METODI AD ALTA FREQUENZA PER I PROBLEMI DI ANTENNA E DI REIRRADIAZIONE

Ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

> Giuseppe Pelosi Dipartimento di Elettronica e Telecomunicazioni Università di Firenze E-mail: giuseppe.pelosi@unifi.it URL: http://ingfi9.det.unifi.it/

NTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

...RIASSUMENDO

Le sorgenti equivalenti (J s, M s) incognite soddisfano ad una equazione integro-differenziale

$$\mathbf{E}(\mathbf{r}) \times \hat{n} = \left[\mathbf{E}^{s} (\mathbf{r}; \mathbf{J}^{s}, \mathbf{M}^{s}) + \mathbf{E}^{i} (\mathbf{r}; \mathbf{J}^{i}) \right] \times \hat{n} = 0 \quad \mathbf{r} \in S$$

La soluzione dell'equazione integro-differenziale è fatta utilizzando tecniche numeriche. Tali tecniche riconducono la soluzione dell'equazione integro-differenziale a quella di un sistema lineare

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

Per il problema radar si utilizzano le teorie fisiche in cui si approssimano a priori le correnti indotte sul bersaglio supposto illuminato da un'onda piana e il campo reirradiato può essere determinato mediante l'integrale di radiazione

...E PROBLEMA RADAR

$$\mathbf{J}^{\text{\tiny PO}} = \mathbf{J}^{\text{\tiny PO}} + \mathbf{J}^{\text{\tiny f}} \longrightarrow \mathbf{E}^{\text{\tiny S}} = \mathbf{E}^{\text{\tiny PO}} \left(\mathbf{J}^{\text{\tiny PO}} \right) + \mathbf{E}^{\text{\tiny f}} \left(\mathbf{J}^{\text{\tiny f}} \right)$$

- \mathbf{J}^{PO} è la corrente di ottica fisica (Physical Optics, PO)
- ${f J}$ è la corrente di fringe che si determina mediante la teoria fisica della diffrazione (Physical Theory of Diffraction, PTD)

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

TEORIE GEOMETRICHE

 $\mathbf{E}^S \cong \mathbf{E}^{go} + \mathbf{E}^d$

Il campo \mathbf{E}^{GO} è calcolato mediante l'ottica geometrica (Geometrical Optics, GO)

Il campo diffratto \mathbf{E}^d è calcolato mediante la *Geometrical Theory of Diffraction* (GTD), Keller, 1962, nella sua versione uniforme (*Uniform Geometrical Theory of Diffraction*, UTD), R.G. Kouyoumjian, P.H. Pathak, 1974

ANTENNE

13/74

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

PROBLEMI CANONICI E PROBLEMI INGEGNERISTICI

- 1. Problemi canonici
- 2. Dai problemi canonici ai problemi ingegneristici

ANTENNE

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

CONDIZIONI DI IMPEDENZA DI LEONTOVICH (Impedance Boundary Conditions, IBC)

La relazione funzionale tra i campi elettromagnetici (E^1,H^1) ed (E^2,H^2) in corrispondenza della superficie di interfaccia tra i due mezzi è del tipo:

$$\mathbf{E}_{1} - (\hat{n} \cdot \mathbf{E}_{1}) \hat{n} = Z_{s} (\hat{n} \times \mathbf{H}_{1})$$

o alternativamente

$$\hat{n} \times \mathbf{E}_1 = Z_s \hat{n} \times (\hat{n} \times \mathbf{H}_1)$$

 Z_s è l'impedenza superficiale che lega la componente tangente del campo elettrico nel mezzo 1 alla corrente elettrica superficiale indotta all'interfaccia tra i due mezzi (Z_s =0, caso perfettamente conduttore)

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)

campo incidente, Q punto di fase nulla

campo totale

$$u^{i}(\rho,\phi) = e^{jk\rho\cos(\phi-\phi')}$$

$$u^{i}(\rho,\phi) = E_{z}^{i}(\rho,\phi) \quad \text{caso soft}$$

$$u^{i}(\rho,\phi) = H_{z}^{i}(\rho,\phi) \quad \text{caso hard}$$

$$(\nabla_t^2 + k^2)u(\rho,\phi) = 0$$

$$\nabla_t^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho}\right) + \frac{1}{\rho} \frac{\partial^2}{\partial \phi^2}$$

$$u(\rho,\phi) = E_z(\rho,\phi)$$
 caso soft
 $u(\rho,\phi) = H_z(\rho,\phi)$ caso hard

caso hard

$$\frac{1}{\rho} \frac{\partial u(\rho, \phi)}{\partial \phi} = 0 \qquad \phi = 0$$

$$\begin{array}{c}
 \text{caso } soft \\
 u(\rho, \phi) = 0 \\
 \end{array}$$

$$\frac{1}{\rho} \frac{\partial \phi}{\partial \phi} = 0$$
 $\psi = 0$

$$u(\rho,\phi)=0$$
 $\phi=n\pi$

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)

