Midterm Exam 1

Date : Wednesday $15^{\rm th}$ February, 2023, from 4:30 pm to 6:30 pm

Total Marks : 50

Notes: : All questions are scored (no optionals).

NI	Ct 1 t ID
Name:	Student ID:

Reference:

- The binary Entropy function $H_b(p)$ is plotted in Fig. 1 as a function of p.
- The model of the binary assymetric channel $BASC(p_0, p_1)$ is provided in Fig. 2.
- The notation λ_n stands for the posterior likelihood ratio in favor of X=1, and it is the ratio of the conditional probability that X=1 given the observation n to the conditional probability that X=0 given this observation. The prior likelihood ratio is the probability that X=1 to the probability that X=0.
- $\log_{10}(2) \approx 0.3$

1 Fill In the Blanks:

Instructions

- > There are total 12 questions in this section that carry total of 18 marks.
- ▶ There is no negative marking in this section.

Questions

1.	(1 point)	Write an e	expression o	$f E_b/N_0$ as	a function	of the band	width efficien	cy η_B :	
2.	\ -	•			010 (1)	,	•	of interest is come year from	
- 1	1				_				

¹Hint: the correct answer is some function of p and e_d , where e_d is defined as $\exp(1)$ in dB, i.e., $e_d = 10 \times \log_{10} (\exp(1))$.

3.	(2 points) Write the full forms of (1) LRT, (2) MAP, (3) ML, and (4) AWGN.
4.	(1 point) The MAP and the ML are two forms of
5.	(1 point) The MAP and the ML differ in the following way:
6.	(1 point) Suppose the decoder of a channel code of length N bits can correct up to t_c bits in error. This code is transmitted over $BSC(p)$. Write an expression for the probability of correct detection p_c and probability of detection error p_e at the output of the decoder as a function of p , N and t_c ?
7.	(2 points) Suppose a binary word of length N bits is transmitted without any channel coding over $BSC(p)$. What is the probability of word detection error at the receiver as a function of p and N ?
8.	(2 points) Determine $H(\tilde{X}_1)$ (i.e., $H(X Y=1)$), and $I(X;Y=1)=H(X)-H(\tilde{X}_1)$ for the joint probability distribution $P(X,Y)$ in Table 1?
	Table 1: Joint probability $P(X,Y)$ for Problem 8

P(X,Y)	X = 0	X = 1
Y = 0	2/5	1/2
Y = 1	1/10	0

Note: since there is no channel coding, the binary word will be detected wrong if any one or more number of N bits is received in error over the BSC.

9.	the BSC is $Y = 1$. In this case, (a) what is the posterior likelihood ratio in favor of $X = 1$? (b) what i the probability of bit detection error at the receiver when the receiver uses the ML detection?
10.	(2 points) Define a new logarithmic function (not the standard logarithmic function which is in decible scale) of SNR λ such that, when $\lambda \gg 1$, the SNR at the output of your logarithmic function become equal to the spectral efficiency η_B in bps/Hz.
11.	(1 points) The SNR per symbol and the SNR per bit are related as $E_S/N_0 = \alpha \times E_b/N_0$. Here $\alpha =$:
12.	(1 points) A power value in the decibel scale of 30 dBm equals how many watts?

Multiple Choice Questions:

Instructions

- \triangleright This is MCQ Version I of IV.
- ▶ There are total 20 questions in this section that carry a maximum of 32 marks.
- ▶ Tick mark the correct option.
 - → Total marks for a correctly answered question are indicated for each question. If the question is answered incorrectly, negative marking will apply, with negative one-fourth of the total marks awarded to a wrong answer.
 - \rightarrow If more than one option is tick-marked, zero marks will be given for the question even if one of the tick-marked options is correct.

Questions

1. (1 points) The RV X at the input to a BSC(p) is the Bernoulli(q = 0.5) RV. Each bit X is repeated three times. Suppose the output of the BSC is $\{0,1,0\}$. In this case, what is the a-posterior likelihood ratio in favor of X = 1?

