TESTUL nr. 2

1. Să se afle soluția sistemului $x^2 + y^2 = 8$, xy = 4.

a) (1,-2) si (2,-1); b) (1,1) si (-1,-1); c) (2,2) si (-2,-2);

d) (2,-1):

e) (2, 2):

f) (-1, 1) si (1, 2).

2. Să se determine valorile parametrului m∈R pentru care ecuația $x^2 - mx + 2 = 0$ are rădăcinile x_1 și x_2 strict mai mici decât 0.

a) $m \in (-\infty, -2\sqrt{2}]$; b) $m \in [-2\sqrt{2}, 2)$; c) $m \in (-2\sqrt{2}, 2\sqrt{2})$;

d) $m \in (-\infty, 2)$:

c) $m \in \emptyset$; f) $m \in (-\infty, 2\sqrt{2})$.

3. Să se rezolve ecuația logaritmică: $(x-2)^{l_3 s} + 2x^{l_2(s-2)} = 3$.

a) $x_1 = 3$, $x_2 = 1$; b) $x_0 = 4$; c) $x_0 = 10$;

d) $x_0 = 3$; e) $x_0 = 8$; f) $x_0 = i2$.

4. Sā se afle suma $S_n = \sum_{k=1}^{n} k C_n^k$.

a) $S_n = 2n$; b) $n2^n$; c) $n2^{n-1}$; d) $n^2 + n$; e) $2n^2$; f) $n^2 - 1$.

5. Un sir monoton crescător de numere reale este întotdeauna:

a) mărginit; b) convergent; c) admite cel puțin un subșir convergent;

d) are limită; e) mărginit superior;

f) niciuna din afirmațiile precedente nu este valabilă.

6. Ecuația $x^3 - 2x + 4 = 0$ are rădăcinile x_1, x_2, x_3 . Să se determine

expresia numerică $E = \frac{1}{1-x_1} + \frac{1}{1-x_2} + \frac{1}{1-x_3}$

a) 3; b) $\frac{2}{3}$; c) $\frac{3}{2}$; d) $\frac{1}{3}$; e) $\frac{1}{2}$; f) 2.

7. Pentru ce valori ale lui $m \in \mathbb{R}$ ecuațis $x^2 + x + e^{-x} + m = 0$ admite o rădăcină dublă?

a) -1; b) 0; c) 2; d) 1; e)
$$\frac{1}{2}$$
; f) $-\frac{1}{2}$.

8. Să se afle matricele X și Y care verifică sistemul $X + Y = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $X^2 - Y^2 = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$ dacă XY = YX.

a)
$$X = \begin{pmatrix} 1 & -\frac{1}{2} \\ 1 & \frac{1}{2} \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$; b) $X = \begin{pmatrix} 1 & -\frac{1}{2} \\ 1 & \frac{1}{2} \end{pmatrix}$, $Y = \begin{pmatrix} 0 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{pmatrix}$;

c)
$$X = \begin{pmatrix} 1 & -\frac{1}{2} \\ -1 & \frac{1}{2} \end{pmatrix}$$
 $Y = \begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}$; d) $X = \begin{pmatrix} 1 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{pmatrix}$, $Y = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$;

c)
$$X = \begin{pmatrix} -1 & -\frac{1}{2} \\ -1 & -\frac{1}{2} \end{pmatrix}$$
, $Y = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$; i) $X = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, $Y = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

9. Să se afle valorile paramentrului α pentru care polinomul $\hat{Z}X^3 + (\alpha + \hat{Z})X + \hat{I}$ din $Z_3[X]$ este ireductibil în $Z_3[X]$.

a)
$$\alpha = \hat{0}, \alpha = \hat{2};$$

b)
$$\alpha = 2$$
;

c)
$$\alpha = \hat{1}$$
;

d)
$$\alpha = \hat{1}, \alpha = \hat{0}$$
;

e)
$$\alpha = \hat{0}$$
;

f)
$$\alpha = \hat{1}$$
, $\alpha = \hat{2}$.

10. Şirul $(a_n)_{n\in\mathbb{N}}$ este definit prin relația de recurență $a_{n+1} = 1 + a_n^2$ cu $a_1 = 0$. Care dintre următoarele afirmații este adevărată pentru șirul a_n ?

- a) märginit;
- b) descrescător;
- c) crescător;
- d) admite un subșir convergent;
- e) aste convergent;
- f) niciuna dintre afirmațiile anterioare nu este adevărată.