CPE 345: Modeling and Simulation

Lecture 7

Today's topic

- Random Number Generation (chapter 7)
 - Properties of Random Numbers
 - Generating Pseudo-random Numbers
 - Techniques for Generating Random Numbers
 - Testing for Randomness

Properties of Random numbers

- What properties should random numbers satisfy?
- Uniformly distributed random numbers in (0,1)
 - A sequence of random numbers R_1 , R_2 , must have two important statistical properties:

Uniformity

– Each random number R_i is a sample drawn from an uniform distribution

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & ow \end{cases} \qquad E(X) = \frac{1}{2}$$

$$var(X) = \frac{1}{12}$$

Independence

- All samples $(R_i, i = 1, 2, ...)$ are independent

$$P(a \le R_i \le b) = \frac{1}{b-a}$$
 for any sample R_i , $a, b \in (0,1)$, $a \le b$

Important consequences

- If the interval (0,1) is divided into n classes, or subintervals of equal length, the number of observations in each interval is N/n; N = total number of observations
 - If n intervals of length $l_1, l_2, ..., l_n$; the number of observations in the interval i is N/l_i ($\sum_i l_i = 1$)
 - We have already used this property to generate arrivals and departures
- Observing a value in a particular interval is independent of the previous values drawn

Generating pseudo-random numbers

- Why pseudo-random?
 - Generating truly random numbers in a simulation is not possible
 - Natural processes generate truly random numbers
 - If random numbers are generated using a known method, then they can be replicated, so they are not truly random anymore
 - In practice: generate pseudo-random numbers (with uniform distribution) that satisfy the ideal properties of the random distribution.
 - Some errors/departure from randomness in generating pseudo random numbers
 - The generated numbers may not be uniformly distributed
 - The generated numbers may be discrete valued instead of continuous valued
 - The mean may be too high or too low
 - The variance may be too high or too low
 - There may be dependence between the generated numbers
 - Autocorrelation
 - Numbers successively higher or lower
 - Several numbers above the mean, then several numbers below the mean

Pseudo-random number generator routines

- The routine should pass all tests for departure from uniformity and independence – will follow shortly
- Some other requirements:
 - Speed usually very large number of random numbers should be generated in a typical simulation (hundreds of thousands)
 - Portability between machines and languages same results wherever it is executed
 - Long-cycle the numbers are repeated after a certain cycle length.
 - Repeatability You may want to run simulations in exactly the same conditions, or you may want to specifically choose different starting points
 - Seed selection

Techniques for generating random numbers

Linear Congruential Method

- Produces a sequence of integers $X_1, X_2, \ldots, X_{m-1}$, according to the following recursive relationship

$$X_0 = \text{seed}$$

$$X_{i+1} = (aX_i + c) \mod m, \ i = 0,1,2,... \quad \text{a = constant multiplier}$$

$$c = \text{increment}$$

$$m = \text{modulus}$$

- If c=0: multiplicative congruential method, otherwise, mixed congruential method
- The choice of the parameters drastically affects the statistical properties and the cycle length
- Variants of this technique used in the computer generation of random numbers (rand() functions)

Examples: ex. 7.1

Example 7.1: X0 = 27, a = 17, c = 43, m = 100

Х	Normalized X
27	0.27
2	0.2
77	0.77
52	0.52
27	0.27
2	0.02
77	0.77
52	0.52
27	0.27
2	0.02
77	0.77
52	0.52
27	0.27

Cycle length 4. Is this acceptable? What happens for different seed selection?

