Darknet-NNPACK on Raspberry Pi

Aug. 2019

Ando Ki, Ph.D. adki@future-ds.com

Contents

- What is NNPACK
- Building NNPACK
- Build and Run Darknet with NNPACK
- Gprof profiling
- Run Darknet with OpenCV
- Run Darknet with OpenCV and USB-Cam

What is NNPACK (1/2)

- https://github.com/Maratyszcza/NNPACK
- https://github.com/shizukachan/NNPACK
- https://github.com/digitalbrain79/NNPACK-darknet

- NNPACK is an acceleration package for neural networks on multi-core CPUs
 - ▶ Built-in expert-tuned kernels with very high performance:
 - ⇒ Fast Fourier transform; Winograd transform
 - ⇒ Matrix-matrix multiplication (GEMM); Matrix-vector multiplication (GEMV)
 - Max-pooling.
 - Multi-threaded SIMD-aware implementations of neural network layers.
 - ▶ Implemented in C99 and Python without external dependencies.

3

What is NNPACK (2/2)

NNPACK layers

- Convolutional layer
 - Training-optimized forward propagation (nnp_convolution_output)
 - Training-optimized backward input gradient update (nnp_convolution_input_gradient)
 - Training-optimized backward kernel gradient update (nnp_convolution_kernel_gradient)
 - Inference-optimized forward propagation (nnp_convolution_inference)
- Fully-connected layer
 - Training-optimized forward propagation (nnp_fully_connected_output)
 - Inference-optimized forward propagation (nnp_fully_connected_inference)
- Max pooling layer
 - ⇒ Forward propagation, both for training and inference, (nnp_max_pooling_output)
- ReLU layer (with parametrized negative slope)
 - ⇒ Forward propagation, both for training and inference, optionally in-place, (nnp_relu_output)
 - Backward input gradient update (nnp_relu_input_gradient)
- Softmax layer
 - Forward propagation, both for training and inference, optionally in-place (nnp_softmax_output)

Building NNPACK: prerequisites

- PIP
 - a tool for installing Python packages from the Python Package Index.
- PEACH-Py
 - Portable Efficient Assembly Code-generator in Higher-level Python
 - an assembler embedded in Python
- Confu
 - Ninja-based configuration system
- Ninja
 - a small build system with a focus on speed; e.g., Make

NNPACK

- https://github.com/Maratyszcza/NNPACK
- https://github.com/shizukachan/NNPACK
- Acceleration package for neural networks on multi-core CPUs

5

Building NNPACK: prepare for build

- Step 1: install pip if not available
 - \$ sudo apt-get install python-pip
- Step 2: Install PeachyPy and Confu
 - \$ sudo pip install --upgrade git+https://github.com/Maratyszcza/PeachPy
 - ▶ \$ sudo pip install --upgrade git+https://github.com/Maratyszcza/confu
- Step 3: Install Ninja
 - ▶ \$ cd ~/work
 - \$ git clone https://github.com/ninja-build/ninja.git
 - \$ cd ninja
 - \$ git checkout release
 - \$./configure.py --bootstrap
 - \$ export NINJA_PATH=\$PWD
 - ▶ \$ cd

Building NNPAC: NNPACK

- Step 4: Build NNPACK for Darknet (i.e., modified NNPACK for Darknet)
 - \$ cd ~/work
 - ▶ \$ git clone https://github.com/digitalbrain79/NNPACK-darknet.git
 - ▶ \$ cd NNPACK-darknet
 - ▶ \$ confu setup
 - ▶ \$ python ./configure.py --backend auto
 - ▶ \$\$NINJA PATH/ninja
 - ▶ \$ sudo cp -a lib/* /usr/lib/
 - \$ sudo cp include/nnpack.h /usr/include/
 - \$ sudo cp deps/pthreadpool/include/pthreadpool.h /usr/include/
 - \$ cd

•

Build Darknet with NNPACK

- Step 5: Build Darknet
 - ▶ \$ cd work
 - ▶ \$ git clone https://github.com/digitalbrain79/darknet-nnpack.git
 - ▶ \$ cd darknet-nnpack
 - ⇒ Have a look at 'Makefile'
 - ▶ \$ make
- Step 6: Download weights
 - ▶ \$ mkdir weights && cd weights
 - ▶ \$ wget https://pjreddie.com/media/files/yolov3-tiny.weights
 - ▶ \$ cd ..

GPU=0 Makefile
CUDNN=0
OPENCV=0
NNPACK=1
ARM_NEON=1
OPENMP=0
DEBUG=0
....

ARM NEON is an advanced SIMD architecture for ARM processors which implement the ARMv7-A or ARMv7-R profile.

Run Darknet with OpenCV

- Step 5: Build Darknet with OpenCV
 - **.**..
 - \$ cd darknet-nnpack
 - ▶ Have a look at 'Makefile'
 - ▶ \$ make

GPU=0 CUDNN=0 OPENCV=1 NNPACK=1 ARM_NEON=1 OPENMP=0 DEBUG=0

- Step 6: Run Darknet
 - \$./darknet detect cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights data/dog.jpg

1

Run Darknet with OpenCV and USB-Cam

- Step 5: Build Darknet with OpenCV
 - **...**
 - ▶ \$ cd darknet-nnpack
 - ▶ Have a look at 'Makefile'
 - \$ make

GPU=0
CUDNN=0
OPENCV=1
NNPACK=1
ARM_NEON=1
OPENMP=0
DEBUG=0
....

- Step 6: Run Darknet
 - ▶ \$./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc.

Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

