EP3 - Cálculo Numérico

Nicholas Funari Voltani - Nº USP: 9359365

17 de Outubro de 2019

Abaixo seguem as tabelas das rotinas dos exercícios; o exercício 1 foi feito em C++, os exercícios 2 e 3 foram feitos em Python, e os gráficos 1 e 2 foram feitos com o Pyplot. Os respectivos códigos estão nos apêndices.

1 Exercício 1: Método de Simpson

1.1 Precisão Simples

Tabela 1: Valores de $\int_0^1 (6-6x^5) dx$ com método de Simpson, precisão simples $(I_{analitica}=5)$.

\overline{p}	$N_{tentativas} = 2^p$	I_{num}	$Erro = I_{num} - I_{analitica} $
1	2	4.875	0.125
2	4	4.99219	0.0078125
3	8	4.99951	0.000488281
4	16	4.99997	3.05176 e - 05
5	32	5	1.43051e-06
6	64	5	0
7	128	5	9.53674e-07
8	256	5	1.43051e-06
9	512	5	4.76837e-07
10	1024	5	4.76837e-07
11	2048	5	0
12	4096	5.00001	8.58307e-06
13	8192	5	2.86102 e-06
14	16384	5.00001	1.23978e-05
15	32768	5.00005	4.76837e-05
16	65536	5.00012	0.000121593
17	131072	5.00007	6.91414 e - 05
18	262144	5.00045	0.000452995
19	524288	5.00232	0.00232077
20	1.04858e + 06	5.00631	0.00631094
21	2.09715e+06	5.00805	0.0080471
22	4.1943e + 06	5.0248	0.0248032
23	8.38861e+06	5.1367	0.136697
24	1.67772e + 07	4.81554	0.184465

1.2 Precisão Dupla

Tabela 2: Valores de $\int_0^1 (6-6x^5) dx$ com método de Simpson, precisão dupla $(I_{analitica}=5)$.

	3.7 0.0	T		
p	$N_{tentativas} = 2^p$	I_{num}	$Erro = I_{num} - I_{analitica} $	
1	2	4.875	0.125	
2	4	4.99219	0.0078125	
3	8	4.99951	0.000488281	
4	16	4.99997	3.05176e-05	
5	32	5	1.90735e-06	
6	64	5	1.19209e-07	
7	128	5	7.45058e-09	
8	256	5	4.65661e-10	
9	512	5	2.91038e-11	
10	1024	5	1.81988e-12	
11	2048	5	1.16351e-13	
12	4096	5	2.66454e-15	
13	8192	5	2.30926e-14	
14	16384	5	2.30926e-14	
15	32768	5	8.88178e-15	
16	65536	5	3.55271e-15	
17	131072	5	1.86517e-14	
18	262144	5	9.23706e-14	
19	524288	5	8.88178e-15	
20	1.04858e + 06	5	1.35003e-13	
21	2.09715e + 06	5	2.93987e-13	
22	4.1943e + 06	5	1.24345e-13	
23	$8.38861e{+06}$	5	8.79297e-13	
24	1.67772e + 07	5	4.80505e-13	

Figura 1: Gráfico dos erros no método de Simpson (em escala logarítmica no eixo vertical).

O gráfico dos erros do método de Simpson tem a forma acima, pois depois de certo número de iterações, o erro de roundoff torna-se relevante em relação ao erro inerente ao método $(\mathcal{O}(h^4) = \mathcal{O}(N_{tentativa}^{-4}))$, forçando os erros a tenderem assintoticamente ao gráfico dos erros de roundoff $(\mathcal{O}(\sqrt{N_{tentativa}}))$.

2 Exercício 2: Método dos Trapézios

Assumiu-se que l=1m (comprimento do pêndulo) e $g=9.81m/s^2$ (para obter os valores da tabela). Dado θ_0 , tem-se que $T=4\sqrt{\frac{l}{g}}\int\limits_0^{\pi/2}\frac{1}{\sqrt{1-k^2\sin^2(\phi)}}d\phi$, onde $k^2=\frac{(1-\cos(\theta_0))}{2}$.

Tabela 3: Tabela da variação do período T para diferentes ângulos iniciais θ_0 entre 0 e π .

