Теория автоматов

Лекция 2: Формальные языки и конечные автоматы

Дьулустан Никифоров

Кафедра ИТ Северо-Восточный Федеральный Университет

Осень 2024

Формальные языки (Formal languages)

- Принимаем какое-нибудь конечное множество за алфавит: Σ алфавит (alphabet).
- Примеры: $\Sigma_1 = \{0,1\}$, $\Sigma_2 = \{a,b,\dots,z\}$, $\Sigma_3 = \{0,1,a,b,c\}$, $\Sigma_4 = \{A,B,\dots,Z\}$. Элементы алфавита будем называть буквами/символами (letters/symbols).
- строка над алфавитом Σ конечная последовательность символов из Σ . string over alphabet Σ finite sequence of symbols in Σ .
- Примеры:
 - $\Sigma = \{a, b, c\} : a, bc, aaabbaac, bbccaaabacabac;$
 - $\Sigma = \{0, 1\} : 0, 1, 00, 101010001.$

- |w| обозначает длину строки w. |bloodymary| = 10.
- Строка длины 0 это пустая(empty) строка. Пустая строка обозначается ε .

- Часто пишем $w = a_1 a_2 \dots a_n$ для строки длины n.
- reverse of $w = a_1 a_2 \dots a_n$: $w^{\mathcal{R}} = a_n a_{n-1} \dots a_1$.
- z подстрока (substring) w если оно содержится внутри w. При этом подстрока может быть пустой строкой или совпадать полностью со всей строкой.
- Примеры: gmo подстрока bigmom; devilfruit подстрока devilfruit; ε подстрока вообще любой строки. maari He является подстрокой marine.

• конкатенация (concatenation) строк x и y: приклеиваем y к хвосту x.

$$x = a_1 a_2 \dots a_n, y = b_1 b_2 \dots b_m \Rightarrow xy = a_1 a_2 \dots a_n b_1 b_2 \dots b_m.$$

• Часто пишем $x^k = xx \dots x$ (k раз). $x^0 = \varepsilon$.

- Σ^* множество всех строк над Σ . $\Sigma^* = \{ w \mid w \text{ строка над } \Sigma \}.$ $\Sigma^* = \Sigma^0 \bigcup \Sigma^1 \bigcup \Sigma^2 \bigcup \ldots$
- Σ^+ множество всех непустых строк над Σ .
- Язык (language) L над алфавитом Σ это множество строк над Σ .

- Σ^* множество всех строк над Σ . $\Sigma^* = \{w \mid w \text{ строка над } \Sigma\}.$ $\Sigma^* = \Sigma^0 \bigcup \Sigma^1 \bigcup \Sigma^2 \bigcup \dots$
- Σ^+ множество всех непустых строк над Σ .
- Язык (language) L над алфавитом Σ это множество строк над Σ . $L \subset \Sigma^*$.
- ullet Для алфавита $\Sigma = \{0,1\}$ какие языки можете придумать?

- Σ^* множество всех строк над Σ . $\Sigma^* = \{ w \mid w \text{ строка над } \Sigma \}.$ $\Sigma^* = \Sigma^0 \bigcup \Sigma^1 \bigcup \Sigma^2 \bigcup \dots$
- Σ^+ множество всех непустых строк над Σ .
- Язык (language) L над алфавитом Σ это множество строк над Σ . $L \subset \Sigma^*$.
- Для алфавита $\Sigma = \{0,1\}$ какие языки можете придумать? $L_{even} = \{w \mid w \in \Sigma^* \text{ и } |w| \text{ четное число } \};$ $L = \{0^n 1^n \mid n \in \mathbb{N}\};$ $L = \{w \mid w \in \Sigma^* \text{ и количество 1-ек больше, чем количество 0-ов} \}.$

- Будем говорить, что "программа" **принимает (accepts)** язык L, если для любой строки $s \in L$ программа возвращает "YES", а для любой строки $s \notin L$ программа возвращает "NO".
- В качестве "программы" у нас будут выступать разные вещи — абстрактные машины в течение курса.
- Какие прикольные языки может быть интересно исследовать?

- Будем говорить, что "программа" **принимает (accepts)** язык L, если для любой строки $s \in L$ программа возвращает "YES", а для любой строки $s \notin L$ программа возвращает "NO".
- В качестве "программы" у нас будут выступать разные вещи — абстрактные машины в течение курса.
- Какие прикольные языки может быть интересно исследовать?
 - Язык всех простых чисел;
 - Язык всех отсортированных массивов;
 - Язык всех правдивых теорем в данной теории;
 - Многие волнующие вопросы человечества можно поставить таким способом!

