INDONESIA'S INNOVATIVE RESEARCH COMPETITION 2022

PEMBANGUNAN EKONOMI HIJAU BERPOROSKAN PEMBATASAN KONSUMSI DALAM RANGKA MENGURANGI DAMPAK NEGATIF TERHADAP LINGKUNGAN DI INDONESIA

Disusun oleh:

Rafi Prayoga Dhenanta	[10119104]	[2019]
Muhammad Pudja Gemilang	[10119055]	[2019]
Muhammad Nabil Fadhlurrahman	[10119065]	[2019]

INSTITUT TEKNOLOGI BANDUNG BANDUNG 2021

LEMBAR PENGESAHAN ISOTERM 2022

1. Judul Karya Tulis Ilmiah

Pembangunan Ekonomi Hijau Berporoskan Pembatasan Konsumsi dalam Rangka

Mengurangi Dampak Negatif terhadap Lingkungan di Indonesia

2. Sub Tema Karya Tulis Ilmiah : Pembangunan Ekonomi Hijau

3. Nama Tim : Tiga Menantu Idaman

4. Ketua Tim

i. Nama Lengkap : Rafi Prayoga Dhenanta

ii. NIM 10119104 iii. Jurusan : Matematika

iv. Perguruan Tinggi : Institut Teknologi Bandung

v. Alamat Rumah dan No. Telp/Hp

RT/RW 05/02, Desa Sumberingin, Kecamatan Karangan, Trenggalek, Jawa Timur

vi. Alamat *e-mail* : rafibinpepe@gmail.com

5. Anggota Tim : 3 orang

6. Dosen Pembimbing

i. Nama Lengkap dan Gelari. Dr. Atmawi Darwis. S.Hut,M.Si ii. NIP/NIDN/NIDKii. 111000012/0402107507

iii. Alamat Rumah dan No. Telp/Hp : Cluster Lumbung Indah no 7 Rt 03 Rw

10, Desa Cikeruh, Kec. Jatinangor, Kab. Sumedang

Trenggalek, 27 Desember 2021

Menyetujui,

Dosen Pembimbing

Ketua Tim

(Atmawi Darwis)

(111000012)

(Rafi Prayoga Dhenanta)

(10119104)

Mengetahui,

Ketua Program Studi Sarjana Matematika

Dr. Nuning Nuraini

NIP. 197404141999032001

LEMBAR ORISINALITAS KARYA TULIS

Yang bertanda tangan di bawah ini:

1. Nama lengkap Ketua: Rafi Prayoga Dhenanta

NIM : 10119104

Tempat/tanggal lahir : Trenggalek, 26 November 2000

Jurusan/Fakultas : Matematika/FMIPA

Perguruan Tinggi : Institut Teknologi Bandung 2. Nama Lengkap Anggota 1 : M Nabil Fadhlurrahman

NIM : 10119065

Tempat/tanggal lahir : Bandung, 18 Juni 2000 Jurusan/Fakultas : Matematika/FMIPA

Perguruan Tinggi : Institut Teknologi Bandung
3. Nama Lengkap Anggota 2 : Muhammad Pudja Gemilang

NIM : 10119055

Tempat/tanggal lahir : Bekasi, 28 Oktober 2001 Jurusan/Fakultas : Matematika/FMIPA

Perguruan Tinggi : Institut Teknologi Bandung

Dengan ini menyatakan bahwa seluruh dokumen karya ilmiah dengan judul "Pembangunan Ekonomi Hijau Berporoskan Pembatasan Konsumsi dalam Rangka Mengurangi Dampak Negatif terhadap Lingkungan di Indonesia" yang kami ikut sertakan dalam lomba ISOTERM (*Indonesia's Innovative Research Competition*) 2022 yang diselenggarakan oleh Himpunan Mahasiswa Kimia "AMISCA" Institut Teknologi Bandung ini adalah **ASLI** karya kami dan bukan merupakan plagiarisme dari karya orang lain. Apabila dikemudian hari pernyataan ini tidak benar maka saya bersedia menerima sanksi yang ditetapkan oleh panitia ISOTERM 2022 berupa diskualifikasi dari kompetisi.

Trenggalek, 27 Desember 2021

Ketua Tim

METERAL CBAJX597343789

Rafi Prayoga Dhenanta) (10119104)

DAFTAR ISI

Lembar Pengesahan ISOTERM 2022	i
Lembar Orisinalitas Karya Tulis	ii
Daftar Isi	iii
Daftar Gambar	iv
Daftar Tabel	v
Abstrak	vi
Bab I: Pendahuluan	1
Latar Belakang	1
Rumusan Masalah	1
Tujuan Penelitian	2
Manfaat Penelitian	2
Penafian	2
Bab II: Tinjauan Pustaka	3
Landasan Teori	3
Konsep Penelitian	3
Bab III: Metode Penelitian	4
Metode Penelitian	4
Alur Berpikir	5
Sumber Data	5
Asumsi	6
Variabel Penelitian	7
Penafian	7
Bab IV: Hasil dan Pembahasan	8
Prediksi Kondisi Indonesia Tahun 2045 Berdasarkan Model	8
Kajian Solusi	14
Bab V: Kesimpulan dan Saran	17
Daftar Pustaka	
Lampiran	19

DAFTAR GAMBAR

Gambar 1: Kalkulator Tapak Ekologi 1	6
Gambar 2: Kalkulator Tapak Ekologi 2	6
Gambar 3: Kalkulator Tapak Ekologi 3	6
Gambar 4: Scatter-pot PDB_Indo dan EF_Indo	8
Gambar 5: Scatter-pot PDB_World dan EF_World	8
Gambar 6: Scatter-pot PDB_2016 dan EF_2016	9
Gambar 7: Grafik Regresi Linier Sederhana PDB_Indo dan EF_Indo	11

DAFTAR TABEL

Tabel 1: Perbandingan Kondisi Indonesia 2016 dengan Prediksi 2045

14

ABSTRAK

Pada tahun 2004, The United Nations' High-Level Panel on Threats, Challenges, and Change memasukkan degradasi atau kerusakan lingkungan sebagai salah satu dari sepuluh ancaman terbesar terhadap kemanusiaan. Banyak penelitian yang telah dilakukan untuk mengetahui faktor-faktor penyebab kerusakan lingkungan hingga pencegahannya. Saat ini, dua faktor utama yang dipercaya menjadi penyebab kerusakan lingkungan adalah ukuran populasi manusia dan tingginya tingkat konsumsi manusia terhadap sumber daya alam. Penelitian ini bertujuan mencari penyebab terbesar kerusakan lingkungan pada masa mendatang sehingga dapat dipilih strategi mitigasi yang tepat dalam konteks pembangunan ekonomi hijau. Salah satu metode untuk melakukan kalkulasi dari dampak atau pengaruh manusia terhadap lingkungan adalah dengan menggunakan model I = PAT, dengan dampak manusia terhadap lingkungan (I) yang dihitung dari perkalian tiga variabel, yaitu populasi (P), kemakmuran (A), dan teknologi (T). Pada penelitian ini, penulis meneliti model tersebut menggunakan pendekatan tapak ekologi dan GDP (PDB) per kapita untuk mendekati variabel kemakmuran (A). Dari proses penelitian menggunakan koefisien korelasi *Pearson*, *Spearman*, dan *Kendall's Tau*, ditemukan korelasi positif antara PDB per kapita dengan tapak ekologi. Hal ini diperkuat dengan analisis grafik baik secara langsung maupun dengan melihat trend menggunakan machine learning. Berbekal informasi tersebut penulis membuat prediksi untuk Indonesia tahun 2045 menggunakan model ekstrapolasi regresi linier dan diperoleh angka kerusakan akibat tingginya tingkat konsumsi saja meningkat hampir 100% dan angka kerusakan akibat jumlah populasi saja meningkat sekitar 25%. Dapat disimpulkan bahwa kerusakan di masa depan yang diakibatkan oleh tingginya tingkat konsumsi jauh lebih besar daripada kerusakan yang diakibatkan oleh banyaknya populasi. Berdasarkan penemuan tersebut seharusnya pembangunan ekonomi hijau lebih terfokus ke arah pembatasan konsumsi, seperti pemberian dan/atau penambahan pajak karbon dan merubah mindset konsumerisme masyarakat Indonesia.

