目录

[1]	大数	女伊	码…	••• •••	• • • • • •	• • • • • • •	•••	••••	3
(1,1)	最简单	的运	算	••• •••	• • • • • • • • • • • • • • • • • • • •	••• ••• •••			3
t 1,2 1	以〇岁	吉尾的	东西…					• • • • • • • • • • • • • • • • • • • •	5
=									
t 1,4 1	增长率	ž	••• •••						15
	•	•	·				•••		_ •
•									
•		<u>-</u>							
-									
(2,4)	多边书	杉符号	••• •••		•••••••				22
t 3 1		头时	什…	•••	•••••	• • • • • • •	•••	•••	28
t 3,1 1	高德纸	为上箭	头						28
•									
t 3,3 1	低级制	超运算	••• •••		• • • • • • • • • • • • • • • • • • • •			,	33
t 3,4 1	康威智	涟式箭	号		• • • • • • • • • • • • • • • • • • • •			,	35
r 4 2	超調	越箭	头…	•••••	•••••	• • • • • • •	•••	•••	39
•									
r 4,2 1	Circle	z 函数	••• •••	••• ••• •••		• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	40
r 4,3 1	Hydr	a 函数	ζ		••••••		••• ••• ••• •••		41
r 4,4 1	E 5#	<i>‡</i> ··· ···	•••	••• ••• •••		••• ••• •••		4	41
		•					•••		
r 5,1 1	BEAF	•	•••••	•• •••	•••	•••••	••• ••• ••• •••	•• ••• •••	65
r 5,2 1	与之ì	记号…	••• •••		• • • • • • • • • • • • • • • • • • • •				86
1 61	超	越数	阵…	•••••	•••••	• • • • • • •	•••	•••	101
(61)	图公的	可 是				••• ••• •••		•••	101

[6,2] Loader.c	
【6,3】Σ函数106)
【6,4】三函数108)
【7】序数时代11:	1
【7,1】f(x)与ω111	
【7,2】ε、ζξοη117	
【7,3】φ函数123	
【7,4】ψ函数130	
t 7,5 1 <i>C</i> K148	3
【8】最终章15	1
【8,1】Rayo 数15:	1
【8,2】大数的意义152) -

【1】大数伊始

【1,1】最简单的运算

【1,1,1】正整数与后继数

正整数集 N*是这么定义的,它满足下面的所有条件:

- 1.任意一个正整数 a 都恰有一个后继数 a⁺
- 2.有一个正整数,没有什么正整数的后继数是它.这个数记作1
- 3.除了1以外的任意一个正整数 a,都是某一个正整数的后继数
- 4. 如 果 1 ∈ S,且(若 n ∈ S,则 n + ∈ S),那 么 S=N*

问题来了.到现在为止,我们并不知道"1的后继数"、"1的后继数的后继数"等该用什么表示.难道是"1"、"1""之类的吗?

于是,很久很久以前,就有人定义了:1+2,2+3,3+4,4+5,5+6,6+7,7+8,8+9,9+10.我们用把两个数字拼起来做成的"10"来表示 9 的后继数.

接下来,10+=11,11+=12,...,19+=20,...,99+=100,...于是,我们就有理论上能够表示出任何正整数的办法了.

但是,后继数这种运算中身只是简单的数数而已,并无任何实际应用价值.真正有价值的东西是下面的——

【1,1,2】加法

加法的定义如下,用加号"+"表示.

- 1. $a+1=a^+$
- 2. $a+b^{+}=(a+b)^{+}$

很简单吧!不过,这个定义十分抽象,其实我们可以得到下面的结论: a+b=a^{++...+}(共 b 个后继数符号"⁺").这就清晰明了多了.

不过,有时候加法还是不够用.于是,我们需要——

【1,1,3】 乘法

乘法的定义如下,用乘号"×"表示.

 $1.a \times 1 = a$

 $2.a \times b^{\dagger} = a \times b + a$

这也是很简单的定义.通俗一点说,axb=a+a+...a(共 b 个"a").

可以发现,10×10=100,100×10=1000,100...0(共 n 个"0")×10=100...0(共 n+1 个"0").这将引导我们进入下一级运算——

【1,1,4】 乘方

乘方运算符一般用"个"表示,定义为:

1.a^1=1

 $2.a^b^=a^b\times a$

乘法没有交换律、结合律.一般来说,它是右结合的,a^b^c被解释成 a^(b^c)有时候,乘法可以不用任何运算符来表示,直接用上标记作"a^b",此时 a^b=a^b可以"通俗一点"说,a^b=a×a×...a(共 b 个"a").然而,更高级的运算很长时间没有得到发展,一直到近代.人们曾经"创造"了很多数字,给它们命名,用以说出任何可能的正整数.

【1,2】以"0"结尾的东西

【1,2,1】4种中文计数系统

在中文数字中,10 称为十,100 称为百,1000 称为千,10000 称为万.这是不可置疑的.但是,更大的数字该如何称呼呢?

早在黄帝时期,3种计数系统就存在了.它们分别是"下数"、"中数"、"上数".而现在,这3种计数系统几乎不存在,取而代之的是"万进"计数方法.这里,我将它们的数值列举如下:

	, , , , , , , , , , , , , , , , , , ,			
数字名称	下数	万进	中 数	上数
Б	10^4	10^4	10^4	10^4
1 Z	10^5	10^8	10^8	10^8
兆	10^6	10^12	10^16	10^16
京	10^7	10^16	10^24	10^32
坟	10^8	10^20	10^32	10^64
纬	10^9	10^24	10^40	10^128
穰	10^10	10^28	10^48	10^256
沟	10^11	10^32	10^56	10^512
涧	10^12	10^36	10^64	10^1024
正	10^13	10^40	10^72	10^2048
载	10^14	10^44	10^80	10^4096

由此可见,"下数"实际上是"十进","中数"则是"万万进",而"上数"是"平方进".其实,"上数"是一种很经济的表示方法,它可以用最少的称呼表示出大数.与"上数"类似的表示法还有很多,如下面一例.

【1,2,2】华严大数

如下表所示.也是"平方进".

名称	数值	名称	数值
倶胝	10 ⁷	一持	10 ⁴⁶⁹⁷⁶²⁰⁴⁸
河庾多	10 ¹⁴	异 路	10 ⁹³⁹⁵²⁴⁰⁹⁶
那由他	10 ²⁸	東 で 径 J	10 ¹⁸⁷⁹⁰⁴⁸¹⁹²
频波罗	10 ⁵⁶	三末耶	10 ³⁷⁵⁸⁰⁹⁶³⁸⁴
	10 ¹¹²	毗諸罗	10 ⁷⁵¹⁶¹⁹²⁷⁶⁸
可伽罗	10 ²²⁴	奚婆罗	10 ¹⁵⁰³²³⁸⁵⁵³⁶
最胜	10 ⁴⁴⁸	伺察	10 ³⁰⁰⁶⁴⁷⁷¹⁰⁷²
摩婆罗	10 ⁸⁹⁶	周广	10 ⁶⁰¹²⁹⁵⁴²¹⁴⁴
河婆罗	10 ¹⁷⁹²	高出	10 ¹²⁰²⁵⁹⁰⁸⁴²⁸⁸
多婆罗	10 ³⁵⁸⁴	最妙	10 ²⁴⁰⁵¹⁸¹⁶⁸⁵⁷⁶
界分	10 ⁷¹⁶⁸	泥罗婆	10 ⁴⁸¹⁰³⁶³³⁷¹⁵²
普摩	10 ¹⁴³³⁶	诃理婆	10962072674304
祢摩	10 ²⁸⁶⁷²	ー 売か	10 ¹⁹²⁴¹⁴⁵³⁴⁸⁶⁰⁸
可婆钤	10 ⁵⁷³⁴⁴	诃理蒲	10 ³⁸⁴⁸²⁹⁰⁶⁹⁷²¹⁶
弥伽婆	10 ¹¹⁴⁶⁸⁸	诃理三	10 ⁷⁶⁹⁶⁵⁸¹³⁹⁴⁴³²
毗攞伽	10 ²²⁹³⁷⁶	奚曾伽	10 ¹⁵³⁹³¹⁶²⁷⁸⁸⁸⁶⁴
毗伽婆	10 ⁴⁵⁸⁷⁵²	せ攞歩 陀	10 ³⁰⁷⁸⁶³²⁵⁵⁷⁷⁷²⁸
僧羯逻摩	10 ⁹¹⁷⁵⁰⁴	诃鲁那	10 ⁶¹⁵⁷²⁶⁵¹¹⁵⁵⁴⁵⁶
毗萨罗	10 ¹⁸³⁵⁰⁰⁸	摩鲁陀	10 ¹²³¹⁴⁵³⁰²³¹⁰⁹¹²
毗赡婆	10 ³⁶⁷⁰⁰¹⁶	ド 慕陀	10 ²⁴⁶²⁹⁰⁶⁰⁴⁶²¹⁸²⁴
毗盛伽	10 ⁷³⁴⁰⁰³²	堅 攞陀	10 ⁴⁹²⁵⁸¹²⁰⁹²⁴³⁶⁴⁸
毗素陀	10 ¹⁴⁶⁸⁰⁰⁶⁴	摩鲁摩	10985162418487296
毗婆诃	10 ²⁹³⁶⁰¹²⁸	调代	10 ¹⁹⁷⁰³²⁴⁸³⁶⁹⁷⁴⁵⁹²
毗薄底	10 ⁵⁸⁷²⁰²⁵⁶	离憍慢	10 ³⁹⁴⁰⁶⁴⁹⁶⁷³⁹⁴⁹¹⁸⁴
毗佉担	10 ¹¹⁷⁴⁴⁰⁵¹²	不动	10 ⁷⁸⁸¹²⁹⁹³⁴⁷⁸⁹⁸³⁶⁸
	10 ²³⁴⁸⁸¹⁰²⁴	极量	10 ¹⁵⁷⁶²⁵⁹⁸⁶⁹⁵⁷⁹⁶⁷³⁶

名称	数值	名称	数值
阿么怛罗	1031525197391593472	可但罗	10 ²¹¹⁵⁶²⁰¹⁸⁴³²⁵⁶⁰¹⁰⁵⁵⁷³⁵⁸⁰⁸
勃么怛罗	1063050394783186944	酰鲁耶	10 ⁴²³¹²⁴⁰³⁶⁸⁶⁵¹²⁰²¹¹¹⁴⁷¹⁶¹⁶
伽么怛罗	10126100789566373888	萨鲁婆	108462480737302404222943232
那么怛罗	10 ²⁵²²⁰¹⁵⁷⁹¹³²⁷⁴⁷⁷⁷⁶	羯罗波	10 ¹⁶⁹²⁴⁹⁶¹⁴⁷⁴⁶⁰⁴⁸⁰⁸⁴⁴⁵⁸⁸⁶⁴⁶⁴
奚么怛罗	10 ⁵⁰⁴⁴⁰³¹⁵⁸²⁶⁵⁴⁹⁵⁵⁵²	诃婆婆	10 ³³⁸⁴⁹⁹²²⁹⁴⁹²⁰⁹⁶¹⁶⁸⁹¹⁷⁷²⁹²⁸
華 4 但 罗	10 ¹⁰⁰⁸⁸⁰⁶³¹⁶⁵³⁰⁹⁹¹¹⁰⁴	毗婆罗	10 ⁶⁷⁶⁹⁹⁸⁴⁵⁸⁹⁸⁴¹⁹²³³⁷⁸³⁵⁴⁵⁸⁵⁶
鉢罗么怛罗	10 ²⁰¹⁷⁶¹²⁶³³⁰⁶¹⁹⁸²²⁰⁸	那婆罗	10 ¹³⁵³⁹⁹⁶⁹¹⁷⁹⁶⁸³⁸⁴⁶⁷⁵⁶⁷⁰⁹¹⁷¹²
尸婆么怛罗	104035225266123964416	摩羅罗	10 ²⁷⁰⁷⁹⁹³⁸³⁵⁹³⁶⁷⁶⁹³⁵¹³⁴¹⁸³⁴²⁴
野罗	108070450532247928832	娑婆罗	10 ⁵⁴¹⁵⁹⁸⁷⁶⁷¹⁸⁷³⁵³⁸⁷⁰²⁶⁸³⁶⁶⁸⁴⁸
薛罗	10 ¹⁶¹⁴⁰⁹⁰¹⁰⁶⁴⁴⁹⁵⁸⁵⁷⁶⁶⁴	迷攞普	10 ¹⁰⁸³¹⁹⁷⁵³⁴³⁷⁴⁷⁰⁷⁷⁴⁰⁵³⁶⁷³³⁶⁹⁶
谛罗	1032281802128991715328	者么罗	10 ²¹⁶⁶³⁹⁵⁰⁶⁸⁷⁴⁹⁴¹⁵⁴⁸¹⁰⁷³⁴⁶⁷³⁹²
個罗	10 ⁶⁴⁵⁶³⁶⁰⁴²⁵⁷⁹⁸³⁴³⁰⁶⁵⁶	駄么罗	10 ⁴³³²⁷⁹⁰¹³⁷⁴⁹⁸⁸³⁰⁹⁶²¹⁴⁶⁹³⁴⁷⁸⁴
突步罗	10129127208515966861312	鉢攞仫陀	108665580274997661924293869568
泥罗	10 ²⁵⁸²⁵⁴⁴¹⁷⁰³¹⁹³³⁷²²⁶²⁴	毗迦摩	10 ¹⁷³³¹¹⁶⁰⁵⁴⁹⁹⁹⁵³²³⁸⁴⁸⁵⁸⁷⁷³⁹¹³⁶
计罗	10 ⁵¹⁶⁵⁰⁸⁸³⁴⁰⁶³⁸⁶⁷⁴⁴⁵²⁴⁸	乌波践多	10 ³⁴⁶⁶²³²¹⁰⁹⁹⁹⁹⁰⁶⁴⁷⁶⁹⁷¹⁷⁵⁴⁷⁸²⁷²
细罗	101033017668127734890496	演説	10 ⁶⁹³²⁴⁶⁴²¹⁹⁹⁹⁸¹²⁹⁵³⁹⁴³⁵⁰⁹⁵⁶⁵⁴⁴
蝉罗	10 ²⁰⁶⁶⁰³⁵³³⁶²⁵⁵⁴⁶⁹⁷⁸⁰⁹⁹²	无尽	10 ¹³⁸⁶⁴⁹²⁸⁴³⁹⁹⁹⁶²⁵⁹⁰⁷⁸⁸⁷⁰¹⁹¹³⁰⁸⁸
谜罗	104132070672510939561984	出生	10 ²⁷⁷²⁹⁸⁵⁶⁸⁷⁹⁹⁹²⁵¹⁸¹⁵⁷⁷⁴⁰³⁸²⁶¹⁷⁶
ジ攞荼	108264141345021879123968	无 我	10 ⁵⁵⁴⁵⁹⁷¹³⁷⁵⁹⁹⁸⁵⁰³⁶³¹⁵⁴⁸⁰⁷⁶⁵²³⁵²
谜兽陀	1016528282690043758247936	河畔多	10 ¹¹⁰⁹¹⁹⁴²⁷⁵¹⁹⁹⁷⁰⁰⁷²⁶³⁰⁹⁶¹⁵³⁰⁴⁷⁰⁴
契鲁陀	1033056565380087516495872	青莲华	10^(2^98×7)
摩睹罗	10 ⁶⁶¹¹³¹³⁰⁷⁶⁰¹⁷⁵⁰³²⁹⁹¹⁷⁴⁴	鉢头摩	10^(2^99×7)
娑母罗	10132226261520350065983488	僧祇	10^(2^100×7)
河野娑	10 ²⁶⁴⁴⁵²⁵²³⁰⁴⁰⁷⁰⁰¹³¹⁹⁶⁶⁹⁷⁶	趣	10^(2^101×7)
迦么罗	10 ⁵²⁸⁹⁰⁵⁰⁴⁶⁰⁸¹⁴⁰⁰²⁶³⁹³³⁹⁵²	至	10^(2^102×7)
摩伽婆	101057810092162800527867904	可僧祇	10^(2^103×7)

名称	数值
河僧祇转	10141976867225561692967630759002112
无量	10 ²⁸³⁹⁵³⁷³⁴⁴⁵¹¹²³³⁸⁵⁹³⁵²⁶¹⁵¹⁸⁰⁰⁴²²⁴
无量转	10 ⁵⁶⁷⁹⁰⁷⁴⁶⁸⁹⁰²²⁴⁶⁷⁷¹⁸⁷⁰⁵²³⁰³⁶⁰⁰⁸⁴⁴⁸
无边	10 ¹¹³⁵⁸¹⁴⁹³⁷⁸⁰⁴⁴⁹³⁵⁴³⁷⁴¹⁰⁴⁶⁰⁷²⁰¹⁶⁸⁹⁶
无边转	10 ²²⁷¹⁶²⁹⁸⁷⁵⁶⁰⁸⁹⁸⁷⁰⁸⁷⁴⁸²⁰⁹²¹⁴⁴⁰³³⁷⁹²
无等	104543259751217974174964184288067584
无等转	109086519502435948349928368576135168
不可数	10 ¹⁸¹⁷³⁰³⁹⁰⁰⁴⁸⁷¹⁸⁹⁶⁶⁹⁹⁸⁵⁶⁷³⁷¹⁵²²⁷⁰³³⁶
不可数转	10 ³⁶³⁴⁶⁰⁷⁸⁰⁰⁹⁷⁴³⁷⁹³³⁹⁹⁷¹³⁴⁷⁴³⁰⁴⁵⁴⁰⁶⁷²
不可称	10 ⁷²⁶⁹²¹⁵⁶⁰¹⁹⁴⁸⁷⁵⁸⁶⁷⁹⁹⁴²⁶⁹⁴⁸⁶⁰⁹⁰⁸¹³⁴⁴
不可称转	10 ¹⁴⁵³⁸⁴³¹²⁰³⁸⁹⁷⁵¹⁷³⁵⁹⁸⁸⁵³⁸⁹⁷²¹⁸¹⁶²⁶⁸⁸
不可思	10 ²⁹⁰⁷⁶⁸⁶²⁴⁰⁷⁷⁹⁵⁰³⁴⁷¹⁹⁷⁷⁰⁷⁷⁹⁴⁴³⁶³²⁵³⁷⁶
不可思转	10 ⁵⁸¹⁵³⁷²⁴⁸¹⁵⁵⁹⁰⁰⁶⁹⁴³⁹⁵⁴¹⁵⁵⁸⁸⁸⁷²⁶⁵⁰⁷⁵²
不可量	10 ¹¹⁶³⁰⁷⁴⁴⁹⁶³¹¹⁸⁰¹³⁸⁸⁷⁹⁰⁸³¹¹⁷⁷⁷⁴⁵³⁰¹⁵⁰⁴
不可量转	10 ²³²⁶¹⁴⁸⁹⁹²⁶²³⁶⁰²⁷⁷⁷⁵⁸¹⁶⁶²³⁵⁵⁴⁹⁰⁶⁰³⁰⁰⁸
不可说	104652297985247205555163324710981206016
不可说转	109304595970494411110326649421962412032
不可说不可说	10 ¹⁸⁶⁰⁹¹⁹¹⁹⁴⁰⁹⁸⁸⁸²²²²⁰⁶⁵³²⁹⁸⁸⁴³⁹²⁴⁸²⁴⁰⁶⁴
不可说不可说转	10^(2^122×7)=10 ³⁷²¹⁸³⁸³⁸⁸¹⁹⁷⁷⁶⁴⁴⁴⁴¹³⁰⁶⁵⁹⁷⁶⁸⁷⁸⁴⁹⁶⁴⁸¹²⁸

什么?你认为这种数字很大?那么你的目光真是够短浅的.....

【1,2,3】2种"-illion"数字系统

我们知道,英文中的 ten 是 10, hundred 是 100, thousand 是 1000, 而 million则是 10⁶.这 2 种计数系统就从这里开始分离.它们是美式英文的"short scale"和其他外文的"long scale".short scale 按照 10³ⁿ⁺³ 命名以-illion 结尾的数字,

而 long scale 按照 10^{6n} 命名以-illion 结尾的数字,按 10^{6n+3} 命名以-illiard 结尾的数字.下面是一些典型的例子.

名称	short scale	long scale	名称	long scale
million	10^6	10^6	milliard	10^9
billion	10^9	10^12	billiard	10^15
trillion	10^12	10^18	trilliard	10^21
quadrillion	10^15	10^24	quadrilliard	10^27
quintillion	10^18	10^30	quintilliard	10^33
sextillion	10^21	10^36	sextilliard	10^39
septillion	10^24	10^42	septilliard	10^45
octillion	10^27	10^48	octilliard	10^51
nonillion	10^30	10^54	nonilliard	10^57
decillion	10^33	10^60	decilliard	10^63
undecillion	10^36	10^66	undecilliard	10^69
duodecillion	10^39	10^72	duodecilliard	10^75
tredecillion	10^42	10^78	tredecilliard	10^81
quattuordecillion	10^45	10^84	quattuordecilliard	10^87
quindecillion	10^48	10^90	quindecilliard	10^93
sexdecillion	10^51	10^96	sexdecilliard	10^99
septendecillion	10^54	10^102	septendecilliard	10^105
octodecillion	10^57	10^108	octodecilliard	10^111
novemdecillion	10^60	10^114	novemdecilliard	10^117
vigintillion	10^63	10^120	vigintilliard	10^123
unvigintillion	10^66	10^126	unvigintilliard	10^129
duovigintillion	10^69	10^132	duovigintilliard	10^135

当然,这些数字并不止这么点.我们还有

名称	short scale	long scale
trigintillion	10^93	10^180
quadragintillion	10^123	10^240
quinquagintillion	10^153	10^300
sexagintillion	10^183	10^360

名称	short scale	long scale
septuagintillion	10^213	10^420
octogintillion	10^243	10^480
nonagintillion	10^273	10^540
centillion	10^303	10^600
primo-vigesimo-centillion	10^366	10^726
ducentillion	10^603	10^1200
trecentillion	10^903	10^1800
quadringentillion	10^1203	10^2400
quingentillion	10^1503	10^3000
sescentillion	10^1803	10^3600
septingentillion	10^2103	10^4200
octingentillion	10^2403	10^4800
nongentillion	10^2703	10^5400
millillion	10^3003	10^6000
dumillillion	10^6003	10^12000
myrillion	10^30003	10^60000
milli-millillion(micrillion)	10^3000003	10^600000
nanillion	10^300000003	10^600000000
picillion	10^300000000003	10^6000000000000
femtillion	103000000000000000003	10 ⁶⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰
attillion	103000000000000000000000000000000000000	106000000000000000000000000000000000000
zeptillion	103000000000000000000000000000000000000	106000000000000000000000000000000000000
yoctillion	10^(3×10^24+3)	10^(6×10^24)
xonillion	10^(3×10^27+3)	10^(6×10^27)
vecillion	10^(3×10^30+3)	10^(6×10^30)
mecillion	10^(3×10^33+3)	10^(6×10^33)
duecillion	10^(3×10^36+3)	10^(6×10^36)
trecillion	10^(3×10^39+3)	10^(6×10^39)

看,trecillion 已经超越华严经数字了,然而我们还有更大的. 以下均为 short scale 中的数字.

名称	short scale	名称	short scale
Tetrecillion	10^(3×10^42+3)	Exdakillion	10 ^{3×10^(3×10^48)+3}
Pentecillion	10^(3×10^45+3)	Zedakillion	10 ^{3×10^(3×10^51)+3}
Hexecillion	10^(3×10^48+3)	Yodakillion	10 ^{3×10^(3×10^54)+3}
Heptecillion	10^(3×10^51+3)	Nedakillion	10 ^{3×10^(3×10^57)+3}
Octecillion	10^(3×10^54+3)	Ikillion	10 ^{3×10^(3×10^60)+3}
Ennecillion	10^(3×10^57+3)	Ikenillion	10 ^{3×10^(3×10^63)+3}
Icosillion	10^(3×10^60+3)	Icodillion	10 ^{3×10^(3×10^66)+3}
Triacontillion	10^(3×10^90+3)	Ictrillion	10 ^{3×10^(3×10^69)+3}
Tetracontillion	10^(3×10^120+3)	Icterillion	10 ^{3×10^(3×10^72)+3}
Pentacontillion	10^(3×10^150+3)	Icpetillion	10 ^{3×10^(3×10^75)+3}
Hexacontillion	10^(3×10^180+3)	Ikectillion	10 ^{3×10^(3×10^78)+3}
Heptacontillion	10^(3×10^210+3)	Iczetillion	10 ^{3×10^(3×10^81)+3}
Octacontillion	10^(3×10^240+3)	Ikyotillion	10 ^{3×10^(3×10^84)+3}
Ennacontillion	10^(3×10^270+3)	Icxenillion	10 ^{3×10^(3×10^87)+3}
Hectillion	10^(3×10^300+3)	Trakillion	10 ^{3×10^(3×10^90)+3}
Killillion	10^(3×10^3000+3)	Tekillion	10 ^{3×10^(3×10^120)+3}
Megillion	10 ^{3×10^3000000+3}	Pekillion	10 ^{3×10^(3×10^150)+3}
Gigillion	10 ^{3×10^3000000000+3}	Exakillion	10 ^{3×10^(3×10^180)+3}
Terillion	10 ^{3×10^3000000000000+3}	Zakillion	10 ^{3×10^(3×10^210)+3}
Petillion	10 ^{3×10^(3×10^15)+3}	Yokillion	10 ^{3×10^(3×10^240)+3}
Exillion	10 ^{3×10^(3×10^18)+3}	Nekillion	10 ^{3×10^(3×10^270)+3}
Zettillion	10 ^{3×10^(3×10^21)+3}	Hotillion	10 ^{3×10^(3×10^300)+3}
Yottillion	10 ^{3×10^(3×10^24)+3}	Botillion	10 ^{3×10^(3×10^600)+3}
Xennillion	10 ^{3×10^(3×10^27)+3}	Trotillion	10 ^{3×10^(3×10^900)+3}
Dakillion	10 ^{3×10^(3×10^30)+3}	Totillion	10 ^{3×10^(3×10^1200)+3}
Hendillion	10 ^{3×10^(3×10^33)+3}	Potillion	10 ^{3×10^(3×10^1500)+3}
Dokillion	10 ^{3×10^(3×10^36)+3}	Exotillion	10 ^{3×10^(3×10^1800)+3}
Tradakillion	10 ^{3×10^(3×10^39)+3}	Zotillion	10 ^{3×10^(3×10^2100)+3}
Tedakillion	10 ^{3×10^(3×10^42)+3}	Yootillion	10 ^{3×10^(3×10^2400)+3}
Pedakillion	10 ^{3×10^(3×10^45)+3}	Notillion	10 ^{3×10^(3×10^2700)+3}

名称	short scale	名称	short scale
Kalillion	10 ^{3×10^(3×10^3000)+3}	Hotejillion	10 ^{3×10^(3×10^300000000)+3}
Dalillion	10 ^{3×10^(3×10^6000)+3}	Gijillion	10 ^{3×10^(3×10^3000000000)+3}
Tralillion	10 ^{3×10^(3×10^9000)+3}	Astillion	10 ^{3×10^(3×10^(3×10^12))+3}
Talillion	10 ^{3×10^(3×10^12000)+3}	Lunillion	10 ^{3×10^(3×10^(3×10^15))+3}
Palillion	10 ^{3×10^(3×10^15000)+3}	Fermillion	10 ^{3×10^(3×10^(3×10^18))+3}
Exalillion	10 ^{3×10^(3×10^18000)+3}	Jovillion	10 ^{3×10^(3×10^(3×10^21))+3}
Zalillion	10 ^{3×10^(3×10^21000)+3}	Solillion	10 ^{3×10^(3×10^(3×10^24))+3}
Yalillion	10 ^{3×10^(3×10^24000)+3}	Betillion	10 ^{3×10^(3×10^(3×10^27))+3}
Nalillion	10 ^{3×10^(3×10^27000)+3}	Glocillion	10 ^{3×10^(3×10^(3×10^30))+3}
Dakalillion	10 ^{3×10^(3×10^30000)+3}	Gaxillion	10 ^{3×10^(3×10^(3×10^33))+3}
Hotalillion	10 ^{3×10^(3×10^300000)+3}	Supillion	10 ^{3×10^(3×10^(3×10^36))+3}
Mejillion	10 ^{3×10^(3×10^3000000)+3}	Versillion	10 ^{3×10^(3×10^(3×10^39))+3}
Dakejillion	10 ^{3×10^(3×10^30000000)+3}	Multillion	10 ^{3×10^(3×10^(3×10^42))+3}

【1,2,4】"-yllion"记法

高德纳(Donald Knuth)发明了一种很"经济"的计数方法,10 称作 ten,100 称作 hundred(这 2 个没变),然而,1000 被称作 ten hundred,3456 被称作 34 hundred 56(不使用"thousand"),10000 则冠以一个新的名称——myriad.现在,一些数的名称和值列举如下:

名称	数值	名称	数值
myriad	10^4	septyllion	10^512
myllion	10^8	octyllion	10^1024
byllion	10^16	nonyllion	10^2048
tryllion	10^32	decyllion	10^4096
quadryllion	10^64	undecyllion	10^8192
quintyllion	10^128	duodecyllion	10^16384
sextyllion	10^256	tredecyllion	10^32768

名称	数值	名称	数值
quattuordecyllion	10^65536	novemtrigintyllion	10^2^41
quindecyllion	10^131072	quadragintyllion	10^2^42
sexdecyllion	10^262144	quinquagintyllion	10^2^52
septdecyllion	10^524288	sexagintyllion	10^2^62
octodecyllion	10 ¹⁰⁴⁸⁵⁷⁶	septuagintyllion	10^2^72
novemdecyllion	10 ²⁰⁹⁷¹⁵²	octogintyllion	10^2^82
vigintyllion	104194304	nonagintyllion	10^2^92
unvigintyllion	10 ⁸³⁸⁸⁶⁰⁸	centyllion	10^2^102
duovigintyllion	10 ¹⁶⁷⁷⁷²¹⁶	ducentyllion	10^2^202
trevigintyllion	10 ³³⁵⁵⁴⁴³²	trecentyllion	10^2^302
quattuorvigintyllion	10 ⁶⁷¹⁰⁸⁸⁶⁴	quadringentyllion	10^2^402
quinvigintyllion	10 ¹³⁴²¹⁷⁷⁶⁸	quingentyllion	10^2^502
sexvigintyllion	10 ²⁶⁸⁴³⁵⁴⁵⁶	sescentyllion	10^2^602
septemvigintyllion	10 ⁵³⁴⁸⁷⁰⁹¹²	septingentyllion	10^2^702
octovigintyllion	10 ¹⁰⁷³⁷⁴¹⁸²⁴	octingentyllion	10^2^802
novemvigintyllion	10 ²¹⁴⁷⁴⁸³⁶⁴⁸	nongentyllion	10^2^902
trigintyllion	104294967296	millyllion	10^2^1002
untrigintyllion	10 ⁸⁵⁸⁹⁹³⁴⁵⁹²	myryllion	10^2^10002
duotrigintyllion	10 ¹⁷¹⁷⁹⁸⁶⁹¹⁸⁴	micryllion	10^2^1000002
tretrigintyllion	10 ³⁴³⁵⁹⁷³⁸³⁶⁸	nanyllion	10 ^{2^1000000002}
quattuortrigintyllion	10 ⁶⁸⁷¹⁹⁴⁷⁶⁷³⁶	picyllion	10 ^{2^100000000000}
quintrigintyllion	10 ¹³⁷⁴³⁸⁹⁵³⁴⁷²	femtyllion	10 ² (10 ¹⁵ +2)
sextrigintyllion	10 ²⁷⁴⁸⁷⁷⁹⁰⁶⁹⁴⁴	attyllion	10 ² (10 ¹⁸ +2)
septtrigintyllion	10 ⁵⁴⁹⁷⁵⁵⁸¹³⁸⁸⁸	zeptyllion	10 ² (10 ²¹⁺²)
octotrigintyllion	10 ¹⁰⁹⁹⁵¹¹⁶²⁷⁷⁷⁶	yoctyllion	10 ^{2^(10^24+2)}

应当指出的是,如果 Bentrizyllion 存在的话,那得多大!

【1,3】经典数字

1,3,1 $e^{\pi\sqrt{163}}$

 $e^{\pi\sqrt{163}}$ 被称作拉马努金数,它比 262537412640768744 约小 2.5×10⁻¹³,以致于人们会误认为它是个整数.

【1,3,2】魔方

 $8! \times 3^7 \times 12! \times 2^{11}/2 = 43252003274489856000, 这是三阶魔方的排列方法总数. <math>7! \times 3^6 \times 24! \times 24!/24^6 \approx 7.4011968415649 \times 10^{45}$, 这是四阶魔方的排列方法总数. 五阶魔方为 $8! \times 3^7 \times 12! \times 2^{10} \times 24! \times (24!/24^6)^2 \approx 2.8287094227774 \times 10^{74}$, 六阶魔方为 $7! \times 3^6 \times 24!^2 \times (24!/24^6)^4 \approx 1.5715285840103 \times 10^{116}$, 七阶魔方为 $8! \times 3^7 \times 12! \times 2^{10} \times 24!^2 \times (24!/24^6)^6 \approx 1.9500551183732 \times 10^{160}$.

【1,3,3】数独

2²⁰×3⁸×5×7×27704267971=6670903752021072936960,这是 9×9 数独的总种数.

【1,3,4】 阿伏伽德罗常数

可伏伽德罗常数约为 6.02214179×10²³

【1,3,5】大数定律

质子和电子的静电力与万有引力之比约为 2.26881×10³⁹,这是物理学中的一个神秘的大数.

【1,3,6】带电粒子

可见宇宙中带电粒子的总数约为 136×2²⁵⁷≈3.149544×10⁷⁹ 个.

【1,3,7】斯奎斯数

用 $\pi(x)$ 表示不超过正整数 x 的质数的个数,如 $\pi(2)=1$, $\pi(3)=2$, $\pi(10)=4$ 等.

我们可以用一个积分来近似估计它—— $li(x)=\int_0^x \frac{dt}{\ln t}$.我们发现,对于"比较小"的数 x,总是有 $\pi(x)$ <ii(x),那么,对于任意的 x,还是否会有 $\pi(x)$ <ii(x)成立呢?

斯奎斯证明了, π(x)和 li(x)的函数值会"交叉"无数坝!而且,如果黎曼假设是正确的,那么第一个"交叉点"不超过 e^e^e^79≈10^(3.5536897484442191 ×10⁸⁸⁵²¹⁴²¹⁹⁷⁵⁴³²⁷⁰⁶⁰⁶¹⁰⁶¹⁰⁰⁴⁵²⁷³⁵⁰³⁸),这个数称作第一斯奎斯数;如果不涉及黎曼假设,那么第一个"交叉点"不超过 e^e^e^e^7.705≈10^10^(3.29994322×10⁹⁶³),这个数称作第二斯奎斯数.

后来,上面的结果被大大地改进了.人们得出,第一斯奎斯数应不超过e^e^{6.75}第二斯奎斯数应不超过e^e¹²³⁶.最后,第一个"交叉点"实际上约为1.397162914×10³¹⁶.(到这里,你应该知道了,这斯奎斯数其实是虚大的)

后来,S. Knapowski 对这个问题进一步研究,得出:对任意一个大于e^e^e^e^e^a55 的数 x,不超过 x 的"交叉点"的个数应大于 $\ln(\ln(\ln(\ln x)))/e^{35}$.

【1,4】增长率

衡量一个函数 f 的增长率,并不是单纯的看 f(x)的大小,而是要看当 x 趋向无穷时 f(x)的相对大小.如一次函数 f(x)=10000x 和二次函数 g(x)= x^2 相比,当 0 < x < 10000 时都有 f(x) > g(x),但不要认为 f(x)的增长率大于 g(x).实际上,当 x 趋向无穷时 f(x) < g(x),因此 f(x)的增长率小于 g(x).这有点像高、低阶无穷大.

但是,增长率与高、低阶无穷大又有一点不同.f(x)=3×和 g(x)=2×都是指数函数,虽然 f(x)是比 g(x)高阶的无穷大,但是它们还是有可比性的.从大类来看,像 lnlnlnlnln(x)的增长率就很小,然后是 lnlnlnlnln(x),...,ln(x),线性函数,接着

是像 xlnln(x)、xln(x)那样的函数, $x^{1.00001}$ 的增长率又稍大.顺着幂函数,我们有 $x^{1.0001}$, $x^{1.001}$, $x^{1.1}$, $x^{1.2}$, x^{2} , x^{3} , x^{10000} 之类的函数.接着是 1.001^{x} , 1.1^{x} , 2^{x} , 1000^{x} 之类的指数函数,接着是 x^{x} ,然后是 $2^{x^{1.01}}$, $2^{x^{1.1}}$, $2^{x^{2}}$, $2^{x^{100}}$ 之类的函数,然后是 $2^{2^{x}}$, $2^{x^{2}}$, x^{2} , $x^{$

【2】超越乘方

【2,1】感叹号!

【2,1,1】普通运算

感叹号"!"表示一种运算,称作阶乘.其定义如下:

1.0!=1

 $2.a!=(a-1)!\times a$

我们很容易知道,a!=1×2×3×...a.这就是"阶乘"这个名字的意义. 实际上,阶乘可以扩展到全实数范围(负整数除外).

【2,1,2】 「函数

对于非负整数 n,你可以认为 n!=\(\(\mathbf{r}\).这个 \(\mathbf{r}\) 函数还可以如下定义.

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt$$

它有这样一个递推公式,就是 \(\Gamma(n+1)=n\Gamma(n).利用它,我们可以计算负数 \(\mathbf{a}\) 的 \(\mathbf{b}\)

於 新 的 增 长 与 乘 方 相 近 ,可 以 算 出 ,100!≈9.3326215443× 10^{157} ,而 1000!≈4.0238726007× 10^{2567} .还 有 $(\frac{1}{2})! = \frac{\sqrt{\pi}}{2}$, $(-\frac{1}{2})! = \sqrt{\pi}$ 等 .

【2,1,3】双阶乘

你是否认为,把一个至少是 3 的数迭代多次阶乘,会变得很大呢?没错.不过,你是否认为,10!!>10!呢?这回你就错了.实际上,10!!中的"!!"是一个运算符,它表示双阶乘,就是"隔着阶乘".实际上, $10!!=2\times4\times6\times8\times10=3840$,10!=3628800,所以 10!!<10!.一般的,奇数 $n!!=1\times3\times5\times...n$,偶数 $n!!=2\times4\times6\times...n$.

【2,1,4】 迭代阶乘

我们用 $n!^2$ 来表示大家所想象的(n!)!,用 $n!^3$ 来表示((n!)!)!,一般地, $n!^1=n!$,而 $n!^{m+1}=(n!^m)!$.这就是迭代阶乘.注意,不要把 $n!^m$ 理解成 n!的 m 次方,如 $3!^2=720$, 而(3!)^2=36.

【2,2】没有运算符

【2,2,1】"最大的数"游戏

设想一下这个游戏.用若干个给定的数字,不用任何运算符,你能组成最大的数是什么?

给你4个"1",你可以组出像1111,11¹¹,111¹,111¹¹,1¹¹¹之类的数.不过后三者是毫无意义的,因为任何数的 1 次方都是它自己,1 的任何数次方都是 1.这样你会浪费很多个"1".实际上,这里最大的数是 11¹¹=285311670611.

给你 4 个"2",你就不要以为 22²² 是最大的数了.实际上22²² <2²²² <2²²² <2²²² <2²²²

因此, $2^{2^{2^2}}$ 才是最大的一个数.顺便说一下, $2^{2^{2^2}} \approx 2.0650635398359 \times 10^{1262611}$. 如果是 4 个"3"呢?这时3³³³ 仍然是最大的. $3^{3^{3^3}} \approx 4.685801298241$ $\times 10^{2652345952577568}$,这个数介于调伏和离憍慢之间.

不过,如果是 $4 \wedge "4"$,那么因为 4^4 >44,所以最大的数应该是 4^{4^4} 而不是 4^{4^4} 这里, 4^{4^4} ≈2.36102267146×10^8072304726028225379382630397085399030071367921738743031867082828418414481568309149198911814701229483451981557574771156496457238535299087481244990261351116,这个数介于 pentacontillion 和 hexacontillion 之间.

现在,考虑一下给出 5 个"2"的情形.我们可以组出的一个数是 $2^{2^{2^2}}$,它大约是 $10^{6.216460684426429\times10^{1262610}}$,介于 killillion和 megillion之间.你会认为它是最大的吗?

【2,2,2】第四级运算

很可惜,即使不用任何"标点符号",我们也有比这更大的数.下面是一个不用任何运算符的超越了加法、乘法和乘方的运算的定义:

 $1.^{1}a=a$

 $2.^{b}a=(^{b-1}a)^{b}$

如果说加法是第一级运算,乘法是第二级运算,乘方是第三级运算,那么这种用"ba"来表示的运算,就称作第四级运算.通俗一点说,ba=a^{a·a} (共 b 个"a").于是刚才的问题就可以进一步扩展了.

4个"2"可以组成²²²2,这个数字应该这么表达:2^2^...2(共 2^2...2(共 22 个"2")个"2").很吃惊吗?

4 个"3"可以组成³³3,可以说成 3^3^...3(共 3^3^...3(共 7625597484987 个"3")个"3"),这里 ³3=3^3^3=3^27>3⁴=81>33.

最后,5个"2"可以组成²²²2,就是2^2^...2(共²²2个"2"),你得自己想象好一阵子.

【2,2,3】实数扩展

设想一下, $y_{x=x^a}b^c_{...1^11^1...}$,而且 $a \cdot b \cdot c$ 等数依次减小,到后面几乎是 1. 那么,这样的"减小"应该如何进行呢?

首先,让我们定义一个函数: $g(x,z)=x^{\frac{1+erf(2z-1)}{2}}$,其中 $erf(x)=\int_0^x e^{-t^2}dt$.于是,我们可以用 q(x,z)实现从 1 到 x 的"平滑"过渡.下面是一些特殊值(近似值).

g(x,z)	z=-1	z=0	z=1/2	z=1	z=2
x=2	1.00000766	1.05602911	1.41421356	1.89388719	1.99998469
x=3	1.00001213	1.09024825	1.73205081	2.75166688	2.99996360
x=10	1.00002543	1.19853192	3.16227766	8.34354085	9.99974568

然后,定义 $T(x,y,n)=g(x,y)^2g(x,y-1)^2...g(x,y-n+2)^2g(x,y-n+1)$,再取极限 $h(x,y)=\lim_{n\to\infty}T(x,y,n)$,那么 h(x,y)似乎可以作为第四级运算的近似.不过,如果真正计算起来,将会得到 $h(2,1)\approx1.962860044952$, $h(2,2)\approx3.898340329384$, $h(2,3)\approx14.91136402023$, $h(3,1)\approx3.01484034768$, $h(3,2)\approx27.4438103490$ 等不准确的结果,甚至 $h(2,4)\approx30815.4026169$,与整数运算值 65536 相差一倍多,而 $h(3,4)\approx2.43\times10^{5924531213185}$,与整数运算值 $1.25638\times10^{3638334640024}$ 相差 2286196573161 个数量级!

实际上,第四级运算的实数扩展,很多人尝试过,但都没有加法、乘法、乘方的扩展那么"平滑"(即可导性).即便"平滑",也像刚才一例一样,失去了原有的整数运算结果.这个"扩展"之路还很长很长.

[2,3] 河克曼函数

【2,3,1】二元函数

二元河克曼函数一般用 Ack(m,n)表示,其定义如下:

- 1.Ack(0,n)=n+1
- 2.Ack(m,0)=Ack(m-1,1)
- 3.Ack(m,n)=Ack(m-1,Ack(m,n-1))

这样,可以认为,Ack(1,0)=Ack(0,1)=2,Ack(1,x)=Ack(0,Ack(1,x-1))=Ack(1x-1)+1,于是 Ack(1,x)=Ack(1,0)+x=x+2.接着,Ack(2,x)=Ack(1,Ack(2,x-1))=Ack(2,x-1)+2=...=Ack(2,0)+2x=Ack(1,1)+2x=2x+3.

到这里,似乎还没有大数或者增长很快的函数出现.不过,如果往下计算,那么这个增长将会很快. $Ack(3,x)=Ack(2,Ack(3,x-1))=2\times Ack(3,x-1)+3$,可知 $Ack(3,x)+3=2\times (Ack(3,x-1)+3)$.而 Ack(3,0)=Ack(2,1)=5,所以 $Ack(3,x)=2\times 8-3=2^{x+3}-3$.

到这里,你应该已经能感受到这个函数的增长之快了.我们将一些有特殊值列举如下:

Ack(m,n)	0	1	2	3	4	m=5
0	1	2	3	5	13	65533
1	2	3	5	13	65533	⁶⁵⁵³⁶ 2-3
2	3	4	7	29	2 ⁶⁵⁵³⁶ -3	⁶⁵⁵³⁶ 2 2 -3
3	4	5	9	61	⁶ 2-3	⁶⁵⁵³⁶ 22-3
4	5	6	11	125	⁷ 2-3	65536 ₂₂ 2-3
5	6	7	13	253	⁸ 2-3	65536 ₂₂₂ 2 2-3
n	n+1	n+2	2n+3	2 ⁿ⁺³ -3	ⁿ⁺³ 2-3	

【2,3,2】一元函数

Friedman 对此函数进行了扩展.一般说来,一元函数总是比二元函数更容易处理一些.他定义 Ack(n)=Ack(n,n).这样的 Ack(n)具有反函数,记作 a(n).实

际上,Ack(0)=1,Ack(1)=3,Ack(2)=7,Ack(3)=61,Ack(4)=⁷2-3,因此 a(1)=0,a(3)=1,a(7)=2,a(61)=3,a(⁷2-3)=4.可见这个α函数的增长是非常慢的.

【2,4】多边形符号

【2,4,1】△·□与○

斯坦豪斯提出了用 \triangle 、 \square 和〇表示的符号.他定义: 把正整数 n 放进一个 \triangle 中等于 n^n , 把 n 放进一个 \square 中等于 n 放进 n 个 \triangle 中,而 把 n 放进一个 \square 中等于 n 放进 n 个 \square 中,也就是说, $\triangle = n^n$,n = n ,n = n (n 层三角形、 n 层正方形).

例如,MEGA 数等于②,那么 MEGA=②=②=②= ②= ④ = ②56,所以,它等于把 256 放进 256 层三角形里面,也就是用函数 $y=x^x$ 迭代 256 次.这个数几乎与第四级运算的数有相同的"档次".

Grand Mega 等于 3=3=3=27,这个数比 Mega 大得多了!

Great Mega=4,Gong Mega=5,Hexomega=6,Heptomega=7,Octomega=8,Nonomega=9,megistron=①,不过,这些数跟 Ack(5,14)相比真是小得可怜,而 Ack(5,14)又远远小于 Ack(6,1)=Ack(7,0).

Megision,也叫 A-ooga,等于②,也就是把 Mega 放进一个圆里面.接着, Grand Megision=③,Great Megision=④,Gong Megision=⑤,Hexomegision=⑥,Heptomegision=⑦,Octomegision=⑧,Nonomegision=⑨, Megisiplextron=①,不过它们都小于 Ack(6,2).

megisiduon 等于"吧 2 放进 3 个圆里面", Grand megisiduon 等于"吧 3 放

进 3 个圆里面",Great megisiduon 等于"把 4 放进 3 个圆里面",Gong megisiduon 等于"把 5 放进 3 个圆里面",hexomegisiduon 等于"把 6 放进 3 个圆里面",heptomegisiduon 等于"把 7 放进 3 个圆里面",octomegisiduon 等于"把 8 放进 3 个圆里面",nonomegisiduon 等于"把 9 放进 3 个圆里面",megisiduplextron 等于"把 10 放进 3 个圆里面".

megisitruon 等于"吧 2 放进 4 个圆里面", Grand megisitruon 等于"吧 3 放进 4 个圆里面", Great megisitruon 等于"吧 4 放进 4 个圆里面", Gong megisitruon 等于"吧 5 放进 4 个圆里面", hexomegisitruon 等于"吧 6 放进 4 个圆里面", heptomegisitruon 等于"吧 7 放进 4 个圆里面", octomegisitruon 等于"吧 8 放进 4 个圆里面", nonomegisitruon 等于"吧 9 放进 4 个圆里面", megisitriplextron 等于"吧 10 放进 4 个圆里面".

megisiquadruon 等于"吧 2 放进 5 个圆里面", Grand megisiquadruon 等于"吧 3 放进 5 个圆里面", Great megisiquadruon 等于"吧 4 放进 5 个圆里面", Gong megisiquadruon 等于"吧 5 放进 5 个圆里面", hexomegisiquadruon 等于"吧 6 放进 5 个圆里面", heptomegisiquadruon 等于"吧 7 放进 5 个圆里面", octomegisiquadruon 等于"吧 8 放进 5 个圆里面", nonomegisiquadruon 等于"吧 9 放进 5 个圆里面", megisiquadruplextron 等于"吧 10 放进 5 个圆里面".

【2,4,2】当〇变成五边形

莫泽(Moser)把这个记号一般化,他定义:把正整数 n 放进一个△里面等于 nⁿ,把 n 放进一个 m 边形里面等于把 n 放进 n 个 m-1 边形里面.这样,五边形就取代了原来的圆.(这个记号也就能够表示更大的数了)

A-ooga 等于"吧 2 放进一个六边形里面".A-oogra 等于"吧 3 放进一个六边形里面",也等于 Grand megisiduon.A-oogrea 等于"吧 4 放进一个六边形里面"也等于 Great megisitruon.A-oogonga 等于"吧 5 放进一个六边形里面",也等于 Gong Megisiquadruon.A-oohexa 等于"吧 6 放进一个六边形里面", A-oohepta 等于"吧 7 放进一个六边形里面", A-oocta 等于"吧 8 放进一个六边形里面", A-ooennea 等于"吧 9 放进一个六边形里面", A-oomega 等于"吧 10 放进一个六边形里面".

A-oogatiplex,也叫Betomega,等于"把2放进2个六边形里面",也就是"把

2 放进一个七边形里面".A-oogatiduplex 等于"把 2 放进 3 个六边形里面",A-oogatitriplex 等于"把 2 放进 4 个六边形里面",A-oogatiquadruplex 等于"把 2 放进 5 个六边形里面".

Betogiga,也叫 A-oogratiduplex,等于"把 3 放进 3 个六边形里面",或者"把 3 放进 - 个七边形里面".

Brantomega,也叫 flexinega,等于"吧 2 放进 2 个七边形里面".Brantogiga等于"吧 3 放进 2 个七边形里面",Breatomega等于"吧 2 放进 3 个七边形里面".Breatogiga,也叫 flexitria,等于"吧 3 放进 3 个七边形里面".Bigiatomega等于"吧 2 放进 4 个七边形里面",Bigiatogiga等于"吧 3 放进 4 个七边形里面",Biquadriatomega等于"吧 2 放进 5 个七边形里面",Biquadriatogiga等于"吧 3 放进 5 个七边形里面",Biquintiatomega等于"吧 2 放进 6 个七边形里面",Biquintiatomega等于"吧 2 放进 6 个七边形里面",Biquintiatomega等于"吧 3 放进 6 个七边形里面".

最后,莫泽数(Moser 数)等于"把 2 放进一个 MEGA 边形里面",这个数还是小于 Ack(Ack(5)).

【2,4,3】超越多边形

Aarex 对这样的记号进行了一次扩展,这个记号就脱离了多边形的形状而存在.一般用 M(a,b)表示"他 a 放进一个 b+2 边形里面".还可以用不止二元的 M 函数,如:M(2,0,1),M(2,3,5),M(7,6,5,4,3,2,1).它们的定义如下:

- $1.M(a,1)=a^{a}$
- 2.M(# O)=M(#),这里用"#"表示一段数字序列,下同
- $3.M(a,0,0,...0,0,b)(c \uparrow "0")=M(a,0,0,...0,a,b-1)(c-1 \uparrow "0")$
- $4.M(a,b \#)=M(M(...M(M(a,b-1 \#),b-1 \#)...,b-1 \#),b-1 \#)(a \uparrow "M")$

接下来我们用这种函数把前面的数字表示出来.

