Exercițiul 1. Fie $(\mathbb{R}, +, \cdot)$ corpul comutativ al numerelor reale și

$$\mathbb{R}_+^* = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} > 0 \}.$$

Definim operațiile:

$$\bigoplus : \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}, \, \forall \, (\mathbf{x}, \mathbf{y}) \in (\mathbb{R}_{+}^{*})^{2} : \mathbf{x} \oplus \mathbf{y} = \mathbf{x} \cdot \mathbf{y}; \\
\otimes : \mathbb{R} \times \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}, \, \forall \, (\alpha, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}_{+}^{*} : \alpha \otimes \mathbf{x} = \mathbf{x}^{\alpha}.$$

$$\otimes : \mathbb{R} \times \mathbb{R}_{+}^{*} \to \mathbb{R}_{+}^{*}, \, \forall \, (\alpha, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}_{+}^{*} : \alpha \otimes \mathbf{x} = \mathbf{x}^{\alpha}$$

Să se arate că \mathbb{R}_+^* are o structura de spatiu liniar real (spațiu liniar peste corpul comutativ \mathbb{R}) în raport cu operațiile definite anterior.

Exercitiul 2. Fie $(\mathbb{K}, +, \cdot)$ un corp comutativ, M o multime oarecare şi $(\mathbb{X}, +, \cdot\mathbb{K})$ un spațiu liniar. Notăm prin $\mathcal{F}(M,\mathbb{X})$ multimea funcțiilor definite pe multimea M şi cu valori în \mathbb{X} ,

$$\mathcal{F}(M, \mathbb{X}) = \{f; f: M \to \mathbb{X}\}.$$

Elementele mulțimii $\mathcal{F}(M, \mathbb{X})$ le vom nota cu litere mici latine f, g, h, \ldots Definim egalitatea a două funcții f și q prin

$$f = g \Leftrightarrow [f(x) = g(x), \forall x \in M].$$

Pe mulțimea $\mathcal{F}(M, \mathbb{X})$ definim două operații astfel:

-(adunarea funcțiilor) $\forall (f,g) \in \mathcal{F}(M,\mathbb{X}) \times \mathcal{F}(M,\mathbb{X})$:

$$(f+g)(x) = f(x) + g(x), \forall x \in M \text{ si}$$

-(înmulțirea funcțiilor din $\mathcal{F}(M,\mathbb{X})$ cu scalari din câmpul \mathbb{K}) $\forall (\alpha,f) \in \mathbb{K} \times$ $\mathcal{F}(M,\mathbb{X})$:

$$(\alpha f)(x) = \alpha f(x), \forall x \in M.$$

Să se arate că față de aceste legi de compoziție multimea $\mathcal{F}(M, \mathbb{X})$ are structura de spațiu liniar peste câmpul K. Dacă considerăm $\mathbb{K} = M = \mathbb{R}$, atunci $\mathcal{F}(\mathbb{R}, \mathbb{R})$ se numește spațiul liniar real al funcțiilor reale cu valori reale.

Exercițiul 3. Fie $(\mathbb{R}, +, \cdot)$ un corpul comutativ al numerelor reale. Notăm cu $\mathbb{R}_n[x]$ multimea polinoamelor de grad $\leq n$ cu coeficienți din \mathbb{R} , în nedeterminata x. Să se arate că operatiile de adunare a două polinoame si de înmultire a unui poliom cu un scalar din \mathbb{R} determină pe $\mathbb{R}_n[x]$ o structură de spațiu liniar.

Exercițiul 4. Să se arate că mulțimea matricelor cu m linii și n coloane, $m, n \in$ \mathbb{N}^* , cu elemente din corpul comutativ $(\mathbb{R}, +, \cdot)$, notată cu $\mathcal{M}_{m \times n}(\mathbb{R})$ are o structura de spațiu liniar în raport cu operațiile de adunare a matricelor și de înmulțire a matricelor cu scalari din corpul \mathbb{R} .

Exercitiul 5. Fie \mathbb{R} corpul comutativ al numerelor reale. Notam cu $\mathcal{M}_n^a(\mathbb{R})$ multimea matricelor patratice antisimetrice cu elemente din \mathbb{R} și cu $\mathcal{M}_n^s(\mathbb{R})$ mulțimea

SEMINARUL NR.4-5.

matricelor patratice simetrice cu elemente din \mathbb{R} . Să se arate că ele formeaza subspații liniare ale lui $(\mathcal{M}_n(\mathbb{R}), +, \cdot, \mathbb{R})$ (mulțimea matricelor patratice cu elemente din \mathbb{R}) și ca orice matrice patratica se poate descompune în mod unic ca suma dintre doua matrice, una simetrica și una antisimetrica, adica

$$\mathcal{M}_n\left(\mathbb{R}\right) = \mathcal{M}_n^s\left(\mathbb{R}\right) \oplus \mathcal{M}_n^a\left(\mathbb{R}\right).$$

Demonstrați că această descompunere este unică.

