

Sensor de Estacionamiento LoRaWAN

Autor:

Cristian Funes

Director:

Ernesto Chediack (CEGA Electrónica)

Codirector:

John Doe (FIUBA)

Índice

1. Descripcion tecnica-conceptual del proyecto a realizar
2. Identificación y análisis de los interesados
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	20 de octubre de 2022
1	Se completa hasta el punto 5 inclusive	03/11/2022

Acta de constitución del proyecto

Buenos Aires, 20 de octubre de 2022

Por medio de la presente se acuerda con el Ing. Cristian Funes que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Sensor de Estacionamiento LoRaWAN", consistirá esencialmente en la implementación de un prototipo de un sensor de estacionamiento con conectividad LoRaWAN, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$500000, con fecha de inicio 20 de octubre de 2022 y fecha de presentación pública 20 de octubre de 2023.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Ernesto Chediack CEGA Electrónica

Ernesto Chediack Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El proyecto que aquí se describe, consiste en la implementación de un sensor de estacionamiento con conectividad LoRaWAN. El sensor será del tipo "tacha", como puede verse en la Figura 1.

Figura 1. Sensor de estacionamiento

El objetivo es poder aplicar este tipo de dispositivos a soluciones de Smart Parking. Cuando el sensor detecte que un vehículo se encuentra posicionado por encima, enviará un mensaje a un servidor LoRaWAN a través de un Gateway LoRa para dar aviso de dicho evento. Lo mismo ocurrirá cuando se detecte que el vehículo se ha retirado. Esta información permitirá conocer cuánto tiempo estuvo un vehículo estacionado. Además, sabiendo la ubicación de cada sensor de estacionamiento, será posible visualizar en tiempo real los espacios ocupados y disponibles para estacionar.

En la Figura 2 puede verse un diagrama en bloques del sistema propuesto:

Figura 2. Diagrama en bloques del sensor de estacionamiento

Se observa que el equipo se alimenta a baterías. Esto es un desafío ya que debe lograrse una autonomía de al menos un año para que el proyecto sea escalable.

Como método de detección se empleará un conjunto magnetómetro-LDR. La idea es poder evitar falsas detecciones, usando ambos sensores. Cuando un vehículo se posicione arriba del sensor, se producirá una variación en la intensidad luminosa que será medida por el LDR. Esto, en junto con la variación de campo magnético producida por la masa vehicular, permitirá mejorar la exactitud de las detecciones, evitando falsos positivos y falsos negativos.

El microcontrolador será el encargado de realizar la lectura de los sensores, como también de controlar la comunicación LoRaWAN y el consumo de energía.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Ernesto Chediack	CEGA Electronica	Gerente de Ingenieria
Cliente	Ernesto Chediack CEGA Electrónica		Gerente de Ingenieria
Impulsor	-	-	-
Responsable	Cristian Funes	FIUBA	Alumno
Colaboradores	Gabriel Caballero	CEGA Electrónica	Desarrollador
Orientador	Ernesto Chediack	CEGA Electrónica	Director Trabajo final
Equipo	José Bosdari	Supercanal	Gerente I+D
Opositores	-	-	-
Usuario final	-	Municipalidad de Luján	-
		de Cuyo	

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sensor de estacionamiento que pueda ser utilizado en aplicaciones de Smart Parking. Para ello debe ser fácilmente escalable y contar con suficiente autonomía energética.

4. Alcance del proyecto

El presente proyecto incluye:

- Diseño, implementación y montaje de una placa funcional para el sensor de estacionamiento.
- Desarrollo del firmware para el microcontrolador del sensor de estacionamiento.
- Desarrollo de entorno de testing.
- Puesta en marcha de una red de 10 sensores para la Municipalidad de Luján de Cuyo.

El presente proyecto no incluye:

- Despliegue de red de mas de 10 sensores.
- Configuración de Gateway LoRaWAN.
- Diseño de gabinete.
- Desarrollo de aplicación de parquímetro.

5. Supuestos del proyecto

Para el desarrollo del siguiente proyecto se supone que:

- Se conseguirán todos los componentes necesarios para la implementación del dispositivo.
- Se podrá acceder a una red LoRa.
- Se podrá utilizar la banda ISM 915MHz.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: çomo [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Figura 3. Diagrama en Activity on Node

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 4, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 4. Diagrama de gantt de ejemplo

Figura 5. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
COSTOS INDIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.