Künstliche Intelligenz

Prof. Dr. Dirk Krechel
Hochschule RheinMain

Symbolische Verfahren, Logik

- Aussagenlogik, Prädikatenlogik
- Horn Logik, Prolog

Prof. Krechel

- Suchen und Bewerten
 - Problemlösen durch Suche
 - Uninformierte Suche
 - Heuristische Suche
 - Spielbäume

*Symbolische Verfahren – Logik

Logik

- Verwendung der mathematischen Deduktion
- um neues Wissen abzuleiten

Prädikatenlogik

- Mächtiges Repräsentationswerkzeug
- Von vielen KI und anderen Programmen verwendet

Aussagenlogik

- Nur Repräsentation einfacher Sachverhalte, weniger mächtig als Prädikatenlogik
- Von vielen KI und anderen Programmen verwendet

*Aussagenlogik

- Symbole stellen Propositionen (Aussagen) dar
 - p, "Es regnet"
- Eine Proposition ist entweder WAHR (true) oder FALSCH (false)
 - Belegen der Proposition mit einem Wahrheitswert
 - Es regnet wirklich, "Es regnet" ist WAHR
- Propositionen können mit Booleschen Verknüpfungen zu komplexen Formeln zusammengesetzt werden
 - $p \vee q$, "Es regnet" \Rightarrow "die Strasse ist nass"
- Formeln sind Sachverhalte die entweder WAHR oder FALSCH sind
 - Je nach dem Wahrheitswert der Propositionen

*Aussagenlogik - Syntax

- Propositionen:
 - Symbole
 - Zum Beispiel p, q, r, s, P, Q, R, S ...
- Konstanten
 - spezielle Propositionen
 - WAHR, FALSCH
- Logische Verknüpfungen
 - − ∧ UND, Konjunktion
 - v ODER, Disjunktion
 - − ⇒ Implikation, Bedingung (If-then)
 - − ⇔ Äquivalenz
 - − ¬ Negation (unär)
 - () Klammern (Gruppierung)

→ Definition: Aussagenlogische Formel

- Definition: Aussagenlogische Formel
 - 1. WAHR (true), FALSCH (false) und jedes Propositionssymbol p, q, r, P,Q,R, ... ist eine aussagenlogische Formel
 - 2. Wenn α und β aussagenlogische Formeln sind dann sind es auch
 - (\alpha)
 - (α ∧ β)
 - $(\alpha \vee \beta)$
 - $(\alpha \Rightarrow \beta)$
 - $(\alpha \Leftrightarrow \beta)$
 - $(\neg \alpha)$
- Formeln werden nur durch die Regeln 1. und 2. gebildet.
- Einführung von Bindungsregeln zur Vermeidung übermäßig vieler Klammern
 - Bindungsstärke (aufsteigend): \Leftrightarrow , \Rightarrow , v, \wedge , \neg
 - Gleicher Operator: Annahme Bindung von links nach rechts

*Beispiele

- $(p \lor q) \Rightarrow r$
 - Wenn p oder q wahr ist, dann ist auch r wahr
- $p \Leftrightarrow (q \land r)$
 - Wenn p wahr ist, dann ist sowohl q als auch r wahr und wenn sowohl q als auch r wahr sind, dann ist auch p wahr
 - Alternativ: p ist wahr genau dann wenn (gdw) sowohl q als auch r wahr ist
- $\neg p \Rightarrow (q \Rightarrow r)$
 - Wenn p falsch ist, dann muss wenn q wahr ist auch r wahr sein

