MPC-in-Multi-Heads: a Multi-Prover Zero-Knowledge Proof System

(or: How to Jointly Prove Any NP Statements in ZK)

Hongrui Cui¹ Kaiyi Zhang¹ Yu Chen ^{2,3,4} Zhen Liu ¹

 $^{1}\mathsf{Department}$ of Computer Science, Shanghai Jiao Tong University

²School of Cyber Science and Technology, Shandong University

³State Key Laboratory of Cryptology

⁴Key Laboratory of Cryptologic Technology and Information Security
⁵Shanghai Qizhi Institute

ESORICS 2021

Synopsis

Introduction

Motivation Functionality

Related Works

MPC/ZK PV-MPC

ZK on Shared Instances

MPC-in-Multi-Heads

A Black-Box Construction Experiments

Conclusion

The **Double Financing** Problem

The **Double Financing** Problem

The **Double Financing** Problem

The **Double Financing** Problem

Prove $(x_1 + x_2 + x_3) < 0.9 \cdot z$!

The **Double Financing** Problem

Non-Interactive Proof is Better!

Multi-Prover Zero-Knowledge

One possible solution for \mathcal{NP} relations:

Ideal MPZK Functionality

$$\mathcal{F}^{\mathsf{mpzk}}(\underbrace{x_1,\ldots,x_m}_{m \text{ Provers}};\underbrace{y}_{1 \text{ Verifier}}) \mapsto \mathcal{R}(x_1,\ldots,x_m;y)$$

where ${\cal R}$ defines an ${\cal NP}$ relation.

Multi-Prover Zero-Knowledge

One possible solution for \mathcal{NP} relations:

Ideal MPZK Functionality

$$\mathcal{F}^{\mathsf{mpzk}}(\underbrace{x_1,\ldots,x_m}_{m \text{ Provers}};\underbrace{y}_{1 \text{ Verifier}}) \mapsto \mathcal{R}(x_1,\ldots,x_m;y)$$

where \mathcal{R} defines an \mathcal{NP} relation.

Discussions:

- ▶ Implies traditional ZK when m=1
- ▶ If V only broadcasts random coins, we can apply FS/BCS transformation

Synopsis

Introduction

Motivation Functionality

Related Works MPC/ZK

PV-MPC

ZK on Shared Instances

MPC-in-Multi-Heads

A Black-Box Construction

Experiments

Conclusion

MPC+ZK

Solutions Implied by Feasibility Results

- lackbox One can easily design a protocol by computing \mathcal{F}^{mpzk} via general MPC framework
- GCZK follows this approach [JKO13, FNO15]

MPC+ZK

Solutions Implied by Feasibility Results

- ightharpoonup One can easily design a protocol by computing $\mathcal{F}^{\mathsf{mpzk}}$ via general MPC framework
- GCZK follows this approach [JKO13, FNO15]

Discussions

Claim: the above construction is not public-coin

MPC+zk-SNARK

More Advanced Solutions

One can also distribute the proving program of zk-SNARK among multi-provers.

MPC+zk-SNARK

More Advanced Solutions

One can also distribute the proving program of zk-SNARK among multi-provers.

Discussions

- Assuming a 3-round protocol w/ messages (a, c, z).
- ▶ If MPC outputs (a, c, z), then some hash function has to be evaluated inside MPC
- The prover's computational complexity tends to be high

Publicly Verifiable MPC

This is the closest to our goal

- PV-MPC allows any external party to verify that the computation is correct
- Claim: this property suffices for our goal

Publicly Verifiable MPC

This is the closest to our goal

- PV-MPC allows any external party to verify that the computation is correct
- Claim: this property suffices for our goal

Caveats

Existing works have some significant drawbacks

- Works of Baum et al. [BDO14, BOSS20] relies on bulletin board—an unalterable broadcast
- Works of Schoenmakers and Veeningen [SV15] relies on honest majority setting to preserve privacy

ZK with Shared Instances

Secret-Shared Proof Instance

- ▶ Boneh et al. proposed "ZKP on Secret-Shared Data" in [BBC+19]
- In their formulation, the **single** prover holds x entirely while **multiple** verifiers only hold shares
- ▶ This primitive is already being used in MPC (cf. [BGIN20])

ZK with Shared Instances

Secret-Shared Proof Instance

- ▶ Boneh et al. proposed "ZKP on Secret-Shared Data" in [BBC+19]
- In their formulation, the **single** prover holds x entirely while **multiple** verifiers only hold shares
- ▶ This primitive is already being used in MPC (cf. [BGIN20])

