Syyskuun vaikeammat valmennustehtävät Ratkaisut

1. Kahden ympyrän keskipisteet ovat O_1 ja O_2 ja säteet r ja R vastaavasti. Oletetaan, että ympyrät leikkaavat kahdessa eri pisteessä A ja B ja että $O_1O_2=1$. Määritä kolmioiden O_1AB ja O_2AB pinta-alojen suhde.

Ratkaisu. Olkoon P kohtisuorien suorien O_1O_2 ja AB leikkauspiste. Olkoon $O_1P=s_1,O_2P=s_2$. Pythagoraan lauseella $PA^2=r^2-s_1^2=R^2-s_2^2$. Toisaalta $s_1+s_2=1$. Nyt

$$s_1 + s_2 = 1s_1^2 - s_2^2 = (s_1 - s_2)(s_1 + s_2) = s_1 - s_2 = r^2 - R^2.$$

Tästä $s_1 = \frac{r^2 - R^2 + 1}{2}$, $s_2 = \frac{R^2 - r^2 + 1}{2}$. Koska alojen suhde on $\frac{\frac{1}{2}s_1SAB}{\frac{1}{2}s_2AB} = \frac{s_1}{s_2}$, vastaus on $\frac{r^2 - R^2 + 1}{R^2 - r^2 + 1}$.

2. Etsi kaikki parit (m, n) positiivisia kokonaislukuja, joille $2^m - 1 \mid 2^n + 1$.

Ratkaisu. Koska $2^m - 1 \mid 2^{2n} - 1$, niin $m \mid 2n$, sillä $(a^k - 1, a^\ell - 1) = a^{(k,\ell)} - 1$. Jos m on pariton niin $m \mid n$, joten $2^m - 1 \mid 2^n - 1$ ja $2^m - 1 \mid 2^n + 1$. Siispä m = 1, jolloin n on mielivaltainen. Jos m on parillinen, niin $\frac{m}{2} \mid n$, joten $2^{\frac{m}{2}} \mid 2^n - 1$. Toisaalta sama luku jakaa luvun $2^n + 1$ koska $\frac{m}{2} \mid m$. Näin ollen m = 2. Silloin n kelpaa jos ja vain jos n on pariton.

- 3. Olkoon $n \geq 3$ kokonaisluku. Montako tornin reittiä on $n \times n$ -shakkilaudan vasemmasta alakulmasta oikeaan yläkulmaan seuraavilla ehdoilla:
 - torni liikkuu joka siirrolla ylös tai oikealle ja
 - \bullet torni ei kulje laudan keskiruutujen kautta (parillisilla n keskiruutuja on neljä ja parittomilla n yksi) ja
 - reittejä pidetään samoina, jos ne kulkevat täsmälleen samojen ruutujen kautta?

Ratkaisu. Jokainen tornin polku on 2n-2 askeleen pituinen, ja askeleista n-1 otetaan ylös ja n-1 oikealle. Koska 2n-2 kohdasta voidaan valita n-1 kohtaa, joissa mennään ylös, $\binom{2n-2}{n-1}$ tavalla, tornin polkuja on kokonaisuudessaan näin monta. Pitää vähentää ne polut, jotka päätyvät keskiruutuihin. Oletetaan aluksi, että n on pariton. Vasemmasta alakulmasta pääsee keskiruutuun $\binom{2m-2}{m-1}$ sallitulla tavalla, missä $m=\frac{n+1}{2}$ (koska se vastaa $m\times m$ -laudan tilannetta). Edelleen keskiruudusta voi jatkaa yhtä monella polulla. Vastaus on siis

$$\binom{2n-2}{n-1} - \binom{n-1}{\frac{n-1}{2}}^2.$$

Olkoon sitten n parillinen. Merkitään keskiruutuja kirjaimilla A, B, C, D, missä A on lähinnä vasenta alakulmaa ja D lähinnä oikeaa yläkulmaa. Taas tornin reittejä on kokonaisuudessaan $\binom{2n-2}{n-1}$. Näistä pitää vähentää polut, jotka päätyvät ruutuun A, ruutuun B päätyvät polut ja ruutuun C päätyvät polut (ruutuun D ei voi päätyä osumatta johonkin näistä). Kuitenkin pitää lisätä ne polut, jotka kulkevat sekä A ja B tai A ja C kautta. Ruutuun A päätyviä polkuja on $\binom{2m-2}{m-1}$, missä $m=\frac{n}{2}$. Edelleen sieltä lähtee $\binom{2m}{m}$ polkua. Ruutuun B päätyy $\binom{2m-1}{m}$ polkua, koska kyseisestä ruudusta alakulmaan on matkaa 2m-1 askelta, ja näistä m otetaan ylös ja m-1 oikealle, joten valintojen määrä on edellä mainittu luku. Vastaavasti ruudusta B lähtee $\binom{2m-1}{m}$ polkua. Ruudun C tilanne on symmetrinen. Polkuja, jotka kulkevat A:n kautta B:hen on yhtä monta kuin polkuja A:han eli $\binom{2m-2}{m-1}$. Ruudusta B voidaan jatkaa $\binom{2m-1}{m}$ tavalla. Polkuja A:n ja C:n kautta on yhtä monta. Vastaus on siis

