Wherever the art of medicine is loved, there is also a love of humanity.

Healthcare Presentation

Presented By:
Ashish Chauhan

Welcome everyone

Today, we're going to explore how to manage healthcare effectively, not just from a clinical perspective, but from a systems, administrative, and human centered viewpoint. Whether you're a healthcare provider, administrator, policymaker, or just curious, this presentation will give you a clear picture of key strategies and practices that lead to a strong healthcare system.

Understanding the Healthcare Ecosystem

First, let's understand the ecosystem. Healthcare is more than hospitals and doctors. It includes public health agencies, insurance providers, pharmaceutical companies, technology systems, and most importantly patients. Effective management requires aligning all these parts to deliver care that is accessible, affordable, and high-quality.

Business Problem Healthcare Management

The healthcare industry faces several challenges that directly impact patient care, operational efficiency, and cost management.

Planning in Healthcare Strategic

Today, we're going to explore how to manage healthcare effectively, not just from a clinical perspective, but from a systems, administrative, and human centered viewpoint. Whether you're a healthcare provider, administrator, policymaker, or just curious, this presentation will give you a clear picture of key strategies and practices that lead to a strong healthcare system.

Healthcare Dataset

About this file

- This dataset consists of 10,000 records, each representing a synthetic patient healthcare record.
- It includes various attributes, such as patient demographics, medical conditions, admission details, and more.

• The dataset is intended for educational and non-commercial use. It is entirely

synthetic and does not contain real patient data.

	15 columns	
<u>A</u>	String	10
#	Integer	2
[]	DateTime	2
	Other	1

Case Study 1: Common Conditions in Elderly Patients

Case Study 2: High-Billing Medical Conditions

Case Study 3: Top Performing Doctors

Case Study 4: Average Hospital Billing

Case Study 5: Emergency Care Leaders

Case Study 6: Insurance Billing Analysis

Case Study 7: Condition-Wise Healthcare Spending

Case Study 8: Diabetes Medication Trends

Case Study 9: Medication Patterns by Demographics

Case Study 10: Hospital Stay Duration Analysis

Case Study 1: Common Conditions in Elderly Patients

Objective: Identify the most prevalent health issues in patients aged 60 and above.

SELECT c.condition_name, COUNT(*) AS total_cases

FROM Admissions a

JOIN Patients p ON a.patient_id = p.patient_id

JOIN Conditions c ON a.condition_id = c.condition_id

WHERE p.age >= 60

GROUP BY c.condition_name

ORDER BY total_cases DESC

LIMIT 1;

Impact: Enables targeted elderly care programs and prioritization of chronic disease management.

Case Study 2: High-Billing Medical Conditions

Objective: Determine which condition has the highest average billing.

SELECT c.condition_name, ROUND(AVG(a.billing_amount),

2) AS avg_billing

FROM Admissions a

JOIN Conditions c ON a.condition_id = c.condition_id

GROUP BY c.condition_name

ORDER BY avg_billing DESC

LIMIT 1;

· Impact: Helps identify cost-heavy diseases and enables insurance companies to adjust coverage strategies.

Case Study 3: Top Performing Doctors

Objective: Find doctors with the highest patient count.

SELECT d.name AS doctor_name, COUNT(*) AS total_patients
FROM Admissions a

JOIN Doctors d ON a.doctor_id = d.doctor_id

GROUP BY d.name

ORDER BY total_patients DESC

LIMIT 5;

Result Grid		Filter Rows:	
	Doctor	ttl_patient_cnt	
١	Michael Smith	27	
	Robert Smith	22	
	John Smith	22	
	James Smith	20	
	Michael Johnson	20	

Impact: Aids in recognizing efficient doctors and identifying staff for mentorship roles or promotions.

Case Study 4: Average Hospital Billing

Objective: Understand billing trends across hospitals.

SELECT h.name AS hospital_name,

ROUND(AVG(a.billing_amount), 2) AS avg_billing

FROM Admissions a

JOIN Hospitals h ON a.hospital_id = h.hospital_id

GROUP BY h.name

ORDER BY avg_billing DESC;

	Hospital	avg_billing
r	Hernandez-Morton	52373.03
	Walker-Garcia	52170.04
	Ruiz-Anthony	52154.24
	George-Gonzalez	52102.24
	Rocha-Carter	52092.67
	Briggs Walker Martinez, and	52024.73

Output

Impact: Assists in benchmarking hospital costs and finding outliers for operational review.

