R documentation

of 'branch.simpson.Rd' etc.

October 5, 2017

branch.simpson	branch. simpson is used to calculate 1 or more simpson index and list
	the position with highest index.

Description

branch.simpson is used to calculate 1 or more simpson index and list the position with highest index.

Usage

```
branch.simpson(seq, level = 1, included = NULL, excluded = NULL,
numRes = 1)
```

Arguments

seq is fastaDNA object to analysed. level is the number of positions.

included is the included position for analysed, these will force the computation to com-

pute the simpson's index at the position no matter what

excluded is the positions that are excluded from computation

numRes is the number of result to be returned.

Value

Will returns simpson's index and the position.

Chlamydia_1	Normal Fasta sample file Chlamydia sequence type with 1 deletion at
	1

Description

Normal Fasta sample file Chlamydia sequence type with 1 deletion at 1

2 flagAllele

Chlamydia_2	Normal Fasta sample file Chlamydia sequence type with multiple deletions at 1, 3, 6

Description

Normal Fasta sample file Chlamydia sequence type with multiple deletions at 1, 3, 6

Chlamydia_mapped	Normal Fasta sample file Chlamydia sequence types with no deletion
3 1 2 1 1 1 1 1 1 1 1 1	

Description

Normal Fasta sample file Chlamydia sequence types with no deletion

flagAllele	flagAllele is used to find out a list of allelic profiles that has been flagged and will not be included in computation of minimum SNPs.
	juigged and will not be included in computation of minimum 5141 s.

Description

flagAllele is used to find out a list of allelic profiles that has been flagged and will not be included in computation of minimum SNPs.

Usage

```
flagAllele(seq)
```

Arguments

seq

a list of SeqFastadna. To keep it simple, use read.fasta from seqinr to import the fasta file.

Value

Will return a list of ignored allelic profiles.

present.percent 3

present.percent	present.percent is used to find present and filter the similarity cal-
	culated using similar.percent.

Description

present.percent is used to find present and filter the similarity calculated using similar.percent.

Usage

```
present.percent(result, percent = 100, number = 100)
```

Arguments

result the result from similar.percent.

percent minimum percentage to be included

number number of results to be displayed

Value

Will return the a list of SNPs (as specified) that can be used and the associated percentage at the particular location.

present.simpson

 $\label{present.simpson} \textit{is used to present the result from the calculation of simpson's index.}$

Description

present.simpson is used to present the result from the calculation of simpson's index.

Usage

```
present.simpson(seq, result)
```

Arguments

seq is fastaDNA object to analysed.
result is the result from branch.simpson.

Value

Will returns the presentation of the result.

similar.percent

processAllele	processAllele is used to returned the processed allelic profiles.
p. 00000//22020	p. cooc. 12222 is used to remined the processed different profiles.

Description

processAllele is used to returned the processed allelic profiles.

Usage

```
processAllele(seq)
```

Arguments

seq a list of SeqFastadna. To keep it simple, use read.fasta from seqinr to import the

fasta file.

Value

Will return the processed allelic profiles.

result	Result file for validation Result from old software	

Description

Result file for validation Result from old software

```
similar.percent is used to find the calculate the percentage of similarity at alleles.
```

Description

similar.percent is used to find the calculate the percentage of similarity at alleles.

Usage

```
similar.percent(seq, ref)
```

Arguments

seq a list of SeqFastadna. To keep it simple, use read fasta from seqinr to import the

fasta file.

ref the specific allele to be identified.

Value

Will return the a list of SNPs that can be used

similar.simpson 5

similar.simpson	similar.simpson is used to calculate the simpson index and list the position with highest index.

Description

similar.simpson is used to calculate the simpson index and list the position with highest index.

Usage

```
similar.simpson(seq, level = 1, included = NULL, excluded = NULL)
```

Arguments

seq is fastaDNA object to analysed. level is the number of positions.

included is the included position for analysed, these will force the computation to com-

pute the simpson's index at the position no matter what

excluded is the positions that are excluded from computation

Value

Will returns simpson's index and the position.

simpson.calculate is used to calculate the simpson's index given a pattern.

Description

simpson.calculate is used to calculate the simpson's index given a pattern.

Usage

```
simpson.calculate(pattern, N)
```

Arguments

pattern is a pattern, can be a vector or a list.

N is the total number of entities that are in the pattern.

Value

Will returns the simpson's index for the pattern.

simpson.pattern simpson.pattern is used to generate pattern for calculation at a later stage.	r
---	---

Description

simpson.pattern is used to generate pattern for calculation at a later stage.

Usage

```
simpson.pattern(seq, position, appended = NULL)
```

Arguments

seq is fastaDNA object to analysed.

position is the position of the sequences used to generate pattern.

appended is the pattern that the current operation will appended onto

Value

Will returns the generated pattern.

usualLength	usualLength is used to find out the length of the sequence (W/O deletion).
-------------	--

Description

usualLength is used to find out the length of the sequence (W/O deletion).

Usage

```
usualLength(seq)
```

Arguments

seq a list of SeqFastadna. To keep it simple, use read.fasta from seqinr to import the

fasta file.

Value

Will return the maximum length of all the allelic profiles.

