analyzing personal movement using activity monitoring devices

mirzarashid abbasov | reproducible research course - project 1 | coursera 18.0CT.2017

Synopsis

There are many ways and possible to collect a large amount of data about personal movement using activity monitoring devices. These type of devices are part of the "quantified self" movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior.

This assignment makes use of data from a personal activity monitoring device. The data for this assignment can be downloaded from: Dataset: Activity monitoring data

The dataset variables included:

```
* steps: Number of steps taking in a 5-minute interval (missing values are coded as NA)
```

- * date: The date on which the measurement was taken in YYYY-MM-DD format
- * interval: Identifier for the 5-minute interval in which measurement was taken

Library loading

```
suppressMessages(library(R.utils))
## Warning: package 'R.utils' was built under R version 3.4.2
## Warning: package 'R.oo' was built under R version 3.4.1
## Warning: package 'R.methodsS3' was built under R version 3.4.1
suppressMessages(library(dplyr))
## Warning: package 'dplyr' was built under R version 3.4.1
suppressMessages(library(ggplot2))
## Warning: package 'ggplot2' was built under R version 3.4.1
suppressMessages(library(gridExtra))
## Warning: package 'gridExtra' was built under R version 3.4.2
```

Loading and preprocessing the data

1. Code for reading in the dataset and/or processing the data

```
knitr::opts_chunk$set(echo = TRUE)

# set working directory
```

```
setwd("/Users/mirzarashid.abbasov/repos/Reproducible research/week2")
# clean up workspance
rm(list = ls())
# set source url Link
url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2Factivity.zip"</pre>
# downloand data from url
download.file(url, "activity.zip")
# convert to the csv format
if(!file.exists('activity.csv')){
  unzip('activity.zip')
# read data from source files to the temp variable
temp <- read.csv("activity.csv", header=T, sep=',')</pre>
head(temp)
##
                 date interval
    steps
## 1 NA 2012-10-01
## 2
     NA 2012-10-01
                             5
                            10
## 3 NA 2012-10-01
## 4 NA 2012-10-01
                           15
## 5 NA 2012-10-01
                            20
## 6 NA 2012-10-01
                            25
```

Data processing & results

What is mean total number of steps taken per day?

2. Histogram of the total number of steps taken each day

Total Steps per Day

3. Mean and median number of steps taken each day

What is mean total number of steps taken per day?

```
## calculate mean of steps taken each day
mean <- mean(result.steps$total.steps)
mean

## [1] 10766.19

## calculate median of steps taken each day
median <- median(result.steps$total.steps)
median

## [1] 10765</pre>
```

What is the average daily activity pattern?

4. Time series plot of the average number of steps taken

```
aes(x = interval, y = total.steps)) +
  geom_line() +
  ggtitle("Time Series: average number of steps") +
  xlab("5-minute interval") +
  ylab("average number of steps taken")
```

Time Series: average number of steps

5. The 5-minute interval that, on average, contains the maximum number of steps

```
result.max <- temp %>% select(steps, interval) %>%
    ## exclude all NA values from steps column
    filter(!is.na(steps)) %>%
    group_by(interval) %>%
    ##calculate sum & mean & median grouped by date
    summarise(total.steps = sum(steps)) %>%
    arrange(desc(total.steps)) %>% ##descending results
    head(result.max, n=1L) ##only TOP 20

## maximum interval number
result.max$interval
## [1] 835

## maximum steps per interval
result.max$total.steps
## [1] 10927
```

Imputing missing values

6. Code to describe and show a strategy for imputing missing data

Use approximation method to fill missing data for example to use median() or mean()

```
## number of NA recods before
before <- sum(is.na(temp$steps))
before

## [1] 2304

## to fill missing values with mean
temp$steps[is.na(temp$steps)] <- mean(temp$steps[!is.na(temp$steps)])

## number of NA recods after
after <- sum(is.na(temp$steps))
after

## [1] 0</pre>
```

Are there differences in activity patterns between weekdays and weekends

7. Histogram of the total number of steps taken each day after missing values are imputed

Total Steps per Day

8. Panel plot comparing the average number of steps taken per 5-minute interval across weekdays and weekends

```
##weekdays as a decimal number(1-7, Monday is 1)
##create a data.frame with weekends days
temp.weekends <- temp[strftime(temp$date, format = "%u") > 5, ]
##create a data.frame with workdays
temp.workdays <- temp[strftime(temp$date, format = "%u") < 6, ]</pre>
##select steps & date from data.frame
result.weekends <- temp.weekends %>% select(steps, interval) %>%
        ## exclude all NA values from steps column
        filter(!is.na(steps)) %>%
        group by(interval) %>%
        ##calculate sum & mean & median grouped by date
        summarise(total.steps = mean(steps))
##select steps & date from data.frame
result.workdays <- temp.workdays %>% select(steps, interval) %>%
        ## exclude all NA values from steps column
        filter(!is.na(steps)) %>%
        group by(interval) %>%
        ##calculate sum & mean & median grouped by date
        summarise(total.steps = mean(steps))
##create a plot for weekends
```

```
g.weekends <-
                ggplot(data=result.weekends,
                aes(x = interval, y = total.steps)) +
                geom line() +
                ggtitle("Weekends. Average number of steps") +
                xlab("5-minute interval") +
                ylab("average number of steps taken")
##create a plot for workdays
                ggplot(data=result.workdays,
g.workdays <-
                aes(x = interval, y = total.steps)) +
                geom line() +
                ggtitle("Workdays.Average number of steps") +
                xlab("5-minute interval") +
                ylab("average number of steps taken")
##create a final plot
grid.arrange(g.workdays, g.weekends, ncol=2)
```

Workdays.Average nun

Weekends. Average nu

Mirzarashid Abbasov, almaty, 2017