CTL.SC1x -Supply Chain & Logistics Fundamentals

Single Period Inventory Model: Calculating Expected Profitability

Agenda

- Expected Profits
- Expected Units Short
- Unit Normal Loss Function
- NFL Jersey Example

Expected Profits

Profit Maximization

$$P[x \le Q] = \frac{p - c}{p} = \frac{c_s}{c_s + c_e}$$

$$\operatorname{Profit}(Q, x) = \begin{cases} px - cQ & \text{if } x \leq Q \\ pQ - cQ & \text{if } x \geq Q \end{cases}$$

$$E\left[\operatorname{Profit}(Q)\right] = \int_0^\infty P(Q, x_0) f_x(x_0) dx_0$$

$$E\left[\operatorname{Profit}(Q)\right] = \int_0^Q \left(px - cQ\right) f_x\left(x_0\right) dx_0 + \int_Q^\infty \left(pQ - cQ\right) f_x\left(x_0\right) dx_0$$

$$E\left[\operatorname{Profit}(Q)\right] = p \int_0^\infty (x) f_x(x_0) dx_0 - cQ - p \int_Q^\infty (x - Q) f_x(x_0) dx_0$$

$$E[Profit(Q)] = pE[x] - cQ - pE[UnitsShort]$$

Expected Profits with Salvage & Penalty

It gets a little more complicated when we use B and g:

g = Salvage value, \$/unit

B = Penalty for not satisfying demand, beyond lost profit, \$/unit

$$P(Q) = \begin{cases} -cQ + px + g(Q - x) & \text{if } x \le Q \\ -cQ + pQ - B(x - Q) & \text{if } x \ge Q \end{cases}$$

$$E[P(Q)] = (p-g)E[x] - (c-g)Q - (p-g+B)E[US]$$

Rearranging this:

$$\left| E[P(Q)] = p(E[x] - E[US]) - cQ + g(Q - (E[x] - E[US])) - B(E[US]) \right|$$

Expected Units Short

Expected Values

Continuous

Discrete

E[Units Demanded]

$$\int_{x=0}^{\infty} x f_x(x) dx = \hat{x}$$

$$\sum_{x=0}^{\infty} x P[x] = \hat{x}$$

E[Units Sold]

$$\int_{x=0}^{Q} x f_x(x) dx + Q \int_{x=Q}^{\infty} f_x(x) dx$$

$$\sum_{x=0}^{Q} x P[x] + Q \sum_{x=Q+1}^{\infty} P[x]$$

E[Units Short]

$$\int_{x=0}^{\infty} (x - Q) f_x(x) dx$$

$$\sum_{x=Q+1}^{\infty} (x-Q) P[x]$$

Example: Discrete Case

Each day I can sell between 1 and 8 freshly baked widgets. The demand distribution is shown below. Widgets not sold at end of day are thrown out.

Suppose that I have decided to order 5 each day.

What is my:

- Expected Demand?
- Expected Units Sold?
- Expected Units Short?

Example:

Demand (x)	P[x]
1	0.125
2	0.125
3	0.125
4	0.125
5	0.125
6	0.125
7	0.125
8	0.125

Demand (x)	P[x]	xP[x]
1	0.125	0.125
2	0.125	0.250
3	0.125	0.375
4	0.125	0.500
5	0.125	0.625
6	0.125	0.750
7	0.125	0.875
8	0.125	1.000
		E[x] = 4.500

$$E[Units Demanded] = \sum_{x=0}^{\infty} xP[x] = \hat{x}$$

Demand (x)	P[x]	xP[x]	QP[x]
1	0.125	0.125	0
2	0.125	0.250	0
3	0.125	0.375	0
4	0.125	0.500	0
5	0.125	0.625	0
6	0.125	0	0.625
7	0.125	0	0.625
8	0.125	0	0.625
		E[sales] =	3.75

