复习试题

一、填空题:

$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, \quad \text{则 A 的 LU 分解为} \qquad A = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & & & \\ -1/4 & 1 & & \\ 0 & -4/15 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 & 0 \\ & 15/4 & -1 \\ & & 56/15 \end{bmatrix}$$

答案

答案: 2.367, 0.25

f(1) = -1, f(2) = 2, f(3) = 1, 则过这三点的二次插值多项式中 x^2 的系数为______, 拉格朗日插值多项式为

答案: -1, $L_2(x) = \frac{1}{2}(x-2)(x-3) - 2(x-1)(x-3) - \frac{1}{2}(x-1)(x-2)$

- 4、近似值 $x^* = 0.231$ 关于真值x = 0.229有(2)位有效数字;
- 5、设f(x)可微,求方程x = f(x)的牛顿迭代格式是();

答案 $x_{n+1} = x_n - \frac{x_n - f(x_n)}{1 - f'(x_n)}$

- 6、对 $f(x) = x^3 + x + 1$, 差 商 f[0,1,2,3] = (1), f[0,1,2,3,4] = (0);
- 7、计算方法主要研究(截断)误差和(舍入)误差;
- 8、用二分法求非线性方程 f(x)=0 在区间(a,b)内的根时,二分 n 次后的误差限为 $\frac{b-a}{2^{n+1}}$);
- 9、求解一阶常微分方程初值问题 y'=f(x,y), $y(x_0)=y_0$ 的改进的欧拉公式为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
);

- 10、已知 f(1)=2, f(2)=3, f(4)=5.9, 则二次 Newton 插值多项式中 x^2 系数为(0.15);
- 11、 两点式高斯型求积公式 $\int_0^1 f(x) dx \approx \left[\int_0^1 f(x) dx \approx \frac{1}{2} \left[f(\frac{\sqrt{3}-1}{2\sqrt{3}}) + f(\frac{\sqrt{3}+1}{2\sqrt{3}}) \right] \right]$),代数精度为(5);
- 12、 解线性方程组 Ax=b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
- $y=10+\frac{3}{x-1}+\frac{4}{(x-1)^2}-\frac{6}{(x-1)^3}$ 的乘除法次数尽量地少, 应将该表

$$\sqrt{2001} - \sqrt{1999}$$
 改写为 $\frac{2}{\sqrt{2001} + \sqrt{1999}}$ 。

- 14、 用二分法求方程 $f(x) = x^3 + x 1 = 0$ 在区间[0,1]内的根,进行一步后根的所在区间为 0.5, 1 ,进行两步后根的所在区间为 0.5, 0.75 。
- 15、 计算积分 $\int_{0.5}^{1} \sqrt{x} dx$,取 4 位有效数字。用梯形公式计算求得的近似值为 <u>0.4268</u> ,用辛卜生公式计算求得的近似值为 <u>0.4309</u> ,梯形公式的代数精度为 <u>1</u> ,辛卜生公式的代数精度为 3 。
- 17、 设 f(0) = 0, f(1) = 16, f(2) = 46, 则 $l_1(x) = ___l(x) = -x(x-2)$ ___, f(x) 的二次牛顿 插值多项式为 $N_2(x) = 16x + 7x(x-1)$ 。
- $\int_a^b f(x) dx \approx \sum_{k=0}^n A_k f(x_k)$ 18、 求积公式 k=0 的代数精度以(高斯型)求积公式为最高,具有(2n+1)次代数精度。
- 19、 已知f(1)=1, f(3)=5, f(5)=-3,用辛普生求积公式求 $\int_1^5 f(x) dx \approx (12)$ 。

20、 设f(1)=1, f(2)=2, f(3)=0, 用三点式求 $f'(1)\approx$ (2.5)。

21、如果用二分法求方程 $x^3 + x - 4 = 0$ 在区间[1,2]内的根精确到三位小数,需对分(10)次。

$$S(x) = \begin{cases} x^3 & 0 \le x \le 1 \\ \frac{1}{2}(x-1)^3 + a(x-1)^2 + b(x-1) + c & 1 \le x \le 3 \\ & 22、已知 \end{cases}$$
 是三次样条函数,则

a = (3), b = (3), c = (1)

 $l_0(x), l_1(x), \dots, l_n(x)$ 是以整数点 x_0, x_1, \dots, x_n 为节点的 Lagrange 插值基函数,则

$$\sum_{k=0}^{n} l_{k}(x) = \sum_{k=0}^{n} x_{k} l_{j}(x_{k}) = \sum_{k=0}^{n} (x_{j}^{4} + x_{k}^{2} + 3) l_{k}(x) = \sum_{k=0}^{n} (x_{k}^{4} + x_{k}^{2} + 3) l_{k}(x) = \sum_{k=0}^{n} (x_{j}^{4} + x_{k}^{2} + 3) l_{k}(x)$$

 $_{25}$ 、区间[a,b]上的三次样条插值函数S(x)在[a,b]上具有直到____2___阶的连续导数。

26 、 改 变 函 数 $f(x) = \sqrt{x+1} - \sqrt{x}$ ($x \gg 1$) 的 形 式 , 使 计 算 结 果 较 精 确 $f(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}}$ _____。

27、若用二分法求方程 f(x) = 0 在区间[1,2]内的根,要求精确到第 3 位小数,则需要对分 10 次。

$$S(x) = \begin{cases} 2x^3, & 0 \le x \le 1 \\ x^3 + ax^2 + bx + c, & 1 \le x \le 2 \ \text{是 3 次样条函数,则} \end{cases}$$
 a=_3_, b=_3_, c=_1__。

 $\int_0^1 e^x dx$ 29、若用复化梯形公式计算 $\int_0^1 e^x dx$,要求误差不超过 10^{-6} ,利用余项公式估计,至少用 477 个求积节点。

 $\begin{cases} x_1 + 1.6x_2 = 1 \\ -0.4x_1 + x_2 = 2 \end{cases}$ 的 Gauss-Seidel 迭代公式 $\begin{cases} x_1^{(k+1)} = 1 - 1.6x_2^{(k)} \\ x_2^{(k+1)} = 2 + 0.4x_1^{(k+1)}, k = 0,1,\cdots \\ x_2^{(k+1)} = 2 + 0.4x_1^{(k+1)}, k = 0,1,\cdots \end{cases}$, 迭代矩阵为_ $\begin{pmatrix} 0 & -1.6 \\ 0 & -0.64 \end{pmatrix}$, 此迭代法是否收敛__收敛__。

 $\mathbf{A} = \begin{pmatrix} 5 & 4 \\ 4 & 3 \end{pmatrix}$,则 $\|A\|_{\infty} = \underline{\qquad \qquad }$

$$A = \begin{bmatrix} 4 & 8 & 2 \\ 2 & 5 & 7 \\ 1 & 3 & 6 \end{bmatrix}$$
的 $A = LU$,则 $U =$

$$U = \begin{bmatrix} 4 & 8 & 2 \\ 0 & 1 & 6 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

33、若 $f(x) = 3x + 2x + 1$,则差尚 $f(x) = 3$ 3	3 .	33、		1,	则差商 f[2,4,8,16,32]=	3	c
---	-----	-----	--	----	---------------------	---	---

$$\int_{-1}^{1} f(x)dx \approx \frac{2}{9} [f(-1) + 8f(0) + f'(1)]$$
 的代数精度为 2

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} x = \begin{bmatrix} 1 \\ 5 \\ 2 \\ 3 \end{bmatrix}$$

线性方程组
(1)

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 0 & 4 \\ 1 & 3 & 5 \end{bmatrix}$$
分解为 $\mathbf{A} = \mathbf{L}\mathbf{U}$,则 $\mathbf{U} = \underline{\qquad} \begin{bmatrix} 3 & 2 & 1 \\ 0 & -\frac{4}{3} & \frac{10}{3} \\ 0 & 0 & \frac{21}{2} \end{bmatrix}$

35,

二、单项选择题:

- 1、Jacobi 迭代法解方程组 Ax = b 的必要条件是 (C)。
 - A. A 的各阶顺序主子式不为零

B.
$$\rho(A) < 1$$

$$a_{ii} \neq 0, i = 1, 2, \dots, n$$

D.
$$||A|| \le 1$$

$$A = \begin{bmatrix} 2 & 2 & -3 \\ 0 & 5 & 1 \\ 0 & 0 & -7 \end{bmatrix}$$
, 则 $\rho(A)$ 为(C).

