DOE 2.1 TWO FACTOR CROSS CLASSIFICATION DESIGNS

Division of Interdisciplinary Studies Semester IV

DESIGNS WITH REPLICATION & INTERACTION

ACTIVITY 2: Let's revisit the Case Study 1

CASE STUDY 3: battery lifetime with two factors

Continuing with the study of battery lifetime, the dependent variable, we now use two independent variables (factors): battery brand and the device in which the battery is used.

Suppose we study three devices and four brands, and decide to run each combination of levels of factors for two batteries; that is, each combination of levels of factors, or "treatment combination," is replicated twice. (In the real world, battery testing often involves 16 batteries, sometimes more, for each combination of device and brand).

Table 5: Battery lifetime (in hours) by brand and device

										_			
			Brand										
Factor 1	Device	1		2		3	3	4	ŀ				
	1	17.9	18.1	17.8	17.8	18.1	18.2	17.8	17.9				
	2	18.2	18.0	18.0	18.3	18.4	18.1	18.1	18.5				
	3	18.0	17.8	17.8	18.0	18.1	18.3	18.1	17.9				
Replicates													

Identify variables, levels and replicates

THE STATISTICAL MODEL

$$Y_{ijk} = \mu + \rho_i + \tau_j + I_{ij} + \varepsilon_{ijk} \tag{9}$$

where

 $i = 1, 2, 3, \dots, R$; that is, i indexes rows

 $j = 1, 2, 3, \dots, C; j$ indexes columns

k = 1, 2, 3, ..., n; k indexes replication per cell

 Y_{ijk} = the data point that corresponds with the k^{th} replicate in the cell at the intersection of the i^{th} row and j^{th} column;

 μ = overall average (mean)

 $ho_i=$ the difference between the i^{th} row mean and the grand mean

 au_i = the difference between the j^{th} column mean and the grand mean

 I_{ij} = a measure of the interaction associated with the i^{th} row and the j^{th} column

 ε_{ijk} = noise or error associated with the particular ijk^{th} data value; the difference between the data value and the true mean of that cell

PARAMETER ESTIMATION OF THE MODEL

Parameter estimation is similar to the one factor model (1). Replacing each parameter in the model by its corresponding estimate,

$$Y_{ijk} - \overline{Y}_{...} = (\overline{Y}_{i..} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) + (\overline{Y}_{ij.} - \overline{Y}_{i...} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (Y_{ijk} - \overline{Y}_{ij.})$$
(10)

By squaring and summing up it can be shown that,

$$\sum_{i}\sum_{j}\sum_{k}(Y_{ijk}-\overline{Y}_{...})^{2}=nC\sum_{i}(\overline{Y}_{i..}-\overline{Y}_{...})^{2}+nR\sum_{j}(\overline{Y}_{.j.}-\overline{Y}_{...})^{2}+n\sum_{i}\sum_{j}(\overline{Y}_{ij.}-\overline{Y}_{i..}-\overline{Y}_{...}-\overline{Y}_{...})^{2}+\sum_{i}\sum_{j}\sum_{k}(Y_{ijk}-\overline{Y}_{ij.})^{2}$$
(11)

$$TSS = SSB_r + SSB_c + SSI_{r,c} + SSW$$

and allocate the degrees of freedom as follows:

$$nRC - 1 = (R - 1) + (C - 1) + (R - 1)(C - 1) + RC(n - 1)$$

Identify variables, levels and replicates from Table 5.

INTERACTION

• Suppose we have two factors, A and B, each at two levels, high (H) and low (L). suppose that the cell means are as follows:

	B_L	Вн
A_{L}	5	8
$\mathbf{A_{H}}$	10	?

- Increase in factor A level keeping factor B level as a constant: $5 \rightarrow 10$ by 5
- Increase in factor B level keeping factor A level as a constant: $5 \rightarrow 8$ by 3
- Increase in the yield when both factor levels change? How many possibilities are there?

If $(A_H, B_H) = 13$, there is no interaction.

If $(A_H, B_H) > 13$, there is positive interaction.

If $(A_H, B_H) < 13$, there is negative interaction.

Interaction is the degree of difference from the sum of the separate effects

CALCULATING SUMS OF SQUARES

Table 6: Battery lifetime (in hours) by brand and device with mean values

				$\overline{Y}_{i\cdots}$							
	Device	1	-	2	2	3	3	4	ŀ		
	1	17.9	18.1	17.8	17.8	18.1	18.2	17.8	17.9		
Cell means											
	2	18.2	18.0	18.0	18.3	18.4	18.1	18.1	18.5		
											Row mear
	3	18.0	17.8	17.8	18.0	18.1	18.3	18.1	17.9		
	$\overline{Y}_{\cdot j \cdot}$										
	Column means									Grand m	ean

