Quadratic forms and the local-global principle e 6: Introduction to the theta correspondence

Lecture 6: Introduction to the theta correspondence

Recall from Prof Barrios: $\theta(\tau) := \sum_{i=1}^{\infty} e^{2\pi i n^2 \tau} = 1 + 2e^{2\pi i t} + 2e^{8\pi i t} + \dots$ $n \in \mathbb{Z}$ $= 1 + 2a + 2a^4 + 2a^9 + \dots$

 $= |+2q+2q^4+2p^9+\cdots$ $q=e^{2\pi i \tau}$

For $k \in \mathbb{Z}_{\geq 1}$: $\theta^{k}(\tau) = \sum_{N \geq 0} v_{k}(n)q^{N}$, where $v_{k}(n) = \# A$ ways to write

 $\begin{array}{ll}
 & n & old & c & c & c & d \\
 & k & squares \\
 & = # \left((x_1, ..., x_k) \in \mathbb{Z}^k : \\
 & x_1^2 + \dots + x_k^2 = n \right)
\end{array}$

k=4.0 04 is a modular form!

(Lecture 6 of Barrios)

• Wk4 (HW4, #11) Every positive # can be writer

as a sum of 4 squares. → Every Fourier coeff
in 84 is ≠ 0

INIZ 12 LGILCZ NB:	
	oviver coeffs of modular forms.
This is the beginning of a very	flozstorz
Today. "toy model" for theta conv	
Part1: Orthogonal groups/IFq	theta Corresponde
Part 2: Weil rep/Fe	Ex. 0 ⁴
Fourier transform	art3: adeles

Part 1: Orthogonal group / 159 Let (V,Q) be any guad space / Fe. Def. The orthog gp corr to V 13: $O(V) := \left\{ g \in GL(V) : h_Q(vg, wg) - h_Q(v, w) \right\}$ Y VINEV } Ex. 2 divil quad spaces: Vns = (Fez. Nm) 120 (120) Can chow: $O(N_{sp}) \cong$ Fg x 2/22 (SO(Vsp) == 150(N2b) UST 'det" Fe) O(V_{ns}) = ker(F₍₂ -> F_e) × H_{2I} Ded Fun $(V) := \{ ? : V \rightarrow C ? \}$

C is a vector space over C dim = $\#V = q^{dmV}$

We know: V & O(V) ~> Fun V O O (V) p: O(V) x Fun V -> Fun V $(q, \ell) \mapsto (v \mapsto \ell(vg))$ This defines an action of O(V) in Fur(V) More over, this action is linear! Remarkable: there is (another group) which also acts) on Fun(V) in a way that doesn't interfere w) the OCVI action. a.5, e, d = 1 } SL2 (Fe) = ((, g) mysterious! nontrivial! involves Fouria transform

Part 2. The finite-field Weil representation Prof. Watsun's cours: $SL_2\mathbb{Z}$ is generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ SLz Fq is NOT! Prop. Shalfq is generated by

diml:

 $d(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \quad u(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad s = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Moreover, every elt of Staffe can be written uniquely in one of the following ways:

ae Fe be le

of = d(a) u(b) for some aEFE, LEFTZ

g = d(a).u(b,).s.u(bz) for some acter, b, bzete.

Fix: Y: FC Cx fixed vention chan Def. The Fourier transform of a for $\ell: V \to \mathbb{C}$ (is: Fun(V) FT(V): V-> C, V -> qu-V12 Z Y(W). T(-hQ(V,W))

Def. Det
$$w: SL_2F_{\varrho} \times Fun(V) \longrightarrow Fun(V)$$
 by

• $w(u(b), \Psi(v) := \Psi(\frac{b}{z}Q(v))\Psi(v)$

•
$$W(u(b), Y)(v) := Y(\frac{b}{z}Q(v))Y(v)$$
 betty

• $W(u(b), Y)(v) := Z_{\alpha}Y(av)$ $\alpha \in H_{\ell}^{x}$
• $W(d(c), Y)(v) := Z_{s}FT(Y)(v)$

For some roots of unity za, z_{ς} , εC^{4} . $\alpha \varepsilon K_{\varsigma}$

Runk: $\omega(s, \omega(s, \varphi))(v) = z_s^2 FT(FT(\varphi))(v)$ $s^2 \leftrightarrow (-1_{-1})$ $z_s^2 \varphi(-v)$

$$\omega(s^2, \varphi)(v) = \omega((-1-1), \varphi) = \omega(A(-1), \varphi)$$

$$= 2 \varphi(-v)$$

Thm = 22 ((-v) = 2-1 ((-v) =) 25= 2-1.

Lemma. The O(V)-act on Fun(V) commundes w/ the Slaffe-action on Fun(V). rf. Wout: g∈O(V), h∈SL2#q $p(g, w(h, \ell)) = w(h, p(g, \ell))$ Recall: p(g,4)(v) = 4(vg). Let's check $p(g, w(s, \ell)) = w(s, p(g, \ell))$ p(g, w(s,4))(v) = w(s,4)(vg)

 $= \frac{2s}{2^{dmV/2}} \sum_{w \in V} \Psi(w) \Upsilon(-h_{\delta}(vg,w))$ = 2 2 p(g,4)(w) y(-hg(v,w)) = 25FT(p(g,4))(v)

 $= \omega(s, \rho(g, \psi))(v).$

Mhot	have me do	ne ;		
	Start:	quad space	V	
	SLIFE C	Fuu(V) C-vectovspa	 	V)
Com		Op replace fter handly s		rical issues)
	4	IR	Įţ	
	ouild this P	icture for	· · · · · · · · · · · · · · · · · · ·	
	$\mathbb{A}_{\mathbb{Q}}$ \subset	IR × π p<α	$\mathbb{Q}_{\mathfrak{p}}$	med form sout form

Part 3. The adeles.

Dof. The my of adds one Q is

 $\mathbb{A}_{\mathbb{Q}} := \left\{ (x_{\infty}, x_2, x_3, x_5) ... \right\}$) & IR × [[Q_p:

xpEZp for all but f. many pcoo} mult & add are componentwise.

 $\mathbb{Q} \hookrightarrow \mathbb{Q}_{\mathbb{P}}$ Exercise: $\chi \longmapsto \chi_{p}$

Show that Q embeds diagonally in IAQ

Analogously, can dehe

SL2(AQ) := restr. product. SL2RX T SL2Op wr.t. SlzZp fr p<0.

There is a dictorary	φf:Sl2(AQ)→C
modular for \sim $5:h\to \mathbb{C}$	forms. of
f, fn on h	behavior of of on SL21R
wt af	transformate of \$\psi \text{under translati} by \$5^2 = \left(\frac{\cos\theta}{\sin\theta} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
lavel N	invariance of of under congruence subgre of Shill, at p/N.
SL2Z	SL2Zp Vp