★ Definition: Interpretation

- Eine Interpretation weist jeder Proposition eine Bedeutung zu, hier ein Wahrheitswert 0 oder 1
- Für eine Menge von Propositionen, kann es viele verschiedene Interpretationen geben
- Eine Interpretation ist eine Funktion I: $\{p, q, r, P, Q, R, ...\} \rightarrow \{0, 1\},$ die jeder Proposition einen Wert 0 or 1 zuweist.
- Interpretationen können wie folgt auf Formeln erweitert werden:

$$I(\neg \alpha) = \begin{cases} 0 \text{ wenn } I(\alpha) = 1 & I(WAHR) = 1 & I(FALSCH) = 0 \\ 1 \text{ sonst} & I((\alpha)) = I(\alpha) \end{cases}$$

$$(1 \text{ wenn } I(\alpha) = 1 \text{ oder } I(\beta) = 1$$

$$(1 \text{ wenn } I(\alpha) = 1 \text{ oder } I(\beta) = 1$$

$$I(\alpha \vee \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = 1 \text{ oder } I(\beta) = 1 \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \wedge \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = 1 \text{ und } I(\beta) = 1 \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \Leftrightarrow \beta) = \begin{cases} 1 \text{ wenn } I(\alpha) = I(\beta) \\ 0 \text{ sonst} \end{cases}$$

$$I(\alpha \Rightarrow \beta) = \begin{cases} 0 \text{ wenn } I(\alpha) = 1 \text{ und } I(\beta) = 0 \\ 1 \text{ sonst} \end{cases}$$

*Erweiterung Interpretation - Alternativ

• Konstanten:
$$I(true) = 1$$

 $I(false) = 0$

• Klammern:
$$I((\alpha)) = I()$$

• Negation:
$$I(\neg \alpha) = 1 - I()$$

• Oder:
$$I(\alpha \vee \beta) = \max(I(\alpha), I(\beta))$$

• Und:
$$I(\alpha \wedge \beta) = \min(I(\alpha), I(\beta))$$

• Äquivalenz:
$$I(\alpha \Leftrightarrow \beta) = 1 - |I(\alpha) - I(\beta)|$$

• Implikation:
$$I(\alpha \Rightarrow \beta) = \max(I(\neg \alpha), I(\beta))$$

*****Beispiel

- Formel $\alpha = (p \lor q) \Rightarrow r$
- Interpretation I₁:

$$-I_1(p) = 1$$

$$-I_1(q)=0$$

$$-I_{1}(r)=1$$

dann
$$I_1(\alpha) = 1$$

Interpretation I₂:

$$-I_2(p) = 1$$

$$-I_{2}(q)=1$$

$$- I_2(r) = 0$$

dann $I2(\alpha) = 0$

*****Wahrheitstabellen

Wahrheitstabellen

- Beschreibung aller möglichen Interpretationen von Propositionen und damit Formeln

р	q	¬ p	p v d	pvq	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

*Erfüllbar, Allgemeingültig, Widerspruchsvoll

- Eine aussagenlogische Formel α ist *erfüllbar* gdw es existiert eine Interpretation I mit $I(\alpha)=1$
- Eine aussagenlogische Formel α ist allgemeingültig (ist eine Tautologie) gdw α ist unter allen möglichen Interpretationen wahr, das heißt gdw für alle Interpretationen I gilt: $I(\alpha)=1$
- Eine aussagenlogische Formel α ist widerspruchsvoll (inkonsistent) gdw α ist unter allen möglichen Interpretationen falsch, das heißt gdw für alle Interpretationen I gilt: $I(\alpha)=0$
- Es gelten die folgenden Zusammenhänge:
 - $-\alpha$ ist widerspruchsvoll gdw
 - α ist nicht erfüllbar gdw
 - $\neg \alpha$ ist allgemeingültig

*Beispiele

- p ist erfüllbar aber nicht allgemeingültig es gibt zwei Interpretationen: I_1 : $I_1(P)=1$ I_2 : $I_2(P)=0$
- p ∧ ¬p ist widerspruchsvoll
- p ∨ ¬p ist allgemeingültig (und natürlich erfüllbar)
- p ∧ q ⇒ p ist allgemeingültig (um falsch zu werden müßte links von ⇒ 1 und rechts 0 stehen, dann wäre aber p rechts 0, aber dann wäre auch links eine 0, was nicht sein soll, also immer 1; alternativ alle Interpretationen prüfen)
- $p \Rightarrow q \Leftrightarrow \neg p \lor q$ ist allgemeingültig
- $p \land p \Leftrightarrow p$ ist allgemeingültig

