AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NAR 79 H M HUDSON K TSUI
TR-148-SER-2

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON ESTIMATORS FOR A PRIORI HYPOTHESES ABOUT M--ETC(U)
NO0014-78-C-0485
NL

I OF 1
AD-A069 531

PRINCETON UNIV N J DEPT OF STATISTICS
SIMULTANEOUS POISSON U

LEVEL

SIMULTANEOUS POISSON ESTIMATORS

FOR A PRIORI HYPOTHESES ABOUT MEANS,

H. Malcolm/Hudson

H. Malcolm/Hudson

The state of the st

14 TR-145-SER-2

Technical Meport, No. 145, Series 2
Department of Statistics
Princeton University

Mar 279

130,

Research sponsored in part by contract with the Office of Naval Research, No. Nppg14-75-C-9453/ awarded to the Department of Statistics, Princeton University, Princeton, New Jersey.

*Visiting Lecturer, on leave from the School of Economic and Financial Studies, Macquarie University, N.S.W., Australia.

†Department of Mathematics, Simon Fraser University, Vancouver, British Columbia, Canada.

This document has been approved for public release and sale; its distribution is unlimited.

406 873

KB

ABSTRACT

Estimators are presented for the simultaneous estimation of p means of Poisson variables with the properties of significant reduction in mean square error of estimation in the region of a pre-specified set of values and, if p(2)3, safety, in the sense that mean square error is never worse than that of the minimum variance unbiased estimator.

1. INTRODUCTION

Suppose x_1,\ldots,x_p are p observations from p independent Poisson distributions with means $\lambda_1,\ldots,\lambda_p$, respectively. In estimating $\lambda=(\lambda_1,\ldots,\lambda_p)$, Clevenson and Zidek (1975), Leonard (1976), and Peng (1978) have shown in different ways that the usual estimator $x=(x_1,\ldots,x_p)$ is inadequate. In particular, Peng's result shows that x is inadmissible under squared error loss $L(\lambda,\hat{\lambda})=\frac{p}{1-1}(\lambda_1-\hat{\lambda}_1)^2$, when $p\geq 3$. However, his proposed estimators perform well only when the λ_1 's are small. K. Tsui (1978) extends Peng's result and provides a large class of estimators of the Poisson means which can incorporate some knowledge of parameter values in order to obtain further improvement over the usual estimator x. For each nonnegative integer k, one of Tsui's estimators is of the form

$$\hat{\lambda}_1 = x_1 - r_k h(x_1)/S$$
 . $i = 1, ..., p$. (1.1)

where $S=\frac{p}{j-1}h^2(x_j)$; r_k is the maximum of (i) the number of x_j greater than k, less two and (ii) zero; and, for some $b\geq 0$, h(y) is defined on the positive integers as:

The estimator (1.1) is designed to provide maximum advantage when the λ_1 's are close to the predetermined integer k. Adaptive

-

where S' = $\frac{R}{i-1}$ $k_1^2(x)$; r_m is the maximum of (i) the number of x_j greater than the minimum of the x_j , less two and (ii) zero; and $k_1(x)$, i = 1, ..., p , are defined as

$$h_1(x) = 0$$
, if $x_1 = \min\{x_j\} = n$ or $x_j < 0$
= 1, if $x_j = n+1$ and $n \ge 0$
= 1+ $\frac{x_1}{1}$ = -1 if $x_j > n+1$ and $n \ge 0$.

These adaptive estimators possess better risk properties over a large region of the parameter space and are dspecially good when the λ_1 's are close to one another. It is required that p be greater than 3 when these adaptive estimators are used. The improvements in risk for both estimators given in (1.1) and (1.3) exceed $E_{\lambda}(r_k^2/S)$ and $E_{\lambda}(r_k^2/S)$, respectively. Nore improvement can then be achieved by reducing S or S' if possible.

In this paper we propose a number of new estimators of the form (1.1) and (1.3), with modifications of the choices h(y) and $h_1(y)$. Considerable improvements in risk properties are thus obtained, as demonstrated by the simulation results of Section 3 and the example of Section 4. Section 2 introduces these modifications, concluding with a discussion of variations of (1.1) that may be found useful.

