A. Definition for a Matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$

First Definition (Maximizing Variance)¹

The first principal component, defined by maximizing variance ($\mathbf{PC}_1^{\text{var}}$), is the unit vector \mathbf{w} that maximizes the sum of squared projections of the data points (\mathbf{x}_i) onto it. This can be expressed as:

$$\begin{aligned} \mathbf{PC}_{1}^{\text{var}} &= \underset{\|\mathbf{w} \in \mathbb{R}^{P}}{\text{arg max}} \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i})^{2} \\ &= \underset{\|\mathbf{w} \in \mathbb{R}^{P}}{\text{arg max}} \|\mathbf{X} \mathbf{w}\|_{2}^{2} \\ &= \underset{\|\mathbf{w} \in \mathbb{R}^{P}}{\text{arg max}} \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} \\ &= \underset{\|\mathbf{w}\|_{2}=1}{\text{we } \mathbb{R}^{P}} \end{aligned}$$

Note: The notation $||\mathbf{w}||=1$ typically implies the Euclidean norm, $||\mathbf{w}||_2=1$.

Second Definition (Minimizing Least Squares Error)

The first principal component, defined by minimizing the least squares reconstruction error ($\mathbf{PC}_1^{\mathrm{LS}}$), is the unit vector \mathbf{w} that minimizes the sum of squared distances between the data points (\mathbf{x}_i) and their projections onto the line defined by \mathbf{w} . This is given by:

$$\mathbf{PC}_{1}^{\mathrm{LS}} = \underset{\|\mathbf{w}\|_{n}=1}{\arg\min} \sum_{i=1}^{n} \operatorname{dist}(\mathbf{x}_{i}, \mathbf{w})^{2}$$

where:

$$dist(\mathbf{x}_i, \mathbf{w}) = \|\mathbf{x}_i - P_{\mathbf{w}}(\mathbf{x}_i)\|_2$$

and $P_{\mathbf{w}}(\mathbf{x}_i)$ is the orthonormal projection of the point \mathbf{x}_i onto the one-dimensional subspace spanned by the vector \mathbf{w} . Specifically, $P_{\mathbf{w}}(\mathbf{x}_i) = (\mathbf{w}^T \mathbf{x}_i) \mathbf{w}$ since $\|\mathbf{w}\|_2 = 1$.

Exercise. Assume that the eigenvalues of the matrix $\mathbf{X}^T\mathbf{X}$ satisfy $\lambda_1 > \lambda_2 > \cdots > \lambda_p \geq 0$. Show that \mathbf{PC}_1^{var} corresponds to \mathbf{v}_1 , the first column vector (eigenvector corresponding to λ_1) of \mathbf{U} in the spectral decomposition of $\mathbf{X}^T\mathbf{X}$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$$

(Where U is the orthogonal matrix whose columns are the eigenvectors \mathbf{v}_i , and $\boldsymbol{\Lambda}$ is the diagonal matrix of eigenvalues λ_i).

¹ The superscript '1' might refer to a footnote or citation in the original source document.