★Definition: Semantische Folgerung

- Eine Formel β folgt semantisch aus einer Formel α gdw für jede Interpretation I gilt, dass wenn $I(\alpha)=1$ dann $I(\beta)=1$. Wir schreiben: $\alpha \models \beta$
- Es gilt: $\alpha \models \beta$ gdw $\alpha \Rightarrow \beta$ ist allgemeingültig

- Eine Formel β folgt semantisch aus einer Menge von Formeln $\Sigma = \{ \alpha_1, ..., \alpha_n \}$ gdw für jede Interpretation I gilt, dass wenn $I(\alpha_1)=1$ und ... und $I(\alpha_n)=1$ dann ist auch $I(\beta)=1$. Wir schreiben: $\Sigma \models \beta$
- Es gilt: $\Sigma \models \beta$ gdw $\alpha_1 \land \alpha_2 \land ... \land \alpha_n \Rightarrow \beta$ ist allgemeingültig

*Erfüllbar, Allgemeingültig, Widerspruchsvoll

- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1,...,\alpha_n\}$ ist *erfüllbar* gdw es existiert eine Interpretation I unter der alle Formeln α_i wahr sind, das heißt $I(\alpha_i)=1$ für i=1...n
- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1, ..., \alpha_n\}$ ist allgemeingültig (ist eine Tautologie) gdw jede Formel α_i allgemeingültig ist
- Wenn $\Sigma = \emptyset$, dann ist Σ allgemeingültig
- Eine Menge von aussagenlogischen Formeln $\Sigma = \{\alpha_1, ..., \alpha_n\}$ ist widerspruchsvoll (inkonsistent) gdw es gibt keine Interpretation I mit $I(\alpha_i)=1$ für i=1...n.

*****Beispiele

- p = p
- p \ q = p
- {p,q} = p
- p ∧ ¬ p | q
- $p \wedge \neg p \models q \wedge \neg q$
- $\{p, q \vee r\} \models (p \wedge q) \vee (p \wedge r)$
- $\{p, \neg p \land \neg q\}$ ist widerspruchsvoll
- $\{p, \neg p \lor \neg q\}$ ist erfüllbar
- { p v ¬ p } ist allgemeingültig

*****Äquivalenz

• Definition: Zwei aussagenlogische Formeln α und β sind äquivalent gdw

$$\alpha \Leftrightarrow \beta$$
 ist allgemeingültig
Wir schreiben $\alpha \approx \beta$

Einige wichtige Äquivalenzen:

```
– Negation: p ≈ ¬¬p
```

- Idempotenz:
$$p \land p \approx p$$
 $p \lor p \approx p$

- Kommutativität:
$$p \wedge q \approx q \wedge p$$
 $p \vee q \approx q \vee p$

- Assoziativität:
$$(p \land q) \land r \approx q \land (p \land r)$$
 $(p \lor q) \lor r \approx q \lor (p \lor r)$

- Distributivität:
$$pv(q \wedge r) \approx (p \vee q) \wedge (p \vee r)$$

 $p\wedge (q \vee r) \approx (p \wedge q) \vee (p \wedge r)$

- De Morgan:
$$\neg (p \land q) \approx \neg p \lor \neg q$$
 $\neg (p \lor q) \approx \neg p \land \neg q$

Transformation von Implikation and Äquivalenz:

•
$$p \Rightarrow q \approx (\neg p \lor q)$$

•
$$p \Leftrightarrow q \approx (p \land q) \lor (\neg p \land \neg q)$$

Beweis durch Betrachtung aller möglichen Interpretationen

*Normalformen

• Eine aussagenlogische Formel α ist in konjunktiver Normalform (CNF, KNF), wenn sie die folgende Form hat:

Die konjunktive Normalform ist eine Konjunktion von Disjunktionen

- $-\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_m$ und
- jede Teilformel $\alpha_{\rm i}$ (Klausel) hat die Form $\alpha_{\rm i1}$ v $\alpha_{\rm i2}$ v ... v $\alpha_{\rm ik_i}$
- jedes α_{ij} (*Literal*) ist entweder von der Form p oder \neg p für ein beliebiges Propositionssymbol p
- Eine aussagenlogische Formel α ist in disjunktiver Normalform (DNF), wenn sie die folgende Form hat:

