

市政立流流的地方。其

Atomic Transition

Probabilities

Sodium Through Calcing

U.S. DEPARTMENT OF CORNEROR

NATIONAL BUREAU DE SYANDMADS

UNITED STATES DEPARTMENT OF COMMERCE • Maurice H. Stans, Secretary
NATIONAL BUREAU OF STANDARDS • Lewis M. Branscomb, Director

Atomic Transition Probabilities

Volume II Sodium Through Calcium

A Critical Data Compilation

W. L. Wiese, M. W. Smith, and B. M. Miles
Institute for Basic Standards
National Bureau of Standards
Washington, D.C.

NSRDS-NBS 22

National Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 22, 306 pages (Oct. 1969)

CODEN: NSRDA

Issued October 1969

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price \$4.50

FOREWORD

The National Standard Reference Data System provides effective access to the quantitative data of phisical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards.

The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field.

The technical scope of the NSRDS is indicated by the principal categories of da. compilation projects now active or being planned; nuclear properties, acomic and molecular properties, solid state properties thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The 'NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

Lewis M. Branscomb, Director

CONTENTS

	Gen	eral Int	roduction		
A. INTRO	DUCTORY REMARKS				Paµe i
B. SCOPE	OF THE TABLES				i
	AL REVIEW OF THE DATA SOUR				i
	d Review of the Problemritical Factors for Determining Transition				i ii
a. Ci	ritical Factors in the Experimental Method	ls			ii
	x. Measurements in Emission				ii
	3. Measurements of Anomalous Dispersio				iii
	y. Lifetime Measurements				iii
	ritical Factors in the Theoretical Methods. α. Calculations Based on Self-Consistent !				iii
	8. The Nuclear Charge Expansion Method		•		iii iii
	y. The Coulomb Approximation				v
	8. LS-coupling				vii
	ritical Factors for Forbidden Lines				viii
	tation of Systematic Trendsependence of f-values on Nuclear Charge				x x
	ystematic Trends of f-values Within Spect				x
	omologous Atoms				x
	xamples				x
	fication of Uncertainties				xiv
	RAL ARRANGEMENTS OF THE TAB RE PLANS AND ACKNOWLEDGME!				xv xv
	S				xv
	BREVIATIONS AND SYMBOLS USED IN THE				xvi
	LATIONS				xvi
Conversio	N FACTORS				xvii
	1.	ist of T	Cables		
	-				
Spectrum		Page	Spectrum		Page
Sodium	Na t	1	Silicon	Si t	71
	Na 11	8		Si 11	76
	Na III	9		Si m	81
	Na tv	12 14		Si v	87 91
	Na vi.	16		Si VI	92
	Na vII	19		Si v11	93
	Na v!11	21		Si viii	94
	Na IX	23		Si IX	96
Magnesium	Mg 1	25 29		Si X	98
	Mg II	31		Si xI	101 103
	Mg iv	32	Phosphorus	P ₁	105
	Mg v	34		Fit	110
	Mg vi	35		Рш	î 14
	Mg VII	37		P IV	116
	Mg viii	40 42		P v	120 121
	Mg x	44		Pyn	122
	Mg X1	46		P vm	123
Aluminnum	Alt	47		P ix	124
	Al II	51 56		P x	127
	Aliv	56 58		P x1	128 130
	Alv	59		Pxm	
	Al v1	60	Sulfur	S1	
	Alvii	61		S II	158
	Al viiiAl ix	63 65		S III	145
	Al x	65 67		S tv	148 150
	Al xi	69		S v1	
	Alvu	70		S	154

List of Tables-Continued

Spectrum		Page	Spectrum		Page
Sulfur-Co	ontinued				
	S viii	154	Potassium	K ₁	225
	S 1x	155		K ₁₁₁	233
	S x	156		K ıv	234
	S XII	157		K v	236
Chlorine	Cl1	158		K v ₁	237
	Cl 11	162		K v11	239
	Clui	171		K viii	240
	Cl 1v	177		K 1x	241
	Clv	179		K x	242
	Cl v1	180		K x1	243
	Cl vn	182		K xıv	244
	Clvm	184	Calcium	Ca 1	245
	Cl1x	184		Ca 11	250
	Cl x	185		Ca IV	255
Argon	Ar 1	187		Ca v	256
	Ar 11	201		Ca v1	257
	Ar 111	211		Ca vII	259
	Ar IV	214		Ca vIII	260
	Ar v	216		Ca 1X	261
	Ar vi	218		Ca x	263
	Ar vii	219		Ca x1	264
	Ar viii	220		Ca x11	265
	Ar 1x	222		Ca XIII	266
	Ar x	222		Ca xv	266
	Ar x1	223	List of Rec	cent Additional Material	268
	Ar XIII	223			

ATOMIC TRANSITION PROBABILITIES*

(A critical data compilation)

Volume II

Elements Sodium through Calcium

W. L. Wiese, M. W. Smith, and B. M. Miles

Atomic transition probabilities for about 5,000 spectral lines of the second ten elements, based on all available literature sources, are critically compiled. The data are presented in separate tables for each element and stage of ionization. For each ion the transitions are arranged according to multiplets, supermultiplets, transition arrays, and increasing quantum numbers. Allowed and forbidden transitions are listed separately. For each line the transition probability for spontaneous emission, the absorption oscillator strength, and the line strength are given along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the upper and lower states. In addition, the estimated accuracy and the source are indicated. In short introductions, which precedenes to each ion, the main justifications for the choice of the adopted data and for the accuracy rating are discussed. A general introduction contains a detailed discussion of the critical factors entering into each major experimental and theoretical method. It also includes a general critical assessment of the widely used Coulomb approximation, and a number of illustrative examples for the exploitation of regularities or systematic trends among oscillator strengths.

Key Words: Allowed and forbidden transitions; oscillator strengths; transition probabilities; sodium; magnesium; aluminum; silicon; phosphorus; sulfur; chtorine; argon; potassium; calcium.

A. INTRODUCTORY REMARKS

This is the second part of a continuing effort to critically evaluate and compile atomic transition probabilities. After completion of the first part which contained the available data for the elements hydrogen through neon [1], we scanned through the f-value** literature [2] for the heavier elements and found somewhat to our surprise that the numerical material on the elements with atomic numbers 11 through 20, i.e., up to the first element of the iron group, was rather extensive and appeared to be fairly well distributed throughout these spectra, including the higher stages of ionization. We therefore decided to systematically evaluate the data for these elements of the third period of the periodic system and in addition K and Ca. In the course of our preliminary survey we found several serious gaps and discrepancies in the data. Several research teams, in particular our own Plasma Spectroscopy Section at NBS, undertook the task to improve the situation for these spectra. Thanks to these efforts and to the availability of the Coulomb approximation by Bates and Damgaard [3], as well as to the exploitation of many evident regularities among atomic f-values [4], we are now able to present a fairly complete body of material of moderate accuracy. However, need for further improvement is quite evident on close inspection of the tables, especially for the important spectra of Sit, P1 and P11. The still rather unsatisfactory status of the numerical data with regard to accuracy is probably best indicated by the fact that this extensive compilation contains only two allowed transitions classified as having an uncertainty of less than 3 percent, namely the Na-D lines.

B. SCOPE OF THE TABLES

In our present compilation we maintain the scope and format of our earlier Volume I [1], i.e., we present critically evaluated transition probabilities of allowed and forbidden discrete transitions of elements Z=11 through 20 including all stages of ionization for which we have data. As source material all the literature references contained in [2] plus some more recent papers have been used.

We have aimed again at presenting fairly reliable f-values for at least all the strong characteristic lines of the various atoms and ions in order to present a table of general usefulness. Specifically, we have tried to include at least the first half of the multiplets listed for each spectrum either in the "Revised Multiplet Table" [5], in the "Ultraviolet Multiplet Table" [6] or in the recent "Selected Tables of Atomic Spectra" [7].

Aside from this objective of listing the stronger lines, we

Aside from this objective of listing the stronger lines, we have included all additional available material with uncertainties not exceeding 50 percent. Most of the final tabulations were undertaken during 1967 and the first half of 1968. Thus, essentially all literature through 1967 and in some cases even later work could be taken into account.

C. CRITICAL REVIEW OF THE DATA SOURCES AND METHOD OF EVALUATION

1. General Review of the Problem

The present status of our knowledge of atomic transition probabilities must still be considered as being far from ideal,

^{*}Supported by the Advanced Research Projects Agency of the Department of Deceme, under Project DEFENDER.

^{**}Hereafter, we shall use the equivalent Grms "Gransition probability, oscillator strength or f-value, and line strength" on an interchangeable basis. The numerical relationships between these quantities are given in the conversion table at the end of this General Introduction.

but some good progress has been made during the last few years. In particular, the increased availability and use of computers have made feasible much more refined theoretical approaches than would have been thought possible just a few years ago. Among the recent theoretical advances the inulticonfigurational approach, also called the method of "superposition of configurations" (SOC), developed by Weiss [8, 9, 10] and others [11, 12, 13, 14] should be especially singled out. Another significant recent development has been the application of the nuclear charge-expansion method to the calculation of f-values by Dalgarno and his co-workers [15, 16, 17]. On the experimental side, the Hanle effect method of measuring accurate atomic lifetimes must be especially mentioned as a method brought into recent prominence by the productive work of several groups, notably by Lurio and others [18, 19]. Many other proven methods have progressed quite a bit by the introduction of modern data processing techniques, which have made the data much more amenable to statistical error treatments. Finally, the detection of many systematic trends and regularities among f-values (see also C.3) ties many independently determined data together for the first time and has thus established a reliable framework of values.

In Volume I we have already given a short description of the major experimental and theoretical methods from which the bulk of the data are obtained; thus we do not have to repeat this here. For detailed descriptions of the various approaches we would also like to refer to two recent review articles, namely a review of the theoretical approaches by Layzer and Garstang [20] including those for forbidden lines and a general discussion of the various experimental methods by one of us [21].

The central problem of this compilation is the evaluation of the reliability and accuracy of the available data. Since this aspect is so crucial, we want to discuss it in detail again and thus complement and add to the remarks we have already made in our earlier published volume.

First the principal four guide-posts should be stated by which we have evaluated the accuracy of the data. These are:

I. The author's evaluation of his uncertainties.

II. The degree of agreement between the results and other reliable material.

III. The author's consideration of all major critical assumptions and factors entering into the results.

IV. The degree of fit of the data into established regularities and systematic trends or consideration of possible reasons for deviations.

Only a few general comments may be made about points I and II. All further remarks on these points depend so much on the particular available material that they have to be relegated to the individual introductions for each spectrum. Our principal comment on the authors' estimates of their uncertainties is that we have sometimes found experimentalists to give only estimates of their statistical errors, but no allowance for any suspected systematic errors. On such occasions we have been more conservative with our estimates than the original authors. In many other instances authors have been simply too optimistic in their error estimates, as is borne out by the discrepancies of their results with other reliable material much outside the mutually estimated error limits, or by discrepancies with well-established systematic trends.

Point II, i.e., specific comparisons with other data, does not warrant any further general comment. Many of the introductions on the individual spectra contain special comments on this subject. An illustrative example of our

comparison tables will be given later in some other connection (see table 7).

2. The Critical Factors for Determining Transition Probabilities

A detailed discussion is now in order on points III and IV. Since the success of an experiment or a calculation is mainly a question of how well the critical factors encountered in the particular method have been coped with, we have sorted out and collected below the major factors which need to be considered for the application of each of the major experimental and theoretical methods. This list should reflect the current state of our knowledge about the major problem areas in the various methods. In each available experiment or calculation, all these critical factors should have heen considered, e.g., all the assumptions and approximations going into the method should have been examined for validity. Thus we may use these factors as a set of criteria by which to judge each paper: If they are properly treated or accounted for, a paper should pass: otherwise it should be rejected from this compilation. However, we found that at the present time we cannot judge the literature with such a rigid procedure, since we would then lose many of the available papers because, for example, it was sometimes not feasible to consider all critical factors. We have therefore relaxed our requirements and have often included slightly defective papers, where, for example, the authors have not properly accounted for all presently known sources of systematic errors but for most of them. In these cases we have of course adjusted the estimated errors or we have discarded the absolute scale of an experiment, if only this was defective, but have used the relative values.

a. Critical Factors in the Experimental Methods

α. Measurements in Emission—The largest number of experimental f-values have been obtained from measurements of the intensities of spectral lines which are emitted from plasmas under known conditions. With arc sources the spectra of Mg I, Si I and II, S I and II, Cl I and II, Ar I and II and Ca I, with shock tubes the spectra of S I and II. Cl I and II and Ar I and with a flame source the spectrum of K I have been studied. In evaluating these experiments we have especially investigated if the following critical assumptions and factors are satisfactorily taken into account by the authors:

(a) Existence of local thermodynamic equilibrium (LTE) or, for relative f-value measurements, existence of partial LTE.

(b) Absence of self-absorption.

(c) Consideration of demixing effects in arcs.

(d) Consideration of the effects of boundary layers in shock tubes, and the effects of inhomogeneous zones in sources assumed to be homogeneous.

(e) High density corrections in plasma sources.

(f) Consideration of the intensity contributions in the line wings and for the background below the lines.

(g) Adjustments for inherent uncertainties in the diagnostic methods (for example, for uncertainties in plasma line-broadening theory).

The largest uncertainties in the f-values result if the requirements (a), (b), and (c) are not fulfilled. However, in the case of self-absorption, i.e., for deviations from requirement (b), strong lines are affected much more than the weaker ones. If the points (d) through (g) are not properly

treated, then the effects on the transition probabilities are normally much smaller and hardly ever give rise to uncertainties above 50 percent.

Absorption experiments, which in this compilation are only encountered for the cases of Mg1 and Ca1, are quite similar in their critical requirements to the above-discussed emission experiments and will therefore not be discussed further. At this point some comments are in order on the extensive transition probability tables by Corliss and Bozman [22]. The transition probabilities obtained by these authors are derived from the spectral line intensity measurements of Meggers et al. [23]. Since the primary objective of this work has been the measurement of line intensities on a uniform scale, but not the reasurement of transition probabilities, several of the critical factors and assumptions listed above were not taken satisfactorily into account Especially the nonconsideration of our points (d), (a), and (c), in that order, is probably responsible for many strong discrepancies observed between their material and other data, ranging in size up to factors of 20. Since we have other material, from fairly reliable sources, for practically all the lines treated by Corliss and Bozman, we have refrained from using any data from their tabulation.

- B. Measurements of Anomalous Dispersion—We have employed the data from several anomalous dispersion measurements, performed with the hook method, for the spectra of Na 1, Mg 1, Al 1, Si 1, K 1 and Ca 1. The most critical factors of this method are the assumptions going into the determination of the populations of the atomic energy levels from which the absorption of radiation takes place. We have however in all cases circumvented this potentially large source of systematic uncertainty by employing the results only on a relative scale, that is, by renormalizing the measured f-values to a scale different from the originally determined one.
- γ. Lifetime Measurements Lifetime measurements with the delayed coincidence and phase shift techniques as well as with the Hanle effect have been carried out for Na 1, Mg 1 and 11, Al 1, Si 1 and 11, F 1 and 11, S 1 and 11, Cl 1, Ar 1 and 11, K 1 and Ca 1 and 11. The derived transition probabilities, even though there are only very few per spectrum, are among the most accurate ones available to date. The major critical factors of lifetime experiments are:
 - (a) Radiative cascading.
 - (b) Radiation trapping or imprisonment.
 - (c) Collisional depopulation of a level.
 - (d) Self-absorption in the spectral lines emitted by the light sources used for the excitation.
 - (e) Insufficient spectral resolution for the detection of the radiation.

Points (a) and (e) can become potential sources of systematic errors only if nonmonoenergetic electron beams are used with energies sufficiently above the threshold energy of the level to be observed, because in this case one has no way of selective excitation of the atomic energy levels. Thus, if lines emitted from other levels have accidentally the same or nearly the same wavelength as the transition to be investigated, they would also be admitted to the detector if the spectral resolution of the system is insufficient. Self-absorption in the light source used for the excitation (point (d)) may be critical in Hanle effect experiments, since it leads to a distortion in the measured shape of the output signal. Cascading and radiation trapping, (a) and (b), normally tend to lengthen the measured lifetime, while collisional depopulation (c) shortens it.

b. Critical Factors in the Theoretical Methods

Theoretical treatments have provided the large majority of the data for this compilation. They contribute greatly to all first and second spectra (with the exception of Ar I and Ca I) and are the exclusive source on all higher spectra.

For the theoretical approaches the situation differs from the experiments insofar as they cannot be subjected to a systematic error analysis, since there is no simple quantitative measure available for estimating the size of the uncertainties introduced by the various approximations in the theoretical models. However, comparisons with accurate experimental results, as well as analysis of the data in the light of apparent regularities and sum rules, and, finally, general consistency checks (for example, between the dipole length and velocity approximations of the transition integral) have accomplished a great deal towards exposing the critical factors and finding general criteria which must be met for obtaining reasonably reliable theoretical f-values. The two main criteria may be stated as follows:

- (a) For transitions with equivalent electrons present in the upper or lower state the calculations should include the effects of configuration interaction, since in this case one cannot reasonably apply the independent-particle model to the jumping electron, but has to take into account correlation effects between the electrons.
- (b) For transitions where the jumping electron is in a shell by itself, the initial and final levels should be checked for possible neighboring perturbing terms, in which case a configuration interaction treatment may become necessary. But, unless such a special situation is encountered, the standard one-electron approximations should be adequate, provided the transition integral is not subject to strong cancellation effects. The spectroscopic data should also be examined for indications of spin-orbit interaction before a particular coupling scheme is adopted.
- a. Calculations Based on Self-Consistent Field (SCF) Wave Functions. The often-employed SCF calculations have been used in various levels of refinement, which may be arranged in a hierarchy of approximations such as presented in figure 1. Many comparisons with experiments have shown the following: First, for transitions between moderately or highly excited states, i.e., with the jumping electron in a shell by itself, the Hartree-Fock or the simplified Hartree-Fock-Slater approximations usually give adequate results, provided no cancellation in the transition integral and no perturbing terms are present. Secondly, for transitions involving orbits which strongly penetrate the core, polarization or relaxation of the core should also be taken into account. Thirdly, if in the case of shell-equivalent electrons (i.e., electrons with the same principal quantum number) the interaction with other electrons is very strong, i.e., if the independent-particle model breaks down, then the SCF approach should be used in conjunction with en extensive multi-configurational treatment (e.g., the superposition-ofconfigurations approach), or some equivalent procedure which adequately represents the detailed effects of electron correlations.
- β. The Nuclear Charge-Expansion Method. This method has been recently applied to a number of transitions in simpler atomic systems. Many comparisons with experiments and other theoretical methods indicate that it produces normally rather accurate f-values for high values of the nuclear charge, i.e., for the highly charged ions in each sequence. This statement applies primarily to the multiplet f-values, while the individual line f-value may be affected by deviations from LS-coupling which generally increase for the

FIGURE 1. Hierarchy of self-consistent field (SCF) approximations.

highly charged ions. This is clearly observed in figures 4 and 5, given later in connection with the discussion on the nuclear charge dependence of f-values. But in figure 6 the few available data do not permit a definite conclusion at this time. The same figures indicate, on the other hand, that the charge expansion method is, in its present level of refinement, not satisfactory at the neutral ends of isoelectronic sequences, especially for those transitions where configuration effects are pronounced. A more complete treatment of these effects is clearly needed.

γ. The Coulomb Approximation. Some detailed remarks about the Coulomb approximation [3] are in order since we have extensively applied this very useful approximation to fill many glaring gaps in the data. The Coulomb approximation does very well indeed in its proper range of application. This may be best seen when it is subjected to the two possible checks mentioned earlier, namely, first to a comparison with the most accurate experimental data and secondly to the degree of fit into the systematic trends.

Let us first review the comparisons with accurate experimental data: The most accurate ones are from lifetime measurements where the uncertainties are typically 10 percent or less. We have therefore collected in table 1 all available comparisons between the Coulomb approximation (when it is not subject to significant cancellation) and either lifetime measurements or those other data which are based on an absolute scale obtained from lifetime measurements. We have ordered these data according to the complexity of the spectra and type of transitions. One may draw the following conclusions: for one-electron spectra (part a of table 1) the agreement is very close as expected; for more complex spectra (part b), but with the jumping electron in a shell by itself, the agreement is still quite good, even in the cases of Ar I and II, and it usually becomes better the less penetrating the orbits of the states are; but, finally, with equivalent electrons present, as in Mg I (part c), large deviations are apparent which are not surprising since this is really outside the range of application for this method.

TABLE 1a. Comparison between data from the Coulomb approximation and from accurate experimental sources for one-electron spectra

		Multiple	et f-value	
Spectrum	Transition	Coulomb Approx.	Experiment	Method and Authors*
Na 1	3s — 3p	0.94	0.955 0.975 1.029	Life; Kibble et al. Life; Link. Life; Baylis.
	3p - 4d	0.095	0.106	Life, and central field approx.; Karstensen and Schramm; Prokofév.
	4p – 4d	0.97	0.91	Life, and central field approx.: Karstensen and Schramm; Prokofév.
Mg 11	3s-3p	0.89	0.96	Life; Smith and Gallagher.
K 1	4s – 4p	0.99	0.954 1.02	Life; Link. Life: Schmieder et al.
Ca 11	4s - 4p 3d - 4p	0.99 0.049	0.97 0.053	Life: Smith and Gallagher. Life: Smith and Gallagher.

^{*}The complete references are listed in the tabulations for each spectrum.

TABLE 1b. Comparison between data from the Coulomb approximation and from accurate experimental sources for transitions where the jumping electron is in a shell by itself

		Total line	strength S			
Spectrum Transition Arra	Transition Array	Coulomb Approx.	Experiment	Method and Authors*		
Arı	45 – 411	333	352	Life and stabilized arc; Klose, and Popenoe and Shumaker,		
	4p – 6s	. 17.5	12.2	Life and stabilized arc; Klose, Bues et al., Corliss and Shumaker (weak lines obtained from intermediate coupling calculations of Joinston).		
Aru	4s — 4p	468	419	Life and stabilized are; Bennett et al., Shumaker and Popenoe, Schnapauff (weak lines obtained from intermediate coupling calculations of Rudko and Tang, Statz et al., and Garstang).		

^{*}The complete references are listed in the tabulations .or each spectrum.

TABLE 1c. Comparison between data from the Coulomb approximation and from accurate experimental sources for transitions with shell-equivalent electrons

	43	Multiple	t <i>f-</i> value	
Spectrum	Transition	Coulomb Approx.	Experiment	Method and Authors*
Mgt	3s ²⁻¹ S = 3s3p ⁻¹ P°	1.656	1.85	Lite; Lurio.
			1.50	Life: Smith and Gallagher.
Ca!	452 1S - 454p 1100	1.83	1.79	Life: Lurio.
			1.74	Life; Smith and Gallagher.
			1.72	Life; Hulpke et al.
Alt	3s ² 3p ² P°-3s ² 3d ² D	0.41	0.175	Life; Budick.
	3s ² 3p ² P°-3s ² 4s ² S	0.05	0.121	Life; Demtröder.
Sitt	3s ² 3p ² P°-3s ² 3d ² D	0.57	0.57	Life; Lawrence and Savage.
	3s ² 3p ² P ⁶ - 3s ² 4s ² S	0.065	0.129	Life; Lawrence and Savage.
Sit	$3s^23p^2$ ³ P $-3s^23p3d$ ³ D°	0.462	0,068	Life; Lawrence and Savage.
	3s23p- 3P3s23p4s 3P°	0.051	0.155	Life and intermed, coupl, cale; Lawrence and Savage.
	1D-1P°	0.055	0,135	Life and intermed, coupl. calc; Lawrence and Savage.
	1S-1P°	0.056	0.100	Life and intermed, coupl, cale; Lawrence and Savage

^{*}The complete references are listed in the tabulations for each spectrum.

TABLE 2. Estimated uncertainties for f-values obtained from the Coulomb approximation

These estimates do not upply for cases with severe cancellation in the transition integral, for which the uncertainties are muc! higher. Transitions between states lower than the ones listed are considered outside the range of applicability of this approximation. The f-values for individual lines and multiplets may be sometimes less accurate due to departures from the normally applied LS-coupling (see C.2 b.5.).

	Transition		Estimated uncertainty (percent)	Isoelectronic sequences
$1s^2ms$ —	$1s^2np$	$(m=2, 3 \ldots : n=2, 3 \ldots)$	10-20	Lithium.
mp -	ns	(m=2,3;n=2,3)	10-20	
mp –	nd	$(m=2, 3 \ldots; n=3, 4 \ldots)$	10-20	
l s²2s m _f r —	$1s^22snd$	$(m=3,4\ldots,n=3,4\ldots)^2$	25	Beryllium.
$2 \mu ms -$	$2\rho n\rho$	$(m=3, 4 \ldots; n=3, 4 \ldots)^2$	25	
mp —	nd	$(m=3, 4 \ldots; r=3, 4 \ldots)$	25	
$1s^22s^22p^{\kappa}ms +$	$1s^22s^22p^nnp$	$(m=3, 4 \ldots; n=3, 4 \ldots)$		
	(a)	u = 1, 2, 3	25	Boron, carbon, nitrogen, oxygen.
	(b)	y = 4, 5	50	Fluorine, neon.
mp —	nd	$(m=3,4 \ldots n=3,4 \ldots)$	00	Trustile, ikesii
	(a)	y = 1, 2, 3	25	Boron, carbon, nitrogen,
	1-7			oxygen.
	(b)	u = 4.5	50	Fluorine, neon.
$1s^2 2s^2 2p^6 ms -$	1s22s22D6nD	$(m=3,4\ldots:n=3,4\ldots)$	20-50	Sodium.
mp —	ns or nd	$(m=3,4\ldots,n=3,4\ldots)$	20-50	E-Malanni
md -	np or nf	$(m=3,4,\ldots,n=4,5,\ldots)$	20-50	
wf-	nd	(m=4,5; n=5,6)	20-50	
1 20 20 10 1	20 20 40	$(m=4,5,\ldots,n=4,5,\ldots)^2$	50	M Company
$1s^2 2s^2 2p^6 3sms = 1.$	s-2s-2p-osup ns or nd	$(m=4, 5 \dots ; n=4, 5 \dots)^2$ $(m=4, 5 \dots ; n=4, 5 \dots)^2$	50 50	Magnesium.
n.p — md —		$(m=3, 4, \ldots, n=4, 5, \ldots)^2$	50	
ma — mf —	np or nf nd	$(m=3,4,; n=4,5,)^n$ (m=4,5,; n=5,6,)	50	
mj –	na	(m=4, 5,; n=5, 0,)	au	
$1s^22s^22p^63s^2md - 1s$	$^{2}2s^{2}2p^{6}3s^{2}np$ or nf	$(m=3, 4 \ldots : n=4, 5 \ldots)$	50	Aluminum.
ms —	np	$(m=4,5,\ldots,n=3,5,\ldots)$	50	
mp =	ns or nd	(m=4,5n=4,5)	50	
mf —	nd	$(m=4, 5 \ldots; n=4, 5 \ldots)$	50	
$1s^2 2s^2 2p^6 3s^2 3p'' ms - 1s$		5; $m = 4, 5 \dots : n = 4, 5 \dots$	50	Siliron, phosphorus, sul- fur, chlorine, argon.
mp =	ns or nd	a, m-a, a, a , $a-a$, a , a	,,,,	fur, emorme, argon.
uip –		5; $m = 4, 5 \dots : n = 4, 5 \dots$	50	

Range depends on comparison material in isoelectronic sequence and goodness of fit into systematic trends,

 2 3d-4p triplets and 3d-4f singles only

The Coulomb approximation results fit also remarkably well into the systematic trends. As some instructive examples we present figures 12, 14, 16, 19, 20, and 21 at the end of this general introduction, which are presented there in connection with other purposes. It is seen that the deviations of the Coulomb approximation results from the curve of best fit are hardly greater than 10 percent. Thus, to sum up, the Coulomb approximation has in its proper range of application consistently given good agreement when reliable experimental comparisons have been available, and it fits well into the regularities. Therefore its extensive use as well as its preference over some less accurate experimental methods appear to be very well warranted.

Based on these comparisons and consistency checks, as well as on the general rule that transitions between non-penetrating orbits (like 3d-4/) are more suitable for this approximation than those involving strongly core-penetrating orbits (like 3s-3p), we have given the error assignments collected in table 2. We feel that these error estimates for the Coulomb approximation are quite conservative, but they should only be upgraded when further comparisons confirm the good agreement found up to now.

δ. LS-coupling. A special word of caution is in order on our extended use of LS-coupling to obtain individual line f-values in multiplets (as well as multiplet f-values in transition arrays) from the Coulomb approximation as well as

²Eoufiguration interaction studies indicate that configuration mixing effects, which are not jurished in the Coulomb approximation, may sometimes become significant for these transitions, especially for higher ions.

from other theoretical treatments. LS-coupling should gradually become a less-reliable approximation as spectra become more complex, and, on the other hand, as the stage of ionization increases. The increasing presence of intercombination lines in the third row atoms is, for example, a clear indication of increased spin-orbit interaction.

In several instances fairly precise experimental data on individual lines as well as t. oretical values calculated in LS and intermediate coupling are available. In cases where intermediate coupling is expected to prevail, i.e., where the differences between the two coupling schemes are pronounced, the experimental values agree indeed much better with intermediate coupling theory [24, 25]. Of highest practical importance is the fact that in such cases the f-values of the stronger lines in multiplets are not nearly as much affected as the weaker lines for which the differences between the coupling schemes become then very

pronounced.

For this critical compilation we have taken the risk to hreak down very many multiplet strengths into individual tine f-values - since these are needed in most applications by using the LS-coupling scheme when no other data were available. This has been done since the scarce experimental comparision material indicates that for most of the spectra included in this compilation LS-coupling appears to be a fair approximation. However, on the basis of the above mentioned observation that the stronger lines in multiplets are usually much less affected by departures from LScoupling than the weaker components, we have differentiated between the strong and weak lines in multiplets and lowered our accuracy assignments for the weaker lines. In as much as this is a rather gross treatment of the data, we feel that many accuracy assignments for individual lines can only be regarded as provisional. We feel also that extended intermediate coupling calculations for many of the spectra presented are urgently needed to settle the question of how drastically departures from LS coupling affect individual atomic transition probabilities.

c. Critical Factors for Forbidden Lines

As in the first volume, we have listed as forbidden lines all magnetic dipole, magnetic quadrupole and electric quadrupole transitions, that is, all transitions which do not fulfill the rigorous selection rules for electric dipole lines (thus, ordinary intercombination lines are tabulated under allowed transitions). Practically all material on forbidden lines comes from calculations; only very few experimental data are available as yet. Our principal sources have heen the extensive calculations by Naqvi [26] as well as the work of Malville and Berger [27], Garstang [28, 29], Froese [30], Pasternack [31], and Czyzak and Krueger [32, 33]. These calculations are normally based on the general experssions for the line strengths of forbidden lines in the ground state configuration, which were for the p^2 , p^3 and p^4 configurations given algebraically and tabulated by Shortley [34] et al., and were later extended by Naqvi [26] to the few transitions in the sp, p, and p^3 configurations.

The principal differences between the various calculations are the ways in which the most important atomic parameters are chosen. Since the latter represent the most critical factors affecting the results, we shall discuss the choice of

these parameters now in detail:

(a) The "spin-orbit," and "spin-spin and spin-other-orbit" integrals. These integrals, usually designated by \$\mathcal{L}\$ and \$\eta_{\tau}\$. have been determined either empirically or by using available wave functions. Garstang has compared the empirical

and theoretical values for some ions-the latter obtained from SCF functions with exchange-and has found differences of up to 20 percent for ζ and up to 30 percent for η . When a choice is available, we have given preference to the

empirical values.

(b) The term intervals. Here one has the choice between using exclusively experimental energy values or combining some of these with the results of the Slater theory [35] for intermultiplet separations, that is, by employing the Slater parameters F_2 . Differences between the two approaches arise mainly due to the effects of configuration interaction. These are neglected in all calculations and may cause deviations up to a factor of two. A study of Garstang [36] in 1956 led to the result that the exclusive use of observational material partially includes, at least in simple cases, the effects of configuration interaction, when the latter is otherwise not taken into account. Thus the work based on experimental term intervals has been adopted whenever available.

Naqvi [26] used in his calculations essentially the second of the above-mentioned approaches. He compared empirically determined Slater parameters F_2 for the various term intervals with theoretically derived values, and selected the one experimental parameter which was in best agreement with theory. Then he employed this particular F_2 and the Slater theory for the determination of all other term intervals. In view of the above-mentioned study by Garstang we have used from Naqvi's work normally only the transition probabilities based entirely on this parameter, i.e., based exclusively on observational material. For example, his data for the $2p^3$ configuration have not been applied when other sources have been available. On the other hand, Naqvi's calculations for the simpler sp configuration are all based an the empirical value for the one term interval there and should, therefore, take the effects of configuration interaction partially into account.

- (c) Transformation coefficients. The atoms and ions under consideration are most closely represented by the intermediate coupling scheme, but for the calculations of transition probabilities the actual wave functions are more conveniently expressed in terms of LS-coupled wave functions. The transformation coefficients were first derived by Shortley et al. [34], and were later refined by several others, in particular by Naqvi [26]. Thus, Naqvi's results have been adopted whenever the choice of the transformation coefficients hecame important and when he accounted for the effects of configuration interaction in the above-mentioned manner. It is especially worth noting that by including the effects of spin-spin and spin-other-orbit interactions on the transformation coefficients of the 2p4 configuration, some results are changed by about 10 percent.
- (d) The integral sq for electric quadrupole transitions. This depends principally on the quality of the employed wave functions. We have preferred calculations with SCF wave functions over those with hydrogenic functions or screening constants and, among SCF calculations, we have preferred those with exchange effects included over those without exchange. The improvement with SCF wave functions against the former is estimated to be of the order of 20 percent. The uncertainty in sq should generally be in the neighborhood of 20 percent.

Some useful remarks may also be made about comparisons of the calculated forbidden line strengths with recent experimental results. At the time when our first table of transition probabilities was completed in 1965, we knew of only one reliable comparison due to the fortunate circumstance that some forbidden [O I] lines have been observed in the aurora, and their temporal variations have been measured. In the meantime, some more forbidden lines have been observed in the laboratory and some rather precise measurements of transition probability ratios have been achieved. With this new material, several instructive and important comparisons are possible, especially for [O1] and [S1]. Laboratory measurements of several transition probability ratios of forbidden lines have been made in emission by McConkey et al. [37], LeBlanc et al. [38], Liszka and Niewodniczanski [39], and Kvifte and Vegard [40] for [O I] and by McConkey et al. [41] for [S I]. A comparison of the experimental results with the calculated values [32, 42] and our recommended "best" values is given in table 3. The agreement is consistent with the error estimates given in the theoretical papers. Other recent experiments on [Pb] by Hults [43] and on [I] by Husain and Wiesenfeld [44] are also consistent with the theoretical error estimates. However, since only rather indirect comparisons can be undertaken for these, they will not be discussed

For some magnetic dipole transitions the line strengills are, near LS-coupling, essentially given by the numbers tabulated in table 4. The transition probabilities for these lines are then simply obtained from the relations given in the conversion table at the end of this general introduction if the wavelength of the line is known. The numbers indicated by an asterisk in table 4 are exact values, while all the other numbers change slightly when deviations from LS-coupling become significant. Nagvi has calculatedfor all the configurations encountered for the atoms and ions listed in our table-the spectra at which the changes become noticeable. He finds that significant changes occur only for the $2p^2$ and $2p^4$ configurations. His results are graphically presented in figures 2 and 3. From these curves one may conveniently obtain the line strengths for some very highly charged ions like Cl XIII. These we have not listed, since there are presently no energy levels and therefore no wavelengths available, so that the transition probabilities cannot be tabulated as yet.

TABLE 3. Transition probability ratios for some forbidden lines of O I and S I

Line ratios		Ex	T1			
	l.eBlanc et al.	McConkey et al.	Kvifte and Vegard	Liszka and Niewodniczanski	Theory: Garstang	Recommended in NSRDS-NBS 4
O 1: A(5577)/A(2972) A(6363)/A(6300) A(2972)/A(**958)	22(±2) - -	18.6 0.33 > 200	0.33	 _ 45	17.6 0.32 210	20.0 0.32 180
		McConkey et al.			Czyzak and Krueger.	Recommended (this tabulation).
S 1: A(7725)/A(4589)	-	5.1 ± 0.7	-	-	5.09	5.09

FIGURE 2. Line strengths for the ${}^3P_1 - {}^3P_0$ and ${}^3P_2 - {}^3P_1$ magnetic dipole lines of the $2p^2$ configuration within the carbon isoelectronic sequence.

FIGURE 3. Line strengths for the ${}^{3}P_{1} - {}^{3}P_{0}$ and ${}^{3}P_{2} - {}^{3}P_{1}$ magnetic dipole lines of the $2p^{4}$ configuration within the oxygen isoelectronic sequence.

TABLE 4. Line strength for some magnetic dipole lines near LS-coupling

Configuration	l.ine	S _m (a1. u)
nsnp*	3P°_3P°	2.00
	3P° - 3P°	2.50
np	² P _{1/2} ° - ² P _{3/2} °	**1.33
np²	3P0-3P1	2.00
	³ P ₁ - ³ P ₂	2.50
np^3	${}^{2}\mathrm{D}^{\circ}_{3/2} - {}^{2}\mathrm{D}^{\circ}_{5/2}$	2.40
	$\begin{bmatrix} {}^{2}D_{3/2}^{\circ} - {}^{2}D_{3/2}^{\circ} \\ {}^{2}P_{1/2}^{\circ} - {}^{2}P_{3/2}^{\circ} \end{bmatrix}$	1.33
np4	aP₁ _aP₀	2.00
•	³ P ₂ - ³ P ₁	2,50
np^s	² P° - ² P° 1/2	**1.33

= 2.3...

*n = 2. o . . . ** Straight-number.

In analogy to the magnetic dipole lines discussed above, there exist also among electric quadrupole transitions a number of cases where the transition probabilities are essentially independent of the interaction parameters and depend critically only on the quadrupole integral s_q . These are the transitions ${}^1S_0 - {}^1D_2$, ${}^3P_2 - {}^3P_1$, and ${}^3P_2 - {}^3P_0$ for the p^2 and p^4 configurations and ${}^2D_{3/2}^{\circ} - {}^2P_{3/2}^{\circ}$, ${}^2D_{3/2}^{\circ} - {}^2P_{3/2}^{\circ}$, $^2\mathrm{D}^{\circ}_{5/2}-^2\mathrm{P}^{\circ}_{1/2}$, for the p^3 configuration.

On the whole, the good agreement with the observations and the assessment of the critical factors indicates that uncertainties no greater than 25 to 50 percent for the forbidden lines have to be generally expected. For the particular magnetic dipole transitions tabulated in table 4 the uncertainties should be much smaller, since their values are almost independent of the choice of the interaction parameters, and also the effects of configuration interaction and deviations from LS-coupling do not enter sensitively into the numbers. Thus the line strengths, especially for ions of lower charge, are essentially exact values. But the respective transition probabilities, on the other hand, often suffer from uncertainties in the energy level data, especially for the higher ions. It is for this reason that we have generally not gone

beyond "B" in our accuracy ratings for these transitions.
Within a given spectrum the electric quadrupole lines listed above should be the best available ones and they have been estimated to be accurate within 25 percent, while the rest of the quadrupole transitions should be accurate within 50 percent. Electric quadrupole lines have been normally rated to be of lower accuracy than magnetic dipole lines, since the uncertainties in the quadrupole integral must be added to the other uncertainties already present

for the magnetic dipole lines.

3. Exploitation of Systematic Trends

During the course of our compilation work we noticed certain regularities in the data which we have then explored and analyzed in detail. We have subsequently detected many additional systematic trends, which establish now, for the first time, a frame-work of reliable f-values tied together by this regula: behavior. The findings and conclusions of these regularity studies have been extensively discussed in several recent papers to which we refer for details [4]. Therefore we shall give here only a summary by presenting the main systematic trends exhibited in the data:

a. Dependence of f-values on nuclear charge Z. This dependence may be readily derived from conventional perturbation theory, with the result that f may be represented by a power series in Z^{-1} :

$$f = a_0 + a_1 Z^{-1} + a_2 Z^{-2} + \dots$$
 (1)

where the first term a_0 is a hydrogenic f-value [4], which vanishes for all transitions which do not involve a change in the principal quantum number. The earlier mentioned nuclear charge-expansion method, applied by Dalgarno and co-workers [15, 16, 17] to the determination of f-values,

makes explicit use of this Z-dependence.

b. Systematic trends of f-values within spectral series. In the comparatively few cases where we have numerical material for at least several members of a spectral series, the f values decrease rapidly for higher series members, in an analogous fashion as for hydrogen. The dependence of f on the principal quantum number n, or the effective quantum number n^* , is always a smooth one, even though for lower nthe f-value is not always monotonically decreasing. For higher n the f-values gradually tend to obey the liydro-

genic dependence $f \sim (n^*)^{-3}$. c. Homologous atoms. The third principal regularity concerns homologous atoms, i.e., atoms with the same outer electron structure. Here we have found that for certain analogous groups of spectral lines the f-values remain approximately constant throughout a family of homologous atoms. For example, the resonance lines of the alkalies, i.e., 2s-2p for Li, 3s-3p for Na, 4s-4p for K etc. are all close to unity. This behavior is readily understood on the basis of the Wigner-Kirkwood partial f-sum rule. If it is assumed that most of the strength of a spectral series is concentrated in its leading transition or, in the general case, its transition array (for example 3s-3p has the dominant strength in a 3s-np series), then it follows that for this dominant transition array the mean f-value is approximately given by the number obtained from the partial f-sum rule. Furthermore, in all homologous atoms the breakdown of the total strength of the transition array into multiplets and individual lines remains the same as long as the coupling scheme remains constant. It follows therefore that for all lines of dominant transition arrays in homologous atoms the f-values should stay approximately constant.

These three above-stated regularities have been proven to be extremely useful for our compilation work, principally

in the following two respects:

We were able to check many data for their degree of fit into apparent regularities and we have used their deviations or their fit as an additional guide for our

accuracy estimates.

II. We could in a number of cases obtain new f-values by exploiting either the dependence of f-values on nuclear charge or the systematic trends of f-values within spectral series. Thus for a number of highly charged ions and for higher members of some spectral series of KI, where no other data were available, we have simply performed graphical interpolations between existing data or graphical extrapolations (figs. 9-21).

d. Examples. In order to further illustrate the usefulness of the regularities, we shall give now a few examples. First, we shall give some graphical presentations of the Z-depend-

ence of f-values:

(1) The Mg-sequence transition $3s^2$ ¹S -3s3p ³P° (resonance line). The adopted data, with the exception of the point for Mgt, are from purely theoretical sources and fall quite smoothly into the expected Z-dependence as seen in figure 4. It is seen that the data of Crossley and Dalgarno [17], ob-

FIGURE 4. f-value versus 1/Z for the Mg-sequence transition $3s^2$ 1S - 3s3p 1P°.

tained by the nuclear charge-expansion method, are apparently very adequate for the higher ions (we use them for Cl VI, Ar VII and K VIII) but deviate for the lower ions increasingly from the values obtained from more advanced theoretical methods [9, 11, 13, 14], as well as from the accurate lifetime experiments of Lurio [18], and Smith and Gallagher [19] for Mg I. In order to illustrate the size of our error estimate, we have shaded in figure 4 the area covered by the adopted uncertainty of 10 percent.

(2) As two other examples we present the Be-sequence multiplets ${}^{1}P^{\circ} - {}^{1}S$ and ${}^{3}P^{\circ} - {}^{3}P$ of the $2s2p - 2p^{2}$ array (figs. 5 and 6). For the highly charged ions Na VIII, Mg IX, Al X and Si XI, which are part of this compilation, we could employ the results of charge-expansion calculations by Cohen and Dalgarno [15] for the triplet as well as the singlet. These calculations include a limited treatment of configuration interaction. In the case of the triplet the results tie in very well with the best available data for the lower ions as is seen in figure 5. The other data are the Hartree-Fock calculations by Weiss (see ref. [1]), calculations based on hydrogen-like wave functions by Veselov [45], and lifetime experiments by Lawrence and Savage [46] and Heroux [47]. We have therefore, guided in part by this good agreement, assigned the conservatively estimated uncertainties of 25 percent to the results of the charge-expansion calculations for those higher ions which are relevant for this compilation.

For the singlet $2s2p \,^{1}P^{\circ} - 2p^{2} \,^{1}S$ we encounter, however, the very different situation given in figure 6. Here the charge-expansion calculations of Cohen and Dalgarno [15], used again for the ions Na VIII through Si XI, do not tie in at all with Weiss' calculations (see ref. [1]) for the lower ions and the neutral Be atom. Furthermore, the appearance of the Z-dependence curve has taken on a different shape. At first

FIGURE 5. f-value versus 1/Z for the Be-sequence transition 2s2p ³P°-2p² ³P.

FIGURE 6. f-value versus 1/Z for the Be-sequence transition 2s2p 'P°-2p2 'S.

sight it is surprising that a triplet and singlet of the same transition array show such a different behavior, but on closer inspection the reason for this is somewhat apparent; While the upper state of the singlet transition, $2p^2 \, ^{\dagger} \hat{S}$, may strongly interact with the ground state 2s2 1S, there is, in the case of the triplet, 2p2 3P, no other 3P state which could be formed by two electrons in the n=2 shell. Thus while the 'S state may be a strong mixture of the $2s^2$ and $2p^2$ configurations, as well as possibly significant interactions from other configurations, no such strong possibility of configuration interaction exists for the ${}^{3}P$ state within the n=2 shell. The points for the lower stages of ionization in figure 6 are therefore at present rather uncertain since both Weiss' and Cohen and Dalgarno's calculations include only limited configuration mixing. A more elaborate treatment is necessary since, in neutral Be and the lower ions, the 2p2 S level is embedded in the 2sns 'S series. But higher stages of ionization this level separates from the series, so that Cohen and Dalgarno's data should gradually become rather accurate for high values of Z. But since it is not clear at what point this occurs, we have lowered our accuracy estimates for these singlet transitions in the ions Na VIII through Si XI for the time being to "E", i.e., we do not rule out uncertainties as large or larger than 50 percent.

TABLE 5. Comparison of multiplet f-values for homologous atoms in the dominant s-p transition arrays*

Tra	nution	f-value	Uncer- tainty	f-value	Uncer- tainty
		Boron (n = 2)	Aluminum.	(n = 3)
(n+1)s-(n+1)p	2S - 2P°	1.07	25%	1.43	25%
		Carbon	(n = 2)	Silicon (n	ı = 3)
np(n+1)s - np(n+1)p	3P° - 3D 3P° - 3P 3P° - 3S 1P° - 1D 1P° - 1S	0.50 0.31 0.10 0.42 0.11	50% 50% 50% 50% 50%	0.61 0.39 0.13 0.67 0.12	50% 50% 50% 50% 50%
		Nitrogen	(n = 2)	Phosphorus	(n=3)
$np^{2}(n+1)s - np^{2}(n+1)p$	4P - 4D° 4P - 4P° 4P - 4S° 2P - 2P°	0.36 0.23 0.088 0.318	25%	0.57 0.36 0.13 0.39	50% 50% 50%
	*C0 *P	Oxygen		Sulfur (n	
$np^3(n+1)s - np^3(n+1)p$	3S° — 3P	0.922 0.898		1.i 1.i	50% 50%
		Fluorine	(n = 2)	Chlorine (n = 3)
$np^4(n+1)s - np^4(n+1)p$	4P - 4P° 4P - 4D° 4P - 4S° 2P - 2S° 2P - 2S°	0.29 0.53 0.11 0.53 0.11 0.34	50% 50% 50% 50% 50% 50%	0.30 0.57 0.12 0.58 0.11 0.36	50% 50% 50% 50% 50% 50%
		Neon (n=2)	Argon (n	(=3)
$np^{\delta}(n+1)s - np^{\delta}(n+1)p$	$1s_{2} - 2p_{1}^{**}$ $1s_{2} - 2p_{2}$ $1s_{2} - 2p_{3}$ $1s_{2} - 2p_{4}$ $1s_{7} - 2p_{6}$ $1s_{2} - 2p_{6}$ $1s_{3} - 2p_{2}$ $1s_{3} - 2p_{7}$ $1s_{3} - 2p_{10}$ $1s_{4} - 2p_{2}$ $1s_{4} - 2p_{5}$ $1s_{4} - 2p_{5}$ $1s_{4} - 2p_{5}$ $1s_{4} - 2p_{6}$ $1s_{4} - 2p_{7}$ $1s_{4} - 2p_{8}$ $1s_{4} - 2p_{10}$ $1s_{5} - 2p_{2}$ $1s_{5} - 2p_{4}$ $1s_{5} - 2p_{6}$	0.123 0.164 0.265 0.158 0.228 0.047 0.273 0.394 0.246 0.073 0.034 0.157 0.018 0.114 0.056 0.170 0.245 0.077	10% 25% 10% 10% 10% 10% 10% 25% 10% 25% 10% 10% 10% 10% 10% 10% 10%	0.133 0.172 0.431 0.160 0.125 0.039 0.341 0.560 0.095 0.016 0.119 0.000 0.121 0.075 0.273 0.413 0.084 0.029 0.030 0.003	25% 25% 25% 25% 25% 25% 25% 25% 25% 25%
	$1s_5 - 2p_8$ $1s_5 - 2p_7$ $1s_5 - 2p_9$ $1s_5 - 2p_{10}$	0.122 0.027 0.373 0.085	10% 10%	0.239 0.031 0.510 0.159	25% 25%

TABLE 5. Comparison of multiplet f-values for homologous atoms in the dominant s-p transition arrays*-Continued

Transition		f-value	Uncer- tainty	f-value	Uncer- tainty	f-value	Uncer- tainty
		Lithium	(n = 2)	Sodium (1	n = 3)	Potassiu	m (n = 4)
$ns - n\rho = (n+1)s - (n+1)\rho$	² S - ² P° ² S - ² P°	0.753 1.23	3% 10%	0.982 1.35	3% 25%	1.02 1.5	10% 50%
		Berylliu	m (n=2)	Magnesiu	nı (n = 3)	Calcium	(n = 4)
ns(n+1)s-ns(n+1)p	³ S - ³ P° ¹ S - ¹ P°	1.13 1.15	25% 25%	1.41 1.24	25% 25%	1.35 1.24	> 50%*** > 50%***

^{*}The data are either the adopted "best" values of this compilation or taken from our earlier Vol. 1 [1]. The numbers are set in italics when experimental data are involved.
**Paschen notation.

TABLE 6. Comparison of multiplet f-values for homologus atoms in the dominant p-d transition arrays*

-	Fransition	f-value	Uncer- tainty	f-value	Uncer- tainty
		Boron (n	= 2)	Aluminum	(n=3)
(n+1)p - (n+1)d	2P - 2D°	0.90	25%	0.71	25%
		Carbon (n = 2)	Silicon $(n=3)$	
np(n+1)p = np(n+1)d	1P = 1P° 1P = 1P°	0.63 0.70 0.26	25% 25% 25%	0.48 0.32 0.00021	50% 50% > 50%
		Nitrogen	(n=2)	Phosphore	us (n = 3)
$n\rho^2(n+1)\rho - n\rho^2(n+1)d$	25°-2P	0.945	10%	0.30	50%
		Oxygen	(n=2)	Sulfur (n=	= 3)
$np^{3}(n+1)p - np^{3}(n+1)d$	2b = 2D ₀ 2b = 2D ₀	0.90 0.75	25% 25%	0.22 0.059	50% > 50%

[&]quot;The data are either the adopted "best" values of this exampliation or taken from our earlier Vol. I {1}. The numbers are set in italics when experimental data

TABLE 7. Comparison of f-values for some prominent transitions of S 1

Transition array	Multiplet	Couloinh approximation [3]	Miller [25]	Foster [48]	Bridges and Wiese [24]	Regularities in homologous atoms
$4s - 4\mu$ $4s - 5\mu$ $4p - 4d$ $4p - 5d$	3b - 3D, 3b - 3D, 3c - 3b 3c - 3b 3c - 3b	1.0 ₃ 1.0 ₇ (*) (*) 0.23 ₀ 0.084 ₂	 0.0057 ₃ 0.0041 ₄ 0.068 ₃	 0.0057 _K 0.0043 _H 	1.5 ₃ 1.4 ₇ 0.010 ₂ 0.0067 ₇ 0.30 ₁ 0.12 ₅	1.1 1.1 — — —

^{*}Severe cancellation is encountered.

^{***}Obtained from the Coulomb approximation. These data are considered quite uncertain and are therefore not listed in the tabulation.

It should be noted that for all chosen examples further f-values for the still higher ions like P XII, S XIII, Cl XIV etc. may be immediately read off the figures. However, we have not employed this particular material in our present compilation since no energy levels and wave lengths are available as yet, so that the f-values cannot be converted to transition probabilities and line strengths. But in other cases where energy level data exist, we have exploited the apparent Z-dependence of f-values to obtain data for higher ions simply by graphical extrapolation. For all these cases we present at the end of this general introduction the relevant Z-dependence graphs which contain the individual data points for the lower ions (figs. 10-21).

The second regularity mentioned above was the systematic variation of f-values within spectral series. Extensive data for this type of regularity are available for several spectral series of Na I, Mg II, K I, and Ca II. A smooth variation of f-value with effective principal quantum number n^* is observed in many cases and speaks for the accuracy of the data. However, the f-values do not always decrease monotonically with increasing principal quantum number. Three examples, for K I, two with a monotonic decrease and one which shows an anomalous behavior, are given graphically in figures 7, 8 and 9 at the end of this general introduction (these graphs have been also utilized for obtaining extrapolated data). The anomalous behavior has been up to now only observed among the very first members of a spectral series.

The third regularity concerns homologous atoms. To illustrate this regularity, we have compared whenever possible the multiplet f-values of the leading transition arrays for s-p and p-d transitions for second and third row atoms as well as for K and Ca. The results, compiled in tables 5 and 6, are quite interesting. First, one observes that for practically all s-p transitions the f-values increase slightly from the second row atoms to the corresponding third row atoms. For the two available cases which also contain fourth row atoms, namely the combinations, Li, Na, and K as well as Be, Mg, and Ca, no further increase in the f-value is noted between the third and fourth row atoms. But, as already mentioned, these increases are very small, so that within the approximate range of the partial f-sum rule prediction the f-values may be regarded as behaving according to this prediction, i.e., they remain essentially constant.

For most p-d transitions on the other hand, this constancy of the f-value is not preserved. In most comparisons the respective f-values for the third row atoms decrease drastically. In at least two examples (Si I $^1P-^1P^\circ$, and S I $^3P-^3D^\circ$) this is definitely due to significant cancellation in the transition integral. It is suspected that such an interference effect is playing a significant role throughout all third row atoms for these particular transitions. Any cancellation effects are of course not considered in the partial f-sum rule application so that this would account for the apparent violation.

The regularities in the f-values of homologous atoms have sometimes influenced our choices of absolute scales. We discuss as an example the case of S1. In this instance we could have chosen the absolute scale for the prominent transitions in the visible and near infrared either from the Coulomb approximation [3], or from the shock-tube work by Miller [25], or from the arc experiments by Foster [48], and Bridges and Wiese [24]. The comparison of the data in table 7 shows a pronounced spread in the absolute values by about a factor of two. For the case of the 4s-4p transitions we may also obtain an absolute scale by extrapolating from the rather accurate data for the homologous 3s-3p transitions of O1, taking account of the fact that for all 4s-4p transitions the f-values increase slightly against the corresponding

3s-3p lines (see table 5). This scale is also listed in the comparison table 7.

After subjecting as usual all methods to an extensive analysis we arrived at our final choice mainly by considering the following facts: (a) the reliability of the Coulomb approximation for the 4s-4p transitions of third row elements is quite good, e.g., in the cases of Ar I and Ar II the deviations against the most accurate methods are within 25 percent or less (table 1); (b) the point at which arc and shock-tube results overlap almost coincides with the scale obtained from the Coulomb approximation; (c) the absolute scales in the arc and shock-tube experiments are much more uncertain than the relative numbers obtained from these experiments and do not rule out the scale obtained from the Coulomb approximation; (d) the almost constant factor between the arc results of Bridges and Wiese and the Coulomb-approximation results may be readily explained on account of large uncertainties present in the absolute experimental scale, but would be very difficult to interpret due to uncertainties in the theory, since several different transition arrays are involved for which the transition integrals are independently obtained; (e) last but not least the f-values predicted from the regularities from homologous atoms support strongly the scale obtained from the Coulomb approximation.

We have therefore chosen the scale of the Coulomb approximation as the best available one and assigned accuracy ratings of 50 percent to the individual (absolute) values.

4. Classification of Uncertainties

Before leaving the subject of the review of the data sources and our method of evaluation, we want to make some remarks about our final error estimates. (But the mechanics of the evaluation process has been explained in the introduction to Volume I [1] and will therefore not be repeated.) In particular, we would like to emphasize that at the present stage of our knowledge we find it impossible to assign individual error limits to each critically evaluated number. We therefore again stick to our earlier devised classification scheme, in which f-values are divided into several levels of accuracy which differ by steps of about factors of three. We use again the following arbitrary notation:

AA	for uncertainties within
	do
	do
	do
D	do
E	for uncertainties larger than

The word uncertainty is used with the meaning "execut of possible error" or "possible deviation from the true value". We have included data of class "E", that is, very uncertain values, only in special cases. For example, we have used them when, for the most important and most characteristic lines of a spectrum, no better data were available, so that otherwise these important lines would have to be omitted. Also, we have retained class "E" f-values to keep multiplets complete. We have often made a further differentiation in the classification scheme by assigning plus or minus signs to some transitions, which serves to indicate that these lines are estimated to be significantly better or worse than the average values of this class. These should he therefore the first or last choice among similar lines.

To sum up, in our error estimates we were principally guided by the main four guide-posts stated earlier: first, by the estimates of the individual authors; second, by

the general agreement of the data with other material; third, by the author's consideration of the critical factors entering into the method; and fourth, when applicable, by the degree of fit of the data into the apparent systematic trends.

The final selections of the data depend so much on the particular material that the major justifications are given in

the individual introductions for each spectrum.

D. GENERAL ARRANGEMENT OF THE **TABLES**

We have continued to use the same general arrangement which we have adopted in Volume I, since we have received many positive comments on it. In a few special cases we have adapted our arrangement to meet the particular situation existing in some spectra. Thus, for example, for ArI we have presented, in addition to the il-coupling notation,

the Paschen notation, since it is widely used.

The wavelength and energy level data have usually been obtained from the standard spectroscopic sources, such as the tabulations of Mrs. Moore-Sitterly [5, 6, 7, 49]. In quite a number of cases she has generously furnished us with newer material from her vast literature files. Thus, for several forbidden lines our listed transition probabilities differ from the author's original values, since we use newer energy level data.

For a number of lines we had to calculate wavelengths from energy level differences. These are given in square brackets to distinguish them from the presumably more

accurate observed material.

E. FUTURE PLANS AND **ACKNOWLEDGMENTS**

We intend to extend this critical compilation in the near future to selected heavier elements. The most likely targets will be the heavier alkalis and alkaline earths, and the elements of the iron group.

It is a pleasure to acknowledge the help and cooperation of many workers in this field. In particular we would like to express our sincere appreciation to all those who have contributed by sending us preprints or as yet unpublished

material.

We also express our deep gratitude to Paul Voigt who assisted us very effectively in the early stages of this compilation. We would finally like to thank several colleagues at other institutions as well as at NBS, who upon our urging carried out special calculations or experiments to eliminate some of the most glaring defects in the data. We would like to mention especially the intermediate coupling calculations of R. Cowan and P. Murphy on Ar 1; the "superposition of configuration" calculations of A. Weiss on MgI, AlI, Al II, and Si II and III; the arc measurements of J. Richter and J. M. Bridges for Ar I, and J. B. Shumaker, Jr. for Ar II; and the lifetime measurements of J. Z. Klose for Ar I.

It is also a pleasure to acknowledge the competent help of Miss Judy Grabusnik in typing and proofreading the

manuscript.

REFERENCES

[1] Wiese, W. L., Smith, M. W., and Glennon, B. M., "Atomic Transition Probabilities -- Hydrogen through Neon," NSRDS-National Bureau of Standards 4, Vol. 1 (U.S. Government Printing Office, Washing-

[2] Glennon, B. M., and Wiese, W. L., "Bibliography on Atomic Transition Probabilities," National Bureau of Standards Miscellaneous Publication 278, April (1966). Supplement, Dec. (1987) (U.S. Government Printing Office, Washington, D.C.).

[3] Bates, D. R., and Damgaard, A., Phil. Trans. Roy. Soc. London, Ser. A242, 101 (1949).

[4] Wiese, W. L., Proc. Beam Foil Spectroscopy Conf., Tucson, Arizona (Gordon and Breach Publ., New York, 1967). Wiese, W. L., and Weiss, A. W., Phys. Rev. 175, 50-65 (1968).
[5] Moore, C. E., "A Multiplet Table of Astrophysical Interest, Revised

Weiss, A. W., Fuys. 1. (1)

[5] Moore, C. E., "A Multiplet Table of Astrophysical Interest, nevisor. Edition," National Bureau of Standards Tech. Note 36 (U.S. Government Printing Office, Washington, D.C., 1959).

[6] Moore, C. E., "An Ultraviolet Multiplet Table," National Bureau of Sec. 1 (U.S. Government Printing Office,

Washington, D.C., 1950).

- [7] Moore, C. E., "Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables," NSRDS-National Bureau of Stand-ards 3, Section 1 (1965), Section 2 (1967) (U.S. Government Printing Office, Washington, D.C.).
- [8] Weiss, A. W., Phys. Rev. 162, 71 (1967). [9] Weiss, A. W., J. Chem. Phys. 47, 3573 (1967). [10] Weiss, A. W. (to be published).

[11] Zare, R. N., J. Chem. Phys. 47, 3561 (1967).
[12] Fischer, C. F., J. Quant. Spectrosc. Radiat. Transfer 8, 755 (1968).
Astrophys. J. 151, 759 (1968).

- [13] Freese, C., Astrophys. J. 140, 36t (1964).
 [14] Steele, R., and Trefftz, E., J. Quant. Spectrosc. Radiat. Transfer 6, 833 (1966).
- [t5] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258
- [16] Dalgarno, A., and Parkinson, E. M., Proc. Roy. Soc. London A301, 253 (1967).
- [17] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).
- [18] Lurio, A., Phys. Rev. 136, A376 (1964). Schmieder, R. W., Lurio, A., and Happer, W., Phys. Rev. 173, 76-79 (1968). [19] Smith, W. W., and Gallagher, A., Phys. Rev. 145, 26 (1966).

- [20] Layzer, D., and Garstang, R. H. "Theoretical Atomic Transition Probabilities," Annual Review of Astronomy and Astrophysics, Vol. 6 (Annual Reviews, Inc., Palo Alto, California, 1968).
- /iese, W. L., "Methods of Experimental Physics," 7A, ch. 2.1 (Academic Press, New York, 1968). [21] Wiese, W. L.
- [22] Corliss, C. H., and Bozman, W. R., "Experimental Transition Probabilities for Spectral Lines of Seventy Elements," National Bureau of Standards Monograph 53 (U.S. Government Printing Office,

Washington, D.C., 1952).
[23] Meggers, W. F., Corliss, C. H., and Scribner, B. F., "Tables of Spectral Line Intensities," National Pureau of Standards Monograph 32 (U.S. Government Printing Office, Washington, D.C., 1961).
[24] Bridges, J. M., and Wiese, W. L., Phys. Rev. 159, 31 (1967).
[25] Miller, M. H., University of Maryland Technical Note BN 550, May

- [26] Naqvi, A. M., Thesis Harvard (1951).[27] Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1t31 (1965). Garstang, R. H., Ann. Astrophys. 25, 109 (1962).
- [28] Garstang, R. H., Ann. Astrophys. 25, 109 (1902). [29] Garstang, R. H., I.A.U. Symposium No. 34 on Planetary Nebulae held at Tatranska Lomnica, Czechoslovakia, Sept. (1967). [30] Froese, C., Astrophys. J. 145, 932 (1966). [31] Pasternack, S., Astrophys. J. 92, 129 (1940).

- [56] Czyzak, S. J., and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, t77 (1963).
- [33] Krueger, T. K., and Czyzak, S. J., Astrophys. J. 144, t194 (1966).
 [34] Shertley, G., Aller, L. H., Baker, J. G., and Menzel, D. H., Astrophys. J. 93, t78 (1941).

Slater, J. C., Phys. Rev. 34, t293 (1929).

- [36] Garstang, R. H., Proc. Cambridge Phil. Soc. 52, t07 (1956).
 [37] McConkey, J. W., Burns, D. J., Moran, K. A., and Emeleus, K. G., hys. Letters 22, 416 (1966).
- [38] LeBlanc, F. J., Oldenberg, O., and Carleton, N. P., J. Chem. Phys. 45, 2200 (t966).
- [39] Liszka, L., and Niewodniczanski, H., Acta. Phys. Polon. 17, 345 (1958). [39] Liszka, L., and Niewodniczanski, H., Acta, Phys. Polon. 17, 345 (1958).
 [40] Kvifte, G., and Vegard, L., Geofys, Publikasjoner Norske Videnskaps-Akad. Oslo 17, No. I (1947).
 [41] McConkey, J. W., Burns, D. J., Moran, K. A., and Kernahan, J. A., Nature 217, 538 (1968).
 [42] Garstang, R. H., Fifteenth International Astrophysical Symposium, Liège, June (1968).
 [43] Hults, M. E., J. Opt. Soc. Am. 56, 1298 (1966).
 [44] Husain, D., and Wiesenfeld, J. R., Nature 213, 1227 (1967).
 [45] Veselov, M. G., Zhur, Fignal, i Teoret, Fig. 19, 959 (1949).

[44] Husain, D., and Wiesenfeld, J. R., Nature 213, 1221 (1901).
[45] Veselov, M. G., Zhur. Ekspil. i Teoret. Fiz. 19, 959 (1949).
[46] Lawrence, G. M., and Savage, B. D., Phys. Rev. 141, 67 (1966).
[47] Heroux, L., Phys. Rev. 153, 156 (1967).
[48] Foster, E. W., Proc. Phys. Soc. London A90, 275 (1967).
[49] Moore, C. E., "Atomic Energy Levels," National Bureau of Standards Circular 467; Vol. 1 (1949); Vol. II (1952); Vol. III (1958) (U.S. Government Printing Office, Washington, D.C.).

TO ABBREVIATIONS AND SYM. final states of a line) by BOLS USED IN THE TABLES

1. Symbols for indication of accuracy:
AAuncertainties within 1%
Auncertainties within 3%
Buncertainties within 10%
Cuncertainties within 25%
Duncertainties within 50%
Euncertainties larger than 50%.

2. Abbreviations appearing in the source column of allowed transitions:

ls = LS-coupling ca = Coulomb approximation n = normalized to a different scale interp. = data interpolated from regularities extrap. = data extrapolated from regularities.

3. Types of forbidden lines: e = electric quadrupole line m =magnetic dipole line m.q. = magnetic quadrupole line.

(The total transition probability is obtained by adding the individual transition probabilities due to each type of radiation, provided there are no significant magnetic fields present, i.e., provided one may average over the magnetic quantum numbers m_i.)

4. Special symbols used in the wavelength and energy level columns:

Number in parenthesis under multiplet notation refers to running number of ref. [5] (Revised Multiplet Table). If letters "uv" are added, we refer to running number of ref. [6] (Ultraviolet Multiplet Table). If letters "UV" precede the number, we refer to ref. [7](Si I, II, III, IV Multiplet Tables and Energy Levels).

Numbers in italics indicate multiplet values, i.e., weighted

averages of line values.

Numbers in square brackets indicate approximate calculated or extrapolated values.

USEFUL RELATIONS

(A) Statistical Weights:

The statistical weights are related to the inner quantum number J_L (in one-electron spectra j) of a level (initial and

$$g_L = 2J_L + 1,$$

and to the quantum numbers of a term (initial and final states of a multiplet) by

$$g_M = (2L+1)(2S+1)$$
.

(The "multiplet" values g_M may also be obtained by summing over all possible "line" values g_L . S is the resultant spin.)

(B) Relations between the strengths of lines and the total multiplet strength:

1. Line strength S:

$$S(i, k) = \sum_{J_k, J_k} S(J_i, J_k)$$
or $S(\text{Multiplet}) = \sum_{J_k, J_k} S(\text{line})$

(k denotes the upper and i the lower term).

2. Absorption oscillator strength:

$$f_{ik}^{\text{multiplet}} = \frac{1}{\overline{\lambda_{ik}} \sum_{L} (2J_i + 1)} \sum_{J_k, J_i} (2J_i + 1) \times \lambda(J_i, J_k) \times f(J_i, J_k)$$

The mean wavelength for the multiplet $\overline{\lambda}_{i_n}$ may be obtained from the weighted energy levels. Usually the wavelength differences for the lines within a multiplet are very small, so that the wavelength factors may be neglected.

3. Transition prohabilities

$$A_{ki}^{\text{multiplet}} = \frac{1}{(\overline{\lambda}_{ik})^3 \sum_{J_k} (2J_k + 1)} \sum_{J_k, J_k} (2J_k + 1) \times \lambda(J_i, J_k)^3 \times A(J_k, J_i)$$

Relative strengths $S(J_i, J_k)$ of the components of a multiplet are listed for the case of LS-coupling in Allen, C. W., "Astrophysical Quantities," 2d ed. (The Athlone Press, London, 1963); White, H. E. and Eliason, A. Y., Phys. Rev. 44, 753 (1933); Shore, B. W. and Menzel, D. H. "Principles of Atomic Structure," p. 447 (John Wiley & Sons, Inc., New York, 1968); Goldberg, L., Astrophys. J. 82, 1 (1935) and 84, 11 (1936).

CONVERSION FACTORS

The factor in each box converts by multiplication the quantity above it into the one at its left.

	A_{ki}	fik	S
Akı	1	$\frac{6.670_2 \times 10^{15}}{\lambda^2} \frac{g_i}{g_k}$	$E_{d} = \frac{2.026_{1} \times 10^{18}}{g_{k}\lambda^{3}}$ $E_{q} = \frac{1.679_{8} \times 10^{18}}{g_{k}\lambda^{5}}$ $M_{d} = \frac{2.697_{2} \times 10^{13}}{g_{k}\lambda^{3}}$
fik	$1.4992 \times 10^{-16} \lambda^2 \frac{g_k}{g_l}$	1	E_d $\frac{303.7_5}{g_i\lambda}$ E_q $\frac{251.8}{g_i\lambda^3}$ M_d
s	E_d $4.935_3 \times 10^{-19} g_k \lambda^3$	E_d 3.292 ₁ × 10 ⁻³ $g_i\lambda$	$\frac{4.043_6 \times 10^{-3}}{g_i \lambda}$
	E_q $5.953 \times 10^{-29} g_k \lambda^5$	E_q $3.971 \times 10^{-3} g_i \lambda^3$	1
	M_d 3.707 ₆ × 10 ⁻¹⁴ $g_k \lambda^3$	M d 247.3 ₀ g _i λ	

The line strength is given in atomic units, which are: For electric dipole transitions (allowed-denoted by E_d):

$$a_0^2e^2 = 7.187_3 \times 10^{-59}m^2C^2$$

for electric quadrupole transitions (forbidden-denoted by E_q):

$$ale^2 = 2.021_6 \times 10^{-78} m^4 C^2$$

for magnetic dipole transitions (forbidden denoted by M_d):

$$e^2h^2/16\pi^2m_e^2c^2=8.599\times 10^{-63} J^2Wb^{-2}m^4$$
.

The transition probability is in units \sec^{-1} , and the f-value is dimensionless. The wavelength λ is given in Angstrom units, and g_i and g_k are the statistical weights of the lower and upper state, respectively. For the atomic constants entering into the relations, we have used the latest recommendations of the National Academy of Sciences adopted by the National Bureau of Standards (NBS Handbook 102 (1967)).

FIGURE 7. Systematic trend of f-values within a spectral series.

Plotted is 1. *Y versus n* for the 4s-np series of K 1.

Section of the Party of the Section of the

FIGURE 8. Systematic trend of f-values within a spectral series showing anomalous behavior. Plotted is $n^{*,j}$ versus n^{*} for the 4p-nd series of K 1.

FIGURE 9. Systematic trend of f-values within a spectral series. Plotted is $n^{**}f$ versus n^{*} for the $4p \cdot ns$ series of K 1.

FIGURE 10. f-value versus 1/Z for the B-sequence transition 2s²2p ²P°-2s²3s ²S. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 11. f-value versus 1/Z for the B-sequence transition 2s²2p ²P°-2s²3d ²D. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 12. f-value versus 1/Z for the Na-sequence transition 3s ²S-4p ²P°. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 13. f-value versus 1/Z for the Na-sequence transition 3s 2S-5p 2P°. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 14. f-value versus 1/Z for the Na-sequence transition 3p ²P°-4s ²S. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 15. f-value versus 1/Z for the Na-sequence transition 3d ²D ~ 4p ²P°. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 16. f-value versus 1/Z for the Na-sequence transition 3d ²D-4f ²F°. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 17. f-value versus 1/Z for the Na-sequence transition 3d ²D-5f ²F°. The complete references are listed in the introductions for cach of the spectra involved.

FIGURE 18. f-value versus 1/Z for the Na-sequence transition 3d ²D-6f ²F°. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 19. f-value versus 1/Z for the Na-sequence transition 4s ²S-4p ^{2Po}. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 20. f-value versus 1/Z for the Na-sequence transition 4p ²P°-4d ²D. The complete references are listed in the introductions for each of the spectra involved.

FIGURE 21. f-value versus 1/Z for the Na-sequence transition 4p ²Po-5s ²S. The complete references are listed in the introductions for each of the spectra involved.

SODIUM

Na I

Ground State

1s22s22p63s 2S1/2

Ionization Potential

 $5.138 \text{ eV} = 41449.65 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength (Å)	No.	Wavelength [Å]	No.	. Wavelength [Å]	No.
2433.8	16	4545.19	21	9990,3	64
2436.6	15	4664.81			
2440.0	14		31	9996.3	64
		4668.56	31	10176	73
2444.2	13	4668.6	31	10183	73
2449.4	12	4747.94	20	10290	63
2455.9	11	4751.82	20	10296	63
2464.4	10	4978.54	30	10566.0	72
2475.5	9	4982.8	30	10572	72
2490.70	8	4982.81	30	10572.3	72
2512.1	7	5148.84	19	10741	62
2543.8	6	5153.40	19	10746.4	49
2593.9	5	5682.63	29	10747	62
2680.4	4	5688.19	29	10749.3	49
2852.81	3	5688.21	29	10834.9	42
2853.01	3	5889.95	ĺ	11190.2	71
3302.37	2	5895.92	1	11197	71
3302.98	2	6154.23	18	11197.2	71
4192.9	38	6160.75	18	11381.5	17
4195.9	38	6632.1	58	11403.8	17
4198.0	27	6680.0	57	11405.6	61
4301.0					
4201.0	27	6743.1	56	11498	61
4212.9	37	6827.3	55	12311.5	70
4215.9	37	6944.0	54	12320.0	70
4220.2	26	7113.0	53	12679.2	41
4223.2	26	7373.3	52	12695	86
4238.99	36	7810.0	51	12771	85
4242.08	36	8183.26	28	12867	84
4242.1	36	8194.79	28	12907.9	60
4249.41	25	8194.82	28	12917.3	60
4252.52	25	8650.3	50	12984	83
4273.64	35	8796	47	13132	82
4276.79	35	8942.96	46	13321	81
4276.8	35	9153.88	45	13574	80
4287.84	24	9465.94	44	13920	79
4291.01	24	9492.3	77	14414	78
4321.40	34	9497.7	77	14767.5	(1)
4324.6	34	9518.5	77 67		69
			67	14779.7	69
4324.62 4341.49	34	9523.9	67	14780	69
4341.49 4344.74	23 23	9595.2	76	16373.9	59
4344.74	2.3	9600.8	76	16388.9	59
4390.03	33	9633.1	66	18465.3	40
4393.3	33	9638.7	66	22056.4	48
4393.34	33	9731.6	75	22083.7	48
4419.89	22	9737.3	75	23348.4	68
4423.25	22	9785.9	65	23379	68
4494.18	32	9791.6	65	23379.1	68
4497.66	32	9916.0	74	90880	39
4497.7	32	9921.9	74	91380	39
4477,1	ا کرت	1 9921.9 1	14	י טסקוע וו	40

Numerous determinations of the oscillator strengths for the famous D-lines of the 3s-3p doublet are available. It is surprising to find that even among the fairly recent values, differences of up to 30 percent exist (e.g., compare the multiplet oscillator strength value of 1.24 obtained from an anomalous dispersion method by Kvater [1] with a value of 0.96 obtained from a lifetime measurement by Kibble, et. al. [2]). The adopted value for the doublet is the average of the supposedly most refined versions of precise experimental and theoretical methods. Specifically it includes the results of a self-consistent field calculation including polarization effects by Biermann and Lübeck [3], a central field approximation by Prokof'ev [4], a magnetic rotation experiment by Stephenson [5], lifetime determinations with the phase-shift technique by Cunningham and Link [6], with the delayed coincidence method of Kibble, et. al. [2], and with the Hanle-effect method by Baylis [8]. An uncertainty of less than 3 percent for the averaged value is indicated by the good agreement among the various selected results.

Values for the 3s-4p, 3s-5p, 3s-6p, 3p-4s and 4s-4p transitions are taken solely from the calculations of Prokof'ev [4], which are considered more advanced than any of the other available approaches. (It should be noted that differences between the various methods are usually only of the order of a few percent.) For the transitions 3s - np, where n runs from 7 to 18, the semiempirical calculations of Anderson and Zilitis [9], and the relative anomalous dispersion measurements of Filippov and Prokof'ev [10] are available. When multiplied by a factor of 0.0134, the values of Filippov and Prokof'ev are found to agree with those of Anderson and Zilitis to within 15 percent; therefore, an average of the normalized values of Filippov and Prokof'ev and the results of Anderson and Zilitis is taken for the above transitions. The lifetime measurement of the 4d level by Karstensen and Schramm [7] has been applied to the transitions 3p-4d and 4p-4d, together with the abovequoted calculations by Prokof'ev [4] and Anderson and Zilitis [9]. Experiment and theory (i.e., the sum of the calculated transition probabilities) agree within 6 percent. The branching ratios are based solely on the calculated results.

For all other transitions, the only available sources are the Coulomb approximation and the semi-empirical calculations of Anderson and Zilitis. Agreement between the two methods is good in general; however, the semi-empirical method of Anderson and Zilitis is considered more refined and their values are used in all cases. For the 3p-6s, 3p-4d and 3p-5d transitions, additional results are available from self-consistent field calculations by Chapman, et. al. [11]. These agree within a few percent with the adopted values.

- Kvater, G. S., Vestnik Leningrad Univ. Ser. Fiz. i Khim. No. 2, 135-t41 (1947). (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.)
 Kibble, B. P., Copley, G., and Krause, L., Phys. Rev. 153, 9-t2 (1967).
 Biermann, L., and Lübeck, K., Z. Astrophys. 25, 325-339 (1948).
 Prokof'ev, V. K., Z. Physik 58, 255-267 (1929).

- Stephenson, G., Proc. Phys. Soc. London A64, 458-464 (1951). Cunningham, P. T., and Link, J. K., J. Opt. Soc. Am 57, 1000-1007 (1967). Karstensen, F., and Schramm, J., Z. Physik 195, 370-379 (1966).
- Baylis, W., Thesis Munich (1967) and to be published.
- [9] Anderson, E. M., and Zihitis, V. A., Optics and Spectroscopy (U.S.S.R.) 16, 99–101 (1964).
 [10] Filippov, A., and Prokofev, V. K., Z. Physik 56, 458–476 (1929).
 [11] Chapman, R. D., Clarke, W. H., and Aller, L. H., Astrophys. J. 144, 376–380 (1966).

Na I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	Ľk	<i>1_{ki}</i> (10 ⁸ sec⁻¹)	fik	S(at.u.)	lag gf	Accu- racy	Source
1	3s-3p	² S – ² P ^c (1)	5891.8	0	16968	2	6	0.629	0.982	38.1	0.293	Λ	2, 3, 4, 5, 6, 8
			5889.95 5895.92	0	16973 16956	2	- 1	0.630 0.628	0.655 0.327	25.4 12.7	0.117 -0.184		ls ls
2	3s-4p	² S - ² P° (2)	3302.6	0	30271	2		0.0292	0.0142	0.311	-1.55	(:+	4
ı			3302.37 3302.98	0 0	30273 30267	2 2		0.0290 0.0293	0.0094 0.00477	0.207 0.104	$\begin{vmatrix} -1.73 \\ -2.021 \end{vmatrix}$		ls Is

Na I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(A)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	KI	Kk	$A_{ki}(10^6$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
3	3s-5p	2S = 2[30	2852.8	0	35042	2	6	0.0060	0.00221	0.0415	-2.355	C+	4
		(luv)	2852.81 2853.01	0	35043 35040	2 2	4 2	0.0060 0.0060	0.00147 7.4 × 10 ⁻⁴	0.0276 0.0138	- 2.53 - 2.83	C+	ls Is
4	3s - 6p	² S - ² P° (2 uv)	2680.4	0	37297	2	6	0.00226	7.3 × 10 · 4	0.0129	-2.84	C+	4
5	3s-7p	² S – ² P° (3 uv)	2593.9	0	38541	2	6	0.00120	3.61 × 10-4	0.0062	-3.140	C+	9, 10n
6	3s-8p	² S = ² P° (4 uv)	2543.8	0	39299	2	6	6.6×10-4	1.92 × 10-4	0.00322	-3.416	C+	9, 10 <i>n</i>
7	3s - 9p	² S – ² P° (5 uv)	2512.1	0	39795	2	6	4.05 × 10 ·4	1.15 × 10-4	0.00190	-3.64	C+	9, 10n
8	3s - 10p	² S – ² P° (6 uv)	2490.70	0	40137	2	6	2.76 × 10 ⁻⁴	7.7×10^{-3}	0.00126	-3.81	C+	9, 10n
9	3s - 11p	2S-2P°	[2475.5]	0	40383	2	6.	1.94×10-4	5.3 × 10 ⁻³	8.7×10-4	-3.97	C+	9, 10n
10	3s-12p	2S 2P°	[2464.4]	0	40566	2	6	1.44×10-4	3.92×10^{-3}	6,4×10-4	-4.105	C+	9, 10n
11	3s - 13p	2S = 2P°	[2455.9]	0	40705	2	6	1.12×10-4	3.03×10^{-3}	4.90 × 10-4	-4.218	C+	9, 10n
12	3s-14p	2S - 2120	[2449.4]	0	40814	2	6	8.6×10 ⁻³	2.31 × 10 ⁻³	3.73 × 10-4	- 4.335	C+	9, 10n
13	3s - 15p	2S-2P°	[2444.2]	0	40901	2	6	6.8 × 10 ⁻³	1.84 × 10 ⁻³	2.96 × 10 ⁻⁴	 4.434	C +	9, 10n
14	3s - 16p	2S-2P°	[2440.0]	0	40971	2	6	5.6 × 10 ⁻³	1.50 × 10 ⁻³	2.41 × 10-4	-4.52	C +	9, 10n
15	3s-17p	2S - 2P°	[2436.6]	0	41028	2	6	4.64×10-3	1.24×10-5	1.99×10-4	-4.61	C +	9, 10n
16	3s - 18p	2S-2P°	[2433.8]	0	41076	2	6	3.87×10^{-3}	1.03 × 10 ⁻⁵	1.65×10-4	-4.69	C+	9, 10n
17	3p-4s	2P°_2S	11397	16968	25740	6	2	0.251	0.163	36.7	- 0.010	C	4
		(3)	11403.8 11381.5	16973 16956	25740 25740	4 2	2 2	0.167 0.084	0.163 0.163	24.5 12.2	- 0.186 - 0.487	C	ls Is
18	3p-5s	2P°_2S	6158.6	16968	33201	6	2	0.072	0.0137	1.67	-1.08 5	С	9
		(5)	6160.75 6154.23	16973 16956	33201 33201	4 2	2 2	0.0482 0.0241	0.0137 0.0137	1.11 0.56	- 1.261 - 1.56	C	ls Is
19	3p-6s	² P°_2S	5151.9	16968	36373	6	2	0.0330	0.00437	0.445	- 1.58	С	9
		(8)	5153.40 5148.84	16973 16956	36373 36373	4 2	2 2	0.0220 0.0110	0.00437 0.00437	0.297 0.148	-1.76 -2.058	C	ls Is
20	3p-7s	210-25	4750.6	16968	38012	6	2	0.0178	0.00201	0.189	- 1.92	С	9
		(11)	4751.82 4747.94	16973 16956	38012 38012	4 2	2 2	0.0119 0.0059	0.00201 0.00201	0.126 0.063	-2.095 -2.396	C C	ls Is
21	$3\rho - 8s$	² P°_ ² S (14)	4544.2	16968	38969	6	2	0.0108	0.00111	0.100	- 2.177	С	9
			4545.19 4541.63	16973 16956	38969 38969	4 2	2 2	0.0072 0.00359	0.00111 0.00111	0.066 0.0332	-2.353 -2.65	C	ls Is
22	3p-9s	² P°-'S (16)	4422.2	16968	39575	6	2	0.0070	6.8 × 10 ⁻⁴	0.060	-2.387	С	9
		1.57	4423.25 4419.89	16973 16956	39575 39575	4 2	2 2	0.00466 0.00233	6.8 × 10 ⁻⁴ 6.8 × 10 ⁻⁴	0.0398 0.0199	-2.56 -2.86	C	ls Is

Na I. Allowed Transitions - Continued

==			,										
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	βı	Kk	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
23	3p - 10s	2p°-2S	4343.8	16968	39983	6	2	0.00480	4.53 × 10 ⁻⁴	0.0389	-2.57	С	9
			4344.74 4341.49	16973 16956	39983 39983	4 2	2 2	0.00320 0.00160	4.53 × 10 ⁻⁴ 4.53 × 10 ⁻⁴	0.0259 0.0129	$\begin{vmatrix} -2.74 \\ -3.043 \end{vmatrix}$	C	ls Is
24	3p-11s	2p°_2S	4289.5	16968	40271	6	2	0.00357	3.28 × 10-4	0.0278	-2.71	С	9
			4291.01 4287.84	16973 16956	40271 40271	4 2	2 2	0.00238 0.00119	3.28 × 10 ⁻⁴ 3.28 × 10 ⁻⁴	0.0185 0.0093	-2.88 -3.183	C	ls Is
25	3p - 12s	2P°-2S	4251.4	16968	40182	6	2	0.00260	2.35×10-4	0.0197	-2.85	С	9
			4252.52 4249.41	16973 16956	40482 40482	4 2	2 2	0.00173 8.7 × 10 ⁻⁴	2.35 × 10 ⁻⁴ 2.35 × 10 ⁻⁴	0.0132 0.0066	-3.027 -3.328	c c	ls Is
26	3p - 13s	2P°-2S	4222.3	16968	40644	6	2	0.00212	1.89×10-4	0.0158	2.95	С	9
			[4223.2] [4220.2]	16973 16956	40644 40644	4 2	2 2	0.00141 7.1 × 10 ⁻⁴	1.89 × 10 ⁻⁴ 1.89 × 10 ⁻⁴	0.0105 0.0053	-3.122 -3.423	C C	ls Is
27	3p-14s	2P° – 2S	4200.1	16968	40769	6	2	0.00177	1.56 × 10 ⁻⁴	0.0129	-3.029	С	9
			[4201.0] [4198.0]	16973 16956	40769 40769	4 2	2 2	0.00118 5.9 × 10 ⁻⁴	1.56 × 10 ⁻⁴ 1.56 × 10 ⁻⁴	0.0086 0.00431	$ \begin{array}{r} -3.205 \\ -3.51 \end{array} $	C C	ls Is
28	3p-3d	² P° – ² D (4)	8191.1	16968	29173	6	10	0.495	0.83	135	0.70	С	4
		(3)	8194.82 8183.26 8194.79	16973 16956 16973	29173 29173 29173	4 2 4	6 4 4	0.495 0.413 0.082	0.75 0.83 0.083	81 44.7 9.0	0.477 0.220 -0.479	C C C	ls ls ls
29	3p -4d	² P°_ ² D (6)	5686.4	16968	34549	6	10	0.131	0.106	11.9	-0.197	C+	4, 7
		(0)	5688.21 5682.63 5688.19	16973 16956 16973	34549 34549 34549	4 2 4	6 4 4	0.131 0.109 0.0219	0.095 0.106 0.0106	7.1 3.97 0.79	-0.420 -0.67 -1.373	C+ C+	ls Is Is
30	3p-5d	² P°- ² D (9)	4981.4	16968	37037	6	10	0.050	0.0311	3.06	-0.73	C	9
		(3)	4982.81 4978.54 [4982.8]	16973 16956 16973	37037 37037 37037	4 2 4	6 4 4	0.050 0.0418 0.0084	0.0280 0.0311 0.00311	1.84 1.02 0.204	-0.95 -1.206 -1.91	C C C	ls Is Is
31	3p-6d	² P° – ² D (12)	4657.5	16968	38387	6	10	0.0257	0.0140	1.29	-1.076	С	9
		(12)	4668.56 4664.81 [4668.6]	16973 16956 16973	38387 38387 38387	4 2 4	6 4 4	0.0257 0.0214 0.00428	0.0126 0.0140 0.00140	0.77 0.430 0.086	-1.298 -1.55 -2.252	000	ls Is Is
32	3p-7d	2P°_2D	4495.6	16968	39201	6	10	0.0151	0.0076	0.68	-1.341	C	9
		(15)	4497.66 4494.18 [4497.7]	16973 16956 16973	39201 39201 39201	4 2 4	6 4 4	0.0151 0.0126 0.00251	0.0069 0.0076 7.6 × 10 ⁻⁴	0.406 0.225 0.0451	$ \begin{array}{r} -1.56 \\ -1.82 \\ -2.52 \end{array} $	C C C	ls Is Is
33	3p-8d	² P° – ² D	4392.3	16968	39729	6	10	0.0097	0.00466	0.404	-1.55	C.	9
		(17)	4393.34 4390.03 [4393.3]	16973 16956 16973	39729 39729 39729	4 2 4	6 4 4	0.0097 0.0081 0.00161	0.00419 0.00466 4.66×10 ⁻⁴	0.242 0.135 0.0270	$ \begin{array}{r} -1.78 \\ -2.031 \\ -2.73 \end{array} $	e e e	ls ls ls
34	3p-9d	2P°2D	4323.5	16968	40090	6	10	0.0066	0.00307	0.262	-1.73	C	9
			4324.62 4321.40 [4324.6]	16973 16956 16973	40090 40090 40090	4 2 4	6 4 4	0.0066 0.0055 0.00109	0.00276 0.00307 3.07 × 10	0.157 0.087 0.0175	1.96 2.212 2.91	CCC	ls Is Is

and the state of t

Na I. Allowed Transitions - Continued

=				,									
No.	Fransition Array	Multiplet	λ(Å)	E ₁ (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	A _{ki} (10 ⁶ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
35	3p - 10d	2 bo - 3D	4275.8	16968	40349	6	10	0.00468	0.00214	0.181	- 1.89	С	9
			4276.79 4273.64 [4276.8]	16973 16956 16973	40349 40349 40349	4 2 4	6 4 4	0.00469 0.00391 7.8 × 10-4	0.00193 0.00214 2.14 × 10 ⁻⁴	0.109 0.060 0.0121	-2.112 -2.369 -3.068	CCC	ls ls ls
36	3p - 11d	2P°-2D	4241.1	16968	40540	6	10	0.00347	0.00156	0.131	-2.029	С	9
			4242.08 4238.99 [4242.1]	16973 16956 16973	40540 40540 40540	4 2 4	6 4 4	0.00346 0.00290 5.8×10 ⁻⁴	0.00140 0.00156 1.56×10-4	0.078 0.0435 0.0087	-2.252 -2.51 -3.205	C C C	is Is Is
37	3p - 12d	2P°-2D	4215.0	16968	40685	6	10	0.00264	0.00117	0.097	-2.154	c	ŷ
	À		[4215.9] [4212.9] [4215.9]	16973 16956 16973	40685 40685 40685	4 2 4	6 4 4	0.00263 0.00220 4.39 × 10 ⁻⁴	0.00105 0.00117 1.17 × 10 ⁻⁴	0.058 0.0325 0.0065	-2.377 -2.63 -3.330	CCC	ls Is Is
38	3p - 13d	2P°-2D	4195.0	16968	40798	6	10	0.00204	9.0 × 10 ⁻⁴	0.074	-2.269	С	9
			[4195.9] [4192.9] [4195.9]	16973 16956 16973	40798 40798 40798	4 2 4	6 4 4	0.00204 0.00170 3.40×10 ⁻⁴	8.1×10^{-4} 9.0×10^{-4} 9.0×10^{-5}	0.0446 0.0248 0.00496	-2.491 -2.75 -3.445	C C C	ls Is Is
39	3d-4p	2D-2P°	91050	29173	30271	10	6	0.00157	0.117	351	0.068	С	9
			[90880] [91380] [90880]	29173 29173 29173	30273 30267 30273	6 4 4	4 2 4	0.00142 0.00156 1.57×10 ⁻⁴	0.117 0.098 0.0195	211 118 23.3	-0.154 -0.407 -1.108	C C C	ls ls ls
40	3d-4f	2D-2F°	18465.3	29173	34587	10	14	0.140	1.00	610	0.99	С	9
41	3d - 5f	² D – ² F° (21)	12679.2	29173	37058	10	14	0.0471	0.159	66	0.201	С	9
42	3d-6f	*D_*F° (22)	10834.9	29173	38400	10	14	0.0224	0.055	19.7	- 0.257	С	9
43	3 <i>d</i> – 7 <i>f</i>	² D- ² F° (23)	9961.28	29173	39209	10	14	0.0127	0.0264	8.7	-0.58	С	9
44	3d-8f	² D - ² F° (24)	9465.94	29173	39734	10	14	0.0079	0.0149	4.64	- 0.83	С	9
45	3d-9f	² D – ² F° (25)	9153.88	29173	40094	10	14	0.0053	0.0093	2.79	-1.033	С	9
46	3d- 10f	² D – ² F° (26)	8942.96	29173	40352	10	14	0.00371	0.0062	1.83	- 1.206	c	9
47	3d-11f	² D− ² F° (27)	8796	29173	40539	10	14	0.00245	0.00414	1.22	-1.383	С	9
48	4s-4p	2S-2P°	22070	25740	30271	2	6	0.062	1.35	197	0.431	С	4
			22056.4 22083.7	25740 25740	30273 30267	2 2	4 2	0.062 0.062	0.90 0.450	131 66	0.255 - 0.046	C	ls Is
49	4s-5p	2S_2P°	10747	25740	35042	2	6	0.0074	0.0385	2.72	-1.114	С	9
		(18)	10746.4 10749.3	25740 25740	35043 35040	2 2	4 2	0.0074 0.0074	0.0257 0.0128	1.82 0.91	- 1.289 1.59	C	ls ls
50	4s-6p	² S- ² P° (19)	8650.3	25740	37297	2	6	0.00231	0.0078	0.444	- 1.81	С	9
51	4s-7p	² S – ² P° (20)	7810.0	25740	38541	2	6	0.00104	0.00284	0.146	-2.246	c	9

Na I. Allowed Transitions - Continued

Vo.	Transition Array	Multiplet	λ(Ă) `	<i>E_i</i> (cm ⁻¹)	E_k (cm $^{-1}$)	Ķi	μĸ	A _{ki} (10 ^k sec ⁻¹)	fik	S(at.u.)	log gf	Aceu- racy	Source
52	4s - 8p	*S_*P°	7373,3	25740	39299	2	6	5.6 × 10-4	0.00136	0.066	- 2.57	c	
53	4s-9p	2S – 2P°	[7113.0]	25740	39795	2	6	3.36 × 10 ⁻⁴	7.6 × 10 ⁻⁴	0.0358	- 2.82	C	,
54	4s - 10p	2S_2P°	[6944.0]	25740	40137	2	6	2.23 × 10-4	4.84×10-4	0.0221	- 3.014	C.	
55	4s-11p	2S-2P°	[6827.3]	2574C	40383	2	6	1.53 × 10-4	3.20 × 10 ⁻⁴	0.0144	-3.194	C	
66	4s - 12p	2S-2P°	[6743.1]	25740	40566	2	6	1.11 × 10-4	2.27 × 10 ⁻⁴	0.0101	-3.343	C	
57	4s 13p	2S-2P°	[6680.0]	25740	40705	2	6	8.5 × 10 ⁻⁵	1.71 × 10 ⁻⁴	9.0075	- 3.466	C:	
58	4s-14p	2S - 2P°	[6632.1]	25740	40814	2	6	6.3×10^{-5}	1.25 × 10 ⁻⁴	0.0055	-3.60	C:	
59	4p - 6s	2p°-2S	16384	30271	36373	6	2	0.0173	0.0232	7.5	-0.86	C	l i
			16388.9 16373.9	30273 30267	36373 36373	4 2	2 2	0.0115 0 0058	0.0232 0.0232	5.0 2.50	-1.033 -1.334	C	1
60	4p-7s	2P° _2S	12915	30271	38012	6	2	0.0088	0.0073	1.86	- 1.359	١:	
			12917.3 12907.9	30273 30267	38012 38012	4 2	2 2	0.0058 0.00292	0.0073 0.0073	1.24 0.62	- 1.53 - 1.84	C.	1
1	4p-8s	2P°-2S	11495	30271	38968	6	2	0.0051	0.00340	0.77	- 1.69	C	
		:	[11498] [11490]	30273 30267	38968 38968	4 2	2 2	0.00343 0.00172	0.00340 0.00340	0.51 0.257	-1.87 -2.168	C	
2	4p - 9s	2P°-2S	10745	30271	39575	6	2	0.00329	0.00190	0.403	-1.94	С	
			[10747] [10741]	30273 30267	39575 39575	4 2	2 2	0.00219 0.00110	0.00190 0.00190	0.269 0.134	-2.119 -2.420	C	
53	4p - 10s	2P°-2S	10294	30271	39983	6	2	0.00225	0.00119	0.242	-2.146	C	
			[10296] [10290]	30273 30267	39983 39983	4 2	2 2	$\begin{array}{c} 0.00150 \\ 7.5 \times 10^{-4} \end{array}$	0.00119 0.00119	0.161 0.081	-2.322 -2.62	C	
54	4p-11s	2p°2S	9994.3	30271	40271	6	2	0.00167	8.3 × 10-4	0.164	-2.301	C.	
			[9996.3] [9990.3]	30273 30267	40271 40271	4 2	2 2	0.00111 5.6 × 10 ⁻⁴	8.3 × 10 ⁻⁴ 8.3 × 10 ⁻⁴	0.110 0.055	$ \begin{array}{r} -2.477 \\ -2.78 \end{array} $	C:	1
65	4p - 12s	2p°-2S	9789.7	30271	40482	6	2	0.00120	5.8 × 10 ⁻⁴	0.112	-2.461	C	
			[9791.6] [9785.9]	30273 30267	40482 40482	4 2	2 2	8.0 × 10 ⁻⁴ 4.02 × 10 ⁻⁴	5.8 × 10 ⁻⁴ 5.8 × 10 ⁻⁴	0.074 0.0372	$ \begin{array}{r} -2.04 \\ -2.94 \end{array} $	C	
56	4p - 13s	2P°_2S	9636.8	30271	40644	6	2	0.00100	4.63×10^{-4}	0.088	-2.56	€:	
			[9638.7] [9633.1]	30273 30267	40644 40644	4 2	2 2	$\begin{array}{c} 6.6 \times 10^{-4} \\ 3.33 \times 10^{-4} \end{array}$	4.63 × 10 ⁻⁴ 4.63 × 10 ⁻⁴	0.059 0.0294	$ \begin{array}{r} -2.73 \\ -3.033 \end{array} $	C	
57	4p-14s	2P°-2S	9522.1	30271	40769	6	2	8.5 × 10 ⁻⁴	3.87 × 10 ⁻⁴	0.073	-2.63	C:	
			[9523.9] [9518.5]	30273 30267	40769 40769	4 2	2 2	5.7×10 ⁻⁴ 2.85×10 ⁻⁴	3.87×10^{-4} 3.87×10^{-4}	0.0485 0.0243	$ \begin{array}{r r} -2.81 \\ -3.111 \end{array} $	C	
68	4p-4d	2P°-2D	23370	30271	34549	6	10	0.067	0.91	420	0.74	C+	7.
			23379.1 23348.4 [23379]	30273 30267 30273	34549 34549 34549	4 2 4	6 4 4	0.067 0.056 0.0111	0.82 0.91 0.091	252 140 28.0	0.52 0.260 - 0.439		

Na I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	<i>E₁</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ķı	E _k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
69	4p-5d	2P°-2D	14776	30271	37037	6	10	0.9260	0.142	41.4	-0.070	C+	9
			14779.7 14767.5 [14780]	30273 30267 30273	37037 37037 37037	4 2 4	6 4 4	0.0261 0.0217 0.00434	0.128 0.142 0.0142	24.9 13.8 2.76	-0.291 -0.55 -1.246	C+ C+	ls ls ls
70	4p-6d	²P°-2D	123!8 12320.0 12311.5 [12320]	30271 30273 30267 30273	38387 38387 38387 38387	6 4 2 4	10 6 4 4	0.0130 0.0130 0.0108 0.00217	0.0493 0.0444 0.0493 0.00493	12.0 7.2 4.00 0.80	-0.53 -0.75 -1.006 -1.71	C+ C+ C+	ls ls ls
71	4p 7d	2P°-2D	11195	30271	39201	6	10	0.0075	0.0235	5.2	-0.85	C+	9
			11197.2 11190.2]11197]	30273 30267 30273	39201 39201 39201	4 2 4	6 4 4	0.0075 0.0063 0.00125	0.0212 0.0235 0.00235	3.13 1.73 0.347	-1.072 -1.328 -2.027	C+ C+	ls Is Is
72	4p-3d	² P°- ² D	10570	30271	39729	6	10	0.00476	0.0133	2.78	-1.098	C+	9
			10572.3 10566.0 [10572]	30273 30267 30273	39729 39729 39729	4 2 4	6 4 4	0.00477 0.00397 7.9 × 10 ⁻⁴	0.0120 0.0133 0.00133	1.67 0.93 0.185	-1.319 -1.58 -2.274	C+ C+	ls ls ls
73	4p - 9d	2130-2D	10181	30271	40090	6	10	0.00323	0.0084	1.68	- 1.299	С	9
			[10183]]10176] [10183]	30273 30267 30273	40090 40090 40090	4 2 4	6 4 4	0.00323 0.00270 5.4 × 10 ⁻⁴	0.0075 0.0084 8.4 × 10 ⁻⁴	1.01 0.56 0.112	-1.52 -1.77 -2.475	C C C	ls ls ls
74	4p-10d	² P°- ² D	9919.9	30271	40349	6	10	0.00230	0.0057	1.11	-1.470	C	9
]9921.9]]9916.0] [9921.9]	30273 30267 30273	40349 40349 40349	4 2 4	6 4 4	0.00230 0.00192 3.83 × 10 ⁻⁴	0.0051 0.0057 5.7 × 10 ⁻⁴	0.67 0.369 0.074	-1.69 -1.95 -2.65	C C C	ls ls ls
75	4p-11d	²P°−2D	9735.4	30271	40540	6	10	0.00169	0.00400	0.77	-1.62	C	9
]9737.3]]9731.6] [9737.3]	30273 30267 30273	40540 40540 40540	4 2 4	6 4 4	0.00169 0.00141 2.81 × 10 ⁻⁴	0.00360 0.00460 4.00×10 ⁻⁴	0.462 0.256 0.051	-1.84 -2.097 -2.80	C C C	ls Is Is
76	4p - 12d	2P°-2D	9598.9	30271	40685	6	10	0.00129	0.00296	0.56	-1.75	C	9
			[9600.8]]9595.2] [9600.8]	30273 30267 30273	40685 40685 40685	4 2 4	6 4 4	0.00128 0.00107 2.14 × 10 ⁻⁴	0.00266 0.00296 2.96 × 10 ⁻⁴	0.336 0.187 0.0374	-1.97 -2.228 -2.93	C C	ls ls ls
77	4p-13d	2 P° - 2D	9495,9	30271	40798	6	10	9.9 × 10 ⁻⁴	0.60224	0.420	-1.87	C	9
			[9497.7] [9492.3] [9497.7]	30273 30267 30273	40798 40798 40798	4 2 4	6 4 4	0.00100 8.3 × 10 ⁻⁴ 1.66 × 10 ⁻⁴	0.00202 0.00224 2.24 × 10 ⁻⁴	0.253 0.140 0.0280	-2.093 -2.349 -3.048	CCC	ls Is Is
78	5s - 10p	2S-2P°	[14414]	33201	40137	2	6	1.64×10-7	0.00153	0.145	-2.51	С	9
79	5s-11p	2S – 2P°]13920]	33201	40383	2	6	1.10×10-	9.6 × 10 ⁻⁴	0.088	-2.72	C	9
80	5s-12p	2S-2P°]13574]	33201	40566	2	6	7.9×10-3	6.6 × 10 ⁻⁴	0.059	-2.88	С	9
81	5s-13p	2S-2P°	[13321]	33201	40705	2	6	6.0 × 10-5	4.76 × 10 ⁻⁴	0.0417	-3.021	С	9
82	5s-14p	2S - 2)10	[13132]	33201	40814	2	6	4.45 × 10 ⁻⁵	3.45 × 10-4	0.0298	-3.161	C	9
83	5s-15p	2S-2P°	[12984]	33201	40901	2	6	3.48 × 10 ⁻³	2.64 × 10 ⁻¹	0.0226	-3.277	C	9
84	5s 16p	2S-2P°	[12867]	33201	40971	2	6	2.78 × 10 ⁻⁵	2.07 × 10 ⁻⁴	0.0175	-3.383	C	9
85	5s-17p	2S-2P°	[12771]	33201	41028	2	6	2.33×10 ⁻³	1.71 × 10 ⁻⁴	0.0144	-3.466	C	9
86	5s-18p	2S-2P°	[12695]	33201	41076	2	6	1,93 × 10⁻⁻	1.40 × 10~4	0.0117	-3.55	C	9

Ground State

ls22s22p6 1S0

Ionization Potential

 $47.29 \text{ eV} = 381528 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Na II, Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	E _k (cm ⁻¹)	gi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{3/2})3s$	¹ S - ³ P° (1 uv)	376.375	0	265693	1	3	1.5	0.0093	0.012	- 2.03	E	1
2	$2p^6 - 2p^5(^2P_{1/2}^\circ)3s$	'S - 'P° (2 uv)	372.069	0	268767	1	3	31	0.19	0.23	-0.72	D	1
3	$2p^6 - 2p^5(^2\mathbf{P}_{3/2}^{\circ})3d$	¹S−³P°	[302.44]	0	330641	1	3	1.4	0.0057	0.0057	-2.24	E	1
4	$2p^6 - 2p^5(^2\mathbf{P}^{\circ}_{3/2})3d$	¹ S - ¹ P° (3 uv)	301.432	0	331749	1	3	9.5	0.039	0.039	- 1.41	D	1
5	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{1/2})3d$	¹ S - ³ D° (4 uv)	300.151	0	333167	1	3	30	0.12	0.12	-0.92	D	1

Ionization Potential

 $71.65 \text{ eV} = 573033 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
378.14	1	1970.6	14	2180.8	12
380.11	1	1976.4	13	2182.8	3
1752.7	9	1985.5	4	2194.8	12
1761.7	9	1995.6	14	2202.8	3
1763.8	9	2004 8	15	2214.2	12 3 3
1773.0	9	2005.2	4	2222.8	12
1782.9	9	2005.2	14	2225.3	7
1791.2	9	2011.9	13	2225.9	12 7 3 3 7
1801.3	9	2022.3	10	2230.3	3
1838.1	8	2028.6	10	2232.2	7
1844.3	8	2031.1	14	2239.5	3 3 3 7 7
1845.1	8	2036.9	15	2246.7	3
1849.6	8	2037.8	10	2251.5	3
1850.3	8 8	2045.5	10	2278.5	7
1855.9	8	2048.7	10	2285.7	7
1856.7	8 8	2051.9	10	2310.0	6
1861.2	8	2055.2	10	2367.3	6
1899.7	11	2058.8	10	2406.6	6 6 5 5 5
1918.5	11	2063.0	10	2459.4	5
1920.1	11	2065.3	10	2468.9	5
1926.3	11	2067.4	17	2474.7	2 2 2 2 2 2
1935.6	11	2073.3	17	2497.0	2
1939.3	11	2101.5	17	2510.3	2
1941.8	11	2107.7	17	2530.2	2
1942.2	13	2144.8	16	2542.9	2
1950.8	11	2151.2	16	2553.6	2 2
1951.2	4	2174.5	16	2563.3	2
1965.1	11		1		

For the $2s^22p^5 {}^2P^\circ - 2s2p^6 {}^2S$ multiplet, Cohen and Dalgarno [1] using the nuclear charge-expansion method and Bagus [2] using the self-consistent field approximation arrive at identical results. The quoted value may be nevertheless quite uncertain since configuration interaction effects with configurations involving electrons of the n=3 shell may be significant, but were not included in the calculations. Inasmuch as no other material is available, the Coulomb approximation has been used for a number of 3s-3p and 3p-3d transitions, where for atomic systems for similar complexity it has given fairly reliable values.

- [1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
- [2] Bagus, P. S., U.S. Atomic Energy Commission ANL-6959 (1964).

NaIII. Allowed Transitions

		-			··		,	1		-			
No	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-4})$	$E_k({ m cm}^{-1})$	Ľ,	#k	$A_{ki}(10^8 m sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^5 - 2s2p^6$	${}^{2}\mathrm{P}^{\circ} + {}^{2}\mathrm{S}$	378.80	<i>4</i> 55	264449	6	2	210	0,15	1.1	-0.05	D-	1. 2
			[378.14] [380.11]	0 1254	264449 264449	4 2	2 2	130 66	0.14 9.14	0.72 0.36	-0.25 -0.55	D- D-	ls ls
2	$2p^43s - 2p^4(^3P)3p$	4)' — 4)'°	2515,6	366594	406434	12	12	2.4	0.23	23	0.44	D	ca
			[2497.0] [2530.2] [2542.9] [2474.7] [2510.3] [2553.6] [2563.3]	366165 367052 367562 366165 367052 367052 367562	406201 406562 406876 406562 406876 406201 406562	6 4 2 6 4 4 2	6 4 2 4 2 6 4	1.7 0.31 0.39 1.1 2.0 0.69 0.96	0.16 0.030 0.038 0.070 0.097 0.10 0.19	8.0 1.0 0.64 3.4 3.2 3.4 3.2	-0.02 -0.92 -1.12 -0.38 -0.41 -0.40 -0.42	D E E D- D- D-	ls ls ls ls ls
3	•	4b – 4D ₀	2232.5	366694	411473	12	20	3.6	0.44	39	0.72	D	ca
			[2230.3] [2246.7] [2251.5] [2202.8] [2225.9] [2239.5] [2182.8] [2214.2]	366165 367052 367562 366165 367052 367562 366165 367052	410988 411548 411964 411548 411964 412202 411964 412202	6 4 2 6 4	8 6 4 6 4 2 4 2	3.7 2.4 1.5 1.1 1.9 3.0 0.19 0.61	0.36 0.28 0.22 0.080 0.14 0.22 0.0090 0.022	16 8.2 3.3 3.5 4.2 3.3 0.39 0.65	0.33 0.05 -0.36 -0.32 -0.25 -0.36 -1.27 -1.06	D D - D - D - E E E	ls ls ls ls ls ls
4		P-'S°	1971.5	366694	417416	12	4	5.2	0.10	7.9	0.08	D	ca
			[1951.2] [1985.5] [2005.2]	366165 367052 367562	417416 417416 417416	6 4 2	4 4 4	2.7 1.7 0.82	0,10 0,10 0,10	3.9 2.6 1.3	-0.22 -0.40 -0.70	D D D	ls ls
5	2	2['-2])°	2458.9	373982	414638	6	10	2.9	0.43	21	0.41	D	ca
			[2459.4] [2468.9] [2406.6]	373633 374681 373633	414281 415173 415173	1 2 1	6 1 4	3.0 2.4 0.51	0,40 0,43 0,041	13 7.0 1.4	-0.20 -0.07 -0.75	D D E	ls Is Is
6		2P - 2S°	2328.8	373982	416910	6	2	3.4	0.091	4.2	-0.26	D	ca
			[2310.0] [2367.3]	373633 374681	416910 416910	1 2	2 2	2,3 1.1	0.09 <u>;</u> 0.090	2.8 1.4	-0.43 -0.74	D D	ls ls
7		2) - 2)°	2247.4	373982	418464	6	6	3.9	0.29	13	0.24	D	ca
			[2232.2] [2278.5] [2225.3] [2285.7]	373633 374681 373633 374681	418418 418557 418557 418418	4 2 4 2	1 2 2 1	3.3 2.4 1.3 0.59	0.24 0.19 0.048 0.093	7.2 2.8 1.4 1.4	-0.02 -0.42 -0.72 -0.73	D D E E	ls ls ls
8	$2p^43p - 2p^4(^3P)3a_1^2$	P°-4)	1852.0	406434	460431	12	20	7.3	0.63	46	0.88	b i	ra
			[1849.6] [1856.7] [1861.2] [1844.3] [1850.3] [1855.9] [1838.1] [1845.1]	406201 406562 406876 406201 406562 406876 406201 406562	460268 460421 460606 460421 460606 460759 460606 460759	6 4 2 6 4 2 6 4	8 6 1 6 1 2 1 2	7.2 5.1 3.0 2.2 3.9 6.0 0.38 1.2	0.49 0.40 0.31 0.11 0.20 0.31 0.013 0.632	18 9.7 3.8 4.1 4.9 3.8 0.46 0.77	0.47 0.20 -0.21 -0.18 -0.10 -0.21 -1.11 -0.89	! D D - D - D - E E	ls ls ls ls ls ls
9		P° = iP	1767.4	106434	163015	12	12	1.6	0.21	15	0,40	D	ca
			[1752.7] [1773.0] [1801.3] [1761.7] [1791.2] [1763.8] [1782.9]	406201 406562 406876 406201 13/5562 406562 406876	463257 462964 462391 462964 462391 463257 462964	6 4 2 6 4 4 4 2	6 1 2 1 2 6 4	3.3 0.61 0.73 2.0 3.7 1.4 1.9	0.15 0.029 0.035 0.063 0.089 0.095	5.2 0.67 0.42 2.2 2.1 2.2 2.1	-0.65 -0.94 -1.15 -0.42 -0.45 -0.42 -0.41	D E E D D D D D D D	1s

Na III. Allowed Transitions - Continued

Sin.	Transition Avray	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	Ľk	$rac{A_{ki}(10^8}{ m sec^{-1})}$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
10		1])° – 4])	2041.9	411473	460431	20	20	1.9	0.12	16	0.38	D	C
			[2020 4]	41/0000	460268	8	8	1.7	0.10	5.5	-0.10	D	1
			[2028.6]	410988		6	6	iii	0.10	2.8	-0.38	Ď	1
			[2045.5]	411548	460421	(4		0.048	1.3	-0.36 -0.72	D-	1
i		!	[2055.2]	411964	460606	4 2		0.76			-0.72 -0.93	D -	1
- 1			[2058.8]	412202	460759	8	6	0.93 0.37	$0.059 \\ 0.017$	0.80 0.91	-0.93 -0.87	D –	7
			[2022.3]	410988	460421	6		0.66	0.017	1.1	-0.67 -0.79	D –	7
			[2037.8]	411548	460606	4	4 2	0.94	0.030	0.80	-0.79 -0.92	D-	
			[2048.7] [2051.9]	411964	460759 460268	6	8	0.94	0.030	0.60	-0.92 -0.88	D-	
i			[2063.0]	411548 411964	460421	4	6	0.42	0.022	1.1	-0.80	D-	
			[2065.3]	412202	460606	2	4	0.46	0.059	0.80	-0.93	D -	
1		4)° 4F	1947.1	411473	462832	20	28	8.9	0.71	91	1.15	D	(
			[1965.1]	410988	461877	8	10	8.8	0.64	33	0.71	D	
			[1939.3]	411548	463113	6	8	7.6	0.57	22	0.53	D	
		ļ	[1935.6]	411964	463628	4	6	7.0	0.59	15	0.37	D	
			[1950.8]	412202	463462	2	4	6.2	0.71	9.1	0.15	D -	
1			[1918.5]	410988	463113	8	8	1.3	0.073	3.7	- 0.23	D-	
			[1920.1]	411548	463628	6	6	2.2	0.12	4.7	-0.14	D -	
			[1941.8]	411964	463462	4	4	2.5	0.14	3.6	-0.25	<u>D</u> –	
			[1899.7]	410988	463628	8	6	0.094	0.0038	0.19	-1.52	E	
			[1926.3]	411548	463462	6	4	0.18	0,0068	0.26	-1.39	E	
2		'S°- 11'	2192.3	417416	463015	4	12	3.7	08,0	23	0.51	D	<u>'</u>
		1	[2180.3]	417416	463257	4	6	3.6	0.38	11	0.18	D	
			[2194.8]	417416	462964	4	4	3.7	0.27	7.7	0.03	D	
			[2222.8]	417416	462391	4	2	3.5	0.13	3.8	-0.28	D	
3		2D° — 2F	1995,9	4!4638	464740	10	14	8.6	0.72	47	0.86	Ð	,
1			[2011.9]	414281	463969	6	8	8.4	0.68	27	0.61	D	
			[1976.4]	415173	465769	4	6	8.3	0.73	19	0.47	D	
			[1942.2]	414281	465769	6	6	0.60	0.034	1.3	-0.69	E	
1		2D° - 2D	1999.7	414638	464646	10	10	2.1	0.13	8.4	0.11	Đ	(
ì		•	[1995.6]	414281	464392	6	6	2.0	0.12	4.7	-0.14	D	
			[2005.2]	415173	465028	4	4	1.9	0,11	3.0	-0.36	Ď	
		:	[1970.6]	414281	465028	6	4	0.23	0,0087	0.34	-1.28	Ĕ	
-		Shaddi C	[2031.1]	415173	164392	4	6	0.14	0.013	0.34	-1.28	Ē	
5		2S°-2P	2015.4	·416910	466511	2	6	4.5	0.83	11	0.22	D	(
		1	[2004.8] [2036.9]	416910 416910	466773 465988	2 2	4 2	4.6 4.4	0,55 0.28	7.3 3.7	0.04 - 0.25	D D	
6		2P° - 2D	2164.7	418464	464646	6	10	5.2	0.61	26	0.56	D	c
			[2174.5]	418418	464392	4	6	5.3	0.56	16	0.35	D	
			[2151.2]	418557	465028	2	4	4.4	0.61	8.7	0.09	Ď	
			[2144.8]	418418	465028	1	i	0.87	0.0060	1.7	-1.62	Ē	į
7		2P° = 2l'	2080,6	418464	466511	6	6	3.3	0.21	8.7	0.10	D	C
			[2067.4]	418418	466773	.1	4	2.8	0.18	4.8	-0.14	D	
			[2107.7]	418557	465988	2	2	2.1	0.14	1.9	-0.55	D	
			[2101.5]	418418	465988	1	2	1.1	0.035	0.97	-0.85	E	
			[2073.3]	418557	466773	2	.1	0.55	0.071	0.97	-0.85	E	

Na III

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number. tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Na III. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$.	Ei	μk	Type of Fransi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^3-2p^3$	2P°-2P°										
			[73294];	0	1364	4	2	m	0.0456	1.33	A	l

NaIV

Ground State

1s22s22p4 3P2

Ionization Potential

98.88 $eV = 797741 \text{ cm}^{-1}$

Allowed Transitions

The values are calculated from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. An additional value for the ${}^{1}S-{}^{1}P^{o}$ transition is available from the calculations of Bolotin, Shironas, and Braiman [2], which also include limited configuration interaction. For this latter transition, the two methods agree fairly well and the results are averaged. In general, uncertainties should be within 50 percent.

References

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

[2] Bolotin, A. B., Shironas, I. I., and Braiman, M. Yu., Vilniaus, Valstybinio v. Kapsuko vardo universiteto Mokslo Darbai 33, matematika fizika 9, 107-112 (1960).

Na IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ei	μ _k	A _{ki} (10 ^k sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 - 2s2p^3$	3P_3P°	410.43	544	244190	9	9	98	0.25	3.0	0.35	Ð	l
			[410.37] [410.54] [408.68] [409.61] [412.24] [411.33]	0 1106 0 1106 1106 1576	243682 244688 244688 245238 243682 244688	5 3 5 3 1	5 3 1 5 3	76 24 42 97 24 32	0.19 0.062 0.062 0.082 0.10 0.24	1.3 0.25 0.42 0.33 0.42 0.33	-0.02 -0.73 -0.51 -0.61 -0.52 -0.62	D- D- D- D- D-	ls ls ls ls ls
2		1D-1P°	[319.64]	[31118]	[343972]	5	3	170	0.16	0.83	-0.10	a	1
3		'S-'P'	[360.76]	[66780]	[343972]	!	3	23	0.13	0.16	-0.89	a	1, 2

Na IV

Forbidden Transitions

The sources used in deriving the adopted values are Naqvi [1], and Malville and Berger [2]. Naqvi's magnetic dipole values are used whenever the choice of transformation coefficients becomes more important than the effects of configuration interaction (see General Introduction). Malville and Berger have calculated values using "spin-orbit" and "spin-spin and spin-other-orbit integrals" calculated by Garstang (Monthly Notices Roy. Astron. Soc. 111, 115 (1951)). The electric quadrupole moment s_q calculated by Malville and Berger has been used throughout and is considered better than Naqvi's, because it is obtained from self-consistent field wavefunctions, while Naqvi used screened hydrogenic wavefunctions. We have therefore modified Naqvi's ${}^3P_2 - {}^3P_1$ and ${}^3P_{2,1} - {}^1D_2$ electric quadrupole values by substituting Malville and Berger's s_q .

