DM545 Linear and Integer Programming

Lecture 2 The Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Definitions and Basics Fundamental Theorem of LP Gaussian Elimination Simplex Method

- 1. Definitions and Basics
- 2. Fundamental Theorem of LP
- 3. Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Mathematical Model

Machines/Materials A and B Products 1 and 2

Graphical Representation:

Outline

Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

- 1. Definitions and Basics
- 2. Fundamental Theorem of LF
- Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Linear Programming

Abstract mathematical model:

Decision Variables
Criterion
Constraints

- Any vector $x \in \mathbb{R}^n$ satisfying all constraints is a feasible solution.
- ► Each $x^* \in \mathbb{R}^n$ that gives the best possible value for $c^T x$ among all feasible x is an optimal solution or optimum
- ▶ The value $c^T x^*$ is the optimum value

In Matrix Form

$$c^{T} = \begin{bmatrix} c_{1} & c_{2} & \dots & c_{n} \end{bmatrix}$$
 max $z = c^{T}x$ $Ax = b$ $x \ge 0$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{31} & a_{32} & \dots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

- \blacktriangleright N natural numbers, $\mathbb Z$ integer numbers, $\mathbb Q$ rational numbers, $\mathbb R$ real numbers
- ► column vector and matrices scalar product: $y^T x = \sum_{i=1}^n y_i x_i$
- ▶ linear combination

$$x \in \mathbb{R}^k$$
 $x_1, \dots, x_k \in \mathbb{R}$
 $\lambda = (\lambda_1, \dots, \lambda_k)^T \in \mathbb{R}^k$
 $x \in \mathbb{R}^k$

moreover:

$$\begin{array}{ccc} \lambda \geq 0 & \text{conic combination} \\ \lambda^T 1 = 1 & (\sum_{i=1}^k \lambda_i = 1) & \text{affine combination} \\ \lambda \geq 0 \text{ and } \lambda^T 1 = 1 & \text{convex combination} \end{array}$$

- set S is linear independent if no element of it can be expressed as combination of the others
 Eg: S ⊂ R ⇒ max n lin. indep.
- ▶ rank of a matrix for columns (= for rows) if (m, n)-matrix has rank = $\min\{m, n\}$ then the matrix is full rank if (n, n)-matrix is full rank then it is regular and admits an inverse
- ▶ $G \subseteq \mathbb{R}^n$ is an hyperplane if $\exists a \in \mathbb{R}^n \setminus \{0\}$ and $\alpha \in \mathbb{R}$:

$$G = \{ x \in \mathbb{R}^n \mid a^T x = \alpha \}$$

▶ $H \subseteq \mathbb{R}^n$ is an halfspace if $\exists a \in \mathbb{R}^n \setminus \{0\}$ and $\alpha \in \mathbb{R}$:

$$H = \{ x \in \mathbb{R}^n \mid \mathbf{a}^T x \le \alpha \}$$

 $(a^T x = \alpha \text{ is a supporting hyperplane of } H)$

▶ a set $S \subset \mathbb{R}$ is a polyhedron if $\exists m \in \mathbb{Z}^+, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$:

$$P = \{x \in \mathbb{R} \mid Ax \le b\} = \bigcap_{i=1}^{m} \{x \in \mathbb{R}^n \mid A_i.x \le b_i\}$$

▶ a polyhedron P is a polytope if it is bounded: $\exists B \in \mathbb{R}, B > 0$:

$$p \subseteq \{x \in \mathbb{R}^n \mid \parallel x \parallel \leq B\}$$

► Theorem: every polyhedron $P \neq \mathbb{R}^n$ is determined by finitely many halfspaces

- ► General optimization problem: $\max\{\varphi(x) \mid x \in F\}, \qquad F \text{ is feasible region for } x$
- ▶ If A and b are rational numbers, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ is a rational polyhedron
- ▶ convex set: if $x, y \in P$ and $0 \le \lambda \le 1$ then $\lambda x + (1 \lambda)y \in P$
- ▶ convex function if its epigraph $\{(x,y) \in \mathbb{R}^2 : y \ge f(x)\}$ is a convex set or $f: X \to \mathbb{R}$, if $\forall x, y \in X, \lambda \in [0,1]$ it holds that $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$

