T4C02 - La dualité onde corpuscule de la lumière

E. Machefer

10 janvier 2024

1 Modèle ondulatoire

1.1 Ondes électromagnétiques

Définition 1.

Une onde électromagnétique correspond à la propagation d'un champ électromagnétique.

Définition 2.

La longueur d'onde est définie par

$$\lambda = c/\nu = c \times T$$

avec c = 3,00 × 108 m/s, ν la fréquence en Hz et T la période en s.

1.2 Domaines de fréquence et de longueur d'onde

Remarque 1.

La lumière est une onde électromagnétique dont la longueur d'onde est comprise entre 400 nm (violet) et 800 nm (rouge).

Nom	γ	X	UV	Visible	IR	Micro-ondes	Radar	Radio
λ (m)	$< 10^{-11}$	$< 10^{-8}$	$< 10^{-7}$		$> 10^{-6}$	$> 10^{-3}$	> 1	> 10
ν (Hz)	$> 10^{20}$	$> 10^{17}$	$> 10^{15}$		$< 10^{14}$	$< 10^{11}$	$< 10^9$	$< 10^{8}$

Exercice 1.

- 1. Le système bluetooth utilise des ondes de fréquence $\nu=2.4$ GHz. Calculer la longueur d'onde λ correspondante.
- 2. Une télécommande utilise une onde électromagnétique de longueur d'onde $\lambda=950~\mathrm{nm}.$
 - (a) Quel est le domaine spectral correspondant?
 - (b) Calculer la fréquence de la source émettrice.
- 3. Voici les caractéristiques d'un four à micro-onde :
 - Puissance : 1000 W
 - Fréquence du rayonnement : 2,45 GHz

Calculer la longueur d'onde correspondante. Le terme micro-onde est-il approprié?

2 Modèle corpusculaire

2.1 Le photon

Définition 3.

Un photon correspond à la plus petite quantité d'énergie que peut transporter une onde électromagnétique. Son énergie est définie par

$$E = h \times \nu = h \times c/\lambda$$

avec h = $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$

2.2 La secondeexercice

Exercice 2.

Document 1. Définition seconde

La seconde, symbole s, est l'unité de temps du SI. Elle est définie en prenant la valeur numérique fixée de la fréquence du césium, $\Delta\nu_{\rm Cs}$, la fréquence de la transition hyperfine de l'état fondamental de l'atome de césium 133 non perturbé, égale à 9 192 631 770 lorsqu'elle est exprimée en Hz, unité égale à s⁻¹.

- 1. Calculer la fréquence du rayonnement correspondant à cette transition.
- 2. Calculer l'énergie mise en jeu en J.
- 3. Quelle est la longueur d'onde correspondante? Quel est le domaine spectral correspondant?

2.3 L'électronvolt DÉFINITION

Remarque 2.

L'énergie mise en jeu pour un photon est en général assez faible. On utilise alors une unité appelée l'**électronvolt** correspondant à l'énergie acquise par un électron lorsqu'il est soumis à une différence de potentiel de $1~\rm V$

$$1eV = 1,602 \times 10^{-19} J$$

2.4 TODO Niveau d'énergie d'un atomeAD

En 1913, le physicien danois Niels Bohr

3 À retenir BO :PROF

— Utiliser une échelle de fréquences ou de longueurs d'onde pour identifier un domaine spectral.

- Citer l'ordre de grandeur des fréquences ou des longueurs d'onde des ondes électromagnétiques utilisées dans divers domaines d'application (imagerie médicale, optique visible, signaux wifi, micro-ondes, etc.).
- Utiliser l'expression donnant l'énergie d'un photon.
- Exploiter un diagramme de niveaux d'énergie en utilisant les relations = c / ν et E = h
- Obtenir le spectre d'une source spectrale et l'interpréter à partir du diagramme de niveaux d'énergie des entités qui la constituent.