Série Nro. 7 – MEF Síncronas II

1Q: Obter as tabelas de estado minimizadas das seguintes tabelas de transições de estados (8 estados) modelo Moore de duas entradas (com código I1, I2, I3, e I4) e duas saídas (O1 e O2)

a) Es	pecifica	ıda Inc	omple	tamente

	I1	I2	I3	I4	01	O2
A	A	В	-	С	0	0
В	E	В	D	-	0	1
B C	Α	-	F	C	1	0
D	-	G	D	Η	1	1
\mathbf{E}	E	В	-	C	0	0
\mathbf{F}	-	В	F	C	0	1
G	E	G	D	-	1	0
H	Α	-	D	Η	1	1

b) Especificada Completamente

	I1	I2	I3	I4	01	O2
A	Α	A	В	С	0	0
В	В	C	D	E	0	1
\mathbf{C}	F	G	E	D	1	0
D	E	F	G	H	1	1
E F	D	C	В	A	0	0
\mathbf{F}	A	A	В	В	0	1
G	C	D	C	D	1	0
H	Е	H	Н	E	1	1

2Q: Usando somente um contador 74163, Mux's e portas, **projete** um **contador** binário de quatro bits com deslocamento bidirecional, onde a sua **tabela de operações** está descrita na figura 2.

Figura 2 – Contador com deslocamento bidirecional.

3Q: Usando somente FF's JK e portas, **projete** um **registrador** de deslocamento controlado de dois bits, onde a sua **tabela de operações** está descrita na figura 3.

Figura 3 – Registrador de deslocamento controlado.

4Q: Usando a **técnica de síntese** de máquinas seqüenciais síncronas e mostrando estas etapas (diagrama de estados, tabela de estados reduzida, equações de excitação e desenho lógico), sintetize um **registrador** de deslocamento de dois bits com as entradas (*Dir*, *Dado*), onde a sua **tabela de operações** está descrito na figura 4. Use FF's JK e portas.

Dir	Dado	Clk	Q1	Q2
Х	Х	0	Q1	Q2
Х	х	1	Q1	Q2
0	0	^	0	Q1
0	1	^	1	Q1
1	0	^	Q2	0
1	1	A	Q2	1

Figura 4 – Tabela de operações.

5Q: Usando FF's de sua preferência e portas, **projete** um **contador pseudosíncrono** com seqüência programável, onde o seu **diagrama de estados** está descrito na figura 5.

Figura 5 – Diagrama de estados.

6Q: Projete o bloco do **circuito pseudo-síncrono** mostrado na figura 6, para que este funcione segundo o seu diagrama de estados. Obs: Ignore possíveis *glitches* nas saídas.

Figura 6 – Circuito pseudo-síncrono e o seu diagrama de estados.

7Q: Usando FF's de sua preferência e portas, projete um **divisor de freqüência** programável com ciclo de trabalho **simétrico** (50% alto e 50% baixo), descrito na figura 7.

Figura 7 – Tabela de operações do divisor programável.

8Q: Projetar um circuito digital síncrono que tem a função de **incrementador programável**. Este circuito processa segundo a tabela de **operações** descrita na figura 8. No término do **número de clocks** segundo S_1 e S_2 , temos o novo valor dos Q's. Use funções MSI, FFs e portas. Por exemplo, quando $S_1=S_2=1$ e depois de quatro clocks temos um incremento $Q\leftarrow Q+1$. Quando $Q=1111 \rightarrow 0000$ é (próximo incremento).

CLK	S_1	S_2	$Q_1 Q_2 Q_3 Q_4$
<u> </u>	$\overline{0}$	0	inibe
$\overline{(2)}$	0	1	$Q_{N+1} \leftarrow Q_N + 1$
<u>(3)</u> ↑	1	0	$Q_{N+1} \leftarrow Q_N + 1$
(4) ↑	1	1	$Q_{N+1} \leftarrow Q_N + 1$

Figura 8 – Tabela de operações.

9Q: Usando funções MSI, FF's e portas, projete uma **fechadura digital** (ver figura 9 – esquema) que se a seqüência **50**, **100** e **200** for feita à tranca se abre (saída Z_3 =1) caso contrário à tranca não se abre (saída Z_3 =0). Duas saídas Z_1 e Z_2 mostram se a seqüência está correta. Quando Z_1 =1 e Z_2 =0 a **seqüência está errada**; quando Z_1 =0 e Z_2 =1 a **seqüência está correta**; quando Z_1 = Z_2 =1 é **fim da seqüência** e está correta. A entrada X de 8 bits é usada para gerar a seqüência (entrada BCD). A **variável inicio**=0, a fechadura está trancada; para inicio=1, começa a leitura do código (X). A variável *inicio* é síncrona.

Figura 9 – Esquema da fechadura digital.

