Foreign Keys

- Pieces of data in different relations are correlated by means of values of primary keys.
- Referential integrity constraints are imposed in order to guarantee that the values refer to existing tuples in the referenced relation.
- A foreign key requires that the values on a set X of attributes of a relation R₁ must appear as values for the primary key of another relation R₂.
 - In other words, set of attributes in one relation that is used to `refer' to a tuple in another relation. (Must correspond to primary key of the second relation.) Like a `logical pointer'.

Referential Integrity

- □ E.g. *sid* is a foreign key referring to Students:
 - Enrolled(sid: string, cid: string, grade: string)
 - If all foreign key constraints are enforced, <u>referential</u> <u>integrity</u> is achieved, i.e., no dangling references.

Referential Integrity (cont'd)

 Only students listed in the Students relation should be allowed to enroll for courses.

Enrolled

sid	cid	grade	Students					
53666	Carnatic101	C		sid	name	login	age	gpa
	Reggae203	В -	***	53666	Jones	jones@cs	18	3.4
	Topology112	A –	7	53688	Smith	smith@eecs	18	3.2
	History 105	B /	\(\)	53650	Smith	smith@math	19	3.8
33000	1115001 9 1 0 5	D						

Ctudonto

Enforcing Referential Integrity

- Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students.
- What should be done if an Enrolled tuple with a non-existent student id is inserted?
 Reject it!
- What should be done if a Students tuple is deleted?
 - Also delete all Enrolled tuples that refer to it.
 - Disallow deletion of a Students tuple that is referred to.
 - Set sid in Enrolled tuples that refer to it to a default sid.
 - Set sid in Enrolled tuples that refer to it to NULL.
- Similar if primary key of Students tuple is updated.

Where do ICs Come From?

- ICs are based upon the semantics of the real-world enterprise that is being described in the database relations.
- We can check a database instance to see if an IC is violated, but we cannot infer that an IC is true by looking at an instance.
 - An IC is a statement about all possible instances
- Key and foreign key ICs are the most common; more general ICs supported too.

One More Example

Offences

<u>Code</u>	Date	Officer	Dept	Registration
143256	25/10/1992	567	75	5694 FR
987554	26/10/1992	456	75	5694 FR
987557	26/10/1992	456	75	6544 XY
630876	15/10/1992	456	47	6544 XY
539856	12/10/1992	567	47	6544 XY

Officers

RegNum	Surname	FirstName
567	Brun	Jean
456	Larue	Henri
638	Larue	Jacques

- Offences[Officer] ⊆
 Officers[RegNum]
- •Offences[Registration,Dept] \subseteq Cars[Registration,Dept]

Cars

Registration	<u>Dept</u>	Owner
6544 XY	75	Cordon Edouard
7122 HT	75	Cordon Edouard
5694 FR	75	Latour Hortense
6544 XY	47	Mimault Bernard

Violation of Foreign keys

Offences

<u>Code</u>	Date	Officer	Dept	Registration
987554	26/10/1992	456	75	5694 FR
630876	15/10/1992	456	47	6544 XY

Officers

RegNum	Surname	FirstName
567 🖊	Brun	Jean
638	Larue	Jacques

Cars

Registration	<u>Dept</u>	Owner	
7122 HT	75	Cordon Edouard	
5694 FR	93 🖊	Latour Hortense	
6544 XY	47	Mimault Bernard	

Referential Constraints: Comments

- Referential constraints play an important role in making the relational model value-based.
- Care is needed in case of referential constraints that involve two or more attributes.

Example

Accidents

<u>Code</u>	Dept1	Registration1	Dept2	Registration2
6207	75	6544 XY	93	9775 GF
6974	93	5694 FR	93	9775 GF

Cars

Registration	<u>Dept</u>	Owner	
7122 HT	75	Cordon Edouard	
5694 FR	93	Latour Hortense	
9775 GF	93	LeBlanc Pierre	
6544 XY	75	Mimault Bernard	

Here we have two referential constraints for Accidents:

Registration1, Dept1 to Cars Registration2, Dept2 to Cars.