Kata Kunci: tapak ekologi, PDB, model, prediksi, pembatasan konsumsi

BAB 1

PENDAHULUAN

1. Latar Belakang

Pada tahun 2004, *The United Nations' High-Level Panel on Threats, Challenges, and Change* memasukkan degradasi atau kerusakan lingkungan sebagai salah satu dari sepuluh ancaman terbesar terhadap kemanusiaan. Beberapa contoh kerusakan lingkungan yang cukup populer antara lain hutan gundul serta berbagai pencemaran tanah, air, dan udara. Kerusakan lingkungan tersebut mengakibatkan menurunnya kualitas hidup manusia contohnya adalah tercemarnya sungai berakibat pada masalah kesehatan penduduk di sekitar sungai. Terlebih lagi kerusakan lingkungan juga berpotensi menimbulkan korban jiwa dan harta benda, contohnya banjir.

Saat ini, dua faktor utama yang dipercaya menjadi penyebab kerusakan lingkungan adalah ukuran populasi manusia dan tingginya tingkat konsumsi manusia terhadap sumber daya alam yang berakibat pada alih fungsi lahan maupun overeksploitasi sumber daya alam. Penyebab kerusakan lingkungan yang paling signifikan harus ditemukan untuk menentukan strategi yang tepat dan efektif untuk mengurangi potensi kerusakan lingkungan di masa depan. Untuk menentukan penyebab tersebut dilakukanlah proses matematis sehingga hasil yang didapat jauh dari kata bias secara sains.

Ukuran populasi adalah sebuah satuan eksplisit yang didapat melalui sensus sementara tingkat konsumsi adalah suatu ukuran yang belum terdapat satuan pastinya. Karena belum terdapat satuan resminya, tingkat konsumsi masyarakat didekati dengan tapak ekologi konsumsi. Tapak ekologi konsumsi adalah ukuran banyaknya lahan yang dibutuhkan oleh seluruh manusia untuk mencukupi kebutuhan konsumsi mereka. Dalam hal ini tapak ekologi konsumsi juga mencakup konsumsi sumber daya fosil maupun sumber daya *renewable*. Salah satu model yang mendekati potensi kerusakan lingkungan berdasarkan populasi dan tapak ekologi adalah model *IPAT*. Dari model tersebut akan diprediksi kerusakan lingkungan di masa mendatang serta penyebabpenyebabnya yang paling signifikan sehingga poros pembangunan ekonomi hijau Indonesia sebaiknya didasarkan pada langkah-langkah mengurangi kerusakan lingkungan akibat suatu penyebab yang paling signifikan.

2. Rumusan Masalah

Dari latar belakang di atas dirumuskan beberapa rumusan masalah sebagai berikut,

- a. Bagaimanakah prediksi kerusakan lingkungan pada tahun 2045 di Indonesia apabila dibandingkan dengan tahun 2016?
- b. Langkah apa yang seharusnya diambil oleh pemerintah untuk mengurangi potensi kerusakan lingkungan di masa mendatang?

3. Tujuan Penelitian

Berdasarkan latar belakang serta rumusan masalah di atas dapat dijabarkan tujuan dari penelitian ini yaitu,

- a. Memprediksi potensi kerusakan lingkungan di Indonesia pada tahun 2045 apabila dibandingkan dengan data di tahun 2016 dan
- b. Mengkaji solusi yang mungkin untuk diimplementasikan dalam rangka pencegahan kerusakan lingkungan di masa mendatang.

4. Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah untuk memberi gambaran secara kasar akan potensi kerusakan lingkungan yang mungkin terjadi di Indonesia pada tahun 2045 yang selanjutnya gambaran tersebut diharapkan mampu digunakan sebagai dasar kajian-kajian lebih lanjut lainnya yang berkaitan dengan penelitian ini.

5. Penafian

Penelitian ini murni dihasilkan oleh daya kreativitas peneliti. Apabila ada suatu bagian yang tidak sengaja terkutip oleh penulis tanpa menyertakan sumber asli, silahkan mengirim *e-mail* ke <u>rafibinpepe@gmail.com</u> untuk dikoreksi.

BAB II

TINJAUAN PUSTAKA

II.1 Landasan Teori

Berikut ini merupakan beberapa teori yang digunakan dalam penelitian ini,

a. Model *IPAT*

Berdasarkan *Encyclopedia of Global Change*, I = PAT adalah formulasi model matematika yang dikembangkan oleh seorang ahli biologi bernama Paul Ehrlich dan seorang *Environmental Scientist* John Holdren yang berusaha menjelaskan faktor-faktor yang dapat berpengaruh terhadap lingkungan. Pada model ini, terdapat tiga variabel prediktor, yaitu *Population* (P), *Affluence* (A), dan *Technology* (T).

b. Tapak Ekologi

Berdasarkan *The Oxford Companion to Global Chang*, tapak ekologi merupakan suatu ukuran yang dinyatakan sebagai banyaknya lahan yang diperlukan untuk mempertahankan penggunaan sumber daya alam di suatu wilayah.

II.2 Konsep Penelitian

Penelitian ini menggunakan beberapa konsep berpikir sebagai pendukungnya. Konsep-konsep tersebut di antaranya,

- a. Pendekatan Variabel Model Menggunakan Variabel Lain Pendekatan variabel model menggunakan variabel lain bertujuan untuk merepresentasikan suatu atau beberapa variabel dalam model dengan menggunakan pendekatan variabel lain untuk memudahkan analisis dan pemodelan masalah. Pendekatan dengan menggunakan variabel biasa digunakan jika variabel yang digunakan dalam pemodelan tergolong sulit untuk didapatkan / digunakan, sehingga diperlukan pendekatan variabel lain yang dapat membantu analisis pada model masalah.
- b. Penyederhanaan Masalah Menggunakan Asumsi

Secara definisi, asumsi merupakan pernyataan yang dapat diuji kebenarannya dengan menggunakan percobaan dalam penelitian. Dalam percobaan, masalah dunia nyata yang tidak ideal terkadang sulit untuk diteliti. Oleh sebab itu, perlu dilakukan beberapa penyesuaian keadaan dengan asumsi - asumsi tertentu yang dapat memudahkan keberjalanan penelitian tanpa mengubah hasil penelitian secara signifikan.