Simplex Method

Definitions

▶ Given a set of points $X \subseteq \mathbb{R}^n$ the convex hull $\mathbf{conv}(X)$ is the convex linear combination of the points

$$\mathbf{conv}(X) = \{\lambda_1 \vec{x}_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n | \vec{x}_i \in X; \lambda_1, \lambda_2, \ldots, \lambda_n \ge 0 \text{ and } \sum_i \lambda_i = 1\}$$

- ▶ A face of P is $F = \{x \in P | ax = \alpha\}$. Hence F is either P itself or the intersection of P with a supporting hyperplane. It is said to be proper if $F \neq \emptyset$ and $F \neq P$.
- ▶ A point x for which $\{x\}$ is a face is called a vertex of P and also a basic solution of $Ax \le b$
- A facet is a maximal face distinct from P
 cx ≤ d is facet defining if cx = d is a supporting hyperplane of P

Linear Programming Problem

Input: a matrix $A \in \mathbb{R}^{m \times n}$ and column vectors $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$

oftimization ctx
Task: rulyet to AACB

- 1. decide that $\{x \in \mathbb{R}^n; Ax \leq b\}$ is empty (prob. infeasible), or
- 2. find a column vector $x \in \mathbb{R}^n$ such that $Ax \leq b$ and c^Tx is max, or
- 3. decide that for all $\alpha \in \mathbb{R}$ there is an $x \in \mathbb{R}^n$ with $Ax \leq b$ and $c^T x > \alpha$ (prob. unbounded)
- **1**. *F* = ∅
- 2. $F \neq \emptyset$ and \exists solution
 - 1. one solution
 - 2. infinite solution
- 3. $F \neq \emptyset$ and $\not\exists$ solution

Linear Programming and Linear Algebra

- ► Linear algebra: linear equations (Gaussian elimination)
- ▶ Integer linear algebra: linear diophantine equations
- Linear programming: linear inequalities (simplex method)
- ▶ Integer linear programming: linear diophantine inequalities

Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

Outline

- 1. Definitions and Basics
- 2. Fundamental Theorem of LP
- 3. Gaussian Eliminatior
- Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Fundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)

Given:

$$\min\{c^T x \mid x \in P\}$$
 where $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$

If P is a bounded polyhedron and not empty and x^* is an optimal solution to the problem, then:

- \triangleright x^* is an extreme point (vertex) of P, or
- ▶ x^* lies on a face $F \subset P$ of optimal solution

Proof:

- ▶ assume x^* not a vertex of P then \exists a ball around it still in P. Show that a point in the ball has better cost
- ▶ if *x** is not a vertex then it is a convex combination of vertices. Show that all points are also optimal.

Implications:

- ▶ the optimal solution is at the intersection of hyperplanes supporting halfspaces.
- ▶ hence finitely many possibilities
- Solution method: write all inequalities as equalities and solve all $\binom{n}{m}$ systems of linear equalities (n # variables, m # constraints)
- ▶ for each point we need then to check if feasible and if best in cost.
- each system is solved by Gaussian elimination

Simplex Method

- 1. find a solution that is at the intersection of some n hyperplanes
- 2. try systematically to produce the other points by exchanging one hyperplane with another
- 3. check optimality, proof provided by duality theory

Demo

Outline

- 1. Definitions and Basics
- 2. Fundamental Theorem of LF
- 3. Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Gaussian Elimination

- Forward elimination reduces the system to triangular (row echelon) form (or degenerate) elementary row operations (or LU decomposition)
- 2. back substitution

Example:

$$2x + y - z = 8$$
 (I)
 $-3x - y + 2z = -11$ (II)
 $-2x + y + 2z = -3$ (III)