Example 7.1. Different seed selection

Cycle length 20

- Too small in both cases
- Depends on the choice of the seed

Χ	Normalized X
3	0.03
94	0.94
41	0.41
40	0.4
23	0.23
34	0.34
21	0.21
0	0
43	0.43
74	0.74
1	0.01
60	0.6
63	0.63
14	0.14
81	0.81
20	0.2
83	0.83
54	0.54
61	0.61
80	0.8
3	0.03
94	0.94

Choosing the parameters

- Some observations related to example 7.1
- Two more important properties
 - Maximum density
 - The numbers generated in example 7.1 are actually discrete, not continuous. The set of values

$$I = \{0, 1/m, 2/m, 3/m, \dots (m-1)/m\}$$

- The approximation for continuous is acceptable for m large
 - In practice, $m = 2^{31}$ -1 and $m=2^{48}$ are commonly used
- Maximum period
 - Maximal period can be achieved by proper choice of the parameters
 - For $m = 2^b$, and $c \neq 0$, the longest possible period is $P = m = 2^b$, achieved if c is relatively prime to m (the greatest common factor of c and m is 1), and a = 1+4k, k integer.

Maximum period – cont.

- For $m = 2^b$, and c = 0, the longest possible period is $P = m/4 = 2^{b-2}$, achieved if the seed X_0 is odd, and a = 3+8k or a = 5+8k, k=0,1, ...
- For m a prime number and c = 0, the longest possible period is P = m-1, achieved if a has the property that the smallest integer k s.t. a^k-1 is divisible by m is k = m-1.
- Study example 7.4 in the book. The chosen parameters are actually used in generators:

$$a = 7^5 = 16807$$

 $m = 2^{31} - 1 = 2,147,483,647$ (prime number)
 $P = m - 1$

Are these numbers sufficiently large?

Combining Linear Congruential Generators

- The period length for example 7.4. seems extremely large
- With PCs capable of hundreds of MIPS, simulations are getting bigger and 10⁹ cycle period is too short.
- Solution: choose multiple generators and combine them
 - If $X_{i,1}, X_{i,2}, \ldots, X_{i,k}$ are the *i-th* output for different generators, where the *j*-th generator has prime modulus m_j , and a_j is chosen such that $P_i = m_i$ -1

such that
$$P_j = m_{j-1}$$

$$X_i = \left(\sum_{j=1}^k (-1)^{j-1} X_{i,j}\right) \mod(m_1 - 1)$$

$$P = \frac{(m_1 - 1)(m_2 - 1)...(m_k - 1)}{2^{k-1}}$$

$$R_i = \begin{cases} \frac{X_i}{m_1}, & X_i > 0 \\ \frac{m_1 - 1}{m_1}, & X_i = 0 \end{cases}$$

Tests for Random Numbers

Uniformity tests

- Frequency test Kolmogorov-Smirnov or χ^2 (chi-square) tests
 - Compare the distribution to the uniform distribution

Independence tests

- Runs test looks for patterns of increasing/decreasing values
- Autocorrelation test tests for correlation between numbers
- Gap test counts the number of digits that appear between the repetition of a particular digit, than uses the Kolmogorov-Smirnov test to compare with the expected size of gaps
- Poker test Treats numbers grouped together as a poker hand.
 The hands obtained are compared to what is expected using a chi-square test.

Hypothesis Testing

- Uniformity test
 - H0 = numbers are uniformly distributed
 - H1 = numbers are not uniformly distributed
 - Failure to reject the null hypothesis means that no evidence of nonuniformity has been found on the basis of this test. It does not mean that further testing is unnecessary.
- Independence test
 - H0 = numbers are independently generated
 - H1 = numbers are not independently generated
 - Failure to reject the null hypothesis means that no evidence of nonindependence has been found on the basis of this test. It does not mean that further testing is unnecessary.
- For each test, a level of significance must be stated

$$\alpha = P(\text{reject } H0 | H0 \text{ true})$$

– frequently, α is set to 0.01 or 0.05 (1%, 5% failure by chance)

Frequency Tests

- Kolmogorov-Smirnov test:
 - Compare empirical CDF (for N samples) with the expected CDF

For a given α and N random samples, find the critical value from Table A.8

Frequency Test – cont.

