AAC专利介绍

2013年09月21日 10:07:03 阅读数:8131

AAC(高级音频编码)是音频压缩方案,并于 1997 年首次在 MPEG 内实现标准化。设计 AAC 的目的是,以低于以前 MPEG 音频压缩格式的比特率提供高品质音频。AAC 通过 MPEG-4 标准化流程实现了进一步完善,并最终利用带宽扩展技术进行了增强,由此产生 High Efficiency AAC;利用新增的参数化立体声产生 High Efficiency AAC version 2 (HE AAC v2)。

授权,涵盖下图中的 AA	3 127140					
(高效)解码器可以回	兼容的音频编码技术组:M 放 MPEG-4 和 MPEG-2 A 听众提供的"透明"音质(和	AC LC 编码数据流等。	因此,AAC 系列可以3	5持各种应用,从手	机网络音乐传输所需的	的极低比
C(高效)解码器可以叵 持率,到为最具鉴赏力的 强低延迟),这些技术。 Via Licensing 还提供 AA		AC LC 编码数据流等。 D音源音质一样)。该 [:] 低延迟有严格要求的应	因此,AAC 系列可以s 专利授权涵盖的其他 AA 用场合的高品质频。	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以巨特率,到为最具鉴赏力的强低延迟),这些技术可 MECESTING 还提供 AAM MPEG Surround>>	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对值	AC LC 编码数据流等。 D音源音质一样)。该 [:] 低延迟有严格要求的应	因此,AAC 系列可以s 专利授权涵盖的其他 AA 用场合的高品质频。	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以巨 特率,到为最具鉴赏力的 强低延迟),这些技术可 Via Licensing 还提供 AA MPEG Surround>> MPEG-4 SLS>>	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对值	AC LC 编码数据流等。 D音源音质一样)。该 [·] 低延迟有严格要求的应 :MPEG Surround 授机	因此,AAC 系列可以3 专利授权涵盖的其他 AA 用场合的高品质频。 双和 MPEG-4 SLS 授权	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以巨特率,到为最具鉴赏力的强低延迟),这些技术可以 Licensing 还提供 AAMPEG Surround>> MPEG-4 SLS>>	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对值 C 两种补充技术的专利池:	AC LC 编码数据流等。 D音源音质一样)。该 [·] 低延迟有严格要求的应 :MPEG Surround 授机	因此,AAC 系列可以3 专利授权涵盖的其他 AA 用场合的高品质频。 双和 MPEG-4 SLS 授权	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以叵 特率,到为最具鉴赏力的 强低延迟),这些技术可 Via Licensing 还提供 AA MPEG Surround>> MPEG-4 SLS>> 有关 Via AAC 专利授权· AAC FAQ>>	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对值 C 两种补充技术的专利池:	AC LC 编码数据流等。 D音源音质一样)。该· 低延迟有严格要求的应 : MPEG Surround 授机	因此,AAC 系列可以3 专利授权涵盖的其他 AA 用场合的高品质频。 双和 MPEG-4 SLS 授权	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以回 特率,到为最具鉴赏力的 强低延迟),这些技术可 Via Licensing 还提供 AA MPEG Surround>> MPEG-4 SLS>> 有关 Via AAC 专利授权· AAC FAQ>> MPEG-4 Audio 标准的执 ISO 在线商店>>	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对位 C 两种补充技术的专利池:	AC LC 编码数据流等。 D音源音质一样)。该" 低延迟有严格要求的应 : MPEG Surround 授机 :们的 FAQ(常见问题) (搜索"14496-3")购3	因此,AAC 系列可以或 专利授权涵盖的其他 AA 用场合的高品质频。 双和 MPEG-4 SLS 授权 。	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比
C(高效)解码器可以回 特率,到为最具鉴赏力的 强低延迟),这些技术可 Via Licensing 还提供 AA MPEG Surround>> MPEG-4 SLS>> 有关 Via AAC 专利授权· AAC FAQ>> MPEG-4 Audio 标准的抗 ISO 在线商店>> 原文网址: http://www.	放 MPEG-4 和 MPEG-2 A/ 听众提供的"透明"音质(和 以实现视频会议或其他对位 C 两种补充技术的专利池: 十划的更多信息,请参阅我 贝可以通过 ISO 在线商店	AC LC 编码数据流等。 D音源音质一样)。该" 低延迟有严格要求的应 : MPEG Surround 授机 :们的 FAQ(常见问题) (搜索"14496-3")购3	因此,AAC 系列可以或 专利授权涵盖的其他 AA 用场合的高品质频。 双和 MPEG-4 SLS 授权 。	E持各种应用,从手 C 技术包括 AAC-L	机网络音乐传输所需的 D(低延迟)和 AAC-	的极低比

此PDF由spygg生成,请尊重原作者版权!!!

我的邮箱:liushidc@163.com