

BÀI 1. NHẮC LẠI VỀ GIẢI TÍCH TỔ HỢP

Môn học: Xác suất Thống kê

Giảng viên: TS. Nguyễn Kiều Linh

Hà Nội, năm 2020

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán vị
- 6 Tổ hợp

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán v
- 6 Tổ hợp

1. Quy tắc cộng

Ví dụ 1

Có bao nhiêu cách để sinh viên chọn ra một phương tiện đi từ nhà đến trường nhập học, biết rằng có hai loại phương tiện để lựa chọn: Phương tiện cá nhân và phương tiện công cộng.

- Phương tiện cá nhân: 3 loại (xe đạp, xe máy, xe hơi.)
- Phương tiện công cộng: 7 loại (xe khách, xe buýt, tàu điện trên cao, tàu hoả, taxi, xe ôm, xích lô).

1. Quy tắc cộng

Ví dụ 1

Có bao nhiêu cách để sinh viên chọn ra một phương tiện đi từ nhà đến trường nhập học, biết rằng có hai loại phương tiện để lựa chọn: Phương tiện cá nhân và phương tiện công cộng.

- Phương tiện cá nhân: 3 loại (xe đạp, xe máy, xe hơi.)
- Phương tiện công cộng: 7 loại (xe khách, xe buýt, tàu điện trên cao, tàu hoả, taxi, xe ôm, xích lô).

Trả lời: Có 3 + 7 = 10 (cách).

4日ト 4団ト 4 豆 ト 4 豆 ・ 9 回 回 ・ 9 回 回 ・ 9 回 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ● 9 回 ●

1. Quy tắc công

Quy tắc công

Một công việc có k phương án thực hiện khác nhau:

- Phương án 1 có n_1 cách thực hiện,
- Phương án 2 có n_2 cách thực hiện,
- O
- Phương án k có n_k cách thực.

Khi đó có $n = n_1 + n_2 + \ldots + n_k$ cách thực hiện công việc trên.

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán v
- 6 Tổ hợp

2. Quy tắc nhân

Ví dụ 2

Cần đi xe buýt từ Hoàng Quốc Việt sang Hà Đông, giả sử cần bắt buộc phải đi qua Cầu Giấy. Có 3 tuyến xe buýt đi từ Hoàng Quốc Việt đến Cầu Giấy và 4 tuyến xe buýt từ Cầu Giấy đến Hà Đông. Hỏi có bao nhiêu cách đi xe buýt từ Hoàng Quốc Việt đến Hà Đông.

2. Quy tắc nhân

Ví dụ 2

Cần đi xe buýt từ Hoàng Quốc Việt sang Hà Đông, giả sử cần bắt buộc phải đi qua Cầu Giấy. Có 3 tuyến xe buýt đi từ Hoàng Quốc Việt đến Cầu Giấy và 4 tuyến xe buýt từ Cầu Giấy đến Hà Đông. Hỏi có bao nhiêu cách đi xe buýt từ Hoàng Quốc Việt đến Hà Đông.

Trả lời: Ta chia thành hai bước thực hiện công việc đi từ Hoàng Quốc Việt Đến Hà Đông.

- Bước 1: Đi từ Hoàng Quốc Việt đến Cầu giấy có 3 cách chọn.
- Bước 2: Đi từ Cầu Giấy đến Hà Đông có 4 cách chọn.

Số cách đi là 3.4 = 12 (cách).

2. Quy tắc nhân

Quy tắc nhân

Một công việc chia thành k giai đoạn thực hiện khác nhau:

- Giai đoạn 1 có n_1 cách thực hiện,
- Giai đoạn 2 có n_2 cách thực hiện,
-
- Giai đoạn k có n_k cách thực.

Khi đó có $n = n_1.n_2...n_k$ cách thực hiện công việc trên.

Ví dụ tổng hợp

Ví dụ 3

Có bao nhiêu cách đi từ nhà A_1 đên nhà A_3 ?

Ví dụ tổng hợp

Ví dụ 3

Có bao nhiều cách đi từ nhà A_1 đên nhà A_3 ?

Trả lời: Đi từ nhà A_1 đến nhà A_3 chia thành hai phương án:

- \bullet Phương án 1: Đi trực tiếp từ nhà A_1 đến nhà A_3 có 2 cách,
- Phương án 2: Đi từ nhà A_1 đến nhà A_2 rồi đi từ nhà A_2 đến nhà A_3 có 3.2=6 cách,

Do đó có tổng cộng 2+6=8 cách đi từ nhà A_1 đến nhà A_3 .

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán vi
- 6 Tổ hợp

Định nghĩa

Chỉnh hợp chập k của n phần tử, ký hiệu A_n^k , là một nhóm có thứ tự gồm k phần tử khác nhau lấy từ n phần tử đã cho $(k \le n)$.

Định nghĩa

Chỉnh hợp chập k của n phần tử, ký hiệu A_n^k , là một nhóm có thứ tự gồm k phần tử khác nhau lấy từ n phần tử đã cho $(k \le n)$.

