Zoológia bezchordátov

- gr. Zóon = zviera, Lógos = veda
- veda zaoberajúca sa živočíchmi
- od mytológie k vede, od vedy k "vedeckejšej vede"





- Význam
  - V minulosti
  - Dnes
- Prežitie
- Zvedavosť
- Záľuba
- Veda
- Aplikácia



























































- Význam zoológie pre človeka
  - Potrava
  - Priemysel a technológie
  - Poľnohospodárstvo, lesníctvo
  - Medicína
  - Estetika













# Živočíchy – predmet štúdia zoológie







#### Počet druhov

Veľkosť živočícha reprezentujúceho skupinu predstavuje relatívny počet druhov v porovnaní s ostatnými skupinami





- 1 Prokaryotes
- 2 Fungi
- 3 Algae
- 4 Plantae (multicellular plants)

- 5 Protozoa
- 6 Porifera (sponges)
- 7 Cnidaria (jellyfish, corals, etc.)
- 8 Platyhelminthes (flatworms)
- 9 Nematoda (roundworms)
- 10 Annelida (earthworms, leeches, etc.)
- 11 Mollusca (snails, bivalves, octopus, etc.)
- 12 Echinodermata (starfish, sea urchins, etc.)
- 13 Insecta
- 14 Non-insect Arthropoda
- 15 Pisces (fish)
- 16 Amphibia (frogs, salamanders, etc.)
- 17 Reptilia (snakes, lizards, turtles)
- 18 Aves (birds)
- 19 Mammalia (mammals)

#### Rozsiahly predmet skúmania

- postupne sa s rastúcim množstvom poznatkov rozčlenila na špecializované odbory a disciplíny
- uplatňovanie praktického využitia poznatkov zoológie zabezpečujú aplikované zoologické vedy
  - poľnohospodárska zoológia, lesnícka zoológia, ...















## Príklady zoologických disciplín

| Anatómia             | štúdium štruktúry organizmu, alebo jeho častí                                      |  |  |
|----------------------|------------------------------------------------------------------------------------|--|--|
| Cytológia            | štúdium štruktúry a funkcií buniek                                                 |  |  |
| Ekológia             | štúdium interakcie organizmu a prostredia                                          |  |  |
| Embryológia          | štúdium vývinu živočícha od oplodneného vajíčka po liahnutie, alebo pôrod          |  |  |
| Genetika             | štúdium mechanizmu prenosu vlastností z rodičov na potomstvo                       |  |  |
| Histológia           | štúdium tkanív                                                                     |  |  |
| Molekulárna biológia | štúdium subbunkových štruktúr a funkcií                                            |  |  |
| Parazitológia        | štúdium parazitov, živočíchov žijúcich na úkor hostiteľov                          |  |  |
| Fyziológia           | štúdium funkcií a procesov v organizme, alebo jeho častiach                        |  |  |
| Systematika          | štúdium klasifikácie a evolučných vzťahov medzi organizmami a skupinami organizmov |  |  |



## Príklady špeciálnych zoologických vied

| Helmintológia    | štúdium červov       |
|------------------|----------------------|
| Entomológia      | štúdium hmyzu        |
| Koleopterológia  | štúdium<br>chrobákov |
| Lepidopterológia | štúdium motýľov      |
| Arachnológia     | štúdium pavúkov      |

| Batrachológia | štúdium<br>obojživelníkov |
|---------------|---------------------------|
| Herpetológia  | štúdium plazov            |
| Ichtyológia   | štúdium rýb               |
| Teriológia    | štúdium cicavcov          |
| Ornitológia   | štúdium vtákov            |

