CMP305 Very Large Scale Integrated Circuit

Lab 2
ASIC Flow (Part 2)

Last Lab

- We Learned about Chip Design Flows
- We Learned about ASIC & FPGA
- We Discussed ASIC Design Flow
- We applied Synthesis Step
- We saw the effect of different designs / Same Functionality

Objectives

- Understand:
 - Static Timing Analysis (STA)
 - Dynamic Timing Analysis (DTA)
 - Design Constraints
- Learn:
 - Use Tcl Scripting
 - Post-Synthesis Simulation

ASIC Design Flow

Timing Analysis

Static Timing Analysis	Dynamic Timing Analysis
Checks static delay requirements	Apply input vectors and check for correct output vectors
Setup / Hold Timing met	Functionality is correct
Run on Synchronous designs only	Synchronous & Asynchronous designs
If wrong, the fabricated IC won't work properly	If wrong, the design is incorrect
	Must be done before STA
Generated by Leonardo	Simulation on Modelsim

- Definitions:
 - Hold Time
 - Min Time the data must be held steady <u>after</u> the clock event so that the data is correctly read
 - Setup Time
 - Min Time the data must be held steady <u>before</u> the clock event so that the data is correctly read
 - Clock Skew
 - Clock could arrive at different components at different times

- Definitions:
 - Critical Path
 - The path between an input (Reg) & an output (Reg) with the maximum delay
 - Arrival Time
 - The time instance for a signal to arrive at a certain point
 - Required Time
 - The latest time at which a signal can arrive without making the clock cycle longer than desired
 - Slack
 - The difference between Required & Arrival time.

 You will study static timing in more details in the lecture

System Physics

P C·V²·f

C Area

Power Capacitance * Voltage² * Frequency

- System Requirements
 - Timing Constraints
 - Area Constraints
 - Power Consumption

- General Constraints:
 - Set Clock Freq / Perio
 - Set Max Delay

- Detailed Constraints:
 - Clock Freq / Period
 - Offset
 - Pulse Width / Duty Cy

- Detailed Constraints:
 - Input Arrival Time
 - Max Transition Time
 - Max Fanout
 - Max Load

- Detailed Constraints:
 - Output Required Tim
 - Max Transition Time
 - Estimate Fanout
 - Estimate Load

- Detailed Constraints:
 - Preserve Signal
 - Max Fanout

- Detailed Constraints:
 - Don't Touch
 - Will not be synthesize
 - No Opt
 - Will not be Optimized
 - Optimize a specific module for Area/Time
 - Set Optimization Efforting
 for a specific module

Scripting

- Copy the commands you performed on leonardo
- To run the eventhesis scrint

```
ayman@ubuntu:~
ayman@ubuntu:~$ spectrum -file Try_mux2.tcl
```

Scripting

- 1. Load Technology
 - Load_lib tsmc035_typ.syn
 - load_library tsmc035_typ
- 2. Read Design File
 - read -technology "tsmc035_typ" -dont_elaborate {mux2.vhd}
- 3. Elaborate
 - elaborate mux2 -architecture Data_flow
 - pre_optimize -common_logic -unused_logic -boundary
 -xor_comparator_optimize
 - pre_optimize -extract
- 4. Set Constraint File
 - read_constraints constraint.ctr

Scripting

- 5. Optimize
 - optimize .work.mux2.Data_flow -target tsmc035_typ
 -macro
 - -delay -effort quick -hierarchy auto
- 6. Optimize Timing
 - optimize_timing .work.mux2.Data_flow
- 7. Generate Reports
 - report_area Area_Report.rpt -cell_usage -all_leafs
 - report_delay Timing_Report.rpt -num_paths 4
 -longest_path -clock_frequency
- 8. Generate Netlist
 - auto_write -format Verilog ./Outputs/mux2_Netlist.v

Post-Synthesis Simulation

- We want to check if the design is synthesized correctly
 - Un-optimized & badly written Designs could generate wrong functionality
 - Generate Verilog Netlist

Post-Synthesis Simulation

- Create New Project in Modelsim
- Compile the Synthesized design in work library
- Compile Technology File in work library

- Prepare a Constraint File that:
 - Set Max Timing to 5 ns
 - Set Max Input Arrival Time to 1 ns
 - Set Max Input Transition to 1 ns
 - Set Max Input Load to 10 pf

- Given n-bit XOR-based Adder (n=8), Use scripts to
 - Synthesis the adder using "TSMC035" Technology
 - Read your constraint file
 - Optimize on <u>Delay</u> & <u>Flatten</u>
 - Report Area, Timing & Netlist
- Is there any Timing Violation? If yes, how to solve it?
- Run Post-Synthesis Simulation

- Reduce Max Timing to 3 ns
- Re-run your script
- Is there any Timing Violation? If yes, how to solve it?

- Reduce Max Timing to 2 ns
- Re-run your script
- Is there any Timing Violation? If yes, how to solve it?