(T)

EUROPEAN PATENT APPLICATION

21 Application number: 86113166.2

(2) Date of filing: 24.09.86

(a) Int. Ci.4: C07C 103/737, C07C 103/84, C07C 123/00, C07C 143/76, C07C 143/80, C07C 149/42, C07D 207/16, C07D 211/16, C07D 211/32, C07D 211/58, C07D 211/62

- Priority: 27.09.85 JP 212240/85 04.03.86 JP 45348/86
- Date of publication of application:
 08.04.87 Bulletin 87/15
- Designated Contracting States:
 BE CH DE FR GB IT LI NL SE

- Applicant: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) Applicant: Showa Denko Kabushiki Kaisha 10-12, Shiba Dalmon 2-chome Minato-ku Tokyo 105(JP)
- 2 Inventor: Okamoto, Shosuke
 15-18, Asahigaoka 3-chome
 Tarumi-ku Kobe-shi Hyogo(JP)
 Inventor: Okada, Yoshio
 542-1, Aza Shimizu
 Okuradani Akashi-shi Hyogo(JP)
 Inventor: Okunomiya, Akiko
 13-2, Nakayamatedori 7-chome

Chuo-ku Kobe-shi Hyogo(JP)
Inventor: Naito, Taketoshi SHOWA DENKO

K.K. Seikagakukenkyusho 24-25, Tamagawa

Ota-ku Tokyo(JP)

inventor: Kimura, Yoshio SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa

2-chome

2-chome

Ota-ku Tokyo(JP)

Inventor: Yamada, Morihiko SHOWA DENKO

K.K.

Seikagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Ohno, Norio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Katsuura, Yasuhiro SHOWA DENKO

K.K.

Seikagakukenkyusho 24-25, Tamagawa

2-ch m

Ota-ku T ky (JP)

Inv ntor: Seki, Yumi SHOWA DENKO K.K.

Selkagakukenkyush 2-chome Ota-ku T kyo(JP) 25, Tamagawa

Widenma trasse 17 Postfach 22 03 45 D-8000 München 22(DE)

- Repr sentative: Strehl, Schübel-Hopf, Groening, Schulz
- (4) Phenylalanine derivative and proteinase inhibitor.
- (57) A phenylalanine derivative having the formula (i):

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time:

C₁-C₄ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylmercapto, C₁-C₄ alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

 C_s - C_s cycloalkyl which may be substituted with hydroxy, C_1 - C_4 alkoxy, hydroxylcarbonyl, C_1 - C_4 alkoxycarbonyl, or C_1 - C_4 alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C,-C4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R' and R' may form with the nitrogen atom at-

tached thereto a ring structure as morpholino; thiomorpholino; or piperidyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

piperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C_1 - C_4 alkyl; C_2 - C_4 alkenyl; benzyl which may be substituted with halogen, C_1 - C_4 alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

This phenylalanine derivative is effective as a proteinase inhibitor.

PHENYLALANINE DERIVATIVE AND PROTEINASE INHIBITOR

15

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to a novel phenylalanine derivative, more particularly to a phenylalanine derivative having a proteinase inhibition activity or a pharmaceutically acceptable salt thereof. The present invention also relates to a proteinase inhibitor containing the phenylalanine derivative as the effective ingredient.

1

2. Description of the Related Art

It is well known in the art that various protinases are present in human organisms. Examples of such proteinases are plasmin, trypsin, kallikrein, urokinase, and the like. As is also known, when these proteinases are abnormally activated for some reason, various diseases are caused. For xample, hemorrhagic diseases are caused when abnormally activated plasmin is present in a relatively large amount in the blood. Also, plasmin participates in inflammation and it is considered to cause inflammatory diseases. For this reason, a substance capable of exhibiting a proteinase inhibition activity is useful as a clinical remedy or medicine, and various investigations in the prior art have been made for the development of such substances. For example, antiplasmins are useful as hematostatic ag nts, antiinflammatory agents or antiallergic agents, antitrypsins are useful for the therapy of pancreatitis, antikallikreins are useful as therapeutical agents for inflammation, and antiurokinases are useful for the inhibition of hemorrhagic symptoms in the thrombolytic therapeutical method with urokinase. Accordingly, developments of proteinase inhibitors having such activities have progressed in the prior art, but their proteinase inhibition activities are low and not satisfactory for practical application as medicines. Further, compounds having satisfactory inhibition activities against various proteinases have not been developed.

SUMMARY OF THE INVENTION

Accordingly, the objects of the present invention are to eliminate the above-mentioned disadvantages of the prior art and to provide a compound having a satisfactory inhibition activity in practical application but still having satisfactory inhibition activities against various proteinases, and a proteinase inhibitor containing the compound as the effective ingredient.

Other objects and advantages of the present invention will be apparent from the following description.

In accordance with the present invention, there is provided a phenylalanine derivative having the formula (i):

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

 C_1 - C_2 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl,

pyridyl, or phenyl which may further be substitut d with nitro, C₁-C₄ alkoxy, or halogen;

 C_4 - C_8 cycloalkyl which may be substituted with hydroxy, C_1 - C_4 alkoxy, hydroxylcarbonyl, C_1 - C_4 alkoxycarbonyl, or C_1 - C_4 alkyl;

20

35

4

phenyl which may be estituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₅ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidy! which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halogen, C₁-C₄ alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10: and

the mark * indicates that the configuration of the carbon may be either one of a D-configuration, L-configuration and DL-configuration, or a pharmaceutical acceptable salt thereof. Examples of such a salt may include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, etc.; organic salts such as oxalate, succinate, glycolate, malate, citrate, maleate, lactate, benzenesulfonate, toluenesulfonate, methanesulfonate, etc.

In accordance with the present invention, there is also provided a proteinase inhibitor comprising the phenylalanine derivative of the above formula - (I) or a pharmaceutically acceptable salt thereof as the active ingredient.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Typical examples of the compound represented by the above formula are listed in Table I.

The compounds listed in the Table are mumbered, respectively, and in the following description, the individual compounds are designated in terms of said compound Nos. for the purpos of convenience.

For the compounds indicated as (DL) in the chemical structure, this means that their carbons are mixtures of D-and L-forms; in the compounds indicated as (L), this means that their carbons are-L-form; and, in the compounds indicated as (D), this means that its carbon is D-form. The asymmetric carbon atoms in the phenylalanine skeleton having no indications are all L-forms. In the physical properties shown in Table I, NMR represents a nuclear magnetic resonance spectrum indicated by δ (i.e., delta) (ppm) representing the ch mical shifts. The determination was carried out by using as a solvent CDCI₃ (i.e., heavy chloroform), (CD₃)-2SO (i.e., d₅-dimethylsulfoxide), D₂O (i.e., heavy water), or CD₃OD (i.e., heavy methanol) alone or in any mixture thereof, and by using as an internal standard TMS (i.e., tetramethylsilane). In the parenthesis after the & number, the number of the hydrogen atom and the symbols s, d, t, q, m, and broad, thereafter, denote singlet, doublet, triplet, quartet, multiplet, and broad absorbance, respectively. The absorbance based on the solvent is omitted from the Table.

IR represents an infrared absorption spectrum in which a potassium bromide tablet is used in the determination unless otherwise noted. When a solution is used in the determination, the kind of solvent is listed in parenthesis. The number listed in the Table represents a wave number in units of cm⁻¹, and only the main absorption peaks are listed in the Table.

MS represents a mass spectrum, and the results are shown as M/e (i.e., the mass of the cation fragment divided by the charge) of the main peaks.

			5	
roperties	RMR: CDC13, TMS 6 0.80—2.20(10H, M) 2.402.60(2H, d) 2.803.30(3H, M) 4.704.90(1H, L) 7.107.90(14H, M)	20XCD ₃ 0D-CDCl ₃ ,THS 8 0.802.20(10II, m) 2.52 (2II, d) 2.60 (3II, s) 2.903.24(2II, m) 4.76 (III, m) 7.127.96(9II, m)	52CDC13-CD30D, TNS 5 0.762.28(1001,m) 2.49 (211,d) 2.56 (311,s) 2.843.20(21,m) 4.68 (111,m) 5.02 (211,m) 6.807.93(131,m)	CD.0D, TMS 6 0.762.28(1011,m) 2.45 (211,d) 2.55 (211,d) 4.65 (111,m) 6.85 (411,dd) 7.76 (411,dd)
Physical P	HS: H/e 483,327,287,253	1R: 3300, 2925, 2850, 1675, 1640, 1585, 1520, 1310, 1265, 1255, 1175, 815, 695	18: 3300,2930,2860,1680, 1642,1598,1530,1510, 1270,1245,1178,1015, 840	1R: 3300, 2925, 2860, 1640, 1590, 1510, 1260, 1175, 835
Coaround	II.2 NCII.2 - CONIICIICONII - CII.3	II, WCII, - CONIICIICONII - C-CII,		
Š.	-	8	r	4
	Contround	HS: Physical Properties	Costround Costround Costround Clip HS: H/e 483,327,287,263 Clicls, THS Click, THS Click	HS: HS:

	5	
NVR: 50XCD30D-CDC13, TFIS 6 0.802.26(1011, m) 2.502.68(511, broad) 2.903.20(211, m) 5.01 (211, s) 6.807.96(1211, ii)	50xCD ₂ 0D-CDCl ₃ THS 6 0.80-2.30{10 ,m} 2.55 (2 ,d) 2.60 (3 ,s) 2.883.18(2 ,m) 3.76 (3 ,s) 4.70 (1 ,m) 6.96 (4 ,dd) 7.78 (4 ,dd)	50XCD ₃ 0D-CDCl ₃ , TNS 6 0.802.25 (1011, m) 2.55 (211, d) 3.04 (211, m) 4.70 (111, m) 5.04 (211, m) 5.04 (211, m) 5.04 (211, m) 5.04 (211, m)
IR: 3230,2925,2860,1675, 1645,1595,1530,1510, 1265,1240,1175,1010, 810	1K: 3300, 2930, 2860, 1680, 1640, 1580, 1510, 1265, 1245, 1175, 1030, 830	1R: 3290, 2930, 2860, 1640, 1600, 1510, 1490, 1450, 1240, 1220, 1000
OCII CI OC		II, NCII,
မ	9 7	

	5		
NPR: 50xCD30D-CDC13, TNS	CDC13, THS 6 0.802.60 (101, m) 2.202.54 (21, m) 2.803.16 (211, m) 5.02 (211, s) 6.727.48(1411, m)	CDC1,-CD,00,7MS \$ 3.0-3.4(21,m) 3.3 (21,s) 4.9-5.1(11,m) 6.6-7.8(1711,m)	-
18: 3280, 2930, 2860, 1665, 1670, 1610, 1530, 1510, 1240, 1215, 1010, 830	PS: N/e 485, 467, 438, 393, 365, 329, 282, 237, 197, 91	NS: N/e 493,359,343,197, 134	
II, NCII, - CONIICIICONII - CII,	II ₂ NCII ₂ - CONIICIICONIII - C	-CONIICIICONII -	
ω σ		9	

KIR: (CD ₃) ₂ SO, THS (CD ₃) ₂ SO, THS (DII, III) 3.52 (III.II) 5.04 (2II.S) 6.76-7.72(13II, III)		NVR: CDC1, -CD, OD, TMS & 3.003.40(211, m) 4.805.00(111, m) 6.607.80(1311, m)
HS: (No. 303, 363, 309, See 1, 237, 226, 197, 127	18: 3300, 2930, 2860, 1680, 1645, 1595, 1530, 1510, 1200, 1140	NS: N/e 389, 287, 239 C
II.» NCII.» - CONIICIICONII - CI	$ C _{P} - \left\langle \begin{array}{c} C _{P} - \left\langle C _{$	II ₂ NCII ₂ - CONIICIICONII - CONIICII - CONIIC
=	255	<u>ස</u>

	5	
NYR: 10XCD30D-CDC13, TNS 6 0.82.20 (101, m) 2 1.30 (611, d) 2 2.58 (311.4) 2 2.58 (311.4) 4 46 (111.m) 4 .70 (111.m) 6.93 (411, dd) 7.75 (411, dd)		NMR: CD ₃ OD, TMS
18: 3300, 2930, 2860, 1680, 1640, 1595, 1530, 1510, 1270, 1240, 1180, 1115, 950, 830	NHR: CD ₂ OD, THS	1R: 36502250, 1700, 1640, 1610, 1545, 1510, 1450, 1380, 1240, 1010, 800
OCII(CII ₃) ₂	II, NCII, - CONIICIICON - CII,	11,2 NCH2, - CONIICHCONII - N. 2211C1
71		91

	5	
(CD ₃) ₂ SO, TNS 6 0.702.20(1011, m) 2.38 (211, broad) 2.703.05(211, m) 4.60 (111, broad) 5.02 (211, s) 6.857.92(1211, m)	CD ₃ OD, ThS CD ₃ OD, ThS S 0.50 2.00(911, m) 2.14 2.36(11, m) 2.56 (311, s) 2.78 (211, d) 2.81 3.16(211, m) 1.04 (111, m) 5.00 (211, s) 6.85 8.10(1311, m)	CD ₃ OD, TMS & 0.301.96(911, m) 2.162.37(11, m) 2.79 (211, d) 2.903.20(211, m) 5.00 (211, s) 5.00 (211, s)
18: 3300, 2930, 2860, 1680, 1645, 1595, 1530, 1510, 1265, 1240, 1175, 820, 805	18: 37002200, 1680, 1640, 1610, 1590, 1510, 1265, ' 1230	1R: 3025, 2930, 1660, 1640, 1595, 1530, 1510, 1310, 1280, 1245, 1175, 740, 700
II, NCII, - CONIICIICONII - C-CII,		$CII_{P} - CONIICIICONII - CONIICII - CO$
	<u>8</u>	61

(CD ₃) ₂ SO, TNS 6 0.76-2.68(118, m) 4.08 (21, s) 5.04 (21, s) 5.04 (21, s) 6.88-7.92(1311, m)	CD ₉ 0D, THS 6 0.801.90(1911, m) 2.082.26(111, m) 2.77 (211, d) 2.803.10(311, m) 4.45 (111, m) 5.02 (211, s) 5.02 (211, s)
MS: N/e 485,467,432,359, 335,288,244,197, 155,134,91	1R: 3300,2930,2880,1840, 1545,1570,1240,1220
OCII ₉ - CONIICIICON - CII ₃ • IIC1	II.P. MCII.P. — CONIICHCONII - CONIICHCONII - CONIICHCONII - CONIICHCONII - CONIICH CO
· · · · · · · · · · · · · · · · · · ·	
	HS: DCII

	5	
NMR: CDaUD, TNS S 0.82.12(1211, m) 2.20 (311, s) 2.722.84(211, m) 5.02 (211, s) 6.807.40(1311, m)		
NS: N/c 489,481,393,343, 237,197,107,91	N.W.: CD, OD, TMS S	NYR: CDC13, TMS S 0.8 -3.2 (2711,m) 3.67-4.28(211,m) 4.87-5.24(211,m) 6.61-7.60(1411,m)
12		OCH ₂ - CONIICHCON CH ₂ - C
	27	88

	5	
(CD ₃) ₂ SO, TMS & 0.701.84(911,m) 2.002.20(111,m) 2.44 (311,s) 2.703.00(211,m) 4.66 (111,m) 5.04 (211,s) 5.04 (211,s) 6.847.58(1311,m)		CDC13-CD3-DD, TMS 6 0.802.20(1011, m) 2.75 (211, d) 3.603.70(211, m) 4.85 (111, t) 7.307.90(1111, m) 8.15 (211, d)
IR: 3300, 2925, 2860, 1665, 1640, 1580, 1530, 1505, 1495, 1235	CD, 0D, TMS & 0.801.86(911,11) 2.102.30(111,11) 2.56 (311,6) 3.04 (211,11) 5.40 (211,11) 6.858.04(1311,11)	18: 3400, 2940, 1640, 1600, 1520, 1345, 1280, 1180
II ₂ NCII ₂ - CONIICIICONII - CONIICII	$ _{2} _{C _{2}} - \left(- $	$ _{2} KC _{2} - \left\langle - \left$
30 29		,

≅ . E

	5	
	CDC13, TMS 6 0.802.20 (1411,m) 2.683.48 (711,m) 3.78 (111,t) 4.50 (111,t) 4.885.26(211,m) 6.288.02(1411,m)	
CD ₂ 00, TMS & 0.682.04(1711, broad) 2.062.40(111, broad) 2.442.86(211, broad) 3.66 (111, s) 5.02 (211, s) 6.628.24(1311, m)	HS: M/e 581,553,425,393,365,337,334,309,202,197,91	18: 3430,3050,2930,1640, 1510,1450,1250,700
OCII2 - CONIICIICONII - CO2 NII2 - IICI	II ₂ NCII ₂ - CONIICIICON CCC.	H2 NCH2 - CONHCHCONCH2 - CONCH
	48	49

	5	
1R: 3300, 1640, 1510, 1240	CD ₃ OD, TMS & 0.802.32(1011, m) 2.622.82(211, m) 3.64 (211, s) 4.204.36(111, m) 4.444.64(111, m) 5.04 (211, s) 6.807.48(1411, m)	NMR: CD,0D, TMS 6 0.912.36(10 , m) 2.723.28(4 , m) 4.564.75(1 , broad) 5.02 (2 , s) 6.708.08(13 , m)
H ₂ NCH ₂ - CONHCHCONII - C	II ₂ NCII ₂ - CONIICIICONIICII ₂ - CONIICII ₂ - CONIICIIICII ₂ - CONIICII ₂ - CONIICIIICII ₂ - CONIICII ₂ - CONIICIICII ₂ - CONIICIICIIICII ₂ - CONIICIICIIICIIICIIICIIICIIICIIICIIICIII	$CII_2 - CONIICIICONII - C-NII_2 - IICI$
. 20	<u>.</u>	73

	<u> </u>	
		JR: 3320, 1635, 1510, 1245
MMR: (D ₃ OD, TMS & 0.922.39(1011, m) 2.803.28(411, m) 4.644.75(111, m) 5.05 6.908.50(1211, m)	CD ₃ OD, TMS 6 0.822.32(1011, m) 2.683.22(711, m) 5.04 (211, s) 6.747.48(1311, m)	NS: N/e 523,373,282,236, 197,137
II ₂ KCII ₂ - CONIICIICONII - CI	OCH2-CONICH2-C	$\frac{0\text{CH}_2}{\text{CH}_2} - \frac{0}{\text{CH}_2}$ $\frac{0\text{CH}_2}{\text{CH}_2} - \frac{0}{\text{CH}_3} - \text{HCI}$
. 29	09	19

F-71	5		
	CD ₃ OD, TMS 6 2.29 (311, s) 3.03.20(211, m) 4.16 (211, s)	3.504.10(31.m) 6.807.90(1711,m)	·
MS: M/e 497,432,387,359, 347,282,256,237, 226,210,197,134, 110,91	MS: M/e 493,343,236,197, 134	IR: 1640,1510,1240,815	MS: M/e 503,438,393,365, 347,256,237,226, 210,197,140,112, 110,91
OCH2-CONICHCONIL		II, HCII, - CONIICIICONII- CII, - IICI	II ₂ NCII ₂ - CONIICIICONII, IICI
62	63	64	

NMR: CD ₃ OD-CDCl ₃ , TMS \$ 2.2 (6H, s) 3.03.20(2H, m) 3.83 (2H, m) 4.805.10(3H, m) 6.807.80(16H, m)		
FIS: M/e 507,357,310,237, 197,134 IR: 3300,1635,1510,1240	CD ₃ OD, THS S 0.952.36(1011, m) 2.703.25(411, m) 4.65-4.75(111, m) 6.887.72(1211, m)	CD _a OD, THS 6 0.842.28(1011, m) 2.763.24(411, m) 4.704.80(111, m) 5.00 (211, s) 6.847.80(1711, s)
II ₂ NCH ₂ - CONIICHCONII - CH ₃	II ₂ NCII ₂ - CONIICIICONII - CI	$ _{2} \text{ MCII}_{2} - \bigcirc \bigcirc \bigcirc \bigcirc _{2} - \bigcirc $
. 82	99	;

