

二烯烃和聚合物单体的推导

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

【烯烃知识回顾】用化学方程式转化关系,并指出反应类型。

 CH_2 = CH_2 +HCl— $\frac{\text{催化剂}}{}$ CH_3CH_2Cl , 加成反应。

①	,反应类型;
②	,反应类型;
③	,反应类型;
4	,反应类型;
⑤	,反应类型;
6	,反应类型;
①	,反应类型;
8	,反应类型。
$nCH_2=CH_2$	Br ₂ → CH ₂ Br - CH ₂ Br ,加成反应
$CH_2 = CH_2 + 3O_2 \xrightarrow{\text{点燃}} 2CO_2 + 2H_2O$,氧化反应 $CH_2 = CH_2 + H_2O$	H ₂ O <u>催化剂</u> →CH ₃ CH ₂ OH; 加成反应
CH_3-CH_2-OH $\xrightarrow{$ 浓硫酸 $}$ $CH_2=CH_2$ \uparrow $+H_2O$, 消去反应	
CH_2 = CH_2 + H_2 $\xrightarrow{\text{催化剂}}$ CH_3 - CH_3 , 加成反应; CH_3 - CH_3 + Cl_2 -	^{光照} →CH ₃ - CH ₂ Cl+HCl, 取代反应;

根深蒂固

一、二烯烃

分子中含有两个碳碳双键的链烃叫做二烯烃。

- 二烯烃比相应的烯烃多一个碳碳双键,因此比相应的烯烃少两个氢原子,其通式为 CnH2n-2。
- 二烯烃可以有以下三种:

「CH₂ = C = CH₂ 累积二烯烃(不稳定,易转化为炔烃)

 $CH_2 = CH - CH = CH_2$ 共轭二烯烃

CH, = CH - CH, - CH = CH, 隔离二烯烃

如果二烯烃中单双键交替排列,则称为共轭二烯烃,二烯烃中最稳定的也就是共轭二烯烃。

在共轭二烯烃中,最重要的两种是 1,3-丁二烯和 2-甲基-1,3-丁二烯(异戊二烯),它们都是重要的有机化工原料,其中 1,3-丁二烯也是最简单的二烯烃。

常见二烯烃	1,3-丁二烯	2-甲基-1,3-丁二烯 (异戊二烯)
分子式	$\mathrm{C_4H_6}$	C_5H_8
结构简式	$CH_2 = CH - CH = CH_2$	$CH_3 \\ CH_2 = C - CH = CH_2$
键线式		

【深度思考】根据 1,3-丁二烯和异戊二烯的相关信息推测二烯烃分子组成的通式?

【参考答案】C_nH_{2n-2} (n≥4)

【深度思考】二烯烃分子的通式和炔烃有什么关系?相同碳原子的二烯烃和炔烃有什么关系?

【参考答案】两者的通式相同,相同碳原子数的二烯烃和炔烃互为同分异构体

【深度思考】二烯烃还可能和哪些类型的有机物互为同分异构体?

【参考答案】环状单烯烃

【深度思考】1-丁烯和1,3-丁二烯是否为同系物,为什么?

【参考答案】不是,同系物的要求是结构相似(官能团的种类和数目相同),组成上相差一个或多个 CH₂,1-丁烯和1,3-丁二烯的碳原子数相同,但所含官能团的数目不同

【知识拓展】不饱和度在解题中的应用

- 1. 不饱和度:有机物分子不饱和程度的量化指标,即有机物分子中与碳原子数相等的链状烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母 Ω 表示。
- 2. 不饱和度的计算:

烃
$$(C_nH_m)$$
: $\Omega = \frac{(2n+2)-m}{2}$

3. 不饱和度的数值与有机物种类的关系

不饱和度的数值	有机物的种类	举例
$\Omega = 0$	烷烃	戊烷
Ω=1	单烯烃或环烷烃	1-戊烯和环戊烷
$\Omega = 2$	炔烃或二烯烃或环状单烯烃	1-戊炔、异戊二烯和环戊烯

4. 注意: 卤代烃的不饱和度计算中,将卤原子等同于氢原子,计入氢原子的数目。例如: C_2H_5Cl , 氢原子的数目看做 6=5+1, 计算得出 $\Omega=0$, C_2H_3Cl , 氢原子的数目看做 4=3+1, 计算出 $\Omega=1$

