Japanese Patent Laid-Open Publication No. 56-111258

Laid-Open Date: September 2, 1981

Application No. 55-160

Application Date: January 7, 1980

Request for Examination: Not made

Inventor: Seiichi Iwamatsu

Applicant: Chou-L.S.I. Gijutsu Kenkyu Kumiai

Title of the Invention:

THIN FILM SEMICONDUCTOR DEVICE

Claims:

A thin film semiconductor device characterized in that a single crystal semiconductor film is formed over a substrate or a film made of silicon nitride through a silicon oxide film, and active regions are formed on said semiconductor film.

Detailed Description of the Invention:

This invention relates to a thin film semiconductor device fabricated by use of a single crystal semiconductor film formed over a dielectric substrate or a dielectric film.

It is known to fabricate a thin film IGFET (insulated gate field effect transistor) by the steps of forming a polycrystalline Si film over a single crystal Si substrate through a SiO₂ film, scanning (so-called "laser annealing")

the poly-Si film to convert it to a single crystal while a laser beam is irradiated to the poly-Si film to heat it, and using the Si film so converted to the single crystal.

However, such a semiconductor device is not free from the problem that ionic contaminants such as Na^+ enter the SiO_2 film as the underlying film of the single Si film and invite fluctuation of various characteristics of IGFET such as its threshold voltage V_{TM} .

It is an object of the present invention to provide a novel thin film semiconductor device that eliminates the problem described above.

The semiconductor device according to the present invention is characterized by skillfully utilizing the property of silicon nitride of impeding ionic contaminants, and by preventing the ionic contaminants from entering the SiO_2 film as the underlying film. Hereinafter, the present invention will be explained in detail with reference to an embodiment thereof shown in the accompanying drawings.

FIG. 1 shows a thin film IGFET according to an embodiment of the present invention. Reference numeral 10 denotes a single crystal Si substrate. Reference numeral 11 denotes a Si_3N_4 film formed on the substrate 10 to a thickness of 0.1 to 2 μ m by a CVD process, or the like. Reference numeral 12 denotes a SiO_2 film formed on the Si_3N_4 film by the CVD process,

or the like.

The substrate 10 may be made of polycrystalline Si or a dielectric such as sapphire, quartz, or the like.

A poly-Si film or an amorphous Si film is deposited onto the SiO₂ film by the CVD process or vacuum deposition. While being irradiated and heated by a laser beam, etc, this Si film is scanned and converted to a single Si film 13. The single crystal Si film 13 is converted to a P type as a P type deciding impurity such as boron is doped before or after its crystallization to the single crystal.

A gate insulating SiO₂ film is formed on the surface of the P type Si film 13 by a thermal formation method, or the like, and a poly-Si film 15 is deposited to this SiO₂ film 14 by the CVD process, or the like. This poly-Si film 15 is patterned into a predetermined gate pattern, and the SiO₂ film 14 below the Si film 15 is then selectively etched with the Si film 15 as the mask, whenever necessary. Selective diffusion treatment or selective ion implantation treatment is carried out with Si film 15 and the SiO₂ portion below the former as the mask, forming thereby N^{*} type source region 16 and drain region 17. Since an N type deciding impurity is simultaneously doped into the Si film 15, too, the Si film 15 is converted to the N^{*} type (or its resistance is lowered).

In the thin film IGFET described above, the Si_3N_4 film 11 is interposed between the substrate 10 and the SiO_2 film

12 and checks invasion of the ionic contaminants into the SiO₂ film 12. Therefore, influences of the ionic contaminants on the channel region as the active region formed in the single crystal Si film 13 on the SiO₂ film can be minimized. The Si₃N₄ film 11 comes into contact with the single crystal Si film 13 not directly but through the SiO₂ film 12. Consequently, the interface charge density Q_{ss} becomes desirably small for stabilizing the characteristics. Incidentally, Q_{ss} is about $10^{12}/\text{cm}^3$ for the Si-SiO₂ interface and is about 2 x $10^{10}/\text{cm}^3$ for the Si-SiO₂ interface.

embodiment of the present invention. In the drawing, like reference numerals are used to identify like constituents as in FIG. 1 and the detailed explanation of such constituents will be omitted. The feature of the device shown in FIG. 2 resides in that after holes are formed at positions corresponding to scribe lines A and B of the SiO, film 12 in such a way as to encompass the FET formation portion, the single crystal Si film 13 is formed, and a SiO, film 18 for isolation is then formed by a selective oxidation treatment in such a way as to encompass the FET formation portion. According to this arrangement, the single crystal Si film portion 13A outside the SiO, film 18 encompasses the FET formation portion while keeping contact with the Si,N, film 11. Moreover, such an enclosure structure remains even after scribing is conducted

along the scribe lines A and B and the substrate 10 is diced into a plurality of chips or pellets. Therefore, the edge part of the SiO₂ film 12 is covered with the single crystal Si film portion 13A and is not exposed to the chip edge with the result that a greater effect of preventing ionic contamination can be obtained than in the case of FIG. 1.

