Eléments d'analyse

Limites

Exercice 1 [00227] [correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue.

On suppose que $\lim_{x \to +\infty} f(x) = \ell$ et on désire établir

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt = \ell$$

a) Pour $\varepsilon > 0$, justifier qu'il existe $A \in \mathbb{R}^+$ tel que pour tout $x \ge A$:

$$\left| \frac{1}{x} \int_{A}^{x} (f(t) - \ell) dt \right| \leqslant \varepsilon$$

b) Conclure en écrivant

$$\frac{1}{x} \int_{0}^{x} f(t) dt - \ell = \frac{1}{x} \int_{0}^{A} (f(t) - \ell) dt + \frac{1}{x} \int_{A}^{x} (f(t) - \ell) dt$$

Exercice 2 [00228] [correction]

Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue telle que

$$f(x+1) - f(x) \xrightarrow[x \to +\infty]{} \ell$$

Montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell$$

en commençant par étudier le cas $\ell = 0$.

Exercice 3 [00230] [correction]

Soit $f:[0,+\infty[\to \mathbb{R}de \text{ classe } \mathcal{C}^1 \text{ telle que}]$

$$\lim_{t \to +\infty} f(t) + f'(t) = \ell \in \mathbb{R}$$

Montrer que

$$f(t) \xrightarrow[t \to +\infty]{} \ell$$

Exercice 4 Mines-Ponts MP [02812] [correction] Soit $f:]0, +\infty[\to \mathbb{R}$ telle que

$$\lim_{x \to 0} f(x) = 0 \text{ et } \lim_{x \to 0} \frac{f(x) - f(x/2)}{\sqrt{x}} = 1$$

Trouver un équivalent simple en 0 de f.

Exercice 5 [03223] [correction] Montrer que lorsque $x \to +\infty$

$$\int_0^x e^{t^2} dt \sim \frac{e^{x^2}}{2x}$$

Développements limités

Exercice 6 [00231] [correction]

Déterminer les développements limités suivants :

a)
$$DL_3(0)$$
 de $\ln\left(\frac{x^2+1}{x+1}\right)$

b)
$$DL_3(0) \text{ de } \sqrt{3 + \cos x}$$

c)
$$DL_2(0)$$
 de $(1+x)^{1/x}$

d)
$$DL_3(0)$$
 de $\frac{\ln(1+x)}{e^x-1}$

Exercice 7 [00232] [correction]

Former le DL à l'ordre 3 en 0 de $arctan(e^x)$.

Quelle à l'allure de cette fonction autour de ce point?

Exercice 8 [00233] [correction]

Exprimer le développement limité général en 0 de $\arcsin x.$

Exercice 9 [00234] [correction]

Former le DL à l'ordre 3 en 0 de

$$\tan x = \frac{\sin x}{\cos x}$$

Prolonger le DL à l'ordre 5 en exploitant

$$\tan(\arctan x) = x$$

Prolonger le DL à l'ordre 7 en exploitant

$$(\tan x)' = 1 + \tan^2 x$$

Exercice 10 Mines-Ponts MP [02818] [correction] Soit $f:]-1, +\infty[\to \mathbb{R}$ donnée par

$$f(x) = \frac{\ln(1+x)}{1+x}$$

- a) Trouver le plus grand intervalle ouvert I contenant 0 sur lequel f est un $\mathcal{C}^{\infty}\text{-diff\'eomorphisme}.$
- b) On note g l'application réciproque de $f_{\restriction I}$. Montrer que les coefficients du développement limité de g en 0 à un ordre quelconque sont positifs.

Etude asymptotique d'application réciproque

Exercice 11 [00237] [correction]

On pose $f(x) = x + \ln x - 1$ pour x > 0.

- a) Prouver que f réalise une bijection de $]0, +\infty[$ sur un intervalle à préciser.
- b) Former le développement limité à l'ordre 2 de f^{-1} en 0.
- c) Donner un équivalent simple à $f^{-1}(y)$ quand $y \to +\infty$.
- d) Quelle est l'allure de la branche infinie de f^{-1} en $+\infty$?
- e) Donner un équivalent simple à $f^{-1}(y)$ quand $y \to -\infty$.

Exercice 12 [00238] [correction]

Montrer que $x \mapsto x + \ln(1+x)$ admet au voisinage de 0 une fonction réciproque. Former le développement limité à l'ordre 3 au voisinage de 0 de celle-ci.

Exercice 13 [00239] [correction]

Soit $f:[\mathrm{e},+\infty[\to \mathbb{R}$ la fonction définie par

$$f(x) = \frac{x}{\ln x}$$

- a) Montrer que f réalise une bijection de $[e, +\infty[$ vers un intervalle à préciser.
- b) Déterminer un équivalent simple à f^{-1} en $+\infty$.
- c) Réaliser un développement asymptotique à trois termes de f^{-1} en $+\infty$.

Exercice 14 [03228] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 vérifiant

$$f(0) = f'(0) = 0$$
 et $f''(0) > 0$

- a) Montrer l'existence de a > 0 tel que f est strictement décroissante sur [-a, 0] et strictement croissante sur [0, a].
- b) On pose

$$b = \min \{ f(-a), f(a) \}$$

Montrer que pour tout $\lambda \in [0, b]$, l'équation $f(x) = \lambda$ admet une unique solution $x_1(\lambda)$ dans [-a, 0] et une unique solution $x_2(\lambda)$ dans [0, a].

- c) Déterminer les limites puis des équivalents de $x_1(\lambda)$ et de $x_2(\lambda)$ quand $\lambda \to 0^+$.
- d) On suppose maintenant que f est de classe \mathcal{C}^3 . Etudier la limite quand $\lambda \to 0^+$ de

$$\frac{x_1(\lambda) + x_2(\lambda)}{\lambda}$$

Exercice 15 [03230] [correction]

Soit $f: x \mapsto \frac{x+1}{x} e^x$

a) Montrer que l'équation

$$f(x) = \lambda$$

admet deux solutions $a(\lambda) < b(\lambda)$ pour λ assez grand.

b) Déterminer

$$\lim_{\lambda \to +\infty} b(\lambda)^{a(\lambda)}$$

Continuité des fonctions réelles

Exercice 16 Centrale MP [00246] [correction]

La fonction $t \mapsto \sin \frac{1}{t}$ si t > 0 et 0 si t = 0 est-elle continue par morceaux sur [0,1]?

Exercice 17 [00245] [correction]

Existe-t-il une fonction continue f de \mathbb{R} dans \mathbb{R} envoyant les rationnels dans les irrationnels et les irrationnels dans les rationnels?

Exercice 18 [00241] [correction]

Soit $f:[0,1] \to [0,1]$.

- a) On suppose que f est continue. Montrer que f admet un point fixe.
- b) On suppose que f est croissante. Montrer que f admet un point fixe.

Exercice 19 [00242] [correction]

Soient $f, g: [0,1] \to [0,1]$ continues vérifiant

$$f\circ g=g\circ f$$

Montrer qu'il existe $x_0 \in [0,1]$ telle que $f(x_0) = g(x_0)$.

Exercice 20 Mines-Ponts MP [02813] [correction]

Soient f et g des fonctions continues de [0,1] dans [0,1] telles que $f \circ g = g \circ f$.

- a) Montrer que l'ensemble des points fixes de f possède un plus grand et un plus petit élément.
- b) Montrer l'existence de $c \in [0, 1]$ tel que f(c) = g(c).

Exercice 21 Centrale MP [00563] [correction]

Soit (u_n) une suite strictement croissante de réels de [0,1] de limite 1. Déterminer les fonctions $f \in \mathcal{C}([0,1],\mathbb{R})$ vérifiant

$$\forall x \in [0, 1], f(x) = \sum_{n=1}^{+\infty} \frac{f(u_n x + 1 - x)}{2^n}$$

Dérivation des fonctions réelles

Exercice 22 [00251] [correction]

Calculer la dérivée nème de $x \mapsto \frac{1}{1-x^2}$.

Exercice 23 [00253] [correction]

Soit $f: x \mapsto \arctan x$. Montrer que pour $n \in \mathbb{N}^*$

$$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{2i} \left(\frac{1}{(x-i)^n} - \frac{1}{(x+i)^n} \right)$$

En déduire les racines de $f^{(n)}$ pour $n \in \mathbb{N}^*$.

Exercice 24 Mines-Ponts MP [02811] [correction]

Soient des réels a, b où $a \notin \{0, 1\}$. On pose h(x) = ax + b pour tout x réel. On note S l'ensemble des fonctions dérivables $f : \mathbb{R} \to \mathbb{R}$ telles que

$$f \circ f = h$$

a) Montrer que $S = \emptyset$ si a < 0.

Désormais on suppose a > 0 (et $a \neq 1$).

- b) Montrer que h est une homothétie; préciser son centre et son rapport.
- c) Soit $f \in S$. Montrer que $h^{-1} \circ f \circ h = f$. En déduire une expression de f; on commencera par le cas 0 < a < 1.

Exercice 25 Mines-Ponts MP [02819] [correction]

On pose $f(x) = e^{-1/x^2}$ pour x réel non nul et f(0) = 0.

a) Montrer l'existence pour tout $n\in\mathbb{N}$ d'un polynôme P_n tel que :

 $\forall x \in \mathbb{R}^*, f^{(n)}(x) = x^{-3n} P_n(x) f(x)$. Quel est le degré de P_n ?

- b) Montrer que f est \mathcal{C}^{∞} , toutes ses dérivées étant nulles en 0.
- c) Montrer que toute racine de P_n est réelle.

Exercice 26 [00248] [correction]

[Théorème de Darboux]

Soit $f:[a,b]\to\mathbb{R}$ une fonction dérivable.

a) Montrer que f' prend toutes les valeurs intermédiaires entre

$$f'(a)$$
 et $\frac{f(b)-f(a)}{b-a}$

b) Conclure que f' prend toutes les valeurs intermédiaires entre f'(a) et f'(b).

Exercice 27 X MP [00257] [correction]

Soit $\lambda \in \mathbb{R}$. Etudier l'équation fonctionnelle

$$f(x) = \int_0^{\lambda x} f(t) \, \mathrm{d}t$$

où f est une fonction réelle continue de la variable réelle

Théorème de Rolle

Exercice 28 [00261] [correction]

- a) Soit $P \in \mathbb{R}[X]$ un polynôme scindé à racines simples avec $n = \deg P \geqslant 2$. Montrer que P' est lui aussi scindé.
- b) Montrer que le résultat perdure même si les racines de P ne sont pas simples.

Exercice 29 [00262] [correction]

On pose $f: x \mapsto \left[(x^2 - 1)^n \right]^{(n)}$.

- a) Montrer que f est une fonction polynomiale de degré n.
- b) Calculer f(1) et f(-1).
- c) Montrer que f possède exactement n racines distinctes toutes dans]-1,1[.

Exercice 30 [00266] [correction]

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 et s'annulant une infinité de fois. Montrer qu'il existe $\alpha\in[a,b]$ tel que $f(\alpha)=f'(\alpha)=0$.

Exercice 31 [00264] [correction]

Soient $f:[a,b] \to \mathbb{R}$ de classe \mathcal{C}^n et $a_1 < a_2 < \ldots < a_n$ des valeurs d'annulation de f.

Montrer que pour tout $x_0 \in [a, b]$, il existe $c \in [a, b]$ vérifiant

$$f(x_0) = \frac{(x_0 - a_1)(x_0 - a_2)\dots(x_0 - a_n)}{n!}f^{(n)}(c)$$

On pourra, lorsque cela est possible, introduire K tel que

$$f(x_0) = \frac{(x_0 - a_1)\dots(x_0 - a_n)}{n!}K$$

et établir que la dérivée nème de $x \mapsto f(x) - \frac{(x-a_1)\dots(x-a_n)}{n!} K$ s'annule.

Exercice 32 [00265] [correction]

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^2 telle que f(a)=f(b)=0.

a) Montrer que

$$\forall x_0 \in [a, b], \exists \xi \in]a, b[, f(x_0) = \frac{(x_0 - a)(x_0 - b)}{2} f''(\xi)$$

b) En déduire que

$$\sup_{[a,b]} |f| \leqslant \frac{(b-a)^2}{8} \sup_{[a,b]} |f''|$$

Exercice 33 Mines-Ponts MP [02820] [correction]

Soient $f: I \to \mathbb{R}$ une fonction deux fois dérivable sur I et a, b, c trois points distincts de I.

Montrer

$$\exists d \in I, \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-a)(c-b)} = \frac{1}{2}f''(d)$$

Théorème des accroissements finis

Exercice 34 [00267] [correction]

Montrer à l'aide du théorème des accroissements finis que

$$\sqrt[n+1]{n+1} - \sqrt[n]{n} \sim -\frac{\ln n}{n^2}$$

Exercice 35 Mines-Ponts MP [02815] [correction]

Soient f un C^1 difféomorphisme croissant de [0,1] sur [0,1] et $n \in \mathbb{N}^*$. Montrer que l'on peut trouver une suite $(x_{k,n})_{1 \le k \le n}$ telle que :

$$\forall k \in \{1, \dots, n\}, \frac{k-1}{n} \le f(x_{k,n}) \le \frac{k}{n} \text{ et } \sum_{k=1}^{n} \frac{1}{f'(x_{k,n})} = n$$

Exercice 36 Mines-Ponts MP [02822] [correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ dérivable.

- a) Si f' est bornée sur \mathbb{R}^+ , montrer que f est uniformément continue sur \mathbb{R}^+ .
- b) Si $|f'(x)| \to +\infty$ quand $x \to +\infty$, montrer que f n'est pas uniformément continue sur \mathbb{R}^+ .

Intégration sur un segment

Exercice 37 [00272] [correction]

Soient $a, b \in \mathbb{R}, 0 < c < \frac{b-a}{2}$ et

$$f: x \mapsto \left\{ \begin{array}{ll} 1 & \mathrm{si} \ |x| \leqslant c \\ 0 & \mathrm{sinon} \end{array} \right.$$

Représenter

$$g(t) = \int_{a}^{b} f(t - x) \, \mathrm{d}x$$

Exercice 38 [02601] [correction]

Soit $f:[a,b]\to\mathbb{R}$ continue par morceaux.

On désire établir, $\lim_{n\to +\infty} \left(\int_a^b f(x) \left| \sin(nx) \right| \, \mathrm{d}x \right) = \frac{2}{\pi} \int_a^b f(x) \, \mathrm{d}x.$

- a) Vérifier le résultat pour une fonction f constante.
- b) Observer le résultat pour une fonction f en escalier.
- c) Etendre enfin le résultat au cas où f est une fonction continue par morceaux.

Exercice 39 [02640] [correction]

[Inégalité d'entropie]

Soit $\varphi: I \to \mathbb{R}$ convexe et dérivable sur I intervalle non singulier.

a) Etablir que pour tout $a, x \in I$ on a l'inégalité

$$\varphi(x) \geqslant \varphi(a) + \varphi'(a)(x - a)$$

b) Soit $f:[0,1] \to I$ continue. Etablir que

$$\varphi\left(\int_0^1 f(t) dt\right) \leqslant \int_0^1 \varphi(f(t)) dt$$

c) Soit $f:[0,1]\to\mathbb{R}$ continue, strictement positive et d'intégrale sur [0,1] égale à 1.

Montrer que

$$\int_0^1 f(t) \ln(f(t)) \, \mathrm{d}t \geqslant 0$$

d) Soit $f,g:[0,1]\to\mathbb{R}$ continues, strictement positives et d'intégrales sur [0,1] égales à 1.

Montrer que

$$\int_0^1 f(t) \ln f(t) dt \geqslant \int_0^1 f(t) \ln g(t) dt$$

Exercice 40 Centrale MP [02469] [correction] Soit (x_k) une suite de [0, 1] équirépartie :

$$\forall [a, b] \subset [0, 1], \lim_{n \to +\infty} \frac{1}{n} \operatorname{Card} \{k \in [1, n] \mid x_k \in [a, b]\} = b - a$$

a) Montrer que

$$\forall f \in \mathcal{C}([0,1]), \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k) = \int_{0}^{1} f(x) dx$$

b) Pour $f(t) = e^{-t^2}$, créer, à l'aide de Maple, un programme calculant

$$\frac{1}{n} \sum_{k=1}^{n} f(x_k)$$

Créer un programme qui réalise la méthode des rectangles. Comparer ces deux programmes avec la valeur donnée par Maple.

c) Adapter la méthode aléatoire au calcul de

$$\iint_{[0,1]^2} \cos(xy) e^{x^2 + y^2} dx dy$$

Exercice 41 X MP [02942] [correction]

Soit $f:[0,1]\to\mathbb{R}$ continue, concave et vérifiant f(0)=1. Etablir

$$\int_0^1 x f(x) dx \le \frac{2}{3} \left(\int_0^1 f(x) dx \right)^2$$

Exercice 42 X MP [02977] [correction]

Soit $f \in \mathcal{C}([0,1],\mathbb{R})$. Déterminer la limite de la suite

$$\left(\frac{\int_0^1 t^n f(t) \, \mathrm{d}t}{\int_0^1 t^n \, \mathrm{d}t}\right)_{n \geqslant 0}$$

Exercice 43 X MP [02981] [correction] Déterminer un équivalent lorsque $n \to +\infty$ de

$$I_n = \int_0^1 \left(\frac{t}{1+t^2}\right)^n \, \mathrm{d}t$$

Exercice 44 [03072] [correction]

Résoudre l'équation

$$2^x + 4^{x^2} = 3^x + 3^{x^2}$$

d'inconnue $x \in \mathbb{R}$.

Exercice 45 Centrale MP [03181] [correction] Déterminer un équivalent de

$$I_n = \int_0^1 \frac{x^{n+1}}{\ln(1-x)} \, \mathrm{d}x$$

Intégrale fonction des bornes

Exercice 46 Centrale MP [00087] [correction]

On pourra à tout moment s'aider du logiciel de calcul formel.

a) Résoudre sur l'intervalle $I =]1, +\infty[$ l'équation différentielle

$$(E): xy' + y = \frac{1}{\ln x}$$

et expliciter (sous forme intégrale) la solution de (E) sur I, notée f, telle que f(2)=0.

Quel est le résultat obtenu avec le logiciel de calcul formel?

b) Etudier les variations de f. Vérifier que f admet un maximum en un unique point d'abscisse $x_0 \in I$.

Avec le logiciel de calcul formel, donner une valeur approchée de x_0 .

c) Déterminer un développement asymptotique à deux termes de f(x) quand $x \to +\infty$. On commencera par établir l'équivalent

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{\ln x}$$

- d) Déterminer un équivalent de f lorsque $x \to 1^+$.
- e) Tracer le graphe de f avec le logiciel de calcul formel.

Exercice 47 Centrale MP [02444] [correction] Soit

$$f(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln t}$$

- a) Calculer les limites de f en 0^+ et $+\infty$, la limite en $+\infty$ de f(x)/x et montrer que f(x) tend vers ln 2 quand x tend vers 1.
- b) Montrer que f est de classe \mathcal{C}^{∞} sur $\mathbb{R}^{+\star}$ mais qu'elle ne l'est pas sur \mathbb{R}^{+} .
- c) Etudier les variations de f et tracer sa courbe représentative.

Exercice 48 [00273] [correction]

On introduit sur \mathbb{R}^* la fonction

$$f: x \mapsto \int_x^{2x} \frac{\mathrm{e}^t}{t} \, \mathrm{d}t$$

- a) Prolonger f par continuité en 0.
- b) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
- c) Branches infinies?

Exercice 49 [00275] [correction]

Soit

$$f: x \in \mathbb{R}^* \mapsto \int_x^{2x} \frac{\operatorname{ch}t}{t} \, \mathrm{d}t$$

- a) Etudier la parité de f. On étudie désormais f sur $]0, +\infty[$.
- b) Prolonger f par continuité en 0.
- c) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^+ .
- d) Branches infinies, allure.

Exercice 50 [00277] [correction]

Soient $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $g : \mathbb{R}^* \to \mathbb{R}$ définie par

$$g(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

- a) Prolonger g par continuité en 0.
- b) Montrer que la fonction ainsi obtenue est \mathcal{C}^1 sur \mathbb{R} .

Exercice 51 [00278] [correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ une application de classe \mathcal{C}^1 et a > 0. On pose

$$I(x) = \frac{1}{x^{a+1}} \int_0^x t^a f(t) dt$$

Déterminer la limite de I(x) quand x tend vers 0.

Calcul d'intégrales

Exercice 52 [00283] [correction]

Calculer

$$\int_0^1 \ln(1+t^2) \,\mathrm{d}t$$

Exercice 53 [00282] [correction]

Calculer les intégrales suivantes via un changement de variable ad hoc :

a)
$$\int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt$$
b)
$$\int_1^2 \frac{dt}{\sqrt{t} + 2t}$$
c)
$$\int_1^2 \frac{\ln(1+t) - \ln t}{t^2} dt$$

Exercice 54 [00285] [correction]

Calculer

$$I = \int_0^{\pi/4} \ln(1 + \tan x) \,\mathrm{d}x$$

Exercice 55 Centrale MP [02436] [correction]

Calculer

$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) \, \mathrm{d}t$$

Exercice 56 [00288] [correction]

Pour $p,q\in\mathbb{N}$, calculer

$$I_{p,q} = \int_0^1 t^p (1-t)^q dt$$

Exercice 57 [00289] [correction]

Pour $n \in \mathbb{N}$, posons

$$I_n = \int_0^{\pi/2} (\sin t)^n \, \mathrm{d}t$$

- a) Former une relation de récurrence liant I_n et I_{n-2} .
- b) En déduire l'expression de I_n selon la parité de n.

Formules de Taylor

Exercice 58 [00291] [correction]

Etablir que pour tout $x \in [0, \pi/2]$,

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Exercice 59 [00293] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 .

On suppose

$$f(x), f''(x) \xrightarrow[x \to +\infty]{} 0$$

Montrer que

$$f'(x) \xrightarrow[x \to +\infty]{} 0$$

Exercice 60 [00295] [correction]

En exploitant une formule de Taylor adéquate établir

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k+1} = \ln 2$$

Exercice 61 [00296] [correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telle que $f''(0) \neq 0$.

a) Montrer qu'au voisinage de 0, la relation

$$f(x) = f(0) + xf'(\theta x)$$

détermine un réel $\theta \in]0,1[$ unique.

b) Déterminer la limite de θ quand $x \to 0$.

Exercice 62 [00297] [correction]

Soient $f:[0,1]\to\mathbb{R}$ une application de classe \mathcal{C}^2 et

$$S_n = \sum_{k=1}^{n} f(k/n^2) - nf(0)$$

Déterminer la limite de la suite (S_n) .

