Navigation on Uneven Terrain

Motivation

Given a robot decorated with all required sensors, autonomously traverse a uneven field, with minimal overlapping of routes.

- Agricultural fields aren't flat, ramps, bumbs, elevations are in nature of agri-fields
- Think of a way that is not limited to 2D Occupancy grid for navigation.

Botanbot

Botanbot is a simple 4 wheeled, ackermann drived mobile robot. It is simulated under Gazebo with all required essential sensors in order to do outdoor navigation. The following table shows currently supported sensors.

Sensor Type	Topic	MSG TYPE
LIDAR	/velodyne_points	sensor_msgs::msg::
RealSense D435 COLOR CAMERA	/camera/color/image_raw	sensor_msgs::msg::
RealSense D435 DEPTH CAMERA	/camera/ aligned_depth_to_color/ image_raw	sensor_msgs::msg::
RealSense D435 IR1 CAMERA	/camera/infra1/image_raw	sensor_msgs::msg::
RealSense D435 IR2 CAMERA	/camera/infra2/image_raw	sensor_msgs::msg::
GPS	/gps/fix	sensor_msgs::msg::
IMU	/imu/data	sensor_msgs::msg::

Botanbot

Botanbot in a farming simulation environment

Botanbot Software stack

https://github.com/jediofgever/ OUTDOOR_NAV2

https://outdoor-nav2.readthedoc s.io/en/main/index.html

<pre> % foxy → % 2 branches</pre>	tags	Go to file Add file → Code →
jediofgever introduce botanbot_	map_server	413843c 2 hours ago 186 commits
assets	add presentation	9 days ago
botanbot_archived_packages	Add NMBU too all licence notifications	2 days ago
botanbot_description	botanbot_gazebo sensor plugin fixes	23 hours ago
botanbot_gazebo	cpplinter happy	23 hours ago
botanbot_gps_waypoint_follower	Add NMBU too all licence notifications	2 days ago
botanbot_gui	cpplinter happy	23 hours ago
botanbot_localization	Add NMBU too all licence notifications	2 days ago
botanbot_map_server	introduce botanbot_map_server	2 hours ago
botanbot_msgs	attempt to make planner server work	3 days ago
botanbot_navigation2	Add NMBU too all licence notifications	2 days ago
botanbot_openvslam	introduce botanbot_map_server	2 hours ago
botanbot_planning	cpplinter happy	23 hours ago
botanbot_utilities	lint all project	23 hours ago
.gitignore	Add utility package for botanbot	2 months ago
LICENSE	Initial commit	2 months ago
□ README.md	add presentation	9 days ago
uncrustify.cfg	correct licenses added, introduce gps waypoint fly	w 2 months ago

3D global representation of environment

- Realistic representation with reliable collision avoidance and path planning
- Surface models that can support a traversability analysis before robot operates
- Possibility of increase in localization accuracy by 3D scan matchers or VSLAM landmark recognition

Considerations for 3D environment representation?

- <u>Grid_map</u> (2.5D actually, but various layers to embed all 3D data, no integrated planner that I know, but they can be converted to costmap_2d easily)
- Mesh_map(triangular meshes, have compatible planners and controllers)
- <u>elevation_mapping</u> (robot-centric or local tasks only, bases on grid_map)
- <u>traversability_mapping</u>(not a serious consideration but nice to keep it here, based on Lego-LOAM)

SLAM's role

- LIDAR based 3D SLAM in the field is nearly unusable. Developed for the use in city like environments.
- Lack of solid shapes, repetitive occuring patterns confuses the algorithms.
- Visual SLAM performs better in the field. With an RGBD camera a correctly scaled map of agricultural field can be obtained.
- <u>Botanbot_openvslam</u>, is a client package to <u>openvslam</u>, a visual slam based o ORB-SLAM2
 Both mapping and localization nodes are available

SLAM's role

SLAM's role

Botanbot Grid Map

<u>Botanbot_grid_map</u> is a client package for grid_map, with provided ROS node and config files, a map(.pcd file) created by visual SLAM is retrieved

as grid_map and published.

No direct integartion with planners

Botanbot Map Server

- Botanbot_map_server is under development. It will serve to botanbot_planning and rely on botanbot_openvslam
- Botanbot Map server uses
 OCTOMAP which works
 exceptionally well for
 collision checking while
 planning with OMPL
 planners

How to do navigation based on this 3D map?

- <u>Botanbot_planning</u> is a package to that provides plugin based structure, plugins access to planners available in OMPL
- With <u>Flexible Collision Library</u>, collision check between robot's skeleton and map is performed. The map is represented as <u>octree</u> and robot body as 3D bounding box.
- An action interface to do planning is provided as ComputePathToPose;

ComputePathToPose.action interface

Available planner plugins are three now

```
planner plugin: "SE2PlannerControlSpace" # other options: "SE2Planner", "SE3Planner", "SE2PlannerControlSpace"
expected planner frequency: 5.0
  plugin: "botanbot planning::SE2Planner"
  planner timeout: 1.0
  interpolation parameter: 50
  octomap voxel size: 0.1
   minx: -50.0
   maxx: 50.0
   miny: -50.0
   maxy: 50.0
   minz: 0.0
   maxz: 3.0
  robot body dimens:
   x: 1.0
   y: 0.5
    z: 0.4
```

```
SE2PlannerControlSpace:
  plugin: "botanbot planning::SE2PlannerControlSpace"
  planner name: "RRT" # other options: SST , EST, KPIECE1
  planner timeout: 1.0
  interpolation parameter: 50
  octomap filename: "/home/ros2-foxy/f.bt"
  octomap voxel size: 0.1
  state space boundries:
   minx: -50.0
   maxx: 50.0
   miny: -50.0
   maxy: 50.0
   minz: 0.0
   maxz: 3.0
  robot body dimens:
    x: 1.0
    V: 0.5
    Z: 0.4
```

```
SE3Planner:
 plugin: "botanbot planning::SE3Planner"
 planner name: "PRMStar" # other options: PRMStar RRTConnect, KPIECE1
 planner timeout: 1.0
 interpolation parameter: 50
 octomap filename: "/home/ros2-foxy/f.bt"
 octomap voxel size: 0.1
 state space boundries:
   minx: -50.0
   maxx: 50.0
   miny: -50.0
   maxy: 50.0
   minz: 0.0
   maxz: 3.0
   x: 1.0
   V: 0.5
   z: 0.4
```

Some results of planning in 3D

Some results of planning in 3D

Localization (WIP)

Rework botanbot_localization so that we have following;

- Absolute localization (utm -> base_link) GNSS + relative_localization = absolute_localization
- Relative localization (map -> base_link) local_localization+ VSLAM = relative_localization
- Local localization (odom->base_link) vslam+imu+encoder = local_localization

Botanbot_localization currently does not include map built by SLAM into localization, it only uses GNSS, IMU, Wheel Odometry.

,current effort will be integrating a built map into botanbot_localization.

Localization (WIP)

- When doing the SLAM in mapping mode, write map info with following properties.
- With this info, utm -> map can be received.

```
lamson_type: rgbd

nap_db_path: /home/ros2-foxy/f.msg

B creation_date: "Fri Jan 15 11:34:42 2021\n"

mmp_coordinates:
latitude: 49.89998651126992
longicude: 8.90004175541922

# longicude: 0.6342219080730283

quaternites:

x: -0.0002674302377596963

y: -7.804134265664371e-05

2: 0.7068408908205831

w: 0.7073725167509558
```

Origin of map

Thanks!