COS 433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

- HW1 due September 15
- PR1 due October 6

Previously on COS 433...

Perfect Security for Multiple Messages

Definition: A stateless scheme (**Enc,Dec**) has **perfect** secrecy for d messages if, for any two sequences of messages $(\mathbf{m}_0^{(i)})_{i \in [d]}$, $(\mathbf{m}_1^{(i)})_{i \in [d]} \in \mathbf{M}^d$

$$(Enc(K, m_0^{(i)}))_{i \in [d]} \stackrel{d}{=} (Enc(K, m_1^{(i)}))_{i \in [d]}$$

Notation: $(f(i))_{i \in [d]} = (f(1), f(2), ..., f(d))$

Randomized Encryption

Syntax:

- Key space **K** (usually $\{0,1\}^{\lambda}$)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: K×M → C (potentially probabilistic)
- Dec: K×C → M (usually deterministic)

Correctness:

• For all $k \in K$, $m \in M$, Pr[Dec(k, Enc(k,m)) = m] = 1 Theorem: No stateless randomized encryption scheme can have perfect security for multiple messages

Proof of Easy Case

Let (Enc, Dec) be stateless, deterministic

Let
$$\mathbf{m}_0^{(0)} = \mathbf{m}_0^{(1)}$$

Let $\mathbf{m}_1^{(0)} \neq \mathbf{m}_1^{(1)}$

Consider distributions of encryptions:

• (
$$c^{(0)}$$
 , $c^{(1)}$) = ($Enc(K, m_0^{(0)})$, $Enc(K, m_0^{(1)})$)

 $\Rightarrow c^{(0)} = c^{(1)}$ (by determinism)

• ($c^{(0)}$, $c^{(1)}$) = ($Enc(K, m_1^{(0)})$, $Enc(K, m_1^{(1)})$)

 $\Rightarrow c^{(0)} \neq c^{(1)}$ (by correctness)

Generalize to Randomized Encryption

Let (Enc, Dec) be stateless, deterministic

Let
$$\mathbf{m}_0^{(0)} = \mathbf{m}_0^{(1)}$$

Let $\mathbf{m}_1^{(0)} \neq \mathbf{m}_1^{(1)}$

Consider distributions of encryptions:

• (
$$c^{(0)}$$
 , $c^{(1)}$) = ($Enc(K, m_0^{(0)})$, $Enc(K, m_0^{(1)})$)
• ($c^{(0)}$, $c^{(1)}$) = ($Enc(K, m_1^{(0)})$, $Enc(K, m_1^{(1)})$)
• $c^{(0)} \neq c^{(1)}$ (by correctness)

Generalize to Randomized Encryption

$$(c^{(0)}, c^{(1)}) = (Enc(K, m), Enc(K, m))$$

$$Pr[c^{(0)} = c^{(1)}]$$
?

- Fix **k**
- Conditioned on k, ciphertexts c⁽⁰⁾ and c⁽¹⁾ are two independent samples from same distribution
 Enc(k, m)

Lemma: Given any distribution D over a finite set X, $Pr[Y=Y': Y\leftarrow D, Y'\leftarrow D] \ge 1/|X|$

• Therefore, $Pr[c^{(0)} = c^{(1)}]$ is non-zero

Generalize to Randomized Encryption

Let (Enc, Dec) be stateless, deterministic

Let
$$\mathbf{m}_0^{(0)} = \mathbf{m}_0^{(1)}$$

Let $\mathbf{m}_1^{(0)} \neq \mathbf{m}_1^{(1)}$

Consider distributions of encryptions:

• (
$$c^{(0)}$$
 , $c^{(1)}$) = ($Enc(K, m_0^{(0)})$, $Enc(K, m_0^{(1)})$)
$$\Rightarrow Pr[c^{(0)} = c^{(1)}] > 0$$
• ($c^{(0)}$, $c^{(1)}$) = ($Enc(K, m_1^{(0)})$, $Enc(K, m_1^{(1)})$)
$$\Rightarrow Pr[c^{(0)} = c^{(1)}] = 0$$

Today: Relaxing Perfect Secrecy

What do we do now?

