CS 440 Introduction to Artificial Intelligence

Lecture 16:

Markov Decision Processes (MDPs)

March 10, 2020

Markov Processes

- Consider an environment
 - Environment may transition to different states
 - Due to actions selected by agent
 - Due to things outside of agent's control
- Example: Autonomous car
 - State of road changes based on what agent does as well as what other agents do
 - Agent may turn, change lanes, accelerate/decelerate, ect.
 - Other cars may move, change lanes, cut you off, ect.
- Very complicated
 - Impossible to predict exactly
- Given state of environment possible to estimate future state
 - Give you position of cars with current speed
 - Predict likely position of cars after certain amount of time has passed

- Markovian assumption
 - Future state only depend on current state
 - Only matters where cars currently are on road
 - Doesn't matter what maneuvers they took to get there
 - Assumption makes solving problems a lot easier
 - Only need to keep track of current state
 - As opposed to history of previous states
 - Only need to reason over current state

Types of Markov Processes

- Discrete vs continuous
- Passive vs active
 - Active process: The agent's actions influence process
- Observable state vs partially observable state
 - Observable state: agent can observe state directly
 - Partially observable state:
 - Example: Wumpus world

	Observable State	Hidden State
Passive	Markov Chain	Hidden Markov Model
Active	Markov Decision Process (MPD)	Partially Observable Markov Decision Process (POMPD)

- May be discrete or continuous
- Passive state of environment does not depend of actions of agent
- Fully observable
- May be discrete or continuous
 - Discrete Markov chains can be represented as finite state machines

- Example: Bit flip
 - String of bits
 - State: string of 1s and 0s
 - At each time step each bit has a p probability of flipping

- Given an environment in a known state
 - What could the environment look like after n steps?
 - Probability of being in each state
- Solve inductively
 - Assume we know the probability you are in each state s at step i
 - $p_{s,i}$ for all $s \in S$
 - Compute probability for each state at step i+1
 - p_{s',i+1} for all s'∈S
 - Probability we will transition from state s to s' at step i+1 equal to probability we are in state s at step i times the transition probability from s to s'
 - $p_{s',i+1} = p(s'|s)*p_{s,i}$
 - Probability we will be in state s' at step i+1
 - $p_{s',i+1} = \sum_{s' \in S} p(s'|s)*p_{s,i}$

- Example: Bit flip
 - String of bits 2
 - States 00, 01, 10, 11
 - Transitions: Each bit has a p probability of flipping

		00	01	10	11
	00	$(1-p)^2$	p(1-p)	p(1-p)	p ²
T =	01	p(1-p)	(1-p) ²	p ²	p(1-p)
	10	p(1-p)	p ²	(1-p) ²	p(1-p)
	11	p ²	(1-p) ²	(1-p) ²	(1-p) ²

Probability at step n

n	00	01	10	11
0	1.0	0	0	0
1	(1-p) ² = .81	p(1-p) = .09	p(1-p) = .09	p ² = .01
2	.6724	.1476	.1476	.0324

Can we formulate as a matrix multiplication problem?

Solve By Matrix Multiplication

- Let $P_i = \{P_{s1,i}, P_{s2,i}, P_{s3,i}, ...\}$
- Let $P_{i+1} = \{P_{s1,i+1}, P_{s2,i+1}, P_{s3,i+1}, \dots\}$
- Let T be a transition function
- $P_{i+1} = T * P_i^T$
- Compute P_{i+1} by repetitively multiplying by T

$$- P_{i+1} = T^{i+1} * P_0^T$$

Can use parallel computing to expedite these computations

- $P_{i+1} = T^{i+1} * P_0^T OR P_{i+1} = P_0^T * T^{i+1}$
 - Depends how you define T
 - p(y|x)
 - X row and Y column ->
 - X row and Y column ->
 - Doesn't matter for this example because T is symmetric

Markov Chains Example

- And moves up/down/left/right with probability p
 - stays in same cell with probability 1-p
- We don't know what move the ant will make

	3	

- May be discrete or continuous
- Active agents actions effect state
- Fully observable
- May be discrete or continuous

