δ -SUPERDERIVATIONS OF SIMPLE FINITE-DIMENSIONAL JORDAN AND LIE SUPERALGEBRAS

Ivan Kaygorodov

Sobolev Inst. of Mathematics Novosibirsk, Russia kib@math.nsc.ru

Keywords: δ -superderivation, Lie superalgebra, Jordan superalgebra.

Abstract:

We introduce the concept of a δ -superderivation of a superalgebra. δ -Derivations of Cartantype Lie superalgebras are treated, as well as δ -superderivations of simple finite-dimensional Lie superalgebras and Jordan superalgebras over an algebraically closed field of characteristic 0. We give a complete description of $\frac{1}{2}$ -derivations for Cartan-type Lie superalgebras. It is proved that nontrivial δ -(super) derivations are missing on the given classes of superalgebras, and as a consequence, δ -superderivations are shown to be trivial on simple finite-dimensional noncommutative Jordan superalgebras of degree at least 2 over an algebraically closed field of characteristic 0. Also we consider δ -derivations of unital flexible and semisimple finitedimensional Jordan algebras over a field of characteristic not 2.

INTRODUCTION

The notion of a derivation of an algebra was generalized by many mathematicians in a number of different directions. Thus, in [1], we can find the definition of a δ -derivation of an algebra. Recall that with $\delta \in F$ fixed, a δ -derivation of an algebra A is conceived of as a linear map ϕ satisfying the condition $\phi(xy) = \delta(\phi(x)y + x\phi(y))$ for arbitrary elements $x, y \in A$. In [1], also, $\frac{1}{2}$ -derivations are described for an arbitrary primary Lie Φ -algebra A ($\frac{1}{6} \in \Phi$) with a nondegenerate symmetric invariant bilinear form. Namely, it was proved that the linear map $\phi: A \to A$ is a $\frac{1}{2}$ -derivation iff $\phi \in \Gamma(A)$, where $\Gamma(A)$ is the centroid of an algebra A. This implies that if A is a central simple Lie algebra having a nondegenerate symmetric invariant bilinear form over a field of characteristic $p \neq 2, 3$, then any $\frac{1}{2}$ -derivation ϕ is represented as $\phi(x) = \alpha x, \ \alpha \in \Phi$. In [2], it was proved that every primary Lie Φ -algebra does not have a nonzero δ -derivation if $\delta \neq -1, 0, \frac{1}{2}, 1$, and that every primary Lie Φ -algebra $A(\frac{1}{6} \in \Phi)$ with a nonzero antiderivation satisfies the identity [(yz)(tx)]x + [(yx)(zx)]t = 0 and is a threedimensional central simple algebra over a field of quotients of the center $Z_R(A)$ of its right multiplication algebra R(A). In [2], too, we can find an example of a nontrivial $\frac{1}{2}$ -derivation for a Witt algebra W_1 , by which is meant a $\frac{1}{2}$ -derivation which is not an element of the centroid of W_1 . δ -Derivations of primary alternative and non-Lie Mal'tsev Φ -algebras with restrictions on an operator ring Φ were described in [3]. It turns out that algebras in these classes have no nonzero δ -derivation if $\delta \neq 0, \frac{1}{2}, 1$.

In [4], δ -derivations of semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic other than 2 were characterized, as well as simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0. δ -Derivations of classical Lie superalgebras were described in [5]. Namely, nonzero δ -derivations were shown

not to exist for $\delta \neq 0, \frac{1}{2}, 1$ and $\frac{1}{2}$ -derivations of the given algebras and superalgebras were described out. Also δ -derivations (and δ -superderivations) of prime Lie superalgebras considered P. Zusmanovich [15]. He was proved that every primary Lie superalgebra does not have a nonzero δ -derivation if $\delta \neq -1, 0, \frac{1}{2}, 1$.

In the present paper, the concept of a δ -superderivation of a superalgebra is introduced. We consider δ -derivations of Cartan-type Lie superalgebras, and also δ -superderivations of simple finite-dimensional Lie superalgebras and of Jordan superalgebras over an algebraically closed field of characteristic 0. A complete description of $\frac{1}{2}$ -derivations is furnished for Cartan-type Lie superalgebras. We prove that nontrivial δ -(super)derivations are missing on the given classes of superalgebras, and as a consequence, infer that δ -superderivations are trivial on simple finite-dimensional noncommutative Jordan superalgebras of degree at least 2 over an algebraically closed field of characteristic 0. Also we consider δ -derivations for unital flexible and semisimple finite-dimensional Jordan algebras over a field of characteristic not 2.

1. BASIC FACTS AND DEFINITIONS

Let Γ be the Grassmann algebra over F generated by elements $1, e_1, \ldots, e_n, \ldots$ and defined by relations $e_i^2 = 0$ and $e_i e_j = -e_j e_i$. Products $1, e_{i_1} e_{i_2} \ldots e_{i_k}, i_1 < i_2 < \ldots < i_k$, form a basis for the algebra Γ over F. Denote by $\Gamma_{\overline{0}}$ and $\Gamma_{\overline{1}}$ subspaces generated by products of, respectively, even and odd lengths. Then Γ is representable as a direct sum of those subspaces (written $\Gamma = \Gamma_{\overline{0}} \oplus \Gamma_{\overline{1}}$), and the following relations hold: $\Gamma_{\overline{i}}\Gamma_{\overline{j}} \subseteq \Gamma_{\overline{i}+\overline{j}\pmod{2}}, i, j = 0, 1$. In other words, Γ is a \mathbb{Z}_2 -graded algebra (or superalgebra) over F.

Now let $A = A_{\overline{0}} \oplus A_{\overline{1}}$ be an arbitrary superalgebra over F. Consider the tensor product $\Gamma \otimes A$ of F-algebras. Its subalgebra

$$\Gamma(A) = \Gamma_{\overline{0}} \otimes A_{\overline{0}} + \Gamma_{\overline{1}} \otimes A_{\overline{1}}$$

is called the $Grassmann\ envelope$ of a superalgebra A.

Let Ω be some variety of algebras over F. A superalgebra $A = A_{\overline{0}} \oplus A_{\overline{1}}$ is called a Ω superalgebra if its Grassmann envelope $\Gamma(A)$ is an algebra in Ω . Classical Lie superalgebras are
simple finite-dimensional Lie superalgebras $G = G_{\overline{0}} \oplus G_{\overline{1}}$ over an algebraically closed field of
characteristic 0, where $G_{\overline{1}}$ is a completely reducible $G_{\overline{0}}$ -module. Simple finite-dimensional Lie
superalgebras over an algebraically closed field of characteristic 0 that are not classical are called
Cartan-type Lie superalgebras. It follows from [6] that Cartan superalgebras are exhausted by
superalgebras of the forms W(n), $n \geq 2$, S(n), $n \geq 3$, $\widetilde{S}(2n)$, $n \geq 2$, and H(n), $n \geq 5$.

We start by defining W(n). Let $\Lambda(n)$ be a Grassmann superalgebra with a set of generators ξ_1, \ldots, ξ_n . We define $\operatorname{der}\Lambda(n)$ as W(n). Every derivation $D \in W(n)$ is representable as

$$D = \sum_{i} P_{i} \frac{\partial}{\partial \xi_{i}}, \quad P_{i} \in \Lambda(n),$$

where $\frac{\partial}{\partial \xi_i}$ is a derivation given by the rule $\frac{\partial}{\partial \xi_i}(\xi_j) = \delta_{ij}$. Let $\deg \xi_i = 1$. Then $W(n) = \bigoplus_{k \geqslant -1} W(n)_k$, where

$$W(n)_k = \left\{ \sum P_i \frac{\partial}{\partial \xi_i} \mid \deg P_i = k+1, \ i = 1, \dots, n \right\}.$$

The superalgebras S(n), $\widetilde{S}(n)$, $\widetilde{H}(n)$, and H(n) are subsuperalgebras of W(n) defined as follows:

$$S(n) = \left\{ \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial \xi_{j}} + \frac{\partial f}{\partial \xi_{j}} \frac{\partial}{\partial \xi_{i}} \middle| f \in \Lambda(n), i, j = 1, \dots, n \right\};$$

$$\widetilde{S}(n) = \left\{ (1 - \xi_{1} \dots \xi_{n}) \left(\frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial \xi_{j}} + \frac{\partial f}{\partial \xi_{j}} \frac{\partial}{\partial \xi_{i}} \right) \middle| f \in \Lambda(n), i, j = 1, \dots, n \right\},$$

$$n = 2l;$$

$$\widetilde{H}(n) = \left\{ D_{f} = \sum_{i} \frac{\partial f}{\partial \xi_{i}} \frac{\partial}{\partial \xi_{i}} \middle| f \in \Lambda(n), f(0) = 0, i = 1, \dots, n \right\};$$

$$H(n) = [\widetilde{H}(n), \widetilde{H}(n)].$$

Root systems for the given superalgebras are described in [7].