【深度思考】

1. 某有机物的分子式为 C4H8, 试推导该有机物可能的结构

【答案】
$$\Omega = \frac{(2 \times 4 + 2) - 8}{2} = 1$$

有机物类别	举例
烯烃	CH_2 = CH - CH_2 - CH_3 CH_3 - CH = CH - CH_3 CH_3 - CH - CH_2
环烷烃	$\begin{array}{ccc} \operatorname{CH_2-CH_2} & \operatorname{CH}_3 \\ & & \operatorname{CH_2-CH_2} & \operatorname{H_2C} & \operatorname{CH_2} \end{array}$

2. 某有机物的分子式为 C4H6, 试推导该有机物可能的结构

【答案】
$$\Omega = \frac{(2 \times 4 + 2) - 6}{2} = 2$$

有机物类别	举例
炔烃	$CH \equiv C - CH_2 - CH_3$ $CH_3 - C \equiv C - CH_3$
二烯烃	CH_2 = CH — CH = CH_2
环状单烯烃	$\begin{array}{c} \text{CHCH}_2 \\ \parallel \mid \\ \text{CHCH}_2 \end{array}$

3. 某有机物的结构如图:

试计算该有机物的分子式

【答案】C7H12

二、最简单的共轭二烯烃【1,3-丁二烯(CH_2 =CH—CH= CH_2)】

二烯烃有碳碳双键,也像烯烃一样能发生加成反应、加聚反应等。但是共轭二烯烃结构上的特点使得它在 加成反应中也有特殊的表现

1. 化学性质:

(1) 氧化反应

- ②可以使酸性高锰酸钾等具有强氧化性的有色溶液褪色。
- (2) 加成反应:

$$\begin{array}{c} \stackrel{1}{\overset{1}{\text{CH}_2}} - \stackrel{2}{\text{CH}} = \stackrel{3}{\text{CH}} - \stackrel{4}{\text{CH}_2} \\ \stackrel{1}{\overset{1}{\text{CH}_2}} - \stackrel{2}{\text{CH}} = \stackrel{3}{\text{CH}} - \stackrel{4}{\text{CH}_2} \\ \stackrel{1}{\overset{1}{\text{Br}}} \qquad \qquad & \stackrel{1}{\text{Br}} \qquad \qquad & \stackrel{(1,4- 加成)}{\text{Im}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} \\ \stackrel{1}{\overset{2}{\text{CH}_2}} - \stackrel{2}{\text{CH}} = \stackrel{2}{\text{CH}} =$$

①1,4-加成: 共轭二烯烃和氢气、卤素、卤化氢等发生 1,4-加成时,两个双键中比较活泼的键一起断裂,同时在原来两个双键中间的单键上生成一个新的双键:

$$CH_2 = CH - CH = CH_2 + Br_2 \longrightarrow CH_2 - CH = CH - CH_2$$

$$\begin{vmatrix} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

②1.2-加成:

$$CH_2 = CH - CH = CH_2 + Br_2 \longrightarrow CH_2 - CH - CH = CH_2$$

$$\begin{vmatrix} & & & \\ & &$$

在一定的条件下,1,3-丁二烯的加成反应中,1,4-加成产物是主要的。1,4-加成反应在化工生产中 具有重要的意义

1,3-丁二烯跟卤素、卤化氢加成时,一般在低温时产生较多的1,2-加成产物,升高温度有利于1,4-加成反应进行。在极性溶剂中反应也有利于1,4 加成。

③完全加成:

$$\label{eq:ch2} \begin{split} \text{CH}_2 &= \text{CH} - \text{CH} = \text{CH}_2 + 2 \text{Br}_2 &\longrightarrow \text{CH}_2 - \text{CH} - \text{CH} - \text{CH}_2 \\ & \mid \quad \quad \mid \quad \mid \quad \quad \mid \quad \quad \mid \quad \mid \quad \quad \mid \quad \mid \quad \mid \quad \quad \mid \quad$$

(2) 加聚反应:

$$n \ CH_2 = CH - CH = CH_2 \xrightarrow{- c \# + r} + CH_2 - CH = CH - CH_2 + (順丁橡胶)$$

顺丁橡胶是 1,3-丁二烯通过 1,4-加成聚合而成的链状高聚物。

2. 用途和来源: 1,3-丁二烯是合成橡胶(顺丁橡胶)的主要原料,可以从石油裂解中得到。

三. 天然橡胶的单体——异戊二烯 (CH₂= C — CH= CH₂)

$$\begin{array}{c} CH_3 \\ n \ CH_2 = C - CH = CH_2 & \xrightarrow{- \text{定条件} \, \Gamma} & \xrightarrow{C} CH_3 \\ \end{array} (天然橡胶)$$

思考 1: 橡胶易老化的原因是什么? 为什么储存液溴的试剂瓶不能用橡胶塞?

