Конкурентные прямые.

В этом разделе мы рассмотрим одну из самых встречающихся тем в олимпиадной геометрии (планиметрии). Это целый класс задач, в которых требуется доказать, что какие-то прямые пересекаются в одной точке (или параллельны), такие прямые ещё называют конкурентными. Как правило их три, но может быть и больше. В данном разделе мы ограничимся рассмотрением примеров, где в основном фигурируют только три прямые.

Методы решения задач

Метод масс

Для начала введем несколько базовых понятий.

Определение. Материальная точка — точка, которой *приписана* некоторая масса.

 ${\it Onpedenehue.}$ Моментом материальной точки A(m) относительно точки Z называют вектор $m\overrightarrow{ZA}$.

 $m{Onpede}$ ление. Точка Z называется **центром масс** системы материальных точек $A_1(m_1),\,A_2(m_2),\,\dots,\,A_n(m_n),\,$ если $\sum_{i=1}^n m_i \overrightarrow{ZA_i} = \overrightarrow{0}$.

Договоримся о следующем: Пусть имеется система \mathfrak{M} материальных точек $A_1(m_1),\,A_2(m_2),\,\dots,\,A_n(m_n)$ с центром масс Z и $\exists A_z(m_z)\in\mathfrak{M}\colon Z=A_z.$ Тогда, говоря в дальнейшем о системе $\mathfrak{M},\,$ мы будем подразумевать pedyциро-ванную систему $\mathfrak{M}'\colon A_z(m_z)\notin\mathfrak{M}',\, \forall A_i(m_i)\in\mathfrak{M}'\colon A_i(m_i)\in\mathfrak{M},\, m_i\neq 0.$

В качестве физической интерпретации теории масс можно использовать следующие соображения: положительной массе материальной точки мы сопоставим $\mathit{грузик}$ соответствующей массы, а отрицательной массе — $\mathit{шарик}$ с соотвествующей подъемной силой.

Теорема (о существовании центра масс). *Центр масс произвольной системы* $A_1(m_1), \ldots, A_n(m_n)$ всегда существует, если $\sum_{i=1}^n m_i \neq 0$.

Доказательство.

 \square Рассмотрим произвольную точку X. Тогда для любой точки плоскости Oимеет место равенство $\sum_{i=1}^n m_i \Big(\overrightarrow{XA_i} - \overrightarrow{OX}\Big) = \sum_{i=1}^n m_i \overrightarrow{OA_i}.$ Тогда, что-

бы точка O была $uenmpom\ macc$ системы, должно выполняться равенство $\sum_{i=1}^n m_i \overrightarrow{OA_i} = \overrightarrow{O} \iff \sum_{i=1}^n m_i \left(\overrightarrow{XA_i} - \overrightarrow{OX}\right) = \overrightarrow{O} \iff \overrightarrow{XO} = \frac{\sum \left(m_i \overrightarrow{XA_i}\right)}{\sum m_i}$. Таким образом, утверждение о существовании $uenmpa\ macc$ свелось к утверждению, что существует вектор \overrightarrow{XO} , заданный соответствующим соотношением, а он, понятное дело, существует. \blacksquare

Примечание. Если условие $\sum_{i=1}^n m_i \neq 0$ не выполняется, то величина $\left|\overrightarrow{XO}\right| = \frac{\left|\sum m_i \overrightarrow{XA_i}\right|}{\sum m_i}$ не имеет смысла, поэтому это ограничение на сумму масс существенно. Физически это можно понимать так: <ДОПИСАТЬ ПРО

ЭТО !!!>

Теорема (о единственности центра масс). *Если центр масс системы* $A_1(m_1)$, ..., $A_n(m_n)$ существует, то он единственен. Доказательство.

Пот противного. Пусть существуют два различных центра масс Z и Z'. Тогда по определению имеем: $\sum_{i=1}^n m_i \overrightarrow{ZA_i} = \overrightarrow{0}$, $\sum_{i=1}^n m_i \overrightarrow{Z'A_i} = \overrightarrow{0}$. $\Rightarrow \sum_{i=1}^n m_i \overrightarrow{ZZ'} = \overrightarrow{0}$ (последний переход верен, так как центр масс существует, то есть $\sum_{i=1}^n m_i \neq 0$) $\Leftrightarrow Z = Z'$, что противоречит предположению, что точки Z и Z' различны. \Rightarrow центр масс Z единственен.