Die diskjunktive Normalform ist eine Disjunktion von Konjunktionen

- $-\alpha_1 \vee \alpha_2 \vee ... \vee \alpha_m$ und
- $-\;$ jede Teilformel $\alpha_{\rm i}$ hat die Form $\alpha_{\rm i1}$ ^ $\alpha_{\rm i2}$ ^ ... ^ $\alpha_{\rm ik_i}$ und
- jede α_{ij} (Literal) ist entweder von der Form p oder \neg p für ein beliebiges Propositionssymbol p

*Transformation in Normalformen

 Jede Formel kann durch Anwendung der Äquivalenzen in eine äquivalente Formel in konjunktiver beziehungsweise disjunktiver Normalform überführt werden

Beispiele:

Systematische Transformation in CNF

• Entfernen von Implikationen und Äquivalenzen.

```
- aus x \Rightarrow y wird \neg x \lor y
- aus x \Leftrightarrow y wird (\neg x \lor y) \land (\neg y \lor x)
```

 Reduzierung des Gültigkeitsbereiches von Negationen auf ein einzelnes Symbol:

```
    aus ¬ (¬ x) wird x
    aus ¬(x v y) wird (¬ y ∧ ¬ x)
    aus ¬(x ∧ y) wird (¬ y v ¬ x)
```

 Verwendung der Distributivgesetze zur Konvertierung in eine Konjunktion von Disjunktionen

```
- aus (p \wedge q) \vee r wird (p \vee r) \wedge (q \vee r)
```

*Aussagenlogik zur Wissensrepräsentation

Wissensrepräsentation

- Gegeben: Wissensbasis als Menge aussagenlogischer Formeln Σ
- Ziel: Anfrage an Wissensbasis als aussagenlogische Formel β formuliert. Ist die Anfrage wahr oder falsch unter Berücksichtigung des Wissens in der Wissensbasis Σ? Folgt β semantisch aus Σ? Gilt also $\Sigma \models \beta$?

Beispiel

- Wissensbasis:
 - WENN "Dirk hat den Mathe-Schein" DANN
 "Dirk hat die Mathe-Hauptklausur bestanden" ODER
 "Dirk hat die Mathe-Nachklausur bestanden"
 - "Dirk hat den Mathe-Schein"
 - "Dirk hat die Mathe-Hauptklausur nicht bestanden"
- Frage: Gilt "Dirk hat die Mathe-Nachklausur bestanden"?

*Symbolische Wissensrepräsentation

Formalisieren: Wissen der realen Welt in Symbole tranformieren

Schlussfolgern: Kalkül zur korrekten Symbolverarbeitung, Herleiten von korrekten Aussagen

Interpretation: Symbole zurück in Wissen der realen Welt

*Semantische Folgerung

- Satz: $\Sigma \models \beta \text{ gdw } \Sigma \cup \{\neg \beta\} \text{ ist widerspruchsvoll}$
- Beweis:
 - ⇒:

Annahme $\Sigma = {\alpha_1, ..., \alpha_n} \models \beta$ gilt. Dann gilt für jede Interpretation I mit $I(\alpha_1)=1, ...$ und $I(\alpha_n)=1,$ dass

 $I(\beta)=1$ und daher $I(\neg\beta)=0$. Es gibt also keine Interpretation mit $I(\alpha_1)=1$, ... und $I(\alpha_n)=1$, dass $I(\beta)=1$ und $I(\alpha_n)=1$, und $I(\alpha_n)$

- ⇐:

Annahme $\Sigma \cup \{\neg \beta\}$ ist widerspruchsvoll.

Dann gibt es keine Interpretatation mit $I(\alpha_1)=1$, ... und $I(\alpha_n)=1$, und $I(\neg\beta)=1$. Falls also $I(\alpha_1)=1$, ... und $I(\alpha_n)=1$ gilt, dann muss $I(\neg\beta)=0$ gelten. Daher muss falls $I(\alpha_1)=1$, ... und $I(\alpha_n)=1$ gilt, auch $I(\beta)=1$ gelten. Folglich gilt $\Sigma \models \beta$.

