@ I T atmark I T

 クラウドネイティブセントラル
 連載一覧
 @IT Special
 セミナー
 ホワイトベーバー

 クラウド
 AI IoT
 アジャイル/DevOps
 セキュリティ
 キャリア&スキル
 Windows
 機械学習
 eBook
 ・その他

 ・New! AI for エンジニアリング
 ・サプライチェーン攻撃
 ・脆弱性管理
 ・OSS管理
 ・Windows 11/365
 ・GitHub
 ・その他の特集

@IT > クラウド > Windows Server Insider > 第11回 MACアドレスを解決するARPプロトコル:基礎...

マイページ

基礎から学ぶWindowsネットワーク

第11回 MACアドレスを解決するARPプロトコル

(3/4 ページ)

2003年05月09日 00時00分 公開

[デジタルアドバンテージ, 著]

印刷 通知 見る Share 20

前のページへ 1 2 3 4 次のページへ

ARPは、与えられたIPアドレスからMACアドレスを求めるためのプロトコルである。 動作原理は非常に単純で、ARP要求をブロードキャストすると、該当するIPアドレスを 持つコンピュータがARP応答を返す、というだけである。次の図を見ていただきたい。

ARPの動作

ARPパケットをブロードキャストで送信すると、該当するIPアドレスを持つコンピュータは、ARPの応答パケットを(ユニキャスト通信で)返送する。返信パケットには返信元のコンピュータのMACアドレスが含まれている。このARPパケットのやり取りにより、お互いのMACアドレスが分かる。後でPC3がPC1に対してARP要求を送信する必要はない。

ARPの動作

いま、PC1が、同じイーサネットのセグメント上に存在し、同じネットワーク・アドレス (と同じネットマスク)を共有しているPC3と通信したいとする。PC1は、PC3のIP アドレスは知っているが、MACアドレスは知らないものとする。コンピュータを起動してネットワークに接続した直後の状態はほぼこのようになっているだろう。

ここでPC3に対して通信をする(イーサネットのフレームを送信する)ためには、まずPC3のMACアドレスを求める必要がある。だがPC3のMACアドレスを知っているのは、(ほとんどの場合は)PC3だけである。だからPC3のMACアドレスを求めるためには、PC3自身に問い合わせるしかないが、MACアドレスが分からないのだから、直接問い合わせることはそもそも不可能である。この矛盾を解決するのが、ブロードキャストとARPパケットを使ったMACアドレスの解決手法である。

ネットワークの通信には、特定の1つのコンピュータだけを対象とする「ユニキャスト通信」のほかに、不特定多数のコンピュータへいっせいに同報通信する「ブロードキャスト通信」がある(このほかに「マルチキャスト通信」などもあるが、ここでは特に触れない)。イーサネットにおける通信でも、同様にブロードキャスト通信とユニキャスト通信がある。あて先MACアドレスをオール1(FF:FF:FF:FF:FF:FF)にしてフレームを送信すると、それはブロードキャスト送信となる。この場合、同じイーサネット・セグメントに接続されているすべてのコンピュータが送信されたフレームを受け取ることになる(IPレベルでブロードキャスト通信を行う場合は、このようにイーサネット・レベルでもブロードキャスト通信になる)。

ARPの要求パケットは、このイーサネットのブロードキャストを使って送信される(図中の(1))。これならば、PC3を含めたすべてのコンピュータがARP要求を受け取ることができる。そして、MACアドレスを要求されたコンピュータのみがARPの応答パ

ホワイトペーパー

ロードバランサー経由のサービス 間接続、IPアドレス管理の手間を どうする?

検知してからどうするか!? 標的型サイバー攻撃における内部対策の提案

ネットワーク製品の導入に関する 読者調査リポート(2014年12月)

もう「Wi-Fi 7」時代? 無線LAN の気になる進化

スポンサーからのお知らせ

- PR -

「ネットワークが分からない」状態からでも 丸ごとサポート

重要なのは発展性 なぜ今、"ストレージ"に 注目が集まっているのか

Special

- PR -

複数ベンダーの「継ぎはぎSAS E」で生じる課題、どうすれば解 決できるのか?

