Conditional Volatility Models

Econ 147

UCLA

Version 1.1

Volatility Modeling

- ▶ In finance, one of the most important principle is "risk-return trade off".
 - return is typically what we expect from the investment, hence $E[r_t]$ (first moment)
 - or $E[r_t r_f]$ where r_f is a risk-free rate (constant): risk premium
 - ightharpoonup risk is typically measured by volatility, hence $Var\left(r_{t}\right)$ (second moment)
- ▶ **Reading:** Course slides and Supplemental Notes
- Optional: Chapter 3 (Heteroscedastic Volatility Models) in Fan and Yao's book
- ▶ Optional: Chapter 18 (GARCH Models) in Ruppert's book

Volatility Modeling

- ▶ In economics and finance, what we really care about is the "conditional moment"
 - $ightharpoonup E\left[r_{t}|\mathcal{F}_{t-1}
 ight]$: conditional mean return, sometimes modelled by a regression framework

$$E\left[r_{t}|\mathcal{F}_{t-1}\right] = \alpha + \beta x_{t-1}$$

▶ $Var(r_t | \mathcal{F}_{t-1})$: conditional volatility, how to model?

Constant Expected Return (CER) Model

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \dots, T; i = 1, \dots N$

$$\epsilon_{it} \sim \text{iid } N(0, \sigma_i^2)$$

$$\text{cov}(\epsilon_{it}, \epsilon_{jt}) = \sigma_{ij}, \text{ cor}(\epsilon_{it}, \epsilon_{jt}) = \rho_{ij}$$

$$\text{cov}(\epsilon_{it}, \epsilon_{js}) = 0 \quad t \neq s, \text{ for all } i, j$$

- CER model, a.k.a. iid Normal model
- We studied probability and statistical inference for this model, such as
 - Point Estimation
 - Interval Estimation (Confidence Interval)
 - Hypothesis Testing

Parameters of CER Model

$$\mu_{i} = E[r_{it}]$$

$$\sigma_{i}^{2} = \text{var}(r_{it})$$

$$\sigma_{ij} = \text{cov}(r_{it}, r_{jt})$$

$$\rho_{ij} = \text{cor}(r_{it}, r_{jt})$$

- Second moments of this model is time-invariant (constant), i.e., does not change with the time t
- ▶ Since $\epsilon_{it} \sim \text{iid } N(0, \sigma_i^2)$, $\text{var}(r_{it}|\mathcal{F}_{t-1}) = E(\epsilon_{it}^2|\mathcal{F}_{t-1}) = E(\epsilon_{it}^2) = \sigma_i^2$
- Implications from the CER Model:
 - normal distribution
 - constant variance over time
- are these implications realistic? NO!

Daily CC Returns of Exchange Rate BP/USD (1996/1/2 to 2017/12/22)

Daily CC Returns of S&P500 (1985/1/2 to 2017/12/22)

Daily CC Returns of Apple Shares (1990/1/2 to 2017/12/29)

Daily CC Returns of Microsoft Shares (1990/1/2 to 2017/12/29)

Daily CC Returns of Exchange Rate and S&P500

Daily CC Returns of Apple and Microsoft Shares

Jarque Bera Test $(H_0: r_{it} \sim iid N(\mu_i, \sigma_i^2))$						
	BP/USD	S&P500	Apple	Microsoft		
JB Statistic	30953	285800	1222400	10578		
Critical Value	5.9915	5.9915	5.9915	5.9915		
Test Result	reject H_0	reject H_0	reject H_0	reject H_0		

- $ightharpoonup H_0$ of normal distribution is clearly rejected.
 - ▶ the main source of this rejection is, again, from outliers.

