EEDG/CE 6303: Testing and Testable Design

Mehrdad Nourani

Dept. of ECE Univ. of Texas at Dallas

Session 10

Built-In Self-Test (BIST)

Various LFSR Architectures

Exhaustive-Pattern LFSR

- Binary counter can be used to generate all 2ⁿ patterns
- Example: 4-bit binary counter

Complete LFSR

- We can easily modify the LFSR to generate the complete sequence that includes all-zero pattern
 - When LFSR has 0...001, the output of NOR is 1 and the last XOR injects a 0 . So, the next state will be all zero 0...000.
 - When LFSR has 0...000, the output of NOR is 1 again but the last XOR injects a 1. So, the next state will be out of all-zero state.

Examples of Complete LFSR

 Further optimization would be possible by optimizing NOR and XOR gates together.

(a) 4-stage standard CFSR

(b) 4-stage modular CFSR

(c) A minimized version of (a)

(d) A minimized version of (b)

Reverse-Order Sequence

- In some test scenarios, a pair of test sequences are required where one contains vectors in the reverse order of the other.
- The reverse-order sequence can be generated using polynomial: $\varphi(x)=x^n \varphi(1/x)$
- Example: 5-stage internal XOR LFSR with

$$-$$
 (a) $\varphi(x)=x^5+x^2+1$

$$-$$
 (b) $\varphi(x) = x^5 + x^3 + 1$

			(a)					(b			
	i		i th	PT	√		i		i	h PI	v	
	0	1	0	0	0	0	0	1	0	0	0	0
	1	0	1	0	0	0	1	0	1	0	0	0
	2	0	0	1	0	0	2	0	0	1	0	0
	3	0	0	0	1	0	3	0	0	0	1	0
	4	0	0	0	0	1	4	0	0	0	0	1
	5	1	0	1	0	0	5	1	0	0	1	()
	6	0	1	0	1	0	6	0	1	0	0	1
	7	0	0	1	0	1	7	1	0	1	1	0
	8	1	0	1	1	0	8	0	1	0	1	1
	9	0	1	0	1	1	9	1	0	1	1	1
	10	1	0	0	0	I	10	1	1	0	0	1
ï	11	1	1	1	0	0	11	1	1	1	1	0
l	12	0	1	1	1	0	12	0	1	1	1	1
l	13	0	0	1	1	1	13	1	0	1	0	1
l	14	1	0	1	1	1	14	1	1	0	0	0
l	15	1	1	1	1	I	15	0	1	1	0	0
¥	16	1	1	0	1	1	16	0.	0	1	1	0
	17	1	1	0	0	1	17	0	0	0	1	1 1
	18	1	1	0	0	0	18	1	0	0	1	
	19	0	1	1	0	0	19	1	1	0	1	1
	20	0	0	1	1	O	20	1	1	1	1	1
	21	0	0	0	1	1	21	1	1	1	0	1
	22	1	0	1	0	1	22	1	1	1	0	0
	23	1	1	1	1	0	23	0	1	1	1	0
	24	0	1	1	1	1	24	0	0	1	1	1
	25	1	0	0	1	I	25	1	0	0	0	1
	26	1	1	1	0	1	26	1	1	0	1	0
	27	1	1	0	1	0	27	0	1	1	0	1
	28	0	1	1	C-	1	28	1	0	1	0	0
	29	1	0	0	1	0	29	0	1	0	1	0
	30	0	1	0	0	1	30	0	0	1	0	1
	:			:			:			:		

Hybrid LFSR

- Polynomial f(x)=1+b(x)+c(x) is fully decomposable iff both b(x) and c(x) have no common terms and there exists an integer j such that $c(x)=x^{j}b(x)$, j>=1
- If f(x) is fully decomposable, then we have $f(x)=1+b(x)+x^{j}b(x)$
- A hybrid (top-bottom) LFSR can be constructed using polynomial $s(x)=1+^{\lambda}x^{j}+x^{j}b(x)$
 - The term ^x^j indicates the XOR gate with one input is connected to the feedback path, not between stages

5-Stage Hybrid LFSRs

- Compared to a standard LFSR with m XOR, a hybrid LFSR can be realized using (m+1)/2 XORs and can achieve full-length 2ⁿ-1 cycle.
 - Details in: L. Wang and E. McCluskey, "Hybrid Design Generating Maximum-Length Sequences,", Trans. CAD, 1988.
- (a) 5-stage top-bottom LFSR

(b) 5-stage bottom-top LFSR

Internal XOR part: $\varphi(x)=1+x^2+x^5$

Weighted Pseudo-Random Pattern

Consider an AND gate with large fan-in:

- If p(1) at all PIs is 0.5, $p_F(1) = 0.5^8 = 1/256$ and $p_F(0) = 1-(1/256) = 255/256$
- Will need enormous # of random patterns to test a stuckat 0 fault on F-- LFSR p(1) = 0.5
 - —We must not use an ordinary LFSR to test this
- IBM holds patents on weighted pseudo-random pattern generator in ATE

