# Présentation d'activités

Matthew Pressland

Université de Glasgow

## Résumé

#### Carrière

- PhD : 2015, Université de Bath, Royaume-Uni, dir. A. King
- 8 ans d'expérience postdoctorale : MPIM Bonn, Stuttgart, Leeds, Glasgow
- Bourse EPSRC de 3 ans (375,000 £ ≈ 435,000 €)
- ▶ 10 articles acceptés, 4 prépublications (toutes de 2023–24)

## Intérêts / philosophie

- Théorie amassée, géométrie algébrique et combinatoire, théorie des représentations (des carquois et des algèbres)
- Expliquer des phénomènes combin. et géométriques via algèbre
- Utiliser ces développements pour résoudre des problèmes géométriques / combinatoires / amas-théoriques

# Enseignement

- Cours (Glasgow)
  - ightharpoonup « Metric Spaces and Basic Topology » (imes 2)
  - ► En ligne (2022), en présence (2024)
  - Prix « Jon Nimmo » (2022)
- Cours et tutorats (Stuttgart)
  - Mathématiques pour l'informatique, l'ingénierie, la physique
  - Très grands cours : 1500–2000 inscrits
  - Enseignement en allemand
- Supervision (Glasgow)
  - Projet d'été : motifs de frise (2022)
  - Projet de master : correspondance de McKay (2023)

# Responsabilités collectives

- ► FDLIST
  - Liste de diffusion / site d'informations en algèbre
  - ► ≈ 400 membres enregistrés
- Événements scientifiques
  - Conférence internationale pour 100 personnes (Oxford, 2023) ≈ 25 000 € de financement externe
  - Conférence hybride (Leeds, 2022)
- Réseau de recherche
  - CLAN : interactions entre cinq universités britanniques
  - Financé par la Société Mathématique de Londres
- Diffusion auprès du grand publique
  - Cours de la Société Royale, programme STEP

# La positivité et la grassmannienne

#### Definition

 $M \in \mathbb{C}^{k \times n}$ , k < n, est totalement positive (TP) si ses mineurs maximaux  $\Delta_I(M)$  sont réels et positifs.

- ▶  $I \in \binom{[n]}{k}$  est un sous-ensemble de k colonnes, et  $\Delta_I(M)$  la déterminante de la matrice  $k \times k$  avec ces colonnes.
- ▶ rg  $M = k \implies$  le span [M] des lignes est un sous-espace k-dimensionnel de  $\mathbb{C}^n$  : c.-à-d.  $[M] \in Gr_{k,n}$ , la grassmannienne.
- ▶ La grassmannienne totalement positive :  $Gr_{k,n}^{>0} = \{[M] : M \text{ est TP}\}.$
- ▶  $\operatorname{Gr}_{k,n}^{>0}$  est important (en théorie de Lie, physique mathématique, ...)
- Un test minimale pour la positivité de M utilise seulement k(n-k)+1 mineurs, mais choisi avec soin!

$$k = 2, n = 4: \Delta_{13}\Delta_{24} = \Delta_{12}\Delta_{34} + \Delta_{14}\Delta_{23}$$

# Structures amassées (I)

Outil moderne : théorie amassée

$$\Delta_{13}\Delta_{24}=\Delta_{12}\Delta_{34}+\Delta_{14}\Delta_{23}$$



- ▶ Idée (Fomin–Zelevinsky '00) :
  - Pour une espace X (comme  $X = Gr_{k,n}$ ), choisir dim X fonctions continues indépendantes  $f_1, \ldots, f_d \colon X \to \mathbb{C}$  (un amas).
  - ightharpoonup Choisir un carquois (graphe orienté) avec les sommets  $f_1,\ldots,f_d$ .
  - Une règle (explicite, mais un peu longue!) permet des mutations, qui changent l'amas et le carquois → nouveaux amas, procédure itérative



# Structures amassées (II)



- ▶ **Fait clé**: si  $f_1(x), \ldots, f_d(x) \in \mathbb{R}_{>0}$ , pour  $x \in X$ , alors  $f(x) \in \mathbb{R}_{>0}$  pour *chaque* fonction f dans un amas (une variable amassée).
- ▶ Si les variables amassées génèrent l'anneau de fonctions sur X, on dit que X a une structure amassée.

