LECTURE 2, PART I: REVIEW OF LINEAR REGRES-

- ₂ SION
- ³ Text references: 401 course material

5 Model Basics and Assumptions

• Recall our model building block from last time:

$$Y = r(X_1) + \varepsilon,$$

- where $\mathbb{E}(\varepsilon|X_1)=0$. The regression function here is $r(X_1)=\mathbb{E}(Y|X_1)$,
- or $r(x) = \mathbb{E}(Y|X_1 = x)$. (We write X_1 here to reflect the fact that we
- just have one predictor, i.e., $X_1 \in \mathbb{R}$)
 - In linear regression, we predict Y from a linear function of X_1 , of the form $\beta_0 + \beta_1 X_1$. If we determine β_0, β_1 by minimizing mean squared error,

$$MSE(\beta_0, \beta_1) = \mathbb{E}[(Y - \beta_0 - \beta_1 X_1)^2],$$

then recall from last time that

$$\beta_1 = \frac{\operatorname{Cov}(X_1, Y)}{\operatorname{Var}(X_1)}, \quad \beta_0 = \mathbb{E}(Y) - \beta_1 \mathbb{E}(X_1)$$

	N. A 11.	1 . 1	т •	D	
1	Multi	pie .	Linear	Kegr	ession

W	That happens now with p predictors, $X_1, \ldots X_p$?
W	We want to model Y as a linear function
U	sing MSE again as our criterion,
Tł	ne optimal coefficients are given by
	We will refer to these as the population regression coefficients .

Our multiple (linear regression) model is

$$Y = r(\mathbf{X}) + \varepsilon.$$

What are really our assumptions when using linear regression? Recall from
your regression class,
3
5
S
7
3
a
[See catexample.R for a linear regression example]
Briefly, note that we can summarize these assumptions as
$Y \mathbf{X} \sim N(eta_0 + oldsymbol{eta}^T\mathbf{X}, \sigma^2)$
Remarks on these assumptions:
3
•

Lecture 2: The Truth about Regression (Part I, Review of Linear Regression)					

13 Linear Regression Estimates from Data

In practice, we don't have access to the distributions of X, Y so we cannot actually compute the population regression coefficients. Instead, we have, say, an iid sample of size n,

$$(\mathbf{X}_1, Y_1), (\mathbf{X}_2, Y_2), \ldots, (\mathbf{X}_n, Y_n)$$

- from some distribution of **X** and *Y*. Note that each $\mathbf{X}_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$,
- but for simplicity, we will from now on follow the notational convention of most
- statistical texts (including AOS, Witten et al., and Shalizi starting in Chapter

- $_{\scriptscriptstyle 1}$ 3) and drop the bold-faced notation on the covariates (so a subscript i will denote
- ² observation *i*).
- Hence, we write our linear model as

Now define the data matrix or the *design matrix* \mathbb{X} as

- ⁷ Each subject corresponds to one row. The number of columns of X corre-
- sponds to the number of features plus 1 for the intercept, q=p+1. Now
- $_{\mathfrak{s}}$ define the vectors \vec{Y} , $\vec{\epsilon}$, β as

$$\vec{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \quad \vec{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}. \tag{1}$$

- Then, we can write our linear model more concisely as
- 12 ______
- 14 _____

Lecture 2: The Truth about Regression (Part I, Review of Linear Regression)

Properties of Least Squares Estimates

Theorem 1 The estimators satisfy the following properties (conditional on X)

3 1.
$$\mathbb{E}(\widehat{\beta}) = \beta$$
.

- ⁴ 2. $\mathbb{V}(\widehat{\beta}) = \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}$
- 5 3. $\widehat{\beta} \approx MVN(\beta, \sigma^2(\mathbb{X}^T\mathbb{X})^{-1}).$
- 4. An approximate 1α confidence interval for β_j is

$$\widehat{\beta}_{j} \pm z_{\alpha/2} \, \widehat{\mathsf{se}}(\widehat{\beta}_{j})$$
 (2)

- where $\widehat{\mathsf{se}}(\widehat{eta}_j)$ is the square root of the appropriate diagonal element of the
- *matrix* $\widehat{\sigma}^2(\mathbb{X}^T\mathbb{X})^{-1}$.

Exercise: Prove the first two assertions¹

12

13

$$\mathbb{E}(a^T Y) = a^T \mu, \quad \mathbb{V}(a^T Y) = a^T \Sigma a.$$

If A is a matrix then

$$\mathbb{E}(AY) = A\mu, \quad \mathbb{V}(AY) = A\Sigma A^T.$$

¹Recall: Let Y be a random vector. Denote the mean vector by μ and the covariance matrix by Σ . If a is a vector then

Lecture 2: The Truth about Regression (Part I, Review of Linear Regression)