(a)
$$\left(\frac{p}{1-p}\right)^3$$
 (b) $\frac{1-p}{p}$

(b)
$$\frac{1-p}{p}$$

(c)
$$\left(\frac{1-p}{p}\right)^3$$
 (d) $\frac{p}{1-p}$

- 2. (3 points) The RV X at the input to a BSC(p) is the Bernoulli(q = 0.5) RV. Each bit X is repeated three times. Suppose the output of the BSC is $\{0,1,0\}$. In this case, what is the probability of bit detection error at the receiver when the receiver uses the ML (i.e., the majority voting) detection?
 - (a) p
 - (b) $3p^2(1-p)+p^3$
 - (c) $3(1-p)^2p+p^3$
- 3. (2 points) When the input X to the BSC(p) channel is the Bernoulli(q) RV, the notation that we have used in the class for the conditional probability P(X = 0 | Y = 1) is
 - (a) \tilde{q}_0
 - (b) \tilde{q}_1
 - (c) $1 \tilde{q}_1$
 - (d) $1 \tilde{q}_0$
- 4. (2 points) When the input X to the BSC(p) channel is the Bernoulli(q = 0.5) RV, the conditional probability P(X = i | Y = j) (i and j take values from the binary set $\{0, 1\}$) equals
 - (a) p if i = j
 - (b) 1-p if $i \neq j$
 - (c) 1 p if i = j
 - (d) \tilde{q}_i regardless of j
- 5. (2 points) [Maximum Likelihood Detection] When the input X to the BSC(p) channel is the Bernoulli (q = 1)0.5) RV, when does the Maximum Likelihood Bayesian Detector of X = i flip the bit Y = j (i and j take values from the binary set $\{0,1\}$) received at the output of the BSC to make the decision regarding X?
 - (a) if (1-p)/p < 1
 - (b) if i = j
 - (c) if $i \neq j$
 - (d) if (1-p)/p > 1
- 6. (2 points) When the input to the BSC(p = 0.5) is the Bernoulli(q) RV, the posterior likelihood ratio λ_0 equals

 - (a) $\frac{1}{(b)} \frac{1-p}{p}$

- (c) $\frac{1-q}{q}$
- (d) $\frac{p}{1-p}$
- (e) $\frac{q}{1-q}$
- 7. (1 points) Suppose the information is sent at a data rate of 1000 bits per second over a BSC(p). If p = 0.1, the data rate at which the information can be successfully received at the receiver equals:
 - (a) $\approx 100 \text{ bps}$
 - (b) $\approx 900 \text{ bps}$
 - (c) $\approx 500 \text{ bps}$
 - (d) Will depend on the exact pattern of the errors introduced by the BSC
- 8. (1 points) Let the rate of a channel code that repeats each bit n times be denoted as r_n . $\lim_{n\to\infty} r_n =$
 - (a) 0
 - (b) 0.5
 - (c) 1
 - (d) k/n
- 9. (2 points) Suppose the SNR $\lambda \gg 1$. In this case, $\lambda_d = 10 \times \log_{10}(\lambda)$ dB is proportional to the spectral efficiency η_B in bits per second per Hertz. The constant of proportionality equals
 - (a) $\log_e(2)$
 - (b) 1/3
 - (c) 1/2
 - $(d) \log_2(e)$
- 10. (2 points) Suppose the spectral efficiency η_B obtained is x bps/Hz when the SNR λ equals y dB. Suppose $y \gg 1$. In this case, if the SNR increases to y+6 dB, the spectral efficiency η_B becomes
 - (a) 4x bps
 - (b) x + 6 bps
 - (c) x+2 bps
 - (d) 2x bps
- 11. (1 points) Suppose the information is sent at a data rate of 1000 bits per second over a BSC(p). For some value of p, the data rate at which the information can be successfully (i.e., reliably) received at the receiver becomes zero. This p equals
 - (a) 1
 - (b) 0
 - (c) 0.5
 - (d) Depends on the conditional probability \tilde{q}_n .

