

Machine-Level Programming II: Control – if / then / else

These slides adapted from materials provided by the textbook

Machine-Level Programming II: Control

- Control: Condition codes
- Conditional branches
- Loops
- Switch Statements

Jumping

jX Instructions

Jump to different part of code depending on condition codes

jX	Condition	Description
jmp	1	Unconditional
je	ZF	Equal / Zero
jne	~ZF	Not Equal / Not Zero
js	SF	Negative
jns	~SF	Nonnegative
jg	~(SF^OF) &~ZF	Greater (Signed)
jge	~ (SF^OF)	Greater or Equal (Signed)
j1	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
ja	~CF&~ZF	Above (unsigned)
jb	CF	Below (unsigned)

Condition Codes (Explicit Setting: Compare)

- Explicit Setting by Compare Instruction
 - cmpq Src2, Src1
 - cmpq b,a like computing a-b without setting destination
- We then jump based on the condition, leading to counter-intuitive reading...

```
if (x > y)
    ...x > y...;
  else
    ...x <= y ...;
}</pre>
```

Conditional Branch Example (Old Style)

Generation

```
gcc -Og -S -fno-if-conversion control.c
```

```
long absdiff
  (long x, long y)
{
  long result;
  if (x > y)
    result = x-y;
  else
    result = y-x;
  return result;
}
```

```
absdiff:
    cmpq %rsi, %rdi # x:y
    jle    .L4
    movq %rdi, %rax
    subq %rsi, %rax
    ret
.L4: # x <= y
    movq %rsi, %rax
    subq %rdi, %rax
    subq %rdi, %rax
    ret</pre>
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

Expressing with Goto Code

- C allows goto statement
- Jump to position designated by label

```
long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

```
long absdiff_j
  (long x, long y)
    long result;
    int ntest = x \le y;
    if (ntest) goto Else;
    result = x-y;
    goto Done;
Else:
    result = y-x;
Done:
    return result;
```

General Conditional Expression Translation (Using Branches)

C Code

```
val = Test ? Then_Expr : Else_Expr;

val = x>y ? x : y; /* max(x, y) */
```

Goto Version

```
ntest = !Test;
if (ntest) goto Else;
val = Then_Expr;
goto Done;
Else:
val = Else_Expr;
Done:
. . .
```

- Create separate code regions for then & else expressions
- Execute appropriate one

Using Conditional Moves

Conditional Move Instructions

- Instruction supports:
 if (Test) Dest ← Src
- Supported in post-1995 x86 processors
- GCC tries to use them
 - But, only when known to be safe

Why?

- Branches are very disruptive to instruction flow through pipelines
- Conditional moves do not require control transfer

C Code

```
val = Test
? Then_Expr
: Else_Expr;
```

Goto Version

```
result = Then_Expr;
eval = Else_Expr;
nt = !Test;
if (nt) result = eval;
return result;
```

Conditional Move Example

```
long absdiff
  (long x, long y)
{
    long result;
    if (x > y)
        result = x-y;
    else
        result = y-x;
    return result;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

absdiff:

```
movq %rdi, %rax # x
subq %rsi, %rax # result = x-y
movq %rsi, %rdx
subq %rdi, %rdx # eval = y-x
cmpq %rsi, %rdi # x:y
cmovle %rdx, %rax # if <=, result = eval
ret</pre>
```

Bad Cases for Conditional Move

Expensive Computations

```
val = Test(x) ? Hard1(x) : Hard2(x);
```

- Both values get computed
- Only makes sense when computations are very simple

Risky Computations

```
val = p ? *p : 0;
```

- Both values get computed
- May have undesirable effects

Computations with side effects

```
val = x > 0 ? x*=7 : x+=3;
```

- Both values get computed
- Must be side-effect free