Exercice 63 Mines-Ponts MP [02816] [correction]

Enoncer et établir la formule de Taylor avec reste intégral.

Exercice 64 Mines-Ponts MP [02817] [correction]

Montrer, pour tout $x \in]0, \pi/2[$, l'existence de $\theta_x \in]0, 1[$ tel que

$$\sin x = x - \frac{x^3}{6}\cos(x\theta_x)$$

Etudier $\lim_{x\to 0} \theta_x$.

Exercice 65 [00255] [correction]

Soient $n \in \mathbb{N}^*$ et $\varphi : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^n telle que

$$\varphi(x) \underset{x \to 0}{=} o(x^n)$$

a) Montrer que

$$\forall 0 \leqslant p \leqslant n, \varphi^{(p)}(x) \underset{x \to 0}{=} o(x^{n-p})$$

b) On introduit $\psi: \mathbb{R} \to \mathbb{R}$ définie par

$$\psi(x) = \begin{cases} \varphi(x)/x & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Montrer que

$$\forall 0 \leq p < n, \psi^{(p)}(x) = o(x^{n-p-1})$$

En déduire que ψ est de classe \mathcal{C}^{n-1} sur \mathbb{R} .

c) Soient $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^n et $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \begin{cases} \frac{f(x) - f(0)}{x} & \text{si } x \neq 0\\ f'(0) & \text{sinon} \end{cases}$$

Montrer que q est de classe C^{n-1} .

d) Soient $f, g : \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^n telles que

$$f(0) = 0, g(x) = 0 \Leftrightarrow x = 0 \text{ et } g'(0) \neq 0$$

Montrer que f/g est de classe C^{n-1} .

Exercice 66 [03217] [correction]

[Egalité de Taylor-Lagrange]

Soient $f: I \to \mathbb{R}$ et $a \in I$. Montrer que si f est de classe \mathcal{C}^{n+1} alors

$$\forall x \in I, \exists c \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

Suites numériques

Exercice 67 [00298] [correction]

Déterminer les limites des suites dont les termes généraux sont les suivants :

a)
$$u_n = \sqrt[n]{n}$$
 b) $u_n = (1 + \frac{x}{n})^n$ c) $u_n = (\frac{n-1}{n+1})^{n+2}$

d)
$$u_n = n^2 \left(\cos \frac{1}{n} - \cos \frac{1}{n+1} \right) e$$
 $u_n = \left(\tan \left(\frac{\pi}{4} + \frac{\alpha}{n} \right) \right)^n f$ $u_n = \left(\frac{\ln(n+1)}{\ln n} \right)^{n \ln n}$

g)
$$u_n = \left(\frac{\sqrt[n]{2} + \sqrt[n]{3} + \sqrt[n]{4}}{3}\right)^n$$
 h) $u_n = \left(\frac{\arctan(n+1)}{\arctan n}\right)^{n^2}$.

Exercice 68 [00302] [correction]

Nature de la suite de terme général

$$u_n = \cos(\pi n^2 \ln(1 - 1/n))$$

Exercice 69 Mines-Ponts MP [02781] [correction]

Etudier la convergence de la suite $(\lfloor a^n \rfloor^{1/n})$, où a > 0.

Exercice 70 Mines-Ponts MP [02782] [correction]

Soient des réels positifs a et b. Trouver la limite de

$$\left(\frac{a^{1/n} + b^{1/n}}{2}\right)^n$$

Exercice 71 [00304] [correction]

Soit (u_n) une suite d'entiers naturels deux à deux distincts. Montrer que $u_n \to +\infty$.

Exercice 72 [00300] [correction]

Soient a > 0 et

$$u_n = (1+a)(1+a^2)\dots(1+a^n)$$

- a) Montrer que si $a \ge 1$ alors $u_n \to +\infty$.
- b) On suppose 0 < a < 1. Montrer que la suite (u_n) est convergente. On pourra exploiter la majoration $1 + x \le e^x$ valable pour tout $x \in \mathbb{R}$.

Exercice 73 [00320] [correction]

Soient $\alpha > 0$ et $u_n = \sum_{k=1}^n \frac{1}{n^{\alpha} + k^{\alpha}}$.

- a) Montrer que si $\alpha > 1$ alors $u_n \to 0$ tandis que si $\alpha < 1$, $u_n \to +\infty$.
- b) Montrer que si $\alpha = 1$, la suite est monotone et convergente.
- c) En exploitant l'encadrement $\ln(1+x) \le x \le -\ln(1-x)$ valable pour tout $x \in [0,1[$, établir $u_n \to \ln 2$.

Exercice 74 [00321] [correction]

a) Etablir que pour tout $x \ge 0$ on a

$$x - \frac{1}{2}x^2 \leqslant \ln(1+x) \leqslant x$$

b) En déduire la limite de

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2} \right)$$

Exercice 75 [00322] [correction]

Soit

$$I_n = \int_0^1 \frac{x^n}{x+1} \, \mathrm{d}x$$

- a) Montrer que $I_n \to 0$ en décroissant.
- b) Simplifier $I_n + I_{n+1}$ et en déduire une expression de I_n à l'aide d'un symbole sommatoire.
- c) Déterminer

$$\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n}$$

d) Exploiter

$$J_n = \int_0^1 \frac{x^n}{x^2 + 1} \mathrm{d}x$$

pour déterminer

$$\lim_{N \to +\infty} \sum_{n=0}^{N} \frac{(-1)^n}{2n+1}$$

Exercice 76 [00324] [correction]

[Irrationalité de e]

On pose pour $n \ge 1$,

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$

- a) Montrer que les suites (u_n) et (v_n) sont adjacentes.
- b) En exploitant l'inégalité de Taylor-Lagrange appliquée à la fonction $x\mapsto \mathrm{e}^x,$ montrer que $u_n\to \mathrm{e}.$
- c) On suppose que e = p/q avec $p,q\in\mathbb{N}^{\star}.$ En considérant $q.q!u_q$ et, obtenir une absurdité.

Exercice 77 Centrale MP [00319] [correction]

a) Soit

$$u_n = \sum_{k=1}^{np} \frac{1}{n+k}$$

où $p \in \mathbb{N}^*$ est fixé. Montrer que la suite (u_n) converge. Sa limite sera notée ℓ (on ne demande pas ici de la calculer)

b) Soit $f: \mathbb{R}^+ \to \mathbb{C}$ de classe \mathcal{C}^1 et telle que f(0) = 0. Soit

$$v_n = \sum_{k=1}^{np} f\left(\frac{1}{n+k}\right)$$

Montrer que (v_n) converge. Exprimer sa limite en fonction de ℓ .

- c) Calculer ℓ en utilisant $f(x) = \ln(1+x)$.
- d) Si f de \mathbb{R}^+ dans \mathbb{C} est continue et vérifie f(0) = 0, montrer qu'il peut y avoir divergence de la suite (v_n) .

Exercice 78 Centrale MP [00323] [correction]

Développement asymptotique à trois termes de :

$$u_n = \sum_{k=1}^n \sin \frac{k}{n^2}$$

Exercice 79 Mines-Ponts MP [02788] [correction]

Donner un développement asymptotique de $\left(\frac{1}{n!}\sum_{k=0}^{n}k!\right)_{n\in\mathbb{N}}$ à la précision $o(n^{-3})$.

Exercice 80 Centrale MP [02471] [correction]

Soit $f(x) = (\cos x)^{1/x}$ et (\mathcal{C}) le graphe de f.

- a) Montrer l'existence d'une suite (x_n) vérifiant :
- i) (x_n) est croissante positive.
- ii) la tangente à (C) en $(x_n, f(x_n))$ passe par O.
- b) Déterminer un développement asymptotique à 2 termes de (x_n) .

Exercice 81 Centrale PC [03184] [correction]

Soient K un réel strictement supérieur à 1 et (ε_n) une suite de réels positifs convergeant vers 0. Soit (u_n) une suite de réels de [0,1] vérifiant

$$\forall n \in \mathbb{N}, 0 \leqslant u_{n+1} \leqslant \frac{u_n + \varepsilon_n}{K}$$

La suite (u_n) converge-t-elle vers 0?

Théorème de Cesaro

Exercice 82 [00307] [correction]

Soit $(u_n)_{n\geqslant 1}$ une suite réelle convergeant vers $\ell\in\mathbb{R}$. On désire établir que la suite $(v_n)_{n\geqslant 1}$ de terme général

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$$

converge aussi vers ℓ . Soit $\varepsilon > 0$.

- a) Justifier qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > n_0$ entraı̂ne : $|u_n \ell| \leq \varepsilon/2$.
- b) Etablir que pour tout entier $n > n_0$ on a :

$$|v_n - \ell| \leqslant \frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} + \frac{n - n_0}{n} \frac{\varepsilon}{2}$$

- c) En déduire qu'il existe $n_1\in\mathbb{N}$ tel que pour tout $n\in\mathbb{N},\,n>n_1$ entraı̂ne : $|v_n-\ell|\leqslant \varepsilon.$
- d) Application : Soit (u_n) une suite réelle telle que $u_{n+1} u_n \to \alpha \neq 0$. Donner un équivalent simple de u_n .

Exercice 83 [00308] [correction]

Soit (u_n) une suite réelle.

a) On suppose que (u_n) converge vers ℓ et on considère

$$v_n = \frac{u_1 + 2u_2 + \dots + nu_n}{n^2}$$

Déterminer $\lim_{n\to+\infty} v_n$.

b) On suppose

$$\frac{u_n - u_{n-1}}{n} \to \ell$$

Déterminer

$$\lim_{n \to \infty} \frac{u_n}{n^2}$$

Exercice 84 [00309] [correction]

Soit (u_n) une suite de réels strictement positifs.

On suppose que

$$\frac{u_{n+1}}{u_n} \to \ell \in \left]0, +\infty\right[$$

Montrer que $\sqrt[n]{u_n} \to \ell$.

Exercice 85 [03219] [correction]

La suite $(u_n)_{n\geqslant 0}$ est définie par $u_0>0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \ln(1 + u_n)$$

- a) Déterminer la limite de la suite (u_n)
- b) Déterminer la limite de

$$\frac{1}{u_{n+1}} - \frac{1}{u_r}$$

c) En déduire un équivalent de (u_n)

Exercice 86 [03220] [correction]

La suite $(u_n)_{n\geqslant 0}$ est définie par $u_0\in]0,\pi/2[$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$$

- a) Déterminer la limite de la suite (u_n)
- b) Déterminer la limite de

$$\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2}$$

c) En déduire un équivalent de (u_n)

Etude de suite de solutions d'une équation

Exercice 87 [01477] [correction]

Soit $f:]0, +\infty[\to \mathbb{R}$ la fonction définie par

$$f(x) = \ln x + x$$

- a) Montrer que pour tout entier $n \in \mathbb{N}$, il existe un unique x_n tel que $f(x_n) = n$.
- b) Former le développement asymptotique de la suite (x_n) à la précision $(\ln n)/n$.

Exercice 88 [00310] [correction]

Pour $n \in \mathbb{N}$, on considère l'équation

$$x + \sqrt[3]{x} = n$$

d'inconnue $x \in \mathbb{R}$.

- a) Montrer que cette équation possède une unique solution x_n .
- b) Déterminer la limite de x_n puis un équivalent simple de (x_n) .
- c) Donner un développement asymptotique à trois termes de (x_n) .

Exercice 89 [00311] [correction]

a) Pour tout $n \in \mathbb{N}$, justifier que l'équation

$$x + e^x = n$$

possède une unique solution $x_n \in \mathbb{R}$.

- b) Déterminer la limite de (x_n) puis un équivalent de x_n .
- c) Former un développement asymptotique à trois termes de x_n quand $n \to +\infty$.

Exercice 90 [01478] [correction]

Montrer que l'équation $\tan x = \sqrt{x}$ possède une unique solution x_n dans chaque intervalle $I_n =]-\pi/2, \pi/2[+n\pi \text{ (avec } n \in \mathbb{N}^*).$

Réaliser un développement asymptotique à trois termes de x_n .

Exercice 91 Centrale MP [02478] [correction]

- a) Subdiviser \mathbb{R}^+ en intervalles contigus disjoints, chacun d'entre eux contenant une unique racine de l'équation (E): $\tan x \operatorname{th} x = 1$.
- b) On range toutes les racines positives de (E) dans une suite strictement croissante $(x_n)_{n\geqslant 0}$.

Evaluer numériquement les quatre premiers termes.

c) Donner un développement asymptotique de x_n .

Exercice 92 Centrale MP [00316] [correction]

Montrer que l'équation $x^n + x^2 - 1 = 0$ admet une unique racine réelle strictement positive pour $n \ge 1$. On la note x_n . Déterminer la limite ℓ de la suite (x_n) puis un équivalent de $x_n - \ell$.

Exercice 93 Centrale MP [00317] [correction]

Pour tout entier $n \ge 2$, on considère l'équation $(E_n): x^n = x + 1$ dont l'inconnue est $x \ge 0$.

- a) Montrer l'existence et l'unicité de x_n solution de (E_n) .
- b) Montrer que (x_n) tend vers 1.
- c) Montrer que (x_n) admet un développement limité à tout ordre. Donner les trois premiers termes de ce développement limité.

Exercice 94 X MP - Centrale MP [00318] [correction]

Pour $n \ge 2$, on considère le polynôme

$$P_n = X^n - nX + 1$$

- a) Montrer que P_n admet exactement une racine réelle entre 0 et 1, notée x_n .
- b) Déterminer la limite de x_n lorsque $n \to +\infty$.
- c) Donner un équivalent de (x_n) puis le deuxième terme du développement asymptotique x_n .

Exercice 95 [00312] [correction]

- a) Soit $n \in \mathbb{N}$. Montrer que l'équation $x^n + \ln x = 0$ possède une unique solution $x_n > 0$.
- b) Déterminer la limite de x_n .
- c) On pose $u_n=1-x_n$. Justifier que $nu_n\sim -\ln u_n$ puis déterminer un équivalent de u_n .

Exercice 96 [00314] [correction]

Montrer que pour tout $n \ge 1$, l'équation

$$\frac{x^n}{n!} = \sum_{k=0}^{n-1} \frac{x^k}{k!}$$

possède une unique racine x_n dans $]0,+\infty[$. Déterminer $\lim x_n$.

Exercice 97 [00315] [correction]

Montrer que la relation $nu_n^{n+1} - (n+1)u_n^n = 1$ définit une suite positive (u_n) unique.

Etudier sa convergence et préciser sa limite.

Exercice 98 [03154] [correction]

Pour $n \in \mathbb{N}^*$ on introduit le polynôme

$$P_n(X) = X(X-1)\dots(X-n)$$

- a) Montrer que le polynôme P_n possède une unique racine dans l'intervalle $]0,1[\,;\,$ celle-ci sera noté $x_n.$
- b) Etudier la monotonie de la suite $(x_n)_{n \ge 1}$.
- c) Former la décomposition en éléments simples de la fraction rationnelle

$$F = \frac{P_n'}{P_n}$$

d) En déduire un équivalent de la suite $(x_n)_{n \ge 1}$.

Suites récurrentes

Exercice 99 [00328] [correction]

Etudier la suite définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 1 + \frac{1}{4}u_n^2$$

Exercice 100 [00330] [correction]

Soient a > 0,

$$u_1 = \sqrt{a}, u_2 = \sqrt{a + \sqrt{a}}, u_3 = \sqrt{a + \sqrt{a + \sqrt{a}}},...$$

Montrer que (u_n) est convergente.

Exercice 101 [00331] [correction]

Soit

$$f: x \mapsto \frac{x^3 + 1}{3}$$

et (u_n) la suite définie par

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N} \ u_{n+1} = f(u_n)$$

- a) Justifier que l'équation f(x) = x possède trois racines réelles (qu'on n'exprimera pas).
- b) Etudier le signe de f(x) x ainsi que la monotonie de f.
- c) Préciser le comportement de (u_n) en discutant selon la valeur de u_0 .

Exercice 102 [00332] [correction]

Soient

$$f: x \mapsto \frac{x^3 + 3ax}{3x^2 + a}$$

(avec a > 0) et (u_n) la suite définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

Etudier les variations de f, le signe de f(x) - x et en déduire le comportement de (u_n) .

Exercice 103 [00333] [correction]

Soient $u_0 \in]0,1[$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2$$

Montrer que (u_n) est monotone de limite nulle. Déterminer les limites des suites dont les termes généraux sont les suivants

$$\sum_{k=0}^{n} u_k^2 \text{ et } \prod_{k=0}^{n} (1 - u_k)$$

Exercice 104 [00334] [correction]

Soit $f:[a,b] \to [a,b]$ une fonction de classe \mathcal{C}^1 telle que

$$\forall x \in [a, b], |f'(x)| < 1$$

- a) Montrer que f admet un point fixe unique α .
- b) Montrer, pour tout $u \in [a, b]$, la convergence vers α de la suite (u_n) définie par

$$u_0 = u$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

Exercice 105 [00335] [correction]

Soit $f:[a,b]\to [a,b]$ une fonction 1 lipschitzienne et $\alpha\in [a,b]$. On considère la suite définie par

$$u_0 = \alpha \text{ et } u_{n+1} = \frac{u_n + f(u_n)}{2}$$

Montrer que (u_n) converge vers un point fixe de f.

Exercice 106 [00329] [correction]

Soit (u_n) la suite définie par

$$u_0 \in]0, 4[$$
 et $\forall n \in \mathbb{N} \ u_{n+1} = 4u_n - u_n^2$

- a) Montrer que (u_n) est bornée. Quelles sont les limites possibles de (u_n) ?
- b) Montrer que si (u_n) converge alors (u_n) est soit stationnaire égale à 0, soit stationnaire égale à 3.
- c) En posant $u_0 = 4\sin^2\alpha$, déterminer les valeurs de u_0 pour lesquelles la suite (u_n) est stationnaire.

Exercice 107 [00336] [correction]

Soient $\rho \in \mathbb{R}^+$ et $\theta \in [-\pi, \pi]$.

On considère la suite complexe (z_n) définie par

$$z_0 = \rho e^{i\theta}$$
 et $\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + |z_n|}{2}$

- a) Exprimer (z_n) à l'aide d'un produit.
- b) Déterminer la limite de (z_n) .

Exercice 108 [00338] [correction]

Soit (u_n) une suite de réels positifs telle que

$$\forall n \in \mathbb{N}, u_{n+2} \leqslant \frac{1}{2}(u_n + u_{n+1})$$

Montrer que (u_n) converge. On pourra commencer par étudier la monotonie de $v_n = \max(u_{n+1}, u_n)$.

Exercice 109 [00337] [correction]

Soient (u_n) et (v_n) les suites récurrentes réelles définies par :

$$u_0, v_0 \in \mathbb{R}^+ \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}$$

Montrer que (u_n) et (v_n) convergent vers une même limite.

Exercice 110 [00326] [correction]

Pour $\alpha \in [0, \pi/2]$, on étudie les suites (u_n) et (v_n) définies par

$$\begin{cases} u_0 = \cos \alpha \\ v_0 = 1 \end{cases} \text{ et } \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = (u_n + v_n)/2 \\ v_{n+1} = \sqrt{u_{n+1}v_n} \end{cases}$$

a) Etablir que pour tout $n \in \mathbb{N}$,

$$u_n = v_n \cos \frac{\alpha}{2^n}$$
 et $v_n = \prod_{k=1}^n \cos \frac{\alpha}{2^k}$

b) Etudier $\sin \frac{\alpha}{2^n} v_n$ et en déduire les limites de (u_n) et (v_n) .

Exercice 111 Mines-Ponts MP [02783] [correction]

Soit $(x_n)_{n\in\mathbb{N}^*}$ une suite de réels positifs. On pose, pour tout n>0,

$$y_n = \sqrt{x_1 + \sqrt{x_2 + \dots + \sqrt{x_n}}}$$

- a) Ici $x_n = a$ pour tout n, où a > 0. Etudier la convergence de (y_n) .
- b) Même question dans le cas où $x_n = ab^{2^n}$ pour tout n, avec b > 0.
- c) Montrer que (y_n) converge si, et seulement si, la suite $(x_n^{2^{-n}})$ est bornée.

Exercice 112 Centrale MP [02477] [correction]

Soit $(x_n)_{n\geqslant 1}$ la suite définie par

$$x_1 > 0$$
 et $\forall n \in \mathbb{N}^*, x_{n+1} = x_n + n/x_n$

- a) Calculer avec Maple, les 10 premiers termes de la suite pour différentes valeurs de x_1 . Commenter.
- b) Minorer x_n . Si $(y_n)_{n\geqslant 1}$ vérifie la même relation de récurrence, étudier x_n-y_n . En déduire le comportement asymptotique de (x_n) .

Exercice 113 X MP [03165] [correction]

Soient (a_n) une suite réelle positive, bornée et (u_n) la suite récurrente définie par

$$u_0 > 0$$
 et $u_{n+1} = \frac{1}{u_n + a_n + 1}$ pour tout $n \in \mathbb{N}$

Montrer que la suite (u_n) converge si, et seulement si, la suite (a_n) converge.

Corrections

Exercice 1 : [énoncé]

a) Soit $\varepsilon > 0$, puisque $f(x) \xrightarrow[x \to +\infty]{} \ell$, il existe $A \in \mathbb{R}^+$ tel que

 $\forall x \geqslant A, |f(x) - \ell| \leqslant \varepsilon.$

Pour $x \ge A$ et pour tout $t \in [A, x], |f(t) - \ell| \le \varepsilon$ donc

 $\left|\frac{1}{x}\int_{A}^{x}(f(t)-\ell)\,\mathrm{d}t\right| \leqslant \frac{1}{x}\int_{A}^{x}\left|f(t)-\ell\right|\,\mathrm{d}t \leqslant \frac{x-A}{x}\varepsilon \leqslant \varepsilon.$

b) $\frac{1}{x} \int_0^x f(t) dt - \ell = \frac{1}{x} \int_0^x (f(t) - \ell) dt = \frac{1}{x} \int_0^A (f(t) - \ell) dt + \frac{1}{x} \int_A^x (f(t) - \ell) dt$ Quand $x \to +\infty$, $\frac{1}{x} \int_0^A (f(t) - \ell) dt = \frac{C^{te}}{x} \to 0$ donc il existe $A' \in \mathbb{R}^+$ tel que

 $x \ge A' \Rightarrow \left| \frac{1}{x} \int_0^A (f(t) - \ell) dt \right| \le \varepsilon \text{ et alors pour } A'' = \max(A, A'), \text{ on a}$ $x \ge A'' \Rightarrow \left| \frac{1}{x} \int_0^a (f(t) - \ell) dt \right| \le 2\varepsilon.$

Exercice 2: [énoncé]

Dans le cas $\ell = 0$

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}^+, \forall x \geqslant A, |f(x+1) - f(x)| \leqslant \frac{\varepsilon}{2}$$

Or

$$\frac{f(x)}{x} = \frac{1}{x} \sum_{k=0}^{E(x-A)-1} \left[f(x-k) - f(x-k-1) \right] + \frac{1}{x} f(x-E(x-A))$$

donc

$$\left| \frac{f(x)}{x} \right| \le \frac{E(x-A)}{A} \frac{\varepsilon}{2} + \frac{|f(x-E(x-A))|}{x}$$

Puisque f est continue sur le segment [A,A+1], elle y est bornée par un certain ${\cal M}$

Or $x - E(x - A) \in [A, A + 1]$ donc

$$\left| \frac{f(x)}{x} \right| \leqslant \frac{\varepsilon}{2} + \frac{M}{x}$$

et pour x assez grand

$$\left| \frac{f(x)}{x} \right| \leqslant \varepsilon$$

Dans le cas général, il suffit d'introduire la fonction $g: x \mapsto f(x) - \ell x$ pour conclure.

