GEOMETRIE ŞI ALGEBRĂ LINIARĂ

Lecția 9

Pentru început voi face câteva comentarii legate de ceea ce am predat la ultimul curs.

Am definit în cursul trecut ce înseamnă un morfism diagonalizabil. Similar o matrice $A \in \mathcal{M}_n(\mathbb{R})$ se numește diagonalizabilă dacă există o bază în \mathbb{R}^n de vectori proprii ai matricei A. Punând acești vectori proprii v_1, \ldots, v_n într-o matrice $Q = (v_1 \ldots v_n)$, ca și coloanele acestei matrice, obținem relația $AQ = QD \Leftrightarrow A = QDQ^{-1}$, unde D este o matrice diagonală formată din valori proprii carora le sunt asociate vectorii proprii v_1, \ldots, v_n .

De fapt relația AQ = QD reprezintă toate egalitățile $Av_j = \lambda_j v_j, 1 \leq j \leq n$. Să vedem acest lucru. Vom identifica coloanele celor doi membri. Fie $1 \leq j \leq n$ arbitrar.

În membrul stâng avem $C_j(AQ) = AC_j(Q) = Av_j$ iar în membrul drept $C_j(QD) = QC_j(D) = 0C_1(Q) + 0C_2(Q) + ... + \lambda_j C_j(Q) + ... + 0C_n(Q) = 0v_1 + 0v_2 + ... + \lambda_j v_j + ... + 0v_n = \lambda_j v_j$.

Exemplul 1. Fie

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

$$P_A(X) = \det(XI_3 - A) = \begin{vmatrix} X & 0 & 0 \\ 0 & X & -1 \\ 0 & -1 & X \end{vmatrix} = X(X^2 - 1) = X(X - 1)(X + 1).$$
 Deci

valorile proprii sunt $\lambda_1 = 0, \dot{\lambda}_2 = 1, \lambda_3 = -1$. Vectorii proprii asociați acestor valori proprii fiind liniar independenți și fiind în număr de trei, în \mathbb{R}^3 , formează bază. Deci matricea este diagonalizabilă. Vectori proprii sunt:

$$A \cdot v_1 = 0 \cdot v_1 \Leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow y = z = 0. \text{ Deci } v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$(A - 1I_3) \cdot v_2 = 0 \Leftrightarrow \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x = 0, y = z, \text{ de}$$
unde $v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.
$$(A + 1I_3) \cdot v_3 = 0 \Leftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x = 0, y = -z, \text{ şi rezultă}$$

$$v_3 = \left(\begin{array}{c} 0\\1\\-1 \end{array}\right).$$

Deci $A = QDQ^{-1}$, unde $Q = (v_1 \ v_2 \ v_3)$, este matricea ce are coloanele vectorii proprii asociați valorilor proprii $\lambda_1, \lambda_2, \lambda_3$. Adică $Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ cu inversa

$$Q^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$
 și $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. Avem $D = Q^{-1}AQ$. Ce reprezintă acestă relație ?

Matricea $A = M_{\mathcal{B}}(f)$, este matricea unei transformări liniare (endomorfism) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, într-o anumită bază \mathcal{B} a spațiului \mathbb{R}^3 . $D = M_{\mathcal{B}'}(f)$, matricea aceleeași transformări liniare f, dar în baza $\mathcal{B}' = \{v_1, v_2, v_3\}$, formată din vectorii proprii (vedeți definiția morfismului diagonalizabil).

Relaţia $D = Q^{-1}AQ$ este exact relaţia $M_{\mathcal{B}'}(f) = M_{\mathcal{B}',\mathcal{B}}(1_{\mathbb{R}^3})^{-1}M_{\mathcal{B}}(f)M_{\mathcal{B}',\mathcal{B}}(1_{\mathbb{R}^3})$, unde $M_{\mathcal{B}',\mathcal{B}}(1_{\mathbb{R}^3})$ este matricea de trecere din baza \mathcal{B} în baza \mathcal{B}' .

