CS 381

Week 1 Part 3

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.

List files in a directory.

Organize an MP3 library.

List names in a phone book.

Display Google PageRank

results.

Problems become easier once sorted.

Find the median.
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing list.

Non-obvious sorting applications.

Data compression.

Computer graphics.

Interval scheduling.

Computational biology.

Minimum spanning tree.

Supply chain management.

Simulate a system of particles.

Book recommendations on

Amazon.

Load balancing on a parallel computer.

. . .

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

	A	L	G (O R	I	T	Н	M	S			
A	L	G	0	R		I	T	Н	M	S	divide	O(1)
A	G	L	0	R		Н	I	М	S	T	sort	2T(n/2)
	A	G 1	H :	I L	M	0	R	s	T		merge	O(n)

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

- Keep track of smallest element in each sorted half.
- Insert smallest of two elements into auxiliary array.
- Repeat until done.

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Solving T(n)

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Proof: In class exercise.

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$

$$\vdots$$

$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

- Base case:
- Inductive hypothesis:
- Goal:

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

- Base case: n = 1.
- Inductive hypothesis:
- Goal:

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal:

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

- Base case: n = 1.
- Inductive hypothesis: $T(n) = n \log_2 n$.
- Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

= $2n \log_2 n + 2n$
= $2n(\log_2 (2n) - 1) + 2n$
= $2n \log_2 (2n)$

Proof Visualized

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \end{cases}$$
sorting both halves merging

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rfloor) + n & \text{otherwise} \end{cases}$$
solve left half $merging$

Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

$$T(n) \leq T(n_1) + T(n_2) + n$$

$$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lceil \lg n_2 \rceil + n$$

$$= n \lceil \lg n_2 \rceil + n$$

$$\leq n(\lceil \lg n \rceil - 1) + n$$

$$= n \lceil \lg n \rceil$$

$$n_{2} = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

log₂n

Lower Bounds for Sorting Algorithms

Merge Sort: O(n * log(n))

Q: Can we do better?

Answer: It depends on the model of computation.

Comparisons counted as the expensive operation

Who is bigger?

Credit to Mary Wooters for lower bound slides

Comparison-based sorting

Want to sort these items.

There's some ordering on them, but we don't know what it is.

bigger than

The algorithm's job is to output a correctly sorted list of all the objects.

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Merge Sort and many other sorting algorithms work like this.

etc.

Lower bound of $\Omega(n \log(n))$.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

This covers all the sorting algorithms we know!!!

- How might we prove this?
 - 1. Consider all comparison-based algorithms, one-by-one, and analyze them.

Lower bound of $\Omega(n \log(n))$.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

This covers all the sorting algorithms we know!!!

- How might we prove this?
 - 1. Consider all comparison-based algorithms, one-by-one, and analyze them.
 - 2. Don't do that.

Instead, argue that all comparison-based sorting algorithms give rise to a decision tree.

Then analyze decision trees.

Decision trees

YES

All comparison-based algorithms have an associated decision tree.

All comparison-based algorithms have an associated decision tree.

What's the runtime on a particular input?

What's the worst-case runtime?

At least Ω (length of the longest path).

We want a statement: in all such trees, the longest path is at least _____

This is a binary tree with at least____leaves.

We want a statement: in all such trees, the longest path is at least _____

This is a binary tree with at least <u>n!</u> leaves.

- n! is about (n/e)ⁿ (Stirling's formula).
- log(n!) can be approximated as ... ?

We want a statement: in all such trees, the longest path is at least _____

This is a binary tree with at least <u>n!</u> leaves.

- n! is about (n/e)ⁿ (Stirling's formula).
- $\log(n!)$ is about $n \log(n/e) = \Omega(n \log(n))$.

- This is a binary tree with at least n! leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth ____

- n! is about (n/e)ⁿ (Stirling's formula).
- $\log(n!)$ is about $n \log(n/e) = \Omega(n \log(n))$.

- This is a binary tree with at least <u>n!</u> leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth logn!
- So in all such trees, the longest path is at least ------.
- n! is about (n/e)ⁿ (Stirling's formula).
- $\log(n!)$ is about $n \log(n/e) = \Omega(n \log(n))$.

- This is a binary tree with at least <u>n!</u> leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth logn!
- So in all such trees, the longest path is at least log(n!).
- n! is about (n/e)ⁿ (Stirling's formula).
- $\log(n!)$ is about $n \log(n/e) = \Omega(n \log(n))$.

We want a statement: in all such trees, the longest path is at least _____

- This is a binary tree with at least <u>n!</u> leaves.
- The shallowest tree with n! leaves is the completely balanced one, which has depth logn!
- So in all such trees, the longest path is at least log(n!).
- n! is about (n/e)ⁿ (Stirling's formula).
- log(n!) is about $n log(n/e) = \Omega(n log(n))$.

Conclusion: the longest path has length at least $\Omega(n \log(n))$.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must make $\Omega(n \log(n))$ comparisons.
- Proof?

- Theorem:
 - Any deterministic comparison-based sorting algorithm must make $\Omega(n \log(n))$ comparisons.
- Proof:
 - Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.

• Theorem:

• Any deterministic comparison-based sorting algorithm must make $\Omega(n \log(n))$ comparisons.

• Proof:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.
- The worst-case running time is at least the depth of the decision tree.

· Theorem:

• Any deterministic comparison-based sorting algorithm must make $\Omega(n \log(n))$ comparisons.

• Proof:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with n! leaves have depth $\Omega(n \log(n))$.

• Theorem:

• Any deterministic comparison-based sorting algorithm must make $\Omega(n \log(n))$ comparisons.

• Proof:

- Any deterministic comparison-based algorithm can be represented as a decision tree with n! leaves.
- The worst-case running time is at least the depth of the decision tree.
- All decision trees with n! leaves have depth $\Omega(n \log(n))$.
- So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.