An observational ontology for the salmon research community

Christopher Jones, Mark Schildhauer, Matthew Jones, Margaret O'Brien, Ben Leinfelder

National Center for Ecological Analysis and Synthesis (NCEAS) University of California, Santa Barbara

Shawn Bowers

University of California, Davis

Josh Madin

MacQuarie University

Mara Zimmerman

Washington Department of Fish and Wildlife

Afternoon talk

- The OBOE model
- More detailed look at the salmon ontology
- Drawing from other semantic efforts
- OBOE Semantic Annotations
- Challenges in modeling concepts

Extensible Observation Ontology

- Known as "OBOE"
- Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa, F. (2007). An ontology for describing and synthesizing ecological observation data. Ecological Informatics, 2(3), 279-296. ELSEVIER SCIENCE BV. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/ S1574954107000362

OBOE Scientific Observations

- A scientific **Observation** is the

Measurement of the Value

of a <u>Characteristic</u>

of some Entity

in a particular <u>Context</u>

Core OBOE model

Example

	Α	В	С	D	I	J	K	L	М	N	0	Р
1												
2	Tucannon Smolt											
3			Pulled									
4		Debris: L=1, M=2, H=3			Wild Chinook			Hatchery Chinook				
5	start	start	end	end	Wild				Hatchery			
6	date	time	Date	time	Spr.	Mort.	Fall	Mort	Blue VIE	Mort.	Purple VIE	Mort.
7	10/8/07	1015	10/9/07	830	0	0	0	0	0	0	0	0
8	10/9/07	831	10/10/07	830	1	0	0	0	0	0	0	0
9	10/10/07	831	10/11/07	915	0	0	0	0	0	0	0	0
10	10/11/07	916	10/12/07	930	0	0	0	0	0	0	0	0
11	10/12/07	931	10/15/07	1000	2	0	0	0	0	0	0	0
12	10/15/07	1001	10/16/07	1200	0	0	0	0	0	0	0	0
13	10/16/07	1201	10/17/07	930	1	0	0	0	0	0	0	0
14	10/17/07	931	10/18/07	1015	6	0	0	0	0	0	0	0
15	10/18/07	1016	10/19/07	1130	5	0	0	0	0	0	0	0
16	10/19/07	1131	10/20/07	1245	3	1	0	0	0	0	0	0
17	10/20/07	1246	10/21/07	1230	2	0	0	0	0	0	0	0
18	10/21/07	1231	10/22/07	1100	9	0	0	0	0	0	0	0

Core OBOE model

- Uses the Web Ontology Language (OWL-DL)
- In turn is expressed in Resource Description Framework (RDF)
 - collections of relationships (subject, predicate, object)
 - Example:
 - SteelheadPopulationSample is-a PopulationSample

Salmon Ontology in OWL

```
0 0
                                                oboe-salmon.owl - dev
x oboe-salmon.owl
   26 crdf:RDF xmlns="http://ecoinformatics.org/oboe-ext/salmon.1.0/oboe-salmon.owl#"
   27
            xml:base="http://ecoinformatics.org/oboe-ext/salmon.1.0/oboe-salmon.owl"
   28
            xmlns:dc="http://purl.org/dc/elements/1.1#"
   29
            xmlns:oboe-spatial="http://ecoinformatics.org/oboe/oboe.1.0/oboe-spatial.owl#"
   30
            xmlns:sweet-biosphere="http://sweet.jpl.nasa.gov/ontology/biosphere.owl#"
   31
            xmlns:oboe-anatomy="http://ecoinformatics.org/oboe/oboe.1.0/oboe-anatomy.owl#"
   32
            xmlns:oboe-characteristics="http://ecoinformatics.org/oboe/oboe.1.0/oboe-characteristics.owl#"
   33
            xmlns:oboe-chemistry="http://ecoinformatics.org/oboe/oboe.1.0/oboe-chemistry.owl#"
   34
            xmlns:oboe-standards="http://ecoinformatics.org/oboe/oboe.1.0/oboe-standards.owl#"
   35
            xmlns:oboe-biology="http://ecoinformatics.org/oboe/oboe.1.0/oboe-biology.owl#"
   36
            xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
   37
            xmlns:ow12xm1="http://www.w3.org/2006/12/ow12-xm1#"
   38
            xmlns:oboe-ecology="http://ecoinformatics.org/oboe/oboe.1.0/oboe-ecology.owl#"
   39
            xmlns:oboe-taxa="http://ecoinformatics.org/oboe/oboe.1.0/oboe-taxa.owl#"
   40
            xmlns:oboe-temporal="http://ecoinformatics.org/oboe/oboe.1.0/oboe-temporal.owl#"
   41
            xmlns:oboe-core="http://ecoinformatics.org/oboe/oboe.1.0/oboe-core.owl#"
            xmlns:owl="http://www.w3.org/2002/07/owl#"
   42
   43
            xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
            xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   44
   45
            xmlns:oboe-environment="http://ecoinformatics.org/oboe/oboe.1.0/oboe-environment.owl#">
   46 0
           <owl:Ontology rdf:about="http://ecoinformatics.org/oboe-ext/salmon.1.0/oboe-salmon.owl">
   47
               <rdfs:label xml:lang="en">OBOE Salmon</rdfs:label>
   48
               <rdfs:comment>
   49
               This ontology contains terms that are common to salmon migration research
   50
               with an initial emphasis on juvenile salmon migration research. It is a
   51
               domain-specific extension of the OBOE ontology.
   52
             </rdfs:comment>
   53
               <owl:versionInfo>Version 1.0 pre-release</owl:versionInfo>
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-anatomy.owl"/>
   54
   55
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-biology.owl"/>
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-characteristics.owl"/>
   56
   57
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-chemistry.owl"/>
   58
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-core.owl"/>
   59
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-ecology.owl"/>
   60
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-environment.owl"/>
   61
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-spatial.owl"/>
   62
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-standards.owl"/>
   63
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-taxa.owl"/>
               <owl:imports rdf:resource="http://ecoinformatics.org/oboe/oboe.1.0/oboe-temporal.owl"/>
   64
   65 🖂
           </owl:Ontology>
Line: 540 Column: 112
                                   : ○ ▼ Tab Size: 4 : -
```


