CSE 417T Introduction to Machine Learning

Lecture 16

Instructor: Chien-Ju (CJ) Ho

Logistics

Homework 4 is due November 14 (Monday)

- Keep track of your own late days
 - Gradescope doesn't allow separate deadlines
 - Your submissions won't be graded if you exceed the late-day limit

Recap

Nearest Neighbor

- Predict \vec{x} according to its nearest neighbor
 - Given $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_N, y_N)\}; y_n \in \{+1, -1\}$
 - Let $\vec{x}_{[1]}$ be \vec{x}' s nearest neighbor, i.e., the closest point to \vec{x} in D
 - Let $y_{[i]}(\vec{x})$ or $y_{[i]}$ be the label of $\vec{x}_{[i]}$
- Nearest neighbor hypothesis

$$g(\vec{x}) = y_{[1]}(\vec{x})$$

Nearest Neighbor

 $g(\vec{x})$ looks like a Voronoi diagram

- Properties of Nearest Neighbor (NN)
 - No training is needed
 - Good interpretability
 - In-sample error $E_{in} = 0$
 - VC dimension is ∞
- This seems to imply bad learning models from what we talk about so far? Why we care?
- What we really care about is E_{out}
 - VC analysis: $E_{out} \leq E_{in}$ + Generalization error
 - We can infer E_{out} through E_{in} and model complexity
 - NN has nice guarantees outside of VC analysis

Nearest Neighbor is 2-Optimal

• Given mild conditions (similar \vec{x} have similar label distribution, input distribution has non-zero support in all space), for nearest neighbor, when $N \to \infty$, with high probability,

$$E_{out} \leq 2E_{out}^*$$

• That is, we can not infer E_{out} from E_{in} , but we know it cannot be much worse than the best anyone can do.

Informal intuitions:

Assumption for nearest neighbor:

- Target function is continuous
- That is, nearby points have similar label distributions

As *N* goes large, there are "close enough" points for prediction

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

k-Nearest Neighbor

"Stabilize" the Hypothesis

- Making predictions according to k nearest neighbors
 - Instead of using a "single" nearest neighbor
- k-nearest neighbor (K-NN)
 - $g(\vec{x}) = sign(\sum_{i=1}^k y_{[i]}(\vec{x}))$
 - (k is often chosen to be an odd number for binary classification)

Impacts of k in k-Nearest Neighbor

- k = 1: the nearest neighbor hypothesis
 - many, complicated decision boundaries; may overfit
- k = N, g predicts the most common label in the training dataset
 - no decision boundaries; may underfit
- k controls the complexity of the hypothesis set
 - k affects how well the learned hypothesis will generalize

How to Choose k

- Making the choice of k a function of N, denoted by k(N)
- Theorem:
 - For $N \to \infty$, if $k(N) \to \infty$ and $\frac{k(N)}{N} \to 0$
 - Then $E_{in}(g) \to E_{out}(g)$ and $E_{out}(g) \to E_{out}(g^*)$
- Example: $k(N) = \sqrt{N}$ satisfies the condition

Informal intuitions:

 $\frac{k(N)}{N} \rightarrow 0$: all the nearest neighbors are next to \vec{x}

 $k(N) \rightarrow \infty$: select infinitely many neighbors

=> We can almost reconstruct the target function

How to Choose k

- Making the choice of k a function of N, denoted by k(N)
- Theorem:
 - For $N \to \infty$, if $k(N) \to \infty$ and $\frac{k(N)}{N} \to 0$
 - Then $E_{in}(g) \to E_{out}(g)$ and $E_{out}(g) \to E_{out}(g^*)$
- Example: $k(N) = \sqrt{N}$ satisfies the condition
- Practical rules of thumb:
 - Small k (e.g., k = 3) is often a good enough choice
 - Using validation to choose k

Summary of k-NN So Far

Pros

- Simple algorithm
- Good interpretations
- Nice theoretical guarantee
- Easy to adapt to regression (average of nearest neighbors) and multi-class classification (majority voting)

Cons

- Curse of dimensionality
- Computational issue
 - each prediction requires O(N) computation

Curse of Dimensionality

Generally, higher dimensionality implies harder learning (think VC)

- Things are worse with similarity-based methods
 - Rely on assumptions that nearby points have similar label distributions
 - As the dimension grows, most of the points will not be nearby to each other...