名称	数值	名称	数值
Mega	M(2,3)	Grand Mega	M(3,3)
Great Mega	M(4,3)	Gong Mega	M(5,3)
Hexomega	M(6,3)	Heptomega	M(7,3)

Octomega	M(8,3)	Nonomega	M(9,3)
Megistron	M(10,3)	megision	M(M(2,3),3)
Grand megision	M(M(3,3),3)	Great megision	M(M(4,3),3)
Gong megision	M(M(5,3),3)	Hexomegision	M(M(6,3),3)
Heptomegision	M(M(7,3),3)	Octomegision	M(M(8,3),3)
Nonomegision	M(M(9,3),3)	Megisiplextron	M(M(10,3),3)

```
megisiduon=M(megision,3)=M(M(M(2,3),3),3)
Grand megisiduon=M(Grand megision,3)=M(M(M(3,3),3),3)
Great megisiduon=M(Great megision,3)=M(M(M(4,3),3),3)
Gong megisiduon=M(Gong megision,3)=M(M(M(5,3),3),3)
Hexomegisiduon=M(Hexomegision,3)=M(M(M(6,3),3),3)
Heptomegisiduon=M(Heptomegision,3)=M(M(M(7,3),3),3)
Octomegisiduon=M(Octomegision,3)=M(M(M(8,3),3),3)
Nonomegisiduon=M(Nonomegision,3)=M(M(M(9,3),3),3)
Megisiduplextron=M(Megisiplextron,3)=M(M(M(10,3),3),3)
megisitruon=M(megisiduon,3)=M(M(M(M(2,3),3),3),3)
Grand megisitruon=M(Grand megisiduon,3)=M(M(M(M(3,3),3),3),3)
Great megisitruon=M(Great megisiduon,3)=M(M(M(M(4,3),3),3),3)
Gong megisitruon=M(Gong megisiduon,3)=M(M(M(M(5,3),3),3),3)
Hexomegisitruon=M(Hexomegisiduon,3)=M(M(M(M(6,3),3),3),3)
Heptomegisitruon=M(Heptomegisiduon,3)=M(M(M(M(7,3),3),3),3)
Octomegisitruon=M(Octomegisiduon,3)=M(M(M(M(8,3),3),3),3)
Nonomegisitruon=M(Nonomegisiduon,3)=M(M(M(M(9,3),3),3),3)
Megisitriplextron=M(Megisiplextron,3)=M(M(M(M(10,3),3),3),3)
megisiquadruon=M(M(M(M(M(2,3),3),3),3),3)
Grand megisiquadruon=M(M(M(M(M(3,3),3),3),3),3)
Great megisiquadruon=M(M(M(M(M(4,3),3),3),3),3)
Gong megisiquadruon=M(M(M(M(M(5,3),3),3),3),3)
Hexomegisiquadruon=M(M(M(M(M(6,3),3),3),3),3)
Heptomegisiquadruon=M(M(M(M(M(7,3),3),3),3),3)
```

Octomegisiquadruon=M(M(M(M(M(8,3),3),3),3),3)

Nonomegisiquadruon=M(M(M(M(M(M(9,3),3),3),3),3),3)Megisiquadruplextron=M(M(M(M(M(M(10,3),3),3),3),3),3)

名称	数值	名称	数值
A-ooga	M(2,4)	A-oogra	M(3,4)
A-oogrea	M(4,4)	A-oogonga	M(5,4)
A-oohexa	M(6,4)	A-oohepta	M(7,4)
A-oocta	M(8,4)	A-ooennea	M(9,4)
A-oomega	M(10,4)	A-oogatiplex	M(M(2,4),4)
A-oogratiplex	M(M(3,4),4)	A-oogreatiplex	M(M(4,4),4)
A-oogongatiplex	M(M(5,4),4)	A-oohexatiplex	M(M(6,4),4)
A-ooheptatiplex	M(M(7,4),4)	A-ooctatiplex	M(M(8,4),4)
A-ooenneatiplex	M(M(9,4),4)	A-oomegatiplex	M(M(10,4),4)

```
A-oogatiduplex=M(A-oogatiplex,4)=M(M(M(2,4),4),4)
A-oogratiduplex=M(A-oogratiplex,4)=M(M(M(3,4),4),4)
A-oogreatiduplex=M(A-oogreatiplex,4)=M(M(M(4,4),4),4)
A-oogongatiduplex=M(A-oogongatiplex,4)=M(M(M(5,4),4),4)
A-oohexatiduplex=M(A-oohexatiplex,4)=M(M(M(6,4),4),4)
A-ooheptatiduplex=M(A-ooheptatiplex,4)=M(M(M(7,4),4),4)
A-ooctatiduplex=M(A-ooctatiplex,4)=M(M(M(8,4),4),4)
A-ooenneatiduplex=M(A-ooenneatiplex,4)=M(M(M(9,4),4),4)
A-oomegatiduplex=M(A-oomegatiplex,4)=M(M(M(10,4),4),4)
A-oogatitriplex=M(A-oogatiduplex,4)=M(M(M(M(2,4),4),4),4)
A-oogratitriplex=M(A-oogratiduplex,4)=M(M(M(M(3,4),4),4),4)
A-oogreatitriplex=M(A-oogreatiduplex,4)=M(M(M(M(4,4),4),4),4)
A-oogongatitriplex=M(A-oogongatiduplex,4)=M(M(M(M(5,4),4),4),4)
A-oohexatitriplex=M(A-oohexatiduplex,4)=M(M(M(M(6,4),4),4),4)
A-ooheptatitriplex=M(A-ooheptatiduplex,4)=M(M(M(M(7,4),4),4),4)
A-ooctatitriplex=M(A-ooctatiduplex,4)=M(M(M(M(8,4),4),4),4)
A-ooenneatitriplex=M(A-ooenneatiduplex,4)=M(M(M(M(9,4),4),4),4)
A-oomegatitriplex=M(A-oomegatiduplex,4)=M(M(M(M(10,4),4),4),4)
```

A-oogatiquadruplex=M(M(M(M(M(2,4),4),4),4),4)

A-oogratiquadruplex=M(M(M(M(M(3,4),4),4),4),4)

A-oogreatiquadruplex=M(M(M(M(M(4,4),4),4),4),4)

A-oogongatiquadruplex=M(M(M(M(M(5,4),4),4),4),4)

A-oohexatiquadruplex=M(M(M(M(M(6,4),4),4),4),4)

A-ooheptatiquadruplex=M(M(M(M(M(7,4),4),4),4),4)

A-ooctatiquadruplex=M(M(M(M(M(8,4),4),4),4),4)

A-ooenneatiquadruplex=M(M(M(M(M(9,4),4),4),4),4)

A-oomegatiquadruplex=M(M(M(M(M(M(10,4),4),4),4),4),4)

	<u> </u>	, , ,	• • •	<u> </u>	
名称	数值	名称	数值	名称	数值
Betomega	M(2,5)	Betogiga	M(3,5)	Betotera	M(4,5)
Betopeta	M(5,5)	Betoexa	M(6,5)	Betozetta	M(7,5)
Betoyotta	M(8,5)	Betoxota	M(9,5)	Betodaka	M(10,5)

Brantomega	M(M(2,5),5)	Brantogiga	M(M(3,5),5)
Brantotera	M(M(4,5),5)	Brantopeta	M(M(5,5),5)
Brantoexa	M(M(6,5),5)	Brantozetta	M(M(7,5),5)
Brantoyotta	M(M(8,5),5)	Brantoxota	M(M(9,5),5)
Brantodaka	M(M(10,5),5)	Breatomega	M(M(M(2,5),5),5)
Breatogiga	M(M(M(3,5),5),5)	Breatotera	M(M(M(4,5),5),5)
Breatopeta	M(M(M(5,5),5),5)	Breatoexa	M(M(M(6,5),5),5)
Breatozetta	M(M(M(7,5),5),5)	Breatoyotta	M(M(M(8,5),5),5)
Breatoxota	M(M(M(9,5),5),5)	Breatodaka	M(M(M(10,5),5),5)

flexinega	M(2,6)	Oktia	M(2,7)
flexitria	M(3,6)	fainega	M(M(2,6),6)
flexitera	M(4,6)	funnynega	M(M(M(2,6),6),6)
flexipera	M(5,6)	ftetrinega	M(M(M(2,6),6),6)
flexiecta	M(6,6)	fpentinega	M(M(M(M(2,6),6),6),6)
flexizetta	M(7,6)	fhexinega	M(M(M(M(M(2,6),6),6),6),6),6)

最后,Moser 数=M(2,Mega-2)=M(2,M(2,3)-2),

Grand Moser=M(3,Grand Mega-2)=M(3,M(3,3)-2),

Great Moser=M(4,Great Mega-2)=M(4,M(4,3)-2),

Gong Moser=M(5,Gong Mega-2)=M(5,M(5,3)-2).

【3】箭头时代

【3,1】高德纳上箭头

【3,1,1】 定义及写法

高德纳上箭头符号一般用 a↑°b 表示,也可以连写多个箭头,如 a↑↑↑b 等.一般地,a↑↑...↑b(c 个"↑")=a↑°b.定义如下:

- $1.a\uparrow b=a^b$
- $2.a\uparrow^{c}1=a$
- $3.a\uparrow^{c}b=a\uparrow^{c-1}(a\uparrow^{c}(b-1))(b>1,c>1)$

我们发现,本定义第1条是乘方,而第2、3条则与加法、乘法、乘方和第四级运算的定义几乎完全相同.

【3,1,2】性质与联系

乘方具有"右结合律",即 $a^b^c=a^(b^c)$,而这种箭头的运算也有同样的性质, a^b^c 被解释成 a^b^c 0,而不是(a^b^c 1) a^b 1.

于是,我们得到:a↑n+1b=a↑na↑n...a(共 b 个"a").

另外,第四级运算可以划归为上箭头的一类:ba=affb.注意到乘方可以写作afb,可以说,乘方、第四级运算和"f"具有一种隐藏的联系.

实际上,通过对阿克曼函数的化归,可以知道,Ack(a,b)=2↑a-2(b+3)-3(a>2)

【3,1,3】其他记法

记号 $a\uparrow^cb$ 有时候可以写作 $a^{^*}...^*b(c \land ''^*)$,或者 $a^{**}...^*b(c+1 \land ''*')$,或者 $a^{**}...^*b(c+2 \land ''+'')$.如果说上箭头是从乘方开始的记号,那么"**...*"就是从乘 法开始的记号,而"++...+"则是从加法开始的记号.

像上箭头一样,我们有多种表示"超运算"的方法.从加法开始的"超运算"有下面这些,hyper(a,n,b),古德斯坦的 $G(n,a,b)=a++...+b(n \wedge "+")$,南比尔的 $a\otimes^n b$, 曾佐勃夫和罗莫里奥的 $a \cap b$,还有默纳福的 $a^{(n)}b$ (或者 $a^{(n)}b$)等.

【3,2】 葛 立 恒 数

【3,2,1】 拉姆塞数

把几个点用一些线连起来,就形成了图.如果一个图中任意 2 个不同顶点之间刚好有一条线相连,就把它称作完全图.这里,把有 n 个顶点的完全图记作 K_n.

现在,我们要对完全图的边进行染色.拉姆塞数的定义如下:

对完全图 K_x 进行 n 染色,满足条件"不管如何染色,都要么存在第 1 种颜色的完全图 K_{a_1} ,要么存在第 2 种颜色的完全图 K_{a_2} ,...,要么存在第 n 种颜色的完全图 K_{a_n} "的 x 的最小值记作 $R(a_1,a_2,...,a_n)$.

容易知道,R(1,a₂,a₃,...,a_n)=1,因为只要有1个点就是 K₁.另外,R(m,2,2...,2)=m. 拉姆塞数还有对称性,或者说交换律——比如 R(4,5,6)=R(6,5,4)=R(6,4,5).

事实上,拉姆塞数的计算是很困难的.到目前,已知的拉姆塞数只有很少.如:

拉姆塞数	可能取值	拉姆塞数	可能取值	拉姆塞数	可能取值
R(3,3)	6	R(3,4)	9	R(3,5)	14

R(3,6) 18 R(4,17) [182,968] R(6,9) [169,780] R(3,7) 23 R(4,18) [182,1139] R(6,10) [179,1171] R(3,8) 28 R(4,19) [198,1329] R(6,11) [253,3002] R(3,9) 36 R(4,20) [230,1539] R(6,12) [262,4367] R(3,10) [40,43] R(4,21) [242,1770] R(6,13) [317,6187] R(3,11) [46,51] R(4,22) [282,2023] R(6,14) [317,8567] R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401,11627] R(3,12) [52,59] R(5,6) [58,87] R(6,16) [434,15503] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434,15503] R(3,14) [66,78] R(5,7) [80,143] R(6,10) [710,33648] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614,26333] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,4250			П			
R(3,8) 28 R(4,19) [198,1329] R(6,11) [253,3002] R(3,9) 36 R(4,20) [230,1539] R(6,12) [262,4367] R(3,10) [40,43] R(4,21) [242,1770] R(6,13) [317,6187] R(3,11) [46,51] R(4,22) [282,2023] R(6,14) [317,8567] R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401,11627] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434,15503] R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548,20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614,26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710,33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878,53129] R(3,20) [109,209] R(5,13) [205,1819] R(7,7)	R(3,6)	18	R(4,17)	[182,968]	R(6,9)	[169, 780]
R(3,9) 36 R(4,20) [230,1539] R(6,12) [262,4367] R(3,10) [40,43] R(4,21) [242,1770] R(6,13) [317,6187] R(3,11) [46,51] R(4,22) [282,2023] R(6,14) [317,8567] R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401,11627] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434,15503] R(3,14) [66,78] R(5,7) [80,143] R(6,16) [548,20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614,26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710,33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878,53129] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8	R(3,7)	23	R(4,18)	[182,1139]	R(6,10)	[179, 1171]
R(3,10) [40,43] R(4,21) [242,1770] R(6,13) [317,6187] R(3,11) [46,51] R(4,22) [282,2023] R(6,14) [317,8567] R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401,11627] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434,15503] R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548,20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614,26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710,33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878,53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070,65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216,1031] R(3,22) [125,252] R(5,15)	R(3,8)	28	R(4,19)	[198,1329]	R(6,11)	[253, 3002]
R(3,11) [46,51] R(4,22) [282,2023] R(6,14) [317,8567] R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401,11627] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434,15503] R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548,20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614,26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710,33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,42503] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878,42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878,53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070,65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216,1031] R(3,22) [125,252] R(5,16) <td>R(3,9)</td> <td>36</td> <td>R(4,20)</td> <td>[230,1539]</td> <td>R(6,12)</td> <td>[262, 4367]</td>	R(3,9)	36	R(4,20)	[230,1539]	R(6,12)	[262, 4367]
R(3,12) [52,59] R(5,5) [43,49] R(6,15) [401, 11627] R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434, 15503] R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548, 20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614, 26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710, 33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 387	R(3,10)	[40,43]	R(4,21)	[242,1770]	R(6,13)	[317, 6187]
R(3,13) [59,69] R(5,6) [58,87] R(6,16) [434, 15503] R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548, 20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614, 26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710, 33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,1	R(3,11)	[46,51]	R(4,22)	[282,2023]	R(6,14)	[317, 8567]
R(3,14) [66,78] R(5,7) [80,143] R(6,17) [548, 20348] R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614, 26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710, 33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R	R(3,12)	[52,59]	R(5,5)	[43,49]	R(6,15)	[401, 11627]
R(3,15) [73,88] R(5,8) [101,216] R(6,18) [614, 26333] R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710, 33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,29) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] <t< td=""><td>R(3,13)</td><td>[59,69]</td><td>R(5,6)</td><td>[58,87]</td><td>R(6,16)</td><td>[434, 15503]</td></t<>	R(3,13)	[59,69]	R(5,6)	[58,87]	R(6,16)	[434, 15503]
R(3,16) [79,135] R(5,9) [125,316] R(6,19) [710, 33648] R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(3,14)	[66,78]	R(5,7)	[80,143]	R(6,17)	[548, 20348]
R(3,17) [92,152] R(5,10) [143,442] R(6,20) [878, 42503] R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878, 53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070, 65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205, 540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 5984] R(7,12) [416, 12375] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84]	R(3,15)	[73,88]	R(5,8)	[101,216]	R(6,18)	[614, 26333]
R(3,18) [98,170] R(5,11) [157,1000] R(6,21) [878,53129] R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070,65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216,1031] R(3,22) [125,252] R(5,15) [261,3059] R(7,9) [233,1713] R(3,23) [136,275] R(5,16) [278,3875] R(7,10) [232,2826] R(4,4) 18 R(5,17) [284,4844] R(7,10) [232,2826] R(4,5) 25 R(5,18) [284,5984] R(7,11) [405,8007] R(4,6) [35,41] R(5,19) [338,7314] R(7,12) [416,12375] R(4,7) [49,61] R(5,20) [380,8854] R(7,14) [511,27131] R(4,8) [56,84] R(5,21) [380,10625] R(7,15) [511,38759] R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) <td>R(3,16)</td> <td>[79,135]</td> <td>R(5,9)</td> <td>[125,316]</td> <td>R(6,19)</td> <td>[710, 33648]</td>	R(3,16)	[79,135]	R(5,9)	[125,316]	R(6,19)	[710, 33648]
R(3,19) [106,189] R(5,12) [181,1364] R(6,22) [1070,65779] R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216,1031] R(3,22) [125,252] R(5,15) [261,3059] R(7,9) [233,1713] R(3,23) [136,275] R(5,16) [278,3875] R(7,10) [232,2826] R(4,4) 18 R(5,17) [284,4844] R(7,11) [405,8007] R(4,5) 25 R(5,18) [284,5984] R(7,12) [416,12375] R(4,6) [35,41] R(5,19) [338,7314] R(7,13) [511,18563] R(4,7) [49,61] R(5,20) [380,8854] R(7,14) [511,27131] R(4,8) [56,84] R(5,21) [380,10625] R(7,15) [511,38759] R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(3,17)	[92,152]	R(5,10)	[143,442]	R(6,20)	[878, 42503]
R(3,20) [109,209] R(5,13) [205,1819] R(7,7) [205,540] R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216,1031] R(3,22) [125,252] R(5,15) [261,3059] R(7,9) [233,1713] R(3,23) [136,275] R(5,16) [278,3875] R(7,10) [232,2826] R(4,4) 18 R(5,17) [284,4844] R(7,11) [405,8007] R(4,5) 25 R(5,18) [284,5984] R(7,12) [416,12375] R(4,6) [35,41] R(5,19) [338,7314] R(7,13) [511,18563] R(4,7) [49,61] R(5,20) [380,8854] R(7,14) [511,27131] R(4,8) [56,84] R(5,21) [380,10625] R(7,15) [511,38759] R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,26)<	R(3,18)	[98,170]	R(5,11)	[157,1000]	R(6,21)	[878, 53129]
R(3,21) [122,230] R(5,14) [233,2379] R(7,8) [216, 1031] R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(3,19)	[106,189]	R(5,12)	[181,1364]	R(6,22)	[1070, 65779]
R(3,22) [125,252] R(5,15) [261, 3059] R(7,9) [233, 1713] R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(3,20)	[109,209]	R(5,13)	[205,1819]	R(7,7)	[205, 540]
R(3,23) [136,275] R(5,16) [278, 3875] R(7,10) [232, 2826] R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(3,21)	[122,230]	R(5,14)	[233,2379]	R(7,8)	[216, 1031]
R(4,4) 18 R(5,17) [284, 4844] R(7,11) [405, 8007] R(4,5) 25 R(5,18) [284, 5984] R(7,12) [416, 12375] R(4,6) [35,41] R(5,19) [338, 7314] R(7,13) [511, 18563] R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(3,22)	[125,252]	R(5,15)	[261, 3059]	R(7,9)	[233, 1713]
R(4,5) 25 R(5,18) [284,5984] R(7,12) [416,12375] R(4,6) [35,41] R(5,19) [338,7314] R(7,13) [511,18563] R(4,7) [49,61] R(5,20) [380,8854] R(7,14) [511,27131] R(4,8) [56,84] R(5,21) [380,10625] R(7,15) [511,38759] R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(3,23)	[136,275]	R(5,16)	[278, 3875]	R(7,10)	[232, 2826]
R(4,6) [35,41] R(5,19) [338,7314] R(7,13) [511,18563] R(4,7) [49,61] R(5,20) [380,8854] R(7,14) [511,27131] R(4,8) [56,84] R(5,21) [380,10625] R(7,15) [511,38759] R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(4,4)	18	R(5,17)	[284, 4844]	R(7,11)	[405, 8007]
R(4,7) [49,61] R(5,20) [380, 8854] R(7,14) [511, 27131] R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,5)	25	R(5,18)	[284, 5984]	R(7,12)	[416, 12375]
R(4,8) [56,84] R(5,21) [380, 10625] R(7,15) [511, 38759] R(4,9) [73,115] R(5,22) [422, 12649] R(7,16) [511, 54263] R(4,10) [92,149] R(5,23) [434, 14949] R(7,17) [628, 74612] R(4,11) [97,191] R(5,24) [434, 17549] R(7,18) [722, 100946] R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,6)	[35,41]	R(5,19)	[338, 7314]	R(7,13)	[511, 18563]
R(4,9) [73,115] R(5,22) [422,12649] R(7,16) [511,54263] R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(4,7)	[49,61]	R(5,20)	[380, 8854]	R(7,14)	[511, 27131]
R(4,10) [92,149] R(5,23) [434,14949] R(7,17) [628,74612] R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(4,8)	[56,84]	R(5,21)	[380, 10625]	R(7,15)	[511, 38759]
R(4,11) [97,191] R(5,24) [434,17549] R(7,18) [722,100946] R(4,12) [128,238] R(5,25) [434,20474] R(7,19) [908,134595] R(4,13) [133,291] R(5,26) [464,23750] R(7,20) [908,177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214,230229] R(4,15) [153,417] R(6,7) [113,298] R(8,8) [282,1870]	R(4,9)	[73,115]	R(5,22)	[422, 12649]	R(7,16)	[511, 54263]
R(4,12) [128,238] R(5,25) [434, 20474] R(7,19) [908, 134595] R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,10)	[92,149]	R(5,23)	[434, 14949]	R(7,17)	[628, 74612]
R(4,13) [133,291] R(5,26) [464, 23750] R(7,20) [908, 177099] R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,11)	[97,191]	R(5,24)	[434, 17549]	R(7,18)	[722, 100946]
R(4,14) [141,349] R(6,6) [102,165] R(7,21) [1214, 230229] R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,12)	[128,238]	R(5,25)	[434, 20474]	R(7,19)	[908, 134595]
R(4,15) [153,417] R(6,7) [113, 298] R(8,8) [282, 1870]	R(4,13)	[133,291]	R(5,26)	[464, 23750]	R(7,20)	[908, 177099]
	R(4,14)	[141,349]	R(6,6)	[102,165]	R(7,21)	[1214, 230229]
R(4,16) [153,815] R(6,8) [127, 495] R(8,9) [317, 3583]	R(4,15)	[153,417]	R(6,7)	[113, 298]	R(8,8)	[282, 1870]
	R(4,16)	[153,815]	R(6,8)	[127, 495]	R(8,9)	[317, 3583]

	1		
R(8,10)	[377, 6090]	R(9,9)	[565, 6588]
R(8,11)	[377, 19447]	R(9,10)	[580, 12677]
R(8,12)	[377, 31823]	R(10,10)	[798, 23556]
R(8,13)	[817, 50387]	R(11,11)	[1597, 184755]
R(8,14)	[817, 77519]	R(12,12)	[1637, 705431]
R(8,15)	[861, 116279]	R(13,13)	[2557, 2704155]
R(8,16)	[861, 170543]	R(14,14)	[2989, 10400599]
R(8,17)	[861, 245156]	R(15,15)	[5485, 40116599]
R(8,18)	[871, 346103]	R(16,16)	[5605, 155117519]
R(8,19)	[1054, 480699]	R(17,17)	[8917, 601080389]
R(8,20)	[1094, 657799]	R(18,18)	[11005, 2333606219]
R(8,21)	[1328, 888029]	R(19,19)	[17885, 9075135299]

另外 R(3,3,3)=17

实际上,拉姆塞数有不少范围,如 $\frac{k2^{k/2}}{e\sqrt{2}}$ < R(k,k) < 4 × R(k-2,k) + 2, R(3,k) < $\frac{5k^2}{12\ln k}$,以及比较具有一般性的 R(a,b) < C_{a+b-2}^{b-1} .

[注: 本节内容全为铺垫]

【3,2,2】 葛立恒问题

葛立恒提出这样一个问题:把 n 阶超立方体的任意两个顶点都连一条线段,得到完全图 K_{2^n}.对所有的线段进行红、蓝二染色.求满足条件"不管如何染色,都存在同一平面的同色的 K₄"的 n 的最小值.

Martin Gardner 证明了,这个结果至多是 G(64)(称作葛立恒数,Graham),其中 $G(1)=3\uparrow^43$, $G(n^+)=3\uparrow^{G(n)}3$.然而,葛立恒证明了这个结果至多是 g(7)(称作little graham),其中 $g(1)=2\uparrow^{12}3$, $g(n^+)=2\uparrow^{g(n)}3$.最近,人们发现该结果的范围应该是[13,2 $\uparrow\uparrow$ 2 $\uparrow\uparrow\uparrow$ 2 $\uparrow\uparrow\uparrow$ 9].由此可见,葛立恒问题也是挺"虚大"的.

事实上,Moser 数远远小于 G(2),而 G(2)又小于 g(2).这个问题涉及的数如此巨大,你看,仅仅是不超过 10^10 的拉姆塞数的计算就已经如此艰难,何况"强化"拓展的数字如此巨大的葛立恒问题!

xkcd=Ack(Graham),看似很大,其实 $xkcd \cdot G(65)$,所以这一扩展几乎没什么用.真正有用的扩展,在下面——

【3,2,3】 Aarex 的扩展

(这个 Aarex 又出现了)首先 forcal= $G(10^6)$,接着 force forcal= $G(G(10^6))$, force force force forcal= $G(G(G(10^6)))$, force force force forcal= $G(G(G(G(10^6))))$, 依次类排,我们可以得到一个序列:Forcal(n).可以如下定义:Forcal(0)= 10^6 , Forcal(n)=G(Forcal(n-1)).

suporcal=Forcal(10^6),force suporcal=G(suporcal)=Forcal(1000001), force force suporcal=G(force suporcal)=Forcal(1000002)等等.进行了"很多"步以后,得到 superior suporcal=Forcal(suporcal).如果定义 Forcal₂(0)= 10^6 ,Forcal₂(n)=Forcal(Forcal₂(n-1)),那么 suporcal=Forcal₂(1),superior suporcal=Forcal₂(1).

可以继续定义 $Forcal_m(0)=10^6$, $Forcal_m(n)=Forcal_{m-1}(Forcal_m(n-1))$,接下来, $megocal=Forcal_2(10^6)$, $force\ megocal=Forcal(Forcal_2(999999)+1)$,然后 $superior\ megocal=Forcal_2(1000001)$, $superior\ superior\ megocal=Forcal_2(1000002)$,然后 $megaior\ megocal=Forcal_3(2)$, $megaior\ megaior\ megocal=Forcal_3(3)$, $megaior\ megaior\ megaior\ megocal=Forcal_3(4)$.

hypercal=Forcal $_4$ (1),force hypercal=Forcal(Forcal $_2$ (Forcal $_3$ (999999) -1))+1),superior hypercal=Forcal $_2$ (Forcal $_3$ (999999)+1),megaior hypercal=Forcal $_3$ (1000001).hyperior hypercal=Forcal $_4$ (2),hyperior hyperior hypercal=Forcal $_4$ (3),hyperior hyperior hyperior hypercal=Forcal $_4$ (4).

gorgcal=Forcal $_5$ (1),force gorgcal=Forcal(Forcal $_2$ (Forcal $_3$ (Forcal $_4$ (999999)-1)-1)+1),superior gorgcal=Forcal $_2$ (Forcal $_3$ (Forcal $_4$ (999999)-1)+1),megaior gorgcal=Forcal $_3$ (Forcal $_4$ (999999)+1),hyperior gorgcal=Forcal $_4$ (1000001).gorgcaior grogcal=Forcal $_5$ (2),gorgcaior gorgcaior gorgcal=Forcal $_5$ (3),gorgcaior gorgcaior gorgcaior gorgcaior gorgcal=Forcal $_5$ (4).

gulfcal=Forcal₆(1),gulfcaior gulfcal=Forcal₆(2),gulfcaior gulfcaior gulfcal=Forcal₆(3),gulfcaior gulfcaior gulfcaior gulfcaior gulfcal=Forcal₆(4). gaspocal=Forcal₇(1),gaspocaior gaspocal=Forcal₇(2),gaspocaior

gaspocaior gaspocal=Forcal $_7$ (3), gaspocaior gaspocaior gaspocaior gaspocal=Forcal $_7$ (4).

ginorcal=Forcal₈(1),ginorcaior ginorcal=Forcal₈(2), ginorcaior ginorcaior ginorcaior ginorcaior ginorcaior ginorcaior ginorcal=Forcal₈(4).

定义 $Forcal_{a,1}(n)=Forcal_a(n), Forcal_{1,b+1}(1)=Forcal_{1000000,b}(1), Forcal_{1,b+1}(n)=Forcal_{$

terribuporcal=Forcal_{2,2}(1),terribuperior terribuporcal=Forcal_{2,2}(2). terribegocal=Forcal_{3,2}(1),terribypercal=Forcal_{4,2}(1),terriborgecal=Forcal_{5,2}(1),terribulfcal=Forcal_{6,2}(1),terribaspcal=Forcal_{7,2}(1),terribinorcal=Forcal_{8,2}(1).

最后, $tribocal=Forcal_{1000000,2}(1)=Forcal_{1,3}(1)$.

【3,3】低级超运算

【3,3,1】下箭头

与上箭头一样,可以把 a↓↓...↓b(c 个"↓")表示为 a↓°b.它的定义如下:
1.a↓b=a^b
2.a↓°1=a
3.a↓°b=(a↓°(b-1))↓^{c-1}a(b>1,c>1)

从第 3 条可以看出,下箭头与上箭头唯一的不同之处就是左结合定义.下箭头本身也是左结合的, $a\downarrow^nb\downarrow^nc$ 被解释成 $(a\downarrow^nb)\downarrow^nc$ 而不是 $a\downarrow^n(b\downarrow^nc)$.

实际上, $a\downarrow^{c+1}b=a\downarrow^c a\downarrow^c ...a(b 个"a").如 c=1,则 <math>a\downarrow\downarrow b=((a^a)^a)...^a(b 个"a"),$ 根据乘方性质 $(a^b)^c=a^(b\times c)$,我们得到 $a\downarrow\downarrow b=a^a^(b-1)$.

于是 $a\downarrow\downarrow a=a^a^a$, 所以 $a\downarrow\downarrow a < a\uparrow\uparrow 3(a>1)$.

下箭头明显不如上箭头增长快速.不过,我们还是得到:a↓^{2c-1}b≥a↑cb 这样一个下限.

【3,3,2】默纳福低级超运算

这种运算一般用 $a_{(n)}b$ 或者 $a_{(n)}b$ 表示.定义为:

- $1.a_{(1)}b=a+b$
- $2.a_{(n)}1=a$
- $3.a_{(n)}b=(a_{(n)}(b-1))_{(n-1)}a(b>1,n>1)$

 $a_{(n)}b$ 也具有左结合律.而且 $a_{(n+1)}b=a_{(n)}a_{(n)}...a(b 个"a")$. 于是我们得到, $a_{(2)}b=a+a+...a=a\times b$, $a_{(3)}b=a\times a\times ...a=a^b$,因此 $a_{(3)}b=a\downarrow b$,进而有 $a_{(n+2)}b=a\downarrow^n b$.

[3,3,3] Clarkkkkson

注:这一节只是跟"↓"稍有联系而已.

lynz 是一个随时间而变化的数.1998年2月26日,lynz₁=lynz₂=100,此后每天 lynz₁和 lynz₂都会加倍.1998年9月17日以后的每一天,lynz₁变成前一天的平方,lynz₂仍按原来的规则变化.记 K=lynz₁+lynz₂

接下来,阶乘是 a!=a×(a-1)×...3×2×1,然后 a!²=a!×(a-1)!×...3!×2!×1!,a!³=a!²×(a-1)!²×...3!²×2!²×1!²,依次类排,a!ⁿ⁺¹=a!ⁿ×(a-1)!ⁿ×...3!ⁿ×2!ⁿ×1!ⁿ.(请勿当真,此定义仅供理解下面的定义)

hypf(c,2,n)= $n!^c \times (n-1)!^c \times ... 3!^c \times 2!^c \times 1!^c$

 $hypf(c,3,n)=n!^{c}\downarrow(n-1)!^{c}\downarrow...3!^{c}\downarrow2!^{c}\downarrow1!^{c}$

 $hypf(c,4,n)=n!^{c}\downarrow\downarrow(n-1)!^{c}\downarrow\downarrow...3!^{c}\downarrow\downarrow2!^{c}\downarrow\downarrow1!^{c}$

依次类排,hypf(c,p,n)=n!c(p)(n-1)!c(p)...3!c(p)2!c(p)1!c

设 ck(c,p,n,1)=hypf(c,p,n),ck(c,p,n,r⁺)=hypf(c,p,ck(c,p,n,r)),那么

 $ck(c,p,n,r)=hypf(c,p,hypf(c,p,...hypf(c,p,hypf(c,p,n))))(#r^\phi"hypf").$

设 A_1 =ck(K,K,K,K), A_{n+1} =ck(A_n , A_n , A_n , A_n),则 A_{k+1} 就称作 Clarkkkkson.因为这个数的定义中 K 在变化,所以 Clarkkkkson 本身也是变化的.实际上,1998 年2月26日,Clarkkkkson"诞生"之日,它就已经超越了葛立恒数;1998年3月7日,Clarkkkkson 超越了 forcal.不过,想要它超越 force forcal,不知要等多久!

【3,4】康威链式箭号

【3,4,1】定义、性质与近似

 $3\rightarrow2\rightarrow6\rightarrow1\rightarrow4\rightarrow7$ $2\rightarrow8\rightarrow6\rightarrow4\rightarrow3\rightarrow5$ $5\rightarrow6\rightarrow3\rightarrow4$ $7\rightarrow1\rightarrow6\rightarrow3$ 上面的东西就是一些康威链式箭号.此符号用右箭头"→"表示.我们称由" \rightarrow "连接的一串数字为一条"键",这样就有:

 $1.a \rightarrow b = a^b$

2.键 $1 \rightarrow 1 \rightarrow$ 链 2=链 1(即只要见到"1"就去掉 1 和它右边的东西,简称"见 1 删右").例如: $4 \rightarrow 5 \rightarrow 7 \rightarrow 1 = 4 \rightarrow 5 \rightarrow 7, 3 \rightarrow 2 \rightarrow 1 \rightarrow 8 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 5 = 3 \rightarrow 2 = 9$

3.链 $\rightarrow a^{+} \rightarrow b^{+} =$ 链 $\rightarrow ($ 链 $\rightarrow a \rightarrow b^{+}) \rightarrow b.$ 例如:

 $3 \rightarrow 4 \rightarrow 8 \rightarrow 2 \rightarrow 5 = 3 \rightarrow 4 \rightarrow 8 \rightarrow (3 \rightarrow 4 \rightarrow 8 \rightarrow 1 \rightarrow 5) \rightarrow 4 = 3 \rightarrow 4 \rightarrow 8 \rightarrow (3 \rightarrow 4 \rightarrow 8) \rightarrow 4 \rightarrow 8 \rightarrow (3 \rightarrow 4 \rightarrow 8) \rightarrow (3 \rightarrow 4 \rightarrow 4) \rightarrow (3 \rightarrow 4$

 $3 \rightarrow 4 \rightarrow 5 \rightarrow 6 = 3 \rightarrow 4 \rightarrow (3 \rightarrow 4 \rightarrow 4 \rightarrow 6) \rightarrow 5$

注意 第 3 条,当链只有 1 个数时,它与上箭头完全一样.这就是说, $a \rightarrow b \rightarrow c = a \uparrow^c b$.康威链式箭号不具有任何结合律,如

 $2 \rightarrow 3 \rightarrow 2 = 2 \uparrow \uparrow 3 = 2 \uparrow 2 \uparrow 2 = 2 \uparrow 4,2 \rightarrow (3 \rightarrow 2) = 2 \rightarrow 9 = 2 \uparrow 9,(2 \rightarrow 3) \rightarrow 2 = 8 \rightarrow 2 = 2 \uparrow 6$,两两不同. 因为 $G(1) = 3 \rightarrow 3 \rightarrow 4$, $G(n^{+}) = 3 \rightarrow 3 \rightarrow G(n)$,而且 $3 \rightarrow 3 \rightarrow 1 < G(1) < 3 \rightarrow 3 \rightarrow 2 \rightarrow 2$,所以 $3 \rightarrow 3 \rightarrow 6 \rightarrow 2 < G(64) < 3 \rightarrow 3 \rightarrow 6 \rightarrow 2$.同理,

 $3 \rightarrow 3 \rightarrow 65 \rightarrow 2 < x k c d < 3 \rightarrow 3 \rightarrow 66 \rightarrow 2, 3 \rightarrow 3 \rightarrow 1000000 \rightarrow 2 < forcal < 3 \rightarrow 3 \rightarrow 1000001 \rightarrow 2$.

请注意刚才下划虚线的地方,实际上,我们可以得出:

 $3 \rightarrow 3 \rightarrow n \rightarrow m+1 < Forcal_{m,2}(n) < 3 \rightarrow 3 \rightarrow 3 \rightarrow n+1 \rightarrow m+1$

 $Forcal_{m,2}(1) < 3 \rightarrow 3 \rightarrow 2 \rightarrow m+1$

 $3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n \rightarrow 2 \leftarrow Forcal_{1,3}(n) \leftarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n+1 \rightarrow 2$

 $3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n \rightarrow 3 \leftarrow Forcal_{2,3}(n) \leftarrow 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n+1 \rightarrow 3$

 $3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n \rightarrow m+1 < Forcal_{m,3}(n) < 3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow n+1 \rightarrow m+1$

最后,我们得到 $3 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2... \rightarrow 2 \rightarrow n \rightarrow m+1$ (共 $a-2 \land "2")<$

Forcal_{m,a}(n) $<3\rightarrow3\rightarrow3\rightarrow2\rightarrow2...\rightarrow2\rightarrow$ n+1 \rightarrow m+1(# a-2 \land "2").

【3,4,2】cg 函数

很简单,cg(n)=n→n→n...→n(共 n 个"n").这意味着 cg(n+3)>Forcal_{n,n}(n).

【3,4,3】下标扩展

Peter Hurford 对这个"→"记号进行了扩展.右箭头"→"的右下角可以增加一个下标,像"→2"、"→3"、"→4"那样.你可以用同种下标箭头组成一条链,如 $3 \rightarrow_2 3 \rightarrow_2 4 \rightarrow_2 2$,又如 $5 \rightarrow_{495} 3 \rightarrow_{495} 6$.但是,你不能把不同的下标箭头不加括号地在一条链中混用.如 $3 \rightarrow_2 3 \rightarrow 4$ 、 $2 \rightarrow_2 6 \rightarrow_3 7$ 等是不正确的写法,而像 $2 \rightarrow_2 (6 \rightarrow_3 7)$ 之类用括号把不同下标箭头分开的写法则是正确的.

下标箭头新增了下面的定义:

```
2.a \rightarrow_{c+1} b = a \rightarrow_{c} a \rightarrow_{c} ... a \rightarrow_{c} a ( \ddagger b \land 箭 \pounds, b+1 \land "a"). 如
                      5 \rightarrow_1 3 = 5^3 = 125, 5 \rightarrow_2 3 = 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 = 5 \rightarrow 5 \rightarrow (5 \rightarrow 5 \rightarrow 4 \rightarrow 5) \rightarrow 4 = ...
                       3\rightarrow_{10}4=3\rightarrow_{9}3\rightarrow_{9}3\rightarrow_{9}3\rightarrow_{9}3
3.下标箭头链仍保持着"见1删右"的性质.如
                     6 \rightarrow_5 3 \rightarrow_5 1 \rightarrow_5 7 \rightarrow_5 5 = 6 \rightarrow_5 3.7 \rightarrow_8 4 \rightarrow_8 6 \rightarrow_8 4 \rightarrow_8 5 \rightarrow_8 1 = 7 \rightarrow_8 4 \rightarrow_8 6 \rightarrow_8 4 \rightarrow_8 5
                       但是此条应在第 2 条之后执行.4\rightarrow_31\rightarrow_35=4,而 4\rightarrow_31=4\rightarrow_24=4\rightarrow4\rightarrow4\rightarrow4\rightarrow4.
 4.a \rightarrow_n b^{\dagger} \rightarrow_n c^{\dagger} = a \rightarrow_n (a \rightarrow_n b \rightarrow_n c^{\dagger}) \rightarrow_n c, 这条与前面相同.
                                        于是,cq(n+1)=n+1→2n.下面你将看到这些含"→n"记号所表示数字的巨大.
 n \rightarrow_2 n > n \rightarrow_2 n - 1 = cg(n). 这很简单.
 3 \rightarrow_2 3 \rightarrow_2 2 = 3 \rightarrow_2 (3 \rightarrow_2 2 \rightarrow_2 2) \rightarrow_2 1 = 3 \rightarrow_2 (3 \rightarrow_2 (3 \rightarrow_2 1 \rightarrow_2 2) \rightarrow_2 1) = 3 \rightarrow_2 (3 \rightarrow_2 3) 
 3\rightarrow 3\rightarrow 3)=3\rightarrow 3\rightarrow ...3\rightarrow 3(共 3\rightarrow 3\rightarrow 3\rightarrow 3\rightarrow 3\rightarrow 7 个"\rightarrow").这个数有点大,它比 cq(cq(3))大.
 3\rightarrow_2 3\rightarrow_2 3=3\rightarrow_2 (3\rightarrow_2 (3\rightarrow_2 1\rightarrow_2 3)\rightarrow_2 2)\rightarrow_2 2=3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 2)\rightarrow_2 2=3\rightarrow_2 (3\rightarrow_2 (3\rightarrow_2 1)\rightarrow_2 2)\rightarrow_2 2=3\rightarrow_2 (3\rightarrow_2 1)\rightarrow_2 (3\rightarrow_2 1
 cq<sup>cg(cg(3))</sup>(3),这里,函数名右上角的东西(上标)不是乘方,而是函数迭代的次数.
 3 \rightarrow_2 3 \rightarrow_2 4、3 \rightarrow_2 3 \rightarrow_2 5、3 \rightarrow_2 3 \rightarrow_2 10、3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3)等,这些都需要你自己发挥想象.
 3 \rightarrow_2 3 \rightarrow_2 2 \rightarrow_2 2 = 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 1 \rightarrow_2 2) \rightarrow_2 1 = 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3)
 3\rightarrow_2 3\rightarrow_2 2=3\rightarrow_2 2=3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 2\rightarrow_2 2)\rightarrow_2 1=3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3))
 3 \rightarrow_2 3 \rightarrow_2 4 \rightarrow_2 2 = 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3))), \(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\
    接下来、3\rightarrow_2 3\rightarrow_2 2\rightarrow_2 3=3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 1\rightarrow_2 3)\rightarrow_2 2=3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3)\rightarrow_2 2
 3 \rightarrow_{2} 3 \rightarrow_{2} 3 \Rightarrow_{2} 3 \Rightarrow_{2} 3 \Rightarrow_{2} (3 \rightarrow_{2} 3 \Rightarrow_{2} 2 \Rightarrow_{2} 3) \Rightarrow_{2} 2 \Rightarrow_{3} 2 \Rightarrow_{2} (3 \rightarrow_{2} 3 \Rightarrow_{2} (3 \rightarrow_{2} 3 \Rightarrow_{2} 2 \Rightarrow_{2} 3) \Rightarrow_{2} 2 \Rightarrow_{2} 2 \Rightarrow_{2} 3 \Rightarrow_{2} 3 \Rightarrow_{2} 2 \Rightarrow_{2} 3 \Rightarrow_{2} 2 \Rightarrow_{2} 3 \Rightarrow_{2} 2 \Rightarrow_{2} 3 \Rightarrow_{2}
 3 \rightarrow_2 3 \rightarrow_2 4 \rightarrow_2 3 = 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3) \rightarrow_2 2) \rightarrow_2 2) \rightarrow_2 2,  \ddagger \ddagger .
    \rightarrow_2 3 \rightarrow_2 3)
 3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 2=3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 (3\rightarrow_2 3\rightarrow_2 3))
 3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 4 \rightarrow_2 2 = 3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 (3 \rightarrow_2 3 \rightarrow
   3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 3 \rightarrow_2 2 \rightarrow_2 2. 3 \rightarrow_2 3 \rightarrow_2
    类的东西.这样,我们得到 3\rightarrow_3 3=3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 3\rightarrow_3 4=3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 3\rightarrow_2 3,还有 3\rightarrow_3 9
   这样大的数字.
   接下来,3\rightarrow_33\rightarrow_32=3\rightarrow_3(3\rightarrow_32\rightarrow_32)\rightarrow_31=3\rightarrow_3(3\rightarrow_33),如此继续,你会得到3\rightarrow_43.
 3\rightarrow_5 3、3\rightarrow_6 3、3\rightarrow_{3\rightarrow3\rightarrow3\rightarrow3} 3 之类的东西.
                                   实际上,我们还可以扩展.
```

 $1." \rightarrow_1" = " \rightarrow "$, 这意味着,下标为 1 相当于没有下标.

【3,4,4】C函数

C函数可以是一元、二元、三元函数,定义如下:

- $1.C(a)=a \rightarrow_a a$
- $2.C(a,1)=a \rightarrow_{C(a)}a$
- $3.C(a,b^+)=a \rightarrow_{C(a,b)}a$
- 4.C(a,1,1)=C(a,C(a,a))
- $5.C(a,b^{+},1)=C(a,C(a,b,1))$
- $6.C(a,1,c^{+})=C(a,C(a,a,c),c)$
- $7.C(a,b^{+},c^{+})=C(a,C(a,b,c^{+}),c)$

可以发现,除了初始值,这个定义好像跟"↑"一样.它所表示数的大小,这里就不详细说明了.

什么,你觉得刚才的数很大?那你根本就还没踏入大数之门呢.

【4】超越箭头

【4,1】Friedman序列

r 4,1,1 1

这是由 Friedman 提出的一个问题.假设有一个由不超过 k 的正整数组成的序列 $\{a_1,a_2,...,a_k\}$,并且满足下面的条件:

不存在任何"满足 $1 \le i < j \le k/2$,且使得 $\{a_i, a_{i+1}, ..., a_{2i}\}$ 是 $\{a_j, a_{j+1}, ..., a_{2j}\}$ 的子序列"的(i,j)对.

这样的序列称作 Friedman 序列.他定义下面的函数 n(k),它表示关于 k 的 Friedman 序列的最大长度.

【4,1,2】n(k)的值

很容易知道,n(1)=3.序列{1,1,1}(可以简单记为"111")就满足要求.

n(2)=11.右图可说明问题.

别看 n(1)和 n(2)比较小,实际上这个序列的增长是很快的,为了表示 n(3)和 n(4),现在定义:

A(1,n)=2n $A(m+1,n)=2\uparrow^{m-1}n$ A(n)=A(n,n)

这个定义与河克曼函数非常相似.Friedman 证明了,A(7198,158386)×n(3) $\le A(A(5))$.n(4) $\ge A^{A(187196)}(1)$,但未得出 n(4)的上限.实际上,这个 n(k)的增长率甚至超过了 C(k,k,k)的增长率.即使 n(4)的上限可能可以用 C 函数来限制,n(5)也可以超过 C 函数所能匹及的范围;即使 n(5)可能可以用 C 函数来限制,n(6)也可以超过 C 函数所能匹及的范围;即使 n(6)可能可以用 C 函数来限制,n(10 5)也可以超过 C 函数所能匹及的范围;即使 n(6)可能可以用 C 函数来限制,n(10 5)也可以超过 C 函数所能匹及的范围.

[4,2] Circle 函数

由平面上的 n 个不相交的圆(可能外离或内含)组成了一个序列: $\{C_1,C_2,...,C_n\}$ 把并集 $C_a \cup C_{a+1} \cup ... C_{b-1} \cup C_b$ 记作 $C_{[a,b]}$ (请联想区间的含义).给定一个正整数 k, 如果存在满足" $k \le i < j \le n/2$,且存在把 $C_{[i,2i]}$ 变成 $C_{[j,2j]}$ 的子集的同胚拓扑变换"的 (i,j)对,那么称这样的 n 圆组为"k-好"的.

把不是"k-好"的n圆组中,n的最大值记作Circle(k).这个函数的增长比n(k)还要快得多!我们只知道很少的值,如Circle(1)=5,Circle(2)≥13.

【4,3】Hydra 函数

一棵"树",它有一些节点和一些枝条.如右图.

最右边的图表示一种"直"的树,此图中它有4个

枝条和5个节点,最下方的是"根".对这棵树进行下面的操作:

第 n 次操作,去掉一个"树叶"a(就是不再向上分支的节点),如果它下面的最近节点 b 不是树根,这时把 b 和它所"长出来"的东西(不包括已经去掉的 a)记作 B,把 b 下面的最近节点记作 c,那么接下来 c 会多"长出"n 个 B,此步操作才完成.

实际上,不管如何操作,一棵树总能在有限步之内变得只剩下树根.现在定义 Hydra 函数如下:

从一个含有k个枝条的"直的"树开始,用上述操作吧它变成只剩树根,所用的最多步数就是 Hydra(k).

很明显,树根不用操作就是树根,所以 Hydra(O)=O.其实,对于任何 k,只要总是从左侧(或者总是从右侧)去掉树叶,那么步数会有最大值.这样,可以得到 Hydra(1)=1,Hydra(2)=3,Hydra(3)=37.

这个函数的增长也比 n(k) 快.Hydra(4) 就远远大于 $5 \rightarrow 5 \rightarrow 5 \rightarrow 4 \rightarrow 5$.

[4,4]E与#

【4,4,1】初级定义

你应该在一些地方见过类似 E10,E35,E200 等记号.这就是由 Sbiis Saibian 定义的 E#记号.实际上,你可以在"E"后面写下由"#"连接的一串数字(序列),如 E23#5#12#8#6#4 等.这里默认底数为 10.如果使用不同的底数,则把它用括弧括起来写在"E"的右边.如 E(5)20#32#7,它以 5 为底数.这一符号定义如下:

- 1.E(a)b=a^b
- 2.E(a)...#1=E(a)... (即把最右边的 1 去掉)
- $3.E(a)b_1\#b_2\#...\#b_n=E(a)b_1\#b_2\#...\#b_{n-2}\#(E(a)b_1\#b_2\#...\#b_{n-1}\#(b_n-1))$. 也就是说,对于最右边不是 1 且序列中至少 2 个数的情形,要按以下方式操作:

把序列中最右边 2 项去掉,然后添上一项,而这一项是"整个序列中,最右边一项减去 1 之后算出来的数值".

特别地,E(a)b#(c+1)=E(a)E(a)b#c.因此,E(a)b#c=E(a)E(a)...E(a)b(共 c 个 "E(a)")=a^a^...^a^b(共 c 个 "a").当(a)省略的时候,默认 a=10,即底数为 10. 下面是一些典型的例子.

E100= 10^{100} ,它称作 googol.而 E100000= 10^{100000} ,被 Sbiis Saibian 称作 googolgong. 这里插一句, 10^{100} +10 称作 googolteen,而大于 googol 的第一个质数称作 gooprol,它等于 10^{100} +267.googolty 则表示 10^{101} .

Egoogol=10^10^100,称作 googolplex,而它的倒数 10^(-10^100)则称作 googolminex. gargoogolplex 则是 googolplex 的平方,即 10^(2×10¹⁰⁰).googolbang 等于 10¹⁰⁰!,它大约是 10^(9.9565705518098×10¹⁰¹).

这几个系列还可以延伸,其中"alogue"是 10 系,"googol"是 100 系,"eceton"是 303 系,而 "gong"是 100000 系.

=	- •					
数值	名歌	数值	名称	数值	名称	数值
E1#5	googoltriplex	E2#5	ecetontriplex	E303#4	googoltriplexigong	E5#5
E1#6	googolquadri	E2#6	ecetonquad	E303#5	googolquadriplex	E5#6
	plex		riplex		igong	
E1#7	endekalogue	E1#11	pentadekalogue	E1#15	ennadekalogue	E1#19
E1#8	dodekalogue	E1#12	hexadekalogue	E1#16	icosalogue	E1#20
E1#9	triadekalogue	E1#13	heptadekalogue	E1#17	triantalogue	E1#30
E1#10	tetradekalogue	E1#14	octadekalogue	E1#18	terantalogue	E1#40
	E1#5 E1#6 E1#7 E1#8 E1#9	E1#5 googoltriplex E1#6 googolquadri plex E1#7 endekalogue E1#8 dodekalogue E1#9 triadekalogue	E1#5 googoltriplex E2#5 E1#6 googolquadri E2#6 plex E1#7 endekalogue E1#11 E1#8 dodekalogue E1#12 E1#9 triadekalogue E1#13	E1#5 googoltriplex E2#5 ecetontriplex E1#6 googolquadri E2#6 ecetonquad plex riplex E1#7 endekalogue E1#11 pentadekalogue E1#8 dodekalogue E1#12 hexadekalogue E1#9 triadekalogue E1#13 heptadekalogue	E1#5 googoltriplex E2#5 ecetontriplex E303#4 E1#6 googolquadri E2#6 ecetonquad E303#5 plex riplex E1#7 endekalogue E1#11 pentadekalogue E1#15 E1#8 dodekalogue E1#12 hexadekalogue E1#16 E1#9 triadekalogue E1#13 heptadekalogue E1#17	E1#5 googoltriplex E2#5 ecetontriplex E303#4 googoltriplexigong E1#6 googolquadri plex riplex riplex igong E1#7 endekalogue E1#11 pentadekalogue E1#15 ennadekalogue E1#8 dodekalogue E1#12 hexadekalogue E1#16 icosalogue E1#9 triadekalogue E1#13 heptadekalogue E1#17 triantalogue

```
接着,penantalogue=E1#50,exatalogue=E1#60,eptatalogue=E1#70,ogdatalogue=
E1#80,entatalogue=E1#90,hectalogue=E1#100(也叫giggol).
megafuga-hundred=100100,它介于 E2#100 和 E3#100 之间.
grangol=E100#100,grangolplex=E100#101,giggolgong=E1#100000,grangolgong=
E100000#100000,googol-stack=E1#googol=^{10^100}10.
googoldex=E100#1#2,googolplexidex=E100#2#2,googolduplexidex=E100#3#2.
grangoldex=E100#100#2,grangoldudex=E100#100#3.
接下来的系列是 teraksys 系列.
 tria-teraksys=E1#1#3=10<sup>↑</sup>↑<sup>↑</sup>3
 tetra-teraksys=E1#tria-teraksys=E1#(E1#1#3)=E1#1#4=10^^^4
 penta-teraksys=E1#tetra-teraksys=E1#(E1#1#4)=E1#1#5=10↑↑↑5
 hexa-teraksys=E1\#penta-teraksys=E1\#(E1\#1\#5)=E1\#1\#6=10\uparrow\uparrow\uparrow6
 hepta-teraksys=E1#1#7=10\uparrow\uparrow\uparrow
 octa-teraksys=E1#1#8=10<sup>↑</sup>↑↑8
 enna-teraksys=E1#1#9=10<sup>↑</sup>↑↑9
 deka-teraksys=E1#1#10=10^↑↑10=E1#1#1#2=10^↑↑↑2
 hecta-teraksys=E1#1#100=10<sup>↑</sup>↑100
greagol=E100#100#100,比 hecta-teraksys 大得多.通俗点说(见右下图)-
我们可以得到下面几个系列.
 greagol 系列:
                                                         greagol =
 greagol=E100#100#100
                                                          101010
 greagolthrex=E100#100#greagol
                                                                             10101010
 =E100#100#(E100#100#100)=E100#100#100#2
 greagolduthrex=E100#100#greagolthrex
 =E100#100#(E100#100#100#2)=E100#100#100#3
                                                                             100
 greagolgong 系列:
                                                                 ①
 greagolgong=E100000#100000#100000
 greagolthrexigon=E100000#100000#100000#2
                                                                 10101010
 greagolduthrexigong=E100000#100000#100000#3
                                                                   10<sup>10</sup>10<sup>10</sup>
                                                                          303
 eceton 系列:
                                                    ecetonthrex =
 ecetonthrex=E303#1#1#2=E303#1#(E303)
                                                                        101010303
                                                     10101010
 =E303#1#centillion,通俗点说(见右图)——
                                                                           101010303
                                                        10101010
 ecetonduthrex=E303#1#1#3
 =E303#1#ecetonthrex
                                                             10<sup>10</sup>10<sup>10</sup>
 petaksys 系列:
                                                               10<sup>10</sup>10<sup>10</sup>
                                                                            10<sup>303</sup>
 tria-petaksys=E1#1#1#3=E1#1#deka-teraksys=10\uparrow\uparrow\uparrow\uparrow3
 tetra-petaksys=E1#1#1#4=E1#1#tria-petaksys=10^↑↑↑4
 penta-petaksys=E1#1#1#5=E1#1#tetra-petaksys=10^↑↑↑5
```

```
hexa-petaksys=E1#1#1#6=10<sup>↑</sup>↑<sup>↑</sup>6
 hepta-petaksys=E1#1#1#7=10\uparrow\uparrow\uparrow\uparrow
 octa-petaksys=E1#1#1#8=10^↑↑↑8
 enna-petaksys=E1#1#1#9=10<sup>↑↑↑</sup>
 deka-petaksys=E1#1#1#10=10^^^^10=E1#1#1#1#2=10^^^^^2
 hecta-petaksys=E1#1#1#100=10^\^\1100
gigangol=E100#100#100#100, 于是我们可以开始下面的系列.
 gigangol 系列:
 gigangol=E100#100#100#100
 gigangoltetrex=E100#100#100#100#2=E100#100#100#gigangol
 gigangoldutetrex=E100#100#100#100#3=E100#100#100#gigangoltetrex
 gigangolgong 系列:
 gigangolgong=E100000#100000#100000
 gigangoltetrexigong=E100000#100000#100000#2
 gigangoldutetrexigong=E100000#100000#100000#3
 eceton 系列:
 ecetontetrex=E303#1#1#1#2
                                          小提示:E(a)1#1#1#...1#1#2=a↑ba
 ecetondutetrex=E303#1#1#1#3
 exaksys 系列:
                                                     (共 b 个"1")
 tria-exaksys=E1#1#1#1#3=10^^^^
 tetra-exaksys=E1#1#1#1#4=10^\^\^\4
 deka-exaksys=E1#1#1#1#10=10^^10101010102
 hecta-exaksys=E1#1#1#1#100=10^\^\^\1100
gorgegol=E100#100#100#100#100, 于是我们可以开始下面的系列.
 gorgegol 系列:
 gorgegol=E100#100#100#100#100
 gorgegolpentex=E100#100#100#100#100#2=E100#100#100#100#gorgegol
 gorgegoldupentex=E100#100#100#100#100#3=E100#100#100#100#gorgegolpentex
 gorgegolgong 系列:
 gorgegolgong=E100000#100000#100000#100000
 gorgegolpentexigong=E100000#100000#100000#100000#2
 gorgegoldupentexigong=E100000#100000#100000#100000#3
 eceton 系列:
 ecetonpentex=E303#1#1#1#1#2
 ecetondupentex=E303#1#1#1#1#3
 eptaksys 系列:
 tria-eptaksys=E1#1#1#1#1#3=10<sup>6</sup>3
 tetra-eptaksys=E1#1#1#1#1#4=10<sup>6</sup>4
```

```
deka-eptaksys=E1#1#1#1#1#10=10<sup>6</sup>10=10<sup>7</sup>2
 hecta-eptaksys=E1#1#1#1#1#100=10<sup>6</sup>100
gulgol=E100#100#100#100#100#100, 于是我们可以开始下面的系列.
 gulgol 系列:
 gulgol=E100#100#100#100#100
 gulgolhex=E100#100#100#100#100#2
 gulgolduhex=E100#100#100#100#100#3
 gulgolgong 系列:
 gulgolgong=E100000#100000#100000#100000#100000
 gulgolhexigong=E100000#100000#100000#100000#100000#2
 gulgolduhexigong=E100000#100000#100000#100000#100000#3
 eceton 系列:
 ecetonhex=E303#1#1#1#1#1#2
 ecetonduhex=E303#1#1#1#1#1#3
 octaksys 系列:
 tria-octaksys=E1#1#1#1#1#1#3=10<sup>7</sup>3
 tetra-octaksys=E1#1#1#1#1#1#4=10<sup>7</sup>4
 deka-octaksys=E1#1#1#1#1#1#10=10<sup>7</sup>10=10<sup>8</sup>2
 hecta-octaksys=E1#1#1#1#1#1#100=10<sup>7</sup>100
gapsgol=E100#100#100#100#100#100#100, 于是我们又可以开始下面的系列.
 gapsgol 系列:
 gapsgol=E100#100#100#100#100#100
 gapsgolheptex=E100#100#100#100#100#100#2
 gapsgolduheptex=E100#100#100#100#100#100#3
 gapsgolgong 系列:
 gapsgolgong=E100000#100000#100000#100000#100000#100000
 gapsgolheptexigong=E100000#100000#100000#100000#100000#100000#2
 gapsgolduheptexigong=E100000#100000#100000#100000#100000#100000#3
 eceton 系列:
 ecetonheptex=E303#1#1#1#1#1#1#2
 ecetonduheptex=E303#1#1#1#1#1#13
 ennaksys 系列:
 tria-ennaksys=E1#1#1#1#1#1#1#1#3=10<sup>8</sup>3
 tetra-ennaksys=E1#1#1#1#1#1#1#4=10<sup>8</sup>4
 deka-ennaksys=E1#1#1#1#1#1#1#10=10<sup>8</sup>10=10<sup>9</sup>2
 hecta-ennaksys=E1#1#1#1#1#1#1#100=10<sup>8</sup>100
ginorgol=E100#100#100#100#100#100#100, 于是我们还可以开始下面的系
列
```

ginorgol 系列:

ginorgol=E100#100#100#100#100#100#100 ginorgoloctex=E100#100#100#100#100#100#100#2 ginorgolduoctex=E100#100#100#100#100#100#100#3

ginorgolgong 系列:

ecetonoctex=E303#1#1#1#1#1#1#1#2 ecetonduoctex=E303#1#1#1#1#1#1#1#3

dekaksys 系列:

tria-dekaksys=E1#1#1#1#1#1#1#1#1#3=10\(^93\)
tetra-dekaksys=E1#1#1#1#1#1#1#1#4=10\(^94\)
deka-dekaksys=E1#1#1#1#1#1#1#1#10=10\(^910=10\)\(^102\)
hecta-dekaksys=E1#1#1#1#1#1#1#1#1#100=10\(^9100\)

实际上,我们可以得出下面的结论:Ea#b#c#d#e=

我们可以按着这个规律写下去,不难得出 Ea1#a2#...an的乘方表达.

