STATS 206 Applied Multivariate Analysis Lecture 6: Principal Components

Prathapasinghe Dharmawansa

Department of Statistics
Stanford University
Autumn 2013

Agenda

- Population principal components
- Sample principal components

Introduction

- A multivariate response may often have few dominant components accountable for system variability.
- Principal component analysis (PCA):
 - Investigating and identifying the modes of variation (based on the variance-covariance structure)
 - Objectives:
 - a. Dimension reduction
 - b. Interpretation and insight
 - Facilitating further analysis, such as multiple regression and cluster analysis, etc.

Population Principal Components (i)

Given p random variables X_1, \ldots, X_p

- Principal components:
 - Referring to particular linear combinations of X_1, \ldots, X_p
 - Representing the selection a new coordinate system obtained by rotating the original system with X_1, \ldots, X_p as the coordinate axes
 - Consequences: the new axes:
 - 1. Representing directions of maximum variability
 - 2. Providing a simpler and more parsimonious description of the covariance structure

Population Principal Components (ii)

Given a random vector $\mathbf{X} = [X_1, X_2, \dots, X_p]'$ with cov. matrix Σ ; Let $\lambda_1 \geq \lambda_1 \geq \dots \geq \lambda_p \geq 0$ be eigenvalues of Σ Consider the linear combinations:

$$Y_1 = \mathbf{a}_1' \mathbf{X} = a_{11} X_1 + a_{12} X_2 + \dots + a_{1p} X_p$$

 $Y_2 = \mathbf{a}_2' \mathbf{X} = a_{21} X_1 + a_{22} X_2 + \dots + a_{2p} X_p$
 \vdots \vdots
 $Y_p = \mathbf{a}_p' \mathbf{X} = a_{p1} X_1 + a_{p2} X_2 + \dots + a_{pp} X_p$

From previous analysis:

$$\Longrightarrow \operatorname{Var}(Y_i) = \mathbf{a}_i' \mathbf{\Sigma} \mathbf{a}_i, \quad i = 1, 2, \dots, p$$

$$\operatorname{Cov}(Y_i, Y_k) = \mathbf{a}_i' \mathbf{\Sigma} \mathbf{a}_k, \quad i, k = 1, 2, \dots, p$$

• Principal components refer to: the uncorrelated linear combinations Y_1, \ldots, Y_p with variances as large as possible (see V_1, \ldots, V_p)

Population Principal Components (iii)

- Principal components
 - The first principal component = $\mathbf{a}_1'\mathbf{X}$, where \mathbf{a}_1 is solution to the optimization problem:

$$\begin{cases} \max & \mathsf{Var}(\mathbf{a}_1'\mathbf{X}) \\ \mathsf{subject to} & \mathbf{a}_1'\mathbf{a}_1 = 1 \end{cases} \text{ or } \begin{cases} \max & \mathbf{a}_1'\mathbf{\Sigma}\mathbf{a}_1 \\ \mathsf{subject to} & \mathbf{a}_1'\mathbf{a}_1 = 1 \end{cases}$$

Note: \mathbf{a}_1 restricted to unit length; otherwise the maximum of $Var(\mathbf{a}_1'\mathbf{X})$ can go unbounded by scaling.

- The second principal component = $\mathbf{a}_2'\mathbf{X}$, where \mathbf{a}_2 is solution to the following problem:

$$\begin{cases} \max & \mathsf{Var}(\mathbf{a}_2'\mathbf{X}) \\ \mathsf{subject to} & \mathbf{a}_2'\mathbf{a}_2 = 1 \\ \mathsf{Cov}(\mathbf{a}_1'\mathbf{X}, \mathbf{a}_2'\mathbf{X}) = 0 \end{cases} \quad \text{or} \quad \begin{cases} \max & \mathbf{a}_2'\mathbf{\Sigma}\mathbf{a}_2 \\ \mathsf{subject to} & \mathbf{a}_2'\mathbf{a}_2 = 1 \\ \mathbf{a}_1'\mathbf{\Sigma}\mathbf{a}_2 = 0 \end{cases}$$

Population Principal Components (iv)

Principal components (Cont'd)

- In general, the *i*-th principal component = $\mathbf{a}_i'\mathbf{X}$, where \mathbf{a}_i comes from solution to the following:

$$\begin{cases} \max & \mathsf{Var}(\mathbf{a}_i'\mathbf{X}) \\ \mathsf{subject to} & \mathbf{a}_i'\mathbf{a}_i = 1 \\ & \mathsf{Cov}(\mathbf{a}_i'\mathbf{X}, \mathbf{a}_k'\mathbf{X}) = 0, \quad \mathsf{for } k < i \end{cases}$$

or
$$\begin{cases} \max & \mathbf{a}_i' \mathbf{\Sigma} \mathbf{a}_i \\ \text{subject to} & \mathbf{a}_i' \mathbf{a}_i = 1 \\ & \mathbf{a}_i' \mathbf{\Sigma} \mathbf{a}_k = 0, \quad \text{for } k < i \end{cases}$$