E[Units Sold | Q=5] =
$$\sum_{x=0}^{Q} xP[x] + Q\sum_{x=Q+1}^{\infty} P[x]$$

Demand (x)	P[x]	Loss L(Q)=x-Q	L(Q)P[x]
1	0.125	0	0
2	0.125	0	0
3	0.125	0	0
4	0.125	0	0
5	0.125	0	0
6	0.125	1	0.125
7	0.125	2	0.250
8	0.125	3	0.375
			E[US] = 0.75

E[Units Short | Q=5] =
$$\sum_{x=Q+1}^{\infty} (x-Q)P[x]$$

Unit Normal Loss Function

Finding Expected Units Short

Loss Function L(Q) = expected amount that random variable X exceeds a given threshold value, Q. Expected units short per replenishment cycle

$$E[US] = \sum_{x=Q+1}^{\infty} (x-Q)p[x] \qquad E[US] = \int_{x=Q}^{\infty} (x-Q)f_x(x) dx$$

For a Normal Distribution we can use G(k), the Unit Normal Loss Function:

$$E[US] = \int_{x=Q}^{\infty} (x - Q) f_x(x) dx = \sigma G\left(\frac{Q - \mu}{\sigma}\right) = \sigma G(k)$$

Recall that k is the Standard Normal Distribution where ($\mu = 0$, $\sigma = 1$) Transform: $k = (Q - \mu)/\sigma$ In Spreadsheets: k = NORMSINV(CR)

Unit Normal Loss function is:

$$G(k) = f_x(x_0) - k*Prob[x_0 \ge k])$$

In Spreadsheets:

=NORMDIST(\mathbf{k} ,0,1,0) - \mathbf{k} *(1 - NORMSDIST(\mathbf{k}))

Standard Normal Table

Standard N	UH	Hai	Tabl			1			
	k	P[x≤k]	G(k)	k	P[x≤k]	G(k)	k	P[x≤k]	G(k)
	0.00	0.5000	0.3989	0.50	0.6915	0.1978	1.00	0.8413	0.0833
	0.01	0.5040	0.3940	0.51	0.6950	0.1947	1.01	0.8438	0.0817
	0.02	0.5080	0.3890	0.52	0.6985	0.1917	1.02	0.8461	0.0802
Suppose:	0.03	0.5120	0.3841	0.53	0.7019	0.1887	1.03	0.8485	0.0787
~N(160, 45)	0.04	0.5160	0.3793	0.54	0.7054	0.1857	1.04	0.8508	0.0772
and $Q = 190$	0.05	0.5199	0.3744	0.55	0.7088	0.1828	1.05	0.8531	0.0757
	0.06	0.5239	0.3697	0.56	0.7123	0.1799	1.06	0.8554	0.0742
What is my E[US]?	0.07	0.5279	0.3649	0.57	0.7157	0.1771	1.07	0.8577	0.0728
,	0.08	0.5319	0.3602	0.58	0.7190	0.1742	1.08	0.8599	0.0714
k=(190-160)/45	0.09	0.5359	0.3556	0.59	0.7224	0.1714	1.09	0.8621	0.0700
= 0.67	0.10	0.5398	0.3509	0.60	0.7257	0.1687	1.10	0.8643	0.0686
	0.11	0.5438	0.3464	0.61	0.7291	0.1659	1.11	0.8665	0.0673
G(k) = 0.1503	0.12	0.5478	0.3418	0.62	0.7324	0.1633	1.12	0.8686	0.0659
G(N) 011303	0.13	0.5517	0.3373	0.63	0.7357	0.1606	1.13	0.8708	0.0646
E[US] = (45)(0.1503)	0.14	0.5557	0.3328	0.64	0.7389	0.1580	1.14	0.8729	0.0634
= 6.76 units	0.15	0.5596	0.3284	0.65	0.7422	0.1554	1.15	0.8749	0.0621
= 0.70 driits	0.16	0.5636	0.3240	0.66	0.7454	0.1528	1.16	0.8770	0.0609
	0.17	0.5675	0.3197	0.67	0.7486	0.1503	1.17	0.8790	0.0596
	0.18	0.5714	0.3154	0.68	0.7517	0.1478	1.18	0.8810	0.0584
	0.19	0.5753	0.3111	0.69	0.7549	0.1453	1.19	0.8830	0.0573
	0.20	0.5793	0.3069	0.70	0.7580	0.1429	1.20	0.8849	0.0561
CTL.SC1x - Supply Chain and Logistics Funda	0.21	0.5832	0.3027	0.71	0.7611	0.1405	1.21	0.8869	0.0550