【4,4,2】连续的"#"

刚才序列 E100#100#...#100(共 n 个"100")中的第 100 个称作 gugold,它等于 E100#100#...#100(100 个"100").

现在,我们设 E(r)a##b=E(r)a#a#...#a(b 个"a"),然后 吧"被##分开的数字"也当作普通的节,进行上面第 2、3 条的递归.例如

E3##4##2#3=E3##4##E3##4##2#2

=E3##4##E3##4##E3##4##2#1

=E3##4##E3##4##E3##**4**##2

=E3##4##E3##4##E3##**4**##**1**

=E3##4##E3##4##E3##**4**

=E3##4##E3##4##E3##E3##4#3

=E3##4##E3##4#E3##E3##E3##4#2

=E3##4##E3##4##E3##E3##E3##E3##4#1

=E3##4##E3##4#E3##E3##E3##E3##4

=E3##4##E3##4##E3##E3##E3##E3##3#3#3

进而我们还有下面的新规则:

1. $E(a)b=a^{b}$

2.EA##...#1=EA 这里的"A"可以代表任意长的序列,可以认为"A"是链.

3.EAa#b=EA(EAa#(b-1))

4.EAa##...c ↑ ...#b=EAa#...c-1 ↑ ...#a##...c ↑ ...#(b-1)

这样,我们就可以把gugold表示成E100##100.它大约与100↑1001相当.注意,不是准确的相等,而是近似.

这一阶段,我们得到下面的数字:

首先是 gugold 系列和相应的-gong 系列.

gugold=E100##100=E100#100##99=...=E100#100#...100#100(± 100 ↑ "100")

quqolda-suplex=E100#100#...100#100(# quqold ↑ "100")=E100##quqold

=E100##100#2

=E100##gugolda-suplex=E100##100#3

gugoldagong=E100000##100000

gugolda-suplexigong=E100000##100000#2

gugolda-dusuplexigong=E100000##100000#3

接下来,顺着 E100##100#n 这一"趋势",我们得到 graatagold=E100##100#100.通俗一点说(如下页图所示)——

```
graatagold
这一系列包含下面的数字:
                                        graatagold=E100##100#100
                                        E100#100#100#100# ...... # 100#100#100# 100
 graatagolda-sudex=E100##100#100#2
 graatagolda-dusudex=E100##100#100#3
 graatagoldagong=E100000##100000#100000
                                              E100#100# ... ... ... #100#100 (2)
 graatagolda-sudexigong=E100000##100000#100000#2
                                               E100#100# ... ... #100#100 (1)
 graatagolda-dusudexigong=E100000##100000#100000#3
实际上, graatagold 应该介于 Graham 数和 forcal 之间.下面是 greegold 系列和相应的
-gong 系列:
 greegold=E100##100#100#100
 greegolda-suthrex=E100##100#100#100#2
 greegolda-dusuthrex=E100##100#100#100#3
 greegoldagong=E100000##100000#100000
 greegolda-suthrexigong=E100000##100000#100000#2
 greegolda-dusuthrexigong=E100000##100000#100000#3
下面是 grinningold 系列和相应的-gong 系列:
 grinningold=E100##100#100#100
 grinningolda-sutetrex=E100##100#100#100#2
 grinningolda-dusutetrex=E100##100#100#100#3
 grinningoldagong=E100000##100000#100000#100000
 grinningolda-sutetrexigong=E100000##100000#100000#100000#2
 grinningolda-dusutetrexigong=E100000##100000#100000#100000#3
下面是 golaagold 系列和相应的-gong 系列:
 golaagold=E100##100#100#100#100
 golaagolda-supentex=E100##100#100#100#100#2
 golaagolda-dusupentex=E100##100#100#100#100#3
 golaagoldagong=E100000##100000#100000#100000#100000
 golaagolda-supentexigong=E100000##100000#100000#100000#100000#2
 golaagolda-dusupentexigong=E100000##100000#100000#100000#100000#3
类似的,我们还有以 gruelohgold=E100##100#100#100#100#100 为首的
gruelohgold 系列,它包含 gruelohgold、gruelohgolda-suhex、gruelohgolda-dusuhex、
gruelohgoldagong、gruelohgolda-suhexigong、gruelohgolda-dusuhexigong 等数字.
以 gaspgold=E100##100#100#100#100#100#100 为首的 gaspgold 系列,它
包含 gaspgold gaspgolda-suheptex gaspgolda-dusuheptex gaspgoldagong.
gaspgolda-suheptexigong、gaspgolda-dusuheptexigong 等数字.
以 ginorgold=E100##100#100#100#100#100#100#100 为首的 ginorgold
系列,它包含 ginorgold ginorgolda-suoctex ginorgolda-dusuoctex ginorgoldagong.
```

ginorgolda-suoctexigong、ginorgolda-dusuoctexigong 等数字.

现在,把刚才我们所说的一些数字列出来,可以得到下面的有规律的数阵.

第1行		第2行	
名称	数值	名歌	数值
googol	E100##1	gugold	E100##100##1
grangol	E100##2	graatagold	E100##100##2
greagol	E100##3	greegold	E100##100##3
gigangol	E100##4	grinningold	E100##100##4
gorgegol	E100##5	golaagold	E100##100##5
gulgol	E100##6	gruelohgold	E100##100##6
gaspgol	E100##7	gaspgold	E100##100##7
ginorgol	E100##8	ginorgold	E100##100##8

其中每一个数其实代表了一个系列(包括普通系列和-gong 系列,甚至eceton-系列和-aksys 系列).如果顺着上表的趋势,我们可以得到下面的东西.提示:用"##"连接的序列近似于没有下标的康威链式箭号.

表的第3行:

gugolthra=E100##100##100
graatagolthra=E100##100##100##2
greegolthra=E100##100##100##3
grinningolthra=E100##100##100##4
golaagolthra=E100##100##100##5
gruelohgolthra=E100##100##100##6
gaspgolthra=E100##100##100##7
ginorgolthra=E100##100##100##8

表的第4行:

gugoltesla=E100##100##100##100
graatagoltesla=E100##100##100##100##2
greegoltesla=E100##100##100##100##3
grinningoltesla=E100##100##100##100##4
golaagoltesla=E100##100##100##100##5
gruelohgoltesla=E100##100##100##100##6
gaspgoltesla=E100##100##100##100##7
ginorgoltesla=E100##100##100##100##8
表的第5行:

gugolpeta=E100##100##100##100##100 graatagolpeta=E100##100##100##100##2 greegolpeta=E100##100##100##100##100##3
grinningolpeta=E100##100##100##100##100##4
golaagolpeta=E100##100##100##100##100##5
gruelohgolpeta=E100##100##100##100##100##6
gaspgolpeta=E100##100##100##100##100##7
ginorgolpeta=E100##100##100##100##100##8
表的第6行:

gugolhexa=E100##100##100##100##100##100
graatagolhexa=E100##100##100##100##100##100##2
greegolhexa=E100##100##100##100##100##100##3
grinningolhexa=E100##100##100##100##100##4
golaagolhexa=E100##100##100##100##100##5
gruelohgolhexa=E100##100##100##100##100##6
gaspgolhexa=E100##100##100##100##100##7
ginorgolhexa=E100##100##100##100##100##8

表的第7行:

gugolhepta=E100##100##100##100##100##100##100 graatagolhepta=E100##100##100##100##100##100##100##2 greegolhepta=E100##100##100##100##100##100##100##3 grinningolhepta=E100##100##100##100##100##100##100##4 golaagolhepta=E100##100##100##100##100##100##5 gruelohgolhepta=E100##100##100##100##100##100##100##6 gaspgolhepta=E100##100##100##100##100##100##7 ginorgolhepta=E100##100##100##100##100##100##8 表的第8行:

总共有64个"gol数",这意味着64个系列.这里就不一一命名了.

如果刚才由 64 个"gol 数"组成了一个表,这个表就只是三维表的一个平面而已.而这个三维表只是一个更大的四维表的一个立方块,四维表又只是五维表的一部分...三维表达到了含下标的康威链式箭号的增长率,那么四维表将会

```
超过它,超过 C 函数,更不用说更高维度的表了.下面是一些典型的数字.
 在三维表中,我们首先见到的是 throogol(用前缀 thr-替换 googol 中的 g-所得),它等于
E100###100,也就是 E100##100##...100##100(100 个"100").第 2 个平面应该包
括下面的东西;
  第 1 行的 throogol=E100###100
        thrangol=E100###100##2
        threagol=E100###100##3
        thrigangol=E100###100##4
        throrgegol=E100###100##5
        thrulgol=E100###100##6
        thraspgol=E100###100##7
        thrinorgol=E100###100##8
  第 2 行的 thrugold=E100###100##100=E100###100###2
        thraatagold=E100###100##100##2
        threegold=E100###100##100##3
        thrinningold=E100###100##4
        throlaagold=E100###100##5
        thruelohgold=E100###100##100##6
        thraspgold=E100###100##7
        thrinorgold=E100###100##100##8
  第 3 行的 thrugolthra=E100###100###3
  第 4 行的 thrugoltesla=E100###100###4
  第 5 行的 thrugolpeta=E100###100###5
  第 6 行的 thrugolhexa=E100###100###6
  第 7 行的 thrugolhepta=E100###100###7
  第 8 行的 thrugolocta=E100###100###8 等等
然后我们进入第3个平面,我们用前缀"tristo-"来引导第3个平面的数字.这个平面以
tristo-throogol=E100####3 为首.
  第 3 个平面的第 1 行包括 tristo-throogol=E100###100###100
                   tristo-thrangol=E100###100###100##2
                   tristo-threagol=E100###100###100##3 等数字
  第 2 行包括 tristo-thrugold=E100###100###100
          tristo-thraatagold=E100###100###100##2
          tristo-threegold=E100###100###100##3 等
  第 3 行包括 tristo-thrugolthra=E100###100###100##100
          tristo-thraatagolthra=E100###100##100##100##2 $
  第 4 行的 tristo-thrugoltesla=E100###100###100##100##100
  第 5 行的 tristo-thrugolpeta=E100###100###100###5
```

```
第 6 行的 tristo-thrugolhexa=E100###100###100###6 等等
当我们进入第4个平面时,使用前缀"teristo".它们以 teristo-throogol=E100####4
为首.如
 第 1 行的 teristo-throogol=E100###100###100
       teristo-thrangol=E100###100###100###100##2
       teristo-threagol=E100###100###100###100##3
 第 2 行的 teristo-thrugold=E100###100###100###100
       teristo-thraatagold=E100###100###100###100##2
 第 3 行的 teristo-thrugolthra=E100###100###100###100##100
 第 4 行的 teristo-thrugoltesla=E100###100###100###100###4
 第 5 行的 teristo-thrugolpeta=E100###100###100###100###5
 第 6 行的 teristo-thrugolhexa=E100###100###100###100###6
第5个平面以 pesto-throogol=E100####5 为首.
(第 1 行)pesto-throogol=E100###100###100###100
      pesto-thrangol=E100###100###100###100##2
(第 2 行)pesto-thrugold=E100###100###100###100###100
(第 3 行)pesto-thrugolthra=E100###100###100###100###100###3 等数字.
第6个平面以 existo-throogol=E100####6 为首.
(第 1 行)existo-throogol=E100###100###100###100###100
      existo-thrangol=E100###100###100###100###100###2
(第 2 行)existo-thrugold=E100###100###100###100###100###100###100
(第3行)existo-thrugolthra=E100###100###100###100###100###100###3等.
第7个平面:episto-throogol=E100####7
第 8 个平面:ogisto-throogol=E100####8
前面的东西都只在四维表的第1个立方块中,而在四维表接下来的立方块中,我们首先见
到第2立方块中的 teroogol=E100####100.
 第2立方块:
 第 1 平面第 1 行 teroogol=E100####100
            terangol=E100####100##2
            tereagol=E100####100##3
 第 1 平面第 2 行 terugold=E100####100##100
            teraatagold=E100####100##100##2
 第 1 平面第 3 行 terugolthra=E100####100###3
       第 4 行 terugoltesla=E100####100###4
 第 2 平面第 1 行 teri-throogol=E100####100###100
 第 3 平面第 1 行 teri-tristo-throogol=E100####100###100###100
 第 4 平面 teri-teristo-throogol=E100####100####4
 第 5 平面 teri-existo-throogol=E100####100####5
```

```
第 1 平面 tristo-teroogol=E100####100####100
  第 2 平面 tristo-teri-throogol=E100####100####100###100
  第 3 平面 tristo-teri-tristo-throogol=E100####100####100####3
  第4立方块:
  第 1 平面 teristo-teroogol=E100####100####100
  第 2 平面 teristo-teri-throogol=E100####100####100####100####100
  第 5 立 市块 pesto-teroogol=E100####100####100####100####100
  第 6 立 方块 existo-teroogol=E100#####6
  第7立方块 episto-teroogol=E100#####7
  第8立方块 ogisto-teroogol=E100#####8
 同样,我们顺着序列
  grangol=E100#100
  gugold=E100##100
  throogol=E100###100
  teroogol=E100####100
 可以得出这个序列的扩展:
  petoogol=E100#####100
  ectoogol=E100######100
  zettoogol=E100######100
  yottoogol=E100########100
 我们用含"sto"的前缀表示一个维度中的位置,用不含"sto"的前缀表示维度.如
  yotti-zetti-ecti-peti-teri-throogol
  =E100#########100######100#####100####100####100####100####100
  tristo-yotti-ecti-teristo-peti-pesto-teri-tristo-thrinorgolthra=E100########100
  ########100######100#####100#####100#####100#####100
  ####100####100####100###100###100##8
 实际上,这个八维表包含了16777216个系列.你可以想象得出每个系列中每个数的名字
 这里就ホーー列挙了.
  如果 E100##...#100 中间有 100 个"#",那么它会变成什么呢?于是,Sbiis
Saibian给出了一个新的扩展,这就是——
```

【4,4,3】"#"的运算

第3立方块:

Sbiis Saibian 把连写的 n 个"#"也记作"#×#×...#×#",或者"#"",这个上标被解释为乘方.试着对比一下:

$aaa...aa=a\times a\times ...a\times a=a^n$ ###...##=#×#×...#×#=#ⁿ

你就发现这个定义实际上是吧"#"当成了一个数,如果"#"右上角的"数字" 是"#",那么 EAa# $^{+}$ b=EAa# ^{b}a .注意到所有的递归都从序列的最右边开始,于 是我们得到下面的定义:

- $1.E(a)b=a^b$
- 2.EAB1=EA,此处 A 为任意序列,B 为任何形式的"#".如

 $E(5)3\#^{4}5\#^{(\#^{3}\#)\times 7+\#\times 2}1=E(5)3\#^{4}5$

即去掉末尾的1和连接它的东西.

- 3.EAa#b=EA(a#(b-1)),此处 A 为任意序列.
- 4.EAa f(#)×# b=EAa f(#) a f(#)×# (b-1),此处 A 为任意序列,f(#)为任何形式的"#", f(#)×#则表示 f(#)和#的乘积.如

 $E(6)3\#^{6\#}2\#^{4\#+3}5=E(6)3\#^{6\#}2(\#^{4\#+2}\times\#)5=E(6)3\#^{6\#}2\#^{4\#+2}2\#^{4\#+3}4$

关于"#"本身的变换,有下面的情况(其中f(#)表示关于#的函数)

- $1.EAa\#^{f(\#)+\#}b=EAa\#^{f(\#)+b}a$
- $2FAa#^{f(\#)\times\#}b=FAa#^{f(\#)\times b}a$
- $3.EAa\#^{\#^{(f(\#)+\#)}}b=EAa\#^{\#^{(f(\#)+b)}}a$
- $4.EAa\#^{*(f(\#)\times\#)}b=EAa\#^{*(f(\#)\times b)}a$
- 6. $EAa\#^{\#^{*}\#^{*}(f(\#)\times\#)}b=EAa\#^{\#^{*}\#^{*}(f(\#)\times b)}a$

- 7.EAa ## b=EAa b# a
- 8.EAa $\#\uparrow\uparrow(f(\#)+\#)$ b=EAa $\#\uparrow\uparrow(f(\#)+b)$ a
- 9. $EAa \#\uparrow\uparrow(f(\#)\times\#) b=EAa \#\uparrow\uparrow(f(\#)\times b) a$
- 10. $EAa\#\uparrow\uparrow(\#^{f(\#)+\#})b=EAa\#\uparrow\uparrow(\#^{f(\#)+b})a$
- 11.EAa # $\uparrow\uparrow$ # $\uparrow\uparrow$ # b=EAa # $\uparrow\uparrow$ # $\uparrow\uparrow$ b a

也就是说,独立的#变成 b,而序列末尾的 b 则变成 a.为 了 更好地理解这些东 西,你可以参见第【7】章有关序数的说明.这里的#好像序数一样.

这是普通系列:

godgahlah=E100#¹⁰⁰100=E100#[#]100

grand godgahlah=E100#^{godgahlah}100=E100#[#]godgahlah=E100#[#]100#2

two-ex-grand godgahlah=E100#grand godgahlah100=E100##100#3

three-ex-grand godgahlah=E100#^{two-ex-grand godgahlah}100=E100#[#]100#4

```
hundred-ex-grand godgahlah=E100##100#101
godgahlah-ex-grand godgahlah=E100##100#(godgahlah+1)
>E100##100#E100##100=E100##100#1#2
-gong 系列:
godgahlahgong=E100000#<sup>100000</sup>100000=E100000#<sup>#</sup>100000
grand godgahlahgong=E100000#godgahlahgong100000=E100000#100000#2
  然后,我们继续扩展,得到下面的数字.
如果说 godgahlah 是第1个系列,那么第2个系列就是 grandgahlah 系列.它包括
 grandgahlah=E100##100#100
 grand grandgahlah=E100##100#100#2 等数字.
然后我们有下面的"系列首项":
 greagahlah=E100##100#100#100
 gigangahlah=E100##100#100#100=E100##100#24
 gorgegahlah=E100#<sup>#</sup>100#100#100#100#100=E100#<sup>#</sup>100#<sup>2</sup>5
 gulgahlah=E100#<sup>#</sup>100#100#100#100#100=E100#<sup>#</sup>100#<sup>2</sup>6
 gaspgahlah=E100#<sup>#</sup>100#100#100#100#100#100=E100#<sup>#</sup>100#<sup>2</sup>7
 ginorgahlah=E100##100#100#100#100#100#100#100#100=E100##100#28
回忆一下上一小节的八维表,这一小节所说的这几个数仅仅是第2个八维表表中的一行
而已.下面列出这第2个八维表中的某些数字.
 第2行:
 gugoldgahlah=E100##100#2100
 graatagoldgahlah=E100##100#2100#100
 greegoldgahlah=E100#<sup>#</sup>100#<sup>2</sup>100#100#100=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>3
 grinningoldgahlah=E100#<sup>#</sup>100#<sup>2</sup>100#100#100#100=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>4
 golaagoldgahlah=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>5
 gruelohgoldgahlah=E100##100#2100#26
 gaspgoldgahlah=E100#<sup>4</sup>100#<sup>2</sup>100#<sup>2</sup>7
 ginorgoldgahlah=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>8
  第 1 平面中的 3~8 行:
 gugolthragahlah=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>100=E100#<sup>#</sup>100#<sup>3</sup>3
 quqolteslagahlah=E100#<sup>#</sup>100#<sup>2</sup>100#<sup>2</sup>100=E100#<sup>#</sup>100#<sup>3</sup>4
 gugolpetagahlah=E100##100#35
 gugolhexagahlah=E100##100#36
 gugolheptagahlah=E100##100#37
 gugoloctagahlah=E100##100#38
 其它维度:
 throogahlah=E100##100#3100
```

```
teroogahlah=E100##100#4100
 petoogahlah=E100##100#5100=E100##100#5
 ectoogahlah=E100##100#6100=E100##100##6
 zettoogahlah=E100##100#<sup>7</sup>100=E100##100##7
 yottoogahlah=E100##100#8100=E100##100##8
最后,第 2 个八维表结束,第 3 个八维表以 gotrigahlah 开始.它等于 E100##100##100
=E100##100#100100.下面是这个八维表中的某些数字.
 gotrigahlah=E100##100##100
 grantrigahlah=E100##100#100
 greatrigahlah=E100##100#100#100
 gigantrigahlah=E100##100#100#100#100
 gorgetrigahlah=E100##100##100#25
 gultrigahlah=E100##100##100#26
 gasptrigahlah=E100#<sup>#</sup>100#<sup>2</sup>7
 ginortrigahlah=E100##100##100#28
 gugoldtrigahlah=E100#<sup>#</sup>100#<sup>2</sup>100
 throotrigahlah=E100##100##100#3100
 terootrigahlah=E100##100##100#4100
 petootrigahlah=E100##100##100#5100
 ectootrigahlah=E100#<sup>#</sup>100#<sup>6</sup>100
 zettootrigahlah=E100##100##100#<sup>7</sup>100
 yottootrigahlah=E100##100##100#8100
接下来,第4个表开始于gotergahlah=E100##100##100##100.顺着这几个表的开头,
我们得到下面的序列:
 googol=E100
 godgahlah=E100##100
 gotrigahlah=E100##100##100
 gotergahlah=E100##100##100##100=E100##+14
 goppegahlah=E100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100=E100#<sup>#+1</sup>5
 gohexgahlah=E100##100##100##100##100##100=E100##+16
 gohepgahlah=E100##100##100##100##100##100##100=E100##+17
 go-ahtgahlah=E100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100#<sup>#</sup>100
 go-enngahlah=E100##+19
 godekahlah=E100##+110
 gohectgahlah=E100##+1100
于是我们把上面的 gohectgahlah 称作 godgoldgahlah,然后我们得到下面的序列.也就
是 9 个表的开头数.
```

```
googol=E100
 godgoldgahlah=E100##+1100
 gotrigoldgahlah=E100#<sup>#+1</sup>100#<sup>#+1</sup>100
 gotergoldgahlah=E100#<sup>#+1</sup>100#<sup>#+1</sup>100
 goppegoldgahlah=E100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100=E100#<sup>#+2</sup>5
 gohexgoldgahlah=E100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100=E100#<sup>#+2</sup>6
 gohepgoldgahlah=E100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+1</sup>100#<sup>#+2</sup>7
 go-ahtgoldgahlah=E100#<sup>#+2</sup>8
 go-enngoldgahlah=E100##+29
 godekagoldgahlah=E100##+210
顺着上面2个序列,我们其实可以组建一个高级表,如果去掉 googol,那么 godgahlah 就
是第1个数,godgoldgahlah 就是第2个数(这2个数都在第1行中).这个高级表可以部
分列举如下.
  第1行:
 godgahlah=E100##100
 godgoldgahlah=E100##+1100
 godthroogahlah=E100##+2100
 godteroogahlah=E100##+3100
 godpetoogahlah=E100##+4100
 go-ectoogahlah=E100##+5100
 godzettoogahlah=E100##+6100
 godyottoogahlah=E100##+7100
  第 2 行:
 deutero-godgahlah=E100#<sup>#*2</sup>100=E100#<sup>#+#</sup>100=E100#<sup>#+100</sup>100
 deutero-godgoldgahlah=E100##×2+1100
 deutero-godthroogahlah=E100##x2+2100
 deutero-godteroogahlah=E100##×2+3100
 deutero-godpetoogahlah=E100##×2+4100
 deutero-go-ectoogahlah=E100##×2+5100
 deutero-godzettoogahlah=E100#**2+6100
 deutero-godyottoogahlah=E100##×2+7100
  第1平面的其它行:
  第 3 行 trito-godgahlah=E100##×3100
  第 4 行 teterto-godgahlah=E100##×4100
  第 5 行 pepto-godgahlah=E100#<sup>#×5</sup>100=E100#<sup>#×#</sup>5=E100#<sup>#^2</sup>5
  第 6 行 exto-godgahlah=E100#<sup>#×6</sup>100=E100#<sup>#×#</sup>6=E100#<sup>#^2</sup>6
  第 7 行 epto-godgahlah=E100#<sup>#*7</sup>100=E100#<sup>#*#</sup>7=E100#<sup>#^2</sup>7
```

第 8 行 ogdo-godgahlah=E100#^{#×8}100=E100#^{#^2}8

```
第 9 行 ento-godgahlah=E100#<sup>#×9</sup>100=E100#<sup>#^2</sup>9
第 10 行 dekato-godgahlah=E100#<sup>#×10</sup>100=E100#<sup>#^2</sup>10
第 20 行 isosto-godgahlah=E100#<sup>#×20</sup>100=E100#<sup>#^2</sup>20
第1立方块的其他平面:
第2平面第1个gridgahlah=E100##^2100
                 gridtrigahlah=E100#<sup>#^2</sup>100#<sup>#^2</sup>100
                 gridtergahlah=E100#<sup>#^2</sup>100#<sup>#^2</sup>100#<sup>#^2</sup>100=E100#<sup>#^2</sup>4
                 gridpeggahlah=E100#<sup>#^2</sup>100#<sup>#^2</sup>100#<sup>#^2</sup>100=E100#<sup>#^2</sup>5
                 gridhexgahlah=E100##^2+16
                 gridhepgahlah=E100##^2+17
                 grid-ahtgahlah=E100##^2+18
                 grid-enngahlah=E100##^2+19
                 grid-dekahlah=E100##^2+110
第 3 平面 deutero-gridgahlah=E100##^2×2100
第 4 平面 trito-gridgahlah=E100##^2×3100
第 5 平面 teterto-gridgahlah=E100##^2×4100
第 6 平面 pepto-gridgahlah=E100#<sup>#^2×5</sup>100=E100#<sup>#^2×#</sup>5=E100#<sup>#^3</sup>5
第 7 平面 exto-gridgahlah=E100#<sup>#^2×6</sup>100=E100#<sup>#^2×#</sup>6=E100#<sup>#^3</sup>6
第 8 平面 epto-gridgahlah=E100#<sup>#^2×7</sup>100=E100#<sup>#^3</sup>7
第 9 平面 ogdo-gridgahlah=E100#<sup>#^2×8</sup>100=E100#<sup>#^3</sup>8
第 10 平面 ento-gridgahlah=E100##^2×9100=E100##^39
第 11 平面 dekato-gridgahlah=E100#<sup>#^2×10</sup>100=E100#<sup>#^3</sup>10
第 21 平面 isosto-gridgahlah=E100#<sup>#^2×20</sup>100=E100#<sup>#^3</sup>20
第 1 四维块的其他立方块:
第 2 立 方 块 第 1 个 kubikahlah=E100##^3100
                    kubitrigahlah=E100#<sup>#^3</sup>100#<sup>#^3</sup>100
                    kubitergahlah=E100#<sup>#^3</sup>100#<sup>#^3</sup>100#<sup>#^3</sup>100=E100#<sup>#^3+1</sup>4
                    kubipeggahlah=E100#<sup>#^3</sup>100#<sup>#^3</sup>100#<sup>#^3</sup>100=E100#<sup>#^3</sup>5
                    kubihexgahlah=E100##^3+16
                    kubihepgahlah=E100#<sup>#^3+1</sup>7
                    kubi-ahtgahlah=E100##^3+18
                    kubi-enngahlah=E100#<sup>#^3+1</sup>9
                    kubi-dekahlah=E100#<sup>#^3+1</sup>10
第 3 立 方块 deutero-kubikahlah=E100##^3×2100
第 4 立 方块 trito-kubikahlah=E100##^3×3100
第 5 立 方块 teterto-kubikahlah=E100##^3×4100
第 6 立 市块 pepto-kubikahlah=E100#<sup>#^3×5</sup>100=E100#<sup>#^3×#</sup>5=E100#<sup>#^4</sup>5
```

```
第7立方块 exto-kubikahlah=E100#<sup>#^3×6</sup>100=E100#<sup>#^3×#</sup>6=E100#<sup>#^4</sup>6
第 8 立 方块 epto-kubikahlah=E100#<sup>#^3×7</sup>100=E100#<sup>#^3×#</sup>7=E100#<sup>#^4</sup>7
第 9 立 方块 ogdo-kubikahlah=E100#<sup>#^3×8</sup>100=E100#<sup>#^4</sup>8
第 10 立 方块 ento-kubikahlah=E100#<sup>#^3×9</sup>100=E100#<sup>#^4</sup>9
第 11 立 方块 dekato-kubikahlah=E100#<sup>#^3×10</sup>100=E100#<sup>#^4</sup>10
第 21 立 方块 isosto-kubikahlah=E100#<sup>#^3×20</sup>100=E100#<sup>#^4</sup>20
第 1 五维块的其它四维块:
第 2 四维块第 1 个 quarticahlah=E100##^4100
                     quartitrigahlah=E100#<sup>#^4</sup>100#<sup>#^4</sup>100=E100#<sup>#^4+1</sup>3
                     quartitergahlah=E100#<sup>#^4</sup>100#<sup>#^4</sup>100#<sup>#^4</sup>100=E100#<sup>#^4+1</sup>4
第 3 四维块 deutero-quarticahlah=E100##^4×2100
第 4 四维块 trito-quarticahlah=E100#<sup>#^4×3</sup>100=E100#<sup>#^4×#</sup>3=E100#<sup>#^5</sup>3
第 5 四维块 teterto-quarticahlah=E100##^4×4100=E100##^54
第 1 六维块的其它五维块:
第 2 五维块第 1 个 quinticahlah=E100##^5100
                     quintitrigahlah=E100#<sup>#^5</sup>100#<sup>#^5</sup>100=E100#<sup>#^5</sup>13
                     quintitergahlah=E100#<sup>#^5</sup>100#<sup>#^5</sup>100#<sup>#^5</sup>100=E100#<sup>#^5+1</sup>4
第 3 五维块 deutero-quinticahlah=E100##^5×2100
第 4 五维块 trito-quinticahlah=E100#<sup>#^5×3</sup>100=E100#<sup>#^5×#</sup>3=E100#<sup>#^6</sup>3
第 5 五维块 teterto-quinticahlah=E100#<sup>#^5×4</sup>100=E100#<sup>#^6</sup>4
第 11 五维块 dekato-quinticahlah=E100#<sup>#^5×10</sup>100=E100#<sup>#^6</sup>10
第 1 七维块的其它六维块:
第 2 六维块第 1 个 sexticahlah=E100##^6100
                     sextitrigahlah=E100#<sup>#^6</sup>100#<sup>#^6</sup>100=E100#<sup>#^6+1</sup>3
                     sextitergahlah=E100#<sup>#^6</sup>100#<sup>#^6</sup>100#<sup>#^6</sup>100=E100#<sup>#^6+1</sup>4
第 3 六维块 deutero-sexticahlah=E100##^6×2100
第 4 六维块 trito-sexticahlah=E100#<sup>#^6×3</sup>100=E100#<sup>#^6×#</sup>3=E100#<sup>#^7</sup>3
第 5 六维块 teterto-sexticahlah=E100#<sup>#^6×4</sup>100=E100#<sup>#^7</sup>4
第 11 六维块 dekato-sexticahlah=E100#<sup>#^6×10</sup>100=E100#<sup>#^7</sup>10
第1八维块的其它七维块:
第 2 七维块第 1 个 septicahlah=E100#<sup>#^7</sup>100
                     septitrigahlah=E100##^7100##^7100=E100##^7+13
                     septitergahlah=E100#<sup>#^7</sup>100#<sup>#^7</sup>100#<sup>#^7</sup>100=E100#<sup>#^7</sup>4
第 3 七维块 deutero-septicahlah=E100##^7×2100
第 4 七维块 trito-septicahlah=E100#<sup>#^7×3</sup>100=E100#<sup>#^7×#</sup>3=E100#<sup>#^8</sup>3
第 5 七维块 teterto-septicahlah=E100#<sup>#^7*4</sup>100=E100#<sup>#^8</sup>4
第 11 七维块 dekato-septicahlah=E100#<sup>#^7×10</sup>100=E100#<sup>#^8</sup>10
其它八维块:
```

```
第 2 八维块第 1 个 octicahlah=E100##^8100
                        octitrigahlah=E100#<sup>#^8</sup>100#<sup>#^8</sup>100=E100#<sup>#^8</sup>13
                        octitergahlah=E100#<sup>#^8</sup>100#<sup>#^8</sup>100#<sup>#^8</sup>100=E100#<sup>#^8</sup>+14
  第 3 八维块 deutero-octicahlah=E100##^8×2100
  第4小维块 trito-octicahlah=E100#<sup>#^8×3</sup>100=E100#<sup>#^8×#</sup>3=E100#<sup>#^9</sup>3
  第 5 八维块 teterto-octicahlah=E100#<sup>#^8×4</sup>100=E100#<sup>#^9</sup>4
  第 11 八维块 dekato-octicahlah=E100##^8×10100=E100##^910
随着这个高级表的结束,我们进入下一个的阶段.我们开始使用#^#/#/#/#/#/甚
\Xi#\uparrow\uparrow#,#\uparrow\uparrow\uparrow#,#\uparrow\uparrow\uparrow\uparrow#,如下.
 godgathor=E100#<sup>#^100</sup>100=E100#<sup>#^#</sup>100
 goober bunch=E100##^100×100100
 grand godgathor=E100#*^#100#2
 gibbering goober bunch=E100##^goober bunch*goober bunch100
 grand grand godgathor=E100##^#100#3(别小看后面的"#3",实际上这个数比 gibbering
 goober bunch 还大)
 gotrigathor=E100#<sup>#^#</sup>100#<sup>#^#</sup>100
 gotergathor=E100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100
 goppegathor=E100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100=E100#<sup>#^#+1</sup>5
 gohexgathor=E100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100=E100#<sup>#^#</sup>+16
 gohepgathor=E100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100#<sup>#^#</sup>100=E100#<sup>#^#</sup>*7
 go-ahtgathor=E100#<sup>#^#+1</sup>8
 go-enngathor=E100#<sup>#^#+1</sup>9
 godekgathor=E100#<sup>#^#+1</sup>10
  deutero-godgathor=E100#<sup>#^#+#^#</sup>100
  trito-godgathor=E100#<sup>#^#+#^#</sup>100=E100#<sup>#^#*3</sup>100=E100#<sup>#^***</sup>3
  teterto-godgathor=E100#<sup>#^#+#^#+#^#</sup>100=E100#<sup>#^#*4</sup>100=E100#<sup>#^**4</sup>4
  pepto-godgathor=E100#<sup>#^#+#^#+#^#+#^#</sup>100=E100#<sup>#^#*5</sup>100=E100#<sup>#^**5</sup>5
 exto-godgathor=E100#<sup>#^#+#^#+#^#+#^#</sup>100=E100#<sup>#^#*6</sup>100=E100#<sup>#^#*#</sup>6
 epto-godgathor=E100#<sup>#^#*7</sup>100=E100#<sup>#^#*#</sup>7
 ogdo-godgathor=E100\#^{*^**}100=E100\#^{*^**}8=E100\#^{*^*(**+1)}8
  ento-godgathor=E100#<sup>#^#*9</sup>100=E100#<sup>#^#*#</sup>9=E100#<sup>#^(#+1)</sup>9
  dekato-godgathor=E100#<sup>#^#*10</sup>100=E100#<sup>#^(#+1)</sup>10
  hecato-godgathor=E100\#^{\#^{*}\#\times 100}100=E100\#^{\#^{*}(\#+1)}100
 godgridgathor=E100#<sup>#^#**#^2</sup>100=E100#<sup>#^(#+2)</sup>100
 godkubikgathor=E100#<sup>#^#***</sup>100=E100#<sup>#^(#+3)</sup>100
 godquarticgathor=E100#<sup>#^#***4</sup>100=E100#<sup>#^(#+4)</sup>100
 godgathordeus=E100#<sup>#^#**</sup>100=E100#<sup>#^(#+#)</sup>100=E100#<sup>#^(#*2)</sup>100
  hecato-godgathordeus=E100#<sup>#^#</sup>****100=E100#<sup>#^(#+#+1)</sup>100=E100#<sup>#^(#×2+1)</sup>100
```

```
godgridgathordeus=E100#<sup>#^#*#^#*#^2</sup>100=E100#<sup>#^(#*2+2)</sup>100
godquarticgathordeus=E100#<sup>#^#**#^4</sup>100=E100#<sup>#^(#*2+4)</sup>100
godgathortruce=E100#<sup>#^#***</sup>100=E100#<sup>#^(#*3)</sup>100
godgathorquad=E100#<sup>#^#*#^#*#^#</sup>100=E100#<sup>#^(#*4)</sup>100
godgathorquid=E100#<sup>#^#***</sup>
100=E100#<sup>#^(#*5)</sup>100
godgathorsid=E100#<sup>#^#*#^#*#^#*#^#*#^#</sup>100=E100#<sup>#^(#*6)</sup>100
godgathorseptuce=E100#<sup>#^(#×7)</sup>100
godgathoroctuce=E100#<sup>#^(#×8)</sup>100
gralgathor=E100#<sup>#^(#×100)</sup>100=E100#<sup>#^(#×#)</sup>100=E100#<sup>#^#^2</sup>100
graltrigathor=E100#<sup>#^#^2</sup>100#<sup>#^#^2</sup>100=E100#<sup>#^#^2</sup>13
graltergathor=E100#<sup>#^#^2</sup>100#<sup>#^#^2</sup>100#<sup>#^#^2</sup>100=E100#<sup>#^#^2</sup>14
deutero-gralgathor=E100#<sup>#^#^2+#^#^2</sup>100=E100#<sup>#^#^2×2</sup>100
trito-gralgathor=E100#<sup>#^#^2+#^#^2</sup>100=E100#<sup>#^#^2×3</sup>100
gralgathordeus=E100#<sup>#^#^2×#^#^2</sup>100=E100#<sup>#^(#^2×2)</sup>100=E100#<sup>#^#^3</sup>2
gralgathortruce=E100#<sup>#^#^2×#^#^2×#^#^2</sup>100=E100#<sup>#^(#^2×3)</sup>100=E100#<sup>#^#^3</sup>3
gralgathorquad=E100#<sup>#^#^2×#^#^2×#^#^2</sup>100=E100#<sup>#^(#^2×4)</sup>100=E100#<sup>#^#</sup>34
gralgathorquid=E100#<sup>#^(#^2×5)</sup>100=E100#<sup>#^#^3</sup>5
gralgathorsid=E100#<sup>#^(#^2×6)</sup>100=E100#<sup>#^#^3</sup>6
gralgathorseptuce=E100##^#^37
gralgathoroctuce=E100##^#^38
thraelgathor=E100#<sup>#^#^3</sup>100=E100#<sup>#^#^31</sup>2
thraeltrigathor=E100#<sup>#^#^3</sup>100#<sup>#^#^3</sup>100=E100#<sup>#^#^3</sup>13
deutero-thraelgathor=E100#<sup>#^#^3+#^#^3</sup>100=E100#<sup>#^#^3×2</sup>100
trito-thraelgathor=E100#<sup>#^#^3+#^#^3+#^#^3</sup>100=E100#<sup>#^#^3×3</sup>100
thraelgathordeus=E100#<sup>#^#^3×#^#^3</sup>100=E100#<sup>#^(#^3×2)</sup>100=E100#<sup>#^#^4</sup>2
thraelgathortruce=E100#<sup>#^#^3×#^#^3×#^#^3</sup>100=E100#<sup>#^(#^3×3)</sup>100=E100#<sup>#^#^4</sup>3
terinngathor=E100#<sup>#^#^4</sup>100=E100#<sup>#^#^4</sup>2
terinntrigathor=E100\#^{\#^{*}\#^{4}}100\#^{\#^{*}\#^{4}}100=E100\#^{\#^{*}\#^{*}4+1}3
deutero-terinngathor=E100#<sup>#^#^4+#^4</sup>100=E100#<sup>#^#^4+2</sup>100
trito-terinngathor=E100#<sup>#^#^4+#^#^4+#^#</sup>100=E100#<sup>#^#^4*3</sup>100
terinngathordeus=E100#<sup>#^#^4*4*#^4</sup>100=E100#<sup>#^(#^4*2)</sup>100=E100#<sup>#^#^5</sup>2
terinngathortruce=E100#<sup>#^#^4</sup>4×#<sup>4</sup>**<sup>4</sup>100=E100#<sup>#^(#^4*3)</sup>100=E100#<sup>#^#</sup>3
pehaelgathor=E100#<sup>#^#^5</sup>100
hexaelgathor=E100#<sup>#^#^6</sup>100
heptaelgathor=E100#<sup>#^#^7</sup>100
```

godtothol=E100#^{#^#^100}100=E100#^{#^#}100

(终于到#^#^#/#7.)

graltothol=E100#**^**^2100

thraeltothol=E100#**^#^**3100

terinntothol=E100##^#^#^4100

pehaeltothol=E100##^#^#^5100

hexaeltothol=E100#^{#^#^#^6}100

heptaeltothol=E100#^{#^#^#^7}100

octaeltothol=E100##^#^#^8100

godtertathol=E100# ** ** ** 100100=E100# ** ** ** 100,从# ** ** ** 400,从# ** ** ** 4100,从# ** ** ** 4100,从# ** ** ** 4100,从# ** ** 4100 省略了很多东西.你要知道,其实这条路很长.现在我们列出一个表,把这些数字放进去,以便对比.这里的数全都是 E100g(#)100 的形式,其中 g(#)是关于#的函数.表中所列的 g(x)则是关于 x 的函数,它们是同一个函数,规则相同.

相应的 g(#)	相应的 g(x)		名称		相应的 g(x)
#^#^#^#	E(x)1#5		godextathol		E(x)1#7
#^#^#^#^2	E(x)2	#5	gralext	athol	E(x)2#7
#^#^#^# ^3	E(x)3	# 5	thraele	xtathol	E(x)3#7
#^#^#^#^4	E(x)4	# 5	terinne	xtathol	E(x)4#7
#^#^#^#^5	E(x)5#5		pehaelextathol		E(x)5#7
#^#^#^#^6	E(x)6#5		hexaelextathol		E(x)6#7
#^#^#^#^7	E(x)7#5		heptaelextathol		E(x)7#7
#^#^#^#^8	E(x)8#5		octaelextathol		E(x)8#7
#^#^#^#	E(x)1#6		godeptathol		E(x)1#8
#^#^#^#^#^2 E(x)		#6 gralepto		athol	E(x)2#8
#^#^#^#^#^3	`#^#^#^#^3 E(x)3#6		thraeleptathol		E(x)3#8
#^#^#^#^#^4 E(x)		#6 terinner		ptathol	E(x)4#8
#^#^#^#^#^5 E(#6	pehaeleptathol		E(x)5#8
#^#^#^#^#6	<i>‡</i> ^6 E(x)6#		hexaeleptathol		E(x)6#8
<i>#^#^#^#</i> ^#^7	E(x)7#6		heptaele	eptathol	E(x)7#8
<i>#^#^#^#</i> ^#^8	E(x)8#6		octaele	ptathol	E(x)8#8
相应的 g(#)		相应的	9(x)		
#^#^# [^] #^#^#^#		E(x)1	#9		
#^#^#^#^#^#^#		E(x)2#9			
#^#^#^#^#^#^#^3		E(x)3#9			
#^#^#^#^#^#^#4		E(x)4#9			
#^#^#^#^#^#		E(x)5#9			
#^#^#^#^#^#^#		#^6 E(x)6#9			
#^#^#^#^#^#	^#^7	#^7 E(x)7#9			
	#^#^#^## #^#*#*#*# #^#*#*#*# #^#*#*#*# #*#*#*#*	#^#^#^## E(x)1: #^#^#^#### E(x)2: #^#*#*################################	#^#^#^## E(x)1#5 #^#^#^### E(x)2#5 #^#*#*#*#	#^#^#^### E(x)1#5 godextorm #^###################################	#^#^#^## $E(x)1\#5$ godextathol #^#^#^#** $E(x)2\#5$ gralextathol #^#*#**** $E(x)3\#5$ thraelextathol #^#*#****** $E(x)3\#5$ thraelextathol #^#*#******* $E(x)3\#5$ thraelextathol #^#*#******* $E(x)5\#5$ pehaelextathol #*#**********************************

```
octaeloctathol
                    |#^#^#^#^#^#^#^#^8|E(x)8#9
看下面,我们终于见到##(也写作#↑↑#)3!
tethrathoth=E100#^#^...#^#100(共有100个"#"), 于是
                    tethrathoth=E100(#1100)100=E100#11#100
tethrathothigong=E100000(#1100000)100000=E100000#11#100000
grand tethrathoth=E100(#11tethrathoth)100
                    =E100#11#tethrathoth
                    =E100#\^#E100#\^#100
                    =E100#11#100#2
grand tethrathothigong=E100000(#11tethrathothigong)100000
                         =E100000#1\dagger#tethrathothigong
                         =E100000#<sup>↑</sup><sup>†</sup>#E100000#<sup>↑</sup><sup>†</sup>#100000
                         =E100000#11#100000#2
grand grand tethrathoth=E100(#11grand tethrathoth)100=E100#11#100#3
grand grand tethrathoth=E100#17#100#4
grand grand grand tethrathoth=E100#11#100#5
grantethrathoth=E100#1100#100
greatethrathoth=E100#17#100#100#100
gigantethrathoth=E100\#\uparrow\uparrow\#100\#100\#100=E100\#\uparrow\uparrow\#100\#^24
gorgetethrathoth=E100\#\uparrow\uparrow\#100\#100\#100\#100=E100\#\uparrow\uparrow\#100\#^25
gultethrathoth=E100\#\uparrow\uparrow\#100\#100\#100\#100\#100=E100\#\uparrow\uparrow\#100\#^26
gasptethrathoth=E100#\uparrow\uparrow#100#^27
ginortethrathoth=E100#\uparrow #100#^28
tethratrithoth=E100#\\#100#\\#100
tethraterthoth=E100#^^#100#^^#100#^^#100=E100#^^#×#4
tethrapethoth=E100#\f\#100#\f\#100#\f\#100#\f\#100=E100#\f\#×#5
tethra-exthoth=E100#11#×#6
tethra-epthoth=E100#11#×#7
tethra-octhoth=E100#11#×#8
deutero-tethrathoth=E100#17#×#17#100
trito-tethrathoth=E100\#\uparrow\uparrow\#\times\#\uparrow\uparrow\#100=E100((\#\uparrow\uparrow\#)^3)100
teterto-tethrathoth=E100#\f\#\*#\f\#\*#\f\#\*#\f\#100=E100((#\f\#)^4)100
hecato-tethrathoth=E100((#\uparrow\uparrow\#)^100)100=E100(#\uparrow\uparrow\#)^#100
grand hecato-tethrathoth=E100(#1+)** #100#2
Monster-Giant=E100(\#\uparrow\uparrow\#)^(\#\uparrow\uparrow\#\times\#\uparrow\uparrow\#\times...\#\uparrow\uparrow\#\times\#\uparrow\uparrow\#)100(\# 99 \uparrow "×")
               =E100((#<sup>↑</sup><sup>†</sup>#)<sup>^</sup>(#<sup>↑</sup><sup>†</sup>#)<sup>^</sup>100)100
               =E100(#<sup>↑</sup><sup>†</sup>#)<sup>^</sup>(#<sup>↑</sup><sup>†</sup>#)<sup>^</sup>#100
```

```
Super Monster-Giant=E100(\#\uparrow\uparrow\#)^(\#\uparrow\uparrow\#)^(\#\uparrow\uparrow\#\times\#\uparrow\uparrow\#\times...\#\uparrow\uparrow\#\times\#\uparrow\uparrow\#)100
                                                                 (共 99 个"×",即 100 个"#↑↑#"相乘)
                                =E100((#↑↑#)^(#↑↑#)^(#↑↑#)^100)100
                                =E100(#↑↑#)^(#↑↑#)^(#↑↑#)^#100
  terrible tethrathoth=E100(\#\uparrow\uparrow\#)^{(\#\uparrow\uparrow\#)^{...}}(\#\uparrow\uparrow\#)^{(\#\uparrow\uparrow\#)}100(\#100 \land "\#\uparrow\uparrow\#")
                                =E100((#11#)1100)100
                                =E100(#<sup>↑</sup><sup>†</sup>#)<sup>†</sup>†#100
  deutero-terrible tethrathoth=E100(\#\uparrow\uparrow\#)\uparrow\uparrow\#\times(\#\uparrow\uparrow\#)\uparrow\uparrow\#100
                                             =E100(((#\uparrow\uparrow#)\uparrow\uparrow#)^2)100
                                             =E100((\#\uparrow\uparrow\#)\uparrow\uparrow\#)^{2}
  trito-terrible tethrathoth=E100(\#\uparrow\uparrow\#)\uparrow\uparrow\#\times(\#\uparrow\uparrow\#)\uparrow\uparrow\#\times(\#\uparrow\uparrow\#)\uparrow\uparrow\#100
                                         =E100(((#\uparrow\uparrow#)\uparrow\uparrow#)^3)100
                                         =E100((#11#)11#)^#3
  hecato-terrible tethrathoth=E100(((\#\uparrow\uparrow\#)\uparrow\uparrow\#)^100)100=E100((\#\uparrow\uparrow\#)\uparrow\uparrow\#)^100
  terrible terrible tethrathoth=E100((#11#)11#)11#100
  terrible terrible tethrathoth=E100(((#\uparrow\uparrow\#)\uparrow\uparrow\#)\uparrow\uparrow\#)\uparrow\uparrow\#100
  terrible terrible terrible tethrathoth=E100((((#\uparrow\uparrow\#)\uparrow\uparrow\#)\uparrow\uparrow\#)\uparrow\uparrow\#)\uparrow\uparrow\#100
  tethrathoth ba'al=E100(...((#↑↑#))↑↑#)...↑↑#)↑↑#100( ± 100 ↑ "↑↑",101 ↑ "#")
  n-ex-terrible tethrathoth=E100(...((#\uparrow\uparrow#)\uparrow\uparrow#)...\uparrow\uparrow#)\uparrow\uparrow#100(\not\equiv n+1 \uparrow "\uparrow\uparrow",n+2 \uparrow "#")
最后,Great and Terrible Tethrathoth=E100(...((#↑↑#)↑↑#)...↑↑#)↑↑#100
(共tethrathoth ba'al个"↑↑").当然,这里把#↑↑#的运算变成了左结合的.如果这一运算
是右结合的,即变成#↑↑↑n 之类的东西,那么它将变得更大!
```

这一扩展到此为止.当然,大数是永无止境的.你可以在 Great and Terrible Tethrathoth 的后面加上 1,或是乘 2,变成一个更加巨大的数.但是大数学者并不屑于此.下一章我们将看到,数阵表示法是多么强大,相比之下,这个 E#系统就逊色多了——哪怕是 Great and Terrible Tethrathoth,都无法匹及后面的东西.

其实,刚才的东西只是热身运动而已.

【5】数阵时代

(5,1) BEAF

【5,1,1】普通数阵

数阵表示法,由 Jonathan Bowers 发明,称作 Bowers Exploding Array Function(简称 BEAF),它很复杂.它看起来很像一个普通的列表,如

 $A1=\{3,2,5,4,100\}$ $A2=\{3,6,1,1,1,1,5,8,1,1,6,7\}$ $A3=\{6,2(1),3,4,1,7(1),5\}$

 $A4 = \{8, 5, 1, 1, 1, 1\}$ $A5 = \{3, 4(9)(9)(8)(6)(6)(6)(4)(3)(1)(1)(1)(1), \frac{1}{2}, \frac{2}{5}\}$

数阵中,数字一般用逗号或分隔符"()"来分隔(圆括号内可以是任何东西).在第一个非逗号的分隔符之前的部分称作主行,非逗号的分隔符之间的部分称作行.如 A1、A2、A4 全都是由主行构成的.A3 中的"6,2"、"3,4,1,7"和"5"都是行,而 A5 的第一行为主行"3,4",另一行为"1,1,2,5".

在数阵中,数字1被称作默认值(这将在后面解释).

数阵的第1个数称作底数(如上面五例中红色数字),通常用b表示.

数阵的第2个数称作指数(如上面五例中蓝色数字),通常用 p 表示.

指数后面第一个不是1的数称作**驾驶员**(如上面五例中黄色底纹的数字,A4没有驾驶员).

在同一行内,紧靠在驾驶员前面的数称作副驾驶(如 A1、 A2 和 A5 中的绿色底纹的数字).如果驾驶员是某一行的第 1 个数,那么副驾驶不存在(如 A3).副驾驶可能是指数本身(如 A1).

副驾驶前面的所有东西称作乘客,如果像 A3 那样没有副驾驶,那么乘客就

是驾驶员前面的所有东西.如上例中灰色底纹的数字.值得注意的是,底数一定 是乘客中的一员.

BEAF的计算规则如下,按1、2、3的顺序执行.

- 1.如果指数为 1,那么整个数阵的值为底数 b
- 2.如果没有驾驶员,那么整个数阵的值为 bp
- 3. 把驾驶员减1,把副驾驶(如果有的话)变成"整个数阵把指数减去1之后的值",乘客全都 变成底数 b.

我们用下面的例子来理解这些东西.

