THE UNIVERSITY OF CHICAGO

Booth School of Business

Business 41912, Spring Quarter 2020, Mr. Ruey S. Tsay

Lecture 5: Multivariate Multiple Linear Regression

The model is

$$\boldsymbol{Y}_{n \times m} = \boldsymbol{Z}_{n \times (r+1)} \boldsymbol{\beta}_{(r+1) \times m} + \boldsymbol{\epsilon}_{n \times m}, \tag{1}$$

where $E(\boldsymbol{\epsilon}_{(i)}) = \mathbf{0}$ and $Cov(\boldsymbol{\epsilon}_{(i)}, \boldsymbol{\epsilon}_{(j)}) = \sigma_{ij} \boldsymbol{I}$ for i, j = 1, ..., m with $\boldsymbol{\epsilon}_{(i)}$ being the *i*th column of $\boldsymbol{\epsilon}$. The design matrix \boldsymbol{Z} is of full rank r+1 and n > r+1.

Here we have n observations in \mathbf{Y} and \mathbf{Z} . Each observation $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{im})'$ contains m variables. Each observation $\mathbf{Z}_i = (1, Z_{i1}, \dots, Z_{ir})'$ contains r measurements of the design matrix. Let $\boldsymbol{\epsilon}_i = (\epsilon_{i1}, \dots, \epsilon_{im})'$ be the error term for the i observation and we have $\text{Cov}(\boldsymbol{\epsilon}_i) = \mathbf{\Sigma} = [\sigma_{jk}]$. Note that in Eq.(1), the ith row of \mathbf{Y} is \mathbf{Y}'_i , the ith row of $\boldsymbol{\epsilon}$ is $\boldsymbol{\epsilon}'_i$ and for the ith data point, we have

$$\boldsymbol{Y}_i = \boldsymbol{\beta}' \boldsymbol{Z}_i + \boldsymbol{\epsilon}_i,$$

where Z'_i is the *i*th row of Z. That is, Z_i is a (r+1)-dimensional vector. The prior equation states the equation for the *i*th data point. We can also consider the *j*th component of Y_i over all sample. Then, we have

$$\boldsymbol{Y}_{j} = \boldsymbol{Z}\boldsymbol{\beta}_{j} + \boldsymbol{\epsilon}_{j},$$

where Y_j , β_j and ϵ_j are the jth column of Y, β and ϵ , respectively. The prior equation is a multiple linear regression discussed before.

From Eq.(1), we have

$$\operatorname{vec}(\boldsymbol{Y}) = (\boldsymbol{I}_m \otimes \boldsymbol{Z})\operatorname{vec}(\boldsymbol{\beta}) + \operatorname{vec}(\boldsymbol{\epsilon}), \tag{2}$$

where $Cov(vec(\epsilon)) = \Sigma \otimes I_n$. Here we use the identity $vec(AB) = (I \otimes A)vec(B)$. The generalized least squares estimate of β is obtained by minimizing the objective function

$$S(\boldsymbol{\beta}) = [\operatorname{vec}(\boldsymbol{\epsilon})]' [\boldsymbol{\Sigma} \otimes \boldsymbol{I}_n]^{-1} \operatorname{vec}(\boldsymbol{\epsilon})$$

$$= [\operatorname{vec}(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{\beta})]' [\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{I}_n] \operatorname{vec}(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{\beta})$$

$$= tr[(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{\beta})'].$$

The last equality holds because Σ is symmetric and we use

$$tr(\boldsymbol{DBC}) = [\text{vec}(\boldsymbol{C'})]'(\boldsymbol{B'} \otimes \boldsymbol{I})\text{vec}(\boldsymbol{D}).$$

Next, using $\text{vec}(\mathbf{Z}\boldsymbol{\beta}) = (\mathbf{I}_m \otimes \mathbf{Z}) \text{vec}(\boldsymbol{\beta})$ and Eq.(1), we have

$$S(\boldsymbol{\beta}) = [\operatorname{vec}(\boldsymbol{Y})' - \operatorname{vec}(\boldsymbol{\beta})'(\boldsymbol{I}_m \otimes \boldsymbol{Z}')][\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{I}_n][\operatorname{vec}(\boldsymbol{Y}) - (\boldsymbol{I}_m \otimes \boldsymbol{Z})\operatorname{vec}(\boldsymbol{\beta}))]$$

$$= \operatorname{vec}(\boldsymbol{Y})'(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{I}_n)\operatorname{vec}(\boldsymbol{Y}) - 2\operatorname{vec}(\boldsymbol{\beta})'(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}')\operatorname{vec}(\boldsymbol{Y})$$

$$+ \operatorname{vec}(\boldsymbol{\beta})'(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}'\boldsymbol{Z})\operatorname{vec}(\boldsymbol{\beta}).$$