- A. 2 B. 5 C. 7
- D. 3
- 3、三点的高斯求积公式的代数精度为(B)。
 - A. 2 B. 5 C. 3
- D. 4
- 4、求解线性方程组 Ax=b 的 LU 分解法中,A 须满足的条件是(B)。
- A. 对称阵 B. 正定矩阵
- C. 任意阵 D. 各阶顺序主子式均不为零
- 5、舍入误差是(A)产生的误差。
- A. 只取有限位数 B. 模型准确值与用数值方法求得的准确值
- C. 观察与测量 D. 数学模型准确值与实际值
- 6、3.141580 是 π的有(B)位有效数字的近似值。
- A. 6 B. 5 C. 4 D. 7
- 7、用 1+x 近似表示 e^x 所产生的误差是(C)误差。
- A. 模型
- B. 观测 C. 截断
- D. 舍入

A. 控制舍入误差 B.	减小方法误差
C. 防止计算时溢出 D.	简化计算
$\frac{x}{9}$ 、用 $1+\frac{3}{3}$ 近似表示 $\sqrt[3]{1+x}$ 所产生的	勺误差是(D)误差。
A. 舍入 B. 观测	C. 模型 D. 截断
10、-324. 7500 是舍入得到的近似	值,它有(C)位有效数字。
A. 5 B. 6	C. 7 D. 8
11、设 f(-1)=1,f(0)=3,f(2)=4,则抛物	插值多项式中 x² 的系数为(A)。
A0. 5 B. 0. 5	C. 2 D2
12、三点的高斯型求积公式的代数	精度为(C)。
A. 3 B. 4 C	. 5 D. 2
13、(D)的 3 位有效数字是 0.236×2	102。
(A) 0.0023549×103 (B) 2354.82×1	0-2 (C) 235.418 (D) 235.54×10-1
14、用简单迭代法求方程 f(x)=0 的实	·根,把方程 f(x)=0 表示成 x=φ(x),则 f(x)=0 的根是
(B) _°	
(A) y=φ(x)与 x 轴交点的横坐标	(B) y=x 与 y=φ(x)交点的横坐标
(C) y=x 与 x 轴的交点的横坐标	(D) y=x 与 y=φ(x)的交点
	$\begin{cases} 3x_1 - x_2 + 4x_3 = 1 \\ -x_1 + 2x_2 - 9x_3 = 0 \end{cases}$
15、用列主元消去法解线性方程组	$\begin{bmatrix} -4x_1 - 3x_2 + x_3 = -1 \\ 0 \end{bmatrix}$,第 1 次消元,选择主元为
(A) 。	
(A) -4 (B) 3 (C) 4	(D) - 9
16、拉格朗日插值多项式的余项是(B),牛顿插值多项式的余项是(C)。
(A) $f(x,x_0,x_1,x_2,,x_n)(x-x_1)$	$(x-x^2)(x-x^{-1})(x-x^{-1})$
(B) $R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}}{(n+1)}$	$\frac{(\xi)}{1)!}$
(C) $f(x,x0,x1,x2,,xn)(x-x0)$	(x-x1)(x-x2)(x-xn-1)(x-xn),
(D) $R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \epsilon$	$o_{n+1}(x)$
17、等距二点求导公式 f'(x1)≈(A)。	

8、解线性方程组的主元素消去法中选择主元的目的是(A)。

(A)
$$\frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 (B) $\frac{f(x_1) - f(x_0)}{x_0 - x_1}$ (C) $\frac{f(x_0) + f(x_1)}{x_0 - x_1}$ (D) $\frac{f(x_1) - f(x_0)}{x_1 + x_0}$

18、用牛顿切线法解方程 f(x)=0, 选初始值 x0 满足(A),则它的解数列 $\{xn\}n=0,1,2,...$ 一定收敛到方程 f(x)=0 的根。

(A)
$$f(x_0)f''(x) > 0$$
 (B) $f(x_0)f'(x) > 0$ (C) $f(x_0)f''(x) < 0$ (D) $f(x_0)f'(x) < 0$

19、为求方程 x3-x2-1=0 在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建 立相应的迭代公式, 迭代公式不收敛的是(A)。

$$x^2 = \frac{1}{x-1}$$
, 迭代公式: $x_{k+1} = \frac{1}{\sqrt{x_k - 1}}$

$$x = 1 + \frac{1}{x^2}$$
, 迭代公式: $x_{k+1} = 1 + \frac{1}{x_k^2}$

(C)
$$x^3 = 1 + x^2$$
, 迭代公式: $x_{k+1} = (1 + x_k^2)^{1/3}$

$$x^3 - 1 = x^2$$
, 迭代公式: $x_{k+1} = 1 + \frac{x_k^2}{x_k^2 + x_k + 1}$

$$\int y' = f(x, y)$$

 $\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \end{cases}$ 欧拉法的局部截断误差是();改进欧拉法的局部截断误差 是();四阶龙格-库塔法的局部截断误差是(A)

$$(A)O(h2)$$
 $(B)O(h3)$ $(C)O(h4)$ $(D)O(h5)$

21、解方程组 Ax = b 的简单迭代格式 $x^{(k+1)} = Bx^{(k)} + g$ 收敛的充要条件是 ()。

(1)
$$\rho(A) < 1$$
, (2) $\rho(B) < 1$, (3) $\rho(A) > 1$, (4) $\rho(B) > 1$

 $\int_a^b f(x)dx \approx (b-a)\sum_{i=0}^n C_i^{(n)}f(x_i)$ 22、在牛顿-柯特斯求积公式: 中,当系数 $C_i^{(n)}$ 是负值时,公式的 稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用

(1)
$$n \ge 8$$
, (2) $n \ge 7$, (3) $n \ge 10$, (4) $n \ge 6$, 23、有下列数表

X	0	0.5	1	1.5	2	2.5
f(x)	-2	-1.75	-1	0.25	2	4.25

 $y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n))$ 求解初值问题 y' = -2y, y(0) = 1, 试问为保证该公式绝对稳定,步长h的取值范围为(

