

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 16 Learning Outcome

 Solve for the angle of twist for elastic torsion of a straight cylindrical shaft

Elastic Torsion of Straight Cylindrical Shafts

Worksheet:

The steel bar to the right is subject to torques as shown.

- a) Determine the maximum shear stress in the structure.
- b) Determine the angle of twist if the free end with respect to the fixed end.

Angle of Twist, φ

$$\phi = \frac{TL}{GJ}$$

$$T_{AB} = 5.25 \, X \, 10^5 \, N - mm$$

$$T_{BC} = 1.5 \, X \, 10^5 \, N - mm$$

$$T_{CD} = 4 X 10^5 N - mm$$

$$J = 56150 \text{ } mm^4$$

Research a typical value for G for steel

$$G = 80 \ GPa = 80000 \ MPa$$

Elastic Torsion of Straight Cylindrical Shafts

Worksheet:

The steel bar to the right is subject to torques as shown.

- Determine the maximum shear stress in the structure.

$$T_{AB} = 5.25 \, X \, 10^5 \, N - mm$$

$$^{5}N-mm$$

$$G = 80 GPa = 80000 MPa$$

$$T_{BC} = 1.5 X 10^5 N - mm$$

$$N-mm$$

$$N-mm$$

$$0^5 N - mm$$

$$T_{CD} = 4 X 10^5 N - mm$$

$$I_{CD} = 4 \times 10^{\circ} N - mm$$

$$1.5 \times 10^5 N \cdot mm(500 mm)$$

$$\phi_{BC} = \frac{1.5 \times 10^5 \text{ N} \cdot mm(500 \text{ mm})}{80000 \frac{N}{mm^2} (56150 \text{ mm}^4)} = 0.0167 \text{ rad}$$

$$10^5 \ N \cdot mm(300 \ mm)$$

$$J = 56150 \text{ mm}^4$$
 $G = 80 \text{ } GPa = 80000 \text{ } MPa$

$$\phi_{TOTAL} = 0.1035 \ rad$$

Georgia