Illustration of Curse of Dimensionality

• Think about Euclidean distance: $d(\vec{x}, \vec{x}') = ||\vec{x} - \vec{x}'||$

• Illustration

- Consider the space $[0,1]^d$ (a hypercube with length of each side = 1)
- What's the side length ℓ of a hypercube that takes up 1% of the space?

```
• d=1: \ell=0.01

• d=2: \ell=0.1

• ...

• d=100: \ell^d=0.01 \Rightarrow \ell\approx 0.95

• d=1000: \ell^d=0.01 \Rightarrow \ell\approx 0.9954
```

Illustration of Curse of Dimensionality

- Consider the distance to the origin when d=100
 - Consider the case that the value of each dimension is uniformly drawn
 - Only 1% of the points will be in the hypercube $[0,0.95]^{100}$
 - Most of the points will be far away from the origin
 - Most of the points will be far away from each other

- No simple solutions....
 - Getting more data
 - Reduce dimensions (see LFD 9.2)

Computational Issues for k-NN

Computational Issues

- k-Nearest Neighbor is computationally demanding
 - Need to store all data points: space complexity O(Nd)
 - For each prediction for \vec{x}
 - Calculate the distance to every point in D
 - Find the *k* closest points
 - Time complexity O(Nd + Nlogk)
- Two general approaches:
 - Reduce the number of data points
 - Store the data in some data structure to speed up searching
 - See LFD 6.2.3 for more discussion

Computational Issues: Potential Solutions

Reduce the number of data points

- Intuition: remove points that will not impact the decision boundary.
- Generally a hard problem. But there are some heuristic approaches.
- Store the data in some data structure to speed up searching

- Intuition: Cluster data points
- For a new data point, first find a nearest cluster. Then find the nearest points within that cluster

Reduce the Amount of Data

Consider the following example

- Goal: Drop data that doesn't impact the decision boundary
 - Find $S \subseteq D$, such that $g_S(\vec{x}) = g_D(\vec{x}) \ \forall \vec{x}$
 - Generally a hard goal to achieve

A Probably Easier Goal

Instead of making the decision boundary consistent

Aim for making the prediction on the training data consistent

Condensed Nearest Neighbor

• Goal: Find $S \in D$, such that $g_S(\vec{x}) = g_D(\vec{x}) \ \forall \vec{x} \in D$

- An iterative algorithm
 - Random initialize a subset of data points S
 - While (there exists point $\vec{x}_* \in D$ such that $g_S(\vec{x}_*) \neq g_D(\vec{x}_*)$)
 - Let y_* be $g_D(\vec{x}_*)$
 - Find the nearest point $\vec{x}' \in D \setminus S$ with the label y_*
 - Insert \vec{x}' to S
- No theoretical guarantees
- Reasonable empirical performance

Speed Up the Search for Nearest Neighbor

- For each prediction for \vec{x} , we need to find the nearest point in D
- Can we speed up this process?

- S_1 and S_2 are two clusters
 - Centers $\vec{\mu}_1$, $\vec{\mu}_2$ and radii r_1 , r_2
- Let S_1 be the nearest cluster for \vec{x}
- Let $\vec{x}'_{[1]}$ be the nearest point in S_1
- Distance from \vec{x} to any point in S_2 is at least $||\vec{x} \vec{\mu}_2|| r_2$
- If $\|\vec{x} \vec{x}'_{[1]}\| \le \|\vec{x} \vec{\mu}_2\| r_2$
 - we don't need to search points in S_2

