

Seismic Isolation Product Line-up

High Damping Rubber Bearing Lead Rubber Bearing Natural Rubber Bearing Elastic Sliding Bearing

Bridgestone Seismic Isolation Product Line-up

We will meet the customer needs with our new product line-up

Features

Sectional View

High damping rubber includes both spring and damping characteristics. Generally, a separate damper is not required, making it an excellent choice for areas with space constraints. Since its hysteresis curves are relatively smooth, seismic isolation can also be extended to the equipment inside the building. There are 3 different elastic moduli are available (XO.3R, XO.4S, XO.6R). From light column loads until high rise building can be accommodated.

LRB Lead Rubber Bearing

This bearing includes a lead plug embedded at the centre of a laminated natural rubber structure, where the rubber incorporates the spring capability and the lead plug provides the damping capability. Generally, a separate damper is not required making it a good choice for areas with space constraints. Its hysteresis resembles elastoplastic materials. The attenuation can be tuned by varying the lead plug diameter. One type of rubber material is available (GO.40).

Natural Rubber Bearing

This bearing uses natural rubber, which inherently has a low damping ratio (about 2~3% equivalent damping ratio), excellent linearity, and a stable restoring force.

A separate damper is required, but the overall isolation design has much greater flexibility. Four different kinds of elastic moduli are available (60.30, 60.35, 60.40, 60.45) to support a wide range of column loads.

Elastic Sliding Bearing

This bearing consists of 2 pieces: 1) a natural rubber bearing bonded with PTFE (Teflon) material and; 2) a stainless steel slide plate. Small displacements are absorbed by the rubber itself, while large displacements cause the rubber bearing to slide on the plate. Since there is no restoring force, the slide bearing is normally used in combination with NRB, LRB or HDR. Two different coefficients of friction are available to suit the damping requirements.

Hysteretic Loop

Content

Bridgestone Seismic Isolation product line up	1
HDR LRB NRB Elastic Sliding Bearing	
Introduction of Product & System	3
High Damping Rubber Bearing X Series	3
Layout Planning Assistance Program	5
Product Specification & Performance Characteristic	6
High Damping Rubber Bearing (HDR)	6
Lead Rubber Bearing (LRB)	9
Natural Rubber Bearing (NRB)	11
Elastic Sliding Bearing	13
Product Specification	15
High Damping Rubber Bearing (HDR)	15
Certification Number MVBR-0516 (X0.3R)	
Certification Number MVBR-0510/MVBR-0519 (X0.4S)	
Certification NumberMVBR-0514/MVBR-0520 (X0.6R)	
HM Series (Total Rubber Thickness 16cm)	15
HN Series (Total Rubber Thickness 20cm)	16
HH Series (Total Rubber Thickness 20cm)	17
HL Series (Total Rubber Thickness 16cm)	19
HT Series (Total Rubber Thickness 25cm)	21
HS Series ($S_2 = 5$)	23
HD Series (Total Rubber Thickness 32cm)	24
Lead Rubber Bearing (LRB)	25
Certification Number MVBR-0517	
Lead Plug Diameter List	25
LH Series (Total Rubber Thickness 20cm)	27
LL Series (Total Rubber Thickness 16cm)	36
LT Series (Total Rubber Thickness 25cm)	43
LD Series (Total Rubber Thickness 32cm)	50
LS Series (S ₂ = 5)	53
Natural Rubber Bearing (NRB)	62
Certification Number MVBR-0295 (N3,G3,G5)	
Certification Number MVBR-0509/MVBR-0518 (G4)	
NS Series (S ₂ = 5)	62
NH Series (Total Rubber Thickness 20cm)	66
NL Series (Total Rubber Thickness 16cm)	67
NT Series (Total Rubber Thickness 25cm)	68
ND Series (Total Rubber Thickness 32cm)	
Elastic Sliding Bearing	70
Certification Number MVBR-0349	
SL Series (μ = 0.13 & G1.2)	70
Others	
Compact Flange	
Dustproof Cover	72
Precautions for Safe Use of Seismically Isolated Bearing	73

Product & System Introduction

High Damping Rubber Bearing X Series

Features of High Damping Rubber Bearing X Series

High damping rubber bearing is a laminated rubber structure that includes a special filler compound in the rubber itself to provide energy absorption performance. It combines damping and spring charateristics and is widely adopted as a seismic isolator.

However, the conventional high damping rubber shows loading hysteresis dependency, where its rate of change of stiffness has become reduced and restoration becomes progressively worse after repeated loading under increasing deformation. With Bridgestone's next-generation of high damping rubber X series, the effect of loading hysteresis dependency is greatly reduced and the properties become much simpler to manage. Furthermore, it is also more accommodating to the reduction in ultimate properties caused by bi-directional loading.

Reduction in Loading Hysteresis Dependency

Compared to conventional high damping rubber, the change of equivalent shear stiffness (1cycle/3cycle) in repeated loading is greatly reduced. The properties of seismic isolation bearings are defined by the 3rd cycle and it is able to reduce the load variation during initial deformation.

Conventional high damping rubber shows shear stress reduction after large deformation due to the effect of loading hysteresis dependency, but the next-generation high damping rubber is able to minimize the change in properties before and after large deformation. By reducing the effect of loading hysteresis dependency, the accuracy of the overall seismic isolation design can be improved.

Increasing of Equivalent Damping Ratio

Compared to conventional high damping rubber, the equivalent damping ratio (at shear strain $\gamma=\pm100\%$) of high damping rubber X0.4S, X0.6R are increased (X0.4S:0.220 \rightarrow 0.240, X0.6R:0.225 \rightarrow 0.240). Furthermore, compared to the same diameter of lead rubber bearing (lead diameter/outer diameter = 0.2), a higher damping ratio can be obtained in the range of $\gamma \ge 130\%$.

Ultimate Properties of High Damping Rubber Bearings by Horizontal Bi-directional Loading

Outline

The ultimate deformation of high-damping rubber is degraded by applying bi-directional loading compared to unidirectional loading. Through a horizontal bi-directional loading test with a full scale model high-damping rubber bearing, torsional deformation can be seen in the side view of the rubber. Compared with unidirectional loading, the phenomenon of breaking at early stage by bi-directional loading has been identified. The standard value of the ultimate properties, influenced by bi-directional loading is shown below and the ultimate compressive stress is confirmed.

e

Figure 1: The mechanism of torsional deformation

Figure 2: Torsional deformation during horizontal bi-directional loading

As shown in Figure 1, when the bi-directional loading is applied on a high damping rubber bearing, the elastic force occurs in the shear deformation direction, while the damping force occurs in the tangential direction of the deformation trajectory. The torsional moment created by the damping elements and the shear deformation is present at each rubber layer of the laminated structure. The additional shear strain γ_{\varnothing} caused by torsional deformation is added to the shear strain caused by the rubber shear deformation itself. Thus, it will rupture relatively early compared to the unidirectional loading test. However, the torsional deformation caused by bi-directional loading does not affect the buckling ultimate strain, as verified experimentally.

Ultimate Property of Horizontal Bi-directional Loading

According to the Japan Society of Seismic Isolation (JSSI) guidelines, the final ultimate strain is determined by the minimum of the ultimate strain $\gamma_{\rm L}$ by unidirectional loading and the ultimate strain $\gamma_{\rm Bo}$ by bi-directional loading.

Ultimate strain by unidirectional loading
 Ultimate strain by unidirectional loading is defined as shown in Table 1.

Table 1: Standard value of ultimate strain by unidirectional loading

	,
Compound	Ultimate strain by unidirectional loading $\gamma_{\rm L}$
X0.4S	$S_2 \times 0.9 \times 100\% \ [0.9 \times S_2 < 4] \\ 400\% \ [0.9 \times S_2 \geqq 4]$
XO.6R	$S_2 \times 0.9 \times 100\% (S_2 < 4.5)$ $400\% (S_2 \ge 4.5)$

S2: Second shape factor

Ultimate strain by bi-directional loading
 Ultimate strain by bi-directional loading is defined as shown in Table 2.

Table 2: Standard value of ultimate strain by bi-directional loading

Compound	Formula of ultimate strain by bi-directional loading $\gamma_{\rm Bo}$
X0.4S	$\gamma_{BO} = (5.80 \times S_2 + 9.05) / (S_2 + 4.49)$
XO.6R	$\gamma_{B0} = (5.00 \times S_2 + 9.05) / (S_2 + 4.49)$

S₂: Second shape factor

Figure 3: Comparison example of ultimate property diagram

LAP² + t.Ver2 (Layout Planning Assistance Program for Seismic Isolation Device)

LAP² + t.Ver2 is a program that supports layout planning of Bridgestone seismic isolation bearing for seismically isolated building. The ideal seismic isolation bearing (in terms of size) can be determined from the column axial force (nominal long term column load) and the selections of sesimic isolation bearing's series based on the layout of the seismic isolation interface. In addition to Bridgestone made seismic isolation bearings, hysteresis type dampers or oil dampers which are typically used in Japan can be specified in the program. The selections can be changed (or specified) interactively on the GUI (Graphic User Interface) screen by the click of a mouse and the notification calculation for that bearing arrangement can be carried out as well.

Besides, regarding to the bearing layout planning, the mathematical process which is using genetic algorithm could produce an optimization function whereby by satisfying the notification calculation and at the same time reduce as much as possible the shear force for the layout plan, or by satisfying the notification calculation and at the same time reduce as much as possible the response displacement for the layout plan that could meet the criterias. In addition to being able to verify by the notification calculation, the Lap²+t.Ver2 software allows response calculation for seismic response analysis.

Simple Input

From the data-input and modification of the seismic isolation interface, seismic response analysis can be conducted easily. Also, Lap 2 + t.Ver 2 is compatible software that can capture or transfer structural calculation data from the "Super Build / SS3" software which is developed by Union System.

•"Super Build / SS3" is a registered trademark of Union System Inc.

2 Calculation Functions of Seismically Isolated Structure

- "Seismic Response calculation by seismic isolation notification*1 ".....the results of the calculation can be printed in a reporting style.
- "Seismic response calculation by time history analysis".....the calculation can be conducted for various earthquake waves. Also, Lap²+t.Ver2 can work together with the structural calculation software "Super Dynamic Pro" from Union System.
- \times 1 The structural calculation method is based on the "Technical standards required for safety which relates to the structural method for seismically-isolated buildings" as stated in the notification No.2009 of the Ministry of Construction, in the year 2000.

Seismic Isolation Devices

Bridgestone natural rubber bearing, lead rubber bearing, high damping rubber bearing, elastic sliding bearing, other standard hysteretic dampers and oil dampers can be adopted.

Layout Planning of Seismic Isolation Devices

The software helps you to choose the appropriate seismic isolation devices and its placement in the building to satisfy the target performance.

Product Specification & Description of Performance Characteristics

High Damping Rubber Bearing (HDR)

Seismic isolation material certification number by Ministry of Land, Infrastructure and Transport, Japan MVBR-0516 (X0.3R Series) Acquired in December 2014

MVBR-0510/MVBR-0519 (X0.4S Series) MVBR-0514/MVBR-0520 (X0.6R Series) Acquired in December 2014 Acquired in December 2014

Product Dimension

	Characteristics						
	Outer diameter	: D₀ (mm)					
	Inner diameter	: D _i (mm)					
	Number of inner diameter	: n _i					
	Effective plane area	: A (× 10 ² mm ²)					
	Thickness of one rubber layer	: t _r (mm)					
, 0	Number of rubber layers	: n					
Physical Dimensions	Total rubber thickness	: H = n • t _r (mm)					
Suar	First shape factor $S_1 = (D_o^2 - n_i \cdot D_i^2) / \{4 \cdot t_r \cdot (D_o + n_i \cdot D_i)\}$						
ij	Second shape factor $S_2 = D_o / (n \cdot t_r)$						
ical	Diameter of flange	: D _f (mm)					
사	Thickness of flange: edge/center	: t _f / t _{ft} (mm)					
_	Connecting bolt PCD	: PCD (mm)					
	Diameter of connecting bolt hole × qty	: d₀ (mm) × qty					
	Bolt size (assumption)	: M (d₀ –3)					
	Thickness of each reinforced steel plate	: t _s (mm)					
	Total height	: Ht (mm)					
	Total weight 1 (kN) = $1 / 9.80665$ (tonf)						

Rubber Material

Notation of rubber kind (standard temperature 20°C standard strain γ = 100%)

Compound name	Rubber code	Shear modulus G _{eq} (N/mm²)	Equivalent damping ratio H _{eq}
X3R	X0.3R	0.300	0.17
X4S	X0.4S	0.392	0.24
X6R	X0.6R	0.620	0.24

Composition of rubber materials (weight ratio %)

Rubbe	r code	Natural rubber Synthetic rubber	Filler, Reinforcement agent	Vulcanization agent and others
	XO.3R	35 and above	15 and above	50 and below
Inner Rubber	X0.4S	35 and above	20 and above	45 and below
nubbei	X0.6R	35 and above	25 and above	40 and below
Cover i	rubber	40 and above	15 and above	40 and below

Properties of rubber materials

lte	m	Tensile strength (N/mm²)	Elongation at Break (%)	Hardness (JIS A)	100% modulus (N/mm²)	Young's modulus E (N/mm²)	Bulk modulus E _w (N/mm²)	Correction factor for apparent Young's modulus according to hardness, k
Test St	andard	JIS K6251	JIS K6251	JIS K6253	JIS K6251	-	-	-
	X0.3R	7 and above	700 and above	34 ± 8	0.53 ± 0.2	4.0	1150	1.0
Inner	X0.4S	7 and above	840 and above	37 ± 8	0.43 ± 0.2	6.2	1300	1.0
nubbei	X0.6R	8.5 and above	780 and above	53 ± 5	0.73 ± 0.2	7.6	1500	1.0
Cover	rubber	12 and above	600 and above	-	_			

Steel Material

Steel material for each part

	Material
Reinforced steel plate	SS400 (JIS G 3101)
Flange*1*2	SS400 (JIS G 3101)
Connecting plate*1	SS400 (JIS G 3101)

^{*1:} Optionally SM490A (JIS G 3106).

Anti-rust treatment of flange

Preparation Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2)				
Primer	Zinc-rich paint $75\mu\mathrm{m} imes 1$ coat			
Middle coat	Epoxy resin paint 60μm × 1 coat			
Finishing	Epoxy resin paint $35\mu m \times 1$ coat			
Total film thickness	170μm and above			

Precautions

- · For mid-storey isolation, fire resistant cover is necessary (according to JSSI provision, HS110X4S cannot apply any fire resistant cover). Please contact fire resistant cover manufacturer who are listed in the JSSI manufacturer list for more details. [http://www.jssi.or.jp/ bussiness/kigyou_detail/to-si-base.htm)
- · There are two certification numbers for XO.4S, XO.6R due to difference of some manufacturing process. Although their properties values are the same, please fill the certification number as shown in the table or the right in the design documents.

Э		Rubber size \varnothing 1000 and below	Rubber size Ø1100 and above
า	X0.4S	Both MVBR-0510/MVBR-0519	MVBR-0510 only
	X0.6R	Both MVBR-0514/MVBR-0520	MVBR-0514 only

^{*2:} Optionally special thickness other than standard thickness

^{*1:} Standard color is gray.
*2: Other kinds of anti-rust treatment are also available. Please contact us for more details.

Shear Properties

Equivalent shear stiffness K_{eq} , equivalent damping ratio H_{eq} , initial stiffness K_1 , post-yield stiffness K_2 , characteristic strength Q_d , Function giving ratio of characteristic strength to maximum shear force of a loop u

Shear properties of HDR is dependent on shear strain amplitude. The shear strain dependency of each property is expressed by the following equations.

Equivalent damping ratio : $H_{eq} = \Delta W / (2 \pi \cdot K_{eq} \delta^2)$

 $\begin{array}{c|c} -\delta_0 & & & & \\ \hline & \Delta W & & & \\ \hline & & -Q_d & \\ \hline & & & \\ H_{eq} = \Delta W/[2\pi K_{eq}\,\delta^2] & \\ \end{array}$

Based on above equations, each shear properties shall be determined by the following equations.*1

 $\begin{array}{lll} \mbox{Equivalent shear stiffness} & : K_{eq} = G_{eq} \cdot A/H \\ \mbox{Initial stiffness} & : K_1 = 10 \times K_2 \\ \mbox{Post-yield stiffness} & : K_2 = K_{eq} (1-u) \\ \mbox{Characteristic strength} & : Q_d = u \cdot K_{eq} \cdot H \cdot \gamma \end{array}$

Temperature dependency

Each shear properties shall be corrected to the value at standard temperature of 20°C by the following equations. [Applicable range: $-10 \le T \le 40$ °C] [T : Temperature during inspection]

 $\begin{array}{lll} \bullet \text{Rubber material XO.3R} & : \text{K}_{\text{eq}} \left(\text{T}^{\circ} \text{C} \right) = \text{K}_{\text{eq}} \left(\text{standard value at } 20^{\circ} \text{C} \right) \times \left(1.139 - 9.653 \times 10^{-3} \cdot \text{T} + 1.721 \times 10^{-4} \cdot \text{T}^{2} - 1.847 \times 10^{-6} \cdot \text{T}^{3} \right) \\ & : \text{H}_{\text{eq}} \left(\text{T}^{\circ} \text{C} \right) = \text{H}_{\text{eq}} \left(\text{standard value at } 20^{\circ} \text{C} \right) \times \left(1.050 - 2.790 \times 10^{-3} \cdot \text{T} + 4.678 \times 10^{-5} \cdot \text{T}^{2} - 1.613 \times 10^{-6} \cdot \text{T}^{3} \right) \\ \bullet \text{Rubber material XO.4S/XO.6R} & : \text{K}_{\text{eq}} \left(\text{standard value at } 20^{\circ} \text{C} \right) \times \left(1.205 - 1.862 \times 10^{-2} \cdot \text{T} + 5.991 \times 10^{-4} \cdot \text{T}^{2} - 8.991 \times 10^{-6} \cdot \text{T}^{3} \right) \\ & : \text{H}_{\text{eq}} \left(\text{T}^{\circ} \text{C} \right) = \text{H}_{\text{eq}} \left(\text{standard value at } 20^{\circ} \text{C} \right) \times \left(1.065 - 4.134 \times 10^{-3} \cdot \text{T} + 1.096 \times 10^{-4} \cdot \text{T}^{2} - 3.102 \times 10^{-6} \cdot \text{T}^{3} \right) \end{array}$

•Standard value of temperature dependency (Standard temperature (20°C))

Properties values		Equivalent she	ar stiffness K _{eq}		Equivalent damping ratio H _{eq}			
	-10°C	0°C	30°C	40°C	-10°C	0°C	30°C	40°C
XO.3R	X0.3R within +25% within +14% X0.4S within +46% within +21%		within –5% within –9%	within +8% within +5%	within –4% within –9	within -9%		
X0.4S			within –6%	within –16%	within +12%	within +7%	within -4%	within -12%
XO.6R				within –16%	within +12%	within +7%	within -5%	within -13%

Performance variation

The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties as shown below.

Rubber materia	als	XO.3R		X0.4S		XO.6R	
		Equivalent shear stiffness, K _{eq}	Equivalent damping ratio, Heq Function giving ratio of characteristic strength to maximum shear force, u	Equivalent shear stiffness, K _{eq}	Equivalent damping ratio, Heq Function giving ratio of characteristic strength to maximum shear force, u	Equivalent shear stiffness, K _{eq}	Equivalent damping ratio, Heq Function giving ratio of characteristic strength to maximum shear force, u
Manufacturing variation*1		±10%	∓10%	±10%	∓10%	±10%	∓10%
Aging*2		+10%	-10%	+10%	-10%	+10%	-10%
Ambient temperature	(+) side	+14%	+5%	+21%	+7%	+21%	+7%
variation 20°C ± 20°C	(-) side	-9%	-9%	-16%	-12%	-16%	-13%
T	(+) side*3	+34%	-15%	+41%	-13%	+41%	-13%
Total	(–) side*3	-19%	+1%	-26%	-2%	-26%	-3%

^{*1:} The variation of each product (standard value) shall be within ±20% and variation of total units of products per project (total of standard values) shall be within ±10%. However, if the total units of products is less than 8 units per project, the variation (total of standard values) shall be within ±15%. [For H_{eq}, Σ (H_{eq} × K_{eq}) / Σ K_{eq} shall be within ±15% from the standard value)

Note: For compressive stiffness Kv, variation of each product (standard value) shall be within ±30%

^{*1:} At standard condition only and shall be excluded when considering the properties variation.

^{*2:} Predicted rate of change after 60 years at 20°C standard temperature.

^{*3:} The equivalent shear stiffness Keq and equivalent damping ratio Heq is dependent to each other. The indicated rate of change of Heq are corresponding to both maximum and minimum rate of change of Keq respectively.

^{*4 :} Above list shows the combination example.

Compressive Properties

Compressive stiffness K_v

•Compressive stiffness Kv is determined by the following equation.

$$Kv = Ec \cdot \frac{A}{H} \qquad Ec = \frac{E(1+2\kappa S_1^2)}{1+E(1+2\kappa S_1^2)/E_{\infty}}$$

Ultimate compressive stress

ullet Critical stress $\sigma_{
m cr}$ at zero shear strain is determined by the following equation.

$$\sigma_{cr} = \alpha_c \cdot \frac{\pi}{4} (G_{eq} \cdot E_b)^{0.5} \cdot S_2$$

However, $E_b = E_{cr} \left[1 + 2/3 \cdot \kappa \cdot S_1^2 \right] / \left[1 + E_{cr} \left[1 + 2/3 \cdot \kappa \cdot S_1^2 \right] / E_{\infty} \right]$

(Note) S_1 is defined as 35.0 (for X0.4S, X0.6R) and 28.0 (for X0.3R) as standard value.

 $lpha_{ ext{c}}$: Correction factor determined from our test data

Rubber material X0.3R : α_c = 1.0 (if S_2 \geq 5) α_c = (1 - 0.2 (5 - S_2)) (if 5 > S_2)

Rubber material X0.4S : α_c = 0.88 (if $S_2 \ge 5$) α_c = 0.88 (1 – 0.07 (5 – S_2)] (if $5 > S_2$)

Rubber material XO.6R : α_c = 1.45 (if $S_2 \ge 5$) α_c = 1.45 – 0.3 (5 – S_2) (if 5 > S_2)

 $E_{CR}=3\times G_{eq}$ (for XO.4S, XO.6R) $E_{CR}=2.2$ (for XO.3R)

$$\sigma_{\rm cr}'(\gamma) = \sigma_{\rm cr} \cdot (1 - \frac{\gamma}{S_2})$$

Rubber material X0.3R: $\sigma_{L} = 40$ (if $S_{2} \ge 5.0$) $\sigma_{L} = 40 + 10$ ($S_{2} - 5$) (5.0 > $S_{2} \ge 3.0$)

 $\gamma_{\rm L}$ is defined as minimum value among [400%], [S₂ × 0.9 × 100%], [(5.80 × S₂ + 7.10)/(S₂ + 3.45) × 100%]

Rubber material X0.4S : $\sigma_{L} = 45$ (if $S_{2} \ge 4.9$) $\sigma_{L} = 45 + 10$ ($S_{2} - 5$) (if $4.9 > S_{2} \ge 4.0$) $\sigma_{L} = 40 + 10$ ($S_{2} - 5$) (if $4.0 > S_{p} \ge 3.0$)

 $\gamma_{\rm L}$ is defined as minimum value among [400%], [S₂ × 0.9 × 100%], [(5.80 × S₂ + 9.05)/(S₂ + 4.49) × 100%]

Rubber material XO.6R: $\sigma_{L} = 60$ (if $S_{2} \ge 4.9$) $\sigma_{L} = 48 + 14$ ($S_{2} - 4$) (if $4.9 > S_{2} \ge 4.0$)

 $\sigma_{L} = 24 + 24 (S_{2} - 3) (if 4.0 > S_{2} \ge 3.5)$ $\sigma_{L} = 22 + 28 (S_{2} - 3) (if 3.5 > S_{2} \ge 3.0)$

 γ_{L} is defined as minimum value among [400%], [S₂ × 0.9 × 100%], [(5.00 × S₂ + 9.05)]/(S₂ + 4.49) × 100%]

Lead Rubber Bearing (LRB)

Seismic isolation material certification number by Ministry of Land, Infrastructure and Transport, Japan MVBR-0517 Acquired in December 2014

Product Dimension

	Characteristics					
	Outer diameter	: D ₀ (mm)				
	Lead plug diameter	: D _i (mm)				
	Number of inner diameter	: A _r (× 10 ² mm ²)				
	Effective plane area	: t _r (mm)				
	Thickness of one rubber layer	: n				
S	Number of rubber layers	$: H = n \cdot t_r (mm)$				
nsio	First shape factor $S_1 = (D_0) / (4 \cdot t_r)$					
Physical Dimensions	Second shape factor $S_2 = D_0 / (n \cdot t_r)$					
	Diameter of flange	: D _f (mm)				
ıysic	Thickness of flange: edge/center	: t _f / t _{ft} (mm)				
늅	Connecting bolt PCD	: PCD (mm)				
	Diameter of connecting bolt hole × qty	: d _b (mm) × qty				
	Bolt size (assumption)	: M (d _b – 3)				
	Thickness of each reinforced steel plate	: t _s (mm)				
	Total height	: H₅ (mm)				
	Total weight 1 (kN) = 1/9.80665 (tonf)					

Rubber Material

Notation of rubber kind (standard temperature 20°C standard strain γ = 100%)

Compound name	Rubber code	Shear modulus G _{eq} (N/mm²)
G4	G0.4	0.385

Composition of rubber materials (weight ratio %)

Rubber code	Natural rubber Synthetic rubber	Filler, Reinforcement agent	Vulcanization agent and others
Inner rubber (G0.4)	60 and above	10 and above	25 and below
Cover rubber	40 and above	15 and above	40 and below

Properties of rubber materials

ltem	Tensile strength (N/mm²)	Elongation at Break (%)	Hardness (JIS A)	100% modulus (N/mm²)	Young's modulus E (N/mm²)	Bulk modulus E∞(N/mm²)	Correction factor for apparent Young's modulus according to hardness, k
Test Standard	JIS K6251	JIS K6251	JIS K6253	JIS K6251	-	-	_
Inner rubber	17 and above	600 and above	37 ± 5	0.8 ± 0.2	2.20	1176	0.85
Cover rubber	12 and above	600 and above	-	-	-	-	_

Steel Material

Steel material for each part

	Material				
Reinforced steel plate	SS400 (JIS G 3101)				
Flange*1*2	SS400 (JIS G 3101)				
Connecting plate*1	SS400 (JIS G 3101)				
Lead plug	Pb (JIS H 2105 special)				

Anti-rust treatment of flange

Preparation	Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2)		
Primer	Zinc-rich paint $75\mu\text{m} \times 1 \text{ coat}$		
Middle coat	Epoxy resin paint $60\mu\text{m} \times 1 \text{ coat}$		
Finishing	Epoxy resin paint $35\mu m \times 1$ coat		
Total film thickness	170μm and above		

Precautions

- · Due to the lead plug embedded in the center of the laminated rubber body, special treatment is required in case the laminated rubber bearing is to be treated as industrial waste, depending on country. Please confirm with the country's regulation.
- · For mid-storey isolation, fire resistant cover is necessary. Please check with fire resistant cover manufacturer who are listed in the JSSI manufacturer list for more details. [http://www.jssi.or.jp/bussiness/kigyou_detail/to-si-base.htm]

^{*1:} Optionally SM490A (JIS G 3106).
*2: Optionally special thickness other than standard thickness.

^{*1:} Standard color is gray.
*2: Other kinds of anti-rust treatment are also available. Please contact us for more details

Shear Properties

Equivalent shear stiffness $\mathsf{K}_{\scriptscriptstyle{\mathrm{eq}}}$, equivalent damping ratio $\mathsf{H}_{\scriptscriptstyle{\mathrm{eq}}}$, initial stiffness $\mathsf{K}_{\scriptscriptstyle{1}}$, post-yield stiffness K2, characteristic strength Qd

Shear properties of LRB is dependent on shear strain amplitude.

The shear strain dependency of each property is expressed by the following equations.

Post-yield stiffness : $K_2 = K_d = C_{Kd} \cdot (K_r + K_p)$ Shear stiffness of laminated rubber : $K_r = G_r \cdot A_r / H$ Additional shear stiffness by lead plug : $K_p = \alpha_p \cdot A_p / H$

Where. C_{Kd}: post-yield stiffness correction factor due to strain dependency

> G_r: shear modulus of rubber 0.385N/mm² γ : shear strain

 $\alpha_{\!\scriptscriptstyle D}\,$: apparent shear modulus of lead 0.583N/mm²

Characteristics strength : $Q_d = C_{Qd} \cdot \sigma_{pb} \cdot A_p$

 $2.036 \ \gamma^{0.41} \ [\gamma \le 0.1]$ 1.106 $\gamma^{0.145}$ [0.1 < γ < 0.5] $C_{\mbox{\tiny Qd}}$: characteristic strength correction factor due to strain dependency $\ C_{\mbox{\tiny Qd}}$ Where. $\sigma_{
m ob}$: Shear stress at yield of lead 7.967N/mm 2

Initial stiffness : $K_1 = \beta \cdot K_d$

Where, β : Ratio of initial stiffness to post-yield stiffness which is between 10~15. (recommended value: 13)

Equivalent shear stiffness K_{eq} Equivalent damping ratio H_{eq}

$$K_{eq} = \frac{Q_d}{\gamma \cdot H} + K_d$$

$$H_{eq} = \frac{2}{\pi} \cdot \frac{Q_d \left(\gamma \cdot H - \frac{Q_d}{(\beta - 1)K_d} \right)}{K_{eq} \cdot (\gamma \cdot H)^2}$$

Temperature dependency

Each shear properties shall be corrected to the value at standard temperature of 20°C by the following equations (Applicable range: $-20 \le T \le 40^{\circ}$ C) (T: Temperature during inspection)

● Temperature correction equation : K_a (T°C) = K_a (standard value at 20°C) × (1.052 - 2.955 × 10⁻³ · T + 1.895 × 10⁻⁵ · T²) : Q_d (T°C) = Q_d (standard value at 20°C) × (1.192 - 1.017 × 10⁻² · T + 2.722 × 10⁻⁵ · T²)

●Standard value of temperature dependency Standard temperature (20°C)*1

	-	-	-	
Properties values	-10°C	0°C	30°C	40°C
Post-yield stiffness K _d	+10%	+6%	-3%	-5%
Characteristic strength Q _d	+36%	+23%	-11%	-21%

 $^{\star}1$: The standard value takes into account the variation of 20% to the value obtained by the temperature correction equation.

Performance variation

The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties as shown below.

Rubber materials		G0.4		
Properties		Post-yield stiffness K _d	Characteristic strength Q _d	
Manufacturing variation*2		Within ±10%	Within ±10%	
Aging*3		Within +10%	_	
Ambient temperature varia-	(+) side	Within +6%	Within +23%	
tion 20°C ± 20°C	(–) side	Within –5%	Within –21%	
Total	(+) side	Within +26%	Within +33%	
IULAI	(–) side	Within –15%	Within –31%	

- *2 : The variation of each product (standard value) shall be within ±20% and variation of total units of products per project (total of standard values) shall be within
 - If total units per project are less than 8 units, variation of total units of products per project (total of standard values) shall be within $\pm 15\%$
- *3 : Predicted rate of change after 60 years at 20°C standard temperature. (20% variation is considered in the rate of change)
- *4 : Above list shows the combination example

Compressive Properties

Compressive stiffness K,

●Compressive stiffness K_v is determined by the following equation.