- ▶ Daily (cc) returns on Exchange Rate (BP/USD), S&P 500, Apple and Microsoft:
 - often exhibit volatility clustering; periods of high and low volatility
 - not clear evidence of autocorrelation: but not independent (WHY?)
 - more outliers than normal (Gaussian distributions): heavy tailedness
- ► IID Normal (Constant Expected Return) model does not capture the empirical property of these financial data
- proper modeling of time-varying volatility is of importance
- We introduce some popular class of volatility modeling that allows $\sigma_t^2 = \operatorname{var}(r_t|\mathcal{F}_{t-1})$ is time varying in the conditional sense (see below)
 - this is called the conditional volatility modeling

Stylized Facts on stock return

- ▶ Nearly mds: $E[r_t|\mathcal{F}_{t-1}] \simeq 0$
- Volatility clustering; periods of high and low volatility
 - persistent volatility modeling
- No (or weak) autocorrelation
- Heavier tail than normal distribution

ARCH(1) model

▶ Let $\mu_t = E[r_t | \mathcal{F}_{t-1}]$. Then

$$r_t = \mu_t + (r_t - \mu_t) = \mu_t + X_t$$
 where $X_t = r_t - \mu_t$

► ARCH(1):

$$X_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

 $\sigma_t^2 = \omega + \alpha_1 X_{t-1}^2$

- $\omega > 0$, $\alpha_1 \ge 0$ are imposed usually
- ▶ Since $\mu_t = E[r_t | \mathcal{F}_{t-1}] \simeq 0$, $r_t \simeq X_t$
- More often we write

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

 $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$

In the rest of the slides, we maintain the assumption that $\mu_t = 0$ (or we can write $r_t = r_t - \mu_t$).

ARCH(1) model

Motivated by earlier discussion:

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

 $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$

or equivalently

$$r_t = \sqrt{\omega + \alpha_1 r_{t-1}^2} e_t$$
, $e_t \sim \textit{iid} N(0, 1)$

- $\omega > 0$, $\alpha_1 \ge 0$ are imposed usually
- $lacksymbol{\sigma}_t^2$ is known at time t-1 (hence included in \mathcal{F}_{t-1})

ARCH(1) model

- The volatility at time $t\left(\sigma_t^2\right)$ depends on the past squared return $\binom{r_{t-1}^2}{t}$ in the *autoregressive* way.
- ► AutoRegressive Conditional Heteroskedasticity ARCH (Robert Engle, 1982)
- Huge success in finance/econometrics/statistics.
 - Engle received Nobel Prize from this contribution

ARCH(1) model properties: mds

From

$$\begin{array}{rcl} r_t & = & \sigma_t e_t, \ e_t \sim \textit{iid} \ \textit{N}(\textbf{0},\textbf{1}) \\ \sigma_t^2 & = & \omega + \alpha_1 r_{t-1}^2 \end{array}$$

 $ightharpoonup E\left[r_{t} \middle| \mathcal{F}_{t-1}
ight] = 0 \text{ (mds)}, \text{ hence } cov\left(r_{t}, r_{s}
ight) = 0 \text{ for all } t
eq s.$

$\mathsf{ARCH}(1)$ model properties: persistent volatility

From

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

 $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$

- Let $v_t=r_t^2-\sigma_t^2=r_t^2-E\left[r_t^2|\mathcal{F}_{t-1}\right]$, then $E\left[v_t|\mathcal{F}_{t-1}\right]=0$ (mds)
 - $v_t = r_t^2 E\left[r_t^2 | \mathcal{F}_{t-1}\right]$ is, by construction, unexpected part from \mathcal{F}_{t-1} , so naturally time series error/innovation/news
- ightharpoonup By adding v_t to both sides,

$$\sigma_t^2 + v_t = \omega + \alpha_1 r_{t-1}^2 + v_t.$$

Since $v_t = r_t^2 - \sigma_t^2$, we have

$$r_t^2 = \omega + \alpha_1 r_{t-1}^2 + v_t$$

ARCH(1) model properties: persistent volatility

► AR(1) representation in "squares"

$$r_t^2 = \omega + \alpha_1 r_{t-1}^2 + v_t.$$

- ▶ If we assume $\alpha_1 < 1$, then r_t^2 is stationary AR(1) process.
 - $ightharpoonup E\left[r_t^2\right] = \frac{\omega}{1-\alpha_1}$
 - $Corr(r_t^2, r_{t-i}^2) = \alpha_1^{|j|}$
- Squared return (volatility proxy) can be persistent: $\alpha_1 \simeq 1$ (see below)

ARCH(1) model properties: heavy tailedness

- ▶ ARCH(1) returns $r_t = \sigma_t e_t$, $e_t \sim iid\ N(0,1)$ has heavier tails than normal distribution.
- ▶ Intuitively, outlier occurs when the variance is large, so it gets even bigger.