Exercitiul 6. Fie
$$S_1 = \left\{ A \in \mathcal{M}_{2\times 3} \left(\mathbb{R} \right); A = \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}, a, b, c \in \mathbb{R} \right\}$$
 si $S_2 = \left\{ B \in \mathcal{M}_{2\times 3} \left(\mathbb{R} \right); B = \begin{pmatrix} 0 & 0 & 0 \\ p & q & r \end{pmatrix}, p, q, r \in \mathbb{R} \right\}$

- a) Să se arate că S_1 și S_2 sunt subspații liniare ale lui $\mathcal{M}_{2\times 3}(\mathbb{R})$.
- b) Să se arate că $\mathcal{M}_{2\times 3}(\mathbb{R}) = S_1 \oplus S_2$.

Exercițiul 7. Sa se precizeze care din submulțimile lui \mathbb{R}^n definite mai jos constituie subspațiu liniar al lui $(\mathbb{R}^n, +, \cdot, \mathbb{R})$:

- a) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_1, x_2, \dots, x_n), x_1 = 0\};$
- b) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_{1,}x_{2,\ldots},x_n), x_1 = 1\};$
- c) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_1, x_2, \dots, x_n), x_1 = x_2\}$;
- d) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_1, x_2, ..., x_n), x_1 x_2 = 0\}$;
- e) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_{1,x_{2,\dots},x_n}), x_1 + x_2 + \dots + x_n = 0\}$;
- f) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_{1,}x_{2,\dots,}x_n), x_1 = x_2 = 0\}$;
- g) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_1, x_2, ..., x_n), x_1 = 0\}$;
- h) $\mathbf{W} = \{x \mid x \in \mathbb{R}^n, x = (x_1, x_2, ..., x_n), x_1 \ge x_2 \}$.

Exercițiul 8. Fie sistemul liniar omogen de ecuații :

$$\sum_{j=1}^{n} a_{ij} x_j = 0, i = 1, ..., m.$$

Să se arate că mulţimea soluţiilor acestui sistem formeaza un subspaţiu liniar real al spaţiului ($\mathbb{R}^n, +, \cdot, \mathbb{R}$) şi poartă numele de **spaţiul nul** al matricei $A, A = (a_{ij})_{\substack{i=\overline{1,m} \ j=\overline{1,n}}}$ şi se notează $\ker(A) = \{x, x^T \in \mathbb{R}^n : Ax = \theta\}$.

Exercițiul 9. Sa se expliciteze subspațiul soluțiilor urmatoarelor sisteme liniare și să se precizeze dimensiunea subspațiului :

a)
$$\{x_1 + x_2 - x_3 - x_4 = 0, \text{ subspaţiu } \hat{\mathbf{m}} (\mathbb{R}^4, +, \cdot, \mathbb{R});$$

b) $\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$, subspaţiu $\hat{\mathbf{m}} (\mathbb{R}^4, +, \cdot, \mathbb{R});$

$$c) \begin{cases} x_1 + x_2 + 2x_3 = 0 \\ 2x_1 - x_2 + 3x_3 = 0 \end{cases}, subspaţiu în (\mathbb{R}^4, +, \cdot, \mathbb{R}); \\ d) \begin{cases} 2x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 + 2x_4 = 0 \end{cases}, subspaţiu în (\mathbb{R}^4, +, \cdot, \mathbb{R}); \\ x_1 + 2x_2 - 2x_3 - x_4 = 0 \end{cases}$$

$$e) \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - x_3 + x_4 = 0 \end{cases}, subspaţiu în (\mathbb{R}^4, +, \cdot, \mathbb{R}); \\ x_1 - x_2 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 - 3x_2 + x_3 - x_4 = 0 \\ x_1 - 2x_2 + x_3 - x_4 = 0 \end{cases}, subspaţiu în (\mathbb{R}^5, +, \cdot, \mathbb{R}).$$

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 = 0 \\ x_1 - 2x_2 + x_3 - 2x_4 + x_5 = 0 \end{cases}$$

Exercițiul 10. Se consideră vectorii

SEMINARUL NR.4-5.

$$\mathbf{v}_1 = (3 + \sqrt{2}, 1 + \sqrt{2}) \in \mathbb{R}^2, \ \mathbf{v}_2 = (7, 1 + 2\sqrt{2}) \in \mathbb{R}^2.$$

Să se arate că \mathbf{v}_1 si \mathbf{v}_2 sunt liniar dependenți dacă se consideră \mathbb{R}^2 spațiu liniar peste corpul comutativ \mathbb{R} și liniar independenți dacă se consideră \mathbb{R}^2 spațiu liniar peste corpul comutativ \mathbb{Q} .

