ACTL3142 Week 4 - Logistic/Poisson Regression

Tadhg Xu-Glassop 2025T2

Recap: Linear Regression

Recall our linear regression model,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon, \qquad \epsilon | x \sim \mathcal{N}(0, \sigma^2).$$

What we are actually doing is assuming $Y|X \sim \mathcal{N}(\mu_X, \sigma^2)$, where $\mu_X = \mathbb{E}[Y|X]$, and then further assuming that μ_X is linear in X.

Recap: Linear Regression

Recall our linear regression model,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon, \qquad \epsilon | x \sim \mathcal{N}(0, \sigma^2).$$

What we are actually doing is assuming $Y|X \sim \mathcal{N}(\mu_X, \sigma^2)$, where $\mu_X = \mathbb{E}[Y|X]$, and then further assuming that μ_X is linear in X.

Note the range of the RHS is \mathbb{R} , which corresponds to the possible values of y on the LHS (remember, we assume Y|X is normal).

Logistic Regression

Logistic Regression

Assume $Y|X \sim \mathcal{B}(p_X)$. Then, assume $\operatorname{logit}(\mu_X)$ is linear in X, where $\mu_X = \mathbb{E}[Y|X] = p_X$. So,

$$\operatorname{logit}(\mu_X) = \operatorname{ln}\left(\frac{\mathbb{P}[Y=1|X]}{1 - \mathbb{P}[Y=1|X]}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p.$$

Used for binary classification.

Note logit : $(0,1) \mapsto \mathbb{R}$ and is invertible, and since the range of RHS is still \mathbb{R} , our model implies $\mathbb{P}[Y=1|X] \in (0,1)$, which makes sense!

Logistic Regression

Logistic Regression

Assume $Y|X \sim \mathcal{B}(p_X)$. Then, assume $\operatorname{logit}(\mu_X)$ is linear in X, where $\mu_X = \mathbb{E}[Y|X] = p_X$. So,

$$\operatorname{logit}(\mu_X) = \operatorname{ln}\left(\frac{\mathbb{P}[Y=1|X]}{1-\mathbb{P}[Y=1|X]}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p.$$

Used for binary classification.

Note logit : $(0,1) \mapsto \mathbb{R}$ and is invertible, and since the range of RHS is still \mathbb{R} , our model implies $\mathbb{P}[Y=1|X] \in (0,1)$, which makes sense!

We make this a classification model with a threshold p', where we predict Y=1 if $\hat{\mu}_X=\hat{p}_X>p'$.

Assessing Classification Models

Confusion Matrix - shows how many predictions we got right and what we got wrong.

	Y = 0	Y = 1	Total
$\hat{Y}=0$	10	2	12
$\hat{Y}=1$	4	14	18
Total	14	16	30

ROC Curve - plots TPR vs FPR across different thresholds. AUC is the area under this curve.

Poisson Regression

Poisson Regression

Assume $Y|X \sim \mathcal{P}(\lambda_X)$. Then, assume $\log(\mu_X)$ is linear in X, where $\mu_X = \mathbb{E}[Y|X] = \lambda_X$. So,

$$\ln(\mu_X) = \ln(\lambda_X) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p.$$

Used for count data.

Again, note In : $\mathbb{R}^+ \mapsto \mathbb{R}$ and is invertible, and since the range of RHS is \mathbb{R} our model implies $\lambda \in \mathbb{R}^+$, which makes sense!

Remarks

Both models are modified linear regressions, so most assumptions and pitfalls carry over.

Be careful of the new interpretations of β_i 's, and their effect on μ_X .

Estimation of β_i 's is done via MLE using our distributional assumption.