Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Exercice 1: Relation hélicoïdale

Question 1: Donner la relation entre les paramètres cinématiques $\it U_{21}$ et $\it P_{21}$

$$U_{21} = \frac{p}{2\pi} P_{21}$$

Question 2: Par un théorème bien choisi, donner la relation entre F et X_{12}

TRS à 2 sur
$$\vec{x}$$
: $F + X_{12} = 0 \Leftrightarrow F = -X_{12}$

Question 3: Par un théorème bien choisi, donner la relation entre $\it C$ et $\it L_{12}$

TMS à 1 sur
$$(A, \vec{x})$$
: $C + L_{21} = 0 \Leftrightarrow C = -L_{21} = C = L_{12}$

Question 4: Par une fermeture bien choisie, donner la relation entre P_{10} et P_{12} et entre U_{20} et U_{21}

On réalise la fermeture cinématique $\{\mathcal{V}_{21}\} + \{\mathcal{V}_{10}\} + \{\mathcal{V}_{02}\} = \{0\}$

- Fermeture en vitesse de rotation sur \vec{x} : $P_{10} = P_{12}$
- Fermeture en vitesse sur \vec{x} : $U_{20} = U_{21}$

Question 5: Etablir la relation issue du TEC liant C, F, P_{10} et U_{20}

On applique le TEC à 1U2 en statique $\left(\frac{dE_c}{dt}=0\right)$ avec liaisons parfaites (on veut démontrer la relation statique du cours...), donc $P_{int}=0$. Le TEC donne donc :

$$P_{ext} = 0 \Leftrightarrow CP_{10} + FU_{20} = 0$$

Question 6: En déduire la relation entre L_{21} et X_{21} dans l'hélico $\ddot{}$ dale

$$\Rightarrow -L_{21}P_{12} - X_{12}U_{21} = 0 \Leftrightarrow -L_{21}P_{12} = X_{12}U_{21}$$

$$\frac{L_{21}}{X_{12}} = -\frac{U_{21}}{P_{12}}$$

$$\frac{L_{21}}{X_{21}} = -\frac{U_{21}}{P_{21}} = -\frac{p}{2\pi}$$

Remarque : on peut aussi écrire ce qui suit, mais ça ne convainc pas spécialement du résultat

$$P(1,2) = 0 = \{T_{1 \to 2}\}\{V_{21}\} = \begin{cases} X_{12} & L_{12} \\ Y_{12} & M_{12} \\ Z_{12} & N_{12} \end{cases}_A^{\mathfrak{B}} \begin{cases} P_{21} & U_{21} \\ 0 & 0 \\ 0 & 0 \end{cases}_A^{\mathfrak{B}} = X_{12}P_{21} + L_{12}U_{21} \Leftrightarrow \frac{L_{21}}{X_{21}} = -\frac{U_{21}}{P_{21}} = -\frac{p}{2\pi}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Soit k le rapport de réduction : $k=\frac{\omega_{20}}{\omega_{10}}$ et μ le rendement.

On se place en régime stationnaire.

Question 1: Exprimer la relation entre \mathcal{C}_1 et \mathcal{C}_2 en fonction de k et μ en utilisant le TEC

On applique le TEC à 1U2 en régime stationnaire dans le référentiel terrestre supposé Galiléen. Les puissances intervenantes sont :

- La puissance dissipée par les liaisons introduite via le rendement, qui ici est la puissance intérieure : $P_{diss}=P_{int}=-(1-\mu)P_{ext\to 1}$
- La puissance en entrée : $P_{ext o 1} = \mathcal{C}_1 \omega_{10}$
- La puissance en sortie : $P_{ext\rightarrow 2} = C_2 \omega_{20}$

En régime stationnaire, on a : $\frac{dE_c}{dt} = 0$. Le TEC nous donne :

$$\begin{split} P_{int} + P_{ext} &= 0 \\ P_{ext} = P_{ext \to 1} + P_{ext \to 2} = C_1 \omega_{10} + C_2 \omega_{20} \\ P_{int} &= -(1 - \mu) P_e = -(1 - \mu) P_{ext \to 1} = -(1 - \mu) C_1 \omega_{10} \\ C_1 \omega_{10} + C_2 \omega_{20} - (1 - \mu) C_1 \omega_{10} &= 0 \Leftrightarrow \mu C_1 \omega_{10} + C_2 \omega_{20} = 0 \Leftrightarrow C_2 \omega_{20} = -\mu C_1 \omega_{10} \\ \hline \frac{C_2}{C_1} &= -\mu \frac{\omega_{10}}{\omega_{20}} = -\frac{\mu}{k} \end{split}$$

