382 Perfection

Diego Alfonso Prieto Torres - Sebastian Camilo Martinez Reyes 9 de diciembre de 2012

Índice

1.	Introducción	1
2.	Definición del Problema	2
	2.1. Objetivos	
	2.2. Precondición	
	2.3. Poscondición	
	2.4. Ejemplo	2
3.	Definición de conceptos	3
4.	Modelo de Solución	3
	4.1. Estrategia de Solución	3
5.	Conclusiones	4

1. Introducción

Este documento es una guia de solución dirigida a los estudiantes para el enunciado #382 Perfection del juez virtual UVA, se recomienda a los lectores hacer una previa revisión del enunciado del problema.

2. Definición del Problema

2.1. Objetivos

Los objetivos del programa con respecto al enunciado son:

Determinar si un numero dado es perfecto, abundante o deficiente.

2.2. Precondición

La entrada del programa es una lista de numeros enteros donde 0 es el fin de la lista, es decir no debe ser procesado.

2.3. Poscondición

la salida debe ser n lineas donde cada linea corresponde al siguiente formato:

```
PERFECTION OUTPUT
i-numero <Clasificacion>
...
...
END OF OUTPUT
```

donde i-numero representa al i-esimo numero de la lista recibida por entrada y <Clasificacion>={PERFECT,DEFICIENT,ABUNDANT}

2.4. Ejemplo

```
\\Input:
15 28 6 56 60000 22 496 0
\\Ouput:
PERFECTION OUTPUT
    15 DEFICIENT
    28 PERFECT
    6 PERFECT
    56 ABUNDANT
60000 ABUNDANT
```

22 DEFICIENT
496 PERFECT
END OF OUTPUT

3. Definición de conceptos

se define un divisor propio de n como aquellos numeros que dividen a n donde esos numeros estan entre: $1 \le x < n$.

se dice que un numero n es Perfecto si la suma de sus divisores propios es n, ejemplo: los divisores propios de 6 son 1,2,3 1+2+3=6. Se dice que un numero es abundante si la suma de sus divisores propios es mayor al numero y deficiente si es menor.

4. Modelo de Solución

4.1. Estrategia de Solución

Definimos el condjunto D_n asi:

$$D_n = \{ X \mid x | n \land x < n \mid X \}$$

definiremos los metodos perfecto, abundante y deficiente de la siguiente manera:

Perfecto.n \equiv (+i | i \in D_n : i) = n Abundante.n \equiv (+i | i \in D_n : i) > n Imperfecto.n \equiv (+i | i \in D_n : i) < n

Asi basta con verificar para cada uno de los elementos de la entrada estas expresiones.

5. Conclusiones

Este enunciado es un claro ejemplo de como podemos expresar de manera practica las definiciones del mundo de las matematicas en soluciones de software o programas, para responder preguntas simples como si un numero es perfecto abundante o deficiente para el caso de nuestro problema a poder responder expresiones mas complejas haciendo uso de los lenguajes de programacón.