Assigment 2 - ESM 232 Climate Modeling

Anthony Luna, Chen Xing, Atefeh Mohseni

4/7/2021

Background

Almond conceptual model

The almond model derived from Lobell et al. (2006) is a statistical model calculating annual yield anomaly of almonds in California, which is based on February minimum temperature (Celsius degree) and January accumulated precipitation (mm).

Load function(s)

Load the almond model function!

The function will process:

- Turn the daily minimum temperature and daily precipitation into monthly results
- Calculate annual almond yield conceptual model

Read input data

Read the climate data in a txt format.

- There is a column containing time information
- It includes two variables: minimum temperature and precipitation

Calculate almond yearly yield anomaly

Use the defined function to calculate almond yield of each year in California (units: ton/acre).

The almond yield equation (Lobell et al. 2006) is:

$$Y = -0.015* (Tn,2) - 0.0046* (Tn,2)^2 - 0.07* (P1) + 0.0043* (P1)^2 + 0.28$$

where Y is almond yield anomaly (ton/acre); Tn,2 is February minimum temperature (C); P1 is January precipitation (mm)

The yearly yield results will be returned to yeild_outcomes

Results

Discussion

References

Lobell D B, Field C B, Cahill K N, et al. Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties[J]. *Agricultural and Forest Meteorology*, 2006, **141(2-4)**: 208-218.

Appendix - almond_model.R

#' Almond Model
#'

#' This function computes the annual yield of almonds in California
#' based on monthly minimum temperature in February and
#' accumulated precipitation in January (Lobell et al. 2006)
#' @param clim_data file path to climate data that includes fields for
#' row_number, D, day, month, year, wy, tmax_C, tmin_c, precip, wyd
#' @param k1 coefficient for February minimum temperature changes
#' @param k2 quadratic term coefficient for February minimum temperature changes
#' @param k3 coefficient for January Precipitation changes
#' @param k4 quadratic term coefficient for January Precipitation changes

```
#' Oparam intercept the intercept of the fitted line
#' @author Anthony Luna, Chen Xing, Atefeh Mohseni
#' @examples almond model(["1" 1991-06-01 1 6 1991 1992 21.232 14.234 1.56 1])
#' @return Almonds yield anomaly (ton acre-1)
#' @references
#' Lobell D B, Field C B, Cahill K N, et al. Impacts of future climate change on
#' California perennial crop yields: Model projections with climate and crop
#' uncertainties[J]. Agricultural and Forest Meteorology, 2006, 141(2-4): 208-218.
almond_model <- function(clim_data,</pre>
                         k1 = -0.015,
                         k2 = -0.0046,
                          k3 = -0.07,
                         k4 = 0.0043,
                          intercept = 0.28 ) {
  ## Error checking
  ## You can use the library checkmate to
  ## make this easier, or just do it with ifelse statements
  # check clim data dimensions
  no_col <- max(count.fields(clim_data, sep = " "))</pre>
  if (no_col < 10)
    print("The input climate data file should have 10 columns")
  } else {
    # check clim_data column names
    file_header <- read.delim(clim_data, header=TRUE, sep = " ", dec = ".")</pre>
    file_headers = colnames(file_header)
    expected_header = c(
      "row_number",
      "D",
      "day",
      "month",
      "year",
      "wy",
      "tmax c",
      "tmin_c",
      "precip",
      "wyd"
    check_res <- isTRUE(all.equal(file_headers, expected_header))</pre>
    if (check_res) {
      # check clim_data column datatypes
      summary <- summary.default(file_header)</pre>
      numeric_types = length(summary[which(summary=="numeric")])
      date_types = length(summary[which(summary=="character")])
      if (numeric_types != 9 | date_types!= 1){
        print("There should have 9 numeric data type and 1 date type in the input file!")
      }
    }
```

```
else{
    print("The format of the input file header is not as expected!")
  }
}
clim data <- read delim(file = clim data, delim=" ")</pre>
# check coefficients and intercept value
## End error checking
# Turn the daily minimum temperature into monthly data through monthly average
# and calculate monthly accumulated precipitation from daily station
# precipitation data
df_summarized <- clim_data %>%
  select(year,month,day,tmin_c,precip) %>%
  group by (year, month) %>%
  summarize(avg_tmin_c=mean(tmin_c),tot_precip = sum(precip)) %>%
  ungroup()
# Extract the February minimum temperature from the data summary
df temp <- df summarized %>%
  filter(month==2) %>%
  select(-tot_precip,-month)
# Extract the January precipitation from the data summary
df_precip <- df_summarized %>%
  filter(month==1) %>%
  select(-avg_tmin_c,-month)
# Calculate the almond annual yield from the statistical relationship:
\# Y = k1*(Tn,2) + k2*(Tn,2)^2 + k3*(P1) + k4*(P1)^2 + intercept
# Y: almond yield anomaly (ton/acre); Tn,2: February minimum temperature (C);
# P1: January precipitation (mm)
df_out <- full_join(df_temp,df_precip) %>%
  mutate(yeild = k1*avg_tmin_c+k2*(avg_tmin_c^2)+k3*tot_precip+k4*(tot_precip^2)+intercept) %>%
  mutate(yeild temp = k1*avg tmin c+k2*(avg tmin c^2)) %>%
  mutate(yeild_precip = k3*tot_precip+k4*(tot_precip^2)) %>%
  mutate(intercept = intercept)
# return the yield to the main function
return(df_out)
```