Exercițiul 11. Se dau vectorii liniar independenți $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ în spațiul liniar \mathbb{X} peste corpul comuativ \mathbb{R} și se cere:

- a) să se arate că vectorii $\mathbf{u} + \mathbf{v}$, $\mathbf{v} + \mathbf{w}$, $\mathbf{u} + \mathbf{w}$ sunt liniar independenți;
- b) să se arate că vectorii $\mathbf{u} + \mathbf{v} 3\mathbf{w}$, $\mathbf{u} + 3\mathbf{v} \mathbf{w}$, $\mathbf{v} + \mathbf{w}$ sunt liniar dependenți;
- c) să se arate că vectorii $\mathbf{u} \mathbf{v}$, $\mathbf{v} \mathbf{w}$, $\mathbf{w} \mathbf{u}$ sunt liniar dependenți.

Exercițiul 12. În spațiul liniar \mathbb{R}^3 se consideră vectorii:

$$x = (1, 2, 3), y = (2, 3, 1), z = (a + 3, a + 1, a + 2), a \in \mathbb{R}.$$

Să se afle valorile parametrului a pentru care acești vectori sunt liniar dependenți și să se scrie relația de dependență liniară.

Exercițiul 13. În spațiul liniar \mathbb{R}^3 se consideră vectorii:

$$u_1 = (1, 1, 0), u_2 = (1, 0, 0), u_3 = (1, 2, 3), u_4 = (1, 0, 1).$$

Să se analizeze dacă:

- a) sistemul de vectori (u_1, u_2) este un sistem de generatori pentru \mathbb{R}^3 ; este acest sistem de vectori liniar independent?
- b) sistemul de vectori (u_1, u_2, u_3) este un sistem de generatori pentru \mathbb{R}^3 ; este acest sistem de vectori liniar independent?
- c) sistemul de vectori (u_1, u_2, u_3, u_4) este un sistem de generatori pentru \mathbb{R}^3 ; este acest sistem de vectori liniar independent?

Precizați ce concluzii se desprind de aici.

Exercițiul 14. Fie sistemul de vectori $S = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$ unde $\mathbf{v}_1 = (1, 0, -1, 1)$, $\mathbf{v}_2 = (-2, 0, 0, -2)$, $\mathbf{v}_3 = (1, 1, 1, 1)$, $\mathbf{v}_4 = (1, -1, -3, 1)$, $\mathbf{v}_5 = (1, -1, 1, -1)$. Se notează mulțimea

 $[S] = \left\{ \mathbf{x} \in \mathbb{R}^4 : x = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_3 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5, \alpha_i \in \mathbb{R}, i = \overline{1,5} \right\}.$

Să se arate că [S] este subspațiu liniar al lui $(\mathbb{R}^4, +, \cdot, \mathbb{R})$. Să se determine o bază în [S].

Exercițiul 15. Să se studieze independența liniară pentru sistemele de vectori din spațiile liniare specificate:

a)
$$((-4, -2, 2), (6, 3, -3), (1, -1, -1), (0, 0, 2))$$
 în $(\mathbb{R}^3, +, \cdot, \mathbb{R})$;

b)
$$((2,3,-1),(0,-2,1),(-1,-1,-1))$$
 în $(\mathbb{R}^3,+,\cdot,\mathbb{R})$;

c)
$$((1, \alpha, 0), (\alpha, 1, 1), (1, 0, \alpha))$$
 în $(\mathbb{R}^3, +, \cdot, \mathbb{R})$;

d)
$$(8-t+7t^2, 2-t+3t^2, 1+t-t^2)$$
 in $(\mathbb{R}_2[t], +, \cdot, \mathbb{R})$;

e)
$$\left(A_1 = \begin{pmatrix} 2 & -2 \\ 4 & -6 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & -4 \\ 5 & 3 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & -4 \\ 4 & 8 \end{pmatrix}\right) \hat{n}$$
 $(\mathcal{M}_2(\mathbb{R}), +, \cdot, \mathbb{R})$:

f)
$$((2,1,3,1),(1,2,0,1),(-1,1,-3,0))$$
 in $(\mathbb{R}^4,+,\cdot,\mathbb{R})$;

$$g)\left(A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, A_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\right) \hat{n}$$

$$(\mathcal{M}_2(\mathbb{R}), +, \cdot, \mathbb{R}).$$

Exercițiul 16. Să se demonstreze că sistemul AX = B este compatibil dacă și numai dacă B aparține spațiului coloanelor matricei A.

