Nom i Cognoms:	Una possible solució
1) (2 punts) Justifica si són certes aquestes	afirmacions sobre el USB 2.0:

<u>És síncron:</u> FALS

Emissor i receptor no comparteixen senyal de rellotge. Cadascun té el seu.

<u>És half-duplex: CERT</u>

Les dades poden anar en qualsevol sentit, però no al mateix instant.

2) (1 punt)

Un micro amb un oscil.lador molt poc precís fa de master en una comunicació SPI. Degut a aquesta imprecisió, la freqüència del senyal de rellotge SCLK té una certa indeterminació. Concretament $f_{SCLK} = 10 \text{Khz} \pm 10\%$.

Si enviem trames de 512 bits, quantifiqueu quin percentatge de bits rebrà incorrectament el slave per causa d'aquesta indeterminació.

0%

Al tractar-se d'una comunicació síncrona, el slave rep el senyal SCLK del master. Per tant llegirà les dades de forma correcta encara que no sigui a una freqüència constant.

3) (2 punts)

pinta_pixel_GLCD (fila, col);

Encén el píxel que es troba en les coordenades esmentades en un LCD gràfic monocrom de 64x128 (0<=fila<=63, 0<=col<=127). La figura 2 ens mostra els eixos i origen de coordenades del GLCD.

posicio_touch_screen (&x, &y);

Obté la posició premuda en una pantalla tàctil ubicada sobre la GLCD. (0<=x<=255, 0<=y<=255). La figura 1 ens mostra els eixos i origen de coordenades de la pantalla tàctil.

calibra_touch_screen (&xmin, &ymin, &xmax, &ymax);

Demana a l'usuari que premi la pantalla tàctil en els seus extrems i retorna les coordenades del punts premuts (figura 1).

Es demana la expressió correcta de les variables pinta_ fila i pinta_col, per a que s'encengui el píxel just allà on ha premut l'usuari.

```
....
calibra_touch_screen (&xmin, &ymin, &xmax, &ymax);
....
posicio_touch_screen (&x, &y);
....
.... // Aqui cal calcular el valor de pinta_fila i pinta_col
....
pinta pixel GLCD (pinta fila, pinta col);
```

```
pinta_fila = 63 - 63 * (y - ymin) / (ymax - ymin)
pinta_col = 127 * (x - xmin) / (xmax - xmin)
```

Nom i Cognoms: Una possible solució

4) (2 punts)

Calcula quan trigaríem a enviar 12KB de dades (12x1024B), des del PIC18F4550 a un PC, si ho fem per una línia sèrie que està configurada a 19200bps, amb paraules de 8 bits, paritat parell i un bit de stop.

Cada transmissió serà: Start, 8 bits de dades, Paritat, Stop, 11 bits.

Enviarem: $12 \text{ KByte x } 11 \text{ bits / Byte} = 12 \times 1024 \times 11 = 135168 \text{ bits.}$

Temps = 135168 bits / 19200 bits/segon = 7,04 segons.

5) (2 punts)

Mireu la següent rutina d'interrupció de recepció de línia sèrie del PIC 18F4550:

La línia sèrie està configurada a 115200bps, 8 bits de dades, no paritat, 1 bit de stop, i NO hi ha cap control de fluxe.

Quin ha de ser el temps màxim entre dos serveis d'interrupció consecutius per evitar que hi hagi error d'overrun ? Raoneu la resposta.

L'overrun es produirà si arriba una nova dada abans de ser llegida l'anterior.

Cada dada transmessa (1 byte) implicarà l'enviament de 1 bit de start + 8 bits de dades + 1 bit de stop = 10 bits.

Per tant, arribarà una dada cada: 10 bits / 115200 bits/segon = 86,8 us.

Si no podem atendre una rutina d'interrupció de recepció de línia sèrie cada 86,8 us ens arribarà una dada sense haver llegit l'anterior. Encara que tinguéssim un buffer hardware o una FIFO d'algunes posicions, s'acabaria omplint també.

6) (1 punt)

Si volem configurar la línia sèrie a 2400bps, amb un PIC que té l'oscil.lador de 4MHz, hi ha alguna diferència entre configurar la línia sèrie amb BRGH en Low Speed o en High Speed?

SPBRG = (Fosc / (16 x Baud rate)) - 1, BRGH = 1 High Speed SPBRG = (Fosc / (64 x Baud rate)) - 1, BRGH = 0 Low Speed

BRGH		Fosc = 4 MHz		
	BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)
	0.3	0.300	0	207
	1.2	1.202	0.17	51
	2.4	2.404	0.17	25
	9.6	8.929	6.99	6
	19.2	20.833	8.51	2
	28.8	31.250	8.51	1
	33.6	-		-
	57.6	62.500	8.51	0
	HIGH	0.244	-	255
	LOW	62.500		0

BRGH=1						
	BAUD RATE (K)	Fosc = 4 MHz				
		KBAUD	% ERROR	SPBRG value (decimal)		
	0.3	-	-			
	1.2	1.202	0.17	207		
	2.4	2.404	0.17	103		
	9.6	9.615	0.16	25		
	19.2	19.231	0.16	12		
	28.8	27.798	3.55	8		
	33.6	35.714	6.29	6		
	57.6	62.500	8.51	3		
	HIGH	0.977	-	255		
	LOW	250.000	-	0		

A les taules que ens dóna el fabricant (ja està tot calculat, no cal recalcular-ho per arribar a la mateixa conclusió o equivocar-se pel camí), veiem que en els dos casos:

- La velocitat real d'enviament serà de 2404 bauds.
- L'error de precisió comès serà del 0,17%

Per tant no hi haurà cap diferència entre fer servir el mode BRGH=0 amb el valor 25 al registre SPBRG o el mode BRGH=1 amb el valor 103 a SPBRG.