DESN2000 MECH Workshop

Week 2 – Functional Representation

Class overview

Overview of Functional	Creating Functional	Key FR Creation	Advanced FR Method: EMS	Draiget Time!	Cummany
Design	Requirements	Principles	Model	Project Time! (65 min)	Summary (5 min)
(5 min)	(5 min)	(25 min)	(10 min)	, ,	

Overview of Functional Design

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Overview of Functional Design - Process

picture

W2 DESN Lecture and Workshop **Today's Workshop** 1. EXPLORE CUSTOMER 2. EXPLORE FUNCTIONAL 3. MAP BETWEEN **DOMAIN DOMAIN CUSTOMER AND FUNCTIONAL DOMAINS** A. Identify Target Customers D. Formulate Functional Requirements G. Map Custom Needs to Functional Requirements. **B. Solicit Customer Needs** E. Classify Functional Requirements C. Extrapolate Customer needs in big F. Organise Functional Requirements

Overview of Functional Design - Process

Creating Functional Requirements

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Creating Functional Requirements

□ Recall: A function transforms an input object/parameter into an output object/parameter.

Verb + Object

Basic Format (what you need)

(Verb + Object 1) to/from/with/through (Verb +Object 2)

(Verb + Object) in context

Advanced Options (not needed but welcome to research if you are curious)

Class	Basic	Flow restricted	Synonyms
	Separate		Switch, Divide, Release, Detach, Disconnect, Disassemble, Subtract,
		Remove	Cut, Polish, Sand, Drill, Lathe
Branch	Refine		Purify, Strain, Filter, Percolate, Clear
	Distribute		Diverge, Scatter, Disperse, Diffuse, Empty Absorb, Dampen, Dispel, Resist, Dissipate
	Import		Input, Receive, Allow, Form Entrance, Capture
	Export		Discharge, Eject, Dispose, Remove
	Transfer		-
Channel		Transport	Lift, Move
		Transmit	Conduct, Convey
	Guide		Direct, Straighten, Steer
		Translate	
		Rotate	Turn, Spin
		Allow DOF	Constrain, Unlock
Connect	Couple		Join, Assemble, Attach
	Mix		Combine, Blend, Add, Pack, Coalesce
	Actuate		Start, Initiate
Control Magnitude	Regulate		Control, Allow, Prevent, Enable/Disable, Limit, Interrupt, Valve
	Change		Increase, Decrease, Amplify, Reduce, Magnify, Normalize, Multiply, Scale, Rectify, Adjust
		Form	Compact, Crush, Shape, Compress, Pierce
		Condition	
Convert	Convert		Transform, Liquefy, Solidify, Evaporate, Condense, Integrate, Differentiate, Process
-	Store		Contain, Collect, Reserve, Capture
Provision	Supply		Fill, Provide, Replenish, Expose
	Extract		
	Sense		Perceive, Recognize, Discern, Check, Locate
Signal	Indicate		Mark
	Display		
	Measure		Calculate
	Stop		Insulate, Protect, Prevent, Shield, Inhibit
Support	Stabilize	"	Steady
	Secure		Attach, Mount, Lock, Fasten, Hold
	Position		Orient, Align, Locate

Example Vocabulary of **Verbs**

<u>Source:</u> Stone, Robert B. Wood, Kristin L, | Development of a Functional Basis for Design

Class	Basic	Sub-basic	Complements				
	Human	-	Hand, foot, head ,etc.				
Material	Gas						
	Liquid			()			
	Solid						
Signal	Status	Auditory	Tone, Verbal				
		Olfactory					
		Tactile	Temperature, Pressure	, Roughness			
	100	Taste					
		Visual	Position, Displacemen	t			
	Control			11			
			Bond graph ba	sed complement			
Class	Basic	Sub-basic	Effort analogy	Flow analogy			
	Human		Force	Motion			
	Acoustic		Pressure	Particle velocity			
	Biological		Pressure	Volumetric flow			
	Chemical		Affinity	Reaction rate			
	Electrical		Electromotive force	Current			
	Electromagnetic	Optical	Intensity	Velocity			
		Solar	Intensity	Velocity			
Energy	Hydraulic	_	Pressure	Volumetric flow			
	Magnetic		Magnetomotive force	Magnetic flux rate			
	Mechanical	Rotational	Torque	Angular velocity			
19	19	Translational	Force	Linear velocity			
		Vibrational	Amplitude	Frequency			
	Pneumatic		Pressure	Mass flow			
	Radioactive		Intensity	Decay rate			
	Thermal		Temperature	Heat flow			
	24	Usage & Degree	e of Specification				
Class only Least							
Specific▼	D 1 6 1 1 1		,				
	Basic or Sub-basic + More	- Class Specific▼					
	13	Basic or S	ub-basic + Complement				
		× (0.700)		Most Specific▼			
	Over	rall increasing de	gree of specification 🗯				

Example Vocabulary of **Nouns**

<u>Source:</u> Stone, Robert B. Wood, Kristin L, | Development of a Functional Basis for Design

Key FR Creation Principles

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Key FR Creation Principles

2. SPECIFY RANGE OF VALUES

3. DECOMPOSED FROM TOP TO BOTTOM

4. DIFFERENTIABLE FROM CUSTOMER NEEDS

Principle 1: Solution Neutral

□ 2 min rapid activity: In your teams, write down 5 solutions (more if you can think of them) you could accomplish the functional requirement of: Transport a Child.

Principle 1: Solution Neutral

□ Even within a product subsection, there are many methods to design the same product.

