Resolução – Prova III (Química II)

12 de julho / Isabella B. & Joel B. & Jonathan B.

Questão 1

Considere que a decomposição térmica do $\mathrm{N}_2\mathrm{O}_5$ gasoso segue o seguinte mecanismo:

$$\begin{split} & \text{N}_2\text{O}_5 \xrightarrow{k_1} \text{NO}_2 + \text{NO}_3 \\ & \text{NO}_2 + \text{NO}_3 \xrightarrow{k_1} \text{N}_2\text{O}_5 + \text{NO}_3 \\ & \text{NO}_2 + \text{NO}_3 \xrightarrow{k_2} \text{NO}_2 + \text{O}_2 + \text{NO} \\ & \text{NO} + \text{N}_2\text{O}_5 \xrightarrow{k_3} 3 \, \text{NO}_2 \end{split}$$

(a) Usando a aproximação do estado estacionário para as espécies ${\rm NO_3}$ e ${\rm NO}$, obtenha a lei cinética derivada do mecanismo proposto.

Resolução:

Aproximações de estado estacionário:

$$\frac{d[NO_3]}{dt} = 0 = k_1[N_2O_5] - (k_{-1}[NO_2][NO_3] + k_2[NO_2][NO_3])$$
(1.1)

$$\frac{d[NO]}{dt} = 0 = k_2[NO_2][NO_3] - k_3[NO][N_2O_5]$$
 (1.2)

Isolamos os intermediários por álgebra:

$$\begin{split} k_1[\mathrm{N}_2\mathrm{O}_5] &= [\mathrm{NO}_3](k_{-1}[\mathrm{NO}_2] + k_2[\mathrm{NO}_2]) \\ [\mathrm{NO}_3] &= \frac{k_1[\mathrm{N}_2\mathrm{O}_5]}{k_{-1}[\mathrm{NO}_2] + k_2[\mathrm{NO}_2]} \\ k_2[\mathrm{NO}_2][\mathrm{NO}_3] &= k_3[\mathrm{NO}][\mathrm{N}_2\mathrm{O}_5] \\ [\mathrm{NO}] &= \frac{k_2[\mathrm{NO}_2][\mathrm{NO}_3]}{k_3[\mathrm{N}_2\mathrm{O}_5]} \end{split}$$

O intermediário [NO] depende de [NO $_3].$ Removemos essa dependência:

$$[NO] = \frac{k_2[NO_2]}{k_3[N_2O_5]} \cdot \frac{k_1[N_2O_5]}{k_{-1}[NO_2] + k_2[NO_2]}$$
$$[NO] = \frac{k_1k_2}{k_3(k_{-1} + k_2)}$$
(1.3)

Determinamos a expressão para a lei cinética do mecanismo completo e substituimos valores que conhecemos via (1.1) e (1.2):

$$\begin{split} \frac{\mathrm{d}[\mathrm{N}_2\mathrm{O}_5]}{\mathrm{d}t} &= k_{-1}[\mathrm{NO}_2][\mathrm{NO}_3] - (k_1[\mathrm{N}_2\mathrm{O}_5] + k_3[\mathrm{NO}][\mathrm{N}_2\mathrm{O}_5]) \\ &\frac{\mathrm{d}[\mathrm{N}_2\mathrm{O}_5]}{\mathrm{d}t} = -2k_3[\mathrm{NO}][\mathrm{N}_2\mathrm{O}_5] \end{split}$$

Substituindo o valor de [NO] achado em (1.3),

$$\frac{\mathrm{d}[\mathbf{N}_2\mathbf{O}_5]}{\mathrm{d}t} = -2\frac{k_1k_2}{k_{-1}+k_2}[\mathbf{N}_2\mathbf{O}_5]$$

(b) Obtenha a lei cinética admitindo as reações (1) e (-1) como um equilíbrio.

Resolução:

Aproximação de pré-equilíbrio:

$$\begin{split} k_1[{\rm N}_2{\rm O}_5] &= k_{-1}[{\rm NO}_2][{\rm NO}_3] \\ [{\rm NO}_2][{\rm NO}_3] &= \frac{k_1}{k_{-1}}[{\rm N}_2{\rm O}_5] \end{split}$$

Separamos o mecanismo em duas partes:

$$N_2O_5 \xrightarrow[k_{-1}]{k_1} NO_2 + NO_3 \xrightarrow{k_2} NO_2 + O_2 + NO_3$$

$$\mathrm{NO} + \mathrm{N_2O_5} \xrightarrow{\ k_3 \ } 3\,\mathrm{NO_2}$$

A aproximação de pré-equilíbrio assume que $k_2 \ll k_1$ e k_{-1} , mas não nos diz nada sobre k_3 . Dado o resultado da (a), é razoável assumir que a segunda parte do mecanismo é relativamente rápida, i.e que $k_3 > k_2$. Logo, a etapa limitante é a etapa 2.

