Show that the vectors u = (1 + i, 2i) and w = (1, 1 + i) in \mathbb{C}^2 are linearly dependent over the complex field \mathbb{C} but linearly independent over the real field \mathbb{R} .

4.2

If $T: V \to V$ is a linear transformation,

find $T(\mathbf{v})$ and $T(\mathbf{w})$ if:

a.
$$T(\mathbf{v} + \mathbf{w}) = \mathbf{v} - 2\mathbf{w}$$
 and $T(2\mathbf{v} - \mathbf{w}) = 2\mathbf{v}$

b.
$$T(v + 2w) = 3v - w$$
 and $T(v - w) = 2v - 4w$

4.3

Determinar cuáles de las siguientes aplicaciones son lineales:

(i)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 definida por $f((x, y, z)) = (x - y, y + 2z)$.

(ii)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 definida por $f((x, y, z)) = (x - y^2, y + 2z)$.

44

Se considera $f: \mathbb{R}^2 \to \mathbb{R}^3$ aplicación lineal tal que f((1,-1)) = (-1,-2,-3) y f((-3,2)) = (0,5,3). Determinar, si es posible, f((x,y)) donde $(x,y) \in \mathbb{R}^2$.

4.5

Hallar, si es posible, una aplicacin lineal $f: \mathbb{R}^4 \to \mathbb{R}^3$ tal que kerf = <(0, 1, -1, 1), (0, 1, 0, 1) > e Imf = <(1, 0, 1), (2, 1, 0) >.

4.6

Show that the following mappings are not linear:

(a)
$$F: \mathbf{R}^2 \to \mathbf{R}^2$$
 defined by $F(x, y) = (xy, x)$

(b)
$$F: \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $F(x,y) = (x+3, 2y, x+y)$

(c)
$$F: \mathbf{R}^3 \to \mathbf{R}^2$$
 defined by $F(x, y, z) = (|x|, y + z)$

a) Sea la siguiente aplicación lineal,

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \to (x+2y-z,2x+3y+z,3y-9z)$

- i) ¿Es f una aplicación invertible? En caso afirmativo, calcula la aplicación f^{-1} .
- ii) Calcular $(x, y, z) \in \mathbb{R}^3$ tal que f(x, y, z) = (1, 2, 0). ¿Existe algún $(x, y, z) \in \mathbb{R}^3$ tal que f(x, y, z) = (1, 1, 0)?
- iii) Calcular alguna base de Im(f) y de Ker(f).
- iv) Discute para qué valores de $a \in \mathbb{R}$, $(a,1,1) \in Im(f)$ y para qué valores $(a,1,1) \in Ker(f)$.
- b) Encontrar una aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(2,0,0) = (4,2,2) y f(1,1,0) = (1,1,0).

a) Calcular M(g) sabiendo que $g: \mathbb{R}^2 \to \mathbb{R}^3$ es una aplicación lineal que verifica las condiciones:

a1)
$$(1,-2) \in Ker(g)$$
. a2) $g(0,1) = (1,-1,2)$

- b) Sea f una aplicación lineal tal que $M(f)=\begin{pmatrix} -2 & -1 & a \\ a & 0 & 2 \\ 4 & 1 & 0 \end{pmatrix}, \ a\in\mathbb{R}\,;$
 - i) Calcular los valores de a y b para que se cumpla que f no es un isomorfismo y que f(1,b,0) = (0,-2,2).
 - ii) Para a = 2, calcular una base y la dimensión del conjunto Ker(f).
 - iii) Para a = -2, calcular una base y la dimensión del conjunto Im(f)
 - iv) Calcular los valores de a para se cumpla

$$\{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = (1, 1, 0)\} = \emptyset.$$

v) Calcular $(f \circ g)(2, -4)$.

Donada l'aplicació lineal f:

$$f: P_1(x) \longrightarrow P_2(x)$$

 $\vec{u} = a + bx \longrightarrow f(\vec{u}) = (2a - b) + (a + b)x + ax^2$,

i les bases B₁ i B₂:

$$B_1 = \{1, \ 1+x\} \ \ {\rm base \ de} \ P_1(x).$$

$$B_2 = \{1, \ 1+x, \ 1+x+x^2\} \ \ {\rm base \ de} \ P_2(x).$$

Trobeu la matriu associada a f en els casos següents:

- a) En base canònica.
- b) En base B_1 de $P_1(x)$ i canònica de $P_2(x)$.
- c) En base canònica de $P_1(x)$ i B_2 de $P_2(x)$.
- d) En base de B_1 de $P_1(x)$ i B_2 de $P_2(x)$.
- e) Estudieu si f és injectiva, exhaustiva o bijectiva.
- f) Trobeu una base del nucli i de la imatge de l'aplicació.

Sean E el espacio de los polinomios de grado menor o igual que 2 con coeficientes reales y F el espacio de los polinomios de grado menor o igual que 3 con coeficientes reales. Se considera la aplicación lineal $f:E\to F$ dada por

$$f(p(t)) = \int_0^t p(s)ds$$

(es decir la imagen de un polinomio es su integral entre 0 y t: una primitiva de dicho polinomio que en 0 toma el valor 0).

Se pide:

- (a) Hallar la matriz coordenada de f respecto a la base $B = \{1, 1+t, 1+t^2\}$ de E y a la base canónica de F.
- (b) Haciendo uso de la matriz hallada en (a), hallar $f(3+t+t^2)$.