☐ These devices all fit the FR of "Carry a Child", but all approach it in a slightly different manner and facilitate very different additional functions.

Principle 2: Specify Range of Values

□ 2 min rapid activity: In your teams, provide 2 improved versions of the following functional requirements, following Principle 2.

Contain coffee

Principle 2: Specify Range of Values

Support a person

Support the weight of a person

Support the weight of between **50kg and 100kg**

Contain coffee

Contain a certain amount of bot liquid

Contain **150ml of liquid** between the temperature of **40°C and 60°C**

Value range specification

Principle 3: Decompose FRs From Top to Bottom

□ **Recall:** FRs can be decomposed using:

Verb Decomposition

Relocate Table

- Lift Table
- Move Table
- Drop Table

Noun Decomposition

Relocate Office

- RelocateComputer
- RelocateFurniture
- RelocateDocuments

Principle 3: Decompose FRs From Top to Bottom

- ☐ Activity (5 mins): In your teams, decompose the following FR using:
 - □ Verb Decomposition
 - Noun Decomposition

Input: Missile stored in weapons bay

FR: Shoot Missile

Output: Missile flying and rocket ignited

Principle 3: Decompose FRs From Top to Bottom

☐ An example of what you could write for each method could be:

Verb Decomposition

Shoot Missile

- Lock missile
- Expose missile to aircraft exterior
- Ignite missile
- Release missile

Noun Decomposition

Shoot Missile

- Lock target
- Remove safety lock
- Open weapons bay doors
- Send ignition signal
- Send release signal
- □ Note that these methods don't have to be used in isolation. You likely will find that, both methods will be needed to thoroughly decompose your project's functional requirements.

Principle 4: Differentiable from Customer Needs

□ Recall: Customer needs fulfil the desires that customers demand, functional requirements describe actions which are needed to achieve that customer need.

☐ CN: car-related safety

■ CN₁: passenger safety

• CN₁₁: driver safety

• CN₁₂: children safety

☐FR: protect passenger

■FR₁: constrain DOF

•FR₁₁: provide a soft cushioning

•FR₁₂: constrain degree of freedom

Summary: Key FR Creation Principles

2. SPECIFY RANGE OF VALUES

3. DECOMPOSED FROM TOP TO BOTTOM

4. DIFFERENTIABLE FROM CUSTOMER NEEDS

Advanced FR Method: EMS Model

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Advanced FR Method: EMS Model

☐ Defines the input and output parameters in the form of Energy, Material and Signal.

- Enables designers/engineers to **track the types of inputs and output** each FR (which eventually is materialised as a physical component) will need to receive and produce, which **guides design choices** such as material selection etc.
- ☐ Also enables visualisation of how energy, material and signals are transformed/converted as the move from one part of the engineering system to the other.

Advanced FR Method: EMS Model

☐ Note the minor variations in input and output in each form of screwdriver

Project Time!

- ☐ Finalise your **CNs** if you haven't yet
- Write your team's problem statement
 - ☐ Reminder that problem statement is solution-independent
- ☐ Map/derive your FRs from your CNs
- □ Decompose your FRs to be more and more specific
- ☐ If your team is way ahead of schedule, **start concept generating solutions!**

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Summary

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles	Advanced FR Method: EMS Model	Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All

Evaluation Tools

- ☐ Decision matrix
 - ☐ Come up with criteria
 - □ Rank your criteria in terms of importance (scaling factor e.g. 5 most important)
 - ☐ Team gives score to each problem
 - ☐ Score * scaling factor = scaled score
 - ☐ Sum scores for each criteria for final score. Go for problem with highest final score

Decision Matrix: Long Wait Time

Criteria → ▼Problems	Customer pain 5	Ease to solve	Effect on other systems	Speed to solve	
Customers wait for host	High—Nothing else for customer to do 3 × 5 = 15	Medium— Involves host and bussers 2 × 2 = 4	High—Gets customer off to bad start 3 × 1 = 3	High—Observations show adequate empty tables $3 \times 2 = 6$	28
Customers wait for waiter	Medium— Customers can eat breadsticks 2 × 5 = 10	Medium— Involves host and waiters	Medium— Customer still feels unattended 2 × 1 = 2	Low— Waiters involved in many activities 1 × 2 = 2	18
Customers wait for food	Medium— Ambiance is nice 2 × 5 = 10	Low—Involves waiters and kitchen 1 × 2 = 2	Medium— Might result in extra trips to kitchen for waiter 2 × 1 = 2	Low—Kitchen is design/space limited 1 × 2 = 2	16
Customers wait for check	Low— Customers can relax over coffee, mints 1 × 5 = 5	Medium— Involves waiters and host $2 \times 2 = 4$	Medium— Customers waiting for tables might notice 2 × 1 = 2	Low— Computerized ticket system is needed $1 \times 2 = 2$	13

Ranking Tool

- This can help rank what user needs or criteria is important to you
- Optional tool to use can do it qualitatively instead

Step 3: Compare the objectives

	Ease of use	Maintains temperature	Durable	Cost	Aesthetics	Total
Ease of use		1	1	1	1	
Maintains temperature	0		0	0	0	
Durable	0	1		1	1	
Cost	0	1	0			
Aesthetics	0	1	0			

- 1 Row of the more important objective
- Row of the less important objective

Summary

Overview of Functional Design	Creating Functional Requirements	Key FR Creation Principles Advanced FR Method: EMS Model		Project Time!	Summary
5 min	5 min	25 min	10 min	65 min	5 min
All	All	All	All	All	All