$$\binom{2n-2}{n-1} - \binom{n-2}{\frac{n-2}{2}} \binom{n}{\frac{n}{2}} - 2\binom{n-1}{\frac{n}{2}}^2 + 2\binom{n-2}{\frac{n-2}{2}} \binom{n-1}{\frac{n}{2}}.$$

4. Olkoot a,b,c>0. Osoita, että $(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$.

Ratkaisu: Pitää osoittaa, että $(\frac{a}{b}+\frac{b}{c}+\frac{c}{a})^2\geq 3+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{a}{c}+\frac{b}{a}+\frac{c}{b}$. Jos merkitään $x=\frac{a}{b},y=\frac{b}{c},z=\frac{c}{a}$, niin xyz=1 ja pitää osoittaa $(x+y+z)^2\geq 3+x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3(xyz)^{\frac{2}{3}}+\sum_{cyc}x^{\frac{4}{3}}y^{\frac{1}{3}}z^{\frac{1}{3}}+xy+yz+zx$. Sieventämällä pitää osoittaa, että $x^2+y^2+z^2+xy+yz+zx\geq 3(xyz)^{\frac{2}{3}}+\sum_{cyc}x^{\frac{4}{3}}y^{\frac{1}{3}}z^{\frac{1}{3}}$. Aritmeettis-geometrisella saadaan $xy+yz+zx\geq 3(xyz)^{\frac{2}{3}}$. Lisäksi $\frac{1}{6}x^2+\frac{1}{6}x^2+\frac{1}{6}x^2+\frac{1}{6}x^2+\frac{1}{6}z^2\geq x^{\frac{4}{3}}y^{\frac{1}{3}}z^{\frac{1}{3}}$. Summaamalla syklisesti yhteen saadaan väite (viimeisimmän epäyhtälöarvion saa näppärämmin painotetulla AG:llä).

5. Olkoon ABC teräväkulmainen kolmio, jossa $\angle ABC = \angle ACB$. Olkoon sen ympäripiirretyn ympyrän keskipiste O ja korkeusjanojen leikkauspiste H. Osoita, että pisteiden B, O ja H kautta kulkevan ympyrän keksipiste on suoralla AB.

Ratkaisu. Olkoon E sivun BC keskipiste. Todistetaan ensin, että ABC on tasakylkinen ja sitten, että pisteet A, H, O, E ovat samalla suoralla (argumentti toimii riippumatta pisteiden H ja O järjestyksestä suoralla). Olkoon D pisteiden B, O, H kautta kulkevan ympyrän ja sivun AB leikkauspiste. Thaleen lauseella riittää osoittaa $\angle BOD = 90$ °. Tunnetusti pisteet O ja H ovat toistensa peilikuvia peilattaessa kulman ABC puolittajan yli. Siten $\angle ABH = \angle CBO := \alpha$. Kehäkulmalauseella myös $\angle DOH = \alpha$. Suoarkulmaisesta kolmiosta BEO saadaan $\angle BEO = 90$ ° $-\alpha$. Nyt $\angle BOD = 180$ ° $-\angle BOE - \angle DOH = 180$ ° -(90° $-\alpha) - \alpha = 90$ °, mikä piti todistaa. Huomaa, että tehtävä ei ole mielekäs, jos ABC on tasasivuinen; tällöinhän O = H.

6. Olkoon $x \ge 3$ kokonaisluku ja $n = x^6 - 1$. Oletetaan, että alkuluvulle p ja kokoaisluvulle $k \ge 0$ pätee $p^k \mid n$. Osoita, että $p^{3k} < 8n$.

