クラス	受験番号	
出席番号	氏 名·	1

2014年度

第2回 全統記述模試問題

数学

(I型 80分) Ⅱ型 100分 Ⅲ刊 120分

2014年8月実施

試験開始の合図があるまで、この問題冊子を開かず、下記および本冊子裏表紙の注意事項をよく読むこと。

注 意 事 項

- 1. 問題冊子は 13 ページである
- 2. 解答用紙は別冊になっている。(解答用紙冊子表紙の注意事項を熟読すること。)
- 3. 本冊子に脱落や印刷不鮮明の筒所及び解答用紙の汚れ等があれば、試験監督者に申し出ること
- 4. 下表のような「選択型」が用意されているので、志望する大学・学部・学科の出題範囲・科目に合わせて、選択型と受験科目で指定された問題を選んで解答すること。受験科目に合わない型・問題を選択した場合には、志望校に対する判定が正しく出ないことがあるので注意すること

選択型	· · · · · · · · · · · · · · · · · · ·	験	科	П	問題ページ	解答用紙
	数学工				D 0 -	1 101 - 16
数/	数学 1.	Α.			P. 2~5	T型 T 枚
II	数学 1,	A, II	-		P. 6~9	21 2511 -> 1-1-
	数学工。	А, П, 1	3			11型2枚
Ш	数学工、	А, П. І	3, H	. !	P. 10~13	Ⅲ型3枚

- 5. 解答用紙は、選択する型によって異なる。必ず指定された解答用紙に正しく答えよ。誤った**番号の箇** 所に解答している場合は得点としないので注意すること。
- 6. 試験開始の合図で解答用紙冊子の数学の解答用紙を切り離し、下部の所定欄に 氏名(フリガナ, 漢字)・在・卒高校名・クラス名・出席番号・受験番号 (受験票の発行を受けている場合)を記入すること。また、選択問題がある場合は、上部の所定欄に 選択問題 を記入すること
- 7. 解答には、必ず黒色鉛筆を使用し、解答用紙の所定欄に記入すること 解答欄外に記入された解答部分は、採点対象外となる。
- 8. 試験終了の合図で上記 6.の事項を再度確認し、試験監督者の指示に従って解答用紙を提出すること。 ただし、自紙の解答用紙は提出しないこと

河合塾

1461220112110010

I型の問題は次ページから始まる.

I型

I型受験者は次の表に従って解答すること.

受験科目	数学 I	[1], [2] を必答.
	数学 I ,A	① を必答し、③, [4] より 1 題選択.

1 【I型共通 必須問題】(配点 60点)

(1) 連立方程式

$$\begin{cases} 2x + y = -2, \\ x^2 - y = 3 \end{cases}$$

を解け、

- (2) $5\sqrt{2}$ の小数部分を a とするとき, $a+\frac{1}{a}$, $a^2-\frac{1}{a^2}$ の値をそれぞれ求めよ.
- (3) a, b, c を実数の定数として, $f(x) = ax^2 + bx + c$ とおく. 放物線 y = f(x) は 3 点 A(1, -32), B(2, -30), C(-1, -24) を通る. また, k > 0 を満たす定数 k に対して g(x) = (x k)(x + k) とおく.
 - (i) a, b, c の値をそれぞれ求めよ.
 - (ii) 不等式 $q(x) \leq 0$ を解け.
 - (iii) $g(x) \le 0$ を満たすすべての実数 x に対して $f(x) \le 0$ が成り立つような k の値の範囲を求めよ.

(4) 平面上に直角三角形 ABC があり,

$$AB=2$$
, $BC=1$, $\angle ABC=90^{\circ}$

を満たしている。辺AC上に点Mを

$$AM = BM = CM$$

を満たすようにとる.

 $\angle BAC = \theta$ とするとき、次の値を求めよ、

- (i) $tan\theta$
- (ii) $\sin(90^{\circ} \theta)$
- (iii) $\cos 2\theta$

I 型

2 【 I 型数学 I 必須問題】(配点 40点)

平面上に三角形 ABC があり、

AB=8, BC=3, CA=7

を満たしている.

- (1)(i) ∠ABC の大きさを求めよ.
 - (ii) 三角形 ABC の面積を求めよ、
 - (iii) 三角形 ABC の外接円の半径を求めよ.
- (2) 三角形 ABC の外接円の弧 AC(B を含まない方)上に点 D をとり, 2 直線 AC, BD の交点を E とするとき, BE: ED=3:1 が成り立つとする.
 - (i) 三角形 ACD の面積を求めよ、また、線分の長さの積 AD·CD の値を求めよ、
 - (ii) 三角形 ACD の周の長さを求めよ、
 - (iii) 三角形 ACD の内接円の半径を求めよ.