For the case $\Theta = W(n)$, elements $h_i = \xi_i \frac{\partial}{\partial \xi_i}$ form a basis for a Cartan subalgebra, and $\Theta_0 = gl_n$. Elements ε_i constitute a basis dual to h_i . A root system shows up as follows:

$$\Delta = \left\{ \varepsilon_{i_1} + \ldots + \varepsilon_{i_k}, \varepsilon_{i_1} + \ldots + \varepsilon_{i_k} - \varepsilon_j \middle| i_r \neq i_s, j \neq i_r, 0 \leqslant k \leqslant n - 1, 1 \leqslant j \leqslant n \right\}.$$

The superalgebras $\Theta = S(n), \widetilde{S}(n)$ (n = 2l in the latter case) have a Cartan subalgebra H generated by elements $h_{ij} = \xi_i \frac{\partial}{\partial \xi_i} - \xi_j \frac{\partial}{\partial \xi_j}$. It is known that $\Theta_0 = sl_n$. Elements ε_i form a basis dual to h_i , and $\varepsilon_1 + \ldots + \varepsilon_n = 0$. A root system is the following:

$$\Delta = \left\{ \varepsilon_{i_1} + \ldots + \varepsilon_{i_k}, \varepsilon_{i_1} + \ldots + \varepsilon_{i_l} - \varepsilon_j \mid i_r \neq i_s, j \neq i_s, \right.$$
$$1 \leqslant k \leqslant n - 2, 0 \leqslant l \leqslant n - 1, 1 \leqslant j \leqslant n \right\}.$$

If $\Theta = H(n)$ then $\Theta_0 = D_l$, for n = 2l, and $\Theta_0 = B_l$ for n = 2l + 1. The superalgebra Θ_0 has a Cartan subalgebra H generated by elements $D_{\xi_i \xi_{i+l}}$. Let $h_i = \sqrt{-1}D_{\xi_i \xi_{i+l}}$ and ε_i be elements of the basis dual to h_i . A root system is described thus:

$$\Delta = \left\{ \varepsilon_{i_1} + \ldots + \varepsilon_{i_t} - \varepsilon_{j_1} - \ldots - \varepsilon_{j_s} \mid i_r \neq i_p, j_r \neq j_p, i_r \neq j_p, 0 \leqslant t, s \leqslant l \right\}.$$

Note that if $\Theta = S(n), \widetilde{S}(n), H(n)$ then Θ_k is defined similarly to how is $W(n)_k$ defined for W(n).

2. δ -DERIVATIONS OF CARTAN-TYPE LIE SUPERALGEBRAS

Let $\delta \in F$. A linear mapping ϕ of a superalgebra A is called a δ -derivation if, for arbitrary elements $x, y \in A$,

$$\phi(xy) = \delta(x\phi(y) + \phi(x)y).$$

A definition for a 1-derivation coincides with the usual definition of a derivation. A 0-derivation is any endomorphism ϕ of A such that $\phi(A^2) = 0$. A nontrivial δ -derivation is a nonzero δ -derivation ϕ which is not a 1- or 0-derivation, nor a $\frac{1}{2}$ -derivation such that $\phi \in \Gamma(A)$. We are interested in how nontrivial δ -derivations act on Cartan-type Lie superalgebras.

By G_{β} we mean a root subspace corresponding to a root β , and g_{β} is conceived of as an element of that subspace.

LEMMA 1. Let $G = G_{\overline{0}} \oplus G_{\overline{1}}$ be a Cartan-type Lie superalgebra and ϕ a nontrivial δ -derivation of the superalgebra G. Then $\phi(G_{\overline{i}}) \subseteq G_{\overline{i}}$.

Proof. In [6], it was shown that $G_{\overline{0}} = [G_{\overline{1}}, G_{\overline{1}}]$. Consequently, for any $x \in G_{\overline{0}}$, we have

$$x = \sum_{i=1}^{n_x} \left(\left(\frac{v_i + z_i}{2} \right)^2 - \left(\frac{v_i - z_i}{2} \right)^2 \right),$$

where $z_i, v_i \in G_{\overline{1}}$. Note that for $y \in G_{\overline{1}}$ and $\phi(y) = y_0 + y_1, y_i \in G_{\overline{i}}$,

$$\phi(y^2) = \delta((y_0 + y_1)y + y(y_0 + y_1)) = 2\delta y_1 y \in G_{\overline{0}}.$$

Hence $\phi(G_{\overline{0}}) \subseteq G_{\overline{0}}$.

Let H be a Cartan subalgebra, $\beta \neq 0$, $g_{\beta} \in G_{\overline{1}} \cap G_{\beta}$, $h \in H$, and $\phi(g_{\beta}) = \sum_{\gamma \in \Delta} g_{\gamma} + h_{\beta}$, where $h_{\beta} \in H$. We obtain the following chain of equalities:

$$\sum_{\gamma \in \Delta} \beta(h) g_{\gamma} + \beta(h) h_{\beta} = \phi(\beta(h) g_{\beta}) = \phi(h g_{\beta})$$
$$= \delta(\phi(h) g_{\beta} + h \phi(g_{\beta})) = \delta\left(\phi(h) g_{\beta} + \sum_{\gamma \in \Delta} \gamma(h) g_{\gamma}\right).$$

Since $\phi(h) \in G_{\overline{0}}$, $\phi(h)g_{\beta} \in G_{\overline{1}}$, and $h \in H$ is arbitrary, we have $\beta = \delta \gamma$ for $\gamma \in \Delta_{\overline{0}}$. This, in view of the form of root systems for Cartan-type Lie superalgebras, yields $\phi(G_{\overline{1}}) \subseteq G_{\overline{1}}$. The lemma is proved.

Let $\Theta = \bigoplus_{i=-1}^n \Theta_i$ be a Cartan-type Lie superalgebra. We will treat $\psi : \Theta_0 \to \Theta_0$ as a restriction of a δ -derivation ϕ to Θ_0 . In view of Lemma 1, it is clear that for $x \in \Theta_0$, $\phi(x) = \psi(x) + \sum_{i=1}^{[n/2]} b_{2i}^x$, where $b_{2i}^x \in \Theta_{2i}$. It is easy to see that ψ is a δ -derivation of the algebra Θ_0 . Relying on results in [1] and the structure of algebras Θ_0 , we conclude that for $\Theta = S(n), \widetilde{S}(n), H(n)$, if $\delta = \frac{1}{2}$ then $\psi(g_0) = \sigma g_0$, $g_0 \in \Theta_0$, $\sigma \in F$, and if $\delta \neq \frac{1}{2}$ then $\psi(\Theta_0) = 0$. It follows from [5, Lemma 7] that for the case where $\Theta = W(n)$, it is true that $\psi(a) = \sigma a$, $\sigma \in F$, with $a = \sum_{i=1}^n \xi_i \frac{\partial}{\partial \xi_i}$.

