1.4 习题

1.4.1. 令 **3** 为任意布尔代数, $a, b, c \in B$, 证明:

$$-(-a + (-b) + c) + (-(-a + b)) + (-a) + c = 1.$$

- **1.4.2.** 在 Lingdenbaum 代数中 $\mathcal{B}(\emptyset)$ 中,如果 $[\alpha]$ 是原子,则对任意公式 β , $\vdash \alpha \to \beta$ 或者 $\vdash \alpha \to \neg \beta$ 。
- **1.4.3.** 对任意布尔代数 A, D, 定义它们的积 C 为:
 - 1. $C = A \times B$;
 - 2. $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$
 - 3. $(a_1,b_1)\cdot(a_2,b_2)=(a_1\cdot a_2,b_1\cdot b_2)$;
 - 4. -(a,b) = (-a,-b);
 - 5. $0 = (0,0), 1 = (1,1)_{\circ}$

证明 8 是一个布尔代数。

- **1.4.4.** 对任意布尔代数 \mathcal{B} ,任意 $a \in B$ 且 a > 0,令 $B \upharpoonright a = \{b \in B \mid b \leq a\}$ 。令 $\mathcal{B} \upharpoonright a$ 中的运算 $+,\cdot,0$ 保持与 \mathcal{B} 中一致,而 1 和 -b 分别为 a 和 $a \cdot (-b)$ 。
 - 1. 证明 $\mathcal{B} \upharpoonright a$ 是一个布尔代数;
 - 2. 对任意 $a \in B$, $\mathcal{B} \cong (\mathcal{B} \upharpoonright a) \times (\mathcal{B} \upharpoonright -a)$ 。
- **1.4.5.** 令 $h: A \to \mathcal{B}$ 为同态, $D \subseteq B$ 且 $\sum D$ 存在,称 h 保持 $\sum D$,如果 $\sum f[D]$ (在 \mathcal{B} 中)存在,并且 $f(\sum D) = \sum f[D]$ 。类似地可以定义保持 $\prod D$ 。证明: \mathcal{B} 上的超滤 U 保持 $\sum D$ 当且仅当 U 所确定的同态 $f: \mathcal{B} \to \{0,1\}$ 保持 $\sum D$ 。
- **1.4.6.** 令 \mathcal{B} 为布尔代数, $h: \mathcal{B} \to \mathcal{P}(\text{Ult}(\mathcal{B}))$ 为 Stone 映射。对任意 $b \in \mathcal{B}$,称 h(b) 为 $S(\mathcal{B})$ 的基本开集,如果集合 $X \subseteq \text{Ult}(\mathcal{B})$ 能表示成基本开集的并集,就称 X 为开集,开集的补集称为闭集。

- 1. 证明 h(d) 既是开集也是闭集, 称为开闭集。
- 2. 对任意 $U, V \in \text{Ult}(\mathcal{B})$,如果 $U \neq V$,则存在一个开闭集包含 U,但不包含 V。(或者相反,包含 U,不包含 V。)
- **1.4.7.** 如果 $C \subseteq \mathcal{P}(\text{Ult}(\mathcal{B}))$ 是开集的族,且 $\bigcup C = \text{Ult}(\mathcal{B})$,就称 X 是开覆盖。证明:如果 C 是开覆盖,则存在有穷的 $C_0 \subseteq C$, $\bigcup C_0 = \text{Ult}(\mathcal{B})$ 。
- **1.4.8.** 对任意布尔代数 \mathcal{B} , $D \subseteq B$ 并且 $\sum D$ 存在。证明:Stone 映射保持 $\sum D$ 当且仅当存在有穷的 $D_0 \subseteq D$, $\sum D = \sum D_0$ 。