Module 4 Answers Name : Rima Zinjuwadia

Answer - Q1.A

$$n = 20$$
, $p = \frac{1}{4}$

Answer - Q1.B

To find the probability of 8 or more employees fearing catching COVID-19 at work, we can use this equation : $P = X \ge 8 = \sum_{k=8}^{20} {n \choose k} p^k (1-p)^{n-k}$, and in the R we can use below commands,

> prob_less_than_8 <- pbinom(7, size = 20, prob = 0.25, lower.tail = TRUE)

> prob_less_than_8

[1] 0.8981881

> prob_8_or_more <- 1 - prob_less_than_8

> prob_8_or_more

[1] 0.1018119

Answer - Q1.C

> prob_exactly_4 <- dbinom(4, size = 20, prob = 0.25)

> prob_exactly_4

[1] 0.1896855

Answer – Q2.A

> prob_X_gt_4 <- 1 - pgamma(4, shape = 2, scale = 3)

> prob_X_gt_4

[1] 0.61506

Answer – Q2.B (i)

> n = 50000

> samples <- rgamma(n, shape = 2, scale = 3)

> proportion_gt_4 <- sum(samples > 4)/n

> proportion_gt_4

[1] 0.61424

Module 4 Answers Name : Rima Zinjuwadia

Answer – Q2.B (ii)

```
> estimated_mean <- mean(samples)
```

> estimated_mean

[1] 6.015659

Answer – Q3.A

```
> mu <- 9
```

- > standard_deviation <- sqrt(mu)
- > standard deviation

[1] 3

Answer – Q3.B

```
> prob_mu_plus_sigma <- ppois(mu + standard_deviation, lambda = mu)
```

- > prob_mu_minus_sigma <- ppois(mu standard_deviation, lambda = mu)
- > prob_within_1_std_dev <- prob_mu_plus_sigma prob_mu_minus_sigma
- > prob_within_1_std_dev

[1] 0.6689926

Answer - Q4

The exponential distribution of Y is modified by the transformation $x = \frac{1}{5}Y + 2$ as it incorporates both multiplication and addition. Although Y follows to an exponential distribution with a rate parameter. $\lambda = \frac{1}{5}$ the resulting variable x does not follow an exponential distribution due to the alteration in shape and size induced by the transformation. Generally, linear transformations do not maintain the original distribution of a random variable, and the resulting distribution of x will depend on the specific characteristics of the transformation.

Answer – Q5.A

```
> prob <- pnorm(7, mean = 6.7, sd = 0.6) - pnorm(6.5, mean = 6.7, sd = 0.6)
```

> prob

[1] 0.3220211

Module 4 Answers Name : Rima Zinjuwadia

$\underline{Answer-Q5.B}$

> n <- 65

> expected_Y <- prob * n

> expected_Y

[1] 20.93137