Semana 2. Resultados potenciales

Equipo Econometría Avanzada

Universidad de los Andes

15 de agosto de 2025

Recordatorio: Instalación de R

2 Estructura de un modelo.

- Parámetros de interés.
- De resultados potenciales al análisis de regresión.

Recordatorio: Instalación de R

- 2 Estructura de un modelo.
- Parámetros de interés.

4 De resultados potenciales al análisis de regresión.

Instalación de R

Para instalar R en su computador:

- Accedan al siguiente enlace: https://cran.r-project.org/
- Seleccionen el sistema operativo correspondiente (Windows, macOS o Linux). Idealmente la versión más reciente, fijarse en compatibilidad.
- Hagan clic en el enlace para descargar el instalador de R.
- Ejecuten el instalador descargado y sigan los pasos indicados para completar la instalación.
- Una vez instalado R, se recomienda instalar también RStudio, un entorno de desarrollo integrado.
 - Accedan a: https://posit.co/download/rstudio-desktop/
 - Seleccionen su sistema operativo y descarguen el instalador de RStudio Desktop (versión gratuita).
 - ▶ Instalen RStudio normalmente.

Recordatorio: Instalación de R

- 2 Estructura de un modelo.
- Parámetros de interés.

4 De resultados potenciales al análisis de regresión.

Estructura de un modelo

Pregunta de investigación: ¿Cuál es el efecto de ser hospitalizado (D) sobre el estado de salud (Y)?

$$D_i = \begin{cases} 1 & \text{si } i \text{ es hospitalizado} \\ 0 & \text{de lo contrario} \end{cases}$$

Se tiene que los resultados potenciales del individuo *i* son:

$$Y_{i,1} = \alpha + \delta + x_i \beta + u_{i,1}$$

$$Y_{i,0} = \alpha + x_i \beta + u_{i,0}$$

El Doctor Perfecto

Example (El Doctor Perfecto)

El Doctor Perfecto sabe si usted necesita o no ser hospitalizado con solo mirarlo!

$$D_i = \mathbb{1}[Y_{i1} > Y_{i0}]$$

Sin embargo, para *i* en ese preciso momento del tiempo solo se observa:

Definition (Del mundo real al mundo potencial)

$$Y_i = Y_{i,1}D_i + Y_{i,0}(1-D_i)$$

Resultados potenciales

today has two potential outcomes

♠ kla (taylor's version) ○ @blessedswift · Aug 8

Today is about to be the best day of my life or the worst day of my life

Recordatorio: Instalación de R

- 2 Estructura de un modelo.
- 3 Parámetros de interés.
- 4 De resultados potenciales al análisis de regresión.

Parámetros de interés.

1 Efecto del tratamiento para *i*:

$$\tau_i = Y_{i1} - Y_{i0}
= \delta + (u_{i1} - u_{i0})$$

¿Cómo se interpreta este efecto?

Average Treatment Effect (ATE):

$$\tau_{ATE} = E(\tau_i)$$

$$= \delta + E(u_{i1} - u_{i0})$$

$$= \delta$$

¿Cómo se interpreta este efecto? ¿Qué son **efectos** homogéneos vs heterogéneos?

Parámetros de interés.

Average Treatment Effect on the Treated (ATT):

$$au_{ATT} = E(\tau_i | D_i = 1)$$

= $\delta + E(u_{i1} - u_{i0} | D_i = 1)$

¿Cómo se interpreta este efecto?

Average Treatment Effect on the Untreated (ATU):

$$\tau_{ATU} = E(\tau_i | D_i = 0)$$

= $\delta + E(u_{i1} - u_{i0} | D_i = 0)$

¿Cómo se interpreta este efecto?

Parámetros de interés.

Volvamos al caso de nuestro Doctor Perfecto...

Example (El Doctor Perfecto)

El Doctor Perfecto sabe si usted necesita o no ser hospitalizado con solo mirarlo. Es decir,

$$D_i = \mathbb{1}[Y_{i,1} > Y_{i,0}]$$

- ¿La asignación al tratamiento es aleatoria?
- ¿Cuál parece ser el efecto que nos interesa? ¿Deberíamos cambiar la pregunta de investigación?