Chú ý

Chỉnh hợp chập k của n phần tử là cách chọn k phần tử từ n phần tử đã cho sao cho:

- Có thứ tự;
- Các phần tử khác nhau.

Định nghĩa

Chỉnh hợp chập k của n phần tử, ký hiệu A_n^k , là một nhóm có thứ tự gồm k phần tử khác nhau lấy từ n phần tử đã cho $(k \le n)$.

Chú ý

Chỉnh hợp chập k của n phần tử là cách chọn k phần tử từ n phần tử đã cho sao cho:

- Có thứ tự;
- Các phần tử khác nhau.

Công thức tính

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)(n-2)\dots(n-k+1).$$
 (1)

TS. Nguyễn Kiều Linh BÀI 1. NHẮC LẠI VỀ GIẢI TÍCH TỔ HỢP

Ví dụ 4

Lớp học có 50 sinh viên, có bao nhiều cách chọn một lớp trưởng, một lớp phó và một bí thư?

Ví dụ 4

Lớp học có 50 sinh viên, có bao nhiều cách chọn một lớp trưởng, một lớp phó và một bí thư?

Lời giải

Chọn 3 người trong 50 người có thứ tự và không lặp lại nên số cách chọn là $A_{50}^3 = 50.49.48 = 117600$ cách.

Ví dụ 4

Lớp học có 50 sinh viên, có bao nhiều cách chọn một lớp trưởng, một lớp phó và một bí thư?

Lời giải

Chọn 3 người trong 50 người có thứ tự và không lặp lại nên số cách chọn là $A_{50}^3 = 50.49.48 = 117600$ cách.

Ví dụ 5

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số khác nhau?

Ví dụ 4

Lớp học có 50 sinh viên, có bao nhiều cách chọn một lớp trưởng, một lớp phó và một bí thư?

Lời giải

Chọn 3 người trong 50 người có thứ tự và không lặp lại nên số cách chọn là $A_{50}^3=50.49.48=117600$ cách.

Ví du 5

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số khác nhau?

Lời giải

Chọn 4 chữ số trong 6 chữ số có thứ tự và không lặp lại nên số các số là $A_6^4 = 6.5.4.3 = 360$.

TS. Nguyễn Kiều Linh BÀI 1. NHẮC LẠI VỀ GIẢI TÍCH TỔ HỢP

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán v
- 6 Tổ hợp

Định nghĩa

Chỉnh hợp lặp chập k của n phần tử, ký hiệu \bar{A}_n^k , là một nhóm có thứ tự gồm k phần tử không nhất thiết khác nhau lấy từ n phần tử đã cho.

Định nghĩa

Chỉnh hợp lặp chập k của n phần tử, ký hiệu \bar{A}_n^k , là một nhóm có thứ tự gồm k phần tử không nhất thiết khác nhau lấy từ n phần tử đã cho.

Chú ý

Chỉnh hợp lặp chập k của n phần tử là cách chọn k phần tử từ n phần tử đã cho sao cho:

- Có thứ tự;
- Các phần tử không nhất thiết khác nhau.

Định nghĩa

Chỉnh hợp lặp chập k của n phần tử, ký hiệu \bar{A}_n^k , là một nhóm có thứ tự gồm k phần tử không nhất thiết khác nhau lấy từ n phần tử đã cho.

Chú ý

Chỉnh hợp lặp chập k của n phần tử là cách chọn k phần tử từ n phần tử đã cho sao cho:

- Có thứ tự;
- Các phần tử không nhất thiết khác nhau.

Công thức tính

$$\bar{A}_n^k = n^k. (2)$$

14 / 22 TS. Nguyễn Kiều Linh

Ví dụ 6

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số?

Ví dụ 6

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số?

Lời giải

Chọn 4 chữ số trong 6 chữ số có thứ tự và có thể lặp lại nên số các số cần tìm là $\bar{A}_6^4 = 6^4 = 1296$.

Ví dụ 6

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số?

Lời giải

Chọn 4 chữ số trong 6 chữ số có thứ tự và có thể lặp lại nên số các số cần tìm là $\bar{A}_6^4=6^4=1296$.

Ví dụ 7

Có 4 cửa hàng cạnh nhau, 5 người khách đến, mỗi khách chọn ngẫu nhiên một cửa hàng. Tính số trường hợp chọn cửa hàng.

Ví dụ 6

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 4 chữ số?

Lời giải

Chọn 4 chữ số trong 6 chữ số có thứ tự và có thể lặp lại nên số các số cần tìm là $\bar{A}_6^4 = 6^4 = 1296$.

Ví du 7

Có 4 cửa hàng cạnh nhau, 5 người khách đến, mỗi khách chọn ngẫu nhiên một cửa hàng. Tính số trường hợp chọn cửa hàng.

