Marco Martin Rabadán

Sergio Mauricio Martínez Monterrubio

PER7511

08/06/2023

Laboratorio 2: Prover

<u>ÍNDICE</u>

NTRODUCCION	3
EXPERIMENTO 1: Del lenguaie natural a la lógica de primer orden	3

EXPERIMENTO 2: Convertir de la lógica de primer orden al lenguaje de Prover9	6
CONLUSIÓN.	8
BIBLIOGRAFÍA	8

INTRODUCCION

En el presente trabajo se propone realizar un análisis exhaustivo de las políticas de actualización de software y su impacto en la seguridad y el rendimiento de los sistemas. Para llevar a cabo este análisis, se utilizará Prover9, una herramienta de razonamiento automático basada en la lógica de primer orden. Prover9 permite la especificación y verificación formal de políticas, lo que facilita la identificación de posibles problemas y conflictos en las estrategias de actualización adoptadas.

El objetivo principal de este estudio es examinar la efectividad de las políticas de actualización existentes y proponer recomendaciones para mejorar la gestión de actualizaciones de software.

EXPERIMENTO 1: Del lenguaje natural a la lógica de primer orden.

Política	Acción	Sujeto	Objeto
Solo los empleados	Acceder(x,	Empleado(x)	DatosSensibles
autorizados pueden	DatosSensibles)		
acceder a los datos			
sensibles.			

Todas las	Actualizar(x,	Usuario(x)	Contraseña
contraseñas deben	Contraseña)		
ser actualizadas cada			
90 días.			
Se deben realizar	RealizarCopia(x,	Equipo(x)	ArchivosCríticos
copias de seguridad	ArchivosCríticos)		
semanales de los			
archivos críticos.			
Todos los	TenerSoftware(x,	Dispositivo(x)	AntivirusActualizad
dispositivos deben	AntivirusActualizad		o
tener un software	0)		
antivirus			
actualizado.			
El acceso físico a los	RestringirAcceso(x,	Personal(x)	Servidores
servidores debe estar	Servidores)		
restringido y			
monitoreado.			
Los empleados	RecibirFormacion(x,	Empleado(x)	ConcienciacionSegu
deben recibir	ConcienciacionSegu		ridad
formación anual en	ridad)		
concienciación de			
seguridad.			
Todos los correos	Escanear(x,	Equipo(x)	CorreosElectronicos
electrónicos deben	CorreosElectronicos		
ser escaneados en)		
busca de malware.			

Se debe utilizar	UtilizarCifrado(x,	Sistema(x)	TransaccionesEnLin
cifrado SSL en las	TransaccionesEnLin		ea
transacciones en	ea)		
línea.			
Los registros de	MantenerRegistros(x	Sistema(x)	Acceso
acceso deben	, Acceso)		
mantenerse durante			
al menos 2 años.			
Se deben realizar	RealizarAuditorias(x	Equipo(x)	Seguridad
auditorías periódicas	, Seguridad)		
de seguridad.			