- Critical values for large number of samples:
 - For N>35:

D _{0.10}	D _{0.05}	D _{0.01}
$1.22/\sqrt{N}$	$1.36/\sqrt{N}$	$1.63/\sqrt{N}$

How to compute empirical CDF

$$S_N(x) = \frac{\text{number of } R_1, R_2, ..., R_N \text{ which are } \leq x}{N}$$

Kolmogorov-Smirnov test: step by step

 Rank the data from smallest to largest. R(i) = the smallest i-th observation

$$R(1) \le R(2) \le \dots \le R(N)$$
• Compute
$$D^{+} = \max_{1 \le i \le N} \left\{ \frac{i}{N} - R(i) \right\}$$

$$D^{-} = \max_{1 \le i \le N} \left\{ R(i) - \frac{i-1}{N} \right\}$$

- Compute $D = \max(D^+, D^-)$
- Determine a critical value D_{α} from Table A.8 for the specified significance level (α) and the given sample size N
- If D ≥ D_α the null hypothesis is rejected;
- If D ≤ D_α no difference is detected between the true distribution and the uniform distribution

Example (7.6)

- Example (7.6) Kolmogorov Smirnov Test
 - Five numbers are generated: 0.44; 0.81; 0.14; 0.05; 0.93
 - Significance level α = 0.05

R(i)	0.05	0.14	0.44	0.81	0.93
i/N	0.20	0.40	0.60	0.80	1.00
i/N-R(i)	0.15	0.26	0.16	-	0.07
R(i)-(i-1)/N	0.05	1	0.04	0.21	0.13

 $D_{0.05} = 0.565 \Rightarrow$ The distribution cannot be distinguished from uniform

Chi-square test

Uses the statistic

$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$
 Chi-square distributed with n-1 degrees of freedom

- $-O_i$ = the observed number in the *i*-th class
- $-E_i$ = the expected number in the *i*-th class
- n =the number of classes
- Compare with critical value $\chi^2_{\alpha,n-1}$ (critical value table)
 - If $\chi_0^2 > \chi_{\alpha,n-1}^2$, reject null hypothesis
 - If $\chi_0^2 \le \chi_{\alpha.n-1}^2$, indistinguishable from the uniform distribution
- For equally spaced classes and N samples $E_i = \frac{N}{n}$
- The test is valid for large number of samples N ≥ 50
 - Recommended that N, and n are chosen such that each $E_i \ge 5$

Independence Tests

 Sometimes the generators pass the Kolmogorov-Smirnov and chi-square tests for uniformity, but the numbers generated are not independent → need independence tests

Run Tests

- Run = succession of similar events
- Example: coin flipping: HTTHHTTTHT
 - Six runs: length 1, 2, 2, 3, 1, 1
- For sequence of random numbers, we can define up runs and down runs (successive numbers are increasing or decreasing) -0.87, +0.15, +0.23, +0.45, -0.69, -0.32, -0.30, +0.19, 0.24.

Are these reasonable generators?

Runs test

- The number of runs
 - a = total number of runs in a truly random sequence
 - For N > 20, distribution of a assumed Gaussian (normal) with

$$\mu_a = \frac{2N - 1}{3}$$

$$\sigma_a^2 = \frac{16N - 29}{90}$$

Standardized normal test statistic: test for independence

$$\sigma_a$$
 Z_0 Z_0 Z_0 Fail to reject $\zeta_{\alpha/2}$

 $Z_0 = \frac{a - \mu_a}{\sigma_a}$ \Rightarrow Gaussian with zero mean and unit variance $Z_0 \sim N(0,1)$