LEMMA 2. The superalgebra W(n) has no nontrivial δ -derivations. **Proof.** It is easy to see that in the above terms, for $x_0, y_0 \in \Theta_0$, we have

$$0 = \phi(ax_0) = \delta\left(\sum_{i=1}^{[n/2]} b_{2i}^a x_0 + a \sum_{i=1}^{[n/2]} b_{2i}^{x_0}\right),\,$$

which entails $b_{2i}^{x_0} = -\frac{1}{2i}b_{2i}^ax_0$. This implies

$$\sum_{i=1}^{[n/2]} \frac{1}{2i} b_{2i}^a(x_0 y_0) = \psi(x_0 y_0) - \phi(x_0 y_0) = \delta \sum_{i=1}^{[n/2]} \frac{1}{2i} ((b_{2i}^a x_0) y_0 + x_0(b_{2i}^a y_0)) = \delta \sum_{i=1}^{[n/2]} \frac{1}{2i} b_{2i}^a(x_0 y_0),$$

so $b_{2i}^a = 0$, and hence $\phi(a) = \sigma a$ and $\phi(x_0) = \psi(x_0)$.

Note that if $\phi(g_{\varepsilon_i}) = \sum_{i=0}^{\lfloor n/2 \rfloor} b_{2j-1}^{g_{\varepsilon_i}}$, where $g_{\varepsilon_i} \in \Theta_1$, then

$$\phi(g_{\varepsilon_i}) = \delta(\sigma a g_{\varepsilon_i} + a \phi(g_{\varepsilon_i})) = \delta\left(\sigma g_{\varepsilon_i} + \sum_{j=0}^{[n/2]} (2j-1) b_{2j-1}^{g_{\varepsilon_i}}\right),\,$$

so $b_{2j-1}^{g_{\varepsilon_i}} = \delta(2j-1)b_{2j-1}^{g_{\varepsilon_i}}$, where $j \neq 1$, and $b_1^{g_{\varepsilon_i}} = \delta(\sigma g_{\varepsilon_i} + b_1^{g_{\varepsilon_i}})$, whence $\phi(g_{\varepsilon_i}) = \frac{\sigma \delta}{1-\delta}g_{\varepsilon_i} + b_{\frac{1}{x}}^{g_{\varepsilon_i}}$

if $\frac{1}{\delta} = 2j - 1$ and $j \in \{0, \dots, [n/2]\}$. It is worth observing that $\phi(g_{\varepsilon_i}) = \phi(h_{ij}g_{\varepsilon_i}) = \delta(\psi(h_{ij})g_{\varepsilon_i} + h_{ij}(\frac{\sigma\delta}{1-\delta}g_{\varepsilon_i} + b\frac{g_{\varepsilon_i}}{\frac{1}{\delta}}))$; i.e., $b_{\frac{1}{\delta}}^{g_{\varepsilon_i}} = b_{\frac{1}{\delta}}^{g_{\varepsilon_i}}$ $\delta h_{ij}b_{\frac{1}{\lambda}}^{g_{\varepsilon_i}}$. Keeping in mind that $b_{\frac{1}{\lambda}}^{g_{\varepsilon_i}} \in W(n)_{2l-1}$ and $h_{ij}g_{\alpha} = 0, \pm g_{\alpha}, \pm 2g_{\alpha}$, we arrive at $\delta = -1$ and $\phi(g_{\varepsilon_i}) = \frac{\sigma \delta}{1 - \delta} g_{\varepsilon_i} + \beta_{g_{-\varepsilon_i}}^{g_{\varepsilon_i}} g_{-\varepsilon_i}$.

For $\delta = -1$, the fact that $0 = \phi(g_{\varepsilon_i}^2) = -2\phi(g_{\varepsilon_i})g_{\varepsilon_i} = \beta_{-\varepsilon_i}^{g_{\varepsilon_i}}g_{-\varepsilon_i}g_{\varepsilon_i}$ implies $\phi(g_{\varepsilon_i}) = \frac{\sigma\delta}{1-\delta}g_{\varepsilon_i}$. Similarly, $\phi(g_{-\varepsilon_i}) = \frac{\sigma \delta}{1-\delta} g_{-\varepsilon_i}$. This entails

$$\frac{\sigma\delta}{1-\delta}g_{\varepsilon_i} = \phi(g_{\varepsilon_i}) = \phi((g_{\varepsilon_i}g_{-\varepsilon_j})g_{\varepsilon_j}) = \delta(\phi(g_{\varepsilon_i}g_{-\varepsilon_j})g_{\varepsilon_j} + (g_{\varepsilon_i}g_{-\varepsilon_j})\phi(g_{\varepsilon_j})) = (2\delta^2 + \delta)\frac{\sigma\delta}{1-\delta}g_{\varepsilon_i}.$$

Clearly, $\sigma \neq 0$ only if $\delta = -1, \frac{1}{2}$; otherwise $\sigma = 0$.

If $\delta = -1$ then $\phi(g_{\varepsilon_i - \varepsilon_j}) = \phi(g_{\varepsilon_i} g_{-\varepsilon_j}) = \sigma g_{\varepsilon_i - \varepsilon_j}$ and $\phi(g_{\pm \varepsilon_i}) = -\frac{\sigma}{2} g_{\pm \varepsilon_i}$. It remains to note that

$$\phi(h_{ij}) = \phi\left(\sum x_k^0 y_k^0\right) = -2\sigma h_{ij}$$
 and $\phi(h_{ij}) = \phi\left(\sum x_l^{-1} y_l^1\right) = \sigma h_{ij}$,

where $x_l^k, y_l^k \in W(n)_k$, whence $\sigma = 0$.

If $\delta \neq \frac{1}{2}$, then $\phi(g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_{k-1}}\pm\varepsilon_{i_k}})=0$, since $\phi(g_{\pm\varepsilon_i})=0$. But if $\delta=\frac{1}{2}$, then $\phi(g_{\pm\varepsilon_i})=\sigma g_{\pm\varepsilon_i}$. Hence $\phi(g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_{k-1}}\pm\varepsilon_{i_k}}) = \sigma g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_{k-1}}\pm\varepsilon_{i_k}}$. The argument above implies that ϕ is trivial. The lemma is proved.

Below, for a root $\alpha = \sum_{i \in I_0} \varepsilon_i - \sum_{j \in I_1} \varepsilon_j$, $I_0 \cap I_1 = \emptyset$, by $\alpha \supseteq (-1)^k \varepsilon_t$ and $\alpha \not\supseteq (-1)^k \varepsilon_t$ we mean $t \in I_k$ and $t \notin I_k$, respectively.

LEMMA 3. The superalgebras S(n) and $\tilde{S}(n)$ have no nontrivial δ -derivations.

Proof. In what follows, we denote both superalgebras S(n) and $\tilde{S}(n)$ by S(n), and α^* will signify the fact that $\alpha^* \not\supseteq \pm \varepsilon_i, \pm \varepsilon_j$. Using the argument above, we conclude that

$$\phi(h_{ij}) = \psi(h_{ij}) + \sum_{\alpha \in \Delta_0} b_{\alpha}^{h_{ij}}, b_{\alpha}^{h_{ij}} \in \bigcup_{k=1}^{[n/2]} S(n)_{2k}.$$

It is easy to see that

$$0 = \phi(h_{ij}h_{ik}) = \delta(\phi(h_{ij})h_{ik} + h_{ij}\phi(h_{ik})),$$

whence $b_{\alpha^*}^{h_{ij}} = b_{\varepsilon_i + \varepsilon_j + \alpha^*}^{h_{ij}} = 0$, and $b_{\varepsilon_i + \alpha^*}^{h_{ik}} = 0$ and $2b_{-\varepsilon_i + \alpha^*}^{h_{ij}} = b_{-\varepsilon_i + \alpha^*}^{h_{ik}}$ for $\alpha^* \supseteq \varepsilon_k$. Let α^* be such that $\alpha^* \supseteq \varepsilon_k$. Then $\phi(g_{\varepsilon_i}) = \delta(\phi(h_{ik})g_{\varepsilon_i} + h_{ik}\phi(g_{\varepsilon_i}))$. Hence

$$b_{\alpha^*}^{g_{\varepsilon_i}} = \delta(b_{-\varepsilon_i + \alpha^*}^{h_{ik}} g_{\varepsilon_i} - b_{\alpha^*}^{g_{\varepsilon_i}}).$$