*Entscheidung semantischer Folgerung

- Benötigt wird Kalkül oder Algorithmus, der $\Sigma \models \beta$ zeigt indem zum Beispiel gezeigt wird, dass $\Sigma \cup \{\neg \beta\}$ widerspruchsvoll ist.
- Idee vollständige Aufzählung, suche Modell
 - Konstruiere alle Interpretationen
 - Bei n verschiedenen Propositionssymbolen sind das 2ⁿ Interpretationen
 - Für jede Interpretation I prüfe of $I(\alpha)$ = 1 für alle $\alpha \in \Sigma \cup \{\neg \beta\}$.
 - Falls eine gefunden wird, dann ist $\Sigma \cup \{\neg \beta\}$ nicht widersprüchlich und folglich gilt $\Sigma \models \beta$ nicht.
 - Falls keine gefunden wird, dann ist $\Sigma \cup \{\neg \beta\}$ widersprüchlich und folglich gilt $\Sigma \models \beta$.
- Problem
 - Vollständige Aufzählung
 - Theoretisch möglich in der Aussagenlogik, aber meist prohibitiv teuer
 - Auch praktisch nicht mehr möglich in der Prädikatenlogik

*Inferenzkalkül

• Ziel:

- Aussagenlogische Formeln direkt syntaktisch manipulieren
- Erzeugen von korrekten aussagenlogischen Formeln
- Inferenzkalkül
 - Vorschriften oder Inferenzregeln
 - Aus gegebenen aussagenlogischen Formeln neue aussagenlogische Formen generieren
- Definition: Eine Formel β folgt syntaktisch aus einer Formelmenge $\Sigma = \{\alpha_1, ..., \alpha_n\}$ und Inferenzregeln IR gdw
 - Es gibt eine Folge von Σ = Σ_0 , Σ_1 , Σ_2 , ... mit β aus einem Σ_i
 - $\Sigma_{i+1} = \Sigma_i \cup \{\gamma_i\}$; und γ_i und entsteht aus Anwendung einer Regel in IR auf Σ_i
 - Wir schreiben: $\Sigma_i \models \gamma_i, \Sigma \models^* \beta$ oder kurz $\Sigma \models \beta$ und $\Sigma_i \models \Sigma_j$ für $i \le j$; um explizit auf IR hinzuweisen schreibt man auch \models_{IR} statt \models

*Korrektheit und Vollständigkeit

Ziel

- Ein Kalkül soll vollständig sein:
 Alles was (semantisch) korrekt ist soll (syntaktisch) herleitbar sein.
- Ein Kalkül soll korrekt sein:
 Alles was (syntaktisch) hergleitet werden kann soll (semantisch) korrekt sein.
- Korrektheit und Vollständigkeit: | = |
 - Korrektheit: Für alle Σ, β gilt: Falls Σ $\models \beta$ gilt, dann gilt Σ $\models \beta$.
 - Vollständigkeit: Für alle Σ, β gilt: Falls $\Sigma \models \beta$ gilt, dann gilt $\Sigma \models \beta$.
- Satz: Es gibt einen korrekten und vollständigen Kalkül für die Aussagenlogik

*Inferenzkalkül

Inferenzkalkül

- Ein Inferenzkalkül besteht aus einer Menge von Inferenzregeln
- Jede Inferenzregel soll eine neue Formel aus vorhandenen Formeln herleiten können

Inferenzregel

- Eine Inferenzregel besteht aus einer Prämisse und einer Konklusion
- *Prämisse*: Ein Muster, auf das eine Teilmenge der vorhandenen Menge von Formeln Σ_i passt
- Konklusion: Eine Formel γ_i, die abgeleitet werden kann
- Hinweis: Vorhandene Formeln können nicht entfernt werden
 - Für Korrektheit und Vollständigkeit ist das vollkommen in Ordnung
 - In Praxis auch Vereinfachungsregeln, die Formeln entfernen

Notation Inferenzregel

Falls Variablen in der Prämisse durch
 aussagenlogische Literale ersetzt
 werden und die entsprechenden Formeln existieren, dann kann man die
 entsprechend ersetzte Konklusion der Formelmenge hinzufügen

Konklusion

*Beispiele von Inferenzregeln

Modus Ponens:

Falls x ⇒y gilt und x gilt, dann kann man y hinzufügen. x und y sind durch beliebige Literale zu ersetzen.