Population Principal Components (v)

Principal components (Cont'd)

• Important result:

Let random vector $\mathbf{X} = [X_1, X_2, \dots, X_p]'$ have cov. matrix Σ ; $(\lambda_1, \mathbf{e}_1), (\lambda_2, \mathbf{e}_2), \dots, (\lambda_p, \mathbf{e}_p)$: eigenvalue-eigenvector pairs of Σ ; $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p \geq 0$; then the *i*-th principal component is

$$Y_i = \mathbf{e}_i' \mathbf{X} = e_{i1} X_1 + e_{i2} X_2 + \ldots + e_{ip} X_p, \quad i = 1, 2, \ldots, p$$

With the above:
$$\begin{cases} \operatorname{Var}(Y_i) = \mathbf{e}_i' \mathbf{\Sigma} \mathbf{e}_i = \lambda_i, & i = 1, 2, \dots, p \\ \operatorname{Cov}(Y_i, Y_k) = \mathbf{e}_i' \mathbf{\Sigma} \mathbf{e}_k = 0, & \forall i \neq k \end{cases}$$

If some eigenvalues λ_i of Σ are equal, then the choices of the associated coefficient vectors \mathbf{e}_i , and hence Y_i , are not unique.

Population Principal Components (vi)

Proof (outline) for the result on previous page based on 1), 2) below

1)
$$\max_{\mathbf{a}\neq\mathbf{0}} \frac{\mathbf{a}'\mathbf{\Sigma}\mathbf{a}}{\mathbf{a}'\mathbf{a}} = \lambda_1$$
 (Known result; attained when $\mathbf{a} = \mathbf{e}_1$)

$$= \max_{\mathbf{a} \neq \mathbf{0}} \frac{\mathbf{a}' \mathbf{\Sigma} \mathbf{a}}{\|\mathbf{a}\|^2} = \max_{\frac{\mathbf{a}}{\|\mathbf{a}\|} \neq \mathbf{0}} \frac{\mathbf{a}'}{\|\mathbf{a}\|} \mathbf{\Sigma} \frac{\mathbf{a}}{\|\mathbf{a}\|} = \max_{\|\mathbf{a}\| = 1} \mathbf{a}' \mathbf{\Sigma} \mathbf{a} = \max_{\frac{\mathbf{a}' \mathbf{a} = 1}{\|\mathbf{a}\| = 1}} \mathbf{a}' \mathbf{\Sigma} \mathbf{a} = \max_{\mathbf{a}' \mathbf{a} = 1} \mathbf{a}' \mathbf{\Sigma} \mathbf{a}$$
our def. for the 1st PC

2)
$$\max_{\substack{\mathbf{a} \neq \mathbf{0} \\ \mathbf{a} \perp \mathbf{e}_k, \forall k < i}} \frac{\mathbf{a}' \mathbf{\Sigma} \mathbf{a}}{\mathbf{a}' \mathbf{a}} = \lambda_i, i = 2, \dots, p \text{ (Known result; maximizing } \mathbf{a} = \mathbf{e}_i)$$

$$= \max_{\substack{\mathbf{a'a} = 1 \\ \mathbf{a} \perp \mathbf{e}_k \\ \forall k < i}} \mathbf{a'} \mathbf{\Sigma} \mathbf{a} \overset{\mathsf{assuming}}{\Longrightarrow} \overset{\lambda_k > 0, \forall k < i}{\Longrightarrow} = \max_{\substack{\mathbf{a'a} = 1 \\ \mathbf{a'} \lambda_k \mathbf{e}_k = 0 \\ \forall k < i}} \mathbf{a'} \mathbf{\Sigma} \mathbf{a} = \max_{\substack{\mathbf{a'a} = 1 \\ \mathbf{a'} \Sigma \mathbf{e}_k = 0, \forall k < i}} \mathbf{a'} \mathbf{\Sigma} \mathbf{a}$$

(details omitted; see the textbook p. 432)

Population Principal Components (vii)

Clearly, from the previous result, we have the following:

Let random vector $\mathbf{X} = [X_1, X_2, \dots, X_p]'$ have covariance matrix Σ ; $(\lambda_1, \mathbf{e}_1), (\lambda_2, \mathbf{e}_2), \dots, (\lambda_p, \mathbf{e}_p)$: the eigenvalue-eigenvector pairs of Σ ; Here $\lambda_1 \geq \lambda_1 \geq \dots \geq \lambda_p \geq 0$. Let $Y_i = \mathbf{e}_i' \mathbf{X}, \quad i = 1, 2, \dots, p$, be the principal components. Then the total population variance is given by:

$$\sum_{i=1}^p \mathsf{Var}(X_i) = \sum_{i=1}^p \sigma_{ii} = \mathsf{trace}(\mathbf{\Sigma}) = \sum_{i=1}^p \lambda_i = \sum_{i=1}^p \mathsf{Var}(Y_i)$$

