САМОСТОЯТЕЛЬНАЯ РАБОТА №3 (5+5+5 БАЛЛОВ)

Номер в списке группы	Задача 1	Задача 2	Задача 3
1, 11, 21	Graf1	CalcTree1	HomeDyn13
2, 12, 22	Graf2	CalcTree2	HomeDyn14
3, 13, 23	Graf3	CalcTree3	HomeDyn15
4, 14, 24	Graf4	CalcTree4	HomeDyn16
5, 15, 25	Graf5	CalcTree5	HomeDyn17
6, 16, 26	Graf6	CalcTree3	HomeDyn13
7, 17, 27	Graf7	CalcTree5	HomeDyn14
8, 18, 28	Graf8	CalcTree6	HomeDyn15
9, 19, 29	Graf9	CalcTree7	HomeDyn16
10, 20, 30	Graf10	CalcTree8	HomeDyn17

Graf1. Дано описание неориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие n строк содержат матрицу смежности (m), m[i][j]=0, если ребра между вершинами i и j не существует. Определить степень для каждой вершины графа. Вывести степени вершин, перечисляя их в порядке возрастания номеров вершин. Если в графе имеются петли, то каждая петля в степени вершины учитывается дважды.

Graf2. Дано описание неориентированного графа в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (a), a[i][j]=0, если ребра между вершинами і и ј не существует. Построить матрицу инцидентности данного графа и вывести ее в файл с именем FileName2. Для справки: матрица инцидентности (b) имеет размер п х m, m - число ребер графа, b[i][j]=1, если ребро ј инцидентно вершине і, в противном случае b[i][j]=0. Нумерацию ребер осуществлять в следующем порядке: сначала ребра, инцидентные вершине номер 1, потом ребра инцидентные вершине номер 2 и т.д. до вершины номер п. Ребра, инцидентные вершине с номером і перечислять в порядке возрастания номера второй вершины, инцидентной данному ребру. При выводе в первой строке указать размер матрицы инцидентности: числа п и m, а в следующих п строках разместить матрицу инцидентности.

Graf3. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины і в вершину ј не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить топологическую сортировку графа. В качестве результата вывести номера вершин графа, полученные в результате сортировки. Если на очередном шаге сортировки имелось несколько равноправных вершин перечислять их в порядке убывания номеров вершин. Если топологическую сортировку выполнить невозможно, то вывести "No solution". Сортировку выполнять используя обход в глубину

Graf4. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины і в вершину ј не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить поиск в ширину от вершины с номером k. В результате вывести номера вершин графа, достижимые для данной вершины, в порядке их обхода при поиске в ширину. Если на очередном шаге сортировки имелось несколько равноправных вершин, перечислять их в порядке возрастания номеров вершин.

Graf5. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы

смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие n строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города i в город j, иначе m[i][j]=1. Определить номера городов, в которые из города K можно долететь менее чем с L пересадками. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf6. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города К можно долететь ровно с L пересадками для самого короткого пути. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf7. Две корпорации хотят разделить сферы влияния, выбрав два разных города для размещения своих штаб-квартир так, чтобы все города, в некоторой округе от штаб-квартиры не были доступны для конкурентов. Схема автомобильного сообщения между городами задана в текстовом файле с именем *FileName* в виде матрицы смежности. Первая строка файла содержит количество городов (n, n<=25), связанных дорогами, а следующие п строк хранят матрицу (m), m[i][j]=0, если нет дороги из города і в город j, иначе m[i][j]=1. Даны два города-кандидата с номерами K1 и K2 для этих двух штаб-квартир. Определить есть ли города, в которые можно попасть из обоих штаб-квартир, если двигаться от каждой штаб-квартиры не более чем через L промежуточных городов. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf8. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города К можно долететь не менее чем с L пересадками и более коротких путей к таким городам не существует. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf9. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие n строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города i в город j, иначе m[i][j]=1. Определить сколько есть маршрутов из города K1 в город K2 с L пересадками. В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в лексикографическом порядке. Маршрут задается перечислением номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).

Graf10. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить все маршруты перелета из города К1 в город К2 В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в порядке от самых коротких к более длинным, маршруты одинаковой длины

перечисляйте в лексикографическом порядке. Маршрут задается перечислением номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).

