-TEAM ORGANIZTIONAL CHART

-Project Plan

- Analysis & mechanical design for robotic arms.
- Determining the right motors for the robotic arms.
- Structural the programing of the robotic arms using ROM system.
- Design the automatic control using IOT principles.
- Mechanical design of the robotic moving base & analyze the mechanical motions.
- Build & design the brush.
- Construct vision systems in the robot
- Design control board of the robot.
 Measure the frequency & the disturbance as well as the overall quality.

- Tasks distribution AI tasks Electrical tasks IoT tasks Mechanical tasks Install & download Design face interface the package of the Design electrical circuit Design the robotic arm arm to the system Construct data base Program the circuit to control the Connect ROS Assemble the units to make 90 degrees robotic arm with the control using 3D software motion board Connect the data Program the motors to base with the face operate with movable interface resisters Design suitable Endeffector Design PHP to connect he data base with the hardware Print the end-effector by 3D printer

Team Time Line														
Major Days	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Mechanical	Design the robotic arm			Assemble the units using 3D software			Design suitable End-effector			Print the end-effector by 3D printer				
Electrical					Design electrical circuit Program			Program the	the circuit to make 90 degrees motion Program			the motors to operate with movable resisters		
IoT	Desig	Design face interface Construct data			ata base to co	ata base to control the robotic arm Connect the data			ta base with the face interface Design PH			P to connect he data base with the hardware		
Al					Install & d	download the package (of the arm to t	the system	Connect R	OS with the	control bo	ard		

- Production line

Determining the assembly method for the robot					
1- assemble the parts of the robot on a 3D	3D printer				
software					
2- design an end-effector					
3- print the end-effector using a 3D printer					

Criteria of assembly				
First using a software	Then applying it on the workshop			

Testing the functionality of the robot in the workshop and fixing technical issues if any

Final step for the robot to be launched					
Will be informed by the training instructors	Duel robots will be there to stand on the				
later on	quality of the work that has done by the				
	teams				