Aux # 11

		Aux	#	11					2	015	年1	月	30	B (月
				_							1940	1	19	-19	
	1111	111	D												
N was		7													
Usanos Ingredie	O(Dlag D) bits	adici	oncelle	23		e e								
	11 2 2	10 U[1	, 13					16		1		1145		V5 L	W.
A	Un sta	ck SI	1,0]	(0	nt	orma	do	ar	regle	0) (es-	delo	os de	en	un bajo
	+ 60	punter	to all	Tope	,t.	6					My	el	con		isura
*	El valo	r de in	iciali	tacio	ón.					4			4.0		J.
								11	24	11					
		71 -	0,000	1200	1 0	40	rma	10	101						
Init (V, D, v)	: HI	1100										SQ NE		
Init (t = 0		and a								ilos gui		S. P.	3. Qri	
	te o	-			000	107								s A	
Write (te o Ito										olos sult			3.Qr 3. R 3. R	
Write (te o							alvo alvo						301	
Write (te o Ito	no está				3 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				V	m		9	1)	
Write (teo Iev Vii,v VCi]	no está								V	m		.0:	(1)	
Write (t←0 I←v V,i,v V(i)	no está								V	my m		. o.		
Write (teo Iev Vii,v VCi]	no está					8, 4			V			or up		
Write (t←0 I←v V,i,v V(i] 1	no está								V	my m		or up		
Write (t←0 I←v V,i,v V(i] 1	no está					\$ 1 A A A A A A A A A A A A A A A A A A			V			or up		
Write (t←0 I←v V,i,v V(i] 1	no está						3 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4		V			o o o		

2) (ser &(D) Idea: userno un arredo B de D bits, tal que B[i] = 1 (=> V[i] ha sido malificado. Claramente nos aucontramos con el problema de inicializar B. Para ello, consideremos B como in arreglo B' [1,0] We tanano de palabra del procesador Supergamos Wy log D Usamos la técnica anterior para inicialitar B en 05 => esto usa $2D'\log D' = \frac{2D}{u}\log D' \leq \frac{2D}{2D}\log D \leq 2D$ bits Sunto a B, esto usa 3D bits (& O(D)) · Branch & acoteur su costo Bound P2 "Bisqueda exhaustiva inteligente" 1) Backtracking · Mirando parte de ma solución predo descartar gran parte del espacio do soluciones. Ej: Si kingo (X, V X1 V X1), ya que se que XI = F no lleva a nada. Para Backtracking neasitamos un "test" que mire un subproblema y diga: A solución · Enconfre ua solución · No si

1

1

3

el backtracking se ve algo así: · Dado un problema Po · S + 3 Po 3 es el conjunto de subproblemas activos. · Mientras 'S no esté vacio: -escoger en subproblema PES y guitarlo de S - expendir P en P1,..., Px subproblemas menores. - para cada Pi: Si test (Pi): - enaentro sel global => lo retorno - no encuentra solvaion => descarto P, else se agrega Pi a S. · Se amencia " 7 edución E 2) Barch & Bound => para optimitación (s.p.g. minimización) E · hirando parte de ma solveión predo acotar su costo E Agri recesitamos una función lover-bound que acote par abajo E el costo de walquier solución completa que parta de ma E person dos solución incompleta dada. E 75P. 5; tenemos in four parcial que pasa por un cito S de nodos, completarlo nocista un camino en Luego Branch & Band so re algo así: (V-s) y arcos de (V-s) a a y s · Dado un problema Po · SE 3 Por es el conjunto de subproblemas activos · Mientras S no esté vacio. -escager un subproblema PES y quitarlo de S. -expandir Pen Pr. ... , Pk Solvaiones paraiales - para cada Pi: siguiente