10Q: Usando funções MSI (menos contador e registrador), FFs de sua preferência e portas projetar um **contador síncrono** crescente programável de 4 bits, que realiza a tabela de operações descrita na figura 10. A variável síncrona *inicio*, inicializa a mudança de operação (inicio=1 inicializa a operação).

 $\underline{Clk} \quad \underline{S} \quad \underline{Q_0} \quad \underline{Q_1} \quad \underline{Q_2} \quad \underline{Q_3}$

- ↑ 0 modulo variável com inicio zero
- 1 módulo 8 com início variável

Figura 10 – Tabela de operações.

Obs: Ilustrando o módulo 8 com início variável: Por exemplo, com o inicio=10, então temos: $10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow 0 \rightarrow 1 \rightarrow 10....$

Ilustrando o módulo variável com inicio zero: Por exemplo, com módulo=7, então temos: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0$

11Q: Usando funções MSI, FF's D e portas projetar um registrador que realizada a tabela de operações descrita na figura 11.

CLK	S_1	S_2	Q_{N+1}
\uparrow	0	0	$Q_{N+1} \leftarrow Dado (4 bits)$
\uparrow	0	1	$Q_{N+1} \leftarrow 3*Q_N$
\uparrow	1	0	$Q_{N+1} \leftarrow 4*Q_N$
\uparrow	1	1	$Q_{N+1} \leftarrow 5*Q_N$

Figura 11 – Tabela de operações.

12Q: Projetar um **Contador/Deslocador** de um bit (**rede iterativa seqüencial**), sendo que este pode ser usado para trabalhar em cascata, isto é, pode ser fazer contador/deslocador de **N bits**. Este circuito realiza as **operações:**

- a) Se S=0 → Contador reversível pseudo-síncrono.
- b) Se S=1 →Registrador de deslocamento: esq→dir; entrada e saída serial; saída paralela.

Obs: Use FF JK e portas

13Q: Projetar um **sistema de comunicação paralelo-serial**, usando funções MSI, FF's e portas (esquema – figura 13). O sistema recebe uma informação de 7 bits, quando a variável **pedido** tem a transição 0→1. Há um processo de serialização (deslocamento: 1 bit por clock) da informação de 7 bits, e no oitavo bit é acrescentado o bit de paridade par (**BP**). O bit BP=1 se o número de 1's na informação for impar, caso contrário BP=0. Quando encerrar a transmissão serial, então temos na variável **Recebeu** o valor 1. Para um novo processamento necessitamos que a variável pedido vá de 1→0 e posteriormente 0→1, e a variável Recebeu inicialmente tem o valor zero.

Exemplo 1010111 1(bit de paridade); 0101110 0(bit de paridade)

Figura 13 – Esquema de comunicação.

14Q: Faça as especificações do Data-path e do controlador, usando funções MSI, FF's e portas, do problema que calcula o **fatorial** de N (8 bits). O algoritmo é composto por duas subrotinas, descritas na figura 14.

```
Dados:
Program Fatorial
                                                   Program Multiplicação
Read(N)
                                                    Read(Fat,I)
I:=1; Fat:=1;
                                                    Z:=0; U:=I;
Repeat
                                                     Repeat
 Fat:=Fat*I;
                                                       Z:=Z+Fat;
 I:=I+1;
                                                       U:=U-1:
Until I>N
                                                      Until U=0
End.
                                                     Fat:=Z;
                                                  End.
```

Figura 14 – Pseudo-código do algoritmo fatorial.

15Q: Usando funções MSI, FF's e portas projetar um circuito digital que lê serialmente um protocolo de tamanho de 8 bits. A variável de entrada Pedido determina a chegada do protocolo (Pedido=0→1). Para cada protocolo que o circuito recebe e posteriormente faz o tratamento, a variável de saída Pronto recebe o valor 1. No inicio do recebimento do protocolo, a variável pronto recebe o valor zero. Enquanto que a variável pronto for zero o conteúdo do registrador de saída não tem significado (lixo). As figuras 15a e 15b mostram respectivamente o modelo do protocolo e o tipo de tratamento que há com as informações. O tratamento das informações é realizado em paralelo. Decompor o problema em data-path e controlador.

Operação

		1	2	3	Info1	5	6	Info2	8
--	--	---	---	---	-------	---	---	-------	---

Figura 15a - Protocolo

Figura 15b – Tabela de operações e esquema geral.

- **16Q:** O sistema digital síncrono realiza a **Divisão inteira** usando apenas as operações primitivas de soma e de subtração, para números naturais de 8 bits (A e B). O sistema fornece o **Quociente e o Resto**, onde **A** é o dividendo e **B** é o divisor. Pede-se:
- a) Descreva o algoritmo em uma pseudo-linguagem.
- **b)** Descreva ao nível de RTL (unidades funcionais) o **Data-Path** do algoritmo de (a).
- c) Descreva o **Diagrama de Estados** do algoritmo de (a).