Далее будем считать, что $\sum_{i=1}^{n} m_i \neq 0$.

Теорема (о группировке масс). Пусть есть система материальных точек $A_1(m_1),\,A_2(m_2),\,\dots,\,A_n(m_n),\,B_1(k_1),\,B_2(k_2),\,\dots,\,B_l(k_l),\,u$ подсистема $A_1(m_1),\,A_2(m_2),\,\dots,\,A_n(m_n)$ имеет центр масс W. Назовем редуцированной системой систему $W(m_1+\dots+m_n),B_1(k_1),\,B_2(k_2),\,\dots,\,B_l(k_l).$ Тогда исходная система имеет ц.м. Z в том и только том случае, когда редуцированная система

имеет u.м. Z.

Доказательство.

 \square Согласно onpedeлению центра масс, надо доказать равносильность $\sum_{i=1}^n m_i \overrightarrow{ZA_i} + \sum_{j=1}^l k_j \overrightarrow{ZB_j} = \overrightarrow{0} \iff \sum_{j=1}^l k_j \overrightarrow{ZB_j} + \sum_{i=1}^n m_i \overrightarrow{ZW} = \overrightarrow{0}$. То есть надо показать равенство: $\sum_{i=1}^n m_i \overrightarrow{ZA_i} = \overrightarrow{ZW} \sum_{i=1}^n m_i \iff \sum_{i=1}^n m_i \left(\overrightarrow{ZA_i} - \overrightarrow{ZW} \right) = \overrightarrow{0} \iff \sum_{i=1}^n m_i \overrightarrow{WA_i} = \overrightarrow{0}$, что верно в силу того, что W — центр масс подсистемы $A_1(m_1), A_2(m_2), \ldots, A_n(m_n)$. \blacksquare

Метод масс широко используется при доказательстве теорем и задач на конкурентность прямых, причем их может быть любое количество, а ключевым элементом решения является именно *теорема о группировке масс*.

Теорема Чевы

Один из самых мощных методов доказательства того, что три прямые проходят через одну точку или параллельны. Приведем ниже доказательство через метод масс. С другими доказательствами этой теоремы (через площадь, подобие и др.) вы можете ознакомится в других источниках, например, в книге Я. П. Понарина «Элементарная геометрия. Том 1».

Теорема Чевы. Пусть на прямых AB, BC, CA, определяющих треугольник ABC, даны точки C_1 , A_1 , B_1 . Для того, чтобы прямые AA_1 , BB_1 , CC_1 пересекались в одной точке или были параллельными, необходимо и достаточно, чтобы

$$\frac{\overrightarrow{AB_1}}{\overrightarrow{B_1C}} \cdot \frac{\overrightarrow{CA_1}}{\overrightarrow{A_1B}} \cdot \frac{\overrightarrow{BC_1}}{\overrightarrow{C_1A}} = 1$$

Доказательство.

Пусть
$$AA_1 \cap BB_1 = P$$
, $CP \cap AB = C_1$. Поместим массы 1, $\frac{\overrightarrow{CA_1}}{A_1B}$, $\frac{\overrightarrow{CB_1}}{B_1A}$ в точки C , B , A соответственно. Тогда центр масс точек B и C находится в A_1 , а значит, по теореме о

группировке масс, центр масс вершин $\triangle ABC$ лежит на прямой AA_1 . Аналогично получаем, что он лежит и на BB_1 . Следовательно, P — центр масс вершин $\triangle ABC$, согласно meopeme o

 $e\partial$ инственности центра масс. Так как $P \in CC_1$, центр масс точек B и A находится в C_1 . Из этого следует, что $\cfrac{\overrightarrow{CB_1}}{\overrightarrow{B_1A}} \cdot \overrightarrow{C_1A} + \overrightarrow{C_1B} \cdot \cfrac{\overrightarrow{CA_1}}{\overrightarrow{A_1B}} = \overrightarrow{O} \iff$

 $\overrightarrow{\overline{AB_1}} \cdot \overrightarrow{\overline{CA_1}} \cdot \overrightarrow{\overline{BC_1}} \cdot \overrightarrow{\overline{BC_1}} = 1$. Мы доказали сразу и необходимость, и достаточность, потому что полученное выражение является критерием пренадлежности точки P прямой CC_1 , то есть того, что все три чевианы проходят через одну точку.

