52023 W.

Formelblatt ELT 1 – Grundlagen, DC-Netzwerke & Strömungsfelder

Konstanten		$e = 1.602 \times 10^{-19} \mathrm{C}$	$\approx 1.6 \times 10^{-19}\mathrm{C}$
	Masse des Elektrons (Ruhemasse, $v \ll c_0$)	$m_e = 9.109 \times 10^{-31}\mathrm{kg}$	$\approx 9\times 10^{-31}\mathrm{kg}$
	Avogadro-Konstante (Anzahl für molare Masse)	$N_A = 6.022 \times 10^{23}\mathrm{mol}^{-1}$	$\approx 6\times 10^{23}\mathrm{mol}^{-1}$
	Boltzmann-Konstante	$k_B = 1.3806 \times 10^{-23} \mathrm{J/K}$	$\approx 1.4 \times 10^{-23}\mathrm{J/K}$
	Lichtgeschwindigkeit (in Vakuum)	$c_0 = 299792458\mathrm{m/s}$	$\approx 3\times 10^8\mathrm{m/s}$

Grundgesetze	Kirchhoffscher Knotensatz KH-1 (Kontinuität)	$\sum_{n} I_n = 0$	$\mathring{I} = \oint_{H\"{uIlle}} \mathbf{J} \cdot d\mathbf{s} = 0$
	Kirchhoffscher Maschensatz KH-2 (Konservativität)	$\sum_{n} U_n = 0$	$\mathring{U} = \oint_{C=\partial A} \mathbf{E} \cdot d\mathbf{l} = 0$
Gru	Ohmsches Gesetz	$R = \frac{U}{I} \text{bzw.} G = \frac{I}{U} = \frac{1}{R}$	$[R]=\Omega,[G]=\mathbb{S}$

Grundlagen	Stromstärke	$I = \left. rac{dQ}{dt} \right _{ ext{durch } A} = \int_{A} \mathbf{J} \cdot \underbrace{\hat{\mathbf{n}} ds}_{ ext{ds}} \stackrel{ ext{homogen}}{=} \mathbf{J} \cdot \mathbf{A}$	$[I] = \frac{C}{s} = A$
	Stromdichte Bewegte Ladungsdichte	$\mathbf{J} = \frac{dI}{dA}\hat{\mathbf{n}} = \rho\mathbf{v} = \sigma\mathbf{E}$ ($\hat{\mathbf{n}} \perp A, \mathbf{A} = \hat{\mathbf{n}}A$)	$[J] = \frac{A}{m^2}$
	Driftgeschwindigkeit (der Ladungsträger)	$\mathbf{v} = \frac{\mathbf{J}}{q n} = \frac{\mathbf{J}}{ ho}$	$ [v] = \mathrm{m/s}, [q] = \mathrm{C} = \mathrm{As}, \\ [n] = \mathrm{1/m^3}, [\rho] = \mathrm{As/m^3} $
	Elektrische Leitfähigkeit und spez. Widerstand ϱ	$\sigma = \frac{1}{\varrho} = q n \mu$	$\begin{split} [\sigma] &= \text{S/m}, [\varrho] = \Omega \text{m}, \\ [\mu] &= \frac{\text{m/s}}{\text{V/m}} = \text{A s}^2 / \text{kg} \end{split}$
	Temperaturabhängigkeit von Widerständen	$\Delta R = (\alpha \Delta T + \beta \Delta T^2 + \dots) R_{T_0} (\Delta T = T_0)$	$(T - T_0)$ $[\alpha] = 1/K$ $[\beta] = 1/K^2$
	Elektrisches Potential normalisierte pot. Energie	$\varphi = \frac{W}{Q}$	$[\varphi] = V = \frac{J}{C} = \frac{kgm^2}{As^3}$
	Elektrische Spannung Potentialdifferenz	$U_{AB} = \varphi_{A} - \varphi_{B} = \frac{\Delta W}{Q} = \int_{A}^{B} \mathbf{E} \cdot \underbrace{d\mathbf{l}}_{\widehat{\mathbf{l}} dl} \stackrel{hom.}{=} \mathbf{E} \cdot$	$\mathbf{l}_{AB} \qquad \qquad [U] = V$
	Leistung <i>Arbeit pro Zeiteinheit</i>	$P = \frac{\Delta W}{\Delta t} = UI = \int_V p dv \stackrel{\text{homogen}}{=} pV$	$[P] = \frac{J}{s} = W$
	Leistungsdichte des el. Strömungsfelds	$p = \frac{dP}{dv} = \mathbf{J} \cdot \mathbf{E} = \sigma E^2 = \varrho J^2$	$[p] = rac{W}{m^3}$
	Wirkungsgrad <i>Effizienz</i>	$\eta = \frac{\Delta W_{\rm ab}}{\Delta W_{\rm zu}} {\rm bzw.} \eta = \frac{P_{\rm ab}}{P_{\rm zu}} = \frac{P_{\rm ab}}{P_{\rm ab} + P_{\rm ver}}$	$[\eta]=1$ (bzw. %)
	Ladungsänderung (aus Stromfluss)	$Q(t_2) = \Delta Q + Q(t_1) = \int_{t_1}^{t_2} I(t) dt + Q(t_1)$	[Q] = C = As

