## Lecture 4

- Lecture 4
  - Network Management Components
  - Key Concept "Manager" & "Agent"
  - Network Devices
  - Components of Agent
    - Agent
    - Agent Part 1 Management interface
  - Management Information
  - Agent Part 2 MIB
  - Agent Part 3 Core Agent logic
  - Managed Object vs. Real Resource
  - Network Management System (NMS)
  - Distributed Network Management
  - Management Proxy and Hierarchy
  - Manager Agent MIB Relationship
  - Concept of Management Network
  - Connecting NMS to Network Devices
  - In-band vs Out-of-band Management Network
  - Dedicated Management Network: Pros & Cons
  - the Non-Technical aspects
    - Network Management Fundamentals Pages 93-97
  - Management Support Organization Tasks
  - Management Support Organization Structure

## **Network Management Components**

- Network devices
  - Managed devices/network elements
- Network management system (NMS)
  - An integrated set of tools for management
- Management network
  - Interconnecting managing and managed entities
- · Management support organization
  - Running the network using the management technologies



## Key Concept - "Manager" & "Agent"

- Network management system (NMS) includes management applications
  - Each management application is a manager
  - An NMS can involve multiple managers
- Network devices come with software component that implements a management interface.
  - These components would be knowwn as an agent
  - Network devices can have multiple agents for different management functions (i.e reading data, configuring, etc.)
- Manager agent communication
  - Manager is in charge
  - Agent plays a support role



#### **Network Devices**

- Also called network elements that includes the following:
  - 1. Switches

- 2. Routers
- 3. Gateways
- 4. Can potentially include network operated servers.
- MUST HAVE a management interface
  - Allowing the management system to send messages to a device (request to configure, retrieve status data)
  - Allowing a device to send messages to the management system (response to request, unexpected event alarm, etc.)

## Components of Agent

#### Agent

The software that implements the management interface for that device. This device *IS NOT* a network device, However, it represents the device when communicating with a management application (manager)

Conceptually an agent consists of three main parts:

- 1. Management interface
- 2. Management Information Base (MIB)
- 3. Core agent logic.



#### Agent Part 1 - Management interface

The management interface handles management communications by *supporting a management protocol* (Rules of communication) for manager-agent communication.

With the management interface:

- Management application (manager) can open or terminate a management session with the Agent
- Manager can make management requests to the agent (requests for data, change configuration, etc.)
- The *agent can send messages* to the manager (alert of loss of communication with another device for example.)



## Management Information

An agent has a management information base (MIB)

Management information provides an abstraction of real-world aspects of devices for management purposes such as:

- 1. Version of installed software
- 2. Utilization of ports
- 3. Device temperature, voltage
- 4. Protocol timeout parameters
- 5. Firewall rules

## Agent Part 2 - MIB

MIB is a conceptual data store that contains a management view of the device being managed.

- Conceptual data stored in MIB management information
- Agent MIB information local to the device
- Manager MIB information of all managed devices

#### THE MIB IS NOT A REAL DATABASE

 An agent MIB is a "virtual" database containing management infromation - just a way to view nad organize information.

#### **EXAMPLE OF MIB:**

- Ports of a router represented as a table in an imaginary database
- Each port having a corresponding entry in the table
- Columns contain conceptual attributes corresponding to actual porperties of the port.

If a device has multiple agents, each agent could have a different MIB - different views and abstraction of information

MIB provides a foundation for network management operations

- Management operations are based on management communications
- Management communications are about exchaning information





## Agent Part 3 - Core Agent logic

The core agent logic *translates* between the operation of the management interface, the MIB, and the actual device.

#### **EXAMPLE**:

- 1. Manager sends a request to "retrieve a counter" into an Agent
- 2. The core agent logic receives the request through the management interface

- 3. Core agent logic *checks MIB* for the referred counter.
- 4. Core agent logic translates the request into an operation that reads out the corresponding hardware register of the device.



## Managed Object vs. Real Resource

A managed object (MO) is a chunk of management infromation that represents one of the real-world aspects of a network device.

An MO could represent:

- 1. Device fan along with its operational state
- 2. Port along with a set of statistical data
- 3. Firewall rule

The real-world object that an MO represents is generally referred to as the "real resource"

 Same real resource can be abstracted in different ways corresponding to different and possibly coexisting MOs

Q: can you give an analogy of different abstractions of the same object?

A person's title will change depending on who you ask with each title representing a different abstraction of the same object

## Network Management System (NMS)

- NMS provides the tools to manage a network including the following:
  - Network monitoring application & network analyzers
  - Service Provisioning systems
  - o Device management applications
  - Intrusion Detection systems

#### Distributed Network Management

An NMS is not always on one host

Distributed network management: - NMS runs on and is distributed across several hosts.

