University of Illinois at Chicago Department of Physics

Electricity and Magnetism PhD Qualifying Examination

January 8, 2016 (Friday) 9:00 am - 12:00 noon

Full credit can be achieved from completely correct answers to **4 questions**. If the student attempts all 5 questions, all of the answers will be graded, and the **top 4 scores** will be counted toward the exam's total score.

1. Two semi-infinite grounded metal plates are parallel to the xz plane, one at y=0, the other at y=a. The left end of their gap, at x=0, is capped off with an infinitely long strip insulated from the two plates and maintained at a specific z-independent potential V(0,y,z). By the method of separation of variables, the potential inside this "slot" (x>0) is known to be

$$V(x,y,z) = \sum_{n=1}^{\infty} C_n e^{-k_n x/a} \sin(n\pi y/a).$$

- Explicitly find the exponent coefficient k_n in terms of a and n based on the Laplace equation.
- Now if the left end potential is explicitly set up to be $V(0,y,z) = V_0 \sin(7\pi y/a)$, determine all C_n simply by inspection. Explicitly find the charge residing in the area between z=0 and z=b on the lower xz plane (y=0), in terms of V_0, a, b, ϵ_0 .
- Explicitly determine the resultant electrostatic force acting on the above mentioned area.

2. A square circuit $a \times a$ is folded along the diagonal line into two perpendicular isosceles right triangles. The fold-line is placed along the x axis. The center of the circuit is placed at the origin O. The current I flows around the first isosceles, starting from $(a/\sqrt{2},0,0)$, reaching (0,a/2,a/2), then $(-a/\sqrt{2},0,0)$. The current moves around the second isosceles, flowing to (0,-a/2,a/2), and returning to the beginning point.

- Determine the magnetic field at the origin.
- Determine the leading dipole magnetic field **B** at a large distance $r \gg a$.
- A secondary circular loop is placed at the spherical coordinates of fixed $r = R \gg a, \ \theta = 60^{\circ}$ and $\phi \in [0, 2\pi]$. Find the leading dipole contribution of the mutual inductance between the two circuits.
- If the secondary loop carries another current I', determine the leading contribution of the magnetic flux due to I' through the first small circuit.
- 3. (i) Determine the electric flux of the Coulomb field from a point charge q located at (0,0,z) through a circular disk of radius R, on the xy plane and centered at (0,0,0) with its normal $\hat{\boldsymbol{n}}=+\hat{\boldsymbol{z}}$. Show the result $\Phi_e\equiv\int_{\rm disk}\boldsymbol{E}\cdot\hat{\boldsymbol{n}}d^2a$ explictly in terms of q,R,z. Describe any discontinuity.
 - (ii) The point charge q moves at a uniform velocity v along the z axis. Its position is z=vt. In the non-relativistic limit for the slow motion, the corresponding electric field is simply given by the instantaneous Coulomb form. Determine the Maxwell displacement current I_d through the disk area, in terms of q, R, v, t. Use appropriate mathematical prescription for the singular behavior in the interval when $t \approx 0$.
 - (iii) Summing up the displacement current I_d and the particle q current $I_q = qv\delta(vt)$, find the Amperian integral $\oint \mathbf{B} \cdot d\mathbf{\ell}$, in terms of q, R, v, t.
 - (iv) Explicitly give the magnetic field at (R, 0, 0) based on above reasoning and the symmetry, for all t.
- 4. An accelerated charged particle q radiates the retarded electric field, approximately

given by

$$\boldsymbol{E}_{\mathrm{rad}} = \frac{q}{4\pi\epsilon_0 c^2} \left(\frac{\hat{\boldsymbol{r}} \times (\hat{\boldsymbol{r}} \times \boldsymbol{a})}{r} \right) ,$$

where a denotes the particle acceleration, r the position vector at the field point with respect to q. The right handed side is evaluated at the retarded time.

- (i) Find the power radiated per unit solid angle $dP/d\Omega$ into the direction \hat{r} in terms of a and χ , where χ is the angle between \hat{r} and a.
- (ii) An incoming harmonic electromagnetic wave is described by $\mathbf{E}_{\text{in}} = E_0 \hat{\mathbf{x}} \cos(kz \omega t)$.

