a finite geometric sequence, 592,
horizontal, 46	•	
vertical, 46	angular, 259	593, 633
Sigma notation, 574	linear, 259	of functions, 50
Sigmoidal curve, 226	Sphere, 714	limit of, 755
Simple harmonic motion, 329, 330	standard form of the equation of, 714	nth partial, 584
frequency, 329	Spring constant, 77	partial, 575
Sine	Square matrix, 504	properties of, 574, 632
curve, 292	determinant of, 541, 544	sequence feature, A17
amplitude of, 294	diagonal, 547	of squared differences, 73, 234, A44
one cycle of, 292	lower triangular, 547	of vectors, 422
function, 2, 266, 273, 293, 310	main diagonal entries of, 504	in space, 719
of any angle, 284	minors and cofactors of, 543	Summary
common angles, 287	triangular, 547	of equations of lines, 8
domain of, 268	upper triangular, 547	of function terminology, 23
graph of, 296, 310	Square root(s)	Summation
inverse, 2, 315, 317, 319	function, 2, 20, 41	formulas and properties, 789
period of, 295	of a negative number, 132	index of, 574
range of, 268	principal, 132	limit of, 789
special angles, 275	Square system of linear equations, 493	lower limit of, 574
Sines, cosines, and tangents of special	Square of trigonometric functions, 384	notation, 574
angles, 275	Squared differences, sum of, 73, A44	upper limit of, 574
Singular matrix, 533	Squaring function, 92	Sum-to-product formulas, 388, 402
Sketching planes in space, 738	Standard deviation, A37	Supplementary angles, 258
Slant asymptote, 155	alternative formula, A38	Surface in space, 715
Slope, 3, 733, 772	Standard form	trace of, 715
of a graph, 772	of a complex number, 128	Symmetric equations of a line in space, 733
of a line, 3, 4	of the equation	Symmetry
Slope-intercept form of the equation of a	of a circle, 637	axis of, of a parabola, 90
line, 7, 8	of an ellipse, 648	in polar coordinates, tests for, 684, 685
Solid analytic geometry, 712	of a hyperbola, 656	with respect to the origin, 35
Solution(s)	of a parabola, 639, 707	with respect to the x -axis, 35
of a linear system, number of, 491	of a plane, 735	with respect to the y-axis, 35
of a polynomial equation, 104	of a sphere, 714	Synthetic division, 116
of a quadratic equation, complex, 132	of Law of Cosines, 413, 465	using the remainder in, 118
of a system of equations, 470	of a quadratic function, 93	System of equations, 470
graphical interpretations, 482	Standard position	equivalent, 481, 490
Solving	of an angle, 254	solution of, 470
exponential and logarithmic	of a vector, 421	solving, 470
	*	<u> </u>

