Δυαδικά νευρωνικά δίκτυα για τυπωμένα ηλεκτρονικά

Παναγιώτης Παπανικολάου

7 Ιουλίου 2023

Τυπωμένα ηλεκτρονικά 🖶 📑

- 🕨 Κανονική εκτύπωση με ειδικά μελάνια
- Αντένες, αισθητήρες, LED, transistors, μπαταρίες…
- ▶ Πολύ φτηνά 👍
- 🕨 Πολύ μεγάλη έκταση/κατανάλωση 📭

Ubiquitous computing

Υπολογιστικά στοιχεία στα πάντα.

Εκτυπωμένο machine learning

- ▶ Πολλές εφαρμογές classification
- Δύσκολα υλοποιήσιμο

Δυαδικά νευρωνικά δίκτυα(ΒΝΝ) 묾

- lacksquare Weights/activations $\in \{-1,1\}$ (1 bit)
- ightharpoonup Multiply-accumulate ightharpoonup XNOR-popcount
- Χαμηλές απαιτήσεις 🕩
- 🕨 Λιγότερο αξιόπιστα 📭

Προηγούμενες εργασίες 🖱

- ▶ Αναλογικοί νευρώνες¹
- ▶ Bespoke decision trees, SVMs²
- ► Bespoke approximate MLPs³
- ► Stochastic computing⁴
- ► Sea of gates⁵

¹Weller et al, Programmable neuromorphic circuit based on printed electrolyte-gated transistors, in: (Asp-Dac)

²Weller et al, Printed machine learning classifiers, in: Annu. Int. Symp. Microarchitecture (Micro)

³Armeniakos et al, Cross-layer approximation for printed machine learning circuits, in: (Date)

⁴Weller et al,Printed stochastic computing neural networks, in: (Date)

⁵Iordanou et al, Tiny classifier circuits: Evolving accelerators for tabular data, (2023).

Στόχος 🧿

Εξέταση ΒΝΝ ως προς την υποστήριξη τυπωμένου ΜL \Xi

Υλοποίηση framework για αυτόματη δημιουργία τυπωμένου BNN από dataset 🚏

Model accuracy **₹**≡

Dataset	FP32	BNN	TNN	MLPC
Cardio 💝	92	88	90	88
GasId 👱	90	81	88	-
Har 🕜	74	51	52	-
Pendigits 🛪	99	87	92	94
Redwine 🝷	60	54	58	56
Whitewine 🝷	57	51	50	54

Παράλληλη υλοποίηση 📚

Παράλληλη υλοποίηση 📚

Απόπειρες βελτιστοποίησης

▶ Ελάχιστο πλάτος αθροίσματος για υποστήριξη dataset

Αριθμητική βελτιστοποίηση πριν τη σύνθεση

Ακολουθιακή υλοποίηση 🕨

Η καθυστέριση δεν είναι απαραίτητα σημαντική

Υπολογισμός νέου νευρώνα κάθε κύκλο

Βελτιώσεις στην ακολουθιακή υλοποίηση 🕨

Tristate buffer memory 📼

▶ Μείωση ισχύος από OR, μεγαλύτερο εμβαδό

Delays 🐧

co dataset	mbinatorial delay(ms)	sequential delay(ms)	sequential cycles	total sequential delay(ms)
cardio	142	147	43	6321
gasId	260	181	46	8326
Har	165	135	46	6210
pendigits	309	147	50	7350
winered	160	138	46	6348
winewhite	143	129	47	6063

Ternary weight networks 🚜

- ightharpoonup Βάρη $\in \{-1,0,1\}$ αντί $\{-1,1\}$
- Αφαίρεση συνδέσεων με βάρος 0 X
- lacktriangle Καλύτερη ακρίβεια $\underline{\mathsf{kal}}$ έως 2 imes μικρότερα κόστη $oldsymbol{\mathbf{T}}$

Συγκρίσεις 🐴

