Document classification

1. Introduction

The goal of this project is to classify text messages as either "ham" (non-spam) or "spam", leveraging both unsupervised clustering and supervised machine learning techniques. The dataset used is a labeled collection of SMS messages, and we apply various vectorization methods and models to improve prediction accuracy.

2. Unsupervised Learning: Clustering

2.1 Data Loading and Preprocessing

- We import the dataset and retain only the necessary columns (text and target).
- Messages are converted to strings to ensure compatibility with NLP pipelines.

2.2 TF-IDF Vectorization

```
[ ] from sklearn.feature_extraction.text import TfidfVectorizer

# Vectorize the text
vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
X_tfidf = vectorizer.fit_transform(df['text'])
```

- TF-IDF (Term Frequency-Inverse Document Frequency) is used to transform text data into numerical form.
- Max_features = 1000 restricts the feature space for dimensionality control.

2.3 Clustering with K-Means and Hierarchical

```
[ ] from sklearn.cluster import KMeans
    from scipy.cluster.hierarchy import linkage, fcluster
    from sklearn.decomposition import PCA
    import matplotlib.pyplot as plt

# Reduce dimensions to 2D for visualization
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X_tfidf.toarray())

# Apply K-means
    kmeans = KMeans(n_clusters=2, random_state=42)
    clusters_kmeans = kmeans.fit_predict(X_tfidf)

# Hierarchical clustering
    Z = linkage(X_tfidf.toarray(), method='ward')
    clusters_hier = fcluster(Z, 2, criterion='maxclust')
```

- PCA reduces the data to 2D for visualization.
- KMeans is used to create 2 clusters.
- Hierarchical Clustering is also applied to provide a comparative view.

2.4 Results Interpretation

```
[] # Plot by Clusters
     plt.figure(figsize=(8, 5))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clusters_kmeans, cmap='viridis', alpha=0.6)
plt.title('K-means Clustering (TF-IDF + PCA)')
     plt.xlabel('PC1')
     plt.ylabel('PC2')
₹
                                       K-means Clustering (TF-IDF + PCA)
         0.6
      O.4
         0.2
         0.0
              -0.4
      # Plot by True Label
      label_map = {'ham': 0, 'spam': 1}
labels = df['target'].map(label_map)
      plt.figure(figsize=(8, 5))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels, cmap='coolwarm', alpha=0.6)
plt.title('True Labels (Spam vs Ham)')
plt.xlabel('PC1')
      plt.ylabel('PC2')
       plt.show()
₹
                                                         True Labels (Spam vs Ham)
            0.6
        0.4
            0.2
             0.0
                   -0.4
                                    -o.2
```

This plot shows 2D clusters from the spam dataset using TF-IDF vectorization, PCA for dimensionality reduction, and K-means clustering.

- Axes (PC1 & PC2): Principal components summarizing TF-IDF features.
- Colors: Represent clusters found by K-means (likely spam vs ham).

Key Insights:

- The V-shape pattern suggests a clear natural separation in the data.
- Some overlaps indicate borderline cases.
- One cluster dominates, possibly due to class imbalance (more "ham").
- → K-means effectively separates the messages into two groups, supporting the idea that spam and ham texts have distinct patterns.
- → KMeans clusters form a visible pattern, but there's noticeable noise/misclassification.
- → Unsupervised learning is limited when labels are available.

3. Supervised Learning: Text Classification

3.1 Preprocessing

```
[ ] import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder

# Load dataset
    df = pd.read_csv('/content/spam.csv', encoding='latin-1')[['text', 'target']]
    df['text'] = df['text'].astype(str)

[ ] # Encode labels
    df['label'] = LabelEncoder().fit_transform(df['target']) # ham=0, spam=1

[ ] # Split into train and test
    X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)
```

- Converts textual labels to binary numeric labels.
- Splits the dataset into 80% training and 20% test.

3.2 Vectorization with Word2Vec

- Loads pretrained Google News Word2Vec embeddings.
- Each document is represented by the average of its word vectors.

```
[ ] X_train_vec = np.vstack([document_vector(doc) for doc in X_train])
    X_test_vec = np.vstack([document_vector(doc) for doc in X_test])
```

 document_vector(doc) is a custom function that averages vectors of all known words in the sentence.

