Thibaut Kouptchinsky

December 22, 2022

Program

- 1 Who am I?
- 2 Introduction
- 3 Inside second order arithmetic
- 4 Outside

What is determinacy?

•0

Consider a set A and a payoff set $X \subseteq A^{\omega}$.

I:
$$a_0$$
 a_2 a_{2n} \cdots $(a_i)_{i<\omega} \stackrel{?}{\in} X$

II: a_1 a_3 a_{2n+1}

Player I wins if yes. Otherwise player II wins.

Axiom of determinacy (AD): "All these games are determined". (False in ZF + C.)

Motivations and applications

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every sets of real numbers is Lebesgue measurable, has the Baire property, and has the perfect set property.

Study these properties for projective Σ_n^1 sets in ω^{ω} .

Are Σ^1_3 sets Lebesgue measurable? Kechris and Martin: "Yes, provided $\mathrm{Det}(\Pi^1_2)$ $(+\mathsf{AC}_\omega(\omega^\omega))$ ".

Applications in measure theory, descriptive set theory, harmonic analysis, ergodic theory, dynamical systems etc.