Precalculus Inverse of fractional linear transformation

Todor Milev

2019

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1}$$

$$y = \frac{x+1}{x-1}$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

We deal with domains and ranges later:
$$y = \frac{x+1}{x-1} \quad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1} \qquad | \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$y(x+1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1} \qquad | \text{mult. by } (x-1)$$

$$y = \frac{x+1}{x-1} \qquad | x(y-1) = x+1$$

$$x(y-1) = y+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$
where deal with domains and ranges later.
$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1} \qquad \text{mult. by } (x-1)$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1 \qquad \text{div. by } (y-1)$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

$$y = \frac{x+1}{x-1}$$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$

$$f^{-1}(x) = \frac{x+1}{x-1}$$

mult. by
$$(x-1)$$

div. by $(y-1)$

relabel
$$x, y$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$
 div. by $(y-1)$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$
 relabel x, y

$$f^{-1}(x) = \frac{x+1}{x-1}$$

mult. by
$$(x-1)$$

relabel
$$x, y$$

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$

$$y(x-1) = x+1$$

$$x(y-1) = y+1$$

$$f^{-1}(y) = x = \frac{y+1}{y-1}$$
 relabel x, y

$$f^{-1}(x) = \frac{x+1}{x-1}$$
We divided by $y-1$ so $y \neq 1$.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \ne 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by $y - \hat{1}$ so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse?

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by $y - \hat{1}$ so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer:
$$f^{-1}(x) = \frac{x+1}{x-1}$$
, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by $y - \hat{1}$ so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for *f* to be its own inverse?

Find
$$f^{-1}(x)$$
 where $f(x) = \frac{x+1}{x-1}$.

Answer: $f^{-1}(x) = \frac{x+1}{x-1}$, $x \neq 1$.

We deal with domains and ranges later:

$$y = \frac{x+1}{x-1}$$
 mult. by $(x-1)$
 $y(x-1) = x+1$
 $x(y-1) = y+1$ div. by $(y-1)$
 $f^{-1}(y) = x = \frac{y+1}{y-1}$ relabel x, y
 $f^{-1}(x) = \frac{x+1}{x-1}$

We divided by y - 1 so $y \neq 1$. Therefore the domain of f^{-1} is all real numbers except 1.

Can a non-identity function be its own inverse? Yes, *f* is.

What does it mean for f to be its own inverse? Graph of f is symmetric across y = x.