Tarea VI

Nicholas Mc-Donnell

 $2 do \ semestre \ 2017$

${\bf \acute{I}ndice}$

2.	Dominios de factorización única, Dominios de Ideales Principales y Dominios	
	Euclidianos	3
	1	3
	3	3
	9	3
	13	3
3.	Lema de Gauss	3
	1	3
	3	3
	9	3
4.	Factorización explicita de polinomios	4
	1	4
	3	4
	7	4
5.	Primos en el anillo de Enteros de Gauss	4
	1	4
	3	4
	7	-

2. Dominios de factorización única, Dominios de Ideales Principales y Dominios Euclidianos

1

Prove or disprove the following.

- (a) The polynomial ring $\mathbb{R}[x,y]$ in two variables is a Euclidean domain.
- (b) The ring $\mathbb{Z}[x]$ is a principal ideal domain.

3

Give an example showing that division with remainder need not be unique in a Euclidean domain.

9

- (a) Prove that $2, 3, 1 \pm \sqrt{-5}$ are irreducible elements of the ring $R = \mathbb{Z}[\sqrt{-5}]$ and that the units of this ring are ± 1 .
- (b) Prove that the existence of factorization is true for this ring.

13

If a, b are integers and if a divides b in the ring of Gauss integers, then a divides b in \mathbb{Z}

3. Lema de Gauss

1

Let a, b be elements of a field F, with $a \neq 0$. Prove that the polynomial $f(x) \in F[x]$ is irreducible if and only if f(ax + b) is irreducible.

3

Let f be an irreducible polynomial in $\mathbb{C}[x,y]$, and let g be another polynomial. Prove that if the variety of zeros of g in \mathbb{C}^2 contains the variety of zeros of f, then f divides g.

9

Prove that the kernel of the homomorphism $\mathbb{Z}[x] \to \mathbb{R}$ sending $x \mapsto 1 + \sqrt{2}$ is a principal ideal, and find a generator for this ideal.

4. Factorización explicita de polinomios

1

Prove that the following polynomials are irreducible in $\mathbb{Q}[x]$.

- (a) $x^2 + 27x + 213$
- **(b)** $x^3 + 6x + 12$
- (c) $8x^3 6x + 1$
- (d) $x^3 + 6x^2 + 7$
- (e) $x^5 3x^4 + 3$

3

Factor $x^3 + x + 1$ in $\mathbb{F}_p[x]$, when p = 2, 3, 5.

7

Factor the following polynomials into irreducible factors in $\mathbb{Q}[x]$.

- (a) $x^3 3x 2$
- **(b)** $x^3 3x + 2$
- (c) $x^9 6x^6 + 9x^3 3$

5. Primos en el anillo de Enteros de Gauss

1

Prove that every Gauss prime divides exactly one integer prime.

3

Factor the following into Gauss primes.

- (a) 1 3i
- **(b)** 10
- (c) 6 + 9i

7

Describe the residue ring $\mathbb{Z}[i]/(p)$ in each case.

- (a) p = 2
- **(b)** $p \equiv 1 \pmod{4}$
- (c) $p \equiv 3 \pmod{4}$