The proportion of total population variance due to the k-th PC is:

$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p} = \frac{\lambda_k}{\sum_{i=1}^p \lambda_i} \qquad k = 1, 2, \dots, p$$

Population Principal Components (viii)

 ho_{Y_i,X_k} : correlation coefficient between random variables Y_i , X_k

If $Y_i = \mathbf{e}_i' \mathbf{X}$, $i = 1, 2, \dots, p$, are the principal components obtained from the covariance matrix Σ of $\mathbf{X} = [X_1, \dots, X_p]'$, then we have:

$$\rho_{Y_i,X_k} = \frac{e_{ik}\sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}} \qquad i,k=1,2,\ldots,p$$

$$(\lambda_1,\mathbf{e}_1),(\lambda_2,\mathbf{e}_2),\ldots,(\lambda_p,\mathbf{e}_p)\text{: eigenvalue-eigenvector pairs of } \mathbf{\Sigma}$$

• Proof: Let $\mathbf{a}_k = [0, \dots, 0, 1, 0, \dots, 0]'$ with 1 at the k-th position. Then $X_k = \mathbf{a}_k' \mathbf{X}$ and $Cov(X_k, Y_i) = \mathbf{a}_k' \mathbf{\Sigma} \mathbf{e}_i$. Since $\mathbf{\Sigma} \mathbf{e}_i = \lambda_i \mathbf{e}_i$, $Cov(X_k, Y_i) = \mathbf{e}_i$ $\lambda_i \mathbf{a}_k' \mathbf{e}_i = \lambda_i e_{ik}$. Thus,

$$\rho_{Y_i,X_k} \triangleq \frac{\mathsf{Cov}(X_k,Y_i)}{\sqrt{\mathsf{Var}(Y_i)}\sqrt{\mathsf{Var}(X_k)}} = \frac{e_{ik}\sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}}; \quad i,k=1,\ldots,p \quad \blacksquare$$

Population Principal Components (ix) Principal Components Obtained from Standardized Variables

• Let $\mathbf{X} = [X_1, \dots, X_p]'$ have mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Consider the standardized variables:

$$Z_i = \frac{(X_i - \mu_i)}{\sqrt{\sigma_{ii}}}, i = 1, \dots, p$$

In matrix notation:

$$\mathbf{Z} = (\mathbf{V}^{1/2})^{-1}(\mathbf{X} - \boldsymbol{\mu})$$

$$\operatorname{recall} : \mathbf{V}^{1/2} = \begin{bmatrix} \sqrt{\sigma_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{\sigma_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\sigma_{pp}} \end{bmatrix}$$

$$\Longrightarrow \operatorname{Cov}(\mathbf{Z}) = (\mathbf{V}^{1/2})^{-1} \mathbf{\Sigma} (\mathbf{V}^{1/2})^{-1} = \boldsymbol{\rho} \text{ (correlation matrix)}$$

Population Principal Components (x) Principal Components Obtained from Standardized Variables

• Based on previous analysis, we have the following result:

Let standardized variables $\mathbf{Z} = [Z_1, Z_2, \dots, Z_p]'$ have cov. matrix $\overline{\boldsymbol{\rho}}$. $(\lambda_1, \mathbf{e}_1), (\lambda_2, \mathbf{e}_2), \dots, (\lambda_p, \mathbf{e}_p)$ are eigenvalue-eigenvector pairs of $\boldsymbol{\rho}$ and $\lambda_1 \geq \lambda_1 \geq \dots \geq \lambda_p \geq 0$. The *i*-th principal component of \mathbf{Z} is

$$Y_i = \mathbf{e}_i' \mathbf{Z} = \mathbf{e}_i' (\mathbf{V}^{1/2})^{-1} (\mathbf{X} - \boldsymbol{\mu}) \quad i = 1, 2, \dots, p$$

$$Y_i = \mathbf{e}_i' \mathbf{Z} = \mathbf{e}_i' (\mathbf{V}^{1/2})^{-1} (\mathbf{X} - \boldsymbol{\mu}) \quad i = 1, 2, \dots, p$$

$$\sum_{i=1}^p \mathsf{Var}(Y_i) = \sum_{i=1}^p \mathsf{Var}(Z_i) = p; \; \rho_{Y_i, Z_k} = e_{ik} \sqrt{\lambda_i}, i, k = 1, \dots, p$$

- Note:
 - 1. Principal components from Σ and from ρ are different (no simple relation)
 - 2. Principal component analysis depends on scales of X. Standardization is needed when we want to remove the effect of scaling.