「ほとんど誰も見ていない」社内 ポータル、どう変えるべき? New!

社内ルールだけでは限界 有名無 実化した「ローカル保存禁止」に どう対応?

自分が作ったアプリがスマホで動くさまを見ると、学生の目が輝くんです New!

NTTデータと日本IBMがタッグ! AIは仕事をどう変える?

オンプレのITインフラを「サブスク」で利用できるサービスは何がスゴイのか?

中堅中小企業の"ネットワーク課 題"はこれで解決! **New!**

- PR -

ケットを返すことにより(図中の(2))、お互いのMACアドレス情報を交換すること ができる。

このARPの要求とそれに対する応答は、TCP/IPをサポートしているシステムは必ず実 装している。そのため、この方法ですべてのコンピュータが通信相手のMACアドレスを 取得することができる。

「守る」だけでは不十分 今どき のストレージには何が必要?

@IT Special ∧

Windows Server Insider 記事ランキング

本日

Excel(エクセル)で日付から自動的に曜日

【Excel】重複データを色付けして瞬時にダ ブりをチェックする

【Excel】パスワードロックを強制的に解除 する方法

TCP/IP通信の状態を調べる「netstat」コ

Windows OSのdirコマンドでファイル名の

システム要件を満たさないPCをWindows 11 2023 Update (23H2) にアップデート する方法

【Windows 10/11】 えっ、UTF-8じゃな くてShift-JISで? お手軽文字コード変換方

PDFファイルにキーボードから直接文字入 力する方法【本家Acrobat Reader編】

Excelの落とし穴「先頭のゼロ(0)」問題 の対処法

【Windows 10/11】PCが数分で勝手にス リープするのを防ぐ

ランキングをもっと見る

月間

を入力する

マンドを使いこなす【Windows OS】

一覧を取得する

あなたにおすすめの記事

- PR -

"企業が重視するポイント"に合わ せたバックアップソリューション

「守る」だけでは不十分 今どき のストレージには何が必要?

社内ルールだけでは限界 有名無 実化した「ローカル保存禁止」に どう対応?

@IT Special ^

ミドルの転職・AMBIの人気コンテンツ - PR -

若手7割がスタートアップ転職に 意欲 | AMBI (アンビ)

あなたの職務適性が15分でわか る AMBI (アンビ)

官公庁関連の厳選求人、多数掲載 中!「ミドルの転職」

Special

「守る」だけでは不十分 今どきのストレージには何が必要?

1. ARP要求の送信

ARP要求を送信するコンピュータは、先のARP構造体パケットのうち、「送信元MAC アドレス」と「送信元IPアドレス」のフィールドに自分の情報を入れてパケットを構築 する。「あて先MACアドレス」は未定なのですべて0を入れておくが、「あて先IPアドレ ス」フィールドには、通信したい相手のIPアドレス(この場合は、PC3のIPアドレス) を設定する。そして「動作」フィールドを「ARP要求(1)」に設定してイーサネットの ブロードキャスト機能を使ってローカルのネットワーク上へブロードキャスト送信す る。これにより、同じネットワーク・セグメント上に存在するすべてのコンピュータは このARP要求を受け取ることになる。

2. ARP応答の返信

ARP要求を受け取ったコンピュータは、そのARP要求が自分のIPアドレス宛であるか どうかを判断し、自分宛でなければARP要求パケットを破棄する。

自分のIPアドレスと一致すれば、ARP応答を返送する。この場合、もともとの「送信 元アドレス」フィールドに入っていた値と「あて先アドレス」フィールドに入っていた 値は交換される(送受信の向きが入れ替わるため)。そして「送信元MACアドレス」フ ィールドには、ARP応答を返送するコンピュータのMACアドレスがセットされる。つま り、すべてのフィールドの値がセットされる。

その後、「動作」フィールドには「ARP応答(1)」がセットされ、今度はユニキャス ト通信で送信元へARP応答が送られる。ARPの要求はブロードキャストだが、返信はブ ロードキャストではない。そのため例えばスイッチング・ハブなどを経由してネットワ ーク上のパケットをキャプチャしていると、応答側のパケットがキャプチャできず、調 査できないことがあるので注意していただきたい。

