Object Detection and Mapping on 3D Plane

Junwon Sung Junghwan Yim

School of Engineering and Applied Sciences

Contents

- Introduction
- Detection
- Prediction
- Mapping
- Future work

Introduction

How can we map the 2D detected objects into 3D plane (like HD-map) with lower computing cost and higher accuracy?

image

proposals (~2k)

Detection - R-CNN, YOLO

CNN features

regions

	Method	mAP	FPS
R-CNN	2 stage (classification after localization)	82.5	1.326
Yolov3	1 stage (classification, localization at the same time)	80.3	2.809

Detection Problem & Solution

"Detection is NOT Consistent"

Detection Bounding Box can be predicted with the current car velocity and position from IMU sensor?

Prediction - SORT, Deep-SORT

SORT (SIMPLE ONLINE REAL-TIME TRACKING)

Fig. 1. Benchmark performance of the proposed method (**SORT**) in relation to several baseline trackers [6]. Each marker indicates a trackers accuracy and speed measured in frames per second (FPS) [Hz], i.e. higher and more right is better.

Prediction - Limit of SORT, Deep-SORT

- 1. Kalman Filter designed with the constant velocity
- 2. Performance strongly depend on the detection model

So, make the Kalman Filter based on IMU sensor

Prediction - Master equation of problem

Prediction - Measuring Distance between The Object

							100	_
125								
125 :	car	minimum	distance	:	(824.0,	179.0) 141.0	74.0	13.516368873914562
125 :	tra	minimum	distance	:	(655.0,	102.0) 7.0	18.0	48.04646748149317
126								
126 :	car	minimum	distance	:	(807.0,	179.0) 139.0	71.0	14.436497271434567
126 :	tra	minimum	distance	:	(657.0,	99.0) 8.0	19.0	46.24020930549718
127								
127 :	car	minimum	distance	:	(804.0,	181.0) 119.0	64.0	14.677679803415574
128								
128 :	car	minimum	distance	:	(789.0,	175.0) 119.0	66.0	15.413403101832394
128 :	tra	minimum	distance	:	(661.0,	94.0) 8.0	20.0	27.702467737077143
129								
129 :	car	minimum	distance	:	(788.0,	178.0) 100.0	60.0	16.184073256924012
129 :	tra	minimum	distance	:	(662.0,	92.0) 8.0	22.0	4.075512152174371
130								
130 :			distance			181.0) 97.0	50.0	14.748076349235312
130 :	tra	minimum	distance	:	(663.0,	91.0) 8.0	23.0	4.072813137504056
131								
131 :	car	minimum	distance	:	(771.0,	180.0) 87.0	47.0	19.218586992597267
132								
132:			distance			175.0) 83.0	50.0	17.47144272054297
132:	tra	minimum	distance	:	(665.0,	88.0) 10.0	22.0	4.479204543067098
133								
133 :	car	minimum	distance	:	(760.0,	175.0) 76.0	50.0	20.364065687520284

Problem : Too Large Uncertainty

Prediction - Estimating Distance between The Object

Input: (vf, vl, vu, af, al, au, x, y, w, h) Dense Layer(12, 10), Lelu Dense Layer(8, 12), Lelu Dense Layer(4, 8), Lelu Dense Layer(2, 4), Lelu Dense Layer(1, 2), Lelu loss: mean sqrt error optimizer: adam

Mapping

As we getting the z-value from network and Kalman Filter, the height of object also can be determined.

If we getting the z-value from pixels placed in Bounding Box, we can inference the shape of the detected objects like scanned with LiDAR

Figure 2: **The proposed pipeline for image-based 3D object detection.** Given stereo or monocular images, we first predict the depth map, followed by back-projecting it into a 3D point cloud in the LiDAR coordinate system. We refer to this representation as *pseudo-LiDAR*, and process it exactly like LiDAR — any LiDAR-based detection algorithms can be applied.

Future Work / Conclusion

- This study suggests the method of detecting objects first in 2D and converting to 3D plane.
- This approach is possibly more efficient than the pseudo-LiDAR by reducing the computing pixels to convert into 3D and using Kalman Filter instead of the Neural network approach.
- With this approach, computing power can be concentrated on the 2D object detection model to improve mapping and detection performance.
- This study could get cost-effectiveness and FPS performance at the same time.

Thank you

