

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8OO

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 19 September 2001

•

·

Patents Form 1/77

Patrots Act 1977 (Rule IG)

Request for grant of a patent (See the notice on the back of this form. You can also get un explanatory leader from the Patent Other to belo you fill in (سبن غل

23APR01 E623903-1 D01049__ P01/7700 0.00-0109910.0 MOGNEPATENT OFFICE 23 APR 2001 RECEIVED BY FAX

The Patent Office

Cardill Read Newport South Water NIS IRH

Your reference

WL-A-021004-UK

2. Patent application number (The Patent Office will LIR In this part)

0109910.0

23 APR 2001

3. Full name, address and postcode of the or of each applicant (underline all survames)

Warner-Lambert Company 201 Tabor Road Morris Plains NJ 07950 US

Patents ADP number (If you know it)

If the applicant is a corporate body, give the country/state of its incorporation

US - Delaware

818 302 001

4. Title of the invention

TREATMENT OF SEXUAL DYSFUNCTION

5. Name of your agent (Tyou have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

COLE, Paul Gilbert Lucas & Co 135 Westhall Road Warlingham Surrey CR6 9HJ

7928138001

Patents ADP number (# you know ti)

1006044388D

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filling of the or of each of these earlier applications and (# you know #) the or each application number

Country Priority application sumber (K you know M)

Date of Sting (day/month/year)

If this application is divided or otherwise derived from an earlier UK application. give die number and the filing date of the earlier application

Number of earlier application

Date of filling (tay / month / your)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? Occamer Yes'th

Yes

- 4) key applicant named in part 3 is not an inventor, or
- b) there is an inventor who it not named as an applicant, or
- e) any mamod applicant is a corporate body. See note (d))

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

159

Clain(s)

7

Abstract

1

21

Drawing(4)

O

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

8

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 1077)

Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature

LUCIA

Date

23rd April 2001

Name and daytime telephone number of person to contact in the United Kingdom

PAUL COLR - 01883 626211

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the Invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered Yes' Patents Porm 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- () For details of the fee and ways to pay please contact the Patent Office.

TREATMENT OF SEXUAL DYSFUNCTION

FIELD OF THE INVENTION

The present invention relates to methods for the treatment of sexual dysfunction and to the preparation of medicaments for the treatment of sexual dysfunction.

BACKGROUND TO THE INVENTION

10

15

20

25

30

5

Both males and females can suffer from sexual dysfunction. Sexual dysfunctions are relatively common in the general population (see O'Donohue W, et al, Clin. Psychol. Rev. 1997; 17: 537-566). The disorder may relate to seeking sexual behaviour (proceptivity) and/or to acceptance of sexual behaviour, accompanied by sexual arousal (receptivity). The prevalence of sexual problems is higher in populations receiving medicaments, in particular antidepressants and antihypertensives. A need for pharmacotherapy for sexual dysfunction is increasing, but there has been very little research effort directed at finding drugs to treat sexual dysfunction.

Sexual dysfunctions include erectile dysfunctions of organic and psychogenic origin (Benet A.E and Melman A, 1995, *Urol. Clin. N. Amer.* 22: 699-709) as well as hypoactive sexual desire disorders, sexual arousal disorders, anorgasmy and sexual pain disorders (Berman et al., 1999, *Urology* 54: 385-391).

In males, impotence can be defined as an inability to achieve penile erection or ejaculation. Its prevalence is claimed to be between 2% and 7% of the human male population, increasing with age up to 50 years and between 18% and 80% between 55 and 80 years of age. In the USA alone, for example, it has been estimated that there are up to 10 million impotent males, with the majority suffering from problems of organic rather than of psychogenic origin. Although many different drugs have been shown to induce penile erection, they were only effective after direct injection into the penile e.g. intraurethrally or intracavernosally (i.e.) and were not approved for erectile

10

15

20

25

dysfunction. US-A-5576290 discloses peptides which are stated to induce erection, but they have to be given subcutaneously e.g. by injection, and if an excessive dose is given they produce an exaggerated erectile response and stomach discomfort. Impotence treatment was revolutionized by the unexpected discovery that cGMP PDB inhibitors, e.g. pyrazolo[4,3-d]pyrimidin-7-ones were useful in the treatment of erectile dysfunction and could be administered orally, therefore obviating the disadvantages associated with i.e. administration. One such compound that is currently being manufactured is sildenafil (Viagra).

Thirty to 50% of American women complain of sexual dysfunction. Ageing, menopause, and decline in circulating oestrogen levels significantly increase the incidence of sexual complaints. In a recent publication, Berman J.R. et al. (Int. J. Impot. Res., 1999, 11: S31-38), describe methodology for evaluating physiologic and subjective components of the female sexual response in the clinical setting and determine the effects of age and oestrogen status on them. Low or absent sexual drive/desire constitutes the commonest problem in the female population (Laumann et al., 1999 JAMA 281:537-544), but no therapy is available other than psychotherapy or empirical approaches. In a further publication (Bonney R.C et al., Scrip's Complete Guide to Women's Healthcare, PJB Publications Ltd, London, 2000) the causes and management of female sexual dysfunction are discussed, including the use of tibolone (Livial; Organon) which is a synthetic steroid that mimics the effects of oestrogen and has been reported to have mild androgenic properties, and the use of testosterone.

So far in the UK and the USA no drug has been licensed by the Department of Health specifically for the treatment of female sexual dysfunction, hence there is an unmet medical need in the treatment of female sexual dysfunction, especially sexual drive problems.

SUMMARY OF THE INVENTION

This invention is based on the realisation that substances that act as bombesin receptor antagonists have utility in the treatment of sexual dysfunction, including the behavioural component thereof, in both male and female subjects. In other words, they can provide a treatment for erectile dysfunctions of organic and psychogenic origin as well as hypoactive sexual desire disorders, sexual arousal disorders, anorgasmy and sexual pain disorders.

10

15

30

The invention therefore provides a method of treating sexual dysfunction which comprises administering to a subject suffering therefrom and in need of treatment an effective amount of a bombesin receptor antagonist.

The invention further provides the use of a bombesin receptor antagonist in the manufacture of a medicament for preventing or treating male sexual dysfunction or female sexual dysfunction.

Furthermore, many of the compounds of this invention have both the property of binding to bombesin receptors and the property that an effective dose can be administered orally.

BRIEF DESCRIPTION OF FIGURES

- Figure 1: Effect of (S) 3-(1H-Indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexyl-methyl]-2-methyl-2-[3-(4-nitro-phenyl)-ureido]-propionamide (Compound (1)) on female rat sexual proceptivity.
 - Figure 2: Effect of Compound (1) on female rat sexual receptivity.
 - Figure 3: Effect of repeated administration of Compound (1) on female rat proceptivity.

30

Figure 4: Effect of intracerebroventricular administration of Compound (1) on female rat sexual proceptivity.

- Figure 5: Inhibitory effect of NMB on female rat sexual proceptivity and antagonism of this effect by Compound (1).
 - Figure 6: Results of an investigation to show whether the effect of Compound (1) on female sexual behaviour is mediated through progesterone.
- Figure 7: Results of an investigation to show whether the effect of Compound (1) on female sexual behaviour is mediated through oestradiol.
 - Figure 8: Results of an investigation to show whether the effect of Compound (1) on female sexual behaviour is mediated through prolactin.
- Figure 9: Results of an investigation to show whether the effect of Compound (1) on female sexual behaviour is mediated through LH.
- Figure 10: Results of an investigation to show whether the effect of Compound (1) on female sexual behaviour is mediated through FSH.
 - Figure 11: Effect of Compound (1) on the sexual behaviour of normal male rats (Mount Latency).
- 25 Figure 12: Effect of Compound (1) on the sexual behaviour of normal male rats (Intromission Latency).
 - Figure 13: Effect of Compound (1) on the sexual behaviour of normal male rats (Number of Mounts + Intromission).
 - Figure 14: Effect of Compound (1) on the sexual behaviour of normal male rats (Ejeculation Latency).

20

25

30

Figure 15: Effect of Compound (1) on the sexual behaviour of normal male rats (Refractory Period).

- Figure 16: Effect of Compound (1) on the sexual behaviour of sexually dysfunctional
 male rats (Mount Latency).
 - Figure 17: Effect of Compound (1) on the sexual behaviour of sexually dysfunctional male rats (Ejaculation Latency).
 - Figure 18: Effect of Compound (1) on the sexual behaviour of sexually dysfunctional male rats (% animals ejaculating).
- Figure 19: Effect of (S)-3-(1*H*-Indol-3-yl)-*N*-{1-(5-methoxy-pyridin-2-yl)cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-propionamide
 (Compound (2)) in PEG 200 on female rat sexual proceptivity.
 - Figure 20: Effect of Compound (2) in methylcellulose on female rat sexual proceptivity.

Figure 21: Effect of Compound (2) in PEG 200 on female rat sexual receptivity.

DESCRIPTION OF PREFERRED EMBODIMENTS

Bombesin receptors are present in hypothalamic areas. We have found that they can exert a neuromodulatory effect on sexual behaviour.

Female sexual dysfunction can be grouped into four classes (Scrip's Complete Guide to Women's Healthcare, p.194-205, 2000), which include hypoactive sexual desire disorders, sexual arousal disorders, organic disorders or anorgasmy and sexual pain disorders. Hypoactive sexual desire disorders can be characterised as persistent or

б

recurrent lack of sexual thoughts/fantasies and lack of receptivity to sexual activity, causing personal distress. Common problems include sexual aversion disorders. Sexual arousal disorders can be characterised as persistent or recurrent inability to achieve or maintain adequate sexual excitement, causing personal distress. Common problems include lack of or diminished vaginal lubrication, decreased clitoral and labial engorgement and lack of vaginal smooth muscle relaxation. Orgasmic disorders can be characterised as persistent or recurrent difficulty or delay in attaining orgasm after adequate sexual stimulation and arousal, causing personal distress. Sexual pain disorders can be characterised by dyspareunia, (characterised by recurrent or persistent genital pain associated with sexual intercourse), vaginismus (characterised by recurrent or persistent involuntary spaam of the muscles of the outer third of the vagina which interferes with vaginal penetration, causing personal distress) and other pain disorders (characterised by recurrent or persistent genital pain induced by non coital sexual stimulation).

15

10

The compounds of this invention are useful in the treatment of female sexual dysfunction, and this includes female sexual dysfunction associated with hypoactive sexual desire disorders, sexual arousal disorders, organic disorders or anorgany, or sexual pain disorders.

20

25

30

The psychogenic component of male sexual dysfunction has been classified by the nomenclature committee of the International Society for Impotence Research (and is illustrated in Sachs B. D., Neuroscience and Biobehavioral Review, 2000, 24 541-560) as generalised type, characterised by a general unresponsiveness or primary lack of sexual arousal, and ageing-related decline in sexual arousability, characterised by generalised inhibition or chronic disorders of sexual intimacy. The inventors believe that there are common mechanisms underlying the pathologies of male and female psychogenic sexual dysfunctions.

The compounds of this invention are useful in the treatment of male sexual dysfunction, especially drug-induced male sexual dysfunction and psychogenic male

10

15

20

25

30

7

sexual dysfunction associated with generalised unresponsiveness and ageing-related decline in sexual arousability.

We have tested compounds that are bombesin receptor antagonists using animal models that we have refined and believe are reliable and predictive, in particular with the capacity to make predictions for females. In rodents proceptive behaviour is under hormonal control, progesterone being essential for induction of proceptive behaviour in combination with oestrogen (Johnson M and Everitt B., Essential Reproduction (3rd edn), Blackwell, Oxford, 1988). The evidence for the hormonal control of proceptive behaviour in primates is conflicting, but on the whole oestrogens and/or androgens appear to enhance proceptive behaviour (Baum M.J., J. Biosci., 1983; 33:578-582). The behavioural manifestations of proceptive behaviour in the rat include "hopping and darting" movement, with rapid vibration of the ears. Tests to assess the eagerness to seek sexual contact (sexual motivation) have been reported as the most appropriate way to measure proceptivity (Meyerson B.J. Lindstrom L.H., Acta Physiol, Scand., 1973; 389 (Suppl.): 1-80). Receptivity, in the rat, is demonstrated when the female assumes a lordotic position. This occurs when, on mounting, the male exerts pressure with his forepaws on the flanks of the receptive female. The main sites of neuronal control for this behaviour are the ventromedial nucleus (VMN) and the midbrain central grey area (MCG) (for review, see Wilson C.A., In: Sexual Pharmacology, Riley A.J. et al. (Eds), Clarendon Press, Oxford, 1993: 1-58).

Bombesin is a 14-amino acid peptide originally isolated from the skin of the European frog *Bombina bombina* (Anastasi A. et al., *Experientia*, 1971; 27: 166). It belongs to a class of peptides which share structural homology in their C-terminal decapeptide region (Dutta A.S., *Small Peptides; Chemistry, Biology, and Clinical Studies*, Chapter 2, pp 66-82). At present, two mammalian bombesin-like peptides have been identified, the decapeptide neuromedin B (NMB) and a 23-residue amino acid, gastrin-releasing peptide (GRP).

10

15

20

25

30

8

Bombesin evokes a number of central effects through actions at a heterogeneous population of receptors. The BB₁ receptor binds neuromedin B (NMB) with higher affinity than gastrin-related peptide (GRP) and neuromedin C (NMC) and BB₂ receptors bind GRP and NMC with greater affinity than NMB. More recently evidence has emerged of two more receptor subtypes denoted BB₃ and BB₄ but due to limited pharmacology, little is known of their function at present. BB₁ and BB₂ receptors have a heterogeneous distribution within the central nervous system indicating that the endogenous ligands for these receptors may differentially modulate neurotransmission. Among other areas, BB₁ receptors are present in the ventromedial hypothalamus (Ladenheim B.E et al, Brain Res., 1990; 537: 233-240).

Bombesin-like immunoreactivity and mRNA have been detected in mammalian brain (Braun M., et al., *Life. Sci.*, 1978; 23: 2721) (Battcy J., et al., *TINS*, 1991;14:524). NMB and GRP are believed to mediate a variety of biological actions (for a review, see WO 98/07718).

The following patent applications disclose compounds capable of antagonising the effects of NMB and/or GRP at bombesin receptors: CA 2030212, EP 0309297, EP 0315367, EP 0339193, EP 0345990, EP 0402852, EP 0428700, EP 0438519, EP 0468497, EP 0559756, EP 0737691, EP 0835662, IP 07258081, UK 2231051, US 4943561, US 5019647, US 5028692, US 5047502, US 5068222, US 5084555, US 5162497, US 5244883, US 5439884, US 5620955, US 5620959, US 5650395, US 5723578, US 5750646, US 5767236, US 5877277, US 5985834, WO 88/07551, WO 89/02897, WO 89/09232, WO 90/01037, WO 90/03980, WO 91/02746, WO 91/04040, WO 91/06563, WO 92/02545, WO 92/07830, WO 92/09626, WO 92/20363, WO 92/20707, WO 93/16105, WO 94/02018, WO 94/02163, WO 94/21674, WO 95/00542, WO 96/17617, WO 96/28214, WO 97/09347, WO 98/07718, WO 00/09115, WO 00/09116. We believe that compounds disclosed in these applications can be used in the prevention or treatment of male and/or female sexual dysfunction, which is an indication that is not disclosed or suggested by the aforesaid applications, or indeed in any previous scientific publication concerning bombesin receptors.

Preferred compounds

Bombesin receptor antagonists to which this invention is applicable include both non-peptide compounds and peptide compounds. Compounds that can be formulated into compositions for oral administration, especially human oral administration, without substantial loss of activity are preferred. Many non-peptide compounds having the desired properties fall into this category.

10

5

A) Non-peptide bombesin receptor antagonists

One preferred genus of compounds for use in the invention comprises bombesin receptor antagonists of the formula (I)

15

20

25

$$A_{1} - \left(\begin{array}{c} R^{1} \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2} \\ \vdots \\ R^{d} \end{array}\right)_{R} - \left(\begin{array}{c} R^{2}$$

and pharmaceutically acceptable salts thereof, wherein:

- jis0 or 1;
- k is 0 or 1;
- l is 0, 1, 2, or 3;
 - m is 0 or 1;
 - n is 0, 1 or 2;
 - Ar is phenyl, pyridyl or pyrimidyl, each unsubstituted or substituted by from 1
 to 3 substituents selected from alkyl, halogen, alkoxy, acetyl, nitro, amino, CH2NR¹⁰R¹¹, cyano, -CF3, -NHCONH2, and -CO2R¹²;
 - R¹ is hydrogen or straight, branched, or cyclic alkyl of from 1 to 7 carbon atoms;
 - R⁸ is hydrogen or forms a ring with R¹ of from 3 to 7 carbon atoms;

- R² is hydrogen or straight, branched, or cyclic alkyl of from 1 to 8 carbon atoms which can also contain 1 to 2 oxygen or nitrogen atoms;
- R⁹ is hydrogen or forms with R² a ring of from 3 to 7 carbon atoms which can contain an oxygen or nitrogen atom; or R² and R⁹ can together be a carbonyl;
- Ar¹ can be independently selected from Ar and can also include pyridyl-N-oxide, indolyl, imidazolyl, and pyridyl;
- R⁴, R⁵, R⁶, and R⁷ are each independently selected from hydrogen and lower alkyl; R⁴ can also form with R⁵ a covalent link of 2 to 3 atoms which may include an oxygen or a nitrogen atom;
- R³ can be independently selected from Ar or is hydrogen, hydroxy, -NMe₂,
 N-methyl-pyrrolyl, imidazolyl, N-methyl-imidazolyl, tetrazolyl, N-methyl-tetrazolyl, thiazolyl, -CONR¹³R¹⁴, alkoxy,

wherein p is 0, 1 or 2 and Ar² is phenyl or pyridyl;

 R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are each independently selected from hydrogen or straight, branched, or cyclic alkyl of from 1 to 7 carbon atoms.

Preferred compounds are those of Formula (Ia)

$$Ar = N \qquad C \qquad C \qquad R^{6} \qquad C \qquad R^{7} \qquad R^{7} \qquad R^{6} \qquad R^{7} \qquad$$

wherein

- Ar is phenyl unsubstituted or substituted with 1 or 2 substituents selected from isopropyl, halo, nitro, and cyano;
- R⁴, R⁵, and R⁶ are hydrogen;
- R⁷ is methyl or hydrogen;
- R³ is 2-pyridyl or hydroxy; and
- Arl is indolyl, pyridyl, pyridyl-N-oxide, or imidazolyl.

10

5

Other preferred compounds are those of Formula I wherein

- Ar is unsubstituted phenyl;
- R¹ is cyclopentyl or tert-butyl;
- R⁴ and R⁵ are hydrogen;
- R⁷ is methyl;
 - R⁶ is hydrogen;
 - R³ is phenyl with two isopropyl substituents, unsubstituted phenyl, or

Ar¹ is indolyl.

20

Other preferred compounds are those of Formula I wherein

Ar is 2,6-diisopropyl-phenyl, 4-nitro-phenyl, and 4-cyano-phenyl;
 R⁴, R⁵, and R⁶ are hydrogen;

R⁷ is methyl;

- R² is hydrogen or cyclohexyl; and
- R³ is hydroxyl, pyridyl,

5

10

15

20

25

At present, most preferred of the compounds of formula (I) is (S) 3-(1H-Indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)-ureido]-propionamide (also referred to as Compound 1) and its pharmaceutically acceptable salts.

Other preferred compounds of Formula (I) are set out below and included also are their pharmaceutically acceptable salts:

(S) N-cyclohexylmethyl-2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1H-indol-3-yl)-2-methyl-propionamide;

N-cyclohexylmethyl-2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1H-indol-3-yl)-N-methyl-propionamide;

N-cyclohexylmethyl-2-[3-(2,6-diisopropyl-phenyl)-1-methyl-ureido]-3-(1H-indol-3-yl)-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-urcido]-2-mcthyl-3-(1-oxy-pyridin-2-yl)-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-2-methyl-3-pyridin-2-yl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;

2-[3-(2-tert-butyl-phenyl)-ureido]-N-cyclohexylmethyl-3-(1H-indol-3-yl)-2-methyl-propionamide;

N-cyclohexylmethyl-2-[3-(2,6-dichloro-phenyl)ureido]-3-(1*H*-indol-3-yl)-2-methyl-propionamide;

10

15

20

N-cyclohexylmethyl-2-[3-(2,6-dimethoxy-phenyl)ureido]-3-(1H-indol-3-yl)-2-methyl-propionamide;

N-cyclohexylmethyl-2-[3-(2,6-dimethylamino-phenyl)-ureido]-3-(1Hindol-3-yl)-2-methyl-propionamide;

(S) N-cyclohexylmethyl-3-(1H-indol-3-yl)-2-methyl-2-[3-(4-nitro-phenyl)-ureido]-propionamide;

N-cyclohexylmethyl-2-[3-(2,2-dimethyl-1-phenyl)propyl)-ureido]-3-(1H-indol-3-yl)-2-methyl-propionamide;

[S-(R*, R*)] 3-(1*H*-indol-3-yl)-2-methyl-2-{3-[1-(4-nitro-phenyl)-ethyl]-ureido}-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;

N-(2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-3-(1H-indol-3-yl)-2-methyl-2-[3-(1-phenyl-cyclopentylmethyl)ureido]-propionamide;

(S)-N-(2,6-diisopropyl-phenyl)-2-[3-(2,2-dimethyl-1-phenyl-propyl)-ureido]-3-(1H-indol-3-yl)-propionamide;

(R)-N-(2,6-diisopropyl-phenyl)-2-[3-(2,2-dimethyl-1-phenyl-propyl)-ureido]-3-(1/I-indol-3-yl)-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-N-(2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-3-(1H-indol-3-yl)-2-methyl-propionamide;

N-cyclohexyl-2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1H-indol-3-yl)-2-methyl-propionamide;

N-(2-cyclohexyl-ethyl)-2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(3-methyl-butyl)-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(3-phenyl-propyl)-propionamide;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1,2,3,4-30 tetrahydro-naphthalen-1-yl)-propionamido;

2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(2-phenyl-cyclohexyl)-propionamide;

15

20

25

- 2-[3-(2,6-diisopropyl-phenyl)-ureido]-N-indan-1-yl-3-(1H-indol-3-yl)-2-methyl-propionamide;
- 2-[3-(2.6-diisopropyl-phenyl)-ureido]-N-(l-hydroxy-cyclohexylmethyl)-3-(1H-indol-3-yl)-2-methyl-propionamide;
- 2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- 2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(6,7.8,9-tetrahydro-5*H*-benzocyclohepten-5-yl)-propionamide;
- 2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-phenylpropionamide;
 - N-(1-hydroxy-cyclohexylmethyl)-3-(1H-indol-3-yl)-2-methyl-2-[3-(4-nitrophenyl)-urcido]-propionamide;
 - 2-[3-(4-cyano-phenyl)-ureido]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S) 3-(1*H*-indol-3-yf)-2-methyl-2-[3-(4-mitro-phenyf)-ureido]-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S) 3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-[3-(4-trifluoromethyl-phenyl)-ureido]-propionamide;
 - (S) 4-(3-{2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-ureido)-benzoic acid ethyl ester;
 - 2-[3-(2,6-diisopropyl-phenyl)-ureido]-3-(1*H*-imidazol-4-yl)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - 2-[3-(2,6-diisopropyl-phenyl)-ureido]-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-3-(2-trifluoromethyl-phenyl)-propionamide;
 - 2-[3-(2,6-diisopropyl-phenyl)-ureido]-2-methyl-3-(2-nitro-phenyl)-N-(1-pyridin-2-yl-oyolohexylmethyl)-propionamide;
 - (S) 3-(1*H*-indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[3-(4-nitro-phenyl)-ureido]-propionamide; and
- N-cyclohexylmethyl-2-[3-(2,6-diisopropyl-phenyl)-ureido]-2-methyl-3-30 pyridin-2-yl-propionamide.

Another preferred genus of compounds which can be used for the present purpose is of formula (II) and includes pharmaceutically acceptable salts thereof:

5 wherein:

15

20

25

- j is 0, 1 or 2;
- k is 0 or 1;
- 1 is 0, 1, 2, or 3;
- m is 0 or 1;
- 10 n is 0, 1 or 2;
 - q is 0 or 1;
 - r is 0 or 1; when r is 0, Ar is replaced by hydrogen;
 - Ar is phenyl, pyridyl, pyrimidyl, thienyl, furyl, imidazolyl, pyrrolyl or thiazolyl each unsubstituted or substituted by from 1 to 3 substituents selected from acetyl, alkoxy, alkyl, amino, cyano, halo, hydroxy, nitro, sulfonamido, sulfonyl, -CF₃, -OCF₃, -CO₂H, -CH₂CN, -SO₂CF₃, -CH₂CO₂H and -(CH₂)₈NR²R⁸ wherein s is 0, 1, 2 or 3 and R² and R⁸ are each independently selected from H, straight or branched alkyl of up to 6 carbon atoms, or R² and R⁸ together with the nitrogen atom to which they are linked can form a 5- to 7-membered aliphatic ring which may contain 1 or 2 oxygen atoms;
 - R¹ is hydrogen, straight or branched alkyl of up to 6 carbon atoms or cycloalkyl of between 5 and 7 carbon atoms which may contain 1 or 2 nitrogen or oxygen atoms;
 - R⁶ is hydrogen, methyl, or forms with R¹ an aliphatic ring of from 3 to 7 atoms which can contain an oxygen or nitrogen atom, or together with R¹ is a carbonyl group;
 - Ar is independently selected from Ar or is indolyl or pyridyl-N-oxide;

- R³, R⁴, and R⁵ are each independently selected from hydrogen and lower alkyl;
- R² is independently selected from Ar or is hydrogen, hydroxy, alkoxy,
 -NMe₂, -CONR²R³⁰ wherein R² and R¹⁰ are each independently selected from
 hydrogen, straight or branched alkyl of up to 6 carbon atoms, or R² and R¹⁰
 together with the nitrogen atom to which they are linked can form a 5-to 7membered aliphatic ring which may contain 1 or 2 oxygen or nitrogen
 atoms, or R² is

wherein p is 0, 1 or 2 and Ar² is phenyl or pyridyl;

• X is a divalent radical derived from any of the following

10

where the ring nitrogen atoms may have lower alkyl groups attached thereto, R¹¹ and R¹² are independently selected from H, halogen, hydroxy, alkoxy, acetyl, nitro, cyano, amino, CF₃ and -(CH₂)_tNR¹³R¹⁴ where t can be 0 or 1, R¹³ and R¹⁴ are each independently selected from hydrogen, straight or branched alkyl of up to 6 carbon atoms or cycloalkyl of 5 to 7 carbon atoms, containing up to 2 oxygen or nitrogen atoms.

A preferred species of compounds within the genus defined by formula (II) is represented by the formula (IIa), and includes pharmaceutically acceptable salt thereof:

wherein:

5

- n is 0 or 1;
- Ar is phenyl or pyridyl which may be unsubstituted or substituted with from 1 to 3 substituents selected from halogen, alkoxy, nitro and cyano;
 - Ar¹ is independently selected from Ar or is pyridyl-N-oxide or indolyl;
 - R⁶ forms with R¹ an aliphatic ring of from 3 to 7 atoms which can contain an oxygen or nitrogen atom, or together with R¹ is a carbonyl group;
- R² is independently selected from Ar or is hydrogen, hydroxy, alkoxy, dimethylamino, tetrazolyl or -CONR⁹R wherein R⁹ and R¹⁰ are each independently selected from hydrogen or methyl or R² is any of

wherein p is 0, 1 or 2 and Ar² is phenyl or pyridyl;

- R³, R⁴ and R⁵ are each independently selected from hydrogen and methyl; and
- X is selected from:

 R^{11} and R^{12} being independently selected from H, halogen, hydroxy, alkoxy, acetyl, nitro, cyano, amino, CF₃ and (CH₂)₁NR¹³R¹⁴ wherein t is 0 or 1 and R¹³ and R¹⁴ are independently selected from hydrogen and methyl.

A sub-species of preferred compounds within the general formula (II) has the formula (IIb) or (IIc):

10

5

wherein Ar and R² independently represent phenyl or pyridyl which may be unsubstituted or substituted with from 1 to 3 substituents selected from halogen, alkoxy, nitro and cyano, and pharmaceutically acceptable salts thereof.

15

A particularly preferred compound falling within formula (II) is (S)-3-(1H-indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylarnino]-propionamide (also referred to as Compound 2) and its pharmaceutically acceptable salts.

20

Other preferred compounds falling within formula (II) are set out below and included also are their pharmaceutically acceptable salts:

15

20

25

- (S)-3-(1*H*-indol-3-yl)-*N*-(1-methoxymethyl-cyclohcxylmethyl)-2-methyl-2-[4-nitro-phenyl)-oxazol-2-ylamino]-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-*N*-(2-oxo-2-phenyl-ethyl)-propionamide;
- 5 (S)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmcthyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-3-phenyl-propionamide;
 - (S)-2-[4-(4-cyano-phenyl)-oxazol-2-ylamino]-3-(1*H*-indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-(4-phenyl-oxazol-2-ylamino)-propionamide;
 - (S)-2-(4-ethyl-oxazol-2-ylamino)-3-(1*H*-indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-thiazol-2-ylamino]-propionamide;
 - (S)-2-(benzooxazol-2-ylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(pyridin-4-ylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-(isoquinol-4-ylamino)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(pyrimidin-5-ylamino)-propionamide;
 - (S)-2-(biphenyl-2-ylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-*m*-tolylamino-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(6-phenyl-pyridin-2-ylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (R)-3-phenyl-2-phenylamino-N-(1-pyridin-2-yl-cyclohexylmethyl)30 propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-2-phenylethylamino-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;

(S)-2-[(benzofuran-2-ylmethyl)-amino]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide, and

(S)-3-(1*H*-indol-3-yl)-2-methyl-2-(4-nitro-benzylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide.

A third genus of bombesin receptor antagonists according to the invention has the formula (III) and include pharmaceutically acceptable salts thereof:

$$Ar - (CH_2)_k - X - N - C - C - N - (CH_2)_l - (CH_2)_n - R^2$$

$$Ar = O \qquad R^6 \qquad \text{(III)}$$

10 wherein:

15

20

25

5

- k is 0, 1 or 2;
- 1 is 0, 1, 2 or 3;
- m is 0 or 1;
- n is 0, 1 or 2;
- X is -CO-, -OCO, -SO- and -SO₂-;
 - Ar is benzimidazolyl, benzofuryl, benzothiadiazolyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, benzothiazolyl, furyl, imidazolyl, indanyl, indolyl, isoquinolyl, isoxazolyl, naphthyl, oxazolyl, phenyl, pyrazinyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidyl, pyrrolyl, quinolinyl, tetralinyl, tetrazolyl, thiazolyl, thienyl or triazolyl each unsubstituted or substituted with from 1 to 3 substituents selected from amino, acetyl, alkyl (straight chain or branched with from 1 to 6 carbon atoms), alkoxy, cyano, halogen, hydroxy, nitro, phenyl, pyridyl, pyrrolyl, isoxazolyl, phenoxy, tolyloxy, CF3, -OCF3, -SO2CF3, -NHCONH2, -CO2H, -CH2CO2H, -CH2CN, SO2Me, SO2NH2, SO2Ph, -(CH2)qNR⁷R⁸, -CONR⁹R¹⁰, and CO2R¹¹, wherein q is 0, 1 or 2 and R⁷, R⁸, R⁹, R¹⁰, R¹¹ are each independently selected from hydrogen or straight or branched alkyl of up to 6 carbon atoms or cyclic alkyl of between 5 to 7 atoms which may contain 1 or 2 oxygen or nitrogen atoms or R⁷ and R⁸ or R⁹ and R¹⁰ together with the nitrogen atom to which

10

they are linked can form a 5- to 7-membered aliphatic ring which may contain 1 or 2 oxygen or nitrogen atoms;

- Ar' is independently selected from Ar and can also be pyridyl-N-oxide;
- R¹ is hydrogen or straight or branched alkyl of up to 6 carbon atoms or cyclic alkyl of between 5 and 7 atoms which may contain 1 or 2 oxygen or nitrogen atoms;
- R² is independently selected from Ar or is hydrogen, hydroxy, alkoxy, -NMe₂,
 -CONR¹²R¹³.

wherein p is 0, 1 or 2, Ar² is phenyl or pyridyl; and, R¹² and R¹³ are each independently selected from hydrogen, straight or branched alkyl of up to 6 carbon atoms or cyclic alkyl of between 5 and 7 carbon atoms;

- R³, R⁴ and R⁵ are each independently selected from hydrogen and lower alkyl;
 and
- R⁶ is hydrogen, methyl or forms with R¹ a ring of from 3 to 7 carbon atoms which can contain an oxygen or nitrogen atom, or R¹ and R⁶ can together be carbonyl.

