


```
In []: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import matplotlib.colors

    %matplotlib inline
    import warnings
    warnings.filterwarnings('ignore')

In []: df = pd.read_csv("/content/zomato.csv",encoding='latin-1')
In []: df.head()
```

Out[]:

٠	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	•••	Currency
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts		Botswana Pula(P)
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese		Botswana Pula(P)
					Edsa Shangri-	Fdsa Shanari-	Fdsa Shanari-			Seafood		

Avadheshkumar04/Zomato_Restaurant_Dataset_EDA.ipynb at main · Avadheshkumar04/Avadheshkumar04

2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	La, 1 Garden Way, Ortigas, Mandal	La, Ortigas, Mandaluyong City	La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Asian, Filipino, Indian	 Botswana Pula(P)
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	 Botswana Pula(P)
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.584450	Japanese, Korean	 Botswana Pula(P)

5 rows × 21 columns

4

n []

df.sample(5)

Out[]:

]•		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	•••	Cur
	6992	7603	Stuti Restaurant	1	New Delhi	6, Satyaniketan, New Delhi	Satyaniketan	Satyaniketan, New Delhi	77.168962	28.587512	North Indian		Rupe
	4902	8517	Apni Rasoi	1	New Delhi	A2, Ganesh Nagar, Laxmi Nagar, New Delhi	Laxmi Nagar	Laxmi Nagar, New Delhi	77.277690	28.630719	North Indian		Rupe

Jeanoua,

141	17294850	Thai Kitchen	216	Augusta	4357 Washington Road, Evans, GA 30809	Evans	Evans, Augusta	-82.132800	33.540600	Thai	 Dc
743	58882	Big Brewsky	1	Bangalore	Behind MK Retail, Before WIPRO Corporate Offic	Sarjapur Road	Sarjapur Road, Bangalore	77.683237	12.913041	Finger Food, North Indian, Italian, Continenta	 Rupe
3581	18381663	Khan Chacha	1	New Delhi	Lower Ground Floor, FCŒ_8, Epicuria, Nehru Pla	Epicuria Food Mall, Nehru Place	Epicuria Food Mall, Nehru Place, New Delhi	77.251426	28.551456	North Indian, Mughlai	 Rupe

5 rows × 21 columns

Data	COTAIIII3 (COCAT ZI COT	uiii 13 / •	
#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object
6	Locality Verbose	9551 non-null	object
7	Longitude	0551 non null	£102+61

/	LUIIBILUUE	TTULLIOII TCCC	I TUA LU4
8	Latitude	9551 non-null	float64
9	Cuisines	9542 non-null	object
10	Average Cost for two	9551 non-null	int64
11	Currency	9551 non-null	object
12	Has Table booking	9551 non-null	object
13	Has Online delivery	9551 non-null	object
14	Is delivering now	9551 non-null	object
15	Switch to order menu	9551 non-null	object
16	Price range	9551 non-null	int64
17	Aggregate rating	9551 non-null	float64
18	Rating color	9551 non-null	object
19	Rating text	9551 non-null	object
20	Votes	9551 non-null	int64

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

Observation

- 1. The Dataset contains some null value in the cuisines coloumn.
- 2. There are total 13 categorical varibales in the datasets .

In []: df.describe()

Out[]:		Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggregate rating	Votes
	count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000
	mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.666370	156.909748
	std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.516378	430.169145
	min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.000000	0.000000
	25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.500000	5.000000
	50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.200000	31.000000
	75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.700000	131.000000
	max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.900000	10934.000000

[.] Have a look on Avg, Min, Max values of Prices , Rating and votes

```
In [ ]:
         df.isnull().sum()
                                 0
         Restaurant ID
Out[ ]:
         Restaurant Name
         Country Code
         City
         Address
         Locality
         Locality Verbose
         Longitude
         Latitude
         Cuisines
         Average Cost for two
         Currency
         Has Table booking
         Has Online delivery
         Is delivering now
         Switch to order menu
         Price range
         Aggregate rating
         Rating color
         Rating text
         Votes
         dtype: int64
In [ ]:
         #Remove the duplicates
         df.duplicated().sum()
Out[]: 0
In [ ]:
         df.dropna(inplace=True)
In [ ]:
         # Correlation between required features
         df[["Average Cost for two","Price range","Aggregate rating","Votes"]].corr()
Out[]:
                             Average Cost for two Price range Aggregate rating
                                                                                 Votes
         Average Cost for two
                                        1.000000
                                                    0.075111
                                                                     0.051864 0.067833
```

