Travaux Dirigés

Filière: MCW

Module: Réseaux Informatiques

Série N°1: Modèle OSI

Exercice 1:

- 1) Quelles sont les avantages des réseaux informatiques.
- 2) Décrire les caractéristiques principales des réseaux suivants : PAN, WPAN, LAN, WLAN, MAN et WAN.
- 3) Illustrez chacun des types de réseaux suivants par un exemple concret : PAN, LAN, MAN et WAN.
- 4) Spécifier la différence entre les réseaux suivants : LAN, MAN et WAN.
- 5) Quels sont les différents critères de classification des réseaux informatiques.
- 6) Définir le mot topologie : physique et logique.
- 7) Que se passe-t-il dans un réseau local en bus s'il n'y a pas de bouchon de terminaison.
- 8) Que désignent les termes suivants :

Protocole, Client, Serveur, Architecture Client-Serveur

- 9) Expliquez par des **schémas** le principe de fonctionnement de chaque topologie suivante: **bus**, **anneau** et **étoile**.
- 10) Citer les avantages et les inconvénients de ces topologies suivantes: Bus, anneau et étoile.
- 11) Comparer les topologies « bus », « étoile » et « anneau » en terme de :
 - Longueur de câble.
 - Facilité de rajouter une machine.
 - Défaillance (citer les points sensibles du réseau).
 - Sécurité.

Exercice 2:

- 1) Donnez une comparaison entre le modèle OSI et le modèle TCP/IP.
- Décrire les fonctions principales de la couche physique et de la couche liaison de données du modèle OSI.
- 3) Décrire le rôle de chaque sous-couche LLC et MAC de la couche liaison de données.
- 4) Donnez des exemples de protocoles de la couche réseau.
- 5) Quels sont les principaux services offerts par la couche réseau.
- 6) Donnez les fonctionnalités de la couche transport.
- 7) Donnez deux protocoles de la couche transport. Ensuite, décrire les caractéristiques principales de chaque protocole.
- 8) Quelles sont les tâches principales effectuées par les deux protocoles UDP et TCP de la couche Transport.
- 9) Décrire les rôles principaux de la couche session et de la couche présentation du modèle OSI.
- 10) Donnez des exemples de protocoles de la couche application.
- 11) Quels sont les différents modes d'accès au medium.
- 12) Dans un réseau **10BASE5**, quelle est la signification de la valeur **10**, du mot « **base** » et de la valeur **5**. Même question pour la norme **10BASE2**.
- 13) Quelles sont les différents équipements d'interconnexion réseaux.

14) Quelles sont les principales caractéristiques de ces équipements d'interconnexion suivants : répéteur, hub (concentrateur), switch (commutateur), pont, passerelle et routeur.

Filière: MCW

- 15) Décrire la composition d'une adresse MAC et son utilité.
- 16) Faites correspondre chacune des PDU suivantes à une couche OSI.

PDU	Couche de l'OSI
Trame	
Segment	
Bits	
Données (Datagramme)	

17) Que veulent dire les sigles suivants :

HTTP, URL, DHCP, DNS, MIME, IMAP, TCP, UDP, FTP, SMTP, POP, HTML

Exercice 3:

- 1) Quels sont les principaux types de supports en cuivre utilisés dans les réseaux informatiques.
- 2) Quelle est la structure des câbles suivants : coaxial, paires torsadées et fibre optique.
- 3) Quelles sont les caractéristiques principales des supports de transmission suivants : Câble coaxial, câble à paires torsadées (blindées et non blindées) et câble en fibre optique.
- 4) Quels sont les différents types d'un câble coaxial.
- 5) Donner le brochage pour former un câble droit à paires torsadées non blindées pour les normes **T568B** et **T568A**.
- 6) Donner le brochage pour former un câble croisé à paires torsadées non blindées.
- 7) Citer les différents cas d'utilisation d'un câble droit et d'un câble croisé.
- 8) Quelles sont les différents types des câbles à paires torsadées blindées?
- 9) Quel type de support de transmission on devra utiliser pour connecter des réseaux longue distance tout en assurant une bande passante élevée.
- 10) Quelles sont les caractéristiques principales des fibres monomodes et multimodes.
- 11) Quelle est la différence entre un câble en fibre optique et un câble en cuivre.
- 12) Citer quelques types de supports sans fil.
- 13) Quelles sont les différentes normes de Wi-Fi.
- 14) Relier chaque description au type de câble à fibre optique correspondant :