In a preferred group of the compounds of formula (III):

- 20 k is 0 or 1;
 - lis 1;
 - m is 0 or 1;
 - n is 0 or 1;

- X is -C(O)-, -OC(O)-, or -SO₂-;
- Ar is benzofuryl, furyl, indolyl, isoquinolyl, naphthyl, phenyl, pyridyl, quinolyl or thienyl each unsubstituted or substituted with 1 or 2 substituents selected from alkoxy, cyano, halogen, nitro, phenyl, phenoxy, -CF₃, -(CH₂)_qNR²R⁸, wherein R⁷ and R⁸ can form a ring of between 5 to 7 atoms which may contain 1 or 2 oxygen or nitrogen atoms, or R⁷ and R⁸ can be independently selected from hydrogen, straight or branched alkyl of up to 4 carbon atoms or cyclic alkyl of 5 carbon atoms;
- Ar¹ is independently selected from Ar, preferably indolyl, and can also be pyridyl-N-oxide;
- R¹ and R⁶ can form a cyclic alkyl of from 5 to 7 carbon atoms or R¹ and R⁶ together are carbonyl;
- R² is independently selected from unsubstituted or substituted pyridyl or is hydrogen, hydroxy, alkoxy, -NMe₂, -CONR¹²R¹³ wherein R¹² and R¹³ are each independently selected from H and CH₃;
- R³, R⁴ and R⁵ are each independently selected from hydrogen and methyl.

In another preferred group of the compounds of Formula (III),

- lis1;
- 20 m is 1;
 - n is 0;
 - R² is 2-pyridyl;
 - R⁶ forms a cyclohexyl with R¹.

25

5

10

15

A particularly preferred group of compounds is of formula (IIIa):

15

20

25

wherein Ar, k and X have the meanings given above in first, and the pyridinc ring is optionally substituted by with 1 or 2 substituents, R and R', independently selected from alkoxy, cyano, halogen, nitro, phenyl, phenoxy, - CF₃, -(CH₂)_qNR⁷R⁸, wherein R⁷ and R⁸ together with the nitrogen atom to which they are linked can form a 5- to 7-membered aliphatic ring which may contain 1 or 2 oxygen or nitrogen atoms, or R⁷ and R⁸ can be independently selected from hydrogen or cyclic alkyl of between 5 to 7 carbon atoms, and their pharmaceutically acceptable salts thereof.

In a further set of compound (IIIa), Ar is benzofuryl, furyl, indolyl, isoquinolyl, naphthyl, phenyl, pyridyl, quinolyl or thieuyl each unsubstituted or substituted with 1 or 2 substituents selected from alkoxy, cyano, halogen, nitro, phenyl, phenoxy, -CF₃, -(CH₂)_qNR⁷R⁸, wherein R⁷ and R⁸ can form a ring of between 5 to 7 atoms which may contain 1 or 2 oxygen or nitrogen atoms, or R⁷ or R⁸ can be a independently selected from hydrogen or cyclic alkyl of 5 carbon atoms, and X is -C(O)-, -OC(O)- or -SO₂.

Preferred N-terminal amide derivatives of the compounds of formula (III)

Amongst N-terminal amide derivatives, i.e. compounds of formula (III) wherein X is -C(O)-, the following compounds are most preferred:

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-4-nitro-benzamide;

C-dimethylamino-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;

1*H*-indole-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

10

15

20

25

30

benzo[b]thiophene-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1*H*-indole-5-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide; and

1*H*-indole-2-carboxylic acid ((S)-2-(1*H*-indol-3-yl)-1-{[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-carbamoyl}-1-methyl-ethyl)-amide.

Other preferred N-terminal amide derivatives of formula (III) include the following:

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-4-methyl-benzamide;

4-chloro-N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-4-methoxy-benzamide;

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-4-methanesulfonyl-benzamide;

3-cyano-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;

3-chloro-N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyll-ethyl}-3-methoxy-benzamide;

N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-cthyl}-3-methanesulfonyl-benzamide;

dimethylamino-N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl)-benzamide;

N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-3-methyl-benzamide;

2-chloro-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-

15

20

cyclohexylmethyl)-carbamoyl]-ethyl)-benzamidc;

- N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-2-nitro-benzamide;
- N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-2-methoxy-benzamide;
- N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-2-methyl-bcnzamide;
- 2-fluoro-N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-{(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide;
- 10 (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-p-tolyl-ethanoylamino)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-o-tolyl-ethanoylamino)-propionamide;
 - (S)-2-[2-(4-hydroxy-phenyl)-ethanoylamino]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-2-[2-(3-hydroxy-phenyl)-ethanoylamino]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-m-tolyl-efhanoylamino)-propionamide;
 - (S)-2-[2-(2-fluoro-phenyl)-ethanoylamino]-3-(1*H-*indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-thiophen-3-yl-ethanoylamino)-propionamide;
- N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)carbamoyl]-ethyl}-isonicotinamide;
 - furan-3-carboxylic acid {(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;
 - furan-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;
- 5-methyl-isoxazole-3-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;
 - 1-methyl-1H-pyrrole-2-carboxylic acid {(S)-2-(1H-indol-3-yl)-1-methyl-1-

10

15

20

25

30

thiophene-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

thiophene-3-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1*H*-indole-6-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridiu-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1*H*-indole-5-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1*H*-indole-4-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1*H*-indole-7-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1-methyl-1*H*-indole-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

benzothiazole-6-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

1H-bcnzotriazole-5-carboxylic acid {(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

3-methyl-thiophene-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

5-methyl-thiophene-2-carboxylic acid {{S}-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

6-methyl-pyridine-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-{(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

isoquinoline-3-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

quinoxaline-2-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-cthyl}-amide;

quinoline-8-carboxylic acid {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;

5-phenyl-oxazole-4-carboxylic acid {(S)-2-(1H-indol-3-yl)-1-methyl-1-[{1-

10

15

20

25

- pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide;
- (S)-3-(1*H*-indol-3-yl)-2-[2-(4-methoxy-phenyl)-ethanoylamino]-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-[2-(4-dimethylamino-phenyl)-ethanoylamino]-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-[2-(2-nitro-phenyl)-ethanoylamino]-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-[2-(2-methoxy-phenyl)-ethanoylarnino]-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide; and
- N-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-{(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-2-pyrrol-1-yl-benzamide.

Preferred N-terminal urethane derivatives of the compounds of formula (III)

- Amongst N-terminal urethane derivatives, i.e. compounds of formula III wherein X is -OC(=0)-, the following compounds are particularly preferred:
 - {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid naphthalen-1-ylmethyl ester;
 - {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3,4-dichloro-benzyl ester;
 - {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3-nitro-benzyl ester;
 - {(S)-2-(1*H*-indol-3-yl)-i-methyl-1-{(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3-trifluoromethyl-benzyl ester;
 - {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid quinolin-6-ylmethyl ester;
 - {(S)-2-(1*H*-indol-3-yI)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-nitro-benzyl ester; and
- ((S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-30 carbamoyl]-cthyl}-carbamic acid 3-cyano-benzyl ester.

Other preferred N-terminal urethane derivatives of formula (III) include the following:

10

15

20

25

30

35

- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3,4-dimethoxy-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid naphthalen-2-ylmethyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-{(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid indan-2-yl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-methoxy-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-chloro-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 2-fluoro-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 2-chloro-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-nitro-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 2-methyl-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[{1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-tert-butyl-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(I-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 2-methoxy-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 4-trifluoromethyl-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3-ethoxy-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-cthyl}-carbamic acid 3-cyano-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 2,4-dichloro-benzyl ester;
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3-methyl-benzyl ester,
- {(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid 3-phenoxy-benzyl ester;
- {(\$)-2-(1*H*-indol-3-yi)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-cthyl}-carbamic acid 4-methyl-benzyl ester, and

10

15

20

25

30

35

{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-cthyl}-carbamic acid 2,3-dichloro-benzyl ester.

Preferred N-terminal sulfonamide derivatives of the compounds of formula (III)

Amongst N-terminal sulfonamide derivatives of formula (III) (compounds of formula (III) wherein X is -SO₂-) the following compounds are particularly preferred:

- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-phenylmethanesulfonylamino-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2-chloro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(naphthalene-1-sulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (\$)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(quinoline-8-sulfonylamino)-propionamide;
- (\$)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-trifluoromethyl-benzenesulfonylamino)-propionamide;
- (S)-2-(biphenyl-2-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(5-methyl-2-phenoxy-benzenesulfonyl-amino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide; and
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2-*p*-tolyloxy-benzenesulfonylamino)-propionamide.
- Further preferred N-terminal sulfonamide derivatives of formula (III) include the following:
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(toluene-4-sulfonylamino)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methanesulfonylamino-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-2-(2-fluoro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(4-chloro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2,2,2-trifluoro-ethanesulfonylamino)-propionamide;

10

15

20

25

30

35

- (S)-2-(5-dimethylamino-naphthalene-1-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(naphthalene-2-sulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2- (thiophene-2-sulfonylamino)-propionamide,
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(3-nitro-benzenesulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(4-fluoro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(4-nitro-benzenesulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(3-trifluoromethyl-benzenesulfonylamino)-propionamide;
- (S)-2-(3,4-dichloro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyrldin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(3-fluoro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (\$)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(4-trifluoromethyl-benzenesulfonylamino)-propionamide;
- (S)-2-(5-chloro-thiophene-2-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(3-chloro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-2-(toluene-3-sulfonylamino)-propionamide;
- (S)-2-(3,4-dimethoxy-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(4-cyano-benzenesulfonylamino)-3-(1//-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2-cyano-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(5-chloro-1,3-dimethyl-1*H*-pyrazole-4-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(3,5-dimethyl-isoxazole-4-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;

10

15

20

25

30

35

- (S)-2-(benzo[1,2,5]thiadiazole-4-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(1-methyl-1*H*-imidazole-4-sulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(benzo[1,2,5]oxadiazole-4-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- 3-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethylsulfamoyl}-thiophene-2-carboxylic acid methyl eater;
- (S)-3-(1*H*-indol-3-yl)-2-(5-isoxazol-3-yl-thiophene-2-sulfonylamino)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(2-nitro-phenylmethanesulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(3-cyano-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(1,2-dimethyl-1*H*-imidazole-4-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-(3-methoxy-benzenesulfonylamino)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(8-nitro-naphthalene-1-sulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2-chloro-5-nitro-benzenesulfonylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(2,4,6-trichloro-benzenesulfonylamino)-propionamide;
- (S)-2-(4-chloro-2-nitro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(5-benzenesulfonyl-thiophene-2-sulfonylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(4-trifluoromethoxy-benzenesulfonylamino)-propionamide;
 - (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(5-methyl-2-phenoxy-benzenesulfonylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
 - (S)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohcxylmethyl)-2-(2-ptolyloxy-benzenesulfonylamino)-propionamide;
- 2-{(S)-2-(1*H*-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethylsulfamoyl}-benzoic acid methyl ester;

10

15

20

25

30

35

- (S)-2-(2,5-dichloro-thiophene-3-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(3-chloro-4-methyl-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(I*H*-indol-3-yl)-2-(2-methoxy-4-methyl-benzenesulfonylamino)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-(5-pyridin-2-yl-thiophene-2-sulfonylamino)-propionamide;
- (S)-2-(5-bromo-6-chloro-pyridine-3-sulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2,4-dinitro-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1H-indol-3-yl)-2-(4-methanesulfonyl-benzenesulfonylamino)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(4-*tert*-butyl-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2,4-dichloro-5-methyl-benzenesulfonylamino)-3-(1*H*-indoi-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-2-(2-chloro-5-trifluoromethyl-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide;
- (S)-3-(1*H*-indol-3-yl)-2-methyl-2-(2-nitro-4-trifluoromethyl-benzenesulfonyl-amino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide; and
- (S)-2-(4-butyl-benzenesulfonylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide.

The compounds of the general formulae above are optically active. The scope of the invention therefore also includes:

- All stereoisomers of the compounds of the above general formulae.
- The solvates, hydrates and polymorphs (different crystalline lattice descriptors) of the above compounds.
- Pharmaceutical compositions of the above compounds.
- Prodrugs of the above compounds such as would occur to a pers n skilled in the art; see Bundgaard et al., Acta Pharm. Suec., 1987; 24: 233-246.

10

15

20

25

30

The alkyl groups contemplated by the invention include straight, branched, or cyclic carbon chains of from 1 to 8 carbon atoms except where specifically stated otherwise. Representative groups are methyl ethyl, propyl, isopropyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, 2-methylbexyl, n-pentyl, 1-methylbutyl, 2,2-dimethylbutyl, 2-methylpentyl, 2,2-dimethylpropyl, n-hexyl, and the like.

The lower alkyl groups include carbon chains of up to 6 carbon atoms. The cycloalkyl groups contemplated by the invention comprise those having 3 to 7 carbon atoms including cyclopentyl and cyclohexyl. They may be substituted with from 1 to 3 groups selected from halogens, nitro, alkyl, and alkoxy.

The alkoxy groups contemplated by the invention comprise both straight and branched carbon chains of from 1 to 6 carbon atoms unless otherwise stated. Representative groups are methoxy, cthoxy, propoxy, i-propoxy, t-butoxy, and hexoxy.

The term "halogen" is intended to include fluorine, chlorine, bromine, and iodine. The term "amine" is intended to include free amino, alkylated amines, and acylated amines.

The term "subject" includes animals, particularly mammals and more particularly humans.

Optical isomers and salts

The compounds of the above general formulae all have at least one chiral centre and some have multiple chiral centres depending on their structure. In particular, the compounds of the present invention may exist as diastereoisomers, mixtures of diastereoisomers, or as the mixed or the individual optical enantiomers. The present invention contemplates all such forms of the compounds. The mixtures of diastereoisomers are typically obtained as a result of the reactions described more fully below. Individual diastereoisomers may be separated from mixtures of the diastereoisomers by conventional techniques such as column chromatography or repetitive recrystallization. Individual enantiomers may be separated by conventional methods well known in the art such as conversion to a salt with an optically active

compound, followed by separation by chromatography or recrystallization and reconversion to the non-salt form.

Where it is appropriate to form a salt, the pharmaceutically acceptable salts include acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, calcium acetate, camsylate, carbonate, chloride, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, firmarate, gluceptate, gluconate, glutamate, glycoloylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, mucate, napsylate, nitrate, pamoate (embonate), pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, theoclate, triethiodide, benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium, and zine.

15

5

10

Preferred salts are made from strong acids. Such salts include hydrochloride, mesylate, and sulfate.

Other non-peptide bombesin antagonists

20

Other non-peptide bombesin antagonists which are believed to be suitable for use in the present invention are described and claimed in the following documents, the contents of which are incorporated herein by reference: WO 00/09115, WO 00/09116, WO 92/07830, JP 07258081 and WO 98/07718.

25

Preparative methods for the compounds of formula (1)

Preparation of the compounds of formula (I) is described in WO 98/07718, the disclosure of which is incorporated herein by reference.

30

Preparative methods for compounds of formula (II)

Throughout this application the following abbreviations have the meanings listed below:

NEt₃ triethylamine THF 5 tetrahydrofuran HBTU O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate DIPEA N,N-drisopropylethylamine **DMF** N,N-dimethylformamide TEBA 10 benzyltriethylammonium chloride BOC2O di-tert-butyl dicarbonate TFA trifluoroacetic acid DMA N,N-dimethylacetamide **EtOA**¢ ethyl acetate MeOH 15 methanol Trp tryptophan Ph phenyl HPLC high pressure liquid chromatography NP normal phase RP 20 reverse phase **DMAP** N,N-dimethyl-4-amino pyridine OAc acetale OB oestradiol benzoate

25 The production of compounds of the formula (II) in which X is oxazolyl is shown in Scheme 1 which illustrates the synthesis of the compounds of Examples 9 to 12 in four steps via Intermediates 4a or 4b. The steps are:

- Formation of the p-mitrophenylcarbamate of the methyl ester (Intermediate 1) and subsequent treatment with aqueous ammonia to give a primary area (Intermediate 2).
- Cyclisation of the primary urea with 2-bromo-1-(4-nitro-phenyl)-ethanone to form an xazole ring (Intermediate 3).

- Hydrolysis of the methyl-ester-protecting group gives Intermediates 4a or 4b.
- Reaction of Intermediate 4s or 4b with the amine Z2, using HBTU to form an amide linkage, affords the desired compounds.

Scheme 1:

Z1

N

Intermediate 1, a-b

Intermediate 2, a-b

Intermediate 3, a-b

a. Z1 = CH₂Indole
b. Z1 = CH₂Ph

Intermediate 4, a-b

a. Z1 = CH₂Indole
b. Z1 = CH₂Indole

In the above scheme:

10

- i) a) 4-Nitrophenylchloroformate, NEt3, THF b) NH3 aq.
- ii) 2-bromo-1-(4-nitro-phenyl)-ethanone in either toluene/dioxan at reflux (3a) or 1,2-dichloroethane at reflux (3b)
- iii) LiOH, dioxan, H₂O

iv) HBTU, DIPEA, DMF, 22

Scheme 2 describes the synthesis of the compounds of Examples 13 to 15 from Intermediate 2a.

5

- A primary urea 2a is cyclised with an appropriate bromomethyl ketone containing the group Z3 to form an oxazole ring (Intermediate 5).
- Hydrolysis of the methyl ester protecting group of the resulting Intermediate
 5a, 5b or 5c gives the Intermediates 6 a-c.
- Reaction of an Intermediate 6a, 6b or 6c with [1-(5-methoxy-2-pyridyl)cyclohexyl]methanamine in the presence of HBTU to form an amide bond affords the desired compounds.

15

10

Scheme 2:

intermediate 2a

Intermediate 5, a-c

intermediate 6, e-c

In the above scheme:

- i) DMF at 30°C
- 20 ii) LiOH, dioxan, H₂O
 - iii) HBTU, DIPEA, DMF, [1-(5-methoxy-2-pyridyl)cyclohexyl]methanamine (described in WO 98/07718)

Scheme 3 describes a two step synthesis for the compounds of Examples 16-23. The reactions are preferentially carried out as a "one-pot" process in which:

- An aromatic ring of a compound Z5-Br or Z5-Cl is appended onto the Nterminal of the illustrated amino acid using a copper catalysed reaction.
- Formation of an amide linkage between the resulting acid and [1-(5-methoxy-2-pyridyl)cyclohexyl]methanamine or [1-(2-pyridyl)cyclohexyl]methylaminc in the presence of HBTU affords the desired compounds.

10

5

Scheme 3:

In the above scheme:

- a) 10% CuI, K₂CO₃, DMF, 130°C
 b) HBTU, DIPEA, DMF, and [1-(5-methoxy-2-pyridyl)cyclohexyl]methan amine (described in WO 98/07718) or [1-(2-pyridyl)cyclohexyl]methylamine (described in WO 98/07718)
 - a) 5-10% CuI, K₂CO₃, TEBA, Pd(P(o-tolyl)₃)Cl₂, DMF, 130°C
 b) HBTU, DIPEA, DMF, and [1-(5-methoxy-2-pyridyl)cyclohexyl]methan-amine (described in WO 98/07718) or [1-(2-pyridyl)cyclohexyl]methylamine (described in WO 98/07718)
 - * represents the attachment point.
- Scheme 4 describes the two step one-pot synthesis of the compound of Example 24:
 - The aromatic ring is appended onto the N-terminal of the amino acid (Intermediate 8) using a copper catalysed reaction and then an in situ HBTU amide bond formation reaction affords the desired compound.

Scheme 4:

Intermediate 8

Example 24

25

10

20

In the above scheme:

i) 10% Cull, K2CO3, DMA, 90°C

THE PATENT OFFICE

2 3 APR 2001

RECEIVED BY FAX

LUCAS & CO.

" THE PATENT	OFFICE FROM	ليومع	. G.
AX NUMBER:	DATE		
COMPANY:	TOTAL N	O. OF PAGES INCLUD	ING COVER:
PHONE NUMBER:	SENDER	S REFERENCE NUMBE	Rı
RE ₄	YOUR REFERENCE NUMBER:		
URGENT DFOR REVIEW D	PLEASE COMMENT	I please reply	□ please recycl

PART 2

135 WESTHALL ROAD - WARLINGHAM - SURREY CR6 9HJ PHONE: 01883 626211 - FAX: 01883 622997

ii) HBTU, NEt₃, DMA, [1-(2-pyridyl)cyclohexyl]methylamine (described in WO 98/07718)

Scheme 5 describes the synthesis of the compounds of Examples 25 - 27 via

Intermediate 10 by the steps of:

- N-BOC protection of the amino acid (Intermediate 7) which provides the groups R⁵ and Ar¹.
- Reaction of the protected amino acid with an amine that provides the groups
 R¹, R², R⁴ and R⁶ using HBTU to form an amide linkage, and thereby give the
 Intermediate 9.
- N-BOC deprotection of the Intermediate 9 to give Intermediate 10.
- Reductive amination of Intermediate 10 with the appropriate aldehyde
 Z6CHO to give the desired compounds.

15

10

Scheme 5:

20

Exemple 25, 26=

In the above scheme:

- i) BOC₂O, K₂CO₃, dioxane, water
- ii) HBTU, DIPEA, [1-(2-pyridyl)cyclohcxyl]methylamine (described in WO 98/07718), DMF
- iii) TFA, CH2Cl2
- 5 iv) NaBH(OAc)3, 1,2-dichloroethane.
 - * represents the attachment point.

Scheme 6 describes the synthesis of Intermediate 13.

10

- The alcohol 11 is methylated using sodium hydride.
- The resulting nitrile is reduced using Raney nickel under an atmosphere of hydrogen.

15

Scheme 6:

Intermediate 11

Intermediate 12

Intermediate 13

In the above scheme:

- i) NaH, CH3L, THF
- 20 ii) Raney mickel, ethanolic ammonia, H2, 345 kPa

Intermediate 13

25

10

15

20

25

43

C-(1-methoxymethyl-cyclohexyl)-methylamine

Intermediate 13

The above compound was prepared as shown in Scheme 6.

1. Sodium hydride (862mg, 21.5mmol, 60% in oil) was taken up in THF (50ml) under argon at 0°C. To this was added a solution of methyl iodide (1.34ml, 21.6mmol) and 1-hydroxy-cyclohexanecarbonitrile (1.0g, 7.18mmol; see J. Fröhlich et al., Heterocycles 1994, 37, 1879-91) in THF (30ml) dropwise over 45 minutes. Once addition was complete the reaction mixture was stirred at room temperature overnight, and then quenched with i-propanol followed by water (100ml). The mixture was then extracted with dichloromethane (2x150ml). The combined organic phases were dried (MgSO₄) and solvent removed under reduced pressure. Residue was purified by chromatography using heptane/ethyl acetate (4:1). Removal of solvent under reduced pressure gave 1-methoxymethyl-cyclohexanecarbonitrile (1.1g, 88%) as a pale yellow oil.

IR (film): 2934, 2861, 2832, 2235, 1476, 1452, 1385, 1211, 1187, 1185, 1126, 1102, 978, 932, 901, 849 cm⁻¹;

¹H NMR (CDCl₃): δ = 1.13-1.33 (3H, m), 1.57-1.78 (5H, m), 1.94-2.02 (2H, m), 3.36 (1H, s), 3.42 (3H, s);

2. To the 1-methoxymethyl-cyclohexanecarbonitrile (1.1g, 7.2mmol) in ethanolic ammonia (60ml) was added Rancy nickel catalyst (0.55g, pre-washed with water and ethanol). Reaction mixture was shaken for 16 hours under hydrogen (345 kPa) at 30°C. The catalyst was filtered off catalyst with extreme caution through a bed of Kieselgubr and washed with ethanol. Removal of the solvent under reduced pressure gave Intermediate 13 (1.12g, 99%) as a yellow oil.

 $MS \text{ m/e (ES+): } 158.2 (M^+ + H, 100\%);$

IR (film): 2926, 2857, 1572, 1452, 1378, 1316, 1190, 1140, 966 cm⁻¹;

¹H NMR (CDCl₃): $\delta = 1.20$ -1.60 (12H, m), 2.62 (2H, s), 3.23 (2H, s), 3.32 (3H, s)

5

Preparative methods for compounds of formula (III)

Compounds of the formula (III) in which X is -CO- can be prepared by condensing an acid of the formula (III-1)

$$Ar - (CH2)k-COOH (III-1)$$

or a derivative thereof with an amine of the formula (III-2)

15

20

25

$$R^3$$
 R^5 R^4 R^1
 $HN - C - C - N - (CH2)1 - (C)m - (CH2)n - R^2
 A_{T} O R^6 (III-2)$

in an aprotic polar solvent in the presence of an appropriate catalyst, the values of the substituents Ar, Ar¹ and R¹ to R⁶ and the parameters k to n being as defined above with reference to formula (III), and optionally converting the resulting product to a pharmaceutically acceptable salt. For example, the condensation may be carried out in dimethylformamide using *O*-benzotriazol-1-yl-N,N,N'.N'-tetramethyluronium hexafluorophosphate (HBTU) and N,N-diisopropyl-ethylamine (DIPEA) as catalyst.

Compounds of the formula (III) in which X is -OC(=O)- can be prepared by forming a carbonate from an alcohol of the formula (III-3)

and reacting the carbonate with an amine of the formula (III-2)

$$R^3$$
 R^5 R^4 R^1
 $HN - C - C - N - (CH2)1 - (C)m - (CH2)n - R^2
 Ar^1 O R^6 (III-2)$

in an aprotic polar solvent in the presence of a base, the values of the substituents Ar, Ar¹ and R¹ to R⁶ and the parameters k to n being as defined above with reference to formula (III), and optionally converting the resulting product to a pharmaceutically acceptable salt. For example, the compound of formula (III-3) may be reacted with 4-nitrophenyl chloroformate in dichloromethane using pyridine as catalyst, and the resulting carbonate may be reacted with the amine of formula (III-2) in dimethyl formamide using N.N-dimethyl-4-amino pyridine as catalyst.

10

Compounds of the formula (III) in which X is $-SO_2$ — can be prepared by condensing a sulfonyl chloride of the formula (III-4)

$$Ar - (CH_2)_k - SO_2CI$$
 (III-4)

15

20

25

with an amine of the formula (III-2)

in an aprotic polar solvent in the presence of a base as catalyst, the values of the substituents Ar, Ar¹ and R¹ to R⁶ and the parameters k to n being as defined above with reference to formula (III), and optionally converting the resulting product to a pharmaceutically acceptable salt. For example, the condensation may be carried out in dimethylformamide in the presence of N,N-diisopropylethylamine and N,N-dimethyl-4-aminopyridine.

In the above methods, the amine of formula (III-2) is preferably a chiral amine of formula (III-5)

wherein the pyridine ring is optionally substituted by with 1 or 2 substituents R and R' selected from alkoxy, cyano, halogen, nitro, phenyl, phenoxy, - CF_3 , - $(CH_2)_qNR^7R^8$, wherein R^7 and R^8 can form a ring of between 5 to 7 atoms, which may contain 1 or 2 oxygen or nitrogen atoms, or R^7 and R^8 can be independently selected from hydrogen or cyclic alkyl of from 1 to 5 carbon atoms, methoxy being a particularly preferred substituent, as in the chiral arnine (III-6):

B) Peptide bombesin receptor antagonists

10

Bombesin antagonists which are peptides and which are believed to be suitable for use in the present invention are described in the following documents, the contents of which are incorporated herein by reference:

Publication	Publication
number	number
WO 97/09347	EP 0835662
US 5650395	US 5439884
WO 96/28214	WO 95/00542
EP 0737691	US 5620955
US 5767236	WO 92/02545
WO 91/04040	EP 0468497
EP 0309297	CA 2030212
EP 0438519	WO 92/20707
BP 0559756	WO 93/16105
WO 89/02897	US 4943561
WO 90/03980	US 5019647
WO 91/02746	US 5028692
WO 92/09626	US 5047502
WO 92/20363	WO 94/02018

WO 94/02163	WO 88/07551
WO 94/21674	WO 89/09232
WO 96/17617	EP 0315367
US 5084555	EP 0345990
US 5162497	US 5068222
US 5244883	US 5620959
US 5723578	UK 2231051
US 5750646	EP 0339193
US 5877277	WO 90/01037
US 5985834	WO 91/06563
EP 0428700	EP 0402852

Pharmaceutical compositions

5

10

. 15

20

25

For preparing pharmaceutical compositions from the compounds of this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, sachets, and suppositories.

A solid carrier can be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, or tablet disintegrating agents; it can also be an encapsulating material. In powders, the carrier is a finely divided solid which is in a mixture with the finely divided active component. In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain 5% to about 70% of the active component. Suitable carriers are magnesium carbonate, magnesium stearate, tale, lactose, sugar, pectin, dextrin, starch, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, a low-melting wax, cocoa butter, and the like.

Liquid form preparations include solutions, suspensions, and emulsions. Sterile water or water-propylene glycol solutions of the active compounds may be mentioned as an example of liquid preparations suitable for parenteral administration. Liquid preparations can also be formulated in solution in aqueous polyethylene glycol solution. Aqueous solutions for oral administration can be prepared by dissolving the active component in water and adding suitable colorants, flavouring agents,

10

15

20

25

30

stabilizers, and thickening agents as desired. Aqueous suspensions for oral use can be made by dispersing the finely divided active component in water together with a viscous material such as natural synthetic gums, resins, methyl cellulose, sodium carboxymethyl cellulose, and other suspending agents known to the pharmaceutical formulation art.

Preferably the pharmaceutical preparation is in unit dosage form. In such form, the preparation is divided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of the preparation, for example, packeted tablets, capsules, and powders in vials or ampoules. The unit dosage form can also be a capsule, sachet, or tablet itself, or it can be the appropriate number of any of these packaged forms.

For preparing suppository preparations, a low-melting wax such as a mixture of fatty acid glycerides and cocoa butter is first melted and the active ingredient is dispersed therein by, for example, stirring. The molten homogeneous mixture is then poured into convenient sized moulds and allowed to cool and solidify.

Compositions that are adapted for oral administration to humans are preferred, especially such compositions in unit dosage form.

Combination therapy

Without wishing to be bound by any particular theory or teaching, the inventors believe that bombesin receptor antagonists could be used as part of a medicament in combination with one or more vasodilator, hormone therapy or neurotransmitter modulator. Such products are used or tested in the treatment of sexual dysfunction. Vasodilators for the treatment of sexual dysfunctions of organic (rather than psychogenic) origin, act at the penis, clitoris or vagina level on local blood flow or lubricant secretions. Vasodilators useful for the treatment of sexual dysfunction include alprostadil or phentolamine, NO (nitric oxide) enhancers such as

L-arginine, and PDE5 inhibitors such as sildenafil r a pharmaceutically acceptable salt thereof (Scrip's Complete Guide to Women's Healthcare, p.194-205, 2000)(Sachs B.D., Neuroscience and Biobehavioral Review . 2000, 24 541-560, Benet and Melman, 1995, Urol. Clin.N. Amer. 22:699-709), VIP (Vaso Intestinal Poptide) enhancers (Scrip's Complete Guide to Women's Healthcare, p.194-205, 2000) or angiotensin-2 receptor antagonists such as losartan (American Heart Association meeting, New Orleans, 2000).

Hormone therapies useful in the treatment of sexual dysfunction of organic and psychogenic nature include modulators of steroid hormones, steroid hormones or hormone product (including synthetic hormones) including oestrogen (Scrip's Complete Guide to Women's Healthcare, p.194-205, 2000), or androgens such as testosterone (Scrip's Complete Guide to Women's Healthcare, p.194-205, 2000, Sachs B.D., Neuroscience and Biobehavioral Review, 2000, 24 341-560), which act in areas of the CNS associated with sexual desire and sexual arousal (Wilson CA. Pharmacological targets for the control of male and female sexual behaviour. In: Sexual Pharmacology, Riley AJ, Peet M, Wilson CA (Eds), Clarendon Press, Oxford, 1993:1-58).

Neurotransmitter modulators useful in the treatment of both psychogenic and organic sexual dysfunction include neurotransmitter agonists and antagonists such as catecholamine agonists such as the D₂ agonist quinelorane, 5HT₂ antagonists such as ritanserin, monoamine synthesis modifiers such as treatments that reduce endogenous 5HT activity, including inhibition of 5HT synthesis using parachlorophenylalamine, monoamine metabolism or uptake modifiers that inhibit catecholamine metabolism or reuptake, such as tricyclic antidepressants, e.g. imipramine (Wilson CA. *Pharmacological targets for the control of male and female sexual behaviour*. In: Sexual Pharmacology, Riley AJ, Peet M, Wilson CA (Eds), Clarendon Press, Oxford. 1993:1-58).