BAB III

METODE PENELITIAN

III.1 Metode Penelitian

Metode penelitian yang digunakan adalah metode kuantitatif berupa studi korelasional yang dilanjutkan dengan analisis prediktif menggunakan metode ekstrapolasi regresi linier sederhana. Untuk kajian solusinya akan digunakan metode kualitatif berupa studi kasus sederhana. Berikut penjelasan secara singkatnya,

a. Metode Penelitian Kuantitatif

Metode penelitian kuantitatif yang digunakan dalam penelitian ini adalah metode statistika dengan penelitian deskriptif, penelitian korelasional, penelitian kausal komparatif, dan statistika inferensi. Penelitian deskriptif digunakan untuk melihat tren dari setiap variabel pada model. Penelitian korelasional digunakan untuk mengetahui korelasi antara beberapa variabel pada model, dalam hal ini variabel GDP per kapita, tapak ekologi konsumsi per kapita, dan *impact* (I). Penelitian kausal komparatif digunakan sebagai lanjutan penelitian korelasional untuk mengetahui dan membandingkan kausalitas antara tiap dua variabel pada model.

b. Studi Korelasional

Menurut Suryabrata (2008), penelitian korelasional adalah penelitian yang bertujuan untuk meneliti sejauh mana variasi - variasi pada suatu faktor memiliki kaitan dengan variasi - variasi pada satu atau lebih faktor berdasarkan pada koefisien korelasi. Metode korelasional biasanya digunakan untuk mengetahui apakah ada hubungan yang kuat / lemah antara dua variabel sehingga dapat memberikan gambaran awal bagi peneliti untuk dapat melakukan penelitian yang lebih lanjut.

c. Metode Ekstrapolasi

Menurut Primandari (2013), ekstrapolasi adalah metode yang digunakan untuk memprediksi nilai dari suatu data atau fungsi yang berada di luar interval (data awal yang telah diperoleh). Metode ini melakukan estimasi fungsi f(x) untuk sebarang nilai x dengan menginterpolasi kurva linear / non-linear untuk semua nilai x dan melakukan ekstrapolasi nilai x di luar data historis.

d. Regresi Linier Sederhana

Regresi linier sederhana merupakan model regresi linear yang yang terdiri dari satu variabel prediktor (variabel bebas) dan satu variabel respons. Regresi lienar sederhana biasa digunakan untuk memodelkan hubungan linear antara variabel bebas dan variabel respons yang didefinisikan oleh persamaan matematika berikut.

$$y = \beta_0 + \beta_1 x$$

dimana β_0 adalah *intercept* dan β_1 adalah *slope*/kemiringan dari garis regresi.

e. Metode Kualitatif Studi Kasus

Metode kualitatif merupakan metode penelitian yang bersifat deskriptif dan cenderung mencari data yang didapatkan dari penelitian secara argumentatif. Menurut Sugoyono (2014), metode kualitatif dapat disebut sebagai metode penelitian neutralistik karena penelitiannya dilakukan pada kondisi yang alamiah (natural setting).

III.2 Alur Berpikir

Karena dalam penelitian ini terdapat dua tujuan utama, alur berpikir akan dibagi menjadi dua garis besar sesuai dengan masing-masing tujuan penelitian yang ingin dicapai.

- Prediksi Potensi Kerusakan Lingkungan Indonesia 2045
 Berikut alur berpikir untuk memprediksi kerusakan lingkungan di Indonesia pada tahun 2045,
 - 1.1 Dari model *IPAT*, peneliti mendekati nilai perkalian antara variabel *Affluence* (A) dan variabel *Technology* (T) dengan variabel baru yaitu *Tapak Ekologi*. Asumsi ini didasarkan pada salah satu tolok ukur dari tapak ekologi sendiri adalah teknologi pada suatu waktu ketika pengukuran tersebut dilakukan. Agar asumsi ini benar, peneliti hanya perlu membuktikan bahwa variabel *Affluence* (A) dapat mempengaruhi tapak ekologi.
 - 1.2 Dalam dunia nyata, variabel *Affluence* nilainya sering dikaitkan dengan nilai PDB (Produk Domestik Bruto) per kapita. Oleh karena itu peneliti akan membuktikan bahwa *Affluence* yang didekati oleh PDB per kapita akan mempengaruhi tapak ekologi. Metode yang digunakan adalah menggunakan korelasi statistika dan analisis inferensial regresi linier sederhana.
 - 1.3 Peneliti membuat model prediksi kerusakan lingkungan di Indonesia pada masa mendatang berdasarkan model regresi linier sederhana.

2. Kajian Solusi

Kajian solusi diawali dengan memberikan jawaban atas pertanyaan klasik tentang signifikansi antara jumlah populasi dibandingkan dengan tingkat konsumsi dalam mempengaruhi kerusakan lingkungan. Setelah jawaban berdasarkan model prediksi telah dirumuskan, kajian selanjutnya akan dilakukan secara argumentatif untuk memperkuat hasil prediksi berdasarkan data.

III.3 Sumber Data

Terdapat beberapa sumber data yang digunakan dalam penelitian ini, di antaranya

- Data Tapak Ekologi https://data.world/footprint/nfa-2019-edition
- Data PDB Per Kapita dan Populasi
 https://www.macrotrends.net/countries/IDN/indonesia/population
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/IDN/indonesia/gdp-gross-domestic-product
 https://www.macrotrends.net/countries/">https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 https://www.macrotrends.net/countries/
 <a href="https://www.

https://www.macrotrends.net/countries/IDN/world/population https://www.macrotrends.net/countries/WLD/world/gdp-per-capita https://databank.worldbank.org/

III.4 Asumsi

Di bawah ini adalah beberapa asumsi yang digunakan dalam penelitian ini,

1. Variabel *Technology* dalam model *IPAT* sudah masuk ke dalam variabel *Tapak Ekologi* secara sendirinya dan jumlahnya pada model prediksi diasumsikan mengikuti nilai dari variabel *Tapak Ekologi*. Hal ini dikarenakan dalam menentukan nilai *Tapak Ekologi* dibutuhkan nilai dari variabel *Technology*.

Berikut ilustrasi yang penentuan nilai tapak ekologi konsumsi berdasarkan situs https://www.footprintcalculator.org/,

Gambar 1: Kalkulator Tapak Ekologi 1

Gambar 2: Kalkilator Tapak Ekologi 2

Gambar 3: Kalkulator Tapak Ekologi 3

Data yang digunakan dalam penelitian ini, khususnya data untuk tapak ekologi, sama dengan data yang ada pada situs di atas. Peneliti menggunakan referensi lain sebagai sumber data dikarenakan lisensi penggunaan data lengkap dari situs di atas belum diberikan. Tetapi nilai untuk variabel *Tapak Ekologi* sama untuk kedua situs, baik yang dijadikan referensi (situs https://data.world/footprint/nfa-2019-edition) maupun yang bukan (situs https://www.footprintcalculator.org/)

- 2. Nilai dari variabel A (*Affluence*) diasumsikan dapat didekati dengan nilai produk domestik bruto per kapita. Hal ini sesuai dengan kondisi lapangan yang mengukur tingkat kemakmuran suatu bangsa berdasarkan ekonominya.
- 3. Nilai dari variabel *Impact* (I) dalam model *IPAT* diasumsikan dapat mendekati nilai dari tingkat kerusakan lingkungan. Hal ini dikarenakan model *IPAT* yang kita

bangun dari variabel *Tapak Ekologi* merupakan nilai yang menyatakan banyaknya lahan yang dibutuhkan untuk mencukupi kebutuhan hidup seluruh manusia (dalam satuan *bumi*). Semakin besar nilai *Impact* maka potensi eksploitasi lahan secara berlebihan akan semakin besar dan berujung pada membesarnya potensi kerusakan lingkungan akibat eksploitasi yang berlebihan.

III.5 Variabel Penelitian

Di bawah ini adalah daftar variabel yang digunakan dalam penelitian ini beserta maknanya,

1. I : *Impact* atau nilai yang menyatakan tingkat kerusakan

lingkungan

2. P : Populasi

3. A : Affluence atau tingkat kemakmuran4. T : Technology atau tingkat teknologi

5. EF_Indo : Tapak ekologi konsumsi per kapita Indonesia6. EF_World : Tapak ekologi konsumsi per kapita seluruh dunia

7. EF_2016 : Tapak ekologi konsumsi per kapita setiap negara di seluruh

dunia pada tahun 2016

8. PDB_Indo : Produk domestik bruto (PDB) per kapita Indonesia
9. PDB_World : Produk domestik bruto (PDB) per kapita seluruh dunia
10. PDB_2016 : Produk domestik bruto (PDB) per kapita setiap negara di

seluruh dunia pada tahun 2016

III.6 Penafian

- 1. Variabel I adalah variabel yang nantinya akan digunakan sebagai penentu kerusakan lingkungan. Variabel ini tidak memiliki satuan yang pasti dalam model *IPAT* yang dimodifikasi menjadi perkalian antara variabel tapak ekologi dengan populasi. Hal ini tidak akan menjadi masalah dalam penelitian ini dikarenakan nilai dari variabel I pada akhirnya hanya akan dijadikan indikator pembanding antara sebuah kasus dengan kasus lainnya di masa mendatang.
- 2. Pembacaan titik dan koma untuk hitungan maupun formula dalam penelitian ini tidak konsisten dikarenakan menggunakan *software* luar negeri yang membaca koma Indonesia sebagai titik. Contohnya desimal 3,14 ditulis 3.14.

