Final Project

Mark Bryant

6/14/2021

Question: What age group do MLB players have a productive season as a hitter

Data Initiation Baseball Stats

```
##install.packages("ISLR")
 ##install.packages("dplyr")
 ##install.packages("ggplot2")
 ##install.packages("tidyverse")
 ##install.packages(ggpubr)
library(ISLR)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(tidyverse)
## -- Attaching packages ----- tidyverse
1.3.1 --
## v tibble 3.1.2 v purrr 0.3.4
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts -----
tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(readr)
library(ggpubr)
```

```
stats <- read csv("~/115/Final Project/stats (1).csv") ## Installed all</pre>
packages and data I needed for this project.
## Warning: Missing column names filled in: 'X12' [12]
##
## -- Column specification -----
## cols(
##
     last name = col character(),
     first name = col character(),
##
     player_id = col_double(),
##
    year = col_double(),
##
##
     player_age = col_double(),
    b_ab = col_double(),
##
##
     b total hits = col double(),
##
     b home run = col double(),
    b_strikeout = col_double(),
##
##
     b_walk = col_double(),
     on_base_percent = col_double(),
##
    X12 = col logical()
##
## )
```

Data Cleaning

```
statslm <- stats %>% select("age" = player_age, "SO" = b_strikeout, "HR" =
b_home_run, "walk" = b_walk, "hits" = b_total_hits, "obp" = on_base_percent)

HRAge <- statslm %>%
    group_by(age) %>% summarize(HR = mean(HR))

SOAge <- statslm %>%
    group_by(age) %>% summarize(SO = mean(SO))

HitAge <-statslm %>%
    group_by(age) %>% summarize(HT = mean(hits))

OBPAge <-statslm %>%
    group_by(age) %>% summarize(OB = mean(obp))
```

Plots

```
HRAge %>%
ggplot(aes(x=age, y=HR)) +geom_line()+geom_point()+ ggtitle("Homeruns at Bat
per Age Group")
```

Homeruns at Bat per Age Group

SOAge %>%
ggplot(aes(x=age, y=S0)) +geom_line()+geom_point()+ ggtitle("Strikeouts at
Bat per Age Group")

Strikeouts at Bat per Age Group


```
HitAge %>%
ggplot(aes(x=age, y=HT)) +geom_line()+geom_point()+ ggtitle("Hits at Bat per
Age Group")
```

Hits at Bat per Age Group

OBPAge %>%

ggplot(aes(x=age, y=OB)) +geom_line()+geom_point()+ ggtitle("On Base % at Bat
per Age Group")

On Base % at Bat per Age Group

Exploration

```
Under30 <- statslm%>% filter( between(age, 20, 29) )## Filter for age 20-29
Over30 <- statslm%>% filter( between(age, 30, 45) )## Filter for age 30-44
PlayerAge2 <- Under30 %>%
  group by(age) %>% summarize(S0 = mean(S0)) ## Mean for players under 30
with under 30
PlayerAge3 <- Over30 %>%
  group_by(age) %>% summarize(SO = mean(SO)) ## Mean for players under 30
with over 30
PlayerAge20B <- Under30 %>%
  group_by(age) %>% summarize(obp = mean(obp)) ## Mean for players under 30
with under 30
PlayerAge30B <- Over30 %>%
  group_by(age) %>% summarize(obp = mean(obp)) ## Mean for players under 30
with over 30
PlayerAge2 %>%
ggplot(aes(x=age, y=S0)) +geom_line()+geom_point()+ ggtitle("Under 30
Grouped")
```

Under 30 Grouped


```
## Mean age for under 30 for strike outs

PlayerAge3 %>%
ggplot(aes(x=age, y=S0)) +geom_line()+geom_point()+ ggtitle("Over 30 Grouped")
```



```
## Mean age for under 30 for strike outs

PlayerAge20B %>%
ggplot(aes(x=age, y=obp)) +geom_line()+geom_point()+ ggtitle("Under 30 Grouped")
```



```
## Mean age for under 30 for On base Percentage

PlayerAge30B %>%
ggplot(aes(x=age, y=obp)) +geom_line()+geom_point()+ ggtitle("Over 30 Grouped")
```

