

17

Gravitation

Newton's Universal Law of Gravitation

- * Force of attraction between two point masses $F = \frac{Gm_1m_2}{r^2}$, where $G = 6.67 \times 10^{-11} \ Nm^2/kg^2$
- * Directed along the line joining the point masses.
- ❖ It is a conservative force ⇒ mechanical energy will be conserved.
- \diamond It is a central force \Rightarrow angular momentum will be conserved.

Gravitational Field due to Spherical Shell

Outside Region $E_g = \frac{GM}{r^2}$, where x > R

On the surface $E_g = \frac{GM}{R^2}$, where x = R

Inside Region $E_g = 0$, where x < R

Note: Direction always towards the centre of the sphere, radially inwards.

Gravitational Field Due to Solid Sphere

Outside Region
$$E_g = \frac{GM}{r^2}$$
, where $r > R$

On the surface
$$E_g = \frac{GM}{R^2}$$
, where $r = R$

Inside Region
$$E_g = \frac{GMr}{R^3}$$
, where $r < R$

Gravity 'g'

- * Acceleration due to gravity $g_s = \frac{GM}{R^2}$ (on the surface of earth)
- At height h, $g_h = \frac{GM}{(R+h)^2}$
- If $h \ll R$; $g_h \approx g_s \left(1 \frac{2h}{R}\right)$
- At depth d, $g_d = \frac{GM(R-d)}{R^3} = g_s \left(1 \frac{d}{R}\right)$
- * Effect of rotation on g : $g' = g ω^2 R cos^2 λ$ (where λ is angle of latitude.)

Gravitational Potential

❖ Due to a point mass at a distance r

$$V = \frac{GM}{r}$$

* Gravitational potential due to spherical shell

Outside the shell
$$V = \frac{GM}{r}, r > R$$

Inside/on the surface of the shell $V = \frac{GM}{R}$, r < R

* Potential due to a solid sphere

Outside Region
$$V = -\frac{GM}{r}, r > R$$

On the surface
$$V = -\frac{GM}{R}$$
, $r = R$

Inside Region
$$V = -\frac{GM(3R^2 - r^2)}{2R^3}, r < R$$

 Potential on the axis of a thin ring at a distance r from the centre.

$$V = -\frac{GM}{\sqrt{R^2 + r^2}}$$

Motion of a Satellite

* Escape velocity from a planet of mass M and radius R

$$V_{e} = \sqrt{\frac{2GM}{R}}$$

Orbital velocity of satellite (orbital radius r)

$$V_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{GM}{(R+H)}}$$

* For nearby satellite

$$V_0 = \sqrt{\frac{GM}{R}} \quad \frac{V_e}{\sqrt{2}}$$

Here V_e = escape velocity on earth surface.

Time Period of Satellite

$$T = \frac{2\pi r}{v} = \frac{2\pi r^{3/2}}{\sqrt{GM}}$$

Energies of a Satellite

Potential energy
$$U = -\frac{GMm}{r}$$

Kinetic energy
$$K = \frac{1}{2}mv^2 = \frac{GMm}{2r}$$

Mechanical energy
$$E = U + K = -\frac{GMm}{2r}$$

Binding energy BE =
$$-E = \frac{GMm}{2r}$$

Kepler's Laws

1st Law of orbitals: Path of a planet is elliptical with the sun at one of the focus.

* IInd Law of areas: Areal velocity
$$\frac{d\vec{A}}{dt} = constant = \frac{\vec{L}}{2m}$$

$$r_{\text{max}} = a(1 + e)$$

$$r_{\min} = a(1 - e)$$

$$v_p = \frac{v_{max}}{v_{min}} = \frac{1+e}{1-e}$$

(where, e is eccentricity.)