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

Na IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})_i$	Ęi	g _k	·Type of Transi- · tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
l	$2p^4 - 2p^4$	3P-3P			•							
			[90391] [90391] [63435] [21.27×10 ⁴]	0 0 0 1106	1106 1106 1576 1576	5 5 5 3	3 3 1	e m e m	1.90×10^{-8} 0.0304 1.48×10^{-7} 0.00561	0.205 2.50 0.091 2.00	C- A C- B	1, 2 1 2 1
2		³ P- ¹ D (1F)										
			3319.3 3319.3 3445.9 3445.9 [3381.0]	0 0 1106 1106 1576	[31118] [31118] [31118] [31118] [31118]	5 3 3	5 5 5 5 5	e m e m e	6.1×10^{-4} 0.56 7.1×10^{-5} 0.167 3.0×10^{-5}	7.3×10^{-4} 0.00381 1.0×10^{-4} 0.00127 4.0×10^{-5}	D- C D- C D-	1, 2 1 1, 2 1 2
3		3P-1S										
			[1497.5] [1522.7]	0 1106	[66780] [66780]	5 3	l l	e m	0.012 7.6	5.4×10^{-5} 9.9×10^{-4}	D-C	2 2
4		1D-1S	[2803.3]	[31118]	[66780]	5	1	e	3.5	0.360	C-	2

Ionization Potential

 $138.37 \text{ eV} = 1116312 \text{ cm}^{-6}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [A]	No.
307.15	3	369.73	7	456.15	8
308.26	3	369.78	7	459,57	8
308.29	3	400.67	2	459,90	1
332,54	6	400.71	2	461.05	1
332.59	6	400.73	2	463.26	1
333.88	6	400.77	2	506,99	9
333.92	6	445.05	4	510.09	9
360.32	5	445.12	4	511.21	9
360.37	5	445.19	4	514.36	9
367.56	7			1	

Values for all the listed transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Judged from graphical comparisons with other ions in the isoelectronic sequence and from the general success of Cohen and Dalgarno's method for similar atomic systems, uncertainties within 50 percent are indicated.

Reference

[1] Cohen. M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Na V. Allowed Transitions

No.	Transition Array	Multiplet	λ(A)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	 g _k	$\frac{I_{ki}(10^8}{\rm sec}^{-1)}$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 - 2s2p^4$	'S'-1'	461.06	0	216892	4	12	31	0.30	1.8	0.08	D	1
			[463.26]	0	215860	4	6	31	0.15	0.90	-0.22	D	ls
		İ	461.05		216896	4	4	31	0.099	0.60	-0.40		Is
			[459.90]	Ö	217440	4	2	31	0.050	0.30	-0.70	1 7	Is
2		2D°-2D	400.72	[47580]	[297130]	10	10	72	0.17	2.3	0.23	D	1
			[400.73]	[47570]	[297115]	6	6	68	0.16	1.3	-0.02	D	ls
			[400.71]	[47595]	[297150]	4	4	65	0.16	0.83	-0.19		Is
			400.67	[47570]	[297150]	6	4	7.2	0.012	0.092	- 1.14		ls
			[400.77]	[47505]	[297116]		6	4.8	0.017	0.092	-1.17		ls
3		2D°-2P	307.89	[47580]	[372367]	10	6	270	0.23	2.3	0.36	D	I
			[308.26]	[47570]	[371967]	6	4	240	0.23	1.4	0.14	D	ls
			[307.15]	[47595]	[373167]	4	2	270	0.19	0.77	-0.12		ls
			[308.29]	[47595]		4	4	26	0.037	0.15	-0.83		ls
4		2P°=2D	445.14	[72480]	[297130]	6	10	11	0.056	0.49	-0.47	D	1
			[445.19]	[72493]	[297116]	4	6	11	0.049	0.29	-0.71	b	ls
			445.05	[72454]	[297150]	2	4	9.2	0.055	0.16	-0.96		Is
			[445.12]	[72493]			4	1.9	0.0056	0.033	-1.65		Is

Na V. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Ā)	$E_i(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	Ķi.	μĸ	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at.u.)	log z/	Accu- racy	Source
5		2P°=2S	360,35	[72480]	[349987]	6	2	150	0.10	0.71	··· C.22	B	1
			[360.37] [360.32]	[72493] [72454]	[349987] [349987]	4 2	2 2	100 52	0.099 0.10	0.47 0.24	-).40 - 0.70	D D	ls Is
6		2P°_2P	333.46	[72480]	[372367]	6	6	78	0.13	0.86	0.11	D	1
			[333.92] [332.54] [332.59] [333.88]	[72493] [72454] [72493] [72454]	[371967] [373167] [373167] [371967]	4 2 4 2	4 2 2 4	65 52 26 13	0.11 0.087 0.022 0.044	0.48 0.19 0.096 0.096	-0.36 -0.76 -1.06 -1.06	D D E E	ls ls ls
7	$2s2p^4 + 2p^5$	4) - 4P°	369,01	[297130]	[568126]	10	6	120	0.15	1.8	0.18	D	1
			[369.73] [367.56] [369.78]	[297116] [297150] [297150]	[567583] [569211] [567583]	6 4 4	4 2 4	110 120 12	0.15 0.12 0.025	1.1 0.60 0.12	-0.05 -0.32 -1.00	D D E	ls ls ls
8		2S - 2P°	458.42	[349987]	[568126]	2	6	7.0	0.066	0.20	0.88	D	1
			[459.57] [456.15]	[349987] [349987]	[567583] [569211]	2 2	4 2	6.8 7.2	0.043 0.022	0.13 0.067	-1.07 -1.36	D D	ls Is
9		2P - 2P°	510.83	[372367]	[568126]	6	6	84	0.33	3.3	0.30	D	1
			[511.21] [510.09] [506.99] [514.36]	[371967] [373167] [371967] [373167]	[567583] [569211] [569211] [567583]	4 2 4 2	4 2 2 4	68 56 29 14	0.27 0.22 0.055 0.11	1.8 0.73 0.37 0.37	0.03 -0.36 -0.66 -0.66	D D – E E	ls ls ls ls

Na v

Forbidden Transitions

All the values for this ion have been taken from Pasternack [1]. The electric quadrupole values have been corrected by applying Naqvi's value [2] for the electric quadrupole moment s_q .

References

[1] Pasternack, S., Astrophys J. **92**, 129 (1940).[2] Naqvi, A. M., Thesis Harvard (1951).

Forbidden Transitions Na v.

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	μk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Aceu- racy	Source
l	$2p^3 + 2p^3$	4S°-2D°										
			[2101.5] [2101.5] [2100.4] [2100.4]	0 0 0	[47570] [47570] [47595] [47595]	1 4 1	6 6 4 1	m e m e	2.2×10^{-4} 9.6×10^{-4} 0.012 5.9×10^{-1}	4.54 × 10 ⁻⁷ 1.4 × 10 ⁻¹ 1.65 × 10 ⁻⁵ 5.7 × 10 ⁻³	D- C- D-	1 1.2 1 1,2
2		4S°_2P°	[1379.4] [1379.4] [1380.2] [1380.2]	0 0 0	[72493] [72493] [72454] [72454]	4	1 1 2 2 2	m e m e	4.3 3.0×10 ⁻⁶ i.7 7.5×10 ⁻⁸	0.00167 3.6 × 10 * 3.31 × 10 4 4.5 × 10 *	C D- C D-	1 1. 2 1 1, 2

Na v. Forbidden Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	,Kk	Type of Transi- tion	.1 _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
3		2D° - 2D°										
			$[40.0 \times 10^{3}]$ $[40.0 \times 10^{3}]$	[47570] [47570]	[47595] [47595]	6	4	m e	2.53×10 ⁻⁷ 6.4×10 ⁻¹⁹	2.40 0.0016	B – D –	1, 2 1, 2
4		2D°-2P°										
		(1 F)	4011.2 4011.2 4021.6 4021.6 4017.5 4015.3 4015.3	[47570] [47570] [47595] [47595] [47570] [47595] [47595]	[72493] [72454] [72454] [72454] [72493]	6 6 4 4 6 4	4 4 2 2 2 4 4	m e m e m	0.67 0.23 0.74 0.19 0.13 1.2 0.096	0.0064 0.56 0.00357 0.24 0.16 0.0116 0.24	C D C D C	1 2 1 2 2 2 1 2
5		2P°-2P°	[05.6 × 105]	[70454]	[20400]				5 99 110 7		n	
			$ \begin{bmatrix} 25.6 \times 10^{5} \\ 25.6 \times 10^{5} \end{bmatrix} $	[72454] [72454]		2 2	4	m e	5.33×10^{-7} 2.5×10^{-18}	1.33 6.6 × 10 ⁻⁴	B – D –	1. 2

Na VI

Ground State

Ionization Potential

 $1s^22s^22p^2$ ³P₀

172.09 eV= 1388419 cm⁻¹

Allowed Transitions List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
311.93	3	420.49	8	1516.0	12
312.61	3	421.49	8	1532.5	12
313.74	3	423.84	8	1550.6	12
317.64	5	440.27	10	1567.8	12
361.25	3 3 5 4	489.57	1	1608.5	14
362.44	6	491.25	1	1615.9	14
363.77	6 7	491.34	1	1630.3	14
364.46	7	494.07	1	1634.6	14
364.52	7	494.16	1	1649.4	14
366.10	7	494.38	1	1741.5	13
366.23	7	528.73	11	1747.5	13
366.28	7	630.65	9	1748.3	13
414.35		632.88	9	1763.3	13
415.55	5	638.21	9	1770.3	13
417.57	2 2 2				

Most data are obtained from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons of this material within the isoelectronic sequence depicting the dependence of f-values on nuclear charge have been made, and the available experimental data for the lower ions, mostly from lifetime measurements, establish fairly definitely that the uncertainties should not exceed 50 percent. Analogous graphs for the data obtained from the Coulomb approximation indicate that these values are accurate within 25 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Na vi. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_t</i> (cm ⁻¹)	E _k (cm ⁻¹)	Kı	Kk	4 _{ki} (10 ^g sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2 - 2s2p^3$	3P - 3D°	492.80	1265	204187	9	15	18	0.11	1.6	-0.00	D+	1
			[494.38] [491.34] [489.57] [494.16] [491.25] [494.07]	1858 698 0 1858 698 1858	204131 204222 204260 204222 204260 204260	5 3 1 5 3 5	7 5 3 5 3 5	18 14 10 4.4 7.4 0.50	0.092 0.082 0.11 0.016 0.027 0.0011	0.75 0.40 0.18 0.13 0.13 0.0089	-0.34 -0.61 -0.96 -1.10 -1.09 -2.26	D+ D+ D- D- E	
2		3P _ 3P°	416.53	1265	241341	9	9	47	0.12	1.5	0.03	D	1
			[417.57] [415.55] [417.57] [415.55] [415.55] [414.35]	1858 698 1858 698 698	241341 241341 241341 241341 241341 241341	5 3 5 3 3 1	5 3 1 5 3	35 11 19 48 12 16	0.090 0.029 0.031 0.041 0.051 0.12	0.62 0.12 0.21 0.17 0.21 0.17	-0.35 -1.06 -0.81 -0.91 -0.82 -0.92	D D- D- D- D-	is ls ls ls ls
3		3P - 3S°	313.16	1265	320589	9	3	290	0.14	1.3	0.10	D+	1
			[313.74] [312.61] [311 93]	1858 698 0	320589 320589 320589	5 3 1	3 3 3	160 95 31	0.14 0.14 0.14	0.72 0.43 0.14	-0.15 -0.38 -0.85	D+ D+ D+	ls
4		'D-'D°	[361.25]	35358	312175	5	5	140	0.27	1.6	0.13	D	ì
5		'D-'P°	[317.64]	35358	350179	5	3	170	0.16	0.82	-0.10	D	1
6		'S-'P°	[362.44]	74274	350179	1	3	47	0.28	0.33	-0.55	D-	1
7	$2s2p^3-2p^4$	3D°-3P	365.31	204187	477926	15	9	120	0.14	2.5	0.32	D	1
			[366.10] [364.46] [363.77] [366.23] [364.52] [366.28]	204131 204222 204260 204222 204260 204260	477277 478597 479156 477277 478597 477277	7 5 3 5 3 3	5 3 1 5 3 5	99 86 120 17 29 1.2	0.14 0.10 0.078 0.035 0.058 0.0039	1.2 0.62 0.28 0.21 0.21 0.014	-0.01 -0.30 -0.63 -0.76 -0.76 -1.93	D D- D- D- E	ls ls ls ls ls
8		3P°-3P	422.68	241341	477926	9	9	29	0.078	0.98	-0.15	D	1
			[423.84] [421.49] [421.49] [420.49] [423.84] [421.49]	241341 241341 241341 241341 241341 241341	477277 478597 478597 479156 477277 478597	5 3 5 3 3	5 3 3 1 5 3	22 7.4 13 30 7.5 9.9	0.059 0.020 0.034 0.026 0.033 0.079	0.41 0.082 0.14 0.11 0.14 0.11	-0.53 -1.22 -0.77 -1.11 -1.00 -1.10	D E D- D- D-	ls ls ls ls ls
9		3S°-3P	635.58	320589	477926	3	9	18	0.32	2.0	-0.02	D	1
			[638.21] [032.88] [630.65]	320589 320589 320589	477277 478597 479156	3 3 3	5 3 1	17 18 18	0.17 0.11 0.035	1.1 0.67 0.22	-0.29 -0.48 -0.98	D D D	ls ls ls
10		'D°-'D	[440.27]	312175	539310	5	5	120	0.34	2.5	0.23	D	1
11		¹P°-¹D	[528.73]	350179	539310	3	5	15	0.11	0.55	-0.48	D	1
12	2p3s 2p(2P2)3p	3P°-3P											
			[1550.6] [1532.5] [1567.8] [1516.0]	808795 807324 808795 807324	873287 872577 872577 873287	5 3 5 3	5 3 3 5	3.99 1.4 2.14 1.42	0.144 0.048 0.0473 0.081	3.67 0.73 1.22 1.22	-0.143 -0.84 -0.63 -0.61	C D C C	ca, ls ca, ls ca, ls ca, ls

Navl. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Ă)	$E_i(cm^{-1})$	$E_{\kappa}(\mathrm{cm}^{-1})$	μ _i	#k	A _{ki} (10 ⁿ sec ⁻¹)	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
13	2p3p - 2p(2P°)3d	² P − ^a D°											
			[1747.5] [1741.5] [1763.3] [1748.3] [1770.3]	873287 872577 873287 872577 873287	930510 929999 929999 929774 929774	5 3 5 3 5	7 5 5 3 3	2.87 2.19 0.70 1.20 0.077	0.184 0.166 0.0327 0.055 0.0022	5.3 2.85 0.95 0.95 0.063	-0.036 -0.303 -0.79 -0.78 -1.97	C C C C E	ca, ls ca, ls ca, ls ca, ls
14		3P_3P°											
			[1649.4] [1615.9] [1634.6] [1608.5] [1630.3]	873287 872577 873287 872577 872577	933915 934463 934463 934745 933915	5 3 5 3 3	5 3 3 1 5	1.46 0.52 0.83 2.10 0.50	0.060 0.0202 0.0201 0.0271 0.0335	1.62 0.323 0.54 0.431 0.54	-0.52 -1.218 -1.000 -1.090 -1.000		ca, ls ca, ls ca, ls ca, ls

Na VI

Forbidden Transitions

The sources adopted for this ion are Naqvi [1], Malville and Berger [2], and Froese [3]. Malville and Berger have utilized "spin-orbit" and "spin-spin and spin-other-orbit" integrals by Garstang (Monthly Notices Roy. Astron. Soc. 111, 115 (1951)). Naqvi's and Malville and Berger's magnetic dipole transitions have generally been averaged since their methods are very similar. But for the ³P-¹S transition, where configuration interaction is important, Malville and Berger's value, which is obtained empirically, has been preferred over that of Naqvi which is based purely on theory (see also General Introduction).

Since Froese's value of s_a , the electric quadrupole moment, is obtained by using the most advanced self-consistent field wave function calculations, we have modified Naqvi's and Malville and Berger's electric quadrupole values by her sq.

Naqvi, A. M. Thesis Harvard (1951).
 Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131 (1965).
 Froese, C., Astrophys. J. 145, 932 (1966).

Navi. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Ľk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2 + 2p^2$	3 P _3 P										
			[14,32 × 10 ⁴] [53807] [86183] [86183]	0 0 6 98 698	698 1858 1858 1858	1 1 3 3	3 5 5 5	m e m e	0.00612 4.35×10^{-8} 0.0211 9.3×10^{-9}	2.00 0.058 2.50 0.131	B C A C	1 2, 3 1 1, 3
2		aP=₁D	[2827.4] [2884.3] [2884.3] [2984.2] [2984.2]	0 698 698 1858 1858	35358 35358 35358 35358 35358	1 3 3 5 5	5 5 5 5 5	e m e m	5.1×10 ⁻⁵ 0.441 1.7×10 ⁻⁴ 1.20 0.0010	2.7×10 ⁻⁵ 0.00196 1.0×10 ⁻⁴ 0.0059 7.1×10 ⁻⁴	D C D C	2, 3 1, 2 1, 3 1, 2 1, 3

Na VI. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g _k	Type of Transi- tion	A _{ki} (sec⁻¹)	S(at.u.)	Accu- racy	Source
3		4P=4S				•						
			[1359,1] [1 380 ,9]	698 1858	74274 74274	3 5	1	m e	13.4 0.019	0.00125 5.7 × 10 ⁻⁵	C D	2 2, 3
4		'D-'S										
			[2568.9]	35358	74274	5	l	e	3.59	0.239	C	2, 3

Na VII

Ground State

Ionization Potential

1s22s22p2P1/2

 $208.444 \text{ eV} = 1681679 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
94.288	11	385.11	6	498.23	7
94.468	11	385.25	6	498.46	7
94.479	11	396.36	4	551.75	9
105.11	10	397.52	4	552.03	9
105.35	10	399.21	4	555.80	9
350,64	3	483.13	5	556,09	9
352.28	3	483.22	5	778.05	8
353.29	3	483.33	5	786.13	8
354.95	3	483.41	5	786.65	8 8
378.21	2	486.74	1	1752.2	12
381.30	2	491.86	1	1912.7	13
385.06	6	492.60	l	1917.1	13

Values for the majority of the transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons with other data for the lower ions of this isoelectronic sequence indicate that the uncertainties should be within 50 percent. For the 3s ${}^2S - 3p {}^2P^{\circ}$ transition an f-value from the chargeexpansion calculations of Naqvi and Victor [2] is available, which links up well with reliable data available for the lower ions as is readily seen again from graphical comparison.

For the $2p^2P^0-3s^2S$ and $2p^2P^0-3d^2D$ multiplets we have obtained data by exploiting the dependence of f-values on nuclear charge: In these cases accurate data for several other ions of the boron sequence are available from extended self-consistent field calculations by Weiss [3] in which configuration mixing is fully included. Utilizing those values, which are also supported by some experimental results on lower ions, we have obtained the f-values of the two transitions simply by graphical interpolation.

References

t] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964)

[2] Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964).
[3] Weiss, A. W., private communication (1967).

Na VII. Allowed Transitions

Vo.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	Kr	$A_{ki}(10^{6}$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
l	$2s^22p - 2s2p^2$	²P°− 2D	190.20	1426	205426	6	10	16	0.096	0.93	- 0.24	D	
			[492.60] [486.74] [491.86]	2139 0 2139	205412 205448 205448	4 2 4	6 4 4	16 14 2.6	0.086 მ.097 0.0096	0.56 0.31 0.062	-0.46 -0.71 -1.42	D D E	
2		² P°- ² S	380.27	1426	264400	6	2	68	0.649	0.37	-0.53	D+	
			[381.30] [378.21]	2139 0	264400 264400	4 2	2 2	46 22	0.050 0.048	0.25 0.12	-0.70 -1.02	D+ D+	
3		2P°-2P	352,95	1+26	284749	6	6	120	0.23	1.6	0.14	D+	
			[353.29] [352.28] [354.95] [350.64]	2139 0 2139 0	285189 283869 283869 285189	4 2 4 2	4 2 2 4	100 83 41 21	0.19 0.16 0.039 0.078	0.89 0.36 0.18 0.18	-0.12 -0.49 -0.81 -0.81	D+ D- D-	
4	$2s2p^2-2p^3$	4P-4S°	398.17	[116331]	[367481]	12	4	120	0.095	1.5	0.06	D+	
			[399.21] [397.52] [396.36]	[116987] [115920] [115187]	[367481] [367481] [367481]	6 4 2	4 4 4	56 40 24	0.089 0.096 0.11	0.70 0.50 0.30	$ \begin{array}{r} -0.27 \\ -0.42 \\ -0.66 \end{array} $	D+ D+ D+	1
5		$^{2}D-^{2}D^{\circ}$	483.28	205426	412345	10	10	34	0.12	1.9	0.08	D+	
			[483.33] [483.22] [483.13] [483.41]	205412 205448 205412 205448	412311 412395 412395 412311	6 4 6 4	6 4 4 6	33 30 3.4 2.3	0.12 0.11 0.0080 0.012	1.3 0.68 0.076 0.076	-0.14 -0.36 -1.32 -1.32	D+ D E E	1
6		² D − ² P°	385.13	205426	465080	10	6	55	0.073	0.93	-0.14	D	
			[385.06] [385.25] [385.11]	205412 205448 205448	465111 465017 465111	6 4 4	4 2 4	50 55 5.5	0.074 0.061 0.012	0.56 0.31 0.062	-0.35 -0.61 -1.32	D D E	:
7		2S -2P°	498,31	264400	465080	2	6	10	0.12	0.38	- 0.62	D	
	i i		[498.23] [498.46]	264400 264400	465111 465017	2 2	4 2	10 11	0.076 0.040	0.25 0.13	-0.82 -1.10	D D	ı
8		² P - ² D°	783.72	284749	412345	6	10	8.0	0.12	1.9	-0.14	D	
			[786.65] [778.05] [786.13]	285189 283869 285189	412311 12395 412395	4 2 4	6 4 4	7.6 6.8 1.4	0.11 0.12 0.013	1.1 0.63 0.13	-0.36 -0.62 -1.28	D D E	
9		2P-2P°	554.54	284749	465080	6	6	34	0.16	1.7	-0.02	D	
			[555.80] [552.03] [556.09] [551.75]	285189 283869 285189 283869	465111 465017 465017 465111	4 2 4 2	4 2 2 4	28 23 11 5.7	0.13 0.10 0.026 0.052	0.94 0.38 0.19 0.19	-0.28 -0.70 -0.98 -0.98	D D D-	! ! !
10	2p-(1S)3s	2P°-2S	105.27	1426	951347	6	2	450	0.025	0.052	-0.82	C	inter
			[105.35] [105.11]	2139 0	951347 951347	2	2 2	300 150	0.025 0.025	0.035 0.017	-1.00 -1.30	CC	1
11	$2p - (^{1}S)3d$	2P°-2D	94.409	1426	1060651	6	10	2700	0.60	1.1	0.56	c	inter
			[94.468] [94.288] [94.479]	2139 0 2139	1060699 1060580 1060580	4 2 4	6 4 4	2600 2200 440	0.53 0.60 0.059	0.66 0.37 0.073	$0.33 \\ 0.08 \\ -0.63$	C C C	i
12	$3s - (^{1}S)3p$	2S-2P°	[1752.2]	951347	1008418	2	4	3.32	0.306	3.53	-0.213	С	2, /
13	$3p-({}^{\dagger}S)3d$	² P°- ² D	[1912.7] [1917.1]	1008418 1008418	1060699 1060580	4 4	6 4	2.20 0.37	0.181 0.020	4.56 0.51	-0.140 -1.09	CD	ca, l ca, l

Na VII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Forbidden Transitions Na vII.

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	gi	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p - (1S)2p	2P°_2P°										
			[46738]	0	2139	2	4	m	0.0878	1.33	A	1

Na VIII

Ground State

Ionization Potential

1s22s2 1So

 $264.155 \text{ eV} = 2131139 \text{ cm}^{-1}$

Allowed Transitions List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
77.267	6	497.80	3	2059.1	16
98.080	7	499.73	3	2558.2	16
411.15	2	788.75	1	2772.0	13
492.33	3	848.73	4	3021.0	15
492.91	5	1239.4	14	3108.9	17
493.97	3 ,	. 1802.7	11	3182.3	8
495.76	3	1867.7	12	14401	9
496.25	3				

Garstang and Shamey [1] have obtained the f-value for the intercombination line 2 So-2 P1 by calculating the ratio of this line against the resonance transition in the intermediate coupling approximation and by using for the resonance line a value calculated according to Cohen and Dalgarno's method [2]. The data calculated from the charge-expansion method of Cohen and Dalgarno [2], which includes limited configuration mixing, are estimated to be usually accurate to 50 percent or better, while the charge-expansion method of Naqvi and Victor [3] should be less reliable when the effects of configuration interaction are strong, since these are neglected entirely. In assigning the accuracy estimates for these methods as well as for the Coulomb approximation we were to a great extent guided by studying the degree of fit of the data into the systematic trends along iscelectronic sequences.

Garstang, R. H., and Shamey, t. J., Astrophys. J. 148, 665-666 (1967).
 Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964).

Na VIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\text{cm}^{-1})$	<i>i</i> E _k (em ^{−1})	gι	Ľ#	$rac{A_{Rl}(10^{ m H}}{ m sec^{-1})}$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	1S-3P°											
			[788.75]	0	[126783]	l	3	6.4×10 ⁻⁴	1.8×10 ⁻⁵	4.7×10^{-3}	-4.74	D	1 <i>n</i>
2		'S-'P°	411.15	0	243223	l	3	45.5	6 346	0.468	-0.461	С	2
3	$2s2p-2p^2$	ab.=ab	496.06	[127593]	[329/83]	9	9	37	0.14	2.0	0.10	D+	2
			[496.25] [495.76] [499.73] [497.80] [492.33] [493.97]	[128387] [126783] [128387] [126783] [126783] [126053]	[328494] [327667]	5 3 5 3 1	5 3 1 5 3	28 9.4 15 36 9.5	0.10 0.035 0.034 0.045 0.058 0.14	0.83 0.17 0.28 0.22 0.28 0.22	-0.30 -0.98 -0.77 -0.87 -0.76 -0.85	D+ D- D- D- D-	ls ls ls ls
4		'P°-'D	[848.73]	243223	361046	3	5	8.0	0.14	1.2	-0.38	D-	2
.5		'P°-'S	[492.91]	243223	446099	3	1	73	0.088	0.43	-0.58	E	2
6	$2s^2 - 2s(^2S)3p$	'S-'P°	[77.267]	0	1294214	1	3	2000	0.55	0.14	-0.26	E	3
7	$2s2p - 2s(^2S)3s$	¹P°-¹S	[98.080]	243223	1262799	3	1	140	0.0065	0.0063	-1.71	E	3
8	2s3s + 2s(2S)3p	'S-'P°	[3182.3]	1262799	1294214	1	3	0.461	0.210	2.20	-0.68	C	3
9	2p3s - 2p(2P°)3p	1P°_1P	[14401]	1426049	1432991	3	3	0.00484	0.0150	2.14	-1.347	C	ca
10		¹P°−¹D	[2059.1]	1426049	1474598	3	5	1.80	0.190	3.87	- 0.244	C	Su
11		'P°-'S	[1802.7]	1426049	1481521	3	1	2.70	0.0438	0.78	-0.88	C	ca
12	2s3p - 2s(2S)3d	'P°-'D	[1867.7]	1294214	1347756	3	5	2.01	0.175	3.23	-0.280	С	ca
13	2p3p - 2p(2P°)3d	¹P¹D°	[2772.0]	1432991	1469055	3	5	0.419	0.080	2.20	-0.62	С	ca
14		1P-1P°	[1239.4]	1432991	1513677	3	3	3.02	0.069	0.85	-0.68	С	ca
15		¹D-¹F°	[3021.0]	1474598	1507690	5	7	0.490	0.094	4.67	- 0.328	С	ca
16		'D-'P°	[2558.2]	1474598	1513677	5	3	0.0226	0.00133	0.056	-2.177	С	ca
17		'S-'P°	[3108.9]	1481521	1513677	ı	3	0.258	0.112	1.15	- 0.95	C	ca

Na viii

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^{a}P^{o} - {}^{a}P^{o}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^{a}P^{o} - {}^{a}P^{o}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Na VIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	g _k	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
2	2s2p — 2s(² S)2p	3bo - 1bo	[13.70×10 ¹] [62327]	[126053] [126783]	[126783] [128387]	1 3	3 5	m m	0.00699 0.0557	2.00 2.50	B A	1 1
2			[853.46] [858.81] [870.05]	[126053] [126783] [128287]	243223 243223 243223	·1 3 5	3 3	m m m	2.70 2.06 3.18	1.87 × 10 ⁻⁴ 0.0145 2.33 × 10 ⁻⁴	CCC	1 1 1

Na IX

Ground State

1s22s 2S1/2

Ionization Potential

 $299.78 \text{ eV} = 2418520 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
53.860	3	77.764	6	224.17	11
58.201	7	77.911	6	681.72	1
58.279	7	77.925	6	694.26	1
58,291	7	81.175	4	2487.7	8
58.952	5	81.350	4	2535.8	8
59.044	5	208.02	9	6841.8	10
70.615	2	223.79	11	7103.4	10
70.653	2	223.99	11	7218.2	10

For the transition 2s-2p, the charge-expansion calculation of Cohen and Dalgarno [1] is chosen. An uncertainty of less than 10 percent is indicated from the graphical comparison of this value with the other material for the same transition within the isoelectronic sequence. Data for the other listed transitions have been obtained from the Coulomb approximation. Plots of the dependence of f-value on nuclear charge for all these transitions have been made and show that this material connects up very smoothly with the data for the lower ions as well as with the hydrogenic value for infinite nuclear charge. Based on this impressive agreement, accuracies of 10 percent (or 25 percent for some of the smaller values) are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

NaIX. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _l (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	μk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s - 2p	2S_2P°	685.85	0	l 45805	2	6	6.59	0.140	0.630	-0.553	В	
			[681.72] [694.26]	0	146688 144038	2 2	4 2	6.71 6.36	0.0936 0.0459	0.420 0.210	-0.728 -1.037	B B	
2	2s-3p	2S-2P°	70.628	0	1415876	2	6	1380	0.310	0.144	-0.208	В	c
			[70.615] [70.653]	0	1416130 1415368	2 2	4 2	1380 1380	0.206 0.103	0.0960 0.0480	-0.385 -0.686	B B	
3	2s-4p	2S-2P°	[53.860]	0	1856665	2	6	630	0.082	0.0292	-0.79	C+	
4	2p3s	2P°-2S	81.292	145805	1375944	6	2	705	0.0233	0.0374	- 0.854	В	,
			[81.350] [81.175]	146688 144038	1375944 1375944	4 2	2 2	470 236	0.0233 0.0234	0.0250 0.0125	-1.031 -1.330	B B	
5	2p-4s	2P°-2S	59.013	145805	1840336	6	2	276	0.00480	0.0056	-1.54	С	,
	<u> </u> 		[59.044] [58.952]	146688 144038	1840336 1840336	4 2	2 2	184 92	0.00480 0.90482	0.00373 0.00187	-1.72 -2.016	C	
6	2p-3d	3bo-3D	77.819	145805	1430114	6	10	4430	0.670	1.03	0.694	В	
			[77.911] [77.764] [77.925]	146688 144038 146688	1430204 1429980 1429980	4 2 4	6 4 4	4410 3690 735	0.602 0.670 0.0670	0.618 0.343 0.0687	0.382 0.127 -0.572	B B B	
7	2p-4d	²P°-²D	58.254	145805	1862432	6	10	1620	0.137	0.158	-0.085	C+	
			[58.279] [58.201] [58.291]	146688 144038 146688	1862572 1862222 1862222	4 2 4	6 4 4	1620 1360 267	0.124 0.138 0.0137	0.095 0.053 0.0105	-0.305 -0.56 -1.261	C+ C+	
8	3s —	2S-2P°	2503.5	1375944	1415876	2	6	0.822	0.232	3.82	-0.333	В	ļ.,
			[2487.7] [2535.8]	1375944 1375944	1416130 1415368	2 2	4 2	0.839 0.789	0.156 0.0761	2.55 1.27	-0.506 -0.818	B B	
9	3s-4p	2S-2p°	[208.02]	1375944	1856665	2	6	171	0.334	0.457	- 0.175	C+	(
10	3p-3d	sbo-sD	7021.5	1415876	1430114	6	10	0.0295	0.0363	5.04	- 0.662	В	
			[7103.4] [6841.8] [7218.2]	1416130 1415368 1416130	1430204 1429980 1429980	4 2 4	4	0.0285 0.0266 0.00453	0.0323 0.0373 0.00353	3.02 1.68 0.336	0.889 1.127 1.850	В	
11	3p-4d	2P°-2D	223.94	1415876	1862432	6	10	456	0.57	2.53	0.53	C+	,
			[223.99] [223.79] [224.17]	1416130 1415368 1416130	18/32572 18/62222 18/62222	4 2 4	6 4 4	457 3 80 76	0.51 0.57 0.057	1.52 0.84 0.169	0.310 0.057 -0.64	C+ C+	

MAGNESIUM

MgI

Ground State

1s22s22p63s2 1S0

Ionization Potential

 $7.644 \text{ eV} = 61669.14 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2025.82	4	3096,89	9	5528.40	10
2736.54	15	3329.92	11	7657.8	24
2776.69		3332.15	11	8806.76	6
2778.27	3 3 3	3336.67	11 5	8923.57	25
2779.83	3	3829.35	5	9255.78	19
2781.42	3	3832.30	5	9414,96	21
2782.97	3 3	3838.29	5	10811.1	20
2846.72	12	4351.91	16	10953.3	26
2848.34	12	4562.48	1	10957.3	26
2851.66	12	4571.10	1	10965.5	26
2852.13	2	4575.3	1	11828.2	8 17
2936.74	14	4702.99	13	12083.7	17
2938.47	14	5167.32	7	14877.6	18
2942.00	14	5172.68	7	15031	22
3091.07	9	5183.60	7	17108.7	23
3092.98	9				

For the intercombination line $3s^2$ ${}^1S_0 - 3s3p$ ${}^3P_1^o$, Boldt's [2] absorption tube measurement is averaged with Garstang's [1] theoretical result. The latter has been renormalized by using the f-value for the resonance line listed in this table. Garstang [1] has also calculated values for the two intercombination lines $3s^2$ ${}^1S_0 - 3s3p$ ${}^3P_{0,2}$, which arise by the interaction of the nuclear moments with the electrons. These values have also been renormalized in the same manner as above. In the case of the J=0 to J=2 transition, magnetic quadrupole radiation constitutes an important contribution to the total transition probability. (See Mg I-Forbidden Lines; see also the General Introduction for adding transition probabilities of various types of radiation.) It should be noted that the listed values for the nuclear-spin-induced transitions are for the isotope Mg²³; for natural magnesium, the relative isotopic abundances must be taken into account.

From the extensive material on the resonance line we have selected the results of Lurio [3] (lifetime measurement via Hanle-effect), Smith and Gallagher [4] (same method) and Weiss [5] (Hartree-Fock calculations in the dipole length approximation, with superposition of configurations). The average of the three values, which agree within 5 percent, has been adopted.

For the other lines, we have made use of three theoretical investigations and two experiments. The calculations by Weiss [5], Zare [7], and Trefftz [9] all employ the self-consistent field approach. They differ insofar as Weiss uses Hartree-Fock functions and superimposes many possible configurations; Zare also includes configuration mixing, but starts with the simpler, less accurate Hartree-Fock-Slater wavefunctions; and Trefftz uses Hartree-Fock wavefunctions but takes configuration mixing only partially into account. Weiss' approach must be considered as the most comprehensive one; thus we have used his values—averaged with experiment—in preference over the others and, when not available, have chosen Zare's results over those of Trefftz. Normally the three methods agree within 15 percent. Exceptions are transitions which involve the 3s3p $^{1}P^{\circ}$ state, where Zare's values are much larger than those of the other two authors. However, for two lines originating from this state where the experimental values of Kersten and Ornstein [8] are

available, Zare agrees better with the measurements than Trefftz, and the average of the experiment and Zare's result has been adopted.

The two experiments mentioned above are the anomalous dispersion measurements of Penkin and Shabanova [6] and emission intensity measurements of Kersten and Ornstein [8] with a low-current, free-burning arc. Both experiments yield relative f-values, which have been normalized by a least-squares fit to Weiss' theoretical results. The values of Penkin and Shabanova differ by ro more than 15 percent from Weiss' results, which speaks for the reliability of the two methods. Therefore, averages from the two methods have been used when they overlap. The measurements of Kersten and Ornstein show a much larger scatter. Thus their results are only sparingly used.

- Garstang, R. H., J. Opt. Soc. Am. 52, 845-851 (1962).
 Boldt, G., Z. Physik 150, 205-214 (1958).
 Lurio, A., Phys. Rev. 136, A376-A379 (1964).
 Smith, W. W., and Gallagher, A., Phys. Rev. 145, 26-35 (1966).
 Weiss, A. W., J. Chem. Phys. 47, 3573 (1967).
 Penkin, N. P., and Shabanova, L. N., Optics and Spectroscopy (U.S.S.R.) 12, 1-5 (1962).
 Zare, R. N., J. Chem. Phys. 47, 3561 (1967).
 Kersten, J. A. H., and Ornstein, L. S., Physica 8, 1124-1136 (1941).
 Treffiz, E., Z. Astrophys. 28, 67-78 (1950).

Mg I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(a1.u.)	log gf	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	¹ S_ ³ P° (1)	*4562.48 4571.10 *[4575.3]	0 0 0	21911 21870 21850	1 1	5 3 1	2.2×10^{-12} 4.3×10^{-6} 5.8×10^{-12}	3.5 × 10 ⁻¹² 4.0 × 10 ⁻⁶ 1.8 × 10 ⁻¹²	5.3 × 10 ⁻¹¹ 6.1 × 10 ⁻³ 2.8 × 10 ⁻¹¹	-11.46 -5.40 -11.74	D- D-	1n 1n, 2
2		(S_iP° (1 uv)	2852.13	0	35051	1	3	4.95	1.81	17.0	0.258	В	3, 4, 5
3	$3s3p-3p^2$	³ P°-3P (6 uv)	2779.9	21891	57853	9	9	5.2	0.61	50	0.74	C+	5, 6n
			2779.83 2779.83 2782.97 2781.42 2776.69 2778.27	21911 21870 21911 21870 21870 21850	57874 57833 57833 57813 57874 57833	5 3 5 3 1	5 3 1 5 3	3.92 1.31 2.16 5.3 1.31 1.76	0.455 0.152 0.151 0.204 0.252 0.61	20.8 4.17 6.9 5.6 6.9 5.6	0.357 - 0.341 - 0.122 - 0.213 - 0.121 - 0.215	C+ C C C C	ls ls is ls ls
4	3s ² - 3s(² S)4p	1S_1P° (2 uv)	2025.82	0	49347	1	3	1.2	0.22	1.5	-0.66	D	7
5	3s3p — 3s(² S)3d	(3) 3P°=3D	3835.3 3838.29 3832.30 3829.35 3838.29 3832.30 3838.29	21891 21911 21870 21850 21911 21870 21911	47957 47957 47957 47957 47957 47957 47957	5 3 1 5 3 5	15 7 5 3 5 3 3	1.68 1.27 0.940 0.420 0.703 0.047	0.619 0.519 0.465 0.620 0.0928 0.155 0.0062	70.3 32.8 17.6 7.82 5.86 5.86 0.39	0.746 0.414 0.145 - 0.208 - 0.333 - 0.333 - 1.51	B B B B B	5, 6n Is Is Is Is Is Is Is
6		1 P° _1 D (7)	0806.76	35051	46403	3	5	0.14	0.28	24	-0.08	Ð	5
7	3s3p — 3s(² S)4s	³ P°- ³ S (2)	5178.3 5183.60 5172.68 5167.32	21891 21911 21870 21850	41197 41197 41197 41197	9 5 3 1	3 3 3 3	1.04 0.575 0.346 0.116	0.139 0.139 0.139 0.139	21.3 11.9 7.10 2.36	0.097 - 0.158 - 0.380 - 0.857	B B B	5,6n Is Is Is

Mg . Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(\text{cm}^{-1})$	E_k (cm ⁻¹)	Ki	g _k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
8		'P°-'S (6)	11828.2	35051	43503	3	1	0.26	0.18	21	-0.27	D	5
9	3s3p - 3s(2S)4d	³ P°_3D (5)	3095.0	21891	54192	9	15	0.56	0.134	12.3	0.081	С	6n, 7
	35(3 Hell		3096.89 3092.98 3091.07 3096.89 3092.98 3096.89	21911 21870 21850 21911 21870 21911	54192 54192 54192 54192 54192 54192	5 3 1 5 3 5	7 5 3 5 3 3	0.56 0.420 0.313 0.139 0.233 0.016	0.112 0.101 0.135 0.0200 0.0334 0.0013	5.7 3.07 1.37 1.02 1.02 0.068	-0.252 -0.52 -0.87 -1.000 -1.000 -2.18	CCCCCE	ls ls ls ls ls
10		'P°_'D (9)	5528.40	35051	53135	3	5	0.14	0.11	6.0	-0.48	D-	7, 8n
11	3s3p - 3s(2S)5s	³ P°_ ³ S (4)	3334.5	21891	51872	9	3	0.31	0.017	1.7	-0.82	D	8 <i>n</i>
		:	3336.67 3332.15 3329.92	21911 21870 21850	51872 51872 51872	5 3 1	3 3	0.17 0.10 0.034	0.017 0.017 0.017	0.93 0.56 0.19	-1.07 -1.29 -1.77	D D D	ls ls ls
12	3s3p- 3s(2S)5d	3P°_3D (5 uv)	2850.6	21891	56968	9	15	0.27	0.055	4.7	-0.31	D-	7, 8n
			2851.66 2848.34 2846.72 2851.66 2848.34 2851.66	21911 21870 21850 21911 21870 21911	56968 56968 56968 56968 56968	5 3 1 5 3 5	7 5 3 5 3	0.27 0.21 0.15 0.068 0.11 0.0076	0.047 0.043 0.055 0.0063 0.014 5.5 × 10 ⁻⁴	2.2 1.2 0.52 0.39 0.39 0.026	-0.63 -0.89 -1.26 -1.38 -1.38 -2.56	D	ls ls ls ls ls
13		'P°-'D (11)	4702.99	35051	56308	3	5	0.16	0.088	4.1	-0.58	D	7, 8n
14	3s3p — 3s(2S)6s	3P°_3S (3 uv)	2940.2	21891	55892	9	3	0.16	0.0067	0.58	-1.22	D-	8 <i>n</i>
	00(17,00		2942.00 2938.47 2936.74	21911 21870 21850	55892 55892 55892	5 3 1	3 3	0.086 0.052 0.017	0.0067 0.0067 0.0067	0.32 0.19 0.065	-1.47 -1.70 -2.17	D- D- D-	ls ls ls
15	3s3p = 3s(2S)6d	³ P°— ³ D (9 uv)	2736.54	21911	58443	5	7	0.207	0.0326	1.47	-0.79	С	6 <i>n</i>
16		³P°¹D (14)	4351.91	35051	58023	3	5	0.21	0.10	4.3	- 0.52	D-	8 <i>n</i>
17	3s3d- 3s(2S)4f	'D-'F° (26)	12083.7	46403	54676	5	7	0.170	0.52	103	0.415	С	9
18		³D−³F°	14877.6	47.57	54677	15	21	0.105	0.487	358	C.86	С	9
19	$3s3d - 3s(^2S)5f$	'D-'F° (27)	9255.78	46403	57204	5	7	0.089	0.16	24	-0.09	С	9
20		³ D — ³ F° (37)	10811.1	47957	57204	15	21	0.0452	0.111	59	0.221	С	9
21	3s3d- 3s(² S)6f	³ D – ³ F° (38)	9414.96	47957	58576	15	21	0.022	0.041	19	-0.21	С	9
22	3s4s - 3s(2S)4p	3S3P°	15031	41197	47848	3	9	0.139	1.41	209	0.63	C+	7
23		1S-3P°	17108.7	43503	49347	1	3	0.094	1.24	70	0.093	С	7
24	3s4s — 3s(² S)5p	³ S = ³ P° (22)	7657.8	41197	54252	3	9	0.0148	0.0390	2.95	- 0.93	C-	9
25		1S-1P° (25)	8923.57	43503	54707	1	3	0.011	0.040	1.2	-1.40	D-	ca

Allowed Transitions - Continued

No	Transition Array	Multiplet	λ(Å)	<i>E</i> _l (cm ⁻¹)	E _k (cm ⁻¹)	Ri	K k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Acen- racy	Source
26	3s4p — 3s(² S)5d	³P°_3D (35)	10962 10965.5 10957.3 10953.3 10965.5 10957.3 10965.5	47848 47851 47844 47841 47851 47844 47851	56968 56968 56968 56968 56968 56968 56968	5 3 1 5 3 5		0.044 0.044 0.033 0.025 0.011 0.018 0.0012	0.13 0.11 0.10 0.13 0.020 0.033 0.0013	43 20 11 4.8 3.6 3.6 0.24	0.08 -0.25 -0.52 -0.88 -1.00 -1.00 -2.18	D D D – D – D – E	ca ls ls ls ls

[&]quot;See introduction.

MgI

Forbidden Transitions

The transition probability for that part of the 3s² 'S₀ - 3s3p ³P₂ transition which is magnetic quadrupole radiation (m.q.) is taken from calculations of Garstang [1]. Following a private communication by him, we have renormalized his published value (For the addition of transition probabilities arising from various types of radiation, see the General Introduction; also, for the relation of A_{ki} (m.q.) to other quantities, see [1].) The data for the ${}^3P^{\circ} - {}^3P^{\circ}$ and ${}^3P^{\circ} - {}^3P^{\circ}$ magnetic dipole transitions are from Naqvi's calculations [2]. The results for the "P"--"P" transitions are essentially indpendent of the choice of interaction parameters and therefore more accurate than those for ³P°-³P°. For the latter transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. For three 3s3p-3s4p electric quadrupole lines, transition probabilities have been calculated by Möller [3], which are consistent with experimental observations.

- Garsiang, R. H., Astrophys. J. 148, 579-584 (1967) and private communication (1967).
 Naqvi, A. M., Thesis Harvard (1951).
 Möller, N. H., Arkiv för Fysik 29, 353-358 (1966).

Forbidden Transitions Mg I.

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_{li}(\mathrm{cm}^{-1})$	Ķi	Kk	Type of Transi- tion	A _{RI} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	3s2 - 3s(2S)3p	¹S-³P°	4562.48	0,000	21911.2	1	5	m.q.	2.8 × 10 ⁻⁴		E	1 <i>n</i>
2	$3s\delta_{F} - 3s(^{2}S)3p$	3P°_3P°						-				
			[49.839 × 10°] [24.555 × 10°]	21850.4 21870.5	21870.5 21911.2	1 3	3 5	m m	1.45×10^{-7} 9.11×10^{-7}		A A	2 2
3		3P°-1P°										
			[7573.2] [7584.7] [7608.2]	21850.4 21870.5 21911.2	35051.3 35051.3 35051.3	1 3 5	3 3	m m m	1.10 × 10 ⁻⁸ 0.0050 1.35 × 10 ⁻³	2.45×10^{-4}	CCC	2 2 2
4	$3s3p - 3s(^2S)4p$	3P°_3P°										
			3854.97 3853,96 3848 91	21911.2 21911.2 21870.5	47844.4 47851.2 47844.4	5 5 3	3 5 3	e e	53 25 18	81 63 27	D D D	3 3 3

Ground State

1s22s22p63s 2S1/2

Ionization Potential

 $15.03 \text{ eV} = 121267.41 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1026.0	3	3538.8	17	4481.2	7
1239.9	2	3538.81	17	5264.3	22
1240.4	3 2 2	3549.52	18	6346.8	21
2660.8	10	3553.37	18	7877.05	13
2790.77	4	3613.78	12	7896.37	13
2795.53	1	3615.58	12	7896.4	13
2797.99	4	3848.2	8	8213.99	14
2798.0	4	3848,21	8	8234.64	14
2802.70	1	3850.39	8	9218.25	11
2928.63	1 5	4384.64	15	9244.27	11
2936.51	5	4390.56	15	9632.2	20
3104.8	5 9	4390.6	15	10914.2	6
3172.71	19	4427.99	16	10915.3	6
3175.78	19	4433.99	16	10951.8	6
3534.97	17				1

The adopted value for the resonance line is an average of self-consistent field calculations including polarization and exchange effects, by Biermann and Lübeck [1], calculations employing a scaled Thomas-Fermi potential by Stewart and Rotenberg [2], and a lifetime experiment utilizing the Hanle effect by Smith and Gallagher [3]. The results of the three methods agree within a few percent. The other transitions covered by Biermann and Lübeck (3p-3d and 3d-4f) should also be quite accurate, i.e., within 10 percent. Less refined self-consistent field calculations (including exchange but neglecting polarization) have been undertaken for several other multiplets by Chapman. Clarke and Aller [4]. In the remaining two transitions treated by Stewart and Rotenberg (-4p) and (3s-5p) and in all transitions involving the (5p) state there appear to be considerable cancellation effects in the transition integral. Hence, accuracy ratings of "D" or "E" have been assigned to these transitions.

For Mg tt, a member of the sodium isoelectronic sequence, it is possible to utilize extensively the dependence of oscillator strengths on nuclear charge for the intercomparison of analogous transitions. Thus, the degree of fit of the individual f-values into the systematic trends has served as one of the decisive factors for the choice of accuracy assignments.

- [t] Biermann, L. and Lübeck, K., Z. Astrophys. 25, 325-339 (1948).
- [2] Stewart, J. C., and Rotenberg, M., Phys. Rev. 140, 1508A-1519A (1965).
- [3] Smith, W. W., and Gallagher, A., Phys. Rev. 145, 26-35 (1966).
- [4] Chapman, R. D., Clarke, W. H., and Aller, L. H., Astrophys. J. 144, 376-380 (1966).

MgII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(cm^{-1})$	g _i	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s-3p	² S- ² P° (1 uv)	2797.9	0	35730	2	6	2.67	0.940	17.3	0.274	B+	1,2,3
		(1 uv)	27s 5.53 2802.70	0	35761 35669	2 2	4 2	2.68 2.66	0.627 0.313	11.5 5.78	0.098 - 0.203	B+ B+	ls Is
2	3s-4p	2S-2P°	1240.1	0	80640	2	6	0.0033	2.3 × 10 ⁻⁴	0.0019	-3.34	E	2
			[1239.9] [1240.4]	0	80650 80620	2 2	4 2	0.0033 0.0033	1.5 × 10 ⁻⁴ 7.7 × 10 ⁻³	0.0012 6.3×10 ⁻⁴	-3.52 -3.81	E E	ls Is
3	3s - 5p	2S-2P°	i026.0	0	97464	2	6	0.0021	0.0010	0.0068	-2.70	D	2
4	3p-3d	² P°_ ² D (3 uv)	2795.5	35730	71491	6	10	4.71	0.920	50.8	0.742	В	1
		(5 44)	2797.99 2790.77 [2798.0]	35761 35669 35761	71491 71491 71491	4 2 4	6 4 4	4.70 3.94 0.783	0.828 0.920' 0.0919	30.5 16.9 3.39	0.520 0.265 - 0.435	B B B	ls Is Is
5	3p-4s	² P°_ ² S (2 uv)	2933.8	35730	69805	6	2	3.23	0.139	8.1	-0.079	C+	ca
		(2 (4))	2936.51 2928.63	35761 35669	69805 69805	4 2	2 2	2.15 1.07	0.139 0.138	5.4 2.66	-0.255 -0.56	C+	ls Is
6	3d-4p	*D-*P°	10926	71491	80640	10	. 6	0.166	0.178	64	0.250	С	ca
		,	10914.2 10951.8 10915.3	71491 71491 71491	80650 80620 80650	6 4 4	1 2 4	0.150 0.166 0.0162	0.178 0.149 0.0290	38.4 21.5 4.17	0.029 - 0.225 - 0.94	C C C	ls ls ls
7	3d-4f	² D - ² F° (4)	4481.2	71491	93800	10	14	2.25	0.950	140	0.978	В	1
8	3d-5p	² D – ² P° (5)	3849.1	71491	97464	10	6	0.035	0.0047	0.60	-1.33	D	4
		(12)	3848.21 3850.39 [3848.2]	71491 71491 71491	97469 97455 97469	6 4 4	4 2 4	0.032 0.035 0.0035	0.0047 0.0039 7.8 × 10 ⁻⁴	0.36 0.20 0.039	-1.55 -1.81 -2.51	D D D	ls Is is
9	3d-5f	*D-*F°	3104.8	71491	103690	10	14	0.81	0.164	16.8	0.215	С	ce
10	3d-6f	² D _2F° 4 uv)	2660.8	71491	109062	10	14	0.38	0.057	5.0	-0.24	D	ca
11	4s - 4p	2S-2P° (1)	9226.0	69805	80640	2	6	0.358	1.37	83	0.438	C+	ca
		(1)	9218.25 9244.27	69805 69805	80650 80620	2 2	4 2	0.359 0.356	0.91 0.456	55 27.8	0.262 -0.040	C+	ls Is
12	4s - 5p	² S – ² P° (2)	3614.4	69805	97464	2	6	0.0017	0.0010	0.024	-2.70	E	4
		(2)	3613.78 3615.58	69805 69805	97469 97455	2 2	4 2	0.0018 0.0017	6.9 × 10 ⁻⁴ 3.4 × 10 ⁻⁴	0.016 0.0081	$\begin{bmatrix} -2.86 \\ -3.17 \end{bmatrix}$	E E	ls Is
13	4p-4d	² P°- ² D (8)	7889.9	80640	93311	6	10	0.79	1.23	192	0.87	C+	ca
		(0)	7896.37 7877.05 [7896.4]	80650 80620 80650	93311 93311 93311	4 2 4	6 4 4	0.79 0.66 0.133	1.11 1.23 0.124	115 64 12.9	0.65 0.391 -0.305	C+ C+	ls Is Is
14	4p - 5s	² P°- ² S (7)	8231.6	80640	92791	6	2	0.78	0.264	42.9	0.200	C+	ca
		'''	8234.64 8213.99		92791 92791	4 2		0.52 0.260	0.264 0.263	28.6 14.2	0.024 -0.279	C+	ls Is

Mg II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Kı	g _k	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
15	4 <i>p</i> −5 <i>d</i>	² P°_ ² D	4388.6	80640	103420	6	10	0.17	0.081	7.0	-0.31	D	1
		(10)	4390.56 4384.64 [4390.6]	80650 80620 80650	103420 103420 103420	4 2 4	6 4 4	0.17 0.14 0.017	0.074 0.083 0.0050	4.3 2.4 0.29	-0.53 -0.78 -1.70	D D D	ls ls ls
16	4p-6s	² P°_ ² S (9)	<i>4432.0</i>	80640	103197	6	2	0.321	0.0315	2.76	-0.72	C+	4
		(2)	4433.99 4427.99	80650 80620	103197 103197	4 2	2 2	0.214 0.107	0.0315 0.0315	1.84 0.92	0.90 1.201	C+	ls ls
17	4p-6d	2P°_2D	3537.6	80640	108900	6	10	0.059	0.019	1.3	-0.95	D	ca
		(12)	3538.81 3534.97 [3533.8]	80650 80620 80650	108900 108900 108900	4 2 4	6 4 4	0.059 0.050 0.0098	0.017 0.019 0.0018	0.77 0.43 0.086	-1.18 -1.43 -2.13	D D D	ls ls ls
18	4p-7s	2P"_2S	3552.1	80640	108784	6	2	0.162	0.0102	0.72	-1.213	С	ca
		(11)	3553.37 3549.52	80650 80620	108784 108784	4 2	2 2	0.108 0.054	0.0102 0.0102	0.477 0.238	-1.390 -1.69	C C	ls ls
19	4p-8s	² P°- ² S (13)	3174.8	80640	112129	6	2	0.097	0.00490	0.307	-1.53	С	ca
		(13)	3175.78 3172.71	80650 80620	112129 112129	4 2	2 2	0.065 0.0325	0.00489 0.00490	0.205 0.102	-1.71 -2.009	C C	ls ls
20	4d-5f	² D- ² F° (15)	9632.2	93311	103690	10	14	0.413	0.80	255	0.91	С	ca
21	4d-6f	² D- ² F° (16)	6346.8	93311	109062	10	14	0.216	0.183	38.2	0.263	С	ca
22	4d-7f	² D- ² F° (17)	52€ 1.3	93311	112301	10	14	0.125	0.073	12.6	- 0.139	С	ca

Ground State

Mg III

1s22s22p6 1S0

Ionization Potential

 $60.12 \text{ eV} = 646364 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Mg III. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	gk	A _{kl} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2p ⁶ -2p ⁵ (² P ^o _{3/2})3s	1S_3P° (1 uv)	234.258	0.	426877	1	3	4.5	0.011	0.0085	- 1.96	E	
2	$2p^6-2p^5(^2\mathrm{P}^{\circ}_{1/2})3s$	'S_'P° (2 uv)	231.730	0.	431539	- 1	3	67	0.21	0.16	-0.68	D	l
3	$2p^6-2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	1S = 3P°	[188.53]	0	530430	1	3	2.5	0.0040	0.0025	-2.40	E	1
4	$2p^6-2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	'S_'P° (3 uv)	187.194	. 0	534204	1	3	100	0.16	0.099	-0.80	D	1
5	$2p^{6}-2p^{5}(^{2}P_{1/2}^{\circ})3d$	'S-3D° (4 uv)	186.510	0	536157	1	3	170	0.27	0.17	-0.57	D	1

Mg IV

Ground State
Ionization Potential

 $1s^{2}2s^{2}2p^{5/2}P_{3/2}^{\circ}$ $109.29 \text{ eV} = 881759 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
321.00	1	1459.6	4	1698.9	3
323.31	1	1490.4	4	1703.4	3
1230.3	5	1508.8	4	1874.6	2
1238.7	5	1525.2	7	1893.9	2
1245.2	5 5	1548.1	7	1906.7	2
1246.6	5	1641.0	3	1925.7	2
1253.7	5	1658.9	3	1936.9	2
1363.4	6	ე 1680.მ	3	1946.2	2
1375.4	6	1683.0	3	1956.6	2

The value for the $2s^22p^5$ $^2P^\circ-2s2p^8$ 2S multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving electrons of the n=3 shell, which were not included in this calculation, may be significant. Inasmuch as no other material is available, the Coulomb approximation has been used for a number of 3s-3p and 3p-3d transitions, where for atomic systems of similar complexity it has given fairly reliable values.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

MgIV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	P1	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 ? p^3 - 2s ? p^6$	2p°_,2S	321.77	742	311527	6	2	260	0.14	0.86	-0.08	D	1
			[321.00] [323.31]	0 2226	311527 311527	4 2	2 2	170 87	0.13 0.14	0.57 0.29	-0.28 -0.55	D D	ls ls
2	$2p^{4}3s - 2p^{4}(^{3}P)3p$	4P-4P*	1911.5	544572	596886	12	12	3.9	0.21	16	0.40	D	ca
			[1393.9] [1925.7] [1936.9] [1874.6] [1906.7] [1946.2] [1956.6]	543727 545144 545962 543727 545144 545144 545962	596527 597072 597590 597072 597590 596527 597072	6 4 2 6 4 4 2	6 4 2 4 2 6 4	2.8 0.50 0.61 1.8 3.2 1.1	0.15 0.028 0.035 0.065 0.088 0.094 0.17	5.6 0.71 0.44 2.4 2.2 2.4 2.2	-0.05 -0.95 -1.15 -0.41 -0.45 -0.42 -0.47	D - D - D - D - D - D - D - D - D - D -	ls ls ls ls ls
3		4P-4D°											
			[1683.0] [1698.9] [1703.4] [1658.9] [1680.0] [1641.0]	543727 545144 545962 543727 545144 543727	603143 604007 604667 604667 604667	6 4 2 6 4 6	8 6 4 6 4 4	5.8 3.9 2.4 1.8 3.1 0.31	0.33 0.25 0.21 0.073 0.13 0.0083	11 5.7 2.3 2.4 2.9 0.27	0.30 0.00 -0.38 -0.36 -0.28 -1.30	D D D- D- E	ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls
4		4P-4S°	1477.8	544572	612240	12	4	8.6	0.094	5.5	0.05	D	ca
			[1459.6] [1490.4] [1508.8]	543727 545144 545962	612240 612240 612240	6 4 2	4 4	4.6 2.8 1.4	0.097 0.092 0.093	2.8 1.8 0.92	-0.24 -0.43 -0.73	D D D	ls ls ls
5	$2p^43p - 2p^4(3P)3d$	4P°_4P											
	reersa		[1245.2] [1238.7] [1230.3] [1253.7] [1246.6]	596527 597072 596527 597072 597590	676837 677805 677805 676837 677805	6 4 6 4 2	6 4 4 6 4	5.9 1.1 4.1 2.6 3.4	0.14 0.026 0.062 0.091 0.16	3.4 0.43 1.5 1.5 1.3	-0.08 -0.98 -0.43 -0.44 -0.49	D E D- D-	ca, ls ca, ls ca, ls ca, ls ca, ls
6		¹D°−¹F		1									
			[1375.4] [1363.4]	604667 604007	677355 677355	4 6	4	4.5 0.32	0.13 0.0059	2.3 0.16	- 0.28 - 1.45	D E	ca, ls ca, ls
7		45°_4P											
			[1548.1] [1525.2]	612240 612240	676837 677805	4	6 4	6.4 6.7	0.34 0.23	7.0 4.7	$0.13 \\ -0.04$	D D	ca, ls ca, ls

Mg IV

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Mg IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> ₁ (cm ⁻¹)	E _k (cm ⁻¹)	gi	Kk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^3 - 2p^3$	²P° – ²P°										
			[44911]	0	2226	4	2	m	0.198	1.33	A	1

Mg v

Ground State

 $1s 2s^22p^{4/3}P_2$

Ionization Potential

 $141.23 \text{ eV} = 1139421 \text{ cm}^{-1}$

Allowed Transitions

The values are calculated from the change-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. An additional value for the 'S-1P' transition is available from the calculations of Bolotin, Shironas, and Braiman [2], which also include limited configuration interaction. For this latter transition, the two methods agree fairly well and the results are averaged. In general, uncertainties should be within 50 percent.

References

Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Bolotin, A. B., Shiror as, I. I., and Braiman, M. Yu., Vilniaus, Valstybinio v. Kapsuko vardo universiteto Moksio Darbai 33, matematika fizika 9, 107-112 (1960).

Allowed Transitions Mg V.

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	E _k (cm ⁻¹)	g _i	g _k	A _{ki} (10 ^k sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^4-2s2p^5$	3P_3P°	353.16	873	284027	9	9	120	0.22	2.3	0.30	D	1
			[353.09] [353.30] [351.09] [352.20] [355.33] [354.22]	0 1780 0 1780 1780 2519	283211 234827 284827 285708 283211 284327	5 3 5 3 1	5 3 3 1 5 3	88 29 50 120 29 40	0.17 0.054 0.055 0.075 0.091 0.22	0.96 0.19 0.32 0.26 0.32 0.26	-0.07 -0.79 -0.60 -0.65 -0.56 -0.66	D - D - D - D - D -	ls Is Is Is Is
2		'D-'P°	[276.58]	[36348]	[397906]	5	3	200	0.14	0.64	-0.15	D	1
3		'S-'P°	[312.31]	[77712]	[397906]	l	3	27	0.12	0.12	-0.92	D	1, 2

Mgv Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV, since the same considerations have been applied.

References

Naqvi, A. M., Thesis Harvard (1951).
 Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1137 (1965).

Mg V. Forbidden Transitions

No.	Transition Array	Mu.tiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	gi	g _k	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P_3P										
			[56164] [56164] [39687] [13.53×10 ⁴]	0 0 0 1780	1780 1780 2519 2519	5 5 5 3	3 3 1 1	e m e m	1.16×10 ⁻⁷ 0.127 8.8×10 ⁻⁷ 0.0218	0.116 2.50 0.052 2.00	C- A C- A	1, 2 1 2 1
2	l	3P-1D								1	.	
			[2750.4] [2750.4] [2892.0] [2892.0] [2955.2]	0 0 1780 1780 2519	[36348] [36348] [36348] [36348] [36348]	5 5 3 3	5 5 5 5 5	e m e m	0.0017 1.90 1.9 × 10-4 0.55 6.7 × 10-5	7.9×10 ⁻⁴ 0.0073 1.1×10 ⁻⁴ 0.00245 4.5×10 ⁻⁵	C D- C	1, 2 1 1, 2 1 2
3		3P_1S		į I								
	}		[1286.8] [1317.0]	0 1780	[77712] [77712]	5 3	1	e m	0.027 23	5.7×10 ⁻⁸ 0.00195	D-	2 2
4		ID-IS						:				
			[2416.8]	[36348]	[77712]	5	1	e	4.2	0.206	C –	2

Mg VI

Ground State

 $1s^22s^22p^3$ $4S_{3/2}^{\circ}$

Ionization Potential

 $186.49 \text{ eV} = 1504581 \text{ cm}^{-1}$

Allowed Transitions

Values for all the listed transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Judged from graphical comparisons with other ions in the isoelectronic sequence and from the general success of Cohen and Dalgarno's method for similar atomic systems, uncertainties within 50 percent are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Mg VI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	g _i	g _k	$A_{kl}(10^8$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 - 2s2p^4$	4S°-4P	401.76	0	248906	4	12	36	0.26	1.4	0.02	D	1
			[403.32] [400.68] [399.29]	0 0 0	247945 249578 250445	4 4 4	6 4 2	36 37 37	0.13 0.089 0.044	0.70 0.47 0.23	-0.28 -0.45 -0.75	D D D	ls ls ls
2		2D°-2D	349,15	[54158]	[340564]	10	10	86	0.16	1.8	0.20	D	1
			[349.16] [349.15] [349.12] [349.19]	[54150] [54171] [54150] [54171]	[340551] [340584] [340584] [340551]	6 4 6 4	6 4 4 6	79 77 8.6 5.7	0.14 0.14 0.010 0.016	1.0 0.65 0.072 0.072	-0.08 -0.25 -1.22 -1.19	D D E E	ls ls ls ls
3	į	2D°-2P	269.92	[54158]	[424633]	10	6	310	0.20	1.8	0.30	D	1
			[270.39] [268.99] [270.41]	[54150] [54171] [54171]	[423981] [425938] [423981]	6 4 4	4 2 4	280 310 31	0.21 0.17 0.034	1.1 0.60 0.12	0.10 -0.17 -0.87	D D E	ls ls ls
4		2P°-2D	387.94	[82791]	[340564]	6	10	13	0.050	0.38	-0.52	D	1
			[388.02] [387.79] [387.97]	[82832] [82710] [82832]	[340551] [340584] [340584]	4 2 4	6 4 4	13 11 2.2	0.045 0.051 0.0049	0.23 0.13 0.025	-0.74 -0.99 -1.71	D D E	ls ls ls
5		2P°-2S	314.64	[82791]	[400619]	6	2	180	0.090	0.56	-0.27	D	1
			[314.68] [314.56]	[82832] [82710]	[400619] [400619]	4 2	2 2	120	0.089 0.092	0.37 0.19	-0.45 -0.74	D D	ls ls
6		2p°_2p	292.53	[82791]	[424633]	6	6	90	0.12	0.67	-0.14	D	1
			[293.13] [291.35] [291.46] [293.02]	[82832] [82710] [82832] [82710]	[423981] [425938] [425938] [423981]	4 2 4 2	4 2 2 4	74 61 30 15	0.096 0.078 0.019 0.038	0.37 0.15 0.074 0.074	-0.42 -0.81 -1.12 -1.12	D D E E	ls ls ls

Mg VI

Forbidden Transitions

For this ion all the values have been taken from Garstang [1], who has improved Pasternack's earlier calculations (Pasternack, S., Astrophys. J. 92, 129 (1940)).

Reference

[1] Garstang, R. H., I.A.U. Symposium #34 on Planetary Nebulae held at Tatranska Lomnica, Czechoslovakia, Sept. (1967).

Mg VI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> ₁ (cm ⁻¹)	$E_k(\text{cm}^{-1})$	g _i	g,	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- rac**	Source
1	$2p^3 - 2p^3$	¹S° − ²D°										
			[1846.7]	0	[54150]	4	6	m	0.0032	4.48 × 10 ⁻⁶	C	1
		1	[1846.7] [1846.0]	0	[54150] [54171]	4	6	e m	0.0022 0.12	1.69 × 10 ⁻⁴ 1.12 × 10 ⁻⁴	C	1
		ļ	[1846.0]	ő	[54171]	4	4	e	0.0014	7.147×10^{-3}	Ď	i
2		1S° _ 2P°										
			[1207.3]	0	[82832]	4	4	m	13	0.00339	C	1
		İ	[1207.3]	0	[82832]	4	4	e	2.7 × 10 ⁻⁶ 5.3	1.6 × 10 ⁻⁸ 6.9 × 10 ⁻⁴	ט	1
			[1209.0] [1209.0]	0	[82710] [82710]	4	2 2	m e	8.5 × 10 ⁻⁵	2.6×10^{-7}	C D	l
3		2D° - 2D°										1
			$[47.6 \times 10^{3}]$	[54150]	[54171]	6	4	m	1.50 × 10 ⁻⁷	2.40	В-	1
			$[47.6 \times 10^{5}]$	[54150]	[54171]	6	4	e	2.0×10^{-20}	1.2×10-4	D	1
4		² D° – ² P°		_							_	
		(1F)	3485.5	[54150]	[82832]	6	4	m	2.1 0.26	0.0132 0.319	000000]]
			3485.5 3503.0	[54150] [54171]	[82832] [82710]	6 4	4 2	e m	2.3	0.0073	Č	1 1
			3503.0	[54171]	[82710]	4	2	e	0.23	0.144	Č	l i
			3500.4	[54150]	[82710]	6	2	e	0.15	0.094	C	1
			3488.1	[54171]	[82832]	4	4	m	3.7	0.0233	C	1 1
			3488.1	[54171]	[82832]	4	4	e	0.11	0.135	· ·	1
5		2P°-2P°										
			$[81.94 \times 10^4]$	[82710]	[82832]	2	4	m	1.63 × 10 ⁻⁵	1.33	B D	1
			[81.94×10 ¹]	[82710]	[82832]	2	4	e	8.7 × 10 ⁻¹⁶	7.7 × 10 ⁻⁴	ע	1

Mg vii

Ground State

1s22s2p2 3P0

Ionization Potential

 $224.90 \text{ eV} = 1814430 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
276.15	3	431.32	1	1371.1	9
277.01	3	434.62	1	1378.7	9
278.40	3	434.71	1	1392.1	9
280.74	3 3 5 4	434.92	1	1396.3	9 9
319.02	4	1290.9	7	1410.0	9
320.50	6	1293.4	7	1470.4	8
363.74	2	1306.3	7	1487.0	8
365.24	6 2 2 2	1327.0	7	1487.9	8
367.67	2	1334.3	7	1496.6	8
429.13	1	1350.8	7	1507.5	8
431.22	1	1356.4	9	1517.4	8

Most data are obtained from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons of this material within the isoelectronic sequence depicting the dependence of f-values on nuclear charge have been made, and the available experimental data for the lower ions, mostly from lifetime measurements, establish fairly definitely that the uncertainties should not viceed 50 percent. Analogous graphs for the data obtained from the Coulomb approximation indicate that these values are accurate within 25 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Mg VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	χį	gk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2 - 2s2p^3$	3P-3D°	433.04	2008	232934	9	15	22	0.10	1.3	-0.05	D+	1
			[434.92]	2939	232865	5	7	21	0.085	0.61	-0.37	D+	ls
			[431.32]	1127	232975	3	5	16	0.075	0.32	-0.65	D+	is
			[429.13] [434.71]	0 2939	233027 232975	1 5	3 5	12 5.4	0.099 0.015	0.14 0.11	$\begin{bmatrix} -1.00 \\ -1.12 \end{bmatrix}$	D	ls Is
	į		[431.22]	1127	233027	3	3	9.3	0.026	0.11	- 1.11	Ď	ls
			[434.62]	2939	233027	5	3	0.59	0.0010	9.0072	-2.30	E	ls
2		3P-3P°	366.42	2008	274922	9	9	55	0.11	1.2	-0.00	D	1
			[367.67]	2939	274922	5	5	41	0.083	0.50	-0.38	D	ls
			[365.24] [367.67]	1127 2939	274922 274922	3 5	3	14 23	0.028 0.028	0.10 0.17	-1.08 -0.85	E D-	ls ls
			[365.24]	1127	274922	3	i	54	0.026	0.17	-0.65	D-	ls
			[365.24]	1127	274922	3	5	14	0.047	0.17	-0.85	Ď-	ls
			[363.74]	0	274922	1	3	18	0.11	0.13	-0.96	D-	ls
3		3P-3S°	277.69	2008	362128	9	3	310	0.12	0.99	0.03	D+	1
			[278.40]	2939	362128	5	3	170	0.12	0.55	-0.22	D+	ls
			[277.01] [276.15]	1127 0	362128 362128	3	3	100 35	0.12 0.12	0.33 0.11	-0.44 -0.92	D+ D+	ls Is
4		'D-'D°	[319.02]				5	160	0.12	İ			
5		ים – טי	[280.74]	[41459]		1				1.3	0.10	D	1
6		iS-iP°	[320.50]	-	-		3	200	0.14	0.65	-0.15	D	1
7	2p3s -	3P°_3P	[320.30]	1049701	[397033]	9	3	53	0.25	0.26	-0.60	D-	1
'	$2p(^{2}P^{\circ})3p$							6.6	0.174	6.8	0.195	i	ca
		}	[1334.3] [1306.3]	1050906 1048385	1125850 1124937	5 3	5	4.83 1.73	0.129 0.0442	2.83 0.57	$\begin{bmatrix} -0.190 \\ -0.88 \end{bmatrix}$		ls
			[1350.8]	1050906	1124937	5	3	2.58	0.0423	0.57	-0.67	C	ls ls
	•		[1327.0]	1048385	1123745	3	1	6.6	0.058	0.76	-0.76	Č	ls
		ŀ	[1290.9]	1048385	1125850	3	5	1.77	0.074	0.94	-0.65	C	ls
			[1293.4]	1047624	1124937	1	3	2.37	0.178	0.76	-0.75	С	ls
8	$\begin{array}{c} 2p3p - \\ 2p(^{2}P^{\circ})3d \end{array}$	3P-3D°	1488.2	1125312	1192507	9	15	3.44	0.191	8.4	0.235	С	ca
			[1487.9]	1125850	1193061	5	7	3.44	0.160	3.92	-0.097		ls
			[1487.0] [1470.4]	1124937	1192185	3	5	2.59	0.143	2.10	-0.368		ls
			1507.5	1123745 1125850	1191753 1192185	1 5	3	1.98 0.83	0.192 0.0282	0.93 0.70	-0.72 -0.85	C	ls ls
			[1496.6]	1124937	1191753	3	3	1.41	0.0474	0.70	-0.85	č	ls ls
			[1517.4]	1125850	1191753	5	3	0.090	0.0019	0.047	-2.03	E	ls
9		3b - 3bo	1392.5	1125312	1197125	9	9	2.39	0.070	2.87	-0.201	С	ca
			[1410.0]	1125850	1196770	5	5	1.73	0.052	1.20	-0.59	C	ls
			[1378.7] [13 96 .3]	1124937 1125850	1197469 1197469	3	3	0.62	0.0176	0.239	-1.277		ls
	i		[1371.1]	1123630	1197872	5 3	3 1	0.99 2.51	0.0174 0.0236	0.399 0.319	-1.060 -1.156		ls ls
			[1392.1]	1124937	1196770	3	5	0.60	0.0230	0.399	-1.060		ls
		1	[1356.4]	1123745	1197469	1	3	0.86	0.071	0.319	-1.149		ls

Mg VII

Forbidden Transitions

The adopted values represent, as in the case of Na VI, the work of Naqvi [1]. Malville and Berger [2], and Froese [3]. For the selection of values, the same considerations as for Na VI are applied, the one exception being that Froese's magnetic dipole values are also used. Since the observed energy levels are uncertain, it is felt that the "spin-orbit" and "spin-spin and spin-other-orbit" integrals ζ and η calculated from her theoretical energy levels will be as accurate as the experimental ones.

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

[3] Froese, C., Astrophys. J. 145, 932 (1966).

Mg vII. Forbidden Transitions

No.	Transition Array	Multiple	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3P_3P	[88707] [34016] [55173] [55173]	0 0 1127 1127	1127 2939 2939 2939	1 1 3 3	3 5 5	m e m e	0.0258 2.67×10 ⁻⁷ 0.0803 5.3×10 ⁻⁸	2.00 0.0362 2.50 0.081	A C A C	1, 3 3 1, 3
2	1	3P = 'D	[2413.0] [2480.5] [2480.5] [2597.3] [2597.3]	0 1127 1127 2939 2939	[41429] [41429] [41429] [41429] [41429]	1 3 3 5 5	5 5 5 5 5 5	e m e m	1.3 × 10 ⁻⁴ 1.30 4.1 × 10 ⁻⁴ 3.39 0.0023	3.1 × 10 ⁻³ 0.00368 1.2 × 10 ⁻⁴ 0.0110 8.1 × 10 ⁻⁴	D C D C	1, 2, 3 3 1, 2, 3
3		3P=1S	[1183.2] [1209.1]	1127 2939	[85647] [85647]	3 5	1 1	m e	37.2 0.042	0.00228 6.5 × 10 ⁻³	C D	2, 3 3
4		¹D-¹S	[2260.8]	[41429]	[85647]	5	1	e	4.18	0.147	С	3

1s22s22p2P1/2

Ionization Potential

 $265.957 \text{ eV} = 2145679 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
74.858	11	342.23	6	436.68	1
75.034	ii	342.25	6	436.73	1
75.044	ii	342.42	6	442.08	7
82.598	10	352.38	4	442.37	7
82.824	10	353.84	4	486.05	9
311.78	3	356.60	4	486.40	9
313.73	3	428.34	5	490.81	9
315.02	3	428.37	5	491.17	9
317.01	3	428.60	5 5	680.31	8
335.25	2	428.64	5	689.67	8
339.01	2	430.47	1	690.34	8

Values for the majority of the transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Graphical comparisons with other data for the lower ions of this isoelectronic sequence indicate that the uncertainties should be within 50 percent.

For the $2p^2P^0-3s^2S$ and $2p^2P^0-3d^2D$ multiplets we have obtained data by exploiting the dependence of f-values on nuclear charge: In these cases accurate data for several other ions of the boron sequence are available from extended self-consistent field calculations by Weiss [2] in which configuration mixing is fully included. Utilizing those values, which are also supported by some experimental results on lower ions, we have obtained the f-values of the two transitions simply by graphical interpolation.

Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Weiss, A. W., private communication (1967).

Mg VIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Α)	<i>E_i</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	Kı	Kk	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p - 2s2p^2$	2P°-2D	434.62	2203	232290	6	10	19	0.087	0.75	-0.28	D	1
			[436.73] [430.47] [436.68]	3304 0 3304	232281 232304 232304	4 2 4	6 4 4	18 16 3.0	0.078 0.088 0.0087	0.45 0.25 0.050	-0.51 -0.75 -1.46	D D E	ls ls ls
2		2D°_2S	337.75	2203	298283	6	2	79	0.045	0.30	-0.57	D+	1
			[339.01] [335.25]	3304 0	298283 298283	4 2	2 2	52 27	0.045 0.045	0.20 0.10	-0.74 -1.05	D+ D+	ls Is
3		2P°_2P	314.59	2203	320077	6	6	140	0.21	1.3	0.10	D+	1
			[315.02] [313.73] [317.01] [311.78]	3304 0 3364 0	320742 31/747 318747 320742	4 2 4 2	4 2 2 4	120 95 45 23	0.17 0.14 0.034 0.068	0.72 0.29 0.14 0.14	-0.17 -0.55 -0.87 -0.87	D+ D+ D~ D-	ls ls ls ls
4	$2s2p^2 - 2p^3$	4P-4S°	354.67	[132428]	[414380]	12	4	140	0.086	1.2	0.01	D+	1
			[356.60] [353.84] [352.38]	[133481] [131763] [130598]	[414380] [414380] [414380]	6 4 2	4 4	67 46 23	0.085 0.086 0.086	0.60 0.40 0.20	-0.29 -0.46 -0.76	D+ D+ D+	ls ls ls
5		² D- ² D°	428.52	232290	465654	10	10	39	0.11	1.5	0.04	D+	1
			[428.60] [428.37] [428.34] [428.64]	232281 232304 232281 232304	465598 465738 465738 465598	6 4 6 4	6 4 4 6	36 35 3.9 2.6	0.099 0.096 0.0071 0.011	0.84 0.54 0.060 0.060	-0.23 -0.42 -1.37 -1.36	D+ D+ E	ls ls ls ls
6		2D-2P°	342.29	232290	524437	10	6	63	0.067	0.75	- 0.17 ·	D	1
			[342.23] [342.42] [342.25]	232281 232304 232304	524486 524339 524486	6 4 4	4 2 4	57 63 6.3	0.067 0.055 0.011	0.45 0.25 0.050	-0.40 -0.66 -1.36	D D E	ls Is Is
7		2S-2P°	442.18	298283	524437	2	6	12	0.10	0.30	-0.70	D	1
			[442.08] [442.37]	298283 298283	524486 524339	2 2	4 2	12 12	0.069 0.034	0.20 0.10	-0.86 -1.17	D D	ls ls
8		²₽−² D °	686.92	320077	465654	6	10	9.4	0.11	1.5	-0.18	D	1
			[690.34] [680.31] [689.67]	320742 318747 320742	465598 465738 465738	4 2 4	6 4 4	9.2 8.0 1.5	0.099 0.11 0.011	0.90 0.50 0.10	-0.40 -0.66 -1.36	D D E	ls ls ls
9		2P-2P°	489.33	320077	524437	6	6	39	0.14	1.4	-0.08	D	1
			[490.81] [486.40] [491.17] [486.05]	320742 318747 320742 318747	524486 524339 524339 524486	4 2 4 2	4 2 2 4	32 26 13 6.6	0.12 0.094 0.023 0.047	0.75 0.30 0.15 0.15	-0.32 -0.73 -1.04 -1.03	D D D- D-	ls ls ls
10	$2p - ({}^{1}S)3s$	²p°_²S	82.748	2203	1210689	6	2	700	0.024	0.039	-0.84	С	interp
п			[82.824] [82.598]	3304 0	1210689 1210689	4 2	2 2	460 240	0.024 0.024	0.026 0.013	-1.02 -1.32	CC	ls ls
11	$2p-({}^{\dagger}S)3d$	*P°-*D	74.976	2203	1335965	6	10	4300	0.61	0.90	0.56	С	interp
			[75.034] [74.858] [75.044]	3304 0 3304	1336033 1335863 1335863	4 2 4	6 4 4	4300 3600 720	0.55 0.61 0.061	0.54 0.30 0.060	0.34 0.09 -0.61	C C E	ls Is Is

Mg VIII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Forbidden Transitions Mg VIII.

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> ₁ (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gı	gk	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p - ('S)2p	2P°_2P°	[30258]	0	3304	2	4	m	0.324	1.33	A	1

Mg IX

Ground State Ionization Potential

1s22s2 1Sa $327.90 \text{ eV} = 2645444 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
62.751 77.737 368.07 439.06 439.17	6 7 2 5 3	443.99 445.94 448.28 704.48 751.56	3 3 3 1 4	1883.4 2201.1 2428.2 2598.7 2814.2	10 15 12 14 8
441.10 443.37	3 3	1073.3 1639.8	13 11	18707	9

Garstang and Shamey [1] have obtained the f-value for the intercombination line 2'S₀ - 2³P₁ by calculating the ratio of this line against the resonance transition in the intermediate coupling approximation and by using for the resonance line a value calculated according to Colien and Dalgarno's method [2]. The data calculated from the charge-expansion method of Cohen and Dalgarno [2], which includes limited configuration mixing, are estimated to be usually accurate to 50 percent or better, while the charge-expansion method of Naqvi and Victor [3] should be less reliable when the effects of configuration interaction are strong, since these are neglected entirely. In assigning the accuracy estimates for these methods as well as for the Coulomb approximation we were to a great extent guided by studying the degree of fit of the data into the systematic trends along isoelectronic sequences.

References

Garstang, R. H., and Shamey, L. J., Astrophys. J. 148, 665-666 (1967).
 Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280. 258-270 (1964).
 Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR - 63-3118 (1964).

Mg IX. Allowed Transitions

										,			
No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	Kk	A _{kl} (10 ⁶ sec ⁻¹)	fik	S(at.u.)	loggf	Accu- racy	Source
1	2s ² - 2s(² S)2p	¹S=³P°	[704.48]	Ü	[141948]	ı	3	0.0013	2.9×10 ⁻³	6.8×10 ⁻⁵	-4.54	D	1 <i>n</i>
2		'S-'P°	[368.07]	0	271687	ı	3	51	0.314	0.380	- 0.50	С	2
3	$2s2p-2p^2$	3P°_3P	443.74	[1.3192]	[368547]	9	9	41	0.12	1.6	0.03	D+	2
			[443.99] [443.37] [448.28] [445.94] [439.17] [441.10]	[144420] [141948] [144420] [241948] [141948] [140786]	[369650] [367493] [367493] [366194] [369650] [367493]	5 3 5 3 1	5 3 1 5 3	31 10 16 41 11	0.092 9.030 0.030 0.041 0.051 0.12	0.67 0.13 0.22 0.18 0.22 0.18	-0.34 -1.05 -0.82 -0.91 -0.82 -0.92	D+ D- D- D- D-	ls ls ls ls ls
4		יP°-'D	[751.56]	271687	404744	3	5	8.9	0.13	0.93	-0.41	D-	2
5		'P°-'S	[439.06]	271687	499444	3	l	84	0.081	0.35	-0.61	E	2
6	$2s^2 -$	'S-'P°	[62.751]	0	1593600	1	3	3300	0.58	0.12	-0.24	E	3
7	$2s(^{2}S)3p$ $2s2p -$	'P°-'S	[77.737]	271687	1558076	3	ı	240	0.0072	0.0055	-1.67	E	3
8	$2s(^{2}S)3s$ 2s3s -	1S-1P°	[2814.2]	1558076	1593600	1	3	0.54	0.191	1.77	-0.72	С	3
9	$2s(^{2}S)3p$ 2p3s -	'P°-'P	[18707]	1742772	1748116	3	3	0.00177	0.0093	1.72	-1.55	С	ca
10	2p(2P°)3p	ıP°-ıD	[1883.4]	1742772	1795868	3	5	1.88	0.167	3.10	-0.300	С	ca
11	2s3p -	D' – °P'	[1639.8]	1593600	1654583	3	5	2.34	0.157	2.55	-0.327	С	ca
12	$2s(^{2}S)3d$ 2p3p -	יP–יD°	[2428.2]	1748116	1789287	3	5	0.498	0.073	1.76	-0.66	С	ca
13	2p(2P°)3d	'P-'P°	[1073.3]	1748116	1841286	3	3	3.66	0.063	0.67	-0.72	С	ca
14		'D-'F°	[2598.7]	1795868	1834337	5	7	0.61	0.086	3.67	-0.367	C	ca
15		¹D-¹P°	[2201.1]	1795868	1841286	5	3	0.0289	0.00126	0.0456	-1.201	С	ca

Mg IX

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

^[1] Naqvi, A. M., Thesis Harvard (1951).

Mg IX. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_{\rm I}({ m cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ki	g _k	Type of Transi- tion	A _{Ri} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	2s2p — 2s(² S)2p	3 P °_3 P °	[86035] [40442]	[140786] [141948]	[141948] [144420]	1 3	3 5	m; m	0.0282 0.204	2.00 2.50	A A	1 1
2	;	3P°_1P°	[763.94] [770.78] [785.75]	[140786] [141948] [144420]	271687 271687 271687	1 3 5	3 3 3	m m m	7.1 391 8.2	3.52×10^{-4} 0.0199 4.40×10^{-4}	С	1 1 1

Mgx

Ground State

 $367.36 \text{ eV} = 2963810 \text{ cm}^{-1}$

1s22s 2S1/2

Ionization Potential

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
44,050	3	63.314	5	609.85	1
47.231	6	65.672	4	625.28	l î
47.310	6	65.847	4	2212.5] 7
47.321	6	170.21	8	2278.7	7
57. 876	2	181.60	10	5918.7	9
57.920	2	181.86	10	6229.6	9
63.152	5	182.03	10	6417.5	9
63.295	5				I

For the transition 2s-2p, the charge-expansion calculation of Cohen and Dalgarno [1] is chosen. An uncertainty of less than 10 percent is indicated from the graphical comparison of this value with the other material for the same transition within the isoelectronic sequence. Data for the other listed transitions have been obtained from the Coulomb approximation. Plots of the dependence of f-value on nuclear charge for all these transitions have been made and show that this material connects up very smoothly with the data for the lower ions as well as with the hydrogenic value for infinite nuclear charge. Based on this impressive agreement, accuracies of 10 percent (or 25 percent for some of the smaller values) are indicated.

Reference

[1] Cohen, M., and Daigarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Mg X. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g;	Kk	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	2S-2P°	614.90	0	162627	2	6	7.38	0.125	0.508	-0.602	В	1
			[609.85] [625.28]	0	163976 159929	2 2	4 2	7.57 7.00	0.0844 0.0410	0.339 0.169	-0.773 -1.086	B B	ls ls
2	2s-3p	2S-2P°	57,891	0	1727394	2	6	2120	0.320 _	0.122	-0.194	В	ca
			[57.876] [57.920]		1727832 1726519	2 2	4 2	2120 2120	0.213 0.107	0.0813 0.0407	-0.371 -0.670	B B	ls ls
3	2s-4p	2S-2P°	[44.050]	0	2270148	2	6	970	0.085	0.0246	-0.77	C+	ca
4	2p-3s	2P°-2S	65.789	162627	1682648	6	2	1030	0.0223	0.0290	-0.874	В	ca
			[65.847] [65.672]		1682648 1682648	4 2	2 2	685 346	0.0223 0.0224	0.0193 0.00967	-1.050 -1.349	B B	ls ls
5	2p 3d	2p°-2D	63.249	162627	1743692	6	10	6710	0.671	0.838	0.605	В	ca
3			[63.295] [63.152] [63.314]	159929	1743880 1743410 1743410	4 2 4	6 4 4	6700 5610 1120	0.603 0.671 0.0670	0.503 0.279 0.0559	0.382 0.128 -0.572	B B B	ls ls
6	2p-4d	² P° – ² D	47.284	162627	2277489	6	10	2200	0.123	0.115	-0.132	C+	ca
			[47.310] [47.231] [47.321]	163976 159929 163976	2277694 2277182 2277182	4 2 4	6 4 4	2200 1840 368	0.111 0.123 0.0124	0.069 0.0383 0.0077	-0.353 -0.61 -1.305	C+ C+	ls ls
7	3s-3p	2S-2P°	2234.1	1682648	1727394	2	6	0.942	0 211	3.11	-0.375	В	ca
		1	[2212.5] [2278.7]	1682648 1682648	1727832 1726519	2 2	4 2	0.968 3.893	0.142 0.0693	2.07 1.04	-0.547 -0.858	B B	ls ls
8	3s - 4p	2S-2P°	[170.21]	1682648	2270148	2	6	268	0.350	0.392	-0.155	C+	ca
9	3p-3d	2P°-2D	6134.0	1727394	1743692	6	10	0.0358	0.0337	4.08	- 0.694	В	ca
			[6229.6] [5918.7] [6417.5]	1727832 1726519 1727832	1743880 1743410 1743410	4 2 4	6 4 4	0.0342 0.0332 0.00521	0.0299 0.0349 0.00322	2.45 1.36 0.272	-0.922 -1.156 -1.890	B B B	ls ls
10	3p-4d	2 J2° - 2D	181.79	1727394	2277489	6	10	690	0.57	2.06	0.53	C+	ca
			[181.86] [181.60] [182.03]	1727832 1726519 1727832	2277694 2277182 2277182	4 2 4	6 4 4	690 580 115	0.52 0.58 0.057	1.24 0.69 0.137	0.318 0.064 -0.64	C+ C+	ls ls ls

1s2 1S0

Ionization Potent '

 $1761.23 \text{ eV} = 14209200 \text{ cm}^{-1}$

Allowed Transitions

The values for this ion are calculated from the charge-expansion method of Dalgarno and Parkinson [1]. From comparisons with the more refined variational calculations by Weiss [2] for lower members of this isoelectronic sequence, uncertainties are estimated not to exceed 10 percent. It should be pointed out that essentially identical results are obtained by extrapolating the data of Weiss towards the high members of the isoelectronic sequence (See fig. 1 of [2]).

- [1] Dalgarno, A., and Parkinson, E. M., Proc. Roy. Soc. London A301, 253-260 (1967).
- [2] Weiss, A. W., J. Research Nat. Bur. Standards 71A 163-168 (1967).

Mg XI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Α)	E_i (cm $^{-1}$)	<i>E_k</i> (cm ⁻¹)	Zi.	#k	$A_{ki}(10^6 m sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	ls² ls2p	'S-'P°	[9.1682]	0	10907306	l	3	1.97 × 10 ⁵	0.745	0.0225	-0.128	В	1
2	$1s^2 - 1s3p$	'S-'P°	[7.8503]	0	12738400	1	3	5.50 × 10 ⁴	0.152	0.00394	-0.818	В	1
3	$1s^2 - 1s4p$	1S-1P°	[7.4732]	0	13381100	1	3	2.27 × 10 ⁴	0.0569	0.00140	- 1.245	В	1
4	ls ² – ls5p	1S-1P°	[7.3096]	0	13680600	1	3	1.15×10 ⁴	0.0277	6.66 × 10 ⁻⁴	-1.558	В	1

ALUMINUM

Al I

Ground State

 $1s^22s^22p^63s^23p^2P_{1/2}^{\circ}$

Ionization Potential

 $5.984 \text{ eV} = 48279.16 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [A]	No.	Wavelength (Å)	No.	Wavelength [Å]	No.
2118.3	14	2367.05	5	8772.87	16
2123.36	14	2372.07	6	8773.9	16
2123.4	14	2373.12	5	8773.90	16
2129.66	13	2373.35	5 5 6	8828.91	25
2134.7	13	2378.40	6	8841.28	25
2134.73	13 12	2567.98	3	8912.90	24
2145.56	12	2575.10	3	8923.56	24
2150.7	12	2575.40	3 3 3 4	8925.50	24
2150.70	12	2652.48	4	10768.4	22
2168.83	11	2660.39	4	10782.0	22
2174.07	11	3082.15	! 1	10786-8	22
2174.11	11	3092.71	1 1	10873.0	23
2199.18	10	3092.84	1 1	10891.7	23
2204.62	10	3944.01	$\begin{bmatrix} 1\\2\\2 \end{bmatrix}$	11253.2	15
2204.67	9	3961.52	2	11254.9	15
2210.06	9	5557.06	20	11255	15
221v.13	9	5557.95	20	13123.4	18
2258.01	8	6696.02	19	13150.8	18
2263.46	7	6698.67	19	16719.0	21
2263.74	8	7835.31	17	16750.6	21
2269.10	7	7836.1	17	16763.4	21
2269.22	7	7836.13	17	1	

The adopted values for this atom are taken from two theoretical and three experimental papers. The theoretical sources are the self-consistent field calculations by Biermann and Lübeck [5] which include polarization and exchange effects, and the calculations of Weiss [2], in which various possible configurations are superimposed and Hartree-Fock wavefunctions are employed. Weiss has carried out his calculations in both the dipole length and dipole velocity approximations and agreement between the two is usually good: in all the cases where his results are applied, the length values are chosen as suggested by the author as being probably more reliable [2].

The experiments consist of anomalous dispersion measurements by Penkin and Shabanova [4] for the 3p-ns and 3p-nc' series and lifetime determinations of the 3d state by Budick [1] by means of the Hanle effect and of the 4s state by Demtröder [3] by means of the phase shift method, all expected to provide accurate values. (This is Demtröder's only lifetime measurement for Al I. His other results [3] are from less accurate absorption measurements.) Penkin and Shabanova's relative values have been normalized in two ways which lead to identical scales: (1) normalization to the average of Weiss' and Demtröder's value for the 3p-4s transition, (2) normalization to Budick's value for the 3p-3d transition. (Weiss' value for this transition is not nearly as reliable as for 3p-4s.)

Finally, it should be noted that the spectroscopic designations of the d states are questionable; the principal quantum number of these states probably should be reduced by one in each case.

^[1] Budick, B., Bull. Am. Phys. Soc. 11, 456 (1966).

^[2] Weiss, A. W., to be published (1969).

^[3] Demiröder, W., Z. Physik 166, 42-55 (1962).

^[4] Penkin, N. P., and Shabanova, L. N. Optics and Spectroscopy (U.S.S.R.) 18, 504 (1965).

^[5] Biermann, L., and Lübeck, K., Z. Astrophys. 25, 325-339 (1948).

Al I. Allowed Transitions

lo.	Transition Array	Multiplet	λ(Å)	<i>E</i> _l (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	#k	.4 _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Sourc
1	3s ² 3p — 3s ² (¹ S)3d	2P°_2D (3)	3039.2	75	32436	ó	16	0.73	0.175	10.7	0.021	C+	
			3092.71 3082.15 3092.84	112 0 112	32437 32435 32435	4 2 4	6 4 4	0.73 0.61 0.12	0.158 0.175 0.018	6.4 3.55 0.71	-0.199 -0.456 -1.16	C+ C+	
2	3s ² 3p — 3s ² ('S)4s	²p°-²S (1)	3955.7	75	25348	6	2	1.47	0.115	9.0	-0.161	C+	2.
	33 (2,33	(1)	3961.52 3944.01	112 0	25348 25348	4 2	2 2	0.98 0.493	0.115 0.115	6.0 2.99	-0.337 -0.64	C+	
3	3s ² 3p - 3s ² (1S)4d	² P^- ² D (2 uv)	2572.8	75	38932	6	10	0.264	0.0437	2.22	-0.58	С	,
			2575.10 2567.98 2575.40	112 0 112	38934 38929 38929	4 2 4	6 4 4	0.264 0.221 0.044	0.0393 0.0437 0.0044	1.33 0.74 0.15	-0.80 -1.058 -1.76	C C D	
4	3s ² 3p - 3s ² ('S)5s	2po_2S (1 uv)	2657.8	75	37689	6	2	0.397	0.0140	0.73	-1.076	С	1.
			2660.39 2652.48	112 0	37689 37689	2	2 2	0.264 0.133	0.0140 0.0140	0.490 0.245	-1.252 -1.55	C	
5	3s ² 3p - 3s ² (1S)5d	² P°- ² D (4 uv)	2371.1	75	42236	6	10	0.85	0.120	5.6	-0.143	С	
			2373.12 2367.05 2373.35	112 0 112	42238 42234 42234	4 2 4	6 4 4	0.85 0.71 0.14	0.108 0.120 0.012	3.38 1.87 0.38	-0.365 -0.62 -1.32	C D	
5	3s ² 3p - 3s ² (1S)6s	2P°_2S (3 uv)	2376.3	75	42144	6	2	0.143	0.00403	0.189	-1.62	С	1
			2378.40 2372.07	112 0	42144 42144	4 2	2 2	0.095 0.0478	0.00403 0.00403	0.126 0.063	-1.79 -2.094	CC	
7	3s ² 3p - 3s ² (¹ S)6d	² P°— ² D (5 uv)	2267.2	75	44168	6	10	0.76	0.098	4.39	-0.231	С	
			2269.10 2263.46 2269.22	112 0 112	44169 44166 44166	4 2 4	6 4 4	0.76 0.64 0.13	0.088 0.098 0.0098	2.63 1.46 0.29	-0.453 -0.71 -1.41	C C D	
8	3s ² 3p - 3s ² (¹ S)7s	² P°_ ² S (6 uv)	2261.8	75	44273	6	2	0.113	0.00288	0.129	-1.76	С	
	35 (5),5	(0 0.7)	2263.74 2258.01	112 0	44273 44273	2	2 2	0.075 0.0377	0.00288 0.00288	0.086 0.0428	-1.94 -2.240	C	
9	3s ² 3p - 3s ² (1S)7d	² P°-2D (7 uv)	2208.3	75	45345	6	10	0.54	0.066	2.88	-0.402	`	
			2210.06 2204.67 2210.13	112 0 112	45346 45344 45344	4 2 4	6 4 4	0.54 0.453 0.090	0.059 0.066 0.0066	1.72 0.96 0.19	-0.63 -0.88 -1.58	CCD	
0	3s ² 3p - 3s ² (1S)8s	² P°_ ² S (8 uv)	2202.8	75	45457	6	2	0.052	0.00127	0.055	-2.118	С	
			2204.62 2199.18	112 0	45457 45457	2	2 2	0.0349 0.0175	0.00127 0.00127	0.0369 0.0184	-2.294 -2.60	C	
1	3s ² 3p - 3s ² (¹ S)8d	² P°_ ² D (9 uv)	2172.3	75	46094	6	10	0.366	0.0431	1.85	-0.59	С	
			2174.07 2163.93 2174.11	112 0 112	46094 46093 46093	4 2 4	4	0.365 0.306 0.061	0.0388 0.0431 0.0043	1.11 0.62 0.12	-0.81 -1.064 -1.76	CCD	
12	3s ² 3p - 3s ² (1S)9d	2P°-2D	2149.0	75	46594	6	10	0.279	0.0322	1.37	-0.71	C	
	98-(1-3)9 (I		2150.70 2145.56 [2150.7]	112 0 112	46594 46593 46593	4 2 4	4	0.279 0.233 0.046	0.0290 0.0322 0.0032	0.82 0.455 0.091	-0.94 -1.191 -1.89		

Al I. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(\text{cm}^{-1})$	E _k (cm ⁻¹)	# I	Kk	A _{kl} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
13	$3s^23p - 3s^2(^1S)10d$	2P°-2D	2133.1	75	46941	6	10	0.182	0.0207	0.87	-0.91	С	41
	33 (3)104		2134.73 2129.66 [2134.7]	112 0 112	46942 46941 46941	4 2 4	6 4 4	0.181 0.152 0.030	0.0186 0.0207 0.0021	0.52 9.290 0.058	-1.128 -1.383 -2.08	C D	ls ls
14	$\begin{vmatrix} 3s^23p - \\ 3s \end{vmatrix}$	2P°-2D	2121.7	75	47192	6	10	0.123	0.0138	0.58	-1.082	С	41
	33		2123.36 2118.3 [2123.4]	112 0 112	47192 47192 47192	4 2 4	6 4 4	0.122 0.103 0.020	0.0124 0.0138 0.0014	0.347 0.192 0.039	$ \begin{array}{r r} -1.305 \\ -1.56 \\ -2.26 \end{array} $	C C D	ls ls
15	3s ² 3d — 3s ² (¹ S)4f	² D− ² F°	11254	32436	41319	10	14	0.177	0.471	175	0.67	С	2
	33 (1.5/4)	(0)	11254.9 11253.2 [11255]	32437 32435 32437	41319 41319 41319	6 4 6	8 6 6	0.178 0.166 0.012	0.450 0.472 0.023	100 70 5.0	0.431 0.276 -0.87	C C D	ls Is
16	$3s^23d - 3s^2(^1S)5f$	² D− ² F° (9)	8773.4	32436	43831	10	14	0.11	0.17	49	0.23	D-	ca
	334 310)	(9)	8773.90 8772.87 [8773.9]	32437 32435 32437	43831 43831 43831	6 4 6	8 6 6	0.10 0.098 0.0069	0.16 0.17 0.0080	28 20 1.4	-0.02 -0.17 -1.32	D- D- E	ls ls
17	3s ² 3d —	²D_²F°	7835,5	32436	45195	10	14	0.061	0.079	20	-0.10	D-	ce
	3s ² (¹ S)6f	(10)	7836.13 7835.31 [7836.1]	32437 32435 32437	45195 45195 45195	6 4 6	8 6 6	0.062 0.057 0.0041	0.076 0.079 0.0038	12 8.2 0.59	-0.34 -0.50 -1.64	D- D- E	li Li li
18	3s ² 4s —	2S_2P°	13132	25348	32961	2	6	0.182	1.41	122	0.450	С	2
	3s ² (¹ S)4p	(4)	13123.4 13150.8	25348 25348	32966 32950	2 2	4 2	0.182 0.181	0.94 0.470	81 40.7	0.274 -0.027	C	!: :
19	3s24s —	2S_2po	6697.0	25348	40276	2	6	0.0169	0.0340	1.50	-1.167	C –	5
	3s ² (¹ S)5p	(5)	6696.02 6698.67	25438 25348	40278 40272	2 2	4 2	0.0169 0.0169	0.0227 0.0113	1.00 0.50	-1.343 -1.65	C-	1.
20	3s ² 4s - 3s ² (1S)6p	² S- ² P° (6)	5557.4	25348	43337	2	6	0.00425	0.0059	0.216	-1.93	c-	
	35 (S)5p	(0)	5557.06 5557.95	25348 25348	43338 43335	2 2	2	0.00425 0.00425	0.00394 0.00197	0.144 0.072	$ \begin{array}{r r} -2.103 \\ -2.405 \end{array} $	C -	1
21	3s ² 4p — 3s ² (¹ S)4d	2P°-2D	16743	32961	38932	6	10	0.101	0.71	235	0.63	C	
	33 (3)44		16750.6 16719.0 16763.4	32966 32950 32966	38934 38929 38929	4 2 4	6 4 4	0.101 0.085 0.017	0.64 0.71 0.071	141 78 16	0.408 0.152 -0.55	CCD	1. 1. 1.
22	3s ² 4p -	2P°_2D	10779	32961	42236	6	10	0.0048	0.014	3.0	-1.08	D	c
	3s²(¹S)5d	(13)	10782.0 10768.4 10786.8	32966 32950 32966	42238 42234 42234	4 2 4	6 4 4	0.0050 0.0040 8.0 × 10 ⁻⁴	0.013 0.014 0.0014	1.8 0.99 0.20	-1.28 -1.55 -2.25	D D E	1.
23	3s ² 4p -	2p°_2S	10887	32961	42144	6	2	0.034	0.020	4.3	- 0.92	D	ce
	3s²(¹S)6s	(12)	10891.7 1 0873.0	32966 32950	42144 42144	4	2 2	0.022 0.011	0.020 0.020	2.9 1.4	-1.10 -1.40	D D	
24	$3s^24p -$	2P°_2D	8920.6	32961	44168	6	10	0.0011	0.0021	0.37	-1.90	D	c
	3s²(¹S)6d	(14)	8923.56 8912.90 8925.50	32966 32950 32966	44169 44166 44166	4 2 4	6 4 4	0.0011 0.0010 1.3×10-4	0.0019 0.0021 2.2×10 ⁻⁴	0.22 0.11 0.026	$ \begin{array}{r r} -2.12 \\ -2.38 \\ -3.06 \end{array} $	D D E	ls ls

All. Allowed Transitions - Continued

No.	Transition Artay	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_{\hat{\kappa}}(\mathrm{cm}^{-1})$	Ķi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(a1.u.)	log gf	Accu- racy	Source
25	3: ² 4p — 3: ² (1S)7:	² P°— ² S (15)	8937.8 8841.28 8828.91	3295 <i>f</i> 32966 32950	44273 44273 44273	6 4 2	2 2 2	0.017 0.011 0.0056	0.0065 0.0065 0.0065	1.1 0.76 0.38	- 1.41 - 1.59 - 1.89	D D D	ca ls ls

Al 1

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Al I. Forbidden Transitions

No.	Transition Array	Multiple1	λ(Å)	$E_I(cm^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	Kk	Type of Transi- tion	A _{kl} (∴ec-1)	S(at.u.)	Accu- racy	Source
1	3p = ('S)3p	3bo T3bo	[89.230×10 ⁴]	0.00	112.04	2	4	m	1.26×10 ⁻⁵	1.33	A	1

 $1s^22s^22p^63s^2 S_0$

Ionization Potential

 $18.823 \text{ eV} = 151860.4 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1047.9	17	1965.4	10	5999.76	37
1048.6	17	1989.85	9	6001.81	37
1050.0	17	2015.4	6	6006.42	37
1189.2	15	2192.6	5	6061.11	40
1190.1	15	2194.2	5 5	6066.38	39
1191.9	15	2195.4	5	6068.46	39
1350.2	18	2195.5	5	6073.23	39
1539.74	16	2816.19	13	6226.18	23
1670.81	1	2994.26	30	6231.5	23
1719.46	8	2995.54	30	6231.78	23
1721.28	8	2998.16	30	6243.2	23
1721.3	8	3088.52	32	6243.36	23
1724.98	8	3649.1	26	6335.74	20
1725.1	8	3651.1	26	6816.69	24
1760.1	2	3651.10	26	6823.48	24
1762.0	2 2 2 2 2	3655.0	26	6837.14	24
1763.79	2	3655.00	26	6917.93	42
1763.95	2	3703.22	31	6919.96	25
1765.8	2	3731.95	28	7042.06	21
1767.60	2	3733.91	28	7056.60	21
1855.95	12	3738.00	28	7063.64	21
1858.05	12	3866.16	29	7449.42	38
1862.34	12	3900.68	3	7471.41	19
1904.3	11	4663.1	14	7624.48	36
1906.5	11	5388.48	35	7627.85	36
1906.6	11	5593.23	27	7635.33	36
1906.7	11	5613.19	43	8354.35	33
1910.0	11	5853.62	34	8359.23	33
1911.0	11	5861.4	34	8359.57	33
1931.05	4	5861.53	34	8362.4	33
1958.4	10	5867.3	34	8363.30	33
1958.9	7	5867.6	34	8363.52	33
1960.7	10	5867.81	34	8640.70	22
1965.3	10	5971.94	41	11	

Weiss' [1] values have been calculated by means of the method of superposition of configurations, employing Hartree-Fock wavefunctions as a starting point. The calculations have been carried out both in the dipole length and dipole velocity approximations. Zare [2] has performed similar calculations, also in the length and velocity forms, using however, the simpler, less accurate Hartree-Fock-Slater wavefunctions, in which exchange effects are only approximately taken into account. The dipole length values of refs. [1] or [2] are selected, being probably more reliable than the velocity values, as suggested by the authors. Crossley and Dalgarno's values [3] have been obtained from a charge-expansion technique which includes configuration mixing in a limited way. There is usually good agreement for those transitions where the various calculations overlap. In these cases we have chosen Weiss' results over Zare's values and these in turn over ref. [3].

The accuracy estimate has been reduced where there is significant disagreement between the length and velocity forms or where there appears to be cancellation in the transition integral

References

Weiss, A. W., J. Chem. Phys. 47, 3573 (1967).
 Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).
 Zare, R. N., J. Chem. Phys. 47, 3561 (1967).

Al II. Allowed Transitions

									<u> </u>				
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	gı	Kk	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s ² -3s(² S)3p	1S_1P° (2 uv)	1670.81	0	59850	1	3	14.6	1.84	10.1	0.265	В	1
2	$3s3p-3p^2$	3P°_3P (5 uv)	1764.0	37517	94207	9	9	13.1	0.61	32.0	0.74	C+	1
		(3 uv)	1763.95	37579	94268	5	5	9.8	0.458	13.3	0.360	C+	ls
			1763.79	37454	94147	3	3	3.29	0.153	2.67	-0.338	C	Is
			1767.60	37579	94147	5	3	5.4	0.153	4.44	-0.116	C	ls
			[1765.8] [1760.1]	37454 37454	94085 94268.	3	1 5	13.1 3.30	0.204 0.255	3.55 4.44	-0.213 -(1.116	C	Is
			[1762.0]	37392	94147	ì	3	4.38	0.233	3.55	-0.215	č	ls Is
3	,	'P°-'D (1)	3900.68	59850	85479	3	5	0.0048	0.0018	0.070	-1.27	E	l
4		1P°-1S	1931.05	59850	111637	3	1	10.8	0.202	3.85	-0.218	С	1
5	3s(2S)3d-	3D-3F°	2193.8	95548	141116	15	21	3.1	0.31	34	0.67	D	2
	3p(2P°)3d		[2192.6]	95547	141141	7	9	3.2	0.30	15	0.32	D	/s
	1		[2194.2]	95548	141108	5	7	2.7	0.28	10	0.15	l Ď	Is
			[2195.5]	95549	141082	3	5	2.6	0.31	6.8	-0.03	D	/s
			[2194.2]	95547	141108	7	7	0.36	0.026	1.3	-0.74	D -	ls
			[2195.5] [2195.4]	95548 95547	141082 141082	5	5	0.50 0.014	0.036 7.1 × 10-4	1.3 0.036	-0.74 -2.30	D-E	ls Is
6		3D-3D°	2015.4	95548	145150	15	15	4.1	0.25	25	0.57	D.	2
7		3D-3P°	1958.9	95548	146598	15	9	6.8	0.24	23	0.55	D	3
8	$3s3p - 3s(^2S)3d$	³ P°- ³ D	1723.2	37517	95548	9	15	12.1	0.901	46.0	0.909	В	1
		(O uv)	[1725.1]	37579	95547	5	7	12.1	0.757	21.5	0.578	В	ls
			[1721.3]	37454	95548	3	5	9.14	0.676	11.5	0.307	B	Is
			1719.46	37392	95549	Ĭ	3	6.79	0.903	5.11	-0.044	В	ls
			[1725.1]	37579	95548	5	5	3.02	0.135	3.83	-0.171	B	1s
			1721.28	37454	95549	3	3	5.07	0.225	3.83	-0.171	В	ls
			1724.98	37579	95549	5	3	0.34	0.0090	0.26	- 1.35	D	ls
9		1F°-1D (8 uv)	1989.85	59850	110088	3	5	14.7	1.45	28.5	0.64	C+	1
10	$3p^2 - 3p(^2P^0)3d$	3P-3D°	1963.0	94207	145150	9	15	12	1.2	70	1.03	D	2
			[1965.3]	94268	145152	5	7	13	1.0	33	0.70	D	Is
			[1960.7]	94147	.45148	3	5	9.1	88.0	17	0.42	Ď	ls
			[1958.4]	94085	14. '48	i	3	7.0	1.2	7.8	0 08	D-	Is
			[1965.4]	94268	145147	5	5	3.1	0.18	5.8	0.05	D-	Is
			[1960.7]	94147	145148	3	3	5.2	0.30	5.8	-0.05	D-	ls.
			[1965.4]	94268	145148	5	3	9.35	0.012	0.39	- 1.22	E	ls
11		3P _ 3P°	1908.7	94207	/46598	9	9	8.1	0.44	25	0.60	D	2
			[1910.9]	94268	146599	5	5	5.8	0.32	10	0.20	D	ls
			[1906.6] [1911.0]	94147 94268	146597 146597	3 5	3	2.0	0.11 0.11	2.1	-0.48	D-	ls t
			[1906.7]	94147	146595	3	ì	3.4 8.2	0.11	3.5 2.8	-0.26 -0.35	1 D -	ls Is
			[1906.5]	94147	146599	3	5	2.0	0.19	3.5	0.24	D -	ls ls
			[1904.3]	94085	146597	Ĭ	3	2.7	0.45	2.8	-0.35	D -	
	2.	•		•	•	•						_	

Al II. Allowed Transitions - Continued

_							Ī			_		.1	
No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	E _k (cm ⁻¹)	Ki	Kk	A _{ki} (10 ^s sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
12	3s3p - 3s(2S)4s	³ P°-3S (4 uv)	1860.3	37517	91271	9	3	7.44	0.129	7.09	0.065	В	1
			1862.34 1858.05 1855.95	37579 37454 37392	91271 91271 91271	5 3 1	3 3	4.12 2.48 0.832	0.129 0.129 0.129	3.94 2.36 0.788	-0.190 -0.412 -0.889	B B B	ls ls ls
13		1 p °_1S	2816.19	59850	95348	3	1	3.83	0.152	4.22	-0.341	c-	1
14	$3p^2 - 3s(^2S)4p$	'D-'P°	[4663.1]	85479	106918	5	3	0.53	0.104	8.0	-0.284	С	3
15	$3s3p - 3s(^2S)4d$	3P°-3D	1191.0	37517	121481		15	1.7	0.059	2.1	-0.28	D	3
			[1191.9] [1190.1] [1189.2] [1191.9] [1190.1] [1191.9]	37579 37454 37392 37579 37454 37579	121480 121481 121481 121481 121481 121481	5 1 5 3 5	7 5 3 5 3	1.7 1.3 0.93 0.42 0.70 0.046	0.050 0.044 0.059 0.0089 0.015 5.9 × 10-4	0.98 0.52 0.23 0.17 0.17 0.012	-0.60 -0.88 -1.23 -1.35 -1.35 -2.53	D D - D - E	ls ls ls ls ls
16		ιΡ°_ιD (1∉ av)	1539.74	59850	124792	3	5	8.8	0.52	7.9	0.19	D	3
17	$3s3p - 3s(^2S)5d$	3 P o-3D	1049.3	37517	132820	9	15	0.64	0.018	0.55	-0.80	D	3
			[1050.0] [1048.6] [1047.9] [1050.0] [1048.6] [1050.0]	37579 37454 37392 37579 37454 37579	132820 132820 132820 132820 132820 132820	5 3 1 5 3 5	7 5 3 5 3	0.64 0.48 0.36 0.16 0.27 0.018	0.015 0.013 0.018 0.0027 0.0044 1.8×10-4	0.26 0.14 0.061 0.046 0.046 0.0031	-1.13 -1.40 -1.75 -1.88 -1.88 -3.05	D D D D E	ls ls ls ls ls
18		'P°-'D	[1350.2]	59850	133914	3	5	4.8	0.22	2.9	-0.19	E	3
19	3s3d-3s(2S)4f	¹ D - ¹ F° (21)	7471.41	110088	123468	5	7	0.94	1.1	140	0.74	D	ca
20	3s3d-3s(2S)5p	¹D-¹P° (22)	6335.74	110088	125867	5	3	0.14	0.050	5.2	-0.60	D	са
21	$3s4s - 3s(^2S)4p$	3S_3P° (3)	7049,3	91271	105453	3	9	0.58	1.31	91	0.59	C+	3
		, ,	7042.06 7056.60 7063.64	91271 91271 91271	105468 105438 105424	3 3	5 3 1	0.59 0.58 0.58	0.73 0.435 0.145	51 30.3 10.1	0.340 0.116 -0.362	C+ C+	ls ls ls
22		¹ S- ¹ P° (4)	8640.70	95343	106918	1	! յ 	0.286	0.96	27.3	-0.018	С	3
23	$3s4p - 3s(^2S)4d$	³ P° = ³ D (10)	6237.4	105453	121481	ò	15	1.1	1.1	200	1.00	D	ca
		(10)	6243.36 6231.78 6226.18 [6243.2] [6231.5] [6243.2]	105468 105438 105424 105468 105438 105468	121480 121481 121481 121481 121481 121481	5 3 1 5 3 5	7 5 3 5 3 3	1.1 0.84 0.62 0.28 0.47 0.031	0.96 0.86 1.1 0.17 0.28 0.011	93 50 22 17 17 1.1	0.68 0.41 0.04 -0.07 -0.08 -1.26	D D D- D- D- E	ls ls ls ls ls
24	$3s4p - 3s(^2S)5s$	³P°_3S (9)	6830.1	105453	120090	9	3	1.0	0.24	49	0.33	D	ca
		(3)	6837.14 6823.48 6816.69	105468 105438 105424	120090 120090 120090	5 3 1	3 3	0.57 0.34 0.11	0.24 0.24 0.24	27 16 5.4	0.08 -0.14 -0.62	D D D	ls ls ls
25		'P°_'S (15)	6919.96	106918	121365	3	1	0.96	0.23	16	-0.16	D	ca

Al II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g _k	Aki(108 800-1)	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
26	$3s4p - 3s({}^{2}S)5d$	³Р°аD (12)	3653,0	105453	132820	9	15	0.27	0.091	9.9	- 0.09	D	C
		(12)	3655.00	105468	132820	5	7	0.27	0.077	4.6	-0.41	D	1
			3651.10	105438	132820	3	5	0.21	0.069	2.5	-0.68	ď	1
			[3649.1]	105424	132820	ì	3	0.15	0.092	1.1	1.04	-6	1
			3655.0	105468	132820	5	5	0.069	0.014	0.83	-1.15	Ď-	1
	ł		[3651.1]	105438	132820	3	3	0.12	0.023	0.83	-1.16	Ď	1 7
			[3655.0]	105468	132820	5	3	0.0076	9.1 × 10 ⁻⁴	0.055	-2.34	E	
27		¹ P°- ¹ D (16)	5593.23	106918	133914	3	5	1.1	0.85	47	0.41	D	c
28	3s4p-3s(2S)6s	aç•_ag (11)	3735.9	105453	132213	9	3	0.39	0.027	3.0	-0.61	D	c
		(11)	3738.00	105468	132213	5	3	0.21	0.027	1.7	-0.87	D	
	,		3733.91	105438	132213	3	3	0.13	0.027	1.0	-1.09	Ď	
			3731.95	105424	132213	1	3	0.043	0.027	0.33	-1.57	D	
29		¹ P°- ¹ S (17)	3866.16	106918	132776	3	1	0.37	0.028	1.1	-1.08	D	C
3 0	3s4p - 3s(2S)6d	³ P°-3D (14)	2996.8	105453	138812	9	15	0.11	0.025	2.2	-0.65	D	
		(14)	2998.16	105468	138812	5	7	0.11	0.021	1.0	-0.98	D	
			2995.54	105438	138812	3	5	0.085	0.019	0.56	-1.24	ĺб	į
			2994.26	105424	138812	ī	3	0.062	0.025	0.25	-1.60	Ď-	
			2998.16	105468	138812	5	5	0.027	0.0037	0.18	-1.73	Ď-	
			2995.54	105438	138812	3	3	0.046	0.0062	0.18	-1.73	D-	-
		_	2998.16	105468	138812	5	3	0.0031	2.5 × 10 ⁻⁴	0.012	-2.90	E	
31		¹P°−¹D (18)	3703.22	106918	139287	3	5	0.38	0.13	4.8	-0.41	D	
32	$3s4p - 3s(^2S)7d$	¹ P°- ¹ D (20)	3088.52	106918	14260?	3	5	0.15	0.036	1.1	-0.97	D	,
33	3s4d-3s(2S)5f	"D–"F° (40)	8358.2	121481	133442	15	21	0.50	0.74	310	1.05	D	
			8354.35	121480	133447	7	9	0.50	0.67	130	0.67	D	
			8359.57	121481	133440	5	7	0.44	0.65	89	0.51	D	
			8363.52	121481	103435	3	5	0.42	0.74	6]	0.35	D	1
			8359.23	121480	133440	7	7	0.055	0.058	11	-0.39	D-	
			8363.30 [8362.4]	121481 121480	133435 133435	5	5	0.078 0.0022	0.082 0.0017	11 0.32	-0.39 -1.92	D-	1
34	3s4d-3s(2S)6f	³ D− ³ F° (41)	5859.7	121481	138542	15	21	0.24	0.17	49	0.41	D	
	1	`,	5853.62	121480	138559	7	9	0.24	0.15	21	0.02	D	1
	1	<u> </u>	5861.53	121481	138536	5	7	0.22	0.15	15	-0.12	D	1
	İ	1	5867.81	121481	138519	3	.5	0.20	0.17	9.8	-0.29	D	
	1	ļ	[5861.4]	121480	138536	7	?	0.026	0.013	1.8	-1.04	D-	
			[5867.6]	121481	138519	5	5	0.036	0.019	1.8	-1.02	Ē-	-
		ŀ	[5867.3]	121480	138519	7	5	0.0010	3.8×10-4	0.051	-2.58	E	1
35	3s5s-3s(2S)7p	1S-1P° (34)	5388.48	121365	139917	1	3	0.012	0.016	0.28	- 1.80	D	
36	$3s5p - 3s(^2S)6d$	³ P°- ³ D (91)	7632.1	125713	138812	9	15	0.089	0.13	29	0.07	D	
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7635 33	125719	138812	5	7	0.090	0.11	14	- 26		
		i	7627.85	125706	138812	3	5	0.065	0.095	7.2	-6.	D	
			7624.48	125701	138812	1	3	0.050	0.13	3.3	-0.8	D-	
			7635.33	125719	138812	5	5	0.022	0.019	2.4	-1.02		
	l		7627.85	125706	138812	3 5	3	0.037	0.032 0.0013	2.4 0.16	-1.02 -2.19	D-	-1

Al II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
37	$3s5p - 3s(^2S)7d$	³ P°- ³ D	6004.4	125713	142363	9	15	0.034	0.031	5.5	-0.55	D	ca
;		(33)	6006.42 6001.81 5999.76 6006.42 6001.81 6006.42	125719 125706 125701 125719 125706 125719	142363 142363 142363 142363 142363 142363	5 3 1 5 3 5	7 5 3 5 3	0.034 0.026 0.019 0.0085 0.014 9.2 × 10 ⁻⁴	0.026 0.023 0.031 0.0046 0.0076 3.0 × 10 ⁻⁴	2.6 1.4 0.61 0.45 0.45 0.030	-0.89 -1.16 -1.51 -1.64 -1.64 -2.82	D D- D- D- E	ls ls ls ls ls
38		1P°-1D (98)	7449.42	125867	142607	3	5	0.12	0.16	12	-0.32	D	ca
39	$3s5p - 3s(^2S)8s$	³ P°_3S (92)	6071.1	125713	142180	9	3	0.076	0.014	2.5	-0.90	D	ca
	:	(72)	6073.23 6068.46 6066.38	125719 125706 125701	142180 142180 142180	5 3 1	3 3	0.042 0.025 0.0085	0.014 0.014 0.014	1.4 0.84 0.28	-1.15 -1.38 -1.85	D D D	ls Is Is
40		'P°_'S (99)	6061.11	125867	142361	3	1	0.076	0.014	0.84	-1.38	D	ca
41	$3s5p - 3s(^2S)8d$	'P°-'D (100)	5971.94	125867	144780	3	5	0.049	0.044	2.6	-0.88	D	ca
42	3s5d-3s(2S)6f	¹ D – ¹ F° (75)	6917.93	133914	139243	5	7	0.16	0.16	18	-0.10	D	ca
43	3s5d-3s(2S)7f	'D-'F° (77)	5613.19	133914	142602	5	7	0.070	0.046	4.3	-0.64	D	ca

Al II

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P^o-³P^o transitions are essentially independent of the choice of the interaction parameters. For the ³P^o-¹P^o transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Al II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\epsilon m^{-1})$	Ķi	¥k	Type of Transi- tion	Aki(sec-1)	S(at.u.)	Accu- racy	Source
1	3s3p = 3s(2S)3p	abo=abo	[16.18×10 ⁵] [79.66×10 ⁴]	37392.0 37453.8	37453.8 37579.3		3 5	m m	4.24 × 10 ⁻⁶ 2.67 × 10 ⁻³	2.00 2.50	B B	1 1
2		3b°-1b°	[4451.6] [4463.9] [4489.0]	37392.0 37453.8 37579.3		1 3 5	3 3 3	n: m m	0.00288 0.57 0.00351	$\begin{array}{c} 2.83 \times 10^{-3} \\ 0.0056 \\ 3.53 \times 10^{-3} \end{array}$	CCC	1 1 1

1s22s22p63s 2S12

Breakle Selection of the Selection

Ionization Potential

 $28.44 \text{ eV} = 229453.99 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
560.390	3	1862.78	1	4357.24	15
695.817	2	1935.9	7	4364.59	15
696,212	2	3283.11	16	4512.54	11
1162.6	9	3287.37	16	4528.91	11
1352.8	8	3601.62	6	4529.18	11
1379.6	5	3601.92	6	4701.65	14
1384.2	5	3612.35	6	4903.71	17
1605.7	4	3702.09	12	5260.91	19
1611.88	4	3713.10	12	5696.47	10
1611.90	4	3980.56	18	5722.65	10
1854.72	1	4150.1	13		

Self-consistent field calculations including exchange effects have been carried out by Weiss [1] and by Chapman, Clarke, and Aller [3] for several multiplets of this ion. Weiss' values have been calculated with both the dipole length and dipole velocity formulas which agree usually within a few percent. Stewart and Rotenberg [2], who developed a method employing a scaled Thomas-Fermi potential, have applied this to several Al III transitions, including 3s-5p, which is not covered by the other authors. Good agreement exists among the various calculations, including the Coulomb approximation, for the few cases where they overlap. Cancellation occurs in varying degrees for the 3s-4p, 3s-5p, 5p-6d, and 5p-7d transitions, which are mostly covered by the Coulomb approximation. In these cases the accuracy rating has been reduced. We have adopted the values of Weiss [1], i.e., the average of his dipole length and dipole velocity values, when we had a choice between different calculations. Furthermore, the results of Refs. [2] and [3] were chosen in preference to the Coulomb approximation.

