

128K x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 10 \text{ ns}$
- · Low active power
 - -1017 mW (max., 12 ns)
- · Low CMOS standby power
 - -55 mW (max.), 4 mW (Low power version)
- 2.0V Data Retention (Low power version)
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE1, CE2, and OE options

Functional Description

The CY7C109 / CY7C1009 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}_1), an active HIGH chip enable (CE2), an active LOW output enable (OE), and three-state drivers. Writing to the device is accomplished by taking chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs LOW and chip enable two (CE2) input HIGH. Data on the eight I/O pins (I/O_0) through I/O₇) is then written into the location specified on the address pins (A_0 through A_{16}).

Reading from the device is accomplished by taking chip enable one $(\overline{CE_1})$ and output enable (\overline{OE}) LOW while forcing write enable (WE) and chip enable two (CE2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE1 HIGH or CE₂ LOW), the outputs are disabled (OE HIGH), or during a write operation (CE₁ LOW, CE₂ HIGH, and WE LOW).

The CY7C109 is available in standard 400-mil-wide SOJ and 32-pin TSOP type I packages. The CY7C1009 is available in a 300-mil-wide SOJ package. The CY7C1009 and CY7C109 are functionally equivalent in all other respects.

Selection Guide

	7C109-10 7C1009-10	7C109-12 7C1009-12	7C109-15 7C1009-15	7C109-20 7C1009-20	7C109-25 7C1009-25	7C109-35 7C1009-35
Maximum Access Time (ns)	10	12	15	20	25	35
Maximum Operating Current (mA)	195	185	155	140	135	125
Maximum CMOS Standby Current (mA)	10	10	10	10	10	10
Maximum CMOS Standby Current (mA) Low Power Version	2	2	2			_

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V CC + 0.5V DC Input Voltage^[1]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)......20 mA

Static Discharge Voltage>2001V (per MIL-STD-883, Method 3015) Latch-Up Current.....>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3]

				09-10 009-10		09-12 009-12		09-15 09–15		
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	/ _{CC} = Min., _{OH} = –4.0 mA			2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	٧	
V _{IH}	Input HIGH Voltage					2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	٧
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	GND ≤ V _I ≤ V _{CC} , Output Disabled	-5	+5	-5	+5	-5	+5	μА	
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND					-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	OUT = 0 mA,				185		155	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}}_1 \geq \text{V}_{\text{IH}} \\ &\text{or CE}_2 \leq \text{V}_{\text{IL}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{MAX}} \end{aligned}$		45		45		40	mA	
I _{SB2}	Automatic CE	Max. V _{CC} ,			10		10		10	mA
	Power-Down Current —CMOS Inputs	$\overline{CE}_1 \ge V_{CC} - 0.3V$, or $CE_2 \le 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f=0		2		2		2		

Electrical Characteristics Over the Operating Range (continued)

				09-20 09-20		09-25 09-25		09-35 09-35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-5	+5	- 5	+5	- 5	+5	μА
I _{OS}	Output Short Circuit Current ^[3]	V _{CC} = Max., V _{OUT} = GND		-300		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$		140		135		125	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. } V_{\text{CC}}, \overline{\text{CE}}_1 \geq V_{\text{IH}} \\ &\text{or } \text{CE}_2 \leq V_{\text{IL}}, \\ &V_{\text{IN}} \geq V_{\text{IH}} \text{ or } \\ &V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$		30		30		25	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \underline{\text{Max.}} \ V_{\text{CC}}, \\ \overline{\text{CE}}_1 \geq V_{\text{CC}} - 0.3\text{V}, \\ \text{or } \overline{\text{CE}}_2 \leq 0.3\text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}, \\ \text{or } V_{\text{IN}} \leq 0.3\text{V}, \text{ f=0} \end{array}$		10		10		10	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- T_A is the "instant on" case temperature. 2.
- Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to:

Switching Characteristics^[3, 5] Over the Operating Range

		7C109-10 7C1009-10		7C109-12 7C1009-12		7C109-15 7C1009-15			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYC	LE								
t _{RC}	Read Cycle Time	10		12		15		ns	
t _{AA}	Address to Data Valid		10		12		15	ns	
t _{OHA}	Data Hold from Address Change	3		3		3		ns	
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		10		12		15	ns	
t _{DOE}	OE LOW to Data Valid		5		6		7	ns	
t _{LZOE}	OE LOW to Low Z	0		0		0		ns	
t _{HZOE}	OE HIGH to High Z ^[6, 7]		5		6		7	ns	
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[7]	3		3		3		ns	
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[6, 7]		5		6		7	ns	
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up			0		0		ns	
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		10		12		15	ns	
WRITE CYC	LE ^[8,9]		•	•	•	•	•	•	
t _{WC}	Write Cycle Time	10		12		15		ns	
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	8		10		12		ns	
t _{AW}	Address Set-Up to Write End	8		10		12		ns	
t _{HA}	Address Hold from Write End	0		0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		0		ns	
t _{PWE}	WE Pulse Width	8		10		12		ns	
t _{SD}	Data Set-Up to Write End	6		7		8		ns	
t _{HD}	Data Hold from Write End	0		0		0		ns	
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns	
t _{HZWE}	WE LOW to High Z ^[6, 7]		5		6		7	ns	

Shaded areas contain preliminary information.

Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{\mbox{\scriptsize OL}}/I_{\mbox{\scriptsize OH}}$ and 30-pF load capacitance.
- the of the contraction of the co
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, t_{HZCE} is less than t_{LZCE}, t_{HZCE}, the write. The minimum write cycle time for Write Cycle no. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{ND} .

$\textbf{Switching Characteristics}^{[3,\,5]} \ \text{Over the Operating Range}$

			09-20 09-20)9-25 09-25	7C109-35 7C1009-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Min.	Unit
READ CYC	LE		•	•	•	•	•	•
t _{RC}	Read Cycle Time	20		25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		5		5		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		8		10		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		8		10		15	ns
t _{LZCE}	CE ₁ LOW to Low Z, CE ₂ HIGH to Low Z ^[7]	3		5		5		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[6, 7]		8		10		15	ns
t _{PU}	CE ₁ LOW to Power-Up, CE ₂ HIGH to Power-Up	0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		20		25		35	ns
WRITE CYC	CLE ^[8]		-					
t _{WC}	Write Cycle Time	20		25		35		ns
t _{SCE}	CE ₁ LOW to Write End, CE ₂ HIGH to Write End	15		20		25		ns
t _{AW}	Address Set-Up to Write End	15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	12		15		20		ns
t _{SD}	Data Set-Up to Write End	10		15		20		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		5		5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		8		10		15	ns

Data Retention Characteristics Over the Operating Range (L Version Only)

Parameter	Description	Min.	Max	Unit	
V_{DR}	V _{CC} for Data Retention	No input may exceed V _{CC} + 0.5V	2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V,$ $CE_1 \ge V_{CC} - 0.3V \text{ or } CE_2 \le 0.3V,$		50	μΑ
t _{CDR}	Chip Deselect to Data Retention Time	$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$	0		ns
t _R	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1^[10, 11]

Read Cycle No. 2 (OE Controlled)[11, 12]

Notes:

- Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[13, 14]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[13, 14]

Notes:

 ^{13.} Data I/O is high impedance if OE = V_{IH}.
 14. If OE₁ goes HIGH or CE₂ goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[14]

Note:

Truth Table

CE ₁	CE ₂	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Χ	Χ	High Z	Power-Down	Standby (I _{SB})
Х	L	Χ	Χ	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	X	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

^{15.} During this period the I/Os are in the output state and input signals should not be applied.

Ordering Information

10	Commercial
CY7C1009L-10VC V32 32-Lead (300-Mil) Molded SOJ 12 CY7C109-12VC V33 32-Lead (400-Mil) Molded SOJ CY7C1009-12VC V32 32-Lead (300-Mil) Molded SOJ	
12 CY7C109-12VC V33 32-Lead (400-Mil) Molded SOJ CY7C1009-12VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C1009-12VC V32 32-Lead (300-Mil) Molded SOJ	
, ,	
CY7C1009I -12VC V32 32-I ead (300-Mil) Molded SO I	
37731000E-12V0	
CY7C109-12ZC Z32 32-Lead TSOP Type I	
15 CY7C109–15VC V33 32-Lead (400-Mil) Molded SOJ	
CY7C1009-15VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C1009L-15VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C109–15ZC Z32 32-Lead TSOP Type I	
20 CY7C109–20VC V33 32-Lead (400-Mil) Molded SOJ	
CY7C1009-20VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C109–20VI V33 32-Lead (400-Mil) Molded SOJ Inc	ndustrial
CY7C109–20ZC Z32 32-Lead TSOP Type I Co	Commercial
CY7C109-20ZI Z32 32-Lead TSOP Type I Inc	ndustrial
25 CY7C109–25VC V33 32-Lead (400-Mil) Molded SOJ Co	Commercial
CY7C1009-25VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C109–25VI V33 32-Lead (400-Mil) Molded SOJ Inc	ndustrial
CY7C109–25ZC Z32 32-Lead TSOP Type I Co	Commercial
CY7C109-25ZI Z32 32-Lead TSOP Type I Inc	ndustrial
35 CY7C109–35VC V33 32-Lead (400-Mil) Molded SOJ Co	Commercial
CY7C1009-35VC V32 32-Lead (300-Mil) Molded SOJ	
CY7C109–35VI V33 32-Lead (400-Mil) Molded SOJ Inc	ndustrial

Package Diagrams

32-Lead (300-Mil) Molded SOJ V32

32-Lead (400-Mil) Molded SOJ V33

Package Diagrams (continued)

32-Lead Thin Small Outline Package Z32

	Document Title: CY7C109, CY7C1009 128K x 8 Static RAM Document Number: 38-05032								
REV.	ECN NO.	Issue Date	Orig. of Change						
**	106826	09/15/01	SZV	Change from Spec number: 38-00140 to 38-05032					