Alive Wild Smolt Steelhead Pop. Sample

- ▼ ●Thing
 - ▶ **©**Characteristic
 - ▶ ⊕CharacteristicQualifier
 - ▼ ●Entity
 - AdministrativeFeature
 - AnatomicalEntity
 - Container
 - **▶** Ecological Community
 - ► Ecological Habitat
 - ▶ •Instrument
 - Organism
 - ▶ PhysicalFeature
 - Population
 - ▶ Primitive Value
 - ▼ •Sample
 - AirSample
 - ▼ ●PopulationSample
 - CherrySalmonPopulationSample
 - ChinookSalmonPopulationSample
 - ChumSalmonPopulationSample
 - CohoSalmonPopulationSample
 - PinkSalmonPopulationSample
 - SockeyeSalmonPopulationSample
 - ▼ •SteelheadPopulationSample
 - ParrSteelheadPopulationSample
 - ▼ •SmoltSteelheadPopulationSample
 - AliveSmoltSteelheadPopulationSample
 - DeadSmoltSteelheadPopulationSample
 - ► HatcherySmoltSteelheadPopulationSample
 - ▼ WildSmoltSteelheadPopulationSample
 - AliveWildSmoltSteelheadPopulationSample
 - DeadWildSmoltSteelheadPopulationSample

</owl:Class>

Alive Wild Smolt Steelhead Pop. Sample

Salmon Ontology Concepts

- Entities being Observed
- Characteristics measured
- Standards And Protocols used

Organism, Sample Entities

Other Entities: Time, Location

- Adopted concepts from other efforts
- Open Geospatial Consortium
 - Geography Markup Language (GML)
 - NASA SWEET ontologies

Physical Characteristics

Behavioral Characteristics

Protocols

Semantic Annotations

Semantic Annotations

Population Sample Annotation

```
0 0 0
                                             untitled
    <?xml version="1.0"?>
 2 \circ < sms:annotation id="jmx.60.28" | dataPackage="jmx.130.11">
       <sms:observation label="o15">
 30
          <sms:entity id="oboe-salmon.owl:AliveWildSmoltSteelheadPopulationSample"/>
          <sms:measurement label="m15" precision="1.0">
 5 n
              <sms:characteristic id="oboe-characteristics.owl:Count"/>
              <sms:standard id="oboe-standards.owl:Number"/>
          </sms:measurement>
 8 ...
       </sms:observation>
 9 .
       <sms:map dataObject="0" attribute="live wild stlhd smolts" measurement="m15"/>
10
11 </sms:annotation>
12
                      ‡ ③ ▼ Tab Size: 4 ‡ -
Line: 12 Column: 1
```


