Total No. of Questions-8]

[Total No. of Printed Pages-4

B.E. III Semester Examination

BE - III/12(A)

233194

COM. ENGG.

Course No. MTH - 312

(Numerical methods using C - programming)

Time Allowed- 3Hours

Maximum Marks-100

Note: Attempt Five questions, selecting atleast two from each section. Use of calculator is allowed.

SECTION-I

- 1. a) Write a short note on Arrays by giving suitable example.
 - b) Describe how a "for loop" is used and explain how multiple initialization is done in C programming.
 - Write a program in C to print the sum of the series $1+x+x^2+x^3+...+x^n$. (7,7,6)
- 2. a) Find a real root of the equation $x^3 2x 5 = 0$ by Bisection method.
 - Geometrically explain Newton Raphson method to find out root of an equation.
 - Using Secant method determine the root of the equation $\cos x xe^x = 0$ correct upto three decimal places.

(7,7,6)

- 3. a) Find the iterative method based on the Newton-Raphson method for finding √N, Where N is a positive real number. Apply the method to N=18 to obtain the result correct upto two decimal places.
 - Find all roots of the polynomial $x^3 4x^2 + 5x 2 = 0$ by using Graeffe's root squaring method.
 - c) Solve the equations $x_1 + x_2 + x_3 = 6$, $3x_1 + 3x_2 + 4x_3 = 20$ and $2x_1 + x_2 + 3x_3 = 13$ by using Gauss elimination method. (7,7,6)
- 4. a) Find inverse of the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by using Gauss Jordan method.
 - b) Determine the largest eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4 \end{bmatrix}$ correct upto 3 decimal places using power method.
 - c) For the matrix $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ find all the eigenvalues and corresponding eigenvectors. (7,7,6)

SECTION-II

5. a) Given

x (in degrees)	15	20	25	30	35	10
sin x	0.2588190	0.3420201	0.4226192	1	0.5735764	0.6427876
E	nd out the	1 20201	0.4220183	0.5		

Find out the value of sin 38° by using Newton's backward difference formula.

b) Find the missing term in the following table

Х	0	1	2	3	4
У	1	3	9	-	81

c) Derive Gauss forward formula.

(7,7,6)

6. a) The population in a town in decennial census was as under.

Estimate the population for the year 1995.

Year	1921	1931	1941	1951	1961
Population	46	66	81	93	101
(in thousands)					101

b) Use Sterling's formula to find find u_{32} from the following data.

$$u_{20} = 14.035, u_{25} = 13.674, u_{30} = 13.257,$$

$$u_{35} = 12.734, u_{40} = 12.089, u_{45} = 11.309$$

(7,7,6)

c) Using Lagrange's formula, Compute f(2.5), given that

X	1	2	3	4
f(x)	1	8	27	64

7. a) From the following table, obtain $\frac{dy}{dx}$ for x=1.2

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- b) Evaluate $\int_0^t \frac{1}{1+x} dx$ correct to three decimal places by using trapezoidal rule.
- c) Given the following data, find the maximum value of y

X	-1	1	2	3	
Y	-21	15	12	3	(7,7,6)

- 8. a) Given $\frac{dy}{dx} = x y^2$ with y(0) = 0, calculate y(0.2) by picard's method up to 3rd approximation
 - b) Using Euler's method Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 0.3$ by choosing h=0.1
 - c) Solve y'' xy + 4y = 0; y(0)=3; y'(0)=0 at x = 0.1 by using Runge-kutta method. (7,7,6)