Example 1 — Part (1)

Calculating the Population Principal Components

• Let random vector $\mathbf{X} = [X_1, X_2, X_3]'$ have the covariance matrix

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

The eigenvalue-eigenvector pairs can be shown to be:

$$\begin{cases} \lambda_1 = 5.8284 \\ \mathbf{e}_1 = \begin{bmatrix} 0.3827 \\ -0.9239 \\ 0 \end{bmatrix} \end{cases} \begin{cases} \lambda_2 = 2 \\ \mathbf{e}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{cases} \begin{cases} \lambda_3 = 0.1716 \\ \mathbf{e}_3 = \begin{bmatrix} 0.9239 \\ 0.3827 \\ 0 \end{bmatrix} \end{cases}$$

Thus, the principal components are given by

$$Y_1 = \mathbf{e}_1' \mathbf{X} = 0.3827 X_1 - 0.9239 X_2, \quad Y_2 = \mathbf{e}_2' \mathbf{X} = X_3$$

 $Y_3 = \mathbf{e}_3' \mathbf{X} = 0.9239 X_1 + 0.3827 X_2$

Example 1 — Part (2)

Calculating the Population Principal Components

(Cont'd)

$$\mathbf{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Results presented earlier can be demonstrated, e.g.,

$$\begin{aligned} \mathsf{Var}(Y_1) =& \mathsf{Var}(0.3827X_1 - 0.9239X_2) \\ =& (0.3827)^2 \mathsf{Var}(X_1) + (-0.9239)^2 \mathsf{Var}(X_2) \\ & + 2(0.3827)(-0.9239) \mathsf{Cov}(X_1, X_2) \\ =& 5.8284 = \lambda_1 \\ \mathsf{Cov}(Y_1, Y_2) =& \mathsf{Cov}(0.3827X_1 - 0.9239X_2, X_3) \\ =& 0.3827 \mathsf{Cov}(X_1, X_3) - 0.9239 \mathsf{Cov}(X_2, X_3) = 0 \end{aligned}$$

Example 1 — Part (3)

Calculating the Population Principal Components

(Cont'd)

$$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{cases} \lambda_1 = 5.8284 \\ e_1 = \begin{bmatrix} 0.3827 \\ -0.9239 \\ 0 \end{bmatrix} \end{cases} \begin{cases} \lambda_2 = 2 \\ e_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{cases} \begin{cases} \lambda_3 = 0.1716 \\ e_3 = \begin{bmatrix} 0.9239 \\ 0.3827 \\ 0 \end{bmatrix}$$

Results presented earlier can be demonstrated, e.g.,

$$\sigma_{11} + \sigma_{22} + \sigma_{33} = 1 + 5 + 2 = \lambda_1 + \lambda_2 + \lambda_3 = 5.8284 + 2 + 0.1716$$

Proportion of total variance from the 1st PC $=\frac{\lambda_1}{\sum_{i=1}^3 \lambda_i} = \frac{5.8284}{8} = 0.7286$

Proportion of total variance from the first two PCs = $\frac{5.8284+2}{8}$ = 0.9786 Correlation coefficients, e.g.:

$$\rho_{Y_1, X_2} = \frac{e_{12}\sqrt{\lambda_1}}{\sqrt{\sigma_{22}}} = \frac{(-0.9239)\sqrt{5.8284}}{\sqrt{5}} = -0.9975$$

Example 2 — Part (1)

Principal Components from Σ and ρ are Different

• Given the covariance matrix Σ of X, we derive the correlation matrix ρ (or the covariance matrix of the standardized variables Z)

$$\Sigma = \begin{bmatrix} 1 & 4 \\ 4 & 100 \end{bmatrix} \Longrightarrow \boldsymbol{\rho} = \begin{bmatrix} 1 & 0.4 \\ 0.4 & 1 \end{bmatrix}$$

ullet The eigenvalue-eigenvector pairs for Σ :

$$\lambda_1 = 100.16, \quad \mathbf{e}_1 = [0.040 \quad 0.999]'$$
 $\lambda_2 = 0.84, \quad \mathbf{e}_2 = [0.999 \quad -0.040]'$

PCs from Σ : $Y_1 = 0.040X_1 + 0.999X_2$; $Y_2 = 0.999X_1 - 0.040X_2$ The first PC here explains a portion

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = \frac{100.16}{101} = 0.992$$

of the total population variance.

