

CLAIMS

We claim:

- 5 1. A molecule or molecular complex comprising all or any parts of a binding pocket defined by structure coordinates of IMPDH amino acids 68, 69, 93, 273, 274, 275, 276, 277, 303, 322, 324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 337, 339, 340, 364, 413, 414, 415, 416, 420, 439, 440, 441, 442, 469, and 470 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 15 2. The molecule or molecular complex according to claim 1, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 274, 275, 276, 277, 303, 322, 324, 325, 326, 331, 333, 414, 415, and 441 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 25 3. The molecule or molecular complex according to claim 2, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 275, 276, 303, 325, 326, 331, 333 and 441 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

4. A molecule or molecular complex comprising all or any parts of a binding pocket defined by structure coordinates of IMPDH amino acids 67, 68, 69, 70, 73, 274, 275, 276, 303, 322, 323, 324, 325, 326, 327, 328, 329, 5 330, 331, 332, 333, 334, 335, 364, 365, 366, 367, 368, 385, 386, 387, 388, 389, 391, 411, 412, 413, 414, 415, 416, 419, 440, 441, 442, 443, 500, 501, 502, 503, 504, 10 505, and 506 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

5 15 20 25 30

5. The molecule or molecular complex according to claim 4, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 68, 69, 70, 303, 322, 326, 327, 328, 329, 330, 331, 332, 333, 335, 364, 365, 366, 367, 385, 386, 387, 388, 411, 413, 414, 415, 416, 419, 441, 442, 443, 501, 502, 503, and 504 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

6. The molecule or molecular complex according to claim 5, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 68, 70, 322, 328, 329, 331, 332, 335, 364, 366, 387, 388, 411, 413, 414, 415, 441, 442, 501, and 502 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root

mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

7. The molecule or molecular complex according to claim 4, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 67, 68, 69, 70, 73, 93, 273, 274, 275, 276, 277, 303, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 337, 339, 340, 364, 365, 366, 367, 368, 385, 386, 387, 388, 389, 391, 411, 412, 413, 414, 415, 416, 419, 420, 439, 440, 441, 442, 443, 469, 470, 500, 501, 502, 503, 504, 505, and 506 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

8. The molecule or molecular complex according to claim 7, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 68, 69, 70, 274, 275, 276, 277, 303, 322, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 335, 364, 365, 366, 367, 385, 386, 387, 388, 411, 413, 414, 415, 416, 441, 442, 443, 501, 502, 503, and 504 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

9. The molecule or molecular complex according to claim 8, wherein said binding pocket is defined by structure coordinates of IMPDH amino acids 68, 70, 275,

276, 303, 322, 325, 326, 328, 329, 331, 332, 333, 335,
364, 366, 387, 388, 411, 413, 414, 415, 441, 442, 501, and
502 according to Figure 1, or a homologue of said molecule
or molecular complex, wherein said homologue comprises a
binding pocket that has a root mean square deviation from
the backbone atoms of said amino acids of not more than
1.5 Å.

10 10. The molecule or molecular complex according
to claim 7, wherein said molecule or molecular complex is
defined by the set of structure coordinates according to
Figure 1, or a homologue thereof, wherein said homologue
has a root mean square deviation from the conserved
backbone atoms of said amino acids of not more than 1.5 Å.

15 11. The molecule or molecular complex according
to claim 7, wherein said molecule or molecular complex
comprises amino acids 1-514 of IMPDH, XMP*, and MPA.

20 12. A machine-readable data storage medium,
comprising a data storage material encoded with machine
readable data which, when using a machine programmed with
instructions for using said data, is capable of displaying
a graphical three-dimensional representation of a molecule
25 or molecular complex comprising all or any parts of a
binding pocket defined by structure coordinates of IMPDH
amino acids 68, 69, 93, 273, 274, 275, 276, 277, 303, 322,
324, 325, 326, 327, 328, 330, 331, 332, 333, 334, 337,
339, 340, 364, 413, 414, 415, 416, 420, 439, 440, 441,
30 442, 469, and 470 according to Figure 1, or a homologue of
said molecule or molecular complex, wherein said homologue
comprises a binding pocket that has a root mean square

deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

13. The machine-readable data storage medium
5 according to claim 12, wherein said binding pocket defined by structure coordinates of IMPDH amino acids 274, 275, 276, 277, 303, 322, 324, 325, 326, 331, 333, 414, 415, and 441 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a
10 binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

14. The machine-readable data storage medium
15 according to claim 13, wherein said binding pocket defined by structure coordinates of IMPDH amino acids 275, 276, 303, 325, 326, 331, 333 and 441 according to Figure 1, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said
20 amino acids of not more than 1.5 Å.

15. A machine-readable data storage medium,
comprising a data storage material encoded with machine
25 readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of all or any parts of a molecule or molecular complex comprising a binding pocket defined by structure coordinates of IMPDH
30 amino acids 67, 68, 69, 70, 73, 274, 275, 276, 303, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 364, 365, 366, 367, 368, 385, 386, 387, 388,

389, 391, 411, 412, 413, 414, 415, 416, 419, 440, 441,
442, 443, 500, 501, 502, 503, 504, 505, and 506 according
to Figure 1, or a homologue of said molecule or molecular
complex, wherein said homologue comprises a binding pocket
5 that has a root mean square deviation from the backbone
atoms of said amino acids of not more than 1.5 Å.