Ângulo Inicial θ_0	Período T	
0.0	2.006066680710594	
0.15707963267948966	2.0091646679239057	
0.3141592653589793	2.0185115351377463	
0.47123889803846897	2.0342686110340145	
0.6283185307179586	2.0567137595244342	
0.7853981633974483	2.086255872614371	
0.9424777960769379	2.1234573998662873	
1.0995574287564276	2.169067688554444	
1.2566370614359172	2.2240716565686345	
1.413716694115407	2.2897612190123233	
1.5707963267948966	2.367841947576239	
1.727875959474386	2.460596725804436	
1.8849555921538759	2.571146180414268	
2.0420352248333655	2.703882981466589	
2.199114857512855	2.865240708892742	
2.356194490192345	3.065164746629215	
2.5132741228718345	3.320234232385449	
2.670353755551324	3.66133681656972	
2.827433388230814	4.157352965790445	
2.9845130209103035	5.026670340633692	

Sabendo que $T_{Galileu}=2\pi\sqrt{\frac{l}{g}}$, podemos analisar como $\frac{T}{T_{Galileu}}$ muda com θ_0 :

Figura 2: Gráfico de $T/T_{Galileu}$ por θ_0 .

3 Exercício 3: Método de Monte Carlo

Tabela 4: Valor de π para N_{tent} tentativas, cada uma com 100 pontos $(x,y) \in (0,1) \times (0,1)$.

-			
Tentativas N_{tent}	Valor médio da integral I_m	$\sigma = \frac{1}{\sqrt{N_{tent} - 1}} \sqrt{\sum_{i=1}^{N_{tent}} (I_i - I_m)}$	$\sigma_m = rac{\sigma}{\sqrt{N_{tent}}}$
1	2.92	_	_
2	3.08	0.027200000000000005	0.11661903789690611
4	3.1142857142857143	0.023586394557823118	0.07678931331543329
8	3.146666666666667	0.0195555555555566	0.04944132324730443
16	3.1535483870967744	0.02436439819632325	0.03902274833055974
32	3.13968253968254	0.018587303212802428	0.024100896775847903
64	3.148031496062992	0.02307485265129259	0.018988011288085086
128	3.1466666666666665	0.020932983377077854	0.01278823414836547
256	3.1517025440313113	0.021924180887967888	0.00925426018618585
512	3.1423655913978497	0.024981302952571397	0.006985098949137443
1024	3.1422960429897415	0.026551329387784567	0.005092055832888949
2048	3.1427399267399267	0.027008986159917123	0.003631526059853768
4096	3.1425369307776827	0.026891997257739893	0.0025623093134910357
8192	3.1425599707013365	0.026756660416814133	0.0018072614361339318
16384	3.1429169591357162	0.027146496247197966	0.0012872026414235509
32768	3.1421554894331276	0.02722501289848515	0.0009115050510467034
65536	3.1417299021141214	0.02697135311656084	0.0006415217751065071
131072	3.14164253861442	0.026945946653054907	0.00045341069466232415

A Código: Método de Simpson (exercício 1)

Code 1: 3a) Código para método de Simpson (simples).

```
#include <iostream>
   #include<cmath>
   using namespace std;
4
   float f_single(float x){ // funcao em precisao single/float
5
6
        y = 6-6*float(pow(x,5));
8
        return y;
   }
9
10
   int main(void){
11
        float I = 5;
                              // valor analitico da integral
12
        \mathbf{int}\ p\,;
                              // para tamanho dos intervalos
13
        float N;
                              // numero de intervalos
14
                              // para iteracoes de Simpson
        int it;
15
        float I_numsingle;
                              // valores numericos das integrais
16
        float x_single;
17
        float h;
                               // passo do programa
18
        for (p=1; p<=24;++p) {
20
            \mathbb{N}=pow(2,p);
21
            h = 1/N;
            x_single = 0;
22
            I\_num single = (h/3)*f\_single(x\_single); // primeiro termo igual a 0
23
            for(it = 1; it < N; ++it)
24
                 x = single += h;
25
                 if (it %2==1){
                                                         //y_{-1}, y_{-3},... (termos "pares", se comecasse
26
                      em n=1)
                     I_numsingle += (h/3)*4*f_single (x_single);
                                                         //y_2, y_4, ... (termos "impares", se
                     comecasse\ em\ n=1)
                     I_numsingle+=(h/3)*2*f_single(x_single);
29
30
            x = \sin g l e + = h;
            I_numsingle+=(h/3)*f_single(x_single);
                                                           // para ultimo ponto da iteracao
32
33
            cout<<p; cout<<" & "; cout<<N; cout<<" & ";
34
            cout << I_numsingle; cout << " & "; cout << abs(I-I_numsingle); cout << " & \\\\n";
35
36
```

B Código: Método dos Trapézios (exercício 2)

