AMPERE'S CIRCUIT LAW - MAXWELL'S EQUATIONS

Ampere's Circuit Law

Ampere's circuit law states that "the line integral of the tangential component of **H** around a closed path is the same as the net current I_{enc} enclosed by the path"

$$\oint \mathbf{H}.\,d\mathbf{l} = I_{enc}$$

The closed integral in the above expression can be performed on any closed path "a" or "b" or "c"

Maxwell's Third Equation

>We have the following equation from Ampere's law:

$$\oint \mathbf{H}.\,d\mathbf{l} = I_{enc}$$

>Applying Stoke's Theorem to the left-hand side, we get:

$$I_{enc} = \oint \boldsymbol{H}.d\boldsymbol{l} = \int (\nabla \times \boldsymbol{H}) \cdot d\boldsymbol{S}$$

But
 $I_{enc} = \int \boldsymbol{J} \cdot d\boldsymbol{S}$

Comparing the two equations above, we get

$$\nabla \times \boldsymbol{H} = \boldsymbol{I}$$

Maxwell's Third Equation also called Ampere's Law in point or differential form

Application of Ampere's Law - Infinite Line Current

- >Useful in calculating the magnetic field in problems that involve symmetrical geometries and symmetrical current distribution
- ➤ Consider an infinitely long filamentary current / along the z-axis as in Figure
- ➤To determine H at an observation point P, we allow a closed path pass through P
- ➤ This path, on which Ampere's law is to be applied, is known as an Amperian path (analogous to the term Gaussian surface)

Application of Ampere's Law - Infinite Line Current

- >We choose a concentric circle as the Amperian path
- Since this path encloses the whole current I, according to Ampere's law:

$$I = \int H_{\phi} \mathbf{a}_{\phi} \cdot \rho \ d\phi \ \mathbf{a}_{\phi} = H_{\phi} \int \rho \ d\phi = H_{\phi} \cdot 2\pi \rho$$

OR

$$\mathbf{H} = \frac{I}{2\pi\rho} \, \mathbf{a}_{\phi}$$

 \triangleright Consider an infinite current sheet in the z = 0 plane

If the sheet has a uniform current density $K = K_y a_y A/m$ as shown in Figure, applying Ampere's law to the rectangular closed path (Amperian path) gives:

- >We regard the infinite sheet as comprising of filaments or line currents
- ➤Therefore, from the right-hand rule H will be cancelled along zaxis due to symmetrical pair of lines
- ➤ So the resultant **H** has only x-component, that is:

$$\mathbf{H} = \begin{cases} H_{\mathbf{o}} \mathbf{a}_{x} & z > 0 \\ -H_{\mathbf{o}} \mathbf{a}_{x} & z < 0 \end{cases}$$

 \triangleright Here H_o is yet to be determined

> Evaluating the line integral of H along the closed path gives:

$$\oint \mathbf{H} \cdot d\mathbf{l} = \left(\int_{1}^{2} + \int_{2}^{3} + \int_{3}^{4} + \int_{4}^{1} \right) \mathbf{H} \cdot d\mathbf{l}$$

$$= 0(-a) + (-H_{0})(-b) + 0(a) + H_{0}(b)$$

$$= 2H_{0}b$$

>Therefore, by comparison we get:

$$H_{\rm o} = \frac{1}{2} K_{\rm y}$$

 \triangleright By substituting H_o , we get:

$$\mathbf{H} = \begin{cases} \frac{1}{2} K_y \mathbf{a}_x, & z > 0 \\ -\frac{1}{2} K_y \mathbf{a}_x, & z < 0 \end{cases}$$

>In general, for an infinite sheet of current density K A/m,

$$\mathbf{H} = \frac{1}{2}\mathbf{K} \times \mathbf{a}_n$$

>where a_n is a unit normal vector directed from the current sheet to the point of interest

Magnetic Flux and Flux Density

- >The magnetic flux density **B** is similar to the electric flux density **D**
- \triangleright As **D** = ϵ_0 **E** in free space, the magnetic flux density **B** is related to the magnetic field intensity **H** as:

$$\mathbf{B} = \mu_{\mathrm{o}}\mathbf{H}$$

- $\triangleright \mu_o$ = constant known as the permeability of free space
- >The constant is in henrys/meter (H/m) and has the value of:

$$\mu_{\rm o} = 4\pi \times 10^{-7} \, \text{H/m}$$

Magnetic Flux and Flux Density

>The Magnetic Flux through a surface S is given by:

$$\Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$

The magnetic flux Ψ is in webers (Wb) and the magnetic flux density is in webers/square meter (Wb/m²) or teslas

Magnetic Flux Lines

The magnetic flux line is the path to which **B** is tangential at every point in a magnetic field

Magnetic flux lines

It is the line along which the needle of a magnetic compass will orient itself if placed in the magnetic field

For example, the magnetic flux lines due to a straight long wire are shown in Figure

The magnetic flux lines are closed and do not cross each other regardless of the current distribution

Magnetic Flux Lines

In an electrostatic field, the flux passing through a closed surface is the same as the charge enclosed; that is,

$$\Psi = \oint \mathbf{D} \cdot d\mathbf{S} = Q$$

- >Thus it is possible to have an isolated electric charge
- >On the other hand, it is **not possible** to have isolated magnetic poles (or magnetic charges)
- For example, if we desire to have an isolated magnetic pole by dividing a magnetic bar successively into two, we end up with pieces each having north and south poles

Magnetic Flux Lines

>Thus the total flux through a closed surface in a magnetic field must be zero; that is,

$$\oint \mathbf{B} \cdot d\mathbf{S} = 0$$

>This equation is referred to as the law of conservation of magnetic flux or Gauss's law for magnetostatic fields

Maxwell's 4th Equation

>From law of conservation of magnetic flux, we have:

$$\oint \mathbf{B} \cdot d\mathbf{S} = 0$$

>By applying Divergence Theorem to the above equation, we get:

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = \int_{v} \nabla \cdot \mathbf{B} \, dv = 0$$
Or

$$\nabla \cdot \mathbf{B} = 0$$

➤ This is Maxwell's 4th Equation

Problem-1

Consider an infinitely long transmission line consisting of two concentric cylinders having their axes along the z-axis, where the z-axis is out of the page. The inner conductor has radius a and carries current I while the outer conductor has inner radius b and thickness t and carries return current -I. Using Ampere's law determine H at different regions around the conductors assuming that current is uniformly distributed in both conductors.