Example 2 — Part (2)

Principal Components from Σ and ρ are Different

ullet The eigenvalue-eigenvector pairs for $Cov({f Z})$ of standardized ${f Z}$:

$$Cov(\mathbf{Z}) = \boldsymbol{\rho} = \begin{bmatrix} 1 & 0.4 \\ 0.4 & 1 \end{bmatrix} \Longrightarrow \begin{cases} \lambda_1 = 1.4, & \mathbf{e}_1 = [0.707 & 0.707]' \\ \lambda_2 = 0.6, & \mathbf{e}_2 = [0.707 & -0.707]' \end{cases}$$

PCs from ρ :

$$Y_{1} = 0.707Z_{1} + 0.707Z_{2} = 0.707 \left(\frac{X_{1} - \mu_{1}}{\sqrt{1}}\right) + 0.707 \left(\frac{X_{2} - \mu_{2}}{\sqrt{100}}\right)$$

$$= 0.707(X_{1} - \mu_{1}) + 0.0707(X_{2} - \mu_{2})$$

$$Y_{2} = 0.707Z_{1} - 0.707Z_{2} = 0.707 \left(\frac{X_{1} - \mu_{1}}{\sqrt{1}}\right) - 0.707 \left(\frac{X_{2} - \mu_{2}}{\sqrt{100}}\right)$$

$$= 0.707(X_{1} - \mu_{1}) - 0.0707(X_{2} - \mu_{2})$$

In contrast, here the first PC explains a portion $\frac{\lambda_1}{p} = \frac{1.4}{2} = 0.7$ of the total (standardized) population variance.

Example 3 — The Multivariate Normal Case

• Recall:

 $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Longrightarrow$ Constant density of \mathbf{X} on the $\boldsymbol{\mu}$ -centered ellipsoids

$$(\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$$

- Axes $\pm\sqrt{\lambda_i}\mathbf{e}_i$; (λ_i,\mathbf{e}_i) 's: eigenvalue-eigenvector pairs of Σ
- ullet For convenience, let $\mu=0$. Then we have

$$c^{2} = \mathbf{x}' \mathbf{\Sigma}^{-1} \mathbf{x} = \frac{1}{\lambda_{1}} (\underbrace{\mathbf{e}'_{1} \mathbf{x}}_{y_{1}})^{2} + \frac{1}{\lambda_{2}} (\underbrace{\mathbf{e}'_{2} \mathbf{x}}_{y_{2}})^{2} + \dots + \frac{1}{\lambda_{p}} (\underbrace{\mathbf{e}'_{p} \mathbf{x}}_{y_{p}})^{2}$$
$$= \frac{1}{\lambda_{1}} y_{1}^{2} + \frac{1}{\lambda_{2}} y_{2}^{2} + \dots + \frac{1}{\lambda_{p}} y_{p}^{2}$$

where $y_i = \mathbf{e}_i' \mathbf{x}, i = 1, \dots, p$, are principal components of \mathbf{x}

→Here the PCs lie in the directions of the axes of a constant density ellipsoid!

Example 3 — The Multivariate Normal Case

An Illustration (p=2)

Sample Principal Components (i)

- Let the data $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be n independent drawings from a p-dimensional population with mean μ and covariance matrix Σ .
 - \Longrightarrow Sample mean $\overline{\mathbf{x}}$, sample cov. matrix \mathbf{S} and sample corr. matrix \mathbf{R}
- Objective: to construct uncorrelated linear combinations of the measured characteristics that account for much of the variation in the sample
- Sample principal components: uncorrelated linear combinations with the largest variances

<u>Note</u>: Analyzing the sample PCs is similar to analyzing the population PCs, with Σ and ρ replaced by S and R.

Sample Principal Components (ii)

- Sample principal components:
 - The 1st sample principal component = $\mathbf{a}_1'\mathbf{x}_j$, where \mathbf{a}_1 maximizes the sample variance of $\mathbf{a}_1'\mathbf{x}_j$ subject to $\mathbf{a}_1'\mathbf{a}_1 = 1$
 - The 2nd sample principal component = $\mathbf{a}_2'\mathbf{x}_j$, where \mathbf{a}_2 maximizes the sample variance of $\mathbf{a}_2'\mathbf{x}_j$ subject to $\mathbf{a}_2'\mathbf{a}_2 = 1$ and zero sample covariance for the pair $(\mathbf{a}_1'\mathbf{x}_i, \mathbf{a}_2'\mathbf{x}_i)$
 - In general, the *i*-th sample principal component = $\mathbf{a}_i'\mathbf{x}_j$, where \mathbf{a}_i maximizes the sample variance of $\mathbf{a}_i'\mathbf{x}_j$ subject to $\mathbf{a}_i'\mathbf{a}_i = 1$ and zero sample covariances for all pairs $(\mathbf{a}_i'\mathbf{x}_j, \mathbf{a}_k'\mathbf{x}_j), k < i$

Sample Principal Components (iii)

Important result:

