

•			
\cap	intersection	Σ_{ϵ}	$\Sigma \cup \{\epsilon\}$
\cup	union	u	blank symbol (also □)
\subseteq	subset	Γ	stack or tape alphabet
\subset	proper subset	Γε	$\Gamma \cup \{\epsilon\}$
⊄	not a subset	$\mathcal{P}(Q)$	power set of Q
€	element of	$\mathcal R$	all regular expressions over Σ
∉	not an element of	×	Cartesian (cross) product
\Leftrightarrow	if and only if	\neg	not (negation)
\rightarrow	implication	٨	and (conjunction)
\forall	for all	V	or (disjunction)
3	there exists	$\#_{a}(w)$	the number of times symbol a appears in string w
*	Kleene star	(a b)	a or b (regular expression)
•	concatenation	lwl	the number of symbols in string w
δ	transition function	{ <i>w</i> y }	the set of all w such that y is true
ε	empty string (also λ)	w^R	reverse of w
Ø	empty set	$\langle X \rangle$	encoding of X
Σ	alphabet	$A \leq_P B$	language A is <i>polynomial reducible</i> to language B

Definitions

Finite Automaton DFA = $(Q, \Sigma, \delta, q_0, F)$

- 1. Q is a finite set of states
- 2. Σ is a finite alphabet
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

Nondeterministic Finite Automaton NFA = $(Q, \Sigma, \delta, q_0, F)$

- 1. Q is a finite set of states
- 2. Σ is a finite alphabet
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function
- 4. $q_0 \in Q$ is the start state
- 5. $F \subseteq Q$ is the set of accept states

Generalized Nondeterministic Finite Automaton GNFA = $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$

- 1. Q is a finite set of states
- 2. Σ is a finite alphabet
- 3. $\delta: (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \to \mathcal{R}$ is the transition function
- 4. q_{start} is the start state
- 5. q_{accept} is the accept state

Regular Expression R is a regular expression if R is

- 1. a for some a in the alphabet Σ
- 2. ε
- 3. Ø
- 4. $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions (union)
- 5. (R_1R_2) where R_1 and R_2 are regular expressions (concatenation), or
- 6. (R_1^*) where R_1 is a regular expression (Kleene star).

Grammar $G = (V, \Sigma, R, S)$

- 1. V is a finite set of variables (non-terminals)
- 2. Σ is a finite set of *terminals*, disjoint from V
- 3. R is a finite set of rules
- 4. $S \in V$ is the start variable

Right-Linear Grammar G is Right-Linear if

3. All rules in R are of the form $A \to xB$ or $A \to x$ where $A, B \in V, x \in \Sigma^*$

Context-Free Grammar CFG Grammar G is Context-Free if

3. All rules in R are of the form $A \to w$ where $A \in V$, $w \in (V \cup \Sigma)^*$

Greibach Normal Form

A grammar is in Greibach normal form if every rule is of the form $S \to \varepsilon$ or $A \to aX$ where S is the start variable, A is any nonterminal, a is any terminal, and X is a (possibly empty) sequence of nonterminals not including S.

Chomsky Normal Form (CNF)

A grammar is in Chomsky normal form if every rule is of one of the following forms

$$S \to \varepsilon$$

$$A \to BC$$

$$A \to a$$

where S is the start variable, a is any terminal, and A, B, and C are any variables—except that B and C may not be the start variable S.

Pushdown Automaton PDA = $(Q, \Sigma, \Gamma, \delta, q_0, F)$

- 1. Q is a finite set of states
- 2. Σ is a finite *input alphabet*
- 3. Γ is a finite stack alphabet
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $F \subseteq Q$ is the set of accept states

Turing Machine TM = $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

- 1. Q is a finite set of states
- 2. Σ is a finite *input alphabet* not containing the special blank symbol \Box
- 3. Γ is a finite *tape alphabet*, where $\subseteq \Gamma$ and $\Sigma \subseteq \Gamma$
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. q_{accept} is the accept state
- 7. q_{reject} is the reject state, where $q_{\text{accept}} \neq q_{\text{reject}}$

Theorems

Pumping Lemma for Regular Languages

If A is a regular language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, $|s| \ge p$, then s may be divided into three pieces, s=xyz, satisfying all of the following conditions:

- 1. for each $i \ge 0$, $xy^iz \in A$
- 2. |y| > 0
- 3. $|xy| \le p$

Pumping Lemma for Context-Free Languages

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, $|s| \ge p$, then s may be divided into five pieces, s=uvxyz, satisfying all of the following conditions:

- 1. for each $i \ge 0$, $uv^i x y^i z \in A$
- 2. |vy| > 0
- 3. $|vxy| \le p$

Language Terminology Equivalences

Recusively Enumerable ≡ Turing-recognizable ≡ Recognizable ≡ Semi-Decidable ≡ Partially Decidable Recursive ≡ Turing-decidable ≡ Decidable

Decidable Languages

$$\begin{aligned} \mathbf{A_{DFA}} &= \{ < B, w > | \ B \text{ is a DFA that accepts input string } w \ \} \\ \mathbf{A_{NFA}} &= \{ < B, w > | \ B \text{ is an NFA that accepts input string } w \ \} \\ \mathbf{A_{REX}} &= \{ < R, w > | \ R \text{ is a regular expression that generates string } w \ \} \\ \mathbf{E_{DFA}} &= \{ < A > | \ A \text{ is a DFA and } L(A) = \varnothing \ \} \\ \mathbf{EQ_{DFA}} &= \{ < A, B > | \ A \text{ and } B \text{ are DFAs and } L(A) = L(B) \ \} \\ \mathbf{A_{CFG}} &= \{ < G, w > | \ G \text{ is a CFG that generates string } w \ \} \\ \mathbf{E_{CFG}} &= \{ < G > | \ G \text{ is a CFG and } L(G) = \varnothing \ \} \end{aligned}$$

Undecidable Languages

EQ_{CFG} = {
$$\langle G, H \rangle \mid G$$
 and H are CFGs and $L(G) = L(H)$ }
 $\mathbf{A}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing Machine that accepts } w \}$
 $\mathbf{S}_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing Machine that does not accept } M \}$