Problem 1 (1.4.7). The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.

(a) Let z, w be two complex numbers such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\overline{w}z}\right|<1 \quad \text{if } |z|<1 \ \ \text{and} \ |w|<1,$$

and also that

$$\left|\frac{w-z}{1-\overline{w}z}\right|=1 \quad \text{if } |z|=1 \ \text{or } |w|=1.$$

Hint: Why can one assume that z is real? It then suffices to prove that

$$(r-w)(r-\overline{w}) \le (1-rw)(1-r\overline{w})$$

with equality for appropriate r and |w|.

(b) Prove that for a fixed w in the unit disc \mathbb{D} , the mappings

$$F: z \mapsto \frac{w-z}{1-\overline{w}z}$$

satisfies the following conditions:

- (i) F maps the unit disc to itself (that is, $F: \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- (ii) F interchanges 0 and w, namely F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F: \mathbb{D} \to \mathbb{D}$ is bijective. Hint: Calculate $F \circ F$.

Proof. (a) Since $\overline{z}w \neq 1$ we can change the inequality from

$$\left| \frac{w - z}{1 - \overline{w}z} \right| \le 1$$

to

$$|w - z| \le |1 - \overline{w}z|$$

Then if we square both sides we can use the properties of the conjugate to get

$$(w-z)\overline{(w-z)} \le (1-\overline{w}z)\overline{(1-\overline{w}z)}$$

Distribute the conjugate over the sum to get

$$(w-z)(\overline{w}-\overline{z}) \le (1-\overline{w}z)(1-w\overline{z})$$

Multiply out to get

$$|w|^2 - z\overline{w} - w\overline{z} + |z|^2 \le 1 - \overline{w}z - \overline{z}w + |w|^2|z|^2$$

Shuffle everything to the right and we get

$$0 \le 1 - |w|^2 |z|^2 - |w|^2 - |z|^2 = (1 - |w|^2)(1 - |z|^2) = (1 - |w|)(1 + |w|)(1 - |z|)(1 + |z|)$$

Since each one of these steps was invertible this inequality is equivalent to the original. At this point it is clear if either |w| or |z| is equal to one we have equality. Moreover when |z| < 1 and |w| < 1 we will have two negative terms and to positive terms making the inequality hold strictly.

- (b) (i) If $|z| \le 1$ then it is in the unit disc. From the above inequality $|F(z)| \le 1$. Thus F is a map from the unit disc to itself.

 For holomorphicity we **FINISH THIS**.
 - (ii) First calculate F(0)

$$F(0) = \frac{w - 0}{1 - \overline{w}0}$$
$$= \frac{w}{1}$$
$$= w$$

Calculating F(w) we get

$$F(w) = \frac{w - w}{1 - |w|^2}$$
$$= 0$$

- (iii) From the second part of (a) if |z| = 1 then F(z) = 1.
- (iv) To show it is a bijection we calculate $F \circ F(z)$:

$$F \circ F(z) = \frac{w + \frac{z - w}{1 - \overline{w}z}}{1 + \overline{w} \frac{z - w}{1 - \overline{w}z}}$$

$$= \frac{\frac{w(1 - \overline{w}z) + z - w}{1 - \overline{w}z}}{\frac{1 - \overline{w}z + \overline{z} - \overline{w}w}{1 - \overline{w}z}}$$

$$= \frac{-|w|^2 z + z}{1 - |w|^2}$$

$$= \frac{z(1 - |w|^2)}{1 - |w|^2}$$

$$= z$$

Problem 2 (1.4.9). Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$.

Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

Proof. Using the chain rule and relations $x = r \cos \theta$ and $y = r \sin \theta$ we get:

$$u_r = u_x \cos \theta + u_y \sin \theta$$

$$u_\theta = -u_x r \sin \theta + u_y r \cos \theta$$

$$v_r = v_x \cos \theta + v_y \sin \theta$$

$$v_\theta = -v_x r \sin \theta + v_y r \cos \theta$$

At this point we have

$$\frac{1}{r}(v_{\theta}) = -v_x \sin \theta + v_y \cos \theta = u_y \sin \theta + u_x \cos \theta = u_r$$

and similarly

$$\frac{1}{r}u_{\theta} = -u_x \sin \theta + u_y \cos \theta = -v_y \sin \theta - v_x \cos \theta = -v_r$$

Taking the derivatives for $u = \log r$ and $v = \theta$ with respect to r and θ we get

$$\frac{\partial u}{\partial r} = \frac{1}{r}$$
$$\frac{\partial u}{\partial \theta} = 0$$
$$\frac{\partial v}{\partial r} = 0$$
$$\frac{\partial v}{\partial \theta} = 1$$

Which fulfill the polar Cauchy-Riemann equations. Thus $\log z$ is in fact holomorphic.