Question 2: Exprimer cette même relation en utilisant la définition du rendement

Sinon, par la définition :
$$\mu = \frac{P_{sortante}}{P_{entrante}} = \frac{-C_2\omega_{20}}{C_1\omega_{10}} = \frac{-C_2}{C_1}k \Leftrightarrow \frac{C_2}{C_1} = -\frac{\mu}{k}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Exercice 3: Pont roulant

Théorème

Question 1: Proposer le théorème, ses hypothèses, le système isolé et les équations correspondantes permettant d'étudier les lois d'accélération du pont roulant

Application du théorème de l'énergie cinétique dans le référentiel terrestre supposé galiléen :

$$\frac{dT(US_i/R_g)}{dt} = P_{ext} + P_{int}$$

On isole tout le chariot (on dira donc que les puissance moteur et frein sont intérieures).

Relations cinématiques

Question 2: Donner l'expression de ω_R , V et ω_r en fonction de ω_m et des paramètres cinématiques du sujet

$$\omega_R = k\omega_m$$
 ; $V = -R\omega_R = -Rk\omega_m$; $\omega_r = -\frac{V}{r} = \frac{R}{r}k\omega_m$

Question 3: Compléter ce schéma en faisant apparaître les masses, inerties, vitesses et relations cinématiques utiles à la détermination de l'énergie cinétique de l'ensemble des pièces en mouvement du système

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Question 4: Exprimer l'énergie cinétique de l'ensemble des pièces en mouvement

$$T(US_i/R_g) = \frac{1}{2}J_m\omega_m^2 + \frac{1}{2}J_k\omega_m^2 + \frac{1}{2}J_f\omega_m^2 + \frac{1}{2}J_R\omega_R^2 + \frac{1}{2}MV^2 + 4 * \frac{1}{2}J_r\omega_r^2$$

Inutile de faire des formules compliquées, on a une translation de direction fixes et des rotations autour d'axes de directions fixes.

Question 5: Déterminer l'expression et la valeur numérique de l'inertie équivalente du système ramenée à l'arbre moteur

$$V = R\omega_{r} = Rk\omega_{m}$$

$$\omega_{r} = \frac{V}{r} = \frac{R}{r}k\omega_{m}$$

$$T(US_{i}/R_{g}) = \frac{1}{2}J_{m}\omega_{m}^{2} + \frac{1}{2}J_{k}\omega_{m}^{2} + \frac{1}{2}J_{f}\omega_{m}^{2} + \frac{1}{2}J_{R}k^{2}\omega_{m}^{2} + \frac{1}{2}MR^{2}k^{2}\omega_{m}^{2} + \frac{1}{2}*4J_{r}\frac{R^{2}}{r^{2}}k^{2}\omega_{m}^{2}$$

$$T(US_{i}/R_{g}) = \frac{1}{2}\left(J_{m} + J_{k} + J_{f} + J_{R}k^{2} + MR^{2}k^{2} + 4J_{r}\frac{R^{2}}{r^{2}}k^{2}\right)\omega_{m}^{2}$$

$$T(US_{i}/R_{g}) = \frac{1}{2}\left(J_{m} + J_{k} + J_{f} + \left(J_{R} + MR^{2} + 4J_{r}\frac{R^{2}}{r^{2}}\right)k^{2}\right)\omega_{m}^{2}$$

$$T(US_{i}/R_{g}) = \frac{1}{2}\left(J_{m} + J_{k} + J_{f} + \left(J_{R} + \left(M + 4\frac{J_{r}}{r^{2}}\right)R^{2}\right)k^{2}\right)\omega_{m}^{2}$$

$$T(US_{i}/R_{g}) = \frac{1}{2}J_{eq}\omega_{m}^{2}$$

$$J_{eq} = J_{m} + J_{k} + J_{f} + \left(J_{R} + \left(M + 4\frac{J_{r}}{r^{2}}\right)R^{2}\right)k^{2} = 0,5 \ kgm^{2}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Couples moteur et frein