30

25

5

10

15

20

The use of this combination therapy includes the preparation of therapies that would allow administration of both components of the medicament, i.e. bombesin

15

20

25

30

receptor antagonists and a vasodilator, hormone therapy medicament or ncurotransmitter modulator medicament in a single dose. A preferred formulation would allow oral administration. However, administration by suppository, cream. transdermal patch or injection is also part of this invention. Alternatively the inventors envisage formulations which allow administration of the bombesin receptor antagonist via a separate route to that of the vasodilator, hormone therapy medicament or neurotransmitter modulator medicament. Such routes could include for example oral administration of the bombesin receptor antagonist and transdermal patch application of the vasodilator. Thus there may be provided a kit in which unit doses of bombesin receptor antagonist occur in association with unit doses of the vasodilator, hormone therapy medicament or neurotransmitter modulator medicament. For example, in the case of a kit where bombesin receptor antagonist is formulated as a tablet capsule or other unit dosage form for oral administration and the vasodilator is provided as a transdermal patch, the two dosage forms could be provided in the form of a two-row tear-off strip in which compartments containing the tablets, etc. occur above compartments containing the transdermal patches. Other forms of packaging in which the two dosage forms are spatially associated so as to make it easy for patients to take them together and to be reminded when they have done so will readily occur to those skilled in the art. The kit will also contain instructions as to when and how the individual components of the kit should be administered.

How the invention may be put into effect will now be described, by way of example only, with reference to the following examples, some of which are preparative and others of which describe results of biological tests.

Example 1

Effect of (S) 3-(1H-Indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexyl-methyl]-2-methyl-2-[3-(4-nitro-phenyl)-ureido]-propionamide (Compound (1)) on female rat sexual proceptivity

10

15

20

25

Ovariectomised adult female Sprague Dawley rats (180-200g, from Charles River) were housed in groups of 6 in a reversed lighting system of 12h light:dark (lights off 7.00-19.00h). Two weeks after ovariectomy they were used for sexual activity tests. The experiments started at least 5h into the dark period.

Tests were carried out in a circular arena of 90cm diameter, surrounded by a 30cm high wall. Two small cages with wire-mesh front (15x15cm) are fixed into the wall such that the front of the cage is «flush» with the wall and the 2 cages are They contained two stimuli animals: an intact sexually opposite cach other. experienced male and a receptive female (ovariectomised, primed with 5µg oestradio) benzoate dissolved in com oil and injected subcutaneously 48 hours before the test and with 0.5 mg of progesterone four hours before the test). Sexually naive test and control animals were used. Forty eight hours before the tests, both the test and control animals were primed with 5µg ocstradiol benzoate. For animals used as positive controls, progesterone (0.5mg/0.1ml) was dissolved in corn oil and administered subcutaneously (s.c.), 4h before the test. Test and control animals were introduced one at a time for 10 minute periods into the arena. During the 10min test, the time that the test or positive control animal spent investigating each stimulus animal was noted. The arena was thoroughly cleaned between animals. The position of the male/female stimuli boxes was randomised between animals, in order to avoid place preference. The difference in the percentage of time spent investigating the male minus the female stimuli was calculated, out of the total time spent investigating stimuli animals.

Compound (1) was dissolved in 100% β-cyclodextrin and then diluted with saline to a final solution of 50% 2-hydroxypropyl-β-cyclodextrin. It was administered intraperitoneally (i.p.) at doses of 3 and 10mg/kg, in a dosing volume of 1ml/kg, 1h before tests. Progesterone (0.5mg/0.1ml) was dissolved in corn oil and administered subcutaneously (s.c.), 4h before test, as a positive control.

Compound (1) dose-dependently (3mg/kg-10mg/kg) increased the percentage of time spent investigating the male stimulus, with a MED of 10mg/kg (see Figure 1). The effect of this dose was similar to the effect of progesterone (prog). (*P<0.05, **P<0.01 Kruskal-Wallis followed by Mann-Whitney test, vs vehicle).

Example 2

Effect of Compound (1) on female rat sexual receptivity

15

10

5

Ovariectomised adult female Spraguc Dawley rats (180-200g, from Charles River) were housed in groups of 6 in a reversed lighting system of 12h light:dark (lights off 7.00-19.00h). Two weeks after ovariectomy they were used for sexual activity tests. The experiments started at least 5h into the dark period.

20

25

Compound (1) was dissolved in 100% β-cyclodextrin and then diluted with saline to a final solution of 50% 2-hydroxypropyl-β-cyclodextrin. It was administered intraperitoneally (i.p.) at a dose of 10mg/kg, in a dosing volume of 1ml/kg. Quinelorane (6.25μg/kg) was dissolved in water and administered s.c. as positive control. Forty eight hours before testing, ovariectomised female rats (as described above), were primed with 5μg oestradiol benzoate dissolved in corn oil and injected subcutaneously. This is a low dose of oestrogen that does not re-establish sexual behaviour in an ovariectomised female but provides a minimum hormonal background for pharmacological agents to stimulate sexual behaviour. The females were placed with a series of vigorous male rats and subjected to 10 mounts.

30

The lordotic response of the animal was recorded and expressed as a percentage of the mounts (i.e. lordosis quotient, LQ), as previously described. Animals showing LQ<20 were considered non-receptive and were included in the

study. Each rat was tested prior to administration of the compound and then tested similarly post-injection. The pre-treatment times were 1h for Compound (1) and vehicle (50% \(\beta\)-cyclodextrin, i.p.) or 90min for quinelorane.

As shown in Figure 2, a single administration of quinelorane (6.25µg/kg, s.c.) significantly (P<0.01) increased the LQ, 90min after administration, compared to the LQ shown before administration (paired t test). A single administration of Compound (1) (10mg/kg, i.p.) also had a significant (P<0.05) stimulatory effect on the LQ, 1h after administration, compared to the LQ shown before administration (paired t test).

10

5

Example 3

The effect of repeated administration of Compound (1) on female rat proceptivity

15

In the present study we have investigated whether the repeated administration of a higher dose of Compound (1) (15mg/kg) still results in stimulation of proceptivity.

20

25

30

Ovariectomised adult female Sprague Dawley rats (180-200g) were housed in groups of 5 in a reversed lighting system of 12h light:dark (lights off 5.00-17.00h). They were used for the experiments at least two weeks after ovariectomy. Forty eight hours before tests, the animals were primed with oestradiol benzoate (5µg/0.1ml in corn oil, s.c.). On day 1, progesterone (0.5mg/0.1ml, in corn oil, s.c.) was administered to one of the groups 4h before tests, as a positive control. Compound (1) (15mg/kg, i.p.) was administered in 50% 2-hydroxypropyl-\beta-cyclodextrin, 1h before tests. The test lasted 10 minutes and was carried out as described before. The difference in the percentage of time spent investigating the male minus the female stimuli was calculated, out of the total time spent investigating stimuli animals. Animals were submitted to a test on day 1 and on day 15. From day 2 to 14 the Compound (1) group received a daily injection of the compound (15mg/kg, i.p.),

15

25

30

while both the vehicle and the progesterone groups received an injection of vehicle. On day 15 the test took place again, as described for day 1.

On day 1, both progesterone and Compound (1) had a stimulatory effect on proceptivity, compared to the vehicle group (**P<0.01, ANOVA followed by Dunnett's test). On day 15, a similar stimulatory effect was observed (**P<0.01, ANOVA followed by Dunnett's test) (see Figure 3). No significant difference was observed between the effects on day 1 and day 15 for each treatment group (paired t test). The effects of progesterone and Compound (1) were statistically similar. There were no changes in body weight or general behaviour between groups along the experiment.

From this study we can conclude that Compound (1) (15mg/kg, i.p.) has a stimulatory effect on proceptivity in the female rat, comparable to progesterone, and that such effect is unaffected by the repeated administration of the compound, which seems to be well tolerated.

20 Example 4

Effect of intracerebroventricular administration of Compound (1) on female rat sexual proceptivity

In order to elucidate the site of action for this effect we have administered the Compound (1) intracerebroventricularly (i.c.v.).

Ovariectomised female rats (Sprague Dawley, obtained from Charles River, UK) were stereotaxically implanted (coordinates 0.89mm behind Bregma, 1.3mm lateral and 2.5mm vertical) with stainless steel cannulae (6 mm long, O.D. 0.75mm), held in place with dental cement. Animals were housed in groups of three and returned to a reversed lighting system of 12h light;dark (lights off 5.00-17.00h).

15

20

25

30

Correct placement of the cannulae was assessed post-mortem. Rats were used for tests two weeks after ovariectomy (one week after cannulation). The experiments started at least 5h into the dark period. Forty eight hours before tests, the animals were primed with 5µg oestradiol benzoate (s.c., in corn oil) and adapted to the apparatus (in the absence of stimuli animals) for 10min on 2 consecutive days prior testing. The 10min test was carried out as previously described. The difference in the percentage of time spent investigating the male minus the female stimuli was calculated, out of the total time spent investigating stimuli.

Compound (1) was dissolved in 50% 2-hydroxypropyi- β -cyclodextrin in saline. It was administered i.c.v. over a 30sec period, with the aid of a pump set to deliver a flow of 10μ l/min. The dosing volume was 5μ l/rat. The compounds were administered 10min before tests. Progesterone (0.5mg/0.1ml) was dissolved in comoil and administered subcutaneously (s.c.), 4h before test, as a positive control. As shown in Figure 4, Compound (1) dose-dependently (3-30 μ g/rat) increased the percentage of time spent investigating the male stimulus, with a MED of 10μ g. The effect of this dose was similar to the effect of progesterone.

From this study we can conclude that the effect of Compound (1) on female sexual proceptivity is centrally mediated.

In figure 4 bars represent percentage of time spent investigating male, minus the percentage of time spent investigating the female stimuli±SEM, (n=7-8 per group). *P<0.05, **P<0.01 vs vehicle (Kruskal-Wallis ANOVA test followed by Mann-Whitney's test).

Example 5

Inhibitory effect of NMB on female rat sexual proceptivity and antagonism of this effect by Compound (1)

We have investigated the potentially inhibitory effect of the BB₁ against neuromedin B (NMB) on female rat sexual proceptivity.

Ovariectomised female rats (Sprague Dawley, obtained from Charles River, UK) were stereotaxically implanted (coordinates 0.89mm behind Bregma, 1.3mm lateral and 2.5mm vertical) with stainless steel cannulae (6 mm long, O.D. 0.75mm), held in place with dental cement. Animals were housed in groups of three and returned to a reversed lighting system of 12h light:dark (lights off 5.00-17.00h). Correct placement of the cannulae was assessed post-mortem. Rats were used for tests two weeks after ovariectomy (one week after cannulation). The experiments started at least 5h into the dark period. Forty eight hours before tests, the animals were primed with 5µg oestradiol benzoate (OB) (s.c., in corn oil) and adapted to the apparatus (in the absence of stimuli animals) for 10min on 2 consecutive days prior testing. The 10min test was carried out as previously described. The difference in the percentage of time spent investigating male minus female was calculated, out of the total time spent investigating stimuli.

Progesterone (Prog. 0.5mg/0.1ml) was dissolved in corn oil and administered subcutaneously (s.c.), 4h before test, to induce proceptive behaviour. Compound (1) (15mg/kg, i.p.) was dissolved in 50% 2-hydroxypropyl- β -cyclodextrin in saline and administered 1h before the i.c.v. administration. Neuromedin B was obtained from Bachem, UK. It was dissolved in isotonic saline and administered i.c.v. over a 30sec period, with the aid of a pump set to deliver a flow of 10μ l/min, 10min before tests. The dosing volume was 5μ l/rat. Each rat received a total amount of 100ng.

25

30

5

10

15

20

As shown in Figure 5, progesterone (Prog) increased the percentage of time spent investigating the male stimulus, compared to the vehicle group, thus showing stimulation of proceptive behaviour. NMB (100ng, i.c.v.) significantly reduced proceptivity in progesterone-treated rats. Moreover, pre-treatment with Compound (1) which acts as an antagonist (15mg/kg, i.p.) prevented the inhibitory effect of NMB. However, the blockade obtained with the dose of Compound (1) used was not total.

From the present study we can conclude that stimulation of BB1 receptors with an agonist results in inhibition of proceptive behaviour. This inhibitory effect may be prevented by the presence of an antagonist. e.g. Compound (1) In figure 5 the bars represent percentage of time spent investigating male, minus the percentage of time spent investigating the female stimuli±SEM, (n=8-12 per group). ***P<0.001 xs progesterone (One-way ANOVA followed by Dunnett's test).

Example 6

Demonstration that the effect of Compound (1) on female sexual behaviour is not mediated through sexual hormones

Previous examples have shown that Compound (1) (nanomolar affinity "mixed" BB₁/BB₂ receptor antagonist) has a dose-dependent stimulatory effect on sexual activity in the female rat, both on proceptivity and receptivity. Although the animals used in that study were ovariectomised, and therefore steroid hormones release can not be expected to occur in response to the compound, there is a possibility that the adrenal glands might secrete steroid hormones in response to Compound (1). If that was the case, the mediation of the stimulatory effects by progesterone would be relevant for rodents, but it would not be the case for primates. In the present study, we have investigated the potential effect of the bombesin receptor antagonist Compound (1) on secretion of progesterone. Oestradiol and pituitary hormones (Luteinising hormone (LH), follicle stimulating hormone (FSH) and prolactin) have also been analysed in the same animals.

25

30

5

10

15

20

Ovariectomised adult female Sprague Dawley rats (180-200g) were housed in groups of 6 in a reversed lighting system of 12h light:dark (lights off 7.00-19.00h). They were used for the experiments at least two weeks after ovariectomy. Forty eight hours before tests, the animals were primed with cestradiol benzoate (5µg/0.1ml in corn oil, s.c.). Progesterone (0.5mg/0.1ml, in corn oil, s.c.) was administered 4h before blood collection, as a positive control. Compound (1) (3-10mg/kg, i.p.) was administered in 50% 2-hydroxypropyl-β-cyclodextrin, 1h prior to blood collection.

Blood was collected from the trunk, after decapitation. It was immediately centrifuged (3500r.p.m., 4°C, 5min) and the plasmas frozen until assayed for hormonal content, using commercially available radioimmunoassay kits (125I-labelled hormones) for oestradiol, progesterone, LH, FSH and prolactin.

5

10

15

20

25

A single administration of progesterone resulted in a significant increase in the progesterone plasma levels (P<0.05), and a significant decrease in LH plasma levels (P<0.01), compared to animals injected with vehicle (Kruskal-Wallis followed by Mann-Whitney test). However, Compound (1) (3-10mg/kg, i.p.) had no effect on the plasma levels of progesterope (Figure 6, where animals were pre-treated with Sug oestradiol benzoate, s.c., 48h before the test. They were tested 1h or 4h post-injection of Compound (1) (3-10mg/kg, p.o.) or progesterone (0.5mg/0.1ml, s.c.) respectively. Values represent mean±SEM, (n=9 per group). *P<0.05, us vehicle (Kruskal-Wallis followed by Mann-Whitney test, vs vehicle), oestradiol (Figure 7, where animals were pre-treated with 5µg ocstradiol benzoate, s.c., 48h before the test. They were tested 1h or 4h post-injection of Compound (1) (3-10mg/kg, p.o.) or progesterone (0.5mg/0.1ml, s.c.) respectively. Values represent mean±SEM, (n=6-7 per group)), prolactin (Figure 8, where animals were pre-treated with 5µg oestradiol benzoate, s.c., 48h before the test. They were tested 1h or 4h post-injection of Compound (1) (3-10mg/kg, p.o.) or progesterone (0.5mg/0.1ml, s.c.) respectively. Values represent mean±SEM, (n=10 per group)) LH (Figure 9, where animals were pre-treated with 5µg oestradiol benzoate, s.c., 48h before the test. They were tested 1h or 4h postinjection of Compound (1) (3-10mg/kg, p.o.) or progesterone (0.5mg/0.1ml, s.c.) respectively. Values represent mean±SEM, (n=10 per group), **P<0.01, w vehicle (Kruskal-Wallis followed by Mann-Whitney test, vs vehicle)) or FSH (Figure 10, where animals were pre-treated with 5µg oestradiol benzoate, s.c., 48h before the test. They were tested 1h or 4h post-injection of Compound (1) (3-10mg/kg, p.o.) or progesterone (0.5mg/0.1ml, s.c.) respectively. Values represent mean±SEM, (n=10 per group).

From this experiment we can conclude that Compound (1) did not have an effect on the secretion of sexual hormones, thus suggesting that the effects of the compound on female sexual activity must be mediated by different mechanisms, maybe involving neurotransmitters.

5

10

15

20

25

30

Example 7

Effect of Compound (1) on the sexual behaviour of normal male rats

The potentially stimulatory effect of Compound (1) on male sexual behaviour has been tested on sexually vigorous rats. Sprague Dawley male rats (Charles River, UK) were kept, 4 rats per cage, in a reversed lighting regime (12:12 hours, lights off at 5.00 h), with free access to food and water. The rats were pre-selected by being presented with a receptive female at 4 days intervals, i.e. every third day (having 2 clear days between presentations) until completing 6-7 days of baseline determination. The animals showing consistently vigorous behaviour (ejaculatory latencies <300s) were chosen for further experiments (n=24). Animals were randomised into three groups. All animals received all three treatments following a latin-square design. Treatments were administered once a week, with a baseline test in between treatments (4 days intervals between baseline and test day). Treatments were Compound (1) (15mg/kg, dissolved in 50% 2-hydroxypropyl-β-cyclodextrin in saline), vehicle, or Fluoxetine (20mg/kg dissolved in 100% DMSO). All treatments were administered i.p. in a 1ml/kg volume, 1h before tests.

arena (50-60 cm diameter), starting 5 hours into the dark cycle and observed under red illumination. Three to 4 minutes after placing the male in the arena, a receptive female (ovariectomised, bearing a 7 mm Silastic implant of cestradiol benzoate) was introduced to the arena and the following parameters noted: Mount Latency: time (in seconds) taken between introduction of female and first mount. A maximum time of 15 minutes (900 seconds) was allowed, and the test terminated if no mounts were

For all the sexual behaviour tests, the males were placed in an observation

recorded within that time (Figure 11), Intromission Latency: time (in seconds) taken

15

20

25

between introduction of female and first intromission (Figure 12), Number of Mounts: to reach ejaculation. When ejaculation was not reached, the number of mounts was not analyzed. Number of Intromissions: to reach ejaculation. When ejaculation was not reached, the number of intromissions was not analyzed (Figure 13 is number of mounts + intromissions), Ejaculation Latency: time (in seconds) taken from first intromission to ejaculation. A maximum time of 30 minutes (1800 seconds) was given, and the test terminated if ejaculation was not achieved in that time (Figure 14), and Refractory Period: time (in seconds) taken from ejaculation to the first mount of the next series of sexual activity. In those animals reaching ejaculation the test was terminated at the end of the refractory period, as indicated by the first mount of the next sexual cycle (Figure 15).

A one-way ANOVA followed by Dunnett's t test was used to compare treated vs vehicle groups each day of testing, for all the sexual behaviour parameters. (*P<0.05, **P<0.01; n=15-16).

Mount latency and intromission latency were significantly increased in the fluoxetine-treated group compared to the vehicle group. Ejaculation latency and refractory period were also increased in this group, showing a decrease in sexual performance as well as the decreased arousal. No changes were seen in the number of mounts and intromissions required to achieve ejaculation. Unlike Fluoxetine, Compound (1) had no effect on any of the parameters studied, at a dose shown to be stimulatory in sexually dysfunctional males (see example 9). From the present study we can conclude that Compound (1) has no effect on sexual behaviour in sexually vigorous males.

Example 8

Effect of Compound (1) on the sexual behaviour of sexually dysfunctional male rats

Fluoxetine induces ejaculation delay, anorgasmy and loss of sexual desire in humans (Crenshaw and Goldberg, 1996). A model of male sexual dysfunction in the rat, induced by daily administration of fluoxetine until a significant detrimental effect on sexual behaviour (arousal and ejaculation) was established. The potentially stimulatory effect of Compound (1) on male sexual behaviour in these sexually dysfunctional male rats was examined. The effects of Compound (1) were compared to those of yohimbine. Preclinical and clinical studies suggest that yohimbine may be an effective treatment for sexual side-effects caused SSRI (Hollander, E., McCarley, A. (1993) J. Clin. Psychiatry 53:207-209. and Jacobsen).

10

15

20

5

Sprague Dawley male rats (Charles River, UK) were kept, 4 rats per cage, in a reversed lighting regime (12:12 hours, lights off at 5.00 h), with free access to food and water. The rats were pre-selected by being presented with a receptive female at 4 days intervals, i.e. every third day (having 2 clear days between presentations) until completing 6-7 trials of baseline determination. The animals showing consistently vigorous behaviour (ejaculatory latencies <300s) were chosen for further experiments. Animals were treated for 3 consecutive days with either vehicle (water) or fluoxetine (20mg/kg, i.p., in a 2ml/kg dosing volume). On the fourth day, the animals treated with water received vehicle (veh+veh) and the animals treated with fluoxetine received one of the three following treatments: Compound (1) (15mg/kg, dissolved in 50% 2-hydroxypropyl-β-cyclodextrin in saline), vehicle (cyclodextrine), or yohimbine (2mg/kg dissolved in water). All treatments were administered i.p. in a 1ml/kg volume, 1h before tests.

25

30

For all the sexual behaviour tests, the males were placed in an observation arena (50-60 cm diameter), starting 5 hours into the dark cycle and observed under red illumination. Three to 4 minutes after placing the male in the arena, a receptive female (ovariectomised, bearing a 7 mm Silastic implant of oestradiol benzoate) was introduced to the arena and the following parameters noted: Mount Latency: time (in seconds) taken between introduction of female and first mount. A maximum time of 15 minutes (900 seconds) was allowed, and the test terminated if no mounts were recorded within that time (Figure 16), Ejaculation Latency: time (in seconds) taken

from first intromission t ejaculation. A maximum time of 30 minutes (1800 seconds) was given, and the test terminated if ejaculation was not achieved in that time (Figure 17), Percentage of males achieving ejaculation within 30 minutes was calculated (Figure 18).

5

A one-way ANOVA followed by Durmett's t test was used to compare the fluoxetine+vehicle group and other groups for mount and ejaculatory latencies. Percentage of animals ejaculating was analysed using a Chi-square test followed by Fisher's test. (*: P<0.05, **: P<0.01, ***: P<0.001; n=15-19).

10

15

20

Mount latency and ejaculation latency were significantly increased in the fluoxetine-treated groups compared to the vehicle+vehicle group, indicating a decrease in sexual desire as well as sexual performance in these groups. The number of animals ejaculating was significantly lower in the fluoxetine-treated groups, indicating anorgasmy. Compound (1) significantly decreased the mount and ejaculatory latencies at the same time as increasing the percentage of animals ejaculating in the animals rendered sexually dysfunctional by the fluoxetine treatment, to levels comparable to normal animals (veh+veh). Yohimbine followed a similar trend, although this did not reach significance.

From the present study we can conclude a stimulatory effect of Compound (1) on sexual behaviour in males suffering from sexual dysfunction, at the level of sexual desire, sexual performance and anorgasmy.

Example 9

25

(S)-3-(1*H*-Indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-propionamide

10

15

20

25

63

1. To a stirred solution of p-nitrophenylchloroformate (9.27g, 46mmol) in THF (200ml) at 0°C was added dropwise a solution of H-(S)-cMeTrp-OMe (1a) (10.7g, 46 mmol) and triethylamine (6.4ml, 46mmol) in THF (100ml) over 1 hour. Stirring was continued for a further 30 minutes at room temperature, after which aqueous ammonia (15ml) was added. IR after 10 minutes indicated bands at 1732 and 1660 cm⁻¹. The THF was removed under reduced pressure, and the residue was taken up in EtOAc and washed with 1N HCl (x2), Na₂CO₃ solution (until intense yellow colour subsided, ~x8), brine, and dried (MgSO₄). The solvent was removed under reduced pressure to give 2a as a foam (10.3g, 82%):MS m/e (AP+): 276.16 (M⁺ + H, 100%);

MS m/e (AP-): 274.11 (M - H, 100%); IR (film): 3383, 1724, 1657, 1600, 1539, 1456, 1374, 1256, 1108, 743 cm⁻¹;

¹H NMR (CDCl₃): δ= 1.70 (3H, s), 3.38 (1H, d, J=14.7 Hz), 3.59 (1H, d, J=14.7 Hz), 3.71 (3H, s), 4.22 (2H, s), 5.16 (1H, s), 6.99 (1H, d, J=2.2 Hz), 7.08-7.20 (2H, m), 7.34 (1H, d, J=8.1 Hz), 7.59 (1H, d, J=7.8 Hz), 8.09 (1H, s).

2. The urea (2a) (6.4g, 23mmol) and 2-bromo-1-(4-mitro-phenyl)-ethanone (6.0g, 23mmol) were stirred in toluene (500ml)/dioxan (100ml) and maintained under reflux for 30 hours, after which solvent was removed under reduced pressure and the residue was purified by chromatography using a 90g Biotago cartridge. 10% EtOAc in heptane eluted the bromide starting material. 20% EtOAc cluted the desired product. Rem val of solvent under reduced pressure gave 3a as a foam (840mg, 9%):

MS m/e (ES+): 420.56 (M⁺, 100%);

15

64

IR (film): 3394, 1732, 1632, 1605, 1574, 1515, 1456, 1334, 1253, 1210, 1108, 1072, 940, 854, 734 cm⁻¹;

¹H NMR (CDCl₃): δ= 1.91 (3H, s), 3.46 (1H, d, J=14.6 Hz), 3.69 (3H, s), 3.78 (1H, d, J=14.6 Hz), 5.57 (1H, s), 6.89 (1H, d, J=2.2 Hz), 7.03-7.08 (1H, m), 7.14-7.18 (1H, m), 7.34 (1H, d, J=8.1 Hz), 7.41 (1H, d, J=8.1 Hz), 7.63 (1H, s), 7.85 (2H, d, J=9.0 Hz), 8.05 (1H, s), 8.24 (2H, d, J=8.6 Hz).

3. The ester (3a) (840mg, 2mmol) was dissolved in dioxan (50ml) and LiOH H₂0 (336mg, 8mmol) in H₂O (25ml) was added. The mixture was stirred vigorously overnight, and then neutralised with 1M HCl (8ml, 8mmol). The majority of the dioxan was removed under reduced pressure and the product was crystallised, filtered off, washed with water and dried under reduced pressure to give pure 4a (668mg, 82%):

MS m/c (ES+): 407 (M⁺ + H); IR (film): 1633 cm⁻¹;

¹H NMR (DMSO-d₆) δ= 1.49 (3H, s), 3.30-3.35 (1H, m, masked by H₂0), 3.59 (1H, d, J=14.7 Hz), 6.86-6.90 (1H, m), 6.99-7.03 (2H, m), 7.30-7.36 (2H, m), 7.48 (1H, s), 7.94 (2H, d, J=9.0 Hz), 8.27-8.30 (3H, m), 10.88 (1H, s), (CO₂H not seen).

20 4. The acid (4a)(1.148g.2.8mmol). O-benzotriazol-1-vl-N.N.N'.N'tetramethyluronium hexafluorophosphate (HBTU, 1.06g, 2.8mmol), and N.Ndisopropylethylamine (DIPEA, 490µl, 2.8mmol) were stirred in DMF (10ml) for 5 adding DIPEA (490ul, minutes before 2.8mmol) and [1-(5-methoxy-2pyridyl)cyclohexyll-methanamine (see WO 98/07718, 678mg, 3.1mmol). HPLC indicated that reaction was complete within 1 hour. Solvent was removed under 25 reduced pressure and the residue was taken up in EtOAc. The organic layer was washed with brine, saturated NaHCO3 (x3), brine and dried (MgSO4), after which solvent was removed under reduced pressure. The residue was purified by chromatography using RP silica with 65% MeOH in H₂O. Pure fractions were evaporated to give the desired product as an amorphous solid (1.12g, 66%): 30

MPt: 100-105°C;

MS m/e (ES+): 609.63 (M⁺ + H, 100%);

IR (film): 3359, 3272, 3054, 2932, 2857, 1628, 1606, 1573, 1515, 1488, 1393, 1336, 1268, 1232, 1181, 1150, 1131, 1097, 1028, 1012, 962, 939, 900, 853, 831, 737 cm⁻¹;

¹H NMR (CDCl₃): δ= 1.10-1.60 (8H, m), 1.72 (3H, s), 1.95-2.02 (2H, m), 3.31-3.42 (2H, m), 3.41 (1H, d, J=14.6 Hz), 3.50 (1H, d, J=14.6 Hz), 3.69 (3H, s), 5.34 (1H, s), 6.90-6.97 (2H, m), 7.04-7.09 (2H, m.) 7.14-7.19 (1H, m), 7.33 (1H, d, J=8.1 Hz), 7.46 (1H, d, J=7.8 Hz), 7.54 (1H, s), 7.77 (2H, d, J=8.8 Hz), 8.00 (1H, d, J=2.9 Hz), 8.04 (1H, s), 8.21 (2H, d, J=8.8 Hz); (amide masked by CHCl₃)

HPLC A: Rt. 11.86 min, 99.8/100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1ml min⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 215 and 254 nm;

HPLC B: Rt. 14.32 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 215 and 254 nm.

Example 10

(S)-3-(1*H*-Indol-3-yl)-*N*-(1-methoxymethyl-cyclohexylmethyl)-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-propionamide

5

15

The above compound was synthesized from Intermediate 4a and Intermediate 13 using the same method as used for Example 9. The acid (4a) (203mg, 0.5mmol), HBTU (190mg, 0.5mmol), and DIPEA (87μl, 0.5mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (87μl x 2, 1.0mmol) and Intermediate 13 (94mg, 0.5mmol, Scheme 6). After 4 hours the solvent was removed under reduced pressure and residue taken up in EtOAc. The organic layer was washed with brine, saturated NaHCO₃ (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. The residue was heated to 60°C in methanol and product filtered off. Drying under reduced pressure gave the desired product as a yellow crystalline solid (214mg, 78%):

MPt: 189-192°C:

MS m/e (ES+): 546.49 (M⁺ + H, 100%);

IR (film): 3285, 2928, 2849, 1637, 1604, 1516, 1453, 1334, 1260, 1108, 1077, 860, 743, 729 cm⁻¹;

¹H NMR (DMSO-d₆): δ= 1.10-1.35 (10H, m), 1.44 (3H, s), 2.91-3.01 (3H, m), 3.06-3.12 (1H, m), 3.07 (3H, s), 3.26-3.31 (1H, m), 3.64 (1H, d, J=14.4 Hz), 6.87-6.93 (2H, m), 7.01 (1H, t, J=7.4 Hz), 7.29-7.37 (3H, m), 7.44 (1H, s), 7.94 (2H, d, J=9.0 Hz), 8.26 (2H, d, J=8.8 Hz), 8.34 (1H, s), 10.84 (1H, s);

HPLC A: Rt. 17.07 min, 100/100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 215 and 254 nm;

HPLC B: Rt. 14.35 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 1 mlmin^{-1} , Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 mm.

Example 11

25

10

15

20

(S)-3-(1H-Indol-3-yl)-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-N-(2-oxo-2-phenyl-ethyl)-propionamide.

The above compound was synthesised from Intermediate 4a using the same method as used for Example 9. The acid (4a) (203mg, 0.5mmol), HBTU (190mg, 0.5mmol), and DIPEA (87μl, 0.5mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (87μl, 0.5mmol) and 2-amino-1-phenyl-ethanone (103mg, 0.6mmol). After 4 hours the solvent was removed under reduced pressure and residue taken up in EtOAc, washed with brine, saturated NaHCO₃ (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using NP 20g Mega Bond Elut cartridge and 40% ethyl acetate in heptane as eluent. Evaporation of pure fractions gave the desired product as a yellow amorphous solid (170mg, 65%):

MPt: 80-90°C;

5

lO

15

20

25

MS m/e (AP+): 525.83 (16%), 524.44 (M⁺+ H, 100%);

IR (film): 3396, 3059, 2983, 2932, 1694, 1628, 1605, 1575, 1514, 1449, 1336, 1284, 1264, 1225, 1181, 1154, 1096, 1072, 1010, 1001, 940, 853, 737 cm⁻¹;

¹H NMR (DMSO-d₆): δ= 1.50 (3H, s), 3.39 (1H, d, J=14.7 Hz), 3.64 (1H, d, J=14.6 Hz), 4.53 (1H, d.d, J=18.1 and 5.4 Hz), 4.66 (1H, d.d, J=18.1 and 5.5 Hz), 6.87 (1H, t, J=7.4 Hz), 6.95 (1H, d, J=2.2 Hz), 7.00 (1H, t, J=7.4 Hz), 7.30 (1H, d, J=8.1 Hz), 7.34 (1H, d, J=8.1 Hz), 7.41 (1H, s), 7.50-7.55 (2H, m), 7.62-7.67 (1H,m), 7.94-7.99 (4H, m), 8.24 (1H, t, J=5.4 Hz), 8.27 (2H, d, J=9.0 Hz), 8.31 (1H, s), 10.86 (1H, s);

HPLC A: Rt. 20.83 min, 98.3/99.6% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 25 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 nm:

10

15

20

25

68

HPLC B: Rt. 6.82 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin⁻¹, Prodigy ODSHI 250x4.6mm 5μM, 215 and 254 nm.