2. THE MAIN RESULTS

-3-

In this section, we propose three estimators of the Poisson means which are modified versions of (1.1) and (1.3). The first estimator pulls the usual estimator towards a prefixed nonnegative integer k, when p is at least four. The second estimator shrinks the usual estimator towards a point determined by the data, namely, the minimum of the observations: p is required to be at least five in this case. Under squared error loss, these estimators have risk uniformly smaller than that of the usual estimator.

Let N_j = the number of observations equal to j , and ℓ denote the largest observation. Set Γ_k^n = max($0, (-\frac{\ell}{1} - N_j - 3)$).

2.1 Pulling x towards k

For a fixed nonnegative integer κ and some $b\geq 0$, define $h^*(y)$ as follows:

$$h^+(y) = -b$$
, if $y = 0, 1, ..., k-1$
= 0, if $y = k$ or $y < 0$ (2.1.
= $\frac{y}{k}$ n^{-1} , if $y = k+1, k+2, ...$

Let $S^* = \frac{p}{2}h^*^2(x_j)$. Replacing h, r_k and S in (1.1) with h*, r_k^* and S^* , we have a new estimator:

Using squared error loss and following the argument of Lemma (5.6) of Hudson (1978), we have the risk improvement $R(\lambda,x)-R(\lambda,\hat{\lambda}^*)$ greater than or equal to

When the Poisson means λ_1 are large but close to one another, S* is much smaller than S as given in (1.1). Hence, the risk improvement using (2.1.2) is expected to be greater than that using (1.1) if λ_1 = k and k is not small. Appropriate choice of k, guided by the prior information available might lead to a substantial improvement in risk over the usual estimator. The nonnegative integer k should be chosen to be close to the prior mean.

2.2 An adaptive estimator

In most practical situations, an estimator which pulls x towards a point determined by the observations themselves and retains seed risk properties is desirable. Define functions $H_1(x)$ to be $X_1^{i} = 1$ if $x_1 > n$ = min $(x_j) \ge 0$, zero otherwise. Then, define the adaptive estimator with i^{th} coordinate

where $S_a^a = \frac{P}{J^a} M_a^2(x)$, $r_a^a = \max(0, p-M_a-3)$, and M_{aa} is the number x_j that are equal to the minimum n. This estimator shrinks x towards the smallest observation. The improvement in risk of (2.2.1) ever the usual estimator can be shown to be at least $E_{\lambda}((r_a^a)^2/S)$ with the proof again along the line of Nudson (1978), lemma (5.6). S_a^c will always be smaller than S^c (as given in (1.3)) and is likely to be much smaller when k is at all large. Hence, the choice (2.2.1) will dominate the choice (1.3). The simulation results respected in Section 3 illustrate this performance.

Notice that (1.3) and (2.2.1) require different lower bounds on p. but this makes little difference if p is large, and see Section 2.4.

More adaptive estimators can be obtained by similar modifications of those suggested by Tsui, but we will not carry through the details here. One further result is of interest, however.

2.3 Another estimator pulling x toward k

Define $H(y) = \sum_{n=1}^{K} n^{-1}$, $y = 1, 2, \dots$, and H(0) = 0. Taking a small liberty with notation, define $H_j = H(j) = H(k)$, for $j = 0, 1, 2, \dots$. Set $S_H = \sum_{j=1}^{K} H_j^2 = \sum_{j=0}^{K} H_j^2$, and define the estimator by

This estimator dominates x, while shrinking observations below k differentially.

To prove this result, we note that it is easy to show, following Stein's method of integration by parts, that the difference in risks of κ and λ is

$$R(\lambda_{a,x}) - R(\lambda_{b,b}) = E\left\{\frac{2r_{B}^{E}}{5} \frac{\ell}{J^{-1}} \frac{S - H_{J}(H_{J} + H_{J-1})}{S - \frac{1}{J}(H_{J} + H_{J-1})} - \frac{(r_{B}^{E})^{2}}{5}\right\}, (2.3.2)$$

where, for convenience, we have dropped the subscript H. We shall

show that
$$\frac{\ell}{j-1}$$
 $H_J = \frac{S-H_J(H_J+H_{J-1})}{J(H_J+H_{J-1})}$ exceeds $\left(\frac{\ell}{J=k+1}, H_J-3\right)$, thus establishing the result.

