Comparison of Plasma Sound Velocity to Plasma Expansion Velocity

Helium			Linear Fit	Linear Fit
Pressure (bar)	t _{flat} (ns)	t ₂ (ns)	v ₁ (km/s)	v ₂ (km/s)
1	< 0.05	~1.75	12.78 ± 0.07	3.07 ± 0.02
5	0.095	~1.75	7.58 ± 0.06	3.45 ± 0.05
15	0.85	~1.75	7.39 ± 0.06	2.57 ± 0.02
30	0.85	~1.75	5.75 ± 0.05	2.14 ± 0.02
40	0.85	~1.75	6.76 ± 0.05	2.19 ± 0.02

$$c_s = \sqrt{\frac{ZkT_e + 3kT_i}{m_i}}$$

For helium at T = 11,000 K, Z = 1, and
$$T_i \ll T_{e_i}$$

 $c_s = 4,780 \text{ m/s}$

Does Plasma Contraction at Short Times Imply that a Cold Dense Plasma acts like it has a Tensile Strength

Bataller et al.