Question 6: Déterminer l'expression des couples C_m et C_f en fonction de J_{eq} , a_f , a_a , R, et k

$$T(US_i/R_g) = \frac{1}{2}J_{eq}\omega_m^2$$
$$\frac{dT(US_i/R_g)}{dt} = J_{eq}\dot{\omega}_m\omega_m$$
$$P_{int} = C_f\omega_m + C_m\omega_m$$

Compte tenu de l'isolement proposé en Q1

- Puissances intérieures :
 - o Contacts et pivots dans le réducteur (liaisons parfaites)
 - Liaisons Chariot/roues (parfaites)
 - o Puissance moteur
 - o Puissance frein
- Puissances extérieures :
 - 5 contacts roue/rail ne dissipant pas d'énergie au contact car la vitesse relative est nulle (RSG), et il n'y a pas de résistance au roulement (PS: dire qu'elles ne sont pas parfaites veut dire qu'il y a des phénomènes de frottement, permettant l'adhérence, et donc le RSG)
 - o Frottements fluides négligés
 - o Gravité, dont la puissance est nulle du fait du mouvement horizontal

Phase d'accélération	Phase de freinage	
$J_{eq}\dot{\omega}_{m}\omega_{m}=C_{m}\omega_{m}$ $J_{eq}\dot{\omega}_{m}=C_{m}$ $C_{m}=J_{eq}\dot{\omega}_{m}$	$J_{eq}\dot{\omega}_{m}\omega_{m}=C_{f}\omega_{m}$ $J_{eq}\dot{\omega}_{m}=C_{f}$ $C_{f}=J_{eq}\dot{\omega}_{m}$	
$a = \dot{V} = R\dot{\omega}_R = Rk\dot{\omega}_m$ $\dot{\omega}_m = \frac{a}{Rk}$		
$C_m = \frac{J_{eq} a_a}{Rk}$	$C_f = \frac{J_{eq} a_f}{Rk}$	

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Question 7: En déduire expressions et valeurs numériques de ces couples pour répondre au cahier des charges

$$a = R\dot{\omega}_r = Rk\dot{\omega}_m$$
$$\dot{\omega}_m = \frac{a}{Rk}$$

Accélération $a_a = 0.1 m/s^2$	Freinage $a_f = -1 m/s^2$
$C_m = J_{eq}\dot{\omega}_m = J_{eq}\frac{a_a}{Rk}$	$C_f = J_{eq}\dot{\omega}_m = J_{eq}\frac{a_f}{Rk}$
Condition :	Condition :
$C_m > J_{eq} \frac{a_a}{Rk} = 2,52 \text{ Nm}$	$C_f < J_{eq} \frac{a_f}{Rk} = -25,24 Nm$

Validation de la phase de freinage

Question 8: Exprimer le temps d'arrêt t_f lors de la phase de freinage de la vitesse V_D à une vitesse nulle en fonction de la vitesse initiale V_D et de l'accélération a_f

$$a(t) = a_f < 0$$

$$V(t) = a_f t + V_D \Rightarrow V(t_f) = 0 \Leftrightarrow t_f = -\frac{V_D}{a_f}$$

$$t_f = -\frac{V_D}{a_f}$$

Question 9: Vérifier que ce temps respecte le cahier des charges

$$t_f = -\frac{V_D}{a_f} = -\frac{1}{-1} = 1 \ s \le 2 \ s \ OK$$

Question 10: Exprimer la distance D_f parcourue lors de la phase de freinage de la vitesse V_D à une vitesse nulle en fonction de la vitesse initiale V_D et de l'accélération a_f

$$D(t) = \frac{a_f}{2}t^2 + V_D t \Rightarrow D(t_f) = D_f = \frac{a_f}{2}t_f^2 + V_0 t_f = \frac{V_D^2}{2a_f} - \frac{V_D^2}{a_f} = \frac{V_D^2}{a_f} \left(\frac{1}{2} - 1\right) = -\frac{V_D^2}{2a_f}$$

