Université Mostefa Benboulaïd Batna 2

Faculté de Technologie

Département d'Electrotechnique

Année universitaire 2017/2018

Promotion: Licence en Electrotechnique

Parcours: Electrotechnique

Module: ELT514

Contrôle de Connaissances

Mercredi 04 Février 2018

Ne pas oublier les unités des différentes grandeurs

Bonus :
$$\overrightarrow{\nabla}$$
. $\overrightarrow{V}(r, \theta, \varphi) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 V_r)$

Exercice n°1

1.1. Donner les noms et le sens physique des expressions suivantes : $\vec{\nabla}V$, $\vec{\nabla}$, \vec{V} , \vec{V} , \vec{V}

1.2. Terminer les expressions suivantes est donner leur sens physique : $\vec{V} \cdot \vec{B} = \vec{V} \cdot \vec{D} = \vec{D} \cdot \vec{D$

1.3. Quelles sont les propriétés d'un vecteur \vec{V} pour qu'il soit un champ de gradient ?

1.4. Rappeler le théorème d'Ampère et la loi de Biot et Savart et dire à quoi servent-ils ?

Exercice n°2

On considère un système de 3 charges ponctuelles posées aux sommets (P_1, P_2, P_3) d'un triangle droit isocèle $(q_1 = 2q, q_2 = q_3 = -q)$. Choisir $P_1 = 0$ origine du système xOy, P_2 sur l'axe des y et P_3 sur l'axe des x. Les côtés du triangle sont tel que P_1 $P_2 = P_1$ $P_3 = a$.

2.1. Trouver la force sur la charge $q_2 = -q$ à la position P_2 .

2.2. Trouver le potentiel électrique, V_1, V_2, V_3 , à la position de chacun des trois sommets créés par les autres charges du triangle.

2.3. Trouver l'énergie potentiel électrostatique, E_n , du système.

2.4. Trouver le moment dipolaire du système entier

Exercice n°3

On considère un segment fini rectiligne P_1P_2 de densité linéique homogène $\lambda > 0$. L'axe z est confondu avec l'axe du segment. Les bouts du segment sont respectivement z_1 et z_2 avec $z_1 \neq z_2$ à partir d'une origine O. soit α_1 l'angle entre OM et P_1M et α_2 l'angle entre OM et P_2M . Compte tenu des symétries, on travaille en coordonnées cylindriques. Calculer le champ et le potentiel électriques en un point M à une distance r du segment à partir de l'origine O.

Exercice n°4

Considérons une région possédant une densité de charge volumique $\rho(r)$ (distribution de charge à symétrie sphérique). Le champ électrique produit par cette distribution a la forme : $\vec{E}(r) = (Cr^2/\epsilon_0)\vec{e}_r$ 4.1. Utiliser la forme intégrale du théorème de Gauss afin de calculer la quantité de charges Q(a), contenu dans une sphère de rayon a centrée sur l'origine.

- **4.2.** Utiliser la forme locale (différentielle) du théorème de Gauss afin d'en déduire l'équation de la densité de charge volumique $\rho(r)$.
- **4.3.** Utiliser la densité volumique $\rho(r)$ trouvée en **4.2.** et recalculer Q(a)

