Todel No 5.8: CHI- SQUARE TEST (χ^2) FOR GOODNESS OF FIT

(i) Null Hypothesis (H_0) : There is no significant difference between expected frequency and observed frequency

(ii) Alternative Hypothesis (H_1) : There is a significant difference between expected frequency and observed frequency

(iii) Level of Significance (α): set a lelvel of significance

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

(v) Conclusion: Degrees of freedom = n-1

(i) If Calculated value of χ^2 < Tabulated value of χ^2 , we accept H_0

(ii) If Calculated value of χ^2 > Tabulated value of χ^2 , we reject H_0

Non appeared on Die	1	2	GO ME	at es	1183 66	6
Cobserved (Oi)	410	32	28	58	54	52
Powbability P(X1)	1/6	1/6	1/6	1/6	1/6	1/6
Expected (Fi) 264×P(XI)	44	44	44	44	44	44

Problem 21: A die is thrown 264 times with the following results. Show that the die is biased.

	No. a	ppeared on the die	1	2	3	4	5	6		
	0	Frequency	40	32	28	58	54	52		
olution:	Given n=6					-		HATT	at word	8

(i) Null Hypothesis (H₀): There is no significant difference blue Observed & Expected (ii) Alternative Hypothesis (H₁): There is usignificant difference.

(iii) Level of Significance (a):

(iii) Level of Significance (a): 0 = 0.05

(iv) Test Statistic: The test statistic $\chi^2 = \sum_{E} \frac{(O_i - E_i)^2}{E}$

$\frac{(O_i - E_i)}{E_i}$	$(O_i - E_i)^2$	Expected Frequency (E_i)	Observed Frequency (O_i)
0.3636 3.2727 5.8182 4.4545 2.2727 1.4545	16 144 256 196 100 64	44 44 44 44 44	40 32 28 58 54 54
	100	44	54 52

Degrees of freedom = $\gamma - 1 = 6 - 1 = 5$ (v) Conclusion:

Calculated value of zet 17-6362

Tabulated value of $\chi^2 = \frac{\chi^2}{100} = \frac{\chi^2}{1000} = \frac{\chi^2}{1000} = \frac{\chi^2}{1000} = \frac{11.070}{1000}$ Calculated value of χ^2

racal > ratab Null Hypothesis is Rejected

Problem 22: The following figures show the distribution of digits in numbers chosen at random from a telephone directory. These is No Significant difference bluon Expected

Digits	0	1	2	3	4	5	6	7	8	9	frequencies &
Frequency	1026	1107	997	966			1107	972 the di	964	853	L. Observed

Solution: Given n= 10
(i) Null Hypothesis (Ho): The digits may be taken to occur equally frequently
(ii) Alternative Hypothesis (Ho): There is a significant difference in districtiony.
(iii) Level of Significance (a):
bluon Observed & Expected frequencies.

0(=0.05)

0=0.05

Expected Frequencies of each one is average avg = 1026+1107+...+853 = 1000

Fi= 1000 + for Each.

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E}$

Observed $Frequency(O_i)$	$Expected$ $Frequency(E_i)$	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{E_i}$
1026 1107 997 966 1075 933 1107 972 964 853	1000 1000 1000 1000 1000 1000 1000 100	676 11449 9 1156 5625 4489 11449 784 1296	0.676 11.449 0.009 1.156 5.625 4.489 11.449 0.784

Degrees of freedom = n-1=10-1=9(v) Conclusion:

Calculated value of $\chi^2 = 2 \text{Col} = 58.5 \text{H} 2$

Tabulated value of χ^2_{10} $\chi^2_{0.05}(n-1) = \chi^2_{0.05}(9) = 16.919$ Calculated value of χ^2 Tabulated value of χ^2 Toal > χ^2_{10} Null Hypothesis is Rejected.

Problem 23: A sample analysis of examination results of 500 students was made. It was found that 220 students had failed, 170 had scored a third class, 90 were placed in second Solution: Given n=500 H(i) Null Hypothesis (H_0) : There is no Significant difference by Observed ξ (ii) Alternative Hypothesis (H_1) : There is Significant difference by Observed ξ (iii) Level of Significance (α) : d=0.05(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_1 - E_1)^2}{E_1}$ class and 20 got a first class. Do these figures commensurate with the general examination

Psublem-23 Here, the Expected frequencies are in the reatio 4:3:2:1 In the form of Percentages: 40:30:20:10

1, 40% (500) = 40 x 500 = 200

2, 30% (500) = 30x5 = 150

3, 201.(500) = 20x5 = 100

4, 10% (500) = 10x5 = 50

	Observed Frequency (O _i)	Expected Frequency (E_i)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
Fail	220	200	1100	2.
Third	170	150	400	2.6666
Secon		100	100	1
Flout		50	900	18
				x' = Σ (<u>(α - ε, γ</u> = 23-6666

(v) Conclusion: Degrees of freedom = n-1 = 4-1=3

Calculated value of $\chi^2 = \chi^2$ cal = 33.6666

Tabulated value of $\chi^2 = \chi^2(0.05) = \chi^2_{0.05}(n-1) = \chi^2_{0.05}(3) = 7.815$ Calculated value of χ^2 Tabulated value of χ^2

Tal > Tab Null Hypothesis Rejected.

Problem 24: A pair of dies are thrown 360 times and the frequency of each sum is indicated below:

$X = x_i$	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significance?