CalcTree1. В текстовом файле с именем filename дано арифметическое выражение **в** обратной польской записи. Операндами являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-) и умножение (*). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3). Преобразуйте дерево так, чтобы в нем не было операции вычитания (замените поддеревья, в которых есть вычитание значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree2. В текстовом файле с именем filename дано арифметическое выражение **в обратной польской записи**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*) и деление нацело (/). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление нацело (-4). Преобразуйте дерево так, чтобы в нем не было операции сложения (замените поддеревья, в которых есть сложение значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree3. В текстовом файле с именем filename дано арифметическое выражение **в** обратной польской записи. Операндами в выражении являются целые числа из промежутка. от 0 до 9. Используемые операции: сложение(+), вычитание(-), умножение(*), деление нацело (/) и целочисленный остаток от деления (%). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление нацело (-4) и целочисленный остаток от деления (-5). Преобразуйте дерево так, чтобы в нем не было операции умножения (замените поддеревья, в которых есть умножение значением данного поддерева). Выведите указатель на корень полученного дерева.

СаlcTree4. В текстовом файле с именем filename дано арифметическое выражение в обратной польской записи. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/) и целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление нацело (-4), целочисленный остаток от деления (-5), возведение в степень (-6). Преобразуйте дерево так, чтобы в нем не было операции деления Иными словами, замените поддеревья, в которых есть операции / или %, значением данного поддерева. Выведите указатель на корень полученного дерева.

CalcTree5. В текстовом файле с именем filename дано арифметическое выражение **в префиксной форме**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*) и деление нацело(/). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4). Преобразуйте дерево так, чтобы в нем не было операций сложения и вычитания. Иными словами, замените поддеревья, в которых есть сложение или вычитание значением данного поддерева. Выведите указатель на корень полученного дерева.

CalcTree6. В текстовом файле с именем filename дано арифметическое выражение **в префиксной форме**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/), целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4), остаток от деления(-5), возведение в степень (-6). Преобразуйте дерево так, чтобы в нем не было операций

возведения в степень (замените поддеревья, в которых есть возведение в степень, значением данного поддерева). Выведите указатель на корень полученного дерева.

CalcTree7. В текстовом файле с именем filename дано арифметическое выражение **в префиксной форме**. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение(+), вычитание(-), умножение(*), деление нацело(/), целочисленный остаток от деления(%) и возведение в степень(^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение(-1), вычитание(-2), умножение(-3), деление(-4), остаток от деления(-5), возведение в степень (-6). Преобразуйте дерево, вычислив значения всех поддеревьев, для которых результат вычислений является числом из промежутка от 0 до 9 (замените такие поддеревья их значениями). Выведите указатель на корень полученного дерева.

СаlcTree8. В текстовом файле с именем filename дано арифметическое выражение в префиксной форме. Операндами в выражении являются целые числа из промежутка от 0 до 9. Используемые операции: сложение (+), вычитание (-), умножение (*), деление нацело (/), целочисленный остаток от деления (%) и возведение в степень (^). Постройте дерево, соответствующее данному выражению. Знаки операций кодируйте числами: сложение (-1), вычитание (-2), умножение (-3), деление (-4), остаток от деления (-5), возведение в степень (-6). Преобразуйте дерево, вычислив значения всех поддеревьев, для которых результат вычислений левого или правого поддерева равен нулю (замените такие поддеревья их значениями). Выведите указатель на корень полученного дерева.

HomeDyn13. К-ичные числа. Среди чисел в системе счисления с основанием K ($2 \le K \le 10$) определить сколько имеется чисел из N (1 < N < 20, K + N < 26) разрядов таких, что в их записи не содержится два и более подряд идущих нулей.

HomeDyn14. К-ичные числа. Среди чисел в системе счисления с основанием K ($2 \le K \le 10$) определить сколько имеется чисел из N (1 < N < 20, N + K < 26) разрядов таких, что в их записи содержится два и более подряд идущих нулей.

HomeDyn15. К-ичные числа. Среди чисел в системе счисления с основанием K ($2 \le K \le 10$) определить сколько имеется чисел из N (1 < N < 20, N + K < 26) разрядов таких, что в их записи не содержится более трех подряд идущих нулей.

HomeDyn16. К-ичные числа. Среди чисел в системе счисления с основанием K ($2 \le K \le 10$) определить сколько имеется чисел из N (1 < N < 20, N + K < 26) разрядов таких, что в их записи содержится более трех подряд идущих нулей.

HomeDyn17. К-ичные числа. Среди чисел в системе счисления с основанием K ($2 \le K \le 10$) определить сколько имеется чисел из N (1 < N < 20, N + K < 26) разрядов таких, что в их записи не содержится более двух подряд идущих нулей.