答:橡胶主要通过二烯烃加成聚合形成,聚合产物中存在双键,而双键易被空气中的氧气氧化变质,故橡胶易老化:也正因为橡胶中有双键,所以会和液溴发生加成反应而使橡胶老化。

思考 2: 与橡胶长时间接触,不会发生反应的是 ()

- A. 高锰酸钾溶液
- B. 溴水
- C. 浓硝酸
- D. 氢氧化钠溶液

【答案】D

 CH₃

 思考 2: 1 mol CH₂= C — CH = CH₂ 和 1 mol Br₂ 完全反应, 试写出产物可能有的结构简式:

四、二烯烃的特殊加成反应:

1,3-丁二烯与乙烯在加热条件下发生 1,4-加成, 生成六元环状产物:

该反应叫做狄尔斯—阿尔德(Diels—Alder)反应,是共轭二烯烃的特征反应,常用于共轭二烯的鉴定和分析

【深度思考】

①请写出 1.3-丁二烯和丙烯发生 D-A 加成反应的化学方程式:

②请写出 1,3-丁二烯和 1,3-丁二烯发生 D-A 加成反应的化学方程式:

③请写出 1,3-丁二烯和乙炔发生 D-A 加成反应的化学方程式:

五、加成聚合反应

1. 单烯烃的加聚反应:

$$\begin{array}{c} \text{n CH}_2\text{=CH}_2 \xrightarrow{-\text{£}\$\text{#F}} \xrightarrow{-\text{£}\$\text{#F}} \text{CH}_2\text{-CH}_2 \xrightarrow{-\text{n}} \\ \\ \text{n CH}_2\text{=CH}\text{-CH}_3 \xrightarrow{-\text{£}\$\text{#F}} \xrightarrow{-\text{£}\$\text{#F}} \xrightarrow{\text{CH}_2\text{-CH}} \xrightarrow{\text{n}} \\ \\ \text{n CH}_2\text{=CHC1} \xrightarrow{-\text{£}\$\text{#F}} \xrightarrow{-\text{£}\$\text{#F}} \xrightarrow{\text{CH}_2\text{-CH}} \xrightarrow{\text{n}} \\ \\ \text{CI} \end{array}$$

【注意】丙烯在进行加聚时,加聚的方式不同,产物不同

2. 共轭二烯烃的 1,4-加聚反应:

n CH₂ = CH — CH = CH₂ —
$$\xrightarrow{-\hat{z}\hat{x}\hat{y}+\hat{y}}$$
 — CH₂ — CH = CH — CH₂ — $\xrightarrow{-\hat{z}\hat{x}\hat{y}+\hat{y}}$

$$\begin{array}{c} \text{CH}_{3} \\ \text{n CH}_{2}\text{=CH} - \text{C} \xrightarrow{\text{C}} \text{CH}_{2} \xrightarrow{-\text{\tiny \mathcal{L}}\text{\tiny \mathcal{L}}\text{\tiny \mathcal{H}}\text{\tiny \mathcal{L}}} + \text{C} + \text$$

3. 多烯烃共聚反应:

六、加聚反应产物的单体推导:

1. 乙烯型

聚合物	-{-CH ₂ -CH ₂ -} _n	CH_3 $-CH_2-CH$ n	$ \begin{array}{c} C1 \\ - CH_2 - CH - \\ \end{array} $
単体	CH ₂ =CH ₂	CH ₂ =CH—CH ₃	CH ₂ =CHCl

2. 1,3-丁二烯型

3. 混合型

总结: 如何准确寻找聚合物的单体

在链节中,**遇到单键每两个** C **原子上切一刀,遇到双键每四个** C **原子上切一刀,**并将其恢复双键(链节上,聚合物推单体,单键变双键,双键变单键,其余不变)。

注意: 此口诀只适用于单烯烃与二烯烃共聚产物的单体推导

枝繁叶茂

考点 1: 二烯烃的性质和加成规律

例 1: 某烃 0.1 mol 完全燃烧后生成 8.96 L CO_2 (标准状况),该烃 0.1 mol 能和 4.48 L H_2 (标准状况)发生加成反应。该烃的结构简式可能是

