GIOVANNI CUTOLO — ESEMPI DI EQUAZIONI CONGRUENZIALI E LORO SOLUZIONI

 $324x \equiv_{508} 127$ non ha soluzioni (2 divide 324 e 508, non 127)

 $120x \equiv_{164} 128$ ha soluzioni: (4 è un MDC tra 120 e 164 e divide 128). Troviamole.

Dividiamo tutto per 4: l'equazione diventa $30x \equiv_{41} 32$ (equazione congruenziale ridotta: 30 e 41 sono coprimi). Eseguiamo l'algoritmo euclideo:

41 = (1) 30 + 11	$\underline{11} = (1)\underline{41} + (-1)\underline{30}$
30 = (2) 11 + 8	$\underline{8} = (1)\underline{30} + (-2)\underline{11}$
$\underline{11} = (1)\underline{8} + \underline{3}$	$\underline{3} = (1)\underline{11} + (-1)\underline{8}$
$\underline{8} = (2)\underline{3} + \underline{2}$	$\underline{2} = (1)\underline{8} + (-2)\underline{3}$
$\underline{3} = (1)\underline{2} + \underline{1}$	$\underline{1} = (1)\underline{3} + (-1)\underline{2}$
$\underline{2} = (2) \underline{1}$ (non serve)	

Dalla seconda colonna ricaviamo:

$$1 = (1) \underline{3} + (-1) \underline{2} = (1) \underline{3} + (-1)(\underline{8} + (-2)\underline{3}) = (-1) \underline{8} + (1 + (-1)(-2)) \underline{3} = (-1) \underline{8} + (3) \underline{3}$$

$$= (-1) \underline{8} + (3)(\underline{11} + (-1) \underline{8}) = (3) \underline{11} + (-1 + (3)(-1)) \underline{8} = (3) \underline{11} + (-4) \underline{8}$$

$$= (3) \underline{11} + (-4)(\underline{30} + (-2) \underline{11}) = (-4) \underline{30} + (3 + (-4)(-2))\underline{11} = (-4) \underline{30} + (11)\underline{11}$$

$$= (-4) \underline{30} + (11)(\underline{41} + (-1) \underline{30}) = (11)\underline{41} + (-4 + 11(-1))\underline{30} = (11)\underline{41} + (-15)\underline{30}$$

Pertanto, $1 = (11)\underline{41} + (-15)\underline{30}$; abbiamo trovato una coppia soluzione dell'equazione diofantea 30x + 41y = 1; più significativamente: abbiamo scoperto che vale $(-15)30 \equiv_{41} 1$, cioè abbiamo scoperto che l'inverso di $[30]_{41}$ in \mathbb{Z}_{41} è $[-15]_{41}$. A questo punto, sappiamo che l'unica classe in \mathbb{Z}_{41} che, moltiplicata per $[30]_{41}$, dia $[32]_{41}$ è $([30]_{41})^{-1}[32]_{41} = [-15]_{41}[32]_{41} = [(-15)32]_{41}$. Questa classe è l'insieme delle soluzioni, in \mathbb{Z} , dell'equazione congruenziale originaria, $120x \equiv_{164} 128$.

In alternativa: da $(-15)30 \equiv_{41} 1$, moltiplicando per 32, otteniamo $32(-15)30 \equiv_{41} 32$, dunque 32(-15) è una soluzione dell'equazione congruenziale e quindi (poiché 30 e 41 sono coprimi) $[(-15)32]_{41}$ è l'insieme di tutte le sue soluzioni in \mathbb{Z} .

Per gli appassionati: facendo qualche calcolo (lo verificheremo più avanti) si può osservare che vale $(-15)32 \equiv_{41} 12$, quindi l'insieme delle soluzioni si può anche descrivere come $[12]_{41}$.

