

Adjoint of	a 5	que	are	Mat	nx
-0		a,	Ь,	c, -	then in
42	A =	02	b2	Ci	then in
	41 - 144	a,	6.	CI.	

Adj A = transpose of $\begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_2 \end{bmatrix} = \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$

Properties of Adjoint!
(i) A (Adj A) = (Adj A) A = IAI In

(ii) Adj (AB) = (Adj B). (Adj A)

Inverse of a Square Matrix!- $A = \frac{Adj A}{|A|}; |A| \neq 0$

Properties of Inverse!
(i) (A')' = A

(ii) (AB)' = B'A'

(iii) (A')' = (A'')'

(iv) Only a non-singular square matrix

can have an inverse.

Example: - 9f A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then find A.

Solution:

Adj A = $\begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

|A| = 3(-3+4)+3(2)-4(-2) = 1 $|A| = \frac{Adj}{|A|} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$

The matrix obtained from a unit matrix I by subjecting it to one of E-operations is called an elementary matrix.

Rank of a Matrix:

Elementary Matrices !-

Let A be any mxn matrix. It has square sub-matrices of different orders. The determinants of these square sub-matrices are called minors of A.

A matrix is said to be of rank r, if!
(i) It has atleast one non-zero minor of order r.

(ii) All the minors of order (x+1) or higher than

r are zero.

Rank of A = & is written as p(a) = r.

If A is a non-singular nxn matrix, Ren P(a) = n

Eckelon form method of finding rank!—

In this form of the matrix, each of the first r elements of the leading diagonal is 1 and every element below the day cliquenal/rth row is zero.

The rank of the matrix is equal to the no. of non-zero diagonal elements when it has been reduced to Eckelon form.

Figen	Vectors and Eigen Values: - Consider a square	
-9-		700
	matrix A of size (nxh), then a column	
	vector X of size (n x 1) is called the	
	Eigen Vector of A, if -	
	1 2592	
	$AX = \lambda X$	
	$\Rightarrow AX - \lambda X = 0$	
-	$\Rightarrow (A-\lambda I)X = 0$	
	where, I is a nonzero xeles.	
	The characteristic roots of equation-1	
	are called the Eigen Values.	-
	Example: Find the eigen values and eigen vectors of the matrix! $A = \begin{bmatrix} -2 & 2 & -3 \\ 7 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	
	of the matrix! - [-2 2 -3]	
4. 12.1	A = 12 1 -6	
	[-1 -2 0]	
	Solution - The characteristic equation of the given	
	matrix is :- A - 1 I = 0	
	$ A - \lambda I = 0$	
St. La	-2-x 2 -3 ·	
Arr.	⇒ 2 1-1 -6 -0 Eigen Valu	
	-1 -2 -A	
	$\Rightarrow (\lambda+3)(\lambda+3)(\lambda-5)=0 \Rightarrow \lambda=-3,-3,5$	
F. A.	45 65	
	Corresponding to 1=-3, the eigen vectors are given	
	by!- (A + 31) X, = 0	
	2 -3 X,	
	⇒ 2 4 -6 x. = 0	
	$\Rightarrow \begin{bmatrix} -1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$	
	Here, we get only one independent equation's	
	x, +2x, -3x, = 0 www.	ululu.in

let	X1 = K	and	x = £	2. then	×. =	3f 2f.	
	[3	£ - 2£	.1	[3]	T.	-2]	

$$X_{i} = \begin{bmatrix} 3k_{i} - 2k_{i} \\ k_{i} \\ k_{i} \end{bmatrix} = k_{i} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + k_{i} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

Corresponding to $\lambda = 5$, the eigen vectors are given by:- $(A - 5I) \times z = 0$

$$\begin{array}{c|cccc}
-7 & 2 & -3 \\
2 & -4 & -6 \\
-1 & -2 & -5
\end{array}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{array}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

×1 - k1 x1 = 2 k1 x3 = - k1

$$X_2 = \hat{K}_3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Properties of Eigen Vectors and Eigen Values :-

(1) The sum of the eigenvalues of a matrix A is equal to trace of A.

(2) The product of the eigen values of a matrix A is equal to its determinant

(3) If h is an eigen value of an orthogonal matrix, then 1/1 is also its eigen value

(4) The eigen values of an idempotent matrix are either zero or unity.