Find the time-averaged energy flux I, the rate of the energy transmitted per unit area across the xy plane, in terms of the input amplitude E_0, k, ω .

(iii The electric field of this wave drives a nano-particle of mass m and charge q to oscillate around the origin on the xy plane at z=0. Since the motion is highly non-relativistic, we can neglect the magnetic force and the self-reaction. The oscillation generates secondary radiation into all possible directions, specified by the polar angle θ with respect to the z axis and the azimuthal angle ϕ of the spherical coordinates.

Determine the *time-averaged* power per unit solid angle, $\frac{dP}{d\Omega}$, emitted from the oscillating particle, in terms of $q, m, E_0, k, \omega, \theta, \phi$.

Into which direction, does $\frac{dP}{d\Omega}$ vanish?

- (iv) Find the total cross-section $\sigma \equiv (\int \frac{dP}{d\Omega} d\Omega)/I$.
- 5. An electrostatic potential near the origin of an observer \mathcal{O} is given by $V(x,y,z)=(V_0/a^2)(y^2+z^2)$. The absence of magnetic field implies the corresponding vector potential $\mathbf{A}=0$. Find the charge density ρ near the origin (in terms of input parameters V_0, a, ϵ_0).

An observer \mathcal{O}' slides with velocity v along the overlapping x, x' axes. The other axis pairs are parallel, $y \parallel y'$, $z \parallel z'$. As $(V/c, \mathbf{A})$ transforms into $(V'/c, \mathbf{A}')$ like (x^0, \mathbf{x}) into (x'^0, \mathbf{x}') , determine V' and \mathbf{A}' .

Find the electric and magnetic fields observed by \mathcal{O}' .

Find the corresponding charge density ρ' , and the current density J'.

Formulas

$$\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0 (I_{q,\text{enc}} + I_{\text{disp}}) , \quad I_{\text{disp}} = \epsilon_0 \frac{d}{dt} \int d^2 \mathbf{a} \cdot \mathbf{E} .$$

$$\nabla \cdot \mathbf{B} = 0 , \quad \nabla \cdot \mathbf{E} = \rho / \epsilon_0 ,$$

$$\nabla \times \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{B} , \quad \nabla \times \mathbf{B} = \mu_0 (\mathbf{J} + \epsilon_0 \frac{\partial}{\partial t} \mathbf{E}) .$$

$$\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B} , \quad \mathbf{E} = -\frac{\partial}{\partial t} \mathbf{A} - \nabla V , \quad \mathbf{B} = \nabla \times \mathbf{A} .$$

Solid angle: $\Omega = 2\pi(1 - \cos\theta)$.

Biot-Savart Law:

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{\mu_0}{4\pi} \int \frac{\boldsymbol{J}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x'})}{|\boldsymbol{x} - \boldsymbol{x'}|^3} \longrightarrow \frac{\mu_0}{4\pi} \int \frac{d\boldsymbol{\ell} \times (\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{\ell}})}{|\boldsymbol{x} - \boldsymbol{x}_{\boldsymbol{\ell}}|^3}$$

The current I in a line segment gives

$$B = \frac{\mu_0 I}{4\pi r} (\cos \theta_{\rm end} - \cos \theta_{\rm front}) ,$$

at the point P with the front/end angle $\theta_{\text{front/end}}$. A circular current loop of radius R gives $B = \frac{\mu_0 I}{2R}$ at its center. In general, for a magnetic dipole,

$$\boldsymbol{B}(r,\theta) = \frac{\mu_0 m}{4\pi} \left(\frac{2\cos\theta}{r^3} \hat{\boldsymbol{r}} + \frac{\sin\theta}{r^3} \hat{\boldsymbol{\theta}} \right) ,$$

$$u_{\rm em} = \frac{1}{2} (\epsilon_0 E^2 + \frac{1}{\mu_0} B^2) , \quad \boldsymbol{S} = \frac{1}{\mu_0} \boldsymbol{E} \times \boldsymbol{B} , \ \omega = vk , \ v = c/n .$$

Lorentz Transformation:

$$x' = \gamma(x - vt)$$
, $y' = y$, $z' = z$, $t' = \gamma(t - xv/c^2)$, $x^0 = ct$, $\gamma = 1/\sqrt{1 - v^2/c^2}$.