Example 12

(S)-N-[1-(5-Methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-3-phenyl-propionamide

The above compound was synthesised from 1b and 4b using the same methods as used for Example 9. The acid (4b) (120mg, 0.33mmol), HBTU (124mg, DIPEA $(114 \mu L)$ 0.66mmol). and [1-(5-methoxy-2-0.33mmol), and pyridyl)cyclohexyl]-methanamine¹ (86mg, 0.4mmol) were stirred in DMF (4ml) for 18 hours. Solvent removed under reduced pressure and residue taken up in EtOAc. The organic layer was washed with brine, saturated NaHCO3 (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using NP silica with 10-80% ethyl acetate in heptane. Pure fractions were evaporated to give the desired compound as a yellow amorphous solid (90mg, 49%):

MS m/e (AP+): 570.23 (M⁺ + H, 100%);

IR (film): 3363, 2930, 2856, 1658, 1651, 1628, 1574, 1515, 1488, 1334, 1268, 1232, 1073, 1030, 938, 852 cm⁻¹;

¹H NMR (DMSO-d₆): δ= 0.94-1.46 (11H, m), 1.98-2.10 (2H, m), 3.04-3.14 (2H, m), 3.25-3.32 (1H, m), 3.57 (1H, d, J=13.6 Hz), 3.73 (3H, s), 6.95-7.00 (3H, m), 7.10-7.24 (5H, m), 7.44 (1H, s), 7.93 (2H, d, J=8.8 Hz), 8.14 (1H, d, J=2.8 Hz), 8.27 (2H, d, J=9.2 Hz), 8.36 (1H, s);

HPLC A: Rt. 5.49 min, 99.76% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 7 min at 1.5 mlmin⁻¹, Prodigy ODSIII 150x4.6mm 3μM at 40°C, 200-300 mm;

HPLC B: Rt. 5.72 min, 99.46% purity, 20-90% CH₃CN/Tris (1mM) over 7 min at 2mlmin⁻¹, Prodigy Phenyl-Ethyl, 100x4.6mm 5μM at 30°C, 200-300 nm.

Example 13

(S)-2-[4-(4-Cyano-phenyl)-oxazol-2-ylamino]-3-(1H-indol-3-yl)-N-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-propionamide

10

15

20

25

5

The above compound was synthesized from 2a via 6a as outlined in Scheme 2 using methods analogous to those used for Example 9. The acid (6a) (309mg, 0.8mmol), HBTU (303mg, 0.8mmol), DIPEA (140μl, 0.8mmol) were stirred in DMF (5ml) for 5 minutes before adding DIPEA (140μl, 0.8mmol) and [1-(5-methoxy-2-pyridyl)cyclohexyl]-methanamine (WO 98/07718) (185mg, 0.84mmol). HPLC indicated reaction complete within 1 hour. Solvent removed under reduced pressure and residue taken up in EtOAc. Washed with brine, saturated NaHCO₃ (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. Residue purified by chromatography using RP silica with 65% MeOH in H₂O. Pure fractions were evaporated to give Example 13 as a white amorphous solid (320mg, 68%):

MPt: 105-108°C:

MS m/e (ES+): 589.32 (M⁺ + H, 100%), 590.18 (62%);

IR (film): 3355, 2932, 2857, 2225, 1628, 1572, 1521, 1489, 1456, 1328, 1269, 1232, 1096, 1072, 1029, 938, 844, 741 cm⁻¹;

15

20

25

70

¹H NMR (CDCl₃): δ= 1.20-1.60 (8H, m), 1.70 (3H, s), 1.93-2.03 (2H, m), 3.30-3.52 (4H, m), 3.68 (3H, s), 5.30 (1H, s), 6.89 (1H, d, J=2.4 Hz), 6.94 (1H, d.d, J=8.8 and 2.9 Hz), 7.03-7.09 (2H, m,) 7.14-7.19 (1H, m), 7.20-7.25 (1H, m), 7.33 (1H, d, J=8.1 Hz), 7.46 (1H, d, J=7.8 Hz), 7.50 (1H, s), 7.63 (2H, d, J=8.5 Hz), 7.72 (2H, d, J=8.3 Hz); 8.00 (1H, d, J=2.9 Hz), 8.05 (1H, s);

HPLC A: Rt. 11.63 min, 97.7/100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 mm;

HPLC B: Rt. 9.20 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 10 1mlmin⁻¹, Prodigy ODSII 250x4.6mm 5µM, 215 and 254 mm.

Example 14

(S)-3-(1*H*-Indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl|-2-methyl-2-(4-phenyl-oxazol-2-ylamino)-propionamide

The above compound was synthesised from 2a via 6b as outlined in Scheme 2 using methods analogous to those used for Example 9. The acid (6b) (57mg, 0.148mmol), HBTU (56mg, 0.148mmol), DIPEA (26μl, 0.148mmol) were stirred in DMF (5ml) for 5 minutes before adding DIPEA (26μl, 0.148mmol) and [1-(5-methoxy-2-pyridyl)cyclohexyl]-methanamine (see WO 98/07718, 34mg, 0.148mmol). HPLC indicated that the reaction was complete within 2 hours. Solvent was removed under reduced pressure and the residue was taken up in EtOAc, washed with brine, sat. NaHCO₃ (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using RP silica with 70% MeOH in H₂O

as eluent. Repurification using NP 8g Biotage cartridge with 45% ethyl acetate in heptane as eluent gave the desired product as a glass (20mg, 24%):

MPt: 85-90°C;

5

10

15

20

25

MS m/e (ES+): 564.06 (M⁺, 87%), 564.96 (M⁺+ H, 100%);

JR (film): 3289, 2931, 2857, 1627, 1569, 1520, 1488, 1456, 1337, 1267, 1233, 1072, 1072, 1030, 939, 739 cm⁻¹;

¹H NMR (DMSO-d₆): δ= 0.95-1.45 (11H, m), 2.00-2.10 (2H, m), 3.10-3.25 (2H, m), 3.21 (1H, d, J=14.6 Hz), 3.59 (1H, d, J=14.6 Hz), 3.71 (3H, s), 6.84-7.14 (7H, m), 7.24-7.40 (5H, m,), 7.70 (2H, d, J=7.6 Hz), 8.05 (1H, s), 8.15 (1H, d, J=2.9 Hz), 10.82 (1H, s);

HPLC A: Rt. 12.01 min, 96.8/95.3% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm;

HPLC B: Rt. 17.27 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, Imlmin⁻¹, Prodigy ODSIII 250x4.6mm 5µM, 215 and 254 nm.

Example 15

(S)-2-(4-Ethyl-oxazol-2-ylamino)-3-(1*H*-ladol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-propionamide

The above compound was synthesized from 2a via 6c as outlined in Scheme 2 using methods analogous to those used for Example 9. The acid (6c) (188mg, 0.6mmol), HBTU (228mg, 0.6mmol), and DIPEA (105µl, 0.6mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (105µl, 0.6mmol) and [1-(5-methoxy-2-pyridyl)cyclohexyl]-methanamine (see WO 98/07718, 150mg, 0.65mm l). HPLC indicated that the reaction was complete within 4 hours. Solvent

was removed under reduced pressure and residue was taken up in EtOAc, washed with brine, sat. NaHCO₃ (x3), brine, dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using RP silica with 65% MeOH in H₂O. The product was repurified using 20g Mega Bond Elut silica cartridge with 45% ethyl acetate in heptane as cluent. Pure fractions were evaporated to give the above compound as a glass (30mg, 10%):

MPt: 60-65°C;

10

15

20

MS m/e (ES+): 516.24 (M⁺ + H, 47%), 517.01 (100%), 538.10 (M⁺ + Na, 25%);

IR (film): 3272, 3054, 2931, 2856, 1651, 1622, 1596, 1573, 1520, 1489, 1457, 1358, 1268, 1232, 1206, 1131, 1083, 1028, 949, 830, 740 cm⁻¹;

¹H NMR (DMSO-d₆): δ= 1.10-1.50 (8H, m), 1.11 (3H, t, J=7.4 Hz), 1.29 (3H, s), 2.05-2.15 (2H, m), 2.28-2.34 (2H, m), 3.08-3.18 (3H, m), 3.48 (1H, d, J=14.4 Hz), 3.79 (3H, s), 6.80-6.90 (3H, m), 6.97-7.04 (2H, m,), 7.10-7.20 (3H, m), 7.27-7.30 (2H, m), 8.17 (1H, d, J=2.9 Hz), 10.80 (1H, s);

LCMS: Rt. 1.36 min, 100% purity, 5-100% CH₃CN in H₂O (+0.1% Formic acid) over 2 min at 4 mlmin⁻¹, Prodigy ODSIII 50x4.6mm 5μM, 215 nm, MS m/e (ES+) 515.95 (100%);

HPLC B: Rt. 12.29 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 1 mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 215 and 254 nm;

Example 16

(S)-3-(1*H*-Indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-25 2-[4-(4-nitro-phenyl)-thiazol-2-ylamino]-propionamide

10

15

20

25

30

The above compound was synthesized using a one-pot procedure as outlined in Scheme 3. A suspension of H-S-oMeTrp-OH (Intermediate 7) (437mg, 2mmol), 2-chloro-4-(4-nitro-phonyl)-thiazole (see Peet, Norton P.: Sunder, Shyam, Reinvestigation of the reported preparation of 3-(4-nitrophenyl)thiazolo[2,3c][1,2,4]triazepines, J. Heterocycl. Chem. (1986), 23(2), 593-5; 481mg, 2mmol), copper (I) iodide (38mg, 0.2mmol), and K₂CO₃ (415mg, 3mmol) in DMF (12ml) under nitrogen was heated to 130°C for 12 hours. The reaction mixture was cooled to ambient temperature before adding HBTU (759mg, 2mmol) and [1-(5-methoxy-2pyridyl)cyclohexyl]-methanamine (see WO 98/07718; 441mg, 2mmol). The mixture was stirred overnight, then concentrated in vacuo, after which the residue was partitioned between water (20ml) and dichloromethane (30ml). The organic phase was separated and filtered through silica (3x12cm) using 500ml of dichloromethane and then 500ml of dichloromethano-other (1:1). Fractions containing product were concentrated under reduced pressure. The residue was absorbed onto 3.5g silica and purified by chromatography (3x11cm) using heptane-ethyl acetate (1:1.1). The product was repurified using RP chromatography (Biotage KP-C18-HS Flash 12M, 15ml.min⁻¹, 60-100% methanol in water). Concentration under reduced pressure gave the desired compound as a pale yellow amorphous solid (27mg, 2%):

MPt: 110-114°C:

MS m/e (AP+): 624.88 (M⁺, 100%), 625.70 (M⁺ + H, 52%);

IR (film): 3385, 3279, 2931, 2855, 1654, 1595, 1542, 1509, 1456, 1341, 1268, 1231, 1108, 1058, 908, 844, 731 cm⁻¹;

¹H NMR (CDCl₃): δ= 1.15-1.55 (8H, m), 1.71 (3H, s), 1.90-2.00 (2H, m), 3.16-3.42 (2H, m), 3.46 (1H, d, J=14.9 Hz), 3.60 (1H, d, J=14.6 Hz), 3.70 (3H, s), 5.51 (1H, s), 6.89-6.93 (3H, m), 6.98 (1H, d, J=8.8 Hz), 7.05-7.10 (1H, m), 7.15-7.25 (2H, m), 7.34 (1H, d, J=8.3 Hz), 7.47 (1H, d, J=7.8 Hz), 7.90 (2H, d, J=9.0 Hz), 7.98 (1H, d, J=2.9 Hz), 9.05 (1H, s), 8.21 (2H, d, J=8.8 Hz);

HPLC A: Rt. 12.30min, 99.4% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 200-300 nm;

HPLC B: Rt. 15.38min, 99.5% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 200-300 nm.

10

15

20

25

74

Example 17

(S)-2-(Benzooxazol-2-ylamino)-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

- The following reagents were combined in the order that they are listed: 1. Intermediate 7 (545mg, 2.5mmol), 2-chlorobenzoxazole (384mg, 2.5mmol), potassium carbonate (346mg, 2.5mmol), benzyltriethylammonium chloride (TEBA, 114mg, 0.5mmol), triethylamine (1.04ml, 7.5mmol), DMF (12.5ml), deoxygenated water (1.25ml), copper (I) iodide (24mg, 0.125mmol), trans-dichlorobis(tri-o-tolylphosphine)palladium(II) (99mg, 0.125mmol). After heating at 100°C under nitrogen for 24 hours the DMF was removed under reduced pressure. The residue was taken up in ethyl acetate/water and the aqueous phase was acidified to pH 6-6.5 using citric acid. The aqueous phase was extracted with three further portions of ethyl acetate. The combined organic layers were dried (MgSO₄) and solvent was removed under reduced pressure. The residue was purified by chromatography using 10g NP silica with 0-100% ethyl acetate in heptane. Crystallisation from dichloromethane gave (S)-2-(benzooxazol-2-ylamino)-3-(1*H*-indol-3-yl)-2-methyl-propionic acid (245mg. 29%). MS m/e (ES+) 335.97 (M⁺ + H, 100%), 336.69 (85%).
- 2. The propionic acid (234mg, 0.7mmol), HBTU (265mg, 0.7mmol), and DIPEA (122μl, 0.7mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (122μl, 0.7mmol) and [1-(2- pyridyl)cyclohexyl]methylamine (WO 98/07718; 140mg, 0.74mmol). After 4 hours at ambient temperature the solvent was removed under reduced pressure. The residue was purified by chromatography using NP silica

with 50% ethyl acetate in heptane as eluent. Pure fractions were evaporated to give the desired compound as fine needles (44mg, 3%):

MPt: 198-200°C;

5

10

15

MS m/e (ES $^+$): 508.59 (100%, M $^+$ + H), 509.92 (10%);

IR (film): 3381, 3222, 3048, 2929, 2856, 1635, 1581, 1552, 1519, 1458, 1353, 1241, 1096, 742 cm⁻¹;

¹H NMR (CDCl₃): $\delta = 1.20-1.60$ (8H, m), 1.76 (3H, s), 1.95-2.05 (2H, m), 3.34 (1H, d.d, J=13.2 and 4.9 Hz), 3.45 (1H, d.d, J=13.2 and 5.6 Hz), 3.50 (2H, s), 5.67 (1H, s), 6.78-6.82 (1H, m), 6.89 (1H, d, J=2.2 Hz), 6.99-7.35 (10H, m), 7.43 (1H, d, J=8.1 Hz), 8.01 (1H, s), 8.24 (1H, d, J=4.6 Hz);

HPLC A: Rt. 10.54 min, 100/100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm;

HPLC B: Rt. 10.67 min, 100/100% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin^{-1} , Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 nm;

10

15

20

76

Example 18

(S)-3-(1*H*-Indol-3-yl)-2-methyl-2-(pyridin-4-ylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

The above compound was prepared on the same scale and using an analogous method as used for Example 17.

- 1. The method of Example 17 was repeated except that 4-bromopyridine hydrochloride (486mg, 2.5mmol) was used.
- 2. The acid from step 1 (30mg, 0.1mmol), HBTU (38mg, 0.1mmol), and DIPEA (18µl, 0.1mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (18µl, 0.1mmol) and [1-(2- pyridyl)cyclohexyl]methylamine (WO 98/07718; 19mg, 0.1mmol). After 2 hours at ambient temperature the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate and washed with sodium bicarbonate solution (x2), brine, and dried (MgSO₄). The solvent was removed under reduced pressure. The crude product was purified by chromatography using 10g ISCO Redisep cartridge with ethyl acetate as eluent. Repurification using 20g RP-C18 with 70% methanol in water and subsequent evaporation gave the desired product in crystalline form (6mg, 13%):

MPt: 180-195°C;

MS m/e (AP $^+$): 468.12 (M $^+$ + H, 100%), 469.59 (M $^+$ + 2H, 20%);

MS m/e (AP): 467.56 (M, 45%), 466.60 (M - H, 100%), 465.64 (M - 2H, 88%);

25

IR (film): 3316, 2930,1651, 1602, 1515, 1430, 1106, 997, 816, 741 cm⁻¹;

NMR (CDCl₃): $\delta = 1.25-1.70$ (8H, m), 1.46 (3H, s), 2.00-2.10 (2H, m), 3.27 (1H, d, J=14.9 Hz), 3.30-3.48 (2H, m), 3.36 (1H, d, J=14.9 Hz), 4.43 (1H, s), 6.22 (2H, d, J=5.6 Hz), 6.85 (1H, d, J=2.0 Hz), 6.89-6.93 (1H, m), 7.11-7.37 (5H, m), 7.46-7.54 (2H, m), 8.08-8.13 (4H, m);

HPLC A: Rt. 7.21 min, 96.1/96.5% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm;

HPLC B: Rt. 6.02 min, 99.1/100% purity, 80:20 methanol/Tris buffer at pH9, 10^{-1} , Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 nm.

Example 19

(S)-3-(1*H*-Indol-3-yl)-2-(isoquinolin-4-ylamino)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

Example 19 was prepared on the same scale and using an analogous method as used for Example 17.

- 1. The method of Example 17 was followed except that 4-bromoisoquinoline 20 (520mg, 2.5mmol) was used.
 - 2. The acid from step 1 (40mg, 0.12mmol), HBTU (46mg, 0.12mmol), and DIPBA (21 μ l, 0.12mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPBA (21 μ l, 0.12mmol) and [1-(2- pyridyl)cyclohexyl]methylamine (WO 98/07718; 23mg, 0.12mmol). After 2 hours at ambient temperature the solvent was

removed under reduced pressure. The residue was taken up in ethyl acetate and washed with sodium bicarbonate solution (x2) and brine and dried (MgSO₄). The solvent was removed under reduced pressure. The crude product was purified by chromatography using 10g ISCO Redisep cartridge with 80% ethyl acetate in heptane as eluent. Repurification using 20g RP-C18 with 70% methanol in water and subsequent evaporation gave the desired product as a glass (9mg, 14%):

MPt: 98-101°C;

5

10

15

20

MS m/e (AP $^+$): 518.28 (100%, M $^+$ + H), 517.40 (M $^+$, 50%);

MS m/e (AP"): 516.53 (75%, M"), 515.63 (100%, M" - H);

IR (film): 3385, 3278, 3052, 2927, 2849, 1651, 1585, 1520, 1455, 1403, 1343, 781,740 cm⁻¹;

NMR (CDCl₃): δ = 1.20–1.65 (11H, m), 1.93–2.10 (2H, m), 3.35 (1H, d, J=14.6Hz), 3.39–3.52 (2H, m), 3.48 (1H, d, J=14.9 Hz), 4.62 (1H, s), 6.55–6.59 (1H, m), 6.90 (1H, d, J=2.0 Hz), 7.00 (1H, d, J=8.1 Hz), 7.17–7.28 (4H, m), 7.37–7.55 (4H, m), 7.62 (1H, s), 7.70 (1H, d, J=7.6 Hz), 7.74–7.76 (1H, m), 7.87 (1H, d, J=8.1 Hz), 8.15 (1H, s), 8.63 (1H, s)

HPLC A: Rt. 7.52 min, 100/100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 nm;

HPLC B: Rt. 8.33 min, 99.7/100% purity, 80:20 methanol/Tris buffer at pH9.

1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5µM, 215 and 254 nm;

Example 20

(S)-3-(1H-Indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-2-(pyrimidin-5-ylamino)-propionamide

The above compound was prepared on the same scale and using an analogous method as used for Example 17.

- 1. The method of Example 17 was followed except that 5-bromopyrimidine (397mg, 2.5mmol) was used.
 - 2. The acid from step 1 (150mg, 0.5mmol), HBTU (190mg, 0.5mmol), and DIPEA (87µl, 0.5mmol) were stirred in DMF (10ml) for 5 minutes before adding DIPEA (87µl, 0.5mmol) and [1-(2-pyridyl)cyclohexyl]methylamine (WO 98/07718; 95mg, 0.5mmol). After 2 hours at ambient temperature the solvent was removed under reduced pressure. The residue was taken up in ethyl acetate and washed with sodium bicarbonate solution (x2) and brine and dried (MgSO₄). The solvent was removed under reduced pressure. The crude product was purified by chromatography using 10g ISCO Redisep cartridge with 90% cthyl acetate in heptane as cluent. Removal of the solvent under reduced pressure gave the desired product as a foam (135mg, 58%):

MPt: 95-98°C;

MS m/e (AP⁺): 470.60 (25%), 469.58 (M⁺ +H, 100%), 468.77 (M⁺, 92%);

MS m/e (AP): 467.60 (M - H, 70%), 466.85 (100%);

IR (film): 3291, 3052, 2931, 2857, 1651, 1575, 1519, 1470, 1455, 1427, 1357, 1306, 1265, 1237, 1194, 1156, 1106, 1010, 848, 788, 739 cm⁻¹;

NMR (CDCl₃): δ = 1.20–1.65 (8H, m), 1.48 (3H, s), 2.00–2.10 (2H, m), 3.24–3.48 (4H, m), 4.14 (1H, s), 6.88–6.92 (2H, m), 7.13–7.24 (3H, m), 7.37 (1H, d, J=8.1 Hz), 7.48–7.55 (3H, m), 7.86 (2H, s), 8.08–8.10 (1H, m), 8.16 (1H, s), 8.57 (1H, s);

HPLC A: Rt. 8.94 min, 99.3/99.4% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm;

HPLC B: Rt. 5.76 min, 95.1/98.7% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin^{-1} , Prodigy ODSIII 250x4.6mm 5 μ M, 215 and 254 nm.

10

15

20

Example 21

(S)-2-(Biphenyl-2-ylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridiu-2-yl-cyclobexylmethyl)-propionamide

The above compound was prepared on the same scale and using an analogous method as used for Example 17.

1. The method of Example 18 except for the use of 2-bromo biphenyl (583mg, 2.5mmols).

10

15

20

5

2. The acid from step 1 (350mg, 0.95mmol), HBTU (400mg, 1mmol), NEt₃ (0.5ml, 3.5mmol), and 1-(2- pyridyl)cyclohexyl]methylamine (WO 98/07718; 200mg, 1mmol) were stirred in DMF (15ml). After 1 hour at ambient temperature the reaction mixture was diluted with ethyl acetate (100ml), washed with sodium bicarbonate solution (x2) and dried (MgSO₄). The solvent was removed under reduced pressure. The crude product was purified by chromatography using 0-50% ethyl acetate in heptane and then 0-30% dichloromethane in ether as eluent. Removal of the solvent under reduced pressure gave the desired product as a foam (98mg, 19% for step 2):

MS m/e (AP⁺): 565 (M⁺ + Na, 100%), 564 (80%), 542 (M⁺, 30%) IR (KBr disc): 3404, 2928, 2855, 1650, 1584, 1508, 1489, 1458, 1432 cm⁻¹:

NMR (DMSO-d₆): $\delta = 1.10$ -1.52 (8H, m), 1.27 (3H, s), 1.95-2.05 (2H, m), 2.95 (1H, d, J=14.4 Hz), 3.02-3.08 (1H, m), 3.08 (1H, d, J=14.6 Hz), 3.28-3.34 (1H,

m), 4.36 (1H, s), 6.37 (1H, d, J=8 Hz), 6.49 (1H, d, J=2.2 Hz), 6.71-6.75 (1H, m), 6.82-6.86 (1H, m), 6.95-7.43 (13H, m), 7.52-7.57 (1H, m), 8.33 (1H, d, J=3.7 Hz), 10.81 (1H, s);

HPLC A: Rt. 12.65min, 99.65% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5µM, 200-300 nm;

HPLC B: Rt. 33.05min, 99.89% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin^{-1} , Prodigy ODSIH 250x4.6mm 5 μ M, 200-300 nm.

Example 22

10

15

20

25

5

(S)-3-(1*H*-Indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-2-*m*-tolylamino-propionamide

The above compound was prepared using a one-pot procedure analogous to the method used for Example 16. The synthesis was carried out on 1mmol scale using 1-bromo-3-methyl-benzene (171mg, 1mmol). The crude product was purified by chromatography using 25g NP silica with 25% ethyl acetate in heptane as eluent. Removal of the solvent under reduced pressure gave the desired compound as a glass (260mg, 54%):

MPt: 70-75°C;

MS m/e (AP $^+$): 481.33 (100%, M $^+$ + H), 482.37 (40%);

IR (film): 3385, 3291, 3049, 2929, 2857, 1652, 1607, 1590, 1513, 1456, 1431, 1302, 1264, 1237, 1177, 1155, 1104, 1010, 774, 741 cm⁻¹;

NMR (DMS0-d₆): δ = 1.08-1.50 (8H, m), 1.19 (3H, s), 2.00-2.10 (2H, m), 2.16 (3H, s), 3.03 (1H, d.d, J=12.9 and 5.1 Hz), 3.10 (1H, d, J=14.7Hz), 3.22 (1H, d, J=14.6Hz), 3.24-3.30 (1H, m), 5.43 (1H, s), 6.29 (1H, s), 6.30 and 6.44 (each 1H,

15

20

each d, J=7.6 Hz), 6.87-7.07 (6H, m), 7.15-7.19 (1H, m), 7.29 (1H, d, J=8.0 Hz), 7.33 (1H, d, J=7.8 Hz), 7.48-7.54 (1H, m), 8.31 8.33 (1H, m), 10.81 (1H, s);

HPLC A: Rt. 11.04 min, 98.3% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 200-300 nm;

HPLC B: Rt. 16.87 min, 99.5% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μM, 200-300 nm.

Example 23

10 (S)-3-(1*H*-Indol-3-yl)-2-methyl-2-(6-phenyl-pyridin-2-ylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

The above compound was prepared using a one-pot procedure analogous to the method used for Example 16. The synthesis was carried out on 0.4mmol scale using 2-bromo-6-phenyl-pyridine (95mg, 0.4 mmol). The crude product was purified by chromatography using 25g NP silica with 55% ethyl acetate in heptane as cluent. Removal of the solvent under reduced pressure gave the desired product as a foam (260mg, 54%):

MS m/e (AP $^{+}$) 544.31 (100%, M $^{+}$ + H), 545.35 (35%);

MS m/e (AP') 542.29 (100%, M'-H), 543.31 (M', 40%);

IR (film): 3407, 3276, 3056, 2930, 2857, 1651, 1595, 1576, 1519, 1486, 1467, 1455, 1439, 1339, 1264, 1180, 1157, 1105, 1028, 1009, 991, 804, 763, 739 cm⁻¹;

NMR (CDCl₃) δ = 1.03–1.60 (8H, m), 1.53 (3H, s), 1.90-2.03 (2H, m), 3.32-3.45 (3H, m), 3.65 (1H, d, J=14.6Hz), 4.67 (1H, s), 6.13 (1H, d, J=8.3 Hz), 6.77-7.50 (14H, m), 7.97 (2H, d, J=7.1 Hz), 8.02 (1H, s), 8.23–8.25 (1H, m);

HPLC A: Rt. 4.21 min, 96.8% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 7 min at 1.5mlmin⁻¹, Prodigy ODSIII 150x4.6mm 5µM, 200-300 nm.

Example 24

5

(R)-3-Phenyl-2-phenylamino-N-[1-pyridin-2-yl-cyclohexylmethyl}-propionamide

The above compound was synthesised as a two step process from Intermediate 8 as shown in Scheme 4.

10

15

20

25

1. To a solution of Intermediate 8 (0.5g, 3mmol) and bromobenzone (0.35ml, 3.3mmol) in DMA (5ml) under nitrogen was added potassium carbonate (0.6g, 4.3mmol) and copper (I) iodide (50mg, 0.26mmol) after which the mixture was heated to 90°C for 1.5 hours. Solvent was removed under reduced pressure and the residue was purified by flash chromatography eluting with 5% methanol in dichloromethane. Removal of solvent under reduced pressure gave (R)-3-phcnyl-2-phenylamino-propionic acid as an oil (0.41g, 56%):

 $MS m/e (AP^+): 242 (M^+ + H, 100\%).$

1913 110 (A1). 242 (W. + H, 100%)

2. The acid from step 1 (0.40g, 1.66mmol), HBTU (0.6g, 1.8mmol), and NEt3 (0.5ml, 3.5mmol), and 1-(2-pyridyl)cyclohexyl]methylamine (WO 98/07718; 0.35mg, 1.8mmol) were stirred in DMF (15ml). After 1 hour at ambient temperature the reaction mixture was diluted with ethyl acetate (100ml), washed with sodium bicarbonate solution (x2) and dried (MgSO₄). The solvent was removed under reduced pressure. The crude product was purified by chromatography using 50% ethyl acetate in heptane and then RP C18 silica with 70% methanol in water as eluent.

B4

Removal of the solvent under reduced pressure gave the desired product as a white amorphous solid (0.15g, 22%):

MPt: 113-115°C;

 $MS \text{ m/c} (AP^{+}): 414.22 (M^{+} + H, 100\%);$

IR (KBr disc): 3300, 2931, 2858, 1649, 1605, 1589, 1523, 1498, 1432, 1318, 748 cm⁻¹:

NMR (CDCl₃): $\delta = 1.20-1.70$ (8H, m), 1. 90-2.15 (2H, m), 2.91 (1H, d.d, J=14.2 and 8.8 Hz), 3.27 (1H, d.d, J=14.2 and 4.4 Hz), 3.38 (1H, d.d, J=13.2 and 5.5 Hz), 3.48 (1H, d.d, J=13.2 and 6.1 Hz), 3.80 (1H, d, J=3.4 Hz), 3.88-3.93 (1H, m), 6.44 (2H, d, J=7.8 Hz), 6.74 (1H, t, J=11.3 Hz), 6.90-7.45 (11H,m), 8.28 (1H, d, J=3.6 Hz);

HPLC A: Rt. 4.51 min, 100% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 10 min at 1.5 mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 200-300 nm;

HPLC B: Rt. 13.15 min, 99.14% purity, 80:20 methanol/Tris buffer at pH9, 1minin^{-1} , Prodigy ODSIII 250x4.6mm 5 μ M, 200-300 nm.

15

10

5

Example 25

(S)-3-(1*H*-Indol-3-yl)-2-methyl-2-phenylethylamino-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

20

The above compound was prepared as shown in Scheme 5 via Intermediate 10.

25 1. To a stirred solution of H-(S)-aMeTrp-OH (7) (10g, 46mmol) and di-t-butyl-dicarbonate (10g, 46mmol) in dioxan (100ml) was added water (20ml) and potassium

carbonate (10g, 74mmol). After 4 hours the reaction mixture was acidified with 2N hydrochloric acid (150ml) and product was extracted with ethyl acetate (2 x 200ml). The combined organic phases were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by flash chromatography using ethyl acetate as eluent. Removal of solvent under reduced pressure gave Boc-(S)-otMeTrp-OH as an orange oil (14.5g, 99%). To a stirred solution of Boc-(S)-otMeTrp-OH (7g, 22mmol) in DMF (100ml) was added HBTU (8.0g, 22mmol), triethylamine (5ml, 35mmol), and [1-(2-pyridyl)cyclohexyl]methylamine (WO 98/07718; 4.2g, 22mmol). After 1 hour the reaction mixture was diluted with ethyl acetate (300ml), washed with 2N hydrochloric acid (2 x 200ml), dried (MgSO₄) and evaporated under reduced pressure at 60°C. The residue was purified by flash chromatography. Elution with 5% methanol in dichloromethane and subsequent removal of solvent under reduced pressure gave intermediate 9 as yellow oil (8.3g, 77%):

MS m/e (AP+): 491 (M⁺ + H, 100%), 513 (M⁺ + Na, 20%);

IR (film): 3339, 2929, 2858, 1704, 1659, 1651, 1589, 1519, 1487, 1366, 1249, 1164, 1070, 908, 737 cm⁻¹;

NMR (CDCl₃): δ = 1.20-1.70 (20H, m), 2.00-2.12 (2H, m), 3.25-3.50 (4H, m), 5.05-5.20 (1H, br.s), 6.92 (1H, d, J=2.0 Hz), 7.02-7.32 (6H, m), 7.51 (1H, d, J=8.0 Hz), 7.59-7.64 (1H, m), 8.03 (1H, s), 8.48 (1H, d, J=4 Hz).

