

Truth Behind DeepFakes(TBD) GROUP - 9

CS 776: Deep Learning For Computer Vision

Department of Computer Science and Engineering Indian Institute of Technology Kanpur (IITK)

MOTIVATION

1. Cybersecurity & Identity Fraud.

impersonate individuals for fraud, scams like digital arrests.

2. National Security & Law Enforcement.

- Terrorist organizations create fake confessions
- Create propaganda during war to gain psychological mileage.

3. Trust in Digital Media is Declining.

 people are losing trust in videos and social media, making it difficult to distinguish real from fake.

false statements can cause confusion and political mileage.

4. Legal and Ethical Challenges

Efficient detection system is necessary to enforce laws.

Techniques

1. Image-Based Detection

Detects deepfake images using extracted frames.

Techniques: Pixel & Texture Analysis, CNN-Based Models

Strengths: Works well on deepfake images; fast processing.

Weaknesses: May struggle with high-quality deepfake videos.

2. Video-Based Detection

Analyzes temporal inconsistencies in videos.

Techniques: Frame Consistency Analysis, Motion Analysis, Frame Extraction + CNNs

Strengths: More reliable than image-based detection.

Weaknesses: Requires more computational power.

Focuses on detecting fake or synthesized voices in deepfake videos.

Techniques: Spectrogram Analysis, Waveform & Pitch Analysis, Lip Sync Analysis

Strengths: Useful for Al-generated voice deepfakes.

Weaknesses: Requires clear audio; background noise can affect accuracy.

4. Physiological Signal-Based Detection

Detects deepfakes using subtle biological signals.

Techniques: Heartbeat Detection, Eye Blink Rate, Head Pose & Eye Gaze Tracking

Strengths: Hard for deepfake creators to replicate.

Weaknesses: Requires high-quality videos; sensitive to lighting conditions.

5. Blockchain & Metadata-Based Detection

Tracks video authenticity using cryptographic verification.

Techniques:

Blockchain Timestamping, Metadata Analysis, Watermarking: Embeds digital fingerprints into real videos to detect tampering.

Strengths: Useful for verifying original content.

Weaknesses: Doesn't work for detecting already-existing deepfakes.

Problem Statement

- Rapid advancement of deepfake technology
- Significant risks in misinformation, identity fraud, and digital security.

AIM: To implement and evaluate multimedia deepfake detection model

- focus primarily on **image-based detection** using deep learning techniques.
- **benchmark** these models on publicly available deepfake datasets.
- **Try to develop a RNN/ViT based approach** while trying to maintain computational efficiency.

Project Members

<u>Name</u>	RollNo	Papers Read
Divyanshu	241110023	- Deep fake detection: current challenges and next steps - Unmasking DeepFakes with simple Features
Khushwant	241110035	Mastering Deepfake Detection: A Cutting-edge Approach to Distinguish GAN and Diffusion-model Images Deepfake detection using convolutional vision transformers and convolutional neural networks
Krishanu	241110037	- Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks - Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection
Rajan Kumar	241110087	- Unmasking deepfake faces from videos using cost sensitive appch Video face manipulation through CNNS
Rishit	241110056	- DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion - Robustness and Generalizability of Deepfake Detection: A Study with Diffusion Models
Senthil Ganesh	241110089	-Towards Solving DeepFake Problem: Improving DeepFake Detection using Dynamic Face Augmentation -DeepFake Detection Method based on Face Edge Bands

DEEP FAKE DETECTION: CURRENT CHALLENGES AND NEXT STEPS

There are three major types of DeepFake images/videos

- Head Puppetry :
 - Controls a target person head movements using a source person expressions
 - Target appears to mimic the source facial behavior.
- Face swapping :
 - The target person face is replaced with the source person face while keeping the source person's facial expressions and movements same.
- Lip syncing :
 - Modifies only the lips of the target person to match new speech.
 - It seem like people are speaking words they didn't actually say.

Current Deep Fake Detection methods

- Mostly target face swapping videos/images
- Many of the existing methods are formulated as frame-level binary classification problems.

contd.