Exercice 3 : [énoncé]

Commençons par le cas $\ell = 0$.

On remarque que $(f(t)e^t)' = (f(t) + f'(t))e^t$ donc

$$f(x)e^{x} = f(0) + \int_{0}^{x} (f(t) + f'(t))e^{t} dt$$

puis

$$f(x) = f(0)e^{-x} + \int_0^x (f(t) + f'(t))e^{t-x} dt$$

Il reste à montrer

$$\int_0^x (f(t) + f'(t))e^{t-x} dt \xrightarrow[x \to +\infty]{} 0$$

Pour $\varepsilon > 0$, il existe $A \in \mathbb{R}^+$, pour $t \ge A$,

$$|f(t) + f'(t)| \leqslant \varepsilon$$

On a alors

$$\left| \int_{A}^{x} (f(t) + f'(t)) e^{t-x} dt \right| \leqslant \varepsilon$$

 $_{
m et}$

$$\left| \int_0^A (f(t) + f'(t)) e^{t-x} dt \right| \leqslant e^{A-x} \int_0^A |f(t) + f'(t)| dt \xrightarrow[x \to +\infty]{} 0$$

Ainsi pour x assez grand,

$$\left| \int_0^x (f(t) + f'(t)) e^{t-x} dt \right| \leqslant 2\varepsilon$$

Finalement $f(x) \xrightarrow[x \to +\infty]{} 0$.

Cas général : il suffit de considérer $g: x \mapsto f(x) - \ell$.

Exercice 4: [énoncé]

Pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que

$$\forall x \in [0, \alpha], (1 - \varepsilon)\sqrt{x} \leqslant f(x) - f(x/2) \leqslant (1 + \varepsilon)\sqrt{x}$$

Pour $x \in]0, \alpha], x/2^n \in]0, \alpha]$ pour tout $n \in \mathbb{N}$ donc

$$(1-\varepsilon)\sqrt{x/2^n} \leqslant f(x/2^n) - f(x/2^{n+1}) \leqslant (1+\varepsilon)\sqrt{x/2^{n+1}}$$

En sommant ces inégalités et en passant à la limite quand $n \to +\infty$ on obtient :

$$(1-\varepsilon)\sqrt{x}\frac{1}{1-1/\sqrt{2}} \leqslant f(x) \leqslant (1+\varepsilon)\sqrt{x}\frac{1}{1-1/\sqrt{2}}$$

La phrase quantifiée ainsi obtenue permet d'affirmer

$$f(x) \sim \frac{\sqrt{x}}{1 - 1/\sqrt{2}}$$

Exercice 5: [énoncé]

On découpe l'intégrale en deux

$$\int_0^x e^{t^2} dt = \int_0^1 e^{t^2} dt + \int_1^x e^{t^2} dt$$

et on procède à une intégration par parties

$$\int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{2t}{2t} e^{t^{2}} dt = \left[\frac{e^{t^{2}}}{2t} \right]_{1}^{x} + \frac{1}{2} \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt$$

Ainsi

$$\int_0^x e^{x^2} = \frac{e^{x^2}}{2x} + \frac{1}{2} \int_1^x \frac{e^{t^2}}{t^2} dt + C^{te}$$

Quand $x \to +\infty$, sachant que la constante est négligeable devant $e^{x^2}/2x \to +\infty$, il suffit pour conclure de montrer

$$\int_{1}^{x} \frac{e^{t^2}}{t^2} dt = o\left(\int_{1}^{x} e^{t^2} dt\right)$$

Soit $\varepsilon > 0$. Il existe $A \geqslant 1$ tel que

$$\forall t \geqslant A, \frac{1}{t^2} \leqslant \varepsilon$$

et alors

$$0 \leqslant \int_1^x \frac{e^{t^2}}{t^2} dt \leqslant \int_1^A \frac{e^{t^2}}{t^2} dt + \varepsilon \int_A^x e^{t^2} dt$$

puis

$$0 \leqslant \int_1^x \frac{e^{t^2}}{t^2} dt \leqslant \int_1^A \frac{e^{t^2}}{t^2} dt + \varepsilon \int_1^x e^{t^2} dt$$

Or

$$\int_{1}^{x} e^{t^{2}} dt \geqslant \int_{1}^{x} 1 dt \geqslant x - 1 \to +\infty$$

donc pour x assez grand

$$\int_1^A \frac{\operatorname{e}^{t^2}}{t^2} \, \mathrm{d}t \leqslant \varepsilon \int_1^x \operatorname{e}^{t^2} \, \mathrm{d}t$$

puis

$$0 \leqslant \int_{1}^{x} \frac{e^{t^{2}}}{t^{2}} dt \leqslant 2\varepsilon \int_{1}^{x} e^{t^{2}} dt$$

et on peut conclure.

Exercice 6: [énoncé]

a)
$$\ln\left(\frac{x^2+1}{x+1}\right) = -x + \frac{3}{2}x^2 - \frac{1}{3}x^3 + o(x^3)$$

b)
$$\sqrt{3 + \cos x} = 2 - \frac{1}{8}x^2 + o(x^3)$$

c)
$$(1+x)^{1/x} = e - \frac{e}{2}x + \frac{11e}{24}x^2 + o(x^2)$$

d)
$$\frac{\ln(1+x)}{e^x-1} = 1 - x + \frac{2}{3}x^2 - \frac{11}{24}x^3 + o(x^3)$$

Exercice 7 : [énoncé]

$$(\arctan e^x)' = \frac{e^x}{1 + e^{2x}} = \frac{1 + x + \frac{1}{2}x^2 + o(x^2)}{2(1 + x + x^2 + o(x^2))} = \frac{1}{2} - \frac{1}{4}x^2 + o(x^2) \text{ donc}$$
$$\arctan e^x = \frac{\pi}{4} + \frac{1}{2}x - \frac{1}{12}x^3 + o(x^3).$$

La tangente au point à pour équation $y = \pi/4 + x/2$. La courbe traverse la tangente.

Exercice 8 : [énoncé]

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \cdot \frac{1}{\sqrt{1-x^2}} = \sum_{k=0}^{n} (-1)^k c_k x^{2k} + o(x^{2n}) \text{ avec}$$

$$c_k = \frac{(-1)^k \frac{1}{2} \frac{3}{2} \cdots \frac{2k-1}{2}}{k!} = (-1)^k \frac{(2k)!}{2^{2k} (k!)^2}$$

donc $\arcsin x = \sum_{k=0}^{n} \frac{(2k)!}{2^{2k}(k!)^2(2k+1)} x^{2k+1} + o(x^{2n+1}).$

Exercice 9 : [énoncé]

Par opérations

$$\tan x = x + \frac{1}{3}x^3 + o(x^3)$$

Par la formule de Taylor-Young, le développement limité à l'ordre 5 existe et est de la forme

$$\tan x = x + \frac{1}{3}x^3 + ax^5 + o(x^5)$$

On a alors

$$\tan(\arctan x) = x + \frac{1}{3}x^3 + ax^5 - \frac{1}{3}x^3 - \frac{1}{3}x^5 + \frac{1}{5}x^5 + o(x^5) = x$$

et donc

$$a = \frac{2}{15}$$

Par la formule de Taylor-Young, le développement limité à l'ordre 7 existe et est de la forme

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + bx^7 + o(x^7)$$

En intégrant le développement à l'ordre 6 de $1 + \tan^2 x$ on conclut

$$b = \frac{17}{315}$$

Exercice 10: [énoncé]

a) f est \mathcal{C}^{∞} et $f'(x) = \frac{1 - \ln(1 + x)}{(1 + x)^2} \neq 0$ si, et seulement si, $x \neq e - 1$.

Le plus grand intervalle cherché est I =]-1, e-1[sur lequel f est \mathcal{C}^{∞} et sa dérivée ne s'annule pas, f réalise donc un \mathcal{C}^{∞} difféomorphisme de I vers $]-\infty, 1/e[$.

b) On a $\ln(1+g(x)) = x(1+g(x))$.

En dérivant $q'(x) = 1 + 2q(x) + q^2(x) + xq'(x) + xq'(x)q(x)$.

En dérivant à l'ordre $n \in \mathbb{N}^*$ et en évaluant en 0 on obtient

$$g^{(n+1)}(0) = 2g^{(n)}(0) + \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(0)g^{(n-k)}(0) + ng^{(n)}(0) + n\sum_{k=0}^{n-1} \binom{n-1}{k} g^{(k+1)}(0)g^{(n-1-k)}(0)$$
sauf en $x = e$ donc f est strictement croissante et réalise donc une bijection de

On peut alors appliquer un raisonnement par récurrence forte pour obtenir $\forall n \in \mathbb{N}, q^{(n)}(0) \geq 0.$

Ceci suffit pour conclure via la formule de Taylor-Young.

Exercice 11 : [énoncé]

- a) f est continue et strictement croissante. L'étude des limites de f permet d'affirmer que f réalise une bijection $]0, +\infty[$ vers \mathbb{R} .
- b) f est \mathcal{C}^{∞} et pour tout $x \in]0, +\infty[$, $f'(x) \neq 0$ donc f^{-1} est \mathcal{C}^{∞} . Par suite f^{-1} admet un développement limité à l'ordre 2 en 0 de la forme $f^{-1}(y) = a + by + cy^2 + o(y^2)$. Comme f(1) = 0, $f^{-1}(0) = 1$ et donc a = 1.

 $f(f^{-1}(y)) = y \text{ donne } 1 + by + cy^2 + o(y^2) + \ln(1 + by + cy^2 + o(y^2)) - 1 = y \text{ soit}$ encore $2by + (2c - \frac{1}{2}b^2)y^2 + o(y^2) = y$. Par unicité des DL, b = 1/2 et c = 1/16. c) Le tableau de variation de f permet de déterminer celui de f^{-1} et d'affirmer $f^{-1}(y) \xrightarrow[y \to +\infty]{} +\infty.$

Puisque $f^{-1}(y) + \ln(f^{-1}(y)) - 1 = y$ avec $\ln(f^{-1}(y)) - 1 = o(f^{-1}(y))$ on obtient $f^{-1}(y) \sim y$.

- d) $f^{-1}(y)/y \xrightarrow[y \to +\infty]{} 1$ et $f^{-1}(y) y = 1 \ln f^{-1}(y) \xrightarrow[y \to +\infty]{} -\infty$. f^{-1} présente en $+\infty$ une branche parabolique de direction y=x.
- e) On a $f^{-1}(y) \xrightarrow{y \to -\infty} 0$.

 $f^{-1}(y) + \ln(f^{-1}(y)) - 1 = y$ donne $\ln(f^{-1}(y)) = y + 1 - f^{-1}(y)$ puis $f^{-1}(y) = e^{1+y}e^{-f^{-1}(y)} \sim e^{1+y}$

Exercice 12 : [énoncé]

 $f: x \mapsto x + \ln(1+x)$ est de classe C^{∞} et f(0) = 0 et f'(0) = 2 > 0 donc f définie \mathcal{C}^{∞} -difféomorphisme d'un voisinage de 0 vers un autre. Son application réciproque étant \mathcal{C}^{∞} , elle admet un développement limité à l'ordre 3 de la former $f^{-1}(y) = ay + by^2 + cy^3 + o(y^3).$

Puisque $f(f^{-1}(y)) = y$, on a $2ay + \left(2b - \frac{a^2}{2}\right)y^2 + (2c - ab + \frac{1}{3}a^3)y^3 + o(y^3) = y$. On en déduit a = 1/2, b = 1/16 et c = -1/192.

Exercice 13 : [énoncé]

a) f est continue et

$$f'(x) = \frac{\ln x - 1}{(\ln x)^2} > 0$$

 $[e, +\infty[$ vers $[e, +\infty[$.

b) Quand $y \to +\infty$, $f^{-1}(y) \to +\infty$.

$$\frac{f^{-1}(y)}{\ln(f^{-1}(y))} = y$$

donc

$$\ln(f^{-1}(y)) - \ln(\ln(f^{-1}(y))) = \ln(f^{-1}(y)) + o(\ln(f^{-1}(y))) = \ln y$$

d'où

$$\ln(f^{-1}(y)) \sim \ln y$$

Par suite

$$f^{-1}(y) \sim y \ln y$$

c) $f^{-1}(y) = y \ln(f^{-1}(y)) = y \ln(y \ln y + o(y \ln y)) = y \ln y + y \ln(\ln y + o(\ln y)) = y \ln y + y \ln(\ln y) + o(y \ln(\ln y)).$

puis
$$f^{-1}(y) = y \ln(f^{-1}(y)) = y \ln(y \ln y + y \ln(\ln y) + o(y \ln(\ln y)) = y \ln(y \ln y) + y \ln\left(1 + \frac{\ln(\ln y)}{\ln y} + o\left(\frac{\ln(\ln y)}{\ln y}\right)\right)$$
 et enfin

$$f^{-1}(y) = y \ln y + y \ln(\ln y) + y \frac{\ln(\ln y)}{\ln y} + o\left(y \frac{\ln(\ln y)}{\ln y}\right)$$

Exercice 14: [énoncé]

a) Puisque f'' est continue et f''(0) > 0, on peut introduire a > 0 tel que f'' > 0 sur [-a, a].

On a alors f' strictement croissante sur [-a, a] et puisque f'(0) = 0, on peut exprimer le signe de f' sur [0, a] et constater que f' est strictement décroissante sur [-a, 0] et strictement croissante sur [0, a].

b) Puisque f est continue, par stricte monotonie, f réalise une bijection f_1 de [-a,0] sur [0,f(-a)] et une bijection f_2 de [0,a] sur [0,f(a)]. L'existence et l'unicité de $x_1(\lambda)$ et de $x_2(\lambda)$ en découlent et

$$x_1(\lambda) = f_1^{-1}(\lambda) \text{ et } x_2(\lambda) = f_2^{-1}(\lambda)$$

c) Par continuité de f_1^{-1} et f_2^{-1} , on a

$$\lim_{\lambda \to 0^+} x_1(\lambda) = 0^- \text{ et } \lim_{\lambda \to 0^+} x_2(\lambda) = 0^+$$

Par la formule de Taylor-Young, quand $x \to 0$

$$f(x) = \frac{1}{2}x^2f''(0) + o(x^2)$$

Pour $i \in \{1, 2\}$, puisque $x_i(\lambda) \to 0$,

$$\lambda = f(x_i(\lambda)) = \frac{1}{2}x_i^2(\lambda)f''(0) + o(x_i^2(\lambda))$$

donc

$$x_i^2(\lambda) \sim \frac{2\lambda}{f''(0)}$$

Ainsi

$$x_1(\lambda) \sim -\frac{\sqrt{2\lambda}}{\sqrt{f''(0)}} \text{ et } x_2(\lambda) \sim \frac{\sqrt{2\lambda}}{\sqrt{f''(0)}}$$

d) On peut écrire

$$x_i(\lambda) = \pm \frac{\sqrt{2\lambda}}{\sqrt{f''(0)}} + y_i(\lambda) \text{ avec } y_i = o(\sqrt{\lambda})$$

Par la formule de Taylor-Young, quand $\lambda \to 0$

$$\lambda = f(x_i(\lambda)) = \frac{1}{2}x_i^2(\lambda)f''(0) + \frac{1}{6}x_i^3(\lambda)f^{(3)}(0) + o(x_i^3(\lambda))$$

et on obtient

$$y_1(\lambda) \sim -\frac{1}{3} \frac{f^{(3)}(0)}{f''(0)^2} \lambda \text{ et } y_2(\lambda) \sim -\frac{1}{3} \frac{f^{(3)}(0)}{f''(0)^2} \lambda$$

donc

$$\frac{x_1(\lambda) + x_2(\lambda)}{\lambda} \to -\frac{2}{3} \frac{f^{(3)}(0)}{f''(0)^2}$$

Exercice 15 : [énoncé]

a) La fonction f est définie et dérivable sur \mathbb{R}^* avec

$$f'(x) = \left(\frac{x^2 + x - 1}{x^2}\right) e^x$$

Notons $\alpha < \beta$ les deux racines réelles de l'équation $x^2 + x - 1 = 0$. On a le tableau des variations suivant

x	$ -\infty $		α		0-	0+		β		$+\infty$
f'(x)		+	0	_			_	0	+	
f(x)	0	7	$f(\alpha)$	\	$-\infty$	$+\infty$	\	$f(\beta)$	7	$+\infty$

Pour $\lambda > \max(f(\beta), f(\alpha))$, l'équation $f(x) = \lambda$ admet deux solutions, l'une dans $a(\lambda) \in]0, \beta[$ et l'autre $b(\lambda) \in]\beta, +\infty[$. b) On a

$$a(\lambda) = (f_{\uparrow]0,\beta[})^{-1}(\lambda) \xrightarrow{\lambda \to +\infty} 0^+ \text{ et } b(\lambda) = (f_{\uparrow]\beta,+\infty[})^{-1}(\lambda) \xrightarrow{\lambda \to +\infty} +\infty$$

Puisque $a(\lambda) \to 0$ et

$$\frac{a(\lambda) + 1}{a(\lambda)} e^{a(\lambda)} = \lambda$$

on a

$$\lambda a(\lambda) = (a(\lambda) + 1)e^{a(\lambda)} \to 1$$

donc

$$a(\lambda) \sim \frac{1}{\lambda}$$

Puisque $b(\lambda) \to +\infty$ et

$$\frac{b(\lambda) + 1}{b(\lambda)} e^{b(\lambda)} = \lambda$$

donc

$$e^{b(\lambda)} \sim \lambda$$

Or $\lambda \to +\infty \neq 1$ donc

$$b(\lambda) \sim \ln \lambda$$

et puisque $\ln \lambda \to +\infty \neq 1$, on a encore

$$\ln b(\lambda) \sim \ln(\ln \lambda)$$

Par suite

$$b(\lambda)^{a(\lambda)} = e^{a(\lambda) \ln b(\lambda)}$$

avec

$$a(\lambda) \ln b(\lambda) \sim \frac{\ln(\ln \lambda)}{\lambda} \to 0$$

donc

$$b(\lambda)^{a(\lambda)} \to 1$$

Exercice 16: [énoncé]

Cette fonction n'a pas de limite en 0, elle n'est donc pas continue par morceaux.

Exercice 17: [énoncé]

Une telle fonction ne prendre qu'un nombre dénombrable de valeurs, or si celles-ci n'est pas constante, elle prend toutes les valeurs d'un intervalle non singulier ce qui constitue un nombre non dénombrable de valeurs. Une telle fonction ne peut donc exister.

Exercice 18: [énoncé]

- a) Considérons $g: x \mapsto f(x) x$. g est continue, $g(0) \ge 0$ et $g(1) \le 0$ donc il existe $\alpha \in [0,1]$ tel que $g(\alpha) = 0$.
- b) L'ensemble $\{x \in [0,1]/f(x) \ge x\}$ est une partie de \mathbb{R} , non vide (0 y appartient) et est majoré (par 1).

On peut donc poser

$$\alpha = \sup \left\{ x \in [0, 1] / f(x) \geqslant x \right\}$$

Pour $x > \alpha$, on a f(x) < x donc $f(\alpha) \le f(x) < x$. D'où $f(\alpha) \le \alpha$. (α est majorant)

Pour $x < \alpha$, il existe $t \in]x, \alpha]$ tel que $f(t) \ge t$ donc $f(\alpha) \ge f(t) \ge t \ge x$. D'où $f(\alpha) \ge \alpha$. (α est le plus petit majorant).

Finalement $f(\alpha) = \alpha$. On peut aussi procéder par dichotomie...

Exercice 19: [énoncé]

Par l'absurde, supposons que f-g ne s'annule pas. Quitte à échanger, supposons f-g>0.

Soit x un point fixe de g.

On a g(f(x)) = f(g(x)) = f(x). Donc f(x) est point fixe de g et de plus f(x) > g(x) = x.

De même, $f^2(x)$ est point fixe de g et $f^2(x) \ge f(x)$.

On peut ainsi construire une suite $(f^n(x))$ de points fixes de g, suite qui est croissante et majorée.

Posons $\ell = \lim_{n \to \infty} f^n(x)$. On a par continuité : $f(\ell) = \ell$ et $g(\ell) = \ell$. Absurde.

Exercice 20 : [énoncé]

- a) L'ensemble des points fixes de f est $(f \mathrm{Id})^{-1} \{0\}$, c'est donc une partie fermée de [0,1]. Etant fermée et bornée c'est une partie compacte. Etant de plus non vide, cette partie admet un plus petit et un plus grand élément.
- b) Soient $a\leqslant b$ les deux éléments précédents. L'égalité $f\circ g=g\circ f$ donne f(g(a))=g(a) et f(g(b))=g(b) donc $a\leqslant g(a),g(b)\leqslant b$. Considérons la fonction continue $\varphi=f-g$. On a $\varphi(a)=a-g(a)\leqslant 0$ et $\varphi(b)=b-g(b)\geqslant 0$ donc φ s'annule.

Exercice 21 : [énoncé]

Soit f une fonction solution. Puisque celle-ci est continue sur un segment, elle y admet un minimum en un certain $x_0 \in [0, 1]$.

