Facial recognition from images (identification)

Vojtěch Vlach (xvlach22) Martin Kneslík (xknesl02) Zuzana Hrkľová (xhrklo00)

Timeline

- What is face identification
- What we did
- How it went

■ Facial recognition with FaceNet and ResNet

- Face detection MTCNN via facenet_pytorch
- Face identification:
 - Embedding extraction facenet_pytorch's InceptionResNetV1
 - Cosine similarity
 - Models: VGGFace2, ResNet50

CelebA dataset (Large-scale CelebFaces Attributes)

- 10177 number of identities
- 202599 number of face images
- 40 binary attributes annotations per image

Wearing Eyeglasses Hat Wavy Hair Mustache Smiling

Nose

Pointy

Bangs

Oval Face

Measure of accuracy based on paired attributes

Attribute	Accuracy (0.6)*	Accuracy (0.7)*	Accuracy (0.8)*	Number of pairs
eyeglasses/sunglasses	0.47	0.21	0.04	14512
blurry photo	0.50	0.26	0.07	16870
wearing lipstick	0.58	0.31	0.09	34745
wearing hat	0.56	0.33	0.11	14279
heavy makeup	0.63	0.37	0.11	44659
blond hair	0.63	0.37	0.12	26260

^{*} Threshold accuracy = similarity of two images > threshold

Fine-tuning + evaluation

Goal: fine-tune subtask while not decreasing overall accuracy

- Validation:
 - filtered dataset for specific task (attribute) + original dataset
 - Threshold accuracy of all image pairs
 - AUC Area Under (ROC) curve
- Training:
 - filtered dataset for the task
 - Arc Face Loss (triplet loss but with Cosine similarity)
 - GPU: GeForce GTX Titan 16GB
 - Batch 16 of 160 x 160 normalized images
- VGGFace2 from facenet_pytorch (27M params)
 - Inception-resnet-V1 pretrained on VGGFace dataset
- Resnet50 from pytorch (24M params)
 - pretrained on ImageNet

■ Training two models on EYEGLASSES subtask

AUC on Resnet

AUC on VGGface2

Fine-tuning experiments with balanced attributes

task	trn images	ResNet50 AUC		VGGFace2 AUC	
		filtered val data	orig val data	filtered val data	orig val data
orig	162770		0.71		0.72
eyeglasses	13306	0.87	0.86	0.85	0.84
blurry photo	16456	0.81	0.82	0.63	0.66
wearing lipstick	28654	0.72	0.77	0.65	0.73

Classification accuracy on general dataset

1000 images in 220 classes

Model	Top-1*	Top-2*	Top-3*
Resnet (pretrained)	.68	.76	.80
VGGFace2 (pretrained)	.98	.99	.99
VGGFace2 eyeglasses	.64	.73	.78
Resnet eyeglasses	.94	.97	.98

^{*} Top-n = Correct image class/identity was in top N most similar classes

Demo application

Timeline

- Task
- Our solution
 - Dataset
 - Face detection
 - Face identification (face_net + pytorch resnet)
- Evaluation
 - Classification + Area under ROC curve
- Experiments + results
 - Dataset subsets
- Conclusion + demo app(s)

Model types (extra)

- VGGFace2 from facenet_pytorch (27M params)
 - Inception-resnet-V1 pretrained on VGGFace dataset
- Resnet50 from pytorch (24M params)
 - pretrained on ImageNet

Inception block²

^[1] https://d2l.ai/chapter_convolutional-modern/resnet.html

^[2] https://medium.com/swlh/understanding-inception-simplifying-the-network-architecture-54cd31d38949