Description	Multimode	Monomode
Il permet de faire voyager les données sur environ 2 Km (2000 m).		
Il utilise des LED comme émetteur source de données lumineuses.		
Il utilise des lasers dans un seul flux comme émetteur source des		
données lumineuses.		
Il est utilisé pour connecter des applications de téléphonie et de		
télévision par câble longue distance.		
Il peut parcourir environ 100 km (100 000 m).		
Il est utilisé dans les réseaux de campus.		

Trouvez pour chaque description fonctionnelle la couche OSI correspondante :

Couche	Description fonctionnelle de la couche OSI
Session	Gestion de l'échange de données pour commencer et maintenir un dialogue.
Liaison de données	Échange de trames entre les périphériques
Transport	Segmentation des données et elle se charge des contrôles nécessaires à la réorganisation de ces segments de données en différents flux de communication.
Présentation	Représentation des données
Réseau	Fourniture d'un chemin de données ou d'une route
Physique	Transmission de bits
Transport	Gestion du transport des données
Application	L'interface entre les applications et l'utilisateur.

1) Trouvez pour chaque description fonctionnelle la couche TCP/IP correspondante :

Couche	Description fonctionnelle de la couche TCP/IP		
Transport	Organisation du dialogue : Gestion de l'échange de données		
Accès réseau	Échange de trames entre les périphériques		
Transport	Segmentations, transferts et réassemblages des données.		
Internet	Détection du meilleur chemin à travers un réseau		
Application	Représentation des données pour l'utilisateur et contrôle des dialogues		

Exercice 5:

Trouvez les termes convenables parmi la liste suivante qui correspondent à chaque description de la couche physique :

Codage de trame ; Composants physiques; Modulation par impulsions et codage; Bande passante; Débit applicatif; Méthode de signalisation; Débit; Modulation de fréquence.

Terme	Description de couche physique	
Composants physiques	Périphériques matériels, support et connecteur de transmission et de transport des signaux binaires.	
Méthode de signalisation	La représentation des 1 et des 0 sur les supports dépend du modèle de codage.	
Codage de trame	Méthode de conversion des flux de bits de données en groupements de bits (prédéfinie).	
Débit applicatif	Quantité de données utilisables transférée sur une période donnée.	
Bande passante	Quantité de données autorisées par le support à circuler pendant une période donnée.	
Débit	Mesure réelle de bits de données sur une période donnée.	
Modulation par impulsions et codage	Technique de conversion de signaux analogiques vocaux en signaux numériques.	
Modulation de fréquence	Méthode de transmission où la fréquence porteuse varie selon les signaux envoyés.	

Niveau: 2^{ème} Année

Exercice 6:

Soit la suite d'éléments binaires 01111110.

1) Représentez les signaux transmis lorsqu'on transmet en bande de base avec les codes **NRZ** et **Manchester**.

Filière: MCW

2) Représentez les signaux transmis lorsqu'on transmet les données avec une modulation d'amplitude à deux valeurs, une modulation de phase à deux valeurs, une modulation de fréquence à deux valeurs.