Пусть теперь прямые AA_1 и BB_1 параллельны. Докажем, что тогда прямая CC_1 им параллельна. От противного. Пусть $CC_1 \cap BB_1 = P$, тогда, аналогично доказанному выше, получаем, что через точку P проходит прямая AA_1 , так как P — центр масс вершин $\triangle ABC$, а мы доказали, что если две прямые через него проходят, то и третья тоже через него проходит, но $P \in AA_1$ противоречит предположению $AA_1 \parallel BB_1$. $\Longrightarrow CC_1 \parallel BB_1 \parallel AA_1$.

Формулу теоремы Чевы несложно запомнить, если при записи отношений пользоваться правилом «в числителе: вектор от текущей вершины до основания чевианы, для которого еще не записано отношение, а в знаменателе: вектор от текущего основания чевианы до другой вершины на данной прямой, содержащей основание чевианы и предыдущую вершину». То есть мы обходим треугольник по или против часовой стрелки и записываем отношения по данному правилу. Аналогичное правило применимо и к угловой теореме Чевы.

Дополнение

Тригонометрическая (угловая) форма теоремы Чевы.

Если ввести в рассмотрение *ориентиро-ванные* углы $\alpha_1 = \angle BAA_1$, $\alpha_2 = \angle A_1AC$, $\gamma_1 = \angle ACC_1$, $\gamma_2 = \angle C_1CB$, $\beta_1 = \angle CBB_1$, $\beta_2 = \angle B_1BA$, то соотношение теоремы Чевы можно представить в эквивалентном виде через синусы этих углов, а именно

$$\frac{\sin\alpha_1}{\sin\alpha_2}\cdot\frac{\sin\gamma_1}{\sin\gamma_2}\cdot\frac{\sin\beta_1}{\sin\beta_2}=1$$

Предлагаем читателю доказать данное утверждение самостоятельно, это будет хорошим упражнением.

Теорема Дезарга

Теорема Дезарга (обратная). Если прямые AB и A_1B_1 , BC и B_1C_1 , CA и C_1A_1 пересекаются, и точки их пересечения лежат на одной прямой, то прямые AA_1 , BB_1 , CC_1 , соединяющие вершины треугольников ABC и $A_1B_1C_1$, конкурентны.

Доказательство данного факта мы здесь приводить не будем, так как это выходит за рамки данного раздела. Отметим только, что эту теорему можно доказать, например, с использованием теоремы Менелая или с помощью выхода в пространство. С одним из них вы можете ознакомиться самостоятельно, скажем, в книге «Элементарная Геометрия Том 1».

Принадлежность точки пересечения двух прямых третьей

Можно попробовать доказать, что точка пересечения каких-то двух прямых из трех принадлежит третьей прямой. Классическим примером является доказательство того, что высоты, медианы и биссекрисы треугольника пересекаются в одной точке. С помощью данного метода иногда так же легко доказываются и более сложные вещи, например, то, что радикальные оси трех окружностей конкурентны. Точнее, таким способом можно доказать, что в нетривиальном случае они проходят через одну точку, а тривиальный случай

можно разобрать отдельно. Этот метод можно по-разному использовать, например, доказать конкурентность высот треугольника можно исходя из следующих соображений: проведем две высоты и третью прямую, проходящую через точку пересечения двух высот и через третью вершину треугольника, а потом докажем, что это и будет искомая высота.

Преобразование плоскости

Можно сделать *преобразование плоскости* f, отображающее плоскость на себя, которое переводит исходные прямые a, b, c, про которые нам нужно доказать, что они конкурентны, в некоторые прямые a', b', c', причем, $a \parallel a', b \parallel b', c \parallel c'$. Тогда, если их образы a', b', c' конкурентны, то и исходные прямые были таковыми.