4. Model Training and Evaluation

A. Random Forest Classifier

```
[ ] from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import classification_report

rf = RandomForestClassifier(n_estimators=100, random_state=42)
    rf.fit(X_train_vec, y_train)
    y_pred_rf = rf.predict(X_test_vec)

print("Random Forest Results:")
    print(classification_report(y_test, y_pred_rf, target_names=['ham', 'spam']))
```

₹	Random Forest	Results: precision	recall	f1-score	support
	ham spam	0.95 0.98	1.00 0.66	0.97 0.79	965 150
	accuracy macro avg weighted avg	0.96 0.95	0.83 0.95	0.95 0.88 0.95	1115 1115 1115

- Model Used: RandomForestClassifier from sklearn.ensemble
- Training: Uses 100 decision trees (n estimators=100)
- **Prediction**: Classifies the test set (X test vec)
- Evaluation: classification report shows precision, recall, and F1-score.

Results Analysis:

- Accuracy: 95% strong overall performance.
- Ham Recall: 1.00 all ham messages correctly classified.
- **Spam Recall:** 0.66 about one-third of spam messages were missed.

- **Precision:** High for both classes (0.95+).
- Conclusion: Reliable for ham detection but needs improvement for spam recall.

B. XGBoost Classifier

```
!pip install xgboost
       import xgboost as xgb
      print(" XGBoost Results:")
      print(classification_report(y_test, y_pred_xgb, target_names=['ham', 'spam']))
Requirement already satisfied: xgboost in /usr/local/lib/python3.11/dist-packages (2.1.4)
Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.26.4)
Requirement already satisfied: nvidia-nccl-cul2 in /usr/local/lib/python3.11/dist-packages (from xgboost) (2.21.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from xgboost) (1.13.1)
      /usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [12:32:08] WARNING: /workspace/src/learner.cc:740: Parameters: { "use_label_encoder" } are not used.
         warnings.warn(smsg, UserWarning)
       XGBoost Results:
                        precision
                                           recall f1-score
                  ham
                 spam
                                0.94
                                                            0.86
                                                                            150
                                                             0.97
                                                                           1115
           accuracy
      weighted avg
                                              0.97
                                                             0.96
                                                                           1115
```

- xgb.XGBClassifier(...): Initializes the XGBoost model with parameters.
- fit(...): Trains the model on the vectorized training data.
- predict (...): Predicts on the test set.
- classification_report(...): Generates metrics like precision, recall, and F1-score.

Results Analysis

- Accuracy: 97% excellent classification overall.
- **Ham Recall:** 0.99 nearly perfect detection of ham.
- **Spam Recall:** 0.78 better than Random Forest for spam.
- **F1-score** (spam): 0.85 strong spam classification balance.
- Conclusion: Best-performing model overall, especially for spam messages.

C. Naive Bayes (GaussianNB)

```
from sklearn.naive_bayes import GaussianNB
    nb = GaussianNB()
   nb.fit(X_train_vec, y_train)
   y_pred_nb = nb.predict(X_test_vec)
    print("Naive Bayes Results:")
   print(classification_report(y_test, y_pred_nb, target_names=['ham', 'spam']))

→ Naive Bayes Results:
                precision recall f1-score support
                     0.97 0.72
           ham
                                        0.83
                                                  965
                     0.33 0.87
                                        0.47
                                                 150
                                        0.74 1115
       accuracy
      macro avg 0.65 0.80
ighted avg 0.89 0.74
                                        0.65
0.78
                                                 1115
   weighted avg
                                                 1115
```

- GaussianNB(): Initializes the Naive Bayes classifier (assumes normal distribution).
- .fit(...): Trains the model with training vectors.
- .predict(...): Predicts spam/ham labels.
- classification report(...): Displays precision, recall, F1-score, etc.

Results Analysis

- Accuracy: 74%: significantly lower than other models.
- Spam Precision: Very low (0.33), meaning many false positives.
- **Ham Recall:** Moderate (0.72), meaning many ham messages missed.
- Weakest model. Performs poorly, especially on spam detection. Likely not suitable for this task with current vectorization (Word2Vec).

5. Performance Comparison

Metric	Random Forest	XGBoost	Naive Bayes
Accuracy	0.95	0.97	0.65
Spam Precision	0.98	0.94	0.33
Spam Recall	0.66	0.78	0.87
Ham Precision	0.95	0.97	0.97
Ham Recall	1.00	0.99	0.72
F1-score (Avg)	0.95	0.97	0.74

- Best Overall: XGBoost High precision & balanced recall.
- Best on Ham: Random Forest (perfect recall).
- Worst Performance: Naive Bayes Poor precision, especially on spam.

6. Conclusion

This end-to-end document classification pipeline demonstrated both unsupervised and supervised approaches on real-world spam data. While clustering provides intuition, supervised models like XGBoost remain essential for high-performance classification. The results also highlight the importance of choosing the right vectorization technique for each model.

All experiments were conducted in Google Colab using Python, scikit-learn, gensim, and XGBoost.