Ratkaisu. Olkoon aluksi p>3. Voidaan kirjoittaa $x^6-1=(x^3-1)(x^3+1)=(x-1)(x+1)(x^2-x+1)(x^2+x+1)$. Jos $d\mid x-1, d\mid x+1$, niin $d\mid 2$. Jos $d\mid x\pm 1$ eli $x\equiv \pm 1\pmod d$, niin $x^2\pm x+1\equiv 2\pm 1\not\equiv 0\pmod d$ paitsi jos d=3 tai d=1. Lisäksi jos $d\mid x^2-x+1, d\mid x^2+x+1$, niin $d\mid 2x$, joten $\frac{d}{2}\mid x$, mistä $\frac{d}{2}\mid x^2+x$. Siispä d=1 tai d=2. Siispä kaikkien neljän tulontekijän pareittaiset sytit ovat ≤ 3 . Erityisesti p>3 jakaa vain yhden tulontekijän. Siispä $p^k\leq x^2+x+1$, joten $p^{3k}\leq (x^2+x+1)^3\leq (2x^2-2)^3=8(x^2-1)^6<8(x^6-1)=8n$, kun $x\geq 3$. Jos p=3, niin p^{k-1} jakaa jonkin tulontekijän. Helposti nähdään, että 9 ei jaa lukuja $x^2\pm x+1$. Lisäksi enintään kaksi tulontekijää voi ola kolmella jaollisia. Siispä $p^k\leq 3(x+1)$, joten $p^{3k}\leq 27(x+1)^3<8(x-1)^6$, kun $2(x-1)^2>3(x+1)$, mikä pätee, kun $x\geq 4$. Siispä tällöin myös $p^{3k}<8(x^6-1)=8n$. Tapaus x=3 on helppo tarkistaa, koska silloin 3 ei ole tekijä. Olkoon sitten p=2. Helposti nähdään, että 2 ei jaa $x^2\pm x+1$. Siispä $p^{k-1}\leq x+1$, joten $p^k<2(x+1)$. Koska erityisesti $p^k<3(x+1)$, äskeinen päättely pätee.

7. Taululle on kirjoitettu $n \geq 2$ reaalilukua. Pelaajat A ja B pelaavat peliä vuorotellen; A aloittaa. Vuorollaan pelaaja valitsee taululta kaksi reaalilukua a ja b, pyyhkii ne ja kirjoittaa tilalle luvut $\frac{2(a+b)}{3}$ ja $\frac{2(a-b)}{3}$. Pelaajan B tavoite on saavuttaa tilanne, jossa kaikkien taulun lukujen itseisarvo on alle $\frac{1}{100}$. Pystyykö B välttämättä saavuttamaan tavoitteensa?

Ratkaisu. Olkoon S_k lukujen neliöiden summa k kierroksen jälkeen. Koska $a^2+b^2=\left(\frac{a+b}{\sqrt{2}}\right)^2+\left(\frac{a-b}{\sqrt{2}}\right)^2>\left(\frac{a+b}{\frac{3}{2}}\right)^2+\left(\frac{a-b}{\frac{3}{2}}\right)^2$, niin S_k on vähenevä jono (eli S_k on semi-invariantti). Pelaaja B pelaa seuraavasti: hän valitsee aina taulun kaksi suurinta lukua. Tällöin $S_{k+1}=S_k-a^2-b^2+\left(\frac{a+b}{\frac{3}{2}}\right)^2+\left(\frac{a-b}{\frac{3}{2}}\right)^2=S_k-\frac{a^2+b^2}{9}\leq S_k-\frac{\frac{2}{n}S_k}{9}=(1-\frac{1}{18n})S_k$, missä n on taulun lukujen määrä (lukujen a ja b maksimaalisuutta käytettiin). Siispä $S_k\leq (1-\frac{1}{18n})^kS_0<10^{-4}$ riittävän suurella k. Tässä vaiheessa B onsaavuttanut tavoitteensa, koska jos lukujen neliöiden summa on alle 10^{-4} , kaikki luvut ovat itseisarvoltaan alle $\frac{1}{100}$.

8. Olkoon P kolmion ABC sisäpiste siten, että $\angle ABP = \angle PCA$. Olkoon Q sellainen piste, että PBQC on suunnikas. Todista, että $\angle QAB = \angle CAP$.

Ratkaisu. Olkoon R sellainen piste, että APBR on suunnikas. Tällöin AB||BP||CQ. Olkoot D sivun AB keskipiste ja E sivun BC keskipiste. Nyt kolmiosta ABC saadaan AC||DE. Koska suunnikkaan lävistäjät puolittavat toisensa, niin D on janan RP keskipiste ja E on janan QP keskipiste. Siten komiosta RPQ saadaan DE||RQ. Yhdistämällä kaksi viimeistä havaintoa saadaan AC||RQ. Yhdistettäessä tämä alun huomioon AR||CQ saadaan, että ACQR on suunnikas. Käyttämällä tietoa suunnikkaan kulmista (suunnikkaassa XYZW on $\angle XYW = \angle ZWY$ ja $\angle WXY = \angle WZY$) ja tehtävän kulmaoletusta saadaan $\angle ABQ = \angle ACQ = \angle ARQ$. Siten ARBQ on jännenelikulmio. Nyt kehäkulmalauseella $\angle QAB = \angle BRQ = \angle CAP$. Viimeinen yhtäsuuruus pätee, koska BR||AP ja RQ||AC. Väite seuraa.