Deep fake detection method falls in 3 major categories

- Physical Inconsistencies-Based Methods
 - Analyzing inconsistencies in human physical and physiological behaviors.
 - Eye Blinking Analysis, Head Pose Analysis, Facial Landmark Patterns.
- Signal-Level Artifact-Based Methods
 - Detects inconsistencies caused during the video synthesis process.
 - Splicing Artifacts Detection: Identifies blending errors when the fake face is merged with the real video. It uses DNN splicing detection methods
- Data-Driven Deep Learning Methods
 - Uses DNN trained on both real and DeepFake videos to automatically detect fakes.
 - CNN-Based Models, & LSTM Models.

Limitations

- Most DeepFake detection methods works on frame-level binary classification problems. There are 2 major issues with this method.
- Lack of Temporal Consistency Analysis
 - Inconsistencies appear across frames over time.
 - Frame-by-frame classification does not consider the sequence of frames, so it might miss these inconsistencies.

contd.

Extra Step Needed for Video-Level Detection

- Since detection happens at the frame level, to decide if an entire video is fake, we need to combine predictions from multiple frames
- This requires an aggregation method, which adds complexity and may reduce accuracy.

Improvements

- Use models that consider multiple frames together rather than treating them independently.
- Detect unnatural movement patterns in face and background across consecutive frames.
- Face-swapping DeepFake videos are relatively easier to detect. Our focus will be on detecting two other forms of DeepFake: head puppetry and lip-syncing.

Unmasking DeepFakes with simple Features

Proposed Method

- It proposes a feature-based method for DeepFake detection using frequency domain analysis.
- Step 1: Convert Image to Frequency Domain
 - Uses Discrete Fourier Transform (DFT) to analyze high-frequency artifacts.
- Step 2: Extract Features using Azimuthal Average
 - Converts 2D frequency data into 1D power spectrum for simplicity.
- Step 3: Classify Real vs Fake Faces
 - Uses simple machine learning classifiers (Logistic Regression, SVM, K-Means).

Why Frequency-Based Approach Works?

- GAN-generated images have visible artifacts in the frequency domain.
- Unlike deep learning models, this method works with very few training samples.

Limitations of Current DeepFake Detection Methods

- Deep Learning-Based Approaches
 - Require large labeled datasets.
 - Can be tricked by advanced Generative Adversarial Network.

contd.

- Frame-Level Classification Issues
 - Ignores temporal consistency in DeepFake videos
 - Needs extra processing for video-level classification.

Improvements

- Improve detection of low-resolution DeepFakes.
- Combine frequency-based analysis with deep learning models.
- Detect DeepFake videos that use realistic voices by combining both video and audio generation in a single tool.

Guarnera et al., 2024 - Mastering Deepfake Detection: A Cutting-edge Approach to Distinguish GAN and Diffusion-model Images

The proposed solution in paper is capable of recognizing whether an image was generated using 9 different GAN engines and 4 diffusion models (DMs) by means of a hierarchical approach.

Dataset Overview: 83,000 images: 41,500 real, 41,500 Al-generated using 9 GAN models (2500 images each) and 4 Diffusion Models (5000 images each) resulting into a 14 class labelled dataset (real, 9GANs, 4DMs). A DFT β-statistics spectrum analysis is done to check the shared patterns among models of same category.

Best non-CNN architectures for 14 class flat classification: 95.71%, 13 class flat classification: 96.2%.

Classification accuracy ResNET-101:

L1:98.93% L2:98.45%

L3-GAN: 97.01% L3-DM: 99.37%

Overall: 97.82%

Hierarchical Multi-level Approach:

Level 1: Classify real vs. Al-generated images.

Level 2: Distinguish between GAN-generated vs. DM-generated images.

Level 3: Identify the specific architecture used to generate the fake image.

The final architecture is defined by four models: E_{L1} , E_{L2} , E_{L3-GAN} , E_{L3-DM} .

ResNET-101 gives the best overall accuracy among different complex models.

...contd.