Problem 3 (1.4.10). *Show that*

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} = 4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta,$$

where Δ is the **Laplacian**

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Proof. First recall that

$$f_z = 1/2f_x - i/2f_y$$

and

$$f_{\overline{z}} = 1/2f_x + i/2f_y$$

Then we compute:

$$\begin{split} 4\frac{\partial}{\partial z}\frac{\partial}{\partial \overline{z}} &= 4\frac{\partial}{\partial z}(1/2f_x + i/2f_y) \\ &= 4(1/4f_{xx} + i/4f_{yx} - i/4f_{xy} + 1/4f_{yy}) \\ &= f_{xx} + f_{yy} = \Delta f \end{split}$$

and the other

$$\begin{split} 4\frac{\partial}{\partial\overline{z}}\frac{\partial}{\partial z} &= 4\frac{\partial}{\partial\overline{z}}(1/2f_x - i/2f_y) \\ &= 4(1/4f_{xx} + i/4f_{yx} - i/4f_{xy} + 1/4f_{yy}) \\ &= f_{xx} + f_{yy} = \Delta f \end{split}$$

Problem 4 (1.4.13). Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:

- (a) $\Re(f)$ is constant;
- (b) $\Im(f)$ is constant;
- (c) |f| is constant;

one can conclude that f is constant.

Proof. Separate f = u + iv.

- (a) Since u is constant $u_x = u_y = 0$. However using the Cauchy-Riemann equations we have that $v_x = v_y = 0$ as well. Since u and v are constant so is f.
- (b) Since v is constant $v_x = v_y = 0$. However using the Cauchy-Riemann equations we have that $u_x = u_y = 0$ as well. Since u and v are constant so is f.
- (c) Since |f| is constant so is $|f|^2 = u^2 + v^2$. Take the derivative with respect to x and divide by two to get

$$uu_x + vv_x = 0$$

and for y

$$uu_y + vv_y = 0$$

Next rewrite the latter with the Cauchy-Riemann equations

$$-uv_x + vu_x = 0$$

Then multiply the first equation by u, the latter by v, and add them together to get

$$u(uu_x + vv_y)v(-uv_x + vu_x) = (u^2 + v^2)u_x = 0$$

Since $u^2 + v^2$ is a constant this implies that $u_x = v_y = 0$.

We can do the same thing by rewriting the first to get

$$(u^2 + v^2)v_x = 0$$

Which implies that $v_x = -u_y = 0$. This gives us that u and v are constant and as such so is f.

Problem 5 (1.4.17). Show that if $\{a_n\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L,$$

then

$$\lim_{n \to \infty} |a_n|^{1/n} = L.$$

In particular, this exercise shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

We prove the alternate exercise given in class.

Proof. Let $R:=\lim_{n\to\infty}\frac{|a_n|}{|a_{n+1}|}$. We will show that R is the radius of convergence for the power series $\sum_{0}^{\infty}a_n(z-z_0)$. Let $|z-z_0|< R$ and $r:=|z-z_0|$

$$\left| \sum_{n=0}^{\infty} a_n (z - z_0)^n \right| \le \sum_{n=0}^{\infty} |a_n| r^n$$

Then we apply the ratio test to the latter sum to get

$$\lim_{n \to \infty} \frac{|a_{n+1}|r}{|a_n|} = \frac{r}{R} < 1$$

which shows that the sum converges.

Now suppose that $|z-z_0| > R$. Then apply the ratio test to the power series to get

$$\lim_{n \to \infty} \frac{|a_{n+1}|r}{|a_n|} = \frac{r}{R} > 1$$

which shows that the series diverges.

Therefore R is in fact the radius of convergence.

I suppose a way of proving the original would be to use the sequence as a power series and apply the convergence tests with Hadarmard's rule.

Problem 6 (2.6.1). Prove that

$$\int_0^\infty \sin(x^2)dx = \int_0^\infty \cos(x^2)dx = \frac{\sqrt{2\pi}}{4}.$$

These are the **Fresnel Integrals**. Here, \int_0^∞ is interpreted as $\lim_{R\to\infty}\int_0^R$. Hint: Integrate the function e^{-x^2} over the $\pi/4$ semicircle thing. Recall that $\int_{-\infty}^\infty e^{-x^2} = \sqrt{\pi}$.

Proof. Let γ_R denote the curve given in the supplied figure of radius R. Then parametrize the curve piecewise so we have:

$$\oint_{\gamma_R} e^{-z^2} = \int_0^R e^{-t^2} dt + \int_0^{\pi/4} iR \operatorname{cis} \theta e^{-(R \operatorname{cis} \theta)^2} d\theta + \int_0^R -\operatorname{cis} \pi/4 e^{-\operatorname{cis} \pi/4(R-t))^2} dt$$

The integral about γ_R is zero as the function contained within is holomorphic. Moreover we already know that $\lim_{R\to\infty}\int_0^R e^{-t^2}dt=\frac{\sqrt{\pi}}{2}$. Next we show that

$$\lim_{R \to \infty} \int_0^{\pi/4} iR \operatorname{cis} \theta e^{-(R \operatorname{cis} \theta)^2} d\theta = 0$$

Problem 7 (2.6.11). Let f be a holomorphic function on the disc D_{R_0} centered at the origin and of radius R_0 .

Proof. (a) Prove that whenever $0 < R < R_0$ and |z| < R, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi} \Re\left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right)) d\varphi.$$

(b) Show that

$$\Re\left(\frac{Re^{i\gamma}-r}{Re^{i\gamma}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\gamma+r^2}.$$

Hint: For the first part, note that if $w = R^2/\overline{z}$, then the integral of $f(\zeta)/(\zeta - w)$ around the circle of radius R centered at the origin is zero. Use this, together with the usual Cauchy integral formula, to deduce the desired identity.