20

25

30

5

10

15

2. To a stirred solution of Intermediate 9 (8.2g, 16.5mmol) in dichloromethane (100ml) was added trifluoroacetic acid (3.0ml, 39mmol). After 18 hours the solvent was removed under reduced pressure at 60°C. The residue was treated cautiously with saturated sodium carbonate solution (200ml) before extracting with ethyl acetate (3 x 200ml). The combined organic phases were dried (MgSO₄) and evaporated under reduced pressure at 60°C. The residue was purified by flash chromatography. Elution with 0-5% methanol in dichloromethane and subsequent removal of solvent under reduced pressure gave Intermediate 10 as white foam (4.85g, 75%):

MPt: 65-68°C;

MS m/e (AP+): 391 (M $^{+}$ + H, 100%);

IR (KBr disc): 3367, 2926, 2855, 1648, 1589, 1569, 1522, 1455, 1430, 1366, 1341, 1234, 842, 784, 742 cm⁻¹;

20

NMR (CDCl₃): $\delta = 1.20$ -1.80 (13H, m), 1.98-2.20 (2H, m), 2.83 (1H, d, J=14.2 Hz), 3.33 (1H, d, J=14.2 Hz), 3.38 (2H, d, J=5.6 Hz), 6.98-7.20 (6H, m), 7.50-7.75 (3H, m), 8.05-8.15 (1H, s), 8.49-8.51 (1H, m);

5 3. To a stirred solution of Intermediate 10 (293mg, 0.75mmol) and phenacetaldehyde (90mg, 0.75mmol) in 1,2-dichloroethane (20ml) was added solid sodium triacetoxyborohydride (316mg, 1.5mmol). After stirring overnight, saturated sodium bicarbonate solution was added – effervescence was observed. The aqueous phase was extracted with dichloromethane. The combined organic phases were dried (MgSO₄) and solvent was removed under reduced pressure. The residue was purified by chromatography using 20g RP-C18 with 0-50% methanol in water followed by 20g NP silica with 45% ethyl acetate in heptane. Removal of solvent under reduced pressure gave the desired compound as a glass (60mg, 16%):

MS m/e (ES⁺): 496.56 (28%), 495.5 (52%, M⁺ + H), 364.43 (22%), 269.34 (51%), 268.90 (88%), 248.37 (100%);

IR (film): 3274, 3058, 2928, 2856, 1651, 1588, 1568, 1519, 1469, 1454, 1431, 1355, 1263, 1236, 1155, 1117, 1053, 1030, 1009, 992, 930, 782, 742 cm⁻¹;

¹H NMR (CDCl₃): δ = 1.20-1.65 (11H, m), 2.00-2.20 (2H, m), 2.40-2.75 (4H, m), 2.94 and 3.05 (each 1H, each d, J=14.4 Hz), 3.41 (2H, d, J=6.1 Hz), 6.74 (1H, d, J=2.2 Hz), 7.04-7.25 (9H, m), 7.32 (1H, d, J=7.8 Hz), 7.55-7.60 (3H, m), 7.90 (1H, s), 8.55-8.58 (1H, m);

HPLC A: Rt. 8.52 min, 99.0/98.6% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm;

25 HPLC B: Rt. 23.84 min, 99.6/100% purity, 80:20 methanol/Tris buffer at pH9, 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5µM, 215 and 254 nm.

Example 26

(S)-2-[(Benzofuran-2-ylmethyl)-amino]-3-(1*H*-indol-3-yl)-2-methyl-/V-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

5

10

15

20

The above compound was prepared as shown in Scheme 5 via Intermediate 10.

To a stirred solution of Intermediate 10 (150mg, 0.38mmol) and benzofuran-2-carbaldehyde (56mg, 0.38mmol) in 1,2-dichloroethane (5ml) was added solid sodium triacetoxyborohydride (162mg, 0.77mmol). After stirring at room temperature for 48 hours saturated sodium bicarbonate solution was added – effervescence was observed. The aqueous phase was extracted with ethyl acetate. The combined organic phases were dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using 60% ethyl acetate in heptane. Removal of solvent under reduced pressure gave the desired product as an amorphous white solid (29mg, 15%):

MS m/e (\pm S⁺): 521.08 (M⁺ + H, 100%), 391.06 (50%);

IR (film): 3268, 3056, 2930, 2856, 1656, 1588, 1569, 1519, 1469, 1454, 1431, 1355, 1342, 1255, 1171, 1105, 1052, 1009, 909, 788, 740 cm⁻¹;

¹H NMR (CDCl₃): δ = 1.20-2.20 (14H, m), 3.08 (1H, d, J=14.4 Hz), 3.14 (1H, d, J=14.8 Hz), 3.45-3.49 (2H, m), 3.66 (1H, d, J=14.4 Hz), 3.76 (1H, d, J=14.8 Hz), 6.33 (1H, s), 6.84-6.88 (1H, m), 7.00-7.65 (12H, m), 8.32 (1H, s), 8.39 (1H, d, J=4.0 Hz);

10

15

20

25

88

HPLC A: Rt. 8.86 min, 99.7/99.1% purity, 20-100% CH₃CN in H₂O (+0.1%TFA) over 15 min at 1mlmin⁻¹, Prodigy ODSIII 250x4.6mm 5μ M, 215 and 254 nm.

Example 27

(S)-3-(1*H*-Indol-3-yl)-2-methyl-2-(4-nitro-benzylamino)-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide

The above compound was prepared as shown in Scheme 5 via Intermediate 10. To a stirred solution of Intermediate 10 (150mg, 0.38mmol) and 4-nitrobenzaldehyde (58mg, 0.38mmol) in 1,2-dichlorocthane (5ml) was added solid sodium triacetoxyborohydride (114mg, 0.54mmol). After stirring at room temperature for 24 hours saturated sodium bicarbonate solution was added – effervescence was observed. The aqueous phase was extracted with ethyl acctate. The combined organic phases were dried (MgSO₄) and solvent removed under reduced pressure. The residue was purified by chromatography using 60% ethyl acetate in heptane. Repurification using RP silica with 45% methanol in water (+ 1% acetic acid) gave pure product. The pure fractions were combined, basified (sodium carbonate), and extracted with ethyl acetate. Removal of solvent under reduced pressure gave the desired compound as a glass (10.5mg, 5%):

MPt: 58-60°C;

MS m/e (ES⁺): 526.15 (M⁺ + H, 100%), 527.14 (33%):

IR (film): 3365, 2924, 2856, 1652, 1513, 1429, 1346, 1257, 1048 cm⁻¹; ¹H NMR (DMSO- d_6): $\delta = 1.10-1.55$ (8H, m), 1.19 (3H, s), 1.88-2.08 (2H, m), 2.25-2.30 (1H, m), 2.95-3.02 (2H, m), 3.10-3.20 (1H, m), 3.17-3.27 (1H, m), 3.50-3.80

(2H, m), 6.93-7.63 (11H, m), 8.12 (2H, d, J=8.8 Hz), 8.42 (1H, d, J=3.6 Hz), 10.86 (1H, s).

Example 28

5

10

15

20

25

30

BB₁ and BB₂ Binding Assays

In the following experiments, measurement of BB1 and BB2 binding was as follows. CHO-K1 cells stably expressing cloned human NMB (for (BB1 assay) and GRP receptors (for BB2 assay) were routinely grown in Ham's F12 culture medium supplemented with 10% foetal calf serum and 2 mM glutamine. For binding experiments, cells were harvested by trypsinization, and stored frozen at -70°C in Ham's F12 culture medium containing 5% DMSO until required. On the day of use, cells were thawed rapidly, diluted with an excess of culture medium, and centrifuged for 5 minutes at 2000 g. Cells were resuspended in 50 mM Tris-HCl assay buffer (pH 7.4 at 21°C, containing 0.02% BSA, 40µg/mL bacitracin, 2µg/mL chymostatin, $4\mu g/mL$ leupeptin, and $2\mu M$ phosphoramidon), counted, and polytronned (setting 5. 10 sec) before centrifuging for 10 minutes at 28,000 g. The final pellet was resuspended in assay buffer to a final cell concentration of 1.5×10^5 /mL. For binding assays, 200 µL aliquots of membranes were incubated with [125I][Tyr4]bombesin (<0.1 nM) in the presence and absence of test compounds (final assay volume 250µL) for 60 minutes and 90 minutes for NMB and GRP receptors, respectively. Nonspecific binding was defined by $1\mu M$ bombesin. Assays were terminated by rapid filtration under vacuum onto Whatman GF/C filters presoaked in 0.2% PBI for >2 hours, and washed 50 mM Tris-HCl (pH 6.9 at 21°C; 6×1 mL). Radioactivity bound was determined using a gamma counter.

All competition data was analysed using nonlinear regression utilizing iterative curve-plotting procedures in Prism⁶⁰ (GraphPad Software Inc., San Diego, USA). IC₅₀ values were corrected to K₁ values using the Cheng-Prusoff equation (Cheng Y., Prusoff W. H., *Biochem. Pharmacol.* 22: 3099-3108, 1973).

The results obtained are listed in Table 1.

Table 1: Human NMB and GRP receptor binding affinities

Example No.	NMB K _i (nM)	GRP K _i (nM)
9	4	24
10	469	
11	5580	-
12	16	2820
13	19	1385
14	106	1190
15	213	1770
16	15	
17	2080,	
18	303	
19	1249	
20	3163	
21	824	
22	653	
23	3371	
24	137	
25	616	2620
26	2400	
27	652	<u> </u>

5

10

Example 29

Effect of (S)-3-(1*H*-Indol-3-yl)-*N*-[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-2-methyl-2-[4-(4-nitro-phenyl)-oxazol-2-ylamino]-propionamide (Compound (2)) in PEG200 on female rat sexual proceptivity

LUCAS & CO.

THE !	ATENT	Office	FROM:	LUCAS	4 G.
PAX NUMBER:			DATE		
COMPANY:			TOTAL 1	O. OF PAGES INCLUDI	NG COVER: 50
PHONE NUMBER:			SENDER	S REFERENCE NUMBER	<u>.</u>
RE ₄	YOUR REFERENCE NUMBER				
URGENT FOR	review C	I please com	amen't	□ please reply	DPLEASE RECYCL
NOTES/COMMENTS:	······································				

PART 3

135 WESTHALL ROAD • WARLINGHAM • SURREY CR6 9HJ PHONE: 01883 626211 • FAX: 01883 622997

10

15

20

25

30

Ovariectomised adult female Sprague Dawley rats (180-200g, from Charles River) were housed in groups of 6 in a reversed lighting system of 12h light:dark (lights off 7.00-19.00h). Two weeks after ovariectomy they were used for sexual activity tests. Animals were adapted to the apparatus (in the absence of stimuli animals) for 10min on 2 consecutive days prior to testing. The experiments started at least 5h into the dark period.

Tests were carried out in a circular arena of 90cm diameter, surrounded by a 30cm high wall. Two small cages with wire-mesh front (15x15cm) are fixed into the wall such that the front of the cage is "flush" with the wall and the 2 cages are opposite each other. They contain two stimuli animals: an intact sexually experienced male and a receptive female (ovariectomised, primed with 5µg oestradiol benzoate dissolved in corn oil and injected subcutaneously 48 hours before the test and with 0.5 mg of progesterone four hours before the test). Sexually naive test and control animals were used. Forty eight hours before the tests, both the test and control animals were primed with 5µg oestradiol benzoate. Test animals were treated with the above compound (30-100mg/kg) which was dissolved in PEG 200 vehicle and administered orally in a 1ml/kg volume 1h before each test. For animals used as positive controls, progesterone (0.5mg/0.1ml) was dissolved in corn oil and administered subcutaneously (s.c.), 4h before the test, Test and control animals were introduced one at a time for 10 minute periods into the arena. During the 10min test, the time that the test or positive control animal spent investigating each stimulus animal was noted. The arena was thoroughly cleaned between animals. The position of the male/female stimuli boxes was randomised between animals, in order to avoid place preference. The difference in the percentage of time spent investigating male minus female was calculated, out of the total time spent investigating stimuli animals.

It was found (see Figure 19) that the above compound dose-dependently (30-100) increased the percentage of time spent investigating the male stimulus, with a MED of 100mg/kg (see below). The effect of this dose was similar to the effect of progesterone (maximal). (*P<0.05, * P<0.01 Kruskal-Wallis followed by Mann-Whitney test, vs vehicle).

Example 30

Effect of Compound (2) in methyl cellulose on female rat sexual proceptivity.

Example 31 was repeated except that the above compound (3-30 mg/kg) was dissolved in 0.5% methyl cellulose and was administered p.o. in a dosing volume of 3ml/kg 1h before tests. Progesterone, (0.5mg/0.1ml) was dissolved in corn oil and administered s.c., 4h before test, as a positive control.

The above compound dose-dependently (3-30mg/kg) increased the percentage of time spent investigating the male stimulus, with a MED of 10mg/kg. This represents a 10-fold increase in potency compared to the oral results obtained in the PEG200 vehicle (MED=100mg/kg). The results are shown in Figure 20 in which bars represent percentage of time spent investigating male, minus the percentage of time spent investigating male, minus the percentage of time spent investigating the female stimuli±SEM, (n=6-9 per group). *P<0.05, **P<0.01 kg vehicle (One-way ANOVA followed by Dunnett's test vs vehicle group).

Example 31

Effect of Compound (2) in PEG 200 on female rat sexual receptivity.

20

5

10

15

Ovariectomised adult female Sprague Dawley rats (180-200g, from Charles River) were housed in groups of 6 in a reversed lighting system of 12h light:dark (lights off 7.00-19.00h). Two weeks after ovariectomy they were used for sexual activity tests. The experiments started at least 5h into the dark period.

25

The above compound was dissolved in PEG200 vehicle and administered orally. Quinelorane dihydrochloride (LY 163,502, 6.25µg/kg) was dissolved in water and administered subcutaneously (s.c.), as a positive control. Both compounds were administered in a 1ml/kg volume.

Forty eight hours before tests, the animals were primed with Sµg oestradiol benzoate (Sigma Chemical. Co. Ltd., UK) dissolved in corn oil and injected subcutaneously. The females were placed with a series of vigorous male rats and subjected to 10 mounts. The lordotic response of the animal was recorded and expressed as a percentage of the mounts (i.e. lordosis quotient, LQ). Treatment induced LQ=0-10% in most of the animals, which were considered non-receptive (NR). Animals showing higher LQ were not included in the study. Each rat was tested prior to administration of the compound and then tested similarly at 1h and 90min post-injection of the above compound or quinelorane respectively.

10

A single administration of quinelorane (6.25μg/kg) significantly (P<0.01) increased the LQ, 90min after administration, compared to the LQ shown before administration (paired t test). A single oral administration of the above compound dose-dependently (10-100mg/kg) increased the LQ lh after administration, with a MED of 100mg/kg (P<0.01) compared to the LQ shown before administration (paired t test). The effect of the above compound (100mg/kg) was similar to the effect of quinelorane (6.25μg/kg) as is shown in Flgure 21.

Synthesis Example (compounds of formula (III))

20

15

(S)-2-Amino-3-(1 *H*-indol-3-yl)-2-methyl-*N*-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide (Intermediate III-7) and (S)-2-Amino-3-(1 *H*-indol-3-yl)-2-methyl-*N*-(1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl)-propionamide (Intermediate III-6)

25

30

In reaction scheme 7 below, Intermediates III-6 and III-7 are made by (i) protecting the amino group of the starting amino acid a with di-t-butyl carbonate and potassium carbonate in dioxane/water, (ii) forming an amide by reaction of the N-protected amino acid with an amine <u>b1</u> or <u>b2</u> in dimethylformamide in the presence of O-benzotriazol-1-yl-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) and N,N-diisopropyl-ethylamine (DIPEA), and (iii) deprotecting the amino group of the product <u>c1</u> or <u>c2</u> by reaction with trifluoroacetic acid in dichloromethane.

Intermediate III-7 R = H Intermediate III-8 R = OMe

- 5 i. BOC₂O, K₂CO₃, dioxane, water
 - ii. HBTU, DIPEA, DMF
 - iii. TFA, CH2Cl2

15

10 {(S)-2-(1-*H*-Indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid *test*-butyl ester (c1)

(1) To a stirred solution of H-(S)-ciMeTrp-OH (a) (10g, 46mmol) and di-t-butyl-dicarbonate (10g, 46mmol) in dioxane (100ml) was added water (20ml) and potassium carbonate (10g, 74mmol). After 4 hours the reaction mixture was acidified with 2N hydrochloric acid (150ml) and product extracted with ethyl acetate (2 x 200ml). The combined organic phases were dried (MgSO₄) and evaporated under

10

15

25

30

reduced pressure. The residue was purified by flash chromatography, eluting with ethyl acetate. Removal of solvent under reduced pressure gave Boc-(S)-aMeTrp-OH as orange oil (14.5g, 99%).

(2) To a stirred solution of Boc-(S)-oMeTrp-OH (7g, 22mmol) in DMF (100ml) was added HBTU (8.0g, 22mmol), triethylamine (5ml, 35mmol), and [1-(2-pyridyl)cyclohexyl]methylamine (b1, 4.2g, 22mmol, described in WO 98/07718). After 1 hour the reaction mixture was diluted with ethyl acetate (300ml) and washed with 2N hydrochloric acid (2 x 200ml), dried (MgSO₄) and evaporated under reduced pressure at 60°C. The residue was purified by flash chromatography. Elution with 5% methanol in dichloromethane and subsequent removal of solvent under reduced pressure gave e1 as yellow oil (8.3g, 77%):

IR (film): 3339, 2929, 2858, 1704, 1659, 1651, 1589, 1519, 1487, 1366, 1249, 1164, 1070, 908, 737 cm⁻¹:

NMR (CDCl₃): δ = 1.20-1.70 (20H, m), 2.00-2.12 (2H, m), 3.25-3.50 (4H, m), 5.05-5.20 (1H, br.s), 6.92 (1H, d, J=2.0 Hz), 7.02-7.32 (6H, m), 7.51 (1H, d, J=8.0 Hz), 7.59-7.64 (1H, m), 8.03 (1H, s), 8.48 (1H, d, J=4 Hz);

MS m/e (AP+): $491 \text{ (M}^+ + \text{H}, 100\%), 513 \text{ (M}^+ + \text{Na}, 20\%).}$

20 (3) (S)-2-Amino-3-(1*H*-indol-3-yl)-2-methyl-*N*-(1-pyrldin-2-yl-cyclohexyl methyl)-propionamide (Intermediate III-7)

To a stirred solution of £1 (8.2g, 16.5mmol) in dichloromethane (100ml) was added trifluoroacetic acid (3.0ml, 39mmol). After 18 hours the solvent was removed under reduced pressure at 60°C. The residue was treated cautiously with saturated sodium carbonate solution (200ml) before extracting with ethyl acetate (3 x 200ml). The combined organic phases were dried (MgSO₄) and evaporated under reduced pressure at 60°C. The residue was purified by flash chromatography. Elution with 0-5% methanol in dichloromethane and subsequent removal of solvent under reduced pressure gave Intermediate III-7 as white foam (4.85g, 75%).

MPt: 65-68°C;

IR (KBr disc): 3367, 2926, 2855, 1648, 1589, 1569, 1522, 1455, 1430, 1366, 1341, 1234, 842, 784, 742 cm⁻¹:

NMR (CDCl₃): $\delta = 1.20$ -1.80 (13H, m), 1.98-2.20 (2H, m), 2.83 (1H, d, J=14.2 H₂), 3.33 (1H, d, J=14.2 H₂), 3.38 (2H, d, J=5.6 H₂), 6.98-7.20 (6H, m), 7.50-7.75 (3H, m), 8.05-8.15 (1H, s), 8.49-8.51 (1H, m);

MS m/e (AP+): $391 (M^+ + H, 100\%)$.

{(S)-2-(1-*H*-Indol-3-yl)-1-methyl-1-[(1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl)-carbamoyl]-ethyl}-carbamic acid *tert*-butyl ester (<u>c2</u>)

To a stirred solution of Boc-(S)- α MeTrp-OH (1.44g, 4.5mmol) in DMF (50ml) was added HBTU (1.72g, 4.5mmol), DIPEA (2.38ml, 13.6mmol), and [1-(5-methoxy-2-pyridyl)cyclohexyl]methanamine (1g, 4.5mmol). After over night the reaction mixture was diluted with ethyl acetate (300ml) and water, dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by flash chromatography. Elution with ethylacetate/heptane (1:1) and subsequent removal of solvent under reduced pressure gave <u>c2</u> as an oil (2.207g, 94%).

NMR (CDCl₃): $\delta = 1.24-1.60$ (8H, m), 1.39 (9H, s), 1.52 (3H, s), 2.00-2.18 (2H, m), 3.20-3.43 (4H, m), 3.82 (3H, s), 6.92 (1H, d, J=2.4 Hz), 7.02-7.20 (6H, m), 7.30 (1H, d, J=6.0 Hz), 7.51 (1H, d, J=8Hz), 8.00 (1H, s), 8.17 (1H, d, J=2.8Hz).

MS m/e (ES+): 521.36 (M⁺ + H, 100%), 543.25 (M⁺ + Na).

Intermediate III-6

10

L5

20

To a stirred solution of £2 (2.2g, 4.2mmol) in dichloromethane (10ml) was added trifluoroacetic acid (5ml, excess). After stirring over night the reaction mixture was taken up in 1N HCl and extracted with diethylether. Organic phase discarded. The aqueous phase was basified cautiously with saturated sodium carbonate solution before extracting with cthyl acetate (3 x 50ml). The combined organic phases were dried (MgSO₄) and evaporated under reduced pressure at 60°C to give Intermediate III-6 as a glass (1.253g, 71%).

IR (film): 3272, 2930, 2857, 1651, 1595, 1573, 1520, 1489, 1478, 1455, 1393, 1358, 1291, 1268, 1232, 1181, 1150, 1131, 1030, 1012, 831, 741 cm⁻¹; NMR (DMSO): $\delta = 1.10$ -1.65 (13H, m), 1.80-1.90 (1H, m), 2.00-2.10 (1H, m), 2.70 (1H, d, J=13.9 Hz), 3.10 (1H, d, J=13.9 Hz), 3.10-3.22 (2H, m), 3.77 (3H,s), 6.93-7.07 (4H, m), 7.16-7.19 (1H, m), 7.32 (1H, d, J=8.1 Hz), 7.48-7.55 (2H, m), 8.21 (1H, d, J=3.2 Hz), 10.88 (1H, s);

MS m/e (ES+): 421.27 (M⁺ + H, 100%), 443.26 (M⁺ + Na).

Examples 32-86

10

N-acyl derivatives of Intermediate III-6 and III-7

Scheme 8 describes the synthesis of N-acyl derivatives of Intermediates III-7 and III-6.

15

Scheme 8

Examples 32-85

Example 86

HBTU, DIPBA, DMF

In scheme 8, R1 represents the rest of the carboxylic acid \underline{d} molecule. These

20 intermediates d are listed in table 2.

10

15

N-acyl derivatives of Intermediate III-7

To acid d (0.18 mmol) was added 0.50 M HBTU in DMF (300 μL, 0.15 mmol), 1.0 M disopropylethylamine in DMF (300 μL, 0.30 mmol) and 0.40 M Intermediate III-7 in DMF (375 μL, 0.15 mmol). The solution was shaken on an orbital shaker at room temperature for 18 h. Water (1.0 mL) was added and the mixture was loaded onto a LC-18 SPE cartridge (0.5 g sorbent) and the cartridge was eluted with water (3 mL), 25% methanol/water (3 mL), 50% methanol/water (4 mL) and methanol (4.5 mL)). The methanol fraction was concentrated and analysed by LCMS. When the purity was <90% the product was further purified by prep. HPLC (column: Phenomenex primesphere 10 μ C18-HC 110A, 100x21.20 mm; mobile phase: methanol / water 10 to 100% gradient). The products were characterised and analysed by LCMS (column: 50x4.6 mm Prodigy ODSIII (5μ) column; mobile phase: acetonitrile / water (0.1% formic acid) 5 to 100% gradient over 2 min, held at 100% acetonitrile for 1 min; flow rate 4 mL/min; UV detection at 215 nm; mass spec: 150-900 Da full scan APCI+ centroid data)

The following products were made by the above method, with the starting material listed in Table 2 and gave the test results indicated in Table 3:

TABLE 2

Example	Intermediate <u>d</u>	
32	Benzoic acid	
33	4-Methyl-benzoic acid	
34	4-Chloro-benzoic acid	
35	4-Methoxy-benzoic acid	
36	4-Nitro-benzoio acid	
37	4-Methanesulfonyl-benzoic acid	

38 3-Cyzno-benzoic acid 39 3-Chloro-benzoic acid 40 3-Methoxy-benzoic acid 41 3-Methanesulfonyl-benzoic acid 42 3-Dimethylamino-benzoic acid 43 3-Methyl-benzoic acid 44 2-Chloro-benzoic acid 45 2-Nitro-benzoic acid 46 2-Methoxy-benzoic acid	
40 3-Methoxy-benzoic acid 41 3-Methanesulfonyl-benzoic acid 42 3-Dimethylamino-benzoic acid 43 3-Methyl-benzoic acid 44 2-Chiore-benzoic acid 45 2-Nitro-benzoic acid	
41 3-Methanesulfonyl-benzoic acid 42 3-Dimethylamino-benzoic acid 43 3-Methyl-benzoic acid 44 2-Chioro-benzoic acid 45 2-Nitro-benzoic acid	
42 3-Dimethylamino-benzoic acid 43 3-Methyl-benzoic acid 44 2-Chlore-benzoic acid 45 2-Nitro-benzoic acid	
43 3-Methyl-benzoic acid 44 2-Chloro-benzoic acid 45 2-Nitro-benzoic acid	
44 2-Chloro-benzoic acid 45 2-Nitro-benzoic acid	
45 2-Nitro-benzoic acid	
46 2 Methorsy-hangoin said	
40 2-telenoxy-beazone acid	
47 2-Methyl-benzoic acid	
48 2-Dimethylamino-benzoic acid	
49 2-Fluoro-benzoic acid	
50 p-Tolyl-acctic acid	····
51 o-Tolyl-acetic acid	
52 (4-Hydroxy-phenyl)-acetic acid	•
53 (3-Hydroxy-phenyl)-acetic acid	
54 m-Tolyl-acetic acid	
55 (2-Fluoro-phenyl)-acetic acid	•
56 Thiophen-3-yl-acetic acid	
57 Pyridine-2-carboxylic acid	
58 Isonicotinic acid	
59 Furan-3-carboxylic acid	,
60 Furan-2-carboxylic acid	
61 1H-Indole-2-carboxylic acid	
62 5-Methyl-isoxazole-3-carboxylic acid	
63 1-Mcthyl-1H-pyrrole-2-carboxylic acid	
64 Thiophene-2-carboxylic acid	

65	Thiophene-3-carboxylic acid
66	1H-Indole-6-carboxylic acid
67	1H-Indole-5-carboxylic acid
68	1H-Indole-4-carboxylic acid
69	1H-Indole-7-carboxylic acid
70	1-Methyl-1H-indole-2-carboxylic acid
71	Benzo[b]thiophene-2-carboxylic acid
72	Benzothiazole-6-carboxylic acid
73	1H-Benzotriazole-5-carboxylic acid
74	3-Methyl-thiophene-2-carboxylic acid
75	5-Methyl-thiophene-2-carboxylic acid
76	6-Methyl-pyridine-2-carboxylic acid
77	Isoquinoline-3-carboxylic acid
78	Quinoxaline-2-carboxylic acid
79	Quinoline-8-carboxylic acid
80	5-Phenyl-oxazole-4-carboxylic acid
81	2-Pyrrol-1-yl-benzoic acid
82	(4-Methoxy-phenyl)-acetic acid
83	(4-Dimethylamino-phenyl)-acetic acid
84	(2-Nitro-phenyl)-acetic acid
85	(2-Methoxy-phenyl)-acetic acid
86	1H-Indole-2-carboxylic acid

TABLE 3

Example No	Product	MH ⁺	Parity %	LCMS Ret time (min)	BB1 IC50 (nM)	BB2 IC50 (nM)
.32	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-benzamide	494,64	100	1.71	2499	IA
33	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-4-methyl-benzamide	508,67	95	1.76	2499	IA
34	4-Chloro-N-{(S)-2-(1H-indol-3-yl)- 1-methyl-1-[(1-pyridin-2-yl- cyclohexyl-methyl)-carbamoyl]- ethyl}-benzamide	529,09	94	1.84	1349	IA
35	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-4-methoxy-benzamide	524,67	94	1.68	2879	IA
36	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- l-[(I-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-4-nitro-benzamide	539,64	80	1.79	343	IA
37	N-{(\$)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- cthyl}-4-methanesulfonyl-benzamide	572,73	95	1.60	2272	IA
38	3-Cyano-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-benzamide	519,65	91	1.71	2042	IA
39	3-Chloro-N-{(S)-2-(1H-indol-3-yl)- 1-methyl-1-[(1-pyridin-2-yl- cyclohexyl-methyl)-carbamoyl]- cthyl}-benzamide	529,09	97	1.84	1269	ÍA
40	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- cthyl}-3-methoxy-benzamid	524,67	98	1.73	2859	IA

41	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-3-methanesulfonyl-benzamide	572,73	95	1.60	3051	IA
42	Dimethylamino-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexyl-methyl)-carbamoyl}-ethyl}-bonzamide	537,71	91	1.74	2518	IA
43	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-3-methyl-benzamide	508,67	100	1.79	2351	ĪA
44	2-Chloro-N-{(S)-2-(1H-indol-3-yl)- 1-methyl-1-[(1-pyridin-2-yl- cyclohexyl-methyl)-carbamoyl}- ethyl}-benzamide	529,09	98	1.79	3229	IA
45	N-{(\$)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-2-nitro-benzamide	539,64	91	1.71	4581	IA
46	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-2-methoxy-benzamide	524,67	100	1.73	2559	IA
47	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-2-methyl-benzamide	508,67	100	1.79	3283	IA
48	C-Dimethylamino-N-{(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexyl-methyl)-carbamoyl]-ethyl}-benzamide	537,71	93	1.79	716	IA
49	2-Fluoro-N-{(S)-2-(1H-indol-3-yl)- 1-methyl-1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- cthyl}-benzamide	512,63	98	1.76	3949	IA
50	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-p-tolyl-ethanoylamino)- propionamide	522,70	94	1.76	944	ĮĄ
51	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-o-tolyl-cthanoylamino)- propionamide	522,70	98	1.76	944	IA

	(C) O FO (4 IT. 1 1 1 1)	504.65	0-	1	1 63	
52	(S)-2-[2-(4-Hydroxy-phenyl)- ethanoylamino]-3-(1H-indol-3-yl)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	524,67	96	1.50	3135	ĮA.
53	(S)-2-[2-(3-Hydroxy-phenyl)- ethanoylamino]-3-(1H-indol-3-yl)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	524,67	90	1.52	1437	ΙA
54	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-m-tolyl-ethanoylamino)- propionamide	522,70	95	1.76	817	IA
55	(S)-2-[2-(2-Fluoro-phenyl)- cthanoylamino]-3-(1H-indol-3-yl)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	526,66	94	1.71	878	1546
56	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-thiophen-3-yl-ethanoylamino)- propionamide	514,70	93	1.65	1437	ΙA
57	Pyridine-2-carboxylic acid {(S)-2- (1H-indol-3-yl)-1-methyl-1-[(1- pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-amide	495,63	98	1.68	3709	IA
58	N-{(S)-2-(1H-Indol-3-yl)-1-methyl- 1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-isonicotinamide	495,63	98	1.47	1365	IA
59	Furan-3-carboxylic acid {(S)-2-(1H-indoI-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide	484,60	97	1.60	1204	IA
60	Furan-2-carboxylic acid {(S)-2-(1H-indol-3-yl)-1-methyl-1-[(1-pyridin-2-yl-cyclohexylmethyl)-carbamoyl]-ethyl}-amide	484,60	100	1.60	1204	IA.
61	1H-Indole-2-carboxylic acid {(S)-2- (1H-indol-3-yl)-1-methyl-1-[(1- pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-amide	533,68	100	1.79	289	527
62	5-Methyl-isoxazole-3-carboxylic acid {(\$)-2-(1H-indol-3-yl)-1- methyl-1-[(1-pyridin-2-yl- cyclohexylmethyl)-carbamoyl]- ethyl}-amide	499,62	94	1.46	4127	IA