If $\mathbf{S}_{p \times p}$ is the sample cov. matrix with eigenvalue-eigenvector pairs $(\widehat{\lambda}_1, \widehat{\mathbf{e}}_1), (\widehat{\lambda}_2, \widehat{\mathbf{e}}_2), \dots, (\widehat{\lambda}_p, \widehat{\mathbf{e}}_p)$, then the i-th sample PC is given by: $\widehat{y}_i = \widehat{\mathbf{e}}_i' \mathbf{x} = \widehat{e}_{i1} x_1 + \widehat{e}_{i2} x_2 + \dots + \widehat{e}_{ip} x_p, \quad i = 1, 2, \dots, p$

$$\widehat{y}_i = \widehat{\mathbf{e}}_i' \mathbf{x} = \widehat{e}_{i1} x_1 + \widehat{e}_{i2} x_2 + \ldots + \widehat{e}_{ip} x_p, \quad i = 1, 2, \ldots, p$$

where $\widehat{\lambda}_1 \geq \ldots \geq \widehat{\lambda}_p \geq 0$ and \mathbf{x} is any observation on X_1, \ldots, X_p .

$$\begin{cases} \text{Sample variance } (\widehat{y}_i) = \widehat{\lambda}_i, & i = 1, \dots, p \\ \text{Sample covariance } (\widehat{y}_i, \widehat{y}_k) = 0, & \forall i \neq k \end{cases} \\ \text{Total sample variance } = \sum_{i=1}^p s_{ii} = \sum_{i=1}^p \widehat{\lambda}_i \\ \text{Correlation coefficient: } r_{\widehat{y}_i, x_k} = \frac{\widehat{e}_{ik} \sqrt{\widehat{\lambda}_i}}{\sqrt{s_{kk}}} & i, k = 1, \dots, p \end{cases}$$

Sample Principal Components (iv) How Many Sample Principal Components to Use?

- A visual aid the scree plot: plotting $\widehat{\lambda}_i$ vs. i, for all i Finding the "elbow": here around i=3 (eigenvalues after $\widehat{\lambda}_2$ are small)
- In this case, without any other evidence, 2 (or 3) sample PCs will be effective in summarizing the total sample variance.

Example 4 — Part (1) Summarizing Sample Variability with One Sample PC

ullet Data: natural logarithm of p=3 dimensions of n=24 male turtles

Male Turtle Data								
No	Length	Width	Height	No	Length	Width	Height	
	(ln)	(ln)	(ln)		(ln)	(ln)	(ln)	
1	4.5326	4.3041	3.6109	13	4.7536	4.4998	3.7612	
2	4.5433	4.3567	3.5553	14	4.7622	4.4998	3.7136	
3	4.5643	4.3820	3.5553	15	4.7622	4.5109	3.7136	
4	4.6151	4.4308	3.6636	16	4.7791	4.5326	3.7136	
5	4.6250	4.4427	3.6376	17	4.7875	4.4886	3.6889	
6	4.6347	4.3944	3.6109	18	4.7875	4.5326	3.7842	
7	4.6444	4.4188	3.6636	19	4.7958	4.5539	3.7377	
8	4.6634	4.4188	3.6636	20	4.8283	4.5326	3.8067	
9	4.6728	4.4067	3.6376	21	4.8442	4.5643	3.8067	
10	4.7185	4.4886	3.6889	22	4.8520	4.5539	3.8067	
11	4.7274	4.4773	3.6889	23	4.8752	4.5539	3.8286	
12	4.7362	4.4543	3.6889	24	4.9053	4.6634	3.8501	

Example 4 — Part (2)

Summarizing Sample Variability with One Sample PC

• Sample mean and cov. matrix from the data:

$$\overline{\mathbf{x}} = \begin{bmatrix} 4.725 \\ 4.778 \\ 3.703 \end{bmatrix}, \quad \mathbf{S} = 10^{-3} \begin{bmatrix} 11.072 & 8.019 & 8.160 \\ 8.019 & 6.417 & 6.005 \\ 8.160 & 6.005 & 6.773 \end{bmatrix}$$

ullet Sample principal component analysis: (Based on eigenvalue decomposition of S)

Variable	$\widehat{\mathbf{e}}_1$	$\widehat{\mathbf{e}}_2$	$\widehat{\mathbf{e}}_3$
$\ln(length)$	0.683	-0.159	-0.713
$\ln(width)$	0.510	-0.594	0.622
$\ln(height)$	0.523	0.788	0.324
Variance $\widehat{\lambda}_i$	23.30×10^{-3}	0.60×10^{-3}	0.36×10^{-3}
% of total var.	96.05	2.47	1.48

e.g., from the table,
$$\widehat{\lambda}_1 = 23.30 \times 10^{-3}$$
, $\widehat{\mathbf{e}}_1 = [0.683 \ 0.510 \ 0.523]'$