Tolerate tiny probability of distinguishing

• If $Pr[c^{(0)} = c^{(1)}] = 2^{-128}$, in reality never going to happen

How Small Is Ok?

Practice:

- Something unlikely to happen in lifetime of data/person/civilization/universe
- Typically something like 2^{-80} , 2^{-128} , or maybe 2^{-256}
 - Being struck by lightning twice: 2-23
 - Winning the lottery: 2-26
 - World-ending asteroid while on this slide: 2-46

How Small Is Ok?

Theory:

- Maybe things will change as technology improves
- Want a more conceptual answer
- Absolute constants unsatisfactory
- Instead, use "negligible" functions

Negligible functions

Def: A function \mathbf{f} is **polynomial** if $\mathbf{f(n)} = O(\mathbf{n}^c)$ for some constant \mathbf{c}

Def: A function g is super-polynomial if, for every polynomial f, f(n) = O(g(n))

Def: A function **p** is **inverse polynomial** if **1/p(n)** is polynomial

Def: A function ε is **negligible** if, for every inverse polynomial \mathbf{p} , $\varepsilon(\mathbf{n}) = O(\mathbf{p}(\mathbf{n}))$

(equivalently, $1/\epsilon$ is super-polynomial)

Examples

```
2<sup>n</sup>
                super-polynomial
      n<sup>-n/7</sup>
               negligible
   3-5log n
                inverse polynomial (= n^{-5log 3})
    1.5<sup>-∛n</sup>
                negligible
                super-polynomial (= n(log 8)(log2n))
    8log<sup>3</sup> n
(log n)/n inverse polynomial
```

Security Parameter **\lambda**

Additional input to system, dictates "security level"

Key, message, ciphertext size all **polynomial** in λ

Probability of adversary success is **negligible** in λ

Defining Encryption Again

Syntax:

- Key space K_λ
- Message space M_λ
- Ciphertext space C_{λ}
- Enc: $K_{\lambda} \times M_{\lambda} \rightarrow C_{\lambda}$ (potentially randomized)
- Dec: $K_{\lambda} \times C_{\lambda} \rightarrow M_{\lambda}$

Correctness:

- $log[K_{\lambda}]$, $log[M_{\lambda}]$, $log[C_{\lambda}]$ polynomial in λ
- For all λ , $k \in K_{\lambda}$, $m \in M_{\lambda}$, Pr[Dec(k, Enc(k,m)) = m] = 1

Statistical Distance

Given two distributions D_1 , D_2 over a set X, define

$$\Delta(D_1,D_2) = \frac{1}{2}\sum_{x} | Pr[D_1=x] - Pr[D_2=x] |$$

Observations:

$$0 \le \Delta(D_1, D_2) \le 1$$

$$\Delta(D_1, D_2) = 0 \iff D_1 \stackrel{d}{=} D_2$$

$$\Delta(D_1, D_2) \le \Delta(D_1, D_3) + \Delta(D_3, D_2)$$

$$(\Delta \text{ is a metric})$$

Another View of Statistical Distance

Theorem: $\Delta(D_1,D_2) \geq \epsilon$ iff \exists (potentially randomized) \triangle s.t.

$$| Pr[A(D_1) = 1] - Pr[A(D_2) = 1] | \ge \varepsilon$$

Terminology: for any A, $|Pr[A(D_1) = 1] - Pr[A(D_2) = 1]|$ is called the "advantage" of A in distinguishing D_1 and D_2

Another View of Statistical Distance

Theorem: $\Delta(D_1,D_2) \geq \epsilon$ iff \exists (potentially randomized) \triangle s.t.

