Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-1: Probability and Information Theory for Machine/Deep Learning

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Continuous Multivariate Distributions

- Same concepts of joint, marginal, and conditional probabilities apply for continuous random variables
- The probability distributions use integration of continuous random variables, instead of summation of discrete random variables

Definition (Joint PDF for continuous random variables)

Two random variables X and Y are *jointly continuous* if there exists a nonnegative function $f_{XY}: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, such that, for any set $A \subseteq \mathbb{R} \times \mathbb{R}$, we have

$$\mathbb{P}\left(\left(X,Y\right)\in A\right)=\iint_{A}f_{XY}\left(x,y\right)dxdy.$$

The function $f_{XY}(x, y)$ is called the *joint probability density function* (PDF) of X and Y.

Continuous Multivariate Distributions (2)

Marginal PDFs

Suppose $f_{X,Y}(x,y)$ is a joint PDF of X and Y, then the marginal densities of X and of Y are given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx.$$

Definition (Conditional continuous random variable)

Suppose X and Y are jointly continuous, the conditional probability density function (PDF) of X given Y is given by

$$f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}.$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Bayes' Theorem

 Bayes' theorem – allows to calculate conditional probabilities for one variable when conditional probabilities for another variable are known

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

- Also known as Bayes' rule
- Multiplication rule for the joint distribution is used: P(X,Y) = P(Y|X)P(X)
- By symmetry, we also have: P(Y,X) = P(X|Y)P(Y)
- The terms are referred to as:
 - -P(X), the prior probability, the initial degree of belief for X
 - -P(X|Y), the posterior probability, the degree of belief after incorporating the knowledge of Y
 - P(Y|X), the likelihood of Y given X
 - P(Y), the evidence
 - Bayes' theorem: $posterior\ probability = \frac{likelihood \times prior\ probability}{evidence}$

Independence

- Two random variables *X* and *Y* are *independent* if the occurrence of *Y* does not reveal any information about the occurrence of *X*
 - E.g., two successive rolls of a die are independent
- Therefore, we can write: P(X|Y) = P(X)
 - The following notation is used: $X \perp Y$
 - Also note that for independent random variables: P(X,Y) = P(X)P(Y)
- In all other cases, the random variables are dependent
- Two random variables X and Y are **conditionally independent** given another random variable Z if and only if P(X,Y|Z) = P(X|Z)P(Y|Z)
 - This is denoted as $X \perp Y | Z$

The joint density function factors for independent random variables

Jointly continuous random variables X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

(f indicates PDF here)

Prof. Monidina Das. Department of CSE_IIT (ISM) Dhanhad

Expected Value

- The *expected value* or *expectation* of a function f(x) with respect to a probability distribution P(x) is the average (mean) when x is drawn from P(x)
- For a discrete random variable x, it is calculated as

$$\mathbb{E}_{\mathbf{x} \sim P}[f(\mathbf{x})] = \sum_{x} P(x)f(x)$$

For a continuous random variable x, it is calculated as

$$\mathbb{E}_{\mathbf{x} \sim P}[f(\mathbf{x})] = \int P(\mathbf{x})f(\mathbf{x}) \, d\mathbf{x}$$

Variance

• Variance: how much the values of the function f(x) deviate from the expected value as we sample values of x from P(x)

$$Var(f(x)) = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2]$$

- When the variance is low, the values of f(x) cluster near the expected value
- The square root of the variance is the standard deviation
 - Denoted $\sigma = \sqrt{\operatorname{Var}(f(x))}$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Covariance

 Covariance gives the measure of how much two random variables are linearly related to each other

$$Cov(f(x), g(y)) = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])(g(y) - \mathbb{E}[g(y)])]$$

• The covariance measures the tendency for f(x) and g(y) to deviate from their means in same (or opposite) directions at same time

Correlation

Correlation coefficient is the covariance normalized by the standard deviations

$$\operatorname{corr}(f(x), g(y)) = \frac{\operatorname{Cov}(f(x), g(y))}{\sqrt{\operatorname{Var}(f(x))} \cdot \sqrt{\operatorname{Var}(g(y))}}$$

- It is also called Pearson's correlation coefficient
- The values are in the interval [-1, 1]
- It only reflects linear dependence between variables, and it does not measure non-linear dependencies between the variables