 $E_c = \frac{E(1 + 2\kappa S_1^2)}{1 + E(1 + 2\kappa S_1^2)/E_\infty} \quad \text{A : Laminated rubber plane area} \quad A_r : \text{Effective plane area} \quad A_p : \text{Lead plug plane area}$ $A = A_r + A_p$ $K_v = \alpha_v \cdot E_c \cdot \frac{A}{H}$ $\alpha_{\rm v}$: Young's modulus correction factor = 1.23

Ultimate compressive stress (refer the figure on the right)

ullet Critical stress $\sigma_{
m cr}$ at zero shear strain is determined by the following equation.

$$\begin{split} &\sigma_{cr} = \frac{\pi}{4} \cdot 1.26 \cdot \alpha_c \cdot (G_{eq} \cdot E_b)^{0.5} \cdot S_2 \\ &\text{However, } E_b = E \left[1 + 2/3 \cdot \kappa \cdot S_1^2 \right] / \left\{ 1 + E \left[1 + 2/3 \cdot \kappa \cdot S_1^2 \right] / \left[E_o \right] \right. \\ &\alpha_c : \text{Correction factor based on } S_2 \text{ determined from our test data} \\ &\text{If } S_2 \geq 5 : \alpha_c = 1 \text{, if } S_2 < 5 : \alpha_c = 0.25 \cdot \left[S_2 - 5 \right] + 1 \end{split}$$

ullet Ultimate compressive stress at any shear strain $\sigma_{cr}'(\gamma)$ is determined by σ_{cr} by the following equation.

$$\sigma_{\rm cr}$$
, $(\gamma) = \sigma_{\rm cr} \cdot (1 - 0.9 \frac{\gamma}{S_2})$

●The ultimate compressive stress shall not exceed the upper limit o₁ determined as below and the strain region corresponding to the ultimate strain γ_L at O compressive stress.

$$\sigma_{\rm L} = 60 \, ({\rm N/mm^2})$$

 $\gamma_{\rm L} = {\rm min} \, (400\%, \, {\rm S_2} \times 100\%)$

Natural Rubber Bearing (NRB)

Seismic isolation material certification number by Ministry of Land, Infrastructure and Transport, Japan MVBR-0295 (N3, G3, G5) Acquired in January 2006 MVBR-0509/MVBR-0518 (G4) Acquired in December 2014

Product Dimension

	Characteristics					
	Outer diameter	: D ₀ (mm)				
	Inner diameter	: D _i (mm)				
	Number of inner diameter	: n _i				
	Effective plane area	: A (× 10 ² mm ²)				
	Thickness of one rubber layer	: t _r (mm)				
	Number of rubber layers	: n				
Physical Dimensions	Total rubber thickness	: $H = n \times t_r \text{ (mm)}$				
ensi	First shape factor $S_1 = \left(D_o^2 - n_i \cdot D_i^2\right) / \left\{4 \cdot t_r \cdot \left(D_o + n_i \cdot D_i\right)\right\}$					
E.	Second shape factor $S_2 = D_o / (n \cdot t_r)$					
ical	Diameter of flange	: D _f (mm)				
hys	Thickness of flange: edge/center	: t _f /t _{ft} (mm)				
ш	Connecting bolt PCD	: PCD (mm)				
	Diameter of connecting bolt hole × qty	: d₀ (mm) × qty				
	Bolt size (assumption)	: M (d _b –3)				
	Thickness of each reinforced steel plate	: t _s (mm)				
	Total height	: H₅ (mm)				
	Total weight 1 (kN) = 1/9.80665 (tonf)					

Rubber Material

Notation of rubber kind (standard temperature 20°C standard strain γ = 100%)

Compound name	Rubber code	Shear modulus G _{eq} (N/mm²)
N3	G0.30	0.294
G3	G0.35	0.343
G4	G0.40	0.392
G5	G0.45	0.441

Composition of rubber materials (weight ratio %)

Rubber code		Natural rubber Synthetic rubber	Filler, Reinforcement agent	Vulcanization agent and others			
Inner rubber	G0.30	55 and above	15 and above	25 and below			
	G0.35	60 and above	10 and above	25 and below			
	G0.40	60 and above	10 and above	25 and below			
	G0.45	65 and above	10 and above	20 and below			
Cover rubber		40 and above	15 and above	40 and below			

Properties of rubber materials

lte	em	Tensile strength (N/mm²)	Elongation at Break (%)	Hardness (JIS A)	100% modulus (N/mm²)	Young's modulus E (N/mm²)	Bulk modulus E _∞ (N/mm²)	Correction factor for apparent Young's modulus according to hardness, k
Test St	andard	JIS K6251	JIS K6251	JIS K6253	JIS K6251	-	-	-
	G0.30	14 and above	600 and above	33 ± 4	0.6 ± 0.2	1.64	1200	0.85
Inner	G0.35	16 and above	600 and above	33 ± 4	0.7 ± 0.2	1.92	1200	0.85
rubber	G0.40	17 and above	600 and above	37 ± 5	0.8 ± 0.2	2.20	1200	0.85
	G0.45	17 and above	600 and above	40 ± 5	0.9 ± 0.2	2.47	1300	0.85
Cover rubber		12 and above	600 and above	-	-	-	-	-

Steel Material

Steel material for each part

	Material			
Reinforced steel plate	SS400 (JIS G 3101)			
Flange*1*2	SS400 (JIS G 3101)			
Connecting plate*1	SS400 (JIS G 3101)			

^{*1:} Optionally SM490A (JIS G 3106).

Anti-rust treatment of flange

Preparation	Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2)			
Primer	Zinc-rich paint 75μm × 1 coat			
Middle coat	Epoxy resin paint 60µm × 1 coat			
Finishing	Epoxy resin paint 35µm × 1 coat			
Total film thickness	$170\mu\mathrm{m}$ and above			

Precautions

- · For mid-storey isolation, fire resistant cover is necessary. Please contact fire resistant cover manufacturer who are listed in the JSSI manufacturer list for more details. [http://www.jssi.or.jp/bussiness/kigyou_detail/to-si-base.htm]
- · There are two certification numbers for G0.40 due to difference of some manufacturing process. Although their properties values are the same, please fill the certification number as shown in the table on the right in the design documents.

Rubber size Ø1000 and below	Rubber size \varnothing 1100 and above		
Both MVBR-0509/MVBR-0518	MVBR-0509 only		

^{*2:} Optionally special thickness other than standard thickness.

^{* 1:} Standard color is gray.
*2: Other kinds of anti-rust treatment are also available. Please contact us for more details.

Shear Properties

Shear stiffness K

NRB shows linear restoring force characteristics in horizontal direction.

Shear stiffness Kh is expressed by the following equation.

$$K_h = \frac{G_{eq} \cdot A}{H}$$

Temperature dependency

Shear stiffness shall be corrected to the value at standard temperature of 20°C by the following equation. δ_0 : Displacement equivalent to 100% strain (Applicable: $-10 \le T \le 40$ °C) (T: Temperature during inspection)

• Temperature correction equation :

 $K_h (T^{\circ}C) = K_h (standard value at 20^{\circ}C) \times (1.052 - 2.955 \times 10^{-3} \cdot T + 1.895 \times 10^{-5} \cdot T^2)$ (Applied to all rubber codes)

●Standard value of temperature dependency Standard temperature (20°C)*1

Properties values	-10°C	0°C	30°C	40°C
Shear stiffness K.	+8%	+6%	-3%	-5%

	P ₀	J. K _h	
$-\delta_0$) <u>.</u>	δο
	-F	-0	

Ġ

Pn: Maximum load

Kh : Shear stiffness (secant stiffness)

Gea : Shear modulus

Properties values	−10°C	0°C	30°C	40°C	*1 : The standard value takes into account the variation of 20% to the value obtained by the temperature correction equation.
Shear stiffness K	+8%	+6%	-3%	-5%	

Performance variation

The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties as shown below.

Rubber materials	Common	
Properties		Shear stiffness K _h
Manufacturing variation*2		Within ±10%
Aging*3		Within +10%
Ambient temperature	(+) side	Within +6%
variation 20°C ± 20°C	(-) side	Within –5%
Total	(+) side	Within +26%
	(–) side	Within –15%

- *2 : The variation of each product (standard value) shall be within ±20% and variation of total units of products per project (total of standard values) shall be within ±10%. However, if the total units of products is less than 8 units per project, the variation (total of standard values) shall be within $\pm 15\%$.
- (Note: For compressive stiffness Kv, variation of each product (standard value) shall be within ±20%.) Predicted rate of change after 60 years at 20°C standard temperature. (20% variation is considered in the rate of change)

Compressive Properties

Compressive stiffness K_v

Compressive stiffness Kv is determined by the following equation.

$$Kv = Ec \cdot \frac{A}{H}$$
 $Ec = \frac{E(1+2\kappa S_1^2)}{1+E(1+2\kappa S_1^2)/E_{cc}}$

Ultimate compressive stress (refer the figure on the right)

•Critical stress σ_{cr} at zero shear strain is determined by the following equation.

$$\begin{split} &\sigma_{\rm cr} = \pi/4 \cdot \alpha_{\rm c} \cdot (G_{\rm eq} \cdot E_{\rm b})^{0.5} \cdot S_2 \\ &\text{However, } E_{\rm b} = E \left[1 + 2/3 \cdot \kappa \cdot S_1{}^2\right] / \left\{1 + E \left[1 + 2/3 \cdot \kappa \cdot S_1{}^2\right] / E_{\infty}\right\} \\ &\alpha_{\rm c} : \text{Correction factor based on } S_2 \text{ determined from our test data} \\ &\text{If } S_2 \geqq 5 : \alpha_{\rm c} = 1.0, \text{ if } S_2 < 5 : \alpha_{\rm c} = 0.10 \cdot (S_2 - 5) + 1 \end{split}$$

ullet Ultimate compressive stress at any shear strain $\sigma_{cr}(\gamma)$ is determined by σ_{cr} by the following equation.

$$\begin{split} &\sigma_{\text{cr}}'[\gamma] = \sigma_{\text{cr}} \cdot [1 - \beta_{\text{c}} \cdot \gamma / S_{\text{c}}] \\ &\beta_{\text{c}} : \text{Correction factor based on } S_{\text{c}} \text{ determined from our test data} \\ &\text{If } S_{\text{c}} \ge 5 : \beta_{\text{c}} = 0.76, \text{ if } S_{\text{c}} < 5 : \beta_{\text{c}} = 0.76/\{0.15 \cdot (S_{\text{c}} - 5) + 1\} \end{split}$$

ulletThe ultimate compressive stress shall not exceed the upper limit $\sigma_{ extsf{L}}$ determined as below and the strain region corresponding to the ultimate strain γ_L at O compressive stress.

Elastic Sliding Bearing

Seismic isolation material certification number by Ministry of Land, Infrastructure and Transport, Japan MVBR-0349 (SL Series, G1.2)

Acquired in June 2007

Product Dimension

	Characteristics	Plan and Sectional View		
	Outer diameter	: D ₀ (mm)		Sliding plate
	Inner diameter	: D _i (mm)		Outer dimen
	Effective diameter (outer diameter of sliding material)	: D _s (mm)	L1 L2 L3 10050	of base plate
	Effective plane area	: A (× 10 ² mm ²)		Outer dimen
	Thickness of one rubber layer	: t _r (mm)	* * * * * * * * * * * * * * * * * * * *	of SUS plate
(0	Number of rubber layers	: n		Inner dimens
sions	Total rubber thickness $H = n \cdot t_r \text{ (mm)}$	E E	of SUS plate	
<u> </u>	First shape factor $S_1 = (D_0 - D_i) / (4 \cdot t_r)$		Total thickne	
E .	Second shape factor $S_2 = Do / (n \cdot t_r)$			Connecting b
sical	Diameter of flange	: D _f (mm)		hole position
Physical	Thickness of flange: edge/center	: t _f / t _{ft} (mm)	Dr P.C.D Dr+16	Diameter of
	Connecting bolt PCD	: PCD (mm)	Do	connecting b
	Diameter of connecting bolt hole × qty	: d₀ (mm) × qty	d i	hole × qty
	Bolt size (assumption)	: M (d₀ – 3)		Bolt size
	Thickness of each reinforced steel plate	: t _s (mm)	<u> </u>	(assumption)
	Total height	: H₅ (mm)		Weight of sli
	Total weight 1 (kN) = 1/9.80665 (tonf)			plate

ctional	View	
	Sliding plate	
10	Outer dimension of base plate	: L ₁ (mm)
500	Outer dimension of SUS plate	: L ₂ (mm)
Lb2	Inner dimension of SUS plate	: L ₃ (mm)
	Total thickness	: $t_s = t_b + t_{st}$ [mm]
	Connecting bolt hole position	: L _{b1} , L _{b2} (mm)
[ق	Diameter of connecting bolt hole × qty	: d₀ (mm) × qty
2	Bolt size (assumption)	: M (d _{b1} – 5)
	Weight of sliding plate	: [kN]

Rubber Material

Notation of rubber kind (standard temperature 20°C standard strain $\gamma = 100\%$)

Series	Compound name	Rubber code	Shear modulus G _{eq} (N/mm²)
SL	GC	G1.2	1.18

Composition of rubber materials (weight ratio %)

Rubber code		Natural rubber Synthetic rubber	Filler, Reinforcement agent	Vulcanization agent and others
Inner Rubber	G1.2	60 and above	10 and above	25 and below
Cover rubber		40 and above	15 and above	40 and below

Properties	οf	rubber	materials
i i opei des	O.	i abbci	i i i dicci i dic

lte	m	Tensile strength (N/mm²)	Elongation at Break (%)	Hardness (JIS A)	100% modulus (N/mm²)	Young's modulus E (N/mm²)	Bulk modulus E _w (N/mm²)	Correction factor for apparent Young's modulus according to hardness, k
Test Standard		JIS K6251	JIS K6251	JIS K6253	JIS K6251	_	-	-
Inner Rubber	G1.2	15 and above	550 and above	65 ± 5	2.45 ± 0.69	5.88	1569	0.53
Cover rubber		12 and above	600 and above	-	_	_	-	-

Sliding Materials ⋅ Sliding Plate Coating

Composition of sliding material · sliding plate coating (weight ratio %)

	• • • • • • • • • • • • • • • • • • • •	0.0	•	
SL Series	Tetrafluoroethylene	Glass fiber	Molybdenum disulfide	
Sliding material	80	15	5	
Sliding plate	SUS (polished by #400 and above)			

Steel Material

Steel material or each part

	Material		
Reinforced	SS400 (JIS G 3101)		
Flai	Flange		
Sliding plate	Stainless plate	SUS304, SUS316 (JIS G 4304, G 4305)	
	Base plate	SS400 (JIS G 3101)	

Anti-rust treatment of flange & base plate

Preparation	Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2)
Primer	Zinc-rich paint $75\mu m \times 1$ coat
Middle coat	Epoxy resin paint $60\mu m \times 1$ coat
Finishing	Epoxy resin paint $35\mu m \times 1$ coat
Total film thickness	$170\mu m$ and above

Precautions

[•] For mid-storey isolation, fire resistant cover is necessary. Please contact fire resistant cover manufacturer who are listed in the JSSI manufacturer list for more details. (http://www.jssi.orjp/bussiness/kigyou_detail/to-si-base.htm)

Shear Properties

Initial stiffness K₁

Initial stiffness K_1 of elastic sliding bearing is expressed by the following equation.

$$K_1 = \frac{G_{eq} \cdot A}{H}$$
 Effective plane area A [mm²] Total rubber thickness H [mm]

Shear modulus in the above equation takes the values below.

	SL series
Shear modulus G _{eq} (N/mm²)	1.18

Friction coefficient μ

Compressive stress dependency and velocity dependency of the friction coefficient μ are expressed by the following equations.

-Q

: Friction coefficient

: Vertical load

: Initial stiffness : Horizontal deformation

 σ (N/mm²) is the compressive stress applied on sliding material; V (mm/s) is the sliding velocity. The standard compressive stress is $\sigma = 10 \text{ N/mm}^2$ (for SL series), while the standard velocity is V = 100 mm/s.

Temperature dependency of initial stiffness

Initial stiffness shall be corrected to the value at standard temperature of 20°C.

(Applicable: $-10 \le T \le 40$ °C) (T: Temperature during inspection)

•Standard value of temperature dependency Standard temperature (20°C)

Properties values		−10°C	0°C	30°C	40°C
Initial stiffness	SL series	within +14%	within +9%	within –4%	within –8%

*1:20% variation is considered in the rate of change.

Performance variation

The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties shall be shown as below.

Series		SL Series		
Properties		Initial stiffness K ₁	Fricition coefficient μ	
Manufacturing variation	1 ^{*2}	Within ±30%	Within ±20%	
Aging*3		Within +16%	-	
Ambient temperature	(+) side	Within +9%	-	
variation 20°C ± 20°C	(–) side	Within –8%	-	
Total	(+) side	Within +55%	Within +20%	
lotal	(–) side	Within –38%	Within –20%	

- *2 : The variation for both friction coefficient μ and initial stiffness K₁ of each product (standard value) shall be within the required variation range.
 (Note: For compressive stiffness K₂, variation of each product (standard value) shall be within ±20% for
 - SL series.)
- *3 : Predicted rate of change after 60 years at 20°C standard temperature. (20% variation is considered in the rate of change.)
- *4 : Above list shows the combination example.

Compressive Properties

Compressive stiffness K,

ullet Compressive stiffness K_v is determined by the following equation.

$$K_{\rm v} = \alpha_{\rm V} \cdot E_{\rm c} \cdot \quad \frac{A}{H} \qquad \quad E_{\rm c} = \frac{E(1 + 2 \kappa S_{\rm I}^2)}{1 + E(1 + 2 \kappa S_{\rm I}^2) \; / E_{\infty}} \label{eq:Kv}$$

(SL series) α_{V} : 1.0

Ultimate compressive stress (refer the figure on the right)

ullet Since bearings will slide before reaching to the buckling shear strain $\gamma_{\rm L}$, ultimate compressive stress takes constant value as below regardless of the deformation of bearings.

For SL series :
$$\sigma_1 = 50 \, (N/mm^2)$$

•The ultimate deformation shall be determined by the relationship between bearing diameter and sliding plate dimension.

The upper limit of SL series is 700mm.

Product Specification
(Please contact us if you require more information regarding the specification)

High Damping Rubber Bearing (HDR)

Certification Number MVBR-0516 (X0.3R)

●HM Series (Total Rubber Thickness 16cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X3R	X0.3R	0.300	0.170

Characteristics			HM060X3R	X3R X0.3R HM070X3R	HM080X3R
	Outer diameter	(mm)	600	700	800
	Inner diameter	(mm)	15	15	20
	Effective plane area	(×10² mm²)	2826	3847	5023
	Thickness of one rub	ber (mm)	5.0	5.9	6.8
	Number of rubber layers	(-)	32	27	23
	Total rubber thickness (mm)		160.0	159.3	156.4
	First shape factor	(-)	29.3	29.0	28.7
Dimensions	Second shape factor	(-)	3.75	4.39	5.12
I Dime	Diameter of flange	(mm)	800	900	1000
Physical [Thickness of flange*1	(mm)	19	19	19
Ш	Connecting bolt PCD	(mm)	825	925	1025
	Diameter of connect bolt hole × qty	ing (mm)	Ø 33 × 8	Ø 33 × 8	Ø 33 × 8
	Bolt size (assumption	n) (–)	M30	M30	M30
	Thickness of each reinforced steel plate (mm)		3.1	3.1	3.1
	Total height (mm)		294.1	277.9	262.6
	Total weight (tonf)		0.44	0.54	0.64
	Total weight (kN)		4.4	5.3	6.3
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	28	34	40
		$[\gamma_0, \sigma_0]$	(0.00,28)	(0.00,34)	(0.00,40)
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.20,28)	(0.65,34)	(1.24,40)
Prop ר	(1.4))	$[\gamma_2, \sigma_2]$	(3.38,3)	(3.95,4)	(4.00,12)
Compression Properties	Compressive stiffness	(×10 ³ kN/m)	1740	2370	3140
Compr	Nominal long term compressive stress*	₂ (N/mm²)	5.0	5.0	5.0
	Nominal long term column load	(kN)	1410	1920	2510
	Allowable tensile stress (N/mm²)		1.0	1.0	1.0
[%DC	Initial stiffness	(×10 ³ kN/m)	3.82	5.22	6.95
Shear Properties $[\gamma=100\%]$	Post yield stiffness	(×10 ³ kN/m)	0.382	0.522	0.695
erties	Characteristic Strength	(kN)	23.7	32.2	42.0
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	0.530	0.724	0.964
Sheal	Equivalent damping ratio	(-)	0.170	0.170	0.170

^{×1} Special thickness for flange is available. Please contact us for more details.
×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

Certification Number MVBR-0516 (X0.3R)

Code

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio	
X3R	X0.3R	0.300	0.170	

				AJA AU.JA	0.300 0.170
	Characteristic	cs	HN060X3R	HN070X3R	HN080X3R
	Outer diameter	(mm)	600	700	800
	Inner diameter	(mm)	15	15	20
	Effective plane area	(×10² mm²)	2826	3847	5023
	Thickness of one rub layer	ber (mm)	5.0	5.9	6.8
	Number of rubber layers	(-)	40	34	29
	Total rubber thicknes	ss (mm)	200.0	200.6	197.2
m	First shape factor	(-)	29.3	29.0	28.7
ensions	Second shape factor	(-)	3.00	3.49	4.06
l Dime	Diameter of flange	(mm)	800	900	1000
Physical Dimensions	Thickness of flange*1	(mm)	19	19	19
Ш	Connecting bolt PCD	(mm)	825	925	1025
	Diameter of connecting bolt hole × qty [mm]		Ø 33 × 8	Ø 33 × 8	Ø 33 × 8
	Bolt size (assumption) (-)		M30	M30	M30
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	3.1
	Total height (mm)		358.9	340.9	322.0
	Total weight (tonf)		0.51	0.62	0.74
	Total weight	(kN)	5.0	6.1	7.2
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	19	25	31
		$[\gamma_0, \sigma_0]$	(0.00,19)	(0.00,25)	(0.00,31)
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	-	(0.03,25)	(0.41,31)
η Prop	(14))	$[\gamma_2, \sigma_2]$	(2.70,2)	(3.14,3)	(3.65,3)
nession	Compressive stiffness	(×10³kN/m)	1390	1880	2490
Compression	Nominal long term compressive stress*	₂ (N/mm ²)	5.0	5.0	5.0
	Nominal long term column load	(kN)	1410	1920	2510
	Allowable tensile stre	ess (N/mm²)	1.0	1.0	1.0
(%۵۲	Initial stiffness	(×10 ³ kN/m)	3.06	4.15	5.51
$(\gamma = 10)$	Post yield stiffness	(×10 ³ kN/m)	0.306	0.415	0.551
Shear Properties $[\gamma=100\%]$	Characteristic Strength	(kN)	23.7	32.2	42.0
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	0.424	0.575	0.764
Shear	Equivalent damping ratio	(-)	0.170	0.170	0.170
¥1 Spe	cial thickness for flange is ava	ilable. Please contact	ue for more details		

^{×1} Special thickness for flange is available. Please contact us for more details.
×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

High Damping Rubber Bearing (HDR)
MVBR-0510 / MVBR-0519 (X0.4S)
Note: There are 2 certification numbers due to difference of some manufacturing process.
Please refer to "Precautions" in page 6 for the certificate number that used for design document.

HH Series (Total Rubber Thickness 20cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio	
X4S	X0.4S	0.392	0.240	

	Characteristics		HH060X4S	HH065X4S	HH070X4S	HH075X4S	HH080X4S	HH085X4S	HH090X4S	HH095X4S	HH100X4S	HH110X4S	HH120X4S	HH130X4S	HH140X4S	HH150X4S	HH160X4S
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500	1600
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55	65	65	80
	Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249	15361	17638	20056
	Thickness of one rubl	oer (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0	10.4
	Number of rubber layers	[-]	50	45	43	40	37	35	33	31	30	27	25	23	21	20	19
	Total rubber thicknes	s (mm)	200	198	202	200	200	200	198	198	201	200	200	200	200	200	198
	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9	36.5
Dimensions	Second shape factor	(-)	3.00	3.28	3.46	3.75	4.00	4.26	4.55	4.79	4.98	5.51	6.00	6.50	7.02	7.50	8.10
- Dime	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900	2000
Physical	Thickness of flange*1 (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50	50/110
ш	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750	1800
	Diameter of connecti bolt hole × qty	ng (mm)	Ø33×12	Ø33×12	Ø33×12	Ø 33×12	Ø 33×12	Ø33×12	Ø33×12	Ø33×12	Ø39×12	Ø 39 × 12	Ø 39 × 12	Ø39×12	Ø 42 × 12	Ø 42 × 16	Ø 45 × 12
	Bolt size (assumption) (–)	M30	M36	M36	M36	M36	M39	M39	M42							
	Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8	5.8
	Total height	(mm)	407.9	390.4	388.3	376.9	422.2	413.1	410.8	402.4	400.6	390.2	385.6	376.9	405.5	410.2	522.0
	Total weight	(tonf)	0.66	0.72	0.80	0.90	1.21	1.31	1.49	1.59	1.77	2.05	2.38	2.65	3.46	4.05	6.64
	Total weight	(kN)	6.5	7.0	7.9	8.9	11.9	12.9	14.6	15.6	17.3	20.1	23.3	26.0	33.9	39.7	65.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	26	29	31	35	38	41	45	48	51	56	61	66	71	76	82
		$[\gamma_0, \sigma_0]$	(0,20)	(0,23)	(0,25)	(0,28)	(0,35)	(0,38)	(0,40)	(0,43)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.7,20)	(0.7,23)	(0.8,25)	(0.8,28)	(0.3,35)	(0.4,38)	(0.4,40)	(0.5,43)	(0.5,45)	(1.1,45)	(1.6,45)	(2.1,45)	(2.6,45)	(3.1,45)	(3.7,45)
	(y)	$[\gamma_2, \sigma_2]$	(2.7,3)	(3.0,3)	(3.1,3)	(3.4,3)	(3.6,4)	(3.8,4)	(3.9,6)	(4.0,8)	(4.0,10)	(4.0,15)	(4.0,20)	(4.0,25)	(4.0,31)	(4.0,36)	(4.0,42)
Compression	Compressive stiffness	(×10 ³ kN/m)	1700	2020	2290	2660	3030	3420	3870	4300	4700	5690	6780	7960	9230	10600	12200
Comp	Nominal long term compressive stress*	2 (N/mm²)	4.6	5.5	6.1	7.0	9.4	10.4	11.5	12.4	13.0	13.0	13.0	13.0	13.0	13.0	13.0
	Nominal long term column load	(kN)	1300	1830	2340	3090	4710	5880	7280	8780	10200	12300	14700	17200	20000	22900	26100
	Allowable tensile stre $(\gamma = 100\%)$	(N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
100%]	Initial stiffness	(×10 ³ kN/m)	3.28	3.89	4.42	5.12	5.83	6.60	7.45	8.29	9.06	11.0	13.1	15.4	17.9	20.5	23.6
H II	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.328	0.389	0.442	0.512	0.583	0.660	0.745	0.829	0.906	1.10	1.31	1.54	1.79	2.05	2.36
Shear Properties (γ	Characteristic Strength	(kN)	45.2	53.0	61.5	70.6	80.3	90.7	102	113	126	152	181	212	246	282	321
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	0.554	0.657	0.746	0.866	0.986	1.11	1.26	1.40	1.53	1.86	2.21	2.60	3.02	3.46	3.98
	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240

^{×1} Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details. ×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

MVBR-0514/MVBR-0520 (X0.6R) Note: There are 2 certification numbers due to difference of some manufacturing process. Please refer to "Precautions" in page 6 for the certificate number that used for design document. HH Series (Total Rubber Thickness 20cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X6R	X0.6R	0.620	0.240

●HI	HH Series (Total Rubber			ness	20cr	n)					X6R	X0.6R		0.620		0.240)
	Characteristic	S	HH060X6R	HH065X6R	HH070X6R	HH075X6R	HH080X6R	HH085X6R	HH090X6R	HH095X6R	HH100X6R	HH110X6R	HH120X6R	HH130X6R	HH140X6R	HH150X6R	HH160X6R
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500	1600
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55	65	65	80
	Effective plane area	(×10 ² mm ²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249	15361	17638	20056
	Thickness of one rub	ber (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0	10.4
	Number of rubber layers	(-)	50	45	43	40	37	35	33	31	30	27	25	23	21	20	19
	Total rubber thicknes	ss (mm)	200	198	202	200	200	200	198	198	201	200	200	200	200	200	198
ñ	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9	36.5
ensior	Second shape factor	(-)	3.00	3.28	3.46	3.75	4.00	4.26	4.55	4.79	4.98	5.51	6.00	6.50	7.02	7.50	8.10
al Dim	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900	2000
Physical Dimensions	Thickness of flange*1 (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50	50/110
	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750	1800
	Diameter of connection bolt hole × qty	ing (mm)	Ø 33 × 12	Ø33×12	Ø 33×12	Ø 33×12	Ø 33×12	Ø33×12	Ø33×12	Ø33×12	Ø39×12	Ø 39 × 12	Ø 39 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16	Ø 45 × 12
	Bolt size (assumption	n) (-)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36	M39	M39	M42
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8	5.8
	Total height	(mm)	407.9	390.4	388.3	376.9	422.2	413.1	410.8	402.4	400.6	390.2	385.6	376.9	405.5	410.2	522.0
	Total weight	(tonf)	0.66	0.72	0.80	0.90	1.21	1.31	1.49	1.59	1.77	2.05	2.38	2.65	3.46	4.05	6.64
	Total weight	(kN)	6.5	7.0	7.9	8.9	11.9	12.9	14.6	15.6	17.3	20.1	23.3	26.0	33.9	39.7	65.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	43	52	58	69	78	89	102	113	122	136	148	160	173	185	200
		$[\gamma_0, \sigma_0]$	(0,22)	(0,30)	(0,35)	(0,42)	(0,48)	(0,52)	(0,56)	(0,59)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)
Properties	Ultimate compressive stress [N/mm²]	$[\gamma_1, \sigma_1]$	(1.5,22)	(1.4,30)	(1.4,35)	(1.5,42)	(1.6,48)	(1.8,52)	(2.1,56)	(2.3,59)	(2.5,60)	(3.1,60)	(3.6,60)	(3.8,60)	(3.8,60)	(3.9,60)	(3.9,60)
n Prop	[[[]]	$[\gamma_2, \sigma_2]$	(2.7,4)	(3.0,5)	(3.1,6)	(3.4,7)	(3.4,11)	(3.5,17)	(3.5,23)	(3.6,29)	(3.6,34)	(3.7,46)	(3.7,56)	-	-	-	-
Compression	Compressive stiffness	(×10 ³ kN/m)	1970	2340	2660	3090	3510	3970	4490	4980	5450	6590	7860	9220	10700	12300	14200
Comp	Nominal long term compressive stress	(N/mm²)	6.6	8.1	9.1	10.7	12.0	13.4	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	1860	2690	3500	4710	6050	7620	9540	10600	11800	14200	16900	19900	23000	26500	30100
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
100%]	Initial stiffness	(×10 ³ kN/m)	5.19	6.15	6.99	8.10	9.23	10.4	11.8	13.1	14.3	17.4	20.7	24.3	28.3	32.4	37.3
(y = 1	Post yield stiffness $[\gamma = 100\%]$	(×10 ³ kN/m)	0.519	0.615	0.699	0.810	0.923	1.04	1.18	1.31	1.43	1.74	2.07	2.43	2.83	3.24	3.73
oerties	Characteristic Strength	(kN)	71.5	83.9	97.3	112	127	143	161	179	199	240	285	335	389	446	507
Shear Properties (γ =	Equivalent shear stiffness	(×10³kN/m)	0.876	1.04	1.18	1.37	1.56	1.76	1.99	2.21	2.42	2.94	3.50	4.11	4.77	5.47	6.29
	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240
×1 Spec	cial thickness for flange is avai	ilable. Please refer to	the table	above for	more det	ails.											

^{*1} Special thickness for flange is available. Please refer to the table above for more deta

MVBR-0510/MVBR-0519 (X0.4S)

Note: There are 2 certification numbers due to difference of some manufacturing process.

Please refer to "Precautions" in page 6 for the certificate number that used for design document.

