解答

問 1.

- (1) $\cos^2 t = \frac{1}{2}(1 + \cos 2t) \ \ \sharp \ \ \ \ \ f(t) = 50 + 50\cos 2t$ 第 1 項は直流成分ゆえ周波数 0 であり、周期には影響しない。第 2 項は基本周期 π . したがって基本周期 $T_0 = \pi$.
- (2) $\frac{2\pi}{k}T_0 = 2\pi$: $T_0 = k$.
- κ (3) $T=2\pi l, \ \frac{T}{2}=2\pi m, \ \frac{T}{3}=2\pi m \ (l,m,n \$ は整数) したがって $2\pi, 4\pi, 6\pi$ の最小公倍数を考えて, $T_0=12\pi$.
- (4) $T=2\pi m_1,\ 2T=2\pi m_2,\ldots,kT=2\pi m_k,\ldots$ $(m_k(k=1,2,\ldots)$ は整数) したがって $2\pi,\pi,\ldots,\frac{2\pi}{k},\ldots$ の最小公倍数を考えて, $T_0=2\pi$.
- ただしここでは $b_1 \neq 0$ とした.
 (5) $f(t) = 2 \cdot \frac{1}{2} \left(\sin \left(t + \frac{t}{2} \right) + \sin \left(t \frac{t}{2} \right) \right) = \sin \frac{3t}{2} + \sin \frac{t}{2}$ したがって $\frac{2}{3} \times 2\pi, 2 \times 2\pi$ の最小公倍数を考えて、 $T_0 = 4\pi$.
 (6) 正弦波の絶対値をとると負の部分が折り返されるため、周期は半分になる.
- したがって $3T_0=\pi$ ∴ $T_0=\frac{\pi}{2}$.
- (7) $f(t) = \frac{1}{2} \left(\sin \left(5\omega_0 t + \omega_0 t \right) + \sin \left(5\omega_0 t \omega_0 t \right) \right) = \frac{1}{2} \left(\sin 6\omega_0 + \sin 4\omega_0 \right)$ したがって $\frac{2\pi}{6\omega_0}$, $\frac{2\pi}{4\omega_0}$ の最小公倍数を考えて, $T_0 = \frac{\pi}{\omega_0}$.
- (8) $f(t) = \frac{1}{2} (1 \cos 2t)$ したがって (1) 同様, $T_0 = \pi$.
 (9) $f(t) = \frac{1}{4} (3 \sin t \sin 3t)$ (3 倍角の公式)
- したがって 2π , $\frac{2\pi}{3}$ の最小公倍数を考えて, $T_0=2\pi$. (10) $\tan t$ の基本周期は π である.したがって, $f(t)=\tan 2t$ の基本周期は $T_0=\pi/2$.

問 2.

(1) 下図.

また,偶関数成分 $f_e(t) = \frac{1}{2}(f(t) + f(-t)) = \begin{cases} 0.5t, & t \ge 0 \\ -0.5t, & t < 0 \end{cases}$,

奇関数成分 $f_o(t) = \frac{1}{2}(f(t) - f(-t)) = 0.5t$ より下図.

(2) 下図.

また,偶関数成分 $f_e(t) = \begin{cases} 0.5\mathrm{e}^{-t}, & t \ge 0 \\ 0.5\mathrm{e}^t, & t < 0 \end{cases}$,奇関数成分 $f_o(t) = \begin{cases} 0.5\mathrm{e}^{-t}, & t > 0 \\ -0.5\mathrm{e}^t, & t < 0 \end{cases}$ より下図.

問 3.

- (1) 偶関数成分 $x_e(t) = 1 + t^2$ 奇関数成分 $x_o(t) = t + t^3$
- (2) $x(t) = \cos t + \sin t + \sin 2t$ と変形できるので、 偶関数成分 $x_e(t) = \cos t$ 奇関数成分 $x_o(t) = \sin t + \sin 2t$