1

EE5609: Matrix Theory Assignment-11

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Abstract

This document solves problem on Eigen values and properties.

Download all solutions from

https://github.com/saurabh13002/EE5609/tree/master/Assignment11

1 Problem

Let **A** be a real symmetric matrix and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$. Then choose the correct option.

- 1. **B** is invertible if and only if **A** is invertible.
- 2. All eigenvalues of **B** are necessarily real.
- 3. $\mathbf{B} \mathbf{I}$ is necessarily invertible.
- 4. **B** is necessarily invertible.

2 solution

Given	Let A be a real symmetric matrix, and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$.
	and $\mathbf{b} = \mathbf{I} + t\mathbf{A}$, where $t = -1$.
Checking Option 1	Lets assume, \mathbf{A} is non invertible, $\implies \det \mathbf{A} = 0$ $\implies \det \mathbf{B} = \det \mathbf{I}$ $\implies \mathbf{B}$ is invertible even if \mathbf{A} is non invertible. since, $\det \mathbf{I} = 1$ Thus Option 1 is incorrect.
Checking Option 2	Eigen values of B = Eigen values of I + i (Eigen values of A). Clearly, Eigen values of B are real only if A , has zero Eigen values, as A is a real symmetric matrix. Thus, Option 2 is incorrect.
Checking Option 3	$\mathbf{B} - \mathbf{I} = i\mathbf{A}$ $\implies \det(\mathbf{B} - \mathbf{I}) = \det i\mathbf{A} = \det \mathbf{A}$ Hence, $\mathbf{B} - \mathbf{I}$ is invertible only if \mathbf{A} is invertible Thus option 3 is also incorrect.
Checking Option 4	Let us assume,
	λ be the eigen value of A , as A is symmetric matrix.
	$\implies \lambda \epsilon \mathbb{R}$
	Then, $i\lambda$ is an eigen value of $i\mathbf{A}$
	$\implies 1 + i\lambda$ is an eigen value of $\mathbf{I} + i\mathbf{A}$
	Given, $\mathbf{B} = \mathbf{I} + i\mathbf{A}$
	Therefore, $1 + i\lambda$ is an eigen value of B .
	Hence, 0 can not be the eigen value of B
Property : det B is equals to product of eigen values of B	\implies det $\mathbf{B} \neq 0$ Therefore, \mathbf{B} is necessarily invertible.
Correct option	The correct option is 4 .