In considering the summation of terms involving observations exceeding k, the argument used in Mudson (1978) continues to apply.

$$\frac{c}{s} = \frac{s - u_1(u_1 + u_{1-1})}{s - \frac{1}{2}(u_1 + u_{1-1})} \ge \left(\frac{c}{J - k + 1} - u_J\right) - 2\frac{s_+}{s} \quad \text{if } \quad u_2(u_\ell + u_{\ell-1}) < s$$

where $S_+ = \frac{1}{3} R_3 R_3^2$. For $j \le k$ we note that $S = \frac{1}{3} (H_j + H_{j-1}) > 0$, and $S = M_j (H_j + H_{j-1}) > 0$ except possibly for the smallest nonzero observation, which we shall denote by j = m, assumed less than k + 1. If in fact $S = M_m (H_m + M_{m-1}) > 0$, or m > k, the result is immediate on replacing terms of the summation below k by 0 and using the result above, noting $S_+/S_1 \le 1$. If $M_m (H_m + M_{m-1}) > S$, then since

S_ 2 H_H^2 (where S_ - I H_H^2) . we have (1 + p)H_2^2 > 5 and H_H^2 < S_ where p - H_H^2 = 1 - H_H^2 > 1. Therefore

$$0 > 0 = \frac{S - H_{1}(H_{1} + H_{1})}{S - \frac{1}{2}(H_{1} + H_{1})} = \frac{S - (1 + \beta)H^{2}}{S - \frac{1}{2}H_{1}(1 + \beta)}$$

S - (1+0)S

$$\frac{5 - (1 + \beta)5}{65} = \frac{1}{3} - (1 + \frac{1}{3})\frac{5}{5}$$

$$\frac{1}{3} \frac{5}{5} - \frac{5}{5} \ge \frac{5}{5} = \sin ce \beta \ge 1.$$

$$\therefore E = N_J \frac{S - H_J(H_J + H_{J-1})}{S - \frac{1}{3} (H_J + H_{J-1})} \ge \left(\frac{\ell}{J = k+1} H_J \right) - \frac{3S_+}{S} - \frac{S_-}{S}$$

 $\geq \frac{L}{j=k+1}M_J-1-\frac{25}{5} \geq \left(\frac{L}{j=k+1}J-3\right).$ We thus have shown that the estimator (2.3.1) has risk

$$R(u,i) \le Eu_1 - E\left\{\frac{(r_k^*)^2}{5H}\right\}.$$
 (2.3.3)

This estimator is a discrete analogue of the Stein estimators developed for continuous exponential families by Mudson (1978). In continuous exponential families the identity

where a(·) is a function dependent on the exponential family considered, is used to obtain risk properties for estimators of the form $x_1-\frac{(p-2)}{3_H}H(x_1) \quad \text{with} \quad H(x)=\int^X_{-1}[a(x)]^{-1}dx \ .$

The corresponding Poisson identity $E((X-\lambda)g(X)) = E(X[g(X)-g(X-1)])$ (see Hudson (1978)) may be used to motivate the choice (2.3.1), but not the choice of estimator given by (2.1.1) and (2.2.1). The choice r_k^k in (2.3.1) is smaller than one might hope; the authors expected r_0^k to be a more suitable choice. Nevertheless, we have little insight as to whether improvements increasing r_k^k are advantageous, except when k is large. See Section 2.4 for further discussion of this point.