3 【I型数学I,A 選択問題】(配点 40点)

図のような一辺の長さ1の正方形 ABCD があり、点 P を正方形の辺に沿って頂点から頂点に移動させる次の試行を行う。

- [0], [1], [2], [3], [4]の5枚のカードが入っている袋から同時に2枚のカードを取り出し、取り出した2枚のカードに書かれた数を記録し、カードを袋に戻す。
- 記録した2つの数の積だけ反時計まわりにPを移動させる。Pは最初、頂点Aにあるとする。
- (1) 1回の試行後にPが、頂点Aにいる確率、頂点Bにいる確率、頂点Cにいる確率、頂点Dにいる確率をそれぞれ求めよ。
- (2) 2 回の試行後に P が頂点 A にいる確率を求めよ.
- (3) 3回試行を行う. Pが,
 - 1回の試行後にいる頂点を X,
 - 2回の試行後にいる頂点を Y,
 - 3回の試行後にいる頂点を2

とするとき、3点 X、Y、Zを頂点とする三角形ができる確率を求めよ。

4 【I型数学I, A 選択問題】(配点 40点)

n は正の整数とする.

- (1) n を 3 で割ったときの余りが 0, 1, 2 のそれぞれの場合について, n^2+2n+4 を 3 で割った余りを求めよ.
- 12: n^2+2n+4 が 6 で割り切れるとき、n を 6 で割った余りを求めよ、
- (3) $\sqrt{3(n^2+2n+4)}$ が偶数となる 50 以下の正の整数 n の値をすべて求めよ.

Ⅱ型

Ⅱ型受験者は次の表に従って解答すること.

河縣科 11	数学Ⅰ, A, Ⅱ	1, 2, 3 を必答し, 4, 5 より1 題選択.
之峽行日	数学 I , A , II , B	1, 2, 3 を必答し、5, 6より1題選択.

【Ⅱ型共通 必須問題】(配点 50点)

- (1) $5\sqrt{2}$ の小数部分を a とするとき, $a+\frac{1}{a}$, $a^2-\frac{1}{a^2}$ の値をそれぞれ求めよ.
- (2) x の方程式 $\tan^2 x \frac{2}{3}\sqrt{3} \tan x 1 = 0$ (0 $\leq x < 2\pi$)を解け、
- (3) $f(x) = x^3 3x + \frac{1}{4}$ とおく、xy 平面上において、y = f(x) のグラフに原点(0, 0) から引いた接線の方程式を求めよ。
- (4) $a = \log_{10} 2$, $b = \log_{10} 3$ とおくとき、次の値を a, b を用いて表せ.
 - (i) $\log_{10} 5$

- (ii) log₁₀12
- (5) a, a, a, b, b, c の 7 文字を円形に並べる並べ方は何通りあるか求めよ。 また、このうち、b と b が隣り合わないような並べ方は何通りあるか求めよ。

2 【Ⅱ型共通 必須問題】(配点 50点)

mはm > -1を満たす定数とする、xv 平面上に、

 曲線
$$C$$
: v = x^2 − x -2,

直線 l: v = mx - 2

がある.

- $C \ge x$ 軸で囲まれる領域 D_1 の面積 S_2 を求めよ.
- (2) C $\geq l$ τ \in L τ \to L

 $x \le k$ を満たす部分の面積を T_1

 $x \ge k$ を満たす部分の面積を T_2

とする、 T_1 : $T_2=3:2$ となるような kの値を求めよ、

3 【Ⅱ型共通 必須問題】(配点 50点)

a、b は実数の定数とする.

$$f(x) = x^3 - (b-2)x^2 + (a-b+6)x + 3a-b+4$$

とし、f(x)はx+1で割り切れるとする。

- (1) bを a を用いて表せ.
- (2) 方程式 f(x) = 0 が虚数解をもつような a の値の範囲を求めよ.
- (3) 方程式 f(x) = 0 が異なる 2 つの虚数解 α 、 β をもつとする。 $\alpha + \beta > 0$ かつ $\alpha^2 + \beta^2 = 0$ が成り立つとき、 $\alpha^{1n+1} + \beta^{4n+1} = -2^{152}$ となるような正の整数 n の値を求めよ。