Diagonalizarea unei matrice înseamnă, după cum am spus la începutul cursului, găsirea unei baze de vectori proprii. Nu toate matricele cu coeficienți reali sunt diagonalizabile. Cele simetrice sunt.

Forme biliniare, forme pătratice

Considerăm un spațiu vectorial V peste corpul \mathbb{R} cu $\dim_{\mathbb{R}}(V) = n$.

Definiția 2. $F: V \times V \longrightarrow \mathbb{R}$ se numește biliniară dacă este liniară în fiecare argument. În plus se numește simetrică dacă F(x,y) = F(y,x). Forma biliniară se numește pozitiv semidefinită dacă $F(x,x) \ge 0$ pentru $\forall x \in V$, și pozitiv definită dacă în plus $F(x,x) = 0 \Rightarrow x = 0_V$. Similar forma F este negativ semidefinită, respectiv negativ definită.

Exemplul 3. • dacă $f_1, f_2 : V \longrightarrow \mathbb{R}$ sunt forme liniare atunci $F(x, y) = f_1(x)f_2(y)$ este o formă biliniară.

• fie $A \in \mathcal{M}_n(\mathbb{R})$, definim $F(x,y) = x^t \cdot A \cdot y = \sum_{i,j}^n a_{i,j} x_i y_j$.

Considerăm
$$n=3$$
 și $A=\begin{pmatrix}0&0&1\\0&0&1\\0&1&0\end{pmatrix}$. Forma biliniară asociată acestei ma-

trice este
$$F: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}$$
, $F(x,y) = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1 y_3 + x_2 y_3 + x_3 y_2$.

Dacă alegem o bază $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ a spaţiului V, şi pe V avem o formă biliniară F, considerăm matricea $F(e_i, e_j) = a_{i,j}$. În funcție de această matrice exprimăm valorile lui F pentru orice vectori. $F(x, y) = \sum_{i,j}^{n} a_{i,j} x_i y_j$.

Propoziția 4. $F: V \times V \longrightarrow \mathbb{R}$ este simetrică dacă și numai dacă matricea asociată lui F într-o bază este simetrică.

Deci avem o corespondență bijectivă între mulțimea aplicațiilor biliniare și $\mathcal{M}_n(\mathbb{R})$, care se restricționează la o bijecție între mulțimea aplicațiilor biliniare simetrice și mulțimea matricelor simetrice.

Legătura matricelor formei biliniare F la schimbarea bazei este dată de

Propoziția 5. Fie \mathcal{B} şi \mathcal{C} două baze ale spațiului vectorial V şi $M_{\mathcal{C},\mathcal{B}}$ matricea de trecere din baza \mathcal{B} în baza \mathcal{C} şi $A_{\mathcal{B}}$ şi respectiv $A_{\mathcal{C}}$ matricele asociate formei biliniare F în cele două baze. Atunci avem $A_{\mathcal{C}} = M_{\mathcal{C},\mathcal{B}}^t \cdot A_{\mathcal{B}} \cdot M_{\mathcal{C},\mathcal{B}}$.

Exemplul 6. $F: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}, F(x,y) = x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 + 3x_3y_3$ este biliniară. matricea asociată în baza canonică este $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. $F(x,x) = x_1^2 + 2x_1x_2 + 2x_2^2 + 3x_3^2 = (x_1 + x_2)^2 + x_2^2 + x_3^2$. Se vede că este pozitiv definită.

Definiția 7. Forma pătratică asociată unei forme biliniare simetrice F, este $Q:V\longrightarrow \mathbb{R},\ Q(x)=F(x,x).$

F se numește polara formei pătratice. Dintr-o formă pătratică obținem polara acesteia prin formula $F(x,y)=\frac{1}{2}\left(Q(x+y)-Q(x)-Q(y)\right)$, care este simetrică. Avem deci o bijecție între forme pătratice și matrice simetrice.

