1 Conditional Expectation

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $(X_i)_{i \in I}$ be a collection of random variables defined on this space. Then we define $\sigma(X_i : i \in I) \subseteq \mathcal{F}$ to be the smallest σ -algebra such that all of the X_i are measurable, i.e

$$\sigma(X_i : i \in I) = \sigma(X_i^{-1}(B) : i \in I, B \in \mathcal{B}(\mathbb{R})).$$

Definition. If $B \in \mathcal{F}$ has $\mathbb{P}(B) > 0$ then we define

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

for any $A \in \mathcal{F}$. Furthermore, if X is an integrable random variable we define

$$\mathbb{E}[X|B] = \frac{\mathbb{E}[X\mathbb{1}(B)]}{\mathbb{P}(B)}.$$

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. We say a σ -algebra \mathcal{G} is countably generated if there exist $(B_i)_{i\in I}$ pairwise disjoint (with I countable) such that $\bigcup_{i\in I} B_i = \Omega$ and $\mathcal{G} = \sigma(B_i : i \in I)$.

Let X be an integrable random variable and \mathcal{G} a countably generated σ -algebra. We want to define $X' = \mathbb{E}[X|\mathcal{G}]$. So define

$$X'(\omega) = \mathbb{E}[X|B_i]$$
 whenever $\omega \in B_i$.

Or equivalently,

$$X'(\omega) = \sum_{i \in I} \mathbb{E}[X|B_i] \mathbb{1}(\omega \in B_i)$$

where we use the convention that $\mathbb{E}[X|B_i] = 0$ if $\mathbb{P}(B_i) = 0$. Then X' is indeed \mathcal{G} -measurable (note \mathcal{G} is the set of $\bigcup_{j \in J} B_j$ for $J \subseteq I$).

Note that for any $G \in \mathcal{G}$ we have $\mathbb{E}[X\mathbb{1}(G)] = \mathbb{E}[X'\mathbb{1}(G)]$. Also

$$\mathbb{E}[|X'|] \le \mathbb{E}\left[\sum_{i \in I} \mathbb{E}[|X||B_i]\mathbb{1}(B_i)\right] = \sum_{i \in I} \mathbb{E}[|X||B_i]\mathbb{P}(B_i) = \mathbb{E}|X| < \infty$$

so X' is integrable.

Theorem (Monotone convergence theorem). Let $(X_n)_{n\geq 1}$ be a sequence of non-negative random variables with $X_n \uparrow X$ as $n \to \infty$ almost surely. Then $\mathbb{E}X_n \uparrow \mathbb{E}X$ as $n \to \infty$.

Proof. See Part II Probability & Measure.

Theorem (Dominated convergence theorem). Let $(X_n)_{n\geq 1}$ be a sequence of random variables with $X_n \to X$ as $n \to \infty$ almost surely and $|X_n| \leq Y$ almost surely for some Y integrable. Then $\mathbb{E}X_n \to \mathbb{E}X$ as $n \to \infty$.

Proof. See Part II Probability & Measure.

Definition (L^p) . Let $p \in [1, \infty]$ and f be a measurable function. Define the L^p -norm

$$||f||_p = (\mathbb{E}[|f|^p])^{1/p} \text{ for } p \in [1, \infty)$$
$$||f||_{\infty} = \inf\{\lambda : |f| \le \lambda \text{ a.e}\}.$$

Furthermore write $f \sim g$ if f = g almost everywhere. Then define the L^p -space $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) = \{f : ||f||_p < \infty\} / \sim$.

Theorem (\mathcal{L}^2 is a Hilbert space). $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ is a Hilbert space with inner product $\langle U, V \rangle = \mathbb{E}[UV]$. For a closed subspace \mathcal{H} , if $f \in \mathcal{L}^2$ there exists a unique $g \in \mathcal{H}$ with $||f - g||_2 = \inf\{||f - h||_2 : h \in \mathcal{H}\}$ and $\langle f - g, h \rangle = 0$ for all $h \in \mathcal{H}$. g is called the orthogonal projection of f on \mathcal{H} .

Proof. See Part II Probability & Measure.