Weighted LFSR

- For a regular LFSR p(1) = 0.5
- Solution to get a weighted LFSR
 - —Add programmable weight selection and complement LFSR bits to get p(1)'s other than 0.5
- Need 2-3 weight sets for a typical circuit
- Weighted pattern generator drastically shortens pattern length for pseudo-random patterns

Weighted Pattern Generator

W ₁	w ₂	Inv.	p (output)	w ₁	w ₂	Inv	p (output)
0	0	0	1/2	1	0	0	1/8
0	0	1	1/2	1	0	1	7/8
0	1	0	1/4	1	1	0	1/16
0	1	1	3/4	1	1	1	15/16

Response Compaction

Motivation for Test Data Compaction

- Huge amount of data in CUT response to LFSR patterns – example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted

Definitions

- Aliasing Due to information loss, signatures of good and some bad machines match
- Compaction Drastically reduce # bits in original circuit response information is lost
- Compression Reduce # bits in original circuit response – no information loss – fully invertible (can get back original response)
- Signature analysis Compact good machine response into good machine signature. Actual signature generated during testing, and compared with good machine signature
- Transition Count Response Compaction Count # transitions from 0→1 and 1→0 as a signature

Response Analysis Mechanisms

- Ones count testing
- Transition count testing
- LFSR-based signature compaction/analysis
 - —Serial
 - —parallel

Ones Counting

- Ones count testing will need a counter to count the number of 1s in the bit stream.
- Assume the CUT has one output and the output contains a stream of L bits. Let the fault-free output response be {r₀,r₁,...,r_{L-1}}.
- Aliasing probability [Savir 1985] for L bit stream when the fault-free response should have m 1s
 —P_{OC}(m)=[C(L,m)-1]/(2^L-1)

Transition Counting

(b) Transition counts of good and failing machines.

Transition Counting Details

- Transition count when L bit test sequence is applied to CUT: $C(R) = \sum_{i=1 \text{ to L-1}} (r_i \oplus r_{i-1})$
- To maximize fault coverage:
 - —Make $C(R_{fault-free})$ good machine transition count as large or as small as possible
- Aliasing probability [Hays 1976] for L bit stream when the fault-free response should have m transitions

$$-P_{TC}(m)=[2C(L-1,m)-1]/(2^{L}-1)$$

Problems with OC and TC Methods

- The aliasing probability in both OC and TC methods depends on the fault-free response
- The aliasing probability is minimum (or maximum) when the fault-free response is in its minimum (or maximum) value of its respective parameter
 - $-P_{TC}$ is maximum when #of transitions m $\approx L/2$
 - $-P_{TC}$ is minimum when #of transitions m = 0 or L-1

LFSR for Response Compaction

- Use cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to seed value (usually 0) before testing
- After testing compare signature in LFSR to known good machine signature
- Critical: Must compute good machine signature

Serial LFSR Compaction

Serial LFSR Compactor

- The polynomial $\varphi(x) = \varphi_m x^m + ... + \varphi_1 x + \varphi_0$
- The polynomial relationship
 - L-bit sequence coming to compactor: $m_0 m_1 m_2 ... m_{L-1} (m_{L-1})$ is the first bit arriving at compactor)
 - The input polynomial: $M(x)=m_0+m_1x+m_2x^2+...+m_{L-1}x^{L-1}$
 - $M(x)=q(x) \varphi(x)+r(x)$ where r(x) the polynomial remainder of $M(x)/\varphi(x)$ will be the final compactor's response

LFSR Compactor Example I

- The polynomial: $\varphi(x) = x^4 + x + 1$
- The sequence: 1110101 that is $M(x)=1+x+x^2+x^4+x^6$
- Initial state: 0000

Polynomial Division Method

4.	$x^2 + 1$	← Q	uotient			
x^4+x+1	x ⁰ +	x^4+		x^2+	x+	1
	$x^{6}+$		x^3+	x^2		
		x^4+	x^3+	***************************************	x+	1
		x^4+			x+	1
	Signature \rightarrow		x^3			
		•				

 $D_0D_1D_2D_3 = 0001$

Final signature (remainder):

Tabular Method

	Tabulai	Mer	IIOU				
Time	Input	LFSR		R stat	state		
-	_	0	0	0	0		
0	$r_1 = 1$	1	0	0	0		
1	$r_2 = 0$	0	1	0	0		
2	$r_3 = 1$	1	0	1	0		
3	$r_4 = 0$	0	1	Ò	1		
4	$r_5 = 1$	0	1	1	0		
5	$r_6 = 1$	1	0	1	1		
6	$r_7 = 1$	0	0	0	1		

LFSR Compactor Example I (cont.)

- (a) Fault-free signature
- (b) Signature for fault f_1 (c) Signature for fault f_2

LFSR Compactor Example II

- LFSR seed value is "00000"
- Input sequence: 0 1 0 1 0 0 0 1
- Symbolic polynomial: $0x^0 + 1x^1 + 0x^2 + 1x^3 + 0x^4 + 0x^5 + 0x^6 + 1x^7$
- Logic simulation: $Remainder = 1 + x^2 + x^3$ (i.e. 10110)

LFSR Compactor Example II (cont.)