 $\sim X^{>0} := \{x \in X : f(x) \in \mathbb{R}_{>0} \text{ pour chaque variable ammassée } f\}$ 

## Theorem (Scott '06)

 $Gr_{k,n}$  a une structure amassée avec un amas de mineurs  $\Delta_I$ , et tous les mineurs parmi les variables amassées.

 $\rightarrow$  les deux définitions de  $Gr_{k,n}^{>0}$  conviennent.

## Théorie amassée

## Avantages :

- Combinatorisation : rendre problèmes en géométrie plus traitable (pour exemple par ordinateur)
- ► Applications surprenante! En géométrie complexe, systèmes dynamiques, physique mathématique, ...

#### Inconvénients :

- Combinatoire complexe : typiquement un nombre infini d'amas
- Définitions inductives, absence de structure : utile pour des computations, mais un défi pour des preuves générales

#### Solution :

- Catégorification : étudier structures amassées avec théorie de représentations de carquois (« l'algèbre linéaire sous stéroïdes »)
- ► Retrouver structure : preuves générales et conceptuelles
- ▶ ~ nouvelles découvertes importantes en algèbre

# Résultats principaux de recherche (I)

## Catégorification

- Première méthode générale pour la catégorification amassée additive dans des contextes géométriques (avec variables gelées)
  Math. Z. (2015)
- Généralisation de la règle de mutation de Fomin–Zelevinsky : naturelle en physique mathématique et en algèbre homologique
  J. Algebra (2020)

## Applications géométriques

 Conjecture de Muller-Speyer sur les variétés positroïdes : première preuve d'une conjecture en géométrie combinatoire, avec des méthodes homologiques (Prépublication 2023, soumise)

# Résultats principaux de recherche (II)

## Applications géométriques (cont.)

- Pour catégorifier des positroïdes : généralisation des résultats en géométrie (torique et non commutative) aux modèles dimère Forum Math. Sigma (2022)
- Catégorification de la combinatoire et la géométrie de positroïdes : correspondances parfaites, automorphisme « twist », fonctions de partition
  - Adv. Math. (2024), avec İ. Çanakçı et A. King

#### Divers

- réduction, Grassmanniennes de carquois, motifs de frise, catégories extriangulées, ...
- plusieurs collaborations internationales (Faber, Gorsky, Grabowski, Kalck, Marsh, Palu, Plamondon, ...)

# Objectifs de recherche (I)

## ► Liens avec la topologie symplectique

- Seconde preuve de la conjecture de Muller-Speyer par Casals-Le-Sherman-Bennett-Weng
- Inspirée par la topologie et la géométrie symplectique : nœuds Legendriens et remplissages Lagrangiens (cf. variétés de tresse)
- ► La théorie amassée résout des problèmes symplectiques : amas ~ remplissage Lagrangien (pas attendu!)

## Objectifs / premiers pas

- Question clé : chaque remplissage Lagrangien vient-il d'un amas ?
- Implications pour la conjecture de « nearby Lagrangians »
- ▶ BIRS Workshop mars 2025 : minicours par Casals et moi-même

# Objectifs de recherche (II)

- Quasi-équivalence et théorie basculante
  - ► Étendre les techniques de ma preuve de la conjecture de Muller-Speyer d'autres structures amassées géométriques
- ► Actions de groupe / invariants
  - Chekhov–Shapiro ferment les structures amassées sous quotients de groupe (algèbres amassées généralisées) : catégorification?
- ► Recherche d'un caractère amassée quantique
  - ▶ Problème ouvert majeur : liens avec les algèbres de Hall, diagrammes de diffusion, catégorification multiplicative, ...
- Projet d'intégration
  - ► Théorie amassée : L. Pirio, P.-G. Plamondon
  - Géométrie algébrique : A.-M. Castravet, O. Piltant
  - ► Théorie de Lie : V. Sécherre, ...

# Développement

- ► Financement d'ANR : JCJC
  - Développement d'un groupe de recherche
  - Supervision postgraduée, opportunités postdoctorales (aussi programme Actions de Marie Skłodowska-Curie, FSMP, ...)
- ► Financement d'ERC (« Consolidator Grant »)
  - Éligible jusqu'à 2027
  - Ambitieux : mais expériences pertinentes (bourse EPSRC) et opportunité significative (liens avec la topologie symplectique)
- Interactions
  - Successeur du réseau ANR CHARMS
  - Réseau thématique ALGÈBRE : colloque tournant

# Merci beaucoup!