1 Fine-Tuning Setup

Data

• Dataset format: JSONL (data/sample_dataset.jsonl).

Each line contains:

```
{"split": "train", "text": "...", "summary": "..."}
{"split": "test", "text": "...", "summary": "..."}
```

- Train/Test split: ~80/20 (train for LoRA adapter learning, test for evaluation).
- **Domain:** Academic-style essays and structured summaries.

Method

- Base Model: sshleifer/distilbart-cnn-12-6 (DistilBART, pretrained on news summarization).
- LoRA Fine-Tuning:
 - Why LoRA? Efficient parameter tuning → trains small adapter layers instead of the entire model.
 - **Target layers:** attention projections (q_proj, k_proj, v_proj, out_proj).
 - Hyperparameters:
 - \blacksquare epochs = 2
 - batch_size = 2
 - learning_rate = 2e-4
 - lora_r = 8, lora_alpha = 16, lora_dropout = 0.05
- Frameworks: Hugging Face transformers, datasets, peft (LoRA).

Results of Fine-Tuning

- Artifacts saved: LoRA adapters inside models/lora-distilbart/.
- Impact:
 - Adapted summarization style → more academic, faithful to input.
 - o Improved readability and reduced hallucinations compared to the base model.

2 Evaluation Methodology

Quantitative Metrics

- ROUGE Scores: Standard for summarization quality.
 - o ROUGE-1: unigram overlap
 - o **ROUGE-2**: bigram overlap
 - o ROUGE-L: longest common subsequence
- Compression Ratio:
 - Measures information density.
 - o Formula: input length ÷ summary length.
 - Ideal: ~2–4 (summary should be 2–4x shorter than input).

Qualitative Evaluation

- Human checks for:
 - Faithfulness: Does the summary stick to the text?
 - Readability: Is it fluent and well-structured?

Style: Does it match academic summarization style?

• RAG-specific checks:

- Were retrieved chunks relevant to the question?
- Did the answer cite or reflect ingested knowledge correctly?

3 Evaluation Outcomes

Quantitative Results

Model	ROUGE-1	ROUGE-2	ROUGE-L	Compression Ratio
Base DistilBART	0.2189	0.0871	0.2189	3.05
LoRA Fine-Tuned	0.2466	0.1196	0.2262	2.67

Interpretation:

- ROUGE improved across all metrics after LoRA fine-tuning.
- Compression ratio is within the desired range → summaries are compact but informative.

Qualitative Outcomes

- Base model: Often produced short, news-like summaries.
- **Fine-tuned LoRA model:** More **academic, coherent, and faithful** to the original essay/PDF.

RAG evaluation:

- Retrieved chunks were relevant.
- o Answers grounded in ingested docs (e.g., Gandhi \rightarrow *non-violence philosophy*).
- o Prevented hallucinations by sticking to KB content.

Conclusion

- Fine-tuning with LoRA successfully adapted DistilBART to academic summarization style.
- Evaluation showed better ROUGE scores and more useful summaries.
- RAG integration made the system flexible: new docs can be ingested without retraining, enabling **real-time**, **document-grounded Q&A**.