IS5102 Database Management Systems

Lecture 2: E-R Diagrams

Alexander Konovalov

alexander.konovalov@st-andrews.ac.uk

(with thanks to Susmit Sarkar)

2021

Describing Data: Abstraction Levels

Physical Level

Describe how a data record (e.g. student) is stored

Logical Level

Describe the data and relationships between data

View Level

Describe selected aspects (views) of the data

Many views of same data possible

Also important to hide data in views (think security)

Schemas and Instances

Analogous to types and values in programming languages

- Schema
 - ► The overall design of the database
 - Physical schema database design at the physical
 - ▶ Logical schema database design at the logical level level
 - Changes are infrequent
- Instance
 - Content of the database at a particular point in time
 - Changes may be frequent

A collection of conceptual tools for describing

- Data
- Data relationships
- Data semantics
- Data constraints

Types of Data Models

Physical data model – geared towards implementation

Logical/conceptual data model – more abstract

Examples:

- ► Entity-Relationship (E-R) data model (mainly for database design)
- Relational model (lower level, later)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

E-R Modeling

A database can be modeled as:

- ► a collection of entities,
- relationship among entities.

Entities and Entity Sets

- ▶ An **entity** is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes
 - Example: people have names and addresses
- ► An **entity set** is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

An entity is represented by a set of **attributes**, that is descriptive properties possessed by all members of an entity set.

Example:

```
instructor = (ID, name, street, city, salary)
course = (course_id, title, credits)
```

▶ Domain – the set of permitted values for each attribute

Attributes

- ► Attribute types:
 - Simple and composite attributes
 - Example of a composite attribute: address
 - ► Single-valued and multivalued attributes
 - Example of a multivalued attribute: phone_numbers
 - Derived attributes
 - Can be computed from other attributes
 - Example: age, if given date_of_birth

► A relationship is an association among several entities

Example:

```
44553 (Student X) advisor 22222 (Instructor Y) student entity \rightarrow relationship set \rightarrow instructor entity
```

A relationship set is a mathematical relation among $n \ge 2$ entities, each taken from corresponding entity sets

$$\{ (e_1, e_2, \dots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \dots, e_n \in E_n \}$$

where $(e_1, e_2, ..., e_n)$ is a relationship

Example: $(44553,22222) \in advisor$

Attributes in Relationship Sets

- ► An attribute can also be property of a relationship set
- ► For instance, the advisor relationship set may have the attribute date which tracks when the student started being associated with the advisor

Degree of a Relationship Set

- Binary relationship
 - involves two entity sets (i.e. has degree two).
 - most relationship sets in a database system are binary.
- ▶ Relationships between more than two entity sets are less common, but also occur
 - Example: students work on research projects under the guidance of an instructor relationship proj_guide is a ternary relationship between instructor, student, and project

Multiplicity Constraints

Participation Constraints

determined by the minimum number of times entity participates in relationship

- if zero, then partial participation
- if more than zero, then total participation

Cardinality Constraints

maximum number of times entity participates in relationship

Mapping Cardinality Constraints

- Express the number of entities to which another entity can be associated via a relationship set
- ▶ Most useful in describing binary relationship sets
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

- ► A super key of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- ► A candidate key of an entity set is a minimal super key
 - ► ID is candidate key of instructor
 - course_id is candidate key of course
- ▶ Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

Keys for Relationship Sets

► The **combination of primary keys** of the participating entity sets forms a super key of a relationship set.

(s_id, i_id) is the super key of advisor

Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys

E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- ► Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Cardinality Constraints

We express cardinality constraints by drawing:

<u>either</u> a directed line (\longrightarrow) , signifying "one"

or an undirected line (___), signifying "many"

between the relationship set and the entity set

One-to-One Relationship

One-to-one relationship between an instructor and a student

- an instructor is associated with at most one student via advisor
- ▶ and a student is associated with at most one instructor via advisor

One-to-Many Relationship

One-to-many relationship between an instructor and a student

- ▶ an instructor is associated with several (including 0) students via advisor
- a student is associated with at most one instructor via advisor

Many-to-One Relationships

Many-to-one relationship between an instructor and a student

- ▶ an instructor is associated with at most one student via advisor,
- ▶ and a student is associated with several (including 0) instructors via advisor

Many-to-Many Relationship

Many-to-many relationship between an instructor and a student

- ► An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via advisor

Participation of an Entity Set in a Relationship Set

► Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set

Example: participation of student in advisor is total every student must have an associated advisor

▶ Partial participation: some entities may not participate in any relationship in the relationship set

Example: participation of instructor in advisor is partial

Reading and Practice

- ▶ Data models:
 - ► Chapters 4-5, Database Design
 - ► Chapter 1, Database System Concepts
- ► E-R models:
 - Chapter 8, Database Design
 - ► Chapter 7, Database System Concepts