BAB IV

HASIL DAN PEMBAHASAN

IV.1 Prediksi Kondisi Indonesia Tahun 2045 Berdasarkan Model

Berdasarkan model *IPAT*, maka variabel I merupakan perkalian dari tiga buah variabel lainnya, yaitu P (*Population*), A (*Affluence*), dan T (*Technology*). Dalam penelitian ini peneliti menggunakan pendekatan lain yang serupa, yaitu menjadikan perkalian antara variabel A dan T menjadi sebuah variabel baru, yaitu tapak ekologi. Jadi penentu kerusakan lingkungan, yaitu variabel I, nilainya akan berupa perkalian antara banyak populasi (P) dengan nilai dari tapak ekologi.

Berdasarkan uraian pada III.2, maka peneliti hanya akan membuktikan bahwa nilai variabel A yang didekati oleh produk domestik bruto (PDB) per kapita mempengaruhi nilai tapak ekologi konsumsi per kapita. Pembuktian ini dilakukan dalam dua tahap, yakni uji korelasi dan analisis regresi linier sederhana.

Uji Korelasi

Berikut adalah hipotesis yang dibangun,

H₀ : Tidak terdapat hubungan antara PDB dengan tapak ekologi

H₁ : Terdapat hubungan antara PDB dengan tapak ekologi

Untuk mendapatkan gambaran yang lebih luas tentang hasilnya, maka uji korelasi akan dilakukan pada tiga *dataset*, yaitu GDP_Indo dengan EF_Indo, GDP_World dengan EF_World, dan GDP_2016 dengan EF_2016. Karena distribusi dari data tidak diketahui maka peneliti akan menggunakan koefisien korelasi *Spearman* dan *Kendall* yang tidak memerlukan syarat kenormalan distribusi dalam penggunaannya.

Berikut scatter-plot dari ketiga dataset,

Gambar 4: Scatter-plot PDB_Indo dan EF_Indo

Gambar 5: Scatter-plot PDB_World dan EF_World

Gambar 6: Scatter-plot PDB_Indo dan EF_Indo

Dari ketiga gambar di atas dapat dilihat adanya gejala korelasi antara PDB per kapita dengan tapak ekologi konsumsi per kapita. Selanjutnya akan ditinjau secara matematis tentang gejala korelasi yang ditemukan dalam gambar.

• Data Indonesia (PDB_Indo dan EF_Indo) Berikut *output* dari *software* RStudio,

Spearman's rank correlation rho

```
data: PDB_Indo and EF_Indo
S = 90, p-value = 1.502e-06
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.9210526
```

Kendall's rank correlation tau

```
data: PDB_Indo and EF_Indo

T = 151, p-value = 2.977e-07

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.7660819
```

Dapat dilihat bahwa masing-masing nilai koefisien korelasi *Spearman* dan *Kendall* adalah 0.9210526 dan 0.7660819 dengan *p-value* yang sangat kecil. Nilai koefisien korelasi tersebut cukup besar sehingga disimpulkan dalam *dataset* ini kita dapat menyimpulkan adanya korelasi antara PDB per kapita dengan tapak ekologi konsumsi per kapita di Indonesia.

Data Dunia (PDB_World dan EF_World)
 Berikut *output* dari *software* RStudio,

Spearman's rank correlation rho

```
data: PDB_World and EF_World
S = 1386, p-value = 3.709e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.6916574
```

Kendall's rank correlation tau

```
data: PDB_World and EF_World

T = 323, p-value = 9.989e-05

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.4850575
```

Dapat dilihat bahwa nilai dari masing-masing koefisien korelasi adalah 0.6916574 untuk *Spearman* dan 0.4850575 untuk *Kendall*. Dapat dilihat pula nilai *p-value* yang cukup kecil. Artinya dapat disimpulkan adanya korelasi yang lemah antara PDB per kapita dengan tapak ekologi konsumsi per kapita di dunia.

Data Seluruh Negara Tahun 2016 (PDB_2016 dan EF_2016)
 Berikut adalah *output* dari *software* RStudio,

Spearman's rank correlation rho

```
data: PDB_2016 and EF_2016
S = 95374, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
0.8855521
```

Kendall's rank correlation tau

data: PDB_2016 and EF_2016 z=13.525, p-value < 2.2e-16 alternative hypothesis: true tau is not equal to 0

sample estimates:

tau 0.6965944

Nilai dari masing-masing koefisien korelasinya adalah 0.8855521 untuk *Spearman* dan 0.6965944 untuk *Kendall* dengan *p-value* yang cukup kecil. Artinya terdapat korelasi antara PDB per kapita dengan tapak ekologi konsumsi perkapita seluruh negara dunia pada tahun 2016.

Berdasarkan hasil di atas dapat dilihat bahwa H₀ ditolak pada penelitian ini. Artinya dapat disimpulkan bahwa terdapat hubungan antara PDB per kapita dengan tapak ekologi konsumsi per kapita.

Menurut statistika, hubungan yang diperoleh dari korelasi terkadang hanya kebetulan terjadi padahal tidak terdapat suatu kondisi sebab-akibat. Oleh karena itu penelitian diteruskan dengan menganalisis model regresi linier sederhana pada *dataset* PDB_Indo dan EF_Info serta sekaligus membuat rincian modelnya.

Regresi Linier Sederhana Antara PDB_Indo dan EF_Indo

Dari *scatter-plot* di atas digambar *plot* baru untuk melihat gambaran akan model liniernya. Didapat,

Gambar 7: Grafik Regresi Linier Sederhana PDB_Indo dan EF_Indo

Secara intuitif dapat dilihat bahwa model linier sangat mungkin untuk memodelkan data PDB_Indo dengan EF_Indo atau dengan lain dapat dilihat pengaruh linier dari nilai PDB per kapita terhadap tapak ekologi per kapita di Indonesia.

Berikut output dari model linier berdasarkan software RStudio,

```
Call:
```

```
lm(formula = EF\_Indo \sim PDB\_Indo)
```

Residuals:

```
Min 1Q Median 3Q Max
-0.073588 -0.028279 -0.006474 0.013177 0.090911
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.277e+00 2.204e-02 57.918 < 2e-16 ***
PDB_Indo 9.049e-05 9.233e-06 9.801 2.08e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.04764 on 17 degrees of freedom Multiple R-squared: 0.8496, Adjusted R-squared: 0.8408 F-statistic: 96.06 on 1 and 17 DF, p-value: 2.078e-08

Didapat persamaan linier yang didapat dari hasil regresinya,