Code 2: 3a) Código para o método dos trapézios.

```
\mathbf{import} \hspace{0.2cm} \text{numpy} \hspace{0.2cm} \text{as} \hspace{0.2cm} \text{np}
    from matplotlib import pyplot as plt
    l=1 ## Talvez mudar
4
    g = 9.81
    T_Galileu=2*np.pi*np.sqrt(l/g)
    ## Para analise grafica
9
    y = []
10
    \mathbf{def} \ \mathbf{k}(\mathtt{theta}) \colon \# \ k \ do \ codigo \iff k^2 \ do \ enunciado
11
          return (1-np.cos(theta))/2
12
13
    def f(theta, phi):
14
          \textbf{return} \ \ 4*np.\ sqrt(1/g)*(1/np.\ sqrt(1-k(\,theta\,)*np.\,sin(\,phi\,)**2)\,)
15
16
    N=1500 ## Numero de pontos no intervalo (0, pi/2) (No de Trapezios = N-1)
17
    h=(np.pi/2 - 0)/N \# Passo
18
20
    \mathbf{print} \, (\, \texttt{"Integracao por Metodo dos Trapezios} \, \texttt{\columnwidth} \, \texttt{\columnwidth})
    \mathbf{print}(" \land \mathtt{theta\_0} \& \mathtt{T} \land \mathtt{hm}") \ \#\# \ Prints \ para \ a \ tabela \ em \ Latex \,, \ no \ EP
21
    \#\!\!/\!\!\!/ \; Para \ 20 \ theta\_0s \; , \; \; entre \ 0 \; e \; pi
22
    for n in range (0,20):
23
          theta_0 = n*np.pi/20
24
          ## Primeiro termo da soma
25
          phi=0
26
          T = (h/2) * f(theta_0, phi)
27
          \#\# Termos do meio da soma
28
          for i in range (1,N):
                phi += h
               T += h*f(theta_0, phi)
          \#\!\!/\!\!\!/ \ Ultimo\ termo\ da\ soma
32
          phi+=h
33
          T \leftarrow (h/2) * f(theta_0, phi)
34
          \mathbf{print}("\{\} \& \{\} \setminus \setminus n" . \mathbf{format}(theta_0, T))
35
          ## Para analise grafica
36
          x.append(theta_0)
37
          y.append(T/T_Galileu)
38
    \#\# Analise grafica
    plt.xlabel("$\\theta_0$")
    plt.ylabel("$T/T_{Galileu}$")
    plt.title("Gr fico de $T/T_{Galileu}\ por \)
43
    plt.plot(x,y)
```

C Código: Método de Monte-Carlo (exercício 3)

Code 3: 3a) Código para o método de Monte Carlo.

```
import numpy as np
   def random(Zn):
2
        a = 16807
3
        m = 2147483647
4
        Z=(a*Zn)\%m
        return Z
   \#\# U_i = random(Z_i)/m
   \#\#\ U_-i\ o\ valor\ pseudo-aleatorio
   m = 2147483647
   Zn = 9359365
10
   \mathbf{x} = []
11
   y = []
12
   I = []
13
   ## Letra b) Primeira tentativa
14
   \#\# (ou p=0, p do proximo for)
15
   for k in range (200):
16
        Zn=random(Zn) ## esta em Z_{-}\{n+1\}
17
        Un=Zn/m
                         ## esta em U_{-}\{n+1\}
18
        if k\%2 == 0:
20
             x.append(Un)
21
        {f else}:
22
             y.append(Un)
   Nin=0
23
   Nout=0
24
    for k in range(len(x)):
25
        {\bf i}\,{\bf f}\ x\,[\,k\,]\!*\!*\!2\!+\!y\,[\,k\,]\!*\!*\!2\!<\!1\!:
26
             Nin+=1
        else:
28
             Nout+=1
    I. append (4*Nin/(Nin+Nout))
    \mathbf{print} \, (\, \texttt{"Primeira tentativa: Im = \{} \, \texttt{".format} \, (\, \text{I} \, [\, 0\, ]\, )\, )
31
   ## Letra c) Tentativas
33
   for n in range (1,18):
34
        Ntent=2**n
35
        for tent in range(0,Ntent): ## quantas tentativas serao feitas
36
             \mathbf{x} = []
37
38
             for i in range (0,200): ## 100 pontos x, 100 pontos y
                  Zn = random(Zn)
                  Un = Zn/m
                  if i \%2 == 0:
42
                      x.append(Un)
43
                  else:
44
                       y.append(Un)
45
             Nin=0
46
             Nout=0
             ## contando pontos dentro e fora do semicirculo
48
             for p in range(len(x)):
                  if x[p]**2+y[p]**2<1:
                       Nin+=1
                  else:
                       Nout+=1
             I. append (4*Nin/(Nin+Nout))
54
55
        Im=np.mean(I)
56
        sigma2=0
57
        for 1 in range (Ntent):
58
59
             sigma2 += (1/(Ntent-1))*(I[1]-Im)**2
        sigmam = np.sqrt(sigma2/Ntent)
```