Taking partial derivative of $S(\beta)$ with respect to $\text{vec}(\beta)$, we have

$$\frac{\partial S(\boldsymbol{\beta})}{\partial \text{vec}(\boldsymbol{\beta})} = -2(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}')\text{vec}(\boldsymbol{Y}) + 2(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}'\boldsymbol{Z})\text{vec}(\boldsymbol{\beta}).$$

Equating to zero gives the normal equations

$$(\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}'\boldsymbol{Z}) \text{vec}(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}') \text{vec}(\boldsymbol{Y}).$$

Consequently, the GLS estimate is

$$\operatorname{vec}(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}'\boldsymbol{Z})^{-1} (\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}') \operatorname{vec}(\boldsymbol{Y})$$

$$= [\boldsymbol{\Sigma} \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}] (\boldsymbol{\Sigma}^{-1} \otimes \boldsymbol{Z}') \operatorname{vec}(\boldsymbol{Y})$$

$$= [\boldsymbol{I}_m \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1} \boldsymbol{Z}'] \operatorname{vec}(\boldsymbol{Y})$$

$$= \operatorname{vec}[(\boldsymbol{Z}'\boldsymbol{Z})^{-1} \boldsymbol{Z}'\boldsymbol{Y}].$$
(3)

Therefore,

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{Z}'\boldsymbol{Z})^{-1}(\boldsymbol{Z}'\boldsymbol{Y}).$$

Note that this is the ordinary least squares estimate. Also, from Eq. (3), we have

$$Cov[vec(\widehat{\boldsymbol{\beta}})] = [\boldsymbol{I}_m \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'][\boldsymbol{\Sigma} \otimes \boldsymbol{I}_n][\boldsymbol{I}_m \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}']'$$

$$= [\boldsymbol{I}_m \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'][\boldsymbol{\Sigma} \otimes \boldsymbol{I}_n][\boldsymbol{I}_m \otimes \boldsymbol{Z}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}]$$

$$= \boldsymbol{\Sigma} \otimes (\boldsymbol{Z}'\boldsymbol{Z})^{-1}.$$

In a sense, we put m multiple linear regressions with the same design matrix \mathbf{Z} together. The errors between the ith and kth multiple linear regressions might be corrected as $\sigma_{ik}\mathbf{I}_n$. Let the ith column of $\boldsymbol{\beta}$ as $\boldsymbol{\beta}_{(i)}$ for $i=1,\ldots,m$. We can think of the model as one that consists of m multiple lienar regressions with the same design matrix \mathbf{Z} . As such, we can estimate $\boldsymbol{\beta}_{(i)}$ as

$$\widehat{\boldsymbol{\beta}}_{(i)} = (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}_{(i)}.$$

Collecting the estimates, we obtain

$$\hat{\boldsymbol{\beta}} = [\hat{\boldsymbol{\beta}}_{(1)}, \hat{\boldsymbol{\beta}}_{(2)}, \dots, \hat{\boldsymbol{\beta}}_{(m)}] = (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'[\boldsymbol{Y}_{(1)}, \boldsymbol{Y}_{(2)}, \dots, \boldsymbol{Y}_{(m)}],$$

or, for simplicity,

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}'\boldsymbol{Y}.$$

For any choice of parameters $\boldsymbol{B} = [\boldsymbol{B}_{(1)}, \boldsymbol{B}_{(2)}, \dots, \boldsymbol{B}_{(m)}]$, the error matrix is $\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{B}$. The error sum of squares and cross-products matrix is

$$(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{B})'(\boldsymbol{Y} - \boldsymbol{Z}\boldsymbol{B}) =$$

$$\left[\begin{array}{cccc} (\boldsymbol{Y}_{(1)} - \boldsymbol{Z}\boldsymbol{B}_{(1)})'(\boldsymbol{Y}_{(1)} - \boldsymbol{Z}\boldsymbol{B}_{(1)}) & \cdots & (\boldsymbol{Y}_{(1)} - \boldsymbol{Z}\boldsymbol{B}_{(1)})'(\boldsymbol{Y}_{(m)} - \boldsymbol{Z}\boldsymbol{B}_{(m)}) \\ \vdots & & \vdots & & \vdots \\ (\boldsymbol{Y}_{(m)} - \boldsymbol{Z}\boldsymbol{B}_{(m)})'(\boldsymbol{Y}_{(1)} - \boldsymbol{Z}\boldsymbol{B}_{(1)}) & \cdots & (\boldsymbol{Y}_{(m)} - \boldsymbol{Z}\boldsymbol{B}_{(m)})'(\boldsymbol{Y}_{(m)} - \boldsymbol{Z}\boldsymbol{B}_{(m)}) \end{array}\right].$$

