

General information

Designation

Ochroma spp. (MD)

Tradenames

FLEXICORE, CONTOURKORE, PRO-BALSA

Typical uses

Cores for sandwich structures; model building; floatation; insulation;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O	
Material family	Natural
Base material	Wood (tropical)
Renewable content	100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 1.14e3	-	2.26e3	USD/m^3

Physical properties

Density	170	-	210	kg/m^3
Relative density	0.1	-	0.15	
Cells/volume	500	-	1e3	/mm^3
Anisotropy ratio	10	-	30	

Mechanical properties

Young's modulus	0.15	-	0.19	GPa
Yield strength (elastic limit)	0.6	-	1	MPa
Tensile strength	0.7	-	1.2	MPa
Elongation	* 1.26	-	1.54	% strain
Compressive strength	0.62	-	1.2	MPa
Compressive stress @ 25% strair	1.1	-	2.1	MPa
Flexural modulus	0.14	-	0.17	GPa
Flexural strength (modulus of rupture)	0.9	-	1	MPa
Shear modulus	* 0.016	-	0.023	GPa
Shear strength	* 9.6	-	11.7	MPa
Rolling shear strength	* 0.35	-	1.06	MPa

Bulk modulus	* 0.08 - 0.1 GPa
Poisson's ratio	* 0.02 - 0.04
Shape factor	5.1
Hardness - Vickers	* 0.28 - 0.34 HV
Hardness - Brinell	* 4.6 - 5.7 HB
Hardness - Janka	* 0.28 - 0.34 kN
Fatigue strength at 10^7 cycles	* 0.25 - 0.33 MPa
Mechanical loss coefficient (tan delta)	* 0.06 - 0.074
Densification strain	0.65 - 0.75
Differential shrinkage (radial)	* 0.05 - 0.06 %
Differential shrinkage (tangential)	* 0.07 - 0.09 %
Radial shrinkage (green to oven-dry)	* 3.2 - 7 %
Tangential shrinkage (green to oven-dry)	4 - 4.8 %
Volumetric shrinkage (green to oven-dry)	6.8 - 8.3 %
Work to maximum strength	* 1.3 - 1.6 kJ/m^3
Impact & fracture properties	
Fracture toughness	0.023 - 0.029 MPa.m^0.5
Thermal properties	
Glass temperature	77 - 102 °C
Maximum service temperature	120 - 140 ℃
Minimum service temperature	* -7323 °C
Thermal conductivity	* 0.037 - 0.045 W/m.℃
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃
Thermal expansion coefficient	* 18.5 - 27.2 µstrain/℃
Floring	
Electrical properties Electrical resistivity	* 2.1e14 - 7e14 µohm.cm
Dielectric constant (relative permittivity)	* 1.68 - 2.05
Dissipation factor (dielectric loss tangent)	* 0 044
Dielectric strength (dielectric breakdown)	^ 0.014 - 0.017 4.85 - 4.9 MV/m
Dielectric Strength (dielectric bleakdown)	4.65 - 4.9 WV/III
Magnetic properties	
Magnetic type	Non-magnetic
Optical properties	
Transparency	Opaque
	Cpaquo
Critical materials risk	

)u			

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Limited use
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.518	-	0.573	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0389	-	0.043	kg/kg
Fine machining energy (per unit wt removed)	* 0.909	-	1	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.0682	-	0.0753	kg/kg
Grinding energy (per unit wt removed)	* 1.34	-	1.48	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.101	-	0.111	kg/kg

Recycling and end of life

Recycle		×			
Recycle fraction in current supply		8.55	-	9.45	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	19.8	-	21.3	MJ/kg
Combustion CO2	*	1.69	-	1.78	kg/kg
Landfill		✓			
Biodegrade		✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse

Shape