In comparing the risk (2.3.3) with the risk $Ei(r_k^2)^2/5$), given by the choice b = 0 in (2.1.3), it appears that since $5 < 5_H$ the estimator (2.1.1), with b = 0, should be preferred to that above. That this is not the case appears by comparison of the exact expression (2.3.2) with the inequality (2.3.3) in favorable circumstances where X_1, \ldots, X_p are not distinguishable from independent Poisson observations with mean k. The exact expression will then approximate $\frac{\left[2r_k^2}{5_H}(2r_k^2) - \frac{(r_k^2)^2}{5_H}\right] = \frac{3(r_k^2)^2}{5_H}$ for large p, and 5_H will be about twice the size of S. The estimator (2.3.1) might therefore be expected to be up to 50% better in risk savings than (2.1.1).

2.4 Concluding remarks

We mention in passing that by considerably more complicated arguments the choices r_k^* and r_m^* in Sections 2.1 - 2.3 can be replaced by r_k and r_m^* as defined in Section 1, provided the plus rule modification of the estimator, detailed below, is made. This allows one to apply the estimation procedures of Section 2 in precisely the same circumstances as the estimators of Section 1. The gain is slight for moderate or large p.

"Plus rule" versions of the above estimator, which will not shrink observations beyond k, can be obtained by redefining S as the greater of S, as defined above, and rg/k. Alternatively, one may wish to enforce the restriction that S exceed the expected value of S when all parameters equal k, for S is a measure of the discrepancy of the observations from the hypothesized mean k. For large k this expected value is close to p/2k for the estimator (2.1.1) with b = 0, and to p/k for the estimator (2.3.1).

the supplier and as realistable will be in and a make

We have discussed, in Section 2.3, the possibility of replacing the "Constant" r_k^k by r_0^* , an adjustment that could be very beneficial if the resulting estimator still dominates n and substantially improves the risk near the prior guess k. To dominate x it is sufficient for $\frac{E}{J_{mm}} M_J$ to exceed $\frac{1}{2} \left(\frac{E}{J_{mm}} M_J - 3 \right)$ when this

4

second term is positive; where

$$A_3 = \frac{S - H_3(H_3 + H_{3-1})}{S - \frac{1}{3}(H_3 + H_{3-1})}$$
, $j = 1, 2, ..., 1$.

This result follows from appropriate revision of (2.3.2). When

 $\frac{\ell}{1}$ M $\frac{35}{5}$ the condition above will be satisfied if $\frac{1}{3}$

$$\frac{L}{J_{nk+1}} \frac{1}{N_J A_J} \ge \begin{bmatrix} \frac{L}{L} & \frac{L}{N_J} - \frac{3S_+}{S} \\ \frac{L}{J_{nk+1}} & \frac{1}{N_J} - \frac{S_+}{S} \end{bmatrix}$$
 (2.4.1)

$$\lim_{J=0}^{k} \|_{J}A_{J} \ge \frac{1}{2} \left[\frac{k}{J_{nm}} \|_{J} - \frac{35}{5} \right] . \tag{2.4.2}$$

A proof of these results is contained in the appendix, for an estimator obtained as a modification of (2.3.1).

The restriction $\frac{\ell}{j-k+1}$ $\frac{1}{j} \ge 3S_{\phi}/S$ is negated only when the data is such that at most two observations exceed k, and these make a disproportionately large contribution to S. Thus in almost all practical applications the restriction will be valid and the modified estimates will be superior to x.

This means that the proposed estimator will indeed dominate x for appendix provided k is sufficiently large (k z 9 is sufficient). The restriction can be removed by a process outlined in the these values of k. The modifications to the estimator which are required are:

- (1) rg replaced by rg.
- (11) S defined to be the greater of the values S, as originally defined, and (p - No)/k.

increases, or as k increases, the superior choice is the modificaestimators. We suspect that as the number of non-zero observations The proof above does little to illuminate the comparison of the two tion above. However, this question has not been examined in this

While the extension of the proofs of Section 2 for shrinkage towards Ki. kp in the transformed space, intuitively corresponding to In earlier work k has always been assumed to be an integer. non-integer, and unequal, hypothesized values seems fairly direct, think it worthy of development. The adjustments required may best $\mathrm{M}(\mathbf{x_1})_{\bullet}$ $\mathrm{M}(\mathbf{x_p})_{\bullet}$ undefined but easily obtained by extrapolation. appropriate estimator corresponding to (2.3.1) we require values (The actual values selected for ki. kp will not affect the be illustrated by an example. Let $\kappa_1, \, \dots, \, \kappa_p,$ non-integer and unequal, be the hypothesized values of the means. To define the the notational complexity required is forbidding, and we do not proofs.) The estimate of the ith co-ordinate of A is then

 $\hat{\lambda}_1 = \kappa_1 - \frac{r^2}{5} (H(x_1) - \kappa_1^2)$, for 1 = 1, ..., p.

