

Summer School ML

Il Machine Learning Basics

Prof. Dr.-Ing. Janis Keuper

INSTITUTE FOR MACHINE LEARNING AND ANALYTICS

Research and Application Fields

The ML Hype

Google Trends Worldwide

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- Labeled data
- Direct and quantitative evaluation
- Learn model from "ground truth" examples
- Predict unseen examples

Supervised Learning

Basic Notation:

Data is given as tuples

$$(X,Y) := \{(x_1,y_1), (x_2,y_2), \dots, (x_n,y_n)\}$$

Where X is the actual data (sample) and y the associated label.

For most ML algorithms (many Deep Learning algorithms are an exception)

$$x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

The data has to be represented as vectors and the labels are scalars.

Supervised Learning as a Black Box

ML algorithms "learns" *mapping* from input to output by example tuples

Supervised Learning: Example: Classification

ML algorithms "learns" *mapping* from input to output by example tuples

More Examples (here Deep Learning)

Example: semantic segmentation

More Examples (here Deep Learning)

Example: contend generation, e.g. style transfer learning

More Examples (here Deep Learning)

Example: Speech recognition

More Examples (here Deep Learning)

Example: Text understanding, e.g. translations

More Examples (here Deep Learning)

Example: Graph analysis

More Examples (here Deep Learning)

Example: game playing

Supervised Learning: Example: Classification

LEARNING: approximate "best" *f* for the given data

Supervised Learning: Example: Classification

LEARNING: optimization problem:

Supervised Learning: Example: Regression

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

UNDERFITTING

$$min(\|f(X,Y),Y'\|)$$

Training model On little data

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

UNDERFITTING

→ bad sampling
Of the data distribution

Challenges of Supervised Learning

- Not only need data also need to have Y → human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

ImageNet Challenge

Example:

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - o 100k test.

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible

Example:

Challenges of Supervised Learning

- Not only need data also need to have $Y \rightarrow$ human annotation
 - Getting "enough" labeled data is expensive
 - Sometimes impossible
- Training data is only a sample: prediction must work on all data → generalization

Challenges of Supervised Learning

• Training data is **only a sample:** prediction must work on **all data** → **generalization**

Which model is better?

Challenges of Supervised Learning

Training data is only a sample: prediction must work on all data → generalization

Which model is better?

Challenges of Supervised Learning

Training data is only a sample: prediction must work on all data → generalization

OVERFITTING

Model "to close" to train data

Very likely to happen in practice.

→ we need to work against this...

Data Preparation: Split into Train, Test, and Validate

A basic technique (we will learn more later) to at least detect overfitting is to split the available data into two or three subsets:

- Use unbiased test set for final evaluation of a model
- Use train set for model training
- Validation set (part of train set) can be used to optimize hyper parameters of the model

Caution: sets must be unbiased! (→ random sampling)
In practice it can be hard to guarantee clean train/test sets:
e.g. how to treat possible variance different data sources?
→ statistical analysis needed!

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- NO Labeled data
- NO Direct and quantitative evaluation
- Explore structure of data

Unsupervised Learning

Data without "labels" (x_1, x_2, \dots, x_n)

- Clustering
- Outlier Detection (e.g. Defect or Intrusion detection)

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- Learning decisions in an interactive environment
- Game playing and robotics
- Hardly use in Data Science

Recall Classification

Supervised Learning: Annotated Training Data

Recall Classification

Supervised Learning: Annotated Training Data

(feature extraction / engineering)

Recall Classification

Supervised Learning: Annotated Training Data

A Simple Example

A algorithm that can classify three different shape in an image:

How to vectorize the data samples?

A Simple Example

A algorithm that can classify three different shape in an image:

How to vectorize the data samples?

Naive solution: dump (raw) pixel data row by row into vector.

A Simple Example

A algorithm that can classify three different shape in an image:

How to vectorize the data samples?

Naive solution: dump (raw) pixel data row by row into vector.

- → possible. BUT can become very difficult problem if we have high Variance in the data, e.g. shapes can **translate**, **scale** or even **rotate**.
- → results in the need for much data (to cover the variance) and the high dimensional space. Also needs complex models (danger to overfit).

Example feature space

A Simple Example

A algorithm that can classify three different shape in an image:

How to vectorize the data samples?

Alternative: find Features T(X) that **encode separable properties** of the data.

- computed by some function T(X)
- Compact representation of X (low dimension)
- Robust against data variance (detailed definition coming up)
- Allows much simpler model!

Example feature space

A Simple Example

- Number of corners
 - → requires a corner detector (standard computer vision algorithm)
 - → does not change under scaling, rotation and translation (but occlusion)
 - → separates triangle from other two shapes

A Simple Example

- Number of corners
- Area

A Simple Example

- Number of corners
- Area
- Area to circumference relation
- Max to min side length relation
- ...

A Simple Example

- Number of corners
- Area
- Area to circumference relation
- Max to min side length relation
- ..
- Color!

Invariant Theory

Example for invariant features – A classic inspection problem:

arbitrary rotations and translations

"Defect"

Invariant Theory

possible solution: invariant features

polygon Fourier spectrum
Al Summer School 2021 - Janis Keuper

Discussion:

Feature extraction vs learning algorithms

- I. if we had perfect features, learning would be trivial
- II. if we had perfect classifiers, we would not need features

Features are usually used to introduce prior knowledge about the Structure of the data and variances to the learning algorithm.

Discussion:

In practice:

- Good features are hard to find
- Often based on complex mathematical functions
- Depend on the application (domain knowledge needed!)

Generic Approaches:

- Invariance by differentiation: set properties into relation / normalization
- Invaraince by integration: compute average properties

Feature Reduction

Motivation

- Very high dimensional representations require a lot of data to fill this huge space (curse of dimensionality)
- Danger of overfitting is higher if space is only sparsely sampled
 - → We would like to "compress" our data (with steerable loss) to a lower dimensional representation

Discussion

https://xkcd.com/1838/