

Formula Sheet

 $E(x') = V(x) + E(x)^{C}$ $(3) V(x) = E(x') - (E(x')^{C})$

1. Distributions:

Distribution	pdf or pmf	mean	variance	MGF
Bernoulli(θ)	$\theta^x (1-\theta)^{1-x}$	θ	$\theta(1-\theta)$	$(1-\theta) + \theta e^t$
Binomial (m, θ)	$\binom{m}{x}\theta^x(1-\theta)^{m-x}$	$m\theta$	$m\theta(1-\theta)$	$[(1-\theta)+\theta e^t]^m$
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$exp[\lambda(e^t-1)]$
$\operatorname{Uniform}[a,b]$	1/(b-a)	(a+b)/2	$(b-a)^2/12$	$\begin{cases} (e^{tb} - e^{ta})/t(b-a) & ,t \neq 0\\ 1 & ,t = 0 \end{cases}$
Normal (μ, σ^2)	$(2\pi\sigma^2)^{-1/2} exp[-\frac{1}{2\sigma^2}(x-\mu)^2]$	μ	σ^2	$exp[\mu t + \sigma^2 t^2/2]$
Exponential(β)	$\beta e^{-\beta x}$	$1/\beta$	$1/\beta^2$	$(1 - t/\beta)^{-1}$
Exponential(θ)	$\frac{1}{\theta}e^{-\frac{x}{\theta}}$	θ	θ^2	$(1-t\theta)^{-1}$
$Gamma(\alpha, \beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	α/β	α/β^2	$(1 - t/\beta)^{-\alpha}, t < \beta$
Beta(a,b)	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	a/(a+b)	$\frac{ab}{(a+b)^2(a+b+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$

- 2. LLN: $\frac{1}{n}\sum_{i}X_{i} \xrightarrow{P} E[X_{i}]$; CLT: $\bar{X}_{n} \xrightarrow{D} N(\mu, \frac{\sigma^{2}}{n})$; $\frac{\chi^{2}}{\sqrt{\chi^{2}_{(m)}/m}} \sim t_{(m)}$; $\frac{\chi^{2}_{(m)}/m}{\chi^{2}_{(n)}/n} \sim F_{(m,n)}$; $\frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)}$
- 3. Method of Moments: $\frac{1}{n}\sum_{i}X_{i}^{k}$ is an estimator of $E[X^{k}]$

T= 8/10 ~ tn-1

- 4. Maximum Likelihood Estimation:

 - Score, $l'(\theta) = \frac{\partial}{\partial \theta} l(\theta)$ At mle $(\hat{\theta})$, $l'(\theta) = 0$ Fisher Info for single obs, $I(\theta_0) = E[\{\frac{\partial}{\partial \theta} \log f(X|\theta)\big|_{\theta=\theta_0}\}^2] = -E[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)\big|_{\theta=\theta_0}]$
 - Fisher info for n obs, $nI(\theta_0) = E\left[\left\{\frac{\partial}{\partial \theta} \log f(X_1, X_2, ..., X_n | \theta)\right|_{\theta = \theta_0}\right\}^2\right] = -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X_1, X_2, ..., X_n | \theta)\right|_{\theta = \theta_0}$
 - $l'(\theta_0) \xrightarrow{D} N(0, nI(\theta_0))$; $\xrightarrow{\frac{1}{n}} l''(\theta_0) \xrightarrow{P} -I(\theta_0)$; $\hat{\theta} \xrightarrow{D} N(\theta_0, \frac{1}{nI(\theta_0)})$ V (FMI)= - L"(FMI)
 - Plug-in est. of Fisher Info, $nI(\hat{\theta}) = -E[\frac{\partial^2}{\partial \theta^2} \log f(X_1, X_2, ..., X_n | \theta)]|_{\theta = \hat{\theta}}$
- 5. $Bias[T] = E[T] \theta; \quad MSE[T] = Var[T] + (Bias[T])^2; \ eff[T_1, T_2] = \frac{V[T_2]}{V[T_1]}; \ \text{C-R Inequality:} \ V[T] \geq \frac{1}{nI(\theta_0)}$
- 6. Consistency in probability, $T_n \xrightarrow{P} \theta$ as $n \to \infty$

imariance property.

7. Factorization theorem: $T(X_1, X_2, ... X_n)$ is said to be sufficient for θ if the joint probability function factors in the form, $f(x_1, x_2, ...x_n | \theta) = g[T(x_1, x_2, ...x_n), \theta] * h(x_1, x_2, ...x_n)$

- 10. Definitions related to test of hypothesis:
 - P[Type-1 error]= $\alpha = P[\text{reject } H_0|H_0 \text{ true}]$
 - P[Type-2 error]= $\beta = P[\text{fail to reject } H_0|H_0 \text{ false}]$
 - Power of a test= $1 \beta = P[\text{reject } H_0|H_0 \text{ false}]$

11. Some p-value formula:

• for z-test
$$2\left[1-\Phi\left(\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right|\right)\right]$$
 where Φ is the CDF of a standard normal distribution.

• for t-test $2\left[1-G\left(\left|\frac{\bar{x}-\mu_0}{s/\sqrt{n}}\right|\right)\right]$ where G is the CDF of a $t_{(n-1)}$ distribution.

- When testing
$$H_0: \mu = \mu_0$$
 against $H_1: \mu > \mu_0, p-value = 1 - \Phi\left(\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right)$

– When testing
$$H_0: \mu=\mu_0$$
 against $H_1: \mu<\mu_0, \ p-value=\Phi\left(\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right)$

– Similar idea for t, χ^2 or other tests.

12. Comparing two populations: (test stats and distributions)

a)
$$\frac{S_x^2/\sigma_x^2}{S_y^2/\sigma_y^2} \sim F_{n-1,m-1}$$
;

b)
$$\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}} \sim N(0, 1)$$

c)
$$\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{(S_p)(\frac{1}{n} + \frac{1}{m})} \sim t_{(n+m-2)}$$
 where, $S_p^2 = \frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}$

a)
$$\frac{S_{x}^{2}/\sigma_{x}^{2}}{S_{y}^{2}/\sigma_{y}^{2}} \sim F_{n-1,m-1}; \quad \text{b)} \frac{(\bar{X}-\bar{Y})-(\mu_{x}-\mu_{y})}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}}} \sim N(0,1)$$

$$c) \frac{(\bar{X}-\bar{Y})-(\mu_{x}-\mu_{y})}{(S_{p})\sqrt{(\frac{1}{n}+\frac{1}{m})}} \sim t_{(n+m-2)} \text{ where, } S_{p}^{2} = \frac{(n-1)S_{x}^{2}+(m-1)S_{y}^{2}}{n+m-2}$$

$$d) \frac{(\bar{X}-\bar{Y})-(\mu_{x}-\mu_{y})}{\sqrt{\frac{S_{x}^{2}}{n}+\frac{S_{y}^{2}}{m}}} \rightarrow t_{(df=v)} \text{ where, } v = \frac{(\frac{S_{x}^{2}}{n}+\frac{S_{y}^{2}}{m})^{2}}{(\frac{S_{x}^{2}}{n-1}+\frac{S_{y}^{2}}{m-1}}$$

$$13. \text{ Likelihood ratio test, } -2ln\Lambda \xrightarrow{D} \chi_{(df=p-d)}^{2}, \text{ where } \Lambda = \frac{max\theta \in \Omega_{0}[L(\theta)]}{max\theta \in \Omega[L(\theta)]} = \frac{L(\theta_{0})}{L(\hat{\theta})}$$

13. Likelihood ratio test,
$$-2ln\Lambda \xrightarrow{D} \chi^2_{(df=p-d)}$$
, where $\Lambda = \frac{\max_{\theta \in \Omega_0} [L(\theta)]}{\max_{\theta \in \Omega} [L(\theta)]} = \frac{L(\theta_0)}{L(\theta)}$

14. Wald test,
$$\frac{\hat{\theta}-\theta_0}{\sqrt{\frac{1}{-l''(\hat{\theta})}}} \xrightarrow{D} N(0,1)$$
; Score test, $\frac{S(\theta_0)}{\sqrt{nI(\theta_0)}} \xrightarrow{D} N(0,1)$

15. Goodness of fit test (known
$$p_i$$
), $X^2 = \sum_{i=1}^k \frac{(X_i - np_i)^2}{np_i} \xrightarrow{D} \chi^2_{(df=k-1)}$

16. Goodness of fit test (unknown
$$p_i$$
), $X^2 = \sum_{i=1}^k \frac{(X_i - np_i(\hat{\theta}))^2}{np_i(\hat{\theta})} \xrightarrow{D} \chi^2_{(df=k-1-dim(\Omega))}$

17. Posterior
$$\propto$$
 Likelihood * Prior $\implies \pi(\theta|s) \propto \prod f(x_i|\theta) * \pi(\theta)$

•
$$\frac{B_2 - \beta_2}{\sqrt{\frac{S^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \sim t_{(n-2)}$$
 where, $S^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - b_1 - b_2 x_i)^2$

relationship)

• CI for
$$\beta_2$$
: $B_2 \pm t_{\frac{(1+\gamma)}{2}(df=n-2)} * \sqrt{\frac{S^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$

• CI for
$$\beta_2$$
: $B_2 \pm t_{\frac{(1+\gamma)}{2}(df=n-2)} * \sqrt{\frac{S^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$
• Total SS = $\sum_{i=1}^n (y_i - \bar{y})^2$; Reg. SS = $b_2^2 \sum_{i=1}^n (x_i - \bar{x})^2$; Error SS = $\sum_{i=1}^n (y_i - b_1 - b_2 x_i)^2$

• Total SS = Reg. SS + Error SS

•
$$R^2 = \frac{Reg. SS}{Total SS}$$

19. Some quantiles from z, t and χ^2 table:

$z_{0.05} = -1.644854$	$z_{0.975} = 1.959964$	$z_{0.1} = -1.281552$	$\chi^2_{0.95(1)} = 3.841459$
$\chi^2_{0.95(2)} = 5.991465$	$\chi^2_{0.95(3)} = 7.814728$	$\chi^2_{0.05(4)} = 0.710723$	$\chi_{0.9(1)}^2 = 2.705543$
$t_{0.05(2)} = -2.919986$	$t_{0.975(2)} = 4.302653$	$t_{0.95(4)} = 2.131847$	$t_{0.95(36)} = 1.688298$
$F_{0.05(19,17)} = 0.4550151$	$F_{0.95(19,17)} = 2.242891$		

(n-1)52