

Introduction to Artificial Intelligence- CII2M3

Genetic Algorithm

ADF

Outline

- What is a Solution?
- Metaheuristic Search
 - Evolutionary Algorithms

Outline

- Genetic Algorithm
 - Chromosome
 - Fitness
 - Parent Selection
 - Crossover and Mutation
 - Survivor Selection

Solution in Genetic Algorithm

Solution in Genetic Algorithm

- Genetic Algorithm models its solution as a string/array
- Default form is 1-dimensional Array
 - But not limited to it

Solution in Genetic Algorithm

- Also called a Chromosome
- Also called an Individual Solution

- Engineering skills are needed in order to Design a Solution
- Occam's Razor: The simpler the better

Solution Design Example

Travelling Salesman Problem

Travelling Salesman Problem

- If we have N city to visit
 - City ID: 1, 2, ..., N
 - Assume All city is fully connected

- Then a solution is:
 - -Array $[1 \times N]$ of Integer
 - Value: the order of visit

Mathematical optimization

Mathematical optimization

If we have a function to optimize

$$-f(x_1,x_2,\ldots,x_N)$$

- Then a solution is:
 - -Array $[1 \times N]$ of Float
 - Value: the order of visit

Knapsack Problem

The Water Jug Problem

4-Queens Problem

Metaheuristic Search

Metaheuristic Search

- A higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem,
 - especially with incomplete or imperfect information or limited computation capacity
- Sample a set of solutions which is too large to be completely sampled

Mathematical optimization

- Minimizing a function $y = 3x^4 4x^3$
- Searching approach:
 - Find an x that minimize y
- Mathematical approach:
 - First derivative

$$-\frac{dy}{dx} = 12x^3 - 12x^2$$
, yield $x = 1$

Mathematical optimization

First derivative? Really Difficult

Random Search

Simulated Annealing

Time to Complete

• Example: TSP 100 locations, 8 hours work day

	Manual thinking	Software A (Dijkstra)	Software B (Genetic Algorithm)
Running time (algorithm)	0	2 hours	10 minutes
Time to complete the route resulted	11 hours	7 hours	7 hours and 20 minutes
Total time spent	11 hours	9 hours	7.5 hours
overtime	3 hours	1 hours	_

Optimization Algorithm

Evolutionary Computation

Evolutionary Computation

- an abstraction from the theory of biological evolution that is used to create optimization procedures or methodologies,
- usually implemented on computers, that are used to solve problems

Evolutionary Algorithms

- generic, population-based meta-heuristic optimization algorithms that use biology-inspired mechanisms like mutation, crossover, natural selection and survival of the fittest.
- EAs are algorithms which implement the EC abstractions

Evolutionary Algorithms

- Genetic Algorithms (GA): binary strings
- Evolution Strategies (ES): real-valued vectors
- Evolutionary Programming (EP): finite state machines
- Genetic Programming (GP): LISP trees
- Differential Evolution (DE)
- Grammatical Evolution (GE)

EAs General Scheme

EC Applications: Optimization

- Scheduling
 - Course scheduling, company/project time table, hospital scheduling, etc.
- Knapsack Problem, Packaging,
- Cutting Stock Problem
- Design Simulation
- Etc.

Jet Nozzle Design

Resultin

Optic Lenses Design

Swarm Intelligence

Genetic Algorithms

- a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover
- Originally developed by John Holland (1975)

Properties of Genetic Algorithms

- Individual Any possible solution
- Population Group of all individuals
- Search Space All possible solutions to the problem
- Chromosome Blueprint for an individual
- Fitness quality of a solution
- Recombination decomposes two distinct solutions and then randomly mixes their parts to form novel solutions

Genetic Algorithms

Chromosome

40 Artificial Intelligence

Representing Solution

- Design what is a solution, and how to measure its quality
- Example
 - TSP Problem
 - Solution: List of visited city
 - Quality: Cost to visit all city using the provided list
 - Knapsack Problem
 - Solution: list of selected goods
 - Quality: value of selected goods, overweight or not
 - Minimizing/Maximizing a Function
 - Solution: $x_1, x_2, \dots x_n$

