CSC 3201 Compiler Construction

Department of Computer Science SZABIST (Islamabad Campus)

Week 4 (Lecture 1, Part 2)

CFG vs CSG

- CFG (Context-Free Grammar):
 - Every production rule is of the form
 - V → w, where V is a single nonterminal symbol, and w is a string of terminals and/or nonterminals (possibly empty).
 - Nonterminals can be rewritten without regard to the context in which they occur.

CFG vs CSG

- CSG (Context-Sensitive Grammar):
 - Both Left and right hand sides of any production rules may be surrounded by a context of terminal and nonterminal symbols.
 - A production rule is of the form
 - $\beta A \gamma \rightarrow \beta \alpha \gamma$

Parsing Techniques

- Top-down parsers
 - Starts at the root of the parse tree and grows towards leaves.
 - At each node, the parser picks a production and tries to match the input.
 - The parser may pick the wrong production in which case it will need to backtrack.
 - Some grammars are backtrack- free.

Parsing Techniques

- Bottom-up parsers
 - Starts at the leaves and grows toward root of the parse tree.
 - As input is consumed, the parser encodes possibilities in an internal state.
 - Starts in a state valid for legal first tokens.
 - Handle a large class of grammars.

Top-down Parsers

- Construct the root node of the parse tree.
- Repeat until the fringe of the parse tree matches input string.
 - At a node labeled A, select a production with A on its LHS.
 - For each symbol on its RHS, construct the appropriate child.
 - When a terminal symbol is added to the fringe and it does not match the fringe, backtrack.

4

Backtracking

```
1 goal \rightarrow expr
2 \exp r \rightarrow \exp r + \operatorname{term}
            | expr - term
              term
5 term → term * factor
            | term / factor
              factor
8 factor → number
```

Backtracking

- Example: x-2*y
 - Wrong production selected at step 2

P	Sentential Form	input
-	Goal	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
1	expr	$\uparrow_{\underline{\mathbf{x}}} - \underline{2} * \underline{\mathbf{y}}$
2	expr + term	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
4	term + term	$\uparrow_{\underline{\mathbf{x}}} - \underline{2} * \underline{\mathbf{y}}$
7	factor + term	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
9	$\langle id,\underline{x}\rangle \pm term$	↑ <u>x~2*y</u>
9	$\langle id, \underline{x} \rangle + \eta erm$	<u>x(↑-)2</u> * <u>y</u>

Backtracking

P	Sentential Form	input
-	Goal	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
1	expr	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
3	expr – term	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
4	term – term	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
7	factor – term	$\uparrow_{\underline{\mathbf{X}}} - \underline{2} * \underline{\mathbf{y}}$
9	$\langle id, \underline{x} \rangle = term$	↑ <u>×~ 2</u> * y
9	$< id, \underline{x} \neq - \eta erm$	<u>x(↑-)2</u> * <u>y</u>