- 1. For the following 4-bit addition operations use equations 11.4-11.7 and fig. 11.12 to
 - a) compute G_0 , G_1 , G_2 , G_3 , G_4 , P_0 , P_1 , P_2 , P_3 , and P_4 .
 - b) use the results from a) to compute $G_{0:0}$, $G_{1:0}$, $G_{2:0}$, and $G_{3:0}$.
- c) use the results from a) and b) to compute the sum bits, $S_1 S_4$, and carry-out (overflow) bit, C_{out} , of the operations and verify by converting to decimal.

1.
$$| 0 | 1 |$$
 $| G_0 = C_{10} = 0 |$
 $| G_1 = | f_1 = 1 |$
 $| G_2 = 1 \cdot 1 = 1 |$
 $| G_2 = 1 \cdot 1 = 1 |$
 $| G_3 = 0 \cdot 1 = 0 |$
 $| G_4 = 1 \cdot 0 = 0 |$
 $| G_4 = 1 \cdot 0 = 0 |$
 $| G_{10} = G_{0} = 0 |$
 $| G_{10} = G_{11} + P_{11} \cdot G_{01} = 1 |$
 $| G_{20} = G_{21} + P_{21} \cdot G_{10} = 1 |$
 $| G_{20} = G_{31} \cdot 1 + P_{31} \cdot G_{21} = 0 |$
 $| G_{31} = G_{31} \cdot 1 + P_{31} \cdot G_{31} = 0 |$
 $| G_{41} = G_{41} + F_{41} \cdot G_{31} = 0 |$
 $| G_{41} = G_{41} + F_{41} \cdot G_{31} = 0 |$

C.
$$S_1 = P_1 \oplus G_{0:0} = 0 \oplus 0 = 0$$

 $S_2 = P_2 \oplus G_{1:0} = 0 \oplus 1 = 1$
 $S_3 = P_3 \oplus G_{2:0} = 1 \oplus 1 = 0$
 $S_4 = P_4 \oplus G_{3:0} = 1 \oplus 1 = 0$
 $C_{out} = G_{4:0} = 1$ ans = 10010 = 18

$$c \cdot S_1 = 1$$

 $S_2 = 1$
 $S_3 = 1$
 $S_4 = 0$
 $Cout = 1$

ans= 10111

C.
$$S_1 = 1$$

 $S_2 = 0$
 $S_3 = 1$
 $S_4 = 1$
Cout = 0 ans = 1101

2. Find the logic operation implemented by the lookup table (LUT) depicted. A value inside a memory cell, indicates that that is the value stored in that cell.

Truth Table.	
A B C Y	
0 0 0 0 0	
0 0 1 1 looks like xor (B,C)	
0 1 0 1 9.	
0 1 1 0	
1000	
1010 Gloves Like A	
1100	
1110	

Answer -> A (BAC) [just one expression]

Other forms exist such as the minterm expression (ABC + ABC), Maxterm expression, etc. 3. Predict the output of the following LFSR assuming it starts in the 0001 state and has a steady clock input. What is the cycle length of this LFSR? Redesign the circuit so it has a cycle of maximal-length (length 15). (The weird-looking gate is an XOR)