#### Zoológia a ...

#### • ... evolúcia

- na živočíchy v minulosti pôsobili rôzne faktory, ktoré ovplyvňovali ich históriu pôsobenie a zmeny týchto faktorov vyvolali evolučné procesy
- poznatky zoológie týkajúce sa pestrosti živočíšnych druhov, ich rozšírenia, morfológie, anatómie, či genetiky pomáhajú lepšie chápať a vysvetľovať proces evolúcie
- ... ekológia a problémy životného prostredia
  - poznanie vzťahov živočíchov a prostredia pomáha lepšie chápať evolúciu, morfológiu, anatómiu, či ontogenézu živočíchov
  - vplyv prostredia sa prejavuje v speciácii, či rozšírení jednotlivých druhov a vyšších taxonomických skupín na Zemi
  - poznanie základov ekológie je podmienkou pochopenia viacerých aspektov zoológie

## Zoologický systém a fylogenéza

- pokusy o usporiadanie organizmov do prehľadného a logického systému
- každý doposiaľ publikovaný systém živočíchov je založený na imaginárnych taxonomických kategóriách – taxónoch
  - vznikajú, za účelom vytvorenia prehľadného systému, členením jednotlivých fylogenetických línií na úseky
- príbuzenské vzťahy usporiadané do tzv. fylogenetického stromu sú schematickým vyjadrením fylogenetickej hypotézy
  - vyjadruje históriu štiepenia jednotlivých evolučných línií, vznikania a zanikania druhov, časovým priebehom evolučných zmien v rámci jednotlivých línií a vznik evolučných noviniek

## Fylogenetický strom



## Fylogenetický strom



Cannon, J.T. et al., 2016: Xenacoelomorpha is the sister group to Nephrozoa Nature 530, 89–93

(04 February 2016)



#### Taxón

- skupina organizmov, ktorá patrí do jednej fylogenetickej vetvy
- hierarchia vetiev vyjadruje príbuzenské vzťahy organizmov
- tak ako taxóny, konkrétne pomenovania skupín organizmov existujú tiež iba v abstraktnej rovine
  - názov mäkkýše znamená iba to, že všetky organizmy, ktoré takto pomenúvame, majú spoločného predka
- budeme pracovať s nasledovnými základnými (Linneovskými) taxonomickými kategóriami
- ríša Regnum;
- kmeň Phylum;
- trieda Classis;
- rad Ordo;
- čeľaď Familia;
- rod Genus;
- druh Species terminálny úsek fylogenetickej vetvy.



## Taxóny

- základné taxonomické kategórie boli neskôr dopĺňané ďalšími, stojacimi medzi úrovňami Linného sústavy
  - napr. medzi triedou Classis a čeľaďou Familia sú to:
     Subclassis, Infraclassis, Superlegion, Legion, Sublegion, Infralegion,
     Supercohorta, Cohorta, Magnordo, Superordo, Grandordo, Mirordo, Ordo,
     Subordo, Infraordo, Parvordo
  - ich úlohou je lepšie vystihnúť príbuzenské vzťahy, ktoré sú omnoho komplikovanejšie ako predpokladal Linné a mnoho jeho nasledovníkov
- Nové metódy a množstvo informácií poukazujú na neuveriteľnú zložitosť vzťahov a klasický Linného nomenklatúrny systém so svojimi úrovňami už aj tak dávno nestačí odrážať známe vzťahy vo fylogenetickom nomenklatúrnom systéme

#### Binomická nomenklatúra

- Musca domestica Linnaeus 1758
- bis = dva, dvojitý, nómen = meno, nómenclátúra = pomenovanie, zoznam mien zo slov nómen = meno a caláre = volať, menovať
- systém pomenovania druhov dvoma menami, z ktorých prvé označuje rod, druhé druh
- za nimi sa obvykle uvádza meno autora pomenovania (alebo jeho skratka)
- rodové aj druhové meno sa píše kurzívou
- binomickú nomenklatúru v taxonómii zaviedol roku 1753 Carl Linné v diele Species plantarum, jeho druhá práca Systema naturae je východzím dielom vedeckej zoologickej nomenklatúry
- jazykom vedeckej, teda aj zoologickej nomenklatúry je latinský jazyk

# Živočíchy

- čo sú živočíchy?
- aké definície poznáte?

