EE214A Design Project

Jay Smith

November 17, 2019

The amplifier under evaluation has 3 stages: Common Gate (CG), Common Source (CS), and Common Drain (CD). In order to analyze, the circuit is broken down into its 3 stages and key parameters are summarized.

Parameter	Spec
Transresistance gain	42.5k
power consumption	$\leq 2 \text{mW}$
bandwidth	≥75MHz
Output load resistance	20k
Output load capacitance	250fF

Common Gate:

Low Frequency Characteristics		
Transimpedance Gain	R _u parallel R _d	
Rin	1/gm1	$Vov_1/(2*I_{D1})$
Rout	2*ro ₁	$2/(lambda*I_{D1})$

Common Source:

The source of the common source stage is referenced to virtual, small-signal ground in the DM half circuit.

$$A_1 = \frac{gm_2}{qm_{1,2}} \tag{1}$$

$$A_1 = \frac{\frac{W}{L}_2 * Vov_2}{\frac{W}{L}_{2L} * Vov_{2L}} \tag{2}$$

$$A_1 = \sqrt{\frac{\frac{W}{L}_2}{\frac{W}{L}_{2L}}} \tag{3}$$

$$A_1 = \frac{Vov_{2L}}{Vov_2} \tag{4}$$

Low Frequency Characteristics		
Av	$-\mathrm{gm}_2/\mathrm{gm}_{\mathrm{L2}}$	
Rin	inf	
Rout	$1/\mathrm{gm_{L2}}$	

Common Drain:

$$C_{LDM} = 500 fF \tag{5}$$

$$R_{LDM} = 10k\Omega \tag{6}$$

Assuming $R_L/2$ much less than $1/gm_3$

$$A_2 = -g_{m3} * \frac{1}{g'_{m3}} || R_{LDM} \approx -0.84 \tag{7}$$

Low Frequency Characteristics		
Av	approx. 0.84	
Rin	inf	
Rout	$1/\mathrm{gm_3}$	

TIA amp:

Small-Signal Model

Low Frequency Transimpedance Gain:

$$\frac{v_{out}}{i_{in}} = (R_u || R_d) * (-\frac{gm_2}{gm_{L2}}) * 0.84$$
(8)

BW

$$C_{LDM} = 500 fF \tag{9}$$

$$R_{LDM} = 10k\Omega \tag{10}$$

$$C_1 = 100fF + cstot_M1 + cdtot_MB1 \tag{11}$$

$$C_2 = cdtot_ML1 + cdtot_M1 + C_{gs2} + (1 + A_1) * C_{gd2}$$
 (12)

$$C_3 = (1 + 1/A_1) * C_{gd2} + C_{db2} + cstot_ML2 + C_{gd3} + (1 + A_2) * C_{gs3} (13)$$

$$C_4 = (1 + 1/A_2) * C_{gs3} + C_{sb3} + cdtot_M3B + 500fF$$
 (14)

$$A_1 = \frac{gm_2}{gm_{1,2}} \tag{15}$$

$$A_1 = \frac{\frac{W}{L}_2 * Vov_2}{\frac{W}{L}_{2L} * Vov_{2L}} \tag{16}$$

$$A_1 = \sqrt{\frac{\frac{W}{L_2}}{\frac{W}{L_{2L}}}} \tag{17}$$

$$A_1 = \frac{Vov_{2L}}{Vov_2} \tag{18}$$

$$A_2 = -g_{m3} * \frac{1}{g'_{m3}} || R_{LDM} \approx -0.84$$
 (19)

ZVTC bandwidth (conservative approximation)

$$b1 = \frac{1}{g_{m1}} * C_1 + (R_u || R_d) * C_2 + g m_{L2} * C_3 + (g m_3' || R_L / 2) * C_4 (20)$$