CCDSTRU	Evereice		
CCDSIRU	Exercise	//-	

Date: _____

Names: ____

Section: ___

final answer

A . Sequences

1. Given that $a_2 = 6$ and $a_6 = 96$ are terms of a geometric sequence, find a_4 .

Given that $u_2 = 0$ and $u_6 = 30$ are terms of a geometric sequence, and u_4 .

2. Given that $a_{10} = 78$ and $a_{25} = 198$ are terms of an arithmetic sequence, find a_n .

3. **6, 10, 16, 24,...** Find the explicit formula for a_n , where $n \geq 1$.

4. $\frac{-2}{5}, \frac{1}{10}, \frac{4}{15}, \frac{7}{20}, \dots$ Find a_n , where $n \ge 1$.

5. $5, 8, 17, 44, 125, \ldots$ Find the recurrence formula for a_n , where $n \geq 1$.

B . **Sums.** Show the first few steps (as indicated below) and the final answer in evaluating the given summation. Final answers must be in its simplest whole or rational number, or expression.

 $\sum_{n=m}^{10} 15m^3 = \underbrace{ first \ step}_{first \ step}$ $= \underbrace{ 2^{nd} \ step}_{final \ answer}$

 $\sum_{k=0}^{2n+2} (3k+2n) = \underbrace{\sum_{first \ step}}_{first \ step}$ $= \underbrace{\sum_{2^{nd} \ step}}_{3^{rd} \ step}$ \vdots

	$\sum_{i=1}^{n} (i+2)^2$
= first ste	$\sum_{j=11}^{n}(j+2)^{2}=$
=	=
2^{nd} ste	_
=	=
3^{rd} ste	_
_	=
$oldsymbol{4^{th}}$ ste	
:	:
= final answe	=