 $\{8,5,1,1,1,1\}=8^5$ $\{8,5,1,1\}=8^5$ $\{8,5\}=8^5$

 ${3,2,2,1}={3,{3,1,2,1},1,1}={3,3,1,1}=3^3=27$

 ${3,2,2}={3,{3,1,2},1}={3,3,1}=3^3=27$

 $\{3,2,1,2,1\}=\{3,3,\{3,1,1,2,1\},1,1\}=\{3,3,3,1,1\}=\{3,\{3,2,3,1,1\},2,1,1\}$

 $= \{3, \{3, \{3, 1, 3, 1, 1\}, \{2, 1, 1\}, \{2, 1, 1\}\} = \{3, \{3, 3, 2, 1, 1\}, \{2, 1, 1\}\}$

 $= \{3, \{3, \{3, 2, 2, 1, 1\}, 1, 1, 1\}, 2, 1, 1\} = \{3, \{3, \{3, \{3, \{3, 1, 2, 1, 1\}, 1, 1, 1\}, 1, 1, 1\}, 2, 1, 1\}\}$

={3,{3,3,1,1,1},1,1,1,2,1,1}={3,{3,27,1,1,1},2,1,1}

 $={3,3^27,2,1,1}=.....=3^3^...3^3(\# 3^27 \wedge "3")$

 ${3,2,1,2}={3,3,{3,1,1,2},1}={3,3,3,1}=...=3^3^...3^3(# 3^27 ^"3")$

实际上,一行末尾的1是不参与任何递归的.因此,我们可以随意地增删行末 的"1"(通常我们都省略行末的"1"不写).接着,下面的等式也是成立的.

 ${4,3,1,1(1)2,3,1}={4,3(1)2,3}$

 ${4,3(1)1,2,1(1)3,4}={4,3(1)1,2(1)3,4}$

 ${4,3(1)1,1,1,1(1)5}={4,3(1)(1)5}$

 $\{4,3(1)1(1)1,1,1(2)1,1(1)1,6\}=\{4,3(1)(1)(2)(1)1,6\}=\{4,3(2)(1)1,6\}$

 $\{4,3(2)(2)(3)(2)(3)(1)(2)3\}=\{4,3(3)(3)(2)3\}$

所以,当省略了行末的"1"后,如果两个分隔符连起来了,并且在"(m)(n)"中, m<n,即左边分隔符的等级低于右边的分隔符,那么我们可以把左边的(m)省略. 综上所述,如果把逗号看作分隔符(O),那么分隔符(n)实际上分隔了各个n维数 阵空间(1维为行,2维为平面,3维为立方块,等等).这一条性质可以表述为:

性质 1:

${A(m)1(n)B}={A(n)B}$ (m<n)

其中 A 和 B 是任意数字序列.

现在,让我们想一下,如何计算{4,3(1)2}呢?因为这个数阵等价于{4,3,1(1)2}

{4,3,1,1(1)2},还等价于{4,3,1,1,1,1,1,1,1,1(1)2}.第 1 行中的乘客到底有多少? 实际上,由(n)分隔的块是一个n维块,它显现的和所隐含的乘客一起组成一个pⁿ块,总共包含pⁿ个数.因此,{4,3(1)2}={4,4,4(1)1}={4,4,4}.类似的, {5,2(5)3}={5,5(1)5,5(2)5,5(1)5,5(3)5,5(1)5,5(2)5,5(2)5,5(1)5,5(2

性质 2:

 ${a,b,c}=a\uparrow^{c}b=a\rightarrow b\rightarrow c$

性质 3(Bird's Proof):

对任意 a≥3,b≥2,d≥2,{a,b,c,d}>a→a→...a→(b-1)→(c+1)(d 个"a")
{a,b,c,d}<a→a→...a→b→(c+1)(d 个"a")

现在,我们列出一些经典的数字. decker={10,10,2}=10^10=E1#10=dekalogue giggol={10,100,2}=10^100=E1#100=hectalogue giggolplex={10,giggol,2}=10^10^100=E1#100#2 giggolduplex= $\{10, giggolplex, 2\}=10\uparrow\uparrow10\uparrow\uparrow10\uparrow\uparrow100=E1\#100\#3$ gaggol={10,100,3}=10^↑100=E1#1#100=hecta-teraksys gaggolplex={10,gaggol,3}=10^↑↑10↑↑100=E1#1#100#2 gaggolduplex= $\{10,gaggolplex,3\}=10\uparrow\uparrow\uparrow10\uparrow\uparrow\uparrow100\uparrow\uparrow\uparrow100=E1#1#100#3$ geegol={10,100,4}=10^↑↑↑100=E1#1#1#100=hecta-petaksys geegolplex={10,geegol,4}=10^^^110^^1100=E1#1#1#100#2 gigol={10,100,5}=10^^^^1100=E1#1#1#1#100=hecta-exaksys gigolplex={10,gigol,5}=10^^^^^10^^^1100=E1#1#1#1#1#100#2 goggol={10,100,6}=10⁶100=E1#1#1#1#1#100=hecta-eptaksys $goggolplex={10,goggol,6}=10\uparrow^{6}10\uparrow^{6}100=E1\#1\#1\#1\#1\#100\#2$ gagol={10,100,7}=10⁷100=E1#1#1#1#1#1#100=hecta-octaksys $gagolplex={10,gagol,7}=10^{7}10^{7}100=E1#1#1#1#1#1#1#100#2$ boogol={10,10,100}=10↑¹0010=10→10→100,1 gugold 小. boogolplex= $\{10,10,boogol\}=10\rightarrow10\rightarrow(10\rightarrow10\rightarrow100), \neq gugold +.$

```
boogolduplex=\{10,10,boogolplex\}=10\rightarrow10\rightarrow(10\rightarrow10\rightarrow10\rightarrow10\rightarrow100)
boogoltriplex=\{10,10,boogolduplex\}=10\rightarrow 10\rightarrow (10\rightarrow 10\rightarrow (10\rightarrow 10\rightarrow 10\rightarrow 100)))
注意, 葛立恒的 G(1)={3,3,4}介于{3,2,1,2}={3,3,{3,1,1,2},1}={3,3,3}和{3,3,1,2}={3,3,
{3,3,3}}之间,而且 G(n+1)={3,3,G(n)},所以葛立恒数 G(64)介于{3,65,1,2}和{3,66,1,2}
之间.xkcd 则小于{3,67,1,2}.
corporalplex={10,corporal,1,2}
biggol={10,10,100,2}
biggolplex={10,10,biggol,2}
baggol={10,10,100,3}
baggolplex={10,10,baggol,3}
beegol={10,10,100,4}
beegolplex={10,10,beegol,4}
bigol={10,10,100,5}
boggol={10,10,100,6}
bagol={10,10,100,7}
troogol={10,10,10,100}
troogolplex={10,10,10,troogol}
triggol={10,10,10,100,2}
triggolplex={10,10,10,triggol,2}
traggol={10,10,10,100,3}
traggolplex={10,10,10,traggol,3}
treegol={10,10,10,100,4}
trigol={10,10,10,100,5}
troggol={10,10,10,100,6}
tragol={10,10,10,100,7}
quadriggol={10,10,10,10,100,2}
quadriggolplex={10,10,10,10,quadriggol,2}
quadraggol={10,10,10,10,100,3}
quadreegol={10,10,10,10,100,4}
quadrigol={10,10,10,10,100,5}
quadroggol={10,10,10,10,100,6}
```

quadragol={10,10,10,10,100,7}

quintiggol={10,10,10,10,10,100,2}

quintaggol={10,10,10,10,10,100,3}

```
quinteegol={10,10,10,10,10,100,4}
quintigol={10,10,10,10,10,100,5}
sextoogol={10,10,10,10,10,10,100}
septoogol={10,10,10,10,10,10,10,100}
octoogol={10,10,10,10,10,10,10,10)}
  下面是另一个系列。
tritri={3,3,3}=3↑↑↑3=3↑↑3↑↑3=3↑↑(3^3^3)=3↑↑(3^27)=3↑↑7625597484987.这个
数在其它表示法中也占有一席之地,如 tritri=3\rightarrow 3\rightarrow 3=3\rightarrow_2 2=E(3)1\#1\#1\#2
=E(3)1#1#3={3,2,1,2}={3,3(1)2}={3,2,2(1)2}.
tritet=\{4,4,4\}=4\uparrow\uparrow\uparrow\uparrow4=4\rightarrow4\rightarrow4=4\rightarrow_22=E(4)1#1#1#4
tripent=\{5,5,5\}=5\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow5=5\rightarrow5\rightarrow5=5\rightarrow22=E(5)1\#1\#1\#1\#5
trisept=\{7,7,7\}=7^77=7\rightarrow7\rightarrow7=7\rightarrow22=E(7)1\#1\#1\#1\#1\#1
tridecal=\{10,10,10\}=10\uparrow^{10}10=10\longrightarrow 10\longrightarrow 10=10\longrightarrow_22
grand tridecal=\{10,10,10,2\}>10\rightarrow10\rightarrow9\rightarrow11>10\rightarrow23
tetratri={3,3,3,3}={3,2,1,1,2}
supertet={4,4,4,4}={4,2,1,1,2}
general={10,10,10,10}={10,2,1,1,2}
generalplex={10,10,10,general}={10,3,1,1,2}
pentatri={3,3,3,3,3}={3,2,1,1,1,2}
superpent={5,5,5,5,5}={5,2,1,1,1,2}
pentadical={10,10,10,10,10}={10,2,1,1,1,2}
pentadicalplex={10,10,10,10,pentadical}={10,3,1,1,1,2}
hexatri={3,3,3,3,3,3}={3,2,1,1,1,1,2}
superhex={6,6,6,6,6,6}={6,2,1,1,1,1,2}
hexadecal={10,10,10,10,10,10}={10,2,1,1,1,1,2}
hexadecalplex={10,10,10,10,10,hexadecal}={10,3,1,1,1,1,2}
heptatri={3,3,3,3,3,3,3}={3,2,1,1,1,1,1,2}
supersept=\{7,7,7,7,7,7,7\}=\{7,7(1)2\}
superoct={8,8,8,8,8,8,8,8}={8,8(1)2}
superenn={9,9,9,9,9,9,9,9}={9,9(1)2}
heptadecal={10,10,10,10,10,10,10}={10,2,1,1,1,1,1,2}
octadecal={10,10,10,10,10,10,10}={10,8(1)2}
ennadecal={10,10,10,10,10,10,10,10,10}={10,9(1)2}
superdecal={10,10,10,10,10,10,10,10,10,10}={10,10(1)2}, ७ ч iteral
```

```
n(k)函数相当于具有{3,k(1)2}的增长率.下面是一些二维数阵所表示的数.
首先是"非 100"系列.
dupertri={3,tritri(1)2}={3,3,2(1)2}
duperdecal={10,iteral(1)2}={10,3,2(1)2},也叫 iteralplex
truperdecal={10,duperdecal(1)2}={10,4,2(1)2}
quadruperdecal={10,truperdecal(1)2}={10,5,2(1)2}
latri={3,3,3(1)2}={3,dupertri,2(1)2},想象一下,如果顺着 n-pertri={3,n,2(1)2}的序列
增长,我们要第 dupertri-1 项才能到达这个 latri.
相应的"100"系列.
goobol={10,100(1)2}
goobolplex={10,goobol(1)2}
gibbol={10,100,2(1)2}
gabbol={10,100,3(1)2}
geebol={10,100,4(1)2}
gibol={10,100,5(1)2}
gobbol={10,100,6(1)2}
gabol={10,100,7(1)2}
boobol={10,10,100(1)2}
bibbol={10,10,100,2(1)2}
babbol={10,10,100,3(1)2}
beebol={10,10,100,4(1)2}
bibol={10,10,100,5(1)2}
bobbol={10,10,100,6(1)2}
babol={10,10,100,7(1)2}
troobol={10,10,10,100(1)2}
tribbol={10,10,10,100,2(1)2}
trabbol={10,10,10,100,3(1)2}
quadroobol={10,10,10,10,100(1)2}
quadribbol={10,10,10,10,100,2(1)2}
quadrabbol={10,10,10,10,100,3(1)2}
quintoobol={10,10,10,10,10,100(1)2}
gootrol={10,100(1)3}
```

bootrol={10,10,100(1)3}

trootrol={10,10,10,100(1)3}

quadrootrol={10,10,10,10,100(1)3}

```
gooquadrol={10,100(1)4}
booquadrol={10,10,100(1)4}
然后第2行出现了第2个数字.如
emperal={10,10(1)10}
emperalplex={10,10(1)emperal}
gossol={10,10(1)100}
gossolplex={10,10(1)gossol}
gissol={10,10(1)100,2}
gissolplex={10,10(1)gissol,2}
gassol={10,10(1)100,3}
gassolplex={10,10(1)gassol,3}
geesol={10,10(1)100,4}
geesolplex={10,10(1)geesol,4}
gussol={10,10(1)100,5}
gussolplex={10,10(1)gussol,5}
hyperal={10,10(1)10,10}
接下来,第2行逐渐被填充.
mossol={10,10(1)10,100}
mossolplex={10,10(1)10,mossol}
missol={10,10(1)10,100,2}
massol={10,10(1)10,100,3}
meesol=\{10,10(1)10,100,4\}
mussol={10,10(1)10,100,5}
bossol={10,10(1)10,10,100}
bissol={10,10(1)10,10,100,2}
bassol={10,10(1)10,10,100,3}
beesol={10,10(1)10,10,100,4}
bussol={10,10(1)10,10,100,5}
trossol={10,10(1)10,10,10,100}
trissol={10,10(1)10,10,10,100,2}
trassol={10,10(1)10,10,10,100,3}
treesol={10,10(1)10,10,10,100,4}
trussol={10,10(1)10,10,10,100,5}
quadrossol={10,10(1)10,10,10,10,100}
quintossol={10,10(1)10,10,10,10,10,100}
```

```
然后我们开始进入第3行.
={10,10(1)(1)2}
diteralplex={10,diteral(1)(1)2}={10,3,2(1)(1)2}
dubol={10,100(1)(1)2}
dutrol={10,100(1)(1)3}
duquadrol={10,100(1)(1)4}
admiral={10,10(1)(1)10}
dossol={10,10(1)(1)100}
dossolplex={10,10(1)(1)dossol}
dutritri={3,3,3(1)3,3,3(1)3,3,3}={3,3(1)(1)(1)2}={3,3(2)2}
dutridecal={10,10,10(1)10,10,10(1)10,10,10}={10,3(1)(1)(1)2}={10,3(2)2}
   接下来,我们会进入高维数阵空间.
={10,10(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)2}={10,10(2)2},注意它比 dutridecal 大多少!
goxxol={10,100(2)2},Sbiis Saibian 在这里插了一脚,这个数与 gridgahlah 的大小相当.
\times \text{appolplex} = \{10, \times \text{appol}(2)2\} = \{10, 3, 2(2)2\}
(2)2=\{10,10(2)3\}
dimentri={3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(
              ={3,3(2)(2)(2)2}
              ={3,3(3)2}
colossol={10,10(3)2},dimentri和 colossol的关系正如 dutritri和 xappol的关系.
coloxxol={10,100(3)2},大约有 kubikahlah 那么大.
colossolplex={10,colossol(3)2}={10,3,2(3)2}
terossol={10,10(4)2}
teroxxol={10,100(4)2},大约有 quartitrigahlah 那么大.
terossolplex={10,terossol(4)2}={10,3,2(4)2}
petossol={10,10(5)2}
```

```
petoxxol={10,100(5)2},大约有 quinticahlah 那么大.
 petossolplex={10,petossol(5)2}={10,3,2(5)2}
 ectossol={10,10(6)2}
 ectossolplex={10,ectossol(6)2}={10,3,2(6)2}
 zettossol={10,10(7)2}
 zettosolplex={10,zettossol(7)2}={10,3,2(7)2}
 yottossol={10,10(8)2}
 yottossolplex={10,yottossol(8)2}={10,3,2(8)2}
 xennossol={10,10(9)2}
 xennossolplex={10,xennossol(9)2}={10,3,2(9)2}
 dimendecal={10,10(10)2},它相当于一个10×10×10×10×10×10×10×10×10 机格的由
 10组成的数阵.
 gongulus={10,10(100)2}
 gongulusplex={10,10(gongulus)2}
 gongulusduplex={10,10(gongulusplex)2}
 gongulustriplex={10,10(gongulusduplex)2}
   实际上,我们在下一小节中将会走得更远.不过,现在我们暂且把大数之路暂
停一下,来谈一谈 Jonathan Bowers 用"{}"来表示的算子.他用 a{c}b 表示从乘
方开始的超运算,定义如下:
 1.a\{c\}1=a
 2.a{1}b=a^{b}
 3.a{c}b=a{c-1}(a{c}(b-1)),其中b>1,c>1
   也就是说,a{c}b={a,b,c}.接下来,我们看下面的东西:
 a{{1}}b=a{a{...a{a}a...}a}a(从中间到右边共 b 个"a",即有 b-1 对花括号)
 a\{\{c+1\}\}b=a\{\{c\}\}(a\{\{c\}\}\{a,a\}))(\# b \uparrow "a")
 a{{{1}}}}b=a{{a{{...a{{a}}}a...}}a}}a(从中间到右边共 b 个"a",即有 2(b-1)对花括号)
 a\{\{\{c+1\}\}\}b=a\{\{\{c\}\}\}(a\{\{\{c\}\}\}\{a\}))(\# b \land "a")
 a{{{{a}}}}a...}}a(从中间到右边共 b 个"a",即有 3(b-1)对花括号)
 a\{\{\{c+1\}\}\}b=a\{\{\{c\}\}\}\}(a\{\{\{c\}\}\}\}(a\{\{\{c\}\}\}\}a)))(\# b \land "a")
                                                {a,b,1,1,2} = a{1}b
以此类推,不难证明,a{{...{{c}}...}}b(共 d 对
花括号)实际上等于{a,b,c,d}.
                                               a,b,c,d,e = a\{\{\{...\{\{\{c\}\}\}...\}\}\}b \text{ w/d }\{\}s
接下来,{a,b,c,d,e}可以表示成右图的形式.
```

而 6 个参数的 $\{a,b,c,d,e,f\}$,7 个参数的 $\{a,b,c,d,e,f,g\}$ 和 8 个参数的 $\{a,b,c,d,e,f,g,h\}$ 分别可以表示成下图的形式.

现在,让我们回到大数之路的正题上来,一起看看下一小节的大数风采.

1 5,1,2 1 &

={*G*,{*G*,*G*(tritri)},2}=...

BEAF 中的(n)表示了规格为 p^n 的数阵块之间的分隔,可是像(1,0,2,4)这样的分隔符到底是什么意思呢?我们把指数 n 看作一个多项式中的常数项.这个多项式的各项由括号分隔符中的各项来确定.如(1,0,2,4)就表示规格为 $p^4(4p^3+2p^2+1)$ 的数阵块之间的分隔.而($a_0,a_1,a_2,...,a_{n-1},a_n$)则表示规格为 $p^4(a_np^n+a_{n-1}p^{n-1}+...+a_2p^2+a_1p+a_0)$ 的数阵块之间的分隔.例如,

{4,3(1,2,2)3}={由4构成的规格为3^(3²×2+3¹×2+3⁰×1)的数阵块(1,2,2)2}

你是否觉得"由 b 构成的规格为 A 的数阵块"这句话很长很难听?这就对了.于是我们需要一个符号去表示这样的表述——A&b.这里,A 可以是一个数(这样的 A&b 表示了一个线性的一行数阵),可以是 m+n+q+r 这样的加法(这样的 A&b 表示了一个多行数阵),可以是 m×n×q×r 这样的乘积(这样的 A&b 表示了一个多维数阵),也可以是 mⁿ 这样的乘方(这样的 A&b 表示了一个 n 维方阵,且每个方向都有 m 个数),等等.例如

 $3\&3=\{3,3,3\}=\text{tritri},4\&3=\{3,3,3,3\}=\text{tetratri},4\&4=\{4,4,4,4\}=\text{supertet},$

```
3\&5=\{5,5,5\}=\text{tripent}, 3\&7=\{7,7,7\}=\text{trisept}, 3\&10=\{10,10,10\}=\text{tridecal},
   5\&3=\{3,3,3,3,3\}=pentatri,5\&5=\{5,5,5,5,5\}=superpent,6\&3=\{3,3,3,3,3,3\}=hexatri,figure 10,5&5=\{5,5,5,5,5,5\}=superpent,6\&3=\{3,3,3,3,3,3,3,3,3\}=hexatri,figure 10,5&5=\{5,5,5,5,5,5\}=superpent,figure 10,5&5=\{5,5,5,5,5\}=superpent,figure 10,5&5=\{5,5,5,5,5\}=superpent,figure 10,5&5=\{5,5,5,5,5\}=superpent,figure 10,5&5=\{5,5,5,5\}=superpent,figure 10,5&5=\{5,5,5\}=superpent,figure 10,5&5=\{5,5,5\}=superpent,figure 10,5
   6&6={6,6,6,6,6,6}=superhex,7&3={3,3,3,3,3,3,3}=heptatri,
   7\&7=\{7,7,7,7,7,7,7\}=supersept,8\&8=\{8,8,8,8,8,8,8,8\}=superoct,
   9&9={9,9,9,9,9,9,9,9}=superenn,10&10={10,10,10,10,10,10,10,10,10,10}=iteral,
   2+1&10=\{10,10(1)10\}=emperal,
   2^{2}\&10=2\times2\&10=2+2\&10=\{10,10(1)10,10\}=\text{hyperal},
   3^{2}\&3=3\times3\&3=3+3+3\&3=\{3,3,3(1)3,3,3(1)3,3,3\}=dutritri
   3<sup>2</sup>&10=3×3&10=3+3+3&10={10,10,10(1)10,10,10(1)10,10,10}=dutridecal,
   10,10}=xappol,
   3^{3}\&3=3\times3\times3\&3=\{3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3(2)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1)3,3(1
   3,3}=dimentri(注意, 虽然 3³=27,但是 3³&3≠27&3),10¹0&10=dimendecal
           注意,&具有对左边的式子"保持不计算"的属性.而且,虽然加法和乘法都具
有交换律和结合律,但是在&中,这样的运算律不能用.我们能用的只有定义(见
第【1,1】节),而这样的定义只能递归到加法为止.试对比:
   5&3={3,3,3,3,3} 2+3&3={3,3(1)3,3,3} 3+2&3={3,3,3(1)3,3}
   4+1&3={3,3,3,3(1)3} 2+2+1&3={3,3(1)3,3(1)3} 2+1+2&3={3,3(1)3(1)3,3}
   2+1+1+1&3={3,3(1)3(1)3(1)3} (2+1)+(1+1)&3={3,3(1)3(2)3(1)3}
   2+(1+(1+1))&3={3,3(3)3(2)3(1)3} 2+1+(1+1)&3={3,3(2)3(2)3(1)3}
   2 \times 3 \& 3 = 2 + 2 + 2 \& 3 = \{3,3(1)3,3(1)3,3\} 3 \times 2 \& 3 = 3 + 3 \& 3 = \{3,3,3(1)3,3,3\}
            于是,我们可以把普通数阵和&的规则(第3条规则)写成:
   3. 把驾驶员减1,把副驾驶(如果有的话)变成"整个数阵把指数减去1之后的值";乘客中由
   (n)分隔的区块变成 p<sup>n</sup>&b,由逗号分隔的乘客变成 b.
            关于&本身,我们还有这样的结论(注意,&有"拼接"的属性):
   "p^n<sup>+</sup>&b"="p^n&b(n)p^n&b(n)...p^n&b(n)p^n&b"(♯ p ↑ "p^n&b")
            至于&的"拼接"属性,可以看看下面的例子:
   3^3&4={3^2&4(2)3^2&4(2)3^2&4}
   = {3^1\&4(1)3^1\&4(1)3^1\&4(2)3^1\&4(1)3^1\&4(1)3^1\&4(2)3^1\&4(1)3^1\&4(1)3^1\&4(1)3^1\&4(1)3^1\&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3^1&4(1)3
```

```
(注意, 不是{{3^1&4(1)3^1&4(1)3^1&4}}
                                        (2){3^1&4(1)3^1&4(1)3^1&4}
                                        (2){3^1&4(1)3^1&4(1)3^1&4}})
= \{3\&4(1)3\&4(1)3\&4(2)3\&4(1)3\&4(1)3\&4(2)3\&4(1)3\&4(1)3\&4\}\}
={4,4,4(1)4,4,4(1)4,4,4(2)4,4,4(1)4,4,4(1)4,4,4(2)4,4,4(1)4,4,4(1)4,4,4}(注意, 不是
\{\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(2)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(2)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,4,4\}(1)\{4,
4}}={tritet(1)tritet(1)tritet(2)tritet(1)tritet(1)tritet(2)tritet(1)tritet(1)tritet},
这里主行只有1个数,那么p为默认值1,于是这个数阵的值为b,即tritet.这是错误的)
          现在,我们可以得出下面的小结论,以便理解高级数阵与&的关系.
 逗号分隔由 b 构成的规格为 1 的数
(1)分隔由 b 构成的规格为 p 的行(即 p&b)
(2)分隔由 b 构成的规格为 pxp 的平面(即 p^2&b)
(3)分隔由 b 构成的规格为 p×p×p 的立方块(即 p^3&b)
(4)分隔由 b 构成的规格为 p^4 的四维数阵块(即 p^4&b)
(n)分隔由 b 构成的规格为 p^n 的 n 维数阵块(即 p^n&b)
(0,1)分隔 p^p&b (1,1)分隔 p^(p+1)&b (2,1)分隔 p^(p+2)&b
(3,1)分隔 p^(p+3)&b (n,1)分隔 p^(p+n)&b (0,2)分隔 p^(p×2)&b
(n,2)分隔 p^(p×2+n)&b
                                                                                                                                                                               (0,3)分隔 p^(p×3)&b
(m,n)分隔 p^(p×n+m)&b
                                                                                                                                                                            (0,0,1)分隔 p^p^2&b
(1,0,1)分隔 p^(p^2+1)&b
                                                                                                                                                                              (n,0,1)分隔 p^(p^2+n)&b
(n,m,1)分隔 p^(p^2+p×m+n)&b
                                                                                                                                                (n,m,q)分隔p^(p^2×q+p×m+n)&b
(0,0,0,1)分隔 p^p^3&b
(a_0,a_1,a_2,...,a_{n-1},a_n)分兩p^(p^n \times a_n + p^{n-1} \times a_{n-1} + ... + p^2 \times a_2 + p \times a_1 + a_0)&b
 当使用BEAF的第3条规则递推时,乘客中的分隔块变成相应的由b构成的数阵块.
           以下是涉及到高级数阵的数字.
dulatri=\{3, 3(0, 2)2\}=\{3^{3\times 2}\&3(0, 2)1\}=3^{3+3}\&3=3^3\times 3^3\&3
                               = \{3^3 \times 3^2 \& 3(2,1)3^3 \times 3^2 \& 3(2,1)3^3 \times 3^2 \& 3\}
                               = \{3^3 \times 3 \& 3(1,1)3^3 \times 3 \&
                               (2,1)3^3 \times 3 & 3(1,1)3^3 \times 3 & 3(1,1)3^3 \times 3 & 3
                               (2,1)3^3 \times 3 & 3(1,1)3^3 \times 3 & 3(1,1)3^3 \times 3 & 3
                               = \{3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(1,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(1,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3^{3}\&3(0,1)3
                               ,1)33&3(0,1)33&3(0,1)33&3}.用下面一张图说明 dulatri 的数阵展开后(未计算)
 是什么样的.黄色表示 33&3,红色表示 33×2&3(见下页右上角)
```

如果我们要计算 dulatri,我们会得到 {3,3,3(1)3,3,3.....(0,1)3,3,.....} = {3,a,2(1)3,3,3.....(0,1)3,3,.....} (其中 a 为{3,2,3(1)3,3,3.....(0,1)3,3,.....} 的数值) =...(现在假设我们把第 1 个"黄数阵"内的东西算出) = {3,d(0,1)3,3,.....} (注意,现在的指数已不是 3,而是很大的 d)

(注意, 就在的指数口水定 3, 111) 定 16 人的 (d)
gingulus={10,100(0,2)2}=100^{100×2}&10, 它的数阵由
10⁴⁰⁰ 个"10"构成,但是它的数值大小远远不如 trilatri.

 $trilatri={3,3(0,3)2}={3^{3\times3}\&3(0,3)1}=3^{3\times2+3}\&3$

= $\{3^{3\times2}\&3(0,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(1,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(1,2)3^{3\times2}\&3(0,2)$ $3^{3\times2}\&3(0,2)3^{3\times2}\&3(2,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(1,2)3^{3\times2}\&3(0,2)3^{3\times2}\&3(0,2)$ $3^{3\times2}\&3(1,2)3^{3\times2}\&3(0,2)3^{3\times$


```
gangulus={10,100(0,3)2}=100^{100\times3}\&10
   geengulus=\{10,100(0,4)2\}=100^{100\times4}\&10
   gowngulus=\{10,100(0,5)2\}=100^{100\times5}\&10
   gungulus={10,100(0,6)2}=100<sup>100×6</sup>&10
   bongulus={10,100(0,0,1)2}=100^100<sup>2</sup>&10
   bingulus=\{10,100(0,0,2)2\}=100^{(100^2\times2)}&10
   bangulus={10,100(0,0,3)2}=100^(100<sup>2</sup>×3)&10
   beengulus=\{10,100(0,0,4)2\}=100^{(100^2\times4)}&10
   trimentri={3,3(0,0,0,1)2}=3^3^3^3&3
   trongulus={10,100(0,0,0,1)2}=100^100^3&10
   quadrongulus={10,100(0,0,0,0,1)2}=100^100^4&10
   goplexulus={10,100(0,0,...0,0,1)2}(# 100 ↑"0")=100^100^100&10
        我们在用数阵表示各个规格为 100~100~100 的数阵块之间的分隔符时遇
到了困难.其实,下面的分隔符可以帮助我们解决这一问题.以下我们用P表示
 一个关于 p 的多项式,用 Q 表示 P 各项的系数.如 P=p2×3+p×2+4,相应
Q="4,2,3" \$.
   (Q)分隔由 b 构成的规格为 p^P 的数阵块(即 p^P&b)
   ((1)1)分隔 p^p^p&b
                                                                                        (Q(1)1)分隔 p^(pP+P)&b
                                                                                         (Q(1)n)分隔p^{p} \times n + P)&b
   ((1)2)分隔 p^(p<sup>p</sup>×2)&b
                                                                                         (Q(1)n,1)分隔p^{p*}(p+n)+P)&b
   (Q(1)0,1)分隔 p^(p<sup>p</sup>×p+P)&b
   (Q(1)n,m)分隔p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^{p}(p^
                                                                            ((1)(1)1)分隔 p^(p<sup>p×2</sup>)&b
   (Q_1(1)Q_2)分隔p^(p^p \times P_2 + P_1)&b
   (Q_0(1)Q_1(1)Q_2)分隔p^{p^2} \times Q_2 + p^p \times Q_1 + Q_0)&b
   (Q_0(1)Q_1(1)...Q_{n-1}(1)Q_n)分兩 p^(p^{p\times n}\times P_n+p^{p\times (n-1)}\times P_{n-1}+...+p^p\times P_1+P_0)&b
                                                              ((2)Q)分隔 p^(p<sup>p^2</sup>×P)&b
   ((2)1)分隔 p^(p<sup>p^2</sup>)&b
   ((2)Q_0(1)Q_1(1)Q_2)分兩 p^{(p^{p^2+p\times2}\times P_2+p^{p^2+p}\times P_1+p^{p^2}\times P_0)&b
   ((2)(2)Q)分隔p^{(p^{p^2x^2}xP)}b ((2)(2)(2)(2)Q)分隔p^{(p^{p^2x^4}xP)}b
                                                                                       ((3)(3)Q)分隔 p^(p<sup>p^3×2</sup>×P)&b
   ((3)1)分隔 p^(p<sup>p^3</sup>)&b
   ((n)Q)分隔 p^(p<sup>p^n</sup>×P)&b
                                                                                      ((0,1)1)分隔 p^p<sup>p</sup> &b
   ((n,1)Q)分隔p^{(p^{p^{(p+n)}}} \times P)&b ((Q_1)Q_2)分隔p^{(p^{p^{p_1}}} \times P_2)&b
   (((1)1)1)分隔 p^p^p^p&b(这意味着 p115&b)
   (((Q_1)Q_2)Q_3)分隔p^(p^p^(p^p^P_1 \times P_2) \times P_3)&b
   (((((1)1)1)1)分隔 p^p^p^p^p^b&b(这意味着 p↑↑7&b)
   ((((Q_1)Q_2)Q_3)Q_4)分隔p^(p^p^(p^p^(p^p^P_1\times P_2)\times P_3)\times P_4)&b
```

```
((((((1)1)1)1)1)分隔 p^p²p²p²p²p²p²p²p²b&b(这意味着 p↑↑9&b)
想 字接下来的就是 p↑↑p&b 甚至是 p↑↑P&b(P 表示关于 p 的多项式或者乘方函数,如 P=p²p²p²p²p²x²p²+p²+p²x3+p×2+3)了,它称作四级数阵(与 p 的第四级运算相对应).然而,我们并没有表示这种数阵块之间的分隔符.我们暂且用分隔符(f(X))表示 f(p)&b 之间的分隔,尽管这种记号实际上并不存在,但它可以帮助我们理解四级数阵,甚至五级数阵,等等.例如:
goduplexulus={10,100((100)1)2}={10,100(X^X^X^100)2}=100^100^100^100^100&100}=100^100^100^99×100^99×99+100个99×100^99*8100
```

从帮助我们理解四级数阵,甚至五级数阵,等等.例如:
goduplexulus={10,100((100)1)2}={10,100(X^X^X^100)2}=100^100^100^100^100&10
=100^100^{100^99×100}&10=100^100^{100^99×99+100^99}&10=100^100^{100^99×99+100^98×100}&10
=100^100^{100^99×99+100^98×99+100^98}&10=100^100^{100^99×99+100^98×99+100^97×100}&10=.....
=100^100^{100^99×99+...+100^2×99+100×99+100}&10(记 P=100^99×99+...+100^2×99+100×99+99)
=100^(100P×100)&10=100^(100P×99+100P-1×100)&10=.....
=100^(P100+1)&10(这里 Pn 是一个关于 n 的复杂函数)
={100^P100&10(X^PX)100^P100&10(X^PX)...(X^PX)100^P100&10}
(共 100 个"100^P100&10")=...........你可以想象一下它的巨大.
gotriplexulus={10,100((0,0,...0,0,1)1)2}(共 100 个"0")=100^100^100^100^100&10
goppatoth=10↑100&10={10,100,2}&10,进入了四级数阵的阶段.(注意,这里的
{10,100,2}仍被&限制,要保持不计算),而 Hydra 函数和 Circle 函数的增长率大约是

goppatothplex=10^fgoppatoth&10

n↑↑n&n 的级别.

triakulus={3,3,3}&3(这个数已经超越 E#的表达能力了),进入了五级数阵的阶段.可以认为 3&3&3 从左到右展开.试对比:(3&3={3,3,3}=tritri)

3&3&3={3&3}&3={3,3,3}&3=3^113&3=triakulus

 $(3\&3)\&3=({3,3,3})\&3=tritri\&3={3,3,3,...,3,3}(# tritri ^"3")={3,tritri(1)2}=dupertri$

 $3\&\{3\&3\}=3\&(3\&3)=3\&\{3,3,3\}=3\&$ tritri= $\{$ tritri,tritri $\}$

也就是说,&保持左边的不计算,而不能保持右边的不计算.

kungulus={10,100,3}&10=10[↑]↑100&10

kungulusplex={10,kungulus,3}&10=10^↑↑kungulus&10

实际上,像a&b&c&d......&e&f的东西都是从左到右展开的.注意,是从左到右展开而不是计算,计算要等到这个数阵统统展开成不含&的形式后才可以进行.接下来的一些数字是

quadrunculus={10,100,4}&10=10↑↑↑100&10——六级数阵

tridecatrix={10,10,10}&10=3&10&10

humongulus={10,10,100}&10

golapulus={10,10(100)2}&10=10¹⁰⁰&10&10

golapulusplex={10,10(100)2}&10&10=10¹⁰⁰&10&10&10

实际上,在下一节"表示数阵规格的数阵"中,符号X是存在的,它表示一行.

[5,1,3]/5L

"/"是一个分隔符,它分开各个 b&b&...b&b(共 p 个"b"),或称作"团".所以,当驾驶员位于"/"后面的时候,应用第 3 条递归时要把各个"/"之间的部分变成b&b&...b&b(共 p 个"b").如

 ${3,2/3}={3\&3/2}={3,3,3/2}(注意,不是{{3,3,3}/2}——&在这里还具有拼接的属性) {3,2/1/1/3}={3&3/3&3/3&3/2}={3,3,3/3,3/3,3/3,3/2}$

 ${3,2/2}={3&3/1}=3&3={3,3,3}=tritri$

 ${3,3/2}={3&3&3/1}=3&3&3={3,3,3}&3=triakulus$

big boowa={3,3,3/2}={3,{3,2,3/2},2/2}={3,{3,3,2/2},2/2}={3,{3,4,2,2/2},2/2}={3,{3,4,2,2/2},2/2}={3,{3,4,2,2/2},2/2}={3,{3,4,2,2/2},2/2}={3,{3,4,2,2/2},2/2},

grand boowa={3,3,big boowa/2} ={3,3,1,2/2},这个数得多大..... super gongulus={10,10(100)2/2} 接下来,我们往第2团添加东西— wompogulus={10,10(10)2/100} 3&3&3&.....3&3 3&3&3&.....3&3 3&3&3&3 3&3&3&3 3&3&3

3&3&3&.....3&3

各个团还可以组成不同规格的团阵,线性的,高维度的,高级的,四级的,五级的,分隔符则采用像(/n)那样的东西.如{3,2(/3)2}={3&3/3&3(/1)3&3/3&3(/1)3&3/3&3(/1)3&3/3&3},还有像(/2,0,0,8),甚至(/(((0,0,5)1)1)3).

guapamongaplex 是规格为 10^guapamonga 的团阵,其中每一团都含有10^guapamonga&10.

a&&b={A/A/.....A}(由 A 构成的规格为 a 的团阵,这里的 a 保持不计算),其中 A=b&b&...b&b(共 a 个"b",这里的 a 需要计算).然后,我们用二级团分隔符"//"分隔各个二级团,也就是分隔各个 b&&b&&...b&&b(p 个"b").

{b,p///2}=b&&&b&&&...b&&&b(p 个"b"),其中 a&&&b={A//A//......A}(由 A 构成的规格为 a 的二级团阵,这里的 a 保持不计算),其中 A=b&&b&&...b&&b (共 a 个"b",这里的 a 需要计算).我们用分隔符"///"分隔各个三级团.

一 积地、{b,p//...n.../2}=b&&...n...&b&&...n...&.......b&&...n....&b(p 个"b")其中 a&&...n...&b={A//...n-1.../A//...n-1.../........A}(由 A 构成的规格为 a 的 n-1 级团阵,这里的 a 保持不计算),其中 A=b&&...n-1...&b&&...n-1...&........b&&...n-1...&b (共 a 个"b",这里的 a 需要计算).我们用分隔符"//...n.../"分隔各个 n 级团.

big hoss={100,100//.../2}(共 100 个"/"),请自行想象.

grand hoss={100,100//.../100}(# 100 ↑"/")

great big hoss={big hoss,big hoss//.../2}(# big hoss ↑"/")

下面,我们将"/"排成斜杠阵.最简单的斜杠阵是{b,p(1)/2}.这个(1)是用来形容斜杠"/"的.一般地,当应用规则3,而且驾驶员位于斜杠阵后面的时候,我们先要对斜杠阵进行递归.

 ${b,p(1)/A}={b,p//.../A}(\# p \land "/")$

{b,p(1)///A}={b,p//.../(1)//A}("(1)"前面有p 个"/")

{4,3(3)/2}={4,3///(1)///(1)///(2)///(1)///(2)///(1)///(1)///(1)///(1)///(2},得到一个规格为 3³的斜虹阵.

 ${4,3(2)//(2)//2}={4,3///(1)///(1)///(2)/(2)//2}$

如果斜杠阵的最前面有斜杠(如"/(8)//"),就直接递归.

试区分:{4,3/(1)3}={4&4&4/4,4,4(1)2}

 ${4,3(/1)3}={4&4&4/4&4&4/4&4&4(/1)2}$

 ${4,3(1)/3}={4,3///3}={4&&&4&&&4///2}$

其实,斜杠阵还可以是高级的、四级的、五级的,等等.为了更好地表示它们,我们使用"表示数阵规格的数阵"的记法.如

最简单的{L}_{b,p}=b&b&...b&b(p 个"b")={b,p/2}

```
\{L+1\}_{b,p}=\{b,p/1,2\}
                                                   \{L+3\}_{b,p}=\{b,p/1,1,1,2\}
                                                   \{L+X\times2+3\}_{b,p}=\{b,p/(1)(1)1,1,1,2\}
用 X 表示 - 行.{L+X}<sub>b,p</sub>={b,p/(1)2}
X^2 表示 - 个平面.{L+X^2}<sub>b,p</sub>={b,p/(2)2}
                                                   \{L+X^3\}_{b,p}=\{b,p/(3)2\}
\{L+X^2\times3\}_{b,p}=\{b,p/(2)(2)(2)(2)\}
\{L+X^X\}_{b,p}=\{b,p/(0,1)2\}
                                                   \{L+X^{X\times 3+2}\}_{b,p}=\{b,p/(2,3)2\}
{L×2}<sub>b,p</sub>={b&b&...b&b/b&b&...b&b}(每团 p ↑ "b")={b,p/1/2}
\{L \times n\}_{b,p} = \{b,p/1/1.../1/2\} (\# n-1 \land 1)
                                                  \{L \times X\}_{b,p} = \{b,p(/1)2\}
\{L\times(X+1)\}_{b,p}=\{b,p(/1)1/2\}
                                                  \{L\times(X+2)\}_{b,p}=\{b,p(/1)1/1/2\}
\{L \times X \times 2\}_{b,p} = \{b,p(/1)(/1)2\}
                                                  \{L \times X \times 3\}_{b,p} = \{b,p(/1)(/1)(/1)2\}
\{L \times X^2\}_{b,p} = \{b,p(/2)2\}
                                                  \{L \times X^2 \times 2\}_{b,p} = \{b,p(/2)(/2)2\}
\{L \times X^3\}_{b,p} = \{b,p(/3)2\}
                                                  \{L \times X^X\}_{b,p} = \{b,p(/0,1)2\}
\{L \times X^{X \times 3+2}\}_{b,p} = \{b,p(/2,3)2\}
                                                  \{L \times X^{X^2}\}_{b,p} = \{b,p(/0,0,1)2\}
\{L \times X^{X^X}\}_{b,p} = \{b,p(/(1)1)2\}
                                                  \{L \times X^{X^X}\}_{b,p} = \{b,p(/(0,1)1)2\}
                                                   L 数阵中有2个参数的情形,{L,1}<sub>b,p</sub>={L,p,p}={b,p/2}(应用规则1)
                                                  \{L^2 \times 2\}_{b,p} = \{b,p//1//2\}
\{L,2\}_{b,p}=\{L^2\}=\{b,p//2\}
\{L^2 \times X \times 3\}_{b,p} = \{b,p(//1)(//1)(//1)2\}
                                                 \{L^2 \times X^2\}_{b,p} = \{b, p(//2)2\}
\{L^2 \times X^X\}_{b,p} = \{b,p(//0,1)2\}
                                                  \{L^2 \times X^{X^X}\}_{b,p} = \{b,p(//(1)1)2\}
                                                  \{L^2 \times X^{X^*X^*X^*X^*X^*}\}_{b,p} = \{b,p(//((1)1)1)2\}
\{L^2 \times X^{X^X}\}_{b,p} = \{b,p(//(0,1)1)2\}
\{L,3\}_{b,p}=\{L^3\}=\{b,p///2\}
                                                  \{L,4\}_{b,p}=\{L^4\}=\{b,p///2\}
\{L,X\}_{b,p}=\{b,p(1)/2\}
                                                  \{L,X\times2\}_{b,p}=\{b,p(1)(1)/2\}
\{L,X^2\}_{b,p}=\{b,p(2)/2\}
                                                    \{L,X^5\times3\}_{b,p}=\{b,p(5)(5)(5)/2\}
\{L,X^X\}_{b,p}=\{b,p(0,1)/2\}
                                                   \{L,X^X^X\}_{b,p}=\{b,p((1)1)/2\}
\{L,X^X^X^X\}_{b,p}=\{b,p((0,1)1)/2\}
                                                    \{L,X^X^X^X^X\}_{b,p}=\{b,p(((1)1)1)/2\}
   现在,想象一下\{L,L\}_{b,p}=\{L^L\}_{b,p},这好比斜杠"/"组成的斜杠团一样!
   如果应用规则3,我们可以得到更神奇的东西.
\{L,2,2\}_{b,p}=\{L,\{L,1,2\},1\}_{b,p}=\{L,L\}_{b,p}=\{L^{L}\}_{b,p}
\{L,L,2\}_{b,p}=\{L\uparrow\uparrow L\}_{b,p}
记 a@b={L,L,....,L}b,a,是由L构成的规格为 a 的数阵(a 需要保持不计算),
```

记 Q@b={L,L,.....,L}b,a,是由L购成的规格刀 Q的数件(Q需要保持不计算),而下标中的 Q需要计算.@具有和&类似的从左开始展开、保持左边不计算和拼接的属性.注意,像 Q@b@b这样的东西,左边的 Q@b要展开到普通数阵(而不是"表示数阵规格的数阵",斜杠阵或者团阵),才能进行右边@b的展开.然后,我们

```
称 b@b@...b@b(p 个"b")为一个超团,用反斜虹"\"分隔各个超团.分隔符"\"的
用法跟"/"几乎一样,例如
 {4,3\1\1//2}={4@4@4\4@4@4\4&&4&&4}
 3@@4={4@4@4\4@4@4\4@4@4}
 {4,3\\3}={4@@4@@4\\2}
 goshomity={100,100\\...\2}(100 ↑"\")
 good goshomity=\{100,100 \setminus ... \setminus 2\}(goshomity \uparrow "\")
    "\"和L2的关系正如"/"和L的关系.注意,L2的"L"和"2"之间没有任何标点.
 \{L2\}_{b,p}=b@b@...b@b(p \ ^ "b")=\{b,p\2\}
                                                \{L2+X^2\}_{b,p}=\{b,p\setminus(2)2\}
 \{L2+3\}_{b,p}=\{b,p\1,1,1,2\}
 \{L2+X^{X^X^X^X}\}_{b,p}=\{b,p\setminus(((1)1)1)2\}
                                                \{L2+L\}_{b,p}=\{b,p\setminus 1/2\}
                                               \{L2\times X^2\}_{b,p}=\{b,p(\2)2\}
 \{L2\times3\}_{b,p}=\{b,p\1\1\2\}
 \{L2\times X^{X^X^X^X}\}_{b,p}=\{b,p(\setminus((1)1)1)2\}
                                               \{(L2)^2 \times X^2\}_{b,p} = \{b,p(\backslash 2)2\}
 \{(L2)^2\}_{b,p} = \{b,p \setminus 2\}
                                                \{(L2)^X\}_{b,p}=\{b,p(0,1)\setminus 2\}
 \{(L2)^X\}_{b,p}=\{b,p(1)\setminus 2\}
 \{(L2)^X^X^X^X^X^X^X\}_{b,p} = \{b,p((((1)1)1)1)\}
 \{L2,2,2\}_{b,p}=\{L2,\{L2,1,2\},1\}_{b,p}=\{L2,L2\}_{b,p} \{L2,n,2\}_{b,p}=\{L2\uparrow\uparrow n\}_{b,p}
                                                \{L2,L2,3\}_{b,p}=\{L2\uparrow\uparrow\uparrow L2\}_{b,p}
 \{L2,L2,2\}_{b,p}=\{L2\uparrow\uparrow L2\}_{b,p}
    记 a%b={L2,L2,....,L2}b,a(由 L2 构成的规格为 a 的数阵),与@类似,也具有
```

记 a%b={L2,L2,.....,L2}_{b,a}(由 L2 构成的规格为 a 的数阵),与@类似,也具有从左边展开(一直展开到普通数阵为止)、保持左边不计算和拼接的属性.然后, b%b%...b%b(p 个 b)称作一个超超团,各个超超团之间用"|"分隔.而符号"|"相应的"表示数阵规格的数阵"的底数为 L3.

记 a#b={L3,L3,.....,L3}_{b,a}(由 L3 构成的规格为 a 的数阵),与%类似,也具有从左边展开(一直展开到普通数阵为止),保持左边不计算和拼接的属性.符号#在这里又出现了,不过我们还是可以把 BEAF和 E#区分开的.很简单,有 E 的就是 E#记号,没有 E 的就是 BEAF.然后,b#b#...b#b(p 个 b)称作一个超超超团,各个超超超团之间用"-"分隔.而符号"-"相应的"表示数阵规格的数阵"的底数为 L4.

bukuwaha={L^X^X}_{100,100}={100,100(0,1)/2}={100,100 A 2},其中 A 表示由"/"构成的规格为 100¹⁰⁰的斜杠阵

big bukuwaha={100,100 B 2},其中B表示由"\"构成的规格为{100,100 A 2}的反斜杠阵它远远大于{100,100\\...\2}(共 bukuwaha 个"\").

bongo bukuwaha={100,100 C 2},其中 C 表示由"|"构成的规格为{100,100 B 2}的竖杠阵

quabinga bukuwaha={100,100 D 2},其中 D 表示由"-"构成的规格为{100,100 C 2}的模址阵

这个表列出了各个"等级"的符号.

由构成的规格为的阵	&	@	%	#	•••••	无对应符号
分隔节	/	\		-	••••	无对应符号
L数阵符号	L	L2	L3	L4	•••••	Ln(n>4)

虽然 Ln 没有对应的分隔符,但是我们还是能"体会"这种数字的大小的.如meamealokkapoowa= $\{L100,10\}_{10,10}$,它的大小只能这么表示.

让我们畅想一下,LX 是什么——LX 是级别等于指数 p 的 L 符号,如果 p 增大,那么这个 L 符号的级别也会增大.接着,L{X+1},L{X+2},L{X×2},L{X×3},L{X 2 } L{X 3 },L{X $^{X+1}$ },L{X $^{X\times2}$ },L{X $^{X\times2}$ },L{X $^{X\times2}$ },L{X $^{X\times2}$ },从后是 L{L}=LL,L{L2},LLX,LL{X $^{X\times2}$ },LLL,LLLLLLLLLLLL,我们还可以把 L 排成数阵(没有逗号分开).注意,{L,L,L(5)L,L,L}_{b,p}和{LLL(5)LLL}_{b,p}可不是一样的.这样的数阵可以是普通的,高级的,四级的,五级的,一团一团的,一个个超团的,一个个超超团的,等等.

最后,meamealokkapoowa oompa= $\{LL...a...L,10\}_{10,10}$,其中 a 为由 L 构成的不带逗号的规格为 $\{L100,10\}_{10,10}$ 的数阵.

其实,我们才刚刚开始.

【5.2】乌之记号

注意:这一节实际上有3个版本,我们在这里介绍第3版,因为旧的2个版本 既复杂,又表示不出新版那样大的数.有兴趣了解旧版的你们可以直接到 Chris Bird 的网站查看.

【5,2,1】[]与<>

Chris Bird 设计了这样的数阵表示法,它和 BEAF 很像,但比 BEAF 更强大, 而且不像 BEAF 那样具有容易误解的地方(&的使用,"LLL"和"L,L,L"的区别等). 这种表示法称作 Bird's Array Notation,这里我们称作"鸟之记号"(谁让他的 名字取得这么). 例如

 $A1=\{3,5,2,1,4,6,2\}$

 $A2=\{3,2[2]1,1,5[3][3][2]2,3\}$ $A3 = \{4,3[4][4][3][3][2]3\}$ $A4=\{3,4[1,1,2,3]5\}$

 $A5=\{4,3[1,3[2]2]2\}$

 $A7 = \{4,3[1[2,4,6]3]\frac{1}{2}\}$

 $A6=\{4,3[1[2]1,2[2]3,4]2\}$

A8={4,3[1[1[1[1,6]5]4]3]2}

底数(红字)、指数(蓝字)、驾驶员(黄色底纹)、副驾驶(绿色底纹)、乘客(灰 色底纹)的定义和 BEAF 都一样.在鸟之记号中,分隔符内的数字至少是 1(而不 像 BEAF 中是 O), 逗号是分隔符[1]的缩写,分隔符由低级到高级依次是逗号, [2],[3]...[1,2],[2,2]...[1,3]...[1,4]...[m,n],[1,1,2],[2,1,2]...[1,2,2],[2,2,2]... [1,3,2]...[1,4,2]...[1,1,3]...[m,n,3],[1,1,4]...[m,n,q]...[1,1,1,2]...[m,n,q,r]...[1[2]2],[2[2]2]...[1,2[2]2]...[1[2]3],[2[2]3]...[1[2]4]...[1[2]1,2]...[1[2]m,n]... [1[2]1[2]2]...[1[3]2]...[m,n[2]q,r[3]2]...[1[3]3]...[1[3]1[3]2]...[1[4]2]... [1[1,2]2]...[3[5]4[1,2]2]...[1[1,2]1[1,2]2]...[1[2,2]2]...[1[m,n]2]...[1[1,1,2]2]... [1[1,1,1,2]2]...[1[1[2]2]2]...[1[1[3]2]2]...[1[1[1,2]2]2]... 鸟之记号的运算遵循 下面的规则(按 M1、M2、M3 的顺序执行):

M1.如果指数 p 为 1,那么数阵的值为底数 b

M2.如果没有驾驶员,那么数阵的值为 bp

M3. 把驾驶员减 1, 把副驾驶(如果有的话)变成"整个数阵把指数减去 1 之后的值", 乘客中 以分隔符[A]分隔的部分全都变成 b<A'>p(其中 A'除了第一个数比 A 小 1 外,其它部分与 A 相同)

规则M3中出现了尖角括号"<>",它是一个有拼接属性的二元算子,它的应用 规则如下.(其中#表示任意的分隔符、数字序列或空序列)

A1.b<0>p=b

A2.b<n+1#>p=b<n #>p[n+1#]b<n #>p[n+1#].....b<n #>p[n+1#]b<n #>p(p $^{"}$ b<n#>p")

"<>"算子中,第一个数为 O 称作默认值,其它数为 1 称作默认值(在[]中只有 1 是默认值).我们把算子中第一个不是默认值的数称作算子驾驶员,把算子驾驶 员前面的所有东西称作算子乘客(注意,没有"算子副驾驶"这种东西).如下面的 算子中,红字为算子驾驶员,蓝字为算子乘客.

<0,1,2,3>

<1,2,3,4,2,1> <0[2,3]1[1,2]1[1,2]1[5]1,2,1,2>

现在,算子的规则 A1 可以认为是在"没有算子驾驶员"的情况下执行的,而规 则 A2 可以认为是在"没有算子乘客"的情况下执行的,而有算子乘客的情况下, 我们执行规则 A3.

A3. 把算子驾驶员减 1, 算子乘客中以分隔符[A]分隔的部分全都变成 p<A'>p(其中 A'除 了第一个数比 A 小 1 外,其它部分与 A 相同)

鸟之记号有下面的性质:

性质 1

{A[M]1[N]B}={A[M]B}(等级[M]×[N])

性质 2

<A[M]1[N]B>=<A[M]B>(等级[M]<[N])

性质 3

 $\{a,b,c\}=a\uparrow^{c}b=a\rightarrow b\rightarrow c$

性质 4(Bird's Proof)

对任意 a≥3,b≥2,d≥2,{a,b,c,d}>a→a→...a→(b-1)→(c+1)(d 个"a")

 $\{a,b,c,d\} < a \rightarrow a \rightarrow ... a \rightarrow b \rightarrow (c+1)(d \uparrow "a")$

实际上,如果是线性的一行数阵,乌之记号与BEAF实际上是完全相同的,这 也是性质 3 和 4 的一个来由.现在我们用几个例子说明上面的规则.