Classification accuracy of the whole hierarchical approach:

- If the image from level 1 is misclassified to the Al class, then this error will be counted 3 times. If the image is misclassified to the real class, as previously described, then the error will be counted only once.
- If the image is misclassified from level 2, then this error will be counted twice.
- If the image is misclassified by level 3, then the error will be counted only once.

Robustness and Generalization:

- Robust to JPEG compression, resize attacks, 3x3 Gaussian Blur
- Not Robust to rotation operation and 9x9 Gaussian Blur
- Generalized well on COCOfake deepfake images dataset (All 3 levels can be used)
- Generalized well on FaceForensics++ deepfake video dataset (Only first 10 frames considered per video), even though the model was never trained on videos.
- Videos are encoded differently than images and different technologies are used for creating deepfake videos. So only L1 can be used for videos.

Cons:

- As the number of generative architectures (GANs and DMs) increases, the classification performance degrades.
- Videos are encoded differently than images. β-statistics extracted from images turn out to be different in videos.so the method could also achieve much lower accuracy values
- The models in this work, on the same ResNET-101 architecture. A combination of the different models can be explored.

Soudy et al., 2024 - Deepfake detection using convolutional vision transformers and convolutional neural networks

<u>Datasets Used:</u> FaceForensics++ and Deep Fake Detection Challenge (DFDC)

Three main components: Preprocessing, Detection, Prediction

Preprocessing

- Video frame extraction and enhancement
- Face detection using MTCNN
- Face alignment and cropping
- Eye and nose region extraction

Detection Models

- Model A (Deep CNN for Nose) (97.4%)
- Model B (Simplified CNN for Eye) (97%)
- Model C (CNN + Vision Transformer for Full Face) (85%)

Prediction

- Majority voting approach
- Combines results from all three models
- Enhances accuracy and robustness of detection

...contd.

Parameters and Experimentation:

Model A (100 epochs)

- 12 layers (3 convolutional blocks)
- ReLU activation, batch normalization, max pooling, dropout
- Trained on 50x50 pixel images of eye/nose regions
- Eye Region : 95.72% accuracy
- Nose Region : 97.4% accuracy

Model B (150 epochs)

- 6 layers (3 convolutional blocks)
- ReLU activation, max pooling, dropout
- Trained on same eye/nose data as Model A
- Eye Region: 96.98% accuracy
- Nose Region : 96.76% accuracy

Model C (CViT)

- 224x224 pixel input images
- 17 convolutional layers for 7x7x512 patches
- Embed each patch into a vector
- Pass to Transformer Encoder of depth 6
- 2048 dim MLP head to Softmax for classification
- Best result: 85% test accuracy (Exp 6)

References	Algorithms	Features used	Accuracy
Our Proposed	CNNs and CViT	Entire face, Eyes, Nose	97% and 85%
CViT-based Technique [30]	CViT	Entire face	69%
CNN-based Technique [32]	CNN	Eye Region	90%

Cons: - High computational resource requirements

- Not effective in detecting deepfakes that involve changes in parts of the face other than the eyes, nose, and entire face.

Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks

- Romeo Lanzino et al., 2024

- A novel deepfake detection approach on RGB images using Binary Neural Networks(BNNs),FFT and LBP for faster inference and minimal accuracy loss.
- Author believes that modern deepfake detecting algorithms involve training complex neural networks with millions of parameters which cant run on compact hardwares like smartphones.
- · Proposed model achieved sota performance on datasets like COCOFake, DMFD, CIFAKE.
- What are BNNs?
 - Binarizing weights and activation functions using a sign function.