ARCH(1) model properties: heavy tailedness

► To prove, we need to show

$$kurt(r_t) = \frac{E\left[r_t^4\right]}{\left(E\left[r_t^2\right]\right)^2} \ge 3 = kurt(e_t) = \frac{E\left[e_t^4\right]}{\left(E\left[e_t^2\right]\right)^2} = E\left[e_t^4\right]$$

Note that

$$E\left[r_t^4 \middle| \mathcal{F}_{t-1}\right] = E\left[\sigma_t^4 e_t^4 \middle| \mathcal{F}_{t-1}\right]$$

$$= \sigma_t^4 E\left[e_t^4\right]$$

$$= \sigma_t^4 \times 3$$

$$= (\sigma_t^2)^2 \times 3$$

$$= (E\left[r_t^2 \middle| \mathcal{F}_{t-1}\right])^2 \times 3$$

ARCH(1) model properties: heavy tailedness

▶ Using Jensen's Inequality: $E[Y^2] \ge (E[Y])^2$,

$$E\left[\left(E\left[r_{t}^{2}|\mathcal{F}_{t-1}\right]\right)^{2}\right] \geq \left(E\left[E\left[r_{t}^{2}|\mathcal{F}_{t-1}\right]\right]\right)^{2} = \left(E\left[r_{t}^{2}\right]\right)^{2}$$

thus
$$E\left[\left(E\left[r_t^2|\mathcal{F}_{t-1}\right]\right)^2\right]\times 3\geq \left(E\left[r_t^2\right]\right)^2\times 3.$$

Now

$$E\left[E\left[r_t^4|\mathcal{F}_{t-1}\right]\right] = E\left[\left(E\left[r_t^2|\mathcal{F}_{t-1}\right]\right)^2\right] \times 3 \ge \left(E\left[r_t^2\right]\right)^2 \times 3$$

therefore

$$\frac{E\left[r_t^4\right]}{\left(E\left[r_t^2\right]\right)^2} \ge 3.$$

ARCH(p) model

We could introduce ARCH(p) model:

$$r_t = \sigma_t e_t, e_t \sim iid N(0, 1)$$

 $\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i r_{t-i}^2$

- lacktriangle Alternatively, to have parsimonious model, we introduce GARCH(1,1)
 - remind the relation of AR(p) and ARMA(1,1)

Jarque Bera Test for ARCH(1) (H_0 : $r_{it} \sim iid N(\mu_i, \sigma_i^2)$)						
	Y1	Y2	Y3	Y4		
	$(\alpha = 0)$	$(\alpha = .3)$	$(\alpha = .7)$	$(\alpha = 1)$		
Statistic	2.1857	180.497	579265	2958117		
C.V.	5.9915	5.9915	5.9915	5.9915		
Rej. Prob.	0.07	0.94	1	1		

Note: the above results are based on 100 replications

GARCH(1,1) model

As an alternative ARCH(p):

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

$$\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

- $\omega > 0$, $\alpha_1 \ge 0$ and $\beta_1 \ge 0$ are imposed usually
- Generalized AutoRegressive Conditional Heteroskedasticity -GARCH
- Even more successful than ARCH
- ► It has been an "industry standard" to use GARCH(1,1) for stock return data
 - Hansen, P. R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?. Journal of applied econometrics, 20(7), 873-889.

GARCH(1,1) model

▶ By similar procedure, with $r_t = \sigma_t e_t$, $e_t \sim iid(0,1)$,

$$\sigma_{t}^{2} = \omega + \alpha_{1} r_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}
r_{t}^{2} - \sigma_{t}^{2} + \sigma_{t}^{2} = \omega + \alpha_{1} r_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2} + r_{t}^{2} - \sigma_{t}^{2}
= \omega + (\alpha_{1} + \beta_{1}) r_{t-1}^{2}
-\beta_{1} r_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2} + r_{t}^{2} - \sigma_{t}^{2}$$

so

$$r_t^2 = \omega + (\alpha_1 + \beta_1) r_{t-1}^2 + v_t - \beta_1 v_{t-1}$$

which can be further written as

$$r_{t}^{2} - \frac{\omega}{1 - \alpha_{1} - \beta_{1}}$$

$$= (\alpha_{1} + \beta_{1}) \left(r_{t-1}^{2} - \frac{\omega}{1 - \alpha_{1} - \beta_{1}} \right) + v_{t} - \beta_{1} v_{t-1}$$

 $ightharpoonup r_t^2$ is ARMA (1,1) process.

