

Our Motivations

What inspired us to calculate the universe's age, and what can we do with the information?

Background

The Hubble Constant (H₀)

A constant that is proportional to distance. Helps us to measure the rate at which the universe is expanding.

"Standard Candle"

Astronomical object with a know Luminosity, in this case, type 1A supernova. Used to calculate distance from Earth.

Steps to the Final Number

The Data

```
[1] import numpy as np
import matplotlib.pyplot as plt
import astropy.io.ascii
import astropy.units as u
import astropy.constants as ac

from google.colab import files
uploaded = files.upload()

Choose Files Tonry_2003.vot
Tonry_2003.vot(n/a) - 45474 bytes, last modified: 10/9/2024 - 100% done
Saving Tonry_2003.vot to Tonry_2003.vot
```

- ★ Import the packages we need for calculations
- ★ Import data of the supernova

The Data (cont'd.)

```
distance = 10**dat["col8"] / 72.0 * u.mpc
distance_error = (10**(dat["col8"]+dat["col9"]) - 10**dat["col8"]) / 72.0 * u.mpc
velocity = 10**dat["col7"] * u.km / u.s
plt.plot(distance.to(u.mpc).value, velocity.to(u.km / u.s).value, marker=".", color="black", linestyle="none")
plt.xscale("log")
plt.yscale("log")
plt.xlabel("Distance [Mpc]")
plt.ylabel("Velocity [km/s]")
plt.show()
```


- ★ Find the distance and velocity from the data
- ★ Use the imported package to plot distance vs velocity!

The Fit

- 1. Redefine our distance values to be between 0-700 mpc
- 2. Calculating the line of best fit (NOT in polynomial form)

```
x = distance.to(u.mpc).value
ind = np.where((x > 0) & (x < 700))
z = np.polyfit(distance.to(u.mpc).value[ind], velocity.to(u.km / u.s).value[ind], 1)</pre>
```

The Fit

- 3. Convert to polynomial form
- 4. Making the function a plottable value

```
p = np.poly1d(z)
velocity_model = p(distance.to(u.mpc)
```


The Fit

3. Graphing the data from before, as well as the data we just calculated for the slope

4. Annotating the graph to list the slope value (Hubble Constant)

The Calculation

```
✓ [51] d = 1 * u.Mpc # define d, or the distance.
    v = z[0] * u.km/u.s # define v, or the velocity, which is, in this instance, the Hubble Constant.

✓ def CalculatingUniverseAge_1(d, v): # d and v represent the input of the function.
    t = np.divide(d, v) # define the equation for t.
    return t
    t = CalculatingUniverseAge_1(d, v)
    print(t.to(u.Gyr)) # define the output, which is the calculated age of the universe.

→ 14.489809340480448 Gyr
```

Method 1: t = d/v

```
t = time (s)
d = distance (Mpc)
v = velocity (km/s)
```

The Calculation

```
[64] H_0 = z[0] * u.km/u.s/u.Mpc # define the Hubble Constant as calculated above.
print(H_0)

→ 67.48137250840927 km / (Mpc s)

(65) def CalculatingUniverseAge_2 (H_0): # d and v represent the input of the function.
t = 1 / H_0 # define the equation for t.
return t
t = CalculatingUniverseAge_2(H_0)
print(t.to(u.Gyr)) # define the output, which is the calculated age of the universe.

→ 14.489809340480448 Gyr
```

Method 2: t = 1 / H_0

 \bigstar H_0 is the slope of the graph where y = distance and x = velocity

t = time(s)

H_0 = Hubble Constant (km / Mpc * s)

The Calculation (cont'd.)

Both methods of calculation for the age of the universe yield the same result...

~ 14.49 Gyr = ~1.449 * 10^10 years = ~14.49 billion years!!

- ★ Astronomers have found very similar numbers (~13-14 billion years)
- ★ The Cosmic Microwave Background yields a similar calculation—we're even more confident!

Our Conclusion

We used the velocity and distance data from Type 1A Supernovae and found that...

- **★** Part 1:
 - The further away a celestial body, the faster it is moving away from us
- **★** Part 2:
 - \circ H_0 = v / d, t = d / v, 1/H_0 = t
 - \circ H_0 = ~67.48 km / (Mpc * s)
- **★** Part 3:
 - Age of the Universe = ~14.49 billion years