OHL Series (Total Rubber Thickness 16cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X4S	X0.4S	0.392	0.240

	TIE OCITES (TOTAL TRUBBEL T				,				X45	XU.45	J 9.	392	0.2	
	Characteristic	S	HL060X4S	HL065X4S	HL070X4S	HL075X4S	HL080X4S	HL085X4S	HL090X4S	HL095X4S	HL100X4S	HL110X4S	HL120X4S	HL130X4S
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55
	Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249
	Thickness of one rubl	ber (mm)	3.95	4.4	4.9	4.85	5.1	5.25	5.65	6.00	6.35	7.2	7.7	8.0
	Number of rubber layers	(-)	41	37	34	34	33	32	30	28	26	23	22	21
	Total rubber thicknes	s (mm)	162	163	167	165	168	168	170	168	165	166	169	168
m m	First shape factor	(-)	37.0	36.1	34.9	37.9	38.2	39.5	38.9	38.8	38.4	36.3	37.2	38.9
Physical Dimensions	Second shape factor	(-)	3.70	3.99	4.20	4.55	4.75	5.06	5.31	5.65	6.06	6.64	7.08	7.74
al Dime	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700
hysica	Thickness of flange (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
ш.	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550
	Diameter of connection bolt hole × qty	ng (mm)	Ø 33 × 12	Ø 33 × 12	Ø 33×12	Ø 33 × 12	Ø 39 × 12							
	Bolt size (assumption) (–)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36
	Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8
	Total height	(mm)	342.0	330.4	324.9	323.2	373.1	368.4	369.1	358.8	347.1	338.4	341.8	364.0
	Total weight	(tonf)	0.58	0.64	0.70	0.82	1.12	1.23	1.40	1.49	1.63	1.88	2.22	2.80
	Total weight	(kN)	5.7	6.3	6.9	8.1	11.0	12.1	13.7	14.6	15.9	18.4	21.8	27.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0	34	38	40	45	48	51	54	58	62	68	72	79
		$[\gamma_0, \sigma_0]$	(0,27)	(0,30)	(0,37)	(0,40)	(0,43)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.8,27)	(0.8,30)	(0.3,37)	(0.4,40)	(0.5,43)	(0.6,45)	(0.9,45)	(1.2,45)	(1.6,45)	(2.2,45)	(2.7,45)	(3.3,45)
ᇿ	(14)	$[\gamma_2, \sigma_2]$	(3.3,3)	(3.6,4)	(3.8,4)	(3.9,6)	(4.0,8)	(4.0,11)	(4.0,13)	[4.0,17]	(4.0,21)	(4.0,27)	(4.0,31)	(4.0,38)
Compression	Compressive stiffness	(×10 ³ kN/m)	2110	2450	2760	3240	3620	4110	4560	5120	5770	6890	8050	9590
Compr	Nominal long term compressive stress*	1 (N/mm²)	6.9	7.8	10.1	11.5	12.3	13.0	13.0	13.0	13.0	13.0	13.0	13.0
	Nominal long term column load	(kN)	1940	2580	3900	5060	6160	7370	8270	9210	10200	12300	14700	17200
	Allowable tensile stre $(\gamma = 100\%)$	(N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
= 100%]	Initial stiffness	(×10 ³ kN/m)	4.05	4.73	5.36	6.21	6.93	7.83	8.71	9.79	11.0	13.3	15.5	18.3
$(\gamma = 10)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.405	0.473	0.536	0.621	0.693	0.783	0.871	0.979	1.10	1.33	1.55	1.83
Shear Properties (γ	Characteristic Strength	(kN)	45.2	53.0	61.5	70.6	80.3	90.7	102	113	126	152	181	212
, Prop	Equivalent shear stiffness	(×10 ³ kN/m)	0.684	0.799	0.905	1.05	1.17	1.32	1.47	1.65	1.86	2.24	2.61	3.09
Shear	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240
	ninal long term compressive s	stress is referred as	long term u	pper limit of	compressive	stress.								

X1 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

Code

MVBR-0514/MVBR-0520 (X0.6R)

Note: There are 2 certification numbers due to difference of some manufacturing process.

Please refer to "Precautions" in page 6 for the certificate number that used for design document.

OHI Series (Total Rubber Thickn	ness 16cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X6R	X0.6R	0.620	0.240

	Characteristic	es .	HL060X6R	HL065X6R	HL070X6R	HL075X6R	HL080X6R	HL085X6R	HL090X6R	HL100X6R	HL110X6R	HL120X6R	HL130X6R
	Outer diameter	(mm)	600	650	700	750	800	850	900	1000	1100	1200	1300
	Inner diameter	(mm)	15	15	15	15	20	20	20	25	55	55	55
	Effective plane area	(×10 ² mm ²)	2826	3317	3847	4416	5023	5671	6359	7849	9480	11286	13249
	Thickness of one rub	ber (mm)	3.95	4.4	4.9	4.85	5.1	5.25	5.65	6.35	7.2	7.7	8.0
	Number of rubber layers	(-)	41	37	34	34	33	32	30	26	23	22	21
	Total rubber thicknes	ss (mm)	162	163	167	165	168	168	170	165	166	169	168
	First shape factor	(-)	37.0	36.1	34.9	37.9	38.2	39.5	38.9	38.4	36.3	37.2	38.9
nsions	Second shape factor	(-)	3.70	3.99	4.20	4.55	4.75	5.06	5.31	6.06	6.64	7.08	7.74
I Dime	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1400	1500	1600	1700
Physical Dimensions	Thickness of flange (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	30/38	32/40	32/40
	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1250	1350	1450	1550
	Diameter of connection bolt hole x qty	ing (mm)	Ø 33 × 12	Ø 39 × 12									
	Bolt size (assumption	n) (–)	M30	M36	M36	M36	M36						
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	5.8
	Total height	(mm)	342.0	330.4	324.9	323.2	373.1	368.4	369.1	347.1	338.4	341.8	364.0
	Total weight	(tonf)	0.58	0.64	0.70	0.82	1.12	1.23	1.40	1.63	1.88	2.22	2.80
	Total weight	(kN)	5.7	6.3	6.9	8.1	11.0	12.1	13.7	15.9	18.4	21.8	27.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	67	78	86	102	111	125	131	149	164	175	191
		$[\gamma_0, \sigma_0]$	(0,41)	(0,48)	(0,51)	(0,56)	(0,59)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(1.4,41)	(1.5,48)	(1.7,51)	(2.1,56)	(2.2,59)	(2.6,60)	(2.9,60)	(3.6,60)	(3.8,60)	(3.8,60)	(3.9,60)
	[14/ 11111]	$[\gamma_2, \sigma_2]$	(3.3,7)	(3.4,11)	(3.5,15)	(3.5,23)	(3.6,28)	(3.6,36)	(3.6,41)	(3.7,57)	_	_	_
Compression	Compressive stiffness	(×10 ³ kN/m)	2440	2840	3200	3760	4190	4760	5280	6680	7990	9330	11100
Compr	Nominal long term compressive stress	(N/mm²)	10.4	12.0	13.1	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	2940	3970	5040	6620	7540	8510	9540	11800	14200	16900	19900
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
= 100%]	Initial stiffness	(×10 ³ kN/m)	6.40	7.48	8.47	9.83	11.0	12.4	13.8	17.4	21.0	24.5	28.9
$(\gamma = 10)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.640	0.748	0.847	0.983	1.10	1.24	1.38	1.74	2.10	2.45	2.89
erties	Characteristic Strength	(kN)	71.5	83.9	97.3	112	127	143	161	199	240	285	335
Shear Properties (γ	Equivalent shear stiffness	(×10 ³ kN/m)	1.08	1.26	1.43	1.66	1.85	2.09	2.33	2.95	3.55	4.13	4.89
Shear	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240

Code

MVBR-0510/MVBR-0519 (X0.4S)

Note: There are 2 certification numbers due to difference of some manufacturing process.

Please refer to "Precautions" in page 6 for the certificate number that used for design document.

OHT Series (Total Rubber Thickness 25cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X4S	X0.4S	0.392	0.240

	The Control (Control Control										
	Characteristic	cs	HT090X4S	HT095X4S	HT100X4S	HT110X4S	HT120X4S	HT130X4S	HT140X4S	HT150X4S	HT160X4S
	Outer diameter	(mm)	900	950	1000	1100	1200	1300	1400	1500	1600
	Inner diameter	(mm)	20	20	25	55	55	55	65	65	80
	Effective plane area	(×10² mm²)	6359	7085	7849	9480	11286	13249	15361	17638	20056
	Thickness of one rub	ber (mm)	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0	10.4
	Number of rubber layers	(-)	42	39	37	34	31	29	26	25	24
	Total rubber thicknes	ss (mm)	252	250	248	252	248	252	247	250	250
_ω	First shape factor	(-)	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9	36.5
ension	Second shape factor	(-)	3.57	3.81	4.03	4.37	4.84	5.15	5.67	6.00	6.41
al Dim	Diameter of flange	(mm)	1250	1300	1400	1500	1600	1700	1800	1900	2000
Physical Dimensions	Thickness of flange*1 (edge/center)	(mm)	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50	50/110
"	Connecting bolt PCD	(mm)	1100	1150	1250	1350	1450	1550	1650	1750	1800
	Diameter of connection bolt hole × qty	ing (mm)	Ø 33 × 12	Ø 33 × 12	Ø 39 × 12	Ø 39 × 12	Ø 39 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16	Ø 45 × 12
	Bolt size (assumption	n) (–)	M30	M30	M36	M36	M36	M36	M39	M39	M42
	Thickness of each reinforced steel plate	e (mm)	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8	5.8
	Total height	(mm)	504.4	488.8	478.3	472.8	460.0	455.5	482.0	489.2	603.0
	Total weight	(tonf)	1.73	1.83	2.00	2.34	2.68	3.01	3.90	4.56	7.22
	Total weight	(kN)	16.9	18.0	19.6	22.9	26.2	29.5	38.2	44.7	70.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma = 0$	33	35	38	43	49	52	58	61	65
		$[\gamma_0, \sigma_0]$	(0,26)	(0,28)	(0,35)	(0,39)	(0,43)	(0,45)	(0,45)	(0,45)	(0,45)
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.8,26)	(0.8,28)	(0.3,35)	(0.4,39)	(0.5,43)	(0.7,45)	(1.2,45)	(1.6,45)	(2.0,45)
	(14 mm)	$[\gamma_2, \sigma_2]$	(3.2,3)	(3.4,4)	(3.6,4)	(3.9,5)	(4.0,9)	(4.0,12)	(4.0,17)	(4.0,20)	(4.0,25)
Compression	Compressive stiffness	(×10³kN/m)	3040	3420	3810	4520	5470	6310	7450	8480	9690
Сотр	Nominal long term compressive stress*	₂ (N/mm ²)	6.4	7.2	9.5	10.8	12.6	13.0	13.0	13.0	13.0
	Nominal long term column load	(kN)	4090	5090	7450	10200	14200	17200	20000	22900	26100
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
= 100%]	Initial stiffness	(×10 ³ kN/m)	5.86	6.59	7.35	8.74	10.6	12.2	14.4	16.4	18.6
(y = 1	Post yield stiffness $(\gamma = 100\%)$	(×10³kN/m)	0.586	0.659	0.735	0.874	1.06	1.22	1.44	1.64	1.86
Properties (γ	Characteristic Strength	(kN)	102	113	126	152	181	212	246	282	321
r Prop	Equivalent shear stiffness	(×10³kN/m)	0.989	1.11	1.24	1.48	1.78	2.06	2.44	2.77	3.15
Shear	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240
274.0	cial thickness for flange is ava	ilable Please refer to	the table on the	nevt nage (unne	on ton table) for	more detaile				_	

^{×1} Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details. ×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

Outer diameter of rubber bearing $[\varnothing]^{*1}$	(900)	(950)	1000	1100	1200	1300
Standard thickness	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(37/45)	(37/45)	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

MVBR-0514/MVBR-0520 (X0.6R)

Note: There are 2 certification numbers due to difference of some manufacturing process.

Please refer to "Precautions" in page 6 for the certificate number that used for design document.

OHT Series (Total Rubber Thickness 25cm)

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X6R	X0.6R	0.620	0.240

	•			25cmj			XE	iR X0.6R	0.620		0.240
	Characteristic	s	HT090X6R	HT095X6R	HT100X6R	HT110X6R	HT120X6R	HT130X6R	HT140X6R	HT150X6R	HT160X6R
	Outer diameter	(mm)	900	950	1000	1100	1200	1300	1400	1500	1600
	Inner diameter	(mm)	20	20	25	55	55	55	65	65	80
	Effective plane area	(×10² mm²)	6359	7085	7849	9480	11286	13249	15361	17638	20056
	Thickness of one rubl	ber (mm)	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0	10.4
	Number of rubber layers	(-)	42	39	37	34	31	29	26	25	24
	Total rubber thicknes	s (mm)	252	250	248	252	248	252	247	250	250
m	First shape factor	(-)	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9	36.5
Physical Dimensions	Second shape factor	(-)	3.57	3.81	4.03	4.37	4.84	5.15	5.67	6.00	6.41
l Dime	Diameter of flange	(mm)	1250	1300	1400	1500	1600	1700	1800	1900	2000
	Thickness of flange*1 (edge/center)	(mm)	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50	50/110
	Connecting bolt PCD	(mm)	1100	1150	1250	1350	1450	1550	1650	1750	1800
	Diameter of connecti bolt hole × qty	ing (mm)	Ø 33 × 12	Ø 33 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16	Ø 45 × 12			
	Bolt size (assumption	M30	M30	M36	M36	M36	M36	M39	M39	M42	
	Thickness of each reinforced steel plate	(mm)	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8	5.8
	Total height	(mm)	504.4	488.8	478.3	472.8	460.0	455.5	482.0	489.2	603.0
	Total weight	(tonf)	1.73	1.83	2.00	2.34	2.68	3.01	3.90	4.56	7.22
	Total weight	(kN)	16.9	18.0	19.6	22.9	26.2	29.5	38.2	44.7	70.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	62	71	80	94	115	127	140	148	158
		$[\gamma_0, \sigma_0]$	(0,38)	(0,43)	(0,48)	(0,53)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	[1.4,38]	(1.5,43)	(1.6,48)	(1.9,53)	(2.3,60)	(2.7,60)	(3.2,60)	(3.6,60)	(3.8,60)
<u>ā</u>	,	$[\gamma_2, \sigma_2]$	(3.2,6)	(3.4,8)	(3.4,12)	(3.5,19)	(3.6,30)	(3.6,38)	(3.7,49)	(3.7,56)	-
Compression	Compressive stiffness	(×10³kN/m)	3530	3960	4420	5240	6340	7310	8640	9830	11200
Comp	Nominal long term compressive stress	(N/mm²)	9.7	11.0	12.2	14.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	6170	7790	9580	13300	16900	19900	23000	26500	30100
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
100%]	Initial stiffness	(×10 ³ kN/m)	9.26	10.4	11.6	13.8	16.7	19.3	22.8	25.9	29.5
ll l	Post yield stiffness $[\gamma = 100\%]$	(×10³kN/m)	0.926	1.04	1.16	1.38	1.67	1.93	2.28	2.59	2.95
oerties	Characteristic Strength	(kN)	161	179	199	240	285	335	389	446	507
Shear Properties (γ	Equivalent shear stiffness	(×10 ³ kN/m)	1.56	1.76	1.96	2.34	2.82	3.26	3.86	4.37	4.98
Shea	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240

^{*1} Special thickness for flange is available. Please refer to the table above for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	(30/36)	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

$$\label{eq:mapping} \begin{split} &\text{MVBR-0510} / \text{MVBR-0519 (X0.4S)} \\ &\text{Note: There are 2 certification numbers due to difference of some manufacturing process.} \\ &\text{Please refer to "Precautions" in page 6 for the certificate number that used for design document.} \\ &\text{PS Series (S}_2 = 5) \end{split}$$

Compound name	Rubber code	Shear modulus (N/mm²)	Equivalent damping ratio
X4S	X0.4S	0.392	0.240

UFI	●HS Series (S ₂ = 5)										0.0	392	0.2	40
	Characteristic	cs	HS070X4S	HS075X4S	HS080X4S	HS085X4S	HS090X4S	HS095X4S	HS100X4S	HS110X4S	HS120X4S	HS130X4S	HS140X4S	HU150X4S
	Outer diameter	(mm)	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
	Inner diameter	(mm)	15	15	20	20	20	20	25	55	55	55	65	65
	Effective plane area	(×10² mm²)	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249	15361	17638
	Thickness of one rub	ber (mm)	4.7	5	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.3	8.5
	Number of rubber layers	(-)	30	30	30	30	30	30	30	30	30	30	30	35
	Total rubber thicknes	ss (mm)	141	150	162	171	180	192	201	222	240	261	279	298
<u>ග</u>	First shape factor	(-)	36.4	36.8	36.1	36.4	36.7	36.3	36.4	35.3	35.8	35.8	35.9	42.2
ension	Second shape factor	(-)	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00	4.98	5.02	5.04
mi O le	Diameter of flange	(mm)	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900
Physical Dimensions	Thickness of flange*1 (edge/center)	(mm)	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	50/100
	Connecting bolt PCD	(mm)	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750
	Diameter of connection bolt hole × qty	ing (mm)	Ø 33 × 12	Ø 33 × 12	Ø 33×12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16			
	Bolt size (assumption	n) (-)	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36	M39	M39
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8
	Total height	(mm)	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6	468.6	537.2	694.7
	Total weight	(tonf)	0.65	0.77	1.07	1.19	1.41	1.56	1.77	2.17	2.63	3.07	4.24	7.04
	Total weight	(kN)	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8	30.1	41.6	69.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma = 0$	50	51	50	50	51	50	51	50	51	51	51	51
		$[\gamma_0, \sigma_0]$	(0,45)	(0,45)	(0,44)	(0,45)	(0,45)	(0,44)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)	(0,45)
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.5,45)	(0.6,45)	(0.6,44)	(0.5,45)	(0.6,45)	(0.6,44)	(0.5,45)	(0.5,45)	(0.6,45)	(0.6,45)	(0.6,45)	(0.6,45)
۳	, ,	$[\gamma_2, \sigma_2]$	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,10)	(4.0,11)
Compression	Compressive stiffness	(×10³kN/m)	3290	3550	3730	4000	4260	4440	4700	5120	5650	6100	6620	7280
Comp	Nominal long term compressive stress*	₂ (N/mm ²)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
	Nominal long term column load	(kN)	5000	5740	6530	7370	8270	9210	10200	12300	14700	17200	20000	22900
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
[%00]	Initial stiffness	(×10 ³ kN/m)	6.33	6.83	7.20	7.70	8.20	8.56	9.06	9.91	10.9	11.8	12.8	13.8
$(\gamma = 1)$	Post yield stiffness $[\gamma = 100\%]$	(×10³kN/m)	0.633	0.683	0.720	0.770	0.820	0.856	0.906	0.991	1.091	1.178	1.278	1.376
Shear Properties ($\gamma=100\%$	Characteristic Strength	(kN)	61.5	70.6	80.3	90.7	102	113	126	152	181	212	246	282
ar Prop	Equivalent shear stiffness	(×10 ³ kN/m)	1.07	1.15	1.22	1.30	1.38	1.45	1.53	1.67	1.84	1.99	2.16	2.32
	Equivalent damping ratio	(-)	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240

^{×1} Special thickness for flange is available. Please refer to the table above for more details.
×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress.

Certification Number MVBR-0514 (X0.6R)

oci milodiidii ivivali i oo i + (//o.o/i)	Compound	Rubber	Shear modulus	Equivalent damping
	name	code	(N/mm²)	ratio
●HD Series (Total Rubber Thickness 32cm)	X6R	X0.6R	0.620	0.240

	Characteristic	s	HD160X6R	HD170X6R	HD180X6R
	Outer diameter	(mm)	1600	1700	1800
	Inner diameter	(mm)	80	85	5 – Ø55
	Effective plane area	(×10 ² mm ²)	20056	22641	25328
	Thickness of one rub	ber (mm)	10.4	10.4	11.1
	Number of rubber layers	(-)	31	31	29
	Total rubber thicknes	s (mm)	322	322	322
10	First shape factor	(-)	36.5	38.8	35.0
nsions	Second shape factor	(-)	4.96	5.27	5.59
I Dime	Diameter of flange	(mm)	2000	□ 1980	□ 2080
Physical Dimensions	Thickness of flange (edge/center)	(mm)	50/100	50/100	50/100
	Connecting bolt PCD	(mm)	1800	-	-
	Diameter of connection bolt hole × qty	ing (mm)	Ø 45 × 12	Ø 45 × 24	Ø 45 × 24
	Bolt size (assumption	n) (-)	M42	M42	M42
	Thickness of each reinforced steel plate	e (mm)	5.8	5.8	5.8
	Total height	(mm)	696.4	696.4	684.3
	Total weight	(tonf)	7.69	9.02	9.79
	Total weight	(kN)	75.4	88.4	96.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	121	130	138
		$[\gamma_0, \sigma_0]$	(0,60)	(0,60)	(0,60)
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(2.5,60)	(2.8,60)	(3.2,60)
	[14/ 11111]	$[\gamma_2, \sigma_2]$	(3.6,34)	(3.6,41)	(3.7,41)
Compression	Compressive stiffness	(×10 ³ kN/m)	8690	9890	10900
Compr	Nominal long term compressive stress	(N/mm²)	15.0	15.0	15.0
	Nominal long term column load	(kN)	30100	34000	38000
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0
[%00	Initial stiffness	(×10 ³ kN/m)	22.8	25.8	28.9
Shear Properties $(\gamma=100\%)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.28	2.58	2.89
erties	Characteristic Strength	(kN)	507	573	641
, Prop	Equivalent shear stiffness	(×10°kN/m)	3.86	4.35	4.88
Shear	Equivalent damping ratio	(-)	0.240	0.240	0.240

Lead Rubber Bearing (LRB) ●LH Series (Total Rubber Thickness 20cm)

P.27

Outer diameter of rubber bearing, Do(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
Lead plug diameter, Dp(mm)														
370														М
360														L
350														К
340													L	J
330													К	ı
320												L	J	Н
310												K	ı	G
300											L	J	Н	А
290											К	I	G	В
280											J	Н	Α	С
270										К	I	G	В	D
260										J	Н	А	С	Е
250									K	I	G	В	D	F
240								K	J	Н	А	С	E	S
230							K	J	I	G	В	D	F	Т
220						К	J	- 1	Н	Α	С	E	S	
210						J	- 1	Н	G	В	D	F	Т	
200					J	- 1	Н	G	Α	С	E	S		
190				J	I	Н	G	Α	В	D	F			
180			J	1	Н	G	Α	В	С	E	S			
170		J	1	Н	G	Α	В	С	D	F				
160	J	- 1	Н	G	Α	В	С	D	Е					
150	I	Н	G	А	В	С	D	E	F					
140	Н	G	Α	В	С	D	Е	F						
130	G	А	В	С	D	Е	F							
120	Α	В	С	D	Е	F								
110	В	С	D	E										
100	С	D	Е											
90	D	E												
80	Е													

●LL Series (Total Rubber Thickness 16cm)

P.36

Outer diameter of rubber bearing, Do(mm)												
Lead plug diameter, Dp(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300
320												L
310												К
300											L	J
290											K	1
280											J	Н
270										K	- 1	G
260										J	Н	Α
250									К	- 1	G	В
240								K	J	Н	Α	С
230							К	J	I	G	В	D
220						К	J	I	Н	Α	С	E
210						J	I	Н	G	В	D	F
200					J	I	Н	G	Α	С	E	S
190				J	I	Н	G	А	В	D	F	
180			J	ı	Н	G	Α	В	С	E	S	
170		J	I	Н	G	Α	В	С	D	F		
160	J	1	Н	G	A	В	С	D	E			
150	1	Н	G	Α	В	С	D	E	F			
140	Н	G	A	В	С	D	E	F				
130	G	A	В	С	D	E	F					
120	A	В	С	D	E	F						
110	В	C	D	E								
100	С	D	E									
90	D	E										
80	E											

●LT Series (Total Rubber Thickness 25cm)

P.43 •LD Series (Total Rubber Thickness 32cm) P.50

Outer diameter of rubber bearing, Do(mm) Lead plug diameter, Dp(mm)	900	950	1000	1100	1200	1300	1400	1500	1600
390									M
380									L
370								М	K
360								L	J
350								K	ı
340							L	J	Н
330							К	ı	G
320						L	J	Н	Α
310						К	ı	G	В
300					L	J	Н	Α	С
290					К	- 1	G	В	D
280					J	Н	Α	С	Е
270				К	ı	G	В	D	F
260				J	Н	Α	С	Е	S
250			K	ı	G	В	D	F	Т
240		К	J	Н	Α	С	E	S	
230	К	J	I	G	В	D	F	Т	
220	J	- 1	Н	Α	С	Е	S		
210	ı	Н	G	В	D	F	Т		
200	Н	G	Α	С	Е	S			
190	G	Α	В	D	F				
180	Α	В	С	E	S				
170	В	С	D	F					
160	С	D	Е						
150	D	E	F						
140	E	F							
130	F								

Outer diameter of rubber bearing, Do(mm) Lead plug diameter, Dp(mm)	1600	1700	1800
215 × 4			М
210 × 4			L
205 × 4			К
200 × 4		L	J
390	М	К	- 1
380	L	J	Н
370	K	- 1	G
360	J	Н	Α
350	I	G	В
340	Н	Α	С
330	G	В	D
320	Α	С	Е
310	В	D	F
300	С	Е	S
290	D	F	
280	Е	S	
270	F		
260	S		
250	T		

●LS Series (S₂=5)

P.53

O. * dif bi D-()													1	
Outer diameter of rubber bearing, Do(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
Lead plug diameter, Dp(mm)														
370														М
360														L
350														К
340													L	J
330													K	I
320												L	J	Н
310												К	I	G
300											L	J	Н	Α
290											K	I	G	В
280											J	Н	А	С
270										K	I	G	В	D
260										J	Н	Α	С	Е
250									К	I	G	В	D	F
240								К	J	Н	А	С	E	S
230							K	J	I	G	В	D	F	Т
220						K	J	- 1	Н	Α	С	E	S	
210						J	- 1	Н	G	В	D	F	T	
200					J	- 1	Н	G	Α	С	Е	S		
190				J	1	Н	G	Α	В	D	F			
180			J	- 1	Н	G	А	В	С	Е	S			
170		J	1	Н	G	Α	В	С	D	F				
160	J	- 1	Н	G	Α	В	С	D	Е					
150	I	Н	G	Α	В	С	D	E	F					
140	Н	G	Α	В	С	D	Е	F						
130	G	Α	В	С	D	E	F							
120	Α	В	С	D	Е	F								
110	В	С	D	E										
100	С	D	Е											
90	D	E												
80	Е													

Type of lead plug															(mm)
Туре	Т	S	F	Е	D	С	В	Α	G	Н	-1	J	К	L	М
Lead plug diameter	A-70	A-60	A-50	A-40	A-30	A-20	A-10	Do/5	A+10	A+20	A+30	A+40	A+50	A+60	A+70

 $[\]ensuremath{^\star} \text{assortment}$ of lead plug diameter is depending on the size of rubber bearing.

OLH Series (Total Rubber Thickness 20cm

Code

 Compound name
 Rubber code
 Shear modulus (N/mm²)

 64
 G0.40
 0.385

Thickness of one rubber (mm)	•L	l Series (Total	Rubber T	hick	ness	20	cm)									-	me 34	G0.40)	0.385	
March dameter March Marc		Characteristic	s	F		С		.H060G		Н			F	П	C		H065G		Н		.1
Efficiency plane area (x10° mm²) 2777 2784 2782 2782 2782 2782 2882 2872 2882		Outer diameter	(mm)		<u>, , , , , , , , , , , , , , , , , , , </u>	, 0	<u>, </u>	600	, 0		<u> </u>	<u> </u>			, 0		650	0		•	
Thickness of one hubbor (mm) 100		Lead plug diameter	(mm)	80	90	100	110	120	130	140	150	160	90	100	110	120	130	140	150	160	170
Number of rulabler Immail Number of rulabler Immail Imma		Effective plane area	(×10 ² mm ²)	2777	2764	2749	2732	2714	2695	2673	2651	2626	3255	3240	3223	3205	3186	3164	3142	3117	3091
Mary			oer (mm)					4.0									4.4				
First shape factor C			(-)					50									45				
Second shape factor C		Total rubber thicknes	s (mm)					200									198				
Connecting bolt PCID (mm)	v	First shape factor	(-)					37.5									36.9				
Connecting bolt PCID (mm)	ension	Second shape factor	[-]					3.00									3.28				
Connecting bolt PCID (mm)	al Dim		(mm)					900									950				
Diameter of connecting both hole x dyy Grant Cloud Clo	Physic		(mm)					22/28	1								22/28	l			
Bot size assumption C								775									825				
Total height (mm)			ng (mm)				Q	33×1	2							Ø	33 × 1	2			
Peinforced steel plate) (-)					M30									M30				
Total weight (tonf) 0.67 0.68 0.68 0.69 0.69 0.70 0.70 0.71 0.71 0.74 0.74 0.74 0.74 0.75 0.76 0.76 0.76 0.76 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78			(mm)					3.1									3.1				
Total weight (kN) 6.6 6.7 6.8 6.8 6.9 6.9 6.9 6.9 6.9 7.0 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6		Total height	(mm)					407.9									390.4				
Critical stress Growner Critical stress Growner Critical stress Critical		Total weight	(tonf)	0.67	0.68	0.68	0.69	0.69	0.70	0.70	0.71	0.71	0.74	0.74	0.74	0.75	0.75	0.76	0.77	0.77	0.78
Compressive stress Compres		Total weight	(kN)	6.6	6.6	6.7	6.7	6.8	6.8	6.9	6.9	7.0	7.2	7.2	7.3	7.3	7.4	7.4	7.5	7.6	7.6
Ultimate compressive stress (N/mm²) (0.00,24) (0.00,30)			$\sigma_{\rm cr}$ when γ = 0					24									30				
Compressive stress (\(\chi_{\chi_{e}}\sigma_{e}\) (\(\chi_{\chi_{e}}\sigma_{e}\)) (\(\chi_{\chi_{e}}\sigma_{e}\) (\(\chi_{\chi_{e}}\sigma_{e}\)) (\(\chi_{\chi_{e}}\sigma_{e}\sigma_{e}\sigma_{e}\)) (\(\chi_{\chi_{e}}\sigma_{e}\	"	Liltimata	$[\gamma_0, \sigma_0]$				[[0.00,24	1)							(0	0.00,30	0)			
Nominal long term column load (kN) 1670 1660 1650 1640 1630 1620 1600 1590 1580 2370 2360 2350 2330 2320 2300 2290 2270 2250 23	perties	compressive stress	$[\gamma_1, \sigma_1]$,		((0.00,24	1)	,						(0	0.00,30	0)			
Nominal long term column load (kN) 1670 1660 1650 1640 1630 1620 1600 1590 1580 2370 2360 2350 2330 2320 2300 2290 2270 2250 23	n Pro		$[\gamma_2, \sigma_2]$				((3.00,2)							(3.28,3)			
Nominal long term column load (kN) 1670 1660 1650 1640 1630 1620 1600 1590 1580 2370 2360 2350 2330 2320 2300 2290 2270 2250 23	ressio		(×10 ³ kN/m)					1670									1970				
Column load CN 160 16	Comp	Nominal long term compressive stress	(N/mm²)					6.0									7.3				
(γ = 100%) (10/mm²) (10/mm			(kN)	1670	1660	1650	1640	1630	1620	1600	1590	1580	2370	2360	2350	2330	2320	2300	2290	2270	2250
Post yield stiffness (x10³kN/m) 0.549 0.551 0.552 0.554 0.555 0.557 0.560 0.562 0.564 0.652 0.653 0.655 0.657 0.658 0.661 0.663 0.665 0.6			(N/mm²)					1.0									1.0				
Post yield stiffness (x10³kN/m) 0.549 0.551 0.552 0.554 0.555 0.557 0.560 0.562 0.564 0.652 0.653 0.655 0.657 0.658 0.661 0.663 0.665 0.6	[%00]		(×10 ³ kN/m)	7.14	7.16	7.18	7.20	7.22	7.25	7.27	7.30	7.33	8.47	8.49	8.51	8.53	8.56	8.59	8.62	8.65	8.68
	H II	$(\gamma = 100\%)$	(×10 ³ kN/m)	0.549	0.551	0.552	0.554	0.555	0.557	0.560	0.562	0.564	0.652	0.653	0.655	0.657	0.658	0.661	0.663	0.665	0.668
	perties	Strength	(kN)	40.0	50.7	62.6	75.7	90.1	106	123	141	160	50.7	62.6	75.7	90.1	106	123	141	160	181
	ar Pro	stiffness	(×10 ³ kN/m)	0.749	0.804	0.865	0.932	1.01	1.09	1.17	1.27	1.37	0.908	0.969	1.04	1.11	1.19	1.28	1.37	1.47	1.58
		ratio	· ·						0.285	0.302	0.317	0.329	0.174	0.199	0.223	0.246	0.266	0.284	0.300	0.314	0.326

 $[\]times 1$ Special thickness for flange is available. Please refer to the table on page 29 for more details.