FIG. 3 shows a thin film IGFET according to still another embodiment of the present invention. Like reference numerals are used in this drawing as in FIG. 1, and the explanation of like constituents will be omitted. The feature of IGFET shown in FIG. 3 is that after a ring-like hole is so formed in the $\mathrm{SiO_2}$ film 12 as to encompass the FET formation portion, the FET portion is formed by the method described with reference to FIG. la protective film 19 of PSG (phospho-silicate glass) covers the FET portion, a ring-like hole corresponding to the ring-like hole of the SiO_2 film is then formed in the protective film 19, and the Si_3N_4 film 20 is thereafter formed over the entire surface of the substrate. According to arrangement, the Si_3N_4 film 20 comes into contact with the Si_3N_4 film 11 on the surface of the substrate through the ring-like holes formed in the protective film 19 and in the SiO2 film. Therefore, the FET portion is encompassed and covered as a whole with the Si_3N_4 films 11 and 20. Consequently, this embodiment provides a greater ionic contamination prevention effect and a greater passivation effect than in the cases of FIGS. 1 and 2.

Incidentally, the Si_3N_4 film is formed on the surface of the substrate in the embodiments given above but the substrate itself may well be made of a Si_3N_4 material. In such a case, the Si_3N_4 film need not be formed on the surface of the substrate.

Brief Description of the Drawings:

FIGS. 1, 2 and 3 are sectional views each showing a thin film IGFET according to a different embodiment of the present invention.

- 10: substrate
- 11: Si₃N₄ film
- 12: SiO₂ film
- 13: single crystal Si film

DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

003216055

WPI Acc No: 1981-76612D/198142

Thin film semiconductor device - of single crystal semiconductor film

formed on silicon oxide film on silicon nitride substrate

Patent Assignee: CHO LSI GLIUTSU KENKYU KUMIAI (CHOL)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 56111258 A 19810902

198142 B

Priority Applications (No Type Date): JP 80160 A 19800107

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 56111258 A 3

Abstract (Basic): JP 56111258 A

A thin-film semiconductor device comprises a silicon nitride substrate or film, a silicon oxide formed on the silicon nitride substrate or film, a single crystal semiconductor film formed on the silicon oxide film, and active regions formed in the semiconductor film.

It is possible to prevent ionic contaminative materials from invading into a SiO2 film as an underlying layer because a Si3N4 film is formed on a substrate.

In an example a Si2N4 film and a SiO2 film are formed on a single crystal Si substrate. A polycrystalline Si film is deposited on the SiO2 film and crystallised by a laser beam to form a single crystal Si film doped with boron. A gate SiO2 film and a poly-Si gate electrode are formed on the single crystal Si film. An N+-type source and drain are formed in the single crystal Si film by ion implantation.

Title Terms: THIN; FILM; SEMICONDUCTOR; DEVICE; SINGLE; CRYSTAL; SEMICONDUCTOR; FILM; FORMING; SILICON; OXIDE; FILM; SILICON; NITRIDE; SUBSTRATE

Derwent Class: L03

International Patent Class (Additional): H01L-021/76; H01L-027/12;

H01L-029/78 File Segment: CPI

(9) 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭56—111258

Int. Cl.3

識別記号

广内整理番号

❸公開 昭和56年(1981)9月2日

H 01 L 27/12 21/76 29/78 6426—5 F 6426—5 F 6603—5 F

発明の数 1 審査請求 未請求

(全 3 頁)

匈薄膜半導体装置

②特 顧 昭55--160

②出

願 昭55(1980)1月7日

仰発 明 者 岩松誠一

川崎市高津区宮崎4丁目1番1 号超エル・エス・アイ技術研究 組合共同研究所内

⑪出 願 人 超エル・エス・アイ技術研究組

合

東京都港区三田一丁目 4 番28号 (三田国際ビルヂング21階)

個代 理 人 弁理士 薄田利幸

明 超 書

現明の名称 存譲半導体部置 毎許請求の額囲

1. シリコンナイトライドからなる基板又は酸の 上にシリコンオキサイド膜を介して単級品半導体 膜を形成すると共にとの半導体膜に活性傾域を形 成したことを特徴とする薄膜半導体装置。

発明の詳細な説明

本発明は、勝電体基板叉は勝電体製上に形成した単結晶半導体膜を用いて構成される薄膜半導体 装置に関する。

従来、単結晶81芸板上に810x膜を介して多 結晶81膜を形成した後、との多結晶81膜をレ ーザーピームで服射加熱しながら走査(いわゆる レーザーアニール)して単結晶化させ、との単結 晶化された81膜を用いて薄膜IGPBで(絶縁 ゲート電界効果トランジスタ)を構成するととは 丁でに知られている。

しかるに、とのようを半導体装置においては、 単結晶81膜の下地としての810、膜中に Na + 等のイオン性汚染物質が侵入し、IGFBIのスレッシュホールド電圧▼_{FB} 等の諸特性を変動させる不総合があつた。

本発明の目的は、とのよりな不都合をなくした 新規な薄膜半導体影響を提供するととにある。

本発明による装置は、シリコンナイトライドが イオン性汚染物質を阻止する性質を有することを 巧みに利用して単結晶半導体膜の下地膜としての 810。膜にイオン性汚染物質が侵入するのを防止 するようにしたことを特徴とするものであつて、 以下、経付図面に示す実施例について詳述する。