Exemplul 8. $Q: \mathbb{R}^3 \longrightarrow \mathbb{R}, Q(x) = x_1^2 + 7x_2^2 + 3x_3^2 - x_1x_2 + 5x_2x_3$. Matricea A asociată lui Q în baza canonică este $A = \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ -\frac{1}{2} & 7 & \frac{5}{2} \\ 0 & \frac{5}{2} & 3 \end{pmatrix}$.

Definiția 9. Spunem că forma pătratică Q este redusă la forma canonică dacă într-o bază avem $Q(x) = \sum_{i=1}^{n} b_i x_i^2$.

Voi prezenta două metode pentru aducerea formelor pătratice la forma canonică.

Metoda 1

Teorema 10 (Gauss). Fie V un spațiu vectorial cu $\dim_{\mathbb{R}}(V) = n$ și $Q: V \longrightarrow \mathbb{R}$ o formă pătratică. Există o bază în care Q are forma canonică.

Demonstrație: Presupunem $Q \neq 0$. Pentru forma nulă nu avem ce demonstra. Demonstrația ne va da algoritmul de obținere a formei canonice. Fie $\mathcal{B} = \{e_1, \ldots, e_n\}$ baza în care $Q(x) = \sum_{1 \leq i,j \leq n} a_{i,j} x_i x_j$. Avem două cazuri.

(1) $\exists i \text{ a.i. } a_{i,i} \neq 0$. Renumerotăm şi presupunm că $a_{1,1} \neq 0$. Cu acesta vom forța un pătrat perfect.

Rescriem
$$Q(x) = a_{1,1}x_1^2 + 2\sum_{j=2}^n a_{1,j}x_1x_j + \sum_{2 \le i,j \le n} a_{i,j}x_ix_j =$$

$$= \frac{1}{a_{1,1}}(a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n)^2 - \frac{1}{a_{1,1}}\sum_{2 \le i,j \le n} a_{1,i}a_{1,j}x_ix_j + \sum_{2 \le i,j \le n} a_{i,j}x_ix_j =$$

$$= \frac{1}{a_{1,1}}(a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n)^2 + \sum_{2 \le i,j \le n} a'_{i,j}x_ix_j,$$
unde $a'_{i,j} = a_{i,j} - \frac{a_{1,i}a_{1,j}}{a_{1,1}}.$

Facem notaja $x_1' = a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n, x_2' = x_2, \ldots, x_n' = x_n$ şi obţinem $Q(x') = \frac{1}{a_{1,1}}(x_1')^2 + \sum_{2 \leq i,j \leq n} a_{i,j}' x_i' x_j'$.

 x'_1, x'_2, \ldots, x'_n sunt componentele vectorului x în baza $\mathcal{B}' = \{e'_1, \ldots, e'_n\}$, în care forma pătratică Q este reprezentată de ecuația de mai sus. În această scriere suma $\sum_{2 \leq i,j \leq n} a'_{i,j} x'_i x'_j$ este o formă pătratică în n-1 variabile căreia i se aplică cazul (1) sau/și cazul (2) de mai jos.

(2) $a_{i,i} = 0, (\forall) i \in \{1, \dots, n\}$. $(\exists) i \neq j$ a.î. $a_{i,j} \neq 0 \ (Q \neq 0)$. Renumerotând putem presupune că $a_{1,2} \neq 0$. Facem următoarea schimbare de coordonate $x_1 = x_1' + x_2', x_2 = x_1' - x_2', x_3 = x_3', \dots, x_n = x_n'$ și obţinem

$$Q(x') = 2a_{1,2}[(x'_1)^2 - (x'_2)^2] + \dots$$
, formă care este în cazul (1).

După o repetare de un număr finit de ori a acestor cazuri vom ajunge la forma canonică.