 $sign(x_r) = \begin{cases} +1, & \text{if } x_r \ge 0, \\ -1, & \text{otherwise.} \end{cases}$

- Replacing majority of arithmetic operations with bitwise operations
- Theoritical speedup of 58x in inference time, 32x less memory
- Can convert any CNN to a BNN(after handling the quantization loss)
- Proposed model uses BNext as a backbone which is pretrained on ImageNet dataset, it consists of a binary convolution module with full precision skip connections and a branch with INT-4 precision for information propagation $y = A_r \otimes W_r \approx (A_h \otimes W_h) \odot \alpha$,
- Role of Fast Fourier Transform and Local Binary Pattern
 - Deepfake generation introduces minute distortions in frequency domain. Thus introduce FFT channel
 - LBP is a texture descriptor which captures the unique textures of facial features, another channel

<u>Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks</u>

- Romeo Lanzino et al., 2024

Key layers

- Adapter layer Convolution layer to convert 5 layers to 3 layers
- Backbone layer BNext model giving a tensor of {-1,+1}^f
- Classifier layer Full precision linear layer

Full precision 1-bit / INT-4 Full precision RGB image (3, h, w) FFT lagnitude (1, h, w) LBP Real / Fake concatenation (.) shape of a tensor

Results on COCOFake and DFFD

.● Resi	uits on COC	OFake	and L	JFFD		(1,h,w)
Model	Pre-training dataset	Accuracy	AUC	Parameters (M)	FLOPs (G)	_
ResNet50	ImageNet	90.31	-	25.6	4.8	
ViT-B/32	ImageNet	87.64	-	88.3	8.56	
CLIP-ResNet50	OpenAI WIT	99.07	-	25.6	4.8	Mod
CLIP-ViT-B/32	OpenAI WIT	99.11	-	88.3	8.56	Xcer
OpenCLIP-ViT-B/32	LAION-400M	97.88	-	88.3	8.56	VGC
OpenCLIP-ViT-B/32	LAION-2B	99.68		88.3	8.56	BNe
BNext-T with frozen backbone	ImageNet	83.65	81.98	29.8	0.89	
BNext-S with frozen backbone	ImageNet	93.15	95.19	67.1	1.91	BNe
BNext-M with frozen backbone	ImageNet	84.59	82.11	133	3.39	BNe
BNext-T	ImageNet	99.25	99.86	29.8	0.89	BNe
BNext-S	ImageNet	99.28	99.89	67.1	1.91	BNe
BNext-M	ImageNet	99.18	99.91	133	3.39	BNe

Model	Accuracy	AUC	Parameters (M)	FLOPs (G)
Xception	-	99.64	40.0	18.0
VGG16	-	99.67	138.4	15.5
BNext-T with frozen backbone	89.56	87.65	29.8	0.89
BNext-S with frozen backbone	89.69	88.58	67.1	1.91
BNext-M with frozen backbone	89.61	86.64	133	3.39
BNext-T	98.95	99.94	29.8	0.89
BNext-S	99.01	99.94	67.1	<u>1.91</u>
BNext-M	98.75	99.92	133	3.39

Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks

- Romeo Lanzino et al., 2024

Result on CIFAKE ->

Conclusion

- Requires up to 5 times fewer FLOPs compared to a ResNet-50 model and nearly 10 times fewer FLOPs than a ViT-B/32 model
- Capable of matching the performance of their full-precision counterparts with minimal loss in classification accuracy

. Con

- FLOPs reductions are purely theoretical as we need specialized hardware and accelerators to realise the speedups
- Only trained on ImageNet for pretraining

	Model	Accuracy	AUC	Parameters (M)	FLOPs (G)
	ResNet-50	95.00	99.00	25.6	4.8
	VGG	96.00	99.00	133	7.63
	DenseNet	98.00	99.00	7.9	5.6
	BNext-T with frozen backbone	83.89	91.70	29.8	0.89
	BNext-S with frozen backbone	80.71	89.25	67.1	1.91
1	BNext-M with frozen backbone	82.77	90.73	133	3.39
	BNext-T	97.29	99.65	29.8	0.89
	BNext-S	96.96	99.55	67.1	1.91
	BNext-M	97.35	99.62	133	3.39

Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection

- Lalith Bharadwaj Baru et al., 2024
 - Modern deepfake detection techniques excel only under same generational family. They fail to generalize well to unseen generations(Because they learn low level artifacts unique to training model).
 - Algorithms which uses frequency based statistics generalize well on different generations but fail when training and testing data come from different distributions
 - Authors' approach
 - Dont explicitly train real vs fake classifiers, instead use feature space of a pretrained vision language model like CLIP-ViT(totally unrelated to our problem domain)
 - Apply Wavelet transformations on extracted features to split features intro frequency components
 - Low frequency components capture granular and nuanced features while high frequency components capture the sharp features. Low frequency components are valuable to us.
 - Pass the low frequency features through an MLP to capture and learn granularity.