THE PARTY OF THE PARTY DESCRIPTION OF THE PARTY OF THE PA

AND THE AT MINE WAS NOT STATE STATED BY COMMENTATION OF THE CASE OF THE

where S is $E\left(H(x_i) - \kappa_i^2\right)$, and r_k^* is the number of observations exceeding their hypothesized values, less three. -13-

3. COMPUTER SIMULATION

the estimator à when the means are relatively close to one another. the risks for the estimator i and the MLE are calculated. The perthen calculated using 2. The third step is repeated 500 times and tained in the second step is generated. Estimates of the means are In this section we report the results of a computer simulation the University of British Columbia. First, the number p of indeone observation of each of the p distributions with the means obpendent Poisson distributions is chosen. Second, p Poisson means The simulation was performed on the Amdahl 470 V/6-II computer at 100[R(x,x) - R(x,x)][R(x,x)] -1s, is calculated. The whole process used to compare our estimator à given by (2.2.1) with the MLE. is then repeated a number of times and the average percentage of means in such a way that we might check the performance of are generated randomly within a certain range (c. d). Third, the savings is calculated. We chose the range of the Poisson centage of savings in using & as compared to the MLE This is the favorable situation for using λ .

From Table 1, the improvement percentage is seen to be an increasing function of p, the number of independent Poisson distributions. Moreover, the improvement percentage increases as the magnitude of the $\lambda_i^{'}$'s increases. From the computer simulation reported in Tsui's report, Peng's estimator given by (1.2) with k=0 has a noticeable improvement over the MLE only when the Poisson means are in the interval (0.4). When the Poisson means are in the interval (0.4). When the Poisson means are large, the improvement of his estimator is negligible. Our estimator $\hat{\lambda}_i^{(R)}$, however, is seen to have a considerable improvement over the MLE, especially when the $\lambda_i^{'}$'s are large but close to one another.

Table 1. Improvement Percentage of 1(m) over the MLE

over the MLE p = 10	10.4	14.0	15.4
Percentage of Improvement over the MLE p = 5 p = 8 p = 10	7.9	13.0	14.2
Percentage of p = 5	1.2	;	2
To the second			
Range of the Poisson Means	(0,4)	(4,8)	(8,12)
22			

-15-

4. AN APPLICATION

Efrom & Morris (1975) cite simulation results for the estimation of binomial proportions which were expected to be near 0.05 (being the exact level at sample size N of a test with nominal significance level 0.05). Five hundred simulations were performed to estimate each proportion. The observed successes (rejections) for 17 different sample sizes are tabulated below as X. The distribution of X is (approximately) Poisson, with mean v exactly calculable, and shown below.

1	36.4	22.6	23.8	22.1	26.3	37.2	21.1	21.12	22.1	25.0	34.9	19.8	21.1	28.3	25.6	23.8	26.3
10g X/25	.495	174	083	223	710.	. 519	329	329	223	000	.445	511	329	.182	.039	083	710.
4	38.4	25.1	21.1	26.4	32.0	37.8	20.5	87.22	25.8	28.8	32.6	26.5	21.3	22.9	24.5	27.1	8.62
*	7	21	23	20	23	42	18	81	20	52	39	15	18	30	26	23	11
4	-	7	3	•	s		1 1 Can		•	2	11 Sec.	12	13	=	15	2	11

Calculations: (fixing k = 25) SH = 1.506 , rH = 14 .

1+1

The squared error of $\delta_{\rm H}$ is 205 compared to the loss 449 of the naive estimator. The accuracy of $\delta_{\rm H}$ is thus of the same order as the precision obtained by using the naive estimate based on over 1,000 simulations. (All but four co-ordinate estimates are improved, one of which is unchanged in value.)