► ARMA (1,1) model

$$|Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t + \theta \varepsilon_{t-1}, \varepsilon_t \sim MDS(0, \sigma_{\varepsilon}^2), |\phi| < 1$$

Properties

$$E[Y_{t}] = \mu, \quad \text{var}(Y_{t}) = \sigma_{Y}^{2} = \frac{1 + \theta^{2} + 2\phi\theta}{1 - \phi^{2}} \sigma_{\varepsilon}^{2}$$

$$\gamma_{j} = \text{cov}(Y_{t}, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)}{1 - \phi^{2}} \sigma_{\varepsilon}^{2}, & |j| = 1\\ \phi \gamma_{j-1}, & j \geq 2\\ \gamma_{-j}, & j \leq -2 \end{cases}$$

$$\rho_{j} = \text{corr}(Y_{t}, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)}{1 + \theta^{2} + 2\phi\theta}, & |j| = 1\\ \phi \rho_{j-1}, & j \geq 2\\ \rho_{-j}, & j \leq -2 \end{cases}$$

Set $\mu = \omega(1 - \alpha_1 - \beta_1)^{-1}$, $\phi = \alpha_1 + \beta_1$ and $\theta = -\beta_1$ to get the mean, variance and covariance of $\{r_t^2\}_{t}$.

GARCH(1,1) model: volatility dynamics

▶ When $(\alpha_1 + \beta_1) < 1$, we can show

$$\begin{split} E[r_t^2] &= \frac{\omega}{1 - \alpha_1 - \beta_1}, \\ \mathrm{var}(r_t^2) &= E\left[v_t^2\right] \left\{ 1 + \frac{\alpha_1^2}{1 - (\alpha_1 + \beta_1)^2} \right\}, \\ \gamma_j &= \mathrm{cov}(r_t^2, r_{t-j}^2) = \left\{ \begin{array}{l} \alpha_1 \frac{1 - (\alpha_1 + \beta_1)\beta_1}{1 - (\alpha_1 + \beta_1)^2} E\left[v_t^2\right], & |j| = 1\\ (\alpha_1 + \beta_1) \, \gamma_{j-1}, & |j| \geq 2 \end{array} \right., \\ \rho_j &= (\alpha_1 + \beta_1) \, \rho_{j-1} \text{ for } |j| \geq 2, \end{split}$$

where ρ_i here is ACF of r_t^2 NOT r_t

GARCH(1,1) model

- Many stylized facts of financial returns can be properly captured:
 - near mds so zero (or weak) autocorrelation
 - persistent volatility dynamics (clustering): $\alpha_1 + \beta_1 \simeq 1$ (see below)
 - heavy tailedness
- Only need a few parameters parsimonious modeling

$$\mathsf{GARCH}(1,1): \ r_t = \left(\omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2\right)^{1/2} \mathsf{e}_t, \ \mathsf{e}_t \sim \mathit{iid} \ \ \mathsf{N}(0,1)$$

$$\underset{\omega = \, 0.2, \, \alpha \, = \, 0.0 \, \text{and} \, \beta \, = \, 0.2}{\omega \, = \, 0.2, \, \alpha \, = \, 0.3 \, \text{and} \, \beta \, = \, 0.2}$$

2000

2000

0.0

$\mathsf{GARCH}(1,1) : \ \mathit{r_t} = \left(\omega + \alpha \mathit{r}_{t-1}^2 + \beta \sigma_{t-1}^2\right)^{1/2} \mathit{e_t}, \ \mathit{e_t} \sim \mathit{iid} \ \mathit{N}(0,1)$ ω = 0.2, α = 0.0 and β = 0.2 ω = 0.2, α = 0.3 and β = 0.2 0.8 0.8 9.0 POF 0.4 0.2 0.2 10 15 10 ω = 0.2, α = 0.6 and β = 0.2ω = 0.2, α = 0.8 and β = 0.20.8 0.8 9.0 9.0 4.0 0.2 0.2

