```
#mathematical operation for array
import numpy as np
#to read the data file
import pandas as pd
#for making statistical graphs
import seaborn as sns
#2D plotting. static,animated, interactive 2D plots or figures and visualazing the data we use
import matplotlib.pyplot as plt
#is used to import the os module, which provides functions for interacting with the operating system.
import os

iris = pd.read_csv('IRIS.csv')
```

1113 = pa:1 caa_c3v(1115:c3v

iris

_		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

iris.columns

iris.shape

→ (150, 5)

#now extract the petal length and petal width from the data for performing LR
iris = iris[['petal_length' , 'petal_width']]
iris

_ →		petal_length	petal_width
	0	1.4	0.2
	1	1.4	0.2
	2	1.3	0.2
	3	1.5	0.2
	4	1.4	0.2
	145	5.2	2.3
	146	5.0	1.9
	147	5.2	2.0
	148	5.4	2.3
	149	5.1	1.8

150 rows × 2 columns

#now define X and Y to plot the graph

X = iris['petal_length']

Y = iris['petal_width']

import matplotlib to plot and to check whether X and Y are linerally correlated or not import matplotlib.pyplot as plt

plt.scatter(X,Y)

#now name the x axis and y axis
plt.xlabel("petal_length")
plt.ylabel("petal_width")
plt.show()

#combining all the commands
plt.xlabel("petal_length")
plt.ylabel("petal_width")
plt.scatter(X,Y)
plt.show()

so to start the LR intially we divide the data into train and test
import numpy as np
from sklearn.model_selection import train_test_split
X_train,X_test, Y_train, Y_test=train_test_split(X,Y, test_size=0.4, random_state=25)

X_train

```
\overline{\Rightarrow}
    126
             4.8
     108
             5.8
     80
             3.8
     19
             1.5
     119
             5.0
     118
             6.9
             4.2
     61
     143
             5.9
     62
             4.0
     132
             5.6
     Name: petal_length, Length: 90, dtype: float64
```

X_train = np.array(X_train).reshape(-1,1)
X_train

```
\rightarrow array([[4.8],
             [5.8],
             [3.8],
             [1.5],
             [5.],
             [4.7],
             [5.1],
             [1.5],
             [3.9],
             [5.],
[1.5],
             [1.9],
             [5.7],
             [4.7],
             [4.4],
             [1.9],
             [6.6],
             [4.1],
             [5.1],
             [4.2],
             [5.5],
             [1.1],
             [1.6],
             [4.],
             [1.6],
             [1.5],
             [4.8],
             [4.9],
             [1.5],
             [5.4],
             [4.],
             [4.3],
```

[4.5], [6.1], [4.4], [1.5],

```
[1.2],
             [1.4],
             [4.3],
             [5.1],
             [5.5],
             [5.],
             [4.4],
             [1.6],
             [5.3],
             [1.6],
             [1.],
             [4.7],
             [3.3],
             [1.7],
             [1.3],
             [1.3],
             [5.5],
             [6.3],
             [5.8],
             [5.1],
X_test = np.array(X_test).reshape(-1,1)
X_test
\rightarrow array([[1.4],
             [4.9],
             [4.8],
             [4.5],
             [5.6],
             [4.4],
             [4.9],
             [1.3],
             [3.7],
             [3.3],
             [1.5],
             [1.5],
             [1.6],
             [5.1],
             [1.4],
             [4.6],
             [6.],
             [5.4],
             [3.6],
             [4.2],
             [3.5],
             [4.1],
             [4.5],
             [1.7],
             [1.5],
             [6.7],
             [3.9],
             [6.7],
             [5.7],
             [1.3],
             [4.6],
             [5.],
             [6.1],
             [1.4],
             [5.3],
             [4.9],
             [4.5],
             [1.3],
             [1.7],
             [1.2],
             [1.3],
             [1.4],
             [1.4],
             [1.6],
             [4.8],
             [1.5],
             [1.4],
             [4.5],
             [1.5],
             [4.9],
             [5.9],
             [1.5],
             [1.4],
             [5.6],
             [3.9],
             [5.1],
             [5.2],
             [4.5],
from sklearn.linear_model import LinearRegression
```

 $https://colab.research.google.com/drive/1BK_2kWisNhgbii9ncbIHB6SqUj0L856G\#printMode=true$

