Ex 1 En interprétant ces ensembles comme noyaux d'applications linéaires, montrer que ce sont des espaces vectoriels :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y = z + t = 0\}, \quad G = \{f \in C^2(\mathbb{R}, \mathbb{R}) / f'' - 3f' + 2f = 0\}$$
$$H = \{f \in C^0([a, b]) / \int_a^b f = f\left(\frac{a + b}{2}\right)\}$$

- **Ex 2** Soient $E=\mathbb{R}^2$ et $f:E\to E$ de matrice $\begin{pmatrix} 4 & 1 \\ -3 & 0 \end{pmatrix}$
 - a) Montrer que f est linéaire et injective. Calculer ${\rm Im}\, f$.
 - b) Montrer que f est un automorphisme de E, et calculer f^{-1} .
 - c) Calculer $F = \ker (f 3 \operatorname{id}_E)$. Si $X \in F$, que vaut f(X)? Que vaut $\operatorname{Im} (f 3 \operatorname{id}_E)$?

Ex 3 Soit $E = \mathbb{R}^3$, (e_1, e_2, e_3) sa base canonique et $f \in \mathcal{L}(E)$ telle que :

$$f(e_1) = e_1 + 2e_3$$
, $f(e_2) = 2e_1 - e_2 - e_3$, $f(e_3) = -e_1 + e_2 + 3e_3$

- a) Déterminer l'image d'un vecteur X de E. Quelle est la matrice A de f? Calculer $\ker f$ et $\operatorname{Im} f$.
- b) $Y_1=\left(\begin{array}{c} 3 \\ -1 \\ 1 \end{array}\right)$ et $Y_2=\left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right)$ sont-ils dans ${\rm Im}\, f$? Si oui, calculer leurs antécédents par f .
- **Ex 4** Soit $E = \mathcal{M}_n(\mathbb{R})$, et $\operatorname{tr}: E \to \mathbb{R}$ définie, si $M = (m_{ij}) \in E$, par $\operatorname{tr} M = \sum_{i=1}^n m_{ii}$. Montrer que tr est une forme linéaire. Est-elle surjective? injective? Dans le cas où n = 3, calculer $\dim \ker \operatorname{tr}$.
- **Ex 5** soit $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par f(M) = AM. Calculer l'image et le noyau de f (pour $\mathrm{Im}\, f$, utiliser la base canonique de $\mathcal{M}_2(\mathbb{R})$)
- **Ex 6** Soit $E=\mathbb{K}_n\left[X\right]$, et $\varphi:E\to E$ définie par $\forall P\in E,\ \varphi\left(P\right)=P-XP'.$ Montrer que $\varphi\in\mathcal{L}\left(E\right)$ et déterminer $\ker\varphi$ et $\operatorname{Im}\varphi.$
- Ex 7 Soit $E=\mathbb{K}_4\left[X\right]$, et $\varphi:E\to E$ définie par $\forall P\in E,\ \varphi\left(P\right)=\left(X^2-1\right)P''-\left(3X+1\right)P'.$ Montrer que φ est un endomorphisme de E et déterminer $\ker\varphi$ (en donner une base). Quels sont les antécédents par φ de $Q=\varphi\left(X^3\right)$?
- **Ex 8** Soit $E=C^{0}\left(\mathbb{R},\mathbb{R}\right)$, et φ définie sur E par $\forall f\in E,\ \varphi\left(f\right):x\mapsto xf\left(x\right)$
 - a) Montrer que φ est un endomorphisme de E
 - b) Déterminer son image et son noyau.
- **Ex 9** Soit $E = \mathbb{C}^{\mathbb{N}}$, et $T : E \to E$ définie par $\forall u \in E, T(u) = (u_{n+1})_{n \in \mathbb{N}}$. Montrer que $T \in \mathcal{L}(E)$, et déterminer $F_{\lambda} = \ker (T - \lambda \operatorname{id}_{E})$ pour $\lambda \in \mathbb{C}$. T est-elle injective, surjective?
- **Ex 10** Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. On suppose qu'il existe des réels distincts $\lambda_1, \ldots, \lambda_n$ et des vecteurs non nuls x_1, \ldots, x_n tels que $\forall k \in [\![1, n]\!]$, $f(x_k) = \lambda_k x_k$. Montrer que la famille (x_1, \ldots, x_n) est libre.
- **Ex 11** Soit $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, f(x) est colinéaire à x. Montrer que f est une homothétie de E.
- **Ex 12** Soit $f \in \mathcal{L}(E)$. Montrer les équivalences :
 - a) $\ker f \cap \operatorname{Im} f = \{0_E\} \iff \ker f = \ker f^2$
 - b) $\ker f + \operatorname{Im} f = E \iff \operatorname{Im} f = \operatorname{Im} f^2$
- **Ex 13** Soient E un \mathbb{K} -espace vectoriel et f, g deux endomorphismes de E vérifiant $f \circ g = g \circ f$.
 - a) Montrer que Im f et ker f sont stables par g et Im g et ker g stables par f.
 - b) On suppose que $E = \ker f + \ker g$. Montrer que $\operatorname{Im} f \subset \ker g$ et $\operatorname{Im} g \subset \ker f$.
- **Ex 14** Soit $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ tel que $f^n = 0_{\mathcal{L}(E)}$. Montrer que $g = f \mathrm{id}_E$ est inversible et exprimer g^{-1} à l'aide de f.

PCSI 1 Thiers 2019/2020

Ex 15 Soit E un \mathbb{R} -espace de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ vérifiant $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$. Montrer qu'il existe $x \in E$ tel que $(x, f(x), \dots, f^{n-1}(x))$ soit une base de E.

