Université de Montpellier - Master 2 Module **Contraintes**

Feuille TD 2 - 23/10/2023

Exercice 1

Soit la contrainte globale $ValueCount([X_1, ..., X_n], [Y_1, ..., Y_q])$ qui est satisfaite si et seulement si pour chaque valeur $v \in \{1, ..., q\}$ on a $Y_v = |\{i \in \{1, ..., n\} \mid X_i = v\}|$. Par exemple, ([2, 1, 5, 1, 2, 3, 1], [3, 2, 1]) satisfait la contrainte ValueCount alors que ([1, 1, 1, 2, 3, 2], [2, 3, 1]) ne la satisfait pas.

Question 1. Soit une contrainte globale AllDifferent (X_1, \ldots, X_n) telle que l'union des domaines forme un intervalle $[1, \ldots, m]$. Montrez que l'on peut exprimer cette contrainte à l'aide d'une contrainte ValueCount portant sur un nombre de variables polynomial en n + m.

Question 2. Justifiez brièvement que si la contrainte globale AllDifferent admet une AC-décomposition lorsque l'union des domaines des variables forme un intervalle $[1, \ldots, m]$, alors AllDifferent admet une AC-decomposition dans le cas général.

Question 3. Calculer l'arc cohérence sur la contrainte globale ValueCount est NP-difficile. Il n'existe donc pas de AC-décomposition pour ValueCount si $P \neq NP$. S'il l'on suppose au contraire que P = NP, peut-on espérer que ValueCount admette une AC-décomposition? Justifiez votre réponse.

Question 4. On a vu en cours que calculer l'arc cohérence sur la contrainte globale $NValue(X_1, ..., X_n, N)$ (qui est satisfaite si et seulement si $N = |\{X_1, ..., X_n\}|$) est NP-difficile. Supposons à nouveau que P = NP. Peut-on espérer que NValue admette une AC-décomposition? Justifiez votre réponse.

Question 5. Soit la contrainte globale MultisetEqual($[X_1,\ldots,X_n],[Y_1,\ldots,Y_n]$) qui est satisfaite si et seulement si les multisets $\{\{X_i\mid i\in\{1,\ldots,n\}\}\}$ et $\{\{Y_i\mid i\in\{1,\ldots,n\}\}\}$ sont égaux. (Un multiset diffère d'un ensemble par le fait qu'il tient compte du nombre d'occurences de chaque élément.) Par exemple ([1,1,1,2,3],[2,1,3,1,1]) satisfait la contrainte MultisetEqual alors que ([1,1,1,2,3],[2,2,3,1,1]) ne la satisfait pas. Contrairement à ValueCount et NValue, on sait que calculer l'arc cohérence est polynomial sur MultisetEqual. MultisetEqual admet-elle une AC-décomposition? Justifiez votre réponse.

Exercice 2

Soit le réseau de contraintes N=(X,D,C), où $X=\{X_1,\ldots,X_5\}$, $D(X_1)=D(X_2)=\{0,2,4,6\}$, $D(X_3)=\{2,5,6,7\}$, $D(X_4)=\{0,2,6,8,12\}$, $D(X_5)=\{0,1,6\}$, $c_1\equiv X_1+X_2+X_3=X_4$, $c_2\equiv |X_1-X_3|=X_5$, $c_3\equiv |X_1-X_2|=4$ et $C=\{c_1,c_2,c_3\}$.

Question 1. Appliquez BC sur N.

Question 2. Appliquez AC sur N.

Question 3. Appliquez SAC sur N.

Soit N^* le réseau de contraintes obtenu à partir de N en fixant les domaines à $D(X_1) = D(X_2) = \{0, ..., 6\}, D(X_3) = \{2, ..., 7\}, D(X_4) = \{0, ..., 12\}, D(X_5) = \{0, ..., 6\}.$

Question 4. Appliquez AC et BC sur N^* . Comparez AC et BC sur les réseaux de contraintes dont les domaines sont des intervalles de \mathbb{Z} .

