Homework 4

Jaden Wang

Problem (1).

- a) $T^{-1}\mathcal{F}'$: Let's check each axiom:
 - (i) Since $\emptyset \in \mathcal{F}'$, $T^{-1}\emptyset = \{\omega : T(\omega) \in \emptyset\} = \emptyset \in T^{-1}\mathcal{F}'$.
 - (ii) Given $T^{-1}A' \in T^{-1}\mathcal{F}'$, we have $A' \in \mathcal{F}'$. Since \mathcal{F}' is a σ -field, $A'^c \in \mathcal{F}'$ and $T^{-1}(A'^c) \in T^{-1}\mathcal{F}'$. Then

$$(T^{-1}A')^{c} = \{\omega : \omega \in (T^{-1}A')^{c}\}$$

$$= \{\omega : \omega \notin T^{-1}A'\}$$

$$= \{\omega : T(w) \notin A'\}$$

$$= \{\omega : T(\omega) \in A'^{c}\}$$

$$= T^{-1}(A'^{c}) \in T^{-1}\mathcal{F}'$$

(iii) Given $T^{-1}A'_1, T^{-1}A'_2, \ldots \in T^{-1}\mathcal{F}', A'_1, A'_2, \ldots \in \mathcal{F}'$. Since \mathcal{F}' is a σ -field, $\bigcup_{n=1}^{\infty} A'_n \in \mathcal{F}'$ and $T^{-1}(\bigcup_{n=1}^{\infty} A'_n) \in T^{-1}\mathcal{F}'$. Now

$$\begin{split} \bigcup_{n=1}^{\infty} T^{-1} A_n' &= \bigcup_{n=1}^{\infty} \{\omega : T(\omega) \in A_n'\} \\ &= \{\omega : T(w) \in \bigcup_{n=1}^{\infty} A_n'\} \\ &= T^{-1} \left(\bigcup_{n=1}^{\infty} A_n'\right) \in T^{-1} \mathcal{F}' \end{split}$$

Hence, $T^{-1}\mathcal{F}'$ is a σ -field.

 $T\mathcal{F}$: Let's check each axiom:

(i) Since $\emptyset \in \mathcal{F}$, $T^{-1}\emptyset = \{\omega : T(\omega) \in \emptyset\} = \emptyset \in T^{-1}\mathcal{F}$.

(ii) Given $A' \in T\mathcal{F}$, we have $T^{-1}A' \in \mathcal{F}$. Since \mathcal{F} is a σ -field, $(T^{-1}A')^c \in \mathcal{F}$. Then

$$T^{-1}(A'^c) = \{\omega : T(\omega) \in A'^c\}$$

$$= \{\omega : T(w) \notin A'\}$$

$$= \{\omega : \omega \notin T^{-1}(A')\}$$

$$= \{\omega : \omega \in (T^{-1}(A'))^c\}$$

$$= (T^{-1}A')^c \in \mathcal{F}$$

Thus $A'^c \in T\mathcal{F}$.

(iii) Given $A'_1, A'_2, \ldots \in T\mathcal{F}$, we have $T^{-1}A'_1, T^{-1}A'_2, \ldots \in \mathcal{F}$. Since \mathcal{F} is a σ -field, $\bigcup_{n=1}^{\infty} T^{-1}A'_n \in \mathcal{F}$. Now

$$T^{-1}\left(\bigcup_{n=1}^{\infty} A'_n\right) = \{\omega : T(\omega) \in \bigcup_{n=1}^{\infty} A'_n\}$$
$$= \bigcup_{n=1}^{\infty} \{\omega : T(w) \in A'_n\}$$
$$= \bigcup_{n=1}^{\infty} T^{-1} A'_n \in \mathcal{F}$$

Thus, $(\bigcup_{n=1}^{\infty} A'_n) \in T\mathcal{F}$.

Hence, $T\mathcal{F}$ is a σ -field.

Regarding measurability, for given $A' \in \mathcal{F}'$ notice that

$$T^{-1}A' = \{\omega \in \Omega : T(\omega) \in A'\} \in \mathcal{F}$$

implies that $T^{-1}\mathcal{F}'\subseteq \mathcal{F}$ but is also the definition of T measurable F/F'. So the two statements are equivalent.

Similarly,

$$T^{-1}(A') \in \mathcal{F} \Leftrightarrow A' \in T\mathcal{F}.$$

This implies that $\mathcal{F}' \subseteq T\mathcal{F}$ but is also the definition of T measurable F/F'. Thus the two statements are equivalent.

b)

(i) We would like to prove by double containment.

(\subseteq): Since by part b) $T^{-1}(\sigma(\mathcal{A}'))$ is a σ -field, it suffices to show that $T^{-1}\mathcal{A}' \subseteq T^{-1}(\sigma(\mathcal{A}'))$.