Université Mostefa Benboulaïd Batna 2

Faculté de Technologie

Département d'Electrotechnique

Année universitaire 2017/2018

Promotion: Licence en Electrotechnique

Parcours: Electrotechnique

Module: ELT514

Solution du Contrôle de Connaissance

Mercredi 22 Février 2017

Exercice n°1 Voir cours

Exercice n°2 $\vec{F}_2 = q_2 \vec{E}_1(P_2) + q_2 \vec{E}_3(P_2) = \frac{q_2}{4\pi\epsilon_0} \left[\frac{q_1}{\sigma^2} \vec{e}_y + \frac{q_3}{2\sigma^2} \vec{e}_{P3P2} \right]$ $\vec{e}_{P3P2} = -\cos\frac{\pi}{4}\vec{e}_x + \sin\frac{\pi}{4}\vec{e}_y = -\frac{\sqrt{2}}{2}\vec{e}_x + \frac{\sqrt{2}}{2}\vec{e}_y$ $\vec{F}_{2} = \frac{-q}{4\pi\epsilon_{0}} \left[\frac{2q}{a^{2}} \vec{e}_{y} + \frac{\sqrt{2}q}{4a^{2}} \vec{e}_{x} - \frac{\sqrt{2}q}{4a^{2}} \vec{e}_{y} \right]$ $\vec{F}_2 = \frac{-q}{4\pi\varepsilon_0} \left[\frac{8q}{4a^2} \vec{e}_y + \frac{\sqrt{2}q}{4a^2} \vec{e}_x - \frac{\sqrt{2}q}{4a^2} \vec{e}_y \right]$ $\vec{F}_2 = \frac{q}{16\pi\varepsilon_0 a^2} \left[\left(\sqrt{2} - 8 \right) \vec{e}_y - \sqrt{2} \vec{e}_x \right] [N]$ $V_1 = \frac{q_2}{4\pi\varepsilon_0 a} + \frac{q_3}{4\pi\varepsilon_0 a} = -\frac{2q}{4\pi\varepsilon_0 a}[V]$ $V_2 = \frac{q_1}{4\pi\varepsilon_0 a} + \frac{q_3}{4\pi\varepsilon_0 a\sqrt{2}} = \frac{q}{4\pi\varepsilon_0 a} \left(\frac{4-\sqrt{2}}{2}\right) [V]$ $V_3 = \frac{q_1}{4\pi\varepsilon_0 a} + \frac{q_2}{4\pi\varepsilon_0 a\sqrt{2}} = \frac{q}{4\pi\varepsilon_0 a} \left(\frac{4-\sqrt{2}}{2}\right) [V]$ $E_p = \frac{1}{2}(q_1V_1 + q_2V_2 + q_3V_3) = -\frac{q^2}{8\pi\varepsilon_0 a} \left[4 + 2\left(\frac{4 - \sqrt{2}}{2}\right) \right] = -\frac{q^2}{8\pi\varepsilon_0 a} \left[8 - \sqrt{2} \right] [J]$

On se rappelle que \vec{p} ne dépend pas du choix d'origine - puisque la charge totale du système est nulle). On place *O* à l'origine du dessein et on trouve :

$$\vec{p} = \sum_{i=1}^{3} q_i \vec{\delta}_i = \sum_{i=1}^{3} q_i \vec{OP}_i = q_1 \vec{OP}_1 + q_2 \vec{OP}_2 + q_3 \vec{OP}_3 = -qa(\vec{e}_x + \vec{e}_y)[C.m]$$

Exercice n°3

On choisit un point P dans un élément dz. On obtient le champ \vec{E} en appliquant l'expression intégrale :

$$\vec{E}(M) = \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{dz}{r_{PM}^2} \vec{u}_{PM}$$

$$\vec{u}_{PM} = \frac{\overrightarrow{PM}}{r_{PM}} = \frac{r\vec{e}_r - z\vec{e}_z}{r_{PM}}$$

$$\vec{E}(M) = \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{r\vec{e}_r - z\vec{e}_z}{r_{PM}^3} dz = \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{r\vec{e}_r - z\vec{e}_z}{(r^2 + z^2)^{3/2}} dz$$

$$\begin{split} \vec{E}(\textit{M}) = & \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{rdz}{(r^2 + z^2)^{3/2}} \vec{e}_r - \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{zdz}{(r^2 + z^2)^{3/2}} \vec{e}_z \\ & \frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{rdz}{(r^2 + z^2)^{3/2}} \vec{e}_r = ? \end{split}$$

Pour cette intégrale, il convient de faire un changement de variables vers l'angle entre *OM* et *PM* et on peut ainsi écrire,

$$z = rtang\alpha = r\frac{sin\alpha}{cos\alpha} \Rightarrow dz = r\frac{1}{cos^2\alpha}d\alpha$$

