《电磁作用分析及重要应用》

- 1. 《电磁作用分析及重要应用》思维导图(或章总结)
- 2. 课外拓展阅读:量子 Hall 效应
- 3. 质量为m电荷为q的粒子在恒定的互相垂直的电场 $\vec{E} = E_0\vec{e}_x$ 和磁场 $\vec{B} = B_0\vec{e}_z$ 中运动,解答以下问题: (1) 系统的能谱和波函数 (2) 在零动量状态中速度 v 的期望值.
- 4. 设带电粒子在均匀磁场 \vec{B} 及三维各向同性谐振子场 $V(\vec{r}) = \frac{1}{2} \mu \omega_0^2 r^2$ 中运动,求能谱公式.
- 5. 一个处于磁场 $\vec{B} = \nabla \times \vec{A}$ 中的无自旋带电粒子的 Hamilton 量为 $H = \frac{1}{2m} (\vec{p} e\vec{A}(r))^2$,其中 $\vec{p} = (p_x, p_y, p_z)$ 是粒子位置 \vec{r} 的共轭动量. 设 $\vec{A} = -B_0 \vec{y} \vec{e}_x$,对应着一个均匀磁场 $\vec{B} = B_0 \vec{e}_z$. (1) 证明 p_x 和 p_z 是运动恒量; (2) 求该体系的能级.