El problema de mezcla

Carlos Castro

UTFSM

Marzo 2021

El problema de mezcla

- Se considera un conjunto de productos fabricados a partir de un conjunto de recursos.
- Se considera una matriz tecnológica que especifica la cantidad de cada recurso requerido para la fabricación de cada producto.
- Cada producto fabricado tiene asociado una utilidad obtenida por su venta.
- Cada recurso tiene asociado una disponiblidad máxima.
- El objetivo es determinar la cantidad a fabricar de cada producto (la mezcla de productos) para maximizar las utilidades respetando la disponibilidad de cada recurso.

Ejemplo

Una fábrica de pinturas produce cinco variedades de colores que generan las siguientes utilidades por litro del producto:

Color	Utilidad			
Celeste	14.500			
Granate	15.000			
Gris	14.000			
Naranja	17.500			
Verde	16.500			

Los colores son fabricados mezclando pinturas básicas con las siguientes disponibilidades expresadas en litros:

Color	Disponibilidad				
Amarillo	400				
Azul	350				
Blanco	500				
Negro	450				
Rojo	300				

Ejemplo

Se cuenta con la siguiente información sobre la cantidad de centímetros cúbicos de cada materia prima necesarios para producir un litro de cada color:

Requerimientos	Amarillo	Azul	Blanco	Negro	Rojo
Celeste		500	500		
Granate				200	800
Gris			700	300	
Naranja	750				250
Verde	600	400			

Problema: determinar la cantidad a producir de cada color de manera tal de maximizar las utilidades respetando la disponibilidad de materias primas.

Enfoque

- Se define una variable de decisión x_i representando la cantidad a fabricar del producto i.
- Restricciones: se establece una restricción para cada materia prima:
 - Materia prima: suma de los recursos utilizados de la materia prima para fabricar cada producto debe ser menor o igual a la disponibilidad de la materia prima.
- Objetivo: maximizar las utilidades totales

Modelo

- Variables:
 - x_i : cantidad del producto i a ser fabricada; $\forall i = 1, ..., 5$ (celeste, granate, gris, naranja y verde).

• Función objetivo:

$$Max z = 14500x_1 + 15000x_2 + 14000x_3 + 17500x_4 + 16500x_5$$

Modelo

- Restricciones:
 - Disponibilidad de cada materia prima:

$$0,75 \times x_4 + 0,60 \times x_5 \leq 400 \text{ (amarillo)}$$

 $0,50 \times x_1 + 0,40 \times x_5 \leq 350 \text{ (azul)}$
 $0,50 \times x_1 + 0,70 \times x_3 \leq 500 \text{ (blanco)}$
 $0,20 \times x_2 + 0,30 \times x_3 \leq 450 \text{ (negro)}$
 $0,80 \times x_2 + 0,25 \times x_4 \leq 300 \text{ (rojo)}$

• Valores posibles para las variables:

$$x_i \geq 0$$
; $\forall i = 1, \ldots, 5$

Modelo

$$Max \ z = 14500x_1 + 15000x_2 + 14000x_3 + 17500x_4 + 16500x_5$$
 Sujeto a:

$$0,75 \times x_4 + 0,60 \times x_5 \leq 400$$

 $0,50 \times x_1 + 0,40 \times x_5 \leq 350$
 $0,50 \times x_1 + 0,70 \times x_3 \leq 500$
 $0,20 \times x_2 + 0,30 \times x_3 \leq 450$
 $0,80 \times x_2 + 0,25 \times x_4 \leq 300$
 $x_i > 0$: $\forall i = 1,...,5$

El caso general

- Se tiene m productos a fabricar a partir de n materias primas considerándose los siguientes parámetros:
 - u_i : utilidad asociada a la venta de una unidad del producto i; $\forall i = 1, ..., m$.
 - s_j : disponibilidad de la materia prima j; $\forall j = 1, ..., n$.
 - r_{ij} : cantidad recurso j requerida para fabricar una unidad del producto i; $\forall i = 1, ..., m, \forall j = 1, ..., n$.

Modelo general

$$Max \ z = \sum_{i=1}^{m} u_i \times x_i$$

Sujeto a

$$\sum_{i=1}^{n} r_{ij} \times x_{i} \leq s_{j} \ \forall j = 1, \dots, n$$
$$x_{i} \geq 0$$

El problema de mezcla

Carlos Castro

UTFSM

Marzo 2021