	O						.H070G	4							L	H075G	4			
	Characteristic	S	Е	D	С	В	Α	G	Н		J	Е	D	С	В	Α	G	Н		J
	Outer diameter	(mm)					700				I					750				1
	Lead plug diameter	(mm)	100	110	120	130	140	150	160	170	180	110	120	130	140	150	160	170	180	190
	Effective plane area	(×10 ² mm ²)	3770	3753	3735	3716	3695	3672	3647	3621	3594	4323	4305	4285	4264	4241	4217	4191	4163	4134
	Thickness of one rubl	oer (mm)					4.7									5.0				
	Number of rubber layers	(-)					43									40				
	Total rubber thicknes	s (mm)					202									200				
ñ	First shape factor	(-)					37.2									37.5				
Dimensions	Second shape factor	(-)					3.46									3.75				
al Dim	Diameter of flange	(mm)					1000									1100				-
Physical I	Thickness of flange*1 [edge/center]	(mm)					22/28								:	22/28	}			
	Connecting bolt PCD	(mm)					875									950				
	Diameter of connecti bolt hole × qty	ng (mm)				Q	33×1	2							Ø	33×1	2			,
	Bolt size (assumption) (-)					M30									M30				
	Thickness of each reinforced steel plate	(mm)					3.1									3.1				
	Total height	(mm)					388.3									376.9				
	Total weight	(tonf)	0.82	0.83	0.83	0.84	0.85	0.85	0.86	0.87	0.87	0.93	0.93	0.94	0.95	0.95	0.96	0.97	0.97	0.98
	Total weight	(kN)	8.1	8.1	8.2	8.2	8.3	8.4	8.4	8.5	8.6	9.1	9.2	9.2	9.3	9.3	9.4	9.5	9.5	9.6
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0					35									42				
		$[\gamma_{0}, \sigma_{0}]$				((0.00,35	5)							(0	0.00,42	2)			
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$				((0.00,35	5)							(0	0.00,42	2)			
l å	, ,	$[\gamma_2, \sigma_2]$				(3.46,3)							(3.75,4)			
Compression	Compressive stiffness	(×10 ³ kN/m)					2250									2610				
Comp	Nominal long term compressive stress	(N/mm²)					8.1									9.4				
	Nominal long term column load	(kN)	3050	3040	3020	3010	2990	2970	2950	2930	2910	4060	4040	4020	4000	3980	3960	3930	3910	3880
	Allowable tensile stre $(\gamma = 100\%)$	ss (N/mm²)					1.0									1.0				
100%]	Initial stiffness	(×10 ³ kN/m)	9.63	9.65	9.67	9.70	9.73	9.76	9.79	9.82	9.85	11.2	11.2	11.2	11.3	11.3	11.3	11.3	11.4	11.4
- 11	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.741	0.742	0.744	0.746	0.748	0.750	0.753	0.755	0.758	0.860	0.862	0.864	0.866	0.868	0.870	0.873	0.876	0.879
Shear Properties (γ	Characteristic Strength	(kN)	62.6	75.7	90.1	106	123	141	160	181	203	75.7	90.1	106	123	141	160	181	203	226
. Prop	Equivalent shear stiffness	(×10 ³ kN/m)	1.05	1.12	1.19	1.27	1.36	1.45	1.55	1.65	1.76	1.24	1.31	1.39	1.48	1.57	1.67	1.78	1.89	2.01
																				ľ

^{* :} Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

		Rubber I					H080G	4								LI	H0850	64				
	Characteristic		Е	D	С	В	A 800	G	Н	I	J	F	Е	D	С	В	850	G	Н	ı	J	K
		(mm)																				
	Lead plug diameter	(mm)	120	130	140	150	160	170	180	190	200	120	130	140	150	160	170	180	190	200	210	220
	Effective plane area	(×10 ² mm ²)	4913	4894	4873	4850	4825	4800	4772	4743	4712	5561	5542	5521	5498	5473	5448	5420	5391	5360	5328	5294
	Thickness of one rubl layer	ber (mm)					5.4										5.7					
	Number of rubber layers	[-]					37										35					
	Total rubber thicknes	s (mm)					200										200					
	First shape factor	[-]					37.0										37.3					
sions	Second shape factor	(-)					4.00										4.26					
Physical Dimensions	Diameter of flange	(mm)					1150										1200					
sical [Thickness of flange*1						24/32)									24/32					
Phy	(edge/center)						1000	•									1050					
	Connecting bolt PCD Diameter of connecti	(mm)																				
	bolt hole × qty	- (111111)					33 × 1										33 ×	12				
	Bolt size (assumption	i) (-)					M30										M30					
	Thickness of each reinforced steel plate	e (mm)					4.4										4.4					
	Total height	(mm)					422.2										413.1			•		
	Total weight	(tonf)	1.25	1.25	1.26	1.26	1.27	1.28	1.29	1.29	1.30	1.34	1.35	1.36	1.36	1.37	1.38	1.38	1.39	1.40	1.41	1.42
	Total weight	(kN)	12.2	12.3	12.3	12.4	12.5	12.5	12.6	12.7	12.8	13.2	13.2	13.3	13.4	13.4	13.5	13.6	13.7	13.7	13.8	13.9
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$					49										56					
		$[\gamma_0, \sigma_0]$				(0	0.00,49	 9)								(0	0.00,5	6)				
operties	Ultimate compressive stress	$[\gamma_1, \sigma_1]$				(C	0.00,49	 9)								(0	0.00,5	6)				
Prope	(N/mm²)	$[\gamma_2, \sigma_2]$				[-	4.00,5)								[-	4.00,9	 9)				
ssion F	Compressive	(×10 ³ kN/m)				•	2960	•									3360					
Compression	stiffness Nominal long term	(N/mm²)					10.5										11.7					
8	Compressive stress Nominal long term		5180	5160	E400	E440	5080	FOCO	E000	E000	4000	CEOO	C400	C4C0	C400	C400		C040	C200	6270	cooo	C400
	column load Allowable tensile stre		3100	3160	3130	3110		3000	3030	3000	4900	6300	0400	0400	0430	0400		0040	6300	02/0	0230	0190
	(γ = 100%)	[14/11111]					1.0										1.0					
Properties $[\gamma=100\%]$	Initial stiffness	(×10 ³ kN/m)			12.8		12.9	12.9	12.9	13.0	13.0	14.4	14.4	14.4	14.5	14.5	14.5	14.6	14.6	14.6	14.7	14.7
s (y =	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.980	0.982	0.984	0.986	0.989	0.991	0.994	0.997	1.00	1.11	1.11	1.11	1.11	1.12	1.12	1.12	1.12	1.13	1.13	1.13
oertie	Characteristic Strength	(kN)	90.1	106	123	141	160	181	203	226	250	90.1	106	123	141	160	181	203	226	250	276	303
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	1.43	1.51	1.60	1.69	1.79	1.90	2.01	2.13	2.25	1.56	1.64	1.73	1.82	1.92	2.02	2.14	2.26	2.38	2.51	2.65
Shear	Equivalent damping ratio	(-)	0.193	0.213	0.232	0.250	0.266	0.281	0.294	0.306	0.317	0.178	0.198	0.216	0.234	0.251	0.266	0.280	0.293	0.304	0.315	0.324
	I ial thickness for flange is avail	- - -	the tel	de elecci	- 6		-3-															

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

	Characteristic							10900											10950	64				
	Outer diameter	(mm)	F	E	D	С	В	900	G	H		J	<u> </u>	F	E	D	С	В	950	G	<u> </u>		J	K_
		(11111)																						
	Lead plug diameter	(mm)	130	140	150	160	170	180	190	200	210	220	230	140	150	160	170	180	190	200	210	220	230	240
	Effective plane area	(×10² mm²)	6229	6208	6185	6161	6135	6107	6078	6048	6015	5982	5946	6934	6912	6887	6861	6834	6805	6774	6742	6708	6673	6636
	Thickness of one rubl	ber (mm)						6.0											6.4					
	Number of rubber layers	(-)						33											31					
	Total rubber thicknes	s (mm)						198											198					
(0	First shape factor	(-)						37.5											37.1					
Physical Dimensions	Second shape factor	(-)						4.55											4.79					
- Dime	Diameter of flange	(mm)						1250											1300					
hysice	Thickness of flange*1 [edge/center]	(mm)					â	28/36	3									2	8/36	3				
ш	Connecting bolt PCD	(mm)						1100											1150					
	Diameter of connecti bolt hole × qty	ng (mm)					Ø	33 × 1	12									Ø	33 × '	12				
	Bolt size (assumption	ı) [– <u>)</u>						M30											M30					
	Thickness of each reinforced steel plate	(mm)						4.4											4.4					
	Total height	(mm)						410.8	3									4	102.4	,				
	Total weight	(tonf)	1.52	1.53	1.54	1.54	1.55	1.56	1.57	1.57	1.58	1.59	1.60	1.64	1.64	1.65	1.66	1.66	1.67	1.68	1.69	1.70	1.71	1.72
	Total weight	(kN)	14.9	15.0	15.1	15.1	15.2	15.3	15.4	15.4	15.5	15.6	15.7	16.0	16.1	16.2	16.2	16.3	16.4	16.5	16.6	16.6	16.7	16.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						66											74					
		$[\gamma_0, \sigma_0]$					(C).00,6	0)									(0)	.00,6	0)				
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(C	0.43,60	 D)									(0)	.98,60	 D)				
Prop	(1.0)	$[\gamma_2, \sigma_2]$					[4	1.00,14	4)									[4	.00,18	3)				
Compression Pr	Compressive stiffness	(×10 ³ kN/m)						3800											4210					
Sompr	Nominal long term compressive stress	(N/mm²)						13.0											13.0					
	Nominal long term	(kN)	8080	8060	8030	8000	7960	7930	7890	7850	7810	7760	7720	9010	8980	8950	8920	8880	8850	8810	8760	8720	8670	8630
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)						1.0											1.0					
100%]	Initial stiffness	(×10³kN/m)	16.3	16.3	16.3	16.3	16.4	16.4	16.4	16.5	16.5	16.6	16.6	18.1	18.1	18.1	18.2	18.2	18.2	18.3	18.3	18.4	18.4	18.5
- II	Post yield stiffness (y = 100%)	(×10 ³ kN/m)	1.25	1.25	1.25	1.26	1.26	1.26	1.27	1.27	1.27	1.28	1.28	1.39	1.39	1.40	1.40	1.40	1.40	1.41	1.41	1.41	1.42	1.42
Shear Properties (γ	Characteristic Strength	(kN)	106	123	141	160	181	203	226	250	276	303	331	123	141	160	181	203	226	250	276	303	331	360
, Propé	Equivalent shear stiffness	(×10 ³ kN/m)	1.78	1.87	1.97	2.07	2.17	2.29	2.41	2.53	2.67	2.80	2.95	2.01	2.10	2.20	2.31	2.42	2.54	2.67	2.80	2.94	3.09	3.24
Shear	Equivalent damping ratio	(-)	0.184	0.202	0.219	0.236	0.251	0.266	0.279	0.291	0.302	0.312	0.321	0.189	0.206	0.222	0.238	0.252	0.266	0.278	0.290	0.301	0.310	0.319
	ratio cial thickness for flange is avail																							

X : Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing $[\varnothing]^{*1}$	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

	Characteristic							1100G											H110G	4				
	Outer diameter	(mm)	F	E	D	С	В	1000	G	Н		J	K	F	Е	D	С	В	1100	G	Н		J	K
			450	400	470	400				000	000	040	050	470	400	400	000				040	050	000	070
	Lead plug diameter	(mm)			170					220			250		180							250		
	Effective plane area	(×10² mm²)	7677	7653	7627	7600	7570	7540	7508	7474	7439	7402	7363	9276	9249	9220	9189	9157	9123	9088	9051	9012	8972	8931
	Thickness of one rubl layer	ber (mm)						6.7											7.4					
	Number of rubber layers	(-)						30											27					
	Total rubber thicknes	s (mm)						201											200					
	First shape factor	(-)						37.3											37.2					
nsions	Second shape factor	[-]						4.98											5.51					
Dime	Diameter of flange	(mm)						1400							,				1500					
Physical Dimensions	Thickness of flange*1 [edge/center]	(mm)					2	28/36	3									3	80/38	3				
	Connecting bolt PCD	(mm)						1250											1350					
	Diameter of connecti bolt hole × qty	ing (mm)					Ø	39 × '	12									Ø	39 × '	12				
	Bolt size (assumption	n) (-)						M36											M36					
	Thickness of each reinforced steel plate	e (mm)						4.4											4.4					
	Total height	(mm)					4	400.6	;									;	390.2	!				
	Total weight	(tonf)	1.82	1.82	1.83	1.84	1.85	1.86	1.86	1.87	1.88	1.89	1.90	2.11	2.12	2.13	2.14	2.15	2.15	2.16	2.17	2.18	2.20	2.21
	Total weight	(kN)	17.8	17.9	18.0	18.0	18.1	18.2	18.3	18.4	18.5	18.6	18.7	20.7	20.8	20.9	21.0	21.0	21.1	21.2	21.3	21.4	21.5	21.6
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						80					,		,				89					
		$[\gamma_0, \sigma_0]$					(0	.00,6	0)									(0)	.00,6	0)				
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(1	.40,60))									(2	.01,60	0)				
	[[14] [[11]]	$[\gamma_2, \sigma_2]$					(4	.00,2	2)									(4	.00,3	1)				
Compression Pr	Compressive stiffness	(×10³kN/m)						4610											5600					
Sompr	Nominal long term compressive stress	(N/mm²)						15.0											15.0					
	Nominal long term column load	(kN)	11500	11500	11400	11400	11400	11300	11300	11200	11200	11100	11000	13900	13900	13800	13800	13700	13700	13600	13600	13500	13500	13400
	Allowable tensile stre $y = 100\%$	ess (N/mm²)						1.0							'				1.0					
10%)	Initial stiffness	(×10 ³ kN/m)	19.8	19.8	19.8	19.9	19.9	20.0	20.0	20.0	20.1	20.1	20.2	24.1	24.1	24.2	24.2	24.3	24.3	24.3	24.4	24.4	24.5	24.5
(y = 100%)	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	1.52	1.52	1.53	1.53	1.53	1.54	1.54	1.54	1.55	1.55	1.55	1.85	1.86	1.86	1.86	1.87	1.87	1.87	1.88	1.88	1.88	1.89
Shear Properties (γ	Characteristic Strength	(kN)	141	160	181	203	226	250	276	303	331	360	391	181	203	226	250	276	303	331	360	391	423	456
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	2.22	2.32	2.43	2.54	2.66	2.78	2.91	3.05	3.19	3.34	3.50	2.76	2.87	2.99	3.12	3.25	3.38	3.53	3.68	3.84	4.00	4.17
Shear	Equivalent damping ratio	(-)	0.193	0.209	0.224	0.239	0.253	0.266	0.278	0.289	0.299	0.309	0.317	0.200	0.215	0.229	0.242	0.254	0.266	0.277	0.287	0.297	0.305	0.313
× · Cnoc	ial thickness for flange is avail	lable Diease refer to	theta	blo obc	wo fon	mono	letaile																	

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

									LH120G4						
	Characteristic	S	S	F	Е	D	С	В	A	G	Н		J	K	L
	Outer diameter	(mm)							1200				1		1
	Lead plug diameter	(mm)	180	190	200	210	220	230	240	250	260	270	280	290	300
	Effective plane area	(×10 ² mm ²)	11055	11026	10996	10963	10930	10894	10857	10819	10779	10737	10694	10649	10603
	Thickness of one rubl	ber (mm)							8.0						
	Number of rubber layers	(-)							25						
	Total rubber thicknes	s (mm)							200						
<u>ග</u>	First shape factor	(-)							37.5						
Dimensions	Second shape factor	(-)							6.00						
al Dim	Diameter of flange	(mm)				,			1600				,		
Physical I	Thickness of flange*1 (edge/center)	(mm)							32/40						
	Connecting bolt PCD	(mm)							1450						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12	2					
	Bolt size (assumption	n) (-)							M36						
	Thickness of each reinforced steel plate	e (mm)							4.4						
	Total height	(mm)							385.6						
	Total weight	(tonf)	2.45	2.46	2.47	2.47	2.48	2.49	2.50	2.51	2.52	2.53	2.55	2.56	2.57
	Total weight	(kN)	24.0	24.1	24.2	24.3	24.3	24.4	24.5	24.6	24.7	24.9	25.0	25.1	25.2
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							98						
		$[\gamma_0, \sigma_0]$							(0.00,60)						
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(2.58,60)						
		$[\gamma_2, \sigma_2]$							(4.00,39)						
Compression Pr	Compressive stiffness	(×10³kN/m)							6690						
Compi	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	16600	16500	16500	16400	16400	16300	16300	16200	16200	16100	16000	16000	15900
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1.0						
[%00	Initial stiffness	(×10 ³ kN/m)	28.6	28.7	28.7	28.7	28.8	28.8	28.9	28.9	29.0	29.0	29.1	29.2	29.2
$[\gamma = 10]$	Post yield stiffness $(\gamma = 100\%)$	(×10³kN/m)	2.20	2.21	2.21	2.21	2.21	2.22	2.22	2.23	2.23	2.23	2.24	2.24	2.25
erties	Characteristic Strength	(kN)	203	226	250	276	303	331	360	391	423	456	491	526	563
, Prop.	Equivalent shear stiffness	(×10 ³ kN/m)	3.22	3.33	3.46	3.59	3.73	3.87	4.02	4.18	4.34	4.51	4.69	4.87	5.06
Shear	Equivalent damping ratio	(-)	0.193	0.206	0.219	0.232	0.244	0.255	0.266	0.276	0.285	0.294	0.302	0.310	0.317
Shear Properties $(\gamma=100\%)$	Characteristic Strength Equivalent shear stiffness Equivalent damping	(×10 ³ kN/m)	3.22	3.33	3.46	3.59	3.73	3.87	4.02	4.18	4.34	4.51	4.69	4.87	5.06

X : Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

VLI	1 Series (Total	Rubbel, 11	IICKIIE	:55 ZI	Jenij										
	Characteristic	s	S	F	E	D	С	В	LH130G4 A	G	Н	I	J	К	L
	Outer diameter	(mm)							1300						
	Lead plug diameter	(mm)	200	210	220	230	240	250	260	270	280	290	300	310	320
	Effective plane area	(×10 ² mm ²)	12959	12927	12893	12858	12821	12782	12742	12701	12657	12613	12566	12518	12469
	Thickness of one rub layer	ber (mm)							8.7						
	Number of rubber layers	(-)							23						
	Total rubber thicknes	ss (mm)							200						
<u>o</u>	First shape factor	[-]							37.4						
ension	Second shape factor	(-)							6.50						
le Dim	Diameter of flange	(mm)							1700						
Physical Dimensions	Thickness of flange*1 (edge/center)	(mm)							32/40						
	Connecting bolt PCD	(mm)							1550						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12	2					
	Bolt size (assumption	n) (–)							M36						
	Thickness of each reinforced steel plate	e (mm)							4.4						
	Total height	(mm)							376.9						
	Total weight	(tonf)	2.74	2.75	2.76	2.77	2.78	2.79	2.80	2.81	2.82	2.83	2.84	2.86	2.87
	Total weight	(kN)	26.9	26.9	27.0	27.1	27.2	27.3	27.4	27.5	27.6	27.8	27.9	28.0	28.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$			'	'			106						
		$[\gamma_0, \sigma_0]$							(0.00,60)	l					
perties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(3.12,60)						
Pr	,	$[\gamma_2, \sigma_2]$							(4.00,47)						
Compression	Compressive stiffness	(×10 ³ kN/m)							7830						
Comp	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	19400	19400	19300	19300	19200	19200	19100	19100	19000	18900	18800	18800	18700
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1.0						
100%]	Initial stiffness	(×10 ³ kN/m)	33.6	33.6	33.7	33.7	33.8	33.8	33.9	33.9	34.0	34.0	34.1	34.2	34.2
ll ll	Post yield stiffness $(\gamma = 100\%)$	(×10³kN/m)	2.58	2.59	2.59	2.59	2.60	2.60	2.61	2.61	2.61	2.62	2.62	2.63	2.63
Shear Properties (γ	Characteristic Strength	(kN)	250	276	303	331	360	391	423	456	491	526	563	601	641
ar Pro	Equivalent shear stiffness	(×10 ³ kN/m)	3.84	3.97	4.10	4.25	4.40	4.56	4.72	4.89	5.07	5.25	5.44	5.63	5.84
	Equivalent damping ratio	(-)	0.199	0.211	0.223	0.235	0.246	0.256	0.266	0.275	0.284	0.292	0.300	0.307	0.314
Spec	cial thickness for flange is avai	iable. Please refer to	the table a	bove for m	ore details.										

imes : Special thickness for flange is available. Please refer to the table above for more details.

	Characteristic		Т	S	F	E	D	С	LH14 B	10G4	G	Н			К	
	Outer diameter	(mm)	'					U		00	<u> </u>			<u> </u>	į K	
	Lead plug diameter	(mm)	210	220	230	240	250	260	270	280	290	300	310	320	330	340
	Effective plane area	(×10² mm²)	15047	15014	14978	14941	14903	14863	14821	14778	14733	14687	14639	14590	14539	14486
	Thickness of one rubl	ber (mm)							9	.5					l.	
	Number of rubber layers	[-]							2	1						
	Total rubber thicknes	s (mm)							20	00						
	First shape factor	(-)							36	6.8				,	,	
Dimensions	Second shape factor	(-)							7.0	02						
I Dime	Diameter of flange	(mm)							18	00						
Physical [Thickness of flange (edge/center)	(mm)							50/	100						
	Connecting bolt PCD	(mm)							16	50						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 42	!×12						
	Bolt size (assumption	n) (–)							M	39						
	Thickness of each reinforced steel plate	(mm)							5	.8						
	Total height	(mm)							51	5.5						
	Total weight	(tonf)	5.22	5.23	5.23	5.25	5.26	5.27	5.28	5.29	5.30	5.32	5.33	5.34	5.36	5.37
	Total weight	(kN)	51.1	51.2	51.3	51.4	51.5	51.6	51.8	51.9	52.0	52.1	52.3	52.4	52.5	52.7
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							1′	14						
		$[\gamma_0, \sigma_0]$							(0.00	0,60)						
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(3.68	3,60)						
Prop	(1.9)	$[\gamma_2, \sigma_2]$							(4.00	0,55)						
Compression	Compressive stiffness	(×10³kN/m)							90	60						
Comp	Nominal long term compressive stress	(N/mm²)							15	i.O						
	Nominal long term column load	(kN)	22600	22500	22500	22400	22400	22300	22200	22200	22100	22000	22000	21900	21800	21700
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1	.0						
[%00	Initial stiffness	(×10 ³ kN/m)	39.1	39.1	39.2	39.2	39.3	39.3	39.4	39.4	39.5	39.5	39.6	39.7	39.7	39.8
Shear Properties $(\gamma=100\%)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	3.01	3.01	3.01	3.02	3.02	3.02	3.03	3.03	3.04	3.04	3.05	3.05	3.06	3.06
erties	Characteristic Strength	(kN)	276	303	331	360	391	423	456	491	526	563	601	641	681	723
r Prop	Equivalent shear stiffness	(×10³kN/m)	4.39	4.53	4.67	4.82	4.98	5.14	5.31	5.49	5.67	5.86	6.06	6.26	6.47	6.69
Sheal	Equivalent damping ratio	(-)	0.193	0.205	0.216	0.227	0.237	0.247	0.257	0.266	0.275	0.283	0.291	0.298	0.305	0.311

	Characteristic	_								LH150G4	1						
			Т	S	F	Е	D	С	В	А	G	Н		J	К	L	М
Physical Dimensions	Outer diameter	(mm)				ı	ı			1500	ı	ı	ı	ſ	1	ſ	1
	Lead plug diameter	(mm)	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370
	Effective plane area	(×10 ² mm ²)	17256	17219	17181	17141	17099	17056	17011	16965	16917	16867	16816	16764	16709	16654	16596
	Thickness of one rubber [mm]		10.0														
	Number of rubber layers	20															
	Total rubber thicknes	200															
	First shape factor	37.5															
	Second shape factor (-)		7.50														
	Diameter of flange (mm)		1900														
	Thickness of flange [edge/center] [mm]		50/100														
	Connecting bolt PCD (mm)									1750							
	Diameter of connecting bolt hole × qty (mm)		Ø 42 × 16														
	Bolt size (assumption) (-)									M39							
	Thickness of each reinforced steel plate	5.8															
	Total height								510.2								
	Total weight	5.76	5.77	5.78	5.79	5.80	5.81	5.82	5.84	5.85	5.86	5.88	5.89	5.91	5.92	5.94	
	Total weight (kN)		56.4	56.5	56.6	56.8	56.9	57.0	57.1	57.2	57.4	57.5	57.6	57.8	57.9	58.1	58.2
Shear Properties ($\gamma=100\%$)	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	122														
		$[\gamma_0, \sigma_0]$								(0.00,60]						
	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	[4.00,60]														
		$[\gamma_2, \sigma_2]$	(4.00,60)														
	Compressive stiffness	(×10 ³ kN/m)	10400														
	Nominal long term compressive stress	(N/mm²)	15.0														
	Nominal long term column load	(kN)	25900	25800	25800	25700	25600	25600	25500	25400	25400	25300	25200	25100	25100	25000	24900
	Allowable tensile stress (N/mm ²) $\gamma = 100\%$		1.0														
	Initial stiffness	(×10³kN/m)	44.8	44.8	44.9	44.9	45.0	45.0	45.1	45.1	45.2	45.3	45.3	45.4	45.5	45.5	45.6
	Post yield stiffness $(\gamma = 100\%)$	(×10³kN/m)	3.44	3.45	3.45	3.45	3.46	3.46	3.47	3.47	3.48	3.48	3.49	3.49	3.50	3.50	3.51
	Characteristic Strength	(kN)	331	360	391	423	456	491	526	563	601	641	681	723	767	811	857
	Equivalent shear stiffness	(×10 ³ kN/m)	5.10	5.25	5.41	5.57	5.74	5.92	6.10	6.29	6.48	6.69	6.89	7.11	7.33	7.56	7.79
Shear	Equivalent damping ratio	[-]	0.198	0.209	0.219	0.229	0.239	0.248	0.257	0.266	0.274	0.282	0.289	0.296	0.302	0.309	0.314
Shear Prop	stiffness Equivalent damping																

^{* :} Special thickness for flange is available. Please conatct us for more details.

