Summary Notes for Week 2: Mixed-Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

pure strategy: only one action is played with positive probability mixed strategy: more than one action is played with positive probability (this addresses the uncertainty of player 1 about player 2's actions and vice versa)

Column

Row

	Heads	Tails	
Heads	(1, -1)	(–1, 1)	1p + -1(1-p) = 2p - 1
Tails	(-1, 1)	(1, -1)	-1p + 1(1-p) = 1 - 2p

Image taken from: https://saylordotorg.github.io/text_introduction-to-economic-analysis/s17-03-mixed-strategies.html

In order for there to be a mixed strategy Nash equilibrium, when player 1 responds with a mixed strategy, player 2 must respond in such a way that he is indifferent to either option. This is because if 2p - 1 > 1 - 2p, then Row is better off, on average, playing Heads than Tails. Similarly, if 2p - 1 < 1 - 2p, then Row is better off playing Tails than Heads. Thus, if Row is better of playing X than Y, then he will just keep playing X such that it is just a pure strategy and not a mixed strategy game.

If, on the other hand, 2p - 1 = 1 - 2p, then Row gets the same payoff no matter what Row does. Therefore, a mixed strategy Nash equilibrium involves at least one player playing a randomized strategy and no player being able to increase his or her expected payoff by playing an alternate strategy.

٧	V	^	n	1	2	r	١
w	v	v		п	a		ı

	C
	7
4	"
	-

3000 S C C C C C C C C C C C C C C C C C					
	Baseball (p)	Ballet (1 – <i>p</i>)	Man's E Payoff		
Baseball (q)	(3, 2)	(1, 1)	3p + 1(1-p) = 1 + 2p		
Ballet (1 – <i>q</i>)	(0, 0)	(2, 3)	0p + 2(1-p) = 2-2p		
Woman's E Payoff	2q + 0(1 - q) = 2q	1q + 3(1 - q) = 3 - 2q			

Image taken from: https://saylordotorg.github.io/text_introduction-to-economic-analysis/s17-03-mixed-strategies.html