CALCULATING SUMS OF SQUARES

Table 6: Battery lifetime (in hours) by brand and device with mean values

		Brand								
	Device 1		2)	3	3	4	Ļ		
	1	17.9	18.1	17.8	17.8	18.1	18.2	17.8	17.9	
Cell means		→ 18	.0	17	.8	18.	15	17.	88	17.95
	2	18.2	18.0	18.0	18.3	18.4	18.1	18.1	18.5	
		18	.1	18.	18.15		18.25		18.3	
	3	18.0	17.8	17.8	18.0	18.1	18.3	18.1	17.9	
		17	.9	17	'.9	18	3.2	18	3.0	18.00
	$\overline{Y}_{\cdot j}$.	18.	00	17.	95	18.	20	18.	05	18.05
Column means Grand mear										

$$\begin{split} SSB_r &= (2)(4) \Big[(17.95 - 18.05)^2 + (18.20 - 18.05)^2 + (18.00 - 18.05)^2 \Big] \\ &= 8 [.01 + .0225 + .0025] \\ &= .28 \end{split}$$

$$SSB_c = (2)(3) [(18.00 - 18.05)^2 + (17.95 - 18.05)^2 + (18.20 - 18.05)^2 + (18.05 - 18.05)^2]$$

$$= 6[.0025 + .001 + .0225 + 0]$$

$$= .21$$

$$\begin{split} SSI_{r,c} &= (2) \left[(18.00 - 17.95 - 18.00 + 18.05)^2 + (17.80 - 17.95 - 17.95 + 18.05)^2 \right. \\ &+ \ldots + (18.00 - 18.00 - 18.05 + 18.05)^2 + \right] \\ &= 2[.055] \\ &= .11 \\ SSW &= \left[(17.90 - 18.00)^2 + (18.10 - 18.00)^2 + (17.80 - 17.80)^2 + \cdots \right. \\ &\left. + (17.90 - 18.00)^2 \right] \\ &= .30 \end{split}$$

and, as a consequence,

$$TSS = .28 + .21 + .11 + .30$$

= .90

If doing the calculations by hand, it may be simpler to independently compute SSB_c, SSB_r, SSW, and TSS, and then derive SSI_{r,c} by subtraction.

Table 7: ANOVA Table for two-factor study of battery life

Source of variability	SSQ	df	Mean Square (MS)	F calc
Rows (due to device)	SSB_r	R-1	$MSB_r = SSB_r/(R-1)$	MSB_r/MSW
Columns (due to brand)	SSB_c	<i>C</i> − 1	$MSB_c = SSB_c/(C-1)$	MSB_c/MSW
Interaction	$SSI_{r,c}$	(R-1)(C-1)	$MSI_{r,c} = SSI_{r,c}/(R-1)(C-1)$	$MSI_{r,c}/MSW$
Error	SSW	RC(n-1)	MSW = SSW/RC(n-1)	
Total	TSS	nRC-1		

Exercise 5:

Test the hypotheses for

- 1. Row factor
- 2. Column factor
- 3. Interaction effect

Ref: Experimental Design with Applications in Management, Engineering and Sciences (Berger et.al, 2018)

Table 7: ANOVA Table for two-factor study of battery life

Source of variability	SSQ	df	Mean Square (MS)	F calc
Rows (due to device)	$SSB_r = 0.28$	R - 1 = 2	$MSB_r = \frac{SSB_r}{R-1} = 0.14$	$\frac{MSB_r}{MSW} = 5.6$
Columns (due to brand)	$SSB_c = 0.21$	C - 1 = 3	$MSB_c = \frac{SSB_c}{C - 1} = 0.07$	$\frac{MSB_c}{MSW} = 2.8$
Interaction	$SSI_{r,c} = 0.11$	(R-1)(C-1)=6	$MSI_{r,c} = \frac{SSI_{r,c}}{(R-1)(C-1)} = 0.0183$	$\frac{MSI_{r,c}}{MSW} = 0.73$
Error	SSW = 0.30	RC(n-1) = 12	$MSW = \frac{SSW}{RC(n-1)} = 0.025$	
Total	TSS = 0.90	nRC - 1 = 23		

Hypotheses for row factor

 H_0 : All row means are equal

 H_1 : Not all row means are equal

Hypotheses for column factor

 $^{\prime}H_{0}$: All column means are equal

 H_I : Not all column means are equal

Hypotheses for interaction effect

 H_0 : There is no interaction between row and column factors

 H_1 : There is interaction between row and column factors

TWO FACTOR DESIGNS IN EXCEL

Exercise 6:

- 1. Conduct two factor ANOVA with replications in EXCEL for battery lifetime data
- 2. Discuss the results

DOE 2.2 DESIGNS WITH NO REPLICATION & NO INTERACTION

THE STATISTICAL MODEL

Recall the statistical model for two factor design with replication and interaction

$$Y_{ijk} = \mu + \rho_i + \tau_j + I_{ij} + \varepsilon_{ijk} \tag{9}$$

If we consider the design with no replication reduces as follows and the interaction term becomes error term. $Y_{ij} = \mu + \rho_i + \tau_j + \varepsilon_{ij}$ (12)