Weiss [1] has also carried out calculations for the doublet ratios of those transitions for which he has calculated absolute f-values. His results indicate that the doublet ratios follow LS-coupling quite well, in direct disagreement with the experimental results of Kisiel [4] who has measured the intensity ratios of various transitions connected with the 3p state. It appears that Kisiel has failed to adequately investigate the effects of self absorption which are probably quite important in this experiment.

For Al III, a member of the sodium isoelectronic sequence, it is possible to utilize extensively the dependence of oscillator strengths on nuclear charge for the intercomparison of analogous transitions. Thus, the degree of fit of the individual f-values into the systematic trends has served as one of the decisive factors for the choice of accuracy assignments.

[[]I] Weiss, A. W., 10 be published (1969).

^[2] Siewari, J. C., and Rotenberg, M., Phys. Rev. 140, 1508A-1519A (1965).

^[3] Chapman, R. D., Clarke, W. H., and Aller, L. H., Astrophys. J. 144, 376-380 (1966).

^[4] Kisiel, A., Acta Phys Polon. 23, 167-175 (1963).

Al III. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E_k (cm $^{-1}$)	Ķi	μk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s-3p	2S - 2P° (1 uv)	1857.4	0	53839	2	6	5.64	0.875	10.7	0.243	В	1
			1854.72 1862.78	0	53917 53684	2 2	4 2	5.67 5.60	0.585 0.291	7.14 3.57	0.066 - 0.235	B B	ls ls
2	3s-4p	² S - ² P° (2 uv)	695.97	0	143684	2	6	0.52	0.011	0.052	-1.64	D]
			695.817 696.212	0	143712 143632	2 2	4 2	0.53 0.51	0.0076 0.0037	0.035 0.017	-1.82 -2.13	D D	ls ls
3	3s-5p	² S = ² P° (3 10v)	560,390	0	178455	2	6	0.48	0.0068	0.025	-1.87	D	2
4	3p-3d	5 hc - 5D	1609.9	53839	135956	6	10	14.5	0.937	29.8	0.750	В	1
			1611.90 1605.7 1611.88	53917 53684 53917	115955 115957 115957	4 2 4	5 4 4	14.4 12.1 2.42	0.843 0.939 0.0942	17.9 9.93 2.00	0.528 0.274 -0.424	B B B	ls ls ls
5	3p-4s	2P°-2S	1382.7	53839	126163	6	2	13.5	0.129	3.51	-0.111	C+	1
			[1384.2] [1379.6]	53917 53 684	126163 126163	4 2	2 2	8.9 4.51	0.129 0.129	2.34 1.17	- 0.287 - 0.59	C+ C+	ls ls
6	3d-4p	$ \begin{array}{c c} ^2D - ^2P^{\circ} \\ (1) \end{array} $	3605.4	115956	143684	10	6	1.49	0.174	20.7	0.242	C+	1
			3601.62 3612.35 3601.92	115955 115957 115957	143712 143632 143712	6 4 4	4 2 4	1.34 1.48 0.150	0.174 0.145 0.0291	12.4 6.9 1.38	0.020 - 0.236 - 0.93	C+ C+	ls ls ls
7	3d-4f	$^{2}D - ^{2}F^{\circ}$	[1935.9]	115956	167612	10	14	12.2	0.96	61	0.98	C+	ca
8	3d-5f	² D − ² F°	[1352.8]	115956	189875	10	14	4.40	0.169	7.5	0.228	С	ca
9	3d-6f	² D − ² F°	[1162.6]	115956	201970	10	14	2.1	0.061	2.3	-0.21	D	ca
10	4s-4p	² S − ² P° (2)	5705,9	126163	143684	2	6	0.878	1.29	48.3	0.412	В	1
			5696.47 5722.65	126163 126163	143712 143632	2 2	4 2	0.882 0.870	0.859 0.427	32.2 16.1	0.235 - 0.069	B B	ls is
11	4p-4d	$^{2}P^{\circ} - ^{2}D$ (3)	4523.2	143634	165786	6	10	2.56	1.31	117	0.90	C+	3
			4529.18 4512.54 4528.91	143712 143632 143712	165785 165787 165787	4 2 4	6 4 4	2.54 2.15 0.426	1.17 1.31 0.131	70 38.9 7.8	0.67 0.418 -0.281	C+ C+	ls ls ls
12	4p-5s	² P° – ² S	3709.2	143684	170636	6	2	3.42	0.235	17.2	0.149	C+	3
			3713.10 3702.09	143712 143632	170636 170636	4 2	2 2	2.27 1.14	0.235 0.235	11.5 5.7	- 0.027 - 0.328	C+	ls ls
13	4d - 5f	${^{2}D - {^{2}F^{\circ}} \atop (5)}$	4150.1	165786	199875	10	14	2.19	0.79	108	0.90	C+	3
14	4f-5d	2F°-21)	4701.65	167612	188876	14	10	0.079	v.019	4.1	-0.58	D	ca
15	5p-6d	² P°−2D (9)	4362.0	178455	201374	6	10	0.084	0.040	3.5	-0.62	D	co
			4364.59 4357.24 4364.59	178470 178430 178470	201374 201374 201374	2 4	6 4 4	0.082 0.070 0.014	0.035 0.040 0.0039	2.0 1.2 0.23	-0.85 -1.10 -1.80	D D D	ls Is

Al III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	₽k		f _{ik}	Stat.u.)	log gf	Accu- racy	Source
16	5p - 7d	² P° – ² D (10)	3285.8	178455	208880	6	10	0.011	0.0030	0.19	- 1.79	D	ca
			3287.37 3283.11 3287.37	178470 178430 178470	208880 208880 208880	4 2 4	6 4 4	0.011 0.0093 0.0018	$\begin{array}{c} 0.0026 \\ 0.0030 \\ 2.9 \times 10^{-4} \end{array}$	0.11 0.065 0.013	- 1.98 2.22 2.94	D D D	le Is Is
17	5d-7f	² D − ² F° (11)	4903.71	188876	209261	10	14	0.351	0.177	28.6	0.248	С	ca
1	5d-8f	$ \begin{array}{c c} ^2D - {}^2F^{\circ} \\ (12) \end{array} $	3980.56	188876	213992	10	14	0.229	0.076	10.0	-0.119	C	ca
19	5f-7d	² F° - ² D (13)	5260.91	189875	208880	14	10	0.0280	0.0083	2.01	- 0.93	C:	са

Al IV

Ground State

1s22s22p6 1S0

water with the state of the sta

Ionization Potential

 $119.96 \text{ eV} = 967783 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kasiner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Al IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	Kk.	$A_{kl}(10^{ m sec^{-1}})$	Jik	S(at.u.)	log g/	Accu- racy	Source
1	$2p^6 - 2p^5(^2\mathbf{P}_{3/2}^{\circ})3s$	'S-"P°	[161.69]	0	618478	1	3	13	0.015	0.0080	- 1.82	E	1
						'							
2	$2p^6 - 2p^3(^2P_{1/2}^{\circ})3s$	י ⁹ ןי −Sי	[160.07]	0	624721	1	3	170	0.20	0.11	-0.70	D	l
3	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	¹S− ^a P°											
			[131.65]	0	759601	1	3	4.7	0.0037	0.0016	-2.43	E	1
4	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	'S-'l'°	[130.37]	0	767041	1	3	630	0.48	0.21	-0.32	Ð	1
5	$2p^6 - 2p^5(^2P^o_{1/2})3d$	'S - "D°	[129.73]	0	770836	1	3	340	0.26	0.11	-0.59	D	1

1s22s2p5 2P3/2

Ionization Potential

 $153.77 \text{ eV} = 1240600 \text{ cm}^{-1}$

Allowed Transitions

The value for the $2s^22p^5 {}^2P^\circ - 2s2p^6 {}^2S$ multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving the n=3 shell electrons, which were not included in this calculation, may be significant.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Alv. Allowed Transitions

No.	Transition Array	Muttiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	Kk	$A_{k!}(10^{8}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^{2}2p^{5} - 2s2p^{6}$	2P°-2S	279.59	1147	358810	6	2	320	0.12	0.68	-0.14	D	1
			[278.70] [281.40]	0 3440	358810 358810	4 2	2 2	210 100	0.12 0.12	0.45 0.23	0.32 0.62	D D	ls ls

Al v

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

111 Naqvi, A. M., Thesis Harvard (1951).

Al v. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	Kk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	2 po _ 2 po										_
			[29062]	0	3440	4	2	m	0.731	1.33	A	1

59

Fire and the desire that we would be

 $1s^22s^22p^{4/3}P_2$

Ionization Potential

 $190.42 \text{ eV} = 1536300 \text{ cm}^{-1}$

Allowed Transitions

The values are calculated from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. From comparisons with other ions in the isoelectronic sequence, uncertainties should be within 50 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Al VI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	μ,	$A_{kl}(10^6\mathrm{sec}^{-1})$	fik	S(at.a.)	log gf	Accu- racy	Source
1	$2s^22p^4-2s2p^3$	зр _ зр•	309.68	/338	324249	9	9	140	0.21	1.9	0.28	D	1
			[309.60] [309.85] [307.25]	0 2736 0	323002 325470 325470	5 3 5	5 3 3	110 36 61	0.16 0.052 0.051	0.79 0.16 0.26	-0.10 -0.81 -0.59	D D D	ls ls
			[308.56] [312.24] [310.91]	2735 2725 3831	326822 323002 325470	3 3 1	5 3	140 35 47	0.069 0.084 0.21	0.21 0.26 0.21	-0.64 -0.60 -0.68	D D D	ls ls
2		ıD-ıb.	[243.76]	41600	451840	5	3	240	0.13	0.51	-0.19	D	1
3		1S-1P°	[275.35]	88670	451840	ì	3	36	0.12	0.11	-0.92	D	1

Al VI

Forbidden Transitions

As in the case of Na tV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na tV, since the same considerations have been applied.

^[1] Naqvi, A. M., Thesis Harvard (1951).

^[2] Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

Al VI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(m cm^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	#k	Type of Transi- tion	$A_{ki}(\sec^{-i})$	S(at.u.)	Accu- racy	Source
1	$2p^{3}-2p^{3}$	ap_ap										
·	-1 -1		[36540]	0	2736	5	3	e	6.1 × 10-7	0.071	C-	1, 2
		ļ	[36540]	0	2736	5 5	3	m	0.461	2.50	C- B C-	1
			[26096]	0	3831	5	1	e	4.3×10-6	0.0310	C-	1, 2
			[91300]	2736	3831	3	1	m	0.0708	2.00	В	1, 2
2		4P_4D										
			[2403.1]	0	41600	5	5	e	0.0037	8,8 × 10 ⁻⁴	D-	1, 2
			[2403,1]	0	41600	5	5	m	5.2	0.0133	C	1
	İ		[2572.3]	2736	41600	3	5	e	3.7 × 10 ⁻⁴	1.3×10 ⁻⁴	D-	1, 2
			[2572.3]	2736	41600	3	5	m	1.40	0.00443	C	1
			[2646.9]	3831	41600	1	5	e	1.3 × 10 ⁻⁴	5.1×10^{-5}	C-	2
3		3P=1S										
.,			[1127.8]	j 0	88670	5	1	e	0.056	6.1 × 10 ⁻³	D-	,
			[1163.7]	2736	88670	3	i	m	61	0.00356	C	2 2
						1						_
-4		$D = {}^{\dagger}S$									_	
			[2123.8]	41600	88670	5	1	e	4.8	0.123	C-	2

Al VII

Ground State

1s22s22p3 4S3/2

Ionization Potential

241.38 eV=1947390 cm⁻¹

Allowed Transitions

Values for all the listed transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Judged from graphical comparisons with other ions in the isoelectronic sequence and from the general success of Cohen and Dalgarno's method for similar atomic systems, uncertainties within 50 percent are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Al VII. Allowed Transitions.

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\operatorname{cm}^{-1})$	g _i	μ _k	$A_{ki}(10^{\mu}{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 + 2s2p^4$	4S°=4P	355,05	0	281647	4	12	41	0.24	1.1	-0.02	D	1
			[356.89] [353.78] [352.16]	0 0 0	280200 282660 283960	4 4 4	6 4 2	41 42 42	0.12 0.079 0.039	0.55 0.37 0.18	-0.32 -0.50 -0.81	D D D	ls ls ls
2		2D°-2D	309.08 [309.12] [309.01] [309.07] [309.06]	60736 60760 60700 60760 60700	384280 384260 384310 384310 384260	10 6 4 6 4	10 6 4 4 6	96 89 86 9.6 6.4	0.14 0.13 0.12 0.0092 0.014	0.78 0.50 0.056 0.056	0.15 -0.11 -0.32 -1.26 -1.25	D D D E E	ls ls ls ls

Allowed Transitions - Continued Al VII.

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E_k(cm ⁻¹)	Ķi	Ľk	4 _{ki} (1()* sec -1)	fik	S(at.u.)	log gf	Accu- racy	Source
3		²D°−²P	240.19	60736	477077	10	6	340	0.18	1.4	0.26	D	1
			[240.77] [239.03] [240.74]	60760 60700 60700	476090 479050 476090	6 4 4	4 2 4	300 350 34	0.18 0.15 0.029	0.84 0.47 0.093	0.03 -0.22 -0.94	D D	ls ls ls
4		²P° − ²D	343.52	93180	384280	6	10	15	0.046	0.31	-0.56	D	1
			[343.65] [343.28] [343.60]	93270 93000 93270	384260 384310 384310	4 2 4	6 4 4	16 13 0.021	0.042 0.044 0.0046	0.19 0.10 0.021	-0.77 -1.06 -1.74	D D E	ls ls ls
5		²P°−2S	279.19	93180	451360	6	2	210	0.082	0.45	-0.31	D	1
			[279.26] [279.05]	93270 93000	451360 451360	4 2	2 2	140 70	0.082 0.082	0.30 0.15	-0.48 -0.79	D D	ls la
6		2P°-2P	260.49	93180	477077	6	5	100	0.10	0.54	-0.22	D	
			[261.22] [259.03] [259.22] [261.04]	93270 93000 93270 93000	476090 479050 479050 476090	4 2 4 2	4 2 2 4	85 70 35 17	0.087 0.070 0.018 0.035	0.30 0.12 0.060 0.060	-0.46 -0.85 -1.14 -1.15	D D E E	ls ls ls

Al VII

Forbidden Transitions

All the values for this ion have been taken from Pasternack [1]. The electric quadrupole values have been corrected by applying Naqvi's value [2] for the electric quadrupole moment s_q .

References

Pasternack, S., Astrophys. J. **92**, 129 (1940).
 Naqvi. A. M., Thesis Harvard (195).

Al VII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Kk	Type of Transi- tion	$A_{ki}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^3 - 2p^3$	4S°-2D°										
			[1645.8] [1645.8] [1647.4] [1647.4]	0 0 0	60760 60760 60700 60700	4 4 4	6 6 4 4	In e m e	0.0046 0.0018 0.26 0.0011	$\begin{array}{c} 4.56 \times 10^{-6} \\ 7.8 \times 10^{-5} \\ 1.72 \times 10^{-4} \\ 3.3 \times 10^{-5} \end{array}$	D-	1 1,2 1 1,2
2		⁴ S°−2P°							:			
			[1072.2] [1072.2] [1075.3] [1075.3]	0 0 0 0	93270 93270 93000 93000	4 4 4	4 4 2 2 2	m e m e	29 1.8×10 ⁻³ 12 4.4×10 ⁻⁵	0.0053 6.2×10-* 0.00111 7.5×10-*	C D- C D-	1 1, 2 1 1, 2

Al VII. Forbidden Transitions—Continued

No.	Transition Array	Multiplet	A(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ	K	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(et.u.)	Accu- racy	Source
3		² D°- ² D°										
			$[16.7 \times 10^{5}]$ $[16.7 \times 10^{5}]$	60700 60700	60760 60760	4	6	m e	2.33×10^{-6} 1.2×10^{-17}	2.40 5.4 × 10 ⁻⁴	B D-	2 1, 2
4		² D°- ² P° (1F)										
			3074.0 3074.0	60760 60760	93270 93270	6	4	m e	4.6 0.31	0.0198 0.20	C D C	1 2
			3093.4	60700	93000	4	2	m	5.1	0.0112	Č	ì
			3093.4 3098.7	60700 60760	93000 93000	4	2 2	e	0.25 0.17	0.086 0.058	D	2 2
			3068.8	60700	93270	4	4	m	8.5	0.0366	D C D	1
İ			3068.8	60700	93270	4	4	e	0.13	0.085	D	2
5		2P°-2P°										
			$[37.03 \times 10^4]$ $[37.03 \times 10^4]$	93000 93000	93270 93270	2 2	4	m e	1.77 × 10 ⁻⁴ 1.6 × 10 ⁻¹⁴	1.33 2.6×10-4	B D-	2 1, 2

Al VIII

Ground State

Ionization Potential

1s22s22p2 3P0

284.53 eV=2295500 cm-1

Allowed Transitions List of tabulated lines:

Wavelength Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
247.39	3	325,32	2	387.97	1
248.46	3	328.20	2	1111.6	8
250.14	3	381.11	li	1118.7	l 8
251.34	5	383.66	1	1131.1	8
285.47	4	383.76	1	1206.3	7
287.04	6	387.67	1	1223.5	7
323.49	2	387.78	1	1280.4	7

Most data are obtained from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons of this material within the isoelectronic sequence depicting the dependence of f-values on nuclear charge have been made, and the available experimental data for the lower ions, mostly from lifetime measurements, establish fairly definitely that the uncertainties should not exceed 50 percent. Analogous graphs for the data obtained from the Coulomb approximation indicate that these values are accurate within 25 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Alviii. Allowed Transitions

No.	Transition Array	Multiplet	λιÅ)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	$A_{ki}(10^{8}\mathrm{sec}^{-1})$	fik	S(at.u.)	log <i>gf</i>	Accu- racy	Source
1	$2s^22p^2-2s2p^3$	3P_3D°	385.76	3047	262273	y	15	24	0.087	1.0	-0.11	D+	1
			[387.97] [383.76] [381.11] [387.78] [383.66] [387.67]	4440 1740 0 +440 1740 4440	262190 262320 262390 262320 262390 262390 262390	5 3 1 5 3 5	7 5 3 5 3 3	23 18 13 5.8 9.9 0.65	0.074 0.066 0.088 0.013 0.022 8.8 × 10 ⁻⁴	0.47 0.25 0.11 0.083 0.083 0.0056	-0.43 -0.70 -1.06 -1.19 -1.18 -2.36	D+ D+ D D D	ls ls ls ls ls
2		aP_aP°	326.71	3047	309130	9	9	62	0.099	0.96	-0.95	D	1
			[328.20] [325.32] [328.20] [325.32] [325.32] [323.49]	4440 1740 4440 1740 1740	309130 309130 309130 309130 309130 309130	5 3 5 3 1	5 3 1 5 3	46 16 25 65 15 22	0.074 0.025 0.024 0.034 0.040 0.10	0.40 0.080 0.13 0.11 0.13 0.11	-0.43 -1.12 -0.92 -0.99 -0.92 -1.00	D E D D D D	ls ls ls ls ls
3		3P-3S°	249.27	3047	404220	9	3	350	0.11	0.81	0.00	D+	1
			[250.14] [248.46] [247.39]	4440 1740 0	404220 404220 404220	5 3 1	3 3 3	190 120 40	0.11 0.11 0.11	0.45 0.27 0.090	-0.26 -0.48 -0.96	D+ D+ D+	ls ls
4		'D – 'D°	[285.47]	[46690]	[396990]	5	5	170	0.21	1.0	0.02	D	1
5		'D-'P°	[251.34]	[46690]	[444550]	5	3	230	0.13	0.53	-0.19	D	1
6		'S-'P°	[287.04]	[96170]	[444550]	1	3	60	0.22	0.21	-0.66	D-	1
7	2p3s - 2p(2p°)3p	3P°-3S	1252.5	1322337	1402180	9	3	6.2	0.0485	1.80	-0.360	C	ca
	Σρ(: Ιορ		[1280.4] [1223.5] [1206.3]	1324080 1320450 1319280	1402180 1402180 1402180	5 3 1	3	3.22 2.21 0.77	0.0474 0.0497 0.050	1.00 0.60 0.200	-0.63 -0.83 -1.301	CCC	ls ls
8	$\begin{array}{c} 2p3p - \\ 2p(^2\mathbf{P^c})3d \end{array}$	3S-3P°	1124.7	1402180	1491089	3	9	4.65	0.265	2.94	-0.100	C	ca
	<i>Lp(1)00</i>		[1131.1] [1118.7] [1111.6]	1402180 1402180 1402180	1490590 1491570 1492140	3 3 3	5 3 1	4.73	0.146 0.089 0.0298	1.63 0.98 0.327	-0.358 -0.57 -1.049	CCC	ls ls

Al viii

Forbidden Transitions

The adopted values represent, as in the case of Na VI, the work of Naqvi [1], Malville and Berger [2], and Froese [3]. For the selection of values, the same considerations as for Na VI are applied, the one exception being that Froese's magnetic dipole values are also used. Since the observed energy levels are uncertain, it is felt that the "spin-orbit" and "spin-spin and spin-otherorbit" integrals ζ and η calculated from her theoretical energy levels will be as accurate as the experimental ones.

Naqvi, A. M., Thesis Harvard (1951).
 Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131 (1965).
 Froese, C., Astrophys. J. 145, 932 (1966).

Al VIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķı	Kk	Type of Transi- tion	$A_{kl}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	aP−ab	[57456] [22516] [37027] [37027]	0 0 1740 1740	1740 4440 4440 4440	1 1 3 3	3 5 5 5	m e m e	0.0948 1.38 × 10 ⁻⁶ 0.265 2.55 × 10 ⁻⁷	2.00 0.0237 2.49 0.053	A C B C	1, 3 3 1, 3
2		3P-1D	[2141.1] [2224.0] [2224.0] [2366.1] [2366.1]	0 1740 1740 4440 4440	[46690] [46690] [46690] [46690] [46690]	1 3 3 5 5	5 5 5 5 5	e m e m	2.5 × 10 ⁻⁴ 3.34 8.6 × 10 ⁻⁴ 8.3 0.0044	3.4×10 ⁻⁵ 0.0068 1.4×10 ⁻⁴ 0.0204 9.8×10 ⁻⁴	D C D C	3 1, 2, 3 3 1, 2, 3
3		3P=3S	[1059.0] [1090.2]	1740 4440	[96170] [96170]	3 5	1	m e	92 0.088	0.00407 8.1×10 ⁻⁵	C D	2, 3
4		¹D=¹S	[2020.4]	[46690]	[96170]	5	1	е	4.79	0.096		3

Al ix

Ground State

Ionization Potential

1s22s2p 2P1/2

 $330.1 \text{ eV} = 2663340 \text{ cm}^{-1}$

Allowed Transitions List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
60.896	11	305.10	2	397.24	7
61.069	11	308.01	6	397.61	7
61.078	11	308.23	6	433.97	9
66.621	10	316.86	4	434.42	9
66.839	10	318.56	4	439.68	9
280,15	3	321.11	4	440.14	9
282.52	3	384.59	5	603.21	8
284.04	3	384.85	5	614.29	8
286.48	3	385.03	1	614.97	8
300.62	2	392.42	1		_

Values for the majority of the transitions are calculated from the nuclear charge-expansion method of Colien and Dalgarno [1], which includes limited configuration mixing. Graphical comparisons with other data for the lower ions of this isoelectronic sequence indicate that the uncertainties should be within 50 percent.

For the 2p 2P°-3s 2S and 2p 2P°-3d 2D multiplets we have obtained data by exploiting the dependence of f-values on nuclear charge: In these cases accurate data for several other ions of the boron sequence are available from extended self-consistent field calculations by Weiss [2] in which configuration mixing is fully included. Utilizing those values, which are also supported by some experimental results on lower ions, we have obtained the f-values of the two transitions simply by graphical interpolation.

- [1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 [2] Weiss, A. W., private communication (1967).

Alix. Allowed Transitions

	1	T	T			1						1	
No.	Transition Array	Multiplet	λ(Å)	$E_{\beta}(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	μk	$A_{kl}(10^6\mathrm{sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p-2s2p^2$	2p°_2])	389.92	3260	259720	6	10	21	0.079	0.61	-0.32	D	1
			[392.42] [385.03] [392.42]	4890 () 4890	259720 259720 259720	4 2 4	6 4 4	21 18 3.4	0.072 0.079 0.0079	0.37 0.20 0.041	-0.54 -0.80 -1.50	D D E	ls Is Is
2		2P°-2S	303.59	3260	332650	6	2	87	0.040	0.24	-0.62	D+	1
			[305.10[[300.62]	4890 0	332650 332650	4 2	2 2	57 30	0.040 0.040	0.16 0.080	-0.80 -1.10	D+ D+	ls Is
3		20-2b	283.53	3260	355953	6	6	160	0.20	1.1	0.08	D+	1
			[284.04] [282.52] [286.48] [280.45]	4890 0 4890 0	356950 353960 353960 356950	4 2 4 2	4 2 2 4	130 110 52 28	0.16 0.13 0.032 0.065	0.61 0.24 0.12 0.12	-0.19 -0.59 -0.89 -0.89	D+ D+ D	ls ls ls ls
4	$2s2p^2-2p^3$	4P_4S°	319.54	[148963[[461910]	12	4	150	0.077	0.97	0.03	D+] 1
			[321.11[[318.56] [316.86]	[150490] [148000] [146310]	[461910] [461910] [461910]		4 4 4	75 50 25	0.077 0.076 0.077	0.49 0.32 0.16	-0.34 -0.52 -0.81	D+ D+ D+	ls ls ls
5		2D-2D°	384.75	259720	519632	10	10	43	0.095	1.2	-0.02	D+	1.
			[384.85] [384.59] [384.59] [384.85[259720 259720 259720 259720	519560 519740 519740 519560	6 4 6 4	6 4 4 6	40 38 4.3 2.8	0.088 0.085 0.0063 0.0095	0.67 0.43 0.048 0.048	$ \begin{array}{r} -0.28 \\ -0.47 \\ -1.42 \\ -1.42 \end{array} $	D+ D+ E E	ls ls ls
6	I	2D-2P°	308.08	259720	584310	10	6	70	0.060	0.61	-0.22	D	1
			[308.01] [308.23[[308.01]	259720 259720 259720	584390 584150 584390	6 4 4	4 2 4	64 69 7.1	0.061 0.049 0.010	0.37 0.20 0.041	-0.44 -0.71 -1.40	D D E	ls ls ls
7		2S-2P°	397.36	332650	584310	2	6	13	0.095	0.25	-0.72	D	1
			[397.24] [397.61]	332650 332650	584390 584150	2 2	4 2	14 13	0.063 0.032	0.17 0.083	-0.90 -1.19	D D	ls Is
8	!	2P - 2D°	610,95	355953	519632	6	10	11	0.099	1.2	-0.23	D	1
			[614.97] [603.21] [614.29]	356950 353960 356950	519560 519740 519740	4 2 4	6 4 4	10 9.2 1.7	0.089 0.10 0.0099	0.72 0.40 0.080	-0.45 -0.70 -1.40	D D E	ls Is Is
9		2P _ 2P°	437.91	355953	584310	6	6	44	0.13	1.1	-0.11	D	1
			[439.68] [434.42] [440.14] [433.97]	356950 353960 356950 353960	584390 584150 584150 584390	4 2 4 2	4 2 2 4	36 30 14 7.4	0.11 0.084 0.021 0.042	0.61 0.24 0.12 0.12	-0.36 -0.77 -1.08 -1.08	D D D	ls ls ls
10	2p-(1S)3s	2f10-2S	66.766	3260	1501020	6	2	1000	0.023	0.030	-0.86	С	interp
			[66.839] [66.621]	4890 0	1501020 1501020	4 2	2 2	680 340	0.023 0.023	0.020 0.010		C	ls Is
11	$2p-({}^{1}S)3d$	*lp°-*D	61.012	3260	1642284	6	10	6700	0.62	0.75	0.57	С	interp
			[61.069] [50.896] [61.078]	4890 0 4890	1642380 1642140 1642140	4 2 4	6 1	6700 5600 1100	0.56 0.62 0.062	0.45 0.25 0.050	0.35 0.09 -0.61	Ω C C	ls ls ls

Al IX.

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number. tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Forbidden Transitions Alix.

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	Kk	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p = (18)2p	2P°-2P°	[20444]	0	4890	2	4	m	1.05	1.33	Α	1

Al x

Ground State

1s22s2 1S0

Ionization Potential

 $398.5 \text{ eV} = 3215340 \text{ cm}^{-1}$

Allowed Transitions

Garstang and Shamey [1] have obtained the f-value for the intercombination line 21So-21P1 by calculating the ratio of this line against the resonance transition in the intermediate coupling approximation and by using for the resonance line a value calculated according to Cohen and Dalgarno's method [2]. The data calculated from the charge-expansion method of Cohen and Dalgarno, [2] which includes limited configuration mixing, are estimated to be usually accurate to 50 percent or better, while the charge-expansion method of Naqvi and Victor [3] should be less reliable when the effects of configuration interaction are strong, since these are neglected entirely. In assigning the accuracy estimates for these methods as well as for the Coulomb approximation we were to a great extent guided by studying the degree of fit of the data into the systematic trends along isoelectronic sequences.

References

Garstang, R. H., and Shamey, L. J., Astrophys. J. 148, 665-666 (1967).
 Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD T.PR-63-3118 (1964).

Al X. Allowed Transitions

No.	Transition Array	Multiple!	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{rm}^{-1})$	Ķ,	μĸ	$A_{ki}(10^{6}~{ m sec}^{-1})$	Ţi,	S(at.u.)	log g/	Acru- rary	Source
1	$2s^2-2s(^2S)2p$	¹ S ³ P°	[638.81]	0	[156540]	1	3	0.0026	4.7×10 ⁻⁵	9.6×10 ⁻⁵	- 4.33	Đ	l n
2		'S-'P°	[332.89]	0	300/.00	ı	3	57	0.287	0.314	 0.54	C	2
3	$2s2p-2p^2$	ap°_ap	400,90	[158286]	[407823]	9	9	49	0.72	1.4	0.03	D +	2
			[401.19] [400.43] [406.39] [406.39] [403.62] [395.38] [397.74]	[160200] [156540] [160200] [156540] [156540] [154850]	[409460] [406270] [406270] [404300] [409460] [406270]	5 3 5 3 1	5 3 1 5 3	36 13 19 49 12	0.089 0.030 0.028 0.040 0.049 0.12	0.58 0.12 0.19 0.16 0.19 0.16	-0.35 -1.05 -0.85 -0.92 -0.83 -0.92	D+ D- D- D- D-	ls ls ls ls ls
4		'P°-'D	[673.67]	300400	448840	3	5	10	0.12	0.77	-0.44	D-	2
5		iho-is	[395.46]	300400	553270	3	1	95	0.074	0.29	-0.65	E	2
6	$2s^2 - 2s(^2S)3p$	'S-'P°	[51.979]	0	1923850	1	3	4800	0.58	0.10	-0.24	E	3
7	$2s2p - 2s(^2S)3s$	P°-PS	[63.134]	300400	1884330	3	1	380	0.0075	0.0047	- 1.65	E	3
8	$2s3s - 2s(^2S)3p$	PS-1P°	[2529.6]	1884330	1923850	1	3	0.60	0.174	1.45	-0.76	C:	3
9	$2p3s - 2p(^{2}P^{\circ})3p$	¹P°=¹P	[26659]	2090980	2094730	3	3	5.0 × 10 ⁻⁴	0.0054	1.41	-1.79	C:	ca
10		ıP°-ıD	[1744.0]	2090980	2148320	3	5	1.93	0.147	2.53	-0.356	C :	ca
11	$2s3p - 2s(^2S)3d$	'P°-'D	[1462.0]	1923850	1992250	3	5	2.68	0.143	2.07	-0.368	C:	ca
12	$2p3p - 2p(^{2}P^{\circ})3d$	'P-'D°	[2175.1]	2094730	2140690	3	5	0.56	0.067	1.43	-0.70	C:	ca
13		¹D-¹F°	[2285.5]	2148320	2192060	5	7	0.72	0.079	2.96	-0.403	(:	ca

Al X Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^4P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Al x. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Цk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	$S({ m at.u.})$	Arcu- racy	Source
1	2s2p-2s(*S)2p	3b0 = 3b0	[59156] [27315]	[154850] [156540]	[156540] [160200]	1 3	3 5	m m	0.0869 0.662	2.00 2.50	A A	1
2		3bo - 1bo	[687.05] [695.12] [713.27]	[154850] [156540] [160200]	300400 300400 300400	1 3 5	3 3 3	m m m	17.5 710 19.6	6.3×10 ⁻⁴ 0.0266 7.9×10 ⁻⁴	C C C	 1

The second section of the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section is a section in the

1s22s2S1/2

Ionization Potential

 $441.9 \text{ eV} = 3564900 \text{ cm}^{-1}$

Allowed Transitions

For the transition 2s-2p, the charge-expansion calculation of Cohen and Dalgarno [1] is chosen. An uncertainty of less than 10 percent is indicated from the graphical comparison of this value with the other material for the same transition within the isoelectronic sequence. Data for the other listed transitions have been obtained from the Coulomb approximation. Plots of the dependence of the f-value on nuclear charge for all these transitions have been made and show that this material connects up very smoothly with the data for the lower ions as well as with the hydrogenic value for infinite nuclear charge. Based on this impressive agreement, accuracies of 10 percent (or 25 percent for some of the smaller values) are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Al XI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g,	Kk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	2S-2P°	556.03	0	179847	2	6	8.35	0.116	0.425	-0.634	В	1
	• • • • • • • • • • • • • • • • • • • •		[549.99] [568.50]	0 0	181820 175900	2 2	4 2	8.62 7.83	0.0782 0.0379	9.283 0.142	-0.806 -1.120	B B	ls Is
2	2s-3p	2S - 2P°	48,311	0	2069937	2	6	3140	0.330	0.105	-0.180	В	ca
]48.297]]48.338]	0	2070520 2068770	2 2	4 2	3150 3140	0.220 0.110	0.0700 0.0350	-0.357 -0.658	B B	ls ls
3	2p-3s	2P°-2S	54.330	179847	2020460	6	2	1469	0.0215	0.0231	-0.889	В	ca
			[54.388] [54.213]	181820 175900	2020460 2020460	4 2	2 2	970 490	0.0215 0.0216	0.0154 0.00770	- 1.066 - 1.365		ls Is
4	2p-3d	²P°−²D	52.398	179847	2088316	6	10	9800	0.672	0.696	0.606	В	ca
			52.446 52.299 52.461	181820 175900 181820	2088540 2087980 2087980	4 2 4	6 4 4	9780 8210 1630	0.605 0.674 0.0672	0.418 0.232 0.0464	$0.381 \\ 0.136 \\ -0.571$	B	ls ls ls
5	2p - 4d	2P°-2D	[39.150]	179847	2734140	6	10	3210	0.123	0.095	-0.132	C+	ca
6	3s-3p	2S-2P°	2020.5	2020460	2069937	2	6	1.06	0.194	2.58	-0.410	В	ca
			[1997.6] [2069.3]	2020460 2020460	2070520 2068770	2 2	4 2		0.131 0.0631	1.72 0.860	-0.582 -0.900		ls !s
7	3p-3d	2 P° - 2D	5439,5	2069937	2088316	6	10	0.0424	0.0314	3.37	-0.725	В	ca
			[5547.9] [5204.2] [5725.8]	2070520 2068770 2070520	2088540 2087980 2087980	4 2 4	6 4 4	0.0402	0.0276 0.0327 0.00298	2.02 1.12 0.225	-0.957 1.184 -1.924	В	ls ls ls
8	3p-4d	2P°-2D	[150.56]	2069937	2734140	6	10	1020	0.58	1.72	0.54	C+	ca

sales pill tall tales and the

152 1S0

Ionization Potential

 $2085.46 \text{ eV} = 16825000 \text{ cm}^{-1}$

Allowed Transitions

The values for this ion are calculated from the charge-expansion method of Dalgarno and Parkinson [1]. From comparisons with the more refined variational calculations by Weiss [2] for lower members of this isoelectronic sequence, uncertainties are estimated not to exceed 10 percent. It should be pointed out that essentially identical results are obtained by extrapolating the data of Weiss towards the high members of the isoelectronic sequence (see fig. I [2]).

References

Dalgarno, A., and Parkinson, E. M., Proc. Roy. Soc. London A301, 253-260 (1967).
 Weiss, A. W., J. Research Nat. Bur. Standards 71A, 163-168 (1967).

Al XII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	μk	$A_{ki}(10^{6}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2 - 1s2p$	'S'P°	[7.7568]	0	12891900	1	3	2.78×10 ³	0.752	0.0192	-0.124	В	1
2	$1s^2 - 1s3p$	'S-'P°	[6.6345]	0	15072700	1	3	7.72×10 ⁴	0.153	0.00334	-0.815	В	1
3	$1s^2 - 1s4p$	1S-1P°	[6.3137]	0	15838600	1	3	3.19 × 10 ⁴	0.0573	0.00119	-1.242	В	1

SILICON

Si I.

Ground State

.1s22s22p43s23p23P0

Ionization Potential

 $8.151 \text{ eV} = 65747.5 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2207.98	9	4947.61	25	7970.31	31
2210.89	2 2	5006.06	24	8035.62	31
2211.74	2	5597.94	17	8074.57	31
	2		17		
2216.67	2	5622.22		8093.24	32
2218.06	2	5645.61	61	8680,08	27
2218.92	2	5665.55	16	9413.51	14
2438.77	4	5684.48	17	10288.9	11
2443.36	4	5690.43	16	10371.3	11
2452.12	4	5701.11	16	10585.1	11
2506.90	3	5708.40	16	10603.4	10
2514.32	3	5754.22	16	10661.0	10
2516.11	3	5772.15	20	10689.7	28
2519.20	3	5780.38	15	10694.3	28
2524.11	3	5793.07	15	10727.4	28
2528.51	3	5797.86	15	10749.4	10
2881.58	6	5806.28	15	10784.6	28
2970.36	5	5859.20	15	10786.9	10
2987.65	5	5872.71	15	10827.1	10
3006.74	ii	5948.55	19	19843.9	26
3020.00	i	6331.95	18	10869.5	13
3905.52	8	6518.73	35	10882.8	28
4102.94	7	6553.9	35	10976.3	28
4721.57	23	6555.46	35	10979.3	10
4738.83	23	6560.56	35	11984.2	9
4747.99	23	6624.2	35	11991.6	9
4755 00	30	6631.05	35	12031.5	9
4755.28	22	6721.85	33	12031.5	9
4772.79 4782.99	22	6976.52	33	12103.5	9
	23				9
4792.21	22	7003.57	34	12395.8	
4792.32	22	7005.88	34	15361.2	29
4805.44	21	7016.74	34	15557.8	29
4817.59	22	7083.95	34	15884.4	29
4818.06	21	7097.47	34	15888.4	12
4821.17	21	7680.27	30	15960.0	29
4823.31	21	7918.39	31	16060.0	29
4866.88	21	7932.35	31	16094.8	29
4869.07	21	7944.00	31		

The results of the intermediate coupling calculations by Garstang and Dawe [1] for two intercombination lines in the $3s^23p^2-3s3p^3$ array should be quite uncertain, since these authors have normalized their values by means of a transition integral averaged from the Coulomb approximation and Varsavsky's [6] screening approximation, which do not contain the important configuration interaction effects. The lifetime measurements of Savage and Lawrence [2, 3] with the phase shift technique provide an accurate absolute scale for several other transitions. The

intermediate coupling calculations of Lawrence [3] and the results of the anomalous dispersion experiment of Slavenas [4] have been normalized to this scale. The two normalized sets of data agree within a few percent. Finally, numerical values are available for two lines from the wallstabilized are experiment of Hey [5]; but the uncertainties are hardly smaller than 50 percent because of the occurrence of demixing effects in this type of arc, which were not taken into account.

Since the above-listed sources provide data for only nine multiplets, the Coulomb approximation has been extensively applied to this spectrum in order to have many prominent lines represented. On the basis of the comparison material available for analogous transitions of neighboring atoms and on the basis of the general success of the Coulomb approximation, accuracy assignments of 50 percent are normally indicated for the selected lines. But, in as much as these comparisons are quite insufficient, the present assignments can only be regarded as provisional, especially since deviations from LS-coupling may be expected for the individual lines, too.

References

- Garstang, R. H., and Dawe, J. A., The Observatory 82, 210-211 (1962).
 Savage, B. D. and Lawrence, G. M., Astrophys. J. 146, 940-943 (1966).
 Lawrence, G. M., Astrophys. J. 148, 261-268 (1967).
 Slavenas, I. Yu. Yu., Optics and Spectroscopy (U.S.S.R.) 16, 214-216 (1964).
 Hey, P., Z. Physik 157, 79-88 (1959).
- [3] Lawrence, G. M., Astrophys. J. 148, 261-268 (1967).
 [4] Slavenas, I. Yu. Yu., Optics and Spectroscopy (U.S.S.R.) 16, 251 (1959).
 [5] Hey, P., Z. Physik 157, 79-88 (1959).
 [6] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, #53, 75 (1961).

Si I. **Allowed Transitions**

			·										
No.	Transition Array	Multiplet	λ(Å)	$E_i(rm^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	μı	A ₆₀ (10° sec. 1)	f _{ik}	S(at.u.)	log g/	Accu- racy	Source
1	$\frac{3s^23p^2-}{3s3p^3}$	³ P = ⁵ S° (0.01)	2020 00	002	22234	_	_	2.2 × 10.5	45 × 10 6	0.0 × 10.	1 1 4 5	E	
			3020.00 3006.74	223 77	33326 33326		5 5	3.3×10^{-5} 1.1×10^{-5}	4.5×10^{-6} 2.5×10^{-6}	$\begin{array}{c} 2.2 \times 10 \\ 7.4 \times 10 \end{array}$		Ë	1
2		³ P = ³ D° (UV 3)	2214.7	150	45303	9	15	0.55	0.068	4.46	-0.213	C:	2
			2216.67 2210.89	223 77	45322 45294	5 3	5	0.55 0.416	0.057 0.051	2.08 1.11	-0.55 -0.82	C:	ls Is
			2207.98	0	45276	l	3	0.311	0.068	0.496 0.372	-1.167	() ()	ls Is
			2218.06 2211.74	223 77	45294 45276	5 3	5 3	0.138 0.232	0.0102 0.0170	0.372	- 1.292 - 1.292	C	ls Is
			2218.92	223	45276	5	3	0.015	6.8 × 10 ⁺	0.025	-2.47	E	Is
3	3p ² - 3p (² P°)4s	3P = 3P° (UV 1)	2518.3	150	39860	9	9	1.64	0.155	11.6	0.145	(; +	3, 4n
			2516.11	223	39955	5	5 3	1.21 0.422	0.115 0.0402	4.76 1.00	- 0.240 0.92	(:+	3, 4n 3, 4n
			2519.20 2528.51	77 223	39760 39760	5	3	0.422	0.0394	1.64	-0.71	(C+	3, 4n
			2524.11	77	39683	3	1	1.66	0.053	1.32	-0.80	(:+	3.4n
			2506.90 2514.32	77 0	39955 39760	3 1	5 3	0.417 0.55	0.065 0.157	1.62 1.30	-0.71 -0.80	(:+	3, 4n 3, 4n
4		ap _ (p°											
		(UV 2)	2452,12	223	40992	5	3	0.0060	3.2 × 10 +	0.013	-2.80	D	1 3
			2443.36 2438.77	77 0	40992 40992	5 3 1	3 3	0.0069 0.0074	6.2 × 10 + 0.0020	0.015	$\begin{bmatrix} -2.73 \\ -2.70 \end{bmatrix}$	D - D -	3 3 3
5		D-3P°											
		(1)	20=0.04	4000		_	_						
			2970.36 2987.65	6299 6299	39955 39760	5 5	5 3	2.3 × 10 ⁴ 0.022	3.1×10 ⁻¹ 0.0018	0.0015 0.088	$\begin{bmatrix} -3.81 \\ -2.05 \end{bmatrix}$	D D	3 3
6		1D-1P° (UV 43)	2881.58	6299	40992	5	3	1.75	0.131	6.2	-0.184	c:	3,4n
7		1S = 3P°											
		(2)	4102.94	15394	39760	1	3	0.0016	0.0012	0.017	-2.91	D	3, 5

Sil. Allowed Transitions-Continued

\ 0.	Transition Array	Multiplet	λ(Å)	$E_{\delta}(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	#k	A ₆ (10" sec. ')	fu	S(at.u.)	log gf	Accu- racy	Source
8		'S - 'P° (3)	3905,52	15394	40992	ι	3	0.145	0.100	1,28	- 1.000	C	3
9	3p4s — 3p(2P°)4p	³P° –³D (4)	12047	39860	48161	9	15	0.17	0.61	220	0.74	D	ca
	oper mp		12031.5 11984.2 11991.6 12270.7 12103.5 12395.8	39955 39760 39683 39955 39760 39955	48264 48102 48020 48102 48020 48020	5 3 1 5 3 5	7 5 3 5 3 3	0.17 0.13 0.094 0.040 0.068 0.0043	0.52 0.46 0.61 0.091 0.15 0.0060	100 54 24 18 18 1.2	0.41 0.14 -0.21 -0.34 -0.35 -1.52	D D D D E	ls ls ls ls
10		зр»_зр (5)	10790	39860	49128	9	9	0.22	0.39	130	0.55	D	ca
			10827.1 10749.4 10979.3 10786.9 10603.4 10661.0	39955 39760 39955 39760 39760 39683	49189 49061 49061 49028 49189 49061	5 3 5 3 1	5 3 1 5 3	0.17 0.056 0.089 0.22 0.057 0.076	0.29 0.097 0.097 0.13 0.16 0.39	52 10 18 14 17 14	0.16 -0.54 -0.31 -0.41 -0.32 -0.41	D - D - D - D - D -	ls ls ls ls ls
11		³ P° = ³ S (6)	10482	39860	49400	9	3	0.24	0.13	40	0.07	D	ca
			10585.1 10371.3 10288.9	39955 39760 39683	49400 49400 49400	5 3 1	3 3	0.13 0.081 0.027	0.13 0.13 0.13	23 13 4.4	-0.19 -0.41 -0.89	D D D	ls Is Is
12		(11.12)	15888.4	40992	47284	3	3	0.081	0.31	48	-0.03	D	ca
13		(13)	10869.5	40992	50189	3	5	0.23	0.67	72	0.30	D	ca
14		1P°-1S (14)	9413.51	49992	51612	3	1	0.27	0.12	11	-0.44	D	ca
15	$3p4s - 3p(^{2}P^{c})5p$	3p°=3[)	5800.9	39860	57094	9	15	0.017	0.015	2.5	-0.87	D	ca
	400		5797.86 5793.07 5780.38 5859.20 5806.28 5872.71	39955 39760 39683 39955 39760 39955	57198 57017 56978 57017 56978 56978	5 3 1 5 3 5	7 5 3 5 3 3	0.018 0.013 0.0098 0.0042 0.0072 1.7 × 10	0.013 0.011 0.015 0.0022 0.0037 1.4×10 ⁻⁴	1.2 9.62 6.28 0.21 0.21 0.014	-1.19 -1.48 -1.82 -1.96 -1.95 -3.15	D D E E E	ls ls ls is ls
16		3P° = 3P (10)	5698.7	39860	57403	9	9	0.038	0.018	3.1	-0.79	D	ca
			5708.40 5690.43 5754.22 5701.11 5645.61 5665.55	39955 39760 39955 39760 39760 39683	57468 57329 57329 57296 57468 57329	5 3 5 3 3 1	5 3 3 1 5 3	0.028 0.0095 0.015 0.037 0.0097 0.013	0.014 0.0046 0.0045 0.0060 0.0077 0.018	1.3 0.26 0.43 0.34 0.43 0.34	-1.15 -1.86 -1.65 -1.74 -1.64 -1.74	D D- D- D- D-	ls ls ls ls ls
17		³ P° – ³ S (11)	5653.9	39860	57542	9	3	0.049	0.0078	1.3	-1.15	D	ca
			5684.48 5622.22 5597.94	39955 39760 39683	57542 57542 57542	5 3 1	3 3 3	0.026 0.016 0.0054	0.0077 0.0077 0.0076	0.72 0.43 0.14	$ \begin{array}{r r} -1.41 \\ -1.64 \\ -2.12 \end{array} $	D D D	ls ls ls
18		1P°-1P (14.01)	6331.95	40992	56780	3	3	1.0×10-4	6.1 × 10 ⁻³	0.0038	-3.74	E	ca
19		1P°-1D (16)	5948.55	40992	57798	3	5	0.022	0.019	1.1	-1.24	D	5
20		1P°-1S (17)	5772.15	40992	58312	3	ı	0.081	0.014	0.77	-1.38	D	ca

Si 1. Allowed Transitions-Continued

Na.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ	μĸ	A _{ki} (10° sec - ¹)	fik	S(at.u.)	log gf	Accuracy	Source
21	3p4s - 3p(2P°)6p	³ P°- ³ D (11.04)	4822.1	39860	60592	9	15	0.011	0.0062	0.89	-1.25	D	ca
	ор (1) ор	(11.01)	4818.06	39955	60705	5	7	0.011	0.0053	0.42	-1.58	D	ls
			4821.17	39760	60496	3	5	0.0080	0.0046	0.22	-1.86	D	ls
- 1			4805.44	39683	60487	1	3	0.0060	0.0063	0.099	-2.20	D	Is
			4866.88	39955	60496	5	5	0.0026	9.2 × 10 ⁻⁴		-2.34	E	ls.
			4823.31 4869.07	39760 39955	60487 60487	3 5	3	0.0045 2.9 × 10 ⁻⁴	0.0016 6.1×10^{-5}	0.074 0.0049	-2.32 -3.52	E	ls Is
22		³ P°− ³ P	4783.8	39860	60758	9	9	0.623	0.0078	1.1	-1.15	D	ca
- 1		(11.05)	.=00.00	00000	40014	l _							
			4792.32	39955	60816	5	5	0.017	0.0058	0.46	-1.54	G	ls.
			4772.79 4817.59	39760 39955	60707 60707	3 5	3	0.0057 0.0091	0.0020 0.0019	0.092	-2.22	D-	ls.
ļ			4792.21	39760	60622	3	1	0.0091	0.0019	0.15 0.12	-2.02 -2.12	D-	ls Is
			4747.99	39760	60816	3	5	0.0057	0.0023	0.12	-2.02	D-	ls
			4755.28	39683	60707	l	3	0.0075	0.0077	0.12	-2.11	D-	İs
23		3P°-3S	4761.3	39860	60857	9	3	0.030	0.0034	0.48	- 1.51	D	ca
		(11.06)	4782,99	39955	60857	5	3	0.017	0.0034	0.27	-1.77	D	ls
- 1			4738.83	39760	60857	3	3	0.010	0.0034	0.16	-1.99	Ď	ls
1			4721.57	39683	60857	i	3	0.0034	0.0034	0.053	-2.47	Ď	ls
24		'P°-'D (17.08)	5006.06	40992	60962	3	5	0.028	0.018	0.88	- 1.27	D	ca
25		1P°=3S (17.09)	4947.61	40992	61198	3	1	0.042	0.0051	0.25	-1.82	D	ca
26	3p4p - 3p(² P°)4d	'P-'D° (31)	10843.9	47284	56503	3	5	0.16	0.48	51	0.16	D	ca
27		(32.02)	8680.08	47284	58802	3	3	1.9×10 ¹	2.1×10 ¹	0.018	-3.20	E	ca
28		³D —³F° (53)	10720	48161	57489	15	21	0.13	0.32	170	0.68	D	ca
		(00)	10727.4	48264	57584	7	9	0.12	0.26	64	0.26	D	ls
			10694.3	48102	57451	5	7	0.12	0.28	49	0.15	D	ls
-			70689.7	48020	57372	3	5 7	0.12	0.33	35	0.00	D	ls
			10882.8	48264	57451	7	7	0.015	0.026	6.5	-0.74	E	ls
			10784.6	48102	57372	5 7	5	0.022	0.038	6.7	-0.72	E	រ៉ែ
1			10976.3	48264	57372	1 '	5	5.5 × 10 ⁻⁴	7.1×10^{-1}	0.18	-2.30	E	ls
29	$3p4p - 3p(^{2}P^{\circ})5s$	³ D = ³ P° (42.21)	15960	48161	54425			0.083	0,19	150	0.45	D	ca
			15960.0	48264	54528	7	5	0.070	0.19	70	0.12	1)	ls
			16094.8	48102	54314	5	3	0.060	0.14	37	-0.15	D	ls
			16060.0	48020	54245	3		0.083	0.11	17	-0.48	D	ls
			15557.8	48102	54528	5 3	5	0.013	0.047	12	-0.63	D	ls
			15884.4 15361.2	48020 48020	54314 54528	3	3 5	0.020 9.3 × 10 · 1	0.076 0.0055	12 0.83	- 0.64 1.78	DE	ls Is
			10001.2	10020	01020		"	7.5 \ 10	0.0000	0.00	1.10	I L	1.5
30	3p4p - 3p(2P°)5d	'P-'D° (36)	7680.27	47284	60301	3	5	0.062	0.092	7.0	-0.56	D	ca
31		³D−³F° (57)	7941.6	48161	60753		21	0.063	0.083	33	0.10	D	ca
			7944.00	48264	60849	7	9	0.049	0.059	11	-0.38	D	ls
			7932.35	48102	60705	5		0.054	0.071	9.3	-0.45	D	ls
	1		7918.39	48020	60645		5	0.054	0.085	6.6	-0.59	D	ls
			8035.62	48264	60705	1	7	0.0067	0.0065	1.2	-1.34	E	ls
			7970.31 8074.57	48102 48264	60645 60645	5 7	5 5	0.010 2.7×10^{-4}	0.0096 1.9 × 10 ⁻¹	1.3 0.035	-1.32 -2.88	E	ls ls
			0014.01	40204	00040	'	"	2.1 \ 10	1.7 ^ 10 .	0,000	2.00	L.	18
32	3p4p 3p(2P°)6s	$(P - iP^{\circ})$ (34)	8093.24	47284	59637	3	3	0.015	0.015	1.2	-1.35	D	ca

Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k({ m cm}^{-1})$	Ľί	#x	$A_{ki}(10^6{ m sec}^{-1})$	fik	S(at.n.)	log gf	Accu- racy	Source
33	3p4p — 3p (² l ³⁰)6d	¹ P- ¹ D° (38)	6721.85	47284	62157	3	5	0.034	0.038	2.5	-0.94	D	ca
34		³ D = ³ F°	7004.3	48161	62438	15	21	0.027	0.028	9.7	-0.38	D	ca
		(33)	7005.88 7003.57 6976.52 7083.95 7016.74 7097.47	48264 48102 48020 48264 48102 48264	62534 62377 62350 62377 62350 62350	7 5 3 7 5 7	9 7 5 7 5 5	0.027 0.024 0.023 0.0029 0.0042 1.1 × 10	$\begin{array}{c} 0.026 \\ 0.025 \\ 0.028 \\ 0.0022 \\ 0.0031 \\ 6.1 \times 10^{-5} \end{array}$	4.2 2.9 1.9 0.36 0.36 0.010	-0.74 -0.90 -1.08 -1.81 -1.81 -3.37	D D D D E	ls ls ls ls ls
35	3p4p — 3p(2P°)7d	³ D = ³ F° (60.06)	6552.1 6555.46	48161 48264	63419 63515	15	21 9	0.0069	0.0062	2.0 0.86	-1.03	D- D-	ca
			6560.56 6518.73 6631.05 [6553.9]	48102 48020 48264 48102 48264	63341 63356 63341 63356 63356	5 3 7 5 7	7 5 7 5 5	0.0060 0.0059 7.3 × 10 ⁻⁴ 0.0011 2.9 × 10 ⁻⁵	0.0057 0.0055 0.0062 4.8 × 10 ⁻⁴ 6.9 × 10 ⁻⁴ 1.4 × 10 ⁻⁵	0.66 0.59 0.40 0.074 0.074 0.0021	-1.40 -1.56 -1.73 -2.47 -2.46 -4.01	D- D- E E E	ls ls ls ls ls

Siı Forbidden Transitions

The sources adopted for this ion are Naqvi [1], and Malville and Berger [2]. Malville and Berger have utilized "spin-orbit" and "spin-spin and spin-other-orbit" integrals by Garstang (Monthly Notices Roy. Astron. Soc. 111, 115 (1951)). Naqvi's and Malville and Berger's magnetic dipole transitions have generally been averaged since their methods are very similar. But for the ³P-¹S transition, where configuration interaction is important, Maiville and Berger's value, which is obtained empirically, has been preferred over that of Naqvi which is based purely on theory (see also General Introduction). For the electric quadrupole moment s_q we have always employed Malville and Berger's results.

References

Naqvi, A. M., Thesis Harvard (1951).
 Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131-1136 (1965).

Forbidden Transitions

No.	Transition Array	Multiplet	A(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi,	μĸ	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^2 + 3p^2$	зр_зр										
•	1.77	1	[12.964×10 ⁵]	0.000	77.115	1	3	m	8.25 × 10 ⁻⁸	2.00	A	1
	!		[44,799 × 10 ⁴]		223.157	1	5	e	3.56×10^{-10}	19.1	C-	2
			$[68.455 \times 10^4]$	77.115	223.157	3	5	m	4.20×10^{-3}	2.50	A	l ī
			[68.455×10 ¹]	77.115	223.157	3	5	e	9.7×10^{-11}	43.3	<u>C</u> –	1, 2
2		³ P- ¹ D (0.01F)										
			15871.6	0.00	6298.85	1	5	e	6.2×10^{-7}	0.0019	D-	2
	Ì		16068.3	77.115	6298.85	3	5	m	9.7 × 10 ⁻⁴	7.5×10^{-4}	C	1, 2
	ļ		16068.3	77.115	6298.85	3	5	ę.	4.0×10^{-6}	0.013	D–	1, 2
			16454.5	223.157	6298.85	5	5	m	0.00271	0.00224	C	1, 2
	1		16454.5	223.157	6298.85	5	5	e	2.5×10^{-5}	0.091	D-	1, 2

75

Si 1. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Į,	μĸ	Type of Transi- tion	$t_{ki}(\sec^{-i})$	S(at.u)	Accu- racy	Source
3		³ P= ¹ S (1F)	6526.78	77.115	15394.4	3	1	m	0.0355	3.66 × 10 ⁻⁴	С-	2
			6589,61		15394.4	5	1	e	0.0011	0.0084	D-	2
4		¹ D- ¹ S (2F)	10991.4	6298.85	15394.4	5	1	e	0.80	76	υ <u></u>	2

SiII

Ground State

Ionization Potential

 $1s^22s\ ^22p^63s\ ^23p\ ^2\mathsf{P}_{1/2}^\circ$

 $16.35 \text{ eV} = 131838.4 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	∥No.
989.867	8	2072.7	13	4128.07	15
992.675	8	2072.70	13	4130.89	15
992.69	8	2328.51	1 1	4130.9	15
1020.70	9	2334.40	1	4621.5	26
1023.69	9	2334.61	1	4896.8	31
1190.42	4	2344.20	1	4902.65	31
1193.28	4	2350.17	1 1	5041.03	19
1194.50	4	2500.93	17	5055.98	19
1197.39	4	2501.97	17	5056.31	19
1246.74	5	2502.0	17	5113.47	14
1248.43	5	2608.90	10	5466,6	25
1251.16	5	2612.99	10	5568.36	30
1260.42	6	2620.89	10	5575.97	30
1264.73	6	2722.25	23	5957.56	20
1265.02	6	2726.70	23	5978.93	20
1304.37	3	2904.28	16	6347.10	18
1309.27	3 7	2905.69	16	6371.36	18
1526.72	7	2905.7	16	6679.65	27
1533.45	7	3203.87	21	6818.45	28
1649.52	11	3210.0	21	6829.8	28
1654.30	11	3210.03	21	6829.82	28
1654.31	11	3333.14	22	7113.45	29
1808.00	2	3339.82	22	7125.84	29
1816.92	2	3853.66	12	7848.80	24
1817.45	2	3856.02	12	7849.7	24
2072.02	13	3862.60	12	7849.72	24

Aside from the Coulomb approximation, four theoretical sources have been selected which all employ the same basic principles, but with different degrees of refinement. Weiss' [2] calculations must be considered the most comprehensive ones since he has used the "superposition-of-configurations" approach with a large number of interacting configurations and Hartree-Fock wavefunctions as a starting point. Values have been calculated in both the dipole length and dipole velocity approximations: the length values are chosen in all cases as being probably the more reliable [2]. Garstang and Shamey [1], as well as Froese-Fischer [6], have carried out their calculations by including limited configuration interaction and using Hartree-Fock functions as a starting point. Garstang and Shamey [1] have also taken into account intermediate coupling. Froese's [5] results for the 3d-5f and 3d-6f transitions are based on self-consistent field calculations; however, her values are modified to account for configuration interaction with the $3s3p^2$ D term by multiplying them by the square of the mixing coefficient as given in Froese and Underhill [7]. Weiss' values have always been chosen where available in preference to the other calculations.

Two experimental papers by Savage and Lawrence [3] and Hey [4] have also been utilized. Savage and Lawrence [3] have carried out lifetime determinations of several states by means of the phase shift technique. Of their numbers we have used only the value for the 4s state, which is within a few percent of the theoretical result obtained by Weiss. Their measured lifetime of the 4f level is within 20 percent of the sum of the adopted theoretical transition probabilities for $333p^2-3s^24f$ and $3s^23d-3s^24f$. The other lifetimes measured are either extremely short, so that experimental errors become fairly large, or are not cascade-free (3d-level) and hence have not been used. Hey [4] has determined transition probabilities from intensity measurements in a wall-stabilized arc. His absolute values may be uncertain by as much as 50 percent, primarily because of the possible demixing effects. In those cases where theory and his experiment overlap, the results have been averaged.

References

- [1] Garstang, R. H., and Shamey, L. J., to be published in Proc. Symposium on Magnetic and Other Peculiar and Metallic-Line Stars.
- [2] Weiss, A. W., to be published (1969).
- [3] Savage, B. D., and Lawrence, G. M., Astrophys. J. 146, 940-943 (1966).
- [4] Hey, P., Z. Physik 157, 79-88 (1959).
- [5] Froese, C., private communication (1965).
- [6] Froese-Fischer, C., Astrophys. J. 151, 759-764 (1968).
- [7] Froese, C., and Underhill, A. B., Astrophys., J. 146, 301-313 (1966).

Si II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	μı	$A_{ki}(10^6~{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p - 3s3p^2$	² P° = ¹ P (UV 0.01)											
			2334.61	287	43108 42933	4	6		5.3×10^{-6}	1.6×10-4		E	1
-			2328.51 2344.20	0 287	42933	2	4		$\begin{vmatrix} 3.1 \times 10^{-10} \\ 3.3 \times 10^{-6} \end{vmatrix}$	4.8×10-9 1.0×10-4		E] 1
			2334.40	0	42824	2	2		9.0×10^{-6}	1.4×10-4		E C	1 1
			2350.17	287	42824	4	2		2.8 × 10 ⁻⁶	8.7×10^{-5}		E	î
2	1	² P°- ² D (UV 1)	1814.0	191	55319	6	10	0.078	0.0064	0.23	-1.42	E	2
		((1 1)	1816.92	287	55325	4	6	0.079	0.0059	0.14	1.63	E	Is
İ			1808.00	U	55310	2	4	0.066	0.0064	0.077	-1.89	Ē	Is
			1817.45	287	55310	4	4	0.013	6.3 × 10 ·	0.015	-2.60	E	Is
3		² P°- ² S (UV 3)	1307,6	191	76666	b	2	11	0.090	2.4	-0.27	D	2
		(())	1309.27	287	76666	4	2	7.0	0.090	1.6	-0.44	D	ls
			1304.37	0	76666	2	2		0.091	0.78	-0.74	D	ls

Si II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_t(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	g,	μĸ	$A_{ki}(10^6\mathrm{sec}^{-1})$	fik .	S(at.u.)	log gf	Aceu- racy	Source
4		2p°_2p (UV 5)	1195.5	191	83837	6	6	43	0.91	22	0.74	D	2
			1194.50 1193.28 1197.39 1190.42	287 6 287 0	84005 83802 83802 84005	4 2 4 2	4 2 2 4	35 29 14 7.2	0.76 0.61 0.15 0.31	12 4.9 2.4 2.4	0.48 0.09 -0.22 -0.22	D D D	ls ls ls
5	$3s3p^2-3p^3$	4P-4S° (UV 8)	1249.5	43002	123034	12	4	38	0.29	14	0.54	D	2
		(0 7 3)	1251.16 1248.43 1246.74	43108 42933 42824	123034 123034 123034	6 4 2	4 4 4	19 13 6.3	0.29 0.29 0.29	7.2 4.8 2.4	$0.24 \\ 0.07 \\ -0.23$	D D D	ls ls ls
6	$3s^23p - 3s^2({}^{1}S)3d$	2120-2D (UV 4)	1263.3	191	79349	6	10	30	1.2	30	0.85	Đ	2
		(0 4)	1264.73 1260.42 1265.02	287 0 287	79355 79339 79339	4 2 4	6 4 4	30 25 5.0	1.1 1.2 0.12	18 9.9 2.0	0.63 0.38 -0.32	D D E	ls ls
7	3s23p -3sf(1S)4s	2p°_2S (UV 2)	1531.2	191	65501	6	2	11.1	0.130	3.94	-0.108	С	2, 3
		(C V 2)	1533.45 1526.72	287 0	65501 65501	4 2	2 2		0.130 0.130	2.63 1.31	-0.284 -0.59	C	ls ls
8	$3s^23p - 3s^2({}^{1}S)4d$	2p°_2D (UV 6)	991.74	191	101024	6	10	8.0	0.20	3.9	0.08	D	2
		(0,0)	992.675 989.867 [992.69]	287 0 287	101025 101023 101023	4 2 4	6 4 4	6.7	0.18 0.20 0.020	2.3 1.3 0.26	-0.15 -0.40 -1.10	D D E	ls ls
9	$3s^23p - 3s^2(^1S)5s$	² P°- ² S (UV 5.01)	1022.7	191	97972	6	2	4.1	0.021	0.43	-0.90	D	6
		(UV 5,01)	1023.69 1020.70	287 0	97972 97972	4 2	2 2		0.021 0.021	0.29 0.14	-1.08 -1.38	D D	ls ls
10	3s3p²-3s²(¹S)4p	4 1-2 10	2620.89 2612.99 2608.90	43108 42933 42933	81252 81192 81252	6 4 4	2	2.9×10^{-5}		5.7×10 ⁻ 5.2×10 ⁻ 1.0×10 ⁻	-5.22	E E E	1 1 1
11	$3s3\mu^2 - 3s^2({}^{1}S)4f$	+P−2F°	1654.31 1649.52 1654.30	43108 42933 43108	103556 103556 103556	6 4 6	8 6 6	6.5×10^{-5}	$\begin{vmatrix} 2.5 \times 10^{-5} \\ 4.0 \times 10^{-6} \\ 1.2 \times 10^{-6} \end{vmatrix}$	8.2×10- 8.7×10- 3.9×10-	4.80	E E E	1 1 1
12	$3s3p^2-3s^2({}^{1}S)4p$		3858.0	55319	81232	10	6	0.28	0.038	4.8	-0.43	D+	2, 4
		(1)	3856.02 3862.60 3853.66	55325 55310 55310	81252 81192 81252	6 4 4	4 2 4	0.28	0.038 0.031 0.0062	2.9 1.6 0.32	-0.65 -0.90 -1.61	D+ D+ E	ls ls ls
13	$3s3p^2-3s^2(^1S)4f$	2D-2F°	2072.4	55319	103556	10	14	1.0	0.092	6.3	-0.04	D	2
		(UV 9)	2072.70 2072.02 [2072.7]	55325 55310 55325	103556 103556 103556	6 4 6	8 6 6	0.96	0.088 0.092 0.0044	3.6 2.5 0.18	-0.28 -0.43 -1.58	D D E	ls ls
14		²P−²F	5113.17	84005	103556	4	0	1.3×10-4	7.5×10 ⁻³	0.0050	- 3.52	E	1
15	$3s^23d - 3s^2(^1S)4f$	2D-2F°	4129.9	79349	103556	10	14	1.42	0.51	69	0.71	С	2, 4
		(3)	4130.89 4128.07 [4130.9]	79355 79339 79355	103556 103556 103556	6 4 6	8 6 6	1.32	0.483 0.51 0.024	39.4 27.6 2.0	0.462 0.310 -0.84	C C E	ls ls

Si II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	₽k	A _{ki} (10" sec-1)	fik	S(at.u.)	log gf	Accu- racy	Source
16	3s ² 3d-3s ² (¹ S)5f	² D- ² F° (UV 17)	2905,2	79349	113760	10	14	0.71	0.13	12	0.10	D	5, 7
		, , , ,	2905.69 2904.28 [2905.7]	79355 79339 79355	113760 113760 113760	6 4 6	8 6 6	0.71 0.67 0.048	0.12 0.13 0.0060	6.9 4.8 0.35	-0.14 -0.29 -1.44	D D E	ls ls ls
17	3s ² 3d-3s ² ('S)6f	² D- ² F° (UV 18)	2501.6	79349	119312	10	14	0.41	0.054	4.4	-0.27	D	5, 7
		(0 1 10)	2501.97 2500.93 [2502.0]	79355 79339 79355	119312 119312 119312	6 4 6	8 6 6	0.41 0.38 0.027	0.051 0.053 0.0026	2.5 1.8 0.13	-0.51 -0.67 -1.82	D D E	ls ls ls
18	3s ² 4s -3s ² (1S)4p	² S- ² P° (2)	6355.1	65501	81232	2	6	0.70	1.26	53	0.401	С	2, 4
		(2)	6347.10 6371.36	65501 65501	81252 81192	2 2	4 2	0.70 0.69	0.84 0.422	35.3 17.7	$0.225 \\ -0.074$	C	ls ls
19	$3s^24p - 3s^2({}^{\scriptscriptstyle \dagger}S)4d$	² P°- ² D (5)	5051.1	81232	101024	6	10	1.2	0.74	74	0.65	D+	2, 4
		(6)	5055.98 5041.03 5056.31	81252 81192 81252	101025 101023 101023	4 2 4	6 4 4	1.2 0.98 0.19	0.66 0.74 0.074	44 25 4.9	0.42 0.17 -0.53	D+ D+ E	ls ls ls
20	3s ² 4p-3s ² ('S)5s	² P°-2S (4)	5972.1	81232	97972	6	2	1.2	0.22	26	0.12	D	4, 6
		(4)	5978.93 5957.56	81252 81192	97972 97972	4 2	2 2	0.81 0.42	0.22 0.22	17 8.7	-0.06 -0.36	D D	ls Is
21	$3s^24p-3s^2(^1S)5d$	² P°- ² D	3208.0	81232	112395	6	10	0.46	0.12	7.5	-0.14	D	ca
		(1)	3210.03 3203.87 [3210.0]	81252 81192 81252	112395 112395 112395	4 2 4	6 4 4	0.46 0.39 0.077	0.11 0.12 0.012	4.5 2.5 0.50	-0.37 -0.62 -1.32	D D E	ls ls ls
22	$3s^24p-3s^2(^1S)6s$	² P°- ² S	3337.6	81232	111185	6	2	0.46	0.026	1.7	-0.81	D	ca
		(0)	3339.82 3333.14	81252 81192	111185 111185	4 2	2 2	0.30 0.15	0.025 0.025	1.1 0.55	-1.00 -1.30	D D	ls ls
23	$3s^24p - 3s^2(^1S)7s$	² P°- ² S (UV 19)	2725.3	81232	117915	6	2	0.24	0.0089	0.48	-1.27	D	ca
		(6 . 12)	2726.70 2722.25	§1252 81192	117915 117915	4 2	2 2	0.16 0.080	0.0089 0.0089	0.32 0.16	-1.45 -1.75	D	ls ls
24	$3s^24d - 3s^2(^1S)5f$	² D- ² F° (7.02)	7849.6	101024	113760	10	14	0.42	0.54	140	0.73	D	ca
		(1.02)	7849.72 7848.80 [7849.7]	101025 101023 101025	113760 113760 113760	6 4 6	8 6 6	0.42 0.39 0.028	0.51 0.54 0.026	80 56 4.0	0.49 0.33 -0.81	D D E	ls ls ls
25	3s ² 4d-3s ² (¹S)6f	$^{2}D-^{2}F^{\circ}$ (7.03)	5466.6	101024	119312	10	14	0.26	0.16	29	0.20	D	са
26	3s ² 4d-3s ² (1S)7f	² D- ² F° (7.05)	4621.5	101024	122656	10	14	0.16	0.072	11	-0.14	D	ca
27	3s ² 4f-3s ² (1S)6d	² F°- ² D (7.12)	6679.65	103556	118523	14	10	0.014	0.0068	2.1	-1.02	D	ca
28	$3s^25p - 3s^2(^1S)6d$	² P°- ² D (7.20)	6826.4	103878	118523	6	10	0.13	0.15	20	-0.05	D	ca
		()	6829.82 6818.45 [6829.8]	103886 103861 103886	118523 118523 118523	4 2 4	6 4 4	0.11	0.13 0.15 0.014	12 6.7 1.3	-0.27 -0.52 -1.25	D D E	ls ls

Sill. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g,	μ.	$A_{ki}(10^{8}~{ m sec}^{-1})$	Lik	S(at.n.)	log g/	Accu- racy	Source
29	$3s^25p - 3s^2({}^{1}S)7s$	² P°=2S (7.19)	7122.1	103878	117915	6	2	0.15	0.038	5.3	-0.64	D	ca
	1		7125.84	103886	117915	4	2	0.098	0.037	3.5	-0.83	D	l ls
			7113.45	103861	1+7915	2	2	0.051	0.038	1.8	-1.12	D	ls
30	$3s^25p - 3s^2(^1S)8s$	² [P°-2S (7.21)	5573,5	103878	121815	6	2	0.088	0.014	1.5	-1.08	D-	ce
	1	111217	5575.97	103886	121815	4	2	0.057	0.013	0.97	-1.28	D-	1.
			5568.36	103861	121815	2	2	0.029	0.013	0.49	-1.59	D -	l:
31	$3s^25p - 3s^2(^1S)9s$	² P°= ² S (7.23)	4900.8	103878	124277	6	2	0.053	0.0064	0.62	-1.42	D-	ca
		1	4902.65	103886	124277	4	2	0.035	0.0064	0.41	-1.59	1 D-	1.
		ì	[4896.8]	103861	124277	2	2	0.018	0.0065	0.21	1.89	D-	1:

Si II

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Si II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E_{k} (${f m}^{-1}$)	g _i	μĸ	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	$S({ m at.u.})$	Accu- racy	Sonrce
l	$3p + \alpha S \beta p$	2[30 <u></u> 2[30	[34.795×10 [‡]]	0.00	287.32	2	-1.	m	2.13×10 ⁻¹	1.33	A	ı

Ionization Potential

 $33.46 \text{ eV} = 269940.6 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [A]	No.	Wavelength [A]	No.	Wavelength [A]	No.
566.613	11	1417.24	4	4665.87	30
671.718	23	1435.78		4683.02	30
672.293	23		10		
		1588.95	9	4683.80	30
673.477	23	1778.72	5	4716.65	43
690,689	25	1783.08	5	4730.52	30
823.408	24	1783.15	5 5	5451.46	29
883.398	15	1786.37	5	5451.96	29
993.519	19	1786.44	5	5473.05	29
994.787	19	1786.52	5	5490.11	29
997.389	19	1838.47	38	5539.93	29
1108.37	12	1839.59	38	5579.94	29
1109.94	12	1842.06	38	5596.9	57
1109.97	12	1842.55	21	5597.90	57
1113.17	12	1856.06	39	5599 25	57
1113.20	12	2449.48	45	5600.00	57
1113.23	12	2528.47	46	5600.95	57
1140.55	17	2541.82	3	5601.46	57
1141.58	17	2546.09	8		
1142.28	17	2546.09 2559.21		5693.8	48
			26	5695.52	48
1144.31	17	3043.8	44	5696.50	48
1144.96	17	3043.93	44	5703.12	48
1145.67	17	3045.08	44	5704.60	48
1155.00	16	3045.1	44	5716.29	48
1155.96	16	3046.28	44	5739.73	28
1156.78	16	3185.13	37	5810.19	58
1158.10	16	3230.50	36	6169.84	56
1160.26	16	3233.95	36	6314.46	51
1161.58	16	3241.62	36	6521.49	55
1206.51	1	3486.91	42	6522.6	55
1206.53	13	3569.67	53	6522.63	55
1207.52	14	3590.47	35	6524.36	55
1294.54		3681.40	54	6524.8	55
1296.73	5	3682.15			
1298.89	2 2 2 2		54	6831.56	52
1298.96	5	3682.25	54	6834.08	52
1290.90	-	3791.41	34	6834.38	52
1301.15	2 2	3796.11	34	7461.89	40
1303.32	2	3796.2	34	7462.35	40
1312.59	20	3806.54	34	7462.62	40
1328.81	18	3806.7	34	7465.6	40
1341.47	7	4338.50	22	7465.67	40
1341.56	7	4341.40	33	7466.32	40
1342.35	7	4377.63	47	7612.36	49
1342.39	7	4468,45	31	8262.57	50
1342.43	7	4494.05	31	8265.64	50
1343.39	7	4552.62	27	8267.75	50
1362.37	6	4554.00	31	8269,32	50
1363.46	6	4567.82	27	8271.38	50
1363.50	6	4574.76	27	8271.94	
1365.25	š	4619.66	30		50
1365.29	6	4638.28	30 30	8341.93 9799.91	32
1365.34	6				

Weiss' [1] values have been calculated by means of the method of superposition of coufigurations, employing Hartree-Fock wavefunctions as a starting point. The calculations have been carried out both in the dipole length and dipole velocity approximations. Zare [3] has performed similar calculations, also in the length and velocity forms, using however, the simpler, less accurate Hartree-Fock-Slater wavefunctions, in which exchange effects are only approximately taken into account. The dipole length values of [1] or [3] are selected, being probably more reliable than the velocity values, as suggested by the authors. Crossley and Dalgarno's values [2] have been obtained from a charge-expansion technique which includes configuration mixing in a limited way. There is usually good agreement for those transitions where the various calculations overlap. In these cases we have chosen Weiss' results over Zare's values and these in turn over [2]. The accuracy estimate has been reduced where there is significant disagreement between the length and velocity forms or where there appears to be cancellation in the transition integral.

References

Weiss, A. W., J. Chem. Phys. 47, 3573 (1967).
 Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).
 Zare, R. N., J. Chem. Phys. 47, 3561 (1967).

Si III. Allowed Transitions

No.	Transition Array	Multipler	λ(Å)	Eicm)	$E_k(\mathrm{cm}^{-1})$	Ľ,	μk	$A_{kl}(10^6~{ m sec}^{-1})$	fik	S(at.u.)	log g[Accu- racy	Source
1		PS = 'P° (UV 2)	1206.51	0	82884	1	3	25.9	1.70	6, 7:1	0.230	В	1
2	$3s3p-3p^2$	2P^_#P (UV 4)	1298.9	52984	129971	9	9	22.3	0.564	21.7	0.706	В	l
		10 17	1298.96	53115	130101	5	5	16.7	0.423	9.04	0.325	В	ls.
			1298.89	52853	129842	3	3	5.58	0.141	1.81	-0.374	В	ls
i			1303.32	53115	129842	5	3	9.18	0.140	3.01	-0.155	В	ls
Ì			1301.15	52853	129708	3	ı	22.2	0.188	2.41	-0.249	В	ls
ļ			1294.54	52853	130101	3	5	5.62	0.235	3.01	-0.152	В	ls
			1296.73	52725	129842	l	3	7.46	0.565	2.41	-0.248	В	ls
3		(UV 6.09)	2541.82	82884	122215	3	5	0.32	0.052	1.3	-0.81	Ð	1
4		¹ P°= ¹ S (UV 9)	1417.24	82884	153444	3	1	26.0	0.261	3,66	-0.106	C	1
5	3s(2S)3d- 3p(2P°)3d'	³ D= ³ F° (UV 35)	172.0	142945	199061	15	21	4.3	0.28	25	0.62	Ð	2
i			1778.72	142944	199164	7	9	4.4	0.27	11	0.28	1)	Is
1			1783.15	142946	199026	5	7	3.8	0.25	7.4	0.10	D	ls
			1786.52	142948	198923	-3	5	3.6	0.28	5.0	0.08	Ð	ls
			1783.08	142944	199026	7	7	0.47	0.023	0.93	-0.79	D-	l_{S}
			1786.44	142946	198923	5	5	0.66	0.032	0.93	-0.80	\bar{D} –	15
			1786.37	142944	198923	7	5	0.018	6.3×10 ⁻⁷	0.026	-2.36	E	ls
6		аD=зР° (UV 38)	1364.3	142945	216241	15	9	12	0.19	13	0.45	D +	3
ļ		·	1365.25	142944	216190	7	5	9.7	0.19	6.1	0.12	D+	ls
			1363.46	142946	216289	5	3	8.5	0.14	3.2	-0.15	1)+	ls
			1362.37	142948	216350	3	l	11	0.10	1.4	-0.52	D -	ls
			1365.29	142946	216190	5	5	1.8	0.049	1.1	-0.61	D -	ls
			1363.50	142948	216289	3	3	2.9	0.082	1.1	0.61	<u>D</u> –	Is
			1365.34	142948	216190	3	5	0.11	0.0053	0.072	-1.80	E	l.s

Si III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(m cm^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	Kr	A _{ki} (10° sec 1)	fik	S(at.u.)	log gf	Accu- racy	Source
7		³ D= ³ D° (UV 39)	1342.2	142945	217452	15	15	10	0.27	18	0.61	D	2
			1341.47 1342.39 1343.39 1342.35 1343.39	142944 142946 142948 142944 142946	217489 217440 217386 217440 217386	7 5 3 7 5	7 5 3 5 3	9.0 7.0 7.5 1.6 2.5	0.24 0.19 0.20 0.030 0.041	7.5 4.2 2.7 0.94 0.90	0.23 -0.02 -0.22 -0.68 -0.69	D D D- D-	ls ls ls ls
			1341.50 1342.43	142946 142948	217489 217440	5 3	5	1.1 1.5	0.043 0.068	0.94 0.90	-0.67 -0.69	D -	ls Is
8		'D='D° (UV 56)	2546.09	165765	205029	5	5	0.61	0.060	2.5	-0.52	D	2
9		'D = 'P° (UV 59)	1588.95	165765	228700	5	3	11	0.25	6.5	0.10	D+	3
10		')='F° (UV 61)	1435.78	165765	235414	5	7	21	0.89	21	0.65	D	2
11	$3s^2 - 3s(^2S)4p$	(UV 3)	566.613	0	176487	1	3	3.2	0.046	0.085	-1.34	E	3
12	3s3p = 3s(2S)3d	³ P°= ³ D (UV 5)	1111.6	52984	142945	9	15	28.8	0.890	29.3	0.904	В	1
			1113.23 1109.97 1108.37 1113.20 1109.94 1113.17	53115 52853 52725 53115 52853 53115	142944 142946 142948 142946 142948 142948	5 3 1 5 3 5	7 5 3 5 3	28.7 21.7 16.2 7.17 12.1 0.80	0.748 0.668 0.893 0.133 0.223 0.0089	13.7 7.32 3.26 2.44 2.44 0.16	0.573 0.302 - 0.049 - 0.177 - 0.175 - 1.35	B B B D	ls ls ls ls ls
13		'P°='P) (UV 11)	1206.53	82884	165765	3	5	48.9	1.78	21.2	0.728	В	1
14	$\begin{vmatrix} 3p^2 - \\ 3p(^2P^\circ)3d' \end{vmatrix}$	'D='D° (UV 22)	1207.52	122215	205029	5	5	19	0.41	8.2	0.31	D	2
15		'D='F° (UV 27)	883.398	122215	235414	5	7	63	1.0	15	0.70	D	2
16		ap_ap* (UV 31)	1159,2	129971	216241	9	9	22	0.44	15	0.60	D	2
		(CV 3D)	1161.58 1156.78 1160.26 1155.96 1158.10 1155.00	130101 129842 130101 129842 129842 129708	216190 216289 216289 216350 216190 216289	5 3 5 3 1	5 3 1 5 3	16 5.2 9.1 22 5.5 7.5	0.32 0.11 0.11 0.15 0.18 0.45	6.2 1.2 2.1 1.7 2.1 1.7	0.20 -0.48 -0.26 -0.35 -0.27 -0.35	D D - D - D - D -	ls ls ls ls ls
17		3P_3D° (UV 32)	1143.1	129971	217452	9	15	39	1.3	43	1.07	D	2
		1 V 32)	1144.31 1141.58 1140.55 1144.96 1142.28 1145.67	130101 129842 129708 130101 129842 130101	217489 217440 217386 217440 217386 217386	5 3 1 5 3 5	7 5 3 5 3	39 30 22 9,7 16 1.1	1.1 0.98 1.3 0.19 0.32 0.013	20 11 4.8 3.6 3.6 0.24	0.74 0.47 0.11 -0.02 -0.02 -1.19	D D D- D- E	ls ls ls ls ls
18		1S=1P° (UV 48)	1328.81	153444	165765	1	3	27	2.1	9.3	0.33	D	3
19	$3s3p - 3s(^2S)4s$	ap°_aS (UV 6)	996.09	52984	153377	ġ.	3	23.6	0.117	3.45	6.022	В	1
	720. 17, 10		997.389 994.787 993.519	53115 52853 52725	153377 153377 153377	5 3 1	3 3 3	13.1 7.89 2.64	0.117 0.117 0.117	1.92 1.15 0.383	-0.233 -0.455 -0.932	B B B	ls ls ls

SiIII. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g,	KK	A _{ki} (10" sec 1)	fa	S(at.u.)	log g/	Aceu- racy	Source
20		'P°='S (UV 10)	1312.59	82884	159070	3	1	5.6	0.048	0.62	-0 84	D	1
21	$3p^2 - 3s(^2S)4p$	¹ D= ¹ P° (UV 20)	1842.55	122215	176487	5	3	2.61	0.080	2.42	-0.398	C	3
22		(3)	4338.50	153444	176487	1	3	0.147	0.125	1.78	-0.90	(:	3
23	3s3p - 3s(2S)4d	³ P°- ³ D (UV 6.01)	672.88	52984	201599	9	15	0.67	0.0075	0.15	-1.17	E	3
	US(D) RG	(0 0 0.01)	673.477 672.293	53115 52853	201599 201598	5 3	7 5	0.66 0.49	0.0063 0.0056	0.070 0.037	-1.50 -1.77	E	ls ls
			671.718 673.477	52725 53115	201598 201598	5	5	0.38 0.16	0.0077 0.0011	$0.017 \\ 0.012$	-2.11 -2.26	E	ls ls
			672.293	52853	201598	3	3	0.27	0.0018	0.012	-2.27	E	ls
			673.477	53115	201598	5	3	0.018	7.5×10^{-5}	8.3×10^{-1}	-3.43	E	ls
24		'P°-'D (UV 12)	823,408	82884	204331	3	5	6.6	0.112	10.0	-0.474	€:	ς,
25	$3s3p - 3s(^2S)5d$	'P°_'D (UV 14)	690.689	82884	227665	3	5	0.58	0.0069	0.047	-1.68	E	3
26	3s3d - 3s(² S)4f	'D-'F° (UV 55)	2559.21	165965	204828	5	7	7.7	1.1	45	0.73	D-	ca
27	3s4s 3s(2S)4p	aS_ap° (2)	4560.1	153377	175300	3	9	1.26	1.18	53	0.55	C+	3
		,	4552.62	153377	175336	3	5	1.26	0.65	29.4	0.290	(:+	
			4567.82 4574.76	153377 153377	175263 175230	3	3	1.25 1.25	$0.392 \\ 0.131$	17.7 5.9	0.070 -0.406	C+	
			4014.10	100077	170200	9			0.151	5.9	- 0.400		13
28		'S-'P° (4)	5739.73	159070	176487	1	3	0.47	0.70	13	-0.16	D+	-3
29	3p4s' – 3p(2P°)4p'	³ P° = ³ D (12.08)	5472.8	226676	244943	9	15	0.79	0.59	96	0.73	D	va
			5473.05 5451.46	226820 226527	245087	5	5	0.79	0.50 0.45	45 24	$0.40 \\ 0.13$	D	ls
			5451.46	226400	244866 244737	i	3	0.60 0.46	0.43	11	0.21	Ď	ls
	:		5539,93	226820	244866	5	5	0.19	0.088	8.0	-0.36	D-	ls
			5490.11 5579.94	226527 226820	244737 244737	3 5	3	0.33 0.021	0.15 0.0058	8.0 0.53	-0.35 -1.54	D- E	ls ls
30		3P°_3P	4674.2	226676	248064	9	9	1.3	0.42	58	0.58	D	ca
		(13)	4683.02	226820	248168	5	5	0.95	0.31	24	0.19	D	ls
	,		4665.87	226527	247954	3	3	0.32	0.10	4.8	-0.52	D-	
			4730.52	226820	247954	5	3	0.52	0.10	8.1	-0.30	D -	1
			4683.80 4619.66	226527	247872	3	5	1.3	0.14	6.4	0.38	D-	ls
			4638.28	226527 226400	248168 247954	3	3	6.33 0.43	$\begin{array}{c} 0.18 \\ 0.42 \end{array}$	8.1 6.4	-0.27 -0.38	D-	ls ls
31		ape_as	4524.2	226676	248773	9	3	1.4	0.14	19	0.10	D	ca
		(15)	4554.00	226820	248773	5	3	0.76	0.14	11	-0.15	D	ls
			4494.05	226527	248773	3	3	0.46	0.14	6.2	-0.38	D	ls
			4468.45	226400	248773	1	3	0.16	0.14	2.1	-0.85	D	ls
32		'P°-'D (44)	8341.93	235951	247935	3	5	0.26	0.46	38	0.14	D	ca
33		¹ P°= ¹ S (46)	4341.40	235951	258979	3	1	1.8	0.17	7.2	-0.30	D	ca
		(90)	l		1	1	1	1.0	10.11	1.2	0.00	17	(4

Si III. Allowed Transitions-Continued

Ňo.	Transition Array	Multiplet	A(Å)	$E_i({ m cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľ,	μA	4 _{ki} (10* sec-1)	fik	S(at.u.)	iog gf	Accu- racy	Sourc
34	3s4p = 3s(2S)4d	*(P°=*I)	3801.4	175300	201599	9	15	3.4	1.2	140	1.03	D	c
			3806.54	175336	201599	5	7	3.4	1.0	65	0.71	D	1
	İ		3796.11	175263	201598	3	5	2.6	0.93	35	0.45	D	1
- 44			3791.41	175230	201598	1	3	2.0	1.3	16	0.11	D	[;
			[3806.7]	175336	201598	5	5	0.88	0.19	12	-0.02	D-	
- 17			[3796.2]	175263	201598	3	3	1.5	0.32	12	-0.02	D -	
Ŋ			[3806.7[175336	201598	5	3	0.095	0.012	0.78	-1.22	E	
35		(7)	3590.47	176487	204331	3	5	3.9	1.2	44	0 57	D	•
36	3s4p + 3s(2S)5s	3P°=3S	3237.8	175300	206176	9	3	4.0	0.21	20	0.28	D	c
H			3241.62	175336	206176	5	3	2.3	0.21	11	0.03	D	
			3233.95	175263	206176	3	3	1.3	0.21	6.7	-0.20	D	} ;
			3230,50	175230	206176	1	3	0.45	0.21	2.2	-0.68	D	
37		1P°_1S (8)	3185.13	176487	207874	3	1	3.8	0.19	6.1	-0.24	D	c
38	3s4p = 3s(2S)6s	3P°_3S (UV 65)	1840,8	175300	229623	9	3	1.7	0.028	1.5	-0.60	D	c
			1842.06	175336	229623	5	3	0.93	0.028	0.86	- 0.85	D	1
		ļ	1839.59	175263	229623	3	3	0.55	0.028	0.51	-1.08	D	ŀ
			1838.47	175230	229623	1	3	0.18	0.028	0.17	-1.55	D	
39		(UV 70)	1856.06	176487	230364	5	3	1.6	0.027	0.50	-1.08	D	
1 0	3s4d+ 3s(2S)5p	³ D = ³ P° (8.03)	7464.5	201599	214992	15	9	0.65	0.33	120	0.69	D	
	1		7466.32	201599	214989	7	5	0.54	0-32	56	0.36	D	
			7462.62	201598	214995	5	3	0.49	0.24	30	0.08	D	
			7461.89	201598	214995	3	1	0.63	0.18	13	-0.27	D	
			7465.67	201598	214989	5	5	0.097	0.681	10	-0.39	D	
			7462.35	201598	214995	3	3	0.16	0.14	10	-0.38	D	
			[7465.6]	201598	214989	3	5	0.0065	0.0091	0,67	-1.56	E	
11		'D = 'P° (8.08)	9799.91	204331	214995	5	3	0.39	0.34	55	0.23	D	
12	3s4d- 3s(2S)5f	³ D - ³ F° (8.06)	3486.91	201599	230270	15	21	1.8	0.45	78	0.83	D	'
43		'D - 'F° (8.09)	4716.65	204331	225526	5	7	2.8	1.3	100	0.81	D	
14	3s4d- 3s(2S)6p	³ D = ³ P° (8.07)	3044.6	201599	234434	15	9	0.22	0.019	2.8	-0.55	D	
			3043.93	201599	234442	7	5	0.19	0.019	1.3	-0.89	D	
			3045.08	201598	234428	5	3	0.17	0.014	0.70	-1.15	D	
			3046.28	201598	234415	3	1	0.22	0.010	0.31	-1.52	D	
			[3043.8]	201598	234442	5	5	0.033	0.0046	0.23	-1.64	D-	
			[3045.1]	201598	234428	3	3 5	0.055	0.0076	0.23	-1.64 -2.80	D-	
			[3043.8]	201598	234442	,	9	0.0023	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.016	-2.80	E	
5	3s4d- 3s(2S)6f	³ D = ³ F° (UV 78)	2449.48	201599	242411	15	21	1.2	0.15	18	0.35	D-	
6		¹ D = ¹ F° (UV 81)	2528.47	204331	243869	5	7	0.81	0.11	4.5	-0.27	D-	
17	3s4f- 3s(2S)5d	'F°='D (8.13)	4377.63	204828	227665	7	5	0.085	0.017	1.8	-0.91	D	

SiIII. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i({ m cm}^{-1})$	E_{k} and	μ,	r's	$A_{ki}(10^6\mathrm{sec}^{-1})$	fik	S(at.u.)	log g/	Accu- racy	Source
48		³ F°− ³ D (8.17)	5707.5	209570	227086	21	15	0.20	0.071	28	0.17	D	ca
		(5716.29	239600	227089	9	7	0.19	0.074	12	-0.18	D	1:
			5704.60	209559	227084	7	5	0.18	0.063	8.3	-0.36	D	1.
			5696.50	209531	227081	5	3	0.20	0.060	5.6	-0.52	D	l l
			5703.12 5695.52	209559	227089	7 5	7 5	0.016	0.0076 0.011	1.0	-1.27	D-	1 4
			[5693.8]	209531 209531	227084 227089	5	7	0.022 4.5 × 10 ⁴	3.[× 10 ⁴	1.0 0.029	-1.26 -2.81	E	
49	3s5p 3s(2S)5d	'P°-'D (10.01)	7612.36	214532	227665	3	5	[.1	1.5	120	0.66	D	re
50	55(17,51	³[•°−3D	8266.3	214992	227086	9	15	0.93	1.6	390	1.16	D	ca
		(10.06)	8262.57	214989	227089	5	7	0.91	1.3	180	0.81	D	l t
			8269.32	214995	227084	3	5	0.70	1.2	97	0.56	Ď	i.
			8271.94	214995	227081	1	3	0.51	1.6	43	0.20	D	1:
			8265.64	214989	227084	5	5	0.23	0.24	32	0.08	D	l.
		i	8271.38 8267.75	214995 214989	227081 227081	3 5	3	0.38 0.026	0.39 0.016	32 2.2	0.07 - 1.10	D E	
51	3s5p 3s(2S)6s	1P°_1S (10.02)	6314.46	214532	230364	3	1		0.25	15	-0.13	D	ce
52	03(5)03	3P°-3S	6832.9	214992	229623	9	3	1.3	0.31	63	0.45	D	ce
		(10.07)	6831.56	214989	229623	5	3	0.74	0.31	35	0.19	D	L
			6834.08	214995	229623	3	3		0.31	21	-0.03	Ď	i
			6834.38	214995	229623	ĭ	3	0.15	0.31	7.0	-0.51	D	i
53	3s5p – 3s(2S)7s	1P°_1S (10.04)	3569.67	214532	242538	3	ı	0.58	0.037	1.3	-0.96	D	co
54		³ P°_ ³ S (10.09)	3681.8	214992	242145	9	3	0.61	0.041	4.5	-0.43	D	ce
		(10.07)	3681.40	214989	242145	5	3	0.33	0.041	2.5	-0.69	D	1.
			3682.15	214995	272145	3	3	0.20	0.041	1.5	-0.91	D	1
	251	2D 2F9	3682.25	214995	242145	1	3		0.041	0.50	-1.39	D	1
55	3s5d- 3s(2S)6f	$^{3}D - ^{3}F^{\circ}$ (17)	6523.5	227086	242411	15	21	0.38	0.34	110	0.71	D	ce
			6524.36	227089	242412	7			0.32	48	0.35	D	1
			6522.63	227084	242411	5	7	0.00	0.31	33	0.19	D	1
			6521.49 [6524.8]	227081 227089	242411	7	5 7	0.32 0.043	0.34	22 4.1	$-0.01 \\ -0.72$	D-	
			[6522.6]	227089	242411	5		0.060	0.027	4.1	-0.72	D-	
			[6524.8]	227089	242411	7	5	0.0018	8.0 × 10 ⁻⁴	0.12	-2.25	E	
56		¹ D - ¹ F° (22)	6169.84	227665	243869	5	7	0.12	0.099	10	-0.30	D	ce
57	3s5d- 3s(2S)7p	3D3P°	5600.1	227086	244938	15	9	0.10	0.029	7.9	-0.36	D	C
	05, O/ip	1.0,	5599.25	227089	244943	7	5	0.086	0.029	3.7	-0.69	D	1
			5600.95	227084	244933	5		0.077	0.022	2.0	-0.96	Ď	i
			5601.46	227081	244929	3	1	0.10	0.016	0.88	-1.32	D-	1
			5597.90	227084	244943	5	5	0.015	0.0072	0.66	-1.44	D-	1
	İ		5600.00 [5596.9]	227081 227081	244933 244943	3	3 5	0.025 0.0010	0.012 8.0×10^{-4}	0.66 0.044	$\begin{vmatrix} -1.44 \\ -2.62 \end{vmatrix}$	D-	
58.		'D-'P° (23)	5810.19	227665	244871	5			0.024	2.3	-0.92	D	(

Si III

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the "P°-"P° transitions are essentially independent of the choice of the interaction parameters. For the "P°-"P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

[t] Naqvi, A. M., Thesis Harvard (195t).

Reference

Si III. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	3s3p -3s(2S)3p	3P°-3P°	[77.74 × 10 ⁴] [38.201 × 10 ⁴]			1 3	3 5	m m	3.83×10^{-5} 2.42×10^{-4}	2.00 2.50	A A	1
2		3P°_1P°	[3314.7] [3328.9] [3358.2]	52724.7 52853.3 53115.0	82884.4	1 3 5	3 3 3	m m m	0.0182 2.22 0.0219	7.4×10^{-5} 0.0091 9.2×10^{-5}	CCC	1 1

Si IV

Ground State

Ionization Potential

 $1s^22s^22p^63s^2S_{1/2}$

 $45.14 \text{ eV} = 364093.1 \text{ cm}^{-1}$

Allowed Transitions List of tabulated lines:

Wavelength [A]	No.	Wavelength [A]	No.	Wavelength [Å]	No.
437.849	5	1533.22	21	4038,06	37
438.734	5	1672.61	23	4088.85	13
457.818	2	1722.53	8	4116.10	13
458. 155	2 2	1727.38	8	4212.41	31
515.118	4	1796,16	19	4314.10	26
516.348	4 7	1796.17	19	4328.18	26
559.533	7	1797.50	19	4403.73	41
560.980	7	2120.18	15	4411.65	35
645.759	12	2127.47	15	4416.51	35
749.941	11	2287.04	20	4602.58	38
815.049	3	2366.76	27	4611.27	38
818.129	3	2370.99	27	4950.11	33
860.551	9	2482.82	25	5304.97	39
860.560	9	2485.38	25	5309.49	39
861.118	9	2675.2	22	6667.56	28
1066.63	10	2723.8i	32	6701.21	28
1122.49	6	2971.52	34	6998.36	40
1128.33	6	3149.56	17	7047.94	29
1128.34	6	3165.71	17	7068.41	29
1210.65	14	3241.57	30	7630.50	36
1211.76	14	3241.58	30	7654.56	36
1228.35	16	3244.19	30	8240.61	42
1230,80	16	3762.44	18	8957.25	24
1393.76	1	3773.15	18	9018.16	24
1402.77	1	4031.39	37		27

Self-consistent field calculations including polarization and exchange effects by Douglas and Garstang [1] are available for several multiplets of this ion. The values are expected to be accurate to within 25 percent, except for the transitions 3s-4p and 3p-4d where large cancellation effects occur in the transition integral. Similar but less refined calculations by Chapman, Clarke, and Aller [2] are adopted for those transitions which Douglas and Garstang have not covered.

For Si IV, a member of the sodium isoelectronic sequence, it is possible to utilize extensively the dependence of oscillator strengths on nuclear charge for the intercomparison of analogous transitions. Thus, the degree of fit of the individual f-values into the systematic trends has served as one of the decisive factors for the choice of accuracy assignments.

A SHOW IN A SHOULD SHOW IN THE SHOW IN THE SHOW IN THE SHOW IN THE SHOW IN THE SHOW IN THE SHOW IN THE SHOW IN

References

- [1] Douglas, A. S., and Garstang, R. H., Proc. Cambridge Phil. Soc. 58, 377-381 (1962).
- [2] Chapman, R. D., Clarke, W. H., and Aller, L. H., Astrophys. J. 144, 376-380 (1966).

Si IV. Allowed Transitions

Vo.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľί	μĸ	$A_{ki}(10^8~{ m sec}^{-1})$.	fik	S(at.u.)	log <i>gf</i>	Accu- racy	Source
1	3s — 3p	² S – ² P° (UV 1)	1396.7	0	71595	2	6	9.15	0.803	7.38	0.206	В	1
			1393.76 1402.77	0	71749 71288	2 2	4 2	9.20 9.03	0.536 0.266	4.92 2.46	$0.030 \\ -0.274$	B B	ls Is
2	3s-4p	² S- ² P° (UV 2)	457.93	0	218375	2	6	3.5	0.033	0.10	-1.18	D	1
		(0.7.2)	457.818 458.155	0	218429 218267	2 2	4 2	3.6 3.6	0.023 0.011	0.068 0.034	- 1.34 - 1.66	D D	ls ls
3	3p-4s	² P° – ² S (UV 4)	817.10	71595	193979	6	2	36.8	0.123	1.98	-0.132	C+	1
		(0 7 4)	818.129 815.049	71749 71288	193979 193979	4 2	2 2	24.4 12.3	$0.123 \\ 0.123$	1.32 0.66	$-0.308 \\ -0.61$	C+	ls Is
4	3p-5s	² P° – ² S (UV 6)	515,93	71595	265418	6	2	12	0.016	0.17	-1.01	D	r
			516.348 515.118	71749 71288	265418 265418	4 2	2	8.2 4.1	0.016 0.016	0.11 0.055	-1.18 -1.49	D D	ls ls
5	3p-6s	² P° – ² S (UV 8)	438.44	71595	299677	6	2	6.4	0.0061	0.053	-1.44	D	ca
			438.734 437.849	71749 71288	299677 299677	4 2	2 2	4.2 2.2	0,0061 6,0062	0.035 0.018	-1.61 -1.91	D D	ls ls
6	3v - 3d	² P° – ² D (UV 3)	1126.4	71595	160375	6	10	26.4	0.84	18.6	0.70	C+	1
			1128.34 1122.49 1128.33	71749 71288 71749	160374 160376 160376	4 2 4	6 4 4	26.3 22.2 4.37	0.75 0.84 0.083	11.2 6.2 1.24	$0.477 \\ 0.225 \\ -0.479$	C+ C+ C+	ls ls
7	3p-4d	² P° – ² D (UV 5)	560.50	71595	250008	6	10	1.0	0.0081	0.090	-1.31	D-	1
			560.980 559.533 560.980	71749 71288 71749	250008 250008 250008	4 2 4	6 4 4	1.0 0.87 0.17	0.0073 0.0081 8.1 × 10	0.054 0.030 0.0060	-1.53 -1.79 -2.49	D- D- D-	ls ls
8	3d-4p	² D - ² P° (UV 10)	1724.1	160375	218375	10	6	5.5	0.148	8.4	0.170	С	1
			1722.53 1727.38 1722.53	160374 160376 160376	218429 218267 218429	6 4 4	4 2 4	4.96 5.5 0.55	0.147 0.123 0.0247	5.0 2.80 0.56	-0.055 -0.308 -1.005	C C	ls ls ls
9	3d-5p	² D + ² P° (UV 12)	860.74	160375	276554	10	6	1.8	0.012	0.33	-0.93	D	ca
			860.551 861.118 860,560	160374 160376 160376	276579 276504 276579	6 4 4	4 2 4	1.6 1.8 0.18	0.012 0.0098 0.0020	0.20 0.11 0.022	-1.15 -1.41 -2.11	D D D	ls Is

Si IV. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ _i	μĸ	$A_{ki}(10^8~{ m sec}^{-1})$	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
10	3d-4f	2 1) = 2 F° (UV 11)	1066.63	160375	254128	10	14	39.1	0.93	32.8	0.97	C+	ca
11	3d-5f	² D – ² F° (UV 13)	749.941	160375	293719	10	14	14.5	0.171	4.23	0.233	C	ca
12	3d - 6f	² D − ² F° (UV 15)	645.759	160375	315230	10	ì4	7.0	0.061	1.3	-0.21	D	ca
13	4s-4p	2S − 2P°	4097.9	193979	218375	2	6	1.56	1.17	31.7	0.369	В	1
3		(1)	4088.85 4116.10	193979 193979	218429 218267	2 2	4 2	1.56 1.54	0.784 0.391	21.1 10.6	0.195 -0.107	B B	ls Is
14	4s-5p	² S - ² P° (UV 16)	1211.0	193979	276554	2	6	0.36	0.024	0.19	- 1.32	D	ca
		(((10)	1210.65 1211.76	193979 193979	276579 276504	2 2	4 2	0.36 0.37	0.016 0.0082	0.12 0.066	-1.51 -1.78	D D	ls Is
15	4p-5s	² P° = ² S (UV 18)	2125.0	218375	265118	6	2	9.0	0.203	8.5	0.086	C+	ca
		((\ 10)	2127.47 2120.18	218429 218267	265418 265418	4 2	2 2	6.0 3.00	0.204 0.202	5.7 2.82	-0.089 -0.394	C+	ls Is
16	4p-6s	² P° – ² S (UV 20)	1230,0	218375	299677	6	2	3.92	0.0296	0.72	−¢ "5	С	ca
		((7 2.0)	1230.80 1228.35	218429 218267	299677 299677	4 2	2 2	2.60 1.30	0.0295 0.0294	0.478 0.238	-0.93 -1.231	c	ls Is
17	4p-4d	² P° - ² D (2)	3160.3	218375	250008	6	10	4.75	1.19	74	0.85	C +	1
		(2)	3165.71 3149.56 3165.71	218429 218267 218429	250008 250008 250008	4 2 4	5 4 4	4.75 4.02 0.79	1.07 1.20 0.119	44.6 24.8 4.96	$0.63 \\ 0.380 \\ -0.322$	C+ C+	ls Is Is
18	4d = 5p	²D − ²P°	3766.0	250008	276554	10	6	2.37	0.303	37.5	0,481	С	2
		(3)	3762.44 3773.15 3762.44	250008 250008 250008	276579 276504 276579	6 4 4	4 2 4	2.14 2.36 0.240	0.303 0.252 0.051	22.5 12.5 2.53	0.260 0.003 - 0.69	C C C	ls Is Is
19	4d - 6p	² D - ² P° (UV 23)	1796,6	250008	305668	10	6	0.87	0.0254	1.50	-0.60	С	ca
		((7 23)	1796.16 1797.50 1796.17	250008 250008 250008	305682 305641 305682	6 4 4	4 2 4	0.78 0.87 0.087	0.0253 0.0210 0.00421	0.90 0.497 0.100	-0.82 -1.076 -1.77	C C	ls Is Is
20	4d – 5f	² D ² F° (UV 22)	2287.04	250008	293719	10	14	6.4	0.70	53	0.85	С	ca
21	4d - 6f	² D = ² F° (UV 24)	1533.22	250003	315230	10	14	3.57	0.176	8.9	0.246	С	ca
22	4f – 5d	² F° = ² D (UV 25)	2675.2	254128	291498	14	10	0.280	0.0215	2.65	-0.52	С	CG
23	4f - 6d	²F° → ²D (UV 27)	1672.61	254128	313915	14	10	0.12	0.0036	0.28	-1.30	D	ca
24	5s-5p	² S - ² P°	8977.4	265418	276554	2	6	0.420	1.52	90	0.483	С	ca
		(3.01)	8957.25 9018.16	265418 265418	276579 276504	2 2	4 2	0.421 0.413	1.01 0.50	60 29.9	0.307 0.003	C	ls Is
25	5s-6p	² S = ² P° (UV 29)	2483.7	265418	305668	2	6	0.066	0.018	0.30	- 1.44	D	ca
		10 7 271	2482.82 2485.38	265418 265418	305682 305641	2 2	4 2	0.066 0.066	0.012 0.0061	0.20 0.10	-1.62 -1.91	D D	ls Is

Si IV. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k({ m cm}^{-1})$	μi	μĸ	$A_{ki}(10^8~{ m sec}^{-1})$	f.,	Stat.u.)	log g/	Acen- racy	Source
26	5p-6s	² [P° – ² S (4)	4323.5	276554	299677	6	2	3.21	0.300	25.6	0.255	C	2
			4328.18 4314.10	276579 276504	299677 299677	4 2	2 2	2.14 1.08	0.300 0.300	17.1 8.5	$\begin{bmatrix} 0.077 \\ -0.222 \end{bmatrix}$	C	ls ls
27	5p-7s	² P°=2S (UV 31)	2370.0	276554	318743	6	2	1.47	0.0412	1.93	-0.61	С	ce
			2370.99 2366.67	276579 276504	318743 318743	2	2 2	0.98 0.490	0.0413 0.0411	1.29 0.64	0.78 1.085	C	
28	5p-5d	$\begin{array}{c c} {}^{2}P^{o} - {}^{2}D \\ (3.02) \end{array}$	6689.8 6701.21 6667.56 6701.21	276554 276579 276504 276579	291498 291498 291498 291498	6 4 2 4	10 6 4 4	1.36 1.36 1.14 0.226	1.52 1.37 1.52 0.152	201 121 67 13.4	0.96 0.74 0.484 -0.216	C C C	li li li
29	5d - 6p	² D - ² P° (4.01)	7055.2	291498	305668	10	6	1.00	0.448	104	0.65	С	ca
			7047.94 7068.41 7047.94	291498 291498 291498	305682 305641 305682	4	2 4	0.90 1.00 0.100	0.447 0.374 0.074	62 34.8 6.9	0.428 0.175 0.53	000	
30	5d-7p	² D - ² P° (5.01)	3242.4	291498	322330	10	6	0.412	0.0390	4.16	-0.409	С	ce
			3241.58 3244.19 3241.57	291498 291498 291498	322338 322313 322338	6 4 4	4 2 4	0.371 0.410 0.0413	0.0390 0.0324 0.0065	2.50 1.38 0.277	-0.63 0.89 -1.59	CCC	1 1
31	5 <i>d</i> – 6 <i>f</i>	² D − ² F° (5)	4212.41	291498	315230	10	14	1.72	0.64	89	0.81	C	:
32	5d-7f	² D - ² F° (UV 32)	2723.81	291498	328200	10	14	1.1	0.17	15	0.23	D	C
33	5f-6d	${}^{2}F^{\circ} - {}^{2}D$ (5.02)	4950.11	293719	313915	14	10	0.205	0.054	12.3	-0.123	C:	C
34	5f-7d	² F° - ² D (UV 33)	2971.52	293719	327362	14	10	0.10	0.0095	1.3	-0.88	D	C
35	6s — 7p	² S - ² P° (8)	4413.2	299677	322330	2	6		0.015	0.45	-1.52	D	C
			4411.65 4416.51	299677 299677	322338 322313	2 2	2	0.018 0.018	0.010 0.0052	0.30 0.15	-1.70 -1.98	D D	
36	6p-7s	2P2-2S	7646.1	305668	3,8743	6	2		0.391	59	0.370	C	C
			7654.56 7630.50	305682 305641	318743 318743	4 2			0.387 0.384	40.0 19.3	0.189 -0.115	C	1
37	6p - 8s	² P°-2S (11)	4035.7	305668	330440	6			0.053	4.24	-0.498	C	C
			4038.06 4031.39	305682 305641	330440 330440	4 2	2 2		0.053 0.053	2.83 1.41	$\begin{bmatrix} -0.67 \\ -0.97 \end{bmatrix}$	C	1
38	6p-7d	² P° – ² D (10)	4608.3	305668	327362	6			0.011	0.98	-1.18	D	C
			4611.27 4602.58 4611.27	305682 305682 305682	327362 327362 327362	4 2 4	4	0.018	0.0095 0.011 0.0011	0.58 0.34 0.064	-1.42 -1.65 -2.37	D D D	
39	6d - 8p	² D − ² P° (13)	5306,4	313915	332755	10			0.053	9.3	-0.276	c :	C
			5304.97 5309.49 5304.97	313915 313915 313915	332760 332744 332760	6 4 4	2	0.210	0.053 0.0443 0.0089	5.6 3.10 0.62		C	
40	6d – 7f	$^{2}D - {}^{2}F^{\circ}$ (12)	6998.36	313915	328200	10	14	0.55	0.56	130	0.75	C	C

Si IV. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	μk	$A_{kl}(10^8\mathrm{sec}^{-1})$	fik	S(at.a.)	log gf	Accu- racy	Sonrce
41	6d – 8f	² D − ² F° (14)	4403.73	313915	336617	10	14	0.41	0.17	24	0.23	D	ca
42	6f - 7d	²F° → ²D (15)	8240.61	315230	327362	14	10	0.126	0.092	34.8	0.110	С	ca

Si v

Ground State

 $1s^22s^22p^{6-1}S_0$

Ionization Potential

 $166.73 \text{ eV} = 1345100 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. D., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Si v. Allowed Transitions

No.	Transition Array	Multiplet	λ(Α)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	μı.	$A_{kl}(10^6{ m sec}^{-1})$	fac	S(at.n.)	log gf	Accu- racy	Source
ŀ	$2p^6 + 2p^5(^2\mathbf{P}^{\circ}_{3/2})3s$	1S_3P°	[118.97]	0	840560	1	3	33	0.021	0.0082	-1.68	E	ı
2	$2p^6 + 2p^5(^2\mathbf{P}^{\circ}_{1/2})3s$	·S-P°	[117.86]	0	848460	1	3	300	0.19	0.074	- 0.72	D	1
3	$2p^6 + 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	1S = 3P°	[98.209]	0	1018240	1	3	8.8	0.0038	0.0012	-2.42	F.	i
4	$2p^6 + 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	'S = 'P°	[97.143]	0	1029410	1	3	2000	0.84	0.27	-0.08	Ð	ı
5	$2p^6 + 2p^5 (^2{\rm P}_{1 2}^o) 3d$	'S = "D°	[96.439]	0	1036930	1	3	480	0.2t)	0.063	- 0.70	Đ	

Ground State

 $1s^2 2s^2 2p^{5/2} P_{3/2}^{o}$

Ionization Potential

 $205.11 \text{ eV} = 1654800 \text{ cm}^{-1}$

Allowed Transitions

The value for the $2s^22p^5$ 2 P°- $-2s2p^6$ 2 S multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving the n=3 shell electrons, which were not included in this calculation, may be significant.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Si VI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ^{−1})	<i>E_k</i> (cm ⁻¹)	Ķi	Kr	A _{ki} (10" se、-1)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^5-2s2p^6$	2 P° —2S	247.04 [246.00] [249.13]	1700 0 5100	406500 406500 406500	6 4 2	2 2 2	370 250 120	0.11 0.11 0.11	0.55 0.37 0.18	-0.18 -0.36 -0.66	D D D	l ls ls

Si vi

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately shown.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Si VI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^3-2p^3$	2po _2po	[19603]	0	5100	4	2	m	2.38	1.33	A	1

Ground State

1s22s2p43P2

Ionization Potential

246.41 eV = 1988000 cm⁻¹

Allowed Transitions

The values are calculated from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. From comparisons with other ions in the isoelectronic sequence, uncertainties should be within 50 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Si VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	Ķi	Kk	A _{ki} (10" sec ⁻¹)	fik	S(al.u.)	log gf	Accu- racy	Source
1	$2s^22p^4 - 2\omega 2p^5$	ap = ap∘	275.46	1962	364994	9	9	160	0.18	1.5	0.21	D	1
			[275.35] [275.67] [272.64] [274.18] [278.44] [276.85]	0 4030 0 4030 4030 5570	363170 366780 366780 368760 363170 366780	5 3 5 3 1	5 1 5 3	120 39 70 170 39 54	0.14 0.044 0.047 0.063 0.076 0.19	0.62 0.12 0.21 0.17 0.21 0.17	-0.15 -0.88 -0.63 -0.72 -0.64 -0.72	D D D D	ls ls ls ls ls
2		1D-1P°	[217.83]	47000	506080	5	3	270	0.12	0.42	-0.22	D	1
3		1S-1P°	[246.12]	99780	506080	1	3	41	0.11	0.090	-0.96	D	1

Si vII Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV, since the same considerations have been applied.

