COMP318 Ontologies and Semantic Web

RDF - Part 9

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

- RDF as a data modelling language
 - RDF syntax
- RDFS schema language

RDFS schema language

- RDFS "extends" RDF by introducing a set of distinguished resources in the language
 - Similar to how traditional programming languages are extended by defining language defined keywords
 - however....
- In RDF we can already use any resource in any triple
 - Anyone can say Anything principle
- By introducing a set of distinguishing resources we give certain triples a special meaning, as identified by RDFS standard
 - swp:Unit rdfs:subClassOf rdfs:Class

RDF Layer vs RDF Schema Layer

- "Jeff Meyer rents BaronWayApartment"
- The schema is itself written in RDF Schema, that can express its components:
 - subClassOf, Class, Property, subPropertyOf, Resource, etc.

RDFS Vocabulary

Vocabulary Layer

Domain Schema Layer (RDFS)

Data Layer (RDF)

COMP318 ©

Typing data by usage

- We introduce the resources rdfs:domain and rdfs:range
 - allow us to describe how a property is used wrt the defined classes
- When a property is used in a triple :s :p :o
 - the class the subject belongs to (:p rdfs:domain :D)
 - the class the object belongs to (:p rdfs:range :R)

Typing data by usage

• The meaning of rdfs:domain and rdfs:range is defined by the inferences that we can derive from the statements

- RDFS inferencing interprets rdfs:domain with
 - if:s:p:oand:prdfs:domain:Dthen:srdf:type:D
- RDFS inferencing interprets rdfs:range with
 - if:s:p:oand:prdfs:range:Rthen:ordf:type:R

Inferences in RDFS domain and range

- Domain and range give some information about how the property :p is to be used:
 - domain refers to the subject of any triple that uses :p as its predicate,
 - range refers to the object of any such triple.
- When we assert that property :p has domain :D (resp, range :R), we state that:
 - whenever :s :p :o, we can infer that the subject (respectively, object) of that triple is a member of the class :D (respectively, :R).
 - If :p is used inconsistently wrt its declaration, RDFS will infer the necessary rdf:type information to make :p compliant with its domain and range declarations
 - But will not signal an error, because in RDFS we cannot assert that a particular instance is not a member of a given class

Combining RDFS:subClassOf with rdfs:domain and rdfs:range

Let's consider the following triples:

```
swp:ResidentialUnit rdfs:subClassOf swp:Unit
swp:rents rdfs:range swp:ResidentialUnit
```

- If we assert that ?x swp:rents ?y
 - ?y a resource that might not be even a swp:ResidentialUnit
 - then we can still derive ?y rdf:type swp:Unit
- The definitions of RDFS domain and range are quite aggressive:
 - we can draw conclusions about the type of any element based simply on its use in a triple
 - as long as we have domain or range information about the predicate.

COMP318 Ontologies and Semantic Web

End of RDF - Part 9

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk