Chapter 3: Geometric Transformations

Sang II Park
Dept. of Software

Geometric objects and Its representations

Scalars

- Scalars α, β, γ from a scalar field
- Operations $\alpha+\beta$, $\alpha\cdot\beta$, 0, 1, $-\alpha$, ()-1
- "Expected" laws apply
- Examples: rationals or reals with addition and multiplication

Vectors

- Vectors u, v, w from a vector space
- Vector addition u + v, subtraction u v
- Zero vector 0
- Scalar multiplication αv

Lines and line Segments

• Parametric form of line: $P(\alpha) = P_o + \alpha d$

• Line segment between Q and R:

$$\mathbf{P}(\alpha) = (1 - \alpha)\mathbf{Q} + \alpha \mathbf{R} \quad for \ 0 \le \alpha \le 1$$

Dot Product (Projection)

 Dot product projects one vector onto another vector

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \mathbf{u}_3 \mathbf{v}_3 = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$
$$p r_{\mathbf{v}} \mathbf{u} = (\mathbf{u} \cdot \mathbf{v}) |\mathbf{v}|^2$$

Cross Product

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| |\sin(\theta)|$
- Cross product is perpendicular to both a and b
- Right-hand rule

Planes

 A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Planes and normal

- Plane defined by point P₀
 and vectors u and v
- u and v should not be parallel
- Parametric form: $T(\alpha, \beta) = P_0 + \alpha u + \beta v$ (α and β are scalars)

- $n = u \times v / |u \times v|$ is the normal
- $n \cdot (P P_0) = 0$ if and only if P lies in plane

Geometric Transformations

Transformations

- Linear transformations
- Rigid transformations
- Affine transformations
- Projective transformations

Homogeneous Coordinates

Any affine transformation between 3D spaces can be represented by a 4x4 matrix

$$T(\mathbf{p}) = \begin{pmatrix} \mathbf{M}_{3\times3} & \mathbf{T}_{3\times1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{p}_{3\times1} \\ 1 \end{pmatrix}$$

 Affine transformation is *linear* in homogeneous coordinates

Projective Spaces

- Homogeneous coordinates
 - -(x, y, z, w) = (x/w, y/w, z/w, 1)
 - Useful for handling perspective projection
- But, it is algebraically inconsistent !!

$$(1,0,0,1) + (1,1,0,1) = (2,1,0,2) = (1,\frac{1}{2},0,1)$$

$$(1,0,0,1) + (2,2,0,2) = (3,2,0,3) = (1,\frac{2}{3},0,1)$$

2D rotation

$$\begin{pmatrix} x', y' \end{pmatrix} \longrightarrow \begin{pmatrix} x, y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

2D scaling

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} s_x x \\ s_y y \\ 1 \end{pmatrix}$$

2D shear

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & d & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + dy \\ y \\ 1 \end{pmatrix}$$

2D reflection

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ -y \\ 1 \end{pmatrix}$$

2D translation

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + t_x \\ y + t_y \\ 1 \end{pmatrix}$$

• 3D rotation

$$\begin{vmatrix} x' \\ y' \\ z' \\ 1 \end{vmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

3D Rotation Matrix about Z Axis

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotation about x and y axes

- Same argument as for rotation about z axis
 - For rotation about *x* axis, *x* is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2D Pivot-Point Rotation

Rotation with respect to a pivot point (x,y)

$$T(x, y) \cdot R(\theta) \cdot T(-x, -y)$$

$$= \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -x \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta & -\sin \theta & x(1-\cos \theta) + y \sin \theta \\ \sin \theta & \cos \theta & y(1-\cos \theta) - x \sin \theta \\ 0 & 0 & 1 \end{pmatrix}$$

(a)

(b)

(c)

(d)

2D Fixed-Point Scaling

Scaling with respect to a fixed point (x,y)

$$T(x, y) \cdot S(s_x, s_y) \cdot T(-x, -y)$$

$$= \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -x \\ 0 & 1 & -y \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} s_x & 0 & (1-s_x) \cdot x \\ 0 & s_y & (1-s_y) \cdot y \\ 0 & 0 & 1 \end{pmatrix}$$

(a)

(b)

(c)

(d)

Scaling Direction

Scaling along an arbitrary axis

$$R^{-1}(\theta) \cdot S(s_x, s_y) \cdot R(\theta)$$

Properties of Affine Transformations

- Any affine transformation between 3D spaces can be represented as a combination of a linear transformation followed by translation
- An affine transf. maps lines to lines
- An affine transf. maps parallel lines to parallel lines
- An affine transf. preserves ratios of distance along a line
- An affine transf. does not preserve absolute distances and angles

Rigid Transformations

- A rigid transformation T is a mapping between affine spaces
 - T maps vectors to vectors, and points to points
 - T preserves distances between all points
 - T preserves cross product for all vectors (to avoid reflection)
- In 3-spaces, T can be represented as

$$T(\mathbf{p}) = \mathbf{R}_{3\times 3} \mathbf{p}_{3\times 1} + \mathbf{T}_{3\times 1}, \quad \text{where}$$

 $\mathbf{R} \mathbf{R}^T = \mathbf{R}^T \mathbf{R} = \mathbf{I} \quad \text{and} \quad \det \mathbf{R} = 1$

Rigid Body Rotation

 Rigid body transformations allow only rotation and translation

- Rotation matrices form SO(3)
 - Special orthogonal group

Rigid Body Rotation

- R is normalized
 - The squares of the elements in any row or column sum to 1

$$\mathbf{R} \ \mathbf{R}^{T} = \mathbf{R}^{T} \mathbf{R} = \mathbf{I}$$

- R is orthogonal
 - The dot product of any pair of rows or any pair columns is 0
- The rows (columns) of R correspond to the vectors of the principle axes of the rotated coordinate frame

- How to rotate around u vector
 (u = given rotation axis)
- → Rotate about x and y axes to make **u** align with the *z*-axis

FIGURE 5–45 Unit vector \mathbf{u} is rotated about the x axis to bring it into the xz plane (a), then it is rotated around the y axis to align it with the z axis (b).

- Rotate u onto the z-axis
 - **u**': Project **u** onto the yz-plane to compute angle α
 - **u**": Rotate **u** about the x-axis by angle α
 - Rotate u" onto the z-asis

FIGURE 5–46 Rotation of \mathbf{u} around the x axis into the xz plane is accomplished by rotating \mathbf{u}' (the projection of \mathbf{u} in the yz plane) through angle α onto the z axis.

FIGURE 5-47 Rotation of unit vector \mathbf{u}'' (vector \mathbf{u} after rotation into the xz plane) about the y axis. Positive rotation angle β aligns \mathbf{u}'' with vector \mathbf{u}_z .

- Rotate u' about the x-axis onto the z-axis
 - Let **u**=(a,b,c) and thus **u'**=(0,b,c)
 - Let $\mathbf{u}_z = (0,0,1)$

$$\cos \alpha = \frac{\mathbf{u}' \cdot \mathbf{u}_z}{\|\mathbf{u}'\| \|\mathbf{u}_z\|} = \frac{c}{\sqrt{b^2 + c^2}}$$

$$\mathbf{u}' \times \mathbf{u}_z = \mathbf{u}_x \|\mathbf{u}'\| \|\mathbf{u}_z\| \sin \alpha \implies \sin \alpha = \frac{b}{\|\mathbf{u}'\| \|\mathbf{u}_z\|} = \frac{b}{\sqrt{b^2 + c^2}}$$
$$= \mathbf{u}_x \cdot b$$

- Rotate u' about the x-axis onto the z-axis
 - Since we know both $\cos \alpha$ and $\sin \alpha$, the rotation matrix can be obtained

$$\mathbf{R}_{x}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{\sqrt{b^{2} + c^{2}}} & \frac{-b}{\sqrt{b^{2} + c^{2}}} & 0 \\ 0 & \frac{b}{\sqrt{b^{2} + c^{2}}} & \frac{c}{\sqrt{b^{2} + c^{2}}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Or, we can compute the signed angle α

atan2
$$(\frac{c}{\sqrt{b^2 + c^2}}, \frac{b}{\sqrt{b^2 + c^2}})$$

- Do not use acos() since its domain is limited to [-1,1]

Gimble

Hardware implementation of Euler angles

Aircraft, Camera

Figure 2.1-24. IMU Gimbal Assembly

Euler Angles

- Rotation about three orthogonal axes
 - 12 combinations
 - XYZ, XYX, XZY, XZX
 - YZX, YZY, YXZ, YXY
 - ZXY, ZXZ, ZYX, ZYZ