Temporal Entity Annotation

```
0 0
                                        untitled
    <?xml version="1.0"?>
 2 \circ < sms: annotation id="jmx.60.28" dataPackage="jmx.130.11">
       <sms:observation label="o1">
 3 0
          <sms:entity id="oboe-temporal.owl:TimeInstant"/>
 4
          <sms:measurement label="m1" precision="1.0">
 5 a
              <sms:characteristic id="oboe-characteristics.owl:Time"/>
 6
              <sms:standard id="oboe-standards.owl:Day"/>
          </sms:measurement>
 8 🖪
       </sms:observation>
 9 🗖
10
       <sms:map dataObject="0" attribute="trap set date" measurement="m1"/>
11 </sms:annotation>
12
Line: 2 Column: 17
           XML
                      ‡ 💮 ▼ Tab Size: 4 ‡ —
```


Full Semantic Annotation

```
OO
                                                     untitled
      <?xml version="1.0"?>
      <sms:annotation id="jmx.60.28" dataPackage="jmx.130.11">
  3 0
         <sms:observation label="o1">==
         <sms:observation label="o2">==
 10 0
 17 0
         <sms:observation label="o3">==
         <sms:observation label="o4">==
 24 0
 31 0
         <sms:observation label="o5">==
 38 0
         <sms:observation label="o6">==
 45 0
         <sms:observation label="o7">==
 52 C
         <sms:observation label="08">==
 59 0
         <sms:observation label="o9">==
 66 0
         <sms:observation label="o10">
 73 0
         <sms:observation label="o11">==
 80 0
         <sms:observation label="o12">==
 87 0
         <sms:observation label="o13">==
 94 0
         <sms:observation label="o14">==
101 0
         <sms:observation label="o15">
108 C
         <sms:observation label="o16">==
115 0
         <sms:observation label="o17">
122 0
         <sms:observation label="o18">==
129 C
         <sms:observation label="o19">==
136 0
         <sms:observation label="o20">==
143 0
         <sms:observation label="o21">==
150
         <sms:map dataObject="0" attribute="trap set date" measurement="m1"/>
         <sms:map dataObject="0" attribute="trap set time" measurement="m2"/>
151
152
         <sms:map dataObject="0" attribute="trap check date" measurement="m3"/>
153
         <sms:map dataObject="0" attribute="trap check time" measurement="m4"/>
         <sms:map dataObject="0" attribute="staff gauge" measurement="m5"/>
154
155
         <sms:map dataObject="0" attribute="live wild spring chinook smolts" measurement="m6"/>
         <sms:map dataObject="0" attribute="dead wild spring chinook smolts" measurement="m7"/>
156
157
         <sms:map dataObject="0" attribute="live wild fall chinook smolts" measurement="m8"/>
158
         <sms:map dataObject="0" attribute="live hatchery chinook smolt blue vie" measurement="m9"/>
         <sms:map dataObject="0" attribute="dead hatchery chinook smolt blue vie" measurement="m10"/>
159
160
         <sms:map dataObject="0" attribute="live hatchery chinook smolt purple vie" measurement="m11"/>
161
         <sms:map dataObject="0" attribute="dead hatchery chinook smolt purple vie" measurement="m12"/>
         <sms:map dataObject="0" attribute="live hatchery chinook smolt captive brood" measurement="m13"/>
162
163
         <sms:map dataObject="0" attribute="dead hatchery chinook smolt captive brood" measurement="m14"/>
         <sms:map dataObject="0" attribute="live wild stlhd smolts" measurement="m15"/>
164
165
         <sms:map dataObject="0" attribute="dead wild stlhd smolts" measurement="m16"/>
         <sms:map dataObject="0" attribute="live wild stlhd parr" measurement="m17"/>
166
         <sms:map dataObject="0" attribute="dead wild stlhd parr" measurement="m18"/>
167
168
         <sms:map dataObject="0" attribute="live hatchery stlhd cwt" measurement="m19"/>
         <sms:map dataObject="0" attribute="live hatchery stlhd left green vie" measurement="m20"/>
169
         <sms:map dataObject="0" attribute="dead hatchery stlhd left green vie" measurement="m21"/>
170
171 </sms:annotation>
172
                                   Line: 2 Column: 17

□ XML
```


Challenges in modeling concepts

- Entities as collections of characteristics
- Modeling part-whole relationships

Part-Whole Relationships

Part-Whole Relationships

Part-Whole Relationships

Challenges in modeling concepts

- Entities as collections of characteristics
- Modeling part-whole relationships
- Knowing the detail depth to model
 - equalivalent, disjoint, transitive
- Getting a large group on the same semantic page