"b<1>p"="b<0>p[1]b<0>p[1]...b<0>p[1]b<0>p"(p \land "b<0>p")

="b,b,...b,b"(p 个"b"),这意味着 b<1>p 和 p&b 是等效的.

 $b<2>p"="b<1>p[2]b<1>p[2]...b<1>p[2]b<1>p"(p <math>\land$ "b<0>p")

```
="b,b,...b,b[2]b,b,...b,b[2].....b,b,...b,b[2]b,b,...b,b"(p^2 \land "b")
                这意味着 b<2>p和 p2&b 是等效的,[2]和(1)是等效的.
我们不难得出,"b<n>p"和 pn&b 是等效的,[n+1]和(n)是等效的.
{3,<mark>2,2</mark>[2]2}={3,{3,1,2[2]2}<del>,1</del>[2]2}={3,3[2]<mark>2</mark>}={3<1>3<del>[2]1</del>}={3,3,3}=tritri
{3,<mark>3,2</mark>[2]2}={3,{3,<mark>2</mark>,2[2]2}<del>,1</del>[2]2}={3,tritri[2]<mark>2</mark>}={3<1>tritri<del>[2]1</del>}={3,3,...3,3}(tritri
↑"3")=dupertri
{3,2,2[1,2]2}={3,{3,1,2[1,2]2},1[1,2]2}={3,3[1,2]2}={3<0,2>3},1,2[1,2]1}={3<3,1>3}
={3<3>3}={3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3[2]3,3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3
=dimentri
{4,3[1,2]2}={4<0,2>3[1,2]1}={4<3>3}
                   ={4<2>3[3]4<2>3[3]4<2>3}
                   ={4,4,4[2]4,4,4[2]4,4,4[3]4,4,4[2]4,4,4[2]4,4,4[3]4,4,4[2]4,4,4[2]4,4,4[4]
                   =\{A\}
{4,3[3,2]2}={4<2,2>3<del>[3,2]1</del>}={4<1,2>3[2,2]4<1,2>3[2,2]4<1,2>3}
                        ={A[1,2]A[1,2]A[2,2]A[1,2]A[1,2]A[2,2]A[1,2]A[1,2]A}={B}
{4,3[1,3]2}={4<0,3>3}={4<3,2>3}={4<2,2>3[3,2]4<2,2>3[3,2]4<2,2>3}
                        ={B[3,2]B[3,2]B}={C}
{4,3[3,3]2}={4<2,3>3}={4<1,3>3[2,3]4<1,3>3[2,3]4<1,3>3}
                        = \{C[1,3]C[1,3]C[2,3]C[1,3]C[1,3]C[2,3]C[1,3]C[1,3]C\} = \{D\}
{4,3[1,1,2]2}={4<0,1,<mark>2>3</mark>}={4<<mark>3,3,1</mark>>3}={4<3,3>3}
                           ={4<2,3>3[3,3]4<2,3>3[3,3]4<2,3>3}
                           ={D[3,3]D[3,3]D}={E}
{4,3[1,1,1,2]2}={4<0,1,1,2>3}={4<3,3,3,4>3}={4<3,3,3>3}
                              ={4<2,3,3>3[3,3,3]4<2,3,3>3[3,3,3]4<2,3,3>3}
                              ={$[1,3,3]$[1,3,3]$[2,3,3]$[1,3,3]$[1,3,3]$[2,3,3]$[1,3,3]$[1,3,3]
                              S[3,3,3]S[1,3,3]S[1,3,3]S[2,3,3]S[1,3,3]S[1,3,3]S[2,3,3]S[1,3,3]S
                              [1,3,3]S[3,3,3]S[1,3,3]S[1,3,3]S[2,3,3]S[1,3,3]S[1,3,3]S[2,3,3]S
                              [1,3,3]5[1,3,3]5}
其中"5"="4<0,3,3>3"="4<3,2,3>3"="4<2,2,3>3[3,2,3]4<2,2,3>3[3,2,3]4<2,2,3>3"
                = "S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1[1,2,3]S_1[1,2,3]S_1
                [3,2,3]S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1[1,2,3]S_1
                [1,2,3]S_1[3,2,3]S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1[1,2,3]S_1[1,2,3]S_1[2,2,3]S_1
                [1,2,3]S_1[1,2,3]S_1"
其中"S<sub>1</sub>"="4<0,2,3>3"="4<3,1,3>3"="4<2,1,3>3[3,1,3]4<2,1,3>3[3,1,3]4<2,1,3>3"
                 = "S_2[1,1,3]S_2[1,1,3]S_2[2,1,3]S_2[1,1,3]S_2[1,1,3]S_2[2,1,3]S_2[1,1,3]S_2[1,1,3]S_2
```

```
[3,1,3]S_2[1,1,3]S_2[1,1,3]S_2[2,1,3]S_2[1,1,3]S_2[1,1,3]S_2[2,1,3]S_2[1,1,3]S_2
                                        [1,1,3]S_{2}[3,1,3]S_{2}[1,1,3]S_{2}[1,1,3]S_{2}[2,1,3]S_{2}[1,1,3]S_{2}[1,1,3]S_{2}[2,1,3]S_{2}
                                         [1,1,3]S_2[1,1,3]S_2"
 这样下去,"S2"="4<0,1,3>3"="4<3,3,2>3","S3"="4<0,3,2>3"="4<3,2,2>3",
"S<sub>4</sub>"="4<0,2,2>3"="4<3,1,2>3","S<sub>5</sub>"="4<0,1,2>3"="E",如果要吧"4<0,1,1,2>3"全部展开,
你需要写 7625597484987 个"4".
{3,2[1[2]2]<del>2</del>}={3<0[2]<del>2</del>>2<del>[1[2]2]1</del>}={3<2<1>2<del>[2]1</del>>2}={3<2,2>2}
                                                                   ={3<0,2>2[1,2]3<0,2>2[2,2]3<0,2>2[1,2]3<0,2>2}
                                                                   ={3<2>2[1,2]3<2>2[2,2]3<2>2[1,2]3<2>2}
                                                                   ={3,3[2]3,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[1,2]3,3[2]3,3}
{4,3[1[2]2]<del>2</del>}={4<0[2]<del>2</del>>3<del>[1[2]2]</del>1}={4<3<1>3<del>[2]1</del>>3}={4<3,3,3>3}
{3,2[2[2]2]2}={3<1[2]2>2}={3<0[2]2>2[1[2]2]3<0[2]2>2}
                                                                   ={3,3[2]3,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[1,2]3,3[2]3,3[1[2]2]3,3[2]3
                                                                   ,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[1,2]3,3[2]3,3
{3,2[1[3]2]2}={3<0[3]<mark>2>2</mark>}={3<<mark>2</mark><2><mark>2[3]1</mark>>2}={3<2,2[2]2,2>2}
                                                                   ={A[1,2[2]2,2]A[2,2[2]2,2]A[1,2[2]2,2]A}
 其中"A"="3<0,2[2]2,2>2"="3<<mark>2,1</mark>[2]2,2>2"="B[1[2]2,2]B[2[2]2,2]B[1[2]2,2]B"
 其中"B"="3<0[2]2,2>2"="3<2<1>2[2]1,2>2"="3<2,2[2]1,2>2"
                                      ="C[1,2[2]1,2]C[2,2[2]1,2]C[1,2[2]1,2]C"
 其中"C"="3<0,2[2]1,2>2"="3<<mark>2,1</mark>[2]1,2>2"="D[1[2]1,2]D[2[2]1,2]D[1[2]1,2]D"
 其中"D"="3<0[2]1,<mark>2>2</mark>"="3<<mark>2<1>2</mark>[2]<del>2,1</del>>2"="3<2,2[2]2>2"
                                        ="E[1,2[2]2]E[2,2[2]2]E[1,2[2]2]E"
 其中"E"="3<0,2[2]2>2"="3<<mark>2,1</mark>[2]2>2"="F[1[2]2]F[2[2]2]F[1[2]2]F"
 其中"F"="3<0[2]2>2"="3,3[2]3,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[2]3,3[1,2]3,3[2]3,3
{4,3[1[3]2]<del>2</del>}={4<0[3]<del>2</del>><del>3[1[3]2]1</del>}={4<<del>3</del><2><del>3[3]1</del>>3}={4<3<1>3[2]3<1>3[2]3<1>3>3}
                                                                  ={4<3,3,3[2]3,3,3[2]3,3,3>3}
={4<2,3,3[2]3,3,3[2]3,3,3>3[3,3,3[2]3,3,3[2]3,3,3]4<2,3,3[2]3,3,3[2]3,3,3>3[3,3,3]3,3
3[2]3,3,3[2]3,3,3]4<2,3,3[2]3,3,3[2]3,3,3>3}
{4,3[1[1,2]2]^2} = {4<0[1,2]^2>3[1[1,2]2]^1} = {4<3<0,2>3[1,2]^1>3} = {4<3<3,1>3>3}
                                                                          ={4<3<2>3[3]3<2>3[3]3<2>3}
={4<3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2
= \{A[3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3[2]3,3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3
A[3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3[2]3,3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]
 其中"A"=
"4<2,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[2]3,3[
```

```
{4,3[1[1[3]2]2]<del>2</del>}={4<0[1[3]2]<del>2</del>><del>3[1[1[3]2]1</del>}={4<<del>3</del><0[3]<del>2</del>><mark>3[1[3]2]1</mark>>3}
                                                   ={4<3<3<2>3[3]1>3>3}={4<3<3,3,3[2]3,3,3[2]3,3,3>3>3}
    然后,我们还有这样的数:{3,3[3[1,2]3]3},{5,5,5[4,4[2,3,4]3,3[6]2,2]3[2,2]2[9]2},
   {10,10[10[10[100]10]10],{3,2[5[4[3[2]3]4]5]2},
   {3,3[3,3[3,3[3,3[3,3[3,3[3,3[3,3[3,3[3]2]2]2]2]2]2]2]2]2},等等.随着方括号和尖
    角括号层数的增加,这一记号的数值增长达到了BEAF中 n↑↑n&n 的级别.
           看看它、{3<3<3<3<3<3<3<3>3>3>3>3>3>3}是不是很像Jonathan
Bowers 的"{}"算子"展开"成某个形式的样子?我们可以想象,
   3{3{3{3{3{3{3{3{3{3{3}}3}3}3}3}3}3}3}3
   {3<10<10<10<10<10<10<10<10>10>10>10>10>10>10>10>10>10>10)={3<<0>>10}(是这样的!)
           于是,多层<>出现了.同样,这种算子对应的分隔符应该是多层[].我们定义,
   A4.b<<...<0>...>>p(n 对尖角括号)=b<<...<p<<...<p>>...>>p....>...>>p</...>...>>p(从中间到右
    边共 p 个"p",每层算子为 n-1 对尖角括号)
          而多层[]的递归仍可以按照规则 M1、M2、M3 来进行.如
   {b,p[[1]]2}={b<<0>>p<del>[[1]]1</del>}={b<p<p<p...<p>>p>p>p>p)}(从中间到右边共p个"p")
     下面我们用正方形符号"□"表示分隔符[[1]]的缩写,正如逗号表示[1]的缩写一样.
   \{4,3[[2]]3\}=\{4 <<1>>3[[2]]2\}=\{4 <<0>>3 \quad 4 <<0>>3 \quad 4 <<0>>3 \quad 4 <<0>>3[[2]]2\}
                                ={4<3<3>3>3 \( \) 4<3<3>3>3 \( \) 4<3<3>3>3 \( \) 4<3<3>3>3
                                ={4<3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,
                                3,3>3 - 4<3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,
                                3[2]3,3,3>3 - 4<3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[
                                2]3,3,3[2]3,3,3>3[[2]]2}
   {4,3<mark>[[1,2]]2</mark>}={4<mark><<0,2>></mark>3<del>[[1,2]]1</del>}={4<<<del>3,1</del>>>3}
                                       ={4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>4</0>>>3 - 4</0>>>3 - 4</0>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>>3 - 4</0>>
                                       - 4<<0>>3 - 4<<0>>3[[3]]4<<0>>3 - 4<<0>>3 - 4<<0>>3[[2]]4<<0>>3
                                       - 4<<0>>3[[2]]4<<0>>3 - 4<<0>>3 - 4<<0>>3
                                      [[2]]4<<0>>3 - 4<<0>>3 - 4<<0>>3 - 4<<0>>3}
   {4,3<mark>[[1[3]2]]</mark>2}={4<mark><<0[3]2>></mark>3<del>[[1[3]2]]1</del>}={4<<<mark>3<2>3[3]1</mark>>>3}
                                            ={4<<3,3,3[2]3,3,3[2]3,3,3>>3}
   {4,3<mark>[[1[1[1[2]2]2]2]]</mark>2}={4<mark><<0[1[1[2]2]2]2}>></mark>3<del>[[1[1[1[2]2]2]2]2]</del>}
                                                 ={4<<3<0[1[2]2]2><mark>3[1[1[2]2]2]1</mark>>>3}={4<<3<<mark>3</mark><0<mark>[2]</mark>2><mark>3[1[2]2]1</mark>>3>>3}
                                                 ={4<<3<3<<mark>3<1>3</mark>[2]1>3>3>3}={4<<3<3<3,3,3>3>3>3}
   {4,3[[1-2]]^2}={4<<0-2>>3[[1-2]]^1}={4<<3<<0>>>3=1>>3}={4<<3<3>>3>3>3}={4<<3}={4<<3>3>3>3>3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3}={4<<3
```

```
<3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3[3]3,3,3[2]3,3,3[2]3,3,3>3>>3}
{4,3[[1-3]]2}={4<<0-3>>3[[1-3]]1}={4<<3<<0>>3-2>>3}={4<<3<3>>3>3-2>>3}
{4,3[[1 - 1 - 2]]2}={4<<0 - 1 - 2>>3}={4<<3<<0>>3 - 3<<0>>3>>3}
                                                                          ={4<<3<3<3>3>3 \( \times 3<3<3>3>3>3}
{4,3[[1[[2]]2]]2}={4<<0[[2]]2>>3}={4<<<mark>3<<1>>>3</mark>>>3}
                           ={4<<3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<3<3>3>3 = 3<3<3>3>3 = 3<3<3>3>3 = 3<3<3>3>3 = 3<3<3>3>3
{4,3[[1[[3]]2]]2}={4<<0[[3]]2>>3}={4<<<mark>3<<2>>3</mark>>>3}
                        ={4<<3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<<0>>3 = 3<0>>3 = 3<<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<0>>3 = 3<
                        3<<0>>3 \( 3<<0>>3 \( 3<<0>)<3>>3 \)
                        ={4<<3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3<3<3>3>3 \( \) 3<3<3>3<3<3>3>3 \( \) 3<3<3>3<3<3>3>3 \( \) 3<3<3>3<3<3>3>3 \( \) 3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3<3>3<3
                       [[2]]3<3<3>3>3 \( \) 3<3<3>3>3 \( \) 3<3<3>3>3}
{b,p[[1□1□2]]2}的增长率达到了 n↑↑(n+1)& n 的级别.
{b,p[[1[[1□2]]2]]2}的增长率达到了 n↑↑(n+2)& n 的级别.
{b,p[[1[[1□1□2]]2]]2}的增长率达到了 n↑↑(n+3)& n 的级别.
{b,p[[1[[1[[1-2]]2]]2]]2}的增长率达到了n↑↑(n+4)&n的级别.
{3,4[[[1]]]2}={3<<<0>>>4}={3<<4<<<mark>4<<4>>>4</mark>>>4>>4}={3<<4<<<mark>4<4<4>>4>4>4>4>4>4>}+>4}</mark>
{b,p[[[1]]]2}的增长率达到了 n↑↑(n×2)& n 的级别.
{b,p[[...[1]...]]2}(m 对方括号)的增长率达到了 n↑↑(n(m-1))& n 的级别.
{b,p[[...[1]...]]2}(p 对方括号)的增长率达到了 n↑↑(n²)& n 的级别.
```

这个新的分隔符则可以很好地扩展这个记号.

【5,2,2】 乌之"/"

现在,我们把[[...[A]...]](共 n 对方括号)记作[A/n],于是我们进入了下一组,这里第1组是 A,而第2组是 n,各个组之间以分隔符/分隔.这样,A4 规则就变为:b<0/n>p=bpp<p/p>n-1>p/n-1>p/n-1>p/n-1>p/n-1>p(从中间到右边共 p 个 p). 然后这第2组可以不仅仅是一个数,还可以是数阵.如

但是,实际上,Chris Bird 并不把多层括号加以扩展,因为它太难以扩展.下面

{4,3[1/2,2]2}={4<0/2,2>3[1/2,2]1}={4<3<3/1,2>3/1,2>3}={4<3<0/1,2>3[1/1,2]3<0/1,2 2>3[1/1,2]3<0/1,2>3[2/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0/1,2>3[1/1,2]3<0

其中"3<0/1,2>3"="3<3/3,1>3"="3<0/3>3[1/3]3<0/3>3[1/3]3<0/3>3[2/3]3<0/3>3 [1/3]3<0/3>3[1/3]3<0/3>3"="3<0/3>3[1/3]3<0/3>3[1/3]3<0/3>3"="3<0/3>3[1/3]3<0/3>3"="3<0/3>3[1/3]3<0/3>3"="3<0/3>3"="3<0/3>3[1/3]3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3"="3<0/3>3 像{4<0/1[1,2]1[4]1[3]1[3]1[2]1,1,1,1,6>3}那样的数阵,它的算子驾驶员不是位于/后面的第一个数,在这种情况下,只需像 A3 规则那样,把算子乘客以分隔符[A]分隔的部分全都变成 p<A'>p 即可,而最前面的 O 应变成 p 本身.于是{4<0/1[1,2]1[4]1[3]1[3]1[2]1,1,1,1,6>3}={4<3/3<0,2>3[1,2]3<3>3[4]3<2>3[3]3<1>3[2]3,3,3,3,3,5>3}.

接下来,设想一下{b,p[1/1[1[...1[1[2]2]2...]2]2]2},如果说 b<0/2>p=bbyyp>p>p>p>p>p>p>p(从中间到右边共 p 个 p),那么不难想象, b<0/p>o/p<0/p>o/p<0/p>p>p>p>p...>p>p>p(从中间到右边共 p 个 p)应该等于 b<0/1/2>p(注意,这里的 O 和 1 都是默认值).我们进入了第 3 组.一般地,对于几个组排成一行的情形(形如 b<A₁/A₂/...A_{n-1}/A_n>p),我们将原来的 A 规则进行一些更改,变成下面的规则:(#表示任意序列,@表示默认值序列)

A1.b<0>p=b

A2.b<n+1#>p=b<n#>p[n+1#]b<n#>p[n+1#].....b<n#>p[n+1#]b<n#>p[n+1#]b<n#>p(共 p 个 b<n#>p) A3.若有算子乘客,且算子驾驶员前的分隔符不是/,则 b<@[A]n+1#>p=b<@'[A]n#>p,其中@'表示原来@序列中以任何[X]分隔的部分都变成 p<X'>p,其中 X'除了第一个数比 X小1外,其它部分与 X 相同.

A4.若有算子乘客,且算子驾驶员前的分隔符是/,则 b<@/1/n+1#>p=b<R_p>p,其中 R₁="0", R_{m+1}="@'/p<R_m>p/n#"

注:以/分隔的部分相对应的@'序列应为 p

我们用下面的例子来说明上面的规则.

 ${4,3[1/1/1/3/2]2}={4<0/1/1/1/3/2>3}={4<R₃>3}={4<3/3/3/3/3<R₂>3/2/2>3}$

 $= \{4 < 3/3/3/3 < \frac{3/3/3}{3}/3 < R_1 > 3/2/2 > 3/2/2 > 3\}$

={4<3/3/3/3<3/3/3<0>3/2/2>3/2/2>3}

={4<3/3/3/3/3/3/2/2>3/2/2>3}

 ${4,3[1/5,2,3]2}={4<0/5,2,3>3}={4<R_3>3}={4<3<R_2>3/4,2,3>3}$

 $={4<3<3<R_1>3/4,2,3>3/4,2,3>3}={4<3<3<0>3/4,2,3>3/4,2,3>3}$

={4<3<3/4,2,3>3/4,2,3>3}

 ${4,3[1/1/1/1[1/1/2]1[1,3]1,3]2}={4<0/1/1/1[1/1/2]1[1,3]1,3>3}$

 $={4<3/3/3/3<0/1/2>3[1/1/2]3<0,3>3[1,3]3,2>3}$

 $={4<3/3/3/3<R_3>3[1/1/2]3<3,2>3[1,3]3,2>3}$

 $= \{4 < 3/3/3/3 < 3/3 < R_2 > 3/1 > 3[1/1/2]3 < 3,2 > 3[1,3]3,2 > 3\}$

 $= \{4 < 3/3/3/3 < 3/3 < 3/3 < R_1 > 3/1 > 3/1 > 3[1/1/2]3 < 3,2 > 3[1,3]3,2 > 3\}$

={4<3/3/3/3<3/3<3/3>3>3[1/1/2]3<3,2>3[1,3]3,2>3}

```
特别要注意的是,分隔符/不能出现在"底层"中——它只能出现在至少第 1 层中.这里,底层即第 0 层,是没有任何\>或[] 包围的层,而在第 n 层中出现了\>或[]时,它们所包围的层就是第 n+1 层.例如,在乌之记号中,像{3,3,3/2}这样的东西是不正确的.在{3,2,4[2/2/3]2[3/2[2[1/3]3]2]2}中,黄色底纹为底层,绿色底纹为第 1 层,青色底纹为第 2 层,灰色底纹为第 3 层.因为分隔符/具有这种性质,所以我们把它称作 1 级超分隔符,而可以出现在底层的分隔符则是普通分隔符.

现在设想一下,我们把组当作一个个元素,排成一个"组数阵",这个组数阵中的行分隔符用[2]/表示,平面分隔符用[3]/表示,等等.要注意,组数阵中的所有分隔符(如[1,2[3]4]/等)都是 1 级超分隔符.而[1]/则可以缩写为/.例如{4,3[1[2]/2]2}={4<0[2]/2>3}={4<3<1>/3}={4<3<1>/3}={4<3<1/3}3}={4<3/3/3>3}
```

 ${4,3[1[2]/1/3]2}={4<0[2]/1/3>3}={4<R₃>3}={4<3<1>/3[2]/3<R₂>3/2>3}$ $= \{4<3<1>/3[2]/3<3<1>/3[2]/3<R₁>3/2>3/2>3 \}$ ={4<3/3/3[2]/3<3/3/3[2]/3/2>3/2>3} ${4,3[1[2]/1[2]/1,3]2}={4<0[2]/1[2]/1,3>3}={4<3<1>/3[2]/3<1>/3[2]/3,2>3}$ ${4,3[1[3]/2]2}={4<0[3]/2>3}={4<3<2>/3[3]/1>3}={4<3/3/3[2]/3/3/3[2]/3/3/3}$ 在普通分隔符[1[A]/2]或者 1 级超分隔符[A]/中,A 可以是任何一个"能够处在底层的" 数阵,即A不含一级超分隔符. {4,3[1[1,2]/2]2}={4<0[1,2]/2>3}={4<3<<mark>0</mark>,2>/3>3}={4<3<<mark>3,1</mark>>/3>3}={4<3<3>/3>3} {4,3[1[1[2]3]/3]2}={4<<mark>0[1[2]3]/3</mark>>3}={4<<mark>3<0[2]3>/3[1[2]3]/2</mark>>3} ={4<3<<mark>3<1>3[2]2</mark>>/3[1[2]3]/2>3} {4,3[1[1[1[1,2]2]2]/2]2}={4<<mark>0[1[1[1,2]2]2]/2</mark>>3} ={4<<mark>3<0[1[1,2]2]2>/3[1[1[1,2]2]2]/1</mark>>3}={4<3<<mark>0[1,2]2</mark>>3[1[1,2]2]1>/3>3} ={4<3<3<<mark>3<0,2>3[1,2]1</mark>>3>/3>3}={4<3<3<3<mark>,1</mark>>3>3>/3>3}={4<3<3<3<3<3>3>/3>3}={4<3<3<3<3>3>/3>3} ${4,3[1[1-2]/1/2]2}={4<0[1-2]/1/2>3}={4<R₃>3}={4<3<0-2>/3[1-2]/3<R₂>3/1>3}$ $= \{4 < 3 < 0 = 2 > /3[1 = 2]/3 < 3 < 0 = 2 > /3[1 = 2]/3 < R_1 > 3/1 > 3 > 3\}$ $= \{4 < 3 < 3 < 0 / 2 > 3 + 1 > / 3[1 - 2] / 3 < 3 < 0 / 2 > 3 + 1 > / 3[1 - 2] / 3 > 3 > 3\}$ $= \{4 < 3 < 3 < R_3 > 3 > /3[1 = 2]/3 < 3 < 3 < R_3 > 3 > /3[1 = 2]/3 > 3 > 3 \$ $= \{4 < 3 < 3 < R_2 > 3 / 1 > 3 > / 3[1 \square 2] / 3 < 3 < 3 < R_2 > 3 / 1 > 3 > / 3[1 \square 2] / 3 > 3 > 3 \}$ $= \{4 < 3 < 3 < 3 < 3 > 3 > 3 > 3 > [1 \square 2] / 3 < 3 < 3 < 3 < 3 > 3 > 3 > / 3[1 \square 2] / 3 > 3 > 3 \}$

接下来,我们允许一级超分隔符[A]/中的 A 含有一级超分隔符.最简单的情况:{4,3[1[1/2]/2]2}={4<0[1/2]/2>3}={4<3<3<3<3>/3>3>/3>3}.一般地, {b,p[1[1/2]/2]2}={b<0[1/2]/2>p}={b<p<p>(b(b) 中(1/2)/2)/2>p>={b(以中间到右边共2p-1个p,共p-1个/,2p-2对<>).它的增长率相当于{n,n,1,2}&n的级别.

接着是{b,p[A[1/2]/2]2},{b,p[1/2[1/2]/2]2},{b,p[1/3[1/2]/2]2}, {b,p[1/A[1/2]/2]2},{b,p[1/1/2[1/2]/2]2},{b,p[1/1/1/2[1/2]/2]2}, {b,p[1[2]/2[1/2]/2]2},{b,p[1[A]/2[1/2]/2]2},最后{b,p[1[1/2]/3]2} ={b<O[1/2]/3>p},它等于 {b<p<p>/p[1/2]/2>p...>/p[1/2]/2>p>/p[1/2]/2>p}(从中间到右边共 2p-1 个 p,共 p-1 个[1/2]/2,2p-2 对<>),它的增长率相当于{n,n×2,1,2}&n 的级别。

我们当然可以把[1/2]/后面的东西变成一个数阵,如{b,p[1[1/2]/A]2}, {b,p[1[1/2]/1/2]2},{b,p[1[1/2]/1/2]2},{b,p[1[1/2]/1[2]/2]2}, {b,p[1[1/2]/1[A]/2]2},{b,p[1[1/2]/1[1/2]/2]2},{b,p[1[1/2]/1[1/2]/1[1/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},{b,p[1[2/2]/2]2},\$\$

下面是增长率相当于 $\{n,n,1,1,2\}$ &n的数阵: $\{b,p[1[1/3]/2]2\}$,它等于 $\{b<0[1/3]/2>p\}=\{b<p<p<m.p<p<p/>/p>p/2>/p>p/2...>/p>p/2>/p>p<math>\{b,p[1[1/3]/2]2\}$,中间到右边共2p-1个p,2p-2 对<>).然后是 $\{b,p[1[1/A]/2]2\}$,直到 $\{b,p[1[1/1/2]/2]2\}$ 为止. $\{b,p[1[1/1/2]/2]2\}=\{b<0[1/1/2]/2>p\}=$

最后,当这些1级超分隔符层叠在一起,即{b<p<p>pp>/p>/p>/p>/p>p> 时,我们就达到了分隔符[A]/的极限(其中 A 含有1级超分隔符).下面我们用一个新的东西来表示它——[1~3].

[5,2,3] ~

我们把[A]/记作[A~2],而[A~1]可以略作[A].注意一下,这个"~2"竟然能使包含它的分隔符由普通分隔符变成 1 级超分隔符!

如果说[A~2](或[A]/)是以[1~2](也就是/)为首的第1类1级超分隔符,那么[A~3]就是以[1~3]为首的第2类1级超分隔符,[A~n]就是以[1~n]为首的第n-1类1级超分隔符,而~则是一个2级超分隔符,它只能处于至少第2层中.它们的运算符合下面的规则.

A1.b<O>p=b,b<O~c>p=b(这意味着,如果~前面的部分全为默认值,那么算子等于b) A2.b<c#>p=b<c-1#>p[c#]b<c-1#>p[c#].....b<c-1#>p[c#]b<c-1#>p(共p个b<c-1#>p), 其中#表示任意序列.

```
A3.非 A1 或 A2 的情况,则 b<@1[A1]c1#1~n>p=b<S1~n>p(即把~前面的部分变为序列 S1),
   这个 S<sub>1</sub> 由下列程序确定.首先令 i=1,然后执行下面的规则:
 a.如果分隔符[Ai]是/,那么令序列 Si=Rpi,其中 R1,1="O",Rn,i="@i'[Ai]p<Rn-1,1>p/ci-1#i",
   R_{n,k}="@_{k}'[A_{k}]p<R_{n,k+1}>p[A_{k}]c_{k}-1\#_{k}"(k<i),结束 A3 规则.
 b.如果分隔符[Ai]是~,那么令序列 Si=Rp,其中 R1="O",Rn="@i'[Ai]p<Rn-1,1>p~ci-1#i",结束 A3 规
   见几
 c.如果分隔符[A_i]是 1 级超分隔符但不是/,那么令 S_{i=1}^{*}@_{i}^{*}[A_{i}^{-}]p < S_{i+1} > p[A_i]c_{i-1}\#_{i}^{*},记
   [A_i]=[@<sub>i+1</sub>[A_{i+1}]c_{i+1}#<sub>i+1</sub>],令 i 加 1,重新 a.b.c.d.
 d.非 a、b 或 c 的情况,则令 Si="@i'[Ai]ci-1#i",结束 A3 规则.
注:这个规则中的 c 表示算子驾驶员.#为任意.序列,@为默认值序列.@'是在相应的@序
列中,把任意[X]分隔的部分变成 p<X'>p(其中 X'除了第1个参数比 X 少 1,其余部分与 X
相同)后所得的序列。@'可以截取@的一部分进行操作,例如[Ai]本是@i的一部分,但@i'
只截取[Ai]前面的部分进行操作.
  我们用下面的例子来解释较复杂的规则 A3.
{4,3[1[1~3]2]2}={4<0[1~3]2>3}={4<5_1>3}(i=1;[A_1]=[1~3];c)
     ={4<3<5<sub>2</sub>>3[1~3]1>3}(i=2;[A<sub>2</sub>]=~;b)
     ={4<3<R<sub>3</sub>>3>3}={4<3<3<R<sub>2</sub>>3~2>3>3}={4<3<3<R<sub>1</sub>>3~2>3~2>3>3}
     ={4<3<3<3<0>3~2>3~2>3>3}={4<3<3<2>3~2>3>3}
\{4,3[1[1\sim3]3]2\}=\{4<0[1\sim3]3>3\}=\{4<S_1>3\}(i=1;[A_1]=[1\sim3];c)
     ={4<3<5_2>3[1~3]2>3}(i=2;[A_2]=~;b)
     ={4<3<R<sub>3</sub>>3[1~3]2>3}={4<3<3<R<sub>2</sub>>3~2>3[1~3]2>3}
     ={4<3<3<R_1>3~2>3~2>3[1~3]2>3}
     ={4<3<3<0>3~2>3~2>3[1~3]2>3}
     ={4<3<3<3~2>3~2>3[1~3]2>3}
{4,3[1[1~3]1[2]2]2}={4<0[1~3]1[2]2>3}={4<S₁>3}(i=1;[A₁]=[2], 是普通分隔符;d)
     ={4<3<0~3>3[1~3]3<1>3[2]1>3}={4<3[1~3]3,3,3>3}
{4,3[1[1~3]1/2]2}={4<0[1~3]1/2>3}={4<S_1>3}(i=1;[A_1]=/;a)
     ={4<R_{3,1}>3}={4<3<0~3>3[1~3]3<R_{2,1}>3>3}
     = \{4 < 3 < 0 < 3 > 3[1 < 3]3 < 3 < 0 < 3 > 3[1 < 3]3 < R_{1,1} > 3 > 3 > 3\}
     ={4<3<0~3>3[1~3]3<3<0~3>3[1~3]3<0>3>3}
     ={4<3[1~3]3<3[1~3]3>3>3}
\{4,3[1[1\sim3]1[1\sim3]2]2\}=\{4<0[1\sim3]1[1\sim3]2>3\}=\{4<S_1>3\}(i=1;[A_1]=[1\sim3];c)
     ={4<3<0~3>3[1~3]3<5_2>3[1~3]1>3}(i=2;[A_2]=~;b)
     = \{4 < 3[1 < 3]3 < R_3 > 3 > 3\} = \{4 < 3[1 < 3]3 < 3 < R_2 > 3 < 2 > 3 > 3\}
     = \{4 < 3[1 < 3]3 < 3 < 3 < R_1 > 3 < 2 > 3 < 2 > 3 > 3\} = \{4 < 3[1 < 3]3 < 3 < 3 < 0 > 3 < 2 > 3 < 2 > 3 > 3\}
```

```
={4<3[1~3]3<3<3~2>3~2>3>3}
{4,3[1[2~3]2]2}={4<0[2~3]2>3}={4<S_1>3}(i=1;[A_1]=[2~3];c)
     ={4<3<5<sub>2</sub>>3[2~3]1>3}(i=2;[A<sub>2</sub>] 不 存 在;d)
     ={4<3<1~3>3>3}={4<3<0~3>3[1~3]3<0~3>3[1~3]3<0~3>3}
     ={4<3[1~3]3[1~3]3>3}
{4,3[1[1/2~3]2]2}={4<0[1/2~3]2>3}={4<<math>S_1>3}(i=1;[A_1]=[1/2~3],是 1 级超分隔符;c)
     ={4<3<5_2>3[1/2~3]1>3}(i=2;[A_2]=/;a)
     = \{4 < 3 < R_{3,2} > 3 > 3\} = \{4 < 3 < 3 < R_{2,1} > 3 / 1 \sim 3 > 3 > 3\} = \{4 < 3 < 3 < R_{2,2} > 3 [1 / 2 \sim 3]1 > 3 \sim 3 > 3 \}
     ={4<3<3<3<3>3>3>3>3>3}
{4,3[1[1[1~3]2~3]2]2}={4<0[1[1~3]2~3]2>3}={4<5_1>3}(i=1;[A_1]=[1[1~3]2~3];c)
     ={4<3<5_2>3}\frac{1[1\sim3]2\sim3]1>3}{(i=2;[A_2]=[1\sim3];c)}
     ={4<3<3<5_3>3~2>3>3}(i=3;[A_3]=~;b)
     ={4<3<3<R<sub>3</sub>>3~2>3>3}={4<3<3<R<sub>2</sub>>3~2>3~2>3>3}
     ={4<3<3<3<R_1>3~2>3~2>3~2>3}={4<3<3<3<0>3~2>3~2>3~2>3>3}
     ={4<3<3<3<2>3~2>3~2>3~2>3}
{4,3[1[1\sim4]2]2}={4<0[1\sim4]2>3}={4<S_1>3}(i=1;[A_1]=[1\sim4];c)
     ={4<3<5_2>3[1~4]1>3}(i=2;[A_2]=~;b)
     ={4<3<R<sub>3</sub>>3>3}={4<3<3<R<sub>2</sub>>3~3>3>3}={4<3<3<R<sub>1</sub>>3~3>3~3>3>3}
     ={4<3<3<0>3<3>3>3>3}={4<3<3<3<3>3>3>3>3}
  如果把{b<O[1~n]2>p}中的定值n变成动值p,我们就进入了下一个阶段:我
```

如果吧{b<0[1~n]2>p}中的定值n变成动值p,我们就进入了下一个阶段:我们可以吧~后面的东西变成一个数阵(而不仅仅是一个数),如{3,3[1[1~1,2]2]2}等;这个数阵甚至可以包含1级超分隔符,如{3,4[1[1~1/3]2]2}等.我们还可以使用2个~,像[1~2~3]那样,这个序列被~分成3个区域;一般地,~分隔各个区域而这些区域可以组成线性数阵,如{3,3[1[3~1/2~1[1~2~3]2~1,2~1~2]2]2}等.如果我们的"由区域组成的数阵"不局限于线性数阵,那么我们将会到达用~无法表示的地方.我们需要迈开一大步,用一些新的、强大的符号表达——

【5,2,4】下标斜红

我们用[1/32]表示~,这样[2/32]就表示"由区域组成的行"之间的分隔符, [3/32]就表示"由区域组成的平面"之间的分隔符.试着类比一下,[1/32]=~,而 [1~2]=/,我们就可以把/写成/1,把~写成/2.这里的[2/32]、[3/32]等都是2级超

分隔符,而/3则是一个3级超分隔符,它出现在至少第3层中.类似的,/3=[1/42],/4=[1/52],...,/n=[1/n+12],/n就应该是一个n级超分隔符,它出现在至少第n层中. 如果分隔符[A]的最外层中所含有的最高级分隔符是n级超分隔符,那么[A]本身将会是一个n-1级分隔符.如分隔符[1[1~2]2/2[1/33]3[2/42]2]的最外层含有[1~2]./. [1/33]和[2/42]这4个分隔符,最高级分隔符[2/42]是3级超分隔符,所以[1[1~2]2/2[1/33]3[2/42]是2]是一个2级超分隔符.用此方法得出的"0级超分隔符"应该是一个普通分隔符.

/n 被称作下标斜虹(包括~在内).注意缩写,如[1[1[1[1/52]2]2]2]2]=[1[1[1/42]2]2]=[1[1/32]2]=[1~2]=/.我们把至少2级超分隔符称作高分隔符,而最小的高分隔符则是~.

下面是含下标斜杠数阵的 A 规则.

- A1.b<O#*>p=b(这意味着,如果第1块全为默认值,那么算子等于b)
- A2.b < c# > p = b < c 1# > p[c#]b < c 1# > p[c#]......b < c 1# > p[c#]b < c 1# > p(共 p 个 b < c 1# > p), 其中#表示任意序列.
- A3.非 A1 或 A2 的情况,则 $b<@_1[A_1]c_1\#_1\#^*>p=b<S_1\#^*>p(这意味着把第 <math>1$ 块变成 S_1), 这个 S_1 由下列程序确定.首先令 $i=i_2=i_3=...=1$ (i 就是 i_1),然后执行下面的规则:
 - a.如果分隔符[A_i]是某种下标斜杠,那么令 m 为下标斜杠的等级(即斜杠的下标),令 $s=i-i_m+1$,令 $S_i=R_{p,i}$,其中 $R_{1,s}="0"$, $R_{n,i}="@_i'[A_i^-]p<R_{n-1,s}>p/mc_i-1#_i"$, $R_{n,k}="@_k[A_k^-]p<R_{n,k+1}>p[A_k]c_k-1#_k"$ ($s\le k< i$).结束 A3 规则.
 - b.如果分隔符[A_i]不是普通分隔符也不是下标斜杠,那么令 S_i ="@ $_i$ [A_i]p< S_{i+1} >p[A_i]c $_i$ -1# $_i$ ",记 [A_i]=[@ $_{i+1}$ [A_{i+1}]c $_{i+1}$ # $_{i+1}$],令 m 为[A_i]的等级,把 i、i $_2$ 、i $_3$ 、…、i $_m$ 都加上 1,令 i $_{m+2}$ 、…都变成 1,重新 a.b.c.
 - c.非 a 或 b 的情况,则令 S;="@;'[A;]c;-1#;".结束 A3 规则.
- 注:这个规则中的 c 表示算子驾驶员.#为任意序列;#*要么是以高分隔符开始的序列,要么是空序列;@为默认值序列.@'是在相应的@序列中,把任意[X]分隔的部分变成p<X'>p(其中X'除了第1个参数比X少1,其余部分与X相同)后所得的序列.@'可以截取@的一部分进行操作,例如[Ai]本是@i的一部分,但@i'只截取[Ai]前面的部分进行操作.我们用下面的例子来解释较复杂的 A3 规则.
- ${4,3[1[1\sim1/2]2]2}={4<0[1\sim1/2]2>3}={4<S_1>3}(i=1;[A_1]=[1\sim1/2];b)$
 - $={4<3<S_2>3[1\sim1/2]1>3}(i=2;[A_2]=/;a,s=1)$

 - ={4<3<3~3<3<3>3>3>3>3}
- ${4,3[1[1\sim1\sim3]2]2}={4<0[1\sim1\sim3]2>3}={4<S_1>3}(i=1;[A_1]=[1\sim1\sim3];b)$

```
={4<3<5_2>3[1\sim1\sim3]1>3}(i=2,i_2=1;[A_2]=\sim;a,s=2)
       = \{4 < 3 < R_{3,2} > 3 > 3\} = \{4 < 3 < 3 < 3 < R_{2,2} > 3 < 2 > 3 > 3\} = \{4 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < R_{1,2} > 3 < 2 > 3 > 3\}
       ={4<3<3~3<3~3<0>3~2>3~2>3}={4<3<3~3<3~3~2>3~2>3>3}
\{4,3[1[1[2/_32]2]2]2\}=\{4<0[1[2/_32]2]2>3\}=\{4<5_1>3\}(i=1;[A_1]=[1[2/_32]2];b)
       ={4<3<5<sub>2</sub>>3}{1[2/<sub>3</sub>2]2]1>3}(i=2;[A<sub>2</sub>]=[2/<sub>3</sub>2];b)
       ={4<3<3<1/_32>3>3>3}={4<3<3<0/_32>3[1/_32]3<0/_32>3[1/_32]3<0/_32>3>3>3}
       ={4<3<3~3~3>3>3}
{4,3[1[1[1/2/<sub>3</sub>2]2]2]2}={4<0[1[1/2/<sub>3</sub>2]2]2>3}={4<S<sub>1</sub>>3}(i=1;[A<sub>1</sub>]=[1[1/2/<sub>3</sub>2]2];b)
       ={4<3<5<sub>2</sub>>3}{1[1/2/<sub>3</sub>2]2]1>3}(i=2;[A<sub>2</sub>]=[1/2/<sub>3</sub>2];b)
       ={4<3<3<5_3>3[1/2/32]1>3>3}(i=3,i_2=2;[A_3]=/;a,s=1)
       ={4<3<3<R_{3,3}>3>3>3}={4<3<3<R_{2,1}>3/4/<sub>3</sub>2>3>3>3}
       = \{4 < 3 < 3 < 3 < 3 < 3 < 3 < R_{1,1} > 3 / 1 / _3 2 > 3 > 3 / _3 2 > 3 > 3 \}
       ={4<3<3<3<3<3<3/3}2>3>3>3/32>3>3}3
\{4,3[1[1[1~3/<sub>3</sub>2]3]2]2\}=\{4<0[1[1~3/<sub>3</sub>2]3]2>3\}=\{4<5<sub>1</sub>>3\}(i=1;[A<sub>1</sub>]=[1[1~3/<sub>3</sub>2]3];b)
       ={4<3<5_2>3}\frac{1[1\sim3/_32]3]1>3}(i=2;[A_2]=[1\sim3/_32];b)
       ={4<3<3<5_3>3[1~3/_32]2>3>3}(i=3,i_2=2;[A_3]=~;a,s=2)
       = \{4 < 3 < 3 < R_{3,3} > 3[1 < 3 /_3 2]2 > 3 > 3\} = \{4 < 3 < 3 < 3 < R_{2,2} > 3 < 2 /_3 2 > 3[1 < 3 /_3 2]2 > 3 > 3\}
       = \{4 < 3 < 3 < 3 < 3 < R_{2,3} > 3[1 < 3 /_{3}2]2 > 3 < 2 /_{3}2 > 3[1 < 3 /_{3}2]2 > 3 > 3\}
       = \{4 < 3 < 3 < 3 < 3 < 3 < R_{1,2} > 3 \sim 2 /_3 2 > 3[1 \sim 3 /_3 2]2 > 3 \sim 2 /_3 2 > 3[1 \sim 3 /_3 2]2 > 3 > 3\}
       ={4<3<3<3<3<3<2/3}2>3[1~3/<sub>3</sub>2]2>3~2/<sub>3</sub>2>3[1~3/<sub>3</sub>2]2>3>3}
{4,3[1[1[1/<sub>3</sub>1,2]2]2]2}={4<0[1[1/<sub>3</sub>1,2]2]2>3}={4<5<sub>1</sub>>3}(i=1;[A<sub>1</sub>]=[1[1/<sub>3</sub>1,2]2];b)
       ={4<3<5_2>3}\frac{1[1/_31,2]2]1>3}(i=2;[A_2]=[1/_31,2];b)
       ={4<3<3<5<sub>3</sub>>3<del>[1/<sub>3</sub>1,2]1</del>>3>3}(i=3,i<sub>2</sub>=2;[A<sub>3</sub>]=,;c)
       ={4<3<3<0/<sub>4</sub>2>3/<sub>3</sub>3,1>3>3}={4<3<3<3/<sub>3</sub>3>3>3>3}
{4,3[1[1[1/<sub>3</sub>1/<sub>3</sub>2]2]2]2}={4<0[1[1/<sub>3</sub>1/<sub>3</sub>2]2]2>3}={4<S<sub>1</sub>>3}(i=1;[A<sub>1</sub>]=[1[1/<sub>3</sub>1/<sub>3</sub>2]2];b)
       ={4<3<5_2>3}\frac{1[1/_31/_32]2]1>3}(i=2;[A_2]=[1/_31/_32];b)
       ={4<3<3<5<sub>3</sub>>3}{1/<sub>3</sub>1/<sub>3</sub>2}1>3>3}(i=3,i<sub>2</sub>=2;[A<sub>3</sub>]=/<sub>3</sub>;a,s=3)
       ={4<3<3<R_{3.3}>3>3>3}={4<3<3<0/42>3/33<R_{2.3}>3\frac{4}{3}}3>3>3}
       = \{4 < 3 < 3 < 3 < 3 < 0 / 42 > 3 / 33 < R_{1.3} > 3 / 34 > 3 > 3 > 3 > 3 > 3 \}
       ={4<3<3<3/<sub>3</sub>3<3/<sub>3</sub>3<0>3>3>3>3}={4<3<3<3/<sub>3</sub>3<3/<sub>3</sub>3>3>3>3}}
{4,3[1[1[1[2/<sub>4</sub>2]2]2]2]2}={4<0[1[1[2/<sub>4</sub>2]2]2]2>3}
       ={4<S_1>3}(i=1;[A_1]=[1[1[2/42]2];b)
```

```
=\{4<3<5_2>3[1[1[2/42]2]1>3\}(i=2;[A_2]=[1[2/42]2];b)
=\{4<3<3<5_3>3[1[2/42]2]1>3>3\}(i=3,i_2=2;[A_3]=[2/42];b)
=\{4<3<3<3<5_4>3[2/42]1>3>3>3\}(i=4,i_2=3,i_3=2;[A_4] 不存在;c)
=\{4<3<3<3<1/42>3>3>3>3\}
=\{4<3<3<3<0/42>3[1/42]3<0/42>3[1/42]3<0/42>3[1/42]3<0/42>3>3>3>3}
<math>=\{4<3<3<3/3/33/33>3>3>3\}
```

Chris Bird 用下面的函数表示乌之记号的极限——U 函数.它的定义如下: U(n)={3,n[1[1[...1[1[1/n1/n2]2]2]2]...]2]2](共 n 层[]).

U(1)=3,因为底层第1行只有1个数,所以根据规则M1,整个数阵的值为底数即3.

U(2)={3,2[1[1~1~2]2]2}={3<0[1~1~2]2>2}={3<2<2~2>2>2}={3<2/2[2]/2/2>2},但还是没有超过 BEAF 所能及的范围.

 $U(3)=\{3,3[1[1[1/₃1/₃2]2]2]2\}=\{3<3<3<3/₃3<3/₃3>3>3>3>3},它远远超过BEAF 所能及的范围.$

想象一下这个数有多大:U^{U(3)}(3),上标表示函数迭代的次数.

到此已穷千里目,谁知才上一层楼.

【6】超越数阵

[6,1] 图论问题

【6,1,1】 tree 函数

设想一下,一些树(树的定义见【4,3】节)组成了一个序列,不妨称作"树列".满足下面条件的树列的最大长度称作 tree(k).

1.树列的第 n 个树至多有 n+k 个顶点(包括根).

2.对任意 ixj,第 i 个树都不能拓扑成为第 j 个树的子图.

tree(0)=1,tree(1)=2,tree(2)=5,tree(3)则至少是 262140(目前还未确定 tree(3)的上限).我们甚至不能确定 tree(4)的上、下界,何况 tree(5)、tree(6)、tree(100)、tree(tree(3))等数.

下面给出一种说明 tree(3)至少是 262140 的树序列:

(以下用 n 表示序列的第 n-3 项,至多有 n 个顶点.用"()"表示只有根的树,"(())"表示从根中长出 1 节直的枝条,"(((())))"表示有 3 节的直的树,"(()(()))"和"((())())"是相同的树,一般地,括号 A 中有括号 B 表示节点 B"长在节点 A 上".一个叶则用"x"表示)

(首项)4:(xxx)

5:((x)(x))

6:(((x)x)x)

7:((((xx)))x)

8:((((((xx))x)))

9:((((xx))x))

10:(((xx))x)

11:((((((((((xx)x))))))))

12:((((((((xx)x)))))))

13:(((((((xx)x)))))

14:((((((xx)x))))

15:((((xx)x)))

16:(((xx)x))

17:((xx)x)

19:(((A₁₅x)))

 $20:((A_{15}x))$

 $21:(A_{15}x)$

【6,1,2】 otree 函数

一个树的各个枝条是"左右无序"的,它同级中的左右枝条可以互换,这是tree 问题.如果一个树的枝条是固定了左右的,例如(x(x))和((x)x)是不同的树,而且在"容纳"时也分左右,如(x(x))能容纳于(x((x)))中但不能容纳于(((x))x)中,这样的树是有序树(otree 问题),满足【6,1,1】节中条件的有序树列的最大长度称作 otree(k).

otree(0)=1,otree(1)=2,otree(2)=5,但 otree(3)就与 tree(3)不同.现已确定的是 otree(3)的下限,用后面第【7】章的 f(x)系统来表示,就是 $f_{\omega^2}(f_{\omega^2}$

【6,1,3】TREE 函数

假设树中的每一个顶点都涂上了颜色,它就是一个有色树.有色树列中的"容纳"不仅仅需要图形的容纳,还需要颜色相同.一个含有3个红色顶点的图是不能容纳于只有2个红色顶点的图中的.不过,TREE 问题不像 otree 问题那样需要"左右有序".满足下面条件的有色树列的最大长度称作 TREE(k).

- 1. 树列中的顶点总共至多有 k 种颜色
- 2.树列的第 n 个树至多有 n 个顶点
- 3.对任意 ikj,第 i 个树都不能拓扑成为第 j 个树的子图.

TREE(1)=1,也就是 tree(0); TREE(2)=3.但是, TREE(3)实然变得很大.如果记 tree₂(x)=tree^x(x), tree₃(x)=tree₂^x(x)(函数名的上标表示迭代次数),那么TREE(3)>tree₃(tree₂(tree(8))). 我们既不知道 TREE(3)的一个上限,也不知道 TREE 函数的增长率如何.

【6,1,4】 SCG和 SSCG 函数

如果一个图的序列满足下面的条件,那么它的最大长度称作 SCG(k):

- 1.任意一个图的任意一个顶点的度至多为3
- 2. 第 n 个图至多有 n+k 个顶点(至少有多少个顶点?O 个.也就是说,可以有空图(一般是图序列的最后一个))
- 3.对任意 ikj,第i个图都不能拓扑成为第j个图的子图.

如果一个简单图的序列满足下面的条件,那么它的最大长度称作 SSCG(k):

- 1.任意一个图的任意一个顶点的度至多为3
- 2. 第 n 个图至多有 n+k 个顶点(至少有多少个顶点?1 个)
- 3.对任意 ikj,第i个图都不能拓扑成为第j个图的子图.

SCG(0)=6.可以认为,第 1 个图是一个顶点连 1 个环(这个顶点的度应该为 2),第 2 个图是 2 个顶点之间连 1 条边,第 3 、 4 、 5 个图分别是没有边的 3 、 2 、 1 个顶点,第 6 个图为空.这样的图取得"图的序列的长度"的最大值.SCG(1)就已经大到用 E#记号几乎表示不出来的程度,用 E100g(#)100 来表示需要"很复杂"的函数 g(x).

SSCG(0)=1,SSCG(1)=4,SSCG(2)则至少是 $3\times 2^{3\times 2^{95}},SSCG(3)$ 大到即使是 TREE n (3)都是几乎不可能超过它的.

SCG 函数和 SSCG 函数都具有大约是 U(n)的增长率.显然,SSCG 函数比SCG 函数稍弱,SSCG(n)、SCG(n),不过 SSCG(3n+4)≥3SCG(n),所以 SCG 函数和 SSCG 函数还是有可比性的.

[6,2] Loader.c

曾有人提出了下面的"比赛":用不超过512个字符(不计空格)的 C 语言代码表示出一个数,看谁的数大.优胜者是 Ralph Loader,下面这段代码就是以他的名字命名的 Loader.c:

```
#define R { return
#define PP(
#define LL(
#define T S (v, y, c,
\#define C ),
\#define X \times )
#define F);}
int r, a;
Py, X
   Ry - ~y << x;
   Rr = x \% 2 ? 0 : 1 + Z(x / 2 F)
LX
   Rx/2 \gg Z(xF)
\#define U = 5(4,13,-4,
   int
      x = r;
         f - 2?
         f > 2?
         f - v?t - (f > v) * c:y:
         Pf, PT LX C
                           S(v+2, t \cup y C c, Z(X)))
         A(T LX C
```

```
T Z(X) F
A (y, X
  R L y) - 1
     ?5 << Py, X
     : S (4, x, 4, Z (r) F
#define B (x /= 2) % 2 && (
D (X
  int
     c = 0
     t = 7,
     u = 14;
  while (x & D (x - 1 C B 1))
     d = LLD(X)C
        f = LrC
        x = LrC
        c-r | (
           Lu) | | Lr) - f | |
           Bu = S(4, d, 4, rC)
                  t = A(t, d)C
           f/2&B c=Pd,cC
                             t U t C
                                U u))
        c && B
           t = P
              ~u & 2 | B
                 u = 1 \ll PLcCu)C
              PLcC t)C
           c = r C
        u/2&B
           c = P t, c C
           u U†C
           t = 9 );
  Ra = PPt, Pu, Px, c)) C
                               a F
```

} main () R D (D (D (D (99)))) F

这个函数所定义的 D(x)是一个增长很快的函数,它的增长率甚至超过了乌之记号和超阶乘数阵的表示能力.D(8)=496,D(9)=2031616.在这个代码中, D(99)就大于 $2\uparrow\uparrow$ 30419,而最后的输出 $D^5(99)$ 则远远大于 $U^{\cup^{(3)}(3)}(3)$.

[6,3] **S**函数

[6,3,1]

设想一下一台图灵机,它只有n种不同状态可以使用,它只能在一条纸带上活动.这条纸带的格子起初全是白色的,图灵机可以把格子在黑色与白色之间转换.如果这样一个图灵机最后能够停下来,就称作 busy beaver.所有n状态的busy beaver 中,一台图灵机能够"扫过"的格子区域所含的最大格子数记作Σ(n).

 $\Sigma(1)=1,\Sigma(2)=4,\Sigma(3)=6,\Sigma(4)=13$.下面是 $\Sigma(3)$ 的最优解: 我们不知道 $\Sigma(5)$ 、 $\Sigma(6)$ 等的准确值,只知道 $\Sigma(5)$ ≥4098, $\Sigma(6)$ ≥3.514×10 18276 .

