Assignment 6

Referral id: SIRSS1088

NAME: ONASVEE BANARSE EMAIL: 2obanarse@gmail.com

COLLEGE: AISSMS IOIT

GitHub: https://github.com/ORION-22/RegexSoftware ASSIGNMENT.git

Q1. Calculate/ derive the gradients used to update the parameters in cost function optimization for simple linear regression.

 \Rightarrow

Gradient Descent:

Gradient descent is an iterative optimization algorithm to find the minimum of a function.

The equation for simple regression is

$$y = a1 * x + a0$$

we know that cost or error(e) = $y \wedge - y$

for n data points:

$$f(a) = 1 \ n \sum (y ^ - y) \ n \ 2 \ i=1$$

$$f(a) = 1 \ n \sum (y ^ - (a1 * x + a0)) \ n \ 2 \ i=1$$

 α = learning rate or the size of the step we take towards finding the optimal fit line

df(a)/da0

partial derivative of f(a) w. r.t a0 will give the value of parameter a0 a0=2 $n \sum (y ^ - (a1 * x + a0))$ n i=1

df(a)/da1 partial derivative of f(a) w. r.t a1 will give the value of parameter a1 a1 = 2 n $\sum x(y \land - (a1 * x + a0))$ n i=1

New
$$a0 = a0 - a0 * \alpha$$

New
$$a1 = a1 - a1 * \alpha$$

Q2. What does the sign of gradient say about the relationship between the parameters and cost function?

 \Rightarrow

The cost function is a function of the parameters and when the sign is positive then the step will decrease as seen below:

New $a0 = a0 - [+ve\ gradient] * \alpha$ when the sign is negative then the step will increase as seen below:

New
$$a0 = a0 - [-ve \ gradient] * \alpha$$

New $a0 = a0 + [\ gradient] * \alpha$

Q3. Why Mean squared error is taken as the cost function for regression problems.

 \Rightarrow

MSE or Mean Squared Error is used to check how close predictions made by the model are to actual values. It calculates the error as actual - prediction and squares the difference to eliminate the negative values.

The lower the MSE, the closer is prediction to actual. In Regression models, a lower MSE usually indicates a better fit.

Q4. What is the effect of learning rate on optimization, discuss all the cases?

 \Rightarrow

In an ideal scenario with an optimal learning rate, the cost function value will be minimized rather quickly.

If we take a large learning rate then the cost function value will be minimized very quickly but will settle at a value that is not the lowest.

If we take a lower than optimal learning rate, then even after substantial iterations the cost function will not minimize sufficiently and will take longer time.