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Covariance Matrix

• Covariance matrix of a multivariate random variable \mathbf{x} with states $\mathbf{x} \in \mathbb{R}^n$ is an $n \times n$ matrix, such that

$$Cov(\mathbf{x})_{i,j} = Cov(\mathbf{x}_i, \mathbf{x}_j)$$

I.e.,

$$\operatorname{Cov}(\mathbf{x}) = \begin{bmatrix} \operatorname{Cov}(\mathbf{x}_1, \mathbf{x}_1) & \operatorname{Cov}(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \operatorname{Cov}(\mathbf{x}_1, \mathbf{x}_n) \\ \operatorname{Cov}(\mathbf{x}_2, \mathbf{x}_1) & \ddots & \operatorname{Cov}(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \vdots \\ \operatorname{Cov}(\mathbf{x}_n, \mathbf{x}_1) & \operatorname{Cov}(\mathbf{x}_n, \mathbf{x}_2) & \cdots & \operatorname{Cov}(\mathbf{x}_n, \mathbf{x}_n) \end{bmatrix}$$

 The diagonal elements of the covariance matrix are the variances of the elements of the vector

$$Cov(x_i, x_i) = Var(x_i)$$

• Also note that the covariance matrix is symmetric, since $Cov(\mathbf{x}_i,\mathbf{x}_i) = Cov(\mathbf{x}_i,\mathbf{x}_i)$

Probability Distributions

• Bernoulli distribution

- Binary random variable x with states {0, 1}
- The random variable can encodes a coin flip which comes up 1 with probability p and 0 with probability 1-p
- Notation: $x \sim Bernoulli(p)$

Uniform distribution

- The probability of each value $i \in \{1,2,\dots,n\}$ is $p_i = \frac{1}{n}$
- Notation: $x \sim U(n)$
- Figure: n = 5, p = 0.2

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Probability Distributions

• Uniform distribution [continuous]

The pdf of a uniform random variable with domain [a, b], where b > a are real numbers, is given by

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & if \ a \le x \le b, \\ 0, & otherwise. \end{cases}$$

Notation: $x \sim U(a, b)$

Probability Distributions

• Binomial distribution

- Performing a sequence of n independent experiments, each of which has probability p of succeeding, where $p \in \{0, 1\}$
- The probability of getting k successes in n trials is $P(x = k) = \binom{n}{k} p^k (1-p)^{n-k}$
- Notation: $x \sim Binomial(n, p)$

Poisson distribution

- A number of events occurring independently in a fixed interval of time with a known rate λ
- A discrete random variable x with states $k \in \{0, 1, 2, ...\}$ has probability $P(\mathbf{x} = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}$
- The rate λ is the average number of occurrences of the event
- Notation: $x \sim Poisson(\lambda)$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Probability Distributions

• Gaussian distribution

- The most well-studied distribution
 - Referred to as normal distribution or informally bell-shaped distribution
- Defined with the mean μ and variance σ^2
- Notation: $x \sim \mathcal{N}(\mu, \sigma^2)$
- For a random variable x with n independent measurements, the density is

$$P_{\rm x}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability Distributions

Multinoulli distribution

- It is an extension of the Bernoulli distribution, from binary class to multi-class
- Multinoulli distribution is also called categorical distribution or generalized Bernoulli distribution
- For example, in multi-class classification in machine learning, we have a set of data examples $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$, and corresponding to the data example \mathbf{x}_i is a k-class label $\mathbf{y}_i = \{y_{i1}, y_{i2}, ..., y_{ik}\}$ representing one-hot encoding
 - Let's denote the probabilities for assigning the class labels to a data example by $\{p_1, p_2, ..., p_k\}$
 - The multinoulli probability of the data example \mathbf{x}_i is $P(\mathbf{x}_i) = p_1^{y_{i1}} \cdot p_2^{y_{i2}} \cdots p_k^{y_{ik}} = \prod_i p_i^{y_{ij}}$
 - Similarly, we can calculate the probability of all data examples as $\prod_i \prod_i p_i^{y_{ij}}$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Information Theory

Information Theory

- Information theory studies encoding, decoding, transmitting, and manipulating information
- Father of information theory: Claude Elwood Shannon
- As such, information theory provides fundamental language for discussing the information processing in computer systems
 - E.g., machine learning applications use the cross-entropy loss [to be discussed in the next lecture], derived from information theoretic considerations