	5	<u> </u>	
		IR: 1640,1515,1250,710	
CD ₃ OD, THS 6 0.802.50(1211, m) 2.803.16(311, m) 4.054.22(411, m) 4.684.76(111, m) 5.03 (211, s) 5.03 (211, s) 6.887.92(1311, m)	WR: CD ₃ OD, TMS S 0.922.50(1211, m) 2.913.15(311, m) 4.024.20(411, m) 4.654.75(111, m) 5.04 (211, m) 5.04 (211, m)	MS: M/c 428,254,197,134	·
OCII	$\frac{0\text{CII}_2}{\text{CII}_2} - \underbrace{\frac{0\text{CII}_2}{\text{CII}_2}}_{\text{CII}_2} - \underbrace{\frac{0\text{CII}_2}{\text{CII}_2}}_{\text{CONIICIICONII}}_{\text{IICI}} - \underbrace{\frac{0\text{CII}_2}{\text{CII}_2}}_{\text{CIII}_2} - \underbrace{\frac{0\text{CIII}_2}{\text{CII}_2}}_{\text{CIII}_2} - \underbrace{\frac{0\text{CIII}_2}{\text{CIII}_2}}_{\text{CIII}_2} - \underbrace{\frac{0\text{CIII}_2$	$CII_2 - CONIICIICON N - C - C ONIICIICON N - C - C ONIICIICIICON N - C - C - C - C ONIICIICIICON N - C - C - C - C - C - C - C - C - C $	
12	22	23	

	5	
	·	ik: 1620, 1510, 1240, 695
CO. 0D, THS CO. 0D, THS 2.603.22(411, m) 4.604.73(111, m) 5.01 (211, s) 6.808.16(1311, m)	CD ₃ OD, TMS 6 0.94-2.36(1311,8) 2.74-3.24(41,8) 4.32-4.40(211,8) 4.68-4.78(111,8) 5.00 (211,8) 6.84-8.20(1311,18)	NS: N/e 575,442,425,410, 326,291
	OCH2 - CONICHCONII - CO2 C2 H6	
7.5	75	92

: ₹:

 OCIIs- silve	<u></u>	
	2930, 1640, 1510, 1240, 695	
 II2 NCII2 - CONIICIICONII - CII3 · IICI		
	We 519,501,393,379, 363,282,272,253, 237,226,210,183,	
II.2 MCII.2 - CONIICIICONII - CII.3 CII.3 IICI	91	5 -
()-diDo	Ä	
	N/e 424,387,359,343, 297,228,197,134,	
$ I_2 \text{ MCII}_2 - \left\langle \begin{array}{c} CII_2 \\ CII_2 \\ CONIICII CONII \\ \end{array} \right\rangle - CII_3$ • IIC1		

		5	
			IR: 3360,2950,1640,1515, 1240
MR:	CU, OD, TMS & 0.902.35(13H, m) 2.58 (3H, s) 2.703.30(4H, m) 4.324.44(2H, m) 4.70 (1H, m) 5.15 (2H, s) 5.15 (2H, s) 6.908.08(12H, m)	CD ₃ OD, TMS S 0.96-2.32(10II, m) 2.56 (3II, s) 2.89-2.70(2II, m) 2.703.20(2II, m) 4.60-4.72(1II, m) 5.12 (2II, s) 6.80-8.02(12II, m)	HS: H/e 387,351,134
0CII₂ - (==	$ _{L^{2} \text$		II ₂ NCII ₂ - CONIICIICONII-CONII-COII - IIC1
98		84	88

	5	
	1R: 3430,3300,3050,2840, 1735,1640,1610,1515, 1240,1180,1025	
1R: 2950, 1640, 1510, 1345, 1245	HS: H/e 571,415,374,237, 226,218,187,179, 106,91	MS: Me 500, 393, 362, 344, 226, 197, 91
OCII ₂ - CONIICIICONIICII ₂ - CONIICII - C	0CII₂	II ₂ NCII ₂ - CONIICIICONIICII ₂ - C
68	06	16

$C_{12} = 0$ $C_{13} = 0$ $C_{14} = 0$ $C_{15} = 0$ $C_{$	 -No-0	CD ₃ OD, TNS S 1.02.34 (1011.m)		
$\begin{array}{c} 0 \text{CU}_2 - \bigcirc \\ \bigcirc \text{CU}_2 - \bigcirc \\ \bigcirc \text{CU}_2 - \bigcirc \\ \bigcirc \text{CONIICHCONIICH}_2 - \bigcirc \text{N} \cdot 2 \text{IICI} \\ \bigcirc \text{CONIICHCONII} - \bigcirc \\ \bigcirc \text{CONIICHCONII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CONIICHCONIII} - \bigcirc \text{CO}_2 \text{C}_2 \text{ II}_5 \cdot \text{IICI} \\ \bigcirc \text{CO}_2 \text{CO}_3 $	 CONIICICONII-			
CONIICIICONIICII ₂ - \(\text{\tint{\text{\tint{\text{\til\text{\tex{\tex		HS:		
CONIICIICONII - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- - - -	M/e 434,344,298,277, 254,226,197,185, 164,134,93		
OCII.2 - COPICICONII - COP. C.2 II.5 • IICI	 -confictionificial -			_
OCII2			<u>::</u>	
Cile Cile Cile	 OCII, P	H/e 557,512,252,172,	2950, 1735, 1645, 1515, 1240	
	 CII2 CII2 CII2			
				-

歪.

	5	
MMR: CO ₃ OD, TMS S 0.82.28(22H, m) 2.723.0 (5H, m) 4.10 (2H, m) 4.45 (1H, m) 5.02 (2H, s) 5.02 (2H, s)	CD ₃ OD, TMS & 0.82.42(1311, m) 3.02 (211, m) 4.04.20(411, m) 4.68 (111, m) 5.01 (211, m) 5.01 (211, m)	1R: 3280, 2960, 2930, 2875, 1700, 1645, 1615, 1505, 1380, 1225, 825
II ₂ NCII ₂ - CONIICIICONII - CO ₂ C ₂ II ₃ CII ₂ CIII CII ₂ CII CII CII CII CII CII CII C	$\frac{0\text{CII}_2 - \bigcap_{i=1}^{6} -F}{\text{CII}_2} - CONIICHCONII - \bigcap_{i=1}^{6} CO_2 C_2 II_5}$	H_2 $HCII_2$ - \bigcirc - \bigcirc - \bigcirc - \bigcap - \bigcap - \bigcap - \bigcirc - \bigcap - \bigcirc -
104		901

104		≅	·
	- cup-	3230, 2930, 1738, 1645, 1535, 1508, 1242	
	CH ₂ CH ₂ - CH ₂ - CH ₂ - HCI	•:	
	€		
80	OCII2-	HS:	
	· ·	H/e 519,504,393,302, 282,197	
	II2NCII2 - CONIICIICON - CO2CII2CII3 · IICI		
109	ļ		
	-00-NO ₂	NMR: CD- OD, TMS	
	II ₂ NCII ₂ - CONIICIICONII- CII ₃ - IIC1	5 0.801.80(1411,m) 3.03.30(311,m) 4.18 (211,s) 4.70 (111,m) 6.838.20(1211,m)	
			

116				
	11 OCII 2 - CONIICIICON - IIC1	1R: 3410, 1745, 1640, 1515, 1245, 1225		·
111		HS: H/e 387,197,151,91	IR: 36002400,1690,1610	5
9	II.2 NCII.2 - CONIICIICONII - CII.2 CO.2 II II.CI		·	
		IR: 3420,3030,1670,1840, 1600,1530,1510,1270	CD ₃ 00, TMS 8 2.56 (311, s) 3.103.30(211, m) 3.98 (211, s) 4.604.80(111, m)	
	II ₂ ИСII ₂ - { } - СОИНСИСОИИ - { } - С'-СИ ₃ • ИС1		5.00 (211,s) 6.808.00(1711,m)	

C0,00,TMS & 0.80--2. 2.58 2.78 3.10 4.70 5.10 CD, 00, TMS 8 0.90--2

C0300, THS 8 0.80--2 2.45--3 £

128	· (NMR: CD ₃ 0D, THS	
		6 0.902.35(1011, m) 2.56 (311.5) 2.79 (211.4) 3.04 (211, m) 4.70 (111, m) 5.04 (211, s) 5.04 (211, s)	
129	112 NCH2 - CONHCHCONH-C N - 2HCI		
<u> </u>	OCH, allo	8,0	5
	CII_2 $CONIICIICONII - C-CII_3 · 2IICI$	2.82 (ZH, d) 3.10 (ZH, m) 4.72 (ZH, m) 5.50 (ZH, s) 7.048.86(IZH, m)	
130	NO ₂	IR: 3280, 2940, 1680, 1600, 1520, 1345, 1270, 1180, 840	
	C = C = C = C = C = C = C = C = C = C =	: :	
			-

131		IR:	NHR:
		3400,3350,3160,1670, 1650,1600,1510,1380, 1330,1155,1125	CD ₂ OD, TMS 6 3.03.40(2ll,m) 4.18 (2ll,s) 4.604.90(1ll,m) 7.108.0 (13ll,m)
	$ I_2 VC _2 - \left\langle \bigcap_{i=1}^{C} - CONIICIICONII - \left\langle \bigcap_{i=1}^{C} - CF_1 \right\rangle - IICI$		
132	•	<u> </u>	. NHR:
·		3430,2960,2880,1745, 1630,1450,1310,1285, 1200,1175	CD ₂ OD, TMS 8 1.702.30 (411, a) 3.03.6 (411, a)
	CH2 (L) I CH1-CH2 CDNIICHCON I - HC1		
133		::	
	(L) - (C) -	34:10,3000,2960,2900, 1745,1730,1845,1285, 1120	

.

		5		
I I I I I I I I I I	40	<u> </u>	1.0.5.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0	
$ I_{2} \text{ MCII}_{2} - \bigcirc \bigcirc -\text{COMIICIICOMII} - \bigcirc $	18: 3430,3030,2860,1640, 1615,1550,1500,1295, 1010	.2930,1	,1310,1	CD ₂ OD, TMS & 0.902.34(10H, w) 2.80 (2H, d) 3.10 (2H, m) 6.969.40(11H, w)
	CONIICIICONII - CII.		CONIICIICONII	CI CII ² CII ² CII ²
55 55	134	135	136	

· 美 ₩.