#### Holozoa a Metazoa ...

- problém stanovenia hranice medzi tým čo ešte nie je živočích a tým,
   čo už živočích je
  - živočíchy mali svojho spoločného predka
  - ten predok mal však rad ďalších predkov
  - keby sme týchto predkov skúmali dostatočne dlho, dostali by sme sa k spoločnému predkovi celej tejto skupiny a húb
  - sú pre nás preto zaujímavé aj organizmy, ktoré nie sú živočíchy, ani huby, no majú bližšie k živočíchom, ako k hubám...
  - tie patria so živočíchmi (Metazoa) do skupiny Holozoa

#### Holozoa

#### Triedy

- Choanoflagellatea
- Corallochytrea
- Filasteria
- Ichthyosporea

a

Metazoa







## Živočíchy (Metazoa)

V minulosti boli živočíchy definované ekologicky.

- heterotrofné organizmy bez bunkovej steny, obvykle sa živiace prijímaním celých súst potravy.
- za živočíchy boli tiež považované aj mnohé jednobunkovce
  - tie v drvivej väčšine prípadov, nemajú s pravými živočíchmi nič spoločné a patria do rôznych iných fylogenetických skupín
- množstvo organizmov považovaných v minulosti za živočíchy, či rastliny nepatrí ani do jednej z ríš
  - pravdepodobne existuje až šesť veľkých skupín (ríše?) eukaryotických organizmov –
    Opisthokonta, Amoebozoa, Rhizaria, Excavata, Archaeplastida (=Plantae),
    Chromalveolata a ďalšie izolované skupiny, s ktorými si fylogenetika zatiaľ nevie
    poradiť

# Živočíchy

Metazoa, teda mnohobunkové Eukaryota, ktorých telo (nie kolónia!) je zložené z diploidných buniek, ktoré sú:

- morfologicky a funkčne rozdielne špecializované, prepojené a schopné:
  - vzájomného rozpoznávania sa,
  - adhézie,
  - komunikácie (chemická signalizácia),
  - udržiavania tvaru tela a orgánov
- prepojené aj medzibunkovou hmotou s vláknami kolagénu a rôznymi glykoproteínmi
- povrchové bunky tvoria dvojvrstvové (bazálna lamina a povrchová vrstva komunikujúca s okolitým prostredím) kontinuálne tkanivo bez mimobunkovej hmoty
- z pohľadu ontogenézy, proces vzniku haploidných buniek meióza, je u živočíchov obmedzená na vznik pohlavných buniek (gamét) – vajíčok a spermií
- počas embryogenézy sa u nich objavujú unikátne procesy (migrácie celých bunkových populácií a molekuly (transkripčné faktory, molekuly signálnych dráh) zabezpečujúce diferenciáciu

# Živočíchy

oko mozková řasa
rudimentální ucho
dolní čelist

žaberní oblouky
dutina hrudní
ocas
páteř

- Špecifiká:
  - Bunka;
  - Medzibunková hmota s kolagénom a glykoproteínmi;
  - Dvojvrstvové povrchové tkanivo bez mimobunkovej hmoty;
  - Meióza iba vznik pohlavných buniek;
  - Unikátne molekuly a procesy počas embryogenézy.











#### Bezchordáty

- bezchordáty ako také (taxón) v podstate neexistujú
- nepotvrdila sa totiž hypotéza, že organizmy bez chordy majú spoločného predka. V tejto učebnici budeme bezchordáty chápať ako všetky skupiny živočíchov okrem chordát



#### Bezchordáty

Všetky Metazoa okrem chordát

- Z pedagogického a praktického hľadiska sa budeme venovať a:
  - ostatným organizmom, ktoré sú im príbuzné (= Holozoa)
  - "Protozoám" jednobunkovým "živočíchom"