Case Study 5: Emergency Care Leaders

Objective: Identify hospitals handling the most emergency cases

SELECT h.name AS hospital_name, COUNT(*) AS emergency_admissions

FROM Admissions a

JOIN Hospitals h ON a.hospital_id = h.hospital_id

WHERE a.admission_type = 'Emergency'

GROUP BY h.name

ORDER BY emergency_admissions DESC

LIMIT 1;

Impact: Informs resource allocation and emergency infrastructure improvements.

Case Study 6: Insurance Billing Analysis

Objective: Compare average billing amounts across insurance providers.

SELECT ip.provider_name, ROUND(AVG(a.billing_amount),

2) AS avg_billing

FROM Admissions a

JOIN Insurance_Providers ip ON a.provider_id =

ip.provider_id

GROUP BY ip.provider_name

ORDER BY avg_billing DESC;

	Insurance Provider	avg_billings
١	UnitedHealthcare	25389.17
	Cigna	25525.77
	Aetna	25553.29
	Blue Cross	25613.01
	Medicare	25615.99

Output

Impact: Useful for financial planning and negotiating better rates with insurers.

Case Study 7: Condition-Wise Healthcare Spending

Objective: Identify the most expensive condition in terms of total healthcare cost.

SELECT c.condition_name, ROUND(SUM(a.billing_amount),

2) AS total_spending

FROM Admissions a

JOIN Conditions c ON a.condition_id = c.condition_id

GROUP BY c.condition_name

ORDER BY total_spending DESC

LIMIT 1;

	Condition_name	expensive_condition
•	Diabetes	238539725.49
	Obesity	238214920.69
	Arthritis	237329120.23
	Hypertension	235720650.31
	Asthma	235459765.36
	Cancer	232167861.31

Impact: Supports focused cost-reduction strategies for high-impact conditions.

Case Study 8: Diabetes Medication Trends

Objective: List the top 3 medications prescribed to diabetic patients

SELECT a.medication, COUNT(*) AS count

FROM Admissions a

JOIN Conditions c ON a.condition_id = c.condition_id

WHERE c.condition_name = 'Diabetes'

GROUP BY a.medication

ORDER BY count DESC

LIMIT 3;

13	Result Grid	47
	Medication	coun
Þ	Lipitor	1893
	Penicillin	1881
	Ibuprofen	1861

Output

Impact: Aids pharmacy inventory management and clinical decision-making

Case Study 9: Medication Patterns by Demographics

Objective: Analyze medication trends by gender and age group.

SELECT p.gender, a.medication, COUNT(*) AS count FROM Admissions a JOIN Patients p ON a.patient_id = p.patient_id GROUP BY p.gender, a.medication ORDER BY p.gender, count DESC;

SELECT

CASE

WHEN p.age < 30 THEN 'Under 30'
WHEN p.age BETWEEN 30 AND 59 THEN '30-59'

ELSE '60 and above'

END AS age_group,

a.medication,

COUNT(*) AS count

FROM Admissions a

JOIN Patients p ON a.patient_id = p.patient_id

GROUP BY age_group, a.medication ORDER BY age_group, count DESC;

Output

Filter Rows:

Result Grid

Output

	age_group	Medication	count
١	30-59	Paracetamol	4996
	30-59	Lipitor	4961
	30-59	Penicillin	4922
	30-59	Ibuprofen	4908
	30-59	Aspirin	4872
	60 and above	Aspirin	4338
-	II on		

.

Impact: Aids pharmacy inventory management and clinical decision-making

Case Study 10: Hospital Stay Duration Analysis

Objective: Find average length of stay per condition.

SELECT

c.condition_name,

ROUND(AVG(DATEDIFF(a.discharge_date,

a.admission_date)), 2) AS avg_stay_days

FROM Admissions a

JOIN Conditions c ON a.condition_id = c.condition_id

GROUP BY c.condition_name

ORDER BY avg_stay_days DESC;

	Condition_name	avg_stay_days
Þ	Asthma	15.70
	Arthritis	15.52
	Cancer	15.50
	Obesity	15.46
	Hypertension	15.46
	Diabetes	15.42

Impact: Helps optimize patient discharge processes and reduce hospital overcrowding

Summary and Call to Action

This project demonstrates how MySQL-driven insights can improve patient care, streamline hospital operations, and manage healthcare costs effectively. By leveraging data, healthcare providers can make smarter, evidence-based decisions. It's time to turn these insights into action for a more efficient and patient-centered healthcare system.

Healthcare Presentation

Presented By:
Ashish Chauhan