$$(1)$$
 $0 < h \le 1$, (2) $0 \le h \le 1$, (3) $0 < h < 1$, (4) $0 \le h < 1$

```
25、\sqrt{3} ≈ 1.732 +1 = (\sqrt{3} - 1)^4,下列方法中哪种最好? (
(A) 28-16\sqrt{3}; (B) (4-2\sqrt{3})^2; (C) (4+2\sqrt{3})^2; (D) (\sqrt{3}+1)^4.
         S(x) = \begin{cases} x^3 & 0 \le x \le 2 \\ 2(x-1)^3 + a(x-2) + b & 2 \le x \le 4 \\ \mathbb{E} = \text{次样条函数}, \quad \mathbf{y} a, b \text{ 的值为} \end{cases}
                                                                                             )
               (B)6, 8; (C)8, 6; (D)8, 8<sub>o</sub>
(A)6, 6;
27、由下列数表进行 Newton 插值,所确定的插值多项式的最高次数是(
                                                                            3.5
                          0.5 2.5
                                                   5.0
                                                                8.0
                                                                            11.5
   f(x_i)
                       (C) 3;
(A)^{5}:
                                                  (\mathbf{D}) 2.
\int_a^b f(x)dx \approx A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3) 的高斯(Gauss)型求积公式的代数精度为
              (B)^7; (C)^5; (D)^3.
(A)^{9};
29、计算\sqrt{3} 的 Newton 迭代格式为( )
    x_{k+1} = \frac{x_k}{2} + \frac{3}{x_{k+1}} = \frac{x_k}{2} + \frac{3}{2x_k} = \frac{x_k}{2} + \frac{2}{x_{k+1}} = \frac{x_k}{2} + \frac{2}{x_{k+1}} = \frac{x_k}{3} + \frac{3}{x_k}
\varepsilon = \frac{1}{2} \times 10^{-3} 30、用二分法求方程 x^3 + 4x^2 - 10 = 0 在区间 [1,2] 内的实根,要求误差限为 \varepsilon = \frac{1}{2} \times 10^{-3} ,则对分
次数至少为( )
                      (C)8;
(A)10: (B)12:
31、经典的四阶龙格一库塔公式的局部截断误差为( )
(A) O(h^4). (B) O(h^2). (C) O(h^5).
32、设l_i(x)是以x_k = k(k = 0,1,\dots,9)为节点的 Lagrange 插值基函数,则k=0 (A) x:
(A) x; (B) k; (C) i;
                                                     (D) 1<sub>o</sub>
33、5 个节点的牛顿-柯特斯求积公式,至少具有(
                                                     )次代数精度
(A)5;
         S(x) = \begin{cases} x^3 & 0 \le x \le 2\\ 2(x-1)^3 + a(x-2) + b & 2 \le x \le 4 \\ \mathbb{E} = \text{constant} \text{ in } a, b \text{ in } \text{in } b \end{cases}
                          (C)8, 6;
35、已知方程 x^3 - 2x - 5 = 0 在 x = 2 附近有根,下列迭代格式中在 x_0 = 2 不收敛的是(
x_{k+1} = \sqrt[3]{2x_k + 5}; \quad (B) \qquad x_{k+1} = \sqrt{2 + \frac{5}{x_k}}; \quad (C) \qquad x_{k+1} = x_k^3 - x_k - 5; \quad (D) \qquad x_{k+1} = \frac{2x_k^3 + 5}{3x_k^2 - 2}.
36、由下列数据
确定的唯一插值多项式的次数为(
(A) 4; (B)2; (C)1;
37、5 个节点的 Gauss 型求积公式的最高代数精度为( )
(A)8; (B)9; (C)10;
```

三、是非题(认为正确的在后面的括弧中打√。否则打x)

1、已知观察值 $(x_i, y_i)(i=0,1,2,..., m)$,用最小二乘法求 n 次拟合多项式 $P_n(x)$ 时,

$$P_n(x)$$
的次数 n 可以任意取。 ()

$$x^2$$

$$(x-x_0)(x-x_2)$$

 $\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$ 表示在节点 x_1 的二次(拉格朗日)插值基函数。 ($\sqrt{}$)

4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。

$$(\sqrt{})$$

$$\begin{pmatrix} 3 & 1 & 1 \\ -2 & 5 & 3 \\ 1 & 2 & 5 \end{pmatrix}$$
 具有严格对角占优。 ()

四、计算题:

$$\begin{cases} 4x_1 + 2x_2 + x_3 = 11 \\ x_1 + 4x_2 + 2x_3 = 18 \end{cases}$$

 $\begin{cases} 4x_1 + 2x_2 + x_3 = 11 \\ x_1 + 4x_2 + 2x_3 = 18 \\ 2x_1 + x_2 + 5x_3 = 22 \\ \text{, 取 } \mathbf{x}^{(0)} = (0,0,0)^T \text{, 迭代四次(要$ 1、用高斯-塞德尔方法解方程组 求按五位有效数字计算)。

答案: 迭代格式

$$\begin{cases} x_1^{(k+1)} = \frac{1}{4} (11 - 2x_2^{(k)} - x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{4} (18 - x_1^{(k+1)} - 2x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{5} (22 - 2x_1^{(k+1)} - x_2^{(k+1)}) \end{cases}$$

k	$x_1^{(k)}$	$X_2^{(k)}$	$x_{3}^{(k)}$
0	0	0	0
1	2.7500	3.8125	2.5375
2	0.20938	3.1789	3.6805
3	0.24043	2.5997	3.1839
4	0.50420	2.4820	3.7019

 $2、求 A、B 使求积公式 \int_{-1}^{1} f(x) dx \approx A[f(-1) + f(1)] + B[f(-\frac{1}{2}) + f(\frac{1}{2})]$ 的代数精度尽量

 $I = \int_{1}^{2} \frac{1}{x} dx$ 高,并求其代数精度;利用此公式求 (保留四位小数)。

答案: $f(x) = 1, x, x^2$ 是精确成立,即

$$\begin{cases} 2A + 2B = 2\\ 2A + \frac{1}{2}B = \frac{2}{3} \end{cases} \qquad A = \frac{1}{9}, B = \frac{8}{9}$$

求积公式为
$$\int_{-1}^{1} f(x)dx = \frac{1}{9}[f(-1) + f(1)] + \frac{8}{9}[f(-\frac{1}{2}) + f(\frac{1}{2})]$$

当 $f(x)=x^3$ 时,公式显然精确成立;当 $f(x)=x^4$ 时, z=5 , z=3 。 所以代数精度为 3。

$$\int_{1}^{2} \frac{1}{x} dx = \int_{-1}^{1} \frac{1}{t+3} dt \approx \frac{1}{9} \left[\frac{1}{-1+3} + \frac{1}{1+3} \right] + \frac{8}{9} \left[\frac{1}{-1/2+3} + \frac{1}{1/2+3} \right]$$
$$= \frac{97}{140} \approx 0.69286$$

3、已知

X_i	1	3	4	5
$f(x_i)$	2	6	5	4

分别用拉格朗日插值法和牛顿插值法求f(x)的三次插值多项式 $P_3(x)$,并求f(2)的近似值(保留四位小数)。

答案:
$$L_3(x) = 2\frac{(x-3)(x-4)(x-5)}{(1-3)(1-4)(1-5)} + 6\frac{(x-1)(x-4)(x-5)}{(3-1)(3-4)(3-5)}$$

$$+5\frac{(x-1)(x-3)(x-5)}{(4-1)(4-3)(4-5)}+4\frac{(x-1)(x-3)(x-4)}{(5-1)(5-3)(5-4)}$$

差商表为

X_i	y_i	一阶均差	二阶均差	三阶均差
1	2			

3	6	2		
4	5	-1	-1	
5	4	-1	0	1/4

$$P_3(x) = N_3(x) = 2 + 2(x-1) - (x-1)(x-3) + \frac{1}{4}(x-1)(x-3)(x-4)$$

$$f(2) \approx P_3(2) = 5.5$$

4、取步长h=0.2,用预估-校正法解常微分方程初值问题

$$\begin{cases} y' = 2x + 3y \\ y(0) = 1 \end{cases} \qquad (0 \le x \le 1)$$

$$\begin{cases} y_{n+1}^{(0)} = y_n + 0.2 \times (2x_n + 3y_n) \\ y_{n+1} = y_n + 0.1 \times [(2x_n + 3y_n) + (2x_{n+1} + 3y_{n+1}^{(0)})] \end{cases}$$

 $y_{n+1} = 0.52x_n + 1.78y_n + 0.04$

r	ı	0	1	2	3	4	5
x	'n	0	0.2	0.4	0.6	0.8	1.0
у	, n	1	1.82	5.8796	10.7137	19.4224	35.0279

5、已知

x_i	-2	-1	0	1	2
$f(x_i)$	4	2	1	3	5

求 f(x) 的二次拟合曲线 $p_2(x)$, 并求 f'(0) 的近似值。

答案:解:

i	X_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
0	-2	4	4	-8	16	-8	16
1	-1	2	1	-1	1	-2	2
2	0	1	0	0	0	0	0
3	1	3	1	1	1	3	3
4	2	5	4	8	16	10	20
Σ	0	15	10	0	34	3	41