当你计算 $\Sigma(n)$ 的时候,你遇到了计算很久却不能停下来的情况,你却不知道这种图灵机到底属于"不是 busy beaver,但没计算完"的哪一类.产生这

adapted from Wolfram, S. A New Kind of Science. Wolfram Media, p. 78, 2002.

一问题的根本原因是"停机问题是不可解的".正是如此,Σ函数成了一个"不可计算"的函数.它的增长率非常大,超过一切递归函数,超过 Loader.c 中的 D 函

数. $\Sigma(10)$ 远远去于 tritri, $\Sigma(25)$ 去于葛立恒数, $\Sigma(150)$ 去于 $\{3,3,3[1[1~3]2]2\}$, $\Sigma(160)$ 则去于 Loader.c 的最后输出—— $D^5(99)$.

【6,3,2】移动的步数

下面这个函数与 Σ 函数具有相近的增长率.所有 n 状态的 busy beaver 中, 一台图灵机能够进行操作的最多步数记作 BB(n).BB(1)=1,BB(2)=6,BB(3)=21, BB(4)=107.我们不知道 BB(5)、BB(6)等的准确值,只知道 BB(5) \geq 47176870, BB(6) \geq 7.412×10³⁶⁵³⁴.一般地,BB(n) \geq Σ (n),这是因为图灵机在运行过程中会来回移动.

【6,3,3】高阶图灵机

一台预言机,除了拥有与图灵机相同的功能,还可以随时解出任何图灵机的停机问题(但不能解出预言机本身的停机问题),也就是说, Σ 函数和 BB 函数在预言机这里是可解的.所有 n 状态的预言机 busy beaver 中,一台预言机能够"扫过"的格子区域所含的最大格子数记作 $\Sigma_2(n)$,能够进行操作的最多步数记作 BB₂(n).这 2 个函数的增长率远远超过 $\Sigma(n)$ 和 BB(n).

下面,我们把普通图灵机记作 1 阶图灵机,把预言机记作 2 阶图灵机.设想一下什么是 3 阶图灵机:它除了拥有与图灵机相同的功能,还可以随时解出任何 1 阶或 2 阶图灵机的停机问题.所有 n 状态的 3 阶 busy beaver 中,一台 3 阶图灵机能够"扫过"的格子区域所含的最大格子数记作 $\Sigma_3(n)$,能够进行操作的最多步数记作 $BB_3(n)$.这 2 个函数的增长率远远超过 $\Sigma_2(n)$ 和 $BB_2(n)$.

一般地,m 阶图灵机除了拥有与图灵机相同的功能,还可以随时解出任何小于 m 阶图灵机的停机问题.所有 n 状态的 m 阶 busy beaver 中,一台 m 阶图灵机能够"扫过"的格子区域所含的最大格子数记作 $\Sigma_m(n)$,能够进行操作的最多步数记作 $BB_m(n)$.

【6,4】三函数

【6,4,1】4个操作符

下面我们定义一些操作符,这里的每一个等式称作一个操作.

- 元操作符 I 定义为 I(x)=x
- 二元操作符 K 定义为 K(x,y)=x
- 三元操作符 S 定义为 S(x,y,z)=x(z,y(z))

如 S(K,S,K(I,S))=K(K(I,S),S(K(I,S)))=K(I,S)=I

三元操作符 Ω 定义如下:形如 $\Omega(x,y,z)$ 的结构,如果x经一系列操作可以变为I,那么 $\Omega(x,y,z)=y$,否则 $\Omega(x,y,z)=z$.

【6.4.2】 嵌套的序列

我们把一些操作符写成一个序列,如 SKS QI.我们从最左端开始对它进行操作,取左边第 1 个操作符作为函数名,然后根据函数名取左边第 2 个,第 2~3 个或第 2~4 个操作符分别作为一元、二元、三元函数的变量.一次操作完后,如果只有一个单独的符号(如 I 和 K,和部分 Q 的操作),那么把这个变量写下来.如果得到一个函数(形如 f(x,y)),那么让 f、x、y 各占一个符号位,把它们放在序列的前 3 位.

操作符序列中的任何一个都可以是另一个"操作符序列",如 $(SIK)(KS\Omega)K(SI(SKI)\Omega\Omega)\Omega$ I.

现在,我们可以得出几个小结论:I(x)#=x#,K(x)(y)#=x#, S(x)(y)(z)#=x(z)(yz)#,其中x·y·z为序列,#为序列或空序列.

【6,4,3】 定义和数值

一个序列可能经过有限灾操作而不能再操作,也可能会无限操作下去而不

能停止,而且你无法判断,就像∑函数一样.如序列

SII(SII)=I(SII)(I(SII))=SII(I(SII))=I(I(SII))(I(I(SII)))=I(SII)(I(I(SII)))= SII(I(I(SII)))=.....

就是无限操作而不能停止的序列.

三函数的定义如下:从一个含有 n 个操作符的序列开始,经过操作后,能得到的最大的有限的输出记作 三(n).

三(1)=1,就是 I - 个符号,无需运算.

三(2)=2,KI 即可,无需运算.

三(3)=3,S(II)即可,无需运算.

三(4)=4,5(555)即可,无需运算.

 $\Xi(5)=6,SSS(SI)=S(SI)(S(SI))$

 $\Xi(6)=17,SSS(SI)S=S(SI)(S(SI))S=SIS(S(SI)S)$

=I(S(SI)S)(S(S(SI)S))=S(SI)S(S(S(SI)S))

=SI(S(S(SI)S))(S(S(SI)S)))

=I(S(S(S(SI)S)))(S(S(SI)S)(S(S(SI)S))))

=S(S(S(SI)S))(S(S(SI)S)(S(S(SI)S))))

 $\Xi(7)=51$

下面是一些值的下限.三(8)≥98,三(9)≥167,三(10)≥296,三(11)≥513.

虽然看上去三函数好像增长得很平缓(不像 TREE 函数那样),但它的增长率远远超过一切 $\Sigma_m(n)$,甚至 $\Sigma_{\Sigma(n)}(n)$ 这样的函数!

【6,4,4】Arx 函数

(这个 Aarex 在这里又插了一脚)Arx 函数的定义如下:

- $1.Arx(1,m)=10^6$
- $2.Arx(n,1)=\Xi(Arx(n-1,1))$
- 3.Arx(n,m)=Arx(Arx(n-1,m),m-1)

这个函数的增长率仅仅是比三函数块一丁点儿而已.第一 Aarex 数等于 $Arx(10^{10^{100}},10^{10^{100}})$.

下面是数阵扩展到了一行,并增添了2条规则:

4.Arx(a,b,c,...,y,1)=Arx(a,b,c,...,y)

5.对于至少 3 个参数且末位不是 1 的 Arx 序列 Arx(a,b,c,...,y,z),把 z 去掉,然后 z 前面的参数全部变成 Arx(a,b,c,...,y,z-1).

第二 Aarex 数等于 $Arx(10^{10^{100}},10^{10^{100}},...,10^{10^{100}})$ (共 $10^{10^{100}}$ 个 $10^{10^{100}}$).

下面是平面型的数阵,各个行之间用分号分隔,行内参数之间用逗号分隔.当任意一行行末的参数为1时,可将它省去.当第1行只有1个参数n时,把n后面第一个非1的参数m变成m-1,m前面同一行的1全变成n,m前面的行全变成由n个n组成的行.第一行的计算仍按前面的规则进行.

第三 Aarex 数等于 Arx(10^{10^100};1;1;...;1;2)(共 10^{10^100} 个 1).

下面是多维度的数阵,各个行之间的分隔符";"可以写成[1],而[2]则是各个平面的分隔符,[3]是各个3维空间的分隔符,等等.记序列 n^(1)="n,n,...,n"(共 n 个 n),序列 n^(m+1)="n^(m)[m]n^(m)[m]n^(m)[m]n^(m)"(共 n 个 n^(m)).在由 [m]分隔的空间内,如果出现了末尾的1,就把它省去(这点跟 BEAF、 乌之记号一样).然后,当第1行只有1个参数 n 时,把 n 后面第一个非1的参数 m 变成 m-1,m 前面的任何由[k]分隔的部分全变成 n^(k).第一行的计算仍按规则 1~5 进行.

第四 Aarex 数等于 $Arx(10^{10^{100}}[10^{10^{100}}]1[10^{10^{100}}]1.....1[10^{10^{100}}]2)(共10^{10^{100}} \uparrow 1).$

【7】序数时代

注:本章为总结篇,你可以在这里找到最正式的表示增长率记号也可以得到有关前面 E#记号和 BEAF 中&符号的使用的启发.

$[7,1]f(x)与 \omega$

[7,1,1] FGH

我们从最简单的运算——后继数开始,定义一个从序数到函数的映射系统——f(x)系统(fast-growing hierarchy,简称 FGH).

f 一 积 带 有 下 标.fo(x)=x⁺=x+1,简 单!

 $f_{n+1}(x)=f_n^{\times}(x)$,上标表示函数迭代次数.如 $f_1(x)=f_0^{\times}(x)=x+1+1$+1(共 x 个+1)= $x+x=x\times2=2x$,我们称它的增长率为 1.一般地,下标为 A 称作"增长率为 A".一次函数就具有 1 的增长率.

 $f_2(x)=f_1^x(x)=x\times2\times2.....\times2(共<math>x$ 个 $\times2)=x2^x$,增长率为 2,指数函数、阶乘、函数 x^x 都具有这一增长率,而高次多项式的增长率介于 1 与 2 之间.

 $f_3(x)=f_2^x(x)$,因为 $f_2(x)>2^x$,所以 $f_3(x)>2^2$ _.....2^x=E(2)x#x> x 2.不管是 2↑ x ,还是 x↑ x ,E(x)x#x,还有"x 放进一个正方形中",都具有 3 的增长率,而 x^x , x^x , x^x , x^x , x^x

 $f_4(x)=f_3^x(x)>2\uparrow\uparrow\uparrow x$,函数 $2\uparrow\uparrow\uparrow x$ 、 $x\uparrow\uparrow\uparrow x$ 、"x 放进一个五边形"都具有 4 的增长率.

 $f_5(x)=f_4^x(x)>2\uparrow\uparrow\uparrow\uparrow x$,函数 $2\uparrow\uparrow\uparrow\uparrow x$ 、 $x\uparrow\uparrow\uparrow\uparrow x$ 、"x 放进一个六边形"都具有 5 的增长率.

接下来是 $f_6(x)$ 、 $f_7(x)$ 、 $f_{tritri}(x)$ 等等,但它们的增长率都是"常数".我们试着改变这些函数的增长率—— $f_x(x)$.这将引导我们冲破原始递归的极限——

【7,1,2】w 与序数运算

 $f_{\omega}(x)=f_{x}(x)$,这里的W不是变量,是序数,它代表着一个序列:1,2,3,4,......-积用 $\omega[n]=n$ 表示.设 a 是序数,那么 a $\alpha[n]$ 表示这一序列的第 n 项.在 $\alpha[n]$ 在 $\alpha[n]$ 可以这样替换成变量: $\alpha[n]$ $\alpha[n]$ $\alpha[n]$ $\alpha[n]$ $\alpha[n]$ 有 是序数).上箭头、下箭头、多边形表示法、河克曼函数、 $\alpha[n]$ 都具有至多 $\alpha[n]$ 的增长率.

接下来是序数的加法运算. $f_{\omega+1}(x)=f_{\omega}^{\times}(x)$,它不等于 $f_{x+1}(x)$ ——你不能在吧"+1"处理掉之前就进行 $\omega[x]=x$ 的替换.这里如果吧 $\omega+1$ 看成一个序数,那么 $(\omega+1)[x]=\omega+(1[x])=\omega+1$. 一般地,对任意序数, $(\alpha_1+\alpha_2+...+\alpha_{n-1}+\alpha_n)[x]=\alpha_1+\alpha_2+...$ $+\alpha_{n-1}+(\alpha_n[x])$,而常数即使作为序数仍为常数,如 1[n]=1,3[n]=3,tritri[n]=tritri等. 葛立恒问题中的 <math>G(n)和 g(n),以及康威链式箭号中的 $a\longrightarrow b\longrightarrow n\longrightarrow 2$ 、 BEAF中的 $\{\alpha,n,1,2\}$ (也可以写成 $a\{\{1\}\}n$)都具有 $\omega+1$ 的增长率(n 为变量).

类似的, $f_{\omega+2}(x)=f_{\omega+1}^{\times}(x)$, $f_{\omega+3}(x)=f_{\omega+2}^{\times}(x)$, $f_{\omega+\omega}(x)=f_{\omega+x}^{\times}(x)$,这里 $\omega+\omega=\omega\times2$ (根据乘法的定义),简写为 $\omega2.f_{\omega2+1}(x)=f_{\omega2}^{\times}(x)$, $f_{\omega2+2}(x)=f_{\omega2+1}^{\times}(x)$, $f_{\omega3}(x)=f_{\omega2+\omega}(x)=f_{\omega2+x}^{\times}(x)$. $\{n,n,n,2\}$ En##n##n 和 $n\to n\to n\to n\to n$ 具有 $\omega2$ 的增长率,而 $\{n,n,n,3\}$ En##n##n##n 和 $n\to n\to n\to n\to n$ 则有 $\omega3$ 的增长率.一般地, $(\omega(n+1))[x]=(\omega n+\omega)[x]=\omega n+(\omega[x])=\omega n+x$.

接下来, $f_{\omega^2}(x)=f_{\omega\omega}(x)=f_{\omega x}(x)$,这里 $\omega^2[x]=(\omega \times \omega)[x]=\omega(\omega[x])=\omega x$. 一般地,对任意序数, $(a_1a_2...a_{n-1}a_n)[x]=a_1a_2...a_{n-1}(a_n[x])$. 无下标的康威链式箭号、En###n 和{n,n,n,n}都具有 ω^2 的增长率.

序数不像普通数字那样具有加法、乘法交换律,如 $f_{1+\omega}(x)=f_{1+x}(x)$ (因为 ω 在最右边,所以处理它,先替换成 $\omega[x]=x$)× $f_{1+x}(1+x)=f_{\omega}(1+x)$ × $f_{\omega}^{2}(x)$ × $f_{\omega+1}(x)$,由此可见,序数 $1+\omega$ 比 $\omega+1$ 小.又如 $f_{2\omega}(x)=f_{2\times\omega}(x)=f_{2\times}(x)$ × $f_{2\times}(2x)=f_{\omega}(2x)$ × $f_{\omega}^{2}(x)$ × $f_{\omega+1}(x)$ × $f_{\omega}(x)$,因此 2ω 比 $\omega+1$ 小.实际上,函数 $f_{1+\omega}(x)$ 、 $f_{2\omega}(x)$ 都具有 ω 的增长率,即 $1+\omega=2\omega=\omega$.

一般地,对于FGH中的序数 α ,递归时总是先从右边开始,碰到**极限序数**就进行序数运算 $f_{\alpha}(x)=f_{\alpha[x]}(x)$,碰到**后继序数**就进行 $f_{\alpha+1}(x)=f_{\alpha}(x)$ 的递归.

下面是一些典型函数的增长率:

 $\{n,n,n,n,n\}$ 、 En####n 和 $n\longrightarrow_n n$ 具有 ω^3 的增长率,这是康威链式箭号的极限.

{n,n,n,1,1,2}和 C(n,n,n)具有 ω³+ω 的增长率

{n,n,n,n,n,n}和 En#⁵n 具有 w⁴ 的增长率

 $\{n,n(1)2\}$ 、 $En\#^n n$ 和 n(k) 具有 ω^ω 的增长率,这是 BEAF 中单行数阵的极限.

{n,n,2(1)2}具有 ωω+1 的增长率,{n,n,3(1)2}具有 ωω+2 的增长率

{n,n,n(1)2}具有 ωω+ω 的增长率 ,{n,n,1,2(1)2}具有 ωω+ω+1 的增长率

 $\{n,n,n,2(1)2\}$ 具有 $\omega^{\omega}+\omega^2$ 的增长率, $\{n,n,n,n(1)2\}$ 具有 $\omega^{\omega}+\omega^2$ 的增长率

{n,n(1)3}具有 w^w×2=w^w2 的增长率,{n,n(1)4}具有 w^w3 的增长率

{n,n(1)n}具有ωω×ω=ωω+1 的增长率(注意 ωω+1≠ω1+ω)

 $\{n,n(1)n,n\}$ 具有 $\omega^{\omega+2}$ 的增长率, $\{n,n(1)n,n,n\}$ 具有 $\omega^{\omega+3}$ 的增长率

 $\{n,n(1)(1)2\}$ 具有 ω^{ω^2} 的增长率, $\{n,n(1)(1)(1)(2\}$ 具有 ω^{ω^3} 的增长率

 $\{n,n(2)2\}$ 和 $En\#^{\#^2}n$ 具有 ω^{ω^2} 的增长率,这是二维 BEAF 数阵的极限.

{n,n(3)2}和 En#^{#^3}n 具有 w^{w^3} 的增长率

{n,n(n)2}={n,n(0,1)2}=nⁿ&n 和 En#^{#^#}n 具有 ω^{ω^ω}=³ω 的增长率

{n,n((1)1)2}=n^{n^n}&n 和 En#^{#^#^#}n 具有 ω^{ω^ω^ω}=⁴ω 的增长率

{n,n((0,1)1)2}=n^{n^n^n}&n 和 En#^{#^#^#}n 具有 ω^{ω^ω^ω^ω}=⁵ω 的增长率

注意,这里 mw 应理解为 w↑↑m,这样,当我们处理"最右边"的时候,我们就会先遇到 m 而不是 ω.

non En#↑↑#n Hydra 函数、Circle 函数都具有 w↑↑ω 的增长率,这一增长率是皮亚诺公理体系的极限.

下面我们将介绍一个增长率也是 wffw 的函数,以便理解序数递归的次序.

【7,1,3】 Goodstein 数列

首先定义一种"遗传记法":把一个数写成 n 进制的形式,如果指数中还有大于 n 的数,就把它们也写成 n 进制的形式.如

26=2⁴+2³+2=2^{2^2}+2²⁺¹+2,这是以 2 为底的遗传记法

500=2×3⁵+3²+3+2=2×3³⁺²+3²+3+2,这是以3为底的遗传记法

200001000030000=2×10¹⁴+10⁹+3×10⁴=2×10¹⁰⁺⁴+10⁹+3×10⁴,这是以 10 为底的遗传记法.

给定一个数 m,对它进行下面的操作:

第1步:把这个数写成以2为底的遗传记法,然后把所有2都改成3,然后把这个数减去1.

第n步(n>1):把上一步的结果写成以n+1为底的遗传记法,然后把所有n+1都改成n+2,

然后把这个数减去1.

例如,以 22 开始,前 7 项分别为 22,7625597485016,1.34078×10¹⁵⁴, 1.9110126×10²¹⁸⁴,2.6591198×10³⁶³⁰⁵,3.7598235×10⁶⁹⁵⁹⁷⁴, 6.0145208×10¹⁵¹⁵¹³³⁵.这个数列会疯狂地增长.

但是,Goodstein 定理告诉我们,不管初始数值是什么,都可以经过有限次操作后变为 O,即这个数列只能有有限项而不能无限延伸.下面的表格可以告诉你你应该怎样理解这个定理.(数值都用遗传记法表示,以 7 为初始值)

n=项数+1	此项的值	"对应"一个序数
2	2 ² +2+1	$\omega^{\omega}+\omega+1$
3	3 ³ +3	ω^{ω} + ω
4	4 ⁴ +3	ω ^ω +3
5	5 ⁵ +2	ω ^ω +2
6	6 ⁶ +1	ω ^ω +1
7	7 ⁷	ω^{ω}
8	7×8 ⁷ +7×8 ⁶ +7×8 ² +7×8+7	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 7 + 7$
9	$7 \times 9^7 + 7 \times 9^6 + 7 \times 9^2 + 7 \times 9 + 6$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 7 + 6$
10	$7 \times 10^7 + 7 \times 10^6 + 7 \times 10^2 + 7 \times 10 + 5$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 7 + 5$
14	7×14 ⁷ +7×14 ⁶ +7×14 ² +7×14+1	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 7 + 1$
15	7×15 ⁷ +7×15 ⁶ +7×15 ² +7×15	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 7$
16	7×16 ⁷ +7×16 ⁶ +7×16 ² +6×16+15	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 6 + 15$
17	$7 \times 17^7 + 7 \times 17^6 + 7 \times 17^2 + 6 \times 17 + 14$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 6 + 14$
30	$7n^7 + 7n^6 + 7n^2 + 6n + 1$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 6 + 1$
31	$7n^7 + 7n^6 + 7n^2 + 6n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 6$
32	$7n^7 + 7n^6 + 7n^2 + 5n + 31$	$\omega^77 + \omega^67 + \omega^57 + \omega^47 + \omega^37 + \omega^27 + \omega^5 + 31$
62	$7n^7 + 7n^6 + 7n^2 + 5n + 1$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 5 + 1$
63	$7n^7 + 7n^6 + 7n^2 + 5n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 5$
64	$7n^7 + 7n^6 + 7n^2 + 4n + 63$	$\omega^77 + \omega^67 + \omega^57 + \omega^47 + \omega^37 + \omega^27 + \omega^4+63$
127	$7n^7 + 7n^6 + 7n^2 + 4n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 4$
128	$7n^7 + 7n^6 + 7n^2 + 3n + 127$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega 3 + 127$
255	$7n^7 + 7n^6 + 7n^2 + 3n$	$\omega^77 + \omega^67 + \omega^57 + \omega^47 + \omega^37 + \omega^27 + \omega^3$
256	$7n^7 + 7n^6 + 7n^2 + 2n + 255$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega^2 + 255$
511	$7n^7 + 7n^6 + 7n^2 + 2n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega^2$
1023	$7n^7 + 7n^6 + 7n^2 + n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7 + \omega$
2047	$7n^7 + 7n^6 + 7n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 7$
2048	7n ⁷ +7n ³ +6n ² +2047n+2047	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 047 + 2047$

n= ɪ页数+1	此项的值	"对应"一个序数
4095	$7n^7 + 7n^3 + 6n^2 + 2047n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 047$
8191	$7n^7 + 7n^3 + 6n^2 + 2046n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 046$
16383	$7n^7 + 7n^3 + 6n^2 + 2045n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 045$
32767	$7n^7 + 7n^3 + 6n^2 + 2044n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 044$
f ₂ (8)×2 ⁵ -1	$7n^7 + 7n^3 + 6n^2 + 2043n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 043$
f ₂ (8)×2 ⁶ -1	$7n^7 + 7n^3 + 6n^2 + 2042n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6 + \omega^2 042$
f ₂ ² (8)-1	$7n^7 + 7n^3 + 6n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 6$
f ₂ ² (8)×2-1	$7n^7 + 7n^3 + 5n^2 + (f_2^2(8) - 1)n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 5 + \omega (f_2^2(8) - 1)$
f ₂ ² (8)×2 ² -1	$7n^7 + 7n^3 + 5n^2 + (f_2^2(8) - 2)n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 5 + \omega (f_2^2(8) - 2)$
f ₂ ² (8)×2 ³ -1	$7n^7 + 7n^3 + 5n^2 + (f_2^2(8) - 3)n$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 5 + \omega (f_2^2(8) - 3)$
f ₂ ³ (8)-1	$7n^7 + 7n^3 + 5n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 5$
f ₂ ⁴ (8)-1	$7n^7 + 7n^3 + 4n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 4$
f ₂ ⁵ (8)-1	$7n^7 + 7n^3 + 3n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 3$
f ₂ ⁶ (8)-1	$7n^7 + 7n^3 + 2n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2 2$
f ₂ ⁷ (8)-1	$7n^7 + 7n^3 + n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7 + \omega^2$
f ₃ (8)-1	7n ⁷ +7n ³	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 7$
f ₃ (8)	$7n^7 + 7n^4 + 6n^3 + (f_3(8) - 1)n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 6 + \omega^2 (f_3(8) - 1)$
	$+(f_3(8)-1)n+f_3(8)-1$	$+\omega(f_3(8)-1)+f_3(8)-1$
f ₃ ² (8)-1	$7n^7 + 7n^4 + 6n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 6$
f ₃ ² (8)	$7n^7 + 7n^4 + 5n^3 + (f_3^2(8) - 1)n^2$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 5 + \omega^2 (f_3^2(8) - 1)$
	$+(f_3^2(8)-1)n+f_3^2(8)-1$	$+\omega(f_3^2(8)-1)+f_3^2(8)-1$
f ₃ ³ (8)-1	$7n^7 + 7n^4 + 5n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 5$
f ₃ ⁴ (8)-1	$7n^7 + 7n^4 + 4n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 4$
f ₃ ⁵ (8)-1	$7n^7 + 7n^4 + 3n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 3$
f ₃ ⁶ (8)-1	$7n^7 + 7n^4 + 2n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3 2$
f ₃ ⁷ (8)-1	$7n^7 + 7n^4 + n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7 + \omega^3$
f ₄ (8)-1	7n ⁷ +7n ⁴	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 7$
f ₄ (8)	$7n^7 + 7n^5 + 6n^4 + (f_4(8) - 1)n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 6 + \omega^3 (f_4(8) - 1) + \omega^2 (f_4(8) - 1)$
	$+(f_4(8)-1)n^2+(f_4(8)-1)n+f_4(8)-1$	$+\omega(f_4(8)-1)+f_4(8)-1$
f ₄ ² (8)-1	$7n^7 + 7n^5 + 6n^4$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 6$
f ₄ ² (8)	$7n^7 + 7n^5 + 5n^4 + (f_4^2(8) - 1)n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 5 + \omega^3 (f_4^2(8) - 1)$
	$+(f_4^2(8)-1)n^2+(f_4^2(8)-1)n+f_4^2(8)-1$	$+\omega^{2}(f_{4}^{2}(8)-1)+\omega(f_{4}^{2}(8)-1)+f_{4}^{2}(8)-1$
f ₄ ³ (8)-1	$7n^7 + 7n^5 + 5n^4$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 5$
f ₄ ⁴ (8)-1	$7n^7 + 7n^5 + 4n^4$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 4$
f ₄ ⁵ (8)-1	$7n^7 + 7n^5 + 3n^4$	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 3$
f ₄ ⁶ (8)-1	7n ⁷ +7n ⁵ +2n ⁴	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4 2$
f ₄ ⁷ (8)-1	7n ⁷ +7n ⁵ +n ⁴	$\omega^7 7 + \omega^6 7 + \omega^5 7 + \omega^4$
f ₅ (8)-1	7n ⁷ +7n ⁵	$\omega^7 7 + \omega^6 7 + \omega^5 7$

n= 项数+1	此项的值	"对应"一个序数
f ₅ (8)	$7n^7 + 7n^6 + 6n^5 + (f_5(8) - 1)n^4 + (f_5(8) - 1)n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 6 + \omega^4 (f_5(8) - 1) + \omega^3 (f_5(8) - 1)$
	$+(f_5(8)-1)n^2+(f_5(8)-1)n+f_5(8)-1$	$+\omega^{2}(f_{5}(8)-1)+\omega(f_{5}(8)-1)+f_{5}(8)-1$
f ₅ ² (8)-1	$7n^7 + 7n^6 + 6n^5$	$\omega^7 7 + \omega^6 7 + \omega^5 6$
f ₅ ² (8)	$7n^7 + 7n^6 + 5n^5 + (f_5^2(8) - 1)n^4 + (f_5^2(8) - 1)n^3$	$\omega^7 7 + \omega^6 7 + \omega^5 5 + \omega^4 (f_5^2(8) - 1) + \omega^3 (f_5^2(8) - 1)$
	$+(f_5^2(8)-1)n^2+(f_5^2(8)-1)n+f_5^2(8)-1$	$+\omega^{2}(f_{5}^{2}(8)-1)+\omega(f_{5}^{2}(8)-1)+f_{5}^{2}(8)-1$
f ₅ ³ (8)-1	$7n^7 + 7n^6 + 5n^5$	$\omega^7 7 + \omega^6 7 + \omega^5 5$
f ₅ ⁴ (8)-1	$7n^7 + 7n^6 + 4n^5$	$\omega^7 7 + \omega^6 7 + \omega^5 4$
f ₅ ⁵ (8)-1	$7n^7 + 7n^6 + 3n^5$	$\omega^7 7 + \omega^6 7 + \omega^5 3$
f ₅ ⁶ (8)-1	$7n^7 + 7n^6 + 2n^5$	$\omega^7 7 + \omega^6 7 + \omega^5 2$
f ₅ ⁷ (8)-1	$7n^7 + 7n^6 + n^5$	$\omega^7 7 + \omega^6 7 + \omega^5$
f ₆ (8)-1	$7n^7 + 7n^6$	ω^7 7+ ω^6 7
f ₆ (8)	$7n^7 + 6n^6 + (f_6(8) - 1)n^5 + (f_6(8) - 1)n^4$	$\omega^7 7 + \omega^6 6 + \omega^5 (f_6(8) - 1) + \omega^4 (f_6(8) - 1)$
	$+(f_6(8)-1)n^3+(f_6(8)-1)n^2+(f_6(8)-1)n$	$+\omega^{3}(f_{6}(8)-1)+\omega^{2}(f_{6}(8)-1)+\omega(f_{6}(8)-1)$
	+f ₆ (8)-1	+f ₆ (8)-1
f ₆ ² (8)-1	7n ⁷ +6n ⁶	$\omega^7 7 + \omega^6 6$
f ₆ ³ (8)-1	7n ⁷ +5n ⁶	ω^7 7+ ω^6 5
f ₆ ⁴ (8)-1	$7n^7+4n^6$	$\omega^7 7 + \omega^6 4$
f ₆ ⁵ (8)-1	$7n^7+3n^6$	$\omega^7 7 + \omega^6 3$
f ₆ ⁶ (8)-1	$7n^7+2n^6$	$\omega^7 7 + \omega^6 2$
$f_6^{7}(8)-1$	$7n^7+n^6$	$\omega^7 7 + \omega^6$
f ₇ (8)-1	7n ⁷	ω^7 7
f ₇ (8)	$6n^{7}+(f_{7}(8)-1)n^{6}+(f_{7}(8)-1)n^{5}$	$\omega^{7}6+\omega^{6}(f_{7}(8)-1)+\omega^{5}(f_{7}(8)-1)+\omega^{4}(f_{7}(8)-1)$
	$+(f_7(8)-1)n^4+(f_7(8)-1)n^3+(f_7(8)-1)n^2$	$+\omega^{3}(f_{7}(8)-1)+\omega^{2}(f_{7}(8)-1)+\omega(f_{7}(8)-1)$
	$+(f_7(8)-1)n+f_7(8)-1$	+f ₇ (8)-1
$f_7^2(8)-1$	6n ⁷	ω^7 6
$f_7^3(8)-1$	5n ⁷	ω^7 5
f ₇ ⁴ (8)-1	4n ⁷	ω^7 4
$f_7^5(8)-1$	3n ⁷	ω^7 3
f ₇ ⁶ (8)-1	2n ⁷	ω^7 2
f ₇ ⁷ (8)-1	n ⁷	ω^7
f ₇ ⁷ (8)	$(f_7^7(8)-1)n^6+(f_7^7(8)-1)n^5$	$\omega^{6}(f_{7}^{7}(8)-1)+\omega^{5}(f_{7}^{7}(8)-1)+\omega^{4}(f_{7}^{7}(8)-1)$
	$+(f_7^7(8)-1)n^4+(f_7^7(8)-1)n^3$	$+\omega^{3}(f_{7}^{7}(8)-1)+\omega^{2}(f_{7}^{7}(8)-1)+\omega(f_{7}^{7}(8)-1)$
	$+(f_7^7(8)-1)n^2+(f_7^7(8)-1)n+f_7^7(8)-1$	+f ₇ ⁷ (8)-1
f ₈ (8)-3	2	2
f ₈ (8)-2	1	1
f ₈ (8)-1	0	0

把从 n 开始的 Goodstein 数列的项数记作 G(n), 称作 Goodstein 函数.(不要与葛立恒数中提到的函数相混淆)于是 G(1)=2,G(2)=4,G(3)=6,G(4)= $f_3(3)$ -2

 $=3\times2^{402653211}$ -2, $G(5)=f_4(4)$ -2, $G(6)=f_6(6)$ -2, $G(7)=f_8(8)$ -2(见上表), $G(8)=f_{\omega+1}(3)$ -2, $G(12)=f_{\omega+1}(f_3(3))$ -2 则大于葛立恒数.

可见,在 FGH 中,序数的递归由"指数"开始——正如你在【5,1】节中看到的指数那样,任何记号都有"底数"、"指数"之说.w 被替换成 w[x]=x,就发生在将要递减的"指数"和"驾驶员"中.如 3+2w 中,3 为底数,2w 为指数;2w 中,2 为底数,w 为指数.a+b 中,a 为底数,b 为指数;a×b 中,a 为底数,b 为指数;a^b 中,a 为底数,b 为指数;ba 中,a 为底数,b 为指数;

康威链式箭号和 E#结构中,递归时只有最右边 2 个数会发生变化,所以它们是"指数";而在 BEAF 中,递归时指数和驾驶员都发生变化,它们都是这里的"指数",如 $f_{\{\omega,\omega,1,1,\omega,\omega,2\}}$ (5)= $f_{\{\omega,5,1,1,5,\omega,2\}}$ (5).

[7,2]ε. ζ ποη

【7,2,1】ε 函数

实际上,我们在 FGH 中不使用像康威链式箭号、E#、BEAF 之类的东西,而是用更大的序数.下面我们引入一个序数函数——ε函数.它的一种定义如下:

- $1.\epsilon(0)[1]=\omega$
- $2.\varepsilon(0)[n+1]=\omega^{\varepsilon(0)[n]}$
- 3.ε(a)[n]=ε(a[n]),此处 a 为极限序数
- $4.\epsilon(\alpha+1)[1]=\epsilon(\alpha)$
- 5. $\epsilon(\alpha+1)[n+1]=\epsilon(\alpha)^{\epsilon(\alpha+1)[n]}$

 则等于 $\epsilon(0)\uparrow\uparrow\omega$, $\epsilon(\alpha+1)$ 等于 $\epsilon(\alpha)\uparrow\uparrow\omega$.

另外,下面的定义(第 2 定义)可以得出相同增长率的 ε(O),而且可以和后面的 φ 结构相对应:

- $1.\epsilon(0)[1]=\omega$
- $2.\epsilon(\alpha+1)[1]=\epsilon(\alpha)+1$
- 3.ε(a)[n]=ε(a[n]),此处 a 为极限序数
- $4.\epsilon(\alpha)[n+1]=\omega^{\epsilon(\alpha)[n]}$
 - ε 函数还可以这样表达: $\epsilon(\alpha)=\omega\uparrow\uparrow(\omega(1+\alpha))$.

下面是一些典型记号的增长率.($\epsilon(\alpha)$ 可以写作 ϵ_{α} ,此处变量为 n)

BEAF	鸟之记号	增长率
ⁿ n&n	{n,n □ 2}	ϵ_0
	{n,n □ 3}	ε ₀ 2
ⁿ n+1&n	{n,n □ n}	$\epsilon_0 \omega$
	{n,n □ 1,2}	$\epsilon_0\omega+1$
	{n,n □ 2,2}	ε ₀ (ω+1)
	{n,n □ n,2}	ε ₀ ω2
	{n,n □ n,3}	εοω3
ⁿ n+2&n	{n,n □ n,n}	$\epsilon_0 \omega^2$
ⁿ n+3&n	{n,n □ n,n,n}	$\epsilon_0 \omega^3$
ⁿ n+n&n	{n,n□1[2]2}	$\epsilon_0 \omega^{\omega}$
ⁿ n+n×2&n	{n,n□1[2]1[2]2}	$\epsilon_0 \omega^{\omega^2}$
ⁿ n+n²&n	{n,n□1[3]2}	$\epsilon_0 \omega^{\omega^2}$
ⁿ n+n ³ &n	{n,n□1[4]2}	$\epsilon_0 \omega^{\omega^3}$
ⁿ n+n ⁿ &n	{n,n□1[1,2]2}	$\epsilon_0 \omega^{\omega^2 \omega}$
ⁿ n+n ^{n^n} &n	{n,n□1[1[2]2]2}	ε _n ω ^{ω^ω}
ⁿ n+n ^{n^n^} &n	{n,n□1[1[1,2]2]2}	$\epsilon_0 \omega^{\omega^2 \omega^2 \omega}$
ⁿ n×2&n	{n,n□1□2}	ϵ_0^2
ⁿ n×2+1&n	{n,n□1□n}	$\epsilon_0^2 \omega$
ⁿ n×3&n	{n,n \(\) 1 \(\) 2}	ϵ_0^3
ⁿ n×n&n	{n,n[[2]]2}	ϵ_0^{ω}
ⁿ n×n×2&n	{n,n[[2]]1[[2]]2}	$\epsilon_0^{\omega 2}$
ⁿ n×n²&n	{n,n[[3]]2}	$\epsilon_0^{\omega^2}$
ⁿ n×n³&n	{n,n[[4]]2}	$\epsilon_0^{\omega^3}$
ⁿ n×n ⁿ &n	{n,n[[1,2]]2}	ε ₀ ω^ω
ⁿ n×n ⁿ⁺¹ &n	{n,n[[2,2]]2}	ε ₀ ^{ω^(ω+1)}
ⁿ n×n ^{n×2} &n	{n,n[[1,3]]2}	ε ₀ ^{ω^(ω2)}

BEAF	鸟 之记号	增长率
ⁿ n×n ^{n×3} &n	{n,n[[1,4]]2}	ε ₀ ^{ω^(ω3)}
ⁿ n×n ^{n^2} &n	{n,n[[1,1,2]]2}	ε ₀ ^{ω^ω^2}
ⁿ n×n ^{n^3} &n	{n,n[[1,1,1,2]]2}	$\epsilon_0^{\omega^2\omega^3}$
ⁿ n×n ^{n^n} &n	{n,n[[1[2]2]]2}	$\epsilon_0^{\omega^2\omega^2\omega}$
ⁿ n×n ^{n^n^n} &n	{n,n[[1[1,2]2]]2}	ε ₀ ω^ω^ω^ω
ⁿ n×n ^{n^n^n} &n	{n,n[[1[1[2]2]2]]2}	ε ₀ ω^ω^ω^ω
(ⁿ n) ² &n	{n,n[[1 - 2]]2}	ϵ_0 ϵ_0
(ⁿ n) ³ &n	{n,n[[1 - 3]]2}	ε_0 ^ ε_0 ^2
(ⁿ n) ⁴ &n	{n,n[[1-4]]2}	ε_0 ε_0 3
(ⁿ n) ⁿ &n	{n,n[[1-1,2]]2}	ε_0 ε_0 ω
(ⁿ n) ^{n^n} &n	{n,n[[1-1[2]2]]2}	ε_0 ε_0 ω^{ω}
ⁿ⁺¹ n&n	{n,n[[1-1-2]]2}	ϵ_0 ϵ_0 ϵ_0
	{n,n[[1-1-3]]2}	ε_0 ε_0 $(\varepsilon_0$ 2)
	{n,n[[1-1-1-2]]2}	ε_0 ε_0 ε_0 2
	{n,n[[1[[2]]2]]2}	ε_0 ε_0 ω
	{n,n[[1[[3]]2]]2}	ε_0 ε_0 ε_0 ω^2
	{n,n[[1[[1,2]]2]]2}	ε_0 ε_0 ε_0 ω^{ω}
	{n,n[[1[[1,1,2]]2]]2}	ε_0 ε_0 ε_0 ω^{ω^2}
	{n,n[[1[[1[2]2]]2]]2}	ε_0 ε_0 ε_0 $\omega^{\omega^{-\omega}}$
	{n,n[[1[[1[3]2]]2]]2}	ε_0 ε_0 ε_0 ω^{ω^2}
	{n,n[[1[[1[1,2]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ω^{ω^2}
ⁿ⁺² n&n	{n,n[[1[[1 - 2]]2]]2}	ϵ_0 ϵ_0 ϵ_0
	{n,n[[1[[1 - 2]]3]]2}	ϵ_0 ϵ_0 $(\epsilon_0$ $\epsilon_0 \times 2)$
	{n,n[[1[[1 - 2]]1,2]]2}	ϵ_0 ϵ_0 $(\epsilon_0$ $\epsilon_0 \times \omega)$
	{n,n[[1[[1 - 2]]1[[1 - 2]]2]]2}	ϵ_0 ϵ_0 $(\epsilon_0$ $\epsilon_0)^2$
	{n,n[[1[[2 - 2]]2]]2}	ε_0 ε_0 $(\varepsilon_0$ $\varepsilon_0)^w$
	{n,n[[1[[1,2 \(\) 2]]2]]2}	ϵ_0 ϵ_0 $(\epsilon_0$ $\epsilon_0)^{w^w}$
	{n,n[[1[[1 - 3]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0
	{n,n[[1[[1 - 4]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 3
	{n,n[[1[[1 - 1,2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ω
	{n,n[[1[[1 - 1,1,2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ω^2
	{n,n[[1[[1 - 1[2]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ω^ω
	{n,n[[1[[1 - 1[3]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ω^{ω^2}
	{n,n[[1[[1 - 1[1,2]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 $\omega^{\omega^{-\omega}}$
ⁿ⁺³ n&n	{n,n[[1[[1 - 1 - 2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0
	{n,n[[1[[1 - 2 - 2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 +1)
	{n,n[[1[[1 - 3 - 2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0

BEAF	鸟之记号	增长率
	{n,n[[1[[1 - 1 - 3]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0
	{n,n[[1[[1 - 1 - 4]]2]]2}	ε_0 ^ ε_0 ^ ε_0 ^(ε_0 3)
	{n,n[[1[[1-1-1-2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 2
	{n,n[[1[[1-1-2-2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0
	{n,n[[1[[1-1-1-3]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0
	{n,n[[1[[1-1-1-4]]2]]2}	ε_0
	{n,n[[1[[1-1-1-1-2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 3
	{n,n[[1[[1-1-1-1-1-2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 4
	{n,n[[1[[1[[2]]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ω
	{n,n[[1[[1[[3]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ω^2
	{n,n[[1[[1[[1,2]]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 ω^{ω}
	{n,n[[1[[1[[1[2]2]]2]]2]]2}	ϵ_0 ϵ_0 ϵ_0 ϵ_0 ϵ_0 $\omega^{\omega^{-\omega}}$
ⁿ⁺⁴ n&n	{n,n[[1[[1[[1 - 2]]2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0
ⁿ⁺⁵ n&n	{n,n[[1[[1[[1 - 1 - 2]]2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0
ⁿ⁺⁶ n&n	{n,n[[1[[1[[1[[1 2]]2]]2]]2]]2}	ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0 ε_0
^{n×2} n&n	{n,n[[[1]]]2}	ϵ_1
^{n×3} n&n	{n,n[[[[1]]]]2}	ε ₂
^{n^2} n&n	{n,n[1/1,2]2}	εω
^{n^2+n} n&n	{n,n[1/2,2]2}	$\epsilon_{\omega+1}$
^{n^2+n×2} n&n	{n,n[1/3,2]2}	ε _{ω+2}
^{n^2×2} n&n	{n,n[1/1,3]2}	ϵ_{ω^2}
^{n^2×2+n} n&n	{n,n[1/2,3]2}	ε _{ω2+1}
^{n^2×3} n&n	{n,n[1/1,4]2}	$\epsilon_{\omega 3}$
^{n^3} n&n	{n,n[1/1,1,2]2}	εω^2
^{n^4} n&n	{n,n[1/1,1,1,2]2}	ε ω^3
^{n^n} n&n	{n,n[1/1[2]2]2}	ε _ω ^ω
^{n^n^2} n&n	{n,n[1/1[3]2]2}	ε _ω ^ω^2
^{n^n^3} n&n	{n,n[1/1[4]2]2}	ε _ω ^ω^3
^{n^n^n} n&n	{n,n[1/1[1,2]2]2}	ε _ω ^ω^ω
^{n^n^n} n&n	{n,n[1/1[1[2]2]2]2}	ε _{ω^ω^ω}
^{n^n^n^n} n&n	{n,n[1/1[1[1,2]2]2]2}	ε _{ω^ω^ω} ω
nîînîîn&n	{n,n[1/1 - 2]2]2}	$\varepsilon(\varepsilon_0)$
	{n,n[1/2 \(\) 2]2]2}	$\varepsilon(\varepsilon_0+1)$
	{n,n[1/1,2 \(\) 2]2]2}	$\varepsilon(\varepsilon_0+\omega)$
	{n,n[1/1[2]2 \(\) 2]2]2}	$\varepsilon(\varepsilon_0+\omega^\omega)$
	{n,n[1/1 - 3]2]2}	$\varepsilon(\varepsilon_0 2)$
	{n,n[1/1 - 1 - 2]2]2}	$\varepsilon(\varepsilon_0^2)$

BEAF	与之记号	增长率
	{n,n[1/1[[2]]2]2}	$\varepsilon(\varepsilon_0^{\omega})$
	{n,n[1/1[[1,2]]2]2}	$\varepsilon(\varepsilon_0^{\omega^*\omega})$
	{n,n[1/1[[1 - 2]]2]2}	$\varepsilon(\varepsilon_0^*\varepsilon_0)$
	{n,n[1/1[[[1]]]2]2]}	$\varepsilon(\varepsilon_1)$
	{n,n[1/1[[[[1]]]]2]2]2}	$\varepsilon(\varepsilon_2)$
	{n,n[1/1[1/1,2]2]2]2}	ε(εω)
	{n,n[1/1[1/2,2]2]2}	$\varepsilon(\varepsilon_{\omega+1})$
	{n,n[1/1[1/1,3]2]2]2}	$\varepsilon(\varepsilon_{\omega^2})$
	{n,n[1/1[1/1,1,2]2]2]2}	$\varepsilon(\varepsilon_{\omega^2})$
	{n,n[1/1[1/1[2]2]2]2]2}	ε(ε _ω ^ _ω)
	{n,n[1/1[1/1[1,2]2]2]2}	ε(ε _{ω^ω})
nîînîînîîn&n	{n,n[1/1[1/1 - 2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon_0))$
	{n,n[1/1[1/1[[[1]]]2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon_1))$
	{n,n[1/1[1/1[1/1,2]2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon_{\omega}))$
	{n,n[1/1[1/1[1/1[2]2]2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon_{\omega^{\wedge}\omega}))$
n1115&n	{n,n[1/1[1/1[1/1 2]2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon(\varepsilon_0)))$
n1116&n	{n,n[1/1[1/1[1/1 - 2]2]2]2]2]2}	$\varepsilon(\varepsilon(\varepsilon(\varepsilon_0))))$

虽然 ϵ 是一个函数,但对于迭代,我们并不采用像 FGH 那样的结构(如 $\epsilon_1(n)=\epsilon^n(n)=\epsilon(\epsilon(...\epsilon(\epsilon(n))...)),\epsilon_{m+1}(n)=\epsilon_m^n(n)),而是直接引入另一个更大的序数.$

[7,2,2] T fon

下面是ζ函数的定义:(当n趋向ω时序数 α[n]趋向 α)

- $1.\zeta(0)[1]=\epsilon(0)$
- $2.\zeta(\alpha+1)[1]=\zeta(\alpha)+1$
- 3.ζ(a)[n]=ζ(a[n]),此处 a 为极限序数
- $4.\zeta(\alpha)[n+1]=\varepsilon(\zeta(\alpha)[n])$

下面是 n 函数的定义:(当 n 趋向 w 时序数 a[n]趋向 a)

- $1.\eta(0)[1]=\zeta(0)$
- $2.\eta(\alpha+1)[1]=\eta(\alpha)+1$
- 3.n(a)[n]=n(a[n]),此处 a 为极限序数
- $4.\eta(\alpha)[n+1]=\zeta(\eta(\alpha)[n])$

需要注意的是, $1+\zeta(\alpha)$ 、 $2\times\zeta(\alpha)$ 、 $2^{\zeta(\alpha)}$ 、 $\omega^{\zeta(\alpha)}$ 和 $\epsilon(\zeta(\alpha))$ 都等于 $\zeta(\alpha)$,而 $1+\eta(\alpha)$ 、 $2\times\eta(\alpha)$ 、 $2^{\eta(\alpha)}$ 、 $\omega^{\eta(\alpha)}$ 、 $\epsilon(\eta(\alpha))$ 和 $\zeta(\eta(\alpha))$ 都等于 $\eta(\alpha)$.下面是一些典型记号的增

长率.($\zeta(\alpha)$ 可以写作 ζ_{α} , $\eta(\alpha)$ 可以写作 η_{α} ,此处变量为 η)

BEAF	与之记号	增长率
nîîn&n	{n,n[1/1/2]2}	ζο
	{n,n[2/1/2]2}	ζο ^ω
	{n,n[1 \(\) 2/1/2]2}	ζο^εο
	{n,n[1[[1 - 2]]2/1/2]2}	ζ_0 ϵ_0 ²
	{n,n[1[[1[[1 2]]2]]2/1/2]2}	ζ_0 ϵ_0 ϵ_0
	{n,n[1[[[1]]]2/1/2]2}	ζ_0 ^ ϵ_1
	{n,n[1[1/1,2]2/1/2]2}	ζ ₀ ^ε _ω
	{n,n[1[1/1 - 2]2/1/2]2}	ζ_0 ^ $\epsilon(\epsilon_0)$
	{n,n[1[1/1[1/1 - 2]2]2/1/2]2}	ζ_0 $\epsilon(\epsilon(\epsilon_0))$
² (n111n)&n	{n,n[1[1/1/2]2/1/2]2}	ζο^ζο
	{n,n[1[2/1/2]2/1/2]2}	ζ ₀ ^ζ ₀ ^ω
	{n,n[1[1 - 2/1/2]2/1/2]2}	$\zeta_0^{}\zeta_0^{}\epsilon_0$
	{n,n[1[1[1/1 - 2]2/1/2]2/1/2]2}	$\zeta_0^{}\zeta_0^{}\epsilon_0^{}\epsilon_0$
³ (n↑↑↑n)&n	{n,n[1[1[1/1/2]2/1/2]2/1/2]2}	ζο^ζο^ζο
⁴(n↑↑↑n)&n	{n,n[1[1[1[1/1/2]2/1/2]2/1/2]2/1/2]2}	ζο^ζο^ζο^ζο
ⁿ (n↑↑↑n)&n	{n,n[1/2/2]2}	$\varepsilon(\zeta_0+1)$
	{n,n[1/3/2]2}	$\varepsilon(\zeta_0+2)$
	{n,n[1/1,2/2]2}	$\varepsilon(\zeta_0+\omega)$
	{n,n[1/1 - 2/2]2}	$\varepsilon(\zeta_0+\varepsilon_0)$
	{n,n[1/1[1/1/2]2/2]2}	$\varepsilon(\zeta_0 2)$
n↑↑↑{n+1}&n	{n,n[1/1[1/2/2]2/2]2}	$\varepsilon(\varepsilon(\zeta_0+1))$
n^^^{n+2}&n	{n,n[1/1[1/1[1/2/2]2/2]2/2]2}	$\varepsilon(\varepsilon(\varepsilon(\zeta_0+1)))$
n^^^{n+3}&n	{n,n[1/1[1/1[1/2/2]2/2]2/2]2/2]2}	$\varepsilon(\varepsilon(\varepsilon(\varepsilon(\zeta_0+1))))$
n^^^{nx2}&n	{n,n[1/1/3]2}	ζ_1
	{n,n[1/2/3]2}	$\varepsilon(\zeta_1+1)$
	{n,n[1/1,2/3]2}	ε(ζ ₁ +ω)
	{n,n[1/1 - 2/3]2}	$\varepsilon(\zeta_1+\varepsilon_0)$
	{n,n[1/1[1/1/2]2/3]2}	$\varepsilon(\zeta_1+\zeta_0)$
	{n,n[1/1[1/1/3]2/3]2}	$\varepsilon(\zeta_1 2)$
	{n,n[1/1[1/1[1/3]2/3]2/3]2}	$\varepsilon(\varepsilon(\zeta_1 2))$
n111{n×3}&n	{n,n[1/1/4]2}	ζ ₂
n111{n×4}&n	{n,n[1/1/5]2}	ζ ₃
$n\uparrow\uparrow\uparrow\{n^2\}\&n$	{n,n[1/1/1,2]2}	ζω
n^^^{n^^n}&n	{n,n[1/1/1 \(\) 2]2}	$\zeta(\epsilon_0)$
nîîînîîîn&n	{n,n[1/1/1[1/1/2]2]2}	$\zeta(\zeta_0)$
n11114&n	{n,n[1/1/1[1/1/2]2]2]2}	$\zeta(\zeta(\zeta_0))$

BEAF	鸟 之 记 号	增长率
DEAI	与 2 孔 5	垣八字
n^^^^5&n	{n,n[1/1/1[1/1/1[1/1/2]2]2]2]2}	$\zeta(\zeta(\zeta(\zeta_0)))$
n^↑↑↑n&n	{n,n[1/1/1/2]2}	no
	{n,n[1/2/1/2]2}	ε(η ₀ +1)
	{n,n[1/3/1/2]2}	ε(η ₀ +2)
	{n,n[1/1[1/1/2]2/1/2]2}	ε(η ₀ 2)
	{n,n[1/1/2/2]2}	$\zeta(\eta_0+1)$
	{n,n[1/1/3/2]2}	$\zeta(\eta_0+2)$
	{n,n[1/1/1[1/1/2]2/2]2}	$\zeta(\eta_0 2)$
n^^^(n×2}&n	{n,n[1/1/1/3]2}	η_1
n1111{n×3}&n	{n,n[1/1/4]2}	η_2
$n\uparrow\uparrow\uparrow\uparrow n\uparrow\uparrow\uparrow\uparrow n\&n$	{n,n[1/1/1/1[1/1/2]2]2}	$\eta(\eta_0)$
n11114&n	{n,n[1/1/1/1[1/1/1/1]2]2]2}	$\eta(\eta(\eta_0))$

对比一下 ϵ 、 ζ 和 η 的定义(ϵ 使用第 2 定义),可以认为, ϵ (0)是 $\alpha o \omega^{\alpha}$ 的第一个序数不动点,它等于 ω^{α} ω

【7,3】φ 函数

【7,3,1】二元φ函数

现在,我们把 $\epsilon(\alpha)$ 写作 $\phi(1,\alpha)$,把 $\zeta(\alpha)$ 写作 $\phi(2,\alpha)$,把 $\eta(\alpha)$ 写作 $\phi(3,\alpha)$,而 $\phi(0,\alpha)=w^\alpha$.它们符合下面的规则:(注意,当 n 趋向 w 时序数 $\alpha[n]$ 趋向 α)

- 1. φ (O,β)= ω ^β
- $2.\phi(\alpha+1,0)[1]=\phi(\alpha,0)$
- 3.φ(a,β)[n]=φ(a,β[n]),此处β为极限序数
- $4.\phi(\alpha+1,\beta)[n+1]=\phi(\alpha,\phi(\alpha+1,\beta)[n])$
- 5.φ(a,0)[n]=φ(a[n],0),此处 a 为 极 限 序 数
- 6.φ(a,β+1)[n]=φ(a[n],φ(a,β)+1),此处 a 为 极限 序 数

通俗 - 点说, $\varphi(\alpha+1,O)=\varphi(\alpha,\varphi(\alpha,\omega,\varphi(\alpha,O))...))$ (共ω $\varphi(\alpha,\varphi(\alpha,\omega,\varphi(\alpha,O))...)$)

φ(α+1,β+1)=φ(α,φ(α,...φ(α,φ(α+1,β)+1)...))(共ω φ(α+1,η)) 用序数不动点来解释,φ(α+1,η)就是 β→φ(α,β)的第 η+1 个序数不动点.