Gimble lock

- Coincidence of inner most and outmost gimbles' rotation axes
- Loss of degree of freedom

Euler angles

 Arbitrary rotation can be represented by three rotation along x,y,z axis

$$R_{XYZ}(\gamma, \beta, \alpha) = R_{z}(\alpha)R_{y}(\beta)R_{x}(\gamma)$$

$$= \begin{bmatrix} C\alpha C\beta & C\alpha S\beta S\gamma - S\alpha C\gamma & C\alpha S\beta C\gamma + S\alpha S\gamma & 0\\ S\alpha C\beta & S\alpha S\beta S\gamma + C\alpha C\gamma & S\alpha S\beta C\gamma - C\alpha S\gamma & 0\\ -S\beta & C\beta S\gamma & C\beta C\gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Euler Angles

- Euler angles are ambiguous
 - Two different Euler angles can represent the same orientation _

$$R_1 = (r_x, r_y, r_z) = (\theta, \frac{\pi}{2}, 0)$$
 and $R_2 = (0, \frac{\pi}{2}, -\theta)$

- This ambiguity brings unexpected results of animation where frames are generated by interpolation.

Smooth Rotation

- Create transformations from M_0 to M_n smoothly
 - Problem: find a sequence of model-view matrices $\mathbf{M_0}$, $\mathbf{M_1}$,..., $\mathbf{M_n}$ for each frame to see a smooth transition
- One solution for rotation (using Euler angles):
 - Find $\mathbf{R}_0 = \mathbf{R}_{0z} \, \mathbf{R}_{0y} \, \mathbf{R}_{0x}$ and $\mathbf{R}_n = \mathbf{R}_{nz} \, \mathbf{R}_{ny} \, \mathbf{R}_{nx}$
 - Then, Create a sequence of rotation R_0, R_1, \ldots, R_n : $R_i = R_{iz} R_{iy} R_{ix}$ (where, ix, iy, iz is the interpolated angles from the beginning and the end)
 - Not very effective!
 - Quaternions can do it better!

Quaternions

- Extension of imaginary numbers from two to three dimensions
- Requires one real and three imaginary components i, j, k

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

- Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - Model-view matrix → quaternion
 - Carry out operations with quaternions
 - Quaternion → Model-view matrix

Computer Animation 수업에서 다룹니다.

Taxonomy of Transformations

Composite Transformations

Composite 2D Translation

$$T = \mathbf{T}(t_{x1}, t_{y1}) \cdot \mathbf{T}(t_{x2}, t_{y2})$$
$$= \mathbf{T}(t_{x1} + t_{x2}, t_{y1} + t_{y2})$$

$$\begin{pmatrix} 1 & 0 & t_{x2} \\ 0 & 1 & t_{y2} \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & t_{x1} \\ 0 & 1 & t_{y1} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_{x1} + t_{x2} \\ 0 & 1 & t_{y1} + t_{y2} \\ 0 & 0 & 1 \end{pmatrix}$$

Composite Transformations

Composite 2D Scaling

$$T = \mathbf{S}(s_{x1}, s_{y1}) \cdot \mathbf{S}(s_{x2}, s_{y2})$$
$$= \mathbf{S}(s_{x1}s_{x2}, s_{y1}s_{y2})$$

$$\begin{pmatrix}
s_{x2} & 0 & 0 \\
0 & s_{y2} & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
s_{x1} & 0 & 0 \\
0 & s_{y1} & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
s_{x1} \cdot s_{x2} & 0 & 0 \\
0 & s_{y1} \cdot s_{y2} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Composite Transformations

Composite 2D Rotation

$$T = \mathbf{R}(\theta_2) \cdot \mathbf{R}(\theta_1)$$
$$= \mathbf{R}(\theta_2 + \theta_1)$$

$$\begin{pmatrix}
\cos\theta_2 & -\sin\theta_2 & 0 \\
\sin\theta_2 & \cos\theta_2 & 0 \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
\cos\theta_1 & -\sin\theta_1 & 0 \\
\sin\theta_1 & \cos\theta_1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
\cos(\theta_2 + \theta_1) & -\sin(\theta_2 + \theta_1) & 0 \\
\sin(\theta_2 + \theta_1) & \cos(\theta_2 + \theta_1) & 0 \\
0 & 0 & 1
\end{pmatrix}$$