Types of Machine Learning

Course Notes

Three Fundamental Types

- 1. Supervised Learning: Uses labeled data with input-output pairs
- 2. Unsupervised Learning: Discovers patterns in unlabeled data
- 3. Reinforcement Learning: Learns through rewards/punishments

Supervised Machine Learning

Binary

Two classes (Pass/Fail)

Multi-class
> Two classes

(A/B/C/D/F)

Key Characteristics

- Requires labeled dataset with input-output pairs
- Contains independent features (input) and dependent feature (output)
- Output feature changes based on inputs

Problem Types

Regression	Binary Classification	Multi-class Classification
Continuous output	Two possible outcomes	Multiple categories
House price prediction	Student pass/fail	Letter grade prediction
$Y\in\mathbb{R}$	$Y \in \{0,1\}$	$Y \in \{1, 2, \dots, K\}$

Algorithms

• Regression: Linear, Ridge, Lasso, Elastic Net

• Classification: Logistic Regression, Decision Trees

• Both: Random Forest, AdaBoost, XGBoost

Unsupervised Machine Learning

Key Characteristics

- No output/label in dataset
- Discovers hidden patterns and structures
- Groups similar data points into clusters
- Used for exploratory analysis

Example: Customer Segmentation

- Features: Salary, Spending score (1-10)
- Goal: Group customers for targeted marketing
- Clusters:
 - High salary + High spending (offer premium discounts)
 - Low salary + Low spending (minimal targeting)
 - Medium salary + High spending (growth opportunities)

Algorithms

- K-Means Clustering
- Hierarchical Clustering
- DBSCAN

Reinforcement Learning

Analogy:
Baby learning
to walk

States: Standing, Walking, Falling Rewards: Praise,

Candy

Punishment: Pain

Key Characteristics

- Learns through **trial-and-error**
- \bullet Receives $\mathbf{rewards}$ for good actions
- Receives **penalties** for bad actions
- Goal: Maximize cumulative reward over time

Learning Process

$$\text{Policy} = \arg\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t}\right]$$

Where:

- $\gamma = \text{Discount factor } (0-1)$
- $R_t = \text{Reward at time } t$
- Policy = Strategy for choosing actions

Summary Table

	Supervised	Unsupervised	Reinforcement
Data	Labeled	Unlabeled	Reward signals
Goal	Predict outputs	Discover patterns	Learn optimal actions
Training	Input-output pairs	Raw features only	Action-reward pairs
Output	Predictions	Clusters	Policy
Examples	Price prediction, Classifi-	Customer segmentation	Game AI, Robotics
	cation		

Course Roadmap

- 1. Supervised Learning (Linear Regression \rightarrow Tree-based methods)
- 2. Unsupervised Learning (Clustering algorithms)
- 3. Reinforcement Learning (Separate module)