References

Naqvi, A. M., Thesis, Harvard (1951).
 Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131-1136 (1365).

Si VII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Цi	μk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P_3P										
	· ·		[24807]	0	4030	5	3	e	2.70×19-6	0.0452	C-	1, 2
			[24807]	0	4030	5	3	m	1.46	2.49	B	1, 2
			[17948]	0	5570	5	1	e	1.82×10^{-3}	0.0202	C-	2
			[64920]	4030	5570	3	l	m	0.196	2.00	Ь	1, 2
2		3P−1D	!									
_			[2127.0]	0	47000	5	5	е	0.0074	9.6 × 10 ⁻⁴	D-	1, 2
			[2127.0]		47000	5	5	m	12.7	0.0226	C	l "ī
			[2326.5]	4030	47000	3	5	e	6.8×10^{-4}	1.4×10^{-4}	D-	1, 2
	1		[2326.5]		47000	3	5	ın	3.24	0.0076	C D-	1
			[2413.0]	5570	47000	l	5	e	2.5×10^{-4}	6.1×10^{-5}	D-	2
3		3P-1S									1	
_			[1002.2]	0	99780	5	1	e	0.11	6.3×10^{-5}	D-	2
			[1044.4]		99780	3	l	m	148	0.0063	C	2 2
4		'D-'S										
-			[1894.7]	47000	99780	5	1	e	5.5	0.080	C-	2

Si VIII

Ground State

 $1s^22s^22p^3$ $4S_{3/2}^{\circ}$

Ionization Potential

 $303.07 \text{ eV} = 2445110 \text{ cm}^{-1}$

Allowed Transitions

Values for all the listed transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Judged from graphical comparisons with other ions in the isoelectronic sequence and from the general success of Cohen and Dalgarno's method for similar atomic systems, uncertainties within 50 percent are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 256-270 (1964).

Si VIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_{\kappa}(\mathrm{cm}^{-1})$	Ľί	μk	$A_{ki}(10^8~{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 - 2s2p^4$	'S° - 'P	317.68	0	314782	4	12	49	0.22	0.93	-0.06	D	1
			[319.83] [316.20] [314.31]	0 0 0	312670 316260 318160	4 4	6 4 2	49 50 52	0.11 0.074 0.039	0.47 0.31 0.16	$ \begin{array}{r} -0.36 \\ -0.53 \\ -0.81 \end{array} $	D D D	ls Is Is
2		²D° — ²D	277.00	[67308]	[428324]	10	10	110	0.13	1.2	0.11	D	1
			[277.10] [276.84] [277.05] [276.89]	[67420] [67140] [67420] [67140]	[428300] [428360] [428360] [428300]	6 4 6 4	4.4	110 100 11 7.6	0.12 0.12 0.0088 0.013	0.67 0.43 0.048 0.048	$ \begin{array}{r} -0.14 \\ -0.32 \\ -1.28 \\ -1.28 \end{array} $	D E	ls ls ls

Si VIII. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(m cm^{-1})$	μ	Kk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
3		2D°-2P	216.18	[67308]	[529877]	10	6	400	0.17	1.2	0.23	D	1
			[216.92] [214.75] [216.79]	[67420] [67140] [67140]	[528420] [532790] [528420]	6 4 4	4 2 4	360 410 40	0.17 0.14 0.028	0.72 0.40 0.080	0.01 -0.25 -0.95	D D E	la Is Is
4		2P°-2D	308.06	[103707]	[428324]	6	10	17	0.041	0.25	-0.61	D	1
			[308.26] [307.65] [308.20]	[103900] [103320] [103900]	[428300] [428360] [428360]	4 2 4	6 4 4	17 14 2.9	0.037 0.041 0.0042	0.15 0.083 0.017	-0.83 -1.09 -1.77	D D E	ls Is Is
5		2P°-2S	250.84	[103707]	[502360]	6	2	240	0.075	0.37	-0.35	D	ì
			[250.97] [250.60]	[103900] [103320]	[502360] [502360]	4 2	2 2	160 77	0.076 0.073	0.25 0.12	-0.52 -0.84	D D	ls Is
6		2 P° 2 P	234.65	[103707]	[529877]	6	6	120	0.097	0.45	-0.24	D	1
			[235.56] [232.85] [233.16] [235.24]	[103900] [103320] [103900] [103320]	[528420] [532790] [532790] [528420]	4 2 4 2	4 2 2 4	97 80 40 19	0.081 0.065 0.016 0.032	0.25 0.10 0.050 0.050	-0.49 -0.89 -1.19 -1.19	D D D- D-	Is Is Is

Si VIII Forbidden Transitions

All the values for this ion have been taken from Pasternack [1]. The electric quadrupole values have been corrected by applying Naqvi's value [2] for the electric quadrupole moment s_q .

References

Pasternack, S., Astrophys. J. **92**, 129 (1940).
 Naqvi, A. M., Thesis Harvard (1951).

Si VIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	μĸ	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^n - 2p^n$	4S° –2D°	[1483.2] [1483.2] [1489.4]	0 0 0	[67420] [67420] [67140]	4 4 4	6 6 4	m e m	0.019 0.0083 1.1	1.38 × 10 ⁻³ 2.1 × 10 ⁻⁴ 5.4 × 10 ⁻⁴	C –	1, 2
2		15°_2P°	[1489.4]	0	[67140] [103320]	4	4	e m	0.0053 29	9.3 × 10 ⁻³	D- C-	1.2
			[967.87] [962.46] [962.46]	0 0	[103320] [103900] [103900]	4 4	2 4 4	e m e	3.4×10 ⁻⁴ 69 1.4×10 ⁻⁴	3.5 × 10 ⁻⁷ 0.0091 2.8 × 10 ⁻⁷	D –	1, 2
3		² D° – ² D°	[35.70×10 ⁴] [35.70×10 ⁴]	[67140] [67140]	[67420] [67420]	4	6	m e	2.37×10 ⁻⁴ 7.7×10 ⁻¹⁴	2.40 0.0016	B D-	1, 2

Si VIII. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(cm^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	₽k.	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
4		² D° – ² P°	[2740.4] [2740.4] [2763.1] [2763.1] [2784.7] [2719.5] [2719.5]	[67420] [67420] [67140] [67140] [67420] [67140] [67140]	[103900] [103900] [103320] [103320] [103320] [103900] [103900]	6 6 4 4 6 4	4 4 2 2 2 2 4 4	m e m e m	11 0.38 12 0.31 0.20 20 0.17	0.0336 0.14 0.0188 0.060 0.040 0.060 0.059	C D C D C	1 2 1 2 2 1 2
5		*bo _*bo	[17.24 × 10 ⁴] [17.24 × 10 ⁴]	[103320] [103320]	[103900] [103900]	2 2	4	m e	0.00175 7.1 × 10 ⁻¹⁴	1.33 2.6×10 ⁻⁵	B D –	1, 2 1, 2

Si IX

Ground State

Ionization Potential

 $1s^22s^22p^2 = P_0$

 $350.96 \text{ eV} = 2831470 \text{ cm}^{-1}$

Allowed Transitions

Most data are obtained from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons of this material within the iso-electronic sequence depicting the dependence of f-values on nuclear charge have been made, and the available experimental data for the lower ions, mostly from life time measurements, establish fairly definitely that the uncertainties should not exceed 50 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Si IX. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(cm^{-1})$	Цi	Цk	A _{ki} (10 ^s sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2-2s2p^3$	aP = aDo	347.40	4452	292306	9	15	28	0.084	0.86	-0.12	D+	1
			[349.96] [345.10] [341.95] [349.77] [345.01] [349.67]	6460 2590 0 6460 2590 6460	292210 292360 292440 292360 292440 292440	5 3 1 5 3 5	7 5 3 5 3 3	27 21 16 6.8 12 0.76	0.069 0.062 0.085 0.013 0.021 8.3 × 10 ⁻⁴	0.40 0.21 0.096 0.072 0.072 0.0048	-0.46 -0.73 -1.07 -1.19 -1.20 -2.38	D+ D+ D- D- D- E	ls ls ls ls
2		3P _ 3P°	294.44 [296.19] [292.83] [296.19] [292.83] [292.83] [290.63]	4452 6460 2590 6460 2590 2590	344080 344080 344080 344080 344080 344080	9 5 3 5 3 1	5 3 1 5 3	70 51 18 29 71 18 24	0.091 0.068 0.023 0.023 0.030 0.038 0.092	0.79 0.83 0.066 0.11 0.088 0.11 0.088	-0.09 -0.47 -1.16 -0.94 -1.05 -0.94 -1.04	D D D D D	ls ls ls ls ls

Si ix. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	₽k	$A_{kl}(10^{\mu}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
3		ap-as°	225.97	4452	446980	9	3	390	0.10	0.67	-0.05	D+	1
			[227.00] [225.03] [223.72]	6460 2590 0	446980 446980 446980	5 3 1	3 3 3	210 130 45	0.099 0.099 0.10	0.37 0.22 0.074	-0.31 -0.53 -1.00	D+ D+ D+	ls ls ls
4		'D - 'D°	[258.10]	[52960]	[440410]	5	5	200	0.20	0.85	0.00	D	1
5		'D-'P°	[227.35]	[52960]	[492820]	5	3	250	0.12	0.44	-0.22	D	1
6		IS-IPº	[259.71]	[107780]	[492820]	1	3	66	0.20	0.17	-0.70	D -	1

Si IX

Forbidden Transitions

The adopted values represents, as in the case of Na VI. the work of Naqvi [1]. Malville and Berger [2], and Froese [3]. For the selection of values, the same considerations as for Na VI are applied, the one exception being that Froese's magnetic dipole values are also used. Since the observed energy levels are uncertain, it is felt that the ζ and η calculated from her theoretical energy levels will be as accurate as the experimental ones.

References

Nagyi, A. M., Thesis Harvard (1951).
 Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131-1136 (1965).
 Froese, C., Astrophys. J. 145, 932-935 (1966).

Si ix. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E _k (cm ⁻⁾)	gi	Kk	Type of Transi- tion	A _{ki} (sec ⁻⁾)	S(at.u.)	Accu- racy	Source
1	2p ² -2p ²	3 b – 3 b	[38600] [.5476] [25833] [25833]	0 0 2590 2590	2590 6460 6460 6460	1 3 3	3 5 5 5	m e m	0.311 6.1 × 10 ⁻⁴ 0.779 1.05 × 10 ⁻⁶	1.99 0.0162 2.49 0.0360	B C B C	1 3 1,3
2		3b=1D	[1888.2] [1985.3] [1985.3] [2149.9] [2149.9]	0 2590 2590 6460 6460	[52960] [52960] [52960] [52960] [52960]	3 3 5	5 5 5 5 5	e m e m	5.0×10 ⁻⁴ 8.0 0.0018 18.9 0.0083	3.6 × 10 ⁻³ 0.0117 1.6 × 10 ⁻⁴ 0.0348 0.0011	D C D C	3 1, 2, 3 3 1, 2, 3
3		3P=1S	[950.66] [986.97]	2590 6460	[107780] [107780]	3 5	1 1	m e .	210 0.17	0.0067 9.6 × 10 ⁻³	C D	2.3
4		יש-יS	[1824.2]	[52960]	[107780]	5	1	•	5.4	0.065	С	3

Ionization Potential

 $401.3 \text{ eV} = 3237400 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lires:

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No
50.524	10	280.03	6	360.63	7
50.691	10	280.32	6	361.13	7
50.703	10	287.25	4	391.85	9
253.81	3	289.28	4	392.43	9
256.58	3	292.31	4	398.50	9
258.39	3	347.43	1	399.11	9
261.27	3	348.71	5	540.95	8
272.00	2	349.00	5	553.71	8 8
277.27	2	356.07	1	554.45	8

Values for the majority of the transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Graphical comparisons with other data for the lower ions of this isoelectronic sequence indicate that the uncertainties should be within 50 percent.

For the $2p^2P^{\circ} - 3d^2D$ multiplet we have obtained data by exploiting the dependence of f-values on nuclear charge: In this case accurate data for several other ions of the boron sequence are available from extended self-consistent field calculations by Weiss [2] in which configuration mixing is fully included. Utilizing those values, which are also supported by some experimental results on lower ions, we have obtained for this ion the f-value of the above multiplet simply by graphical interpolation.

Reserences

Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Weiss, A. W., private communication (1967).

Si x. Allewed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ķi	KK	A _{ki} (10" sec=1)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s ² 2p - 2s2p ²	2P°-2D	353.14	4660	287830	6	10	23	0.073	0.51	- 0.36	D	1
			[356.07] [347.43] [356.07]	6990 0 6990	287830 287830 287830	4 2 4	6 4 4	23 21 3.8	0.066 0.074 0.0073	0.31 0.17 0.034	-0.58 -0.83 -1.53	D	ls Is Is
2		2P°-2S	275.49	4660	367650	6	2	97	0.037	0.20	- 0.65	D+	1
	•		[277.27] [272.00]	6990 0	367650 367650	4 2	2 2	62 34	0.036 0.037	0.13 0.067	-0.84 -1.13		1

Si x. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	Į,	Цk	$A_{ki}(10^8~{ m sec}^{-1})$	f _i .	S(at.u.)	log gf	Accu- racy	Source
3		2P°-2P	257.79	4660	392580	6	6	180	0.18	0.90	0.03	D+	1
			[258.39] [256.58] [261.27] [253.81]	6990 0 6990 0	394000 389740 389740 394000	4 2 4 2	4 2 2 4	150 120 57 31	0.15 0.12 0.029 0.060	9.50 9.20 0.10 0.10	-0.22 -0.62 -0.94 -0.92	D+ D+ D+ D+	ls Is
4	$2s2p^2 + 2p^3$	4P-4S*	290.44	[165888]	[510190]	12	4	170	0.071	0.81	-0.07	D+	1
			[292.31] [289.28] [287.25]	[168090] [164500] [162060]	[510190] [510190] [510190]	6 4 2	4 4 4	83 56 30	0.071 0.071 0.074	0.41 0.27 0.14	-0.37 -0.55 -0.83	D+ D+ D+	ls
5		² D − ² D°	348.89	287830	574456	10	10	48	0.087	10	-0.06	D+	1
		II Es	[349.00] [348.71] [348.71] [349.00]	287830 287830 287830 287830	574360 574600 574600 574360	6 4 6 4	6 4 4 6	44 43 4.8 3.2	0.081 0.078 0.0058 0.0087	0.56 0.36 0.040 0.040	-0.31 -0.51 -1.46 -1.46	D+ D+ E	ls Is Is
6		²D−2P°	280.13	287830	[644813]	10	6	78	0.055	0.51	-0.26	D	1
			[280.03] [280.32] [280.03]	287830 287830 287830	[644940] [644560] [644940]	4	4 2 4	72 78 7.8	0.056 0.046 0.0092	0.31 0.17 0.034	-0.47 -0.74 -1.43	D D E	ls ls ls
7		2S-2P°	360.80	367650	[644813]	2	6	15	0.088	0.21	- 0.75	D	1
			[360.63] [361.13]	367650 367650	[644940] [644560]		4 2	15 15	0.059 0.029	0.14 0.070	-0.93 -1.24	D D	ls Is
8		2P-2D°	549.83	392580	574456	6	10	12	0.092	1.0	-0.26	D	1
			[554.45] [540.95] [553.71]	394000 389740 394000	574360 574600 574600	4 2 4	6 4 4	12 11 2.0	0.082 0.093 0.0092	0.60 0.33 0.067	-0.48 0.73 -1.43	D D E	ls Is Is
9		2P - 2P°	396.46	392580	[644813]	6	6	50	0.12	0.92	-0.14	D	1
			[398.50] [392.43] [399.i1] [391.85]	394000 389740 394000 389740	[644940] [644560] [644560] [644940]	2 4	4 2 2 4	41 34 16 8.4	0.097 0.077 0.019 0.039	0.51 0.20 0.10 0.10	-0.41 -0.81 -1.12 -1.11	D D D	ls ls ls
10	2p=(18).1	2P°-2D	50.636	4660	1979542	6	10	9800	0.63	0.63	0.58	C	interp
			[50.691] [50.524] [50.703]	0	1979°.30 197°260 197°260	4 2 4	6 4 4	9800 8200 1600	0.57 0.63 0.063	0.38 0.21 0.042	0.36 0.10 -0.60	C C D	ls ls ls

Si x
Forbidden Transitions
List of tabulated lines:

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
431.15	5	501.10	4	3794.0	8
435 73	5 5	795.10	3	4525.7	8
439.21	5	810.83	3	14302	ī
442.65	5	835.14	3	16579	2
443.97	5	941.89	7	23468	9
451.16	5	981.26	7	27848	2
486.40	4	1252.8	, 6	40972	2
492.25	4				

For all the values on this ion Garstang [1] is the only available source. The transition probability of the magnetic dipole transition in the ground state 2p configuration should be quite accurate, since it does not depend on the interaction parameters. The rest of the magnetic dipole values should be good to within 25 percent since the energy levels are experimentally known.

The electric quadrupole integral s_q was determined by two independent methods: (a) extrapolation within the isoelectronic sequence and (b) by using the Coulomb approximation. The two results agreed in predicting an s_q of 0.20.

Reference

[1] Garstang, R. H., Ann. Astrophys. 25, 109 (1962).

Si x. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g,	Kk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-('S)2p	3be=3be	[14302] [14302]	0	6990 6990	2 2	4 4	m e	3.07 1.5 × 10 ⁻³	1.33 0.021	A D	1
2	$2s2p^2 - 2s2p^2$	4P_4P	[40972] [40972] [16579] [27848] [27848]	[162060] [162060] [162060] [164500] [164500]	[164500] [164500] [168090] [168090]	2 2 4 4	4 4 6 6 6	m e e m	0.32 7.6 × 10 ⁻⁹ 4.2 × 10 ⁻⁶ 0.74 4.4 × 10 ⁻⁷	3.26 0.0021 0.019 3.56 0.026	C D C D	1 1 1 1
3		*P = *D	[795.10] [795.19] [810.83] [810.83] [835.14] [835.14] [795.10] [810.83] [810.83] [835.14] [835.14]	[162060] [162060] [164500] [164500] [168090] [168090] [162060] [164500] [164500] [168090]	287830 287830 287830 287830 287830 287830 287830 287830 287830 287830 287830	2 2 4 6 6 2 4 6 6	4 4 4 4 6 6 6 6 6	m e m e m e m	4.8 0.024 18 0.0010 5.7 0.29 0.0038 10 0.26 47 0.080	3.58 × 10 ⁻⁴ 1.8 × 10 ⁻⁵ 0.00142 8.3 × 10 ⁻⁷ 4.92 × 10 ⁻⁴ 2.8 × 10 ⁻⁴ 4.3 × 10 ⁻⁶ 0.00119 3.3 × 10 ⁻⁴ 0.0061 1.2 × 10 ⁻⁴		1 1 1 1 1 1 1 1 1

Si x. Forbidden Transitions - Continued

No.	Transition Ar as	Multiple+	λ(Å)	E;(cm ⁻¹)	$E_k(\cos z)$,4	Kk	Type of Transi- tion	(kitsec 1)	S(at.u.)	Aceu- racy	Source
4		4P=2S										
			[456.40]	[152060]	367650	2	2	m	60	5.1 × 10-4	ļ Ç]
			[492.25] [492.25]	[164500] [164500]	367650 367650	4	2 2	m e	240 0.0072	0.00212 2.5 × 10 ⁻⁷	C	
			[501.10]	[168090]	367650	6	2	ė	0.15	5.6 × 10 · *	Ď	ļ
5	ļ	4P = 2P										
			[439.21]	[162060]	389740	2	2	m	13	8.2 × 10 ⁻³	Ğ	1
			[443.97] [443.97]	[164500] [164500]	389740 389740	4	2 2	m	7.6 0.10	4.93 × 10 ⁻³ 2.0 × 10 ⁻⁸	C	1
			[451.16]	168090	389740	6	2	e e	0.10	1.3 × 10 ⁻⁴	D I	1
			[431.15]	[162060]	394000	2	4	m	5.0	5.9×10^{-3}	$\bar{\mathbf{c}}$	1
			[431.15]	[162060]	394000	2	4	e	0.027	9.5×10^{-7}	D	1
			[435.73] [435.73]	[164500] [164500]	394000 394000	4	4	m e	8.4 0.097	1.03 × 10 ⁻⁴ 3.6 × 10 ⁻⁴	CD	1
			[442.65]	168090	394000	6	4	m	13	1.67 × 10-4	l č	î
i			[442.65]	[168090]	394000	6	4	e	0.043	1.7×10-4	D	1
6		2 D $-^2$ S										
			[1252.8]	287830	367650	4	2	m	0.16	2.33 × 10 ⁻³	C	ļ
			[1252.8] [1252.8]	287830 287830	367650 367650	4	2 2	e	9.0 13	0.033 0.049	D	1 1
_		4 5 . 473	(1202.0)	201000	00.000		-		10	0.017		•
7		$^{2}D - ^{2}P$	[981.26]	287830	389740	4	2	m	14	9.8 × 10-4	c	1
]		[981.26]	287830	389740	4	2	e	0.67	7.3 × 10-4	Ď	i
			[981.26]	287830	389740	6	?	e	1.3	0.0014	D	1
			[941.89] [941.89]	287830 287830	394000 394000	4	4	m	26 0.053	0.00322 9.4 × 10 ⁻³	CD	1 1
ĺ			[941.89]	287830	394000	6	4	e m	0.055 15	0.00186	C	
			[941.89]	287830	394000	6	4	e	0.0075	1.3×10^{-3}	Ď	! 1
8		2S - 2P		Į,								
_		_ •	[4525.7]	367650	389740	2	2	m	11	0.076	C	1
			[3794.0]	367650	394000	2	4	m	4.6	0.0373	C	1
			[3794.0]	367650	394000	2	4	e	2.0 × 10 ⁻⁴	3.7×10^{-4}	ן ט	1
9		$^{2}P - ^{2}P$	100460	000=40	004000	_			5.45			_
			[23468] [23468]	389740 389740	394000 394000	2	4	m	0.67 1.2 × 10-#	1.28 0.020	C	1
i			[20100]	307170	377000	٤	7	e	1.2 ^ 10 "	0.020	ן ע	1

Si XI

Ground State

1s22s2 1S0

Ionization Potential

 $476.0 \text{ eV} = 3840470 \text{ cm}^{-1}$

Allowed Transitions

Garstang and Shamey [1] have obtained the f-value for the intercombination line $2^1S_n - 2^3P_1$ by calculating the ratio of this line against the resonance transition in the intermediate coupling approximation and by using for the resonance line a value calculated according to Cohen and Dalgarno's method [2]. The data calculated from the charge-expansion method of Cohen and Dalgarno, [2] which includes limited configuration mixing, are estimated to be usually accurate to 50 percent or better, while the charge-expansion method of Naqvi and Victor [3] should be less

reliable when the effects of configuration interaction are strong, since these are neglected entirely. In assigning the accuracy estimates for these methods as well as for the Coulomb approximation we were to a great extent guided by studying the degree of ht of the data into the systematic trends along isoelectronic sequences.

References

- [1] Garsiang, R. H., and Shamey, L. J., Astrophys. J. 148, 665-666 (1967).
- [2] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
- [3] Nagvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR 63-3118 (1964).

Si XI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_{ m s}{ m em}^{-1})$	$E_k({ m cm}^{\pm 1})$	μi	μ_k	$4_{ki}(10^{6}\mathrm{sec}^{-1})$	f_{ik}	S(at.u.)	log <i>gf</i>	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	1S_#P°	[582.89]	0	[171560]	l	3	0.0050	7.6 × 10 ⁻⁵	1.4×10 '	-4.12	D	1 <i>n</i>
2		1S_1P°	[303.58]	0	329400	1	3	64	0.264	0.264	-0.58	C	2
3	$2s2p-2p^2$	ap°_ap	365.08	[174208]	[448122]	9	9	51	0.10	1.1	-0.05	D+	2
			[365.42] [364.50] [371.61] [368.38] [358.54] [361.31]	[176810] [171560] [176810] [171560] [171560] [169140]	[450470] [445910] [445910] [443020] [450470] [445910]	5 3 5 3 3 1	5 3 1 5 3	38 13 20 49 13	0.076 0.026 0.025 0.033 0.042 0.10	0.46 0.092 0.15 0.12 0.15 0.12	-0.42 -1.11 -0.90 -1.00 -0.90 -1.00	D+ D- D- D- D-	ls ls ls ls ls
4		d'-°th	[609.76]	329400	493400	3	5	11	0.11	0.64	-0.48	D -	2
5		'P°-'S	[359.41]	329400	607630	3	ì	100	0.068	0.24	-0.69	E	2
6	$2s^2 - 2s(^2S)3p$	S-1P°	[43.763]	0	2285040	1	3	7200	0.62	0.089	-0.21	E	3
7	$2s2p - 2s(^2S)3s$	1P°=1S	[52.299]	329400	2241480	3	1	580	9.0079	0.0041	- 1.63	E	3
8	2s3s - 2s(2S)3p	'S-'P°	[2295.0]	2241480	2285040	:	3	0 68	0.160	1.21	-0.80	C	3
9	2s3p = 2s(2S)3d	'P°-'D	[1316.3]	2285040	2361010	3	5	3.04	0.132	1.71	- 0.402	С	ca
10	2p3p = 2p(2P°)3d	'D-'F°	[2040.6]	2532140	2581130	5	7	0.83	0.073	2.44	-0.438	C	са

Si XI

Forbidden Transitions

The transition probability for that part of the $2s^2$ $^{1}S_0 - 2s2p$ $^{3}P_2$ transition which is magnetic quadrupole radiation is taken from calculations of Garstang [1]. We have renormalized his result using for the resonance line a transition integral calculated by the method of Cohen and Dalgarno [2] (see also Allowed Transitions; for the addition of transition probabilities arising from various types of radiation, see the General Introduction; for the relation of A_{ki} (m.q.) to other quantities [1]).

Naqvi's calculations [3] are the only available source for the other transitions. The results for the 3P°-3P° lines are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

References

Garstang, R. H., Astrophys. J. 148, 579-584 (1967).
 Coben, M. and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).
 Naqvi, A. M., Thesis Harvard (1951).

Si XI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	μk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
	$2s^{2} - 2s(^{2}S)2p$ $2s2p - 2s(^{2}S)2p$	3bo — 3bo 12 — 3bo	565.58 [41311] [19042]	0 [169140] [171560]	[176810] [171560] [176810]	1 1 3	5 3 5	m.q. m m	0.14 0.255 1.95	2.00 2.50	E A A	1, 2 3 3
3		3 b o — 1 b o	[623.99] [633.55] [655.35]	[169149] [171560] [176810]	329400 329400 329400	1 3 5	3 3 3	m m m	39.2 1220 42.5	0.00106 0.0346 0.00133	CCC	3 3 3

Si XII

Ground State

1s22s 2S)/2

Ionization Potential

 $523.2 \text{ eV} = 4221460 \text{ cm}^{-1}$

Allowed Transitions

For the transition 2s-2p, the charge-expansion calculation of Cohen and Dalgarno [1] is chosen. An uncertainty of less than 10 percent is indicated from the graphical comparison of this value with the other material for the same transition within the isoelectronic sequence. Data for the other listed transitions have been obtained from the Coulomb approximation. Plots of the dependence of f-value on nuclear charge for all these transitions have been made and show that this material connects up very smoothly with the data for the lower ions as well as with the hydrogenic value for infinite nuclear charge. Based on this impressive agreement, accuracies of 10 percent (or 25 percent for some of the smaller values) are indicated.

References

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Si XII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μі	μk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	fik	S(at.u.)	log g/	Accu- racy	Source
1	2s-2p	2S 2P°	506.35	0	197493	2	6	9.36	0 108	0.360	-0.666	В	1
			[499.28] [521.10]	0	200290 191900	2 2	4 2	9.77 8.59	0,0350	0.240 0.120	-0.836 -1.155	. В . В	ls ls
2	2p-3s	²P°−2S	45.598	197493	2390580	6	2	1990	0.0207	0.0186	-0.906	В	ca
			[45.656] [45.482]	200290 191900	2390580 2390580	4 2	2 2	1320 668	0.0207 0.0207	0.0124 0.00620	- 1.082 1.383	B B	ls ls
3	2p-3d	²p°-²D	44.118	197493	2464134	6	10	1.39×10 ⁴	0.675	0.588	0.607	В	са
			[44.165] [44.021] [44.184]	200290 191900 200290	2464530 2463540 2463540	4 2 4	6 4 4	1.38 × 10 ⁴ 1.16 × 10 ⁴ 2300	0.607 0.676 0.0674	0.353 0.196 0.0392	0.385 0.131 -0.569	B B B	ls ls ls

PHOSPHORUS

Pι

Ground State

 $1s^22s^22p^83s^23p^3$ $4S_{3/2}^{\circ}$

Ionization Potential

 $10.484 \text{ eV} = 84580 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1534.7	4	5098.20	16	7486.79	24
1534.73	4	5100.96	16	7496.23	24
1671.68	i	5109.62	16	7505.76	24
1674.61	i	5149.46	15	7563.63	24
1679.71	i	5154.84	15	7600.7	24
1077.71	1	5154.04	15	7000.7	24
1719.00	3	5162.28	15	7834.2	25
1725.85	3	5166.8	16	7917.84	25
1774.99	2	5189.9	15	7953.9	25
1732.87	3 2 2 2 2	5222.1	15	8002.63	25
1787.68	2	5258.1	15	8046.79	25
1858.91	7	5262.07	19	8090.08	25
1859.43	7	5293.53	19	8139.1	25
2135.47	6	5345.86	19	8190.4	25
2136.18	6	5378.32	19	8637.62	20
2149.14	6	5458.31	18	8741.54	20
2152.94	10	5477.75	18	9175.85	13
2154.08	10	5548.49	18	9304.88	13
2222.57	5	6673.71	21	9525.78	13
2223.35	5	6717.42	21	9563.45	13
2234.95	5 5				12
2234.93	,	6979.76	23	9593.54	12
2235.73	5	6985.2	23	9608.97	12
2242.53	5	7001.54	23	9734.74	12
2533.99	5 9	7017.32	23	9750.73	12
2535.61	9	7051.93	23	9790.08	14
2553.25	9	7084.2	23	9796.79	12
2554.90	9	7100.01	02	9903.74	14
2659.4	8	7102.21 7154.03	23 23	9903.74	12
	8	1			14
2675.31	8	7158.37	22	10084.2	
2677.13		7165.45	22	10204.7	14
2636.17	8	7175.12	22	10511.4	11
2688.00	8	7176.66	22	10529.5	11
4978.11	17	7197.83	22	10581.5	11
5015.86	17	7235.49	2?	10596.9	11
5045.40	16	7268.33	22	10681.4	11
5059.20	16	7282.38	22	10769	11
5061.91	16	7343.11	22	10813.0	11
5079.37	17	7459.80	24	10974	11

Varsavsky's value [1] for the $3s^23p^3 \cdot 4S^\circ - 3s3p^4 \cdot 4P$ multiplet, calculated by means of a screening approximation which neglects the important effects of configuration interaction, should be quite uncertain—probably too high as judged from other comparisons. Results of lifetime measurements and intermediate coupling calculations by Lawrence [2] have been adopted for many lines in the uv region. The measured lifetimes have been used by Lawrence to provide an absolute

scale for the calculated transition probabilities. The f-values of transitions involving a change in spin (intercombination lines) are expected to be rather uncertain, since they are quite small.

The above two sources cover only a small portion of the known multiplets of this atom. Thus the Coulomb approximation has been extensively employed in order to have at least some of the remaining prominent lines represented. Since there is very little comparison material available for analogous transitions, these values should be used cautiously, particularly those transitions with accuracy assignments of "E", since severe cancellation in the transition integral occurs for the latter. Additional uncertainties in these data may be due to deviations from LS-coupling. There are indications from the energy level spacings that some deviations may be encountered.

References

Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, 75-108 (1961).
 Lawrence, G. M., Astrophys. J. 148, 261-268 (1967).

PI. Allowed Transitions

				PI	Allow	ea	l ra	insitions			4	1	,
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μį	μk	$A_{kl}(10^8\mathrm{sec}^{-3})$	f.k	S(at.u.)	log gf	Accu- racy	Source
ì	$3s^23p^3 - 3s3p^4$	4S°_4P (2 uv)	1676.6	0	59643	4	12	11	1.4	30	0.74	E	1
		(2)	1679.71 1674.61 1671.68	0 0 0	59535 59716 59820	4 4 4	6 4 2	11 11 11	0.68 0.45 0.23	15 10 5.0	0.43 0.26 -0.04	E E E	ls ls
2	$3p^3 - 3p^2(^3P)4s$	4S°_4P (1 uv)	1779.7	0	56190	4	12	2.16	0.307	7.2	0.089	C	2
	ορ (1 / 1 8	(1 41)	1774.99 1782.87 1787.68	0 0 0	56340 56090 55939	4 4 4	6 4 2	2.17 2.14 2.13	0.154 0.102 0.051	3.59 2.39 1.20	-0.210 -0.389 -0.69		2 2 2
3		4S°-2P											1
			1719.00 1727.85	0	58174 57877	4	4 2	0.0026 0.0015	1.2×10^{-4} 3.4×10^{-5}		-3.32 -3.87	E E	2 2
4	$3p^3 - 3p^2(^1D)4s'$	⁴S°−2D											
	<i>5p</i> (<i>D)</i> 48		1534.73 [1534.7]	0	65157 65157	4	6 4	4.4 × 10 ⁻³ 8.2 × 10 ⁻⁵	2.3×10^{-5} 2.9×10^{-6}			E E	2 2
5	$3p^3 - 3p^2(^3P)4s$	² D°- ⁴ P (3 uv)		! 									
	•		2223.35 2234.95 2235.73 2242.53 2222.57	11376 11362 11376 11362 11362	56340 56090 56090 55939 56340	6 4 6 4 4	6 4 4 2 6	8.8×10 ⁻³ 0.0013 0.0062 0.0040 5.4×10 ⁻³	6.5 × 10 ⁻⁵ 9.7 × 10 ⁻⁵ 3.1 × 10 ⁻⁴ 1.5 × 10 ⁻⁶ 6.0 × 10 ⁻⁶	0.0029 0.014 0.0045	-3.41 -3.41 -2.73 -3.22 -4.62	E E E E	2 2 2 2 2 2
6		2D°-2P	2140.4	11370	58075	10	6	3.06	0.126	8.9	0.100	C	2
		(4 uv)	2136.18 2149.14 2135.47	11376 11362 11362	58174 57877 58174	6 4 4	4 2 4	2.83 3.18 0.211	0.129 0.110 0.0144	5.4 3.12 0.406	-0.111 -0.357 -1.240	C	2 2 2
7	3p ³ – 3p ² (¹D)4s'	² D° – ² D (5 uv)	1859.2	11370	65157	10	10	2.81	0.145	8.9	0.161	C	2
	op (Dres	(5 uv)	1859.43 1858.91 1859.43 1858.91	11376 11362 11376 11362	65157 65157 65157 65157	6 4 6 4	6 4 4 6	2.64 2.54 0.226 0.232	0.137 0.132 0.0078 0.0180	5.0 3.22 0.287 0.441	-0.085 -0.277 -1.330 -1.143	CC	2 2 2 2 2

PI. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_{\ell}(m cm^{-1})$	$E_k(\mathrm{cm}^{-3})$	Ķi	¥k	$A_{ki}(10^{6}\mathrm{sec}^{-1})$	fik	S(at.u.)	log <i>gf</i>	Accu- racy	Source
8	$\frac{3p^3-}{3p^2(^3P)4s}$	² P°_+P (7 uv)											
	•		2677.13	18748	56090	4	4	0.0013	1.4×10^{-4}	0.0049	-3.25	Ē	2
			2686.17	18722	55939	2	2	3.9×10^{-4}	4.2×10^{-5}	7.5×10^{-4}	-4.08	Ē	2
			[2659.4]	18748 18722	56340 56090	4 2	6	4.1×10^{-7} 2.7×10^{-4}	6.5×10^{-8} 5.8×10^{-5}	2.3 × 10 ⁻⁶ 0.0010	-6.59 -3.94	E E	2
			2675.31 2688.00	18748	55939	4	2	4.1×10^{-4}	2.2×10^{-5}	7.9 × 10 ⁻⁴	-4.06	Ē	2 2 2 2 2 2
9		2p°_2p (8 uv)	2541.4	18739	58075	6	6	1.11	0.108	5.4	-0.188	С	2
			2535.61	18748	58174	4	4	0.95	0.092	3.06	-0.434	C	2
			2553.25	18722	57877	2	2	0.71	0.069	1.17	-0.86	Ç	2
			2554.90	18748	57877	4 2	2	0.300	0.0147	0.494	-1.231 -1.114	C	2 2 2 2
			2533.99	18722	58174	2		0.200	0.0385	0.64	-1.114		2
10	$3p^3 - 3p^2(^1D)4s'$	² P° – ² D (9 uv)	2153.7	18739	65157	6	10	0.61	0.071	3.02	-0.371	С	2
	J D.		2154.08	18748	65157	4	6	0.58	0.061	1.72	-0.61	C	2
			2152.94 2154.08	1872° 18748	65157 65157	2 4	4	0.485 0.173	0.067 0.0120	0.96 0.341	-0.87 -1.319	C	2 2 2
11	$3p^24s - 3p^2(^3P)4p$	4P-4D° (1)	10604	56190	65618	12	20	0.20	0.57	240	0.84	D	ca
			10581.5	56340	65787	6	8	0.21	0.47	99	0.45	D	ls
			10529.5 10511.4	56090 55939	65585 65450	4 2	6	0.15	0.37	51	0.17	D	ls Is
			10813.0	56340	65585	6	6	0.088 0.060	0.29 0.10	20 22	-0.24 -0.20	D D	ls
			10681.4	56090	65450	4	4	0.11	0.19	26	-0.20	D	ls
			10596.9	55939	65373	2	2	0.17	0.29	20	-0.24	D	ls
			[10974] [10769]	56340	65450	6	4	0.0095	0.011	2.5	-1.16	E	ls
				56090	65373	4	2	0.033	0.029	4.1	-0.94	E	ls
12		4P_4P° (2)	9744.9	56190	66449	12	12	0.26	0.36	140	0.64	D	са
			9796.79	56340	66544	6	6	0.18	0.26	50	0.19	D	ls
			9734.74 9608.97	56090	66360	4	4	0.035	0.049	6.3	-0.71	Ē	ls
			9976.65	55939 56340	66343 66360	2 6	2	0.044 0.11	0.062 0.11	3.5	-0.91	E D	ls Is
			9750.73	56090	66343	4	2	0.11	0.15	22 20	-0.18 -0.21	Ď	ls
		1	9563.45	56090	66544	4	6	0.081	0.17	21	-0.17	Ď	ls
			9593.54	55939	66360	2	4	0.11	0.31	19	0.21	D	ls
13		4P_4S° (3)	9391.5	56190	66835	12	4	0.29	0.13	47	0.18	D	ca
			9525.78	56340	66835	6	4	0.14	0.13	24	-0.12	D	ls
			9304.88 9175.85	56090 55939	56835 56835	4 2	4	0.096 0.050	0.13 0.13	15 7.6	-0.30 -0.60	D D-	ls Is
14		² P - ² P° (4)	10023	58075	68049	6	6	0.27	0.39	77	0.37	D	ca
		(4)	10084.2	58174	68088	4	4	0.21	0.32	43	0.11	D	ls
			9903.74	57877	67971	2	2	0.18	0.26	17	-0.29	D	ls
			10204.7	58174	67971	4	2	0.083	0.065	8.7	-0.59	D-	ls
			9790.08	57877	68088	2	4	0.045	0.13	8.3	-0.59	D-	ls
15	3p ² 4s - 3p ² (³ P)5p	4P - 4D°						0.005				_	
			5162.28	56340	75705	6	8	0.032	0.017	1.7	-0.99	E	ca, ls
			5154.84 5149.46	56090 55939	75484 75353	4 2	6	0.015 0.0066	0.0091 0.0052	0.62 0.18	-1.44 -1.98	E	ca, ls
			[5222.1]	56340	75484	6	6	0.0058	0.0032	0.18	-1.98	E	ca, is
			[5189.9]	56090	75353	4	4	0.0075	0.0030	0.21	-1.92	Ē	ca, ls
		1	[5258.1]	56340	75353	6	4	5.7 × 10 ⁻⁴	1.6 × 10-4	0.016	-3.03	E	ca, ls

PI. Allowed Transitions-Continued

Jes.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(cm^{-1})$	Ķi	Kk	$A_{ki}(10^4~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
16		4P-4P°	5098.3	56190	75799	l.	12	0.042	0.016	3.3	-0.71	E	ce
- [5109.62	56340	75905	6	6	0.034	0.013	1.3	-1.10	E	l.
i			5100.96	56090	75689	4	4	0.0046	0.0018	0.12	-2.14	Ē	i
- 1		İ	5059.20	55939	75700	2	2	0.0063	0.0024	0.080	-2.32	Ē	1
		1 !	[5166.8]	56340	75689	6	4	0.014	0.0037	0.38	-1.65	E	1
		ı İ	5098.20	56090	75700	4	2	0.029	0.0057	0.38	-1.64	E	1
ļ		1	5045.40	56090	75905	4	6	0.016	0.0090	0.60	-1.44	E	1
			5061.91	55939	75689	2	4	0.015	0.012	0.39	-1.63	E	1
17		4P-4S°	5041.0	56190	76022	12	4	0.059	0.0075	1.5	-1.04	E	c
			5079.37	56340	76022	6	4	0.029	0.0074	0.75	-1.35	E	
			5015.86	56090	76022	4	4	0.020	0.0077	0.51	-1.51	E	1 4
			4978.11	55939	76022	2	4	0.011	0.0079	0.26	-1.80	E	/
18		² P − ² D°	5475.8	58075	76332	6	10	0.052	0.039	4.2	-0.63	E	C
			5477.75	58174	76425	4	6	0.057	0.038	2.8	-0.81	E	1
		1	5458.31	57877	76192	2	4	0.038	0.034	1.2	-1.17	E	7
			5548.49	58174	76192	4	4	0.0066	0.0031	0.22	-1.91	E	'
19		2P - 2P°	5328.4	58075	76837	6	6	0.087	0.037	3.9	-0.65	E	c
			5345.86	58174	76875	4	4	0.073	0.031	2.2	-0.90	E	
		į	5293.5 3	57877	76762	2 4		0.058	0.024	0.84	-1.32	E.	
			5378.32	58174	76762		2 2 4	0.027	0.0060	0.42	-1.62		! /
			5262.07	57877	76875	2	4	0.015	0.013	0.44	-1.60	E	'
20	$3p^{2}4p - 3p^{2}(^{3}P)4d$	² S° − ² P	8706.9	64240	75722	2	6	0.087	0.30	17	-0.23	D	c
	J. (- ,		8741.54	64240	75676	2 2	4	0.091	0.21	12	-0.38	D	1
			8637.62	64240	75814	2	2	0.079	0.089	5.1	-0.75	D	1
21	$3p^24p - 3p^2(^3P)5d$	² S° − ² P	6702.8	64240	79155	2	6	0.048	0.097	4.3	-0.71	E	C
			6717.42 6673.71	64240 64240	79122 79220	2 2	4 2	0.050 0.045	0.067 0.030	3.0 1.3	-0.87 -1.22	E E	1
00		4D°-4F								l i			
22		זי – יטי	7181.4	65618	79539	20		0.053	0.057	27	0.06		c
			7175.12	65787	79721	8	10	0.033	0.032	6.0	− 0.60		1
			7176.66	65585	79515	6			C.049	6.9	-0.53	E	4
			7165.45	65450	79402			0.000	0.058	5.5	-0.65	E	4
			7158.37	65373	79339	2	4	0.051	0.078	3.7	-0.81	E	
			7282.38	65787	79515	8		0.0081	0.0065	1.2	-1.29		
			7235.49	65585	79402	6	6	0.017	0.013	1.9	-1.11		Ì .
	1		7197.83 7343.11	65450 65787	79339 79402	8	6	0.020 6.5 × 10 ⁻⁴	0.016 4.0 × 10 ⁻⁴	1.5 0.076	-1.20 -2.50		'
			7268.33	65585	79339	6		0.0015	7.7 × 10 ⁻⁴	0.070	-2.30 -2.33		
23		4D° – 4D		ľ									
			7102.21	65787	79864	8	8	0.0036	0.0027	0.51	-1.66	E	ca,
			7051.93	65585	79762	6	6	0.0037	0.0021	0.39	-1.78		ca,
			7017.32	65450	79697	4	4	0.0032	0.0024	0.22	-2.02		ca,
			7154.03	65787	79762	8	6	0.0013	7.6 × 10 ⁻⁴	0.14	-2.21	Ē	ca,
			[7084.2]	65585	79697	6	4	0.0029	0.0015	0.21	-2.05		cu,
	i		700i.54	65585	79864	6	8	5.4 × 10-+	5.3×10^{-4}	0.073	-2.50	E	ca,
			[6985.2]	65450	79762	4	6	0.0014	0.0016	0.14	-2.20		ca,
	ļ		6979.76	65373	79697	2	4	0.0020	0.0029	0.13	-2.24	E	ca,

PI. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	¥k	$A_{ki}(10^6\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
24		4P°-4D				1.1							
25	3p ² 4p — 3p ² (³ P)6s	+D° — 4P	7505.76 7459.80 7456.79 7563.63 7496.23 [7600.7] 8055.2 8046.79 8090.08 [8190.4] 7917.84 8002.63 [8139.1] [7834.2] [7953.9]	66544 66360 66343 66544 66360 66544 65618 65787 65585 65450 65585 65450 65373 65450 65373	79864 79762 79697 79762 79697 79697 78029 78211 77942 77656 78211 77942 77656 78211 77942	6 4 2 6 4 6 20 8 6 4 6 4 6 4 2 2 4 2 4 2 2 4 2 4 2 4 2 4	12 6 4 4 2 6 4 2 6 4 4 2 6 4	0.018 0.018 0.013 0.0079 0.016 0.0016 0.030 0.023 0.020 0.015 0.0053 0.010 0.015 5.8 × 10 ⁻⁴ 0.0016	0.020 0.022 0.021 0.0068 0.014 9.2 × 10 ⁻⁴ 0.017 0.017 0.013 0.0075 0.0049 0.0097 0.015 8.1 × 10 ⁻⁴ 0.0030	3.0 2.2 1.1 1.0 1.4 0.14 9.2 3.6 2.0 0.81 0.77 1.0 0.81 0.083 0.16	-0.92 -1.05 -1.37 -1.39 -1.26 -2.26 -0.46 -1.11 -1.52 -1.53 -1.41 -1.52 -2.49 -2.22	EEEE D D D D D D EEEEEE	ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ls ls ls ls ls ls

Pı

Forbidden Transitions

All the values for this atom are taken from the work of Czyzak and Krueger [1], since they have included the important effects of configuration interaction and have used self-consistent field wavefunctions with exchange to obtain their value of s_q . (For a more complete discussion see the General Introduction).

Reference

[1] Czyzak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

P1. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g;	Kr	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^{3}-3p^{3}$	4S° - 2D°										
•	op op	(1F)	8787.6	0.0	11376.4	4	6	m	9.1×10-#	1.37 × 10 ⁻⁶	С	1
			8787.6	0.0	11376.4	4	6	e	1.9×10-4	0.035	D	ī
			8799.1	0.0	11360.8	4	4	m	1.77×10-4	1.79×10^{-5}	C	1
			8799.1	0.0	11360.8	4	4	e	1.2 × 10-4	0.015	D	1
2		45°-2P°	i									
_	}	(2F)	5332.4	0.0	18748.0	4	4	m	0.108	0.00243	C	1
	1		5332.4	0.0	18748.0	4	4	e	3.3×10^{-7}	3.4×10^{-6}	D	1
		j l	5339.7	0.0	18722.7	4	2	m	0.0426	4.81 × 10 · 4	C	1
			5339.7	0.0	18722.7	4	2	8	4.7 × 10-4	2.4×10 ⁻⁵	D	1
3	[2D°-2D°						1				
"		-	$[64.09 \times 10^{3}]$	11360.8	11376.4	4	6	m	4.10 × 10-*	2.40	В	1
			$[64.09 \times 10^{5}]$		11376.4	4	6	e	7.7 × 10-18	0.30	D	1

P 1. Forbidden Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Kk	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
4		2D°-2P°										
•			[13562]	11376.4	18748.0	6	4	m	0.0190	0.0070	C	1
			[13562]	11376.4	18748.0	6	4	e	0.094	103	C	1
			[13580]	11360.8	18722.7	4	2	m:	0.0211	0.00392	C	1
			[13580]	11360.8	18722.7	4	2	e	0.080	44.1	C	l
			[13609]	11376.4	18722.7	6	2	e	0.053	29.5	C	1
			[13533]	11360.8	18748.0	4	4	m	0.0341	0.0125	C	1
]	[13533]	11360.8	18748.0	4	4	C	0.0405	43.8	C	l I
5		2p°-2p°		1								
_		1	$[39.515 \times 10^{3}]$	18722.7	18748.0	2	4	m	1.45×10^{-7}	1.33	B	1
			[39.515 × 10 ⁵]	18722.7	18748.0	2	4	e	5.9×10^{-17}	0.14	D	1

PII

Ground State

 $1s^22s^22n^63s^23p^2\ ^3\mathrm{P}_0$

Ionization Potential

 $19.72 \text{ eV} = 159100 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1301.87	2	4530.81	10	5316.07	4
1304.47	2	4533,96	11	5344,75	4
1304.68	2 2 2	4554,83	12	5378.20	18
1305.48	2	4565.27	12	5386.88	4
1309.87	2	4582.17	10	5409.72	4
1310.70	2	4588.04	9	5425.91	4
1532.51	1	4589.86	9	5450.74	18
1535.90	1	4602.08	9	5483,55	18
1536,39	1	4626.70	9	5499.73	4
1542.29	1	4628.77	12	5507.19	18
1543.09	:	4658.31	9	5541.14	18
1543.61	1	4698.16	9	5583.27	18
4385.35	16	4823.68	17	5588,34	19
4402.09	10	4864.42	17	5727,71	19
4414.28	11	4927.20	17	5764.46	19
4417.30	10	4935.62	15	6024.18	3
4420.71	8	4941,53	17	6034.04	3
4424.07	11	4954.39	17	6043.12	3 3 3
4463.00	11	4969.71	17	6055,50	20
4466.13	10	5040.80	13	6087.82	3
4467.98	11	5152.23	5	6165.59	3
4475.26	10	5191.41	5 5 7	6232.29	3 3
4483.68	11	5253.52	7	7735.06	21
4499.24	14	5296.13	5	7845.63	6

For the two uv transitions listed, the radiative lifetime measurements of Savage and Lawrence [1] performed with the phase shift technique are available. Corrections for cascading from higher excited states have been applied by these authors.

Since no other theoretical or experimental data are available for this spectrum as yet, the Coulomb approximation has been extensively used in order to have some of the more prominent lines tabulated. On the basis of the comparison material available for analogous transitions of neighboring atoms and because of the general success of the Coulomb approximation, accuracy estimates of 50 percent for the selected lines appear to be in order. But, in as much as these comparisons are still quite insufficient, the present accuracy assignments can be regarded only as provisional. There are furthermore indications from energy level spacings that this spectrum may show significant deviations from LS-coupling. Since LS-coupling had to be used for the breakdown into multiplets and lines, this may introduce additional uncertainties, especially in the weaker lines.

Reference

[1] Savage, B. D., and Lawrence, G. M., Astrophys. J. 146, 940-943 (1966).

PII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Цi	μĸ	$A_{ki}(10^8~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23\rho^2 - 3s3\rho^3$	3P = 3D° (1 uv)	1539.2	316	65285	9	15	0.128	0.0076	0.346	- 1.165	C+	1
			1542.29	469	65308	5	7	0.127	0.0063	0.161	- 1.50	C+	ls
			1535.90	165	65273	3	5	0.096	0.0057	0.086	-1.77	C+	ls
			1532.51	0	65252	1	3	0.072	0.0076	0.038	-2.12	D	ls
			1543.09	469	65273	5	5	0.032	0.0011	0.029	-2.25	D	ls
			1536.39	165	65252	3	3	0.054	0.0019	0.029	-2.24	D	ls
			1543.61	469	65252	5	3	0.0035	7.6×10^{-3}	0.0019	-3.42	E	is
2		3P = 3P° (2 uv)	1307.7	316	76788	9	9	1.56	0.0400	1.55	-0.444	C	1
			1310.70	469	76765	5	5	1.17	0.0301	0.65	-0.82	C	ls
			1304.68	165	76813	3	3	0.392	0.0100	0.129	-1.52	C	ls
			1309.87	469	76813	5	3	0.65	0.0100	0.215	-1.301	C	ls
	•		1304.47	165	76824	3	1	1.57	0.0134	0.172	-1.396	C	ls
			1305.48	165	76765	3	5	0.392	0.0167	0.215	-1.300	C	ls
			1301.87	0	76813	1	3	0.53	0.0401	0.172	-1.397	C	ls
3	3p4s — 3p (2P°)4p	3 P ° − 3 D	6052.0	86940	103459	9	15	0.67	0.61	110	0.74	D	ca
			6043.12	87125	103669	5	7	0.68	0.52	52	0.42	D	ls
			6024.18	86745	103340	3	5	0.51	0.46	28	0.14	Ď	ls
			6034.04	86598	103166	1	3	0.37	0.61	12	-0.21	Ď	ls
			6165.59	87125	103340	5	5	0.16	0.091	9.3	-0.34	D-	ls
	1		6087.82	86745	103166	3 5	3	0.27	0.15	9.2	-0.34	D-	ls
			6232.29	87125	103166	5	3	0.017	0.0060	0.62	-1.52	E	ls
4		aP°_aP	5406.2	86940	105432	9	9	0.93	0.41	65	0.56	D	ca
			5425.91	87125	105550	5	5	0.69	0.31	27	0.19	D	ls
			5386.88	86745	105303	3	3	0.23	0.10	5.4	-0.51	D-	ls
			5499.73	87125	105303	5	3	0.37	0.10	9.1	-0.30	D-	ls
			5409.72	86745	105225	3	1	0.93	0.14	7.2	-0.39	D-	ls
			5316.07	86745	105550	3	5	0.24	0.17	9.0	-0.29	D-	ls.
	1	I	5344.75	86598	105303	1	3	0.32	0.41	7.2	-0.39	D-	1.

PII. Allowed Transitions - Continued

10.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	μi	Цk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	f _{ik}	S(at.u.)	log gf	Accu- racy	Sourc
5		3P° – 3S	5244.6	86940	106002	9	3	1.0	0.14	22	0.11	D	c
Ì			5296.13	87125	106002	5	'3	0.55	0.14	12	-0.16	D	ĺ ,
			5191.41	86745	106002	3	3	0.35	0.14	7.1	-0.38	Ď	
			5152.23	86598	106002	1	3	0.12	0.14	2.4	-0.85	D	
6		ıb. — ıb	7845.6 ∪	88894	101636	3	3	0.33	0.30	23	-0.04	D	c
7		ıbıD	5253.52	88894	107924	3	5	1.0	0.72	37	0.33	D	
8		1P°1S	4420.71	88894	111509	3	1	1.6	0.15	6.7	-0.34	D	,
9	$3p4p - 3p(^{210})4d$	³ D − ³ F°	4598.5	103459	125199	15	21	2.0	0.88	200	1.12	D	
			4602.08	103669	125392	7	9	1.9	0.79	84	0.74	D	
			4588.04	103340	125139	5	7	1.7	0.77	58	0.58	D	
			4589.86 4658.31	103166 103669	124948 125130	3 7	5	1.6 0.21	0.87 0.069	39 7.4	$0.42 \\ -0.31$	D –	
			4626.70	103340	124948	5	5	0.30	0.007	7.4	-0.31	D-	
			4698.16	103669	124948	7	5	0.0084	0.0020	0.22	-1.85	E	
0		3b - 3Do	4484.5	105432	127725	9	15	1.3	0.67	89	0.78	D	
			4475.26	105550	127889	5	7	1.3	9.55	41	0.44	D	
			4530.81	105303 105225	127368	3	5	1.0	0.52	23	0.19	D D-	
			4402.09 4582.17	105225	127935 127368	1 5	3 5	0.73 0.33	0.64 0.10	9.3 7.9	-0.19 -0.28	D-	1
			4417.30	105303	127935	3	3	0.55	0.16	7.0	-0.32	Ď-	1
			4466.13	105550	127935	5	3	0.036	0.0065	0.48	-1.49	E	
1		3P = 3P°	4463.8	105432	127828	9	9	0.73	0.22	29	0.30	D	
			4463.00	105550	127951	5	5	0.54	0.16	12	-0.09	Ď	
			4483.68	105303	127600	3 5	3	0.19	0.056	2.5	-0.78	D-	
			4533.96 4424.07	105550 105303	127600 127900	3	1	0.31 0.73	0.057 0.072	4.2 3.1	-0.55 -0.67	D –	i
			4414.28	105303	127951	3	5	0.18	0.089	3.9	0.57	D-	
			4467.98	105225	127600	1	3	0.25	0.22	3.3	- 0.65	D-	
2		3S - 3P°	4580.4	106002	127828	3	9	0.96	0.91	41	0.43	D	
			4554.83	106002	127951	3	5	0.96	0.50	22	0.17	D	1
			4628.77	106002	127600	3		0.97	0.31	14	-0.03	D	
			4565.27	106002	127900	3	1	0.96	0.10	4.5	-0.52	D -	
13		D-'D°	5040.80	107924	127756	5	1	0.40	0.15	13	-0.12	D	
1		'D-'F°	4499.24	107924	130143	5	7	1.4	0.60	44	0.47	D	
5		'S-'P°	4935.62	111509	131 /64	1	3	0.63	0.69	11	-0.16	D	
6	$3p4p - 3p(^{2}P^{0})5s$	ıb – ıb.	4385.35	101636	124433	3	3	0.40	0.12	5.0	-0.46	D	
7		3D - sp.	4942.5	103459	123686	15	9	0.78	0.17	42	0.41	D	
			4943.53	103669	123892 123456	7	5	0.63	0.16	19	0.06	D	
			4969.71 4954.39	103340 103166	123456	5	3	0.58 0.78	0.13 0.096	11 4.7	-0.19 -0.54	D D-	
			4864.42	103340	123892	5	5	0.11	0.040	3.2	-0.34 -0.70	D-	
			4927.20	103166	123456	3	3	0.19	0.070	3.4	-0.68	D -	1
		I	4823.58	103166	123892	1 3	1 5	9.0075	0.0043	0.21	-1.89	F.	i

Pn. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ^{−1})	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	$A_{kl}(10^{\rm s}{ m sec}^{-1})$	fik	S(at.u.)	log <i>µf</i>	Accu- racy	Source
18		ab=abo	5476.7	105432	123686	9	9	0.44	0.20	32	0.25	D	ca
19		3S – 3P°	5450.74 5507.19 5583.27 5541.14 5378.20 5483.55 5653.3 5588.34 5727.71 5764.46	105550 105303 105550 105303 105303 105225 106002 106002 106002 106002	123892 123456 123456 123345 123892 123456 123686 123892 123456 123345	5 3 5 3 1 3 3 3	5 3 1 5 3 9 5 3	0.33 0.11 0.19 0.45 0.11 0.15 0.15 0.15 0.15	0.15 0.052 0.053 0.070 0.081 0.20 0.21 0.11 0.073 0.025	13 2.8 4.8 3.8 4.3 3.7 12 6.3 4.1 1.4	0.13 0.81 0.58 0.68 0.62 0.69 0.19 0.46 0.66 1.13	D D - D - D - D D D D D D D - D D D D D	ls ls ls ls ls ca is
20		۰D – ۱۵۰	6055.50	107924	124433	5	3	0.69	0.23	23	-0.06	D	ca
21		'S - 'P°	7735.06	111509	124433	1	3	0.11	0.29	7.5	-0.53	D	ca

PII

Forbidden Transitions

The adopted values have been derived from the theoretical work of Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially slike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have generally been averaged, except for the ³P--¹S transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

For the electric quadrupole transitions only Czyzak and Krueger's values are used since their sq is obtained by using advanced self-consistent field wavefunctions with exchange effects included.

References

Naqvi, A. M., Thesis Harvard (1951).
 Czyzak, S. J. and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

PII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	g _i	Kk	Type of Transi- tion	A _{kt} (sec ⁻¹)	$S({f at.u.})$	Accu- racy	Source
1	$3p^2 - 3p^2$	3P_3P										
	1		$[60.663 \times 10^4]$	0.0	164.8	1	3	1	8.05 × 10-3	2.00	A	1
		İ	$[21.316 \times 10^4]$	0.0	469.0	l i	5		6.0 × 10-4	7.9	C	2
		1	[32.864 × 10 ⁴] [32.864 × 10 ⁴]	164.8 164.8	469.0 469.0	3	5	m e	3.80×10^{-4} 1.54×10^{-9}	2.50 17.6	A C	1
	i		[32.004 × 10]	104.0	405.0	١,	٦	•	1.54 ^ 10	17.0	١	4
2		aP - ID								į		
-		(1F)	11255	0.0	8882.6	1	5	e	3.3 × 10-6	0.0018	D	2
			11485.2	164.8	8882.6	3	5	m	0.0063	0.00176	C	1, 2
	ļ		11483.2	164.8	8882.6	3	5	e	2.2×10^{-5}	0.013	D	2
		j	11898.2	469.0	8882.6	5	5		0.0169	0.0053	C	1, 2
			11898.2	469.0	8882.6	1.5	5	e	1.3×10^{-4}	0.091	D	2

PII. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	#k	Type of Transi- tion	$I_{ki}(\mathrm{sec}^{-1})$	S(at.m.)	Aven- racy	Source
3	:	³ P = ¹ S (2F)	4669.5 4736.6	164.8 469.0	21576.2 21576.2	3 5	1 1	m e	0.220 0.0063	8.3×10 ⁻¹ 0.0089	C. D	2 2
4		'D-'S (3F)	7869.5	8882.6	21576.2	5	1	e	2.0	35	Đ	2

PIII

Ground State

 $1 s^2 2 s^2 2 p^6 3 s^2 3 p^2 \frac{399}{12}$

Ionization Potential

 $30.156~\rm eV = 243290.0~\rm cm^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelengtb [Á]	No.	Wavelength (A)	No.
1334.87	1	3802.08	5	4057.39	2
1344.34	li	3895.03	4	4059.27	2
1344.90	i	3904.79	4	4080.04	2
3219.32	6	3922.72	4	4222.15	3
3233.62	6	3933.38	4	4246.68	3
3280.22	8	3951.51	4	4587.91	9
3717.63	5	3957.64	4	5203.86	7
3744.22	5	3997.17	4		·

Varsavsky's value [1] for the $3s^23p$ ²P°- $3s3p^2$ ²D multiplet, which has been calculated by means of a screening approximation which neglects the important effects of configuration interaction, should be quite uncertain-probably too high as judged from other comparisons. Since there are no other sources available, the Coulomb approximation has been applied to other prominent lines in this spectrum. Judging from comparisons with analogous transitions in other atoms, accuracies within 50 percent may be expected for the selected lines.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Scr. 6, No. 53, 75-108 (1961).

PIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	Estem 5	$E_k(\mathrm{cm}^{-1})$	μ,	μı	$\mathcal{A}_{ki}(10^8\mathrm{sec}^{-1})$	Ţ _{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$3s^2 3p - 3s3p^2$	² P° – ² [) (1 uv)	1341.2	373	74933	6	10	14	0.64	17	0.59	E	1
			1344.34 1334.87 1344.90	560 0 560	74945 74915 74915	4 2 4	6 4 4	14 12 2.3	0.56 0.65 0.062	10 5.7 1.1	0.35 0.11 -0.60	E E E	ls ls ls
2	3d = (1S)4p	² D = ² P° (1)	4066.2	116881	141+67	10	6	1.0	0.15	20	0.17	D-	ca
			4059.27 4080.04 4057.39	116885 116874 116874	141513 141376 141513	6 4 4	4 2 4	0.90 0.99 0.10	0.15 0.12 0.025	12 6.7 1.3	-6.05 -0.31 -1.00	D – D – D –	ls Is Is
3	$4s = ({}^{\dagger}S)4p$	² S = ² P° (3)	4230.4	117835	141467	2	6	1.5	1.2	33	0.37	D	ca
			4222.15 4246.68	117835 117835	141513 141376	2 2	4 2	1.5 1.4	0.78 0.39	22 11	-0.19	D D	ls Is
4	3s3p4s + 3s3p(³ P°)4p	1P° – 4P (9)	3943.5	184811	210162	12	12	1.7	0.40	63	0.69	D	ca
			3957.64 3933.38 3922.72 3997.17 3951.51	185045 184639 184453 185045 184639 184639	210306 210056 209939 210056 209939 210306	6 4 2 6 4 4	6 4 2 4 2 6	1.2 0.23 0.30 0.76 1.4 0.54	0.29 0.054 0.068 0.12 0.17 0.19	22 2.8 1.8 9.6 8.8 9.5	0.23 -0.66 -0.87 -0.14 -0.17 -0.13	D E D- D-	ls ls ls ls ls
			3895.03 3904.79	184453	210056	2	4	0.75	0.34	8.8	-0.17	D-	ls
5		1P° – 4S (10)	3768,5 3802.08	184811 185045	211339 211339	12	4	2.1 0.97	0.15 0.14	22 11	0.25	D D	ca Is
			3744.22 3717.63	184639 184453	211339 211339	4 2	4	0.68 0.34	0.14 0.14	7.0 3.5	$-0.25 \\ -0.55$	D D	ls Is
6	$4p = ({}^{1}S)4d$	2P° - 2) (4)	3228.8	141467	172429	6	10	4.6	1.2	77	0.86	D	ca
			3233.62 3219.32 3233.62	141513 141376 141513	172429 172429 172429	4 2 4	6 4 4	4.6 3.9 0.77	1.1 1.2 0.12	46 26 5.2	$0.64 \\ 0.38 \\ -0.31$	D D D-	ls Is Is
7	4d = (18)5p	² I) = ² P° (5)	5002 04	172429	101440			0.79	0.22	22	0.11	D	/
			5203.86 5203.86	172429	191640 191640	6	4	0.79	0.036	2.5	-0.84	E	ca, ls ca, ls
8	4d = (1S)5f	2D - 2F° (6)	3280.22	172429	202906	10	14	1.8	0.40	43	0.60	D	са
9	4f=(1S)5d	² F° − ² I) (7)	4587.91	178653	200443	14	16	0.11	0.026	5.4	-0.45	D	ca

Рш

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

PIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p - (^{1}S)3p$	2P°-2P°										
			$[17.865 \times 10^{4}]$	0.0	559.6	2	4	m	0.00157	1.33	A	1

P_{IV}

Ground State

 $1s^22s^22p^63s^2 {}^1S_0$

Ionization Potential

 $51.354 \text{ eV} = 414312 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
368.01	25	847.72	14	1065.7	9
368.32	25	849.80	14	1066.6	9
368.96	25	850.39	14	1086.9	8 8 8
388.32	10	851.09	14	1088.6	8
424.06	26	855.05	12	1091.4	8
443.81	23	859.73	13	1094.4	21
444.25	23	850.49	13	1118.6	4
444.27	23	861.53	13	1589.0	22
445.16	23	863.31	13	1640.6	3 7
445.17	23	865.01	13	1691.8	7
445.18	23	866.81	13	1845.6	6 5
522.01	24	907.60	16	1847.5	.5
628.983	19	908.05	15	3347.72	27
629.914	19	950.669	1	3364.44	27
631.765	19	963.97	18	3371.10	27
756.53	17	1025.58	2	3717.03	29
776.37	20	1028.13	2	3717.63	29
823.177	11	1030.55	2 2 2 2	3719.3	29
824.733	11	1033.14	2	3727.6	29
827.932	11	1035.54	2	3728.67	29
845.97	14	1065.5	9	4249.57	28
847.02	14				

Zare's values [1] have been calculated by means of the method of superposition of configurations, employing Hartree-Fock-Slater wavefunctions as a starting point. The calculations have been carried out in both the dipole length and dipole velocity representations; the length values are chosen in all cases as being probably more reliable. Crossley and Dalgarno's values [2] have been obtained from nuclear charge-expansion calculations which include configuration mixing in a limited way. Zare's method must be considered the more refined of the two calculations. Hence his data have been chosen whenever there was a choice. In many cases, the degree of fit of the data into the apparent f-value dependences on nuclear charge could be utilized as an addi-

tional criterion in arriving at the accuracy estimates. The accuracy assignments for any transition involving the 3s3d D, 3p3d D, or 3p2 D energy levels have been reduced since reliability of these energy levels is quite doubtful. Hence, for transitions involving these states, the listed line strength will be more reliable than either the oscillator strength or the transition probability, since the latter two quantities depend on the wavelength of the transition.

References

P IV. Allowed Transitions

				,									
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľί	μk	$A_{kl}(10^{\kappa}\mathrm{sec}^{-1})$	fik	S(at.u.)	log <i>gf</i>	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	¹ S- ¹ P° (1 uv)	950.669	0	105190	1	3	39.4	1.60	5.01	0.204	В	1
2	$3s3p-3p^2$	3P°_3P (2 uv)	1030.5	68374	165411	9	9	30.2	0.481	14.7	0.64	C+	2
		ŕ	1030.55 1030.55 1035.54 1033.14 1025.58 1028.13	68607 68139 68607 68139 69139 67912	165646 165178 165178 164935 165646 165178	5 3 5 3 1	5 3 1 5 3	22.6 7.5 12.4 29.9 7.7 10.1	0.360 0.120 0.120 0.160 0.201 0.482	6.1 1.22 2.04 1.63 2.04 1.63	0.255 -0.444 -0.222 -0.319 -0.220 -0.317	C+ C+ C+ C+ C+	ls ls ls ls ls
3		$\mathbf{d}_{i} = i\mathbf{D}$	[1640.6]	105190	166144	3	5	1.8	0.12	1.9	-0.44	E	1
4		1P°-1S	[1118.6]	105190	194589	3	1	32.4	0.203	2.24	- 0.215	c-	1
5	3s(2S)3d - 3p(2P°)3d	'D−' F °	[1847.5]	[222142]	[276270]	5	7	7.3	0.53	16	0.42	D-	2
6		'D-'D°	[1845.6]	[222142]	[276325]	5	5	1.2	0.063	1.9	-0.50	D-	2
7		P°-יםי	[1691.8]	[222142]	281251	5	3	2.6	0.068	1.9	-0.47	D-	1
8		3D_3P°	1090.0 [1091.4] [1088.6] [1086.9] [1091.4] [1088.6] [1088.6]	189389 189389 189389 189389 189389 189389 189389	281133 281011 281251 281391 281011 281251 281251	15 7 5 3 5 3 5	9 5 3 1 5 3 3	18 15 14 18 2.7 4.5 0.30	0.19 0.19 0.14 0.11 0.048 0.080 0.0032	10 4.8 2.6 1.1 0.86 0.86 0.057	0.46 9.13 -0.15 -0.50 -0.62 -0.62 -1.80	D+ D+ D+ D+ D+ D+	ls ls ls ls ls
9		3D-3D°	1065.8	189389	283211	15	15	16	0.27	14	0.61	D	2
			[1065.7] [1065.5] [1066.6] [1065.5] [1066.6] [1065.7] [1065.5]	189389 189389 189389 189389 189389 189389	283221 283239 283142 283239 283142 283221 283239	7 5 3 7 5 5 3	7 5 3 5 3 7 5	14 11 12 2.4 3.9 1.7 2.3	0.24 0.18 0.20 0.030 0.040 0.042 0.067	5.8 3.2 2.1 0.73 0.70 0.73 0.70	0.21 -0.05 -0.22 -0.68 -0.70 -0.68 -0.70	D D D - D - D -	ls ls ls ls ls
10	$3s^2 - 3s(^2S)4p$	'S-'P°	[388.32]	0	257520	1	3	15	0.10	0.13	-0.00	D-	1
11	$3s3p - 3s(^2S)3d$		826.34	68374	189389	9	15	46.7	0.796	19.5	0.855	В	1
		(3 uv)	827.932 824.733 823.177 827.932 824.733 827.932	68607 68139 67912 68607 68139 68607	139389 189389 169389 189389 189389 189389	5 3 1 5 3 5	7 5 3 5 3 3	46.4 35.2 26.3 11.6 19.5 1.3	0.668 0.598 0.801 0.119 0.199 0.0079	9.10 4.87 2.17 1.62 1.62 0.11	0.524 0.254 -0.096 -0.225 -0.224 -1.40	B B C C D	ls ls ls ls ls
12		¹ P°- ¹ D (5 uv)	[855.05]	105190	[222142]	3	5	84	1.5	13	0.65	D	1

^[1] Zare, R. N., J. Chem. Phys. 47, 3561 (1967). [2] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).

Piv. Allowed Transitions - Continued

No.	Transition Arrav	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(m cm^{-1})$	μi	μk	$A_{ki}(10^{\circ}\mathrm{sec}^{-4})$	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
13	$3p^2 - 3p(^2P^\circ)3d$	3P_3P°	864.14	165411	281133	9	9	35	0.39	10	0.55	Ð	2
			[866.81]	165646	281011	5	5	26	0.29	4.2	0.16	D	ls
			[861.53]	165178	281251	3	3	8.8	0.098	0.83	-0.53	D-	ls
			[865.01]	165646	281251	5	3	15	0.098	1.4	-0.31	D-	ls
			[860.49]	165178	281391	3	1	35	0.13	1.1	-0.41	D-	Is
			[863.31] [859.73]	165178 164935	281011 281251	3	5 3	8.8 12	0.16 0.39	1.4 1.1	-0.32 -0.41	D-	ls Is
14		3P-3D°	848.90	165411	283211	9	15	64	1.2	29	1.03	D	2
			[849.80]	165646	283321	5	7	66	1.0	14	0.70	D	ls
			[847.02]	165178	283239	3	5	48	0.86	7.2	0.41	D	Is
			[845.97]	164935	283142	1	3	36	1.1	3.2	0.04	D-	ls
			[850.39]	165646	283239	5	5	16	0.17	2.4	-0.07	D-	Is
			[847.72]	165178	283142	3	3	27	0.29	2.4	-0.06	D-	ls
			[851.09]	165646	283142	5	3	1.8	0.011	0.16	-1.26	E	Is
15		'D-'F°	[908.05]	166144	[276270]	5	7	35	0.61	9.1	0.48	Е	2
16		'D-'D°	[907.60]	166144	[276325]	5	5	31	0.39	5.8	0.29	Е	2
17		'D-'P°	[756.53]	166144	298327	5	3	4.1	0.021	0.26	-0.98	Е	1
18	1	'S-'P°	[963.97]	194589	298327	l	3	29.0	1.21	3.84	0.083	C.	1
19	$3s3p - 3s(^2S)4s$	3P°_3S (4 uv)	630.86	68374	226889	9	3	49.2	0.098	1.83	-0.055	C	1
			631.765	68607	226889	5		27.3	0.098	1.02	-0.310	C	Is
			629.914	68139	226889	3		16.5	0.098	0.61	-0.53	C	Is
			628.983	67912	226889	l	3	5.5	0.098	0.203	-1.009	С	ls
20		ıp°_ıs	[776.37]	105190	233995	3	1	24.2	0.073	0.56	-0.66	C-	1
21	$3p^2 - 3s(^2S)4p$	D -Po	[1094.4]	166144	257520	5	3	5.6	0.061	1.1	-0.52	E	1
22		'S-'P°	[1589.0]	194589	257520	1	3	0.18	0.021	0.11	-1.69	D	1
23	$3s3p - 3s(^2S)4d$	³P°−3D	444.71	68374	293242	9	15	0.75	0.0037	0.049	-1.48	E	1
			[445.16]	6' a17	293247	5	7	0.75	0.0031	0.023	- 1.81	E	ls
		1	[444.25]	o8139	293239	3	5	0.55	0.0027	0.012	-2.09	E	Is
			[443.81]	67912	293234	1	3	0.42	0.0037	0.0054	-2.43	E	Is
		ļ	[445.17]	68607	293239	5			5.6×10^{-4}	0.0041	- 2.55	<u>E</u>	Is
			[444.27]	68139	293234	3	3	0.32	9.3 × 10 ⁻⁴	0.0041	-2.55	E	ls
			[445.18]	68607	293234	5	3	0.021	3.7×10^{-5}	2.7 × 10 ⁻⁴	-3.73	E	ls
24		¹P°−¹D	[522.01]	105190	296758	3	5	0.74	0.0050	0.026	-1.82	E	1
25	$3s3p - 3s(^2S)5d$	3bo-3D	368.64	68374	339638	9	15	20	0.070	0.76	-0.20	D	1
			[368.96]	68607	339636	5	7	20	0.058	0.35	-0.54	D	Is
			[368.32]	68139	339639	3	5	15	0.052	0.19	-0.81	Ď	Is
			[368.01]	67912	339642	1	3	11	0.069	0.084	-l.16	D-	Is
		1	[368.96]	68607	339639	5	5	5.1	0.010	0.063	-1.30	D-	Is
			[368.32] [368.96]	68139 68607	339642 339642	3 5	3 3		0.017 6.9×10^{-4}	0.063 0.0042	-1.29 2.46	D- E	ls Is
											- 1		1
26		¹P₀−¹D	[424.06]	105190	[341005]	3	5	0.11	4.8 × 10 ⁻⁴	0.0020	-2.84	Е	1
27	3s4s - 3s(2S)4p	³ S - ³ P° (1)	3355.9	226889	256679	3	9	2.11	1.07	35.4	0.51	C +	1
		,	3347.72	226889	256751	3	5	2.13	0.60	19.7	0.255	C +	ls
			3364.44	226889	256603	3	3	2.09	0.355	11.8	0.027	C+	ls
			3371.10	226889	256544	3	1	2.1	0.12	3.9	-0.45	D	ls
28		IS-IP	4249.57	233995	257520	1	3	0.84	0.69	9.6	-0.161	C	1
20		(2)			201020	1 *	"	0.07	"	7.0	1	1	1

PIV. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	Цk	$A_{ki}(10^6{ m sec}^{-1})$	fik	S(at.u.)	log of	Accu- racy	Source
29	3s4d - 3s(² S)5p	3D _ 3P°	[3719.3] 3728.67 3717.63 [3727.6] 3717.03	293247 293239 293239 293234 293234	320126 320053 320126 320053 320126	7 5 5 3 3	5 3 5 3 5	2.0 1.8 0.36 0.60 0.024	0.30 0.23 0.075 0.12 0.0084	26 14 4.6 4.6 0.31	0.32 0.06 -0.43 -0.44 -1.60	D D - D - E	ca, ls ca, ls ca, ls ca, ls ca, ls

P_{IV}

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ} - {}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ} - {}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi. A. M., Thesis Harvard (1951).

A STATE OF THE STA

P IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	Kr	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	3s3p =3s(2S)3p	зЬо — зЬо	[43.963 × 10 ⁴] [21.343 × 10 ⁴]	67911.6 68139.0	68139.0 68607.4	1 3	3 5	m m	2.12×10 ⁻⁴ 0.00139	2.00 2.50	A A	1
2		ap∘ = 1p∘	[2681.7] [2698.2] [2732.7]	67911.6 68139.0 68607.4	105190 105190 105190	1 3 5	3 3 3	m m m	0.078 6.3 0.092	1.67 × 10 ⁻⁴ 0.0137 2.09 × 10 ⁻⁴	CCC	1 1 1

Ground State

1s22s22p63s 2S1/2

Ionization Potential

 $65.007 \text{ eV} = 524462.9 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
255.60	3	544.91	5	1118.0	1
255.69	3	673.86	7	1128.0	1
328.47	2	673.91	7	1379.7	12
328.77	2	865.46	4	1385.2	12
410.06	2	871.37	4	2424.3	12
410.08	9	871.45	4	2440.8	11
475.60	8	997.53	6	2441.1	11
475.62	8	997.64	6	3175.16	10
542.57	5	1000.4	6	3204.06	10

The only source available for this ion are the charge-expansion calculations of Crossley and Dalgarno [1] which include limited configuration mixing. Graphical comparisons of this work with more refined values within the isoelectronic sequence indicate an accuracy of 25 percent or better. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values for P v simply by graphical interpolation.

Reference

[1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. *ondon A286, 510-518 (1965).

Pv. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	Lisem ⁽¹⁾	$E_k(\mathrm{cm}^{-1})$	Ķi	Kk	$A_{ki}(10^{\mu}\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s - 3p	2S-2Pc	1121.3	0	89181	2	6	11.9	0.67	4.95	0.127	С	1
			[1118.0] [1128.0]	0	89446 88652	2 2	4 2	12.0 11.6	0.448 0.222	3.30 1.65	-0.048 -0.353		ls Is
2	3s-4p	2S-2P°	328.57	0	304350	2	6	11	0.055	0.12	-0.96	D+	interp
			[328.47] [328.77]	0	304445 304161	2 2	4 2	11 11	0.037 0.018	0.080 0.040	-1.13 -1.44	D+ D+	ls Is
3	3s-5p	2S-2P°	255.63	0	391195	2	6	7.5	0.22	0.037	-1.36	D	interp
			[255.60] [255.69]	0	391242 391102	2 2	4 2	7.6 7.3	0.015 0.0071	0.025 0.012	-1.52 -3.85	D D	ls ls
4	3p-3d	2P°-2D	869.39	89181	204204	6	10	36.7	0.69	11.9	0.62	С	1
			[871.37] [865.46] [871.45]	88652	204208 204197 204197	4 2 4	6 4 4	36.2 31.0 6.0	0.62 0.70 0.069	7.1 3.97 0.79	0.394 0.146 -0.56	CCC	ls ls ls

P v. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	Kk	A _{ki} (10" sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
5	3p-4s	2p°_2S	544.13	89181	272961	6	2	74	0.11	1.2	0.18	С	interp
			[544.91] [542.57]	89446 88652	272961 272961	4 2	2 2	49 25	0.11 0.11	0.79 0.39	- 0.36 - 6.66	C C	ls ls
6	3d-4p	2D-2P°	998.54	204204	304350	10	6	17	0.15	4.9	0.18	С	interp
			[997.64] [1000.4] [997.53]	204208 204197 204197	304445 304161 304445	6 4 4	4 2 4	15 16 1.7	0.15 0.12 0.025	2.9 1.6 0.33	-0.05 -0.32 -1.00	C C C	ls ls ls
7	3d-4f	2D-2F°	673.90	204204	352595	10	14	97	0.92	20	0.96	C+	interp
			[673.91] [673.86] [673.91]	204208 204197 204208	352595 352595 352595	6 4 6	8 6 6	91 88 6.3	0.83 0.90 0.043	11 8.0 0.57	0.70 0.56 -0.59	C+ C+ C+	ls ls ls
8	3d-5f	2D-2F°	475.61	204204	414459	10	14	36	0.17	2.7	0.23	С	interp
			[475.62] [475.60] [475.62]	204208 204197 204208	414459 414459 414459	6 4 6	8 6 6	35 35 2.4	0.16 0.18 0.0082	1.5 1.1 0.077	-0.02 -0.14 -1.31	C C C	ls ls ls
9	3d-6f	2D-2F°	410.07	204204	448062	10	14	17	0.061	0.82	0.21	С	interp
			[410.08] [410.06] [410.08]	204208 204197 204208	448062 448062 448062	6 4 6	8 6 6	17 16 1.1	0.058 0.061 0.0028	0.47 0.33 0.023	-0.46 -0.61 -1.77	C C C	ls ls ls
10	4s-4p	² S - ² P°	3184.9	272961	304350	2	6	2.32	1.06	22.2	0.326	С	ca
		(4)	3175.16 3204.06	272961 272961	304445 304161	2 2	4 2	2.34 2.28	0.71 0.351	14.8 7.4	0.151 -0.154	C	ls ls
11	4p-4d	2P°-2D	2435.3	304350	345401	6	10	7.4	1.1	53	0.82	С	interp
			[2440.8] [2424.3] [2441.1]	304445 304161 304445	345403 345398 345398	4 2 4	6 4 4	7.4 6.4 1.2	1.0 1.1 0.11	32 18 3.5	0.60 0.34 -0.36	CCC	ls ls ls
12	4p-5s	² P° – ² S	1383.3	304350	376639	6	2	20	0.19	5.2	0.06	С	interp
			[1385.2] [1379.7]	304445 304161	376639 376639	4 2	2 2		0.19 0.19	3.5 1.7	-0.12 -0.42	C	ls ls

P vi

Ground State

1s22s22p6 1So

Ionization Potential

 $220.414 \text{ eV} = 1778250 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kasiner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

P VI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľί	μ _k	$A_{kl}(10^6\mathrm{sec}^{-1})$	fik.	S(at.u.)	log <i>gf</i>	Accu- racy	Source
1	$\begin{array}{c} 2p^{6} - \\ 2p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})3s \end{array}$	1S-3P°	[91.471]	0	1093240	1	3	74	0.028	0.0084	- 1.55	E	1
2	$\begin{array}{c} 2p^6 - \\ 2p^5(^2\mathrm{P}^\circ_{1/2})3s \end{array}$	1S-1P°	[90.647]	O	1103180	l	3	490	0.18	0.054	0.74	D	1
3	$\begin{array}{c} 2p^{6} - \\ 2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3d \end{array}$	¹S-³P°	[76.534]	0	1306610	1	3	16	0.0042	0.0011	-2.38	E	1
4	2p ⁶ - 2p ⁵ (² P° _{3/2})3d	1S_1P°	[75.648]	0	1321910	1	3	4700	1.2	0.30	0.08	D	1
5	$\begin{array}{c} 2p^6 - \\ 2p^5 (^2\mathbf{P}^{\circ}_{1/2}) 3d \end{array}$	¹ S - ³ D°	[74.951]	0	1334210	1	3	670	0.17	0.042	-0.77	D	1

P vII

Ground State

 $1s^22s^22p^5 {}^2\mathrm{P}^{\circ}_{3/2}$

Ionization Potential

 $263.31 \text{ eV} = 2124300 \text{ cm}^{-1}$

Allowed Transitions

The value for the $2s^22p^5 {}^2P^\circ - 2s2p^6 {}^2S$ multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving the n=3 shell electrons, which were not included in this calculation, may be significant.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

P VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	μĸ	$A_{ki}(10^{\circ}\mathrm{sec}^{-1})$	fi.	S(at.u.)	log g/	Accu-	Source
1	$2s^22\rho^5 - 2s2\rho^6$	² P°= ² S	221.09	2423	454732	6	2	420	0.10	0.45	-0.22	D	ı
			[219.91] [223.48]	0 7268	454732 454732	4 2	2 2	290 140	0.10 0.10	0.30 0.15	-0.40 -0.70		ls Is

P vII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

PVII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	μĸ	Type of Transi- tion	4 _{ki} (sec ⁻¹)	S(al.u.)	Accu- racy	Source
l	$2p^5 - 2p^5$	5bo=5bo	[13755]	0	7268	4	2	m	6.89	1.33	A	1

P viii

Ground State

1s22s22p4 3P2

Ionization Potential

 $309.26 \text{ eV} = 2495000 \text{ cm}^{-1}$

Allowed Transitions

The values are calculated from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. From comparisons with other ions in the isoelectronic sequence, uncertainties should be within 50 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

PVIII. Allowed Transitions

No.	Transition Array	Multipler	λ(Å)	$E_{\delta}(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μί	μĸ	$A_{ki}(10^8\mathrm{sec}^{-1})$	fik .	S(at.n.)	log gf	Accu- racy	Source
1	$2s^22p^3 + 2s2p^5$	ab−ab₀	247.77	2789	406389	9	y	190	0.18	1.3	0.21	D	1
			[247.64] [248.04] [244.55] [246.32] [251.23] [249.32]	0 5757 0 5757 5757 7826	403806 408913 408913 411736 403806 408913	5 3 5 3 3	5 3 3 1 5 3	140 49 83 190 46 61	0.13 0.045 0.045 0.058 0.073 0.17	0.54 0.11 0.18 0.14 0.18 0.14	-0.17 -0.87 -0.65 -0.76 -0.66 -0.77	D D D D	ls ls ls ls
2		'D-'P°	[196.76]	[52450]	[560680]	5	3	310	0.11	0.35	-0.26	D	1
3		'S−'P°	[222.37]	[110970]	[560680]	1	3	46	0.10	0.075	1.00	D	1

P viii

Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV. since the same considerations have been applied.

References

[1] Naqvi, A. M. Thesis Harvard (1951). [2] Malville. J. M. and Berger, R. A., Planetary and Space Science 13, 1131-1136 (1965).

PvIII. Forbidden Transitions

No.	Transition Array	Multiple1	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	#k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P_3P										
			[17365]	0	5757	5	3	e	1.09×10^{-3}	0.0306	<u>C</u>	1. 2
			[17365]	0	5757	5	3	m	4.28	2.49	В	
			[12774] [48319]	0 5757	7826 7826	5	1	e m	6.8 × 10 ⁻⁵ 0.476	0.0138 1.99	C-B	2
			[40013]	3131	1020	,	١.	""	0.410	1.77	_ B	
2		3P - 1D						İ				
			[1906.6]	0	[52450]	5	5	e	0.014	0.0011	D-	1. 2
	ļ		[1906.6]	0	[52450]	5	5	m	28.7	0.0369	C	1
			[2141.0]	5757	[52450] [52450]	3	5	e	0.0011 6.8	1.5 × 10 ⁻⁴		1.2
			[2141.0] [2240.3]	5757 7826	[52450]	1	5	m e	4.6×10-4	0.0124 7.7×10-3	C D-	2
			[2240.0]	1020	[02400]	1	, J		4.0 × 10	1.1 × 10	"	
3		3P - 1S				1		-				
			[901.14]	0	[110970]	5	1	e	0.18	6.3×10^{-3}		2 2
			[950.45]	5757	[110970]	3	1	m	340	0.0108	C	2
4	ĺ	'D-'S					İ					
7		D 3	[1708.8]	[52450]	[110970]	5	1	e	6.2	0.054	C-	2
			[.100.0]	[02700]	[,	ľ	1				3-	

P ix

Ground State

Ionization Potential

 $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

371.6 eV = 2997600 cm⁻¹

Allowed Transitions List of tabulated lines:

Wavelength (Å)	No.	Wavelength (Å)	No.	Wavelength (Å)	No.
194.61	3	234.94	7	283.25	1
197.03	3	235.22	7	283.96	8
197.25	3	250.05	2	285.36	
211.17	6	250.37	2	289.28	,
211.60	6	250.40	2	289.53	1
214.02	6	250.72	2	308.65	9
214.46	6	278.06	4	314.77	9
227.75	5	278.82	4	314.95	9
228.25	5	279.21	4	341.33	9
231.69	7				

Values for all the listed transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Judged from graphical comparisons with other ions in the isoelectronic sequence and from the general success of Cohen and Dalgarno's method for similar atomic systems, uncertainties within 50 percent are indicated.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

P IX. Allowed Transitions

				1 11									
No.	ransition Array	Multiplet	A(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	K i	Kk	A _{ki} (10 ^µ sec ⁻¹)	lik	S(at.u.)	log <i>gj</i>	Accu- racy	Source
ı	$2s^22p^3-2s2p^4$	4S°-4P	287.07	0	348350	4	12	56	0.21	0.78	-0.08	D	1
			[289.53] [285.36] [283.25]	0 0 0	345390 350440 353050	4 4 4	6 4 2	54 57 58	0.10 0.069 0.035	0.39 0.26 0.13	-0.40 -0.56 -0.85	D D D-	ls Is Is
2		$^{2}D^{\circ}-^{2}D$	250.45	73505	472784	10	10	130	0.12	0.98	0.08	D	1
			[250.72] [250.05] [250.40] [250.37]	73730 73167 73730 73167	472580 473090 473090 472580	6 4 6 4	6 4 4 6	120 110 13 8.4	0.11 0.11 0.0079 0.012	0.55 0.35 0.039 0.039	-0.18 -0.36 -1.32 -1.32	DDEE	ls Is Is
3		² D°- ² P	196.35	73505	582810	10	6	440	0.15	0.98	0.18	D	1
			[197.25] [194.61] [197.03]	73730 73167 73167	580710 587010 580710	6 4 4	4 2 4	390 450 43	0.15 0.13 0.025	0.59 0.33 0.065	-0.05 -0.28 -1.00	D D E	ls Is Is
4		2P°-2D	278.80	114106	472784	6	10	20	0.039	0.21	-0.63	D	. 1
			[279.21] [278.06] [278.82]	114430 113457 114430	472580 473090 473090	4 2 4	6 4 4	20 16 3.3	0.035 0.038 0.0038	0.13 0.070 0.014	-0.85 -1.12 -1.82	D D E	ls Is Is
5	14	2P°-2S	228.08	114106	552540	6	2	260	0.069	0.31	-0.38	P	1
			[228.25] [227.75]	114430 113457	552540 552540	4 2	2 2	180 86	0.070 0.067	0.21 0.10	-0.55 -0.87	D	ls Is
6	 	2P°_2P	213.35	114106	582810	6	6	130	0.090	0.38	-0.27	D	1
			[214.46] [211.17] [211.60] [214.02]	114430 113457 114430 113457	580710 587010 587010 580710	4 2 4 2	4 2 2 4	110 90 45 22	0.074 0.060 0.015 0.030	0.21 0.084 0.042 0.042	-0.53 -0.92 -1.22 -1.22	D D- D-	ls ls ls ls
7	$2s2p^4-2p^5$	2D-2P°	233.87	472784	900380	10	6	210	0.10	0.78	0.00	D	1
			[234.94] [231.69] [235.22]	472580 473090 473090	898220 904700 898220	6 4 4	4 2 4	180 210 20	0.10 0.085 0.017	0.47 0.26 0.052	-0.22 -0.47 -1.17	D D E	ls Is Is
8		2S-2P°	287.49	552540	900380	2	6	12	0.045	0.086	- 1.05	D	1
			[289.28] [283.96]	552540 552540	898220 904700	2 2	4 2	12 13	0.030 0.016	0.057 0.029	-1.22 1.49	D D	ls Is
9		2P-2P°	314.89	582810	900380	6	6	150	0.23	1.4	0.14	D	1
			[314.95] [314.77] [308.65] [321.33]	580710 587010 580710 587010	898220 904700 904700 898220	4 2 4 2	4 2 2 4	130 100 55 24	0.19 0.15 0.039 0.076	0.78 0.31 0.16 0.16	-0.12 -0.52 -0.81 -0.81	D D D-	ls ls ls

P IX Forbidden Transitions

Naqvi's [1] calculations are the only available source.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951)

Pix. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi.	#k	Type of Transi- tion	$A_{kl}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
l	$2p^3 - 2p^3$	4S° - 2D°										
			[1356.3] [1356.3] [1366.7] [1366.7]	0 0 0	73730 73730 73167 73167	4 4 4 4	6 6 4 4	m e m e	0.0441 0.014 10.9 0.0083	2.45×10^{-5} 2.2×10^{-4} 0.00412 9.4×10^{-5}	C – D – C – D –	1 1 1 1
2		4S°-2P°			}							
			[881.39] [881.39] [873.90] [873.90]	0 0 0	113457 113457 114430 114430	4 4 4 4	2 2 4 4	m e m e	57 7.1×10 ⁴ 127 0.0030	0.00288 4.5 × 10 ⁻⁷ 0.0126 3.6 × 10 ⁻⁶	(:- D- (:- D-	1 1 1 1
3		² D° – ² D°								 		
			$[17.76 \times 10^4]$ $[17.76 \times 10^4]$	73167 73167	73730 73730	4 4	6 6	m e	$\begin{array}{c} 0.00193 \\ 2.6 \times 10^{-12} \end{array}$	2.40 0.0016	B D-	1
4		2D° - 2P°										
			[2456.3] [2456.3] [2481.3] [2481.3] [2516.4] [2422.7] [2422.7]	73730 73730 73167 73167 73730 73167 73167	114430 114430 113457 113457 113457 114430 114430	6 6 4 4 6 4 4	4 4 2 2 2 4 4	m e m e e m	17.3 0.49 18.5 0.40 0.25 32.5 0.22	0.0380 0.10 0.0210 0.044 0.030 9.069 0.043	D C – D C – D	1 1 1 1 1 1
5		2 20 - 2 20										
			$ \begin{bmatrix} 10.27 \times 10^{1} \\ 10.27 \times 10^{1} \end{bmatrix} $	113457 113457	114430 114430	2 2	4 4	m e	0.00828 2.6×10 11	1.33 7.0 × 10	B D-]

 $\mathbf{P}\mathbf{x}$

Ground State

 $1s^22s^22p^2\,^3\mathrm{P}_0$

Ionization Potential

 $424.3 \text{ eV} = 3423000 \text{ cm}^{-1}$

Allowed Transitions

Most data are obtained from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. Graphical comparisons of this material within the iso-

electronic sequence depicting the dependence of f-values on nuclear charge have been made, and the available experimental data for the lower ions, mostly from lifetime measurements, establish fairly definitely that the uncertainties should not exceed 50 percent.

Reference

[1] Colien, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Px. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	e,	$A_{ki}(10^6\mathrm{sec}^{-1})$	fii:	S(at.u.)	log gf	Accu-	Source
ı	$2s^22p^2 - 2s2p^3$	$^3P - ^3D^\circ$	315.42	5897	322937	9	15	31	0.077	0.72	-0.16	D÷	1
			[318.26] [312.87] [309.44] [318.04] [312.72] [317.88]	8580 3390 0 8580 3390 8580	322790 323010 323160 323010 323160 323160	5 3 1 5 3 5	7 5 3 5 3 3	31 24 18 7.6 13 0.84	0.065 0.058 0.079 0.011 0.019 7.6 × 10 ⁻⁴	0.34 0.18 0.080 0.069 0.060 0.0040	-0.49 -0.76 -1.10 -1.26 -1.24 -2.42	D+ D+ D D D	ls ls ls ls ls
2		3 P -3 P °	[269.48] [265.77]	8580 3390	379660 379660	5 3	5 5	58 20	0.063 0.035	0.28 0.093	-0.50 -0.98	D D-	1. <i>ls</i> 1. <i>ls</i>
3		ap_a\$°	206.52 [207.68] [205.46] [204.04]	5897 8580 3390 0	490100 490100 490100 490100	5 3 1	3 3 3	440 240 150 50	0.093 0.094 0.094 0.094	0.57 0.32 6.19 0.063	-0.08 -0.33 -0.55 -1.03	D+ D+ D+ E	ls Is Is
4		'D-'D°	[235.27]	59330	484377	5	5	220	0.19	0.72	-0.02	D	1
5		ıD=ıΡ°	[207.57]	59330	541090	5	3	280	0.11	0.37	-0.26	D	1
6		'S-'P"	[237.16]	119430	541090	l	3	76	0.19	0.15	-0.72	D-	1

P_x

Forbidden Transitions

The adopted values represent, as in the case of Na VI, the work of Naqvi [1], Malville and Berger [2], and Froese [3]. For the selection of values, the same considerations as for Na VI are applied, the one exception being that Froese's magnetic dipole values are also used. Since the observed energy levels are uncertain, it is felt that the ζ and η calculated from her theoretical energy levels will be as accurate as the experimental ones.

Naqvi, A. M., Thesis Harvard (1951).
 Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131-1136 (1965).
 Froese, C., Astrophys. J. 145, 932-935 (1966).

Px. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	μ _k	Type of Transi- tion	4 _{ki} (sec 1)	S(ai.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	ap _ ap										
•	-pp		[29491]	0	3390	ı	3	m	0.698	1.99	В	1, 2, 3
			11652	ő	8580	l i	5	, P	1.75×10 5	0.0112	C	3
			19263)	3390	8580	3	5	m	1.87	2.48	В	1, 2, 3
			[19263]	3390	8580	3	5	e	3.12×10^{-8}	0.0247	C	3
2	!	3P-4D						ļ				
_			[1685.5]	0	59330	1	5	e	9.2×10 ¹	3.7×10^{-5}	D	3
	i		[1787.6]	3390	59330	3	5	m	16.8	0.0178	C	1, 2, 3
			[1787.6]	3390	59330	3	5	e	0.0034	1.9 × 10 ⁴	D	3
			[1970.4]	8580	59330	5	5	m	37.3	0.053	C	1, 2, 3
			[1970.4]	8580	59330	5	5	e	0.015	0.0013	D	3
3	İ	3P=1S									Ì	
Ū		'	[861.77]	3390	119430	3	1	m	405	0.0096	C	2.3
			[902.12]	8580	119430	5	i	e	0.31	1.1×10^{-4}		3
4		'D-'S										
•			[1663.9]	59330	119430	5	1	e	5.8	0.0437	C	3

P XI

Ground State

 $1s^22s^22p^2P_{1/2}^{\circ}$

Ionization Potential

 $479.4 \text{ eV} = 3867500 \text{ cm}^{-1}$

Allowed Transitions

Values for the majority of the transitions are calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1], which includes limited configuration mixing. Graphical comparisons with other data for the lower ions of this isoelectronic sequence indicate that the uncertainties should be within 50 percent.

For the $2p \, ^2P^\circ - 3s \, ^2S$ and $2p \, ^2P^\circ - 3d \, ^2D$ multiplets we have obtained data by exploiting the dependence of f-values on nuclear charge: In these cases accurate data for several other ions of the boron sequence are available from extended self-consistent field calculations by Weiss [2] in which configuration mixing is fully included. Utilizing those values, which are also supported by some experimental results on lower ions, we have obtained the f-values of the two transitions simply by graphical interpolation.

References

^[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

^[2] Weiss, A. W., private communication (1967).

PXI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	K,	μĸ	$A_{ki}(10^6\mathrm{sec}^{-1})$.lık	S(at.u.)	log g/	Accu- racy	Source
1	$2s^22p - 2s2p^2$	2P°-2D	321.83	6467	317190	6	10	26	0.068	0.43	-0.39	D	1
			[325.21] [315.27] [325.21]	9700 0 9700	317190 317190 317190	4 2 4	6 4 4	26 23 4.3	0.061 0.067 0.0068	0.26 0.14 0.029	$ \begin{array}{r r} -0.61 \\ -0.87 \\ -1.57 \end{array} $	D D E	ls ls ls
2		2P°-2S	251.98	6467	403330	6	2	110	0.034	0.17	-0.69	D +	1
			[254.05] [247.94]	9700 0	403330 403330	4 2	2 2	68 38	0.033 0.035	0.11 0.057	-0.88 -1.15	D+ D	ls ls
3		2P°-2P	236.27	6467	429707	6	6	200	0.16	0.76	0.02	D +	1
			[236.99] [234.84] [240.32] [231.67]	9700 0 9700 0	431650 425820 425820 431650	4 2 4 2	4 2 2 4	160 130 61 34	0.13 0.11 0.027 0.055	0.42 0.17 0.084 0.084	-0.28 -0.66 -9.97 -0.96	D + D+ E E	ls ls ls
4	$2s2p^2 + 2p^3$	4P=1S°	265.80	[183283]	[559500]	12	4	180	0.065	0.68	-0.11	D+	1
			[268.02] [264.41] [262.05]	[186400] [181300] [177900]	[559500] [559500] [559500]	6 4 2	4 4 4	89 63 31	0.064 0.066 0.064	0.34 0.23 0.11	-0.42 -0.58 -0.89	D + D + D +	ls Is Is
5	2p ('S)3s	² P°= ² S	46.134 [46.203] [45.997]	6467 9700 0	2174060 2174060 2174060	6 4 2	2 2 2	2190 1400 700	0.022 0.022 0.022	0.020 0.013 0.0067	-0.88 -1.06 -1.36	C C D	interp Is Is
6	2p+('S)3d	2P°-2D	42.710	6467	2347866	6	10	1.4×10 ⁴	0.64	0.54	0.58	С	interp
			[42.764] [42.599] [42.776]	9700 0 9700	2348130 2347470 2347470	1 2 4	6 4 4	$\begin{array}{c} 1.4 \times 10^{4} \\ 1.2 \times 10^{4} \\ 2300 \end{array}$	0.57 0.64 0.064	0.32 0.18 0.036	0.36 0.11 -0.59	C C D	ls Is Is

P xi

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

P xI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	#k	Type of Transi- tion	$A_{ki}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
l	2p = (¹S)2p	2 >0 2 >0	[10306]	0	9700	2	4	m	8.19	1.33	A	1

Ground State

1s22s2 1So

Ionization Potential

 $560.3 \text{ eV} = 4520500 \text{ cm}^{-1}$

Allowed Transitions

Garstang and Shamey [1] have obtained the f-value for the intercombination line 2 'S₀-2 'P'₁ by calculating the ratio of this line against the resonance transition in the intermediate coupling approximation and by using for the resonance line a value calculated according to Cohen and Dalgarno's method [2]. The data calculated from the charge-expansion method of Cohen and Dalgarno [2], which includes limited configuration mixing, are estimated to be usually accurate to 50 percent or better, while the charge-expansion method of Naqvi and Victor [3] should be less reliable when the effects of configuration interaction are strong, since these are neglected entirely. In assigning the accuracy estimates for these methods as well as for the Coulomb approximation we were to a great extent guided by studying the degree of fit of the data into the systematic trends along isoelectronic sequences.

Reterences

Garstang, R. H., and Shamey, L. J., Astrophys. J. 148, 665–666 (1967).
 Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258–270 (1964).
 Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3; tö (1964).

P XII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i({ m cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	¥i	βk	$A_{kl}(10^8~{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s ² -2s(² S)2p	¹S−³P°	[536.51]	0	[186390]	1	3	0.0685	1.1 × 10 ⁻⁴	2.0 × 10 →	-3.96	D	1n
2		'S-'P°	[278.68]	0	358840	1	3	70	0.245	0.225	-0.61	C	2
3	$2s2p - 2p^2$	abo=ab	[335,57] [328,30]	[192996] [186390]	[490990] [490990]		5 5	43 15	0.072 0.040	0.40 0.13	-0.44 -0.92	D+ D+	2. ls 2. ls
4		ιΡ°-ιD	[557.57]	358840	538190	3	5	13	0.10	0.55	-0.52	D-	2
5	$2s^2 - 2s(^2S)3p$	1S-1P°	[37.345]	0	2677740	1	3	1.1×10 ⁴	0.66	0.81	-0.18	E	3
6	$2s2p - 2s(^2S)3s$	¹P°−¹S	[44.045]	358840	2629250	3	1	850	0.0033	0.0036	- 1.60	E	3
7	$2s3s - 2s(^2S)3p$	1S_1P°	[2061.6]	2629250	2677740	1	3	0.79	0.152	1.03	-0.32	C:	3
8	2p3s = 2p(2P°)3p	'P°-'D	[1407.5]	2876720	2947770	3	5	2.59	0.128	1.78	-0.416	C:	ca
9	2s3p-2s(2S)3d	ıP°−ıD	[1208.5]	2677740	2760490	3	5	3.28	0.120	1.43	-0.444	C	ca
10	2p3p – 2p(² P°)3d	'D-'F°	[1906.9]	2947770	3000210	5	7	0.86	0.065	2.05	-0.488	C:	ca
11		1D-1P°	[1568.1]	2947770	3011540	5	3	0.0443	9.8×10 ⁻⁴	6.0253	-2.310	C:	ca

P XII

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

P XII. Forbidden Transitions

No.	Transition Array	Multiplet	A(Å)	$E_i(\mathrm{cm}^{-\epsilon})$	$E_k(\mathrm{cm}^{-1})$	gı	#k	Type of Transi- tion	$A_{ki}(\sec^{-t})$	S(at.11.)	Accu- racy	Source
ŀ	2s2ρ-2s(² S)2ρ	3bo=3bo	[31242] [15147]	[183190] [186390]		1 3	3 5	m m	0.590 3.88	2. 00 2. 50	B A	1
2		3 h o — 1 h o	[569.31] [579.88] [602.95]	[183190] [186390] [192990]	358840 358840 358840	1 3 5	3 3 3	m m m	77 1940 81	0.00158 0.0421 0.00197	C C C	1 1 1

P xIII

Ground State

 $1s^22s\ ^2S_{1/2}$

Ionization Potential

 $611.45 \text{ eV} = 4933060 \text{ cm}^{-1}$

Allowed Transitions

For the transition 2s-2p, the charge-expansion calculation of Cohen and Dalgarno [1] is chosen. An uncertainty of less than 10 percent is indicated from the graphical comparison of this value with the other material for the same transition within the isoelectronic sequence. Data for the other listed transitions have been obtained from the Coulomb approximation. Plots of the dependence of f-value on nuclear charge for all these transitions have been made and show that this material connects up very smoothly with the data for the lower ions as well as with the hydrogenic value for infinite nuclear charge. Based on this impressive agreement, accuracies of 10 percent (or 25 percent for some of the smaller values) are indicated.

Reference

[11] Cahen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

P XIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	μ _k	$A_{ki}(10^6\mathrm{sec}^{-1})$	fik .	S(at.u.)	log gf	Accu- racy	Source
1	2s - 2p	2S-2P°	464.24	0	215407	2	6	10.4	0.100	0.307	-0.699	В	1
			[456.10] [481.42]	0	219250 207720	2 2	4 2	10.9 9.26	0.0683 0.0322	0.205 0.102	-0.865 -1.191		ls Is
2	2s-3p	2S-2P°	35.110 [35.086] [35.157]	0 0 0	2848230 2850150 2844390	2 2 2	6 4 2	6180 6190 6150	0.343 0.229 0.114	0.0792 0.0528 0.0264	-0.164 -0.339 -0.642	В	ca ls ls
3	2p-3s	2P°-2S	38.767	215407	27949(X)	6	2	2610	0.0196	0.0150	- 0.930	В	ca
			[38.825] [38.652]	219250 207720	2794900 2794900	4 2	2 2	1730 877	0.0196 0.0196	0.0100 0.00500	- 1.106 1.407	B B	ls Is
4	2p-3d	²P°−²D	37.655	215407	2871076	6	10	1.90×10 ⁴	0.675	0,502	0.607	В	ca
			[37.702] [37.558] [37.721]	219250 207720 219250	2871620 2870260 2870260	4 2 4	6 4 4	1.90 × 10 ⁴ 1.60 × 10 ⁴ 3160	0.606 0.675 0.0674	0.301 0.167 0.0335	0.385 0.130 - 0.569		/s /s /s
5	3s - 3p	2S-2P°	1875.1	2794900	2848230	2	6	0.953	0.151	1.86	- 0.520	В	ca
			[1810.0] [2020.0]	2794900 2794900	2850150 2844390	2 2	4 2	1.06 0.762	0.104 0.0466	1.24 0.620	-0.682 -1.031	B B	ls ls
6	3p-3d	2P°-2D	4375.9	2848230	2871076	6	10	0.0583	0.0279	2.41	-0.776	В	ca
			[4656.4] [3864.4] [4971.3]	2850150 2844390 2850150	2871620 2870260 2870260	4 2 4	6 4 4	0.0485 0.0705 0.00664	0.0236 0.0316 0.00246	1.45 0.803 0.161	-1.025 -1.199 -2.007	B B B	/s /s /s

White the latest the l

SULFUR

SI

Ground State

1s22s22p63s23p4 3P2

Ionization Potential

 $10.357 \text{ eV} = 83559.3 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1277.3	10	1474.39	7	7696.73	32
1283.8	10	1474.57	7	8449.54	33
1286.7	10	1483.04	7	8451.55	33
1295.66	9	1483.23	7		
1295.00	9	1485.61	3	8452.14	33
1290.17	,	1403.01		8670.19	29
1302.34	9	1487.15	7	8670.65	29
1302.87	9	1666.69	13	8671.37	29
1303.11	9	1687.49	2	8679.00	29
1303.42	22	1706.38	12	8679.70	20,
1305.89	9	1706.9,	12	8680.47	29
1316,57	20	1707.13	12	8693.24	29
1316.6	20	1782.26	19	8693.98	29
1323.5	20	1807.34	6	8694.70	29
1323.52	20	1819.2	18	8874.53	24
1326.64	20	1820.36	6	8880.1	24
1381.57	1	1826.26	6	0000 70	94
1385.52	i	1900.27	5	8880.70	24
1388.46		1900.27	5	8882.47	24
1389.16	1 1	2168.9	11	8884.23	24
			17	9035.92	30
1392.61	1	2190.6	17	9036.32	30
1396.15	1	3015.7	16	9036.73	30
1401.54	21	4694.13	27	9038.72	30
1409.37	21	4695.45	27	9039.27	30
1412.90	21	4696.25	27	9039.5	30
1425.10	4	5278.10	28	9212.91	25
1425.2	4	5278,70	28	9228.11	25
1425.23	4	5278.99	28	9237.49	25
1433.33	4	6403.58	34	10455.5	26
1437.01	4	6408.13	34	10456.8	26
1444.32	8	6415.50	34	10459.5	26
1448.25	15	6743.58	31	11403	23
1452.6	8	6748.79	31	11406	23
1471.82	14	6757.16	31		
1472.5	14	7679.60	32	11453	23
1472.5	7	7679.00	32	11464 11472	23 23

For the vacuum uv portion of the spectrum, two experimental data sources are available. Müller [1] has carried out a wall-stabilized arc experiment for many lines in this region; since his absolute values agree within a few percent with the scale provided by the lifetime measurements of Savage and Lawrence [4] employing the phase shift technique, we have in this case not renormalized these values to the lifetime scale as we have usually done. Lawrence [2] has performed intermediate coupling calculations for all possible transitions in the $3p^4-3p^34\varepsilon$ array; these numbers are normalized by means of the scale provided by the lifetime experiment of Savage and Lawrence [4] above. Lawrence's values are chosen whenever Müller is not available. In the visible region of the spectrum, transition probabilities have been measured by Bridges and Wiese [3] using

a wall-stabilized arc, by Foster [6] with a vortex arc and by Miller [5] with a conventional shock-tube. All three experiments agree well on a relative basis, but the absolute scale of Bridges and Wiese is about a factor of two higher than that of the other two authors. The absolute values are estimated to be of only moderate accuracy, of the order of 20 to 50 percent, due to difficulties in determining the populations of the atomic states from which the emission takes place. We have therefore renormalized the data of Bridges and Wiese, which are more complete than the others, to the scale provided by the Coulomb approximation. This scale is just about in between the two experimental scales and it fits extremely well into the f-value regularities observed for homologous atoms. The Coulomb approximation is employed for the remainder of the transitions listed and is expected to give results with uncertainties within 50 percent, except for those transitions involving shellequivalent electrons.

References

[1] Müller. D., Z. Naturforsch. 23a, 1707-1716 (1968).

Lawrence, G. M., Astrophys. J. 148, 261-268 (1967).
Bridges, J. M., and Wiese, W. L., Phys. Rev. 159, 31-38 (1967).
Savage, B. D., and Lawrence, G. M., Astrophys. J. 146, 940-943 (1966).
Miller, M. H., Thesis Maryland (1968) and to be published.
Foster, E. W., Proc. Phys. Soc. London A90, 275-282 (1967).

Allowed Transitions SI.