Code

Compound	Rubber	Shear modulus
name	code	(N/mm²)
G4	G0.40	0.385

Characteristics	3164 (150 3142	160 3117	170 3091
Lead plug diameter	3164 (
Effective plane area (x10° mm²) 2777 2764 2749 2732 2714 2695 2673 2651 2626 3255 3240 3223 3205 3186 Thickness of one rubber (mm) 3.95 4.4 Number of rubber aleyers (-) 41 3.77 Total rubber thickness (mm) 162 163 First shape factor (-) 38.0 36.9 Second shape factor (-) 3.70 3.99 Diameter of flange (mm) 900 950 Thickness of flange (mm) 22/28 22/28 Connecting bolt PCD (mm) 775 825 Diameter of connecting (mm) 233×12 233×1 Bolt size (assumption) (-) M30 M30 Total neight (mm) 342.0 330.4 Total weight (tonf) 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.62 0.65 0.66 0.66 0.67 0.67 0.67 0.67 0.60 0.60	3164 (
Thickness of one rubber (mm)		3142	3117	3091
layer				
layers Total rubber thickness (mm) 162 163				
First shape factor [-] 38.0 36.9 Second shape factor [-] 3.70 3.99 Diameter of flange (mm) 900 950 Thickness of flange (edge/center) (mm) 22/28 22/28 Connecting bolt PCD (mm) 775 825 Diameter of connecting (mm) 033 x 12 033 x 1 Bolt size (assumption) [-] M30 M30 Thickness of each reinforced steel plate (mm) 3.1 3.1 Total height (mm) 342.0 330.4 Total weight (tonf) 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.63 0.65 0.66 0.66 0.67 Total weight (kN) 5.8 5.9 5.9 5.9 6.0 6.0 6.1 6.1 6.2 6.4 6.4 6.5 6.5 6.6 Critical stress (N/mm²) (0.00,48)				
Second shape factor C- 3.70 3.99				
Connecting bolt PCD				
Connecting bolt PCD				
Connecting bolt PCD				
Connecting bolt PCD	2			
bolt hole × qty	2			
Thickness of each reinforced steel plate (mm) 342.0 330.4 Total height (mm) 342.0 330.4 Total weight (tonf) 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.63 0.65 0.66 0.66 0.66 0.67 Total weight (kN) 5.8 5.9 5.9 5.9 6.0 6.0 6.1 6.1 6.2 6.4 6.4 6.5 6.5 6.6 Critical stress (N/mm²) (γ₀, σ₀) (0.00,41) (0.00,41) Ultimate compressive stress (N/mm²) (0.00,48)				
reinforced steel plate (mm) 331 330.4 Total height (mm) 342.0 330.4 Total weight (tonf) 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.63 0.65 0.66 0.66 0.66 0.67 Total weight (kN) 5.8 5.9 5.9 5.9 6.0 6.0 6.1 6.1 6.2 6.4 6.4 6.5 6.5 6.6 Critical stress (N/mm²) (0.00,41) (0.00,41) (0.00,48) (0.00,41)				
Total weight (tonf) 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.63 0.65 0.66 0.66 0.66 0.67 Total weight (kN) 5.8 5.9 5.9 5.9 6.0 6.0 6.1 6.1 6.2 6.4 6.4 6.5 6.5 6.6 Critical stress (N/mm²) (γ_0 , σ_0) (0.00,41) (0.00,41) (0.00,48) (0.00,41)				
Total weight (kN) 5.8 5.9 5.9 5.9 6.0 6.0 6.1 6.1 6.2 6.4 6.4 6.5 6.5 6.6 Critical stress N/m^2 $N/$				
Critical stress (N/mm^2) σ_{cr} when $\gamma=0$ 41 48 (γ_0, σ_0) $(0.00,41)$ $(0.00,48)$ Ultimate compressive stress (γ_1, σ_1) $(0.00,48)$	0.67	0.68	0.68	0.69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.6	6.7	6.7	6.8
Ultimate compressive stress $[\gamma_1, \sigma_1]$ $[0.00,41]$ $[0.00,41]$		•	<u>. </u>	
$\begin{array}{c c} \hline P & compressive stress \\ \hline (N/mm^2) & \hline \end{array} \qquad \begin{array}{c} (\gamma_1, \sigma_1) & (0.00,41) \\ \hline \end{array}$	3)			
g, (1, 1, 1, 1)	3)			
$\begin{bmatrix} \Box \\ \end{bmatrix} \begin{bmatrix} (\gamma_2, \sigma_2) \end{bmatrix} \begin{bmatrix} (3.70, 4) \end{bmatrix}$)			
Compressive stiffness [×10³kN/m] 2070 2400 Nominal long term compressive stress (N/mm²) 9.2 10.5				
Nominal long term compressive stress (N/mm²) 9.2				
Nominal long term (kN) 2550 2540 2520 2510 2490 2470 2460 2430 2410 3410 3400 3380 3360 3340	3320	3290	3270	3240
Allowable tensile stress (N/mm²) 1.0 1.0	•			
Initial stiffness (×10³kN/m) 8.82 8.84 8.86 8.89 8.92 8.95 8.98 9.02 9.06 10.3 10.3 10.4 10.4 10.4	10.4	10.5	10.5	10.6
Post yield stiffness (×10 ³ kN/m) 0.678 0.680 0.682 0.684 0.686 0.688 0.691 0.694 0.697 0.792 0.794 0.796 0.798 0.801	0.803	0.806	0.809	0.812
Characteristic (kN) 40.0 50.7 62.6 75.7 90.1 106 123 141 160 50.7 62.6 75.7 90.1 106	123	141	160	181
Post yield stiffness (×10³kN/m) 0.678 0.680 0.682 0.684 0.686 0.688 0.691 0.694 0.697 0.792 0.794 0.796 0.798 0.801 Characteristic Strength (kN) 40.0 50.7 62.6 75.7 90.1 106 123 141 160 50.7 62.6 75.7 90.1 106 Equivalent shear stiffness (×10³kN/m) 0.926 0.993 1.07 1.15 1.24 1.34 1.45 1.56 1.69 1.10 1.18 1.26 1.35 1.45 Equivalent damping ratio (-) 0.165 0.193 0.219 0.244 0.266 0.285 0.302 0.317 0.329 0.174 0.199 0.223 0.246 0.266		1.67	1.79	1.92
Equivalent damping [-] 0.165 0.193 0.219 0.244 0.266 0.285 0.302 0.317 0.329 0.174 0.199 0.223 0.246 0.266	1.56	0.300	0.314	0.326

	Characteristic	cs	E	D	С	L B	L070G	4 G	Н		l J	Е	D	С	L B	_L075G	4 G	Н		J
	Outer diameter	(mm)					700									750				
	Lead plug diameter	(mm)	100	110	120	130	140	150	160	170	180	110	120	130	140	150	160	170	180	190
	Effective plane area	(×10² mm²)	3770	3753	3735	3716	3695	3672	3647	3621	3594	4323	4305	4285	4264	4241	4217	4191	4163	4134
	Thickness of one rubl	ber (mm)					4.9									4.85				
	Number of rubber layers	[-]					34									34				
	Total rubber thicknes	s (mm)					167									165				
	First shape factor	(-)					35.7									38.7				
Dimensions	Second shape factor	[-]					4.20									4.55				
Dime	Diameter of flange	(mm)					1000									1100				
Physical [Thickness of flange (edge/center)	(mm)					22/28	3								22/28	}			
	Connecting bolt PCD	(mm)					875									950				
	Diameter of connection bolt hole × qty	ing (mm)				Q	33 × 1	12							Ø) 33 × 1	12			
	Bolt size (assumption	n) (-)					M30									M30				
	Thickness of each reinforced steel plate	e (mm)					3.1									3.1				
	Total height	(mm)					324.9									323.2				
	Total weight	(tonf)	0.72	0.72	0.73	0.73	0.74	0.74	0.75	0.75	0.76	0.84	0.85	0.85	0.85	0.86	0.86	0.87	0.88	0.88
	Total weight	(kN)	7.0	7.1	7.1	7.2	7.2	7.3	7.3	7.4	7.4	8.2	8.3	8.3	8.4	8.4	8.5	8.5	8.6	8.7
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$					54									67				
		$[\gamma_0, \sigma_0]$				((0.00,54	1)							((0.00,60))			
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$				((0.00,54	1)							((0.50,60	0)			
Prop.		$[\gamma_2, \sigma_2]$				(4.00,8)							(-	4.00,14	1]			
Compression	Compressive stiffness	(×10 ³ kN/m)					2680									3200				
Compr	Nominal long term compressive stress	(N/mm²)					11.4									13.0				
	Nominal long term column load	(kN)	4310	4290	4270	4250	4220	4200	4170	4140	4110	5620	5590	5570	5540	5510	5480	5440	5410	5370
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)					1.0									1.0				
][%][Initial stiffness	(×10 ³ kN/m)	11.7	11.7	11.7	11.8	11.8	11.8	11.9	11.9	12.0	13.6	13.6	13.6	13.6	13.7	13.7	13.8	13.8	13.9
Shear Properties $(\gamma=100\%)$	Post yield stiffness (γ = 100%)	(×10 ³ kN/m)	0.899	0.901	0.903	0.905	0.908	0.910	0.913	0.916	0.920	1.04	1.05	1.05	1.05	1.05	1.06	1.06	1.06	1.07
erties	Characteristic Strength	(kN)	62.6	75.7	90.1	106	123	141	160	181	203	75.7	90.1	106	123	141	160	181	203	226
Prop.	Equivalent shear stiffness	(×10 ³ kN/m)	1.27	1.36	1.44	1.54	1.64	1.76	1.87	2.00	2.14	1.50	1.59	1.69	1.79	1.91	2.03	2.16	2.29	2.44
Shear	Equivalent damping ratio	(-)	0.181	0.205	0.227	0.247	0.266	0.283	0.298	0.311	0.323	0.187	0.209	0.229	0.248	0.266	0.282	0.296	0.309	0.320

	Characteristic						L080G										L085G					14
	Outer diameter	(mm)	E	D	С	В	800	G	H	<u> </u>	J	F	l E	D	С	В	850	G	<u> </u>		J	K
			400	400	110	450		470	400	400	000	400	400	440	4E0	400		400	400	000	040	000
	Lead plug diameter	(mm)		130	140	150	160	170	180	190	200	120	130	140	150	160	170	180	190	200	210	
	Effective plane area	(×10² mm²)	4913	4894	4873	4850	4825	4800	4772	4743	4712	5561	5542	5521	5498	5473	5448	5420	5391	5360	5328	5294
	Thickness of one rubl	mm)					5.1										5.25					
	Number of rubber layers	(-)					33										32					
	Total rubber thicknes	s (mm)					168										168					
"	First shape factor	(-)					39.2										40.5					
nsions	Second shape factor	(-)					4.75										5.06					
Dime	Diameter of flange	(mm)					1150										1200					
Physical Dimensions	Thickness of flange (edge/center)	(mm)				:	24/32	2									24/32	2				
_ ₾	Connecting bolt PCD	(mm)					1000										1050					
	Diameter of connection bolt hole x qty	ing (mm)				Ø	33 × ′	12								Ø	33 ×	12				
	Bolt size (assumption	n) (-)					M30										M30					
	Thickness of each reinforced steel plate	(mm)					4.4										4.4					
	Total height	(mm)					373.1										368.4	ļ.				
	Total weight	(tonf)	1.15	1.16	1.16	1.17	1.17	1.18	1.19	1.19	1.20	1.26	1.26	1.27	1.28	1.28	1.29	1.29	1.30	1.31	1.32	1.32
	Total weight	(kN)	11.3	11.3	11.4	11.4	11.5	11.6	11.6	11.7	11.8	12.4	12.4	12.5	12.5	12.6	12.6	12.7	12.8	12.8	12.9	13.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$					74										85			1		
		$[\gamma_0, \sigma_0]$				(0	0.00,60))								((0.00,6	0)				
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$				[′	1.00,60))								('	1.65,6	0)				
	[14/ 11111]	$[\gamma_2, \sigma_2]$				(4	4.00,18	3)		•	•					[4	4.00,2	4)	•			
ession	Compressive stiffness	(×10³kN/m)					3590										4100					
Compression	Nominal long term compressive stress	(N/mm²)					13.0										15.0					
	Nominal long term	(kN)	6390	6360	6330	6300	6270	6240	6200	6170	6130	8340	8310	8280	8250	8210	8170	8130	8090	8040	7990	7940
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)					1.0										1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	15.1	15.2	15.2	15.2	15.3	15.3	15.3	15.4	15.4	171	17:1	17:1	17.2	17.2	17.3	17.3	17.3	17.4	17.4	17.5
l II	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	1.16	1.17	1.17	1.17	1.17	1.18	1.18	1.18	1.19	1.31	1.32	1.32	1.32	1.32	1.33	1.33	1.33	1.34	1.34	1.35
Shear Properties (γ	Characteristic Strength	(kN)	90.1	106	123	141	160	181	203	226	250	90.1	106	123	141	160	181	203	226	250	276	303
, Prope	Equivalent shear stiffness	(×10 ³ kN/m)	1.70	1.79	1.90	2.01	2.13	2.25	2.38	2.53	2.67	1.85	1.95	2.05	2.16	2.28	2.40	2.54	2.68	2.83	2.98	3.15
Shear	Equivalent damping ratio	(-)	0.193	0.213	0.232	0.250	0.266	0.281	0.294	0.306	0.317	0.178	0.198	0.216	0.234	0.251	0.266	0.280	0.293	0.304	0.315	0.324
	1 40.0																					

	Characteristic	*C						_0900											095G					
			F	E	D	С	В	Α	G	H		J	K	F	Е	D	l C	В	A	<u>G</u>	Н		J	K
	Outer diameter	(mm)		ſ				900	1	ſ			1				ı	1	950	J	ĺ	ſ		
	Lead plug diameter	(mm)	130	140	150	160	170	180	190	200	210	220	230	140	150	160	170	180	190	200	210	220	230	240
	Effective plane area	(×10 ² mm ²)	6229	6208	6185	6161	6135	6107	6078	6048	6015	5982	5946	6934	6912	6887	6861	6834	6805	6774	6742	6708	6673	6636
	Thickness of one rubl layer	ber (mm)						5.65											6.00					
	Number of rubber layers	(-)						30											28					
	Total rubber thicknes	s (mm)						170											168					
, n	First shape factor	[-]						39.8											39.6					
ensions	Second shape factor	(-)						5.31											5.65					
I Dine	Diameter of flange	(mm)						1250	1										1300					
Physical Dimensions	Thickness of flange (edge/center)	(mm)					2	28/30	6									2	28/36	3				
	Connecting bolt PCD	(mm)						1100											1150					
	Diameter of connection bolt hole × qty	ng (mm)					Ø	33 ×	12									Ø	33 × 1	12				
	Bolt size (assumption	i) [–)						M30											M30					
	Thickness of each reinforced steel plate	e (mm)						4.4											4.4					
	Total height	(mm)					:	369.1										:	358.8	3				
	Total weight	(tonf)	1.43	1.44	1.44	1.45	1.45	1.46	1.47	1.48	1.48	1.49	1.50	1.53	1.54	1.54	1.55	1.55	1.56	1.57	1.58	1.58	1.59	1.60
	Total weight	(kN)	14.0	14.1	14.1	14.2	14.3	14.3	14.4	14.5	14.6	14.6	14.7	15.0	15.1	15.1	15.2	15.2	15.3	15.4	15.5	15.5	15.6	15.7
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0						89											94					
		$[\gamma_0, \sigma_0]$					(0	.00,6	0)									(C	0.00,6	0)				
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(1	.90,6	0)									(2	2.28,60	0)				
	(. 4,)	$[\gamma_2, \sigma_2]$					(4	.00,2	9)									[4	.00,3	4)				
Compression	Compressive stiffness	(×10³kN/m)						4530)										5080	١				
Compi	Nominal long term compressive stress	(N/mm²)						15.0											15.0					
	Nominal long term column load	(kN)	9340	9310	9280	9240	9200	9160	9120	9070	9020	8970	8920	10400	10400	10300	10300	10300	10200	10200	10100	10100	10000	10000
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)						1.0											1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	19.0	19.0	19.1	19.1	19.1	19.2	19.2	19.3	19.3	19.4	19.4	21.4	21.4	21.4	21.5	21.5	21.6	21.6	21.6	21.7	21.8	21.8
l II	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	1.46	1.46	1.47	1.47	1.47	1.47	1.48	1.48	1.49	1.49	1.49	1.64	1.65	1.65	1.65	1.65	1.66	1.66	1.67	1.67	1.67	1.68
Shear Properties (γ	Characteristic Strength	(kN)	106	123	141	160	181	203	226	250	276	303	331	123	141	160	181	203	226	250	276	303	331	360
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	2.08	2.19	2.30	2.41	2.54	2.67	2.81	2.96	3.11	3.28	3.45	2.37	2.48	2.60	2.73	2.86	3.00	3.15	3.31	3.47	3.64	3.82
Sheal	Equivalent damping ratio	(-)	0.184	0.202	0.219	0.236	0.251	0.266	0.279	0.291	0.302	0.312	0.321	0.189	0.206	0.222	0.238	0.252	0.266	0.278	0.290	0.301	0.310	0.319

	Characteristic	·c						_100G											L110G					
			F	E	l D	C	В	A	G	H		J	K	F	Е	D	C	В	A	G	H		J	K
	Outer diameter	(mm)		ſ	1			1000	1	ſ		ĺ	ſ					ĺ	1100		ĺ	ſ		
	Lead plug diameter	(mm)	150	160	170	180	190	200	210	220	230	240	250	170	180	190	200	210	220	230	240	250	260	270
	Effective plane area	(×10 ² mm ²)	7677	7653	7627	7600	7570	7540	7508	7474	7439	7402	7363	9276	9249	9220	9189	9157	9123	9088	9051	9012	8972	8931
	Thickness of one rubl	ber (mm)						6.35											7.2					
	Number of rubber layers	(-)						26											23					
	Total rubber thicknes	s (mm)						165											166					
(0	First shape factor	(-)						39.4											38.2					
ensions	Second shape factor	(-)						6.06											6.64					
I Dime	Diameter of flange	(mm)						1400											1500					
Physical Dimensions	Thickness of flange (edge/center)	(mm)					2	28/36	3									3	30/38	3				
ш	Connecting bolt PCD	(mm)						1250											1350					
	Diameter of connection bolt hole × qty	ng (mm)					Ø	39 ×	12									Ø	39 × '	12				
	Bolt size (assumption	ı) (–)						M36											M36					
	Thickness of each reinforced steel plate	(mm)						4.4											4.4					
	Total height	(mm)					;	347.1										;	338.4	ı				
	Total weight	(tonf)	1.66	1.67	1.67	1.68	1.69	1.69	1.70	1.71	1.72	1.73	1.73	1.93	1.94	1.95	1.95	1.96	1.97	1.98	1.98	1.99	2.01	2.01
	Total weight	(kN)	16.3	16.4	16.4	16.5	16.5	16.6	16.7	16.8	16.8	16.9	17.0	19.0	19.0	19.1	19.2	19.2	19.3	19.4	19.5	19.6	19.7	19.7
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						101											109					
		$[\gamma_0, \sigma_0]$					(0	.00,6	0)									(0	.00,6	D)				
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(2	.72,6	0)									(3	3.32,60))				
	(.9)	$[\gamma_2, \sigma_2]$					(4	.00,4	1)									[4	.00,5	D)				
Compression	Compressive stiffness	(×10 ³ kN/m)						5720)										6830					
Compr	Nominal long term compressive stress	(N/mm²)						15.0											15.0					
	Nominal long term column load	(kN)	11500	11500	11400	11400	11400	11300	11300	11200	11200	11100	11100	13900	13900	13800	13800	13700	13700	13600	13600	13500	13500	13400
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)						1.0											1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	24.1	24.1	24.2	24.2	24.3	24.3	24.3	24.4	24.5	24.5	24.6	29.1	29.1	29.2	29.2	29.3	29.3	29.4	29.4	29.5	29.5	29.6
l II	Post yield stiffness (γ = 100%)	(×10 ³ kN/m)	1.85	1.86	1.86	1.86	1.87	1.87	1.87	1.88	1.88	1.89	1.89	2.24	2.24	2.24	2.25	2.25	2.25	2.26	2.26	2.27	2.27	2.28
Shear Properties (γ	Characteristic Strength	(kN)	141	160	181	203	226	250	276	303	331	360	391	181	203	226	250	276	303	331	360	391	423	456
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	2.71	2.83	2.95	3.09	3.23	3.39	3.54	3.71	3.89	4.07	4.26	3.33	3.46	3.61	3.76	3.92	4.08	4.26	4.44	4.63	4.83	5.03
Shear	Equivalent damping ratio	(-)	0.193	0.209	0.224	0.239	0.253	0.266	0.278	0.289	0.299	0.309	0.317	0.200	0.215	0.229	0.242	0.254	0.266	0.277	0.287	0.297	0.305	0.313

	Characteristic	s	S	F	E	D	С	В	LL120G4	G	Н		J	K	L
	Outer diameter	(mm)							1200						
	Lead plug diameter	(mm)	180	190	200	210	220	230	240	250	260	270	280	290	300
	Effective plane area	(×10² mm²)	11055	11026	10996	10963	10930	10894	10857	10819	10779	10737	10694	10649	10603
	Thickness of one rubl	ber (mm)							7.7						
	Number of rubber layers	[-]							22						
	Total rubber thicknes	s (mm)							169						
"	First shape factor	(-)							39.0						
ensions	Second shape factor	(-)							7.08						
ol Dime	Diameter of flange	(mm)							1600						
Physical Dimensions	Thickness of flange (edge/center)	(mm)							32/40						
	Connecting bolt PCD	(mm)							1450						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12						
	Bolt size (assumption	n) (–)							M36						
	Thickness of each reinforced steel plate	(mm)							4.4						
	Total height	(mm)							341.8						
	Total weight	(tonf)	2.27	2.28	2.29	2.30	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37	2.38
	Total weight	(kN)	22.3	22.4	22.4	22.5	22.6	22.7	22.8	22.8	22.9	23.0	23.1	23.2	23.3
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							117						
		$[\gamma_0, \sigma_0]$							(0.00,60)						
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(3.84,60)						
	(. 4,)	$[\gamma_2, \sigma_2]$							(4.00,58)						
Compression	Compressive stiffness	(×10³kN/m)							8000						
Comp	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	16600	16500	16500	16400	16400	16300	16300	16200	16200	16100	16000	16000	15900
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)							1.0						
[%00	Initial stiffness	(×10³kN/m)	33.8	33.8	33.9	33.9	34.0	34.0	34.1	34.2	34.2	34.3	34.4	34.4	34.5
Properties $(\gamma = 100\%)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.60	2.60	2.61	2.61	2.61	2.62	2.62	2.63	2.63	2.64	2.64	2.65	2.65
erties	Characteristic Strength	(kN)	203	226	250	276	303	331	360	391	423	456	491	526	563
r Prop	Equivalent shear stiffness	(×10³kN/m)	3.80	3.94	4.08	4.24	4.40	4.57	4.75	4.94	5.13	5.33	5.54	5.75	5.98
Shear	Equivalent damping ratio	(-)	0.193	0.206	0.219	0.232	0.244	0.255	0.266	0.276	0.285	0.294	0.302	0.310	0.317

	Characteristic	cs	S	F	E	D	С	В	LL130G4	G	Н		J	K	L
	Outer diameter	(mm)							1300						
	Lead plug diameter	(mm)	200	210	220	230	240	250	260	270	280	290	300	310	320
	Effective plane area	(×10 ² mm ²)	12959	12927	12893	12858	12821	12782	12742	12701	12657	12613	12566	12518	12469
	Thickness of one rub	ber (mm)							8.0						
	Number of rubber layers	[-]							21						
	Total rubber thicknes	ss (mm)							168						
(0	First shape factor	(-)							40.6						
ensions	Second shape factor	(-)							7.74						
I Dime	Diameter of flange	(mm)							1700						
Physical Dimensions	Thickness of flange (edge/center)	(mm)							32/40						
	Connecting bolt PCD	(mm)							1550						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12	!					
	Bolt size (assumption	n) (–)							M36						
	Thickness of each reinforced steel plate	e (mm)							5.8						
	Total height	(mm)							364.0						
	Total weight	(tonf)	2.88	2.89	2.90	2.91	2.92	2.92	2.93	2.94	2.95	2.97	2.98	2.99	3.00
	Total weight	(kN)	28.3	28.3	28.4	28.5	28.6	28.7	28.8	28.9	29.0	29.1	29.2	29.3	29.4
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							130						
		$[\gamma_0, \sigma_0]$							(0.00,60)						
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(4.00,60)						
	(.4,)	$[\gamma_2, \sigma_2]$							(4.00,60)						
Compression	Compressive stiffness	(×10 ³ kN/m)							9600						
Compr	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	19400	19400	19300	19300	19200	19200	19100	19100	19000	18900	18800	18800	18700
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1.0						
[%00	Initial stiffness	(×10 ³ kN/m)	40.0	40.1	40.1	40.2	40.2	40.3	40.4	40.4	40.5	40.6	40.6	40.7	40.8
[y = 10	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	3.08	3.08	3.09	3.09	3.10	3.10	3.10	3.11	3.11	3.12	3.13	3.13	3.14
Properties $[\gamma = 100\%]$	Characteristic Strength	(kN)	250	276	303	331	360	391	423	456	491	526	563	601	641
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	4.57	4.73	4.89	5.06	5.24	5.43	5.62	5.82	6.03	6.25	6.48	6.71	6.95
Shear	Equivalent damping ratio	(-)	0.199	0.211	0.223	0.235	0.246	0.256	0.266	0.275	0.284	0.292	0.300	0.307	0.314

Outer diameter of rubber bearing $[\varnothing]^{*1}$	(900)	(950)	1000	1100	1200	1300
Standard thickness	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(37/45)	(37/45)	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

●LT Series (Total Rubber Thickness 25cm)

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.385

ULI	Series (Total	Rupper Ir	IICK	nes	iS c	2JC	m)										L	G ₄	4	GO.	40	(0.385	
	Characteristic	S	F	E	D	С	L' B	T090G A	64 G	Н		J	К	F	E	D	С	L1 B	095G A	4 G	Н		J	K
	Outer diameter	(mm)						900											950					
	Lead plug diameter	(mm)	130	140	150	160	170	180	190	200	210	220	230	140	150	160	170	180	190	200	210	220	230	240
	Effective plane area	(×10² mm²)	6229	6208	6185	6161	6135	6107	6078	6048	6015	5982	5946	6934	6912	6887	6861	6834	6805	6774	6742	6708	6673	663
	Thickness of one rubl	ber (mm)						6.0											6.4					
	Number of rubber layers	(-)						42											39					
	Total rubber thicknes	s (mm)						252											250					-
	First shape factor	(-)						37.5											37.1					
nsions	Second shape factor	(-)						3.57											3.81					
I Dime	Diameter of flange	(mm)						1250	1										1300					
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					í	28/30	6									2	28/36	3				
Ш	Connecting bolt PCD	(mm)						1100											1150					
	Diameter of connecti bolt hole × qty	ing (mm)					Ø	33×	12									Ø	33 × 1	12				
	Bolt size (assumption	n) (–)						M30											M30					
	Thickness of each reinforced steel plate	(mm)						4.4											4.4					
	Total height	(mm)						504.4	ı										488.8	3				
	Total weight	(tonf)	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.89	1.89	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.99
	Total weight	(kN)	17.4	17.5	17.5	17.6	17.7	17.8	17.9	18.0	18.1	18.2	18.4	18.5	18.6	18.6	18.7	18.8	18.9	19.0	19.1	19.2	19.4	19.
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$			•			37											43					
		$[\gamma_0, \sigma_0]$					(C	0.00,3	7)									(0	.00,4	3)				
perties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(C	0.00,3	7)									(0)	.00,4	3)				
Pro	(1.4)	$[\gamma_2, \sigma_2]$					(3.57,4	1)									(;	3.81,4	1)				
Compression	Compressive stiffness	(×10 ³ kN/m)						2980)										3340	ı				
Compr	Nominal long term compressive stress	(N/mm²)						8.6											9.6					
	Nominal long term column load	(kN)	5340	5330	5310	5290	5260	5240	5220	5190	5160	5130	5100	6680	6660	6640	6610	6590	6560	6530	6500	6470	6430	6400
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)						1.0											1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	12.8	12.8	12.8	12.8	12.9	12.9	12.9	13.0	13.0	13.0	13.1	14.4	14.4	14.4	14.4	14.5	14.5	14.5	14.6	14.6	14.6	14.7
ll ll	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.982	0.984	0.986	0.988	0.990	0.992	0.994	0.997	0.999	1.00	1.00	1.11	1.11	1.11	1.11	1.11	1.12	1.12	1.12	1.12	1.13	1.13
erties	Characteristic Strength	(kN)	106	123	141	160	181	203	226	250	276	303	331	123	141	160	181	203	226	250	276	303	331	360
Shear Properties (γ	Equivalent shear stiffness	(×10 ³ kN/m)	1.40	1.47	1.54	1.62	1.71	1.80	1.89	1.99	2.09	2.20	2.32	1.60	1.67	1.75	1.84	1.93	2.02	2.12	2.23	2.34	2.45	2.57
Sheal	Equivalent damping ratio	(-)	0.184	0.202	0.219	0.236	0.251	0.266	0.279	0.291	0.302	0.312	0.321	0.189	0.206	0.222	0.238	0.252	0.266	0.278	0.290	0.301	0.310	0.319
* : Spec	cial thickness for flange is avai	lable. Please refer to	the ta	ble abo	ove for	more o	details.																	

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

	Characteristic						L	T100G											110G	4				
		-	F	Е	D	C	В	4000	G	H		J	K	F	E	D	С	В	A	G	Н		J	K
	Outer diameter	(mm)						1000		ī									1100					
	Lead plug diameter	(mm)	150	160	170	180	190	200	210	220	230	240	250	170	180	190	200	210	220	230	240	250	260	270
	Effective plane area	(×10 ² mm ²)	7677	7653	7627	7600	7570	7540	7508	7474	7439	7402	7363	9276	9249	9220	9189	9157	9123	9088	9051	9012	8972	8931
	Thickness of one rubl	ber (mm)						6.7											7.4					
	Number of rubber layers	(-)						37											34					
	Total rubber thicknes	s (mm)						248											252					
ro.	First shape factor	(-)						37.3											37.2					
noisus	Second shape factor	(-)						4.03											4.37					
I Dime	Diameter of flange	(mm)						1400											1500					
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					á	28/36	5									3	0/38	3				
ш	Connecting bolt PCD	(mm)						1250											1350					
	Diameter of connecti bolt hole × qty	ng (mm)					Ø	39×	12									Ø	39 × '	12				
	Bolt size (assumption	i) (–)						M36											M36					
	Thickness of each reinforced steel plate	e (mm)						4.4											4.4					
	Total height	(mm)						478.3	3									4	172.8	3				
	Total weight	(tonf)	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.16	2.17	2.42	2.43	2.44	2.45	2.46	2.47	2.48	2.49	2.51	2.52	2.53
	Total weight	(kN)	20.2	20.3	20.4	20.5	20.6	20.7	20.8	20.9	21.0	21.1	21.3	23.7	23.8	23.9	24.0	24.1	24.2	24.3	24.4	24.6	24.7	24.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						50											60					
		$[\gamma_0, \sigma_0]$					(C).00,5	0)									(0)	.00,6	 O)				
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(C).00,5	0)									(0)	.00,6	0)				
Prop	[14/ 11111]	$[\gamma_2, \sigma_2]$		•			(-	4.00,5	5)	•								[4	.00,1′	1)				
Compression Pr	Compressive stiffness	(×10 ³ kN/m)						3740											4450					
Compr	Nominal long term compressive stress	(N/mm²)						10.7											12.2					
	Nominal long term	(kN)	8190	8160	8140	8110	8080	8040	8010	7970	7940	7900	7860	11300	11300	11200	11200	11200	11100	11100	11000	11000	10900	10900
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)						1.0											1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	16.0	16.1	16.1	16.1	16.2	16.2	16.2	16.3	16.3	16.3	16.4	19.1	19.2	19.2	19.2	19.3	19.3	19.3	19.4	19.4	19.4	19.5
- II	Post yield stiffness [y = 100%]	(×10 ³ kN/m)	1.23	1.24	1.24	1.24	1.24	1.24	1.25	1.25	1.25	1.26	1.26	1.47	1.47	1.48	1.48	1.48	1.48	1.49	1.49	1.49	1.50	1.50
Shear Properties (γ	Characteristic Strength	(kN)	141	160	181	203	226	250	276	303	331	360	391	181	203	226	250	276	303	331	360	391	423	456
Prope	Equivalent shear stiffness	(×10 ³ kN/m)	1.80	1.88	1.97	2.06	2.15	2.25	2.36	2.47	2.59	2.71	2.84	2.19	2.28	2.37	2.47	2.58	2.69	2.80	2.92	3.05	3.18	3.31
Shear	Equivalent damping	[-]	0.193	0.209	0.224	0.239	0.253	0.266	0.278	0.289	0.299	0.309	0.317	0.200	0.215	0.229	0.242	0.254	0.266	0.277	0.287	0.297	0.305	0.313
	cial thickness for flange is avail	labla Diagga safas ta	the te	ble en	the ne	t 2000	fumme	l ton to	LI-16-		dotoile													

X : Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing $[\varnothing]^{*1}$	(900)	(950)	1000	1100	1200	1300
Standard thickness	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(37/45)	(37/45)	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

	Characteristic	es	S	F	E	D	С	В	LT120G4	G	Н		J	К	L
	Outer diameter	(mm))						1200						_
	Lead plug diameter	(mm)	180	190	200	210	220	230	240	250	260	270	280	290	300
	Effective plane area	(×10² mm²)	11055	11026	10996	10963	10930	10894	10857	10819	10779	10737	10694	10649	10603
	Thickness of one rub	ber (mm)							8.0						
	Number of rubber layers	(-)							31						
	Total rubber thicknes	s (mm)							248						
	First shape factor	(-)							37.5						
Physical Dimensions	Second shape factor	[-]							4.84						
Dime	Diameter of flange	(mm)							1600						
hysical	Thickness of flange* [edge/center]	(mm)							32/40						
	Connecting bolt PCD	(mm)							1450						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12						
	Bolt size (assumption	n) (-)							M36						
	Thickness of each reinforced steel plate	e (mm)							4.4						
	Total height	(mm)							460.0						
	Total weight	(tonf)	2.76	2.77	2.78	2.79	2.80	2.82	2.83	2.84	2.85	2.87	2.88	2.90	2.91
	Total weight	(kN)	27.1	27.2	27.3	27.4	27.5	27.6	27.7	27.9	28.0	28.1	28.3	28.4	28.6
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							76						
		$[\gamma_0, \sigma_0]$							(0.00,60)						
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(1.11,60)						
		$[\gamma_2, \sigma_2]$							(4.00,19)						
Compression Pr	Compressive stiffness	(×10 ³ kN/m)							5390						
Compr	Nominal long term compressive stress	(N/mm²)							13.0						
	Nominal long term column load	(kN)	14400	14300	14300	14300	14200	14200	14100	14100	14000	14000	13900	13800	13800
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1.0						
100%]	Initial stiffness	(×10 ³ kN/m)	23.1	23.1	23.2	23.2	23.2	23.3	23.3	23.3	23.4	23.4	23.5	23.5	23.6
ll ll	Post yield stiffness $(\gamma = 100\%)$	(×10°kN/m)	1.78	1.78	1.78	1.78	1.79	1.79	1.79	1.79	1.80	1.80	1.80	1.81	1.81
erties	Characteristic Strength	(kN)	203	226	250	276	303	331	360	391	423	456	491	526	563
Shear Properties (γ	Equivalent shear stiffness	(×10 ³ kN/m)	2.59	2.69	2.79	2.90	3.01	3.12	3.25	3.37	3.50	3.64	3.78	3.93	4.08
hear	Equivalent damping ratio	[-]	0.193	0.206	0.219	0.232	0.244	0.255	0.266	0.276	0.285	0.294	0.302	0.310	0.317

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

	Characteristic	_							LT130G4						
			S	F	E	D	С	В	A	G	Н	I	J	К	L
	Outer diameter	(mm)							1300						
	Lead plug diameter	(mm)	200	210	220	230	240	250	260	270	280	290	300	310	320
	Effective plane area	(×10² mm²)	12959	12927	12893	12858	12821	12782	12742	12701	12657	12613	12566	12518	12469
	Thickness of one rubl layer	oer (mm)							8.7						
	Number of rubber layers	(-)							29						
	Total rubber thicknes	s (mm)							252						
2	First shape factor	(-)							37.4						
Dimensions	Second shape factor	(-)							5.15						
ul Dim	Diameter of flange	(mm)							1700						
Physical I	Thickness of flange* (edge/center)	(mm)							32/40						
ш	Connecting bolt PCD	(mm)							1550						
	Diameter of connecti bolt hole × qty	ng (mm)							Ø 39 × 12						
	Bolt size (assumption) (-)							M36						
	Thickness of each reinforced steel plate	(mm)							4.4						
	Total height	(mm)							455.5						
	Total weight	(tonf)	3.12	3.13	3.14	3.15	3.16	3.18	3.19	3.20	3.22	3.23	3.25	3.26	3.28
	Total weight	(kN)	30.6	30.7	30.8	30.9	31.0	31.1	31.3	31.4	31.5	31.7	31.8	32.0	32.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							84						
		$[\gamma_{0}, \sigma_{0}]$							(0.00,60)						
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(1.63,60)						
	,	(γ_2, σ_2)							(4.00,25)						
Compression Pr	Compressive stiffness	(×10 ³ kN/m)							6210						
Jompi	Nominal long term compressive stress	(N/mm²)							15.0						
)	Nominal long term column load	(kN)	19400	19400	19300	19300	19200	19200	19100	19100	19000	18900	18800	18800	18700
	Allowable tensile stre $\gamma = 100\%$	SS (N/mm²)							1.0						
10%)	Initial stiffness	(×10 ³ kN/m)	26.7	26.7	26.7	26.8	26.8	26.8	26.9	26.9	27.0	27.0	27.1	27.1	27.2
γ = 10	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.05	2.05	2.06	2.06	2.06	2.06	2.07	2.07	2.07	2.08	2.08	2.08	2.09
Shear Properties $(\gamma=100\%)$	Characteristic Strength	(kN)	250	276	303	331	360	391	423	456	491	526	563	601	641
, Prop	Equivalent shear stiffness	(×10 ³ kN/m)	3.04	3.15	3.26	3.37	3.49	3.61	3.74	3.88	4.02	4.16	4.31	4.47	4.63
hear	Equivalent damping ratio	(-)	0.199	0.211	0.223	0.235	0.246	0.256	0.266	0.275	0.284	0.292	0.300	0.307	0.314

^{* :} Special thickness for flange is available. Please refer to the table on the previous page (upper top table) for more details.