The least squares estimates $\hat{\boldsymbol{\beta}}_{(i)}$ thus minimize $tr[(\boldsymbol{Y}-\boldsymbol{Z}\boldsymbol{B})'(\boldsymbol{Y}-\boldsymbol{Z}\boldsymbol{B})]$. The estimates also minimize the generalized variance $|(\boldsymbol{Y}-\boldsymbol{Z}\boldsymbol{B})'(\boldsymbol{Y}-\boldsymbol{Z}\boldsymbol{B})|$. Let $\widehat{\boldsymbol{Y}}=\boldsymbol{Z}\widehat{\boldsymbol{\beta}}$ be the fitted values and $\widehat{\boldsymbol{\epsilon}}=\boldsymbol{Y}-\widehat{\boldsymbol{Y}}$ be the residuals. It follows that $\widehat{\boldsymbol{\epsilon}}=\boldsymbol{Z}$

Let $\widehat{Y} = Z\widehat{\beta}$ be the fitted values and $\widehat{\epsilon} = Y - \widehat{Y}$ be the residuals. It follows that $\widehat{\epsilon} = (I - H)Y$, where H is the hat-matrix as defined in the multiple linear regression. The orthogonality properties of the multiple linear regression continue to hold for the multivariate multiple linear regression. Specifically,

- 1. $\mathbf{Z}'\hat{\boldsymbol{\epsilon}} = \mathbf{0}$,
- 2. $\widehat{\boldsymbol{Y}}'\widehat{\boldsymbol{\epsilon}} = \boldsymbol{0}$,

3.
$$\mathbf{Y}'\mathbf{Y} = \widehat{\mathbf{Y}}'\widehat{\mathbf{Y}} + \widehat{\boldsymbol{\epsilon}}'\widehat{\boldsymbol{\epsilon}}$$
, i.e. $\widehat{\boldsymbol{\epsilon}}'\widehat{\boldsymbol{\epsilon}} = \mathbf{Y}'\mathbf{Y} - \widehat{\boldsymbol{\beta}}'\mathbf{Z}'\mathbf{Z}\widehat{\boldsymbol{\beta}}$.

The second property says that $\widehat{\boldsymbol{Y}}_{(i)}$ is perpendicular to all residual vetors $\widehat{\boldsymbol{\epsilon}}_{(k)}$.

Result 7.9. For the LSE $\hat{\beta}$ with Z being of full rank r+1,

- 1. $E(\widehat{\boldsymbol{\beta}}_{(i)}) = \boldsymbol{\beta}_{(i)}$, i.e. $E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$.
- 2. $\operatorname{Cov}(\widehat{\boldsymbol{\beta}}_{(i)}, \widehat{\boldsymbol{\beta}}_{(k)}) = \sigma_{ik}(\boldsymbol{Z}'\boldsymbol{Z})^{-1}, i, j = 1, \dots, m.$
- 3. $E(\widehat{\boldsymbol{\epsilon}}) = \mathbf{0}$ and $E(\widehat{\boldsymbol{\epsilon}}_{(i)}, \widehat{\boldsymbol{\epsilon}}_{(k)}) = (n r 1)\sigma_{ik}$, so $E(\widehat{\boldsymbol{\epsilon}}'\widehat{\boldsymbol{\epsilon}}) = (n r 1)\boldsymbol{\Sigma}$.
- 4. $\hat{\boldsymbol{\epsilon}}$ and $\hat{\boldsymbol{\beta}}$ are uncorrelated.

Proof: Use the results of multiple linear regression discussed before. In addition,

$$\hat{m{eta}}_{(i)} - m{eta}_{(i)} = (m{Z}'m{Z})^{-1}m{Z}'m{Y}_{(i)} - m{eta}_{(i)} = (m{Z}'m{Z})^{-1}m{Z}'m{\epsilon}_{(i)},$$

and

$$\widehat{m{\epsilon}}_{(i)} = m{Y}_{(i)} - \widehat{m{Y}}_{(i)} = [m{I} - m{H}] m{\epsilon}_{(i)}.$$

Result 7.10. Assume that Z is of full rank r+1 and $n \geq (r+1)+m$. If the errors ϵ have a multivariate normal distribution, then the LSE $\hat{\beta}$ is also the maximum likelihood estimator of β , and $\hat{\beta}$ has a normal distribution with mean β and $\text{Cov}(\hat{\beta}_{(i)}, \hat{\beta}_{(k)}) = \sigma_{ik}(Z'Z)^{-1}$. In addition, $\hat{\beta}$ is independent of the MLE of the positive definite matrix Σ given by

$$\widehat{\Sigma} = \frac{1}{n}\widehat{\epsilon}'\widehat{\epsilon} = \frac{1}{n}(Y - Z\widehat{\beta})'(Y - Z\widehat{\beta}),$$

and $n\hat{\Sigma}$ is distributed as $W_{p,n-r-1}(\Sigma)$. The maximized likelihood $L(\hat{\mu},\hat{\Sigma}) = (2\pi)^{-mn/2}|\hat{\sigma}|^{-n/2}e^{-mn/2}$.

