Machine Learning & Climate Project - Droughts forecasting

I. Context

- Climate change increases the odds of more frequent, intense and longer droughts
- Droughts impact agriculture, water supply availability, wildfires, etc.
- Better forecast allows better resilience

D1 Moderate Drought

II. Data

Weather data

(daily observations of temperatures, precipitations, humidity, ...) 18 variables

Soil data

(elevation, slope, aspect, land use, ...)
30 variables

Observed droughts (weekly observations)

III. Objective

- Forecast droughts for 6 upcoming weeks
- Regression task on the continuous score
- Metrics used:
 - MAE / RMSE
 - Macro F1 score (binning predictions and targets)

IV. Exploratory Data Analysis

Highly imbalanced dataset (rationale to focus on Macro F1 score)

Presence of highly correlated variables (Temperature, Wind and Soil Quality variables)

Machine Learning & Climate Project - Droughts forecasting

V. Models

Naive model (baseline): Identity

Non temporal models: Linear regressions, Gradient Boosting regressor, FFNN

Temporal models: LSTM

- Time Series are split into subsequent episodes of a given length to avoid correlation
- Matrix of observations is flattened or averaged for non temporal models

VI. Results

VII. Discussion

- Naive model's score opens a discussion on the prediction's scope
- Flattening the data causes an explosion of the number of features and suppresses all time depencies. Averaging data does not help

VIII. Eventual next steps

- Transformers
- Include weather forecast
- Best model predictions beyond 6 weeks