	Characteristic									0G4						
	Outer diameter	(mm)		S	F	E	D	C	B 1/1	<u> </u>	G	Н		J	J K	L
	Outer diameter								14						l	
	Lead plug diameter	(mm)	210	220	230	240	250	260	270	280	290	300	310	320	330	340
	Effective plane area	(×10 ² mm ²)	15047	15014	14978	14941	14903	14863	14821	14778	14733	14687	14639	14590	14539	14486
	Thickness of one rub layer	ber (mm)							9	.5						
	Number of rubber layers	(-)							2	6						
	Total rubber thicknes	ss (mm)							24	17						
(0	First shape factor	(-)							36	8.8						
noisus	Second shape factor	(-)							5.	6 7						
I Dime	Diameter of flange	(mm)							18	00						
Physical Dimensions	Thickness of flange (edge/center)	(mm)							50/	100						
	Connecting bolt PCD	(mm)							16	50						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 42	!×12						
	Bolt size (assumption	n) (–)							M	39						
	Thickness of each reinforced steel plate	e (mm)							5	.8						
	Total height	(mm)							59	2.0						
	Total weight	(tonf)	5.64	5.65	5.66	5.68	5.69	5.70	5.72	5.73	5.75	5.76	5.78	5.79	5.81	5.83
	Total weight	(kN)	55.3	55.4	55.5	55.7	55.8	55.9	56.1	56.2	56.3	56.5	56.7	56.8	57.0	57.2
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							9	2						
		$[\gamma_0, \sigma_0]$							(0.00	0,60)						
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(2.18	3,60)						
	(14))	$[\gamma_2, \sigma_2]$							(4.00	0,33)						
Compression	Compressive stiffness	(×10 ³ kN/m)							73	20						
Compr	Nominal long term compressive stress	(N/mm²)							15	i.O						
	Nominal long term column load	(kN)	22600	22500	22500	22400	22400	22300	22200	22200	22100	22000	22000	21900	21800	21700
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)					•		1	.0			•			
= 100%]	Initial stiffness	(×10 ³ kN/m)	31.6	31.6	31.6	31.7	31.7	31.7	31.8	31.8	31.9	31.9	32.0	32.0	32.1	32.1
) = 10	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.43	2.43	2.43	2.44	2.44	2.44	2.45	2.45	2.45	2.46	2.46	2.46	2.47	2.47
Shear Properties (γ	Characteristic Strength	(kN)	276	303	331	360	391	423	456	491	526	563	601	641	681	723
Propi	Equivalent shear stiffness	(×10 ³ kN/m)	3.54	3.66	3.77	3.89	4.02	4.15	4.29	4.43	4.58	4.74	4.89	5.06	5.23	5.40
Shear	Equivalent damping ratio	(-)	0.193	0.205	0.216	0.227	0.237	0.247	0.257	0.266	0.275	0.283	0.291	0.298	0.305	0.311
Shea		(-)	0.193	0.205	0.216	0.227	0.237	0.247	0.257	0.266	0.275	0.283	0.291	0.298	0.305	0

	Characteristic	es	Т	S	F	F	П	С	В	LT150G4	G	Н		J	К		М
	Outer diameter	(mm)								1500						_	
	Lead plug diameter	(mm)	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370
	Effective plane area	(×10² mm²)	17256	17219	17181	17141	17099	17056	17011	16965	16917	16867	16816	16764	16709	16654	16596
	Thickness of one rubl	ber (mm)								10.0							
	Number of rubber layers	(-)								25							
	Total rubber thicknes	ss (mm)								250							
	First shape factor	(-)								37.5							
Dimensions	Second shape factor	(-)								6.00							
I Dime	Diameter of flange	(mm)								1900							
Physical	Thickness of flange (edge/center)	(mm)								50/100							
	Connecting bolt PCD	(mm)								1750							
	Diameter of connecti bolt hole × qty	ing (mm)							Ç	Ø 42 × 10	3						
	Bolt size (assumption	n) (–)								M39							
	Thickness of each reinforced steel plate	e (mm)								5.8							
	Total height	(mm)								589.2							
	Total weight	(tonf)	6.33	6.35	6.36	6.37	6.39	6.40	6.42	6.43	6.45	6.47	6.48	6.50	6.52	6.54	6.56
	Total weight	(kN)	62.1	62.2	62.4	62.5	62.6	62.8	62.9	63.1	63.2	63.4	63.6	63.8	63.9	64.1	64.3
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$								98							
		$[\gamma_0, \sigma_0]$							((0.00,60)						
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$								(2.58,60)						
	(9)	$[\gamma_2, \sigma_2]$							((4.00,39)						
Compression	Compressive stiffness	(×10³kN/m)								8360							
Compi	Nominal long term compressive stress	(N/mm²)								15.0							
	Nominal long term column load	(kN)	25900	25800	25800	25700	25600	25600	25500	25400	25400	25300	25200	25100	25100	25000	24900
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)								1.0							
[%00	Initial stiffness	(×10 ³ kN/m)	35.8	35.8	35.9	35.9	36.0	36.0	36.1	36.1	36.2	36.2	36.3	36.3	36.4	36.4	36.5
[y = 10	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.75	2.76	2.76	2.76	2.77	2.77	2.77	2.78	2.78	2.79	2.79	2.79	2.80	2.80	2.81
Properties $(\gamma = 100\%)$	Characteristic Strength	(kN)	331	360	391	423	456	491	526	563	601	641	681	723	767	811	857
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	4.08	4.20	4.32	4.46	4.59	4.73	4.88	5.03	5.19	5.35	5.51	5.69	5.86	6.05	6.23
Shear	Equivalent damping ratio	(-)	0.198	0.209	0.219	0.229	0.239	0.248	0.257	0.266	0.274	0.282	0.289	0.296	0.302	0.309	0.314

	Characteristic	OS	Т	S	F	F	D	С	В	LT160G4	G	Н		.I	l K		M
	Outer diameter	(mm)								1600							
	Lead plug diameter	(mm)	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390
	Effective plane area	(×10 ² mm ²)	19615	19575	19534	19490	19446	19399	19351	19302	19251	19198	19144	19088	19031	18972	18912
	Thickness of one rub	ber (mm)								10.4							
	Number of rubber layers	(-)								24							
	Total rubber thicknes	ss (mm)								250							
(0	First shape factor	(-)								38.5							
Dimensions	Second shape factor	(-)								6.41							
I Dime	Diameter of flange	(mm)								2000							
Physical	Thickness of flange (edge/center)	(mm)								50/110							
П.	Connecting bolt PCD	(mm)								1800							
	Diameter of connection bolt hole × qty	ing (mm)							Ç	Ø 45 × 18	2						
	Bolt size (assumption	n) (–)								M42							
	Thickness of each reinforced steel plate	e (mm)								5.8							
	Total height	(mm)								603.0							
	Total weight	(tonf)	7.40	7.41	7.43	7.44	7.46	7.47	7.49	7.51	7.52	7.54	7.56	7.58	7.60	7.62	7.64
	Total weight	(kN)	72.5	72.7	72.8	73.0	73.1	73.3	73.4	73.6	73.8	73.9	74.1	74.3	74.5	74.7	74.9
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$								106							
		$[\gamma_0, \sigma_0]$							((0.00,60)						
Properties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$								(3.07,60)						
	($[\gamma_2, \sigma_2]$							((4.00,46)						
Compression	Compressive stiffness	(×10³kN/m)								9610							
Comp	Nominal long term compressive stress	(N/mm²)								15.0							
	Nominal long term column load	(kN)	29400	29400	29300	29200	29200	29100	29000	29000	28900	28800	28700	28600	28500	28500	28400
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)								1.0							
00%]	Initial stiffness	(×10 ³ kN/m)	40.8	40.9	40.9	41.0	41.0	41.0	41.1	41.1	41.2	41.3	41.3	4.14	4.14	4.15	4.15
Properties $[\gamma=100\%]$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	3.14	3.14	3.15	3.15	3.15	3.16	3.16	3.17	3.17	3.17	3.18	3.18	3.19	3.19	3.20
erties	Characteristic Strength	(kN)	391	423	456	491	526	563	601	641	681	723	767	811	857	904	952
r Prop	Equivalent shear stiffness	(×10³kN/m)	4.71	4.84	4.97	5.12	5.26	5.41	5.57	5.73	5.90	6.07	6.25	6.43	6.62	6.81	7.01
Shear	Equivalent damping ratio	[-]	0.203	0.213	0.223	0.232	0.241	0.250	0.258	0.266	0.273	0.281	0.288	0.294	0.300	0.306	0.312

Code

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.385

	Characteristic	· S								LD160G4							
	Outer diameter			S	F	Ē	D	С	В	1600	G	H		J	K	L	M
		(mm)								1000							
	Lead plug diameter	(mm)	250	260	270	280	290	300	310	320	330	340	350	360	370	380	390
	Effective plane area	(×10² mm²)	19615	19575	19534	19490	19446	19399	19351	19302	19251	19198	19144	19088	19031	18972	18912
	Thickness of one rubl	ber (mm)								10.4							
	Number of rubber layers	(-)								31							
	Total rubber thicknes	s (mm)								322							
w	First shape factor	(-)								38.5							
Physical Dimensions	Second shape factor	(-)								4.96							
l Dime	Diameter of flange	(mm)								2000							
hysica	Thickness of flange (edge/center)	(mm)								50/100)						
	Connecting bolt PCD	(mm)								1800							
	Diameter of connecti bolt hole × qty	ng (mm)							Ç	⊘ 45 × 18	2						
	Bolt size (assumption	ı) (–)								M42							
	Thickness of each reinforced steel plate	(mm)								5.8							
	Total height	(mm)								696.4							
	Total weight	(tonf)	7.91	7.93	7.95	7.96	7.98	8.00	8.02	8.04	8.07	8.09	8.11	8.13	8.16	8.18	8.21
	Total weight	(kN)	77.6	77.7	77.9	78.1	78.3	78.5	78.7	78.9	79.1	79.3	79.5	79.8	80.0	80.3	80.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0								81							
		$[\gamma_{0}, \sigma_{0}]$								0.00,60)						
roperties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$								[1.43,60)						
	(9)	$[\gamma_2, \sigma_2]$							([4.00,22)						
Compression	Compressive stiffness	(×10 ³ kN/m)								7440							
Compi	Nominal long term compressive stress	(N/mm²)								15.0							
	Nominal long term column load	(kN)	29400	29400	29300	29200	29200	29100	29000	29000	28900	28800	28700	28600	28500	28500	28400
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)								1.0							
100%]	Initial stiffness	(×10 ³ kN/m)	31.6	31.6	31.7	31.7	31.7	31.8	31.8	31.9	31.9	31.9	32.0	32.0	32.1	32.1	32.2
$[\gamma = 10]$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.43	2.43	2.44	2.44	2.44	2.44	2.45	2.45	2.45	2.46	2.46	2.46	2.47	2.47	2.47
erties	Characteristic Strength	(kN)	391	423	456	491	526	563	601	641	681	723	767	811	857	904	952
Shear Properties ($\gamma=$	Equivalent shear stiffness	(×10 ³ kN/m)	3.64	3.75	3.85	3.96	4.07	4.19	4.31	4.44	4.57	4.70	4.84	4.98	5.12	5.27	5.43
Shear	Equivalent damping ratio	(-)	0.203	0.213	0.223	0.232	0.241	0.250	0.258	0.266	0.273	0.281	0.288	0.294	0.300	0.306	0.312

Thickness of one rubben	370	J	К	L
Lead plug diameter*1 (mm) 280 290 300 310 320 330 340 350 360 Effective plane area (×10² mm²) 22082 22037 21991 21943 21894 21843 21790 21736 21680	370			
Effective plane area (×10° mm²) 22082 22037 21991 21943 21894 21843 21790 21736 21680	370			
Thickness of and rubban		380	390	200 × 4
Thickness of one rubber	21623	21564	21503	21441
layer (mm)				
Number of rubber [-] 31				
Total rubber thickness (mm) 322				
First shape factor [-] 40.9				
Second shape factor				
Diameter of flange (mm)				
Thickness of flange (mm) 50/100				
Connecting bolt PCD (mm)				
Diameter of connecting bolt hole × qty (mm)				
Bolt size (assumption) (-) M42				
Thickness of each reinforced steel plate (mm) 5.8				
Total height (mm) 696.4				
Total weight (tonf) 9.30 9.32 9.34 9.36 9.38 9.40 9.42 9.45 9.47	9.49	9.52	9.54	9.57
Total weight (kN) 91.2 91.4 91.6 91.8 92.0 92.2 92.4 92.6 92.9	93.1	93.3	93.6	93.9
Critical stress σ_{cr} when $\gamma = 0$ 89				
$ (\gamma_0, \sigma_0) $				
Ultimate compressive stress $[\gamma_1, \sigma_1]$ $[1.90,60]$				
$ \begin{array}{c c} Compressive \\ Stiffness \\ \hline Compressive \\ Compre$				
Nominal long term (N/mm²) 15.0				
Naminal long tops	32400	32300	32300	32200
Allowable tensile stress (N/mm $^{\circ}$) 1.0				
Initial stiffness (×10 ³ kN/m) 35.7 35.8 35.8 35.8 35.9 36.0 36.0 36.0	36.1	36.1	36.2	36.2
Post yield stiffness (×10 ³ kN/m) 2.75 2.75 2.76 2.76 2.76 2.77 2.77 2.77	2.78	2.78	2.78	2.79
Post yield stiffness (×10³kN/m) 2.75 2.75 2.75 2.76 2.76 2.76 2.77 2.77 2.77 2.77 2.77	857	904	952	1000
Equivalent shear stiffness (×10 ³ kN/m) 4.27 4.38 4.50 4.62 4.75 4.88 5.01 5.15 5.29	5.43	5.58	5.74	5.89
Equivalent damping [-] 0.216 0.225 0.234 0.242 0.251 0.258 0.266 0.273 0.280	0.286	0.293	0.299	0.304

^{*1} It will be a multi-plug structure if lead plug diameter is bigger than 390mm.

	<u> </u>								LD18	30G4						
	Characteristic	S ————————————————————————————————————	S	F	Е	D	С	В	А	G	Н		J	K	L	M
	Outer diameter	(mm)							18	00						
	Lead plug diameter*1	(mm)	300	310	320	330	340	350	360	370	380	390	200 × 4	205 × 4	210 × 4	215 × 4
	Effective plane area	(×10 ² mm ²)	24740	24692	24643	24592	24539	24485	24429	24372	24313	24252	24190	24127	24061	23995
	Thickness of one rubl layer	oer (mm)							1′	1.1						
	Number of rubber layers	(-)							2	9						
	Total rubber thicknes	s (mm)							38	22						
SE	First shape factor	(-)							40).5						
Dimensions	Second shape factor	(-)							5.	59						
al Dim	Diameter of flange	(mm)							□ 2	080						
Physical I	Thickness of flange (edge/center)	(mm)							50/	100						
	Connecting bolt PCD	(mm)								-						
	Diameter of connecti bolt hole × qty	ng (mm)							Ø 45	× 24						
	Bolt size (assumption) (-)							M	42						
	Thickness of each reinforced steel plate	(mm)							5	.8						
	Total height	(mm)							68	4.3						
	Total weight	(tonf)	10.1	10.1	10.2	10.2	10.2	10.2	10.3	10.3	10.3	10.3	10.4	10.4	10.4	10.4
	Total weight	(kN)	99.3	99.5	99.7	99.9	100.1	100.3	100.6	100.8	101.1	101.3	101.6	101.8	102.1	102.4
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0							9	4						
		$[\gamma_0, \sigma_0]$							(0.00	0,60)						
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(2.24	1,60)						
	,	$[\gamma_2, \sigma_2]$							(4.00	0,33)						
Compression Pr	Compressive stiffness	(×10 ³ kN/m)							96	00						
Somp	Nominal long term compressive stress*	₂ (N/mm ²)							15	i.O						
	Nominal long term column load	(kN)	37100	37000	37000	36900	36800	36700	36600	36600	36500	36400	36300	36200	36100	36000
	Allowable tensile stre $(\gamma = 100\%)$	ss (N/mm²)							1	.0			•			•
100%]	Initial stiffness	(×10 ³ kN/m)	40.1	40.2	40.2	40.2	40.3	40.3	40.4	40.4	40.5	40.5	40.6	40.6	40.7	40.7
[y = 10	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	3.09	3.09	3.09	3.10	3.10	3.10	3.11	3.11	3.11	3.12	3.12	3.12	3.13	3.13
Shear Properties ($\gamma=$	Characteristic Strength	(kN)	563	601	641	681	723	767	811	857	904	952	1000	1050	1100	1160
, Prop	Equivalent shear stiffness	(×10 ³ kN/m)	4.84	4.96	5.08	5.21	5.35	5.48	5.63	5.77	5.92	6.07	6.23	6.39	6.56	6.73
Shear	Equivalent damping ratio	(-)	0.219	0.228	0.236	0.244	0.251	0.259	0.266	0.273	0.279	0.285	0.291	0.297	0.302	0.308

^{*1} It will be a multi-plug structure if lead plug diameter is bigger than 390mm.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{*1} For adoption of special thickness in regard to those sizes that stated in the (), delivery time will be longer due to mold preparation. *2 For Ø1400 and above, assembled type flange will be used. *3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

Compound	Rubber	Shear modulus
name	code	(N/mm²)
G4	G0.40	0.385

•L5	Series (S ₂ = 5	5)													-	me 34	G0.40)	0.385	
	Characteristic	·c					S060G									S065G				
			E	D	С	В	<u> </u>	G	Н		J	Е	D	С	В	CEO.	G	Н		J
	Outer diameter	(mm)	00	00	100	110	600	120	140	150	160	00	100	110	100	650	140	150	160	170
	Lead plug diameter	(mm)	80	90	100	110	120	130	140	150	160	90	100	110	120	130	140	150	160	170
	Effective plane area	(×10 ² mm ²)	2777	2764	2749	2732	2714	2695	2673	2651	2626	3255	3240	3223	3205	3186	3164	3142	3117	3091
	Thickness of one rubblayer	oer (mm)					4.0									4.4				
	Number of rubber layers	(-)					30									30				
	Total rubber thicknes	s (mm)					120									132				
w	First shape factor	(-)					37.5									36.9				
noisue	Second shape factor	(-)					5.00									4.92				
l Dime	Diameter of flange	(mm)					900									950				
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					22/28									22/28	3			
L.	Connecting bolt PCD	(mm)					775									825				
	Diameter of connecti bolt hole × qty	ng (mm)				Q	ў 33 × 1	2							Ø	33×1	12			
	Bolt size (assumption) (–)					M30									M30				
	Thickness of each reinforced steel plate	(mm)					3.1									3.1				
	Total height	(mm)					265.9									277.9				
	Total weight	(tonf)	0.50	0.50	0.51	0.51	0.51	0.52	0.52	0.52	0.53	0.58	0.58	0.59	0.59	0.59	0.60	0.60	0.61	0.61
	Total weight	(kN)	4.9	4.9	5.0	5.0	5.0	5.1	5.1	5.1	5.2	5.7	5.7	5.8	5.8	5.8	5.9	5.9	6.0	6.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$					81									78				
		$[\gamma_0, \sigma_0]$				((0.00,60	0)							((0.00,60	D)			
erties	Ultimate compressive stress (N/ mm²)	$[\gamma_1, \sigma_1]$				(1.46,60))							(1.28,60	0)			
Prop		$[\gamma_2, \sigma_2]$				(4	4.00,23	3)							(4	4.00,21	1)			
Compression Properties	Compressive stiffness	(×10 ³ kN/m)					2790									2960				
Jompr	Nominal long term compressive stress	(N/mm²)					15.0									15.0				
	Nominal long term column load	(kN)	4170	4150	4120	4100	4070	4040	4010	3980	3940	4880	4860	4830	4810	4780	4750	4710	4680	4640
	Allowable tensile stre $y = 100\%$	SS (N/mm²)					1.0									1.0				
100%]	Initial stiffness	(×10 ³ kN/m)	11.9	11.9	12.0	12.0	12.0	12.1	12.1	12.2	12.2	12.7	12.7	12.8	12.8	12.8	12.9	12.9	13.0	13.0
H II	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	0.915	0.918	0.920	0.923	0.926	0.929	0.933	0.936	0.940	0.977	0.980	0.982	0.985	0.988	0.991	0.994	0.998	1.00
Shear Properties (γ	Characteristic Strength	(kN)	40.0	50.7	62.6	75.7	90.1	106	123	141	160	50.7	62.6	75.7	90.1	106	123	141	160	181
Prope	Equivalent shear stiffness	(×10 ³ kN/m)	1.25	1.34	1.44	1.55	1.68	1.81	1.95	2.11	2.28	1.36	1.45	1.56	1.67	1.79	1.92	2.06	2.21	2.37
Shear	Equivalent damping ratio	(-)	0.165	0.193	0.219	0.244	0.266	0.285	0.302	0.317	0.329	0.174	0.199	0.223	0.246	0.266	0.284	0.300	0.314	0.326
	cial thickness for flange is avail	able. Please refer to	the tab	le above	for mor	e details	S.													

imes : Special thickness for flange is available. Please refer to the table above for more details.

●LS Series (S₂ = 5)

	Characteristic						S070G					_	_			S075G				
		-	Е	D	<u> </u>	В	700	G	Н		J	Е	D	C	В	750	G	<u> </u>		J
	Outer diameter	(mm)		Ì			700									750				
	Lead plug diameter	(mm)	100	110	120	130	140	150	160	170	180	110	120	130	140	150	160	170	180	190
	Effective plane area	(×10 ² mm ²)	3770	3753	3735	3716	3695	3672	3647	3621	3594	4323	4305	4285	4264	4241	4217	4191	4163	4134
	Thickness of one rubl layer	ber (mm)					4.7									5.0				
	Number of rubber layers	(-)					30									30				
	Total rubber thicknes	s (mm)					141									150				
_ω	First shape factor	(-)					37.2									37.5				
ension	Second shape factor	(-)					4.96									5.00				
- Dim	Diameter of flange	(mm)					1000									1100				
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					22/28									22/28	1			
	Connecting bolt PCD	(mm)					875									950				
	Diameter of connecti bolt hole × qty	ng (mm)				Q	33×1	2							Ø	33×1	2			
	Bolt size (assumption	ı) (–)					M30									M30				
	Thickness of each reinforced steel plate	(mm)					3.1									3.1				
	Total height	(mm)					286.9									295.9				
	Total weight	(tonf)	0.67	0.67	0.67	0.68	0.68	0.69	0.69	0.70	0.70	0.79	0.79	0.80	0.80	0.81	0.81	0.82	0.82	0.83
	Total weight	(kN)	6.5	6.6	6.6	6.7	6.7	6.7	6.8	6.8	6.9	7.7	7.8	7.8	7.9	7.9	8.0	8.0	8.1	8.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$					80									81				
		$[\gamma_0, \sigma_0]$				((0.00,60	0)							((0.00,60	0)			
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$				(1.38,60))							(1.46,60))			
	[14]	$[\gamma_2, \sigma_2]$				(4	4.00,22	2)							[4	4.00,23	3)			
Compression Pr	Compressive stiffness	(×10 ³ kN/m)					3220									3480				
Compr	Nominal long term compressive stress	(N/mm²)					15.0									15.0				
	Nominal long term column load	(kN)	5650	5630	5600	5570	5540	5510	5470	5430	5390	6480	6460	6430	6400	6360	6330	6290	6250	6200
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)					1.0									1.0				
100%]	Initial stiffness	(×10 ³ kN/m)	13.8	13.8	13.9	13.9	13.9	14.0	14.0	14.1	14.1	14.9	14.9	15.0	15.0	15.0	15.1	15.1	15.2	15.2
- II	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	1.06	1.06	1.07	1.07	1.07	1.08	1.08	1.08	1.09	1.15	1.15	1.15	1.15	1.16	1.16	1.16	1.17	1.17
Shear Properties (γ	Characteristic Strength	(kN)	62.6	75.7	90.1	106	123	141	160	181	203	75.7	90.1	106	123	141	160	181	203	226
, Prop	Equivalent shear stiffness	(×10 ³ kN/m)	1.51	1.60	1.71	1.82	1.94	2.07	2.22	2.37	2.52	1.65	1.75	1.86	1.97	2.10	2.23	2.37	2.52	2.68
Shear	Equivalent damping ratio	(-)	0.181	0.205	0.227	0.247	0.266	0.283	0.298	0.311	0.323	0.187	0.209	0.229	0.248	0.266	0.282	0.296	0.309	0.320
V . Coos	ial thickness for flange is avail	lable Please refer to	the tel	lo on the																

X : Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{*1} For adoption of special thickness in regard to those sizes that stated in the (), delivery time will be longer due to mold preparation.

*2 For Ø1400 and above, assembled type flange will be used.

*3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

OLC	Series (S ₂ = 5) j																				
	Characteristic	S	E	D	С	B	S080G A	4 G	Н		J	F	Е	D	С	L B	S085G A	64 G	Н		J	К
	Outer diameter	(mm)					800										850					
	Lead plug diameter	(mm)	120	130	140	150	160	170	180	190	200	120	130	140	150	160	170	180	190	200	210	220
	Effective plane area	(×10 ² mm ²)	4913	4894	4873	4850	4825	4800	4772	4743	4712	5561	5542	5521	5498	5473	5448	5420	5391	5360	5328	5294
	Thickness of one rubl	ber (mm)					5.4										5.7					
	Number of rubber layers	(-)					30										30					
	Total rubber thicknes	s (mm)					162										171					
(0	First shape factor	(-)					37.0										37.3					
ensions	Second shape factor	(-)					4.94										4.97					
I Dime	Diameter of flange	(mm)					1150										1200					
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					24/32	2									24/32	2				
Ш	Connecting bolt PCD	(mm)					1000										1050					
	Diameter of connection bolt hole × qty	ng (mm)				Ø	33 × 1	12								Ø	33 × ·	12				
	Bolt size (assumption	ı) [– <u>)</u>					M30										M30					
	Thickness of each reinforced steel plate	(mm)					4.4										4.4					
	Total height	(mm)					353.6										362.6	;				
	Total weight	(tonf)	1.09	1.10	1.10	1.11	1.11	1.12	1.13	1.13	1.14	1.22	1.23	1.23	1.24	1.24	1.25	1.26	1.26	1.27	1.28	1.29
	Total weight	(kN)	10.7	10.8	10.8	10.9	10.9	11.0	11.1	11.1	11.2	12.0	12.0	12.1	12.1	12.2	12.3	12.3	12.4	12.5	12.5	12.6
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0					79										80					
	Luci c	$[\gamma_0, \sigma_0]$				(0	0.00,60) 								(0	0.00,6	0)				
perties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$				(1.31,60	0)								('	1.39,60	D)				
Pro	, ,	$[\gamma_2, \sigma_2]$				[4	1.00,2	1)								[4	1.00,2	2)				
Compression	Compressive stiffness	(×10 ³ kN/m)					3650										3910			,		
Comp	Nominal long term compressive stress	(N/mm²)					15.0										15.0					
	Nominal long term column load	(kN)	7370	7340	7310	7270	7240	7200	7160	7110	7070	8340	8310	8280	8250	8210	8170	8130	8090	8040	7990	7940
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)					1.0										1.0					
100%]	Initial stiffness	(×10 ³ kN/m)	15.7	15.7	15.8	15.8	15.8	15.9	15.9	16.0	16.0	16.8	16.8	16.8	16.9	16.9	17.0	17.0	17.0	17:1	17.1	17.2
ll ll	Post yield stiffness $(\gamma = 100\%)$	(×10°kN/m)	1.21	1.21	1.21	1.22	1.22	1.22	1.23	1.23	1.23	1.29	1.29	1.30	1.30	1.30	1.30	1.31	1.31	1.31	1.32	1.32
Shear Properties (γ	Characteristic Strength	(kN)	90.1	106	123	141	160	181	203	226	250	90.1	106	123	141	160	181	203	226	250	276	303
ır Prop	Equivalent shear stiffness	(×10 ³ kN/m)	1.76	1.86	1.97	2.09	2.21	2.34	2.48	2.62	2.78	1.82	1.91	2.01	2.12	2.24	2.36	2.49	2.63	2.78	2.93	3.09
	Equivalent damping ratio			0.213				0.281	0.294	0.306	0.317	0.178	0.198	0.216	0.234	0.251	0.266	0.280	0.293	0.304	0.315	0.324
* : Spec	cial thickness for flange is avai	lable. Please refer to	the tal	ole abov	e for m	ore det	ails															

imes : Special thickness for flange is available. Please refer to the table above for more details..

	b beries (b ₂ = 5	<u> </u>																						
	Characteristic	S	F	E	D	С	LS B	6090G A	64 G	Н	-	J	K	F	Е	D	С	LS B	6095G A	64 G	Н		J	К
	Outer diameter	(mm)						900											950					
	Lead plug diameter	(mm)	130	140	150	160	170	180	190	200	210	220	230	140	150	160	170	180	190	200	210	220	230	240
	Effective plane area	(×10² mm²)	6229	6208	6185	6161	6135	6107	6078	6048	6015	5982	5946	6934	6912	6887	6861	6834	6805	6774	6742	6708	6673	6636
	Thickness of one rubl	ber (mm)						6.0											6.4					
	Number of rubber layers	(-)						30											30					
	Total rubber thicknes	s (mm)						180											192					
	First shape factor	(-)						37.5											37.1					
nsions	Second shape factor	(-)						5.00											4.95					
- Dime	Diameter of flange	(mm)						1250											1300					
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					2	28/36	3									2	28/36	3				
	Connecting bolt PCD	(mm)						1100											1150					
	Diameter of connecti bolt hole × qty	ng (mm)					Ø	33 × 1	12									Ø	33 × 1	12				
	Bolt size (assumption	ı) (–)						M30											M30					
	Thickness of each reinforced steel plate	(mm)						4.4											4.4					
	Total height	(mm)					;	379.6	;									:	391.6	;				
	Total weight	(tonf)	1.44	1.45	1.45	1.46	1.47	1.47	1.48	1.49	1.50	1.50	1.51	1.60	1.61	1.61	1.62	1.63	1.64	1.64	1.65	1.66	1.67	1.68
	Total weight	(kN)	14.1	14.2	14.2	14.3	14.4	14.4	14.5	14.6	14.7	14.7	14.8	15.7	15.8	15.8	15.9	16.0	16.0	16.1	16.2	16.3	16.4	16.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						81	•	•		'							79					•
		$[\gamma_0, \sigma_0]$					(0	.00,6	0)									(0)	.00.6	0)				
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					(1	.46,60))									[1	.33,60)				
	[14]	$[\gamma_2, \sigma_2]$					(4	.00,2	3)									(4	.00,2	2)				
Compression Pr	Compressive stiffness	(×10 ³ kN/m)						4180											4350					
Sompr	Nominal long term compressive stress	(N/mm²)						15.0											15.0					
	Nominal long term column load	(kN)	9340	9310	9280	9240	9200	9160	9120	9070	9020	8970	8920	10400	10400	10300	10300	10300	10200	10200	10100	10100	10000	9950
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)						1.0											1.0					
= 100%]	Initial stiffness	(×10 ³ kN/m)	17.9	17.9	17.9	18.0	18.0	18.1	18.1	18.1	18.2	18.2	18.3	18.7	18.7	18.7	18.8	18.8	18.9	18.9	18.9	19.0	19.0	19.1
$(\gamma = 10)$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	1.38	1.38	1.38	1.38	1.39	1.39	1.39	1.40	1.40	1.40	1.41	1.44	1.44	1.44	1.44	1.45	1.45	1.45	1.46	1.46	1.46	1.47
Shear Properties (γ	Characteristic Strength	(kN)	106	123	141	160	181	203	226	250	276	303	331	123	141	160	181	203	226	250	276	303	331	360
r Prop	Equivalent shear stiffness	(×10³kN/m)	1.96	2.06	2.16	2.27	2.39	2.52	2.65	2.79	2.93	3.09	3.25	2.08	2.17	2.28	2.39	2.50	2.63	2.76	2.89	3.04	3.19	3.35
Sheal	Equivalent damping ratio	(-)	0.184	0.202	0.219	0.236	0.251	0.266	0.279	0.291	0.302	0.312	0.321	0.189	0.206	0.222	0.238	0.252	0.266	0.278	0.290	0.301	0.310	0.319
× Snec	cial thickness for flange is avail	lable. Please refer to	the ta	ble on	the ne	xt nage	funner	ton ta	able) fo	r more	details													

X : Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{*}X1 For adoption of special thickness in regard to those sizes that stated in the (), delivery time will be longer due to mold preparation.