Example 4 — Part (3) Summarizing Sample Variability with One Sample PC

(Cont'd)

Variable	$\widehat{\mathbf{e}}_1$	$\widehat{\mathbf{e}}_2$	$\widehat{\mathbf{e}}_3$
$\ln(length)$	0.683	-0.159	-0.713
$\ln(width)$	0.510	-0.594	0.622
$\ln(height)$	0.523	0.788	0.324
Variance $\widehat{\lambda}_i$	23.30×10^{-3}	0.60×10^{-3}	0.36×10^{-3}
% of total var.	96.05	2.47	1.48

The first principal component is given by:

$$\hat{y}_1 = 0.683 \ln(\text{length}) + 0.510 \ln(\text{width}) + 0.523 \ln(\text{height})$$

which accounts for 96.05% of the total sample variance.

Example 4 — Part (4) Summarizing Sample Variability with One Sample PC

• The scree plot for the male turtle data: suggesting one dominant PC is effective in summarizing the total variance

Sample Principal Components (v)

Standardizing the Sample PCs

Standardization: Construct the following

$$\mathbf{Z}_{j} = (\mathbf{D}^{1/2})^{-1}(\mathbf{x}_{j} - \overline{\mathbf{x}})$$

$$\mathbf{D}^{1/2} = \begin{bmatrix} \sqrt{s_{11}} & 0 & \dots & 0 \\ 0 & \sqrt{s_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{s_{pp}} \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} \mathbf{Z}'_{1} \\ \mathbf{Z}'_{2} \\ \vdots \\ \mathbf{Z}'_{n} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1p} \\ z_{21} & z_{22} & \dots & z_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & \dots & z_{np} \end{bmatrix}$$

Sample Principal Components (vi)

Standardizing the Sample PCs

• It can be shown that the sample mean and covariance matrix are:

$$\overline{\mathbf{z}} = \frac{1}{n} \mathbf{Z}' \mathbf{1} = \mathbf{0}$$

$$\mathbf{S}_z = \frac{1}{n-1} (\mathbf{Z} - \frac{1}{n} \mathbf{1} \mathbf{1}' \mathbf{Z})' (\mathbf{Z} - \frac{1}{n} \mathbf{1} \mathbf{1}' \mathbf{Z})$$

$$= \frac{1}{n-1} (\mathbf{Z} - \mathbf{1} \overline{\mathbf{z}}')' (\mathbf{Z} - \mathbf{1} \overline{\mathbf{z}}') = \frac{1}{n-1} \mathbf{Z}' \mathbf{Z}$$

$$= \begin{bmatrix}
1 & \frac{s_{12}}{\sqrt{s_{11}} \sqrt{s_{22}}} & \cdots & \frac{s_{1p}}{\sqrt{s_{11}} \sqrt{s_{pp}}} \\
\frac{s_{12}}{\sqrt{s_{11}} \sqrt{s_{22}}} & 1 & \cdots & \frac{s_{2p}}{\sqrt{s_{22}} \sqrt{s_{pp}}}
\end{bmatrix} = \mathbf{R}$$

$$\vdots & \vdots & \ddots & \vdots \\
\frac{s_{1p}}{\sqrt{s_{11}} \sqrt{s_{pp}}} & \frac{s_{2p}}{\sqrt{s_{22}} \sqrt{s_{pp}}} & \cdots & 1$$

Sample Principal Components (vii)

Standardizing the Sample PCs

• Similarly, we have the following result:

If $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ are standardized observations with covariance matrix \mathbf{R} , then the *i*-th sample principal component is given by:

$$\widehat{y}_i = \widehat{\mathbf{e}}_i' \mathbf{z} = \widehat{e}_{i1} z_1 + \widehat{e}_{i2} z_2 + \ldots + \widehat{e}_{ip} z_p, \quad i = 1, 2, \ldots, p$$

 $(\widehat{\lambda}_i, \widehat{\mathbf{e}}_i)$: *i*-th eigenvalue-eigenvector pair of \mathbf{R} , $\widehat{\lambda}_1 \geq \ldots \geq \widehat{\lambda}_p \geq 0$

$$\begin{cases} \text{Sample variance } (\widehat{y}_i) = \widehat{\lambda}_i, & i = 1, \dots, p \\ \text{Sample covariance } (\widehat{y}_i, \widehat{y}_k) = 0, & \forall i \neq k \\ \text{Total (standardized) sample variance } = \operatorname{trace}(\mathbf{R}) = p = \sum_{i=1}^p \widehat{\lambda}_i \\ \text{Correlation coefficient: } r_{\widehat{y}_i, z_k} = \widehat{e}_{ik} \sqrt{\widehat{\lambda}_i}, & i, k = 1, \dots, p \end{cases}$$

Sample Principal Components (viii)