重规方程组为
$$\begin{cases} 5a_0 + 10a_2 = 15\\ 10a_1 = 3\\ 10a_0 + 34a_2 = 41 \end{cases}$$

$$a_0 = \frac{10}{7}, a_1 = \frac{3}{10}, a_2 = \frac{11}{14}$$

$$p_2(x) = \frac{10}{7} + \frac{3}{10}x + \frac{11}{14}x^2 \qquad p_2'(x) = \frac{3}{10} + \frac{11}{7}x$$

$$f'(0) \approx p_2'(0) = \frac{3}{10}$$

6、已知 sin x 区间[0.4, 0.8]的函数表

x_i	0.4	0.5	0.6	0.7	0.8
y_i	0.38942	0.47943	0.56464	0.64422	0.71736

如用二次插值求 sin 0.63891 的近似值,如何选择节点才能使误差最小?并求该近似值。

答案:解:应选三个节点,使误差

$$|R_2(x)| \le \frac{M_3}{3!} |\omega_3(x)|$$

尽量小,即应使 $|\omega_3(x)|$ 尽量小,最靠近插值点的三个节点满足上述要求。即取节点 $\{0.5,0.6,0.7\}$ 最好,实际计算结果

$$\sin 0.63891 \approx 0.596274$$

且

$$\begin{aligned} & \left| \sin 0.63891 - 0.596274 \right| \\ & \leq \frac{1}{3!} \left| (0.63891 - 0.5)(0.63891 - 9 - 0.6)(0.63891 - 0.7) \right| \\ & \leq 0.55032 \times 10^{-4} \end{aligned}$$

7、构造求解方程 $e^x + 10x - 2 = 0$ 的根的迭代格式 $x_{n+1} = \varphi(x_n), n = 0,1,2,\cdots$,讨论其收敛性,并将根求出来, $|x_{n+1} - x_n| < 10^{-4}$ 。

答案: 解: 令 $f(x) = e^x + 10x - 2$, f(0) = -2 < 0, f(1) = 10 + e > 0

且 $f'(x) = e^x + 10 > 0$ 对 $\forall x \in (-\infty, +\infty)$. 故 f(x) = 0 在 (0.1) 内有唯一实根.将方程

f(x) = 0 变形为

$$x = \frac{1}{10}(2 - e^x)$$

则当 x ∈ (0,1) 时

$$\varphi(x) = \frac{1}{10}(2 - e^x)$$
, $|\varphi'(x)| = \left| -\frac{e^x}{10} \right| \le \frac{e}{10} < 1$

故迭代格式

$$x_{n+1} = \frac{1}{10}(2 - e^{x_n})$$

收敛。取 $x_0 = 0.5$, 计算结果列表如下:

n	0	1	2	3
x_n	0.5	0.035 127 872	0.096 424 785	0.089 877 325
n	4	5	6	7
x_n	0.090 595 993	0.090 517 340	0.090 525 950	0.090 525 008

且满足 $|x_7 - x_6| \le 0.000\,000\,95 < 10^{-6}$ 所以 $x^* \approx 0.090\,525\,008$

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 14 \\ 2x_1 + 5x_2 + 2x_3 = 18 \\ 3x_1 + x_2 + 5x_3 = 20 \end{cases}$$
 8、利用矩阵的 LU 分解法解方程组

$$A = LU = \begin{bmatrix} 1 \\ 2 & 1 \\ 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & -4 \\ & -24 \end{bmatrix}$$

答案:解:

 $\Rightarrow Ly = b \neq y = (14,-10,-72)^T$, $Ux = y \neq x = (1,2,3)^T$.

$$\begin{cases} 3x_1 + 2x_2 + 10x_3 = 15 \\ 10x_1 - 4x_2 - x_3 = 5 \\ 2x_1 + 10x_2 - 4x_3 = 8 \end{cases}$$

- - (1) 试建立一种收敛的 Seidel 迭代公式,说明理由;
 - (2) 取初值 $\mathbf{x}^{(0)} = (0,0,0)^T$, 利用(1)中建立的迭代公式求解,要求 $||x^{(k+1)} - x^{(k)}||_{\infty} < 10^{-3}$

解: 调整方程组的位置, 使系数矩阵严格对角占优

$$\begin{cases} 10x_1 - 4x_2 - x_3 = 5 \\ 2x_1 + 10x_2 - 4x_3 = 8 \\ 3x_1 + 2x_2 + 10x_3 = 15 \end{cases}$$

故对应的高斯-塞德尔迭代法收敛.迭代格式为

$$\begin{cases} x_1^{(k+1)} = \frac{1}{10} (4x_2^{(k)} + x_3^{(k)} + 5) \\ x_2^{(k+1)} = \frac{1}{10} (-2x_1^{(k+1)} + 4x_3^{(k)} + 8) \\ x_3^{(k+1)} = \frac{1}{10} (-3x_1^{(k+1)} - 2x_2^{(k+1)} + 15) \end{cases}$$

取 $x^{(0)} = (0,0,0)^T$. 经 7 步迭代可得:

 $\mathbf{x}^* \approx \mathbf{x}^{(7)} = (0.999\ 991\ 459, 0.999\ 950\ 326, 1.000\ 010)^T$

10、已知下列实验数据

χ_i	1.36	1.95	2.16
$f(x_i)$	16.844	17.378	18.435

试按最小二乘原理求一次多项式拟合以上数据。

解: 当 0 < x < 1 时, $f''(x) = e^x$, 则 $|f''(x)| \le e$, 且 $\int_0^1 e^x dx$ 有一位整数.

要求近似值有 5 位有效数字,只须误差 $\left|R_1^{(n)}(f)\right| \le \frac{1}{2} \times 10^{-4}$.

由
$$\left| R_1^{(n)}(f) \right| \le \frac{(b-a)^3}{12n^2} \left| f''(\xi) \right|$$
 ,只要

$$\left| R_1^{(n)}(e^x) \right| \le \frac{e^{\xi}}{12n^2} \le \frac{e}{12n^2} \le \frac{1}{2} \times 10^{-4}$$

即可,解得

$$n \ge \sqrt{\frac{e}{6}} \times 10^2 = 67.30877 \cdots$$

所以 n=68, 因此至少需将 [0,1] 68 等份。

$$\begin{bmatrix} 1 & -1 & 1 \\ 5 & -4 & 3 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -12 \\ 11 \end{bmatrix}$$

11、用列主元素消元法求解方程组

$$\begin{bmatrix} 1 & -1 & 1 & -4 \\ 5 & -4 & 3 & -12 \\ 2 & 1 & 1 & 11 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 5 & -4 & 3 & -12 \\ 1 & -1 & 1 & -4 \\ 2 & 1 & 1 & 11 \end{bmatrix}$$

回代得

$$x_3 = -1, x_2 = 6, x_1 = 3$$

12、取节点 $x_0 = 0, x_1 = 0.5, x_2 = 1$, 求函数 $f(x) = e^{-x}$ 在区间[0,1]上的二次插值多项式 $P_2(x)$, 并估计误差。

解:

$$P_2(x) = e^{-0} \times \frac{(x - 0.5)(x - 1)}{(0 - 0.5)(0 - 1)} + e^{-0.5} \times \frac{(x - 0)(x - 1)}{(0.5 - 0)(0.5 - 1)}$$

$$+e^{-1} \times \frac{(x-0)(x-0.5)}{(1-0)(1-0.5)}$$

$$= 2(x-0.5)(x-1) - 4e^{-0.5}x(x-1) + 2e^{-1}x(x-0.5)$$

$$f(x) = e^{-x}, f'''(x) = -e^{-x}, M_3 = \max_{x \in [0,1]} |f'''(x)| = 1$$

$$|R_2(x)| = |e^{-x} - P_2(x)| \le \frac{1}{3!} |x(x-0.5)(x-1)|$$

13、用欧拉方法求

故截断误差

$$y(x) = \int_0^x e^{-t^2} dt$$

在点x = 0.5, 1.0, 1.5, 2.0处的近似值。

解: $y(x) = \int_0^x e^{-t^2} dt$ 等价于

$$\begin{cases} y' = e^{-x^2} \\ y(0) = 0 \end{cases} \quad (x > 0)$$

记 $f(x,y) = e^{-x^2}$,取 h = 0.5, $x_0 = 0, x_1 = 0.5, x_2 = 1.0, x_3 = 1.5, x_4 = 2.0$ 则由欧拉公式

$$\begin{cases} y_{n+1} = y_n + hf(x_n, y_n) \\ y_0 = 0 \end{cases}, \quad n = 0,1,2,3$$

$$y(0.5) \approx y_1 = 0.5,$$

可得
$$y(0.5) \approx y_1 = 0.5$$
, $y(1.0) = y_2 \approx 0.88940$

$$y(1.5) \approx y_3 = 1.07334$$
, $y(2.0) = y_4 \approx 1.12604$

- 14、给定方程 $f(x) = (x-1)e^x 1 = 0$
 - 1) 分析该方程存在几个根:
 - 2) 用迭代法求出这些根, 精确到5位有效数字;
 - 3) 说明所用的迭代格式是收敛的。

