Relaxation Behavior of Network Polymers with Random Connectivity

Hiroshi Sasaki

Toagosei Co., Ltd.

July 19, 2023

- Introduction
 - Adhesive Bonding Technology as a Key to Multi-Materialization
 - Durability of Rubber
 - ゴムのモデル化
- ② ランダムネットワークの検討
 - ランダムネットワークについて

Adhesive Bonding Technology

- For Energy conservation
 - weight reduction of cars
 - multi-materialization
 - adhesive bonding technology is a key
- durability in long-term use is important
 - Especially for fatigue tests
 - reliability of polymer materials is still ambiguous

1. focusing on Energy conservation

- weight reduction of transportation equipment, especially automobiles is being considered.
- for that purpose, multi-materialization using Aluminum, Magnesium, CFR(T)Ps is discussed.
- these different colors
- in the process, adhesive bonding technology is a big key.
- for example, these red lines
- 2. requirements for network polymers used as adhesives are
 - not only high primary mechanical properties
 - but also the ability to withstand fatigue tests
 - , in which the polymer is repeatedly deformed at various deformation rates in order to ensure durability in long-term use.

Mechanical Hysteresis Loss and Fracture Energy

- Mechanical Hysteresis Loss
 - Reduced stress on unloading
 - Energy dissipation during cycle
 - Possitive correration with fracture energy^a
- The origin of Hysteresis Loss^b
 - Viscoelastics
 - Crystallization
 - Derived by added filler

hyst

- Mechanical Hysteresis is illustrated in this figure.
- Reduced stress comes out on unloading compared with loading one.
- this green area is equivalent to Energy dissipation during cycle
- and the intensity of hysteresis loss had been reported to have Possitive correration with fracture energy by Payne.
- The origin of hysteresis loss is also categorized by Payne
 - Viscoelasticity based
 - Crystallization
 - Derived by added filler

^aK.A.Grosch, J.A.C.Harwood, A.R.Payne, Rub. Chem. Tech., 41, 1157(1968) ^bA.R.Payne, J.Poly.Sci.:Sympo., 48, 169(1974)

Andrews Theory for Rubber Toughness

Andrews Theory

- Focused on stress field around the crack^a
 - Stress Loading zone
 - Unloading one
 - divided by stress maximum line
- On the progress of the crack,
 - stress field is transit.
 - Hysteresis Loss⇒Energy Dissipation
 - The progress of Crack is Suppressed

- On the fracture of rubber, Andrews proposed a model focused on Stress fields around the Crack top area
- stress fields can be divide in twe regions, stress loading field and unloading one.
- On the progress of the crack,
 - stress field is transit
 - During this transition, Hysteresis Loss is occur and dissipate energy
 - through this process, the progress of Crack is suppressed

^aE.H.Andrews, Y.Fukahori, J. of Mat. Sci. 12, 1307 (1977)

Classical Theory of Rubber Elasticity

Neo-Hookean Model

$$W = C_1(I_1 - 3)$$

against Uniaxial elongation

$$\sigma_{nom} = 2C_1 \left(\lambda - \frac{1}{\lambda^2} \right) = G \left(\lambda - \frac{1}{\lambda^2} \right)$$

Mooney-Rivlin Model

$$W = C_1(I_1 - 3) + C_2(I_2 - 3)$$

against Uniaxial elongation

$$\sigma_{nom} = 2\left(C_1 + C_2 \frac{1}{\lambda}\right) \left(\lambda - \frac{1}{\lambda^2}\right)$$

With or without Junction Poinits fluctuation

Affine Network Model ^a

 $G_{affine} = \nu k_B T$

 $\nu \colon$ Number density of strands in the system

Phantom Network Model ^a

$$G_{phantom} = \nu k_B T \left(1 - \frac{2}{f} \right)$$

f: Functionality of Junction Points

^aP.J. Flory, Principles of Polymer Chemistry, (1953)

^aH.M. James, E.J. Guth, Chem. Phys., 21, 6, 1039 (1953)

Vicinity of Junction Point

- Junction points are surrounded by many of adjacent strands(x in fig.).
- Fluctuation of junctions are suppressed.

combination of G_c and G_e

- Constrained Junction Model
 - Constraints are reduced and G approaches to G_c .
- Topological relationships
 - Contribution of entanglement.^b

$$G_e = T_e G_N^0$$

^aP.J.Flory, J.Chem.Phys., 66, 12, 5720 (1977)

^bD.S.Pearson and W.Graessley, Macromol., 11, 3, 528 (1978)

Vicinity of Junction Point

- Junction points are surrounded by many of adjacent strands(x in fig.).
- Fluctuation of junctions are suppressed.