Conclusion

Quite orthogonal

Synopsis

Introduction

Motivation Functionality

Related Works

MPC/ZK PV-MPC

ZK on Shared Instances

MPC-in-Multi-Heads A Black-Box Construction Experiments

Conclusion

$$\mathcal{R}(x, w) = C(x, w) = 1$$

 $\mathcal{R}(x, w) = C(x, w) = 1$

Now we extend the number of provers

An Example

Consider the 3-prover example:

3 Real Provers Simulating 9 Virtual Parties

- ▶ Alice (resp. Bob, Charlie) shares a into a_1, a_2, a_3 (resp. b, c)
- ▶ They compute the function $\mathcal{R}(\sum a_i, \sum b_i, \sum c_i; x)$ using some 9-party MPC \blacksquare
- ► Each prover simulates 3 parties, "group-wise" communication is sent via "prover-wise" channels

An Example

Consider the 3-prover example:

3 Real Provers Simulating 9 Virtual Parties

- ▶ Alice (resp. Bob, Charlie) shares a into a_1, a_2, a_3 (resp. b, c)
- ▶ They compute the function $\mathcal{R}(\sum a_i, \sum b_i, \sum c_i; x)$ using some 9-party MPC \blacksquare
- ► Each prover simulates 3 parties, "group-wise" communication is sent via "prover-wise" channels

Discussion

- lacktriangle Communication complexity is $\Omega(|C|)$
- $ightharpoonup \Pi$ needs to protect honest prover's privacy

Experiment Setup

We tested on three relations:

- $ightharpoonup \mathcal{R}^{\mathsf{hash}}(y;(x_1,x_2)): y = \mathtt{SHA256}(x_1 \oplus x_2)$
- $ightharpoonup \mathcal{R}^{\mathsf{comp}}((y,h_1,h_2);((x_1,r_1),(x_2,r_2))):$

$$\underbrace{y < (x_1 + x_2)}_{\text{32-bit integer}} \land h_1 = \text{SHA256}(x_1||r_1) \land h_2 = \text{SHA256}(x_2||r_2)$$

$$ightharpoonup \mathcal{R}^{\text{sum}}(y;(x_1,...,x_8)): y = \underbrace{x_1 + ... + x_8}_{\text{32-bit integer}}$$

Experiment Results

- lacktriangle We instantiate the inner protocol Π with semi-honest GMW
- ▶ Each round the verifier checks 2 views per prover

Relation	\mathcal{R}^{hash}	\mathcal{R}^{comp}	\mathcal{R}^{sum}
Circuit Size	94,302/22,528	189,450/45,312	1,821/288
Simulated Party	2×3	2×3	8×3
Soundness Error	2^{-40}	2^{-40}	2^{-40}
Repetition Count	70	70	70
Proving Time	109min	223min	26min31s
Verification Time	23.7s	50.0s	1.44s
Proof Size	4.0MB	8.0MB	1.3MB

Synopsis

Introduction

Motivation Functionality

Related Works

MPC/ZK PV-MPC ZK on Shared Instances

MPC-in-Multi-Heads

A Black-Box Construction Experiments

Conclusion

Conclusion

Our contributions:

- ► A new primitive from practical applications
- A simple construction of the primitive
- Implementation and experiments

Further Improvement

The current protocol only utilizes the original (simplest) MPC-in-the-head construction, adaptation of new techniques (e.g., Ligero, ZKB++) is left as a future work.

Reference I

Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

Zero-knowledge proofs on secret-shared data via fully linear PCPs.

In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67-97. Springer, Heidelberg, August 2019.

Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-party computation. In Michel Abdalla and Roberto De Prisco, editors, SCN 14, volume 8642 of *LNCS*, pages 175–196. Springer, Heidelberg, September 2014.

Reference II

Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via distributed zero-knowledge proofs.

Cryptology ePrint Archive, Report 2020/1451, 2020. https://eprint.iacr.org/2020/1451.

Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.

Efficient constant-round MPC with identifiable abort and public verifiability.

In Daniele Micciancio and Thomas Ristenpart, editors, *CRYPTO 2020, Part II*, volume 12171 of *LNCS*, pages 562–592. Springer, Heidelberg, August 2020.

Reference III

Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.

Privacy-free garbled circuits with applications to efficient zero-knowledge.

In Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 191–219. Springer, Heidelberg, April 2015.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

Reference IV

Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 955–966. ACM Press,

November 2013.

Berry Schoenmakers and Meilof Veeningen. Universally verifiable multiparty computation from threshold homomorphic cryptosystems.

In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, *ACNS 15*, volume 9092 of *LNCS*, pages 3–22. Springer, Heidelberg, June 2015.