Ensuite $r^2 + z^2 = \frac{r^2}{\cos^2 \alpha}$

A $z = z_1$ on a $\alpha = \alpha_1$ et à $z = z_2$ on a $\alpha = \alpha_2$

$$\begin{split} \frac{\lambda}{4\pi\epsilon_0} \int_{\alpha_1}^{\alpha_2} \frac{r dz}{(r^2+z^2)^{3/2}} &= \frac{\lambda}{4\pi\epsilon_0} \int_{\alpha_1}^{\alpha_2} \frac{\cos^3\alpha}{r^2} \ r \frac{1}{\cos^2\alpha} \, d\alpha = \frac{\lambda}{4\pi\epsilon_0 r} \int_{\alpha_1}^{\alpha_2} \cos\alpha \, d\alpha \\ &= \frac{\lambda}{4\pi\epsilon_0 r} (\sin\alpha_2 - \sin\alpha_1) \end{split}$$

$$\frac{\lambda}{4\pi\varepsilon_0} \int_{z_1}^{z_2} \frac{zdz}{(r^2 + z^2)^{3/2}} \vec{e}_z = ?$$

Posons $u^2 = r^2 + z^2 \Rightarrow udu = zdz$

Les bornes de l'intégrale sont :

$$u_1 = (r^2 + z_1^2)^{1/2}$$
 et $u_2 = (r^2 + z_2^2)^{1/2}$

$$\begin{split} \frac{\lambda}{4\pi\varepsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{zdz}{(r^{2}+z^{2})^{3/2}} &= \frac{\lambda}{4\pi\varepsilon_{0}} \int_{(r^{2}+z_{2}^{2})^{1/2}}^{(r^{2}+z_{2}^{2})^{1/2}} \frac{du}{u^{2}} = -\frac{\lambda}{4\pi\varepsilon_{0}} \frac{1}{u} \Big|_{(r^{2}+z_{1}^{2})^{1/2}}^{(r^{2}+z_{1}^{2})^{1/2}} \\ &= -\frac{\lambda}{4\pi\varepsilon_{0}} \left[\frac{1}{(r^{2}+z_{2}^{2})^{1/2}} - \frac{1}{(r^{2}+z_{1}^{2})^{1/2}} \right] = -\frac{\lambda}{4\pi\varepsilon_{0}} r (\cos\alpha_{2} - \cos\alpha_{1}) \\ \vec{E}(M) &= \frac{\lambda}{4\pi\varepsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{rdz}{(r^{2}+z^{2})^{3/2}} \vec{e}_{r} - \frac{\lambda}{4\pi\varepsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{zdz}{(r^{2}+z^{2})^{3/2}} \vec{e}_{z} \\ &= \frac{\lambda}{4\pi\varepsilon_{0}} r [(\sin\alpha_{2} - \sin\alpha_{1}) \vec{e}_{r} + (\cos\alpha_{2} - \cos\alpha_{1}) \vec{e}_{z}] \end{split}$$

$$V(M) &= \frac{\lambda}{4\pi\varepsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{dz}{r_{PM}} = \frac{\lambda}{4\pi\varepsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{dz}{(r^{2}+z^{2})^{1/2}} \\ z &= r t a n g \alpha = r \frac{\sin\alpha}{\cos\alpha} \Rightarrow dz = r \frac{1}{\cos^{2}\alpha} d\alpha \\ r^{2} + z^{2} &= \frac{r^{2}}{\cos^{2}\alpha} \Rightarrow (r^{2}+z^{2})^{1/2} = \frac{r}{\cos\alpha} \\ V(M) &= \frac{\lambda}{4\pi\varepsilon_{0}} \int_{\alpha_{1}}^{\alpha_{2}} \frac{\cos\alpha}{r} \frac{r}{r} \frac{1}{\cos^{2}\alpha} d\alpha = V(M) = \frac{\lambda}{4\pi\varepsilon_{0}} \int_{\alpha_{1}}^{\alpha_{2}} \frac{d\alpha}{\cos\alpha} \frac{d\alpha}{r} \frac{d\alpha}{r} \end{split}$$