The trace or spur of a square matrix is the sum of its diagonal elements.

			_	2 tank	
(II) (a)	sin	2×	=	1 + tanex	
(P)	cos	24	=	1 - tan2x	The second

Limits!-

Some important expensions to be used !-

(i)
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{21}x^2 + \dots$$

(ii)
$$\left(\frac{x^{h}-a^{h}}{x-a}\right) = \left(x^{h-1}+ax^{h-2}+a^{1}x^{h-3}+ + a^{h-1}\right)$$

(iii)
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$$

(iv)
$$a^{x} = 1 + x \log_{e} a + \frac{(x \log_{e} a)^{2}}{2!} + \dots$$

(v)
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

(vi)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$(yi)$$
 $\cos x = 1 - \frac{\chi^2}{2i} + \frac{\chi^4}{4i} - \frac{\chi'}{6i} + \dots$

$$-(yiii) + toh x = -x + \frac{x^3}{3} + \frac{2}{15} x^5 + \frac{1}{15}$$

Some Important Theorems on Limits:

(ii)
$$\lim_{k\to 0} \left(\frac{e^{k}-1}{k}\right) = 1$$
, (iii) $\lim_{k\to 0} \left(\frac{a^{k}-1}{k}\right) = \log_e a$

(iv)
$$\lim_{k\to\infty} (1+k)^k = e - \lim_{k\to\infty} \left(\frac{\sin k}{k}\right) = 0$$

(v)
$$\lim_{k\to 0} \frac{\log(1+k)}{k} = 1$$
 $\lim_{k\to \infty} \left(\frac{\cos k}{k}\right) = 0$

Continuity and Differentiability: -

A function is continuous, if its graph is a single unbroken curve with no holes or jumps.

A function is differentiable, if its graph is relatively smooth, and does not contain any breaks, or bends.

A differentiable function is always continuous, but a continuous function need not be differentiable.

Differentiation! -

Some important fumulaes !-

(V)
$$\frac{d}{dx} conx = -sinx$$
, (Vi) $\frac{d}{dx} (tanx) = sec^2x$

$$(xi) \frac{d}{dx} (sin^2 x) = \frac{1}{\sqrt{1-x^2}}, \quad (xii) \frac{d}{dx} (coa^2 x) = \frac{-1}{\sqrt{1-x^2}}$$

$$(xiii) \frac{d}{dx}(tan^{2}k) = \frac{1}{1+k^{2}}, \quad (xiv) \frac{d}{dx}(cot^{2}k) = \frac{-1}{1+k^{2}}$$

(xr)
$$\frac{d}{dx}$$
 (sec'x) = $\frac{1}{x \sqrt{x^2-1}}$, (xri) $\frac{d}{dx}$ (conec'x) = $\frac{-1}{x \sqrt{x^2-1}}$

$$(x \times iii) \frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) f(x) - f(x) g(x)}{\left[g(x) \right]^2} \frac{|(xx)|}{\left[\frac{d}{dx} \log_x x - \frac{1}{x \log_x x} \right]}$$

Integration

Fundamental Integration Formulas:

(i)
$$\int x^n dx = \frac{x^{n+1}}{(n+1)}$$
 (ii) $\int \frac{1}{x} dx = \log x + c$

(iii)
$$\int e^{x} dx = e^{x} + c$$
 (iv) $\int a^{x} dx = \frac{a^{x}}{\log_{e} a} + c$

$$(xr) \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^2\left(\frac{x}{a}\right) + C \quad (xri) \int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^2\left(\frac{x}{a}\right) + C$$

$$(xvii) \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c \cdot (xviii) \int \frac{-1}{a^2 + x^2} dx = \frac{1}{a} \cot^{-1}\left(\frac{x}{a}\right) + c$$

$$(xix)\int \frac{dx}{x\sqrt{x^2-a^2}} = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + c, \quad (xx)\int \frac{-dx}{x\sqrt{x^2-a^2}} = \frac{1}{a} \csc^{-1}\left(\frac{x}{a}\right) + c$$

Integration by Substitution! -

$$I = \int f(g(x)) \cdot g'(x) dx, \quad \text{let } g(x) = t$$

$$\Rightarrow I = \int f(t) dt \qquad \Rightarrow g'(x) dx = dt$$

Note:-