 $i = 1, 2, 3, \dots, R$; that is, i indexes rows

 $j = 1, 2, 3, \dots, C; j$ indexes columns

 Y_{ij} = the data point that corresponds with the i^{th} row and j^{th} column

 μ = overall average (mean)

 $ho_i=$ the difference between the i^{th} row mean and the grand mean

 τ_i = the difference between the j^{th} column mean and the grand mean

 $arepsilon_{ij}$ = noise or error associated with the particular ij^{th} data value

PARAMETER ESTIMATION OF THE MODEL

• By following the procedure as in previous designs, sums of squares will be calculated as;

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = C \sum_{i} (\overline{Y}_{i} - \overline{Y}_{..})^{2} + R \sum_{j} (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i} - \overline{Y}_{.j} + \overline{Y}_{..})^{2}$$

$$TSS = SSB_{r} + SSB_{c} + SSW$$
(13)

with the degrees of freedom as follows:

$$RC - 1 = (R - 1) + (C - 1) + (R - 1)(C - 1)$$

- $TSS Total\ sum\ of\ squares = sum\ of\ squares\ (Observation Grand\ Mean)$
- $SSB_r Sum \ of \ squares \ between \ rows = C \times sum \ of \ squares \ (Row \ mean Grand \ Mean)$
- SSB_c Sum of squares between columns = $R \times sum$ of squares (Column Mean Grand Mean)
- $SSW-Sum\ of\ squares\ within\ columns=sum\ of\ squares(Observation\ -RM-CM+GM)$

An Un-replicated Numerical Example

 Data array of un-replicated two-factor experiment are shown in Table 8. Based on historical evidence it is assumed that there is no interaction between the two factors.

Table 8 : Data array for numerical example

Level of factor B	Level of factor A							
factor B	1	2	3	\overline{Y}_{i} .				
1	7	3	4					
2	10	6	8					
3	6	2	5					
4	9	5	7					
$\overline{Y}_{\cdot j}$				$\overline{Y}_{\cdot \cdot} =$				

Dependent variable:

Independent variables or factors:

No. of levels of factor A:

No. of levels of factor B:

Total no. of data points:

An Un-replicated Numerical Example

 Data array of un-replicated two-factor experiment are shown in Table 8. Based on historical evidence it is assumed that there is no interaction between the two factors.

Table 8: Data array for numerical example

Level of	Level of factor A							
factor B	1	2	3	\overline{Y}_{i} .				
1	7	3	4	4.7				
2	10	6	8	8				
3	6	2	5	4.3				
4	9	5	7	7				
$\overline{Y}_{\cdot j}$	8	4	6	$\overline{Y}_{\cdot \cdot} = 6$				

Dependent variable: Y

Independent variables or factors: factor A and

factor B

No. of levels of factor A : C = 3

No. of levels of factor B : R = 4

Total no. of data points : $R \times C = 12$

•
$$SSB_r = C \sum_i (\bar{Y}_i - \bar{Y}_{..})^2 = 3\{(4.7 - 6)^2 + \dots (7 - 6)^2\} = 28.67$$

•
$$SSB_c = R \sum_j (\bar{Y}_{.j} - \bar{Y}_{..})^2 = 4\{(8-6)^2 + (4-6)^2 + (6-6)^2\} = 32.00$$

•
$$TSS = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^2 = (7-6)^2 + (10-6)^2 + \dots + (7-6)^2 = 62.00$$

•
$$SSW = TSS - (SSB_r + SSB_c) = 62.00 - (28.67 + 32.00) = 1.33$$

Table 9: ANOVA Table for un-replicated numerical example

Source of variability	SSQ	df	MS	$F_{ m calc}$
Row	28.67	3	9.55	43
Column	32.00	2	16.00	72
Error	1.33	6	.22	
Total	62.00	11		

Ref: Experimental Design with Applications in Management, Engineering and Sciences (Berger et.al, 2018)

Exercise 7: Test the hypotheses for row factor and column factor at α = 0.05 and α = 0.01 levels.

Hypotheses for row factor

 H_0 : All row means are equal

 H_I : Not all row means are equal

When α = 0.05 table F value, $F_{0.05,3,6} = 4.76 < F_{calc} = 43$. When α = 0.01 table F value, $F_{0.01,3,6} = 9.78 < F_{calc} = 43$. Reject H_0 and row factor is highly significant at both levels.

Hypotheses for column factor

 H_0 : All column means are equal

 H_1 : Not all column means are equal

It is assumed that there is no interaction between row and column factors. If our assumption of no interaction is incorrect, conclusions are not valid.

TWO FACTOR DESIGNS NO REPLICATION IN EXCEL

Exercise 8:

- 1. Conduct two factor ANOVA with no replication in EXCEL for un-replicated numerical data
- 2. Discuss the results

Tips & Take aways

