MAT-266: Análisis de Regresión

Certamen 2. Junio 16, 2021

Tiempo: 70 minutos

Nombre:

Profesor: Felipe Osorio

1. (40 pts) Sea Y_{ij} , para i=1,2,3 y $j=1,\ldots,m$ variables aleatorias independientes con distribución normal, tales que $\mathsf{E}(Y_{ij}) = \mu_{ij}$, $\mathsf{var}(Y_{ij}) = \sigma^2$, y

$$\mu_{1j} = \tau, \qquad \mu_{2j} = \tau + \theta, \qquad \mu_{3j} = \tau - \theta.$$

- a) Determine la matriz de diseño X.
- **b)** Obtener el estimador ML de $(\tau, \theta)^{\top}$ y $var(\widehat{\theta})$.
- c) Derive el estadístico F para probar la hipótesis $H_0: \theta = 0$.
- **2.** (60 pts) Considere el modelo de regresión lineal $Y = X\beta + \epsilon$ bajo los Supuestos A1-A4* y suponga las restricciones lineales

$$G\beta = g$$
,

donde $G \in \mathbb{R}^{q \times p}$ con $rg(G) = q y g \in \mathbb{R}^q$. Sea

$$A = I - BG$$

con

$$\boldsymbol{B} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top}(\boldsymbol{G}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{G}^{\top})^{-1}.$$

Muestre que la matriz A tiene las siguientes propiedades:

- (i) \mathbf{A} es idempotente con rango $rg(\mathbf{A}) = r$.
- (ii) $\boldsymbol{X}\boldsymbol{A}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}$ es idempotente y simétrica con rango r.
- (iii) $A(X^{\top}X)^{-1} = (X^{\top}X)^{-1}A^{\top} = A(X^{\top}X)^{-1}A^{\top}$.