<u> </u>	1-Methyl-1H-pyrrole-2-carboxylic	497,65	96	1.46	4819	
63		497,03	סכ	1.40	4013	-
	acid ((S)-2-(1H-indol-3-yl)-1-				,	ļ
:	methyl-1-[(1-pyridin-2-yl-		i		l]
į	cyclohexylmethyl)-carbamoyl]-					Ì
	ethyi}-amide			1		
64	Thiophene-2-carboxylic acid ((S)-2-	500,67	100	1.42	1437	IA
04		200,07	100	A - 72	1757	M
	(1H-indol-3-yl)-1-methyl-1-[(1-					1
-	pyridin-2-yl-cyclohexylmethyl)-					
	carbamoyl]-ethyl}-amide					
65	Thiophene-3-carboxylic acid {(S)-2-	500,67	100	1.39	2201	IA
	(1H-indol-3-yl)-1-methyl-1-[(1-			l		
	pyridin-2-yl-cyclohexylmethyl)-					
	carbamoyl]-ethyl}-amide					l (
		522.60	100	1.42	1504	3.4
66	1H-Indole-6-carboxylic acid {(S)-2-	533,68	100	1.42	1604	1A
	(1H-indol-3-yl)-1-methyl-1-[(1-	•				
	pyridin-2-yl-cyclohexylmethyl)-				[,	
	carbamoyl]-ethyl)-amide					
67	1H-Indole-5-carboxylic acid {(S)-2-	533,68	100	1.35	1881	IA
"	(1H-indol-3-yl)-1-methyl-1-[(1-	,				
		••				
	pyridin-2-yl-cyclohexylmethyl)-			ļ		
	carbamoyl]-ethyl}-amide					
68	1H-Indole-4-carboxylic acid {(S)-2-	533,68	99	1.35	4503	ĭA ,
	(1H-indol-3-yl)-1-methyl-1-[(1-			ŀ		
1	pyridin-2-yl-cyclohexylmethyl)-					
	carbamoyi]-cthyl}-amide					
69	1H-Indole-7-carboxylic acid {(S)-2-	533,68	100	1.60	1369	ĬA
09		333,00		1.00	1202	}
	(1H-indol-3-yl)-1-methyl-1-[(1-					
	pyridin-2-yl-cyclohexylmethyl)-					
	carbamoyl]-ethyl)-amide			}	<u> </u>	
70	1-Methyl-1H-indole-2-carboxylic	547,71	100	1.70	1233	TA.
	acid {(S)-2-(1H-indol-3-yl)-1-				ļ	
	methyl-1-[(1-pyridin-2-yl-			1		
	cyclohexylmethyl)-carbamoyl]-				ł	
	1			İ		
	ethyl}-amide	660.60	100	1		71
71	Benzo[b]thiophene-2-carboxylic acid	550,73	100	1.63	611	ĬA.
	((S)-2-(1H-indol-3-yl)-1-methyl-1-					
	[(1-pyridin-2-yl-cyclohexylmethyl)-			ı		
	carbamoyl]-ethyl}-amide				1	
72	Benzothiazole-6-carboxylic acid	551,72	95	1.35	897	1495
<i>''</i>	{(S)-2-(1H-indol-3-yl)-1-methyl-1-					
1				1		
	[(1-pyridin-2-yl-cyclohexylmethyl)-				}	
	carbamoyl]-ethyl}-amide			<u> </u>		Ļ
73	1H-Benzotriazole-5-carboxylic acid	535,65	95	1.25	3167	j -
	{(S)-2-(1H-indol-3-yl)-1-methyl-1-				1	
]	[(1-pyridin-2-yl-cyclohexylmethyl)-				}	1
\$	carbamoyl]-ethyl}-amide					
1	carramoni-carrit-armoe				1	1
L	<u> </u>				<u> </u>	

74	3-Methyl-thiophene-2-carboxylic	514,70	100	1.53	744	IA
	acid {(S)-2-(1H-indol-3-yl)-1-	, -	'''	1		
	methyl-1-[(1-pyridin-2-yl-				1	
	cyclohexylmethyl)-carbamoyl]-				1	
	ethyl}-amide		L			
75	5-Methyl-thiophene-2-carboxylic	514,70	100	1.60	1663	ΪA
	acid {(S)-2-(1H-indol-3-yl)-1-			İ		
1 -	methyl-1-[(1-pyridin-2-yl-	•		İ		
}	cyclohexylmethyl)-carbamoyl]-					
	ethyt}-amide					
76	6-Methyl-pyridine-2-carboxylic acid	509,66	98	1.6	2816	IA
	{(S)-2-(1H-indol-3-yl)-1-methyl-1-					
	[(1-pyridin-2-yl-cyclohexylmethyl)-			1		
77	carbamoyl]-ethyl}-amide Isoquinoline-3-carboxylic acid {(S)-	545,69	100	1.71	1363	
"	2-(1H-indol-3-yl)-1-methyl-1-[(1-	J4J,07	100	1./1	1203	-
	pyridin-2-yl-cyclohexylmethyl}-					
ļ	carbamoyl]-ethyl}-amide			l	ļ	
						- <u>-</u> -
78	Quinoxaline-2-carboxylic acid ((S)-	546,68	94	1.67	1425	IA.
	2-(1H-indol-3-yl)-1-methyl-1-[(1-					
	pyridin-2-yl-cyclohexylmethyl)-					
=-	carbamoyl]-ethyl}-amide	240 00		7.50	4 4500	7.4
79	Quinoline-8-carboxylic acid ((S)-2-	545,69	96	1.57	4479	IA.
	(1H-indol-3-yl)-1-methyl-1-[(1-] .	
,	pyridin-2-yl-cyclohexylmethyl)		•			
80	carbamoyl]-ethyl}-amide 5-Phenyl-oxazole-4-carboxylic acid	561,69	95	1.81	2660	ĪΑ
80	{(S)-2-(1H-indol-3-yl)-1-methyl-1-	301,09	93	1.01	2000	1,7%
	[(1-pyridin-2-yl-cyclohexylmethyl)-					
	carbamoyl]-ethyl}-amide					l
81	N-{(S)-2-(1H-Indol-3-yl)-1-methyl-	559,72	98	1.71	361	ľΑ
"	1-[(1-pyridin-2-y]-	J-77 5		*''*	501	<u> </u>
1	cyclohexylmethyl)-carbamoyl]-					
	ethyl}-2-pyrrol-1-yl-benzamide					
82	(S)-3-(1H-Indol-3-yl)-2-[2-(4-	538,70	98	1.71	1694	IA
	methoxy-phenyl)-ethanoylamino]-2-		- -			
	methyl-N-(I-pyridin-2-yl-					
	cyclohexylmethyl)-propionamide					
83	(S)-2-[2-(4-Dimethylamino-phenyl)-	551,74	100	1.36	2708	<u>LA</u>
	cthanoylamino]-3-(1II-indol-3-yl)-2-	Í		ł		
	methyl-N-(1-pyridin-2-yi-			ł		;
	cyclohexylmethyl)-propionamide					
84	(S)-3-(1H-Indol-3-yl)-2-methyl-2-[2-	553,67	95	1.5	1979	ĬA
	(2-nitro-phenyl)-ethanoylamino]-N-	-			1	
	(1-pyridin-2-yl-cyclohexylmethyl)-					
	propionamide			<u></u>		<u> </u>

85	(S)-3-(1H-Indol-3-yl)-2-[2-(2-	538,70	100	1.57	1326	2479
	methoxy-phenyl)-ethanoylamino]-2-				ļ	
	methyl-N-(1-pyridin-2-yl-					
	cyclohexylmethyl)-propionamide				L	

IA: $IC50 > 10000 \, nM$

N-acyl derivative of Intermediate III-6

5

10

Example 86

1H-Indole-2-carboxylic acid ((S)-2-(1H-indol-3-yl)-1-{[1-(5-methoxy-pyridin-2-yl)-cyclohexylmethyl]-carbamoyl}-1-methyl-ethyl)-amide

To a solution of 1-H-Indole-2-carboxylic acid (38 mg, 0.24 mmol), Intermediate III-6 (100 mg, 0.19 mmol) and diisopropylethylamine (61 mg, 0.47 mmol) in DMF (5 mL) was added HBTU (90 mg, 0.24 mmol). The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure and the residue was diluted with ethyl acetate, washed with brine, dried (MgSO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (60% ethyl acetate/heptane) to give Example 86 as an amorphous white solid (65 mg, 61%).

IR (film): 3285, 2931, 2855, 1651, 1537, 1489, 1456, 1420, 1342, 1310, 1267, 1028, 908, 744 cm⁻¹;

NMR (CDCl₃): $\delta = 1.10$ -1.61 (11H, m), 1.95-2.04 (2H, m), 3.29-3.52 (4H, m), 3.43 (3H, s), 6.47 (1H,s), 6.86-6.90 (1H, m), 6.98-6.99 (2H, m), 7.09-7.42 (8H, m), 7.52-7.58 (2H, m), 7.73-7.74 (1H, m) 8.05 (1H, s), 9.11 (1H, s);

MS m/e (ES+): $564 (M^+ + H, 100\%)$.

Binding studies of Example 86 to the bombesin receptors gave the following results (IC₅₀): BB1: 11 nM, BB2: 119 nM.

25

20

Examples 87-110

N-terminal urethane derivatives of Intermediate III-7

30

Scheme 9 describes the synthesis of urethane derivatives of Intermediate III-7:

- Conversion of alcohol into 4-nitrophenyl carbonates
- N-terminal urethane formation

Scheme 9

Examples 87-110

- i. 4-nitrophenyl chloroformate, pyridine, THF
 - ii. DMAP, DMF

In scheme 9, R2 represents the rest of the intermediate <u>e</u>. These intermediates <u>e</u> are listed in table 4.

To a stirred solution of alcohol e (10 mmol) and 4-nitrophenyl chloroformate (2.01 g, 10 mmol) in dichloromethane (50 mL) at 0°C was added dropwise a solution of pyridine (0.81 mL, 10 mmol) in dichloromethane (10 mL). The reaction mixture was allowed to slowly warm to room temperature and was stirred at room temperature for 16 h. The solvent was removed under reduced pressure and the residue was taken up in ethyl acetate (50 mL) and was washed successively with 10% citric acid (2x30 mL), water (30 mL), sat. NaHCO₃ solution (2x50 mL) and brine (50 mL). The organic phase was dried (MgSO₄) and was concentrated under reduced pressure. The crude product was recrystallised from typically ethyl acetate, diethyl ether or heptane to give pure carbonate f. The product was characterised by IR (see Table 4 for carbonate signals).

20

25

5

10

.15

To carbonate <u>f</u> (0.21 mmol) was added DMF (0.4 mL) followed by 0.50 M DMAP in DMF (400 μL, 0.20 mmol) and 0.50 M Intermediate III-7 in DMF (200 μL, 0.10 mmol). The solution was shaken on an orbital shaker at room temperature for 42 h. Water (1.0 mL) was added and the mixture was loaded onto a LC-18 SPE cartridge (0.5 g sorbent) and the cartridge was eluted with 25% methanol/water (3.4 mL) and methanol (4 mL). The methanol fraction was concentrated and purified by prep. HPLC (column: Phenomenex primesphere 10 μ C18-HC 110A, 100x21.20 mm; mobile phase: methanol/water 10 to 100% gradient). The products were characterised and analysed by LCMS (column: 50x4.6 mm Prodigy ODSIII

(5μ) column; mobile phase: acctonitrile/water (0.1% formic acid) 5 to 100% gradient over 2 min, held at 100% acctonitrile for 1 min; flow rate 4 mL/min; UV detection at 215 nm; mass spec: 150-900 Da full scan APCI+ centroid data).

The following products were made by the above method, with the starting material listed in Table 4 and gave the test results indicated in Table 5:

TABLE 4

Example	intermediate <u>e</u>	intermediate <u>f</u> : IR (cm ⁻¹)
87	Naphthalen-1-yi-methanol	1754
88	(3,4-Dimethoxy-phenyl)-methanol	1754
89	Naphthalen-2-yl-methanol	1752
90	Indan-2-ol	1765
91	(3,4-Dichloro-phenyl)-methanol	1754
92	(4-Methoxy-phenyl)-methanol	1748
93	(4-Chloro-phenyi)-methanol	1761
94	(2-Fluoro-phenyi)-methanol	1752
95	(2-Chloro-phenyl)-methanol	1764
96	(4-Nitro-phonyl)-methanol	1761
97	o-Tolyl-methanol	1757
98	(4-tert-Butyl-phenyl)-methanol	1766
99	(3-Nitro-phenyl)-methanol	1769
100	(2-Methoxy-phenyl)-methanol	1766
101	(4-Trifluoromethyl-phenyl)-methanol	1763
102	(3-Ethoxy-phenyl)-methanol	1767
103	3-Hydroxymethyl-benzonitrile	1769
104	(2,4-Dichloro-phenyl)-methanol	1768
105	m-Tolyl-methanol	1757
106	(3-Phenoxy-phenyl)-methanol	1766
107	(3-Trifluoromethyl-phenyl)-methanol	1770

108	p-Tolyl-methanol	1759
109	(2,3-Dichloro-phenyl)-methanol	1758
110	Quinolin-6-yl-methanol	1761

TABLE 5

Example No	Product	MH [†]	Purity %	LCMS Ret time (min)	BB1 IC50 (nm)	BB2 IC50 (nm)
87	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid naphthalen-1-ylmethyl ester	574,73	100	1.67	239	IA
88	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3,4-dimethoxy-benzyl ester	584,72	95	1.41	1758	IA.
89	{(S)-2-(1H-Indol-3-yt)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid naphthalen-2-ylmethyl ester	574,73	100	1.67	1001	ΪA
90	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid indan-2-yl ester	550,71	91	1.59	955	IA.
91	{(\$)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3,4-dichloro-benzyl ester	593,56	93	1.73	202	IA
92	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- methoxy-benzyl ester	554,70	93	1.49	1610	IA
93	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- chloro-benzyl ester	559,11	98	1.62	681	IA

94	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2- fluoro-benzyl ester	542,66	91	1.52	923	IA.
95	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyxidin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2- chloro-benzyl ester	559,11	89	1.62	624	IA
96	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- nitro-benzyl ester	569,67	97	1.51	41	463
97	{(S)-2-(iH-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2- methyl-benzyl ester	538,70	94	11.60	751	IA.
98	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- tert-butyl-benzyl ester	580,78	100	1.86	1986	IA
99	{(S)-2-(1H-Indol-3-yl)-I-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- nitro-benzyl ester	569,67	97	1.51	17	612
100	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2- methoxy-benzyl ester	554,70	96	1.52	818	IA
101	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- trifluoromethyl-benzyl ester	592,67	97	1.7	1102	IA.
102	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- ethoxy-benzyl ester	568,72	89	1.60	1065	IA
103	((S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- cyano-benzyl ester	549,68	99	1.43	85	IA

104	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2,4-dichloro-benzyl ester	593,56	95	1.78	450	IA
105	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- methyl-benzyl ester	538,70	96	1.59	841	IA
106	{(\$)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- phenoxy-benzyl ester	616,77	96	1.78	1350	IA
107	((S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 3- trifluoromethyl-benzyl ester	592,67	96	1.67	182	IA
108	{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 4- methyl-benzyl ester	538,70 .:	97	1.60	1084	IA
109	((\$)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid 2,3-dichloro-benzyl ester	593,56	94	1.73	152	1A
110	((S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethyl}-carbamic acid quinolin-6-ylmethyl ester	575,72	97	1.22	171	ΪA

Examples 111-168

N-terminal sulfonamide derivatives of Intermediate III-7

Scheme 10

Examples 111-168

10

15

20

In scheme 10, R3 represents the rest of the intermediate g. These intermediates g are listed in table 6.

To sulfonyl chloride g (0.14 mmol) was added 0.143 M Intermediate III-7 in DMF (700 μL, 0.10 mmol) followed by 300 μL of a solution containing a mixture of diisopropylethylamine (0.667 M in DMF, 0.20 mmol) and 4-dimethylaminopyridine (0.033 M in DMF, 0.01 mmol). The reaction mixture was shaken in an orbital shaker at 70°C for 16 h. The crude reaction mixture was loaded onto a 5 g silica cartridge and the cartridge was eluted with ethyl acetate in heptane (30 to 100% gradient). Removal of the solvent under reduced pressure gave the sulfonamides (Examples 111-168). The purity of the sulfonamide was checked by LCMS. Those samples that were less than 95% pure were further purified by prep HPLC (column: YMC-Pack ODS-AM, 5μm, 150x20 mm; mobile phase: acetonitrile / water 40 to 100% gradient). The products were characterised and analysed by LCMS (column: 150x4.6 mm Prodigy ODS3 (3μ) column; mobile phase: acetonitrile (0.085% TFA) / water (0.1% TFA) 20 to 100% gradient over 7 min, held at 100% acetonitrile (0.085% TFA) for 1 min; flow rate 1.5 mL/min; detection: diode array 200-300 nm; mass spec: 150-900 Da full scan APCI+ centroid data) (see Table 7).

The following examples were made by the above method, with the starting material listed in Table 6 and gave the test results indicated in Table 7:

TABLE 6

Example	intermediate g
111	Phenyl-methanesulfonyl chloride
112	4-Methyl-benzenesulfonyl chloride
113	2-Chloro-benzenesulfonyl chloride
114	2-Fluoro-benzenesulfonyl chloride
115	Naphthalene-1-sulfonyl chloride
116	4-Chloro-benzenesulfonyl chloride
117	5-Dimethylamino-naphthalene-1-sulfonyl chloride
118	Naphthalene-2-sulfonyl chloridc

`~4_`

119	Thiophene-2-sulfonyl chloride
120	Quinoline-8-sulfonyl chloride
121	3-Nitro-benzenesulfonyl chloride
122	4-Fluoro-benzenesulfonyl chloride
123	4-Nitro-benzenesulfonyl chloride
.124	3-Trifluoromethyl-benzenesulfonyl chloride
125	3,4-Dichloro-benzenesulfonyi chloride
126	3-Fluoro-benzenesulfonyl chloride
127	4-Trifluoromethyl-benzenesulfonyl chloride
128	5-Chloro-thiophene-2-sulfonyl chloride
129	2-Trifluoromethyl-benzenesulfonyl chloride
130	3-Chloro-benzenesulfonyl chloride
131	3-Methyl-benzenesulfonyl chloride
132	3,4-Dimethoxy-benzenesulfonyl chloride
133	4-Cyano-benzenesulfonyl chloride
134	2-Cyano-benzenesulfonyl chloride
135	5-Chloro-1,3-dimethyl-1H-pyrazole-4-sulfonyl chloride
136	3,5-Dimethyl-isoxazole-4-sulfonyl chloride
137	Benzo[1,2,5]thiadiazole-4-sulfonyl chloride
138	1-Methyl-1H-imidazole-4-sulfonyl chloride
139	Benzo[1,2,5]oxadiazole-4-sulfonyl chloride
140	3-Chlorosulfonyl-thiophene-2-carboxylic acid methyl ester
141	5-Isoxazol-3-yl-thiophene-2-sulfonyl chloride
142	(2-Nitro-phenyl)-methanesulfonyl chloride
143	3-Cyano-benzenesulfonyl chloride
144	1,2-Dimethyl-1H-imidazole-4-sulfonyl chloride
145	3-Methoxy-benzenesulfonyl chloride
146	8-Nitro-naphthalene-1-sulfonyl chloride
147	2-Chloro-5-nitro-benzenesulfonyl chloride
148	2,4,6-Trichloro-benzenesulfonyl chloride
149	4-Chloro-2-nitro-benzenesulfonyl chloride
150	5-Benzenesulfonyl-thiophene-2-sulfonyl chloride
151	4-Trifluoromethoxy-benzencsulfonyl chloride

152	5-Methyl-2-phonoxy-benzenesulfonyl chloride
153	2-p-Tolyloxy-benzenesulfonyl chloride
154	Biphenyl-2-sulfonyl chloride
155	2-Chlorosulfonyl-benzoic acid methyl ester
156	3-Chloro-4-fluoro-benzenesulfonyl chloride
-157	2,5-Dichloro-thiophene-3-sulfornyl chloride
158	3-Chloro-4-mcthyl-benzenesulfonyl chloride
159	2-Methoxy-4-methyl-benzenesulfonyl chloride
160	5-Pyridin-2-yl-thiophene-2-sulfonyl chloride
161	5-Bromo-6-chloro-pyridine-3-sulfonyl chloride
162	2,4-Dinitro-benzenesulfonyl chloride
163	4-Methanesulfonyl-benzenesulfonyl chloride
164	4-tert-Butyl-benzenesulfonyl chloride
165	2,4-Dichloro-5-methyl-benzenesulfonyl chloride
166	Chloro-trifluoromethyl-benzenesulfonyl chloride
167	Nitro-trifluoromethyl-benzenesulfonyl chloride
168	4-Butyl-benzenesulfonyl chloride

TABLE 7

Example No	Product	MH	Purity %	LCMS Ret time (min)	BB1 IC50 (nm)	BB2 IC50 (nm)
111	(S)-3-(1H-Indol-3-yl)-2-methyl-2- phenylmethanesulfonylamino-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	544,72	100	4.64	186	IA
112	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (tolucne-4-sulfonylamino)- propionamide	544,72	100	4.74	557	IA
113	(S)-2-(2-Chloro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	565,14	100	4.71	257	IA

114	(S)-2-(2-Fluoro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	548,68	100	4.54	267	IÀ
	(S)-3-(1H-Indol-3-yl)-2-methyl-2- (naphthalene-1-sulfonylamino)-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	580,76	99	4.98	185	1576
116	(S)-2-(4-Chloro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	565,14	97	4.89	373	4386
117	(S)-2-(5-Dimethylamino- naphthalene-1-sulfonylamino)-3- (1H-indol-3-yl)-2-methyl-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	623,82	100	4.39	1302	IA
118	(S)-3-(1H-Indol-3-yl)-2-methyl-2- (naphthalene-2-sulfonylamino)-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	5 80,76	100	5.01	322	IA
119	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (thiophene-2-sulfonylamino)- propionamide	536,72	99	4.39	232	Ia
120	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (quinoline-8-sulfonylamino)- propionamide	581,74	99	4.53	108	ĬA
121	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(3- nitro-benzenesulfonylamino)-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	575,69	99	4.58	208	1960
122	(S)-2-(4-Fluoro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	548,68	100	4.60	560	4165
123	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(4- nitro-benzenesulfonylamino)-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	575,69	98	4.65	515	IA

				_		
124	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (3-trifluoromethyl- benzenesulfonylamino)- propionamide	599,58	100	5.03	440	2246
125	(S)-2-(3,4-Dichloro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	599,58	99	5.47	216	IA
126	(S)-2-(3-Fluoro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	548,68	100	4.65	407	2761
127	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (4-trifluoromethyl- benzenesulfonylamino)- propionamide	598,69	95	5.31	553	IA
128	(S)-2-(5-Chloro-thiophene-2- sulfonylamino)-3-(1H-indol-3-yl)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	571,17	99	4.94	404	IA
129	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-trifluoromethyl- benzenesulfonylamino)- propionamide	598,69	99	5.11	134	-
130	(S)-2-(3-Chloro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	565,14	99	5.05	331	2687
131	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (toluene-3-sulfonylamino)- propionamide	544,72	99	4.93	393	1019
132	(S)-2-(3,4-Dimethoxy- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	590,75	98	4.50	608	IA
133	(S)-2-(4-Cyano- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	555,70	99	4.61	766	IA

134	(S)-2-(2-Cyano- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	555,70	97	4.62	408	IA
135	(S)-2-(5-Chloro-1,3-dimethyl-1H-pyrazole-4-sulfonylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	583,16	98	4.38	1252	IA
136	(S)-2-(3,5-Dimethyl-isoxazole-4- sulfonylamino)-3-(1H-indol-3-yl)-2- methyl-N-(1-pytidin-2-yl- cyclohexylmethyl)-propionamide	549,70	96	4.54	515	ĬA.
137	(S)-2-(Benzo[1,2,5]thiadiazole-4-sulfonylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	588,76	97	4.67	256	ĬA
138	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(1-methyl-1H-imidazole-4-sulfonylamino)-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	534,69	100	3.60	3667	IA
139	(S)-2-(Benzo[1,2,5]oxadiazole-4- sulfonylamino)-3-(1H-indol-3-yl)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	572,69	100	4.70	507	IA.
140	3-{(S)-2-(1H-Indol-3-yl)-1-methyl-1- [(1-pyridin-2-yl-cyclohexylmethyl)- carbamoyl]-ethylsulfamoyl}- thiophene-2-carboxylic acid methyl ester	594,76	100	4.79	167	IA
141	(S)-3-(1H-Indol-3-yl)-2-(5-isoxazol- 3-yl-thiophene-2-sulfonylamino)-2- methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	603,77	98	4.60	534	IA.
142	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(2-nitro-phenylmethanesulfonylamino)- N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	589,72	100	4.65	430	IA.
143	(S)-2-(3-Cyano- benzenesulfonylamino)-3-(1H-indol- 3-yI)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	555,70	99	4.55	460	IA.
144	(S)-2-(1,2-Dimethyl-1H-imidazole-4-sulfonylamino)-3-(1H-ind 1-3-yl)-2-methyl-N-(1-pyrldin-2-yl-cyclohexylmethyl)-propionamide	548,71	96	3.55	2482	IA

		, , , , , , , , , , , , , , , , , , , 				
145	(S)-3-(1H-Indol-3-yl)-2-(3-methoxy-benzenesulfonylamino)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	560,72	99	4.75	295	3686
146	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(8-nitro-naphthalene-I-sulfonylamino)-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	625,75	99	4.89	177	IA
147	(S)-2-(2-Chloro-5-nitro- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	610,14	96	5.00	374	Ia
148	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2,4,6-trichloro- benzenesulfonylamino)- propionamide	634,03	100	5.45	215	Ia
149	(S)-2-(4-Chloro-2-nitro- benzenesul fonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	610,14	100	5.13	513	IA
150	(S)-2-(5-Benzenesulfonyl-thiophene- 2-sulfonylamino)-3-(1H-indol-3-yl)- 2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	676,88	100	5.03	297	IA
151	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (4-trifluoromethoxy- benzenesulfonylamino)-propion amide	614,69	99	5.35	635	IA
152	(S)-3-(1H-Indol-3-yl)-2-methyl-2-(5-methyl-2-phenoxy-benzenesulfonylamino)-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	636,82	97	5.79	76	IA
153	(S)-3-(1H-Indol-3-yl)-2-methyl-N- (1-pyridin-2-yl-cyclohexylmethyl)-2- (2-p-tolyloxy- benzenesulfonylamino)- propionamide	636,82	97	5.79	90	IA
154	(S)-2-(Biphenyl-2-sulfonylamino)-3- (1H-indol-3-yl)-2-methyl-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	606,79	97	5.52	166	JA

155	2-{(S)-2-(1H-Indol-3-yl)-1-methyl-1-	588,73	99	4.84	242	IA
	[(1-pyridin-2-yl-cyclohexylmethyl)-	,				
	carbamoyl]-ethylsulfamoyl}-benzoic			1		
	acid methyl ester_					
156	(S)-2-(3-Chloro-4-fluoro-	583,13	95	5.12	284	1216
	benzenesulfonylamino)-3-(1H-indol-					
	3-yl)-2-methyl-N-(1-pyridin-2-yl-					
	cyclohexylmethyl)-propionamide					
157	(S)-2-(2,5-Dichloro-thiophene-3-	605,61	99	5.23	214	IA
	sulfonylamino)-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-pyridin-2-yl-					}
	cyclohexylmethyl)-propionamide	580 18			200	2020
158	(S)-2-(3-Chloro-4-methyl-	579,17	97	5.28	299	3939
	benzenesulfonylamino)-3-(1H-indol-				}	
	3-yl)-2-methyl-N-(1-pyridin-2-yl-					
7.50	cyclohexylmethyl)-propionamide (S)-3-(1H-Indol-3-yl)-2-(2-methoxy-	574,75	96	4.92	445	IA
159	4-methyl-benzenesulfonylamino)-2-	214,13	70	4.72	445	i iv
	methyl-N-(1-pyridin-2-yl-				l	Ì
1	cyclohexylmethyl)-propionamide					
160	(S)-3-(1H-Indol-3-yl)-2-methyl-N-	613,81	100	4.79	344	IA
100	(1-pyridin-2-yl-cyclohexylmethyl)-2-	015,01	100	"""	1	
	(5-pyridin-2-yl-thiophene-2-					
	sulfonylamino)-propionamide					
161	(S)-2-(5-Bromo-6-chloro-pyridine-3-	645,02	95	5.09	187	IA
	sulfonylamino)-3-(1H-indol-3-yl)-2-					
	methyl-N-(1-pyridin-2-yl-			1	1	l
	cyclohexylmethyl)-propionamide				ł	
162	(S)-2-(2,4-Dinitro-	620,69	100	4.97	475	LA
	benzenesulfonylamino)-3-(1H-indol-					
	3-yl)-2-methyl-N-(1-pyridin-2-yl-			-		
	cyclohexylmethyl)-propionamide					
163	(S)-3-(1H-Indol-3-yl)-2-(4-	608,78	98	4.20	1043	IA
	methanesulfonyi-					•
	benzenesulfonylamino)-2-methyl-N-					
	(1-pyridin-2-yl-cyclohexylmethyl)-					
1	propionamide	505 00			122	
164	(S)-2-(4-tert-Butyl-	586,80	96	5.65	406	IA.
	benzenesulfonylamino)-3-(1H-indol-					
	3-yl)-2-methyl-N-(1-pyridin-2-yl-					
1.5	cyclohexylmethyl)-propionamide	(12.61	07	1 5 5 4	100	1.
165	(S)-2-(2,4-Dichloro-5-methyl-	613,61	97	5.64	172	IA
	benzenesulfonylamino)-3-(1H-indol-					
	3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide				1	
	cyclonex Aunem At 3-brobious mide	1			<u> </u>	<u> </u>

166	(S)-2-(Chloro-trifluoromethylbenzenesulfonylamino)-3-(1H-indol-3-yl)-2-methyl-N-(1-pyridin-2-yl-cyclohexylmethyl)-propionamide	633,14	100	5.33	627	IA
167	(S)-3-(1H-Indol-3-yl)-2-methyl-2- (mtro-trifluoromethyl- benzenesulfonylamino)-N-(1- pyridin-2-yl-cyclohexylmethyl)- propionamide	643,69	100	5.34	758	ĬA
168	(S)-2-(4-Butyl- benzenesulfonylamino)-3-(1H-indol- 3-yl)-2-methyl-N-(1-pyridin-2-yl- cyclohexylmethyl)-propionamide	586,80	96	5.84	492	IA

10

15

20

25

30

-- 121 --

The present invention additionally comprises the combination of a bombesin receptor antagonist for the treatment of male sexual dysfunction as outlined herein (more particularly male erectile dysfunction) and female sexual dysfunction (as outlined herein) with one or more of the following auxiliary active agents. The combination provides a treatment for erectile dysfunctions of organic, neurogenic and/or psychogenic origin as well as hypoactive sexual desire disorders, sexual arousal disorders, anorgasmic and sexual pain disorders

Thus a further aspect of the invention provides a pharmaceutical combination (for simultaneous, separate or sequential administration) of a bombesin receptor antagonist according to the invention and :

- one or more naturally occurring or synthetic prostaglandins or esters thereof. Suitable prostaglandins for use herein include compounds such as alprostadil, prostaglandin E₁, prostaglandin E₀, 13, 14 dihydroprosta glandin E₁, prostaglandin E₂, eprostinol, natural synthetic and semi-synthetic prostaglandins and derivatives thereof including those described in WO-00033825 and/or US 6,037,346 issued on 14th March 2000 all incorporated herein by reference, PGE₀, PGE₁, PGA₁, PGB₁, PGF₁ α, 19-hydroxy PGA₁, 19-hydroxy PGB₂, PGE₃α, carboprost tromethamine dinoprost, tromethamine, dinoprostone, lipo prost, gemeprost, metenoprost, sulprostune, tiaprost and moxisylate; and/or
- 2) one or more α adrenergic receptor antagonist compounds also known as α adrenoceptors or α-receptors or α-blockers. Suitable compounds for use herein include: the α-adrenergic receptor blockerss as described in PCT application WO99/30697 published on 14th June 1998, the disclosures of which relating to α-adrenergic receptors are incorporated herein by reference and include, selective α₁-adrenoceptor or α₂-adrenoceptor blockers and non-selective adrenoceptor blockers, suitabl α₁-adrenoceptor blockers include: phentolamine, phentolamine mesylat, trazodone, alfuzosin, indoramin, naftopidil, tamsulosin, dapiprazole, phenoxyb nzamin, idazoxan, faraxan,

yohimbine, rauwolfa alkaloids, Recordati 15/2739, SNAP 1069, SNAP 5089, RS17053, SL 89.0591, doxazosin, terazosin, abanoquil and prazosin; α_2 -blocker blockers from US 6,037,346 [14th March 2000] dibenamine, tolazoline, trimazosin and dibenamine; α -adrenergic receptors as described in US patents: 4,188,390; 4,026,894; 3,511,836; 4,315,007; 3,527,761; 3,997,666; 2,503,059; 4,703,063; 3,381,009; 4,252,721 and 2,599,000 each of which is incorporated herein by reference; α_2 -Adrenoceptor blockers include: clonidine, papaverine, papaverine hydrochloride, optionally in the presence of a cariotonic agent such as pirxamine; and/or

10

15

20

25

- one or more NO-donor (NO-agonist) compounds. Suitable NO-donor compounds for use herein include organic nitrates, such as mono- di or trinitrates or organic nitrate esters including glyceryl brinitrate (also known as nitroglycerin), isosorbide 5-mononitrate, isosorbide dinitrate, pentaerythritol tetranitrate, erythrityl tetranitrate, sodium nitroprusside (SNP),
 3-morpholinosydnonimine molsidomine, S-nitroso- N-acetyl penicilliamine (SNAP)
 S-nitroso-N-glutathione (SNO-GLU), N-hydroxy L-arginine, amylnitrate, linsidomine, linsidomine chlorohydrate, (SIN-1) S-nitroso N-cysteine, diazenium diolates, (NONOates), 1,5-pentanedinitrate, L-arginene, ginseng, zizphi fructus, molsidomine, Re 2047, nitrosylated maxisylyte derivatives such as NMI-678-11 and NMI-937 as described in published PCT application WO 0012075; and/or
- 4) one or more potassium channel openers or modulators. Suitable potassium channel openers/modulators for use herein include nicorandil, cromokalim, levcromakalim, lemakalim, pinacidil, cliazoxide, minoxidil, charybdotoxin, glyburide, 4-amini pyridine, BaCl₂; and/or
- 5) one or more dopaminergic agents, preferably apomorphine or a selective D2, D3 or D2/D₃agonist such as, pramipexole and ropirinol (as claimed in WO-0023056), PNU95666 (as claimed in WO-0040226); and/or

20

30

-123-

- 6) one or more vasodilator agents. Suitable vasodilator ag ints for use hi rein include nimodepine, pinacidil, cyclandelate, isoxsuprine, chloroprumazine, halo peridol, Rec 15/2739, trazodone, and/or
- 5 7) one or more thromboxane A2 agonists; and/or
 - 8) one or more CNS active agents; and/or
- 9) one or more ergot alkoloids; Suitable ergot alkaloids are described in US patent 6,037,346 issued on 14th March 2000 and include acetergamine, brazergoline, bromerguride, cianergoline, delorgotrile, disulergine, ergonovine maleate, ergotamine tartrate, etisulergine, lergotrile, lysergide, mesulergine, metergoline, metergotamine, nicergoline, pergolide, propisergide, proterguride, terguride; and/or
 - 10)one or more compounds which modulate the action of natruretic factors in particular atrial naturetic factor (also known as atrial naturetic peptide), B type and C type naturetic factors such as inhibitors or neutral endopeptidase; and/or
 - 11)one or more compounds which inhibit angiotensin-converting enzyme such as enapril, and combined inhibitors of angiotensin-converting enzyme and neutral endopeptidase such as omapatrilat; and/or
- 25 12)one or more angiotensin receptor antagonists such as losartan; and/or
 - 13) one or more substrates for NO-synthase, such as L-arginine; and/or
 - 14) one or more calcium channel blockers such as amiodipine; and/or
 - 15) one or more antagonists of endothelin receptors and inhibitors or indothelinconverting enzyme; and/or

10

-- 124-

- 16)one or more cholesterol lowering agents such as statins (e.g. atorvastatin/ Lipitor- trade mark) and fibrates; and/or
- 17)one or more antiplatelet and antithrombotic agents, e.g. tPA, uPA, warfarin, hirudin and other thrombin inhibitors, heparin, thromboplastin activating factor inhibitors; and/or
- 18) one or more insulin sensitising agents such as rezulin and hypoglycaemic agents such as glipizide; and/or
- 19)L-DOPA or carbidopa; and/or
- 20) one or more acetylcholinesterase inhibitors such as donezipil; and/or
- 15 21) one or more steroidal or non-steroidal anti-inflammatory agents; and/or
- 22) one or more estrogen receptor modulators and/or estrogen agonists and/or estrogen antagonists, preferably raioxifene or lasofoxifene, (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydronaphthalene-2-ol and pharmaceutically acceptable salts thereof (compound A below) the preparation of which is detailed in WO 96/21656.