```
EF Indo = 0.00009049*PDB Indo + 1.277
```

Dari hasil tersebut dapat dilihat bahwa *p-value* untuk setiap variabelnya sangat kecil, yaitu 2.08e-08. Artinya variabel PDB_Indo cukup signifikan mempengaruhi hasil EF_Indo. Selain itu nilai dari *R-squared* juga cukup besar yaitu 0.8496 serta nilai *p-value* uji F-nya juga cukup kecil, yakni 2.078e-08, sehingga dapat disimpulkan bahwa terdapat pengaruh sebab-akibat, yaitu nilai dari PDB per kapita di Indonesia mempengaruhi nilai dari tapak ekologi per kapita di Indonesia.

Dalam dunia nyata artinya semakin berkembang suatu ekonomi baik secara individual maupun dalam skala nasional di Indonesia maka nilai dari tapak ekologi yang dihasilkan akan semakin besar. Sebagai contoh nyata adalah orang dengan ekonomi tinggi akan membelanjakan lebih banyak uang daripada orang yang kurang mampu. Hal ini sering menjadi sumber utama masalah overkonsumsi.

Semakin besar nilai tapak ekologi berarti semakin luas pula lingkungan dan sumber dayanya yang dibutuhkan untuk memenuhi kebutuhan manusia. Dengan besarnya tapak ekologi maka potensi kerusakan lingkungan akibat overeksploitasi serta pembukaan lahan baru juga semakin besar. Kesimpulan yang dapat diambil adalah semakin makmur suatu komunitas maka potensi kerusakan lingkungan akan semakin besar.

Untuk membenarkan kesimpulan akhir di atas, dilakukan uji asumsi regresi berupa uji kenormalan residual menggunakan *Uji Kolmogorov-Smirnov* dan auto-korelasi menggunakan *Uji Keacakan*.

Berikut hasil uji-uji di atas menggunakan software Rstudio,

Lilliefors (Kolmogorov-Smirnov) normality test

```
data: residual D = 0.15892, p-value = 0.2345
```

Dari hasil di atas dapat dilihat nilai *p-value* adalah 0.2345. Artinya asumsi normalitas residual regresi tidak dilanggar.

Approximate runs rest

```
data: residual
```

Runs = 7, p-value = 0.1

alternative hypothesis: two.sided

Dapat dilihat nilai *p-value* adalah 0.1. Artinya model regresi linier sederhana yang didapatkan dari penelitian ini tidak melanggar asumsi tidak adanya autokorelasi.

Jadi terbukti bahwa nilai variabel A yang didekati oleh produk domestik bruto (PDB) per kapita mempengaruhi nilai tapak ekologi konsumsi per kapita di Indonesia. Pengaruh yang didapatpun adalah pengaruh berupa sebab-akibat. Lebih jauh lagi dapat dilihat bahwa penyebab kerusakan lingkungan bukan hanya karena faktor populasi tetapi juga karena faktor overkonsumsi.

Adapun model untuk memprediksi keadaan Indonesia tahun 2045 yang dapat dibangun adalah,

```
EF_{Indo} = 0.00009049*PDB_{Indo} + 1.277
```

 $I = EF_Indo^*P$

dengan PDB_Indo adalah proyeksi produk domestik bruto Indonesia per kapita tahun 2045 dan P adalah proyeksi jumlah penduduk Indonesia pada tahun 2045. Dua variabel yang akan diprediksi adalah EF_Indo yang menyatakan besarnya nilai tapak ekologi Indonesia pada tahun 2045 dan variabel I yang menyatakan potensi kerusakan lingkungan Indonesia tahun 2045.

Berikut *dataset* yang dibentuk dengan catatan data untuk EF_Indo pada tahun 2045 merupakan hasil prediksi menggunakan persamaan pada IV.1. dengan diketahui target PDB Indonesia untuk tahun 2045 adalah \$ 23199.

Untuk tahun 2045,

$$EF_Indo = 0.00009049*PDB_Indo + 1.277$$

= 3.37627751

Tahun	2016	2045
EF_Indo	1.689990485	3.37627751
P (Populasi)	261556381	325705348

Tabel 1: Perbandingan Kondisi Indonesia 2016 dengan Prediksi 2045

Di bawah ini adalah kondisi potensi kerusakan lingkungan di Indonesia tahun 2016 dan 2045,

Tahun 2016

 $I = EF_Indo*P$

= 1.689990485*261556381

= 442027795.2

Tahun 2045

 $I = EF_Indo*P$

= 3.37627751*325705348

= 1099671641

Dapat dilihat bahwa prediksi akan potensi kerusakan lingkungan di tahun 2045 akan meningkat sekitar 148.78%.

IV.2 Kajian Solusi

Berdasarkan model *IPAT* maka tingkat kerusakan lingkungan dipengaruhi oleh banyaknya populasi, kemakmuran yang didekati dengan produk domestik bruto, dan tingkat teknologi. Dalam model yang disederhanakan, tingkat kerusakan lingkungan dipengaruhi oleh nilai tapak ekologi dan populasi. Pada bagian ini dibahas faktor yang paling signifikan mempengaruhi kerusakan lingkungan di masa mendatang.

Perbandingan Pengaruh Tapak Ekologi dan Populasi

Metode perbandingannya adalah dengan metode membagi kasus dengan acuan kondisi Indonesia pada tahun 2016. Perlakuan yang diimplementasikan adalah populasi konstan seperti tahun 2016 sedangkan tapak ekologi nilainya berupa prediksi untuk tapak ekologi tahun 2045, dan populasi merupakan proyeksi tahun 2045 sementara tapak ekologi konstan seperti tahun 2016.

Dengan menggunakan *dataset* yang sama pada IV.1 akan ditinjau faktor yang paling signifikan dalam mempengaruhi potensi kerusakan lingkungan.

```
Acuan (Tahun 2016)
```

```
I = EF_Indo*P
```

= 1.689990485*261556381

= 442027795.2

Kasus 1 (EF Indo tahun 2045 dan P tahun 2016)

```
I = EF_Indo*P
```

= 3.37627751*261556381

= 883086926.8

Kenaikan potensi kerusakan lingkungan dibandingkan data 2016 adalah sekitar 99.78%

Kasus 2 (EF_Indo tahun 2016 dan P tahun 2045)

