TOPOLOGÍA. UAM, 24 de enero de 2017

APELLIDOS, NOMBRE:		
Grupo:		

- 1. a) Definir con precisión qué es un espacio topológico de Hausdorff.
 - b) Sea $f:X\longrightarrow Y$ una aplicación inyectiva y continua del espacio topológico X en el espacio topológico de Hausdorff Y. Demostrar que, entonces, X es también de Hausdorff.
 - c) Aplicar el punto b) para demostrar que un subespacio de un espacio de Hausdorff es también de Hausdorff.
 - d) Utilizar el punto b) o el punto c) para demostrar que si un producto de espacios topológicos es un espacio de Hausdorff; entonces cada uno de dichos espacios es también de Hausdorff.
- 2. a) Definir con precisión qué es un espacio topológico compacto.
 - b) Demostrar que, si $\{C_j\}_{j\in\mathbb{N}}$ es una familia de cerrados no vacíos de un espacio topológico compacto X, tales que $\forall j\in\mathbb{N},\ C_{j+1}\subset C_j$, entonces $\bigcap_{j=1}^{\infty}C_j\neq\emptyset$.
 - c) Sea $f: \mathbb{R} \longrightarrow X$ una aplicación continua y cerrada de \mathbb{R} , con su topología usual en un espacio topológico compacto X. Usando la familia $\{f([j, \to [)]_{j \in \mathbb{N}}, \text{ aplicar el punto b})$ para demostrar que existe algún $x \in X$ tal que $f^{-1}(x)$ es un conjunto infinito.

3. Considera la siguiente familia de subconjuntos de \mathbb{R} :

$$\beta = \{(a,b) \ : \ a < b \ , \ a,b \in \mathbb{R} \ \} \cup \{(a,b) \setminus K \ : \ a < b \ , \ a,b \in \mathbb{R} \ \}$$
donde $K = \{\frac{1}{n} \ : \ n = 1,2,3,\ldots\}.$

- a) Demuestra que β es una base para una topología en $\mathbb R$ que es más fina que la topología usual.
- b) Denotaremos por \mathbb{R}_K a \mathbb{R} con la topología generada por la base β . Demuestra que $(-\infty,0)$ con la topología usual es homeomorfo a $(-\infty,0)$ con la topología de subespacio de \mathbb{R}_K .
- c) Demuestra que \mathbb{R}_K es conexo.
- **4.** En $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ se considera la topología \mathcal{T}_1 producto de la topología usual en el primer factor \mathbb{R} por la topología discreta en el segundo factor \mathbb{R} .

Después se define en \mathbb{R}^2 la siguiente relación de equivalencia \mathcal{R} :

$$(x_1, y_1)\mathcal{R}(x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

- a) Demostrar que el espacio cociente X de $(\mathbb{R}^2, \mathcal{T}_1)$ por la relación \mathcal{R} es homeomorfo a $[0, \to [$ con su topología usual.
- b) Estudiar si la proyección canónica de $(\mathbb{R}^2, \mathcal{T}_1)$ sobre X es abierta o cerrada.
- c) Repetir el ejercicio considerando en \mathbb{R}^2 la topología usual \mathcal{T} en lugar de \mathcal{T}_1 .
- 5. a) Explicar con detalle qué quiere decir que el espacio topológico Y sea un retracto de deformación fuerte (o retracto deformación, para abreviar) del espacio topológico X. Poner algún ejemplo.
 - b) Enunciar y demostrar un resultado que relacione los grupos de homotopía de X y de Y cuando Y es un retracto de deformación de X.
 - c) Demostrar con detalle que el vaso vacío Y es un retracto de deformación del vaso lleno X. En concreto, tomar

$$X = \{(x, y, z) \in \mathbb{R}^3 : (x^2 + y^2 \le 1) \land (0 \le z \le 1)\},$$

$$Y = \{(x, y, z) \in \mathbb{R}^3 : ((x^2 + y^2 \le 1) \land (z = 0)) \lor ((x^2 + y^2 = 1) \land (0 \le z \le 1))\}$$

d) Determinar, razonadamente los grupos de homotopía de los espacios X e Y del punto anterior.