Theorem (Conditional expectation). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra, $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Then there exists an integrable random variable Y satisfying

- (a) Y is \mathcal{G} -measurable;
- (b) for all $A \in \mathcal{G}$, $\mathbb{E}[X\mathbb{1}(A)] = \mathbb{E}[Y\mathbb{1}(A)]$.

Moreover Y is unique, in the sense that if Y' also satisfies (a) and (b), then Y = Y' almost surely. We call Y a version of the conditional expectation of X given \mathcal{G} . We write $Y = \mathbb{E}[X|\mathcal{G}]$ almost surely. If $\mathcal{G} = \sigma(Z)$ for a random variable Z, then we write $\mathbb{E}[X|Z] = \mathbb{E}[X|\mathcal{G}]$.

Remark. (b) could be replaced by $\mathbb{E}[XZ] = \mathbb{E}[YZ]$ for all Z bounded and \mathcal{G} -measurable.

Proof. First we show uniqueness. Suppose Y and Y' both satisfy (a) and (b) and let $A = \{Y > Y'\} \in \mathcal{G}$. Then

$$\mathbb{E}[Y\mathbbm{1}(A)] = \mathbb{E}[Y'\mathbbm{1}(A)] \Rightarrow \mathbb{E}[(Y-Y')\mathbbm{1}(A)] = 0 \Rightarrow \mathbb{P}(Y > Y') = 0 \Rightarrow Y \leq Y' \text{ a.s.}$$
 and similarly $Y \geq Y'$ a.s.

Now we show existence. First assume $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Then $\mathcal{L}^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $\mathcal{L}^2(\mathcal{F})$. Hence

$$\mathcal{L}^2(\mathcal{F}) = \mathcal{L}^2(\mathcal{G}) \oplus \mathcal{L}^2(\mathcal{G})^{\perp}$$

so we can write X = Y + Z for $Y \in \mathcal{L}^2(\mathcal{G})$ and $Z \in \mathcal{L}^2(\mathcal{G})^{\perp}$. Define $\mathbb{E}[X|\mathcal{G}] = Y$, so Y is \mathcal{G} -measurable and for all $A \in \mathcal{G}$

$$\mathbb{E}[X\mathbbm{1}(A)] = \mathbb{E}[Y\mathbbm{1}(A)] + \underbrace{\mathbb{E}[Z\mathbbm{1}(A)]}_{=0} = \mathbb{E}[Y\mathbbm{1}(A)].$$

We claim that if $X \geq 0$ almost surely, then $Y \geq 0$ almost surely. Indeed, let $A = \{Y < 0\} \in \mathcal{G}$ so $0 \leq \mathbb{E}[X\mathbbm{1}(Y < 0)] = \mathbb{E}[Y\mathbbm{1}(Y < 0)] \leq 0$ which implies $\mathbb{P}(Y < 0) = 0$.

Assume now that $X \geq 0$ almost surely. Define $X_n = X \wedge n \leq n$, so $X_n \in \mathcal{L}^2$ for all n. Let $Y_n = \mathbb{E}[X_n|\mathcal{G}]$. Then X_n is an increasing sequence and by the above claim, Y_n is also an increasing sequence almost surely. Define $Y = \limsup_{n \to \infty} Y_n$, so Y is \mathcal{G} -measurable. Also $Y = \uparrow \lim_{n \to \infty} Y_n$ almost surely. For any $A \in \mathcal{G}$ we have

$$\mathbb{E}[X\mathbb{1}(A)] = \lim_{n \to \infty} \mathbb{E}[X_n\mathbb{1}(A)] = \lim_{n \to \infty} \mathbb{E}[Y_n\mathbb{1}(A)] = \mathbb{E}[Y\mathbb{1}(A)]$$

by the Monotone Convergence Theorem.

Finally, for general X write $X = X^+ - X^-$ and define $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X^+|\mathcal{G}] - \mathbb{E}[X^-|\mathcal{G}]$.

Remark. From the last proof we can see that we can define $\mathbb{E}[X|\mathcal{G}]$ for $X \geq 0$ without assuming integrability of X. It satisfies all the conditions apart from integrability.

