Simple Linear Regression

Foundation

Dr. Maria Tackett

$$Y = f(X) + \epsilon$$

$$Y = f(X) + \epsilon$$

Y: response variable

$$Y = f(X) + \epsilon$$

Y: response variable

X: predictor variable

$$Y = f(X) + \epsilon$$

Y: response variable

X: predictor variable

f: fixed but unknown function

$$Y = f(X) + \epsilon$$

Y: response variable

X: predictor variable

f: fixed but unknown function

 ϵ : random error

Simple linear regression

Simple linear regression

$$Y = f(X) + \epsilon$$

$$= \mu_{Y|X} + \epsilon$$

$$= \beta_0 + \beta_1 X + \epsilon$$

$$Y = \beta_0 + \beta_1 X + \epsilon$$

where the errors are independent and normally distribution, $\epsilon \sim N(0, \sigma_{\epsilon})$

$Y|X \sim N(\beta_0 + \beta_1 X, \sigma_\epsilon)$

$$Y|X \sim N(\beta_0 + \beta_1 X, \sigma_{\epsilon}^2)$$

$$Y|X \sim N(\beta_0 + \beta_1 X, \sigma_\epsilon^2)$$

Regression standard error

Once we fit the model, we can use the residuals to calculate the **regression standard error**

$$\hat{\sigma}_{\epsilon} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n-2}}$$

Standard error of $\hat{\beta}_1$

$$SE_{\hat{\beta}_1} = \hat{\sigma}_{\epsilon} \sqrt{\frac{1}{(n-1)s_X^2}}$$