Conform definiției subspațiului generat de un sistem de vectori, b aparține spațiului coloanelor matricei A dacă există $\alpha_1, \alpha_2, ..., \alpha_n$ astfel încât

$$b = \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + \alpha_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix} \Leftrightarrow$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

$$b = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Analizați compatibilitatea sistemelor folosind rezultatul Exercițiului 16.

$$\begin{pmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -9 \\ -3 \end{pmatrix},$$

$$\begin{pmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 0 & 5 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -9 \\ -3 \end{pmatrix}.$$

Exercițiul 17. Să se demonstreze că sistemul AX = B are soluție unică dacă și numai dacă $\ker(A) = \{\theta\}$, unde $\ker(A) = \{X : AX = 0\}$.

Exercițiul 18. Fie matricele $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 1 & 1 \\ 3 & 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$. Este adevărată egalitatea C(A) = C(B)?

Exercițiul 19. Fie $A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}$. Determinați o bază în spațiul coloanelor, o bază în spațiul liniilor matricei A și în spațiul nul. Precizați dimensiunile acestor spații.

Exercițiul 20. Analog pentru matricea

$$A = \left(\begin{array}{rrrr} 1 & 2 & 0 & 2 & 1 \\ 3 & 6 & 1 & 9 & 6 \\ 2 & 4 & 1 & 7 & 5 \end{array}\right).$$

Exercițiul 21. Să se arate că vectorii.(1,0,0), (1,2,0), (1,2,3) formează o bază în $(\mathbb{R}^3,+,\cdot,\mathbb{R})$.

Exercițiul 22. Fie

$$A = \left\{ A | A = \begin{pmatrix} 0 & 0 & x \\ y & 0 & 0 \\ u & z & 0 \end{pmatrix}, x = y + z, x, y, z, u \in \mathbb{R} \right\}.$$

- a). Sa se atate ca \mathcal{A} este subspațiu liniar real al lui $\mathcal{M}_{3\times 3}(\mathbb{R})$.
- b). Matricele M, N, P constituie o baza în \mathcal{A} unde

$$M = \begin{pmatrix} 0 & 0 & -3 \\ -2 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix}, N = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} P = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}.$$

SEMINARUL NR.4-5.

Exercițiul 23. În spațiul liniar $(\mathcal{M}_{m\times n}(\mathbb{R}), +, \cdot, \mathbb{R})$ consideram sistemul de matrice:

$$S = (E_{ij}; i = \overline{1, m}, j = \overline{1, n})$$

unde E_{ij} sunt definite prin

$$i \to \begin{pmatrix} 0 & \dots & \cdot & \dots & 0 \\ 0 & \dots & \cdot & \dots & 0 \\ \dots & & 0 & & \dots \\ 0 & \dots & 1 & \dots & 0 \\ 0 & \dots & 0 & \dots & 0 \\ \dots & & 0 & & \dots \\ 0 & \dots & \cdot & \dots & 0 \end{pmatrix}$$

 $(E_{ij}$ are toate elementele nule, cu excepția celui de la intersecția liniei i cu coloana j, care este egal cu 1), constituie o bază, numită baza canonică a spațiului $(\mathcal{M}_{m\times n}\left(\mathbb{R}\right),+,\cdot,\mathbb{R}).$

Exercitiul 24. Să se arate că $S = (1, x, x^2, \dots, x^n)$ este o bază în $(\mathbb{R}_n[x], +, \cdot, \mathbb{R})$, numită baza canonică a spațiului.

Exercițiul 25. Fie $S = (v_1, v_2, ..., v_n) \subset \mathbb{R}_m$ o mulțime de vectori coloană liniar independentă. Fie $P \in \mathcal{M}_m(\mathbb{R})$ o matrice nesingulară. Demonstrați că mulțimea $S' = (Pv_1, Pv_2, ..., Pv_n)$ este liniar independentă. Rezultatul se păstrează dacă Peste singulară?