	. 5	
CD, 0D, TMS 6 3.103.30(211, m) 4.14 (311, s) 4.18 (211, s) 4.704.80(111, m) 5.0 (211, s) 5.0 (211, s) 6.808.80(1611, m)	CD ₃ 0D, TMS & 0.902.40(10II, m) 2.78 (2II, d) 2.803.20(2II, m) 4.18 (3II, s) 4.50-4.70(1II, m) 5.02 (2II, m) 5.02 (2II, m)	
IR: 3430,3030,2850,2620, 1645,1615,1550,1510, 1440,1300,1235	1R: 3430,3030,2930,1650, 1620,1550,1510,1460, 1440,1300,1220	CO, 00, TMS & 0.90232 (1011, m) 2.78 (21, d) 3.08 (211, m) 4.68 (111, m) 6.64-7.80(131, m)
$ _{2} _{2} - \langle _{2} - \langle _{2} \rangle$ $ _{2} _{2} _{2} - \langle _{2} \rangle - _{2} $	$0CH_2 - \bigcirc$ $CH_2 - \bigcirc$ $CH_3 - 2IICI$	$ _{L^{2}} KCI _{2} - \left\langle - \left$
	141	

143 $ \begin{array}{cccccccccccccccccccccccccccccccccc$				
	143			
$ R = \frac{0.02_{\text{C}} \text{CHz}}{ R } - \frac{0.00_{\text{C}} \text{CHz}}{ R } - 0.00_{$, 	0	CD ₃ OD, TMS & 0.802.32(1711, m) 2.783.20(611, m) 4.60 (111, m) 7.048.94(711, m)	
0-c02 CII2-C1 C1 C	144	0-C02-C11g- Br C11g- C11	IR: 1760, 1690, 1680, 1590, 1510, 1440	· .
	145	0-02 CII2 - CII2 - CII2 - C-CII3 - C-CII3	ik: 1760, 1630, 1680, 1580, 1510, 1440	

	•		
·	1760, 1690, 1680, 1590, 1510, 1440	CD, 0D, TMS & 0.81 2.32(1711, m) 2.70 3.28(611, m) 4.40 4.66(111, m) 6.64 8.80(711, m)	18: 3430,3300,3030,2830, 1700,1650,1560,1460 1440,1340,1300,1010, 850,700
0-C0 ₂ CII ₂ -	$C_{12} \times C_{13} \times C$	II.2 NCH.2 - CONIICHCONII(CH.2.), CH.3 . 211C1	II2 NCII2 - CONIICIICONII - CON - 211C1
146		147	148

≅ ,00° 20° 20° 20° 系: ≅ ∷ 120 151 149

54

MAR: <u>≅</u> ₹:

	×0°	IR:		
	II,2 NCII,2 - CONIICIICONIICII,2 - C	1105, 1040, 860, 760		
	$ _{2} _{2} _{2} - \left\langle - \left$	1R: 3450,3200,3000,2850, 2570,2000,1745,1605, 1505,1455,1350,1230, 1105,1005,840,750, 700	5	5
		MS: M/e 473,430,415,345, 317,205,128,113, 86		
•	II ₂ NCII ₂ - CONIICIICON N-CII(CII ₃) ₂ · HCI			

•	5		
.35(12ll, m) .40(8ll, m) .40(8ll, m) .84(1ll, m) .08(4ll, m) .2ll, d)	24(2211, m) 82(111, m) 04(111, m) 86(811, m)	THS 52(911, m) 25(411, m) (211,	
CD ₃ 00, TMS 6 0.84-2.35 2.70-3.40 4.52-4.84 6.96-7.08	CDCL3, TMS 8 0.783.2 4.804.6 5.907.6	CD300-D20,TT S 0.78-11, 2.92-3, 4.19 6.95-8.	:
,		.CII.	
CONIICIONII(CII ₂) ₂ OCII ₃	CONNICTION CONTRACTION CONTRAC	OCII ₂ - N CII ₂ CII ₃ CII ₃	
II ₂ NCII ₂ -	II2 NCII2 -	II ₂ NCII ₂ -	
. 191	162	163	 -

	5	-
IR: 3430,3020,2940,1730, 1700,1640,1610,1510, 1320,1220,820		
HS: N/e 177,107,94,67	CD, 00, TMS 6 0.802.36(10 , m) 2.403.16(11 , m) 6.928.96(7 , m)	MS: M/e 254,139,107,93
OCH2 CO-CONICILCONII-CONICILCON	$ _{2} \text{MCI} _{2} - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \begin{array}{c} 0 - \left\langle \begin{array}{c} 0 - \left\langle \begin{array}{c} 0 - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \begin{array}{c} 0 - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \end{array} c - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \end{array} c - \left\langle \begin{array}{c} 0 - \left\langle \end{array} c - \left\langle \end{array} c - \left\langle \end{array} c - \left\langle \right. \right) \right. \right.$	II ₂ NCII ₂ - CONIICIICONIICII ₂ - CN
167		691

	5	
1R: 3400,2940,1740,1650, 1500,1450,1370,1200, 1180,1150,1090,860	18: 3400,2940,1740,1640, 1500,1370,1200,1180, 1150,1090,860	CD ₃ OD, TMS & 0.842.40(2211, m) 2.603.00(411, m) 3.163.44(211, m) 5.03 (211, s) 6.847.72(1411, m)
	13- NC 2 - CON C CON - N - 2 C	
170	<u> </u>	173

≅

	5	
	1R: 3430,3080,2930,1710, 1640,1600,1530,1410, 1310,1280,700	
CO ₃ OD, THS 6 1.701.88(411,m) 2.903.92(711,m) 4.16 (211,s) 4.70 (111,m) 5.01 (211,s) 6.847.85(1211,m)	MS: M/e 483,328,197	MS: N/e 548,380,197,154
0-CII ₂ -CII ₂ CII ₂ CII ₂ CII ₂ IICI	$\bigcap_{ \mathbf{l}_{\mathbf{g}} } C \mathbf{l}_{\mathbf{g}} = \bigcap_{ \mathbf{l}_{\mathbf{g}} } C \mathbf{l}_{\mathbf{g}} $	0-C ₂ -
176	7.1	178

·		
640, 180,	0	
IR: 3400,2940,1730,1640, 1500,1370,1200,1180, 1150,870	IR: 3400,3050,2840,1640, 1510,1350,860,760	
0,2940, 0,1370, 0,870	. 1350,0	
3400 R:		
	• 51ICI	
5	•	
· 28C		
		-
	NO2 CONIICIICONIICII2	
SOS CONFICUONII CONFICUONII CONFICUONII CONFICUONII CONFICURCII CONFICURCII CONFICURI	COMING COMING	
	·	
- CID-NCII	II ₂ NCII ₂ -	•
187	<u>8</u>	

The compounds of the present invention can be synthesized by various combinations of the so-called peptide synthesis methods.

- 1) Mixed acid anhydride method [Ann, Chem., 572,] 190 (1951)
- 2) Acid chloride method [Biochemistry., 4, 22!9 (1960)]
- 3) Phosphazo method [Chem. Ber., <u>93</u>, 2387 (1960)]
- 4) Dicyclohexylcarbodiimide method [J. Am. Chem. Soc., <u>77</u>, 1067 (1955)]
- 5) Activ ster m thod using, for example, N-hydroxysuccinimide [J. Am. Chem. Soc., <u>85</u>, 3039 (1963)].

It should be noted, we'ver, that not all of the compounds can be synthesized according to the methods as mentioned here, but that it is necessary to combine the above-mentioned methods appropriately for the respective compounds. Among these methods, typical examples of the reaction routes are shown below.

Route A

For carrying out synthesis from ① to ③,① is dissolved in an appropriate solvent such as THF, dimethylsulfoxide diethyl ether, dioxane, and the like, and an appropriate base such as triethylamine, pyridine, and the like, is added in an amount of! equivalent to 5 equivalents, preferably 2 to 3 equivalents relative to ①. To this reaction mixture is added ethyl chlorocarbonate as such or as a solu-

tion dissolved in the solvent used as the reaction solvent, at one time or in several divided portions. The temperature of the reaction mixture is maintained at -10°C to 30°C, preferably 5 to 10°C. The reaction time is from I hour to 50 hours, preferably from 5 to 20 hours. After a conventional post-treatment, 0.5 to 2 equivalents of

are added and the reaction ried out at -10°C to 30°C, preferably 5 to 20°C, for 1 to 50 hours, preferably 5 to 20 hours. Th n, after a conventional post-treatment, (3) is obtained.

The reaction from 3 to 4 may be carried out by allowing 3 to react with I to I0 equivalents, preferably 3 to 7 equivalents relative to 3 of 4N-HCl dioxane solution at room temperature. Then,

after a convent post-tr atment, (4) is obtained. The reactions from (4) to (6) can be carried out in the same way as from (1) to (4), wh reby (6) can be obtained.

10

Route B

$$\begin{array}{c|c}
X & X & X \\
\hline
BOCNHCHOO_2H & R_2 & BOCNHCHOON \\
\hline
1 & 3 & R_2
\end{array}$$

$$\begin{array}{c|c}
 & X \\
 & & X \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$\xrightarrow{\text{4N-HC1 / }} \text{H}_{\text{2}} \text{N-Y-CONFICHOUN} \xrightarrow{R_1} \text{R}_{\text{2}}$$

For syntheses from 1 to 3 and from 4 to 5, there may be employed, for example, the methods as described in J. Am. Chem. Soc., 77 1067 (1955). For the reactions from 3 to 4 and from 5 to 6, the methods as described in route A may be used.

50

45

$$\begin{array}{c}
 & \text{NaH} \\
\hline
 & \text{R}_3-A
\end{array}$$
BOCNIECHCON
$$\begin{array}{c}
 & \text{R}_1 \\
 & \text{R}_2
\end{array}$$

45

50

55

For syntheses from 3 to 7, there may be employed, for example, the methods as described in synthesis 685 (1976), J. Chem. Soc. Perkin Trans 1 490 (1977).

