Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente
Analisi	Prof. A. Manzoni	
CdL Ingegneria Aerospaziale	Prof. S. Micheletti	
<u>Ultima Prova in Itinere</u>		
21 giugno 2019		
Cognome:	Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

Pre Test

1. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_4 nell'intervallo [0,4] e i corrispondenti valori $y_0 = -4, y_1 = -2, y_2 = -2, y_3 = 0$ e $y_4 = -2$. Si consideri il polinomio di Lagrange $\Pi_4(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_4(2.5)$.

$$\Pi_4(2.5) = -1{,}1094$$

2. (1 punto) Si approssimi l'integrale $I = \int_{-4}^{4} (3 - 7x^3) dx$ con la formula semplice del punto medio e si riporti l'approssimazione I_{PM} ottenuta.

$$I_{PM} = 24$$

3. (2 punti) Si consideri la formula dei trapezi composita per l'approssimazione dell'integrale $\int_0^3 e^x dx$. Senza applicare esplicitamente la formula, si stimi il numero M di sottointervalli equispaziati di [0,3] tali per cui l'errore di quadratura è inferiore alla tolleranza $tol = 10^{-3}$.

$$M \ge 213$$

4. (1 punto) Si consideri la funzione $f(x) = 1 - 3^{8x}$. Si riporti il valore approssimato di $f'(\overline{x})$ in $\overline{x} = 0$ mediate le differenze finite all'indietro, ovvero $\delta_- f(\overline{x})$, usando il passo h = 1/8.

$$\delta_{-}f(\overline{x}) = -\frac{16}{3} = -5{,}3333$$

5. (1 punto) Si consideri la funzione $f(x) = 3 - 5x^2$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico punto $\overline{x} \in \mathbb{R}$ mediate le differenze finite in avanti, ovvero $E_+f(\overline{x}) = f'(\overline{x}) - \delta_+f(\overline{x})$, usando il passo h = 1/2.

$$E_+f(\overline{x}) = \frac{5}{2} = 2.5$$

6. (1 punto) Si consideri il seguente problema differenziale di diffusione:

$$\begin{cases} -u''(x) = 6 & x \in (0,1), \\ u(0) = u(1) = 0, \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per N=1. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.

$$u_1 = \frac{3}{4} = 0.75$$

7. (2 punti) Si consideri il seguente problema differenziale di diffusione-reazione:

$$\begin{cases} -u''(x) + 5 u(x) = 8 \sin(\pi x) & x \in (0,1), \\ u(0) = 0, & u(1) = 1. \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per N=1. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.

$$u_1 = \frac{12}{13} = 0.923\,077$$

Ferraga	1
ESERCIZIO	- 1

(a) (3 punti) Data $f:[a,b] \to \mathbb{R}$ una funzione continua, si definisca e si riporti con precisione l'espressione del polinomio interpolante composito lineare $\Pi^1_H f$ considerando N+1 nodi equispaziati in [a,b], ovvero $x_0=a,x_1,\ldots,x_N=b$, con passo H=(b-a)/N. Si interpreti graficamente $\Pi^1_H f$.

Si riporti il risultato (teorema) di convergenza dell'interpolazione composita lineare.

(b) (2 punti) Utilizzando opportunamente la funzione interp1 di Matlab®, si approssimi la funzione

$$f(x) = 8 \left[e^{x/10} + \sin\left(\pi x + \sqrt{3}\right) \right]$$
 definita in $[a,b] = [0,10]$,

mediante il polinomio interpolante composito lineare $\Pi_H^1 f$ su nodi equispaziati con passi di ampiezza H=0.25, 0.125, 0.0625, 0.03125. Si riportino, al variare di H, i valori delle approssimanti corrispondenti $\Pi_H^1 f$ valutate in $\overline{x}=\sqrt{2}$.

per
$$H = 0.25$$
: $\Pi_H^1 f(\overline{x}) = 8,455342$ per $H = 0.125$: $\Pi_H^1 f(\overline{x}) = 8,358985$ per $H = 0.0625$: $\Pi_H^1 f(\overline{x}) = 8,355487$ per $H = 0.03125$: $\Pi_H^1 f(\overline{x}) = 8,35164$