- State space S
- Set of actions A
- Transition function T(s,a,s')
 - T(s,a,s') = p(s'|s',a)
 - Probability that you will end up in state s' if you take action a while in state s
 - Defined for all combinations of $s \in S$, $a \in A$, $s' \in S$
- Reward function R
 - Could define reward of being in a state, R(s)
 - Could define reward of performing action while in state R(s,a)
 - Could be reward of performing action that ends up in a particular state R(a,s')
- Immediate objective: Determine the best action to take given your current state
 - Action that maximizes expected future reward

Markov Chains Example

- Robot in a grid with noisy actions
 - Robot can choose Left/Right/Up/Down
 - Actions may bring robot to wrong cell

		+1000
	-100	

- Objective: find best action
- Search
 - Branching faction equal to number of actions
 - For each node in search tree need probability for each state
 - Need to compute for every state
 - Can blow up quickly

- Policy is a mapping of states to actions
 - $-\Pi(s) \rightarrow a$
- Policies are solutions to MDPs
- Optimal policy is a policy that maps each state to the action which maximizes expected future reward.

• Ideas?

- Construct a policy that is optimal for next n moves
 - Define Π_n to be a policy that is optimal for n steps
 - Define R_n to be the expected reward for this policy
- Construct inductively
 - Assume you have a policy $\Pi_{_{\! i}}$ that is optimal over i steps
 - $R_{i+1}(s) = \max_{a \in A} (R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
 - $\prod_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
- What can you say if $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$?

- Construct a policy that is optimal for next n moves
 - Define Π_n to be a policy that is optimal for n steps
 - Define R_n to be the expected reward for this policy
- Construct inductively
 - Assume you have a policy $\Pi_{_{\! i}}$ that is optimal over i steps
 - $R_{i+1}(s) = \max_{a \in A} (R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
 - $\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
- What can you say if $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$?
 - Policy won't change for all future iterations
 - $\Pi_{i+1}(s)$ is an optimal policy

- Idea: iteratively compute $R_{i+1}(s)$ and $\Pi_{i+1}(s)$ from $R_{i+1}(s)$ until it converges to optimal
 - do
 - For all $s \in S$, $a \in A$, $s' \in S$

$$-R_{i+1}(s) = \max_{a \in A} (R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$$

$$-\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$$

- Until $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$
- Problem
 - Does not take into account number of steps to get to goal
 - Sequence of n moves to goal yields same reward as single move to goal

- Multiply reward of future steps by discounting factor α
- do
 - For all $s \in S$, $a \in A$, $s' \in S$
 - $R_{i+1}(s) = \max_{a \in A} (R(a,s) + \alpha \sum_{s \in S} p(s'|s) R_i(s'))$
 - $\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \alpha \sum_{s \in S} p(s'|s) R_i(s'))$
- Until $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$

Markov Chains Example

- Robot in a grid with noisy actions
 - Robot can choose Left/Right/Up/Down
 - Actions may bring robot to wrong cell

		+1000
	-100	

Types of Markov Processes

- Discrete vs continuous
- Passive vs active
 - Active process: The agent's actions influence process
- Observable state vs partially observable state
 - Observable state: agent can observe state directly
 - Partially observable state:
 - Example: Wumpus world

	Observable State	Hidden State
Passive	Markov Chain	Hidden Markov Model
Active	Markov Decision Process (MPD)	Partially Observable Markov Decision Process (POMPD)

- May be discrete or continuous
- Passive agents actions don't effect state
- PArtially observable
- May be discrete or continuous

Rutgers

Hidden Markov Model: Example

- One an ordinary day Bob has a .7 probability of being in his office
- If Bob is busy working on a paper deadline he has a .9 probability of being in his office
- If he is sick and there is no paper deadline he has a .1 probability of being in his office
- If he is sick but there is a paper deadline he has a .6 probability of being in his office
- John does not know if Bob has a paper deadline of if he is sick
 - He only knows if Bob is in his office
 - Can he infer the probability Bob has a paper deadline or is sick based on these observations?
 - Can he predict if Bob will be in his office?

Hidden Markov Model: Example

	Not Sick	Sick
Paper	.9	.6
No Paper	.7	.1

- Also need to know transition probability of paper deadline and being sick
 - If Bob has a paper deadline at time step i there is a .9 probability he will have a paper deadline at step i+1
 - If Bob is sick at time step i there is a .8 probability he will be sick at step i+1

Hidden Markov Model Example 2

- Food at corner of grid
 - Don't know where food is
 - And has .3 probability of moving towards food and .1 probability of moving away

	.1		
.1		3	
	.3		