Лекция 14 Функции нескольких переменных

Определение. Всякий упорядоченный набор из n действительных чисел $x_1, x_2, ..., x_n$ обозначается $x = (x_1, x_2, ..., x_n)$ или $P(x_1, x_2, ..., x_n)$ и называется **точкой** n-мерного пространства \mathbb{R}^n ; числа $x_1, x_2, ..., x_n$ называются **координатами** точки P.

Определение. Пусть $D \subset \mathbb{R}^n$ - произвольное множество точек. Если каждой точке $P(x_1, x_2, ..., x_n)$ поставлено в соответствие некоторое определенное действительное число $f(P) = f(x_1, x_2, ..., x_n)$, то говорят, что на множестве $D \subset \mathbb{R}^n$ задана числовая функция f от n переменных $x_1, x_2, ..., x_n$. Множество D называется областью определения функции и обозначается D(f) или просто D. Число u = f(P) называется значением функции f в точке P. Множество всех значений функции обозначается E(f) или просто E.

Геометрическими изображениями пространств \mathbb{R}^2 и \mathbb{R}^3 являются (координатная) плоскость и (координатное) пространство соответственно, поэтому в случае двух (трех) переменных область определения функции z = f(x, y), (функции u = f(x, y, z) соответственно) геометрически представляет собой некоторое множество точек на плоскости (в пространстве).

Определение. Графиком функции $u = f(x_1, x_2, ..., x_n)$ называется множество точек $(x_1, x_2, ..., x_n, u)$ в пространстве \mathbb{R}^{n+1} , таких, что $(x_1, x_2, ..., x_n) \in D(f)$, а $u = f(x_1, x_2, ..., x_n)$.

Обычно график функции двух переменных z = f(x, y) представляет собой некоторую поверхность.

Пример. Найти область определения функции $z = \sqrt{R^2 - x^2 - y^2}$, R > 0, и построить ее график.

◀ Найдем область допустимых значений:

$$R^2 - x^2 - y^2 \ge 0$$
, или $x^2 + y^2 \le R^2$.

Найденная область определения представляет собой круг радиуса R с центром в начале координат.

Поскольку $z^2 + x^2 + y^2 = R^2$, $z \ge 0$, то график представляет собой верхнюю часть сферы радиуса R с центром в начале координат.

Пример. Найти область определения функции $u = \sqrt{1 - x^2 - y^2 - z^2}$.

Ч Найдем область допустимых значений:

$$1-x^2-y^2-z^2 \ge 0$$
 или $x^2+y^2+z^2 \le 1$.

Найденная область определения представляет собой шар радиуса 1 с центром в начале координат.

Пример. Построить график функции $z = x^2 + y^2$.

Пример. Построить график функции $z = x^2 - y^2$.

К простейшим функциям нескольких переменных относятся линейные и квадратичные функции.

Определение. Линейной называется функция вида

$$u = a_1 x_1 + a_2 x_2 + ... + a_n x_n + b = \sum_{i=1}^{n} a_i x_i + b,$$

при этом постоянные $a_1, a_2, ..., a_n, b$ называются коэффициентами линейной функции.

Если b = 0, то такая функция называется линейной формой.

Определение. Квадратичной называется функция вида

$$u = \sum_{i,j=1}^{n} a_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i + c$$

Если $b_1 = b_2 = \ldots = b_n = c = 0$ и хотя бы одно из чисел a_{ij} отлично от нуля, то функция называется *квадратичной формой*.

Примеры.

1. Линейная функция двух переменных имеет вид

$$z = Ax + By + C$$
, $A = \text{const}$, $B = \text{const}$, $C = \text{const}$.

Графиком такой функции является плоскость.

- **2.** Квадратичная форма от двух переменных имеет вид $z = Ax^2 + 2Bxy + Cy^2$, A = const, B = const, C = const.
- 3. Квадратичная форма от трех переменных имеет вид

$$u = Ax^{2} + By^{2} + Cz^{2} + 2Dxy + 2Exz + 2Fyz,$$

где A = const, B = const, C = const, D = const, E = const, F = const.

