B. E. First Semester (All) / SoE – 2018-19 Examination

Course Code: GE 2103 Course Name: Engineering Chemistry

Time: 3 Hours/4 Hours [Max. Marks: 60

Instructions to Candidates :-

- (1) All questions are compulsory.
- (2) All questions carry marks as indicated.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Use of Logarithmic tables, non programmable calculator, Steam tables, Mollier's chart, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.
- 1. Solve any **One** (A **or** B) :— (CO 1)
 - (A) (A1) The following data was obtained when a water sample was analyzed: $Ca(HCO_3)_2 = 16 \cdot 2 \text{ ppm}, \quad Mg(HCO_3)_2 = 73 \text{ ppm}, \quad MgSO_4 = 120 \text{ ppm},$ $HCl = 7 \cdot 3, \quad MgCl_2 = 9 \cdot 5 \text{ ppm}, \quad CaCl_2 = 11 \cdot 1 \text{ ppm}, \quad SiO_2 = 5 \text{ ppm}$ Calculate:
 - (i) Carbonate and non-carbonate hardness.
 - (ii) The quantity of lime (90% pure) and soda (86% pure) required to soften two lakh liters of this water sample using Sodium aluminate as a coagulant at the rate of 8.2 ppm. 5
 - (A2) Mention the chemical reactions occurring during boiling of water containing temporary hardness.
 - (A3) Describe break point chlorination graphically and write its advantages.
 - (B) (B1) Write short note on : Reverse osmosis process and caustic embrittlement. 5 (CO 1)

RDR/2KNT/OT – 10007 Contd.

		(B2)	removed by a zeolite softener. The zeolite then required 117 liter of NaCl solution containing 120 g/liter of NaCl for complete	S
		(B3)	Explain briefly the principle, advantages and limitations of zeolit process.	e 3
2.	Solve a	ny O r	ne (A or B) :— (CO 2	()
	(A)	(A1)	What is the difference between primary and secondary batteries Define Power density and Energy density.	?
		(A2)	Write brief note on fuel cell.	4
		(A3)	State and explain Faraday's first law of electrolysis.	2
	(B)	(B1)	Describe reactions, advantages, disadvantages and applications of Ni-metal hydride battery. 4(CO 2)	
		(B2)	Define the following terms :—	
			(i) Energy efficiency.	
			(ii) Faraday's second law of electrolysis.	
			(iii) Shelf life.	
			(iv) Entropy.	4
		(B3)	Discuss advantages and disadvantages of Li-ion battery.	2
3.	Solve a	ny O r	ne (A or B) :— (CO2	()
	(A)	(A1)	Give reasons for:	
			(i) Rusting of iron is quicker in saline water.	
			(ii) Copper equipment should not possess small steel bolt.	3
		(A2)	What is cathodic protection ? How is it achieved using sacrificial anode and impressed current ?	al 5
		(A3)	Differentiate between Galvanizing and Tinning.	2

2

Contd.

RDR/2KNT/OT – 10007

	(B)	(B1)	How does design and material selection help corrosion control 3 (CO 2)
		(B2)	Write an explanatory note on 'Waterline corrosion'.
		(B3)	Explain mechanisms of electrochemical corrosion:
			(1) H ₂ evolution.
			(2) O ₂ absorption.
4.	Solve a	ny O r	ne (A or B) :— (CO 3)
	(A)	(A1)	Under which conditions solid lubricants are used? Discuss how graphite works as a solid lubricant.
		(A2)	An oil sample under test has a Saybolt Universal Viscosity (SUV) of 60 seconds at 210 °F and 600 seconds at 100 °F. A standard Gulf oil has a SUV of 60 seconds at 210 °F and 800 seconds at 100 °F. A Pennsylvanian oil having viscosity of 60 seconds at 210 °F has a SUV of 410 seconds at 100 °F. Calculate the viscosity index of the sample oil.
		(A3)	Define following properties of lubricants with significance:
			(i) Flash and fire point.
			(ii) Saponification value.
	(B)	(B1)	Explain any one mechanism of lubrication. 3 (CO 3)
		(B2)	Define drop point. Give its significance. Describe Drop point test
		(B3)	Define the following with significance:
			(i) Consistency of grease.
			(ii) Aniline point.
5.	Solve a	ny O r	ne (A or B) :— (CO 3)
	(A)	(A1)	The % analysis of coal used for firing a furnace is : $C=82\%$ $H_2=4\%$, $S=4\%$, $N_2=2{\cdot}8\%$ and $O_2=3{\cdot}2\%$.
			Calculate:
			(i) Minimum weight and volume of air required for complete combustion of 1 kg of coal.

- (ii) The % analysis of dry flue gas by volume if 40% excess air is supplied for combustion.
- (A2) How is calorific value of a gaseous fuel determined by Boy's gas calorimeter?
- (A3) What is proximate analysis of coal?
- (B) (B1) The Higher Calorific Value of a gaseous fuel as found out by Boy's calorimeter is 6500 K.Cal./m³. Find out its Net calorific value if the mass of water condensed per m³ of the fuel is 0.2 Kg. 2 (CO 3)
 - (B2) Differentiate between : (i) Octane number and Cetane number.
 - (B3) Draw a neat and labeled diagram of fixed-bed catalytic cracking process and mention the advantages of catalytic cracking process.
- 6. Solve any **One** (A **or** B) :— (CO 4)
 - (A) (A1) Describe manufacturing of ordinary Portland cement and write chemical reactions taking place in rotary kiln.
 - (A2) Give the applications of nanomaterial in the field of Medicine.
 - (A3) What are the different types of liquid crystals? Describe their general properties and applications.
 - (B) (B1) What are the microscopic constituents of Portland cement? Give their properties. 4 (CO 4)
 - (B2) Differentiate between Single Walled and Multiple walled carbon Nano tubes.
 - (B3) State and explain AntiMarkovnikov's rule.