#### STAT 431 — Applied Bayesian Analysis — Course Notes

# Bayesian Analysis Overview

Fall 2022

### Main Idea of Bayesian Analysis



### **Data Notation**

After we observe the data, we regard them as fixed:

$$y$$
 (or just  $y$  if univariate)

Before we observe the data, we regard them as random:

$$Y$$
 (or just  $Y$  if univariate)

For example, the data could represent a sample of n values:

after observing: 
$$\boldsymbol{y} = (y_1, \dots, y_n)$$

before observing: 
$$\mathbf{Y} = (Y_1, \dots, Y_n)$$

### Parametric Models

Before observing the data, we may know only something about their distribution, based on some generating random process.

A parametric **model** for random data Y is a collection of possible distributions for Y, indexed by a **parameter**  $\theta$  (or just  $\theta$ , if univariate).

We don't know the "actual" value of  $\theta$ .

In the frequentist (classical) perspective,  $\theta$  is fixed.

Bayesians can regard  $\theta$  as random.

#### Model Notation

Bayesians regard the model as the set of conditional distributions for  $oldsymbol{Y}$  given  $oldsymbol{ heta}$  and may write

$$Y \mid \boldsymbol{\theta} \sim \mathcal{M}(\boldsymbol{\theta})$$

where  $\mathcal{M}$  specifies the data model.

We assume each such conditional distribution has a density (PMF or PDF), denoted

$$f(y \mid \theta)$$
 (or  $f(Y \mid \theta)$  in BSM)

For example, if  $Y=(Y_1,\ldots,Y_n)$  is known to be a normal (Gaussian) sample with unknown mean  $\mu$  and unknown variance  $\sigma^2$ , then

$$\boldsymbol{\theta} = (\mu, \sigma^2)$$

and we write

$$Y_i \mid \mu, \sigma^2 \sim iid \text{ Normal}(\mu, \sigma^2)$$

SO

$$f(\boldsymbol{y} \mid \mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \mu)^2}{2\sigma^2}\right)$$

#### Likelihood

After observing the data, we can "plug them in" to the density

$$f(\boldsymbol{y} \mid \boldsymbol{\theta})$$

and call the resulting function of  $\theta$  the **likelihood**.

As we will see, a likelihood need be specified only up to proportionality in  $\theta$ .

Likelihood can be used in non-Bayesian contexts, but we will use it as an ingredient in Bayes' rule.

#### **Prior Notation**

If  $\theta$  has a marginal distribution (as a Bayesian can assume), it is called the **prior distribution**.

If  $\theta$  has a marginal density (usually a PDF), it is the **prior density**, denoted in BSM as

$$\pi(\boldsymbol{\theta})$$

The prior is intended to represent our uncertainty about the value of  $\theta$  before seeing the data.

-

### Posterior Notation

The conditional distribution of  $oldsymbol{ heta}$  given  $oldsymbol{Y}=oldsymbol{y}$  is the **posterior distribution**.

It represents our uncertainty about the value of  $\theta$  after seeing the data.

The posterior distribution can have a **posterior density**, denoted

$$p(\boldsymbol{\theta} \mid \boldsymbol{y})$$
 (or  $p(\boldsymbol{\theta} \mid \boldsymbol{Y})$  in BSM)

The posterior is uniquely determined by the likelihood and prior, according to Bayes' rule ...

g

## Bayes' Rule

Assuming there is a prior density,

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{f(\boldsymbol{y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})}{m(\boldsymbol{y})}$$

where the marginal density of Y is

$$m(\boldsymbol{y}) \;\; = \;\; \left\{ \begin{array}{ll} \displaystyle \sum_{\mathsf{all}\;\boldsymbol{\theta}} f(\boldsymbol{y}\mid\boldsymbol{\theta})\,\pi(\boldsymbol{\theta}), & \;\; \boldsymbol{\theta} \;\; \mathsf{discrete} \\ \\ \displaystyle \int f(\boldsymbol{y}\mid\boldsymbol{\theta})\,\pi(\boldsymbol{\theta})\,d\boldsymbol{\theta}, & \;\; \boldsymbol{\theta} \;\; \mathsf{continuous} \end{array} \right.$$

Q

### Proportionality

Bayes' rule is written more simply as

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta})$$

where the proportionality is in  $\theta$ , not y.

That is, the proportionality constant (normalizing constant) may (and usually does) depend on y.

(Q: Why is it OK to know the posterior density only up to proportionality?)

Note: In this form of Bayes' rule, we may drop any factors in the likelihood or the prior density that don't depend on  $\theta$ .

Remark: Bayes' rule for *probabilities* can be interpreted as a special case in which both the data and parameter are discrete.

See the example in BSM Sec. 1.2.1.

### Bayesian Inference Process

- 1. Define the data model(s).
- 2. Obtain the likelihood function.
- 3. Specify the prior density.
- 4. Compute the posterior density.

Then use the posterior to make inference.

Considerations in choosing a data model are the same as you may have seen in other statistical courses.

Considerations in choosing a prior relate to the kind of prior information you think you have (specific? vague? none?) and computational ease. We will revisit this in more detail later (BSM Chapter 2).