Exercițiul 26. Fie $S=(v_1,v_2,...,v_n)\subset\mathbb{R}^n$ o mulțime de vectori linie liniar independentă. Să se demonstreze că S este liniar independentă dacă și numai dacă $S' = (v_1, v_1 + v_2, v_1 + v_2 + v_3, ..., v_1 + v_2 + v_3 + ... + v_n)$ este liniar independentă.

Exercițiul 27. a) Să se determine coordonatele vectorului $\mathbf{x} \in \mathbb{R}^3$ în baza canonică dacă în baza

$$S_1 = (e'_1 = (1, 1, 1), e'_2 = (1, 1, 0), e'_3 = (1, 0, 0))$$

are coordonatele 1, 2, 3, $(\mathbf{x})_{S_1} = (1, 2, 3)$. b) Ce coordonate are vectorul $\mathbf{y} \in \mathbb{R}^3$ în baza S_1 dacă în baza

$$S_2 = (e_1'' = (1, -1, 1), e_2'' = (3, 2, 1), e_3'' = (0, 1, 0))$$

are coordontele $(\mathbf{y})_{S_2} = (2, 4, -2)$.

Exercițiul 28. Să se completeze până la o bază în \mathbb{R}^4 următoarea mulțime liniar independentă:

$$((1 \ 0 \ -1 \ 2), (0 \ 0 \ 1 \ -2)).$$

Exercițiul 29. Fie sistemul de vectori $S = (\mathbf{v}_1 = (1, 0, -1, 1), \mathbf{v}_2 = (1, 1, 1, -1))$. Completați aceast sistem de vectori până la o bază în $(\mathbb{R}^4, +, \cdot, \mathbb{R})$. Același lucru pentru vectorii $\mathbf{v}_1 = (1, 0, -1, 2), \mathbf{v}_2 = (0, 0, 1, -2)$

Exercițiul 30. Fie sistemul de vectori $S = (\mathbf{v} = (1, 2, 3))$. Completați aceast sistem de vectori până la o bază în $(\mathbb{R}^3, +, \cdot, \mathbb{R})$.

Exercițiul 31. Să se stabilească formulele de transformare a coordonatelor când se trece de la baza S la baza S' dacă

- a) S = ((2,3), (0,1)), S' = ((6,4), (4,8)) în \mathbb{R}^2 ;
- b) $S = ((1,1,1), (1,1,0), (1,0,0)), S' = ((2,0,3), (-1,4,1), (3,2,5)) \hat{n} \mathbb{R}^3;$
- c) $S = (t^2, t, 1), S' = (3 + 2t + t^2, t^2 4, t + 2)$ în $\mathbb{R}_2[\mathbf{x}]$
- d) S = ((1, 2, -1, 0), (1, -1, 1, 1), -1, 2, 1, 1), (-1, -1, 0, 1)),
- S' = ((2,1,0,1), (0,1,2,2), (-2,1,1,2), (1,3,1,2)) în \mathbb{R}^4 .
- e) S = ((1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)),
- $S' = ((1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (1, 1, 1, 1)) \hat{n} \mathbb{R}^4.$

Exercițiul 32. Să se arate că sistemul de vectori ((1,1,0,0),(1,-1,1,1)) nu este o bază în subspațiul soluțiilor sistemului

$$\begin{cases} -x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 + x_4 = 0 \end{cases}$$

Exercițiul 33. Se dau matricele

$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix}.$$

- a) Să se studieze liniara dependență a acestor matrice în $(\mathcal{M}_2(\mathbb{R}), +, \cdot, \mathbb{R})$.
- b) Să se completeze mulțimea acestor matrice până la o bază în spațiul $(\mathcal{M}_2(\mathbb{R}),+,\cdot,\mathbb{R})$.
 - c) Este baza obținută la fel orientată cu baza canonică a spațiului dat?

1. Exercitii suplimentare

Exercițiul 34. Fie $(X, +, \cdot, K)$ un spațiul liniar și S_1, S_2 două sisteme de vectori din $X, S_1 \subset S_2$. Demostrați că

- a) dacă S_1 este liniar dependent, atunci S_2 este liniar dependent.
- b) dacă S_2 este liniar independent, atunci S_1 este liniar independent.

Exercițiul 35. Fie $(X, +, \cdot, K)$ un spațiul liniar și $S = (v_1, v_2, ..., v_n)$ o bază din X. Orice sistem de vectori care conține mai mult de n vectori este liniar dependent.