```
I = EF_Indo*P
```

= 1.689990485*325705348

= 550438939

Kenaikan potensi kerusakan lingkungan dibandingkan data 2016 adalah sekitar 24.53%

Berdasarkan hasil perbandingan di atas dapat disimpulkan bahwa tapak ekologi konsumsi per kapita, yang di bagian IV.1 telah dijelaskan hubungannya dengan produk domestik bruto per kapita, lebih signifikan dalam mempengaruhi kerusakan lingkungan dibandingkan dengan banyaknya populasi. Jadi poros pembangunan ekonomi hijau harus lebih terfokus dalam mengurangi besarnya nilai tapak ekologi dibandingkan terfokus pada pengendalian populasi.

Adapun variabel tapak ekologi per kapita nilainya sangat bergantung pada produk domestik bruto per kapita (lihat bagian IV.1). Semakin besar PDB per kapita masyarakat Indonesia maka semakin besar pula potensi kerusakan lingkungannya akibat overkonsumsi. Selain PDB per kapita, variabel tapak ekologi juga dipengaruhi oleh variabel teknologi. Dengan ini terdapat dua opsi untuk menurunkan nilai tapak ekologi, yaitu dengan arah pengembangan teknologi hijau dan pembatasan konsumsi.

Peneliti menganggap bahwa opsi pembatasan konsumsi adalah opsi yang jauh lebih efektif dan mudah direalisasikan jika dibandingkan dengan opsi pengembangan teknologi hijau dalam rangka tercapainya pembangunan ekonomi hijau di Indonesia. Di bawah ini beberapa alasannya,

1. Teknologi hijau hanya bersifat idealis, yaitu hanya bagus dalam ide-idenya belaka namun sangat sulit untuk direalisasikan di dunia nyata. Salah satu contohnya adalah mobil listrik yang sudah didamba-dambakan muncul di pasaran sejak dulu namun hingga saat ini jumlah mobil listrik yang berjalan di Indonesia masih sangat sedikit dibandingkan mobil yang tidak ramah lingkungan. Selain itu menurut berita di tirto.id, 85% listrik yang digunakan masyarakat Indonesia masih berasal dari energi fosil yang tidak ramah lingkungan.

Perubahan untuk tahun 2045 dituntut untuk cepat sehingga peneliti menduga bahwa teknologi-teknologi hijau yang digembor-gemborkan oleh pemerintah tidak akan sanggup untuk mengejar tahap realisasi totalnya. Oleh karena itu pemerintah seharusnya lebih memperhatikan opsi pembatasan konsumsi yang realisasinya cenderung lebih instan karena hanya membutuhkan peraturan pemerintah tertentu yang dapat dirumuskan dalam waktu yang tidak terlalu lama jika dibandingkan dengan tahap pengembangan hingga perealisasian teknologi hijau.

- 2. Menurut Miller dan Spoolman dalam bukunya yang berjudul *Living in the Environment Seventeenth Edition*, tren teknologi di negara maju cenderung seimbang, yaitu perkembangan teknologi hijau dan teknologi yang merusak lingkungan cenderung seimbang. Apabila kita tinjau, perkembangan teknologi yang tidak ramah lingkungan tersebut dipengaruhi oleh hukum *supply and demand* yang merupakan imbas dari overkonsumsi. Dengan melakukan pembatasan konsumsi, maka permasalahan overkonsumsi sedikit demi sedikit akan berkurang karena berkurangnya *demand* masyarakat terhadap sumber daya. Akibatnya teknologi yang merusak lingkungan tidak akan berkembang sementara teknologi hijau tetap berkembang dengan kecepatan konstan. Jadi dalam hal ini pembatasan konsumsi dapat dikatakan sebagai pendukung berkembangnya teknologi hijau dalam pasar teknologi negara-negara maju.
- 3. Kebijakan teknologi hijau hanya dapat diterapkan pada beberapa golongan sementara kebijakan pembatasan konsumsi dapat diberlakukan pada seluruh golongan masyarakat. Di lapangan, harga barang maupun alat yang mengandung 'label teknologi hijau' jauh lebih mahal dari biasanya. Hanya masyarakat pada golongan tertentu yang mampu menjangkau teknologi-teknologi maupun barang-barang dengan label tersebut. Akibatnya kebijakan pembangunan ekonomi hijau akan terganggu apabila berporoskan pada teknologi hijau.

Sebaliknya, opsi pembatasan konsumsi sendiri akan lebih universal. Masyarakat dengan pendapatan yang tidak begitu tinggi tidak akan terbebani karena berdasarkan bagian IV.1, masyarakat dengan PDB per kapita yang tidak terlalu tinggi memiliki nilai tapak ekologi konsumsi yang tidak terlalu tinggi pula. Sementara masyarakat dengan pendapatan tinggi akan lebih mengendalikan pola hidup mereka sesuai dengan peraturan pembatasan konsumsi. Karena opsi ini lebih universal, maka opsi pembatasan konsumsi harus dijadikan poros untuk pembangunan ekonomi hijau di Indonesia.

Berdasarkan beberapa alasan dan perhitungan matematis dapat disimpulkan bahwa opsi terbaik untuk dijadikan poros pembangunan ekonomi hijau adalah opsi pembatasan konsumsi. Adapun beberapa contoh pembatasan konsumsi adalah dengan pemberian pajak karbon yang lebih untuk kendaraan maupun industri, penambahan konsep harga lingkungan dalam harga barang yang dijual di pasaran, mengubah *mindset* masyarakat, dan lain-lain. Perlu diperhatikan bahwa jika suatu opsi dijadikan poros maka bukan berarti opsi lainnya, seperti pengembangan teknologi, ditinggalkan sepenuhnya.

BAB V

KESIMPULAN DAN SARAN

Di bawah ini adalah kesimpulan dari penelitian yang telah dilakukan,

- 1. Berdasarkan pendekatan model *IPAT*, potensi kerusakan lingkungan pada tahun 2045 di Indonesia diprediksi akan meningkat sebesar 148.78% dibandingkan dengan tahun 2016.
- 2. Penyebab terbesar dari kerusakan lingkungan adalah tingkat konsumsi masyarakat yang tinggi. Tingkat konsumsi yang tinggi menyebabkan tingginya sumber daya alam yang dibutuhkan oleh masyarakat. Hal ini berdampak pada eksploitasi sumber daya alam. Adapun solusi yang ditawarkan oleh peneliti dalam penelitian ini adalah pembatasan konsumsi dalam rangka mengurangi tingginya tingkat konsumsi masyarakat Indonesia.

DAFTAR PUSTAKA

- Cuff, David., Andrew S. Goudie, (2006), *Encyclopedia of Global Change*, Oxford. Oxford University Press.
- Cuff, David., Andrew S. Goudie, (2009), *The Oxford Companion to Global Change*. Oxford University Press.
- Spoolman, Scott E., & G. Tyler Miller, JR. (2012). *Living in the Environment*. Belmont, CA: Brooks/Cole.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing A. Identitas Diri Ketua

1	Nama Lengkap	Rafi Prayoga Dhenanta	
2	Jenis Kelamin	Laki-laki	
3	Program Studi	Matematika	
4	NIM	10119104	
5	Tempat dan Tanggal Lahir	Trenggalek, 26 November 2000	
6	Alamat E-mail	rafibinpepe@gmail.com	
7	Nomor Telepon/HP	087755031252	

B. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 3 HSC 2021 kategori lomba analisis data tingkat nasional	Universitas Halu Oleo	2021
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam Lomba Karya Tulis Ilmiah **ISOTERM 2022**.

Trenggalek, 27 Desember 2021 Ketua Tim,

(Rafi Prayoga Dhenanta)