Lloyd's Algorithm: Construct Clusters

- Goal: Cluster data into K clusters
 - Split points into K sets $S_1, ..., S_N$
 - Such that the sum of distance from each point to its center is the smallest
 - Again, hard in general, but we can use greedy-based approaches
- Lloyd's Algorithm
 - 1. Randomly pick K points as centers
 - 2. Create the Voronoi regions as clusters
 - 3. Update the centers (calculating the mean)
 - 4. Update the region
 - 5. Repeat 3 and 4

• This is the first unsupervised learning algorithm we talk about in this course

Final Remark: Nearest Neighbor is Nonparametric

Nearest Neighbor

no parameters expressive/flexible $g(\mathbf{x})$ needs data generic, can model anything

Linear models

(d+1) parameters rigid, always linear $g(\mathbf{x})$ needs only weights specialized

Radial Basis Functions (RBF)

Radial Basis Functions

- Think about k-nearest neighbor (K-NN) again
 - $g(\vec{x}) = sign(\sum_{i=1}^k y_{[i]}(\vec{x}))$
 - Make predictions based on k nearest data points
 - Each of the *k* data points has the same weight

- Natural questions:
 - Weight them based on how close data points are to \vec{x}
 - Can we use more (or even all) data?

Radial Basis Functions

- Given dataset $D = \{\vec{x}_1, ..., \vec{x}_N\}$
- Task: Make a prediction on \vec{x}

Radial Basis Function:

•
$$g(\vec{x}) = \frac{1}{Z(\vec{x})} \sum_{n=1}^{N} \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right) y_n$$

- This is for regression. We can take a sign and make it a binary classification.
- $Z(\vec{x}) = \sum_{m=1}^{N} \phi\left(\frac{\|\vec{x} \vec{x}_m\|}{r}\right)$ is for normalization
- $\phi(s)$: a monotonically decreasing function

 It's called radial basis function since it takes the distance to the points as the basis function

Radial Basis Functions

Radial Basis Function:

•
$$g(\vec{x}) = \sum_{n=1}^{N} \frac{1}{Z(\vec{x})} \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right) y_n$$

- Example of ϕ
 - Gaussian RBF: $\phi(s) = e^{-s}$
- Intuitions
 - The impact of \vec{x}_n to \vec{x} is higher if it's closer to \vec{x}
 - The role of r is similar to k in k-NN
 - $r \rightarrow 0:1-NN$
 - $r \rightarrow \infty$: N-NN (i.e., k = N)

From Nonparametric to Parametric RBF

Nonparametric RBF

•
$$g(\vec{x}) = \sum_{n=1}^{N} \frac{y_n}{Z(\vec{x})} \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right)$$

•
$$g(\vec{x}) = \sum_{n=1}^{N} w_n(\vec{x}) \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right)$$

The hypothesis is defined by dataset

Parametric RBF hypothesis set

•
$$h(\vec{x}) = \sum_{n=1}^{N} w_n \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right)$$

• Learn w_n from data

Parametric RBF => Linear Models

Parametric RBF is linear model with nonlinear transformation

•
$$h(\vec{x}) = \sum_{n=1}^{N} w_n \, \phi\left(\frac{\|\vec{x} - \vec{x}_n\|}{r}\right)$$

• The projection
$$\Phi(\vec{x}) = \begin{bmatrix} \phi\left(\frac{\|\vec{x} - \vec{x}_1\|}{r}\right) \\ \phi\left(\frac{\|\vec{x} - \vec{x}_2\|}{r}\right) \\ \vdots \\ \phi\left(\frac{\|\vec{x} - \vec{x}_N\|}{r}\right) \end{bmatrix}$$

- We can apply what we learned in linear models to learn w_n
- However, this seems to be overfitting (N parameters for N points)

From N points to K points

• Use only K points $(\vec{\mu}_1, ..., \vec{\mu}_K)$

•
$$h(\vec{x}) = \sum_{k=1}^{K} w_k \phi\left(\frac{\|\vec{x} - \vec{\mu}_k\|}{r}\right)$$

- Which K points?
 - We can find *K* representative points
 - Use clustering algorithms, e.g., Lloyd algorithm as introduced earlier
 - 1. Randomly pick K points as centers
 - 2. Create the Voronoi regions as clusters
 - 3. Update the centers (calculating the mean)
 - 4. Update the region
 - 5. Repeat 3 and 4