Докажем равносильность конкурентности образов прямых и исходных прямых.

Необходимость.

Пусть $a \cap b \cap c = M$; $\forall i \in \{a, b, c\}$: f(i) = i' и f(M) = M'. Заметим, что $\forall i \in \{a, b, c\}$: $M \in i \Rightarrow M' \in f(i) \implies M' \in a', b', c'$.

Если же $a \parallel b \parallel c$, то, т.к. f переводит a, b, c в параллельные им прямые, имеем следующее: $a \parallel b \parallel c \implies f^{-1}(a) \parallel f^{-1}(b) \parallel f^{-1}(c) \iff a' \parallel b' \parallel c'$.

Достаточность.

Пусть a',b',c' — образы прямых a,b,c соответственно при преобразовании плоскости $f,a'\cap b'\cap c'=M',\,f^{-1}(M')=M.$ Тогда

$$\begin{cases} f^{-1}(a') = a \\ f^{-1}(b') = b \\ f^{-1}(c') = c \\ f^{-1}(M') = M \\ M' \in a', b', c' \end{cases} \Rightarrow M \in a, b, c$$

Если же $a' \parallel b' \parallel c'$, то, т.к. f переводит a, b, c в параллельные им прямые и $f - \mathit{биективноe}$ преобразование плоскости, имеем следующее: $a' \parallel b' \parallel c' \implies f^{-1}(a') \parallel f^{-1}(b') \parallel f^{-1}(c') \iff a \parallel b \parallel c$.

(Данный метод применим не только для случая n=3, но и для любого количества прямых)

Примечание. Если требуется только, чтобы прямые a, b, c пересекались в одной точке, то достаточно, чтобы f переводило a, b, c в любые прямые. В таком случае пересечение прямых a, b, c в одной точке, по вышеописанным причинам, также сохраняется.

Известные прямые

Посмотреть, может быть это какие-то известные три прямые, про которые вы знаете, что они конкурентны, например, это могут быть три прямые,

которые являются радикальными осями каких-то окружностей или медианами/биссектрисами/высотами, или просто конкурентными чевианами в какомнибудь треугольнике. Можно также начать действовать с конца. То есть в предположении, что утверждение доказано выявить какие-нибудь полезные признаки картинки и попытаться ими воспользоваться. Таким образом можно свести исходную задачу к равенству углов, подобию/гомотетичности треугольника и т.п., и постараться доказать уже новое утверждение.

Изогонали и изогональное сопряжение

В продолжение предыдущего подраздела про известные прямые рассмотрим такие прямые, которые называют *изогоналями*.

Определение. Прямые AP и AQ называются **изогоналями** относительно данного угла BAC, если $\angle PAB = \angle QAC$. (Что, очевидно, эквивалентно следующему: AP и AQ симметричны относительно биссектрисы угла BAC).

Теорема (основная теорема об изогоналях). Пусть имеются прямые a, b, c, проходящие через точки A, B, C соответственно. Тогда a, b, c конкурентны, где a' u a; b' u b; c' u c — изогонали относительно углов A, B, C соответственно.

Доказательство.

 \square Докажем сначала, что из конкуретности прямых $a,\,b,\,c$ следует конкурентность прямых $a',\,b',\,c'.$

Положим $\angle PCB = \gamma$, $\angle BAP = \alpha$, $\angle CBP = \beta$, $\angle P'CP = \gamma'$, $\angle PAP' = \alpha'$, $\angle PBP' = \beta'$ (здесь все углы ориентированные). Тогда для прямых a, b, c из угловой теореме Чевы имеем следующее:

$$\frac{\sin\alpha}{\sin(\alpha+\alpha')} \cdot \frac{\sin(\gamma+\gamma')}{\sin\gamma} \cdot \frac{\sin\beta}{\sin(\beta+\beta')} = 1$$

А теперь заметим, что

$$\frac{\sin(\alpha+\alpha')}{\sin\alpha} \cdot \frac{\sin\gamma}{\sin(\gamma+\gamma')} \cdot \frac{\sin(\beta+\beta')}{\sin\beta} = 1$$

Но ведь это — выражение угловой формы теоремы Чевы для прямых a', b', c'. А значит, согласно угловой теореме Чевы, a', b', c' конкурентны. Обратное

следствие доказывается аналогично.