Wavelet-Driven Generalizable Framework for Deepfake Face Forgery Detection

- Lalith Bharadwaj Baru et al., 2024

Algorithm 1 Wavelet-CLIP

11: return cls_n

```
1: Input: Dataset \mathcal{D}, Encoder Enc_{\phi}^{(\mathrm{ViT})}(.), \epsilon, n;
2: for iterations = 1 to \epsilon do
3: for batch = n do
4: Z^{(n)} = Enc_{\phi}^{(\mathrm{ViT})}(x^{(n)})
5: fv_{\mathrm{low}}^{(n)}, fv_{\mathrm{high}}^{(n)} = \mathrm{DWT}(Z^{(n)})
6: fv_{\mathrm{low}}^{(n)} = \mathrm{MLP}(fv_{\mathrm{low}}^{(n)})
7: Z_{\mathrm{new}}^{(n)} = \mathrm{IDWT}([fv_{\mathrm{low}}^{(n)}, fv_{\mathrm{high}}^{(n)}])
8: \mathrm{cls}_n = \mathrm{MLP}(Z_{\mathrm{new}}^{(n)})
9: end for
```

Dataset Name	Train/Test	No. of Samples
FaceForensics++ [30]	Train	114884
Celeb-DF v1 (CDFv1) [23]	Test	3136
Celeb-DF v2 (CDFv2) [23]	Test	16420
FaceShifter (Fsh) [9]	Test	8958

Models	Venue	Backbone	Protocol	CDFv1	CDFv2	Fsh	Avg.
MesoNet [1]	WIFS-18	Custom CNN	Supervised	0.735	0.609	0.566	0.636
MesoInception [1]	WIFS-18	Inception	Supervised	0.736	0.696	0.643	0.692
EfficentNet [32]	ICML-19	EfficentNet B4 [32]	Supervised	0.790	0.748	0.616	0.718
Xception [3]	ICCV-19	Xception	Supervised	0.779	0.736	0.624	0.713
Capusle [26]	ICASSP-19	CapsuleNet [31]	Supervised	0.790	0.747	0.646	0.728
DSP-FWA [22]	CVPR-19	Xception [3]	Supervised	0.789	0.668	0.555	0.677
CNN-Aug [16]	CVPR-20	ResNet50 [19]	Supervised	0.742	0.702	0.598	0.681
FaceX-ray [21]	CVPR-20	HRNet [21]	Supervised	0.709	0.678	0.655	0.681
FFD [5]	CVPR-20	Xception [3]	Supervised	0.784	0.7435	0.605	0.711
F ³ -Net [12]	ECCV-20	Xception [3]	Supervised	0.776	0.735	0.591	0.700
SRM [10]	CVPR-21	Xception [3]	Supervised	0.792	0.755	0.601	0.716
CORE [27]	CVPR-22	Xception [3]	Supervised	0.779	0.743	0.603	0.708
RECCE [2]	CVPR-22	Custom CNN	Supervised	0.767	0.731	0.609	0.702
UCF [17]	ICCV-23	Xception [3]	Supervised	0.779	0.752	0.646	0.725
CLIP [11]	CVPR-23	ViT [7]	Self-Supervised	0.743	0.750	0.730	0.741
Wavelet-CLIP (ours)	7-	ViT [7]	Self-Supervised	0.756	0.759	0.732	0.749

MANAN PER STATE OF TECHNICAL

DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion

Key Idea:

- Instead of detecting superficial artifacts, DiffusionFake focuses on identity-level feature separation.
- Uses Stable Diffusion to enhance deepfake feature disentanglement.