Rappresentazione integrale del campo totale di Sommerfeld-Maliuzhinets

$$u(\rho,\phi) = \frac{1}{2\pi j} \int_{\gamma} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha$$

 $\gamma = \gamma^+ + \gamma^-$ contorno di integrazione di Sommerfeld funzione spettrale

 $|s(\alpha)-s(\pm j\infty)| < exp(-a|\Im(\alpha)|)$, a > 0

con $\Im(\alpha) \to \pm \infty$

Si deve determinare la funzione spettrale che dipende dalle condizioni al contorno del campo elettromagnetico totale sulla superficie del wedge $\phi = 0$ e $\phi = n\pi$

$$u(\rho,\phi) = 0 \qquad \phi = 0$$

$$\frac{1}{2\pi j} \int_{\gamma} s(\alpha - n\pi/2) e^{jk\rho\cos\alpha} d\alpha = 0$$

$$u(\rho,\phi) = 0 \qquad \phi = n\pi$$

$$\frac{1}{2\pi j} \int_{\gamma} s(\alpha + n\pi/2) e^{jk\rho\cos\alpha} d\alpha = 0$$

$$\begin{cases} s(\alpha - n\pi/2) = s(-\alpha - n\pi/2) \\ s(\alpha + n\pi/2) = s(-\alpha + n\pi/2) \end{cases}$$

$$\frac{1}{n} \frac{2\cos(\alpha/n)}{\sin(\alpha/n) - \sin(\phi'/n)} =$$

$$= \cot\left(\frac{n\pi - \alpha - \phi'}{2n}\right) - \cot\left(\frac{\alpha - \phi'}{2n}\right)$$

sistema di equazioni funzionali alle differenze

soluzione del sistema

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT

Trovata la funzione spettrale, si pone il problema del calcolo dell'integrale che si risolve applicando il teorema di Cauchy e si pone il problema di come scegliere i cammini di chiusura C₁ e C₂

$$\begin{split} &\frac{1}{2\pi j}\int_{\gamma}s\left(\alpha+\phi-n\pi/2\right)e^{jk\rho\cos\alpha}d\alpha+\frac{1}{2\pi j}\int_{C_{2}??}s\left(\alpha+\phi-n\pi/2\right)e^{jk\rho\cos\alpha}d\alpha+\\ &+\frac{1}{2\pi j}\int_{C_{2}??}s\left(\alpha+\phi-n\pi/2\right)e^{jk\rho\cos\alpha}d\alpha=\text{somma dei residui dei poli} \end{split}$$

30/74

NTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

${\it WEDGE}~{\bf PERFETTAMENTE}~{\bf CONDUTTORE}~({\bf CASO}~{\bf 2D})\text{-}{\bf CASO}~{\it SOFT}$

Si scelgono i cammini C_1 e C_2 di chiusura in modo che passino per i punti di sella

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

NTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT

Tra tutti i possibili cammini C_1 e C_2 passanti per i punti di sella si sceglie quello tale che:

$$I(k\rho) = \int_{C_1} e^{k\rho f(\alpha)} F(\alpha) d\alpha$$

$$f(\alpha) = f_R(\alpha) + jf_I(\alpha) = j\cos\alpha$$

$$f_R(\alpha) = f_R(\alpha = \alpha_s) - s^2$$

$$f_I(\alpha) = f_I(\alpha = \alpha_s)$$

$$F(\alpha) = F(\alpha = \alpha_s) - s^2$$

$$I(k\rho) = e^{k\rho f(\alpha_s)} \int_{-\infty}^{+\infty} \phi(s) e^{-k\rho s^2} ds$$
$$\phi(s) = F(\alpha) \frac{d\alpha(s)}{ds}$$

