Structured-Depth Image Based Rendering & Depth Enhancement Tool

Pravin Kumar Rana
Sound and Image Processing Lab.(SIP)
KTH - Royal Institute of Technology
SE-10044 Stockholm, Sweden

Outline

- Structured-Depth Image Based Rendering
- Depth Enhancement Tool: Updates
- Depth Pixel Cluster Based Thresholding

Structured-Depth Image Based Rendering (SDIBR)

Connection & Principal Depth Map Extraction

Inter-View Connection Information

Extraction of Auxiliary Depth Information

Structured Depth Maps

Principal Depth Map

Auxiliary Depth Information

SDIBR Experiments

Experimental Results

Quality of Rendered Virtual Views

MPEG	Virtual	Proposed	VSRS	△Y-PSNR
Test	View	Method	3.5	[dB]
Data		[dB] (a)	[dB](b)	(a-b)
Pantomime	38	38.03	36.81	1.22
(p = 39)	40	39.96	36.62	3.34
Dog	38	35.20	34.05	1.15
(p = 39)	40	33.10	28.24	4.86
Lovebird1	05	32.80	31.94	0.86
(p = 04)	07	30.50	30.32	0.18
Newspaper	02	31.29	30.73	0.56
(p = 03)	04	30.72	29.52	1.20
Mobile	04	42.60	41.36	1.24
(p = 05)	06	41.97	39.94	2.03

Conclusions

- It exploits the inter-view connectivity information among multiview video and takes advantage of a consistent depth map.
- It addresses the problems of inter-view depth inconsistencies and varying illumination conditions.
- It permit an appealing 3D scene representation on the encoder side by avoiding depth consistency testing for each interpolated pixel on the decoder side.
- It improves the subjective visual quality as well as the objective quality of rendered views

Depth Enhancement Tool

Testing pixels in 1, 2, and 3

Depth Enhancement Tool

Sub-pel DET Results

Test	Virtual View	VSRS 3.5 [dB]	
Sequences		Integer-pel	Half-pel
Kendo	02	37.52	37.57
Balloons	04	35.44	35.50
Lovebird1	05	33.00	33.03
Newspaper	05	32.00	32.01

Depth Pixel Cluster-Based Thresholding

Connection Threshold

Multiple Depth Maps at Reference Viewpoints

Depth Difference Matrix (DDM) =
$$\begin{pmatrix} 0 & \Delta_{1,2} & \Delta_{1,3} & \cdots & \Delta_{1,N} \\ \Delta_{2,1} & 0 & \Delta_{2,3} & \cdots & \Delta_{2,N} \\ \Delta_{3,1} & \Delta_{3,2} & 0 & \cdots & \Delta_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Delta_{N,1} & \Delta_{N,2} & \Delta_{N,3} & \cdots & 0 \end{pmatrix}, \text{ where, } \Delta_{i,j} = \begin{pmatrix} d_i - d_j \end{pmatrix};$$

Cluster Approach Based Connection Thresholding

Cluster Distribution

Relative Distance Sub-cluster Classification

$$DDM = \begin{pmatrix} 0 & \Delta_{1,2} & \Delta_{1,3} & \cdots & \Delta_{1,N} \\ \Delta_{2,1} & 0 & \Delta_{2,3} & \cdots & \Delta_{2,N} \\ \Delta_{3,1} & \Delta_{3,2} & 0 & \cdots & \Delta_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Delta_{N,1} & \Delta_{N,2} & \Delta_{N,3} & \cdots & 0 \end{pmatrix}$$

where,

$$\left| \Delta \right| \qquad \theta_{1} = \min \left\{ \left[\Delta_{i,j} \right] \middle\| \Delta_{i,j} \middle| > 0; j > i \right\}$$

$$\theta_{2} = \min \left\{ \left[\Delta_{i,j} \right] \middle\| \Delta_{i,j} \middle| > \theta_{1}; j > i \right\}$$

•••

Define relative distances:

$$\widetilde{\theta}_{1} = \frac{\theta_{1}}{\theta_{\max}}, \ \widetilde{\theta}_{2} = \frac{\theta_{2}}{\theta_{\max}}, \cdots \cdots, 1$$

Relative Distance Sub-cluster Classification

Connection Threshold

$$\begin{aligned} &\text{Class A Cluster} & = & T_A = 0.0 \\ &\text{Class B Cluster} & = & T_B < = 2\sigma_B \\ &\text{Class C Cluster} & & \text{if} \quad \widetilde{\theta_1} < 0.25 \quad \rightarrow \text{Class C}_1 \text{Cluster} \\ &\text{if} \quad \widetilde{\theta_1} \ge 0.25 \quad \rightarrow \text{Class C}_2 \text{Cluster} \end{aligned}$$

$$\text{Class C}_i \text{ Cluster} & = & T_{C_i} < = 2\sigma_{C_i} \end{aligned}$$

Experimental Results

4-view Depth Consistency Testing Supported View Synthesis Algorithm

Test Data (50 frames)	Virtual View	$T<(\mu+\lambda\sigma)$ [dB]	Cluster Based Threshold [dB]
Lovebind1	05	32.0	32.3
Lovebird1	06	29.2	29.3
Navyananan	04	30.0	30.5
Newspaper	05	32.6	32.8