We note, too, that the squared error of $\delta_{\rm H}$ is much lower than that of the pooled mean (which is worse in this case than the naive estimator X). It is also smaller than the loss (242) obtained by Efron and Morris using Normal based Stein methods. This could be a chance fluctuation, or it could reflect the fact that the particular configuration of the μ 's (being skew distributed rather than symmetrically spread here) is better suited to $\delta_{\rm H}$ than to the Stein estimator.

5. CONCLUDING REMARKS

The estimators considered in Section 2 have been shown to have substantially smaller risks than that of the traditional estimator, or the Peng estimator, for situations in which the unknown means are likely to be similar in value but not close to zero. The risk reductions for the estimators considered in the simulations of Section 3 are as large as 15%.

Much greater gains can be anticipated when, in (2.3.1), the multiplying "constant" r_k^a can be replaced by r_0^a , without resulting in deterioration of risk relative to the usual estimator. This gain is apparent in the example of Section 4. Such a choice has been justified above, though it remains to be seen how the corresponding estimator will compare with the others.

The results obtained are important in underlining a useful

choice of metric, for estimation purposes, when considering the deviation of observations from preconceived values. The appropriate measure is seen to be $\frac{p}{f-1}\frac{p}{\lambda_f}$ with M as given in (2.3.1). This observation makes it possible to extend these results to contingency table estimation by shrinkage to "smoothed" fitted values. This methodology will be the subject of a later paper.

Finally, we are once again led to conclude that prior expectations which are supported by the data can lead to quite dramatic improvements in estimator accuracy.

ACKNOWLEDGEMENT

The authors wish to thank Dr. J. V. Zidek for his encourage-

This research was partially supported by the Mational Research the work was done while the authors were Visiting at the University Greatly appreciated.

-11

BIBL IOGRAPHY

Brown, C. C. and Muenz, L. R. (1976). "Reduced mean square error estimation in contingency tables." J. Amer. Stat. Assn., 71, 176-181.

Ξ

2

- Brown, L. D. (1977). "A heuristic method for determining admissibility of estimators with applications," Annals Stat., (to appear).
- [3] Carter, G. M. and Rolph, J. E. (1974). "Empirical Bayes methods applied to estimating fire alarm probabilities,"
 J. Amer. Stat. Assn., 69, 880-885.
- [4] Clevenson, M. L. and Zidek, J. V. (1975). "Simultaneous estimation of the mean of independent Poisson laws."

 J. Amer. Stat. Assn., 70, 698-705.
- [5] Efron, B. and Morris, C. (1975). "Data analysis using Stein's estimator and its generalizations," J. Amer. Stat. Assn., 70, 311-319.
- [6] Hudson, M. M. (1978). "A natural identity for exponential families with applications in multi-parameter estimation." Annals Stat., 6, 478-484.
 [7] James, W. and Stein, C. (1961). "Estimation with Quadratic 361-379.
- [8] Leonard, T. (1976). "Some alternative approaches to multiparameter estimation," <u>Biometriks</u>, 63, 69-75.
- [9] Peng. J. (1979). "Simultaneous estimation of the parameters of independent Poisson distributions." <u>Annals Stat.</u>, (to appear).
- [10] Stein, C. (1973). "Estimation of the mean of a multivariate normal distribution," Tech. Report No. 48, Dept. of Statistics, Stanford University, Stanford, Calif.
- [11] Tsui, K. (1978). "Simultaneous estimation of several Poisson parameters under squared error loss," Tech. Report No. 37, Dept. of Statistics, University of California at Riverside, Riverside, California.

APPENDIX

Proof of 2.4.1

As noted in Section 2.3, the argument used in Hudson (1978), Lemma (5.6), generalizes directly to this situation.