*X2 For
 X2 For
 X2 For
 X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

	series (5 ₂ = 5																							
	Characteristic	s	F	E	D	С	B	S100G A	4 G	Н	I	J	K	F	Е	D	С	LS B	8110G A	4 G	Н		J	K
	Outer diameter	(mm)						1000											1100					
	Lead plug diameter	(mm)	150	160	170	180	190	200	210	220	230	240	250	170	180	190	200	210	220	230	240	250	260	270
	Effective plane area	(×10² mm²)	7677	7653	7627	7600	7570	7540	7508	7474	7439	7402	7363	9276	9249	9220	9189	9157	9123	9088	9051	9012	8972	8931
	Thickness of one rubl	ber (mm)						6.7											7.4					
	Number of rubber layers	(-)						30											30					
	Total rubber thicknes	s (mm)						201											222					
	First shape factor	(-)						37.3											37.2					
nsions	Second shape factor	(-)						4.98											4.95					
- Dime	Diameter of flange	(mm)						1400											1500					
Physical Dimensions	Thickness of flange* (edge/center)	(mm)					2	28/36	6									3	10/38	3				
<u> </u>	Connecting bolt PCD	(mm)						1250											1350	ı				
	Diameter of connecti bolt hole × qty	ng (mm)					Ø	39 × 1	12									Ø	39 × 1	12				
	Bolt size (assumption	i) (–)						M36											M36					
	Thickness of each reinforced steel plate	(mm)						4.4											4.4					
	Total height	(mm)						400.6	;										125.6	3				
	Total weight	(tonf)	1.82	1.82	1.83	1.84	1.85	1.86	1.86	1.87	1.88	1.89	1.90	2.24	2.25	2.26	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.35
	Total weight	(kN)	17.8	17.9	18.0	18.0	18.1	18.2	18.3	18.4	18.5	18.6	18.7	22.0	22.1	22.2	22.3	22.3	22.4	22.5	22.7	22.8	22.9	23.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$						80											80					•
		$[\gamma_0, \sigma_0]$					(0	.00,6	0)									(0)	.00.6	0)				
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$					[1	.40,60))									[1	.35,60	0)				
	[4]	$[\gamma_2, \sigma_2]$					(4	.00,2	2)									(4	.00,2	2)				
Compression Pr	Compressive stiffness	(×10 ³ kN/m)						4610											5040)				
Compi	Nominal long term compressive stress	(N/mm²)						15.0											15.0					
	Nominal long term column load	(kN)	11500	11500	11400	11400	11400	11300	11300	11200	11200	11100	11100	13900	13900	13800	13800	13700	13700	13600	13600	13500	13500	13400
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)						1.0											1.0					
= 100%]	Initial stiffness	(×10 ³ kN/m)	19.8	19.8	19.8	19.9	19.9	20.0	20.0	20.0	20.1	20.1	20.2	21.7	21.7	21.8	21.8	21.8	21.9	21.9	21.9	22.0	22.0	22.1
$(\gamma = 10)$	Post yield stiffness $[\gamma = 100\%]$	(×10 ³ kN/m)	1.52	1.52	1.53	1.53	1.53	1.54	1.54	1.54	1.55	1.55	1.55	1.67	1.67	1.67	1.68	1.68	1.68	1.69	1.69	1.69	1.70	1.70
Shear Properties (γ	Characteristic Strength	(kN)	141	160	181	203	226	250	276	303	331	360	391	181	203	226	250	276	303	331	360	391	423	456
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	2.22	2.32	2.43	2.54	2.66	2.78	2.91	3.05	3.19	3.34	3.50	2.48	2.58	2.69	2.80	2.92	3.05	3.18	3.31	3.45	3.60	3.75
Shear	Equivalent damping ratio	(-)	0.193	0.209	0.224	0.239	0.253	0.266	0.278	0.289	0.299	0.309	0.317	0.200	0.215	0.229	0.242	0.254	0.266	0.277	0.287	0.297	0.305	0.313
× · Snec	ial thickness for flange is avail	lable. Please refer to	the ta	hle ahr	we for	more o	details																	

^{* :} Special thickness for flange is available. Please refer to the table above for more details...

●LS Series (S₂ = 5)

	Characteristic	cs	S	F	E	D	С	В	LS120G4 A	G	Н	ı	J	K	L
	Outer diameter	(mm)							1200						
	Lead plug diameter	(mm)	180	190	200	210	220	230	240	250	260	270	280	290	300
	Effective plane area	(×10² mm²)	11055	11026	10996	10963	10930	10894	10857	10819	10779	10737	10694	10649	10603
	Thickness of one rubl	ber (mm)							8.0						
	Number of rubber layers	(-)							30						
	Total rubber thicknes	ss (mm)							240						
ر س	First shape factor	(-)							37.5						
Physical Dimensions	Second shape factor	(-)							5.00						
al Dim	Diameter of flange	(mm)							1600						
-hysica	Thickness of flange* (edge/center)	(mm)							32/40						
	Connecting bolt PCD	(mm)							1450						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12	2					
	Bolt size (assumption	n) (-)							M36						
	Thickness of each reinforced steel plate	e (mm)							4.4						
	Total height	(mm)							447.6						
	Total weight	(tonf)	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.79	2.80	2.81	2.83	2.84	2.85
	Total weight	(kN)	26.6	26.7	26.8	26.9	27.0	27.1	27.2	27.3	27.4	27.6	27.7	27.9	28.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma = 0$							81						
"0	Ultimate	$[\gamma_0, \sigma_0]$							(0.00,60)						
operties	compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(1.46,60)						
on Pro		$[\gamma_2, \sigma_2]$							(4.00,23)						
Compression Pr	Compressive stiffness	(×10 ³ kN/m)							5570						
Comp	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	16500	16500	16500	16400	16400	16300	16300	16200	16200	16100	16000	16000	15900
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)						ı	1.0		Γ				ı
= 100%]	Initial stiffness	(×10 ³ kN/m)	23.9	23.9	23.9	24.0	24.0	24.0	24.1	24.1	24.2	24.2	24.2	24.3	24.3
s (y = '	Post yield stiffness $[\gamma = 100\%]$	(×10 ³ kN/m)	1.84	1.84	1.84	1.84	1.85	1.85	1.85	1.85	1.86	1.86	1.87	1.87	1.87
perties	Characteristic Strength	(kN)	203	226	250	276	303	331	360	391	423	456	491	526	563
Shear Properties (γ	Equivalent shear stiffness	(×10³kN/m)	2.68	2.78	2.88	2.99	3.11	3.23	3.35	3.48	3.62	3.76	3.91	4.06	4.22
	Equivalent damping ratio cial thickness for flange is avai	(-)	0.193	0.206	0.219	0.232	0.244	0.255	0.266	0.276	0.285	0.294	0.302	0.310	0.317

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

	Characteristic	OS .	S	F	E	D	С	В	LS130G4	G	Н		J	K	L
	Outer diameter	(mm)							1300			•	•		
	Lead plug diameter	(mm)	200	210	220	230	240	250	260	270	280	290	300	310	320
	Effective plane area	(×10 ² mm ²)	12959	12927	12893	12858	12821	12782	12742	12701	12657	12613	12566	12518	12469
	Thickness of one rubl	ber (mm)							8.7						
	Number of rubber layers	(-)							30						
	Total rubber thicknes	ss (mm)							261						
"	First shape factor	(-)							37.4						
Physical Dimensions	Second shape factor	(-)							4.98						
I Dime	Diameter of flange	(mm)							1700						
hysica	Thickness of flange* (edge/center)	(mm)							32/40						
L.	Connecting bolt PCD	(mm)							1550						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 39 × 12						
	Bolt size (assumption	1) (–)							M36						
	Thickness of each reinforced steel plate	e (mm)							4.4						
	Total height	(mm)							468.6						
	Total weight	(tonf)	3.18	3.19	3.20	3.21	3.23	3.24	3.25	3.27	3.28	3.30	3.31	3.33	3.35
	Total weight	(kN)	31.2	31.3	31.4	31.5	31.6	31.8	31.9	32.0	32.2	32.3	32.5	32.6	32.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							81						
		$[\gamma_0, \sigma_0]$							(0.00,60)						
operties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(1.42,60)						
	, ,	$[\gamma_2, \sigma_2]$							(4.00,22)						
Compression Pr	Compressive stiffness	(×10 ³ kN/m)							6000						
Comp	Nominal long term compressive stress	(N/mm²)							15.0						
	Nominal long term column load	(kN)	19400	19400	19300	19300	19200	19200	19100	19100	19000	18900	18800	18800	18700
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)							1.0						
= 100%]	Initial stiffness	(×10³kN/m)	25.8	25.8	25.8	25.9	25.9	25.9	26.0	26.0	26.1	26.1	26.2	26.2	26.2
$[\gamma = 1]$	Post yield stiffness $(\gamma = 100\%)$	(×10³kN/m)	1.98	1.98	1.99	1.99	1.99	2.00	2.00	2.00	2.00	2.01	2.01	2.02	2.02
Shear Properties (γ	Characteristic Strength	(kN)	250	276	303	331	360	391	423	456	491	526	563	601	641
r Prop	Equivalent shear stiffness	(×10³kN/m)	2.94	3.04	3.15	3.26	3.37	3.49	3.62	3.75	3.88	4.02	4.17	4.32	4.47
Shea	Equivalent damping ratio	(-)	0.199	0.211	0.223	0.235	0.246	0.256	0.266	0.275	0.284	0.292	0.300	0.307	0.314

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

•LS	S Series (S ₂ = 5	5)														
	Characteristic	S	Т	S	F	E	D	С	LS14 B	-0G4 A	G	Н	ı	J	K	L
	Outer diameter	(mm)							14	00						
	Lead plug diameter	(mm)	210	220	230	240	250	260	270	280	290	300	310	320	330	340
	Effective plane area	(×10² mm²)	15047	15014	14978	14941	14903	14863	14821	14778	14733	14687	14639	14590	14539	14486
	Thickness of one rub	ber (mm)							9	3						
	Number of rubber layers	(-)							3	0						
	Total rubber thicknes	ss (mm)							27	79						
ω ω	First shape factor	(-)							37	? .6						
ension	Second shape factor	(-)							5.0	02						
al Dime	Diameter of flange	(mm)							18	00						
Physical Dimensions	Thickness of flange (edge/center)	(mm)							37/	′45						
	Connecting bolt PCD	(mm)							16	50						
	Diameter of connection bolt hole × qty	ing (mm)							Ø 42	× 12						
	Bolt size (assumption	n) (-)							M	39						
	Thickness of each reinforced steel plate	e (mm)							5	8						
	Total height	(mm)							53	7.2						
	Total weight	(tonf)	4.38	4.39	4.40	4.42	4.43	4.44	4.46	4.48	4.49	4.51	4.53	4.55	4.57	4.59
	Total weight	(kN)	42.9	43.0	43.2	43.3	43.4	43.6	43.7	43.9	44.1	44.2	44.4	44.6	44.8	45.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$							8	2						
		$[\gamma_0, \sigma_0]$							(0.00	0,60)						
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							(1.49	9,60)						
n Prop	, ,	$[\gamma_2, \sigma_2]$							(4.00),23)						
Compression Proper	Compressive stiffness	(×10 ³ kN/m)							65	30						
Comp	Nominal long term compressive stress	(N/mm²)							15	i.O						
	Nominal long term column load	(kN)	22600	22500	22500	22400	22400	22300	22200	22200	22100	22000	22000	21900	21800	21700
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)							1.	0						
190%]	Initial stiffness	(×10³kN/m)	27.9	28.0	28.0	28.0	28.1	28.1	28.1	28.2	28.2	28.3	28.3	28.4	28.4	28.5
$[\gamma = 1]$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.15	2.15	2.15	2.16	2.16	2.16	2.16	2.17	2.17	2.17	2.18	2.18	2.18	2.19
Shear Properties $[\gamma=100\%]$	Characteristic Strength	(kN)	276	303	331	360	391	423	456	491	526	563	601	641	681	723
r Prop	Equivalent shear stiffness	(×10 ³ kN/m)	3.14	3.24	3.34	3.45	3.56	3.68	3.80	3.93	4.06	4.19	4.33	4.48	4.63	4.78
Shear	Equivalent damping ratio	(-)	0.193	0.205	0.216	0.227	0.237	0.247	0.257	0.266	0.275	0.283	0.291	0.298	0.305	0.311

•L	Series (S ₂ = 5	5)															
	Characteristic	:S	Т	S	F	Е	D	С	В	LU150G4	G	Н		J	K	L	M
	Outer diameter	(mm)								1500							
	Lead plug diameter	(mm)	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370
	Effective plane area	(×10² mm²)	17256	17219	17181	17141	17099	17056	17011	16965	16917	16867	16816	16764	16709	16654	16596
	Thickness of one rubl	ber (mm)								8.5							
	Number of rubber layers	(-)								35							
	Total rubber thicknes	s (mm)								298							
"	First shape factor	(-)								44.1							
noisus	Second shape factor	(-)								5.04							
al Dime	Diameter of flange	(mm)								1900							
Physical Dimensions	Thickness of flange (edge/center)	(mm)								50/100							
	Connecting bolt PCD	(mm)								1750							
	Diameter of connection bolt hole × qty	ng (mm)							Q	Ø 42 × 16	6						
	Bolt size (assumption	ı) (–)								M39							
	Thickness of each reinforced steel plate	(mm)								5.8							
	Total height	(mm)								694.7							
	Total weight	(tonf)	7.22	7.24	7.26	7.27	7.29	7.31	7.32	7.34	7.36	7.38	7.40	7.43	7.45	7.47	7.49
	Total weight	(kN)	70.9	71.0	71.2	71.3	71.5	71.7	71.8	72.0	72.2	72.4	72.6	72.8	73.0	73.3	73.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0								87							
		$[\gamma_0, \sigma_0]$							(0.00,60)						
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$							([1.75,60])						
Prop	(4))	$[\gamma_2, \sigma_2]$							(4.00,25)						
Compression Prope	Compressive stiffness	(×10 ³ kN/m)								7400							
Compi	Nominal long term compressive stress	(N/mm²)								15.0							
	Nominal long term column load	(kN)	25900	25800	25800	25700	25600	25600	25500	25400	25400	25300	25200	25100	25100	25000	24900
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)								1.0							
10%)	Initial stiffness	(×10 ³ kN/m)	30.1	30.1	30.2	30.2	30.2	30.3	30.3	30.3	30.4	30.4	30.5	30.5	30.6	30.6	30.7
Shear Properties $[\gamma=100\%]$	Post yield stiffness $(\gamma = 100\%)$	(×10 ³ kN/m)	2.31	2.32	2.32	2.32	2.33	2.33	2.33	2.33	2.34	2.34	2.34	2.35	2.35	2.35	2.36
erties	Characteristic Strength	(kN)	331	360	391	423	456	491	526	563	601	641	681	723	767	811	857
, Prop	Equivalent shear stiffness	(×10 ³ kN/m)	3.43	3.53	3.63	3.74	3.86	3.98	4.10	4.23	4.36	4.49	4.63	4.78	4.93	5.08	5.24
Shear	Equivalent damping ratio	[-]	0.198	0.209	0.219	0.229	0.239	0.248	0.257	0.266	0.274	0.282	0.289	0.296	0.302	0.309	0.314

Natural Rubber Bearing (NRB)

Certification Number MVBR-0295 (N3,G3,G5)

ONS Series (S. = 5)

Compound Rubber Shear modulus name code $[N/mm^2]$

OM	Series ($S_2 = 1$	o)								N	3 GO.	30 (0.294
	Characteristic	S	NS060N3	NS065N3	NS070N3	NS075N3	NS080N3	NS085N3	NS090N3	NS095N3	NS100N3	NS110N3	NS120N3
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	25	25
	Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9498	11305
	Thickness of one rubl	oer (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0
	Number of rubber layers	(-)	30	30	30	30	30	30	30	30	30	30	30
	Total rubber thicknes	s (mm)	120	132	141	150	162	171	180	192	201	222	240
"0	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	36.3	36.7
Dimensions	Second shape factor	(-)	5.00	4.92	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00
cal Dim	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600
30Physical	Thickness of flange* (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40
(1)	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450
	Diameter of connecti bolt hole × qty	ng (mm)	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 39 × 12	Ø 39 × 12	Ø 39 × 12
	Bolt size (assumption) (-)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36
	Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4
	Total height	(mm)	265.9	277.9	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6
	Total weight	(tonf)	0.49	0.57	0.65	0.77	1.07	1.19	1.41	1.56	1.77	2.17	2.63
	Total weight	(kN)	4.8	5.6	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	53	51	52	53	51	52	53	52	52	52	53
		$[\gamma_{0}, \sigma_{0}]$	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(1.58,40)	(1.39,40)	(1.50,40)	(1.59,40)	(1.42,40)	(1.51,40)	(1.59,40)	(1.46,40)	(1.52,40)	(1.47,40)	(1.59,40)
n Prope		$[\gamma_2, \sigma_2]$	(4.00,21)	(4.00,19)	(4.00,20)	(4.00,21)	(4.00,19)	(4.00,20)	(4.00,20)	(4.00,20)	(4.00,20)	(4.00,20)	(4.00,20)
Compression Properties	Compressive stiffness	(×10³kN/m)	2140	2270	2470	2680	2800	3000	3210	3340	3540	3870	4290
Comp	Nominal long term compressive stress	(N/mm²)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	Nominal long term column load	(kN)	2830	3320	3850	4420	5020	5670	6360	7090	7850	9500	11300
	Allowable tensile stre $(\gamma = 100\%)$	ss (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10 ³ kN/m)	0.693	0.739	0.803	0.866	0.912	0.976	1.04	1.09	1.15	1.26	1.39
	ial thickness for flange is avail		the table on	the next page	(upper top ta	able) for more	details.						

t page (upper top

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

Certification number MVBR-0295 (N3,G3,G5)

Compound	Rubber	Shear modulus
name	code	(N/mm²)
G3	G0.35	0.343

•NS	S Series (S ₂ =	5)								G	3 GO.		0.343
	Characteristic	CS	NS060G3	NS065G3	NS070G3	NS075G3	NS080G3	NS085G3	NS090G3	NS095G3	NS100G3	NS110G3	NS120G3
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	25	25
	Effective plane area	(×10 ² mm ²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9498	11305
	Thickness of one rub	ber (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0
	Number of rubber layers	(-)	30	30	30	30	30	30	30	30	30	30	30
	Total rubber thicknes	ss (mm)	120	132	141	150	162	171	180	192	201	222	240
	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	36.3	36.7
ensions	Second shape factor	(-)	5.00	4.92	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00
cal Dim	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600
30Physical Dimensions	Thickness of flange* (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40
m	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450
	Diameter of connection bolt hole × qty	ing (mm)	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 33 × 12	Ø 39 × 12	Ø 39 × 12	Ø 39 × 12
	Bolt size (assumption	n] [–]	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4
	Total height	(mm)	265.9	277.9	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6
	Total weight	(tonf)	0.49	0.57	0.65	0.77	1.07	1.19	1.41	1.56	1.77	2.17	2.63
	Total weight	(kN)	4.8	5.6	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma = 0$	59	57	58	59	58	58	59	58	58	58	59
		$[\gamma_0, \sigma_0]$	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)	(0.00,40)
rties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(2.12,40)	(1.93,40)	(2.04,40)	(2.13,40)	(1.97,40)	(2.05,40)	(2.12,40)	(2.00,40)	(2.06,40)	(2.01,40)	(2.13,40)
n Properties	,	$[\gamma_2, \sigma_2]$	(4.00,23)	(4.00,22)	(4.00,22)	(4.00,23)	(4.00,22)	(4.00,23)	(4.00,23)	(4.00,22)	(4.00,23)	(4.00,22)	(4.00,23)
Compression	Compressive stiffness	(×10 ³ kN/m)	2220	2350	2560	2780	2900	3120	3330	3460	3670	4020	4440
Comp	Nominal long term compressive stress	(N/mm²)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	Nominal long term column load	(kN)	2830	3320	3850	4420	5020	5670	6360	7090	7850	9500	11300
	Allowable tensile stre $(\gamma = 100\%)$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10 ³ kN/m)	0.808	0.862	0.936	1.01	1.06	1.14	1.21	1.27	1.34	1.47	1.62
	cial thickness for flange is avai	I-bl- Di	the teble ob		dataila								

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

Certification number MVBR-0295 (N3,G3,G5)

Code

 Compound name
 Rubber code
 Shear modulus (N/mm²)

 G5
 G0.45
 0.441

	Characteristic	S	NS060G5	NS065G5	NS070G5	NS075G5	NS080G5	NS085G5	NS090G5	NS095G5	NS100G5	NS110G5	NS120G5	NS130G5	NS140G5	NU150G5
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	25	25	30	30	40
	Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9498	11305	13266	15387	17659
	Thickness of one rubb layer	oer (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.3	8.5
	Number of rubber layers	(-)	30	30	30	30	30	30	30	30	30	30	30	30	30	35
	Total rubber thicknes	s (mm)	120	132	141	150	162	171	180	192	201	222	240	261	279	298
•	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	36.3	36.7	36.5	36.8	42.9
Dimensions	Second shape factor	(-)	5.00	4.92	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00	4.98	5.02	5.04
cal Dim	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900
30Physical	Thickness of flange* (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	50/100
eo ·	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750
	Diameter of connecti bolt hole × qty	ng (mm)	Ø 33 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16										
	Bolt size (assumption) (-)	M30	M36	M36	M36	M36	M39	M39							
	Thickness of each reinforced steel plate	e (mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8
	Total height	(mm)	265.9	277.9	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6	468.6	537.2	694.7
	Total weight	(tonf)	0.49	0.57	0.65	0.77	1.07	1.19	1.41	1.56	1.77	2.17	2.63	3.07	4.24	7.05
	Total weight	(kN)	4.8	5.6	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8	30.1	41.6	69.2
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	72	70	71	72	71	71	72	71	72	71	72	72	73	77
		$[\gamma_{0}, \sigma_{0}]$	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)
ırties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(1.12,60)	(0.93,60)	(1.04,60)	(1.13,60)	(0.96,60)	(1.05,60)	(1.12,60)	(1.00,60)	(1.05,60)	(1.01,60)	(1.12,60)	(1.07,60)	(1.15,60)	(1.49,60)
- Prope		$[\gamma_2, \sigma_2]$	(4.00,28)	(4.00,26)	(4.00,27)	(4.00,28)	(4.00,27)	(4.00,28)	(4.00,28)	(4.00,27)	(4.00,28)	(4.00,27)	(4.00,28)	(4.00,28)	(4.00,29)	(4.00,31)
Compression Properties	Compressive stiffness	(×10³kN/m)	2490	2640	2880	3110	3260	3500	3730	3890	4110	4510	4980	5360	5840	6620
Comp	Nominal long term compressive stress	(N/mm²)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	4240	4970	5770	6620	7540	8510	9540	10600	11800	14200	17000	19900	23100	26500
	Allowable tensile stre $(\gamma = 100\%)$	SS (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10³kN/m)	1.04	1.11	1.20	1.30	1.37	1.46	1.56	1.63	1.72	1.89	2.08	2.24	2.43	2.62

^{* :} Special thickness for flange is available. Please refer to the table on the next page (upper top table) for more details.

Outer diameter of rubber bearing (Ø)*1	(600)	(650)	700	(750)	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(26/32)	(26/32)	26/32	(30/36)	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

Certification number MVBR-0509/MVBR-0518 [G4] Note: There are 2 certification numbers due to difference of some manufacturing process. Please refer to "Precautions" in page 11 for the certificate number that used for design document. NS Series $S_2 = 5$

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.392

● M	S Series (S ₂ = !	5)											G4	G0.40	0.3	92
	Characteristic	s	NS060G4	NS065G4	NS070G4	NS075G4	NS080G4	NS085G4	NS090G4	NS095G4	NS100G4	NS110G4	NS120G4	NS130G4	NS140G4	NU150G4
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55	65	65
	Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249	15361	17638
	Thickness of one rubl	oer (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.3	8.5
	Number of rubber layers	(-)	30	30	30	30	30	30	30	30	30	30	30	30	30	35
	Total rubber thicknes	s (mm)	120	132	141	150	162	171	180	192	201	222	240	261	279	298
ro.	First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	35.3	35.8	35.8	35.9	42.2
ension	Second shape factor	(-)	5.00	4.92	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00	4.98	5.02	5.04
cal Dim	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900
30Physical Dimensions	Thickness of flange* (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	50/100
(t)	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750
	Diameter of connection bolt hole × qty	ng (mm)	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø39×12	Ø39×12	Ø39×12	Ø39×12	Ø42×12	Ø42×16
	Bolt size (assumption) (–)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36	M39	M39
	Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8
	Total height	(mm)	265.9	277.9	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6	468.6	537.2	694.7
	Total weight	(tonf)	0.49	0.57	0.65	0.77	1.07	1.19	1.41	1.56	1.77	2.17	2.63	3.07	4.24	7.04
	Total weight	(kN)	4.8	5.6	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8	30.1	41.6	69.1
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0	65	63	64	65	63	64	65	64	64	63	64	64	65	69
		$[\gamma_{0}, \sigma_{0}]$	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.50,60)	(0.32,60)	(0.42,60)	(0.52,60)	(0.35,60)	(0.43,60)	(0.51,60)	(0.38,60)	(0.44,60)	(0.32,60)	(0.45,60)	(0.41,60)	(0.48,60)	(0.88,60)
Prope ר		$[\gamma_2, \sigma_2]$	(4.00,25)	(4.00,24)	(4.00,25)	(4.00,26)	[4.00,24]	(4.00,25)	(4.00,25)	(4.00,24)	(4.00,25)	(4.00,24)	(4.00,25)	(4.00,25)	(4.00,25)	(4.00,27)
Compression Properties	Compressive stiffness	(×10³kN/m)	2280	2420	2640	2850	2990	3200	3420	3560	3770	4080	4510	4870	5290	6030
Comp	Nominal long term compressive stress	(N/mm²)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	4240	4970	5770	6620	7540	8510	9540	10600	11800	14200	16900	19900	23000	26500
	Allowable tensile stre $(\gamma = 100\%)$	SS (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10³kN/m)	0.923	0.985	1.07	1.15	1.22	1.30	1.38	1.45	1.53	1.67	1.84	1.99	2.16	2.32
	cial thickness for flange is avail	able Please refer to	the table	above for r	nono dotoi	le .										

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

Specification of flange (edge thickness / center thickness)

Outer diameter of rubber bearing $[\varnothing]^{*1}$	(600)	(650)	700	750	800	850	900	950	1000	1100	1200	1300
Standard thickness	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	[26/32]	(26/32)	26/32	30/36	32/40	32/40	37/45	37/45	42/50	42/50	42/50	42/50

X1 For adoption of special thickness in regard to those sizes that stated in the [], delivery time will be longer due to mold preparation. X2 For Ø1400 and above, assembled type flange will be used.
X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

Certification number MVBR-0509/MVBR-0518 [G4] Note: There are 2 certification numbers due to difference of some manufacturing process. Please refer to "Precautions" in page 11 for the certificate number that used for design document.