下面是一些典型记号的增长率.(此处变量为 n)

BEAF	与之记号	增长率
n↑ ⁵ n&n	{n,n[1/1/1/2]2}	φ(4,0)
n↑ ⁵ {n×2}&n	{n,n[1/1/1/3]2}	φ(4,1)
n ¹⁵ n ¹⁵ n&n	{n,n[1/1/1/1[1/1/1/2]2]2}	φ(4,φ(4,0))
n ⁶ 4&n	{n,n[1/1/1/1[1/1/1/1[1/1/1/2]2]2]2}	$\phi(4,\phi(4,\phi(4,0)))$
n↑ ⁶ n&n	{n,n[1/1/1/1/2]2}	φ(5,0)
n↑ ⁷ n&n	{n,n[1/1/1/1/1/2]2}	φ(6,0)
n↑ ⁿ n&n	{n,n[1[2]/2]2}	φ(ω,Ο)
	{n,n[2[2]/2]2}	φ(ω,Ο) ^ω
	{n,n[1 - 2[2]/2]2}	$\varphi(\omega,0)^{\epsilon_0}$
	{n,n[1[1/1/2]2[2]/2]2}	φ(ω,Ο)^ζ ₀
	{n,n[1[1[2]/2]2[2]/2]2}	φ(ω,Ο)^φ(ω,Ο)
	{n,n[1[1[1[2]/2]/2]2[2]/2]2}	$\varphi(\omega,O)^{\varphi}(\omega,O)^{\varphi}(\omega,O)$
	{n,n[1/2[2]/2]2}	ε(φ(ω,Ο)+1)
	{n,n[1/1/2[2]/2]2}	ζ(φ(ω,Ο)+1)
	{n,n[1[2]/3]2}	φ(ω,1)
	{n,n[1[2]/4]2}	φ(ω,2)
	{n,n[1[2]/1,2]2}	φ(ω,ω)
	{n,n[1[2]/2,2]2}	φ(ω,ω+1)
	{n,n[1[2]/3,2]2}	φ(ω,ω+2)
	{n,n[1[2]/1,3]2}	φ(ω,ω2)
	{n,n[1[2]/1,4]2}	φ(ω,ω3)
	{n,n[1[2]/1,1,2]2}	$\varphi(\omega,\omega^2)$
	{n,n[1[2]/1[2]2]2}	$\phi(\omega,\omega^{\omega})$

BEAF	鸟之记号	增长率
	{n,n[1[2]/1 □ 2]2}	$\varphi(\omega, \epsilon_0)$
	{n,n[1[2]/1[1[2]/2]2]2}	φ(ω,φ(ω,Ο))
	{n,n[1[2]/1[1[2]/2]2]2]2}	$\phi(\omega,\phi(\omega,\phi(\omega,O)))$
n↑ ⁿ⁺¹ n&n	{n,n[1[2]/1/2]2}	φ(ω+1,0)
	{n,n[1[2]/2/2]2}	φ(ω,φ(ω+1,0)+1)
	{n,n[1[2]/3/2]2}	$\varphi(\omega,\varphi(\omega+1,0)+2)$
	{n,n[1[2]/1,2/2]2}	φ(ω,φ(ω+1,0)+ω)
	{n,n[1[2]/1[2]2/2]2}	$\varphi(\omega,\varphi(\omega+1,0)+\omega^{\omega})$
	{n,n[1[2]/1[1[2]/1/2]2/2]2}	$\phi(\omega,\phi(\omega+1,0)2)$
	{n,n[1[2]/1[1[2]/1[2]/1/2]2/2]2/2]2}	$\varphi(\omega,\varphi(\omega,\varphi(\omega+1,0)2))$
	{n,n[1[2]/1/3]2}	φ(ω+1,1)
	{n,n[1[2]/1/4]2}	φ(ω+1,2)
	{n,n[1[2]/1/1,2]2}	φ(ω+1,ω)
	{n,n[1[2]/1/1[1[2]/1/2]2]2}	$\varphi(\omega+1,\varphi(\omega+1,0))$
	{n,n[1[2]/1/1[1[2]/1[2]/1/2]2/2]2]2}	$\varphi(\omega+1,\varphi(\omega+1,\varphi(\omega+1,O)))$
n↑ ⁿ⁺² n&n	{n,n[1[2]/1/1/2]2}	φ(ω+2,0)
	{n,n[1[2]/1/2/2]2}	$\varphi(\omega+1,\varphi(\omega+2,0)+1)$
	{n,n[1[2]/1/3/2]2}	$\varphi(\omega+1,\varphi(\omega+2,0)+2)$
	{n,n[1[2]/1/1[1[2]/1/1/2]2/2]2}	$\varphi(\omega+1,\varphi(\omega+2,0)2)$
	{n,n[1[2]/1/1/3]2}	$\varphi(\omega+2,1)$
	{n,n[1[2]/1/4]2}	φ(ω+2,2)
	{n,n[1[2]/1/1[1[2]/1/1/2]2]2}	$\varphi(\omega+2,\varphi(\omega+2,0))$
n↑ ⁿ⁺³ n&n	{n,n[1[2]/1/1/2]2}	φ(ω+3,0)
	{n,n[1[2]/1/1/3]2}	$\varphi(\omega+3,1)$
n↑ ⁿ⁺⁴ n&n	{n,n[1[2]/1/1/1/2]2}	φ(ω+4,0)
n↑ ^{n×2} n&n	{n,n[1[2]/1[2]/2]2}	φ(ω2,0)
	{n,n[1/2[2]/1[2]/2]2}	ε(φ(ω2,0)+1)
	{n,n[1[2]/2[2]/2]2}	φ(ω,φ(ω2,0)+1)
	{n,n[1[2]/3[2]/2]2}	φ(ω,φ(ω2,0)+2)
	{n,n[1[2]/1[1[2]/2]2[2]/2]2}	φ(ω,φ(ω2,0)2)
	{n,n[1[2]/1/2[2]/2]2}	$\varphi(\omega+1,\varphi(\omega2,0)+1)$
	{n,n[1[2]/1/1/2[2]/2]2}	φ(ω+2,φ(ω2,0)+1)
	{n,n[1[2]/1[2]/3]2}	φ(ω2,1)
	{n,n[1[2]/1[2]/4]2}	φ(ω2,2)
	{n,n[1[2]/1[2]/1[2]/2]2]2}	φ(ω2,φ(ω2,0))
n↑ ^{n×2+1} n&n	{n,n[1[2]/1[2]/1/2]2}	φ(ω2+1,0)
	{n,n[1[2]/1[2]/1/3]2}	φ(ω2+1,1)

BEAF	与之记号	增长率
nîn×2+2n&n	{n,n[1[2]/1[2]/1/2]2}	φ(ω2+2,0)
n↑ ^{n×2+3} n&n	{n,n[1[2]/1[2]/1/1/2]2}	φ(ω2+3,0)
n↑ ^{n×3} n&n	{n,n[1[2]/1[2]/2]2}	φ(ω3,0)
	{n,n[1[2]/1[2]/3]2}	φ(ω3,1)
n↑ ^{n×3+1} n&n	{n,n[1[2]/1[2]/1/2]2}	φ(ω3+1,0)
n ¹ n×4n&n	{n,n[1[2]/1[2]/1[2]/2]2}	φ(ω4,0)
n↑ ^{n×5} n&n	{n,n[1[2]/1[2]/1[2]/1[2]/2]2}	φ(ω5,0)
n ¹ n ² n&n	{n,n[1[3]/2]2}	$\varphi(\omega^2,0)$
	{n,n[1/2[3]/2]2}	$\varepsilon(\varphi(\omega^2,0)+1)$
	{n,n[1[2]/2[3]/2]2}	$\varphi(\omega,\varphi(\omega^2,0)+1)$
	{n,n[1[2]/1[2]/2[3]/2]2}	$\varphi(\omega^2, \varphi(\omega^2, 0)+1)$
	{n,n[1[3]/3]2}	$\varphi(\omega^2,1)$
	{n,n[1[3]/4]2}	$\varphi(\omega^2,2)$
n↑ ^{n^2+1} n&n	{n,n[1[3]/1/2]2}	$\varphi(\omega^2+1,0)$
n ¹ n ²⁺² n&n	{n,n[1[3]/1/1/2]2}	$\varphi(\omega^2+2,0)$
n ^{^^2+n} n&n	{n,n[1[3]/1[2]/2]2}	$\varphi(\omega^2+\omega,0)$
n^n^2+n×2n&n	{n,n[1[3]/1[2]/1[2]/2]2}	$\varphi(\omega^2 + \omega^2, 0)$
n ¹ n ^{2×2} n&n	{n,n[1[3]/1[3]/2]2}	$\varphi(\omega^2 2,0)$
n ¹ n ^{2×3} n&n	{n,n[1[3]/1[3]/2]2}	$\varphi(\omega^2 3,0)$
nîn^3n&n	{n,n[1[4]/2]2}	$\varphi(\omega^3,0)$
nîn^4n&n	{n,n[1[5]/2]2}	φ(ω ⁴ ,0)
nînn&n	{n,n[1[1,2]/2]2}	$\varphi(\omega^{\omega},O)$
	{n,n[1[1,2]/3]2}	$\varphi(\omega^{\omega},1)$
nîn^n+1n&n	{n,n[1[1,2]/1/2]2}	$\varphi(\omega^{\omega}+1,0)$
n ^{n^n×2} n&n	{n,n[1[1,2]/1[1,2]/2]2}	φ(ω ^ω 2,0)
n^ ^{n^{n+1}} n&n	{n,n[1[2,2]/2]2}	$\varphi(\omega^{\omega+1},0)$
n↑ ^{n^{n+2}} n&n	{n,n[1[3,2]/2]2}	$\varphi(\omega^{\omega+2},0)$
n ^{^n^{nx2}} n&n	{n,n[1[1,3]/2]2}	φ(ω ^{ω2} ,0)
n ^{^^{n^{n×3}}} n&n	{n,n[1[1,4]/2]2}	φ(ω ^{ω3} ,Ο)
nîn^n^2n&n	{n,n[1[1,1,2]/2]2}	φ(ω ^{ω^2} ,0)
n ^{^n^{n^2*2}} n&n	{n,n[1[1,1,3]/2]2}	$\varphi(\omega^{\omega^2\times 2},0)$
n ^{n^n^3} n&n	{n,n[1[1,1,1,2]/2]2}	φ(ω ^{ω^3} ,0)
nînînn&n	{n,n[1[1[2]2]/2]2}	φ(ω ^{ωˆω} ,Ο)
n ^{^n^n^n} ^2n&n	{n,n[1[1[3]2]/2]2}	φ(ω ^{ω^ω^2} ,Ο)
n ^{n^n^n} n&n	{n,n[1[1[1,2]2]/2]2}	φ(ω ^{ωˆωˆω} ,Ο)
n ^{^n^n^n^n} n&n	{n,n[1[1[1[2]2]2]/2]2}	φ(ω ^{ωˆωˆω} ,Ο)
n↑ ^{n↑↑6} n&n	{n,n[1[1[1[1,2]2]2]/2]2}	φ(ω ^{ωˆωˆωˆω} ,Ο)

BEAF	鸟之记号	增长率
n↑ ^{n↑↑n} n&n	{n,n[1[1 - 2]/2]2}	$\varphi(\epsilon_0,0)$
	{n,n[1[1 - 2]/3]2}	$\varphi(\epsilon_0,1)$
	{n,n[1[1 - 2]/1,2]2}	$\varphi(\epsilon_0,\omega)$
	{n,n[1[1 - 2]/1 - 2]2}	$\varphi(\epsilon_0,\epsilon_0)$
	{n,n[1[1-2]/1[1[1-2]/2]2]2}	$\varphi(\epsilon_0, \varphi(\epsilon_0, 0))$
	{n,n[1[1-2]/1[1[1-2]/1[1[1-2]/2]2]2}}	$\varphi(\epsilon_0, \varphi(\epsilon_0, \varphi(\epsilon_0, O)))$
n↑ ⁿ ↑↑ ⁿ⁺¹ n&n	{n,n[1[1 - 2]/1/2]2}	$\varphi(\epsilon_0+1,0)$
n↑ ^{n↑↑n×2} n&n	{n,n[1[1 - 2]/1[1 - 2]/2]2}	$\varphi(\epsilon_0 2,0)$
n↑ ^{n↑↑n×n} n&n	{n,n[1[2 - 2]/2]2}	$\varphi(\epsilon_0\omega,0)$
nî ⁿ nîn&n	{n,n[1[1,2 \(\) 2]/2]2}	$\varphi(\epsilon_0\omega^\omega,0)$
n ^{1 {n} 1 n n n 1 n 1 n n 1 n n n n n n n n n	{n,n[1[1 - 3]/2]2}	$\varphi(\epsilon_0^2,0)$
n↑ ⁿ ↑↑{n+1}n&n	{n,n[1[1-1-2]/2]2}	$\varphi(\epsilon_0^{\epsilon_0}, 0)$
	{n,n[1[1-1-1-2]/2]2}	$\varphi(\epsilon_0^{\epsilon_0^{\epsilon_0}}, 0)$
	{n,n[1[1[2/2]2]/2]2}	$\varphi(\epsilon_0^{\epsilon_0}\omega,0)$
nî ^{n↑↑{n+2}} n&n	{n,n[1[1[1 2/2]2]/2]2}	$\varphi(\epsilon_0^{\epsilon_0}\epsilon_0,0)$
n↑ ⁿ ↑↑{n×2}n&n	{n,n[1[1[1/3]2]/2]2}	$\varphi(\epsilon_1,0)$
n ^{†n} † ^(n^2) n&n	{n,n[1[1[1/1,2]2]/2]2}	$\varphi(\epsilon_{\omega},0)$
nî ⁿ înînan	{n,n[1[1[1/1 - 2]2]/2]2}	$\varphi(\epsilon(\epsilon_0),0)$
nî ⁿ tînan	{n,n[1[1[1/1/2]2]/2]2}	$\varphi(\zeta_0,0)$
nî ^{n††††} n&n	{n,n[1[1[1/1/1/2]2]/2]2}	φ(η ₀ ,0)
{n,n,n↑ ⁿ n}&n	{n,n[1[1[1[2]/2]2]/2]2}	φ(φ(ω,Ο),Ο)
{n,n,n↑ ^{n^n} n}&n	{n,n[1[1[1[1,2]/2]2]/2]2}	$\varphi(\varphi(\omega^{\omega},O),O)$
${n,n,n}^{n\uparrow\uparrow n}$	{n,n[1[1[1[1 - 2]/2]2]/2]2}	$\varphi(\varphi(\epsilon_0,0),0)$
{n,4,1,2}&n	{n,n[1[1[1[1[2]/2]2]/2]2]/2]2}	$\varphi(\varphi(\varphi(\omega,O),O),O)$
{n,5,1,2}&n	{n,n[1[1[1[1[1[1[2]/2]2]/2]2]/2]2]/2]2}	$\varphi(\varphi(\varphi(\omega,O),O),O)$

如果有这样一个序数,它是满足 $a
ightarrow \phi(\alpha, O)$ 的序数不动点,那么它将会是什么呢?想象一下,它应该是类似 $\phi(\phi(\phi(\phi(\dots, O), O), O), O)$ 的东西.这将让我们进入二元 ϕ 函数的极限.

【7,3,2】「序数

我们设 $\Gamma(n)$ 是 $\alpha
ightarrow \phi(\alpha,0)$ 的第n+1个序数不动点,它们的定义如下:

- 1.\(\Gamma(0)[1]=1
- $2.\Gamma(\alpha+1)[1]=\Gamma(\alpha)+1$
- 3.Γ(α)[n]=Γ(α[n]),此处 α 为极限序数

 $4.\Gamma(\alpha)[n+1]=\varphi(\Gamma(\alpha)[n],0)$

通俗 - 点说, $\Gamma(O)$ = $\phi(\phi(...\phi(\phi(O,O),O),...,O),O)$ (共ω \wedge ϕ),而

 $\Gamma(n+1)=\phi(\phi(...\phi(\phi(\Gamma(n)+1,0),0),...,0),0)$ (共 $\omega \wedge \phi$).注意,不要把「序数与阶乘的「函数混淆.下面是一些典型记号的增长率.

 $f_{\Gamma(O)}(n)=f_{\phi(\phi(...\phi(\phi(O,O),O)...,O),O)}(n)$ (共 n 个 ϕ), $\{n,n,1,2\}$ &n 和 $\{n,n[1[1/2]/2]2\}$ 有此增长率.

 $f_{\phi(\Gamma(0),1)}(n)=f_{\phi(\phi(...\phi(\phi(0,0),0)...,0),\Gamma(0)+1)}(n)$ (共 n 个 ϕ), $\{n,n+1,1,2\}$ &n 有此增长率.

 $f_{\Gamma(1)}(n)=f_{\phi(\phi(...\phi(\phi(\Gamma(O)+1,O),O)...,O),\Gamma(O)+1)}(n)$ (共 n 个 ϕ), $\{n,n\times2,1,2\}$ &n 和 $\{n,n[1[1/2]/3]2\}$ 有此增长率.

 $f_{\Gamma(2)}(n)=f_{\phi(\phi(...\phi(\phi(\Gamma(1)+1,0),0)...,0),\Gamma(0)+1)}(n)$ (共 n 个 ϕ), $\{n,n\times3,1,2\}$ &n $\$_0\{n,n[1[1/2]/4]2\}$ 有 此 增 长 率 .

 $f_{\Gamma(\omega)}(n)=f_{\Gamma(n)}(n),\{n,n^2,1,2\}$ &n和 $\{n,n[1[1/2]/1,2]2\}$ 有此增长率.

 $\{n,\{n,n,1,2\},1,2\}$ &n 和 $\{n,n[1[1/2]/1[1[1/2]/2]2]2\}$ 具有 $\Gamma(\Gamma_0)$ 的增长率.(此处 $\Gamma(\alpha)$ 可写为 Γ_a)

接下来,Γ(Γ(Γ(.....)))将会成为什么呢?联想一下φ函数的定义,我们就不建对它进行扩展.如下:

【7,3,3】多元φ函数

我们记 Γ(α)=φ(1,0,α),开始下面的多元 φ 函数记号.我们用"#"来表示任意 序列(或空序列),用"\$"来表示只有 Ο 的序列(或空序列).

- $1.\phi(\alpha)=\omega^{\alpha}$
- $2.\phi(0,\#)=\phi(\#)$
- 3.φ(#,a,\$)[n]=φ(#,a[n],\$),此处 a 为极限序数
- 4.φ(#,α,\$,β+1)[n]=φ(#,α[n],φ(#,α,\$,β)+1,\$),此处 α 为 极限序数
- $5.\phi(\#,\alpha+1,0,\$)[1]=\phi(\#,\alpha,0,\$)$
- $6.\phi(\#,\alpha+1,0,\$)[n+1]=\phi(\#,\alpha,\phi(\#,\alpha+1,0,\$)[n],\$)$
- $7.\phi(\#,\alpha+1,\$,\beta+1)[1]=\phi(\#,\alpha+1,\$,\beta)+1$
- 8. $\phi(\#,\alpha+1,\$,\beta)[n+1]=\phi(\#,\alpha,\phi(\#,\alpha+1,\$,\beta)[n],\$)$

当序数 α 为后继序数(可以写成 $\beta+1$ 的形式)时,直接进行 $f_{\alpha}(n)=f_{\beta+1}(n)=f_{\beta}^{n}(n)$ 的递归;当序数 α 为极限序数(不能写成 $\beta+1$ 的形式)时, $f_{\alpha}(n)=f_{\alpha[n]}(n)$,即极限序数取第 n 项进行代换.

下面是一些典型记号的增长率.(此处变量为n)

BEAF 鸟之记号 增长率

	T	
{n,n,2,2}&n	{n,n[1[1/2]/1/2]2}	φ(1,1,0)
{n,n,3,2}&n	{n,n[1[1/2]/1/1/2]2}	φ(1,2,0)
{n,n,n,2}&n	{n,n[1[1/2]/1[2]/2]2}	φ(1,ω,Ο)
{n,n,{n,n,1,2},2}&n	{n,n[1[1/2]/1[1[1[1/2]/2]2]/2]2}	φ(1,Γ ₀ ,0)
{n,n,1,3}&n	{n,n[1[1/2]/1[1/2]/2]2}	φ(2,0,0)
{n,n,1,4}&n	{n,n[1[1/2]/1[1/2]/2]/2]2}	φ(3,0,0)
{n,n,1,n}&n	{n,n[1[2/2]/2]2}	φ(ω,Ο,Ο)
{n,n,1,{n,n,2}}&n	{n,n[1[1 - 2/2]/2]2}	$\varphi(\epsilon_0,0,0)$
{n,n,1,{n,n,1,2}}&n	{n,n[1[1[1[1/2]/2]2/2]/2]2}	φ(Γ ₀ ,0,0)
{n,n,1,1,2}&n	{n,n[1[1/3]/2]2}	φ(1,0,0,0)
{n,n,1,1,3}&n	{n,n[1[1/3]/1[1/3]/2]2}	φ(2,0,0,0)
{n,n,1,1,{n,n,2}}&n	{n,n[1[1 - 2/3]/2]2}	$\phi(\epsilon_{0}, 0, 0, 0)$
{n,n,1,1,{n,n,1,1,2}}&n	{n,n[1[1[1[1/3]/2]2/3]/2]2}	φ(φ(1,0,0,0),0,0,0)
{n,n,1,1,1,2}&n	{n,n[1[1/4]/2]2}	φ(1,0,0,0,0)
{n,n,1,1,1,1,2}&n	{n,n[1[1/5]/2]2}	φ(1,0,0,0,0,0)

接下来,为了少写几个 0,我们用符号"@n"表示从右数第 n+1 个位置,如 $\phi(1,0,0,0,0)=\phi(1@4)$, $\phi(2,0,0,\phi(3,0,0,\epsilon_0),0,0,0,\omega)=\phi(2@7,\phi(3@3,\epsilon_0)@4,\omega)$ 等.想象一下序列 $\phi(1)=\omega$, $\phi(1@1)=\epsilon_0$, $\phi(1@2)=\Gamma_0$, $\phi(1@3)$, $\phi(1@4)$,...我们存会 到达多元 ϕ 函数的一个极限——

[7,3,4] SVO 和 LVO

SVO,即 small veblen ordinal,指的是 $\phi(1@\omega)$,它是 ϕ 函数有"固定多个"参数时的极限.如果用 ϕ 函数来表示 SVO,那么它的参数个数学须是改变的.SVO表示的是下面的序列: $\phi(1)=\omega,\phi(1,0)=\epsilon_0,\phi(1,0,0)=\Gamma_0,\phi(1,0,0,0),\phi(1,0,0,0,0),...$ 不过我们还是可以继续的.

我们可以用序数 $\phi(1@\omega,1)$ 来表示序列 $\phi(1,SVO+1),\phi(1,O,SVO+1),$ $\phi(1,O,O,SVO+1),\phi(1,O,O,SVO+1),\dots$ 的极限,然后是 $\phi(1@\omega,2),\phi(1@\omega,3)$ 等序数.(注意, $\phi(1@\omega,0)=\phi(1@\omega)$)接着是 $\phi(2@\omega),\phi(3@\omega),\dots$ 然后我们得到下面的序数: $\phi(1,O@\omega)=\phi(1@\omega+1)$.它是与 $\phi(1@\omega,O)=\phi(1@1+\omega)$ 不同的序数.它的"参数个数"达到了 $\omega+1$.

参数个数可以继续增多. $\phi(1@w+2)$, $\phi(1@w+3)$, $\phi(1@w2)$, $\phi(1@w3)$, $\phi(1@w^2)$, $\phi(1@w^w)$, $\phi(1@\epsilon_0)$, $\phi(1@\Gamma_0)$, $\phi(1@\phi(1@3))$, $\phi(1@\phi(1@4))$,

φ(1@φ(1@ω)),φ(1@φ(1@ω+1)),φ(1@φ(1@ω2)),φ(1@φ(1@ω 2)), φ(1@φ(1@ε₀)),φ(1@φ(1@φ(1@3))),φ(1@φ(1@φ(1@ω))),... 如果我们顺着序列φ(1)=ω,φ(1@ω),φ(1@φ(1@ω)),φ(1@φ(1@φ(1@ω))),... 走下去,我们会到达一个极限序数——LVO(即 large veblen ordinal).

LVO是φ函数的极限.因为LVO序列的后一项就含有前一项那么多个参数,而这个极限中身,用φ函数来表示,就有LVO个参数.既然参数的个数无法再增多,我们的φ函数也就到达了真正的极限.

不过,我们应该怎样继续下去,得到更大的序数呢?

【7,4】ψ函数

[7,4,1] ψ $= \Omega$

一元函数 W 函数的定义如下:

- $1.\psi(0)=\varepsilon_0$
- $2.\psi(\alpha+1)[1]=\psi(\alpha)$
- $3.\psi(\alpha+1)[n+1]=\psi(\alpha)^{\psi(\alpha+1)[n]}$

当 ψ 函数里面不出现 Ω 时,我们认为 $\psi(\alpha)=\epsilon_{\alpha}$.如果出现了 Ω 呢? ψ 函数中的 ω 序数可以如下定义:

- 1. ψ (α+ Ω)[1]= ψ (α× Ω)[1]= ψ (α)
- $2.\psi(\alpha+\Omega)[n+1]=\psi(\alpha+\psi(\alpha+\Omega)[n])$
- 3. ψ (α×Ω)[n+1]= ψ (α× ψ (α×Ω)[n])
- $4.\psi(\Omega^{\hat{}}\Omega...^{\hat{}}\Omega^{\hat{}}(\alpha+\Omega))[1]=\psi(\Omega^{\hat{}}\Omega...^{\hat{}}\Omega^{\hat{}}(\alpha\times\Omega))[1]=\psi(\Omega^{\hat{}}\Omega...^{\hat{}}\Omega^{\hat{}}\alpha)$
- $5.\psi(\Omega^{\Omega}...^{\Omega}(\alpha+\Omega))[n+1]=\psi(\Omega^{\Omega}...^{\Omega}(\alpha+\psi(\Omega^{\Omega}...^{\Omega}(\alpha+\Omega))[n])$

```
6.\psi(\Omega^{\Omega}_{\Omega}^{\Omega}^{\Omega})[n+1]=\psi(\Omega^{\Omega}_{\Omega}^{\Omega}^{\Omega}(\alpha \times \psi(\Omega^{\Omega}_{\Omega}^{\Omega}^{\Omega})[n])
```

ψ函数可以这样统一定义: $\psi(\alpha)$ 是只用 O、 1、 ω 、 Ω 、 加法、 乘法、 乘方和任何 $\psi(\beta)$ (其中 β < α)所不能表示的最小的序数. Ω 是第 1 个不可数的序数,也可以写作 ω_1 .在 ψ 函数中, Ω 序数就好像"除去它以后的 ω 层迭代"一样(请看定义)以下是 ψ 函数与其它符号之间的关系:

 $\psi(\Omega) = \psi(\psi(...\psi(\psi(O))...)) = \zeta_0, \psi(\Omega+1) = \zeta_0^{\zeta_0} - \zeta_0^{\zeta_0} = \varepsilon(\zeta_0+1),$

 $\psi(\Omega + a) = \varepsilon(\zeta_0 + a)$

 $\psi(\Omega 2) = \psi(\Omega + \Omega) = \psi(\Omega + \psi(\Omega + \dots + \psi(\Omega + \psi(\Omega)) \dots)) = \zeta_1, \psi(\Omega \times (1 + \alpha)) = \zeta_\alpha$

 $\psi(\Omega^2) = \psi(\Omega \times \Omega) = \psi(\Omega \times \psi(\Omega \times ... \psi(\Omega \times \psi(\Omega))...)) = \eta_0$

 $\Psi(\Omega^2 2) = \eta_1 \Psi(\Omega^2 (1+\alpha)) = \eta_\alpha$

 $\psi(\Omega^3) = \varphi(4,0), \psi(\Omega^3(1+\alpha)) = \varphi(4,\alpha)$

 $\psi(\Omega^{\alpha}) = \varphi(1+\alpha,0), \psi(\Omega^{\alpha}(1+\beta)) = \varphi(1+\alpha,\beta)$

 $\Psi(\Omega^{\Omega}) = \Gamma_0, \Psi(\Omega^{\Omega}(1+a)) = \Gamma_a$

 $\varphi(a_n,a_{n-1},...a_1,a_0,\beta)=\psi(\Omega^{n}(\Omega^na_n+\Omega^{n-1}a_{n-1}+...+\Omega a_1+a_0)\times(1+\beta))$ (此序数大于 Γ_0)

SVO= $\psi(\Omega^{\Omega})$, $\phi(1@\omega,1)=\psi(\Omega^{\Omega})$, $\phi(1@\omega,\alpha)=\psi(\Omega^{\Omega})$, $\phi(1+\alpha)$

 $\varphi(2@\omega)=\psi(\Omega^{(\Omega^{\omega}2)}), \varphi(\alpha@\omega)=\psi(\Omega^{(\Omega^{\omega}\alpha)})$

 $\varphi(1@a)=\psi(\Omega^{\Omega}a)$

LVO= $\psi(\Omega^{\Lambda}\Omega^{\Lambda}\Omega)$.

下面是一些典型记号的增长率.(此处变量为n)

tree 函数的增长率为 SVO.

BEAF	乌之记号	增长率
{n,n(1)2}&n	{n,n[1[1/1,2]/2]2}	$\Psi(\Omega^{\Omega^{\cap \omega}})$
{n,n(1)n}&n	{n,n[1[1/2,2]/2]2}	$\Psi(\Omega^{\Omega^{(\omega+1)}})$
{n,n(1)n,n}&n	{n,n[1[1/3,2]/2]2}	$\Psi(\Omega^{\Omega^{(\omega+2)}})$
{n,n(1)(1)2}&n	{n,n[1[1/1,3]/2]2}	$\Psi(\Omega^{\Omega^{(\omega^2)}})$
{n,n(1)(1)(1)2}&n	{n,n[1[1/1,4]/2]2}	$\Psi(\Omega^{\Omega^{(\omega3)}})$
{n,n(2)2}&n	{n,n[1[1/1,1,2]/2]2}	$\Psi(\Omega^{\Omega^{^{^{}}\omega^{^{^{}}2}})$
{n,n(3)2}&n	{n,n[1[1/1,1,1,2]/2]2}	$\Psi(\Omega^{\Omega^{^{}}\omega^{^{}}3})$
{n,n(0,1)2}&n	{n,n[1[1/1[2]2]/2]2}	$\Psi(\Omega^{\Omega^{\cap \omega}})$
{n,n((1)1)2}&n	{n,n[1[1/1[1,2]2]/2]2}	$\Psi(\Omega^{\Omega^{\cap}\omega^{\cap}\omega})$
n11n&n&n	{n,n[1[1/1 \(\) 2]/2]2}	$\Psi(\Omega^{\Omega^{}\Psi(O)})$
n^^^n&n&n	{n,n[1[1/1[1/3]2]/2]2}	$\psi(\Omega^{\Omega^{}\psi(\Omega)})$
n^^^n&n&n	{n,n[1[1/1[1/4]2]/2]2}	$\psi(\Omega^{\Omega^{\wedge}\psi(\Omega^{\wedge}2)})$
n↑ ⁿ n&n&n	{n,n[1[1/1[1/1,2]2]/2]2}	$\psi(\Omega^{\Omega^{\wedge}\psi(\Omega^{\wedge}\omega)})$
{n,n,1,2}&n&n	{n,n[1[1/1[1[1/2]/2]2]/2]2}	$\Psi(\Omega^{\Omega^{}\Psi(\Omega^{}\Omega)})$

BEAF	与之记号	華
{n,n,1,2}&n&n&n	{n,n[1[1/1[1[1/1[1[1/2]/2]2]/2]2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}\psi(\Omega^{\hat{\Omega}})})$
{n,n/2}	{n,n[1[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})$
{n,n,2/2}	{n,n,2[1[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}})+1}$
{n,n/3}	{n,n[1[1/1/2]/2]3}	$\psi(\Omega^{\Omega^{\hat{\Omega}})2}$
{n,n/1/2}	{n,n[1[1/1/2]/2]1[1[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}})^2}$
{n,n/1/1/2}		$\Psi(\Omega^{\Omega^{\hat{\Omega}})^3}$
{n,n(/1)2}	{n,n[2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}})^{\omega}}$
${n,n(/2)2}$	{n,n[3[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\omega^2}$
${n,n(/3)2}$	{n,n[4[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\omega^{\hat{3}}}$
${n,n(/0,1)2}$	{n,n[1,2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\hat{\omega}^{\hat{\omega}}}$
{n,n(/(1)1)2}	{n,n[1[2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\omega^{\hat{\omega}}\omega^{\hat{\omega}}}$
n††n&&n	{n,n[1 - 2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}})^{\Psi(0)}}$
{n,n,1,2}&&n		$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\Psi(\Omega^{\hat{\Omega}})}$
{n,n/2}&&n	{n,n[1[1[1/1/2]/2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}})^{\Psi(\Omega^{\hat{\Omega}}\Omega^{\hat{\Omega}})}$
{n,n//2}	{n,n[1/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}+1})$
{n,n//2}&&&n	{n,n[1[1/2[1/1/2]/2]2/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}+1})^{\psi(\Omega^{\hat{\Omega}}\Omega^{\hat{\Omega}+1)}$
{n,n///2}	{n,n[1/3[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}+2})$
{n,n///2}	{n,n[1/4[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+3})$
{n,n(1)/2}	{n,n[1/1,2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\omega)$
{n,n(2)/2}	{n,n[1/1,1,2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\omega^2})$
{n,n(3)/2}	{n,n[1/1,1,1,2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\omega^3})$
${n,n(0,1)/2}$	{n,n[1/1[2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\omega^{\omega})$
{n,n((1)1)/2}	{n,n[1/1[1,2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\omega^{\omega^{\hat{\omega}}})$
$\{L,X\uparrow\uparrow X\}_{n,n}$	{n,n[1/1 - 2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\psi(0))$
$\{L,X\uparrow\uparrow\uparrow X\}_{n,n}$	{n,n[1/1[1/3]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Psi(\Omega))$
$\{L,X\uparrow\uparrow\uparrow\uparrow X\}_{n,n}$	{n,n[1/1[1/4]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Psi(\Omega^2))$
$\{L,X\uparrow^XX\}_{n,n}$	{n,n[1/1[1/1,2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Psi(\Omega^{\omega}))$
$\{L,\{X,X,1,2\}\}_{n,n}$	{n,n[1/1[1[1/2]/2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Psi(\Omega^{\Omega}))$
$\{L,L\}_{n,n}$	{n,n[1/1[1[1/1/2]/2]2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{L,\{L,L\}\}_{n,n}$		$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \psi(\Omega^{\Omega^{\hat{\Omega}}} + \psi(\Omega^{\Omega^{\hat{\Omega}}})))$
$\{L,X,2\}_{n,n}$	{n,n[1/1/2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\Omega})$
$\{L,X+1,2\}_{n,n}$	{n,n[1/2/2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega + \Psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{L,X\times2,2\}_{n,n}$	{n,n[1/1,2/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega+\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega))$
{L,X,3} _{n,n}	{n,n[1/1/3[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^2)$
$\{L,X,4\}_{n,n}$	{n,n[1/1/4[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\Omega}+\Omega)$
$\{L,X,X\}_{n,n}$	{n,n[1/1/1,2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega \omega)$
$\{L,L,L\}_{n,n}$	{n,n[1/1/1[1[1/1/2]/2]2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega \Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega))$

BEAF	乌之记号	增长率
{L,X,1,2} _{n,n}	{n,n[1/1/1/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}+\Omega^2})$
{L,X,1,3} _{n,n}	{n,n[1/1/1/3[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\Omega^2})$
{L,X,1,1,2} _{n,n}	{n,n[1/1/1/2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}+\Omega^3})$
{L,X(1)2} _{n,n}	{n,n[1[2]/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\omega})$
$\{L,X^2(1)2\}_{n,n}$	{n,n[1[3]/2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\omega^{\hat{\Omega}}})$
$\{L,X^{X}(1)2\}_{n,n}$	{n,n[1[1,2]/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\omega^{\hat{\omega}}})$
$\{L,X\uparrow\uparrow X(1)2\}_{n,n}$	{n,n[1[1 - 2]/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\psi(0)})$
{L,L(1)2} _{n,n}	{n,n[1[1[1[1/1/2]/2]2]/2[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{\Lambda}}+\Omega^{\psi(\Omega^{\Lambda}}))$
{L,3,2(1)2} _{n,n}		$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\psi(\Omega^{\hat{\Omega}} + \Omega^{\hat{\Omega}} + \Omega^{\hat{\omega}}))})$
$\{L,X,2(1)2\}_{n,n}$	{n,n[1[1/2]/2[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega})$
{L,X×2,2(1)2} _{n,n}		$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega} + \psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega}))$
$\{L,X,3(1)2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega}+\Omega)$
$\{L,X,4(1)2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega}+\Omega^{2})$
$\{L,X,1,2(1)2\}_{n,n}$		$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega}+\Omega^{2})$
$\{L,X,1,1,2(1)2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega}+\Omega^{3})$
$\{L,X(1)3\}_{n,n}$		$\Psi(\Omega^{\Omega^{\Lambda}\Omega} + \Omega^{\Omega} + \Omega^{\omega})$
$\{L,L(1)3\}_{n,n}$		$\psi(\Omega^{\Omega^{}\Omega} + \Omega^{\Omega} + \Omega^{\psi(\Omega^{}\Omega^{}\Omega)})$
$\{L,X,2(1)3\}_{n,n}$		$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega}2)$
$\{L,X,2(1)4\}_{n,n}$		$\Psi(\Omega^{\Omega^{\Omega}}+\Omega^{\Omega}3)$
$\{L,X(1)X\}_{n,n}$		$\Psi(\Omega^{\Omega^{\Omega}}+\Omega^{\Omega}\omega)$
$\{L,X(1)L\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega} \Psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{L,X(1)1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega+1})$
$\{L,X^2(1)1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega+\omega})$
$\{L,X^3(1)1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\Omega}}+\Omega^{\Omega+\omega^{2}})$
$\{L,X^{X}(1)1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\Omega}}+\Omega^{\Omega+\omega^{\omega}})$
{L,L(1)1,2} _{n,n}		$\psi(\Omega^{\Omega^{\Lambda}}+\Omega^{\Omega+\psi(\Omega^{\Lambda}\Omega^{\Lambda})})$
$\{L,X,2(1)1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^2})$
{L,X,2(1)1,3} _{n,n}		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^2}2)$
$\{L,X(1)1,X\}_{n,n}$		$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^2}\omega)$
$\{L,X(1)1,L\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega^2} \Psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{L,X(1)1,1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^{2+1}})$
$\{L,X,2(1)1,1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^3})$
$\{L,X,2(1)1,1,1,2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^4})$
$\{L,X(1)(1)2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^{\omega}})$
$\{L,X,2(1)(1)2\}_{n,n}$		$\Psi(\Omega^{\Omega^{\cap}\Omega} + \Omega^{\Omega^{\cap}2})$
n×3@n		$\Psi(\Omega^{\Omega^{\Omega}}+\Omega^{\Omega^{2}\times\omega})$
n ² @n		$\Psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^{\hat{\omega}}})$

BEAF	鸟之记号	增长率
n ⁿ @n		$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega^{\hat{\omega}}})$
n ^{n^n} @n		$\psi(\Omega^{\Omega^{\hat{\Omega}}}+\Omega^{\Omega^{\hat{\omega}}})$
n↑↑n@n		$\psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\Omega^{\hat{\Lambda}}})$
{n,n/2}@n		$\psi(\Omega^{\Omega^{\Lambda}}+\Omega^{\Omega^{\Psi}(\Omega^{\Lambda}}))$
{n,n/2}@n@n		$\Psi(\Omega^{\Omega^{\hat{\Omega}}} + \Omega^{\hat{\Omega}})$
		$\psi(\Omega^{\Omega^{\Lambda}}+\Omega^{\Omega^{\Lambda}}+\Omega^{\Omega^{\Lambda}}))$
{n,n\2}	{n,n[1[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}2)$
{n,n\\2}	{n,n[1/2[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}2+1})$
{n,n(1)\2}	{n,n[1/1,2[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}2+\omega})$
$\{L2,L\}_{n,n}$	{n,n[1/1[1[1/1/2]/2]2[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}2+\psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{L2,L2\}_{n,n}$	{n,n[1/1[1[1/1/2]/3]2[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}2}+\psi(\Omega^{\Omega^{\hat{\Omega}}2}))$
$\{L2,X,2\}_{n,n}$	{n,n[1/1/2[1/1/2]/3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}2+\Omega})$
{n,n 2}	{n,n[1[1/1/2]/4]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}3)$
{n,n - 2}	{n,n[1[1/1/2]/5]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}4})$
$\{LX\}_{n,n}$	{n,n[1[1/1/2]/1,2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}\omega})$
$\{L\{X+1\}\}_{n,n}$	{n,n[1[1/1/2]/2,2]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}}(\omega+1))$
$\{L\{X\times2\}\}_{n,n}$	{n,n[1[1/1/2]/1,3]2}	$\psi(\Omega^{\Omega^{\hat{\Omega}}\omega^2})$
$\{L\{X^2\}\}_{n,n}$	{n,n[1[1/1/2]/1,1,2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}\omega^2})$
$\{L\{X^X\}\}_{n,n}$	{n,n[1[1/1/2]/1[2]2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}\Omega}\omega^{\omega})$
$\{L\{X\uparrow\uparrow X\}\}_{n,n}$	{n,n[1[1/1/2]/1 - 2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}\Psi(0))$
$\{LL\}_{n,n}$	{n,n[1[1/1/2]/1[1[1/1/2]/2]2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}}}\Psi(\Omega^{\Omega^{\hat{\Omega}}}))$
$\{LX2\}_{n,n}$	{n,n[1[1/1/2]/1/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}+1}})$
$\{L\&L\}_{n,n}$	{n,n[1[1/1/2]/1[1/1/2]/2]2}	$\Psi(\Omega^{\Omega^{\hat{\Omega}\times 2}})$
{L&L&L}n,n	{n,n[1[1/1/2]/1[1/1/2]/1[1/1/2]/2]2}	$\psi(\Omega^{\Omega^{}\Omega\times 3})$

BEAF 的最大增长率为 $\psi(\Omega^{\Omega^{\Omega^*W}})$,而这也是乌之记号中 $\{n,n[1[2/1/2]/2]/2\}$ 的增长率.

 $\{n,n[1[3/1/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega^{\infty}}})$

 $\{n,n[1[1,2/1/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega^{\infty}}})$

 $\{n,n[1[1_2/1/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega^{\chi}}(0)})$

 $\{n,n[1[1[1/2]/2]/2]/2]/2]$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega^{*}}})$

 $\{n,n[1[1[1/1/2]/2]/2]/2]/2]/2\}$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega^{\Lambda}}(\Omega^{\Lambda})})$

 $\{n,n[1[1[1[1[1/1/2]/2]/2]/2]/2]/2]/2]/2]/2]$ 的增长率为 $\psi(\Omega^{\Omega^{\Omega}\Omega^{*}\psi(\Omega^{\Omega}\Omega^{*}\Omega^{*}\psi(\Omega^{\Omega}\Omega^{*}\Omega^{*}\Omega^{*}))})$

 $\{n,n[1[1/2/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{\cap(\Omega+1)}})$

 $\{\mathsf{n},\mathsf{n}[1[1/3/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{(\Omega+2)}})$

 $\{n,n[1[1/1,2/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{(\Omega+\omega)}})$

 $\{n,n[1[1/1_2/2]/2]2\}$ 的增长率为 $\psi(\Omega^{\Omega^{(\Omega+\psi(0))}})$

 $\{n,n[1[1/1[1[1/1/2]/2]/2]/2]/2\}$ 的增长率为 $\psi(\Omega^{\Omega^{(\Omega+\psi(\Omega^{\Omega}\Omega^{\Omega}))})$

 $\{n,n[1[1/1[1[1/1[1]1/2]/2]/2]/2]/2]/2]/2]$ 的增长率为 $\psi(\Omega^{\Omega^{(\Omega+\psi(\Omega^{\Omega^{(\Omega+\psi(\Omega^{\Omega^{(\Omega+\psi(\Omega^{\Omega^{(\Omega+\psi(\Omega^{(\Omega+\psi(\Omega^{(\Omega+\psi(\Omega^{(\Omega+\psi(\Omega^{(\Omega+\psi(\Omega^{(\Omega^{((\Omega+\psi(\Omega^{(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((\Omega+\psi(\Omega^{((1))})})})})}})})})})})})})})})})})$

```
\{\mathsf{n},\mathsf{n}[1[1/1/3]/2]2\}的增长率为\psi(\Omega^{\Omega^{(\Omega^2)}})
    \{n,n[1[1/1/1_2]/2]2\}的增长率为\psi(\Omega^{\Omega^{(\Omega\psi(0))}})
    \{\mathsf{n},\mathsf{n}[1[1/1/1[1[1/1/2]/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{(\Omega\psi(\Omega^{\Omega}\Omega^{\Omega}))})
    \{n,n[1[1/1/1/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega^2}})
    \{n,n[1[1/1/1/1/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega^{3}}})
    \{n,n[1[1[2]/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega^{\infty}}})
    \{\mathsf{n},\mathsf{n}[1[1[1_2]/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega^{\Psi(0)}}})
    \{\mathsf{n},\mathsf{n}[1[1[1[1/1/2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Psi}(\Omega^{\Omega}\Omega^{\Omega})})
    \{n,n[1[1[1[1[1[1[1/1/2]/2]/2]/2]/2]/2]/2]/2]\}的增长率为 \psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\psi(\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega})})
    \{n,n[1[1[1/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1/2]/3]/2]2\}的增长率为\psi(\Omega^{\Omega^{(\Omega^{\Omega^{\times 2}})}})
    \{n,n[1[1[1/2]/1/2]/2]2\}的增长率为 \psi(\Omega^{\Omega^{\Omega}\Omega^{(\Omega+1)}})
    \{n,n[1[1[1/2]/1[1/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}(\Omega^2)})
    \{n,n[1[1[2/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}(\Omega^{\omega})})
    \{n,n[1[1[1[1[1[1/2]/2]/2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}(\Omega^{\psi(\Omega^{\Omega}\Omega^{\Omega}\Omega))}})
    \{n,n[1[1[1/3]/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}^{2}})
    \{n,n[1[1[1/1_2]/2]/2]/2\}的增长率为 \psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1/1[1[1/2]/2]/2]/2]/2]/2]的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1/1/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega})
    \{n,n[1[1[1/1/3]/2]/2]2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}(\Omega^2)})
    \{n,n[1[1[1/1/1/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{2}})
    \{n,n[1[1[1[2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\infty}})
    \{n,n[1[1[1[1-2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1/2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1/1/2]/2]/2]/2]/2\}的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})
    \{n,n[1[1[1[1/2]/2]/2]/2]/2]/2]的增长率为\psi(\Omega^{\Omega^{\Omega^{\Omega}\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}}})
    \{n,n[1[1[1[1/1/2]/2]/2]/2]/2]/2]的增长率为\psi(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})
     \omega^{\omega}_{...}\omega^{\omega}=\psi(0),这是基于\omega的运算的序数.下面,我们可以改一改\psi函数
的定义,得到Ψ1函数、Ψ2函数之类的东西-
```

