Midterm 1 Version 2 Solution

$March\ 19,\ 2020$

Question 1

a. Since

$$S_1=\{1,2,3,5,7,11,13,17,19,23,29\}, \text{ and } S_2=\{1,2,3,5,6,10,15,30\},$$

$$S_1\cap S_2=\{1,2,3,5\}$$

b. See the table below

p	q	r	$\neg p$	$\neg p \Leftrightarrow q$	$(\neg p \Leftrightarrow q) \Rightarrow r$
\overline{T}	Т	Т	F	F	Τ
Т	Т	F	F	F	Т
\overline{T}	F	Т	F	Т	Т
F	Т	Т	Τ	Τ	F
Т	F	F	F	Τ	F
F	F	Т	Т	F	Т
\overline{F}	F	F	Т	F	Т

Correct Solution:

p	q	r	$\neg p$	$\neg p \Leftrightarrow q$	$(\neg p \Leftrightarrow q) \Rightarrow r$
Т	Τ	Т	F	F	Т
\overline{T}	Т	F	F	F	Т
Т	F	Т	F	Т	Т
*F	*T	*T	*T	*T	*T
\overline{T}	F	F	F	Т	F
*F	*T	*F	*T	*T	*F
F	F	Т	Т	F	Т
F	F	F	Τ	F	Т

- * = Incorrect/missing solution
- c. Let $x \in \mathbb{N}$. Assume P(x).

We will prove that there is a natural number y such that the predicate Q(x,y) is true.

Correct Solution:

Let
$$x \in \mathbb{N}$$
, and $y = \underline{\hspace{1cm}}$. Assume $P(x)$.

We will prove that the predicate Q(x, y) is true.

Question 2

a. $\forall x \in P, Cat(x) \wedge Loves(x, x)$

Correct Solution:

$$\forall x \in P, Cat(x) \Rightarrow Loves(x, x)$$

b.
$$\forall x \in P, \exists y \in P, Cat(x) \land Cute(y) \land Loves(x, y)$$

Correct Solution:

$$\forall x \in P, \ Cat(x) \land Cute(x) \Rightarrow (\forall y \in P, Cat(y) \Rightarrow Cute(y))$$

c.
$$\exists x \in P, Cat(x) \land Cute(x) \Rightarrow \forall y \in P, Cat(y) \land Cute(y)$$

d.
$$\forall p_1, p_2 \in P, p_1 \neq p_2 \land Loves(p_1, p_2) \land Loves(p_2, p_1) \Rightarrow (Cat(p_1) \land \neg Cat(p_2)) \lor (\neg Cat(p_1) \land Cat(p_2))$$

Question 3

a.
$$\exists n \in \mathbb{N}, \ n > 1 \Rightarrow \forall x \in \mathbb{R}, \ \lfloor nx \rfloor = n \lfloor x \rfloor$$

Correct Solution:

$$\exists n \in \mathbb{N}, \; n > 1 \wedge (\forall x \in \mathbb{R}^+, \; \lfloor nx \rfloor = n \lfloor x \rfloor)$$

b. Negation: $\forall n \in \mathbb{N}, \ n > 1 \land (\exists x \in \mathbb{R}, \ \lfloor nx \rfloor \neq n \lfloor x \rfloor)$

Let n = 2, x = 0.5.

Then,

$$\lfloor nx \rfloor = \lfloor 2(0.5) \rfloor \tag{1}$$

$$=1 (2)$$

And,

$$n\lfloor x\rfloor = 2\lfloor 0.5\rfloor \tag{3}$$

$$=2(0) \tag{4}$$

$$=0 (5)$$

Since $\lfloor nx \rfloor \neq n \lfloor x \rfloor$, the predicate logic is false.

Correction, First Case ($n \le 1$):

Assume $n \leq 1$. Then, the first case of the negation is true.

Correction, Second Case ($\exists x \in \mathbb{R}, n \lfloor x \rfloor \neq \lfloor nx \rfloor$):

Let $n \in \mathbb{N}$, $x = \frac{1}{n}$. Assume n > 1.

Then,

$$n\lfloor x\rfloor = n\lfloor \frac{1}{n}\rfloor \tag{1}$$

$$=0 (2)$$

And,

$$\lfloor nx \rfloor = \lfloor \frac{1}{n} \rfloor \tag{3}$$

$$= \lfloor 1 \rfloor \tag{4}$$

$$=1 (5)$$

Since $n\lfloor x\rfloor \neq \lfloor nx\rfloor$, the second case of negation is also false.

Then, it follows from the negation that the statement is false.

Question 4

• Let $a, b \in \mathbb{N}$. Assume $b \mid a$ and $b \mid (a+2)$.

Then, $\exists k, l \in \mathbb{Z}$,

$$a = kb \tag{1}$$

$$(a+2) = lb (2)$$

by the definition of divisibility.

Then,

$$2 = (l - k)b \tag{3}$$

Since $(l-k) \in \mathbb{Z}$ and $b \in \mathbb{N}$, the only possible combinations that make up 2 are 1 and 2.

Then it follows from above that b = 1 or b = 2.