Proof of 2.4.2

We shall show that A₃ ≥ $\frac{1}{2}(1-3H_2^2/5)$ for 3 = 1, 2, ..., k such that N_j ≥ 1.

where P₃ = H₃₋₁/H₃ = (1 - 1/3H₃) , 3 < k.

the minimum non-zero observation. $H_j(H_j+H_{j-1})$ < 5, so, assuming The denominator is necessarily positive when j s k. For j + m,

$$A_{j} = \frac{S - H_{j}(H_{j} + H_{j-1})}{S - \frac{1}{2}(H_{j} + H_{j-1})} = \frac{1 - \frac{H_{j}^{2}}{2}(1 + \theta_{j})}{1 + 3\frac{1}{2}} = \frac{1 - \frac{3H_{j}^{2}}{2}}{1 + \frac{3H_{j}^{2}}{2}}$$

a consequence, provided S is bounded away from 0 by the plus-rule righthand side negative. The assumption $\theta_{\rm j} \le 2$ is correct for all Therefore, if $3H_{\rm J}^2/S \le 1$, (2.4.2) is immediate. If $3H_{\rm J}^2/S > 1$, the result is still correct since the lefthand side is positive and the there is no difficulty in establishing that $A_{j} \ge \frac{1}{2}$ and (2.4.2) as J except k-1 s J s k if k 2 4. For these two remaining cases

restriction S 2 (p-No)/k, when k 2 4.

Finally, when j . m. the above argument applies unless HR (HR + HR-1) > S. Then

$$0 \ge \frac{S - H_{\parallel}(H_{\parallel} + H_{\parallel} - \chi)}{S - \frac{H}{\parallel}(1 + \beta_{\parallel})} \ge \frac{S - H_{\parallel}^{2}(1 + \beta_{\parallel})}{S - \frac{H}{\parallel}} S$$

$$= \frac{1}{B} \left[1 - \frac{H_{\parallel}^{2}}{S}(1 + \beta_{\parallel}) \right]$$

Since, for k 2 4, 1 5 pm 2 2, we have

which, on rearrangement, yields
$$\frac{H^2}{1-\frac{H^2}{5}(1+\theta_m)} \geq \frac{1}{2}\theta_m(1-3\frac{1}{5})$$

(2.4.2) again holds for k ≥ 4.

Case by case enumeration reveals that (2.4.2) holds when

Risk improvement of the modified estimators of Section 2.4

Outline of a proof that ENJA > 1/2[ENj - 3).

1. As noted it suffices to consider the situation with

 $3S_+/S > \frac{E}{L} M_J$. If, in addition, $H_1(H_1 + H_{1-1}) < S$ then we may replace (2.4.1) by the stronger inequality

$$\int_{J=k+1}^{L} H_{J} A_{J} \ge \left(\int_{J=k+1}^{L} M_{J} - 2S_{+}/S \right) ,$$

also a consequence of Hudson's paper.

This, together with (2.4.2), gives the result immediately (noting that E Nj must be either 1 or 2). Thus we need only j=k+1 consider the case M1(H1 + H1-1) > S.

2. Now treat the case $\frac{L}{L}$ NJ = 1 , S₊/S > $\frac{1}{2}$ (a consequence of H₁(H₁ + H₁₋₁) > S).

If Hm(Hm + Hm-1) < S then show that for k 2 4

$$\sum_{j=m}^{k-2} J^{A_{j}} \ge \frac{n_{1} \left[1 - \frac{3R_{1}}{H_{1}}\right]}{1 + \frac{3R_{1}}{H_{2}}}$$
(2)

where $M_1=\sum\limits_{j=m}^{k-2}M_jA_j$, $R_1=\sum\limits_{j=m}^{k-2}M_jH_j^2/S$. This result follows by observing that, since $\beta_j\leq 2$, $A_j\geq \frac{1-3H_j^2/S}{1+3H_j^2/S}$, and

that the minimum of the function

$$f(x) = \frac{k-2}{1-8} \frac{1-3x_1}{1+3x_3}$$

for fixed N and subject to the constraints ${\rm zM}_{\rm jxj}$ = r occurs

Let $M_2 = \sum_{j=k-1}^{k} M_j = \sum_{j=k+1}^{k} M_j (=1)$ and $R_2 = \sum_{j=k-1}^{k} M_j H_j^2 / S$. R3 = 5+/5 . Apply (2.4.1) and (2) to conclude

$$EN_{j}A_{j} \ge (1 - 3R_{3}) + M_{2}A_{k-1} + \frac{N_{1}\left(1 - \frac{3R_{1}}{H_{1}}\right)}{1 + \frac{3R_{1}}{H_{1}}}$$

. .. .