A. CH₂=CH-CH=CH₂

B. CH₃-CH=CH-CH₃

C. $CH \equiv C-CH_2-CH_3$

D. $CH_2 = C(CH_3)_2$

【难度】★【答案】AC

变式 1: 某烃 A 经催化加氢后,转化为最简式为"CH₂"的另一种烃 B。5.6 g B 恰好能吸收 12.8 g Br₂,转化为溴代烷烃,A 可能是()

A.
$$CH_2=CH-C=CH_2$$

B. $CH_3-CH_2-CH=CH_2$

$$C$$
 CH_3 - $C\equiv C$ - CH_3

【难度】★【答案】A

例 2: 1 mol 某气态烃能跟 2 mol HCl 加成,而加成产物又可以和 8 mol Cl₂完全取代。则该烃可能是(

A. 2-甲基丙烯

B. 乙炔

C. 1,3-丁二烯

D. 丙烯

【难度】★★【答案】C

例 3: β-月桂烯的结构如图所示,β-月桂烯与 Br_2 发生 1:1 加成反应产物(只考虑位置异构)理论上最多有(

- A. 1种
- B. 4种
- C. 3种
- D. 2种

【难度】★★【答案】B【思考】若β-月桂烯与 HBr 发生 1:1 加成反应,则产物有多少种? 8 种

变式 1: β-月桂烯的结构如图所示,β-月桂烯与 Br_2 发生 1:2 加成反应产物(只考虑位置异构)在理论上最多有 _____种。

- A. 1种
- B. 2种
- C. 3种
- D. 4种

【难度】★★【答案】D

考点 2: 双烯加成 (D-A 反应)

例 4: 己知:

【难度】★★

变式 1: 己知:

- A. 2-甲基-1,3-丁二烯和 2-丁炔
- C. 2,3-二甲基-1,3-戊二烯和乙炔

- B. 1,3-戊二烯和 2-丁炔
- D. 2,3-二甲基-1,3-丁二烯和丙炔

【难度】★★★【答案】AD

考点 3: 加聚和聚合产物的单体推导

例 5: 乙烯和丙烯按 1:1 聚合时, 生成乙丙树脂聚合物, 则该聚合物的结构简可能是

【难度】★★【答案】B

变式 1: 乙炔二分子聚合可制得 CH_2 =CH-C = CH ,继续和 HCl 加成得 CH_2 =CH-C ,将其聚合便得聚合

【难度】★★【答案】A

例 6: 在一定条件下,发生加聚反应,生成 $+CH_2-CH=C-CH_2+n$ 的单体的是

A. 丙烯

- B. 乙烯和丙烯
- C. 2-甲基-2-丁烯
- D. 2-甲基-1,3-丁二烯

【难度】★【答案】D

变式 1: 工程塑料 ABS 树脂,在合成时用了三种单体。

$$+$$
CH₂-CH-CH₂-CH=CH-CH₂-CH₂-CH $+$ _n ABS: CN C₆H₅ ,这三种单体的结构简式分别是:

【难度】★★

【答案】CH₂=CH-CN₂ CH₂=CH-CH=CH₂ CH₂=CH-C₆H₅

变式 2: 若需合成结构简式如下的共聚物

$$\begin{array}{c} CH_3 \\ + CH - CH - CH_2 - CH = CH - CH_2 + \frac{1}{n} \end{array}$$

则所需要的单体应是 (

①2-丁烯 ②1-丁烯 ③1,3-丁二烯 4) 丙炔

⑤丙烯

A. ①③ B. ②③

C. 34

D. 45

【难度】★★【答案】A

变式 3: 合成结构简式如图所示的共聚物

CH-CH₂-CH₂-CH=CH-CH₂-CH=CH-
$$\frac{1}{n}$$

所需单体是

【难度】★★★

考点 4: 综合应用

例 7: 近年来,由于石油价格的不断上涨,以煤为原料制备一些化工产品的前景又被看好。下图是以煤为原料 生产聚氯乙烯 (PVC) 和人造羊毛的合成路线。

- (1) 写出反应类型:反应①_____;反应②_____;
- (2) 写出由 A→C 的化学方程式:
- (3) 写出由 B→PVC 的化学方程式:
- (4) 写出制备人造羊毛的化学方程式: 。

