

毕业设计任务书

课题名称	直流电机速度控制系统设计与应用	
_		

课题来源_	企业生产实际

二级学	学院(系)	自动化学院
专	业	应用电子技术
班	级	电子 18
姓	名	
学	号	
指导教		

起讫时间: <u>2020</u>年 <u>11</u>月 <u>30</u>日~<u>2021</u>年 <u>01</u>月 <u>24</u>日 (共<u>8</u>周)

1、设计依据

小功率直流电机是一种传统的电机类型,在生产生活中使用广泛。如日常生活中使用的自动收衣服架的执行结构、各种电动玩具、微型水泵等。

在社会生活实际过程中,随着各种需求的出现,生产设备、生活用具不断出现新的功能。 其中,很多产品的新功能,应用了一些电机,特别是简易的直流电机,如饮水机、豆芽机、 花草滴灌设备、养鱼设备、家居用品等。产品需求旺盛,应用广泛。

2、任务要求

本课题是进一步地巩固前期课程,以有刷或无刷直流电机作为载体,设计一个电机速度 闭环控制系统, 电机最大工作电压 12V, 电流 1A。

主要内容:

- 1)、制作硬件测试平台; 2)、完成 PCB 设计工作; 3)、电机驱动部分不允许使用集成模块,仅可使用分立元件。
- 4)、设计控制程序,实现电机 0~360 度范围内任意角度设定的闭环控制,稳态误差±5度, 必须使用实验数据绘制相应的曲线,说明控制性能;
- 5)、设计控制程序,实现电机 150~250rpm 范围内跟随 200+50sin(2*PI*t/1000)速度信 号的闭环跟踪控制,稳态误差±30rpm,必须测量实验数据绘制相应的曲线,说明控制性能。

3、毕业设计进度计划

起讫日期	工作内容	备注
第一周	课题内容分析,资料收集。	收集相应的知识模块资 料或相类似的方案比较。
第二周	课题不同方案的审核比较,最终确立相应的方案。	必须从多个方案中,根据 难易程度,经济性,维护 性、自身实际情况等方面 来确定。
第三周	系统核心部分实现分析、并进行原理图绘制。	因要求不同,核心部分也 会有所不同。核心部分可 以是控制单元、显示设定 单元、通讯单元、电机驱 动等。
第四周	设计方案。	软硬件调试、程序模拟、 不同控制模式的控制策 略测试等。
第五周	PCB 设计、程序接口调试,与其它单元程序进行测试。	联调应根据方案不同,可 以包含硬件系统的联调 和软件系统的联调。
第六周	系统联调。	本阶段可能会检测出系统的不稳定性,可能还会导致部分重新设计才能达到设计参数。
第七周	系统改进、完善,资料整理、论文撰写。	按要求准备资料答辩。 本着执着、负责任的态 度。写出能够反映毕业设
第八周	论文答辩	计期间所完成的任务和 水平。