Exercice 3

Pour $q \ge k \ge 1$, on considère la contrainte globale (k,q)-ConsecutiveOnes $([X_1,\ldots,X_n])$ qui porte sur n variables booléennes X_1,\ldots,X_n . Cette contrainte est satisfaite si et seulement si chaque séquence maximale (non vide) de 1 consécutifs dans le vecteur (X_1,\ldots,X_n) est de longueur au moins k et au plus q. Par exemple, ([0,1,1,0,1,1,1]) satisfait (2,3)-ConsecutiveOnes mais ([0,1,0,0,1,1,1]) ne la satisfait pas.

Question 1. Montrez que pour tout $q \ge k \ge 1$, la contrainte globale (k,q)-ConsecutiveOnes admet une AC-décomposition.

La contrainte globale (k,q)-ConsecutiveValues $([X_1,\ldots,X_n])$ porte sur n variables entières et est satisfaite si et seulement si chaque séquence maximale (non vide) de valeurs identiques consécutives est de longueur au moins k et au plus q.

Question 2. La contrainte globale (k,q)-ConsecutiveValues admet-elle une AC-décomposition? Justifiez votre réponse.

La contrainte globale DifferentConsecutiveLengths($[X_1, \ldots, X_n]$) porte sur n variables entières et est satisfaite si et seulement si pour toute valeur v, il n'existe pas deux séquences maximales (non vides) de v consécutifs qui ont la même longueur.

Question 3. La contrainte globale DifferentConsecutiveLengths admet-elle une AC-décomposition? Justifiez votre réponse.

Question 4. Les réponses aux questions 2 et 3 vous permettent-elles de déterminer si l'arc cohérence sur ces deux contraintes est calculable en temps polynomial?

Exercice 4

Dans un réseau de contraintes N = (X, D, C), on dit qu'une valeur $v \in D(X_i)$ est singleton viable si le réseau de contraintes obtenu à partir de N' en fixant $D(X_i) = \{v\}$ a une fermeture arc cohérente non vide. Un réseau est singleton arc cohérent (SAC) si toutes les valeurs sont singleton viables; "appliquer SAC" désigne le processus d'enlever des valeurs qui ne sont pas singleton viables jusqu'à ce que toutes le soient.

Soit le réseau de contraintes $N^* = (X, D, C)$, où $X = \{X_1, \ldots, X_4\}$, $D(X_1) = D(X_2) = \{1, 2, 7, 8\}$, $D(X_3) = D(X_4) = \{1, 2, 3, 4\}$, $c_1 \equiv |X_1 - X_2| = |X_3 - X_4|$, $c_2 \equiv X_3 = 2X_2$, $c_3 \equiv X_1 + X_4 = 5$ et $C = \{c_1, c_2, c_3\}$.

Question 1. Appliquez BC sur N^* .

Question 2. Appliquez SAC sur N^* .

Question 3. Combien comporte de variables le plus petit réseau de contraintes binaires normalisé (c-à-d tel que deux contraintes ne peuvent pas avoir la même portée) qui est SAC mais n'a pas de solution? Justifiez.

Question 4. On peut définir la propriété SBC de façon analogue à SAC, en remplaçant AC par BC dans la définition. Comparez les propriétés AC, SAC, BC et SBC.

Un réseau de contraintes binaires N = (X, D, C) est k-quasi-arborescent s'il est normalisé et qu'il existe k variables dont la suppression (ainsi que la suppression des contraintes incidentes) produit un réseau arborescent. On rappelle qu'un réseau arborescent AC admet toujours une solution.

Question 5. Un réseau 1-quasi-arborescent qui est SAC admet-il toujours une solution? Justifiez.

Question 6. Soit $k \ge 1$. Peut-on résoudre en temps polynomial les réseaux de contraintes k-quasi-arborescents? Justifiez.

Exercice 5

Soit le réseau de contraintes N=(X,D,C), où $X=\{u,v,w,x,y,z\}, C=\{\texttt{AllDifferent}(u,v,w,x,y,z)\}$ et les domaines sont définis comme ci-dessous.

Question 1. Donner l'état des domaines après fermeture GAC pour les domaines suivants :

Question 2. Donner l'état des domaines après fermeture GAC pour les domaines suivants :