- Benefits of distributed management:
  - 1. Scalable: more hosts = greater processing, I/O and storage capacity.
  - 2. Robust: if one fails, NMS can still be running
  - 3. Delay and overhead: managing from location close to a local network (similar to cloud vs. edge computing.)

#### Management Proxy and Hierarchy

Proxy: Node acting on behalf of other nodes

A network device may act as a management proxy to another. - Plays the agent role in interacting with the management system. - Plays the manager role in interacting with another device.

This eventually forms a *management hierarchy* and the entity in the middle does not have to be a device. - possible a sub- or local management system.



Management Hierarchy

# Manager - Agent - MIB Relationship

- Fundamental relationship among manager, agent, and MIB
- The manager operates on the abstraction of the agent provided through the agent's MIB:
  - Sends requests to the Agent
  - Receives responses from the Agent
  - o Asks the agent to be notified of events

Agent: proxy for managed device NMS: proxy for the real-world organization responsible for managing the network.



Manager/Agent Reference Diagram

# Concept of Management Network

Managers and agents need to communicate and NMS on different hosts need to be able to communicate with each other.

- Management network: the network interconnecting NMS and managed devices
- Production networks: the network providing services to the end user.
- Management and production networks can be physically separate networks or the same physical network.



## Connecting NMS to Network Devices

Network devices can be connected with/without a management Network and here are the following methods to do so:

- 1. Direct connections
  - Network devices have a management/console port (typically a serial interface)
  - A technician can directly connect a craft terminal to a device.

Issues: - Needs on-site physical access to the device - Impractical to go from device to device in a large scale network.

- 2. Connecting through a terminal servers
  - Terminal server will have a set of serial interface ports, each connecting with one network device and a port for the craft terminal to connect to.

Issues: - Still needs on-site physical access to the terminal server - Would also still need to go between terminal servers

- 3. Terminal server with Ethernet port and IP address
  - On-site connection to teh terminal server no longer needed
  - o preliminary management Network

Issues: - Keeping track of which devices are connected to what terminal server and their respective ports.

4. Connecting to network devices through regular Ethernet ports(In-band Management Network)

- Skips the need for terminal servers
- Connects to network devices using regular Ethernet ports and IP address.

#### In-band management network

Same network infrastructure and port for management and production networks (mixing network management data traffic and production data traffic

- 5. Connecting to network devices through management Ethernet ports (out-of-band Management Network)
  - Also skips terminal servers
  - Connects to network device using Ethernet ports and IP addresses dedicated to network management purposes.

#### Out-of-band Management network

Different ports for management and production networks (separating management data traffic from production data traffic.

# In-band vs Out-of-band Management Network

- In-band: same network shared by production and management traffic
- Out-of-band: dedicated management network

### Dedicated Management Network: Pros & Cons

To determine whether management networks are beneficial, we would need to look at the trade offs.

Which (dedicated or shared management network is better in:

- Reliability:
  - Out-of-band because it removes the possibility of having a highly congested production traffic flow from losing management traffic which is necessary to manage production traffic in the first place.
- Quality of service (QoS) for production traffic:
  - Out-of-band works especially considering that management traffic is quite unpredictable since sometimes it will have a higher traffic rate than normal which would potentially interrupst production traffic flow.
- Ease of network planning:
  - Out-of-band: It enables us to separate the planning for how management and production traffic would go around.
  - However it is also fair to consider in-band management because it simplifies the entire process because you would have less factors to consider overall.
- Security:
  - Out-of-band: prevents unauthorized access from making changes on the management side which can potentially cause the entire network to go down.
- Cost:

• In-band would be cheaper to implement as less time and effort would be needed in setting up the entire network infrastructure since it will all be bundled together.

#### the Non-Technical aspects

Network Management Fundamentals - Pages 93-97

Organizational aspect of network management: - Management support organization - Important to telecommunications service providers and large enterprises - Smaller businesses may not have a management support organization (but just one network administrator.

For large networks: network operation center (NOC)

#### Management Support Organization - Tasks

- Overall task: managing the network Manager
  - Montoring the network for failures
  - Diagnosing failures and carrying out repairs
  - Provisioning new services
  - Adding and removing users to and from the network
  - Tracking network performance, taking preventative measures
  - Planning network upgrades
  - Planning network topology and network buildout

## Management Support Organization - Structure

- Management support organization divided into different units
  - Each performing a distinct function
  - Minimizing interactions between different units and dependencies causing finger-pointing situations

#### Example structure:

- Network planning: Analyzing network usage and traffic patterns, planning network buildout and service rollout.
- Network operations: Keeping the network running and monitoring the Network
- Network administration: Physically deploying the network and services on it, may include field technicians (combining A and M in OAMP)
- Customer management: Interacting with customers