Ir = LinearRegression()
Ir.fit(X_train, Y_train)

```
▼ LinearRegression (i) (?)
     LinearRegression()
c = Ir.intercept_
-0.3818060650247206
m= Ir.coef_
→ array([0.41723083])
Y_pred_train = m*X_train+c
Y_pred_train.flatten()
⇒ array([1.62090194, 2.03813278, 1.20367111, 0.24404019, 1.70434811,
            1.57917886, 1.74607119, 0.24404019, 1.24539419, 1.70434811,
             \hbox{\tt 0.24404019, 0.41093252, 1.99640969, 1.57917886, 1.45400961, } 
            0.41093252, 2.37191744, 1.32884036, 1.74607119, 1.37056344,
            1.91296353, 0.07714785, 0.28576327, 1.28711727, 0.28576327,
            0.24404019, 1.62090194, 1.66262503, 0.24404019, 1.87124044,
            1.28711727, 1.41228652, 1.49573269, 2.16330203, 1.45400961,
            0.24404019, 2.12157894, 0.11887094, 0.2023171 , 1.41228652,
            1.74607119, 1.91296353, 1.70434811, 1.45400961, 0.28576327,
            1.82951736, 0.28576327, 0.03542477, 1.57917886, 0.99505569,
            0.32748635, 0.16059402, 0.16059402, 1.91296353, 2.24674819,
            2.03813278, 1.74607119, 0.28576327, 0.86988644, 1.74607119,
            1.28711727, 0.32748635, 0.2023171 , 1.53745578, 1.57917886, 1.95468661, 1.49573269, 1.78779428, 1.07850186, 0.16059402,
            1.57917886,\ 2.16330203,\ 0.2023171\ ,\ 0.24404019,\ 0.2023171\ ,
            2.28847128, 0.2023171 , 1.49573269, 1.95468661, 1.32884036,
            0.24404019, 2.03813278, 1.28711727, 1.74607119, 1.95468661,
            2.4970867 , 1.37056344, 2.07985586, 1.28711727, 1.95468661])
Y_pred_train1 = Ir.predict(X_train)
Y_pred_train1
→ array([1.62090194, 2.03813278, 1.20367111, 0.24404019, 1.70434811,
            1.57917886, 1.74607119, 0.24404019, 1.24539419, 1.70434811,
            0.24404019, 0.41093252, 1.99640969, 1.57917886, 1.45400961,
            0.41093252, 2.37191744, 1.32884036, 1.74607119, 1.37056344,
            1.91296353, 0.07714785, 0.28576327, 1.28711727, 0.28576327,
            0.24404019, 1.62090194, 1.66262503, 0.24404019, 1.87124044,
            1.28711727, 1.41228652, 1.49573269, 2.16330203, 1.45400961,
            0.24404019, 2.12157894, 0.11887094, 0.2023171 , 1.41228652,
            1.74607119, 1.91296353, 1.70434811, 1.45400961, 0.28576327,
            1.82951736, 0.28576327, 0.03542477, 1.57917886, 0.99505569,
            0.32748635, 0.16059402, 0.16059402, 1.91296353, 2.24674819,
            2.03813278, 1.74607119, 0.28576327, 0.86988644, 1.74607119,
            1.28711727, 0.32748635, 0.2023171 , 1.53745578, 1.57917886,
            1.95468661, 1.49573269, 1.78779428, 1.07850186, 0.16059402,
            1.57917886, 2.16330203, 0.2023171 , 0.24404019, 0.2023171 ,
            2.28847128, 0.2023171 , 1.49573269, 1.95468661, 1.32884036,
            0.24404019, 2.03813278, 1.28711727, 1.74607119, 1.95468661
            2.4970867 , 1.37056344, 2.07985586, 1.28711727, 1.95468661])
plt.scatter(X_train,Y_train)
plt.plot(X_train,Y_pred_train1,color= 'aquamarine')
plt.xlabel("sepal_length")
plt.ylabel("sepal_width")
plt.show()
```

```
2.5
              2.0
Y_pred_test1 = Ir.predict(X_test)
Y_pred_test1
\Rightarrow array([0.2023171 , 1.66262503, 1.62090194, 1.49573269, 1.95468661, 1.45400961, 1.66262503, 0.16059402, 1.16194802, 0.99505569,
                    0.24404019, \ 0.24404019, \ 0.28576327, \ 1.74607119, \ 0.2023171 \ , \\
                   1.53745578, 2.12157894, 1.87124044, 1.12022494, 1.37056344,
                   1.07850186, 1.32884036, 1.49573269, 0.32748635, 0.24404019, 2.41364053, 1.24539419, 2.41364053, 1.99640969, 0.16059402,
                   1.53745578, 1.70434811, 2.16330203, 0.2023171, 1.82951736, 1.66262503, 1.49573269, 0.16059402, 0.32748635, 0.11887094,
                    \hbox{\tt 0.16059402, 0.2023171 , 0.2023171 , 0.28576327, 1.62090194,} 
                   0.24404019, 0.2023171 , 1.49573269, 0.24404019, 1.66262503, 2.07985586, 0.24404019, 0.2023171 , 1.95468661, 1.24539419, 1.74607119, 1.78779428, 1.49573269, 1.99640969, 1.37056344])
                                                               sepal length
plt.scatter(X_test,Y_test)
plt.plot(X_test,Y_pred_test1,color= 'aquamarine')
plt.xlabel("sepal_length")
plt.ylabel("sepal_width")
plt.show()
```


Start coding or generate with AI.

Start coding or generate with AI.

Start coding or $\underline{\text{generate}}$ with AI.