Determine the global coordinates of point B if the local coordinate system is rotated 30 degrees relative to the global coordinate system. The local coordinates of point B: (30,15).

2. Given the 2-D truss structure shown below, find the displacements of the nodes, reaction forces, and normal stresses developed in the members. Material steel, diameter 1/4 in.

20.000.00000						30 (34/25) 31/25/2	a piel de Water Coltago
KA(2	,1) KA(2,2)	2,2) KA(2,3)	KA(2,4)	0	0	0	0
KA(1	,1) KA(1,2)	1,2) KA(1,3)	KA(1,4)	0	0	0	0

FX1	KA(1,1)	KA(1,2)	KA(1,3)	KA(1,4)	0	0	0	0
FY1	KA(2,1)	KA(2,2)	KA(2,3)	KA(2,4)	0	0	0	0
55	KA(3,1)	KA(3,2)	KA(3,3)+KB(1,1)+KD(1,1)	KA(3,4)+KB(1,2)+KD(1,2)	KB(1,3)	KB(1,4)	KD(1,3)	KD(1,4)
0	 KA(4,1)	KA(4,2)	KA(4,3)+KB(2,1)+KD(2,1)	KA(4,4)+KB(2,2)+KD(2,2)	KB(2,3)	KB(2,4)	KD(2,3)	KD(2,4)
40	0	0	KB(3,1)	KB(3,2)	KB(3,3)+KC(1,1)	KB(3,4)+KC(1,2)	KC(1,3)	KC(1,4)
-30	0	0	KB(4,1)	KB(4,2)	KB(4,3)+KC(2,1)	KB(4,4)+KC(2,2)	KC(2,3)	KC(2,4)
FX4	0	0	KD(3,1)	KD(3,2)	KC(3,1)	KC(3,2)	KC(3,3)+KD(3,3)	KC(3,4)+KD(3,4)
FY4	0	0	KD(4,1)	KD(4,2)	KC(4,1)	KC(4,2)	KC(4,3)+KD(4,3)	KC(4,4)+KD(4,4)

Y2 X3 Y3

3. Given the 2-D truss structure shown below, find the displacements of the nodes, reaction forces, and normal stresses developed in the members.

Material: Steel, diameter 50mm.

		1	2	3	4	5	6	7	8	
		x1	у1	x2	y2	x3	у3	x4	у4	
1	F1x	AB	AB	Α	Α	В	В	0	0	XIO
2	F1y	AB	AB	Α	Α	В	В	0	0	¥2-10
3	52x	Α	А	ACE	ACE	С	С	E	E	x2
1	F27-3	Α	Α	ACE	ACE	С	С	E	E	y2
5_	F3X	В	В	С	С	BCD	BCD	D	D	x3
0	F30	В	В	С	С	BCD	BCD	D	D	у3
t ,	54X	0	0	Е	Е	D	D	DE	DE	x4
8	F4y	0	0	E	E	D	D	DE	DE	X4 0