Find from Gaussian distribution tables For significance $\alpha/2$ 21

Determine critical values for significance $\alpha/2$

• Significance level $\alpha = P(\text{reject } H0 \mid H0 \text{ true})$

$$\alpha = P(Z_0 \ge \zeta_{\alpha/2}) + P(Z_0 \le -\zeta_{\alpha/2}) = 2P(Z_0 \ge \zeta_{\alpha/2})$$

$$\frac{\alpha}{2} = P(Z_0 \ge \zeta_{\alpha/2}) = 1 - \phi(\zeta_{\alpha/2}) \Rightarrow \text{determine } \zeta_{\alpha/2}$$

tabulated

Runs above and below the mean

- For example, if mean is 0.5
- 0.1 0.2 0.22 0.14 0.33 0.18 0.63 0.58 0.53 0.76 0.9 0.82 0.27 ...
- In terms of runs up and down:

If we define the runs as above and below the mean:

- Same test can be run with the runs defined as in (**)
 - n1 = number above of mean
 - n2 = number below the mean
 - b = number of runs Gaussian r.v.

$$\mu_b = \frac{2n_1n_2}{N} + \frac{1}{2}$$

$$\sigma_b^2 = \frac{2n_1n_2(2n_1n_2 - N)}{N^2(N-1)}$$

Auto-correlation test

- Computation of the auto-correlation between every m (the lag) numbers starting with i
 - autocorrelation ρ_{im} -> between R_i , R_{i+m} , R_{i+2m} , $R_{i+(M+1)m}$, M is the largest value s.t. $i+(M+1)m \le N$
- Nonzero autocorrelation → lack of independence
 - H0: $\rho_{im} = 0$
 - H1: $\rho_{im} \neq 0$
- For large values of M, the distribution of the estimator $\hat{\rho}_{i,m}$ is approx. normal (Gaussian).

The statistic $z_0 = \frac{\hat{\rho}_{i,m}}{\sigma_{\hat{\rho}_{i,m}}}$ is normally distributed with mean 0 and unit variance, for large M

Auto-correlation test: step-by-step

Compute

$$\hat{\rho}_{i,m} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\sigma_{\hat{\rho}_{i,m}} = \frac{\sqrt{13M+7}}{12(M+1)}$$
[Schmidt & Taylor – 1970]

Compute statistic

$$z_0 = \frac{\hat{\rho}_{i,m}}{\sigma_{\hat{\rho}_{i,m}}}$$

Do not reject the null hypothesis (independence) if

$$-\zeta_{\alpha/2} \le z_0 \le \zeta_{\alpha/2}$$

 α = level of significance

Gap test

- Gap = interval between the recurrences of the same digit
- Frequency of the gaps
 - The observed frequencies of various gap sizes compared to the theoretical frequency – Kolmogorov-Smirnov test
 - Theoretical frequency distribution

$$P(gap \le x) = F(x) = 0.1 \sum_{n=0}^{x} (0.9)^n$$

Note: Probability of occurrence for certain digit is 0.1.

Poker test

- Frequency with which certain digits are repeated in a series of numbers
- Example
 - 0.255, 0.577, 0.414, 0.828, 0.909, 0.303, 0.001
- Pair of like digits generated
- For three digits: three possibilities
 - All different
 - All equal
 - One pair of like digits

Given a fixed digit, this digit different
$$P(\text{exactly one pair}) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} (0.1)(0.9) = 0.27$$
no. of possibilities Given a fixed digit, this digit is the same no. of possibilities

Poker test: cont.

P(three different digits) = P(second different from first)P(third different from first and second) = = (0.9)(0.8) = 0.72

$$P(\text{three like digits}) = P(\text{second digit same as first})P(\text{third digit same as first and second}) = = (0.1)(0.1) = 0.01$$

Poker test:

Measure observed frequency for the three cases Compute expected frequency E_i (probabilities*1000) Perform chi-square test

Example 7.14.

 $47.65 > \chi^2_{0.05,2} = 5.99$

Combination 1	Obs. Freq.	Expected Freq.	(Oi-Ei)2/Ei
3 different digits	680	720	2.22
3 like digits	31	10	44.10
Exactly 1 pair	289	270	1.33

Homework

Problem 7 page 286, chapter 7