Примечание. Точки P и P' называют изогонально сопряжёнными относительно **треугольника** ABC, если они существуют, то есть если соответствующие прямые непараллельны. Отметим так же, что нам не пришлось отдельно разбирать случай, когда прямые a, b, c параллельны, так как это учтено в угловой теореме Чевы.

Используя данный метод, можно мгновенно получить, например, что высоты пересекаются в одной точке. Для этого достаточно заметить, что $\angle OAC = \angle H_aAB$, где AH_a — высота в треугольнике ABC. То есть AH_a и AO — изогонали относительно угла CAB треугольника ABC. Проведя аналогичные рассуждения для оставшихся двух высот и применив к ним вышесформулированную теорему, получим требуемое.

Пересечение *симедиан* в одной точке также доказывается в один ход, а именно: медианы пересекаются в одной точке, а симедианы *по определению* симметричны медианам относительно биссектрис углов. Применяя теперь только что доказанную теорему, получим искомое утверждение.

Приведем ниже, как дополнение, интересный факт, доказательство которого вы можете найти, например, в статье «Теорема об изогоналях» А.Куликовой и Д.Прокопенко.

Теорема. Пусть OB и OC — изогонали угла AOD. Прямые AC и BD пересекаются в точке Q, прямые AB и CD — в точке P. Тогда OP и OQ — также изогонали относительно угла AOD.

Изотомическое сопряжение

Определение. Точки P и Q называются **изотомически сопряженными** относитильно **отрезка** AB, если они симметричны относительно середины этого отрезка.

Теорема. Пусть на прямых BC, AC, AB, образующих треугольник ABC, отмечены точки A_1 , B_1 , C_1 соответственно. Точки A_2 , B_2 , C_2 изотомически сопряжены точкам A_1 , B_1 , C_1 относительно отрезков BC, AC, AB соответственно. Тогда для того, чтобы прямые AA_1 , BB_1 , CC_1 были конкурентны, необходимо и достаточно, чтобы прямые AA_2 , BB_2 , CC_2 были таковыми.

Доказательство.

 \square Докажем сначала, что из конкурентности прямых AA_1 , BB_1 , CC_1 сле-

дует конкурентность прямых AA_2 , BB_2 , CC_2 .

По определению изотомического сопряжения имеем: $\overrightarrow{AB_2} = \overrightarrow{B_1C} = \overrightarrow{x}$, $\overrightarrow{CA_2} = \overrightarrow{A_1B} = \overrightarrow{y}$, $\overrightarrow{BC_1} = \overrightarrow{C_2A} = \overrightarrow{z}$. Положим $B_2B_1 = \overrightarrow{x_1}$, $A_2A_1 = \overrightarrow{y_1}$, $C_2C_1 = \overrightarrow{z_1}$.

Тогда, применив теорему Чевы для прямых AA_1 , BB_1 , CC_1 , получим:

$$\frac{\overrightarrow{x} + \overrightarrow{x_1}}{\overrightarrow{x}} \cdot \frac{\overrightarrow{y} + \overrightarrow{y_1}}{\overrightarrow{y}} \cdot \frac{\overrightarrow{z} + \overrightarrow{z_1}}{\overrightarrow{z}} = 1$$

Теперь заметим, что имеет место равенство

$$\frac{\overrightarrow{x'}}{\overrightarrow{x'} + \overrightarrow{x_1}} \cdot \frac{\overrightarrow{y'}}{\overrightarrow{y'} + \overrightarrow{y_1}} \cdot \frac{\overrightarrow{z'}}{\overrightarrow{z'} + \overrightarrow{z_1}} = 1$$

А значит, согласно теореме Чевы, прямые AA_2, BB_2, CC_2 конкурентны. Следствие в обратную сторону доказывается аналогично. \blacksquare

Примечание. Точки Q и Q' называются изотомически сопряженными относительно **треугольника** ABC, если они существуют, то есть если соответствующие прямые непараллельны.Отметим так же, что нам не пришлось отдельно разбирать случай, когда прямые AA_1 , BB_1 , CC_1 параллельны, так как это учтено в теореме Чевы.

