(I)

Amendments to the Claims

1. (currently amended) A compound of Formula (I):

$$\begin{array}{c|c}
R_1 & R^2 \\
Q & \\
(CH_2)_m & \\
A_1^2 & A_3 & A_4 & A_5 & O & N & T
\end{array}$$

or a pharmaceutically acceptable salt or N-oxide thereof, wherein:

one of A¹, A², A³, A⁴ and A⁵ is N, another of them is C-R⁵, another of them is C-R⁶, and the other two are independently either N or CH;

Q is a C₃₋₈cycloalkyl, a 5- or 6-membered heteroaryl, or a 4-8-membered heterocyclic ring;

T together with the -N=C- to which it is attached forms a heteroaryl ring, or a heterocyclic ring where the N=C bond is the only site of unsaturation;

 R^1 and R^2 each independently are hydrogen, halogen, hydroxy, cyano, nitro, vinyl, ethynyl, methoxy, OCF_nH_{3-n} , $-N(C_{0-4}alkyl)(C_{0-4}alkyl)$, CHO, or $C_{1-2}alkyl$ optionally substituted with 1-5 independent halogen, hydroxy, cyano, methoxy, $-N(C_{0-2}alkyl)(C_{0-2}alkyl)$, SOCH₃, or SO_2CH_3 substituents; or R^1 and R^2 together form a carbocyclic-or heterocyclic ring; or R^1 and R^2 may be taken together to represent an oxygen atom attached to the ring via a double bond;

R³ and R⁴ each independently are hydrogen, halogen, OCF_nH_{3-n}, methoxy, CO₂R⁷⁷, cyano, nitro, CHO, CONR⁹⁹R¹⁰⁰, CON(OCH₃)CH₃, or C₁₋₂alkyl, heteroarylor C₃₋₇cycloalkyl optionally substituted with 1-5 independent halogen, hydroxy, cyano, methoxy, -NHCO₂CH₃, or -N(C₀₋₂alkyl)(C₀₋₂alkyl) substituents; or R³ and R⁴ together form a 5-8-membered aromatic, heteroaromatic, or carbocyclic, or heterocyclic ring;

R⁵ and R⁶ each independently are hydrogen, hydroxy, halogen, cyano, nitro, CO₂R⁷, CHO, COR⁸, C(OH)R⁷R⁸, C(=NOR⁷)R⁸, CONR⁹R¹⁰, SR⁷, SOR⁸, SO₂R⁸, SO₂NR⁹R¹⁰, CH₂NR⁹R¹⁰, NR⁹R¹⁰, N(C₀₋₄alkyl)SO₂R⁸, NHCOR⁷, or C₁₋₄alkyl group, C₂₋₄alkenyl group, C₂₋₄alkynyl group, C₁₋₄alkoxy group, <u>or</u> aryl group, or heteroaryl group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, C₁₋₂alkoxy, -

 $N(C_{0-2}alkyl)(C_{0-2}alkyl)$, $C_{1-2}alkyl$, CF_nH_{3-n} , aryl, -keteroaryl, $-COC_{1-2}alkyl$, $-CON(C_{0-2}alkyl)$, $CON(C_{0-2}alkyl)$, SCH_3 , SO_2CH_3 , or $-SO_2N(C_{0-2}alkyl)(C_{0-2}alkyl)$ substituents; or R^5 and R^6 together form a 5-8-membered carbocyclic or heterocyclic ring;

 R^7 and R^{77} each independently are hydrogen, or $C_{1\text{-4}}$ alkyl group, $C_{2\text{-4}}$ alkenyl group, $C_{2\text{-4}}$ alkynyl group, $C_{3\text{-7}}$ cycloalkyl group, <u>or</u> aryl group, <u>heteroaryl group</u>, <u>or</u> 4–7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, $C_{1\text{-2}}$ alkoxy, $-N(C_{0\text{-2}}$ alkyl)($C_{0\text{-2}}$ alkyl), $C_{1\text{-2}}$ alkyl, $C_{3\text{-7}}$ cycloalkyl, $C_{4\text{-7}}$ membered heterocyclic ring, $CF_nH_{3\text{-n}}$, aryl, heteroaryl, CO_2H , $-COC_{1\text{-2}}$ alkyl, $-CON(C_{0\text{-2}}$ alkyl)($C_{0\text{-2}}$ alkyl), $C_{0\text{-2}}$ alkyl), $C_{0\text{-2}}$ alkyl), substituents;