Exemplul 11. Fie $Q: \mathbb{R}^3 \longrightarrow \mathbb{R}, Q(x) = x_1^2 - 3x_2^2 + 2x_3^2 + 2x_1x_2 + 4x_1x_3$. Folosind algoritmul Gauss obţinem $Q(x) = (x_1 + x_2 + 2x_3)^2 - 4x_2^2 - 2x_3^2 - 4x_2x_3 = (x_1 + x_2 + 2x_3)^2 - 4(x_2^2 + x_2x_3 + \frac{1}{4}x_3^2) - x_3^2 = (x_1 + x_2 + 2x_3)^2 - 4(x_2 + \frac{1}{2}x_3)^2 - x_3^2$. Deci $Q(\overline{x}) = \overline{x_1}^2 - 4\overline{x_2}^2 - \overline{x_3}^2$, unde $\overline{x_1} = x_1 + x_2 + 2x_3$, $\overline{x_2} = x_2 + \frac{1}{2}x_3$, $\overline{x_3} = x_3$.

Exemplul 12. Fie $Q(x) = 2x_2x_3$. Matricea acestei forme pătratice este cea din **exemplul 1**, $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Folosind schimbarea de coordonate $x_2 = \overline{x}_2 + \overline{x}_3, x_3 = \overline{x}_2 - \overline{x}_3$, obținem $Q(\overline{x}) = 2\overline{x}_2^2 - 2\overline{x}_3^2$.

Metoda 2

Teorema 13 (Jacobi). Fie V un spaţiu vectorial cu $\dim_{\mathbb{R}}(V) = n$, şi $Q: V \longrightarrow \mathbb{R}$, o formă pătratică $Q(x) = \sum_{1 \leq i,j \leq n} a_{i,j} x_i x_j$ într-o bază \mathcal{B} . Dacă matricea $A = (a_{i,j})_{i,j=\overline{1,n}}$ are toţi minorii principali $\Delta_1 = a_{11}, \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \ldots, \Delta_n = \det(A)$ nenuli, atunci există o bază $\overline{\mathcal{B}}$ a lui V în care $Q(\overline{x}) = \frac{1}{\Delta_1} \overline{x}_1^2 + \frac{\Delta_1}{\Delta_2} \overline{x}_2^2 + \ldots + \frac{\Delta_{n-1}}{\Delta_n} \overline{x}_n^2$.

Exemplul 14. Considerăm forma pătratică Q care într-o bază \mathcal{B} a spațiului \mathbb{R}^3 are matricea simetrică $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ pentru care $\Delta_1 = 1, \Delta_2 = 3, \Delta_3 = -1$. Toți sunt nenuli, deci conform teoremei Jacobi forma canonică a formei pătratice Q este $Q(\overline{x}) = \overline{x}_1^2 + \frac{1}{3}\overline{x}_2^2 + \frac{3}{-1}\overline{x}_3^2$.

Spații euclidiene

Considerăm ca și mai sus un spațiu vectorial V peste corpul \mathbb{R} cu $\dim_R(V) = n$.

Definiția 15. $<,>: V \times V \longrightarrow \mathbb{R}$, o aplicație biliniară, simetrică, pozitiv definită se numește *produs scalar* pe V. (V,<,>) spațiul vectorial V pe care avem definit un produs scalar se numește *spațiu euclidian*.

- **Exemplul 16.** Produsul scalar standard pe \mathbb{R}^n este $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$, unde $x, y \in \mathbb{R}^n$. Matricea asociată este matricea identitate I_n . Este clar biliniar, simetric și pozitiv semidefinit. Dacă $\langle x, x \rangle = 0 \Leftrightarrow \sum_{i=1}^n x_i^2 = 0$, $x_i \in \mathbb{R}$. De aici rezultă că $x_i = 0$, $(\forall)1 \leqslant i \leqslant n$, adică x = 0. Deci acest produs este un produs scalar pe \mathbb{R}^n .
 - Fie $\mathcal{C}([a,b]) = \{f: [a,b] \longrightarrow \mathbb{R} | f \text{continuă} \}$. Pe acest spaţiu considerăm $\langle f,g \rangle = \int_a^b f(x)g(x)dx$. Se verifică faptul că acesta este un produs scalar pe $\mathcal{C}([a,b])$.