NFL Jersey Example Solution

Data:

- Total cost = c = 10.90\$/jersey
- Selling price = p = 24 \$/jersey
- Forecast demand ~N(32000, 11000)

Solutions:

- Case 1: No salvage value (g=0); $Q^* = 33,267$
- Case 2: Salvage value (g=7 /jersey); Q* = 40,149

What is Expected Profit for each case?

$$E[P(Q)] = (p-g)E[x] - (c-g)Q - (p-g+B)E[UnitsShort]$$

Case adapted from Parsons, J. (2004) "Using A Newsvendor Model for Demand Planning of NFL Replica Jerseys," MIT Supply Chain Management Program Thesis.

Image Source: http://commons.wikimedia.org/wiki/File:Tom Brady %28cropped%29.jpg

$$E[P(Q)] = (p-g)E[x] - (c-g)Q - (p-g+B)E[UnitsShort]$$

- First term; (p-g)E[x]
 - Case 1: (24-0)(32000) = \$768,000
 - Case 2: (24-7)(32000) = \$544,000
- Second term; (c-g)Q
 - Case 1: = (10.9 0)(33267) = \$362,610
 - Case 2: = (10.9 7)(40149) = \$156,581
- Third term; (p-g+B)E[US]
 - Using Unit Normal Loss Function; $E[US] = \sigma G(k)$

- Third term; (p-g+B)E[US]
 - 1. Find $k = (Q \mu)/\sigma$
 - 2. Look up or calculate Unit Normal Loss function, G(k)
 - 3. Find E[US] = σ G(k)
 - 4. Multiply E[US] by (p-g+B)
- Case 1: No salvage value, $Q^* = 33,267$
 - 1. k = (33267 32000)/11000 = 0.115
 - 2. G(k) = 0.3441
 - =NORMDIST(0.115,0,1,0) 0.115*(1 NORMSDIST(0.115))
 - Use Standard Normal Table (interpolation)

Standard Nor	ma	ıl Ta	ble
	k	P[x≤k]	G(k)
	0.00	0.5000	0.3989
	0.01	0.5040	0.3940
	0.02	0.5080	0.3890
	0.03	0.5120	0.3841
k= 0.115	0.04	0.5160	0.3793
What is G(0.115)?	0.05	0.5199	0.3744
	0.06	0.5239	0.3697
Interpolating:	0.07	0.5279	0.3649
=(1/2)(0.3464 - 0.3418)	0.08	0.5319	0.3602
= 0.0023	0.09	0.5359	0.3556
	0.10	0.5398	0.3509
G(0.115) = 0.3418 + 0.0023	0.11	0.5438	0.3464
= 0.3441	0.12	0.5478	0.3418
	0.13	0.5517	0.3373
	0.14	0.5557	0.3328
	0.15	0.5596	0.3284
	0.16	0.5636	0.3240
	0.17	0.5675	0.3197
	0.18	0.5714	0.3154
	0.19	0.5753	0.3111

mal Table								
k	P[x≤k]	G(k)	k	P[x≤k]				
0.00	0.5000	0.3989	0.50	0.6915				
0.01	0.5040	0.3940	0.51	0.6950				
0.02	0.5080	0.3890	0.52	0.6985				
0.03	0.5120	0.3841	0.53	0.7019				
0.04	0.5160	0.3793	0.54	0.7054				
0.05	0.5199	0.3744	0.55	0.7088				
0.06	0.5239	0.3697	0.56	0.7123				
0.07	0.5279	0.3649	0.57	0.7157				
0.08	0.5319	0.3602	0.58	0.7190				
0.09	0.5359	0.3556	0.59	0.7224				
0.10	0.5398	0.3509	0.60	0.7257				
0.11	0.5438	0.3464	0.61	0.7291				
0.12	0.5478	0.3418	0.62	0.7324				
0.13	0.5517	0.3373	0.63	0.7357				
0.14	0.5557	0.3328	0.64	0.7389				
0.15	0.5596	0.3284	0.65	0.7422				
0.16	0.5636	0.3240	0.66	0.7454				

^{0.20} 0.5793 0.21 0.5832

G(k)

0.1978

0.1799

0.1771

0.1742

0.1714

0.1687

0.1659

0.1633

0.1606

0.1580

0.1554

0.1528

0.1503

0.1478

k

1.00

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

0.8461	
0.8485	
0.8508	
0.8531	
0.8554	Г

0.8577

0.8643

0.8665

0.8686

0.8708

0.8729

P[x≤k]

0.8413

0.8438

0.

0.

- 0.8790 0. 0.8810 0. 0. 0.
- 0.69 0.7549 0.1453 1.19 0.8830 0.3069 0.70 0.7580 0.1429 1.20 0.8849 CTL.SC1x - Supply Chain and Logistics Fundamentals 0.3027 0.71 0.7611 0.1405 1.21 0.8869

0.67

0.68

0.7486

0.7517

^{0.1947}

- Expected Cost of Units Short = (p-g+B)E[US]
 - 1. Find $k = (Q \mu)/\sigma$
 - 2. Look up or calculate Unit Normal Loss function, G(k)
 - 3. Find E[US] = σ G(k)
 - 4. Multiply E[US] by (p-g+B)
- Case 1: No salvage value g=0; $Q^* = 33,267$
 - 1. k = (33267 32000)/11000 = 0.115
 - 2. G(k) = 0.3441
 - 3. E[US] = (11000)(0.3441) = 3785 jerseys
 - 4. (p-g+B)E[US] = (24-0-0)(3785) = \$90,840
- Case 2: Salvage value g=7; $Q^* = 40,149$
 - 1. k = (40149 32000)/11000 = 0.741
 - 2. G(k) = 0.1332
 - 3. E[US] = (11000)(0.1332) = 1465 jerseys
 - 4. (p-g+B)E[US] = (24-7-0)(1465) = \$24,905

$$\left| E[P(Q)] = (p-g)E[x] - (c-g)Q - (p-g+B)E[US] \right|$$

	(p-g)E[x]	(c-g)Q	(p-g+B) E[US]	E[Profit]
Case 1 (g=0)	\$768,000	\$362,610	\$90,840	\$314,550
Case 2 (g=7)	\$544,000	\$156,581	\$24,905	\$362,514

$$\left| E[P(Q)] = (p-g)E[x] - (c-g)Q - (p-g+B)E[US] \right|$$

	(p-g)E[x]	(c-g)Q	(p-g+B) E[US]	E[Profit]
Case 1 (g=0)	\$768,000	\$362,610	\$90,840	\$314,550
Case 2 (g=7)	\$544,000	\$156,581	\$24,905	\$362,514

$$E[P(Q)] = p(E[x] - E[US]) - cQ + g(Q - (E[x] - E[US])) - B(E[US])$$

Units	E[Demand]	E[US]	Ordered Q	E[Sold at Full Price]	E[Sold at Discount]
Case 1 (g=0)	32,000	3,785	33,267	28,215	0
Case 2 (g=7)	32,000	1,465	40,149	30,535	9,614

Key Points from Lesson

Key Points from Lesson

Expected Profitability

$$E[P(Q)] = p(E[x] - E[US]) - cQ + g(Q - (E[x] - E[US])) - B(E[US])$$

- Expected Units Short
 - Loss Function

$$\int_{x=Q}^{\infty} (x-Q) f_x(x) dx \qquad \sum_{x=Q+1}^{\infty} (x-Q) P[x]$$

- Tabulate the Loss Function for any distribution
- Unit Normal Loss Function, G(k)

=NORMDIST(\mathbf{k} ,0,1,0) - \mathbf{k} *(1 - NORMSDIST(\mathbf{k}))

Demand Probability for NFL Jerseys

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