Несложно видеть, что точки касания вписанной и соответствующей вневписанной оружностей изотомически сопряжены относительно соответствующей стороны треугольника ABC (см. рис.). Тогда, проделывая аналогичные рассуждения для всех сторон треугольника ABC и применяя только что доказанну теорему, получим, что точки Нагеля и Жергонна изотомически сопряженыи.

Понятное дело, что это далеко не самый полный список методов доказательства подобного рода задач. Цель данного раздела — показать, в каких направлениях можно начать действовать в задачах такого типа.

Примеры

Давайте рассмотрим теперь применение данных методов при решение конкретных задач. Примеры специально разбираются так подробно, чтобы продемонстрировать решение задачи от идеи до полного, окончательного решения.

Пример 1. В треугольнике $ABC\ AL_a,\ BL_b,\ CL_c$ — биссектрисы, K_a — точка пересечения касательных к описанной окружности в вершинах B и $C,\ K_b,\ K_c$ определены аналогично. Докажите, что прямые $K_aL_a,\ K_bL_b$ и K_cL_c пересекаются в одной точке. (Заочный тур олимпиады им. И.Ф.Шарыгина 2019)

Решение. Чтобы понять, какой из вышеописанных методов поможет в решении данной задаче, обратимся к рисунку (см. рис. 1). Из известных преобразований плоскости тут мало что может помочь. Скажем, используя, повором, или осевую симметрию, или параллельный перенос — не совсем понятно относительно чего производить эти преобразования, и что куда при них перейдет. Инверсия здесь явно не поможет, потому что данные прямые не проходят через центр какой-нибудь «удобной» окружности, и поэтому вообще перейдут в окружности, следовательно нам ничего доказать не удастся. Использование гомотети также не кажется, по крайней мере на первый взгляд, осмысленным, т.к. мы ничего не можем сказать про отношения отрезков (кроме, разве что, в $\triangle ABC$), поэтому не поймем что куда перейдет. Остается последний вариант — теорема Чевы. На первый взгляд её использование здесь вам может показаться неуместным, но не торопитесь с выводами. Итак, давайте разбираться, как же все-таки здесь использовать теорему Чевы.

Рис. 1

Как мы помним, в теореме Чевы нам нужно, чтобы произведение отношений соответствующих направленных отрезков было равно 1, тогда и только тогда прямые пересекутся в одной точке. Здесь отношения таких отрезков считать неудобно, поэтому давайте лучше постараемся все-таки понять что-то про расположение данных прямых. Единственное, отношение чего мы знаем — отношения отрезков, содержащие основания биссекрис $\triangle ABC$. Было бы хорошо понять что-нибудь про расположение самих прямых, например, углы относительно сторон $\triangle K_a K_b K_c$. Давайте отдельно перерисуем фрагмент рисунка, содержащий одну из трех прямых $(K_aL_a,\ K_bL_b,\ K_cL_c),$ и исследуем его.

Попробуем как-то привязаться к углам α и β , зная отношение $\frac{CL_b}{L_bA}$. Давайте вспомним, что площадь треугольника можно посчитать как полупроизведение сторон на синус угла между ними. То есть

$$C$$
 L_b A $S_{CK_bL_b} = \frac{CK_b \cdot K_bL_b \cdot \sin \alpha}{2}$. Аналогично $S_{AK_bL_b} = \frac{K_bL_b \cdot K_bA \cdot \sin \beta}{2}$. Откуда получаем $\frac{S_{CK_bL_b}}{S_{AK_bL_b}} = \frac{CK_b \cdot \sin \alpha}{K_bA \cdot \sin \beta}$. С дру-

гой стороны
$$S_{AK_bL_b}=\frac{h\cdot L_bA}{2}$$
 и $S_{CK_bL_b}=\frac{h\cdot L_bC}{2}$. Тогда $\frac{S_{CK_bL_b}}{S_{AK_bL_b}}=\frac{L_bC}{L_bA}$. И окончательно $\frac{S_{CK_bL_b}}{S_{AK_bL_b}}=\frac{CK_b\cdot\sin\alpha}{K_bA\cdot\sin\beta}=\frac{L_bC}{L_bA}$.

