

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2011; month=10; day=5; hr=6; min=34; sec=2; ms=462;]

=====

Application No: 08444790 Version No: 4.0

Input Set:

Output Set:

Started: 2011-10-04 16:07:32.102
Finished: 2011-10-04 16:07:33.945
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 843 ms
Total Warnings: 22
Total Errors: 0
No. of SeqIDs Defined: 26
Actual SeqID Count: 26

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)

Input Set:

Output Set:

Started: 2011-10-04 16:07:32.102
Finished: 2011-10-04 16:07:33.945
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 843 ms
Total Warnings: 22
Total Errors: 0
No. of SeqIDs Defined: 26
Actual SeqID Count: 26

Error code Error Description

This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Brockhaus, et al.

<120> Human TNF Receptor

<130> 01017/40451B

<140> 08444790

<141> 1995-05-19

<150> CH-3319-89

<151> 1989-09-12

<160> 26

<170> PatentIn version 3.5

<210> 1

<211> 2111

<212> DNA

<213> Homo sapiens

<400> 1

gaattcgggg gggttcaaga tcactggac caggccgtga tctctatgcc cgagtctcaa 60

ccctcaactg tcaccccaag gcacttggga cgtcctggac agaccgagtc ccgggaagcc 120

ccagcactgc cgctgccaca ctgcctgag cccaaatggg ggagtgagag gccatagctg 180

tctggcatgg gcctctccac cgtgcctgac ctgctgctgc cgctgggtct cctggagctg 240

ttggtggaa tataccctc aggggttatt ggactggtcc ctacacctagg ggacagggag 300

aagagagata gtgtgtgtcc ccaaggaaaa tatatccacc ctcaaaataa ttcgattgc 360

tgtaccaagt gccacaaagg aacctacttg tacaatgact gtccaggccc ggggcaggat 420

acggactgca gggagtgtga gagcggctcc ttccaccgtt cagaaaacca cctcagacac 480

tgcctcagct gctccaaatg ccgaaaggaa atgggtcagg tggagatctc ttcttgacaca 540

gtggaccggg acaccgtgtg tggctgcagg aagaaccagt accggcatta ttggagtgaa 600

aacctttcc agtgcttcaa ttgcagcctc tgcctcaatg ggaccgtgca cctctctgc 660

caggagaaaac agaacaccgt gtgcacactgc catgcagggtt tctttctaaag agaaaacgag 720

tgtgtctcct gtagtaactg taagaaaagc ctggagtgca cgaagttgtg cctaccccg 780

attgagaatg ttaagggcac tgaggactca ggcaccacag tgctgttgcc cctggtcatt 840

ttctttggtc ttgccttt atccctcctc ttcattggtt taatgtatcg ctaccaacgg 900

tggaaagtcca agctctactc cattgtttgt gggaaatcga cacctgaaaa agagggggag 960

cttgaaggaa ctactactaa gcccctggcc ccaaacccaa gttcagtc cactccaggc	1020
ttcaccccca ccctgggctt cagtcccgta cccagttcca cttcaccc cagttccacc	1080
tatacccccgtgactgtcc caactttgcg gttcccgca gagaggtggc accaccat	1140
cagggggctg accccatcct tgcacagcc ctgcctccg accccatccc caaccctt	1200
cagaagtggg aggacagcgc ccacaagcca cagagctag acactgtga ccccgcgacg	1260
ctgtacgccc tggtgagaa cgtgcccccg ttgcgttgg aaggattcgt gggcgctta	1320
gggctgagcg accacgagat cgatcggtcg gagctgcaga acggcgctg cctgcgcgag	1380
gcgcaataca gcatgctggc gacctggagg cggcgacacgc cgccgcgcga ggccacgctg	1440
gagctgtgg gacgcgtgct ccgcacatg gacctgtgg gtcgttgg aacatcgag	1500
gaggcgcttt gggccccgc cgccctcccg cccgcgcaca gtcttctcag atgaggctgc	1560
ccccctgcgg gcagctctaa ggaccgtcct gcgagatcgc ttccaaacc cacttttc	1620
tggaaaggag gggtcctgca gggcaagca ggagctagca gcccctact tggtgctaac	1680
ccctcgatgt acatagcttt tctcagctgc ctgcgcgcgc cgcacagtca ggcgtgtgcg	1740
cgcggagaga ggtgcgcgt gggctcaaga gcctgagtgg gtggtttgcg aggatgaggg	1800
acgctatgcc tcatgcccgt ttgggtgtc ctaccaggca aggtgtcg gggcccccgt	1860
gttcgtccct gagcctttt cacagtcat aagcagttt tttgtttt gtttgtttt	1920
ttttgtttt taaatcaatc atgttacact aatagaaact tggcactcct gtgcctctg	1980
cctggacaag cacatagcaa gctgaactgt cctaaggcag gggcgagcac ggaacaatgg	2040
ggccttcagc tggagctgtg gactttgtt catacactaa aattctgaag ttaaaaaaaa	2100
aacccgaatt c	2111