Ⅱ型

[4] 【Ⅱ型数学 I, A, Ⅱ 選択問題】(配点 50点)

〇 を原点とする xy 平面上に 2 点 A (-1, 1), B (3, 0) がある。A を通り直線 OA に垂直な直線を I とし、I 上に点 C (2, k) をとる。また、O を中心とし A を通る円を S とする。

- (1) 1の方程式と k の値を求めよ.
- (2) Sの方程式を求めよ、また、BからSに引いた接線のうち、傾きが負であるものの方程式を求めよ、
- (3) 線分 BC(端点を含む)上に点 P をとり、S の y>0 を満たす部分に P から引いた接線の接点を Q とする。P が線分 BC 上を動くとき、線分 PQ(端点を含む)の通過する領域を K とおく。点(x, y)が K 上を動くとき、x+3y のとり得る値の範囲を求めよ。

5 【Ⅱ型共通 選択問題】(配点 50点)

(1) 整数 p, q, r に対して,

$$a=3p$$
, $b=3q+1$, $c=3r+2$

とおく。

- (i) a^3 , b^3 , c^3 を 9 で割ったときの余りをそれぞれ求めよ.
- 「ii」 a^0 , b^0 , c^0 を 9 で割ったときの余りをそれぞれ求めよ.
- (2) 整数 x, v, z に対して,

$$K = (x - y)(y - z)(z - x)$$
, $L = x^9 - 8y^9 + z^9$

とおく、Kが3で割り切れないならば、Lは9で割り切れることを示せ、

6 【Ⅱ型数学 I , A , Ⅱ , B 選択問題】(配点 50点)

数列

 $1 \mid 2, 3 \mid 6, 7, 8, 9, 10, 11 \mid 22, 23, \cdots \mid \cdots$...(*)

があり、上記のようにグループに分けられている.

n番目 $(n=1, 2, 3, \cdots)$ のグループの先頭の数を a_n とするとき、この数列は次の規則に従って定められている。

- $a_1 = 1$ $\sigma = 3$.
- n 番目のグループは a_n から始まり、連続する a_n 個の整数が小さい順に並んでいる.
- n 番目のグループの末尾の数の 2 倍を n+1 番目のグループの先頭の数とする. したがって、 $a_1=1$ 、 $a_2=2$ 、 $a_3=6$ 、 $a_4=22$ である.
- (1) a₅を求めよ、
- (2)(i) n 番目のグループの末尾の数を a_n を用いて表せ.
 - (ii) a_{n+1} を a_n を用いて表せ、また、 a_n を求めよ、
- (3) (*) において、初項から n 番目のグループの末尾の数までの和を求めよ.

Ⅲ型

Ⅲ型受験者は次の表に従って解答すること.

受験科目 数学 I, A, II, B, III [1], [2], 3], [4] を必答し, [5], [6], [7] より 1 題選択.

【Ⅲ型 必須問題】(配点 40点)

- (1) x の方程式 $\tan^2 x \frac{2}{3}\sqrt{3}\tan x 1 = 0$ (0 $\leq x < 2\pi$)を解け.
- (2) a, a, a, b, b, c の 7 文字を円形に並べる並べ方は何通りあるか求めよ. また、このうち、b と b が隣り合わないような並べ方は何通りあるか求めよ.
- $\{3\}$ $f(x) = x^3 3x + \frac{1}{4}$ とおく、xy 平面上において、y = f(x) のグラフに原点(0, 0)から引いた接線の方程式を求めよ。
- (4) 平面上の2つのベクトル \overrightarrow{a} , \overrightarrow{b} が, $\overrightarrow{a}|=3, \quad |\overrightarrow{b}|=4, \quad |\overrightarrow{a}-\overrightarrow{b}|=2$ を満たすとき、 $|\overrightarrow{a}+\overrightarrow{b}|$ の値を求めよ.
- r を実数の定数とする. $\sum_{n=1}^{\infty} 2r^{n-1} = 3$ が成り立つとき、r の値を求めよ.

2 【Ⅲ型 必須問題】(配点 40点)

a は a>1 を満たす定数とする.

関数
$$f(x) = \frac{\cos x}{\sin x - a}$$
 とおくとき、 $f'\left(\frac{\pi}{2}\right) = \frac{1}{2}$ が成り立つとする.

- (1) aの値を求めよ.
- (2) 区間 $0 < x < \pi$ における f(x) の極値を求めよ.