Solution: Given n=

X = x	2	3	4	5	6	7	8	9	10	11	12
$p(x_i)$	1/26	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	436	4/36
Expected Frequencies = $360 p(x_i)$	10	20	30	40	50	60	50	40	30	20	10

- (i) Null Hypothesis (H₀):
- (ii) Alternative Hypothesis (H1):
- (iii) Level of Significance (α) :
- (iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i E_i)^2}{E_i}$

Observed Frequency(O _i)	Expected Frequency (E_r)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
8 24 35 37 44 65 51 42 26 14	10 20 30 40 50 60 50 40 30	14 16 25 9 36 25 14 16	0.4 0.8 0.8333 0.2350 0.72 0.4167 0.02 0.100 0.5333
14	10	36	1.8333 1.6 2-5-24-7-4U

Degrees of freedom = n-1 = 11-1 = 10(v) Conclusion:

Calculated value of $\chi_{100}^2 = 7.4483$ Tabulated value of $\chi_{100}^2 = 7.4483$ Calculated value of $\chi_{100}^2 = 7.4483$ Calculated value of $\chi_{100}^2 = 7.4483$ Problem 25: 4 coins were tossed 160 times and the following results were obtained. Accept

No. of Heads	0	1	2	.3	4	
Observed	17	52	54	31	6	n=5
Frequency		0.000				

Under the assumption that coins are balanced, find the expected frequencies of 0,1,2,3 or 4 heads, and test the goodness of fit at \a = 0.05 Fit a Binomial Distribution.

Solution: No. of coins = NZU q = 1 - p =Probability to get a head p =

$X = x_i$	0	1	2	3	4
$p(x_i)$	0.0625	0.25	0.375	0.25	0.0625
Expected Frequencies $E_{l} = 160 p(x_{l})$	10	40	60	40	10

Binomial Distribution Formula: p(x=x) = n(x px qn-x

Given n=5 [Jable]

(i) Null Hypothesis (H₀): There is No Significant Difference.

(ii) Alternative Hypothesis (H₁): There is Significant difference.

(iii) Level of Significance (a): d=0.05

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E}$

Expected Frequency(E,)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
10 40 60 40	49 144 36 81 16	E, 4.9 3.6 0.4 2.025
	10 40 60	10 49 144 60 36

Degrees of freedom = n-1 = 5-1 = 4(v) Conclusion:

Calculated value of x2 12.725

Null Hypothesis is Rejected:

Tabulated value of χ^2 χ^2 χ^2 χ^2 χ^2 χ^2 χ^2 Calculated value of χ^2 Tabulated value of χ^2 Problem 26: A survey of 240 families with 4 children each revealed the following

distribution. To fit a Binomial Distribution

Male Births	4	3	2	1	0
Observed	10	55	105	58	12
Frequencies					

Can we accept that the male and female births are equally distributed?

Solution: No. of families = 240 No. of children = n=4 Probability to have a male birth p = 1/2, q = 1 - p = 1/2

$X = x_i$	4	3	2	1	0
$p(x_i)$	0.0625	0.25	0.375	0.25	0.0625
Expected Frequencies $= 240 p(x_c)$	15	60	90	60	15

The Binomial Distribution P(x=x)=ncxpxqn-x

Given n= 5

(i) Null Hypothesis (Ho):

(ii) Alternative Hypothesis (H,):

(iii) Level of Significance (a):

(iv) Test Statistic: The test statistic $\chi^2 = \sum_{i} \frac{(O_i - E_i)^2}{r^2}$

Observed Frequency (O_i)	Expected Frequency (E,)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
10	15	25	1.6666
55	60	25	0.4167
105	90	225	2.5
58	60	4	0.0667
12	15	9	0.6

Degrees of freedom = n-1 = 5 - 1 = 4(v) Conclusion:

Calculated value of χ^2_{col} 5.2498

Tabulated value of χ^2_{col} 76.05(4)= 9.488 Null Hypothesis is

Calculated value of χ^2 Tabulated value of χ^2 Problem 27: Fit a poisson distribution to the following data and for its goodness of fit at level of significance 0.05? To fit a Possion Distribution

X	0	1	2	3	4
f	419	352	154	56	19

$X = x_i$	0	1	2	3	4
$p(x_i)$	0.4049	0.366	0.1654	0.0498	0.0112
Expected Frequencies	404.9	366	165.4	49.8	11.2

Polition Distribution: $p(x=x) = \frac{e^{\mu}u^{x}}{x!}$

47

$$M = \frac{904}{1000} = 0.904$$
"\(\chi\) in calci"

Given n= 5

(i) Null Hypothesis (H₀):

(ii) Alternative Hypothesis (H1):

(iii) Level of Significance (α): α=0.05

(iv) Test Statistic: The test statistic $\chi^2 = \sum (O_i - E_i)^2$

Observed Frequency (O_i)	Expected Frequency (E_i)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
10 H19	404.9	155946.01	385.1469 264.2650 22.0565 1.3502 0.0571 $x^2 = \sum_{E}^{(0,-E)^2} = 672.8757$
58 352	366	96721	
105 154	165.4	3648.16	
58 56	49.8	67.24	
12 19	11.2	0.64	

(v) Conclusion: Degrees of freedom = n-2=5-2=3

Calculated value of $\chi_{\text{tot}}^2 = 672.8757$ Tabulated value of $\chi_{\text{tot}}^2 = \chi_{0.05}^2 (n-2) = \chi_{0.05}^2 (3) = 7.815$ Calculated value of χ^2 Tabulated value of χ^2 Tabulated value of χ^2 Null Hypothesis is Rejected