解: 1) 将方程

$$(x-1)e^x - 1 = 0$$

(1)

改写为

$$x-1=e^{-x} \tag{2}$$

作函数 $f_1(x) = x - 1$, $f_2(x) = e^{-x}$ 的图形 (略) 知 (2) 有唯一根 $x^* \in (1,2)$ 。

2) 将方程(2) 改写为

$$x = 1 + e^{-x}$$

构造迭代格式

$$\begin{cases} x_{k+1} = 1 + e^{-x_k} \\ x_0 = 1.5 \end{cases} \qquad (k = 0, 1, 2, \dots)$$

计算结果列表如下:

k	1	2	3	4	5	6	7	8	9
χ_k	1.22313	1.29431	1.27409	1.27969	1.27812	1.27856	1.27844	1.27847	1.27846

3)
$$\varphi(x) = 1 + e^{-x}$$
, $\varphi'(x) = -e^{-x}$

当 $x \in [1,2]$ 时, $\varphi(x) \in [\varphi(2), \varphi(1)] \subset [1,2]$,且

$$|\varphi'(x)| \le e^{-1} < 1$$

所以迭代格式 $x_{k+1} = \varphi(x_k)$ $(k = 0,1,2,\cdots)$ 对任意 $x_0 \in [1,2]$ 均收敛。

15、用牛顿(切线)法求 $\sqrt{3}$ 的近似值。取 $x_0=1.7$, 计算三次, 保留五位小数。

解: $\sqrt{3}$ 是 $f(x) = x^2 - 3 = 0$ 的正根, f'(x) = 2x, 牛顿迭代公式为

$$x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}$$
 $x_{n+1} = \frac{x_n}{2} + \frac{3}{2x_n}$ $(n = 0,1,2,\cdots)$

取 x0=1.7, 列表如下:

n	1	2	3
x_n	1.73235	1.73205	1.73205

16、已知f(-1)=2,f(1)=3,f(2)=-4,求拉格朗日插值多项式 $L_2(x)$ 及f(1,5)的近似值,取五位小数。

解:
$$L_2(x) = 2 \times \frac{(x-1)(x-2)}{(-1-1)(-1-2)} + 3 \times \frac{(x+1)(x-2)}{(1+1)(1-2)} - 4 \times \frac{(x+1)(x-1)}{(2+1)(2-1)}$$
$$= \frac{2}{3}(x-1)(x-2) - \frac{3}{2}(x+1)(x-2) - \frac{4}{3}(x+1)(x-1)$$
$$f(1.5) \approx L_2(1.5) = \frac{1}{24} \approx 0.04167$$

 $\int_0^1 e^x dx$ 17、n=3,用复合梯形公式求 $\int_0^1 e^x dx$ 的近似值(取四位小数),并求误差估计。

解:
$$\int_0^1 e^x dx \approx T_3 = \frac{1-0}{2\times 3} [e^0 + 2(e^{1/3} + e^{2/3}) + e^1] \approx 1.7342$$

$$f(x) = e^x, f''(x) = e^x, 0 \le x \le 1$$
 By $|f''(x)| \le e$

$$|R| = |e^x - T_3| \le \frac{e}{12 \times 3^2} = \frac{e}{108} = 0.025 \dots \le 0.05$$

至少有两位有效数字。

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -3 & 1 \\ 1 & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ -8 \end{pmatrix}$$

18、用 Gauss-Seidel 迭代法求解线性方程组 (1-1) 取 $\mathbf{x}^{(0)}=(0,0,0)^{\mathrm{T}}$,列表计算三次,保留三位小数。

解: Gauss-Seidel 迭代格式为:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{3}(& -x_3^{(k)} + 5) \\ x_2^{(k+1)} = -\frac{1}{3}(-x_1^{(k+1)} & -x_3^{(k)} - 1) \\ x_3^{(k+1)} = \frac{1}{4}(-x_1^{(k+1)} + x_2^{(k+1)} & -8) \end{cases}$$

$$\begin{bmatrix} 3 & 0 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

 $\begin{bmatrix} 3 & 0 & 1 \\ 1 & -3 & 1 \\ 1 & -1 & 4 \end{bmatrix}$ 严格对角占优,故 Gauss-Seidel 迭代收敛.

取 $x^{(0)}=(0,0,0)^{T}$, 列表计算如下:

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$
1	1.667	0.889	-2.195
2	2.398	0.867	-2.383
3	2.461	0.359	-2.526

$$\int y' = x + y$$

 $\begin{cases} y' = x + y \\ 19、用预估—校正法求解 \\ y(0) = 1 \end{cases} \quad (0 \le x \le 1), \ h = 0. \ 2, \ 取两位小数。$

解: 预估-校正公式为

$$\begin{cases} y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2) \\ k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + h, y_n + k_1) \end{cases}$$

$$n = 0,1,2,\dots$$

其中f(x,y)=x+y, $y_0=1$, h=0.2, n=0,1,2,3,4, 代入上式得:

n	1	2	3	4	5
\mathcal{X}_n	0.2	0.4	0.6	0.8	1.0
\mathcal{Y}_n	1.24	1.58	2.04	2.64	3.42

20、(8分) 用最小二乘法求形如 $y = a + bx^2$ 的经验公式拟合以下数据:

\mathcal{X}_i	19	25	30	38
\mathcal{Y}_i	19.0	32.3	49.0	73.3

 $\mathfrak{A}: \Phi = span\{1, x^2\}$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 19^{2} & 25^{2} & 31^{2} & 38^{2} \end{bmatrix} \qquad y^{T} = \begin{bmatrix} 19.0 & 32.3 & 49.0 & 73.3 \end{bmatrix}$$

解方程组 $A^TAC = A^Ty$

其中
$$A^T A = \begin{bmatrix} 4 & 3391 \\ 3391 & 3529603 \end{bmatrix}$$
 $A^T y = \begin{bmatrix} 173.6 \\ 179980.7 \end{bmatrix}$

解得:
$$C = \begin{bmatrix} 0.9255577 \\ 0.0501025 \end{bmatrix}$$
 所以 $a = 0.9255577$, $b = 0.0501025$

 $\int_0^1 e^{-x} dx$ 21、(15 分) 用 n=8 的复化梯形公式(或复化 Simpson 公式)计算 $\int_0^1 e^{-x} dx$ 时,试用余项估计其误差。用 n=8 的复化梯形公式(或复化 Simpson 公式)计算出该积分的近似值。

解:
$$|R_T[f]| = \left| -\frac{b-a}{12} h^2 f''(\eta) \right| \le \frac{1}{12} \times \frac{1}{8^2} \times e^0 = \frac{1}{768} = 0.001302$$

$$T(8) = \frac{h}{2} [f(a) + 2\sum_{k=1}^{7} f(x_k) + f(b)]$$

$$= \frac{1}{16} [1 + 2 \times (0.8824969 + 0.7788008 + 0.60653066 + 0.5352614 + 0.47236655 + 0.41686207) + 0.36787947]$$

$$= 0.6329434$$

22、(15 分)方程 $x^3 - x - 1 = 0$ 在x = 1.5附近有根,把方程写成三种不同的等价形式(1) $x = \sqrt[3]{x+1}$

对应迭代格式 $x_{n+1}=\sqrt[3]{x_n+1}$; (2) $x=\sqrt{1+\frac{1}{x}}$ 对应迭代格式 $x_{n+1}=\sqrt{1+\frac{1}{x_n}}$; (3) $x=x^3-1$ 对应迭代格式 $x_{n+1}=x_n^3-1$ 。判断迭代格式在 $x_0=1.5$ 的收敛性,选一种收敛格式计算 x=1.5 附近的根,精确到小数点后第三位。