Jugando a ser el Doctor Perfecto

Paciente	<i>Y</i> ₁	<i>Y</i> ₀	Edad	ET ¹	D	Υ
1	1	10	29			
2	1	5	35			
3	1	4	19			
4	5	6	45			
5	5	1	65			
6	6	7	50			
7	7	8	77			
8	7	10	18			
9	8	2	85			
10	9	6	96			
11	10	7	77			

¹Efecto del tratamiento

Jugando a ser el Doctor Perfecto

Paciente	<i>Y</i> ₁	<i>Y</i> ₀	Edad	ET ²	D	Υ
1	1	10	29	-9		
2	1	5	35	-4		
2 3	1	4	19	-4 -3 -1		
4	5	6	45	-1		
5	5	1	65	4		
6	6	7	50	-1		
7	7	8	77	-1		
8	7	10	18	-1 -3 6		
9	8	2	85	6		
10	9	6	96	3		
11	10	7	77	3		

Calculen el ATE!

²Efecto del tratamiento

Jugando a ser el Doctor Perfecto

Paciente	Y_1	<i>Y</i> ₀	Edad	ET	D	Y
1	1	10	29	-9	0	10
2	1	5	35	-4	0	5
3	1	4	19	-3	0	4
4	5	6	45	-1	0	6
5	5	1	65	4	1	5
6	6	7	50	-1	0	7
7	7	8	77	-1	0	8
8	7	10	18	-3	0	10
9	8	2	85	6	1	8
10	9	6	96	3	1	9
11	10	7	77	3	1	10

Calculen el ATT y el ATU!

- Recordatorio: Instalación de R
- 2 Estructura de un modelo.
- Parámetros de interés.

4 De resultados potenciales al análisis de regresión.

De resultados potenciales al análisis de regresión.

$$Y_{i} = Y_{i1} \times D_{i} + Y_{i0} \times (1 - D_{i})$$

$$Y_{i} = E(Y_{i0}) + Y_{i1} \times D_{i} + Y_{i0} \times (1 - D_{i}) - E(Y_{i0})$$

$$Y_{i} = \underbrace{E(Y_{i0})}_{\beta_{0}} + \underbrace{(Y_{i1} - Y_{i0})}_{\beta_{1}} \times D_{i} + \underbrace{Y_{i0} - E(Y_{i0})}_{u_{i}}$$

$$Y_i = \beta_0 + \beta_1 D_i + u_i \tag{1}$$

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 x_i + u_i \tag{2}$$

• ¿Bajo qué condiciones $\widehat{\beta}_{1,MCO}$ de (1) y (2) es un estimador insesgado del ATE?

El estimador de β_1 de la ecuación (1) por MCO corresponde a la diferencia de medias entre tratados y no tratados. Concretamente,

$$\hat{\beta}_1^{MCO} = \bar{Y}_i | D_i = 1 - \bar{Y}_i | D_i = 0 \tag{3}$$

Un cálculo sencillo resulta en que

$$\hat{\beta}_1^{MCO} \xrightarrow{P} \mathbb{E}[Y_i | D_i = 1] - \mathbb{E}[Y_i | D_i = 0]$$
(4)

Se puede demostrar que

$$\hat{\beta}_1^{MCO} \xrightarrow{P} ATT + (\mathbb{E}[Y_{i0}|D_i = 1] - \mathbb{E}[Y_{i0}|D_i = 0])$$
 (5)

$$\hat{\beta}_1^{MCO} \xrightarrow{P} ATU + (\mathbb{E}[Y_{i1}|D_i = 1] - \mathbb{E}[Y_{i1}|D_i = 0])$$
 (6)

$$\hat{\beta}_{1}^{MCO} \xrightarrow{P} ATE + (\mathbb{E}[Y_{i0}|D_{i}=1] - \mathbb{E}[Y_{i0}|D_{i}=0]) + (1-\pi)(ATT - ATU)$$

$$(7)$$

donde $\pi = P(D_i = 1)$.

• Intuitivamente, ¿por qué en este contexto MCO subestima el ATT?

¡Gracias!