Attention : D est uns distance négative depuis une distance initiale nulle

$$D_f = -\frac{{V_D}^2}{2a_f}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Question 11: En déduire la distance parcourue lors de la phase de freinage et vérifier le critère du cahier des charges

$$D_f = \frac{1}{-1} \left(\frac{1}{2} - 1 \right) = 0.5 \ m \le 0.5 \ m \ OK$$

Validation de la phase d'accélération

Question 12: Exprimer la distance D_a parcourue lors de la phase d'accélération d'une vitesse nulle à la vitesse V_D en fonction de la vitesse initiale V_D et de l'accélération a_a

$$a(t) = a_a > 0$$

$$V(t) = a_f t \Rightarrow V(t_a) = V_D \iff t_a = \frac{V_D}{a_a} = \frac{1}{0.1} = 10 \text{ s}$$

$$D(t) = \frac{a_a}{2} t^2 \Rightarrow D(t_a) = D_a = \frac{a_a}{2} t_a^2 = \frac{V_D^2}{2a_a}$$

$$D_a = \frac{V_D^2}{2a_a}$$

Question 13: En déduire la distance parcourue lors de la phase d'accélération et vérifier le critère du cahier des charges

$$D_a = \frac{{V_D}^2}{2a_a} = \frac{1^2}{2*0.1} = 5 \ m \le 6 \ m \ OK$$

Le cahier des charges précise : $D_f \le 0.5$: Validé

Etude du moteur

Question 14: Déterminer l'expression littérale et la valeur numérique de la vitesse de rotation maximale du moteur ?

$$V_D=R\omega_r=Rk\omega_m$$

$$\omega_{m_{max}}=rac{V_D}{Rk}=rac{1}{0.2*0.1}=50~rd/s=477~tr/min$$

Question 15: En déduire la puissance moteur maximale nécessaire au bon fonctionnement du système étudié

$$P_{max} = C_m \omega_{m_{max}} = 2,52 * 50 = 126 W$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Bilan

Question 16: Conclure sur le choix des équipements permettant de répondre au cahier des charges

Il faut un frein qui délivre un couple minimum de 25,24 Nm pour réussir à arrêter le chariot en 0,5 m en 1 s.

Il faut un moteur de puissance 126 W tournant au maximum à 477 tr/min et de couple minimum 2,52 Nm pour accélérer le chariot à la vitesse VD en 5 m.

Question 17: Déterminer la distance parcourue aux temps t_1 , t_2 et t_3 en fonction de a_a , a_f , t_1 , t_2 et t

	Par les primitives On suppose que les distances et temps sont nuls à chaque début de tronçon	Par les aires
De 0 à <i>t</i> ₁	$V_{1}(t) = a_{a}t$; $D_{1}(t) = \frac{a_{a}t^{2}}{2}$ $V_{1}(t_{1}) = a_{a}t_{1} = V_{d}$ $D_{1} = \frac{a_{a}t_{1}^{2}}{2}$	Triangle: $D_1 = \frac{a_a t_1^2}{2}$
De t_1 à t_2	$V_2(t) = V_d = a_a t_1$ $D_2 = a_a t_1 (t_2 - t_1)$	Rectangle: $D_2 = D_1 + a_a t_1 (t_2 - t_1)$ $D_2 = \frac{a_a t_1 t_1}{2} + a_a t_1 (t_2 - t_1)$ $D_2 = a_a t_1 \left(\frac{t_1}{2} + t_2 - t_1\right) = a_a t_1 \left(t_2 - \frac{t_1}{2}\right)$
De t_2 à t_3	$V_3(t) = a_f t + V_d$ Le temps en t_3 remis à 0 en t_2 vaut $t_3 - t_2$ $0 = a_f(t_3 - t_2) + V_d$ $D_3(t) = a_f \frac{t^2}{2} + V_d t$ $D_3 = a_f \frac{(t_3 - t_2)^2}{2} + V_d(t_3 - t_2)$ $D_3 = -\frac{V_d(t_3 - t_2)}{2} + V_d(t_3 - t_2)$ $D_3 = \frac{V_d(t_3 - t_2)}{2} = \frac{a_a t_1(t_3 - t_2)}{2}$	Triangle: $D_3 = D_2 - \frac{a_f(t_3 - t_2)^2}{2}$ $D_3 = a_a t_1 \left(t_2 - \frac{t_1}{2}\right) - \frac{a_f}{2} (t_3 - t_2)^2$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Calculs plus complexes

