UNIVERSIDADE FEDERAL DE MINAS GERAIS

VINICIUS TRINDADE DIAS ABEL

DOCUMENTAÇÃO Espirais

Introdução

Os dois algoritmos foram pensados com base nas retas diagonais formadas pelos números quadrados perfeitos, tendo em vista que é possível encontrar suas respectivas posições nas espirais utilizando suas raízes.

Funcionamento do código

Para as duas espirais é definido um ponto base, que é o primeiro ponto quadrado perfeito antecessor do ponto desejado (número inserido na entrada padrão, ponto que queremos descobrir as coordenadas), ou o próprio ponto desejado, quando este é um quadrado perfeito.

Para encontrar o ponto base, basta pegar a parte inteira da raiz do ponto desejado e elevar ao quadrado. E a partir de uma rápida análise das espirais, observa-se que, dado um ponto base Q, suas coordenadas são:

Espiral Quadrada	Coordenada X	Coordenada Y
Se Q é par:	-(√Q/2)	- (√Q / 2)
Se Q é ímpar:	(√Q − 1)/2	$[(\sqrt{Q}-1)/2]+1$

Espiral Triangular	Coordenada X	Coordenada Y
Se Q é par:	- √Q	- (√Q / 2)
Se Q é ímpar:	√Q	-[(\sqrt{Q}-1)/2]

Obs.: Quando Q é par, ele está na reta verde (indicada nas imagens acima), seja na espiral quadrada ou triangular. Se Q for ímpar, está na reta amarela.

Após descobrir o ponto base (ainda não é necessário encontrar sua localização, apenas adiantei a explicação), o algoritmo calcula a distancia total entre o ponto desejado e o ponto base, com uma simples subtração (ponto desejado menos ponto base). Em seguida, ele calcula a distancia horizontal e vertical entre os dois pontos, que ocorre das seguintes formas:

Para a Espiral Quadrada:

Analisando a espiral, sabe-se que a distância horizontal (distância do ponto desejado ao ponto base no eixo X) pode ser no máximo a parte inteira da raiz do ponto desejado, então se a distância total for maior que a parte inteira da raiz do ponto desejado, a distância vertical (distância do ponto desejado ao ponto base no eixo Y) é maior que 0, porque após percorrer toda a distância horizontal possível, percorre-se uma distância vertical para completar a distância total.

Observa-se também, que quando o ponto base está na reta verde, para chegar ao ponto desejado é preciso ir para a direita e para cima (ou seja, incrementar a coordenada X e, talvez, a Y), e quando o ponto base está na reta amarela, para chegar ao ponto desejado é preciso ir para a esquerda e para baixo (ou seja, decrementar a coordenada X e, talvez, a Y).

Para a Espiral Triangular:

Analisando a espiral, sabe-se que a distância horizontal é igual a distância total e a distância vertical, quando a distância total for maior que a parte inteira da raiz do ponto desejado, é igual a parte inteira da raiz do

ponto desejado menos a diferença entre a distância total e parte inteira da raiz do ponto desejado. E quando a distância total for menor ou igual a parte inteira da raiz do ponto desejado, a distância vertical é igual a distância total.

Observa-se também, que quando o ponto base está na reta verde, para chegar ao ponto desejado é preciso ir apenas para a direita (ou seja, incrementar a coordenada X), e quando o ponto base está na reta amarela, para chegar ao ponto desejado é preciso ir para a esquerda e para cima (ou seja, decrementar a coordenada X e incrementar a coordenada Y).

Por fim, para descobrir as coordenadas do ponto desejado, o algoritmo confere em qual reta está o ponto base, descobrindo se ele é par ou ímpar, e então calcula as coordenadas do ponto base da forma descrita anteriormente. Em seguida, realiza as operações de incremento e decremento utilizando as distancias horizontal e vertical, como foi explicado, e chega no resultado esperado.

Complexidade dos algoritmos

Como os dois códigos não possuem nenhum laço de repetição, ao invés disso, realiza apenas operações matemáticas e condicionais para saber qual a coordenada do ponto desejado, a complexidade dos dois algoritmos é Θ(1).