1 Inference

Partitioning $\mathbf{Z} = [\mathbf{Z}_1, \mathbf{Z}_2]$, where \mathbf{Z}_1 and \mathbf{Z}_2 are $n \times (q+1)$ and $n \times (r-q)$ matrix, respectively. The model becomes

$$Y = Z_1\beta_1 + Z_2\beta_2 + \epsilon.$$

Test $H_o: \beta_2 = \mathbf{0}$ vs $H_a: \beta_2 \neq \mathbf{0}$. As before, consider the submodel

$$Y = Z_1 \beta_1 + \epsilon$$
.

The LSE of $\boldsymbol{\beta}_1$ is $\hat{\boldsymbol{\beta}}_1 = (\boldsymbol{Z}_1'\boldsymbol{Z}_1)^{-1}\boldsymbol{Z}_1'\boldsymbol{Y}$ and, under normality, the estimate of the residual covariance matrix is

$$\widehat{\boldsymbol{\Sigma}}_1 = n^{-1} (\boldsymbol{Y} - \boldsymbol{Z}_1 \widehat{\boldsymbol{\beta}}_1)' (\boldsymbol{Y} - \boldsymbol{Z}_1 \boldsymbol{\beta}_1).$$

The likelihood ratio is

$$\Lambda = \frac{\max_{\boldsymbol{\beta}_1, \boldsymbol{\Sigma}} L(\boldsymbol{\beta}_1, \boldsymbol{\Sigma})}{\max_{\boldsymbol{\beta}, \boldsymbol{\Sigma}} L(\boldsymbol{\beta}, \boldsymbol{\Sigma})} = \frac{L(\widehat{\boldsymbol{\beta}}_1, \widehat{\boldsymbol{\Sigma}}_1)}{L(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\Sigma}})} = \left(\frac{|\widehat{\boldsymbol{\Sigma}}|}{|\widehat{\boldsymbol{\Sigma}}_1|}\right)^{n/2}.$$

Result 7.11. Assume that Z is of full rank r+1 and n>m+r+1. Also, ϵ are normally distributed. Under $H_o: \beta_2 = \mathbf{0}, n\widehat{\Sigma}$ is distributed as $W_{p,n-r-1}(\Sigma)$ independently of $n(\widehat{\Sigma}_1 - \widehat{\Sigma})$ which, in turn, is distributed as $W_{p,r-q}(\Sigma)$. The likelihood ratio test of H_o is equivalent to rejecting H_o for large values of

$$-2\ln(\Lambda) = -n\ln\left(\frac{|\hat{\Sigma}|}{|\hat{\Sigma}_1|}\right).$$

Furthermore, for large n, the modified statistic

$$-\left[n-r-1-\frac{1}{2}(m-r+q+1)\right]\ln\left(\frac{|\widehat{\Sigma}|}{|\widehat{\Sigma}_1|}\right)$$

has, to a close approximation, a chi-square distribution with m(r-q) degrees of freedom.

Remarks: Some alternative test statistics have been proposed in the literature for testing $H_o: \beta_2 = \mathbf{0}$. Let $\mathbf{E} = n\hat{\Sigma}$, $\mathbf{G} = n(\hat{\Sigma}_1 - \hat{\Sigma})$ and $\eta_1 \geq \eta_2 \geq \ldots \geq \eta_s$, where $s = \min(p, r - q)$, be the non-zero eigenvalues of $\mathbf{G}\mathbf{E}^{-1}$. Then,

- Wilk's lambda = $\prod_{i=1}^{s} \frac{1}{1+\eta_i} = \frac{|E|}{|E+G|}$,
- Pillai's trace = $\sum_{i=1}^{s} \frac{\eta_i}{1+n_i} = tr[\boldsymbol{G}(\boldsymbol{G}+\boldsymbol{E})^{-1}],$
- Hotelling-Lawley trace = $\sum_{i=1}^{s} \eta_i = tr[GE^{-1}],$
- Roy's greatest root = $\frac{\eta_1}{1+\eta_1}$.