Question 18: Déterminer l'expression de la distance parcourue d(t) par le pont roulant en fonction de a_a , a_f , t_1 , t_2 et t

Attention : on ne demande pas la distance totale

Exploitation des aires sous la courbe			
$0 \le t \le t_1$	$t_1 \le t \le t_2$	$t_2 \le t \le t_3$	
$D_{01}(t) = \frac{a_a}{2}t^2$ $Vérification$ $D_1 = D(t_1) = \frac{a_a}{2}t_1^2$	$\begin{aligned} t_1 &\le t \le t_2 \\ D_{12}(t) &= D_1 + V_d(t - t_1) \\ V_d &= a_a t_1 \\ D_{12}(t) &= \frac{a_a}{2} t_1^2 + a_a t_1(t - t_1) \end{aligned}$ $V_d &= a_a t_1 \\ D_{12}(t) &= \frac{a_a}{2} t_1^2 + a_a t_1(t - t_1) \\ D_2 &= D_{12}(t_2) = \frac{a_a}{2} t_1^2 + a_a t_1(t_2 - t_1) \\ D_2 &= a_a t_1 \left(\frac{t_1}{2} + t_2 - t_1\right) \\ D_2 &= a_a t_1 \left(t_2 - \frac{t_1}{2}\right) \end{aligned}$	$D_{23}(t) = D_2 - \frac{a_f}{2}(t - t_2)^2$ $D_{23}(t) = a_a t_1 \left(t_2 - \frac{t_1}{2}\right) - \frac{a_f}{2}(t - t_2)^2$ Vérification $D_3 = a_a t_1 \left(t_2 - \frac{t_1}{2}\right) - \frac{a_f}{2}(t_3 - t_2)^2$	

Dernière mise à jour	MECA 2	Denis DEFAUCHY
18/01/2023	Dynamique	TD3 - Correction

Question 19: En déduire l'expression littérale en fonction de L, a_a , a_f , t_a et t_f et la valeur numérique du temps maximal T à vitesse constante

$$L = D_2(t_3) = a_f \left(\frac{t_3^2}{2} - t_2 t_3\right) + a_a t_1 t_3 + \frac{a_f t_2^2 - a_a t_1^2}{2}$$

$$t_1 = t_a$$

$$t_2 = t_a + T$$

$$t_3 = t_a + T + t_f$$

$$a_f \left(\frac{(t_a + T + t_f)^2}{2} - (t_a + T)(t_a + T + t_f)\right) + a_a t_a (t_a + T + t_f) + \frac{a_f (t_a + T)^2 - a_a t_a^2}{2} = L$$

$$a_f \left(((t_a + t_f) + T)^2 - 2(t_a + T)((t_a + t_f) + T)\right) + 2a_a t_a (t_a + T + t_f) + a_f (t_a + T)^2 - a_a t_a^2$$

$$= 2L$$

$$a_f \left(((t_a + t_f)^2 + 2(t_a + t_f)T + T^2 - 2(t_a + T)(t_a + t_f) - 2T(t_a + T)\right) + 2a_a t_a^2 + 2a_a t_a^2$$

$$+ 2a_a t_a t_f + a_f t_a^2 + 2a_f t_a T + a_f T^2 - a_a t_a^2 = 2L$$

$$\left(a_f t_a^2 + 2a_f t_a t_f + a_f t_f^2 + 2a_f (t_a + t_f)T + a_f T^2 - \left(2a_f t_a^2 + 2a_f t_a t_f + 2a_f T(t_a + t_f)\right) - 2a_f t_a^2 + 2a_f t_a^2 + 2a_a t_a^2 + 2a_a t_a^2 + 2a_a t_a^2 + 2a_a t_a^2 + 2a_f t_a^2$$

AN:

$$T = 24,5 s$$

PS: on s'en doutait car lors de l'accélération et du freinage, on parcourt 5,5m. Il en reste 24,5 à parcourir à la vitesse de 1 m/s.