6.4 The Building Blocks of Life

Objectives: 1. Describe the role of carbon in living organisms. 2. Summarize the four major family biological macromolecules. 3. Compare the functions of each group of biological macromolecules.

Organic Chemistry

- All living things on earth are Carbon based
 - ► Has 4 valence electrons;
 - ► Forms _____ bonds
 - Can bond in a variety of ways
 - ► Rings, chains, branched molecules
 - ► Single, double or triple bonds

Butadiene Acetylene

Benzene

Biological Molecules

- ► 4 classes
 - Carbohydrates
 - Proteins
 - ► Nucleic acids
 - ▶ Lipids
- ► All four of them are macromolecules (molecules made from combining smaller units together); but only the <u>first three</u> are polymers.
 - ► Smaller unit are called "monomers", larger molecule of them bonded together is called a "polymer"
 - ► Lipids are not polymers, but they are macromolecules

Carbohydrates

- Made of C, H, and O, always in a ratio of 1C:2H:10
- Includes monosaccharides, disaccharides and polysaccharides
 - Monomer (building block) is a monosaccharide...a single sugar unit
 - Able to bond together at specific locations on the molecule (-OH, hydroxyl groups)
 - Monosaccharides
 - Sugars like glucose
 - Disaccharides
 - Sugars like sucrose
 - Polysaccharides
 - Molecules likes starch, cellulose, glycogen

disaccharide (sucrose)

What do Carbohydrates do in Living Things?

- major immediate energy source (glucose)
- Polysaccharides have a couple of different functions
 - ► Store energy (glycogen found in liver/muscle cells)
 - Store energy (starch found in plants)
 - Structural support (cellulose found in plants)
 - ► These molecules vary in their shape and organization of the individual monosaccharides that make them up

How can we test to see if an object has Carbohydrates?

Benedict's test for simple sugars

lodine test for starch/complex carbs

Lipids

- Made almost entirely of C and H
- ► Fats, oils, waxes
 - ► Main job is to store energy (long term use)

3 fatty acids

- ► Also structural role in living cells
- Made primarily of fatty acids and glycerol

Lipids

- May be fats
 - Saturated
 - All of the carbon's bonds are filled with H
 - ► Tend to exist in solid form
 - Unsaturated
 - ▶ Some of the carbon's have double bonds, leading to kinks in the shape of the fat
 - ► Exist in liquid form

Saturated Fatty Acid

Unsaturated Fatty Acid

Lipids

- Phospholipids
 - Crucial to the structure of cell membranes
 - ► Glycerol backbone, 2 fatty acid chains and a phosphate head
 - Polar and non-polar ends

- Steroids
 - Ring structures
 - Cholesterol
 - Hormones (estrogen/testosterone)
 - vitamins

How do we test for lipids?

Sudan III or IV test

Checkpoint

Compare and contrast the structure and function of carbohydrates and lipids.

Proteins

- Essential molecules; involved in almost every function of your body
 - ► Make up 15% of our total body mass
- Made of smaller units called amino acids, which are joined together to make larger protein molecules
 - ▶ 20 different amino acids; only variation is in the R group

AMINO ACIDS ARE THE BUILDING BLOCKS OF PROTEINS IN LIVING ORGANISMS. THERE ARE OVER 500 AMINO ACIDS FOUND IN NATURE - HOWEVER, THE HUMAN GENETIC CODE ONLY DIRECTLY ENCODES 20. 'ESSENTIAL' AMINO ACIDS MUST BE OBTAINED FROM THE DIET, WHILST NON-ESSENTIAL AMINO ACIDS CAN BE SYNTHESISED IN THE BODY.

Levels of Protein Structure

- Primary
 - Sequence of amino acids
- Secondary
 - Alpha helices or beta pleated sheets
 - Due to hydrogen bonds
- Tertiary
 - Interactions of side chains leads to a folding of the molecule
- Quaternary
 - Sometimes multiple chains come together to create a larger protein

How do we test for proteins?

Biuret test

Nucleic Acids

- Primary job is to store and transmit genetic information
- DNA and RNA
- Made of smaller monomers called nucleotides
 - made of sugar, phosphate and nitrogen containing base

Nucleic acids

- Join together in long chains
- DNA stores genetic information
- ► RNA transmits it, and enables that genetic information to be decoded
- We will be learning about these molecules in greater detail later in the course

FACT CHECK/PARTNER TALK

Review the structure and function of proteins and nucleic acids.

Review (Amoeba sisters)

Biological molecule	Basic Unit	Function	Example	Common elements at building block level	Extra note
Carbohydrate					
Lipid					
Protein					
Nucleic acid					