On a alors

$$f(x_0) = \sum_{n=1}^{+\infty} \frac{f(u_n x_0 + 1 - x_0)}{2^n} \geqslant \sum_{n=1}^{+\infty} \frac{f(x_0)}{2^n} = f(x_0)$$

On en déduit

$$\forall n \in \mathbb{N}, f(u_n x_0 + 1 - x_0) = f(x_0)$$

En passant à la limite quand $n \to +\infty$, on obtient

$$f(1) = f(x_0)$$

Ainsi f(1) est la valeur minimale de f sur [0,1]

Un raisonnement symétrique assure aussi que f(1) est la valeur maximale de f sur [0,1].

On en déduit que f est constante.

La réciproque est immédiate.

Notons que l'hypothèse de stricte croissance de la suite (u_n) est sans doute là pour tromper l'ennemi.

Exercice 22 : [énoncé]

$$\frac{1}{1-x^2} = \frac{1}{2} \frac{1}{1-x} + \frac{1}{2} \frac{1}{1+x} \text{ et } \left(\frac{1}{1-x}\right)^{(n)} = \frac{n!}{(1-x)^{n+1}}, \left(\frac{1}{1+x}\right)^{(n)} = (-1)^n \frac{n!}{(1+x)^{n+1}} \text{ donc}$$

$$\left(\frac{1}{1-x^2}\right)^{(n)} = \frac{n!}{2(1-x)^{n+1}} + \frac{(-1)^n n!}{2(1+x)^{n+1}}.$$

Exercice 23 : [énoncé]

$$f'(x) = \frac{1}{x^2+1} = \frac{1}{2i} \left(\frac{1}{x-i} + \frac{1}{x+i} \right)$$
 qu'il suffit de dériver à l'ordre n .

Après résolution de l'équation $(x-i)^n = (x+i)^n$, on obtient que les racines de $f^{(n)}$ sont les $\cot \frac{k\pi}{n}$ avec $k \in \{1, \ldots, n-1\}$.

Exercice 24: [énoncé]

a) En dérivant la relation $(f \circ f)(x) = ax + b$ on obtient f'(x)f'(f(x)) = a. On observe que h admet un unique point fixe $\alpha = b/(1-a)$.

Si pour tout $x \in \mathbb{R}$, f(x) < x alors h(x) = f(f(x)) < f(x) < x ce qui est contradictoire avec l'existence d'un point fixe pour h.

De même, on ne peut avoir f(x) > x pour tout $x \in \mathbb{R}$. La continuité de f permet alors d'assurer l'existence d'un point fixe à f (qui ne peut d'ailleurs qu'être α car un point fixe de f est aussi point fixe de h).

La relation

$$f'(x)f'(f(x)) = a$$

en $x = \alpha$ donne

$$(f'(\alpha))^2 = a$$

Par suite si a < 0, $S = \emptyset$.

b) On observe

$$h(x) = a(x - \alpha) + \alpha$$

h est une homothétie de centre α et de rapport a.

c) On a

$$h^{-1} \circ f \circ h = h^{-1} \circ f \circ f \circ f = h^{-1} \circ h \circ f = f$$

En itérant la relation précédente

$$(h^{-1})^n \circ f \circ h^n = f$$

avec $h^{n}(x) = \alpha + a^{n}(x - \alpha)$ et $(h^{-1})^{n}(x) = \alpha + a^{-n}(x - \alpha)$.

Supposons $a \in [0, 1[$.

On peut écrire

$$f(x) = ((h^{-1})^n \circ f \circ h^n) = (h^{-1})^n \circ f(\alpha + a^n(x - \alpha))$$

Puisque $a^n \to 0$ et que f est dérivable en α

$$f(\alpha + a^n(x - \alpha)) = \alpha + a^n(x - \alpha)f'(\alpha) + o(a^n)$$

donc

$$f(x) = (h^{-1})^n \circ f(\alpha + a^n(x - \alpha)) = \alpha + (x - \alpha)f'(\alpha) + o(1)$$

En passant à la limite quand $n \to +\infty$, on peut affirmer que f est affine. Puisque de plus α est point fixe, f est une homothétie de centre α et son rapport ne peut qu'être \sqrt{a} .

Dans le cas a > 1, la même étude en partant de

$$h \circ f \circ h^{-1} = f$$

permet aussi d'affirmer que f est affine et d'obtenir la même conclusion.

Exercice 25 : [énoncé]

- a) Il suffit de raisonner par récurrence. On obtient $P_0(x) = 1$ et pour tout $n \in \mathbb{N}$, $P_{n+1} = (2 3nX^2)P_n + X^3P'_n$. Par récurrence, pour n > 0, deg $P_n = 2(n-1)$.
- b) f est continue en 0 et pour tout $n \in \mathbb{N}^*$, $f^{(n)}(x) \xrightarrow[x \to 0]{} 0$ dont par le théorème
- « limite de la dérivée », on peut conclure.
- c) $P_1 = 2$ a toutes ses racines réelles.
- $f'(0) = \lim_{x \to +\infty} f'(x) = \lim_{x \to -\infty} f'(x) = 0$ donc par une généralisation du théorème de Rolle, on peut affirmer que f'' s'annule sur $]0, +\infty[$ et $]-\infty, 0[$. Ses annulations sont aussi des zéros de P_2 qui est de degré 2, donc P_2 a toutes ses racines réelles. f'' s'annule aussi en 0 et en $\pm \infty$. Par la généralisation du théorème de Rolle, on obtient 2 annulations sur $]0, +\infty[$ et 2 annulations sur $]-\infty, 0[$ qui seront toutes quatre zéros de P_3 qui est un polynôme de degré $4, \ldots$ on peut itérer la démarche.

Exercice 26: [énoncé]

Soit y une valeur strictement intermédiaire à f'(a) et $\frac{f(b)-f(a)}{b-a}$.

Soit $\varphi : [a, b] \to \mathbb{R}$ définie par $\varphi(x) = f(x) - y(x - a)$.

 φ est dérivable. $\varphi(a) = f(a), \ \varphi'(a) = f'(a) - y < 0, \ \varphi(b) = f(b) - y(b-a) > f(a).$

Puisque $\varphi'(a) < 0$, φ prend des valeurs strictement inférieures à f(a).

Ainsi il existe $\alpha \in]a,b]$ tel que $\varphi(\alpha) < f(a)$.

 φ est continue, par le théorème des valeurs intermédiaires appliqué entre α et b, il existe $x \in [\alpha, b] \in [a, b]$ tel que $\varphi(x) = f(a)$.

En appliquant le théorème de Rolle entre a et x, il existe $c \in]a,x[$ tel que $\varphi'(c)=0$ i.e. f'(c)=y.

Par le même principe que ci-dessus, f' prend aussi les valeurs intermédiaires à f'(b) et $\frac{f(b)-f(a)}{b-a}$ et donc les valeurs intermédiaires à f'(a) et f'(b).

Exercice 27 : [énoncé]

Nous allons montrer que seule la fonction nulle est solution sur $\mathbb R$ du problème posé.

Soit $f: \mathbb{R} \to \mathbb{R}$ une solution du problème posé.

On vérifie aisément que f est indéfiniment dérivable et vérifie

$$f(0) = 0$$
 et $f'(x) = \lambda f(\lambda x)$

Dans les cas où $\lambda=0$ ou $\lambda=1$ conclut aisément que f est la fonction nulle. Dans le cas où $\lambda=-1$, on a f''(x)=f'(-x)=-f(x). Ainsi f est solution de l'équation différentielle y''+y=0 et puisque f(0)=f'(0)=0, on obtient encore que f est la fonction nulle.

Cas $|\lambda| < 1$

Pour tout $x \in \mathbb{R}$, on $f'(x) = \lambda f(\lambda x)$. Pour $x \in \mathbb{R}^+$, posons

$$M(x) = \sup_{[-x,x]} |f|$$

La fonction M est croissante et

$$M(x) \xrightarrow[x \to 0^+]{} f(0) = 0$$

Pour $x \ge 0$

$$|f(x)| \le \int_0^x |f'(t)| dt = |\lambda| \int_0^x |f(\lambda t)| dt \le |\lambda| x M(|\lambda x|)$$

et on a un résultat semblable pour $x \leq 0$.

On en déduit

$$M(x) \leq |\lambda| |x| M(|\lambda x|)$$

En itérant cette relation, on obtient

$$M(x) \leqslant \left[\left| \lambda \right|^{(n+1)/2} \left| x \right| \right]^n M(\left| \lambda^n x \right|)$$

et quand $n \to +\infty$ on obtient M(x) = 0.

On en déduit que f est constante égale à la fonction nulle.

Cas $|\lambda| > 1$: reste à résoudre...On peut toujours faire référence à X MP 2006 1ère épreuve mais cela ne me semble pas raisonnable pour un jour d'oral...

Exercice 28 : [énoncé]

Soient $a_1 < \ldots < a_n$ les racines de P.

En appliquant Rolle sur chaque intervalle $[a_i, a_{i+1}]$, on obtient n-1 racines réelles distinctes pour le polynôme P'. Puisque $\deg P' = n-1$, ce polynôme est scindé. Soient $a_1 < \ldots < a_p$ les racines de P et $\alpha_1, \ldots, \alpha_p$ leurs multiplicités avec $\alpha_1 + \cdots + \alpha_p = n$.

Les $a_1 < \ldots < a_p$ sont racines de P' de multiplicités respectives $\alpha_1 - 1, \ldots, \alpha_p - 1$. Comme ci-dessus, par Rolle, on peut aussi assurer l'existence de p-1 autres racines à P'.

La somme des multiplicités des racines est donc au moins égales à

$$\sum_{i=1}^{p} \alpha_{i} - 1 + p - 1 = n - 1 = \deg P' \text{ donc } P' \text{ est scind\'e}.$$

Exercice 29 : [énoncé]

a) $(X^2 - 1)^n$ est de degré 2n donc $[(X^2 - 1)^n]^{(n)}$ est de degré n.

$$f(1) = \sum_{k=0}^{n} {n \choose n} [(x-1)^n]^{(k)} (1) [(x+1)^n]^{(n-k)} (1) = 2^n n!$$

et de manière similaires $f(-1) = (-1)^n 2^n n!$.

c) 1 et -1 sont racines de multiplicité n de $g: x \mapsto (x^2 - 1)^n$, 1 et -1 sont donc racines de $g, g', \dots, g^{(n-1)}$.

En appliquant le théorème de Rolle, on montre que $g', g'', \ldots, g^{(n)} = f$ admettent resp. $1, 2, \ldots, n$ racines dans]-1, 1[. Puisque f est de degré n, celles-ci sont simples et il ne peut g en avoir d'autres.

Exercice 30 : [énoncé]

Soit (a_n) une suite de valeurs d'annulation deux à deux distinctes de f. Par le théorème de Bolzano-Weierstrass, on peut extraire de la suite bornée (a_n) une

sous-suite convergente $(a_{\varphi(n)})$. Posons α sa limite. Par continuité, on a $f(\alpha)=0$. En appliquant le théorème de Rolle entre $a_{\varphi(n)}$ et $a_{\varphi(n+1)}$, il existe b_n compris entre ces deux nombres tel que $f'(b_n)=0$. Quand $n\to +\infty$, on a $b_n\to \alpha$ par encadrement et donc par continuité de f', on a $f'(\alpha)=0$. Finalement $f(\alpha)=f'(\alpha)=0$.

Exercice 31: [énoncé]

Si $x_0 \in \{a_1, \ldots, a_n\}$ n'importe quel c convient.

Si $x_0 \notin \{a_1, \ldots, a_n\}$, il existe une constante K telle que

$$f(x_0) = \frac{(x_0 - a_1)\dots(x_0 - a_n)}{n!}K$$

La fonction $x \mapsto f(x) - \frac{(x-a_1)...(x-a_n)}{n!}K$ est de classe \mathcal{C}^n et s'annule en a_1, \ldots, a_n et x_0 ce qui fournit au moins n+1 valeurs d'annulation et permet, par le théorème de Rolle, de conclure que sa dérivée nème s'annule en un $c \in [a, b[$. Or

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(f(x) - \frac{(x - a_1) \dots (x - a_n)}{n!} K \right) = f^{(n)}(x) - K$$

donc $K = f^{(n)}(c)$.

Exercice 32 : [énoncé]

a) Si $x_0 = a$ ou $x_0 = b$: ok. Sinon introduisons un réel K tel que la fonction

$$g: x \mapsto f(x) - \frac{(x-a)(x-b)}{2}K$$

s'annule en x_0 .

La fonction g est de classe C^2 et s'annule en a < t < b donc il existe $\xi \in]a,b[$ tel que $g''(\xi) = 0$ ce qui résout le problème.

b) Notons que les sup engagés existent car les fonctions considérées sont continues sur le segment [a, b].

On a

$$\forall x \in [a, b], |f(x)| \le \frac{(x - a)(b - x)}{2} \sup_{[a, b]} |f''|$$

Or $x \mapsto \frac{(x-a)(b-x)}{2}$ est maximum en $x = \frac{a+b}{2}$ ce qui donne :

$$|f(x)| \le \frac{(b-a)^2}{8} \sup_{[a,b]} |f''|$$

puis

$$\sup_{[a,b]} |f| \leqslant \frac{(b-a)^2}{8} \sup_{[a,b]} |f''|$$

Exercice 33 : [énoncé]

Considérons

$$g: x \mapsto (x-b)f(a) + (a-x)f(b) + (b-a)f(x) - \frac{1}{2}(a-b)(b-x)(x-a)K$$

où la constante K est choisie de sorte que g(c) = 0 (ce qui est possible). La fonction g s'annule en a, en b et en c donc par le théorème de Rolle, il existe $d \in I$ tel que g''(d) = 0 ce qui résout le problème posé.

Exercice 34: [énoncé]

En appliquant le théorème des accroissements finis à $x \mapsto x^{1/x}$ entre n et n+1, on obtient

$$^{n+1}\sqrt{n+1} - \sqrt[n]{n} = \frac{1-\ln c}{c^2}$$

avec $c \in]n, n+1[$.

Puisque $c \sim n \to +\infty$, $\ln c \sim \ln n$ et donc

$$^{n+1}\sqrt{n+1} - \sqrt[n]{n} \sim -\frac{\ln n}{n^2}$$

Exercice 35: [énoncé]

Appliquons le théorème des accroissements finis à f^{-1} entre $\frac{k-1}{n}$ et $\frac{k}{n}$

$$\exists y_{k,n} \in \left] \frac{k-1}{n}, \frac{k}{n} \right[, f^{-1} \left(\frac{k}{n} \right) - f^{-1} \left(\frac{k-1}{n} \right) = (f^{-1})'(y_{k,n}) \left(\frac{k}{n} - \frac{k-1}{n} \right)$$

En posant $x_{k,n} = f^{-1}(y_{k,n})$, on a

$$\frac{k-1}{n} \leqslant f(x_{k,n}) \leqslant \frac{k}{n}$$

En sommant les relations précédentes pour k allant de 1 à n on obtient :

$$f^{-1}(1) - f^{-1}(0) = \sum_{k=1}^{n} \frac{1}{f'(x_{k,n})} \frac{1}{n}$$

car

$$(f^{-1})'(y_{k,n}) = \frac{1}{f'(x_{k,n})}$$

Puisque $f^{-1}(1) = 1$ et $f^{-1}(0) = 0$ car $f \mathcal{C}^1$ difféomorphisme croissant de [0,1] sur [0,1], on obtient finalement,

$$\sum_{k=1}^{n} \frac{1}{f'(x_{k,n})} = n$$

Exercice 36: [énoncé]

- a) Si f' est bornée sur \mathbb{R}^+ , l'inégalité des accroissements finis assure que f est lipschitzienne donc uniformément continue.
- b) Supposons que f soit uniformément continue. Pour $\varepsilon = 1 > 0$, il existe un réel $\alpha > 0$ vérifiant $\forall x, y \in \mathbb{R}, |y x| \leq \alpha \Rightarrow |f(y) f(x)| \leq 1$. En particulier, pour tout $x \in \mathbb{R}, |f(x + \alpha) f(x)| \leq 1$. Or par le théorème des accroissements finis, il existe $\xi_x \in]x, x + \alpha[$ vérifiant $|f(x + \alpha) f(x)| = \alpha |f'(\xi_x)|$ et donc $|f'(\xi_x)| \leq 1/\alpha$. Cette propriété est incompatible avec $|f'(x)| \to +\infty$.

Exercice 37: [énoncé]

 $-c \leqslant t - x \leqslant c \Leftrightarrow t - c \leqslant x \leqslant t + c.$

Si $t \le a - c$ ou $t \ge b + c$ alors g(t) = 0.

Si $a - c \le t \le a + c$ alors $g(t) = \int_a^{t+c} 1 \, dx = t + c - a$.

Si $a + c \le t \le b - c$ alors $g(t) = \int_{t-c}^{a+c} 1 dt = 2c$.

Si $b - c \le t \le b + c$ alors $g(t) = \int_{t-c}^{b} 1 dx = b - t + c$.

La fonction g est représentée par une fonction continue affine par morceaux.

Exercice 38 : [énoncé]

a) Supposons f constante égale à C.

 $\int_a^b f(x) \left| \sin(nx) \right| dx = C \int_a^b \left| \sin(nx) \right| dx.$

Posons $p = \left| \frac{an}{\pi} \right| + 1$ et $q = \left| \frac{bn}{\pi} \right|$.

 $\int_{a}^{b} |\sin(nx)| \, dx = \int_{a}^{\frac{p\pi}{n}} |\sin(nx)| \, dx + \sum_{k=n+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} |\sin(nx)| \, dx + \int_{\frac{q\pi}{n}}^{b} |\sin(nx)| \, dx$

On a $\left| \int_a^{\frac{p\pi}{n}} |\sin(nx)| \, dx \right| \leq \frac{\pi}{n} \, \operatorname{donc} \int_a^{\frac{p\pi}{n}} |\sin(nx)| \, dx \to 0$ et aussi

 $\int_{\frac{q\pi}{}}^{b} |\sin(nx)| \, \mathrm{d}x \to 0.$

De plus $\sum_{k=n+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} |\sin(nx)| dx = \frac{(q-p)}{n} \int_{0}^{\pi} \sin t dt = \frac{2(q-p)}{n} \to \frac{2(b-a)}{\pi}.$

Ainsi $\int_a^b |\sin(nx)| dx \to \frac{2}{\pi}(b-a)$ puis $\int_a^b f(x) |\sin(nx)| dx = \frac{2}{\pi} \int_a^b f(x) dx$.

b) Supposons f en escalier.

Soit a_0, \ldots, a_n une subdivision adaptée à f.

Par l'étude qui précède, $\int_{a_{k-1}}^{a_k} f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_{a_{k-1}}^{a_k} f$.

Puis en sommant par la relation de Chasles $\int_a^b f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_a^b f$.

c) Supposons enfin f continue par morceaux.

Pour $\varepsilon > 0$, il existe φ en escalier vérifiant $||f - \varphi||_{\infty,[a,b]} \leqslant \frac{\varepsilon}{b-a}$.

Puisque $\int_a^b \varphi(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_a^b \varphi$, pour n assez grand, on a $\left| \int_a^b \varphi(x) |\sin(nx)| dx - \frac{2}{\pi} \int_a^b \varphi \right| \leqslant \varepsilon$.

Or
$$\left| \int_a^b \varphi(x) \left| \sin(nx) \right| dx - \int_a^b f(x) \left| \sin(nx) \right| dx \right| \le \varepsilon$$
 et $\left| \int_a^b \varphi - \int_a^b f \right| \le \varepsilon$ donc $\left| \int_a^b f(x) \left| \sin(nx) \right| dx - \frac{2}{\pi} \int_a^b f \right| \le 2\varepsilon + \frac{2}{\pi} \varepsilon$.
Ainsi $\int_a^b f(x) \left| \sin(nx) \right| dx \to \frac{2}{\pi} \int_a^b f dx$.

Exercice 39: [énoncé]

- a) φ étant convexe, la courbe est au dessus de chacune de ses tangentes.
- b) Posons $a = \int_0^1 f(u) du \in I$ et considérons $x = f(t) \in I$:

 $\varphi(f(t)) \geqslant \varphi(a) + \varphi'(a)(f(t) - a)$ En intégrant sur [0, 1], on obtient :

 f^1 (1) (f^1 (1) ()

$$\int_0^1 \varphi(f(t)) dt \geqslant \varphi\left(\int_0^1 f(u) du\right)$$

car

$$\int_0^1 \varphi'(a)(f(t) - a) dt = \varphi'(a) \left(\int_0^1 f(t) dt - \int_0^1 f(u) du \right) = 0$$

c) $\varphi: x \mapsto x \ln x$ est convexe sur $I = \mathbb{R}^{+\star}$ car $(x \ln x)' = 1 + \ln x$ qui est croissant. L'inégalité précédente donne alors

$$0 \leqslant \int_0^1 f(t) \ln(f(t)) \, \mathrm{d}t$$

puisque $\int_0^1 f(t) dt = 1$ annule φ .

d) $x \mapsto x \ln x$ étant convexe et de tangente d'équation y = x - 1 en 1, on a $x \ln x \geqslant x - 1$ pour tout x > 0.

Par suite

$$\int_0^1 f(t) \ln f(t) \, \mathrm{d}t - \int_0^1 f(t) \ln g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)}\right) g(t) \, \mathrm{d}t \geqslant \int_0^1 \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_0^1 \frac{f(t)}{g(t)} \ln \left(\frac{f(t)}{g(t)} - 1\right) g(t) \, \mathrm{d}t = \int_$$

Document7

Exercice 40: [énoncé]

- a) La propriété est valable pour les fonctions en escalier et se prolonge aux fonctions continues par approximation uniforme.
- b)

$$f:=x->exp(-x^2)$$

somme1:=proc(n)

local k,S;

S:=0; for k from 1 to n do S:=S+f(die()) od; RETURN(S/n);

end;

somme2:=proc(n)

RETURN(sum(f(k/n),k=1..n)/n);

end;

La méthode aléatoire donne des résultats instables peu convaincants.

c)

 $g:=(x,y)->cos(x*y)*exp(x^2+y^2);$

somme3:=proc(n)

local k,S;

S:=0; for k from 1 to n do S:=S+g(die(),die()) od; RETURN(S/n);

end;

Exercice 41 : [énoncé]

Par un argument géométrique (trapèze sous la courbe) la concavité donne

$$x\frac{f(0) + f(x)}{2} \leqslant \int_0^x f(t) \, \mathrm{d}t$$

On en déduit $xf(x) \leq 2 \int_0^x f(t) dt - x donc$

$$\int_{0}^{1} x f(x) dx \leq 2 \int_{x=0}^{1} \left(\int_{t=0}^{x} f(t) dt \right) dx - \frac{1}{2} (1)$$

Or

$$\int_{x=0}^{1} \int_{t=0}^{x} f(t) dt dx = \int_{t=0}^{1} \int_{x=t}^{1} f(t) dx dt = \int_{t=0}^{1} (1-t)f(t) dt = \int_{0}^{1} f(t) dt - \int_{0}^{1} tf(t) dt$$

La relation (1) donne alors

$$3\int_0^1 x f(x) \, \mathrm{d}x \le 2\int_0^1 f(t) \, \mathrm{d}t - \frac{1}{2} (2)$$

Enfin

$$2\left(\int_0^1 f(t)\,\mathrm{d}t - \frac{1}{2}\right)^2 \geqslant 0$$

donne

$$2\left(\int_{0}^{1} f(t) dt\right)^{2} \geqslant 2\int_{0}^{1} f(t) dt - \frac{1}{2} (3)$$

Les relations (2) et (3) permettent alors de conclure.