0.0

10

15

10

$$\mathsf{GARCH}(1,1): \ r_t = (\omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2)^{1/2} e_t, \ e_t \sim \mathit{iid} \ \mathsf{N}(0,1)$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

$$\omega = 0.2, \ \alpha = 0.0 \ \mathsf{and} \ \beta = 0.2$$

Jarque Bera Test for GARCH(1,1) (H_0 : $r_{it} \sim iid N(\mu_i, \sigma_i^2)$)						
	Y1	Y2	Y3	Y4		
	$(\alpha = 0)$	$(\alpha = .3)$	$(\alpha = .6)$	$(\alpha = .8)$		
Statistic	1.8002	72.242	19839.7	418870		
C.V.	5.9915	5.9915	5.9915	5.9915		
Rej. Prob.	0.05	0.9	1	1		

Note: the above results are based on 100 replications

Confidence Interval

► Consider GARCH(1,1)

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

$$\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

- **b** By definition, r_t/σ_t is a standard normal random variable
- Therefore

$$\Pr\left(-q_{1-\alpha/2}^Z \le r_t/\sigma_t \le q_{1-\alpha/2}^Z\right) = 1-\alpha$$

where $q_{1-\alpha/2}^{Z}$ denotes the $100\,(1-\alpha/2)$ quantile of standard normal

- ► The (1α) -confidence interval of r_t is: $\left[-\sigma_t q_{1-\alpha/2}^Z, \ \sigma_t q_{1-\alpha/2}^Z \right]$
- ► For example, the 0.95-confidence interval of r_t is (approximately): $[-1.96\sigma_t, 1.96\sigma_t]$

Note: The empirical coverage probability is 0.97

Value at Risk (VaR)

- ightharpoonup Suppose we have initial wealth W_0 invested in a risky asset
- ▶ With simple return R, the profit of this investment is $L_1 = W_0 \cdot R$ and its VaR_α is

$$q_{\alpha}^{L_1} = W_0 \cdot q_{\alpha}^R$$

where q_{α}^{R} denotes the α quantile of R.

• With CC return r, the profit of this investment is $L_1=W_0\cdot (e^r-1)$ and its ${\sf VaR}_{\alpha}$ is

$$q_{\alpha}^{L_1} = W_0 \cdot (e^{q_{\alpha}^r} - 1)$$

where q_{α}^{r} denotes the α quantile of r.

Value at Risk (VaR)

Lemma 2. Suppose that X is a random variable and h(x) is a strictly increasing function of x. Define a new random variable Y = h(X). Then

$$q_{\alpha}^{Y} = h(q_{\alpha}^{X})$$

where q_{α}^{Y} and q_{α}^{X} denote the α quantiles of X and Y respectively.

► In GARCH models

$$r_t = \sigma_t e_t$$
, $e_t \sim iid N(0, 1)$

- ▶ The conditional distribution of r_t given σ_t is N(0,1)
- ▶ Given $\sigma_t > 0$, $r_t = \sigma_t e_t$ is a strictly increasing function of e_t .
- Therefore,

$$q_{\alpha}^{r_t} = \sigma_t q_{\alpha}^{e_t}$$

where $q_{\alpha}^{r_t}$ and $q_{\alpha}^{e_t}$ denote the α quantiles of r_t and e_t (given \mathcal{F}_{t-1}) respectively.

Therefore,

$$q_{\alpha}^{L_1} = W_0 \cdot (e^{q_{\alpha}^{r_t}} - 1) = W_0 \cdot (e^{\sigma_t q_{\alpha}^{e_t}} - 1)$$

 $lacksymbol{q}_{lpha}^{e_t}=q_{lpha}^{Z}$ is known since it is the quantile of the standard normal

$$L_{1,t} = \$1*(e^{r_t}-1)$$
, where $r_t = \sqrt{0.2+0.3r_{t-1}^2}e_t$, $e_t \sim iid\ N(0,1)$

Note: $W_0 = 1$. The relative frequencies of exceedances of $L_{1,t}$ over VaR(0.05) and VaR(0.025) are 0.050 and 0.016 respectively.