Step-by-Step Process:

- 1. Feature Extraction (CNN-Based Encoder)
 - a. Extracts latent features from a deepfake image x_f as $f=E(x_f)$
- 2. Feature Filtering Module (FFM)
 - a. Splits features into:
 - i. $f_s \rightarrow$ **Source features** (motion, expression).
 - ii. $f_{+} \rightarrow$ **Target features** (identity, texture).
 - iii. $f_s = F_s(f)$, $f_t = F_t(f)$ where F_s and F_t are filtering networks.
- 3. **Weight Module** (Involves weight module loss $L_{ws} + L_{wt}$): The Weight Module ($W_s(f), W_t(f)$) determines the importance of source vs. target features
- 4. **Stable Diffusion for Feature Learning** (Involves Reconstruction Loss L_s , L_t)
 - a. Uses **frozen Stable Diffusion** to ensure f_s and f_t contain meaningful identity features.
 - b. $x_s' = SD(f_s), x_t' = SD(f_t)$
- 5. **Deepfake Classification**
 - a. Classifier predicts **real or fake** using f_s and f_t.
 - b. $\hat{Y}=Classifier(f_s,f_t)$

The total loss function combines: Cross-Entropy Loss (L_{ce}) for classification. + Reconstruction Loss (L_{s} , L_{t}) for disentanglement + weight module loss.

- $L = L_{CE} + \lambda_s L_s + \lambda_t L_t + L_{ws} + L_{wt}$
- $\lambda_s \lambda_t$ are weighting factors (hyperparameters) for reconstruction loss.
- L_{CE} ensures correct real vs. fake classification.

Figure 1: Pipeline of the generation process of Deepfake (a) and our proposed DiffusionFake (b).

Experimental Findings

- Trained on FF++ dataset, tested on Celeb-DF, DFDC-P, WildDeepfake, DFD, and DiffSwap
- Improvement of ~7-10% acc across all
- Stable Diffusion is crucial → Removing it drops acc by 6%.
- Feature Filter is important → Removing it drops acc by 5%.
- Weight Module is essential → Removing it drops acc by 3%.
- No additional parameters or computational overhead during inference.

Why is DiffusionFake More Effective?

CNN-based methods fail on unseen deepfakes \rightarrow They rely on dataset-specific artifacts. **DiffusionFake generalizes better** \rightarrow Uses identity-based feature separation.

Technical Improvements:

<u>Method</u>	Feature Extraction Approach	Performance on Unseen Deepfakes
CNN-Based Classifiers	Detects artifacts (pixel inconsistencies, blur)	Poor Generalization
Frequency-Based Methods	Detects manipulation in frequency domain	Limited to dataset-specific artifacts
DiffusionFake (Ours)	Disentangles source-target identity features using Stable Diffusion	Strong Generalization

Unmasking deepfake faces from videos using an explainable cost sensitve Deep learning approach (2023)

- Dataset used: Face Forensics++ and Celeb DF V2- 80/10/10(train/test/validate)
- Preprocessing: deletion of corrupt file, face recongnition package to find frames with faces, extract key frames, resize frames- 224x224 and 30 fps.
- Adjustment of cost of datasets- for less sample class
- Four pretrained models (Xceptionnet, inceptionResNet v2, EfficientNetV2s and v2M
- Model training: <u>initial learning rate</u> .001, lowered if model performed poorely

Batch size - 16

Optimization technique - adam optimization

Global average pooling

Relu and softmax activation

Dropout rate- 0.5 to prevent overfitting

<u>Unmasking deepfake faces from videos using an explainable cost sensitve</u> <u>Deep learning approach(2023)</u>

Performance matrix

Model	Accuracy	Precision	Recall	F1-Score
XceptionNet	98%	0.98	0.98	0.98
EfficientNetV2S	97%	0.97	0.97	0.97
EfficientNetV2M	97%	0.97	0.97	0.97
InceptionResNetV2	97%	0.97	0.97	0.97

Novelty:

key frame extraction: measure difference between frames rather than frame by frame

cost sensitive neural networks: higher weight to lower class.

Video Face Manipulation Detection Through CNNs(2020)

Objective:

Detecting manipulated facial videos (deepfakes, FaceSwap, etc.) using embedding of attention layers Convolutional Neural Networks (CNNs).