解: (1)
$$\varphi'(x) = \frac{1}{3}(x+1)^{-\frac{2}{3}}, |\varphi'(1.5)| = 0.18 < 1, 故收敛;$$

$$\varphi'(x) = -\frac{1}{2x^2\sqrt{1+\frac{1}{x}}}$$
(2)
$$|\varphi'(1.5)| = 0.17 < 1, 故收敛;$$

$$(3)$$
 $\varphi'(x) = 3x^2$, $|\varphi'(1.5)| = 3 \times 1.5^2 > 1$, 故发散。

选择
$$(1)$$
: $x_0 = 1.5$, $x_1 = 1.3572$, $x_2 = 1.3309$, $x_3 = 1.3259$, $x_4 = 1.3249$, $x_5 = 1.32476$, $x_6 = 1.32472$

23、(8分) 已知方程组AX = f, 其中

$$A = \begin{bmatrix} 4 & 3 \\ 3 & 4 & -1 \\ & -1 & 4 \end{bmatrix}, \quad f = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

- (1) 列出 Jacobi 迭代法和 Gauss-Seidel 迭代法的分量形式。
- (2) 求出 Jacobi 迭代矩阵的谱半径。

$$\begin{cases} x_1^{(k+1)} = \frac{1}{4}(24 - 3x_2^{(k)}) \\ x_2^{(k+1)} = \frac{1}{4}(30 - 3x_1^{(k)} + x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{4}(-24 + x_2^{(k)}) \\ k = 0.1.2.3. \dots \end{cases}$$

解: Jacobi 迭代法:

$$\begin{cases} x_1^{(k+1)} = \frac{1}{4}(24 - 3x_2^{(k)}) \\ x_2^{(k+1)} = \frac{1}{4}(30 - 3x_1^{(k+1)} + x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{4}(-24 + x_2^{(k+1)}) \\ k = 0,1,2,3,\cdots \end{cases}$$

Gauss-Seidel 迭代法:

$$B_{J} = -D^{-1}(L+U) = \begin{bmatrix} 0 & -\frac{3}{4} & 0\\ -\frac{3}{4} & 0 & \frac{3}{4}\\ 0 & \frac{3}{4} & 0 \end{bmatrix}, \quad \rho(B_{J}) = \sqrt{\frac{5}{8}} (\text{PR} \frac{\sqrt{10}}{4}) = 0.790569$$

 $\begin{cases} \frac{dy}{dx} = -y + 1 \\ y(0) = 1 \end{cases}$ 用改进的欧拉法求 y(0.1) 的值;用经 典的四阶龙格—库塔法求 y(0.1) 的值。

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) = 0.9y_n + 0.1 \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(0)})] = 0.905y_n + 0.095 \end{cases}$$
 改进的欧拉法:

所以 $y(0.1) = y_1 = 1$, 经典的四阶龙格一库塔法:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}[k_1 + 2k_2 + 2k_3 + k_4] \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1) \\ k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2) \\ k_4 = f(x_n + h, y_n + hk_3) \end{cases} \qquad k_1 = k_2 = k_3 = k_4 = 0, \text{ fill } y(0.1) = y_1 = 1.$$

25、数值积分公式形如

 $\int_{0}^{1} x f(x) dx \approx S(x) = Af(0) + Bf(1) + Cf'(0) + Df'(1)$ 试确定参数 A, B, C, D 使公式代数精度尽 量高; (2) 设 $f(x) \in C^4[0,1]$, 推导余项公式 $R(x) = \int_0^1 x f(x) dx - S(x)$, 并估计误差。

解:将
$$f(x)=1,x,x^2,x^3$$
 分布代入公式得:
$$A=\frac{3}{20},B=\frac{7}{20},B=\frac{1}{30},D=-\frac{1}{20}$$
 构造 Hermite 插值多项式 $H_3(x)$ 满足
$$H_3'(x_i)=f(x_i)$$
 相 $i=0,1$ 其中 $x_0=0,x_1=1$ 则有:
$$\int_0^1 x H_3(x) dx = S(x)$$
 ,
$$f(x)-H_3(x)=\frac{f^{(4)}(\xi)}{4!}x^2(x-1)^2$$

$$y_{n+1} = \alpha_0 y_n + \alpha_1 y_{n-1} + h[\theta f(x_n, y_n) + (1 - \theta) f(x_{n-1}, y_{n-1})]$$

$$\begin{cases} y' = f(x, y) \end{cases}$$

 $\begin{cases} y'=f(x,y) \\ y(x_0)=y_0 \text{ 时, 如何选择参数} & \alpha_0,\alpha_1,\theta \text{ 使方法阶数尽可能高,并求局} \end{cases}$ 部截断误差主项,此时该方法是几阶的

解:

27、(10分)已知数值积分公式为:

$$\int_{0}^{h} f(x)dx \approx \frac{h}{2}[f(0) + f(h)] + \lambda h^{2}[f'(0) - f'(h)],$$
 试确定积分公式中的参数 λ , 使其代数精

确度尽量高,并指出其代数精确度的次数。

 \mathbf{w} . f(x) = 1 显然精确成立;

$$f(x) = x_{\text{HJ}}, \quad \int_0^h x dx = \frac{h^2}{2} = \frac{h}{2} [0 + h] + \lambda h^2 [1 - 1];$$

$$f(x) = x^2_{\text{HJ}}, \quad \int_0^h x^2 dx = \frac{h^3}{3} = \frac{h}{2} [0 + h^2] + \lambda h^2 [0 - 2h] = \frac{h^3}{2} - 2\lambda h \Rightarrow \lambda = \frac{1}{12};$$

$$f(x) = x^3_{\text{HJ}}, \quad \int_0^h x^3 dx = \frac{h^4}{4} = \frac{h}{2} [0 + h^3] + \frac{1}{12} h^2 [0 - 3h^2];$$

$$f(x) = x^4_{\text{HJ}}, \quad \int_0^h x^4 dx = \frac{h^5}{5} \neq \frac{h}{2} [0 + h^4] + \frac{1}{12} h^2 [0 - 4h^3] = \frac{h^5}{6};$$

所以,其代数精确度为3。

28、(8分) 已知求 $\sqrt{a}(a>0)$ 的迭代公式为:

$$x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$$
 $x_0 > 0$ $k = 0,1,2\cdots$

证明: 对一切 $k = 1, 2, \dots, x_k \ge \sqrt{a}$, 且序列 $\{x_k\}$ 是单调递减的, 从而迭代过程收敛。

证明: $x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k}) \ge \frac{1}{2} \times 2 \times \sqrt{x_k \times \frac{a}{x_k}} = \sqrt{a} \quad k = 0,1,2 \cdots$

故对一切 $k = 1, 2, \dots, x_k \ge \sqrt{a}$ 。

 $\frac{x_{k+1}}{\chi_k} = \frac{1}{2}(1 + \frac{a}{x_k^2}) \le \frac{1}{2}(1+1) = 1$ 所以 $x_{k+1} \le x_k$,即序列 $\{x_k\}$ 是单调递减有下界,从而迭代过程收敛。

 $\int_0^3 f(x)dx \approx \frac{3}{2}[f(1) + f(2)]$ 是否为插值型求积公式?为什么?其代数精度是多少?

