# Систематика графов перехода систем из одного состояния в другое

Влох Дмитрий Андреевич, гр. 522

Санкт-Петербургский государственный университет университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: аспирант, Тамазян Г.С.



Санкт-Петербург 2013г.

#### Описание систем

Предметом исследования являются системы, состоящие из двух элементов A и B. Эти элементы в дальнейшем будем называть аппаратами.



Рис. 1: Примеры схем с двумя аппаратами А и В

В систему приходят заявки с некоторой плотностью поступления  $\lambda$ . Над каждой заявкой, попавшей в систему, должны быть выполнены операции  $\Omega_1,..,\Omega_i$ 

## Постановка задачи

#### Цель работы:

построить всевозможные схемы моделей систем некоторого класса с дискретными состояниями, где число аппаратов равно двум, а число операций — трем.

Для рассматриваемого класса систем необходимо:

- описать алгоритм, помогающий перечислять всевозможные схемы систем данного класса;
- построить всевозможные схемы систем на основе данного алгоритма;
- на основе этих схем создать диалоговую программу для учебных целей, позволяющую генерировать графы заданной схемы и моделировать данный класс систем.

#### Описание систем

В качестве множества размещений операций  $\Omega_1$ ,  $\Omega_2$  и  $\Omega_3$  по аппаратам A и B будем рассматривать такие, которые удовлетворяют следующим требованиям.

- Для каждой заявки обязательно должны быть выполнены все операции.
- Обслуживание заявки может начинаться и заканчиваться на любом из аппаратов.
- Если заявка начала выполняться на каком либо аппарате, то она продолжает обслуживаться на этом аппарате, если не задан приоритет выполнения.
- ullet  $u_i^j > 0$ , где  $u_i^j -$  время выполнения j-ой заявки на i-ом аппарате.
- Если есть возможность обслуживания на нескольких аппаратах, то выбирается тот, который наиболее предпочтителен (основной аппарат для этой операции). Операция  $\Omega_i$ , выполняемую на основном для нее аппарате, будем называть безусловной.

#### Описание систем

#### Определение 1

Операция, выполненная не на основном аппарате, называется условной и обозначается  $(\Omega_i)$ 

#### Определение 2

Две схемы называются изоморфными, если они совпадают с точностью до переименования аппаратов.

#### Допущение

Пусть аппарат A - основной для операции  $\Omega_1$ , иначе мы всегда можем найти изоморфную схему для которой это будет выполняться.

## Метод морфологического ящика

#### 1) Формулировка проблемы.

Необходимо классифицировать системы, состоящие из двух аппаратов A и B, на которых выполняются три операции  $\Omega_1$ ,  $\Omega_2$  и  $\Omega_3$ .

## 2) Определение параметров, которые могут войти в решение заданной проблемы.

На каждом аппарате для операции  $\Omega_i$  имеются следующие варианты выполнения:  $\Omega_i$ ,  $(\Omega_i)$ , не выполняется.

#### 3) Конструирование морфологического ящика.

В задаче рассматриваются системы с двумя аппаратами, на каждом из которых могут выполняться операции  $\Omega_1,\Omega_2,\Omega_3.$  Исходя из этого строим морфологический ящик.

## Метод морфологического ящика

Таблица 1: Морфологический ящик

| $A$ ппар $^1$ | A          |                      |              | В            |              |              |  |
|---------------|------------|----------------------|--------------|--------------|--------------|--------------|--|
| Опер.         | $\Omega_1$ | $\Omega_2$           | $\Omega_3$   | $\Omega_1$   | $\Omega_2$   | $\Omega_3$   |  |
| Возм.опер.2   | $\Omega_1$ | $\Omega_2$           | $\Omega_3$   |              | $\Omega_2$   | $\Omega_3$   |  |
| Возм.опер     |            | $(\Omega_2)$         | $(\Omega_3)$ | $(\Omega_1)$ | $(\Omega_2)$ | $(\Omega_3)$ |  |
| Возм.опер     |            | не вып. <sup>3</sup> | не вып.      | не вып.      | не вып.      | не вып.      |  |

<sup>&</sup>lt;sup>1</sup> Аппарат

<sup>&</sup>lt;sup>2</sup> Возможные операции

<sup>&</sup>lt;sup>3</sup> Не выполняется

## Метод морфологического ящика

4) Определение условий, которым должны удовлетворять элементы множества корректных заданий.

Используя морфологический ящик, мы можем рассмотреть всевозможные варианты и исключить невозможные.

## 5) Результат.

В результате перебора был получен набор из 41ой схемы, перечисленной в дипломной работе.

## Пример полученной схемы

$$\frac{A}{\lambda} \Rightarrow \frac{A}{\Omega_1} \longrightarrow \frac{B_2}{\Omega_3} \longrightarrow$$

Рис. 2: Пример схемы

Таблица 2: Декартовое произведение состояний на А и на В

| 00 | 02 | 03 |
|----|----|----|
| 10 | 12 | 13 |
| W0 | W2 | W3 |

## Пример полученной схемы



Рис. 3: Граф состояний

#### Цель:

создать диалоговую программу, которая позволяет моделировать полученные схемы и контролировать построение графов учащимся.

Таблица 3 : Способ задания графа

| Исходное сост.   | 00 | 10 | 02 | 03 | 12 | 13 | W2 | W3 |
|------------------|----|----|----|----|----|----|----|----|
| Переходное сост. | 10 | 02 | 03 | 0  | 13 | 10 | W3 | 02 |
| Переходное сост. | -  | -  | 12 | 13 | W2 | W3 | -  | -  |

В табл.2 показан способ задания графа в программе.



Рис. 4: Вкладка задания графа.



Рис. 5 : Сообщение об ошибке при неверно введенном графе.



Рис. 6: Результат построения правильно заданного графа



Рис. 7: Вкладка задания графа



Рис. 8: Результат моделирования

Данное приложение может быть использовано для обучению по курсу "Моделирование систем". С его помощью можно решать следующие задачи.

- Анализировать работу любой схемы, задавая разные параметры.
- Сравнивать результаты моделирования обоих методов для одной схемы.
- Контролировать построение графов учащимся.

#### Заключение

- В данной работе был произведен анализ схемы с двумя аппаратами и тремя операциями. Были построены всевозможные варианты данной схемы и предложен алгоритм, который упрощает перебор нужных вариантов. Результат исследования – список из 41-ой схемы.
- Также была написана диалоговая программа для обучения по курсу "Моделирование систем".

Спасибо за внимание!