Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

7 The Graph Score Theorem

- Homework assignment published on Monday, 2018-04-09.
- Submit questions and first solution by Sunday, 2018-04-15, 12:00 by email to dominik.scheder@gmail.com and the TAs.
- You will receive feedback by Wednesday, 2018-04-18.
- Submit your final solution by Sunday, 2018-04-22 to me and the two TAs.

Exercise 7.1. Describe, in simple sentences with a minimum of mathematical formalism, (1) the score of a graph, (2) what the graph score theorem is, (3) the idea of the graph score algorithm, (4) where the difficult part of its proof is. Imagine you have a friend who does not take this class, and think about how to answer the above questions to them.

Theorem

Let $d = (d_1, \dots, d_n)$ with $d - 1 \le \dots \le d_n$. Define d' by

$$d'_{i} = \begin{cases} d_{i} - 1 & i = n - d_{n}, \dots, n - 1, n \\ d_{i} & i = 1, \dots, n - d_{n} - 1 \end{cases}$$

Then there exists a graph with score d if and only if there exist a graph with score d'

Furthermore, if n = 1, then there exist a graph with score (d_1) if and only if $d_i = 1$.

Idea of Algorithm

find-graph
$$(d_1, d_2, \dots, d_n)$$

sort (d_1, d_2, \dots, d_n)

$$d'_{i} = \begin{cases} d_{i} - 1 & i = n - d_{n}, \dots, n - 1, n \\ d_{i} & i = 1, \dots, n - d_{n} - 1 \end{cases}$$

$$G' = \text{find-graph}(d'_1, d'_2, \cdots, d'_{n-1})$$

if $G' = \text{NULL}$
return NULL
else $G = G' + vertex(n)$

7.1 Alternative Graphs

Now we will look at different notions of graphs. As defined in class and in the video lectures, a graph is a pair G = (V, E) where V is a (usually finite) set, called the *vertices*, and $E \subseteq \binom{V}{2}$, called the set of *edges*.

Multigraphs. A multigraph is like a graph, but you can have several parallel edges between two vertices. You cannot, however, have self-loops. That is, there cannot be an edge from u to u itself. This is an example of a multigraph:

We can define degree and score for multigraphs, too. For example, this multigraph has score (4,4,2). Obviously no graph can have this score.

Exercise 7.2. State a score theorem for multigraphs.

Theorem 7.3 (Multigraph Score Theorem). Let $A = (a_1, ..., a_n) \in \mathbb{N}_0^n$, $a_1 \geq a_2 \geq ... \geq a_n$. There is a multigraph with this score if and only if $a_1 + a_2 + ... + a_n$ is even and $a_1 \leq a_2 + ... + a_n$.

Furthermore, when n = 1, then exists a graph with $score(a_1)$ if and only if $a_1 = 0$. When n = 2, then exists a graph with $score(a_1, a_2)$ if and only if $a_1 = a_2$.

Remark. This is actually simpler than for graphs.

Exercise 7.4. Prove your theorem.

Proof. Suppose v_1, v_2, \ldots, v_n are the corresponding vertices of a_1, a_2, \ldots, a_n . Multigraph $\Rightarrow a_1 \leq a_2 + \cdots + a_n$

According to the handshake theorem, $a_1 + a_2 + \cdots + a_n$ is even.

We can split vertices into two groups: v_1 and v_2, \ldots, v_n .

For each edge E(u, v):

If u is v_1 and v is in v_2, \ldots, v_n , then v_1 gains degree of 1 and v_2, \ldots, v_n gain degree of 1.

If u is in v_2, \ldots, v_n and v is v_1 , then v_1 gains degree of 1 and v_2, \ldots, v_n gain degree of 1.

If u is in v_2, \ldots, v_n and v is v_2, \ldots, v_n , then v_1 gains no degree and v_2, \ldots, v_n gain degree of 2.

Therefore, the degree of v_1 must be less or equal than the total degree of v_2, \ldots, v_n , namely $a_1 \leq a_2 + \cdots + a_n$.

 $a_1 \leq a_2 + \cdots + a_n \Rightarrow \text{multigraph}$

Case 1. When $a_1 = a_2 + \cdots + a_n$.

Construct multigraph by connecting a_i edges between v_1 and v_i , $i \geq 2$.

 v_1 gains $a_2 + \cdots + a_n$ degrees and v_i gains a_i degree(s), so there is a multigraph.

Case 2. When $a_1 < a_2 + \cdots + a_n$. Let $A = a_1, B = a_2 + \cdots + a_n$. $B - A = a_2 + \cdots + a_n - a_1$.