Propoziția 17 (Cauchy-Bunyakovsky-Schwarz). Fie (V,<,>) un spațiu euclidian și $x,y\in V$. Atunci are loc $|< x,y>| \le \sqrt{< x,x>< y,y>}$.

Definiția 18. Doi vectori x, y din spațiul euclidian (V, <, >) se numesc *ortogonali* dacă < x, y >= 0.

Exemplul 19. Considerăm \mathbb{R}^2 cu produsul scalar canonic și vectorii $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

şi $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Avem $< v_1, v_2 >= 1 \cdot 1 + 1 \cdot (-1) = 0$, adică aceștia sunt ortogonali. Acest fapt îl știm deja. v_1 stă în plan pe prima bisectoare a axelor (având coordonatele egale), iar v_2 stă pe a doua bisectoare a axelor. Știm că cele două bisectoare sunt ortogonale.

Mai uşor de văzut este că $\langle e_1, e_2 \rangle = 0$, unde $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ şi $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, sunt vectorii din baza canonică a planului \mathbb{R}^2 .

Propoziția 20. Fie (V, <, >) un spațiu euclidian real de dimensiune n. Orice sistem de vectori nenuli ce sunt ortogonali doi câte doi este sistem de vectori liniar independenți..

Definiția 21. Fie $L_1, L_2 \subset V$, submulțimi ale spațiului euclidian (V, <, >). Spunem că L_1 este ortogonal pe L_2 dacă < v, w >= 0 pentru $(\forall) v \in L_1$ și $(\forall) w \in L_2$. Scriem $L_1 \perp L_2$. În particular dacă $L_1 = \{x\} \neq \{0_V\}$, atunci $x \perp L_2 \Leftrightarrow < x, w >= 0$, $(\forall) w \in L_2$.

Ortogonalitatea este suficient să fie testată pe o bază. Mai precis.

Propoziția 22. Fie (V, <, >) un spațiu euclidian real de dimensiune n, și L un subspațiu vectorial al lui V. Considerăm $\mathcal{B} \subset L$, o bază a subspațiului L. Atunci $x \perp L \Leftrightarrow x \perp \mathcal{B}$.

Demonstrație: " \Rightarrow " Clar pentru că $\mathcal{B} \subset L$.

"\(\infty\)" Fie $\mathcal{B} = \{v_1, \ldots, v_k\}$ bază în L. Considerăm $w \in L$ arbitrar, $w = \sum_{i=1}^k a_i v_i$ cu $a_i \in \mathbb{R}$. $\langle x, w \rangle = \langle x, \sum_{i=1}^k a_i v_i \rangle = \sum_{i=1}^k a_i \langle x, v_i \rangle = 0$ pentru $(\forall)i$.

Definiția 23. Fie (V, <, >) un spațiu euclidian real și $L \neq \emptyset$, o submulțime a lui V. Mulțimea notată $L^{\perp} = \{x \in V \mid x \perp L\}$ se numește *complementul ortogonal* al lui L în V.

Definiția 24. Într-un spațiu euclidian (V, <, >), numim normă a vectorului $x \in V$ și notăm $||x|| = \sqrt{\langle x, x \rangle}$.

Din definiție $||x|| \ge 0$. Din proprietățile produsului scalar rezultă următoarele proprietăți ale normei.