16. The machine-readable data storage medium
according to claim 15, wherein said binding pocket is
10 defined by structure coordinates of IMPDH amino acids 68,
69, 70, 303, 322, 326, 327, 328, 329, 330, 331, 332, 333,
335, 364, 365, 366, 367, 385, 386, 387, 388, 411, 413,
414, 415, 416, 419, 441, 442, 443, 501, 502, 503, and 504
15 according to Figure 1, or a homologue of said molecule or
molecular complex, wherein said homologue comprises a
binding pocket that has a root mean square deviation from
the backbone atoms of said amino acids of not more than
1.5 Å.

20 17. The machine-readable data storage medium
according to claim 16, wherein said binding pocket is
defined by structure coordinates of IMPDH amino acids 68,
70, 322, 328, 329, 331, 332, 335, 364, 366, 387, 388, 411,
413, 414, 415, 441, 442, 501, and 502 according to Figure
25 1, or a homologue of said molecule or molecular complex,
wherein said homologue comprises a binding pocket that has
a root mean square deviation from the backbone atoms of
said amino acids of not more than 1.5 Å.

30 18. The machine-readable data storage medium
according to claim 15, wherein said binding pocket is
defined by structure coordinates of IMPDH amino acids 67,

68, 69, 70, 73, 93, 273, 274, 275, 276, 277, 303, 322,
323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333,
334, 335, 337, 339, 340, 364, 365, 366, 367, 368, 385,
386, 387, 388, 389, 391, 411, 412, 413, 414, 415, 416,
5 419, 420, 439, 440, 441, 442, 443, 469, 470, 500, 501,
502, 503, 504, 505, and 506 according to Figure 1, or a
homologue of said molecule or molecular complex, wherein
said homologue comprises a binding pocket that has a root
mean square deviation from the backbone atoms of said
10 amino acids of not more than 1.5 Å.

19. The machine-readable storage medium according
to claim 18, wherein said binding pocket is defined by
structure coordinates of IMPDH amino acids 68, 69, 70,
15 274, 275, 276, 277, 303, 322, 324, 325, 326, 327, 328,
329, 330, 331, 332, 333, 335, 364, 365, 366, 367, 385,
386, 387, 388, 411, 413, 414, 415, 416, 441, 442, 443,
501, 502, 503, and 504 according to Figure 1, or a
homologue of said molecule or molecular complex, wherein
20 said homologue comprises a binding pocket that has a root
mean square deviation from the backbone atoms of said
amino acids of not more than 1.5 Å.

20. The machine-readable storage medium according
25 to claim 19, wherein said binding pocket is defined by
structure coordinates of IMPDH amino acids 68, 70, 275,
276, 303, 322, 325, 326, 328, 329, 331, 332, 333, 335,
364, 366, 387, 388, 411, 413, 414, 415, 441, 442, 501, and
502 according to Figure 1, or a homologue of said molecule
30 or molecular complex, wherein said homologue comprises a
binding pocket that has a root mean square deviation from
the backbone atoms of said amino acids of not more than

1.5 Å.

21. The machine-readable data storage medium,
according to claim 18, wherein said molecule or molecular
complex is defined by the set of structure coordinates for
IMPDH according to Figure 1, or a homologue of said
molecule or molecular complex, said homologue having a
root mean square deviation from the backbone atoms of said
amino acids of not more than 1.5 Å.

22. A machine-readable data storage medium
comprising a data storage material encoded with a first
set of machine readable data which, when combined with a
second set of machine readable data, using a machine
programmed with instructions for using said first set of
data and said second set of data, can determine at least a
portion of the structure coordinates corresponding to the
second set of machine readable data, wherein: said first
set of data comprises a Fourier transform of at least a
portion of the structural coordinates for IMPDH according
to Figure 1; and said second set of data comprises an X-
ray diffraction pattern of a molecule or molecular complex
of unknown structure.

23. A method for evaluating the ability of a
chemical entity to associate with a molecule or molecular
complex according to any one of claims 1 to 11 comprising
the steps of:

- SUB A1*
- a. employing computational means to perform
a fitting operation between the chemical entity and a
binding pocket of the molecule or molecular complex; and
 - b. analyzing the results of said fitting

operation to quantify the association between the chemical entity and the binding pocket.

5 24. A method of utilizing molecular replacement
to obtain structural information about a molecule or a
molecular complex of unknown structure by using the
structure coordinates set forth in Figure 1, comprising
the steps of:

- 10 a. crystallizing said molecule or molecular
complex;
- 15 b. generating an X-ray diffraction pattern
from said crystallized molecule or molecular complex;
- 15 c. applying at least a portion of the
structure coordinates set forth in Figure 1 to the X-ray
diffraction pattern to generate a three-dimensional
electron density map of at least a portion of the molecule
or molecular complex whose structure is unknown.

20 25. The method according to claim 24, wherein the
molecule or molecular complex comprises a polypeptide
selected from an IMPDH homologue.

25 26. A method for preparing a IMPDH/XMP*/MPA
crystal comprising the steps of:

- 25 a. forming a complex between IMPDH and IMP;
- 25 b. adding NAD and MPA to the complex formed
in step a;
- 30 c. monitoring the accumulation of the
IMPDH/XMP*/MPA complex; and
- 30 d. crystallizing the complex formed in step
c in the presence of MeP.

*add A2
add C3*