Construct multigraph by connecting vertices in v_2, \ldots, v_n until the total left degree of v_2, \ldots, v_n is equal to the degree of v_1 . Then it becomes **Case 1**.

More concretely, we can do this by following process:

For v_i , $i = n, n - 1, \dots, 2$.

When $a_i < B - A$, then connect a_i edges between v_i and v_{i-1} . a_i becomes 0 and a_{i-1} becomes $a_{i-1} - a_i$. And B becomes $B - 2a_i$.

Now the new sequence is $a_1, a_2, \ldots, a'_{i-1} = a_{i-1} - a_i, 0, \ldots, 0$. The new B is $B - 2a_i$.

When $a_i \geq B - A$, then connect $\frac{B-A}{2}$ edges between v_i and v_{i-1} . a_i becomes $a_i - \frac{B-A}{2}$ and a_{i-1} becomes $a_{i-1} - \frac{B-A}{2}$. And B becomes B - (B-A) = A.

Now the new sequence is $a_1, a_2, \ldots, a'_{i-1} = a_{i-1} - \frac{B-A}{2}, a'_i = a_i - \frac{B-A}{2}, 0, \ldots, 0,$ $A = a_1 = B = a_2 + \cdots + a'_{i-1} + a'_i$. So it becomes **Case 1**, we can simply connect v_1 with $v_i, i = 2, 3, \ldots, n$.

Since A + B is even, B - A is even, too, so $\frac{B-A}{2}$ is an integer. And B - A < B, so there exists v_k such that $a_k \ge B - A$.

To sum up, we can construct a multigraph if $a_1 + a_2 + \cdots + a_n$ is even and $a_1 \leq a_2 + \cdots + a_n$.

Weighted graphs. A weighted graph is a graph in which every edge e has a non-negative weight w_e . In such a graph the weighted degree of a vertex u is $wdeg(u) = \sum_{\{u,v\} \in E} w_{\{u,v\}}$.

This is an example of a weighted graph, which has score (3, 2, 2). Obviously no graph and no multigraph can have this score.

Exercise 7.5. State a score theorem for weighted graphs. That is, state something like

Theorem 7.6 (Weighted Graph Score Theorem). Let $(a_1, \ldots, a_n) \in \mathbb{R}_0^n$ $a_1 \geq a_2 \geq \cdots \geq a_n$. There is a weighted graph with this score if and only if $a_1 \leq a_2 + \cdots + a_n$.

Remark. This is actually even simpler.

Exercise 7.7. Proof. Suppose v_1, v_2, \ldots, v_n are the corresponding vertices of a_1, a_2, \ldots, a_n .

Weighted Graph $\Rightarrow a_1 \leq a_2 + \cdots + a_n$

We can split vertices into two groups: v_1 and v_2, \ldots, v_n .

For each edge E(u, v):

If u is v_1 and v is in v_2, \ldots, v_n , then v_1 gains degree of the weight and v_2, \ldots, v_n gain degree of the weight.

If u is in v_2, \ldots, v_n and v is v_1 , then v_1 gains degree of the weight and v_2, \ldots, v_n gain degree of the weight.

If u is in v_2, \ldots, v_n and v is v_2, \ldots, v_n , then v_1 gains no degree and v_2, \ldots, v_n gain the degree of double weight.

Therefore, the degree of v_1 must be less or equal than the total degree of v_2, \ldots, v_n , namely $a_1 \leq a_2 + \cdots + a_n$.

 $a_1 \leq a_2 + \cdots + a_n \Rightarrow \text{Weighted Graph}$

Case 1. When $a_1 = a_2 + \cdots + a_n$.

Construct Weighted Graph by connecting an edge of weight a_i between v_1 and v_i , $i \geq 2$.

 v_1 gains $a_2 + \cdots + a_n$ degrees and v_i gains a_i degree(s), so there is a Weighted Graph.

Case 2. When $a_1 < a_2 + \cdots + a_n$. Let $A = a_1$, $B = a_2 + \cdots + a_n$. $B - A = a_2 + \cdots + a_n - a_1$.

Construct Weighted Graph by connecting vertices in v_2, \ldots, v_n until the total left degree of v_2, \ldots, v_n is equal to the degree of v_1 . Then it becomes **Case 1**.

More concretely, we can do this by following process:

For v_i , i = n, n - 1, ..., 2.

When $a_i < B - A$, then connect an edge of weight a_i between v_i and v_{i-1} . a_i becomes 0 and a_{i-1} becomes $a_{i-1} - a_i$. And B becomes $B - 2a_i$.