Large Sample Inferences – (1)

Large sample properties of $\widehat{\lambda}_i$ and $\widehat{\mathbf{e}}_i$

- Assumptions here:
 - Observations X_1, \ldots, X_n : a normal random sample
 - Eigenvalues of the unknown covariance matrix Σ of the normal distribution are positive and distinct: $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$
- Results ([Anderson 63][Girshick 39]): Define $\widehat{\lambda} = [\widehat{\lambda}_1, \dots, \widehat{\lambda}_p]'$
 - 1. Let Λ be the diagonal matrix with entries $\lambda_1, \ldots, \lambda_p$ from Σ . Then $\sqrt{n}(\widehat{\lambda} \lambda)$ is approximately $N_p(\mathbf{0}, 2\Lambda)$.
 - 2. Let

$$\mathbf{E}_i \triangleq \lambda_i \sum_{k=1, k \neq i}^p \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} \mathbf{e}_k \mathbf{e}_k' \implies \sqrt{n} (\widehat{\mathbf{e}}_i - \mathbf{e}_i) \stackrel{\mathsf{approx.}}{\sim} N_p(\mathbf{0}, \mathbf{E}_i)$$

3. Each $\widehat{\lambda}_i$ is distributed independently of the elements of the associated $\widehat{\mathbf{e}}_i$.

Sample Principal Components (ix)

Large Sample Inferences – (2)

- Result 1 implies that
 - $\begin{array}{l} -\ \widehat{\lambda}_i \text{'s: independent; each } \widehat{\lambda}_i \text{: approximately } \sim N(\lambda_i, 2\lambda_i^2/n) \\ \Longrightarrow P[|\widehat{\lambda}_i \lambda_i| \leq z(\alpha/2)\lambda_i\sqrt{2/n}] = 1 \alpha \\ \text{A large sample } 100(1-\alpha)\% \text{ confidence interval for } \lambda_i \text{ is:} \end{array}$

$$\frac{\widehat{\lambda}_i}{1 + z(\alpha/2)\sqrt{2/n}} \le \lambda_i \le \frac{\widehat{\lambda}_i}{1 - z(\alpha/2)\sqrt{2/n}}$$

where $z(\alpha/2)$ is the upper $100(\alpha/2)$ th percentile of N(0,1)Bonferroni-type intervals for m λ_i 's: replacing $z(\alpha/2)$ by $z(\alpha/2m)$

- Result 2 \Longrightarrow $\widehat{\mathbf{e}}_i$: normally distributed around \mathbf{e}_i for large samples, $\forall i$
 - Elements of $\widehat{\mathbf{e}}_i$: correlated; This correlation depends on n and differences among (unknown) λ_i 's
 - Approximate standard errors for \widehat{e}_{ik} 's are given by the square roots of the diagonal elements of $\frac{1}{n}\widehat{\mathbf{E}}_i$, where $\widehat{\mathbf{E}}_i$ is derived from \mathbf{E}_i by $\widehat{\lambda}_i \leftarrow \lambda_i$ and $\widehat{\mathbf{e}}_i \leftarrow \mathbf{e}_i$, for all i

Sample Principal Components (x)

Testing for the Equal Correlation Structure

Testing
$$H_0: \boldsymbol{\rho} = \underbrace{\boldsymbol{\rho}_0}_{p \times p} = \begin{bmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \dots & 1 \end{bmatrix}$$
 versus $H_1: \boldsymbol{\rho} \neq \boldsymbol{\rho}_0$

- Motivation of the test: if H_0 holds, then eigenvalues of Σ are not distinct, and thus previous results do not apply!
- <u>Lawley's procedure</u> for the test:
 Let

$$\overline{r}_k = \frac{1}{p-1} \sum_{i=1, i \neq k}^p r_{ik}, k = 1, 2, \dots, p; \quad \overline{r} = \frac{2}{p(p-1)} \sum_k \sum_{i < k} r_{ik}$$

 \overline{r}_k : average off-diagonal elements in the k-th column (or row) of \mathbf{R} \overline{r} : overall average of off-diagonal elements of \mathbf{R}

Sample Principal Components (xi) Testing for the Equal Correlation Structure

Lawley's procedure (Cont'd)

Further let

$$\widehat{\gamma} = \frac{(p-1)^2 [1 - (1 - \overline{r})^2]}{p - (p-2)(1 - \overline{r})^2}$$

Then the large sample approximate α -level test is to reject H_0 in favor of H_1 if

$$T = \frac{n-1}{(1-\overline{r})^2} \left[\sum_{k} \sum_{i < k} (r_{ik} - \overline{r})^2 - \widehat{\gamma} \sum_{k=1}^p (\overline{r}_k - \overline{r})^2 \right] > \chi^2_{(p+1)(p-2)/2}(\alpha)$$