For synthesis from 7 to 8, 7 is dissolved in an appropriate solvent such as DMF, DMSO, toluene, and the like, and NaH is added in an amount of I equivalent to 5 equivalents, preferably I equivalent to 2 equivalents relative to 7. To this reaction mixture is added a solution of R₃-A dissolved in the solvent used as the reaction solvent, and the reaction is carried out at room temperature from 2 hours to 50 hours, preferably from 4 to 6 hours. Then, after a conventional post-treatment, 8 is obtained. For synthesis 8 to 9, the methods from 3 to 6 in route A may be used.

EXAMPLES

The present invention will now be further illustrated by, but is by no means limited to, the following Examples. In the following, preparation of typical compounds is described by referring to specific examples.

Example 1

Synthesis of N-(trans-4-aminomethylcyclohe;ylcar-bonyl)-L-phenylalanine 4-acetylanilide (Compound No. 2)

N-(t-butyloxycarbonyl)-L-phenylalanine (I) (5.30 g) was dissolved in dry tetrahydrofuran (80 ml), triethylamine (3 ml) was added to the resultant solution and ethyl chlorocarbonate (2.40 g) was added to the mixture under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-acetylaniline (2.70 g) and the mixture was stirred at room temperature for I0 hours. To the reaction mixture was added ice-water (300 ml) and th precipitated crystalline substance was collected by filtration, thoroughly washed and dried to give 7.07 g of N-(t-butyloxycarbonyl)-L-phenylalanine 4-acetylanilide (II).

To the above compound (II) (2.29 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (30 ml) and ice-cooling was removed, followed by stirring at room temperature for 30 minutes. To this solution was added ether (300 ml) and the precipitated crystalline substance was collected by filtration, washed with ether and dried under a reduced pressure to quantitatively obtain L-phenylalanine 4-acetylanilide hydrochloride (III).

On the other hand, transbutyloxycarbonyl) aminom thylcyclohexylcarboxylic acid (I.62 g) was dissolved in dry tetrahydrofuran (50 ml), triethylamine (0.96 ml) was added to the resultant solution and ethyl chlorocarbonate (0.76 g) was added under ice-cooling to the mixture, followed by stirring for 30 minutes. To this solution was added the hydrochloride salt (III) previously obtained and triethylamine (2 ml) was added to the mixture, followed by stirring at room temperature for 3 hours. Ice-water (200 ml) was added to the reaction mixture and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to give 2.62 g of N-[trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarbonyl]-L-phenylalanine 4-acetylanilide (IV).

To the above compound (IV) (2.60 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (25 ml) and the mixture was stirred at room temperature for 30 minutes. The mixture was concentrated under a reduced pressure, and the residue was dissolved in water (I00 ml) and sodium carbonate (I.05 g) was added to the resultant solution. The precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (V) (I.90 g).

Example 2

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (Compound No. 3)

...

Ľ.

Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (I.41 g) was made into a mixed acid anhydride following a conventional method, and 4-benzyloxy-Lphenylalanine-4-acetylanilide hydrochloride previously synthesized following a conventional method was added thereto and the mixture was stirred with addition of triethylamine (I.7 ml) at room temperature for 3 hours. Then, post-treatment was carried out following the procedure as described in Example I to give N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-acetylanilide (I) (2.46 g).

The above compound (I) (2.40 g) was treated with 4N-hydrogen chloride/dioxane and, following the procedure of Example I, N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (II) (I.50 g) was obtained.

Example 3

Synthesis of Nations-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide -(Compound No. 4)

Ethanol was added to the N-(trans-4-aminomethylcyclohexyl-carbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilid pr pared in Example 2 (I00 mg), palladium black (20 mg) and cyclohexene (2.5 ml) and the mixture was stirred under reflux of ethanol for 30 minutes. The solid was collected by filtration, and concentrated to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (79 mg).

Example 4

15

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (Compound No. 5)

of N-(t-butyloxycarbonyl)-4mixture benzyloxy-L-phenylalanine 4-acetylanilide (I) (4.88 g), palladium black (0.60 g), cyclohexene (15 ml) and ethanol (100 ml) was subjected to the reaction under reflux of ethanol for I hour. After cooling, the solid was filtered off and the filtrate was concentrated obtain N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (II) (3.90 g). The compound (II) without purification was dissolved in N,N-dimethylformamide (I00 ml) and the solution was stirred with addition of sodium hydride (60% content) (0.44 g) at room temperature for 30 minutes. To this solution was added 4-chlorobenzyl chloride (I.6I g) and the reaction was carried out at room temperature for i0 hours. Ice-water (500 ml) was added to the reaction mixture, and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to N-(t-butyloxycarbonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (III) (3.65 g). The compound (III) was treated in a conventional manner to synthesize N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (IV).

Example 5

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-methoxy-L-phenylalanine 4-acetylanilide - (Compound No. 6)

N-(t-butoxyoxycarbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (0.49 g), palladium black (0.10.g) and cycloh xene (4 ml) were reacted with thanol (20 ml) under reflux for I hour. After cooling, the solid was filtered off and the filtrate

25

35

was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.39 g). The compound (I) was dissolved in dimethylformamide (6 ml) and oily sodium hydride (0.04 g) was added to the resultant solution. The mixture was stirred at room temperature for 30 minutes. To this mixture was added a dimethylformamide (2 ml) solution of methyl iodide (0.15 g) and the reaction was carried out at room temperature for 6 hours. Ice-water was added to the reaction mixture, and the resultant oily substance was extracted with ethyl acetate. After a conventional treatment, N-(t-butyloxycarbonyl)-4methoxy-L-phenylalanine 4-acetylanilide (II) (0.21 g) was obtained. N-(trans-4-aminomethyl cyclohexylcarbonyl)-4-methoxy-L-phenylalanine 4-acetylanilide (0.08 g) was obtained from the compound (II) (0.19 g), following the procedure of Exampie I.

Example 6

<u>Synthesis of N-(4-aminomethylbenzoyl)-4-hydroxy-</u> <u>L-phenylalanine 4-benzoylanilide (Compound No. 10)</u>

N-(4-benzyloxycarbonylaminomethylbenzoyl)-4benzyloxy-L-phenylalanine 4-benzoylanilide (I) -(0.20 g) was dissolved in 30% hydrobromic acid/acetic acid solution (IO ml) and the solution was stirred at room temperature for 30 minutes. Excessive reagent was removed with ether by decantation, water was added to the residue and the mixture was made alkaline with sodium carbonate, followed by extraction with methylene chloride. Acconventional method, cording to а aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4benzoylanilide (II) (0.II g) was obtained.

Example 7

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (Compound No. 16)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (3.7l g) was dissolved in dry tetrahydrofuran (I00 ml) and, under ice cooling, triethylamine (I.5 ml) was added thereto. After stirring for I5 minutes, ethyl chlorocarbonate (I.10 g) was added, followed by stirring for 30 minutes. To this solution was added 3-aminopyridin (0.94 g) and the reaction was carried out at room temperature for 7 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure.

The residue was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-ph nylalanin 3-pyridylamide (II) (I.0l g) was obtained.

The compound (II) (0.90 g) was dissolved in dry 1,4-dioxane (10 ml) and, to this solution, 4N hydrogen chloride/dioxane solution (25 ml) was added and, at room temperature, the mixture was stirred for I hour. The precipitated substance was collected by filtration and dried. This product was added to a mixed acid anhydride, which was previously synthesized from 4-(t-butyloxycarbonyl)aminomethyl cyclohexyl carboxylic acid (0.54 g), triethylamine (0.31 ml), and ethyl chlorocarbonate -(0.23 g). Furthermore, to this mixture were added triethylamine (0.62 ml) and N,N-dimethylformamide (5 ml) followed by stirring at room temperature for 3 hours. To the reaction mixture was added icewater (100 ml) and the precipitated substance was collected by filtration. After thoroughly washing with water and drying, N-(trans-4-(t-butyloxycarbonyl)-aminomethylcyclohexylcarbonyl-4-benzyloxy-Lphenylalanine 3-pyridylamide (III) (0.98 g) was obtained.

The compound (III) (0.95 g) was dissolved in dry I,4-dioxane (I0 ml) and, to this solution, 4N-hydrogen chloride/dioxane solution (20 ml) was added, followed by stirring at room temperature for 2 hours. The precipitated substance was collected by filtration and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (0.90 g).

Example 8

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound 23)

mixture of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine cyclohexylamide (0.68 g) obtained in Example 4, palladium black (0.10 g), cyclohexene (4 ml), and ethanol (20 ml) was allowed to react under reflux of ethanol for one hour, while stirring. After cooling, the solid was filtered off and the filtrate was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl-4-hydroxy-L-phenylalanine cyclohexylamide (I) (0.54 g). The compound (I) (0.54 g) was dissolved; without purification, in N,N-dimethylformamide (10 ml), followed by adding sodium hydride (0.06 g) thereto. The mixture was stirred at room temperature for 30 minutes. To this solution was added a solution of phenacyl bromide (0.30 g) in N,N-dimethylformamide (5 ml). The reaction was carried out at room temperature for 4 hours, followed by adding

50

15

20

ice-water thereto. The resultate sily product was extracted with ethyl acetate. After a conventional post-treatm nt, N-(t-butyloxycarbonyl)-4-phenacyloxy-L-ph nylalanine cyclohexylamide (II) - (0.6I g) was obtained. From the compound (II), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (0.38 g) was obtained, following the procedure of Example 7.

Example 9

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-nitro-D.L-phenylalanine 4-benzoylanilide hydrochloride (Compound No. 31)

N-(t-butyloxycarbonyl)-4-nitro-D,Lphenylalanine (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under icecooling to the resultant solution, followed by stirring for 20 minutes. 4-benzoylaniline (0,6 g) was added to the solution and the mixture was further stirred at room temperature for I2 hours, According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-D,L-phenylalanine zoylanilide (I) was obtained. To the above compound (I) (0.37 g) was added 4N-hydrogen chloride/dioxane solution (l.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (I0 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethyl chlorocarbonate -(0.09 g) was added to the solution under icecooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional posttreatment, 0.29 g of N-[trans-4-(t-butyloxy carbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-D,Lphenylalanine 4-benzoylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4N-hydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride was obtained.