$$Pr[A(D_1) = 1] - Pr[A(D_2) = 1] \ge \epsilon$$

To lower bound Δ , just need to show adversary \mathbf{A} with that advantage

Examples

 D_1 = Uniform distribution over $\{0,1\}^n$

$$\cdot \Pr[D_1 = x] = 2^{-n}$$

 D_2 = Uniform conditioned on even parity

• $Pr[D_2=x] = 2^{-(n-1)}$ if x has even parity, 0 otherwise

$$\Delta(D_{1},D_{2}) = \frac{1}{2} \sum_{\text{even } x} |2^{-n} - 2^{-(n-1)}| + \frac{1}{2} \sum_{\text{odd } x} |2^{-n} - 0| = \frac{1}{2} \sum_{\text{even } x} 2^{-n} + \frac{1}{2} \sum_{\text{odd } x} 2^{-n} = \frac{1}{2}$$

Examples

```
D_1 = Uniform over \{1,...,n\}
D_2 = Uniform over \{1,...,n+1\}
\Delta(D_1,D_2) = \frac{1}{2}\sum_{x=1}^{n} |1/n - 1/(n+1)|
                         + \frac{1}{2} |0 - \frac{1}{(n+1)}|
                   = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{n(n+1)} + \frac{1}{2} \frac{1}{(n+1)}
                   = \frac{1}{(n+1)} + \frac{1}{(n+1)} = \frac{1}{(n+1)}
```

Statistical Security (Concrete)

Definition: A scheme (Enc,Dec) has ε-statistical secrecy for d messages if \forall two sequences of messages $(m_0^{(i)})_{i \in [d]}$, $(m_1^{(i)})_{i \in [d]} \in M^d$ $\Delta \big[\left(\text{Enc}(K, m_0^{(i)}) \right)_{i \in [d]}, \left(\text{Enc}(K, m_1^{(i)}) \right)_{i \in [d]}, \right] < \epsilon$

We will call such a scheme (d,ϵ) statistically secure

Statistical Security (Asymptotic)

```
Definition: A scheme (Enc,Dec) has statistical secrecy for d messages if \exists negligible \epsilon such that \forall two sequences (m_0^{(i)})_{i \in [d]}, (m_1^{(i)})_{i \in [d]} \in M_\lambda^d, \Delta \big[ \left( \text{Enc}(K_\lambda, \, m_0^{(i)} \, ) \right)_{i \in [d]},  \left( \text{Enc}(K_\lambda, \, m_1^{(i)} \, ) \right)_{i \in [d]} \big] < \epsilon(\lambda)
```

We will call such a scheme **d**-time statistically secure

Stateless Encryption with Multiple Messages

Ex:

$$M = C$$
 $K = Perms(M)$
 $Enc(K, m) = K(m)$
 $Dec(K, c) = K^{-1}(c)$

Q: Is this statistically secure for two messages?

Theorem: For any $\varepsilon < 1$, no stateless deterministic encryption scheme can have ε -statistical security for 2 messages

(Proof basically the same as before)

Importantly: proof does **not** hold for randomized schemes for $\varepsilon > 0$

Stateless Encryption with Multiple Messages

Ex:

```
C = M \times R  r \leftarrow R

K = Perms(C)

Enc(K, m) = K(m,r)

Dec(K, c) = (m',r') \leftarrow K^{-1}(c), output m'
```

Q: Is this statistically secure for two messages?

Q: Is it practical?

Example

A more efficient example:

```
M = \mathbb{Z}_p (p a prime of size 2^{\lambda}, \lambda=128)
C = \mathbb{Z}_p^2
K = \mathbb{Z}_p^2
Enc((a,b), m) = (r, (ar+b) + m)
Dec((a,b), (r,c)) = c - (ar+b)
```

Proof of Example

```
Let D_h be distribution of ( Enc(k,m_b^{(i)}) )<sub>i={0.1}</sub>
Let \mathbf{D_h}' be the following:
          1. Run (c_0,c_1)\leftarrow Db
          2. If \mathbf{r}_0 = \mathbf{r}_1, output \perp
          3. Else output (c_0,c_1)
Fix r_0 \neq r_1, m_0, m_1, c_0, c_1
Pr[ar_0+b+m_0=c_0, ar_1+b+m_1=c_1] = 1/p^2
(a,b)
So D_0' = D_1' (\Delta(D_0', D_1') = 0)
```

