DB-SCAN

Density-Based Clustering

Clustering based on density (local cluster criterion), such as density-connected points

Each cluster has a considerable higher density of points than outside of the cluster

DBSCAN

DBSCAN is a density-based algorithm.

- Density = number of points within a specified radius r (Eps)
- A point is a core point if it has more than a specified number of points (MinPts) within Eps

These are points that are at the interior of a cluster

- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point.

Density-Based Clustering: Basic Concepts

- Two parameters:
 - · Eps: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- NEps(p): {q belongs to D | dist(p,q) ≤ Eps}
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, MinPts if
 - p belongs to NEps(q)
 - · core point condition:
 - |NEps (q)| ≥ MinPts

Density-Reachable and Density-Connected

Density-reachable:

 A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly density-reachable from pi

Density-connected

 A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

Min-pts = 3

х	У	
	2	10
	2	5
	8	4
	5	8
	7	5
	6	4
	1	2
	4	9
	X	2 2 8 5 7 6 1

Euclidean Distance			A2	А3		Α4		A5		A6		A7	A8	
A1		0												
A2		5		0										
A3	8	3.49	6.0	8	0									
A4	3	3.61	4.2	4	5		0							
A5	7	7.07		5	1.41		3.61		0					
A6	7	7.21	4.1	2	2		4.12		1.41		0			
A7	8	3.06	3.1	6	7.28		7.21		6.71		5.39		0	
A8	2	2.24	4.4	7	6.4		1.41		5		5.39	7.6	52	0

	0	0	С	С	С	С	0	С
Euclidean								
Distance	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	5	8.49	3.61	7.07	7.21	8.06	2.24
A2	5	0	6.08	4.24	5	4.12	3.16	4.47
A3	8.49	6.08	0	5	1.41	2	7.28	6.4
A4	3.61	4.24	5	0	3.61	4.12	7.21	1.41
A5	7.07	5	1.41	3.61	0	1.41	6.71	5
A6	7.21	4.12	2	4.12	1.41	0	5.39	5.39
A7	8.06	3.16	7.28	7.21	6.71	5.39	0	7.62
A8	2.24	4.47	6.4	1.41	5	5.39	7.62	0
	A1	A2	A3,A5,A6	A4,A8	A3,A5,A6	A3,A5,A6	A7	A4,A8

 ε = 2 and min pt = 2

A1, A2 and A7 are outliers

There are 2 clusters formed:

Cluster1: A3,A5,A6

Cluster2: A4,A8

	B/O	В/О	B/O	С	С	С
Euclidean						
Distance	А	В	С	D	E	F
Α	0	0.7	5.7	3.6	4.2	3.2
В	0.7	0	4.9	2.9	3.5	2.5
C	5.7	4.9	0	2.9	1.4	2.5
D	3.6	2.9	2.9	0	1	0.5
E	4.2	3.5	1.4	1	0	1.1
F	3.2	2.5	2.5	0.5	1.1	0
	A,B	A,B	C,E	D,E,F	C,D,E,F	D,E,F

 ε = 2 and min pt = 3

Visiting the Border/Outlier Points:

C: Neighborhood points = E which is a core point Thus C is a Border point

A: Neighborhood points = B which is a B/O

B: Neighborhood points = A which is a B/O
Thus A and B are outlier

Original Points

Point types: core, border and noise

Determining Eps and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor (e.g., k=4)

DB Scan algorithm

- 1. $S=\{x_1,x_2,...,x_n\} \in \mathbb{R}^m$
- 2. Chose value for r>0 and $\epsilon>0$ where r= no of points and $\epsilon=$ distance of two points
- 3. $A_i = \{ x \in S : d(x_i, x) \le \} ; i = 1, 2, 3 \dots n$
- 4. if $|Ai| \ge r$, calculate all those Ai
- 5. Take union of $A_i \& A_i$ if $A_i \cap A_i \neq \emptyset$
- 6. Repeat 5 till no union take place.

DBSCAN: Complexity

<u>Time Complexity</u>: O(n²)—for each point it has to be determined if it is a core point, can be reduced to O(n*log(n)) in lower dimensional spaces by using efficient data structures (n is the number of objects to be clustered);

Space Complexity: O(n).

Questions?