Synthesis of N-Nas-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylam:ide hydrochloride (Compound No. 34)

Triethylamin (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added 4-cis/trans-methyl-cyclohexylamine (0.43 g) and the mixture was stirred at room temperature for 10 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate washed with water and dried to give 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methyl-cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxanesolution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to give quantitatively 4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to a solution of trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.62 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to give 0.2 g of N-strans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes... Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under a reduced pressure to give 0.1 g of N-(trans-4aminomethylcyclohexylcarbonyl)-4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride.

Example II

Example 10

139

chlorobenzyloxy)-L-phenylalanine 4-acetylanilide methane sulfonate (Compound No. 35)

N-(t-butyloxycarbonyl)-4-(benzyloxy)-L-4-acetylanilide (I.2 g), palladium phenylalanin black (0.15 g) and cyclohexane (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-chlorobenzylchloride (0.4 g) in dimethylformamide (5 ml) was allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water (100 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (1.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (I2 ml) to obtain 4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(III). The above compound (III) was suspended in dimethylformamide (I0 ml) -tetrahydrofuran (I0 ml) dry solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid anhydride were added under ice-cooling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.31 g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (I0 ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. This was dissolved in water (100 ml) and the substance precipitated by addition of sodium carbonate was suspended in methanol (30 ml) - methylenechloride (30 ml) solution and methanesulfonic acid (0.13 g) was added to the suspension, followed by stirring at room temperature for I hour, to obtain a transparent solution. After evaporation of the solvent under reduced pressure, recrystallization from ethanolether solution gave N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilidemethanesulfonate (I.I

Example 12

g).

Synthesis -- N-(trans-4-aminomethylcyclohexyl carbonvi)-4-benzyloxy-L-phenylalanine 4-sulfamovlanilide hydrochloride (Compound No. 47)

Triethylamine (I.5 ml) was added to a solution of N-(t-butyloxycarbonyi)-4-b nzyloxy-Lphenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-sulfamoylahiline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to give I.3 g of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine 4-sulfamoylanilide (II). To the above compound (II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at rooin temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4-benzyloxy-L-phenylalanine 4-sul-famoylanilide hydrochloride (III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethyl chlorocarbonate (0.1 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After ex-

4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-sulfamoylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride was obtained.

traction with chloroform, according to the same

post-treatment as in Example I, 0.28 g of N-(trans-

Example 13

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)pyridylamide hydrochloride (Compound No. 59)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (4.46 g) was dissolved in dry tetrahydrofuran (IIO ml) and triethylamine (I.80 ml) was added under ice-cooling, followed by stirring for 15 minutes. To this solution was added ethyl chlorocarbonate (I.44 g) and the mixture was stirred adding 30 minutes. After 4-amino-2chloropyridine (1.54 g), the reaction was carried out

45

15

20

25

30

35

at room temperature for 10 has. The solid was filtered off and the filtrate was concentrated under a reduced pressure. The residue was extracted with ethyl acetate. The extract was purified with a column chromatography to obtain N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamid (II) (0.60 g). Following th procedur of Example 7, the final compound N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)pyridylamide hydrochloride (III) (0.67 g) was obtained from the compound (II).

Example 14

;

•:

٠,٠

- 5

· ·j

٠,٠

~ii

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 79)

N-(t-butyloxycarbonyl)-4-hydroxy-L-

g) phenylalanine 4-acetylanilide (0.57)triethylamine (0.5 ml) were dissolved in dichloromethane (I0 ml) -tetrahydrofuran (I0 ml) solution and 4-toluenesulfonyl chloride (0.38 g) was added. at room temperature, followed by stirring for 3 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide (I) (0.8 g) was obtained. The above compound (I) (0.8 g) was treated with 4N hydrogen chloride/dioxane solution (2.2 ml) to obtain 4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide hydrochloride (II) (0.7 g). On the other hand, trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarboxylic acid (0.37.g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.7 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide (III) (0.32 g) was obtained. The above compound -(III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide

Example 15

hydrochloride (0.2 g).

N-(4-aminometh anzovicarbonyi)-4-benzyloxy-Lphenylalanine 3.4-dimethylovolohexylamide hydrochloride (Compound No. 80)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (0.3 g) and 3,4-dimethylcyclohexylamin (0.1 g) wer dissolved in dry methylene chloride (30 ml) and 1-ethvl-3-(3dimethylaminopropyl)carbodiimide hydrochloride -(0.2 g) was added to the solution, followed by stirring at room temperature for I2 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (I) (0.32 g) was obtained. The above compound (I) (0.3 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to ob-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (II) (0.26 g). The above compound (II) (0.26 g) and 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.16 g) were dissolved in dry methylene chloride (20 ml) -pyridineand l-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.15 g) was added to the solution. The reaction was carried out at room temperature for I2 hours. After a conventional posttreatment. N-[4-(t-butyloxycarbonyl)aminomethylbenzoyl]-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (III) (0.23 g) was obtained. The above compound (III) was allowed to react with 4N-hydrogen chloride/dioxane solution to rhi) obtain N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (0.18 g).

Example 16

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-nitrophenyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 95)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (I.59 g) in dimethyl sulfoxide (IO ml) were added potassium hydroxide (0.25 g) and 4-nitrobromobenzene (0.8) g), and the mixture was heated at 80 -90°C and stirred for 10 hours. After conventional post-treatment N-(t-butyloxycarbonyl)-4-(4-nitrophenyloxy)-Lphenylalanine 4-acetylanilide (I) (0.62 g) was obtained. The above compound (I) (0.6 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain 4-(4-nitrophenyloxy-Lphenylalanine 4-acetylanilide hydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic mixed acid anhydride obtained in Example 5 to N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(4-

50

nitrophenyloxy)-L-phenylax-nine 4-acetylanilide (II) - (0.54 g). The above compound (II) (0.54 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-nitrophenoxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.39 g).

Example 17

Synthesis of N-(4-aminomethylbenzovl)-4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (Compound No. 96)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2.00 g) was dissolved in dry tetrahydrofuran (50 ml) and, under ice-cooling, triethylamine (0.8l ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.64 g) was added thereto, followed by stirring for 30 minutes. To this solution was added 4-picolylamine (0.58 g) and the mixture was stirred at room temperature for 5 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate. After a conventional post-treatment N-(t-butyloxvcarbonyl)-4-benzyloxy-L-phenylalanine picolylamide (II) (I.60 g) was obtained. To the compound (II) (i.60 g) 4N-hydrogen chloride/dioxane solution (15 ml) was added, followed by stirring at room temperature for 30 minutes. The precipitated substance was collected by filtration and dried to quantitatively obtain 4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (III).

On the other hand, N-4-(t-butyloxycarbonyl)aminomethyl benzoic acid (0.60 g) was dissolved in dry tetrahydrofuran (IO ml) and N,N-dimethylformamide (5 ml) and, under ice-cooling, triethylamine (1.20 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.29 g) was added thereto, followed by stirring for 30 minutes. To this solution was added the above-prepared compound (III), followed by stirring for 3 hours at room temperature. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate and, after a conventional post-treatment, N-4-(t-butyloxycarbonyl)aminomethylbenzoyl-4-benzyloxy-Lphenylalanine 4-picolylamide (IV) (0.45 g) was obtained. To this compound (IV) (0.45 g) was added 4N hydrogen chloride/dioxane solution (4.5 ml) and the precipitated substance was collected by filtration. After drying, N-(4-aminomethylbenzoyl)-4-4-picolylamide benzyloxy-L-phenylalanine dihydrochloride (0.39 g) was obtained.

Synthesis of N-(4-aminom thylbenzoyl)-4-benzyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound No. II4)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added cychlohexylamine - (0.43 g) and the mixture was stirred at room temperature for IO hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water, and dried to obtain 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanin cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxan solution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitatedcrystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to quantitatively obtain 4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.62 g) dissolved in dry tetrahydrofuran (30 mi) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to obtain 0.2 g of N-[4-(t-butyloxycarbonyl)aminomethylbenzoyl]-4-benzyloxy-Lphenylalanine cyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogenchloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to obtain 0.1 g of N-(4-aminomethylbenzoyl)-4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride.

50 Example 19

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilid hydrochloride (Compound No. II9)

Example 18

Triethylamine (I.5 ml) was ded to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-L-(i) (2 g) dissolved in dry phenylalanine tetrahydrofuran (30 ml) and ethyl chlorocarbonate -(0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-trifluoromethylaniline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to obtain I.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine trifluoromethylanilide (II). To the above compound -(II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4benzyloxy-L-phenylalanine 4-trifluoromethylanilide -(III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethylchlorocarbonate (0.1 g) was added under icecooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example 1, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide hydrochloride was obtained.

Example 20

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. |2|)

To a solution of N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (0.57 g) in dry dimethylsulfoxide (I0 ml) was added oily sodium hydride (0.07 g), followed by stirring at room temperature for 30 minutes. Then, 2-chloro-5-nitropyridine (0.28 g) was added and stirred at room temperature for I0 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(5-nitro-2-pyridyloxy-L-phenylalanine 4-acetylanilide (I) (0.70 g) was obtained. The above compound (I) (0.70 g)

was treated with AN hydrog n chloride/dioxane solution (I5 ml) to obtain 4-(5-nitro-2-pyridyloxy)-L-ph nylalanine 4-acetylanilide hydrochloride (II) (0.65 g).

On the oth r hand, trans-4-(t-butyloxycarbonyl) aminom thylcycloh xylcarboxylic acid (0.37 g) and tri thylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.65 g) and, after neutralizing with triethylamine, the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(5nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide -(III) (0.32 g) was obtained. The above compound (III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(5-nitro-2pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

Example 21

25

N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 122)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine 4-acetylanilide (I.2 g), palladium black (0.15 g) and cyclohexene (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.l g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-cyanobenzylbromide (0.4 g) in dimethylformamide (5 ml) was added and allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water-(100 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-cyanobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above

compound (II) (I.25 g) was allowed to react with 4N-hydrogen chloride/dioxane (I2 ml) to obtain 4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide - (III).

