演習問題 2.20

正定値行列 Σ は、次の二次形式が、任意の実ベクトル a について正になるということで定義できる。

$$\mathbf{a}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{a}$$

... (2.285)

 Σ が正定値になる必要十分条件は、式 (2.45) で定義される Σ のすべての固有値 λ_i が正となることであることを示せ。

[固有ベクトルの方程式]

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$$

··· (2.45)

ここで、 Σ は $D \times D$ の共分散行列である。また、演習問題 2.18 より、 Σ には対称であるものを選んでよいことが示されている。

[固有ベクトルの正規直交性]

 Σ が実数の対称行列であるため、その固有値も実数となり、2 つの固有値が $\lambda_i \neq \lambda_j$ であるとき、それに対応する固有ベクトル \mathbf{u}_i と \mathbf{u}_i は、

$$\mathbf{u}_i^{\mathrm{T}}\mathbf{u}_j = I_{ij}$$

... (2.46)

となる。ただし、 I_{ij} は単位行列の i,j 要素で、

$$I_{ij} = \begin{cases} 1, & i = j \text{ のとき} \\ 0, & それ以外のとき \end{cases}$$

··· (2.47)

を満たす。

[**正定値行列** (positive definite matrix)]

固有値がすべて正である行列のことである。

[半正定値行列 (positive semidefinite matrix)]

固有値がすべて非負である行列のことである。

[解]

 Σ が正定値になる必要十分条件は、式 (2.45) で定義される Σ のすべての固有値 λ_i が 正となることであることを示す。 $\mathbf{a} \neq \mathbf{0}$ であると仮定すると、任意の実ベクトル \mathbf{a} は、

 Σ の固有ベクトル \mathbf{u}_i の線形結合

$$\mathbf{a} = \sum_{i=1}^{D} c_i \, \mathbf{u}_i$$

で表せる。ただし、D は各ベクトルの次元数、 c_i は \mathbf{a} を \mathbf{u}_1 , … , \mathbf{u}_D に射影した際に得られる係数である。 $\mathbf{\Sigma}$ の固有値を λ_i とすると、固有方程式 (2.45) を用いて、

$$\mathbf{a}^{\mathrm{T}} \mathbf{\Sigma} \mathbf{a} = \left(\sum_{i=1}^{D} c_{i} \mathbf{u}_{i} \right)^{\mathrm{T}} \mathbf{\Sigma} \left(\sum_{j=1}^{D} c_{j} \mathbf{u}_{j} \right)$$
$$= \left(\sum_{i=1}^{D} c_{i} \mathbf{u}_{i} \right)^{\mathrm{T}} \left(\sum_{j=1}^{D} c_{j} \lambda_{j} \mathbf{u}_{j} \right)$$

となる。式 (2.46), (2.47) より、i=j のときのみ、 $\mathbf{u}_i^{\mathrm{T}}\mathbf{u}_j=1$ となるので、上記の式は、

$$= c_1^2 \lambda_1 + \dots + c_D^2 \lambda_D = \sum_{i=1}^D c_i^2 \lambda_i$$

となる。ここで、a は実ベクトルであり、a の成分はすべて 0 でないので、すべての固有値が厳密に正であるとき、上記の式は厳密に正となることがわかる。

$$\sum_{i=1}^{D} c_i^2 \lambda_i > 0$$

(任意の実ベクトル ${\bf a}$ の成分 c_i は負の値であっても c_i^2 より、 ${\bf 0}$ でない限り許容される。) ゆえに、 ${\bf \Sigma}$ が正定値行列である場合にしか成し得ない。もしいくつかの固有値 λ_i が ${\bf 0}$ 、または負の値であれば、 ${\bf a}={\bf u}_i$ となるようなベクトル ${\bf a}$ が存在し得ることを意味する。 すなわち、上記の式が ${\bf 0}$ 以下になり得ることを意味する。 これらのことから、 ${\bf \Sigma}$ のすべての固有値 λ_i が正であることは、 ${\bf \Sigma}$ が正定値になる必要十分条件であることを意味している。

固有値 λ_k が 0 であると仮定すると、固有方程式 (2.45) より、 $\Sigma \mathbf{u}_k = \lambda_k \mathbf{u}_k = 0$ となり、両辺に対し、左側から Σ^{-1} を掛けると、 $\mathbf{u}_k = 0$ が得られる。しかし、演習問題 2.18 より、 $\mathbf{u}_k \neq 0$ であるので、背理法より、 $\lambda_k \neq 0$ でなくてはならないことがわかる。