<210> 2
 <211> 455
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Gly	Leu	Ser	Thr	Val	Pro	Asp	Leu	Leu	Leu	Pro	Leu	Val	Leu	Leu
1															

Glu	Leu	Leu	Val	Gly	Ile	Tyr	Pro	Ser	Gly	Val	Ile	Gly	Leu	Val	Pro
20															

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys

35

40

45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu
85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val
100 105 110

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg
115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe
130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu
145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu
165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr
180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser
195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu
210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys
225 230 235 240

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu
245 250 255

Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser
260 265 270

Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val
275 280 285

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys
290 295 300

Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly
305 310 315 320

Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn
325 330 335

Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp
340 345 350

Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro
355 360 365

Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu
370 375 380

Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln
385 390 395 400

Tyr Ser Met Leu Ala Thr Trp Arg Arg Arg Thr Pro Arg Arg Glu Ala
405 410 415

Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly
420 425 430

Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro
435 440 445

Pro Ala Pro Ser Leu Leu Arg
450 455

<210> 3

<211> 2339

<212> DNA

<213> Homo sapiens

<400> 3

tcggacacccg tgtgtgactc ctgtgaggac agcacataca cccagctctg gaactgggtt

60

cccgagtgtc tgagctgtgg ctccccgtgt agctctgacc aggtggaaac tcaaggctgc 120
actcgaaac agaaccgcac ctgcacacgtc aggccggct ggtactgcgc gctgagcaag 180
caggaggggt gccggctgtg cgccgcgtg ccgaagtgcc gcccggctt cggcggtggcc 240
agaccaggaa ctgaaacatc agacgtggtg tgcaagccct gtgcgggggg gacgttctcc 300
aacacgactt catccacgga tatttgagg ccccaccaga tctgtaacgt ggtggccatc 360
cctggaaatg caagcaggaa tgcagtctgc acgtccacgt ccccccacccg gagtatggcc 420
ccaggggcag tacacttacc ccagccagtg tccacacgtat cccaacacac gcagccaaat 480
ccagaaccca gcactgctcc aagcacctcc ttccctgctcc caatgggccc cagccccca 540
gctgaaggaa gcactggcga ctgcgtctt ccagttggac tgattgtggg tgtgacagcc 600
ttgggtctac taataatagg agtggtaac tgtgtcatca tgaccaggtaaaaaagaag 660
cccttgcgtcc tgcagagaga agccaaaggta cctcacttgc ctgcccataa ggcccggggt 720
acacagggcc ccgagcagca gcacctgtcg atcacagcgc cgagctccag cagcagctcc 780
ctggagagct cggccagtg cttggacaga agggcgccca ctcggAACca gccacaggca 840
ccaggcgtgg aggccagttgg ggccggggag gcccggccca gcaccggag ctcaagcagat 900
tcttccctg gtggccatgg gacccaggta aatgtcacct gcatcgtgaa cgtctgttagc 960
agctctgacc acagctcaca gtgcctcc caagccagct ccacaatggg agacacagat 1020
tccagccct cggagtcccc gaaggacgag caggtccct tctccaagga ggaatgtgcc 1080
tttcggtcac agctggagac gccagagacc ctgcgtggga gcaccgaaga gaagccctg 1140
ccccctggag tgcctgatgc tggatgaag cccagtaac caggccgtg tggctgtgt 1200
cgtagccaaag gtggctgagc cctggcagga tgaccctgcg aagggccct ggtccttcca 1260
ggccccccacc actaggactc tgaggcttt tctggccaa gttcccttag tgccctccac 1320
agccgcagcc tccctctgac ctgcaggcca agagcagagg cagcgagttg tggaaaggct 1380
ctgcgtccat ggcgtgtccc tctcgaaagg ctggctgggc atggacgttc ggggcattgt 1440
ggggcaagtc cctgaggctc tgcgtccatgc cccgcccagc tgcacccgtcc agcctggctt 1500
ctggagccct tgggtttttt gttgtttgt ttgtttgtt gttgtttct cccctgggc 1560
tctggccagc tctggcttcc agaaaacccc agcatcctt tctgcagagg ggcttctgg 1620
agaggaggaa tgctgcctga gtcacccatg aagacaggac agtgcttcag cctgaggctg 1680
agactgcggg atggtcctgg ggctctgtgc agggaggagg tggcagccct gtagggaaacg 1740