Ē

ESQUENA DE APROXIMACION

		+ Pa	Wa	ca	da	Pc																	
			*	Si.	Þi	60	w	a S	0.	00	mel	eta	=)	act	val	170	uC.	60	4.	٦ľ			
			K	Si	no	,					· · · · ·												
					51		11PK	h	OUD	96	Pi) <	1	2007	1.6								
					a																		
+					na																		
		J.C.	. (101	110	24																	
=)	\	1		-1	.1	_	, ,	arco	no	Sli	vioun	000	20	e a	CV	-5	()				1		
=)(Nost*	5	Col	Whie	21al	11	1 1	PSO	0 0	01 1	NINI	iona	de C	bgr	afo	V	- /						
		J					9	W C	iona	fe	todo	slos	no	101	0	1- 3	5).						
								3		N	15-	_											
																-							
																						1.3	
			-																				
			المارعا																				
														4,000		_							
								· -															

ESQUEMA DE APROXIMACIÓN (1+E)

PROBLEMA	DE 19 MOCHICA NP-COMPLETO, se deja aproximaca (KNAPSACK subset - sum)
Versión d	de decision: XIXz, Xn > 0 bits para repr to tope to linput = O(n logt) puede ser 32 bit
Sep	ile encontrar in conjunt que sonte
	de opt: t es máximo
Forma	Greedy: recibo elemento y veo que pasa si lo meto o no a la bolsa
Nota:	O(n·t) prog. dinámica, pres t es gigantesco, NO es polinomial en el input O(nlogt) es exponencial!
Exacto:	for i 1 to n (lo incluyo o no?) (1) to n (lo incluyo o no?)
	truncar (L, t) (eliminar subconjuntos que se pasan) (Posibles) return max L (max t)
x = 1, L=(0	3,2 [en el merge se eliminan repetidos 5) 241=<1> 50,1> 12+3=(3,4)
L -	$\langle 0, 1, 3, 47 \rangle$ $L+2 = \langle 2, 3, 5, 6 \rangle$ $\langle 0, 1, 2, 3, 4, 5, 6 \rangle$
	<0,1,34> agrego $<2,3,5,6>$ no agrego

2727-12 Lo auterior era Frenta Brita ... ¿ Ciánto tiempo requiere? ~ O(2) preden estar todos los subconjuntos INACEPTABLE. posibles en L Vamos a aproximar. La idea es hacer que L no se agrande mucho · Versión aproximada: Dado in elemento ZEL, tendremos una L doude garantitamos que un y EL que representa a z está en L' 7 represente a 2 sii 12 < y < 2 2 es representado por alguien in foco Apriox (E) MENOR (no piece war mayor porque 14(0) me posióa pasar de t) for C & 1 to n L ← Merge (L, L+xi) truncar (Lit) filtrar (L, 8) = borro los eltos representados por otros return max L Filter (L, 8) L' < < L[1]> tomo el mín; por lefinición nadie la prode representar. last = 1 [1] for it 2 to 141 if L [:] > last · (1+8) L' & L'concat L[i] last & LIEI return L' Este error relacionado a 1+8 se va acumulando.

Í

=

3

3

3

3

Este error relacionado a (1+8) se va acumulando. Después de filtran tenemos: ? ellos consecutivos van L [1] > 1 LECT > (1+8). LEi-1] J creciendo consecutivamente Si. l = |L|, l-1 L(l) > (1+8)pero solo trabajamos mientras L(l) & t (al truncar) $(1+8)^{l-1} \le t (\log(1+8)\cdot(l-1) \le \log t)$ /log(.). l ≤ logt +1 jteremos asta sup.
log(1+8) para el largo! Entonces en cada iteración del for pago 0 (1 + logt log(1+ O(2") -> O("n logt) y n logt es log(1+8)) el tamaño del input. Pareciera ser lineal en el tamano del input, pero debemos estraiar bien que sorpresas salen de 1 (1+8) Aunque sean nomenos enteros, hay que dejar que 8>0 ER si no explota. (48)2 (48) pasa a 39 etapa y se reemplaza por w (1+8)3 (X & w < x : després de n iteraciones, entrego Z que 2 /- 3*/-2 < 2* ≤ Z

E