Analisamos, então, a lei cinética para NO para a etapa 2:

$$\frac{\mathrm{d[NO]}}{\mathrm{d}t} = k_2[\mathrm{NO}_2][\mathrm{NO}_3]$$

Pela aproximação de pré-equilíbrio:

$$\frac{\mathrm{d[NO]}}{\mathrm{d}t} = \frac{k_1 k_2}{k_{-1}} [\mathrm{N}_2 \mathrm{O}_5]$$

Essa é a etapa limitante, então é a nossa lei cinética. Para obtê-la para $[N_2O_5]$, basta ajustar a estequiometria:

$$\frac{\mathrm{d}[\mathrm{N}_2\mathrm{O}_5]}{\mathrm{d}t} = -2\frac{k_1k_2}{k_{-1}}[\mathrm{N}_2\mathrm{O}_5]$$

(c) Mostre que da lei cinética obtida em (a) pode-se, através de aproximações, chegar à mesma equação obtida em (b). Em que condições está justificada essa aproximação? Teste sua hipótese utilizando valores plausíveis para as constantes de velocidade.

Resolução:

Como já foi dito, a aproximação de pré-equilíbrio assume que $k_2 \ll k_1$ e k_{-1} . Se assumirmos isso para a equação obtida em a), podemos aproximar $k_{-1}+k_2\approx k_{-1}$, obtendo uma equação idêntica à b). Essa aproximação é a condição para fazermos a aproximação de pré-equilíbrio: se as etapas de equilíbrio forem muito mais rápidas que a etapa 2, então elas conseguem reestabelecer o equilíbrio mais rapidamente que a etapa 2 consegue desestabilizá-lo, justificando a aproximação que a condição de equilíbrio sempre vale.

Podemos checar se vale dando valores numéricos para as constantes. Referenciando o NIST Chemical Kinetics Database, obtivemos os valores $k_1 = 5 \cdot 10^{-2}$, $k_2 = 3,64 * 10^{-16}$ e $k_{-1} = 1,66 \cdot 10^{-12}$ para $T = 298\,\mathrm{K}$ e para as ordens esperadas (1ª, 2ª e 2ª, respectivamente). Para esses valores, a equação de (a) fica:

$$\frac{\mathrm{d}[\mathrm{N}_2\mathrm{O}_5]}{\mathrm{d}t} = -2\frac{5\cdot 10^{-2}\cdot 3{,}64\cdot 10^{-16}}{1{,}66\cdot 10^{-12} + 3{,}64\cdot 10^{-16}}[\mathrm{N}_2\mathrm{O}_5] = -\frac{3{,}64\cdot 10^{-17}}{1{,}66\cdot 10^{-12} + 3{,}64\cdot 10^{-16}}[\mathrm{N}_2\mathrm{O}_5]$$

O denominador da constante vale $1,660\,364\cdot10^{-12}$, que é aproximadamente $1,66\cdot10^{-12}$. Fica claro, então, que a aproximação é válida para valores experimentais das constantes.

Questão 2

As reações paralelas de substituição nucleofílica bimolecular (SN_2) e eliminação bimolecular de formaldeído (E_{CO2}) observadas entre o nitrato de metila $(MeNO_3)$ e o íon hidróxido foram estudadas e são representadas com suas respectivas constantes de velocidade abaixo:

$$\begin{split} \text{MeNO}_3 + \text{HO}^- &\to \text{CH}_3 \text{OH} + \text{NO}_3^-, k_{\text{SN}_2} \\ \text{MeNO}_3 + \text{HO}^- &\to \text{H}_2 \text{O} + \text{CH}_2 \text{O} + \text{NO}_2^-, k_{\text{E}_{\text{CO}2}} \end{split}$$

Esse estudo experimental foi conduzido a uma temperatura e pressão constantes e em excesso de nitrato de metila, fornecendo os dados cinéticos a seguir. As reações também foram modeladas do ponto de vista teórico, fornecendo valores de energia relativos dos "reagentes" e dos estados de transição, conforme apresentado no diagrama a seguir.

Os dados teóricos foram obtidos em um ótimo nível de cálculo e fornecem a estrutura dos reagentes e dos estados de transição abaixo, mesmo assim, sua precisão não é inferior a 1 kcal/mol.

(a) Considerando que a intensidade relativa pode ser considerada como proporcional a concentração dos reagentes, escreva as derivadas $\frac{d[HO^-]}{dt}$, $\frac{d[NO_3^-]}{dt}$, $\frac{d[NO_2^-]}{dt}$ em função das constantes de velocidades e das

concentrações das espécies envolvidas.

