Práctico 5 Álgebra II – Año 2024/1 FAMAF

AUTOVALORES Y AUTOVECTORES

Objetivos.

- Familiarizarse con las nociones de autovalor y autovector de una matriz cuadrada.
- Aprender a calcular el polinomio característico, los autovalores, y los autoespacios de una matriz cuadrada.

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

(1) Para cada una de las siguientes matrices, hallar sus autovalores reales, y para cada autovalor, dar una descripción paramétrica del autoespacio asociado sobre \mathbb{R} .

(a)
$$\begin{bmatrix} 2 & 1 \\ -1 & 4 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$, (c) $\begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$, (d) $\begin{bmatrix} 3 & -5 \\ 1 & -1 \end{bmatrix}$,

(e)
$$\begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix}, \ \lambda \in \mathbb{R}, \quad \text{(f)} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}, 0 \leq \theta < 2\pi.$$

(2) Calcular los autovalores complejos de las matrices (d) y (f) del ejercicio anterior, y para cada autovalor, dar una descripción paramétrica del autoespacio asociado sobre C.

Observación. Es oportuno destacar algunos fenómenos que podemos observar en los ejercicios (1)-(2).

- (i) Una matriz con coeficientes reales puede no tener autovalores reales pero sí complejos (matriz (d)) o tener ambos (matriz (f)).
- (ii) Para describir paramétricamente los autoespacios podemos necesitar distintas cantidades de parámetros para los distintos autovalores (la matriz (c)). Esta cantidad mínima de parámetros es lo que llamaremos dimensión.
- (iii) La cantidad de autovalores distintos es menor o igual al tamaño de la matriz. Incluso puede tener un sólo autovalor (matriz (d) y más generalmente la matriz (e) del Ejercicio (9)) o tener tantos como el tamaño (matriz (b) y (f)).

- (3) Probar que hay una única matriz $A \in \mathbb{R}^{2\times 2}$ tal que (1, 1) es autovector de autovalor 2, y (-2, 1) es autovector de autovalor 1.
- (4) Sea $A \in \mathbb{K}^{n \times n}$, y sea $f(x) = ax^2 + bx + c$ un polinomio, con $a, b, c \in \mathbb{K}$. Sea f(A) la matriz $n \times n$ definida por

$$f(A) = aA^2 + bA + c \operatorname{Id}_n.$$

Probar que todo autovector de A con autovalor λ es autovector de f(A) con autovalor $f(\lambda)$.

- (5) Sea $A \in \mathbb{K}^{2\times 2}$.
 - a) Probar que el polinomio característico de A es $\chi_A(x) = x^2 \text{Tr}(A)x + \text{det}(A)$.
 - b) Si A no es invertible, probar que los autovalores de A son 0 y Tr(A).
- (6) Sea $A \in \mathbb{K}^{n \times n}$. Probar que el polinomio $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n A)$ y el polinomio característico de A tienen las mismas raíces.

Observación Algunos libros definen el polinomio característico de la matriz A como $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n - A)$. Como vemos en el ejercicio anterior, ambas definiciones sirven para encontrar autovalores de A. El polinomio $\tilde{\chi}_A(x)$ tiene la particularidad de ser mónico, o sea que el coeficiente del término x^n es 1.

- (7) Probar que si $A \in \mathbb{K}^{n \times n}$ es una matriz nilpotente entonces 0 es el único autovalor de A. Usar esto para deducir que la matriz $\operatorname{Id}_n A$ es invertible (esta es otra demostración del Ejercicio (13) del Práctico 3).
- (8) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Existe una matriz invertible A tal que 0 es autovalor de A.
 - b) Si A es invertible, entonces todo autovector de A es autovector de A^{-1} .

Ejercicios de repaso Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

(9) Repetir los Ejercicios 1 y 2 con las siguientes matrices.

(a)
$$\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$, (c) $\begin{bmatrix} 4 & 4 & -12 \\ 1 & -1 & 1 \\ 5 & 3 & -11 \end{bmatrix}$,

(d)
$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & -1 \end{bmatrix}$$
, (e)
$$\begin{bmatrix} \lambda & 0 & 0 & \dots & 0 \\ 1 & \lambda & 0 & \dots & 0 \\ 0 & 1 & \lambda & \dots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \lambda \end{bmatrix}$$
, $\lambda \in \mathbb{R}$.