Constraints Effect

- Suppress the fluctuation of Junction Point
 - Deviate from Phantom Network Model
 - Affect G_c
- Strands Entangles each other
 - Works as a Junction Point
 - ullet Generate additional G_e

Storage modulus G is combination of G_c and G_e

VIcinity of Junction Point

- Junction points are surrounded by many of adjacent strands.
- Because of other strands, Fluctuation of junctions are suppressed.
- Effect
- Previous models
 - On the uniaxial deformation, constraints are released and G approaches to G_c
 - Considering topological effect can be counted as Ge

Vicinity of Junction Point

- Junction points are surrounded by many of adjacent strands(x in fig.).
- Fluctuation of junctions are suppressed.

Constraints Effect

- Constrained Junction Model
 - ullet G approaches to G_c .
- Topological relationships
 - Contribution of entanglement.^b

$$G_e = T_e G_N^0$$

• Vicinity of Junction Point

- Junction points are surrounded by many of adjacent strands.
- Because of other strands, Fluctuation of junctions are suppressed.
- Effect
- Previous models
 - On the uniaxial deformation, constraints are released and ${\it G}$ approaches to ${\it G}_c$
 - Considering topological effect can be counted as Ge

7 / 12

^aP.J.Flory, J.Chem.Phys., 66, 12, 5720 (1977)

D.S.Pearson and W.Graessley, Macromol., 11, 3, 528 (1978)

- Diffused-Constraint Model
 - Confining potential affect all points along the chain.^a
- Nonaffine Tube Model
 - Improved model of "Edwards' Tube Model".b
- Slip-tube Model
 - A pairwise interaction of chains is introduced.c
- allowframebreaksbbb
- bbbb
- Z

^a A. Kloczkowski, J.E. Mark, B. Erman, Macromol., 28, 5089 (1995)

^bM. Rubinstein, S. Panyukov, Macromol., 30, 25, 8036 (1997)

^CM. Rubinstein, S. Panyukov, Macromol., 35, 6670 (2002)

Recent approach for Constraints (Entanglements)

- Diffused-Constraint Model
 - Confining potential affect all points along the chain.^a
- Nonaffine Tube Model
 - Improved model of "Edwards' Tube Model".b

^a A. Kloczkowski, J.E. Mark, B. Erman, Macromol., 28, 5089 (1995)

^b M. Rubinstein, S. Panyukov, Macromol., 30, 25, 8036 (1997)

SS

- Introduction
 - Adhesive Bonding Technology as a Key to Multi-Materialization
 - Durability of Rubber
 - ゴムのモデル化
- ② ランダムネットワークの検討
 - ランダムネットワークについて

ランダムネットワークの検討

- 前述のモデルの問題点
 - 変形速度依存性の議論が陽に行われていない。
 - 基本となる PNM の再現が必須。
- ネットワーク構造の連結性にランダム性を導入
 - Flory のファントムネットワークの要件に合致^a
 - ullet the mean values $ar{r}$ of starand fluctuate
 - fluctuations $\Delta r = r \bar{r}$ are Gaussian
 - the mean-square fluctuations depend only on structure
- Previous Work for Random Network
 - Random end-crosslink for telechelic polymers^b
 - Primitive Chain Network Simulation^c

^aP. J. Flory, Proc. R. Soc. London. Series A, 351, 351 (1976)

^bG.S. Grest, et.al., Non-Cryst. Solids, 274, 139 (2000)

^cY. Masubuchi, Nihon Reoroji Gakkaishi, 49, 2, 73 (2021)