Il existe plusieurs façons d'évaluer cette intégrale. L'une que nous choisissons est la suivante :

$$\int_{\alpha_{1}}^{\alpha_{2}} \frac{d\alpha}{\cos\alpha} = \int_{\alpha_{1}}^{\alpha_{2}} \frac{\cos\alpha d\alpha}{1 - \sin^{2}\alpha}$$

$$u = \sin\alpha \Rightarrow du = \cos\alpha d\alpha$$

$$\int_{\alpha_{1}}^{\alpha_{2}} \frac{\cos\alpha d\alpha}{1 - \sin^{2}\alpha} = \int_{u_{1}}^{u_{2}} \frac{du}{1 - u^{2}}$$

$$\frac{1}{1-u^2} = \frac{1}{(1-u)(1+u)} = \frac{A}{1-u} + \frac{B}{1+u} = \frac{A(1+u) + B(1-u)}{(1-u)(1+u)} = \frac{(A-B)u + (A+B)}{(1-u)(1+u)}$$

$$\begin{cases} A-B = 0 \\ A+B = 1 \end{cases} \Rightarrow A = B = \frac{1}{2}$$

$$\frac{1}{1-u^2} = \frac{1/2}{1-u} + \frac{1/2}{1+u}$$

$$\int_{u_1}^{u_2} \frac{du}{1-u^2} = \frac{1}{2} \int_{u_1}^{u_2} \frac{du}{1-u} + \frac{1}{2} \int_{u_1}^{u_2} \frac{du}{1+u}$$

$$\int_{u_1}^{u_2} \frac{du}{1-u} = ?$$

$$v = 1 - u \Rightarrow dv = -du$$

$$\int_{u_1}^{u_2} \frac{du}{1-u} = -\int_{v_1}^{v_2} \frac{dv}{v} = -lnv|_{v_1}^{v_2} = -ln(1-u)|_{u_1}^{u_2} = -ln(1-sin\alpha)|_{\alpha_1}^{\alpha_2}$$

$$\int_{u_1}^{u_2} \frac{du}{1+u} = ?$$

$$w = 1 + u \Rightarrow dw = du$$

$$\int_{u_1}^{u_2} \frac{du}{1+u} = \int_{w_1}^{w_2} \frac{dw}{w} = lnw|_{w_1}^{w_2} = ln(1+u)|_{u_1}^{u_2} = ln(1+sin\alpha)|_{\alpha_1}^{\alpha_2}$$

$$\int_{\alpha_1}^{\alpha_2} \frac{d\alpha}{cos\alpha} = \frac{1}{2} ln(1+sin\alpha) - \frac{1}{2} ln(1-sin\alpha) \Big|_{\alpha_1}^{\alpha_2} = \frac{1}{2} ln \frac{(1+sin\alpha)}{(1-sin\alpha)} \Big|_{\alpha_1}^{\alpha_2}$$

$$= \frac{1}{2} ln \frac{(1+sin\alpha_2)(1-sin\alpha_1)}{(1-sin\alpha_2)(1+sin\alpha_1)}$$

$$V(M) = \frac{\lambda}{8\pi\epsilon_0} ln \frac{(1+sin\alpha_2)(1-sin\alpha_1)}{(1-sin\alpha_2)(1+sin\alpha_1)}$$

Exercice n°4

$$\iint \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{Ca^2}{\varepsilon_0} \iint dS = 4\pi \frac{Ca^4}{\varepsilon_0} = \frac{Q(a)}{\varepsilon_0} \Rightarrow Q(a) = 4\pi Ca^4$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{Cr^2}{\varepsilon_0} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{Cr^4}{\varepsilon_0} \right) = \frac{C}{\varepsilon_0 r^2} \frac{dr^4}{dr} = \frac{4Cr^3}{\varepsilon_0 r^2} = \frac{4Cr}{\varepsilon_0} \Rightarrow \rho = 4Cr$$

$$Q(a) = \iiint \rho(r) d\tau = 4\pi \int_0^a 4Cr^3 dr = 4\pi C[r^4]_0^a = 4\pi Ca^4$$