Price range	0.075111	1.000000	0.438356	0.309474
Aggregate rating	0.051864	0.438356	1.000000	0.313474
Votes	0.067833	0.309474	0.313474	1.000000

In []: df.iloc[0: 1]

Out[]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	•••	Currency	Has Table booking	de
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts		Botswana Pula(P)	Yes	

1 rows × 21 columns

Warning: Total number of columns (21) exceeds max_columns (20) limiting to first (20) columns.

Warning: Total number of columns (21) exceeds max_columns (20) limiting to first (20) columns.

Observation, countplot for Table booking and not, or customer online Delivery and not

```
In [ ]: # Analysing costumer has table bookings or not
sns.countplot(x='Has Table booking', data=df)
```

Out[]: <Axes: xlabel='Has Table booking', ylabel='count'>

8000 -

Some of the customer has online delivery

```
In [ ]: #Analysing the no of delivery in present
sns.countplot(x='Has Online delivery', hue='Has Table booking', data=df)
```


Observation: Very less deliveries

```
In [ ]: sns.countplot(x='City', data=df)
```

Out[]: <Axes: xlabel='City', ylabel='count'>

In []: df_country = pd.read_excel("/content/Country-Code.xlsx")

In []: df_country

t[]:	Country Code	e Country							
	0 1	l India							
	1 14	4 Australia							
	2 30) Brazil							
	3 37	7 Canada							
	4 94	1 Indonesia							
	5 148	New Zealand							
	6 162	2 Phillipines							
	7 166	5 Qatar							
	8 184	1 Singapore							
	9 189	South Africa							
1	l 0 191								
	1 1 208								
	1 2 214								
		5 United Kingdom							
	1 4 216								
'	14 210	o officed states							
[]:[.	final_df = pd.m	nerge(df, df_count	ry, on='Country	Code', how='l	eft')				
]:	final_df								
[]:	Restaurant ID	Restaurant Count Name Co	try City de	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines .
_				Third Floor,	Century City	Century City			

0	6317637	Le Petit Souffle	162	Makati City	Century City Mall, Kalayaan Avenu	Mall, Poblacion, Makati City	Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	•••
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City	Edsa Shangri- La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Seafood, Asian, Filipino, Indian	
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.584450	Japanese, Korean	
•••											
9546	5915730	NamlÛ± Gurme	208	ÛÁstanbul	Kemanke□ô Karamustafa Pa□ôa Mahallesi, RÛ±htÛ±	Karakí_y	Karakí_y, ÛÁstanbul	28.977392	41.022793	Turkish	•••
9547	5908749	Ceviz AÛôacÛ±	208	ÛÁstanbul	Ko□ôuyolu Mahallesi, Muhittin îìstí_ndaÛô Cadd	Ko□ôuyolu	Ko□ôuyolu, ÛÁstanbul	29.041297	41.009847	World Cuisine, Patisserie, Cafe	

9548	5915807	Huqqa	208	ÛÁstanbul	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	Kuruí_e□ôme	Kuruí_e□ôme, ÛÁstanbul	29.034640	41.055817	Italian, World Cuisine	
9549	5916112	A□ô□ôk Kahve	208	ÛÁstanbul	Kuruí_e□ôme Mahallesi, Muallim Naci Caddesi, N	Kuruí_e□ôme	Kuruí_e□ôme, ÛÁstanbul	29.036019	41.057979	Restaurant Cafe	
9550	5927402	Walter's Coffee Roastery	208	ÛÁstanbul	CafeaÛôa Mahallesi, BademaltÛ± Sokak, No 21/B,	Moda	Moda, ÛÁstanbul	29.026016	40.984776	Cafe	

9551 rows × 22 columns

Display the datatype

F 7		
[]:	final_df.dtypes	
ut[]:	Restaurant ID	int64
	Restaurant Name	object
	Country Code	int64
	City	object
	Address	object
	Locality	object
	Locality Verbose	object
	Longitude	float64
	Latitude	float64
	Cuisines	object
	Average Cost for two	int64
	Currency	object
	Has Table booking	object
	Has Online delivery	object
	Is delivering now	object

```
Switch to order menu object
Price range int64
Aggregate rating float64
Rating color object
Rating text object
Votes int64
Country object
dtype: object
```