The fact that $\phi(g_{\varepsilon_i}) = \delta(\phi(h_{ij})g_{\varepsilon_i} + h_{ij}\phi(g_{\varepsilon_i}))$ implies

$$b_{\alpha^*}^{g_{\varepsilon_i}} = \delta b_{-\varepsilon_i + \alpha^*}^{h_{ij}} g_{\varepsilon_i}.$$

The relations obtained yield $(1+\delta)b_{-\varepsilon_i+\alpha^*}^{h_{ij}}g_{\varepsilon_i}=b_{-\varepsilon_i+\alpha^*}^{h_{ik}}g_{\varepsilon_i}=2b_{-\varepsilon_i+\alpha^*}^{h_{ij}}g_{\varepsilon_i}$; i.e., $b_{-\varepsilon_i+\alpha^*}^{h_{ij}}g_{\varepsilon_i}=0$. Obviously, $\phi(g_{-\varepsilon_i})=-\delta(\phi(h_{ij})g_{-\varepsilon_i}+h_{ij}\phi(g_{-\varepsilon_i}))$, and so

$$b_{\alpha^*}^{g_{-\varepsilon_i}} = -\delta b_{\varepsilon_i + \alpha^*}^{h_{ij}} g_{-\varepsilon_i}.$$

The equality $\phi(g_{-\varepsilon_i}) = -\delta(\phi(h_{ik})g_{-\varepsilon_i} + h_{ik}\phi(g_{-\varepsilon_i}))$ gives

$$b_{\alpha^*}^{g_{-\varepsilon_i}} = \delta(b_{\varepsilon_i + \alpha^*}^{h_{ik}} g_{-\varepsilon_i} - b_{\alpha^*}^{g_{-\varepsilon_i}}),$$

whence $(1 - \delta)b_{\varepsilon_i + \alpha^*}^{h_{ij}} = b_{\varepsilon_i + \alpha^*}^{h_{ik}} = b_{\varepsilon_i + \varepsilon_k + \gamma^*}^{h_{ik}} = 0$, where $\gamma^* \not\supseteq \pm \varepsilon_i, \pm \varepsilon_k$; i.e., $b_{\varepsilon_i + \alpha^*}^{h_{ij}} = 0$. We claim that $b_{\varepsilon_i - \varepsilon_j + \alpha^*}^{h_{ij}} = 0$. To prove this, consider

$$2\phi(g_{\varepsilon_j-\varepsilon_i}) = -\delta(\phi(h_{ij})g_{\varepsilon_j-\varepsilon_i} + h_{ij}\phi(g_{\varepsilon_j-\varepsilon_i})).$$

This yields

$$2b_{\alpha^*}^{g_{\varepsilon_j-\varepsilon_i}} = -2\delta b_{\varepsilon_i-\varepsilon_j+\alpha^*}^{h_{ij}} g_{\varepsilon_j-\varepsilon_i}.$$

On the other hand, $\phi(g_{\varepsilon_i-\varepsilon_i}) = -\delta(\phi(h_{ik})g_{\varepsilon_i-\varepsilon_i} + h_{ik}\phi(g_{\varepsilon_i-\varepsilon_i}))$ gives

$$b_{\alpha^*}^{g_{\varepsilon_j-\varepsilon_i}}=-\delta(b_{\varepsilon_i-\varepsilon_j+\alpha^*}^{h_{ik}}g_{\varepsilon_j-\varepsilon_i}-b_{\alpha^*}^{g_{\varepsilon_j-\varepsilon_i}}).$$

Since $\alpha^* \supseteq \varepsilon_k$, we define $\gamma^* = \alpha^* - \varepsilon_k - \varepsilon_j$, where $\gamma^* \not\supseteq \pm \varepsilon_i, \pm \varepsilon_k$; hence $b_{\varepsilon_i + \varepsilon_k + \gamma^*}^{h_{ik}} = 0$ and $b_{\varepsilon_i - \varepsilon_j + \alpha^*}^{h_{ik}} = 0$. Consequently, $b_{\alpha^*}^{g_{\varepsilon_j - \varepsilon_i}} = 0$ and $b_{\varepsilon_i - \varepsilon_j + \alpha^*}^{h_{ij}} = 0$.

The equalities $b_{\varepsilon_j-\varepsilon_i+\alpha^*}^{h_{ij}}=b_{\pm\varepsilon_j+\alpha^*}^{h_{ij}}=0$ are obtained by substituting $i\leftrightarrow j$ and $h_{ij}=-h_{ji}$ simultaneously. Thus $\phi(h_{ij})=\psi(h_{ij})$.

If $\delta \neq \frac{1}{2}$, then the fact that $\phi(g_{\pm \varepsilon_i}) = \pm \delta h_{ik} \phi(g_{\pm \varepsilon_i})$ implies $\phi(g_{\pm \varepsilon_i}) = b_{\mp \varepsilon_i}^{g_{\pm \varepsilon_i}}$ and $\delta = -1$, since k is arbitrary. Note that $0 = \phi(g_{\pm \varepsilon_i}^2) = 2\delta \phi(g_{\pm \varepsilon_i})g_{\pm \varepsilon_i} = 2\delta b_{\mp \varepsilon_i}^{g_{\pm \varepsilon_i}}g_{\pm \varepsilon_i}$, whence $b_{\mp \varepsilon_i}^{g_{\pm \varepsilon_i}} = 0$. Taking into account that $g_{\pm \varepsilon_1}, \ldots, g_{\pm \varepsilon_n}$ are generators for S(n), we have $\phi(S(n)) = 0$.

If $\delta = \frac{1}{2}$, then $\phi(g_{\pm \varepsilon_i}) = \frac{1}{2}(\sigma g_{\pm \varepsilon_i} \pm h_{ij}\phi(g_{\pm \varepsilon_i}))$, which entails $\phi(g_{\pm \varepsilon_i}) = \sigma g_{\pm \varepsilon_i}$. Since $g_{\pm \varepsilon_1}, \ldots, g_{\pm \varepsilon_n}$ are generators for S(n), we obtain $\phi(g) = \sigma g$, $g \in S(n)$. This does imply that ϕ is trivial. The lemma is proved.

LEMMA 4. The superalgebra H(n) has no nontrivial δ -derivations.

Proof. By α^* we mean $\alpha^* \not\supseteq \pm \varepsilon_i$. The argument above entails

$$\phi(h_i) = \psi(h_i) + \sum_{\alpha \in \Delta_0} b_{\alpha}^{h_i}, b_{\alpha}^{h_i} \in \bigcup_{k=1}^{[n/2]} H(n)_{2k}.$$

Consequently, $0 = \phi(h_i h_j) = \delta(\phi(h_i) h_j + h_i \phi(h_j))$, which implies $b_{\alpha^*}^{h_i} = 0$. For $\alpha^* \supseteq \varepsilon_j$, we have $b_{-\varepsilon_i + \alpha^*}^{h_i} = -b_{-\varepsilon_i + \alpha^*}^{h_j}$ and $b_{\varepsilon_i + \alpha^*}^{h_i} = b_{\varepsilon_i + \alpha^*}^{h_j}$. For $\alpha^* \supseteq -\varepsilon_j$, it is true that $b_{\varepsilon_i + \alpha^*}^{h_j} = -b_{\varepsilon_i + \alpha^*}^{h_i}$ and $b_{-\varepsilon_i + \alpha^*}^{h_j} = b_{-\varepsilon_i + \alpha^*}^{h_i}$.

Assume that for α^* , either $\alpha^* \supseteq \varepsilon_j$ or $\alpha^* \supseteq -\varepsilon_j$. We claim that $b_{\pm \varepsilon_i + \alpha^*}^{h_i} = 0$. Obviously,

$$\phi(g_{\varepsilon_i}) = \delta(\phi(h_i)g_{\varepsilon_i} + h_i\phi(g_{\varepsilon_i})), \ 0 = \phi(h_jg_{\varepsilon_i}) = \delta(\phi(h_j)g_{\varepsilon_i} + h_j\phi(g_{\varepsilon_i})),$$

from which we conclude that $\delta b^{h_i}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}=b^{g_{\varepsilon_i}}_{\alpha^*}=-b^{h_j}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}=b^{h_i}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}$ for $\alpha^*\supseteq\varepsilon_j$; i.e., $b^{h_i}_{-\varepsilon_i+\alpha^*}=0$. For $\alpha^*\supseteq-\varepsilon_j$, we have $(1+\delta)b^{h_i}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}=(1+\delta)b^{h_j}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}=(1+\delta)b^{g_{\varepsilon_i}}_{\alpha^*}=\delta b^{h_i}_{-\varepsilon_i+\alpha^*}g_{\varepsilon_i}$, which yields $b^{h_i}_{-\varepsilon_i+\alpha^*}=0$.