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

$W\!EDGE$ PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT

$$\frac{1}{2\pi j} \int_{\gamma} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha + \frac{1}{2\pi j} \int_{SDP_{+x}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha + \frac{1}{2\pi j} \int_{SDP_{+x}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha = \sum_{n} r_{n}$$

$$r_{n} \text{ sono i residui nella fascia } -\pi - gd \Big[Im(\alpha) \Big] < Re(\alpha) < +\pi - gd \Big[Im(\alpha) \Big]$$

$$u(\rho,\phi) = \frac{1}{2\pi j} \int_{\gamma} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha = u^{d}(\rho,\phi) + u^{go}(\rho,\phi)$$

$$u^{go}(\rho,\phi)=\sum_{n}r_{n}$$

campo dell'ottica geometrica

$$u^{d}(\rho,\phi) = -\frac{1}{2\pi j} \int_{SDP_{+\pi}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha - \frac{1}{2\pi j} \int_{SDP_{-\pi}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha$$
 campo diffratto

$$u^{i}(\rho,\phi)h\left[\pi-(\phi-\phi')\right]+u'(\rho,\phi)h\left[\pi-(\phi+\phi')\right]$$

$$u^{i}(\rho,\phi) = e^{jk\rho\cos(\phi-\phi')}$$
 campo
 $u^{r}(\rho,\phi) = -e^{jk\rho\cos(\phi+\phi')}$ campo

$$u^{r}(\rho,\phi) = -e^{jk\rho\cos(\phi+\phi')}$$
 campo riflesso

Si deve introdurre il campo diffratto per rendere continuo il campo totale

$$u^{d}\left(\rho,\phi\right) = -\frac{1}{2\pi j} \int\limits_{SDP_{+\pi}} s\left(\alpha + \phi - n\pi/2\right) e^{jk\rho\cos\alpha} d\alpha - \frac{1}{2\pi j} \int\limits_{SDP_{-\pi}} s\left(\alpha + \phi - n\pi/2\right) e^{jk\rho\cos\alpha} d\alpha$$

INTENNE II – ANTENNE IN AMBIENTE OPERATIVO

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVC

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT-CAMPO **DIFFRATTO**

$$u^{d}(\rho,\phi) = -\frac{1}{2\pi j} \int_{SDP_{z}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha - \frac{1}{2\pi j} \int_{SDP_{z}} s(\alpha + \phi - n\pi/2) e^{jk\rho\cos\alpha} d\alpha$$

Si devono valutare in modo efficiente i due integrali lungo i due SDP passanti attraverso i due punti di sella α_s

$$\alpha = \alpha_s = \pm \pi$$

Per fare questo si utilizza il metodo SDP nella versione modificata di Pauli-Clemmow

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT-CAMPO **DIFFRATTO**

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

 $I(k\rho) = \int_{SDP_x} e^{k\rho f(\alpha)} F(\alpha) d\alpha = e^{k\rho f(\alpha_i)} \int_{-\infty}^{+\infty} \phi(s) e^{-k\rho s^2} ds$ $f(\alpha) = f_R(\alpha) + jf_I(\alpha) = j\cos\alpha$

 $\phi(s) = F(\alpha) \frac{d\alpha}{ds}$ $F(\alpha) = s(\alpha + \phi - n\pi/2)$

La funzione $F(\alpha)$ ha poli sull'asse reale $(\alpha=\alpha_p)$ ed i residui dei poli corrispondono ai contributi di GO

I poli possono passare per il punto di sella $\alpha = \alpha_s = \pm \pi$ e questo avviene quando il punto di osservazione è vicino ai confini RSB e ISB

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

della diffrazione e sua versione uniforme, esempi di applicazione WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT-CAMPO **DIFFRATTO**

INTENNE II – ANTENNE IN AMBIENTE OPERATIVO

 $G(s) = F(\alpha) \frac{d\alpha}{ds} \left[f(\alpha) - f(\alpha = \alpha_p) \right]$ $G(s) = \sum_{s=0}^{\infty} c_m s^m$ $f(\alpha) - f(\alpha = \alpha_p) = f(\alpha = \alpha_s) - f(\alpha = \alpha_p) + s^2 = (s^2 + ja)$ $a = j \Big[f(\alpha = \alpha_s) - f(\alpha = \alpha_p) \Big]$

$$\int_{-\infty}^{+\infty} F(\alpha) \frac{d\alpha(s)}{ds} e^{-k\rho s^2} = \int_{-\infty}^{+\infty} \frac{G(s)}{s^2 + ja} e^{-k\rho s^2} ds \cong -c_0 \int_{-\infty}^{+\infty} \frac{e^{-k\rho s^2}}{s^2 + ja} ds \quad , \ k\rho \gg 1$$

$$\int_{-\infty}^{+\infty} \frac{e^{-k\rho s^2}}{s^2 + ja} ds = 2e^{k\rho a} \sqrt{\frac{\pi}{a}} \int_{k\rho a}^{+\infty} e^{j\tau^2} d\tau$$

