### **Algorithm for Decision Tree Induction**

- Basic algorithm
  - A greedy algorithm that constructs a decision tree in a top-down recursive divide-and-conquer manner
  - At start, all the training examples are at the root
  - Attributes are assumed to be categorical
    - If continuous-valued, they are discretized in advance
  - Examples are partitioned recursively based on the selected test attributes
  - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)



#### Output: A Decision Tree for "buys\_computer"





## **Algorithm for Decision Tree Induction**

- Conditions for stopping the partitioning process
  - All samples for a given node belong to the same class
  - There are no remaining attributes for further partitioning –
    majority voting is employed for classifying the leaf
  - There are no samples left



#### Output: A Decision Tree for "buys\_computer"





#### **Test Attribute Selection**

- Which is better as a test attribute?
  - Partitions a group into more homogeneous ones





#### **Attribute Selection Measure: Information Gain**

- Select the test attribute having the highest information gain
- Let  $p_i$  be the probability that an arbitrary tuple in D belongs to class  $C_i$ , estimated by  $|C_{i,D}|/|D|$
- Entropy (expected information) to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

The more heterogeneous the higher



## **Attribute Selection Measure: Information Gain**

Expected information needed (after using A to split D into

$$Info_{A}(D) = \sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times Info(D_{j})$$

Information gained by branching on attribute A





#### **Attribute Selection: Information Gain**

Class P: buys\_computer = "yes"

 $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$ 

Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$
  $+\frac{5}{14}I(3,2) = 0.694$ 

| age  | p <sub>i</sub> | n <sub>i</sub> | I(p <sub>i</sub> , n <sub>i</sub> ) |
|------|----------------|----------------|-------------------------------------|
| <=30 | 2              | 3              | 0.971                               |
| 3140 | 4              | 0              | 0                                   |
| >40  | 3              | 2              | 0.971                               |

 $\frac{5}{14}I(2,3)$  means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit\ rating) = 0.048$$





- Let attribute A be a continuous-valued attribute
- Make attribute A discrete by deciding the split points for A
  - Sort the existing values for A in increasing order
  - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
    - (a<sub>i</sub>+a<sub>i+1</sub>)/2 is the midpoint between the values of a<sub>i</sub> and a<sub>i+1</sub>





- Let attribute A be a continuous-valued attribute
- Make attribute A discrete by deciding the split points for A
  - Sort the existing values for A in increasing order
  - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
    - (a<sub>i</sub>+a<sub>i+1</sub>)/2 is the midpoint between the values of a<sub>i</sub> and a<sub>i+1</sub>



- Compute the entropy for each split point:
  - D1 is the set of tuples in D satisfying A ≤ split-point
  - D2 is the set of tuples in D satisfying A > split-point
- Determine the best split point for A
  - The point giving the minimum entropy (i.e., maximum information gain) for A is selected



- Question
  - While a binary partition is assumed currently, an n-ary partition could be considered
  - What is the problem with this case?



#### **Gain Ratio for Attribute Selection (C4.5)**

- Information gain measure is biased towards attributes
  with a large number of values
  - If A has 5 values and B has 2 values,
  - A tends to have higher information gain than B
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)
  - GainRatio(A) = Gain(A) / SplitInfo(A)

#### **Gain Ratio for Attribute Selection (C4.5)**

• GainRatio(A) = Gain(A) / SplitInfo<sub>A</sub>(D)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- Example
  - gain\_ratio(income) = 0.029/0.926 = 0.031

$$SplitInfo_{A}(D) = -\frac{4}{14} \times \log_{2}(\frac{4}{14}) - \frac{6}{14} \times \log_{2}(\frac{6}{14}) - \frac{4}{14} \times \log_{2}(\frac{4}{14}) = 0.926$$

 The attribute with the maximum gain ratio is selected as the splitting attribute



### Gini index (CART, IBM IntelligentMiner)

If a data set D contains tuples from n classes, gini index, gini(D) is defined as

$$gini(D)=1-\sum_{j=1}^{n} p_{j}^{2}$$

where  $p_i$  is the relative probability of class j in D

If a data set D is split on A into two subsets  $D_1$  and  $D_2$ , the *gini* index (impurity) *gini*(D) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

• where  $D_1$  is a set of tuples having some values for A while  $D_2$  is a set of tuples having the other values for  $A_1$ 

### Gini index (CART, IBM IntelligentMiner)

Reduction in impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

- The attribute providing the largest reduction in impurity (i.e., the smallest gini<sub>A</sub>(D)) is chosen to as the test attribute to split the node
  - Binary partition: need to enumerate all the possible splitting points for each attribute

### Gini index (CART, IBM IntelligentMiner)

Example: D has 9 tuples in buys\_computer = "yes" and 5 tuples in buys\_computer = "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D<sub>1</sub>: {low, medium} and 4 in D<sub>2</sub>: {high}

$$\begin{split} &gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_1) \\ &= \frac{10}{14} (1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14} (1 - (\frac{1}{4})^2 - (\frac{3}{4})^2) \\ &= 0.450 \\ &= Gini_{income} \in \{high\}(D) \end{split}$$

■ If gini<sub>{medium,high}</sub> is 0.30, it will be better since it is the lower

#### **Comparing Attribute Selection Measures**

- The three measures, in general, return good results but
  - Information gain:
    - biased towards multivalued attributes
  - Gain ratio:
    - tends to prefer unbalanced splits in which one partition is much smaller than the others
  - Gini index:
    - has difficulty when # of classes is large
    - tends to favor tests that result in equal-sized partitions and purity in both partitions



## **Overfitting**

#### Overfitting

- An induced tree may overfit the training data
- Extreme case
  - Every tuple has its own branch in the tree

#### Problem

- Too many branches, some may reflect anomalies due to noise or outliers
- Poor accuracy for unseen samples

## **Overfitting and Tree Pruning**

Two approaches to avoid overfitting



- Prepruning: Halt tree construction early
  - Do not split a node if this would result in the goodness measure falling below a threshold
  - Difficult to choose an appropriate threshold
- Postpruning: Remove branches from a "fully grown" tree
  - Get a sequence of progressively pruned trees (see Fig. 6.6 in text)
  - Use a set of data different from the training data to decide which is the "best pruned tree"

### **Classification in Large Databases**

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
  - relatively faster learning speed (than other classification methods)
  - convertible to simple and easy to understand classification rules
  - can use SQL queries for accessing databases
  - comparable classification accuracy with other methods

#### Visualization of a Decision Tree in SGI/MineSet 3.0



#### **Presentation of Classification Results**



### **Chapter 6. Classification and Prediction**

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