Also it is easy to see that for $\alpha^* \supseteq \varepsilon_i$, it is true that

$$\phi(g_{-\varepsilon_i}) = -\delta(\phi(h_i)g_{-\varepsilon_i} + h_i\phi(g_{-\varepsilon_i})), \ 0 = \phi(h_jg_{-\varepsilon_i}) = \delta(\phi(h_j)g_{-\varepsilon_i} + h_j\phi(g_{-\varepsilon_i})),$$

whence $\delta b_{\varepsilon_i+\alpha^*}^{h_i}g_{-\varepsilon_i}=-b_{\alpha^*}^{g_{-\varepsilon_i}}=b_{\varepsilon_i+\alpha^*}^{h_j}g_{-\varepsilon_i}=b_{\varepsilon_i+\alpha^*}^{h_i}g_{-\varepsilon_i}$; i.e., $b_{\varepsilon_i+\alpha^*}^{h_i}=0$. That $b_{\varepsilon_i+\alpha^*}^{h_i}=0$ for $\alpha^*\supseteq -\varepsilon_j$ derives from the equality $b_{-\varepsilon_j+\gamma^*}^{h_j}=0$ proved above, where $\gamma^* \not\supseteq \pm \varepsilon_j, \ \gamma^* = \alpha^* + \varepsilon_i + \varepsilon_j, \ \text{and} \ b^{h_j}_{-\varepsilon_j + \gamma^*} = b^{h_i}_{\alpha^* + \varepsilon_i}.$

If $\delta \neq \frac{1}{2}$, then for $\gamma = 1, 2$ we have

$$\phi(g_{(-1)^{\gamma}\varepsilon_i}) = (-1)^{\gamma}\phi(h_i g_{(-1)^{\gamma}\varepsilon_i}) = (-1)^{\gamma}\delta h_i \phi(g_{(-1)^{\gamma}\varepsilon_i}).$$

This implies $\phi(g_{(-1)^{\gamma}\varepsilon_i}) = \sum_{\alpha^* \in \Delta_0 \cup \{0\}} b_{-(-1)^{\gamma}\varepsilon_i + \alpha^*}^{g_{(-1)^{\gamma}\varepsilon_i}}$ and $\delta = -1$. Note that

$$0 = \phi(g_{(-1)^{\gamma}\varepsilon_i}^2) = -2\sum_{\alpha^* \in \Delta_0 \cup \{0\}} b_{-(-1)^{\gamma}\varepsilon_i + \alpha^*}^{g_{(-1)^{\gamma}\varepsilon_i}} g_{(-1)^{\gamma}\varepsilon_i};$$

i.e., $\phi(g_{(-1)^{\gamma}\varepsilon_i})=0$. Hence $\phi(g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_t}-\varepsilon_{j_1}-\ldots-\varepsilon_{j_s}})=0$, whence $\phi(H(n))=0$. If $\delta = \frac{1}{2}$ then $\phi(h_i) = \sigma h_i$. Consequently,

$$2\phi(g_{(-1)^{\gamma}\varepsilon_i}) = (-1)^{\gamma}2\phi(h_ig_{(-1)^{\gamma}\varepsilon_i}) = \sigma g_{(-1)^{\gamma}\varepsilon_i} + (-1)^{\gamma}h_i\phi(g_{(-1)^{\gamma}\varepsilon_i});$$

i.e., $\phi(g_{(-1)^{\gamma}\varepsilon_i}) = \sigma g_{(-1)^{\gamma}\varepsilon_i}$. This does imply that $\phi(g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_t}-\varepsilon_{j_1}-\ldots-\varepsilon_{j_s}}) = \sigma g_{\varepsilon_{i_1}+\ldots+\varepsilon_{i_t}-\varepsilon_{j_1}-\ldots-\varepsilon_{j_s}}$, which yields $\phi(g) = \sigma g$, $g \in H(n)$. Thus ϕ is trivial. The lemma is proved.

THEOREM 5. A Cartan-type Lie superalgebra does not have nontrivial δ -derivations. The **proof** follows from Lemmas 2-4.

COROLLARY 6. A simple finite-dimensional Lie superalgebra over an algebraically closed field of characteristic 0 does not have nontrivial δ -derivations.

The **proof** follows from Theorem 5 and [5].

3. δ -SUPERDERIVATIONS OF SIMPLE FINITE-DIMENSIONAL SUPERALGEBRAS

Let A be a superalgebra. By a superspace we mean a \mathbb{Z}_2 -graded space. A homogeneous element ψ of an endomorphism superspace $A \to A$ is called a superderivation if

$$\psi(xy) = \psi(x)y + (-1)^{p(x)\deg(\psi)}x\psi(y).$$

Suppose $\delta \in F$. A linear mapping $\phi : A \to A$ is called a δ -superderivation if

$$\phi(xy) = \delta(\phi(x)y + (-1)^{p(x)\deg(\phi)}x\phi(y)).$$

Consider a Lie superalgebra $G = G_{\overline{0}} + G_{\overline{1}}$ and fix an element $x \in G_{\overline{1}}$. Then $ad_x : y \to xy$ is a superderivation of G having parity $p(ad_x) = 1$. Obviously, for any superalgebra, multiplication by an element of the base field F is an even $\frac{1}{2}$ -superderivation.

By the supercentroid $\Gamma_s(A)$ of a superalgebra A we mean a set of all homogeneous linear mappings $\chi:A\to A$ satisfying the condition

$$\chi(ab) = \chi(a)b = (-1)^{p(a)p(\chi)}a\chi(b)$$

for two arbitrary homogeneous elements $a, b \in A$.

A definition for a 1-superderivation coincides with the usual definition of a superderivation. A 0-superderivation is an arbitrary endomorphism ϕ of A such that $\phi(A^2) = 0$. A nontrivial δ -superderivation is a nonzero δ -superderivation which is not a 1- or 0-derivation, nor an element of the centroid. We are interested in how nontrivial δ -superderivations act on simple finite-dimensional Lie superalgebras and on simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0.

THEOREM 7. A simple finite-dimensional Lie superalgebra G over an algebraically closed field of characteristic 0 does not have nontrivial δ -superderivations.

Proof. It follows from Corollary 6 that simple finite-dimensional Lie superalgebras over an algebraically closed field of characteristic 0 have no nontrivial even δ -superderivations. We argue to show that nontrivial odd δ -superderivations likewise are missing.

Let ϕ be a nontrivial odd δ -superderivation. A map ψ_x on the superalgebra G is defined thus:

$$\psi_x = [\phi, ad_x] = \phi ad_x + ad_x \phi.$$

It is easy to see that the map ψ_x is a δ -superderivation. Thus, using Corollary 6 and keeping in mind that every even δ -superderivation is a δ -derivation of G, we conclude that ψ_x is trivial; i.e., $\psi_x = 0$, for $\delta \neq \frac{1}{2}$, and $\psi_x(g) = \alpha_x g$ for $\delta = \frac{1}{2}$, where $\alpha_x \in F$ and $g \in G$. For $\delta = \frac{1}{2}$ and $g \in G_{\overline{1}}$, we have

$$\alpha_x g = \psi_x(g) = \phi(xg) + x\phi(g) = \frac{1}{2}\phi(x)g + \frac{1}{2}x\phi(g) = -\psi_g(x) = -\alpha_g x;$$

i.e., $\alpha_x = 0$. Hence $\phi(x)g + x\phi(g) = 0$ for arbitrary g.