Prediction: To predict the mean response at a fixed values \mathbf{Z}_0 of the predictor variables, we have

$$Z_0'\widehat{\boldsymbol{\beta}} \sim N_m(Z_0'\boldsymbol{\beta}, Z_0'(Z'Z)^{-1}Z_0\Sigma),$$

and

$$n\widehat{\Sigma} \sim W_{n-r-1}(\Sigma),$$

where the above two statistics are independent.

The $100(1-\alpha)\%$ confidence ellipsoid for $\mathbf{Z}_0'\boldsymbol{\beta}$ is

$$Z_0'(\beta - \hat{\beta})' \left(\frac{n}{n-r-1}\hat{\Sigma}\right)^{-1} (\beta - \hat{\beta})' Z_0$$

$$\leq \boldsymbol{Z}'_0(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}_0\left[\left(\frac{m(n-r-1)}{n-r-m}\right)F_{m,n-r-m}(\alpha)\right],$$

where $F_{m,n-r-m}(\alpha)$ is the upper 100 α th percentile of an F-distribution with m and n-r-mdegrees of freedom.

The $100(1-\alpha)\%$ simultaneous confidence intervals for $E(Y_i) = \mathbf{Z}_0 \boldsymbol{\beta}_{(i)}$ are

$$\boldsymbol{Z}_0'\widehat{\boldsymbol{\beta}}_{(i)} \pm \sqrt{\left(\frac{m(n-r-1)}{n-r-m}\right)F_{m,n-r-m}(\alpha)}\sqrt{\boldsymbol{Z}_0'(\boldsymbol{Z}'\boldsymbol{Z})^{-1}\boldsymbol{Z}_0\left(\frac{n}{n-r-1}\widehat{\sigma}_{ii}\right)},$$

where $\boldsymbol{\beta}_{(i)}$ is the *i*th column of $\widehat{\boldsymbol{\beta}}$ and $\hat{\sigma}_{ii}$ is the (i,i)th element of $\widehat{\boldsymbol{\Sigma}}$. Forecasting: To forecast the response $\boldsymbol{Y}_0 = \boldsymbol{Z}_0' \boldsymbol{\beta} + \boldsymbol{\epsilon}_0$ at \boldsymbol{Z}_0 , we have

$$\boldsymbol{Y}_0 - \boldsymbol{Z}_0' \widehat{\boldsymbol{\beta}}' = \boldsymbol{Z}_0' (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) + \boldsymbol{\epsilon}_0 \sim N_m[\boldsymbol{0}, (1 + \boldsymbol{Z}_0' (\boldsymbol{Z}' \boldsymbol{Z})^{-1} \boldsymbol{Z}_0) \boldsymbol{\Sigma}],$$

which is independent of $n\hat{\Sigma}$. Thus, the $100(1-\alpha)\%$ prediction ellipsoid for Y_0 is

$$(\boldsymbol{Y}_0 - \boldsymbol{Z}_0'\widehat{\boldsymbol{\beta}})' \left(\frac{n}{n-r-1}\widehat{\boldsymbol{\Sigma}}\right)^{-1} (\boldsymbol{Y}_0 - \boldsymbol{Z}_0'\widehat{\boldsymbol{\beta}})$$

$$\leq (1 + \mathbf{Z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}_0) \left[\left(\frac{m(n-r-1)}{n-r-m} F_{m,n-r-m}(\alpha) \right) \right].$$

The $100(1-\alpha)\%$ simultaneous prediction intervals for the individual responses Y_{0i} are

$$\mathbf{Z}_0'\widehat{\boldsymbol{\beta}}_{(i)} \pm \sqrt{\left(\frac{m(n-r-1)}{n-r-m}F_{m,n-r-m}(\alpha)\right)\sqrt{(1+\mathbf{Z}_0'(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}_0)\left(\frac{n}{n-r-1}\widehat{\sigma}_{ii}\right)}},$$

for i = 1, ..., m.

2 Regression models with time-series errors

See R demonstration, using the Natural Gas Data on Table 7.4 of the textbook. In particular, a multiplicative seasonal model seems to fit the data better than the one used in the text.

Example 7.6 of the textbook: natural gas for heating. Daily data and the variables are

- 1. Y: (Dependent variable) sendouts of natural gas
- 2. X_1 : Degree of heating days (DHD) which is defined as 65° daily average temperature.
- 3. X_2 : Lagged DHD, i.e. DHD_{Lag}.
- 4. X_3 : Windspeed (24-hour average)
- 5. X_4 : Weekend indicator.

There are 63 observations shown in Table 7.4.