解: 是。因为
$$f(x)$$
 在基点 1、2 处的插值多项式为
$$p(x) = \frac{x-2}{1-2} \times f(1) + \frac{x-1}{2-1} \times f(2)$$

$$\int_0^3 p(x) dx = \frac{3}{2} [f(1) + f(2)]$$
 。其代数精度为 1。

30、(6分)写出求方程 $4x = \cos(x) + 1$ 在区间 [0,1] 的根的收敛的迭代公式,并证明其收敛性。

$$(6 \ \%)$$
 $x_{n+1} = \phi(x_n) = \frac{1}{4} [1 + \cos(x_n)], \quad n=0, 1, 2, \dots$

31、(12 分)以 100, 121, 144 为插值节点,用插值法计算 $\sqrt{115}$ 的近似值,并利用余项估计误差。用 Newton 插值方法:差分表:

 $\sqrt{115} \approx 10+0.0476190(115-100)-0.0000941136(115-100)(115-121)$

=10.7227555

$$f'''(x) = \frac{3}{8}x^{-\frac{5}{2}}$$

$$|R| = \left| \frac{f'''(\xi)}{3!} (115 - 100)(115 - 121)(115 - 144) \right|$$

$$\leq \frac{1}{6} \frac{3}{8} 100^{-\frac{5}{2}} \times 15 \times 6 \times 29 \approx 0.00163$$

 $I = \int_0^1 \frac{\sin(x)}{x} dx$ 的近似值,要求误差限为 0.5×10^{-5} 。

$$S_1 = \frac{1}{6} \left(f(0) + 4f(\frac{1}{2}) + f(1) \right) = 0.94614588$$

$$S_2 = \frac{1}{12} \left(f(0) + 4f(\frac{1}{4}) + 2f(\frac{1}{2}) + 4f(\frac{3}{4}) + f(1) \right) = 0.94608693$$

$$|I - S_2| \approx \frac{1}{15} |S_2 - S_1| = 0.393 \times 10^{-5}$$
 $I \approx S_2 = 0.94608693$

或利用余项:
$$f(x) = \frac{\sin(x)}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \frac{x^8}{9!} - \cdots$$

$$f^{(4)}(x) = \frac{1}{5} - \frac{x^2}{7 \times 2!} + \frac{x^4}{9 \times 4!} - \dots \qquad |f^{(4)}(x)| \le \frac{1}{5}$$

$$|R| = \frac{(b-a)^5}{2880n^4} |f^{(4)}(\eta)| \le \frac{1}{2880 \times 5n^4} \le 0.5 \times 10^{-5}, \quad n \ge 2, \quad I \approx S_2 = \cdots$$

33、(10分)用 Gauss 列主元消去法解方程组:

$$\begin{cases} x_1 + 4x_2 + 2x_3 = 24 \\ 3x_1 + x_2 + 5x_3 = 34 \\ 2x_1 + 6x_2 + x_3 = 27 \end{cases}$$

3.0000 1.0000 5.0000 34.0000

0.0000 3.6667 0.3333 12.6667

0.0000 5.3333 -2.3333 4.3333

3.0000 1.0000 5.0000 34.0000

0.0000 5.3333 -2.3333 4.3333

0.0 0000 1.9375 9.6875

$$x = (2.0000, 3.0000, 5.0000)^T$$

$$(A^{T}A)x = A^{T}b$$

$$\begin{pmatrix} 3 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 8 \\ 20 \end{pmatrix}$$

$$x = \begin{pmatrix} -1.3333 \\ 2.0000 \end{pmatrix}$$

若用 Householder 变换,则:

$$(A,b) \rightarrow \begin{pmatrix} -1.73205 & -3.46410 & 4.61880 \\ 0 & -0.36603 & -1.52073 \\ 0 & -1.36603 & -2.52073 \end{pmatrix}$$

最小二乘解: (-1.33333, 2.00000)^T.

35、(8分)已知常微分方程的初值问题:

$$\begin{cases} dy/dx = x/y, & 1 \le x \le 1.2 \\ y(1) = 2 \end{cases}$$

用改进的 Euler 方法计算 y(1.2) 的近似值, 取步长 h=0.2。

$$k_1 = f(x_0, y_0) = 0.5$$
 $k_2 = f(x_1, y_0 + hk_1) = 1.1/(2 + 0.2 \times 0.5) = 0.5238095$

$$y_1 = y_0 + \frac{h}{2}(k_1 + k_2) = 2 + 0.1 \times (0.5 + 0.5238095) = 2.1071429$$

36、(6分)构造代数精度最高的如下形式的求积公式,并求出其代数精度:

$$\int_0^1 x f(x) dx \approx A_0 f\left(\frac{1}{2}\right) + A_1 f(1)$$

取 f(x)=1,x, 令公式准确成立,得:

$$A_0 + A_1 = \frac{1}{2}$$
, $\frac{1}{2}A_0 + A_1 = \frac{1}{3}$ $A_0 = \frac{1}{3}$, $A_1 = \frac{1}{6}$

 $f(x)=x^2$ 时,公式左右=1/4; $f(x)=x^3$ 时,公式左=1/5,公式右=5/24

:. 公式的代数精度=2

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

37、(15 分)已知方程组Ax = b, 其中

- (1) 写出该方程组的 Jacobi 迭代法和 Gauss-Seidel 迭代法的分量形式;
- (2) 判断(1) 中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快;

解: (1) Jacobi 迭代法的分量形式

$$\begin{cases} x_1^{(k+1)} = 1 - 2x_2^{(k)} + 2x_3^{(k)} \\ x_2^{(k+1)} = 2 - x_1^{(k)} - x_3^{(k)} ; k = 0,1,2,\dots \\ x_3^{(k+1)} = 3 - 2x_1^{(k)} - 2x_2^{(k)} \end{cases}$$

Gauss-Seidel 迭代法的分量形式

$$\begin{cases} x_1^{(k+1)} = 1 - 2x_2^{(k)} + 2x_3^{(k)} \\ x_2^{(k+1)} = 2 - x_1^{(k+1)} - x_3^{(k)} ; k = 0,1,2,\dots \\ x_3^{(k+1)} = 3 - 2x_1^{(k+1)} - 2x_2^{(k+1)} \end{cases}$$

(2) Jacobi 迭代法的迭代矩阵为

$$\mathbf{B} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U}) = \begin{bmatrix} 0 & -2 & 2 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{bmatrix},$$

 $\lambda_1 = \lambda_2 = \lambda_3 = 0$, $\rho(B) = 0 < 1$, Jacobi 迭代法收敛

Gauss-Seidel 迭代法的迭代矩阵为

$$G = (D - L)^{-1}U = \begin{bmatrix} 0 & -2 & 2 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{bmatrix}.$$

 $\lambda_1 = 0, \lambda_2 = \lambda_3 = 2$, $\rho(B) = 2 > 1$,Gauss-Seidel 迭代法发散

$$\begin{cases} \frac{dy}{dx} = 2x - y \\ y(0) = 1 \end{cases}$$

38、(10 分)对于一阶微分方程初值问题 y(0)=1 ,取步长 h=0.2,分别用 Euler 预报 -校 正法和经典的四阶龙格—库塔法求 y(0.2) 的近似值。

解: Euler 预报一校正法

$$\begin{cases} y_{n+1}^{(0)} = y_n + 0.2(2x_n - y_n) = 0.4x_n + 0.8y_n \\ y_{n+1} = y_n + 0.1(2x_n - y_n + 2x_{n+1} - y_{n+1}^{(0)}) = 0.16x_n + 0.2x_{n+1} + 0.82y_n \\ y(0.2) \approx y_1 = 0.2 \times 0.2 + 0.82 \times 1 = 0.86 \end{cases}$$