【难度】★★★【答案】(1) 加成反应; 加聚反应

(2) $CH \equiv CH + HCN \rightarrow CH_2 = CH - CN$

$$\begin{array}{c}
\text{Cl} \\
-\frac{1}{2} + \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2
\end{array}$$

例 5: 丁基橡胶可用于制造汽车内胎,合成丁基橡胶的一种单体 A 的分子式为 C_4H_8 ,A 氢化后得到 2-甲基丙烷。

完成下列填空:

- (1) A 可以聚合, 写出 A 的两种聚合方式(以反应方程式表示)。
- (2) A 与某烷发生烷基化反应生成分子式为 C_8H_{18} 的物质 B,B 的一卤代物只有 4 种,且碳链不对称。写出 B 的结构简式
- (3) 写出将 A 通入下列两种溶液后出现的现象:

A 通入溴水: ______;

A 通入溴的四氯化碳溶液: 。

(4)烯烃和 NBS 作用,烯烃中与双键碳相邻碳原子上的一个氢原子被溴原子取代。分子式为 C_4H_8 的烃和 NBS 作用,得到的一溴代烯烃有 种。

【难度】★★★【答案】

$$\begin{array}{cccc} & CH_{3} & CH_{3} \\ & CH_{3}-C & CH_{2}-CH - CH_{3} \\ & CH_{3} & CH_{3} \end{array}$$

- (3) A 通入溴水: 红棕色褪去且溶液分层 A 通入溴的四氯化碳溶液: 红棕色褪去
- (4) 3种

瓜熟蒂落

1. 某炔烃与足量溴水充分反应, 所得的产物是 2	,2,3,3-四溴丁烷,则与该炔烷	圣互为同分异构体的是()
A. 丙炔 B. 1,3-丁二烯	C. 2-丁烯 D.	异戊二烯
【难度】★【答案】B	. , ,	
2. 下列各组物质一定为同系物的是 ()		
A. C ₃ H ₈ 和 C ₆ H ₁₄	B. C ₃ H ₄ 和 C ₆ H ₁₀	
C. C ₂ H ₄ 和 C ₄ H ₈	D. C ₂ H ₅ Cl 和 C ₃ H ₆ Cl ₂	
	D. C2H5C1 74 C3H6C12	
【难度】★【答案】A		
3. 下列各有机物中,按系统命名法命名正确的是		
A. 3,3-二甲基丁烷	B. 3-甲基-2-乙基戊烷	
C. 1,3-二甲基戊烷	D. 2-甲基-3-乙基戊烷	
【难度】★【答案】D		
4. 下列有机物命名中,正确的是 ()		
ÇH ₂ CH ₃		CH₃
A. 2-乙基丙烷: CH ₃ -CH-CH ₃	B. 3-甲基-1,3-丁二烯: CH	$H_2 = \overset{\downarrow}{C} - CH = CH_2$
CH ₃		
CH ₂ -CH ₂ -CH ₂	Ç	H ₃
C. 1,3-二甲基丙烷: CH ₃	D. 2-甲基-1-丙烯: CH ₃ -C	=CH ₂
	D. 2 4 1 1 1 mp.	
【难度】★【答案】D		
The Wheelsh Shift Ideals (I		
5. 具有单双键交替长链(如: —CH=CH—CH=C		
尔(Nobel)化学奖即授予开辟此领域的 3 位科学家		
A. 聚乙烯 B. 聚氯乙烯	C. 聚 1,3-丁二烯	D. 聚乙炔
【难度】★★【答案】D		
6. 某烃分子的键线式为: , 该炒	圣与 Br₂物质的量之比为 1:1	加成时,所得二溴代物有(
)		
A. 5种 B. 4种	C. 3种 D.	6种
【难度】★★【答案】A	C. 311 D.	
() () () () () () () () () () () () () (
7. 化合物CH ₂ =CH-CH=CH-CH=CH ₂ 在与 Br	2以物质的量为 1:1 加成时,	可得到异构体的种数是
	· · · · · · · · · · · · · · · · · · ·	
()		
A. 1 B. 2	C. 3	D. 4
【难度】★★【答案】D		

8. 环戊二烯在一定条件下发生二聚反应,该反应涉及"1,4-加成"原理,两个环戊二烯分子的五元环均得以保留。 反应中新生成的共价键的编号(如图)是 ()