Определение. δ - *окрестностью* U_{δ} точки (x_0,y_0) называется круг (без границы) радиуса $\delta > 0$ с центром в точке (x_0,y_0) : $U_{\delta} = \left\{ (x,y) : (x-x_0)^2 + (y-y_0)^2 < \delta^2 \right\}.$

Замечание. В случае функции трех и более переменных δ - окрестность U_{δ} точки (x_0, y_0, z_0) будет шаром (без границы) радиуса $\delta > 0$ с центром в точке (x_0, y_0, z_0) .

Предел и непрерывность функции нескольких переменных

Пусть функция $u = f\left(x_1, x_2, ..., x_n\right)$ определена в некоторой окрестности точки $P_0\left(x_1^0, x_2^0, ..., x_n^0\right)$, за исключением, быть может, самой точки P_0 .

Определение. Число A называется **пределом** функции f(P) при стремлении точки $P(x_1, x_2, ..., x_n)$ к точке $P_0(x_1^0, x_2^0, ..., x_n^0)$, если для любого числа $\varepsilon > 0$ найдется число $\delta > 0$, такое, что из условия $0 < \rho(P, P_0) < \delta$ следует $|f(P) - A| < \varepsilon$.

При этом пишут $A = \lim_{P \to P_0} f(P)$.

Справедливы теоремы о пределе суммы, разности, произведения и частного двух функций.

Определение. *Предел* функции f(P) равен бесконечности при стремлении точки $P(x_1, x_2, ..., x_n)$ к точке $P_0(x_1^0, x_2^0, ..., x_n^0)$, если для любого числа N > 0 найдется число $\delta > 0$, такое, что из условия $0 < \rho(P, P_0) < \delta$ следует |f(P)| > N.

При этом пишут $\lim_{P\to P_0} f(P) = \infty$.

Аналогично можно определить $\lim_{P\to P_0}f\left(P\right)=+\infty$ и $\lim_{P\to P_0}f\left(P\right)=-\infty$.

.

Определение. Функция u = f(P) называется *непрерывной* в точке P_0 , если выполнены следующие три условия:

- 1) $P_0 \in D(f)$;
- $2) \quad \exists \lim_{P \to P_0} f(P);$
- 3) $\lim_{P \to P_0} f(P) = f(P_0).$

Определение. Функция u = f(P) называется *непрерывной в области*, если она непрерывна в каждой точке этой области.

Справедливы теоремы о непрерывности суммы, разности, произведения и частного двух непрерывных в данной точке функций, а также теорема о непрерывности сложной функции.

Пример. Вычислить предел
$$\lim_{\substack{x\to 0,\\y\to 0}} \frac{xy}{3-\sqrt{9+xy}}$$
.

$$\operatorname{d}\lim_{\substack{x \to 0, \\ y \to 0}} \frac{xy}{3 - \sqrt{9 + xy}} = \lim_{\substack{x \to 0, \\ y \to 0}} \frac{xy(3 + \sqrt{9 + xy})}{\left(3 - \sqrt{9 + xy}\right)\left(3 + \sqrt{9 + xy}\right)} = -\lim_{\substack{x \to 0, \\ y \to 0}} \left(3 + \sqrt{9 + xy}\right) = -6 \, .$$

Определение частных производных первого порядка

Пусть функция $u = f\left(x_1, x_2, ..., x_n\right)$ определена в некоторой окрестности точки $P_0\left(x_1^0, x_2^0, ..., x_n^0\right)$. Рассмотрим точку $P_1\left(x_1^0, x_2^0, ..., x_k^0 + \Delta x_k, ..., x_n^0\right)$ из той же окрестности.