Since $\mathcal{A}' \subseteq \sigma(\mathcal{A}')$,

$$T^{-1}\mathcal{A}' = \{ T^{-1}A' : A' \in \mathcal{A}' \} \subseteq \{ T^{-1}A' : A' \in \sigma(\mathcal{A}') \} = T^{-1}(\sigma(\mathcal{A}')).$$

Since $\sigma(T^{-1}A')$ is the smallest σ -field containing $T^{-1}A'$, we obtain $\sigma(T^{-1}A') \subseteq T^{-1}(\sigma(A'))$ as required.

 (\supseteq) : Give $A' \in \mathcal{A}'$, clearly $T^{-1}A' \in T^{-1}\mathcal{A}'$ and thus $T^{-1}A' \in \sigma(T^{-1}A') := \mathcal{F}$. Let $\mathcal{F}' := \sigma(\mathcal{A}')$. Then by Theorem 13.1, T is measurable F/F'. Then by 1a, this is equivalent to

$$T^{-1}\mathcal{F}' = T^{-1}(\sigma(\mathcal{A}')) \subseteq \sigma(T^{-1}\mathcal{A}') = \mathcal{F}.$$

As we obtain both directions,

$$\sigma(T^{-1}\mathcal{A}') = T^{-1}(\sigma(\mathcal{A}')).$$

- (ii) Suppose $\Omega_0 \subseteq \Omega, T: \Omega_0 \to \Omega$ be the identity map. Theorem 10.1 states:
 - 1) If \mathcal{F} is a σ -field on Ω , then $\mathcal{F}_0 = \mathcal{F} \cap \Omega_0$ is a σ -field on Ω_0 .

Proof

Given $A \in \mathcal{F}$,

$$T^{-1}A = \{\omega \in \Omega_0 : T(\omega) \in A\}$$

= $\{\omega \in \Omega_0 : T(\omega) \in A \cap \Omega_0\}$ by identity map
= $A \cap \Omega_0$

Therefore, $T^{-1}\mathcal{F} = \{T^{-1}A : A \in F\} = \{A \cap \Omega_0 : A \in \mathcal{F}\} = \mathcal{F} \cap \Omega_0$. Recall from part b) that $T^{-1}\mathcal{F}$ is the smallest σ -field such that T is measurable $(\mathcal{F} \cap \Omega_0)/F$.

Thus, $\mathcal{F}_0 = \mathcal{F} \cap \Omega_0$ is a σ -field.

2) If $\mathcal{F} = \sigma(\mathcal{A})$ on Ω , then $\mathcal{F}_0 = \mathcal{F} \cap \Omega_0 = \sigma(\mathcal{A} \cap \Omega_0)$.

Proof

By part c (i), we have

$$\sigma(T^{-1}\mathcal{A}) = T^{-1}(\sigma(A))$$

$$\sigma(\{T^{-1}A : A \in \mathcal{A}\}) = T^{-1}\mathcal{F}$$

$$\sigma(A \cap \Omega_0 : A \in \mathcal{A}) = \mathcal{F} \cap \Omega_0 \text{ by identity map}$$

$$\sigma(\mathcal{A} \cap \Omega_0) = \mathcal{F}_0$$

as required.

Problem (2). Suppose $s = \sum_{i=1}^{n} a_i I_{A_i}, A_i \in \mathcal{F}$.

(i) $\nu(\emptyset) = 0$:

$$\nu(\emptyset) = \int_{\emptyset} s \ d\mu$$

$$= \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap \emptyset)$$

$$= \sum_{i=1}^{n} a_{i} \mu(\emptyset)$$

$$= \sum_{i=1}^{n} a_{i} \cdot 0 = 0$$

(ii) $\nu: \Omega \to [0, \infty)$: Since $s \ge 0$, we have $a_i \ge 0 \ \forall i$. Since μ is a measure on $(\Omega, \mathcal{F}), \ \mu(A) \ge 0 \ \forall A \in \mathcal{F}$. Given $B \in \mathcal{F}$, since \mathcal{F} is a σ -field,

 $A_i \cap B \in \mathcal{F}$. So $a_i \mu(A_i \cap B) \ge 0 \ \forall i$.

$$\nu(B) = \int_{B} s \, d\mu$$
$$= \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap B)$$
$$\geq 0$$

(iii) countable additivity: Given disjoint $B_1, B_2, \ldots \in \mathcal{F}$,

$$\nu\left(\bigcup_{n=1}^{\infty}B_{n}\right) = \sum_{i=1}^{m}a_{i}\mu\left(A_{i}\cap\bigcup_{n=1}^{\infty}B_{n}\right)$$

$$= \sum_{i=1}^{m}a_{i}\mu\left(\bigcup_{n=1}^{\infty}(A_{i}\cap B_{n})\right)$$

$$= \sum_{i=1}^{m}a_{i}\sum_{n=1}^{\infty}\mu(A_{i}\cap B_{n}) \text{ countable add. of } \mu$$

$$= \sum_{n=1}^{\infty}\sum_{i=1}^{m}a_{i}\mu(A_{i}\cap B_{n}) \text{ linearity}$$

$$= \sum_{n=1}^{\infty}\nu(B_{n})$$

Hence, ν is a measure on (Ω, \mathcal{F}) .