Questo NON È modo più rapido di risolvere l'equazione congruenziale considerata. Vediamo qualche alternativa. Eseguendo l'algoritmo euclideo non necessariamente con le divisioni aritmetiche, ne abbiamo una versione più veloce:

che richiede qualche passaggio in meno nella fase successiva:

$$1 = (-1) \underline{11} + (-4)(\underline{-3}) = (-1) \underline{11} + (-4)(\underline{30} + (-3)\underline{11}) = (-4) \underline{30} + ((-1) + (-4)(-3))\underline{11} = (-4) \underline{30} + (-11)\underline{11} = \dots$$
 (siamo già al terzo rigo del calcolo precedente)

Si può fare ancora meglio: 30 e 32 sono, evidentemente, congrui rispettivamente a -11 e -9 modulo 41, quindi la nostra equazione congruenziale si può riscrivere come $-11x \equiv_{41} -9$, ovvero (spostando termini tra destra e sinistra, oppure moltiplicando per -1, evidentemente invertibile modulo 41) come $11x \equiv_{41} 9$. Le divisioni si riducono ancora:

ed abbiamo:

 $1 = (-1) \underline{11} + (-4)(\underline{-3}) = (-1) \underline{11} + (-4)(\underline{41} + (-4)\underline{11}) = (-4) \underline{41} + ((-1) + (-4)(-4))\underline{11} = (-4) \underline{41} + (15)\underline{11}$ dunque $15 \cdot 11 \equiv_{41} 1$ e cosi l'insieme delle soluzioni dell'equazione è $[9 \cdot 15]_{41} = [135]_{41} = [12]_{41}$ (infatti $135 = 3 \cdot 41 + 12$).

1

- $4x \equiv_{10} 8$ ha ovviamente 2 come soluzione in Z. L'insieme di tutte le soluzioni non è [2]₁₀ ma [2]₅, perché in forma ridotta l'equazione diventa $2x \equiv_5 4$, notare: 2 e 5 sono coprimi. Si può osservare che, ad esempio, $7 \in [2]_5 \setminus [2]_{10}$, quindi [2]₅ è strettamente contenuto in [2]₁₀; è facile anche verificare che [2]₅ è l'unione disgiunta di [2]₁₀ e [7]₁₀, quindi, l'equazione data, vista come equazione in \mathbb{Z}_{10} : $[4]_{10}X = [8]_{10}$ ha esattamente due soluzioni: $[2]_{10}$ e $[7]_{10}$.
- L'equazione $45x \equiv_{47} 476$ si risolve immediatamente senza bisogno di calcoli: evidentemente $45 \equiv_{47} -2$ e $476 \equiv_{47} 6$, quindi l'equazione è equivalente a (nel senso che ha le stesse soluzioni di) $-2x \equiv_{47} 6$, ovvero (dividendo -2e 6 per -2, che è invertibile modulo 47) a $x \equiv_{47} -3$, che è già risolta: l'insieme delle soluzioni è $[-3]_{47}$.
- L'equazione $32x-4\equiv_{18}8$ non è altro che un modo diverso di scrivere $32x\equiv_{18}12$. Per semplificarla possiamo dividere tutto per 2 (MCD tra 32 e 18), ottenendo $16x \equiv 96$. Da questa, siccome 2 è coprimo con 9, quindi invertibile modulo 9, dividendo 16 e 6 per 2 ricaviamo l'equazione equivalente $8x \equiv_9 3$; ma $8 \equiv_9 -1$, quindi possiamo riscrivere questa come $-x \equiv_9 3$, ovvero $x \equiv_9 -3$, e l'equazione originaria è risolta. In alternativa: da $32x \equiv_{18} 12$ passiamo a $-4x \equiv_{18} 12$, perché $-4 \equiv_{18} 32$, quindi, dividendo tutto per 2, a $-2x \equiv_{9} 6$; possiamo ancora dividere -2per 2, o direttamente per -2, perché, di nuovo, 2 e -2 sono invertibili modulo 9, per ottenere ancora $x \equiv_9 -3$ e così l'insieme $[-3]_9$ di tutte le soluzioni.
- Un esempio simile: $14x \equiv_{111} 21$ ha le stesse soluzioni di $2x \equiv_{111} 3$; qui bisogna fare attenzione al fatto che 7, per il quale abbiamo diviso 14 e 21, e 111 sono coprimi. Come facciamo a saperlo? Be', $111 \equiv_7 111 - 70 = 40$, siccome 42 è multiplo di 7 certamente non lo è 40 (infatti $40 \equiv_7 -2$), quindi 7 non divide 111; poiché 7 è primo questo garantisce che 7 e 111 sono coprimi. A questo punto dobbiamo risolvere $2x \equiv_{111} 3$. Possiamo farlo usando l'algoritmo euclideo, oppure osservando che, siccome 3 è dispari come 111, allora 3+111 è pari, ne ricaviamo l'intero (3+111)/2=114/2=57, allora $2\cdot 57=3+111\equiv_{57}3$ e così vediamo che 57 è soluzione dell'equazione. Dal momento che l'equazione è ridotta (2 e 111 sono coprimi), l'insieme delle soluzioni è [57]₁₁₁.
- Non sempre riusciamo ad identificare a prima vista il massimo comun divisore non negativo tra il modulo ed il coefficiente dell'incognita dell'equazione, o almeno a stabilire se questi sono coprimi. Possiamo utilizzare l'algoritmo anche in questi casi.