- Задача (Problem) это вопрос определения, принадлежит ли данная строка данному языку.
- Как видите, на самом деле, определить *язык* это и есть поставить *задачу*.
- Решить задачу это придумать "программу".

• Пример конечного автомата: кофе-автомат

• Пример конечного автомата: автоматическая дверь

Дверь имеет 2 возможных состояния: открытое (OPEN) и закрытое (CLOSED).

Есть 4 возможных действия:

- FRONT человек стоит перед дверью;
- REAR человек стоит сзади двери;
- ВОТН люди стоят перед и сзади двери;
- NEITHER рядом никого нет;

А это что за автомат?

А это что за автомат? Программа, которая ищет слово "then" в тексте.

(!) Однако, это не Детерминированный конечный автомат (ДКА), которые мы сначала будет изучать.

Такие теоретические конструкции могут показаться примитивными/ненужными, но они на удивление хорошо моделируют процесс мышления/вычисления для некоторых задач!

- Распознать строку четной длины.
- Распознать строку, содержащую четное количество 0-ов.
- Распознать строку, содержащую нечетное количество 1-ек.
- Распознать бинарное число, которое четное.

Распознать бинарную строку четной длины.

Распознать бинарную строку, содержащую *четное количество 1-ек*.

Распознать бинарное число, которое четное.

Конечные Автоматы

- Конечные автоматы это простая модель компьютеров.
- Вопрос: что мы можем сделать, имея на руках ограниченное кол-во ресурсов?
- Это дает инсайты на что могут делать компьютеры с очень ограниченной памятью.

Конечные Автоматы: определение

Definition

Конечный автомат (finite automaton) — это 5-tuple (Q,Σ,δ,S,F) , где

- Q конечное множество, называемое множеством состояний (states),
- Σ конечное множество, называемое алфавитом (alphabet),
- $\delta: Q \times \Sigma \to Q$ функция перехода (transition function),
- $S \in Q$ начальное состояние (start state),
- $F \subseteq Q$ множество принимающих состояний (set of accept states).

Конечные Автоматы: формальное описание автомата

Формально опишем этот конечный автомат:

Конечные Автоматы: формальное описание автомата

Формально опишем этот конечный автомат:

- $Q = \{E, O\}$,
- $\Sigma = \{0, 1\}$,
- \bullet S=E,
- $F = \{E\}$,
- $\delta(E,0) = E, \delta(E,1) = O,$ $\delta(O,0) = O, \delta(O,1) = E.$

Конечные Автоматы: формальное описание автомата

- $Q = \{q_1, q_2, q_3\},$
- $\Sigma = \{0, 1\},$
- $S = q_1$,
- $F = \{q_2\}$,
- δ описано через таблицу переходов:

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Давайте нарисуем этот конечный автомат.

Конечные Автоматы

Конечные Автоматы: вычисление автомата

Definition

Пусть $M=(Q,\Sigma,\delta,S,F)$ - конечный автомат, $w=w_1w_2\dots w_n$ — строка над $\Sigma.$

Тогда мы говорим, что M принимает (accepts) w, если есть последовательность r_0, r_1, \ldots, r_n in Q такая, что:

- $r_0 = S$,
- $\delta(r_i, w_{i+1}) = r_{i+1}$ for $i = 0, \dots, n-1$, and
- \bullet $r_n \in F$.

- Если A это множество всех строк, *принимаемых* автоматом M, то мы говорим, что M распознает/принимает (recognizes/accepts) A.
- A язык (language) автомата M, обозначается A=L(M).
- Обратите внимание, всегда можно сказать, что M принимает пустую строку.

Посмотрим на предыдущий пример:

Построим вычисление этого автомата на строке 00111010000:

Посмотрим на предыдущий пример:

Построим вычисление этого автомата на строке 00111010000: $q_1 \stackrel{0}{\to} q_1 \stackrel{0}{\to} q_1 \stackrel{1}{\to} q_2 \stackrel{1}{\to} q_2 \stackrel{1}{\to} q_2 \stackrel{0}{\to} q_3 \stackrel{1}{\to} q_2 \stackrel{0}{\to} q_3 \stackrel{0}{\to} q_2 \stackrel{0}{\to} q_3 \stackrel{0}{\to} q_2 \stackrel{0}{\to} q_3 \stackrel{0}{\to} q_2$. Автомат принимает строку, так как последнее состояние вычисления — это q_2 , являющийся принимающим.

Что за язык распознается автоматом?

Что за язык распознается автоматом?

 $L(M) = \{ w \mid w \text{ содержит хотя бы одну 1-ку и четное количество 0-ков следуют за последней 1-кой} \}.$