(10119104)

A. Identitas Diri Anggota 1

1	Nama Lengkap	Muhammad Nabil Fadhlurrahman	
2	Jenis Kelamin	Laki-Laki	
3	Program Studi	Matematika	
4	NIM	10119065	
5	Tempat dan Tanggal Lahir	Bandung 18 Juni 2000	
6	Alamat E-mail	m.nabilfad@gmail.com	
7	Nomor Telepon/HP	08113374524	

B. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Finalis Analisis Data Tingkat Nasional	Cybertrend	2021
2	Juara 2 Lomba Menulis Karya Ilmiah bertemakan "Digital Talent"	Shiftacademy	2021

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam Lomba Karya Tulis Ilmiah **ISOTERM 2022**.

Bandung, 30, Desember, 2021 Anggota Tim,

M Nabil Fadhlurrahman

10119065

A. Identitas Diri Anggota 2

1	Nama Lengkap	Muhammad Pudja Gemilang	
2	2 Jenis Kelamin Laki - Laki		
3	Program Studi	Matematika	
4	NIM	10119055	
5	Tempat dan Tanggal Lahir	dan Tanggal Lahir Bekasi, 28 Oktober 2001	
6	Alamat E-mail	lamat E-mail pudjagemilang2001@gmail.com	
7	Nomor Telepon/HP	08111840700	

B. Penghargaan Yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Finalis Lomba Analisis Data Tingkat Nasional Kategori Mahasiswa 2021	Cybertrend	2021
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam Lomba Karya Tulis Ilmiah **ISOTERM 2022**.

Bandung, 30 Desember 2021 Anggota Tim,

Muhammad Pudja Gemilang

10119055

A. Identitas Diri Dosen Pendamping

1	Nama Lengkap (dengan gelar) Dr. Atmawi Darwis, S.Hut, M.Si	
2	Jenis Kelamin	Laki - Laki
3	Program Studi	Teknologi Pasca Panen
4	NIP/NIDN	111000012/0402107507
5	Tempat dan Tanggal Lahir	Kebumen, 02 Oktober 1975
6	Alamat E-mail	atmawi@sith.itb.ac.id
7	Nomor Telepon/HP	082316610393

B. Riwayat Pendidikan

Gelar Akademik	kademik Sarjana		Doktoral
Nama Institusi	Universitas	Institut Pertanian	Institut Pertanian
	Winaya Mukti	Bogor	Bogor
Jurusan/Prodi	Teknologi Hasil	Ilmu Pengetahuan	Teknologi Serat
Julusan/11oui	Hutan	Kehutanan	dan Komposit
Tahun Masuk-Lulus	1993-1999	2006-2008	2010-2015

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Pengetahuan Lingkungan	Wajib	2
2	Struktur, Sifat, dan Penggunaan Kayu	Peminatan	3
3	Lab. Pasca Panen I : Eskperimental	Wajib	2
4	Sensor dan Instrumentasi Pasca Panen	Wajib	3
5	Hama Hasil Hutan	Peminatan	3
6	Anatomi Kayu dan Bukan Kayu	Peminatan	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Karakteristik Mikroskopis Bambu Impregnasi	P2MI-ITB	2021
2	Karakteristik Bahan Berlignoselulosa Bukan Kayu Pada Beberapa Produk Biokomposit Dan Peluangnya Sebagai Material Peredam Suara	Penelitian Dasar Unggulan Perguruan Tinggi-DIKTI	2021

3	Impregnasi Limbah Kayu Sawit Dengan Bahan Alam Serbuk Gergaji dan Resin Pinus merkusii Sebagai Bahan Material Alternatif Pengganti Kayu Masa Depan (Tahap 3)	(PD-DIKTI)	2021
4	Peningkatan Mutu Batang Kelapa Sawit Dengan Proses Impregnasi Nanofiller untuk Penggunaan Struktural (Tahap 3)	Peningkatan Mutu Batang Kelapa Sawit Dengan Proses Impregnasi Nanofiller untuk Penggunaan Struktural (Tahap 3)	2020
5	Impregnasi Limbah Kayu Sawit Dengan Bahan Alam Serbuk Gergaji dan Resin <i>Pinus merkusii</i> Sebagai Bahan Material Alternatif Pengganti Kayu Masa Depan (Tahap 2)	Penelitian Dasar (PD- DIKTI)	2020
6	Karakteristik kayu Raru (Cotylelobium melanoxylon) Asal Sumatera Utara dan Peluangnya Sebagai Bahan Baku Kontruksi (Tahap 2)	Penelitian Dasar (PD- DIKTI	2020

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Peningkatan daya saing usaha agroforestry kopi pada kelompok petani kopi gunung geulis melalui program wisata petik kopi di kebun (Wistikobun)	PPM P2MI-ITB	2021

2	Rancangan Hutan Rakyat untuk Penghasil Kayu Energi dan Aplikasi Teknik Pembuatan Briket Arang dalam Rangka Pengembangan Desa Mandiri Energi di Sekitar Hutan Pendidikan Gunung Geulis ITB	PPM Dana Mandiri ITB	2018
3	Diversifikasi Produk Bambu Melalui Teknologi Lainasi dalam Upaya Pemberdayaan Masyarakat di Sekitar Kawasan Hutan Pendidikan Gunung Geulis Jatinangor Sumedang	PPM Dana Mandiri ITB	2017
4	Pelatihan Peningkatan Kualitas Kayu Hutan Rakyat Bagi Anggota Kelompok Tani Hutan Rakyat di Desa Cibugel, Kecamatan Cibugel, Kabupaten Sumedang	PPM Dana Mandiri ITB	2016
5	Pelatihan dan Peningkatan Kualitas Pengrajin Kayu Sekitar Kampus ITB dan Pembuatan <i>Website</i> Klinik Kayu	ITB	2013

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam Lomba Karya Tulis Ilmiah **ISOTERM 2022**.

Bandung, 30 Desember 2021 Dosen Pendamping,

(Dr. Atmawi Darwis, S.Hut, M.Si)

(111000012,0402107507)

Lampiran 2 : Bukti Pembayaran

Lampiran 3 : Data Hasil Pra-Pemrosesan

Pra-pemrosesan data dilakukan dengan menggabungkan data dari berbagai sumber data yang berbeda menjadi satu *dataset*. Hal ini dilakukan karena data yang ada tidak memenuhi variabel yang dibutuhkan dalam penelitian. Contohnnya hanya ada data tapak ekologi dan data PDB per kapita secara terpisah. Dalam penelitian ini, peneliti menggabungkan data tersebut menjadi satu untuk kemudian diolah. Berikut beberapa *dataset* hasil dari proses tersebut,

Data Indonesia

Tahun	Populasi		PDB Per Kapita (\$)	Tapak Ekologi Konsumsi Per Kapita
1998		205724592	464	1,321491808
1999		208615169	671	1,354625353
2000		211513823	780	1,353162513
2001		214427417	748	1,332924518
2002		217357793	900	1,351622112
2003		220309469	1066	1,382218797
2004		223285676	1150	1,426936906
2005		226289470	1263	1,378521112
2006		229318262	1590	1,362623876
2007		232374245	1860	1,432488238
2008		235469762	2167	1,475790069
2009		238620563	2261	1,471205122
2010		241834215	3122	1,508486775
2011		245115987	3643	1,532731143
2012		238451722	3694	1,564273332
2013		251805307	3624	1,560522368
2014		255128076	3492	1,681764413
2015		258383256	3332	1,639532755
2016		261556381	3563	1,689990485

Data Rata-Rata Dunia

Tahun	Populasi	PDB Per Kapita (\$)	Tapak Ekologi Konsumsi Per Kapita
1987	5052522147	2844	2,634128969
1988	5145426008	3136	2,642887491
1989	5237441558	3230	2,665697755
1990	5327231061	3482	2,661868156
1991	5414289444	3614	2,609165339
1992	5498919809	3751	2,588059631
1993	5581597546	3865	2,541747482
1994	5663150427	4107	2,540684396
1995	5744212979	4468	2,547410794
1996	5824891951	4502	2,574439637
1997	5905045788	4506	2,579159445

1998	5984793942	4406	2,557433277
1999	6064239055	5378	2,535023807
2000	6143493823	5488	2,557441027
2001	6222626606	5404	2,551505933
2002	6301773188	5543	2,544088896
2003	6381185114	6134	2,60360682
2004	6461159389	6824	2,711946062
2005	6541907027	7298	2,740521586
2006	6623517833	7813	2,77823494
2007	6705946610	8697	2,820544381
2008	6789088686	9482	2,821484254
2009	6872767093	8840	2,737538387
2010	6956823603	9556	2,841278781
2011	7041194301	10493	2,866569793