gggtccttca agttagctca ggaggcttgg aaagcatcac ctcaggccag gtgcagtgcc	1800
tcacgcctat gatcccagca ctttgggagg ctgaggcggg tggatcacct gaggttagga	1860
gttcgagacc agcctggcca acatggtaaa accccatctc tactaaaaat acagaaatta	1920
gccgggcgtg gtggccggca cctatagtcc cagctactca gaagcctgag gctggaaat	1980
cgttgaacc cgggaagcgg aggttgcagg gagccgagat cacgccactg cactccagcc	2040
tgggcgacag agcgagagtc tgtctcaaaa gaaaaaaaaa aagcaccgcc tccaaatgct	2100
aacttgcct tttgtaccat ggtgtgaaag tcagatgccc agagggccca ggcaggccac	2160
catattcagt gctgtggcct gggcaagata acgcacttct aactagaaat ctgccaattt	2220
ttaaaaaaag taagtaccac tcaggccaac aagccaacga caaagccaaa ctctgccagc	2280
cacatccaac ccccccacctg ccatttgac cctccgcctt cactccggtg tgccctgcag	2339

<210> 4
 <211> 392
 <212> PRT
 <213> Homo sapiens

<400> 4

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu			
1	5	10	15

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser		
20	25	30

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys		
35	40	45

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys		
50	55	60

Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala			
65	70	75	80

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro		
85	90	95

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His		
100	105	110

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala

115

120

125

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val
130 135 140

His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser
145 150 155 160

Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly
165 170 175

Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val
180 185 190

Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val
195 200 205

Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Lys Pro Leu Cys Leu
210 215 220

Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly
225 230 235 240

Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser
245 250 255

Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala
260 265 270

Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala
275 280 285

Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly
290 295 300

Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser
305 310 315 320

Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met
325 330 335

Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val
340 345 350

Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro
355 360 365

Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val
370 375 380

Pro Asp Ala Gly Met Lys Pro Ser
385 390

<210> 5
<211> 28
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (25)..(25)
<223> Xaa = unknown amino acid

<400> 5

Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro
1 5 10 15

Gln Gly Lys Tyr Ile His Pro Gln Xaa Asn Ser Ile
20 25

<210> 6
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 6

Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Thr Lys
1 5 10 15

<210> 7
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 7

Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
1 5 10 15

Pro Leu

<210> 8
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 8

Val Phe Cys Thr
1

<210> 9
<211> 16
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 9

Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
1 5 10 15

<210> 10
<211> 18
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (8)...(8)
<223> Xaa = unknown amino acid

<400> 10

Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15

Thr Cys

<210> 11
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa = unknown amino acid

<400> 11

Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
1 5 10

<210> 12
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 12

Leu Cys Ala Pro
1

<210> 13
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 13

Val Pro His Leu Pro Ala Asp
1 5

<210> 14

<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = unknown amino acid

<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa = unknown amino acid

<400> 14

Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
1 5 10 15

<210> 15
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 15

Leu Val Pro His Leu Gly Asp Arg Glu
1 5

<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic primer

<400> 16
agggagaaga gagatagtgt gtgtccc

27

<210> 17
<211> 41
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 17
aagcttggcc aggatccagc tgactgactg atcgcgagat c 41

<210> 18
<211> 41
<212> DNA
<213> Artificial sequence

<220>
<223> Antisense primer

<400> 18
gatctcgcgta tcagtcagtc agctggatcc tggccaaagct t 41

<210> 19
<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 19
cacagggatc catacgatgtc tggcatgggc ctctccac 38

<210> 20
<211> 44
<212> DNA
<213> Artificial sequence

<220>
<223> Antisense primer

<400> 20
cccggtacca gatctctatt atgtggtgcc tgagtccatca gtgc 44

<210> 21
<211> 19
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic primer

<400> 21
gatccagaat tcataatag 19

<210> 22
<211> 1