Chromosome

- Blueprint (a set of parameters) which define a proposed solution to the problem
- Represented in a string
 - Traditionally as binary, but other encodings such as integer or real are also possible
- The evolution usually starts from a population of randomly generated individuals

Chromosome

Problem:

Find x_1 and x_2 that minimize function $f(x_1, x_2) = x_1^3 + \frac{1}{3}x_2^2$ in range [-2, 3]

Individual Representation

- Integer Value, Real Value
- Binary Encoding (to represents Integer)
- Integer Encoding (to represents Real)
- Real Encoding (to represents Real)
- Etc.

Phenotype
$x_1 = -1$
$x_2 = 2$
$x_1 = -1.15$
$x_2 = 1.89$

Genotype	Phenotype
Binary Encoding using 3 bits (3 gens)	
$x = r_{min} + \frac{r_{max} - r_{min}}{\sum_{i=1}^{N} 2^{-i}} (g_1 * 2^{-1} + g_1 * 2^{-2} + \dots + g_N * 2^{-N})$	$x_1 = -0.57$
$x_1 = -2 + \frac{3 - (-2)}{(2^{-1} + 2^{-2} + 2^{-3})} (0 * 2^{-1} + 1 * 2^{-2} + 0 * 2^{-3})$	$x_2 = 2.29$
$x_2 = -2 + \frac{3 - (-2)}{(2^{-1} + 2^{-2} + 2^{-3})} (1 * 2^{-1} + 1 * 2^{-2} + 0 * 2^{-3})$	

Genotype	Phenotype
Integer Encoding using 3 gens	
2 0 5 7 6 9	
$x = r_{min} + \frac{r_{max} - r_{min}}{\sum_{i=1}^{N} 9 * 10^{-i}} (g_1 * 10^{-1} + g_1 * 10^{-2} + \dots + g_N * 10^{-N})$	$x_1 = -0.97$
$x_1 = -2 + \frac{3 - (-2)}{9 * (10^{-1} + 10^{-2} + 10^{-3})} (2 * 10^{-1} + 0 * 10^{-2} + 5 * 10^{-3})$	$x_2 = 1.84$
$x_2 = -2 + \frac{3 - (-2)}{9 * (10^{-1} + 10^{-2} + 10^{-3})} (7 * 10^{-1} + 6 * 10^{-2} + 9 * 10^{-3})$	

Genotype	Phenotype
Real Encoding using 3 gens	
0.47 0.08 0.13 0.73 0.92 0.66	
$x = r_{min} + \frac{r_{max} - r_{min}}{N} (g_1 + g_1 + \dots + g_N)$	$x_1 = -0.87$
$x_1 = -2 + \frac{3 - (-2)}{3} (0.47 + 0.08 + 0.13)$	$x_2 = 1.85$
$x_2 = -2 + \frac{3 - (-2)}{3}(0.73 + 0.92 + 0.66)$	

 For optimizing (real) values, the best practice is to encode the phenotypes into a much longer genotypes (chromosomes)

- Traveling Salesman Problem
- Individual Representation
 - Ordered chromosome
 - Permutation

- Knapsack Problem
 - Bag capacity: 25
- Individual Representation
 - Integer, non repeatable
 - Except 0

ID	Weight	Value
1	12	10
2	5	4
3	4	3
4	9	2
5	7	5
6	11	10
7	15	20
8	6	7
9	3	1
10	2	2
0	0	0

52 Artificial Intelligence

Objective Function

- Evaluation of a chromosome
- Values/properties of a solution represented by a chromosome
- A solution may have multiple objective functions designed
- Should consider all the existing constraints

- Quality of a chromosome
 - A value to indicate the quality of a solution
- Survival of the fittest
 - The higher the fitness means the better the solution
 - Higher fitness should survive
 - Low fitness individual will perish

- Characteristic
 - Clearly defined (from the objective function)
 - Should be sufficiently fast to compute
 - Should generate intuitive results.
 - The best/worst candidates should have best/worst score values

