Máquinas de Turing

Exercício

Cadeia: 0001

001

01

000001

Técnicas de Programação

- Calcular de maneira similar a um computador
 - Tão poderoso quanto um computador convencional
- Cálculos sobre outras máquinas de Turing
 - Programa que examina outros programas
 - Permite provar existência de problemas indecidíveis

Armazenamento no Estado

- Usar o controle finito p/ conter uma quantidade finita de dados
 - Não apenas um estado de controle q, mas 3 elementos de dados A, B e C

Figura 8.13: Máquina de Turing vista como tendo um armazenamento de controle finito e várias trilhas

Armazenamento no Estado

- $M = (Q,\{0,1\},\{0,1,B\},\delta,[q0,B],[q1,B])$
 - Memoriza em seu controle finito o primeiro símbolo que vê
 - Aceita a linguagem: 01* + 10*
 - Conjunto de estados: $Q = \{q0,q1\} \times \{0,1,B\}$
 - Função transição, para a = 0 ou 1
 - $\delta([q0,B],a) = ([q1,a],a,R)$
 - $\delta([q1,a],a') = ([q1,a],a',R)$
 - $\delta([q1,a],B) = ([q1,B],B,R)$

Várias Trilhas

- Imaginar a fita como várias trilhas
 - Cada trilha possui um símbolo
 - Modo de visualizar os símbolos como uma estrutura útil
 - Ex. a célula varrida contem o símbolo [X,Y,Z]

Figura 8.13: Máquina de Turing vista como tendo um armazenamento de controle finito e várias trilhas

- Um conjunto de estados
 - Executam algum processo útil
 - Inclui um estado inicial
 - Um estado de retorno
 - Passa o controle de volta ao conjunto de estados que chamou a sub-rotina

- Exemplo: Máquina que faz "multiplicação"
 - Começa com 0m10n1 e termina com 0mn
 - Em geral a fita estará com: 010n10kn
 - Etapa básica:
 - Trocamos um 0 no primeiro grupo por B
 - Adicionamos n 0's ao último grupo
 - Resultado: 0(i-1)10n10(k+1)n

- Quando acabarem os 0's do primeiro grupo, teremos nm 0's no segundo grupo
- Etapa final: trocar os 10ⁿ1 valores iniciais por branco

- Sub-rotina Copy
 - Implementa a segunda etapa anterior

Programa de multiplicação completo:

Exercício

Escreva uma MT que faça potenciação.

Dica: use sub-rotinas