- 12. (1 points) When the input to the BSC(p) is the Bernoulli(q = 0.5) RV, the posterior likelihood ratio λ_0 equals

 - (a) $\frac{p}{1-p}$ (b) $\frac{1-p}{p}$ (c) 0

 - (d) 1
- 13. (1 points) Suppose the information source is the Bernoulli RV(q) whose entropy is shown in Fig. 1 for different q. What is the maximum rate at which the information can be transmitted reliably over the BSC(p = 0.3).
 - (a) ≈ 0.9
 - (b) ≈ 0.1
 - (c) ≈ 0.3
 - (d) ≈ 0.7
- 14. (1 points) Suppose an informative source generates one of five symbols whose probabilities are $\{1 1\}$ $q, \alpha \times q, \alpha \times q, \alpha \times q, \alpha \times q$. The value of α equals:
 - (a) 0.25
 - (b) 0.2
 - (c) 0.4
 - (d) 0.1
- 15. (1 points) Suppose an informative source generates one of five symbols whose probabilities are $\{1 1\}$ $q, \alpha \times q, \alpha \times q, \alpha \times q, \alpha \times q$. The value of q at which the source becomes maximally informative equals:
 - (a) 0.75
 - (b) 0.2
 - (c) 0.25
 - (d) 0.8
- 16. (2 points) A binary assymetric channel $BASC(p_0, p_1)$ is shown in Fig. 2. When the input X to this channel is the Bernoulli(q) RV, the conditional probability P(X = 1 | Y = 1) equals

 - (a) $\frac{(1-p_0)(1-q)}{(1-p_0)(1-q)+p_1 q}$ (b) $\frac{p_0 q}{(1-p_1)(1-q)+p_0 q}$ (c) $\frac{p_0 (1-q)}{(1-p_0)(1-q)+(1-p_1) q}$ (d) $\frac{(1-p_1) q}{(1-p_1) q+p_0 (1-q)}$

- 17. (1 points) When the input X to the binary assymetric channel BASC (p_0, p_1) in Fig. 2 is the Bernoulli(q =0.5) RV, what is the posterior likelihood ratio λ_0 ?

 - (a) $\frac{p_1}{1 p_0}$ (b) $\frac{(1 p_0)}{p_0}$ (c) $\frac{1 p_1}{p_1}$ (d) $\frac{p_0}{1 p_1}$
- 18. (2 points) Suppose⁸ an observation of Y = j at the output of the BSC(p < 0.5) results in the conditional entropy $H(X_i) < 1$ bit. When the input to this BSC is the Bernoulli(q = 0.5) RV X, the posterior (after the observation) λ_j as compared to the prior (before the observation) likelihood ratio λ
 - (a) can either increase or decrease
 - (b) cannot increase
 - (c) cannot decrease
 - (d) becomes 1 regardless of λ
- 19. (2 points) Suppose an observation of Y=1 at the output of the BSC(p<0.5) results in the conditional entropy $H(\tilde{X}_{j=1}) < 1$ bit. When the input to this BSC is the Bernoulli(q = 0.5) RV X, the posterior λ_i as compared to the prior λ
 - (a) moves closer to 1
 - (b) cannot decrease
 - (c) moves toward ∞
 - (d) becomes 1 regardless of λ
- 20. (2 points) The input to the BSC(p < 0.5) is the Bernoulli(q > 0.5) RV X, and an observation of Y = 1at the output of the BSC results in the conditional entropy $H(X_j) > H(X)$ bit. The posterior λ_j as compared to the prior λ
 - (a) moves away from 1
 - (b) moves closer to 1
 - (c) moves closer to 0
 - (d) moves closer to ∞
 - (e) becomes 1 regardless of λ

⁸This question is about the similarity between the posterior likelihood ratio, conditional entropy and mutual information. On observing an output from a communication channel (evidence), what happens to the likelihood if the conditional entropy reduces. Do you become more certain about the state of the transmitter or less?

Figure 1: Binary entropy function.

Figure 2: Binary Assymetric Channel $BASC(p_0, p_1)$.