 R^8 is C_{1-4} alkyl group, C_{2-4} alkenyl group, C_{2-4} alkynyl group, C_{3-7} cycloalkyl group, or aryl group, heteroaryl group, or 4–7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, C_{1-2} alkoxy, - $N(C_{0-2}$ alkyl)(C_{0-2} alkyl), C_{1-2} alkyl, C_{3-7} cycloalkyl, 4–7 membered heterocyclic ring, CF_nH_{3-n} , aryl, heteroaryl, CO_2H , $-COC_{1-2}$ alkyl, $-CON(C_{0-2}$ alkyl)(C_{0-2} alkyl), $SOCH_3$, SO_2CH_3 , or - $SO_2N(C_{0-2}$ alkyl)(C_{0-2} alkyl) substituents;

R⁹, R¹⁰, R⁹⁹, and R¹⁰⁰ each independently are hydrogen, or C₁₋₄alkyl group, C₃₋₇cycloalkyl group, <u>or</u> aryl group, <u>heteroaryl group</u>, or 4-7 membered heterocyclic group, wherein any group optionally is substituted with 1-6 independent halogen, cyano, nitro, hydroxy, C₁₋₂alkoxy, -N(C₀₋₂alkyl)(C₀₋₂alkyl), C₁₋₂alkyl, C₃₋₇cycloalkyl, 4-7 membered heterocyclic ring, CF_nH_{3-n}, aryl, heteroaryl, -COC₁₋₂alkyl, -CON(C₀₋₂alkyl)(C₀₋₂alkyl), SOCH₃, SO₂CH₃, or -SO₂N(C₀₋₂alkyl)(C₀₋₂ alkyl) substituents; or R⁹ and R¹⁰⁰ or R⁹⁹ and R¹⁰⁰ together form a 6-8 membered heterobicyclic ring system or a 4-8 membered heterocyclic ring which optionally is substituted with 1-2 independent C₁₋₂alkyl, CH₂OCH₃, COC₀₋₂alkyl, hydroxy, or SO₂CH₃ substituents;

n is 1, 2 or 3;

m is 0 or 1;

the dotted line together with the solid line forms an optional double bond, and Δ indicates that the double bond has the (E)-configuration; and

with the proviso that Formula (I) does not represent 3-cyclopentyl-2-pyridin-4-yl-*N*-thiazol-2-ylpropionamide.

2. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or

N-oxide thereof, wherein

the dotted line together with the solid line forms a double bond;

A³ is C-R⁵, A⁴ is C-R⁶, one of A¹, A² and A⁵ is N, and the other two are CH.

- 3, 4. (canceled)
- 5. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof, wherein

the dotted line together with the solid line forms a double bond;

- 6. (original) A compound according to claim 5, or a pharmaceutically acceptable salt or *N*-oxide thereof, wherein Q is a C₃₋₈cycloalkyl ring.
- 7. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof, wherein

the dotted line together with the solid line forms a single bond;

- 8, 9. (canceled)
- 10. (currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof, wherein Q is cyclopentyl, or cyclohexyl, tetrahydrothiopyranyl, 1-oxo-tetrahydrothiopyranyl or 1,1-dioxo-tetrahydrothiopyranyl.
- 11. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof, wherein the group of formula

is 2-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 3-(1*H*-pyrazolyl), 2-(1*H*-imidazolyl), 5-[1,2,4]thiadiazolyl, 2-[1,3,4]thiadiazolyl, 2-(4,5-dihydrothiazolyl), 3-isoxazolyl, 2-oxazolyl, or 2-thiazolyl.

- 12. (original) A compound according to claim 1, or a pharmaceutically acceptable salt or N-oxide thereof, wherein the dotted line together with the solid line forms a single bond, and the absolute configuration at the asymmetric centre α to the amide carbonyl carbon is (R).
- 13. (original) A compound according to claim 1 wherein R^3 is hydrogen, halogen, C_{1-2} alkyl, or trifluoromethyl; and R^4 is hydrogen or methyl.
 - 14. (currently amended) A compound selected from:
 - 2-(6-Chloropyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-2-(6-phenylpyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-N-thiazol-2-yl-2-(6-thiophen-3-ylpyridin-3-yl)propionamide;
 - 3-Cyclopentyl-2-pyridin-3-yl-*N*-thiazol-2-ylpropionamide;
 - (E)-3-Cyclopentyl-2-(6-methylsulfanylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-methylsulfanylpyridin 3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-ethylsulfanylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethylsulfanylpyridin-3-yl)acrylamide;
- (E) 3 Cyclopentyl-2 [6 (5-methyltetrazol-1-yl)pyridin-3-yl] N-thiazol-2-ylacrylamide;
 - (E) 3-Cyclopentyl-N-thiazol-2-yl-2-(6-[1,2,4]triazol-1-ylpyridin-3-yl)acrylamide;
- (E) N (5-Chlorothiazol-2-yl) 3-cyclopentyl-2-(6-[1,2,4]triazol-1-ylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(5-methylsulfanylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methylsulfanylpyridin- 2-yl)acrylamide;
 - 3-Cyclopentyl-2-(6-fluoropyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - (E)-3-Cyclopentyl-2-(2-propylsulfanylpyrimidin-5-yl)-N-thiazol-2-ylacrylamide;
- (E) 3 (4 Tetrahydropyranyl) 2 (6 methanesulfanylpyridin 3 y l) N-thiazol 2-ylacrylamide;
- *N*-(5-Chloropyridin-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)propionamide;

- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-[1,2,4]thiadiazol-5-ylpropionamide;
- 3 Cyclopentyl 2 (6 cyclopropanesulfonylpyridin 3 yl) N (5 furan 2 yl [1,3,4]thiadiazol 2 yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-[1,3,4]thiadiazol-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-pyrimidin-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(4-methyloxazol-2-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(4-methylpyridin-2-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(6-methylpyridin-2-yl)propionamide;
 - 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-isoxazol-3-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(5-fluoropyridin-2-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(1-methyl-1*H*-pyrazol-3-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(5-methylpyridin-2-yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-pyridin-2-ylpropionamide;
- *N*-Benzothiazol-2-yl-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)propionamide;
 - 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-pyrazin-2-ylpropionamide; *N*-(6-Chloropyrazin-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-
- yl)propionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-pyrimidin-4-ylpropionamide;
- 3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(3-methyl-[1,2,4]thiadiazol-5-yl)propionamide;
 - (E)-3-Cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)-N-thiazol-2-ylacrylamide;

- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-ethanesulfonylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethanesulfonylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(5-methanesulfonylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Bromothiazol-2-yl)-3-cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)acrylamide;
- (*E*)-3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)-*N*-(5-fluorothiazol-2-yl)acrylamide;
- (*E*)-2-[3-Cyclopentyl-2-(6-cyclopropanesulfonylpyridin-3-yl)acryloylamino]-thiazole-5-carboxylic acid methylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methanesulfonylpyridin-2-yl)acrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(5-methanesulfinylpyridin-2-yl)acrylamide;
- (*E*)-2-[5-Chloro-6-(propane-1-sulfonyl)pyridin-3-yl]-3-cyclopentyl-*N*-thiazol-2-ylacrylamide;
- $\label{eq:energy} (E)\mbox{-}2\mbox{-}[5\mbox{-}Chloro-6\mbox{-}(propane-1\mbox{-}sulfinyl)pyridin-3\mbox{-}yl]-3\mbox{-}cyclopentyl-$N\mbox{-}thiazol-2\mbox{-}ylacrylamide;}$
- (E)-2-(5-Chloro-6-methanesulfonylpyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylacrylamide;
- $\label{eq:energy} (\textit{E})\text{-}2\text{-}(5\text{-}Chloro\text{-}6\text{-}methane sulfinylpyridin-}3\text{-}yl)\text{-}3\text{-}cyclopentyl-\textit{N}\text{-}thiazol-}2\text{-}ylacrylamide;$
- (*E*)-2-(5-Chloro-6-methanesulfonylpyridin-3-yl)-*N*-(5-chlorothiazol-2-yl)-3-cyclopentylacrylamide;
- (*E*)-2-(5-Chloro-6-methanesulfinylpyridin-3-yl)-*N*-(5-chlorothiazol-2-yl)-3-cyclopentylacrylamide;
- $\label{eq:energy} (E)\mbox{-3-Cyclopentyl-} N\mbox{-}(5\mbox{-fluorothiazol-2-yl)-2-} (6\mbox{-methane sulfonyl pyridin-3-yl) acrylamide;}$

