What We Claim Is:

1	1.	A method for estimating channel characteristics in a multicarrier transmission
2	system compr	rising the steps of:
3		receiving a multicarrier signal;
4		applying Fast Fourier transformations to carriers of said multicarrier signal;
5		estimating channel characteristics of a multicarrier channel over which said
6	multicarrier si	gnal was transmitted using iterative processing; and
7		decoding said transformed multicarrier signal.
\	2.	The method according to claim 1, wherein said iterative processing further
7 PM	comprises the	steps of:
RT		determining if a block in a frame in the received signal is a training block;
4		tentatively decoding said block of said received signal;
5		calculating a tentative reference signal based on a previous training block;
6		generating a tentative estimation of channel characteristics using said tentative
7	reference sign	nal;
8		decoding said block of said received signal;
9		calculating a reference signal based on said received block;
10		generating an estimation of channel characteristics using said reference signal;
11		incrementing the block number;
12		determining if the end of said frame has been reached;

- accepting a next block of deceived signal if said end of said frame has not been reached; and
- iteratively performing the steps above. 15
- 3. 1 The method according to claim 2, wherein said decoding steps are performed using $\hat{\mathbf{c}}_n = \underset{\mathbf{c}_n}{\operatorname{arg min}} \sum_m ||\mathbf{x}_{m,n} - \hat{\mathbf{H}}_{m,n} \mathbf{c}_n||^2$. 2
 - 4. The method according to claim 2, wherein said calculating steps are performed using $\widetilde{\mathbf{H}}_{m,n} = \underset{\mathbf{H}_{m,n}}{\arg\min} \sum_{m} ||\mathbf{x}_{m,n} - \mathbf{H}_{m,n} \hat{\mathbf{c}}_{n}||^{2}$.
 - 5. The method according to claim 2, wherein said first generating step is performed using $\sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+1-l}) - \mathbf{d}(\hat{\mathbf{H}}_{m,n}) = 0$
 - 6. The method according to claim 2, wherein said second generating step is performed using $\sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+1-l}) - \mathbf{d}(\hat{\mathbf{H}}_{m,n+1}) = 0$.
- 7. The method according to claim \1, wherein said decoding step further 1 comprises the steps of: 2
- demodulating said multicarrier received signal; 3
- combining said demodulated multicarrier signal using a maximum ratio 4
- combiner; and 5
- Viterbi decoding said combined signal. 6

full that the

3

2

8.	The	method	according	to	claim	7,	further	comprising	the	step	O
deinterleaving	said o	combined	signal if sai	d co	mbined	sigr	nal was i	nterleaved for	r trans	smissi	on.

The method according to claim 2, wherein said decoding step further 9. comprises the steps of:

demodulating said multicarrier received signal;

combining said demodulated multicarrier signal using a maximum ratio combiner; and

Viterbi decoding said combined signal.

- 10. The method according to claim 9, further comprising the step of deinterleaving said combined signal if said combined signal was interleaved for transmission.
- The method according to claim 7, wherein said demodulating step is 11. performed concurrently for all signals of said multicarrier signal.
- 12. The method according to claim 9, wherein said demodulating step is performed concurrently for all signals of said multicarrier signal.
- 13. The method according to claim 2, wherein said first generating step is 1 performed using $\sum_{l=1}^{M_1} b_l^T \widetilde{H}_{m,n+1-l} - \hat{H}_{m,n} = 0.$ 2
- 14. The method according to claim 2, wherein said second generating step is 1 performed using $\sum_{l=l}^{M_1} \mathbf{b}_l^T \widetilde{\mathbf{H}}_{m,n+1-l} - \hat{\mathbf{H}}_{m,n+1} = 0.$ 2

1	15.	The method according to claim 1, wherein Fast Fourier transformations are
2	applied to eac	h carrier of said multicarrier signal.
1	16.	A method for estimating channel characteristics in a multicarrier transmission
2	system compr	rising the steps of:
3		receiving a multicarrier signal;
4		applying Fast Fourier transformations to carriers of said multicarrier signal;
5		estimating channel characteristics of a multicarrier channel over which said
6	multicarrier s	signal was transmitted using iterative backward processing, wherein said
7	iterative back	ward processing further comprises the steps of;
$\nu_{\rm s}$		determining if a block in a frame in the received signal is correct;
120		tentatively decoding said block of said received signal;
10		calculating a tentative reference signal based on a previous training block;
11		generating a tentative estimation of channel characteristics using said tentative
12	reference sign	al;
13		decoding said block of said received signal;
14		calculating a reference signal based on said received block;
15		generating an estimation of channel characteristics using said reference signal;
16		decrementing the block number;
17		determining if the beginning of said frame has been reached;
18		accepting a next block of received signal if said beginning of said frame has
19	not been reach	ned;

2

land and a few man black and seem of the s

iteratively performing the steps above; and decoding said transformed multicarrier signal.