Maximizing the objective function

$$f = h$$

$$f = h_1 + h_2 + \cdots h_n$$

• Minimizing the objective function $f = \frac{1}{h_1 + h_2 + \dots + h_n + a}$

$$f = -h$$

$$f = \frac{1}{h_1 + h_2 + \dots + h_n + a}$$

$$f = \frac{1}{h_1 + a} + \frac{1}{h_2 + a} + \dots + \frac{1}{h_n + a}$$

Fitness Function Example

- Traveling Salesman Problem
 - Read each gen pair
 - If there is an edge (connection) for each pair of node in gen, calculate the cost, f = 1/h
 - If there is any pair of node that is not connected, f = 0
- Knapsack Problem
 - Calculate the total weight, if the total < max, f = total value
 - If total > max, f = 0
- Function Optimization
 - Decode chromosome, if values are in boundaries, calculate the objective
 - If the values are outside the boundaries, f = 0

Parent Selection

58 Artificial Intelligence

Parent Selection

- Process to select individuals as parents to generate new offspring for the next generation
 - Individual solutions are selected through a fitness-based process

- Popular and well-studied methods:
 - Roulette Wheel Selection
 - Tournament Selection
 - [New] Roulette Wheel via Stochastic Acceptance

Roulette Wheel Selection

Individuals are given a probability of being selected that is directly proportionate to their fitness

$$p_i = \frac{f_i}{\sum_{j=1}^N f_j}$$

- Two individuals are then chosen randomly based on these probabilities and produce offspring.
 - Stochastic, Time complexity O(n) or $O(\log n)$

Roulette Wheel Selection

Chromosom e	Fitnes s		
C1	2	0.25	
C2	1	0.125	4
C3	1	0.125	
C4	4	0.5	
total	8		•

0.2 0.4 0.6 0.8 1

Illustration 2

Stochastic Roulette Wheel Selection

- 1. Select randomly one individual i with uniform probability (1/N),
- 2. Accept selection with probability $\frac{fi}{fmax}$, where $fmax = \max\{f_i\}_{i=1}^N$ is the maximal fitness in the population
- 3. Otherwise, the procedure is repeated from step 1

```
function StochasticRouletteWheel(fitness)
    maxFitness = max(fitness)
    while(true)
        indv = random_uniform()*N
        r = random_uniform()
        if( r < fitness(indv)/maxFitness )
        return indv</pre>
```

Chromosom e	Fitnes s
C1	2
C2	1
C3	1
C4	4

Tournament Selection

- less stochastic noise,
- fast, easy to implement
- have a constant selection pressure

- 1. choose k (the tournament size) individuals from the population at random
- 2. choose the best individual from pool/tournament with probability p
- 3. choose the second-best individual with probability p*(1-p)
- 4. choose the third best individual with probability $p*((1-p)^2)$
- 5. and so on...

```
function tournamentSelection(pop, k):
  best = []
  for i=1 to k
    indv = pop[random(1, N)]
    if (best == []) or fitness(indv) > fitness(best)
       best = indv
  return best
```


Crossover and Mutation

Artificial Intelligence

Crossover or Recombination

- Enables the evolutionary process to move toward promising regions of the search space
- Matches good parents' sub-solutions to construct better offspring
- Crossover does not always occur
 - based on a set probability
 - The probability of crossover is usually \sim 60% to 70%.

Crossover or Recombination

- General Schemes:
 - Single-Point, Two-Point, n-point crossover
 - Uniform crossover, Arithmetic crossover
 - etc.
- For ordered chromosome
 - Partially matched crossover
 - Cycle crossover
 - Order crossover
 - etc.

Crossover or Recombination

Single-point - Randomly select a point

Two-points - Randomly select two points

Mutation

- to simulate the effect of errors that happen with low probability during duplication
- small chance of mutation
 - loop through all the alleles
 - By a small probability (\sim 1%), either change it by a small amount or replace it with a new value

Initi	al ch	rom	oson	ne									
Muta	Mutation process												
1	0	1	1	0	0	0	1	Result:					

Mutation

- General Schemes:
 - Bit-level mutation
 - Gene/allele-level mutation
 - Chromosome-level mutation
- For ordered chromosome
 - Swap mutation
 - Scramble mutation
 - etc.

