Solving PDE/ODE using neural networks by converting the differential equations into an aptimitation problem. Let's take a symphe differential equation $\frac{d^2 e}{dx^2} + \frac{ady}{dx} = 5$ Ps. C. Assumption! the function un is a newal network NN(x), which tekes xas input and tratio so u sovig Universal approximation theorem: Regardless of the PDE/ODE we can always approximate the solution ucx) yp a nevel network. let's corrider a simple use, one neuron and

a = T(w,x) $w_2 \sigma'(w,x) \omega$ =) u = wz \(\tau_1 \times_1 \) $\omega_2 \sigma''(\omega, x) \omega_i^2$ dru It is possible to compute all deciratives of u with respect to x. It you have more neurous and more hidden layers, the same principle holds. This is known as back propo gotion. It û = NNCD we con tind u'x , n'(x). udon. from here, & proposed the problem: Minimize \[\frac{d^2 \darksquare \langle ad\langle - \boundsquare \langle \langle \frac{d^2 \darksquare \langle ad\langle - \boundsquare \langle \langle \frac{d^2 \darksquare \langle ad\langle - \boundsquare \langle \l How in while the boundary on ditron? Minimire of der + adil - b] + [hio) no] + [26, -4,]

this is Known as the loss function. The loss
function = cost function + MSC 17C. PDELODE
and then, the Los function is minimized.
Example:
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
Burger's $u_t + uu_x - (0.01/\pi)u_{xx} = 0, x \in [-1,1], t \in [0,1],$ $u(0,x) = -\sin(\pi x), \Rightarrow 1 - C$ $u(t,-1) = u(t,1) = 0. \Rightarrow 0. C$
the postulate u(x,t) = NN(x,t) output X=-1 X=-1
NN. u
t=0 t=T t
Now, we can detune the loss function
û = NN (Kt)