43 / 63

GARCH models

- The GARCH models are useful for
 - building confidence intervals: $\left[-\sigma_t q_{1-\alpha/2}^Z, \ \sigma_t q_{1-\alpha/2}^Z\right]$
 - lacktriangle calculating the VaRs: $W_0 \cdot (e^{\sigma_t q^Z_{lpha}} 1)$
- ▶ The usefulness depends on the knowledge of σ_t which is unknown in reality
- ▶ Since $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$, we can estimate σ_t^2 by estimating $(\omega, \alpha_1, \beta_1)$
- Estimation method conditional maximum likelihood
 - facts: standard asymptotic results hold (consistency and asymptotic normality), hence usual t-test (or p-value based test) is available
 - most standard statistical package can accommodate GARCH model estimation

▶ From the ARCH(1) model:

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

 $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$

the conditional distribution of $r_t | \mathcal{F}_{t-1} \sim N(0, \sigma_t^2)$ is given by

$$f(r_t|\mathcal{F}_{t-1};\theta) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left[-\frac{r_t^2}{2\sigma_t^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\left(\omega + \alpha_1 r_{t-1}^2\right)}} \exp\left[-\frac{r_t^2}{2\left(\omega + \alpha_1 r_{t-1}^2\right)}\right]$$

where $\theta = (\omega, \alpha_1)$ denotes the parameter to be estimated.

▶ The conditional log-likelihood function for $\theta = (\omega, \alpha_1)$:

$$\begin{split} &\frac{1}{T} \log L_{T}(\theta) \\ &= \frac{1}{T} \sum_{t=1}^{T} \log f(r_{t} | \mathcal{F}_{t-1}; \theta) \\ &= -\frac{1}{2} \log(2\pi) - \frac{1}{2T} \sum_{t=1}^{T} \log(\sigma_{t}^{2}) - \frac{1}{2T} \sum_{t=1}^{T} \frac{r_{t}^{2}}{\sigma_{t}^{2}} \\ &= -\frac{1}{2} \log(2\pi) - \frac{1}{2T} \sum_{t=1}^{T} \log(\omega + \alpha_{1} r_{t-1}^{2}) - \frac{1}{2T} \sum_{t=1}^{T} \frac{r_{t}^{2}}{\omega + \alpha_{1} r_{t-1}^{2}} \end{split}$$

► FOC w.r.t ω:

$$\frac{\partial \log L_{T}(\theta)}{\partial \omega} = \frac{\partial \log L_{T}(\theta)}{\partial \sigma_{t}^{2}} \frac{\partial \sigma_{t}^{2}}{\partial \omega}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left(-\frac{1}{2\sigma_{t}^{2}} + \frac{r_{t}^{2}}{2\sigma_{t}^{4}} \right) \cdot 1$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2\sigma_{t}^{2}} \left(\frac{r_{t}^{2}}{\sigma_{t}^{2}} - 1 \right)$$

▶ FOC w.r.t α_1 :

$$\frac{\partial \log L_{T}(\theta)}{\partial \alpha_{1}} = \frac{\partial \log L_{T}(\theta)}{\partial \sigma_{t}^{2}} \frac{\partial \sigma_{t}^{2}}{\partial \alpha_{1}}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left(-\frac{1}{2\sigma_{t}^{2}} + \frac{r_{t}^{2}}{2\sigma_{t}^{4}} \right) \cdot r_{t-1}^{2}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2\sigma_{t}^{2}} \left(\frac{r_{t}^{2}}{\sigma_{t}^{2}} - 1 \right) r_{t-1}^{2}$$

The maximum likelihood estimator $\widehat{\theta}_T = (\widehat{\omega}_T, \widehat{\alpha}_{1,T})$ of $\theta = (\omega, \alpha_1)$ can be solved from the equations

$$\begin{array}{lll} \frac{\partial \log L_T(\widehat{\theta}_T)}{\partial \omega} & = & 0 \text{ and} \\ \\ \frac{\partial \log L_T(\widehat{\theta}_T)}{\partial \alpha_1} & = & 0. \end{array}$$

From the GARCH(1) model:

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

$$\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

the conditional distribution of $r_t | \mathcal{F}_{t-1} \sim N(0, \sigma_t^2)$ is given by

$$f(r_t|\mathcal{F}_{t-1};\theta) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left[-\frac{r_t^2}{2\sigma_t^2}\right]$$
$$= \frac{\exp\left[-\frac{r_t^2}{2(\omega+\alpha_1r_{t-1}^2+\beta_1\sigma_{t-1}^2)}\right]}{\sqrt{2\pi(\omega+\alpha_1r_{t-1}^2+\beta_1\sigma_{t-1}^2)}}$$

where $\theta = (\omega, \alpha_1, \beta_1)$ denotes the parameter to be estimated.