A. 1

B. 2

C. 3

D. 4

【难度】★★★【答案】AC

9. 若需合成结构简式如下的共聚物

$$- \begin{array}{c} CH_3 \\ - CH = C \\ - CH_2 - CH = CH - CH_2 - CH_2 - CH_2 \\ \end{array}$$

则所需要的单体应是(

①丙烯

②丙炔

③1,3-丁二烯

④乙烯

⑤丙烯

A. 134

B. (2)(3)(4)

C. 145

D、235

【难度】★★【答案】B

10. 将用于 2008 年北京奥运会的国家游泳中心(水立方)的建筑采用了膜材料 ETFE,该材料为四氟乙烯与乙烯的共聚物,四氟乙烯也可与六氟丙烯共聚成聚全氟乙丙烯。下列说法错误的是 ()

- A. ETFE 分子中可能存在"-CH₂-CH₂-CF₂-CF₂-"的连接方式
- B. 合成 ETFE 及合成聚全氟乙丙烯的反应均为加聚反应
- C. 聚全氟乙丙烯分子的结构简式可能为 $+CF_2-CF_2-CF_2-CF_3+_n$
- D. 四氟乙烯分子中既含有极性键又含有非极性键

【难度】★★【答案】C

11. 一些烷烃的燃烧热(kJ/mol)如下:

化合物	燃烧热	化合物	燃烧热
甲烷	891.0	正丁烷	2878.0
乙烷	1560.8	异丁烷	2869.6
丙烷	2221.5	2-甲基丁烷	3531.3

下列推断正确的是

- A. 热稳定性: 正丁烷>异丁烷
- B. 乙烷燃烧的热化学方程式为: 2C₂H₆(g)+7O₂(g)→4CO₂(g)+6H₂O(g)+1560.8 kJ
- C. 相同质量的烷烃,碳的质量分数越大,燃烧放出的热量就越多
- D. 正戊烷的燃烧热大约在 3540 kJ/mol 左右

【难度】★★★【答案】D

- 12. 常温下,10mL 某气态烃和 60mL 氧气混合,用电火花点燃,完全燃烧后,将生成气体通过浓硫酸,恢复原来的温度后,剩余气体 45mL。已知该烃能使溴水和酸性高锰酸钾溶液褪色,该烃与溴水反应时,参加反应的烃与 Br_2 的物质的量之比为 1:2,试通过计算:
- (1) 推断该烃的分子式; (2) 写出该烃可能的结构简式并用系统命名法命名。

【答案】(1) C₄H₆

(2) CH ≡ C - CH₂ - CH₃ (1-丁炔); CH₃ - C ≡ C - CH₃ (2-丁炔); CH₂ = CH - CH = CH₃ (1,3-丁二烯)

- 13. 玫瑰的香味物质中包含苧烯, 苧烯的键线式为:
- (1) 1 mol 苧烯最多可以跟_____mol H₂发生反应。
- (2) 写出苧烯跟等物质的量的 Br₂ 发生加成反应所得产物的可能的结构 (用键线式表示)。
- (3)有机物 A 是苧烯的同分异构体,分子中含有""结构, A 可能的结构为____(用键线式表示)。
- (4) 写出 和 Cl₂ 发生 1,4-加成反应的产物的键线式

【难度】★★★【答案】(1) 2 (2) /

$$(3) \qquad \qquad (4) \qquad (1)$$

14. 已知烯烃在强氧化剂酸性高锰酸钾溶液的作用下双键断裂:

$$\begin{array}{c} R_1 \\ R_2 \end{array} C = C \begin{array}{c} R_3 \\ H \end{array} \begin{array}{c} KMnO_4 \\ H^+ \end{array} \begin{array}{c} R_1 \\ R_2 \end{array} C = O + O = C \begin{array}{c} R_3 \\ OH \end{array}$$

现有一化合物 A,分子式为 $C_{10}H_{18}$ 经过量的酸性高锰酸钾溶液作用得到下列三种化合物

$$CH_3$$
 C=O CH_3 -C-OH CH_3 -C-CH₂-CH₂-COH

请由此可以推导 A 的结构简式

$$\begin{array}{c} CH_3 \\ CH_3-C=C-CH_2-CH=CH-CH_3 \\ CH_3-CH=C-CH_2-CH_2-CH=C-CH_3 \\ CH_3 \end{array}$$
 (答案)