$$R_{\mathsf{AB}} = R_{\mathsf{A}} + R_{\mathsf{B}} + \frac{R_{\mathsf{A}}R_{\mathsf{B}}}{R_{\mathsf{C}}}$$

$$R_{\mathsf{AC}} = R_{\mathsf{A}} + R_{\mathsf{C}} + \frac{R_{\mathsf{A}}R_{\mathsf{C}}}{R_{\mathsf{B}}}$$

$$R_{\mathsf{BC}} = R_{\mathsf{B}} + R_{\mathsf{C}} + \frac{R_{\mathsf{B}}R_{\mathsf{C}}}{R_{\mathsf{A}}}$$

$$R_{\rm BC} = R_{\rm B} + R_{\rm C} + \frac{R_{\rm B}R_{\rm C}}{R_{\rm A}}$$

Dreieck-Stern-Umwandlung $\triangle \Rightarrow \downarrow$

$$R_{\rm A} = \frac{R_{\rm AB}R_{\rm AC}}{R_{\rm AB} + R_{\rm BC} + R_{\rm AC}}$$

$$R_{\rm B} = \frac{R_{\rm AB}R_{\rm BC}}{R_{\rm AB} + R_{\rm BC} + R_{\rm AC}}$$

$$R_{\rm C} = \frac{R_{\rm AC}R_{\rm BC}}{R_{\rm AB} + R_{\rm BC} + R_{\rm AC}}$$

	E
7110	١
Ď	9

Graph G(V,E) bzw. G(K,Z)

erzweigter Pfad

Spannbaum vollständiger Baum

Masche innerer/äusserer Kreis

Eulerscher Polyedersatz für *planare* Graphen

Ein Graph G besteht aus je einer Menge k Knoten, K, und einer Menge z Zweige (Verbindungen zwischen Knoten), Z.

Ein Baum ist ein (verzweigter) Pfad/Linienzug (zusammenhängende Zweige bzw. Verbindungen von Knoten) ohne Zyklen/Kreise.

Ein Spannbaum ist ein Baum, welcher alle Knoten verbindet; er besteht aus k-1 Baumzweigen (daneben z-k+1 Verbindungszweige).

Eine Masche ist ein Kreis (einzelner Zyklus, d.h. Pfad mit gleichem Start- und Endknoten) ohne innere oder äussere Zweige; Anzahl: m.

 $z={\sf Anz}.$ Zweige Anz. Maschen m=z-k+2k = Anz. Knoten

Maschen-/Kreisstrommethode

$$Rj = u$$

- Unbekannte j
 - · Maschen- bzw. Kreisströme
 - Anzahl: m-1-i
- Widerstandsmatrix R

•
$$r_{xx} = \left[\sum_{n} R_n\right]_{\text{in } j_x}$$

•
$$r_{xy} = \pm \left[\sum_{n} R_{n}\right]_{\text{in } j_{x} \cap j_{y}}$$

- sowie Steuerparameter von gesteuerten Quellen
- Spannungsquellenvektor u

•
$$u_x = \mp \left[\sum_n U_{q,n}\right]_{\text{in } j_x}$$

• positiv: $U_{q,n}$ entgegen j_n

Knotenpotentialmethode (KPM)

$$Gu = i$$

- Unbekannte u
 - Knotenspannungen $\varphi \varphi_0$
 - Anzahl: k-1-v
- Leitwertmatrix G

•
$$g_{xx} = \left[\sum_n G_n\right]_{\text{an } u_x}$$

•
$$g_{xy} = -\left[\sum_n G_n\right]_{\text{an } u_x \& u_y}$$

- sowie Steuerparameter von gesteuerten Quellen
- Stromquellenvektor i

•
$$i_x = \pm \left[\sum_n I_{q,n}\right]_{\text{an } u_x}$$

• positiv: fliesst in u_x hinein

modifizierte Knotenpot. (MNA)

$$\mathbf{\tilde{G}}\mathbf{w} = \mathbf{s}$$

- Unbekannte w
 - · alle Knotenspannungen u, sowie einige Zweigströme $(I_{qu} \Rightarrow v, I_s \Rightarrow s)$
 - Anzahl: k 1 + v + s
- lacksquare modifizierte Leitwertmatrix $ilde{\mathbf{G}}$

$$ilde{\mathbf{G}} = egin{bmatrix} \mathbf{G} & \mathbf{\Gamma}_u \ \mathbf{\Gamma}_i & -\mathbf{R} \end{bmatrix}$$

(G ähnlich KPM)

- Quellenvektor s
 - Spannungsquellen
 - Stromguellen