Correction du TP

Analyser

(1) Pont diviseur:

$$\underline{S} = \frac{1/jC\omega}{R + 1/jC\omega} \underline{E}$$

$$\Leftrightarrow \underline{S} = \frac{1}{1 + jRC\omega} \underline{E}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + jRC\omega}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + j\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + jx}$$

$$x = \frac{\omega}{\omega_c}$$

$$\underline{H}(x) \approx \frac{1}{x \to 0} \frac{1}{1 + 0} = 1 \quad \text{et} \quad \underline{H}(x) \approx \frac{1}{x \to \infty} \frac{1}{jx}$$

(2)

$$\underline{\underline{H}}(x) \underset{x \to 0}{\sim} \frac{1}{1+0} = 1$$
 et $\underline{\underline{H}}(x) \underset{x \to \infty}{\sim} \frac{1}{jx}$

2) \diamond Pour le gain :

$$G_{\mathrm{dB}}(x) \xrightarrow[x \to 0]{} 20 \log(1) = 0$$
 et $G_{\mathrm{dB}}(x) \underset{x \to \infty}{\sim} 20 \log \left| \frac{1}{\mathrm{j}x} \right| = -20 \log x$

Ainsi, à hautes fréquences, le gain diminue de 20 dB par décade : si ω est multiplié par 10, le gain en décibel baisse de 20 dB (i.e. l'amplitude est divisée par 10).

♦ Pour la phase :

$$\varphi(x) \xrightarrow[x \to 0]{} \arg(1) = 0$$
 et $\varphi(x) \underset{x \to \infty}{\sim} \arg\left(\frac{1}{\mathrm{j}x}\right) = -\frac{\pi}{2}$

(3)On a trouvé

$$\omega_c = \frac{1}{RC} \Leftrightarrow \boxed{f_c = \frac{1}{2\pi RC}}$$
 avec
$$\begin{cases} R = 1.0 \text{ k}\Omega \\ C = 0.10 \text{ µF} \end{cases}$$
A.N. : $f_c = 1.6 \times 10^{+3} \text{ Hz}$

(4)

FIGURE TP13.1 – Schéma complété.

- (5) On choisit le mode AC (courant alternatif).
- (6) À la fréquence coupure, on obtient

$$S_m(f_c) = |\underline{H}(f_c)|E_m = \frac{E_m}{\sqrt{2}}$$

L'application numérique donne bien $S_m(f_c) \approx 2$ carreaux.

IV Réaliser

IV/B Mesures pour le tracé du diagramme de Bode

1

Tableau TP13.1 – Mesures pour diagramme de Bode.

f (Hz)	G_{dB} (dB)	$ \Delta t $ (µs)	$\left \Delta\varphi_{s/e}\right \text{ (rad)}$	$\Delta \varphi_{s/e} \text{ (rad)}$
100	-0.02	99,9	0,06	-0.06
300	-0,15	98,8	0,19	-0.19
600	-0.58	95,6	0,36	-0.36
1000	-1,45	89,3	$0,\!56$	$-0,\!56$
1200	-1,95	85,7	0,65	-0.65
1600	-3,03	78,4	0,79	-0.79
2000	-4,11	71,5	0,90	-0,90
3000	-6,58	57,5	1,08	-1,08
5000	$-10,\!36$	40,2	1,26	$-1,\!26$
7000	-13,08	30,6	1,35	-1,35
10000	-16,07	22,5	1,41	-1,41
20000	-22,01	11,9	1,49	-1,49
30000	$-25,\!52$	8,1	1,52	-1,52
40000	-28,01	6,1	1,53	-1,53
50000	-29,95	4,9	1,54	$-1,\!54$

${ m V}^{\, |}$ Valider et conclure

- 2 Voir fin du sujet.
- 3 Idem.
- 4 En déduire :

a – On trouve $f_{c, {\rm exp}} = (1.57 \pm 0.02)\,{\rm kHz},$ d'où l'écart normalisé

$$\boxed{E_n = \frac{|f_{c, \exp} - f_{c, \text{theo}}|}{u_{f_{c, \exp}}}} \Rightarrow \underline{E_n = 1} < 2 \quad \text{donc compatibles.}$$

b – Calcul similaire.

c – C'est un passe-bas.