

2022. 06. 04.

삼성전자

정석용

■ SDK 설치

- Vivado SDK 설치('22.6.3 기준 Ver. 2022.1)
 - ▶ Link(Xilinx 회원가입 필요) : https://www.xilinx.com/support/download.html
 - > "Xilinx Unified Installer 2022.1: Windows Self Extracting Web Installer" 클릭

■ SDK 설치

- 1. Select Product : Vivado
- 2. Select Edition: Vivado ML Standard
- ▶ 3. 체크 박스 선택

■ SDK 설치

- > 다운로드: Vivado Board Files for Digilent FPGA Boards
 - File-link: https://github.com/Digilent/vivado-boards/archive/master.zip?_ga=2.102205826.2068139069.1654266768-606320024.1654266768
 - **➢ GitHub**: https://github.com/Digilent/vivado-boards
- vivado-boards-master.zip의 \vivado-boards-master\newBoard_files 폴더 전체 복사
 - ▶ 복사 대상 경로: C:\Xilinx\Vivado\2022.1\data\boards

▶원본 링크: https://digilent.com/reference/programmable-logic/guides/installing-vivado-and-sdk

- □ 개발 보드 설명 : Digilent社 Arty A7-35t
- ➤ Xilinx社 : Artix-7 series(XC7A35TICSG324-1L) FPGA 탑재
 - **> 보드 Spec.:** <u>https://digilent.com/reference/programmable-logic/arty-a7/start</u>
 - > XDC File : Master XDC Files
 - > 예제 1: Logic gate[and, not, or, etc.] (by JSY)
 - > 제조사 제공 예제 : https://digilent.com/reference/programmable-logic/arty-a7/demos/gpio

☐ 예제 Project : Intro

- ▶ 활용 예시: 회로 내 이상 상황(OVP/OCP/OTP 등) 감지 및 Turn-off 회로 테스트 가능
 - ▶ OVP Rising Edge, OCP Falling Edge IC가 사용될 경우, NOT/OR gate 등 다수 테스트용 IC 필요
 - FPGA로 프로그래밍 시, 모든 Digital Logic 구현 가능하며, 부품구매없이 Digital 회로 간단히 테스트 가능
- ▶ 그 외, [Delay/Latch/PWM], [Open-Drain/Buffer] 등 다양한 디지털 기능 구현 가능

□ 예제 Project : 시뮬레이션

- ▶ Logic_gate.zip 압축 해제 후, Vivado로 Project OPEN
 - ➤ Source Design Sources top.v 에 gates module정의
 - 2 input, 6 output(NOT / AND / OR / XOR / NOR / NAND)
- ▶ Run Synthesis 실행하면, 베릴로그 언어로 작성된 'gates module' RTL 합성 진행됨
 - > Synthesis Open Synthesized Design Schematic 에서 FPGA LUT 연결 상태 확인가능

[소스 코드]

[신세시스 Schematic]

□ 예제 Project : 시뮬레이션

- > RTL Analysis Open Elaborated Design Schematic 에서 RTL 합성 확인 가능
 - ▶ 베릴로그 코드로 구현한 내용이 logic레벨로 구현되었는지 회로도 level 에서 검증

[RTL Schematic]

□ 예제 Project : 시뮬레이션

- ▶ Hardware에 코드 업로드 하기 앞서, 시뮬레이션 검증 진행(h/w 업로드 파일 생성 시간이 오래 걸리기 때문)
- > Sources Simulation Sources sim_1 gate_tb.v 에 시뮬레이션 정보 있음
- ▶ Time condition / Inout Source / 초기값 등 설정하면 됨

gates_tb.v × Project Summary ? _ 0 0 * C:/Users/SUB_DESK/Desktop/Logic_gate/L ∨ □ Design Sources (1) gates (top.v) timescale 1ns / 10ps ∨ □ Constraints (1) module gates_tb(); ∨ □ constrs 1(1) // Inputs Artv-A7-35-Master.xdc reg in_1, in_2; → Simulation Sources (2) //Outout wire y_not; ates_tb (gates_tb.v) (1) wire y_and; 11 wire y_or; u_gates : gates (top.v) wire y_xor; 13 wire y_nor; Waveform Configuration File (1) 14 wire y_nand; > Utility Sources (1) 15 16 gates u_gates (

Time condition

```
timescale 1ns / 10ps
     module gates_tb();
 3 🗀
     // Inputs
     reg in_1, in_2;
                  source
 8
      //Outout
     wire v not:
     wire y and;
10
     wire y_or;
11
     wire y_xor;
12
13
     wire y_nor;
     wire y_nand;
15
16
      gates u_gates (
          .in_1(in_1),
17
18
          .in_2(in_2),
19
          .y_not(y_not),
20
          .y_and(y_and),
21
          .y or(y or),
22
          .y_xor(y_xor),
23
          .y_nor(y_nor),
24
          .y nand(y nand)
25
```

Condition

```
þ initial begin
          in_1 = 0;
29
          in_2 = 0;
30
          #100:
31
32
                 in 1 = 1:
33
                in 2 = 1:
          #200
34
          #200
                in 1 = 0;
                in 2 = 0;
35
          #200
36
     endmodule
```

[Simulation 파일]

[Simulation 설정]

☐ 예제 Project : 시뮬레이션

- > SIMULATION Run Simulation Run Behavioral Simulation
 - ▶ in_1, in_2 입력에 대한 6종 출력 확인 가능
 - ▶ 노란색 막대 구간에서 in_1 = in_2 = 1(High)
 - → y_not = 0, y_and = 1, y_or = 1 등 정상 동작 확인

[Simulation 결과]

□ 예제 Project : 하드웨어 프로그래밍

- ▶ H/W 프로그래밍을 위해서는 Sources Constraints constrs_1 Arty-A7-35-Master.xdc 설정 필요
 - ▶ gate module에서 설정한 in/out 포트를 FPGA IC의 pin에 할당
- IMPLEMENTATION Run Implementation 실행
- > PROGRAM AND DEBUG Generate Bitstream

□ 예제 Project : 하드웨어 프로그래밍

- ▶ 비트스트림 파일을 이용해 FPGA에서 코드 동작 시키기
 - ▶ PROGRAM AND DEBUG Open Hardware Manager Open Target 클릭 : Target Board 연결
 - ▶ PROGRAM AND DEBUG Open Hardware Manager Program Device 클릭 : FPGA IC 선택
 - ▶ 기본 저장경로 : .\Logic_gate.runs\impl_1\gates.bit
- ▶ ※ 메모리가 아닌 FPGA내에 업로드 되기때문에 전원이 제거 시, 코드 내용도 삭제됨

[비트 스트림 업로드]

□ 예제 Project : 하드웨어 프로그래밍

- 메모리 저장용 Configuration file(*.mcs) 생성
 - > Tools Generate Memory configuration File
 - ➤ Bitstream 기본 저장경로 : .\Logic_gate.runs\impl_1\gates.bit
 - Memory Part는 Board의 실제 메모리 명 선택, 그 외 옵션은 하기 그림과 동일하게 설정

[Configuration 설정]

□ 예제 Project : 하드웨어 프로그래밍

- ▶ Programming a Configuration Memory Device : MCS파일을 Board 내 Memory에 업로드 하기
 - ▶ Hardware Target Bard Memory IC 우클릭 Program Device 선택
 - ▶ MCS 파일 선택 : 기본 저장 경로 : .\Logic_gate.runs\impl_1\gates.mcs
- ▶ 프로그래밍이 완료 되면, FPGA를 재부팅하여도 코드가 저장되어있음

[Configuration 설정]