Note that $\phi(g_0x) = \frac{1}{2}(\phi(g_0)x + g_0\phi(x)) = 0$ for $g_0 \in G_{\overline{0}}$. The fact that $G_{\overline{1}} = [G_{\overline{0}}, G_{\overline{1}}]$ entails $\phi(G_{\overline{1}}) = 0$. Now, with $G_{\overline{0}} = [G_{\overline{1}}, G_{\overline{1}}]$ in mind, we obtain $\phi = 0$.

If $\delta \neq \frac{1}{2}$, then

$$0 = \psi_x(g) = \phi(xg) + x\phi(g).$$

Hence $2\delta\phi(x)x = \phi(x^2) = \phi(x)x$ for $x \in G_{\overline{1}}$; in other words, $0 = \phi(x)x = \phi(x^2)$. It follows that $\phi(G_{\overline{0}}) = 0$. It remains to note that if $x \in G_{\overline{1}}$ and $g_0 \in G_{\overline{0}}$ then $\phi(xg_0) = -x\phi(g_0) = 0$ and $G_{\overline{1}} = [G_{\overline{0}}, G_{\overline{1}}]$. Consequently, ϕ is trivial. The theorem is proved.

The remaining part of the paper is a logical continuation of [4]. Therefore, we use the terms and notation developed therein. It is worthwhile recollecting the following identities for a Jordan algebra:

$$(x^2y)x = x^2(yx), \quad xy = yx. \tag{1}$$

LEMMA 8. A simple finite-dimensional Jordan superalgebra A with a semisimple even part over an algebraically closed field of characteristic 0 does not have nontrivial odd δ -superderivations.

Proof. We know that simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0 which contain unity e and have a semisimple even part are exhausted by superalgebras of the forms $M_{m,n}^{(+)}$, $Q(n)^{(+)}$, osp(n,m), P(n), J(V,f), K_{10} , and D_t . A superalgebra K_3 with a semisimple even part contains no unity.

Let ϕ be a nontrivial odd δ -superderivation. Since $\phi(e) = \phi(ee) = 2\delta\phi(e)$, we have two options: $\delta \neq \frac{1}{2}$ or $\delta = \frac{1}{2}$. In the former case $\phi(e) = 0$, which entails $\phi(x) = \phi(ex) = \delta(\phi(e)x + \phi(e)x)$

 $e\phi(x)$) = $\delta\phi(x)$, i.e., $\phi(x)$ = 0. In the latter case $\phi(x) = \phi(ex) = \frac{1}{2}(\phi(e)x + e\phi(x))$, whence $\phi(x) = \phi(e)x$.

For the superalgebras $M_{m,n}^{(+)}$, $Q(n)^{(+)}$, osp(n,m), P(n), J(V,f), D_t , and K_{10} , we will consider a Peirce decomposition with respect to idempotents e_i . The superalgebra A is representable as $A = A_0^{e_i} \oplus A_{\frac{1}{2}}^{e_i} \oplus A_1^{e_i}$, where $A_j^{e_i} = \{x \in A \mid xe_i = jx\}$, with $A_{\frac{1}{2}}^{e_i} \subseteq A_{\overline{1}}$. It is clear that $R_{e_j}R_{e_i} = R_{e_i}R_{e_j}$, where R_x is a right multiplication operator. Thus

$$0 = 2\phi(e_i e_j) = (\phi(e)e_i)e_j + e_i(\phi(e)e_j) = 2(\phi(e)e_i)e_j.$$

Using this, in view of the fact that $\phi(e) \in A_{\overline{1}}$, we will represent $\phi(e)$ as $\phi(e) = \sum \beta_{\gamma} g_{\gamma}$, where g_{γ} are basis elements. Clearly, if $g_{\gamma} \in A_{\frac{1}{2}}^{e_i} \cap A_{\frac{1}{2}}^{e_j}$, then $\beta_{\gamma} = 0$. Consequently, $\phi(e) = 0$ for $M_{m,n}^{(+)}$, osp(n,m), J(V,f), D_t , and K_{10} , which implies that odd δ -superderivations on these superalgebras are trivial. For $Q(n)^{(+)}$ and P(n), we have $\phi(e) = \sum_{i=1}^{n} \beta_i (e_{i,n+i} + e_{n+i,i})$ and $\phi(e) = \sum_{i=1}^{n} \beta_i e_{n+i,i}$, respectively.

For the superalgebra $Q(n)^{(+)}$

$$\frac{1}{2}(\beta_{i}(e_{i,n+i} + e_{n+i,i}) - \beta_{j}(e_{j,n+j} + e_{n+j,j})) = \phi(\Delta^{i,j} \circ \Delta^{j,i})
= \frac{1}{2}((\phi(e) \circ \Delta^{i,j}) \circ \Delta^{j,i} - \Delta^{i,j} \circ (\phi(e) \circ \Delta^{j,i})) = 0,$$

where $\Delta^{i,j} = e_{i,n+j} + e_{n+j,i}$, which yields $\beta_i = 0$.

For the superalgebra P(n).

$$\begin{split} 0 &= \phi((e_{i,j} + e_{n+j,n+i}) \circ (e_{j,n+i} - e_{i,n+j})) \\ &= \frac{1}{2} ((\phi(e) \circ (e_{i,j} + e_{n+j,n+i})) \circ (e_{j,n+i} - e_{i,n+j}) \\ &\quad + (e_{i,j} + e_{n+j,n+i}) \circ (\phi(e) \circ (e_{j,n+i} - e_{i,n+j}))) \\ &= \frac{1}{4} (\beta_i (e_{n+j,i} + e_{n+i,j}) \circ (e_{j,n+i} - e_{i,n+j}) \\ &\quad + (e_{i,j} + e_{n+j,n+i}) \circ (\beta_j e_{i,j} - \beta_i e_{j,i} + \beta_j e_{n+j,n+i} - \beta_i e_{n+i,n+j})) \\ &= -\frac{1}{8} \beta_i (e_{j,j} + e_{n+j,n+j}); \end{split}$$

i.e., $\beta_i = 0$. Therefore, $\phi(e) = 0$ for $Q(n)^{(+)}$ and P(n), which gives $\phi = 0$.

For the superalgebra K_3 , $\phi(e) = \delta(\phi(e)e + e\phi(e)) = \delta\phi(e)$, whence $\phi(e) = 0$. It is easy to see that $\phi(z) = \alpha_z e$ and $\phi(w) = \alpha_w e$. Hence

$$0 = 2\phi(e) = 2\phi([z, w]) = 2\delta(\phi(z)w - z\phi(w)) = \delta(\alpha_z w - \alpha_w z),$$

which implies $\phi = 0$. The lemma is proved.

We recall the definition of a superalgebra $J(\Gamma_n)$. Let Γ be the Grassmann algebra with a set of (odd) anticommutative generators $e_1, e_2, \ldots, e_n, \ldots$ To define a new multiplication, called the *Grassmann bracket*, we use the operation

$$\frac{\partial}{\partial e_j}(e_{i_1}e_{i_2}\dots e_{i_n}) = \begin{cases} (-1)^{k-1}e_{i_1}e_{i_2}\dots e_{i_{k-1}}e_{i_{k+1}}\dots e_{i_n}, & \text{where } j = i_k, \\ 0, & \text{where } j \neq i_l, \ l = 1, \dots, n. \end{cases}$$

Grassmann multiplication for $f, g \in \Gamma_0 \bigcup \Gamma_1$ is defined thus:

$$\{f,g\} = (-1)^{p(f)} \sum_{j=1}^{\infty} \frac{\partial f}{\partial e_j} \frac{\partial g}{\partial e_j}.$$

Let $\overline{\Gamma}$ be an isomorphic copy of Γ under an isomorphism mapping $x \to \overline{x}$. Consider a direct sum of vector spaces $J(\Gamma) = \Gamma + \overline{\Gamma}$, on which the structure of a Jordan superalgebra is defined by setting $A_0 = \Gamma_0 + \overline{\Gamma_1}$ and $A_1 = \Gamma_1 + \overline{\Gamma_0}$, with multiplication

$$a \bullet b = ab, \ \overline{a} \bullet b = (-1)^{p(b)} \overline{ab}, \ a \bullet \overline{b} = \overline{ab}, \ \overline{a} \bullet \overline{b} = (-1)^{p(b)} \{a, b\},$$

where $a, b \in \Gamma_0 \bigcup \Gamma_1$ and ab is a product in Γ . Let Γ_n be a subalgebra of Γ generated by e_1, e_2, \ldots, e_n . Denote by $J(\Gamma_n)$ the subsuperalgebra $\Gamma_n + \overline{\Gamma_n}$ of $J(\Gamma)$. If $n \ge 2$, then $J(\Gamma_n)$ is a simple Jordan superalgebra.