Exercițiul 36. Fie $(\mathbb{X}, +, \cdot, \mathbb{K})$ un spațiul liniar și $(\mathbb{V}, +, \cdot, \mathbb{K})$ un subspațiul liniar a lui \mathbb{X} . Demonstrați că $\dim_{\mathbb{K}} \mathbb{V} \leq \dim_{\mathbb{K}} \mathbb{X}$.

Exercițiul 37. Fie $(\mathbb{X}, +, \cdot, \mathbb{K})$ un spațiul liniar și $(\mathbb{V}, +, \cdot, \mathbb{K})$ un subspațiul liniar a lui \mathbb{X} . Dacă $\dim_{\mathbb{K}} \mathbb{V} = \dim_{\mathbb{K}} \mathbb{X}$ atunci $\mathbb{V} = \mathbb{X}$.

Exercițiul 38. (Teorema lui Grassmann) Fie \mathbb{X} un \mathbb{K} -spațiu liniar finit dimensionat. Dacă \mathbb{V}_1 și \mathbb{V}_2 sunt două subspații liniare ale lui \mathbb{X} atunci are loc relația

$$\dim_{\mathbb{K}} \mathbb{V}_1 + \dim_{\mathbb{K}} \mathbb{V}_2 = \dim_{\mathbb{K}} (\mathbb{V}_1 \cap \mathbb{V}_2) + \dim_{\mathbb{K}} (\mathbb{V}_1 + \mathbb{V}_2).$$

Exercițiul 39. Fie $(\mathbb{V}, +, \cdot, \mathbb{R})$ un spațiu liniar iar $\mathbb{V}_1, \mathbb{V}_2$ două subspații liniare ale lui \mathbb{V} cu $\dim_{\mathbb{R}} \mathbb{V}_1 = \dim_{\mathbb{R}} \mathbb{V}_2 = 6$ și $\dim_{\mathbb{R}} \mathbb{V} = 10$. care este cea mai mică valoare posibilă a lui $\dim_{\mathbb{R}} (\mathbb{V}_1 \cap \mathbb{V}_2)$?

Exercițiul 40. Fie $A=(a_{ij})_{i,j=\overline{1,n}}$ o matrice de ordinul n, cu elemente reale sau complexe. Dacă

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, \quad i = \overline{1, n}$$

să se arate că $\det A \neq 0$.

Exercițiul 41. Fie $A = (a_{ij})_{i,j=\overline{1,n}}$ o matrice reală sau complexă, de ordinul n, având proprietatea că $\sum_{j=1}^{n} |a_{ij}| < 1$ pentru $i = \overline{1,n}$. Să se arate că matricele I + A și I - A sunt inversabile.

Exercițiul 42. Fie $A=(a_{ij})_{i,j=\overline{1,2013}}$ o matrice în care $a_{ij}\in\{-1,0,1\}$, $\forall i,j=\overline{1,2013}$. Să se arate că determinantul matricei

 $2014I_{2013} + A$ este nenul.

SEMINARUL NR.4-5.

Exercițiul 43. Să se stabilească, fără a calcula determinantul, dacă matricea

$$A = \begin{pmatrix} n & 1 & 1 & \cdots & 1 \\ 1 & n & 1 & \cdots & 1 \\ 1 & 1 & n & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 1 & 1 & 1 & \cdots & n \end{pmatrix}$$

este nesingulară.

Exercițiul 44. Fie $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ astfel încât $\sum_{j=1}^{n} a_{ij} = 0$ pentru i = 1, 2, ..., m. Să se explice de ce coloanele matricei A sunt liniar dependente și deci rang(A) < n.

Exercițiul 45. Fie $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Să se justifice că dacă rang(A) = r atunci $\dim_R C(A) = \dim_R L(A) = r$ și $\dim_R \ker(A) = n - r$, $\dim_R \ker(A^T) = m - r$.

Exercițiul 46. Să se demonstreze că $rang(A + B) \le rang(A) + rang(B)$.

Indicație. Se demonstrează că $rang(A+B) = \dim_R C(A+B) \le \dim_R (C(A)+C(B)) \le$ $\le \dim_R C(A) + \dim_R C(B) - \dim_R (C(A) \cap C(B)) \le$ $\le \dim_R C(A) + \dim_R C(B) = rang(A) + rang(B).$

Exercițiul 47. Să se demonstreze că $|rang(A) - rang(B)| \le rang(A - B)$.

Exercițiul 48. Să se explice de ce coloanele matricei

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{pmatrix}$$

sunt liniar independente dacă n < m