The abov compound (III) was suspended in dim thylformamide (I0 ml) -tetrahydrofuran (I0 ml) solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcycl hexylcarboxylic

50

15

35

acid mixed acid anhydn were added under icecooling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.3I g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (10 ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. The product was recrystallized from an ethanol-ether solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (l.l g).

Example 22

. -

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 130)

N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine - (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under ice-cooling to the resultant solution, followed by stirring for 20 minutes. 4-acetylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide (I) was obtained.

To the above compound (I) (0.37 g) was added 4N-hydrogen chloride-dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-L-phenylalanine 4acetylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid -(0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethylchlorocarbonate (0.09 g) was added to the solution under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) -(0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.29 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-Lphenylalanine 4-acetylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4Nhydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. Th crystalline substance precipitated was collected by filtration and subjected a conventional post-treatment, wh reby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanin 4-ac tylanilide hydrochlorid was obtained.

Example 23

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(3-chloro-6-nitrophenoxy)-L-phenylalanine
4-pyridylamide dihydrochloride (Compound No. 137)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-pyridylamide (5.35 g) in dimethyl sulfoxide (I00 ml) was added oily sodium hydride (0.62 g), followed by stirring at room temperature for 30 minutes. Thereafter, 2,4-dichloronitrobenzene (2.88 g) was added and stirred at room temperature for 10 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(3-chloro-6-nitrophenoxy)-L-phenylalanine 4-pyridylamide dihydrochloride (6.66 g) was obtained. The abov compound (I) (6.50 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (50 ml) to 4-(3-chloro-6-nitrophenoxy-L-phenylalanin obtain 4-pyridylamide dihydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid. anhydride obtained in Example 5 to obtain N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3-chloro-6nitrophenoxy)-L-phenylalanine 4-pyridylamid (II) -(7.16 g). The above compound (II) (7.00 g) was allowed to react with 4N-hydrogen chloride/dioxan solution (I50 ml) to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3-chloro-6-nitrophenoxy)-Lphenylalanine 4-pyridylamide (6.06 g).

Example 24

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)4-(4-picolyloxy)-L-phenylalanine 4-pic-pecolylamide (Compound No.165)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (I.86 g) was dissolved in dry tetrahydrofuran (30 ml) and, under ice-cooling, triethylamine (0.75 ml) was added thereto. After stirring for I0 minutes, ethyl chlorocarbonate (0.56 g) was added and stirred for 30 minutes. To this solution was added a solution of 4-pipecoline (0.55 g) in dry tetrahydrofuran (5 ml). The ice bath was removed and the reaction was carried out at room temperature for 2 hours. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. To the residue was added water

20

(50 ml), followed by extracting with ethyl acetate. After a conventional post-treatment N-(t-butylox-ycarbonyl)-4-benzyloxy-L-phenylalanine 4-pipecolylamide (II) (I.83 g) was obtained.

A mixture of the above compound (II) (I.70 g), palladium black (0.20 g), cyclohexene (6 ml), and ethanol (50 ml) was reacted under reflux of ethanol. After cooling, the solid was filtered off and the filtrate was concentrated to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-pipecolylamide (III) (1.36 g). The compound (III) was dissolved, without purification, in N,N-dimethylformamide (20 ml). To this solution was added oily sodium hydride (60% content) (0.16 g), followed by stirring at room temperature for 30 minutes. To this solution was added a solution of 4-picolyl chloride (0.50 g) in N,N-dimethylformamide (5 ml) and the reaction was carried out at room temperature for 7 hours. Ice water was added to the reaction mixture and the resultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-picolyloxy)-Lphenylalanine 4-pipecolylamide (IV) (I.20 g) was obtained. From the compound (IV), N-(trans-4aminomethylcyclohexylcarbonyl)-4-(4-picolyloxy)-Lphenylalanine-4-pipecolylamide (0.85 g) following

the procedure of Example 6. The phenylalanine derivatives or the salts thereof according to the present invention, which are an effective component of the proteinase inhibitor of the present invention, have very potent inhibition activities against proteinases such as plasmin, kallikrein, trypsin, and urokinase as shown in the below-mentioned test results. The plasmin inhibition activity is different from the effect exhibited by the antiplasmins of the prior art, when contrasted with known drugs of the prior art such as tranexamic acid or e-aminocaploic acid which selectively inhibits only plasmin among proteinases. For example, some effective ingredients of the proteinase inhibitor according to the present invention exhibit an inhibition activity against urokinase, which is a plasminogen activating enzyme as is well known. This means that the inhibition of this enzyme can provide preferable hemostatics. On the other hand, some of the proteinase inhibitors according to the present invention inhibit antikallikrein activity and antitrypsin activity. This means that these inhibition activities can provide, together with the antiplasmin activity, a strong antiinflammatory agent. For example, the Compound No. 3 in Table 3 is known as the phenylalamine derivative having the structure similar to that of the present invention (see Pharmazie 39, H, I, 68,1984). Furthermore, the Compound Nos. 4, 5, 6, and 7 are known as phenylalamine d rivatives (see Chem. Abst. 77, 102225j; 86, 39312d; and 80, 92633m).

In the following, antiplasmin activity, antikallikrein activity, antitrypsin activity, antiurokinase activity and antithrombin activity of the present compounds are described in detail by ref ming to typical test examples.

The measurement methods employed in the following test examples are as described below. The test results are shown in Table 2 by referring to the compound Nos. in the above Table I for the compounds of the present invention, and the test results are shown in Table 4 by showing the structures of the compounds in Table 3 for the commercially available antiplasmins as Comparative Examples.

(I) Evaluation of Antiplasmin Activity

(i) <u>Determination of inhibition activity for fibrin de-</u> composition

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 600 µl. To this buffer solution, 200 µl of a 0.2% bovine fibrinogen, 100 µl of a 0.3 casein unit/ml human plasmin solution, and 100 µl of a 50 unit/ml bovine thrombin solution, all dissolved in the above-mentioned buffer, are added at a temperature of 37°C in a constant temperature bath. Then, the dissolution time of the fibrin mass formed above is determined. Thus, the concentration lso of the inhibitor sample (i.e., 50% inhibition concentration, µmol), at which the dissolution time obtained in the absence of the inhibitor (i.e., about 5 minutes) is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-225I decomposition</u>

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.4) to make the total volume to 400 μ l. To this solution, 50 μ l of a 3 mM S-225l solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 casein unit/ml human plasmin is added and the mixture is incubated at a temperature of 37°C for 4 minutes. Thereafter, the reaction is stopped by adding 50 μ l of 50% acetic acid.

The absorbance of p-nitroaniline formed in the reaction mixture is determined at 405 nm. Thus, the concentration I_{50} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., I/2) of that obtained in the absence of the inhibitor, is determined.

30

35

45

(iii) Determination of inhibation activity for fibringen

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 400 µl. To this solution, 500 µl of a 0.4% bovine fibrinogen solution and 100 μl of a I casein unit/ml human plasmin solution, all dissolved in the above-mentioned buffer are added at a temperature of 37°C in a constant temperature bath. After the mixture is allowed to stand at a temperature of 37°C for I0 minutes, 3800 µl of the above-mentioned buffer containing I3.2 mM of tranexamic acid and 200 µl of a 50 unit/ml bovine thrombin solution are added to terminate the reaction. The mixture is incubated at a temperature of 37°C for 15 minutes to form the fibrin. The fibrin clot thus formed is adhered to or wound around a glass rod and is then washed with water. The amount of the remaining fibrinogen is determined according to a tyrosine coloring method using a phenol reagent (see J. Biol. Chem., 73, 627 (1927)). From the amount of the remaining fibrinogen thus determined, the amount of decomposed fibrinogen is calculated. Thus, the concentration Is (µmol) of the inhibitor sample, at which the amount of decomposed fibrinogen is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(2) Evaluation of Antithrombin Activity

(i) <u>Determination of inhibition activity against fibrin</u> formation

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 500 μ l. To this solution, 400 μ l of a 0.2% bovine fibrinogen solution and 100 μ l of a 4 unit/ml bovine thrombin solution are added at a temperature of 37°C in a constant temperature bath. Thus, a coagulation time is determined. The inhibitor concentration l_{so} (μ mol), at which the coagulation time obtained in the absence of the inhibitor is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2238</u> decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.3) to make a total volume of 400 μ l. To this solution, 50 μ l of a 0.2 mM S-2238 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 unit/ml bovine thrombin solution is added ther to and the absorbance, at 405 nm, of

the p-nitrocardine form d per minute is determined at a temperature of 37°C by using the so-called initial velocity m thod. Thus, the concentration I_{50} - (μ mol) of the inhibitor sample at which the absorbance is one half (i.e., I/2) of that obtained in the absence of the inhibitor sample, is determined.

(3) Evaluation of Antitrypsin Activity Determination of inhibition activity against S-2238 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-imidazole buffer solution (pH = 8.l) and l25 μ l of a 1 mM S-2238 solution is added to make the total volume to l.20 ml. The mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. To this mixture, 0.05 ml of bovine trypsin is added and the absorbance, at 405 nm, of the p-nitroaniline formed per minute is determined at a temperature of 37°C by the so-called initial velocity method. Thus, the concentration l_{50} - (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(4) Evaluation of Anti-Plasma Kallikrein Activity Determination of inhibition activity for S-2302 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.8) to make the total volume to 400 µl. To this solution, 50 µl of a 2 mM S-2302 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 ul of a 0.12 unit/ml human plasma kallikrein is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 µl of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration Iso (umol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(5) Evaluation of Antiurokinase Activity Determination of inhibiton activity for S-2444 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.8) to make the total volume to 400 μ l. To this solution, 50 μ l of a l mM S-2444 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 500 unit/ml human urokinase is added and

the mixture is incubated at a comperature of 37°C for 5 minutes. Thereafter, 50 μ l of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration l_{50} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., l/2) of that obtained in the absence of the inhibitor sample, is determined.

When the compounds of the present invention are used as a medicine, there are no critical limitations to the administration methods. The present proteinase inhibitor can be formulated by any con-

ŧ.

ventional methods in pharmaceutics. For example, the present proteinase inhibitor may be applied in any conventional manner including intravenous injection, intramuscular injection, instillation, and oral administration. Although there are no critical limitations to the administration dosage, the suitable dosage is 100 to 1000 mg/day/person, which can be conveniently decreased or increased as desired, as a matter of course.