▶ The conditional log-likelihood function for $\theta = (\omega, \alpha_1, \beta_1)$:

$$\begin{split} &\frac{1}{T}\log L_{T}\left(\theta\right) \\ &= &\frac{1}{T}\sum_{t=1}^{T}\log f\left(r_{t}|\mathcal{F}_{t-1};\theta\right) \\ &= &-\frac{1}{2}\log(2\pi) - \frac{1}{2T}\sum_{t=1}^{T}\log(\sigma_{t}^{2}) - \frac{1}{2T}\sum_{t=1}^{T}\frac{r_{t}^{2}}{\sigma_{t}^{2}} \\ &= &-\frac{1}{2}\log(2\pi) - \frac{1}{2T}\sum_{t=1}^{T}\log(\omega + \alpha_{1}r_{t-1}^{2} + \beta_{1}\sigma_{t-1}^{2}) \\ &-\frac{1}{2T}\sum_{t=1}^{T}\frac{r_{t}^{2}}{\omega + \alpha_{1}r_{t-1}^{2} + \beta_{1}\sigma_{t-1}^{2}} \end{split}$$

► FOC w.r.t ω:

$$\frac{\partial \log L_{T}(\theta)}{\partial \omega} = \frac{\partial \log L_{T}(\theta)}{\partial \sigma_{t}^{2}} \frac{\partial \sigma_{t}^{2}}{\partial \omega}$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left(-\frac{1}{2\sigma_{t}^{2}} + \frac{r_{t}^{2}}{2\sigma_{t}^{4}} \right) \cdot 1$$

$$= \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2\sigma_{t}^{2}} \left(\frac{r_{t}^{2}}{\sigma_{t}^{2}} - 1 \right)$$

► FOC w.r.t *α*₁:

$$\frac{\partial \log L_T(\theta)}{\partial \alpha_1} = \frac{\partial \log L_T(\theta)}{\partial \sigma_t^2} \frac{\partial \sigma_t^2}{\partial \alpha_1}$$

$$= \frac{1}{T} \sum_{t=1}^T \left(-\frac{1}{2\sigma_t^2} + \frac{r_t^2}{2\sigma_t^4} \right) \cdot r_{t-1}^2$$

$$= \frac{1}{T} \sum_{t=1}^T \frac{1}{2\sigma_t^2} \left(\frac{r_t^2}{\sigma_t^2} - 1 \right) r_{t-1}^2$$

▶ FOC w.r.t β_1 :

$$\begin{split} \frac{\partial \log L_{T}\left(\theta\right)}{\partial \beta_{1}} &= \frac{\partial \log L_{T}\left(\theta\right)}{\partial \sigma_{t}^{2}} \frac{\partial \sigma_{t}^{2}}{\partial \beta_{1}} \\ &= \frac{1}{T} \sum_{t=1}^{T} \left(-\frac{1}{2\sigma_{t}^{2}} + \frac{r_{t}^{2}}{2\sigma_{t}^{4}} \right) \cdot \sigma_{t-1}^{2} \\ &= \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2\sigma_{t}^{2}} \left(\frac{r_{t}^{2}}{\sigma_{t}^{2}} - 1 \right) \sigma_{t-1}^{2} \end{split}$$

The maximum likelihood estimator $\widehat{\theta}_T = (\widehat{\omega}_T, \widehat{\alpha}_{1,T})$ of $\theta = (\omega, \alpha_1)$ can be solved from the equations

$$\begin{array}{lcl} \frac{\partial \log L_T(\widehat{\theta}_T)}{\partial \omega} & = & 0, \\ \frac{\partial \log L_T(\widehat{\theta}_T)}{\partial \alpha_1} & = & 0, \\ \frac{\partial \log L_T(\theta)}{\partial \beta_1} & = & 0. \end{array}$$