Now the new sequence is $a_1, a_2, \ldots, a'_{i-1} = a_{i-1} - a_i, 0, \ldots, 0$. The new B is $B - 2a_i$.

When $a_i \geq B - A$, then connect an edge of weight $\frac{B-A}{2}$ between v_i and v_{i-1} . a_i becomes $a_i - \frac{B-A}{2}$ and a_{i-1} becomes $a_{i-1} - \frac{B-A}{2}$. And B becomes B - (B - A) = A.

Now the new sequence is $a_1, a_2, \ldots, a'_{i-1} = a_{i-1} - \frac{B-A}{2}, a'_i = a_i - \frac{B-A}{2}, 0, \ldots, 0,$ $A = a_1 = B = a_2 + \cdots + a'_{i-1} + a'_i$. So it becomes **Case 1**, we can simply connect v_1 with $v_i, i = 2, 3, \ldots, n$.

Since the sequence are sorted, there are no repeated weighted edges. And B - A < B, so there exists v_k such that $a_k \ge B - A$.

Therefore, we can construct a Weighted Graph if $a_1 \leq a_2 + \cdots + a_n$.

Allowing negative edge weights. Suppose now we allow negative edge weights, like here:

This "graph with real edge weights" has score (2,0,0). This score is impossible for graphs, multigraphs, and weighted graphs with non-negative edge weights.

Exercise 7.8. State a score theorem for weighted graphs when we allow negative edge weights. That is, state a theorem like

Theorem 7.9 (Score Theorem for Graphs with Real Edge Weights). Let $(a_1, \ldots, a_n) \in \mathbb{R}^n$. There is a graph with real edge weights with this score if and only if $n \geq 3$ or $a_1 = a_2$ when n = 2 or $a_1 = 0$ when n = 1.

Exercise 7.10. Prove your theorem.

Proof. Obviously, if there is a graph with real edge weights, $n \ge 3$ or $a_1 = a_2$ when n = 2 or $a_1 = 0$ when n = 1.

Suppose v_1, v_2, \ldots, v_n are the corresponding vertices of a_1, a_2, \ldots, a_n .

When n = 1, obviously, there is a graph with real edge weights if and only if $a_1 = 0$.

When n = 2, obviously, there is a graph with real edge weights if and only if $a_1 = a_2$.

When n = 3, suppose x, y, z be the weight of $E(v_2, v_3), E(v_1, v_3), E(v_1, v_2)$. According to the degree of each vertices, there are equations as followings:

$$\begin{cases} x + y = a_3 \\ x + z = a_2 \\ y + z = a_1 \end{cases}$$

The solution is:

$$\begin{cases} x = \frac{a_2 + a_3 - a_1}{2} \\ y = \frac{a_1 + a_3 - a_2}{2} \\ z = \frac{a_1 + a_2 - a_3}{2} \end{cases}$$

Therefore, for every sequence a_1, a_2, a_3 , there is a graph with real edge weights.

When $n \geq 4$.

Connect an edge of weight a_i between v_i and v_1 , $i \geq 4$.

Now we can image v_1, v_4, \ldots, v_n as a "big" vertice v_1' . To promise the degree of v_1 , the degree of the "big" vertice is $a_1' = a_1 - a_4 - \cdots - a_n$.

In fact, it becomes the cases that n = 3. Suppose x, y, z be the weight of $E(v_2, v_3), E(v'_1, v_3), E(v'_1, v_2)$.

$$\begin{cases} x + y = a_3 \\ x + z = a_2 \\ y + z = a'_1 \end{cases}$$

$$\begin{cases} x = \frac{a_2 + a_3 - a'_1}{2} \\ y = \frac{a'_1 + a_3 - a_2}{2} \\ z = \frac{a'_1 + a_2 - a_3}{2} \end{cases}$$

Therefore, for $a_1, a_2, \ldots, a_n, n \geq 4$, there is a graph with real edge weight.

Exercise 7.11. For each student ID (a_1, \ldots, a_n) in your group, check whether this is (1) a graph score, (2) a multigraph score, (3) a weighted graph score, or (4) the score of a graph with real edge weights.

Whenever the answer is yes, show the graph, when it is no, give a short argument why.

Example Solution. My work ID is 50411. This is a weighted graph score, as shown by this picture:

This settles (3). It is not a multigraph score, because BLABLABLA. I won't give more details, as it might give too many hints about Exercise 7.2. Alright, this settles (2). Note that I do *not* need to answer (4), as this is already answered by (3). Neither do I need to answer (1), as a "no" for (2) implies a "no" for (1).