Definition. Let $(\mathcal{G}_n)_{n\geq 1}$ be sub σ -algebras of \mathcal{F} . We call them *independent* if whenever $G_i \in \mathcal{G}_i$ and $i_1 < i_2 < \ldots < i_k$ we have

$$\mathbb{P}(G_{i_1}\cap\ldots\cap G_{i_k})=\prod_{j=1}^k\mathbb{P}(G_{i_j}).$$

For a random variable X and a σ -algebra \mathcal{G} , we say they are *independent* if $\sigma(X)$ is independent of \mathcal{G} .

Properties of conditional expectation

Let $X, Y \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra. Then

- 1. $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$ (take $A = \Omega$);
- 2. If X is \mathcal{G} -measurable then $\mathbb{E}[X|\mathcal{G}] = X$ almost surely (X clearly satisfies the conditions);
- 3. If X is independent of \mathcal{G} , then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$ almost surely;
- 4. If $X \geq 0$ almost surely then $\mathbb{E}[X|\mathcal{G}] \geq 0$ almost surely;
- 5. For $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}[\alpha X + \beta Y | \mathcal{G}] = \alpha \mathbb{E}[X | \mathcal{G}] + \beta \mathbb{E}[Y | \mathcal{G}]$ almost surely;
- 6. $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$ almost surely.

Recall:

Theorem (Fatou's Lemma). If $X_n \geq 0$ for all n almost surely, then

$$\mathbb{E}[\liminf_{n\geq 1} X_n] \leq \liminf_{n\geq 1} \mathbb{E} X_n.$$

Proof. See Part II Probability & Measure.

Theorem (Jensen's Inequality). If X is integrable, $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, then

$$\mathbb{E}[\varphi(X)] \ge \varphi(\mathbb{E}[X]).$$

We consider any analogues of our convergence theorems for conditional expectation.

Theorem (Conditional Monotone Convergence Theorem). Suppose $X_n \geq 0$ for all n and $X_n \uparrow X$ almost surely as $n \to \infty$. Let \mathcal{G} be a sub σ -algebra of \mathcal{F} . Then $\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$ almost surely.

Remark. Note that $\mathbb{E}[X_n|\mathcal{G}] \uparrow \mathbb{E}[X|\mathcal{G}]$ in the almost-sure sense, as these are random variables.

Proof. Let $Y_n = \mathbb{E}[X_n|\mathcal{G}]$ almost surely. Then Y_n is increasing. Set $Y = \mathbb{E}[X_n|\mathcal{G}]$ $\limsup_{n>1} Y_n$. Since Y_n is \mathcal{G} -measurable, Y is \mathcal{G} -measurable. Also $Y=\uparrow$ $\lim_{n>1} \bar{Y_n}$ almost surely. We need to show $\mathbb{E}[Y\mathbb{1}(A)] = \mathbb{E}[X\mathbb{1}(A)]$ for all $A \in \mathcal{G}$. This follows from the usual Monotone Convergence Theorem as

$$\mathbb{E}[Y \mathbb{1}(A)] = \lim_{n \ge 1} \mathbb{E}[Y_n \mathbb{1}(A)] = \lim_{n \ge 1} \mathbb{E}[X_n \mathbb{1}(A)] = \mathbb{E}[X \mathbb{1}(A)].$$

Theorem (Conditional Fatou's Lemma). Let $(X_n)_{n\geq 1}$ be a non-negative sequence of random variables. Then

$$\mathbb{E}[\liminf_{n\to\infty} X_n|\mathcal{G}] \leq \liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \text{ almost surely.}$$

Proof. Note that $\inf_{k\geq n} X_k \uparrow \liminf_{n\to\infty} X_n$ so by the conditional MCT

$$\lim_{n\to\infty} \mathbb{E}[\inf_{k>n} X_k | \mathcal{G}] = \mathbb{E}[\liminf_{n\to\infty} X_n | \mathcal{G}].$$

We also have

$$\mathbb{E}[\inf_{k > n} X_k | \mathcal{G}] \le \mathbb{E}[X_k | \mathcal{G}] \quad \forall k \ge n \text{ almost surely}.$$

Which implies

$$\mathbb{E}[\inf_{k\geq n} X_k | \mathcal{G}] \leq \inf_{k\geq n} \mathbb{E}[X_k | \mathcal{G}] \quad \forall k \geq n \text{ almost surely}$$

since k takes countable values (intersection of countable sets of full measure also has full measure). Now taking limits as $n \to \infty$ we are done.