Top 3 Country with Maximum number of order

```
In [ ]:
         final df.Country.value counts()
         Country
Out[ ]:
         India
                           8652
         United States
                            434
         United Kingdom
         Brazil
                             60
         UAE
                             60
         South Africa
                             60
         New Zealand
                             40
         Turkey
                             34
         Australia
                             24
         Phillipines
                             22
         Indonesia
                             21
         Singapore
                             20
         0atar
                              20
         Sri Lanka
                             20
         Canada
         Name: count, dtype: int64
In [ ]:
         #final_df['Price range'].value_counts().plot(kind='pie', autopct='%.2f%%')
         # Assuming final df is your DataFrame containing 'Price range' and 'Country' columns
         final df['Price range'].value counts().plot(kind='pie', autopct='%.2f%%', labels=final df.Country.value counts().index)
         plt.title('Price range distribution by Country')
Out[]: Text(0.5, 1.0, 'Price range distribution by Country')
```


final_df['Aggregate rating'].value_counts().plot(kind='pie',autopct='%.2f')
plt.title('Aggregate rating distribution')
plt.show()

Aggregate rating distribution

Note that 22.51% costumers given 0 ratings

Display the Ratings related column in the datafram format

In []:
 final_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset_index()

Out[]:	Aggregate rating	Rating color	Rating text	0
0	0.0	White	Not rated	2148
1	1.8	Red	Poor	1
2	1.9	Red	Poor	2
3	2.0	Red	Poor	7
4	2.1	Red	Poor	15
5	2.2	Red	Poor	27
6	2.3	Red	Poor	47
7	2.4	Red	Poor	87
8	2.5	Orange	Average	110
9	2.6	Orange	Average	191

10	2.7	Orange	Average	250
11	2.8	Orange	Average	315
12	2.9	Orange	Average	381
13	3.0	Orange	Average	468
14	3.1	Orange	Average	519
15	3.2	Orange	Average	522
16	3.3	Orange	Average	483
17	3.4	Orange	Average	498
18	3.5	Yellow	Good	480
19	3.6	Yellow	Good	458
20	3.7	Yellow	Good	427
21	3.8	Yellow	Good	400
22	3.9	Yellow	Good	335
23	4.0	Green	Very Good	266
24	4.1	Green	Very Good	274
25	4.2	Green	Very Good	221
26	4.3	Green	Very Good	174
27	4.4	Green	Very Good	144
28	4.5	Dark Green	Excellent	95
29	4.6	Dark Green	Excellent	78
30	4.7	Dark Green	Excellent	42
31	4.8	Dark Green	Excellent	25
32	4.9	Dark Green	Excellent	61

INTEREINCE

Rating color is WHITE when it is NOT RATED Rating color is RED when it is POOR Rating color is ORANGE when it is AVERAGE Rating color is YELLOW when it is GOOD Rating color is GREEN when it is VERY GOOD Rating color is DARK GREEN when it is EXCELLENT

In []:

#ratings = final_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').reset_index().rename(columns={0:'Ratings').rename(columns={0:'

ratings = final_df.groupby(['Aggregate rating','Rating color','Rating text']).size().reset_index().rename(columns={0:'Rating ratings

