

MODÉLISER LE COMPORTEMENT LINÉAIRE ET NON LINÉAIRE **DES SYSTÈMES MULTIPHYSIQUES**

TP

PSI

AMÉLIORATION DE LA FIABILITÉ DU MODÈLE

DÉCOUVRIR LE SYSTÈME

Activité 1	
Tout le monde	Prendre connaissance des fiches 1 & 2 de la documentation.
	Remplir le document réponse :
	 Indiquer la grandeur asservie en BF
	 Indiquer la grandeur commandée en BO
	 Indiquer les modes d'asservissement alternatifs
-	Remnlir la chaîne fonctionnelle

Activité 2 - Modèle de comportement

monde Tout le

☐ En réalisant un (ou des) essais, réaliser une identification temporelle permettant d'identifier le comportement de l'ensemble du système (asservissement en vitesse). On pourra utiliser les fiches 3 et 4.

Activité 3 – Tracé des résultats

Expérimentateur		Vérifier si les exigences suivantes sont respectées : Stabilité : Dépassement inférieur à 10 % ; Rapidité : temps de montée inférieur à 150 ms ; Précision : écart nul en régime permanent. Exporter l'essai sous format texte.
Modélisateur	<u> </u>	En utilisant Matlab-Simulink, modéliser le comportement du système. Exporter les résultats pour les visualiser sur Python. Importer les données expérimentales pour afficher la consigne, le mod graphe.

Exporter les résultats pour les visualiser sur Python. ☐ Importer les données expérimentales pour afficher la consigne, le modèle et l'essai sur le même graphe.

Codeur

☐ En utilisant Python afficher sur le même graphe la consigne, l'essai et le modèle. Le modèle pourra être obtenu à partir d'une expression analytique ou à partir des données du modélisateur (ou des deux).

2 SYNTHÈSE

Activité 4

☐ Finaliser la fiche de synthèse.