Exercice 42: [énoncé]

On peut écrire

$$\frac{\int_0^1 t^n f(t) dt}{\int_0^1 t^n dt} = \int_0^1 (n+1)t^n f(t) dt$$

Par le changement de variable $u = t^{n+1}$

$$\frac{\int_0^1 t^n f(t) dt}{\int_0^1 t^n dt} = \int_0^1 f(u^{1/(n+1)}) du$$

Par convergence dominée par $||f||_{\infty}$, on obtient

$$\frac{\int_0^1 t^n f(t) \, \mathrm{d}t}{\int_0^1 t^n \, \mathrm{d}t} \to f(1)$$

Exercice 43: [énoncé]

On a

$$2^n I_n = \int_0^1 \left(\frac{2t}{1+t}\right)^n dt$$

où l'on remarque que la fonction $t\mapsto \frac{2t}{1+t^2}$ croît de [0,1] sur [0,1]. Introduisons

$$J_n = \int_0^1 \frac{1+t^2}{2} \left(\frac{2t}{1+t^2}\right)^n dt = \int_0^{\pi/2} (\sin x)^n dx$$

On sait

$$J_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$

(via $nJ_nJ_{n+1}=\pi/2$ et $J_n\sim J_{n+1}$, cf. intégrales de Wallis) Montrons $2^nI_n\sim J_n$ en étudiant la différence

$$2^{n}I_{n} - J_{n} = \int_{0}^{1} \frac{1 - t^{2}}{2} \left(\frac{2t}{1 + t^{2}}\right)^{n} dt$$

On découpe l'intégrale en $1-\varepsilon_n$ avec $\varepsilon_n\to 0$ que nous choisirons par la suite.

$$\int_0^1 \frac{1-t^2}{2} \left(\frac{2t}{1+t^2}\right)^n \, \mathrm{d}t = \int_0^{1-\varepsilon_n} \frac{1-t^2}{2} \left(\frac{2t}{1+t^2}\right)^n \, \mathrm{d}t + \int_{1-\varepsilon_n}^1 \frac{1-t^2}{2} \left(\frac{2t}{1+t^2}\right)^n \, \mathrm{d}t$$

D'une part

$$0 \leqslant \int_{1-\varepsilon_n}^1 \frac{1-t^2}{2} \left(\frac{2t}{1+t^2}\right)^n dt \leqslant \varepsilon_n \frac{2\varepsilon_n - \varepsilon_n^2}{2} \sim \varepsilon_n^2$$

et d'autre part

$$0\leqslant \int_0^{1-\varepsilon_n}\frac{1-t^2}{2}\left(\frac{2t}{1+t^2}\right)^n\,\mathrm{d}t\leqslant \frac{1}{2}\left(\frac{1-\varepsilon_n}{1-\varepsilon_n+\varepsilon_n^2/2}\right)^n$$

avec

$$\left(\frac{1-\varepsilon_n}{1-\varepsilon_n+\varepsilon_n^2/2}\right)^n = \exp\left(-\frac{1}{2}n\varepsilon_n^2 + o(n\varepsilon_n^2)\right)$$

Pour $\varepsilon_n = n^{-1/3}$, on a

$$\int_{1-\varepsilon_n}^1 \frac{1-t^2}{2} \left(\frac{2t}{1+t^2}\right)^n \, \mathrm{d}t = O\left(\frac{1}{n^{2/3}}\right) = o\left(\frac{1}{\sqrt{n}}\right)$$

 $_{
m et}$

$$\left(\frac{1-\varepsilon_n}{1-\varepsilon_n+\varepsilon_n^2/2}\right)^n = \exp\left(-\frac{1}{2}n^{1/3} + o(n^{1/3})\right) = o\left(\frac{1}{\sqrt{n}}\right)$$

On peut alors affirmer

$$2^n I_n - J_n = o\left(\frac{1}{\sqrt{n}}\right)$$

puis

$$2^n I_n \sim \frac{\sqrt{\pi}}{\sqrt{2n}}$$

et finalement

$$I_n \sim \frac{\sqrt{\pi}}{2^n \sqrt{2n}}$$

Exercice 44: [énoncé]

L'équation étudiée équivaut à

$$4^{x^2} - 3^{x^2} = 3^x - 2^x$$

Or

$$3^{x} - 2^{x} = \int_{0}^{1} x(2+t)^{x-1} dt \text{ et } 4^{x^{2}} - 3^{x^{2}} = \int_{0}^{1} x^{2} (3+t)^{x^{2}-1} dt$$

et donc l'équation étudiée peut se réécrire

$$\int_0^1 \varphi(t) \, \mathrm{d}t = 0$$

où φ est l'application continue définie par

$$\varphi(t) = x(x(3+t)^{x^2-1} - (2+t)^{x-1})$$

Si $x \leq 0$ ou si $x \geq 1$, il est immédiat d'affirmer que l'application φ est de signe constant.

Si $x \in]0,1[$, l'étude est plus délicate et nous allons montrer par étude de fonctions

$$x(3+t)^{x^2-1} \le (2+t)^{x-1}$$

soit encore

$$\ln x + (x^2 - 1)\ln(3 + t) \leqslant (x - 1)\ln(2 + t)$$

Soit $f: x \mapsto \ln x + (x^2 - 1) \ln(3 + t) - (x - 1) \ln(2 + t)$ définie sur [0, 1]La fonction f est dérivable et

$$f'(x) = \frac{1}{x} + 2x\ln(3+t) - \ln(2+t)$$

Si $x \ge 1/2$ alors $f'(x) \ge \frac{1}{x} + \ln(3+t) - \ln(2+t) \ge 0$. Si $x \le 1/2$ alors $f'(x) \ge 2 - \ln(2+t) \ge 2 - \ln 3 \ge 0$.

Dans tous les cas $f'(x) \ge 0$ et donc f est croissante.

Puisque f(1) = 0, la fonction f est négative et l'on obtient l'inégalité proposée. Finalement, l'équation initialement étudiée équivaut à une équation de la forme

$$\int_0^1 \varphi(t) \, \mathrm{d}t = 0$$

avec φ une fonction continue de signe constant. L'équation est donc vérifiée si, et seulement si, φ est la fonction nulle.

Pour $x \leq 0$, cette propriété n'est vérifiée que si x = 0.

Pour x > 0, si la fonction φ est la fonction nulle alors

$$\forall t \in [0,1], \frac{1}{x} + (x^2 - 1)\ln(3 + t) - (x - 1)\ln(2 + t) = 0$$

puis en dérivant par rapport à la variable t, on obtient

$$\forall t \in [0,1], \frac{x^2 - 1}{3 + t} = \frac{x - 1}{2 + t}$$

ce qui n'est possible que pour x=1.

Inversement, x=0 et x=1 sont solutions de l'équation étudiée. Finalement

$$\mathcal{S} = \{0, 1\}$$

Exercice 45: [énoncé]

Posons $f: [0,1] \to \mathbb{R}$ définie par

$$f(x) = -\frac{\ln(1-x)}{x} = \sum_{n=0}^{\infty} \frac{x^n}{n+1}$$

prolongée par continuité en 0.

Notons que cette fonction est positive et croissante.

Introduisons $a,b\in]0,1[$ dont les valeurs seront déterminées ultérieurement. On peut écrire

$$-(n+1)I_n = A_n + B_n + C_n$$

avec

$$A_n = \int_0^a (n+1) \frac{x^n}{f(x)} dx, B_n = \int_a^b (n+1) \frac{x^n}{f(x)} dx \text{ et } C_n = \int_b^1 (n+1) \frac{x^n}{f(x)} dx$$

Par monotonie de f,

$$0 \leqslant A_n \leqslant \int_0^a \frac{(n+1)x^n}{f(0)} = a^{n+1}$$

Pour $a = 1 - \varepsilon_n$ avec $\varepsilon_n = \frac{\ln n}{n} \to 0$, on a

$$\ln(n)a^{n+1} = e^{\ln(\ln n) + (n+1)\ln(1-\varepsilon_n)} \to 0$$

car

$$\ln(\ln n) + (n+1)\ln(1-\varepsilon_n) \sim -\ln n \to -\infty$$

On en déduit

$$A_n = o\left(\frac{1}{\ln n}\right)$$

Par la croissance de f

$$0 \leqslant C_n \leqslant \int_b^1 \frac{(n+1)x^n}{f(b)} dx = \frac{1-b^{n+1}}{f(b)}$$

Pour $b = 1 - \eta_n$ avec $\eta_n = \frac{1}{n(\ln n)} \to 0$, on a

$$b^{n+1} \to 1$$
 et $f(b) \sim \ln n$

de sorte que

$$C_n \sim o\left(\frac{1}{\ln n}\right)$$

Enfin, toujours par la croissance de f,

$$\frac{b^{n+1} - a^{n+1}}{f(b)} \leqslant B_n \leqslant \frac{b^{n+1} - a^{n+1}}{f(a)}$$

et puisque

$$b^{n+1} - a^{n+1} \to 1$$
 et $f(b) \sim f(a) \sim \ln n$

on parvient à

$$-(n+1)I_n \sim \frac{1}{\ln n}$$

et finalement

$$I_n \sim -\frac{1}{n \ln n}$$

Remarque:

Par le changement de variable $t = -\ln(1-x)$, $x = 1 - e^{-t}$

$$I_n = -\int_0^{+\infty} \frac{(1 - e^{-t})^{n+1}}{t} e^{-t} dt$$

En développant par la formule du binôme

$$I_n = \sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} \int_0^{+\infty} \frac{e^{-t} - e^{-(k+1)t}}{t} dt$$

et on peut montrer par découpage d'intégrale et un changement de variable affine que

$$\int_0^{+\infty} \frac{e^{-t} - e^{-(k+1)t}}{t} dt = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{+\infty} \frac{e^{-t} - e^{-(k+1)t}}{t} dt = \ln(k+1)$$

Ce qui précède permet alors d'établir

$$\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} \ln(k+1) \sim -\frac{1}{n \ln n}$$

Exercice 46 : [énoncé]

a) (E) est une équation différentielle linéaire d'ordre 1 définie sur I. La solution générale homogène est

$$y(x) = \frac{\lambda}{x}$$

Par la méthode de la variation de constante, une solution particulière est

$$y(x) = \frac{1}{x} \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

La solution générale est alors

$$y(x) = \frac{1}{x} \left(\lambda + \int_{2}^{x} \frac{\mathrm{d}t}{\ln t} \right)$$

La fonction f recherchée est donnée par

$$f(x) = \frac{1}{x} \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

La résolution avec Maple

dsolve(
$$\{x*D(y)(x)+y(x)=1/\ln(x),y(2)=0\},y(x)$$
);

fait référence à une fonction Ei qui lui est personnelle.

b) La fonction f admet pour dérivée

$$f'(x) = \frac{1}{x \ln x} - \frac{1}{x^2} \int_2^x \frac{\mathrm{d}t}{\ln t} = \frac{1}{x^2} g(x)$$

avec

$$g(x) = \frac{x}{\ln x} - \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

Par intégration par parties

$$g(x) = \frac{2}{\ln 2} - \int_2^x \frac{dt}{(\ln t)^2}$$

Puisque

$$g'(x) = -\frac{1}{(\ln x)^2} < 0$$

la fonction g est strictement décroissante, g(2) > 0 et $\lim_{t \to \infty} g = -\infty$ donc la fonction g s'annule une unique fois en un $x_0 \in I$. Le signe de g puis de f' sont alors immédiats et on peut affirmer que f admet un unique maximum en x_0 . On obtient une valeur approchée de x_0 en écrivant

fsolve(diff(
$$1/x*int(1/ln(t),t=2..x),x$$
)=0,x);

- et l'on obtient $x_0 = 6,579728$ à 10^{-6} près.
- c) Par intégration par parties

$$f(x) = \frac{1}{x} \int_{2}^{x} \frac{dt}{\ln t} = \frac{1}{\ln x} - \frac{2}{x \ln 2} + \frac{1}{x} \int_{2}^{x} \frac{dt}{(\ln t)^{2}}$$

Montrons que

$$\int_2^x \frac{\mathrm{d}t}{(\ln t)^2} = o\left(\int_2^x \frac{\mathrm{d}t}{\ln t}\right) \text{ quand } x \to +\infty$$

Soit $\varepsilon > 0$. Puisque $1/\ln t \xrightarrow[t \to +\infty]{} 0$, il existe $x_0 \geqslant 2$ tel que

$$\forall t \geqslant x_0, \frac{1}{\ln t} \leqslant \varepsilon$$

et alors

$$\int_{x_0}^{x} \frac{\mathrm{d}t}{(\ln t)^2} \leqslant \varepsilon \int_{x_0}^{x} \frac{\mathrm{d}t}{\ln t} \leqslant \varepsilon \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

De plus, par non intégrabilité d'une fonction positive

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln t} \xrightarrow[x \to +\infty]{} +\infty$$

donc, pour x assez grand

$$\int_{2}^{x_0} \frac{\mathrm{d}t}{(\ln t)^2} = C^{te} \leqslant \varepsilon \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

et alors

$$0 \leqslant \int_{2}^{x} \frac{\mathrm{d}t}{(\ln t)^{2}} \leqslant 2\varepsilon \int_{2}^{x} \frac{\mathrm{d}t}{\ln t}$$

On en déduit

$$f(x) \sim \frac{1}{\ln x} - \frac{2}{x \ln 2} \sim \frac{1}{\ln x}$$

Une nouvelle intégration par parties donne

$$\int_{2}^{x} \frac{\mathrm{d}t}{(\ln t)^{2}} = \frac{x}{(\ln x)^{2}} - \frac{2}{(\ln 2)^{2}} + 2 \int_{2}^{x} \frac{\mathrm{d}t}{(\ln t)^{3}}$$

Comme ci-dessus, on montre

$$\int_2^x \frac{\mathrm{d}t}{(\ln t)^3} = o\left(\int_2^x \frac{\mathrm{d}t}{(\ln t)^2}\right) \text{ quand } x \to +\infty$$

et on en déduit

$$f(x) = \frac{1}{\ln x} + \frac{1}{(\ln x)^2} + o\left(\frac{1}{(\ln x)^2}\right)$$
 quand $x \to +\infty$

d) Quand $x \to 1^+$, on peut écrire x = 1 + u avec $u \to 0^+$ et alors

$$\int_{2}^{x} \frac{\mathrm{d}t}{\ln t} = \int_{1}^{u} \frac{\mathrm{d}s}{\ln(1+s)}$$

Or

$$\frac{1}{\ln(1+s)} = \frac{1}{s} + \frac{s - \ln(1+s)}{s \ln(1+s)}$$

donc

$$\int_{1}^{u} \frac{\mathrm{d}s}{\ln(1+s)} = \ln u + \int_{1}^{u} \frac{s - \ln(1+s)}{s \ln(1+s)} \, \mathrm{d}s$$

Grâce à un prolongement par continuité, il y a convergence quand $u \to 0^+$ de l'intégrale du second membre et donc on peut affirmer

$$f(x) = \frac{1}{x} \int_{2}^{x} \frac{dt}{\ln t} = \frac{1}{u} \sim \frac{1}{x - 1}$$

e) On obtient le graphe de f par la commande

$$plot(1/x*int(1/ln(t),t=2..x),x=1.5..20);$$

Remarque:

Les questions c) et d) pouvaient aussi être résolues en faisant référence à des résultats de comparaison d'intégrales partielles de fonctions positives non intégrables (résultats hors-programme).

Exercice 47: [énoncé]

a) La fonction f est définie sur $]0,1[\,\cup\,]1,+\infty[$ car pour chaque x dans ce domaine, la fonction $t\mapsto 1/\ln t$ est définie et continue sur le segment d'extrémités x et x^2 car 1 n'y appartient pas. Pour $x\in]0,1[$, on a pour tout $t\in [x^2,x]$, $2\ln x\leqslant \ln t\leqslant \ln x$ puis par encadrement d'intégrales

$$\frac{x^2 - x}{2\ln x} \leqslant f(x) \leqslant \frac{x^2 - x}{\ln x}$$

et donc $f(x) \xrightarrow[x \to 0^+]{} 0$.

L'encadrement est identique pour x > 1 ce qui permet d'affirmer $f(x) \xrightarrow[x \to +\infty]{} +\infty$ et $f(x)/x \xrightarrow[x \to +\infty]{} +\infty$.

On peut aussi écrire

$$f(x) = \int_{x}^{x^{2}} \frac{t}{t \ln t} \, \mathrm{d}t$$

et par encadrement du t du numérateur par x et x^2 , on obtient f(x) encadré par xI(x) et $x^2I(x)$ avec

$$I(x) = \int_{x}^{x^{2}} \frac{\mathrm{d}t}{t \ln t} = [\ln |\ln t|]_{x}^{x^{2}} = \ln 2$$

d'où $f(x) \xrightarrow[x \to 1]{} \ln 2$.

b) On introduit H primitive de $t\mapsto 1/\ln t$ et on démontre que f est de classe \mathcal{C}^1 sur $]0,1[\,\cup\,]1,+\infty[$ avec $f'(x)=\frac{x-1}{\ln x}$. Cette dérivée étant de classe \mathcal{C}^∞ , on conclut que f est \mathcal{C}^∞ sur $]0,1[\,\cup\,]1,+\infty[$. On prolonge f par continuité en 1 en posant $f(1)=\ln 2$ et puisque $f'(x)\xrightarrow[x\to 1]{}1$, la fonction f est de classe \mathcal{C}^1 sur $]0,+\infty[$ avec

f'(1)=1. Par développement en série entière $h\mapsto \frac{\ln(1+h)}{h}$ est \mathcal{C}^{∞} au voisinage de 0 donc $x\mapsto \frac{\ln x}{x-1}$ est \mathcal{C}^{∞} au voisinage de 1 et par passage à l'inverse $x\mapsto f'(x)$ est \mathcal{C}^{∞} au voisinage de 1. Finalement f est \mathcal{C}^{∞} sur $]0,+\infty[$. Le calcul de f''(x) permet de justifier que f'' n'a pas de limite finie en 0 et donc f ne peut être prolongée en une fonction de classe \mathcal{C}^{∞} au voisinage de 0.

c) f est croissante, convexe, branche parabolique verticale en $+\infty,$ tangente horizontale en l'origine.

Exercice 48 : [énoncé]

a) Quand $x \to 0^+$, $\forall t \in [x, 2x]$, $e^x \le e^t \le e^{2x}$ donc $e^x \ln 2 \le f(x) \le e^{2x} \ln 2$. Ainsi $f(x) \to \ln 2$.

De même, quand $x\to 0^-, \, f(x)\to \ln 2.$ On prolonge f par continuité en 0 en posant $f(0)=\ln 2.$

b) Soit F une primitive de $t \mapsto e^t/t$ sur $\mathbb{R}^{+\star}$. F est \mathcal{C}^1 et f(x) = F(2x) - F(x) donc f est \mathcal{C}^1 et $f'(x) = \frac{e^{2x} - e^x}{x}$. Il en est de même sur $\mathbb{R}^{-\star}$ et puisque $f'(x) \xrightarrow[x \to 0]{} 1$, on peut affirmer que la fonction continue f est \mathcal{C}^1 sur \mathbb{R} et f'(0) = 1.

c) Quand $x \to +\infty$, $f(x) \ge e^x \ln 2$ assure une branche parabolique verticale. Quand $x \to -\infty$, $e^{2x} \ln 2 \le f(x) \le e^x \ln 2$ donne $f(x) \to 0^+$ ce qui donne l'axe (Ox) asymptote, courbe au dessus.

Exercice 49 : [énoncé]

- a) Par le changement de variable u = -t, on obtient que f est paire.
- b) Pour tout x > 0, on a

$$\forall t \in [x, 2x], \frac{\operatorname{ch} x}{t} \leqslant \frac{\operatorname{ch} t}{t} \leqslant \frac{\operatorname{ch} 2x}{t}$$

En intégrant, on obtient

$$\operatorname{ch} x \cdot \ln 2 \leqslant f(x) \leqslant \operatorname{ch} 2x \cdot \ln 2$$

et on en déduit

$$f(x) \xrightarrow[r \to 0]{} \ln 2$$

c) La fonction $t \mapsto \operatorname{ch} t/t$ est continue sur $]0, +\infty[$ donc y admet une primitive G et puisque f(x) = G(2x) - G(x), on obtient que f est de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$f'(x) = \frac{\mathrm{ch}2x - \mathrm{ch}x}{x}$$

De plus

$$f'(x) \xrightarrow[x \to 0]{} 0$$

donc, par le théorème du prolongement \mathcal{C}^1 , f est de classe \mathcal{C}^1 sur \mathbb{R}^+ .

d) Puisque $f(x) \ge \operatorname{ch} x \cdot \ln 2$, f présente une branche parabolique verticale.

Exercice 50 : [énoncé]

a) $g(x) - f(0) = \frac{1}{x} \int_0^x f(t) - f(0) dt$.

Pour $\varepsilon > 0$, il existe $\alpha > 0$ vérifiant $|x| \leqslant \alpha \Rightarrow |f(x) - f(0)| \leqslant \varepsilon$.