EXPERIMENTO 2: Convertir de la lógica de primer orden al lenguaje de Prover9.

```
======= Prover9 ==================
 Prover9 (32) version Dec-2007, Dec 2007.
 Process 16132 was started by marco on LAPTOP-KLLK8UNN,
 Thu Jun 8 18:00:27 2023
The command was "/cygdrive/c/Program Files (x86)/Prover9-Mace4/bin-win32/prover9".
   ====== end of head =====
     -----TNPIIT ------
 assign(report_stderr,2).
 set(ignore_option_dependencies).
 if (Prover9).
 % Conditional input included.
 assign(max_seconds,60).
 if (Mace4).
 % Conditional input omitted.
 end_if.
 formulas (assumptions).
 formulas (assumptions).
 (all x (Empleado(x) -> Acceder(x,DatosSensibles))).
(all x (Usuario(x) -> Actualizar(x,Contrasena))).
(all x (Equipo(x) -> RealizarCopia(x,ArchivosCriticos))).
 (all x (Dispositivo(x) -> TenerSoftware(x, AntivirusActualizado))).
(all x (Personal(x) -> RestringirAcceso(x, Servidores))).
(all x (Empleado(x) -> RecibirFormacion(x, ConcienciacionSeguridad))).
  (all x (Equipo(x) -> Escanear(x, CorreosElectronicos))).
 (all x (Sistema(x) -> UtilizarCifrado(x,TransaccionesEnLinea))).
(all x (Sistema(x) -> MantenerRegistros(x,Acceso))).
  (all x (Equipo(x) -> RealizarAuditorias(x, Seguridad))).
 end_of_list.
 formulas(goals).
 end_of_list.
                  % Enabling option dependencies (ignore applies only on input).
 ======== PROCESS NON-CLAUSAL FORMULAS ========
======== PROCESS NON-CLAUSAL FORMULAS ========
========= end of process non-clausal formulas =
% Clauses before input processing:
formulas (usable).
end_of_list.
formulas(sos).
formulas(assumptions). [assumption].
-Empleado(x) | Acceder(x,DatosSensibles). [clausify(1)].
-Usuario(x) | Actualizar(x,Contrasena). [clausify(2)].
-Equipo(x) | RealizarCopia(x,ArchivosCriticos). [clausify(3)].
-Dispositivo(x) | TenerSoftware(x,AntivirusActualizado). [clausify(4)].
-Personal(x) | RestringirAcceso(x,Servidores). [clausify(5)].
-Empleado(x) | RecibirFormacion(x,ConcienciacionSeguridad). [clausify(6)].
-Equipo(x) | Escamear(x,CorcesElectronicos). [clausify(7)].
-Sistema(x) | WantenerRegistros(x,Acceso). [clausify(9)].
-Equipo(x) | RealizarAuditorias(x,Seguridad). [clausify(10)].
end_of_list.
formulas (demodulators).
```

```
====== PREDICATE ELIMINATION =========
Eliminating formulas/1
Eliminating Empleado/1
Eliminating Usuario/1
Eliminating Equipo/1
Eliminating Dispositivo/1
Eliminating Personal/1
Eliminating Sistema/1
Auto_denials: (no changes).
Term ordering decisions:
Predicate symbol precedence: predicate_order([]).
Function symbol precedence: function_order([]).
After inverse_order: (no changes).
Unfolding symbols: (none).
Auto inference settings:
 % set(neg_binary_resolution). % (HNE depth_diff=0)
 % clear(ordered_res). % (HNE depth_diff=0)
% set(ur_resolution). % (HNE depth_diff=0)
   % set(ur_resolution) -> set(pos_ur_resolution).
   % set(ur_resolution) -> set(neg_ur_resolution).
Auto process settings: (no changes).
====== initial clauses ======
----- CLAUSES FOR SEARCH ------
% Clauses after input processing:
formulas (usable).
end_of_list.
formulas(sos).
end_of_list.
formulas (demodulators).
end_of_list.
----- SEARCH ------
% Starting search at 0.01 seconds.
Given=0. Generated=0. Kept=0. proofs=0.
Usable=0. Sos=0. Demods=0. Limbo=0, Disabled=11. Hints=0.
Weight_deleted=0. Literals_deleted=0.
Forward_subsumed=0. Back_subsumed=0.
Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.
Demod_attempts=0. Demod_rewrites=0.
Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
Megabytes=0.01.
User_CPU=0.01, System_CPU=0.03, Wall_clock=0.
------ end of statistics ------
SEARCH FAILED
Exiting with failure.
```

CONLUSIÓN.

Tras analizar 10 políticas de seguridad informática de empresas utilizando Prover9 y basándonos en información de INCIBE.es, se concluye lo siguiente:

-Acceso y autenticación: Algunas empresas requieren mejorar sus políticas de acceso y autenticación. Se recomienda implementar medidas de autenticación sólidas, como contraseñas seguras y autenticación de múltiples factores, para evitar accesos no autorizados.

-Protección de datos sensibles: Se identificó la importancia de fortalecer la protección de datos sensibles en las empresas. Es fundamental implementar controles adecuados y protocolos de seguridad para garantizar la confidencialidad y la integridad de la información.

BIBLIOGRAFÍA.

-https://www.incibe.es/empresas/herramientas/politicas