with a unique solution, 537	Transformations of functions, 41	U
System of linear equations	nonrigid, 46	Uncoded row matrices, 553
consistent, 482	rigid, 46	Undefined, 23
dependent, 491	Transverse axis of a hyperbola, 656	Union of two events, probability of, 619
elementary row operations, 490	Triangle	Unit
inconsistent, 482, 510	area of	circle, 265
independent, 491	using a determinant, 548	definitions of trigonometric
nonsquare, 493	Heron's Area Formula, 416, 466	functions, 266
number of solutions, 491	standard formula, 416	vector, 421
row-echelon form, 489	oblique, 404	in the direction of v , 424
square, 493	area of, 408	form, 719
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Triangular matrix, 547	notation, standard, 719
T	Trigonometric	in space, in the direction of \mathbf{v} , 719
Table feature, A17	equations, solving, 365	standard, 424
Tangent	form of a complex number, 444	Unity, <i>n</i> th roots of, 451
feature, A18	argument of, 444	Upper
function, 2, 266, 273, 304, 310	modulus of, 444	bound, 122
of any angle, 284	functions, 266, 273, 284	limit of summation, 574
common angles, 287	of any angle, 284	
graph of, 304, 310	evaluating, 287	and Lower Bound Rules, 122
inverse, 2, 317, 319	cosecant, 2, 266, 273, 284, 307, 310	quartile, A40
special angles, 275	cosine, 2, 266, 273, 284, 293, 310	triangular matrix, 547
line, 770, 780		Uses of a graphing utility, A1
to a parabola, 641	cotangent, 2, 266, 273, 284, 306, 310 even, 269	Using the remainder in synthetic division,
Term, of a sequence, 570	horizontal	118
Terminal		V
point, 420	shrink of, 295	Value
side of an angle, 254	stretch of, 295	
Test(s)	translation of, 296	feature, A19
for collinear points, 549	inverse, 317	of a function, 18, 23
even function, 36	properties of, 320	Variable
Horizontal Line, 64	key points, 292	dependent, 17, 23
	intercepts, 292	independent, 17, 23
Leading Coefficient, 102	maximum points, 292	Variance, A37
odd function, 36	minimum points, 292	in sign, 121
Rational Zero, 119	limit of, 755	Vector(s), 420, 719, 733
for symmetry, in polar coordinates,	odd, 269	addition of, 422, 719
684, 685	product of, 384	properties of, 423
Vertical Line, 30	reflection of, 295	resultant of, 422
Theorem	right triangle definitions of, 273	analysis, 747
of Algebra, Fundamental, 135	secant, 2, 266, 273, 284, 307, 310	angle between two, 435, 467, 720
Binomial, 599, 634	sine, 2, 266, 273, 284, 293, 310	component form of, 421, 719
DeMoivre's, 448	square of, 384	components of, 421, 437
Descartes's Rule of Signs, 121	tangent, 2, 266, 273, 284, 304, 310	cross product of, 726
existence, 135	unit circle definitions of, 266	difference of, 422
Factor, 117, 176	vertical	directed line segment representation, 420
Intermediate Value, 108	shrink of, 294	direction, 733
Linear Factorization, 135, 177	stretch of, 294	angle of, 426
Pythagorean, 348	translation of, 297	dot product of, 434, 719
Remainder, 117, 176	identities	properties of, 434, 467
Three-dimensional coordinate system,	cofunction, 350	equal, 421, 719
•	even/odd, 350	horizontal component of, 424
494, 712	fundamental, 276, 350	length of, 421, 719
left-handed orientation, 712	guidelines for verifying, 357	linear combination of, 424
octant, 712	Pythagorean, 276, 350	magnitude of, 421, 719
plane, 494	quotient, 276, 350	negative of, 422
right-handed orientation, 712	reciprocal, 276, 350	normal, 735
Trace	values of common angles, 287	orthogonal, 436, 720
feature, A19, A23	Trigonometry, 254	parallel, 721
of a plane, 738	Triple scalar product, 730	parallelogram law, 422
of a surface, 715	geometric property of, 730	perpendicular, 436
Transcendental function, 2, 180	Two-point form of the equation of a line, 5	in the plane, 420

A164 Index

projection of, 437 resultant of, 422 scalar multiplication of, 422, 719 properties of, 423 in space, 719 addition of, 719 angle between two, 720 component form of, 719 cross product of, 726 direction, 733 dot product of, 719 equal, 719 length of, 719 magnitude of, 719 normal, 735 orthogonal, 720 parallel, 721 scalar multiple of, 719 standard unit, 719 sum of, 719 triple scalar product, 730 unit, in the direction of v, 719 unit form, 719 zero, 719 standard position of, 421 sum of, 422, 719 triple scalar product, 730	unit, 421 in the direction of v, 424, 719 form, 719 standard, 424, 719 v in the plane, 420 vertical component of, 424 zero, 421, 719 Vertex (vertices) of an angle, 254 of an ellipse, 647 of a hyperbola, 656 of a parabola, 90, 639 Vertical asymptote, 143 of a rational function, 144 component of v, 424 line, 8 Line Test, 30 shift, 42 shrink, 46 of a trigonometric function, 294 stretch, 46 of a trigonometric function, 294 translation of a trigonometric function, 297 Viewing window, A20	W With replacement, 607 Without replacement, 607 Work, 439 X x, change in, 772 x-axis, symmetric with respect to, 35 x-intercepts, of the graph of a polynomial function, 104 xy-plane, 712 xz-plane, 712 Y y, change in, 772 y-axis, symmetric with respect to, 35 yz-plane, 712 Z Zero(s) feature, A22 matrix, 520 multiplicity of, 105 of a polynomial function, 104 bounds for, 122 repeated, 105 vector, 421 in space, 719 Zoom feature, A23
--	---	--

Linear Function (p. 6)

$$f(x) = x$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Intercept: (0, 0)Increasing

Absolute Value Function (p. 19)

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ Intercept: (0, 0)Decreasing on $(-\infty, 0)$ Increasing on $(0, \infty)$ Even function y-axis symmetry