Methodology: Operate on a small part of video, non reversible operations leaves peculiar footprint that exposes editing

Attention layer based CNN:

- Uses EfficientNetB4 as a base model : ImageNet dataset shows an efficiency of 83%, Xceptionnet has 79%
- Incorporates attention layers to highlight key facial regions.

<u>Video Face Manipulation Detection Through CNNs(2020)</u>

Datasets Used:

- FaceForensics++ (FF++): Contains 4000 manipulated videos.
- DeepFake Detection Challenge (DFDC): Over 119,000 videos.

0

Results & Performance:

- The attention layer based model outperforms the baseline (XceptionNet).
- Future work is to incorporate temporal analysis.

roving

Sowmen Das et al. "Towards Solving DeepFake Problem: Improving DeepFake Detection using Dynamic Face Augmentation"

- Overcomes the problem of overfitting (due to oversampling) in datasets (Memorize)
- Deepfake generation Variation Auto Encoders (VAE) and GANs
- Face clustering unique subjects and no. of subjects
- Preprocessing steps to prevent data leak Split the data based on face clusters

Face-Cutout (Dropout)

- Uses landmark positions to augment training images
- Calculate polygons for face- cutout
- Sensory group removal and convex hull removal

Experimental Setup and Results

- Model Selection EfficientNet-B4 and XceptionNet
- LogLoss calculation for comparison
- Face-cutout augmentation outperforms

Zhengjie Deng et al. "DeepFake Detection Method based on Face Edge Bands"

- Synthetic forgery traces found at the edges of faces
- Uses only edge bands of faces for deepfake detection
- EfficientNet B3 is the training network used
- Dilation, Erosion and Bitwise Not Algorithm
- Smaller no of pixels used for AUC of over 99.8%

FIGURE 7. List of datasets used in Deepfake related studies.

TABLE 5. Distribution of used models.

Category	Model	#Studies
	CNN	71
Deep Learning	RNN	12
	RCNN	2
	SVM	11
	k-MN	4
	LR	3
	MLP	3
Machina Lagraina	BOOST	2
Machine Learning	RF	1
	DT	1
	DA	1
	NB	1
	MIL	1
Statistical	EM	1
Statistical	TV, KL, JS	1

A Recurrent Neural Network (RNN) is a type of neural network designed to process sequential data. Unlike traditional feedforward neural networks, RNNs have loops that allow information to persist across timesteps.

Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs) are their more advanced variants.

Expected Outcome and deliverables

Taking computational capacity into account, we will design a Streamlit-based frontend for the detection of Deep Fake images and videos.

Phase 1: Deep Fake Image Detection

- Utilize a CNN and train a classifier on the publicly available 140k Real and Fake Faces dataset from Kaggle. (DenseNET/VGGFace/XceptionNet/Custom CNN Architectures) and provide Heatmap Visualization.
- Conduct robustness analysis to further evaluate the model.

Phase 2: Deep Fake Video Detection

- Initially employ the mini_face_forensics dataset from Kaggle for model training and evaluation.
- Explore potential model architectures:
 - CNN + LSTM/GRU combination.
 - ViTs, such as CViT/Swin Transformer/FasterViT
 - Model Ensembling
- Extract features using state-of-the-art pretrained models such as InceptionV3 or XceptionNet for transfer learning. The pretrained model will be used to obtain a feature vector, further the LSTM/ViT layers will be trained using these features and create a baseline model.
- Implementation Strategy:
 - Integrate various techniques from research papers studied to improve baseline model performance.
 - If feasible, apply the finalized model to a state-of-the-art Faceforensics++ dataset for further validation.
- Deliverables:
 - A web-based interface for Deep Fake detection.
 - Jupyter Notebooks documenting the implementation.

<u>Timeline</u>

Ongoing Literature review In Progress Dataset Acquisition <u>30 Mar</u> Preprocessing **Training Models** <u>5 APR</u> Trained models apply on test **10 APR** dataset, Robustness analysis etc Performance Analysis 16 APR

Presentation and code review as per alloted schedule