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Self-information

Shannon defined the self-information of an event X as

$$I(X) = -\log(P(X))$$

- -I(X) is the self-information, and P(X) is the probability of the event X
- The self-information outputs the bits of information received for the event X
 - For example, if we want to send the code "0010" over a channel
 - The event "0010" is a series of codes of length n (in this case, the length is n=4)
 - Each code is a bit (0 or 1), and occurs with probability of $\frac{1}{2}$; for this event $P = \frac{1}{2^n}$

$$I("0010") = -\log(P("0010")) = -\log(\frac{1}{2^4}) = -\log_2(1) + \log_2(2^4) = 0 + 4 = 4 \text{ bits}$$

[Log base e => unit is nats Log base 2 => unit is bits]

Entropy

• For a discrete random variable X that follows a probability distribution P with a probability mass function P(X), the expected amount of self-information is **entropy** (or Shannon entropy):

$$H(X) = \mathbb{E}_{X \sim P}[I(X)] = -\mathbb{E}_{X \sim P}[\log P(X)]$$

- Based on the expectation definition $\mathbb{E}_{X \sim P}[f(X)] = \sum_X P(X)f(X)$, we can rewrite the entropy as $H(X) = -\sum_X P(X)\log P(X)$
- If X is a continuous random variable that follows a probability distribution P with a probability density function P(X), the entropy is

$$H(X) = -\int_X P(X) \log P(X) dX$$

For continuous random variables, the entropy is also called differential entropy

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbad

Entropy

- Distributions that are closer to a uniform distribution have high entropy
- Because there is little surprise when we draw samples from a uniform distribution, since all samples have similar values

Kullback-Leibler Divergence

- Kullback-Leibler (KL) divergence (or relative entropy)
- provides a measure of how different two probability distribution are
- For two probability distributions P(X) and Q(X) over the same random variable X, the KL divergence is

$$D_{KL}(P||Q) = \mathbb{E}_{X \sim P} \left[\log \frac{P(X)}{Q(X)} \right] = \mathbb{E}_{X \sim P} \left[\log P(X) - \log Q(X) \right] = -\mathbb{E}_{X \sim P} \left[\log \frac{Q(X)}{P(X)} \right]$$

For discrete random variables, this formula is equivalent to

$$D_{KL}(P||Q) = \sum_{X} P(X) \log \frac{P(X)}{Q(X)} = -\sum_{X} P(X) \log \frac{Q(X)}{P(X)}$$

• KL divergence is non-negative

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Jensen-Shannon divergence

- KL divergence is not a true distance metric, because it is **not symmetric** $D_{KL}(P||Q) \neq D_{KL}(Q||P)$
- An alternative divergence which is non-negative and symmetric is the Jensen-Shannon divergence, defined as

$$D_{JS}(P||Q) = \frac{1}{2}D_{KL}(P||M) + \frac{1}{2}D_{KL}(Q||M)$$

– In the above, M is the average of the two distributions, $M = \frac{1}{2}(P + Q)$

Exercise

• What is the gradient $(\nabla_x \sigma(x))$ of the sigmoid function $\sigma(x)$ as defined below?

$$\sigma(x) = \frac{1}{1 + \exp(-w^T x)}$$

• What is the SVD decomposition of the following matrix:

$$\boldsymbol{A} = \left[\begin{array}{cc} 3 & 2 \\ 2 & 4 \\ 1 & 2 \end{array} \right]$$

(write using the following form : $U\Sigma V^T$ where U and V are orthogonal, and Σ is diagonal)

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Exercise

- Compute expectation and variance of the random variable X following:
 - $P(X = k) = \phi(1 \phi)^{k-1}$ for $k = 1, 2, \dots \phi \in [0, 1]$
 - $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for $k = 1, 2, \dots$ $\lambda > 0$
- Compute expectation and variance of the random variable X following:
 - $p(X = x) = \frac{1}{b-a} \quad \forall x \in (a,b)$
 - $p(X = x) = \lambda e^{-\lambda x}$ $x \ge 0$, $\lambda > 0$

Exercise

- What can be the maximum value of D_{KL} ?
- What does $D_{KL} = 0$ indicate?