Par suite, si $|x| \le \alpha$, pour tout t compris entre 0 et x, $|f(t) - f(0)| \le \varepsilon$ puis par intégration, $|g(x) - f(0)| \le \varepsilon$. Ainsi $g(x) \xrightarrow[\tau \to 0]{} f(0)$. On pose g(0) = f(0).

b) Par opération, q est de classe \mathcal{C}^1 sur \mathbb{R}^* .

$$g'(x) = -\frac{1}{x^2} \int_0^x f(t) dt + \frac{f(x)}{x}$$

Procédons à une intégration par parties,

$$\int_0^x f(t) dt = xf(x) - \int_0^x tf'(t) dt$$

On a alors

$$g'(x) = \frac{1}{x^2} \int_0^x tf'(t) dt$$

De façon semblable à ce qui précède, on obtient

$$g'(x) \xrightarrow[x \to 0]{} \frac{1}{2}f'(0)$$

Ainsi la fonction continue g est \mathcal{C}^1 sur \mathbb{R} et

$$g'(0) = \frac{1}{2}f'(0)$$

Exercice 51 : [énoncé]

On a

$$I(x) - \frac{f(0)}{a+1} = \frac{1}{x^{a+1}} \left(\int_0^x t^a f(t) dt - \int_0^x t^a f(0) dt \right) = \frac{1}{x^{a+1}} \int_0^x t^a \left(f(t) - f(0) \right) dt$$

Pour $\varepsilon > 0$, il existe $\alpha > 0$ vérifiant

$$|x| \leqslant \alpha \Rightarrow |f(x) - f(0)| \leqslant \varepsilon$$

Par suite, si $|x| \le \alpha$, pour tout t compris entre 0 et x, $|f(t) - f(0)| \le \varepsilon$ puis par intégration

$$\left| \frac{1}{x^{a+1}} \int_0^x t^a \left(f(t) - f(0) \right) \, \mathrm{d}t \right| \leqslant \varepsilon$$

Ainsi

$$\lim_{x \to 0} I(x) = \frac{f(0)}{a+1}$$

Exercice 52 : [énoncé]

$$\int_0^1 \ln(1+t^2) dt = \left[t \ln(1+t^2)\right]_0^1 - \int_0^1 \frac{2t^2}{1+t^2} dt = \ln 2 + \frac{\pi}{2} - 2.$$

Exercice 53: [énoncé]

a) Via $x = \cos t$

$$\int_0^{\pi} \frac{\sin t}{3 + \cos^2 t} dt = \int_{-1}^1 \frac{dx}{3 + x^2} = \frac{1}{\sqrt{3}} \left[\arctan \frac{x}{\sqrt{3}} \right] = \frac{\pi}{3\sqrt{3}}$$

b) Via $x = \sqrt{t}$

$$\int_{1}^{2} \frac{dt}{\sqrt{t} + 2t} = \int_{1}^{\sqrt{2}} \frac{2 dx}{1 + 2x} = \left[\ln(1 + 2x)\right]_{1}^{\sqrt{2}} = \ln(1 + 2\sqrt{2}) - \ln 3$$

c) Via x = 1/t

$$\int_{1}^{2} \frac{\ln(1+t) - \ln t}{t^{2}} dt = -\int_{1}^{1/2} \ln(x+1) dx = \int_{3/2}^{2} \ln x dx = \frac{7}{2} \ln 2 - \frac{3}{2} \ln 3 - \frac{1}{2}$$

Exercice 54 : [énoncé]

La fonction $x \mapsto \ln(1 + \tan x)$ est définie et continue sur $[0, \pi/4]$ donc I existe. $\ln(1 + \tan x) = \ln(\cos x + \sin x) - \ln(\cos x)$ et $\cos x + \sin x = \sqrt{2}\cos\left(\frac{\pi}{4} - x\right)$. Ainsi

$$I = \frac{\pi \ln 2}{8} + \int_0^{\pi/4} \ln \cos \left(\frac{\pi}{4} - x\right) dx - \int_0^{\pi/4} \ln(\cos x) dx$$

or

$$\int_0^{\pi/4} \ln \cos \left(x - \frac{\pi}{4} \right) dx = \int_0^{\pi/4} \ln \cos(t) dt$$

donc

$$I = \frac{\pi \ln 2}{8}$$

Exercice 55: [énoncé]

On réalise le changement de variable $t = \tan \frac{x}{2}$ pour lequel $\frac{2t}{1+t^2} = \sin x$. On obtient

$$\int_0^{\sqrt{3}}\arcsin\left(\frac{2t}{1+t^2}\right)\,\mathrm{d}t = \int_0^{2\pi/3}\frac{1}{2}\arcsin(\sin x)\left(1+\tan^2\frac{x}{2}\right)\,\mathrm{d}x$$

On simplifie $\arcsin(\sin x) = x$ pour $x \in [0, \pi/2]$ et $\arcsin(\sin x) = \pi - x$ pour $x \in [\pi/2, 2\pi/3]$.

Enfin on calcule

$$\int_0^{\pi/2} x \left(1 + \tan^2 \frac{x}{2} \right) \, \mathrm{d}x$$

par intégration par parties.

Au final, on obtient

$$\int_0^{\sqrt{3}} \arcsin\left(\frac{2t}{1+t^2}\right) \, \mathrm{d}t = \frac{\pi}{\sqrt{3}}$$

Exercice 56 : [énoncé]

Par intégration par parties, on obtient pour $q \neq 0$

$$I_{p,q} = \frac{q}{p+1} I_{p+1,q-1}$$

Puisque $I_{n,0} = \frac{1}{n+1}$, on obtient

$$I_{p,q} = \frac{q!p!}{(p+q+1)!}$$

Exercice 57: [énoncé]

a) Pour $n \ge 2$, par intégration par parties (avec $u' = \sin t$ et $v = \sin^{n-1} t$):

$$I_n = (n-1)I_{n-2} - (n-1)I_n$$

donc

$$I_n = \frac{n-1}{n} I_{n-2}$$

b) $I_0 = \pi/2$ et $I_1 = 1$ puis

$$I_{2p} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2} \text{ et } I_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}$$

Exercice 58: [énoncé]

Par la formule de Taylor avec reste intégral :

$$\sin x = x - \frac{1}{3}x^3 + \int_0^x \frac{(x-t)^4}{4!} \cos(t) dt$$

or

$$0 \leqslant \int_0^x \frac{(x-t)^4}{4!} \cos(t) dt \leqslant \frac{x^5}{120}$$

donc

$$x - \frac{1}{6}x^3 \le \sin x \le x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Exercice 59 : [énoncé]

Par Taylor avec reste intégral

$$f(x+1) = f(x) + f'(x) + \int_{x}^{x+1} (x+1-t)f''(t) dt$$

donc

$$|f'(x)| \le |f(x)| + |f(x+1)| + \max_{x \le t \le x+1} |f''(t)| \xrightarrow[x \to +\infty]{} 0$$

Exercice 60: [énoncé]

Considérons la fonction $f: t \to \ln(1+t)$. f est de classe C^{∞} , f(0) = 0,

$$\forall k \geqslant 1, f^{(k)}(t) = \frac{(-1)^{k-1}(k-1)!}{(1+t)^k}$$

donc

$$f^{(k)}(0) = (-1)^{k-1}(k-1)!$$

Sur [0,1], $|f^{(n+1)}(t)| \leq n!$ donc l'inégalité de Taylor Lagrange donne

$$\left| f(1) - f(0) - \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} \right| \le \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

i.e.

$$\left| \ln 2 - \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} \right| \leqslant \frac{1}{n+1} \to 0$$

d'où

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1} \to \ln 2$$

Exercice 61 : [énoncé]

- a) L'existence de θ est assurée par le théorème des accroissements finis. Si deux réels θ et θ' sont solutions distinctes alors, par le théorème de Rolle, f'' s'annule entre θx et $\theta' x$. Or $f''(0) \neq 0$, donc il existe un voisinage de 0 sur lequel f'' ne s'annule pas et sur ce voisinage on a l'unicité de θ .
- b) Par la formule de Taylor-Young appliquée à f':

$$f'(\theta x) = f'(0) + x\theta f''(0) + o(x)$$

En substituant dans la relation initiale, on obtient

$$f(x) = f(0) + xf'(0) + x^2\theta f''(0) + o(x^2)$$

Or la formule de Taylor-Young appliquée à f donne

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + o(x^2)$$

On en déduit

$$x^{2}\theta f''(0) + o(x^{2}) = \frac{1}{2}x^{2}f''(0) + o(x^{2})$$

Sachant $f''(0) \neq 0$, on en déduit $\theta \to 1/2$ quand $x \to 0$.

Exercice 62 : [énoncé]

Par l'inégalité de Taylor Lagrange avec $M = \max_{[0,1]} |f''|$:

$$\left| f\left(\frac{k}{n^2}\right) - f(0) - \frac{k}{n^2} f'(0) \right| \leqslant \frac{M}{2} \left(\frac{k}{n^2}\right)^2$$

Par suite

$$\left| S_n - \sum_{k=1}^n \frac{k}{n^2} f'(0) \right| \leqslant \frac{M}{2n^4} \sum_{k=1}^n k^2 \leqslant \frac{M}{2n} \to 0$$

or

$$\sum_{k=1}^{n} \frac{k}{n^2} f'(0) = \frac{n+1}{2n} f'(0)$$

donc

$$S_n \xrightarrow[n \to +\infty]{} f'(0)/2$$

Exercice 63: [énoncé]

C'est du cours.

Exercice 64 : [énoncé]

Par l'égalité de Taylor-Lagrange (hors-programme) :

$$\forall x \in]0, \pi/2[, \exists \xi \in]0, x[, \sin x = x - \frac{1}{6}x^3\cos(\xi)]$$

Le réel $\theta_x = \xi/x$ convient.

A défaut de connaître, l'égalité de Taylor-Lagrange, par l'égalité de Taylor avec reste intégral

$$\sin x = x - \int_0^x \frac{(x-t)^2}{2!} \cos t \, \mathrm{d}t$$

Or pour $t \in [0, x]$, on a

$$\cos x \leqslant \cos t \leqslant 1$$

avec inégalité stricte pour $t \in [0, x[$ donc

$$\frac{x^3}{6}\cos x < \int_0^x \frac{(x-t)^2}{2!}\cos t \, dt < \frac{x^3}{6}$$

Ainsi

$$\int_0^x \frac{(x-t)^2}{2!} \cos t \, \mathrm{d}t = \lambda \frac{x^3}{6} \text{ avec } \cos x < \lambda < 1 = \cos 0$$

Par le théorème des valeurs intermédiaires, on peut écrire

$$\lambda = \cos(x\theta_x) \text{ avec } \theta_x \in]0,1[$$

Quand $x \to 0$, $x\theta_x \to 0$ donc

$$\cos(x\theta_x) = 1 - \frac{1}{2}x^2\theta_x^2 + o(x^2)$$

puis

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{12}x^5\theta_x^2 + o(x^5)$$

or

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^5)$$

donc $\theta_x^2 \to 1/10$ puis

$$\theta_x \to \frac{1}{\sqrt{10}}$$

Exercice 65 : [énoncé]

a) Par la formule de Taylor Young :

$$\varphi(x) = \varphi(0) + x\varphi'(0) + \dots + \frac{x^n}{n!}\varphi^{(n)}(0) + o(x^n)$$

 $\varphi(x) = o(x^n)$ entraı̂ne alors $\varphi(0) = \varphi'(0) = \dots = \varphi^{(n)}(0) = 0$.

En appliquant la formule de Taylor Young à $\varphi^{(p)}$, on obtient la conclusion.

b)
$$x\psi(x) = \varphi(x) = o(x^n)$$
 donc $\psi(x) = o(x^{n-1})$.

$$x\psi'(x) + \psi(x) = \varphi'(x) = o(x^{n-1}) \text{ donc } \psi'(x) = o(x^{n-2})$$

$$x\psi''(x) + 2\psi'(x) = \varphi''(x) = o(x^{n-2}) \text{ donc } \psi''(x) = o(x^{n-3})...$$

Par le théorème du prolongement \mathcal{C}^1 , la fonction ψ est de classe \mathcal{C}^{n-1} .

c) On introduit

$$\varphi(x) = f(x) - \left(f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) \right)$$

On a $\varphi(x) = o(x^n)$ donc ψ est de classe \mathcal{C}^{n-1} puis

$$g(x) = \psi(x) + \left(f'(0) + \dots + \frac{x^{n-1}}{n!}f^{(n)}(0)\right)$$

est de classe C^{n-1} .

d)

$$\frac{f(x)}{g(x)} = \frac{f(x)}{x} \frac{1}{g(x)/x}$$

avec $x \mapsto f(x)/x$ et $x \mapsto g(x)/x$ qui se prolongent en 0 en des fonctions de classe \mathcal{C}^{n-1} .

Exercice 66 : [énoncé]

Soit $x \in I$

 $\operatorname{Cas} x = a$

N'importe quel c convient.

 $\operatorname{Cas} x > a$

Par la formule de Taylor-Laplace

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Posons

$$m = \min_{[a,x]} f^{(n+1)}$$
 et $M = \max_{[a,x]} f^{(n+1)}$

On a

$$m\frac{(x-a)^{n+1}}{(n+1)!} \leqslant \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) \, \mathrm{d}t \leqslant M \frac{(x-a)^{n+1}}{(n+1)!}$$

En appliquant le théorème des valeurs intermédiaires à $f^{(n+1)}$, il existe $c \in I$ tel que

$$\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt = f^{(n+1)}(c) \frac{(x-a)^{n+1}}{(n+1)!}$$

 $\operatorname{Cas} x < a$ Semblable

Exercice 67: [énoncé]

- a) $u_n = \exp(\ln n/n) \to 1$.
- b) $u_n = \exp(n \ln(1 + \frac{x}{n})) = \exp(x + o(1)) \to e^x$.
- c) $u_n = \exp\left((n+2)\ln\left(1-\frac{2}{n+1}\right)\right) = \exp(-2+o(1)) \to e^{-2}$.
- d) $u_n = -2n^2 \sin\left(\frac{1}{n} + \frac{1}{n+1}\right) \sin\left(\frac{1}{n} \frac{1}{n-1}\right) = O\left(\frac{1}{n}\right) \to 0.$
- e) $\tan\left(\frac{\pi}{4} + \frac{\alpha}{\pi}\right) = 1 + \frac{2\alpha}{\pi} + o\left(\frac{1}{n}\right)$ donc
- $u_n = \exp\left(n \ln\left(1 + \frac{2\alpha}{n} + o\left(\frac{1}{n}\right)\right)\right) = \exp(2\alpha + o(1)) \to e^{2\alpha}$
- f) $u_n = \left(1 + \frac{1}{n \ln n} + o\left(\frac{1}{n \ln n}\right)\right)^{n \ln n} \to e$.
- g) $\sqrt[n]{2} = \exp\left(\frac{1}{n}\ln 2\right) = 1 + \frac{1}{n}\ln 2 + o(1), u_n = \left(1 + \frac{\ln 24}{3n} + o\left(\frac{1}{n}\right)\right)^n \to \sqrt[3]{24}.$ h) $\arctan(n+1) \arctan n = \frac{1}{1+c^2}$ avec $n \le c \le n+1$ donc

$$u_n = \exp\left(n^2 \ln\left(1 + \frac{1}{1+c^2}\right)\right) = \exp\left(1 + o(1)\right) \to e.$$

Exercice 68 : [énoncé]

$$u_n = \cos\left(\pi n + \frac{\pi}{2} + o(1)\right) = (-1)^{n+1}\sin(o(1)) \to 0.$$

Exercice 69: [énoncé]

Si $a \in [0, 1[$, la suite est constante égale à 0.

Si a = 1, la suite est constante égale à 1.

Si a > 1 alors $a^n - 1 < \lfloor a^n \rfloor \le a^n$ donne $(a^n - 1)^{1/n} < \lfloor a^n \rfloor^{1/n} \le a$ et donc, par encadrement, la suite converge vers a.

Exercice 70: [énoncé]

Si a=0 ou b=0 alors la suite converge évidemment vers 0. On suppose désormais a,b>0.

On a

$$\frac{1}{2}\left(a^{1/n} + b^{1/n}\right) = 1 + \frac{1}{2n}\ln(ab) + o\left(\frac{1}{n}\right)$$

donc

$$\left(\frac{a^{1/n} + b^{1/n}}{2}\right)^n \to \sqrt{ab}$$

Exercice 71: [énoncé]

 $\forall A \in \mathbb{R}^+$, l'ensemble $E = \{n \in \mathbb{N}/u_n < A\}$ est fini car il contient au plus E(A) + 1 éléments.

Par suite il possède un plus grand élément N et alors $\forall n \ge N+1, u_n \notin E$ donc $u_n \ge A$. Ainsi $u_n \to +\infty$.

Exercice 72: [énoncé]

- a) Si $a \ge 1$ alors $u_n \ge 2^n \to +\infty$ donc $u_n \to +\infty$.
- b) $u_n > 0$ et $\frac{u_{n+1}}{u_n} > 1$ donc (u_n) est croissante. De plus

$$u_n \leqslant e^a e^{a^2} \dots e^{a^n} = \exp\left(a \frac{1-a^n}{1-a}\right) \leqslant \exp\left(\frac{a}{1-a}\right)$$

donc (u_n) est majorée et par suite convergente.

Exercice 73 : [énoncé]

- a) Si $\alpha > 1$ alors $0 \leqslant u_n \leqslant \frac{n}{n^{\alpha}+1} \to 0$ donc $u_n \to 0$.
- Si $\alpha < 1$ alors $u_n \geqslant \frac{n}{n^{\alpha} + n^{\alpha}} = \frac{1}{2}n^{1-\alpha} \to +\infty$ donc $u_n \to +\infty$.
- b) $u_{n+1} u_n = \frac{1}{2n+1} + \frac{1}{2n+2} \frac{1}{n+1} > 0$ donc (u_n) est croissante. De plus $u_n \leqslant \frac{n}{n+1} \leqslant 1$ donc (u_n) est majorée et par conséquent convergente.

c)
$$u_n = \sum_{k=1}^n \frac{1}{n+k} \le -\ln\left(\prod_{k=1}^n \left(1 - \frac{1}{n+k}\right)\right) = -\ln\frac{n}{2n} = \ln 2$$
 et

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \geqslant \ln \left(\prod_{k=1}^n \left(1 + \frac{1}{n+k} \right) \right) = \ln \frac{2n+1}{n+1} \rightarrow \ln 2 \text{ donc } u_n \rightarrow \ln 2.$$

Exercice 74: [énoncé]

- a) Il suffit de dresser le tableau de variation des fonctions $x \mapsto \ln(1+x) x + \frac{1}{2}x^2$ et $x \mapsto x \ln(1+x)$.
- b)

$$\ln u_n \leqslant \sum_{k=1}^n \frac{k}{n^2} = \frac{(n+1)}{2n} \to \frac{1}{2}$$

et

$$\ln u_n \geqslant \sum_{k=1}^n \frac{k}{n^2} - \frac{k^2}{n^4} = \frac{n+1}{2n} + O\left(\frac{1}{n}\right) \to \frac{1}{2}$$

donc $u_n \to \sqrt{e}$.

Exercice 75 : [énoncé]

a)

$$0 \leqslant I_n \leqslant \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1} \to 0$$

donc $I_n \to 0$.

De plus, pour tout $x \in [0, 1]$,

$$\frac{x^n}{x+1} \leqslant \frac{x^{n+1}}{x+1}$$

donc $I_n \leqslant I_{n+1}$.

b)

$$I_n + I_{n+1} = \frac{1}{n+1}$$

donc

$$I_n = \sum_{k=1}^n \frac{(-1)^{n-k}}{k} + (-1)^n I_0$$

c) $I_0 = \ln 2$ et $(-1)^n I_n \to 0$ donc

$$\sum_{k=1}^{n} \frac{(-1)^{-k}}{k} + \ln 2 \to 0$$

puis la conclusion.

d) Comme ci-dessus, $J_n \to 0$. De plus

$$J_n + J_{n+2} = \frac{1}{n+1}$$

donc

$$J_{2n} = \sum_{k=0}^{n-1} \frac{(-1)^{n-1-k}}{2k+1} + (-1)^n J_0$$

puis

$$\sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{2k+1} + \frac{\pi}{4} \to 0$$

d'où

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \to \frac{\pi}{4}$$

Exercice 76: [énoncé]

a) Aisément (u_n) est croissante (v_n) décroissante et $v_n - u_n \to 0$.

b) Par l'inégalité de Taylor-Lagrange, pour tout $x \in [0, 1]$,

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{M_{n+1}x^{n+1}}{(n+1)!}$$

avec $M_{n+1} = \sup_{x \in [0,1]} |(e^x)^{(n+1)}| = e$. Pour x = 1, on obtient

$$|\mathbf{e} - u_n| \leqslant \frac{\mathbf{e}}{(n+1)!} \to 0$$

donc $u_n \to e$.

c) Par la stricte monotonie des suites (u_n) et (v_n) on a $u_n < e < v_n$ pour tout $n \in \mathbb{N} \star$.

 $q.q!u_q$ est un entier et $q.q!v_q$ est l'entier consécutif. Or $q.q!u_q < q.q!e < q.q!v_q$ donc q.q!e ne peut être entier. Or q.q!e = p.q! $\in \mathbb{N}$. Absurde.

Exercice 77 : [énoncé]

a)

$$u_{n+1} - u_n = \frac{1}{n(p+1)+1} + \dots + \frac{1}{(n+1)(p+1)} - \frac{1}{n+1} \le 0$$

et $u_n \leqslant \frac{np}{n+1} \leqslant p$ donc (u_n) converge. b) Par le théorème des accroissements finis, pour tout $n \in \mathbb{N}^*$ et $k \in \{1, \dots, np\}$, il existe $c_{n,k} \in \left[0, \frac{1}{n+k}\right]$ tel que

$$f\left(\frac{1}{n+k}\right) - f(0) = f'(c_{n,k})\frac{1}{n+k}$$

On a alors

$$v_n - \ell f'(0) = \sum_{k=1}^{np} \left(f'(c_{n,k}) - f'(0) \right) \frac{1}{n+k}$$

Pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que pour tout $x \in [0, \alpha]$ on ait $|f'(x) - f'(0)| \leq \varepsilon$.

Pour n suffisamment grand pour que $\frac{1}{n+1} \leqslant \alpha$, on a $c_{n,k} \in [0,\alpha]$ et donc $|v_n - \ell f'(0)| \leq \varepsilon \ell$.

