

Módulo 07 | Python: Programação Orientada a Objetos

Caderno de **Exercícios** Professor André Perez

Tópicos

- 1. from / import / as;
- 2. Módulo;
- 3. Pacote;
- 4. Baixando pacotes.

Exercícios

0. Preparação do ambiente

Neste exercício vamos utilizar a base de dados de ações da bolsa de valores dos EUA, a Dow Jones. Os dados estão disponíveis para download neste link. Vamos utilizar o pacote wget para fazer o download dos dados.

Instalando o pacote wget na versão 3.2.

```
pip install wget==3.2
```

• Fazendo o download dos dados no arquivo compactado dados.zip.

```
import wget
```

 $wget.download(url='\underline{https://archive.ics.uci.edu/ml/machine-learning-databases/00312/dow_jones_index.zip')$

```
'./dados (1).zip'
```

• Descompactando os dados na pasta dados com o pacote nativo zipfile.

```
import zipfile
with zipfile.ZipFile('./dados.zip', 'r') as fp:
    fp.extractall('./dados')
```

Verifique a pasta dados criada, ela deve conter dois arquivos:

- · dow_jones_index.data: um arquivo com os dados;
- dow_jones_index.names: um arquivo com a descrição completa dos dados.

É possível observar que o arquivo de dados é um arquivo separado por virgulas, o famoso csv. Vamos renomear o arquivo de dados para que ele tenha a extensão csv com o pacote nativo os.

• Renomeando o arquivo com o pacote nativo os.

```
import os
```

```
os.rename('./dados/dow_jones_index.data', './dados/dow_jones_index.csv')
```

```
Traceback (most recent call last)
```

c:\Users\Soldado\Downloads\Python\Modulos\Exercícios\Python_M7_exercise.ipynb Cella 16 line 3

 <a href='vscode-notebook-cell:/c%3A/Users/Soldado/Downloads/Python/Modulos/Exerc%C3%ADcios/Python_M7_exercise.ipynb#Y426sZmls

FileExistsError: [WinError 183] Impossibile creare un file, se il file esiste già: './dados/dow_jones_index.data' -> './dados/dow_j

RICERCA SU STACK OVERFLOW

Pronto! Abra o arquivo e o Google Colab irá apresentar uma visualização bem legal dos dados.

▼ 1. Pandas

Para processar os dados, vamos utilizar o pacote pandas na versão 1.1.5. A documentação completa por ser encontrada neste link

```
!pip install pandas==1.1.5
```

Vamos importar o pacote com o apelido (alias) pd.

import pandas as pd

Estamos prontos para ler o arquivo.

```
df = pd.read_csv('./dados/dow_jones_index.csv')
```

O pandas trabalha com o conceito de dataframe, uma estrutura de dados com muitos métodos e atributos que aceleram o processamento de dados. Alguns exemplos:

• Visualizando as n primeiras linhas:

df.head(n=10)

	quarter	stock	date	open	high	low	close	volume	percent_change_price	<pre>percent_change_volume_over_last_wk</pre>	pre
0	1	AA	1/7/2011	\$15.82	\$16.72	\$15.78	\$16.42	239655616	3.792670	NaN	
1	1	AA	1/14/2011	\$16.71	\$16.71	\$15.64	\$15.97	242963398	-4.428490	1.380223	
2	1	AA	1/21/2011	\$16.19	\$16.38	\$15.60	\$15.79	138428495	-2.470660	-43.024959	
3	1	AA	1/28/2011	\$15.87	\$16.63	\$15.82	\$16.13	151379173	1.638310	9.355500	
4	1	AA	2/4/2011	\$16.18	\$17.39	\$16.18	\$17.14	154387761	5.933250	1.987452	
5	1	AA	2/11/2011	\$17.33	\$17.48	\$16.97	\$17.37	114691279	0.230814	-25.712195	
6	1	AA	2/18/2011	\$17.39	\$17.68	\$17.28	\$17.28	80023895	-0.632547	-30.226696	
7	1	AA	2/25/2011	\$16.98	\$17.15	\$15.96	\$16.68	132981863	-1.766780	66.177694	
8	1	AA	3/4/2011	\$16.81	\$16.94	\$16.13	\$16.58	109493077	-1.368230	-17.663150	
9	1	AA	3/11/2011	\$16.58	\$16.75	\$15.42	\$16.03	114332562	-3.317250	4.419900	

