Esercizio 1. Sia V uno spazio vettoriale e $\{\underline{v}_1, \ldots, \underline{v}_k\}$ vettori linearmente indipendenti. Verificare che se $c_1, \ldots, c_k \in \mathbb{R}, c_j \neq 0 \ \forall j$, allora i vettori

 $c_1\underline{v}_1,\ldots,c_k\underline{v}_k$

Sow increments is interested.

\$\overline{V_1}, \overline{V_2}, \overline{V_3}, \overline{V_4}, \ldots \overline{V_6} \text{ for some linearmente [independent]}, operation:

\$\alpha_1, \overline{V_2} + \ldots + \alpha_K \overline{V}_K = \overline{O} \text{ for \$\alpha_1, \ldots, \alpha_K \overline{K} \text{ function}} = \overline{O} \text{ \$\alpha_1, \overline{V}_2, \overline{V}_2, \overline{V}_4, \overline{V}_6, \overline{V}_

Esercizio 1. Sia V uno spazio vettoriale e $\{\underline{v}_1,\ldots,\underline{v}_k\}$ vettori linearmente indipendenti. Verificare che se $c_1,\ldots,c_k\in\mathbb{R},\,c_j\neq 0\;\forall j,$ allora i vettori

 $c_1\underline{v}_1,\ldots,c_k\underline{v}_k$

sono anche linearmente indipendenti.

Esercizio 2. In $M_{33}(\mathbb{R})$ consideriamo il sottospazio $\mathcal{S}_{33}(\mathbb{R})$ delle matrici simmetriche ed il sottospazio $\mathcal{A}_{33}(\mathbb{R})$ delle matrici antisimmetriche.

Determinare una base di $M_{33}(\mathbb{R})$.

Determinare una base del sottospazio $S_{33}(\mathbb{R})$ e una base del sottospazio $A_{33}(\mathbb{R})$.

$$M_{33}(R)$$

e una lose l'un insieme marsimale di rettou

1)
$$= \left\{ \begin{pmatrix} 123 \\ 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 132 \end{pmatrix}, \begin{pmatrix} 123 \\ 123 \\ 312 \end{pmatrix} \right\}$$

$$2) = \begin{cases} 4 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{cases} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 7 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 5 \end{pmatrix}$$

$$3) \beta'' = \left\{ \begin{pmatrix} 123 \\ -245 \\ -3-56 \end{pmatrix}, \begin{pmatrix} 123 \\ -246 \\ -3-67 \end{pmatrix}, \begin{pmatrix} 234 \\ -367 \\ -4-78 \end{pmatrix} \right\}$$

No

Esercizio 3. Sia $V=\mathbb{R}^3$ e si considerino i vettori

$$\underline{v}_1 = \left| egin{array}{c} 1 \\ 2 \\ 2 \end{array} \right|, \ \underline{v}_2 = \left| egin{array}{c} 3 \\ 1 \\ -1 \end{array} \right|, \ \underline{v}_3 = \left| egin{array}{c} -1 \\ -1 \\ 0 \end{array} \right|$$

Verificare che questi 3 vettori formano una base di \mathbb{R}^3 .

$$Y_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \quad Y_3 = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$

$$2 \cdot \begin{vmatrix} 1 \\ 2 \end{vmatrix} + 2 \cdot \begin{vmatrix} 3 \\ 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} -1 \\ -1 \end{vmatrix} = 2 \cdot \begin{vmatrix} -1 \\ 0 \end{vmatrix}$$

$$\begin{cases} 2x + 3y - 1z = 0 \\ 2x + y - z = 0 \end{cases} \begin{cases} x + 6x - 4x = 0 \\ 4x = z \\ 9 = 2x \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases}$$

Esercizio 4. Sia $V = \mathbb{R}^4$ e si considerino i vettori

$$\underline{v}_1 = (1,0,1,0), \ \underline{v}_2 = (0,1,0,0), \ \underline{v}_3 = (0,0,1,0).$$

Verificare che questi 3 vettori sono linearmente indipendenti.

Determinare una base per i seguenti sottospazi:

$$W_1 = \operatorname{Span}(\underline{v}_1, \underline{v}_2, \underline{v}_3, \underline{v}_1 + \underline{v}_2, \underline{v}_1 + 74\underline{v}_2 - \sqrt{2}\underline{v}_3)$$

 $W_2 = \operatorname{Span}(\underline{v}_1, \underline{v}_2)$

$$W_3=\operatorname{Span}(\underline{v}_1+\underline{v}_2,\underline{v}_1-\underline{v}_2,\underline{v}_1+2\underline{v}_2,\underline{v}_1-2\underline{v}_2)$$

$$\begin{cases} x = 0 \\ y = 0 \\ x + 2 = 0 \end{cases} = \begin{cases} x = 6 \\ y = 0 \\ x + 2 = 0 \\ 0 + 0 + 0 = 0 \end{cases}$$

SCRIVIAMOLO SOTTOFORMA DI MARICE

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

quindi 5, soms linearmente endipendente

$$\beta = (\underline{Y}, \underline{Y}_2, \underline{Y}_3, (\underline{Y}_3 + \underline{Y}_2))$$

(*) 2, V, + 2, V2 + 2 3 V3 + B7 4 V2 - B

1 VI + 1 VZ + 1 V3 + 74 VZ -2 V3 OK MA QUESTO NUMERO E OTTENIBICE ANCHE 2N 1 SOLI VETTORI VI VZ V.

W2 = SPAN (Y, Y2) = W3 5 PEN QUESTO

$$\mathbf{V_{4}} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{V_{2}} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

 $\mathcal{B} = \left\{ V_1, V_2, \left(V_1 + V_2 \right), \left(V_1 - V_2 \right) \right\}$