Solutions to Homework #6

1. List all the state pairs (unordered) as below:

Pass 1: Mark all the state pairs with exactly one state being a final state.

Pass 2: Mark each unmarked state pair (r, s) satisfying: there are (p, q) and a such that $\delta(r, a) = p$ and $\delta(s, a) = q$ and (p, q) was marked before.

b	2						
с	1	1					
d	2	2	1				
e		2	1	2			
f	2	2	1		2		
g	2	2	1	2	2	2	
h	2		1	2	2	2	2
	a	b	c	d	e	f	g

Pass 3: no new pairs can be marked.

Now, we have $a \equiv e, b \equiv h$ and $d \equiv f$. The minimal automaton can be drawn as below:

- 2. Notice that the problem is equivalent to check the emptiness of $(L(M_1) L(M_2)) \cup (L(M_2) L(M_1))$. Since regular languages are closed under Boolean operations, there for we have an algorithm to construct a FA M from M_1 and M_2 to accept $(L(M_1) L(M_2)) \cup (L(M_2) L(M_1))$. Recall we also have an algorithm to check whether L(M) is empty.
- 3. Suppose L can be accepted by a DFA M. Now we construct a Λ -NFA M^R that "reverses" M as below. M^R has the same state space as M. But for

each transition $\delta(p,a) = q$ in M, we have $p \in \delta'(q,a)$ (That is, the arrow on each arc is reversed). The initial state of M is the final state of M^R , and the final states in A of M are the initial states of M^R . But since we do not allow more than one initial state in a FA, we have to add a new state q_d into M^R such that the new state is connected to each state in A by a Λ -transition. Here is the explicit construction:

Suppose DFA $M = \langle Q, \Sigma, q_0, A, \delta \rangle$. Let $M^R = \langle Q \cup \{q_d\}, q_d, \{q_0\}, \delta' \rangle$ be a Λ -NFA satisfying:

 $p \in \delta'(q, a)$ iff $\delta(p, a) = q$, for all $p, q \in Q$ and $a \in \Sigma$, and $\delta'(q_d, \Lambda) = A$.

Clearly, (you need to figure it out), $L(M^R) = L^R$. From Kleene's Theorem, L^R is regular.

4. Suppose L can be accepted by a DFA M. Now we construct a Λ -NFA M^P that accepts Prefix(L) and therefore Prefix(L) is regular. The ideas are as follows. x is accepted by M^P iff x can be extended to another string xy such that xy can accepted by M. M^P works as follows. On the given input word x, M^P simulates M. Suppose after consuming x, M falls into state q. At this time, M^P starts to simulate M again from state q but notice that x is all the input word we have, the simulation can not consume any more input. Here comes the tricky part. Instead of simulating M, M^P simulates a Λ -version of M (i.e., change any transition in M into a Λ -transition) from state q. If the Λ -version of M (from state q) falls into an accepting state — this means there is a y with xy in L(M).

In order to construct M^P , we need two copies of M: one is the original M, the other is the Λ -version of M. That is, suppose DFA $M = \langle Q, \Sigma, q_0, A, \delta \rangle$. Let $M^R = \langle Q \cup Q', \Sigma, q_0, A', \delta' \rangle$ be a Λ -NFA satisfying:

- (1). $Q' = \{q' : q \in Q\}$ with each state $q \in Q$ renamed as q'. That is, the state space of M^P is the union of Q and Q'.
 - (2). $A' = \{q' : q \in A\}.$
 - (3). δ' (the transitions of M^P) are:
- (3.1). Those transitions in M, i.e., $p \in \delta'(q, a)$ iff $\delta(q, a) = p$, for all $p, q \in Q$ and $a \in \Sigma$,
- (3.2). Those transitions in Λ -version of M, i.e., $p' \in \delta'(q', \Lambda)$ iff there exists $a \in \Sigma$ such that $\delta(q, a) = p$, for all $p, q \in Q$.
 - (3.3). A-transitions connecting the two copies: $q' \in \delta'(q, \Lambda)$ for all $q \in Q$.
 - (4). Each δ' can only be constructed from above.

5. Suppose L can be accepted by a DFA M. Now we construct a Λ -NFA M^H that accepts Half(L) and therefore Half(L) is regular. The ideas are as follows. x is accepted by M^H iff x can be extended to another string xy such that xy can accepted by M and |x| = |y|. If we make two copies of M just as in Problem 5, we will face a problem on how to make sure that |x| = |y| – that is, to make sure that M^H executes the same number of transitions when simulates M as when simulates the Λ -version of M. A trick is to make the two copies running synchronously: whenever M fires a transition, the Λ -version of M also fires a $(\Lambda$ -) transition. But how do we know which state the Λ -version of M starts from? M^H guesses a starting state for the Λ -version and at the end simulating M, M^H checks the state that M falls into is exactly the starting state guessed for the Λ -version. M^H accepts the input x if the Λ -version falls into an accepting state.

Here is the construction: suppose DFA $M = \langle Q, \Sigma, q_0, A, \delta \rangle$. Let $M^H = \langle \{q_d\} \cup (Q \times Q \times Q), \Sigma, q_d, A', \delta' \rangle$ be a Λ -NFA satisfying:

- (1). The state space of M^H is all the state triples of Q, plus the newly added state q_d ,
 - (2). the newly added state q_d is the initial state of M^H ,
 - (3). the accepting states of M^H is $A' = \{(p, p, q) : p \in Q, q \in A\}$.
 - (4). Transitions in M^H are:
- (4.1). $(p, q_0, p) \in \delta'(q_d, \Lambda)$, for all $p \in Q$. (This part corresponds to "guessing a starting state for the Λ -version")
- (4.2). $(p,q,r) \in \delta'((p,s,t),a)$ iff $\delta(s,a) = q$ and there exists $b \in \Sigma$ such that $\delta(t,b) = r$, for all $p,q,r,s,t \in Q$. (This corresponds to there is a transition in M (the first copy) from state s to state q on reading input symbol a (this a is from the input word x), and synchronously, there is a Λ -transition in the Λ -version from state t to state t. Notice that t is used to remember the guessed starting state for the Λ -version).
 - (4.3). All the transitions of M^H are constructed from above.