Polynomial time $O(n^2m)$ but needs to guarantee that all the numbers during the run can be represented by polynomially bounded bits

Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

Outline

- 1. Definitions and Basics
- 2. Fundamental Theorem of LP
- 3. Gaussian Elimination
- 4. Simplex Method

Standard Form Basic Feasible Solutions Algorithm

A Numerical Example

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \dots, m$$

$$x_j \geq 0, \quad j = 1, \dots, n$$

$$\begin{array}{rcl}
\text{max} & c^T x \\
& Ax & \leq & b \\
& x & \geq & 0
\end{array}$$

$$x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

$$\max \quad \begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\begin{bmatrix} 5 & 10 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \leq \quad \begin{bmatrix} 60 \\ 40 \end{bmatrix}$$

 $x_1, x_2 > 0$

Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

Outline

- 1. Definitions and Basics
- 2. Fundamental Theorem of LP
- 3. Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Standard Form

Each linear program can be converted in the form:

$$\max \quad c^{T}x$$

$$Ax \leq b$$

$$x \in \mathbb{R}^{n}$$

$$c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$$

constraints,
$$ax \le b$$
 and $ax \ge b$
• if $ax > b$ then $-ax < -b$

▶ if equations, then put two

 \blacktriangleright if min c^Tx then max $(-c^Tx)$

and then be put in standard (or equational) form

$$\begin{array}{ll}
\max & c^T x \\
Ax & = & b \\
x & \ge & 0
\end{array}$$

$$x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

- 1. "=" constraints
- 2. $x \ge 0$ nonnegativity constraints
- 3. $(b \ge 0)$
- 4 max

Transformation into Std Form

Every LP can be transformed in std. form

1. introduce slack variables (or surplus)

$$5x_1 + 10x_2 + x_3 = 60$$

 $4x_1 + 4x_2 + x_4 = 40$

2. if
$$x_1 \stackrel{>}{\underset{<}{=}} 0$$
 then $\begin{array}{c} x_1 = x_1' - x_1'' \\ x_1' \geq 0 \\ x_1'' \geq 0 \end{array}$

- 3. $(b \ge 0)$
- 4. $\min c^T x \equiv \max(-c^T x)$

LP in $n \times m$ converted into LP with at most (m + 2n) variables and m equations (n # original variables, m # constraints)

Geometry

- Ax = b is a system of equations that we can solve by Gaussian elimination
- Elementary row operations of [A | b] do not affect set of feasible solutions
 - multiplying all entries in some row of [A | b] by a nonzero real number λ
 - ▶ replacing the ith row of $\begin{bmatrix} A & | & b \end{bmatrix}$ by the sum of the ith row and jth row for some $i \neq j$
- ▶ We assume $\operatorname{rank}([A \mid b]) = \operatorname{rank}(A) = m$, ie, rows of A are linearly independent otherwise, remove linear dependent rows

Outline

- 1. Definitions and Basics
- Fundamental Theorem of LF
- Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Basic Feasible Solutions

Basic feasible solutions are the vertices of the feasible region:

More formally:

Let $B = \{1 \dots m\}$, $N = \{m+1 \dots n+m\}$ be subsets of columns A_B is made of columns of A indexed by B:

Definition

 $x \in \mathbb{R}^n$ is a basic feasible solution of the linear program $\max\{c^Tx \mid Ax = b, x \geq 0\}$ for an index set B if:

- ▶ the square matrix A_B is nonsingular, ie, all columns indexed by B are lin. indep.
- ▶ $x_B = A_B^{-1}b$ is nonnegative, ie, $x_B \ge 0$ (feasibility)

We call $x_j, j \in B$ basic variables and remaining variables nonbasic variables.

Theorem

A basic feasible solution is uniquely determined by the set B.