Lời giải

Mỗi khách có 4 cách chọn cửa hàng, có 5 khách nên số cách chọn cửa hàng là $\bar{A}_4^5=4^5=1024.$

TS. Nguyễn Kiều Linh BÀI 1. NHẮC LẠI VỀ GIẢI TÍCH TỔ HỢP

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán vị
- 6 Tổ hợp

Định nghĩa

Hoán vị của n phần tử, ký hiệu P_n , là một nhóm có thứ tự có đủ mặt cả n phần tử đã cho.

Định nghĩa

Hoán vị của n phần tử, ký hiệu P_n , là một nhóm có thứ tự có đủ mặt cả n phần tử đã cho.

Chú ý

Hoán vị là một chỉnh hợp chập n của n phần tử. Như vậy một hoán vị của n phần tử là một nhóm thoả mãn:

- Có thứ tự;
- Các phần tử khác nhau.

Định nghĩa

Hoán vị của n phần tử, ký hiệu P_n , là một nhóm có thứ tự có đủ mặt cả n phần tử đã cho.

Chú ý

Hoán vị là một chỉnh hợp chập n của n phần tử. Như vậy một hoán vị của n phần tử là môt nhóm thoả mãn:

- Có thứ tự;
- Các phần tử khác nhau.

Công thức tính

$$P_n = A_n^n = n!$$

(3)

17 / 22 TS. Nguyễn Kiều Linh

Ví dụ 8

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 6 chữ số khác?

Ví dụ 8

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 6 chữ số khác?

Lời giải

Mỗi số cần tìm là một hoán vị của 6 chữ số đã cho, dó đó số chữ số cần tìm là $P_6=6!=720.$

Ví dụ 8

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 6 chữ số khác?

Lời giải

Mỗi số cần tìm là một hoán vị của 6 chữ số đã cho, dó đó số chữ số cần tìm là $P_6=6!=720.$

Ví du 9

Một bàn dài có 10 ghế và có 10 sinh viên. Tính số cách sắp xếp tuỳ ý 10 sinh bàn dài này?

Ví dụ 8

Từ 6 chữ số 1, 2, 3, 4, 5, 6 lập được bao nhiều số có 6 chữ số khác?

Lời giải

Mỗi số cần tìm là một hoán vị của 6 chữ số đã cho, dó đó số chữ số cần tìm là $P_6=6!=720.$

Ví du 9

Một bàn dài có 10 ghế và có 10 sinh viên. Tính số cách sắp xếp tuỳ ý 10 sinh bàn dài này?

Lời giải

Mỗi cách xếp 10 sinh viên vào bàn dài là một hoán vị của 10, do đó số cách xếp tuỳ ý 10 sinh viên vào bàn là $P_{10} = 10! = 3628800$.

TS. Nguyễn Kiều Linh BÀI 1. NHẮC LẠI VỀ GIẢI TÍCH TỔ HỢP

Nội dung

- 1 Quy tắc cộng
- 2 Quy tắc nhân
- 3 Chỉnh hợp
- 4 Chỉnh hợp lặp
- 6 Hoán v
- 6 Tổ hợp

Định nghĩa

Tổ hợp chập k của n phần tử, ký hiệu C_n^k , là một nhóm không phân biệt thứ tự gồm k phần tử lấy từ n phần tử đã cho $(k \le n)$.

Định nghĩa

Tổ hợp chập k của n phần tử, ký hiệu C_n^k , là một nhóm không phân biệt thứ tự gồm k phần tử lấy từ n phần tử đã cho $(k \le n)$.

Chú ý

Tổ hợp chập k của n phần tử là một nhóm

- Không có thứ tự;
- Các phần tử khác nhau.

Đinh nghĩa

Tổ hợp chập k của n phần tử, ký hiệu C_n^k , là một nhóm không phân biệt thứ tư gồm k phần tử lấy từ n phần tử đã cho $(k \le n)$.

Chú ý

Tổ hợp chập k của n phần tử là một nhóm

- Không có thứ tự;
- Các phần tử khác nhau.

Công thức tính

$$C_n^k = \frac{n!}{(n-k)!k!}$$

Tính chất

- $C_n^k = C_n^{n-k}$;
- $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$

Tính chất

- $C_n^k = C_n^{n-k}$;
- $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$

Ví dụ 9

Ngân hàng đề thi có 100 câu hỏi cho trước. Mỗi đề thi có 5 câu hỏi được lấy ngẫu nhiên trong ngân hàng đề thi. Hỏi có thể lập được bao nhiêu đề thi có nội dung khác nhau?

Tính chất

- $C_n^k = C_n^{n-k}$;
- $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$

Ví dụ 9

Ngân hàng đề thi có 100 câu hỏi cho trước. Mỗi đề thi có 5 câu hỏi được lấy ngẫu nhiên trong ngân hàng đề thi. Hỏi có thể lập được bao nhiêu đề thi có nội dung khác nhau?

Lời giải

Số đề thi có thể lập được là $C_{100}^5 = \frac{100!}{95!5!} = 75287520.$

Kết luận