• Und-Elminination:

Oder Einführung:

$$\begin{array}{c} X_{1} \wedge X_{2} \dots X_{n-1} \wedge X_{n} \\ X_{i} \\ X_{1}, X_{2}, \dots X_{n-1}, X_{n} \\ \hline X_{1} \wedge X_{2} \dots X_{n-1} \wedge X_{n} \\ X_{1} & X_{2} \dots X_{n-1} \wedge X_{n} \\ \hline X_{1} & V X_{2} \dots X_{n-1} & V X_{n} \end{array}$$

Elminiation doppelter Negation:

• Resolution:

$$X_1 \lor X_2 \dots X_n \lor Z, \quad \neg Z \lor Y_1 \lor Y_2 \dots Y_m$$

$$X_1 \lor X_2 \dots \lor X_n \lor Y_1 \lor Y_2 \dots Y_m$$

*Resolutionskalkül

• Normalisierung, Σ

- Transformiere alle Formeln der Wissensbasis in CNF
- Für jede Formel nehme jedes Konjunktionsglied als separate Formel auf
- Die so entstehende neue Formelmenge Σ enthält jetzt nur noch Disjunktionen von Literalen (eventuell negierten Propositionssymbolen)

• Herleitung einer Anfrage β aus Σ

- − Idee: Zeige, dass β aus Σ folgt, da $\{\neg \beta\} \cup \Sigma$ widerspruchsvoll ist
- Transformiere die Negation der Anfrage $\neg \beta$ (Beweisziel) in CNF
- Füge Ergebnis dieser Transformation zu Σ hinzu
- Verwende die Resolution als Inferenzregel um die leere Konklusion herzuleiten (ein Widerspruch)
- Falls die leere Konklusion hergleitet werden kann, dann ist die erzeugte Formelmenge, $\{\neg\beta\} \cup \Sigma$ in CNF, widerspruchsvol

Wissensbasis:

p,

$$(p \land q) \Rightarrow r$$

 $(s \lor t) \Rightarrow q$,

t

Anfrage:

Wissensbasis in CNF

Negation der Anfrage in CNF¬ r

Anfrage folgt aus Wissenbasis wenn diese Klauselmenge widerspruchsvoll ist

- Propositionen
 - Joe ist klug:
 - Joe mag Eishockey:
 - Joe geht ins Stadion:
 - Joe ist Kanadier:
 - Joe fährt Schlittschuh:
- Wissensbasis
 - Joe ist klug:
 - Wenn Joe klug ist und wenn Joe Eishockey mag, dann geht Joe ins Stadion:
 - Wenn Joe Kanadier ist oder wenn Joe Schlittschuh fährt, dann mag Joe Eishockey:
 - Joe fährt Schlittschuh
- Anfrage
 - Geht Joe ins Stadion?

- p q
- S

p

 $p \wedge q \Rightarrow r$

 $s \lor t \Rightarrow q$

S

Wissensbasis in CNF plus negierte Anfrage

 $\neg p \lor \neg q \lor r$

 $\neg s \vee q$

 $\neg t \lor q$

S

 $\neg r$

Grenzen der Aussagenlogik

Aussagenlogik

- Annahme: Alles kann mit einfachen Fakten (Propositionen) ausgedrückt werden
- Die Ausdrucksstärke ist beschränkt
- Ausblick Prädikatenlogik
 - Sachverhalte der Welt modellieren mit Relationen und Eigenschaften
 - Prädikatenlogik stellt diese Modellierungselemente bereit