Numerical Optimization, 2020 Fall Homework 4

Due on 14:59, Oct. 15, 2020

- 1. 请按要求写出下列线性规划问题对应的对偶问题.
- (1) 请参考 Lecture 5 提供的原-对偶表格法, 写出如下问题对应的对偶问题并使用**图解法**求解. [15pts]

min
$$12x_1 + 8x_2 + 16x_3 + 12x_4$$

s.t. $-2x_1 - x_2 - 4x_3 \le -2$
 $-2x_1 - 2x_2 - 4x_4 \le -3$
 $x_i \ge 0, \quad i = 1, \dots, 4.$ (1)

解:

请使用 Lagrange 方法写出如下问题对应的对偶问题. [10pts]

min
$$x_1 - x_2$$

s.t. $2x_1 + 3x_2 - x_3 + x_4 \le 0$
 $3x_1 + x_2 + 4x_3 - 2x_4 \ge 3$
 $-x_1 - x_2 + 2x_3 + x_4 = 6$
 $x_1 \le 0$
 $x_2, x_3 \ge 0$. (2)

解:

(2) L(x, x) = x1-x2+ x10x1+3x2-x5+x4,	- /2(3X1+951+95-794-3) +78(-91-96+27X4-96) +M191-M292 -M3	X3 JUJU,MI,MIJM3ZD
= (H2A-372-A3+M1)X1+(-1-	(31-32-33-14)1/2+(-21-4)2+223-143)1/(3+(21+22+13)1/4+3?	12-673
max 372-673	max 3λ2-6λ8	
[1+271-3/2-78+1M1=0	[+2\lambda_1-3\lambda\lambda_3\le 0	
S.t1+3/1-/2-/2-M2-20 -71-4741/2-M3-0	s.t. / -1+371-72-73 70	
/-71-472+273-M3=0	⇒ ->1-4x2+12s ≥0	
X+172+78=0	λ1+2/2+/β=20	
λι 70	کاله کاله	
bed		

2. 考虑如下的两阶段法中第一阶段的辅助问题

$$\min_{\substack{\boldsymbol{x} \in \mathbb{R}^n \\ \boldsymbol{y} \in \mathbb{R}^m}} \quad \sum_{i=1}^m y_i \\
\text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b} \\
\boldsymbol{x} \ge \boldsymbol{0}, \boldsymbol{y} \ge \boldsymbol{0}$$
(3)

其中 $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{c} \in \mathbb{R}^n$ 和 $\mathbf{b} \in \mathbb{R}^m$ 给定.

(1) 写出问题 (3) 的对偶问题. [15pts] 解:

2.(1) max
$$B\lambda$$

S.t. $\lambda^{T}[AI]_{mx(Hm)} \leq \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} n$

(2) 对于上述问题 (1) 中得到的对偶问题, 请问它有最优解吗? 请给出充分的理由. [15pts]

解: 有最优解

因为原问题必有基本可行解 $(0,...0,b_1,....b_m)_{1*(n+m)}$,且基本可行解存在则存在一个基本可行解为最 优解;则根据强对偶定理,原问题可行,则对偶问题可行,且最优值相等,取得该最优值得 λ^* 即为最 优解

3. 如图 1 示. 请解释: 为什么该定理成立? (提示: 利用强对偶定理.) [15pts]

解:

取 $\lambda^* = (C_B^T B^{-1})^T$ 其中 B 为最有基本可行解对应的基

 $(\lambda^*)^T b = (C_B^T B^{-1}) b = C_B^T (B^{-1} b) = C_B^T x^*$

所以 λ^* 是对偶问题的最优解

4. 如图 2 示. 请解释: 如果初始单纯型表格含有单位阵, 为什么转轴完成后对应的最下方的位置是最优 乘子? (注意: 回答需要针对一般的线性规划问题转轴, 不能仅仅解释给出的例子.) [15pts] 解:

定理. 设标准形线性规划问题有最优解 x^* , B 是最优基本可行解对应的基,则

$$\lambda^* = (c_B^{\mathrm{T}} B^{-1})^T$$

是其对偶问题的最优解.

图 1: Lecture 5 第 11 页给出的定理.

5. 证明: 线性规划问题求解等价于求解一个线性可行性问题.(<mark>提示: 请参考 Lecture 5 第 14 页.</mark>) [15pts] 解:

5. 盾咆题 minc ^T X	对偶问题 max b ^{Ty} max b ^{Ty}	
AX=b	ATUSC => ATUSC	
X70	S20	
"三" 结例题枯暴优解,则	据据强对据定理可得 5岁=7次在火-2代别6般从从成主用时发-84*	
:.新胞 A%-b		
ATO+S=C		
b7g=c7x		
(20,520 有解 公	x*, y=y*, s=c-0 ⁷ y*	
"仁"若新问题所,则的	解满生1项之处,由强对假定理成2处,19年的11万的题及数据的图	影解
因此排除问题是否在最优的	足術、本新月類是否例行	

	$oldsymbol{x_1}$	\boldsymbol{x}	\mathbf{a}	3	x_4	x_5	, .	$B^{-1}b$		
	2	2	2	1	1	0)	4		原问题
	1		$\overline{2}$	2	0	1		6		最优解
$m{r^{ ext{T}}}$	– 1	_	4 –	3	0	0)	0		$x_1^*=0$
										$x_2^{ar{*}}=1$
	x_1	x_2	x_3	\boldsymbol{x}	4	x_5	\boldsymbol{B}	^{-1}b		$x_3^*=2$
	1	1	$\frac{1}{2}$		$\frac{1}{2}$	0		2		
	-1	0	1	<u> </u>	1	1		2		→ 1 /m → px
r^{T}	3	0	-1	:	2	0		8		对偶问题 最优解
						<u> </u>		$b^{-1}b$		
		x_2	x_3	x_4		x_5	D	<u> </u>		$\lambda_1^* = -1$
	$\frac{3}{2}$	1	0	1	_	$-\frac{1}{2}$		1		$\lambda_2^* = -1$
	-1	0	1	-1		1		2		2
$m{r}^{ ext{T}}$	2	0	0	1		1		10		
				·					why?	
数值最优化				线性规	见划				ShanghaiTech-S	sist-cs 13

图 2: Lecture 5 第 13 页给出的单纯型表示例.