Resolução:

$$\begin{split} \frac{\mathrm{d}[\mathrm{OH}^-]}{\mathrm{d}t} &= -k_{\mathrm{SN}_2}[\mathrm{MeNO}_3][\mathrm{OH}^-] - k_{\mathrm{E}_{\mathrm{CO}2}}[\mathrm{MeNO}_3][\mathrm{OH}^-] \\ &= \left(-k_{\mathrm{SN}_2} - k_{\mathrm{E}_{\mathrm{CO}2}}\right)[\mathrm{MeNO}_3][\mathrm{OH}^-] \\ &= -\left(k_{\mathrm{SN}_2}' + k_{\mathrm{E}_{\mathrm{CO}2}}'\right)[\mathrm{OH}^-] \end{split}$$

Como temos um excesso de $MeNO_3$, segue que:

$$\begin{split} \frac{\text{d[NO_3^-]}}{\text{d}t} &= k_{\text{SN}_2}[\text{MeNO}_3][\text{OH}^-] = k'_{\text{SN}_2}[\text{OH}^-] \\ \frac{\text{d[NO_2^-]}}{\text{d}t} &= k_{\text{E}_{\text{CO}2}}[\text{MeNO}_3][\text{OH}^-] = k'_{\text{E}_{\text{CO}2}}[\text{OH}^-] \end{split}$$

O que nos leva às relações:

$$\begin{split} \frac{\mathrm{d}[\mathrm{OH}^-]}{\mathrm{d}t} &= -k'_{\mathrm{SN}_2}[\mathrm{OH}^-] - k'_{\mathrm{E}_{\mathrm{CO}\,2}} = -\left(k'_{\mathrm{SN}_2} + k'_{\mathrm{E}_{\mathrm{CO}\,2}}\right)[\mathrm{OH}^-] \\ &\frac{\mathrm{d}[\mathrm{NO}_3^-]}{\mathrm{d}t} = k'_{\mathrm{SN}_2}[\mathrm{OH}^-] \\ &\frac{\mathrm{d}[\mathrm{NO}_2^-]}{\mathrm{d}t} = k'_{\mathrm{E}_{\mathrm{CO}\,2}}[\mathrm{OH}^-] \end{split}$$

(b) Com os dados cinéticos do gráfico (também apresentados na tabela no fim dessa questão), obtenha a constante de decaimento de HO^- experimental, os valores de k_{SN_2} e $k_{\mathrm{E}_{\mathrm{CO}2}}$.

Resolução:

Com

$$[OH^-]_{(t)} = [OH^-]_0 e^{-(k'_{SN_2} + k'_{ECO_2})t}$$

Podemos tomar

$$\begin{split} \frac{\mathrm{d}[\mathrm{NO_3}^-]}{\mathrm{d}t} &= k'_{\mathrm{SN_2}} \cdot [\mathrm{OH}^-]_0 \mathrm{e}^{-(k'_{\mathrm{SN_2}} + k'_{\mathrm{ECO_2}})t} \\ \Longrightarrow & \int_0^t \mathrm{d}[\mathrm{NO_3}^-] &= k'_{\mathrm{SN_2}} [\mathrm{OH}^-]_0 \int_0^t \mathrm{d}\mathrm{e}^{-\left(k'_{\mathrm{SN_2}} + k'_{\mathrm{ECO_2}}\right)t} \, \mathrm{d}t \end{split}$$

e, sendo $\int e^{-xt} dt = -e^{-xt}/x + C$, temos que

$$\begin{split} [\mathrm{NO_3}^-] &= k_{\mathrm{SN_2}}' [\mathrm{OH}^-]_0 \cdot \left(-\frac{\mathrm{e}^{-\left(k_{\mathrm{SN_2}}' + k_{\mathrm{ECO2}}'\right)t}}{\left(k_{\mathrm{SN_2}}' + k_{\mathrm{ECO2}}'\right)} + \frac{1}{\left(k_{\mathrm{SN_2}}' + k_{\mathrm{ECO2}}'\right)} \right) \\ &= \frac{k_{\mathrm{SN_2}}' [\mathrm{OH}^-]_0}{k_{\mathrm{SN_2}}' + k_{\mathrm{ECO2}}'} \left(1 - \mathrm{e}^{-\left(k_{\mathrm{SN_2}}' + k_{\mathrm{ECO2}}'\right)t} \right) \end{split}$$

o que implica que $\mathrm{[NO_2}^-] \longrightarrow 100\,\%$ análogo e, portanto

$$[\mathrm{NO_2}^-] = \frac{k'_{\mathrm{SN}_2}[\mathrm{OH}^-]_0}{k'_{\mathrm{SN}_2} + k'_{\mathrm{E}_{\mathrm{CO}2}}} \left(1 - \mathrm{e}^{-\left(k'_{\mathrm{SN}_2} + k'_{\mathrm{E}_{\mathrm{CO}2}}\right)t}\right)$$