Over 30 Grouped

Mean age for under 30 for On base Percentage

```
resU <- cor.test(Under30$age, Under30$SO, method = "pearson")</pre>
resU
##
## Pearson's product-moment correlation
##
## data: Under30$age and Under30$SO
## t = 0.6519, df = 83, p-value = 0.5163
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.143941 0.280234
## sample estimates:
##
          cor
## 0.07137264
res0 <- cor.test(Over30$age, Over30$SO, method = "pearson")</pre>
res0
##
## Pearson's product-moment correlation
##
## data: Over30$age and Over30$SO
## t = -1.5359, df = 55, p-value = 0.1303
```

```
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.44010940 0.06099236
## sample estimates:
##
          cor
## -0.2027983
resUOB <- cor.test(Under30$age, Under30$obp, method = "pearson")</pre>
resUOB
##
## Pearson's product-moment correlation
##
## data: Under30$age and Under30$obp
## t = -1.2375, df = 83, p-value = 0.2194
## alternative hypothesis: true correlation is not equal to \theta
## 95 percent confidence interval:
## -0.33802777 0.08084262
## sample estimates:
##
          cor
## -0.1346006
res00B <- cor.test(Over30$age, Over30$obp, method = "pearson")</pre>
res00B
##
## Pearson's product-moment correlation
## data: Over30$age and Over30$obp
## t = 2.3856, df = 55, p-value = 0.02052
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.04961345 0.52490684
## sample estimates:
##
         cor
## 0.3062224
## Correlation test for the age group and strikeouts
```

Cluster Analysis

```
X <- statslm[,1:6]
str(X)

## tibble [142 x 6] (S3: tbl_df/tbl/data.frame)
## $ age : num [1:142] 41 34 35 35 34 37 33 35 37 34 ...
## $ SO : num [1:142] 43 42 31 60 65 49 37 38 51 22 ...
## $ HR : num [1:142] 13 4 4 10 14 12 0 11 5 3 ...
## $ walk: num [1:142] 22 19 25 35 28 32 15 44 25 12 ...
## $ hits: num [1:142] 55 56 56 46 46 63 45 52 55 63 ...
## $ obp : num [1:142] 0.359 0.315 0.375 0.336 0.333 0.373 0.269 0.365 0.328
0.381 ...</pre>
```

```
scale X <- scale(X)</pre>
kmeans_X <- kmeans(scale_X,4) # Kmeans function takes two arguements -
dataset, number of clusters
kmeans X
## K-means clustering with 4 clusters of sizes 36, 33, 34, 39
## Cluster means:
                        S0
                                   HR
                                            walk
                                                       hits
##
                                                                   obp
            age
## 1 0.2002485 0.8640545 0.5162648 -0.3751755 -0.2949670 -0.5508535
## 2 -0.2194364 -0.3133682 -0.9580055 -0.6303485 -0.9279897 -0.9486608
## 3 -0.4751237 0.4598528 0.8625580 0.8773223 0.7072528 1.0318646
## 4 0.4150425 -0.9333283 -0.4179057 0.1148426 0.4409199 0.4116188
##
## Clustering vector:
## [1] 4 4 4 1 1 4 2 4 4 4 4 1 4 3 1 4 1 2 4 3 4 4 1 1 1 2 4 1 3 4 4 3 2 2
1 1 1
## [38] 1 1 4 1 2 3 1 1 1 2 1 2 3 3 3 2 3 4 2 2 4 3 4 1 2 1 2 2 2 2 1 4 4 1
4 3 4
## [75] 4 3 3 1 2 3 3 4 3 2 4 2 4 3 4 4 2 3 1 2 2 1 4 4 4 3 2 2 4 2 4 1 1 3
1 4 4
## [112] 1 3 3 3 3 4 1 3 3 2 2 1 2 2 2 3 3 3 3 2 3 3 1 2 3 3 1 2 4 1 1
## Within cluster sum of squares by cluster:
## [1] 107.90274 88.76898 146.05541 158.14270
## (between_SS / total_SS = 40.8 %)
## Available components:
##
## [1] "cluster"
                      "centers"
                                     "totss"
                                                    "withinss"
"tot.withinss"
## [6] "betweenss"
                                     "iter"
                                                    "ifault"
                      "size"
# PLot
X$Cluster <-kmeans_X$cluster # Creating a new column in dataset X with
cluster information obtained through kmeans clustering
ggplot(X,aes(x=age,y=obp,color=as.factor(Cluster))) +geom_point()
```


