CLAIMS

1. A fluoropolymer containing acid/acid salt groups and having -CF₂H groups at polymer chain terminals, wherein said acid/acid salt groups are sulfonic acid groups, -SO₂NR¹R², -SO₃NR³R⁴R⁵R⁶, -SO₃M¹_{1/L}, phosphoric acid groups, -PO₃(NR⁷R⁸R⁹R¹⁰)₂ and/or -PO₃M²_{2/L}, in the formula R¹ represents H or M⁶_{1/L}, R² represents H, M⁷_{1/L}, an alkyl group or a sulfonyl-containing group, R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms, M¹, M², M⁶ and M⁷ are the same or different and each represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table.

5

10

15

- 2. The fluoropolymer according to Claim 1, said fluoropolymer being one obtained by subjecting a fluoropolymer precursor containing acid/acid salt groups
 20 and having -CF₂COOX groups at polymer chain terminals, in the formula X represents H, NR¹¹R¹²R¹³R¹⁴ or M⁴_{1/L}; R¹¹, R¹², R¹³ and R¹⁴ are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M⁴ represents a metal having a valence of L, said metal having a valence of L being as defined above, to heat treatment by which said -CF₂COOX groups can be converted to -CF₂H groups, X being as defined above.
- 3. The fluoropolymer according to Claim 1 or 2, wherein said acid/acid salt groups are sulfonic acid groups, $-SO_3NR^3R^4R^5R^6$ and/or $-SO_3M^1_{1/L}$, R^3 , R^4 , R^5 , R^6 and M^1 being as defined above.
- 4. The method of producing the fluoropolymer according to any one of Claims 1 to 3, by subjecting a

fluoropolymer precursor containing acid/acid salt groups and having $-CF_2COOX$ groups at polymer chain terminals, in the formula X represents H, $NR^{11}R^{12}R^{13}R^{14}$ or $M^4_{1/L}$; R^{11} , R^{12} , R^{13} and R^{14} are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms and M^4 represents a metal having a valence of L, said metal having a valence of L being a metal belonging to the group 1, 2, 4, 8, 11, 12 or 13 of the long-form periodic table, to heat treatment for the conversion of said $-CF_2COOX$ groups to $-CF_2H$ groups, X being as defined above,

wherein said fluoropolymer precursor is one obtained by polymerizing a perhalovinyl ether derivative represented by the general formula (I):

 $CF_2 = CF - O - (CF_2 CFY^1 - O)_n - (CFY^2)_m - SO_2 Z$ (I)

5

10

wherein Y¹ represents F, Cl or a perfluoroalkyl group, n represents an integer of 0 to 3, the n atoms/groups of Y¹ are the same or different, Y² represents F or Cl, m represents an integer of 1 to 5, the m atoms of Y² are the same or different and Z represents F, Cl, Br, I, -OM⁵1/L or -ONR¹5R¹6R¹7R¹8; M⁵ represents a metal having a valence of L and the metal having a valence of L is as defined above, and R¹5, R¹6, R¹7 and R¹8 are the same or different and each represents H or an alkyl group containing 1 to 4 carbon atoms,

when the group $-SO_2Z$ in the general formula (I) is not said acid/acid salt group but is a group convertible to such acid/acid salt group, said fluoropolymer precursor is one subjected to a conversion treatment, after the abovementioned polymerization, for the conversion of said group $-SO_2Z$ to the above-mentioned acid/acid salt group, and said heat treatment comprises heating said

said heat treatment comprises heating said fluoropolymer precursor at 120 to 400°C.

5. The method of producing a fluoropolymer according to Claim 4,

wherein the heat treatment comprises heating the fluoropolymer precursor at 120 to 200°C in the presence of water or an organic solvent having compatibility with water.

5 6. The method of producing a fluoropolymer according to Claim 5,

wherein the organic solvent having compatibility with water is an organic liquid having a boiling point exceeding 100°C but not exceeding 300°C.

10

15

7. The method of producing a fluoropolymer according to any one of Claims 4 to 6,

wherein the fluoropolymer precursor is an at least binary copolymer obtained by polymerizing the perhalovinyl ether derivative and a monomer copolymerizable with said perhalovinyl ether derivative.

- 8. The method of producing a fluoropolymer according to any one of Claims 4 to 7,
- wherein Y^2 is F, n is 0 or 1 and m is 2 or 3.
 - 9. The method of producing a fluoropolymer according to any one of Claims 4 to 8,

wherein the fluoropolymer precursor constitutes a powder, dispersion, solution or membrane-shaped molding.

10. The method of producing a fluoropolymer according to Claim 9,

wherein the fluoropolymer precursor constitutes a membrane-shaped molding.

- 11. An electrolyte membrane comprising the fluoropolymer according to any one of Claims 1 to 3.
- 35 12. An immobilized active substance material

comprising the fluoropolymer according to any one of Claims 1 to 3 and an active substance.

13. The immobilized active substance material5 according to Claim 12,

wherein the active substance is a catalyst.

- 14. The immobilized active substance material according to Claim 13,
- wherein the catalyst is a platinum-containing metal.
 - 15. A membrane-electrode assembly comprising the immobilized active substance material according to Claim 13 or 14.

15

- 16. A solid polymer electrolyte fuel cell comprising the membrane-electrode assembly according to Claim 15.
- 20 17. A solid polymer electrolyte fuel cell comprising the electrolyte membrane according to Claim 11.