Substituindo valores, temos:

Para OH⁻:

$$0.12 = 0.93e^{-\left(k'_{\rm SN_2} + k'_{\rm ECO_2}\right)300}$$

$$\Rightarrow \frac{12}{93} = e^{-\left(k'_{\rm SN_2} + k'_{\rm ECO_2}\right)300}$$

$$\Rightarrow \log\left(\frac{12}{93}\right) = -300\left(k'_{\rm SN_2} + k'_{\rm ECO_2}\right)$$

$$\Rightarrow \left(k'_{\rm SN_2} + k'_{\rm ECO_2}\right) \approx 0.0068 \approx 6.8 \cdot 10^{-3}$$

Para NO_3^- :

$$0,12 = k'_{\mathrm{SN}_2} \cdot 0,93 \underbrace{\left(1 - \underbrace{\mathrm{e}^{-6,8 \cdot 10^{-3} \cdot 300}}_{0,13}\right)}_{0,87}$$

$$0,12 = \frac{k'_{\mathrm{SN}_2} \cdot 0,809}{6.8 \cdot 10^{-3}}$$

o que nos dá

$$8,16 \cdot 10^{-4} = k'_{\rm SN_2} \cdot 0,809 \\ k'_{\rm SN_2} \approx 1 \cdot 10^{-3} \\ k'_{\rm E_{CO2}} \approx 5,8 \cdot 10^{-3}$$

(c) Mostre a partir das derivadas parciais que o valor da constante de decaimento de HO⁻ é igual a soma das outras constantes e mostre que isso se verifica com os valores calculados em b. A equação de Eyring relaciona o valor da constante de velocidade com a energia livre de ativação, que pode ser representada pela entalpia e entropia de ativação conforme a seguinte equação:

$$k(T) = \frac{k_b T}{h} e^{\Delta S^{\dagger}/R} e^{-\Delta H^{\dagger}/RT}$$

Resolução:

$$\begin{aligned} [\mathrm{OH}^-] &= [\mathrm{OH}^-]_0 \mathrm{e}^{-k^*t} \\ \frac{\mathrm{d}[\mathrm{OH}^-]}{\mathrm{d}t} &= \underbrace{[\mathrm{OH}^-]_0 \mathrm{e}^{-k^*t}}_{[\mathrm{OH}^-]} \cdot (-k^*) = -k^*[\mathrm{OH}^-] = -\left(k'_{\mathrm{SN}_2} + k'_{\mathrm{E}_{\mathrm{CO}2}}\right) [\mathrm{OH}^-] \end{aligned}$$

(d) Considerando que a energia de interação dos estados de transição é praticamente a mesma, explique porque a reação $E_{\rm CO2}$ é mais rápida do que a ${\rm SN}_2$.

Resolução:

Ao considerar que a energia de interação dos estados de transição é praticamente a mesma, a explicabilidade de a reação $\rm E_{\rm CO2}$ ser mais rápida do que $\rm SN_2$, se deve ao fato de que a similaridade da estrutura eletrostática interna do componente não dificulta a velocidade de reação entre os componentes, isto é, devido à diferença de energia entre as estruturas internas dos elementos, com interações específica como as forças de interação de London, o que gera uma maior interação entre entre os elementos e diminui as velocidades de reação entre as moléculas.

(e) Com esses dados, é possível afirmar alguma coisa a respeito do papel do nitrato de metila no mecanismo da reação?

Dados cinéticos:

	Intensidade Relativa das espécies		
tempo/ms	HO.	NO ₂ -	NO ₃ -
0	0.93	0.08	0.00
50	0.71	0.29	0.04
100	0.48	0.45	0.07
150	0.35	0.57	0.09
200	0.24	0.65	0.10
250	0.18	0.72	0.12
300	0.12	0.76	0.12
350	0.10	0.79	0.13
400	0.07	0.80	0.13
450	0.06	0.83	0.13
500	0.04	0.83	0.14
550	0.03	0.83	0.13
600	0.03	0.84	0.13
650	0.02	0.84	0.14
700	0.02	0.85	0.14
750	0.02	0.85	0.14
800	0.01	0.86	0.14

Resolução:

O incremento de nitrato de metila no mecanismo da reação estabiliza o equilíbrio da intensidade relativa das espécies químicas na reação, agindo como uma espécie de solução tampão, em que a intensidade relativa das espécies entre 200 ms até 800 ms se mantém em uma zona de estabilidade.