#### **GEL-21945** Circuits

#### Examen 1 (Hiver 2008)

Enseignant: Hakim Bendada Date: jeudi, 14 février 2008

Local: PLT-1112 Durée: 13h30 à 15h20

#### Remarques importantes

- Les pages de gauche du cahier sont réservées uniquement au brouillon.

- Indiquez clairement les sens des courants et tensions sur vos schémas.

# Problème no. 1 (25 points) - Principe de superposition

Le circuit ci-dessous est en régime continu. Utiliser le principe de superposition pour trouver la tension V.



# Problème no. 2 (28 points) – Équivalent Norton & Transfert maximal de puissance

- a) Déterminer l'équivalent Norton de la partie gauche du circuit (bornes a-b) en fonction des paramètres  $v_s$ ,  $R_1$ ,  $R_2$  et d.
- b) Dans le cas où  $R_1 = R_2 = 1 \ k\Omega$  et d = 2, déterminer la valeur de la résistance de charge R qui permettrait un transfert maximal de puissance.
- c) On veut que la puissance maximale absorbée par la charge R, trouvée en b), soit égale à 9 mW. Estimer à quelle valeur  $v_s$  la source de tension doit alors être ajustée.



### Problème no. 3 (24 points) - Notions de base

Une source de tension  $v_s$  alimente une charge composée de trois éléments R, L, C. Le courant dans la résistance R est donné sur la figure suivante.



Tracer **soigneusement** en fonction du temps la tension  $v_L$ , le courant  $i_L$ , la puissance  $p_L$  et l'énergie  $w_L$  dans l'inductance L.

### Problème no. 4 (23 points) – Transformateur idéal

Une source de tension  $V_s$  est connectée au primaire d'un transformateur idéal de rapport 5. Un condensateur de capacité C est connecté au secondaire du transformateur.



- a) Donner en fonction de  $V_s$  et C les expressions de la tension  $V_C$  et des courants  $i_1$  et  $i_2$ .
- b) Si la source délivre une tension alternative telle que  $V_s(t) = 5 \sin \omega t$ , déterminer (sans tracer) la tension  $V_c(t)$  aux bornes du condensateur et le courant  $i_2(t)$  qui le traverse. On prendra  $C = 1 \, mF$  et  $\omega = 1000 \, rad \, / s$  pour l'application numérique.
- c) Que deviennent  $V_c(t)$  et  $i_2(t)$  quand  $V_s(t) = 10 + 5 \sin \omega t$ ? Justifier.

# Extraits d'autres examens

### Problème no. 1 (28 points): Méthode des nœuds

Considérez le circuit suivant:



- a) Écrire directement, **sous forme matricielle**, les équations d'équilibre du circuit en utilisant la méthode des nœuds.
- b) À l'aide du résultat de a), déterminer la tension  $v_4$  (Remarque: Pour répondre à la question b) seulement, utiliser  $R_1 = 50 \Omega$ ;  $R_2 = 20 \Omega$ ;  $R_3 = 100 \Omega$ ;  $R_4 = 200 \Omega$ ;  $R_5 = 20 \Omega$ ).

<u>Important</u>:- Accompagnez toutes les étapes de vos calculs par les schémas électriques (circuit de base et circuit final) nécessaires à la compréhension de votre méthodologie. Donnez des noms aux tensions nodales et représentez-les sur vos schémas. **Les schémas doivent être soigneusement dessinés**.

# Problème no. 2 (27 points): Méthode des mailles

Considérez le circuit suivant:



- a) Écrire directement, **sous forme matricielle**, les équations d'équilibre du circuit en utilisant la méthode des mailles et les opérateurs  $s = \frac{d}{dt}$  et  $\frac{1}{s} = \int dt$ .
- b) Déduire de a) les équations d'équilibre, sous forme matricielle, du circuit si la source de courant est commandée et débite un courant égal à  $25 V_4$ .

<u>Important</u>: Accompagnez toutes les étapes de vos calculs par les schémas électriques (circuit de base et circuit final) nécessaires à la compréhension de votre méthodologie. Adopter le sens des aiguilles d'une montre pour les courants circulatoires. **Les schémas doivent être soigneusement dessinés**.

# Problème no. 3 (36 points) – Équations d'équilibre

Soit le circuit suivant où l'ampli op ne peut pas être considéré comme idéal. Il possède une résistance d'entrée  $R_i$ , une résistance de sortie  $R_o$  et son gain  $A_v$  en boucle ouverte n'est pas infini.



- a) Dessiner le circuit équivalent au circuit ci-dessus en remplaçant l'ampli op par son modèle simple.
- **b**) Établir, **sous forme matricielle**, les équations d'équilibre du circuit en utilisant la méthode des nœuds en fonction de  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_i$ ,  $R_o$ ,  $A_v$  et  $V_s$ .
- c) En déduire le gain en tension  $G = V_o/V_s$  quand  $R_1 = 10 \text{ k}\Omega$ ;  $R_2 = 1 \text{ k}\Omega$ ;  $R_3 = 1 \text{ k}\Omega$ ;  $R_i = 1 \text{ M}\Omega$ ;  $R_o = 100 \Omega$  et  $A_v = 100000$ . Selon le signe du gain G, indiquer s'il s'agit d'un montage amplificateur inverseur ou non-inverseur?