- (1) $||\alpha x|| = |\alpha| \cdot ||x||$, pentru $(\forall) x \in V$ și $(\forall) \alpha \in \mathbb{R}$
- $(2) ||x|| = 0 \Leftrightarrow x = 0_V,$
- (3) $|\langle x, y \rangle| \leq ||x|| \cdot ||y||, (\forall)x, y \in V,$ (Cauchy-Bunyakovsky-Schwarz)

(4) $||x+y|| \le ||x|| + ||y||$, $(\forall)x, y \in V$, (inegalitatea Minkowski sau a triunghiului),

(5)
$$||x|| - ||y|| | \le ||x - y||, (\forall)x, y \in V.$$

Definiția 25. Fie $\mathcal{B} = \{v_1, \dots, v_n\} \subset V$, o bază a spațiului euclidian V. Aceasta se numețe *ortogonală* dacă $v_i \perp v_j$, $(\forall)i, j$. Dacă în plus $||v_i|| = 1$, $(\forall)i$ atunci baza se numește *ortonormată*.

Dacă $\mathcal{B} = \{v_1, \dots, v_n\}$ este bază ortogonală în V, atunci $\mathcal{B}' = \{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ este o bază ortonormată.

În **exemplul 19** $\{v_1, v_2\}$ este bază ortogonală. Din aceasta, obținem $\{\frac{1}{\sqrt{2}}v_1, \frac{1}{\sqrt{2}}v_2\}$ bază ortonormată. Baza canonică $\{e_1, e_2\}$ este bază ortonormată.

Definiția 26. Fie (V, <, >) un spațiu euclidian real, L un subspațiu a lui V și $\mathcal{B} = \{v_1, \ldots, v_k\} \subset L$, o bază a lui L. Fie $x \in V$. Vectorul $\sum_{i=1}^k < x, v_i > v_i$ se numește *proiecția* vectorului x pe L și se notează $\operatorname{pr}_L x$.

Există un algoritm de a obține din orice bază a unui spaju euclidian o bază ortonormată.

Teorema 27 (Gram-Schmidt). Fie $\mathcal{B} = \{v_1, \ldots, v_n\}$ o bază a spațiului euclidian real (V, <, >) cu $\dim_{\mathbb{R}}(V) = n$. Atunci există o bază ortonormată $\{e_1, \ldots, e_n\}$, astfel încât sistemele de vectori $\{v_1, \ldots, v_k\}$ şi $\{e_1, \ldots, e_k\}$ generează acelaşi subspațiu a lui V, pentru $(\forall)k = \overline{1, n}$.

Demonstrație: Obținem mai întâi o bază ortogonală $\{x_1,\ldots,x_n\}$, pe care o normăm. Definim $x_1=v_1,x_j=v_j-\sum_{i=1}^{j-1}\frac{< v_j,x_i>}{< x_i,x_i>}x_i$, pentru $(\forall)j=\overline{2,n}$. Vectorii x_1,\ldots,x_n sunt ortogonali doi câte doi, deci conform **propoziției 20**, liniar independenți.

Definim $e_i = \frac{x_i}{||x_i||}$. Din definiția vectorilor x_i , și deci ai vectorilor e_i rezultă că subspațiul generat de $\{v_1, \ldots, v_k\}$ este egal cu subspațiul generat de $\{e_1, \ldots, e_k\}$, pentru orice k.

Exemplul 28. Fie $\mathcal{B} = \{v_1, v_2, v_3\} = \{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \} \subset \mathbb{R}^3$, bază. Dorim

să obținem o bază ortonormată folosind algoritmul Gram-Schmidt.

$$x_{1} = v_{1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, x_{2} = v_{2} - \frac{\langle v_{2}, x_{1} \rangle}{\langle x_{1}, x_{1} \rangle} x_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

$$x_{3} = v_{3} - \frac{\langle v_{3}, x_{1} \rangle}{\langle x_{1}, x_{1} \rangle} x_{1} - \frac{\langle v_{3}, x_{2} \rangle}{\langle x_{2}, x_{2} \rangle} x_{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{pmatrix}.$$

 $||x_1|| = \sqrt{2}, ||x_2|| = 1, ||x_3|| = \frac{1}{\sqrt{2}}$. Deci $e_1 = \frac{1}{\sqrt{2}}x_1, e_2 = x_2, e_3 = \sqrt{2}x_3$ este baza ortonormată.