Examples

```
sample.case1 <-function(){</pre>
#Read the file
Chlamydia <- read.fasta(file='../data/Chlamydia_mapped.txt')</pre>
#STEP 1. Process the file
Chlamydia <- processAllele(Chlamydia)</pre>
untempered <-read.fasta(file='../data/Chlamydia_mapped.txt')</pre>
#Since Chlamydia is normal
checkIdentical(Chlamydia, untempered)
#PERCENT MODE
result=similar.percent(Chlamydia, 'A_D213')
present=present.percent(result, 98, 100)
#All result should have percent higher or equal to 98
for (a in 1:100){
checkTrue(present[[a]]$percent>=98)
}
#SIMPSON MODE
result=branch.simpson(Chlamydia, level=1, numRes=3)
output=present.simpson(Chlamydia, result)
#Should have 3 results
checkTrue(length(output)==3)
checkEquals(output[[1]]$'Index', 0.7344, tolerance=0.00016)
Description=paste('At position:', '1988', sep='-')
checkEquals(output[[1]]$'Description', Description)
checkEquals(output[[2]]$'Index', 0.7318, tolerance=0.00016)
Description=paste('At position:', '2044', sep='-')
checkEquals(output[[2]]$'Description', Description)
checkEquals(output[[3]]$'Index', 0.7266, tolerance=0.00016)
Description=paste('At position:', '2034', sep='-')
checkEquals(output[[3]]$'Description', Description)
}
sample.case2 <-function(){</pre>
#Read the file
Chlamydia <- read.fasta(file='../data/Chlamydia_1.txt')</pre>
#STEP 1. Process the file
Chlamydia <- processAllele(Chlamydia)</pre>
#Since 1 sequence has deletion and is ignored
checkEquals(length(Chlamydia), 55)
#PERCENT MODE
result=similar.percent(Chlamydia, 'A_D213')
present=present.percent(result, 98, 100)
#Should have no result because A_D213 is ignored
```

```
checkEquals(result, NULL)
checkEquals(present, list())
#PERCENT MODE
result=similar.percent(Chlamydia, 'H_S1432')
present=present.percent(result, 98, 100)
#Check result
checkEquals(length(present), 100)
checkEquals(present[[1]]$'position', 171)
checkEquals(present[[1]]$'percent', 100)
#SIMPSON MODE
result=branch.simpson(Chlamydia, level=1, numRes=3)
output=present.simpson(Chlamydia, result)
#Should have 3 results
checkTrue(length(output)==3)
\label{lem:checkEquals} $$ \operatorname{checkEquals}(\operatorname{output}[[1]]\$'\operatorname{Index'}, \quad 0.7347, \ \operatorname{tolerance=0.00016}) $$  \operatorname{Description=paste}('At \ \operatorname{position:'}, \ '1988', \ \operatorname{sep='-'}) $$
checkEquals(output[[1]]$'Description', Description)
checkEquals(output[[2]]$'Index', 0.7306, tolerance=0.00016)
Description=paste('At position:', '2044', sep='-')
checkEquals(output[[2]]$'Description', Description)
checkEquals(output[[3]]$'Index', 0.7199, tolerance=0.00016)
Description=paste('At position:', '2034', sep='-')
checkEquals(output[[3]]$'Description', Description)
}
sample.case3 <-function(){</pre>
#Read the file
Chlamydia <- read.fasta(file='../data/Chlamydia_2.txt')</pre>
#STEP 1. Process the file
Chlamydia <- processAllele(Chlamydia)</pre>
#Since 1 sequence has deletion and is ignored
checkEquals(length(Chlamydia), 53)
#PERCENT MODE
result=similar.percent(Chlamydia, 'A_D213')
present=present.percent(result, 98, 100)
#Should have no result because A_D213 is ignored
checkEquals(result, NULL)
checkEquals(present, list())
#PERCENT MODE
result=similar.percent(Chlamydia, 'H_S1432')
present=present.percent(result, 98, 100)
#Check result
checkEquals(length(present), 100)
checkEquals(present[[1]]$'position', 171)
```

```
checkEquals(present[[1]]$'percent', 100)
#SIMPSON MODE
result=branch.simpson(Chlamydia, level=1, numRes=3)
output=present.simpson(Chlamydia, result)
#Should have 3 results
checkTrue(length(output)==3)
checkEquals(output[[1]]$'Index', 0.7343, tolerance=0.00016)
Description=paste('At position:', '2044', sep='-')
checkEquals(output[[1]]$'Description', Description)
checkEquals(output[[2]]$'Index', 0.7329, tolerance=0.00016)
Description=paste('At position:', '1988', sep='-')
checkEquals(output[[2]]$'Description', Description)
\label{lem:checkEquals} $$ \operatorname{Lough}(0.7263, tolerance=0.00016) $$ \operatorname{Description=paste}('At position:', '2034', sep='-') $$
checkEquals(output[[3]]$'Description', Description)
test.deactivation <- function()</pre>
{
  DEACTIVATED('Deactivating integration test function')
}
```

Index

```
branch.simpson, 1
Chlamydia_1, 1
Chlamydia_2, 2
Chlamydia_mapped, 2
flagAllele, 2
present.percent, 3
present.simpson, 3
processAllele, 4
result, 4
similar.percent, 4
similar.simpson, 5
simpson.calculate, 5
simpson.pattern, 6
usualLength, 6
```