23/04 '01 09:16 FAX

Compound A

5

10

15

20

one or more of a PDE inhibitor, more particularly a PDE 2, 3, 4, 5, 7 or 8 inhibitor, preferably PDE2 or PDE5 inhibitor and most preferably a PDE5 inhibitor (see hereinafter), said inhibitors preferably having an IC50 against the respective enzyme of less than 100nM: and/or

- 23) one or more of an NPY (neuropeptide Y) inhibitor, more particularly NPY1 or NPY5 inhibitor, preferably NPY1 inhibitor; and/or one or more of a NEP inhibitor preferably having an IC50 for NEP of less than 300nM, more preferably less than 100nM; and/or
- 24) one or more of vasoactive intestinal protein (VIP), VIP mirnetic, VIP analogue, more particularly mediated by one or more of the VIP receptor subtypes VPAC1,VPAC or PACAP (pituitory adenylate cyclase activating peptid), on or more of a VIP receptor agonist or a VIP analogue (eg Ro-125-1553) or a

15

20

25

-126-

VIP fragment, one or more of a α-adrenoceptor antagonist with VIP combination (eg invicorp, Aviptadii); and/or

- 25) one or more of a melanocortin receptor agonist or modulator or melanocortin ehancer, such as melanotan II, PT-14, PT-141 or compounds claimed in WO-09964002, WO-00074679, WO-09955679, WO-00105401, WO-00058361, WO-00114879, WO-00113112, WO-09954358 and/or
- 26) one or more of a serotonin receptor agonist, antagonist or modulator, more particularly agonists, antagonists or modulators for 5HT1A (including VML 670), 5HT2A, 5HT2C, 5HT3 and/or 5HT6 receptors, including those described in WO-09902159, WO-00002550 and/or WO-00028993; and/or
 - 27) one or more of a testosterone replacement agent (inc dehydroandrostendione), testosternone (Tostrelle), dihydrotestosterone or a testosterone implant; and/or
 - 28) one or more of estrogen, estrogen and medroxyprogesterone or medroxyprogesterone acetate (MPA) (i.e. as a combination), or estrogen and methyl testosterone hormone replacement therapy agent (e.g. HRT especially Premarin, Cenestin, Oestrofeminal, Equin, Estrace, Estrofem, Elleste Solo, Estring, Eastraderm TTS, Eastraderm Matrix, Dermestril, Premphase, Preempro, Prempak, Premique, Estratest, Estratest HS, Tibolone); and /or
 - 29) one or more of a modulator of transporters for noradrenaline, dopamine and/or serotonin, such as bupropion, GW-320659
 - 30) one or more of a purinergic receptor agonist and/or modulator; and/or
- 31) one or more of a neurokinin (NK) receptor antagonist, including those described in WO-09964008; and/or
 - 32) one or more of an opioid receptor agonist, antagonist or modulator, pref rably agonists for the ORL-1 receptor and/or;

一127一

- 33) one or more of an agonist or modulator for oxytocin/vasopressin receptors, preferably a selective oxytocin agonist or modulator and/or;
- 34) one or more modulators of cannabinoid receptors.

Auxiliary Agent PDE5 inhibitor (I:PDE5) :

PDE5 Inhibitors

10

20

25

30

5

23/04 '01 09:17 FAX

Suitable PDE5i's for use in the pharmaceutical combinations according to the present invention are the cGMP PDE5i's hereinafter detailed. Particularly preferred for use herein are potent and selective cGMP PDE5i's.

Suitable cGMP PDE5 inhibitors for the use according to the present invention include:

the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in EP-A-0463756; the pyrazolo [4.3-d]pyrimidin-7-ones disclosed in EP-A-0526004; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 93/06104; the Isomeric pyrazolo [3,4-d]pyrimidin-4-ones disclosed in published International patent application WO 93/07149; the quinazolin-4-ones disclosed in published international patent application WO 93/12095; the pyrido [3,2-d]pyrimidin-4-ones disclosed in published international patent application WO 94/05661; the purin-6ones disclosed in published international patent application WO 94/00453; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 98/49166; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 99/54333; the pyrazolo [4,3d]pyrimidin-4-ones disclosed in EP-A-0995751; the pyrazolo [4,3-d]pyrimidin-7ones disclosed in published international patent application WO 00/24745; the pyrazolo [4,3-d]pyrimidin-4-ones disclosed in EP-A-0995750; the compounds disclosed in published international application WO95/19978; the compounds disclosed in publish d international application WO 99/24433 and the compounds disclosed in published international application WO 93/07124.

-128-

It is to be understood that the contents of the above published patent applications, and in particular the general formulae and exemplified compounds therein are incorporated herein in their entirety by reference thereto.

Preferred type V phosphodiesterase inhibitors for the use according to the present invention include:

5-[2-ethoxy-5-(4-methyl-1-piperazinylsulphonyl)phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (sildenafil) also known as 1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxyphenyl]sulphonyl]-4-methylpiperazine (see EP-A-0463756);

5-(2-ethoxy-5-morpholinoacetylphenyl)-1-methyl-3-n-propyl-1,6-dihydro-7Hpyrazolo[4,3-d]pyrimidin-7-one (see EP-A-0526004);

3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-n-propoxyphenyl]-2-(pyridin-2-yl)methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO98/49166);

- 3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-(pyridin-2-yl)methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO99/54333);
- (+)-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-1(R)methylethoxy)pyridin-3-yl]-2-methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7one, also known as 3-ethyl-5-[5-[4-ethylpiperazin-1-ylsulphonyl]-2-([(1R)-2-methoxy-1-methylethyl]oxy)pyridin-3-yl)-2-methyl-2,6-dihydro-7H-pyrazolo[4,3-d]
 pyrimidin-7-one (see WO99/54333);
- 5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-m thoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-on , also known as 1-{6-ethoxy-5-[3-ethyl-6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyrldylsulphonyl)-4-ethylpiperazine (see WO 01/27113, Example 8);

25

30

-123-

5-[2-iso-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylpiperidin-4-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO 01/27113, Example 15);

5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-phenyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO 01/27113, Example 66);

5-(5-Acetyl-2-propoxy-3-pyridinyl)-3-ethyl-2-(1-isopropyl-3-azetldlnyl)-2,6-dihydro-7*H*-pyrazolo[4,3-d]pyrimidin-7-one (seeWO 01/27112, Example 124);

5-(5-Acetyl-2-butoxy-3-pyrldlnyl)-3-ethyl-2-(1-ethyl-3-azetidlnyl)-2,6-dihydro-7*H*-pyrazolo[4,3-d]pyrimidin-7-one (see WO 01/27112, Example 132);

- (6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl) pyrazino[2',1':6,1]pyrido[3,4-b]indole-1,4-dione (IC-351), i.e. the compound of examples 78 and 95 of published international application WO95/19978, as well as the compound of examples 1, 3, 7 and 8;
- 2-[2-ethoxy-5-(4-ethyl-piperazin-1-yl-1-sulphonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one (vardenafil) also known as 1-[[3-(3,4-dihydro-5-methyl-4-oxo-7-propyllmidazo[5,1-f]-as-triazin-2-yl)-4-ethoxyphenyl]sulphonyl]-4-ethylpiperazine, i.e. the compound of examples 20, 19, 337 and 336 of published international application WO99/24433; and

the compound of example 11 of published international application WO93/07124 (EISAI); and

compounds 3 and 14 from Rotella D P, J. Med. Chem., 2000, 43, 1257.

Still other type cGMP PDE5 inhibitors useful in conjunction with the present invention include:4-bromo-5-(pyrldylmethylamino)-6-[3-(4-chlorophenyl)-propoxyl-3(2H)pyridazinone; 1-[4-[(1,3-benzodloxol-5-ylmethyl)amiono]-6-chloro-2-quinozolinyl]-4-piperidine-carboxylic acid, monosodlum salt; (+)-cis-5,6a,7,9,9,9a-

hexahydro-2-[4-(trifluoromethy!)-phenylmethyl-5-methyl-cyclop nt-4,5]imidazo[2,1-b]purin-4(3H)one; furazlocillin; cis-2-hexyl-5-methyl-3,4,5,6a,7,8,9,9a- octahydrocyclopent[4,5]-imidazo[2,1-b]purin-4-one; 3-acetyl-1-(2-chlorobenzyl)-2-propylindole-6- carboxylate; 3-acetyl-1-(2-chlorobenzyl)-2-propylindole-6-carboxylate; 4-bromo-5-(3-pyridylmethylamino)-6-(3-(4-chlorophenyl) propoxy)-3- (2H)pyridazinone; I-methyl-5(5-morpholinoacetyl-2-n-propoxyphenyl)-3-n-propyl-1,6-dihydro-7H-pyrazolo(4,3-d)pyrimidin-7-one; 1-[4-[(1,3-benzodioxol-5-ylmethyl)arnino]-6-chloro-2- quinazolinyl]-4-piperidinecarboxylic acid, monosodium salt; Pharmaprojects No. 4516 (Glaxo Wellcome); Pharmaprojects No. 5051 (Bayer); Pharmaprojects No. 5064 (Kyowa Hakko; see WO 96/26940); Pharmaprojects No. 5069 (Schering Plough); GF-196960 (Glaxo Wellcome); E-8010 and E-4010 (Eisai); Bay-38-3045 & 38-9456 (Bayer) and Sch-51866.

- The suitability of any particular cGMP PDE5 inhibitor can be readily determined by evaluation of its potency and selectivity using literature methods followed by evaluation of its toxicity, absorption, metabolism, pharmacokinetics, etc in accordance with standard pharmacoutical practice.
- 20 Preferably, the cGMP PDE5 inhibitors have an IC₅₀ at less than 100 nanomolar, more preferably, at less than 50 nanomolar, more preferably still at less than 10 nanomolar.
- IC50 values for the cGMP PDE5 Inhibitors may be determined using the PDE5 assay in the Test Methods Section hereinafter.
 - Preferably the cGMP PDE5 inhibitors used in the pharmaceutical combinations according to the present invention are selective for the PDE5 enzyme. Preferably they are selective over PDE3, more preferably over PDE3 and PDE4. Preferably, the cGMP PDE5 inhibitors of the invention have a selectivity ratio greater than 100 more preferably great in than 300, over PDE3 and in its preferably over PDE3 and PDE4.

-131-

Selectivity ratios may readily be determined by the skilled person. IC50 values for the PDE3 and PDE4 enzyme may be determined using established literature methodology, see S A Ballard et al., Journal of Urology, 1998, vol. 159, pages 2164-2171 and as detailed herein after.

10

5

15

20

25

Auxiliary Agent: NEP inhibitor (1:NEP)

NEP EC3.4.24.11, also known as enkephalinase or neprilysin, is a zinc-dependent neutral endopeptidase. This enzyme is involved in the breakdown of several bioactive oligopeptides, cleaving peptide bonds on the amino side of hydrophobic amino acid residues (Reviewed in Turner et al., 1997). The key neuronally released bioactive agents or neuropeptides metabolised by NEP include natriuretic peptides such as atrial natriuretic peptides (ANP) as well as brain natriuretic peptide and C-type natriuretic peptide, bombesin, bradykinin, calcitonin gene-related peptide, endothelins, enkephalins, neurotensin, substance P and vasoactive intestinal peptide. Some of these peptides have potent vasodilatory and neurohormone functions, diuretic and natriuretic activity or mediate behaviour effects.

30

Background teachings on NEP have been presented by Victor A. McKusick et al on http://www3.ncbi.nlm.nlh.gov/Omim/searchomim.htm. The following information concerning NEP has been extracted from that source.

10

15

20

25

-132-

"Common acut lymphocytic leukemia antig n is an important cell surface marker in the diagnosis of human acute lymphocytic leukemia (ALL). It is present on leukemic cells of pre-B phenotype, which represent 85% of cases of ALL. CALLA is not restricted to leukemic cells, however, and is found on a variety of normal tissues. CALLA is a glycoprotein that is particularly abundant in kidney, where it is present on the brush border of proximal tubules and on glomerular epithelium. Letarte et al. (1988) cloned a cDNA coding for CALLA and showed that the amino acid sequence deduced from the cDNA sequence is identical to that of human membraneassociated neutral endopeptidase (NEP; EC 3.4.24.11), also known as enkephalinase. NEP cleaves peptides at the amino side of hydrophobic residues and inactivates several peptide hormones including glucagon, enkephalins, substance P, neurotensin, oxytocin, and bradykinin, By cDNA transfection analysis, Shipp et al. (1989) confirmed that CALLA is a functional neutral endopeptidase of the type that has previously been called enkephalinase. Barker et al. (1989) demonstrated that the CALLA gene, which encodes a 100-kD type II transmembrane glycoprotein, exists in a single copy of greater than 45 kb which is not rearranged in malignancies expressing cell surface CALLA. The gene was located to human chromosome 3 by study of somatic cell hybrids and in situ hybridization regionalized the location to 3q21-q27. Tran-Paterson et al. (1989) also assigned the gene to chromosome 3 by Southern blot analysis of DNA from human-rodent somatic cell hybrids, D'Adamio et al. (1989). demonstrated that the CALLA gene spans more than 80 kb and is composed of 24 exons."

Preferred for NEPi's for use as auxiliary agents in combination with bombesin receptor antagonists according to the present invention are:

(2R)-2-[(1-{[(5-ethyl-1.3.4-thladiazol-2-yl)amino]carbonyl}cyclopentyl)

30 methyllpentanoic acid

and

(28)-2-[(1-{[(5-Ethyl-1.3.4-thiadiazol-2-yl)amino]carbonyl}cyclopentyl)-methyl]pentanoic acid

5

10

15

The title product from stage c) below (824mg) was further purified by HPLC using an AD column and using hexane:iso-propanol:trifluoroacetic acid (85:15:0.2) as elutant to give (2R)-2-[(1-{[(5-ethyl-1,3,4-thiadlazol-2-yl)amino]carbonyl}cyclopentyl) methyl]pentanoic acid as a white foam, 400mg, 99.5% ee, 1 H NMR (CDCl₃, 400MHz) δ : 0.90 (t, 3H), 1.36 (m, 6H), 1.50-1.80 (m, 9H), 2.19 (m, 1H), 2.30 (m, 1H), 2.44 (m, 1H), 2.60 (m, 1H), 2.98 (q, 2H), 12.10-12.30 (bs, 1H), LRMS: m/z 338 (MH), [α]_D = -9.0° (c = 0.1, methanol), and (2S)-2-[(1-{[(5-ethyl-1,3,4-thiadiazol-2-yl)amino]carbonyl}cyclopentyl}-methyl]pentanoic acid as a white foam, 386mg, 99% ee, 1 H NMR (CDCl₃, 400MHz) δ : 0.90 (t, 3H), 1.38 (m, 6H), 1.50-1.79 (m, 9H), 2.19 (m, 1H), 2.30 (m, 1H), 2.44 (m, 1H), 2.60 (m, 1H), 2.98 (q, 2H), 12.10-12.27 (bs, 1H); LRMS: m/z 338 (MH); and [α]_D = +3.8° (c = 0.1, methanol)

20 Preparation of Starting Materials

a) 1-[2-(tert-Butoxycarbonyl)-4-pentyll-cyclopentane carboxylic acid

A mixture of 1-[2-(tert-butoxycarbonyl)-4-pentenyl]-cyclopentane carboxylic acid (EP 274234) (23g, 81.5mmol) and 10% palladium on charcoal (2g) in dry ethanol (200ml) was hydrogenated at 30psi and room temperature for 18 hours. The reaction mixture was filtered through Arbocel®, and the filtrate evaporated under reduced pressure to give a yellow oil. The crude product was purified by column chromatography on silica get, using ethyl acetate:pentane (40:60) as the eluant, to provide the desired product as a clear oil, 21g, 91%; ¹H NMR (CDCl₃, 0.86 (t, 3H), 1.22-1.58 (m, 15H), 1.64 (m, 4H), 1.78 (dd, 1H), 2.00-2.18 (m, 3H), 2.24 (m, 1H); LRMS : m/z 283 (M-H)

b) <u>tert-Butyl 2-[(1-{[(5-ethyl-1,3,4-thladlazol-2-yl)amino]carbonyl}-cyclopentyl)methyl[pentanoate.</u>

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.21mmol), 1-hydroxybenzotriazole hydrate (0.2mmol), N-methylmorpholine (0.31mmol) and 2-amino-5-ethyl-1,3,4-thiadiazole (0.22mmol) were added to a solution of the product from stage a) above (150mg, 0.53mmol) in N,N-dimethylformamide (3ml), and the reaction stirred at 90°C for 18 hours. The cooled solution was diluted with ethyl acetate (90ml), washed with water (3x25ml), and brine (25ml), then dried (MgSO₄) and evaporated under reducing diluted product was purified by chromatography on sillca gel, using ethyl acetate:pentane (30:70) as the eluant to afford the title compound, 92%; ¹H NMR (CDCl₃, 300MHz) 8: 0.82

20

5

10

10

15

20

-135-

(t, 3H), 1.20-1.80 (m, 22H), 1.84 (m, 1H), 2.20 (m, 4H), 3.04 (q, 2H), 9.10 (bs, 1H); LRMS: m/z 396.2 (MH⁺).

c) 2-[(1-[(5-ethyl-1,3,4-thiadiazol-2-yl)amino]carbonyl)cyclopentyl) methyl]pentanoic acid,

Trifluoroacetic acid (5ml) was added to a solution of the title product from stage b) above (0.31mmol) in dichloromethane (5ml), and the solution stirred at room temperature for 4 hours. The reaction mixture was concentrated under reduced pressure and the residue azeotroped with toluene and dichloromethane to afford the title compound as a clear oil, 81%, ¹H NMR (CDCl₃, 400MHz) δ: 0.92 (t, 3H), 1.35 (t, 3H), 1.25-1.80 (m, 11H), 2.20-2.50 (m, 4H), 2.95 (q, 2H), 12.10 (bs, 1H); LRMS: m/z 339.8 (MH*); Anal. Found: C, 56.46; H, 7.46; N, 12.36. C₁₆H₂₅N₃O₃S requires C, 56.62; H, 7.44; N, 12.37%.

Details on a suitable assay system for identifying and/or studying an I:NEP are presented in the hereinafter in the section entitled NEP Assay.

Further examples of NEP inhibitors are disclosed and discussed in the following review articles:

Pathol. Biol., 46(3), 1998, 191.

25 Current Pharm. Design, 2(5), 1996, 443.

Biochem. Soc. Trans., 21(3), 1993, 678.

Handbook Exp. Pharmacol., 104/1, 1993, 547.

TiPS, 11, 1990, 245.

Pharmacol. Rev., 45(1), 1993, 87.

-136-

Curr. Opin. Inves. Drugs, 2(11), 1993, 1175.

Antihypertens. Drugs, (1997), 113.

Chemtracts, (1997), 10(11), 804.

Zinc Metalloproteases Health Dis. (1996), 105.

5 Cardiovasc. Drug Rev., (1996), 14(2), 166.

Gen. Pharmacol., (1996), 27(4), 581.

Cardiovasc. Drug Rev., (1994), 12(4), 271.

Clin. Exp. Pharmacol. Physiol., (1995), 22(1), 63.

Cardiovasc. Drug Rev., (1991), 9(3), 285.

10 Exp. Opin. Ther. Patents (1996), 6(11), 1147.

Yet, further examples of NEPi's are disclosed in the following documents:

EP-509442A

US-192435

US-4929641

EP-599444B

US-884664

EP-544620A

US-798684

J. Med. Chem. 1993, 3821,

Circulation 1993, 88(4), 1.

EP-136883

JP-85136554

US-4722810

Curr. Pharm. Design, 1996, 2, 443.

EP-640594

J. Med. Chem. 1993, 36(1), 87.

EP-738711-A

JP-270957

CAS # 115406-23-0

DE-19510566

DE-19638020

23/04 '01 09:23 FAX

EP-830863

JP-98101565

EP-733642

WO9614293

JP-08245609

JP-96245609

WO9415908

JP05092948

WO-9309101

WO-9109840

EP-519738

EP-690070

J. Med. Chem. (1993), 36, 2420.

JP-95157459

Bioorg. Med. Chem. Letts., 1996, 6(1), 65.

Further I:NEPs are disclosed in the following documents:

EP-A-0274234

JP-88165353

Biochem.Biophys.Res. Comm.,1989, 164, 58

EP-629627-A

US-77978

Perspect. Med. Chem. (1993), 45.

EP-358398-B

5

Further examples of I:NEPs are selected from the following structures:

Compound	Structure	Mode of Action
		References

		The same of the sa
FXII	Ma C	I:NEP
		EP-509442A
	SACH S-	US-192435
		U\$-4929641
FXIII	HO,C- 9 9	I:NEP
	N SH	(also an ACE inhibitor)
		EP-599444B
		US-884664
FXIV	\sim	I:NEP
	How H	EP-544620A
		US-798684
·	CORT	J. Med. Chem.
		1993, 3821.
FXV	(20)	I:NEP
	L Ph	(also an ACE inhibitor)
	Me H	Mixanpril
	HO,C Me	Circulation
		1993, <u>88(</u> 4), 1.
FXVI		I:NEP
	HS C C C C C C C C C C C C C C C C C C C	EP-136883
	1 1 COM	JP-85136554
		US-4722810
FXVII		I:NEP
	1 1 1	Retrothiorphan
	H OH	Curr. Pharm. Design,
• .	}	1996, 2, 443.
FXVIII	~	I:NEP
	HS ~ N	(also an ACE inhibitor)
	СОН	EP-640594
FXIX	1	I:NEP
	HE COM	J. Med. Chem.
		1993, 36(1), 87.
	1	

23/04 '01 09:24 FAX

FXX	HN CO,H	I:NEP (also an ACE inhibitor) EP-738711-A JP-270957
	HO THE TON	CAS # 115406-23-0
FXXII	Ho I N COLET	I:NEP (also an ECE inhibitor) DE-19510566 DE-19638020 EP-830863 JP-98101565
FXXIII	HO ^T C HO	I:NEP (also an ECE inhibitor) EP-733642
FXXIV	EIO OH NOR	I:NEP WO96/14293
FXXV	HO WALL OH	I:NEP JP-08245609 JP-96245609
FXXVI	m. I.Q. E. Corp.	I:NEP WO9415908
FXXVII	но И Д Соля	I:NEP JP05092948

-140

FXXVIII	HE N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	I:NEP WO-9309101
FXXIX	H3 TH CO,H	I:NEP WO-9109840
FXXXI	Hore N	I:NEP EP-519738 EP-690070
FXXXII	HO ₂ C·VH Acs H	I:NEP (also an ACE inhibitor) J. Med. Chem. (1993), 36, 2420.
FXXXIII	но Дусоля	I:NEP JP-95157459 Bloorg. Med. Chem. Letts., 1996, 6(1), 65.

LUCAS & CO.

DATE: TOTAL NO. OF PAGES INCLUDING COVER: SENDER'S REFERENCE NUMBER:
48
SENDER'S REFERENCE NUMBER:
YOUR REFERENCE NUMBER:
LEASE COMMENT DPLEASE REPLY DPLEASE RECYCL

PART 4

135 WESTHALL ROAD • WARLINGHAM • SURREY CR6 9HJ PHONE: 01883 626211 • FAX: 01883 622997

Ø002/049

- 14/-

Preferred additional I:NEPs are selected from the following structures:

Compound	Structure	Mode of Action
		References
FV	L D 4 0	I:NEP
	no la la la la la la la la la la la la la	EP-A-0274234
		(Example 300)
FVI	L () 4 0	I:NEP
	но У П ОН	EP-A-0274234
j	% • •	(Example 379)
FVII	QMe	I:NEP
	· ~	Candoxatrilat
	HO H	EP-274234
		JP-88165353
	он Т	Biochem.Biophys.Res.
		Comm.,1989, <u>164</u> , 58
FVIII		I:NEP
	SH ° ∞'H	Omapatrilat
		(also an inhibitor of
	s	ACE)
		EP-0629627 - A
		US-77978
FIX	NHSO,Me	I:NEP .
ľ	H ₂ N HN	Sampatrilat
	HO J. J.	(also an inhibitor of
	O GHO3C	ACE)
1	ОН	Perspect. Med. Chem.
		(1993), 45.
		EP-0358398-B

23/04 '01 09:25 FAX

2025

-142-

FX	HO OH OH OCO,H NH	I:NEP Phosphoramidon (which is commercially available)
FXI	нв Т он	I:NEP Thiorphan (which is commercially available)

More preferred additional I:NEPs are selected from the following structures:

COMPOUN	STRUCTURE
D	
F57	Ho Ho
F58	HO NO NO NO NO NO NO NO NO NO NO NO NO NO
F59	HO OH
F60	HO S CH ₃

Test Assays: Auxiliary Compounds

5 NEP ENZYME ASSAY

THE PREPARATION AND ASSAY OF SOLUBLE (NEP) NEUTRAL ENDOPEPTIDASE FROM CANINE, RAT, RABBIT AND HUMAN KIDNEY CORTEX.

10

23/04 '01 09:26 FAX

Soluble NEP is obtained from the kidney cortex and activity is assayed by measuring the rate of cleavage of the NEP substrate Abz-D-Arg-Arg-Leu-EDDnp to generate its fluorescent product, Abz-D-Arg-Arg.

15

EXPERIMENTAL PROCEDURE:-

1. MATERIALS

All water is double de ionised.

20

1.1 Tissues

Human Kidney

IIAM (Pennsylvania, U.S.A.)

Rat Kidney

Rabbit Kidney

25 Canine Kidney

1.2 Homogenisation medium

100mM Mannitol and 20mM Tris @ pH 7.1

23/04 '01 09:27 FAX

2029

- 146-

- 2.42g Tris (Fisher T/P630/60) is diluted in 1 litre of water and the pH adjusted to 7.1 using 6M HCl at room temperature. To this 18.22g Mannitol (Sigma M-9546) is added.
- 5 1.3 Tris buffer (NEP buffer).50ml of 50mM Tris pH 7.4 (Sigma T2663) is diluted in 950ml of water.
 - 1.4 Substrate (Abz-D-Arg-Arg-Leu-EDDnp)

Made to order from SNPE, and is stored as a powder at –20°C. A 2mM stock is made by gently re-suspending the substrate in Tris buffer, this should not be vortexed or sonicated. 600µl aliquots of the 2mM stock are stored at –20 for up to one month. (Medeiros, M.A.S., Franca, M.S.F. et al., (1997), Brazilian Journal of Medical and Biological Research, 30, 1157-1162).

15 1.5 Total product

Samples corresponding to 100% substrate to product conversion are included on the plate to enable the % substrate turnover to be determined. The total product is generated by incubating 1ml of 2mM substrate with 20µl of enzyme stock for 24 hours at 37°C.

20

1.6 Stop solution.

A 300µM stock of Phosphoramidon (Sigma R7385) is made up in NEP buffer and stored in 50µl aliquots at -20.

- 25 1.7 Dimethyl sulphoxide (DMSQ).
 - 1.8 Magnesium Chloride -MgCl₂.6H₂O (Fisher M0600/53).
 - 1.9 Black 96 well flat bottom assay plates (Costar 3915).
 - 1.10 Topseal A (Packard 6005185).
 - 1.11 Centrifuge tubes

30

2. SPECIFIC EQUIPTMENT

- 2.1 Sorvall RC-5B centrifug (SS34 GSA rotor, pre-cooled to 4 C).
- 2.2 Braun miniprim r mixer.
- 2.3 Beckman CS-6R centrifuge.

23/04 '01 09:27 FAX

10

30

-147~

- 2,4 Fluostar galaxy.
- 2.5 Wesbart 1589 shaking incubator.

3. METHODS

- 5 3.1 TISSUE PREPARATION
 - 3.2 Dog, rat, rabbit, and human NEP is obtained from the kidney cortex using a method adapted from Booth, A.G. & Kenny, A.J. (1974) *Biochem. J.* 142, 575-581.
 - 3.3 Frozen kidneys are allowed to thaw at room temperature and the cortex is dissected away from the medulla.
 - 3.4 The cortex is finely chopped and homogenised in approximately 10 volumes of homogenisation buffer (1.2) using a Braun miniprimer (2.2).
 - 3.5 Magnesium chloride (1.8) (20.3mg/gm tissue) is added to the homogenate and stirred in an ice-water bath for 15 minutes.
- 3.6 The homogenate is centrifuged at 1,500g (3,820rpm) for 12 minutes in a Beckman centrifuge (2.3) before removing the supernatant to a fresh centrifuge tube and discarding the pellet.
 - 3.7 The supernatant is centrifuged at 15,000g (12,100rpm) for 12 minutes in a Sovall centrifuge (2.1) and the supernatant is discarded.
- 3.8 The pale pink layer on the top of the remaining pellet is removed and resuspended in homogenisation buffer containing magnesium chloride (9mg MgCl in 5ml buffer per 1g tissue).
 - 3.9 The suspension is centrifuged at 2,200g (4,630rpm) for 12 minutes in a Beckman centrifuge (2.3) before discarding the pellet.
- 25 3.10 The supernatant is centrifuged at 15,000g (12,100rpm) for 12 minutes using the Sorvall centrifuge (2.1) and the supernatant is discarded.
 - 3.11 The final pellet is resuspended in homogenisation buffer containing magnesium chloride (0.9mg MgCl in 0.5ml buffer per 1g tissue). A homogenous suspension is obtained using a Braun miniprimer (2.2). This is then frozen down in 100µl allquots to be assayed for NEP activity.