Ad esempio, consideriamo l'equazione congruenziale $238x \equiv_{323} 51$. Usiamo l'algoritmo euclideo (velocizzato) per la ricerca dei MDC tra 238 e 323:

$$323 = (1) 238 + 85$$
$$238 = (3) 85 + (-17)$$
$$85 = (-17) (5),$$

vediamo così che -17 e quindi 17 sono i MCD cercati. Siccome 17 divide $51 = 3 \cdot 17$, l'equazione ha soluzioni. Per trovarne una, come fatto in precedenza, ricaviamo un'espressione di 17 come combinazione lineare di 238 e 323. Abbiamo $\underline{17} = (-1)\underline{238} + (3)\underline{85} = \underline{85} = \underline{323} + (-1)\underline{238}$, quindi $\underline{17} = (-1)\underline{238} + (3)(\underline{323} + (-1)\underline{238}) = (3)\underline{323} + (-4)\underline{238}$. Allora $238(-4) \equiv_{323} 17$. Moltiplicando per 51/17 = 3 otteniamo $238(-12) \equiv_{323} 51$, dunque -12 è una soluzione

della nostra equazione. Per ottenere l'insieme di tutte le soluzioni in Z dobbiamo dividere il modulo 325 per 17 (MCD tra 325 e 238) ottenendo 325/17 = 19; l'insieme delle soluzioni è dunque $[-12]_{19}$.

Osservazione finale: e se volessimo risolvere $323x \equiv_{238} 51$ o, ad esempio, $323x \equiv_{238} 34$? Non dovremmo ripetere la procedura: l'uguaglianza $\underline{17} = (3)\,\underline{323} + (-4)\underline{238}$ che abbiamo ottenuto al punto precedente, infatti, mostra anche che vale $3 \cdot 323 \equiv_{238} 17$, quindi moltiplicando 3 per 3 = 51/17 otteniamo una soluzione di $323x \equiv_{238} 51$, moltiplicando 3 per 2 = 34/17 ne otteniamo una di $323x \equiv_{238} 34$. Gli insiemi dei tutte le soluzioni in $\mathbb Z$ di queste due equazioni sono dunque $[9]_{14}$ e $[6]_{14}$, dal momento che 238/17 = 14.

Questo non deve sorprendere, e discorso analogo si applica a tutti gli esempi precedenti. Risolvere un'equazione congruenziale $ax \equiv_m c$ è infatti sostanzialmente equivalente a risolvere l'equazione diofantea ax + my = c, che è anche equivalente a risolvere (a meno dello scambio dei nomi date alle variabili) l'equazione congruenziale $cx \equiv_m a$; il problema di determinare una soluzione di $ax \equiv_m c$ è quindi sostanzialmente equivalente a quello di determinarne una per $cx \equiv_m a$.