Homework 1

Discrete Structures 2

Due Thursday, Jan 17, 2019, 12:00 pm

Instructions: You should submit your homework online on webcourse. Only 3 problems will be graded, each graded problem is worth 5 points. There will be 3 effort points in total for the ungraded problems, 1 for each problem. Hence the maximum score for this homework is $3 \times 5 + 3 = 18$.

- 1. Let *A* and *B* be arbitrary sets. Prove that $(A \times B) \cap (B \times A) = (A \cap B)^2$.
- 2. Let *A* and *B* be arbitrary sets. Prove that $P(A) \cap P(B) = P(A \cap B)$. (Note: P stands for power set.)
- 3. Let $n \in \mathbb{N}$ and let $S_n = \{(x,y) \in \mathbb{N}^2 | x < y \le n\}$. List all the elements of S_3 . How many elements are there in S_n ? Prove your answer.
- 4. Determine which functions below define surjections from $N \times N$ to N. Give a one-line explanation.
 - f(x,y) = x+y
 - f(x,y)=xy
- 5. Given that a, b, and c are odd integers, prove that equation $ax^2 + bx + c = 0$ cannot have a rational root.
- 6. Prove that $\exists x,y$ irrational such that x^y is rational. Use only the fact that $\sqrt{2}$ is irrational. (Rational numbers are real numbers that can be expressed as a fraction.)