Exercice 7:

Faites correspondre les protocoles de la couche application cités dans la liste ci-dessous avec les méthodes d'acheminement de la couche transport correspondantes : **TCP**, **UDP** ou les **deux** :

HTTP, FTP, VoIP, SMTP, Telnet, DNS, Télévision sur IP, TFTP, DHCP, SNMP

Méthode d'acheminement de couche transport		
ТСР	UDP	Les deux

Exercice 8:

Associer les normes et les protocoles d'application de la liste ci-dessous avec le modèle convenable :

DHCP, POP, TFTP, MPEG, DNS, IMAP, HTTP, JPEG, HTML

Modèle OSI	Modèle TCP/IP
Application	Application
Présentation	
Session	

Exercice 9:

Faites correspondre les protocoles cités dans la liste ci-dessous avec la couche TCP/IP correspondante :

POP, SMTP, DNS, http, FTP, BOOTP, IMAP, DHCP, TCP, UDP, IP, OSPF, RIP, ICMP, EIGRP, Ethernet, Pilotes d'interface

Application	Transport	Internet	Accès réseau

Exercice 10:

Pour chaque fonction, indiquez à quelle sous couche elle correspond.

Fonctions		LCC
1. Elle contrôle la carté réseau par l'intermédiaire des pilotes logiciels.		
2. Elle agit avec les couches supérieures pour ajouter des informations d'application liées à la transmission des données vers les protocoles de		
niveau supérieur.		

Niveau: 2^{ème} Année

3. Elle agit avec le matériel pour répondre aux besoins en bande passante, elle	
recherche les erreurs dans les bits envoyés et reçus.	
4. Elle contrôle l'accès aux supports en appliquant les exigences des normes	
relatives aux supports physiques et de signalisation.	
5. Elle prend en charge la technologie Ethernet à l'aide de la méthode	
CSMA/CD ou CSMA/CA/.	
6. Elle reste relativement indépendante du matériel physique.	

Exercice 11:

- 1) Quels sont les différents champs d'une trame Ethernet IEEE 802.3 avec leurs tailles.
- 2) Trouvez les noms des champs de trame Ethernet qui correspondent à leurs descriptions.

Nom du champ	Description des champs de trame Ethernet 802.3	
	Il utilise le remplissage pour agrandir ce champ de trame pour atteindre	
	au moins 64 octets.	
	Il indique le protocole de niveau supérieur utilisé	
	L'adresse MAC d'interface ou de carte réseau d'origine de la trame	
	Il aide l'hôte à déterminer si la trame reçue lui est adressée.	
	Il indique aux destinations de se préparer à recevoir une nouvelle trame.	
	Il synchronise les périphériques d'émission et de réception en vue de	
	l'acheminement des trames.	
	Il détecte les erreurs d'une trame Ethernet.	

Exercice 12:

- 1) Relier chaque description suivante avec la caractéristique convenable du protocole IP :
- 1 Aucun contact n'est établi avec l'hôte de destination avant d'envoyer un paquet.
- 2- La fibre optique, les satellites et le sans fil peuvent être utilisés pour acheminer le même paquet.
- 3- Envoie un paquet même si l'hôte de destination ne peut pas le recevoir.
- 4 La livraison des paquets n'est pas garantie.
- 5 Ne garantit pas que le paquet est acheminé sans aucune erreur.
- 6 Adapte la taille du paquet envoyé selon le type d'accès au réseau utilisé.

Sans connexion	Acheminement au mieux	Indépendant du support
https://sites.google.com/si 1-	te/grivelstudies/home/module1 4- 3	/chapitre-6

2) Trouvez les champs d'en-tête IPv4 correspondants aux descriptions suivantes:

Toujours défini sur 0100 pour 1'IPv4	Définit la priorité de chaque paquet	Généralement appelé « nombre de sauts »
Indique le prochain protocole de couche supérieure à utiliser	Identifie l'adresse IP de l'hôte de l'expédition	Identifie l'adresse IP de l'hôte de destinataire
Identifie le nombre de mots de 32 bits contenus dans l'entête	Sa valeur maximale de 65 535 octets	Vérifie si l'entête IP est correct et en cas d'erreur, le paquet est rejeté.

https://fr.wikipedia.org/wiki/IPv4

Niveau: 2^{ème} Année