LEMMA 9. The superalgebra $J(\Gamma_n)$ has no nontrivial odd δ -derivations.

Proof. Let ϕ be a nontrivial odd δ -superderivation and $\phi(1) = \alpha \gamma + \beta \overline{\nu}$, where $\alpha, \beta \in F$, $\gamma \in \Gamma$, and $\overline{\nu} \in \overline{\Gamma}$. Clearly,

$$\phi(x) = \phi(1 \bullet x) = \delta(\phi(1) \bullet x + \phi(x)),$$

whence $\phi(x) = \frac{\delta}{1-\delta}\phi(1) \bullet x$. Hence $\phi(1) = 0$ for $\delta \neq \frac{1}{2}$, and so $\phi(J(\Gamma_n)) = 0$. Consider the case $\delta = \frac{1}{2}$ in greater detail. Obviously,

$$\phi(1) = \phi(\overline{e_i} \bullet \overline{e_i}) = \frac{1}{2} (\phi(\overline{e_i}) \bullet \overline{e_i} + \overline{e_i} \bullet \phi(\overline{e_i})) = \phi(\overline{e_i}) \bullet \overline{e_i} = \overline{e_i} \bullet (\overline{e_i} \bullet \phi(1)).$$

For arbitrary x of the form $e_{i_1}e_{i_2}\dots e_{i_k}$, we have

$$\overline{e_i} \bullet (\overline{e_i} \bullet x) = \begin{cases} x & \text{if } \frac{\partial x}{\partial e_i} = 0, \\ 0 & \text{if } \frac{\partial x}{\partial e_i} \neq 0, \end{cases}$$
(2)

$$\overline{e_i} \bullet (\overline{e_i} \bullet \overline{x}) = \begin{cases} \overline{x} & \text{if } \frac{\partial x}{\partial e_i} \neq 0, \\ 0 & \text{if } \frac{\partial x}{\partial e_i} = 0. \end{cases}$$
(3)

Let $\gamma = \gamma^{i+} + e_i \gamma^{i-}$ and $\overline{\nu} = \overline{\nu^{i+}} + e_i \overline{\nu^{i-}}$, where γ^{i-} , γ^{i+} , ν^{i-} , and ν^{i+} do not contain e_i . Since i is arbitrary, in view of (2) and (3), we have $\gamma = 1$ and $\nu = e_1 \dots e_n$. Thus $\phi(1) = 0$ for n = 2k, whence $\phi(J(\Gamma_n)) = 0$ as well. If n = 2k + 1 then $\phi(1) = \beta \overline{e_1 \dots e_n}$. Furthermore,

$$\phi(e_1) = \phi(1) \bullet e_1 = \beta \overline{e_1 \dots e_n} \bullet e_1 = 0,$$

$$\phi(\overline{e_1}) = \phi(1) \bullet \overline{e_1} = \beta \overline{e_1 \dots e_n} \bullet \overline{e_1} = -\beta e_2 \dots e_n.$$

The relations derived above yield $0 = \phi(e_1 \bullet \overline{e_1}) = \frac{1}{2}(e_1 \bullet \phi(\overline{e_1}) + \phi(e_1) \bullet \overline{e_1}) = -\frac{\beta}{2}e_1 \dots e_n;$ i.e., $\phi(1) = 0$. Consequently, $\phi(J(\Gamma_n)) = 0$. The lemma is proved.

THEOREM 10. A simple finite-dimensional Jordan superalgebra A over an algebraically closed field of characteristic 0 has no nontrivial δ -superderivations.

Proof. According to [8, 9], every simple finite-dimensional nontrivial Jordan superalgebra A over an algebraically closed field F of characteristic 0 is isomorphic to one of the following superalgebras: $M_{m,n}^{(+)}$, $Q(n)^{(+)}$, osp(n,m), P(n), J(V,f), D_t , K_3 , K_{10} , or $J(\Gamma_n)$. Even δ -superderivations are grading-preserving δ -derivations. It follows from [4] that nontrivial even

 δ -superderivations are missing on this class of superalgebras. Lemmas 8 and 9 point to there being no nontrivial odd δ -superderivations for simple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic 0. The theorem is proved

Let $A = A_0 \oplus A_1$ be a superalgebra over a field of characteristic distinct from 2, with multiplication *. On the vector space A, a new multiplication \circ is given by the rule $a \circ b = \frac{1}{2}(a*b+(-1)^{p(a)p(b)}b*a)$, where p(x) is the parity of an element x. Denote the resulting superalgebra by $A^{(+)}$.

COROLLARY 11. Let ϕ be a δ -superderivation of a superalgebra A over an algebraically closed field of characteristic 0, with $A^{(+)}$ a simple finite-dimensional Jordan superalgebra. Then ϕ is trivial.

Proof. The statement is a consequence of the fact that ϕ is a δ -superderivation of the superalgebra $A^{(+)}$. Note that

$$\begin{array}{lcl} 2\phi(x\circ y) & = & \phi(xy) + (-1)^{p(x)p(y)}\phi(yx) \\ & = & \delta(\phi(x)y + (-1)^{p(y)p(\phi)}(-1)^{p(x)p(y)}y\phi(x) \\ & & + (-1)^{p(x)p(\phi)}x\phi(y) + (-1)^{p(x)p(y)}\phi(y)x) \\ & = & 2\delta(\phi(x)\circ y + (-1)^{p(x)p(\phi)}x\circ\phi(y)). \end{array}$$

The result now follows by treating ϕ as a δ -superderivation of $A^{(+)}$ and using Theorem 10.

Noncommutative Jordan superalgebras are a natural generalization of the class of Jordan superalgebras. According to [10], the superalgebras satisfying the hypothesis of Corollary 11 are exemplified by simple finite-dimensional noncommutative Jordan superalgebras A of degree t > 1, where by a degree is meant a maximal number of nonzero pairwise orthogonal idempotents. Therefore, we have

THEOREM 12. A simple finite-dimensional noncommutative Jordan superalgebra A of degree t>1 over an algebraically closed field of characteristic 0 does not have nontrivial δ -superderivations.

4. δ -DERIVATIONS OF SIMPLE FINITE-DIMENSIONAL JORDAN ALGEBRAS

 δ -Derivations of semisimple finite-dimensional Jordan algebras over an algebraically closed field of characteristic $\neq 2$ were described in [4]. We will give a description of δ -derivations for semisimple finite-dimensional algebras over a field of characteristic distinct from 2, and look at how the δ -derivations act on certain noncommutative Jordan algebras.

THEOREM 13. A semisimple finite-dimensional Jordan algebra A over a field of characteristic other than 2 has no nontrivial δ -derivations.

Proof. First we consider a partial case where A is a simple finite-dimensional Jordan algebra with unity 1. Let ϕ be a nontrivial δ -derivation of A. According to [4, Thm. 2.1], we have $\delta = \frac{1}{2}$ and $\phi(x) = \phi(1)x$. Let Z(A) be the center of A. It is well known that if Z(A) is a field then $\overline{Z(A)}$ is an algebraic closure of Z(A) (see [11]). Consider $\overline{A} = A \otimes_{Z(A)} \overline{Z(A)}$. We know from [12] that \overline{A} is a simple finite-dimensional Jordan algebra over an algebraically closed field $\overline{Z(A)}$.

We define a mapping $\overline{\phi}: \overline{A} \to \overline{A}$ by setting $\overline{\phi}(\sum x_i \otimes \alpha_i) = \sum \phi(1)x_i \otimes \alpha_i$, and show that $\overline{\phi}$ is a δ -derivation of \overline{A} .