4.0 DETERMINATION OF NEP ACTIVITY

23/04 '01 09:28 FAX

10

20

The activity of the previously allquoted NEP is measured by its ability to cleave the NEP specific peptide substrate.

- 4.1 A 4% DMSO/NEP buffer solution is made (4mls DMSO in 96mls NEP buffer).
 - 4.2 Substrate, total product, enzyme, and Phosphoramidon stocks are left on ice to thaw.
 - 4.3 50µl of 4% DMSO/NEP buffer solution is added to each well.
- 4.4 The 2mM substrate stock is diluted 1:40 to make a 50µM solution. 100µl of 50µM substrate is added to each well (final concentration 25µM).
- 4.5 50µl of a range of enzyme dilutions is added to initiate the reaction (usually 1:100, 1:200, 1:400, 1:800, 1:1600, and 1:3200 are used). 50µl of NEP buffer is added to blank wells.
- 4.6 The 2mM total product is diluted 1:80 to make a 25μM solution, 200μl of
 25μM product is added to the first four wells of a new plate.
 - 4.7 Plates are incubated at 37oC in a shaking incubator for 60 minutes.
 - 4.8 The 300µM Phosphoramidon stock is diluted 1:100 to 300nM. The reaction is stopped by the addition of 100µl 300nM Phosphoramidon and incubated at 37°C in a shaking incubator for 20 minutes before being read on the Fluostar (ex320/em420).

5. NEP INHIBITION ASSAYS

- 5.1 Substrate, total product, enzyme and Phoshoramidon stocks are left on ice to thaw.
 - 5.2 Compound stocks are made up in 100% DMSO and diluted 1:25 in NEP buffer to give a 4% DMSO solution. All further dilutions are carried out in a 4% DMSO solution (4mls DMSO in 96mls NEP buffer).
- 5.3 50µl of compound in duplicate is added to the 96 well plate and 50µl of 4% DMSO/NEP buffer is add id to control and blank wells.
 - 5.4 The 2mM substrate stock is diluted 1:40 in NEP buffer to make a 50μM solution (275μl 2mM substrate to 10,73ml buffer is enough for 1 plate).
 - 5.5 Th enzyme stock dilut d in NEP buffer (determined from activity checks).

23/04 '01 09:29 FAX

- 5.6 Th 2mM total product stock is diluted 1:80 in NEP buffer to make a 25µM solution. 200µl is added to the first four wells of a separate plate.
- 5.7 The 300µM Phosphoramidon stock is diluted 1:1000 to make a 300nM stock (11µl Phosphoramidon to 10.99ml NEP buffer.
- 5 5.8 To each well in the 96 well plate the following is added:

Table Reagents to be added to 96 well plate.

	Compound/	Tris	Substrate	NEP	Total
	DMSO	Buffer		enzyme	product
Samples	2µl compound	50µi	100µl	50µl	None
Controls	2μl DM\$O	50µl	100μΙ	50µl	None
Blanks	2μl DMSO	100µl	100μΙ	None	None
Totals	2µI DMSO	None	None	None	200µl

- 10 5.9 The reaction is initiated by the addition of the NEP enzyme before incubating at 37°C for 1 hour in a shaking incubator.
 - 5.10 The reaction is stopped with 100µl 300nM Phosphoramidon and incubated at 37°C for 20 minutes in a shaking incubator before being read on the Fluostar (ex320/em420).

6. CALCULATIONS

15

20

25

The activity of the NEP enzyme is determined in the presence and absence of compound and expressed as a percentage.

% Control activity (turnover of enzyme):

Mean FU of controls - Mean FU of blanks X 100

Mean FU of totals - M an FU of blanks

% Activity with inhibitor:

23/04 '01 09:29 FAX

20033

-1501

Mean FU of compound – Mean FU of blanks X 100 Mean FU of totals – Mean FU of blanks

5 Activity expressed as % of control:

% Activity with inhibitor X 100
% Control activity

A sigmoidal dose-response curve is fitted to the % activities (% of control) vs compound concentration and IC50 values calculated using LabStats fit-curve in Excel.

ACE ASSAY

15 THE PREPARATION AND ASSAY OF SOLUBLE ANGIOTENSIN CONVERTING ENZYME (ACE), FROM PORCINE AND HUMAN KIDNEY CORTEX.

Soluble ACE activity is obtained from the kidney cortex and assayed by measuring the rate of cleavage of the ACE substrate Abz-Gly-p-nitro-Phe-Pro-OH to generate its fluorescent product, Abz-Gly.

1. MATERIALS

All water is double de ionised.

25

20

1.1 Human Kidney IIAM

IIAM (Pennsylvania, U.S.A.) or UK Human

Tissue Bank (UK HTB)

1.2 Porcine kidney ACE

Sigma (A2580)

- 1.3 Homogenisation buffer-1
- 30 100mM Mannitol and 20mM Tris @ pH 7.1
 - 2.42g Tris (Fisher T/P630/60) is diluted in 1 litre of water and the pH adjusted to 7.1 using 6M HCl at room temperature. To this 18.22g Mannitol (Sigma M-9546) is added.
 - 1.4 Homogenisation buffer-2

-181

100mM Mannitol, 20mM Tris @ pH7.1 and 10mM MgCl₂6H₂O (Fisher M0600/53) To 500ml of the homogenisation buffer 1 (1.4) 1.017g of MgCl₂ is added.

- 1.5 Tris buffer (ACE buffer).50mM Tris and 300mM NaCl @ pH 7.4
- 5 50ml of 50mM Tris pH 7.4 (Sigma T2663) and 17.52g NaCl (Fisher S/3160/60) are made up to 1000ml in water.
 - 1.6 Substrate (Abz-D-Gly-p-nitro-Phe-Pro-OH) (Bachem M-1100)
 ACE substrate is stored as a powder at -20°C. A 2mM stock is made by gently re-suspending the substrate in ACE buffer, this must not be vortexed or sonicated. 400µl aliquots of the 2mM stock are stored at -20°C for up to one month.
 - 1.7 Total product

Samples corresponding to 100% substrate to product conversion are included on the plate to enable the % substrate tumover to be determined (see calculations).

- 15 The total product is generated by incubating 1ml of 2mM substrate with 20µl of enzyme stock for 24 hours at 37°C.
 - 1.8 Stop solution.

0.5M EDTA (Promega CAS[6081/92/6]) is diluted 1:250 in ACE buffer to make a 2mM solution.

- 20 1.9 Dimethyl sulphoxide (DMSO).
 - 1.10 Magnesium Chloride -MgCl₂.6H₂O (Fisher M0600/53).
 - 1.11 Black 96 well flat bottom assay plates (Costar 3915 or Packard).
 - 1.12 Topseal A (Packard 6005185).
 - 1.13 Centrifuge tubes

25

10

2. SPECIFIC EQUIPTMENT

- 2.1 Sorvall RC-5B centrifuge (SS34 GSA rotor, pre-cooled to 4°C).
- 2.2 Braun miniprimer mixer.
- 30 2.3 Beckman CS-6R centrifuge.
 - 2.4 BMG Fluostar Galaxy.
 - 2.5 Wesbart 1589 shaking Incubator.

3. METHODS

15

25

-152

3.1 TISSUE PREPARATION

- 3.3 Human ACE is obtained from the kidney cortex using a method adapted from Booth, A.G. & Kenny, A.J. (1974) *Biochem. J.* 142, 575-581.
- 5 3.3 Frozen kidneys are allowed to thaw at room temperature and the cortex is dissected away from the medulla.
 - 3.4 The cortex is finely chopped and homogenised in approximately 10 volumes of homogenisation buffer-1 (1.4) using a Braun miniprimer (2.2).
 - 3.5 Magnesium chloride (1.11) (20.3mg/gm tissue) is added to the homogenate and stirred in an ice-water bath for 15 minutes.
 - 3.6 The homogenate is centrifuged at 1,500g (3,820rpm) for 12 minutes in a Beckman centrifuge (2.3) before removing the supernatant to a fresh centrifuge tube and discarding the pellet.
 - 3.7 The supernatant is centrifuged at 15,000g (12,100rpm) for 12 minutes in a Sovall centrifuge (2.1) and the supernatant is discarded.
 - 3.8 The pale pink layer on the top of the remaining pellet is removed and resuspended in homogenisation buffer-2 (1.5) (5ml buffer per 1g tissue).
 - 3.9 The suspension is centrifuged at 2,200g (4,630rpm) for 12 minutes in a Beckman centrifuge before discarding the pellet.
- 20 3.10 The supernatant is centrifuged at 15,000g (12,100rpm) for 12 minutes using the Sorvall centrifuge and the supernatant is discarded.
 - 3.11 The final pellet is resuspended in homogenisation buffer-2 (0.5ml buffer per 1g tissue). A homogenous suspension is obtained using a Braun miniprimer. This is then frozen down in 100µl aliquots to be assayed for NEP activity.

4.0 DETERMINATION OF ACE ACTIVITY

The activity of the previously aliquoted ACE is measured by its ability to cleave the ACE specific peptide substrate.

- Porcine ACE (1.2) is defrosted and resuspended in ACE buffer (1.8) at 0.004U/µl, this is frozen down in 50ul aliquots.
 - 4.1 A 4% DMSO/ACE buffer solution is made (4mls DMSO in 96mls ACE buffer).

15

30

@ 036

153-

- 4.2 Substrate (1.7), total product (1.8) and enzyme (1.1, 1.2, 1.3), are left on lee to thaw.
- 4.3 50µl of 4% DMSO/ACE buffer solution is added to each well.
- 4.4 The 2mM substrate stock is diluted 1:100 to make a 20µM solution. 100µl of 20µM substrate is added to each well (final concentration in the assay 10µM).
- 4.5 50µl of a range of enzyme dilutions is added to initiate the reaction (usually 1:100, 1:200, 1:400, 1:800, 1:1600, and 1:3200 are used). 50µl of ACE buffer is added to blank wells.
- 4.6 The 2mM total product is diluted 1:200 to make 10µM solution. 200µl 10µM product is added to the first four wells of a new plate.
- 4.7 Plates are incubated at 37°C in a shaking incubator for 60 minutes.
- 4.8 The enzyme reaction is stopped by the addition of 100µl 2mM EDTA in ACE buffer and incubated at 37°C in a shaking incubator for 20 minutes before being read on the BMG Fluostar Galaxy (ex320/em420).

5. ACE INHIBITION ASSAYS

- 5.1 Substrate, total product, and enzyme stocks are left on ice to thaw.
- 5.2 Compound stocks are made up in 100% DMSO and diluted 1:25 in ACE buffer to give a 4% DMSO solution. All further dilutions are carried out in a 4% DMSO/ACE buffer solution (4mls DMSO in 96mls ACE buffer).
 - 5.3 50µl of compound, in duplicate, is added to the 96 well plate and 50µl of 4% DMSO/ACE buffer is added to control and blank wells.
- 5.4 Steps 5.2 and 5.3 can be carried out either by hand or using the Packard multiprobe robots
 - 5.5 The 2mM substrate stock is diluted 1:100 in ACE buffer to make a 20µM solution (10µM final concentration in the assay) (110µl of 2mM substrate added to 10.89ml buffer is enough for 1 plate).
 - 5.6 The enzyme stock is diluted in ACE buffer, as determined from activity checks (4.0).
 - 5.7 The 2mM total product stock is diluted 1:200 in ACE buffer to make a 10µM solution. 200µl is added to the first four wells of a separate plate.
 - 5.8 The 0.5mM EDTA stock is diluted 1:250 to make a 2mM stock (44µl EDTA to 10.96ml ACE buffer).

7547

5.9 To each well of the 96 well plate the following reagents are added:

Table 1: Reagents added to 96 well plate.

	Compound/	Tris	Substrate	ACE	Total
	DMSO	Buffer		enzyme	product
Samples	2µl compound	50µI	100µl	50µ1	None
Controls	2µl DMSO	50µl	100μΙ	50µI	None
Blanks	2µI DMSQ	_100µì	100µ1	None	None
Totals	2µl DMSO	None	None	None	200µl

5

25

- 5.10 50µl of the highest concentration of each compound used in the assay is added in duplicate to the same 96 well plate as the totals (5.7). 150µl of ACE buffer is added to determine any compound fluorescence.
- 5.11 The reaction is initiated by the addition of the ACE enzyme before incubating at 37°C for 1 hour in a shaking incubator.
- 5.12 The reaction is stopped by the addition of 100µl 2mM EDTA and incubated at 37°C for 20 minutes in a shaking incubator, before being read on the BMG Fluostar Galaxy (ex320/em420).

15 6, CALCULATIONS

The activity of the ACE enzyme is determined in the presence and absence of compound and expressed as a percentage.

- 20 FU = Fluorescence units
 - (i) % Control activity (turnover of enzyme):

Mean FU of controls – Mean FU of blanks X 100

Mean FU of totals – Mean FU of blanks

(ii) % Activity with inhibitor.

23/04 '01 09:32 FAX

Ø 038

-155/

Mean FU of compound – Mean FU of blanks X 100 Mean FU of totals – Mean FU of blanks

5 (iii) Activity expressed as % of control:

% Activity with inhibitor X 100% Control activity

- 10 OR <u>Mean FU of compound Mean FU of blanks</u> X 100

 Mean FU of controls Mean FU of blanks
 - (iv) % Inhibition = 100 % control
- 15 (v) For fluorescent compounds the mean FU of blanks containing compound (5.10) is deducted from the mean FU of compound values used to calculate the % Activity.

A sigmoidal dose-response curve is fitted to the % activities (% of control) vs compound concentration and IC₅₀ values calculated using LabStats fit-curve in Excel.

25 PDE5 inhibitor - TEST METHODS

Phosphodlesterase (PDE) inhibitory activity

In vitro PDE inhibitory activities against cyclic guanosine 3',5'monophosphate (cGMP) and cyclic adenosine 3',5'-monophosphate (cAMP)
phosphodiesterases were determined by measurement of their IC₅₀ values (the
concentration of compound required for 50% inhibition of enzyme activity).

23/04 '01 09:32 FAX

10

15

20

25

2039

.- 156

The required PDE enzymes were isolated from a variety of sources, including human corpus cavernosum, human and rabbit platelets, human cardiac ventricle, human skeletal muscle and human and canine retina, essentially by the method of W.J. Thompson and M.M. Appleman (Biochem., 1971, 10, 311). In particular, the cGMP-specific PDE (PDE5) and the cGMP-inhibited cAMP PDE (PDE3) were obtained from human corpus cavernosum or human platelets; the cGMP-stimulated PDE (PDE2) was obtained from human corpus cavernosum and human platelets; the calcium/calmodulin (Ca/CAM)-dependent PDE (PDE1) from human cardiac ventricle; the cAMP-specific PDE (PDE4) from human skeletal muscle and human recombinant, expressed in SF9 cells; and the photoreceptor PDE (PDE6) from human or canine retina. Phosphodiesterases 7-11 were generated from full length human recombinant clones transfected into SF9 cells.

Assays can be performed either using a modification of the "batch" method of W.J. Thompson et al. (Biochem., 1979, 18, 5228) or using a scintillation proximity assay for the direct detection of AMP/GMP using a modification of the protocol described by Amersham pic under product code TRKQ7090/7100. In summary, the effect of PDE inhibitors was investigated by assaying a fixed amount of enzyme in the presence of varying inhibitor concentrations and low substrate, (cGMP or cAMP in a 3:1 ratio unlabelled to [3H]-labeled at a conc -1/3 K_m) such that $IC_{50} \cong K_l$. The final assay volume was made up to 100µl with assay buffer [20 mM Tris-HCl pH 7.4, 5 mM MgCl₂, 1 mg/ml bovine serum albumin]. Reactions were initiated with enzyme, incubated for 30-60 min at 30°C to give <30% substrate turnover and terminated with 50 μl yttrium silicate SPA beads (containing 3 mM of the respective unlabelled cyclic nucleotide for PDEs 9 and 11). Plates were re-sealed and shaken for 20 min, after which the beads were allowed to settle for 30 min in the dark and then counted on a TopCount plate reader (Packard, Meriden, CT) Radioactivity units were converted to % activity of an uninhibited control (100%), plotted against inhibitor concentration and inhibitor IC50 values obtain id using the 'Fit Curve' Microsoft Excel extension (or in-house quivalent). Results from these tests shi withat the compounds of the present invention are inhibitors of cGMP-specific PDE5.

23/04 '01 09:33 FAX

2040

-15)-

Functional activity

This can be assessed in vitro by determining the capacity of a compound of the invention to enhance sodium nitroprusside or electrical field stimulation-induced relaxation of pre-contracted rabbit corpus cavernosum tissue strips, using methods based on that described by S.A. Ballard et al. (Brit. J. Pharmacol., 1996, 118 (suppl.), abstract 153P) or S.A. Ballard et al. (J. Urology, 1998, 169, 2164-2171).

In vivo activity

15

25

30

Compounds can be screened in anaesthetised dogs to determine their capacity, after i.v. administration, to enhance the pressure rises in the corpora cavernosa of the penis induced by intracavernosal injection of sodium nitroprusside, using a method based on that described by Trigo-Rocha et al. (Neurourol. and Urodyn., 1994, 13, 71).

20 REFERENCES FOR THE NEP SECTION

- 1. Barker, P. E.; Shipp, M. A.; D'Adamio, L.; Masteller, E. L.; Reinherz, E. L. The common acute lymphobiastic leukemia antigen gene maps to chromosomal region 3(q21-q27). J. Immun. 142: 283-287, 1989.
- 2. D'Adamio, L.; Shipp, M. A.; Masteller, E. L.; Reinherz, E. L.: Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5-prime untranslated regions. Proc. Nat. Acad. Sci. 86: 7103-7107, 1989.
- 3. Letarte, M.; V ra, S.; Tran, R.; Addis, J. B. L.; Onizuka, R. J.; Quackenbush, E. J.; Jongeneel, C. V.; McInnes, R. R. : Common acute lymphocytic I ukemia antigen is identical to neutral endopeptidase. J. Exp. Med. 168: 1247-1253, 1988.

10

15

20

25

30

- 4. Shipp, M. A.; Vijayaraghavan, J.; Schmidt, E. V.; Mastell r, E. L.; D'Adamio, L.; Hersh, L. B.; Reinherz, E. L. : Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 ('enkephalinase'): direct evidence by cDNA transfection analysis. Proc. Nat. Acad. Sci. 86: 297-301, 1989.
- 5. Tran-Paterson, R.; Willard, H. F.; Letarte, M.: The common acute lymphoblastic leukemia antigen (neutral endopeptidase--3.4.24.11) gene is located on human chromosome 3. Cancer Genet. Cytogenet. 42: 129-134, 1989.

NPY assay:

An assay for identifying NPY inhibitors is presented in WO-A-98/52890 (see page 96, lines 2 to 28).

BIOAVAILABILITY

Preferably, the compounds of the invention(and combinations) are orally bioavailable. Oral bioavailablity refers to the proportion of an orally administered drug that reaches the systemic circulation. The factors that determine oral bioavailability of a drug are dissolution, membrane permeability and metabolic stability. Typically, a screening cascade of firstly *in vitro* and then *in vivo* techniques is used to determine oral bioavailability.

Dissolution, the solubilisation of the drug by the aqueous contents of the gastro-intestinal tract (GIT), can be predicted from *in vitro* solubility experiments conducted at appropriate pH to mimic the GIT. Preferably the compounds of the invention have a minimum solubility of 50 mcg/ml. Solubility can be determined by standard procedures known in the art such as described in Adv. Drug Deliv. Rev. 23, 3-25, 1997.

Membrane p rmeability refers to the passage of the compound through the cells of the GIT. Lipophilicity is a key property in predicting this and is defined by in

~155

vitro Log D_{7,4} measurements using organic solvents and buffer. Preferably the compounds of the Invention have a Log D_{7,4} of -2 to +4, more preferably -1 to +2. The log D can be determined by standard procedures known in the art such as described in J. Pharm. Pharmacol, 1990, 42:144.

5

10

15

Cell monolayer assays such as CaCo₂ add substantially to prediction of favourable membrane permeability in the presence of efflux transporters such as p-glycoprotein, so-called caco-2 flux. Preferably, compounds of the invention have a caco-2 flux of greater than 2x10⁻⁶cms⁻¹, more preferably greater than 5x10⁻⁶cms⁻¹. The caco flux value can be determined by standard procedures known in the art such as described in J. Pharm. Sci, 1990, 79, 595-600

Metabolic stability addresses the ability of the GIT or the liver to metabolise compounds during the absorption process: the first pass effect. Assay systems such as microsomes, hepatocytes etc are predictive of metabolic liability. Preferably the compounds of the Examples show metabolic stability in the assay system that is commensurate with an hepatic extraction of less then 0.5. Examples of assay systems and data manipulation are described in Curr. Opin. Drug Disc. Devel., 201, 4, 36-44, Drug Met. Disp., 2000, 28, 1518-1523

20

25

Because of the interplay of the above processes further support that a drug will be orally bioavailable in humans can be gained by <u>in vivo</u> experiments in animals. Absolute bioavailability is determined in these studies by administering the compound separately or in mixtures by the oral route. For absolute determinations (% absorbed) the intravenous route is also employed. Examples of the assessment of oral bioavailability in animals can be found in Drug Met. Disp., 2001, 29, 82-87; J. Med Chem., 1997, 40, 827-829, Drug Met. Disp., 1999, 27, 221-226.

30 [

By cross reference herein to compounds contained in patents which can be used in accordance with invention, we mean the therapeutically active compounds as defined in the claims (in particular of claim 1) and the specific examples (all of which is incorporated herein by reference).

@ 043

-160-

Claims

A pharmaceutical formulation comprising bombesin receptor antagonIst and

- 1) one or more naturally occurring or synthetic prostaglandins or esters thereof. Suitable prostaglandins for use herein include compounds such as alprostadil, prostaglandin E₁ prostaglandin E₂, a prostaglandin E₃, and the semi-synthetic prostaglandins and derivatives thereof including those described in WO-00033825 and/or US 6,037,346 issued on 14th March 2000 all Incorporated herein by reference, PGE₀, PGE₁, PGA₁, PGB₁, PGF₁ α, 19-hydroxy PGA₁, 19-hydroxy PGB₁, PGE₂, PGB₂, 19-hydroxy-PGA₂, 19-hydroxy-PGB₂, PGE₃α, carboprost tromethamine dinoprost, tromethamine, dinoprostone, lipoprost, gemeprost, metenoprost, sulprostune, tiaprost and moxisylate; and/or
- 2) one or more α adrenergic receptor antagonist compounds also known as α adrenoceptors or α -receptors or α -blockers. Suitable compounds for use herein include: the a-adrenergic receptor blockerss as described in PCT application WO99/30897 published on 14th June 1998, the disclosures of which relating to α adrenergic receptors are incorporated herein by reference and include, selective α_1 -adrenoceptor or α_2 -adrenoceptor blockers and non-selective adrenoceptor blockers, suitable a1-adrenoceptor blockers include: phentolamine, phentolamine mesylate, trazodone, alfuzosin, indoramin, naftopidil, tamsulosin, dapiprazole. phenoxybenzamine, idazoxan, efaraxan, yohlmbine, rauwolfa alkaloids, Recordati 15/2739, SNAP 1069, SNAP 5089, RS17053, SL 89.0591, doxazosin, terazosin, abanoquil and prazosin; α₂-blocker blockers from US 6,037,346 [14th March 2000] dibenamine, tolazoline, trimazosin and dibenamine; α-adrenergic receptors as described in US patents: 4,188,390; 4,026,894; 3,511,836; 4.315,007; 3,527,761; 3,997,666; 2,503,059; 4,703,063; 3,381,009; 4,252,721 and 2,599,000 each of which is incorporated herein by reference; a Adrenoceptor blockers include: clonidine, papaverine, papaverine hydrochloride, optionally in the presence of a cariotonic agent such as pirxamine; and/or
- 3) one or more NO-donor (NO-agonist) compounds. Sultabl NO-donor compounds for use herein include organic nitrates, such as mono- di or tri-nitrates or organic nitrate esters including glyceryl brinitrate (also known as nitroglycerin), isosorbide

2001 04/23 MON 16:53 FAX

4044

-161-

5-mononitrate, isosorbide dinitrate, pentaerythritol tetranitrate, erythrityl tetranitrate, sodium nitroprusside (SNP),

3-morpholinosydnonlmine molsidomine, S-nitroso- N-acetyl penicillamine (SNAP) S-nitroso-N-glutathlone (SNO-GLU), N-hydroxy - L-arginine, amylnitrate, linsidomine, linsidomine chlorohydrate, (SIN-1) S-nitroso - N-cysteine, diazenium diolates, (NONOates), 1,5-pentanedinitrate, L-arginene, ginseng, zizphi fructus, molsidomine, Re - 2047, nitrosylated maxisylyte derivatives such as NMI-678-11 and NMI-937 as described in published PCT application WO 0012075; and/or

- 4) one or more potassium channel openers or modulators. Suitable potassium channel openers/modulators for use herein include nicorandil, cromokalim, levcromakalim, lemakalim, pinacidil, cliazoxide, minoxidil, charybdotoxin, glyburide, 4-amini pyridine, BaCl₂; and/or
- 5) one or more dopaminergic agents, preferably apomorphine or a selective D2, D3 or D2/D₉agonist such as, pramipexole and ropirinol (as claimed in WO-0023056),PNU95666 (as claimed in WO-0040226); and/or
- 6) one or more vasodilator agents. Suitable vasodilator agents for use herein include nimodepine, pinacidil, cyclandelate, isoxsuprine, chloroprumazine, halo peridol, Rec 15/2739, trazodone, and/or
- 7) one or more thromboxane A2 agonists; and/or
- 8) one or more CNS active agents; and/or
- 9) one or more ergot alkoloids; Suitable ergot alkaloids are described in US patent 6,037,346 issued on 14th March 2000 and include acetergamine, brazergoline, bromerguride, clanergoline, delorgotrile, disutergine, ergonovine maleate, ergotamine tartrate, etisutergine, lergotrile, lysergide, mesutergine, metergoline, metergotamine, nicergoline, pergolide, propisergide, proterguride, terguride; and/or
- 10) one or more compounds which modulate the action of natruretic factors in particular atrial naturetic factor (also known as atrial naturetic peptide), B type and C type naturetic factors such as inhibitors or neutral endopeptidase; and/or

@045

-162-

- 11) one or more compounds which inhibit angiotensin-converting enzyme such as napril, and combined inhibitors of anglotensin-converting enzym and neutral endopeptidase such as omapatrilat; and/or
- 12) one or more angiotensin receptor antagonIsts such as losartan; and/or
- 13) one or more substrates for NO-synthase, such as L-arginine; and/or
- 14) one or more calcium channel blockers such as amlodipine; and/or
- 15) one or more antagonists of endothelin receptors and inhibitors or endothelinconverting enzyme; and/or
- 18) one or more cholesterol lowering agents such as statins (e.g. atorvastatin/ Lipitor-trade mark) and fibrates; and/or
- 17) one or more antiplatelet and antithrombotic agents, e.g. tPA, uPA, warfarin, hirudin and other thrombin inhibitors, heparin, thromboplastin activating factor inhibitors; and/or
- 18) one or more insulin sensitising agents such as rezulin and hypoglycaemic agents such as glipizide; and/or
- 19) L-DOPA or carbidopa; and/or
- 20) one or more acatylcholinesterase inhibitors such as donezipii; and/or
- 21) one or more steroidal or non-steroidal anti-inflammatory agents; and/or
- 22) one or more estrogen receptor modulators and/or estrogen agonists and/or estrogen antagonists, preferably raioxifene or lasofoxifene, (-)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydronaphthalene-2-ol and pharmaceutically acceptable salts thereof (compound A below) the preparation of which is detailed in WO 96/21656.

₫046

Compound A

one or more of a PDE inhibitor, more particularly a PDE 2, 3, 4, 5, 7 or 8 inhibitor, preferably PDE2 or PDE5 inhibitor and most preferably a PDE5 inhibitor (see hereinafter), said inhibitors preferably having an IC50 against the respective enzyme of less than 100nM: and/or

- 23) one or more of an NPY inhibitor, more particularly NPY1 or NPY5 inhibitor, preferably NPY1 inhibitor; and/or one or more of a NEP inhibitor preferably having an IC50 for NEP of less than 300nM, more preferably less than 100nM; and/or
- 24) one or more of vasoactive intestinal protein (VIP), VIP mirnetic, VIP analogue, more particularly mediated by one or more of the VIP receptor subtypes VPAC1,VPAC or PACAP (pituitory adenylate cyclase activating peptide), one or more of a VIP receptor agonist or a VIP analogue (eg Ro-125-1553) or a VIP fragment, one or more of a α-adrenoceptor antagonist with VIP combination (eg Invicorp, Aviptadil); and/or

D 047

23/04 '01 09:38 FAX

-164-

- 25) one or more of a melanocortin receptor agonist or modulator or melanocortin ehancer, such as melanotan II, PT-14, PT-141 or compounds claimed in WO-09964002, WO-00074679, WO-09955679, WO-00105401, WO-00058361, WO-00114879, WO-00113112, WO-09954358 and/or
- 26) one or more of a serotonin receptor agonist, antagonist or modulator, more particularly agonists, antagonists or modulators for 5HT1A (including VML 670), 5HT2A, 5HT2C, 5HT3 and/or 5HT6 receptors, including those described in WO-09902159, WO-00002550 and/or WO-00028993; and/or
- 27) one or more of a testosterone replacement agent (inc dehydroandrostendione), testosternone (Tostrelle), dihydrotestosterone or a testosterone implant; and/or
- 28) one or more of estrogen, estrogen and medroxyprogesterone or medroxyprogesterone acetate (MPA) (i.e. as a combination), or estrogen and methyl testosterone hormone replacement therapy agent (e.g. HRT especially Premarin, Cenestin, Oestrofeminal, Equin, Estrace, Estrofem, Elleste Solo, Estring, Eastraderm TTS, Eastraderm Matrix, Dermestril, Premphase, Preempro, Prempak, Premique, Estratest, Estratest HS, Tibolone); and /or
- 29) one or more of a modulator of transporters for noradrenaline, dopamine and/or serotonin, such as bupropion, GW-320659
- one or more of a purinergic receptor agonIst and/or modulator; and/or
- 31) one or more of a neurokinin (NK) receptor antagonist, including those described in WO-09964008; and/or
- one or more of an opioid receptor agonist, antagonist or modulator, preferably agonists for the ORL-1 receptor and/or;
- 33) one or more of an agonist or modulator for oxytocin/vasopressin receptors, preferably a selective oxytocin agonist or modulator and/or;
- 34) one or more modulators of cannabinoid receptors;

and a pharmaceutically acceptable excipient.

Ø028/049

ĭ

2048

23/04 '01 09:38 FAX

-165-

2. A pharmaceutical combination as defined in claim (adapted for oral administration.

₫ 048

- 166-

Use of a combination as defined in claim 1. In the preparation of a medicament for the treatment or prophylaxis of male sexual dysfunction (more particularly male erectile dysfunction) and/or female sexual dysfunction (more particularly hypoactive sexual desire disorders, sexual arousal disorders, anorgasmic and sexual pain disorders).

ABSTRACT

TREATMENT OF SEXUAL DYSFUNCTION

5

Bombesin receptor antagonists have been found to be useful in the treatment of sexual dysfunction in both males and females.

Figure 1

Vehicle

Wehicle

Quinelorane (6.25µg/kg, s.c.)

Compound (1) 10mg/kg, i.p.

Figure 2

THIS PAGE BLANK (USPTO)

•

Figure 3

THIS PAGE BLANK (USPTO)

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Vehicle (50% cyclodextrin, i.p.)

Compound (1) 15mg/kg, i.p.

Fluoxetine (20mg/kg, i.p.)

Figure 13

Figure 14

Figure 15

Figure 16

500

250

□ Veh+Veh Fluoxetine x 3 days +Veh (50% β-cyclodextrin) +Yohimbine (2mg/kg, i.p.) 1000 Ejaculatory latency (s) 750

Before

After Treatment

Figure 17

Fluoxetine (20mg/kg, i.p.) x3 days

Figure 18

Figure 19

Figure 20

Vehicle (PEG 200 p.o.)

Quinelorane (6.25ug/kg s.c.)

Compound (2), 10 mg/kg

Compound (2), 30 mg/kg

Compound (2), 100 mg/kg

Figure 21