Normal Distributions - Standard Normal

Normal Distributions - Standard Normal

- We are in sections 6.1 and 6.2 of the textbook
- The most common type of continuous random variable is called a *normal distribution*. These distributions appear very commonly in practice.
- All normal distributions look the same if we measure the *x* axis using standard deviations. We view the probability as the area of a certain region under the normal curve.
- We use the letter z to stand for the number of standard deviations. So z=1 means one standard deviation above the mean, and z=-2 means two standard deviations below the mean.
- We use the letter x to stand for actual data values, such as 15 inches or 40 pounds.
- The values of z and x are related by the formula

$$z = \frac{(x - \mu)}{\sigma}$$
$$x = \mu + z \times \sigma$$

1. Suppose we have a normal distribution with a mean of 40 and a standard deviation of 5. Fill in this table:

х	<i>Z</i> .
45	~
30	
	2
	-1
48	
	1.5

1

2. For each of the following, **label the diagram** and **shade in** the area that is requested. **DO NOT find the value**.

(a) P(z > 0)

(b) P(z < 1)

(c) P(-2 < z < 2).

(d) The percentage of data that fall within one standard deviation of the mean.

(e) The percentage of data that fall within one-half standard deviation of the mean.

(f) The percentage of data the are more than two standard deviations from the mean.

(g) Have a higher value (are to the right of) a point 3 standard deviations below the mean.

(h) The data that are above the 85th percentile.

(i) The data that are below the 25th percentile.

- 3. Suppose a normal distribution have a mean of 50 and a standard deviation of 1.
 - (a) What z-value corresponds to each of these x-values?

$\boldsymbol{\mathcal{X}}$	z
50	
53	
49	
48.5	

(b) What x-value corresponds to each of these z-values?

z	X
-1	
2.5	
-1.25	

- 4. For each of these, find the desired probability using a *z*-table.
 - (a) P(z < 0.25)
 - (b) P(z > 0.75)
 - (c) P(0.25 < z < 0.25)
 - (d) P(z < -0.67)
 - (e) P(-0.1 < z < 0.1)

5. A data set has *x* values that are normally distributed. The mean is 15 and the standard deviation is 2.

For each of the following, **label the diagram** and **shade in** the area that is requested. Then use the *z*-chart to **find the value** that was requested.

(a) P(x > 15)

(b) P(x < 18)

(c) P(14 < x < 18).