Note that

$$\overline{\phi}((x \otimes \alpha)(y \otimes \beta)) = \overline{\phi}(xy \otimes \alpha\beta) = \phi(xy) \otimes \alpha\beta
= \frac{1}{2}(\phi(x)y \otimes \alpha\beta + x\phi(y) \otimes \alpha\beta)
= \frac{1}{2}(\overline{\phi}(x \otimes \alpha)(y \otimes \beta) + (x \otimes \alpha)\overline{\phi}(y \otimes \beta)).$$

That $\overline{\phi}$ is linear follows from the definition of $\overline{\phi}$.

Thus, in view of [4, Thm. 2.5], we obtain $\overline{\phi}(x) = \alpha x$, where $\alpha \in \overline{Z(A)}$. Hence $\phi(x) \otimes \beta = \overline{\phi}(x \otimes \beta) = \alpha x \otimes \beta$. From this, with $\phi : A \to A$ in mind, we derive $\phi(x) = \alpha x$, where $\alpha \in Z(A)$. Consequently, ϕ is trivial.

An argument for the general case repeats the proof for a semisimple Jordan algebra over an algebraically closed field of characteristic other than 2, presented in [4, Thm. 2.6]. The theorem is proved.

The algebras satisfying the identity $(x^2y)x = x^2(yx)$ are a natural generalization of the class of Jordan algebras. Whenever an algebra has unity, this identity readily transforms into a flexibility identity (xy)x = x(yx). The algebras satisfying the two identities are said to be noncommutative Jordan. By a degree of a noncommutative Jordan algebra we mean a maximal number of nonzero pairwise orthogonal idempotents.

THEOREM 14. A simple finite-dimensional noncommutative Jordan algebra A of degree t > 1 over a field of characteristic distinct from 2 has no nontrivial δ -derivations.

Proof. Let ϕ be a nontrivial δ -derivation of A. If we appeal to the proof of Corollary 11 we see that ϕ is a δ -derivation of $A^{(+)}$. By [13], $A^{(+)}$ is a simple finite-dimensional Jordan algebra. Theorem 13 implies that for ϕ (treated as a δ -derivation of $A^{(+)}$), we have $\phi(x) = a \circ x$, where $a \in Z(A^{(+)})$. In view of [14], $Z(A) = Z(A^{(+)})$. Therefore, ϕ being a δ -derivation of A is trivial. The theorem is proved.

Let $\Delta_{\delta}(A)$ be a set of nontrivial δ -derivations of an algebra A and $\Gamma(A)$ be the centroid of A. For A, $A^{(-)}$ denotes an adjoint commutator algebra, i.e., one with multiplication [a, b] = ab - ba.

LEMMA 15. Let A be a unital flexible algebra over a field of characteristic distinct from 2. Then $\Delta_{\delta}(A) \subseteq \Gamma(A^{(-)})$.

Proof. According to [4, Thm. 2.1], nontrivial δ -derivations are possible only if $\delta = \frac{1}{2}$. Let $\phi \in \Delta_{\frac{1}{2}}(A)$ and e be unity in A. It is easy to see that

$$\phi((xy)x) = \frac{1}{2}(\phi(xy)x + (xy)\phi(x)) = \frac{1}{4}(\phi(x)y)x + \frac{1}{4}(x\phi(y))x + \frac{1}{2}(xy)\phi(x);$$

on the other hand,

$$\phi(x(yx)) = \frac{1}{2}(\phi(x)(yx) + x\phi(yx)) = \frac{1}{2}\phi(x)(yx) + \frac{1}{4}x(\phi(y)x) + \frac{1}{4}x(y\phi(x)).$$

In view of the flexibility identity, we have

$$2((xy)\phi(x) - \phi(x)(yx)) = x(y\phi(x)) - (\phi(x)y)x,$$

whence

$$\phi(x)x = x\phi(x)$$

for y = e. By linearizing the equality above, we obtain

$$[\phi(x), y] = [x, \phi(y)].$$

It remains to observe that

$$\phi([x,y]) = \phi(xy - yx) = \frac{1}{2}(\phi(x)y - y\phi(x) + x\phi(y) - \phi(y)x)$$
$$= \frac{1}{2}([\phi(x), y] + [x, \phi(y)]) = [\phi(x), y] = [x, \phi(y)].$$

Hence $\Delta_{\frac{1}{2}}(A) \subseteq \Gamma(A^{(-)})$. The lemma is proved.

LEMMA 16. For any algebra A over a field of characteristic distinct from 2, $\Delta_{\delta}(A) = \Delta_{\delta}(A^{(+)}) \cap \Delta_{\delta}(A^{(-)})$ and $\Gamma(A) = \Gamma(A^{(+)}) \cap \Gamma(A^{(-)})$.

Proof. Obviously, $\Delta_{\delta}(A) \subseteq \Delta_{\delta}(A^{(+)}) \cap \Delta_{\delta}(A^{(-)})$ (which follows from an argument similar to one in Cor. 11). Let $\psi \in \Delta_{\delta}(A^{(+)}) \cap \Delta_{\delta}(A^{(-)})$; then

$$\psi(xy + yx) = \delta(\psi(x)y + y\psi(x) + x\psi(y) + \psi(y)x),$$

$$\psi(xy - yx) = \delta(\psi(x)y - y\psi(x) + x\psi(y) - \psi(y)x).$$

By summing these equalities, we arrive at

$$\psi(xy) = \delta(\psi(x)y + x\psi(y)).$$

This yields $\psi \in \Delta_{\delta}(A)$, which entails $\Delta_{\delta}(A) = \Delta_{\delta}(A^{(+)}) \cap \Delta_{\delta}(A^{(-)})$.

In a similar way, we derive $\Gamma(A) = \Gamma(A^{(+)}) \cap \Gamma(A^{(-)})$. The lemma is proved.

Acknowledgement. I am grateful to V. N. Zhelyabin for his attention to my work and constructive comments.

Список литературы

- [1] V. T. Filippov, "δ-Derivations of Lie algebras," Sib. Mat. Zh., 39, No. 6, 1409-1422 (1998).
- [2] V. T. Filippov, " δ -Derivations of prime Lie algebras," Sib. Mat. Zh., 40, No. 1, 201-213 (1999).
- [3] V. T. Filippov, "δ-Derivations of prime alternative and Mal'tsev algebras," Algebra Logika, **39**, No. 5, 618-625 (2000).
- [4] I. B. Kaigorodov, " δ -Derivations of simple finite-dimensional Jordan superalgebras," $Algebra\ Logika,\ 46$, No. 5, 585-605 (2007).
- [5] I. B. Kaygorodov, "δ-Derivations of classical Lie superalgebras," Sib. Mat. Zh., **50**, No. 3, 547-565 (2009).
- [6] V. G. Kac, "Lie superalgebras," Adv. Math., 26, No. 1, 8-96 (1977).
- [7] I. B. Penkov, "Characters of strongly generic irreducible Lie superalgebra representations," *Int. J. Math.*, **9**, No. 3, 331-366 (1998).
- [8] I. L. Kantor, "Jordan and Lie superalgebras defined by the Poisson algebra," in *Algebra and Analysis* [in Russian], Tomsk State Univ., Tomsk (1989), pp. 55-80.
- [9] V. G. Kac, "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras," Comm. Alg., 5, 1375-1400 (1977).
- [10] A. P. Pozhidaev and I. P. Shestakov, "Noncommutative Jordan superalgebras of degree $n \geq 2$," Algebra Logika, 49, No. 1, 26-59 (2010).
- [11] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, and A. I. Shirshov, *Rings That Are Nearly Associative* [in Russian], Nauka, Moscow (1978).

- [12] I. N. Herstein, Noncommutative Rings, The Carus Math. Monogr., 15, Math. Ass. Am. (1968).
- [13] R. H. Oehmke, "On flexible algebras," Ann. Math. (2), 68, 221-230 (1958).
- [14] V. G. Skosyrskii, "Strongly prime noncommutative Jordan algebras," Tr. Inst. Mat. SO RAN, 16, 131-163 (1989).
- [15] P. Zusmanovich, On δ -derivations of Lie algebras and superalgebras, arXiv:0907.2034v2.