3.2

Assumptions

- **1.** The X_i s are a random sample (i.e., they are independent and identically distributed random variables).
- **2.** The measurement scale of the X_i s is at least ordinal.

Test Statistic We will use two test statistics in this test. Let T_1 equal the number of observations less than or equal to x^* , and let T_2 equal the number of observations less than x^* . Then $T_1 = T_2$ if none of the numbers in the data exactly equals x^* . Otherwise, T_1 is greater than T_2 .

Null Distribution The null distribution of the test statistics T_1 and T_2 is the binomial distribution, with parameters n = sample size, and $p = p^*$ as given in the null hypothesis. The null distribution is given in Table A3 for $n \le 20$ and selected values of p.

For other values of n and p the normal approximation is used. That is, approximate quantiles x_q for T are given by

$$x_q = n \cdot p + z_q \sqrt{n \cdot p \cdot (1 - p)} \tag{1}$$

where z_q is the qth quantile of a standard normal random variable, given in Table A1.

Hypotheses Let x^* and p^* represent some specified numbers, $0 < p^* < 1$. The hypotheses may take one of the following three forms.

A. (Two-Tailed Test)

 H_0 : The p*th population quantile is x^*

[This is equivalent to H_0 : $P(X \le x^*) \ge p^*$, and $P(X < x^*) \le p^*$, where X has the same distribution as the X_i s in the random sample.]

 H_1 : x^* is not the p^* th population quantile

The rejection region corresponds to values of T_2 that are too large [indicating that perhaps $P(X < x^*)$ is greater than p^*] and to values of T_1 that are too small [indicating that perhaps $P(X \le x^*)$ is less than p^*]. The rejection region is found by entering Table A3 with the sample size n and the hypothesized probability p^* , as in the two-tailed binomial test. Find the number t_1 such that

$$P(Y \le t_1) = \alpha_1 \tag{2}$$

3.2: The Quantile Test

N \$20

C-21: 1 (X) アしょくないしょる Ma: 11 11 How the pan Pop quantile < X Now the Pa Pop quantily X How the pa Pop quant = X find to such that

C= 12. 72727 t2 } P(4 8 (2)=1-2 Find to Such the

C= 1 15t, 0/12 /28 P(3 5t2)=1-0/2 P(3 (5) = 0/2 and find to 8 tz such

TI HOR XE XX 12-1111人大 where

P.V=P(y>/2)

or Using P. Value

RV-P(3×1)

P.V=2P(4 (1) 01 RN=2P(97/12) The Smaller

Cost. 3.2: The Quartile Test

Ho, has poen Pop. quartile < X Yla: 11 /11 7X

ti=n.P+ta (nex (1-fx) 0-21: 1 523 where

> C={12:127 t25 Ya: // /x whore

Ho: The Path Pop. quant > x Ho: The Pth Pop. quex t = n Pa + 2 (n8(1-8))

t = n Pa + 2 (n8(1-8))

t = n Pa + 2 (n8(1-8)) -Xx /// #X* C={1,5t,0/12/21

t2=n.Px+Z~~~~~~)

NU HOLXIVX where

Or Using P.Value

=P(YSTI)=P[ZSTI-NP*+5] =P(YZZ)=I-P(ZST2-NP-5) USEQ &&

-The Smaller

where $1-\alpha$ is a known *confidence coefficient* and where $X^{(r)}$ and $X^{(s)}$ are order statistics (see Definition 2.1.4) with r and s specified. The values for r and s may be determined prior to drawing the sample in the manner described next, with knowledge of only the sample size n and the desired confidence coefficient. The sample X_1, \ldots, X_n needs only to be random. No restrictions are made on the distribution function of X_i . Thus this statistical method may be applied freely to any random sample from any population.

Confidence Interval for a Quantile .

Data The data consist of observations on X_1, X_2, \ldots, X_n , which are independent and identically distributed random variables. $X^{(1)} \leq X^{(2)} \leq \cdots \leq X^{(r)} \leq \cdots \leq X^{(r)} \leq \cdots \leq X^{(r)} \leq \cdots \leq X^{(r)}$ represents the ordered sample, where $1 \leq r < s \leq n$. We wish to find a confidence interval for the (unknown) p^* th quantile, where p^* is some specified number between zero and one.

Assumptions

- 1. The sample X_1, X_2, \ldots, X_n is a random sample.
- 2. The measurement scale of the X_i s is at least ordinal.

Method A (small samples) For $n \le 20$ Table A3 may be used to find r and s. Enter Table A3 with the sample size n and the probability $p = p^*$. Read down the column for $p = p^*$ until reaching an entry approximately equal to $\alpha/2$, where $1 - \alpha$ is the approximate confidence coefficient desired. Call that entry α_1 , and the corresponding value for $p = p^*$ until reaching an entry approximately equal continue down the column for $p = p^*$ until reaching an entry approximately equal to $1 - (\alpha/2)$, which we will call $1 - \alpha_2$. The value of $p = p^*$ until reaching an entry approximately equal to p =

$$P(X^{(r)} \le x_p \le X^{(s)}) \ge 1 - \alpha_1 - \alpha_2$$
(19)

provides the confidence interval. If we assume that the unknown distribution function is continuous, then

$$P(X^{(r)} \le x_{p^*} \le X^{(s)}) = 1 - \alpha_1 - \alpha_2$$
 (20)

as stated in Equation 18 also.

Method B (large sample approximation) For n greater than 20 the approxi-

mation based on the central limit theorem may be used. (See Equation 1.)

and

$$s^* = np^* + z_{1-\alpha/2} \sqrt{np^*(1-p^*)}$$
 (22)

where the quantiles z_p are obtained from Table A1 and where $1 - \alpha$ is the desired confidence coefficient. In general, r^* and s^* will not be integers. Let r and s be the integers obtained by rounding r^* and s^* upward to the next higher integers. Then the approximate confidence interval is given by Equation 19, or Equation 20 if the unknown distribution function is continuous.

A one-sided confidence interval may be formed by finding only r or s as described. One-sided confidence intervals are of the form

$$P(X^{(r)} \le x_{p^*}) = 1 - \alpha_1 \tag{23}$$

and

$$P(x_{p^*} \le X^{(s)}) = 1 - \alpha_2 \tag{24}$$

if the distribution function is continuous, or

$$P(X^{(r)} \le x_{p^*}) \ge 1 - \alpha_1 \tag{25}$$

and

$$P(x_{p^*} \le X^{(s)}) \ge 1 - \alpha_2$$
 (26)

otherwise.

Computer Assistance Minitab (under Median Test) and StatXact (under Sign Test) find a confidence interval for the median.

EXAMPLE 3

Sixteen transistors are selected at random from a large batch of transistors and are tested. The number of hours until failure is recorded for each one. We wish to find a confidence interval for the upper quartile, with a confidence coefficient close to 90%. Table A3 is entered with n=16 and p=0.75. Reading down the column for p=0.75 the probability 0.0271 is selected as being close to 0.05. The value of y associated with $\alpha_1=0.0271$ is y=8; therefore r equals 9. The probability