ARP応答を返信する側では、応答を返信すると同時に、自身の持つ「ARPテーブル (後述)」にIPアドレスとMACアドレスのペアを登録する。

3. ARP応答の受信

ARP応答を受信したコンピュータは、ARPパケットの中からMACアドレスを取り出 し、ARPテーブル中に格納する。これにより、お互いのコンピュータは、相手のIPアド レスと相手のMACアドレスの情報を取得することができる。

ARPテーブル

ARPテーブルは、ARPパケットのやりとりで得られた情報を格納しておくためのテー ブルである。ARPは(ネットワーク・パケットを送受信するという)コストの高い処理 であり、IPパケットを送信するたびに利用するのは現実的ではない。そこで、1度取得し たARPの情報をARPテーブルに格納しておくことにより、無用なARPパケットのやりと りを抑えて、ネットワークのパフォーマンスを最大限に活用できるようにしている。

ARPテーブルへの登録はARPの要求パケットを受信した場合と、ARPの応答パケット を受け取った場合に行われる。ただし、ARP要求パケットは、ARPのあて先IPアドレス 以外のコンピュータでも受け取るが、そこではARPテーブルには登録しない(すでに

ARPテーブル中にエントリが存在する場合は、その情報を更新する)。あくまでもARPの対象となっている2台のコンピュータ間でのみ、それぞれの持つARPテーブルにエントリが登録される。

ARPテーブルには、IPアドレスとMACアドレスの対応と、それらの情報をどのインターフェイスから受信したかの情報が記録されている。そしてARPテーブルに記録されるエントリには、通常は寿命があり、最後にARPパケットを受信してから一定時間が経つと、そのエントリは自動的に消滅する。例えばWindows 2000やWindows XPシステムでは、デフォルトでは最大10分(600秒)となっている。この間を過ぎてもARPデータの更新がなければ、エントリは自動的に消去される。このような仕組みにより、例えばネットワーク・インターフェイスを取り替えたよう場合でも(IPアドレスが同じでMACアドレスが変わったような場合でも)、自動的に新しいMACアドレスに更新され、正しく通信できるようになる。

TCP/IPのプロトコル・スタック内に保持されているARPテーブルの情報を調査したり、追加/修正したりするには、arp.exeというコマンドを利用する(詳細は次ページ)。

ARPテーブルの情報は、IPパケットの送信のたびに参照される。もし通信相手のIPアドレスがこのARPテーブル中に存在すれば、IPパケットはただちにイーサネット・フレームとして組み立てられ、送信される。

しかしARPテーブル中に該当するIPアドレスが見つからなければ、以上のようなARP要求の送信とその応答の受信を経てARPテーブルのエントリが追加され、その後IPパケットが送信されることになる。

ARPによる自IPアドレスの重複確認

ARPは、通信相手のMACアドレスを知るためのプロトコルとして開発されたが、現在では、IPアドレスの重複確認のためにも利用されることが多い。以前ではTCP/IPプロトコルを利用する場合、各コンピュータに割り当てるIPアドレスが重複しないようにするのはコンピュータの所有者や管理者の責任であった。もし間違えて同じIPアドレスを複数のコンピュータに付けてしまったりすると、それらの2台とも外部からはうまく通信できなくなってしまう(IPパケットを送信する側からみると、どちらのコンピュータにパケットを送ってもよいのかが判断できず、混乱するから)。このような事態を防ぐため、最近のWindowsのTCP/IPプロトコル・スタックなどでは、システムの起動時にARPパケットを使ったIPアドレスの重複確認を行っている。

IPアドレスが重複しているかどうかを確認する方法は、意外と簡単である。あて先IPアドレスとして自分のIPアドレスをセットしたARP要求パケットを送信するのである(送信元のIPアドレスや送信元MACアドレス・フィールドには、通常通り自分自身のアドレスがセットされている)。自分自身のIPアドレスをターゲットとするARP要求パケットなので、誰も応答するはずがない。だがもし、そのARP要求に応答するようなコンピュータがあるとすると、すでにそのIPアドレスは使用されているということが分かる。この場合は、IPアドレスが重複していることを表示して、TCP/IPのプロトコル・スタックを有効にせず、無効のままとする。なおこのIPアドレスの確認は、手動で固定的にIPアドレスを割り当てた場合だけでなく、DHCPサーバでIPアドレスを割り当てているような場合でも行われる。そのため、現在のWindowsシステムでは、以前のようなIPアドレスの重複事故を見ることは非常に少なくなった。

