

Ciclo di vita di un sistema informativo

Progettazione di basi di dati

- □ La progettazione di una base di dati è una delle attività del processo di sviluppo di un sistema informativo
 - va inquadrata nel contesto più ampio di ciclo di vita di un sistema informativo

6

Progettazione di basi di dati

Progettazione di una base di dati

- □ La base di dati costituisce un componente importante del sistema complessivo
- - la progettazione della base di dati precede la progettazione delle applicazioni che la utilizzano
 - attenzione maggiore alla fase di progettazione rispetto alle altre fasi

24

Metodologia di progettazione: Esempio

- - decomposizione dell'attività
 - strategie da seguire nei vari passi
 - 1. A) dieta alimentare
 - B) esercizi per ridurre la percentuale di grasso
 - 2a. A) esercizi con pesi
 - B) esercizi di resistenza

27

Metodologia di progettazione: Esempio

- □ Preparazione atletica
 - decomposizione dell'attività
 - strategie da seguire nei vari passi
 - modelli di riferimento per descrivere i dati d'ingresso e di uscita delle varie fasi
 - 1. dati d'ingresso: peso attuale, % di grasso corporeo dati di uscita: modello della struttura corporea della persona in forma
 - 2a. dati di ingresso: modello di persona in forma dati di uscita: modello della struttura corporea dell'atleta medio

28

- ∑ È specificato per ogni entità
- Descrive i concetti (attributi e/o entità) dello schema che permettono di individuare in modo univoco le occorrenze delle entità
 - ogni entità deve avere almeno un identificatore
 - può esistere più di un identificatore appropriato per un'entità

106

 $D_{M}^{B}G$

146

145

Documentazione di schemi E-R

□ Dizionario dei dati

- permette di arricchire lo schema E-R con descrizioni in linguaggio naturale di entità, relazioni e attributi
- - non sempre possono essere indicati esplicitamente in uno schema E-R
 - possono essere descritti in linguaggio naturale
- □ Regole di derivazione dei dati
 - permettono di esplicitare che un concetto dello schema può essere ottenuto (mediante inferenza o calcolo aritmetico) da altri concetti dello schema

147

Regole di derivazione dei dati: esempio

Regole di derivazione	
RD1	Il numero di crediti acquisiti da uno studente si ottiene sommando il numero di crediti dei corsi per cui lo studente ha superato l'esame
RD2	La media voti di uno studente di ottiene calcolando la

RD2 La media voti di uno studente di ottiene calcolando la media dei voti degli esami superati dallo studente

148

UML ed E-R