· Visualizando o nome das colunas:

```
df.columns.to_list()
```

```
['quarter',
    'stock',
    'date',
    'open',
    'high',
    'low',
    'close',
    'volume',
    'percent_change_price',
    'percent_change_volume_over_last_wk',
    'previous_weeks_volume',
    'next_weeks_open',
    'next_weeks_close',
    'percent_change_next_weeks_price',
    'days_to_next_dividend',
    'percent_return_next_dividend']
```

· Verificando o número de linhas e colunas.

```
linhas, colunas = df.shape
print(f'Número de linhas: {linhas}')
print(f'Número de colunas: {colunas}')

Número de linhas: 750
Número de colunas: 16
```

Vamos selecionar os valores de abertura, fechamento, máximo e mínimo das ações do McDonalds, listado na Dow Jones como MCD:

• Selecionando as linha do dataframe original df em que a coluna stock é igual a MCD.

```
df_mcd = df[df['stock'] == 'MCD']
```

• Selecionando apenas as colunas de data e valores de ações.

```
df_mcd = df_mcd[['date', 'open', 'high', 'low', 'close']]
```

Excelente, o problema é que as colunas com os valores possuem o carater \$ e são do tipo texto (object no pandas).

df_mcd.head(n=10)

	date	open	high	low	close
216	1/7/2011	\$77.10	\$77.59	\$73.59	\$74.37
217	1/14/2011	\$74.25	\$74.49	\$72.46	\$74.06
218	1/21/2011	\$74.65	\$75.75	\$74.31	\$75.01
219	1/28/2011	\$74.25	\$75.85	\$73.05	\$73.28
220	2/4/2011	\$73.80	\$74.50	\$73.08	\$74.05
221	2/11/2011	\$74.13	\$76.32	\$73.30	\$76.14
222	2/18/2011	\$76.07	\$76.45	\$75.70	\$76.13
223	2/25/2011	\$75.95	\$76.45	\$74.42	\$74.44
224	3/4/2011	\$74.51	\$76.63	\$73.64	\$76.03
225	3/11/2011	\$76.38	\$77.25	\$74.97	\$76.73

 ${\tt df_mcd.dtypes}$

```
date object
open object
high object
low object
close object
dtype: object
```

Vamos limpar as colunas com o método apply, que permite a aplicação de uma função anônima (lambda) qualquer. A função lambda remove o caracter \$ e faz a conversão do tipo de str para float.

```
for col in ['open', 'high', 'low', 'close']:
    df_mcd[col] = df_mcd[col].apply(lambda value: float(value.split(sep='$')[-1]))
```

Verifique novamente os dados e seus tipos.

df_mcd.head(n=10)

	date	open	high	low	close
216	1/7/2011	77.10	77.59	73.59	74.37
217	1/14/2011	74.25	74.49	72.46	74.06
218	1/21/2011	74.65	75.75	74.31	75.01
219	1/28/2011	74.25	75.85	73.05	73.28
220	2/4/2011	73.80	74.50	73.08	74.05
221	2/11/2011	74.13	76.32	73.30	76.14
222	2/18/2011	76.07	76.45	75.70	76.13
223	2/25/2011	75.95	76.45	74.42	74.44
224	3/4/2011	74.51	76.63	73.64	76.03
225	3/11/2011	76.38	77.25	74.97	76.73

df_mcd.dtypes

```
date object
open float64
high float64
low float64
close float64
dtype: object
```

Excelente, agora podemos explorar os dados visualmente.

Agora é a sua vez! Conduza o mesmo processo para extrair e tratar os dados da empresa Coca-Cola (stock column igual a KO).

• Selecionando as linha do dataframe original df em que a coluna stock é igual a KO.

```
# extração e tratamento dos dados da empresa Coca-Cola.
import pandas as pd
df = pd.read_csv('./dados/dow_jones_index.csv')

df_ko = df[df['stock'] == 'KO']
```

Vamos selecionar os valores de abertura, fechamento, máximo e mínimo das ações da empresa Coca-Cola, listado na Dow Jones como KO:

• Selecionando apenas as colunas de data e valores de ações.

```
df_ko = df_ko[['date', 'open', 'close']]
```

Excelente, o problema é que as colunas com os valores possuem o carater \$ e são do tipo texto (object no pandas).

```
# Visualize os dados do dataframe
df_ko.head(n=10)
```

```
date open close
```

```
# Verifique o tipo dos dados

df_ko.dtypes

date object
  open object
  close object
  dtype: object
```

Vamos limpar as colunas com o método apply, que permite a aplicação de uma função anônima (lambda) qualquer. A função lambda remove o caracter \$ e faz a conversão do tipo de str para float.

```
211 2/25/2011 $63.36 $64.31

for col in ['open', 'close']:
    df_ko[col] = df_ko[col].apply(lambda value: float(value.split(sep='$')[-1]))
        213 3/11/2011 $00.32 $04.81
```

Verifique novamente os dados e seus tipos.