No.	Transition Array	Multiplet	λ(Å)	<i>E₁</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	$A_{ki} = (10^8 \text{ sec}^{-1})$	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^23p^4 - 3s3p^5$	³ P – ³ P° (7 uv)	1388.7	196	72206	9	9	0.012	3.4×10 ⁻⁴	0.014	-2.51	D	1
			1388,46 1389,16 1381,57	0 397 0	72026 72383 72383	5 3 5	5 3 3	0.0055 0.0017 0.0054	1.6×10^{-4} 4.9×10^{-5} 9.3×10^{-5}	0.0037 6.7 × 10 ⁻⁴ 0.0021	$ \begin{array}{r} -3.10 \\ -3.83 \\ -3.33 \end{array} $	D D D	1 1 1
			1385.52 1396.15 1392.61	397 397 574	72572 72026 72383	3 3 1	1 5 3	0.013 0.0057 0.0052	1.2 × 10 ⁻⁴ 2.8 × 10 ⁻⁴ 4.5 × 10 ⁻⁴	0.0016 0.0039 0.0021	-3.44 -3.08 -3.35	D D D	1 1 1
2		'S-'P°	1687.49	22181	81441	1	3	0.94	0.12	0.67	-0.92	D	1
3	$3p^4 - 3p^3(^4S^\circ)3d$	³ P5D° (4 uv)											
		(- 4 4 7)	1485.61	574	67836	1	3	0.023	0.0023	0.011	-2.64	D	1
4		$^{3}P - ^{3}D^{\circ}$ (5 uv)	1429.1	196	70169	9	15	3.6	0.18	7.8	0.21	D	1
			1425.10 1433.33	0 397	70171 70167	5 3	7 5	3.5 2.7	0.15 0.14	3.5 2.0	-0.12 -0.38		1, ls
			1437.01 1425.23	574 0	70166 70167	1 5	3 5	2.0 0.89	0.19 0.027	0.90 0.63	-0.72 -0.87	D D-	1. /s
			1433.33 [1425.2]	397 0	70166 70166	3 5	3	1.6 0.099	0.048 0.0018	0.68 0.042	-0.84 -2.05	D-	1. <i>ls</i>
5	$3p^4 - 3p^3(^4S^\circ)4s$	³ P_ ⁵ S° (1 uv)											
		(1 44)	1900,27 1914.68	0 397	52624 52624	5 3	5 5	6.6 × 10 ⁻⁴ 1.9 × 10 ⁻⁴	3.6×10^{-5} 1.7×10^{-5}	$0.0011 \\ 3.2 \times 10^{-4}$	3.74 4.29	D D	1 1
6		³ P - ³ S° (2 uv)	1813.7	196	55331	9	3	7.1	0.12	6.3	0.03	C	,
		(2 41)	1807.34 1820.36 1826.26	0 397 574	55331 55331 55331	5 3 1	3 3 3	4.1 2.2 0.73	0.12 0.11 0.11	3.6 2.0 0.66	-0.22 -0.48 -0.96	C C	1 1 1
7	$3p^4 - 3p^3(^2D^\circ)4s'$	³ P- ³ D° (3 uv)	1478.5	196	67832	9	15	1.7	0.094	4.1	-0.07	D	1, 2
		(0 47)	1474.01 1483.04 1487.15 1474.39	0 397 574 0	67843 67826 67817 67826	5 3 1 5	7 5 3 5	1.6 1.2 0.89 0.57	0.075 0.066 0.089 0.019	1.8 0.97 0.44 0.45	-0.43 -0.70 -1.05 -1.02		1, 2 1, 2 1, 2
			1483.23 1474.57	397	67817 67817	3 5	3	0.75 0.068	0.025 0.0013	0.36 0.032	-1.12 -2.19	D	1, 2

S I. Allowed Transitions - Continued

==		7		T. And	weu I	lan	SHIC	ons — Cor	itinued				
No	. Transition Array	Multiple	t λ(Å)	$E_i(\operatorname{cin}^{-1})$	$E_k(\text{cm}^{-1})$) 4	, 2	Aki(10 sec-1)		S(at.u.)	log gf	Accu	Source
8		3P-1D°				1		-				+-	
9			1444.32 [1452.6]	0 397	69239 69239		5 5		8.1×10-4 1.8×10-4	0.019 0.0026	-2.39 -3.27	D D	1 2
9	$3p^4 - 3p^3(^2P^\circ)4s$	3P_3P° (9 uv)	1299.2	196	77166	9	g	5.7	0.15	5.6	0.13	D	1, 2
10		3P_1P°	1295.66 1302.87 1296.17 1303.11 1302.34 1305.89	0 397 0 397 397 574	77181 77151 77151 77136 77181 77151	3 5	3 3 1 5	1.1 2.4 4.8 1.3	0.12 0.028 0.037 0.041 0.056 0.13	2.6 0.36 0.79 0.53 0.72 0.56	-0.22 -1.07 -0.73 -0.91 -0.77 -0.89	D D D D D	1 2 1 1 2 2
11	3p4 - 3p3(4S°)4s	'D-3S°	[1277.3] [1283.8] [1286.7]	0 397 574	78290 78290 78290		3	7.8×10^{-1}		$ 3.7 \times 10^{-4} \\ 2.4 \times 10^{-7} \\ 5.4 \times 10^{-6} $	-7.24	D D D	2 2 2 2
12	$3p^4-$	D-3D°	[2168.9]	9239	55331	5	3	4.9×10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.4×10-4	-3.98	D	2
	3p ³ (2D°)4s'	(10 uv)	1706.38 [1706.9] 1707.13	9239 9239 9239	67843 67826 67817	5 5 5	5	0.0012 1.6 × 10 · 0.0050	$\begin{array}{ c c c c c c }\hline 7.5 \times 10^{-5} \\ 7.0 \times 10^{-7} \\ 1.3 \times 10^{-4} \\ \end{array}$	$\begin{array}{ c c c c }\hline 0.0021 \\ 2.0 \times 10^{-5} \\ 0.0037 \\ \hline \end{array}$	-3.43 -5.46 -3.19	D D D	1 2 1
13		'D-'D° (ll uv)	1666.69	9239	69239	5	5	5.8	0.24	6.6	0.08	C	1
14	$3p^4 - 3p^3(^2P^\circ)4s''$	'D-3P°											
	<i>γ</i> , (1 γ ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι		1471.82 [1472.5]	9239 9239	77181 77151	5 5	5 3	0.025 0.0053	8.1×10 ⁻⁴ 1.0×10 ⁻⁴	0.020 0.0025	-2.39 -3.30	D D	1 2
15		יP° (12 uv)	1448.25	9239	78290	5	3	6.9	0.13	3.1	-0.19	D	1
	$3p^4 - 3p^3(^4S^\circ)4s$ $3p^4 -$	1S-2S°	[3015.7]	22181	55331	1	3	1.2×10-4	4.9×10-5	4.9×10-4	-4.31	D	2
	$3p^3(^2\mathrm{D}^\circ)4s'$ $3p^4-$		(2190.6]	22181	67817	1	3	0.0042	9.1 × 10-4	0.0065	-3.04	D	2
	3p ³ (² P°)4s"		[1819.2]	22181	77151	1	3	6.3 × 10-4	9.4×10-5	5.6 × 10.4			
19		(13 uv)	1782.26	22181	78290	1	3	1.5	0.22	5.6×10-4 1.3	-4.03 -0.66	D D	2 1
20 :	$3p^4 - 3p^3(^4S^\circ)4d$	3P-3D° (8 uv)	1320.0	196	75955	9	15	9.94	0.041	1.6	-0.43	D	I
21	1,1,2,1,1,00,0		1316.57 1323.52 1326.64 1316.6] 1323.5] 1316.6]	0 397 574 0 397	75957 75953 75952 75953 75952 75952	5 3 1 5 3 5	7 5 3 5 3 3	0.96 0.69 0.45 0.24 0.38 0.027	0.035 0.030 0.036 0.0063 0.010 4.2 × 10 ⁻⁴	0.76 0.39 0.16 0.14 0.13 0.0091	-0.76 -1.05 -1.44 -1.50 -1.52 -2.66	D D D D D E	1, /s 1, /s 1, /s 1, /s 1, /s 1, /s 1, /s
21 3	$3p^4 - 3p^3(^4S^\circ)5s$	P-3S° (6 uv)	1405.3	196	71353	9	3	16	0.016	0.65	-0.84	D	1
			1401.54 1409.37 1412.90	0 397 574	71353 71353 71353	5 3 1	3	0.91 0.50 0.16	0.016 0.015 0.014	0.37 0.21 0.065	-1.35	D D D	1 1 1

SI. Allowed Transitions—Continued

Vo.	Transition Array	Multiplet	λ(Å)	E_i (cm ⁻¹)	E_k (cm ⁻¹)	gi	¥k	$\frac{A_{ki}(10^{\rm H}}{\rm sec^{-1})}$	fik	S(at.u.)	log gf	Accu- racy	Source
22	3p4-3p3(4S°)6s	3P_3S°											
			1303.42	0	76721	5	3	1.9	0.029	0.62	-0.84	D	11
23	3p ³ 3d- 3p ³ (4S°)4f	⁵ D°- ⁵ F (19)	11464	67885	[76653]	25	35	0.18	0.50	470	1.10	E	ce
			11453 11472	67878 67890	[76653] [76653]	7	11	0.18 0.15	0.44 0.39	150 100	0.60 0.43	E	1.
			[11406]	67888	[76653]	5	7	0.13	0.35	65	0.43	Ē	1.
			[11403]	67886	[76653]	3	5	0.10	0.34	38	0.01	E	1
			11464 11453	67885 67878	[76653] [76653]	1 9	3	0.085 0.031	0.50 0.060	19 20	$-0.30 \\ -0.27$	E	1
			11472	67890	[76653]	7	7	0.055	0.11	29	-0.12	E	1
			[11406] [11403]	67888 67886	[76653] [76653]	5	5 3	0.074 0.087	0.14 0.17	27 19	-0.14 -0.30	E E	1
			11453	67878	[76653]	9	7	0.0026	0.0040	1.4	-1.44	E	i 'i
			11472	67890	[76653]	7 5	5	0 0073	0.010	2.7	-1.14	E	1
24	3p³3d	5D°-5F	[11406] 8880.1	67888 67885	[76653] 79143	25	35	0.012	0.014 0.17	2.7	0.63	E	ď
	3p ³ (⁴ S°)5f	(21)											
			8874.53 8884.23	67878 67890	79143 79143	7	11 9	0.10 0.083	0.15 0.13	39 26	$0.13 \\ -0.05$	E	
			8882.47	67888	79143	5	7	0.069	0.11	17	-0.25	E	
			8880.70 [8880.1]	67886 67885	79143 79143	3 1	5	0.056 0.047	0.11 0.17	9.7 4.8	-0.48 -0.78	E E	
			8874.53	67878	79143	9	9	0.017	0.020	5.2	-0.75	Ē	
			8884.23	67890	79143	7	7	0.030	0.035	7.3	-0.60	E	
			8882.47 8880.70	67888 67886	79143 79143	5 3	5	0.040 0.047	0.047 0.055	6.9 4.8	-0.63 -0.78	E	
			8874.53	67878	79143	9	7	0.0014	0.0013	0.35	-1.93	E	ı
			8884.23 8882.47	67890 67888	79143 79143	7 5	5 3	0.0040 0.0067	0.0034 0.0047	0.69 0.69	-1.63 -1.63	E E	
25	$3p^34s - 3p^3(^4S^\circ)4p$	⁵ S°- ⁵ P	9223.4	52624	63463	5	15	0.29	1.1	170	0.74	D+	3
	,,,	,	9212.91	52624	63475	5	7	0.30	0.53	80	0.42	D+	3
			9228.11 9237.49	52624 52624	63457 63446	5	5	0.28 0.28	9.36 0.22	55 33	0.26 0.04	D+ D+	3
26		3S°-3P	10456	55331	64892	3	9	0.22	1.1	110	0.52	D+	3
		(3)	10455.5	55331	64893	3	5	0 22	0.60	62	0.26	D+	,
			10459.5	55331	64889	3	3	0.22	0.36	37	0.20	D+	i
			10456.8	55331	64892	3	1	0.22	0.12	12	-0.44	D+	1
27	$3p^34s - 3p^3(^4S^\circ)5p$	⁵ S°- ⁵ P (2)	4695.1	52624	73917	5	15	0.0074	0.0074	0.57	-1.43	D+	3
			4694.13 4695.45	52624 52624	73921 73915	5	7 5	0.0076 0.0074	0.0035	0.27	-1.76	D+	,
			4696.25	52624	73912	5	3	0.0072	0.0025 0.0014	0.19 0.11	-1.90 -2.15	D+	
28		3S°-3P	5278.7	55331	74270	3	9	0.0038	0.0048	0.25	-1.94	D+	3
		(4)	5278.99	55331	74269	3	5	0.0038	0.0026	0.14	- 2.10	D+	
			5278.70 5278.10	55331 55331	74270 74272	3	3 1	0.0038 0.0038	0.0016 5.3 × 10-4	0.083 0.028	-2.32 -2.80	D+ D	1
29	$3p^{3}4p - 3p^{3}(4S^{\circ})4d$	⁵ P- ⁵ D° (6)	8684.2	63463	74975	15	25	0.12	0.22	93	0.52	D+	3
			8694.70 8680.47	63475 63457	74973 74974	5	9	0.11 0.075	0.16 0.12	33 17	$-0.05 \\ -0.23$	D + D+	/
			8671.37	63446	74975	3	5	0.040	0.076	6.5	-0.64	D	i
			8693.98	63475	74974	7	7	0.038	0.043	8.7	-0.52	D	/
			8679.70 8670.65	63457 63446	74975 74976	5	5	0.063 0.087	0.077 0.098	11 8.4	- 0.41 - 0.53	D+ D	/
	00		8693.24	63475	74975	7	5	0.0074	0.0060	1.2	-1.38	D -	1
			8679.00 8670.19	63457 63446	74976 74977	5 3	3	0.029 0.12	0.020 0.043	2.8 3.7	-1.00 -0.89	D-	/

S I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	ĽΙ	g _E	$A_{kl}(10^{6}$ sec ⁻¹)	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
30		³ P - ³ D° (13)	9036.7	64892	75955	9	15	0.029	0.059	16	-0.27	D	ca
		(10)	9035.92	64893	75957	5	7	0.029	0.049	7.3	-0.61	D	ls
ĺ			9036.32	64889	75953	3	5	0.022	0.044	3.9	-0.88	D	ls
		ļ	9038.72	64892	75952	1	3	0.016	0.059	1.7	-1.23	D	ls
-			9039.27	64893	75953	5	5	0.0072	0.0088	1.3	-1.36	D-	ls
			9036.73	64889	75952	3	3	0.012	0.015	1.3	-1.36	D-	ls
		ļ	[9039.5]	64893	75952	5	3	8.0×10^{-4}	5.9 × 10 ⁻⁴	0.087	-2.53	E	ls
31	3ρ ³ 4ρ — 3ρ ³ (*S°)5d	(8) 21, - 2D _o	6751.2	63463	78271	15	25	0.079	0.090	30	0.13	D+	3 <i>n</i>
			6757.16	63475	78271	7	9	0.080	0.070	11	-0.31	D+	ls
1			6748.79	63457	78271	5	7	0.053	0.050	5.6	-0.60	D+	ls
			6743.58	63446	78271	3	5	0.028	0.032	2.1	-1.02	D	ls
			6757.16	63475	78271	7	7	0.026	0.018	2.8	-0.90	D	ls
			6748.79	63457	78271	5	5	0.046	0.032	3.5	-0.80	D	ls
			6743.58	63446	78271	3	3	0.059	0.041	2.7	-0.92	D	ls
			6757.16	63475	78271	7	5	0.0053	0.0026	0.40	-1.75	E	ls
			6748.79	63457	78271	5	3	0.020	6.0081	0.90	-1.39	E D-	ls
1			6743.58	63446	78271	3	1	0.079	0.018	1.2	-1.27	17-	ls
32	$3p^34p - 3p^3(^4S^\circ)6s$	⁵ P- ⁵ S° (7)	7689.6	63463	76464	15	5	0,061	0.018	6.8	-0.57	D	ca
		, ,	7696.73	63475	76464	7	5	0.028	0.018	3.1	-0.91	D	ls
			7686.13	63457	76464	5	5	0.020	0.018	2.2	-1.06	D	ls
ļ			7679.60	63446	76464	3	5	0.012	0.018	1.3	-1.28	D	ls
33		³ P- ³ S ² (14)	8451.6	64892	76721	9	3	0.050	0.018	4.5	- 0.79	D	ca
		(11)	8452.14	64893	76721	5	3	0.028	0.018	2.5	-1.04	D	ls!
			8449.54	64889	76721	3	3	0.017	0.018	1.5	-1.26	Ď	ls
			8451.55	64892	76721	ì	3	0.0057	0.018	0.51	-1.74	D-	ls
34	$3p^34p - 3p^3(^4S)7s$	⁵ P- ⁵ S° (9)	6410.5	63463	79058	15	5	0.029	0.0059	1.9	-1.05	D	ca
	3p"(3)118	(9)	6415.50	63475	79058	7	5	0.013	ti 0059	0.87	- 1.39	g	ls
			6408.13	63457	79058	5	5	0.013	0.0059	0.62	-1.53 -1.53	ď	ls
			6403.58	63446	79058	3	5	0.0057	0.0059	0.37	-1.75		l is

Sı

Forbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have normally been averaged, except for the $^3P-^1S$ transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction). McConkey, Burns, Moran, and Kernahan [3] have measured the relative intensities of the $^1D_2-^1S_0$ and the $^3P_1-^1S_0$ lines obtaining a ratio of 5.1 ± 0.7 in perfect agreement with Czyzak and Krueger's theoretical ratio of 5.09.

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Czyzak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

[3] McConkey, J. W., Burns, D. J., Moran, K. A. and Kernahan, J. A., Nature 217, 538-539 (1968).

St. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	£k	Fype of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.n.)	Accu- racy	Source
1	3p4-3p4	3P_3P										
1	3p - 3p	-1 - 1	[25.239 × 10 ⁴]	0.00	396.11	5	3		8.4×10-9	15.4	С	2
			25.239×10^{4}	0.00	396.11	5	3	e m	0.00140	2.50	Ä	ī
			$[17.427 \times 10^{4}]$	0.00	573.66	5	ľ	e	7.1×10-8	6.8	Ċ	2
			$[56.30^7 \times 10^4]$	396.11	573.66	3	l i	m	3.02×10^{-4}	2.00	Ä	ī
			[00.30 × 10]		,,,,,,,	٠ ٠	•	"	7.02			
2		3P ~ (D										i
		(1 F)	- •		1							
			¹ :0819.8	0.00	9238.52	5	5	P	2.1 × 10	0.094	D	2
]	10819.8	0.00	9238,52	5	5	m	0.0275	0.0065	С	1.2
			11305.8	396.11	9238.52	3	5	e	2.5×10^{-5}	0.014	D	2
		i	11305.8	396.11	9238.52	3	5	m	0.0080	0.00215	(:	1.2
			11540.1	573.66	9238.52	1	5	e	5.0×10^{-6}	0.0030	D	2
3		3P-1S				!	ļ					
		(2F)		0.00		_	١.		0.00=0			1
			4506.9	0.00	22180.0	5	l I	e	0.0073	0.0081	D	2 2
		ĺ	4589.26	396 11	22180.0	3	1	m	0.35	0.00125	(:	2
		15 46										
4		'D-'S										
		(3F)	770 04	0000 50	20100.0	-	١.		, 70	20.1		
			7721.04	9238.52	22180.0	5	1	P	1.78	29.1	C	2

SII

Ground State

Ionization Potential

 $(s^2 2s^2 2p^6 3s^2 3p^{3/4} {\bf S}_{3/2}^a$

 $23.4 \text{ eV} = 188824.5 \text{ cm}^{-6}$

Allowed Transitions List of tabulated lines:

Wavelength [A]	No.	Wavelength [A]	No.	Wavelengtle Aj	No.
1124.39	3	3860.64	22	4153.10	19
1125.00	3	3892,32	22	4162.70	19
1131.05	3	3923,48	23	4165.11	26
1131.65	3 3	3933.29	23	4168.41	19
1234.14	2	3939.49	20	4174.04	26
1250.50	1	3946.98	20	4180.7	26
1253.79	1	3950.42	20	4189.71	26
1259.53	,	3963.13	20	4189.71	19
3317.70	18	3970,69	20	4213.5	19
3547.9	24	3971.2	20	4217.23	19
3567.17	24	3979,86	25	4249.92	27
3616.92	24	3990,94	20	4255.01	19
3639.1	24	3998.79	25	4257.42	27
3783.16	29	4003.89	20	4259.18	27
3792.46	22	4009.39	23	4267.80	21
3802.65	22	4028.79	20	4269.76	21
3809.67	22	4032.81	25	4278.54	21
3821.0	22	4050.11	20	4282.63	21
3850.93	22	4142.29	19	4291.45	21
3860.15	29	4145.10	19	4294.43	21

List of tabulated lines - Continued

Wavelength [Å]	No.	Wavelength [Å]	Na.	Wavelengtn [Å]	No.
4318.69	21	4901.30	31	5509,67	8
4333.84	21	4908.5	10	5518.74	
4342.84	30	4917.15	14	5526.22	5
4391.84	30	4924.08	9	5536.77	5
4402.86	30	4925.32	9	5556.01	34 5 5 8
4432.41	30	4942.47	9	5559.06	34
4456,43	30	4991.94	9	5564.94	8
4463.58	30	5006.71	33	5578.85	5
4483.42	30	5009.54	9	5606.11	8 5 5 5
4486.66	30	5014.03	14	5616.63	5
4524.68	17	5027.19	4	5639.96	13
4524.95	17	5032.41	9	5645.62	8
4552.38	17	5047.28	14	5646.98	13
4656.74	11	5103.30	9	5659.95	5 5
4681.32	10	5126.15	33	5664.73	5
4700.21	32	5142.33	4	5819.22	13
4716.23	11	5198.89	33	6305.51	6
4729.45	31	5201.00	16	6312.68	7
4742.4	10	5201.32	16	7885.26	28
4779.11	10	5212.6	16	7967.43	12
4792.02	31	5212.61	16	8005.24	28
4804.12	10	5320.70	15	8018.70	28
4815.52	11	5345.67	15	8093.25	28
4819.60	31	5345.7	15	8133.02	28
4819.60	32	5362.69	34	8222.15	28
1824.07	32	5400.67	34	8223.16	28
4835,85	31	5428.64	8	8233.30	28
4883.73	31	5432 77	8	8314.73	12
4885.63	14	5451.81			
4900.47	31	5473.59	8		

Müller [1] has measured the f-values for three multiplets in the vacuum uv portion of this spectrum using a wall-stabilized arc. His absolute values have been renormalized to the scale provided by the lifetime determinations of Savage and Law = e [5] employing the phase shift technique.

In the visible region, Bridges and Wiese [2] have carried out a wall-stabilized arc experiment for several lines, while Miller [3] has performed measurements with a conventional shock tube. Garstang [4] has calculated relative line strengths in intermediate coupling for all possible transitions in the 4s-4p array. The experimental approaches, which do not provide very accurate absolute values, are slightly renormalized to the scale obtained from the Coulomb approximation for the prominent $4s \, ^4P_{5\,2} + 4p \, ^4D_{5\,2}^2$ hue ($\lambda 5454$). The relative values of all three methods are in good agreement and, where available, the normalized results are averaged (an exception is the $4s \, ^4P + 4p \, ^4S^2$ multiplet; here the two experiments agree, but deviate strongly from theory; it seems likely that the classification is here erroneous).

The Coulomb approximation is employed for many other transitions in this ion; it should be pointed out, however, that these values may have large uncertainties due to significant departures from LS coupling. The departures will affect the weaker lines within these multiplets more strongly.

References

- [1] Müller, D., Z. Naturforsch. 23a, t707-t7t6 (t968).
- [2] Bridges, J. M., and Wiese, W. L., Phys. Rev. 159, 31-38 (1967).
- [3] Miller, M. It., Thesis Maryland (1968) and to be published.
- [4] Gaystang, R. R., Monthly Notices Roy, Astron. Soc. 114, 118-133 (1954).
- [5] Savage, B. D., and Lawrence, G. M., Astrophys. J. 146, 940-943 (1966).

A CONTRACTOR OF THE PARTY OF TH

SII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻⁾)	$E_k(\text{cm}^{-1})$	βi	μĸ	$rac{4_{ki}(10^8)}{ m sec}$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p^3 - 3s3p^4$	4S°-4P (1 uv)	1256.1	0	79612	4	12	0.39	0.028	0,46	-0.95	C:	1 <i>n</i>
		(1 uv)	1259.53 1253.79 1250.50	0 0 0	79395 79758 79968	4 4 4	6 4 2	0.34 0.42 0.46	0.012 0.010 0.0054	0.20 0.17 0.089	-1.32 -1.40 -1.67		1 <i>n</i> 1 <i>n</i> 1 <i>n</i>
2		² P°- ² P (7 uv)	1234.14	24573	105599	4	4	0.048	0.0011] 	-2,36	D+	1 <i>n</i>
3	$3p^3 - 3p^2(^3P)4s$	2P°_2P	1127.0	24557	113286	6	6	4.0	0.076	1.7	-0.34	D	1 <i>n</i>
		(8 uv)	1125.00 1131.05 1131.65 1124.39	24573 24524 24573 24524	113461 112937 112937 113461	4 2 4 2	4 2 2 4	3.1 2.7 1.1 0.84	0.059 0.051 0.011 0.032	0.87 0.38 0.16 0.24	-0.63 -0.99 -1.36 -1.19	D D	ln ln ln ln
4	$3s3p^4 - 3s^23p^24p$	² P- ² S° (1)	5027.19 5142.33	105599 106044	125485 125485	4 2	2 2	0.26 0.19	0.048 0.074	3.2 2 5	-0.72 -0.83	D +	2n, 3n $3n$
5	$3p^23d - 3p^2(^3P)4p$	4F_4D° (11)									And the second s		
			5606.11 5659.95 5664.73 5526.22 5578.85 5616.63 5536.77	110766 110313 110177 110508 110313 110177	128599 127976 127825 128599 128233 127976 128233	10 6 4 8 6 4 4	8 4 2 8 6 4 6	0.30 0.34 0.38 0.081 0.074 0.083 0.066	0.11 0.11 0.091 0.037 0.034 0.039 0.045	21 12 6.8 5.4 3.8 2.9 3.3	0.04 -0.18 -0.44 -0.53 -0.69 -0.81 -0.74	D+ D+ D D	
6		4D-4P° (19)	6305.51	114279	130134	8	6	0.18	0.078	13	-0.20	D	2n
7	<u>.</u>	² F- ² D° (26)	6312.68	114804	130641	6		0.20	0,080	10	-0.32	D	2n
8	$3p^24s -$	4P-4D°	5468.3	116005	128287	12		0.81	0.60	130	0.86	D+	1
	3p ² (³ P)4p	(6)	5453.81	110268	128599	6		0.78	0.46	50	0.44	D+	3n, 4n
			5432.77	109831	1282?`	4	6	0.61	0.11	29	0.21	D+	
			5428.64	109561	127976	2	1	0.38	6.34	12	-0.17	D+	1
			5564.94	110268	128233	6	6	0.16	0.076	8.3	-0.34	D+	1
			5509.67	109831	127976	4	4	0.39	0.18	13	-0.14	D+	
			5473.59	109561	127825	2	2	0.74	0.33	12	-0.18	D+	
			5645.62 5556.01	110268 109831	127976 127825	6	4 2	0.018 0.15	0,0056 0,036	0.63 2.6	-1.47 - 0.84		$\begin{bmatrix} 3n, 4n \\ 4n \\ 3n, 4n \end{bmatrix}$
9		4P_4P°	5003.9	110005	129984	12	12	0.89	0.33	66	0.60	D	2n.
		(7)	5032.41	110268	130134	6	6	0.66	0.25	25	0.18	D+	
			4991.94 4942.47 5103.30 5009.54 4924.08 4925.32	109831 109561 110268 109831 109831 109561	129858 129788 129858 129788 130134 129858	4 2 6 4 4 2	1 2 1 2 6 1	0.15 0.15 0.50 0.70 0.22 0.24	0,056 0,055 0,13 0,13 0,12 0,17	3.7 1.8 13 8.7 7.7 5.6	-0.65 -0.96 -0.11 -0.28 -0.32 -0.47	D D D	3n, 4n 3n, 4n 3n, 4n 3n, 4n 3n, 4n 3n, 4n

SII. Allowed Transitions - Continued

0.	Transition Array	Multiplet	A(A)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	μί	μk	4 _{ki} (10° sec-1)	fik	Stat.u.)	log gf	Accu- racy	Sourc
)		4P-2D°											
ı		(8)								j	·		١.
			4779.11	110268	131187	6	6	0.013	0.0037	0.35	-1.65	D	4,
			4804.12 4681.32	i 09831 109831	130641 131187	4	4	5.9 × 10-4 0.0030	2.1 × 10-4 0.0015	0.013 0.091	-3.09 -2.23	D D	4
İ			4742.4	109561	130641	2	4	0.0012	8.3 × 10-4	0.026	-2.78	Ď	4
			[4908.5]	110268	130641	6	4	0.0031	7.4 × 10 ⁻⁴	0.072	-2.35	D	4
1		4P-4S° (9)	4755.1	110005	131029	12	4	0.99	0.11	21	0.12	D+	2n. 3
Ì		12)	4815.52	110268	131029	6	4	0.64	0.15	14	-0.05	D+	2n. 3
1			4716.23	109831	131029	4	4	0.23	0.076	4.7	-0.52		2n, 3
			4656.74	109561	131029	2	4	0.12	0.078	2.4	0.81	D	3
2		${}^{2}P - {}^{2}S^{\circ}$ (12)	8195.1	113286	125485	6	2	0.24	0.080	13	-0.32	D	4
		, , _ ,	8314.73	113461	125485	4	2	0.16	0.085	9.3	-0.47	D	4
			7967.43	112937	125485	2	2	0.080	0.076	4.0	-0.82	D	4.
3		${}^{2}P - {}^{2}D^{\circ}$ (14)	5653.6	113286	130969	6	10	0.75	0.60	67	0.56	D	2n 3n, 4
			5639.96	113461	131187	4	6	0.75	0.54	40	0.33	D	4
i			5646.98 5819.22	112937 113 46 1	130641 130641	2 4	4 4	0.68 0.085	0.65 0.043	24 3.3	$\begin{vmatrix} 0.11 \\ -0.76 \end{vmatrix}$	D D+	21
						•	7	l l					3n. 4
1		² P = ² P° (15)	4981.2	113286	133356	6	6	0.85	0.32	31	0.28	D	3n. 4
			5014.03	113461	133400	4	4	0.72	0.27	18 6.4	-0.03 -0.40	D	$\begin{vmatrix} 3n, 4 \\ 3n, 4 \end{vmatrix}$
-			4917.15 5047.28	112937 113 461	133269 133269	2 4	2 2	0.55 0.32	0.20 0.060	4.0	-0.40 -0.62	D	3n. 4
			4885.63	112937	133400	2	4	0.13	0.090	2.9	-0.74	D	4
5	$\frac{3p^24s' -}{3p^2(^3P)4d}$	$^{2}D - ^{2}F^{\circ}$ (38)	5331.3	121529	140281	10	14	0.85	0.51	89	0.71	D+	3". 4
	ορ (1 / τ α	(00)	5320.70	121529	140319	6	8	0.84	0.48	50	0.46	D+	
1			5345.67	121528	140230	4	6	0.75	0.48	34	0.28	D+	
			[5345.7]	121529	140230	6	6	0.11	0.045	4.8	-0.57	D+	
6		² D = ² D*	5208.0	121529	140725	10	10	0.79	0.32	55	0.51	D	3n,
		(39)	5212.61	121529	140709	6	6	0.72	0.29	30	0.24	D	3n. 4
			5201.00	121528	140750	4	4	0.68	0.28	19	0.05	D	3n.
			5201.32	121529	140750	6	4	0.065	0.018	1.8	-0.97		3n, 4
			[5212.6]	121528	140709	4	6	0.098	0.060	4.1	-0.62	D	3n,
7		$^{2}D - ^{2}P^{\circ}$ (40)	4534.1	121529	143578	10	6	1.2	0.21	32	0.32		3n,
1			4524.95	121529	143623	6	4	0.98	0.20	18	0.08		3n.
			4552.38 4524.68	$\frac{121528}{121528}$	143489 143623	4	2	1.3 0.093	0.20 0.029	12 1.7	-0.10 -0.94		3n,
,	$3p^{2}4p -$	2S°-2P											
8	$\frac{3p^24p}{3p^2(^3P)4d}$	(42)											
	0,77 (1 7 2		3317.70	125485	[155618]	2	2	1.3	0.21	4.7	-0.37	E	ca,
9		4D°-4F	4159.6	128287	152321	20	28	2.3	0.84	230	1.23	D-	
		(44)	4162.70	128599	152615	8	10	2.3	0.76	83	0.78	D-	
			4153.10	128233	152305	6	8	2.0	0.70	57	0.62		
			4145.10	127976	152094	4	6	1.8	0.69	38	0.44		
			4142.29 4217.23	127825 128599	151959 152305	8	8	1.7 0.33	0.86 0.088	24 9.8	$\begin{vmatrix} 0.24 \\ -0.15 \end{vmatrix}$		
			4189.71	128233	152094	6	6	0.57	0.15	12	-0.04		
			4168.41	127976	151959	4	4	0.66	0.17	9.5	-0.16	E	
			4255.01	128599	152094	- 8	6	0.022	0.0045	0.50	-1.45	E	1

SII. Allowed Transitions -- Continued

lo.	Transition Array	Multiplet	λ(Δ)	Ēi(cm⁻¹)	$E_k(e\eta r^*)$	μ.	μz	$rac{d_{kl}(10^8}{ m sec^{-1})}$	fik	S(at.u.)	log gf	Accu- racy	Source
20		4D°-4D (45)	3995.8	128287	153306	20	20	0.60	0.14	38	0.46	D-	ca
	İ	(30)	4028,79	128599	153414	8	8	0.51	0.12	13	-0.00	D-	1:
]			3990.94	128233	153283	6	6	0.35	0.083	6.6	-0.30	E	ls
			3963.13	127976	153202	4	4	0.24	0.058	3.0	-0.61	E	1:
ŀ			3946.98	127825	153154	2	2	0.31	0.072	1.9	-0.84	E	1
			4050.11	128599	153283	8	6	0.11	0.021	2.2 2.7	-0.78 -0.69	E	
ı			4003.89 3970.69	128233 127976	153202 153154	6 4	2	0.21 0.31	0.034 0.036	1.9	-0.84	E	i i
i			[3971.2]	128233	153414	6	8	0.087	0.030	2.1	-0.79	Ē	\ddot{l}
-			3950.42	127976	153283	4	6	0.14	0.050	2.6	-0.70	E	i
ļ			3939.49	127825	153202	2	4	0.15	0.072	1.9	-0.84	E	
1		4P°-4D (49)	4286.6	129984	153306	12	20	1.7	0.77	130	0.96	D-	re
i			4294.43	130134	153414	6		1.7	0.61	52	0.56	D-	
			4267.80	129858	153283	4	6	1.2	0.48	27 11	$-0.28 \\ -0.12$	E	
			4269.76 4318.69	129788 130134	153202 153283	6	6	0.70 0.49	0.38 0.14	12	-0.12 -0.08	E	-i
-			4282.63	129858	153203	4	4	0.49	0.14	14	-0.01	Ē	i
			4278.54	129788	153154	2	2	1.4	0.38	ii	-0.12	Ē	l i
			4333.84	130134	153202	6	1	0.082	0.15	1.3	-1.03	E	i.
			4291.45	129858	153154	4	2	0.28	0.038	2.2	-0.81	E	1:
2		4P°_4P (50)	3851.1	129984	155943	12	12	_	0.20	30	0.37	D-	ce
ļ			3892.32	130134	155818	6	6	0.63	0.14	11	-0.06	<u>D</u> –	1.
i			[3821.0]	129858	156029	4	4	0.12	0.026	1.3	-0.98	E	/
			3792.46	129788	156148	2	2	0.15	0.032	0.80	-1.19	E	1 1
			3860.64	130134	156029	6	4	0.40	0.060	4.6	-0.44	E	1.
			3802.65 3850.93	129858 129858	156148 155818	4	2	0.74 0.27	0.080 0.091	4.0 4.6	-0.49 -0.44		1.
			3809.67	129788	156029	2	6 4	0.38	0.16	4.1	-0.49	E	i i
3		$^{2}D^{\circ} - {}^{2}F$ (55)	3931.6	130969	156397	10	14	2.1	0.67	87	0.83	D-	ce
			3933.29	131187	156604	6	8	2.0	0.63	19	0.5^{c}	D-	1.
			3923.48	130641	156121	4	6	2.0	0.68	35	0.44		l
			4009.39	131187	156121	6	6	0.14	0.034	2.7	-0.70	E	1.
1		$^{2}D^{\circ} - ^{2}D$ (56)	3596.9	130969	158763	10	10	0.38	0.074	8.8	0.13	D-	ci
			3616.92 3567.17	131187	158827 158666	6	6		0.070	5.0 5.1	-0.38 -0.57	D- D-	
			[3639.1]	130641 131187	158666	6	1	0.35 0.039	0.007	0.37	1.51	E	1
			[3547.9]	130641	158827	4	6		0.0071	0.33	-1.55		i
5		4S°-4P (59)	4012.7	131029	155943	4	12	1.2	0.85	45	0.53	D-	re
		·	4032.81	131029	155818	4	6	1.2	0.43	23	0.24	D-	1.
			3998.79	131029	156029	4	4	1.2	0.28	15	0.05	E	/
			3979.86	131029	156148	1	2	1.2	0.14	7.2	-0.26	E	/
6	$3p^24p' - 3p^2(^1D)4d'$	² F°- ² F (64)	4179.1	140281	164203	14	14	0.79	0.21	40	0.46	1)	CC
	• ` ` ′	(= - /	4189.71	140319	164181	8	8	0.74	0.20	22	0.19	D-	1.
			4165.11	140230	164232	6	6	0.74	0.19	16	0.06	D -	/
	(1		4180.7 4174.04	140319 140230	164232 164181	8 6	8	0.037 0.028	0.0072 0.0096	0.79 0.79	- 1.24 - 1.24	E	1
7	30	² D°− ² F	4258.1	140725	164203	10			0.57	80	0.76	D-	
		(66)	4259.18	140709	164181	6	8	1.5	0.55	46	0.52	D-	1.
			4257.42	140750	164232	4		1.4	0.57	32	0.36		i i
)	4249.92			6		0.10	0.027	2.3	-0.79		i

S II. Allowed Transitions-Continued

No.	Transition Array	Multiple:	λ(A)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	Kk	$A_{ki}(10^6$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
28	3p ² 4d – 3p ² (³ P)5p	4F-4D° (68)	8204.6	152321	164506	28	20	0.14	e. 10	77	0.46	D-	ca
	,		8223.16	152615	164773	10		0.12	0.098	27	-0.01	D -	ls
		!	8233.30	152305	164447	8	6	0.12	0.089	19	-0.15	E	ls
			8223.16 8222.15	152094 151959	164252 164119	6	4	0.12 0.15	0.080 0.076	13 8.3	-0.32 -0.51	E	ls Is
			8222.15	152305	164773	8	Ω	0.13	0.076	2.7	-0.31	Ē	ls
			8093.25	152094	164447	6	6	0.024	0.024	3.8	-0.84	Ē	ls
			8133.02	151959	164252	4		0.029	0.029	3.1	-0.94	Ē	l ls
		!	7885.26	152094	164773	6	8:	6.4×10^{-4}	8.0×10^{-4}	0.12	-2.32	E	Is
			8005.24	151959	164447	4	6	0.0013	0.0019	0.20	-2.12	E	ls
29	$3p^24p - 3p^2(^3P)5s$	$ \begin{array}{c} ^{2}S^{\circ}-{}^{2}P\\ (41) \end{array} $	3808.4	125485	151735	2		0.15	0.10	2.5	-0.70	D-	ca
			3783.16 3860.15	125485 125485	151911 1513 84	2 2	4 2	0.15 0.16	0.064 0.036	1.6 0.92	-0.89 -1.14	D-E	ls Is
30		⁴ D°- ⁴ P (43)	4456.9	128287	150718	20	12	0.76	0.14	40	0.48	D	3n,ca
		(40)	4463.58	128599	150996	8	6	0.53	0.12	14	-0.02	D	3 <i>n</i>
			4483.42	128233	150531	6	4	0.31	0.062	5.5	-0.43	D	3n
		! 	4486.66	127976	150258	4		0.66	0.10	5.9	-0.40	D	3n
		ĺ	4391.84	128233	150996	6			0.046	4.0	-0.56	E	ca, ls
			4432.41	127976	150531	4	4	0.29	0.087	5.1	-0.46	E	ca, ls
			4456.43 4342.84	127825 127976	150258 150996	2 4	6	0.47 0.018	0.14 0.0075	4.1 0.43	-0.56 -1.52	E E	ca, ls ca, ls
			4402.86	127825	150531	2	4	0.046	0.0075	0.43	-1.32	E	ca, is
31		4P°_4P (46)	4821.6	129984	150718				0.19	36	0.36		ca
			4792.02	130134	150996			0.37	0.13	12	-0.12		ls
			4835.85	129858	150531	4		0.072	0.025	1.6	-0.99		ls
			4883.73 4901.30	129788 130134	150258 150531	6		0.091 0.24	0.032 0.058	1.0 5.6	-1.19 -0.46		ls ls
			4900.47		150258			0.45	0.081	5.3	-0.40		ls
			4729.45	129858	150996	4	6	0.16	0.080	5.0	-0.49		l is
			4819.60	129788	150531	2	4	0.23	0.16	5.0	-0.50	E	ls ls
32		² D°- ² P (52)	4814.2	130969	151735			0.85	0.18	28	0.25		ca
			4824.07	131187	151911	6		0.76	0.18	17	$\begin{vmatrix} 0.02 \\ -0.22 \end{vmatrix}$	D- E	ls ls
			4819.60 4700.21	130641 130641	151384 151911	4			0.15 0.028	9.5 1.7	-0.22 -0.95	Γ	ls ls
33		⁴ S°_4P (57)	5077.6	131029			12	0.18	0.21	14	-0.08	D-	co
			5006.71	131029	150996	4	6		0.098	6.5	-0.41		
			5126.13 5198.89		150531 150258				0.069 0.036	4.7 2.4	-0.56 -0.85		
34		² P°_ ² P (61)	5439.5	133356	151735	1			0.22	24	0.13		ì
		(01)	5400.67	133400	151914	4	4	0.40	0.18	13	-0.15	D-	l.
			5518.74	133269	151384	2			0.15	5.4	-0.53		l:
			5559.06	133400	151384	4	2	0.16	0.037	2.7	-0.83	E	ls ls
			5362.69	133269	151911	2	4	0.081	0.070	2.5	-0.86		ls

SII

Forbidden Transitions

All the values for this ion are taken from Czyzak and Krueger [1], since they have included the important effects of configuration interaction and have used self-consistent field wavefunctions with exchange to obtain their value of s_q . (For a more complete discussion see General Introduction.)

Reference

[1] Czyzak, S. J., and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

SII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	Ķi	g _k	Type of Tran- sition	$A_{ki}(sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^3 - 3p^3$	4S°2D° (2F)	6716.42	0.0	14884.8	4	6	m	3.63 × 10 ⁻⁵	2.45×10^{-6}	C	1
			6716.42 6730.78 6730.78	0.0 0.0 0.0	14884.8 14853.0 14853.0	4 4	6 4 4	e m e	4.3×10^{-4} 1.56×10^{-4} 2.7×10^{-4}	$\begin{array}{c} 0.021 \\ 7.1 \times 10^{-6} \\ 0.0090 \end{array}$	D C D	1 1
2		4S°-2P° (1F)	4068.60	0.9	24571.6	4	4	m	0.341	0.00341	С	 1
		1	4068.60 4076.35 4076.35	0.0 0.0 0.0	24571.6 24524.9 24524.9	4 4 4	4 2 2	e m e	1.3 × 10 ⁻⁶ 0.134 1.4 × 10 ⁻⁵	$\begin{array}{c} 3.5 \times 10^{-6} \\ 6.7 \times 10^{-4} \\ 1.8 \times 10^{-5} \end{array}$	D C D	1 1 1
3		2D°-2D°	[31.44×10 ⁵] [31.44×10 ⁵]	14853.0 14853.0	14884.8 14884.8	4 4	6	m e	3.47×10^{-7} 1.5×10^{-16}	2.40 0.17	B	1
4		² D°- ² P° (3F)										
			10317.7 10317.7 10336.0 10336.0 10369.7	14884.8 14884.8 14853.0 14853.0 14884.8	24571.6 24571.6 24524.9 24524.9 24524.9	6 6 4 4 6	4 4 2 2 2	m e m e	0.060 0.154 0.067 0.131 0.087	0.0098 42.9 0.0054 18.4 12.4	0000000	
			10284.3 10284.3	14853.0 14853.0	24571.6 24571.6	4 4	4 4	e m e	0.067 0.108 0.067	0.0174 18.2	CC	1 1
5		² P°- ² P°	$ \begin{bmatrix} 21.41 \times 10^{5} \\ 21.41 \times 10^{5} \end{bmatrix} $	24524.9 24524.9	24571.6 24571.6	2 2	4 4	m e	9.14×10 ⁻⁷ 8.9×10 ⁻¹⁶	1.33 0,096	C+ D	1 1

 $1s^22s^22p^63s^23p^2$ ³P₀

Ionization Potential

 $35.0 \text{ eV} = 282752 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1190.17	1	2856.02	10	3750.74	9
1194.02	i	2863.53	10	3752.9	2
1194.40	l i l	2872.00	iŏ	3778.90	l ã
1200.97	i	2897.5	iŏ	3831.85	g
1201.71	i	2904.31	10	3837.80	2 2 8 8 8
1202.10	1	2947.2	10	3838.32	8
2443.3	13	2949.2	12	3860.64	8
2460.50	13	2950.23	12	3899.09	8 8 6
2489.59	13	2962.7	12	3900.0	6
2496.24	13	2964.80	12	3920.37	6
2499.08	13	2985.98	12	3928.62	6
2508.15	13	2998.8	12	3961.55	6
2636.88	14	3231.10	4	3983.77	6 6 7
2665.40	14	3233.24	4	3985.97	6
2680.47	14	3234.17	4	4253.59	7
2691.68	14	3324.01	3	4284.99	7
2702.76	14	3324.87	3	4332.71	1 7
2709.9	11	3367.18	3 3	4340.30	7 7 7 5 7
2714.1	11	3369.49	3	4354.56	5
2718.88	11	3370.38	3	4361.53	7
2721.40	14	3387.13	3	4364.73	1 5
2726.82	15	3632.02	2	4418.84	7
2731.10	11	3656.61	9	4439.87	5 7 5 5 5
2741.01	11	3662.01	9	4467.83	5
2756.89	u	3709.37	2	4478.48	5
2775.25	11	3710.42	2	4499.29	5 5
2785.49	15	3717.78	9 2	4527.96	5
2797.39	15	3747.90	2		

Varsavsky [1] has calculated a value for one multiplet of this ion using the screening-approximation method; this number should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have been neglected entirely. For numerous other transitions, including those involving shell-equivalent electrons, the Coulomb approximation has been employed in order to have data available for some of the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are normally expected; however, the uncertainties should be somewhat larger for those transitions involving shell-equivalent electrons.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

SIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_{\kappa}(\cos m^{-1})$	£!	gr.	A _{ki} (10 ^a sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
l	$3s^23p^2 - 3s3p^3$	3P_3D° (1 uv)	1197.5	562	84066	9	15	17	0.62	22	0.75	E	1
			1200,97	833	84100	5	7	17	0.51	10	0.40	E	ls
			1194.02	297	84046	3	5	13	0.46	5.4	0.14	E	l,
	•		1190.17	0	84019	ļ	3	9.6	0.61	2.4	-0.21	E	l:
			1201.71 1194,40	833 297	84046 84019	5 3	5 3	4.2 7.1	0.091 0.15	1.8 1.8	$-0.34 \\ -0.34$	E	
			1202.10	833	84019	5	3	0.47	0.0061	0.12	-1.52	Ē	i.
2	3p3d- 3p(2P°)4p	3P°-3D	3680.7	143118	170279	9	15	0.010	0.0034	0.37	- 1.52	E	c
	<i>ар(-г)цр</i>	(1)	3632.02	143124	170649	5	7	0.010	0.0029	0.17	-1.84	E	l.
		!	3709.37	143116	170067	3	5	0.0075	0.0026	0.094	-2.11	E	1
			3747.90	143096	169770	1	3	0.0054	0.0034	0.042	-2.47	E	1
			3710.42	143124	170067	5	5	0.0025	5.2×10^{-4}	0.031	-2.59	E	1
- 1			3750.74	143116	169770	3	3	0.0041	8.6×10^{-4}	0.032	-2.59	E	1
			[3752.9]	143124	169770	5	3	2.7×10 ⁻⁴	3.4×10^{-5}	0.0021	-3.77	E	l t
3		³ P°- ³ P (2)	3346.2	143118	172994	9	9	0.32	0.053	5.3	-0.32	E	ce
			3324.87	143124	173192	5	5	0.24	0.039	2.2	-0.71	Ē	l
		I	3369.49	143116	172786	3	3	0.077	0.013	0.44	-1.41	E	1
			3370.38	143124	172786	5	3	0.13	0.013	0.73	-1.18	E	
			3387.13	143116	172631	3	1 5	0.30	0.017	0.58 0.72	-1.28 -1.18	E	
			3324.01 3367.18	143116 143096	173192 172786	1	3	0.079	0.022 0.052	0.72	-1.18	Ē	1 1
1		3P°-3S	3233,4	143118	174036	9	3	1.3	0.070	6.7	-0.20	E	
•		(3)	İ										(
			3234.17	143124	174036	5	3	0.75	0.070	3.7	-0.46	E	
			3233.24 3231.10	143116 143096	174036 174036	3	3	0.45 0.15	$0.070 \\ 0.070$	2.2	-0.68 -1.15	E E	1
5		3D°-3D	4425.3	147688	174030	15	3	0.13	0.070	0.75 6.8	-0.33	E	C
,		(7)											
			4364.73	147745	170649	7	7	0.097	0.028	2.8	-0.71	E E	- 4
			4467.83	147691 147550	170067 169770	5	5	0.072	0.021	1.6	-0.97 -1.16		1
			4499.29 4478.48	147745	170067	3 7	3 5	0.076 0.016	$0.023 \\ 0.0034$	1.0 0.35	-1.16 -1.62	E	ĺ
			4527.96	147691	169770	5	3	0.016	0.0034	0.33	-1.62	Ē	
			4354.56	147691	170649	5	7	0.012	0.0049	0.35	-1.61	Ē	i
			4439.87	147550	170067	3	5	0.016	0.0077	0.34	-1.63	Ē	i
5		³ D°- ³ P	3950.5	147688	172994	15	9	0.73	0.10	20	0.19	E	c
		1 -7	3928.62	147745	173192	7	5	0.59	0.098	8.9	-0.16	E	1
		l i	3983.77	147691	172786	5	3	0.51	0.073	4.8	-0.44	E	l
		1 .	3985.97	147550	172631	3	1	0.68	0.054	2.1	-0.79	E	
			3920.37	147691	173192	5	5	0.11	0.025	1.6	-0.91	Ē	
			3961.55	147550	172786	3	3	0.17	0.041	1.6	-0.91	E	
			[3900.0]	147550	173192	3	5	0.0072	0.0027	1.1	-2.69	E	
,	3p4s - 3p(2P°)4p	³ P°- ³ D (4)	4287.1	146960	170279	9	15	1.2	0.55	70	0.70	D	C
			4253.59	147146	170649	5	7	1.2	0.47	33	0.37	D	
			4284.99	146737	170067	3	5	0.90	0.41	17	0.09	D	
			4332.71	146696	169770	1	3	0.64	0.54	7.7	-0.27	D-	
			4361.53	147146	170067	5	5	0.28	0.081	5.8	-0.39	D-	
			4340.30 4418.84	146737 147146	169770 169770	3 5	3	0.48 0.030	0.14 0.0053	5.8 0.39	-0.39 -1.57	D – E	
}		3P°_3P	3840.0	146960	172994	9	9	1.7	0.38	43	0.53	D	r
	ļ	(5)	3838.32	147146	173192	5	5	1.3	0.28	18	0.14	D	
			3837.80	146737	172786	3	3	0 42	0.092	3.5	-0.56	D	
			3899.09	147146	172786	5	3	0.67	0.092	5.9	-0.30	D	
			3860.64	146737	172631	3	lï	1.6	0.072	4.7	-0.44	Ď	
			3778.90	146737	173192	3	5	0.44	0.16	5.8	-0.33	Ď	
			3831.85	146696		1	3	0.56	0.37	4.7	-0.43		

SIII. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-3})$	gi	gk	A _{ki} (10 ⁸ sec ⁻¹)	fit:	S(at.u.)	log gf	Accu- racy	Source
Ģ		3P°_3S	3692.3	146960	174036	9	3	1.9	0,13	14	0.06	D	·ca
		(6)	3717.78	147146	174036	5	3	1.0	0.13	7.8	-0.20	D	ls
			3662.01	146737	174036	3	3	0.64	0.13	4.6	-0.42	D	ls
			3656.61	146696	174036	1	3	0.21	0.13	1.5	-0.89	D –	ls
10	3p4p → 3p(2P°)4d	³ D- ³ F° (15 uv)	2865.7	170279	205164	15	21	5.7	0.99	140	1.17	D	ca
			2863.53	170649	205561	7	9	5.7	0.90	59	0.80	D	ls
			2856.02	170067	205071	5	7	5.1	0.87	41	0.64	D	ls
			2872.00	169770	204579	3	5 7	4.7 0.61	0.97	28	-0.46 -0.27	D D-	ls Is
			2904.31 [2897.5]	170649 170067	205071 204579	5	5	0.86	0.077 0.86	5.2 5.1	-0.27 -0.27	D-	ls
			[2947.2]	170649	204579	7	5	0.024	0.0022	0.15	-1.81	E	ls
11		³D-3D°	2740.6	170279	206757	15	15	1.6	0.18	24	0.42	D	ca
		(16 uv)	2756.89	170649	206911	7	7	1.4	0.16	9.9	0.04	D	ls
			2731.10	170067	206672	5	5	i.ī	0.12	5.4	-0.22	Ď	ls
		1	2718.88	169770	206539	3	3	1.2	0.13	3.5	-0.41	D	ls
			2775.25	170649	206672	7	5	0.24	0.019	1.2	-0.87	D-	ls
		Ì	2741.01	170067	206539	5	3	0.39	0.026	1.2	-0.88	<u>D</u> –	ls
			[2714.1] [2709.9]	170067 169770	206911 206672	5 3	7 5	0.18 0.24	0.027 0.043	1.2 1.2	-0.87 -0.88	D –	ls Is
12		³ P- ³ D° (14)	2961.0	172994	206757	9	15	4.0	0.88	77	0.90	D	ca
		(18 uv)	2964.80	173192	206911	5	7	4.0	0.74	36	0.57	D	ls
		,	2950.23	172786	206672	3	5	3.0	0.66	19	0.30	D	Is
			[2949.2]	172631	206539	1	3	2.2	0.88	8.5	-0.06	D -	ls
			2985.98	173192	206672	5	5	0.99	0.13	6.5	-0.18	D-	ls
			[2962.7] [2998.8]	172786 173192	206539 206539	3 5	3	1.7 0.11	0.22 0.0088	6.4 0.44	$\begin{vmatrix} -0.18 \\ -1.36 \end{vmatrix}$	D –	ls Is
10	0.4	#D #D0					-						
13	3p4p — 3p (2Pc)5s	³ D- ³ P° (17 uv)	2495.6	170279	210338	15	9	3.6	0.17	21	0.41	D	ca
		4.0	2496.24	170649	210698	7	5	2.5	0.17	9.7	0.07	D	ls
	ĺ		2508.15 2499.08	170067 169770	209926	5 3	3	2.3	0.13 0.097	5.4	-0.18 -0.53	D D-	ls Is
			2460.50	170067	209773 210698	5	1 5	3.1 0.45	0.041	2.4 1.7	-0.69	D-	ls
			2489.59	167770	209926	3	3		0.072	1.8	-0.67	Ď-	ls
			[2443.3]	169770	210698	3	5	0.030	0.0045	0.11	-1.87	E	ls
14		3P_3P° (19 uv)	2677.0	172994	210338	9	9	1.9	0.20	16	0.26	D	ca
			2665.40	173192	210698	5	5	1.4	0.15	6.4	-0.14	D	ls
			2691.68	172786	209926	3	3	0.46	0.050	1.3	-0.82	D	ls
			2721.40 2702.76	173192 172786	209926 209773	5	3	0.77 1.9	0.051 0.068	2.3 1.8	-0.59 -0.69	D D	ls ls
			2638.88	172786	210698	3	1 5	0.45	0.008	2.1	-0.69 -0.63	D	ls
			2680.47	172631	209926	i	3	0.62	0.20	1.8	-0.70	D	ls
15		35 _ 3P° (20 uv)	2753.9	174036	210338	3	9	0.61	0.21	5.7	-0.20	D	ca
		,=,	2726.82	i74036	210698	3	5	0.60	0.11	3.0	-0.47	D	ls
			2785.49	174036	209926	3	3	0.61	0.071	2.0	-0.67	D	ls
			2797.39	174036	209773	3	1	0.63	0.024	0.66	-1.14	D -	ls

SIII

Forbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have normally been averaged, except for the ³P- ¹S transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

References

[1] Naqvi, A. M., Thesis Harvard (1951). [2] Czyzak, S. J., and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

S III. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	g _k	Type of Tran- sition	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$3p^2-3p^2$	3þ — 3Þ	[33.638 × 10 ⁴] [12.009 × 10 ⁴] [18.676 × 10 ⁴] [18.676 × 10 ⁴]	0.0 0.0 297.2 297.2	832.5	1 1 3 3	3 5 5 5	m e m	4.72 × 10 ⁻⁴ 4.69 × 10 ⁻⁸ 0.00207 1.16 × 10 ⁻⁸	2.00 3.49 2.50 7.9	A C A C	1 2 1 2
2		³ P-'D (1F)	[8831.5] 9069.4 9069.4 9532.1 9532.1	0.0 297.2 297.2 832.5 832.5	11320 11320 11320 11320 11320	1 3 3 5 5	5 5 5 5 5	e m e m	9.1×10 ⁻⁶ 0.0248 6.1×10 ⁻⁵ 0.064 3.3×10 ⁻⁴	0.0014 0.00343 0.011 0.0103 0.077	D C D C	1, 2 2 1, 2 1, 2
3		³ P_ ¹ S (2F)	3721.8 3796.7	297.2 832.5		3 5	1 1	m e	0.85 0.016	0.00162 0.0077	C D	2 2
4		'D-'S (3F)	6312.1	11320	27163	5	1	e	2.54	15.2	С	2

SIV

Ground State

1s22s22p63s23p2P0

Ionization Potential

 $47.29 \text{ eV} = 381541.4 \text{ cm}^{-1}$

Allowed Transitions

The screening-approximation calculations of Varsavsky [1] for the 3s²3p ²P°-3s3p² ²D multiplet are considered to be rather uncertain (probably too high, as judged from comparisons in other ions) since the important effects of configuration mixing are neglected entirely. Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3p 2Po-4s 2S multiplet; these results should be reliable to within 25 percent, as judged from plots depicting f-value dependence on nuclear charge.

References

- [1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

S IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gı	Kk	$A_{kl}(10^8\mathrm{sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p - 3s3p^2$	² P°-2D (1 uv)	1069.6	633	94130	6	10	20	0.57	12	0.53	E	1
		(- 4,	1072.99	950	94148	4	6	20	0.52	7.3	0.32	E	Is
			1062.67	0	94102	2	4	17	0.59	4.1	0.97	E	ls
			1073.52	950	94102	4	4	3.3	0.057	0.81	-0.64	E	ls
2	3p-(1S)4s	2P°-2S	553.10	633	181432	6	2	6ì	0,094	1.03	- 0.249	С	2
			[554.07]	950	181432	4	2	40.8	0.094	0.69	-0.425	С	ls
			551.17	0	181432	2	2	20.6	0.094	0.341	-0.73	č	İs
3	$4s - (^{1}S)4p$	² S – ² P° (1)	3104.1	181432	213647	2	6	2.6	1.1	23	0.35	D+	ca
İ		(-/	3097.46 3117.75	181432 181432	213717 213507	2 2	4 2	2.6 2.5	0.74 0.37	15 7.5	0.17 - 0.13	D+ D+	ls Is

SIV. Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

SIV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	8k	Type of Tran- sition	$A_{kl}(\sec^{-1})$	S(at. u.)	Accu- racy	Source
1	3p - (1S)3p	3bo=3bo	[10.521×10 ⁴]	0.0	950.2	2	4	m	0.00770	1.33	A	1

 $1s^22s^22p^63s^2$ 4S_0

Ionization Potential

 $72.5 \text{ eV} = 584700 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
437.37	8	680.90	7	852,185	2
438.19	8	631.68	7	854.792	2
439.65	S	686.11	6	857.872	2
658.262	5	686.95	6	860.462	2
659.853	5	688.07	6	883,54	4
663.155	5	689,85	6	884.45	4
676.21	7	691.74	6	885.77	-1
677.35	7	693.53	6	900.90	3
678.12	7	786.476	1	902.83	3
680.36	7	849.241	2	905.89	3

The charge-expansion technique of Crossley and Dalgarno [1], which includes limited configuration mixing, has been employed for the majority of the transitions in this spectrum. Grazdev and Prokofev [2] have carried out Coulomb approximation calculations, modified with the Seaton correction, for the $3s^3p$ $^3P^\circ-3s^4s$ 3S multiplet. For many of these transitions, the dependence of oscillator strength on nuclear charge has served as an aid in estimating accuracies.

For the resonance line we have chosen an interpolated value in preference to the result by Crossley and Dalgarno, since their number for S v does not fit too closely into the very firmly established systematic trend for this transition against nuclear charge (See fig. 4 of the General Introduction).

References

- [1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

S v. Allowed Transitions

Vo.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	g _i	μĸ	$A_{ki}(10^8\mathrm{sec^{-1}})$	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	1S_1P° (1 uv)	786.476	0	127149	1	3	52.5	1.46	3.78	0.164	В	interp
2	$3s3\rho - 3\rho^2$	3P°-3P	854.85	[83819]	[200798]	9	9	41.8	0.458	11.6	0.62	C +	1
3		(2 uv)	854.792 854.792 860.462 857.872 849.241 852.185	[84200] [83433] [84200] [83433] [83433] [83071]	[201186] [200417] [200417] [200000] [201186] [200417]	5 3 5 3 3 1 .	5 3 1 5 3	31.3 10.5 17.1 41.4 10.7 14.1	0.343 0.115 0.114 0.152 0.192 0.460	4.83 0.97 1.61 1.29 1.61 1.29	0.234 -0.462 -0.244 -0.341 -0.240 -0.337	C+ C C C C	ls ls ls ls
3	3s(2S)3d = 3p(2P°)3d	$^3\mathrm{D} - ^3\mathrm{P}_{\odot}$	904.37	[234987]	[345569]	15	9	22	0.16	7.3	0,39	D	1
	эр 1 - 154		[905.89] [902.83] [900.90] [905.89] [902.83] [905.89]	[234987] [234987] [234987] [234987] [234987] [234987]	[345376] [345750] [345987] [345376] [345376]	7 5 3 5 3 3	5 3 1 5 3 5	19 17 22 3.3 5.6 0.22	0.16 0.12 0.091 0.041 0.068 0.0045	3.4 1.8 0.81 0.61 0.61 0.041	0.06 -0.22 -0.56 -0.69 -0.69 -1.87	D D - D - D - E	ls ls ls ls
4		$_{3}I){3}I)_{\circ}$	884.29	[234987]	[348072]	15	15	21	0.24	11	0.56	D	1
			[883.54] [884.45] [885.77] [884.45] [885.77] [883.54] [884.45]	[234987] [234987] [234987] [234987] [234987] [234987] [234987]	[348168] [348051] [347883] [348051] [347883] [348168] [348051]	7 5 3 7 5 3 3	7 5 3 5 3 7 5	19 14 16 3.2 5.2 2.3 3.1	0.22 0.17 0.18 0.027 0.036 0.038 0.061	4.4 2.5 1.6 0.55 0.53 0.55 0.53	0.18 -0.07 -0.26 -0.72 -0.74 -0.72 -0.74	D D D D- D- D-	ls ls ls ls ls
5	3s3p + 3s(2S)3d	³ P°= ³ D (3 uv)	661.52	[838/9]	[234987]	9	15	64.4	0.704	13.8	v.802	В	1
			663,155 659,853 658,262 663,155 659,853 663,155	[84200] [83433] [83071] [84200] [83433] [84200]	[234987] [234987] [234987] [234987] [234987] [234987]	5 3 1 5 3 5	7 5 3 5 3 3	63.9 48.7 36.2 16.0 27.0 1.8	0.590 0.529 0.706 0.105 0.176 0.0070	6.44 3.45 1.53 1.15 1.15 0.077	0.470 0.201 - 0.151 - 0.280 - 0.277 - 1.45	B B B B	ls ls ls ls ls ls
6	$3p^2 - 3p(^2P^\circ)3d$	3P = 3P°	690,75	[200798]	[315569]	9	9	50	0.36	7.3	0.51	D	1
			[693.53] [688.07] [691.74] [686.95] [689.85] [686.11]	[201186] [200417] [201186] [200417] [200417] [200000]	[345376] [345750] [345750] [345987] [345376] [345750]	5 3 5 3 1	5 3 3 1 5 3	36 13 20 51 12 17	0.26 0.090 0.088 0.12 0.15 0.36	3.0 0.61 1.0 0.81 1.0 0.81	0.11 0.57 0.36 0.44 0.36 0.44	D D D D D	ls ls ls ls
7		3P-3D°	679.01	[200798]	[348072]	9	15	86	0,69	20	0.95	D	1
			[686,36] [677,35] [676,21] [680,90] [678,12] [681,68]	[201186] [200417] [200000] [201186] [200417] [201186]	[348168] [348051] [347882] [348051] [347883] [347883]	5 3 1 5 3 5	5 3 5 3 3	85 65 48 22 37 2.3	0.83 0.75 0.99 0.15 0.25 0.0098	9.3 5.0 2.2 1.7 1.7 0.11	0.62 0.35 0.00 0.12 0.12 1.31	D D D D E	ls ls ls ls ls ls ls ls ls
8	3530-	3P°_3S	438.88	[83819]	[311670]	9	3	100	0.096	1.25	-0.063	C	2
	3s(2S)4s	(4 uv)	439.65 438.19 437.37	[84200] [83433] [83071]	[311670] [311670] [311670]	5 3 1	3 3 3	55 33.3 11.2	0,096 0,096 0,096	0,65 0,415 0,138	-0.319 -0.54 -1.018	C C C	ls ls

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^{9}P^{\circ} - {}^{3}P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^{9}P^{\circ} - {}^{3}P^{\circ}$ transitions, Naqvi uses emperical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Sv. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	Kĸ	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$3s3p - 3s(^2S)3p$	3P°-3P°	[27.62 × 10 ⁴] [13.03 × 10 ⁴]	[83071] [83433]	[83433] [84200]	1 3	3 5	m m	8.53 × 10 ⁻⁴ 0.00610	2.00 2.50	B B	1
2		3P°_1P°	[2268.0] [2286.8] [2327.6]	[83071] [83433] [84200]	127149 127149 127149	1 3 5	3 3	m m m	0.236 14.0 0.273	3.06 × 10 ⁻⁴ 0.0186 3.83 × 10 ⁻⁴	C C	1 1 1

SVI

Ground State

1s22s22p63s 2S1/2

Ionization Potential

 $88.029 \text{ eV} = 710194 \text{ cm}^{-3}$

Allowed Transitions List of tabulated lines:

Wavelength [Å]	Ne.	Wavelength [Å]	No.	Wavelength [Å]	No.
191.48	3	464.654	7	944.517	1
191.56	3	648,50	6	971.36	12
248.985	2	648.64	6	975.70	12
249.271	2	650.43	6	1975.5	11
283.50	9	706.480	4	1992.5	11
328.51	8	712.682	4	1993.5	1 11
388.940	5	712.844	4	2587.4	10
390.859	5	933.382	1	2618.3	10

The only source available for this ion are the charge-expansion calculations of Crossley and Dalgarno [1] which include limited configuration mixing. Graphical comparisons of this work with more refined values within the isoelectronic sequence indicate accuracies within 25 percent. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values simply by graphical interpolation.

Reference

[1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc., London A286, 510-518 (1965).

Svi. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> ₃ (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	gi	Kk	$A_{ki}(10^6\mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s-3p	² S- ² P° (1 uv)	937.07	0	106716	2	6	16.1	0.64	3.92	0.107	С	1
		(1 uv)	933.382 944.517	0	107137 105874	2 2	4 2	16.3 15.7	0.425 0.211	2.61 1.31	-0.071 -0.375	C C	!s !s
2	3s-4p	² S - ² P° (2 uv)	249.09	0	401469	2	6	25.6	0.071	0.117	-0.85	С	си
		(2 00)	248.985 249.271	0 0	401621 401164	2 2	4 2	25.4 26.1	0.0471 0.0244	0.077 0.0400	-1.026 -1.312	C	ls Is
3	3s - 5p	2S-2P°	191.51	0	522175	2	6	17	0.028	0.035	-1.25	D	interp
			[191.48] [191.56]	0	522248 522030	2 2	4 2	17 17	0.018 0.0095	0.023 0.012	-1.44 -1.72	D D-	ls Is
4	3p-3d	² P°-2D (3 uv)	710.62	106716	247439	6	10	49.1	0.62	8.7	0.57	С	1
		(3 44)	712.682 706.480 712.844	107137 105874 107137	247452 247420 247420	4 2 4	6 4 4	48.5 41.7 8.1	0.55 0.62 0.062	5.2 2.90 0.58	0.346 0.096 -0.61	C C D	ls Is Is
5	3p-4s	² P°- ² S	390.22	106716	362983	6	2	121	0.092	0.71	-0.258	С	ca
		(4 uv)	390.859 388.940	107137 105874	362983 362983	4 2	? 2	81 40.3	0.093 0.091	0.477 0.234	-0.431 -0.74	C	ls Is
6	3d-4p	$^{2}D-^{2}P^{\circ}$	649.22	247439	401469	10	6	37	0.14	3.0	0.15	c	interp
			[648.64] [650.43] [648.50]	247452 247420 247420	401621 401164 401621	6 4 4	4 2 4	33 37 3.7	0.14 0.12 0.023	1.8 1.0 0.20	-0.08 -0.32 -1.04	C C D	ls Is Is
7	3d-4f	² D- ² F° (5 uv)	464.654	247439	462653	10	14	202	0.92	14.0	0.96	C+	ca
8	3d+5f	$^{2}D-^{2}F^{\circ}$	328.51	247439	551848	10	14	75	0.17	1.8	0.23	c	interp
9	3d-6f	$^{2}D-^{2}F^{\circ}$	283.50	247439	600170	10	14	37	0.062	0.58	-0.21	c	interp
10	4s-4p	² S − ² P°	2597.6	362983	401469	2	6	3.2	0.97	17	0.29	c	interp
			[2587.4] [2618.3]	362983 362983	401621 401164	2 2	1 2	3.2 3.2	0.65 0.33	5.7	0.11 -0.18	C	ls Is
11	4p-4d	2P°-2D	1986.9	401469	451799	6	10	10	1.0	39	0.78	C	interp
			[1992.5] [1975.5] [1993.5]	401621 401164 401621	451808 451785 451785	4 2 4	6 4 4	9.8 8.5 1.7	0.88 1.0 0.099	23 13 2.6	0.55 0.30 -0.40	C C D	ls ls ls
12	4p-5s	² P°−2S	974.25	401469	504112	6	2	38	0.18	3.5	0.03	С	interp
			[975.70] [971.36]	401621 401164	504112 504112	4 2	2 2	25 13	0.18 0.19	2.3 1.2	$\begin{vmatrix} -0.14 \\ -0.42 \end{vmatrix}$	C	ls Is

 $1s^22s^22p^{6/4}S_0$

Ionization Potential

 $280.99 \text{ eV} = 2266990 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single—configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner. S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

S VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	μk	$A_{ki}(10^8~{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2p^6 - 2p^5(^2P_{3/2}^{\circ})3s$	1S = 3P°	[72.663]	0	1376220	1	3	150	0.036	0,6086	-1.44	Е	
2	$2p^6 - 2p^5(^2\mathbf{P}_{1/2}^{\circ})3s$	15-1P°	[72.029]	0	1388330	1	3	730	0.17	0.040	-0.77	b	1
3	$2p^6 - 2p^5(^2\mathrm{P}_{3/2}^{\circ})3d$	1S 3P°	[61.547]	0	1624770	1	3	26	0.0045	9.1×10 ⁻⁴	-2.35	E	1
4	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d$	1S-1P°	[60,804]	0	1644630	1	3	8400	1.4	0.28	0.15	D	1
5	$2p^6 - 2p^5(^2\mathrm{P}^{\circ}_{1/2})3d$	¹ S = ³ D°	[60, 161]	0	1662210	1	3	980	0, 16	0.032	-0.80	D	1

S VIII

Ground State

 $1s^22s^22p^{5/2}P_{3/2}^{\circ}$

Ionization Potential

 $328.80 \text{ eV} = 2652720 \text{ cm}^{-1}$

Allowed Transitions

The value for the $2s^22p^{5/2}P^{\circ}-2s2p^{6/2}S$ multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving the n=3 shell electrons, which were not included in this calculation, may be significant.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

S VIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľi.	Kk	$A_{ki}(10^{6}\mathrm{sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
ı	$2s^22p^5 - 2s2p^6$	2P°-2S	199.91	3377	503590	6	2	480	0.096	0.38	-0.24	D	1
			[198.57] [202.65]	0 10130	503590 503590	4. 2	2 2	320 160	0.096 0.097	0.25 0.13	-0.42 -0.71	D D	ls ls

S vIII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

S vIII. Forbidden Transitions

\ 0.	Transition Array	Multiples	λ(A)	E_i (cm $^{-1}$)	$E_k(\mathrm{cm}^{-1})$	μί	μk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1		2P°=2P° (1F)	9917.9	()	10130	4	2	m	18.6	1.33	A	1

SIX

Ground State

 $1s^22s^22p^{4/3}P_2$

Ionization Potential

 $378.95 \text{ eV} = 3057300 \text{ cm}^{-1}$

Forbidden Transitions

As in the case of Na tV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na tv. since the same criteria have been applied.

References

[1] Naqvi, A. M., Thesis Harvard (1951).
[2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 4131 (1965).

Six. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	μĸ	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P _ 3P										
			[12544]	9	7970	5	3	e	3.83×10-5	0.0213	C-	1,2
			[12544]	0	7970	5	3	m	11.3	2.48	В	1
			[9404.8]	0	10630	5	1	e	2.2×10^{-4}	0.0096	C-	2
	İ	Ì	[37584]	7970	10630	3	1	m	1.01	1.99	В	1
2		³P-¹D	_	-								
-	•		[1724.1]	0	[58000]	5	5	e	0.026	0.0012	D -	1,2
			1724.1	0	[58000]	5	5	m	61	0.058	C D-	1
			[1998.8]	7970	[58000]	3	5	e	0.0018	1.7×10^{-4}	D-	$1,\hat{2}'$
			[1998.8]	7970	[58000]	3	5	m	13.2	0.0196	C	1
			[2110.4]	10630	[58000]	1	5	e	7.6×10 ⁻⁴	9.5×10^{-5}	D-	2
3	į	3P-1S										
U			[817.66]	0	[122300]	5	1	e	0.33	7.2×10^{-5}	D-	2
			[874.66]	7970	[122300]	3	ì	m	710	0.0176	C	2 2
4		'D-'S										
4		פֿי–עי	[1555.2]	[58000]	[122500]	5	1	e	6.9	0.0374	C-	2

 $\mathbf{S}\mathbf{x}$

Ground State

 $1s^22s^22p^3$ $^4S_{3/2}^{\circ}$

Ionization Potential

447.0? eV = 3606000? cm^{-1}

Forbidden Transitions

The line strength for the one transition listed in the table is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Sx. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	μĸ	Type of Transi- tion	$A_{ki}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^3-2p^3$	2P° – 2P°	[66650]	[122230]	[123730]	2	4	m	0.0303	1.33	A	l

SXII

Ground State

1s22s2p2P2p2

Ionization Potential

?

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability is not as accurate, since the energy level difference is not accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

S XII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	μk	Type of Transi- tion	$A_{ki}(sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p - ({}^{1}S)2p$	² P°-2P° (1F)	7536	0	[13266]	2	4	m	21.0	1.33	В	1

CHLORINE

Clı

Ground State

 $1s^22s^22p^63s^23p^{5/2}P_{3/2}^{\circ}$

Ionization Potential

 $12.97 \text{ eV} = 104591 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	 Wavelength [Å]	No.
1188.77	3	4475 21	10	7070 00	-
1201.36		4475.31	18	7878.22 7899.28	6 29
1335.72	3	4491.05	15	7915.09	29
1347.24	2 2	4526.20 4545.38	28 17	7924.62	7
1351.66	$\frac{2}{2}$	4578.17	17	7935.00	30
1331.00	4	1 40.0.17	1,	7933.00	30
1363.45	2	4580.47	9	7976.95	29
1373.12	1	4601.00	28	7980.58	5
1379.53	1 1	4623,96	15	7997.80	6
1389.69	i i	4654.05	25	8084.48	16
1389.96	1	4661.22	22	8085.54	16
1396.53	1	4674.40	27	8086.67	16
4104.78	22	4677.76	25	8087.67	16
4147.20	22	4691.53	24	8194.35	
4209.68	1 19	4721.24	25	8212.00	5 5 5
4226.44	21	4740.71	25	8333.29	5
4.120.44	21	4740.71	24	0075.05	-
4264.59	19	4796.76	25	8375.95	5 5
4289.43	18	4818.42	23	8428.25	10
4323.35	21	4818.64	27	8550.46 8575.25	12 5 5
4337.80	18	4852.70	24	8575.25 8585.96	و
4363.30	19	4976.62	14	8585,90	э
10.00.00	17	1710.02	1	8686.28	13
4369.52	19	5099.80	14	8948.01	4
4371.55	is	5140.35	14	9073.15	11
4379.90	18	7256.63	8	9073.13 9121.10	4
4387.55	21	7414.10	7	9121.10	4
4389.76	18	7537.06	8	9191.07	4
				9288.82	10
4390.38	20	7702.89	29	9393.81	4
4402.58	18	7717.57	7	9486.89	4
4403.03	17	7744.94	8	9584,77	4
4438.48	17	7769.18	29	9592.20	10
4445.83	18	7771.10	29		
				9632.37	11
4446.11	17	7821.35	29	9702.35	4
4469.37	28	7830.76	29	9875.95	10

Lawrence [1] has carried out intermediate coupling calculations for three multiplets in the vacuum uv region involving the 4s state. These values are normalized via a lifetime measurement of this state by him [1], in which he applied the phase shift technique. Hofmann [2] has measured oscillator strengths for the same multiplets using a wall-stabilized arc; his values for the ${}^2P^{\circ} - {}^2P$ and ${}^2P^{\circ} - {}^2P$ multiplets are renormalized to Lawrence's [1] lifetime and the results averaged with Lawrence's calculated values. For the ${}^2P^{\circ} - {}^4P$ intercombination multiplet, Hofmann's renormalized values are used exclusively where available; for the other lines, Lawrence's calculated values are taken.

In the visible region, emission experiments are available. Foster [4] and Hey [5] employed vortex and wall-stabilized arcs, respectively, while Bengtson [3] used a conventional shock tube. Usually there is good agreement where the three experiments overlap and in these cases the results have been averaged. For the case of the 4s 4P-4p 4D° multiplet, only the weaker lines measured by Bengtson are chosen since the stronger lines of this multiplet seem to be affected by selfabsorption. For several lines Foster [4] has made use of Kiess' intensity data to obtain absolute transition probabilities; the accuracy estimate has then been reduced.

The Coulomb approximation has been employed for several multiplets of the 4s-4p and 4p-4darrays; it compares usually quite well with the measurements, when theory and experiment overlap.

References

- Lawrence, G. M., Astrophys. J. 148, 261–268 (1967).
 Hofmann, W., Z. Naturforsch. 22a, 2097–2101 (1967).
- [3] Bengtson, R. D., Thesis Maryland (1968) and to be published.
- [4] Foster, E. W., Proc. Phys. Soc. London A80, 882-893 (1962).
- [5] Hey, P., Z. Physik 157, 79-88 (1959).

Cl I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g _i	μk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3p^5 - 3p^4(^3P)4s$	2p°4p (l uv)											
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1389.69	0	71954	4		0.0023	1.0×10^{-4}	0.0018	-3.40	D	1
		į į	1396.53	881	72484	2	4	0.015	8.8×10^{-4}	0.0081	-2.75	D	2n
			1379.53	0	72484	4	4	0.11	0.0031	0.057	1.91	D	2 <i>n</i>
			1389.96	881	72823	2		0.017	4.9×10^{-4}	0.0045	-3.01	D	1
			1373.12	0	72823	4	2	0.0029	4.1×10^{-5}	7.4 × 10-4	- 3.79	D	2 <i>n</i>
2		2P°-2P	1348.8	294	74434	6	6	4.94	0.135	3,59	-0.092	C+	1, 2n
		(2 uv)							0.114	2.00	0.241	C	1, 2n
			1347.24	0	74221	4		4.19	0.114	2.02 0.79	-0.341 0.75	C+	1, 2n 1, 2n
			1351.66	881	74861	2	2	3.23	0.088	0.79	-1.031	C	1. 2"
			1335.72	0	74861	4	2	1.74	$0.0233 \\ 0.0418$	0.409	-1.031	C+	1. 2n
			1363.45	881	74221	2	4	0.75	0,0416	0.575	- 1.076		1.2
3	$3p^5 - 3p^4(^1D)4s'$	2P°-2D	1193.0	294	84116	6	10	2.47	0.088	2.07	-0.277	С	1. 2n
	1047 (27, 2		1188.77	0	84116	4		2.33	0.074	1.16	-0.53	C	1.2n
			1201.36	881	84117	2	-1	2.39	0.103	0.82	-0.69	C	1, 2n
			1188.77	0	84117	4	4	0.271	0.0057	0.090	1.64	C	1.2n
4	3p43 + 3p4(3P)4p	4P-4P° (1)	9270.5	72276	83060	12	12	0.23	0.30	110	0.56	D	co
	, , , , , , , , , , , , , , , , , , ,	1	9121.10	71954	82915	6		0.17	0.22	39	0.12	D	ls ls
			9393.81	72484	83127	4		0.031	0.042	5.1	-0.78	E	1.
			9486.89	72823	83361	2		0.039	0.052	3.3	-0.98	E	l.
	[8948.01	71954	83127	6	-1	0.12	0.095	17	-0.24	D-	1,
			9191.67	72484	83361	4		0.21	0.13	16	-0.28	D-	1
			9584.77	72484	82915	4		0.066	0.14	17	-0.26	D- D-	
			9702,35	72823	83127	2	1	0.091	0.26	16	-0.29	D	
5		4P = 4D° (2)	8413.1	72276	84159	12	20	0.27	0.48	160	0.76	D	3n, ce
		_/	8375.95	71954	83890	6	8	0.28	0.39	64	0.37	D	1.
			8585,96	72484	84128	4	6	0.19	0.31	35	0.09	D	1
			8575,25	72823	84481	2	4	0.12	0.27	15	-0.27	D	3, 1
			8212.00	71954	84128	6		0.079	0.080	13	- 0.32	D	3. /
			8333.29	72484	84481	4		0.16	0.16	18	-0.19	D	1 . !
			8428.25	72823	84684	2		0.24	0.25	14	-0.30	D	3. /
			7980.58	71954	81481	6		0.016	0.010	1.6	-1.22	E	1 . !
			8194.35	72484	84684	1 4	2	0.050	0.025	2.7	-1.00	E	3,

Cli. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	gi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
6		4P - 2D° (3)	7878.22 7997.80	71954 72484	84644 84984	6 4	6 4	0.018 0.021	0.017 0.020	2.6 2.1	-0.99 -1.10	D D	3 3
7		4P_2P° (4)	7414 10	71954	85438	6	4	0.047	0.026	3.8	-0.81	D	,
		!	7414.10 7717.57 7924.62	72484 72823	85438 85438	4 2	4	0.030 0.021	0.020 0.027 0.040	2.7 2.1	-0.81 -0.97 -1.10	D D	3 3
8		4P_4S° (5)	7430.1	72276 71954	85731 85731	12 6		0.38 0.19	0.11	31 14	0.12	D+ D+	3, ca 3, ls
			7256.63 7547.06 7744.94	72484 72823	85731 85731	4 2	4	0.19 0.13 0.065	0.10 0.11 0.12	14 11 6.0	$ \begin{vmatrix} -0.22 \\ -0.36 \\ -0.62 \end{vmatrix} $	D+ D+	3, ls 3, ls 3, ls
9	$3p^44s - 3p^4(^1D)4p'$	4P-2P°	4580.47	72484	94310	4	4	0.0018	5.7 × 10-4	0.034	-2.65	D-	4
10	3p44s — 3p4(3P)4p	² P- ² D° (11)	9662.9	74434	84780	6	10	0.25	0.58	110	0.54	D	ca
	SP (17)	(11)	9592.20 9875.95 9288.82	74221 74861 74221	84644 84984 84984	4 2 4	4	0.24 0.19 0.044	0.50 0.56 0.057	63 37 7.0	0.30 0.05 -0.64	D D E	ls Is Is
11		² P - ² S°	9251.6	74434	85240	6	2	0.27	0.11	21	-0.16	D	ca
		(12)	9073.15 9632.37	74221 74861	85240 85240	4 2	2 2	0.19 0.083	0.12 0.12	14 7.3	-0.33 -0.62	D D	ls Is
12		² P – ² P° (13)	8550.46	74221	85913	4	2	0.019	0.010	1.2	-1.40	D-	3
13		² P- ⁴ S° (14)	8686.28	74221	85731	4	4	0.039	0.044	5.0	-0.75	D	3
14	3p44s — 3p4(1D)4p'	2P - 2P°	4976 62 5099.80 5140.35	74221 74861 74861	94310 94465 94310	4 2 2	2	0.0035 0.0085 0.0025	0.0013 0.0033 0.0020	0.085 0.11 0.067	-2.28 -2.18 -2.40	D+ D D-	3, 4 4 4
15		² P – ² D°	4623.96 4491.05	74861 74221	96482 96482	2 4		0.0045 0.0048	0.0029 0.0015	0.088 0.086	-2.24 -2.22	D+ D+	3, 4 3, 4
16		² D− ² D°	8085.8	84116	96480	10	10	0.42	0.41	110	0.61	D	3, <i>ca</i>
			8086.67 8085.54 8084.48 8087.67	84116 84117 84116 84117	96478 96482 96482 96478	6 4 6 4	4	0.40 0.38 0.042 0.028	0.39 0.38 0.028 0.041	62 40 4.4 4.4	0.37 0.18 - 0.77 - 0.79	D D E E	ls ls ls
17	3p44s — 3p4(3P)5p	4P_4P° (6)	4438.48	71954	94478	6	6	0.014	0.0041	0.36	-1.61	D	3.4
			4403.03 4446.11 4545.38 4578.17	71954 72484 72484 72823	94659 94969 94478	6 4 4 2	4 2 6	0.0074 0.0044 5.1 × 10 ⁻⁴ 0.0017	0.0014 6.5×10-4 2.4×10-4 0.6011	0.12 6.038 0.014 0.032	-2.08 -2.58 -3.02 -2.67	D D D-	3, 4 4 4 3, 4

Cl 1. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(cm^{-1})$	<i>E_k</i> (cm ⁻¹)	gi	gk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
18		4P_4D° (7)	4408.5	72276	94953	12	20	0.011	0.0052	0.91	-1.20	D+	3, 4, 5
		(()	4389.76 4475.31 4445.83 4371.55 4379.90 4402.58 4280.43 4337.80	71954 72484 72823 71954 72484 72823 71954 72484	94728 94823 95309 94823 95309 95531 95309 95531	6 4 2 6 4 2 6 4	6 4 6 4 2 4	0.013 0.0043 0.0023 0.0015 0.012 0.0058 0.0016 0.0026	0.0050 0.0019 0.0014 4.3×10-4 0.0035 0.0017 2.9×10-4 3.7×10-4	0.43 0.11 0.040 0.037 0.20 0.049 0.025 0.021	-1.52 -2.12 -2.56 -2.59 -1.85 -2.47 -2.76 -2.83	C - D + D + D + D - D -	3, 4, 5 3, 4 3, 4 3, 4 3, 4 4
19		4P_2D°	4337.60	12404	9,3331	4	2	0.0020	3.7 ~ 10	0.021	2.00		•
		(8)	4363.30 4369.52 4264.59 4209.68	72484 72823 71954 71954	95396 95702 95396 95702	4 2 6 6	4 6		0.0029 0.0040 4.6×10 ⁻⁴ 7.3×10 ⁻⁴	0.16 0.12 0.039 0.060	-1.94 -2.10 -2.56 -2.36	D+ D+ D+ D-	3, 4 3, 4 3, 4 3, 4
20		4P-2S°	4390.38	72823	95593	2	2	0.0079	0.0023	0.066	-2.34	D+	3, 4
21		⁴ P- ⁴ S°	4284.8	72276	95668	12	4	0.021	0.0019	0.32	-1.64	D+	3, 4
		(2)	4226.44 4323.35 4387.55	71954 72484 72823	95608 95608 95608	6 4 2	4 4 4	0.011	9.8 × 10 ⁻⁴ 0.0031 0.0021	0.082 0.18 0.060	-2.23 -1.91 -2.38	D+ D+ D+	3, 4 3, 4 3, 4
22		4P_2P°	4104.78 4147.20	71954 72484	96309 96590	6 4	4 2		3.4 × 10 ⁻⁴ 4.9 × 10 ⁻⁴	0.027 0.027	-2.69 -2.71	D-	4 4
23		² P_ ⁴ P°	4818.42	74221	94969	4	2	0.0039	6.8×10 ⁻⁴	0.043	-2.57	D	4
24		² P- ⁴ D°	4852.70 4740.71 4691.53	74221 74221 74221	94823 95309 95531		6 4 2	0.0042	0.0012 0.0014 0.0018	0.078 0.088 0.11	-2.32 -2.25 -2.14	D+ D+ D+	3.4
25		² P- ² D°	4741.6	74434	95518	ő	10	0.0038	0.0021	0.20	-1.90	D+	3, 4
			4721.24 4796.76 4654.05	74291 7	95396 95702 95702	2	4	0.0021 0.0019 0.0049	0.0011 0.0013 0.0016	0.065 0.041 0.098	$\begin{array}{r r} -2.36 \\ -2.58 \\ -2.19 \end{array}$	D+ D- D+	4
26		² P- ² S°	4677.76	74221	95593	4	2	0.0054	8.9 × 10-4	0.055	-2.45	D+	3, 4
27		² P-4S°	4674.40 4818.64	74221 74861	95608 95608		4 4		6.6×10 ⁻⁴ 0.0013	0.040 0.042	-2.58 -2.58	D+ D	3,4
28		² P_ ² P° (15)	4550.6	74434	96403	6	6	0.054	0.017	1.5	-0.99	D+	3, 4, 5
		(10)	4526.20 4601.00 4469.37 4661.22	74221 74861 74221 74861	96309 96590 96590 96309	4	2 2	0.041 0.039 0.016 0.010	0.013 0.012 0.0024 0.0065	0.75 0.37 0.14 6.20	-1.28 -1.62 -2.02 -1.89	D D C -	

Cl. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(A)	<i>E₁</i> (cm ⁻¹)	E _k (cm ⁻¹)	Ķ,	Kr.	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
29	3\(\bullet^{1}4p - \) 3\(\bullet^{1}(^{3}P)4d	4P°_4D	7852.7	83060	95791	12	20	0.10	0.15	48	0.26	D	3, 00
	• ` '		7821.35	82915	95696	6	8	0.095	0.12	18	-0.14	D	3, /
			7899.28	83127	95782	4	6	0.058	0.082	8.5	-0.48	D	3, 1
			7976.95	83361	95893	2	4	0.041	0.078	4.1	-0.81	D-	, .
	1		7769.18	82915	95782	6	6	0.045	0.040	6.2	-0.62	D	3, 1
			7830.76	83127	95893	4	4	0.069	0.063	6.5	-0.60	D	3, 1
			7915.09	83361	95991	2	2	0.061	0.058	3.0	-0.94	D-	3, 1
			7702.89	82915	95893	6	4	0.0054	0.0032	0.49	-1.72	E	3, 1
			7771.10	83127	95991	4	2	0.024	0.011	1.1	-1.36	E	3, /
30	ļ	4D°-4F'	1							1			
			7935.00	83890	96490	6	8	0.046	0.058	9,1	-0.46	D	3
		1							İ				ca, l

Cli

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Cl I. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Kı	Kr	Type of Transi- tion	A _{ki} (sec ¹)	S(at.u.)	Accu- racy	Source
1	3p5-3p5	2P°_2P°	[11.328×10*]	0	882.50	4	2	m	0.0123	1.33	A	1

Chu

Ground State
Ionization Potential

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{4} {}^{3}P_{2}$ $23.80 \text{ eV} = 192000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelengtli [Å]	No.
1063.83	1	1079.68	1	2498.53	57
1068.0	1	2427.79	55	2502.75	57
1071.05	1 1	2430.16	55	2543.98	56
1071.76	1	2434.10	55	2544.84	56
1075.2	1 1	2496.04	l 57 l	2545.5	56

List of tabulated lines - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2546.94	56	3860.80	30	4544.48	11
2547.76	56	3860.98	30	4569.42	47
2549.85	56	3861.40	30	4572.13	47
2666.46	58	3861.95	45	4739.42	8
2667.36	58	3862.6	45	4740.40	14
2906.25	33	3864.60	45	4755.64	8
3022.93	32	3865.2	45	4765.30	8
3147.86	5	3868.62	45	4768.68	26
3161.44	6	3883.80	48	4771.09	26
3175.9	36	3904.0	37	4771.66	28
3176.3	36	3906.9	37	4778.93	26
3182.3	36	3913.92	37	4781.32	26
3182.7	36	3916.70	37	4781.82	8
3188.4	36	3917.57	37	4785.44	26
3189.04	36	3929.0	37	4794.54	17
3231.75	40	3929.7	37	4797.1	26
3306.45	31 31	3954.21 3990.19	44	4798.40	8
3307.90 3308.7	31	3990.19 3996.3	41	4810.06 4811.57	17 52 -
3315.44	31	4001.9	41 41	4811.57 4819.46	17
3316.86	31	4020.06	41	4819.79	8
3329.12	31	4026.7	41	4822.3	52
3505.44	35	4036.53	41	4827.0	52
3508.94	35	4124.00	49	4836.79	8
3509.39	35	4130.86	49	4857.94	52
3513.22	35	4131.4	49	4863.1	52
3513.69	35	4132.48	24	4879.0	52
3522.14	35	4133.66	49	4893.1	7
3526.13 3568.04	35 43	4135.5 4147.09	49 49	4896.77 4900.3	20 25
3576.00	43	4155.2	49	4904.76	20
3587.78	43	4185.61	27	4907.17	25
3596.9	43	4183.82	27	4914.32	20
3597.3	38	4191.59	27	4917.72	20
3601.4	38	4195.11	27	4922.14	20
3603.72	43	4204.54	27	4924.28	7
3604.51	43	4208.03	27	4924.83	25
3605.9	38	4215.0	54	4925.17	7
3606.6	38	4223.0	54	4933.2	20
3610.8	38	4224.92	54	4936.99	7
3615.09	38	4228.7 4234.09	54	4943.24	10
3618 98 3639.19	42 42	4234.09 4234.8	46 54	4970.12 4995.52	7 7
3648.07	42	4235.49	51	5068.10	19
3731.23	39	4235.49	54	5078.25	19
3798.80	34	4241.38	46	5098.34	19
3805.24	34	4251.3	50	5099.30	19
3809.51	34	4253.51	46	5103.04	19
3810.10	34	4258.8	50	5104.08	19
3818.40	34	4261.22	50	5113.36	19
3829.27	4	4264.4	50	5175.85	13
3830.8	34	4270.61	50	5217.93	18
3843.26	12	4276.51	50	5221.34	18
3845.42	30	4291.76	2!	5392.12	23
3845.69	30	4304.07	21	5423.25	2
3845.84	30	4307.42 4334.1	21 21	5423.52 5421.36	2 2 2 2
3850.97 3851.38	30 30	4334.1 4336.26	21	5443.42	2
3851.38 3851.69	30	4313.62	21	5444.25	2
3854.75	45	4399.14	29	5444,99	2

List of tabulated lines-Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
5456.27 5457.02 5457.47 5568.81 5634.83	2 2 2 2 53 9	6759.42 6841.86 6850.21 6924.2 6932.4	15 15 15 15 15	8360.63 8364.0 8385.0 8385.7 8394.2	3 3 3 3 3
6094.65 6399.41	22 16	6952.13 8355.6	15 3		

Lawrence [1] has accurately measured the lifetime of the first excited state with the delayed-coincidence method. Using LS-coupling, we have derived the f-values for all components of the resonance multiplet. Foster [3] and Hey [4] have measured some f-values with vortex and wall-stabilized arcs respectively, while Bengtson [2] has performed emission intensity measurements with a conventional shock tube. When their measurements and the Coulomb approximation overlap, the individual deviations from the adopted averages are within 25 percent.

For numerous other transitions, including those involving shell-equivalent electrons, the Coulomb approximation has been employed in order to have data available for some of the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are normally expected. Bengtson [2] has measured one multiplet involving shell-equivalent electrons for which the Coulomb approximation was calculated $(3p^33d^5D^\circ-3p^34p^5P)$ and the results are almost identical. However, this close agreement could be accidental and the uncertainties should in general be somewhat larger for transitions involving shell-equivalent electrons.

References

- [1] Lawrence, G. M., private communication (1968) and to be published.
- [2] Bengtson, R. D., Thesis Maryland (1968) and to be published.
- [3] Foster, E. W., Proc. Phys. Soc. London A80, 882-893 (1962).
- [4] Hey, P., Z. Physik 157, 79-88 (1959).

Clii. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	<i>E</i> _k (cm ⁻¹)	gi	g _k	$\begin{array}{c} A_{ki}(10^8 \\ \text{sec}^{-1}) \end{array}$	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s ² 3p ⁴ - 3s3p ⁵	aP_aP° (1 uv)	1071.3	343	93685	9	9	1.12	0.0193	0.61	- 0.76	С]
		. ,	1071.05	0	93367	5	5	0.84	0.0144	0.254	-1.143	C	ls
			1071.76	697	93999	3	3	0.280	0.00482	0.051	-1.84	C	ls ls
			1063.83	0	93999	5	3	0.477	0.00485	0.085	-1.62	C	l ls
			[1068.0]	697	94333	3	1	1.13	0.0064	0.068	-1.72	C	ls ls
			1079.08	697	93367	3	5	0.274	0.0080	0.085	-1.62	C	ls ls
			[1075.2]	996	93999	l	3	0.369	0.0192	0.068	-1.72	Ć	ls
2	`p³3d — 3p²(⁴S°)4p	⁵ D° – ⁵ P (2)	5438.3	110_ 8	128686	25	15	0.25	0.065	29	0.21	D	2
	• ` ` `	. ,	5423.25	110296	128730	9	7	0.18	0.062	9.9	-0.26	D	2, Is
			5443.42	110297	128663	7	5	0.15	0.047	6.0	-0.48	D	2, 15
			5456.27	110300	128622	5	3	0.084	0.022	2.0	-0.95	D	ls
			5423.52	110297	128730	7	7	0.037	0.016	2.0	-0.95	D	2, Is
			5444.25	110300	128663	5	5	0.095	0.047	4.2	-0.63	D	2, Is
			5457.02	110302	128622	3	3	0.11	0.048	2.6	-0.84	D	ls ls
			5424.36	110300	128730	5	7	0.0056	0.0035	0.31	-1.76	E	2, ls
			5444.99	110302	128663	3	5	0.024	0.020	1.1	-1.23	D	2, 1
			5457.47	110304	123622	1	3	0.048	0.064	1.2	1.19	D-	ls

Clii. Allowed Transitions - Continued

==													
No.	Trausition Array	Multiplet	λ(Å)	E _f (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	gi	g _k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
3		³ D°- ³ P	8368.2	119813	131763	15	9	0.13	0.082	34	0.09	E	ca
		(3)	8360.63	119810	131767	7	5	0.11	0.081	16	-0.25	E	ls
	1		[8364.0]	119799	131755	5	3	0.096	0.060	8.3	-0.52	E	ls
		1	[8385.0]	119842	131768	3	1	0.13	0.045	3.7	-0.87	E	ls
			[8355.6]	119799	131767	5	5	0.019	0.020	2.8	-0.99 -0.99	E E	ls Is
			[8394.2] [8385.7]	119842 119842	131755 131767	3	3 5	0.032 0.0013	0.034 0.0022	2.8 0.19	-2.17	Ē	ls
4	$3p^33d' - 3p^3(^2D^\circ)4p'$	'D°-'F	3829.27	121499	147606	5	7	0.0095	0.0029	0.19	-1.83	E	ca
5		¹D°-¹D (10)	3147.86	121499	153257	5	5	0.14	0.021	1.1	-0.98	E	ca
6		'F°-'D (11)	3161.44	121635	153257	7	5	0.23	0.024	1.8	-0.77	E	са
7		³ F°- ³ D (12)	4970.2	126276	146396	21	15	0.14	0.038	13	-0.10	E	ca
			4995.52 4970.12	126457 126219	146469 146334	7	7 5	0.13 0.13	0.039 0.034	5.7 3.9	-0.46 -0.62	E	ls ls
			4970.12	126032	146330	5	3	0.13	0.034	2.6	-0.80	EEEE	ls
			4936.99	126219	146469	7	7	0.012	0.0042	0.48	-1.53	Ē	ls
			4924.28	126032	146334	5	5	0.016	0.0059	0.48	-1.53	E	ls ls
			[4893.1]	126032	156469	5	7	3.3 × 10 ⁻⁴	1.7 × 10 ⁻⁴	0.014	-3.08	E	ls
8		³ F°- ³ F (13)	4792.9	126276	147140	21	21	0.056	0.019	6.4	-0.39	E	ca
			4819.79 4781.82	126457 126219	147198 147126	7	7	0.051 0.047	0.018 0.016	2.6 1.8	-0.79 -0.95	E	ls ls
			4755.64	126032	147054	5	5	0.050	0.017	1.3	-1.07	Ē	ls
			4836.79	126457	147126	9	7	0.0044	0.0012	0.17	-1.96	E	ls
			4798.40	126219	147054	7	5	0.0062	0.0015	0.17	-1.97	E	ls
			4765.30	126219	147198	1 3	9	0.∪035	0.0015	0.17	-1.97	Ē	ls
			4739.42	126032	147126	5	7	0.0045	0.0021	0.16	-1.98	E	ls
9		¹ F°- ¹ P (23)	5634.83	127727	145469	3	3	0.095	0.045	2.5	-0.87	E	ca
10	3p ³ 3d" - 3p ³ (² P°)4p"	¹ P°- ¹ D (47)	4943.24	139350	159574	3	5	0.0028	0.0017	0.083	-2.29	E	ca
11		¹ P°_1P (48)	4544.48	139350	161348	3	3	0.082	0.025	1.1	-1.12	E	ca
12		¹ P°- ¹ S (49)	3843.26	139350	165362	3	1	0.42	0.031	1.2	-1.03	E	ca
13		'D°-'D (50)	5175.85	140259	159574	5	5	0.039	0.016	1.3	-1.10	E	ca
14		¹ D°- ¹ P (51)	4740.40	140259	161348	5	3	0.24	0.948	3.7	-0.62	E	ca
15		³ F°- ³ D (54)	6835.7	144139	158768			0.14	2.070	33	0.17	E	ca
			6759.42	1439 9 6 144175	158786 158769	7		0.13 0.12	0.069	9.7	-0.20 -0.36	EEE	ls
			6850.21 6952.13	144175	158709			0.12	0.052	6.7	-0.53	E	ls
			6841.86	144175	158786	7	7	0.011	0.0077	1.2	-1.27	Ē	ls
			[6932.4]	144344	158769	5	5	0.015 3.1 × 10-4	0.011 3.1 × 10-4	1.2 0.035	-1.27 -2.81	E	ls ls
			[6924.2]	144344	158786	3	'	3.1 ^ 10 4	3.1 ~ 10 .	0.033	-2.01	_ E	1
16		³ P°_ ³ P (58)											
		\	6399.41	146043	161635	5	5	0.040	0.024	2.6	-0.91	E	ca, l

Cl II. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	gk	A _{kl} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
17	3p ³ 41- 3y ³ (4S°)4p	5S°_5P	4806.1	107879	128686	5	15	1.14	1.19	94	0.77	С	2, 3
	3;"('5')4p	(1)	4794.54	107879	128730	5	7	1.18	0.57	44.9	0.455	С	4, co 2, 3, 4
			4810.06	107879	128663	5	5	1.13	0.392	31.0	0.292	С	ca, l 2, 3
			4819.46	107879	128622	5	3	1.11	0.232	18.4	0.064	С	ca, l 2, 3 ca, l
18		³ S°_ ³ P (3)	5220.6	112608	131763	3	9	0.77	0.94	48.7	0.450	С	2,3,c
		(6)	5217.93 5221.34 5217.93	112608 112608 112608	131767 131755 131768	3 3 3	5 3 1	0.77 0.77 0.77	0.52 0.315 0.11	27.0 16.2 5.4	0.193 -0.025 -0.50	C C D	,
19	3p ³ 4s' - 3p ³ (² D°)4p'	³ D°- ³ D	5092.2	126753	146396	15	15	0.86	0.33	84	0.70	D	c
			5078.25 5103.04	126783 126743	146469 146334	7 5	7 5	0.77 0.59	0.30 0.23	35 19	0.32 0.06	D D	
			5099.30 5113.36	126725 126783	146330 146334	3 7	3 5	0.64 0.13	0.25 0.037	13 4.4	-0.12 -0.59	D D-	
			5104.08 5068.10	126743 126743	146330 146469	5	3 7	0.21 9.097	0.050 0.052	4.2 4.4	-0.60 -0.58	D-	
			5098.34	126725	146334	3	5	0.13	0.084	4.2	-0.60	D-	
20		$^{3}D^{\circ}-^{3}F$ (17)	4906.3	126758	147140	15	21	0.90	0.45	110	0.83	D	2, 6
			4896.77	126783	147198	7	9	0.88	0.41	46	0.46	D	2, c
			4904.76 4917.72	126743 126725	147126 147054	5	7 5	0.81 0.75	0.41 0.45	33 22	0.31 0.13	D	
	İ		4914.32	126783	147126	7	7	0.10	0.036	4.1	-0.60	D-	
			4922.14 [4933.2]	126743 126783	147054 147054	5 7	5 5	0.14 0.0041	0.051 0.0011	4.1 0.12	-0.59 -2.11	D- E	
21		³ D°- ³ P (19)	4326.0	126758	149874	15	9	1.0	0.17	36	0.41	D	2,
			4343.62	126783	149798	7	5	0.84	0.17	17	0.08	D	2, c
	1		4307.42	126743	149952	5	3	0.76	0.13	9.0	-0.19	D-	
			42º1.76 4336.26	126725 126743	150019 149798	3 5	1 5	1.0 0.15	0.094 0.042	4.0 3.0	- 0.55 - 0.68	D – D –	
			4304.07 [4334.1]	126725 126725	149952 149798	3	3 5	0.25 0.010	0.071 0.0047	3.0 0.20	-0.67 -1.85	D – E	
22		¹ D° – ¹ P (26)	6094.65	129065	145469	5	3	0.53	0.18	18	-0.05	D	
23		¹D°- ¹F (28)	5392.12	129065	147606	5	7	0.89	0.54	48	0.43	D	2, 6
24		'D°-'D (29)	4132.48	129065	153257	5	5	1.6	0.41	28	0.32	D	'
25	3p34s"- 3p3(2P°)4p"	³ P°-3S (39)	4917.4	137841	158177	9	3	0.97	0.11	17	0.02	D	
	SF (- /-P	(07)	4924.83	137878	158177	5	3	0.52	0.11	9.2	-0.25	D	
			4907.17 [4900.3]	137804 137770	158177 158177	3 1	3	0.32 0.11	0.11 0.11	5.5 1.8	$ \begin{array}{c c} -0.47 \\ -0.94 \end{array} $	D D	
26		³ P°- ³ D (40)	4778.5	137841	158768	9	15	1.0	0.59	83	0.72	D	,
		ν/	4781.32 4768.68	137878 137804	158786 158769	5 3	7 5	1.0 0.77	0.49	39	0.39	D D	
			4771.09	137770	158724	1	3	0.57	0.44 0.58	21 9.2	0.12 - 0.23	D-	
			4785.44 4778.93	137878 137804	158769 158724	5	5	0.26 0.43	0.088 0.15	6.9	-0.36	D-	
			[4797.1]	137878	158724	3 5	3	0.43	0.15	6.9 0.46	-0.36 -1.54	D-	

Cl II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	g _k	A _{ki} (10 ^µ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
27		3P°_3P	4200.8	137841	161646	9	9	1.5	0.39	49	0.55	D	c
		(43)	4208.03	137878	161635	5	5	1.1	0.29	20	0.17	D	ı
ĺ			4191.59	137804	161655	3	3	0.37	0.098	4.1	-0.53	D -	t
	İ		4204.54 4188.82	137878 137804	161655 161671	5 3	3	0.62 1.5	0.098 0.13	6.8 5.4	-0.31 -0.41	D –	1
			4195.11	137804	161635	3	5	0.37	0.16	6.8	-0.41 -0.31	D-	
			4185.61	137770	161655	l	3	0.50	0.39	5.4	-0.41	D –	i
8		'P°-'D (45)	4771.66	138623	159574	3	5	1.0	0.59	28	0.25	D	C
9		¹ P° _ 1P (46)	4399.14	138623	161348	3	3	1.3	0.38	17	0.06	D	c
0	3p ³ 4p - 3p ³ (⁴ S°)4d	⁵ P — ⁵ D° (25)	3855.6	128686	154622	15	25	2.7	1.0	190	1.18	D	C
		` <u></u>	3860.80	128730	154624	7	9	2.7	0.77	68	0.73	D	!
			3850.97 3845.42	128663 128622	154623 154620	5	7 5	1.8 0.94	0.56 0.35	35 13	0.45 0.02	D D	1
	1		3860.98	128730	154623	7	7	0.89	0.20	18	0.14	D	1
			3851.38 3845.69	128663 128622	154620 154618	5 3	5	1.6 2.0	0.35 0.45	22 17	0.24 0.13	D D	
			3861.40	128730	154620	7	5	0.18	0.028	2.5	-0.70	D-	
			3851.69 3845.84	128663 128622	154618 154617	5 3	3	0.67 2.7	0.090 0.20	5.7 7.6	-0.35 -0.22	D- D-	
1		3P_3D°	3321.2	131763	161873	9	15	1.4	0.40	39	0.55	D	
		(37)	3329.12	131767	161797	5	7	1.5	0.34	19	0.23	D	
	8		3315.44	131755	161908	3	5	1.1	0.29	9.6	-0.05	D	
	/		3307.90 3316.86	131768 131767	161990 161908	1 5	3 5	0.78 0.36	0.38 0.059	4.2 3.2	-0.42 -0.53	D- D-	
			3306.45	131755	161990	3	3	0.58	0.039	3.1	-0.53 -0.54	D-	
			[3308.7]	131767	161990	5	3	0.039	0.0038	0.21	-1.72	E	
32	$3p^34p' - 3p^3(^2D^\circ)4d'$	'P-'D° (57)	3022.93	145469	178539	3	5	0.60	0.14	4.1	-0.38	D	C
33		(14 uv)	2906.25	145469	179867	3	3	0.86	0.11	3.1	-0.48	D	C
34		³ D− ³ F° (62)	3805.9	146396	172671	15	21	1.8	0.53	100	0.90	D	c
			3805.24	146469	172741	7	9	1.8	0.51	44	0.55	D	
			3798.80 3809.51	146334 146330	172650 172573	5 3	7 5	1.6 1.5	0.49 0.55	31 21	0.39	D	
			3818.40	146469	172650	7	7	0.20	0.044	3.9	-0.51	D-	1
			3810.10 [3830.8]	146334 146469	172573 172573	5 7	5 5	0.28 0.0080	0.062 0.0013	3.9 0.11	$\begin{vmatrix} -0.51 \\ -2.05 \end{vmatrix}$	D-	
15		³ D - ³ D° (64)	3517.0	146396	174829	15	15	1.6	0.29	51	0.64	D	0
		(01)	3522.14	146469	174853	7	7	1.4	0.26	21	0.26	D	
			3509.39 3513.22	146334 146330	174821 174786	5 3	5 3	1.1 1.2	0.20 0.22	12 7.6	-0.00	D	
			3526.13	146469	174821	7	5	0.24	0.22	2.6	-0.18 -0.64	D-	
			3513.69	146334	174786	5	3	0.39	0.044	2.5	-0.66	D-	-
			3505.44 3508.94	146334 146330	174853 174821	5 3	7 5	0.17 0.24	0.045 0.072	2.6 2.5	-0.65 -0.66	D –	
36		³ D – ³ P° (65)	3186.1	146396	177782	15	9	0.38	0.034	5.4	-0.29	D	
		(0)	3189.04	146469	177817	7	5	0.19	0.020	1.5	0.85	D	
			[3182.7]	146334	177754 177694	5	3	0.39	0.035	1.8	0.76	D	
			[3188.4] [3176.3]	146330 146334	177817	3 5		0.52 0.076	0.026 0.011	0.83	-1.10 -1.24	D-	
			[3182.3]	146330	177754	3	3	0.13	0.020	0.61	-1.23	D-	
	!		[3175.9]	146330	177817	3	5	0.0051	0.0013	0.040	-2.42	E	1

Cli. Allowed Transitions - Continued

			T	 		T ==				T		1	
No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	E _k (cm ⁻¹)	KI	μk	A _{ki} (10 ⁱ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
37		³F _³F° (68)	3916.8	147140	172671	21	21	0.88	0.20	55	0.63	D	ca
		(00)	3913.92	147198	172741	9	9	0.82	0.19	22	0.23	D	ls
			3916.70	147126	172650	7	7	0.74	0.17	15	0.07	D	ls Is
			3917.57	147054	172573	5	5	0.78	0.18 0.13	12	-0.05 -0.95	DE	1
			[3929.0] [3929.7]	147198 147126	172550 172573	7	7 5	0.70 0.097	0.13	1.5	-0.95	Ē	i.
			3904.0	147126	172741	7	ő	0.055	0.016	1.4	-0.95	Ē	l ï
			[3906.9]	147054	172650	5	7	0.070	0.022	1.4	-0.95	Ē	l.
38		³F−³D° (70)	3611.5	147140	174829	21	15	0.17	0.024	6.1	-0.29	D	co
		,,,,	3615.09	147198	174853	9	7	0.16	0.025	2.6	-0.66	D	1
			[3610.8]	147126	174821	7	5	0.16	0.022	1.8	-0.82	D	!
	_		[3605.9]	147054	174786	5	3	0.18 0.014	0.021 0.0027	1.2 0.23	- 0.99 - 1.72	D	
1		!	[3606.6] [3601.4]	147126 147054	174853 174821	7 5	7 5	0.014	0.0027	0.23	-1.72	F	1 7
			[3597.3]	147054	174853	5	7	4.0 × 10-4	1.1 × 10-4	0.0064		E	l.
			[0091.0]	147034	114033	,	'	4.0 × 10	1.1 × 10	0.0001	5.21		
39		iF-1F°	3781.23	147606	174045	7	7	0.87	0.19	16	0.12	D	ca
40		(72)	0001.55	147606	150500		٠	0.10	0.014	1.0	1.00	, n	
40		¹ F- ¹ D° (73)	3231.75	147606	178539	7	5	0.12	0.014	1.0	-1.02	D	са
41		³ P_ ³ D° (76)	4007.2	149874	174829	9	15	0.82	0.33	39	0.47	D	ca
		, , , ,	3990.19	149798	174853	5	7	0.84	0.28	18	0.15	D	ls
			4020.06	149952	174821	3	5	0.62	0.25	10	-0.12	D	ls
			4036.53	150019	174786	1	3	0.46	0.34	4.5	-0.47	D-	ls
		İ	[3996.3]	149798	174821	5	5	0.21	0.050	3.3	-0.60	D-	ls
			[4026.7] [4001.9]	149952 149798	174786 174786	3 5	3	0.35 0.023	0.084	3.3 0.22	-0.60 -1.78	D-E	ls ls
42		³ P- ³ S° (77)	3629.9	149874	177423	9	3	2.1	0.14	15	0.10	D	ca
		(1)	3618.88	149798	177423	5	3	1.2	0.14	8.5	-0.15	D	ls
			3639.19	149952	177423	3	3	0.72	0.14	5.2	-0.37	D	ls
		ļ	3648.07	150019	177423	1	3	0.24	0.14	1.7	-0.84	D	ls
43		3P_3P° (78)	3583.2	149874	177782	9	9	1.6	0.30	32	0.43	D	ca
		(10)	3568.04	149798	177817	5	5	1.2	0.22	13	0.05	D	ls
		,	[3596.9]	149952	177754	3	3	0.39	0.076	2.7	-9.64	D-	ls
			3576.00	149798	177754	5	3	0.66	0.075	4.4	-0.42	D-	ls
			3603.72	149952	177694	3	1	1.6	0.10	3.7	0.51	D-	l.
			3587.78	149952 150019	177817	3	5	0.39	0.13	4.5	0.42	D-	ls Is
44		'D-'D°	3604.51 3954.21	153257	177754 178539	5	3	0.52	0.31	3.6	-0.51 0.11	D	C
77		(82)	3704.21	100201	110007	Ĭ	"		0.20		0.11		
45	3p34p"-: 3p3(2P°)4d"	³ D – ³ F° (84)	3864.6	158768	184644	15	21	2.7	0.84	160	1.10	D	co
		ļ	3868.62	158786	184628	7	9	2.7	0.77	68	0.73	D	l:
			3861.95	158769	184655	5	7	2.4	0.74	47	0.57	D	1.
			3854.75 3864.60	158724 158786	184658 184655	3 7	5	0.30	0.83 0.066	32 5.9	0.40	D-	1,
			[3862.6]	158769	184658	5	7 5	0.30	0.000	5.9	-0.33	D-	l,
			[3865.2]	158786	184658	7	5	0.012	0.0019	0.17	-1.88	E	
46	3p34p 3p2(45°)5s	⁵ P- ⁵ S° (24)	4246.8	128686	152233	15	5	1.8	0.16	34	0.39	D	ca
	1	(,	4253.51	128730	152233	7	5	0.84	0.16	16	0.06	D	l ls
			4241.38	128663	152233	5	5	0.60	0.16	11	-0.09	D	l ls
	1	I	4234.09	128622	152233	3	5	0.36	0.16	6.8	-0.31	D	ls

Clu. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(\text{cm}^{-1})$	E _k (cm ⁻¹)	.Kı	g _k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Seurce
47		³ P – ³ S° (35)	4571.5	131763	153633	9	3	1.6	0.17	23	0.18	D	ca
			4572.13 4569.42 4572.13	131767 131755 131768	153633 153633 153633	5 3 1	3 3	0.92 0.55 0.18	0.17 0.17 0.17	13 7.8 2.6	-0.06 -0.29 -0.76	D D D	ls ls ls
48	3p ³ 4p' - 3p ³ (² D°)5s'	'P-'D° (55)	3883.80	145469	171209	3	5	0.33	0.13	4.3	-0.42	D	ca
49		³ D - ³ D° (60)	4140.1	146396	170550	15	15	0.59	0.15	31	0.36	D	са
		(66)	4147.09 4130.86 4133.66 [4155.2] [4135.5] 4124.00 [4131.4]	146469 146334 146330 146469 146334 146334	170576 170535 170515 170535 170515 170576 170535	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.53 0.41 0.45 0.092 0.15 0.066 0.089	0.14 0.11 0.11 0.017 0.023 0.023 0.038	13 7.2 4.7 1.6 1.6 1.6	-0.02 -0.28 -0.47 -0.92 -0.94 -0.93 -0.94	D D D - D - D - D -	ls ls ls ls ls
50		3F-3D°	4271.7	147140	170550	21	15	0.83	0.16	48	0.53	D	ca
		(66)	4276.51 4270.61 4261.22 [4264.4] [4258.8] [4251.3]	147198 147126 147054 147126 147054 147054	170576 170535 170515 170576 170535 170576	9 7 5 7 5 5	7 5 3 7 5 7	0.76 0.74 0.83 0.066 0.092 0.0019	0.15 0.14 0.14 0.018 0.025 7.1 × 10 ⁻⁴	21 14 9.5 1.8 1.8 0.050	0.16 0.00 -0.17 -0.90 -0.90 -2.45	D D D – D – E	ls ls ls ls ls
51		'F-'D° (71)	4235.49	147606	171209	7	5	0.80	0.15	15	0.03	D	ca
52		³ P - ³ D° (74)	4836.5	149874	170550	9	15	0.33	0.20	28	0.25	D	ca
			4811.57 4857.04 [4879.0] [4822.3] [4863.1] [4827.0]	149798 149952 150019 149798 149952 149798	170576 170535 170515 170535 170515 170515	5 3 1 5 3 5	7 5 3 5 3 3	0.34 0.25 0.19 0.085 0.14 0.0095	0.17 0.15 0.20 0.030 0.050 0.0020	13 7.2 3.2 2.4 2.4 0.16	-0.08 -0.35 -0.70 -0.83 -0.82 -2.00	D D D - D - D - E	ls ls ls ls ls
53		¹ D- ¹ D° (80)	5568.81	153257	171209	5	5.	0.50	0.23	21	0.07	D	ca
54	3p ³ 4p"- 3p ³ (² P°)5s"	³ D- ³ P° (83)	4229.6	158768	182411	15	9	0.98	0.16	33	0.37	D	ca
	• ` '		4224.92 4235.49 [4234.8] [4223.0] [4228.7] [4215.0]	158786 158769 158724 158769 158724 158724	182449 182372 182338 182449 182372 182449	7 5 3 5 3	5 3 1 5 3 5	0.82 0.74 0.99 0.15 0.25 0.0098	0.16 0.12 0.088 0.039 0.066 0.0043	15 8.3 3.7 2.7 2.8 0.18	0.04 -0.23 -0.58 -0.71 -0.70 -1.88	D D - D - E	ls ls ls ls ls
55	$3p^34p - 3p^3(^4S^\circ)5d$	⁵ P- ⁵ D° (11 uv)							2	 			
			2434.10 2430.16 2427.79 2434.10 2430.16	128730 128663 128622 128730 128663	169800 169800 169800 169800 169800	7 5 3 7 5	9 7 5 7 5	0.72 0.48 0.25 0.24 0.42	0.082 0.059 0.037 9.021 0.037	4.6 2.4 0.89 1.2 1.5	-0.24 -0.53 -0.95 -0.83 -0.73	D- D- D- D-	ca, ls ca, ls ca, ls ca, ls ca, ls
56		3P_3D° (13 uv)	2548.6	131763	171000	9	15	0.78	0.13	9.5	0.05	D-	ca
		(10 44)	2549.85 2546.94 2544.84 2547.76 2543.98 [2545.5]	131767 131755 131768 131767 131755 131767	170974 171006 171052 171006 171052 171052	5 3 1 5 3 5	7 5 3 5 3 3	0.76 0.58 0.43 0.19 0.33 0.022	0.10 0.094 0.13 0.019 0.032 0.0013	4.4 2.4 1.1 0.79 0.79 0.053	-0.28 -0.55 -0.90 -1.03 -1.02 -2.20	D - D - E E E	ls ls ls ls ls

Cl II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	KI	Ľk	$rac{A_{kl}(10^{ m H}}{ m sec^{-1})}$	fik	S(at.u.)	'log gf	Accu- racy	Source
57	3p ³ 4p — 3p ³ (⁴ S°)6s	⁸ P- ⁵ S° (10 uv)	2500.8 2502.75 2498.53 2496.04	28686 128730 128663 128622	168674 168674 168674 168674	15 7 5 3	5 5 5 5	0.67 0.31 0.22 0.13	0.021 0.021 0.021 0.021	2.6 1.2 0.86 0.51	-0.50 -0.83 -0.98 -1.20	D D D	ca Is Is
58		3P_3S° (12 uv)	2667.36 2666.46 2667.36	131763 131767 131755 131768	169247 169247 169247 169247	9 5 3 1	3 3 3 3	0.61 0.34 0.21 0.069	0.022 0.022 0.022 0.022	1.7 0.97 0.58 0.19	-0.71 -0.96 -1.18 -1.66	D D D	ca Is Is Is

ClII

Forbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have normally been averaged, except for the ³P-¹S transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Czyak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

Cl II. Forbidden Transitions

No.	Tran- sition Array	Multiplet	λ(Å)	<i>E₁</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	g _i	g _k	Type of Transition	A _{ki} (sec ⁻¹)	S(at. u.)	Accu- racy	Source
1	3p4-3p4	3h-3h	[14.34 × 10 ⁴] [14.34 × 10 ⁴] [10.04 × 10 ⁴] [33.44 × 10 ⁴]	0 0 0 697	697 697 996 996	5 5 5 3	3 3 1	e m e m	6.0 × 10 ⁻⁸ 0.00762 4:78 × 10 ⁻⁷ 0.00144	6.5 2.50 2.90 2.00	C A C A	2 1 2 1
2		³ P — ¹ D (1F)	8579.5 8579.5 9125.8 9125.8 [9381.8]	0 0 697 697 996	11652 11652 11652 11652 11652	5 5 3 3	5 5 5 5 5	e m e m	5.5 × 10 ⁻⁴ 0.103 5.8 × 10 ⁻⁵ 0.0293 1.2 × 10 ⁻⁵	0.076 0.0121 0.011 0.00413 0.0026	D C D C	1. 2 2 1. 2 2 2
3		³ P- ¹ S (2F)	3583.2 3675.0	0 697	[27900] [27900]	5 3	l 1	e m	0.018 1.34	0.0063 0.00247	D C	2 2
4		¹ D- ¹ S (3F)	6152.9	11652	[27900]	5	1	e	2.29	12.0	С	2

