

Design and Development of an Autonomous Payload Return Vehicle

Introduction

Space Hardware Club

O Student-run organization, supports undergraduate research projects in the areas of rocketry, space satellites, and high altitude ballooning (HAB)

Problem

- O HAB projects involve carrying a scientific payload into the upper atmosphere
- Often descend under unguided parachute and lands in unfavorable locations

Solution

- Creation of an autonomous payload return vehicle
- Ram-Air Parafoil Targeted Object Return (RAPTOR)

Inspiration

- Joint Precision Airdrop Delivery System (JPADS)
- Developed by the US Army and Air Force

JPADS

Systems Overview

High Altitude Weather Balloon Operation

- Payload ascends to generally 25,000 meters
- Descends after it releases from the line or balloon bursts
- Typical payloads descend under a standard parachute
- Payload lands and is is recovered

RAPTOR System Operation

- RAPTOR ascends on a standard high altitude balloon
- Captures atmospheric data and GPS position
- Releases from the balloon line prior to balloon burst
- To provide steering, servos articulate the parafoil's trailing edge
- Guides system to desired landing location

RAPTOR System Requirements

- Maximum mass of 1.8 kilograms
- O Release mechanism for balloon line
- Landing speed of 7 meters per second
- Atmospheric data collection sensors and GPS

High Altitude Balloon

Flight Operations

Flight Predictions

- Cambridge University Spaceflight Landing Predictor (CUSF) Simulations
- Select a set of landing locations based on CUSF results
- Software autonomously selects a location from this set

Guided Parafoil Flight

- O Parafoil was chosen rather than a standard parachute
- Parafoils are inflatable airfoils generates lift
- Deflection of the trailing edge causes turning
- Servos pull on the parafoil's brake lines

FAA Compliance

- Maximum mass of 1.8 kilograms
- Not classified as an Unmanned Aerial Vehicle (UAV)
- O Guidance at 3,100 meters to clear airspace
- Tower notification

Concept of Operation

Project Development

Kestrel

- Electronics testing bed
- Mechanical components prototyping
- Basic flight software testing

Falcon

- Developing basic parafoil control
- Flight algorithms
- Additional mechanical development
- Electronic redesign

Phoenix

- Improved parafoil control with larger parafoil
- Reliable cutdown
- Printed Circuit Board (PCB) development
- Expanded guidance algorithms

Flight Timeline

Flight #	Date	Payload	Summary
1	April 21, 2018	Kestrel	Mechanical prototypesElectronic brown-out
2	August 31, 2018	Kestrel	Stable electronicsSuccessful flight
3	October 6, 2018	Falcon	Successful payload operationsDebris caught in parafoil
4	October 27, 2018	Falcon	Mechanical release failureSoftware updates
5	November 17, 2018	Falcon	Mechanical release failureUnsuccessful recovery

Flights 1-2: Kestrel

Flight Objectives

- Construct a flight ready payload
- Prototype mechanical, electrical, and software systems
- Verify systems function at high altitude

Flight Results

- Incremental mechanical design improvements
- Inspired brown-out safeguards for electronics and software
- Verified system was operational at low temperature
- Atmospheric sensor and data acquisition was successful

Team Photo Prior to First Flight

Collected Atmospheric Data

Kestrel Payload

Flights 3-5: Falcon

Flight Objectives

- Implement initial active descent control using parafoil
- Very low target altitude of 300 meters
- Collect data regarding parafoil flight characteristics

Falcon Payload

Flight Results

- Inconsistent mechanical release mechanism for balloon line
- Successful parafoil deployment
- Unable to achieve steady-flight
- Increased electrical and software system capabilities
- Increase knowledge of parafoil behavior
- O Payload was lost to a tree during 5th flight

Team Photo Prior to First Flight

Phoenix

Phoenix Objectives

- Cumulative design incorporating knowledge from Kestrel and Falcon
- Low and high altitude flight capability
- Stand-alone payload flight with improved guidance
- Develop a parafoil flight characteristic model

System Changes

- Electrical: single battery power source and use a custom PCB
- Mechanical: new primary release mechanism and addition of secondary release
- Software: improved error handling
- Aerospace: increase parafoil size and lift capacity
- System: more rigorous testing and flight procedures

Phoenix Parafoil Testing

Payload Overview

and Motor

Secondary

#

1

4

Mechanical Design

Brake Line Controller

- Adjusts brake lines on parafoil
- Uses continuous rotation servo
- Brake line is wrapped around the blue spool
- Additively manufactured (3D printed)

Primary Release Mechanism

- Used to release the payload from the balloon line and deploy parafoil
- Electronic solenoid provides brown-out resilience
- Bow release is set manually and is opened with the solenoid

Secondary Release Mechanism

- Used during testing to prevent the loss of the payload
- Hotwire is used to burn the balloon line and release payload

Brake Line Controller

Primary Release Mechanism

Secondary Release Mechanism

Parafoil Design

Semi-Rigid Frame

- Inspired by a similar project*
- Intended to ease parafoil inflation at high altitude
- Decreases parafoil line tangling

Parafoil Attachment

CAD Rendering of Semi-Rigid Frame

- Secured externally to the payload
- Deployed by a release mechanism
- Prevented parafoil from spinning and tangling the 200+ parafoil lines
- Decreases chance of free-fall

Dowel Rod Frame inside Parafoil

Semi-Rigid Parafoil Secured to Payload

Flight Software

Structure

O Uses Arduino framework, C++ object oriented programming

Guidance

- O Basic landing location determination will be replaced by a feed-forward neural network combined with a decision tree
- O Run validation using current location every second

Control

O Inertial turning system to be upgraded by a data-driven PID controller

Current Inertial System

Guidance Testing

Machine Learning

Landing Location Selection

- O Groundnet examines satellite imagery to determine locations prior to flight
- Chosen locations are graded by team members in terms of desirability

Landing Location Determination

- Skynet determines viability of locations based on current location, wind speed, wind direction, heading, altitude, and velocity during flight
- Feed forward neural network is trained prior to flights using CUSF simulation data
- Locations above viability threshold are fed into a decision tree to determine optimal landing location based on the given data

Electrical Subsystem

Power Source

- Originally used several separate power sources
- Single rechargeable Lithium-Ion battery

Unified Sensor PCB

- O Designed as a shield for an Arduino Uno
- PCB contains all of the sensors and components plug into the shield
- Decreases electronic weight and wiring complexities

Falcon Electrical System

Phoenix PCB

Phoenix PCB with Components

Conclusion

Future Project Development

- Hawk: Ability to carry a payload train
- Eagle: Culmination of RAPTOR design improvements and final product

Project Variant

Thunderbird: Design for returning high-power and model rockets

Development Schedule

- Phoenix is currently under development
- Test flights planned during the summer of 2019

Falcon being Launched

Falcon in Flight

Questions