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.392

l Series (Total	Rubber T	hickr	iess 2	20cm								G4	G0.40	0.3	92
						NH080G4	NH085G4	NH090G4	NH095G4	NH100G4					NH150G4
Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55	65	65
Effective plane area	(×10² mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249	15361	17638
Thickness of one rubl	oer (mm)	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0
Number of rubber layers	(-)	50	45	43	40	37	35	33	31	30	27	25	23	21	20
Total rubber thicknes	s (mm)	200	198	202	200	200	200	198	198	201	200	200	200	200	200
First shape factor	(-)	36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9
Second shape factor	(-)	3.00	3.28	3.46	3.75	4.00	4.26	4.55	4.79	4.98	5.51	6.00	6.50	7.02	7.50
Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900
Thickness of flange* (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50
Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1750
Diameter of connecti bolt hole × qty	ng (mm)	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø39×12	Ø39×12	Ø39×12	Ø39×12	Ø42×12	Ø42×16
Bolt size (assumption) (-)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36	M39	M39
Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8
Total height	(mm)	407.9	390.4	388.3	376.9	422.2	413.1	410.8	402.4	400.6	390.2	385.6	376.9	405.5	410.2
Total weight	(tonf)	0.66	0.72	0.80	0.90	1.21	1.31	1.49	1.59	1.77	2.05	2.38	2.65	3.46	4.05
Total weight	(kN)	6.5	7.0	7.9	8.9	11.9	12.9	14.6	15.6	17.3	20.1	23.3	26.0	33.9	39.7
Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	31	35	38	43	47	51	56	61	64	70	77	84	90	97
	$[\gamma_0, \sigma_0]$	(0.00,31)	(0.00,35)	(0.00,38)	(0.00,43)	(0.00,47)	(0.00,51)	(0.00,56)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)
Ultimate compressive stress [N/mm²]	$[\gamma_1, \sigma_1]$	-	-	-	-	-	-	-	(0.07,60)	(0.44,60)	(1.08,60)	(1.76,60)	(2.42,60)	(3.05,60)	(3.74,60)
	$[\gamma_2, \sigma_2]$	(2.76,0)	(3.21,0)	(3.46,0)	(3.75,3)	(4.00,5)	(4.00,10)	(4.00,16)	(4.00,21)	(4.00,25)	(4.00,32)	(4.00,38)	(4.00,44)	(4.00,51)	(4.00,57)
Compressive stiffness	(×10³kN/m)	1370	1610	1840	2140	2420	2750	3110	3450	3770	4530	5420	6350	7330	8470
Nominal long term compressive stress	(N/mm²)	6.0	7.0	7.8	8.9	9.8	10.8	12.0	13.0	15.0	15.0	15.0	15.0	15.0	15.0
Nominal long term column load	(kN)	1700	2320	3000	3930	4920	6130	7630	9200	11800	14200	16900	19900	23000	26500
Allowable tensile stre $(\gamma = 100\%)$	ss (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear stiffness															
	Characteristic Outer diameter Inner diameter Effective plane area Thickness of one rubilayer Number of rubber layers Total rubber thickness First shape factor Second shape factor Diameter of flange Thickness of flange* (edge/center) Connecting bolt PCD Diameter of connecting bolt PCD Diameter of connecting bolt pcd bolt hole x qty Bolt size (assumption) Thickness of each reinforced steel plate Total height Total weight Total weight Critical stress (N/mm²) Ultimate compressive stress (N/mm²) Compressive stress Nominal long term column load Allowable tensile stres	CharacteristicsOuter diameter(mm)Inner diameter(mm)Effective plane area(×102 mm2)Thickness of one rubber layer(mm)Number of rubber layers(-)Total rubber thickness(mm)First shape factor(-)Second shape factor(-)Diameter of flange(mm)Thickness of flange* (edge/center)(mm)Connecting bolt PCD(mm)Diameter of connecting bolt hole x qty(mm)Bolt size (assumption)(-)Thickness of each reinforced steel plate(mm)Total height(mm)Total weight(kN)Critical stress (N/mm2) σ_{cr} when $\gamma = 0$ Ultimate compressive stress (N/mm2) $(\gamma_{cr}, \sigma_{o})$ Ultimate compressive stress (N/mm2) $(\gamma_{cr}, \sigma_{o})$ Compressive stress stress (n/mm2) $(\gamma_{cr}, \sigma_{o})$ Nominal long term column load(kN)Allowable tensile stress(N/mm2)	Characteristics NH06064 Outer diameter (mm) 600 Inner diameter (mm) 15 Effective plane area (x10° mm²) 2826 Thickness of one rubber layers (mm) 4.0 Number of rubber layers (mm) 200 First shape factor (-) 36.6 Second shape factor (-) 3.00 Diameter of flange (mm) 900 Thickness of flange* (mm) 22/28 Connecting bolt PCD (mm) 775 Diameter of connecting bolt PCD (mm) 233×12 Bolt size (assumption) (-) M30 Thickness of each reinforced steel plate (mm) 3.1 Total height (mm) 3.1 Total weight (kn) 6.5 Critical stress (N/mm²) σ _c when γ = 0 3.1 Ultimate compressive stress (N/mm²) (276.0) Compressive stress (N/mm²) (276.0) Nominal long term compressive stress (N/mm²) 6.0 Allowable tensile stress </td <td>Characteristics N+06004 N+06064 Outer diameter (mm) 600 650 Inner diameter (mm) 15 15 Effective plane area (×10² mm²) 2826 3317 Thickness of one rubber layer (mm) 4.0 4.4 Number of rubber layers (-) 50 45 Total rubber thickness (mm) 200 198 First shape factor (-) 3.66 36.1 Second shape factor (-) 3.00 3.28 Diameter of flange (mm) 900 950 Thickness of flange* (mm) 22/28 22/28 Connecting bolt PCD (mm) 775 825 Diameter of connecting (mm) 33×12 33×12 Bolt size (assumption) (-) M30 M30 Thickness of each reinforced steel plate (mm) 3.1 3.1 Total height (kn) 6.5 7.0 Critical stress (N/mm²) (√, √, √, √, √, √, √, √, √, √, √, √, √, √</td> <td>Characteristics NH06064 NH06054 NH07064 Outer diameter (mm) 600 650 700 Inner diameter (mm) 15 15 15 Effective plane area (×10° mm²) 2826 3317 3847 Thickness of one rubber layer (mm) 4.0 4.4 4.7 Number of rubber layer (-) 50 45 43 Total rubber thickness (mm) 200 198 202 First shape factor (-) 36.6 36.1 36.4 Second shape factor (-) 300 3.28 3.46 Diameter of flange (mm) 290 950 1000 Thickness of flange* (edge/center) (mm) 22/28 22/28 22/28 Connecting bolt PCD (mm) 775 825 875 Diameter of connecting bolt PCD (mm) 33×12 233×12 233×12 Bolt size (assumption) (-) M30 M30 M30 Total he</td> <td>Outer diameter (mm) 600 650 700 750 Inner diameter (mm) 15 15 15 15 Effective plane area (×10° mm²) 2826 3317 3847 4416 Thickness of one rubber layers (mm) 4.0 4.4 4.7 5.0 Number of rubber layers (mm) 200 198 202 200 First shape factor (-) 36.6 36.1 36.4 36.8 Second shape factor (-) 3.00 3.28 3.46 3.75 Diameter of flange (mm) 900 950 1000 1100 Thickness of flange* (mm) 22/28 23 33 12 31 31 31</td> <td>Characteristics NH06004 NH06004 NH07004 NH07004</td> <td>Characteristics NH66004 (mm) NH06004 (mm) NH07004 (mm) NH07004</td> <td>Characteristics N406064 N406054 N407004 N407604 N406064 N406064</td> <td> Note</td> <td>Characteristics Ne00024 Ne00024 Ne00024 Ne00026 Ne00026</td> <td>Characteristics Ne0000 Ne00000 Ne000000 Ne000000 Ne000000 Ne000000 Ne000000 Ne0000000 Ne0000000000 Ne000000000000 Ne00000000000000000 Ne000000000000000000000000000000000000</td> <td>Cherecteristics Notect <</td> <td> Charactenistics Notifical Notifica</td> <td> Characteristics</td>	Characteristics N+06004 N+06064 Outer diameter (mm) 600 650 Inner diameter (mm) 15 15 Effective plane area (×10² mm²) 2826 3317 Thickness of one rubber layer (mm) 4.0 4.4 Number of rubber layers (-) 50 45 Total rubber thickness (mm) 200 198 First shape factor (-) 3.66 36.1 Second shape factor (-) 3.00 3.28 Diameter of flange (mm) 900 950 Thickness of flange* (mm) 22/28 22/28 Connecting bolt PCD (mm) 775 825 Diameter of connecting (mm) 33×12 33×12 Bolt size (assumption) (-) M30 M30 Thickness of each reinforced steel plate (mm) 3.1 3.1 Total height (kn) 6.5 7.0 Critical stress (N/mm²) (√, √, √, √, √, √, √, √, √, √, √, √, √, √	Characteristics NH06064 NH06054 NH07064 Outer diameter (mm) 600 650 700 Inner diameter (mm) 15 15 15 Effective plane area (×10° mm²) 2826 3317 3847 Thickness of one rubber layer (mm) 4.0 4.4 4.7 Number of rubber layer (-) 50 45 43 Total rubber thickness (mm) 200 198 202 First shape factor (-) 36.6 36.1 36.4 Second shape factor (-) 300 3.28 3.46 Diameter of flange (mm) 290 950 1000 Thickness of flange* (edge/center) (mm) 22/28 22/28 22/28 Connecting bolt PCD (mm) 775 825 875 Diameter of connecting bolt PCD (mm) 33×12 233×12 233×12 Bolt size (assumption) (-) M30 M30 M30 Total he	Outer diameter (mm) 600 650 700 750 Inner diameter (mm) 15 15 15 15 Effective plane area (×10° mm²) 2826 3317 3847 4416 Thickness of one rubber layers (mm) 4.0 4.4 4.7 5.0 Number of rubber layers (mm) 200 198 202 200 First shape factor (-) 36.6 36.1 36.4 36.8 Second shape factor (-) 3.00 3.28 3.46 3.75 Diameter of flange (mm) 900 950 1000 1100 Thickness of flange* (mm) 22/28 23 33 12 31 31 31	Characteristics NH06004 NH06004 NH07004 NH07004	Characteristics NH66004 (mm) NH06004 (mm) NH07004	Characteristics N406064 N406054 N407004 N407604 N406064 N406064	Note	Characteristics Ne00024 Ne00024 Ne00024 Ne00026 Ne00026	Characteristics Ne0000 Ne00000 Ne000000 Ne000000 Ne000000 Ne000000 Ne000000 Ne0000000 Ne0000000000 Ne000000000000 Ne00000000000000000 Ne000000000000000000000000000000000000	Cherecteristics Notect <	Charactenistics Notifical Notifica	Characteristics

^{* :} Special thickness for flange is available. Please refer to the table above for more details.

Certification number MVBR-0509/MVBR-0518 [G4] Note: There are 2 certification numbers due to difference of some manufacturing process. Please refer to "Precautions" in page 11 for the certificate number that used for design document. NL Series (Total Rubber Thickness 16cm)

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.392

• NE Series (Total Rubber 11				· · · · · ·						G4	G0.40	, 0.	.392	
	Characteristic	S	NL060G4	NL065G4	NL070G4	NL075G4	NL080G4	NL085G4	NL090G4	NL095G4	NL100G4	NL110G4	NL120G4	NL130G4
	Outer diameter	(mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300
	Inner diameter	(mm)	15	15	15	15	20	20	20	20	25	55	55	55
	Effective plane area	(×10 ² mm ²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9480	11286	13249
	Thickness of one rubb layer	oer (mm)	3.95	4.4	4.9	4.85	5.1	5.25	5.65	6.0	6.35	7.2	7.7	8.0
	Number of rubber layers	(-)	41	37	34	34	33	32	30	28	26	23	22	21
	Total rubber thicknes	s (mm)	162	163	167	165	168	168	170	168	165	166	169	168
S	First shape factor	(-)	37.0	36.1	34.9	37.9	38.2	39.5	38.9	38.8	38.4	36.3	37.2	38.9
30Physical Dimensions	Second shape factor	(-)	3.70	3.99	4.20	4.55	4.75	5.06	5.31	5.65	6.06	6.64	7.08	7.74
ical Din	Diameter of flange	(mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700
30Phys	Thickness of flange (edge/center)	(mm)	22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40
(3)	Connecting bolt PCD	(mm)	775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550
	Diameter of connecti bolt hole × qty	ng (mm)	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø33×12	Ø39×12	Ø39×12	Ø39×12	Ø39×12
	Bolt size (assumption) (-)	M30	M30	M30	M30	M30	M30	M30	M30	M36	M36	M36	M36
	Thickness of each reinforced steel plate	(mm)	3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4.4	4.4	4.4	5.8
	Total height	(mm)	342.0	330.4	324.9	323.2	373.1	368.4	369.1	358.8	347.1	338.4	341.8	364.0
	Total weight	(tonf)	0.58	0.64	0.70	0.82	1.12	1.23	1.40	1.48	1.63	1.88	2.22	2.80
	Total weight	(kN)	5.7	6.3	6.9	8.1	11.0	12.1	13.7	14.5	15.9	18.4	21.8	27.5
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when γ = 0	42	46	49	57	61	68	71	75	80	86	93	103
		$[\gamma_{\scriptscriptstyle 0},\sigma_{\scriptscriptstyle 0}]$	(0.00,42)	(0.00,46)	(0.00,49)	(0.00,57)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)
erties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	-	-	-	-	(0.13,60)	(0.77,60)	(1.06,60)	(1.50,60)	(2.01,60)	(2.64,60)	(3.29,60)	(4.00,60)
Compression Properties		$[\gamma_2, \sigma_2]$	(3.70,2)	(3.99,5)	(4.00,9)	(4.00,16)	(4.00,21)	(4.00,27)	(4.00,30)	(4.00,35)	(4.00,40)	(4.00,47)	(4.00,53)	(4.00,60)
pressio.	Compressive stiffness	(×10³kN/m)	1700	1960	2190	2630	2940	3360	3720	4170	4690	5520	6490	7810
Com	Nominal long term compressive stress	(N/mm²)	8.7	9.7	10.5	12.1	13.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	2460	3220	4040	5340	6530	8510	9540	10630	11800	14200	16900	19900
	Allowable tensile stre $(\gamma = 100\%)$	ss (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10³kN/m)	0.684	0.799	0.905	1.05	1.17	1.32	1.47	1.65	1.86	2.24	2.61	3.09

Outer diameter of rubber bearing (Ø)*1	(900)	(950)	1000	1100	1200	1300
Standard thickness	28/36	28/36	28/36	30/38	32/40	32/40
Special thickness (option)	(37/45)	(37/45)	42/50	42/50	42/50	42/50

^{**}X1 For adoption of special thickness in regard to those sizes that stated in the (1), delivery time will be longer due to mold preparation.

**X2 For Ø1400 and above, assembled type flange will be used.

**X3 Compared to the standard spefication, total height & weight of product for special thickness will be changed.

Certification number MVBR-0509/MVBR-0518 [G4] Note: There are 2 certification numbers due to difference of some manufacturing process. Please refer to "Precautions" in page 11 for the certificate number that used for design document. NT Series (Total Rubber Thickness 25cm)

Compound name	Rubber code	Shear modulus (N/mm²)					
G4	G0.40	0.392					

ONT Series (Total Rubber			HICKHES	راااا					G4	G0.40	0.392
	Characteristic	os .	NT090G4	NT095G4	NT100G4	NT110G4	NT120G4	NT130G4	NT140G4	NT150G4	NT160G4
	Outer diameter	(mm)	900	950	1000	1100	1200	1300	1400	1500	1600
	Inner diameter	(mm)	20	20	25	55	55	55	65	65	80
	Effective plane area	(×10² mm²)	6359	7085	7849	9480	11286	13249	15361	17638	20056
	Thickness of one rub	ber (mm)	6.0	6.4	6.7	7.4	8.0	8.7	9.5	10.0	10.4
	Number of rubber layers	(-)	42	39	37	34	31	29	26	25	24
	Total rubber thicknes	ss (mm)	252	250	248	252	248	252	247	250	250
m	First shape factor	(-)	36.7	36.3	36.4	35.3	35.8	35.8	35.1	35.9	36.5
ensions	Second shape factor	(-)	3.57	3.81	4.03	4.37	4.84	5.15	5.67	6.00	6.41
30Physical Dimensions	Diameter of flange	(mm)	1250	1300	1400	1500	1600	1700	1800	1900	2000
OPhysi	Thickness of flange* (edge/center)	(mm)	28/36	28/36	28/36	30/38	32/40	32/40	37/45	42/50	50/110
(1)	Connecting bolt PCD	(mm)	1100	1150	1250	1350	1450	1550	1650	1750	1800
	Diameter of connect bolt hole × qty	ing (mm)	Ø33×12	Ø33×12	Ø39×12	Ø39×12	Ø 39 × 12	Ø 39 × 12	Ø 42 × 12	Ø 42 × 16	Ø 45 × 12
	Bolt size (assumption	ı) (–)	M30	M30	M36	M36	M36	M36	M39	M39	M42
	Thickness of each reinforced steel plate	e (mm)	4.4	4.4	4.4	4.4	4.4	4.4	5.8	5.8	5.8
	Total height (mm)		504.4	488.8	478.3	472.8	460.0	455.5	482.0	489.2	603.0
	Total weight	(tonf)	1.73	1.83	2.00	2.34	2.68	3.01	3.90	4.56	7.21
	Total weight	(kN)	16.9	18.0	19.6	22.9	26.2	29.5	38.2	44.7	70.7
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma = 0$	40	43	47	52	61	66	72	77	83
		$[\gamma_0, \sigma_0]$	(0.00,40)	(0.00,43)	(0.00,47)	(0.00,52)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)	(0.00,60)
arties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	-	-	-	-	(0.13,60)	(0.65,60)	(1.28,60)	(1.77,60)	(2.36,60)
n Prope		$[\gamma_2, \sigma_2]$	(3.75,1)	(3.81,3)	(4.00,5)	(4.00,12)	(4.00,22)	(4.00,27)	(4.00,34)	(4.00,38)	(4.00,44)
Compression Properties	Compressive stiffness	(×10 ³ kN/m)	2440	2740	3060	3600	4370	5040	5920	6780	7770
Comp	Nominal long term compressive stress	(N/mm²)	8.2	9.0	9.9	11.2	13.1	15.0	15.0	15.0	15.0
	Nominal long term column load	(kN)	5210	6380	7770	10600	14800	19900	23000	26500	30100
	Allowable tensile stre $[\gamma = 100\%]$	ess (N/mm²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10³kN/m)	0.989	1.11	1.24	1.48	1.78	2.06	2.44	2.77	3.15

Certification number MVBR-0509 (G4)

Compound name	Rubber code	Shear modulus (N/mm²)
G4	G0.40	0.392

Code

	Characteristics		ND160G4	ND170G4	ND180G4
	Outer diameter	(mm)	1600	1700	1800
	Inner diameter	(mm)	80	85	5 – Ø 55
	Effective plane area	(×10² mm²)	20056	22641	25328
	Thickness of one rub	ber (mm)	10.4	10.4	11.1
	Number of rubber layers	(-)	31	31	29
	Total rubber thicknes	ss (mm)	322	322	322
(0	First shape factor	[-]	36.5	38.8	35.0
ensions	Second shape factor	(-)	4.96	5.27	5.59
cal Dim	Diameter of flange	(mm)	2000	□ 1980	□ 2080
30Physical Dimensions	Thickness of flange (edge/center)	(mm)	50/100	50/100	50/100
(1)	Connecting bolt PCD	(mm)	1800	-	-
	Diameter of connect bolt hole × qty	ing (mm)	Ø 45 × 12	Ø 45 × 24	Ø 45 × 24
	Bolt size (assumption	ı) (–)	M42	M42	M42
	Thickness of each reinforced steel plate	e (mm)	5.8	5.8	5.8
	Total height	(mm)	696.4	696.4	684.3
	Total weight	(tonf)	7.69	9.02	9.79
	Total weight	(kN)	75.4	88.4	96.0
	Critical stress (N/mm²)	$\sigma_{\rm cr}$ when $\gamma=0$	64	70	71
		$[\gamma_0, \sigma_0]$	(0.00,60)	(0.00,60)	(0.00,60)
rties	Ultimate compressive stress (N/mm²)	$[\gamma_1, \sigma_1]$	(0.43,60)	(1.01,60)	(1.17,60)
Prope		$[\gamma_2, \sigma_2]$	(4.00,25)	(4.00,30)	(4.00,33)
Compression Properties	Compressive stiffness	(×10³kN/m)	6020	6950	7480
Comp	Nominal long term compressive stress	(N/mm²)	15.0	15.0	15.0
	Nominal long term column load	(kN)	30100	34000	38000
	Allowable tensile stress $[N/m]$		1.0	1.0	1.0
Shear Properties	Shear stiffness (shear strain: $\gamma = \pm 100\%$)	(×10³kN/m)	2.44	2.75	3.08

Elastic Sliding Bearing

Certification Number MVBR-0349

●SL Series (μ = 0.13, G1.2)

Code

Compound name	Rubber code	Shear modulus (N/mm²)
GC	G1.2	1.18

			,	ı			
	Characteristics	SL030GC	SL040GC	SL050GC	SL060GC	SL070GC	SL080GC
	Outer diameter (mm)	300	400	500	600	700	800
	Inner diameter (mm)	0	0	0	0	0	0
	Effective diameter (mm)	300	400	500	600	700	800
	Effective plane area ^{×1} (× 10 ² mm ²)	707	1257	1963	2827	3848	5027
	Thickness of one rubber layer (mm)	3.5	5.0	6.0	7.5	8.7	10.0
	Number of rubber layers [–]	12	12	10	8	7	6
ubber	Total rubber thickness (mm)	42	60	60	60	61	60
ed R	First shape factor [–]	21.4	20.0	20.8	20.0	20.1	20.0
minat	Second shape factor [–]	7.14	6.67	8.33	10.0	11.5	13.3
of Lar	Diameter of sliding material (PTFE)	308	408	508	608	708	808
Physical Dimensions of Laminated Rubber	Diameter of flange (mm)	500	650	750	900	1000	1150
mens	Thickness of flange (mm)	16/22	16/22	22/28	22/28	22/28	24/32
cal Di	Connecting bolt PCD (mm)	420	550	650	775	875	1000
Physi	Diameter of connecting bolt hole × qty (mm)	Ø 27 × 8	Ø 27 × 8	Ø 27 × 8	Ø 33 × 8	Ø 33 × 8	Ø 33 × 8
	Bolt size (assumption) [-]	M24	M24	M24	M30	M30	M30
	Thickness of each reinforced steel plate (mm)	2.2	2.2	2.2	3.1	3.1	3.1
	Height of laminated rubber (mm)	103.2	121.2	122.8	132.7	130.5	130.5
	Weight of laminated rubber (tonf)	0.05	0.10	0.15	0.24	0.31	0.41
	Weight of laminated rubber (kN)	0.5	0.9	1.5	2.4	3.0	4.0
	Ultimate displacement (mm)	(Outer dimer	nsion of SUS plate – 0	Outer diameter of lam	ninated rubber) / 2 ,	(Max displacement	= ± 700mm)
rties	Ultimate compressive stress (N/mm²)			5	0		
rope	Nominal long term compressive stress (N/mm²)			10)×2		
sion F	Nominal long term column load (kN)	707	1260	1960	2830	3850	5030
Compression Properties	Compressive stiffness (×10 ³ kN/m)	1730	2040	3290	4600	6190	8170
Com	Allowable tensile stress (N/mm²)			()		
Shear Properties	Initial stiffness (×10°kN/m)	1.98	2.46	3.85	5.55	7.44	9.86
Shear Propertie	Post yield stiffness (×10°kN/m)			()		
Friction Coefficient	Dynamic friction coefficient [-]		0.13 (compre	ssive stress σ = 10 (1	N/mm²), velocity V =	100 (mm/s))	
=	ctive plane area is calculated based on effective dia		6 F F + 1 D				

^{*1} Effective plane area is calculated based on effective diameter (outer diameter of sliding material) ×2 Nominal long term compressive stress is referred as long term upper limit of compressive stress

Sliding plate (SUS finished product of #400) can be used in combination of the following specifications in corespond to the ultimate deformation.

	Characteristics		QL13228	QL14228	QL15228	QL16231	QL17231	QL18231	QL19231	QL20231	QL21231	QL22231
е	Outer dimension of base plate	(mm)	□ 1320	□ 1420	□ 1520	□ 1620	□ 1720	□ 1820	□ 1920	□ 2020	□ 2120	□ 2220
	Outer dimension of SUS plate	(mm)	□ 1300	□ 1400	□ 1500	□ 1600	□ 1700	□ 1800	□ 1900	□ 2000	□ 2100	□ 2200
Dimensions of Sliding Plate	Inner dimension of SUS plate	(mm)	550	600	650	700	750	800	850	900	950	1000
Siidi	Total thickness	(mm)	28	28	28	31	31	31	31	31	31	31
ns of	Connecting bolt hole position	L _{b1} (mm)	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900
ensio		L _{b2} (mm)	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100
	Diameter of connecting bolt hole × qty	(mm)	Ø 35 × 8	Ø 35 × 8	Ø 35 × 8	Ø 41 × 8						
Physical	Bolt size (assumption)	(-)	M30	M30	M30	M36						
문	Weight of sliding plate	(tonf)	0.38	0.44	0.50	0.62	0.70	0.78	0.87	0.96	1.06	1.16
	Weight of sliding plate	(kN)	3.7	4.3	4.9	6.1	6.8	7.7	8.5	9.4	10.4	11.4

Others

Compact Flange Type

Characteristic

Installation space improvement

It could save space during installation because the flange size has been minimized in compact shape. Reduction of footing size is possible especially in the retrofit project, edge part's placement & etc. strength of the flange, displacement of rubber bearing & etc. Please contact us for

Round shape of rubber bearing

Because of round-shape of rubber bearing, there is no change of shear characteristics due to direction.

Line-up is for the flange-integrated seismic isolation bearing.

Please contact us for any size that isn't listed in the table below.

Certification Number	Series	Size (diameter of rubber bearing)	Type of Rubber	Performance
MVBR-0510/MVBR-0519 MVBR-0514/MVBR-0520	HDR	Ø600 – Ø1300	X4S X6R	Equivalent to Bridgestone
MVBR-0509/MVBR-0518 MVBR-0295	NRB	Ø600 – Ø1300	G4 N3, G3, G5	seismic isolation rubber (round-shape flange)
MVBR-0517	LRB	Ø600 – Ø1300	G4	

more details.

Flange Size Table

Diameter of rubber bearing	600	650	700	750	800	850	900	950	1000	1100	1200	1300
Diameter of round-shape flange (D)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700
Length of one side of a compact flange (L)	745	795	845	910	965	1010	1055	1100	1200	1290	1380	1470
D-L	155	155	155	190	185	190	195	200	200	210	220	230

Comparison Between Compact Flange and Round-shape Flange

●Comparison of flange's dimension

Supports many types of seismic isolation rubber bearing

*Compared to round-shape flange, compact flange has some limitations in the

Any size can be selected from Bridgestone's product range.

View of reinforcement bar arrangement

View of reinforcement bar arrangement with span of 180-200mm

imes For $ilde{\varnothing}$ 1400 and above, assembled type flange will be used.

Dustproof Cover for Elastic Sliding Bearing

Characteristic

Superior workability

It is composed of 2.0mm thick polyvinyl chloride and base fabric only, easy to carry and excellent workability including easily detach during maintenance.

Flame resistance

With self-extinguishing properties, polyvinyl chloride can prevent the spread of fire in the event of fire.

Other Characteristics

It helps to clean the dirt or dust on the surface since elastic sliding bearing and "dustproof cover SD" move together during earthquake, and it does not affect the sliding surface.

Compared to conventional product, we had shortened the lead time.

Dustproof

"Dustproof cover SD" are arranged to cover the surface of sliding plate without a gap, so that dirt or dust does not deposit on the surface.

Durability

Polyvinyl chloride is excellent in durability and there is almost no degradation in strength. It can be used for a long period of time with peace of mind.

Precaution

Because of polyvinyl chloride, it requires high-temperature treatment for disposal.

Example of installation

Precautions for Safe Use of Seismic Isolation Bearing (SIB)

 The term "SIB" as used in this precautions means seismic isolation bearing for seismically isolated building, including sliding bearing.

MARNING

Failure to follow these precautions may result in death or serious injury.

SIB is heavy. Falling or rolling SIB may cause death or serious injury.

- Always be careful when you move SIB.
- Transport SIB one by one. If not, it becomes unstable.
- When lifting the SIB with a crane or others, observe the followings.
- Use a crane or a suspending jig (eyebolt or others) corresponding to the product weight of the SIB, and use the bolt hole of SIB flange and hoist at 4 points or more. If not, it becomes unstable.
- Sufficiently check the safety of the surroundings beforehand so that no one enters around the suspended load. Rubber part of SIB is flammable. Ignition / catch fire on SIB may cause fire or burn.
- Be away from a fire and do not weld the flange part or such like.

NOTICE

Failure to follow these precautions may result in damage to other property, or damage, low performance, malfunction or early deterioration in durability of SIB itself.

- Do not apply large impact (falling, collision, etc.) to SIB. Damaged SIB may cause function deterioration of the SIB and an early deterioration in durability.
- Do not roll the SIB or twist it with iron lever or bar. Damaged SIB may cause function deterioration and an early deterioration in durability.
- Be careful not to damage the SIB with other equipment (such as a cutter when packaging removal). Damaged SIB may cause function deterioration of the SIB and an early deterioration in durability.
- In case of outdoor storage, be sure to take measures against rain. Due to wetting with rainwater, it may cause an early deterioration in durability to the flange antirust coating part.
- Do not expose the SIB to a temporary high temperature condition (about 100 ° C or higher). Due to the influence of heat, the rubber part of the SIB may be damaged, which may cause function deterioration of the SIB and an early deterioration in durability.
- When tightening the bolt in SIB installation work, do not damage the flange antirust coating part with bolt / washer fastening jig or others. It may cause an early deterioration in durability to the flange antirust coating part.
- Install the SIB so that the horizontal inclination of the foundation becomes less than 1/400 in inclination accuracy. (Except when our company acknowledges in advance.) When mounted in an inclined, SIB may not function properly (function deterioration may occur).
- Do not apply or adhere oils, solvents etc. to the rubber part. Due to deterioration, dissolution etc. of the rubber part may cause function deterioration of the SIB and an early deterioration in durability.
- Do not scratch the coating part of the sliding plate when removing the packing of the sliding plate of sliding bearing. Damage of the coating part may cause function deterioration and an early deterioration in durability.
- If the residual displacement after the earthquake is equal to or greater than the preset displacement (standard 5 cm), promptly take measures to restore it to the origin. It may cause function deterioration of the SIB and an early deterioration in durability.
- After installing SIB, consider aeration and ventilation as much as possible inside seismic isolation interface, and remove moisture by condensation as necessary. It may cause an early deterioration in durability to the flange antirust coating part.
- Carry out proper maintenance as prescribed in the design document (building completion inspection · normal inspection · periodical inspection · emergency inspection · detailed inspection etc. by experts). It is necessary to periodically check whether events that may cause function deterioration of the SIB and an early deterioration in durability have occurred.

- Specification and parameter may vary. Please enquire our company or any group's subsidiary whenever want to use it.
- Content of catalogue is as on January 2017.

Bridgestone Corporation

Seicmic Isolation & Vibration Control Products Business Department Yaesu Center Bldg. 11F, Yaesu, Chuo-ku, Tokyo 103-0028, Japan

TEL: +81-3-5205-6865 FAX: +81-3-5202-6848

EMAIL: zzy310.menshin@bridgestone.com

URL: http://www.bridgestone.com/products/diversified/antiseismic_rubber/index.html

MORE INFORMATION ON SEISMIC http://www.menshin-channel.com/index.html

Bridgestone Engineered Products of Asia Sdn Bhd

L1-E-3B, Enterprise 4, Technology Park Malaysia, Lebuhraya Puchong-Sg. Besi, Bukit Jalil, 57000 Kuala Lumpur, Malaysia. TEL: +60-3-8996-2670 FAX: +60-3-8996-2690

EMAIL: info@bridgestone.com.my

PT. Bridgestone Mining Solutions Indonesia

Wisma Nusantara Building 12th floor, Jl. M.H. Thamrin No. 59, Jakarta 10350, Indonesia TEL: +62-21-3190-8077 FAX: +62-21-3983-5881

Bridgestone Diversified Products Japan Co., Ltd.

6F-2, No.41, Nanking W.Rd, Taipei, Taiwan, R.O.C TEL: +886-2-2556-3459 FAX: +886-2-2556-3487

Taiwan branch

Bridgestone Engineered Products of Asia Sdn Bhd (Australia)

Unit 17/27 Old Great Northen highway, Midland WA 6056, P.O Box 2325 Midland WA 6936 TEL: +61-8-9250-0600 FAX: +61-8-9250-0601 EMAIL: info@bsea.com.au

Bridgestone Engineered Products of Asia Sdn Bhd (India)

Office No. 404, 4th Floor, Time Tower, Mehrauli Gurgaon Road, Gurgaon-122001, India TEL: +91-124-4262321/+91-124-426232 EMAIL: info@bridgestone.com.my

BRISA Bridgestone Sabanci Tyre Manufacturing and Trading Inc (Turkey)

Kısıklı Cad. Şehit Teğmen İsmail Moray Sok., No:2/1, 34662 Altunizade, Istanbul, Turkey

TEL: +90-216-544-3500/2192 FAX: +90-216-544-3535