The Symbol ⊥ ("bot")

Represents an abort/reject/bad outcome

Augments whatever set we are talking about

• Ex: support of $D_b = C^2$, so support of $D_b' = C^2 \cup \{\bot\}$

Proof of Example

Lemma: $\Delta(D_1,D_2) \leq \frac{1}{2} \Pr[bad|D_1] + \frac{1}{2} \Pr[bad|D_2] + \Delta(D_1',D_2')$

Where:

- "bad" is some event
- $Pr[bad|D_b]$ is probability "bad" when sampling from D_b
- D_b' is D_b, except outputs ⊥ on "bad"

Proof of Lemma

$$\begin{split} &\Delta(D_{1},D_{2})=22\sum_{x}|\Pr[D_{1}=x]-\Pr[D_{2}=x]|\\ &=22\sum_{x:bad}|\Pr[D_{1}=x]-\Pr[D_{2}=x]|\\ &+22\sum_{x:good}|\Pr[D_{1}=x]-\Pr[D_{2}=x]|\\ &\leq 22\sum_{x:bad}|\Pr[D_{1}=x]|+22\sum_{x:bad}|\Pr[D_{2}=x]|\\ &+22\sum_{x:good}|\Pr[D_{1}=x]-\Pr[D_{2}=x]|\\ &=22\sum_{x:bad}|\Pr[D_{1}=x]|+22\sum_{x:bad}|\Pr[D_{2}=x]|\\ &+22\sum_{x:bad}|\Pr[D_{1}=x]-\Pr[D_{2}=x]|\\ &+22\sum_{x}|\Pr[D_{1}'=x]-\Pr[D_{2}'=x]|\\ &=22\sum_{x:bad}|\Pr[D_{1}'=x]-\Pr[D_{2}'=x]|\\ &=22\sum_{x:bad}|\Pr[D_{1}'=x]-\Pr[D_{2}'=x]|$$

Proof of Example

```
Let D_b be distribution of ( Enc(k,m_b^{(i)}) )_{i \in \{0,1\}}
Let bad be when r_0=r_1
Let D_b be the following:
```

- 1. Run $(c_0,c_1)\leftarrow Db$
- 2. If **bad**, output \perp
- 3. Else output (c_0,c_1)

$$Pr[bad|D_b] = 1/p$$

$$\Delta(D_0', D_1') = 0$$

Therefore, $\Delta(D_0, D_1) \le 1/p \approx 2^{-\lambda}$

Summary so Far

Stateless encryption for multiple messages

/

But, key length grows with number of messages

X

And, key length grows with length of message

Limits of Statistical Security

Theorem: Suppose (Enc,Dec) has plaintext space $M = \{0,1\}^n$ and key space $K = \{0,1\}^t$. Moreover, assume it is (d, 0.4999)-secure. Then:

t 2 d n

In other words, the key must be at least as long as the total length of all messages encrypted

Proof Idea: Compression

Use an encryption protocol to build a compression protocol

Goal: |m'| < |m|

For Now: Easier Goal

The Protocol

Let $\mathbf{m}_{\mathbf{0}}$ be some arbitrary message in \mathbf{M}

Setup():

- Choose random $k_0 \leftarrow K$
- Let $c_1 \leftarrow Enc(k_0, m_0), ..., c_d \leftarrow Enc(k_0, m_0)$
- Output (c₁,...,c_d)

Comp($(c_1,...,c_d)$, $(m_1,...,m_d)$):

- Find $k,r_1,...,r_d$ such that $c_i = Enc(k,m_i; r_i) \forall i$
- If no such values exist, abort
- Output k

The Protocol

Let $\mathbf{m_0}$ be some message in \mathbf{M}

```
Comp( (c_1,...,c_d), (m_1,...,m_d)):
```