Theorem (Conditional Dominated Convergence Theorem). Suppose $X_n \to X$ almost surely, $|X_n| \leq Y$ almost surely with Y integrable. Then $\mathbb{E}[X_n|\mathcal{G}] \rightarrow$ $\mathbb{E}[X|\mathcal{G}]$ almost surely.

Proof. We apply the Conditional Fatou's Lemma. Indeed $-Y \leq X_n \leq Y$ so $X_n + Y \ge 0$ and $Y - X_n \ge 0$ for all n. By Conditional Fatou's Lemma

$$\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}] = \mathbb{E}[X+Y|\mathcal{G}] = \mathbb{E}[\liminf_{n \to \infty} (X_n + Y)] \le \liminf_{n \to \infty} \mathbb{E}[X_n|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]$$

and

$$\mathbb{E}[Y|\mathcal{G}] - \mathbb{E}[X|\mathcal{G}] = \mathbb{E}[\liminf_{n \to \infty} (Y - X_n)|\mathcal{G}] \le \mathbb{E}[Y|\mathcal{G}] + \liminf_{n \to \infty} (-\mathbb{E}[X_n|\mathcal{G}]).$$

Hence $\limsup_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \leq \mathbb{E}[X|\mathcal{G}]$ and $\liminf_{n\to\infty} \mathbb{E}[X_n|\mathcal{G}] \geq \mathbb{E}[X|\mathcal{G}]$ almost surely.

Theorem (Conditional Jensen's Inequality). Let X be integrable, $\varphi : \mathbb{R} \to \mathbb{R}$ a convex function such that $\varphi(X)$ is integrable or $\varphi(X) \geq 0$. Then $\mathbb{E}[\varphi(X)|\mathcal{G}] \geq$ $\varphi(\mathbb{E}[X|\mathcal{G}])$ almost surely.

Proof. We claim that $\varphi(x) = \sup_{i \in \mathbb{N}} (a_i x + b_i), \ a_i, b_i \in \mathbb{R}$.

Then $\varphi(X) = \sup_{i \in \mathbb{N}} (a_i X + b_i)$. So

$$\mathbb{E}[\varphi(X)|\mathcal{G}] \ge \sup_{n \ge 1} (a_i \mathbb{E}[X|\mathcal{G}] + b_i) \quad \forall i \in \mathbb{N} \text{ almost surely.}$$

Note. We need the supremum in the claim to be over a countable set so we can preserve the almost-sue property of an inequality.

Corollary. For all $p \in [1, \infty)$ we have

$$||\mathbb{E}[X|\mathcal{G}]||_p \le ||X||_p.$$

Proof. Apply conditional Jensen $(x \mapsto x^p \text{ is convex})$.

Theorem (Tower property). Let X be integrable and $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ sub σ -algebras. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$
 almost surely.

Proof. $\mathbb{E}[X|\mathcal{H}]$ is certainly \mathcal{H} -measurable so it remains to check

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbb{1}(A)] \quad \forall A \in \mathcal{H}.$$

But since $A \in \mathcal{G}$ whenever $A \in \mathcal{H}$ we have

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{1}(A)] = \mathbb{E}[X\mathbb{1}(A)] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbb{1}(A)].$$

Proposition. Let $X \in \mathcal{L}^1$, $\mathcal{G} \subseteq \mathcal{F}$ a sub σ -algebra, Y bounded and \mathcal{G} -measurable. Then

$$\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}]$$
 almost surely.

Proof. $Y\mathbb{E}[X\mathcal{G}]$ is certainly \mathcal{G} -measurable. Also for any $A \in \mathcal{G}$

$$\mathbb{E}[XY\mathbb{1}(A)] = \mathbb{E}[X \underbrace{(Y\mathbb{1}(A))}_{\text{bounded,}}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}](Y\mathbb{1}(A))].$$