Определение. *Частной производной* (первого порядка) $\frac{\partial u}{\partial x_k}$ функции u = f(P)

по переменной x_k в точке P_0 называется следующий предел:

$$\left. \frac{\partial u}{\partial x_k} \right|_{P_0} = \lim_{\Delta x_k \to 0} \frac{f\left(P_1\right) - f\left(P_0\right)}{\Delta x_k} = \lim_{\Delta x_k \to 0} \frac{f\left(x_1^0, x_2^0, \dots, x_k^0 + \Delta x_k, \dots, x_n^0\right) - f\left(x_1^0, x_2^0, \dots, x_n^0\right)}{\Delta x_k},$$

если этот предел существует и конечен.

Здесь k = 1, ..., n.

Другие обозначения: $f_{x_k}'(P_0), u_{x_k}(P_0)$.

Если P_0 — переменная точка, то частная производная $\frac{\partial u}{\partial x_k}$ становится новой функцией от этой точки.

Частные производные вычисляются по обычным правилам и формулам дифференцирования; при этом все переменные, кроме x_k , рассматриваются как постоянные.

Примеры.

1.
$$z = x^y$$
. Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

$$\blacktriangleleft \frac{\partial z}{\partial x} = yx^{y-1}, \frac{\partial z}{\partial y} = x^y \ln x. \blacktriangleright$$

2.
$$u = \operatorname{arctg}(xyz)$$
. Найти $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$.

$$\blacktriangleleft \frac{\partial u}{\partial x} = \frac{1}{1 + x^2 y^2 z^2} \cdot (yz), \frac{\partial u}{\partial y} = \frac{1}{1 + x^2 y^2 z^2} \cdot (xz), \frac{\partial u}{\partial z} = \frac{1}{1 + x^2 y^2 z^2} \cdot (xy). \blacktriangleright$$

3.
$$u = \sqrt{x^2 + y^2 + z^2}$$
. Найти $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$.

$$\blacktriangleleft \frac{\partial u}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2 + z^2}} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{\partial u}{\partial y} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{\partial u}{\partial z} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} . \blacktriangleright$$

Понятие дифференцируемости функции нескольких переменных

Пусть функция $u=f\left(x_1,x_2,...,x_n\right)$ определена в некоторой окрестности точки $P_0\left(x_1^0,x_2^0,...,x_n^0\right)$. Рассмотрим точку $P\left(x_1^0+\Delta x_1,x_2^0+\Delta x_2,...,x_k^0+\Delta x_k,...x_n^0+\Delta x_n\right)$ из той же окрестности.

Определение. *Полным приращением* функции u = f(P) в точке $P_0(x_1^0, x_2^0, ..., x_n^0)$, соответствующим приращениям аргументов $\Delta x_1, \Delta x_2, ..., \Delta x_n$, называется разность

$$\Delta u = f(P) - f(P_0) = f(x_1^0 + \Delta x_1, x_2^0 + \Delta x_2, \dots, x_k^0 + \Delta x_k, \dots, x_n^0 + \Delta x_n) - f(x_1^0, x_2^0, \dots, x_n^0).$$

Определение. Функция u = f(P) называется *дифференцируемой* в точке P_0 , если всюду в некоторой окрестности этой точки полное приращение может быть представлено в виде:

$$\Delta u = A_1 \Delta x_1 + A_2 \Delta x_2 + \ldots + A_n \Delta x_n + o(\rho(P, P_0)),$$

где $o(\rho(P,P_0))$ — бесконечно малая функция более высокого порядка, чем $\rho(P,P_0)$,

$$\rho(P,P_0) = \sqrt{\left(\Delta x_1\right)^2 + \left(\Delta x_2\right)^2 + \ldots + \left(\Delta x_n\right)^2},$$

 $A_1, A_2, ..., A_n$ – постоянные, зависящие от точки P_0 (и не зависящие от $\Delta x_1, \Delta x_2, ..., \Delta x_n$).

