

Nomenclatura

P [Pa] Presión $V [\mathrm{m}^3]$ Volumen Masa m [kg] δ [kg/m³] Densidad $\delta_{H_2O} = 997[\text{kg/m}^3]$ Altura l [m] $g \left[m/s^2 \right]$ Aceleración de la gravedad *ṁ* [kg/min] Caudal másico \dot{Q} [m³/min] Caudal volumétrico T[K]Temperatura $R [kJ/kg\cdot K]$ Constante del gas \overline{R} [kJ/kg·K] Constante universal de los gases $\overline{R} = 8,31434[kJ/kmol \cdot K]$ Número de moles n [moles] M [kg/kmol] Peso molecular \overline{v} [m³/kmol] Volumen específico molar *t* [s] Tiempo Q[J]Calor u, U[J]Energía interna W[J]Trabajo Trabajo de circulación W_c [J] Entalpía *h*, *H* [J] Calor específico a v = cte c_{v} Calor específico a p = cte c_p Calor específico medio del gas c_n Razón de calores específicos Coeficiente adiabático Coeficiente politrópico nEstado 2 – Estado 1 Fracción molar x_i Composición gravimétrica g_i P_c, T_c, V_c Valores críticos z [m] Altura

Velocidad del gas

 ω [m/s²]

FÓRMULAS MÁS UTILIZADAS

Ec. General
$$pV = mRT \mid pv = RT$$

1er Principio $Q = \Delta h + \Delta E_p + \Delta E_c + W_c$

2do Principio $Q_1 = W + Q_2$

Calor $\delta Q = c \cdot dT$

Energía interna $du = c_v \cdot dT$

Entalpía $dh = c_p \cdot dT$

Relación Mayer $R = c_p - c_v$

Constante del gas $\overline{R} = R \cdot M$

Trabajo SC $\delta W = p \cdot dv$

Trabajo SA rp $\delta W_c = -v \cdot dp$

Rendimiento $\eta = \frac{obtenido}{demandado}$

Ciclo de Carnot $\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$

Politrópica $pv^n = cte$

Potencia $N = W\dot{m} = Q\dot{m}$

UNIDAD 1 CONCEPTOS FUNDAMENTALES

Presión hidrostática	$P_h = \delta g l$
$P_{abs} = P_{atm} + P_{man}$	$P_{vacio} = P_{atm} - P_{abs}$
Densidad específica	$\delta_e = \frac{\delta}{\delta_{H_2O}} = \frac{m}{V\delta_{H_2O}}$
Volumen específico	$v_e/v = \frac{V}{m} \ \overline{v} = \frac{V}{m}M$
Potencia	$N = W \cdot \dot{m}$
Temperatura	
$\frac{{}^{\circ}C}{100} = \frac{{}^{\circ}F - 32}{180} = \frac{K - 273}{100}$	

UNIDAD 2 GASES IDEALES

Ecuación general	PV = mRT
Ley Boyle-Mariotte	$PV = cte \ (T = cte)$
Ley de Charles	$\frac{V}{T} = cte \ (P = cte)$
Ley de Joule	$u = c_v T$
Entalpía	h = u + pv
	$h = c_p T$
$PV = n\overline{R}T$	$m = nM \overline{R} = RM$
Trabajo	$\delta W = p \cdot dv \ [J/kg]$
Calor	$\delta Q = c \cdot dT [J/kg]$
Relación IMPORTANTE	$\frac{pv}{T} = R = cte$

UNIDAD 3 GASES REALES

Ecuación de Mayer $R = c_p - c_v$ Razón de calores $k = \frac{c_p}{c_p} > 1$

Mezcla de gases

Ley de Dalton
$$P_T = \sum_{i} P_i$$

Ley de Amagat
$$V_T = \sum V_i$$

Fracción molar
$$x_i = \frac{\overline{n_i}}{n_T} = \frac{V_i}{V_T} = \frac{P_i}{P_T}$$

Compos. gravimétrica
$$g_i = \frac{m_i}{m_T}$$

$$u = \sum g_i u_i \qquad c_v = \sum g_i c_{vi}$$

$$h = \sum g_i h_i$$
 $c_p = \sum g_i c_{pi}$

Peso molecular
$$M_T = \frac{m_T}{n_T}$$

Van der Waals

$$\left(p + \frac{a}{(\overline{v})^2}\right) = \frac{\overline{R}T}{(\overline{v} - b)}$$

$$a = 3P_cV_c^2 \quad b = \frac{V_c}{3} \quad R = \frac{8}{3}\frac{P_cV_c}{T_c}$$

Beattie-Bridgeman

$$\left(p + \frac{A}{(\overline{\nu})^2}\right) \frac{(\overline{\nu})^2}{(\overline{\nu} + B)} = \overline{R}T(1 - e)$$

$$A = A_0 \left(1 - \frac{a}{\overline{\nu}}\right) \quad B = B_0 \left(1 - \frac{b}{\overline{\nu}}\right) \quad e = \frac{c}{\overline{\nu}T^3}$$

