Probabilité conditionnelle

PST

4 - Probabilité conditionnelle

Résumé du document

Definition

Table des matières

1.	Concept	2
2.	Probabilité conditionnelle	. 3
	2.1. Remarques	3
3.	Théorème de multiplication	4
	3.1. Théorème des probabilités totales	

1. Concept

La probabilité conditionnelle nous permet de calculer la probabilité d'un événement en fonction d'une condition.

L'opération permettant de calculer la probabilité conditionnelle est la suivante:

A= probabilité que l'évenement A se passe B= événement qui s'est réalisé

Nous cherchons donc la chance que l'évenement A se passe en sachant que l'événement B s'est réalisé:

$$P(A \mid B)$$

2. Probabilité conditionnelle

La formule de base permettant de calculer cette probabilité est:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \ P(B) \neq 0$$

2.1. Remarques

$$P(B \mid B) = 1$$

si A est inclus dans B, alors $A \cap B = A$ et donc

$$P(A \mid B) = \frac{P(A)}{P(B)}$$

3. Théorème de multiplication

En utilisant l'inverse de la formule présentée au point 2 nous pouvons retrouver $P(A \cap B)$, pour cela nous aurons la formule suivante:

$$P(A \cap B) = P(A \mid B) * P(B)$$
$$= P(B \mid A) * P(A)$$

3.1. Théorème des probabilités totales

Soient A et B deux événements quelconques. Comme B et \overline{B} forment une partition de Ω , on aura selon le théorème des probabilités totales,

$$\begin{split} P(A) &= P(A \mid B) * P(B) + P\Big(A \mid \overline{B}\Big) * P\Big(\overline{B}\Big) \\ &= P(A \mid B) * P(B) + P\Big(A \mid \overline{B}\Big) * P(1 - P(B)) \end{split}$$