 $1s^22s^22p^43s^23p^3$ $^4S_{3/2}^{\circ}$

Ionization Potential

39.90 eV = 321936 cm⁻¹

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1005.28	1	2439.9	29	2991.82	15
1003.28	1				
	1	2442.47	26	3104.46	10
1015.02	1	2447.14	26	3152 34	10
1798.0	2	2448.58	26	3191.45	10
1808.51	2	2468.5	17	3244.44	12
1810.3	2 2 2	2469.20	17	3259.32	12
1817.73	2	2471.07	18	3283.41	9
1822.50	2	2477.4	17	3289.80	9
1824.6	2	2431.8	17	3300.9	9
1828.40	2	2434.27	17	3320.57	12
1832.08	2	2485.1	17	3329.06	9
1833.31	2	2486.91	27	3336.16	12
1897.8	3	2504.23	17	3340.42	9
1898.9	3	2510.92	17	3386.22	14
1901.61	3	2519.45	17	3387.60	9
1912.90	3	2531.76	23	3392.89	14
1914.1	3	2532,48	23	3393.45	14
1916.5	3	2533.9	27	3400.2	14
1917.87	3	2540.9	23	3530.03	iš
1920.3	3	2542.7	17	3553.3	13
2231.2	25	2562.5	27	3560.68	13
2253.07	25	2577.13	20	3602.10	8
2255.7	25	2580.67	20	3612.85	8
2268.95	25	2601.16	16	3622.69	8
2278.34	25	2603.59	16	3656.95	8
2283.93	25	2609.50	16	3670.28	8
2291.38	25	2616.97	16	3682.05	8
2291.8	25	2618.78	16	3683.39	6
2291.8	21	2620,05	24	3688.0	5
2298.51	21	2624.71	24	3705.45	8
2340.64	21	2632.67	24	3707.34	5
2347.7	21	2633.18	16	3720.45	ıï
2359.67	28	2639.1	20	3725.7	6
2359.9	28	2648.8	16	3741.7	8
2370.37	28	2651.19	16	3748.81	11
2372.7	18	2661.65	19	3759.0	6
2379.47	26	2662.3	19	3824.47	5
2379.8	18	2663.2	19	3850.8	ıï
2387.3	18	2665.54	19	3991.50	4
2394.73	18	2669.6	19	4018.50	4
2403.32	26	2670.5	19	4059.07	4
2409.4	18	2675.7	16	4087.2	4
2416.42	26	2682.5	22	4104.23	4
2419.5	18	2691.4	19	4106.83	4
2422.47	26	2691.52	22	4100.03	4
2434.8	18	2699.6	19	4591.1	7
2435.8	29	2710.37	22	4604.5	7 7 7
2436.1	29	2965.56	15	4608.21	7
2439.69	29	2970.67	15	7000.21	•

Varsavsky [1] has calculated a value for one multiplet of this ion using the screening-approximation method; this number should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have been neglected entirely. For numerous other transitions, including those involving shell-equivalent electrons, the Coulomb approximation has been employed in order to have data available for some of the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are normally expected; however, the uncertainties should be somewhat larger for those transitions involving shell-equivalent electrons.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Cl III. Allowed Transitions

0.	Transition Array	Multiplet	λ(Å)	<i>E</i> ₁ (cm ⁻¹)	E _k (cm ⁻¹)	g _i	gk	$A_{ki}(10^8\mathrm{sec^{-1}})$	fik	S(at.u.)	log <i>gf</i>	Accu- racy	Sourc
l	$3s^23p^3-3s3p^4$	4S°-4P (1 uv)	1011.3	0	98883	4	12	26	1.2	16	0.68	E	
	j	`'	1015.02	0	98520	4	6	25	0.58	7.8	0.37	E E	1
			1008.78	0	99130	4	4	26	0.39	5.2	0.19	E	4
	·		1005.28	0	99475	4	2	26	0.20	2.6	-0.10	E	4
2	$3p^23d - 3p^2(^3P)4p$	4F−4D° (7 uv)	1825.7	147077	201850	28	20	1.8	0.065	11	0.26	E	C
		, ,	1822.50	147498	202368	10	8	1.7	0.067	4.0	-0.18	E	
			1828.40	147073	201765	8	6	1.5	0.057	2.7	-0.34	E	
			1832.08	146750	201332	6	4	1.5	0.050	1.8	-0.53	E E	
			1833.31	146526	201073	4	2	1.8	0.046	1.1	-0.73	L F	
			1808.51 1817.73	147073 146750	202368 201765	8	8	0.19 0.32	0.0094 0.016	0.45 0.58	-1.12 -1.02	E E	Ì
			[1824.6]	146526	201703	4	4	0.37	0.018	0.36	-1.13	Ē	
	1		[1798.0]	146750	202368	6	8	0.0096	6.2 × 10 ⁻⁴	0.022	-2.43	Ĕ	
			[1810.3]	146526	201765	4	6	0.018	0.0013	0.031	-2.28	Ē	
		4D-4P° (8 uv)	1908.1	151907	204316	20	12	1.7	0.054	6.8	0.03	Е	
		(0 41)	1901.61	151954	204541	8	6	1.3	0.054	2.7	-0.36	E	
			1912.90	151849	204124	6	4	1.0	0.038	1.4	-0.64	E	
			1917.87	151880	204022	4	2	0.83	0.023	0.58	-1.04	E	
			[1897.8]	151849	204541	6	6	0.30	0.016	0.61	-1.01	E	
			[1914.1]	151880	204124	4	4	0.53	0.029	0.73	-0.93	E	i
			[1920.3]	151946	204022	2	2	0.83	0.046	0.58	-1.04	E	
			[1898.9]	151880	204541	4	6	0.033	0.0027	0.068	-1.97	E	
			[1916.5]	151946	204124	2	4	0.083	0.0091	0.11	-1.74	E	
		4P_4P° (7)	4045.8	179599	204316	12		0.19	0.048	7.6	-0.24	E	
		_	3991.50	179495	204541	6	6		0.033	2.6	-0.70	E	
			[4087.2]	179664	204124	A	4	0.020	0.0063	0.34	-1.60	E	
			[4124.1]	179781	204022	2 6	2	0.031	0.0078	0.21	-1.81	E	İ
			4059.07 4104.23	179495 179664	204124 204022	4	4 2	0.000	0.014	1.]	-1.07	E E	
	Í		4018.50	179664	204522	4	6	0.16	0.020 0.021	1.1	-1.11 -1.07	Ē	İ
	1		4106.83	179781	204124	2	4	0.059 0.078	0.039	1.1	-1.11	Ē	
5		² D - ^{21,10} (9)	3776.4	182656	209136	10	6	0.75	0.097	12	-0.02	E	
		\ ,	3824.47	183043	209183	6	4	0.64	0.093	7.0	-0.25	E	
			3707.34	182076	209042	4	2	0.75	0.077	3.8	-0.51	E	
			[3688.0]	182076	209183	4	4	0.076	0.015	0.75	-1.21	E	
Ò	3p ² 3d' 3p ² (¹D)4p'	² D - ² P° (12)	3712.1	195083	222022	10	6	0.34	0.043	5.2	-0.37	E	
			3683.39	194960	222101	6	4	0.31	0.043	3.1	-0.59	E	
			[3759.0]	195268	221863	4	2	0.33	0.035	1.7	-0.86	E	
			[3725.7],	195268	222101	4	4	0.034	0.0071	0.35	-1.55	E	

Cl III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Bi	8k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
7		² F- ² D° (13)	4602.6	196148	217875	14	10	0.33	0.075	16	0.02	E	ca
		Ì	4608.21 [4591.1] [4604.5]	196156 196138 196138	217850 217913 217850	8 6 6	6 4 6	0.31 0.33 0.016	0.074 0.070 0.0050	9.0 6.3 0.45	-0.22 -0.38 -1.53	E E E	ls ls ls
8	3p ² 4s — 3p ² (3P)4p	4P_4D°	3629.0	174294	201850	12	20	1.7	0.56	80	0.83	D	ca
	3p ² (°P')4p	(1)	3602.10 3612.85 3622.69 3682.05 3670.28 3656.95 [3741.7] 3705.45	174614 174094 173736 174614 174094 173736 174614 174094	202368 201765 201332 201765 201332 201073 201332 201073	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	1.7 1.2 0.70 0.48 0.86 1.4 0.077 0.26	0.45 0.35 0.27 0.098 0.17 0.27 0.011 0.027	32 17 6.6 7.2 8.4 6.5 0.79 1.3	0.43 0.14 -0.26 -0.23 -0.16 -0.26 -1.19 -0.97	D D D D D E E	ls ls ls ls ls ls
9		4P_4P° (2)	3330.9	174294	204316	12	12	2.2	0.36	48	0.64	D	ca
		(=/	3340.42 3329.06 [3300.9] 3387.60 3340.42 3283.41 3289.80	174614 174094 173736 174614 174094 174094 173736	204541 204124 204022 204124 204022 204541 204124	6 4 2 6 4 4 2	6 4 2 4 2 6 4	1.5 0.29 0.37 0.93 1.8 0.68 0.93	0.25 0.048 0.060 0.11 0.15 0.16 0.30	17 2.1 1.3 7.2 6.6 7.1 6.6	0.18 -0.72 -0.92 -0.19 -0.22 -0.18 -0.22	D E D D D	ls ls ls ls ls
10		4P_4S° (3)	3160.1	174294	205939	12	4	2.6	0.13	16	0.19	D	ca
		(0)	3191.45 3139.34 3104.46	174614 174094 173736	205939 205939 205939	6 4 2	4 4 4	1.2 0.86 0.44	0.13 0.13 0.13	7.9 5.2 2.6	-0.12 -0.35 -0.59	D D D	ls Is Is
11		² P _2 D° (5)	3739.4	178841	205583	6	10	1.6	0.57	42	0.53	D	ca
		(0)	3720.45 3748.81 [3850.8]	179076 178370 179076	205947 205037 205037	4 2 4	6 4 4	1.7 1.3 0.25	0.52 0.57 0.055	25 14 2.8	0.32 0.05 - 0.65	D D D-	ls ls ls
12		² P – ² P° (6)	3300.9	178841	209136	6	6	2.3	0.38	25	0.26	D	ca
			3320.57 3259.32 3336.16 3244.44	179076 178370 179076 178370	209183 209042 209042 209183	4 2 4 2	4 2 2 4	1.9 1.6 0.76 0.41	0.32 0.26 0.064 0.13	14 5.5 2.8 2.8	0.11 -0.29 -0.59 -0.59	D D D	ls Is Is Is
13	3p ² 4s' - 3p ² (¹ D)4p	$^{2}D-^{2}F^{\circ}$ (10)	3543.8	188413	216631	10	14	2.3	0.60	70	0.78	D	ca
		,	3530.03 3560.68 [3553.3]	188390 188448 188390	216710 216525 216525	6 4 6	8 6 6	1.8 1.7 0.12	0.46 0.48 0.023	32 22 16	0.44 0.28 -0.87	D D D	ls Is Is
14		$^{2}D - ^{2}D^{\circ}$ (11)	3394.2	!88413	217875	10	10	2.0	0.35	39	0.54	D	ca
		,,	3393.45 3392.89 3386.22 [3400.2]	188390 188448 188390 188448	217850 217913 217913 217850	6 4 6 4	6 4 4 6	1.9 1.9 0.21 0.14	0.33 0.32 0.024 0.036	22 14 1.6 1.6	0.30 0.11 -0.84 -0.85	D D D-	ls Is Is
15		² D - ² P° (lluv)	2975.4	188413	222022	10	6	3.1	0.25	24	0.39	D	ca
		(1144)	2965.56 2991.82 2970.67	188390 188448 188448	222101 221863 222101	6 4 4	4 2 4	2.7 3.0 0.30	0.24 0.20 0.040	14 7.9 1.6	0.16 -0.10 -0.79	D D D-	ls ls ls

Cl 111. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	<i>E_k</i> (cm ⁻¹)	gı	₽k	$A_{kl}(10^8~{\rm sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
16	$3p^24p - 3p^2(^3P)4d$	⁴ D° – ⁴ F (12 ¹ 1v)	2614.7	201850	240096	20	28	6.5	0.93	160	1.27	D	ca
			2616.97	202368	240568	8	10	6.6	10	58	0.83	D	ls
			2609.50	201765	240075	6	8	5.7	0.74	40	0.67	D	l Is
			2603.59	201332	239730	4	6	5.0	0.76	26	0.48	D D	ls Is
		l	2601.16 2651.19	201073 202368	239506 240075	8	8	4.6 0,92	0.94 0.097	16 6.7	0.28	D-	Is
			2633.18	201765	239730	6	6	1.6	0.16	8.6	-0.01	D-	l is
		1	2618.78	201332	239506	4	4	1.8	0.19	6.5	-0.12	D-	l is
		1	[2675.7]	202368	239730	8	6	0.060	0.0048	0.34	-1.41	E	Is
			[2648.8]	201765	239506	6	4	0.13	0.0088	0.46	-1.28	Е	ls
7		4D° – 4D (13uv)	2503.5	201850	241794	20	20	1.8	0.17	28	0.53	D	ca
		(1041)	2519.45	202368	242046	8	8	1.5	0.15	10	0.07	D	1.
			2504.23	201765	241685	6	6	1.0	0.098	4.8	-0.23	D	15
			2434.27	201332	241572	4	4	0.73	0.068	2.2	-0.47	D	ls
			2469.20	201073	241559	2	2	0.93	0.085	1.4	-0.77	D-	ls ls
			[2542.7] 2510.92	202368 201765	241685 241572	8 6	6 4	0.33 0.63	0.024 0.040	1.6 2.9	-0.71 -0.62	D- D-	ls ls
			[2485.1]	201332	241559	4	2	0.03	0.042	1.4	-0.02	D-	l is
			[2481.8]	201765	242046	6	8	0.26	0.032	1.6	-0.71	Ď-	i i
			[2477.4]	201332	241685	4	6	0.43	0.059	1.9	-4.63	D-	1.
			[2468.5]	201073	241572	2	4	0.46	0.085	1.4	-0.77	D-	/:
8		4D°-4P (14uv)	2431.7	201850	242973	20	12	0.21	0.011	1.8	-0.65	D	ca
			2471.07	202368	242823	8	6	0.16	0.011	0.74	-1.04	D	ls.
			2419.5	201765 201332	243081	6	4	0.13 6.11	0.0079 0.0047	0.38	-1.32	D	1:
			[2387.3] [2434.8]	201332	243207 242823	6	6	0.038	0.0047	0.15 0.16	-1.73 -1.69	D-	
			2394.73	201703	243081	4	4	0.030	0.0060	0.19	-1.62	D-	i.
			[2372.7]	201073	243207	2	2	0.11	0.0094	0.15	-1.73	D-	l i
			[2409.4]	201332	242823	4	6	0.0043	5.6×10^{-4}	0.018	-2.65	E	1:
			[2379.8]	201073	243081	2	4	0.011	0.0019	0.029	-2.43	E	l:
9		4P° = 4D (16uv)	2668.2	204316	241794	12	20	4.8	0.85	90	1.01	D	co
			2665.54	204541	242046	6	8	4.8	0.68	36	0.61	D	l !s
			2661,65 [2662.3]	204124 204022	241685	4 2	6 4	3.4	0.54	19	0.33	D D-	l:
			[2691.4]	204022	241572 241685	6	6	2.0 1.4	0.43 0.15	7.5 8.2	-0.07 -0.04	D-	1.
			2669.6	204124	241572	4	4	2.6	0.27	9.6	0.04	D-	i.
			[2663.2]	204022	241559	2	2	4.0	0.43	7.5	-0.07	D-	i
		}	[2699.6]	204541	241572	6	4	0.23	0.017	0.91	-0.99	E	1.
			[2670.5]	204!24	241559	4	2	0.80	0.043	1.5	-0.77	E	"
0		² D° – ² F (18uv)	2581.6	205583	244318	10		4.6	0.65	55	0.81	D	co
			2580.67	205947	244685	6	8	4.7	0.63	32	0.58	D	1;
			2577.13 [2639.1]	205037 205947	243828	4	6	4.3 0.29	0.65 0.031	22 1.6	0.41 0.73	D E	
1		² D ² - ² D (19 uv)	2324.3	205583	248606	10	10	4.5	0.37	28	0.57	D	ca
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2340.64	205947	248658	6	6	4.2	0.35	16	0.32	D	1.
			2298.51	205037	248528	4		4.2	0.33	10	0.32	Ď	i.
			[2347.7]	205947	248528	6	4	0.47	0.026	1.2	- 0.81	D	l
			[2291.8]	205037	248658	4	6	0,34	0.040	1.2	-0.80	D	1:
2		4S°_4P (20 uv)	2700.2	205939	242973	4		3.5	1.2	41	0.66	D	co
	1		2710.37	205939	242823	4	6	3.5	0.57	20	0.36	D	l:
			2691.52	205939	243081	4		3.5	0.38	14	0.18	D	l:
		1	[2682.5]	205939	243207	4	2	3.5	0.19	6.8	-0.12	D-	

Cl III. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	E _k (cm ⁻¹)	gi	Kk	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Sourc
23		² P°-2D (22 uv)	2533.6	209136	248606	6	10	5.4	0.86	43	0.71	D	co
		(== = -,	2532.48	209183	248658	4	6	5.3	0.77	26	0.49	D	l:
			2531.76	209042	248528	2	4	4.4	0.85	14	0.23	D	ls
			[2540.9]	209183	248528	4	4	0.88	0.085	2.9	-0.47	E	l.
24	$3p^24p' - 3p^2(^1D)4d'$	² F°- ² D (23 uv)	2629.9	216631	254655	14	10	0.43	0.032	3.9	-0.35	D	co
			2632.67	216710	254683	8	6	0.41	0.032	2.2	-0.59	D	1.
			2624.71	216525	254613	6	4	0.44	0.030	1.6	-0.74	D	1
			2620.05	216525	254683	6	6	0.021	0.0022	0.11	- 1.89	E	l.
25	$3p^24p - 3p^2(^3P)5s$	4D°-4P (15 uv)	2281.0	201850	245691	20	12	3.4	0.16	24	0.50	D	ce
			2283.93	202368	246137	8	6	2.7	0.16	9.6	0.11	D	1
	1		2291,38	201765	245392	6	4	2.2	0.12	5.2	-0.16	D	1
	1	1	[2291.8]	201332	244952	4	2	1.8	0.070	2.1	-0.55	D-	1
			2253.07	201765	246137	6	6	0.61	0.046	2.1	-0.56	D-	1
			2268.95	201332	245392	4	4	1.1	0.086	2.6	-0.46	D-	4
			2278.34	201073	244952	2	2	1.8 0.067	0.14 0.0075	2.1 0.22	-0.56	D-	
			[2231.2] [2255.7]	201332 201073	246137 245392	4 2	6	0.007	0.0075	0.39	-1.52 -1.28	E E	1
26		4P°4P (17 uv)	2416.9	204316	245691	12	12	2.0	0.18	17	0.33	D	C
		, ,	2403.32	204541	246137	6	6	1.4	0.12	5.9	-0.13	D	1
			2422.47	204124	245392	4	4	0.28	0.025	0.79	-1.01	E] /
			2442.47	204022	244952	2	2	0.35	0.032	0.51	-1.20	E	1
			2447.14	204541	245392	6	4	0.94	0.056	2.7	-0.47	D-	1
		1	2448.58	204124	244952	4	2	1.8	0.080	2.6	-0.50	D-	
	Ì		2379.47	204124	246137	4	6	0.62	0.078	2.5	-0.50	D-	4
		1	2416.42	204022	245392	2	4	0.88	0.15	2.4	-0.51	D-	'
27		4S°-4P (21 uv)	2515.6	205939	245691	4	12	0.69	0.20	6.5	-0.11	D	C
			2486.91	205939	246137	4	6	0.68	0.095	3.1	-0.42	D	1 4
			[2533.9]	205939	245392	4	4	0.69	0.067	2.2	-0.57	D	1
			[2562.5]	205939	244952	4	2	0.70	0.034	1.2	-0.86	D	'
28	$3p^24p^2 - 3p^2(^1D)5s'$	² F°- ² D (24 uv)	2366.5	216631	258888		10	2.9	0.17	19	0.39	D	c
			2370.37	216710	258886	8	6	2.8	0.18	11	0.16	D	1
	-		2359.67 [2359.9]	216525 216525	258891 258886	6	6	3.0 0.14	0.17 0.012	7.7 0.55	0.00	D E	1
29		² D°- ² D (26 u v)	2438.3	217875	258888	10	10	2.1	0.19	15	0.27	D	c
		, ,	2436.1	217850	258886	6	6	2.0	0.18	8.5	0.02	D	'
			2439.69	217913	258891	4	4	1.9	0.17	5.5	-0.17	D	
			[2435.8]	217850	258891	6	4	0.21	0.013	0.60	-1.12	E	1 .
	ĺ		[2439.9]	217913	258886	4	6	0.14	0.019	0.61	-1.12	E	1 .

Cl III

Forbidden Transitions

All the values for this ion are taken from Czyzak and Krueger [1], since they have included the important effects of configuration interaction and have used self-consistent field wavefunctions with exchange to obtain their value of s_q . (For a more complete discussion see General Introduction.)

Reference

[1] Czyzak, S. J. and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

Cl III. Forbidden Transitions

No.	Transition Array	Multipleı	λ(Å)	$E_t(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Ľk.	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$3p^3 - 3p^3$	4S°_2D° (1F)										
		`—'	5517.66	0.0	18118.6	4	6	m	1.46 × 10-4	5.5 × 10 ⁻⁶	C	1
			5517.66	0.0	18118.6	4	6	e	8.6 × 10 ⁻⁴	0.016	D	1
	ļ		5537.6	0.0	18053	4	4	m	0.0065	1.64×10-4		1
			5537.6	0.0	18053	4	4	e	5.5 × 10-4	0.0068	D	1
2		45°_2P°										!
_		(2F)						ľ				
			3342.7	0.0	29907	4	4	m	0.96	0.0053	C	1
			3342.7	0.0	29907	4	8	' e	4.9×10 ⁻⁶	4.8 × 10 ⁻⁶	D	1
	1.		3353.4	0.0	29812	4	2	m	0.374	0.0065	Č	1
			3353.4	0.0	29812	4	2	e	4.0 × 10 ⁻⁸	2.0×10^{-5}	D	1
3		*D°-*D°						1				
		D – D	[15.24×10 ⁵]	18053	18118.6	4	6	m	3.05 × 10 ⁻⁶	2.40	В	l 1
			[15.24×10 ⁵]	18053	18118.6	4	6	e	4.9×10 ⁻¹⁵	0.14	D	1 1
4		2Do-2ho										
		(3F)			:							
			8481.6	18118.6	29907	6	4	m	0.169	0.0153	C	1
			8481.6	18118.6	29907	6	4	e	0.195	20.4	Č	1
			8501.8	18053 18053	29812	4	2	m	0.186	0.0085	C	1
			8501.8 8550.5	18118.6	29812 29812	4	2 2	e	0.165 0.108	8.7 5.9	C	l I
			8433.7	18053	29907	4	4	e m	0.306	0.0272	Č	1
			8433.7	18053	29907	4	4	e e	0.084	8.6	č	1
5		2P0_2P0										
•		• - •	[10.5×10 ⁵]	29812	29907	2	4	m	7.7×10^{-6}	1.33	C+	1
			[10.5 × 10 ⁸]	29812	29907	2 2	4	e	1.9×10^{-14}	0.058	D	ī

1s22s22p63s23p23Po

Ionization Potential

 $53.5 \text{ eV} = 431226 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength (Å)	No.	Wavelength [Å]	No.
973.22	1	1534.4	4	2751.2	3
977.56	ì	1539.3	4	2770.7	3
977.89	ī	1600.0	5	2782.4	3
984.95	1	1617.4	5	2835.4	3
985.25	1	1625.5	5	3063.1	2
986.09	1	1632.3	5	3071.4	2
1500.4	4	1638.8	5	3076.7	2
1510.6	4	1650.3	5	3106.0	2
1528.7	4	2701.3	3	3167.9	2
1532.2	4	2724.0	3	3213.8	2

Varsavsky [1] has calculated a value for one multiplet of this ion using the screening-approximation method; this number should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have been neglected entirely. For several other transitions the Coulomb approximation has been employed in order to have some data on the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are expected; however these estimates should be regarded as provisional.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6. No. 53, 75 (1961).

Cl IV. Allowed Transitions

No.	T _{ransition} Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	μ́k	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p^2-3s3p^3$	3P-3D°	981.27	909	102818	q	15	23	0.55	16	0.69	E	1
			[984.95] [977.56] [973.22] [985.25] [977.89] [986.09]	1341 491 0 1341 491 1341	102869 102787 102752 102787 102752 102752	5 3 1 5 3 5	7 5 3 5 3	23 17 13 5.5 9.4 0.63	0.46 0.41 0.56 0.080 0.13 0.0055	7.5 4.0 1.8 1.3 1.3 0.089	0.36 0.09 -0.25 -0.40 -0.41 -1.56	HEEEEE	is ls ls ls ls
2	3p4s - 3p(² P°)4p	³b₀−3D	3082.2 [3076.7] [3063.1] [3071.4] [3167.9] [3106.0] [3213.8]	215948 216468 215389 215026 216468 215389 216468	248372 248961 249026 247575 248026 247575 247575	9 5 3 1 5 3 5	15 7 5 3 5 3	2.3 1.7 1.3 0.52 0.92 0.055	0.54 0.45 0.40 0.53 0.079 0.13 0.0051	49 23 12 5.4 4.1 4.1 0.27	0.69 0.35 0.08 -0.28 -0.40 -0.41 -1.59	D D D	ls

Cl IV. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Â)	$E_l(\text{cm}^{-1})$	<i>E</i> _k (cm ^{−1})	Ķı	Kk	$A_{kl}(10^6 { m sec}^{-1})$	fik	S(at.u.)	log.gf	Accu- racy	Source
3		3P°_3P	2767.6	215948	252070	9	9	3.1	0.36	29	0.51	D	ca
			[2782.4] [2751.2] [2835.4] [2770.7] [2701.3] [2724.0]	216468 215389 216468 215389 215389 215026	2525 251726 251726 251471 252397 251726	5 3 5 3 3	5 3 1 5 3	2.3 0.78 1.2 3.0 0.82 1.1	0.26 0.088 0.086 0.12 0.15 0.36	12 2.4 4.0 3.2 4.0 3.2	0.11 -0.58 -0.37 -0.44 -0.35 -0.44	D D D D	ls ls ls ls ls
4	3p4p - Sj (*P°)5s	3D-3P°	1531.9	248372	313649	15	9	7.5	0.16	12	0.38	D	ca
Marie e	<i>5</i> ₁ (-1)0s		[1532.2] [1539.3] [1534.4] [1510.6] [1528.7] [1500.4]	248961 248026 247575 248026 247575 247575	314225 312991 312747 314225 312991 314225	7 5 3 5 3 3	5 3 1 5 3 5	6.3 5.6 7.3 1.2 1.9 0.080	0.16 0.12 0.086 0.040 0.066 0.0045	5.6 3.0 1.3 1.0 1.0 0.067	0.05 -0.22 -0.59 -0.70 -0.70 -1.87	D D D- D- D- E	ls ls ls ls
5		3P_3P°	1623.9 [1617.4] [1632.3] [1650.3] [1638.8] [1600.0] [1625.5]	252070 252397 251726 252397 251726 251726 251471	313649 314225 312991 312991 312747 314225 312991	9 5 3 5 3 3 1	9 5 3 1 5 3	4.6 3.5 1.1 1.8 4.5 1.2	0.18 0.14 0.045 0.044 0.061 0.076 0.18	8.8 3.7 0.73 1.2 0.98 1.2 0.98	0.21 -0.15 -0.87 -0.66 -0.74 -0.64 -0.74	D D D- D D- D	ls ls ls

Cl IV

Forbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have been averaged, except for the ³P-¹S transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

References

[1] Naqvi, A. M., Thesis Harvard (1951).
[2] Czyzak, S. J., and Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

Cl IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	Type of Transi- tion	$A_{kl}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^2 - 3p^2$	3P_3P	[20.36×10 ⁴] [74551] [11.76×10 ⁴] [11.76×10 ⁴]	0 0 491 491	491 1341 1341 1341	1 1 3 3	3 5 5 5	m e m e	0.00213 2.77×10 ⁻⁷ 0.00225 6.3×10 ⁻⁸	2.00 19.0 2.49 4.25	B C B C	1, 2 2 1, 2 2
2		³ P_ ¹ D (1F)	[7262.3] 7530.54 7530.54 8045.63 8045.63	0 491 491 1341 1341	13766 13766 13766 13766 13766	1 3 3 5 5	5 5 5 5	e m e m	2.2×10 ⁻⁵ 0.080 1.5×10 ⁻⁴ 0.196 7.7×10 ⁻⁴	0.0013 0.0063 0.11 0.0189 0.077	D C D C	1, 2 1, 2 2 1, 2 2

Cl IV. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	Kk	Type of Transi- tion	Aki(sec-1)	S(at u.)	Accu- racy	Source
3		³ P - ¹ S (2F)	3118.3 3203.3	491 1341	32550 32350	3 5	1 1	m e	2.61 0.038	0.00293 0.0077	C D	2 2
4		'D-'S (3F)	5323.29	13766	32550	5	i	e	3.2	8.0	D	2

Cl v

Ground State

 $1s^22s^22p^63s^23p^2P_{1/2}^{\circ}$

Ionization Potential

 $67.80 \text{ eV} = 547000 \text{ cm}^{-1}$

Allowed Transitions

The acreening-approximation calculations of Varsavsky [1] for the $3s^23p^2P^\circ - 3s3p^2^2D$ multiplet are considered to be rather uncertain (probably too high, as judged from comparisons in other ions) since the important effects of configuration mixing are neglected entirely. Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the $3p^2P^\circ - 4s^2S$ multiplet; these results should be reliable to within 25 percent, as judged from plots depicting f-value dependence on nuclear charge.

Reference

- [1] Varsavsky, C. M. Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
- [2] Gruzdev, P. F., and Prokofev, V. K., Oplics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

Cl v. Allowed Transitions

No.	Transition Array	Multiple1	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	ŖΙ	Æk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s²3p — 3s3µ²	2P°-2D	890.61 [894.34] [883.13]	995 1492 0 1492	113277 113306 113234 113234	6 4 2 4	10	26 26 23	0.52 0.47 0.53	9.2 5.5 3.1	0.49 0.27 0.03	E	ls ls
2	3p-('S)4s	2P°-2S	[894.92] 391.67 [392.43] [390.15]	995 1492 0	256313 256313 256313	6 4 2	2 2 2	4.3 119 79 40.0	0.052 0.091 0.091 0.091		-0.68 -0.263 -0.439 -0.74	E C C	ls 2 Is Is

Clv

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Clv. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Kĸ	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p-({}^{1}S)3p$	2P°_2P°										
		,	[67000]	0	1492	2	4	m	0.0298	1.33	A	1

Cl vi

Ground State

Ionization Fotential

1s22s22p63s2 1So

 $96.7 \text{ eV} = 780000 \text{ cm}^{-1}$

Allowed Transitions List of tabulated lines:

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
323.36	8	571.38	6	756.26	4
324.99	8	571.41	7	756.34	1 4
325.16	8	573.46	6	756.50	1
550.36	5	576.43	6	757.82	á
552.00	5 5	577.44	6	757.91	4
552.04	5	580.44	6	763.84	3
555.48	5	671.37	1	768.47	3
555.57	5	724.13	2	768.55	3
555.62	5	727.54	2	773.79	3
565.48	7	730.29	2	773.88	3 3 3 3 3
566.64	7	730.48	2	774.05	٠,
567.52	7	733.89	2		
570.02	7	736.75	2		
570.52	7	755,47	4		
570.89	6	755.63	4		

The charge-expansion technique of Crossley and Dalgarno [1], which includes limited configuration mixing, has been employed for the majority of the transitions in this spectrum; while Gruzdev and Prekofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3s3p $^3P^0-3s4s$ 3S multiplet. For many of these transitions, the dependence of oscillator strength on nuclear charge has served as an aid in estimating accuracies.

References

^[1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).

^[2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

Cl VI. Allowed Transitions

==						-		alisitiviis					
No.	Transition Array	Multiplet	λ(Ä)	<i>E_i</i> (cm ⁻¹)	<i>E_k</i> (cm ⁻¹)	g _i	Kk	A _{ki} (10" sec ⁻¹)	f _{ik} .	S(at.u.)	log gf	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	1S-1P°	[671.37]	0	148949	1	3	63.2	1.28	2.83	0.107	В	1
2	$3s3p-3p^3$	3Po-3P	730.42	[99286]	[236193]	9	9	54	0.434	9.4	0.59	C+	1
			[730.29] [730.48] [736.75] [733.89] [724.13] [727.54]	[99865] [98700] [99865] [98700] [98700] [98147]	[236797] [235596] [235596] [234960] [236797] [235596]	5 3 5 3 1	5 3 1 5 3	40.8 13.5 22.1 53 14.0 18.2	0.326 0.108 0.108 0.143 0.183 0.434	3.92 0.78 1.31 1.04 1.31 1.04	0.212 -0.489 -0.268 -0.368 -0.260 -0.363	CCCCCC	ls ls ls ls ls
3	3s(2S)3d-	3D-3P°	771.04	[279870]	[409565]	15	9	28	0.15	5.6	0.35	D	1
	3p(2P°)3d		[774.05] [768.55] [763.84] [773.88] [768.47] [773.79]	[279883] [279860] [279845] [279860] [279845] [279845]	[409079] [409975] [410762] [409079] [409975] [409079]	7 5 3 5 3 3	5 3 1 5 3 5	23 21 28 4.1 7.0 0.27	0.15 0.11 0.082 0.037 0.062 0.0041	2.6 1.4 0.62 0.47 0.47 0.031	0.02 -0.26 -0.61 -0.73 -0.73 -1.91	D D D D E	ls ls ls ls ls
4		3D-3D°	756.30	[279870]	[412092]	15	15	27	0.23	8.6	0.54	D	1
			[755.63] [756.34] [757.82] [756.50] [757.91] [755.47] [756.26]	[279888] [279860] [279845] [279888] [279860] [279860] [279845]	[412228] [412075] [411802] [412075] [411802] [412228] [412075]	7 5 3 7 5 5 3	7 5 3 5 3 7 5	24 19 20 4.2 6.7 3.0 4.1	0.21 0.16 0.17 0.026 0.034 0.036 0.058	3.6 2.0 1.3 0.45 0.43 0.45 0.43	0.17 -0.10 -0.29 -0.74 -0.77 -0.74 -0.76	D D D- D- D-	ls ls ls ls ls
5	3s3p-3s(2S)3d	3b3D	553.76	[99286]	[279870]	9	15	81.9	0.628	10.3	0.752	В	1
	:	ı	[555.48] [552.00] [550.36] [555.57] [552.04] [555.62]	[99865] [98700] [98147] [99865] [98700] [99865]	[279888] [27°360] [27'9845] [27'9860] [27'9845] [27'9845]	5 3 1 5 3 5	7 5 3 5 3 3	61.9 46.2 20.3 34.4	0.526 0.471 0.629 0.0938 0.157 0.0063	4.81 2.57 1.14 0.858 0.858 0.057	-0.327	B B B B	ls ls ls ls ls
6	3p2-3p(2P°)3d	3P3P°	576.79	[236193]	[409565]	9	9	65	0.32	5.5	0.46	D	1
			[580.44] [573.46] [577.44] [570.89] [576.43] [571.38]	[236797] [235596] [236797] [235596] [235596] [234960]	[409079] [409975] [409975] [410762] [409079] [409975]	5 3 5 3 1	5 3 1 5 3	16 27 66 16	0.24 0.081 0.080 0.11 0.13 0.32	2.3 0.46 0.76 0.61 0.76 0.61	0.08 -0.61 -0.40 -0.48 -0.41 -0.49	D D- D- D- D-	ls ls ls ls ls
7		3P-3D°	568.51	[236193]	[412092]	9	15	110	0.39	15	0.90	D	1
			[570.02] [566.64] [565.48] [570.52] [567.52] [571.41]	[236797] [235596] [234960] [236797] [235596] [236797]	[412228] [412075] [411802] [412075] [411802] [411802]	5 3 1 5 3 5	7 5 3 5 3 3	85 63 28 48	0.75 0.68 0.91 0.14 9.23 0.0088	7.0 3.8 1.7 1.3 1.3 0.083	0.57 0.31 -0.04 -0.15 -0.16 -1.36	D D- D- D- E	ls ls ls ls ls
8	353p - 35(2S)4s	3P°_3S	324.55	[99286]	[407404]	9	3	171	0.090	0.87	-0.092	C	2
			[325.16] [324.99] [323.36]	[99865] [99700] [98147]	[407404] [407404] [407404]	5 3 1	3 3	57	0.090 0.090 0.090	0.482 0.289 0.096	-0.57	CCC	ls ls ls

Clvi

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P° - ³P° transitions are essentially independent of the choice of the interaction parameters. For the ²P° - ¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

CIVI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	Ki	₽'k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	3s3p — 3s(2S)3p	3Po-3Po	[18.08×10 ⁴] [85810]	[98147] [98700]	[98700] [99865]	1 3	3 5	m m	0.00304 0.0213	2.00 2.50	C+	1 1
2		3P°_1P°	[1968.4] [1990.1] [2036.7]	[98147] [98700] [99865]	148949 148949 148949	1 3 5	3 3 3	m m m	0.62 27.8 0.70	5.3×10 ⁻⁴ 0.0244 6.6×10 ⁻⁴	C- C-	l i l

Cl vII

Ground State

1s22s22p63s 2S1/2

Ionization Potential

 $114.27 \text{ eV} = 921902 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
196.12	2	598.21	3	2178.8	9
196.39	2	604.79	3	2212.0	9
207.75	8	605.05	3		Ì
240.85	7	722.13	11	İ	
293,25	4	725.73	11		
294.89	4	800.70	!		
340.27	6	813.00	1		
455.13	5	1668.2	10		
455.28	5 5	1686.4	10		į
456.56	5	1687.6	10		

Two sources of data are available for this ion: the calculations of Stewart and Rotenberg [1], employing a scaled Thomas-Fermi potential, and the charge-expansion formulation of Crossley and Dalgarno [2], which includes limited configuration mixing. Graphical comparisons of both works with more refined values within the isoelectronic sequence indicate accuracies within 25 percent. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values simply by graphical interpolation.

References

[1] Siewari, J. C., and Roierberg, M., Phys. Rev. 140, 1508A-1519A (1965).

[2] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).

Cl VII. Allowed Transitions

===				CI VI		****		ansitions					
No.	Transition Array	Multiplet	λ(Ă)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	ξí	μk	A _{ki} (10 ^k sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s-3p	2S−2P°	804.76	0	124261	2	6	21.5	0.63	3.32	0.100	С	1
			[800.70] [813.00]	0	124891 123001	2 2	4 2	21.7 21.1	0.418 0.209	2.20 1.12	- 0.078 - 0.379	C	ls Is
2	3s4p	2S-2P°	196.21	0	509656	2	6	59	0.102	0.132	- 0.69	С	1
			[196.12] [196.39]	0	509885 509197	2 2	4 2	59 59	0.068 0.0340	0.088 0.0440	- 0.87 - 1.167	C	ls Is
3	3p-3d	²P°−²D	602.59	124261	290210	6	10	61	0.55	6.6	0.52	С	2
			[604.79] [598.21] [605.05]	124891 123001 124891	290239 290166 290166	4 2 4	6 4 4	61 52 10	0.498 0.56 0.055	3.97 2.21 0.44	0.299 0.049 0.66	C C D	ls Is Is
4	3p-4s	2P°-2S	294.34	124261	464003	6	2	230	0.10	0.58	0.22	С	interp
			[294.89] [293.25]	124891 123001	464003 464003	4 2	2 2	150 76	0.10 0.098	0.39 0.19	-0.40 -0.71	C	ls Is
5	$3d-4\rho$	2D-2P°	455.69	290210	509656	10	6	70	0.13	2.0	0.11	С	interp
			[455.28] [456.56] [455.13]	290239 290166 290166	509885 509197 509885	6 4 4	4 2 4	64 71 7.0	0.13 0.11 0.022	1.2 0.67 0.13	-0.11 -0.36 -1.06	C C	ls Is Is
6	3d-1f	2D−2F°	340.27	290210	584093	10	14	380	0.92	10	0.96	C+	interp
7	3d-5f	² D− ² F°	240.85	290210	705404	10	14	140	0.17	1.3	0.23	С	interp
8	3d-6f	² D− ² F°	207.75	290210	771549	10	14	68	0.062	0.42	-0.21	C	interp
9	4s-4p	2S - 2P°	2189.8	464003	509656	2	6	4.1	0.89	13	0.25	С	interp
			[2178.8] [2212.0]	464003 464003	509885 509197	2 :	4 2	4.3 4.0	0.61 0.30	8.7 4.3	$0.09 \\ -0.22$	C	ls Is
10	4p-4d	²P° - ²D	1689.4	509656	569166	6	10	14	0.98	33	0.77	С	interp
			[1686.4] [1668.2] [1687.6]	509885 509197 509885	569182 569142 569142	4 2 4	6 4 4	14 12 2.3	0.90 1.0 0,099	20 11 2.2	0.56 0.30 - 0.40	C C D	ls Is Is
11	4p-5s	2P°_2S	724.53	509656	647677	6	2	65	0.17	2.4	0.0ì	c	interp
	,		[725.73] [722.13]	509885 509197	646677 647677	4 2	2 2	42 22	0.17 0.17	1.6 0.80	-0.17 -0.47	C C	ls Is

Ground State

1s22s2p8 1S0

Ionization Potential

 $348.3 \text{ eV} = 2810000 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wavefunctions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

CIVIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Α)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	A _{kl} (10* sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2p^{6} - 2p^{5}(^{2}P_{3/2}^{o})3s$	¹ S- ³ P°					1						
	2p (1 3/2/00		[59.191]	0	1689450	1	3	280	0.044	0.0086	-1.36	E	1
2	$\frac{2p^6 - 2p^5(^2P_{1/2}^\circ)3s}$	1S-1P°	[58.673]	0	1704360	1	3	970	0.15	0.029	-0.82	D	
	,												1
3	$2p^{6} - 2p^{5}(^{2}\mathbb{P}_{3/2}^{\circ})3d$	1S-3P°			1								
	-1- (- 0/2/		[50.700]	0	1972390	1	3	45	0.0052	8.7 × 10-4	-2.28	E	1
4	$\frac{2p^{6}-}{2p^{5}(^{2}\mathbf{P}_{3/2}^{o})3d}$	1S_1P°	[50.074]	0	1997040	1	3	1.4×104	1.6	0.26	0.20	D	1
5	2p ⁶ -	1S-3D°		i									
	$2p^{5}(^{2}\mathbf{P}_{1/2}^{\circ})3d$		[49.487]	0	2020730	1	3	1500	0.17	0.028	-0.77	D	1

Cl ix

Ground State

1s22s22p5 2P3/2

The same of the sa

Ionization Potential

 $400.7 \text{ eV} = 3233000 \text{ cm}^{-1}$

Allowed Transitions

The value for the $2s^22p^5$ $^2P^o-2s2p^6$ 2S multiplet is calculated from the nuclear charge-expansion method of Cohen and Dalgarno [1]. It may be quite uncertain since configuration interaction effects with configurations involving the n=3 shell electrons, which were not included in this calculation, may be significant.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Cl IX. Allowed Transitions

No.	Transition Array	Multiplet	λ(4)	$E_i(\mathrm{cm}^{-1})$	E _k (cm ⁻¹)	g ₁	Kk	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^5 - 2s2p^6$	3P°-2S	182.19	4533	553400	6	2	540	0.089	0.32	-0.27	D	1
			[180.70] [185.25]	0 13600	553400 553400	4 2	2 2	360 180	0.088 0.090	0.21 0.11	-0.45 0.74	D D	ls Is

Cl ix

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Clix. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Kk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	2P° −3P°										
			[7350.9]	0	13600	4	2	m	45.2	1.33	A	1

Cl x

Ground State

1s22s22p4 3P2

Ionization Potential

 $455.3 \text{ eV} = 3673000 \text{ cm}^{-1}$

Allowed Transitions

The values are calculated from the charge-expansion method of Cohen and Dalgarno [1] which includes limited configuration mixing. From comparisons with other ions in the isoelectronic sequence, uncertainties should be within 50 percent.

Reference

[1] Cohen, M., and Dalgarno, A., Proc. Roy. Soc. London A280, 258-270 (1964).

Clx. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ki	Kk	$A_{ki} = (10^{\text{H}} \text{ sec}^{-1})$	f_{ik}	S(at. u.)	log gf	Accu- racy	Source
1	2s ² 2p ⁴ – 2s2p ⁵	3b - 150	[205.34] [210.03]	0 10 88 0	[487000] [487000]	5 3		180 57	0.11 0.063	0.38 0.13	- 0.26 - 0.72		1. <i>ls</i> 1. <i>ls</i>

Clx

Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV. since the same criteria have been applied.

References

- Naqvi, A. M., Thesis Harvard (1951).
 Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

Cl X. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Цi	Kk	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P_3P	[9188.7] [9188.7]	0	10880 10880	5 5	3 3	e m	1.30×10-4 28.6	0.0152 2.47	C-B	1. 2 1
2		3P-1D	[1639.3] [1 39.3] [1 395.2] [1995.2]	0 0 10880 10880	[61000] [61000] [61000] [61000]	5 5 3 3	5 5 5 5	e m e m	9.036 109 0.0020 20.4	0.0013 0.089 1.9×10 4 0.0301	D- C D- C	1. 2 1 1. 2
3		3P_1S	[767.40] [837.31]		[120310] [130310]	5 3	1 1	e m	0.51 1410	8.1×10 ⁻⁵ 0.0307	D-	2 2
4		¹D-¹S	[1442.8]	[61000]	[130310]	5	1	e	7.7	0.0287	(:-	2

ARGON Arı

Ground State

 $1s^22s^22p^63s^23p^{6-1}S_0$

Ionization Potential

 $15.755 \text{ eV} = 127109.9 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
866.80	2	4510.73	76	5194.02	378
869.75	6	4522.32	68	5210.49	361
876.06	ľĭ	4544.75	413	5214.77	364
879.95	5	4554.32	359	5216.28	397
1048.22	4	4584.96	409	5221.27	360
1066.66	3	4586.61	408	 5241.09	365
3406.18	97	4587.21	407	5246.24	392
3461.08	88	4589,29	75	5249.20	391
3554.30	82	4596.10	74	5252.79	363
3563.29	96	4628.44	73	5254.47	312
3567.66	77	4642.15	401	5286,07	317
3572.30	96	4647.49	400	5290.00	390
3606.52	87	4702.32	72	5309.52	318
3632.68	86	4746.82	386	5317.73	372
3634.46	85	4752.94	387	5373.50	366
3643.12	84	4768.68	301	5393.27	398
3649.83	95	4798.74	415	5410.48	367
3659.53	83	4835,97	414	5421.35	375
3670.67	93	4836.70	395	5439.99	334
3675.23	94	4876.26	358	5442.24	304
3770.37	89	4886.29	410	5451.65	333
3834.68	92	4887.95	357	5457.42	377
3894.66	91	4894.69	356	5459,65	303
3947.50	58	4921.04	411	5467.16	376
3948.98	59	4937.72	412	5473.46	340
4044.42	66	4956.75	402	5490.12	307
4045.96	57	4989.95	403	5492.09	382
4054.53	65	5032.03	405	5495.87	302
4158.59	57	5048,81	374	5506.11	306
4164.18	56	5054.18	336	5524.96	225
4181-88	71	5056.53	335	5528.97	393
4190.71	55	5060.08	388	5534.49	384
4191.03	70	5070.99	406	5540.87	224
4198.32	64	5073.08	300	5552.77	394
4200.67	54	5078.03	305	5558.70	216
4251.18	53	5087.09	389	5559,66	323
4259.36	80	5104.74	404	5572.54	233
4266.29	63	5118.21	309	5574.22	324
4272.17	62	5127.80	308	5581.87	226
4300.10	61	5151.39	298	5588.72	232
4333.56	78	5152.30	217	5597.48	327
4335.34	79	5162.29	299	5606.73	215
4345.17	77	5177.54	396	5618.01	344
4363.79	60	5187.75	218	5620.92	343
4424.00	69	5192.72	362	5623.78	328

Ar I. Allowed Transitions-Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
5635,58	311	6119.66	320	6888.17	158
5637.33	369	6121.86	331	6925.01	263
5639.12	399	6127.42	227	6937.67	135
5641.39	310	6128.73	330	6951.46	163
5648.69	380	6145.44	260	6960.23	165
5649.26	381	6155.24	346	6965.43	31
5650.70	214	6165.12	259	6992.17	262
56 59.13	379	6170.17	345	7030.25	272
5681.90	316	6173.10	238	7067.22	30
5683.73	315	6179.41	325	7068.73	274
5700.87	314	6212.50	245	7086.70	284
5712.51	368	6215.94	261	7107.48	273
5739.52	239	6230.93	244	7125.83	288
5772.11	247	6243.40	329	7147.04	29
5773.99	371	6244.73	266	7158.83	287
5783.54	240	6248.41	236	7162.57	168
5789.48	246	6278.65	242	7206.98	291
5790.40	370	6296.87	267	7229.93	149
5802.08	313	6307.66	243	7265.17	155
5834.26	248	6309,14	235	7270.66	142
5643.77	373	6364.89	234	7272.93	39
5860.31	271	6369.58	234	7285.44	178
5882.62	270			7311.72	277
		6384.72	269		
5888.58	337	6416.31	268	7316.01	295
5912.09	140	6431.56	275	7350.78	294
5916.58	229	6466.55	250	7353.18	276
5927.11	223	6481.14	347	7353.32	148
5928.81	339	6493.97	152	7372.12	141
5940.86	348	6513.85	349	7383.98	38
5942.67	338	6538.11	145	7392.97	281
5943.89	222	6596.12	144	7412.33	171
5964.48	251	6598.68	352	7422.26	172
5968.32	351	6604.02	146	7425.29	176
5971.60	350	6604.85	151	7435.33	280
5981.90	231	6632.09	279	7436.25	143
5987.30	220	6656.88	265	7471.17	37
5988.13	322	6660.68	278	7484.24	156
5994.66	321	6664.05	150	7503.87	52
5999.00	::30	6677.28	40	7510.42	177
6005.73	383	6684.73	254	7514.65	36
6013.68	221	6698.47	159	7618.33	182
6025.15	353	6698.88	282	7628.86	183
6032.13	219	6719.22	249	7635,11	28
6043.22	228	6722.88	257	7670.04	147
6052.73	138	6752.84	137	7704.81	161
6059.37	139	6754.37	253	7723.76	27
6064.76	326	6756.10	258	7724.21	44
6081.25	385	6766.61	166	7798.55	154
6085.86	237	6779.93	332		
6090,79	314	6818.29	332 252	7868.20 7891.08	283 162
6098.81	342	6827.25	254		
6101.16	355	III	256	7916.45	286
		6851.88	264	7948.18	43
6104.58	354	6871.29	136	7965.08	285
6105.64 6113.46	255 341	6879.59 6887.10	157	8006.16 8014.79	35
			164	8014.79	26

Ar I. Allowed Transitions-Continued

	, 		 	1	
Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
8016.74	290	11441.8	198	14093.6	118
8037.23	297	11441.6	113	14596.3	110
8046.13	153	11488.1	45	14634.1	18
8053.31	160	11580.4	10	14739.1	114
8066.60	289	11668.7	116	14786.3	417
0000.00	207	11000.7	110	14700.5	""
8103.69	34	11719.5	106	14876.6	416
8115.31	25	11733.3	7	15046.4	134
8151.86	293	11943.5	8	15172.3	199
8203.42	292	12026.6	119	15302.3	16
8264.52	51	12112.2	102	15329.6	105
8384.73	174	12139.8	123	15353.5	202
8408.21	50	12343.7	108	15402.6	15
8424.65	33	12356.8	11	15555.5	126
8490.30	170	12402.9	111	15734.9	206
8521.44	49	12439.2	100	15776.6	201
8605.78	175	12456.1	190	15816.8	23
8620.46	167	12487.6	188	15899.9	20
8667,94	42	12554.4	101		1
8761.69	181	2621.8	200	15989.3	213
	169		133	16122.7	103
8784.61	109	12702.4	133	16180.0	205
8799.08	173	12733.6	189	16264.1	209
8962.19	180	12746.3	204	16436.9	14
9057.51	296	12802.7	107	16520.1	110
9075.42	179	12933.3	203	16549.8	13
91.22.97	24	12956.6	99	16739.8	208
9194.64	187	13008.5	207	16940.4	115
9224.50	48	13214.7	98	17823.3	17
9291.53	186	13231.4	193	20317.0	212
9354.22	47	13273.1	128	20616.5	125
9657.78	32	13313.4	122	20812.0	22
9784,50	46	13367.1	211	21332.2	121
9784.50 10470,1	41	13367,1 13406.6	9	21332.2 21534.9	131
10478.0	185	13499.2	197	22039.2	120
10506.5	12	13504.0	104	22039.2	120
10673.6	184	13543.8	192	23133.4	130
10010.0	104	13343.0	192	40100.4	130
10683.4	191	13573.6	210	23844.8	21
10950.7	117	13599.2	127	23967.5	129
11078.9	109	13622.4	112		
11248.4	195	13678.5	132		
11393.7	194	13825.7	196		

A wealth of numerical data exists on the oscillator strengths of the Ar1 spectrum. Numerous emission intensity measurements, performed mostly with stabilized arcs, as well as some lifetime determinations and several calculations based on intermediate coupling theory, have been recently reported in the literature.

Most of the work on Ar1 has centered on the prominent red and blue lines, i.e., the 4s-4p and 4s-5p transition arrays. While the majority of the recent data agree very well on a relative basis, considerable discrepancies exist on the absolute scale. At present two different absolute scales, which are about 25 to 35 percent apart, appear to be supported by several experiments on each side, and at this time both possibilities deserve serious consideration.

One scale is clustered around the fairly extensive lifetime measurements of 4p and 5p levels by Klose [12, 13] performed with a delayed coincidence method. This scale is, within a range of about \pm 10 percent, found also from the arc experiments of Popenoe and Shumaker [10] and Wiese

[14], from another less extensive lifetime experiment, again performed with the delayed coincidence technique, by Osherovich and Veroleinen [15], and from the Coulomb approximation [16].*

The other absolute scale, which is about 25 to 35 percent lower, is supported by the recent stabilized arc experiments of Bues et al. [5], Wende [4], and Richter [24] and by the shock-tube experiment of Coates and Gaydon [18]. To complicate matters, a recent lifetime measurement of two 4 μ levels by Landman [19] with the Hanle-effect technique—which has usually produced reliable results—lies about half-way in between these two scales, leaning a little toward the first scale (the two Landman values are about 10 to 13 percent lower than those derived from the first scale).

Aside from the above mentioned work, many other emission experiments with arcs are available; but we have not considered these for the absolute scale after noticing that they either show an appreciable scatter in the relative data when compared to any of the above experiments (which are, on a relative basis, all in good agreement), or they contain assumptions and data used for the diagnostics which are considered outdated now.

After a very detailed analysis we have decided to adopt the first scale as best represented by Klose's lifetime measurements. In our opinion this scale at present appears to be the least objectionable one; but it needs to be pointed out again that we do not consider this issue settled yet. We have chosen this scale for the following principal reasons:

First, Klose's lifetime data for four 4p and seven 5p levels (the latter in conjunction with theoretical data) represent a self-consistent set of data.

Second, there is no readily apparent reason why Klose's measured lifetimes are too short as would be required by the other scale. There are two principal mechanisms which could cause his lifetimes to be too short, namely, (a) depopulation by collisions and, (b) cascading from those higher levels which decay faster than the 4p levels because they have a direct connection to the ground state. The latter mechanism would apply principally to the 5s and 3d levels. Detailed quantitative estimates [20] show, however, that under Klose's conditions collisional depopulation is negligible and the cascading from those higher fast-decaying levels which are directly linked with the ground state is so severely modified by radiation trapping (imprisonment) that the effective lifetimes of these states become much longer than the measured ones.

Third, the Coulomb approximation, in conjunction with intermediate coupling theory [21], produces within a few percent the same lifetimes as measured by Klose for the 4p levels. This is exactly the same situation as encountered for the analogous case of the 3s-3p array of Ne I, where the Coulomb approximation has given accurate numbers. In addition, the Coulomb approximation, when applied to some other prominent transition arrays of Ar I where no cancellation occurs, such as 4p-3d and 4p-5s, is also in these cases consistent with the experimental data based on Klose's scale. Furthermore, the adopted absolute scale for the 4s-4p array of argon fits much better into the apparent regularities for atomic f-values than the other possible scale with the smaller f-values.

Fourth, a possible explanation for the cause of the discrepancy between the two scales has been advanced by one of us some time ago [14] which also supports the adopted scale. The principal argument is based on the observation that in most emission is tensity measurements the authors fail to include the intensity contributed by the line wings which may readily amount to about 15 to 20 percent. In the usually very dense are plasmas the spectral lines are appreciably broadened. Thus the far wing contributions, which are extremely difficult to measure, should be taken into account by a theoretical estimate based on Stark broadening theory to obtain consistency with either the lifetime results or calculated transition probabilities. This line wing correction has been included only in the arc experiments of Shumaker and Popenoe [3, 10] and Wiese [14], both of which are in agreement with Klose's scale. If this correction were applied to the other arc experiments, it would have the effect of increasing the results by about 15 to 20 percent or more and thus bring them into reasonably close agreement with the scale adopted here.

In spite of the foregoing arguments, we feel that there may still be other equally important causes contributing to this discrepancy, since the line wing correction cannot explain certain inconsistencies observed by several authors within their arc experiments (see, e.g., ref. [5]). In view of this still somewhat uncertain situation we have been very conservative with our error estimates for this spectrum.

Now some details on the chosen numerical values:

Our starting point has been Klose's lifetime measurements [12] for the 4p levels with which we have renormalized Shumaker and Popenoe's [3] transition probabilities for the 4s-4p array. (The

normalization factor is 0.926.) The Shumaker and Popenoe values, it might be pointed out fulfill the J-file sum rule very well. Calculated f-values by Garstang and Van Blerkom [21] for the 4s-4parray based on intermediate coupling theory and an absolute scale provided by the Coulonib approximation agree generally quite well with this scale. For the 4s-5p transitions, the prominent blue lines, we have chosen the averaged values of those recent sets of stabilized-arc data by Wende [4], Bues et al. [5], and Corliss and Shumaker [6], with appropriate renormalization factors. The first two authors cover the entire 4s-5p array, while Corliss and Shumaker have measured only about half of the lines in a wall-stabilized arc. The three sets of data agree very well on a relative basis, in most cases within 15 percent. To obtain the absolute scale, we have then connected these 4s-5p data with the 4s-4p array. Unfortunately, not too many links between the two transition arrays exist. Out of these we have chosen the arc measurements of Popenoe and Shumaker [10], which cover a few lines of both arrays. In particular, the 4300 Å line (4s-5p) and the 6965 Å line (4s-4p) were extensively measured by these authors, and Corliss and Shumaker [6] use this value for the 4300 Å line as the basis for their other results. We have therefore first renormalized the data of Corliss and Shumaker with the same factor applied earlier to the Shumaker and Popenoe values for the 4s-4p lines (since these measurements were based on the 6965 Å (4s-4p) line). Then the material of Bues et al., and Wende was put on this same absolute scale by determining and applying the respective mean arithmetic factors against the renormalized Corliss and Shumaker values; these factors are 1.250 for Bues et al., and 1.329 for Wende.

From our principal connection between the 4s-4p and 4s-5p arrays based on the 4300 Å and 6965 Å lines, a transition probability ratio of 0.059 may be derived for these two lines. For comparison, the arc measurements of Bott [17] produce a ratio of 0.050, while Coates and Gaydon [18] with a shocktube obtain 0.062. It is also interesting to note that for another possible link, this one between the 4300 Å and 7147 Å lines, the here-obtained ratio of 0.61 is again bracketed by those obtained by Coates and Gaydon (0.45) and Bues et al. (0.69).

The adopted 4s-5p transition probabilities, combined with theoretical data for the far-infrared 5s-5p and 3d-5p transitions [11, 13], are completely consistent with the lifetime data for seven 5p levels measured by Klose [12].

For many other lines in the visible and near ultraviolet we have primarily drawn on the (renormalized) material of Bues et al. [5], and Malone and Corcoran [8]. The latter used a radio frequency induction coupled plasma source; their renormalization factor is 1.159. In the many cases, where in addition to the material of Bues et al., data from Corliss and Shumaker were also available, we have given preference to the values of Bues et al., since these were obtained photoelectrically with a stabilized arc while Corliss and Shumaker's data were usually derived from an analysis of the relative intensity measurements of Dieke and Crosswhite [22]. For some 4p-6s lines we have listed the calculated absolute values of Johnston [7], based on intermediate coupling theory. We have not used any of his other material, since the transition integrals are very small, indicating cancellation, and his values usually disagree strongly with Bues et al., or Corliss and Shumaker, when comparisons are possible. We have also not used the results of Desai and Corcoran [23], obtained with a radio frequency plasma source, since—in comparison with other experimental values [5, 6]—they seem to show a dependence on the upper energy level of the transition involved.

For numerous infrared lines, we have employed the relative arc measurements of Wiese et al. [9], which are normalized again to Klose's scale. In the case of the 4p-5s array, we could complete the data by using also the intermediate coupling calculations of Murphy [11]. These theoretical data, presented on their own absolute scale, are in fairly good agreement with the arc measurements, in many cases within 30 percent.

In order to have a number of transition arrays complete or nearly complete, which is quite useful for checks with the J-file sum rule, we have listed in our compilation a number of mostly weak lines which we normally do not include in these compilations (lines of class "E"). We feel that none of these listed lines are very uncertain, i.e., we consider most of them probably to be within a factor of two of the true values.

Finally, for the two principal resonance lines in the vacuum uv, 2o-4s, we have taken the average of a lifetime result by Lawrence [1] obtained with the delayed-coincidence method and a value reported by Lewis [2] who has analyzed natural line width measurements, which essentially constitute lifetime measurements, too. For several other lines in the vacuum uv we have deduced transition probabilities from Lawrence's lifetime measurements by subtracting out the smaller contributions, ranging from about 6 percent to 40 percent, of numerous infrared transitions starting

from the same upper levels. To do this, we applied the arc measurements of Wiese et al. [9], and the intermediate coupling calculations of Murphy [11].

References

- [1] Lawrence, G. M., Phys. Rev. 175, 40-44 (1968).
- [2] Lewis, E. L., Proc. Phys. Soc. London 92, 817-825 (1967).
- [3] Shumaker, Jr., J. B. and Popenoe, C. H., J. Opt. Soc. Am. 57, 8-10 (1967).
- [4] Wende, B., Z. Physik 213, 341-351 (1968).
- [5] Bues, I., Haag, T., and Richter, J., Technical Report Inst. Experimentalphysik, Kiel Universitaet (1966-67).
- [6] Corliss, C. H., and Shumaker, Jr., J. B., J. Res. NBS 71A (Phys. and Chem.) No. 6, 575-581 (1967).
- [7] Johnston, P. D., Proc. Phys. Soc. London 92, 896-908 (1967).
- [8] Malone, B. S., and Corcoran, W. H., J. Quant. Spectrosc. Radiat. Transfer. 6, 443-449 (1966).
- [9] Wiese, W. L., Bridges, J. M., Kornblith, R. L., and Kelleher, D. E. (to be published).
- [10] Popenoe, C. H., and Shumaker, Jr., J. B., J. Res. NBS 69A (Phys. and Chem.) No. 6, 495-509 (1965).
- [11] Murphy, P. W., J. Opt. Soc. Am. 58, 1200-1208 (1968).
- [12] Klose, J. Z., J. Opt. Soc. Am. 57, 1242-1244 (1967).
- [13] Klose, J. Z., J. Opt. Soc. Am. 58, 1509-1512 (1968).
- [14] Wiese, W. L., Proc. Eighth International Conference on Phenomena in Ionized Gases, Vienna, Austria. 447 (Springer Verlag, Vienna, 1967).
- [15] Osherovich, A. L. & Veroleinen, Ya.F., Vestnik Leningrad, Univ. Fiz. i Khim. No. 1, 140-141 (1967).
- [16] Bates, D. R. & Damgaard, A., Phil. Trans. Roy. Soc. London, Ser. A. 242, 101-122 (1949).
- [17] Bott, J. F., Phys. Fluids 9, 1540-1547 (1966).
- [18] Coates, P. B. & Gaydon, A. G., Proc. Roy. Soc. London A293, 452-468 (1966).
- [19] Landman, D. A., Phys. Rev. 173, 33-39 (1968).
- [20] See, e.g., Wiese, W. L., Chapter 2.1 Vol. 7A, Methods of Experimental Physics, Academic Press, New York (1968).
- [21] Garstang, R. H. and Van Blerkom, J., J. Opt. Soc. Am. 55, 1054-1057 (1965).
- [22] Dieke, G. H. and Crosswhite, H. M., Ordance Project No. TB2-0001 (488) (Dec. 1954).
- [23] Desai, S. V., and Corcoran, W. H., J. Quant. Spectrosc. Radiat. Transfer 8, 1721-1730 (1968).
- [24] Richter, J., Z. Astrophys. 61, 57-66 (1965).

*Note Added in Proof: New lifetime measurements by Veroleinen and Osherovich [Optics and Spectroscopy (U.S.S.R.) 25, 258-259 (1968)] for five 4p levels are in very close agreement with our adopted absolute scale. If these results would be applied to the same 4p levels for which we have used Klose's data [12], our absolute scale would shift by 2 percent towards higher transition probabilities.

Ar 1. Allowed Transitions

No.	Transit	tion	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	μι	KK	A_{ki} (10 ⁿ	fik	Stat.u.)	log gf	Ac-	Source
	<i>jl</i> -coupling	Paschen					,	sec-1)	"	=:		racy	
1 2	$3p^{6} {}^{1}S - 3d \left[\frac{3}{2}\right]^{\circ} \ 3p^{6} {}^{1}S - 3d' \left[\frac{3}{2}\right]^{\circ}$	$1 \frac{p_0 - 3d_2}{1p_0 - 3s_1'}$	876.06 866.80	0 0	114148 115367	1 1	3	2.70 3.13	0.093 0.106	0.269 0.302	-1.032 -0.97	C+	1, 9n 1, 9n
3 4	$3p^{6.1}S - 4s[\frac{3}{2}]^{\circ}$ $3p^{6.1}S - 4s'[\frac{1}{2}]^{\circ}$	$1p_0 - 1s_4$ $1p_0 - 1s_2$	1066.66 1048.22	0	93751 95400	1	3 3	1.19 5.1	0.061 0.254	0.214 0.88	-1.215 -0.60	C+	1. 2 1. 2
5 6	$3p^{6.1}S - 5s[\hat{x}]^{\circ}$ $3p^{6.1}S - 5s'[\frac{1}{4}]^{\circ}$	$1\mu_0 - 2s_4$ $1\mu_0 - 2s_2$	879.95 869.75	0	113643 114975]	3	0.77 0.350	0.0268 0.0119	0.078 0.0341	- 1.57 - 1.92	C C	1. 9n. 11 1. 9n. 11
7 8 9 10	3d[1]°-4f[1] 3d[1]°-4f[1]	$3d_6 - 4X$ $3d_5 - 4X$ $3d'_4 - 4V$ $3d_4 - 4W$ $3d_3 - 4Y$	11733.3 11943.5 13406.6 11580.4 12356.8	11668 11818 112750 113020 112139	120188 120188 120207 121653 120230	7	3 8 20 16 12	0.0067 0.046 0.065 0.00346 0.035	0.0416 0.26 0.39 0.0159 0.19	1.60 31 150 4.24 39	-1.381 -0.11 0.55 -0.95 -0.02	C D+ D C	9n 9n 9n 9n 9n
12 13 14 15 16	3d[1]°-4f[1] 3d[1]°-4f[1]	$3d_3-4Z$ $3d_2-4X$ $3d_2-4Y$ $3d_1'-4V$ $3d_1'-4U$	10506.5 16549.8 16436.9 15402.6 15302.3	112139 114148 114148 113717 113717	121654 120188 120230 120207 120250	5 3 7 7	12 8 5 9 16	0.0158 0.016 0.059 0.014 0.054	0.063 0.18 0.40 0.064 0.43	10.9 29 65 23 150	-0.50 -0.27 0.08 -0.36 0.48	C D- D- D-	9n 9n 9n 9n 9n

Ars. Allowed Transitions-Continued

No.	Transi	toy	λ(\)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	Ľk.	.4 _{ki} (10 ^a	fik	S(at.u.)	log gf	Ac-	Source
	jl-caupling	Paschen	A(1)		r.gcciii)		FK.	sec-1)	Jik	B(ut.u.)		racy	
17 18 19 20	3d' [\$\frac{3}{2}\] \circ -4f[\frac{7}{2}\] \circ 3d' [\frac{3}{2}\] \circ -4f' [\frac{7}{2}\] \circ 3d' [\frac{3}{2}\] \circ -4f' [\frac{7}{2}\] \circ 3d' [\frac{3}{2}\] \circ -4f' [\frac{7}{2}\]	$3s_{1}^{""}-4U$ $3s_{1}^{"}-4W$ $3s_{1}^{"}-4Z$ $3s_{1}^{*}-4Z$	17823,3 14634,1 14596,3 15899,9	114641 114822 114805 115267	120250 121653 121654 121654	5 7 5 3	12	0.0084 0.090 0.053 0.077	0.056 0.66 0.41 0.49	16 220 98 76	-0.55 0.66 0.30 0.17	E D- D- D	9n 9n 9n 9n
21 22 23	$3d[\frac{7}{4}]^{\circ} - 5p[\frac{5}{2}]$ $3d[\frac{3}{2}]^{\circ} - 5p[\frac{5}{2}]$ $3d[\frac{3}{2}]^{\circ} - 5p'[\frac{1}{2}]$	$3d_4' - 3p_9$ $3d_3 - 3p_9$ $3d_3 - 3p_2$	23844.8 20812.0 15816.8	112750 112139 112139	116943 116943 118460	9 5 5	7	0.012 8.5 × 10 ⁻⁴ 9.8 × 10 ⁻⁴	0.079 0.0077 0.0022	56 2.6 0.57	-0.15 -1.4i -1.96	D D- E	9n 9n 9n
24 25 26 27 28	$\begin{array}{c} 4x \left[\frac{3}{2} \right]^{\circ} - 4\mu \left[\frac{1}{2} \right] \\ 4x \left[\frac{3}{2} \right]^{\circ} - 4\mu \left[\frac{3}{2} \right] \\ 4x \left[\frac{3}{2} \right]^{\circ} - 4\mu \left[\frac{3}{2} \right] \\ 4x \left[\frac{3}{2} \right]^{\circ} - 4\mu \left[\frac{3}{2} \right] \end{array}$	$1s_5 - 2p_{10}$ $1s_5 - 2p_{9}$ $1s_5 - 2p_{8}$ $1s_5 - 2p_{7}$ $1s_5 - 2p_{8}$	9122.97 8115.31 8014.79 7723.76 7635.11	93144 93144 93144 93144 93144	104102 105463 105617 106087 106238	5 5 5 5 5	5 3	0.212 0.366 0.096 0.957 0.274	0.159 0.51 0.692 0.0306 0.239	23.8 68 12.2 3.89 30.1	-0.100 0.407 -0.337 -0.82 0.077	C	3 <i>n</i> 3 <i>n</i> 3 <i>n</i> 3 <i>n</i> 3 <i>n</i>
29 30 31 32 33	$\begin{array}{c} 4s \left[\frac{3}{2} \right]^o - 4\rho' \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right]^o - 4\rho' \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right]^o - 4\rho' \left[\frac{1}{2} \right] \\ 4s \left[\frac{3}{2} \right]^o - 4\rho' \left[\frac{5}{2} \right] \end{array}$	$\begin{array}{l} 1s_{5}-2p_{4} \\ 1s_{5}-2p_{3} \\ 1s_{5}-2p_{5} \\ 1s_{4}-2p_{5} \\ 1s_{4}-2p_{8} \end{array}$	71 17.04 7067.22 6965.43 9657.78 8424.65	9:144 93144 93144 93751 93751	107132 107290 107496 104102 105617	5 5 5 3 3	5 3 3	0.0065 0.0395 0.067 0.060 0.233	0.09299 0.6296 0.0292 0.084 0.413	0.351 3.44 3.35 8.0 34.4	- 1.83 - 0.83 - 0.84 - 0.60 0.093	0000	3n 3n 3n 3n 3n
34 35 36 37 38	$\begin{array}{l} 4s \left[\frac{3}{2} \right] \circ -4\rho \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -4\rho \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -4\rho \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -4\rho \left[\frac{3}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -4\rho \left[\frac{3}{2} \right] \end{array}$	$\begin{array}{c} 1s_4 - 2\mu_7 \\ 1s_4 - 2\mu_6 \\ 1s_4 - 2\mu_5 \\ 1s_4 - 2\mu_4 \\ 1s_4 - 2\mu_3 \end{array}$	8103.69 8006.16 7514.65 7471.17 7383.98	93751 93751 93751 93751 93751	106087 106238 107054 107132 107290	3 3 3 3 3	5 1	0.277 0.0468 0.430 2.5 × 10 ⁻⁴ 0.087	0.273 0.075 0.121 2.1 × 10 ⁻⁴ 0.119	21.8 5.9 9.0 0.015 8.6	-0.087 -0.65 -0.440 -3.20 -0.447	C	3 <i>u</i> 3 <i>n</i> 3 <i>n</i> 3 <i>n</i> 3 <i>u</i>
39 40 41 42 43	$\begin{array}{c} 4s \lfloor \frac{3}{4} \rfloor^{\circ} - 4\rho' \lfloor \frac{1}{2} \rfloor \\ 4s \lfloor \frac{3}{2} \rfloor^{\circ} - 4\rho' \lfloor \frac{1}{2} \rfloor \\ 4s' \lfloor \frac{1}{2} \rfloor^{\circ} - 1\rho \lfloor \frac{1}{2} \rfloor \\ 4s' \lfloor \frac{1}{2} \rfloor^{\circ} - 4\rho' \lfloor \frac{3}{2} \rfloor \\ 4s' \lfloor \frac{1}{2} \rfloor^{\circ} - 4\rho' \lfloor \frac{3}{2} \rfloor \end{array}$	$\begin{array}{c} 1s_4 - 2\dot{\rho}_2 \\ 1s_4 - 2\rho_1 \\ 1s_3 - 2\rho_{10} \\ 1s_3 - 2\rho_7 \\ 1s_3 - 2\rho_4 \end{array}$	7272.93 6677.28 10470.1 8667.94 7948.18	93751 93751 94554 94554 94554	107496 108723 104102 106087 107132	3 1 1 1	3 3	0.0200 0.00241 0.0117 0.0280 0.196	0.0159 5.4×10-4 0.058 0.095 0.56	1.14 0.0354 1.99 2.70 14.6	-1.321 -2.79 -1.237 -1.022 -0.252	C	3n 3n 3n 3n 3n
14 45 46 47 48	$\begin{array}{c} 4s' \left[\frac{1}{2} \right]^{\circ} - 4p' \left[\frac{1}{2} \right] \\ 4s' \left[\frac{1}{2} \right]^{\circ} - 4p \left[\frac{1}{2} \right] \\ 4s' \left[\frac{1}{2} \right]^{\circ} - 4p \left[\frac{1}{2} \right] \\ 4s' \left[\frac{1}{2} \right]^{\circ} - 4p \left[\frac{1}{2} \right] \\ 4s' \left[\frac{1}{2} \right]^{\circ} - 4p \left[\frac{1}{2} \right] \end{array}$	$\begin{array}{c} 1s_{3} - 2p_{2} \\ 1s_{2} - 2p_{10} \\ 1s_{2} - 2p_{8} \\ 1s_{2} - 2p_{7} \\ 1s_{2} - 2p_{6} \end{array}$	7724.21 11488.1 9784.50 9354.22 9224.50	94554 95400 95400 95400 95400	107496 104102 105617 106087 106138	1 3 3 3 3	3 5 3	0.127 0.0025 0.0161 0.0115 0.059	0.341 0.0049 0.0385 0.0151 0.125	8.7 0.56 3.72 1.39 11.4	-0,467 -1.83 -6.94 -1 344 -0.426	C- C-	3n 3n 3n 3n 3n
49 50 51 52	4s'[½]°ー4p'[½] 4s'[½]°ー4p'[½]	$ 1s_2 - 2p_4 1s_2 - 2p_3 1s_2 - 2p_2 1s_2 - 2p_4 $	8521.44 8408.21 8264.52 7503.87	95400 95400	107132 107290 107496 108723	3 3 3	5 3	0.147 0.244 0.168 0.472	0.160 0.431 0.172 0.133	13.5 35.8 14.0 9.8	-0.319 0.112 -0.287 -0.399	C	3n 3n 3n 3n
53 54 55 56 57	$\begin{array}{c} 4s \left[\frac{1}{2} \right] \circ -5 \rho \left[\frac{1}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -5 \rho \left[\frac{5}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -5 \rho \left[\frac{5}{2} \right] \\ 4s \left[\frac{3}{2} \right] \circ -5 \rho \left[\frac{3}{2} \right] \end{array}$	$1s_{5} - 3\mu_{18}$ $1s_{5} - 3\mu_{9}$ $1s_{5} - 3\mu_{8}$ $1s_{5} - 3\mu_{7}$ $1s_{5} - 3\mu_{6}$	4251.18 4200.67 4190.71 4164.18 4158.59	93144 93144 93144 93144 93144	116660 116943 116999 117151 117184	5 5 5 5 5	5 3	0.00113 0.0103 0.00254 0.00295 0.0145	1.84 × 10 ⁻⁴ 0.00382 6.7 × 10 ⁻⁴ 4.60 × 10 ⁻⁴ 0.00376	0.0129 0.264 0.0461 0.0315 0.257	-3.036 -1.72 -2.475 -2.64 -1.73	C	4n, 3n, 6n 4n, 5n 5n 4n, 5n, 6n 4n, 5n, 6n
58 59 60 61 62	$4s[\frac{3}{2}]^{\circ} - 5p'[\frac{3}{2}]$ $4s[\frac{3}{2}]^{\circ} - 5p'[\frac{1}{2}]$ $4s[\frac{3}{2}]^{\circ} - 5p[\frac{3}{2}]$ $4s[\frac{3}{2}]^{\circ} - 5p[\frac{3}{2}]$	$\begin{array}{c} 1s_5 - 3\rho_1 \\ 1s_5 - 3\rho_2 \\ 1s_4 - 3\rho_{10} \\ 1s_4 - 3\rho_8 \\ 1s_4 - 3\rho_7 \end{array}$	3947,50 3948,98 4365,79 4300,10 4272,17	93144 93144 93751 93751 93751	118469 118460 116660 116999 117151	5 5 3 3 3	3 3 5	6.3×10 ⁻⁴ 0.00467 1.5×10 ⁻⁴ 0.00394 6.0084	1.47 × 10 ⁻⁴ 6.6 × 10 ⁻⁴ 4.3 × 10 ⁻³ 0.00182 0.00230	0.0096 0.0426 0.0018 0.077 0.097	-3.134 -2.481 -3.89 -2.263 -2.161	C D C	4n.5n 4n.5n 4n.5n.6n 4n.5n.6n 4n.5n.6n
63 64 65 66 67	$4s[\frac{3}{2}]^{\circ} - 5p'[\frac{3}{2}]$	$1s_4 - 3p_8$ $1s_4 - 3p_5$ $1s_4 - 3p_4$ $1s_4 - 3p_3$ $1s_4 - 3p_2$	4266.29 4198.32 4054.53 4044.42 4045.96	93751 93751 93751 93751 93751	117184 117563 118407 118469 118460	3 3 3 3	1 3 5	0.00333 0.0276 2.71 × 10-4 0.00346 4.38 × 10-4	0.00141	0.064 0.101 0.00267 0.056 0.00430	-2.344 -2.137 -3.70 -2.374 -3.489	C C C	4n, 5n, 6n 4n, 5n 4n, 5n 4n, 5n 4n, 5n 4n, 5n

Ari. Allowed Transitions - Continued

No.	Transit	o n	λ(Α)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	Kı	#k	A _{ki} (10 ^t	fik	S(at.u.)	log gf	Ac- cu-	Source
	jl-coupling	Paschen						sec-1)				racy	
68 69 70 71 72	$\begin{array}{l} 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{3}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho'\left[\frac{3}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho'\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{1}{2}\right] \end{array}$	$ \begin{array}{c} 1s_3 - 3p_{10} \\ 1s_3 - 3p_7 \\ 1s_3 - 3p_4 \\ 1s_4 - 3p_2 \\ 1s_2 - 3p_{10} \end{array} $	4522.32 4424.00 4191.03 4181.88 4702.32	94554 94554 94554 94554 95400	116669 117151 118407 118460 116660	1 1 1 1 3		8.4×10 ⁻⁵ 0.0056 0.0058	8.7×10 ⁻⁴ 7.4×10 ⁻⁵ 0.00442 0.00456 3.75×10 ⁻⁴	0.0130 0.0011 0.061 0.063 0.0174	-3.060 -4.13 -2.355 -2.341 -2.95	00000	4n.5n.6n 4n.5n.6n 5n 4n.5n 4n.5n
73 74 75 76 77	$\begin{array}{l} 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{5}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{5}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{5}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho\left[\frac{5}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 5\rho'\left[\frac{5}{2}\right] \end{array}$	$\begin{array}{c} 1s_2 - 3\rho_8 \\ 1s_2 - 3\rho_7 \\ 1s_2 - 3\rho_6 \\ 1s_2 - 3\rho_5 \\ 1s_2 - 3\rho_4 \end{array}$	4628.44 4596.10 4589.29 4510.73 4345.17	95400 95400 95400 95400 95400	116999 117151 117184 117563 118407	3 3 3 3 3	5 3 5 1 3	0.00102 5.1×10 ⁻³ 0.0123	2.28 × 10 ⁻⁴ 3.23 × 10 ⁻⁴ 2.7 × 10 ⁻⁵ 0.00125 8.9 × 10 ⁻⁴	0.0104 0.0147 0.0012 0.056 0.0380	-3.165 -3.014 -4.09 -2.426 -2.57	C C C C C	4n.5n.6n 4n.5n.6n 4n.5n.6n 4n.5n.6n 4n.5n.6n
78 79 80	$4s'[\frac{1}{2}]^{\circ} - 5p'[\frac{3}{2}]$ $4s'[\frac{1}{2}]^{\circ} - 5p'[\frac{1}{2}]$ $4s'[\frac{1}{2}]^{\circ} - 5p'[\frac{1}{2}]$	$\begin{array}{c} 1s_2 - 3\rho_3 \\ 1s_2 - 3\rho_2 \\ 1s_2 - 3\rho_1 \end{array}$	4333.56 4335.34 4259.36	95400 95400 95400	118469 118460 118871	3 3 3	5 3 1	0.06387	0.00282 0.00109 0.00376	0.121 0.0467 0.158	-2.073 -2.485 -1.95	000	4n. 5n 4n. 5n 4n. 6n
81 82 83 84 85	$ \begin{array}{l} +s \left[\frac{3}{2} \right]^{\circ} - 6 \mu \left[\frac{5}{2} \right] \\ +s \left[\frac{3}{2} \right]^{\circ} - 6 \mu \left[\frac{3}{2} \right] \\ +s \left[\frac{3}{2} \right]^{\circ} - 6 \mu \left[\frac{1}{2} \right] \\ +s \left[\frac{3}{2} \right]^{\circ} - 6 \mu \left[\frac{3}{2} \right] \\ +s \left[\frac{3}{2} \right]^{\circ} - 6 \mu \left[\frac{3}{2} \right] \end{array} $	$\begin{array}{c} 1s_{5} - 4p_{9} \\ 1s_{5} - 4p_{8} \\ 1s_{4} - 4p_{10} \\ 1s_{4} - 4p_{8} \\ 1s_{4} - 4p_{7} \end{array}$	3567.66 3554.30 3659.53 3643.12 3634.46	93144 93144 93751 93751 93751	121165 121271 121069 121192 121257	5 3 3 3	7 5 3 5 3	0 0029 4.7 × 10 ⁻⁴ 2.6 × 10 ⁻⁴	3.2×10^{-4} 5.5×10^{-4} 9.4×10^{-5} 8.6×10^{-5} 2.8×10^{-4}	0.019 0.032 0.0034 0.0031 0.010	-2.80 -2.56 -3.55 -3.59 -3.08	D D D D	8n 8n 8n 8n 8n
86 87 88 89 90	$\begin{array}{c} 4s[\frac{1}{2}]^{\circ} - 6p[\frac{1}{2}] \\ 4s[\frac{1}{2}]^{\circ} - 6p[\frac{1}{2}] \\ 4s[\frac{1}{2}]^{\circ} - 6p[\frac{1}{2}] \\ 4s'[\frac{1}{2}]^{\circ} - 6p'[\frac{1}{2}] \\ 4s'[\frac{1}{2}]^{\circ} - 6p'[\frac{1}{2}] \end{array}$	$ \begin{array}{l} 1s_4 - 4p_8 \\ 1s_4 - 4p_5 \\ 1s_4 - 4p_2 \\ 1s_3 - 4p_{10} \\ 1s_3 - 4p_4 \end{array} $	3632.68 3606.52 3461.08 3770.37 3563.29	93751 93751 93751 93751 94554 94554	121271 121470 122635 121069 122610	3 3 1 1	5 1 5 3 3	0.0081 7.1 × 10-4	2.3 × 10 ⁻⁴ 5.3 × 10 ⁻⁴ 2.1 × 10 ⁻⁴ 4.7 × 10 ⁻⁴ 7.4 × 10 ⁻⁴	0.0083 0.019 0.6073 0.0059 0.0087	$-2.80 \\ -3.20$	D D D D	8n 8n 8n 8n 8n
91 92 93 94 95	$\begin{array}{c} 4s'\left[\frac{1}{2}\right]^{\circ} - 6\rho\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 6\rho\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 6\rho'\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 6\rho'\left[\frac{1}{2}\right] \\ 4s'\left[\frac{1}{2}\right]^{\circ} - 6\rho'\left[\frac{1}{2}\right] \end{array}$	$\begin{array}{c} 1s_2 - 4\rho_{10} \\ 1s_2 - 2\rho_5 \\ 1s_2 - 4\rho_3 \\ 1s_2 - 4\rho_2 \\ 1s_2 - 4\rho_1 \end{array}$	3894.66 3834.68 3670.67 3675.23 3649.83	95400 95400 95400 9.5400 9.5400	121069 121470 122635 122601 122791	3 3 3 3	5 3	0.0080 3.3 × 10 ⁻⁴ 5.2 × 10 ⁻⁴	1.4×10 ⁻⁴ 5.9×10 ⁻⁴ 1.1×10 ⁻³ 1.1×10 ⁻⁴ 5.7×10 ⁻⁴	0.022	*-3.38 -2.75 -3.48 -3.48 -2.77	D D D D	8n 8n 8n 8n 8n
96 97	$\begin{vmatrix} 4s'[\frac{1}{2}]^{\circ} - 7\rho[\frac{1}{2}] \\ 4s'[\frac{1}{2}]^{\circ} - 7\rho'[\frac{1}{2}] \end{vmatrix}$	$1s_2 - 5p_5 1s_2 - 5p_1$	3572.30 3406.18	95400 95400	123385 124750	3	1		3.4 × 10 ⁻⁴ 2.4 × 10 ⁻⁴	0.012 0.0080	2.99 3.14	D D	8n 8n
98 99 100 101 102	$ \begin{array}{c} 4\rho[\frac{1}{2}] - 3d[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 3d[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 3d[\frac{3}{2}]^{\circ} \end{array} $	$\begin{array}{c} 2p_{10} - 3d_{8} \\ 2p_{10} - 3d_{5} \\ 2p_{10} - 3d_{3} \\ 2p_{9} - 3d_{1}^{\prime} \\ 2p_{9} - 3d_{1}^{\prime} \end{array}$	13214.7 12956.6 12439.2 12554.4 12112.2	104102 104102 104102 105463 105463	111668 111818 112139 113426 113717	3 3 7 7	3 5 5	0.083 0.055 0.0014	0.079 0.21 0.21 0.0024 0.077	10 27 26 0.68 21	-0.63 -0.20 -0.20 -1.77 -0.27	D D D D	9n 9n 9n 9n 9n
103 104 105 106 107	$ \begin{vmatrix} 4p\left[\frac{3}{2}\right] - 3d\left[\frac{7}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 3d\left[\frac{7}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 3d\left[\frac{7}{2}\right]^{\circ} \end{vmatrix} $	$\begin{array}{c} 2p_8 - 3d_5 \\ 2p_8 - 3d_4 \\ 2p_8 - 3d_3 \\ 2p_8 - 3d_2 \\ 2p_8 - 3d_1'' \end{array}$	16122.7 13504.0 15329.6 11719.5 12802.7	105617 105617 105617 105617 105617	111818 113020 112139 114148 113426	5 5 5 5 5	7 5 3	0.12	0.0010 0.47 0.0049 0.0132 0.16	0.27 100 1.2 2.55	-2.30 0.37 -1.61 -1.180 -0.10	D – C D	9n 9n 9n 9n 9n
108 109 110 111 112	$\begin{vmatrix} 4\rho[\frac{3}{2}] - 3d^{2}[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 3d[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 3d[\frac{3}{2}]^{\circ} \end{vmatrix}$	$\begin{array}{c} 2p_8 - 3d_1' \\ 2p_8 - 3s_1''' \\ 2p_7 - 3d_3 \\ 2p_7 - 3d_2 \\ 2p_7 - 3d_1'' \end{array}$	12343, 7 11078.9 16520.1 12402.9 13622.4	105617 105617 106087 106087 106087	113717 114641 112139 114148 173426	5 5 3 3	5 5 3	0.0093 0.0029 0.12	0.071 0.0172 0.020 0.27 0.38	14 3.13 3.3 32 51	-0.45 -1.066 -1.22 -0.09 0.06	D C D D	9n 9n 9n 9n 9n
113 114 115 116 117	$\begin{vmatrix} 4\rho[\frac{3}{2}] - 3d[\frac{7}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 3d[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 3d'[\frac{7}{2}]^{\circ} \end{vmatrix}$	$\begin{vmatrix} 2\mu_1 - 3s_1'' \\ 2\mu_6 - 3d_4 \\ 2\mu_6 - 3d_3 \\ 2\mu_6 - 3s_1'' \\ 2\mu_6 - 3s_1' \end{vmatrix}$	11467.3 14739.1 16940.4 11668.7 10950.7	106087 106238 106238 106238 106238	114805 113020 112139 114805 115367	5 5 5 5	7 5 5	9.9 × 30-4 0.028	0.0136 0.0045 0.12 0.086 0.00480	1.54 1.1 34 16.6 0.87	-1 388 -1.65 -0.22 9.367	D D C C	9n 9n 9n 9n 9n

Arl. Allowed Transitions-Continued

No.	Transiti	un	λ(Á)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	Ķi.	Ľk.	A _{ki} (10 ⁶	fik	S(a(.u.)	lag gf	Ac-	Source
	jl-coupling	Paschen.	,	,	,	[C **	sec-1)	J (A	D(a ()		racy	
118 119 120 121 122	$\begin{array}{c} 4\rho\left[\frac{1}{2}\right] - 3d\left[\frac{1}{2}\right]^{\circ} \\ 4\rho\left[\frac{1}{2}\right] - 3d'\left[\frac{1}{2}\right]^{\circ} \\ 4\rho\left[\frac{1}{2}\right] - 3d\left[\frac{1}{2}\right]^{\circ} \\ 4\rho'\left[\frac{1}{2}\right] - 3d'\left[\frac{1}{2}\right]^{\circ} \\ 4\rho'\left[\frac{1}{2}\right] - 3d'\left[\frac{1}{2}\right]^{\circ} \end{array}$	$2p_5 - 3d_2 2p_5 - 3s_1' 2p_4 - 3d_6 2p_4 - 3d_5 2p_4 - 3s_1'''$	14093.6 12026.6 22039.2 21332.2 13313.4	107654 107054 107132 107132 107132	114148 115367 111668 111818 114641	1 1 3 3 3	3 3 1 3 5	0.048 0.0047 0.0014 3.6×10 ⁻⁴ 0.15	0.43 0.031 6.0033 0.0025 0.65	20 1,2 0,71 0,52 85	-0.37 -1.51 -2.00 -2.12 0.29	D D D- D- D	9n 9n 9n 9n 9n
123 124 125 126 127	$\begin{array}{c} 4p'\left[\frac{3}{2}\right] - 3d'\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{3}{2}\right] - 3d\left[\frac{1}{2}\right]^{\circ} \\ 4p'\left[\frac{3}{2}\right] - 3d\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{3}{2}\right] - 3d'\left[\frac{5}{2}\right]^{\circ} \\ 4p'\left[\frac{3}{2}\right] - 3d'\left[\frac{5}{2}\right]^{\circ} \end{array}$	$2p_4 - 3s'_1 2p_3 - 3d_5 2p_3 - 3d_3 2p_3 - 3d'_1 2p_3 - 3s''''$	12139.8 22077.4 20616.5 15555.5 13599.2	107132 107290 107290 107290 107290	115367 111818 112139 113717 114641	3 5 5 5 5 5	3 3 5 7 5	0.051 0.0016 0.0044 1.1 × 10 ⁻⁴ 0.025	0.11 0.0068 0.028 5.8 × 10 ⁻⁴ 0.070	14 2.5 9.6 0.15 16	-0.48 -1.47 -0.85 -2.54 -0.46	D D D- D- D-	9n 9n 9n 9n 9n
128 129 130 131 132	$ \begin{vmatrix} 4p' \left[\frac{1}{2} \right] - 3d' \left[\frac{5}{2} \right]^{\circ} \\ 4p' \left[\frac{1}{2} \right] - 3d \left[\frac{1}{2} \right]^{\circ} \\ 4p' \left[\frac{1}{2} \right] - 3d \left[\frac{1}{2} \right]^{\circ} \\ 4p' \left[\frac{1}{2} \right] - 3d' \left[\frac{4}{2} \right]^{\circ} \end{vmatrix} $	$\begin{array}{c} 2p_3 - 3s_1'' \\ 2p_2 - 3d_6 \\ 2p_2 - 3d_5 \\ 2p_2 - 3d_3 \\ 2p_2 - 3s_1' \end{array}$	13273.1 23967.5 23133.4 21534.9 13678.5	107290 107496 107496 107496 107496	114822 411668 111818 112139 114805	5 3 3 3 3	7 1 3 5 5	0.17 0.0041 0.0019 0.0012 0.070	0.61 0.012 0.015 0.013 0.33	130 2.8 3.5 2.9	0.48 - 1.44 - 1.35 - 1.41 - 0.00	D D D D	9n 9n 9n 9n 9n
133 134	$\begin{array}{c} 4\rho'[\frac{1}{2}] - 3d \left[\frac{3}{2}\right]^{\circ} \\ 4\rho'[\frac{1}{2}] - 3d'[\frac{3}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2\rho_2 - 3s_1' \\ 2\rho_1 - 3s_1' \end{array}$	12702.4 15046.4	107496 108723	115367 115367	3	3	0,080 0,058	0.19 0.59	24 29	$\begin{bmatrix} -0.24 \\ -0.23 \end{bmatrix}$	D D	9 <i>n</i> 9 <i>n</i>
135 136 137 138 139	$\begin{array}{c} 4p\left[\frac{1}{2}\right] - 4d\left[\frac{1}{2}\right]^{\circ} \\ 4p\left[\frac{1}{2}\right] - 4d\left[\frac{1}{2}\right]^{\circ} \\ 4p\left[\frac{1}{2}\right] - 4d'\left[\frac{1}{2}\right]^{\circ} \\ 4p\left[\frac{1}{2}\right] - 4d'\left[\frac{1}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2p_{10} - 4d_{6} \\ 2p_{10} - 4d_{5} \\ 2p_{10} - 4d_{3} \\ 2p_{10} - 4s_{1}^{m} \\ 2p_{10} - 4s_{1}^{m} \end{array}$	6937.67 6871.29 6752.84 6052.73 6059.37	104102 104102 104102 104102 104102	118512 118651 118907 120619 120601	3 3 3 3 3	1 3 5 5 5	0.0321 0.0290 0.0201 0.0020 0.00423	0.0077 0.0205 0.0229 0.0018 0.00388	$\begin{array}{c} 0.53 \\ 1.39 \\ 1.53 \\ 0.11 \\ 0.232 \end{array}$	-1.64 -1.211 -1.163 -2.27 -1.93	C C D+ C	5n 5n 5n 5n 5n, 6n
140 141 142 143 144	$\begin{array}{c} 4\rho \left[\frac{1}{2}\right] - 4d' \left[\frac{1}{2}\right]^{\alpha} \\ 4\rho \left[\frac{1}{2}\right] - 4d \left[\frac{1}{2}\right]^{\alpha} \\ 4\rho \left[\frac{1}{2}\right] - 4d \left[\frac{1}{2}\right]^{\alpha} \\ 4\rho \left[\frac{1}{2}\right] - 4d' \left[\frac{1}{2}\right]^{\alpha} \\ 4\rho \left[\frac{1}{2}\right] - 4d' \left[\frac{1}{2}\right]^{\alpha} \end{array}$	$\begin{array}{c} 2p_{10} - 4s'_1 \\ 2p_9 - 4d'_4 \\ 2p_9 - 4d_4 \\ 2p_9 - 4d_3 \\ 2p_9 - 4s''_1 \end{array}$	5912.09 7372.12 7270.66 7436.25 6596.12	104102 105436 106436 105436 105436	121012 119024 119213 118907 120619	3 7 7 7 7	3 9 7 5 5	0.0105 0.020 0.0011 0.0028 2.4 × 10-4	0.0054 0.021 8.4 × 10 ⁻⁴ 0.0016 1.1 × 10 ⁻⁴	0.320 3.5 0.14 0.28 0.017	-1.79 -0.84 -2.23 -1.94 -3.11	C D → D D	5n, 6n 5n 5n 5n 6n
145 146 147 148 149	$\begin{array}{c} 1\rho[\frac{3}{2}]-1d'[\frac{3}{2}]^{\circ} \\ 1\rho[\frac{3}{2}]-1d'[\frac{3}{2}]^{\circ} \\ 1\rho[\frac{3}{2}]-1d[\frac{3}{2}]^{\circ} \\ 1\rho[\frac{3}{2}]-1d[\frac{3}{2}]^{\circ} \\ 1\rho[\frac{3}{2}]-1d[\frac{3}{2}]^{\circ} \end{array}$	$\begin{vmatrix} 2\rho_8 - 4s_1'' \\ 2\rho_8 - 4s_1' \\ 2\rho_8 - 4d_5 \\ 2\rho_8 - 4d_4 \\ 2\rho_8 - 4d_1'' \end{vmatrix}$	6538,11 6604.02 7670.04 7353.32 7229.93	105436 105436 105617 105617 105617	120754 120601 118651 119213 119445	7 7 5 5 5	7 5 3 7 5	0.0011 0.0029 0.0029 0.010 6.9 × 10-4	7.2×10 ⁻⁴ 0.0013 0.0015 0.012 5.4×10 ⁻⁴	0.11 0.20 0.19 1.4 0.064	-2.30 -2.03 -2.12 -1.24 -2.57	D+ D+ D+ D	5n 5n 5a 5n 5n
150 151 152 153 154	$ \begin{vmatrix} 4p \left[\frac{5}{2} \right] - 4d' \left[\frac{5}{2} \right] \\ 4p \left[\frac{5}{2} \right] - 4d' \left[\frac{5}{2} \right] ^{\circ} \\ 4p \left[\frac{5}{2} \right] - 4d \left[\frac{1}{2} \right] ^{\circ} \\ 4d \left[\frac{1}{2} \right] - 4d \left[\frac{1}{2} \right] ^{\circ} $	$\begin{array}{c} 2\mu_8 - 4s_1''' \\ 2\mu_8 - 4s_1''' \\ 2\mu_8 - 4s_1' \\ 2\mu_7 - 4d_8 \\ 2\mu_7 - 4d_3 \end{array}$	6664,05 6604,85 6493,97 8046,13 7798,55	105617 105617 105617 106087 106087	120619 120754 121012 118512 119807	5 5 3 3	5 7 3 1 5	0.0016 1.4×10 ⁻⁴ 3.1×10 ⁻⁴ 0.0117 9.1×10 ⁻⁴	0.00379	0.12 0.014 0.013 0.301 0.11	-2.28 -3.19 -3.22 -1.94 -2.38	ን+ D D C D+	5# 5n (sn 59 5a
155 156 157 158 159	$\begin{array}{c} 4\rho[\frac{1}{2}] - 4d[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 4d[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 4d'[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 4d'[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 4d'[\frac{1}{2}]^{\circ} \end{array}$	$ \begin{vmatrix} 2p_7 - 4d_2 \\ 2p_7 - 4d_1' \\ 2p_7 - 4s_1'' \\ 2p_7 - 4s_1' \\ 2p_7 - 4s_1' \end{vmatrix} $	7265.17 7484.24 6879.59 6888.17 6698.47	106087 106087 106087 106087 106087	119848 119445 120619 120601 121012	3 3 3 3	30003	0.0018 0.0035 0.0019 0.0026 2.6 × 10-4	0.0015 0.0049 0.0023 0.0031 1.7 × 10-4	0.10 0.37 0.16 0.21 0.032	-2.36 -1.83 -2.16 -2.04 -3.29	D D+ D+ D+ D	5n 5n 5n 5n 5n
160 161 162 163 164	$ \begin{vmatrix} 4p[\frac{3}{2}] - 4d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 4d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 4d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 4d'[\frac{1}{2}]^{\circ} \end{vmatrix} $	$ \begin{vmatrix} 2p_6 - 4e_5 \\ 2p_6 - 4d_4 \\ 2p_6 - 4d_3 \\ 2p_6 - 4s_1^m \\ 2p_6 - 4s_1^m \end{vmatrix} $	8053,31 7704,81 7891,08 6951,46 6887,10	106238 106238 106238 106238 106238	118651 119213 118907 120619 120754	555555	3 7 5 5 7	0,0090 6.6 × 10 ⁻⁴ 0,0099 0.0023 0.0014	0.0053 8.2 × 10 ⁻⁴ 0.0092 0.0016 0.0014	0.70 0.10 1.20 0.19 0.16	-1.58 -2.39 -1.337 -2.09 -2.16	C D C D D+	5n 5n 5n 5n 5n
165 166 167 168 169	$4\rho[1]-4d\{1\}^6$	$\begin{array}{c} 2p_{8}-4s_{1}''\\ 2p_{8}-4s_{1}'\\ 2p_{5}-4d_{5}\\ 2p_{5}-4s_{1}'\\ 2p_{4}-4d_{8} \end{array}$	6960.23 6760.64 8620.46 7162.57 8784.61	106238 106238 107054 107054 107132	120601 121012 118651 121012 118512	5 5 1 1 3	5 3 3 1	0.0025 0.0042 0.0096 6.0 × 10 ⁻⁴ 0.0025	$\begin{array}{c} 0.0018 \\ 0.0017 \\ 0.0321 \\ 0.0014 \\ 9.5 \times 10^{-4} \end{array}$	0.21 6.19 0.91 0.053 0.082	-2.04 -2.07 -1.493 -2.85 -2.55	D D+ C D	5n 5n 5n 5n 5n

Arl. Allowed Transitions - Continued

					1		r			T	1====	T	
No.	Transiti	on	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	#k	4,,(10"	fik	S(at.u.)	log gf	Ac- cu-	Source
	jl-coupling	Paschen						sec-1)				racy	
170 171	$4p'[\frac{3}{4}] - 4el[\frac{4}{4}]^6$	$2p_4 - 4d_3 2p_4 - 4s_1'''$	8490.30 7412.33	107132 107132	118907 120619	3	5 5	0.0010 0.9041	0.0019 0.0057	0.16 0.42	-2.25 -1.77	D D+	5 <i>n</i> 5 <i>n</i>
172		$2p_4 - 4s_1''$	7422.26	107132	120601	3	5	6.9 × 10-4	9.5 × 10-4	0.070	-2.55	D	5n
173	4p'[]] 4d[]]°	$2p_0 - 4d_5$	8799.08	107290	118651	5	3	0.0048	0.0033	0.48	-1.78	D+	5n
174	$4p'[\frac{3}{2}] - 4d[\frac{1}{4}]^{\circ}$	$2p_0 - 4d_4$	8384.73	107290	119213	=	' '	0.0025	0.0036	0.50	- 1.74	D	5n
175	$4p'[\frac{1}{2}] - 4d[\frac{3}{2}]^{\circ}$	$2p_3 - 4d_3$	8605.78	107290	118907	5		0.0108	0.0120	1.70	-1.222	C	511
176 177	4p'[1] = 4d'[1]° 4p'[1] = 4d'[1]°	$2\rho_3 - 4s_1^{\prime\prime} 2\rho_3 - 4s_1^{\prime\prime}$	7425.29 7510.42	107290 107290	120754 120601	5		0,0032 0,0047	0.0037 0.0040	0.45 0.49	-1.73 -1.70	D D	5n 6n
178	$[4\mu'[\frac{1}{2}] - 4d'[\frac{1}{2}]^{\circ}]$	$2p_{3}-4s_{1}^{\prime}$	7285.44	107290	121012	5	3	0.0013	6.0 × 10 ⁻⁴	0.072	-2.52	D	5 <i>n</i>
179	$4p'\left[\frac{1}{2}\right] - 4d\left[\frac{1}{2}\right]^{\circ}$	$2p_2 - 1J_3$	9075.42	107496	118512	3	l	0.013	0.0051	0.46	- 1.82	D	511
180 -	$4p'[\frac{1}{2}] - 4d[\frac{1}{2}]^{\circ}$	$2p_2 - 4d_3$	8962.19	107496	118651	3	3	0.0017	0.0020	0.18	-2.22	D+	511
181	4p'[1] - 4d[1]°	$2p_2 - 4d_3$	8761.69	107496	118907	3	5	0.0099	0.019	1.6	-1.24	D+	511
182 183	$\begin{vmatrix} 4p'[\frac{1}{2}] - 4d'[\frac{3}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 4d'[\frac{3}{2}]^{\circ} \end{vmatrix}$	$2p_2 - 4s_1^{\prime\prime\prime} 2p_2 - 4s_1^{\prime\prime}$	7618.33 7628.86	107496 107496	120619 120601	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$		0 0030 0.0030	0.0044 0.0044	0.33	- 1.88 - 1.88	D D	5n
14,7	77 [9] 11 [2]	2/2 43)	1020.00	107470	120001	"] "	0.000	V.W F1	0.55	-1.00	ייי	5 <i>n</i>
184	$4p[\frac{1}{2}] - 5s[\frac{3}{2}]^{\circ}$	2/-10-283	10673.6	104102	113469	3		0.049	0.14	15	-0.38	D-	11
185 186	$\begin{bmatrix} 4\rho[\frac{1}{2}] - 5s[\frac{3}{2}] \\ 4\rho[\frac{1}{2}] - 5s[\frac{3}{2}]^2 \end{bmatrix}$	$2p_{10}-2s_4 = 2p_{10}-2s_3$	10478.0 9291.53	104102 104102	113643 114862	3		0.0274 0.0366	0.0451 0.0158	4.67	-0.87	C	911
187	$4p[\frac{1}{2}] - 5s \cdot [\frac{1}{2}]^{\circ}$	$2p_{10}-2s_1$ $2p_{10}-2s_2$	9194 64	104102	114975	3		0.0300	0.0251	1.45 2.28	- 1.324 - 1.123	č	9n 9n
188	$4p\left[\frac{3}{2}\right] - 5s\left[\frac{3}{2}\right]^6$	$2p_9 - 2s_5$	12487.6	105463	113469	7	5	0.12	0.19	56	0.12	D-	911
189	4μ[½] −5s[½]	$ _{2p_8-2s_5}$	12733.6	105617	113469	5	5	0.012	0.030	6.3	-0.82	D	9,,
190	$4p[\frac{1}{2}] - 5s[\frac{1}{2}]^{\circ}$	$2p_{\rm h} - 2s_{\rm h}$	12456.1	105617	113643	5		0.10	0.14	28	-0.15	D	9n
191 192	$\begin{vmatrix} 4\mu \begin{bmatrix} \frac{3}{2} \end{bmatrix} - 5s^* \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\circ} \\ 4\mu \begin{bmatrix} \frac{3}{2} \end{bmatrix} - 5s \begin{bmatrix} \frac{3}{2} \end{bmatrix}^{\circ} \end{vmatrix}$	$2p_8 - 2s_2 2p_7 - 2s_5$	10683.4 13543.8	105617 106087	114975 113469	5 3		0.0021 0.0046	0.0022 0.021	0.39	- 1.96 - 1.20	E	11
193	$\frac{4p[\frac{3}{4}] - 5s[\frac{3}{4}]^{\circ}}{4p[\frac{3}{4}]}$	$2p_7 - 2s_4$	13231.4	106087	113643	3	3	0.046	0.12	16	-0.44	Ď-	ii
194	$4\mu[\frac{3}{2}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_7 - 2s_3$	11393.7	106087	114862	3	1	0.0249	0.0162	1.82	- 1,313	С	911
195	$[4p[\frac{1}{2}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_7 - 2s_2$	11248.4	106087	114975	i 3		0.0028	0.0054	0.60	- 1.79	E	11
196 197	$4p[\frac{1}{2}] - 5s[\frac{3}{2}]$ $4p[\frac{3}{2}] - 5s[\frac{3}{2}]^{\circ}$	$2p_6 - 2s_5 2p_6 - 2s_4$	13825.7 13499.2	106238 106238	113469 113643	5		0.033 0.027	0.095 0.045	22 10	-0.32 -0.65	D-	11
198	$4p[\frac{3}{4}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_{6}-2s_{2}$	11441.8	106238	114975	5	3	0.0156	0.0184	3.46	- 1.036	Č	911
199	$4p(\frac{1}{2}) - 5s(\frac{3}{2})^{\circ}$	$2p_3 - 2s_4$	15172.3	107054	113643	1	3	0.015	0,15	7.5	-0.82	D	$\frac{1}{n}$ 9n
200	$[4p[\frac{1}{2}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_3 - 2s_2$	12621.8	107054	114975	1	3	0.0038	0.027	3.1	-1.57	E	11
201 202	$\begin{vmatrix} 4p'[\frac{1}{2}] - 5s[\frac{1}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 5s[\frac{1}{2}]^{\circ} \end{vmatrix}$	$2p_4 - 2s_5 2p_4 - 2s_4$	15776.6 15353.5	107132 107132	113469 113643	3	3	5.9 × 10 ⁻⁴ 0.0045	0.0037 0.016	0.58 2.4	-1.95 -1.32	E E	11
203	$4p'[\frac{3}{2}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_4 - 2s_0$	12933.3	107132	114862	3	i	0.11	0.091	12	-0.56	Ď	911
204	4p [1] -5s [1]"	$2p_4 - 2s_2$	12746.3	107132	114975	3	3		0.053	6.7	-0.80	D	911
205 206	$\frac{4\mu'[\frac{3}{4}] - 5s[\frac{3}{4}]^{\circ}}{3\mu'[\frac{3}{4}] - 5s[\frac{3}{4}]^{\circ}}$	$2p_3 - 2s_5 2p_3 - 2s_4$	16180.0 15734.9	107290	113469	5	3	0.0014	0.0055 7.3×10=4	1.5	-1.56 -2.44	D D-	90
207	$4p'[\frac{3}{2}] - 5s'[\frac{1}{2}]^{\circ}$	$2p_3 - 2s_2$	13008.5	107290	114975	5	3	0.10	0.15	33	-0.12	D	911
208	$4p'\left[\frac{1}{4}\right]-5s\left[\frac{3}{4}\right]^{\circ}$	$2p_2-2s_3$	16739.8	107496	113469	3	5	0,0035	0.024	4.0	-1.14	D-	9n
209	4p [1] - 5s[1]°	$2p_2 - 2s_4$	16264.1	107496	113643	3	3	3.4 × 10-4	0.0013	0.22	-2.41	D-	911
210	$ \begin{array}{c c} 4p'[\frac{1}{2}] - 5s'[\frac{1}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 5s'[\frac{1}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 5s[\frac{3}{2}]^{\circ} \end{array} $	$2p_2-2s_3$	13573.6	107496	114862	3	!		0.047	6.3	-0.85	D-	11
211 212	$\frac{4p'[\frac{1}{2}] - 5s[\frac{3}{2}]^{\circ}}{4p'[\frac{1}{2}] - 5s[\frac{3}{2}]^{\circ}}$	$2\mu_2 - 2s_2$ $2\mu_1 - 2s_4$	13367.1 20317.0	107496 108723	114975 113643	3		0.034	0.090	12 2.2	0.57 -1.48	D-	9,1
213	$4p'\left[\frac{1}{4}\right] - 5s'\left[\frac{1}{4}\right]^{\circ}$	$2p_1 - 2s_2$	15989.3	108723	114975	i		0 021	9.24	12	-0.62	D-	9"
AT 4	4 (13 5 (113)		5450.70	16:1100	1:11701		1	0.9333	0.0052	0.007	1.00		
214 215	$4p[\frac{1}{2}] - 5d[\frac{1}{2}]^{\circ}$ $4p[\frac{1}{2}] + 5d[\frac{1}{2}]^{\circ}$	$2p_{10} - 5d_6$ $2p_{10} - 5d_5$	5650.70 5606.73	104102 104102	121794 121933	$\frac{3}{3}$	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$		0.0053 0.0108	0.297	-1.80 -1.489	C	5 <i>u</i>
2.6	$[4p[\frac{1}{2}]-5d[\frac{3}{2}]^{\circ}$	$2p_{10} - 5d_3$	5558.70	104102	122087	3	5	0.6148	0.0114	0.63	-1.466	C:	31
217 218	$\begin{vmatrix} 4p[\frac{1}{2}] - 5d'[\frac{3}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 5d'[\frac{3}{2}]^{\circ} \end{vmatrix}$	$\begin{array}{c} 2p_{10} - 5s_1^{\prime\prime\prime} \\ 2p_{10} - 5s_1^{\prime\prime} \end{array}$	5152.30 5187.75	104102	123506 123373	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	5		7.2×10 ⁻⁴ 0.0092	0.037	$\begin{bmatrix} -2.67 \\ -1.55 \end{bmatrix}$	D	5n, 6n
219 220	$4p[\frac{1}{2}] - 5d[\frac{7}{2}]^{\circ}$ $4p[\frac{1}{2}] - 5d[\frac{7}{2}]^{\circ}$	$2p_9 - 5d_4' = 2p_9 - 5d_4$	6032.13 5987.30	105463 105463	122036 122160	7 7		0.0246 0.0013	0.0173 6.9 × 10-+	2.40 0.095	-0.91 -2.32	C: D	5n.6n
221	4p 養]5d 養]°	$2p_9 - 5d_3$	6013.68	105463	122087	7	5	0.0015	5.7 × 10-4	0.078	-2.40	D+	5 n
222	$[4p[\frac{\pi}{2}] - 5d[\frac{\pi}{2}]^{\circ}$	$2p_9 - 5d_1''$	5943.89 5927.11	105463 105463	122282 122330	7 7	5	3.8×10^{-4} 3.9×10^{-4}	1.4×10-4 2.1 × 10-4	0.020	-3.01 -2.83	D-	5 <i>n</i> 5 <i>n</i>
223	$\left[4p\left[\frac{\pi}{4}\right]-5d\left[\frac{\pi}{4}\right]^{\circ}\right]$	$ 2p_9-5d_1' $	1 3721.11	100409	122000	' '	1 '	10.20.10	12.17.10	1 0.020	2.00	D+	1 3//

and the same of th

Ari. Allowed Transitions - Continued

No.	Transit	ion	λ(Ă)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľί	ĽI:	.4 _{kl} (10 ^t	fik	S(at.u.)	log gf	Ac-	Source
	jl-coupling	Paschen					,	sec-1)) ···	J (21)		racy	
224 225 226 227 228	$\begin{array}{l} 4p \begin{bmatrix} \frac{1}{2} \\ -5d' \end{bmatrix} = 5d' \begin{bmatrix} \frac{1}{2} \\ -5d' \end{bmatrix} = 5d' \begin{bmatrix} \frac{1}{2} \\ -5d' \end{bmatrix} = 5d \begin{bmatrix} \frac{1}{2} \\ -5d \end{bmatrix} = 5d \begin{bmatrix} \frac{1}{$	$\begin{array}{c} 2p_9 - 5s_1''' \\ 2p_9 - 5s_1'' \\ 2p_9 - 5s_1'' \\ 2p_8 - 5d_5 \\ 2p_8 - 5d_4 \end{array}$	5540.87 5524.96 5581.87 6127.42 6043.22	105463 105463 105463 105617 105617	123506 123557 123373 121933 150	7 7 7 5 5	5 7 3 7	4.3 × 10 ⁻⁴ 0.0018 5.8 × 10 ⁻⁴ 0.0011 0.0153	8.1×10^{-4}	0.018 0.10 0.025 0.039 1.17	-3.01 -2.25 -2.88 -2.72 -1.233	D D+ D+ D+ C	5u 5u 5u 5u 5u
229 230 231 232 233	$\begin{array}{c} 4p\left[\frac{5}{2}\right] - 5d\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{5}{2}\right] - 5d\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{5}{2}\right] - 5d'\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{5}{2}\right] - 5d'\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{5}{2}\right] - 5d'\left[\frac{5}{2}\right]^{\circ} \end{array}$	$2p_8 - 5d_2$ $2p_8 - 5d_1''$ $2p_8 - 5d_1''$ $2p_8 - 5s_1'''$ $2p_8 - 5s_1'''$	5916.58 5999.00 5981.90 5588.72 5572.54	105617 105617 105617 105617 105617	122514 122282 122330 123506 123557	5 5 5 5 5	3 5 7 5 7	6.1×10 ⁻⁴ 0.0615 1.3×10 ⁻⁴ 0.0016 0.0069	1.9 × 10 ⁻⁴ 8.1 × 10 ⁻⁴ 9.8 × 10 ⁻⁵ 7.3 × 10 ⁻⁴ 0.00450	0.019 0.080 0.0096 0.067 0.413	-3.02 -2.39 -3.31 -2.44 -1.65	D D - D + C	5n 5n 5n 5n 5n
234 235 236 237 238	$\begin{array}{c} 4p\left[\frac{9}{2}\right] - 5d\left[\frac{1}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d\left[\frac{1}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d\left[\frac{9}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d\left[\frac{9}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d\left[\frac{9}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2p_7 + 5d_6 \\ 2p_7 + 5d_5 \\ 2p_7 + 5d_3 \\ 2p_7 + 5d_2 \\ 2p_7 + 5d_4' \end{array}$	6364.89 6309.14 6248.41 6085.86 6173.10	106087 106087 106087 106087 106087	121794 121933 122087 122514 122282	3 3 3 3	1 3 5 3 5	0.0058 7 9 × 10 ⁻¹ 7. i × 10 ⁻⁴ 9.4 × 10 ⁻⁵ 0.0070	6.9 × 10-4	0.074 0.029 0.943 0.0031 0.406	-2.46 -2.85 -2.68 -3.81 -1.70	D+ D D C	5n 5n 5n 6n 5n
239 240 241 242 243	$\begin{array}{c} 4\rho \left[\frac{3}{2}\right] - 5d' \left[\frac{3}{2}\right]^{\circ} \\ 4\rho \left[\frac{3}{2}\right] - 5d' \left[\frac{3}{2}\right]^{\circ} \\ 4\rho \left[\frac{3}{2}\right] - 5d \left[\frac{7}{2}\right]^{\circ} \\ 4\rho \left[\frac{3}{2}\right] - 5d \left[\frac{7}{2}\right]^{\circ} \\ 4\rho \left[\frac{3}{2}\right] - 5d \left[\frac{3}{2}\right]^{\circ} \end{array}$	$2p_7 - 5s_1'''$ $2p_7 - 5s_3''$ $2p_6 - 5d_3$ $2p_6 - 5d_4$ $2p_6 - 5d_3$	5739.52 5783.54 6369.58 6278.65 6307.66	106087 106087 106238 306238 106238	123506 123373 121933 122160 122087	3 5 5 5	5 3 7 5	0.0091 8.4 × 10-4 0.0044 2.1 × 10 + 0.0063	0.0016	0.43 0.040 0.17 0.018 0.39	-1.65 -2.68 -2.10 -3.07 -1.73	D D- D+ D D+	5n 5n 5n 5n 5n
244 245 246 247 248	$\begin{array}{c} 4p\left[\frac{9}{2}\right] + 5d\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d'\left[\frac{5}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d'\left[\frac{9}{2}\right]^{\circ} \\ 4p\left[\frac{9}{2}\right] - 5d'\left[\frac{9}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2p_8 - 5d_1'' \\ 2p_6 - 5d_1' \\ 2p_6 - 5s_1''' \\ 2p_6 - 5s_1''' \\ 2p_6 - 5s_1'' \end{array}$	6230.93 6212.50 5789.48 5772.11 5834.26	106238 106238 106238 106238 106238	122282 122330 123506 123557 123373	5 5 5 5	57575	1.3×10 ⁻⁴ 0.0041 4.8×10 ⁻⁴ 0.0021 0.0052	7.6×10 ⁻⁵ 0.0033 2.4×10 ⁻⁴ 0.0015 0.00268	0.0078 0.34 0.023 0.14 0.257	-3.42 -1.78 -2.92 -2.14 -1.88	D D+ D D C	6n 5n 5n 5n 5n, 6n
249 250 251 252 253	$\begin{array}{c} 4p[\frac{1}{2}] - 5d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 5d[\frac{3}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 5d'[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d[\frac{1}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d[\frac{1}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2p_5 + 5d_5 \\ 2p_5 + 5d_2 \\ 2p_5 + 5s_4' \\ 2p_4 + 5d_6 \\ 2p_4 + 5d_5 \end{array}$	6719.22 6466.55 5964.48 6818.29 6754.37	107054 107054 107054 107132 107132	121933 122514 123816 121794 121933	1 1 1 3 3	3 3 1 3	0.0025 0.0016 8.0 × 10-4 0.0021 0.0022	0.0051 0.0029 0.0013 4.9 × 10 ⁻⁴ 0.0015	0.11 0.062 0.025 0.033 0.10	-2.29 -2.53 -2.89 -2.83 -2.35	D D D D	5n 5n 5n 5n 5n
254 255 256 257 258	$ \begin{vmatrix} 4p'\{\frac{3}{2}\} - 5d[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d'[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 5d[\frac{3}{2}]^{\circ} $	$\begin{array}{c} 2p_4 + 5d_3 \\ 2p_4 + 5s_1^{***} \\ 2p_3 + 5d_5 \\ 2p_3 + 5d_4 \\ 2p_3 + 5d_3 \end{array}$	6684.73 6105.64 6827.25 6722.88 6756.10	1.77132 107132 107290 107290 107290	122087 123506 121933 122160 122087	3 3 5 5 5	5 5 27 5	4.1 × 10 ⁻⁴ 0.0126 0.0025 3.3 × 10 ⁻⁴ 0.0038	0.0117 0.0011	0.030 0.71 0.12 0.035 0.29	-2.86 -1.455 -2.28 -2.81 -1.88	D C D D D+	5n 5n 5n 5n 5n
259 260 261 262 263	$ \begin{array}{c c} 4p'\left[\frac{1}{2}\right] - 5d'\left[\frac{1}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 5d'\left[\frac{1}{2}\right]^{\circ} \\ 4p'\left[\frac{3}{2}\right] - 5d'\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 5d\left[\frac{1}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 5d\left[\frac{1}{2}\right] \end{array} $	$\begin{array}{c} 2p_3 - 5s_4^{\prime\prime\prime} \\ 2p_3 - 5s_4^{\prime\prime} \\ 2p_3 - 5s_4^{\prime\prime} \\ 2p_2 - 5d_8 \\ 2p_2 - 5d_5 \end{array}$	6165.12 6145.44 6215.94 6992.17 6925.01	107290 107290 107290 107496 107496	123506 123557 12373 121794 121933	5 5 3 3	5 7 5 1 3	0.00103 0.0079 0.0059 0.0078 0.0012	5.9 × 10 ⁻⁴ 0.0063 0.0034 0.0019 8.9 × 10 ⁻⁴	0.060 •0.63 0.35 0.13 0.061	-2.53 -1.50 -1.77 -2.24 -2.57	C D+ D+ D+	5n 5n 5n 5n 5n
264 265 266 267	$\begin{vmatrix} 4p' \begin{bmatrix} \frac{1}{2} \end{bmatrix} = 5d \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\circ} \\ 4p' \begin{bmatrix} \frac{1}{2} \end{bmatrix} = 5d \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\circ} \\ 4p' \begin{bmatrix} \frac{1}{2} \end{bmatrix} = 5d' \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\circ} \\ 4p' \begin{bmatrix} \frac{1}{2} \end{bmatrix} = 5d' \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\circ} \end{vmatrix}$	$ \begin{vmatrix} 2p_2 - 5d_3 \\ 2p_2 - 5d_2 \\ 2p_2 - 5s_1^{(i)} \\ 2p_2 - 5s_1^{(i)} \end{vmatrix} $	6851.88 6656.88 6244.73 6296.87	107496 107496 107496 107496	122087 122514 123506 123373	3 3 3 2	5 3 5 5	3.2 × 10 ⁴	8.2 × 10 ⁻⁴ 2.1 × 10 ⁻⁴ 2.0 × 10 ⁻⁴ 0.0093	0.056 0.014 0.013 0.58	-2.61 -3.20 -3.22 -1.55	D D D D+	5n 6n 5n 5n
268 260 270 271 272	$\begin{vmatrix} 4p \left[\frac{1}{2} \right] - 6s \left[\frac{3}{2} \right]^{\circ} \\ 4p \left[\frac{1}{2} \right] - 6s \left[\frac{1}{2} \right]^{\circ} \\ 4p \left[\frac{1}{2} \right] - 6s \left[\frac{1}{2} \right]^{\circ} \\ 4p \left[\frac{1}{2} \right] - 6s \left[\frac{3}{2} \right]^{\circ} \end{vmatrix}$	$\begin{array}{c} 2p_{10} - 3s_5 \\ 2p_{10} - 3s_4 \\ 2p_{10} - 3s_4 \\ 2p_{10} - 3s_2 \\ 2p_{9} - 3s_5 \end{array}$	6416.31 6384.72 5882.62 5360.31 7030.25	104102 104102 104102 104102 105463	119683 119760 121097 121161 119683	3 3 3 7	5 3 1 3 5	0.0121 0.00439 0.0128 0.00285 0.0278	0.0124 0.00268 0.00221 0.00147 0.0147	0.79 0.159 0.129 0.085 2.38	-1.429 -2.095 -2.178 -2.357 -0.99	C	5n 5u 5u 5u . 6u 5u
273 274 275 276 277	$ \begin{vmatrix} 4\rho[\frac{3}{2}] - 6s[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 6s[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 6s[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 6s[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 6s[\frac{3}{2}]^{\circ} \end{vmatrix} $	$ \begin{vmatrix} 2p_8 - 3s_5 \\ 2p_8 - 3s_4 \\ 2p_8 - 3s_2 \\ 2p_7 - 3s_5 \\ 2p_7 - 3s_4 \end{vmatrix} $	7107.48 7068.73 6431.56 7353.18 7311.72	105617 105617 105617 105087 106087	119683 119760 121161 119683 119760	5 5 3 3	5	0.0047 0.021 5.3 × 10 ⁻⁴ 0.0021 0.018	0.0035 0.0094 2.0 × 10-4 0.0028 0.014	0.41 1.09 0.021 0.21 1.0	-1.75 -1.33 -3.00 -2.08 -1.37	D+ D+ D E D+	5n 5n 5n 7 5n

