Quiz, 10 questions

	Consu	tulational Va	u nagadi	Next Item			
•	Congra	tulations! Yo	ou passeu:	Next item			
	~	1 / 1 points					
	1. Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?						
		$a^{[3]\{7\}(8)}$					
		$a^{[8]\{7\}(3)}$					
	0	$a^{[3]\{8\}(7)}$					
	Correct						
		$a^{[8]\{3\}(7)}$					
	~	1 / 1 points					
	2. Which of these statements about mini-batch gradient descent do you agree with?						
		•	one pass through the training s descent is faster than training o descent.	_			
		an explicit for-loop o	ent mini-batch gradient descent over different mini-batches, so t all mini-batches at the same tin	hat the			

(vectorization).

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch Optimization algorithms.

10/10 points (100%)

Quiz, 10 questions

-	1 / 1 points the best mini-batch size usually not 1 and not m, but instead ning in-between?					
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set befor making progress.					
Corre	ect					
Corre	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.					
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.					
Un-selected is correct						
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.					
Un-selected is correct						

Suppose your learning algorithm's cost J, plotted as a function of the Optimization algorithms, looks like this: 10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

Suppose the temperature in Casablanca over the first three days of Optimization algorithms he:

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$v_2=7.5$$
 , $v_2^{corrected}=10$

Correct

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$lpha = 0.95^t lpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Quiz, 10 questions

1 / 1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line $$\emptyset = 0.98$$ that had a lot of

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Quiz, 10 questions

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

	Try mini-batch gradient descent							
Correct								
Corre	Try tuning the learning rate $lpha$							
	Try initializing all the weights to zero							
Un-selected is correct								
	Try using Adam							
Correct								
Corre	Try better random initialization for the weights							

1/1 points

Which of the following statements about Adam is False?

Optimization	alg	We thans use "default" values for the hyperparameters	10/10 points (100%)
Quiz, 10 questions		eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	•
		The learning rate hyperparameter $\boldsymbol{\alpha}$ in Adam usually needs to be tuned.	
		Adam combines the advantages of RMSProp and momentum	
	0	Adam should be used with batch gradient computations, not with mini-batches.	
	Corre	ect	
-			_