	Inputs	<i>x</i> ⁰	<i>x</i> ¹	<i>X</i> ²	<i>X</i> 3	х ⁴
	Initial State	0	0	0	0	0
	1	1	0	0	0	0
	0	0	1	0	0	0
Logic	0	0	0	1	0	0
Simulatio	n: 0	0	0	0	1	0
	1	1	0	0	0	1
	0	1	0	0	1	0
	1	1	1	0	0	1
	0	1	0	1	1	0

Logic simulation: Remainder = $1 + x^2 + x^3$

LFSR Compactor Example III

- Suppose we use a 3-bit exhaustive binary counter for pattern generator.
- Faults may be masked here too.

LFSR Compactor Example III (cont.)

LFSR aliases for fsa1, transition counter for a sa1

Pattern	Responses						
abc	Good	<i>a</i> sa1	f sa1	b sa1			
000	0	0	1	0			
001	1	1	1	0			
010	0	1	1	0			
011	0	1	1	0			
100	0	0	1	1			
101	1	1	1	1			
110	1	1	1	1			
111	1	1	1	1			
	Signatures						
Transition Count	3	3	0	1			
LFSR	001	101	001	010			

Probability of Aliasing

- Consider polynomial operations (equivalent to mod 2 where multiplication and addition are the same as AND and XOR.
 - —Fault-free circuit response: $M^*(x) = q^*(x) \phi(x) + r^*(x)$
 - —Faulty circuit response: $M(x)=q(x) \varphi(x)+r(x)$
- Aliasing occurs when $r^*(x)=r(x)$ while $M^*(x)\neq M(x)$
 - $-M^*(x)+M(x)=[q^*(x)+q(x)] \varphi(x)+(r^*(x)+r(x)]$ =[q*(x)+q(x)] \varphi(x)
 - —Aliasing occurs when the error polynomial $E(x)=M^*(x)+M(x)$ (i.e. a bit-by-bit XOR of fault-free and faulty responses) is divisible by the LFSR feedback polynomial $\phi(x)$.
 - —Aliasing is independent of the exact value of fault-free response.

Probability of Aliasing (cont.)

- The maximum degree of E(x)=M*(x)+M(x) is L-1 (when L bit input streams is compacted).
- The maximum degree of φ(x) is m
- So, the maximum degree of [q*(x)+q(x)] will be L-1-m.
- For a given feedback polynomial φ(x), any polynomial of degree ≤L-1-m can be used to obtain a fault-free signature.
- There exist 2^{L-m} polynomials of degree≤L-1-m.
 If we remove all-zero polynomial, total of 2^{L-m}-1 cases can cause aliasing.

$$-P_{\text{serial}}(m) = [2^{(L-m)}-1]/(2^{L}-1) \approx 2^{-m}$$

Parallel LFSR Compaction (MISR)

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR compacts all outputs into one LFSR
 - Works because LFSR is linear obeys superposition principle
 - Superimpose all responses in one LFSR final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

MISR Structure

- The polynomial $\varphi(x) = \varphi_m x^m + ... + \varphi_1 x + \varphi_0$
- The polynomial relationship
 - Up to m number of L-bit sequences coming to each input of MISR
 - The effective input polynomial will be a combination of all input polynomials: $M(x)=M_0(x)+x$ $M_1(x)+x^2$ $M_2(x)+...+$ x^{m-1} $M_{m-1}(x)$
 - $M(x)=q(x)*\phi(x)+r(x)$ where r(x) the polynomial remainder of $M(x)/\phi(x)$ will be the final compactor's response

A 4-Stage MISR Example

	First word coming in
$egin{array}{c} M_0 \ M_1 \ M_2 \ M_3 \end{array}$	1 0 0 1 0 0 1 0 1 0 1 1 0 0 0
M_3 M	1 0 0 1 1

- The equivalent sequence will be: $1x^{0}+0x^{1}+0x^{2}+1x^{3}+1x^{4}+0x^{5}+1x^{6}+1x^{7}$
- The aliasing probability when n out of m inputs are used

$$-P_{MISR}(m) = [2^{(nL-m)} - 1]/(2^{nL} - 1) \approx 2^{-m}$$

MISR Division Example

 $x^{3}+x^{2}+x^{0}$

MISR Matrix Equation

- The polynomial: $\varphi(x) = x^4 + x + 1$
- M_i(t): Input streams of MISR at time t **XOR**
- The transition matrix/relation:

 $M_1(t)$

 $S_1(t)$

Example (note that * is AND and + is XOR)

Another MISR Example

$$\begin{bmatrix} s_0(t+1) \\ s_1(t+1) \\ s_2(t+1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} s_0(t) \\ s_1(t) \\ s_2(t) \end{bmatrix} + \begin{bmatrix} M_0(t) \\ M_1(t) \\ M_2(t) \end{bmatrix}$$

Multiple Signature Checking

- Use 2 different testing sessions:
 - 1st with MISR with polynomial $\phi_1(x)$
 - 2^{nd} with MISR with different polynomial $\varphi_2(x)$
- Reduces probability of aliasing
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2nd MISR polynomial
 - A 2-1 MUX to select between two feedback polynomials