Определение. Дифференциалом (первого порядка) du функции u = f(P) называется главная (при условии, что не все коэффициенты $A_1, A_2, ..., A_n$ равны нулю) часть полного приращения функции в данной точке, линейная относительно $\Delta x_1, \Delta x_2, ..., \Delta x_n$, т.е.

$$du = A_1 \Delta x_1 + A_2 \Delta x_2 + \ldots + A_n \Delta x_n.$$

Таким образом

$$\Delta u = du + o(\rho(P, P_0)).$$

Пусть $u = x_k$, k = 1, ..., n. Тогда $\Delta u = \Delta x_k = dx_k$, k = 1, ..., n. Поэтому можно записать

$$du = A_1 dx_1 + A_2 dx_2 + \ldots + A_n dx_n.$$

Замечание. Дифференциал является линейной формой по переменным $dx_1, dx_2, ..., dx_n$.

Теорема 1. Если функция u = f(P) дифференцируема в точке P_0 , то функция непрерывна в точке P_0 .

Теорема 2. Если функция u = f(P) дифференцируема в точке P_0 , то в точке P_0 существуют все частные производные $\frac{\partial u}{\partial x_k}$, причем $A_k = \frac{\partial u}{\partial x_k}$, $k = 1, \ldots, n$.

Следствие. Если функция u = f(P) дифференцируема в точке P_0 , то ее дифференциал в этой точке имеет вид

$$du = \frac{\partial u}{\partial x_1}\bigg|_{P_0} dx_1 + \frac{\partial u}{\partial x_2}\bigg|_{P_0} dx_2 + \ldots + \frac{\partial u}{\partial x_n}\bigg|_{P_0} dx_n.$$

Теорема 3. Если функция u = f(P) имеет в точке P_0 непрерывные частные производные первого порядка, то функция u = f(P) дифференцируема в точке P_0 и ее дифференциал в этой точке имеет вид

$$du = \frac{\partial u}{\partial x_1}\bigg|_{P_0} dx_1 + \frac{\partial u}{\partial x_2}\bigg|_{P_0} dx_2 + \ldots + \frac{\partial u}{\partial x_n}\bigg|_{P_0} dx_n.$$

В частном случае функции двух переменных z = f(x, y)

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy,$$
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$\Delta z = dz + o\left(\sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2}\right) = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy + o\left(\sqrt{\left(\Delta x\right)^2 + \left(\Delta y\right)^2}\right).$$

Применение дифференциала в приближенных вычислениях

Дифференциал используется для приближенных вычислений приращения функции и значения функции в точке. Например, в случае функции двух переменных $z=f\left(x,y\right)$ при малых приращениях аргументов Δx и Δy справедливы приближенные равенства для полного приращения функции Δz и для значения самой функции в точке $\left(x_0 + \Delta x, y_0 + \Delta y\right)$

$$\Delta z \approx dz$$
, $f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + dz$.

В развернутом виде

$$\Delta z \approx \frac{\partial z}{\partial x} \bigg|_{P_0} \Delta x + \frac{\partial z}{\partial y} \bigg|_{P_0} \Delta y,$$

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \frac{\partial z}{\partial x} \bigg|_{(x_0, y_0)} \Delta x + \frac{\partial z}{\partial y} \bigg|_{(x_0, y_0)} \Delta y.$$

Предполагается при этом, что значение функции в точке $(x_0,)$ легко вычислить точно.

Пример. Вычислить приближенно $\sqrt{(4,05)^2 + (3,07)^2}$.

◄ Рассмотрим функцию $f(x, y) = \sqrt{x^2 + y^2}$. Положим

$$x_0 = 4$$
, $y_0 = 3$, $\Delta x = 0.05$, $\Delta y = 0.07$.

Имеем

$$f(4,3) = 5, \frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \frac{\partial f}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}, dz = \frac{x\Delta x + y\Delta y}{\sqrt{x^2 + y^2}},$$
$$\Delta z|_{(4,3)} \approx dz|_{(4,3)} = \frac{4 \cdot 0,05 + 3 \cdot 0,07}{5} \approx 0,08,$$
$$\sqrt{(4,05)^2 + (3,07)^2} \approx 5 + 0,08 = 5,08.$$