2012	7125828059	10606	2,822204017
2013	7210581976	10784	2,851794621
2014	7295290765	10952	2,824135736
2015	7379797139	10251	2,777203816
2016	7464022049	10294	2,74661923

Data Dunia pada Tahun 2016 untuk Setiap Negara

Tahun	Negara	PDB Per Kapita (\$)	Tapak Ekologi Konsumsi Per Kapita
2016	Afghanistan	509,2	0,726752264
2016	Albania	4124,1	2,007807267
2016	Algeria	3946,5	2,407316313
2016	Angola	3506,1	1,014546714
2016	Antigua and Barbuda	15198,7	4,331066199
2016	Argentina	12790,2	3,365050398
2016	Armenia	3591,8	1,934901591
2016	Aruba	28452,2	6,516226678
2016	Australia	49971,1	6,640308838
2016	Austria	45276,8	6,03092636
2016	Azerbaijan	3880,7	2,080504773
2016	Bahamas	31563,3	3,738534275
2016	Bahrain	22608,5	8,633620511
2016	Bangladesh	1401,6	0,842296715
2016	Barbados	16900	3,804285285
2016	Belarus	5022,6	3,986801736
2016	Belgium	41984,1	6,245329468
2016	Belize	4857	5,352774707
2016	Benin	1087,3	1,419208126
2016	Bermuda	106885,9	7,510674229
2016	Bhutan	2930,6	4,491794868
2016	Bolivia	3076,7	3,184441622

2016	5	4004.7	2 500 400 425
2016	Bosnia and Herzegovina	4994,7	3,699489436
2016	Botswana	7243,9	2,720639299
2016	Brazil	8710,1	2,811444367
2016	Brunei Darussalam	27158,4	4,221506539
2016	Bulgaria	7548,9	3,445613485
2016	Burkina Faso	688,3	1,204274317
2016	Burundi	282,2	0,658104356
2016	Cabo Verde	3131	1,433073133
2016	Cambodia	1269,6	1,390910813
2016	Cameroon	1364,3	1,37836464
2016	Canada	42315,6	7,740135397
2016	Cayman Islands	78471,6	5,801694704
2016	Central African Republic	402,2	1,218006168
2016	Chad	693,4	1,515237929
2016	Chile	13753,6	4,311299592
2016	China	8147,9	3,620902447
2016	Colombia	5870,8	2,049904218
2016	Comoros	1273,1	1,242688381
2016	Congo, Dem. Rep.	471,3	0,695829558
2016	Congo, Rep.	2039,5	1,053686844
2016	Costa Rica	12011,2	2,682116134
2016	Cote d'Ivoire	2013,4	1,181906698
2016	Croatia	12361,5	3,936533786
2016	Cuba	8060,8	1,777224967
2016	Cyprus	24605,9	3,747826347
2016	Czech Republic	18575,2	5,589134018
2016	Denmark	54664	6,798010757
2016	Djibouti	2802,2	2,39893392
2016	Dominica	8081	2,360273822
2016	Dominican Republic	7280,9	1,719456046
2016	Ecuador	6060,1	1,711169321
2016	Egypt	3519,9	1,811106443
2016	El Salvador	3806	2,056634499
2016	Equatorial Guinea	9250,3	1,8759155
2016	Estonia	18282,9	7,063776899
2016	Ethiopia	717,1	1,04238782
2016	Fiji	5651,3	3,145397429
2016	Finland	43784,3	6,256846389
2016	France	37037,4	4,447238005
2016	Gabon	6984,4	2,291574016
2016	Gambia	690,8	1,002787022
2016	Georgia	4062,2	2,121984534
2016	Germany	42107,5	4,840599716
2016	Ghana	1913,5	1,96901883
2010	Ghana	1713,3	1,30301003

		17005.4	
2016	Greece	17885,4	4,268169911
2016	Grenada	9628,2	2,934776909
2016	Guatemala	4173,3	1,878919936
2016	Guinea	732,3	1,559028899
2016	Guinea-Bissau	661,5	1,482628312
2016	Guyana	5811,4	3,385517261
2016	Haiti	1266	0,675446518
2016	Honduras	2342,6	1,551632952
2016	Hungary	13090,5	3,61195481
2016	India	1732,6	1,168769064
2016	Indonesia	3562,8	1,689990485
2016	Iran, Islamic Republic of	5253,4	3,191067701
2016	Iraq	4550,7	1,744809478
2016	Ireland	62819	5,126992256
2016	Israel	37282,5	4,875547985
2016	Italy	30939,7	4,436457184
2016	Jamaica	4843,7	1,612327588
2016	Japan	39400,7	4,492708711
2016	Jordan	4175,4	2,079741579
2016	Kazakhstan	7714,8	5,546108427
2016	Kenya	1410,5	1,016972794
2016	Korea, Republic of	29288,9	6,000496443
2016	Kuwait	27653,2	8,58522681
2016	Kyrgyzstan	1120,7	1,655219677
2016	Lao People's Democratic Republic	2308,8	1,905780301
2016	Latvia	14315,8	6,356949287
2016	Lebanon	7626,3	3,287463288
2016	Lesotho	1018,9	1,37875784
2016	Liberia	714,6	1,107337592
2016	Libyan Arab Jamahiriya	4035,2	3,733129459
2016	Lithuania	14998,1	5,567059654
2016	Luxembourg	104278,4	12,9110953
2016	Macedonia TFYR	5133	2,924290424
2016	Madagascar	476	0,929030358
2016	Malawi	315,8	0,738861905
2016	Malaysia	9817,8	3,918383147
2016	Mali	780,7	1,573614346
2016	Malta	25741,4	5,792532152
2016	Mauritania	1536,9	2,315617323
2016	Mauritius	9681,6	3,522457674
2016	Mexico	8744,5	2,602674658
2016	Mongolia	3660,2	7,672155366
2016	Montenegro	7033,6	3,650513384
2016	Morocco	2896,7	1,700268918
		,	_,: ::=:: :=:

		429.0	
2016	Mozambique	428,9	0,81409684
2016	Myanmar	1158,4	1,660480509
2016	Nepal	899,5	1,071209982
2016	Netherlands	46007,9	4,82617369
2016	New Zealand	40080,5	4,742488637
2016	Nicaragua	2107,6	1,758867671
2016	Niger	498,1	1,661426663
2016	Nigeria	2176	1,088425811
2016	Norway	70460,6	5,510859689
2016	Oman	14610	6,763583578
2016	Pakistan	1368,4	0,833921721
2016	Panama	14344	2,252415142
2016	Papua New Guinea	2509,6	1,746567766
2016	Paraguay	5324,6	2,903069803
2016	Peru	6205	2,238179276
2016	Philippines	3073,7	1,3299606
2016	Poland	12447,4	4,427801441
2016	Portugal	19978,4	4,100471489
2016	Qatar	57163	14,41108333
2016	Romania	9548,6	3,093807823
2016	Russian Federation	8704,9	5,159919089
2016	Rwanda	744,8	0,76291927
2016	Samoa	4109,1	2,960656331
2016	Sao Tome and Principe	1700,1	1,723240362
2016	Saudi Arabia	19878,8	6,233826102
2016	Senegal	1269,9	1,141730782
2016	Serbia	5765,2	2,992091366
2016	Sierra Leone	501,4	1,18957683
2016	Singapore	56848,2	5,879150211
2016	Slovakia	16508,7	4,206184952
2016	Slovenia	21663,6	5,125379125
2016	Solomon Islands	2225,5	2,426263326
2016	Somalia	296	0,969011477
2016	South Africa	5272,5	3,15145821
2016	Spain	26505,3	4,040861868
2016	Sri Lanka	3886,3	1,494943493
2016	Sudan	1325,2	1,219618493
2016	Suriname	5872,8	2,965378324
2016	Sweden	51965,2	6,457298173
2016	Switzerland	83073,3	4,637014111
2016	Tajikistan	807,1	0,94740431
2016	Tanzania, United Republic of	966,5	1,221801136
2016	Thailand	5993,3	2,487644538
		1353,7	•
2016	Timor-Leste	1333,/	0,496162446

Togo	803,2	1,055687064
Tonga	4157,9	3,39572449
Trinidad and Tobago	16250,6	8,378179067
Tunisia	3697,9	2,194933179
Turkey	10894,6	3,357563802
Turkmenistan	6387,7	5,319437572
Uganda	733,4	1,063039521
Ukraine	2187,7	2,908518699
United Arab Emirates	38141,9	8,918985324
United Kingdom	41048,3	4,368049539
United States of America	58021,4	8,104394061
Uruguay	16715,6	1,920235122
Uzbekistan	2567,8	1,922903784
Viet Nam	2192,2	2,122372265
Yemen	1138,6	0,669524587
Zambia	1280,8	0,947356864
Zimbabwe	1464,6	1,073540556
	Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Uganda Ukraine United Arab Emirates United Kingdom United States of America Uruguay Uzbekistan Viet Nam Yemen Zambia	Tonga 4157,9 Trinidad and Tobago 16250,6 Tunisia 3697,9 Turkey 10894,6 Turkmenistan 6387,7 Uganda 733,4 Ukraine 2187,7 United Arab Emirates 38141,9 United Kingdom 41048,3 United States of America 58021,4 Uruguay 16715,6 Uzbekistan 2567,8 Viet Nam 2192,2 Yemen 1138,6 Zambia 1280,8