9. Osoita, ettei ole olemassa funktiota $f: \mathbb{R} \to \mathbb{R}$, jolle

$$\frac{f(x) + f(y)}{2} \ge f(\frac{x+y}{2}) + |x-y|$$

kaikilla reaaliluvuilla x ja y.

Ratkaisu. Selvästi funktio f(x) toteuttaa epäyhtälön jos ja vain jos f(x)+c toteuttaa, missä c on vakio. Voidaan siis olettaa f(0)=0. Sijoituksella y=0 saadaan $f(x)\geq 2f(\frac{x}{2})+|x|$. Tämä epäyhtälö sanoo myös $f(\frac{x}{2})\geq 2f(\frac{x}{4})+|\frac{x}{2}|$. Siispä $f(x)\geq 4f(\frac{x}{4})+2|x|$. Induktiolla saadaan helposti $f(x)\geq 2^nf(\frac{x}{2^n})+2^{n-1}$. Jos x=1, saadaan $f(1)\geq 2^nf(\frac{1}{2^n})+2^{n-1}$. Koska f(1) ei voi olla mieleivaltaisen suuri, pätee $f(\frac{1}{2^n})<0$ kaikilla riittävän suurilla n. Toisaalta sijoituksella x=-1 saadaan $f(-1)\geq 2^nf(\frac{1}{2^n})+2^{n-1}$, joten myös $f(\frac{1}{2^n})>0$ riittävän suurilla n. Mutta toisaalta $\frac{f(\frac{1}{2^n})+f(\frac{1}{2^n})}{2}\geq \frac{1}{2^{n-1}}>0$, mikä on ristiriita.

10. Etsi kaikki funktiot $f: \mathbb{Z}_+ \to \mathbb{Z}_+$, joille f(n!) = f(n)! kaikilla $n \in \mathbb{Z}_+$ ja $a-b \mid f(a)-f(b)$ kaikilla $a,b \in \mathbb{Z}_+$, kun $a \neq b$.

Ratkaisu. Selvästi funktiot $f(n)=n, \ f(n)=1$ ja f(n)=2 kaikilla $n\in\mathbb{Z}_+$ kelpaavat. Osoitetaan, ettei muita ole. Koska f(1)!=f(1), niin f(1) on 1 tai 2. Osoitetaan, että jos f(n)=c äärettömän monella n, niin f(n)=c kaikilla n. Jos näin on, niin $a-b\mid f(a)-c$ kaikilla niillä $b\neq a$, joille f(b)=c (äärettömän monessa tapauksessa). Siispä luvulla f(a)-c on mielivaltaisen suuria jakajia, joten f(a)=c kaikilla a. Seuraavaksi olkoon p pariton alkuluku. Wilsonin lauseella $(p-1)!\equiv -(p-2)!\equiv -1\pmod p$, joten $p\mid (p-2)!-1$. Nyt pätee $p\mid (p-2)!-1\mid f((p-2)!)-f(1)=f(p-2)!-f(1)$. Jos olisi $f(p-2)\geq p$, niin $f(p-2)!\equiv 0\pmod p$, joten $p\mid f(1)$. Kuitenkin f(1) on 1 tai 2, ristiriita. Siispä $f(p-2)\leq p-1$. Jos f(p-2)=p-1, niin $p\mid (p-1)!-1,$ mikä on ristirita Wilsonin lauseelle. Siispä $f(p-2)\leq p-2$. Toisaalta $p-3\mid f(p-2)-f(1),$ joten joko $f(p-2)\geq p-3+f(1)\geq p-2$ tai f(p-2)=f(1). Alkulukuja on äärettömän monta, ja äärettömän monelle p on pädettävä ensimmäinen vaihtehto; muutoin f on vakio aikaisemman havainnon nojalla. Siispä f(p-2)=p-2 äärettömän monella alkuluvulla p. Jos $n\in\mathbb{Z}_+$ ja f(p-2)=p-2, niin $n-p-2\mid f(n)-f(p-2)=f(n)-p-2.$ Siten $f(n)\equiv n\pmod {n-p-2}.$ Koska modulus saadaan mieleivaltaisen suureksi valitsemalla p riittävän suureksi, seuraa f(n)=n kaikilla n.