- 1 17. The method according to claim 16, wherein said decoding steps are performed using $\hat{\mathbf{c}}_n = \arg\min_{\mathbf{c}_n} \sum_{m} ||\mathbf{x}_{m,n} \hat{\mathbf{H}}_{m,n} \mathbf{c}_n||^2$.
 - 18. The method according to claim 16, wherein said calculating steps are performed using $\widetilde{\mathbf{H}}_{m,n} = \underset{m}{\operatorname{arg min}} \sum_{m} ||\mathbf{x}_{m,n} \mathbf{H}_{m,n} \hat{\mathbf{c}}_{n}||^{2}$.
 - 19. The method according to claim 16, wherein said first generating step is performed using $\sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+l-1}) \mathbf{d}(\widehat{\mathbf{H}}_{m,n}) = 0$
 - 20. The method according to claim 16, wherein said second generating step is performed using $\sum_{l=1}^{M_L} \mathbf{B}_l \mathbf{d}(\widetilde{\mathbf{H}}_{m,n+l-1}) \mathbf{d}(\widehat{\mathbf{H}}_{m,n-l}) = 0$.
 - 21. The method according to claim 16, wherein said decoding step further comprises the steps of:

demodulating said multicarrier received signal;

combining said demodulated multicarrier signal using a maximum ratio combiner; and

Viterbi decoding said combined signal.

2

ļΔ

1

2

- 22. The method according to claim 21, further comprising the step of deinterleaving said combined signal if said combined signal was interleaved for transmission.
- 23. The method according to claim 21, wherein said demodulating step is performed concurrently for all signals of said multicarrier signal.
- 24. The method according to claim 21, wherein said demodulating step is performed concurrently for all signals of said multicarrier signal.
- 25. The method according to claim 16, wherein said generating steps are performed using $\sum_{l=1}^{M_L} \mathbf{B}_l^T \widetilde{\mathbf{H}}_{m,n+l} \hat{\mathbf{H}}_{m,n} = 0$.
- 26. The method according to claim 16, wherein Fast Fourier transformations are applied to each carrier of said multicarrier signal.
- 27. A method for estimating channel characteristics in a multicarrier transmission system comprising the steps of:

receiving a multicarrier signal;

applying Fast Fourier transformations to carriers of said multicarrier signal;

estimating channel characteristics of a multicarrier channel over which said multicarrier signal was transmitted concurrently using iterative processing and iterative backward processing; and

decoding said transformed multicarrier signal.

1	28.	The method according to claim 27, wherein said iterative processing further
2	comprises the	steps of:
3		determining if a block in a frame in the received signal is a training block;
4		tentatively decoding said block of said received signal;
5		calculating a tentative reference signal based on a previous training block;
6		generating a tentative estimation of channel characteristics using said tentative
7	reference sign	al;
8		decoding said block of said received signal;
9		calculating a reference signal based on said received block;
100		generating an estimation of channel characteristics using said reference signal;
4	7	incrementing the block number;
\\213	•	determining if the end of said frame has been reached;
13		accepting a next block of received signal if said end of said frame has not
14	been reached;	and
15		iteratively performing the steps above.
1	29.	The method according to claim 27, wherein said interactive backward
2	processing co	mprises the steps of:
3		determining if a block in a frame in the received signal is correct;
4		tentatively decoding said block of said received signal;
5		calculating a tentative reference s gnal based on a previous training block;
6		generating a tentative estimation of channel characteristics using said tentative
7	reference sign	nal;

1

2

1

2

decoding said block of said received signal;

calculating a reference signal based on said received block;

generating an estimation of channel characteristics using said reference signal;

decrementing the block number;

determining if the beginning of said frame has been reached;

accepting a next block of received signal if said beginning of said frame has not been reached; and

iteratively performing the steps above.

30. The method according to claim 27, wherein said decoding step further comprises the steps of:

demodulating said multicarrier received signal;

combining said demodulated multicarrier signal using a maximum ratio combiner; and

Viterbi decoding said combined signal;

- 31. The method according to claim 30, further comprising the step of deinterleaving said combined signal if said combined signal was interleaved for transmission.
- 32. The method according to claim 30, wherein said demodulating step is performed using QPSK techniques.
- 33. The method according to claim 7, wherein said demodulating step is performed using QPSK techniques.

2000-0071

1	34. The method according to claim 9, wherein said demodulating step is
2	performed using QPSK techniques.
1	35. The method according to claim 20, wherein said demodulating step is
2	performed using QPSK techniques.
) 1 2	36. The method according to claim 77, wherein Fast Fourier transformations are applied to each carrier of said multicarrier signal.