Proof:

$$Ax = A_B x_B + A_N x_N = b$$
$$x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$
$$x_B = A_B^{-1} b$$

 A_B is singular hence one solution

Note: we call B a (feasible) basis

Extreme points and basic feasible solutions are geometric and algebraic manifestations of the same concept:

Theorem

Let P be a (convex) polyhedron from LP in std. form. For a point $v \in P$ the following are equivalent:

- (i) v is an extreme point (vertex) of P
- (ii) v is a basic feasible solution of LP

Proof: by recognizing that vertices of P are linear independent and such are the columns in A_B

Theorem

Let $LP = \max\{c^T x \mid Ax = b, x \ge 0\}$ be feasible and bounded, then the optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear programming

Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

Idea for solution method: examine all basic solutions. There are finitely many: $\binom{m+n}{m}$. However, if n=m then $\binom{2m}{m} \approx 4^m$.

Outline Definitions and Basics Fundamental Theorem of LF Gaussian Elimination Simplex Method

- 1. Definitions and Basics
- 2. Fundamental Theorem of LP
- 3. Gaussian Elimination
- 4. Simplex Method
 Standard Form
 Basic Feasible Solutions
 Algorithm

Simplex Method

$$\begin{array}{lll}
\text{max} & z = \begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\
\begin{bmatrix} 5 & 10 & 1 & 0 \\ 4 & 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} & = \begin{bmatrix} 60 \\ 40 \end{bmatrix} \\
& x_1, x_2, x_3, x_4 & \geq & 0
\end{array}$$

Canonical std. form: one decision variable is isolated in each constraint and does not appear in the other constraints or in the obj. func. and *b* terms are positive

It gives immediately a feasible solution:

$$x_1 = 0, x_2 = 0, x_3 = 60, x_4 = 40$$

Is it optimal? Look at signs in $z \rightsquigarrow$ if positive then an increase would improve.

Let's try to increase a promising variable, ie, x_1 , one with positive coefficient in z (is the best choice?)

$$5x_1 + x_3 = 60$$

$$x_1 = \frac{60}{5} - \frac{x_3}{5}$$

$$x_3 = 60 - 5x_1 \ge 0$$

If $x_1 > 12$ then $x_3 < 0$

$$4x_1 + x_4 = 40$$

$$x_1 = \frac{40}{4} - \frac{x_4}{4}$$

$$x_4 = 40 - 4x_1 \ge 0$$

If $x_1 > 10$ then $x_4 < 0$

we can take the minimum of the two $\rightsquigarrow x_1$ increased to 10 x_4 exits the basis and x_1 enters

Simplex Tableau

First simplex tableau:

we want to reach this new tableau

	x_1	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	-z	Ь
X3	0	?	$\overline{1}$?	0	?
x_1	1	?	0	?	0	?
					1	

Pivot operation:

1. Choose pivot:

 $\mbox{\sc column:}$ one s with positive coefficient in obj. func. (to discuss

later)

row: ratio between coefficient b and pivot column: choose the

one with smallest ratio:

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{is}} : a_{is} > 0 \right\}, \quad \theta \text{ increase value of entering var.}$$

2. elementary row operations to update the tableau

- \triangleright x_4 leaves the basis, x_1 enters the basis
 - ► Divide row pivot by pivot
 - ▶ Send to zero the coefficient in the pivot column of the first row
 - ▶ Send to zero the coefficient of the pivot column in the third (cost) row

From the last row we read: $2x_2 - 3/2x_4 - z = -60$, that is:

$$z = 60 + 2x_2 - 3/2x_4$$
.

Since x_2 and x_4 are nonbasic we have z = 60 and $x_1 = 10$, $x_2 = 0$, $x_3 = 10$, $x_4 = 0$.

▶ Done? No! Let x_2 enter the basis

Definitions and Basics Fundamental Theorem of LP Gaussian Elimination Simplex Method

Reduced costs: the coefficients in the objective function of the nonbasic variables, \bar{c}_N

Optimality:

The basic solution is optimal when the reduced costs in the corresponding simplex tableau are nonpositive, ie, such that:

$$\bar{c}_N \leq 0$$

Graphical Representation