3 【Ⅲ型 必須問題】(配点 40点)

kは正の定数とする.

xy 平面上に放物線 $P: y=kx^2+2$ がある.

- (1) P が直線 y=x+1 と共有点をもたないような k の値の範囲を求めよ.
- (2) 円 C_a : $(x-a)^2 + (y-a+1)^2 = 1$ があり、a は $a \ge 0$ の範囲を動くとする.
 - (i) C_a の中心の軌跡を求めよ.
 - (ii) C_a が通過する領域を K とする。kが(1)で求めた範囲にあるとき、点(0, 1)を通り傾き m の直線が P とも K とも共有点をもたないような実数 m の値の範囲を求めよ。

Ⅲ型

4 【Ⅲ型 必須問題】(配点 40点)

数列 $\{a_n\}$ が、

$$\begin{cases}
a_1 = 1, \\
a_{n+1} = 2a_n + n^2 + (-1)^n & (n = 1, 2, 3, \cdots)
\end{cases}$$

で与えられている。 anを 4 で割ったときの余りを bn とする.

- (1) a₂, a₃, a₄の値をそれぞれ求めよ.
- (2) 一般項 b_{2m-1} , b_{2m} $(m=1, 2, 3, \cdots)$ をそれぞれ推定し、それらが正しいことを数学的帰納法を用いて示せ、
- (3) $\sum_{k=1}^{n} a_k$ が 4 で割り切れるための n の条件を求めよ、ただし、n は正の整数とする。

5 【Ⅲ型 選択問題】(配点 40点)

(1) 整数 p, a, r に対して,

$$a=3p$$
, $b=3q+1$, $c=3r+2$

とおく.

- (i) a^3 , b^3 , c^3 を 9 で割ったときの余りをそれぞれ求めよ.
- (ii) a^9 , b^9 , c^9 を 9 で割ったときの余りをそれぞれ求めよ.
- (2) 整数 x, y, z に対して,

$$K = (x - y)(y - z)(z - x), L = x^9 - 8y^9 + z^9$$

とおく. Kが3で割り切れないならば、Lは9で割り切れることを示せ、

6 【Ⅲ型 選択問題】(配点 40点)

関数 $f(x) = -x \log x (x > 0)$ に対して y = f(x) のグラフを C とする.

- (1) f(x)の増減, グラフの凹凸を調べ, Cの概形をかけ. 必要ならば, $\lim_{x\to 0} x \log x = 0$ を用いてよい.
- (2) 不定積分 $\int f(x) dx$ を求めよ.
- (3) f(0) = 0 と定め、xy 平面上において不等式 $0 \le y \le f(x)$ で表される領域を D とする。 また、a > 0 とし、2 直線 y = ax、y = 2ax と C の交点をそれぞれ A、B とする。
 - D のうち、A を通り x 軸に垂直な直線と、B を通り x 軸に垂直な直線の間にある部分の面積を S(a)、
 - D のうち、不等式 $ax \le y \le 2ax$ を満たす部分の面積を T(a) とする.
 - (i) S(a)を求めよ.
 - (ii) a が a>0 を満たして変化するときの T(a) の最大値、および、そのときの a の値を求めよ。

7 【Ⅲ型 選択問題】(配点 40点)

O を原点とする xv 平面上に双曲線

$$C: \frac{x^2}{a^2} - \frac{y^2}{3^2} = 1$$
 (aは正の定数)

があり、Cの焦点の座標は(5,0)、(-5,0)である。Cの第1象限の部分に点Pをとる。PにおけるCの接線をIとし、Cの2本の漸近線とIの交点をQ、Rとする。ただし、Qのy座標はRのy座標より大きいものとする。

- (1) aの値を求めよ.
- (2) (1) で求めた a の値に対して P の座標を (as, 3t)(s>0, t>0) とおくとき、Q、R それぞれの座標を s、t を用いて表せ、
- (3) A(8, 3)とする. Pが C 上の第1象限の部分を動くとき,四角形 OQAR の面積の 最小値を求めよ。

Ⅰ型, Ⅱ型, Ⅲ型 はそれぞれ選択型のいずれかによって解答(選択解答) する問題が指定されている。指示に従い、必ず指定された問題を解答(選択解答) し、下記の記入例に従って解答用紙に必要事項を記入すること。

〈記入例〉 II型 選択生の場合

〈数学Ⅱ型解答用紙(その2)裏 面〉