(c) (2 punti) In seguito al punto (b), si calcolino e si riportino gli errori $E_H(f) = \max_{x \in [a,b]} |f(x) - \Pi_H^1 f(x)|$ associati alle corrispondenti approssimanti $\Pi_H^1 f$ (al fine del calcolo dell'errore in Matlab® si valutino f(x) e $\Pi_H^1 f(x)$ in 1000 punti con il comando linspace(0, 10, 1000)).

per H = 0.25: $E_H(f) = \underline{59,423491 \cdot 10^{-2}}$ per H = 0.125: $E_H(f) = \underline{15,393128 \cdot 10^{-2}}$ per H = 0.0625: $E_H(f) = \underline{38,5389 \cdot 10^{-3}}$ per H = 0.03125: $E_H(f) = \underline{9,647382 \cdot 10^{-3}}$

Alla luce del teorema di convergenza di cui al punto (a), si stimi algebricamente l'ordine di convergenza p del metodo e si commentino i risultati ottenuti.

				nodi distinti e $n \gg 1$. Si dei <i>minimi quadrati</i> , dove
[0,10] e dalle	corrispondenti valuta	azioni della fun	zione $f(x)$ definita al	1 = 11 nodi equispaziati in l punto (b). Si calcolino e si ali dati nel senso dei minimi
$p_1(x) = \underline{\hspace{1cm}}$	1,3585 x + 7,78	44	$p_2(x) = \underline{0,2514}$	$x^2 - 1,1554x + 11,5553$
			te nel senso dei mini oppie di dati precede	mi quadrati $p_m(x)$ coincide nti?
	mice pomionimale den	$m = \underline{\hspace{1cm}}$		11011
SERCIZIO 2.	Si consideri il pro	oblema di Cau	ehy:	
	$\begin{cases} y'(t) \\ y(0) \end{cases}$	$ \begin{array}{rcl} & = & f(t,y) \\ & = & y_0, \end{array} $	$t \in (0,t_f],$	(1)
n $t_f > 0$ e il da	to iniziale y_0 assegna			
Eulero in ava		ritmo del meto	do di <i>Eulero in avana</i>	zione mediante il metodo di ti (non in stretto linguaggio
1				

Si riporti ora la definizione di zero stabilità del metodo di Eulero in avanti; si definisca con prisione tutta la notazione.
$(1\ punto)$ Si riporti ora l'algoritmo del metodo di $Crank-Nicolson$ (non in stretto lingua Matlab®) per l'approssimazione del problema di Cauchy (1); si definisca con precisione ti la notazione utilizzata.

	Γ 1] 2
(d)	(3 punti) Si consideri ora il problema di Cauchy (1) con $f(t,y) = 5\left[3\cos(3t)e^{-t/2} + \frac{1}{2}\right] - \frac{y}{2}$
	$t_f = 3$ e $y_0 = 5$. Si utilizzino opportuni comandi Matlab® per approssimare tale problema mediante il metodo di <i>Crank-Nicolson</i> con diversi passi temporali $h_1 = 0.5$, $h_2 = 0.25$, $h_3 = 0.125$ e $h_4 = 0.0625$. Si riportino i valori della soluzione approssimata $u_{N_{h,i}}$ corrispondente all'istante finale t_f per ciascuno dei precedenti valori di h_i (si riportino almeno 4 cifre decimali).
•	$u_{N_{h,1}}=$
	$u_{N_{h,3}} = \underline{\qquad 5,467209} \qquad \qquad u_{N_{h,4}} = \underline{\qquad 5,461639}$
	(2 punti) Sapendo che la soluzione esatta del problema è $y(t) = 5 \left[1 + \sin(3t) e^{-t/2}\right]$, si calcoline e si riportino gli errori E_{h_i} associati alle soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun valore d h_i specificato al punto (d) (si riportino almeno 4 cifre decimali in formato esponenziale).
	$E_{h_1} = \underline{11,618921 \cdot 10^{-2}}$ $E_{h_2} = \underline{2,959014 \cdot 10^{-2}}$
	$E_{h_3} = \underline{7,428352 \cdot 10^{-3}} \qquad E_{h_4} = \underline{18,589687 \cdot 10^{-4}}$
	Si utilizzino tali risultati per stimare graficamente l'ordine di convergenza del metodo di Crank Nicolson. Si motivi la risposta riportando con completezza la procedura seguita e il corrispondente grafico ottenuto.