$[7,4,2] \psi_{\alpha} = 0$

 ψ_1 函数的定义如下:(里面使用了 ω_2 这一序数,即第 2 个不可数的序数) $1.\psi_1(0)[1]=\Omega$ $\psi_1(0)[n+1]=\Omega^*\psi_1(0)[n]$

```
2.\psi_1(\alpha+1)[1]=\psi_1(\alpha)
    \psi_1(\alpha+1)[n+1]=\psi_1(\alpha)^{\psi_1}(\alpha+1)[n]
  注:这里 h(x)为任意只含加法、乘法、乘方和之前定义过的函数的函数.
  3.\psi_1(h(\alpha+\omega_2))[1]=\psi_1(\alpha)
    \psi_1(h(\alpha+\omega_2))[n+1]=\psi_1(h(\alpha+\psi_1(h(\alpha+\omega_2))[n]))
  4.\psi_1(h(\alpha \times \omega_2))[1]=\psi_1(\alpha)
    \psi_1(h(\alpha \times \omega_2))[n+1]=\psi_1(h(\alpha \times \psi_1(h(\alpha \times \omega_2))[n]))
      一般地,\psi_{\alpha}函数可以定义为:(\omega_{0}=\omega_{1}=\Omega)
  1.\psi_a(0)[1]=\omega_a
    \psi_a(0)[n+1]=\omega_a^{\psi_1}(0)[n]
  2.\psi_a(\beta+1)[1]=\psi_1(\beta)
    \psi_a(\beta+1)[n+1]=\psi_1(\beta)^*\psi_1(\beta+1)[n]
  3.\psi_a(h(\beta+\omega_{a+1}))[1]=\psi_a(\beta)
    \psi_a(h(\beta+\omega_{a+1}))[n+1]=\psi_a(h(\beta+\psi_a(h(\beta+\omega_{a+1}))[n]))
  4.\psi_a(h(\beta \times \omega_{a+1}))[1]=\psi_a(\beta)
    \psi_a(h(\beta \times \omega_{a+1}))[n+1] = \psi_a(h(\beta \times \psi_a(h(\beta \times \omega_{a+1}))[n]))
     Ψ_{\alpha}(Ψ_{\beta}(Y))(其中 α<β, Y≥ω_{\beta+1})还可以简写成 Ψ_{\alpha}(Y), 而 Ψ(α)则指 Ψ_{0}(α). 序数的大
小可以这样比较:\mathbf{w} \cdot \mathbf{\psi}(\mathbf{a}) \cdot \Omega \cdot \mathbf{\psi}_1(\mathbf{a}) \cdot \mathbf{w}_2 \cdot \mathbf{\psi}_2(\mathbf{a}) \cdot \mathbf{w}_3 \cdot \mathbf{\psi}_3(\mathbf{a}) \cdot ... 其中 <math>\mathbf{a} 为任意. 序数. 你
会发现,当我们考虑简写记号\psi_{\alpha}(\gamma)的时候,单独的\gamma不可能处于\psi_{\alpha}中,也不可能
处于 \psi_{\alpha+1} 中,......只能处于 \psi_{B} 中,于是 \psi_{\alpha}(\gamma)实际上表示 \psi_{\alpha}(\psi_{B}(\gamma)),从而不会引起
歧义.
     Ψ(Ψ_1(O))=Ω^Ω^Ω^...Ω^Ω(ΗωΛΩ),这个序数是上一小节(【7,4,1】节)所
描述序数的极限,它被称作 BHO(Bachmann-Howard ordinal).
      下面是一些典型记号的增长率:(此处变量为 n)
    {n,n[1[1~3]2]2}的增长率为ψ(ψ1(O))
    {n,n[2[1~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(O))<sup>ω</sup>
    \{n,n[1[1[1~3]2]2[1~3]2]2\}的增长率为\psi(\psi_1(0))^*\psi(\psi_1(0))
    {n,n[1/2[1~3]2]2}的增长率为 ψ(ψ1(0)+1)
    \{\mathsf{n},\mathsf{n}[1[1/2~2]2[1~3]2]2\}的增长率为 \psi(\psi_1(\mathsf{O})+\Omega^\Omega)
    \{\mathsf{n},\mathsf{n}[1[1/1/2~2]2[1~3]2]2\}的增长率为 \psi(\psi_1(0)+\Omega^{\Omega^{\hat{\Omega}}})
    \{n,n[1[1[1/2~2]2~2]2[1~3]2]2\}的增长率为\psi(\psi_1(0)+\Omega^{\Omega^2\Omega^2})
    {n,n[1[1~3]3]2}的增长率为 ψ(ψ<sub>1</sub>(0)2)
    {n,n[1[1~3]4]2}的增长率为 ψ(ψ<sub>1</sub>(0)3)
    {n,n[1[1~3]1[1[1~3]2]2]a) 增长率为 ψ(ψ<sub>1</sub>(0)ψ(ψ<sub>1</sub>(0)))
    {n,n[1[1~3]1[1[1~3]1[1[1~3]2]2]2]的增长率为 ψ(ψ<sub>1</sub>(Ο)ψ(ψ<sub>1</sub>(Ο)ψ(ψ<sub>1</sub>(Ο))))
```

```
{n,n[1[1~3]1/2]2}的增长率为 ψ(ψ<sub>1</sub>(0)Ω)
{n,n[1[1~3]1[2~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(O)Ω<sup>ω</sup>)
\{n,n[1[1~3]1[1/2~2]2]2\}的增长率为\psi(\psi_1(0)\Omega^{\Omega})
\{n,n[1[1~3]1[1/1/2~2]2]2\}的增长率为 \psi(\psi_1(0)\Omega^{\Omega^{\Omega}})
\{\mathsf{n},\mathsf{n}[1[1~3]1[1[1/2~2]2~2]2]2\}的增长率为\psi(\psi_1(0)\Omega^{\Omega^{\Omega}\Omega^{\Omega}})
{n,n[1[1~3]1[1~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(O)<sup>2</sup>)
\{n,n[1[1~3]1[1~3]1[1~3]2]2\}的增长率为 \psi(\psi_1(0)^3)
{n,n[1[2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(O)<sup>ω</sup>)
{n,n[1[1[1[1~3]2]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ(ψ<sub>1</sub>(0)))
{n,n[1[1[1[1[1[1-3]2]2~3]2]2~3]2]2}的增长率为 ψ(ψ1(O)^ψ(ψ1(O)^ψ(ψ1(O))))
\{n,n[1[1/2~3]2]2\}的增长率为 \psi(\psi_1(0)^{\Omega})
\{n,n[1[1/1/2~3]2]2\}的增长率为\psi(\psi_1(0)^{\Omega^{\hat{\Omega}}})
\{n,n[1[1[1/2~2]2~3]2]2\}的增长率为\psi(\psi_1(0)^{\Omega^{\Lambda}\Omega^{\Lambda}})
\{n,n[1[1[1/1/2~2]2~3]2]2\}的增长率为 \psi(\psi_1(0)^{\Omega^{\Lambda}\Omega^{\Lambda}\Omega})
{n,n[1[1[1~3]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(O)^ψ<sub>1</sub>(O))
{n,n[1[1[1~3]3~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^2)
\{n,n[1[1[1~3]4~3]2]2\}的增长率为\psi(\psi_1(0)^*\psi_1(0)^*3)
{n,n[1[1[1~3]1[1[1~3]2]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ(ψ<sub>1</sub>(0)))
\{n,n[1[1[1~3]1/2~3]2]2\}的增长率为\psi(\psi_1(0)^{\psi_1}(0)^{\Omega})
{n,n[1[1[1~3]1/3~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^(Ω2))
\{n,n[1[1[1~3]1/1/2~3]2]2\}的增长率为\psi(\psi_1(0)^{\psi_1(0)}\Omega^2)
\{\mathsf{n},\mathsf{n}[1[1[1~3]1[1/2~2]2~3]2]2\}的增长率为\psi(\psi_1(0)^{\bullet}\psi_1(0)^{\bullet}\Omega^{\Omega})
\{n,n[1[1[1~3]1[1/1/2~2]2~3]2]2\}的增长率为\psi(\psi_1(0)^*\psi_1(0)^*\Omega^{\Omega^*\Omega})
\{n,n[1[1[1~3]1[1[1/2~2]2~2]2~3]2]2\}的增长率为\psi(\psi_1(0)^{\bullet}\psi_1(0)^{\bullet}\Omega^{\Omega^{\bullet}\Omega^{\bullet}\Omega})
{n,n[1[1[1~3]1[1~3]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0))
{n,n[1[1[1~3]1[1~3]3~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^(ψ<sub>1</sub>(0)2))
{n,n[1[1[1~3]1[1~3]1[1~3]2~3]2]2}的增长率为 ψ(ψ1(0)^ψ1(0)^ψ1(0)^2)
{n,n[1[1[1~3]1[1~3]1[1~3]1[1~3]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^3)
{n,n[1[1[2~3]2~3]2]2}的增长率为 ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ω)
{n,n[1[1[1[1[1[1~3]1[1~3]2~3]2]2~3]2~3]2]2}的增长率为
\psi(\psi_1(O)^*\psi_1(O)^*\psi_1(O)^*\psi_1(O)^*\psi_1(O)^*\psi_1(O))
\{n,n[1[1[1/2~3]2~3]2]2\}的增长率为\psi(\psi_1(0)^*\psi_1(0)^*\psi_1(0)^*\Omega)
\{\mathsf{n},\mathsf{n}[1[1[1/1/2~3]2~3]2]2\}的增长率为\psi(\psi_1(\mathsf{O})^*\psi_1(\mathsf{O})^*\psi_1(\mathsf{O})^*\Omega^\Omega)
\{\mathsf{n},\mathsf{n}[1[1[1/2~2]2~3]2~3]2\}的增长率为\psi(\psi_1(0)^*\psi_1(0)^*\psi_1(0)^*\Omega^{\Omega^*\Omega})
\{n,n[1[1[1/1/2~2]2~3]2~3]2\}的增长率为\psi(\psi_1(0)^*\psi_1(0)^*\psi_1(0)^*\Omega^{\Omega^*\Omega^*\Omega})
{n,n[1[1[1[1~3]2~3]2~3]2]2}的增长率为ψ(ψ1(0)^ψ1(0)^ψ1(0))
{n,n[1[1[1[1~3]1[1~3]2~3]2~3]2}的增长率为ψ(ψ1(O)^ψ1(O)^Ψ1(O)^Ψ1(O))
{n,n[1[1[1[1[1-3]2~3]2~3]2~3]2]2}的增长率为ψ(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0))
{n,n[1[1~4]2]2}的增长率为 ψ(ψ<sub>1</sub>(1))
```

```
{n,n[1[1~5]2]2}的增长率为 ψ(ψ<sub>1</sub>(2))
{n,n[1[1~1,2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω))
{n,n[1[1~1[1[1~3]2]2]2]的增长率为 ψ(ψ<sub>1</sub>(ψ(ψ<sub>1</sub>(O))))
\{n,n[1[1~1[1[1~1[1[1~3]2]2]2]2]2]2\}的增长率为\psi(\psi_1(\psi(\psi_1(\psi(\psi_1(O))))))
\{n,n[1[1~1/2]2]2\}的增长率为\psi(\psi_1(\Omega))
{n,n[1[1~2/2]2]2}的增长率为 ψ(ψ<sub>1</sub>(Ω+1))
\{n,n[1[1~1[1[1~1/2]2]2/2]2\}的增长率为 \psi(\psi_1(\Omega+\psi(\psi_1(\Omega))))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1[1\sim1/2]2]2/2]2]2/2]2\}的增长率为 \psi(\psi_1(\Omega+\psi(\psi_1(\Omega+\psi(\psi_1(\Omega))))))
\{n,n[1[1~1/3]2]2\}的增长率为\psi(\psi_1(\Omega 2))
{n,n[1[1~1/4]2]2}的增长率为 ψ(ψ<sub>1</sub>(Ω3))
\{n,n[1[1~1/1[1[1~3]2]2]2\}的增长率为\psi(\psi_1(\Omega\psi_1(O)))
\{n,n[1[1~1/1[1[1~1/1[1[1~3]2]2]2]2]2\}的增长率为 \psi(\psi_1(\Omega\psi(\psi_1(\Omega\psi(\psi_1(O))))))
\{n,n[1[1~1/1/2]2]2\}的增长率为\psi(\psi_1(\Omega^2))
\{n,n[1[1~1/1/2]2]2\}的增长率为\psi(\psi_1(\Omega^3))
\{n,n[1[1~1[1[1[1~3]2]2~2]2]2\}的增长率为\psi(\psi_1(\Omega^*\psi_1(O)))
\{n,n[1[1~1[1[1[1~1[1[1[1~3]2]2~2]2]2]2]2]2\}的增长率为\psi(\psi_1(\Omega^*\psi(\psi_1(\Omega^*\psi(\psi_1(O))))))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1/2\sim2]2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega}))
\{n,n[1[1~2[1/2~2]2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega}+1))
\{n,n[1[1~1/2[1/2~2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega}+\Omega))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1/2\sim2]3]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega}2))
\{n,n[1[1~1[1/2~2]1/2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega+1}))
\{n,n[1[1~1[1/2~2]1[1/2~2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^2}))
\{n,n[1[1~1[2/2~2]2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega \omega}))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1[1\sim1[1/2\sim2]2]2]2]2/2\sim2]2]2\}的增长率为 \psi(\psi_1(\Omega^n(\Omega)\psi(\psi_1(\Omega^n))))
\{n,n[1[1~1[1/3~2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{2}}))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1/1[1[1\sim1[1/2\sim2]2]2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega})))
\{n,n[1[1~1[1/1/2~2]2]2]2\}的增长率为 \psi(\psi_1(\Omega^{\Omega^{\Omega}}))
\{n,n[1[1~1[1/1/1/2~2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{\Omega^2}}))
\{n,n[1[1~1[1[2~2]2~2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{\Omega^{\Omega^{-}\omega}}}))
{n,n[1[1~1[1[1[1[1/1/2~2]2]2]2]2~2]2~2]2]2}的增长率为
\Psi(\Psi_1(\Omega^{\hat{\Omega}}\Omega^{\hat{\Omega}}))))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1[1/2\sim2]2\sim2]2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{\Lambda}\Omega^{\Lambda}\Omega}))
\{n,n[1[1~1[1[1/1/2~2]2~2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega}))
\{n,n[1[1~1[1[1/2~2]2~2]2~2]2]2\}的增长率为\psi(\psi_1(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}\Omega}))
\{n,n[1[1~1[1~3]2]2]2\}的增长率为\psi(\psi_1(\psi_1(O)))
\{n,n[1[1~2[1~3]2]2]2\}的增长率为 \psi(\psi_1(\psi_1(0)\Omega))
\{\mathsf{n},\mathsf{n}[1[1\sim1/2[1\sim3]2]2\}的增长率为 \psi(\psi_1(\psi_1(\mathsf{O})\Omega^\Omega))
\{n,n[1[1~1[1~3]3]2]2\}的增长率为 \psi(\psi_1(\psi_1(0)^2))
\{n,n[1[1~1[1~3]1/2]2]2\}的增长率为\psi(\psi_1(\psi_1(0)^{\Omega}))
```

```
{n,n[1[1~1[1~3]1[1~3]2]2]2}的增长率为 ψ(ψ1(ψ1(O)^ψ1(O)))
\{n,n[1[1~1[2~3]2]2]\}的增长率为\psi(\psi_1(\psi_1(0)^{\omega}))
\{n,n[1[1~1[1/2~3]2]2]2\}的增长率为\psi(\psi_1(\psi_1(0)^{\Omega}))
\{n,n[1[1~1[1/1/2~3]2]2]2\}的增长率为\psi(\psi_1(\psi_1(0)^{\Omega^2\Omega}))
\{n,n[1[1~1[1[1/2~2]2~3]2]2\}的增长率为\psi(\psi_1(\psi_1(0)^{\Omega^1\Omega^2}))
\{n,n[1[1~1[1[1/1/2~2]2~3]2]2\}的增长率为\psi(\psi_1(\psi_1(0)^{\Omega^1\Omega^2\Omega^2\Omega^2}))
{n,n[1[1~1[1[1/2~3]2~3]2]2]4的增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)))
\{n,n[1[1~1[1[1/1/2~3]2~3]2]2\}的增长率为\psi(\psi_1(\psi_1(O)^*\psi_1(O)^*\psi_1(O)^*\psi_1(O)))
{n,n[1[1~1[1[1/2~3]2~3]2~3]2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)^ψ<sub>1</sub>(0)))
{n,n[1[1~1[1~4]2]2]2}的增长率为ψ(ψ1(ψ1(1)))
{n,n[1[1~1[1~5]2]2]2}的增长率为ψ(ψ1(ψ1(2)))
\{n,n[1[1~1[1~1/2]2]2]2\}的增长率为 \psi(\psi_1(\psi_1(\Omega)))
\{n,n[1[1~1[1~1/3]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega 2)))
\{n,n[1[1~1[1~1/1/2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^2)))
\{n,n[1[1\sim1[1\sim1/1/1/2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^3)))
\{n,n[1[1~1[1~1[2~2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^{\omega})))
\{n,n[1[1~1[1~1[1/2~2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^{\Omega})))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1\sim1[1/1/2\sim2]2]2]2]2\}的增长率为 \psi(\psi_1(\psi_1(\Omega^{\Omega^{\Omega}})))
\{n,n[1[1~1[1~1[1/2~2]2~2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^{\Omega^{\Omega^{\Omega^{\Omega}}})))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1\sim1[1[1/1/2\sim2]2\sim2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\Omega^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})))
{n,n[1[1~1[1~1[1~3]2]2]2]的增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(Ο))))
{n,n[1[1~1[1~1[1~4]2]2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(1))))
\{n,n[1[1~1[1~1[1~1/2]2]2]2]2\}的增长率为 \psi(\psi_1(\psi_1(\psi_1(\Omega))))
\{n,n[1[1~1[1~1[1~1/1/2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\psi_1(\Omega^2))))
\{n,n[1[1~1[1~1[1~1[1/2~2]2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\psi_1(\Omega^{\Omega}))))
\{\mathsf{n},\mathsf{n}[1[1\sim1[1\sim1[1\sim1[1/1/2\sim2]2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\psi_1(\Omega^{\Omega^{\Omega}}))))
\{n,n[1[1~1[1~1[1~1[1[1/2~2]2~2]2]2]2]2]2\}的增长率为\psi(\psi_1(\psi_1(\psi_1(\Omega^{\Omega^{\Omega}\Omega^{\Omega}))))
{n,n[1[1~1[1~1[1~1[1~3]2]2]2]2]a) 增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(Ο)))))
{n,n[1[1~1[1~1[1~1[1~1[1~3]2]2]2]2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(Ο))))))
{n,n[1[1~1~2]2]2}的增长率为ψ(ω<sub>2</sub>)
\{n,n[1[1~1~2]1[1~1~2]2]2\}的增长率为 \psi(\psi_1(\omega_2)^2)
{n,n[1[2~1~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub>)<sup>ω</sup>)
\{n,n[1[1/2\sim1\sim2]2]2\}的增长率为\psi(\psi_1(\omega_2)^{\Omega})
{n,n[1[1[1~3]2~1~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub>)^ψ<sub>1</sub>(O))
\{n,n[1[1[1~1~2]2~1~2]2]2\}的增长率为\psi(\psi_1(\omega_2)^*\psi_1(\omega_2))
\{n,n[1[1[1~1~2]1/2~1~2]2]2\}的增长率为\psi(\psi_1(\omega_2)^{\Omega})
{n,n[1[1[1~1~2]1[1~1~2]2~1~2]2]2}的增长率为 \psi(\psi_1(ω_2)^*\psi_1(ω_2)^*\psi_1(ω_2))
\{n,n[1[1[1-1-2]2-1-2]2-1-2]2\}的增长率为\psi(\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2))
{n,n[1[1[1[1~1~2]1[1~1~2]2~1~2]2~1~2]2]2}的增长率为
```

```
\psi(\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2))
{n,n[1[1[1[1[1~1~2]2~1~2]2~1~2]2~1~2]2]2}的增长率为
\psi(\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_
{n,n[1[1~2~2]2]2}的增长率为 ψ(ω2+1)
{n,n[1[1~3~2]2]2}的增长率为ψ(ω<sub>2</sub>+2)
\{n,n[1[1~1/2~2]2]2\}的增长率为 \psi(\omega_2+\Omega)
{n,n[1[1~1[1~1~2]2~2]2]2}的增长率为 ψ(ω<sub>2</sub>+ψ<sub>1</sub>(ω<sub>2</sub>))
\{n,n[1[1~1[1~1~2]1/2~2]2]2\}的增长率为\psi(\omega_2+\psi_1(\omega_2)\Omega)
{n,n[1[1~1[1~1~2]1[1~1~2]2~2]2]2}的增长率为 ψ(ω<sub>2</sub>+ψ<sub>1</sub>(ω<sub>2</sub>)<sup>2</sup>)
\{n,n[1[1~1[1/2~1~2]2~2]2]2\}的增长率为\psi(\omega_2+\psi_1(\omega_2)^{\Omega})
{n,n[1[1~1[1[1~1~2]2~1~2]2~2]2]2}的增长率为ψ(ω2+ψ1(ω2))ψ1(ω2))
{n,n[1[1~1[1[1~1~2]1[1~1~2]2~1~2]2~2]2]2}的增长率为ψ(ω2+ψ1(ω2)^ψ1(ω2))
{n,n[1[1~1[1[1[1~1~2]2~1~2]2~1~2]2~2]2]2}的增长率为
\psi(\omega_2+\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2)^*\psi_1(\omega_2))
{n,n[1[1~1[1~2~2]2~2]2]2}的增长率为 ψ(ω<sub>2</sub>+ψ<sub>1</sub>(ω<sub>2</sub>+1))
{n,n[1[1~1[1~1[1~1-2]2~2]2~2]2}的增长率为ψ(ω2+ψ1(ω2+ψ1(ω2)))
\{n,n[1[1~1[1~1[1~1[1~1[1~1[0]2~2]2~2]2~2]2]2\}的增长率为 \psi(\omega_2+\psi_1(\omega_2+\psi_1(\omega_2+\psi_1(\omega_2))))
{n,n[1[1~1~3]2]2}的增长率为ψ(ω<sub>2</sub>2)
{n,n[1[1~1~4]2]2}的增长率为ψ(ω23)
{n,n[1[1~1~1/2]2]2}的增长率为ψ(ω2Ω)
\{n,n[1[1~1~1/1/2]2]2\}的增长率为\psi(\omega_2\Omega^2)
{n,n[1[1~1~1[2~2]2]2]2}的增长率为 ψ(ω2Ω<sup>ω</sup>)
\{n,n[1[1~1~1[1/2~2]2]2]2\}的增长率为 \psi(\omega_2\Omega^{\Omega})
\{\mathsf{n},\mathsf{n}[1[1\sim1\sim1[1/1/2\sim2]2]2]2\}的增长率为 \psi(\mathsf{w}_2\Omega^{\Omega^{\Omega}})
\{n,n[1[1~1~1[1[1/2~2]2~2]2]2\}的增长率为\psi(\omega_2\Omega^{\Omega^{\Omega}\Omega^{\Omega}})
{n,n[1[1~1~1[1~3]2]2]2}的增长率为 ψ(ω<sub>2</sub>ψ<sub>1</sub>(O))
\{n,n[1[1~1~1[1~1/2]2]2]2\}的增长率为\psi(\omega_2\psi_1(\Omega))
\{n,n[1[1~1~1[1~1/1/2]2]2]2\}的增长率为 \psi(ω_2\psi_1(\Omega^2))
\{n,n[1[1~1~1[1/2~2]2]2]2]2\}的增长率为\psi(\omega_2\psi_1(\Omega^{\Omega}))
\{n,n[1[1~1~1[1/1/2~2]2]2]2\}的增长率为 \psi(ω_2\psi_1(\Omega^{\Omega^{\Omega}}))
{n,n[1[1~1~1[1~1[1~3]2]2]2]的增长率为 ψ(ω2ψ1(ψ1(O)))
{n,n[1[1~1~1[1~1[1~3]2]2]2]2]a) 增长率为 ψ(ω<sub>2</sub>ψ<sub>1</sub>(ψ<sub>1</sub>(ψ<sub>1</sub>(Ο))))
{n,n[1[1~1~1[1~1~2]2]2]2}的增长率为ψ(ω2Ψ1(ω2))
{n,n[1[1~1~1[1~1~1[1~1~2]2]2]2]2}的增长率为ψ(ω2ψ1(ω2ψ1(ω2)))
{n,n[1[1~1~1~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub><sup>2</sup>))
{n,n[1[2~1~1~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub><sup>2</sup>)<sup>ω</sup>)
\{n,n[1[1/2~1~1~2]2]2\}的增长率为\psi(\psi_1(\omega_2^2)^{\Omega})
{n,n[1[1[1~1~1~2]2~1~1~2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub>²)^ψ<sub>1</sub>(ω<sub>2</sub>²))
\{n,n[1[1[1~1~1~1~2]1[1~1~1~2]2~1~1~2]2]2\}的增长率为 \psi(\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2))
```

```
\{n,n[1[1[1[1\sim1\sim1\sim2]2\sim1\sim1\sim2]2\sim1\sim1\sim2]2]2\}的增长率为 \psi(\psi_1(\omega_2^2)^*)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^*\psi_1(\omega_2^2)^
{n,n[1[1~2~1~2]2]2}的增长率为 ψ(ω2<sup>2</sup>+1)
\{n,n[1[1~1[1~2~1~2]2~1~2]2]2\}的增长率为\psi(\omega_2^2+\psi_1(\omega_2^2))
\{n,n[1[1~1~2~2]2]2\}的增长率为\psi(\omega_2^2+\omega_2)
\{n,n[1[1~1~1[1~1~2~2]2~2]2\}的增长率为\psi(\omega_2^2+\omega_2\psi_1(\omega_2^2+\omega_2))
\{n,n[1[1~1~1~3]2]2\}的增长率为\psi(\omega_2^22)
\{n,n[1[1~1~1~1/2]2]2\}的增长率为\psi(\omega_2^2\Omega)
\{n,n[1[1~1~1~1~1~1~1~2]2]2\}的增长率为 \psi(\omega_2^2\psi_1(\omega_2^2))
{n,n[1[1~1~1~1~1~1~1~1[1~1~1~1~2]2]2]2}的增长率为 \psi(ω_2^2 \psi_1(ω_2^2 \psi_1(ω_2^2)))
\{n,n[1[1~1~1~1~2]2]2\}的增长率为 \psi(\omega_2^3)
{n,n[1[1~1~1~1~1~2]2]2}的增长率为 ψ(ω2<sup>4</sup>)
\{n,n[1[1[2/32]2]2]2\}的增长率为\psi(\omega_2^{\omega})
{n,n[1[2[2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ψ<sub>1</sub>(ω<sub>2</sub><sup>ω</sup>)<sup>ω</sup>)
\{n,n[1[1/2[2/<sub>3</sub>2]2]2]2\}的增长率为 \psi(\psi_1(\omega_2^{\omega})^{\Omega})
\{n,n[1[1[1[2/32]2]2]2[2/32]2]2\}的增长率为\psi(\psi_1(\omega_2^{\omega})^*\psi_1(\omega_2^{\omega}))
\{n,n[1[1[1[2/32]2]1[1[2/32]2]2[2/32]2]2]2\}的增长率为 \psi(\psi_1(\omega_2^{\omega})^*\psi_1(\omega_2^{\omega})^*\psi_1(\omega_2^{\omega}))
{n,n[1[1[1[1[2/32]2]2[2/32]2]2[2/32]2]2]2}的增长率为
\Psi(\Psi_1(\omega_2^{\omega})^*\Psi_1(\omega_2^{\omega})^*\Psi_1(\omega_2^{\omega})^*\Psi_1(\omega_2^{\omega}))
{n,n[1[1~2[2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω</sup>+1)
\{n,n[1[1~1~2[2/32]2]2]2\}的增长率为 \psi(\omega_2^{\omega}+\omega_2)
\{n,n[1[1~1~1~2[2/32]2]2]2\}的增长率为 \psi(\omega_2^{\omega}+\omega_2^2)
{n,n[1[1[2/<sub>3</sub>2]3]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω</sup>2)
{n,n[1[1[2/<sub>3</sub>2]4]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω</sup>3)
\{n,n[1[1[2/32]1/2]2]2\}的增长率为 \psi(\omega_2^{\omega}\Omega)
\{n,n[1[1[2/32]1[1[2/32]2]2]2\}的增长率为\psi(\omega_2^{\omega}\psi_1(\omega_2^{\omega}))
\{n,n[1[1[2/32]1[1[2/32]1[1[2/32]2]2]2]2]2\}的增长率为 \psi(\omega_2^{\omega}\psi_1(\omega_2^{\omega}\psi_1(\omega_2^{\omega})))
{n,n[1[1[2/32]1~2]2]2}的增长率为 ψ(ω2<sup>ω+1</sup>)
{n,n[1[1[2/32]1~1~2]2]2}的增长率为 ψ(ω2<sup>ω+2</sup>)
{n,n[1[1[2/<sub>3</sub>2]1[2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω2</sup>)
{n,n[1[1[2/<sub>3</sub>2]1[2/<sub>3</sub>2]1[2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω3</sup>)
{n,n[1[1[3/32]2]2]2}的增长率为 ψ(ω2<sup>ω^2</sup>)
{n,n[1[1[1,2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>2</sub><sup>ω^ω</sup>)
\{n,n[1[1[1[1-1-2]2]2]2]2\}的增长率为\psi(\omega_2^{\psi}(\omega_2))
{n,n[1[1[1[1[1[2/<sub>3</sub>2]2]2]2]2]2]2]的增长率为 ψ(ω2<sup>ω</sup>))
\{n,n[1[1[1[1[1[1[1[1-1~2]2]2]2]2]2]2]2]2]2]2]2\}的增长率为<math>\psi(\omega_2^*\psi(\omega_2^*\psi(\omega_2)))
\{n,n[1[1[1/2/<sub>3</sub>2]2]2]2\}的增长率为 \psi(\omega_2^{\Omega})
\{n,n[1[1[1/2/32]3]2]2\}的增长率为\psi(\omega_2^{\Omega}2)
\{n,n[1[1[1/2/32]1[1[1/2/32]2]2]2]2\}的增长率为\psi(\omega_2^{\Omega}\psi_1(\omega_2^{\Omega}))
\{n,n[1[1[1/2/32]1~2]2]2\}的增长率为\psi(\omega_2^{\Omega+1})
```

```
\{n,n[1[1[1/2/32]1[1/2/32]2]2]2\}的增长率为\psi(\omega_2^{\Omega^2})
\{n,n[1[1[2/2/32]2]2]2\}的增长率为\psi(\omega_2^{\Omega\omega})
\{n,n[1[1[1[1[1/2/32]2]2]2]2/2/32]2]2\}的增长率为\psi(\omega_2^{\Omega})
\{n,n[1[1[1/3/32]2]2]2\}的增长率为 \psi(\omega_2^{\Omega^2})
\{n,n[1[1[1/1/2/32]2]2]2\}的增长率为 \psi(\omega_2^{\Omega^{\Omega}})
\{n,n[1[1[1/1/1/2/32]2]2]2\}的增长率为\psi(\omega_2^{\Omega^2\Omega^2})
\{n,n[1[1[1[2~2]2/32]2]2]2\}的增长率为 \psi(\omega_2^{\Omega^{\Omega^{\omega}}})
\{n,n[1[1[1[1[1[1[1/1/2/32]2]2]2]2]2]2/32]2]2]2\}的增长率为<math>\psi(\omega_2^{\Omega}\Omega^{\Omega})
\{n,n[1[1[1/2~2]2/32]2]2\}的增长率为\psi(\omega_2^{\Omega^{\Omega}\Omega^{\Omega}})
\{n,n[1[1[1/1/2~2]2/32]2]2\}的增长率为\psi(\omega_2^{\Omega^{\Omega}\Omega^{\Omega}})
\{n,n[1[1[1[1/2~2]2~2]2/32]2]2\}的增长率为\psi(\omega_2^{\Omega^{\Omega}\Omega^{\Omega}\Omega^{\Omega}})
\{n,n[1[1[1[1~3]2/32]2]2\}的增长率为\psi(\omega_2^{\psi_1}(0))
\{n,n[1[1[1[1~4]2/32]2]2\}的增长率为\psi(\omega_2^{\psi_1}(1))
\{n,n[1[1[1[1~1~2]2]2]2]2\}的增长率为\psi(\omega_2^{\psi_1}(\omega_2))
\{n,n[1[1[1[1[2/32]2]2]2]2\}的增长率为\psi(\omega_2^{\psi_1}(\omega_2^{\omega}))
\{n,n[1[1[1[1/2/<sub>3</sub>2]2]2]2]2]2\}的增长率为\psi(\omega_2^{\gamma})
\{n,n[1[1[1[1[1[1-3]2]2]2]2]2]2\}的增长率为\psi(\omega_2^{\psi_1}(\omega_2^{\psi_1}(O)))
\{n,n[1[1[1~2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2)
\{n,n[1[1[1~2/32]2]3]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)2)
\{n,n[1[1[1~2/32]2]1/2]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)\Omega)
\{n,n[1[1[1~2/32]2]1[1[1~2/32]2]2]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)^2)
\{n,n[1[2[1~2/<sub>3</sub>2]2]2]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)^\omega)
\{n,n[1[1/2[1~2/<sub>3</sub>2]2]2]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)^{\Omega})
\{n,n[1[1[1[1~2/32]2]2[1~2/32]2]2]2\}的增长率为\psi(\psi_1(\omega_2^*\omega_2)^*\psi_1(\omega_2^*\omega_2))
\{n,n[1[1~2[1~2/<sub>3</sub>2]2]2]2\}的增长率为\psi(\omega_2^{\omega_2+1})
\{n,n[1[1[1/2/<sub>3</sub>2]2[1~2/<sub>3</sub>2]2]2]2\}的增长率为\psi(\omega_2^{\omega_2+\psi_1}(\omega_2^{\Omega}))
{n,n[1[1[1~2/<sub>3</sub>2]3]2]2}的增长率为 ψ((ω<sub>2</sub>^ω<sub>2</sub>)2)
\{n,n[1[1[1~2/32]1[1[1[1~2/32]2]2]2]2]2\}的增长率为\psi((\omega_2^*\omega_2)\psi(\omega_2^*\omega_2))
\{n,n[1[1[1~2/32]1/2]2]2\}的增长率为\psi((\omega_2^*\omega_2)\Omega)
{n,n[1[1[1~2/<sub>3</sub>2]1[1[1~2/<sub>3</sub>2]2]2]2]2]的增长率为 ψ((ω<sub>2</sub>^ω<sub>2</sub>)ψ<sub>1</sub>(ω<sub>2</sub>^ω<sub>2</sub>))
{n,n[1[1[1~2/<sub>3</sub>2]1~2]2]2}的增长率为 ψ(ω<sub>2</sub>^(ω<sub>2</sub>+1))
\{n,n[1[1[1~2/32]1[1~2/32]2]2]2\}的增长率为\psi(\omega_2^*(\omega_2^*2))
{n,n[1[1[2~2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>2</sub>^(ω<sub>2</sub>ω))
{n,n[1[1[1[1[1-2/32]2]2]2]2-2/32]2]2}的增长率为ψ(ω2^(ω2ψ(ω2^ω2)))
\{n,n[1[1[1/2~2/32]2]2]2\}的增长率为\psi(\omega_2^*(\omega_2\Omega))
{n,n[1[1[1[1[1~2/<sub>3</sub>2]2]2]2~2/<sub>3</sub>2]2]2]2}的增长率为ψ(ω2^(ω2Ψ1(ω2^ω2)))
\{n,n[1[1[1~3/32]2]2]2\}的增长率为\psi(\omega_2^{\omega_2^2})
\{n,n[1[1[1~1/2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\Omega)
```

```
\{n,n[1[1[1~1~2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\omega_2)
\{n,n[1[1[1~1~1~2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\omega_2^*2)
\{n,n[1[1[1[2/32]2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\omega_2^*\omega)
\{n,n[1[1[1/2/32]2/32]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\Omega)
\{n,n[1[1[1[1~2/32]2/32]2]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\omega_2^*\omega_2)
\{n,n[1[1[1-1-2/32]2/32]2]2\}的增长率为\psi(\omega_2^*\omega_2^*\omega_2^*\omega_2^*\omega_2)
\{n,n[1[1[1/33]2]2]2\}的增长率为\psi(\psi_2(0))
\{n,n[1[1[1/33]3]2]2\}的增长率为\psi(\psi_2(0)2)=\psi(\psi_1(\psi_2(0)2))\neq\psi(\psi_1(\psi_2(0))2)
{n,n[1[1[1/<sub>3</sub>3]1/2]2]2}的增长率为 ψ(ψ<sub>2</sub>(0)Ω)
\{n,n[1[1[1/33]1[1[1/33]2]2]2\}的增长率为\psi(\psi_2(0)\psi_1(\psi_2(0)))
{n,n[1[1[1/33]1~2]2]2}的增长率为 ψ(ψ2(0)ω2)
\{n,n[1[1[1/33]1[1/33]2]2]2\}的增长率为\psi(\psi_2(0)^2)
\{n,n[1[1[2/33]2]2]2\}的增长率为\psi(\psi_2(0)^{\omega})
\{n,n[1[1[1/2/33]2]2]2\}的增长率为 \psi(\psi_2(0)^{\Omega})
{n,n[1[1[1~2/33]2]2]4的增长率为 ψ(ψ2(0)^ω2)
{n,n[1[1[1[1/33]2/33]2]2]2}的增长率为 ψ(ψ2(0)^ψ2(0))
\{n,n[1[1[1[1/33]1[1/33]2]2]2\}的增长率为\psi(\psi_2(0)^*\psi_2(0)^*\psi_2(0))
\{n,n[1[1[1[1[1/33]2/33]2/33]2]2]2\}的增长率为\psi(\psi_2(0)^*\psi_2(0)^*\psi_2(0)^*\psi_2(0))
{n,n[1[1[1/34]2]2]2}的增长率为 ψ(ψ2(1))
{n,n[1[1[1/<sub>3</sub>1/2]2]2]的增长率为 ψ(ψ<sub>2</sub>(Ω))
{n,n[1[1[1/31~2]2]2]的增长率为 ψ(ψ2(ω2))
\{n,n[1[1[1/31[1/33]2]2]2]2\}的增长率为\psi(\psi_2(\psi_2(0)))
\{n,n[1[1[1/31[1/31[1/33]2]2]2]2]2\}的增长率为\psi(\psi_2(\psi_2(\psi_2(O))))
{n,n[1[1[1/31/32]2]2]3的增长率为ψ(ω3)
\{n,n[1[1[1/2/<sub>3</sub>1/<sub>3</sub>2]2]2]2\}的增长率为\psi(\psi_2(\omega_3)^{\Omega})
\{n,n[1[1[1~2/31/32]2]2]2\}的增长率为\psi(\psi_2(\omega_3)^*\omega_2)
\{n,n[1[1[1/31/32]2/31/32]2]2\}的增长率为\psi(\psi_2(\omega_3)^*\psi_2(\omega_3))
{n,n[1[1[1/<sub>3</sub>2/<sub>3</sub>2]2]2]2}的增长率为 ψ(ω<sub>3</sub>+1)
\{n,n[1[1[1/31/2/32]2]2]2\}的增长率为\psi(\omega_3+\Omega)
\{n,n[1[1[1/31~2/32]2]2]2\}的增长率为\psi(\omega_3+\omega_2)
\{n,n[1[1[1/31[1/31/32]2/32]2]2]2\}的增长率为\psi(\omega_3+\psi_2(\omega_3))
\{n,n[1[1[1/31/33]2]2]2\}的增长率为\psi(\omega_32)
\{n,n[1[1[1/31/31/2]2]2]2\}的增长率为\psi(\omega_3\Omega)
\{n,n[1[1[1/31/31~2]2]2]2\}的增长率为\psi(\omega_3\omega_2)
\{n,n[1[1[1/31/31[1/31/32]2]2]2]2\}的增长率为\psi(\omega_3\psi_2(\omega_3))
\{n,n[1[1[1/31/31/32]2]2]2\}的增长率为\psi(\omega_3^2)
{n,n[1[1[1[2/42]2]2]2]a) 增长率为 ψ(ω3<sup>ω</sup>)
\{n,n[1[1[1[3/42]2]2]2]2\}的增长率为 \psi(\omega_3^{\omega^2})
```

```
\{n,n[1[1[1/2/42]2]2]2]2\}的增长率为\psi(\omega_3^{\Omega})
\{n,n[1[1[1-2/42]2]2]2\}的增长率为\psi(\omega_3^{\omega_2})
\{n,n[1[1[1/32/42]2]2]2\}的增长率为\psi(\omega_3^{\omega_3})
\{n,n[1[1[1/31/32/42]2]2]2\}的增长率为\psi(\omega_3^*\omega_3^*\omega_3)
{n,n[1[1[1[1[1/<sub>3</sub>2/<sub>4</sub>2]2/<sub>4</sub>2]2]2]2]2]的增长率为 ψ(ω<sub>3</sub>^ω<sub>3</sub>^ω<sub>3</sub>^ω<sub>3</sub>)
\{n,n[1[1[1[1[1/31/32/42]2/42]2]2]2]2\}的增长率为\psi(\omega_3^*\omega_3^*\omega_3^*\omega_3^*\omega_3)
{n,n[1[1[1[1/43]2]2]2]2}的增长率为 ψ(ψ3(O))
{n,n[1[1[1[1/43]3]2]2]2}的增长率为 ψ(ψ3(0)2)
\{n,n[1[1[1/43]1/2]2]2\}的增长率为\psi(\psi_3(0)\Omega)
{n,n[1[1[1[1/43]1~2]2]2]a) 增长率为 ψ(ψ3(O)ω2)
\{n,n[1[1[1/43]1/32]2]2\}的增长率为\psi(\psi_3(0)\omega_3)
\{n,n[1[1[1[2/43]2]2]2]2\}的增长率为 \psi(\psi_3(0)^2)
\{n,n[1[1[1/2/43]2]2]2\}的增长率为 \psi(\psi_3(0)^{\Omega})
{n,n[1[1[1[1~2/43]2]2]2]a) 增长率为 ψ(ψ3(0)^ω2)
{n,n[1[1[1[1/<sub>3</sub>2/<sub>4</sub>3]2]2]2]2}的增长率为 ψ(ψ<sub>3</sub>(0)^ω<sub>3</sub>)
{n,n[1[1[1[1[1/43]2/43]2]2]2]a) 增长率为 ψ(ψ3(0)^ψ3(0))
{n,n[1[1[1/44]2]2]2]2}的增长率为 ψ(ψ3(1))
\{n,n[1[1[1/41/2]2]2]2]2\}的增长率为\psi(\psi_3(\Omega))
{n,n[1[1[1[1/41~2]2]2]2]2}的增长率为 ψ(ψ3(ω2))
{n,n[1[1[1/41/32]2]2]2]a) 增长率为 ψ(ψ3(ω3))
{n,n[1[1[1/41[1/43]2]2]2]2]2}的增长率为 ψ(ψ3(ψ3(O)))
{n,n[1[1[1/41/42]2]2]2]2}的增长率为 ψ(ω4)
{n,n[1[1[1/41/43]2]2]2]的增长率为 ψ(ω42)
\{n,n[1[1[1/41/41/32]2]2]2]2\}的增长率为\psi(\omega_4\omega_3)
\{n,n[1[1[1/41/41/42]2]2]2]2]2\}的增长率为\psi(\omega_4\psi_3(\omega_4))
{n,n[1[1[1/41/41/42]2]2]2]2]2}的增长率为 ψ(ω4²)
{n,n[1[1[1/41/41/41/42]2]2]2]2]2}的增长率为 ψ(ω4³)
{n,n[1[1[1[1[2/52]2]2]2]2]2]a)增长率为 ψ(ω4<sup>ω</sup>)
\{n,n[1[1[1[1/2/52]2]2]2]2]2]2\}的增长率为\psi(\omega_4^{\Omega})
{n,n[1[1[1[1[1~2/52]2]2]2]2]2]a) 增长率为 ψ(ω4^ω2)
{n,n[1[1[1[1[1/32/52]2]2]2]2]2]2]的增长率为 ψ(ω4^ω3)
\{n,n[1[1[1[1/42/52]2]2]2]2]2]2]2\}的增长率为\psi(\omega_4^*\omega_4)
{n,n[1[1[1[1[1/53]2]2]2]2]2]的增长率为 ψ(ψ4(O))
{n,n[1[1[1[1[1/51/52]2]2]2]2]2]2]的增长率为ψ(ω<sub>5</sub>)
{n,n[1[1[1[1[1[2/<sub>6</sub>2]2]2]2]2]2]2]a) 增长率为 ψ(ω<sub>5</sub><sup>ω</sup>)
\{n,n[1[1[1[1[1/52/62]2]2]2]2]2]2]2\}的增长率为\psi(\omega_5^*\omega_5)
{n,n[1[1[1[1[1/63]2]2]2]2]2]2]的增长率为 ψ(ψ5(O))
\{n,n[1[1[1[1[1/61/62]2]2]2]2]2]2]2\}的增长率为\psi(\omega_6)
{n,n[1[1[1[1[1[1/71/72]2]2]2]2]2]2]2]2]的增长率为 ψ(ω<sub>7</sub>)
```

 $\{n,n[1[1[1[1[1[1[1/81/82]2]2]2]2]2]2]2]2]2]2]2]2]的增长率为 <math>\psi(\omega_8)$

鸟之记号的最大增长率,以及 SCG 函数、 SSCG 函数的增长率均为 $\psi(\omega_\omega)$,这个序数是序列 $\psi(\omega)$, $\psi(\Omega)$, $\psi(\omega_2)$, $\psi(\omega_3)$,...的极限.这个序数也是二阶逻辑中 $\Pi_1^1-CA_0$ 系统的算术极限.

接下来, $\psi(\omega_{\omega}+1)$ 应该是 $\psi(\psi_1(\omega_{\omega})+1)$, $\psi(\psi_2(\omega_{\omega})+1)$, $\psi(\psi_3(\omega_{\omega})+1)$,...的极限,接着我们还可以得到 $\psi(\omega_{\omega}+2)$, $\psi(\omega_{\omega}2)$, $\psi(\omega_{\omega}3)$, $\psi(\omega_{\omega}^2)$, $\psi(\omega_{\omega}^3)$, $\psi(\omega_{\omega}^{-1}\omega_{\omega})$,

设想一下这样一个序数: $\psi(\omega_\Omega)$.既然 Ω 意味着 ω 层 ψ 函数的迭代,这个序数就应该是序列 $\psi(\omega_0)=\psi(\omega),\psi(\omega_{\psi(\omega)}),\psi(\omega_{\psi(\omega)})$,…的极限.然后 $\psi(\omega_\omega)$ 是序列 $\psi(\psi_1(\omega)),\psi(\omega_{\psi_1(\omega)}),\psi(\omega_{\psi_1(\omega)})$,…的极限.接着,我们还有像 $\psi(\omega_\omega)$ 、 $\psi(\omega_\omega)$ 、 $\psi(\omega_\omega)$ 、 $\psi(\omega_\omega)$ 之类的序数,直到 $\psi(\beta)$,其中 β 是 $\alpha \longrightarrow \omega_\alpha$ 的第一个序数不动点,即 $\psi(\omega_\omega)$.这个 $\psi(\omega_\omega)$ 是二阶逻辑中 Π_1^1 — TR_0 系统的算术极限.

结束了吗?我们还没有结束,大数和序数也不可能就这样结束.接下来我们将看到超越 Π_1^1 — TR_0 的东西——

[7,4,3] **D** 函数和 I

下面的 Φ 函数与二元 φ 函数有相近的定义:

$1.\Phi(O,β)=ω_β$

- $2.\Phi(\alpha+1,0)[1]=\Phi(\alpha,0)$
 - $\Phi(\alpha+1,0)[n+1]=\Phi(\alpha,\Phi(\alpha+1,0)[n])$
- $3.\Phi(\alpha+1,\beta+1)[1]=\Phi(\alpha+1,\beta)+1$
 - $\Phi(\alpha+1,\beta+1)[n+1]=\Phi(\alpha,\Phi(\alpha+1,\beta+1)[n])$
- $4.\Phi(\alpha,\beta)[n]=\Phi(\alpha,\beta[n])$,其中β为极限序数.
- 5.Φ($\alpha,\beta+1$)[n]=Φ($\alpha[n],\beta+1$),其中 α 为极限序数.

注意,Φ函数必须在ψ函数里面使用.

 $\Phi(1,0)=\Phi(0,\Phi(0,\dots\Phi(0,\Phi(0,0))\dots))=\Phi(0,\Phi(0,\dots\Phi(0,\dots))=\omega_{\omega_{\omega_{\omega}}},$ 它是 $\alpha\longrightarrow\omega_{\alpha}$ 的第一个序数不动点.这意味着 $\Phi(1,0)$ 和 $\omega_{\Phi(1,0)}$ 是同一序数.接下来,如果顺着 ψ

```
函数的定义,我们将会得到像 \psi(\Phi(1,O)+1)这样的东西,它是序列 \psi(\psi_{\omega}(\Phi(1,O))+1),\psi(\psi_{\omega_{\omega}}(\Phi(1,O))+1),\dots的极限.然后序列 \psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi(\Phi(1,O)),\psi
```

 $ψ(Φ(ω,O)), ψ(Φ(Φ(ω,O),O)), ψ(Φ(Φ(Φ(ω,O),O),O)),...的 极限——像 Γ(O)那样! 接下来 ψ(ψ_I(I^{I^ω}))应与 SVO 类似,而 ψ(ψ_I(I^{I^I}))应与 LVO 类似.顺着序列 ψ(ψ_I(I)),ψ(ψ_I(I^I)),ψ(ψ_I(I^{I^I})),ψ(ψ_I(I^{I^I})),ω 走下去,它的极限应是 ψ(ψ_I(ψ_{Ω_{I+1}}(O)))(也可以写作 ψ(ψ_{Ω_{I+1}}(O)),这里 ψ_I 函数相当于 ψ_{ΩI} 函数),这个序数 与 BHO 类似,但它是 KPI 系统的算术 极限.$

我们可以继续,得到序数 $\psi(\psi_{\Omega_{\text{I}+1}}(I))=\psi(\psi_{\Omega_{\text{I}+1}}(\psi_{\text{I}}(\psi_{\text{I}}(...\psi_{\text{I}}(O))...))),$ $\psi(\psi_{\Omega_{\text{I}+1}}(\Omega_{\text{I}+1}))=\psi(\psi_{\Omega_{\text{I}+1}}(\psi_{\Omega_{\text{I}+1}}(...\psi_{\Omega_{\text{I}+1}}(O))...)))$ (注意,在普通的 ψ 函数 中, ω_{a+1} 代表 ω 层 ψ_a 函数的迭代,而这里 $\Omega_{\text{I}+a}$ 代表 ω 层 $\psi_{\Omega_{\text{I}+a}}$ 函数的迭代,而这里 $\Omega_{\text{I}+a}$ 代表 ω 层 $\psi_{\Omega_{\text{I}+a}}$ 函数的迭代), $\psi(\psi_{\Omega_{\text{I}+2}}(O))$, $\psi(\psi_{\Omega_{\text{I}}}(\Omega_{\text{I}+\omega}))$

最后, $\alpha \to \psi_{\Omega_I}(\Omega_{I+\alpha})$ 的序数不动点——不要认为是 $\psi_{\Omega_I}(\Omega_{I2})=\psi_{\Omega_I}(\Omega_{I+I})$ ——用一个新的记号表示,应该是 $\psi_{I(2)}(0)$.由 $\alpha \to \psi_{\Omega_I}(\Omega_{I+\alpha})$ 变成 $\psi_{I(2)}(0)$ 的过程就正如由 $\alpha \to \psi(\Omega_\alpha)$ 变成 $\psi_{I}(0)$ 的过程.

- 积地, $\alpha o \psi_{\Omega_{I(\beta)+\alpha}}$ 的序数不动点是 $\psi_{\Omega_{I(\beta+1)}}$ (O).接下来,序数 $\mathbf{I}(\mathbf{I}(\mathbf{I}))$...))就是 $\alpha o \mathbf{I}(\alpha)$ 的第 \mathbf{I} 个序数不动点,记作 $\mathbf{I}(\mathbf{I},0)$,

在 FGH 中包含它的最小序数是 $\psi(\psi_{I(1,0)}(0))$.而 $\alpha \rightarrow I(\alpha)$ 的第 n+1 个序数不动点则可以记作 I(1,n).这时 I 又变得像 ϕ 函数那样 J.类似于 $\phi(1,0,0)$,我们有 I(1,0,0);类似于 $\phi(2,0,0,0)$,我们有 I(2,0,0,0);类似于 $\phi(3@7)$,我们有 I(3@7).等等.

【7,4,4】x 函数与 M

如果说 I 序列可以比作 φ 函数,那么什么东西才可以比作 ψ 函数呢?没有. 不过我们可以找到一个"相近的"函数——— χ 函数.它是一个二元函数,第 1 个参数可能含有 M 这一新的序数符号,第 2 个参数则不含 M.它的定义稍复杂,如下: 1.χ(O,β)=I(β)

- 2.x(a,0)[n]=x(a[n],0),这里 a 为极限序数
- $3.x(\alpha,\beta+1)[n]=x(\alpha[n],x(\alpha,\beta)+1),$ 这里 α 为 极限序数
- $4.x(\alpha+1,0)[1]=x(\alpha,0)$

 $\chi(\alpha+1,0)[n+1]=\chi(\alpha,\chi(\alpha+1,0)[n])$

注:这里 h(x)为任意只含加法、乘法、乘方和之前定义过的函数的函数.

 $5.\chi(h(\alpha+M),0)[1]=\chi(h(\alpha),0)$

 $\chi(h(a+M),0)[n+1]=\chi(h(a+\chi(h(a+M),0)[n]),0)$

 $\chi(h(\alpha \times M),0)[1]=\chi(h(\alpha),0)$

 $\chi(h(a\times M),0)[n+1]=\chi(h(a\times\chi(h(a\times M),0)[n]),0)$

 $6.\chi(\alpha+1,\beta+1)[1]=\chi(\alpha,\beta)$

 $\chi(\alpha+1,\beta+1)[n+1]=\chi(\alpha,\chi(\alpha+1,\beta+1)[n])$

 $7.x(h(\alpha+M),\beta+1)[1]=x(h(\alpha+M),\beta)+1$

 $\chi(h(\alpha+M),\beta+1)[n+1]=\chi(h(\alpha+\chi(h(\alpha+M),\beta+1)[n]),0)$

 $\chi(h(\alpha \times M), \beta+1)[1]=\chi(h(\alpha \times M), \beta)+1$

 $\chi(h(\alpha \times M), \beta+1)[n+1]=\chi(h(\alpha \times \chi(h(\alpha \times M), \beta+1)[n]), 0)$

8. $\chi(\alpha,\beta)[n]=\chi(\alpha,\beta[n])$,这里β为极限序数

可见,从第1个参数看,X函数的运算与ψ函数类似,但从2个参数的关系来看,X函数的运算与φ函数类似.X函数与I序列有如下关系:

 $I(\alpha_n \otimes (1+\beta_n),...,\alpha_2 \otimes (1+\beta_2),\alpha_1 \otimes (1+\beta_1),\alpha_0) = \chi(M^{\alpha_n}\beta_n + ... + M^{\alpha_2}\beta_2 + M^{\alpha_1}\beta_1,\alpha_0)$

我们还可以得到像 $\chi(M^M),\chi(M^{M^M})$ 那样的东西.在 FGH 中,我们的记号如 $\psi(\psi_{\Omega_{\mathbb{I}}}(\chi(M^M))),\psi(\psi_{\chi(M^M-M)}(2))$ 等.不过,它们都比不上接下来出现的东西——

t 7,51 CK

【7,5,1】非递归序数

在FGH中,前面所提及的所有序数,都是递归定义的,但因为 ∑ 函数是非递归序数(或者说是不可计算的),所以前面的序数统统都比不上 ∑ 函数的增长.那么,我们应该如何表示 ∑ 函数的增长率呢?

函数 $\Sigma^n(2)$ (上标表示函数迭代的次数)的增长率是 $W_1^{CK}+1$,接下来 W_1^{CK} 可以"加上"任何序数,直到它本身. W_1^{CK} 可以放入任何运算中,如乘法、乘方、 ψ 函数等等,接下来就是第 2 个非递归序数—— W_2^{CK} ,它是 W_1^{CK} 放入任何递归运算所得序数的集合. $\Sigma_2(n)$ 的增长率为 W_2^{CK} .

我们还可以得到第n个非递归序数—— w_n^{CK} ,它刚好是 $\Sigma_n(m)$ 的增长率(自变量为m).

然后,下标 \mathbf{n} 可以变成任何序数,如 $\mathbf{w}_{\mathbf{w}}^{CK}$ 、 $\mathbf{w}_{\mathbf{w}_{1}^{CK}}^{CK}$ 、 $\mathbf{w}_{\mathbf{w}_{2}^{CK}}^{CK}$ 、 $\mathbf{w}_{\mathbf{w}_{1}^{CK}}^{CK}$ 、等.

【7,5,2】φ^{CK}函数

我们只需把φ函数的定义稍微修改,就可得到φ^{CK}函数——它是非递归函数! 我们用"#"来表示任意序列(或空序列),用"\$"来表示只有O的序列(或空序列).

$$1.\varphi(\alpha)^{CK} = \omega_{\alpha}^{CK}$$

- $2.\phi(0,\#)^{CK}=\phi(\#)^{CK}$
- 3.φ(#,a,\$)^{CK}[n]=φ(#,a[n],\$)^{CK},此处 a 为极限序数
- 4.φ(#,a,\$,β+1)^{CK}[n]=φ(#,a[n],φ(#,a,\$,β)^{CK}+1,\$)^{CK},此处 a 为 极 限 序 数

5.φ(#,α+1,0,\$)^{CK}[1]=φ(#,α,0,\$)^{CK} φ(#,α+1,0,\$)^{CK}[n],\$)^{CK} φ(#,α+1,0,\$)^{CK}[n+1]=φ(#,α,φ(#,α+1,0,\$)^{CK}[n],\$)^{CK} 6.φ(#,α+1,\$,β+1)^{CK}[1]=φ(#,α+1,\$,β)^{CK}+1 φ(#,α+1,\$,β)^{CK}[n+1]=φ(#,α,φ(#,α+1,\$,β)^{CK}[n],\$)^{CK} 特别地,φ(1,0)^{CK} 是 α→ω_α^{CK} 的第1个序数不动点,即ω_{ω,ck}^{CK}.三函数的增长率正 是 φ(1,0)^{CK}.

单行的 Arx 函数增长率只有 $\varphi(1,0)^{CK}+\omega^2$,平面的 Arx 函数增长率只有 $\varphi(1,0)^{CK}+\omega^{\omega^2}$,多维的 Arx 函数增长率只有 $\varphi(1,0)^{CK}+\omega^{\omega^2}$,由此可见,Arx 函数的扩展是很弱的.

【7,5,3】强化 Arx 函数

如果我们把第【6,4,4】小节的 Arx 函数的规则 2 改成"Arx(n,1)= $f_{\alpha}(Arx(n-1,1))$,其中序数 $\alpha=\phi(Arx(n-1,1),0)^{CK}$ ",那么这个 Arx 函数将脱离三函数而存在,它是强化 Arx 函数.规则 $1\cdot 3\cdot 4\cdot 5$ 仍不变.它的增长率就可以达到 $\phi(\omega,1)^{CK}+\omega^{\omega^{\Delta}\omega}$.

第五 Aarex 数等于强化 Arx 函数中的 Arx $(10^{10^{100}}[10^{10^{100}}]1[10^{10^{100}}]1.....1[10^{10^{100}}]2)(共 <math>10^{10^{100}} \land 1)$,虽然表达式 跟第四 Aarex 数相同,但数值大得多.

强化 Arx 函数可以继续扩展,它使用乌之记号的 A 规则,另添加高级数阵的规则 6:记 n 是第一个参数,m 是 n 后面第一个非 1 的数.如果 m 不在第 1 行,那 么吧 m 减 1,吧 m 前面以分隔符[A]分隔的部分全都变成 n A'>n (其中 A'除了第一个数比 A 小 1 外,其它部分与 A 相同).最后,在强化 Arx 函数

中,b<0//> O(1,2) p=b<p<p>p<p<p>ppppp>p>p>p>ppp力 对<>),它对应的分隔符是[1/1,2].
现在强化 Arx 函数的最大增长率变成了 $\phi(\omega,1)^{CK}$ + $\psi(\omega_{\omega})^{\omega}$.第六 Aarex 数等于 $Arx(10^{10^{100}}[1/1,2]1[1/1,2]1.....1[1/1,2]2]2)(共 <math>10^{10^{100}}$ 个 [1/1,2]1).

接下来 Arx 函数像这样扩展,它使用&算子:

 $Arx(0)&(#)=10^6$

Arx(#)&(1)=Arx(#)

Arx(#)&(n)=Arx(1[1/1,22]1[1/1,22]1...1[1/1,22]2)&(n-1)(共 Arx(#')&(n)个[1/1,22]), 其

中#'表示#序列中第1个参数减1后得到的序列。

Arx(#)&(n,m)=Arx(#)&(Arx(#)&(n-1,m),m-1),即处理后一个数阵,直到变成1个数.

Arx(#₁)&(#₂)&(#₃) 先 处 理#₃, 如 Arx(#₁)&(#₂)&(n,m)=

 $Arx(\#_1)\&(\#_2)\&(Arx(\#_1)\&(\#_2)\&(n-1,m),m-1).$

最后,第七 Aarex 数等于 $Arx(1)&(1)&...&(1)&(2)(共 <math>10^{10^{^100}}$ 个 1),但是它远远比不上 $f_{\phi(1,0,0,0)}$ ck(3).

【8】最终章

【8,1】Rayo 数

Rayo 函数的增长率大得连 FGH 都没有足够大的序数来表示.Rayo 开玩笑地提出这个函数,Rayo(n)定义为"大于在一阶逻辑中用不超过 n 个符号能表示的任何数的最小正整数".而"大于在一阶逻辑中用不超过 10¹⁰⁰ 个符号能表示的任何数的最小正整数",即 Rayo(10¹⁰⁰),称作 Rayo 数.

对于较小的 n,Rayo(n)的实际大小可能很小,但是,我们知道,增长率是要看 n 趋向无穷时的大小的.

【8,2】大数的意义

我们假象一下,不妨用 σ 表示这个Rayo函数的增长率吧. $f_{\sigma}(x)$ 当然是一个增长得很快的函数.

Rayo数=Rayo(10100),是个很大的数.它是现有的已命名的最大的数.

接下来是 Rayo+1,虽然只大了1,但是,它的确比 Rayo 数大.没有最大的数,而当你说出一个数时,非大数者会告诉你,这不是最大的数,"你说的数"+1 比它更大.这是毫无意义的,它不会在大数上取得任何进展.

接下来是 Rayo+2, Rayo+3,......

接下来是Rayo×2.这些人从+1的人那里迈开了"一大步",他们认识到+1的局限.但是,这仍然是毫无意义的.

接下来是 Rayo×3, Rayo×4,.....

下面我们又走上了一个台阶——Rayo².把一个数平方,这"确实"是增大数值的一个办法.

Rayo³,Rayo⁴,.....,Rayo²Rayo²,Rayo²Rayo

我们还可以把 Rayo 数放进各种运算中.直到——Rayo 函数.Rayo(Rayo)让我们充分利用这个函数,但 Rayo(Rayo(n))的增长率却还是 σ.

接下来是 Rayo(Rayo(Rayo)),Rayo(Rayo(Rayo(Rayo))),.....函数 Rayoⁿ(Rayo)的增长率终于达到了 σ+1.

 $f_{\sigma+2}(x)$ 的增长比 Rayoⁿ(Rayo)还块,它可以轻松超越 Rayo^{Rayo(Rayo)}(Rayo). 接着是函数 $f_{\sigma+3}(x)$, $f_{\sigma+4}(x)$, $f_{\sigma+a}(x)$, 直到 $f_{\sigma+\sigma}(x)$, 即 $f_{\sigma2}(x)$.

接着是函数 $f_{\sigma3}(x),f_{\sigma^2}(x),f_{\sigma^3}(x),f_{\sigma^2}(x),f_{\sigma^2\sigma}(x),f_$

更快的函数,或是更大更快的记号,一切都是徒劳.

Googology(大数的学问)不是在于创造出"最大的数"——那根本就不存在——而是在于拥有能够表示数的记号."站在巨人的肩上"这句话在这里并不适

用.任何+1的行为都是徒劳,只有自己创造出一个记号,或是发现一个新的函数,才是有用的.

Sbiis Saibian 曾说过这样一句话:几乎所有的正整数都是非常非常大的.其实,无论对于什么正整数 n,如果任取一个正整数 m,那么 m>n 的概率是 1.

参考资料:

大数 wikia

http://googology.wikia.com

Sbiis Saibian 的网站

http://sites.google.com/site/largenumbers/home Jonathan Bowers 的网站

http://www.polytope.net/hedrondude/home.htm Chris Bird 的网站

http://mrob.com/users/chrisb/