Arl. Allowed Transitions-Continued

Na.	Transition	on	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	#k	$4_{kl}(10^{\mu}$	f _{ik}	S(at.u.)	log gf	Ac-	Source
	jl-coupling	Paschen						sec-1)				racy	
278 279 280 281 282	4\(\begin{align*} 4\(\pi\) \be	$\begin{array}{c} 2\rho_7 + 3s_3 \\ 2\rho_7 + 3s_2 \\ 2\rho_6 + 3s_5 \\ 2\rho_e + 3s_4 \\ 2\rho_6 + 3s_2 \end{array}$	6660.68 6532.09 7435.33 7392.97 6698.88	106087 106087 106238 106238 106238	121097 121161 119683 119760 121161	3 3 5 5 5	1 3 5 3 3	0.0081 5.5 × 10 ± 0.0094 0.0075 0.0017	0.0018 3.6 × 10 ⁻⁴ 0.0078 0.0037 6.8 × 10 ⁻⁴	0.12 0.024 0.95 0.45 0.075	-2.27 -2.97 -1.41 -1.73 -2.47	D D D+ D+ D+	5n 5n 5n 5n 5n
283 284 255 256 287	$\begin{array}{c} 4p[\frac{1}{2}] - 6s[\frac{3}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 6s'[\frac{1}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 6s[\frac{3}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 6s'[\frac{1}{2}]^{\circ} \\ 4p'[\frac{3}{2}] - 6s'[\frac{1}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2p_5 - 3s_4 \\ 2p_5 - 3s_2 \\ 2p_4 - 3s_5 \\ 2p_4 - 3s_4 \\ 2p_4 - 3s_3 \end{array}$	7868.20 7086.70 7963.08 7916.45 7158.83	107054 107054 107132 107132 107132	119760 121161 119683 119760 121097	1 1 3 3 3	3 3 5 3 1	0.00365 0.0016 3.4 × 10 ⁻⁴ 0.0013 0.022	0.0102 0.0036 5.4 × 10 ⁻⁴ 0.0012 0.0055	0.263 0.083 0.042 0.093 0.39	- 1.99 - 2.45 - 2.79 - 2.45 - 1.78	C: D+ E: D+ D+	5n 5n 7 5n 5n
288 289 290 291 292	$\begin{array}{c} 4p' \left[\frac{1}{2} \right] - 6s' \left[\frac{1}{2} \right]^{2} \\ 4p' \left[\frac{3}{2} \right] - 6s \left[\frac{3}{2} \right]^{3} \\ 4p' \left[\frac{3}{2} \right] - 6s' \left[\frac{1}{2} \right]^{3} \\ 4p' \left[\frac{3}{2} \right] - 6s' \left[\frac{1}{2} \right]^{3} \\ 4p' \left[\frac{1}{2} \right] - 6s \left[\frac{3}{2} \right]^{3} \end{array}$	$2p_4 - 3s_2 2p_3 - 3s_5 2p_3 - 3s_4 2p_3 - 3s_2 2p_2 - 3s_5$	7125.83 8066.60 8016.74 7206.98 8203.42	107132 107290 107290 107290 107496	121161 119683 119760 121161 119683	3 5 5 5 3	3 5 3 3 5	0,0063 0,0015 4.2 × 10 5 0,0258 0,0016	0.0048 0.0015 2.4 × 10 ⁻⁵ 0.0121 0.0027	0.34 0.20 0.0032 1.43 0.22	-1.84 -2.13 -3.92 -1.218 -2.09	D+ D+ E C E	5n 5n 7 5n 7
293 294 295 296 297	$\begin{array}{c} 4p'\left[\frac{1}{2}\right] - 6s\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 6s'\left[\frac{1}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 6s\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 6s\left[\frac{3}{2}\right]^{\circ} \\ 4p'\left[\frac{1}{2}\right] - 6s'\left[\frac{1}{2}\right]^{\circ} \end{array}$	$2p_2 - 3s_4 2p_2 - 3s_3 2p_2 - 3s_2 2p_1 - 3s_4 2p_1 - 3s_2$	8151.86 7350.78 7316.01 9057.51 8037.23	107496 107496 107496 107496 108723 108723	119760 121697 121161 119760 121161	3 3 1	3 1 3 3 3	3.3 × 10 ⁻⁴ 0.012 0.010 9.7 × 10 ⁻⁴ 0.00374	3.3 × 10 ⁻³ 0.0032 0.0080 0.0036 0.0109	0.626 0.23 0.58 0.11 0.288	-3.00 -2.02 -1.62 -2.44 -1.96	E D+ D+ E	5n 5n 5u 7
298 299 300 301 302	$\begin{array}{c} 4p[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 6d[\frac{3}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ} \\ 4p[\frac{3}{2}] - 6d[\frac{1}{2}]^{\circ} \end{array}$	$ \begin{vmatrix} 2p_{10} - 6d_6 \\ 2p_{10} - 6d_5 \\ 2p_{10} - 6d_3 \\ 2p_{10} - 6s_1'' \\ 2p_9 - 6d_4' \end{vmatrix} $	5151.39 5162.29 5073.08 4768.68 5495.87	104102 104102 104102 104102 105463	123509 123468 423809 125067 123653	3 3 3 7	3 5 5	0.0249 0.0198 6.1 × 10 ⁻⁴ 0.0090 0.0176	0.00330 0.0079 3.9 × 10 ⁻⁴ 0.0051 0.0102	0.168 0.403 0.020 0.24 1.30	-2.001 -1.63 -2.93 -1.82 -1.46	C C D D	51; 511 611 511
303 304 305 306 307	$\begin{array}{c} 4p\left[\frac{3}{2}\right] - 6d\left[\frac{7}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 6d\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 6d\left[\frac{7}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 6d\left[\frac{3}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2p_9 - 6d_4 \\ 2p_9 - 6d_1' \\ 2p_9 - 6s_1'' \\ 2p_8 - 6d_4 \\ 2p_8 - 6d_1'' \end{array}$	5459.65 5442.24 5078.03 5506.11 5490.12	105463 105463 105463 105617 105617	123774 123833 125150 123774 123827	7 7 7 5 5	7 7	4.0×10 ⁻⁴ 9.7×10 ⁻⁴ 4.9×10 ⁻⁴ 0.0037 8.9×10 ⁻⁴	1.3 × 10 ⁻¹ 1.9 × 10 ⁻¹ 0.0023	0.022 0.054 0.022 0.21 0.035	-2.90 -2.52 -2.88 -1.93 -2.70	D D E D+ D	50 60 60 50 60
308 309 310 311 312	$\begin{array}{c} 4\rho[\frac{5}{2}] - 6d'[\frac{5}{2}]^{\circ} \\ 4\rho[\frac{5}{2}] - 6d'[\frac{5}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 6d[\frac{5}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - ud[\frac{5}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 6d'[\frac{5}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2p_{8} - 6s_{1}^{\prime\prime\prime} \\ 2p_{8} - 6s_{1}^{\prime\prime\prime} \\ 2p_{7} - 6d_{3} \\ 2p_{7} - 6d_{1}^{\prime\prime} \\ 2p_{7} - 6s_{1}^{\prime\prime\prime} \end{array}$	5127.80 5118.21 5641.39 5635.58 5254.47	105617 105617 106087 106087 106087	125113 125150 123809 123827 125113	5 5 3 3 3	5 5	0.0028 9.1 × 10-1 0.0010	1.3 × 10 ⁻⁴ 0.0015 7.2 × 10 ⁻⁴ 7.9 × 10 ⁻⁴ 0.0026	0.011 0.13 0.046 0.044 0.14	-3.19 -2.11 -2.67 -2.63 -2.11	D D+ D D E	51. 51. 61. 61.
313 314 315 316 311	$4p[\frac{3}{2}] - 6d[\frac{7}{2}]^{\circ}$ $4p[\frac{3}{2}] - 6d[\frac{3}{2}]^{\circ}$	$\begin{array}{c} 2p_8 + 6d_5 \\ 2p_8 + 6d_4 \\ 2p_6 + 6d_1'' \\ 2p_8 + 6d_1' \\ 2p_6 + 6s_1''' \end{array}$	5802.08 5700.87 5683.73 5681.90 5286.07	106238 106238 106238 106238 106238	123468 123774 123827 123833 125150	5 5 5 5 5	5 7	0.0061 0.0021 0.0021	0.0013 0.0042 0.0010 0.0014 5.9 × 10 ⁻⁴	0.13 0.39 0.097 0.13 0.051	-2.18 -1.68 -2.29 -2.15 -2.53	D D D D	51 51 51 51 61
318 319 320 321 322	$4p[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ}$	$\begin{array}{c} 2p_{8}-6s_{1}^{\prime\prime}\\ 2p_{5}-6d_{5}\\ 2p_{4}-6d_{5}\\ 2p_{4}-6d_{3}\\ 2p_{4}-6d_{1}^{\prime\prime} \end{array}$	5309.52 6090.79 6119.66 5994.66 5988.13	106238 107054 107132 107132 107132	125067 123468 123468 123809 123827	5 1 3 3 3	3 3 5	0.0031 5.3 × 10 ⁻⁴ 2.7 × 10 ⁻⁴	2.4×10 +	0.043 0.10 0.018 0.014 0.034	-2.61 -2.28 -3.05 -3.14 -2.77	E D D+ D D-	6) 5) 5) 6) 5)
323 324 325 326 327	$\begin{array}{c} 4p'[\frac{1}{2}] - 6d'[\frac{1}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ} \\ 4p'[\frac{1}{2}] - 6d[\frac{1}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2p_4 - 6s_1^{""} \\ 2p_4 - 6s_4^{"} \\ 2p_3 - 6d_5 \\ 2p_4 - 6d_4 \\ 2p_3 - 6s_1^{""} \end{array}$	5559.66 5574.22 6179.41 6064.76 5597.48	107132 107132 107290 107290 107290	125113 125067 123468 123774 125150	3 3 5 5 5	5 3 7	6.0×10-		0.099 0.021 0.024 0.046 0.27	- 2.27 - 2.95 - 2.92 - 2.64 - 1.84	D+ D D D E	51 51 51 51 61
328 329 330 331 332	$ 4p'[\frac{1}{2}]-6d[\frac{3}{2}]^{\circ}$	$\begin{array}{c c} 2p_3 - 6s_1'' \\ 2p_2 - 6d_3 \\ 2p_2 - 6d_1'' \\ 2p_1 - 6d_3 \end{array}$	5623.78 6243.40 6128.73 6121.86 6779.93	107290 107490 107496 107496 108723	125067 123509 123809 123827 123468	5 3 3 3 1	5 5	0.0015 0.0014 9.0×10 ⁻⁴ 1.4×10 ⁻⁴ 0.00126	7.1×10 ⁻⁴ 2.6×10 ⁻⁴ 8.4×10 ⁻⁴ 1.3×10 ⁻³ 0.00261	0.066 0.016 0.051 0.0079 0.058		D- D D C	5.7 5.7 6.7 6.7 6.7

Arl. Allowed Transitions-Continued

No.	Transiti	on	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	μA	4 _{ki} (10 ⁴	f _{ik}	S(at.u.)	log gf	Ac- cu-	Source
	j/-coupling	Paschen						sec ⁻¹)				racy	
333 334 335 336 337	$\begin{array}{c} 4\mu[\frac{1}{2}] - 7s[\frac{3}{2}] \circ \\ 4\mu[\frac{1}{2}] - 7s[\frac{3}{2}] \circ \\ 4\mu[\frac{1}{2}] - 7s'[\frac{1}{2}] \circ \\ 4\mu[\frac{1}{2}] - 7s[\frac{1}{2}] \circ \\ 4\mu[\frac{1}{2}] - 7s[\frac{1}{2}] \circ \end{array}$	$\begin{array}{c} 2\mu_{10} - 4s_5 \\ 2\mu_{10} - 4s_4 \\ 2\mu_{10} - 4s_3 \\ 2\mu_{10} - 4s_2 \\ 2\mu_{9} - 4s_5 \end{array}$	5451.65 5439.99 5056.53 5054.18 5888.58	104102 104102 104102 104102 105463	122440 122479 123373 123882 122440	3 3 3 7	3 1 3	0.0049 0.0020 0.0059 0.0047 0.0134	0.0036 £.7×10 ⁻⁴ 7.5×10 ⁻⁴ 0.0018 0.00498	0.20 0.047 0.038 0.089 0.68	-1.96 -2.58 -2.65 -2.27 -1.458	D+ D+ D C	5n 5n 5n 5n 5n
338 339 340 341 342	$\begin{array}{c} 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2\rho_{\rm N} - 4s_5 \\ 2\rho_{\rm N} - 4s_4 \\ 2\rho_{\rm N} - 4s_2 \\ 2\rho_7 - 4s_5 \\ 2\rho_7 - 4s_4 \end{array}$	5942.67 5928.81 5473.46 6113.46 6098.81	105617 105617 105617 105617 106087 106087	122440 122479 123882 122440 122479	5 5 5 3 3	3 3 5	0,0019 0,011 0,0021 4.9 × 10 ⁻⁴ 0,0054	9.8×10 ⁻⁴ 0.0034 5.7×i9 ⁻⁴ 4.6×10 ⁻⁴ 0.0030	0.096 0.33 0.052 0.028 0.18	-2.31 -1.77 -2.55 -2.86 -2.05	D D+ D+ D+ D+	5n 5n 5n 5n 5n
343 344 345 346 347	$\begin{array}{c} 4\rho\left[\frac{3}{2}\right] - 7s'\left[\frac{1}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s'\left[\frac{1}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \\ 4\rho\left[\frac{3}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \\ 4\rho\left[\frac{1}{2}\right] - 7s\left[\frac{3}{2}\right]^{\circ} \end{array}$	$\begin{array}{c} 2p_7 - 4s_3 \\ 2p_7 - 4s_2 \\ 2p_6 - 4s_5 \\ 2p_6 - 4s_4 \\ 2p_5 - 4s_4 \end{array}$	5620.92 5618.01 6170.17 6155.24 6481.14	106087 106087 106238 106238 107054	123873 123882 122440 122479 122479	3 3 5 5 1	3 5 3	0,0038 0,0022 0,0052 0,0053 9,8×10 ⁻⁴	6.0×10 ⁻⁴ 0.0010 0.00297 0.0018 0.0019	0.033 0.057 0.301 0.18 0.040	-2.74 -2.51 -1.83 -2.04 -2.72	D D C D D	5n 5n 5n 5n 5n
348 349 350 351 352	$4p'[\frac{3}{2}] - 7s[\frac{3}{2}]^{\circ}$	$\begin{array}{c} 2\rho_5 - 4s_2 \\ 2\rho_4 - 4s_4 \\ 2\rho_4 - 4s_3 \\ 2\rho_4 - 4s_2 \\ 2\rho_3 - 4s_5 \end{array}$	5940,86 6513,85 5971,60 5968,32 6598,68	107054 107132 107132 107132 107290	123882 122479 123873 123882 122440	3 3 5	3 1 3	0.0012 5.6 × 10 ⁻⁴ 0.011 0.0019 3.8 × 10 ⁻⁴	0.0019 3.6×10 ⁻⁴ 0.0020 9.9×10 ⁻⁴ 2.5×10 ⁻⁴	0.037 0.023 0.12 0.058 0.027	2.72 -2.97 -2.22 -2.53 -2.90	D D D+ D	5n 6n 5n 5n 6n
353 354 355	$\begin{vmatrix} 4\rho' \left[\frac{1}{2} \right] - 7s' \left[\frac{1}{2} \right] \circ \\ 4\rho' \left[\frac{1}{2} \right] - 7s' \left[\frac{1}{2} \right] \circ \\ 4\rho' \left[\frac{1}{2} \right] - 7s' \left[\frac{1}{2} \right] \circ \end{vmatrix}$	$ \begin{array}{c c} 2\rho_3 - 4s_2 \\ 2\rho_2 - 4s_3 \\ 2\rho_2 - 4s_2 \end{array} $	6025.15 6104.58 6101.16	107290 107496 107496	123882 123873 123882	5 3 3	1	0.0094 0.0035 0.0034	0.4031 6.6×10-4 0.0019	0.30 0.040 0.12	-1.81 -2.70 -2.24	D + D D +	5n 5n 5n
356 357 358 359 360	$4p[\frac{1}{2}] - 7d[\frac{1}{2}]^{\circ}$	$\begin{vmatrix} 2\mu_{10} - 7d_6 \\ 2\mu_{10} - 7d_6 \\ 2\mu_{10} - 7d_3 \\ 2\mu_{10} - 7s_1'' \\ 2\mu_9 - 7d_4' \end{vmatrix}$	4894.69 4887.95 4876.26 4554.32 5221.27	104102 104102 104102 104102 105463	124527 124555 124604 126053 124610	3 3 3 7	3 5 5	0.019 9.014 9.0081 4.0 × 10 ⁻⁴ 0.0092	0.0023 0.0049 0.0048 2.1 × 10 ⁻⁴ 0.0048	0.11 0.24 0.23 0.0093 0.58	-2.16 -1.84 -1.84 -3.20 -1.47	D D D E D	5n 5n 5n 6n
361 362 363 364 365	$ \begin{array}{c} 4\mu[\frac{5}{2}] - 7d[\frac{7}{2}] \circ \\ 4\mu[\frac{5}{2}] - 7d[\frac{5}{2}] \circ \\ 4\mu[\frac{5}{2}] - 7d[\frac{7}{2}] \circ \\ 4\mu[\frac{5}{2}] - 7d[\frac{5}{2}] \circ \\ 4\mu[\frac{5}{2}] - 7d[\frac{5}{2}] \circ \end{array} $	$ \begin{array}{c} 2\rho_9 - 7d_4 \\ 2\rho_9 - 7d_1^* \\ 2\rho_8 - 7d_4 \\ 2\rho_8 - 7d_2^* \\ 2\rho_8 - 7d_1^* \end{array} $	5210,49 5192,72 5252,79 5214,77 5241,09	105463 105463 105617 105617 105617	124650 124715 124650 124788 124692	7755 555	7 7 3	1.3 × 10 ⁻⁴	4.6 × 10 ⁻⁴ 5.3 × 10 ⁻⁵ 0.0032 5.3 × 10 ⁻⁴ 5.6 × 10 ⁻⁴	0.055 0.0063 0.28 0.046 0.049	-2.50 -3.43 -1.79 -2.58 -2.55	D D D D	6n 5n 6n 6n 6n
366 367 368 369 370	$ \begin{vmatrix} 4p[\frac{3}{2}] - 7d[\frac{3}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 7d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 7d[\frac{3}{2}]^{\circ} $	$ \begin{vmatrix} 2p_7 - 7d7 \\ 2p_6 - 7d1 \\ 2p_5 - 7d_5 \\ 2p_5 - 7d_2 \\ 2p_3 - 7d_5 \end{vmatrix} $	5373,50 5410,48 5712,51 5637,33 5790,40	106087 106238 107054 107054 107290	124715 124555 124788	3 5 1 1 5	7 3 3	0.0028 0.0021 9.1 × 10-4 9.5 × 10-4 3.5 × 10-4	0.0014	0.11 0.12 0.025 0.025 0.010	-2.22 -2.19 -2.89 -2.85 -3.26	D- D- D- D- D	6n 6n 6n 6n 5n
371 372 373		$ \begin{vmatrix} 2\rho_3 - 7d_3 \\ 2\rho_2 - 7s_1^m \\ 2\rho_2 - 7d_3 \end{vmatrix} $	5773.99 5317.73 5843.77	107290 107290 107496	126090	5 5 3	7	0.0011 0.0027 3.4 × 10	5.5 × 10 ⁻⁴ 0.0016 2.9 × 10 ⁻⁴	0.053 0.14 0.017	-2.56 -2.09 -3.06	D E D	5n 6n 5n
374 375 376 377 378	$\begin{cases} 4\rho[\frac{5}{2}] - 8s[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{5}{2}] - 8s[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{5}{2}] - 8s[\frac{3}{2}]^{\circ} \end{cases}$	$\begin{vmatrix} 2p_{10} - 5s_5 \\ 2p_9 - 5s_5 \\ 2p_8 - 5s_5 \\ 2p_8 - 5s_4 \\ 2p_7 - 5s_3 \end{vmatrix}$	5048.81 5421.35 5467.16 5457.42 5194.02	104102 105463 105617 105617 106087	123903 123903 123936	3 7 5 5 3	5 5 3	0.0048 0.0062 7.9 × 10- 0.0637 0.0081	0.0031 0.0020 4 3.5 × 10 ⁻⁴ 9.9 × 10 ⁻⁴ 0.0011	0.15 0.24 0.032 0.089 0.056	-2.04 -1.86 -2.76 -2.31 -2.49	D D D D	5n 6n 5n 5v
379 380 381 382 383	$ \begin{array}{c c} 1 & \mu & 2 \\ 1 & \mu & $	$\begin{array}{c c} 2p_8 - 5s_5 \\ 2p_6 - 5s_4 \\ 2p_4 - 5s_4 \\ 2p_4 - 5s_3 \\ 2p_3 - 5s_4 \end{array}$	5659.13 5648.69 5949.26 5492.09 6005.73	106238 107132 107132	123936 123936 125335	3 3	3	0.0027 0.0013 0.0016 0.0058 0.0015	0.0013 3.8×10 ⁻⁴ 8.4×10 ⁻⁴ 8.7×10 ⁻⁴ 4.7×10 ⁻⁴		-2.60	D D D E D+	อีก อีก อีก อีก อีก
384 385		$\begin{vmatrix} 2p_3 - 5s_2 \\ 2p_2 - 5s_4 \end{vmatrix}$	5534.49 6081.25					0.0028 7.8 × 10-	$\begin{array}{c c} 7.7 \times 10^{-1} \\ 4.3 \times 10^{-4} \end{array}$	0.070 0.026		D+ D	5 <i>n</i> 5 <i>n</i>

Arl. Allowed Transitions-Continued

No.	Transiti	on	λ(Α)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	#i	μk	4,4(10°	f ik	S(at.u.)	log gf	Ac- cu-	Source
	jl-coupling	Paschen						856 ₋₁)				racy	
386 387 388 389 390	$\begin{array}{c} 4\rho[\frac{1}{2}] - 8d[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 8d[\frac{1}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 8d[\frac{7}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 8d[\frac{7}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 8d[\frac{1}{2}]^{\circ} \end{array}$	$2p_{40} - 8d_6$ $2p_{10} - 8d_5$ $2p_9 - 8d_4$ $2p_8 - 8d_4$ $2p_6 - 8d_5$	4746.82 4752.94 5060.08 5087.09 5290.00	104102 104102 105463 105617 106238	125163 125136 125220 125270 125136	3 3 7 15 15	3 0 7	0.0037 0.0047 0.0039 0.0017 9.4 × 10-4	4.2×10 ⁻⁴ 0.0016 0.0019 4.4×10 ⁻⁴ 2.4×10 ⁻⁴	0.020 0.075 0.22 0.079 0.02;	-2.90 -2.32 -1.87 -2.33 -2.92	E E E E	6n 6n 6n 6n
391 392 393 394	$\begin{array}{l} 4\rho[\frac{3}{2}] - 8d[\frac{3}{2}]^{\circ} \\ 4\rho[\frac{3}{2}] - 8d[\frac{5}{2}]^{\circ} \\ 4\rho[\frac{1}{2}] - 8d[\frac{1}{2}]^{\circ} \\ 4\rho'[\frac{3}{2}] - 8d[\frac{1}{2}]^{\circ} \end{array}$	2p ₆ = 8d ₁ 2p ₆ = 8d ₄ 2p ₅ = 8d ₅ 2p ₄ = 8d ₅	5249.20 5246.24 5528.97 5552.77	106238 106238 107054 107132	125283 125294 125136 125136	5 5 1 3	7 3	8.2 × 10 ⁴ 0.0012 0.0012 8.2 × 10 ⁻⁴	3.4×10 ⁻¹ 6.6×10 ⁻¹ 0.0017 3.8×10 ⁻⁴	0.029 0.057 0.031 0.021	- 2.77 - 2.48 - 2.77 - 2.94	E E E E	6 <i>u</i> 6 <i>n</i> 6 <i>n</i> 6 <i>n</i>
395 396 397 398 399	$\begin{array}{l} 4p\left[\frac{1}{2}\right] - 9s\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 9s\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 9s\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{3}{2}\right] - 9s\left[\frac{3}{2}\right]^{\circ} \\ 4p\left[\frac{1}{2}\right] - 9s\left[\frac{3}{2}\right]^{\circ} \end{array}$	$2p_{10}-6s_52p_9-6s_52p_8-6s_42p_6-6s_52p_5-6s_4$	4836,70 5177,54 5216,28 5393,27 5639,12	104102 105463 105617 106238 107054	124772 124772 124783 124772 124783	3 7 5 5 1	5 3	0.00106 0.0025 0.0014 0.0010 0.0022	6.2×1′. ⁴ 7.3×10 ⁻¹ 3.4×10 ⁻¹ 4.5×10 ⁻¹ 0.0031	0.0296 0.087 0.029 0.040 0.058	-2.73 -2.29 -2.77 -2.65 -2.50	(: D - D - D -	6 <i>n</i> 5 <i>n</i> 6 <i>n</i> 6 <i>n</i> 6 <i>u</i>
400 401 402 403 404	$\begin{array}{c} 4p[\frac{1}{2}] - 9d[\frac{1}{2}]^{\circ} \\ 4p[\frac{1}{2}] - 9d[\frac{7}{2}]^{\circ} \\ 4p[\frac{7}{2}] - 9d[\frac{7}{2}]^{\circ} \\ 4p[\frac{7}{2}] - 9d[\frac{7}{2}]^{\circ} \\ 4p[\frac{7}{2}] - 9d[\frac{7}{2}]^{\circ} \end{array}$	$\begin{array}{c} 2p_{10} - 9d_5 \\ 2p_{10} - 9d_4 \\ 2p_9 - 9d_4 \\ 2p_8 - 9d_4 \\ 2p_7 - 9d_1'' \end{array}$	4647.49 4642.15 4956.75 4989.95 5104.74	104102 104102 105463 105617 106087	125613 125638 125632 125652 125672	3 7 5 3	7	0.0013 0.0010 0.6 0.0011 9.1 × 10 ⁻⁴	4.2×10^{-4} 5.4×10^{-4} 9.0×10^{-4} 5.6×10^{-4} 5.9×10^{-4}	0.020 0.025 0.10 0.046 0.030	-2.90 -2.79 -2.20 -2.55 -2.75	E E E E	611 611 611 611 611
405 406	$4\rho\left[\frac{5}{2}\right] - 10s\left[\frac{3}{2}\right]^{\circ}$ $4\rho\left[\frac{5}{2}\right] - 10s\left[\frac{3}{2}\right]^{\circ}$	$2p_9 - 7s_5 \\ 2p_8 - 7s_4$	5032.03 5070.99	105463 105617	125330 125332	5		8.5 × 10 ⁻⁴ 0.0027	2.3×10 ⁻⁴ 6.3×10 ⁻⁴	0,027 9,053	-2.79 -2.50	E	6 <i>n</i> 6 <i>n</i>
407 408	$4p[\frac{1}{2}] - 10d[\frac{1}{2}]^{\circ}$ $4p[\frac{1}{2}] - 10d[\frac{1}{2}]^{\circ}$	$2 ho_{19}-\ 10d_{6}\ 2 ho_{10}-$	4587.21 4586.61	104102	125896 125899	3		0.0051	5.4×10 ⁻¹ 7.6×10 ⁻¹	0.024	-2.79 -2.64	E	6n
409	$4p[\frac{1}{2}] - 10d[\frac{3}{2}]^{\circ}$	$\frac{10d_5}{2p_{10}-}$	4584.96	104102	125907	3	ļ	0.0024	8.9×10 ⁻¹	0,040	-2.57	E	611
410	$4p[\frac{4}{4}] - 10d[\frac{7}{4}]^{\circ}$	$\begin{array}{c} 10d_3 \\ 2p_9 + \\ 10d_4' \end{array}$	1886.29	105463	125923	7	ų	0.0012	5.5×10 +	0.062	-2.42	E	611
411	4p[∰] = 10d[∰]°	$\begin{array}{c} 2p_5 + \\ 10d_4 \end{array}$	4921.04	105617	125933	5	7	6.1 × 10 ⁻¹	3.1 × 10 ⁺	0.025	-2.81	E	6 <i>n</i>
412	4ρ[½] 11s[½]°	2p8s.	4937.72	105463	125709	7	5	3.8×10⁻⁴	9,9×10 ⁻⁵	0.011	-3.16	E	611
413	4ρ[½] — 11d[½]°	$2p_{10} -$	4544.75	104102	126099	3	3	8.6 × 10 ⁻¹	2.7×10 ⁻⁴	0.012	-3.09	E	hu
414	$4p[\frac{1}{2}]-11d[\frac{7}{2}]^{\circ}$	$11d_5 \ 2p_9 - \ 11d_4'$	4835.97	105463	126135	7	9	9.7×10 4	4.4×10 ⁻⁴	0.049	-2.51	E	611
415	$4p[\frac{3}{2}] - 12d[\frac{7}{2}]^{\circ}$	$\frac{2p_0-}{12d_4'}$	4798.74	105463	126296	7	9	9.2×10 4	4.1×10 +	0.045	- 2.54	E	6n
416 417	$5s[\frac{3}{2}]^{\circ} - 4f[\frac{3}{2}] 5s[\frac{3}{2}]^{\circ} - 4f[\frac{5}{2}]$	$\frac{2s_5 - 4X}{2s_5 - 4Y}$	14876.6 14786.3	113469 113469	120188 120230	5 5		6.0×10-4 0.0021	0.0032 0.017	0.77 4.1	- 1.80 - 1.07	D -	9n 9n

Ground State

 $1s^22s^22p^63s^23p^{5/2}\mathrm{P}^{\circ}_{3/2}$

Ionization Potential

 $27.63 \text{ eV} = 222848.2 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [A]	No.	Wavelength [A]	No.	Wavelength [Å]	No.
718.091	3	3476.75	34	3765.27	63
723.361	3	3487.32	38	3770.52	63
725.550	3 3	3491.24	34	3780.84	37
	3	3491.54	34	3786.38	
730.929	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$				6
737.457	2	3499.48	8	3796.60	61
740.270	2 2 2	3509.78	34	3799.38	37
745.323	2.	3514.39	34	3603.17	61
748.198	2	3517.89	8	3808.58	6
919.782	1	3520.00	38	3809.46	63
932.053	1	3521.26	38	3819.02	60
3000.44	44	 3535,32	34	3825.68	60
3028.91	50	3545.60	45	3826.81	37
3093.40	50	3545.84	55	3830.39	6
3139.02	36	3548,52	38	3841.52	37
3161.37	54	3550,03	43	3844.57	23
3169.67	36	3559,51	45	3844.74	37
3181.04	36	3561.03	55	3845.41	21
3194.23	35	3562.19	55	3850.58	22
3204.32	46			3855.16	47
3212.52	36	3565.03 3576.61	39	3868.52	52
0212.02	"	13.770.071	,,0		
3225.97	35	3581.61	38	3872.14	37
3236.81	49	3582.36	38	3875.26	5
3243.69	36	3588.45	38	3880.34	37
3249.80	36	3600,22	58	3891.40	5
3263,57	35	3603.46	39	3891.98	5
3273.32	46	3622.14	63	3900.62	37
3281.70	36	3639,83	59	3911.57	37
3293.64	49	3650.89	64	3914.77	5
3307.23	49	3655.28	48	3922.36	23
3350.93	57	3656.05	42	3925.72	73
3361.75	57	2660.61	(1)	3928.63	22
	57	3669.61	63	3931.24	5
3365.54	49	3671.01	58	3932.55	52
3366.59		3678.27	63		
3370.93	39	3680.06	59	3944.27	5
3376.44	57	3706.94	7	3946.10	73
3379,46	40	3709.92	42	3952.73	51
3388,53	53	3714.74	6	3958.38	41
3397.90	40	3717.17	42	3968.36	5
3414.46	56	3718.21	62	3974.48	21
3421.62	39	3720.43	63	3974.75	20
3429.62	56	3724.52	62	3979.36	52
3430.42	40	3729.31	22	3988.16	41
3432.59	56	3737.89	62	3992.05	5
3454.10	34	3750.49			33
3464.13	45	うんぴいすり	6 1	3994.79	1 .5.5

Ar II. Allowed Transitions - Continued

Wavelength (Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
4013.86	5	4370.75	17	5017.63	25
4033.82	65	4371.33	4	5062.04	18
4035,46	32	4375.95	29	5141.79	16
4038.81	5	4379.67	19	5145.32	25
4042.90	32	4383.75	28	5215.11	25
4052.92	33	4400.10	4	5286.90	25
4057.67	21	4400.99	4	5724.33	24
4060.6	21	4420.91	4	5843.78	24
4065.11	41	4426.01	19 j	5950.91	24
4072.01	32	4430.19	19	6077.43	24
4076.64	65	4431.00	4	6103.55	13
4076.94	68	4448.88	75	6138.66	10
4079.58	32	4460.56	4	6212	24
4082.39	20	4481.81	17	6243.13	10
4103.91	65	4535.49	72	6399.22	10
4103.91	68	4545.05	27	6483.08	13
4112.82	20	4547.76	69	6638.23	9
4131.73	31	4564,42	71	6639.74	9
4147.38	21	4579.35	29	6643.72	9
4156.09	65	4587.90	28	6666.36	12
4178.37	19	4589.90	30	6684.31	9
4179.30	65	4609.56	30	6756.55	9
4201.97	20	1 637.25	30	6808.53	11
4218.67	68	4657.89	27	6861.27	12
4222.64	70	4721.59	71	6863,54	9
4226.99	74	4726.86	26	6886.62	9
4228.16	20	4735.91	18		
4237.22	31	4764.86	27		
4255.60	67	4806.02	18		
4266.53	19	4847.82	18		<u> </u>
4275.16	70	4865.92	71		
4277.52	31	£879.86	26		
4282.90	19	1889.03	27		
4300.65	15	4904.75	14		
4331.20	19	4933.21	18		
4332.03	4	4952.92	25		Ì
4337.07	74	4965.07	26		
4348.06	19	4972.16	18		
4352.20	4	5009.33	18		
4362.07	17	5017.16	16		

For some vacuum uv lines of this spectrum we could utilize the radiative lifetime measurements of Lawrence [1], based on the delayed-coincidence technique, and the intermediate-coupling calculations of Statz et al. [2], based on Hartree-Fock wavefunctions in the radial integral.

In the visible region, many experimental and theoretical determinations of transition probabilities have been carried out. As a common absolute basis for much of our tabulated data in this region, we have chosen the accurate lifetime determinations of the 4p levels by Bennett et al. [7]. This experiment is considered the most advanced of the three recent lifetime measurements (Bakos et al. [8] and Matilsky and Hesser [9]) since, in contrast to the others, it completely eliminates cascading effects by using electron excitation of the atomic states at the corresponding threshold energies.

Of the other experiments which provide many individual transition probabilities, we have adopted the recent wall-stabilized arc measurements of Shumaker and Popenoe [3] and Schnapauff [5]. (Schnapauff has also employed in some cases a hollow cathode as a light source.) Shumaker and Popenoe's values have been chosen, where available, in preference to those of Schnapauff (with whom they are normally in good agreement), because they employ more advanced data processing and evaluating techniques. The expected increased precision appears to be reflected in their results which provide a better fulfillment of the J-file sum rule for the 4s-4p array and exhibit the apparent slow variation of the radial transition integral in this array. Shumaker and Popenoe's values are also in better agreement with the theoretical calculations described below and their measurements of Bennett et al. [7]. However, as a single exception, values for the $4s^4P-4p^4S^6$ multiplet do not satisfy the J-file sum rule very well and, consequently, we have reduced our accuracy-estimates for these lines.

For many other lines of moderate strength in the visible where no reliable measurements are revailable, we have applied the intermediate-coupling calculations of Statz et al. [2], described above, as well as those of Rudko and Tang [4] and Garstang [6]. Both the results of Statz et al., and Garstang have been placed on the absolute scale described above. Finally, it should be mentioned that the Coulomb approximation is expected to provide a fairly reliable radial transition integral for many other lines, but since the individual line strengths probably would be unreliable due to the suspected breakdown of LS-coupling, we have refrained from tabulating these.

References

- [1] Lawrence, G. M., Twentieth Gaseous Electronics Conference, San Francisco (1967) (to be published).
- [2] Statz, H., Horrigan, F. A., Koozekanani, S. H., Tang, C. L., and Koster, G. F., J. App. Physics 36, 2278-2286 (1965); and Koster, G. F., Statz, H., and Tang, C. L., J. App. Physics 39, 4045-4046 (1968).
- [3] Shumaker, J. B., Jr., and Popenoe, C. H., J. Opt. Soc. Am. 59 (1969) (to be published).
- [4] Rudko, R. I., and Tang, C. L., J. App. Physics 38, 4731-4739 (1967); and 39, 4046 (1968); and Marantz, H., thesis Cornell University.
- [5] Schnapauff, R., Z. Astrophys. 68, 431-444 (1968).
- [6] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 114, 118-133 (1954).
- [7] Bennett, W. R., Jr., Kindlmann, P. J., and Mercer, G. N., Applied Optics Supplement 2 of Chemical Lasers 34-57 (1965).
- [8] Bakos, J., Szigeti, J., and Varga, L., Phys. Letters 20, 503-504 (1966).
- [9] Matilsky, T. A., and Hesser, J. E., J. Opt. Soc. Am. 59, 579 -582 (1969).

A: II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Ă)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	ĮĽį	μk	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23\rho^5 + 3s3\rho^6$	² P°= ² S (1 uv)	923.84	477	108721	6	2	2.08	0.0089	0.162	-1.272	С	ı
į			919.782	0	108721	4	2 2	1.41	0.0089	0.108	-1.449	С	Is
		11	932.053	1431	108721	2	2	0.67	0.0088	0.054	-1.75	C	/s
2	$3p^5 - 3p^4(^3P)4s$	² P° = ⁴ P (3 uv)											
			748.198	1431	135086	2	4	0.059	9.9 × 10-4	0.0049	-2.70	E	2
			740.270	0	135086	4	4	0.31	0.0025	0.025	-2.00	E	1 2
			745.323	1431	135602	2	2	0.073	6.1×10^{-4}	0.0030	-2.91	E	2
			737.457	0	135602	4	2	0.038	1.5×10^{-4}	0.0015	-3.22	E	2
3		² P° – ² P (4 uv)	724.09	477	138582	6	6	28	0.22	3.1	0.12	D	2
			723.361	0	138244	4	4	23	0.18	1.7	-0.14	D	2
			725.550	1431	139258	2	2	19	0.15	0.72	-0.52	Ď	
			718.091	0	139258	4	2	9.5	0.037	0.35	-0.83	D	2 2 2
			730.929	1431	138244	2	1 4	4.5	0.072	0.35	-0.84	D	ļ

Ar II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	A(Å)	$E_i(\cos n^{-1})$	E _k (cm ⁻¹)	μ	#k	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
4	3µ43d— 3µ4(3P)4µ	4D4P° (1)	4388.2	132475	155257	20	12	0.440	0.076	22.0	0.182	С	3n
			4400.99 4371.33	132327 132481	155043	8	6	0.322	0.070	8.1	-0.252 -0.57	C	3 <i>n</i> 3 <i>n</i>
	i		4332.03	132631	155351 155708	6 4	4 2	0.233 0.20	0.0445 0.028	3.84 1.6	-0.37 -0.95	Č-	3n
			4431.00	132481	155043	6	6	0.110	0.0324	2.83	-0.71	C	311
	İ		4400.10	132631	155351	4	4	0.164	0.0476	2.76	-0.72	C	39
		1	4352.20 4460.56	132738 132631	155708 155043	2	6	0.228 0.0156	0.065 0.0070	1.85 0.410	-0.89 -1.55	C	39 3n
			4420.91	132738	155351	2	4	0.033	0.019	0.56	-1.42	č-	3n
5		⁴ D- ⁴ D° (2)	3967.6	132475	157672	20	20	0.115	0.0272	7.1	-0.264	C	311
			4013.86 3968.36	132327 132481	157234 157673	8	8	0.107	0.0258	2.73 0.86	-0.69	C	3n
			3914.77	132631	158168	6 4	6	0.0467 0.0320	0.0110 0.0074	0.379	-1.180 -1.53	Č	3n 3n
	1	1	3891.40	132738	158428	2	2	0.039	0.0089	0.23	-1.75	C -	3n
			3944,27 3891,98	132327 132481	157673 158168	8	6	0.0403	0.0070	0.73 6.85	-1.252	C –	311
	1		3875.26	132631	158428	4	4 2	0.073 0.076	0.011 0.0086	0.65	-1.18 -1.46	C-	3n 3n
	1		4038.81	132481	157234	6	8	0.0127	0.00414	0.330	-1.60	C	3n
			3992.05 3931.24	132631 132738	157673 158168	4 2	6 4	0.0153 0.020	0.0055 0.0093	0.288	$\begin{vmatrix} -1.66 \\ -1.73 \end{vmatrix}$	C –	3n 3n
6		⁴ D- ² D° (3)							, 11				
		(3)	3786.38	132327	158730	8	6	0.012	0.0019	0.19	-1.82	C -	3n
		1	3714.74	132481	159393	6	4	0.0065	9.0 × 10-4		-2.27	D-	4
			3808.58 3830.39	132481 132631	158730 158730	6 4	6	0.0073 0.0062	0.0016 0.0020	0.12 0.10	$ \begin{array}{r r} -2.02 \\ -2.10 \end{array} $	D-	3n
			3750.49	132738	159393	2	4	0.0027	0.0011	0.028	-2.66	Ď-	4
7		4D-2P°											
		(4)	3706.94	132738	159706	2	2	0.0070	0.0014	0.035	-2.55	D-	4
8		4D-4S°											
	ļ	(5)	0.400.40	100401	141040	6	١.	0.0053	6.5 × 10 ⁻⁴	0.045		D-	١,
			3499.48 3517.89	132481 132631	161049 161049	4	4	0.0033	3.7×10 ⁻⁴		-2.41 -2.83	D-	4
9		4F-4D°											
	1	(20)	6643.72	142186	157234	10	8	0.167	0.088	19.3	-0.056	С	311
		l .	6684.31	142717	157673	8	6	0.113	0.057	10.0	-0.341	l č	31
			6638.23	143108	158168	6	4	0.129	0.057	7.4	-0.466	C	311
		1	6639.74	143371	158428	4	2	0.181 0.0098	0.060	5.2	-0.62	C	311
			6886.62 6863.54	142717	157234 157673	8 6	8 6	0.0218	0.0076 0.0154	1.26 2.09	-1.252 -1.034		31
			6756.55	143371	158168	4	4	0.0091	0.0062	0.55	-1.61	C-	31.
10		⁴F−2D°	1				1						
		(21)	6243,13	142717	158730	8	6	0.029	0.013	2.1	-0.98	C-	311
			6138.66	143108	159393	6		0.029	0.0038	0.46	-0.96 -1.64	č-	
			6399.22	143108	158730	6			0.0034	0.43	-1.69	C-	
11		² P − ² D°											
		(24)	6808.53	144710	159393	2	4	0.0064	0.0089	0.40	-1.75	C-	3n
10		² P− ² P°										1	
12		(25)											
		,	6861.27	145669	160239	4	4	0.0242	0.0171	1.54	-1.165		3n
			6666,36	144710	159706	2	2	0.071	0.047	2.1	-1.03	(C-	3n

ArII. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μί	μk	A _{kl} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
13		² P _ ² S° (27)	6351.5	145349	161089	6	2	0.118	0.0238	2.99	-0.85	С	3n
		(21)	6483.08 6103.55	145669 144710	161089 161089	4 2	2 2	0.101 0.012	0.0318 0.0067	2.72 0.27	-0.90 -1.87	C C	3n 3n
14	3p4(3P)3d- 3p4(1D)4p'	² F ² F° (34)					i.					_	
15		²F−²D°	4904.75	150148	170530	6	8	0.045	0.022	2.1	- 0.88	D	5 <i>n</i>
•		(36)	4300,65	150148	173393	6	6	0.061	0.017	1.4	-0.99	D	5 <i>11</i>
16		$^{2}D - ^{2}F^{\circ}$ (37)							<u> </u>				
			5141.79 5017.16	151087 150475	170530 170401	6	8 6	0.095 0.231	0.050 0.131	5.1 8.6	- 0.52 - 0.281	C	5n 3n
1.7		² D- ² D° (39)											
			4481.81 4370.75	151087 150475 150475	173393 173348	6 4 4	6 4 6	0.494 0.65	0.149 0.186	13.2 10.7	-0.049 -0.128	C	5 <i>n</i> 3 <i>n</i>
18	5μ⁴4s −	4P_4P°	4362.07 4875.0	134750	173393 155257	12	12	0.057	0.024	1.4 64	- 1.02 0.60	D C	5 <i>n</i> 3 <i>n</i>
	3p4(3P)4p	(6)	4806.02	134242	155043	6	6	0.79	0.274	26.0	0.216	C+	311
			4933.21	135086	155354	4	4	0.143	0.052	3.39	-0.68	C+	311
			4972.16 4735.91	135602 134242	155708 155354	6	2	0.096 0.58	0.0356 0.130	i.16 12.2	-1.148 -0.108	C	3n 3n
			4847.82	135086	155708	4	2	0.85	0.150	9.6	-0.222	C	311
			5009.33 5062.04	135086 135602	155043 155354	1 2	6	0.147 0.221	0.083 0.170	5.5 5.7	-0.479 -0.469	C C+	3n 3n
19		⁴ P – ⁴ D° (7)	4361.4	134750	157672	12	20	1.14	0.54	93	0.81	С	3n
		(7)	4348.06	134242	157234	6	8	1.24	0.469	40.2	0.449	С	3 <i>n</i>
			4426.01	135086	157673	4	6	0.83	0.366	21.3	0.166	C	3n
		}	4430.19	135602	158168	2	4	0.53	0.312	9.1	-0.205	C	3n
			4266.53 4331.20	134242 135086	157673 158168	6	6	0.156 0.56	0.0426 0.158	3.59 9.0	-0.59 -0.199	C	3n 3n
			4379.67	135602	158428	2	2	1.04	0.156	8.6	-0.199 -0.233	č	311
			4178.37 4282.90	134242 135086	158168 158428	6	4 2	0.013 0.120	0.0023 0.0165	0.19 0.93	-1.86 -1.180	C-	3n 3n
20		⁴P2D	7202.70	10,000	10,0120	ľ		0.120	0.0100	0.50	1,100		0.1
- "		(8)											
			4082.39	134242	158730	6	6	0.027	0.0067	0.54	-1.40	C-	3n
			4112.82 3-74.75	135086 134242	159393 159393	4	4	0.0082 0.0041	0.0021 6.5 × 10-4	0.11 0.051	- 2.08 - 2.41	D-	3n 4
			4228.16	135086	158730	4	6	0.130	0.052	2.91	-0.68	C	3 <i>n</i>
			4201.97	135602	159393	2	1	0.035	0.019	0.51	-1.42	D-	4
21		4P_2P° (9)											
			3974.48	135086	160239	4	4	0.0068	0.0016	0.084	- 2.19	D-	4
			4147.38	135602	159706	2	2	1.8×10^{-4}	4.6×10^{-5}	0.0013	- 4.04	E	211
			3845.41 [4060.6]	134242 135086	160239 158706	6	1 2	0.0091 3.2×10^{-5}	0.0013 4.0×10-6	0.10 2.1 × 10-4	-2.11 -4.80	D	4 2n
			4057.67	135602	160239	2	4	0.0038	0.0019	0.050	- 2.42	Ē	2n 2n
22		4P_4S° (10)	3801.4	134750	161049	12	-1	1.4	0.10	15	0.08	D	311
		1107	3729.31	134242	161049	6	4	0,60	0.083	6.1	-0.30	D	311
		1	3850.58	135086	161049	4	1	0.47	0.10	5.3	-0.40	D	311
	I	1	l 3928.63	135602	161049	2	1	0.30	0.14	3.6	-0.55	D	311

Ar II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	μ,	#k	4 _{ki} (10 ^g sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
23		4P_2S°											
		(11)	3844.57	135086	161989	4	2	0.9071	7.9 × 10-4	0.040	- 2.50	E	2n
ļ			3922.36	135602	161089	2	2	0.0019	4.4 × 10 ⁻⁴	0.011	-3.06	Ë	2n
24		2P_4P°			<u> </u> 						:		
ļ		(12)	5843.78	138244	155351	4	4	3.8 × t0 ⁻⁴	1.9×10~4	0.015	-3.12	E	2n
			6077.43 5724.33	139258 138244	155708 155708	2	2 2	9.8 × 10 ⁻⁴ 0,0014	5.4×10^{-4} 3.4×10^{-4}	0.022 0.026	-2.97 -2.87	E	2n 2n
İ		ļ	5950.91 6212	138244 139258	155043 155351	4 2	6	7.0×10^{-4} 2.1×10^{-5}	5.6×10^{-4} 2.4×10^{-5}		-2.65	E E	2n 2n
25		²P_4D°	(7212	1372.80	11,2,3,7,7	-	•	2.1 \ 10	2.4 ^ 10	2.7 ~ 10	7.02	1	
2.7		(13)			155450	١.		0.005	0.050				
1			5145.32 5286.90	138244 139258	157673 158168	1 2	6 4	0,097 0,0156	0.058 0.0131	3.91 0.455	-0.63 -1.58	C	3n 3n
j			5017.63 5215.11	138244 139258	158168 158428	1 2	1 2	0,0085 1.6 × 10-4	0.0032 6.5×10^{-5}	0.21	-1.89 -3.89	C =	3n 2n
			4952.92	138244	158428	4	2	3.2×10^{-5}	5.9 × 10 ⁻⁸	3.8×10^{-4}		Ë	2n
26		² P- ² D° (14)	4897.5	138582	158995	6	10	0.79	0.471	45.6	0.451	С	3n
		(14)	4879.86	138244	158730	4	6	0.78	0.418	26.8	0.223	g	311
			4965.07 4726.86	139258 138244	159393 159393	4	4	0.347 0.50	0.256 0.167	8.4 10.4	-0.291 -0.175	C	3n 3n
27		² P_ ² P° (15)	4654.4	138582	160061	6	6	1.00	0.325	29.9	0.290	C+	3n
		(13)	4545.05	138244	160239	4	4	0.413	0.128	7.66	- 0.291	В	311
			4889.03 4657.89	139258 138244	159706 159706	4	2 2	0.159 0.81	0.057 0.132	1.83 8.1	-0.94 -0.277	C	3n 3n
			4764.86	139258	160239	2	4	0.575	0.391	12.3	-0.107	В	3n
28		² P_4S° (16)											
		(10)	4383.75 4587.90	138244 139258	161049 161049	4 2	1	0.011 1.4 × 10-4	0.0032 8.8×10 ⁻⁵	0.18 0.0027	-1.89 -3.75	E E	3n 2n
29		2P_2S°	4441.8	138582	161089	6	2	1.10	0.108	9.5	- 0.188	С	3n
		(17)	4375.95	138244	161089	4	2	0.200	0.0287	1.65	0.94	C	3n
			4579.35	139258	161089	2	2	0.82	0.258	7.8	-0.287	C	3n
30	$3p^{4}4s' - 3p^{4}(^{1}D)4p'$	$^{2}D-^{2}F^{\circ}$ (31)	4602.3	148753	170475	10	14	0.91	0.403	61	0.61	C-	5 <i>n</i>
			4609.56 4589.90	148842 148620	170530 170401	6	8 6	0.91 0.82	0.387 0.389	35.2 23.5	0.366 0.192	CC	5n 5n
			4637.25	148842	170401	6	6	0.090	0.029	2.7	-0.76	Ď	5 <i>n</i>
31		² D - ² P° (32)	4225.0	148753	172415	10	6	1.3	0.20	28	0.30	D	4
		(32)	4277.52	148842	172214	6	4	1.0	0.18	15	0.03	D	4
			4131.73 4237.22	148620 148620	172816 172214	1 4	4	1.4 0.21	0.18 0.057	9.7 3.2	-0.14 -0.64	D	4
32		2[) - 2[)°	4060.3	148753	173375	10	10	1.0	0.25	34	0.40	D	4.51
		(33)	4072.01	148842	173393	6	6	0.57	0.142	11 4	-0.070		511
			4042.90 4079.58	148620 148842	173348 173348	6	1 4	1.4 0.26	0.34 0.043	18 3.5	-0.13 -0.59	D	4
			4035,46	148620	173393	4	6	0.045	0.016	0.88	-1.19	D	5 <i>n</i>
33	3p44s"- 3p4(1S)4p"	² S – ² P° (101)	4033.4	167308	1921994	2	6	1.5	1.1	30	0.34	E	6 <i>n</i>
			4052.92 3994.79	167308 167308		2 2	1 2	1.5	0.75 0.37	20 9.8	$0.18 \\ -0.13$	E E	bu bu

Ar II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Λ)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	Ľi.	μk	4 _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
34	3p44p — 3p4(3P)4d	4P°_4D (44)											
	Sp. (37	(1.7)	3491.54	155043	183676	6	8	3.0	0.73	50	0.64	D	_4
			3514.39	155351	183797	4	6	1.23 0.82	0.342 0.31	15.8 7.2	0.136 -0.21	C	5n 4
			3535.32 3476.75	155708 155043	183986 183794	6	6	1.34	0.31	16.7	0.164	C	5 <i>n</i>
			3491.24	155351	183986	4	4	2.2 2.5	0.40	18	0.20	D	4
			3509.78 3454.10	155708 155043	184192 183986	6	2 4	2.5 0.45	0.46 0.054	11 3.7	-0.04 -0.49	D D	4
35		4P°_4F											
		(46)	3194.23	155043	186340	6	4	0.24	0.024	1.5	-0.84	D-	4
	1		3225.97	155551	186340	4	4	C.046	0.0072	0.30	- 1.54	D-	4
			3263.57	155708	186340	2	4	0.35	0.11	2.4	-0.66	D-	
36		4P°_4P (47)	3181.4	155257	186681	12	12	2.0	0.30	38	9.56 -0.05	D D	4
			3139.02 3212.52	155043 155351	186891 186470	6	6 4	1.0 0.096	0.15 0.015	9.2 0.63	-1.22	D	4
			3281.70	155708	186171	2	2	0.73	0.12	2.5	-0.62	D	4
			3181.04	155043 155351	186470 186171	6	4	0.63 2.0	0.064 0.16	4.0 6.7	-0.42 -0.19	D	4
			3243.69 3169.67	155351	186891	4	6	0.82	0.10	7.7	-0.19	Ď	4
			3249.80	155708	186470	2	4	1.0	0.32	6.8	-0.19	D	4
37	1	⁴ D°− ⁴ D (54)	3822.4	157672	183826	20	20	0.65	0.14	36	0.45	D	4.5n
	İ		3780.84	157234	183676	8	8	0.94	0.20	20	$0.20 \\ -0.70$	D	4 5n
			3826.81 3872.14	157673 158168	183797 183986	6	6	0.15	0.033 0.043	2.5 2.2	-0.76	D	3n 4
			3880.34	158428	184192	2	2	0.22	0.059	1.3	-1.00	D	4
			3763.50	157234	183797	8	6	0.14	0.022	2.2	-0.75	D .	5n
			3799.38 3841.52	157673 158168	183986 184192	6	4 2	0.23	0.033 0.030	2.5 1.5	-0.70 -0.92	D	4
			3844.74	157673	183676	6	8	0.047	0.014	i.ï	-1.08	D	4
			3900.62 3911.57	158168 158428	183797 183986	4 2	6	0.082 0.088	0.028 0.040	1.4 1.0	-0.95 -1.10	D	4
38		⁴D° – ⁴F	3711.31	130420	10.57007			0.000	5,040	1.0	1.10		•
		(56)	3588.45	157234	185093	8	10	3.39	0.82	77	0.82	$ _{\mathbf{C}}$	5 <i>n</i>
			3576.61	157673	185625	6		2.77	0.71	50	0.63	č	5n
			3582.36	158168	186074	4	6	3.72	1.07	51	0.63	C	5n
			3581.61 3521.26	158428 157234	186340 185625	8	8	1.8 0.23	0.69 0.043	16 4.0	$\begin{vmatrix} 0.14 \\ -0.46 \end{vmatrix}$	D	4 5n
	1		3520.00	157673	186074	6	6	0.80	0.15	10	-0.05	ű	5 <i>n</i>
			3548.52 3487.32	158168 157673	186340 186340	6	4	1.1 0.027	0.21 0.0033	9.7 0.23	-0.08 -1.70	D	4
39		'D°-'P					.	0.021	V.0000				
		(57)	3370.93	157234	186891	8	6	0.059	0.0075	0.67	-1.22	n n	,
			3421.62	157673	186891	6	6	0.059	0.0075 0.016	0.67	-1.02	D	4
			3603. 6	158428	186171	2	2	0.065	0.013	0.30	-1.59	Ď	4 4 4
			3565,03	158428	186470	2	4	1.1	0.42	9.8	-0.08	D	4
40		4D°-2F											
		(59)	3379.46	157234	186816	8	8	0.020	0.0034	0.30	-1.57	D-	1
			3430,42	157673	186816	6	8	0.058	0.014	0.92	-1.08	D-	4
			3397.90	158168	187589	4	6	0.027	0.0070	0.31	-1.55	D-	4
41		² D°− ⁴ D (65)							[
		(00)	3988.16	158730	183797	6	6	0.059	0.012	0.94	-1.14	D-	4
			4065.11	159393	183986	4	4	0.015	0.0037	0.20	-1.83	0-	4
	1	1	3958.38	158730	183986	6	4	0.333	0.0052	0.40	-1.51	D-	

Ar II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Λ)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Дi	#k	4 _{ki} (10* sec 1)	fik	S(at.u.)	log gf	Accu- racy	Sourc
12		5Do=+i.											
		(67)	3717.17	158730	185625	6	8	0.030	0.0083	0.61	-1.30	D-	
l			3656,05 3709,92	158730 159393	186074	6	6	0.13 0.053	0.026	1.9 0.53	-0.81 -1.36	D D-	51
			3709.92	199999	186340	*	*	0.055	0.011	0.33	- 1.30	17-	,
13		2D°-4P											
		,,	3550.03	158730	i86891	6	6	0.024	0.0045	0.32	-1.57	D-	
14		2D°-21						-					
		(69)	3000,44	159393	192712	4	4	1.5	0.20	8.0	-0.10	D	4
45		2D°-2F	3551.1	158995	187147	10	14	3.9	1.0	120	1.00	D	
•0		(70)				1			İ		ļ		
			3559.51 3545.60	158730 159393	186816 187589	6	8 6	3.9 3.4	0.99 0.96	69 45	0.77 0.58	D D	
			3464.13	158730	187589	6	6	0.37	0.067	4.6	-0.40	Ö	
16		2D°-2P											
		(71)	3273.32	159393	189935		2	0.37	0.030	1.3	-0.92	D	
		Ì	3204.32	159393	190592	1	1	0.40	0.062	2.6	-0.61	D	
47		2p°_4p											
-		(81)	3855,16	160239	 186171	1	2	0.015	0.0017	0.085	-2.17	D-	
40		2P°_2F		100207	10,777		-		, www.		2	•	
48		(82)											
			3655.28	160239	187589	1	6	0.23	0,069	3.3	-0.56	D-	
49		² P° - ² P	3298.1	160061	190373	6	6	2.7	0.45	29	0.43	D	
		(8.3)	3293.64	160239	190592	1	1	1.7	0.28	12	0.05	D	
			3307.23 3366,59	159706 160239	189935 189935	2	$\frac{2}{2}$	3.4 0.41	0.56 0.035	1.5	-0.05 -0.85	D	
		1	3236.81	159706	190592	2	ī	0.52	0.16	3.5	-0.49	ď	
50		²P −²D					ļ						
			3093,40 3028,91	160239 159706	192557 192712	1 2	6	1.4 2.3	0.95 0.63	39 13	0.38 0.10	D D	Á
		100 40	1,0,20,71	1.771(2)	1,2112	-	•	2	0.0.5	1."	0.10	"	
51		⁴ S°-4F (89)		1									
	į		3952.73	161049	186340	.1	1	0.35	0.082	4.3	-0.48	D-	
52		4S° _4P	3900,3	161049	186681	4	12	1.5	1.1	54	0.64	D	
		(90)	3868.52	161049	186891	1	6	1.9	0.64	33	0.41	D	
			3932.55 3979.36	161049 161049	186470 186171	1	1 2	1.1	0.26 0.15	13 8.1	$0.02 \\ -0.22$	D	1
-		4430 411	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101077	1007111		-	'	0.13	"	0.22	"	
53		² S°= ² P (96)					1						
			3388.53	161089	190592	2	1	1.9	0.65	15	0.11	D	.9
54		2S°=2D	2141.27	141000	103713		١.	, ,	0.54				
			3161.37	161089	192712	2	4	1."	0.54	11	0.03	D-	
55	3p44p' 3p4(1D)4d'	${}^{2}F^{\circ} - {}^{2}G$ (106)	3554.5	170475	198600	1-1	18	4.0	0.98	160	1.14	D	
	ap Cond	11007	3561.03	170530	198604	8	10	4.0	0.95	89	0.88	D	
			3545.84 3562.19	170401 170530	198595 198595	6 8	8	3.9 0.15	0.98	69 2.7	0.77	D	

Arii. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(1)	<i>E_i</i> (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	βi	μk	$\frac{4_{ki}(10^{8})}{\mathrm{sec}^{-1}}$	f ik	S(at.u.)	log gf	Accu- racy	Source
56		2F°-2D	3409,0	170475	199801	14	10	0.31	0.039	6.1	-0.26	D	4
		(107)	3429.62 3432.59 3414.46	170530 170401 170401	199680 199982 199680	8 6 6	6 4 6	0.22 0.32 0.077	0.029 0.038 0.013	2.6 2.6 0.91	0.63 0.64 1.11	D D D	4 4 4
57		${}^2\mathbf{F}^6 = {}^2\mathbf{F}$ (109)	3365,5	170475	200180	14.	14	1.6	0.27	42	0,58	D	4
		1021	3376,44 3350,93 3365,54 3361,75	170530 170401 170530 170401	200139 200235 200235 200139	8 6 8 6	6 6	1.5 1.5 0.13 0.039	0.26 0.25 0.017 0.0088	23 17 1.5 0.59	0.32 0.18 0.87 1.28	D D D	4 4 4 4
5ਰ		² P°_2P (115)	3600.22 3671.01	172214 172214	199525 199447	1 1	1 2	2.2 0.71	0.43 0.072	20 3.5	0.24 -0.54	D L	4 4
59		² P°- ² D (116)	3639.83 3680.06	172214 172816	199680 199982	4 2	6 4		0.42 0.49	20 12	0.23 - 0.01	D	4 4
60		² D°-2P (128)	3825.68 3819.02	173393 173348	199525 199525	6		0.76 0.0036	0.11 7.9×10 ⁻¹	8.4 0,040	-0.18 -2.50	D D	4
61		² D°- ² D (129)	3803.17	173393	199680	6	6	1.5	0.33	24	0.30	D	4
62	3	² D°−2F	3796.60 3729.6	173348 173375	199680 290180	10		0.25	0.081	4.1 82	0.83	D D	4
		(131)	3737.89 3718.21 3724.52	173393 173348 173393	200139 200235 200235	6	8 6	2.3 2.0	0.64 0.62 0.071	47 30 5.2	0.58 0.39 -0.37	D D D	4 4 4
63	$3p^44p - 3p^4(^3P)5s$	4P°_4P (42)	3734.0	155257	182030	12	12	1.1	0.23	34	0.44	D	4
	34 (13-5)	(142)	3765,27 3720,43 3669,61 3678,27 3622,14 3809,46 3770,52	155043 155354 155708 155043 155354 155354 155708	181594 182222 182951 182222 182951 181594 132222	64 4 2 6 4 4 2	1 2 1 2 6	0.17 (0.64 0.34	0.21 0.035 0.026 0.034 0.063 0.14 0.17	15 1.7 0.63 2.5 3.0 7.2 4.3	0.10 -0.85 -1.28 -0.69 -0.60 -0.25 -0.47	D D D D D D	1 1 1 1 1 1
61		(P°_2P (43)	3650,89	155708	183091	2	4	0.12	0.048	1.2	1.02	D -	4
65		⁴ D° = ⁴ P (52)	4102,91 4033,32 4179,30 4156,09 4076,64	157234 158168 157673 158168 158428	181594 182951 181594 182222 182951	8 4 6 4 2	6	0.98 0.13 0.39	0.23 0.12 0.034 0.10 0.20	25 6.3 2.8 5.5 5.3	0.26 -0.32 -0.69 -0.40 -0.40	D D D D	4 4 4 4
66		⁴ D° = ² P (53)	4011.20	158168	183091	4	1	0.031	0.0075	0.40	-1.52	D -	-1
67		² D°- ⁴ P (63)	4255.60	158730	182222) 4	0.021	0.0038	0.32	-1.64	D-	4

Ar II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Δ)	$E_i(\mathrm{cm}^{-1})$	$E_k(\operatorname{cnr}^{-1})$	gi	#k	-f _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.n.)	log g/	Acen- racy	Source
68		² D°= ² P (64)	4102.1	158995	183366	10	6	1.5	0.22	30	0.34	D	-1
		(07)	4103.91 4076.94 4218.67	158730 159393 159393	183091 183915 183091	6 4 4		1.3 0.99 0.36	0.22 0.12 0.096	18 6.6 5.3	0.12 - 0.32 - 0.42	D D D	1 1 4
69		² P°=4P (76)	4547.76	160239	182222	4	1 4	0.077	0.024	1.4	-1.02	D-	
70		² P°_ ² P (77)											
		ત,	4222.64 4275.16	160239 159706	183915 183091	4 2	2 4	0.69 0.26	0.092 0.14	5, 1 4.0	- 0.43 - 0.55	D D	1
71		4S°-4P (85)	4764.9	161049	182030	4	12	0.17	0.18	11	-0.14	D	1
		(0.5)	4865.92 4721.59 4564.42	161049 161049 161049	181594 182222 182951	1 1 1	6 4 2	0.15 0.15 0.29	0,080 0,050 0,045	5.1 3.1 2.7	-0.49 -0.70 -0.71	D D D	1
72		4S°=2P (86)	4535.49	161049	183091	-1	1	0.074	0.023	1.4	-1.01	D ~	1
73	3p44p' + 3p40'Dj5s'	² F°= ² I) (105)	3946.10	170530	195865	8	6	1.4	0.25	25 17	0.30	b	
74		2P° _2D	3925.72	170401	195867	6	1	1.4	0.22	17	0.12	D	1
(4		(113)	4226.99 4337.07	172214 172816	195865 195867	4 2	6 4	0.41 0.34	0.16 0.19	9.2 5.5	- 0.19 - 0.42	D D	1
75		² D° – ² D (127)	4448.88	173393	195865	6	6	0,65	0.19	17	0,06	D	1

ArII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[t] Naqvi, A. M., Thesis Harvard (1951).

Ar II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(A)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľι	Дk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
l	$3p^3-3p^3$	2P° – 2P°	[69842]	0	1431.41	4	2	m	0.0526	1.33	A	1

Ground State

1s22s2p63s23p43P2

Ionization Potential

 $40.90 \text{ eV} = 329965.80 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
871.099	1	2345.17	6	3344.72	10
875.534	! i	2484.11	4	3352.2	10
878.728	l i	2493.0	4	3358.49	10
879.622	li	2499.9	4	3361.3	10
883.179	i	2508.91	4	3368.8	10
887.404	1	2518.2	4	3391.85	7
1669.1	2	2524.5	4	3424.3	7
1669.3	2 2 2	2533.92	4	3438.0	7 7 7 7 9
1669.67	2	2631.90	4 5 5	3471.4	7
1673.2	2	2632.4	5	3472.6	9
1673,43	2	2660.2	5	3480.55	9
1673.5	2 2 2 2 3	2677.9	5 5 5 5	3498.1	9 7 7 9
1675.6	2	2678.38	5	3498.3	7
1675.64	2	2724.84	5	3499.67	9
1914.40	3	2743.9	5	3500.5	9
1914.7	3	3024.05	11	3502.7	9
1915.56	3	3027.1	11	3503.58	9
1918.1	3	3037.0	11	3511.7	9
1918.6	3	3054.82	11	11	
1919.5	3	3064.77	11		
2242.29	6	3078.15	11		
2248.7	6	3285,85	8		
2263.2	6	3301.88	8		
2282.21	6	3311.25	8	ll .	
2297.1	6	3336.13	10	11	-

Lawrence [1] has accurately measured the lifetime of the first excited state with the delayed-coincidence method. Using LS-coupling, we have derived the f-values for all components of the resonance multiplet. For numerous other transitions, including those involving shell-equivalent electrons, the Coulomb approximation has been employed in order to have data available for some of the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are normally expected; however, the uncertainties should be somewhat larger for those transitions involving shell-equivalent electrons.

Reference

[1] Lawrence, G. M., private communication (1968) and to be published.

Ar III. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(em^{-1})$	$E_k(\text{cm}^{-1})$	μı	μĸ	4 _{ki} (10 ⁶ sec ⁻¹)	f _{ir} .	S(at.u.)	log r	Accu- racy	Source
1	$3z^23p^4-3s3p^5$	3P_3P° (1 uv)	879.06	545	114303	ý	9	2.82	0.0327	0.85	-0.53	C	1
	0307	(1 41)	£73.728	0	113801	5	5	2.11	0.0245	0.354	-0.91	C.	ls.
		-	879.622	1112	114798	3	3	0.70	0.0082	0.071	-1.61	C	ls
			871.099	1112	114798	5 3	3	1.21 2.84	0.0082 0.0109	0.118 0.094	- 1.387 - 1.485		ls Is
			875.534 887.404	1112 1112	115328 113801	3	5	0.68	0.0109	0.094	- 1.463 - 1.393		ls
			883.179	1570	114798	ĭ	3	0.92	0.0323	0.094	-1.491		ls
2	3p ³ 3d 3p ³ (4S°)4p	5D°-5P (6 uv)											
	Sp (5).p	(0 1.7	1669.67	144907	204797	9	7	1.7	0.054	2.7	-0.31	E	ca, Is
		•	1673.43	144893	204649	7	5	1.2	0.036	1.4	-0.59	E	ca, ls
			1675.64	144886	204563	5	3	0.76	0.019	0.53	-1.02	E	ca, ls
			[1669.3]	144893 144893	204797 204649	7 5	7 5	0.43 0.76	0,018 0,032	0.70 0.88	-0.90 -0.80	E	ca, ls
			[1673.5] [1675.6]	144883	204563	3	3	0.10	0.041	0.68	-0.91	Ë	ca, ls
			[1669.1]	144886	204797	5	7	0.062	0.0036	0.10	-1.71	E	ca. ls
		•	[1673.2]	144883	204649	3	5	0.26	0.014	0.23	- 1.39	E	ca, ls
3		3D°_3P (7 uv)	1915.6	156943	209145	15	9	2.1	0.071	6.7	0.03	E	ca
			1914.40	156918	209152	7	5	1.8	0.071	3.1	0.31	E	ls.
			1915.56	156925	209127	5	3	1.6	0.053	1.7	-0.58	E	ls
			[1918.1] [1914.7]	157031 156925	209166 209152	3 5	1 5	$\frac{2.1}{0.32}$	0.039 0.018	0.75 0.56	- 0.93 - 1.05	E E	ls ls
			[1914.7]	157031	209132	3	3	0.54	0.016	0.56	-1.05	E	ls
			[1918.6]	157031	209152	3	5	0.021	0.0020	0.037	-2.23	Ë	ls
4	3p33d' — 3p3(2D°)4p'	³F°_3F (8 uv)	2504.1	186606	226529	21	21	0.31	0.029	5.1	-0.21	E	ca
	Gp (2 , .p	(0 41)	2484.11	186402	226646	9	9	0.30	0.027	2.0	-0.61	E	ls
			2508.91	186657	226503	7	7	0.26	0.025	1.4	-0.76	E	ls.
			2533.92	186903	226356	5	5	0.27	0.026	11	~ 0.88	E	ls
			[2493.0] [2518.2]	186402 186657	226503 226356	7	5	0.025	0.0018	0.14	-1.78	E	ls Is
	1		[2499.9]	186657	226546	7	9	0.034 0.020	0.0023 0.0024	0.14	- 1.79 - 1.78	E	ls ls
			[2524.5]	186903	226503	5	7	0.025	0.0023	0.14	- 1.79	Ë	ls
5		² D°- ³ D (9 uv)	2690.3	188108	225268	15	15	0.48	0.052	7.0	-0.10	E	ca
		(> 4,)	2724.84	188714	225403	7	7	0.42	0.047	3.0	-0.48	E	ls
			2678.38	187823	225148	5	5	0.34	0.036	1.6	-0.74		ls.
			2631.90	187171	225155	3	3	0.37	0.039	1.0	-0.93	E	ls
			[2743.9] [2677.9]	188714 187823	225148 225155	5	5 3	0.073 0.12	0.0059 0.0078	$0.37 \\ 0.35$	- 1.39	F.	ls
			[2660.2]	187823	225403	5	7	0.12	0.0081	0.36	-1.41 -1.39	E	ls Is
		}	[2632.4]	187171	225148	3	5	0.075	0.013	0.34	- 1.41	Ë	ls
6		3D°-3P (10 uv)	2304.8	188108	231483	15	9	0,65	0.031	3.5	-0.33	E	ca
			2345.17	188714	231342	7	5	0.54	0.032	1.7	- 0.66	E	ls.
			2282.21	187823	231627	5	3	0.49	0.023	0.87	-0.94	E	ls.
			2242.29	187171	231755	3		0.67	0.017	0.37	-1.30	E	ls.
			[2297.1] [2248.7]	187823 187171	231342 231627	5 3	5 3	0.098 0.17	0.0077 0.013	0.29 0.28	-1.41 -1.42	E E	ls Is
			[2263.2]	187171	231342	3	5	0.0066	8.5 × 10-4	0.28	-2.60	E	ls
7	3d³3d" - 3p³(²P°)4p"	³P°≎P (6)	3432.6	214152	243276	9	9	0.25	0.044	4.4	-0.41	Е	ca
	. , , ,		3391.85	213951	243425	5	5	0.19	0.033	1.8	-0.79	E	ls
			[3471.4]	214347	243146	3	3	0.060	0.011	0.37	-1.49	E	ls
			[3424.3]	213951	243146	5	3	9.10	0.011	0.61	-1.26	E	ls.
			[3498.3] [3438.0]	214347 214347	242924 243425	3	5	0.24 0.062	0.015 0.018	0.50 0.62	-1.36 -1.26	E	ls
			[3498.1]	214568	243147		3	0.002	0.044	0.62	- 1.26 - 1.36	E E	/s /s

a sales and the sales of

Ar III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	μ,	#k	$A_{ki}(10^{\mu} m sec^{-1})$	fik	S(at.u.)	· log gf	Accu- racy	Source
8	$3p^3.4s - 3p^3(^4S^\circ)4p$	⁵ S°- ⁵ P	3296.6	174375	204701	5	15	2.0	0.99	54	0.69	D	ca
			3285.85	174375	204797	5	7	2.0	0.46	25	0.37	D	ls
			3301.88	174375	204649	5	5	2.0	0.33	18	0.22	D	/s
			3311.25	174375	204564	5	3	2.6	0.20	11	-0.01	D	ls
9	$\begin{vmatrix} 3\rho^3 4s' - \\ 3\rho^3 (^2\mathbf{D}^\circ) 4\rho' \end{vmatrix}$	³ D° - ³ D (2)	3492.1	196640	225268	15	15	1.7	0.32	54	0.68	D	ca
			3480.55	196680	225403	7	7	1.6	0.28	23	0.29	D	Is
			3503.58	196614	225148	5	5	1.2	0.22	13	0.04	D	ls.
			3499.67	196589	225155	3	3	1.3	0.24	8.1	-0.15	D	ls
			[3511.7]	196680	225148	7	5	0.26	0.035	2.8	-0.61	D-	ls
		1 .	[3502.7]	196614	225155	5	3	0.43	0.047	2.7	-0.63	D-	ls
			[3472.6]	196614	225403	5	7	0.20	0.049	2.8	-0.61	D-	ls
			[3500.5]	196589	225148	3	5	0.26	0.078	2.7	-0.63	D-	/s
10		³ D°- ³ F	3344.8	196640	226529	15	21	2.0	0.46	76	0.84	D	ca
			3336.13	196680	226646	7	9	2.0	0.43	33	0.47	D	ls
	•		3344.72	196614	226503	5	7	1.8	0.41	23	0.31	D	ls
			3358.49	196589	226356	3	5	1.6	0.46	15	0.14	D	ls.
		i	[3352.2]	196680	226503	7	7	0.22	0.037	2.8	-0.59	D-	Is
			[3361.3]	196614	226356	5 7	5	0.30	0.051	2.8	-0.59		ls
			[3368.8]	196680	226356	7	5	0.0085	0.0010	0.081	-2.15	E	ls
11	$3p^34s'' - 3p^3(^2P)4p''$	³ P∞_3D (4)	3041.4	207382	240252	9	15	2.5	0.58	52	0.72	D	ca
			3024.05	207233	240292	5	7	2.6	0.49	24	0.39	D	ls
			3054.82	207532	240258	3	5	1.9	0.44	13	0.11	Ď	ls
			3078.15	207673	240151	1	3	1.4	0.58	5.9	-0.24	D~	Is
			[3027.1]	207233	240258	5	5	0.64	0.088	4.4	-0.36	D-	İs
			3064.77	207532	240151	3	3	1.0	0.15	4.4	-0.36	D-	Is
			[3037.0]	207233	240151	5	3	0.070	0.0058	0.29	-1.54	E	Is

Ar III

Forbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have been averaged, except for the $^{3}P-^{1}S$ transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Czyzak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

Ar III. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^4 - 3p^4$	3P_3P										
•	or or		[89896]	0.00	1112.1	5	3	e	3.62×10^{-7}	3.80	С	2
		1	[89896]	0.00	1112.1	5	3	m	0.0308	2.49	Ç B	1
			[63669]	0.00	1570.20	5	1	e	2.72×10^{-6}	1.69	C	2
		Ì	$[21.823 \times 10^4]$	1112.1	1570.20		1	m	0.00519	2.00	A	1
2	ŀ	3P-1D	1						ı		3	
-		(1F)	7135.80	0.00	14010.0	5	5	e	0.0014	0.077	D	2
		(***)	7135.80	0.00	14010.0	5	5	m	0.0321	0.00216	Č	1. 2
		ł	7751.06	1112.1	14010.0	3	5	e	1.3×10^{-4}	0.011	Ď	2
		į	7751.06	1112.1	14010.0	3	5	m	0.083	0.0072	Č	1, 2
			[8036.5]	1570.20	14010.0	1	5	e	2.9×10^{-5}	0.0029	Ď	2
3		3P_1S										
		(2F)	3005.1	0.00	33265.7	5	1	e	0.043	0.0062	D	2
	ļ	(2.7)	3109.0	1112.1	33265.7	3	1	m	4.02	0.00448	Č	2 2
4		1D-1S (3F)	5191.82	14010.0	33265.7	5		e	3.10	7.0	С	2

Ar IV

Ground State
Ionization Potential

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{3} \, {}^{4}S_{3/2}^{\circ}$ 59.79 eV = 482400 cm⁻¹

A STATE OF THE STA

Allowed Transitions

List of tabulated lines:

Wavelength [A]	No. Wavelength [No.	Wavelength [A]	No.	
840.029 843.772 850.602 2562.1 2565.5	1 1 1 3 3	2640.34 2682.6 2757.92 2776.26 2782.9	3 3 5 2 5	2809.44 2818.3 2830.3 2852.0 2874.4	2 2 2 2 2 2	
2568.1 2608.06 2615.7	3 3 3	2784.47 2788.96 2797.1	5 2 2	2913.0 2926.3 3037.98	4 4 4	

Lawrence [1] has accurately measured the lifetime of the first excited state with the delayed-coincidence method. Using LS-coupling, we have derived the f-values for all components of the resonance multiplet. For several other transitions the Coulomb approximation has been employed in order to have some data on the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are expected; however these estimates should be regarded as provisional.

Reference

[1] Lawrence, G. M., private communication (1968) and to be published.

Ar IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	Kk	$\begin{array}{c} A_{ki}(10^{a} \\ \text{sec}^{-1}) \end{array}$	fir	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p^3 - 3s3p^4$	4S°_4P (1 uv)	846.54	0	118128	4	12	2.67	0.086	0.96	-0.463	С	1
		(1 4.7)	850.602	0	117564	4	6	2.63	0.0429	0.480	-0.77	С	ls
			843.772	0	118515	4	4	2.70	0.0288	0.320	-0.94	С	ls
			840.029	0	119044	4	2	2.73	0.0145	0.160	-1,237	C	ls
2	$3p^24s - 3p^2(^3P)4p$	4P_4D° (4 uv)	2810.9	251325	286890	12	20	2.6	0.51	57	0.79	D	ca
			2809.44	251972	287556	6	8	2.6	0.41	23	0.39	D	ls
			2788.96	250907	286752	4	6	1.9	0.32	12	0.11	D	ls
			2776.26	250219	286229	2	4	1.1	0.26	4.7	-0.29	D-	ls
			[2874.4]	251972	286752	6	6	0.73	0.091	5.1	-0.27	D-	ls
			[2830.3] [2797.1]	250907 250219	286229 285960	4 2	4 2	$\frac{1.4}{2.2}$	0.16 0.26	6.0 4.7	-0.19 -0.29	D-	ls Is
			[2818.3]	251972	286229	6	4	0.13	0.20	0.57	-1.21	E	İs
			[2852.0]	250907	285960	4	2	0.41	0.025	0.94	-0.99	Ĕ	ls
3		4P_4P° (5 uv)	2617.5	251325	289518	12	12	3.2	0.33	34	0.60	D	ca
		(5 41)	2640.34	251972	289835	6	6	2.2	0.23	12	0.14	D	ls
			2608.06	250907	289238	4	4	0.43	0.044	1.5	-0.75	E	ls
			[2565.5]	250219	289126	2	2	0.57	0.056	0.94	-0.95	E	ls
			[2682.6]	251972	289238	6	4	1.4	0.097	5.2	-0.23	D-	ls
			[2615.7]	250907	289126	4	2	2.7	0.14	4.7	-0.26	D-	ls
			[2568.1] [2562.1]	250907 250219	289835 289238	4 2	6	1.0 1.4	0.15 0.28	5.1 4.7	-0.22 -0.25	D- D-	ls Is
4		² P – ² D° (2)	2925.4	256930	291103	6	10	2.4	0.52	30	0.49	D	ca
	ļ	(-/	[2913.0]	257349	291668	4	6	2.5	0.47	18	0.27	D	ls
			[2926.3]	256093	290256	2	4	2.0	0.51	9.9	0.01	D	ls
			3037.98	257349	290256	4	4	0.36	0.050	2.0	-0.70	E	İs
5	$3p^2 4s' - 3p^2(^1D)4p'$	² D− ² F°	2769.2	268159	304260	10	14	2.7	0.44	40	0.64	D	ca
			2757.92	268151	304400	6	8	2.8	0.42	23	0.40	D	ls
			2784.47	268171	304074	4	6	2.5	0.44	16	0.24	D	ls
			[2782.9]	268151	304074	6	6	0.18	0.021	1.1	-0.90	E	ls

Ariv

Forbidden Transitions

All the values for this ion are taken from Czyzak and Krueger [1], since they have included the important effects of configuration interaction and have used self-consistent field wavefunctions with exchange to obtain their value of s_q . (For a more complete discussion see General Introduction.)

Reference

[1] Czyzak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

- Value Constitution

Ariv. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g,	μ _l :	Type of Transi- tion	$A_{ki}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3\mu^{3}-3\mu^{3}$	4S°-2D°										
		(1F)	4711 22	0.00	21210 5		_		0.00160	2.70 × 10-5		1
			4711.33 4711.33	0.00	21219.5 21219.5	4	6	m	0.00160	3.72×10^{-5} 0.066	C	1
		1 1	4711.33 4740.20	0.00		4	4	e m	0.0080	0.000	C	1
			4740.20 4740.20	0.00		4	4	"" e	0.072	0.00113	Ď	l
2		S°-2P°										
_		3 - 1	[2853.6]	0.00	35032.3	4	4	m	2.55	0.0088	С	1
		1 1	[2853.6]	0.00		4	4	e	1.6×10^{-5}	7.0×10^{-8}	Ď	i
		1	[2868.2]	0.00	34855.4	4	2	m	0.97	0.00170	Č	1
		ł	[2868.2]	0.00	34855.4	4	2	e	1.2×10-4	2.8×10^{-5}	D	1
3		² D° – ² D°										
			$[77.38 \times 10^{4}]$	21090.3	21219.5	4	6	m	2.33×10^{-5}	2.40	A	1
			$[77.38 \times 10^4]$	21090.3	21219.5	4	6	e	1.1×10^{-13}	0.11	D	l
4		² D°− ² P°										ł
		(2F)										
	1		7237.26	21219.5	35032.3	6	4	m	0.444	0.0249	C	1
		1	7237.26	21219.5	35032.3	6	4	e	0.226	10.7	C	1
] :	7262.76	21090.3	34855.4	4	2	m	0.488	0.0139	C	1
			7262.76	21090.3	34855.4	4	2	e	0.190	4.57	C	1
	İ		7332.0	21219.5	34855.4	6	2	e	0.122	3.08	C	1
			7170.62 7170.62	21090.3 21090.3	35032.3 35032.3	4	4	m	0.81 0.098	0.0445 4.42	C	
		450 451		2,0,0,0	3,755=10			,	0.070	1.72		
5		2P°-2P°	fee en 10:3	24055	050000							
			$[56.51 \times 10^4]$	34855.4	35032.3	2	4	m	4.97×10^{-5}	1.33	A	
			$[56.51 \times 10^4]$	34855.4	35032.3	2	4	e	4.1×10^{-13}	0.055	D	1

Ar V

Ground State

 $1s^22s^22p^63s^23p^2$ ³P₀

Ionization Potential

 $75.0 \text{ eV} = 605100 \text{ cm}^{-1}$

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky. C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Arv. Allowed Transitions

No.	Transition Array	Muttiplet	A(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻¹)	g _i	¥k	$A_{ki}(10^8$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p^2 - 3s3p^3$	3P3D°	830.94 834.878 827.055 822.159 [835.80] [827.36] [836.12]	2032 765 0 2032 765 2032 2032	121730 121810 121678 121632 121678 121632 121632	9 5 3 1 5 3 5	15 7 5 3 5 3	29 29 22 17 7.2 12 0.80	0.50 0.42 0.38 0.51 0.075 0.13 0.0051	5.8 3.1 1.4 1.0 1.0 0.070	0.66 0.32 0.06 -0.29 -0.43 -0.42 -1.60	EEEEEE	ls ls ls ls ls

Ar VForbidden Transitions

The adopted values have been derived from Naqvi [1], and Czyzak and Krueger [2]. Since their methods are essentially alike, Naqvi's and Czyzak and Krueger's magnetic dipole transitions have normally been averaged, except for the $^3P-^1S$ transition where configuration interaction is important. In this case Czyzak and Krueger's empirically derived value has been preferred over Naqvi's, which is based purely on theory (see also General Introduction).

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Czyzak, S. J. & Krueger, T. K., Monthly Notices Roy. Astron. Soc. 126, 177-194 (1963).

Arv. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	Ek	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^2 - 3p^2$	3P _ 3P	[13.07×10 ⁴] [49199] [78905] [78905]	0 0 765 765	765 2032 2032 2032 2032	1 1 3 3	3 5 5 5	m e m	0.00805 1.33×10 ⁻⁶ 0.0273 '2.79×10 ⁻⁷	2.00 1.14 2.49 2.54	A C B C	1 2 1 2
2		³ P_ ¹ D (1F)	6131.0 6435,10 6435.10 7005.67 7005.67	0 765 765 2032 2032	16301 16301 16301 16301 16301	1 3 3 5 5	5 5 5 5 5	e m e m	4.9 × 10 ⁻⁵ 0.223 3.5 × 10 ⁻⁴ 9.52 0.0016	0.0013 0.0110 0.011 0.0329 0.079	D C D C D	1, 2 2 1, 2 1, 2 2
3		3P_1S	[2691.1] [2786.1]	765 2032	37914 37914	3 5]]	m e	6:8 _. 0.081	0.00493 0.0081	C D	2 2
4		¹ D- ¹ S (2F)	4625,54	16301	37914	5_	1	e	3.8	4.8	D	2

 $1s^22s^22p^63s^23p^2P_{1/2}^{\circ}$

Ionization Potential

 $91.3 \text{ eV} = 736600 \text{ cm}^{-1}$

Allowed Transitions

The screening-approximation calculations of Varsavsky [1] for the $3s^23p^2P^\circ-3s3p^2^2D$ multiplet are considered to be rather uncertain (probably too high, as judged from comparisons in other ions) since the important effects of configuration mixing are neglected entirely. Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the $3p^2P^\circ-4s^2S$ multiplet; these results should be reliable to within 25 percent, as judged from plots depicting f-value dependence on nuclear charge.

References

- [1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

Ar VI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23\rho - 3s3\rho^2$	2P°-2D	763,00	1473	132534	6	10	33	0.48	7.3	0.46	Е	1
			[767.06] [754.93] [767.71]	2210 0 2210	132578 132468 132468	4 2 4	6 4 4	33 28 5.4	0.44 0.48 0.048	4.4 2.4 0.48	$\begin{array}{c c} 0.25 \\ -0.02 \\ -0.72 \end{array}$	E E E	ls Is Is
2	3p-(1S)4s	2P°-2S	293.42	1473	342286	6	2	205	0.088	0,51	-0.277	С	2
			[294.05] [292.15'	2210 0	342286 342286	4 2	2 2	136 69	880.0 880.0	0.341 0.169	-0.453 -0.75	C C	ls Is

Ar vi

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Arvi. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_t(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μį	μĸ	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.n.)	Aceu- racy	Source
1	3p=(1S)3p	5bo [—] 5bo	[45237]	0	2210	2	4	m	0.097	1.33	A	1

1s22s22p63s21So

Ionization Potential

 $124.0 \text{ eV} = 1000400 \text{ cm}^{-1}$

Allowed Transitions

The charge-expansion technique of Crossley and Dalgarno [1], which includes limited configuration mixing, has been employed for the majority of the transitions in this spectrum; while Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3s3p $^3P^{\circ}-3s4s$ 3S multiplet. For many of these transitions, the dependence of oscillator strength on nuclear charge has served as an aid in estimating accuracies.

References

- [1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

Ar VII. Allowed Transitions

No.	Transition Array	Multiplet	γ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ľί	Kk	$A_{ki}(10^8)$ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	1S_1P°	[585.75]	0	170720	1	3	78.3	1.21	2.33	0.083	В	1
2	$3s3p - 3p^2$	3P°-3P	637,30	[14744]	[271657]	9	9	67	0.408	7.7	0.56	C+	1
			[637.05] [637.47] [644.38] [641.32] [630.30] [634.22]	[115581] [113900] [115581] [113900] [113900] [113095]	[272554] [270770] [270770] [269829] [272554] [279770]	5 3 5 3 3	5 3 1 5 3	50 16.7 27.0 66 17.3 22.8	0.306 0.102 0.101 0.136 0.172 0.412	3.21 0.64 1.07 0.86 1.07 0.86	0.185 -0.51 -0.297 -0.389 -0.287 -0.385	C+ C C C C	ls ls ls ls ls
3	$3s3p - 3s(^2S)3d$	ab∞=aD	477.55 [479.38] [475.66] [473.97] [479.49] [475.78] [479.62]	[114744] [115581] [113900] [113095] [115581] [113900] [115581]		9 5 3 1 5 3 5	15 7 5 3 5 3	99.2 98.0 75.3 56.4 24.5 41.8 2.7	0.565 0.473 0.426 0.570 0.0845 0.142 0.0056	8.00 3.73 2.00 0.889 0.667 0.667	0.706 0.374 0.107 -0.244 -0.374 -0.371 -1.55	B B B B B	ls ls ls ls ls
4	3s3p - 3s(2S)4s	ab ₀ =33	250,41 [250,94] [249,89] [249,38]	[114744] [115581] [113900] [113095]	[514083] [541083] [541083] [514083]	5 3 1	3 3 3 3	278 154 93 31.1	0.087 0.087 0.087 0.087	0.65 0.359 0.215 0.071	-0.106 -0.362 -0.58 -1.060	C C C C	ls ls ls

Ar VII

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P°-³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[t] Naqvi, A. M., Thesis Harvard (1951).

ArvII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Α)	$\mathcal{E}_t(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ.	μı	Type of Transi- tion	$I_{ki}(\sec^{-1})$	S(at.g.)	Accu- racy	Source
1	$3s3p + 3s(^2S)3p$	э Ь «—я Ь «	[12.42×10 ⁴] [59470]	[1130 ⁰ 5] [113900]	{113900} [115581]	1 3	3 5	m m	0.00939 0.0641	2.00 2.50	B B	i l
2		1)-1)-1	[1735.4] [1759.9] [1813.6]	[113095] [113900] [115581]	170720 170720 170720	1 3 5	3 3 3	m m m	1,34 48.8 1,47	7.8 × 10 ⁴ 0.0296 9.7 × t0 ⁴	C- C- C-	 1 1

Ar VIII

Ground State

Ionization Potential

 $1s^22s^22p^63s^2S_{1,2}$

 $143.46 \text{ eV} = 1157400 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [A]	No.	Wavelength [Å]	No.	Wavelength [A]	No.
120.09	3	337 09	6	545,90	11
120.16	3	337.26	6	700.24	i
158.92	2	338.22	6	713.81	i
159.17	2	519.43	4	1411.4	10
184.30	8	526.45	4	1463.9	10
229.44	5	526.87	4	1465.5	10
230.88	5	542.94	11	1875.2	9
260,30	7			1910.9	9

The only source available for this ion are the charge-expansion calculations of Crossley and Dalgarno [1] which include limited configuration mixing. Graphical comparisons of this work with more refined values within the isoelectronic sequence indicate accuracies within 25 percent. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values simply by graphical interpolation.

Reference

^[1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).

Ar vIII. Allowed Transitions

θ.	Transition Array	Multiplet	A(A)	$E_i(\mathrm{cm}^{-1})$	<i>L</i> _A (en.⁻¹)	βı	μk	$\frac{A_{ki}(10^{6}}{\mathrm{sec}^{-1})}$	f _{ik}	S(at.u.)	log gf	Accu- racy	Source
1	3s + 3p	2S = 2P°	704.87	0	141870	2	6	25.4	0.57	2.63	0.057	C:	
			[700.24] [713.81]	0	142776 140058	2 2	4 2	25.8 24.5	0.380 0.187	1.75 0.88	-0.119 -0.427	C.	
2	3s 4p	2S-2P°	159.01	0	628905	2	6	110	0.12	0.13	-0.62	С	inte
			[158.92] [159.17]	0	629237 628240	2 2	4 2	110 110	0.083 0.041	0.087 0.043		C	
3	3s - 5p	${}^{2}S - {}^{2}P^{c}$	120.11	0	832542	2	6	60	0.039	0.031	-1.11	D	inte
			[120.09] [120.16]	0	832691 832245	2 2	4 2	61 58	0.027 0.013	0.021 0.010	-1.27 -1.59	D D	
4	3p-3d	2P°—2D	524.12	141870	332667	6	10	73	0,50	5.2	0.477	С	
			[526,45] [519,43] [526,87]	142776 140058 142776	332727 332576 332576	4 2 4	ó 4 4	72 63 12	0,450 0,51 0,050	3.12 1.73 0.35	0.255 0.009 -0.70	C C D	
5	3p-4s	² P°- ² S	230.39	141870	575910	6	2	350	0.093	0.42	-0.25	C	inte
			[230,88] [229,44]	142776 140058	575910 575910	4 2	2 2	230 120	0.092 0.093	0.28 0.14	-0.43 -0.73	C	
6	3d = 4p	2]) = 2]P°	337.57	332667	628905	10	6	120	0.12	1.3	0.08	C	inter
			[337.26] [338.22] [337.09]	332727 332576 332576	629237 628240 629237	6 4 4	1 2 1	10K) 11O 12	0.12 0.097 0.020	0.78 0.43 0.087	$ \begin{array}{r} -0.14 \\ -0.41 \\ -1.10 \end{array} $	C C D	
7	3d - 1f	${}^{2}D = {}^{2}F^{\circ}$	260.30	332667	716837	10	14	650	0.92	7.9	0.96	C+	inter
8	3d = 5f	2]) =2F°	184.30	332667	875265	10	14	240	0.17	10	0.23	С	inter
9	4s-4p	${}^{2}S = {}^{2}P^{\circ}$	188*.0	575910	628905	2	6	5.1	0.82	10	0.21	С	inte
			[4875.2] [1910.9]	575910 575910	629237 628240	2 2	1 2	5.1 4.8	0.54 0.26	6.7 3.3	$-0.03 \\ -0.28$	C	
0	4p-4d	2P° = 2D	1457.5	628905	697517	6	10	17	0.92	26	0.74	С	inte
			[1463.9] [1441.4] [1465.5]	629237 628240 629237	697548 697471 697471	1 2	6 4 4	17 15 2.7	0.83 0.91 0.088	16 8.7 1.7	0.52 0.26 -0.45	C C D	
l	$4\mu - 5s$	² P°= ² S	544.91	628905	812422	6	2	110	0.16	1.7	-0.02	С	inter
			[515.90] [512.91]	629237 628240	812422 812422	1 2	2 2	68 36	8.15 0.16	1.1 0.57	- 0.22 - 0.49	C	

1s22s22p6 1S0

Ionization Potential

422.6 eV

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wave functions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Ar IX. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μ,	<i>1</i> 4	4 _{ki} (10" sec 1)	.f.ik	S(at.u.)	log gf	Acen- racy	Source:
l	$\frac{2p^{6} - 2p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})3s}{2p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})3s}$	1S3 p ∞							The second secon				•
	= i 1 3/2/00		[49.180]	0	2033350	1	3	480	9.052	0.0084	-1.28	E	1
2	$\frac{2p^6 - 2p^5(^2\mathbf{P}_{1/2}^2)3s}{2p^5(^2\mathbf{P}_{1/2}^2)3s}$)S=!P°	[48,730]	0	2052120	1	3	1300	0.14	0.022	-0.85	D	1

Ar X

Ground State

 $1s^22s^22p^5$ $^2P_{3/2}^{\circ}$

Ionization Potential

?

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability is not as accurate, since the energy level difference is not accurately known.

Reference

[1] Nagvi, A. M., Thesis Harvard (1951).

Ar x. Forbidden Transitions

No.	Tran sition Array	Multiplet	λ(Α)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķ,	μĸ	Type of Transi- tion	$I_{ki}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	² P° = ² P° (1F)	5536	0	[18059]	4	2	m	106	1.33	В	1

 $1s^22s^22p^4$ ³P₂

Ionization Potential

9

Forbidden Transitions

The sources used in deriving the adopted values are Naqvi [1], and Malville and Berger [2]. The electric quadrupole value of Naqvi has been modified by substituting Malville and Berger's quadrupole moment s_q , since this is obtained from self-consistent field wave functions, while Naqvi used the less elaborate screened hydrogenic wave functions.

References

- [1] Naqvi, A. M., Thesis Harvard (1951).
- [2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

Ar XI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Α)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	μĸ	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	лР —лР (1F)	6919 6919	0	14449 14449	5 5	3 3	e m	3.9×10 ⁻⁴ 66.5	0.011 2.45	D B	1, 2

Ar XIII

Ground State

 $1s^22s^22p^2$ ³P₆

Ionization Potential

2

Forbidden Transitions

Krueger and Czyzak's [1] values have been used for this ion, except for the magnetic dipole ${}^{3}P_{0,1} - {}^{3}P_{1,3}$ transitions where Naqvi's [2] results have been applied. Some wavelength data are from observed coronal lines. The electric quadrupole moment (s_q) is based on self-consistent field wave functions with exchange.

References

- [t] Krueger, T. K. and Czyzak, S. J., Astrophys. J. 144, 1194-1202 (1966).
- [2] Naqvi, A. M., Thesis Harvard (1951).

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	¥:	μĸ	Type of Tran- sition	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3P = 3P	[9960] [4579] 8475.7 8475.7	0 0 [10040] [10040]	[10040] [21835] [21835] [21835]	1 1 3 3	3 5 5 5	m e m e	17.9 7.9×10-4 21.5 7.4×10-5	1.97 0.0047 2.43 0.0097	B- C- B C	2 1 2 1
		3 b− 1D	[1165] [1319] [1319] [1562] [1562]	0 [10040] [10040] [21835] [21835]	[85840] [85840] [85840] [85840] [85840]	1 3 3 5 5	5 5 5 5 5	e m e m	0.0022 242 0.035 420 0.10	1.4×10 ⁻⁵ 0.103 4.2×10 ⁻⁴ 0.296 0.0028	C	1 1 1 1
		³ P - ¹ S	[675.3] [733.7] [1383]	[10040] [21835] [85840]	[158100] [158100] [158100]	3 5 5	1	m e	3030 2.7 5.5	0.0346 3.4 × 10 ⁻⁴ 0.017	C D	1 1

Arxiv

Ground State

 $1s^2 2s^2 2p\ ^2 \mathrm{P}_{1/2}^{\circ}$

Ionization Potential

?

The state of the s

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi[1]. The transition probability should also be quite accurate, since the energy level difference is accurately known

Reference

[1] Naqvi. A. M., Thesis Harvard (1951).

Ar XIV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\epsilon \mathrm{m}^{-1})$	Ľ,	μĸ	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Acen- racy	Source
1	2p — 2p	2 P°—2P °	4412.4	0	22657	2	4	m	104	1.33	A	1

POTASSIUM

Κı

Ground State

 $1s^22s^22p^63s^23p^64s^2S_{1/2}$

Ionization Potential

 $4.339 \text{ eV} = 35009.78 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2927.5	24	6964.18	35	10904	73
2942.7	23	6964,69	35	10925	81
2963.2	22			10927	73
		7541.5	66		13
2992.2	21	7618.9	65	10948	81
3034.8	20	7664.91	15	11022.3	10
3101,9	19	7698.98	15	11237	72
3217.15	18	7722.3	64	11261	72
3217.62	18	7865.5	63	11270	80
3246.38	17	8037.3	8	11294	80
3247.41	17	8038.9	8	11690.2	34
40.4.15	16	00000		11744	7.
4044.15	16	8039.3	8	11744	71
4047.21	16.	8072.5	62	11769.7	34
4741.6	33	8192.5	7	11770	71
4744.4	42	8194.1	7	11772.8	34
4754.6	33	8194.6	7	11793	79
4757,4	42	8250.2	14	11820	79
4786.9	32	8251.7	14	12432.2	25
4791.0	41	8390.3	61	12522.1	25
4800,2	32	8391.5	61	12526	58
4804.3	32 41	8417.3		12540	58
4004.3	+1	0+17.3	6	12540	58
4850.0	31	8419.0	6	12580	70
4856.1	40	8419.8	6	12610	70
4863.6	31	8503.5	13	12659	78
4869,8	40	8505.3	13	12690	78
4942.0	30	8763.6	5	13377.9	2
4950.8	39	8765.4	5	13382	2
4956.1	30	8766.8	5	13397.1	2 2
4965,0	39	8902.2	12	14153	69
5084.3	29	8904.1	12		
5097.2	38	8923.5	60	14191 14293	69 77
5000 n	20	0005			
5099.2	29	8925.6	60	14332	77
5112.2	38	9347.0	4	14807	50
5323,4	28	9349.1	4	14810	50
5339,8	28	9351.4		14811	50
5343.1	37	9595.60	11	15163	9
5359.6	37	9597.76	11	15163.1	9
5359.7	37	9950.5	59	15168.4	9
5782.4	27	9955.2	59		-
5801.8	27	10479	3	15203	49
5812.2	36	10479	3	15205 15207	49
	26	10497	2		
5831.7	36	10487	3	15768	48
5831.9	36	10672	74	15770	48
6911.1	26	10686	82	15772	48
6936.27	35	16693	74	15984	56
6938,8	26	10707	82	16622	47

Kt. Allowed Transitions - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
16625	47	20685	45	31591	1
16628	47	20690	45	36363	67
16963	55	20701	45	36613	67
17939	68	21945	53	37072	75
18000	68	27068	57	37335	75
18029	46	27185	44	37348	75
18033	46	27193	44	62068	43
18038	46	27206	57	62110	43
18229	76	27226	44	62436	43
18292	76	31162	52	136900	51
18298	76	31381	1		
18627	54	31404	1 1		ŀ

The value for the 4s-4p resonance doublet is the average of three experimental and two theoretical determinations. The experiments include an absolute anomalous dispersion measurement by Ostrovskii and Penkin [2] and lifetime determinations using the phase-shift method by Link [3] and the Hanle effect by Schmieder, et al. [4]. The theoretical approaches considered the most refined available are a self-consistent field calculation (SCF), done in both the length and velocity approximations and including core-relaxation effects, by Weiss [5] and a similar SCF calculation, but instead including core polarization effects, by Hameed et al. [6]. Very good agreement among the averaged values suggests an accuracy within 10 percent.

For the 4s-np series the anomalous dispersion measurements of Filippov [7] are chosen in preference to the available theoretical calculations which are considered unreliable due to cancellation in the radial integral for these transitions. Filippov's values are normalized such that his value for the 4s-4p transition agrees with the above adopted value. Based mainly on the reliability of Filippov's values for the similar 3s-np series in Na I. the accuracy for these transitions is estimated to be within 25 percent. Values for a few of the higher members of this series are obtained by graphical extrapolation. Schmieder, et al. [4] have measured the lifetime of the 5p state which confirms Filippov's adopted value for 4s-5p (see fig. 7 in the General Introduction), if Anderson and Zilitis' [1] results are used to take account of the 5s-5p and 3d-5p transitions.

Weiss has included the 4p-3d transition in his SCF calculations described above. Dipole length and velocity approximations agree well and their average is within 10 percent of the value calculated by Villars [8] using the SCF approach and including a polarization potential.

Values for most of the members for the 4p-ns and 4p-nd series are available from Villar's SCF calculations and from the absolute flame intensity measurements of Van der Held and Heierman [9]. For the 4p-ns series, agreement is usually good and the results have been averaged (see fig. 9 in General Introduction). For the 4p-nd series the values are obtained by graphically averaging the two results (fig. 8 in General Introduction). Whenever these sources are not available for these series, the semi-empirical calculations of Anderson and Zilitis [1] are employed or the results are obtained by means of extrapolation or interpolation.

For all other transitions in the remaining series, the semi-empirical calculations of Anderson and Zilitis are adopted with accuracies expected to be within 50 percent.

References

- [1] Anderson, E. M., and Zilitis, V. A., Optics and Spectroscopy (U.S.S.R.) 16, 99-t01 (1964).
- [2] Ostrovskii, Yu. I., and Penkin, N. P., Optics and Spectroscopy (U.S.S.R.) 12, 379 (1962).
- [3] Link, J. K., J. Opt. Soc. Am. 56, t195-1199 (1966).
- [4] Schmieder, R. W., Lurio, A., and Happer, W., Phys. Rev. 173, 76-79 (1968).
- [5] Weiss, A. W., J. Res. NBS 71A (Phys. and Chem.) No. 2, t57-t62 (t967).
- [6] Hameed, S., Herzenberg, A., and James, M. G., J. Phys. B (Proc. Phys. Soc.) Ser. 2, 1, 822-830 (1968).
- [7] Filippov, A. N., Zhur. Ekspil. j. Teoret. Fiz. 3, 520-523 (1933) (translated in "Optical Transition Probabilities." Vol. 1).
- [8] Villars, D. S., J. Opt. Soc. Am. 42, 552-558 (1952).
- [9] Van der Held, E. F. M., and Heierman, J. H., Physica 3, 3t-4t (1936).