(10) Sea $A \in \mathbb{K}^{n \times n}$, y sea $f(x) = a_0 + a_1 x + \dots + a_n x^n$, $n \ge 1$, $a_i \in \mathbb{K}$, $a_n \ne 0$, un polinomio. Sea f(A) la matriz $n \times n$ definida por

$$f(A) = a_0 \operatorname{Id}_n + a_1 A + \dots + a_n A^n.$$

Probar que todo autovector de A con autovalor λ es autovector de f(A) con autovalor $f(\lambda)$.

- (11) En este ejercicio consideraremos el polinomio $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n A)$.
 - a) Calcular el polinomio $\tilde{\chi}_A(x)$ de las siguientes matrices.

$$A_2 := \begin{bmatrix} 0 & -a_0 \\ 1 & -a_1 \end{bmatrix}, \qquad A_3 := \begin{bmatrix} 0 & 0 & -a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \end{bmatrix}.$$

donde a_0 , a_1 , a_2 son escalares.

b) (a) Sean $a_0, ..., a_{n-1}$ escalares. Calcular el polinomio $\tilde{\chi}_A(x)$ de

$$A_n := \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & & \vdots & \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}.$$

- c) Deducir que dado un polinomio mónico p(x) siempre existe una matriz A tal que $\tilde{\chi}_A(x) = p(x)$.
- (12) ⓐ En este ejercicio consideraremos el polinomio $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n A)$. Sea $A \in \mathbb{K}^{n \times n}$, y $\tilde{\chi}_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Probar que a) $a_0 = (-1)^n \det(A)$. b) $a_{n-1} = -\operatorname{Tr}(A)$.
- (13) ⓐ En este ejercicio consideraremos el polinomio $\tilde{\chi}_A(x) = \det(x \operatorname{Id}_n A)$. Sea $A \in \mathbb{C}^{n \times n}$. Probar que si $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ son los autovalores de A (posiblemente repetidos), entonces se cumple que:
 - a) $\det(A) = \lambda_1 \cdots \lambda_n$.
 - b) $Tr(A) = \lambda_1 + \cdots + \lambda_n$.

Aclaración. Los Ejercicios (12) (b) y (13) (b) no son fáciles de probar y no son evaluables. Pero ya que enunciamos los items (a) es interesante saber que valen los items (b).

Ayudas. (11) b) Desarrollar el determinante por la primera fila y hacer inducción.

- (12) (a) Evaluar el polinomio $\tilde{\chi}_A(x)$ en un valor apropiado para obtener el término independiente a_0 .
- (12) (b) Desarrollar el determinante de $x \operatorname{Id} A$ por la primera columna y hacer inducción en el tamaño de la matriz. Es decir, primero

$$\tilde{\chi}_A(x) = \det(x \operatorname{Id} - A) =$$

$$(x - a_{11}) \det((x \operatorname{Id} - A)(1|1)) + a_{21} \det((x \operatorname{Id} - A)(2|1)) + \dots + (-1)^n a_{n1} \det((x \operatorname{Id} - A)(n|1)).$$

De estos sumandos, el único sumando donde hay x^{n-1} es $(x - a_{11}) \det((x \operatorname{Id} - A)(1|1))$. Además, $\det((x \operatorname{Id} - A)(1|1))$ es el polinomio característico de la submatriz A(1|1). Podemos aplicar la hipótesis inductiva a esta matriz y deducir que el coeficiente de x^{n-1} en el producto de polinomios $(x - a_{11}) \det((x \operatorname{Id} - A)(1|1))$ es $- \operatorname{Tr}(A)$.

(13) Sobre \mathbb{C} podemos descomponer el polinomio $\tilde{\chi}_A(x)$ de la siguiente manera

$$\tilde{\chi}_A(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n).$$
 (\diamondsuit)

Con esta igualdad podemos calcular los términos a_0 y a_{n-1} de $\tilde{\chi}_A(x)$ de dos maneras. La primera es la obtenida en el Ejercicio (12). La segunda es usando la multiplicación del lado derecho de (\diamondsuit). Para el término a_0 hay que evaluar en un valor apropiado. Para el término a_{n-1} hay que notar que para obtener x^{n-1} debemos elegir una x de todos los factores salvo en uno y un término del estilo $-\lambda_i$. Igualando lo que obtengamos probamos el ejercicio.