#1図は、本発明の一実施例による薄膜IG ▼ BIを示すもので、10は単結晶81 基板、11 は基板10上にC ▼ D 法等により0.1~2 μ m の 厚さに形成された81,3, 膜、12は81,3, 膜上 にC ▼ D 法等により形成された810, 膜である。 基板10は多結晶81であつてもよく、サファイ ア.石英等の砂塩体であつてもよい。

810, 膜上化は 0 ▼ D 法又は蒸光法等により多 結晶 8 1 膜又はアモルフアス 8 1 膜が被増され、

—257—

(2)

(1)

特閒昭56-111258(2)

この81膜はレーザービーム等で照射加熱しなが ち走査されるととにより単結晶81類13に変換 される。単結晶81度13は単結晶化の前叉は後 の欧階でポロン等のP型決定不細物をドープする ことによつてP型化される。

P型 8 1 膜 1 3 の表面には 熱生成法等によりゲート 記録 1 3 の表面には 熱生成法等によりゲート 記録 1 6 10 1 膜 1 4 が形成され、 8 10 2 膜 1 4 上には 0 7 D 法等により多結晶 8 1 膜 1 5 が 被増される。 この多結晶 8 1 膜 1 5 は所定のゲートパターンにしたがつてパターニングされ、 この後必要に応じて 8 1 膜 1 5 の下の 8 10 1 課 1 4 も 6 1 膜 1 5 をマスクとして選択エンチされる。 そして、 8 1 膜 1 5 及びその下の 8 10 1 部分をマスクとする選択的拡散処理又は選択的イオン打込処 域 1 7 が形成され、 これと同時に 8 1 膜 1 5 にも 8 単決定不純物がドープされるので 8 1 膜 1 5 が 8 単 型化(低低抗化)される。

上配した薄膜 I G P B T によれは、 基板 1 0 と 810, 膜 1 2 との間に 81, N。 膜 1 1 が介在して

(3)

形成したととである。このようにすると、810。 腺18の外側の単結晶81段部分134が81。8。 腺11と接触した形でアBT形成部を取開くよう になり、しかもこのような包囲構造はスクライブ ラインA、Bに沿つてスクライビングを行なつて 基板10を複数のチップ又はペレットに細分した 後も存続する。従つて、810。腺12の端縁をは 単結晶81膜部分134でかかわれてチップ端縁に 関呈されなくなり、毎1図の場合よりも一層大き なイオン性汚染防止効果を得ることができる。

部3凶は、本発明の更に他の実施的による神膜
IGPBTを示すもので、部1 図におけると同一
部分には同一符号を付してその詳細を散明を容略
する。部3 図の報酬の特徴とするところは、8 1
0 : 擬12にPBT形成部を取囲むように環状孔
を形成した後、第1 図について述べたような万法
によりPBT部を形成し、しかる後PBG(リン・
いるばれて行行ない。ここでアン・
シリケート・ガラス)などからなる保護関19 に
か述の810。膜12に形成した環状孔に対応した
環状孔を形成してから基板上に全面的に81。N。

イオン性汚染物質の810,膜12への侵入を閉止するようになつているので、810。解12上の単結晶81膜13に形成された活性領域としてのチャンネル領域がイオン性汚染物質によつで影響されるのを最小限におさえることができる。また、単結晶81膜13には、81。以4 膜11が函数でなく、810。膜12を介して接するようになつているので、界面電荷密度Q88が小さくなり、特性安定化上好ましい。ちなみに、81-81。以4 界面の場合のQ88は約1012/dであり、81-810。外面の場合のQ88は約2×1010/d である。

第2図は、本条男の他の契約例による輝度IG PBTを示すもので、毎1図におけると同一部分 には同一符号を付してその詳細な殷男を省略する。 第2図の装置の特徴は、810, 膜12のスクライ プラインA・Bに対応する個所にPBT形成部を 取置むように孔を形成した後、単語481膜13 を形成し且つPBT形成部を取囲むように過択線 化処理によりアイソレーション用810,膜18を

(4)

膜20を形成したととである。とのようにすると、81.8k。膜20が保護膜19及び810、膜12に形成した類状孔を介して基板製面の81.8k。 膜11 と接触するので、PBT部は81.8k。 膜11 及び20で全面的に包囲被覆される。従つて、前送した部1図及び銀2図の場合よりもさらに大きなイオン性汚染防止効果又はパッシベーション効果が得られるものである。

なか、上記突施例では基板表面に 81, N。 膜を 形成したが、基板そのものを 81, N。 材で構成し てもよく、との場合には基板表面に 81, N。 膜を 形成しなくてよい。

図面の簡単を説明

第1図,第2図及び第3図はそれぞれ不発明の 異なる実施例による複膜IG FBTを示す断面図 である。

10…基板、11…81。以4膜、12…810。 膜、13…単結晶81膜。

(6)

代理人 弁理士 薄田 彩

特開昭56-111258(3)