Survivor Selection

70 Artificial Intelligence

Survivor Selection

- Generational Replacement
 - generate n off-springs, where n is the population size, and the entire population is replaced by the new one at the end of the iteration
 - Must add a mechanism to ensure the best individual survives:
 Elitism
- Steady-State
 - generate one or two off-springs in each iteration and they replace one or two individuals from the population
 - Much simpler, but requires more generation to converge

Elitism

- Usually used in Generational Replacement type
- Copied the best chromosomes into the next generation once or twice
- Ensure the solution quality obtained will not decrease from one generation to the next

Generational Replacement

```
population = generatePopulation(N)
                                                                             initial generation
while stoppingCondition is not satisfied
      fitness = evaluate(population)
                                                                                                Mating
                                                                              c1 1 1 0 0 0 1 0
      newPopulation = elitism(population, fitness)
                                                                  Replace
                                                                                                 pool
                                                                              c2 1 0 1 1 0 1 1
      while size(newPopulation) < N
             parent1, parent2 =
                                                                              cn 0 0 1 1 0 1 0
                                                                                                           cj 0 0 1 0 1 1 1 Pn/2
parentSelection(population)
             offspring = crossover(parent1, parent2,
                                                                                      Elitism
pC)
                                                                                                              Crossover
             offspring = mutate(offspring, pM)
             newPopulation.add(offspring)
                                                                                                               Mutation
                                                                              c1 0 1 1 0 1 1 0
      end
                                                                                               add
                                                                              c2 0 1 1 0 0 1 0
      population = newPopulation
end
                                                            C1 0 1 1 0 1 1 0
                                                           c2 0 1 1 0 0 1 0
                                                            cn 1 1 1 1 0 1 0
                                                          next generation
```


Steady-State

```
population = generatePopulation(N)
while stoppingCondition is not satisfied
    fitness = evaluate(population)
    parent1, parent2 = parentSelection(population)
    offspring = crossover(parent1, parent2, pC)
    offspring = mutate(offspring, pM)
    population = steadyState(population, offspring)
end
```


Steady-State procedures

- Age-based selection
 - Offspring replaces the oldest individual in population

Steady-State procedures

- Fitness-based selection
 - Offspring replaces individual with the worst fitness value in population

Steady-State procedures

- Local Fitness-based selection
 - Select the best individuals form a pair of parents and its offspring to replace one or all the parents

Epilog

78 Artificial Intelligence

Stopping Criteria

- Max iteration (max generation)
- Time limit
- Fitness plateau
- Fitness threshold
- Population and Generational diversity

EAs are suitable for problems:

- Complex Problem
- Difficult to understand
- Can not use conventional methods
- Real time system
- The solution does not have to be the most optimal
- No prior knowledge
- No mathematical analysis is available

Problems Solved using EAs

- Traveling Salesman Problem
- Shortest Path
- Knapsack
- Cutting Stock Problem
- Scheduling
- Other Optimizing Problems

Choosing Searching Method

- ▲ How big is the problem space?
- What is the branching factor (b) and the depth of the solution (d)?
- How much processor and memory space available?
- Does the solution have to be optimal?
- Can the heuristic function be found/formulated?
- There is one goal or more?

Conclusion

- The methods included in the blind search require enormous memory to solve simple problems.
- With the current speed and limited computer memory, currently blind search is not yet possible to be implemented into the real world.
- The only method that might be used is Iterative Deepening Search (IDS) as it requires very little memory even though the processing time is very long.

Conclusion

- Among the search methods included in the heuristic search, A* is the best option
 when we can find a heuristic function for the problem to be solved.
- We can choose the A* variation that best fits the problem to be solved and the resources (time and memory) we have.
- When more than one type of heuristic function is found, choose the one closest to the actual cost.

Question?

THANK YOU