Ex 16 Soit $f \in \mathcal{L}(E)$.

- a) Montrer que $\forall k \in \mathbb{N}$, $\ker f^k \subset \ker f^{k+1}$.
- b) On suppose : $\exists p \in \mathbb{N}^* / \ker f^{p-1} \subsetneq \ker f^p = \ker f^{p+1}$. Montrer que $\left\{ \begin{array}{l} k$
- c) Montrer que $\forall k \in \mathbb{N}, \ \operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$. d) On suppose : $\exists p \in \mathbb{N}^* \ / \ \operatorname{Im} f^{p+1} = \operatorname{Im} f^p \subsetneq \operatorname{Im} f^{p-1}$. Montrer que $\left\{ \begin{array}{l} k$
- Ex 17 Soit $E = \mathbb{R}^4$. Calculer les matrices canoniquement associés au projecteur et à la symétrie sur l'espace F d'équation x-y+t=0 parallèlement à la droite G engendrée par le vecteur u=(1,1,2,-1).

Ex 18 Soit $f \in \mathcal{L}(E)$ vérifiant $f^2 - 3f + 2 \operatorname{id}_E = 0_{\mathcal{L}(E)}$:

- a) Montrer que $f \in GL(E)$ et calculer f^{-1} en fonction de f.
- b) Montrer que $E = \ker (f id_E) \oplus \ker (f 2id_E)$.
- c) Soit $p = f id_E$. Montrer p est un projecteur de E. Calculer son projecteur associé; retrouver le résultat du b).
- **Ex 19** Soit $E = \mathbb{R}^3$, et (e_1, e_2, e_3) sa base canonique. On considère l'endomorphisme f de E défini par :

$$f(e_1) = 5e_1 + e_2 - 2e_3$$
; $f(e_2) = e_1 + 5e_2 + 2e_3$; $f(e_3) = -2e_1 + 2e_2 + 2e_3$

- a) Donner la matrice A de f, puis calculer ker f et $\operatorname{Im} f$.
- b) On pose $p = \frac{1}{6}f$: montrer que p est un projecteur dont on donnera les éléments caractéristiques.
- c) En déduire que $X \in \text{Im } f \iff f(X) = 6X$. Les systèmes suivants admettent-ils des solutions ?

$$\begin{cases} 5x + y - 2z = 3 \\ x + 5y + 2z = 3 \\ -2x + 2y + 2z = 0 \end{cases} ; \begin{cases} 5x + y - 2z = 1 \\ x + 5y + 2z = 0 \\ -2x + 2y + 2z = 0 \end{cases}$$

Ex 20 Soit E un \mathbb{R} -espace vectoriel, F et G deux sous-espaces supplémentaires de E, s un endomorphisme de F et φ un isomorphisme de F sur G. On pose, si $x = x_F + x_G \in E$, avec $x_F \in F$ et $x_G \in G$,

$$f(x) = \varphi(x_F) + s(x_F) + \varphi^{-1}(x_G)$$

Montrer que f est un automorphisme de E et donner une expression de $f^{-1}(x)$ à l'aide de la décomposition de x.

Ex 21 Soient E un \mathbb{K} -espace vectoriel non trivial, et p et q deux projecteurs de E. Montrer que

$$p\circ q=q\circ p=p\Longleftrightarrow \left\{\begin{array}{l} \ker q\subset \ker p\\ \operatorname{Im} p\subset \operatorname{Im} q\end{array}\right.$$

- Ex 22 Soient p et q deux projecteurs de E. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$. Sous ces conditions, montrer que $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$ et $\ker(p+q) = \ker p \cap \ker q$
- Ex 23 Soient f, p, q trois endomorphismes de E et a, b deux scalaires distincts vérifiant : $\begin{cases} p+q=\mathrm{id} \\ ap+bq=f \\ a^2p+b^2q=f^2 \end{cases}$ a) Montrer que $(f-a\,\mathrm{id})\circ(f-b\,\mathrm{id})=0$ $\mathcal{L}(E)$, et en déduire que p et q sont deux projecteurs associés. b) Montrer que $\forall n\in\mathbb{N}$ $f^n=a^{n-1}$ $f^n=a^{n-1}$

 - b) Montrer que $\forall n \in \mathbb{N}, f^n = a^n p + b^n q$.
 - c) On suppose $ab \neq 0$: montrer que $f \in GL(E)$, et que la formule du b) reste valable pour $n \in \mathbb{Z}$
- **Ex 24** On se donne une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^m$.

On suppose qu'il existe une application linéaire $g: \mathbb{R}^m \to \mathbb{R}^n$ vérifiant $f \circ g \circ f = f$

- a) Montrer que $f \circ g$ est un projecteur de \mathbb{R}^m , $g \circ f$ un projecteur de \mathbb{R}^n , et que $\left\{ \begin{array}{l} \operatorname{Im} (f \circ g) = \operatorname{Im} f \\ \ker (g \circ f) = \ker f \end{array} \right.$
- b) Soit $Y \in \mathbb{R}^m$. Montrer que $Y \in \operatorname{Im} f \Longleftrightarrow f \circ g\left(Y\right) = Y$
- c) En déduire que si $Y \in \text{Im } f$, alors les solutions de l'équation linéaire f(X) = Y sont les vecteurs de la forme X = g(Y) + h(Z), $Z \in \mathbb{R}^n$ où h est un endomorphisme de \mathbb{R}^n qu'on déterminera.