Team Members:

Raghav Gade – 20CS02003

Ayush Asutkar – 20CS01057

Problem Statement

Designing of a 32-bit RISC processor that will support the following assembly instruction:

- ➤ MOVE Ri, Rj: The content of Rj is transferred to Ri.
- ➤ MOVE Ri, Immediate (16 bit): The immediate value (32 bit unsigned extended) will be transferred to Ri.
- ➤ LOAD Ri, X(Rj): The content of memory location [[Rj] + X] is loaded into Ri, where X is a 16-bit unsigned immediate value.
- ➤ STORE Ri, X(Rj): The content of register Ri is stored in memory [[Rj] + X], where X is a 16 bit unsigned immediate value.
- \rightarrow ADD Ri, Rj, Rk: Ri = Rj + Rk
- ➤ ADI Ri, Rj, Immediate (16 bit): Ri = Rj + Immediate value (32 bit unsigned extended)
- \triangleright SUB Ri, Rj, Rk: Ri = Rj Rk
- ➤ SUI Ri, Rj, Immediate (16 bit): Ri = Rj Immediate value (32 bit unsigned extended)
- ➤ AND Ri, Rj, Rk: Ri = Rj AND Rk
- ➤ ANI Ri, Rj, Immediate (16 bit): Ri = Rj AND Immediate value (32 bit unsigned extended)
- > OR Ri, Rj, Rk: Ri = Rj OR Rk
- ➤ ORI Ri, Rj, Immediate (16 bit): Ri = Rj OR Immediate value (32 bit unsigned extended)
- > HLT: Stops the execution

Instruction Encoding:

Instruction Format: - 32 – bit instruction and supports 16 – bit immediate value

Encoding: - OOOO YYYY AAAA BBBB XXXXXXXXXXXXXXXXX

Encoding in Hexadecimal: - O Y A B XXXX

Component	Binary	Hexadecimal
OPCODE	0000	0
DESTINATION (RY)	YYYY	Υ
SOURCE – 1	AAAA	Α
SOURCE – 2	BBBB	В
IMMEDIATE	XXXXXXXXXXXXXXX	XXXX

Opcode for Instructions: -

Instruction	Opcode	Hexadecimal Opcode
MOV Ri, Rj	0000	0
MVI Ri, X	0001	1
LOAD Ri, X(Rj)	0010	2
STORE Rk, X(Rj)	0011	3
ADD Ri, Rj, Rk	0100	4
ADI Ri, Rj X	0101	5
SUB Ri, Rj, Rk	0110	6
SUI Ri, Rj, X	0111	7
AND Ri, Rj, Rk	1000	8
ANI Ri, Rk, X	1001	9
OR Ri, Rj, Rk	1010	A
ORI Ri, Rk, X	1011	В
HLT	1100	С

Encoding for Registers: - 4 bits are used for 8 registers.

Register	Binary Encoding	Hexadecimal Encoding
R0	0000	0
R1	0001	1
R2	0010	2
R3	0011	3
R4	0100	4
R5	0101	5
R6	0110	6
R7	0111	7

Examples:

i. ADD R1, R2, R2: 41220000

No immediate value in this case, keeping it 0 is preferable. Similar encoding needs to be followed in case of SUB, AND and OR instructions with respective opcodes.

Opcode	Destination	Source – 1	Source – 2	Immediate
0100	0001	0010	0010	000000000000000000000000000000000000000
4	1	2	2	0000

ii. SUI R1, R2, 300: 7120012C

No Source -2 value in this case, keep the value of source -2 as 0. Similar encoding needs to be followed in case of ANI, ADI and ORI instructions with respective opcodes.

	Opcode	Destination	Source – 1	Source – 2	Immediate
	0111	0001	0010	0000	000000100101100
Ī	7	1	2	0	012C

iii. LOAD R1, 12(R2): 2120000C

No Source – 2 value in this case, keep the value of source 2 as 0.

Opcode	Destination	Source – 1	Source – 2	Immediate
0010	0001	0010	0000	000000000001100
2	1	2	0	000C

iv. STORE R3, 22(R4): 304300016

No Destination value in this case, keep the value of source 2 as 3, because R3 contains the data. Effective address will be [R4] + 22.

Opcode	Destination	Source – 1	Source – 2	Immediate
0011	0000	0100	0011	000000000010110
3	0	4	3	0016

v. MOV R2, R6: 02600000

No Source – 2 and Immediate value in this case, keep this values as 0.

Opcode	Destination	Source – 1	Source – 2	Immediate
0000	0010	0110	0000	000000000000000000000000000000000000000
0	2	6	0	0000

vi. MVI R3, 420: 130001A4

No Source -1 and Source -2 in this case, keep this values as 0.

Opcode	Destination	Source – 1	Source – 2	Immediate
0001	0011	0000	0000	0000000110100100
1	3	0	0	01A4

vii. HLT: C0000000

No field in this case except for opcode, keep all the values except the opcode as 0.

Opcode	Destination	Source – 1	Source – 2	Immediate
0110	0000	0000	0000	000000000000000000000000000000000000000
С	0	0	0	0000