Beweis 1:

Beweis der Kantorovich-Ungleichung (Lemma 2.18)

Beweis: Seien $0 < \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$ die Eigenwerte und u_1, u_2, \ldots, u_n paarweise orthonormale Eigenvektoren von Q. Sei $x \in \mathbb{R}^n$ mit $x \ne 0$ beliebig, aber fest gegeben. Da die u_1, u_2, \ldots, u_n insbesondere eine Basis für den \mathbb{R}^n bilden, existiert eine Darstellung der Form

$$x = \sum_{i=1}^{n} \beta_i u_i$$

mit $\sum_{i=1}^n \beta_i^2 > 0$ für gewisse $\beta_i \in \mathbb{R}$. Die Orthonormalität der u_i ergibt ferner

$$F(x) := \frac{(x^T x)^2}{(x^T Q x)(x^T Q^{-1} x)} = \frac{(\sum_{i=1}^n \beta_i^2)^2}{(\sum_{i=1}^n \lambda_i \beta_i^2)(\sum_{i=1}^n \lambda_i^{-1} \beta_i^2)}.$$

Mit $\gamma_i := \frac{1}{\sum_{i=1}^n \beta_i^2} \beta_i^2$ wird daraus

$$F(x) = \frac{1}{\left(\sum_{i=1}^{n} \gamma_i \lambda_i\right) \left(\sum_{i=1}^{n} \gamma_i \lambda_i^{-1}\right)}.$$

Sei $\bar{\lambda} := \sum_{i=1}^n \gamma_i \lambda_i$. Wegen $\gamma_i \geq 0$ und $\sum_{i=1}^n \gamma_i = 1$ ist $\bar{\lambda}$ eine Konvexkombination der Eigenwerte λ_i von Q. Somit ist $\lambda_1 \leq \bar{\lambda} \leq \lambda_n$. Wir betrachten nun im \mathbb{R}^2 die Punkte

$$P_i := (\lambda_i, \lambda_i^{-1}), \quad i = 1, \dots, n,$$
 und
 $Q := (\bar{\lambda}, \sum_{i=1}^n \gamma_i \lambda_i^{-1}).$

Die Punkte P_1, P_2, \dots, P_n liegen auf dem Graphen der Funktion

$$r: \mathbb{R}_{++} \to \mathbb{R}, \quad r(\lambda) = \lambda^{-1}.$$

Wegen $r''(\lambda) > 0$ für alle $\lambda > 0$ ist r strikt konvex (klar?). Folglich liegen P_2, \ldots, P_{n-1} unterhalb der Geraden durch P_1 und P_n . Der Punkt Q liegt wegen $Q = \sum_{i=1}^n \gamma_i P_i$ und $\gamma_i \geq 0$, $\sum_{i=1}^n \gamma_i = 1$ in der konvexen Hülle von $\{P_1, P_2, \ldots, P_n\}$ und somit jedenfalls nicht oberhalb der Geraden $g(\lambda) := (\lambda_1 + \lambda_n - \lambda)/(\lambda_1 \lambda_n)$ durch P_1 und P_n :

$$\sum_{i=1}^{n} \gamma_i \lambda_i^{-1} \le \frac{\lambda_1 + \lambda_n - \bar{\lambda}}{\lambda_1 \lambda_n}.$$

Hieraus erhält man

$$F(x) = \frac{1}{\bar{\lambda} \sum_{i=1}^{n} \gamma_{i} \lambda_{i}^{-1}}$$

$$\geq \frac{\lambda_{1} \lambda_{n}}{\bar{\lambda} (\lambda_{1} + \lambda_{n} - \bar{\lambda})}$$

$$\geq \min_{\lambda_{1} \leq \lambda \leq \lambda_{n}} \frac{\lambda_{1} \lambda_{n}}{\bar{\lambda} (\lambda_{1} + \lambda_{n} - \lambda)}$$

$$= \frac{4\lambda_{1} \lambda_{n}}{(\lambda_{1} + \lambda_{n})^{2}},$$

wobei wir den Nachweis der letzten Gleichheit als einfache Aufgabe für den Leser überlassen. Damit ist die Kantorovich-Ungleichung bewiesen.