Propiedades reducidas

$$p_r = \frac{p}{p_c} T_r = \frac{T}{T_c} \nu_r = \frac{\nu}{\nu_c}$$

Gou Yen Sou $PV = zn\overline{R}T$

UNIDAD 4 Transformaciones en Gases

En sistemas cerrados

Primer principio
$$Q = \Delta U + W$$

$$W(+): \square \rightarrow Q(+): \square \leftarrow$$

$$W(-): \square \leftarrow Q(-): \square \rightarrow$$

En sistemas abiertos

Primer principio
$$Q = \Delta E + W_T$$

$$Q = \Delta h + \Delta E_p + \Delta E_c + W_c$$

Energía potencial
$$E_p = gz \left[\frac{J}{kg} \right]$$

Energía cinética
$$E_c = \frac{1}{2}\omega^2 \left[\frac{J}{kg} \right]$$

Trabajo circulante
$$W_c = \int_1^2 -v \cdot dp$$

Si no hay datos para $E_{c/p} \implies E_{c/p} = 0$

Caudal volumétrico
$$\dot{Q} = A \cdot \omega [m^3/s]$$

Caudal másico
$$\dot{m} = \frac{\dot{Q}}{v_0} [kg/s]$$

Transformaciones

Isocórica
$$pv^{\infty} = cte$$
 $Q = \Delta u = c_v \Delta T$ $W = 0$

Isobárico
$$pv^0 = cte$$
 $Q = \Delta h = c_p \Delta T$ $W = p(v_2 - v_1)$

Isotérmico
$$pv = cte$$
 $Q = p_1v_1 \ln \frac{v_2}{v_1}$ $W = p_1v_1 \ln \frac{v_2}{v_1}$

Adiabática
$$pv^{\gamma} = cte$$
 $Q = 0$ $W = \frac{p_1v_1 - p_2v_2}{\gamma - 1}$

Isotérnico
$$pv^0 = cte$$
 $Q = \Delta h = c_p \Delta T$ $W = p(v_2 - v_1)$
Isotérnico $pv = cte$ $Q = p_1 v_1 \ln \frac{v_2}{v_1}$ $W = p_1 v_1 \ln \frac{v_2}{v_1}$
Adiabática $pv^\gamma = cte$ $Q = 0$ $W = \frac{p_1 v_1 - p_2 v_2}{\gamma - 1}$
Politrópica $pv^n = cte$ $Q = \left(\frac{\gamma - n}{\gamma - 1}\right)W$ $W = \frac{p_1 v_1 - p_2 v_2}{n - 1}$

Para politrópicas

$$Tu^{n-1} - ata$$
 $yu^n - ata$

$$W = \frac{RT_1}{n-1} \left(1 - \frac{T_2}{T_1} \right) \quad W = \frac{RT_1}{n-1} \left[1 - \left(\frac{\nu_1}{\nu_2} \right)^{n-1} \right] \quad W = \frac{RT_1}{n-1} \left[1 - \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right]$$

UNIDAD 5 SEGUNDO PRINCIPIO

La transferencia de calor y trabajo no es equivalente, existen pérdidas.

$$Q_1 = W + Q_2$$

Rendimiento $\eta = \frac{\text{energía útil}}{\text{energía absorbida}}$

Teorema de Clausius $\sum \frac{Q_i}{T_i} \le 0$

 $\sum \frac{Q_i}{T_i} = 0 \quad \text{Procesos reversibles}$

 $\sum \frac{Q_i}{T_i} < 0$ Procesos irreversibles

Entropía $dS = \frac{\delta Q}{T}$ T = cte

Rendimientos isentrópicos

Ciclo de Carnot $\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$ Turbina $\eta_s = \frac{W_{real}}{W_s} = \frac{h_1 - h_{2r}}{h_1 - h_{2s}}$ ema de Clausius $\sum \frac{Q_i}{T_i} \le 0$ Compresor $\eta_s = \frac{W_s}{W_{real}} = \frac{h_{2s} - h_1}{h_{2r} - h_1}$

Unidad 6 AIRE HÚMEDO

Psicrosometría

$$\begin{split} P_{bar} &= P_{aire} + P_{agua} & h = h_a + \omega h_{v \; sat} \\ HR &= \frac{m_v}{m_{sat}} = \frac{P_v}{P_{sat}} & \omega = \frac{m_v}{m_a} = \frac{0,622 \; p_v}{P - P_v} \end{split}$$

Ecuaciones de aire seco:

Masa de aire seco: $\sum_{ent} \dot{m}_a = \sum_{sal} \dot{m}_a$ Masa de agua: $\sum_{ent} \dot{m}_w = \sum_{sal} \dot{m}_w$

 $\sum_{ent} \dot{m}_a \omega = \sum_{sal} \dot{m}_a \omega$

Energía:

 $\dot{Q}_{ent} + \dot{W}_{ent} + \sum_{ent} \dot{m}h = \dot{Q}_{sal} + \dot{W}_{sal} + \sum_{sal} \dot{m}h$

Unidad 16? Transferencia calor

Conducción de calor a través de paredes planas y compuestas.

$$Q = \frac{A.\Delta T}{\frac{1}{h} + \frac{L}{k} + \frac{1}{h}}$$

Conducción de calor a través de cilindros huecos y compuestos.

$$Q = \frac{2\pi . L.\Delta T}{\frac{1}{h.r_i} + \frac{ln\left(\frac{r_f}{r_i}\right)}{k} + \frac{1}{h.r_f}}$$