Exercise Sheet 2 Linear Algebra (AAI)

Exercise 2.1 (H)

Determine whether U is a subspace of \mathbb{R}^3 :

- a) $U = \{(x, y, z) \in \mathbb{R}^3 : z = 3x y\},\$
- b) $U = \{(x, y, z) \in \mathbb{R}^3 : x \cdot y \cdot z = 0\},\$
- c) $U = \{(x, y, z) \in \mathbb{R}^3 : x \cdot (\exp(y) + z) = 0\},\$
- d) $U = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \ge 0\},\$
- e) $U = \{(\lambda, 2\lambda, 4\lambda) \in \mathbb{R}^3 : \lambda \in \mathbb{R}\}.$

Exercise 2.2 (H)

Consider $v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^4$ given by

$$v_1 = (1, 2, 1, 2), \ v_2 = (1, 1, 1, 1), \ v_3 = (0, 1, 1, 0), \ v_4 = (0, 1, 0, 1), \ v_5 = (1, 0, 0, 1).$$

- a) Express each vector v_i as a linear combination of the remaining vectors v_j with $j \neq i$ (if possible).
- b) Prove or disprove:
 - i) $\operatorname{span}(\{v_2, v_3, v_5\}) = \operatorname{span}(\{v_3, v_5\}),$
 - ii) span $(\{v_2, v_3, v_5\})$ = span $(\{v_1, v_3, v_5\})$,
 - iii) span $(\{v_2, v_5\})$ = span $(\{v_3, v_5\})$,
 - iv) span($\{v_1, v_5\}$) = span($\{v_1, v_2, v_3, v_4, v_5\}$),
 - v) span($\{v_1, v_2, v_4\}$) = span($\{v_2, v_3, v_5\}$).
- c) Determine all linearly independent families $(v_i)_{i \in I}$ with $I \subseteq \{1, \dots, 5\}$ and $|I| \leq 3$.

Exercise 2.3 (H)

Let $U \subseteq V$ be a subspace of V and let $x, y \in V$. Show that

$$y \in \operatorname{span}(U \cup \{x\}) \land y \notin U \Rightarrow x \in \operatorname{span}(U \cup \{y\}).$$

Exercise 2.4 (H)

a) Let $v_1, v_2, v_3 \in \mathbb{R}^{[0,\infty)}$ be given by

$$v_1(x) = 1$$
, $v_2(x) = \sqrt{x}$, $v_3(x) = \sin(x)$

for $x \in [0, \infty)$. Show that (v_1, v_2, v_3) is linearly independent.

b) Let V be a K-vector space and let (v_1, v_2) be linearly independent for $v_1, v_2 \in V$. Show that $(v_1 - v_2, v_1 + v_2)$ is linearly independent.