经典的四阶龙格—库塔法

$$\begin{cases} y_{n+1} = y_n + \frac{0.2}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ k_1 = 2x_n - y_n \\ k_2 = 2(x_n + 0.1) - (y_n + 0.1k_1) \\ k_3 = 2(x_n + 0.1) - (y_n + 0.1k_2) \\ k_4 = 2(x_n + 0.2) - (y_n + 0.2k_3) \end{cases}$$

$$y(0.2) \approx y_1 = 0.8562$$

$$(k_1 = 1.5041; k_2 = 1.5537; k_3 = 1.5487; k_4 = 1.5943)$$

$$y_{n+1} = y_n + \frac{h}{2} [\alpha f(x_n, y_n) + \beta f(x_{n-1}, y_{n-1})]$$
 求解一阶常微分方程初值问题

$$\begin{cases} y' = f(x, y) \end{cases}$$

 $y(x_0) = y_0$,问:如何选择参数 α , β 的值,才使该方法的阶数尽可能地高?写出此时的局部截断误差主项,并说明该方法是几阶的。

解: 局部截断误差为

$$T_{n+1} = y(x_{n+1}) - y(x_n) - \frac{h}{2} [\alpha f(x_n, y(x_n)) + \beta f(x_{n-1}, y(x_{n-1}))]$$

$$= y(x_n) + hy'(x_n) + \frac{h^2}{2!} y''(x_n) + \frac{h^3}{3!} y'''(x_n) + O(h^4) - y(x_n) - \frac{h}{2} [\alpha y'(x_n) + \beta y'(x_{n-1})]$$

$$= y(x_n) + hy'(x_n) + \frac{h^2}{2!} y''(x_n) + \frac{h^3}{3!} y'''(x_n) + O(h^4) - y(x_n) - \frac{h}{2} \alpha y'(x_n)$$

$$- \frac{h}{2} \beta [y'(x_n) - hy''(x_n) + \frac{h^2}{2!} y'''(x_n) + O(h^3)]$$

$$= h(1 - \frac{\alpha}{2} - \frac{\beta}{2}) y'(x_n) + \frac{h^2}{2!} (1 + \beta) y''(x_n) + (\frac{h^3}{3!} - \frac{h^3}{4} \beta) y'''(x_n) + O(h^4)$$

$$\begin{cases} 1 - \frac{\alpha}{2} - \frac{\beta}{2} = 0 \\ 1 + \beta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 3 \\ \beta = -1 \end{cases}$$
因此有

局部截断误差主项为 $\frac{5h^3}{12}y'''(x_n)$,该方法是 2 阶的。

40、(10分)已知下列函数表:

x	0	1	2	3
f(x)	1	3	9	27

(1)写出相应的三次 Lagrange 插值多项式;

(2)作均差表,写出相应的三次 **Newton** 插值多项式,并计算f(1.5) 的近似值。

解: (1)

$$L_3(x) = \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)} + \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)} + \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} + \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}$$

$$= \frac{4}{3}x^3 - 2x^2 + \frac{8}{3}x + 1$$

$$0 \quad 1$$

$$1 \quad 3 \quad 2$$

$$2 \quad 9 \quad 6 \quad 2 \quad 4$$

$$2 \quad 9 \quad 6 \quad 2 \quad 4$$

$$(2) 均差表: 3 \quad 27 \quad 18 \quad 6 \quad 3$$

$$N_3(x) = 1 + 2x + 2x(x-1) + \frac{4}{3}x(x-1)(x-2)$$

$$f(1.5) \approx N_3(1.5) = 5$$

$$\begin{cases} \frac{dy}{dx} = 8 - 3y \\ (x \ge 0) \end{cases}$$
 41、(10 分)取步长 $h = 0.2$,求解初值问题
$$\begin{cases} y(0) = 2 \end{cases}$$
 ,分别用欧拉预报一校正法和经

典四阶龙格一库塔法求 y(0.2) 的近似值。

解: (1) 欧拉预报-校正法:

$$\begin{cases} y_{n+1}^{(0)} = y_n + 0.2(8 - 3y_n) = 1.6 + 0.4y_n \\ y_{n+1} = y_n + 0.1(8 - 3y_n + 8 - 3(1.6 + 0.4y_n)) = 1.12 + 0.58y_n \\ y(0.2) \approx y_1 = 2.28 \end{cases}$$

(2) 经典四阶龙格-库塔法:

$$\begin{cases} y_{n+1} = y_n + \frac{0.2}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ k_1 = 8 - 3y_n \\ k_2 = 8 - 3(y_n + 0.1k_1) \\ k_3 = 8 - 3(y_n + 0.1k_2) \\ k_4 = 8 - 3(y_n + 0.2k_3) \\ y(0.2) \approx y_1 = 2.3004 \end{cases}$$

 $\underline{\mathbf{m}: 5 \land \mathbf{h} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}}$ $\mathbf{f}(\mathbf{x}) = \frac{1}{1 + 2\mathbf{x}^2}$

$\chi_{\rm i}$	0	0.5	1	1.5	2
$f(x_i)$	1	0.666667	0.333333	0.181818	0.111111

------(2分)

(1)复化梯形公式 (n=4,h=2/4=0.5):

$$T_4 = \frac{0.5}{2} [1 + 2 \times (0.666667 + 0.3333333 + 0.181818) + 0.111111]$$

= 0.868687

(2) 复化梯形公式 (n=2,h=2/2=1):

$$S_2 = \frac{1}{6}[1 + 4 \times (0.666667 + 0.181818) + 2 \times 0.333333 + 0.111111]$$

= 0.861953

43、(10 分)已知方程组Ax = b, 其中

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- (1)列出 Jacobi 迭代法和 Gauss-Seidel 迭代法的分量形式;
- (2)讨论上述两种迭代法的收敛性。

解: (1) Jacobi 迭代法:

$$\begin{cases} x_1^{(k+1)} = (1 - x_2^{(k)} - x_3^{(k)})/2 \\ x_2^{(k+1)} = (1 - x_1^{(k)} - x_3^{(k)})/2 \\ x_3^{(k+1)} = (1 - x_1^{(k)} - x_2^{(k)})/2 \end{cases}$$

$$B = D^{-1}(L+U) = \begin{vmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{vmatrix}$$

Jacobi 迭代矩阵:

$$\rho(B) = 1$$

收敛性不能确定

(2) Gauss-Seidel 迭代法:

$$\begin{cases} x_1^{(k+1)} = (1 - x_2^{(k)} - x_3^{(k)})/2 \\ x_2^{(k+1)} = (1 - x_1^{(k+1)} - x_3^{(k)})/2 \\ x_3^{(k+1)} = (1 - x_1^{(k+1)} - x_2^{(k+1)})/2 \end{cases}$$

$$G = (D - L)^{-1}U = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{4} & \frac{1}{2} \\ 0 & -\frac{1}{8} & -\frac{1}{8} \end{bmatrix}$$

Gauss-Seidel 迭代矩阵:

$$\rho(B) = \left| \frac{-5 \pm \sqrt{7}i}{16} \right| = \sqrt{\frac{1}{8}} < 1$$

该迭代法收敛

$$\begin{cases} \frac{dy}{dx} = f(x,y)\\ (c \le x \le d) \end{cases}$$
 44、(10 分) 求参数 a,b ,使得计算初值问题
$$\begin{cases} y(x_0) = y_0 \\ y(x_0) = y_0 \end{cases}$$
 的二步数值方法

$$y_{n+1} = y_n + h[af(x_n, y_n) + bf(x_{n-1}, y_{n-1})]$$

的阶数尽量高,并给出局部截断误差的主项。

解:
$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2!}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + O(h^4)$$

$$y_{n+1} = y(x_n) + h(ay'(x_n) + by'(x_{n-1}))$$

$$= y(x_n) + ahy'(x_n) + bh(y'(x_n) - hy''(x_n) + \frac{h^2}{2!}y'''(x_n) + O(h^4))$$

$$=y(x_n)+(a+b)hy'(x_n)-bh^2y''(x_n)+\frac{bh^3}{2}hy'''(x_n)+O(h^4))$$

$$\begin{cases} a+b=1\\ -b=\frac{1}{2}, & p=-\frac{1}{2}\\ p=-\frac{1}{2} \end{cases}$$
 所以当
$$\begin{cases} y_{n+1}-y(x_{n+1})=\frac{bh^3}{2}y'''(x_n)+O(h^4)=O(h^3) \end{cases}$$
 局部截断误差的主项为
$$y_{n+1}-y(x_{n+1})=-\frac{h^3}{4}y'''(x_n)$$
 ,该方法为二阶方法。