- (*E*)-3-Cyclopentyl-*N*-(5-fluorothiazol-2-yl)-2-(6-methanesulfinylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
 - (E)-3-Cyclopentyl-2-(6-ethanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-ethanesulfinylpyridin-3-yl)acrylamide;
 - (E)-3-Cyclopentyl-2-(5-methanesulfinylpyridin-2-yl)-N-thiazol-2-ylacrylamide;
- (*E*)-3-Cyclopentyl-2-[2-(propane-1-sulfinyl)pyrimidin-5-yl]-*N*-thiazol-2-ylacrylamide;
- $\label{eq:energy} (E)\mbox{-3-Cyclopentyl-2-(6-ethanesulfinylpyridin-3-yl)-N-(5-fluorothiazol-2-yl)acrylamide;}$
 - (E)-3-Cyclopentyl-2-(6-cyclopropanesulfinylpyridin-3-yl)-N-thiazol-2-ylacrylamide;
- $\label{eq:energy} (E)-N-(5-\text{Chlorothiazol-2-yl})-3-\text{cyclopentyl-2-} (6-\text{cyclopropanesulfinylpyridin-3-yl}) acrylamide;$
- (*E*)-3-Cyclopentyl-2-(6-cyclopropanesulfinylpyridin-3-yl)-*N*-(5-fluorothiazol-2-yl)acrylamide;
- (*E*)-3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-*N*-(5-chlorothiazol-2-yl)acrylamide;
 - 3-Cyclopentyl-2-(6-methanesulfonylpyridin-3-yl)-N-thiazol-2-ylpropionamide:
 - 3-Cyclopentyl-2-(6-mercaptopyridin-3-yl)-N-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-2-(6-methanesulfinylpyridin-3-yl)-N-thiazol-2-ylpropionamide;
- 3-Cyclopentyl-2-(6-methoxymethanesulfinylpyridin-3-yl)-*N*-thiazol-2-ylpropionamide;
 - 3-Cyclopentyl-2-[6-(propane-2-sulfinyl)pyridin-3-yl]-N-thiazol-2-ylpropionamide;
- 3-{5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridin-2-ylsulfanyl}propionic acid;
- 3-{5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridine-2-sulfonyl}propionic acid;
 - {5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridin-2-ylsulfanyl}acetic acid;
 - {5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridine-2-sulfonyl}acetic acid;
 - {5-[2-Cyclopentyl-1-(thiazol-2-ylcarbamoyl)ethyl]pyridine-2-sulfinyl}acetic acid;
 - (E)-2-(6-Aminopyridin-3-yl)-N-(5-chlorothiazol-2-yl)-3-cyclopentylacrylamide;
 - (E)-2-(6-Aminopyridin-3-yl)-3-cyclopentyl-N-thiazol-2-ylacrylamide;
 - (E)-3-Cyclopentyl-2-(6-methylaminopyridin-3-yl)-N-thiazol-2-ylacrylamide;

- (*E*)-*N*-(5-Chlorothiazol-2-yl)-3-cyclopentyl-2-(6-methanesulfonylaminopyridin-3-yl)acrylamide;
- $\label{eq:control} \textit{(E)-3-Cyclopentyl-2-(6-methane sulfonylaminopyridin-3-yl)-N-thiazol-2-ylacrylamide;}$
- (E)-3-Cyclopentyl-2-[6-(methanesulfonylmethylamino)pyridin-3-yl]-N-thiazol-2-ylacrylamide;

or a pharmaceutically acceptable salt or N-oxide thereof.

- 15. (original) A pharmaceutical composition comprising a compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof, and a pharmaceutically acceptable carrier.
- 16. (withdrawn) A method of prophylactic or therapeutic treatment of hyperglycemia or diabetes comprising a step of administering an effective amount of the compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof.
- 17. (withdrawn) A method of prevention of diabetes in a human demonstrating prediabetic hyperglycemia or impaired glucose tolerance comprising a step of administering an effective prophylactic amount of the compound according to claim 1, or a pharmaceutically acceptable salt or *N*-oxide thereof.
 - 18. (withdrawn) A process for the preparation of a compound of Formula (Ia):

said process comprising a step of the condensation of a compound of Formula (IV):

$$R^{1}$$
 R^{2}
 $(CH_{2})_{m}$
 A^{2}
 A^{4}
 A^{5}
 A^{5}
 A^{5}
 A^{5}
 A^{5}
 A^{5}

with a compound of Formula (V):

wherein A^1 - A^5 , Q, T, R^1 - R^4 , m and Δ are as defined in claim 1.

19. (withdrawn) A process for the preparation of a compound of Formula (Ib):

$$\begin{array}{c|c}
R_1^1 & R^2 \\
Q & \\
(CH_2)_m & \\
A_1^2 & A_5^1 & \\
A_3^3 & A_4^4 & A_5^5 & O & N & T
\end{array}$$
(Ib)

said process comprising a step of the condensation of a compound of Formula (VIII):

$$R^{1}$$
 Q
 $(CH_{2})_{m}$
 A^{2}
 A^{3}
 A^{4}
 A^{5}
 Q
 $(VIII)$

with a compound of Formula (V):

wherein A^1 - A^5 , Q, T, R^1 -- R^4 and m are as defined in claim 1.

20. (original) A compound of Formula (IV):

wherein $A^1\text{-}A^5,\,Q,\,R^1,\,R^2,\,m$ and Δ are as defined in claim 1.

21. (original) A compound of Formula (VIII):

wherein A^1 - A^5 , Q, R^1 , R^2 and m are as defined in claim 1.