Но ведь K_bC и K_bA — это отрезки касательных к окружности ω из одной точки \Rightarrow $K_bC = K_bA$.

В итоге полученное выражение преобретает вид
$$\frac{\sin \alpha}{\sin \beta} = \frac{L_b C}{L_b A}$$
.

Мы видим отношение двух синусов, что наталкивает нас на мысль о том, что на самом деле мы будем использовать *угловую* форму теоремы Чевы.

Теперь остается лишь написать схожее отношение для всех трех прямых и перемножить.

$$\frac{\sin \angle K_c K_a L_a}{\sin \angle L_a K_a K_b} \cdot \frac{\sin \angle K_a K_b L_b}{\sin \angle L_b K_b K_c} \cdot \frac{\sin \angle K_b K_c L_c}{\sin \angle L_c K_c K_a} = \frac{BL_a}{L_a C} \cdot \frac{CL_b}{L_b A} \cdot \frac{AL_c}{L_c B} = 1$$

(последнее равенство верно, т.к. биссектрисы пересекаются в одной точке) Тогда, согласно «yгловой» форме теоремы Чевы, прямые K_aL_a, K_bL_b, K_cL_c пересекаются в одной точке. Что и требовалось доказать.

Комментарий. Вектора мы опустили, потому что основания биссектрис всегда лежат на сторонах треугольника. Однако стоит отметить, что условие (BL_b, AL_a, CL_c) биссектрисы» мы использовали, только когда считали отношение синусов соответствующих углов. То есть, вообще-то говоря, BL_b, AL_a, CL_c могли быть любыми чевианами в $\triangle ABC$, основания которых лежат на сторонах треугольника, и которые пересекаются в одной точке.

Пример 2. В треугольнике ABC AH_1 и BH_2 — высоты; касательная к описанной окружности в точке A пересекает BC в точке S_1 , а касательная в точке B пересекает AC в точке S_2 ; T_1 и T_2 — середины отрезков AS_1 и BS_2 . Докажите, что T_1T_2 , AB и H_1H_2 пересекаются в одной точке. (Заочный тур олимпиады им. И.Ф.Шарыгина 2019)

Решение. На первый взгляд задача кажется достаточно трудной, однако можно снова обратиться к списку вышеописанных методов и выбрать нам подходящий, как мы делали в предыдущем примере.

Пример 3. Даны три окружности. Первая и вторая пересекаются в точках A_0 и A_1 , вторая и третья — в точках B_0 и B_1 , третья и первая — в точках C_0 и C_1 . Пусть $O_{i,j,k}$ — центр описанной окружности треугольника $A_iB_jC_k$. Через все пары точек вида $O_{i,j,k}$ и $O_{1-i,1-j,1-k}$ провели прямые. Докажите, что эти 4 прямые пересекаются в одной точке или параллельны. (Заочный тур

олимпиады им. И.Ф.Шарыгина 2019)

Решение.

Пример 4. Каждая из окружностей $S_1,\,S_2$ и S_3 касается внешним образом окружности S (в точках $A_1,\,B_1,\,C_1$ соответственно) и двух сторон треугольника ABC (см. рис.). Докажите, что прямые $AA_1,\,BB_1,\,CC_1$ пересекаются в одной точке. ($Bcepocc.,\,1994,\,\phi$ инал, 10)

Решение.

Задачи

ТУТ БУДУТ ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ.

Подсказки

ТУТ БУДУТ ПОДСКАЗКИ К ЗАДАЧАМ ДЛЯ САМОСТОЯТЕЛЬНО-ГО РЕШЕНИЯ.

Список литературы

- [1] Я. П. Понарин Элементарная геометрия Том 1
- [2] А.Куликова, Д.Прокопенко «Теорема об изогоналях» http://geometry.ru/articles/isogonal_theorem_kvant_04_05.pdf