Square Root Function (p. 20)

$$f(x) = \sqrt{x}$$

Domain: $[0, \infty)$ Range: $[0, \infty)$ Intercept: (0, 0)Increasing on $(0, \infty)$

Greatest Integer Function (p. 34)

$$f(x) = [\![x]\!]$$

Domain: (-∞, ∞)
Range: the set of integers
x-intercepts: in the interval [0, 1)
y-intercept: (0, 0)
Constant between each pair of consecutive integers
Jumps vertically one unit at

each integer value

Quadratic Function (p. 92)

$$f(x) = ax^2$$

Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ Intercept: (0, 0)Decreasing on $(-\infty, 0)$ Increasing on $(0, \infty)$ Even function Axis of symmetry: x = 0

Relative minimum or vertex: (0, 0)

Cubic Function (p. 101)

$$f(x) = x^3$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ Intercept: (0, 0)Increasing on $(-\infty, \infty)$ Odd function Origin symmetry

Rational Function (p. 152)

$$f(x) = \frac{1}{x}$$

Domain: $(-\infty, 0) \cup (0, \infty)$ Range: $(-\infty, 0) \cup (0, \infty)$

No intercepts

Decreasing on $(-\infty, 0)$ and $(0, \infty)$

Odd function Origin symmetry

Vertical asymptote: *y*-axis Horizontal asymptote: *x*-axis

Exponential Function (p. 182)

$$f(x) = a^x, \ a > 0, \ a \neq 1$$

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Intercept: (0, 1)

Increasing on $(-\infty, \infty)$

for $f(x) = a^x$

Decreasing on $(-\infty, \infty)$

 $for f(x) = a^{-x}$

x-axis is a horizontal asymptote

Continuous

Logarithmic Function (p. 195)

$$f(x) = \log_a x, \ a > 0, \ a \neq 1$$

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Intercept: (1, 0)

Increasing on $(0, \infty)$

y-axis is a vertical asymptote

Tangent Function (p. 304)

Continuous

Reflection of graph of $f(x) = a^x$

in the line y = x

Sine Function (p. 293)

$$f(x) = \sin x$$

Domain: $(-\infty, \infty)$

Range: [-1, 1]

Period: 2π

x-intercepts: $(n\pi, 0)$ *y*-intercept: (0, 0)

Odd function

Origin symmetry

Cosine Function (p. 293)

$$f(x) = \cos x$$

Domain: $(-\infty, \infty)$

Range: [-1, 1]

Period: 2π

x-intercepts: $\left(\frac{\pi}{2} + n\pi, 0\right)$

y-intercept: (0, 1) Even function y-axis symmetry

$f(x) = \tan x$

Domain: $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, \infty)$

Period: π

x-intercepts: $(n\pi, 0)$

y-intercept: (0, 0)

Vertical asymptotes: $x = \frac{\pi}{2} + n\pi$

Odd function
Origin symmetry

Cosecant Function (p. 307)

$$f(x) = \csc x$$

Domain: $x \neq n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π No intercepts

Vertical asymptotes: $x = n\pi$

Odd function
Origin symmetry

Secant Function (p. 307)

$$f(x) = \sec x$$

Domain: $x \neq \frac{\pi}{2} + n\pi$

Range: $(-\infty, -1] \cup [1, \infty)$

Period: 2π

y-intercept: (0, 1)Vertical asymptotes: $x = \frac{\pi}{2} + n\pi$

Even function *y*-axis symmetry

Cotangent Function (p. 306)

$$f(x) = \cot x$$

Domain: $x \neq n\pi$

Range: $(-\infty, \infty)$

Period: π

x-intercepts: $\left(\frac{\pi}{2} + n\pi, 0\right)$

Vertical asymptotes: $x = n\pi$

Odd function Origin symmetry

Inverse Sine Function (p. 319)

$f(x) = \arcsin x$

Domain: $\begin{bmatrix} -1, 1 \end{bmatrix}$ Range: $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$

Intercept: (0, 0)
Odd function
Origin symmetry

Inverse Cosine Function (p. 319)

$$f(x) = \arccos x$$

Domain: [-1, 1]Range: $[0, \pi]$

y-intercept: $\left(0, \frac{\pi}{2}\right)$

Inverse Tangent Function (p. 319)

$$f(x) = \arctan x$$

Domain: $(-\infty, \infty)$

Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Intercept: (0, 0)

Horizontal asymptotes: $y = \pm \frac{\pi}{2}$

Odd function Origin symmetry