DEEP LEARNING WITH KERAS

Themistoklis Diamantopoulos

Contents

- Day 1:
 - Machine Learning with Python
 - Introduction to Deep Learning
 - Optical Character Recognition
 - Image Recognition
- Day 2
 - Sentiment Analysis
 - Neural Doodle
 - Neural Style Transfer
 - Al Game Learning

INTRODUCTION TO MACHINE LEARNING

What is Machine Learning?

- Subfield of Artificial Intelligence
- Term coined in 1959 by Arthur Samuel

Progressively improve performance on a specific task with data, without being explicitly programmed

Types of Machine Learning tasks

- Supervised Learning
 - Learn output based on input data
- Unsupervised Learning
 - Find structure in given data
- Reinforcement Learning
 - Learn from the environment

Supervised Learning tasks

Classification

- Classify data to 1, 2 or more classes
- Confusion Matrix

- Evaluation Metrics
 - Accuracy = (TP + TN) / (P + N)
 - Precision = TP / (TP + FP)
 - Recall = TP / P

Regression

- Build a model that fits the data
- Actual (y_i) and predicted values (ŷ_i)
 - Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$$
 where $SS_{res} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ and $SS_{tot} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$

Data Splitting

- Use training data to train the model
 - Some data can be used to validate the model → validation set
 - Use folds of training data for validation → Cross-validation
- Evaluate the model on test data
 - Test set must not overlap with training data

Unsupervised Learning tasks

Clustering

Dimensionality Reduction

INTRODUCTION TO NEURAL NETWORKS

Why Neural Networks?

- Cognitive features
- Inspired by the brain
 - 10¹¹ neurons
 - 0.001 sec switching time
 - >10⁴ connections per neuron
 - 0.1 sec for scene recognition

A brief history course

- From the perceptron to deep learning
- AI Winter 1969 1986

The first breakthrough

ImageNet image recognition challenge

Source: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

The perceptron - where it all started

- Invented in 1959 by Frank Rosenblatt
- Practically also the first Neural Network

Source: https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

Activation functions

Different types of functions

Step function

$$step_t(x) = \begin{cases} 1 & x > t \\ 0 & otherwise \end{cases}$$

Sign function

$$sign(x) = \begin{cases} +1 & x \ge 0 \\ -1 & otherwise \end{cases}$$

Sigmoid function

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Example use of perceptron

- Bias → Offset from the origin
- Weights → Slope of the line

$$w_1 x_1 + w_2 x_2 + \theta = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{\theta}{w_2}$$

$$y = \operatorname{sgn}\left(\sum_{i=1}^{2} w_i x_i + \theta\right)$$

$$\operatorname{sgn}(s) = \begin{cases} 1 & \text{if } s > 0 \\ -1 & \text{otherwise.} \end{cases}$$

$$d(n) = \begin{cases} +1 & \text{if } x(n) \in \text{set } A \\ -1 & \text{if } x(n) \in \text{set } B \end{cases}$$

- 1. Select random sample from training set
 2. If classification is correct, do nothing
 3. If classification is incorrect, modify w:

$$w_i = w_i + \eta d(n) x_i(n)$$

Limitations of perceptron

Can be used only for Linearly Separable Data

Linearly Separable

Not Linearly Separable

Neural Network Topologies

Used for different types of problems

Multi-Layer Perceptron

Convolutional Neural Network

Recurrent Neural Network

MULTI-LAYER PERCEPTRON

Training a Multi-Layer Perceptron

- Gradient Descent
 - Start with some initial parameters θ
 - Update them using:

$$\theta \leftarrow \theta - \eta \cdot \nabla_{\theta} E(x, \theta, y)$$

where:

- η: learning rate
- *E*(*x*, *θ*, *y*): error

Continue until error is small

Training a Multi-Layer Perceptron

Gradient Descent

$$\theta \leftarrow \theta - \eta \cdot \nabla_{\theta} E(x, \theta, y)$$

- Backpropagation
 - Easy way to compute $\nabla_{\theta} E(x, \theta, y)$

Training a Multi-Layer Perceptron

Generate an error signal that measures the difference between the predictions of the network and the desired values and then use this error signal to change the weights so that predictions get more accurate

Source: https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

INTRODUCTION TO DEEP LEARNING

What is Deep Learning?

- Subfield of Machine Learning
- Practical definition:

Imitates the workings of the human brain in processing data and creating patterns for use in decision making

What are Deep Neural Networks?

Simple answer:

Neural Networks with many layers

Practical answer:

Neural Networks with more than one hidden layer

Elaborate answer:

Neural Networks that train on a distinct set of features in each layer → Feature Hierarchy

Feature Hierarchy

Deep neural networks learn hierarchical feature representations

Traditional Machine Perception

Hand-crafted Feature Extraction

Source: https://www.slideshare.net/kuanhoong/big-data-malaysia-a-primer-on-deep-learning

Traditional vs Deep Learning

Traditional Learning

Deep Learning

Source: https://www.researchgate.net/publication/322325843

Deep Learning Applications

DEEP LEARNING WITH PYTHON

Set of Powerful Libraries

Source: https://www.datacamp.com/community/blog/python-scientific-computing-case

Machine Learning Libraries

- numpy
 - Arrays: universal point of reference in the python ML world
- pandas
 - Data manipulation made easy
- scipy
 - Basis of scientific computing
- scikit-learn
 - (Almost) all machine learning algorithms you will ever need
- matplotlib
 - Plot all of the above

... and all of these are seamlessly connected!

Deep Learning with Python

- Multiple options
- All equivalent but all different
- Hard to port solutions

theano

Deep Learning with Keras

- One framework to rule them all
- Easier to code and read
- Can harness CPU and GPU

theano

Keras Requirements

- An up-to-date python distribution
- The python numpy-scipy-scikit stack
- A fast CPU or GPU

If possible, use a GPU!

... although your CPU will do for simple applications!

Source: http://www.gpurendering.com/technology/learningMachinesGpuVsCpu.html

Neural Networks with Keras

```
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=32)
metrics = model.evaluate(x_test, y_test, batch_size=128) } Get metrics
classes = model.predict(x_test, batch_size=128) } Make predictions
```

Source: https://keras.io/