Dual Views of RBF

•
$$h(\vec{x}) = \sum_{k=1}^{K} w_k \phi\left(\frac{\|\vec{x} - \vec{\mu}_k\|}{r}\right)$$

- Connection to linear models
 - Parametric RBF is essentially linear model with nonlinear transformation
- Connection to nearest neighbor
 - Radial Basis Function is defined by "similarity
 - A prediction for a point is based on the "similarity" of the points to be predicted and other points
- Also have some connection to SVM and neural network that we'll discuss

Support Vector Machines (SVM)

What Do We Know about Linear Classification?

- What we discussed so far:
 - PLA: Find a linear separator that separates the data within finite steps, if data is linear separable.
 - Pocket algorithm: empirically keep the best separator during PLA.
 - Surrogate loss: Using logistic regression for linear classification.
- Challenges
 - Binary classification error is hard to optimize
 - We cannot use "gradient descent" type of algorithm to minimize E_{in} .

Support vector machines (SVM) tries to look at things a bit differently.

Linear Classification

Which separator would you choose?

Probably the right one. Why?

Linear Classification

Which separator would you choose?

More robust to noise (e.g., measurement error of \vec{x})

Linear Classification

Which separator would you choose?

Margin: shortest distance from the separator to the points in D (Informal argument)

Higher margin => more "constrained" hypothesis => lower VC dimension

Support Vector Machine

Goal:

- Find the max-margin linear separator that separates the data
- Recall the goal of PLA: Find the linear separator that separates the data

Notations:

Notations we used so far:

- $\vec{x} = (x_0, x_1, \dots, x_d)$
- $\overrightarrow{w} = (\mathbf{w_0}, \mathbf{w_1}, \dots, \mathbf{w_d})$
- Linear separator

$$h(\vec{x}) = sign(\vec{w}^T \vec{x})$$

Notations we will use in SVM

- $\vec{x} = (x_1, \dots, x_d)$
- $\overrightarrow{w} = (w_1, \dots, w_d)$
 - Linear separator

$$h(\vec{x}) = sign(\vec{w}^T \vec{x} + b)$$

Separating the bias/intercept b is important for us to characterize the margin.

We will use (\vec{w}, b) to characterize the hypothesis

• Claim: \vec{w} is the norm vector of the hyperplane $\vec{w}^T \vec{x} + b = 0$

• Claim: \vec{w} is the norm vector of the hyperplane $\vec{w}^T \vec{x} + b = 0$

- Consider any two points \vec{x}' and \vec{x} " on the hyperplane
 - $\vec{w}^T \vec{x}' + b = 0$
 - $\vec{w}^T \vec{x}'' + b = 0$
- Combining the above

•
$$\vec{w}^T(\vec{x}' - \vec{x}") = 0$$

- \overrightarrow{w} is orthogonal to the hyperplane
- \vec{w} is the norm vector of the hyperplane

• What is the distance between a point \vec{x}_0 and a hyperplane $\vec{w}^T \vec{x} + b = 0$

• What is the distance between a point \vec{x}_0 and a hyperplane $\vec{w}^T \vec{x} + b = 0$

- Consider an arbitrary point \vec{x}' on the hyperplane
- Distance between the point \vec{x}_0 and the hyperplane

$$dist(\vec{x}_0, \vec{w}, b) = \left| \frac{\vec{w}^T}{\|\vec{w}\|} (\vec{x}_0 - \vec{x}') \right|$$
$$\left| \frac{1}{\|\vec{w}\|} (\vec{w}^T \vec{x}_0 - \vec{w}^T \vec{x}') \right|$$
$$\left| \frac{1}{\|\vec{w}\|} (\vec{w}^T \vec{x}_0 + b) \right|$$

Outline of Our Discussion

- Assume data is linearly separable
 - Formulate the hard-margin SVM

```
Given D, find separator (\overrightarrow{w}, b) that maximize margin (\overrightarrow{w}, b) s.t. all points in D is correctly classified
```