ΔŊ

																									
ase	8-2444	=	28	31	25	42	=	80	45	23	19	120	560	330	80	e. e.	=	40	100	>400	32	09	20	130	×200
Plasma Kallikrein	S-2302	1.9	0.85	0.63	0.46	2.0	0.84	2.1	1.7	0.56	1.2	0.16	2.1	1.1	0.37	0.9	8.5	. 0.38	1.2	09	1.2	1.2	0.46	4.5	×100
Trypsin	8-2238	0.30	1.3	0.77	0.84	1.1								3.1	1.0		0.52	. 1.0	0.82	2.5	8.1	1.1	0.84	7.5	. 22
ambin	Fibrinogen	>50	>1000	>100		>500		>200	>200			>25	×100	>25	>50	×100	>200	>20	>20	>50	>200	>100		>200	>100
ntdnoath: 1. Chronoth	S-2238	>100	>1000	>200	•	230		>400	>400			>50	>100	>50	280	>100	>200	>100	>125	>20	>1000	>500		>400	>200
	Fibrin	40	21	0.40	0.39	4.6	0.41	4.4	2.9	0.28	0.28	0.31	1:1	0.35	0.95	3.3	12	0.095	0.41	0.41	0.68	0.95	0.091	1.0	3.4
Plasmin	S-2251	27	36	1.8	0.00	1.3	0.79	168	6.1	1.5	1.3	1.4	6.9	3.1	1.4	14	13	0.80	1.7	2.3	3.4	3.8	0.58	8.9	5.3
Campound	.Q	-	. ~	, m	വ	ဖ	12	14	16	17	19	70	3 6	29	30	31	33	32	36	38	40	44	45	47	48

Table 2 (Continued)

																								
nase	S-2444	35	. 73	46	45	>150	40	>200	>100	65	>200	350	40	25	82	>200	>200	65	>250	. ≻200	×400	>400	28	23
Plasma Kallikrein	S-2302	0.45	0.42	92.0	. 1.4	2.8	0.42	8.3	24	. 2.3	22	0.54	1.2	1.2	. 6.2	25	>200	. 2.4	. > 200	100	17	40	0.51	0.42
Trypsin	S-2238	1.0	2.6	1.2	0.73	1.3	0.67	2.4	01		5.0	3.9	0.44	1.0	1.3	0.95	450	1.1	38	. 9.2	0.45	7.0	1.5	0.97
Throabin	Fibrinocen	№1 00	>20	>100	>500	>20	>250	>100	>20	>250	>20	>50	> 20	>200	>50	>25	>400	×100	>25	>50	>50	>25	>20	>20
Th	8-2238	>200	>125	200	730	>125	>125	>200		>400		>20		>400	170	>20	>400	>125	>50	>50	>100	>20	>200	>100
	Fibrin	0.19	0.29	.0.29	3.3	0.72	0.18	0.58	1.4	0.49	1.0	0.092	0.14	0.65	0.63	0.62	210	0.88	2.4	0.75	0.33	2.9	0.21	0.35
PLasma	S-2251	1.0	1.2	1.9	4.6	3.4	1.4	1.8	5.6	2.5	2.9	0.80		1.2	1.7	2.1	220	5.6	5.8	3.8	-:-	8.5	0.89	0.95
Compound	No.	54	22	28	57	28	29	62	63	64	65	99	29	89	20	72	73	75	92	78	80	82	. 83	98

Table 2 (Continued)

- [
	Urokinase	S-2444	>200	82	8.0	>200	320	>100	>200	>150	>200	>300	>20	>100	>150	19	34	78	47	6.3	20	82	34	>250	37	>1000
	Plasma Kallikrein	S-2302	120	1.2	0.14	350	3.5	18	40	19	, 20	>20	>25	40	3.7	0.18	0.43	0.078	0.38	3.5	0.41	0.44	8.3	17	0.66	▶1000
	Trypsin	8-2238	22	2.5	1.5	22	1.3	1.2	2.5	3.0	0.43	5.8	81	9.5	3.0	0.24	1:0	0.71	08.0	0.45	1.8	1.3	0.50	4.4	1.2	•
·	Thrombin	Fibrinogen	>20	▶100	>100	>250	>50	•	>50	>50	>40		>50		>50	>200	>20	>20		>200	>20	×100	>400	>200	>200	×1000
	T	8-2238	>200	>200	>400	. 001<	>400		>20		>50	>50		-	>50	280	>200	95			>200	×1000	>400	>200	>400	>1000
		Fibrin -	>20	0.32	0.27	18	0.16	0.12	2.6	0.54	0.27	-	1.7	1.4	0.77	0.43	0.31	0.28	0.13	0.83	0.29	0.30	7.1	56	0.58	190
	Plasnín	S-2251	33	1.6	0.63	29	0.69	0.78	4.2	4.1	0.58	5.2	8.3	3.2	3.4	0.95	1:1	0.39	0.49	1.5	1.5	1.4	. 15	170	06.0	>1000
	Campound	ģ	88	83	95	96	102	103	105	106	109	111	113	114	118	121	122	123	125	126	127	128	130	131	137	139

able 2 (Continued)

Compound	Plasmin		ult.	Thrombin	Trypsin	Plasma Kallikrein	Urokinase
Ŋ.	S-2251	Fibrin	S-2238	Fibrinogen	8-2238	S-2302	S-2444
140	8.8	2.5	>200	>200		18	×100
144	0.23	0.051		>50	0.95	0.37	43
145	0.56	0.075	98	>50		0.75	31
146	0.64	0.29	001	001 ~		0.58	45

CII3 CONIICIICON(CII3)2 Compound <u>چ</u> ស 9

Table 3 (Continued)

....C00II (t - AMCIIA) H2N(CH2)6 COOII (EACA) Table 3 Compound ٠ چ ~ က

Table 4

Compound	Plasmi	n	Throm	bin	Trypsin	Plasma	Urokinase
No.	S-2251	fibrin	S-2238	Fibrinogen	S-2238	<u>Kallikrein</u> S·2302	S-2444
1	75,000	60	>1,000	>1,000	>1,000	>1,000	>1,000
2	180,000	200	 ·			•	••••
3	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000
4	>200	>200	>200	>200		>200	>200
5	>100	>100	>100	>100	>150	>100	>100
6	>200	>200	>200	>200		>200	· >200
7	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000

Claims

40

I. A phenylalanine derivative having the formula (I):

15

20

where R' and R' are, in expendently, hydrogen provided that both R' and R' are not hydrogen at the sam time;

C₁-C₂ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylmercapto, C₁-C₄ alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

C₆-C₈ cycloalkyl which may be substituted with hydroxy, C₁-C₆ alkoxy, hydroxylcarbonyl, C₁-C₆ alkoxycarbonyl, or C₁-C₆ alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₅ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C_1 - C_4 alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-

C4 alkyl, phenylcarbonyl, or C3-C4 alkoxycarbonyl;

X is hydrog n; nitro; amino; or -OZ wherein Z is hydrogen; C₁-C₄ alkyl; C₂-C₄ alkenyl; benzyl which may be substituted with halog n, C₁-C₄ alkyl, nitro, trifluoromethyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C₁-C₄ alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

- 2. A phenylalanine derivative as claimed in claim I, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.
- 3. A proteinase inhibitor comprising as an essential component the phenylalanine derivative of claim I or the pharmaceutically acceptable salt thereof.
- 4. A proteinase inhibitor as claimed in claim 3, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.

45

40

50

EUROPEAN SEARCH REPORT

	DOCUMENTS CON	SIDERED TO BE RELEVANT		EP 86113166.
Category		ith indication, where appropriate, want pessages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Im. CI.4)
D,X		ACTS, vol. 101, no. 4, Columbus, Ohio,	1,2	C 07 C 103/73 C 07 C 103/84 C 07 C 123/00
	different Na-and benzoylated amin with aromatic apage 657, column	"Preparation of ryl-sulfonylated or ino acid amides aminomethyl groups" nns 1,2, abstract-nozie 1984, 39(1),68-9	-	C 07 C 143/76 C 07 C 143/86 C 07 C 149/42 C 07 D 207/16 C 07 D 211/16 C 07 D 211/32 C 07 D 211/56
A	US - A - 4 261	919 (W.S. KNOWLES et al.)	1	C 07 D 211/63 C 07 D 213/30 C 07 D 213/40
	* Column 1, 2, line 28	line 20 - column		C 07 D 213/56 C 07 D 213/66 C 07 D 213/79 C 07 D 239/3
P,A	EP - A2 - 0 183	3 271 (SHOWA DENKO K.K.)	1,3	C 07 D 239/4 C 07 D 295/1 C 07 D 307/1
	* Compounds stract *	No. 102-140; ab-		TECHNICAL FIELDS SEARCHED (Int. Cl.4)
				C 07 C 103/0
	•		·	
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	VIENNA	16-12-1986		HOFBAUER
Y : parti docu A : techi	CATEGORY OF CITED DOCL cularly relevant if taken alone cularly relevant if combined with ment of the same category nological background written disclosure mediat document	E: earlier paten after the filin ith another D: document ci L:: document ci	t occument, t g date ted in the app ted for other i	ying the invention

EPO Form 1503 03 62

	DOCUMENTS CO	NSIDERED TO BE	RELEVAN	7	EP 861	13166.2
ategory		with indication, where appeared to the second passages	propriete,	Relevant to claim	CLASSIFIC APPLICAT	ATION OF THE ION (Int. CI.4)
		·			C 07 K A 61 K	31/40 31/435 31/505 31/535 31/54
			İ		A OI K	37702
			•			•
	·				TECHNIC SEARCHE	AL FIELDS D (Int. Ci 4)
	·					
	The present search report has	been drawn up for all claim		·		
	Place of search WIENNA	Date of completion 16-12-1	n of the search		Examiner HOFBAUE	r
: particular particular docume : technological particular particul	ATEGORY OF CITED DOC arly relevant if taken alone arly relevant if combined int of the same category of the same category to disclosure disclosure diste document	•	theory or print earlier patent after the film of document cit document cit.	t document, g g date ted in the app ted for other r	o benealed up	n, or