ARPを使ったIPアドレスの重複確認のことを、Windowsでは「Gratuitous ARP」と呼んでいる(Gratuitousとは無償とかフリーな、という意味)。もともとはほかのコンピュータ自身が持つARPテーブルの内容を強制的に更新させるために使われていたものであり(すでにARPテーブル中に該当するエントリを持つコンピュータは、ARP要求を受けると、エントリを更新しなければならないと定義されている)、通信中にIPが変わってしまうようなモバイル・ノード向けのTCP/IP実装向けの機能であった(RFC3220「IP Mobility Support for IPv4」参照)。現在では、このようにシステム起動時のIPアドレスの重複チェックに使われることが多い。

@IT eBook

解決!Python CSVファイル編

誰か、要件追加を止めてくれ! ――「旭川医大の惨劇」徹底解 説

目指せ、共有フォルダ管理の達 人! Windowsファイル共有 を"極める"ためのPowerShellコ マンドレット基本集

IT人材ゼロでDX!? お悩み中小企業のためのDX推進が分かる無料の電子書籍とは

一覧ページへ

注目のテーマ

「サプライチェーン攻撃」対策

システム開発ノウハウ 【発注ナビ】

- PR -

脱SESに成功し受託開発へ。エンジニアのやる気アップによる好循環

「Laravel」に強いシステム開発会 社15社

「脱リファラル営業」がエンジニア の実力を高める

ARPの例とARPコマンドの使い方

Copyright@ Digital Advantage Corp. All Rights Reserved.

基礎から学ぶWindowsネットワーク 連載一覧

全 23 回

新しい連載記事が 10 件あります

第13回 データグラム通信を実現するUDPプロトコル

第12回 TCP/IPプロトコルを支えるICMPメッセージ

第11回 MACアドレスを解決するARPプロトコル

第10回 IPパケットの構造とIPフラグメンテーション

第9回 IPルーティング

過去の連載記事が8件あります

Special

ローコードツールの現 在地。AI、機械学習と のシナジーで新たな価 値を生み出す New!

「守る」だけでは不十分 今どきのストレージには何が必要?

NTTデータと日本IBM がタッグ! AIは仕事 をどう変える?

「ネットワークが分からない」状態からでも 丸ごとサポート New!

「ほとんど誰も見ていない」社内ポータル、 どう変えるべき? New!

社内ルールだけでは限界 有名無実化した「ローカル保存禁止」 にどう対応?

データは「守りながら 活用する時代」に

オンプレのハードウェ アも「サブスク」の時 代へ コストや契約は どう変わる?

@IT Special ^

この記事に関連する製品/サービスを比較(キーマンズネット)

構築したいネットワーク要件で大きく変わる『ルーター』の選び方まずネットワークの性質を十分に見極めよう!『ネットワーク管理』製品比較既存のネットワーク構成とマッチする?『WAN高速化』製品の選び方信頼性や可用性に対する取り組みは?『ネットワークスイッチ』製品比較

L4負荷分散とL7負荷分散どちらを重視?『ADC/ロードバランサ』製品一覧

印刷 通知 見る Share 20

@ITについて

RSSについて

アイティメディアIDについて

アイティメディアIDとは

メールマガジン登録

お問い合わせ 広告について

採用広告について

@ITのRSS一覧

@ITのメールマガジンは、 もちろ ん、すべて無料です。ぜひメールマ ガジンをご購読ください。

利用規約

著作権・リンク・免責事項

サイトマップ

申し込みページへ

ITmediaはアイティメディア株式会社の登録商標です。

メディア一覧 | 公式SNS | 広告案内 | お問い合わせ | プライバシーポリシー | RSS | 運営会社 | 採用情報 | 推奨環境