Duale Hochschule Baden-Württemberg Mannheim

Geld und Währung

Dr. Johannes Reeg (M.Sc.)

Kapitel 4

IV. Wie eine Zentralbank makroökonomische Zielgrößen beeinflussen kann:

Das IS/MP/PC-Modell

Das IS/MP/PC-Modell

- IS-Kurve
- Neu Keynesianische Phillips-Kurve
- Geldpolitik: beschrieben durch Verlustfunktion (loss function)

$$y = a - b \cdot r + \varepsilon_1$$

$$\pi = \pi^e + \mathbf{d} \cdot \mathbf{y} + \varepsilon_2$$

$$L = (\pi - \pi_0)^2 + \lambda \cdot Y^2$$

3 Modellbausteine (I)

1. IS-Kurve $y = a - b \cdot r + \varepsilon_1$

- **y**: Output-Lücke (*output gap*), d.h. prozentuale Abweichung des Outputs vom Vollbeschäftigungswert: $\frac{Y-Y^V}{Y^V}$, wobei Y^V das Vollbeschäftigungseinkommen darstellt
- **a**: autonome Nachfragekomponente
- **b**: (Real-)zinselastizität
- **r**: Realzins
- ε_:exogener Nachfrageschock
- Notenbank steuert r und nicht Geldmenge (M). Dies ist möglich, da sie im Basismodell glaubhaft ist, d.h. $\pi_e = \pi_0$, wobei π_0 die Zielinflation der Notenbank ist
- Fisher-Gleichung: $i = r + \pi e$ bzw. $i = r + \pi_0$
- Da π_0 = konst., kann Notenbank durch Steuerung von i gleichzeitig r perfekt steuern.

3 Modellbausteine (II)

2. Phillips-Kurve

$$\pi = \pi^e + \mathbf{d} \cdot \mathbf{y} + \varepsilon_2$$

- π : Inflations rate
- π^e : erwartete Inflationsrate
- **d**: Steigung der Phillips-Kurve
- $arepsilon_2$ Angebotsschock

3 Modellbausteine (III)

3. Loss-Funktion

$$L = (\pi - \pi_0)^2 + \lambda \cdot Y^2$$

- L: geldpolitischer (Wohlfahrts-) Verlust
- λ : Präferenzparameter, der relative Gewichtung des Output- bzw. Inflationsziels der Notenbank bestimmt
- Bliss-point der Notenbank erreicht bei $\pi = \pi_0$ sowie y = 0.
- Minimierung der Loss-Funktion stellt "optimale" Politik dar.
- Wie sollte Notenbank also gemäß dieser optimalen Politik handeln bzw. welche Politikergebnisse sind zu erwarten bei gegebenen Schocks?

Ein einfaches Modell für die Analyse von Geldpolitik

Nachfrageschock

Negativer Nachfrageschock verschiebt die IS-Kurve nach links

Nachfrageschock senkt Inflationsrate und führt zu negativer Output gap

Zentralbank reagiert auf den Nachfrageschock mit Realzinssenkung

Zentralbank kann den Schock vollständig kompensieren. Kein trade-off zwischen Inflation und Output (oder Arbeitslosigkeit)

Angebotsschock

Preissteigernder Angebotsschock (z.B. höhere Ölpreise) verschiebt Phillips-Kurve nach links

Alternative I: Stabilisieren der Inflationsrate durch Anhebung des Realzinses

Alternative II: Stabilisieren des Outputs durch Konstant Halten des Realzinses

Optimale Geldpolitik wird von Verlustfunktion und damit den Präferenzen (d.h. λ) der Notenbank bestimmt

 Optimales Resultat kann graphisch als Tangentialpunkt zwischen neuer Phillips-Kurve und Verlustkreis (C) bestimmt werden:

$$L = (\pi - \pi_0)^2 + \lambda \cdot Y^2$$

• Kreisformel

$$1 = \frac{(\pi - \pi_0)^2}{(\sqrt{L})^2} + \frac{(y - 0)^2}{(\sqrt{L/\lambda})^2}$$

Zusatz: Eine dynamische Version des IS/MP/PC-Modells

Phillips-Kurve

$$\pi_t = \pi_{t-1} + \alpha y_{t-1} + \eta_t$$

> IS-Kurve

$$y_{t} = \gamma y_{t-1} - \beta r_{t-1} + \varepsilon_{t}$$

Der Transmissionsprozess im dynamischen Modell

$$r_t \rightarrow y_{t+1} \rightarrow \pi_{t+2}$$
 $+1$
 $+2$

Dynamik eines Nachfrageschocks

Dynamik eines Angebotsschocks