GARCH(p,q) model: estimation using R

- ▶ When using R, need to install the following package
 - ▶ install.packages(TSA)
- ▶ R command: garch(x, order = c(p,q))
 - x is the date vector
 - c(p,q) specifies the order of the GARCH model

Estimating GARCH(1,1) with Apple Shares

- ▶ We use the daily CC returns of Apple shares from Jan 2, 2015 to Dec 29, 2017 (755 trading dates and hence 754 observations)
- ▶ We use the data to fit a GARCH(1,1) model

$$r_t = \sigma_t e_t, e_t \sim iid N(0,1)$$

$$\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

- We will get the estimators of ω , α_1 and β_1
- ▶ By estimating the model, we will also get the residuals \hat{e}_t and the fitted values $\hat{\sigma}_t$ for t = 2, 3, ..., 754
- Let $\hat{r}_t = \hat{\sigma}_t \hat{e}_t$ denote the fitted value of r_t for t = 2, 3, ..., 754. We can compare r_t and \hat{r}_t to see the fit of the model

Estimation and Inference of GARCH(1,1)

		ω	α_1	β_1
Apple	est.	0.000020	0.0833	0.8193
	std.	0.000006	0.0220	0.0448

Model:
$$r_t = \sigma_t e_t$$
 and $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2 + \beta_1 \sigma_{t-1}^2$, $e_t \sim \textit{iid} \ \textit{N}(\textbf{0},\textbf{1})$

Estimating GARCH(1,1) with Apple Shares

- Empirical results show that the GARCH(1,1) fits the data very well!
- More important question is on the GARCH(1,1)'s performances in prediction
- ightharpoonup We are interested in future (tomorrow's) return r_{t+1} given the information up to today
 - lacktriangle building confidence intervals: $\left[\sigma_{t+1}q_{1-\alpha/2}^Z,\ \sigma_{t+1}q_{1-\alpha/2}^Z\right]$
 - calculating the VaRs: $W_0 \cdot (e^{\sigma_{t+1}q_{\alpha}^Z} 1)$
- ▶ We can use the data up to today to estimate GARCH(1,1) and then get estimator $\widehat{\sigma}_{t+1}$ of σ_{t+1}
 - lacktriangle building confidence intervals: $\left[\widehat{\sigma}_{t+1}q_{1-lpha/2}^{Z},\;\widehat{\sigma}_{t+1}q_{1-lpha/2}^{Z}
 ight]$
 - calculating the VaRs: $W_0 \cdot (e^{\widehat{\sigma}_{t+1}q_{\alpha}^Z}-1)$

Estimating GARCH(1,1) with Apple Shares

- ▶ We consider the confidence intervals and VaRs for the cc Returns in year 2017
- ► From Jan 3, 2017, in each trading date of 2017 (there are 253 trading dates), we use 503 observations immediately before this date to estimate a GARCH(1,1)
- lacktriangle We then get an estimator $\widehat{\sigma}_{t+1}$ for this trading date
 - ightharpoonup building confidence intervals: $\left[\widehat{\sigma}_{t+1}q_{1-\alpha/2}^{Z},\ \widehat{\sigma}_{t+1}q_{1-\alpha/2}^{Z}\right]$
 - lacktriangle calculating the VaRs: $1\cdot (e^{\widehat{\sigma}_{t+1}q_{\alpha}^Z}-1)$
- We are interested in
 - the relative frequency that $\left[\widehat{\sigma}_{t+1}q_{1-\alpha/2}^{Z},\ \widehat{\sigma}_{t+1}q_{1-\alpha/2}^{Z}\right]$ covers r_{t+1}
 - the relative frequencies that $L_1 = 1 \cdot (e^{r_{t+1}} 1)$ exceeds VaR(0.05) and VaR(0.025)

Note: The empirical coverage probability is 0.96414

Note: the relative frequencies that $L_1 = 1 \cdot (e^{r_{t+1}} - 1)$ exceeds VaR(0.05) and VaR(0.025) are 0.0279 and 0.0199 respectively.

Concluding Remarks I

- Some popular volatility models (ARCH/GARCH/SV) are discussed
 - empirical stylized fact, modeling and corresponding properties
 - estimation and inference
 - dominating models in practice
- Next topics
 - portfolio choice and econometrics
 - factor pricing model (estimation and inference)