Formulário (Primitivas)

Função	Primitiva
$u^r u', r \neq -1$	$\frac{u^{r+1}}{r+1}$
$\frac{u'}{u}$	$\ln u $
$u'e^u$	e^u
$u'a^u, a \in \mathbb{R}^+ \setminus \{1\}$	$\frac{a^u}{\ln a}$
$u'\cos u$	$\operatorname{sen} u$
$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	g u
$u'\csc^2 u$	$-\cot g u$
$u'\sec u$	$ \ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot u $
$\frac{u'}{\sqrt{1-u^2}}$	arcsen u
$\frac{u'}{1+u^2}$	$\operatorname{arctg} u$

Algumas fórmulas trigonométricas:

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

sen (x + y) = sen x cos y + cos x sen y

Formulário (Transformada de Laplace)

Formulario (Transformada de Laplace)	
Função	Transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a} , \ s > a$
$\operatorname{sen}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
f(t) + g(t)	$F(s) + G(s), \ s > s_f, s_g$
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s), s > s_f$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s), \ s > s_f$
$H_a(t)f(t-a)$ $(a>0)$	$e^{-as}F(s), s > s_f$
f(at) $(a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0),$
	$s > s_f, s_{f'}, \dots, s_{f^{(n-1)}}$
(f*g)(t)	$F(s)G(s), s > s_f, s_g$
$\int_0^t f(\tau) d\tau$	$\frac{1}{s}F(s), \ s > 0, \ s_f$

Notas:

- 1. F denota a transformada de Laplace da função f, $F(s) = \mathcal{L}\{f(t)\}(s), \ s > s_f$.
- 2. Para cada linha dos quadros acima, podem haver restrições adicionais a considerar para que a fórmula indicada nessa linha seja válida.