ggplot(X,aes(x=age,y=S0,color=as.factor(Cluster))) +geom_point()


```
X30 <- Over30[,1:6]
str(X30)
## tibble [57 x 6] (S3: tbl_df/tbl/data.frame)
## $ age : num [1:57] 41 34 35 35 34 37 33 35 37 34 ...
## $ SO : num [1:57] 43 42 31 60 65 49 37 38 51 22 ...
## $ HR : num [1:57] 13 4 4 10 14 12 0 11 5 3 ...
## $ walk: num [1:57] 22 19 25 35 28 32 15 44 25 12 ...
## $ hits: num [1:57] 55 56 56 46 46 63 45 52 55 63 ...
## $ obp : num [1:57] 0.359 0.315 0.375 0.336 0.333 0.373 0.269 0.365 0.328
0.381 ...
scale X30 <- scale(X30)</pre>
kmeans_X <- kmeans(scale_X30,3) # Kmeans function takes two arguements -</pre>
dataset, number of clusters
kmeans X
## K-means clustering with 3 clusters of sizes 20, 17, 20
##
## Cluster means:
                       S0
                                           walk
                                                     hits
           age
                                  HR
                                                                 obp
## 1 -0.3707343  0.8060072  0.77509183 -0.3995020  0.1148861 -0.4742776
## 2 -0.2553998 -0.5845969 -0.94346187 -0.7490731 -0.4609020 -0.5739591
## 3 0.5878241 -0.3090998 0.02685076 1.0362142 0.2768806 0.9621428
##
## Clustering vector:
1 1 1
## [39] 1 1 1 2 3 1 1 1 2 2 3 2 2 1 2 3 2 3 3
## Within cluster sum of squares by cluster:
## [1] 63.99327 45.40736 99.72770
## (between SS / total SS = 37.8 %)
##
## Available components:
##
                                   "totss"
## [1] "cluster"
                     "centers"
                                                 "withinss"
"tot.withinss"
## [6] "betweenss"
                                                 "ifault"
                    "size"
                                   "iter"
summary(kmeans_X)
##
               Length Class Mode
## cluster
               57
                      -none- numeric
## centers
               18
                      -none- numeric
## totss
                1
                      -none- numeric
                3
## withinss
                      -none- numeric
## tot.withinss 1
                      -none- numeric
## betweenss
                1
                      -none- numeric
## size
           3 -none- numeric
```


ggplot(X,aes(x=age,y=obp,color=as.factor(Cluster))) +geom_point()

Plot Clusters over all the varibles

pairs(scale_X,col=as.factor(kmeans_X\$cluster))

Try yourself "ggparis" function from "ggally package for a better visualization

Summary of Final

Describe the dataset and why you selected it for this project.

The data set I chose was baseball data from the MLB for the 2021 current season. The data contained player statistics for hitting and strikeouts.

Describe any processing problems you identified with the data and how you overcame those issues

THe data has a few issues. I had to clean up the data because some of the naming headers were very long. I also had a lot of data that was not relavent to my research to support my question.

Describe your 'Big Question' and why the data is a good choice to answer it.

My big question was "At which age can you expect a productive season?" This means that I was searching for the player age group that had a chance to hit, get on base, or score a homerun.

Describe the results of your exploratory analysis and what preliminary conclusions you were able to draw based on this analysis

I unfortunately did not have a great way to prove my question with the current methods I have learned from class. I was able to correlative reseach but that came up inconclusive. I also did a cluster analysis, but that also came up inconclusive. I was able to plot data, but unfortunately, it still did not represent strong evidence to my question. The question I was trying to answer was out of the scope of the methods I used to analyze the data.

Describe how you selected the methodology for your analysis of the big question and the pros and cons of that method and any alternative methods you considered

I used correlation, the pro was it was able to tell me there was no immediate relationships with the analysis I was trying to research, given the variables I chose to correlate. The con, it only correlated the values, but it was not representative overall of the truth of my data.

Cluster Analysis and KMeans, I use this method, but it unfortunately did not provide sufficient evidence of proof to answer my question.

Describe your final conclusions based on your analysis and support them with analytics on your dataset

One conclusion that I was able to get out of the analysis was the age group was not the important factor, but the individual age's were a possible factor to MLB players being productive.

Describe any additional analyses that you would have liked to carry out and any additional data that would have been needed in order to extend your analysis

I think KMEANs would have been better if I had a bigger data set that represented multi year player information. This would then give me a year over year review of how the age groups did during thier season.