Visualize novamente os dados do dataframe
df_ko.head(n=10)

	date	open	close
204	1/7/2011	65.88	62.92
205	1/14/2011	62.70	63.13
206	1/21/2011	63.21	62.77
207	1/28/2011	62.87	62.21
208	2/4/2011	62.32	62.56
209	2/11/2011	62.67	63.57
210	2/18/2011	63.67	64.55
211	2/25/2011	63.36	64.31
212	3/4/2011	64.17	65.21
213	3/11/2011	65.32	64.81

Verifique novamente o tipo dos dados
df_ko.dtypes

date object open float64 close float64 dtype: object

Excelente, agora podemos explorar os dados visualmente.

2. Seaborn

Para visualizar os dados, vamos utilizar o pacote seaborn na versão 0.11.1. A documentação completa por ser encontrada neste link

```
!pip install seaborn==0.11.1
```

Vamos importar o pacote com o apelido (alias) sns.

```
import seaborn as sns
```

Vamos visualizar os valores de abertura das ações ao longo do tempo.

```
plot = sns.lineplot(x="date", y="open", data=df_mcd)
_ = plot.set_xticklabels(labels=df_mcd['date'], rotation=90)
```

Vamos também visualizar os valores de fechamento das ações ao longo do tempo.

```
plot = sns.lineplot(x="date", y="close", data=df_mcd)
_ = plot.set_xticklabels(labels=df_mcd['date'], rotation=90)
```

Para facilitar a comparação, vamo visualizar os quatro valores no mesmo gráfico.

```
plot = sns.lineplot(x="date", y="value", hue='variable', data=pd.melt(df_mcd, ['date']))
_ = plot.set_xticklabels(labels=df_mcd['date'], rotation=90)
```

Para finalizar, vamos salvar o gráfico numa figura.

```
plot.figure.savefig("./coca-cola.png")
```

Agora é a sua vez, faça o gráfico acima para a empresa Coca-Cola e salve a imagem com o nome ko.png.

- c:\Users\Soldado\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn_core.py:1218: FutureWarning: is_categorical_dty if pd.api.types.is categorical dtype(vector):
- c:\Users\Soldado\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn_core.py:1218: FutureWarning: is_categorical_dty if pd.api.types.is_categorical_dtype(vector):
- c:\Users\Soldado\AppData\Local\Programs\Python\Python311\Lib\site-packages\seaborn_core.py:1218: FutureWarning: is_categorical_dty
 if pd.api.types.is_categorical_dtype(vector):

Vamos visualizar os valores de abertura das ações ao longo do tempo.

```
plot = sns.lineplot(x="date", y="open", data=df_ko)
_ = plot.set_xticklabels(labels=df_ko['date'], rotation=90)
```

Vamos também visualizar os valores de fechamento das ações ao longo do tempo.

```
plot = sns.lineplot(x="date", y="close", data=df_ko)
_ = plot.set_xticklabels(labels=df_ko['date'], rotation=90)
```

Para facilitar a comparação, vamo visualizar os quatro valores no mesmo gráfico.

Para finalizar, vamos salvar o gráfico numa figura.

```
plot.figure.savefig("./coca-cola.png")
```

Analise as duas imagens e escreva pelo menos um *insight* que você consegue extrair dos dados. Fique a vontade para escrever quantos *insights* você quiser.

Obs: Insights são observações sobre o que você percebe/entende/interpreta em suas análises. No caso deste exercício, você vai analisar os dados dos gráficos da empresa McDonalds e da empresa Cola-Cola e notar o que os dados gerados podem ser interessante, que tipo de interpretação o comportamento dos dados estão te trazendo.

Insight #1: ...

O gráfico apresenta duas linhas que representam os valores de fechamento (linha laranja) e abertura (linha azul) das ações de uma determinada empresa no período de tempo.

Em geral, o valor de fechamento é superior ao valor de abertura, o que pode indicar que o preço das ações tende a aumentar ao longo do dia de negociação. No entanto, existem alguns pontos onde as duas linhas se cruzam.

Insight #2: ...

Podemos observar que o intervalo de valores no eixo y está entre 62 e 68. Isto sugere que, apesar das flutuações diárias, o preço das ações permaneceu relativamente estável ao longo do período representado em o gráfico.

Além disso, não parece haver uma clara tendência ascendente ou descendente durante o período considerado. Isso pode indicar que a empresa teve um desempenho estável nesse período.