Flight Delays Analysis

M. Farhan Rais DAS 311

Contents/Data Analytics Workflow

Background

Flight delays at JFK Airport

https://patch.com/new-york/queens/more-80-laguardia-flights-cancelednearly-100-delayed

Hundreds Of LaGuardia, JFK Flights Canceled, Delayed

LaGuardia saw more than 175 flights delayed Friday morning as snow descended on New York City, according to FlightAware.

Callin Loesch, Patch Staff O

Posted Fri, Jan 19, 2024 at 11:03 am ET | Updated Fri, Jan 19, 2024 at 11:57 am ET

Problem Statement

JFK Airport is experiencing high volumes of flight delays. Department of Transport has put together data of domestic flight information for in-house analysts.

How might the **DoT data analyst** use **flight data** to analyse trends in flight delays and make recommendations to JFK Airport management in order to **improve flight departure times**?

Kaggle Dataset

Flight Status Prediction

- Flight information including cancellation and delays by airline in **2022** (4,078,318 rows).
- [Python] Filtered data to flights originating from **JFK Airport** (79,127 rows).

https://www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022?select=readme.md

https://www.transtats.bts.gov/Homepage.asp

Wrangle/Prepare

Steps taken:

- Removed unnecessary/redundant columns
- Removed empty rows (with no time info)
- Inserted new columns (split info, aggregated info)

25.9%

20,524

Flights delayed in 2022 (>15 mins)

Airlines with Flight Delays

Top 3 Airlines

- JetBlue Airways (47%)
- 2. Delta Air Lines (16%)
- 3. Republic Airlines (14%)

Delays by Destination

Top 3 Destinations

- Florida
- California
- 3. Massachusetts

Delay Time Distribution

Delay Distribution by Months

Recommendations

Airline

Introduce fines for delay frequency

Destination

Customer advisory

Seasonality

Increase airport manpower

Future Work

Further Study

Dataset of other airports and years

Prediction

Data science prediction model

Short cuts make long delays.

J. R. R. Tolkier

Thank You

mfarhan.rais@generalassemb.ly https://generalassemb.ly/students

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