- Find $k,r_1,...,r_d$ such that $c_i = Enc(k,m_i; r_i) \forall i$
- If no such values exist, abort
- Output k

```
Decomp((c_1,...,c_d), k):
```

- Compute $m_i = Dec(k,c_i)$
- Output (m₁,...,m_d)

Analysis of Protocol

If **Comp** succeeds, **Decomp** must succeed by correctness

• Since c_i=Enc(k,m_i; r_i), Dec(k,c_i) must give m_i

Therefore, must figure out when **Comp** succeeds

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

(Probability over the randomness used by **Setup()**)

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

Proof:

- Suppose Comp succeeds with probability 1-p for messages m₁,...,m_d
- Let $A(c_1,...,c_d)$ be the algorithm that runs $Comp((c_1,...,c_d), (m_1,...,m_d))$ and outputs 1 if Comp succeeds
- If $c_i = \text{Enc}(k_0, m_i)$, then $\text{Pr}[A(c_1, ..., c_d)=1] = 1$ • If $c_i = \text{Enc}(k_0, m_0)$, then $\text{Pr}[A(c_1, ..., c_d)=1] = 1-p$
- By (d,ε)-statistical security of Enc, p must be ≤ε

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

Claim: For a random sequence of messages $m_1,...,m_d$, Comp succeeds with prob at least $1-\varepsilon$

(Probability over the randomness used by **Setup()** and the random choices of $\mathbf{m_1, ..., m_d}$)

Next step: Removing Setup

We know:

Pr[Comp succeeds:
$$\binom{(c_1,...,c_d)}{m_i \in M} \leftarrow Setup(), \] \ge 1-\epsilon$$

 \Rightarrow there must exist some $(c_1^*,...,c_d^*)$ such that

Pr[Comp succeeds: $m_i \leftarrow M$] $\geq 1-\epsilon$

Fix $(c_1^*,...,c_d^*)$, define: $M' = \{(m_1,...,m_d): Comp$ succeeds $\}$

• Note that $|M'| \ge (1-\epsilon) |M|^d$

The Protocol

Find $k,r_1,...,r_d$ such that $c_i^*=Enc(k,m_i; r_i) \forall i$

For each i, Let $m_i \leftarrow Dec(k,c_i^*)$ Output $(m_1,...,m_d)$

By previous analysis,

- Alice always successfully compresses
- Bob always successfully decompresses

Final Touches

Can compress messages in M' into keys in K

Therefore, it must be that |M'| ≤ |K|

```
Meaning t = log |K|

\geq log |M'|

\geq log [ (1-\epsilon) |M|^d ]

= d log |M| + log [1-\epsilon]

= dn + log [1-\epsilon]

\geq dn (as long as \epsilon < 1/2)
```

Takeaway

If you don't want to physically exchange keys frequently, you cannot obtain statistical security

So, now what?

Timeline/Cipher sophistication

Computational Security

We are ok if adversary takes a really long time

Only considered attack for adversaries that don't take too long

How Long Is Ok?

Practice:

- Lifetime of data/person/civilization/universe
- Typically something like 280, 2128, or maybe 2256
 - Lifetime of universe in nanoseconds: 2⁵⁸
 - Number of atoms in known universe: 2²⁶⁵

How Long Is Ok?

Theory:

- Maybe things will change as technology improves
- Want a more conceptual answer
- Absolute constants unsatisfactory
- Instead, consider an attack if time bounded by polynomial function

Brute Force Attacks

Simply try every key until find right one

If keys have length λ , 2^{λ} is upper bound on attack

Not always applicable – requires being able to test when guess was correct

Always applicable when | key | ≤ | message |

Holiwudd Criptoe!

[TRANSLTR]'s three million processors would all work in parallel ... trying every new permutation as they went

Holiwudd Criptoe!

"What's the longest you've ever seen TRANSLTR take to break a code?"

"About an hour, but it had a ridiculously long key—ten thousand bits"

Reminders

- HW1 due September 15
- PR1 due October 6