In particular, for $k \ge 9, \ A_{k-1} > 5/6.$ Considering the righthand side as a function of R_1 and R_3 the minimum occurs when close to 1 because of the constraint that S exceed (p-Nn)/k. Note that, for sufficiently large k, A_{k-1} is arbitrarily

$$1 + \frac{3R_1}{H_1} = \sqrt{2} \text{ and } R_3 = 1 - R_1. \text{ Thus}$$

$$EN_j A_j - \frac{(EN_j - 3)}{2} \ge (2/2 - 2.5) M_1 + (A_{k-1} - 0.5) M_2 - 1$$

$$\ge 0 \quad \text{if} \quad A_{k-1} \ge 5/6 \text{ .}$$

slight refinement of (2) shows the result for this case too. since $M_1 + M_2 \ge 3$, except in the case $M_1 = 3$, $M_2 = 0$. A

If Hm(Hm + Hm-1) > S then use the result

$$A_{\rm m} \ge \frac{1}{2} \left(1 - \frac{3H^2}{5} \right)$$

from the proof of (2.4.2) together with the analogue of (2) for the remaining observations less than (k-1) to easily obtain the required result.

3. Now consider the case $E = N_J = 2$, $S_+/S \ge 2/3$.

considered is $H_m(H_m + H_{m-1})$ < S. Thus (2) again applies, and Since we may insist that $\beta_m < 2$, the only case that need be repeating the argument above

$$EN_{3}A_{3} - \frac{(EN_{3} - 3)}{2} \ge (2/\overline{2} - 2.5)N_{1} + 0.33N_{2} - 0.5 \ge 0$$
.

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE (Thus Due Bare)

,

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
Tech. Report #145. Series 2	S. BOUT ACCESSION NO. J. ARCIPIENT'S CATALOG WUNDER
4. TitlE (met Sabessio)	S. TYPE OF REPORT & PERIOD COVERED
SIMULTANEOUS POISSON ESTIMATORS FOR	Technical Report
PRIORI MIPOTMESES ABOUT MEANS	6. PERFORMING ONC. REPORT HUMBER
T. AUTHORIU	C. CONTRACT OR ORANT HUMBERY
M. Nalcolm Nudson and Kam-Mah Tsut	N00614-75-C-0453
Department of Statistics	6. Aug to a soft any massife. Take
Princeton University Princeton, B. J. 08544	
11. Controlling of Fice wast and about to forder 4361	March 1979
Arlington, Virginia 22217	it, masses of passs
TE MORITORING ACCUSES AND A ACCUSED AND ASSESSED AND ASSESSED OFFICE OF ACCUSED OFFICE AND ACCUSED OF ACCUSED	Unclassified
	No. M.C. addirentow townships

ipproved for public release; distribution unlimited

DESTRIBUTION STATEMENT (of the observer material in Black 26, if different frem Report)

Note: W. Malcolm Mudson is a Visiting Lecturer at Princeton University, on leave from the School of Economic and Financial Studies, Macquarie University, N.S.W., Australia, Kam-Wah Tsui is with the Dages, of Mathematics, Simon Fraction, Kam-Wah Tsui is with the Dages, of Mathematics, Simon Exact University, Vancouver, B.C.

Estimators are presented for the simultaneous estimation of p means of Poisson variables with the properties of significant reduction in mean square error of estimation in the region of a pre-specified set of values and, if p ≥ 3, safety, in the sense that mean square error is never worse than that of the minimum variance unbiased estimator.

S 1 Jam 73 M S CONTION OF 1 MOV 48 15 0850LETE

UNCLASSIFIED

RECURITY CLASSIFICATION OF THIS PAGE (Then Bure Bussel)