KI. Allowed Transitions

Νo.	Transition Array	Multiplet	λ (Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	μι	#k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
l	3d-5p	²D − ²P°	31453	21535.4	24713.9	10	6	0.016	0.14	140	0.15	D	1
			[31381] [31591] [31404]	21534.4 21536.8 21536.8	24720.2 2470i.4 24720.2	6 4 4	4 2 4	0.014 0.015 0.0015	0.14 0.11 0.022	84 47 9.3	-0.08 -0.36 -1.06	D D D	ls Is
2	3d-6p	²D − ²P°	13384	21535.4	29004.9	10	6	0.0041	0.0066	2.9	-1.18	D	1
			13377.9 13397.1 [13382]	21534.4 21536.8 21536.8	29007.7 28999.3 29007.7	6 4 4	4 2 4	0.0037 0.0041 4.1×10 ⁻⁴	0.0066 0.0055 0.0011	1.7 0.97 0.19	-1.40 -1.66 -2.36	D D D	ls Is
3	3d-7p	²D − ²P°	10482	21535.4	31073.0	10	6	0.0019	0.0019	0.66	-1.72	D	ì
			[10479] [10487] [10484]	21534.4 21536.8 21536.8	31074.5 31070.0 31074.5	6 4 4	4 2 4	0.0017 0.0019 1.9×10-4	0.0019 0.0016 3.2×10 ⁻⁴	0.39 0.22 0.044	-1.94 -2.20 -2.90	D D D	ls Is
4	3d-8p	²D − ²P°	9348.6	21535.4	32229.2	10	6	0.0011	8.4×10 ⁻⁴	0.26	-2.08	D	1
			[9347.0] [9351.4] [9349.1]	21534.4 21536.8 21536.8	32230.1 32227.4 32230.1	6 4 4	4 2 4	9.6×10 ⁻⁴ 0.0011 1.1×10 ⁻⁴	8.4×10 ⁻⁴ 7.0×10 ⁻⁴ 1.4×10 ⁻⁴	0.16 0.086 0.017	-2.30 -2.55 -3.25	D D D	ls Is
5	3d-9p	² D - ² P°	8764.8	21535.4	32941.5	10	6	6.7 × 10-4	4.6×10-4	0.13	-2.34	D	1
			[8763.6] [8766.8] [8765.4]	21534.4 21536.8 21536.8	32942.1 32940.3 32942.1	6 4 4	4 2 4	6.7×10^{-4}	4.6×10 ⁻⁴ 3.8×10 ⁻⁴ 7.7×10 ⁻⁵	0.080 0.044 0.0089	-2.56 -2.81 -3.51	D D D	1: 1: 1:
6	3d - 10p	²D−2P°	8418.2	21535.4	33411.1	10	6	4.4×10-4	2.8×10 ⁻⁴	0.078	-2.55	D	
:			[8417.3] [8419.8] [8419.0]	21534.4 21536.8 21536.8	33411.5 33410.3 33411.5	6 4 4	4 2 4	4.4×10^{-4}	$\begin{array}{c} 2.8 \times 10^{-4} \\ 2.4 \times 10^{-4} \\ 4.7 \times 10^{-5} \end{array}$	0.047 0.026 0.0052	-2.77 -3.03 -3.72	D D D	l. 1. l.
7	3d - 11p	² D − ² P°	8193.3	21535.4	33737.1	10	6	3.1 × 10-4	1.9×10-4	0.050	-2.73	D	1
			[8192.5] [8194.6] [8194.1]	21534.4 21536.8 21536.8	33737.4 33736.6 33737.4	6 4 4	4 2 4	3.1 × 10-4	$ \begin{array}{c c} 1.9 \times 10^{-4} \\ 1.6 \times 10^{-4} \\ 3.1 \times 10^{-5} \end{array} $	0.030 0.017 0.0034	-2.95 -3.21 -3.90	D D D	1. 1. 1
8	3d-12p	2D-2P°	8038.1	21535.4	33972.7	10	6	2.3×10 ⁻⁴	1.3×10-4	0.035	-2.88	D	
			[8037.3] [8039,3] [8038.9]	21534.4 21536.8 21536.8	33972.9 33972.3 33972.9	6 4 4	4 2 4	2.3×10^{-4}	$\begin{array}{c} 1.3 \times 10^{-4} \\ 1.1 \times 10^{-4} \\ 2.2 \times 10^{-5} \end{array}$	0.021 0.012 0.0023	-3.11 -3.36 -4.06	D D D	!! !!
9	3d-4f	²D ²F°	15165	21535.4	28127.7	10	14	0.16	0.75	370	0.88	D	
			15163.1 15168.4 [15163]	21534.4 21536.8 21534.4	28127.7 28127.7 28127.7	6 4 6	8 6 6	0.15 0.15 0.010	0.71 0.75 0.036	210 150 11	$0.63 \\ 0.48 \\ -0.67$	D D D	l. 1. 1.
0	$\begin{vmatrix} 3d-5f \end{vmatrix}$	² D - ² F° (9)	11022.3	21535.4	30605.6	10	14	0.066	0.17	61	0.23	D	
1	3d-6f	² D - ² F° (10)	9596.5	21535.4	31953.0	10	14	0.035	0.068	22	-0.17	D	
			9595.60 9597.76 9595.60	21534.4 21536.8 21534.4	31953.0 31953.0 31953.0	6 4 6	8 6 6	0.035 0.033 0.0024	0.065 0.068 0.0032	12 8.6 0.61	-0.41 -0.57 -1.71	D D D	1: 1: 1:
12	3d-7f	² D− ² F°	8903.0	21535.4	32764.5	10	14	0.021	0.035	10	-0.45	D	
			[8902.2] [8904.1] [8902.2]	21534.4 21536.8 21534.4	32764.5 32764.5 32764.5	6 4 6	6		0.034 0.035 0.0017	5,9 4.1 0,30	-0.70 -0.85 -1.99	D D D]

KI. Allowed Transitions-Continued

No.	Transition Acray	Multiplet	λ(A)	$E_i(\mathrm{cm^{-1}})$	$E_k(\mathrm{cm}^{-1})$	βi	μκ	$\frac{A_{ki}(10^8}{ m sec^{-1})}$	fik	S(at. n.)	log gf	Acen- racy	Source
3	3d-8f	² D- ² F°	8504.2	21535.4	33291.0	10	14	0.014	0.021	5.9	-0.68	D	ı
			[8503.5] [8505.3] [8503.5]	21534.4 21536.8 21534.4	33291.0 33291.0 33291.0	6 4 6	8 6 6	0.014 0.013 9.2×10-4	0.020 0.021 0.0010	3.4 2.4 0.17	-0.92 -1.08 -2.22	D D D	ls ls ls
14	3d-9f	² D− ² F°	8250.9	21535.4	33652.0	10	14	0.0095	0.014	3.7	-0.87	D	1
-			[8250.2] [8251.7] [8250.2]	21534.4 21536.8 21534.4	33652.0 33652.0 33652.0	6 4 6	8 6 6	0.0096 0.0089 6.4×10 ⁻⁴	0.013 0.014 6.5×10	2.1 1.5 0.11	-1.11 -1.26 -2.41	D D D	l: ls ls
15	4s-4p	$\begin{array}{c c} {}^{2}S - {}^{2}P^{\circ} \\ \hline (1) \end{array}$	7676.2	0.0	13023.7	2	6	0.385	1.02	51.6	0.310	B+	2, 3, 4, 5,
		(1)	7664.91 7698,98	0.0 0.0	13042.9 12985.2	2 2	4 2	$0.387 \\ 0.382$	0.682 0.339	34.4 17.2	0.135 -0.169	B+ B+	l Is
6	4s - 5p	${}^{2}S - {}^{2}P$ (3)	4045.2	0.0	24713.9	2	6	0.0124	0,0091	0.242	-1.74	C	7n
		(0)	4044.15 4047.21	0.0 0.0	24720.2 24701.4	2 2	4 2	0.0124 0.0124	0.0061 0.00305	0.161 0.081	-1.91 -2.215	C	ls is
7	4s-6p	² S- ² P° (4)	3446.7	0.0	29004.9	2	6	0.00168	9.0×10-4	0.0204	-2.74	С	7,
		(4)	3446,38 3447,41	0.0 0.0	29007.7 28999.3	2 2	4 6	0.00168 0.00168	6.0×10 ⁻⁴ 2.99×10 ⁻⁴	0.0136 0.0068	-2.92 -3.223	C	/s s
8	4s-7p	² S - ² P° (1 uv)	3217.3	0.0	31073.0	2	6	4.60×10-4	2.14×10-4	0.00453	-3.369	С	7,
		(1 44)	3217.15 3217.62	0.0 0.0	31074.5 31070.0	2 2	4 2	4.61 × 10 ⁻⁴ 4.57×10 ⁻⁴	1.43×10 ⁻³ 7.1×10 ⁻⁵	0.00303 0.00150	$-3.54 \\ -3.85$	C	1:
9	$4s-8\rho$	² S - ² P° (2 uv)	3101.9	0.0	32229.0	2	6	1.84×10-4	8.0×10 ⁻⁵	0.00164	-3.80	С	7 n
20	4s - 9p	² S - ² P° (3 uv)	3034.8	0.0	32941.5	2	6	9.4×10 ⁻⁵	3.90×10 ⁻⁵	7.8×10-4	-4.108	С	7,
21	$4s-10\mu$	² S - ² P° (4 uv)	2992.2	0.0	33411.1	2	6	5.4×10 ⁻⁵	2.19×10-5	4.31×10-4	-4.359	С	7 n
22	4s-11p	² S - ² P° (5 uv)	2963.2	0.0	33737.1	2	6	3.3×10 ⁻⁵	1.3×10-5	2.5×10-4	-4.59	D	extrap
23	4s - 12p	² S - ² P° (6 uv)	2942.7	0.0	33972.7	2	6	2.4×10 ⁻⁵	9.2×10 ⁻⁶	1.8×10-4	-4.71	D	extrap.
24	4s-13p	2S - 2P°	2927.5	0.0	34148.5	2	6	1.7×10-5	6.7×10-1	1.3×10 -4	-4.87	D	extrap.
25	4p-5s	$ \begin{array}{c} ^{2}P^{\circ} - {}^{2}S \\ (5) \end{array} $	12492	13023.7	21026.8	6	2	0.235	0.183	45.1	0,041	C	8
			12522.1 12432.2	13042.9 12985.2	21026.8 21026.8	1 2	2 2	0.156 0.079	0.183 0.183	30.2 15.0	-0.136 -0.437	C	ls Is
26	4p-6s	2P°-2S	6929.5	13023.7	27450.7	6	2	0.082	0.0196	2.69	-0.93	С	8. 9
			[6933,8] [6911.1]	13042.9 12985.2	27450.7 27450.7	4 2	2 2	0.054 0.0272	0.0196 0.0196	1.78 0.89	1.108 1.409	C	ls Is
27	4p - 7s	²P°−2S	5795.3	13023.7	30274.3	6	2	0.0369	0.0062	0.71	- 1.430	C	8, 9
			[5801.8] [5782.4]	13042.9 12985.2	30274.3 30274.3	4 2	2 2	0.0246 0.0123	0.0062 0.0062	0.474 0.235	-1.61 -1.91	C C	ls Is
28	4p-8s	2P°-2S	5334.3	13023.7	31756.0	6	2	0.0189	0.00269	0.283	-1.79	С	8, 9
			[5339.8] [5323.4]	13042.9 12985.2	31756.0 31756.0	4 2	2 2	0.0126 0.0063	0.00269 0.00268	0.189 0.094	-1.97 -2.271	C	ls Is

K1. Allowed Transitions - Continued

in.	Transition Array	Moniplet	λ (Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	¥i	μĸ	4 _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
9	4/1 – 9s	2P°-2S	5094.3	13023.7	32648.2	6	2	0.0105	0.00136	0.137	- 2.088	С	8,
			[5099.2] [5084.3]	13042.9 12985.2	32648.2 32648.2	4 2	2 2	9.0070 0.00350	0.00136 0.00136	0.092 0.0454	-2.263 -2.57	C	/
0	$4\mu - 10s$	2p°-2S	4951.4	13023.7	33214.4	6	2	0.0064	7.8 × 10 ⁻⁴	0.077	-2.327	C	8,
			[4956.1] [4942.0]	13042.9 12985.2	33214.4 33214.4	4 2	2 2	0.00425 0.00213	7.8 × 10 ⁻⁴ 7.8 × 10 ⁻⁴	0.051 0.0254	$ \begin{array}{r} -2.50 \\ -2.81 \end{array} $	C-	
1	4p - 11s	² P°- ² S	4859.0	13023.7	33598.2	6	2	0.0043	5.1 × 10 ⁻⁴	0.049	-2.51	c-	inter
			[4863.6] [4850.0]	13042.9 12985.2	33598.2 33598.2	4 2	2 2	0.0029 0.0014	5.1 × 10 ⁻⁴ 5.1 × 10 ⁻⁴	0.033 0.016	-2.69 -2.99	C-	
2	4p - 12s	² P°- ² S	4795.7	13023.7	33869.7	6	2	0.00310	3.57×10 ⁻⁴	0.0338	-2.61	c-	1,
			[4800.2] [4786.9]	13042.9 12985.2	33869.7 33869.7	4 2	2 2	0.00207 0.00103	3.57 × 10 ⁻⁴ 3.57 × 10 ⁻⁴	0.0225 0.0112	-2.78 -3.083	C-	:
2	4p-13s	2P°-2S	4750.3	13023.7	34069.3	6	2	0.0024	2.7×10-4	0.025	-2.79	c –	extra
			[4754.6] [4741.6]	13042.9 12985.2	34069.3 34069.3	4 2	2 2	0.0016 8.0 × 10-4	2.7×10^{-4} 2.7×10^{-4}	0.017 0.0084	-2.97 -3.27	C-	
ļ	4p-3d	² P°- ² D	11745	13023.7	21535,4	6	10	0.262	0.90	209	0.73	С	5
		(6)	11772.8 11690.2 11769.7	13042.9 12985.2 13042.9	21534.4 21536.8 21536.8	4 2 4	6 4 4	0.259 0.220 0.0434	0.81 0.90 0.090	125 69 14.0	0.51 0.255 0.444	CCC	
5	4p-4d	² P°- ² D	6955.2	13023.7	27397.4	6	10	3.1 × 10-4	3.7×10-4	0.051	-2.65	E	8n.
			6964.69 6936.27 6964.18	13042.9 12985.2 13042.9	27397.0 27398.1 27398.1	4 2 4	6 4 4	$\begin{vmatrix} 3.1 \times 10^{-4} \\ 2.6 \times 10^{-4} \\ 5.1 \times 10^{-5} \end{vmatrix}$	3.4×10^{-4} 3.7×10^{-4} 3.7×10^{-5}	0.031 0.017 0.0034	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E E E	
6	4p-5d	2 p° -2D	5825.3	13023.7	30185.4	6	10	0.0033	0.0028	0.32	-1.77	D	8n.
			[5831.9] [5812.2] [5831.7]	13042.9 12985.2 13042.9	30185.2 30185.7 30185.7	1 2 1		0.0032 0.0028 5.4×10-4	0.0025 0.0029 2.7×10-4	0.19 0.11 0.021	-2.00 -2.24 -2.97	D D D	
7	4p-6d	² P°− ² D	5354.1	13023.7	31695.6	6	10	0.0046	0.0033	0.35	-1.70	D	8n.
			[5359.7] [5343.1] [5359.6]	13042.9 12985-2 13042.9	31695.5 31695.8 .31695.8	4 2 4	6 4 4	0.0046 0.0040 7.6×10-4	0.0030 0.0034 3.3×10-4	0.21 0.12 0.023	-1.92 -2.17 -2.88	D D D	i i
3	4p-7d	2 l ³ - 2 l)	5107.2	13023.7	32598.5	6			0.6023	0.23	-1.86	D	8n.
			[5112.2] [5097.2] [5112.2]	13042.9 12985.2 13042.9	32598.5 32598.5 32598.5	1 2 1	6 4 4		0.0021 0.0023 2.2×10 ⁻⁴	0.14 0.077 0.015	-2.08 -2.34 -3.06	D D D	
)	1	2P°-2D	4960.2	13023.7	33178.4	6			0,0016	0.16	-2.02	D	8n
			[4965.8] [4950.8] [4965.0]	13042.9 12985.2	33178.4 33178.4	4 2	4	0.0022	0.0015 0.0016 1.7×10-4	0.096 0.053	$\begin{vmatrix} -2.22 \\ -2.49 \end{vmatrix}$	D D	

K1. Allowed Transitions-Continued

lo.	Transition Array	Multiplet	λ(Å)	$E_{t}(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	#k	$\frac{A_{ki}(10^8}{\text{sec}^{-1})}$	fik	S(at. u.)	log g/	Accu- racy	Sourc
0	4p-9d	2P°-2D	4865.2	13023.7	33572.1	6	10	0.0020	0.0012	0.12	2.14	D	8n, 9
			[4869.8] [4856.1] [4869.8]	13042.9 12985.2 13042.9	33572.1 33572.1 33572.1	4 2 4	4	0.0021 0.0018 3.5 × 10 ⁻⁴	0.0011 0.0013 1.2 × 10 ⁻⁴	0.072 0.040 0.0030	-2.36 -2.59 -3.32	D D D	1
l	4p - 10d	2P°-2D	4799.9	13023.7	33851.8	6	10	0.0016	9.0 × 10-4	0.085	-2.27	D	ln, 9
			[4804.3] [4791.0] [4804.3]	13042.9 12985.2 13042.9	33851.8 33851.8 33851.8	4 2 4	6 4 4	0.0016 0.0013 2.6 × 10 ⁻⁴	8.1×10^{-4} 8.9×10^{-4} 9.0×10^{-5}	0.051 0.028 0.0057	-2.49 -2.75 -3.44	D D D	
2	4p-11d	2P°-2D	4753.1	13023.7	34056.9	6	10	0.0012	6.6 × 10 ⁻⁴	0.062	-2.40	D	
			[4757.4] [4744.4] [4757.4]	13042.9 12985.2 13042.9	34056.9 34056.9 34056.9	4 2 4		0.0012 9.8 × 10 ⁻⁴ 1.9 × 10 ⁻⁴	5.9×10^{-4} 6.6×10^{-4} 6.6×10^{-5}	0.037 0.021 0.0041	-2.63 -2.88 -3.58	D D D	
3	4d-6p	² D- ² P°	62191	27397.4	29004.9	10	6	0.0086	0.30	610	0.48	D	
			[62068] [62436] [62110]	27397.0 27398.1 27398.1	29007.7 28999.3 29007.7	6 4 4	2	0.0078 0.0083 8.7 × 10 ⁻⁴	0.30 0.24 0.050	370 200 41	$0.26 \\ -0.02 \\ -0.70$	D D D	
4	4d-7p	² D- ² P°	27199	27397.4	31073.0	10	6	0.0029	0.019	17	-0.72	D	
			[27185] [27226] [27193]	27397.0 27398.1 27398.1	31074.5 31070.0 31074.5	6 4 4	2	0.0025 0.0029 2.8 × 10 ⁻⁴	0.019 0.016 0.0031	10 5.7 1.1	-0.94 -1.19 -1.91	D D D	
5	4d-8p	2D-2P°	20691	27397.4	32229.0	10	6	0.0015	0.0059	4.0	-1.23	D	
			[20685] [20701] [20690]	27397.0 27398.1 27398.1	32230.1 32227.4 32230.1	6 4 4	4 2 4	0.0014 0.0015 1.5 × 10 ⁻⁴	0.0059 0.0048 9.9 × 10 ⁻⁴	2.4 1.3 0.27	-1.45 -1.72 -2.40	D D D	
6	4d-9p	2D-2P°	18032	27397.4	32941.5	10	6	9.2 × 10 ⁻⁴	0.0027	1.6	-1.57	D	
			[18029] [18038] [18033]	27397.0 27398.1 27398.1	32942.1 32940.3 32942.1	6 4 4	2	8.3 × 10 ⁻⁴ 9.1 × 10 ⁻⁴ 9.5 × 10 ⁻⁵	0.0022	0.96 0.53 0.11	-1.79 -2.06 -2.74	D D D	
.7	4d-10p	² D− ² P°	16624	27397.4	33411.1	10	ن	6.0×10 ⁻⁴	0.0015	0.82	-1.82	D	
			[16622] [16628] [16625]	27397.0 27398.1 27398.1	33 1.5 33410.3 33411.5	6 4 4	2	5.4×10^{-4} 6.0×10^{-4} 6.1×10^{-5}	0.0012	0.49 0.27 0.055	$ \begin{array}{r} -2.05 \\ -2.32 \\ -3.00 \end{array} $	D D D	
8	4d-11p	² D- ² P°	15769	27397.4	33737.1	10	6	4.2×10-4	9.5 × 10 ⁻⁴	0.49	-2.02	D	
			[15768] [15772] [15770]	27397.0 27398.1 27398.1	33737.4 33736.6 33737.4	6 4 4	2	3.7×10^{-4} 4.1×10^{-4} 4.3×10^{-5}		0.29 0.16 0.033	-2.25 -2.51 -3.19	D D D	
9	4d-12p	2D-2P°	15204	27397.4	33972.7	10	6	3.1×10^{-4}	6.4×10 ⁻⁴	0.32	-2.19	D	
			[15203] [15207] [15205]	27397.0 27398.1 27398.1	33972.9 33972.3 33972.9	6 4 4	2	2.7×10^{-4} 3.2×10^{-4} 3.0×10^{-3}	5.5×10^{-4}	0.19 0.11 0.021	-2.42 -2.66 -3.40	D D D	
0	4d-13p	2D-2P°	14808	27397.4	34148.5	10	6	2.3×10-4	4.6 × 10 ⁻¹	0.22	-2.34	D	
			[14807] [14811] [14810]	27397.0 27398.1 27398.1	34148.6 34148.2 34148.6	6 4 4	4 2 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8×10^{-4}	9.13 9.075 0.015	-2.56 -2.82 -3.52	D D D	
1	$ _{4d-4f}$	² D- ² F°	136900	27397.4	28127.7	10	14	8.9 × 10 ⁻⁴	0.35	1600	0.54	D	

K1. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	μί	μ̈́k	$\frac{A_{ki}(10^{\rm g}}{\rm sec^{-1})}$	fik	S(at. u.)	log gf	Accu- racy	Source
52	4 <i>d</i> – 5 <i>f</i>	²D−²F°	31162	27397.4	30605.6	10	14	0.020	0.40	410	0.60	D	1
53	4d-6f	² D− ² F°	21945	27397.4	31953.0	10	14	0.014	0.14	100	0.15	D	1
54	4d – 7f	² D− ² F°	18627	27397.4	32764.5	10	14	0.0088	0.064	39	-0.19	D	1
55	4d-8f	² D− ² F°	16963	27397.4	33291.0	10	14	0.0060	0.036	20	-0.44	D	1
56	4d = 9f	² D− ² F°	15984	27397.4	33652.0	10	14	0.0043	0.023	12	- 0.64	D	1
57	5s-5p	2S-2P°	27114	21026.8	24713.9	2	6	0.045	1.5	270	0.48	D	1
			[27068] [27206]	21026.8 21026.8	24720.2 24701.4	2 2	4 2		1.0 0.50	180 90	0.30 0.00	D D	ls Is
58	5s-6p	² S − ² P°	12531	21026.8	29004.9	2	6	0.0045	0.032	2.6	-1.20	D	1
			[12526] [12546]	21026.8 21026.8	29007.7 28999.3	2 2	4 2		0.021 0.011	1.7 0.87	-1.38 -1.68	D D	ls Is
59	5s-7p	2S-2P°	9951.3	21026.8	31073.0	2	6	0.0014	0.0060	0.39	-1.92	L	1
			[9950.5] [9955.2]	21026.8 21026.8	31074.5 31070.0	2 2	4 2		0.0040 0.0020	0.26 0.13	$ \begin{array}{r r} -2.10 \\ -2.40 \end{array} $	D D	ls Is
60	5s — 8p	2S-2P°	8924.4	21026.8	32229.0	2	6	5.9 × 10 ⁻⁴	0.0021	0.13	-2.37	D	1
			[8923.5] [8925.6]	21026.8 21026.8	32230.1 32227.4	2 2	4 2		0.0014 7.1 × 10 ⁻⁴	0.083 0.042	-2.55 -2.85	D D	li li
61	.5s−9p	2S-2P°	8390.7	21026.8	32941.5	2	6	3.2×10^{-4}	0.0010	0.056	2.69	D	1
i			[8390,3] [8391.5]	21026.8 21026.8	32942.1 32940.3	2 2	4 2		$\begin{vmatrix} 6.7 \times 10^{-4} \\ 3.3 \times 10^{-4} \end{vmatrix}$	0.037 0.019	-2.87 -3.17	D D	
62	5s-10p	2S-2P°	8072.5	21026.8	33411.1	2	6	1.9×10^{-4}	5.7×10⁻⁴	0.630	- 2.94	L	1
63	5s-11p	2S-2P°	7865.5	21026.8	33737.1	2	6	1.3 × 10 ⁻⁴	3.5×10^{-4}	0.018	-3.15	D	
64	5s-12p	² S− ² P°	7722.3	21026.8	33972.7	2	6	8.9×10^{-5}	2.4×10 ⁻⁴	0.012	-3.32	Đ	
65	5s-13p	2S-2P°	7618.9	21026.8	34148.5	2	6	6.5×10^{-3}	1.7×10-4	0.0085	-3.47	D	
66	5s-14p	² S− ² P°	7541.5	21026.8	34283.1	2	6	4.9×10^{-5}	1.3 × 10 ⁻⁴	0.0063	-3.60	D	
67	5p-6s	² P°- ² S	36529	3.9	27450.7	6	2	0.048	0.32	230	0.28	D	
			[36613] [36363]	24720.2 24701.4	27450.7 27450.7	4 2	2 2	0.032 0.016	0.32 0.32	150 77	0.11 - 0.19	D	1.
68	5p-7s	2P°-2S	17979	24713.9	30274.3	6	2	0.017	0.627	9.6	-0.79	D	1
			[18000] [17939]	24720.2 24701.4	30274.3 30274.3	1 2		0.011 0.0056	0.027 0.027	6.4 3.2	$ \begin{array}{c c} -0.97 \\ -1.27 \end{array} $	B B	1.
69	5p-8s	² P°− ² S	14178	24713.9	31765.0	6	2	0.0087	0.0087	2.4	-1.28	Đ	
	1		[14191] [14153]	24720.2 24701.4	31765.0 31765.0	4 2	2 2	0.0058 0.0029	0,0087 0,0087	1.6 0.81	-1.46 -1.76	B B	
79	5p-9s	2P°-2S	12600	24713.9	32648.2	6	2	0.0052	0.0041	1.0	- 1.61	D	
			[12610] [12580]	24720.2 24701.4		1 4 2		0.0034	0.0041 0.0041	0.68 0.34	-1.79 -2.09	D D	1

K I. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	#k	A _{ki} (10 ⁸ sec ⁻¹)	f ik	S(at. u.)	log gf	Accu- racy	Source
71	5p - 10s	²P°−2S	11761	24713.9	33214.4	6	2	0.0033	0.0023	0.54	-1.85	D	1
			[11770] [11744]	24720.2 24701.4	33214.4 33214.4	4 2	2 2	0.0022 0.0011	0.0023 0.0023	0.36 0.18	-2.03 -2.33	D D	ls Is
72	5p-11s	² P°− ² S	11253	24713.9	33598.2	6	2	0.0023	0.0015	0.33	-2.06	D	1
			[11261] [11237]	24720.2 24701.4	33598,2 33598,2	4 2		0.0015 7.7 × 10-4	0.0015 0.0015	0.22 0.11	-2.23 -2.53	D D	ls Is
73	5p-12s	² P°- ² S	10919	24713.9	33869,7	6	2	0.0016	9.6 × 10 ⁻⁴	0.21	-2.24	D	ı
		 	[10927] [10904]	24720.2 24701.4	33869.7 33869.7	4 2		0.0011 5.4 × 10-4	9.6 × 10 ⁻⁴ 9.6 × 10 ⁻⁴	0.14 0.069	$ \begin{array}{r} -2.42 \\ -2.72 \end{array} $	D D	ls Is
74	5p-13s	2P°-2S	10686	24713.9	34069.3	6	2	0.0012	6.6×10-4	0.14	-2.40	D	1
			[10693] [10672]	24720.2 24701.4	34069.3 34069.3	4 2		7.7 × 10 ⁻⁴ 3.9 × 10 ⁻⁴	6.6 × 10 ⁻⁴ 6.6 × 10 ⁻⁴	0.093 0.046	-2.58 -2.88	D D	ls ls
75	5p-4d	5De-5D	37255	24713.9	27397.4	6	10	0.035	1.2	880	0.86	D	1
			[37348] [37072] [37333]	24720.2 24701.4 24720.2	27397.0 27398.1 27398.1	4 2 4	4	0.034 0.029 0.0057	1.1 1.2 0.12	530 290 59	0.64 0.38 -0.32	D D D	
76	5p-5d	²P°−²D	18272	24713.9	30185.4	6	10	9.3 × 10 ⁻⁴	0.0078	2.8	-1.33	D]
			[18298] [18229] [18292]	24720.2 24701.4 24720.2	30185.2 30185.7 30185.7	4 2 4	4	9.4 × 10 ⁻⁴ 7.8 × 10 ⁻⁴ 1.6 × 10 ⁻⁴	0.0077	1.7 0.93 0.19	-1.55 -1.81 -2.50	D D D	
77	5p-6d	² P°−2D	14319	24713.9	31695.6	6	10	2.9 × 10 ⁻⁶	1.5 × 10 ⁻⁵	0.0042	-4.05	D-	;
			[14332] [14293] [14332]	24720.2 24701.4 24720.2	31695.5 31695.8 31695.8	4 2 4	4	2.9×10^{-6} 2.4×10^{-6} 4.8×10^{-7}	1.5×10^{-5}	0.0025 0.0014 2.8 × 10 ⁻⁴	-4.28 -4.52 -5.22	D- D- D-	
78	5p-7d	²P°−²D	12679	24713.9	32598,5	6	10	1.2×10-4	4.6 × 10 ⁻⁴	0.12	-2.56	D] 1
			[12690] [12659] [12690]	24720.2 24701.4 24720.2	32598.5 32598.5 32598.5	4 2 4	4	9.7×10^{-5}	$\begin{array}{c} 4.2 \times 10^{-3} \\ 4.6 \times 10^{-4} \\ 4.6 \times 10^{-5} \end{array}$	0.070 0.039 0.0078	-2.78 -3.03 -3.73	D D D	la la la
79	5p-8d	² P°− ² D	11811	24713.9	33178.4	6	10	1.7×10-4	6.0×10-4	0.14	-2.44	D	1
			[11820] [11793] [11820]	24720.2 24791.4 24720.2	33178.4 33178.4 33178.4	4 2 4	4	1.4 × 10-4	$\begin{array}{c} 5.4 \times 10^{-4} \\ 6.0 \times 10^{-4} \\ 6.0 \times 10^{-5} \end{array}$	0.084 0.047 0.0093	-2.67 -2.92 -3.62	D D D	li li li
80	5p-9d	² P°− ² D	1/286	24713.9	33572.1	6	10	1.8 × 10-4	5.7×10-4	0.13	-2.47	ת] 1
			[11294] [11270] [11294]	24720.2 24701.4 24720.2	33572.1 33572.1 33572.1	4 2 4	4	1.5×10^{-4}	$\begin{array}{c} 5.1 \times 10^{-4} \\ 5.7 \times 10^{-4} \\ 5.7 \times 10^{-5} \end{array}$	0.076 0.042 0.0085	-2.69 -2.94 -3.64	D D D	li li li
81	5p-10d	2120-2D	10940	24713.9	33851.8	6	10	1.6×10-4	4.8×10-4	0.10	-2.54	D	
			[10948] [10925] [10948]	24720.2 24701.4 24720.2	33851.8 33851.8 33851.8	4 2 4	4		$\begin{array}{c} 4.3 \times 10^{-4} \\ 4.8 \times 10^{-4} \\ 4.8 \times 10^{-5} \end{array}$	0.062 0.035 0.0069	-2.76 -3.02 -3.72	D D D	
82	5p-11d	²P°−2D	10700	24713.9	34056.9	6	10	1.4×10-4	4.1 × 10-4	0.087	-2.61	D	
			[10707] [10686] [10707]	24720.2 24701.4 24720.2	34056.9 34056.9 34056.9	4 2 4	4	1.2×10^{-4}	3.7×10^{-4} 4.1×10^{-4} 4.1×10^{-5}	0.052 0.029 0.0058	-2.83 -3.09 -3.78	D D	/: /: /:

1s22s22p63s23p5 2Po

Ionization Potential

 $46 \text{ eV} = 369000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines.

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
765.644	1	2992.24	3	3289.06	5
778.528	1	3023.4	3	3322.40	2
2550.02	4	3052.07	3	3358.5	2
2635.11	4	3056,84	3	3364.22	6
2689.90	4	3061.2	6	3420.82	2
2877.4	3	3201.95	6	3421.83	5
2938.45	3	3209.34	6	3448.0	2
2954.3	3	3254.0	5	3468.32	2
2986.20	3	3278.79	2	3513.88	2

Bagus [1] has calculated a value for one multiplet of this ion using the self-consistent field method; this number should be uncertain since the possibly important effects of configuration interaction have been neglected entirely. For several other transitions the Coulomb approximation has been employed in order to have some data available for the more prominent lines in this spectrum. From the general success of this method and from comparisons with analogous transitions in other ions, uncertainties of 50 percent are expected; however these estimates should be regarded as provisional.

Reference

[t] Bagus, P. S., U.S. Atomic Energy Commission ANL-6959 (1964).

KIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	#k	4 _{ki} (10 ^g sec ^{−1})	fik	S(at. u.)	log gf	Aceu- racy	Source
1	$\begin{vmatrix} 3s^2 3p^5 - \\ 3s 3p^6 \end{vmatrix}$	² P°_2S (l uv)	769.89	721	130609	6	2	73	0.22	3.3	0.11	E	1
			765.644 778.528	0 2162	130609 130609	2	2 2	50 23	0.22 0.21	2.2 1.1	-0.06 -0.37	E	ls Is
2	$3p^44s - 3p^4(^3P)4p$	4P_4P° (1)	3375.2	208184	237803	12	12	1.8	0.30	40	0,56	D	ca
			3322.40 3420.82	207422 208688	237512	6	6	1.3	0.21	14	0.10	D	İs
			[3448.0]	200000	237912 238455	4 2	4 2	0.23 0.28	0.040 0.050	1.8 1.1	-0.80 -1.00	E	ls Is
			3278.79	207422	237912	6	4	0.86	0.092	6.8	-0.26	Ď-	15
		į	[3358.5]	208688	238455	4	2	1.5	0.13	5.6	-0.30		ls ls
	İ		3468.32	208688	237512	4	6	0.48	0.13	5.9	-0.28	D-	Is
			3513.88	209461	237912	2	4	0.65	0.24	5.6	-0.32	D-	ls
3		4P -4D° (2)	3005,1	208184	241451	12	20	2.5	0.56	67	0.83	D	ca
		(7 uv)	2992.24	207422	240830	6	8	2.5	0.45	27	0.43	D	Is
			3052.07	208688	241444	4	6	1.7	0.35	14	0.15		ls
			3056.84	209461	242165	2	4	1.0	0.28	5.6	-0.25	D-	ls.
			2938.45	207422	241444	6	6	0.77	0.10	5.8	-0.22	D-	Is
			2986.20	208688	242165	4	4	1.3	0.18	7.1	-0.14	D-	ls.
		i	[3023.4] [2877.4]	209461 207422	242527 242165	6	2 4	2.1	0.29	5.7	-0.24	D -	/s
			[2954.3]	208688	242105 242527	4	2	0.14 0.44	0.012 0.029	0.66 1.1	- 1.15 - 0.94	E	ls Is

K III. Allowed Transitions - Continued

No.	Transition Array	Muitiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\text{cm}^{-1})$	g _i	Kk	$\frac{A_{kl}(10^8}{\sec^{-1})}$	fix	S(at.u.)	log <i>gf</i>	Accu- racy	Source
4		² P - ² D° (8 uv)	2600.5	208184	246626	12	4	3.8	0.13	13	0.19	D	cu
		,	2550,02 2635,11	207422 208688	246626 246626	6	4	2.0 1.2	0.13 0.13	6.5 4.5	-0.11 -0.28	D D	ls Is
5		2P-2D°	2689.90	209461	246626	2	4	0.60	0.13	2.3	-0.59	D	ls
Э	II.	(4)	3329.6 3289.06	213227 212725	243252 243121	6	10	1.9	0.53 0.49	35 21	0.50	D D	ca t
	 		3421.83 [3254.0]	214232 212725	243448 243448	2 4	4	2.0 1.5 0.35	0.49 0.53 0.055	12 2.4	0.29 0.03 -0.66	D	ls Is Is
6		² P_ ² P° (5)	3204.4	213227	244425	6	6	2.2	0.34	22	0.31	D	ca
		(0)	3201.95 3209.34	212725 214232	243947 245382	4 2	4 2	1.8 1.5	0.28 0.23	12 4.9	$0.05 \\ -0.34$	D D	ls Is
			[3061.2] 3364.22	212725 214232	245382 243947	4 2	2 4	0.88 0.32	0.062 0.11	2.5 2.4	-0.61 -0.66	D- D-	ls Is

K in.

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately l.nown.

Reference

[1] Naqvi. A. M., Thesis Harvard (1951).

KIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	Kk	Type of Transi- tion	$A_{kl}(m sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^5 - 3p^5$	2]30_2[30	[46940]		0140				0.101	1 119		1
			[46240]	0	2162	4	2	m	0.181	1.33	A	'

K iv

Ground State

1s22s2p63s23p43P2

Ionization Potential

 $60.90 \text{ eV} = 491300 \text{ cm}^{-1}$

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Scr. 6, No. 53, 75 (1961).

K IV. Allowed Transitions

No.	Transition Array	Multiplet	A(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μį	μk	A _{ki} (10" sec" 1)	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s ² 3p ⁴ — 3s3µ ⁵	3P_3P*	745.66 [745.26] [746.35] [737.14] [741.95] [754.67] [749.99]	816 0 1673 0 1673 1673 2324	134926 134181 135659 136453 134481 135659	9 5 3 5 3 1	9 5 3 1 5 3	87 64 21 37 84 21 27	0.72 0.53 0.18 0.18 0.23 0.30 0.69	16 6.5 1.3 2.2 1.7 2.2 1.7	0.81 0.42 0.27 0.05 0.18 0.05 0.16	E E E E E	1 !s !s !s !s !s

K iv

Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV, since the same criteria have been applied.

References

- [1] Neqvi, A. M., Thesis Harvard (1951).
- [2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

K IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	μk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Асси- гасу	Source
1	$3p^4 - 3p^4$	3P_3P										
			(59757)	0	1673	5	3	e	1.77 × 10-6	2.41	C-	1, 2
			[59757]	0	1673	5	3	m	0.105	2.49	В	ī
- 1			[43018]	0	2324	5	1	e	1.22×10^{-5}	1.07	C-	2
			$[15.36 \times 10^4]$	1673	2324	3	1	m	0.0148	1.99	В	1
2		3P_1D										
		(1F)	(101.00		16004.0	_	_				_	
			6101.83 6+)1.83	0	16384 0	5	5	c	0.9032	0.080	D-	1.2
			6794.8	1673	16384.0 16384.0	3	5	m	0.83 2.6 × 10-4	0.0351 0.011	C D-	1.2
- 1			6794.8	1673	16384.0	3	5	e m	0.201	0.011	C C	1, 2 1, 2
			[7110.4]	2324	16384.0	ĭ	5	"e	6.0×10^{-5}	0.0032	Ď-	1. 2
3		3P_1S										
"		1-3	[2593.5]	0	38546	5	l ı	e	0.086	0 0060	D-	,
			[2711.2]	1673	38546	3	5	m	10.4	0.0077	Č	2
4		1D-1S										
ът.		(2F)										
		\ ` '	4510.9	16384.0	38546	5	1	e	3.9	4.34	C-	2

 $1s^22s^22p^63s^23p^3$ $^4S_{3/2}^{\circ}$

Ionization Potential

82.6 eV

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Kv. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{eni}^{-1})$	#I	Ľк	A _{ki} (10 ⁶ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	$3s^23p^3 - 3s3p^4$	4S°-4P	727.44	0	137468	4	12	40	0.96	9.2	0.58	E	1
			[731.86] [724.42] [720.43]	0 0 0	136639 138042 138806	4 4 4	6 4 2	40 41 41	0.48 0.32 0.16	4.6 3.1 1.5	0.28 0 11 -0.19	E E	ls Is Is

K v

Forbidden Transitions

For this ion all the values have been taken from Garstang [1] who has applied refined methods for calculating the magnetic dipole and electric quadrupole line strengths.

Reference

[1] Garstang, R. H., I.A.U. Symposium #34 on Planetery Nehulae held at Tatranska Lomnica, Czechoslovakia, Sept. (1967).

Kv.: Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	Kk	Type of Transi- tion	A _{ki} (sec -1)	S(at.u.)	Accu- racy	Source
1	$3p^3 - 3p^3$	⁴ S°- ² D° (1F)										
		(2.2 /	4122.63	0	24249.5	4	6	m	0.0025	3.90 × 10 ⁻³	С	1
			4122.63	0	24249.5	4	6	e	0.0044	0.019	D	1
			4163.30	0	24012.7	4	4	m	0.109	0.00117	C	1
			4163,30	0	24012.7	4	4	e	0.0027	0.0080	D	1
2		4S° _2P°										
-	Ī	5 – .	[2495.3]	0	40064	4	4	m	6.5	0.0150	С	1
			2495.31	Ŏ	40064	4	4	e	7.2 × 10-5	1.7 × 10-5	Ď	i i
			[2515.3]	0	39745	4	2	m	2.4	0.00283	C	1
			[2515.3]	υ	39745	4	2	e	5.1 × 10 ⁻⁴	6.1×10^{-5}	D	1
3		² D°−2D°										
_		J .	[42.22 × 10 ⁴]	24012.7	24249.5	4	6	m	1.43 × 10-4	2.40	A	1
			$[42.22 \times 10^4]$	24012.7	24249.5	4	6	e	3.2×10^{-12}	0.15	D	1
4		² D° – ² P° (2F)										
			6316.6	24249.5	40064	6	4	m	1.1	0.0411	C	1
			6316,6	24249.5	40064	6	4	e	0.36	8.6	000000	1
			6349.5	24012.7	39745	4	2 2	nı	1.2	0.0228	C	1
	1		6349.5	24012.7	39745	4	2	· e	0.30	3.69	Č	ļ ļ
			6446.5	24249.5	39745	6	2	e	0.19	2.52	Č	1 1
			6223.4	24012.7	40064	4	4	m	2.1	0.075	Č	1 1
	i		6223.4	24012.7	40064	4	4	e	0.16	3.56	C	11.
5		2P°_2P°										
			$[31.3 \times 10^4]$	39745	40064	2 2	4	m	2.91 × 10-4	1.33	В	1
			$[31.3 \times 10^4]$	39745	40061	2	4	e	9.2×10^{-12}	0.066	D	1

Kvi

Ground State

1s22s22/183s23/123Po

Ionization Potential

99.7 eV = 804513 cm^{-1}

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Kvi. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> (2m²¹)	$E_{k}(\mathrm{cm}^{-1})$	gi	Kk	A _{ki} (10 ⁴ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	3s²3p² — 3s3p³	3P~3D°	720.13 [724.42] [716.00] [710.51] [725.31] [716.27] [725.59]	2924 1131 0 2924 1131 2924	140865 140966 140796 140743 140796 140743 140743	9 5 3 1 5 3 5	15 7 5 3 5 3	35 28 21 8.7 15 0.97	0.46 0.39 0.35 0.47 0.069 0.12 0.0046	9.8 4.6. 2.5 1.1 0.82 0.82 0.055	0.62 0.29 0.02 - 0.33 - 0.46 - 0.44 - 1.64	E E E E E E	

K vi

Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV, since the same criteria have been applied.

References

[1] Naqvi, A. M., Thesis Harvard (1951).

[2] Malville, J. M., and Berger, R. A., Planetary and Space Science 13, 1131 (1965).

K vi. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1 2	$3p^2-3p^2$	3P_3P	[88390] [34190] [55760] [55760]	0 0 1131 1131	1131 2924 2924 2924	1 1 3 3	3 5 5 5	m e m e	0.0259 5.4 × 10 ⁻⁶ 0.0772 1.05 × 10 ⁻⁶	1.99 0.75 2.48 1.68	B C – B C –	1 2 1 1, 2
		(1F)	[5269.2] 5603.2 5603.2 6229.3 6229.3	0 1131 1131 2924 2924	18973 18973 18973 18973 18973	1 3 3 5 5	5 5 5 5 5	e m e m	1.1×10 ⁻⁴ 0.54 7.4×10 ⁻⁴ 1.17 0.0030	0.0013 0.0177 0.012 0.052 0.085	D – C D – C	2 1, 2 1, 2 1, 2 1, 2
3		3P_1S	[2367]? [2471]?	1131 2924	[43374]? [43374]?	3 5	1 1	m e	15.7 0.14	0.0077 0.0077	C - D -	2 2
4		'D-'S (2F)	4097?	18973	[43374]?	5	1	, e	4.1	2.8	D-	2

1s22s22p63s23p 2P01/2

Ionization Potential

 $118 \text{ eV} = 950200 \text{ cm}^{-1}$

Allowed Transitions

The screening-approximation calculations of Varsavsky [1] for the $3s^23p$ $^2P^\circ - 3s3p^2$ 2D multiplet are considered to be rather uncertain (probably too high, as judged from comparisons in other ions) since the important effects of configuration mixing are neglected entirely. Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3p $^2P^\circ - 4s$ 2S multiplet; these results should be reliable to within 25 percent, as judged from plots depicting f-value dependence on nuclear charge.

References

- [1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

K VII. Allowed Transitions

No.	Transition Array	Multiplet	γ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	gk	Aki (108 sec "1)	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^23p - 3s3p^2$	² P° – ² D	667.13	2086	151982	6	10	40	0.44	5.8	0.42	E	1
			[671.50] [658.41] [672.26]	3129 0 3129	151882	4 2 4		39 34 6.5	0.40 0.44 0.044	3.5 1.9 0.39	0.20 -0.06 -0.75	E E E	ls ls ls
2	3p-(1S)4s	2P°-2S	228.72	2086	439297	6	2	325	0.085	0.384	-0.292	C	2
			[229.27] [227.64]	31 2 9 0		4 2		216 109	0.085 0.085	0.257 0.127	-0.469 -0.77	C	ls ls

K vii

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

K VII. Forbidden Transitio.

No.	Transition · Array	Multiplet	λ(Å)	<i>E₁</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	gi	<i>B</i> k	Type of Transi- tion	A _{kn,*} 2c ⁻¹)	S(at.u.)	Accu- racy	Source
1	3p+('S)3p	² P°- ² P°	[31950]	0	3129	2	4	m	0.275	1.33	A	1

 $1s^22s^22p^63s^2$ 1S_0

Ionization Potential

 $155 \text{ eV} = 1247000 \text{ cm}^{-1}$

Allowed Transitions

The charge-expansion technique of Crossley and Dalgarno [1], which includes limited configuration mixing, has been employed for the majority of the transitions in this spectrum; while Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3s3p $^3P^0-3s4s$ 3S multiplet. For many of these transitions, the dependence of oscillator strength on nuclear charge has served as an aid in estimating accuracies.

References

- [1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

K vIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E_i</i> (cm ⁻¹)	$E_k(\text{cm}^{-1})$	Ķi	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^2 - 3s(^2S)3p$	1S-1P°	[519.37]	0	192540	1	3	94.0	1.14	1.95	0.057	В	1
2	$3s3p-3p^2$	ab₂−ab	564.85	130274	307313	9	9	81	0.388	6.5	0.54	C+	1
			[564.47] [565.12] [572.79] [569.51] [557.02] [561.59]	131452 129080 131452 129080 129080 127,468	308608 306035 306035 304669 308608 306035	5 3 5 3 1	5 3 1 5 3	61 20.2 32.3 79 21.1 27.5	0.292 0.097 0.095 0.128 0.164 0.389	2.71 0.54 0.90 0.72 0.90 0.72	0.164 -0.54 -0.323 -0.416 -0.308 -0.410	C+ CCCCC C	ls ls ls ls ls
3	3s3p - 3s(*S)3d	³b₀−₃D	420.51 [422.51] [418.45] [416.60] [422.64] [418.54]	130274 131452 129080 127968 131452 129080	368082 368132 368060 368004 368060 368004	9 5 3 1 5 3	15 7 5 3 5 3	116 114 87.9 - 66.1 28.5 48.9	0.511 0.427 0.385 0.516 0.0763 0.128	6.37 2.97 1.59 0.708 0.531 0.531	0.663 0.329 0.063 -0.287 -0.419 -0.416	B B B B	ls ls ls ls ls
			422.74	131452	368004	5	3	3.2	0.0051	0.035	-1.59	Ď	ls
4		¹P°-¹D	[464]	192540	[408000]	3	5	160	0.87	4.0	0.42	D	1
5	$3s3p - 3s(^2S)4s$	3P°-3S	199.45	130274	631654	9	3	423	0.084	0.496	-0.12i	С	2
			[199.92] [198.98] [198.54]	131452 129080 127968	631654 631654 631654	5 3 1	3 3 3	234 142 47.4	0.084 0.084 0.084	0.276 0.165 0.055	-0.377 -0.60 -1.076	C C C	ls ls ls

K viii

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P°-³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

K VIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	E _k (cm ⁻¹)	g _i	g _k	Type of Transi- tion	4 _{kt} (8ec ⁻¹)	S(at.u.)	Accu- racy	Source
1	3s3p - 3s(2S)3p	3bo=3bo	[89900] [42147]	127968 129080	129080 131452	1 3	3 5	m m	0.0247 0.180	2.00 2.50		1
2		3P°-1P°	[1548.7] [1575.8] [1637.0]	127968 129080 131452	192540 192540 192540	1 3 5	3 3 3	m m m	3.51 93 3.71	0.00145 0.0404 0.00181	C C C	1 1 1

K ix

Ground State

 $1s^22s^22p^63s^2S_{1/2}$

Ionization Potential

 $175.94 \text{ eV} = 1419425 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
131.65	2	260.05	5	621.41	1
131.90	2	260.83	5	636,40	i
145.73	7	451.01	10	1273.4	9
184.59	4	453.96	10	1294.6	9
185.88	4	459.50	3	1297.2	9
205.83	6	466.95	3	1647.1	8
259.86	5	467.59	3	1687.1	8

The only source available for this ion are the charge-expansion calculations of Crossley and Dalgarno [1] which include limited configuration mixing. Graphical comparisons of this work with more refined values within the isoelectro, ic sequence indicate accuracies within 25 percent. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values simply by graphical interpolation.

Reference

[1] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-510 (1965).

KIX. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ki	¥k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log g/	Accu- racy	Source
1	3s-3p	2S_2P°	629.29	0	159670	2	6	30.1	0.54	2.22	0.033	G	1
			[621.41] [636.40]	0	160925 157159	2	4 2	31.2 29.1	0.362 0.177	1.48 0.74	-0.140 -0.451	C	ls ls
2	3s-4p	2€ _2po	131.73	0	759135	2	6	180	0.14	0.12	-0.55	С	interp
			[131.65] [131.90]	0	759615 758174	2 2	4 2	180 180	0.092 0.046	0.080 0.040	-0.74 -1.04	c c	ls Is
3	3p-3d	2P°-2D	464.50	159570	374963	6	10	85	0.459	4.21	0.440	С	1
			[466.95] [459.50] [467.59]	160925 157159 160925	375080 374788 374788	4 2 4	6 4 4	84 73 14	0.411 0.463 0.046	2.53 1.40 0.28	0.216 -0.033 -0.74		ls ls ls
4	3p-4s	2p°-2S	185.45	159670	698902	6	2	520	0.090	0.33	0.27	С	interp
			[185.88] [184.59]	160925 157159	698902 698902	4 2	2 2	350 180	0.090 0.091	0.22 0.11	-0.44 -0.74	C	ls ls
5	3d-4p	5D-, Lo	260.30	374963	759135	10	6	200	0.12	1.0	0.08	c	interp
			[260.05] [260.83] [259.86]	375080 374788 374788	759615 758174 759615	6 4 4	4 2 4	170 190 19	0.12 0.096 0.020	0.60 0.33 0.067	-0.14 -0.42 -1.10	C C D	ls ls ls
6	3d-4f	²D−²F°	205.83	374963	860808	10	14	1000	0.92	6.2	6.96	C+	interp
7	3 <i>d</i> – 5 <i>f</i>	²D−²F°	145.73	374963	1061150	10	14	380	0.17	0.82	0.23	С	interp
8	4s - 4p	2S-2P°	1660.2	698902	759135	2	6	6.2	0.77	8.4	0.19	С	interp
			[1647.1] [1687.1]	698902 698902	759615 758174	2 2	4 2	6.3 5.9	0.52 0.25	5.6 2.8	0.02 -0.30	C	ls Is
9	4p-4d	² P°- ² D	1287.6	759135	836798	6	10	21	0.86	22	0.71	С	interp
			[1294.6] [1273.4] [1297.2]	759615 758174 759615	836861 836703 836703	4 2 4	6 4 4	20 18 3.5	0.76 0.87 0.088	13 7.3 1.5	0.48 0.24 -0.45	C D	ls ls ls
10	4p5s	2P°_2S	452.97	759135	979901	6	2	150	0.15	1.3	-0.05	С	interp
			[453.96] [451.01]	759615 758174	979901 979901	4 2	2 2	96 50	0.15 0.15	0.89 0.45	-0.22 -0.52	C C	ls Is

KX

Ground State

 $1s^22s^22p^{6}$ 1S_0

Ionization Potential

 $503.8 \text{ eV} = 4064300 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wave functions and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference
[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Kx. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gı	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	2p6-	1S-3P°											
	2p ⁵ (2P _{3/2})3s		[41.540]	0	2407300	1	3	770	0.060	0.0082	-1.22	E	1
2	$2p^{6} - 2p^{5}(^{2}P_{1/2}^{\circ})3s$	1S-1P°	[41.147]	0	2430300	1	3	1600	0.12	0.016	-0.92	 	1
3	$2p^{6}-$	¹ S- ³ P°									1		
	$2p^{5}(^{2}\mathrm{P}^{\circ}_{3/2})3d$		[36.229]	0	2760200	1	3	110	0.0065	7.8 × 10 ⁻⁴	-2.19	E	1
4	$\frac{2p^{6}-}{2p^{3}(^{2}\mathrm{P}_{3/2}^{\circ})3d}$	1S-1P°	[35.779]	0	2794900	1	3	3.3×10 ⁴	1.9	0.22	0.28	D	1
5	2p ⁶ −	¹S−³D°											1
	2p ⁵ (² P ^o _{1/2})3d	3-0	[35.307]	0	2832300	1	3	3900	0.22	0.026	-0.66	D	1

K xi

Ground State Ionization Potential 1s22s2p5 2P3/2

2

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

KXI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	K k	Type of Transi- tion	Aki(sec-1)	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	2po-2po	[4256.4]	0	23475	4	2	m =	231	1.33	A	1

 $1s^22s^22p^2$ ³P₀

Ionization Potential

?

Forbidden Transitions

Krueger and Czyzak's [1] values have been used for this ion, except for the magnetic dipole ${}^{3}P_{0,1} - {}^{3}P_{1,3}$ transitions where Naqvi's [2] results have been applied. Some wavelength data are from observed coronal lines. The electric quadrupole monient (s_q) is based on self-consistent field wave functions with exchange.

References

- [1] Krueger, T. K., and Czyzak, S. J., Astrophys. J. 144, 1194-1202 (1966).
- [2] Naqvi, A. M., Thesis Harvard (1951).

K xIV. Forbidden Transitions

No.	Transition Array	Multiplet	λ (Å)	$E_i(\mathrm{cm}^{-1})$	E _k (cm ⁻¹)	gi	g _k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p²-2p²	3P_3P	[7474] [3545] 6740 6740	0 0 [13380] [13380]	[13380] [28210] [28210] [28210]	1 1 3 3	3 5 5 5	m e m c	42.2 0.00222 42.1 1.79×10-4	1.96 0.00370 2.39 0.0074	B- C- B C	2 1 2 1
		3P-1D	[1033] [1199] [1199] [1458] [1458]	0 [13380] [13380] [28210] [28210]	[96810] [96810] [96810] [96810] [96810]	1 3 3 5 5	5 5 5 5	e m e m	0.9051 412 0.056 650 0.14	1.8 × 10 ⁻⁵ 0.131 4.2 × 10 ⁻⁴ 0.373 0.0028	D – C D – C	1 1 1 1 1
		3P-1S	[625.3] [689.2] [1307]	[13380] [28210] [96810]	[173310] [173310] [173310]	3 5	1 1	т е	5200 3.5 5.9	0.0469 3.2 × 10 ⁻⁴ 0.013	C D	1 1

CALCIUM

Ca I

Ground State
Ionization Potential

 $1s^22s^22p^63s^23p^64s^2$ 1S₀

 $6.11 \text{ eV} = 49305.72 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2150.80	29	3630.97	32	4585.96	1
2200.73	28	3644.41	32	4586.1	l i
2275.46	14	3644.77	32	4685.27	36
2398.56	27	3644.99	32	4878.13	
2541.40	13	3673.42	11	5041.62	2 7
2617.66	12	3675.29	11	5188.85	33
2721.65	26	3678.21	l ii l	5260.39	24
2994.96	15	3748.35	io	5261.71	24
2997.31	15	3750.29	10	5262.24	24
2999.64	15	3753.34	10	5264,24	24
3000.86	15	3870.48	8	5265,56	24
3006.86	15	3872.54	8	5270.27	24
3009.21	15	3872.56	8	5512.98	20
3102.35	42	3875.78	8	5581,97	23
3107.39	42	3875.8	8	5588.76	23
3117.65	42	3875.80	8	5590,12	23
3136.02	40	3948.90	34	5594.47	23
3140.79	40	3957.05	34	5598.49	23
3141.16	40	3973.71	34	5601.29	23
3150.75	40	4092.63	5	5602.85	23
3151.27	40	4094.93	5	5857.45	19
3151.64	40	4094.96	5	6102.72	31
3164.60	41	4098.53	5	6122.22	31
3169.84	41	4098.57	5 1	6156.02	3
3180.52	41	4098.6	5 5 5 5	6161.29	3
3209.96	38	4108.53	9	6162.17	31
3215.17	38	4226.73	17	6163.76	
3215.34	38	4283.01	18	6166.44	3
3225.90	38	4289.36	i8	6169,06] 3
3226.15	38	4298.99	18	6169.56	3 3 3 3
3226.32	38	4302.53	18	6439.07	21
3269.08	39	4307.74	i8	6449,81	22
3274.67	39	4318.65	l is	6455.60	22
3286.07	39	4355.08	6	6462.57	21
3344.51	35	4425.44	30	6471.66	21
3350.21	35	4434.96	30	6493,78	21
3350.36	35	4435.69	30	6499.65	21
3361.92	35	4454.78	30	6508.85	21
3362.14	35	4455.89	30	6572.78	16
3362.28	35	4456.61	30	6717.69	4
3468.48	37	4526.94	25		
3474.76	37	4578.55	1		
3487.60	37	4581.40	i		1
3624.11	32	4581.47	i		
3630.75	32	4585.87	1 i i	1	

For this spectrum we have exclusively used experimental material since even recent theoretical efforts [10, 11] have not provided a consistent set of data. The f-value for the resonance line has been taken from three lifetime experiments, namely the Hanle effect measurements of Lurio, de Zafra, and Goshen [6], as well as Smith and Gallagher [7], and the phase-shift measurements of Hulpke, Paul, and Paul [8]. The very close agreement of the three results suggests the averaged value should be uncertain by no more than 10 percent. Another lifetime result, this one by Karstensen and Schramm [12], using delayed coincidence techniques for the 4f 'F' level, allows a determination of the transition probability for the 3d 1D-4f 1F° line, but in a less direct manner, since the contribution of the 4d 1D-4f 1F° line had to be estimated via a Bates-Damgaard calculation and subtracted. Fairly precise relative oscillator strengths are available for a few lines from the anomalous dispersion experiments of Filippov and Kremenevsky [3], Prokof 'ev [5], and Shabanova [9] and for a larger number of lines from the work of Ostrovskii and Penkin [4]. The relative values are normalized to the value chosen for the resonance line. Further data could be taken from an emission experiment with a stabilized arc by Köstlin [2] and an absorption experiment by Olsen, Routly, and King [1]. The relative values of Olsen et al. have been normalized to Ostrovskii and Penkin's value for the 4289 Å line which in turn has been normalized to the above adopted value for the resonance line. (This simple normalization procedure leads here to the same result as a least-squares fit between the overlapping data of Olsen et al. and Ostrovskii and Penkin.) A detailed comparison of the data of Olsen et al. with all other available material indicates a wavelength dependence of Olsen's data for wavelengths greater than 4600 Å; hence, these values have not been used for these wavelengths except where no other source is available.

References

- [1] Olsen, K. H., Routly, F. M., and King, R. B., Astrophys J. 130, 688-692 (1959).
- [2] Köstlin, H., Z. Physik 178, 200-215 (1964).
- [3] Filippov, A., and Kremenevsky, N., Physik. Z. Sowjetunion 1, 299-301 (1932).
- [4] Ostrovskii, Yu. I., and Penkin, N. P., Optics and Spectroscopy (U.S.S.R.) 10, 219-222 (1961).
- [5] Prokof 'ev, V. K., Z. Physik 50, 701-715 (1928).
- [6] Lurio, A., de Zafra, R. L., and Goshen, R. J., Phys. Rev. 134, A1196-A1203 (1964).
- [7] Smith, W. W., and Gallagher, A., Phys. Rev. 145, 26-35 (1966).
- [8] Hulpke, E., Paul, E., and Paul, W., Z. Physik 177, 257-268 (1964).
- [9] Shabanova, L. N., Optics and Spectroscopy (U.S.S.R.) 15, 450-451 (1963).
- [10] Friedrich, H., and Trefftz, E., J. Quant. Spectrosc. Radiat. Transfer 9, 333-359 (1969).
- [11] Weiss, A. W., private communication (1968).
- [12] Karstensen, F., and Schramm, J. Z. Astrophys. 68, 214-221 (1968).

Ca I. Allowed Transitions

								ortions .					
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g _i	μk	$A_{ki}(10^8$ sec ⁻¹)	fik	S(at.u.)	log gf	Accu- racy	Source
1	4s3d-4s(2S)4f	³D − ³F° (23)	4582.7	20356	42171	15	21	0.226	0.099	22.5	0.172	С	1n, 2
0		1D = 1F°	4585.87 4581.40 4578.55 4595.96 4581.47 [4586.1]	20371 20349 20335 20371 20349 20371	42171 42171 42170 42171 42170 42170	7 5 3 7 5 7	9 7 5 7 5 5	0.229 0.209 0.176 0.025 0.035 9.8 × 10 ⁻⁴		9.8 6.9 4.16 0.83 0.82 0.023	-0.186 -0.337 -0.56 -1.26 -1.26 -2.81	C C C D D E	ln, ls ln, ls ln, ls ls ls
2		(35)	4878.13	21850	42344	5	1	0.188	0.094	7.5	-0.328	С	12
3	$4s3d-4s(^2S)5p$	³D.—³P° (20)	6167.7	20356	36565	15	9	0.22	0.076	23	0.06	D	2
		ζ= -,	6169.56 6169.06 6166.44 6161.29 6163.76 6156.02	20371 20349 20335 20349 20335 20335	36575 36555 36548 36575 36553 36575	7 5 3 5 3 3	5 3 1 5 3 5	0.19 0.17 0.22 0.033 0.056 0.0023	0.076 0.057 0.042 0.019 0.032 0.0621	11 5.8 2.6 1.9 1.9 0.13	-0.27 -0.55 -0.90 -1.02 -1.02 -2.20	D D - D - D - E	ls

Cal. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	E _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	μι	μk	4 _{kl} (10* sec-1)	fik	S(at. u.)	log gf	Accu- racy	Source
4		¹ D — ¹ P° (32)	6717.69	21850	36732	5	3	0.12	0.049	5.4	-0.61	E	1 <i>n</i>
5	4s3d-4s(2S)5f	³ D - ³ F° (25)	4096.0	20356	44763	15	21	0.13	0.046	9.3	-0.16	D	1 <i>n</i>
		(20)	4098.53 4094.93 4092.63 4098.57 4094.96 [4098.6]	20371 20349 20335 20371 20349 20371	44763 44763 44763 44763 44763 44763	7 5 3 7 5 7	9 7 5 7 5 5	$\begin{array}{c} 0.13 \\ 0.12 \\ 0.11 \\ 0.015 \\ 0.021 \\ 5.8 \times 10^{-4} \end{array}$	0.041 0.041 0.048 0.037 0.0052 1.0×10 ⁻⁴	3.9 2.8 1.9 0.35 0.35 0.0098	-0.54 -0.69 -0.84 -1.59 -1.59 -3.15	D D D – D – E	ln ln ln ls ls
6		¹ D - ¹ F° (37)	4355.08	21850	44805	5	7	0.19	0.074	5.3	-0.43	D	1 <i>n</i>
7	4s3d-4s(2S)6p	¹ D - ¹ P° (34)	5041.62	21850	41679	5	3	0.33	0.076	6.3	-0.42	D	2
8	4s3d-4s(2S)6f	³D − ³F° (26)	3873.5	20356	46165	15	21	0.075	0.024	4.5	-0.44	D	1n
		(20)	3875.78 3872.54 3870.48 3875.80 3872.56 [3875.8]	20371 20349 20335 20371 20349 20371	46165 46165 46165 46165 46165	7 5 3 7 5 7	9 7 5 7 5 5	0.079 0.054 0.072 0.0089 0.0098 3.5 × 10 ⁻⁴	0.023 0.017 0.027 0.0020 0.0022 5.7×10^{-5}	2.1 1.1 1.0 0.18 0.14 0.0051	-0.79 -1.07 -1.09 -1.85 -1.96 -3.40	D D D – D – E	ln, ls ln, ls ln ln, ls ln, ls ln, ls
9		¹ D - ¹ F° (39)	4108.53	21850	46182	5	7	0.90	0.32	22	0.20	υ	1 <i>n</i>
10	4s3d-4s(2S)7f	³ D − ³ F° (27)	3751.3	20356	47006	15	21	0.040	0.012	2.2	-0.74	D	l <i>n</i>
		ν,	3753.34 3750.29 3748.35 3753.34 3750.29 3753.34	20371 20349 20335 20371 20349 20371	47006 47006 47006 47006 47006 47006	7 5 3 7 5 7	9 7 5 7 5 5	0.041 0.034 0.034 0.0044 0.0062 1.7 × 10 ⁻⁴	$\begin{array}{c} 0.011 \\ 0.010 \\ 0.012 \\ 9.3 \times 10^{-4} \\ 0.0013 \\ 2.6 \times 10^{-3} \end{array}$	0.95 0.62 0.44 0.080 0.080 0.0022	-1.11 -1.30 -1.44 -2.19 -2.19 -3.74	D D D – D – E	1n, ls 1n, ls 1n, ls 1n, ls 1n, ls 1n, ls
11	4s3d-4s(2S)8f	³ D − ³ F° (28)	3676.2	20356	47550	15	21	0.025	0.0072	1.3	-0.97	D	1 <i>n</i>
		,	3678.21 3675.29 3673.42 3678.21 3675.29 3678.21	20371 20349 20335 20371 20349 20371	47550 47550 47550 47550 47550 47550	7 5 3 7 5 7	9 7 5 7 5 5	0.023 0.022 0.022 0.0026 0.0038 1.0 × 10 ⁻⁴	$\begin{array}{c} 0.0061 \\ 0.0062 \\ 0.0075 \\ 5.3 \times 10^{-4} \\ 7.7 \times 10^{-4} \\ 1.5 \times 10^{-5} \end{array}$	0.52 0.38 0.27 0.045 0.047 0.0013	-1.37 -1.51 -1.65 -2.43 -2.41 -3.98	D D D - D - E	1n, ls 1n, ls 1n 1n, ls 1n, ls 1n, ls
12	$4s^2 - 3d(^2D)4p'$	¹ S - ³ D° (3 uv)	2617.66	0	38192	1	3	1.6×10-4	5.0×10 ⁻³	4.3×10-4	-4.30	D-	3n
13		¹ S - ³ P° (4 uv)	2541.40	0	39335	1	3	1.7×10-4	5.0×10 ⁻³	4.2×10-4	-4.30	D-	3 <i>n</i>
14		1S = 1P° (6 uv)	2275.46	0	43933	l	3	0.301	0.070	0.52	- 1.155	C+	
15	$4s4p-3d^2$	3P° _ 3P (17)	3003.2	15263	48551	9	9	1.08	0.146	13.0	0.119	С	1n, 2
		(11)	3006.86 2999.64 3009.21 3000.86 2997.31 2994.96	15316 15210 15316 15210 15210 15158	48564 48538 48538 48524 48564 48538	5 3 5 3 1	5 3 1 5 3	0.75 0.279 0.430 1.58 0.241 0.367	0.101 0.0376 0.0350 0.071 0.054 0.148	5.0 1.11 1.73 2.10 1.60 1.46	-0.297 -0.95 -0.76 -0.67 -0.79 -0.83	000000	1n, ls 1n, ls 1n, ls 1n, ls 1n, ls

Ca I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(cm^{-1})$	E _k (cm ⁻¹)	gı	μk	$A_{kl}(10^8$ sec ⁻¹)	fik	S(at. u.;	log gf	Accu- racy	Source
6	4s²-4s(2S)4p	1S-3P2 (1)								1	!		
		(1)	6572.78	0	15210	1	3	2.6×10^{-5}	5.1 × 10 ⁻⁵	0.0011	-4.29	D+	4n, 5n
17		'S-'P° (2)	4226.73	0	23652	1	3	2.18	1.75	24.4	0,243	B+.	6,7,8
8	4s4p-4p2	3P° — 3P (5)	4300.8	15263	38508	9	9	1.81	0.50	64	0.65	C+	1n, 2,
		(0)	4302.53	15316	38552	5	5	1.36	0.377	26.7	0,275	C+	1n, 4n.
			4298.99	15210	38465	3	3	0.466	0.129	5.5	-0.412	C+	ln, 4n.
			4318.65	15316	38465	5	3	0.74	2 124	8.8	-0.208	C+	ln, 4n
			4307.74	15210	38418	3	1	1.99	0.185	7.9	-0.256	C+	1n, 4n
			4283.01	15210	38552	3	5	0.434	0.199	8.4	-0.224	C+	1n,4n
			4289.36	15158	38465	1	3	0.60	0.498	7.0	-0,303	C+	ln, 4n
9		'P° – 'D (47)	5857.45	23652	40720	3	5	0.66	0,57	33	0,23	ת	
20		1P°-1S (48)	5512.98	23652	41786	3	1	1.1	0.17	9.3	-0.29	E	1
21	4s3d-3d(2D)4p'		6460.3	20356	35831	15	21	0.54	0.47	150	0.85	D	
		(18)	6439.07 6462.57 6493.78 6471.66 6499.65 6508.85	20371 20349 20335 20371 20349 20371	35730 35819	7 5 3 7 5 7	9 7 5 7 5 5	0.47 0.44 0.059 0.081	0.42 0.41 0.46 0.037 0.051 0.0011	62 44 30 5.5 5.5 0.16	0.47 0.31 0.14 -0.59 -0.59 -2.11	D D D – D – E	
22		3D - 1D°											
		(19)	6455,60 6449.81	20349 20335		5 3			0.0090 0.094	0.96 6.0	-1.35 -0.55	E D	1
23		³ D - ³ D° (21)	5592.5	20356	38232	15	15	0.56	0.26	73	0.59	D	
		·	5588.76 5594.47 5598.49 5601.29 5602.85 5581.97 5590.12	20349	38219 38192 38219 38192 38259	7 5 3 7 5 5 3	5 3 5 3 7	0.43 0.086 0.14 0.060	0.23 0.18 0.20 0.029 0.040 0.039 0.065	30 17 11 3.7 3.7 3.6 3.6	0.21 -0.05 -0.22 -0.69 -0.70 -0.71	D D D D D D D D D D D D D D D D D D D	
24		³ D - ³ P° (22)	5266.7	20356	39338	15	9	0.60	0.15	39	0.35	D	
			5270.27 5265.56 5262.24 5264.24 5261.71 5260.39	20335 20349 20335	39335 39333 39340 39335	3	3 1 5 3	0.44 0.60 0.091 0.15	0.15 0.11 0.083 0.038 0.062 0.0042	18 9.5 4.3 3.3 3.2 0.22	0.02 -0.26 -0.60 -0.72 -0.73 -1.90	D D D- D- O- E	
25		¹ D - ¹ P° (36)	4526.94	21850	43933	5	3	0.41	0.075	5.6	-0.43	D	1
26	$4s^2-4s(^2S)5p$	1S _ 1P° (2 uv)	2721.65	U	30732	1	3	0.0027	9.0 × 10-4	0.0081	-3.05	D	3

Ca I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Ă)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μi	#k	4 _{ki} (10 ^k sec-1)	fik	S(at. u.)	$\log g \dot{f}$	Acca-	Source
27	4s ² -4s(² S)6p	'S - 'P° (5 uv)	2398.56	0	41679	1	3	0.167	0.0433	0.342	-1.364	C+	3n, 4n
28	$4s^2-4s(^2S)7p$	¹ S - ¹ P° (7 uv)	2200.73	0	45425	1	3	0.153	0.0333	0.241	-1.478	С	9 <i>n</i>
29	4s2-4s(2S)8p	'S-'P° (8 uv)	2150.80	0	46480	1	3	0.061	0.0126	0.089	-1.90	С	9n
30	4s4p-4s(2S)4d	³ P°- ³ D (4)	4445.0	15263	37754	9	15	0.85	0.418	55	0.58	C+	ln, 2,
		(4)	4454.78	15316	37757	5	7	0.86	0.357	26.2	0.252	C+	1n, 4n
Ì			4434.96	15210	37752	3	5	0.63	0.312	13.7	-0.029	C+	1n, 4n,
			4425.44	15158	37748	1	3	0.468	0.412	6.0	-0.385	C+	1n, 4n,
			4455.89	15316	37752	5	5	0.208	0.062	4.55	-0.51	C+	1n, 4n,
			4435.69	15210	37748	3	3	0.356	0.105	4.60	-0.50	C+	1n, 4n,
			4456.61	15316	37748	5	3	0.0245	0.00437	0.321	-1.66	C+	ln, 4n,
31	$4s4p - 4s(^2S)5s$	³ P°- ³ S	6141.9	15263	31539	9	3	0.66	0.125	22.8	0.051	c	2,41
			6162.17 6122.22 6102.72	15316 15210 15158	31539 31539 31539	5 3 1	3 3 3	0.354 0.231 0.077	0.121 0.130 0.129	12.3 7.9 2.59	-0.218 -0.409 -0.89	CCC	4n, ls 4n, ls 4n, ls
32	$4s4p - 4s(^2S)5d$	$^{3}P^{\circ} - ^{3}D$ (9)	3637.6	15263	42746	9	15	0.370	0.122	13.2	0.041	C+	1n, 2,
			3644.41	15316	42747	5	7	0.355	0.099	5.9	-0.305	C+	4n $1n, 4n,$
		İ	3630.75	15210	42745	3	5	0.297	0.098	3.51	-0.53	C+	1n, 4n,
			3624.11	15158	42743	1	3	0.212	0.125	1.49	-0.90	C+	1n, 4n,
			3644.77	15316	42745	5	5	0.094	0.0188	1.13	-1.027	C+	1n, 4n,
			3630.97	15210	42743	3	3	0.153	0.0302	1.08	-1.043	C+	1n, 4n,
20			3544.99	15316	42743	5	3	0.0095	0.00114	0.068	-2.244	C+	1n, 4n,
33		'P°-'D (49)	5188.85	23652	42919	3	5	0.40	0.27	14	-0.09	D	<i>l</i> s 2
34	4s4p-4s(2S)6s	³ P°- ³ S (6)	3965.4	15263	40474	9	3	0.305	0.0240	2.82	-0.67	С	1n, 4n
			3973.71 3957.05 3948.90	15316 15210 15158	40474 40474 40474	5 3 1	3 3 3	0.175 0.098 0.0334	0.0248 0.0231 0.0234	1.62 0.90 0.304	-0.91 -1.159 -1.63	CCC	1n, 4n 1n, 4n 1n, 4n
35	4s4p-4s(2S)6d	³ P°- ³ D (11)	3356.1	15263	45051	9	15	0.239	0.067	6.7	-0.220	С	1n, 4n
			3361.92 3350.21 3344.51 3362.14 3350.36 3362.28	15316 15210 15158 15316 15210 15316	45049 45050 45049	5 1 5 3 5	5 3	0.223 0.178 0.151 0.065 0.111 0.0059	0.053 0.050 0.076 0.0110 0.0187 6.0 × 10 ⁻⁴	2.93 1.65 0.84 0.61 0.62 0.0332	-0.58 -0.82 -1.119 -1.260 -1.251 -2.52	CCCCCC	1n. 4n 1n. 4n 1n. 4n 1n. 4n 1n. 4n
36		'P°-'D (51)	4685.27	23652	44990	3	5	0.080	0.044	2.0	-0.88	D	2

Ca I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	μk	$A_{kl}(10^{\mu}$ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
37	4s4p-4s(2S)7s	3P°-3S	3481.1	15263	43981	9	2	0.14	0.0082	0.85	-1.13	D	1 <i>n</i>
٠.	731p 43(2)13	(10)	J 4 01.1		40701	1	,						
			3487.60	15316	43981	5	3	0.078	0.0025	0.49	-1.37	D	1 <i>n</i>
			3474.76 3468.48	15210 15158	43981 43981	3	3	0.046 0.013	0.0033 0.0071	0.28 0.081	-1.60 -2.15	D	1 <i>n</i> 1 <i>n</i>
			04.00.40	13136	40701	1					2.10		
38	4s4p-4s(2S)7d	$^{3}P^{\circ} - ^{3}D$ (13)	3220.5	15263	46305	9	15	0.15	0.040	3.8	-0.44	D	1 <i>n</i>
			3225.90	15316	46306	5	7	0.16	0.035	1.9	-0.76	D	1 <i>n</i>
	ļ		3215.17	15210	46304	3		0.11	0.023	0.89	-1.08	D	$\frac{1n}{1n}$
			3209.96	15158	46302	1		0.073 0.040	0.034 0.0062	0.36 9.33	-1.47 -1.51	D	ln
			3226.16	15316 15210	46304 46302	5 3	5 3	0.040	0.0002	0.25	-1.63	D	ln
			3215.34 3236.32	15316	46302	5		0.0042	4.0×10-4	0.021	-2.70	E	ls
39	4s4p-4s(2S)8s	3P°-3S	3280.3	15263	45739	9		0.094	0.0050	0.49	-1.35	D	ln
		(12)	3286.07	15316	45739	5	3	0.053	0.0051	0.28	-1.59	D	1 <i>n</i>
			3274.67	15210	45739	3	3	0.030	0.0048	0.16	-1.84	D	1n
			3269.08	15158	45739	i		0.0094	0.0045	0.048	-2.35	D	1 <i>n</i>
40	4s4p-4s(2S)8d	³ P°−3D (15)	3145.8	15263	47042	9	15	0.078	0.019	18	-0.77	D	l <i>n</i>
		(/	3150.75	15316	47045	5	7	0.086	0.018	0.93	-1.05	D	1 <i>n</i>
			3140.79	15210	47040	3		0.049	0.012	0.37	-1.44	D	1 <i>n</i>
			3136.02	15158	47036	1	3	0.041	0.018	6.19	-1.74	D	1 <i>n</i>
			3151.27	15316	47040	5		0.018	0.0027	0.14	-1.87	D	1n
			3141.16	15210	47036	3	3	0.030	0.0044 1.9×10-4	0.14 0.010	-1.88 -3.02	D E	ln ls
			3151.64	15316	47036	5	3	0.0022	1.9 × 10 .	0.010	-3.02	E	13
41	4s4p-4s(2S)9s	³ P°-3S (14)	3175.2	15263	46748	9	3	0.055	0.0028	0.26	-1.60	D	1 <i>n</i>
		` ,	3180.52	15316	46748	5		0.029	0.0026	0.14	-1.89	D	1 <i>n</i>
			3169.84	15210	46748	3		0.020	0.0030	0.094	-2.05	D	1 <i>n</i>
			3164.60	15158	46748	1	3	0.0053	0.0024	0.025	-2.62	D	1 <i>n</i>
42	4s4p-4s(2S)10s	3P° = 3S (16)	3112.5	15263	47382	9	3	0.034	0.0016	0.15	-1.84	D	1 <i>n</i>
		(1.0)	3117.65	15316	47382	5	3	0.017	0.0015	0.077	-2.12	D	ln.
			3107.39	15210	47382	š	3	0.010	0.0015	0.046	-2.35	D	ln
			3102.35	15158	47382	1		0.0062	0.0027	0.028	-2.57	D	l n
			1.52.00			L.	Ľ				L	1	<u> </u>

Cail

Ground State
Ionization Potential

 $1s^22s^22p^63s^23p^64s^2S_{1/2}$ 11.87 eV = 95748.0 cm⁻¹

Allowed Transitions List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1287.2	10	1330.9	8	1455.5	28
1288.2	10	1368.4	7	1460.2	28
1304.6	9	1369.5	7	1461.2	27
1305.7	9	1433.1	6	1466.0	27
1329.8	8	1434.3	6	1458.3	26

Ca II. Allowed Transitions - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.	
1473.1	26	1814.6	18	4:20.13		
1477.3	25	1815.04	18	5001.49	34 34 34	
1482.1	25	1838.08	4	5019.98		
1488.8	24	1840.21	4	5021.14		
1493.7	1843.6	14	5285.34	31		
1504.2	23	1851.10	14	5307.30	31 33	
1509.2	23	2103.24	17	8203.2		
1525.3	22	2112.76	17	8250.2	33	
1530.4	22	2113.19	17	8256.1	33	
1553.5	5	2128.73	2	8498.02	1	
1555.1	5	2131.43	2	8542.09	1	
1555.3	21	2132.25	2	8662.14	1	
1560.6	21	2197.79	13	9856.7	30	
1600.5	20	2208.61	13	9933.3	30	
1606.1	20	3158.87	16	11836.4	29	
1606.2	20	3179.33	16	11947.0	29	
1642.8	3	3181.28	16			
1643.8	3 3 3	3706.03	12			
1644.4		3736.90	12	1		
1673.8	19	3933.66	11			
1680.0	19	3968.47	11			
1680.1	.1 19 4097.12		35	,		
1691.7	15	4109.83	35	,		
1698.1	15	4110.33	35			
1807.74	18	4206.21	32			

The great majority of the values are taken from the extensive calculations of Trefftz [1] which are based on the self-consistent field method and include core polarization effects. Her results for the 3d-4p and 4s-4p transitions are supported by excellent agreement (2-5%) with similar calculations of Weiss [3] (SCF with core relaxation) and Douglas and Garstang [4] (SCF with core polarization). For the 4s-4p transition, an experimental value is available from the lifetime measurements by Gallagher [2] employing the Hanle effect, which agrees with 10 percent with the theoretical results. Thus the average of the measured value and Trefftz' calculated result is adopted.

References

- [1] Trefftz, E., private communication (1968) and to be published.
- [2] Gallagher, A., Phys. Rev. 157, 24-30 (1967).
- [3] Weiss, A. W., J. Res. NBS 71A (Phys. and Chem.) 157-162 (1967).
- [4] Douglas, A. S., and Garstang, R. H., Proc. Cambridge Phil. Soc. 58, 377-381 (1962).

Ca II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	μı	#k	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
1	3d-4p	² D - ² P° (2)	8579.1 8542.09 8662.14 8498.02	13687 13711 13650 13650	25340 25414 25192 25414	10 6 4 4	6 4 2 4	0.109 0.099 0.106 0.0111	0.072 0.072 0.060 0.0121	20.3 12.2 6.8 1.35	-0.143 -0.365 -0.62 -1.315	C. CC C	ls ls ls
2	3d-5p	² D- ² P° (3 uv)	2131.5 2131.43 2132.25 2128.73	13687 13711 13650 13650	60587 60613 60535 60613	10 6 4 4	6 4 2 4	0.020 0.018 0.020 0.0020	8.1×10 ⁻⁴ 8.1×10 ⁻⁴ 6.8×10 ⁻⁴ 1.4×10 ⁻⁴	0.057 0.034 0.019 0.0038	-2.09 -2.31 -2.57 -3.25	D D D	ls ls ls

Call. Allewed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(cm^{-1})$	μı	μk	$rac{A_{ki}(10^8}{ m sec^{-1})}$	fik	S(at. u.)	log gf	Accu- racy	Source
3	3d-6p	² D – ² P° (5 uv)	1644.1	1.3687	74510	10	6	0.014	3.3×10-4	0.018	-2.48	D	1
		(0 41)	1644.4 1643.8 1642.8	13711 13650 13650	74522 74486 74522	6 4 4	4 2 4	0.013 0.014 0.0014	3.4×10^{-4} 2.8×10^{-4} 5.5×10^{-5}	0.011 0.0060 0.0012	-2.69 -2.95 -3.66	D D D	ls Is Is
4	3d-4f	² D- ² F° (4 uv)	1839.2	13687	68057	10	14	2.61	0.185	11.2	0.267	С	1
			1840.21 1838.08 1840.21	13711 13650 13711	68057 68057 68057	6 4 6	8 6 6	2.60 2.44 0.173	0.176 0.185 0.0088	6.4 4.48 0.320	0.024 -0.131 -1.277	C	ls ls ls
5	3d-5f	² D- ² F° (6 uv)	1554.2	13687	78028	10	14	1.70	0.086	4.40	-0.066	С	1
			1555.1 1553.5 1555.1	13711 13650 13711	78028 78028 78028	6 4 6	8 6 6	1.69 1.59 0.113	0.082 0.086 0.00410	2.51 1.76 0.126	0.308 0.463 1.61	CCC	ls ls ls
6	3d-6f	² D- ² F° (7 uv)	1433.3	13687	83458	10	14	1.08	0.0465	2.19	-0.333	С	1
			1434.3 1433.1 1434.3	13711 13650 13711	83458 83458 83458	6 4 6	8 6 6	1.07 1.01 9.072	0.0441 0.0466 0.00222	1.25 0.88 0.063	-0.58 -0.73 -1.88	CCC	ls ls ls
7	3d-7f	2D-2F°	i369.1	13687	86728	10	14	0.71	0.0280	1.26	-0.55	С	1
			[1369.5] [1368.4] [1369.5]	13711 13650 13711	86728 86728 86728	6 4 6	8 6 6	0.71 0.66 0.0473	0.0266 0.0277 0.00133	0.72 0.50 0.0360	-0.80 -0.96 -2.098	CCC	ls Is Is
8	3d-8f	2D-2F°	1330.5	13687	88848	10	14	0.490	0.0182	0.80	-0.74	С	1
			[1330.9] [1329.8] [1330.9]	13711 13650 13711	88848 88848 88848	6	8 6 6	0.491 0.459 0.0328	0.0174 0.0182 8.7 × 10 ⁻⁴	0.457 0.320 0.0229	-0.98 -1.138 -2.282		ls ls ls
9	3d-9f	2D-2F°	1305.3	13687	90300	10	14	0.350	0.0125	0.54	-0.90	С	1
			[1305.7] [1304.6] [1305.7]	13711 13650 13711	90300 90300 90300	6 4 6	8 6 6	0.352 0.328 0.0234	0.0120 0.0126 6.0×10-4	0.309 0.216 0.0154	-1.143 -1.298 -2.444	C	ls ls ls
10	3d-10f	2D-2F°	1287.8	13687	91338	10	14	0.259	0.0090	0.382	-1.046	С	1
			[1288.2] [1287.2] [1288.2]	13711 13650 13711	91338 91338 91338	6 4 6	8 6 6	0.258 0.242 0.0172	0.0086 0.0090 4.28 × 10 ⁻⁴	0.218 0.153 0.2109	-1.287 -1.444 -2.59	CCC	ls ls ls
11	45 - 411	2S_2P° (1)	3945.2	0	25340	2	6	1.48	1.04	27.0	0.318	C+	1, 2
			3933.66 3968.47	0	25414 25192	2 2	4 2	1.50 1.46	0.69 0.344	18.0 9.0	$0.140 \\ -0.162$		
12	4p -5s	² P°- ² S	3726.5	25340	52167	6	2	2.49	0.173	12.7	0.016	С	11
			3736.90 3706.03	25414 25192	52167 52167	4 2	2 2	1.65 0.84	0.173 0.173	8.5 4.22	-0.160 -0.461	C	ls ls
13	4p - 6s	² P°- ² S (8 uv)	2205.0	25340	70678	6	2	0.93	0.0227	0,99	-0.87	C	1
			2208.61 2197.79	25414 25192	70678 70678	4 2	2 2	0.62 0.313	0.0227 0.0227	0.66 0.328	-1.042 -1.343	C	ls ls
14	4p - 7s	² P°- ² S (10 uv)	1848.1	25340	79450	6	2	0.463	0.0079	0.288	-1.324	С	1
			1851.10 1843.6	25414 25192	79450 79450	4 2	2 2	0,308 0,155	0.0079 0.0079	9.1 3 0.056	-1.50 -1.80	C	ls Is

Call. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	E _I (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	μ	μk	A _{ki} (10 ⁸ sec ⁻¹)	f _{ik}	S(at. u.)	log gf	Accu- racy	Source
15	4p-8s	2P°-2S	1696.0	25340	84303	6	2	0.269	0.00387	0.130	-1.63	С	1
			[1698.1] [1691.7]	25414 25192	84303 84303	4 2	2 2	0.179 0.090	0.00387 0.00387	0.087 0.0431	-1.81 -2.111	C	ls Is
16	4p — 4d	² P°- ² D (4)	3172.6	25340	56851	6	10	3.62	0.91	57	0.74	С	1
		,	3179.33 3158.87 3181.28	25414 25192 25414	56859 56839 56839	4 2 4	6 1 4	3.59 3.05 0.60	0.82 0.91 0.091	34.2 19.0 3.80	0.52 0.260 -0.439	CCC	ls Is Is
17	4p-5d	² P°- ² D (9 uv)	2109.6	25340	72727	6	10	1.10	0.122	5.1	-0.135	С	1
		(> 2)	2112.76 2103.24 2113.19	25414 25192 25414	72731 72722 72722	4 2 4	6 4 4	1.10 0.93 0.182	0.110 0.123 0.0122	3.06 1.70 0.340	-0.357 -0.61 -1.312	C C C	ls Is Is
18	4p-6d	² P°- ² D (11 uv)	1812.1	25340	80526	6	10	0.490	0.0402	1.44	-0.62	С	1
		(33.21)	1815.04 1807.74 [1814.6]	25414 25192 25414	80528 80523 80523	4 2 4	6 4 4	0.486 0.412 0.081	0.0360 0.0403 0.00402	0.86 0.480 0.096	-0.84 -1.094 -1.79	C C C	ls Is Is
19	4p-7d	2P°-2D	1677.9	25340	84937	6	10	0.266	0.0187	0.62	-0.95	С	1
			[1680.0] [1673.8] [1680.1]	25414 25192 25414	84938 84935 84935	4 2 4	6 4 4	0.255 0.224 0.0441	0.0168 0.0188 0.00187	0.372 0.207 0.0413	-1.173 -1.425 -2.126	CCC	ls is ls
20	4p-8d	² P°- ² D	1604.2	25340	87677	6	10	0.162	0.0104	0.330	-1.205	С	1
			[1606.1] [1600.5] [1606.2]	25414 25192 25414	87676 87674 87674	4 2 4	6 4 4	0.161 0.136 0.0269	0.0094 0.0104 0.00104	0.198 0.110 0.0220	-1.425 -1.68 -2.381	C C C	ls ls ls
21	4p-9d	²P~−²D	1558.8	25340	89491	6	10	0.105	0.0064	0.197	-1.416	С	1
			[1560.6] [1555.3] [1560.6]	25414 25192 25414	89491 89490 89490	4 2 4	6 4 4	0.105 0.089 0.0175	0.0057 0.0064 6.4×10-4	0.118 0.066 0.0131	-1.64 -1.89 -2.59	C C C	ls ls ls
22	4p-10d	5b5D	1528.7	25340	90756	6	10	0.073	0.00428	0.129	-1.59	С	1
			[1530.4] [1525.3] [1530.4]	25414 25192 25414	90756 90755 90755	4 2 4	6 4 4	0.073 0.061 0.0122	0.00382 0.00428 4.27 × 10-4	0.077 0.0430 0.0086	-1.82 -2.068 -2.77	C C C	ls ls ls
23	4p-11d	2P°-2D	1507.5	25340	91674	6	10	0.053	0.00302	0.090	-1.74	С	1
			[1509.2] [1504.2] [1509.2]	25414 25192 25414	91674 91674 91674	4 2 4	6 4 4	0.053 0.0446 0.0088	0.00272 0.00303 3.02 × 10-4	0.054 0.0300 0.0060	-1.96 -2.218 -2.92	C C C	ls ls
21	4p-12d	2P°-2D	1492.1	25340	92361	6	10	0.0399	0.00222	0.065	-1.88	С	1
			[1493.7] [1488.8] [1493.7]	25414 25192 25414	92361 92361 92361	4 2 4	6 4 4	9.0395 0.0333 0.0066	0.00198 0.00221 2.26 × 10-4	0.0390 0.0217 0.00433	-2.101 -2.355 -3.056	CCC	ls ls
25	4p-13d	²P°−²D	1480.5	25340	92885	6	10	0.0305	0.00167	0.0488	- 2.000	С	
			[1482.1] [1477.3] [1482.1]	25414 25192 25414	92885 92885 92885	4 2 4	6 4 4	0.0304 0.0256 0.0051	0.00150 0.00168 1.67 × 10-4	0.0293 0.0163 0.00325	-2.222 -2.474 -3.175	CCC	ls ls

Call. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	E1(cm-1)	E _k (cm ⁻¹)	K I	Kk	$A_{ki}(10^8$ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Sourc
26	4p-14d	2P° -2D	1471.5	25340	93300	6	10	0.0240	0.00130	0.0378	-2.108	C	
			[1473.1]	25414	93300	4	6	0.0240	0.00117	0.0227	-2.330	C	
	10		[1468.3]	25192	93300	2	4	0.0202	0.00130	0.0126	-2.59	C.	
			[1473.1]	25414	93300	4	4	0.00399	1.30×10-4	0.00252	-3.284	С	ļ
27	4p — 15d	21.12D	1464.4	25340	93629	6	10	0.0192	0.00103	0.0298	-2.209	С	ļ
			[1466.0]	25414	93629	4	6	0.0192	9.3 × 10 ⁻⁴	0.0179	-2.429	C	
			[1461.2]	25192	93629	2	4	0.0161	0.00103	0.0099	-2.69	C	
			[1466.0]	25414	93629	4	4	0.00320	1.03×10-4	0.00199	-3.385	С	
28	4p-16d	2P°-2D	1458.7	25340	93896	6	10	0.0156	8.3×10 ⁻⁴	0.0239	-2.303	С	
			[1460.2]	25414	93896	4	6	0.0155	7.4×10^{-4}	0.0143	-2.53	C	
			[1455.5]	25192	93896	2	4	0.0131	8.3×10^{-4}	0.0080	-2.78	C	ŀ
			[1460.2]	25414	93896	4	4	0.00259	8.3×10^{-5}	0.00159	-3.479	C	
29	5s-5p	² S- ² P° (5)	11873	52167	60587	2	6	0.23	15	110	0.48	D	
		(6)	11836.4	52167	60613	2	4	0.23	0.98	76	0.29	D	1
			11947.0	52167	60535	2	2	0.23	0.49	38	-0.01	D	İ
30	5p-6s	² P°- ² S (12)	9907.1	60587	70678	6	2	0.58	0.28	55	0.23	D	
		\\.	9933.3	60613	70678	4	2	0.38	0.28	37	0.05	D	1
			9856.7	60535	70678	2	2	0.19	0.28	18	- 0.25	D	
31	5p-7s	*P°-2S	5299.9	60587	79450	6	2	0.23	0.033	3.4	-0.70	D	
		(14)	5307.30	 60613	79450	4	2	0.15	0.033	2.3	-0.88	D	ľ
	-		5285.34	60535	79450	2	2	0.13	0.033	1.1	-0.66	D	
										_			
32	5p-8s	² P°- ² S (16)	4215.4	60587	8-1303	6	2	0.13	0.011	0.95	-1.18	D	
		(10)	4220.13	60613	84303	4	2	0.085	0.011	0,63	-1.36	D	
			4206.21	60535	84303	2	2	0.043	0.011	6.32	- 1.66	D	
33	5p-5d	² P°- ² D (13)	8235.0	60587	72727	6	10	0.61	1.0	170	0.78	c-	·
		(13)	8250.2	60613	72731	4	6	0.61	0.93	100	0.57	C-	.
		1	8203.2	60535	72722	2	4	0.51	1.0	56	0.30	C-	
	,	į	8256.1	60613	72722	4	4	0.10	0.10	11	-0.40	C-	•
34	5p-5d	² P°- ² D (15)	50 i 3.9	60587	80526	6	10	0.24	0.15	15	-0.05	D	
		120,	5019.98	60613	80528	4	6	0.23	0.13	8,8	-0.28	D	
			5001.49	60535	80523	2	4	0.20	0.15	4.9	-0.52	D	
			5021.14	60613	80523	4	4	0.039	0.015	0.98	-1.22	D	
35	5p-7d	² P°- ² D (17)	4105.6	60587	84937	6	10	0.12	0.050	4.0	-0.52	D	
		(17)	4109.83	60613	84938	4	6	0.12	0.045	2.4	-0.74	D	
			4097.12	60535	84935	2	4	0.099	0.050	1.3	-1.00	D	
			4110.33	60613	84935	4	4	0.019	0.0049	0.27	-1.71	D	

Call

Forbidden Transitions

The line strength for the magnetic dipole 3d-3d transition is a straight number, tabulated for example by Osterbrock [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known. Osterbrock's electric quadrupole values are regarded as quite uncertain since in cases where more recent data are available he has not compared very well.

Reference

[1] Osterbrock, D. E., Astrophys. J. 114, 469-472 (1951).

Ca II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
l	3d = (1S)3d	² D− ² D	[16.477×10 ⁵]	13650.2	13710.9	4	6	m	2.41 × 10 ⁻⁶	2.40	A	1
2	4s + (1S)3d	² S - ² D (1F)	7291.46 7323.88	0.00	13710.9 13650.2	2 2	6	e e	1.3 1.3	96 65	E E	1 1

Ca IV

Ground State

THE WEST STREET

1s22s22p63s23p5 2Po

Ionization Potential

 $67 \text{ eV} = 542000 \text{ cm}^{-1}$

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Ca IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g _i	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik.	S(at. u.)	log gf	Accu- racy	Source
	$3s^23p^5 - 3s3p^6$	2P°-2S	660.54	1038	152430	6	2	170	0.37	4.8	0.35	E	1
			[656.04] [669.73]	0 3115	152430 152430	4 2	2 2	120 54	0.37 0.36	3.2 1.6	0.17 -0.14	E E	ls Is

Caiv

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ca IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	#k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	3μ ⁵ – 3μ ⁵	2P°_2P°	[32090]	0	3115	4	2	m	0.543	1.33	A	1

Ca v

Ground State

1s22s22p63s23p43P2

Ionization Potential

 $84.39 \text{ eV} = 680800 \text{ cm}^{-1}$

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Cav. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> _f (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	A _{kl} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
ı	$3s^23p^4 - 3s3p^5$	3P_3P°	647.01	1165	155721	9	9	100	0.63	12	0.75	E	1
			[646.56] [647.87] [637.93] [643.12] [656.77] [651.55]	2404 0 2404 2404 3276	154664 156756 156755 157897 154664 156756	5 3 5 3 1	5 3 3 1 5 3	76 25 44 110 24 34	0.48 0.16 0.16 0.22 0.26 0.65	5.1 1.0 1.7 1.4 1.7	0.38 -0.32 -0.10 -0.18 -0.11 -0.19	EEEEEE	is is is is is

Ca V

Forbidden Transitions

As in the case of Na IV the adopted values are taken from Naqvi [1], and Malville and Berger [2]. For a discussion on the selection of values see Na IV, since the same criteria have been applied.

References

- [1] Naqvi, A. M., Thesis Harvard (1951).
- [2] Malville, J. M., and Berger, R. A., Fianetary and Space Science 13, 1131 (1965).

Ca v. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	3p4+3p4	3P-3P	[41551] [41551] [30517] [11.49×10 ⁴]	0 0 0 2406.0	2406.0 2406.0 3276 3276	5 5 5 3	3 3 1 1	e m e m	7.1×10 ⁻⁶ 0.311 4.5×10 ⁻⁵ 0.0354	1.57 2.48 0.71 1.99	C- B C- B	1.2 1.2 2 1.2
2		³ P_ ¹ D ⁽¹ F)	5309.18 5309.18 6086.92 6086.92 [6427.4]	0 0 2406.0 2406.0 3276	18830.1 18830.1 18830.1 18830.1 18830.1	5 5 3 3	5 5 5 5 5	e m e m	0.0063 1.93 4.6×10-4 0.431 1.1×10-4	0.079 0.054 0.011 0.0180 0.0037	D- C D- C D-	1.2 1.2 1.2 1.2
3		3P_1S	[2280.0] [2412.3]	0 2406.0	43847 43847	5 3	1	e m	0.16 24	0.0057 0.0125	D-C	2 2
4		'D-'S (2F)	3996.3	18830.1	43847	5	1	e	4.6	2.79	c-	2

Ca VI

Ground State

 $1s^22s^22p^63s^23p^3$ $^4S_{3/2}^{\circ}$

Ionization Potential

109 eV

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Cavi. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	Kk	A _{ki} (10 ^H sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^23p^3 - 3s3p^4$	4S°-4P	637.10	0	156960	4	12	48	0.88	7.4	0.55	E	1
			[641.88] [633.81] [629.59]	0 0 0	155792 157775 158833	4 4 4	6 4 2	47 50 49	0.44 0.30 0.14	3.7 2.5 1.2	0.25 0.08 -0.25	E E E	ls ls ls

Ca VI

Forbidden Transitions

For this ion, the only available source is Pasternack [1]. Reference

[1] Pasternack, S., Astrophys. J. 92, 129-155 (1940).

Ca VI. Forbidden Transitions

No.	Transition Array	Multiplet	λ (Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g _i	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$3p^3 - 3p^3$	4S°_2D° (1F)	3646.3 3646.3	0	[27417] [27417]	4 4	6	m e	0.0066 0.013	7.1 × 10 ⁻⁵ 0.030	C- D-	l 1
			3702.7 3702.7	0	[27000] [27000]	4	4	m e	0.28 0,0081	0.00211 0.013	D-	1 1
2		4S°-2P°	[2206.3] [2206.3] [2233.7] [2233.7]	0 0 0 0	[45310] [45310] [44754] [44754]	4 4 4 4	4 4 2 2	m e m e	12 2.9 × 10 ⁻⁴ 4.8 0.0020	0.0191 3.6 × 10 ⁻³ 0.00397 1.3 × 10 ⁻⁴	C D- C D-	1 1 1
3		*D°-*D°	[24.0×10 ⁴] [24.0×10 ⁴]	[27000] [27000]	[27417] [27417]	4 4	6 6		7.83 × 10 ⁻⁴ 8.2 × 10 ⁻¹¹	2.40 0.23	B D –]]
4		² D° – ² P° (2F)	5587.2 5587.2 5631.0 5631.0 5766.4 5460.0 5460.0	[27417] [27417] [27000] [27000] [27417] [27000] [27000]	[45310] [45310] [44754] [44754] [44754] [45310] [45310]	6 6 4 4 6 4 4	4 4 2 2 2 4 4	e m e	2.1 0.78 2.3 0.64 0.39 3.9 0.35	0.054 10. 0.0305 4.3 3.0 0.094 4.0	C D- C D- C D- C	1 1 1 1 1 1
5		2P°-2P°	[17.98×10 ⁴] [17.98×10 ⁴]	[44754] [44754]	[45310] [45310]	2 2	4 4	m e	0.00154 2.2 × 10 ⁻¹⁰	1.33 0.098	B D –	1

Ground State

 $1s^22s^22p^63s^23p^2$ ³P₀

Ionization Potential

 $128 \text{ eV} = 1030000 \text{ cm}^{-1}$

Allowed Transitions

A value is available for one multiplet of this ion from the screening-approximation calculations of Varsavsky [1]. This result should be quite uncertain (probably too high, as judged from comparisons in other ions), since the possibly important effects of configuration interaction have not been taken into account.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).

Ca VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
1	$3s^23p^2 - 3s3p^3$	3P-3D°	634 72 [639.15] [630.51] [624.38] [640.38] [630.78] [640.66]	2803 4070 1627 0 4070 1627 4070	160354 160527 160228 160160 160228 160160 160160	9 5 3 1 5 3 5	15 7 5 3 5 3 3	42 41 32 25 10 18 1.1	0.43 0.35 0.32 0.43 0.064 0.11 0.0042	8.0 3.7 2.0 0.89 0.67 0.67 0.044	0.59 0.24 -0.02 -0.37 -0.49 -0.48 -1.68	EEEE	ls ls ls ls ls

Ca VII

Forbidden Transitions

Since their methods are essentially the same, the averaged values of Naqvi [1], Malville and Berger [2], and Krueger and Czyzak [3] have been normally used for the magnetic dipole lines. Naqvi has not been included for the $^3P-^1S$ transition, where the effects of configuration interaction become important (see General Introduction). All values for the electric quadrupole transition probabilities have been taken from Krueger and Czyzak, since their electric dipole moment s_q has been obtained by using self-consistent field wavefunctions with exchange.

- [1] Naqvi, A. M., Thesis Harvard (1951).
- [2] Malville, J. M. and Berger, R. A., Planetary and Space Science 13, 1131 (1965).
- [3] Krueger, T. K. and Czyzak, S. J., Astrophys. J. 144, 1194 (1966).

Cavu. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_l(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ri	Kk	Type of Transi- tion	.4 _H (sec⁻¹)	S(at.u.)	Accu- racy	Source
1	$3p^2 - 3p^2$	3P_3P	[61450]	0	1627	1	3 5	m	0.0771	1.99	В	1
			[24460] [40640] [40640]	0 1627 1627	[4087] [4087] [4087]	1 3 3	5 5 5	m	1.9 × 10 ⁻⁵ 0.199 3.3 × 10 ⁻⁶	0.50 2.47 1.1	D B D	3
2		³ P_ ¹ D (1F)	[4571.8] [4939.3] [4939.3] 5621.4 5621.4	0 1627 1627 [4087] [4087]	[21867] [21867] [21867] [21867] [21867]	1 3 3 5 5	5 5 5 5 5	e	1.8 × 10 ⁻⁴ 1.25 0.0015 2.56 0.0053	0.0011 0.0280 0.013 0.084 0.089	D C D C	1, 2, 3 3 1, 2, 3
3		3P-1S	[2133.8]? [2252.1]?	1627 [4087]	[48477]? [48477]?	3 5	l 1	m e	33.2 0.27	0.0120 0.0093	C	2, 3 3
		(2F)	[3756.9]?	[2186.9]	[48477]?	5	1	e	4.4	2.0	D-	3

Ca VIII

Ground State

1s22s22p63s23p2Po

Ionization Potential

 $147 \text{ eV} = 1189000 \text{ cm}^{-1}$

Allowed Transitions

The screening-approximation calculations of Varsavsky [1] for the $3s^23p$ $^2P^\circ - 3s3p^2$ 2D multiplet are considered to be rather uncertain (probably too high, as judged from comparisons in other ions) since the important effects of configuration mixing are neglected entirely. Gruzdev and Prokofev [2] have carried out Coulomb approximation calculations modified with the Seaton correction for the 3p $^2P^\circ - 4s$ 2S multiplet; these results should be reliable to within 25 percent, as judged from plots depicting f-value dependence on nuclear charge.

References

- [1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75 (1961).
- [2] Gruzdev, P. F., and Prokofev, V. K., Optics and Spectroscopy (U.S.S.R.) 21, 151-152 (1966).

CavIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ki	Kk	A _{ki} (10 ⁿ sec ⁻¹)	fik	S(at. u.)	log gj	Accu-	Source
1	$3s^23p - 3s3p^2$	2P°-2D	592.22	2870	171726	6	10	47	0.41	4.8	0.39	E	1
			[596.93] [582.84] [597.84]	4305 0 4305	171828 171573 171573	4 2 4	6 4 4	46 41 7.6	0.37 0.42 0.041	2.9 1.6 0.32	0.17 -0.08 -0.79	E E E	ls Is Is
2	3p-(1S)4s	2P°-2S	183.68	2870	547308	6	2	480	0.081	0.294	-0.313	C	2
			[184.16] [182.71]	4305 0	547308 547308	4 2	2 2	320 160	0.081 0.081	0.196 0.097	-0.489 -0.79	C	/s /s

Ca VIII

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ca vIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transi- tion	4 _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$3p - (^1S)3p$	2P°_2P°	[23222]	0	4305	2	4	m	0.716	1.33	A	1

Ca IX

Ground State

1s22s2p63s21S0

Ionization Potential

 $188 \text{ eV} = 1519000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
100.65 100.96 100.97 129.20 129.42	7 7 7 6 6	161.98 162.37 163.23 371.90 373.80	5 5 3 3	398.7 466.23 498.00 503.28 506.16	4 1 2 2 2
129.45 129.93 129.97 129.99	6 6 6	373.98 378.09 378.38 378.57	3 3 3	507.09 512.06 515.57	2 2 2

The two available sources for this ion are the calculations of Zare [1], which include configuration interaction employing Hartree-Fock-Slater wave functions as a starting point, and the charge-expansion method of Crossley and Dalgarno [2] which also includes configuration interaction but in a more limited way. For many of these transitions, the dependence of oscillator strength on nuclear charge has served as an aid in estimating accuracies.

^[1] Zarc, R. N., J. Chem. Phys. 47, 3561-3572 (1967).

^[2] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510 (1965).

Ca IX. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_1(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ri	Kk	A _{ki} (10 ⁸ sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
ı	$3s^2 - 3s(^2S)3p$	15-1P°	[466.23]	0	214488	1	3	112	1.09	1.68	0.037	В	1
2	$3s3p - 3p^2$	3P°-3P	506.69	145764	343122	9	9	95	0.366	5.5	0.52	C+	2
	•		[506.16]	147370	344935	5	5	72	0.275	2.29	0.138	C+	Is
			[507.09]	144130	341333	3	3	23.7	0.091	0.458	-0.56	C	ls
			[515.57]	147370	341333	3 5	3	37.5	0.090	0.76	-0.347	C	ls
			512.06	144130	332420	3	1	92	0.121	0.61	-0.440	C	ls
			498.00	144130	344935	3	5	24.9	0.155	0.76	-0.333	C	ls
			[503.28]	142635	341333	1	3	32.3	0.368	0.61	-0.434	C	ls
3	$3s3p-3s(^2S)3d$	3P°-3D	376.00	145764	411723	9	15	152	0.54	6.0	0.69	C	1
			[378.09]	147370	411858	5	7	150	0.450	2.80	0.352	C	ls
			[373.80]	144130	411652	3	5	116	0.406	1.50	0.086	C	l ls
			371.901	142635	411525	1	3	88	0.55	0.67	-0.260	C	1.
			378.38	147370	411652	5	5	37.4	0.080	0.50	-0.398	C	1.
			[373.98]	144130	411525	3	3	65	0.135	0.50	-0.393	Č	l.
			[378.57]	147370	411525	5	3	4.1	0.0053	0.033	-1.58	Ĕ	ls
4		ıP°-ıD	[398.7]	214488	[465300]	3	5	220	0.89	3.5	0.43	D	1
5	3s3p-3s(2S)4s	3P°-3S	162.80	145764	760002	9	3	680	0.090	0.436	-0.092	C	1
	1		[163.23]	147370	760002	5	3	376	0.090	0.242	- 0.347	C	ls
			162.37	144130	760002	3	3	229	0.090	0.145	-0.57	C	ls.
			[161.98]	142635	760002	1	3	77	0.091	0.0484	-1.041	C	l:
6	$3s3p-3s(^2S)4d$	3P°-3D	129.69	145764	916852	9	15	510	0.22	0.83	0.29	D]
			[129.93]	147370	916990	5	7	510	0.18	0.39	-0.04	D	1.
			[129.42]	144130	916780	3	5	390	0.16	0.21	-0.31	D	1.
	1		[129.20]	142635	916652	i	3	290	0.22	0.092	-0.67	D-	
			[129.97]	147370	916780	5	5	130	0.032	0.069	-0.79	D -	i.
	i		[129.45]	144130	916652	3	3	220	0.054	0.069	-0.79	D-	
			[129.43]	147370	916652	5	3	14	0.0022	0.0046	-1.97	E	i i
7	$3s3p-3s(^2S)5d$	3P°-3D											
	`		[100.96]	147370	1137880	5	7	240	0.051	0.085	-0.59	D	1, /
			100.65	144130	1137720	3	5	180	0.046	0.046	-0.86	Ď	1. 1
	1	I	100.97	147370	1137720	5	5	60	0.0091	0.015	-1.34	ď	i, i

Ca IX

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P°-³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ca IX, Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g _i	Ek	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.11.)	Accu- racy	Source
1	3s3p 3s(² S)3p	ab∘=ab∘	[66870] [30860]	142635 144130	144130 147370	1 3	3 5	m m	0.0601 0.459	2.00 2.50	A A	1 1
2		3 P °-1 P °	[1391.7] [1421.3] [1489.9]	142635 144130 147370	214488 214488 214488	1 3 5	3 3 3	m m m	7.5 158 7.7	0.00225 0.050 0.00282	C C C	1 1 1

Cax

Ground State

1s22s2p63s 2S1/2

Ionization Potential

 $211.29 \text{ eV} = 1704660 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å)	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
110.96 111.20 118.20 151.83 153.01	2 2 7 4 4	206.75 207.39 369.29 371.90 411.69	5 5 10 10 3	557.74 574.01 1137.0 1159.1 1162.1	1 1 9 9
167.00 206.57	6 5	419.76 420.49	3 3	1462.6 1504.5	8

Two sources of data are available for this ion: the calculations of Stewart and Rotenberg [1], employing a scaled Thomas-Fermi potential, and the charge-expansion formulation of Crossley and Dalgarno [2], which includes limited configuration mixing. Graphical comparisons of both works with more refined values within the isoelectronic sequence indicate accuracies within 25 percent. A number of additional values have been obtained from studies of the f-value dependence on nuclear charge. The reliable material available for other ions of this isoelectronic sequence in these cases permits the determination of reliable values simply by graphical interpolation.

- [1] Siewart, J. C., and Rotenberg, M., Phys. Rev. 140, 1508A-1519A (1965).
- [2] Crossley, R. J. S., and Dalgarno, A., Proc. Roy. Soc. London A286, 510-518 (1965).

Cax. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gı	g _k	A _{ki} (10 ⁿ sec ⁻¹)	fik	· S(at. u.)	log gf	Accu- racy	Source
1	3s-3p	2S-2P°	563.0%	0	177601	2	6	37.2	0.53	1.96	0.025	C	,1
			[557.74] [574.01]	0	179295 174214	2 2	4 2	37.5 35.4	0.350 0.175	1.29 0.66	-0.155 -0.456	C	ls Is
2	3s-4p	2S-2P°	111.04	0	900575	2	6	261	0.145	0.106	-0.54	С	1
			[110.96] [111.20]	0	901210 899305	2 2	4 2	263 261	0.097 0.0483	0.071 0.0354	-0.71 -1.015	C	ls Is
3	3p-3d	2P°-2D	417.08	177601	417361	6	10	97	0.420	3.46	0.401	С	2
			[419.76] [411.69] [420.49]	179295 174214 179295	417527 417113 417113	4 2 4	6 4 4	95 83 !6	0.376 0.424 0.042	2.08 1.15 0.23	0.177 -0.072 -0.78	C C D	is Is Is
4	3p-4s	2P°-2S	152.62	177601	832838	δ	2	740	0.086	0.26	0.29	С	interp
			[153.01] [151.83]	179295 174214	832838 832838	4 2	2 2	480 250	0.084 0.087	0.17 0.087	0.47 0.76	C	ls Is
5	3d-4p	2D-2P°	206.95	417361	900575	10	6	290	0.11	0.75	0.04	С	interp
			[206.75] [207.39] [206.57]	417527 417113 417113	901210 899305 901210	6 4 4	4 2 4	260 280 29	0.11 0.092 0.018	0.45 0.25 0.050	-0.18 -0.43 -1.14	C C D	ls Is Is
6	3d-4f	2D-2F°	167.00	417361	1016167	10	14	1600	0.93	5.1	0.97	C+	interp
7	3d-5f	2D-2F°	118.20	417361	1263357	10	14	580	0.17	0.66	0.23	С	interp
8	4s-4p	2S - 2P°	1476.3	832838	900575	2	6	7.3	0.72	7.0	0.16	C	interp
			[1462.6] [1504.5]	832838 832338	901210 899305	2 2	4 2	7.6 6.8	0.49 0.23	4.7 2.3	-0.01 -0.34	C	ls Is
9	4p-4d	2P°-2D	1151.8	900575	987394	6	10	25	0.83	19	0.70	С	interp
			[1159.1] [1137.0] [1162.1]	901210 899305 901210	987259	4 2 4	6 4 4	24 22 4.2	0.72 0.84 0.085	11 6.3 1.3	0.46 0.23 -0.47	C C D	ls Is Is
10	4p-5s	2P°-2S	371.03	900575	1170098	6	2	220	0.15	1.1	-0.05	С	interp
			[371.90] [369.29]			4 2		140 74	0.15 0.15	0.73 0.37	-0.22 -0.52	C	ls ls

Ca XI

Ground State

1s22s2p6 1S0

Ionization Potential

 $591.8 \text{ eV} = 4774300 \text{ cm}^{-1}$

Allowed Transitions

Calculations by Kastner, Omidvar, and Underwood [1], employing Hartree-Fock wave function and including intermediate coupling, are available. Since the calculations are based on a single-configuration approximation only, uncertainties of up to 50 percent are expected for the strong lines and even higher uncertainties for the weak lines, the latter being more affected by assumptions about the coupling.

Reference

[1] Kastner, S. O., Omidvar, K., and Underwood, J. H., Astrophys. J. 148, 269-273 (1967).

Ca XI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	Ķi	gr	ਜੰ _{ki} (108 sec ⁻¹)	fik	S(at. u.)	log gf	Accu- racy	Source
ij	$2p^{6} - 2p^{5}(^{2}P_{3/2}^{\circ})3s$:S-3P°											
	2p*(-13/2)38		[35.576]	0	2810900	1	3	1200	0.066	0.0077	-1.18	E	1
2	$2p^{6} - 2p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})3s$	'S-'P°	[35.213]	0	2839900	1	3	2000	0.11	C.013	-0.96	D	1
3	$\begin{vmatrix} 2p^6 - \\ 2p^5(^2\mathbf{P}_{3/2}^{\circ})3d \end{vmatrix}$	'S-3P°										<u> </u>	
	2p"("Γ _{3/2})5α		[31.257]	0	3199300	1	3	170	0.0074	7.6×10-4	-2.13	E	1
4	$ \begin{array}{c c} 2p^6 - \\ 2p^5(^2\mathrm{P}^{\circ}_{3/2})3d \end{array} $	'S-'P°	[30.867]	0	3239700	1	3	4.9×10 ⁴	2.1	0.21	0.32	D	1
5	$\begin{vmatrix} 2p^{6} - \\ 2p^{5}(^{2}P_{1/2}^{\circ})3d \end{vmatrix}$	'S-3D°											
	2p*(-P _{1/2})3a		[30.448]	0	3284300	1	3	6200	0.26	0.026	-0.59	D	1

Ca XII

Ground State

1s22s2p5 2P3/2

Ionization Potential

655 eV

Forbidden Transitions

The line strength for the one transition in the ground state configuration is a straight number, tabulated for example by Naqvi [1]. The transition probability should also be quite accurate, since the energy level difference is accurately known.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ca XII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	E _k (cm ⁻)	Ri	Rk	Type of Transi- tion	A _{ki} (sec ⁻¹)	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	² P°_2P° (1 F)	3329,5	0	30028	4	2	m	486	1.33	Α	1

Ground State

Ionization Potential

Forbidden Transitions

Krueger and Czyzak's [1] values have been used for this ion, except for the magnetic dipole ${}^{3}P_{0,1} - {}^{3}P_{1,3}$ transitions where Naqvi's [2] results have been applied. Some wavelength data are from observed coronal lines. The electric quadrupole moment (s_q) is based on self-consistent field wave functions with exchange.

References

- [t] Krueger, T. K. and Czyzak, S. J., Astrophys. J. 144, 1194-1202 (1966).
- [2] Naqvi, A. M. Thesis Harvard (1951).

CaxII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(m cm^{-1})$	Ķi	μĸ	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	$S({ m at.u.})$	Accu- racy	Source
1	2p4 - 2p4	3P _ 3P (1F)	4086.5 4086.5 [3484]	0 0 0	24464 24464 [28660]	5 5 5	3 3 1	e m e	0.00362 317 0.0111	0.0074 2.41 0.00340	C B C-	1 2
		₃b−ıD	[23810] [1124] [1124] [1550] [1550] [1658]	24464 0 24464 24464 [28660]	[28660] [89,000] [89000] [89000] [89000]	5 5 3 1	5 5 5 5 5	e m e m	3.84 0,30 850 0,0089 111 0,0068	0.0016 0.223 2.4×10 ⁻⁴ 0.077 2.5×10 ⁻⁴	D- C- D- C- D-	1 1 1 1 1 1
		³ P = ¹ S	[560,2] [649,4]	() 2 1161 [89000]	[178500] [178500] [178500]	5 3 5	1	m e	1.2 8200 7.4	3.9×10 ⁻⁵ 0.083 0.0076	D- C-	1

Ca XV

Ground State Ionization Potential $1s^22s^22\rho^2 {}^3P_0$

or conservation and the second second

Forbidden Transitions

Krueger and Czyzak's [1] values have been used for this ion, except for the magnetic dipole ${}^{3}P_{6|1} - {}^{3}P_{1,3}$ transitions where Naqvi's [2] results have been applied. Some wavelength data are from observed coronal lines. The electric quadrupole moment (s_{η}) is based on self-consistent field wave functions with exchange.

- [1] Krueger, T. K. and Czyzak, S. J., Astrophys. J. 144, 1194-1202 (1966).
- [2] Naqvi. A. M. Thesis Harvard (1951).

Ca xv. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	Ķi	gu	Type of Transi- tion	$A_{kl}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3h 3h	5694.44 [2783.8] 5446.44 5446.44	1755 17556	17556 35911 35911 35911	1 1 3 3	3 5 5 5	m e m e	94.9 0.0060 77.8 4.06×10-4	1.95 0.00297 2.33 0.0057	B C B C	£ 1 2
9		3P − 1D	[916.7] [1093] [1093] [1367] [1367]	0 17556 17556 35911 35911	[109070] [109070] [109070] [109070] [109070]	1 3 5 5	5 5 5 5 5	e m e m e	0.015 670 0.087 960 0.19	2.8 × 10 ⁻⁵ 0.163 4.0 × 10 ⁻⁴ 0.455 0.0026	D- C- D- C- D-] 1 1 1
3		3P = 1S	[581.3] [650.8]	17556 35911	[189570] [189570]	3 5	1	m e	8500 4.4	0.062 3.0×10-4	C - D -	1
4		'D-'S	[1242]	[109070]	[189570]	5	1	ę	5.9	0.010	D	1

LIST OF RECENT ADDITIONAL MATERIAL

(New material which would have been considered if received before cut-off date)

Spectrum	References	Spectrum	References
Naı	1, 2, 10	Pıv	11
MgI	9, 11	Arı	7
MgII	10	,,	7.0
		Kı	10
Alı	3		
Al II	11	Car	11
	[Call	10
Si 1	4, 5, 6, 8		
Si II	4		
Si III	4, 11		
Si IV	12		

References and Comments

[1] Hameed, S., Herzenberg, A., and James, M. G., J. Phys. B (Proc. Phys. Soc.) Ser. 2, 1, 822-830 (1968).Nat

Self-consistent field calculations with core polarization for the resonance transition. Results

agree within a few percent with our tabulated value.

[2] Wolff, R. J., and Davis, S. P., J. Opt. Soc. Am. 58, 490–495 (1968).

Lifetime of 3p ³P° state. Agrees exactly with our listed number. [3] Cunningham, P. T., J. Opt. Soc. Am. **58**, 1507-1509 (1968).

Phase-shift lifetime of 4s 2S_{1/2} and 3d 2D states. Supports within 2-4 percent our adopted absolute

scale.
[4] Hofmann, W., Max Planck Institut für Physik und Astrophysik MPI-PAE/Extraterr. (January. 1969). Si 1, 11, 111

Vacuum uv stabilized arc experiment. Agreement with our tahulated data is quite good for Si 1, although Hofmann has values for many more lines. The absolute values appear to be low for Si 11, but the relative values agree quite well with ours. Does not agree with our listed value (and systematic trends) for Si III.

[5] Schulz-Gulde, E., J. Quant. Spectrosc. Radiat. Transfer 9, 13-29 (1969).

Wall-stabilized arc experiment. The values are in poor agreement with our listed values and the calculations of refs. [6] and [8] below. We recommend these new experimental values over those of refs. [6] and [8] and our tahulated data.

[6] Armstrong, Jr., L., and Liebermann, R., J. Quant. Spectrosc Radiat. Transfer 9, 123-128 (1969).

Intermediate coupling calculations with absolute scale from wavefunctions with self-consistent field type potential. Should be considered along with ref. [8] when values are not available from ref. [5].

[7] Veroleinen, Ya. F., and Osherovich, A. L., Optics and Spectroscopy (U.S.S.R.) 25, 258-259 (1968).

Delayed-coincidence lifetimes. See comment under Ar I.

[8] Warner, B., Monthly Notices Roy. Astron. Soc. 139, 1-34 (1968)

Intermediate coupling calculations with wavefunctions from Thomas-Fermi-Dirac potential and with configuration mixing. Should be considered along with ref. [6] when values are not available from ref. [5].

[9] Warner, B., Monthly Notices Roy. Astron. Soc. 139, 103-113 (1968). MgI

Calculations similar to those of ref. [8]. Results agree usually very well with our values.

[10] Warner, B., Monthly Notices Roy. Astron. Soc. 139, 115-128 (1968).

Na I, Mg II, K I, Ca II

Calculations similar to those of ref. [8]. The results agree within a few percent with our values.

[11] Warner, B., Monthly Notices Roy. Astron. Soc. 140, 53-59 (1968).

Mg I, Al II, Si III, P IV, Ca I Intermediate coupling calculations with Thomas-Fermi-Dirac wavefunctions. Results usually agree well with our listed data where one would expect.

[12] Warner, B., Monthly Notices Roy. Astron. Soc. 141, 273-276 (1968).

Si IV Calculations based on scaled Thomas Fermi wavefunctions. The agreement with our tabulated material is excellent.

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards 1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer

Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical

Mathematics - Electricity - Metrology - Mechanics - Heat - Atomic and Molec-Applied ular Physics - Radio Physics - Radio Engineering - Time and Frequency - Astrophysics -

Cryogenics.2

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures-Invention and Innovation-Vehicle Systems Research-Product Evaluation-Building Research-Instrument Shops-Measure-

ment Engineering-Electronic Technology-Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation - Linac Radiation - Nuclear Radiation - Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information-Computer Services-Systems

Development - Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information 3-Office of Technical Information and Publications-Library-Office of Public Information - Office of International Relations.

Headquarters and Laboratoriea at Gaithershurg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
 Located at Boulder, Colorado 80302.
 Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NBS TECHNICAL PUBLICATIONS

PERIC DICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$6.00; foreign, \$7.25*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

*Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse U.S. Department of Commerce Springfield, Virginia 22151

Announcement of New Publications in

National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series—National Bureau of Standards.

Name			•••••
Company			••••••
Address		•••••	• • • • • • • • • • • • • • • • • • • •
City	State	Zip Code	

(Notification key N-337)

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g., NSRDS-NBS-17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be made either by international money order or draft on an American bank. Postage stamps are not acceptable.

No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

- □ NSRDS-NBS 1, National Standard Reference Data System-Plan of Operation, by E. L. Brady and M. B. Wallenstein, 1964 (15 cents).
- □ NSRDS-NBS 2, Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents).
- □ NSRDS-NBS 3, Sec. 1, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, SiII, SiIII, SiIV, by C. E. Moore, 1965 (35 cents).
- □ NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents).
- □ NSRDS-NBS 4, Atomic Transition Probabilities, Volume 1, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith and B. M. Glennon, 1966 (\$2.50).
- □ NSRDS-NBS 5, The Band Spectrum of Carbon Monoxide, by P. H. Krupenie, 1966 (70 cents).
- □ NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents).

- □ NSRDS-NBS 7, High Temperature Properties and Decomposition of Inorganic Salts, Part 1, Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents).
- □ NSRDS-NBS 8, Thermal Conductivity of Selected Materials, by R. W. Powell, C. Y. Ho, and P. E. Liley, 1966 (\$1).
- □ NSRDS-NBS 9, Bimolecular Gas Phase Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2).
- □ NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Mo. cules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents).
- □ NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents).
- □ NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients From Symmetric to Asymmetric Bases and Expectation Values of P_z, P_z, and P_z, by R. H. Schwendeman, 1968 (60 cents).
- □ NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts, by J. Horiuti and K. Miyahara, 1968 (\$1).
- □ NSRDS-NBS 14, X-Ray Wavelengths and X-Ray Atomic Energy Levels, by J. A. Bearden, 1967 (40 cents).
- □ NSRDS-NBS 15, Molten Salts, Vol. 1. Electrical Conductance, Density, and Viscosity Data, by G. Janz, F. W. Dampier, G. R. Lakshiminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3).
- □ NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2).
- □ NSRDS-NBS 17, Tables of Molecular Vibration Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents).
- □ NSRDS-NBS 18, Critical Analysis of the Heat-Capacity Data of the Literature and Evaluation of Thermodynam'c Properties of Copper, Silver, and Gold From 0 to 300 K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents).
- □ NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents).
- □ NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S. Johnston, 1968 (45 cents).
- □ NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by 3. W. Benson and H. E. O'Neal (in press).

U S GOVERNMENT PRINTING OFFICE | 1966 GL-308-022