## $\begin{array}{c} {\rm BBM}\ 205 \\ {\rm Spring}\ 2015\ {\rm Final}\ {\rm Exam} \end{array}$

## SHOW YOUR WORK TO RECEIVE FULL CREDIT. KEEP YOUR CELLPHONE TURNED OFF.

| 1. (3 points) Use <b>pigeonhole principle</b> to show that in any simple connected graph, there are two vertices that have the same degree. |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                                                             |  |  |  |  |  |  |  |  |
| 2. (2 points) Use a <b>proof by contraposition</b> to show that if $x + y \ge 2$                                                            |  |  |  |  |  |  |  |  |

where x and y are real numbers, then  $x \ge 1$  or  $y \ge 1$ .

- 3. (7 points) (a) (1 point) How many license plates can be made using either three letters followed by three digits or four letters followed by two digits?
  - (b) (.5 points) How many different functions are there from a set with 10 elements to a set with 5 elements?
  - (c) (1.5 points) How many permutations of the letters ABCDEFG contain
    - a) the string BCD?
    - b) the strings ABC and CDE?
    - c) the strings CBA and BED?
  - (d) (1 point) Show that if n and k are integers with  $1 \le k \le n$ , then  $\binom{n}{k} \le n^k/2^{k-1}$ .
  - (e) (1 point) How many different ways are there to choose 6 donuts from the 21 varieties at a donut shop?
  - (f) (1 point) How many different strings can be made from the letters in ABRACADABRA, using all letters?
  - (g) (1 point) A bowl contains 10 red balls and 10 blue balls. A person selects balls at random without looking at them. How many balls must be selected to be sure of having at least three balls of the same color?

| 4. | (8 points) | (a) | (2 points) | Draw | these graphs: | $K_4$ , | $C_5$ , | $K_{2,3},$ | $Q_3$ . |
|----|------------|-----|------------|------|---------------|---------|---------|------------|---------|
|----|------------|-----|------------|------|---------------|---------|---------|------------|---------|

- (b) (1.5 points) For which values of n are these graphs bipartite?
  - a)  $K_n$  b)  $C_n$  c)  $Q_n$

- (c) (2 points) How many vertices and how many edges do these graphs have?
- a)  $K_n$  b)  $C_n$  c)  $K_{m,n}$  d)  $Q_n$

- (d) (1.5 points) Find the degree sequence of each of the following graphs:
- a)  $K_4$  b)  $C_5$  c)  $K_{2,3}$
- (e) (1 point) Determine whether each of these sequences is the degree sequence of a graph. For those that are, draw a graph having the given degree sequence.
  - a) 5,4,3,2,1,0
  - b) 1,1,1,1,1,1

- 5. (2 points) Represent the graph below using
  - a) an adjacency list,
  - b) an adjacency matrix.



6. (1 point) Find all cut-vertices of the graph below.



7. (1 point) A simple graph is called k-regular if every vertex has degree k. Show that if a bipartite graph G = (V, E) is k-regular for some positive integer k and  $(V_1, V_2)$  is a bipartition of V, then  $|V_1| = |V_2|$ .

8. (4 points) Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.



9. (2 points) Determine whether the given graph has an Euler circuit. Construct such a circuit when one exists. If no Euler circuit exists, determine whether the graph has an Euler path and construct such a path if one exists.



- 10. (2 points) (a) (1 point) For which values of m and n does the complete bipartite graph  $K_{m,n}$  have a Hamilton circuit?
  - (b) (1 point) Can you find a simple graph with n vertices (and  $n \ge 3$ ) that does not have a Hamilton circuit, yet the degree of every vertex in the graph is at least (n-1)/2?

11. (3 points) (a) (1 point) Derive a recurrence relation for  $C(n, k) = \binom{n}{k}$ , the number of k-element subsets of an n-element subset. Specifically, write C(n+1,k) in terms of C(n,i) for appropriate i.

(b) (2 points) Solve the recurrence relation with the given initial condition below.  $a_n = 7a_{n-1} - 10a_{n-2}$ ;  $a_0 = 5$ ,  $a_1 = 16$ .

12. (2 points) Let  $f_i$  be the *i*th Fibonacci number. **Use induction** to prove that  $f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1}$  when n is a positive integer.

13. (3 points) (a) (1 point) Show that  $x^2 + 4x + 17$  is  $O(x^3)$ .

(b) (2 points) Show that  $x^3$  is **not**  $O(x^2 + 4x + 17)$ .

## **Extra Point Questions:**

You can answer up to 3 questions to earn extra points.

Please **mark** which questions you choose to answer.

- 14. (3 points) Prove that at least one of the real numbers  $a_1, a_2, \ldots, a_n$  is greater than or equal to the average of these numbers.
- 15. (3 points) Use induction to prove that if n is a positive integer, then 133 divides  $11^{n+1} + 12^{2n-1}$ .
- 16. (3 points) Show that if G is a bipartite simple graph with n vertices and e edges, then  $e \le n^2/4$ .
- 17. (3 points) Show that a simple graph G with n vertices is connected if it has more than (n-1)(n-2)/2 edges.
- 18. (3 points) Show that every connnected graph with n vertices has at least n-1 edges.
- 19. (3 points) Suppose that v is an endpoint of a cut edge. Prove that v is a cut vertex if and only if this vertex is not pendant.
- 20. (3 points) Let S(n,k) denote the number of functions from  $\{1,\ldots,n\}$  onto  $\{1,\ldots,k\}$ . Show that S(n,k) satisfies the recurrence relation

$$S(n,k) = k^n - \sum_{i=1}^{k-1} C(k,i)S(n,i).$$