Out[]:		Aggregate rating	Rating color	Rating text	Rating Count
	0	0.0	White	Not rated	2148
	1	1.8	Red	Poor	1
	2	1.9	Red	Poor	2
	3	2.0	Red	Poor	7
	4	2.1	Red	Poor	15
	5	2.2	Red	Poor	27
	6	2.3	Red	Poor	47
	7	2.4	Red	Poor	87
	8	2.5	Orange	Average	110
	9	2.6	Orange	Average	191
	10	2.7	Orange	Average	250
	11	2.8	Orange	Average	315
	12	2.9	Orange	Average	381
	13	3.0	Orange	Average	468
de e e e e (A e e e de e	1/	2 1	Orange	Average	510

```
Orarige
                                          Average
                                                             כו כ
\mathbf{I} \hookrightarrow
                   ۱ . د
15
                   3.2
                                                             522
                             Orange
                                          Average
                   3.3
16
                             Orange
                                                             483
                                          Average
                                                             498
17
                   3.4
                             Orange
                                         Average
18
                   3.5
                              Yellow
                                            Good
                                                             480
                   3.6
                              Yellow
                                            Good
                                                             458
19
                   3.7
                              Yellow
                                            Good
                                                             427
20
                                                             400
21
                   3.8
                              Yellow
                                            Good
                   3.9
                              Yellow
                                            Good
22
                                                             335
23
                                                             266
                                       Very Good
                   4.0
                              Green
                                                             274
24
                              Green
                                       Very Good
                   4.1
25
                                                             221
                                       Very Good
                   4.2
                              Green
                                                             174
26
                   4.3
                                       Very Good
                              Green
27
                                       Very Good
                   4.4
                              Green
                                                             144
                                         Excellent
                                                              95
                         Dark Green
28
                   4.5
29
                         Dark Green
                                         Excellent
                                                              78
                   4.6
30
                         Dark Green
                                         Excellent
                                                              42
                   4.7
                                                              25
                         Dark Green
                                         Excellent
31
                   4.8
32
                                                              61
                         Dark Green
                                         Excellent
                   4.9
```

```
# @title Rating Count

from matplotlib import pyplot as plt
    ratings['Rating Count'].plot(kind='line', figsize=(8, 4), title='Rating Count')
    plt.gca().spines[['top', 'right']].set_visible(False)
```

Rating Count

INFERENCE--> Around 2k people have given zero ratings. ratings (4.5-4.9)=excellent. 4.0 to 4.4=v.good. 3.5 to 3.9=good. 2.5 to 3.4 = average and so on .

In []:

Histogram

Bar Plot


```
hue =final_df["Rating color"]
Out[ ]:
                 Dark Green
                 Dark Green
                      Green
                 Dark Green
                 Dark Green
         9546
                      Green
         9547
                      Green
         9548
                     Yellow
         9549
                      Green
         9550
                      Green
         Name: Rating color, Length: 9551, dtype: object
```

New Section

box plot

```
In [ ]: | sns.boxplot(x=final df['Currency'], y=final df['Average Cost for two'])
```


In []: sns.boxplot(x=final_df['Has Online delivery'], y=final_df['Average Cost for two'])
 plt.xticks(rotation=45)

Has Table booking

40

Out 1 1 [Tayt(0 0 'No') Tayt(1 0 'Vac')])

0

Distplot

```
In [ ]: sns.distplot(final_df['Price range'],hist= False)
sns.distplot(final_df['Aggregate rating'],hist= False)
Out[ ]: <Axes: xlabel='Aggregate rating', ylabel='Density'>
1.2 -
```


Observation :-> Amazing informatios by this Probability Density Function Price range "1" has given no ratings Price range "3 and 4" has given ratings between "2.0 to 4.9

HeatMap

```
In [ ]: sns.heatmap(pd.crosstab(final_df['Is delivering now'],final_df['Has Online delivery']))
```

Outf 1: <Axes: xlabel='Has Online delivery'. vlabel='Is delivering now'>

Observation:- this heatmap gives a better understanding, less no. of delivering the order recive

Pairplot

Since pairplot is not required here. But just to give a Bird Eye of Scatter plots scatterplot

```
In [ ]: sns.scatterplot(x=final_df['Average Cost for two'],y=final_df['Aggregate rating'])
```

Out[]: <Axes: xlabel='Average Cost for two', ylabel='Aggregate rating'>


```
In [ ]: sns.lineplot(y=final_df['Votes'],x=final_df['Has Online delivery'])
```

Out[]: <Axes: xlabel='Has Online delivery', ylabel='Votes'>

In this notebook, we've delved into Exploratory Data Analysis (EDA), aiming to thoroughly understand our dataset's different features, whether numerical or categorical. To achieve this, we've employed a variety of visualization techniques like count plots, histograms, box plots, and scatter plots, among others.

EDA serves as a vital initial step in comprehending the inherent patterns and connections within our data. Through visualization, we're able to glean significant insights, facilitating informed decision-making. It enables us to pinpoint trends, anomalies, correlations, and other critical aspects of our dataset, laying the groundwork for further analysis and interpretation.

In []: