

Decision Trees

Regression Trees

- Rely on the ability to split data based on information from features.
- This means we need a mathematical definition of **information** and the ability to measure it.

Decision Trees

Gini Impurity

- **Gini impurity** is a mathematical measurement of how "pure" the information in a data set is.
- In regards to classification, we can think of this as a measurement of class uniformity.

Gini Impurity for Classification:

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Gini Impurity for Classification:

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Class Red (2/4)(1 - 2/4) = 0.25

Class Blue (2/4)(1 - 2/4) = 0.25

Gini Impurity 0.25 + 0.25 = 0.5

Data is more "pure" (less impurity)

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Class Red (1/4)(1 - 1/4) = 0.1875

Class Blue (3/4)(1 - 3/4) = 0.1875

Gini Impurity 0.1875+0.1875 = 0.375

Data is completely "pure" (no impurity)

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

Class Blue (4/4)(1 - 4/4) = 0

Gini Impurity 0 + 0 = 0

- If the goal of a decision tree is to separate out classes, we can use **gini impurity** to decide on data split values.
- We want to **minimize** the gini impurity at leaf nodes.
- Minimized impurity at leaf nodes means we are separating classes effectively!

Create a decision tree to predict spam.

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

Predict if email is spam if it contains a URL:

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

Predict if email is spam if it contains a URL:

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

Recall the gini impurity formula:

X - URL Link	Y-Spam
Yes	Yes
Yes	Yes
No	No
No	No
No	Yes
No	No
Yes	No

- Treat Yes Spam and No Spam as c classes:
- Left Leaf Node:

 - Left Leaf Gini=0.44
- Right Leaf Node:
 - $(\frac{1}{4})(\frac{1-1}{4}) + (\frac{3}{4})(\frac{1-3}{4})$
 - Right Leaf Gini=0.375

- Total Emails: (2+1) + (1+3) = 7
- Left Leaf Gini=0.44
- Right Leaf Gini=0.375
- Left Emails: 3
- Right Emails: 4
- (3/7)*0.44 + (4/7)*0.375
- Gini Impurity: 0.403

Decision Trees

Continuous Features: Binning

Let's calculate the feature gini impurity:

X - Words in Email	Y-Spam
10	Yes
40	No
20	Yes
50	No
30	No

• First sort data:

X - Words in Email	Y-Spam
10	Yes
40	No
20	Yes
50	No
30	No

• First sort data:

X - Words in Email	Y-Spam
10	Yes
20	Yes
30	No
40	No
50	No

Calculate potential split values for node:

X - Words in Email	Y-Spam
10	Yes
20	Yes
30	No
40	No
50	No

Use averages between rows as values:

X - Words in Email	Y-Spam
15 10	Yes
20	Yes
25 30	No
35 40	No
45 50	No

Words ≤ N

Calculate gini impurity for each split:

X - Wo	ords in Email	Y-Spam
15	10	Yes
13	20	Yes
	30	No
	40	No
	50	No

$$G(Q) = \sum_{c \in C} p_c (1-p_c)$$

$$G(Q) = {\binom{1}{2}}{(0+0)} + {\binom{4}{5}}{(\frac{1}{4})(1-\frac{1}{4})} + {\binom{3}{4}}{(1-\frac{3}{4})}$$

$$= 0.3$$

Repeat for all possible splits:

X - Wo	ords in Email	Y-Spam	
15	10	Yes	Gini=0.3
	20	Yes	Gini=0.5
25	30	No	
35	40	No	→ Gini=0.26
45	50	No	Gini=0.4

Choose lowest impurity split value

X - Words in Email	Y-Spam
10	Yes
20	Yes
30	No
40	No
50	No

Decision Trees

Dealing with overfitting: pruning (automatic) and maximum depth (hyperparameter)

• Pruning:

• Pruning:

A large overfitted tree:

• Pruning: minimum gini impurity

• Pruning: minimum gini impurity

• We can also mandate a max depth:

• We can also mandate a max depth:

