Real Analysis and Probability (MTH 9831). Final Examination

Instructions: Please print your name below. Solve any 6 problems. Points above 100 will be counted as extra credit. Indicate by a check in the comments column below up to 6 problems, for which you want to receive credit. Unchecked problems will not be graded. If you check more than 6 problems, the first 6 checked problems will be graded. Good luck! And Happy Holiday Season!

Student name:	Grade

Problem	Out of	Score	Comments
1	20		
2	20		
3	15		
4	15		
5	15		
6	15		
7	20		
8	15		
9	15		
10	20		
Total	170		required: 100

Problem 1. Suppose that the security's price follows the binomial model with parameters u=1.2, d=1/1.2, r=0.02. The initial price of the security is \$60. Find the risk-neutral price of the derivative that expires at time 4 and pays \$3 if the price stays between 40 and 100 at all times before the expiration; otherwise it pays nothing.

Problem 2. Let $(N(t))_{t\geq 0}$ be a Poisson process with intensity λ . Let T_i be the first time when $N(t)=i, i\in\{1,2\}$. Find

(a)
$$P(T_1 < s \mid N(t) = 2)$$
; (b) $E(T_2 \mid T_1)$.

Problem 3. Let (X_1, X_2) have the following joint moment generating function (λ, μ, ν) are positive parameters)

$$M_{(X_1,X_2)}(t_1,t_2) = \exp\left(\lambda(e^{t_1}-1) + \mu(e^{t_2}-1) + \nu(e^{t_1+t_2}-1)\right).$$

Determine the marginal distributions of X_1 and X_2 . Are X_1 and X_2 are dependent or independent?

Problem 4. Let τ_1 be the first time the simple symmetric random walk hits 1. Show that τ_1 is a stopping time (with respect to the natural filtration of the random walk).

Problem 5. Consider a measurable space $(\mathbb{R}, \mathcal{B})$ and the following two probability measures on it: for every $A \in \mathcal{B}$

$$P(A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx; \quad Q(A) = \int_A \frac{1}{\sqrt{2\pi}} e^{-(x+1)^2/2} dx.$$

Are these measures equivalent? If yes, then explain why and find $\frac{dQ}{dP}$. If no, then illustrate how the equivalence fails.

Problem 6. True or false? If X_1 and X_2 are two normal random variables and $Cov(X_1,X_2)=0$ then X_1 and X_2 are independent. Give either a proof or a counterexample.

Problem 7. Let $(X_n)_{n\geq 1}$ be an i.i.d. sequence of exponential random variables with parameter 1. Show that $X_n/n\to 0$ almost surely as $n\to\infty$.

Problem 8. Let X_0, X_1, \ldots be i.i.d. random variables, and $P(X_0 = 1) = P(X_0 = -1) = 1/2$. Define the stochastic process $(S_n)_{n>0}$ as follows

$$S_0 = 0$$
, $S_{n+1} = \begin{cases} S_n + X_{n+1}, & \text{if } X_0 = 1\\ S_n + 2X_{n+1}, & \text{if } X_0 = -1, \end{cases}$

and let $\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n)$, $n \geq 0$. Is this process a martingale? Is this process a Markov process? (Everything is with respect to $(\mathcal{F}_n)_{n>0}$.)

Problem 9. Let τ_a be the first time when a Brownian motion hits level a, $a \neq 0$. Find the density of τ_a . Is τ_a integrable?

Problem 10. Let $(B(t))_{t>0}$ be a Brownian motion.

- (a) Show that $(B^2(t) t)_{t \ge 0}$ is a martingale (with respect to the natural filtration).
- (b) Let a, b > 0 and $\tau = \inf\{t \ge 0 : B(t) \in \{-a, b\}\}$. Prove that $E\tau = ab$.