- When data is not linearly separable
 - Tolerate some noise
 - Soft-margin SVM

- Nonlinear transform
 - Dual formulation and kernel tricks

- Goal
 - Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$ that is linearly separable
 - Find separator (\vec{w}, b) that (1) maximizes the margin and (2) separates D
- (\vec{w}, b) separates D (making correct predictions for all points in D)
 - $y_n = sign(\vec{w}^T \vec{x}_n + b)$ for all n
 - $y_n(\vec{w}^T\vec{x}_n + b) \ge 0$ for all n
- Margin: shortest distance from the separator to points in D

$$\operatorname{margin}(\vec{w}, b) = \min_{n} \operatorname{dist}(\vec{x}_{n}, \vec{w}, b)$$

$$= \min_{n} \left| \frac{1}{\|\vec{w}\|} (\vec{w}^{T} \vec{x}_{n} + b) \right|$$

$$= \min_{n} \frac{1}{\|\vec{w}\|} y_{n} (\vec{w}^{T} \vec{x}_{n} + b)$$

$$dist(\vec{x}_0, \vec{w}, b) = \left| \frac{1}{\|\vec{w}\|} (\vec{w}^T \vec{x}_0 - b) \right|$$

$$y_n \in \{-1, +1\}$$
 and $y_n(\overrightarrow{w}^T\overrightarrow{x}_n + b) \ge 0$

- Goal
 - Given $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$ that is linearly separable
 - Find separator (\vec{w}, b) that (1) maximizes the margin and (2) separates D
- Formulate it as a constrained optimization problem

```
maximize<sub>\vec{w},b</sub> margin(\vec{w},b)
subject to y_n(\vec{w}^T\vec{x}_n+b) \ge 0, \forall n
margin(\vec{w},b) = min_n \frac{1}{||\vec{w}||} y_n(\vec{w}^T\vec{x}_n+b)
```

• The constrained optimization problem

```
maximize<sub>\vec{w},b</sub> margin(\vec{w},b)
subject to y_n(\vec{w}^T\vec{x}_n+b) \ge 0, \forall n
margin(\vec{w},b) = min_n \frac{1}{\|\vec{w}\|} y_n(\vec{w}^T\vec{x}_n+b)
```

- normalizing (\overrightarrow{w}, b)
 - Note that $\vec{w}^T \vec{x} + b = 0$ is equivalent to $c\vec{w}^T \vec{x} + cb = 0$ for any c
 - We will normalize (\vec{w}, b) such that $\min_n y_n(\vec{w}^T \vec{x}_n + b) = 1$
 - margin $(\vec{w}, b) = \frac{1}{\|\vec{w}\|}$
 - $y_n(\vec{w}^T\vec{x}_n + b) \ge 1, \forall n$

• The constrained optimization problem

maximize
$$_{\overrightarrow{w},b}$$
 $\frac{1}{\|\overrightarrow{w}\|}$ subject to $y_n(\overrightarrow{w}^T\overrightarrow{x}_n+b) \geq 1, \forall n$

Some final adjustments

minimize
$$_{\overrightarrow{w},b}$$
 $\frac{1}{2}\overrightarrow{w}^T\overrightarrow{w}$ subject to $y_n(\overrightarrow{w}^T\overrightarrow{x}_n+b)\geq 1, \forall n$

Final Form of Hard-Margin SVM

minimize
$$_{\overrightarrow{w},b}$$
 $\frac{1}{2}\overrightarrow{w}^T\overrightarrow{w}$ subject to $y_n(\overrightarrow{w}^T\overrightarrow{x}_n+b) \geq 1, \forall n$

- How to solve it?
 - Hard-margin SVM is a Quadratic Program
 - Standard form of Quadratic Program (QP)

minimize_{$$\vec{u}$$} $\frac{1}{2}\vec{u}^TQ\vec{u} + \vec{p}^T\vec{u}$
subject to $A\vec{u} \ge \vec{c}$

• There exist efficient QP solvers we can utilize