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)-CASO SOFT-CAMPO TOTALE

Coefficiente di diffrazione della UTD per un wedge perfettamente conduttore

$$u(\rho,\phi) = u^{d}(\rho,\phi) + u^{go}(\rho,\phi)$$

$$u^{d}(\rho,\phi) = D(\rho,\phi,\phi') \frac{e^{-jk\rho}}{\sqrt{\rho}} \quad \text{campo diffratto}$$

$$\begin{split} D(\rho,\phi,\phi') &= \frac{-e^{-j(\phi'/4)}}{2n\sqrt{2\pi k}} \times \\ &\left[\cot\left(\frac{\pi + (\phi - \phi')}{2n}\right) F\left[k\rho a^+(\phi - \phi')\right] + \cot\left(\frac{\pi - (\phi - \phi')}{2n}\right) F\left[k\rho a^-(\phi - \phi')\right] \mp \\ &-\left\{\cot\left(\frac{\pi + (\phi + \phi')}{2n}\right) F\left[k\rho a^+(\phi + \phi')\right] + \cot\left(\frac{\pi - (\phi + \phi')}{2n}\right) F\left[k\rho a^-(\phi + \phi')\right]\right\}\right] \end{split}$$

$$a^{\pm}\left(\phi\pm\phi'\right)=2\cos^2\left[\frac{2n\pi N^{\pm}-\left(\phi\pm\phi'\right)}{2}\right] \qquad N^{\pm} \text{ interiche meglio soddisfano le relazioni:} \\ \left\{2n\pi N^{+}-\left(\phi\pm\phi'\right)=\pi\right. \\ \left\{2n\pi N^{-}-\left(\phi\pm\phi'\right)=-\pi\right. \\ \left\{2n\pi N^{-$$

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 2D)

Distribuzione del campo elettrico dovuto ad un'onda piana incidente normalmente su un semipiano perfettamente conduttore (caso soft)

44/74

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 3D)-Ray Fixed Coordinate System

$$\mathbf{E}^d = [D]\mathbf{E}^i A(s)e^{-jks}$$

$$\begin{bmatrix} E_{\parallel}^{d}(s) \\ E_{\perp}^{d}(s) \end{bmatrix} = \begin{bmatrix} -D_{\parallel} & 0 \\ 0 & -D_{\perp} \end{bmatrix} \begin{bmatrix} E_{\parallel}^{i}(Q) \\ E_{\perp}^{i}(Q) \end{bmatrix} A(s)e^{-jks}$$

 $[D] \rightarrow$ matrice coefficienti di diffrazione

 $s \rightarrow$ distanza osservatore-punto di diffrazione

 $A(s) \rightarrow$ fattore di *spreading*

NTENNE II – ANTENNE IN AMBIENTE OPERATIVO

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

WEDGE PERFETTAMENTE CONDUTTORE (CASO 3D)-Ray Fixed Coordinate System

Coefficiente di diffrazione della UTD per un wedge perfettamente conduttore

$$D_{\perp}(L,\phi,\phi') = \frac{-e^{-J(\vec{\phi}/4)}}{2n\sqrt{2\pi k}\sin{\gamma_0'}} \times \left[\cot\left(\frac{\pi + (\phi - \phi')}{2n}\right)F\left[kLa^+(\phi - \phi')\right] + \cot\left(\frac{\pi - (\phi - \phi')}{2n}\right)F\left[kLa^-(\phi - \phi')\right] \mp \left[\cot\left(\frac{\pi + (\phi + \phi')}{2n}\right)F\left[kLa^+(\phi + \phi')\right] + \cot\left(\frac{\pi - (\phi + \phi')}{2n}\right)F\left[kLa^-(\phi + \phi')\right]\right\}\right]$$

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

DAI PROBLEMI CANONICI AI PROBLEMI INGEGNERISTICI

In pratica in regime di alta frequenza (ovvero quando le dimensioni della struttura sono grandi rispetto alla lunghezza d'onda)

- l'oggetto è scomposto in un insieme di problemi canonici (wedge o spigolo, cilindro, vertice o corner, tip, etc.) che approssimano localmente la struttura nelle sue caratteristiche geometriche ed elettriche
- il campo totale è la somma del campo di ottica geometrica e del campo diffratto associato ai vari problemi canonici
- fissati il punto di osservazione e il punto sorgente i problemi canonici che contribuiscono al campo totale sono individuati mediante il principio di Fermat generalizzato (ray tracing)

59/74

60/74

ANTENNE II – ANTENNE IN AMBIENTE OPERATIVO

Metodi ad alta frequenza per i problemi di antenna e di reirradiazione: ottica geometrica, teoria geometrica della diffrazione e sua versione uniforme, esempi di applicazione