On en déduit $v_n \to \ell f'(0)$

c) Pour $f(x) = \ln(1+x)$,

$$v_n = \sum_{k=1}^{np} \ln(n+k+1) - \ln(n+k) = \ln(n(p+1)+1) - \ln(n+1) \to \ln(p+1)$$

On conclut $\ell = \ln p$.

d) Pour $f(x) = \sqrt{x}$,

$$v_n = \sum_{k=1}^{np} \frac{1}{\sqrt{n+k}} \geqslant \frac{np}{\sqrt{(n+1)p}} \to +\infty$$

Exercice 78 : [énoncé]

Pour $x \in [0, 1]$,

$$\left|\sin x - x + \frac{1}{6}x^3\right| \leqslant \frac{1}{120}$$

On a donc

$$u_n = \sum_{k=1}^{n} \frac{k}{n^2} - \frac{1}{6} \frac{k^3}{n^6} + M_n$$

avec

$$|M_n| \le \frac{1}{120} \sum_{k=1}^n \frac{k^5}{n^{10}} \le \frac{1}{120} \frac{1}{n^4}$$

donc $M_n = o(1/n^3)$.

$$\sum_{k=1}^{n} \frac{k}{n^2} = \frac{n(n+1)}{2n^2} = \frac{1}{2} + \frac{1}{2n}$$

 $_{
m et}$

$$\sum_{k=1}^{n} \frac{k^3}{n^6} = \frac{1}{n^6} \sum_{k=1}^{n} k^3 \sim \frac{1}{4n^2}$$

donc

$$u_n = \frac{1}{2} + \frac{1}{2n} - \frac{1}{4n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 79 : [énoncé]

On a

$$\frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \frac{1}{n(n-1)} + \frac{1}{n(n-1)(n-2)} + o\left(\frac{1}{n^3}\right) + \sum_{k=0}^{n-5} \frac{k!}{n!}$$

Or

$$\sum_{k=0}^{n-5} \frac{k!}{n!} \le (n-4) \frac{(n-5)!}{n!} = o\left(\frac{1}{n^3}\right)$$

donc

$$\frac{1}{n!} \sum_{k=0}^{n} k! = 1 + \frac{1}{n} + \frac{1}{n^2} + \frac{2}{n^3} + o\left(\frac{1}{n^3}\right)$$

Exercice 80 : [énoncé]

a) La fonction f est définie et \mathcal{C}^{∞} sur $\mathcal{D} = \bigcup_{k \in \mathbb{Z}} I_k$ avec

$$I_k = \left] -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[$$

Pour $x \in \mathcal{D}$, la tangente en (x, f(x)) passe par O si, et seulement si, xf'(x) = f(x). Après transformation, ceci équivaut pour x > 0 à l'équation

$$x \tan x + \ln(\cos(x)) + 1 = 0$$

Posons $\varphi(x) = x \tan x + \ln(\cos(x)) + 1$.

 φ est définie et \mathcal{C}^{∞} sur \mathcal{D} . $\varphi'(x) = x(1 + \tan^2 x) > 0$ sur $\mathcal{D} \cap \mathbb{R}^{+*}$.

Quand $x \to \left(\frac{\pi}{2} + 2k\pi\right)^-$, $\varphi(x) \to +\infty$. Quand $x \to \left(-\frac{\pi}{2} + 2k\pi\right)^+$, $\varphi(x) \to -\infty$. $\varphi_{\uparrow I_k}$ réalise donc une bijection de I_k vers \mathbb{R} (pour $k \in \mathbb{N}^*$).

La suite $(x_n)_{n\in\mathbb{N}^*}$ avec $x_n=(\varphi_{|I_n})^{-1}(0)$ est solution.

b) Evidemment $x_n \sim 2n\pi$ et donc $x_n = 2n\pi + y_n$.

On a

$$\sin y_n = -\frac{\cos y_n(\ln\cos y_n) + \cos y_n}{2n\pi + y_n}$$

avec $|y_n| < \pi/2$

L'étude de la fonction $x \mapsto x \ln x + x$ assure que celle-ci est bornée et donc $\sin y_n \to 0$ puis $y_n \to 0$.

Par suite $\cos y_n \to 1$ donc $\sin y_n \sim -\frac{1}{2n\pi}$ puis $y_n \sim -\frac{1}{2n\pi}$.

On conclut

$$x_n = 2n\pi - \frac{1}{2n\pi} + o\left(\frac{1}{n}\right)$$

Exercice 81 : [énoncé]

Montrons que la suite (u_n) converge vers 0 par l'epsilontique...

Soit $\varepsilon > 0$. Puisque la suite (ε_n) converge vers 0, il existe un rang $N \in \mathbb{N}$ pour lequel

$$\forall n \geqslant N, 0 \leqslant \varepsilon_n \leqslant \varepsilon$$

et alors pour tout $n \ge N$

$$0 \leqslant u_{n+1} \leqslant \frac{u_n + \varepsilon}{K}$$

On en déduit

$$0 \leqslant u_{n+2} \leqslant \frac{u_n}{K^2} + \frac{\varepsilon}{K^2} + \frac{\varepsilon}{K}$$

et par récurrence

$$\forall p \in \mathbb{N}, 0 \leqslant u_{n+p} \leqslant \frac{u_n}{K^p} + \sum_{i=1}^p \frac{\varepsilon}{K^i}$$

La suite (u_n) étant majorée par 1 et on peut encore écrire

$$\forall p \in \mathbb{N}, 0 \leqslant u_{n+p} \leqslant \frac{1}{K^p} + \varepsilon \sum_{i=1}^{\infty} \frac{1}{K^i} = \frac{1}{K^p} + \frac{\varepsilon}{1 - 1/K}$$

Pour p assez grand, on a $1/K^p \le \varepsilon$ et alors

$$0 \leqslant u_{n+p} \leqslant \varepsilon + \frac{\varepsilon}{1 - 1/K} = \lambda \varepsilon$$

avec λ une constante strictement positive ce qui permet de conclure.

Exercice 82: [énoncé]

- a) C'est la convergence de u_n vers ℓ .
- b) Par l'inégalité triangulaire

$$|v_n - \ell| = \frac{1}{n} |(u_1 - \ell) + \dots + (u_n - \ell)|$$

$$\leq \frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} + \frac{|u_{n_0+1} - \ell| + \dots + |u_n - \ell|}{n}$$

et on conclut en exploitant $|u_k - \ell| \leqslant \frac{\varepsilon}{2}$ pour $k > n_0$.

c) Quand $n \to +\infty$,

$$\frac{|u_1-\ell|+\cdots+|u_{n_0}-\ell|}{n} = \frac{C^{te}}{n} \to 0$$

donc pour n assez grand

$$\frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} \leqslant \frac{\varepsilon}{2}$$

Ainsi il existe un rang n_1 au-delà duquel

$$|v_n - \ell| \leqslant \frac{\varepsilon}{2} + \frac{n - n_0}{n} \frac{\varepsilon}{2} \leqslant \varepsilon$$

d) On applique le résultat précédent à la suite de terme général $u_{n+1}-u_n$ et on peut affirmer $\frac{1}{n}\sum_{k=0}^{n-1}u_{k+1}-u_k\to\alpha$ donc $\frac{1}{n}\left(u_n-u_0\right)\to\alpha$ puis $\frac{1}{n}u_n\to\alpha$ et enfin $u_n\sim\alpha n$.

Exercice 83: [énoncé]

a) Supposons $\ell = 0$.

Soit $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n > n_0, |u_n| \leq \varepsilon/2$$

On a alors

$$|v_n| \leqslant \left| \frac{u_1 + \dots + n_0 u_{n_0}}{n^2} \right| + \left| \frac{(n_0 + 1)u_{n_0 + 1} + \dots + n u_n}{n^2} \right| \leqslant \frac{C^{te}}{n^2} + \frac{\varepsilon}{2} \leqslant \varepsilon$$

pour n assez grand.

Ainsi $v_n \to 0$.

Cas général : $u_n = \ell + w_n$ avec $\omega_n \to 0$:

$$v_n = \frac{n(n+1)}{2n^2}\ell + \frac{w_1 + \dots + nw_n}{n^2} \to \frac{\ell}{2}$$

b) On peut écrire

$$\frac{u_n}{n^2} = \frac{(u_n - u_{n-1}) + \dots + (u_1 - u_0)}{n^2} + \frac{u_0}{n^2}$$

donc

$$\frac{u_n}{n^2} = \frac{n^{\frac{(u_n - u_{n-1})}{n}} + \dots + \frac{(u_1 - u_0)}{1}}{n^2} + \frac{u_0}{n^2} \to \frac{\ell}{2}$$

Exercice 84: [énoncé]

On a $\ln u_{n+1} - \ln u_n \to \ln \ell$ donc par Césaro

$$\frac{1}{n} \sum_{k=1}^{n} \ln u_k - \ln u_{k-1} \to \ln \ell$$

d'où

$$\frac{1}{n}\ln u_n \to \ln \ell$$

puis

$$\sqrt[n]{u_n} \to \ln \ell$$

Exercice 85 : [énoncé]

a) La suite (u_n) est bien définie et à valeur dans $\mathbb{R}^{+\star}$ car

$$\forall x > 0, \ln(1+x) > 0$$

La suite (u_n) est décroissante car

$$\forall x \geqslant 0, \ln(1+x) \leqslant x$$

La suite (u_n) est aussi minorée par 0 donc convergente.

En passant la relation de récurrence à la limite, on obtient que (u_n) tend vers 0. b)

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - \ln(1 + u_n)}{u_n u_{n+1}} \sim \frac{1}{2}$$

 $car u_{n+1} \sim u_n.$

c) Par le théorème de Césaro

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) \to \frac{1}{2}$$

puis

$$\frac{1}{n}\frac{1}{u_n} \to \frac{1}{2}$$

Finalement

$$u_n \sim \frac{2}{n}$$

Exercice 86 : [énoncé]

a) La suite (u_n) est décroissante car

$$\forall x \in [0, \pi/2], \sin x \leqslant x$$

La suite (u_n) est aussi minorée par 0 donc convergente.

En passant la relation de récurrence à la limite, on obtient que (u_n) tend vers 0.

$$\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{u_n^2 - \sin(u_n)^2}{u_n^2 u_{n+1}^2} \sim \frac{1}{3}$$

car $u_{n+1} \sim u_n$.

c) Par le théorème de Césaro

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}^2} - \frac{1}{u_k^2} \right) \to \frac{1}{3}$$

puis

$$\frac{1}{n}\frac{1}{u_n^2} \to \frac{1}{3}$$

Finalement

$$u_n \sim \frac{\sqrt{3}}{\sqrt{n}}$$

Exercice 87 : [énoncé]

a) La fonction $f: x \mapsto x + \ln x$ réalise une bijection de $]0, +\infty[$ sur \mathbb{R} d'où l'existence de (x_n) .

Comme $n \to +\infty$, $x_n = f^{-1}(n) \to +\infty$. Par suite $\ln x_n = o(x_n)$ et $n = x_n + \ln x_n \sim x_n$.

Donc $x_n = n + o(n)$.

Soit $y_n = x_n - n$. On a:

$$y_n = -\ln x_n = -\ln(n + o(n)) = -\ln n + \ln(1 + o(1)) = -\ln n + o(1)$$

Donc

$$x_n = n - \ln n + o(1)$$

Soit $z_n = y_n + \ln n$. On a:

$$z_n = -\ln(n - \ln(n) + o(1)) + \ln n = -\ln\left(1 - \frac{\ln n}{n} + o(\frac{1}{n})\right) = \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$

$$\operatorname{Donc} x_n = n - \ln n + \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$

Exercice 88: [énoncé]

- a) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + \sqrt[3]{x}$ réalise une bijection de \mathbb{R} vers \mathbb{R} .
- b) $x_n = f^{-1}(n)$ et $f^{-1} \xrightarrow{+\infty} +\infty$ donc $x_n \to +\infty$.

Puisque $\sqrt[3]{x_n} = o(x_n)$, on a $x_n \sim n$.

c) On peut écrire $x_n = n + y_n$ avec $y_n = o(n)$.

Puisque

$$y_n + \sqrt[3]{n + y_n} = 0$$

on a

$$y_n \sim -\sqrt[3]{n}$$

On peut écrire $y_n = -\sqrt[3]{n} + z_n$ avec $z_n = o(\sqrt[3]{n})$.

Puisque

$$-\sqrt[3]{n} + z_n + \sqrt[3]{n} \left(1 + \frac{1}{3} - \sqrt[3]{n} + o\left(\frac{\sqrt[3]{n}}{n}\right)\right) = 0$$

on a $z_n \sim \frac{1}{3\sqrt[3]{n}}$.

Finalement

$$x_n = n - \sqrt[3]{n} + \frac{1}{3\sqrt[3]{n}} + o\left(\frac{1}{\sqrt[3]{n}}\right)$$

Exercice 89 : [énoncé]

a) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + e^x$.

x	$-\infty$		$+\infty$
f(x)	$-\infty$	7	$+\infty$

- b) $f(x_n) = n \leqslant n + 1 = f(x_{n+1})$ donc $x_n \leqslant x_{n+1}$ car f^{-1} est croissante.
- Si (x_n) est majorée par M alors $f(x_n) = n \leq f(M)$ ce qui est absurde.

La suite (x_n) étant croissante et non majorée, elle diverge vers $+\infty$.

 $x_n = o(e^{x_n}) \text{ donc } e^{x_n} \sim n \to +\infty \neq 1 \text{ puis } x_n \sim \ln n.$

c) Posons $y_n = x_n - \ln n = o(\ln n)$.

On a $y_n + \ln n + n e^{y_n} = n$ donc

$$e^{y_n} = 1 - \frac{y_n}{n} + \frac{\ln n}{n} \to 1$$

d'où $y_n \to 0$ et

$$e^{y_n} = 1 + y_n + o(y_n)$$

On a alors $y_n + \ln n + n(1 + y_n + o(y_n)) = n$ d'où $ny_n + o(ny_n) = -\ln n$ et

$$y_n \sim -\frac{\ln n}{n}$$

Par suite

$$x_n = \ln n - \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$

On écrit $y_n = -\frac{\ln n}{n} + z_n$ et

$$e^{y_n} = 1 - \frac{\ln n}{n} + z_n + \frac{1}{2} \left(\frac{\ln n}{n}\right)^2 + o\left(\frac{\ln n}{n}\right)^2$$

donc

$$-\frac{\ln n}{n} + z_n + nz_n + \frac{1}{2} \frac{(\ln n)^2}{n} + o\left(\frac{(\ln n)^2}{n}\right) = 0$$

puis

$$z_n \sim -\frac{(\ln n)^2}{2n^2}$$

Finalement

$$x_n = \ln n - \frac{\ln n}{n} - \frac{(\ln n)^2}{2n^2} + o\left(\left(\frac{\ln n}{n}\right)^2\right)$$

Exercice 90 : [énoncé]

Sur I_n , la fonction $f: x \mapsto \tan x - \sqrt{x}$ est continue, croît strictement de $-\infty$ vers

Cela assure l'existence et l'unité de x_n

On a

$$-\frac{\pi}{2} + n\pi < x_n < \frac{\pi}{2} + n\pi$$

donc $x_n \sim n\pi$.

Posons $y_n = x_n - n\pi$. On a $\tan y_n = \sqrt{x_n}$ et $y_n \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ donc

$$y_n = \arctan\sqrt{x_n} \to \frac{\pi}{2}$$

Posons

$$z_n = \frac{\pi}{2} - y_n = \frac{\pi}{2} - \arctan\sqrt{x_n} = \arctan\frac{1}{\sqrt{x_n}} = \arctan\frac{1}{\sqrt{n\pi + \frac{\pi}{2} + o(1)}}$$

On a

$$\frac{1}{\sqrt{n\pi + \frac{\pi}{2} + o(1)}} = \frac{1}{\sqrt{n\pi}} \frac{1}{\sqrt{1 + \frac{1}{2n} + o\left(\frac{1}{n}\right)}} = \frac{1}{\sqrt{n\pi}} - \frac{1}{4} \frac{1}{\sqrt{\pi n^3}} + o\left(\frac{1}{n^{3/2}}\right)$$

 $_{
m et}$

$$\arctan x = x - \frac{1}{3}x^3 + o(x^3)$$

donc

$$z_n = \frac{1}{\sqrt{n\pi}} - \frac{1}{4} \frac{1}{\sqrt{\pi n^3}} - \frac{1}{3} \frac{1}{\sqrt{\pi^3 n^3}} + o\left(\frac{1}{n^{3/2}}\right)$$

Finalement

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{\sqrt{n\pi}} + \frac{3+4\pi}{\pi^{3/2}} \frac{1}{n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right)$$

Exercice 91 : [énoncé]

- a) La fonction $x \mapsto \tan x + \tan x + \tan x$ réalise une bijection continue strictement croissante de $I_0 = [0, \pi/2]$ vers \mathbb{R}^+ et de $I_n =]-\pi/2 + n\pi, \pi/2 + n\pi[$ vers \mathbb{R} pour $n \ge 1x \mapsto \tan x + \tan x$. Dans chaque I_n figure une solution unique x_n à l'équation (E).
- b) On résout l'équation dans les intervalles $[n\pi, n\pi + \pi/2]$ pour des valeurs successives de n.

seq(fsolve(tan(x)*tanh(x)=1,x=n*Pi..Pi/2+n*Pi),n=0..3);

c)

Puisque $x_n \in I_n$, on a déjà $x_n \sim n\pi$.

Posons $y_n = x_n - n\pi$. On a $y_n \in]-\pi/2, \pi/2[$ et $\tan y_n \operatorname{th} x_n = 1$ donc $y_n = \arctan \frac{1}{\tanh x_n}$

Puisque $x_n \to +\infty$, th $x_n \to 1$ puis $y_n \to \pi/4$. Ainsi $x_n = n\pi + \pi/4 + o(1)$. On obtient le développement limité de $x \mapsto \arctan x$ en 1 par

series(arctan(x).x=1):

On en déduit $y_n = \frac{\pi}{4} + \frac{1}{2}(\operatorname{th} x_n - 1) + o(\operatorname{th} x_n - 1)$ Or $1 - \operatorname{th} x_n = \frac{2}{\mathrm{e}^{2x_n + 1}} \sim \frac{2}{\mathrm{e}^{2n\pi + \pi/2}} \operatorname{donc} y_n - \frac{\pi}{4} \sim -\frac{2}{\mathrm{e}^{2n\pi + \pi/2}}.$ Finalement $x_n = n\pi + \pi/4 - \frac{2}{\mathrm{e}^{2n\pi + \pi/2}} + o\left(\frac{1}{\mathrm{e}^{2n\pi}}\right).$

On peut observer la rapide convergence vers 0 de $x_n - n\pi + \pi/4$ en écrivant

seq(fsolve(tan(x)*tanh(x)=1,x=n*Pi..Pi/2+n*Pi)-evalf(n*Pi+Pi/4),n=0..3);

Exercice 92 : [énoncé]

Posons $f_n(x) = x^n + x^2 - 1$. L'étude de la fonction f_n assure l'existence et l'unicité d'une solution $x_n \in \mathbb{R}^+$ à l'équation étudiée. De plus, on observe que $x_n \in [0,1]$. Puisque $0 = f_{n+1}(x_{n+1}) \le f_n(x_{n+1})$, on peut affirmer $x_{n+1} \ge x_n$. La suite (x_n) est croissante et majorée donc converge vers un réel ℓ . Puisque pour tout $n \in \mathbb{N}$, $x_n \in [0,1]$, à la limite $\ell \in [0,1]$. Si $\ell < 1$ alors $0 \leqslant x_n^n \leqslant \ell^n \to 0$ et la relation $x_n^n + x_n^2 - 1 = 0$ donne à la limite $\ell^2 = 1$ ce qui est absurde. On conclut que $\ell = 1$. Posons $u_n = 1 - x_n$, $(1 - u_n)^n = u_n(2 - u_n)$ donne $n \ln(1 - u_n) = \ln u_n + \ln(2 - u_n)$ d'où $-nu_n \sim \ln u_n$ puis $\ln n + \ln u_n \sim \ln(-\ln u_n)$ or $\ln(-\ln u_n) = o(\ln u_n)$ donc $\ln u_n \sim -\ln n$ puis $u_n \sim \frac{\ln n}{n}$ et enfin $x_n - 1 \sim -\frac{\ln n}{n}$.

Exercice 93: [énoncé]

a) Il suffit d'étudier la fonction $f_n: x \mapsto x^n - (x+1)$.

b) $f_n(1) \le 0$ donc $x_n \ge 1$. $f_{n+1}(x_n) = x_n^{n+1} - (x_n + 1) = (x_n - 1)(x_n + 1) \ge 0$ donc $x_{n+1} \leq x_n$. La suite (x_n) est décroissante et minorée par 1 donc elle converge vers $\ell \geqslant 1$. Si $\ell > 1$ alors $x_n^n \geqslant \ell^n \to +\infty$ or $x_n^n = x_n + 1 \to \ell + 1$. Ce qui est impossible et il reste $\ell = 1$.

c) $x^n = x + 1 \Leftrightarrow n \ln x = \ln(x+1) \Leftrightarrow g(x) = \frac{1}{n}$ avec $g(x) = \frac{\ln x}{\ln(x+1)}$ définie sur $[1,+\infty[$. La fonction g est de classe \mathcal{C}^{∞} , g'(x)>0 donc g réalise une bijection de $[1, +\infty[$ vers [0, 1[, de plus (puisque $g'(x) \neq 0)$ g^{-1} est aussi de classe \mathcal{C}^{∞} et donc g^{-1} admet un $DL_n(0)$ pour tout $n \in \mathbb{N}$ et donc $x_n = g^{-1}(1/n)$ admet un développement limité à tout ordre. Formons ses trois premiers termes $q^{-1}(x) = a + bx + cx^2 + o(x^2)$. $a = q^{-1}(0) = 1$. $q(q^{-1}(x)) = x$ donc $\ln(1+bx+cx^2+o(x^2)) = x\ln(2+bx+o(x^2))$ puis $bx + \left(c - \frac{b^2}{2}\right)x^2 + o(x^2) = \ln(2)x + \frac{b}{2}x^2 + o(x^2)$ donc $b = \ln 2$ et $c = \frac{(1 + \ln(2))\ln(2)}{2}$.

Finalement $x_n = 1 + \frac{\ln 2}{n} + \frac{(1 + \ln(2)) \ln 2}{2n^2} + o(\frac{1}{n^2}).$

Exercice 94 : [énoncé]

- a) P_n réalise une bijection strictement décroissante de [0,1] vers [-n,1].
- b) $P_{n+1}(x_n) = x_n^{n+1} (n+1)x_n + 1 \le P_n(x_n) = 0$ donc $x_{n+1} \le x_n$. La suite (x_n) est décroissante et minorée, elle converge donc vers un réel $\ell \in [0,1]$. Si $\ell > 0$ alors $0 = P_n(x_n) \to -\infty$, c'est absurde. On conclut $\ell = 0$.
- c) $\frac{x_n^n}{nx_n} = \frac{1}{n}x_n^{n-1} \to 0$ donc $x_n^n = o(nx_n)$ puis sachant $x_n^n nx_n + 1 = 0$, on obtient $x_n \sim 1/n$.
- d) Errivons $x_n = \frac{1}{n} + \frac{\varepsilon_n}{n}$ avec $\varepsilon_n \to 0$.

Puisque $x_n^n = nx_n - 1$, on a $\frac{(1+\varepsilon_n)^n}{n^n} = \varepsilon_n$. $(1+\varepsilon_n)^n = \exp(n\ln(1+\varepsilon_n)) = \exp(n\varepsilon_n + o(n\varepsilon_n)).$

Or $n\varepsilon_n = n \frac{(1+\varepsilon_n)^n}{n^n}$.

Puisque $\varepsilon_n \to 0$, pour n assez grand, $|1 + \varepsilon_n| \leq 2$ et la relation précédente donne $|n\varepsilon_n| \leqslant \frac{2^n}{n^{n-1}} \to 0.$

On en déduit $n\varepsilon_n \to 0$ puis $(1+\varepsilon_n)^n \to 1$ et enfin $\varepsilon_n \sim \frac{1}{n^n}$.

Finalement

$$x_n = \frac{1}{n} + \frac{1}{n^{n+1}} + o\left(\frac{1}{n^{n+1}}\right)$$

Exercice 95 : [énoncé]

a) Soit $f_n: x \mapsto x^n + \ln x$. On a

x	0		1		$+\infty$
$f_n(x)$	$-\infty$	7	1	7	$+\infty$

d'où l'existence et l'unicité de x_n avec en plus la propriété $x_n \in]0,1[$.

b) On a

$$f_{n+1}(x_n) = x_n^{n+1} + \ln(x_n) = (1 - x_n)\ln(x_n) < 0$$

donc $x_{n+1} \ge x_n$. La suite (x_n) est croissante et majorée par 1 donc converge vers $\ell \in [0, 1].$

Si $\ell < 1$ alors

$$0 = x_n^n + \ln x_n \to -\ln \ell$$

 $\operatorname{car} 0 \leqslant x_n^n \leqslant \ell^n \to 0.$

Ceci est impossible. Il reste $\ell = 1$.

c) $(1-u_n)^n = -\ln(1-u_n) \sim u_n \to 0 \neq 1$

donc $n \ln(1-u_n) \sim \ln u_n$ puis $nu_n \sim -\ln u_n \to +\infty \neq 1$.

 $\ln n + \ln u_n \sim \ln(-\ln u_n)$ donc $\ln n = -\ln u_n + \ln(-\ln u_n) + o(\ln(-\ln u_n))$ or $\ln(-\ln u_n) = o(\ln u_n)$ donc $\ln n \sim -\ln u_n$ puis

$$u_n \sim -\frac{\ln u_n}{n} \sim \frac{\ln n}{n}$$

Exercice 96 : [énoncé]

On pose $f_n(x) = \frac{x^n}{n!} - \sum_{k=0}^n \frac{x^k}{k!}$. On observe que $f_n(0) = -1$, $\lim_{x \to +\infty} f_n(x) = +\infty$ et

 $f'_{n+1} = f_n$. La propriété est vrai pour n = 1 et si elle est vrai au rang n, le tableau de signe de f_n permet d'assurer que f_{n+1} est décroissante (et donc strictement négative) sur $[0, x_n]$ puis strictement croissante sur $[x_n, +\infty]$. Par le théorème des valeurs intermédiaires, on peut assurer que f s'annule en un $x_{n+1} > x_n$ et celui-ci est unique.

La suite (x_n) est croissante. Si elle est majorée alors elle converge vers un réel ℓ et $\frac{x_n^n}{n!} \to 0$. Or la suite de terme général est $\sum_{k=0}^n \frac{x_n^k}{k!}$ est croissante et strictement

positive. Elle ne peut donc converger vers 0. Par conséquent la suite (x_n) n'est pas majorée et, étant croissante, elle diverge vers $+\infty$.

Exercice 97: [énoncé]

L'étude des variations de la fonction $x \mapsto nx^{n+1} - (n+1)x^n$ assure l'exitence et l'unicité de $u_n > 0$ vérifiant la relation $nu_n^{n+1} - (n+1)u_n^n = 1$. De plus on peut affirmer $u_n \ge 1$.

Puisque $u_n^n(n(u_n-1)-1)=1$ et $u_n^n\geqslant 1$ on a $n(u_n-1)-1\leqslant 1$ puis $0\leqslant u_n-1\leqslant 2/n$ permet de conclure $u_n\to 0$.

Exercice 98: [énoncé]

a) Par application du théorème de Rolle à la fonction $t\mapsto P_n(t)$ sur chacun des intervalles [k,k+1] (avec $0\leqslant k\leqslant n-1$), on obtient que le polynôme P'_n admet au moins une racine dans chacun des intervalles]k,k+1[. Puisque le polynôme P'_n est de degré n, il possède au plus n racines et donc il ne possède pas d'autres racines que celles précédentes. En particulier, le polynôme P'_n possède exactement une racine dans l'intervalle]0,1[.

b) On a

$$P_{n+1}(X) = P_n(X)(X - (n+1))$$

En dérivant et en évaluant en x_n on obtient

$$P'_{n+1}(x_n) = P_n(x_n)$$

D'une part

$$(-1)^n P_n(x_n) = x_n \prod_{k=1}^n (k - x_n)$$

est une quantité positive.

D'autre part, l'expression

$$(-1)^n P_{n+1}(x) = x(x-1) \prod_{k=2}^{n+1} (k-x)$$

est négative sur [0,1]. On en déduit ses variations sur [0,1] puis le signe de sa dérivée sur ce même intervalle. Puisque qu'elle est négative sur $[0,x_{n+1}]$ et positive sur $[x_{n+1},1]$, on obtient

$$x_{n+1} \leqslant x_n$$

La suite $(x_n)_{n\geqslant 1}$ est donc décroissante.

c) Puisque les racines de P_n sont exactement les $0, 1, \ldots, n$ et puisque celles-ci sont simples, on obtient

$$F_n = \sum_{k=0}^n \frac{1}{X - k}$$

d) Sachant $F_n(x_n) = 0$, on obtient

$$\frac{1}{x_n} = \sum_{k=1}^n \frac{1}{k - x_n}$$

Puisque $0 \le x_n \le x_0 \le 1$, on obtient

$$\sum_{k=1}^{n} \frac{1}{k} \leqslant \frac{1}{x_n} \leqslant \sum_{k=1}^{n} \frac{1}{k - x_0} \leqslant \frac{1}{1 - x_0} + \sum_{k=2}^{n} \frac{1}{k - 1}$$

Ainsi

$$\ln n + O(1) \leqslant \frac{1}{x_n} \leqslant \ln(n-1) + O(1)$$

et on peut conclure

$$x_n \sim \frac{1}{\ln n}$$

Exercice 99 : [énoncé]

Si (u_n) converge sa limite ℓ vérifie $\ell = 1 + \ell^2/4$ d'où $\ell = 2$.

 $u_{n+1} - u_n = \frac{1}{4}(u_n - 2)^2$ donc (u_n) est croissante.

Si $u_0 > 2$ alors (u_n) diverge vers $+\infty$.

Si $u_0 \in [0,2]$ alors on vérifie aisément que (u_n) est majorée par 2 et on conclut $u_n \to 2$.

Exercice 100 : [énoncé]

 $u_{n+1} \geqslant u_n$ donc (u_n) est croissante. Par récurrence montrons $u_n \leqslant a+1$. La relation est vraie pour n=1 et l'hérédité s'obtient par $u_{n+1} = \sqrt{a+u_n} \leqslant \sqrt{2a+1} \leqslant a+1$.

Exercice 101: [énoncé]

- a) Il suffit de dresser le tableau de variation de f. On note $\alpha < \beta < \gamma$ ces trois racines.

c) $u_n \leqslant u_{n+1} \Rightarrow f(u_n) \leqslant f(u_{n+1})$ donc $u_0 \leqslant f(u_0) \Rightarrow (u_n)$ croissante.

De même $u_n \geqslant u_{n+1} \Rightarrow f(u_n) \geqslant f(u_{n+1})$ donc $u_0 \geqslant f(u_0) \Rightarrow (u_n)$ décroissante. Les seules limites finies possibles pour (u_n) sont α, β, γ .

Enfin si $u_0 \le \alpha$ (resp. β , γ) alors pour tout n, $u_n \le \alpha$ (resp. β , γ) et de même pour \geqslant .

Au final on peut conclure :

 $u_0 \in]-\infty, \alpha[$ donne (u_n) décroissant vers $-\infty$.

 $u_0 = \alpha$ donne (u_n) constante égale à α .

 $u_0 \in]\alpha, \gamma[$ donne (u_n) convergeant vers β .

 $u_0 = \gamma$ donne (u_n) constante égale à γ .

 $u_0 \in [\gamma, +\infty[$ donne (u_n) croissant vers $+\infty$.

Exercice 102: [énoncé]

f'(x) est du signe de $3(x^2-a)^2$ donc f est croissante et par suite (u_n) est monotone.

Les racines de l'équation f(x) = x sont $0, \sqrt{a}$ et $-\sqrt{a}$. Ce sont les seules limites possibles pour (u_n) .

f(x) - x est du signe de $ax - x^3 = -x(x - \sqrt{a})(x + \sqrt{a})$.

Si $u_0 \in]0, \sqrt{a}]$ la suite est croissante est majorée par \sqrt{a} donc converge vers \sqrt{a} Si $u_0 \in [\sqrt{a}, +\infty[$ la suite est décroissante et minorée par \sqrt{a} donc converge vers \sqrt{a} .

Exercice 103: [énoncé]

 $u_{n+1} - u_n = -u_n^2 \leq 0$ donc (u_n) est croissante. Aisément, on montre que $u_n \in]0,1[$ pour tout $n \in \mathbb{N}$ et donc on peut conclure que (u_n) converge. Sa limite ℓ vérifie $\ell = \ell - \ell^2$ d'où $\ell = 0$.

$$\sum_{k=0}^{n} u_k^2 = \sum_{k=0}^{n} u_k - u_{k+1} = u_0 - u_{n+1} \to u_0$$

et

$$\prod_{k=0}^{n} (1 - u_k) = \prod_{k=0}^{n} \frac{u_{k+1}}{u_k} = \frac{u_{n+1}}{u_0} \to 0$$

Exercice 104: [énoncé]

a) Soit $g:[a,b]\to\mathbb{R}$ définie par g(x)=f(x)-x. g est continue, $g(a)\geqslant 0$ et $g(b)\leqslant 0$ donc g s'annule en un point α qui est alors point fixe de f. Si α et β sont deux points fixes distincts alors par application du théorème des accroissements finis, il existe $c \in [a,b]$ tel que f'(c)=1 ce qui est incompatible avec les hypothèses.

b) La fonction $x \mapsto |f'(x)|$ est continue sur le segment [a, b], elle y admet donc un maximum en un point $c \in [a, b]$ et en posant k = |f'(c)| on a

$$\forall x \in [a, b], |f'(x)| \leq k \text{ avec } k \in [0, 1]$$

Par l'inégalité des accroissements finis, f est k lipschitzienne et alors par récurrence :

$$\forall n \in \mathbb{N}, |u_n - \alpha| \leq k^n |u - \alpha| \to 0$$

d'où le résultat.

Exercice 105 : [énoncé]

$$u_{n+1} - u_n = \frac{(f(u_n) - f(u_{n-1})) + (u_n - u_{n-1})}{2}$$

Puisque f est 1 lipschitzienne on a

$$|f(u_n) - f(u_{n-1})| \le |u_n - u_{n-1}|$$

donc $u_{n+1} - u_n$ est du signe de $u_n - u_{n-1}$,

(en fait la fonction itératrice est croissante).

Par suite (u_n) est monotone et étant bornée elle converge vers un $\ell \in [a, b]$. La relation

$$u_{n+1} = \frac{u_n + f(u_n)}{2}$$

donne à la limite

$$\ell = \frac{\ell + f(\ell)}{2}$$

donc $f(\ell) = \ell$.

Exercice 106: [énoncé]

- a) On observe que $x \mapsto 4x x^2$ est une application de [0,4] dans lui-même. Par suite $u_n \in [0,4]$ pour tout $n \in \mathbb{N}$. Si (u_n) converge alors, en posant ℓ sa limite, on a $\ell = 4\ell \ell^2$ d'où $\ell = 0$ ou $\ell = 3$.
- b) Supposons que $u_n \to 0$. S'il existe un rang n tel que $u_n = 0$ alors la suite (u_n) est stationnaire égale à 0. Sinon on a $u_n > 0$ pour tout $n \in \mathbb{N}$ et donc $u_{n+1} u_n \sim 3u_n > 0$. Ainsi, à partir d'un certain rang, la suite est strictement

Corrections

42

croissante. De même si $u_n \to 3$ sans être stationnaire égale à 3, on observe que la suite $|u_n-3|$ est strictement croissante à partir d'un certain rang.

c) On obtient aisément $u_n = 4\sin^2 2^n \alpha$. La suite est stationnaire si, et seulement si, il existe $n \in \mathbb{N}$ tel que $u_n = 0$ ou 3 i.e. $\sin^2(2^n \alpha) = 0, \sqrt{3}/2, -\sqrt{3}/2$ soit encore $2^n \alpha = k\pi/3$ avec $k \in \mathbb{Z}$. Ainsi les u_0 pour lesquels la suite est stationnaire sont les $\sin(k\pi/3.2^n)$ avec $k \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Exercice 107: [énoncé]

a) $z_1 = \frac{\rho e^{i\theta} + \rho}{2} = \rho \cos \frac{\theta}{2} e^{i\frac{\theta}{2}}$. Par ce principe:

$$z_n = \rho \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cdots \cos \frac{\theta}{2^n} e^{i\frac{\theta}{2^n}}$$

b) $e^{i\frac{\theta}{2^n}} \to 1$ et

$$\cos\frac{\theta}{2}\cos\frac{\theta}{4}\cdots\cos\frac{\theta}{2^n} = \frac{\sin\theta}{2^n\sin\frac{\theta}{2^n}} \to \frac{\sin\theta}{\theta} \text{ (ou 1 si } \theta = 0)$$

Finalement $z_n \to \frac{\sin \theta}{\theta}$.

Exercice 108: [énoncé]

On a $u_n \le v_n$ et $u_{n+1} \le v_n$, $v_{n+1} = \max(u_{n+2}, u_{n+1})$ avec $u_{n+2} \leqslant \frac{1}{2} (u_n + u_{n+1}) \leqslant v_n$ et $u_{n+1} \leqslant v_n$ donc (v_n) est décroissante. (v_n) est décroissante et minorée par 0 donc (v_n) converge. On a $u_{n+1} \leqslant v_n$.

$$v_{n+1} \le \max\left(\frac{1}{2}(u_{n+1} + u_n), u_{n+1}\right) = \max\left(\frac{1}{2}(u_{n+1} + u_n), \frac{1}{2}(u_{n+1} + u_{n+1})\right) = \frac{1}{2}v_{n+1}$$

donc $2v_{n+1} - v_n \leqslant u_{n+1} \leqslant v_n$ donc (u_n) converge vers la même limite que (u_n) .

Exercice 109 : [énoncé]

Les suites (u_n) et (v_n) sont bien définies et à termes positifs. Sachant

$$\forall a, b \in \mathbb{R}^+, \sqrt{ab} \leqslant \frac{a+b}{2}$$

on a $\forall n \geq 1, u_n \leq v_n$ puis $u_{n+1} \geq u_n$ et $v_{n+1} \leq v_n$.

Les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont respectivement croissante et décroissante et on a $\forall n \geq 1, u_0 \leq u_n \leq v_n \leq v_0$.

Par convergence monotone, (u_n) et (v_n) convergent vers des limites ℓ et ℓ' . En passant la relation $v_{n+1} = \frac{u_n + v_n}{2}$ à la limite on obtient $\ell = \ell'$.

Exercice 110 : [énoncé]

- a) Exploiter $1 + \cos x = 2\cos^2\frac{x}{2}$ et raisonner par récurrence.

$$\sin\frac{\alpha}{2^n}v_n = \frac{1}{2^n}\sin\alpha$$

via $\sin a \cos a = \frac{1}{2} \sin 2a$. Par suite

$$v_n \sim \frac{\sin \alpha}{2^n \sin(\alpha/2^n)} \to \frac{\sin \alpha}{\alpha}$$

et aussi

$$u_n \to \frac{\sin \alpha}{\alpha}$$

Exercice 111: [énoncé]

Notons que la suite (y_n) est croissante, elle est donc convergente si, et seulement si, elle est majorée.

a) Ici $y_{n+1} = \sqrt{a+y_n}$. Soit ℓ la racine positive de l'équation $\ell^2 - \ell - a = 0$ i.e.

$$\ell = \frac{1 + \sqrt{1 + 4a}}{2}$$

On remarque que $y_1 = \sqrt{a} \leqslant \ell$ et on montre par récurrence $y_n \leqslant \ell$. La suite (y_n) est croissante et majorée donc convergente.

- b) On observe que la nouvelle suite (y_n) est désormais égale à b fois la précédente, elle est donc convergente.
- $v_{n+1}\leqslant \max\left(\frac{1}{2}(u_{n+1}+u_n),u_{n+1}\right)=\max\left(\frac{1}{2}(u_{n+1}+u_n),\frac{1}{2}(u_{n+1}+u_{n+1})\right)=\frac{c}{2}u_{n+1}\underbrace{\operatorname{Si}}_{2}(u_{n}^{2^{-n}})\text{ est bornée par une certain }M\text{ alors }x_{n}^{2^{-n}}\leqslant y_{n}\leqslant \ell\text{ donc }(x_{n}^{2^{-n}})\text{ est bornée.}$ (x_n^2) est alors inférieure à celle obtenue par (M^{2^n}) , cette dernière étant convergente, la suite (y_n) converge.

Exercice 112 : [énoncé]

a) Définissons une procédure récursive calculant les termes de la suite

x:=proc(n,x1)local v; if n=1 then RETURN(x1) else y:=x(n-1,x1); RETURN(y+(n-1)/y); fi end;

On peut alors évaluer les termes de la suite pour différentes valeurs de x_1

x1:=5; seq(evalf(x(k,x1)),k=1..10);

On remarque que (x_n) tend vers $+\infty$ et on peut même présumer $x_n \sim n$. On remarque aussi que pour $x_1=1$ on a $x_n=n$ ce qu'on justifie aisément par récurrence.

b) La suite proposée est bien définie et à termes dans $]0, +\infty[$. En exploitant $a+b\geqslant 2\sqrt{ab}$, on peut affirmer $x_{n+1}\geqslant 2\sqrt{n}$ donc $x_n\geqslant 2\sqrt{n-1}$ pour $n\geqslant 2$. On en déduit $x_n\to +\infty$.

Pour $n \ge 2$, posons $u_n = x_n - y_n$, quitte à échanger éventuellement les suites $(x_n)_{n \ge 1}$ et $(y_n)_{n \ge 1}$ pour que $u_2 = x_2 - y_2 \ge 0$. On a

$$u_{n+1} = \left(1 - \frac{n}{x_n y_n}\right) u_n$$

Or pour $n \ge 2$,

$$1 - \frac{n}{x_n y_n} \geqslant 1 - \frac{n}{4(n-1)} > 0$$

On en déduit que pour tout $n \ge 2$, $u_n \ge 0$ et $(u_n)_{n\ge 2}$ décroissante. La suite (u_n) est donc convergente et par conséquent $x_n \sim y_n$.

Puisque pour $y_1 = 1$, on obtient $y_n = n$, on peut affirmer $x_n \sim n$.

Exercice 113: [énoncé]

Posons

$$M = \sup_{n \in \mathbb{N}} a_n$$

On vérifie aisément que la suite (u_n) est bien définie et que pour tout $n \ge 2$

$$\frac{1}{M+2} \leqslant u_n \leqslant 1$$

Supposons la convergence de la suite (u_n) . Sa limite est strictement positive. En résolvant l'équation définissant u_{n+1} en fonction de u_n , on obtient

$$a_n = \frac{1}{u_{n+1}} - u_n - 1$$

On en déduit que la suite (a_n) converge.

Inversement, supposons que la suite (a_n) converge vers une limite $\ell, \ell \ge 0$. Considérons la suite (v_n) définie par

$$v_0 = 1$$
 et $v_{n+1} = \frac{1}{v_n + \ell + 1}$ pour tout $n \in \mathbb{N}$

On vérifie que la suite (v_n) est bien définie et à termes strictement positifs. L'équation

$$x = \frac{1}{x + \ell + 1}$$

possède une racine L > 0 et on a

$$|v_{n+1} - L| \leqslant \frac{|v_n - L|}{1 + L}$$

ce qui permet d'établir que la suite (v_n) converge vers L. Considérons ensuite la suite (α_n) définie par

$$\alpha_n = u_n - v_n$$

On a

$$\alpha_{n+1} = \frac{\alpha_n + (\ell - a_n)}{(u_n + a_n + 1)(v_n + \ell + 1)}$$

et donc

$$|\alpha_{n+1}| \leqslant k \left(|\alpha_n| + |a_n - \ell| \right)$$

avec

$$k = \frac{1}{m+1} \in [0,1[$$

où m > 0 est un minorant de la suite convergente (v_n) . Par récurrence, on obtient

$$|\alpha_n| \le k^n |\alpha_0| + \sum_{p=0}^{n-1} k^{n-p} |a_p - \ell|$$

Soit $\varepsilon > 0$.

Puisque la suite (a_n) converge vers ℓ , il existe p_0 tel que

$$\forall p \geqslant p_0, |a_p - \ell| \leqslant \varepsilon$$

et alors

$$\sum_{n=n}^{n-1} k^{n-p} |a_p - \ell| \leqslant \varepsilon \sum_{k=1}^{+\infty} k^p = \frac{k\varepsilon}{1-k}$$

Pour n assez grand

$$\sum_{p=0}^{p_0-1} k^{n-p} |a_p - \ell| = C^{te} k^n \leqslant \varepsilon \text{ et } k^n |\alpha_0| \leqslant \varepsilon$$

et on en déduit

$$|\alpha_n| \leqslant 2\varepsilon + \frac{k\varepsilon}{1-k}$$

Ainsi $\alpha_n \to 0$ et par conséquent

$$u_n \to L$$

FIGURE 1 – La fonction g

FIGURE 2 – Le graphe de f