- 1. We use from the notes the existence of the oriented intersection number, defined when $f: M \to N$, and $Z \subset N$ is a submanifold with $f = f_0 \sim f_1$ and $f_1 \pitchfork Z$, $I(f,Z) = \sum_{p \in f_1^{-1}(Z)}$ orientation #(p), which is congruent to $I_2(f,Z)$ (I will not give this construction since it was done in class). Now since $\dim M = \dim N$, we can define $\deg f = I(f,\{p\})$ for $p \in M$, we need to show that this is well defined for arbitrary p and that it reduces to $\deg_2 f$.
- **2.** Use the separation theorem to show that NM is orientable, then since $T\mathbb{R}^{k+1} = TM \oplus NM$ and $T\mathbb{R}^{k+1}$ and NM are orientable, we get an orientation on TM (see handwritten notes).
- **3. Lemma.** If G a (finite) discrete group acts on an orientable manifold M such that the action is smooth, free and proper, such that for each $g \in G$ we have $\det(dg) > 0$ on M, then there is an induced orientation on M/G.

Proof. For convenience, take the section $s: M \to \Lambda^n TM$ so that s > 0. Let $q: M \to M/G$ be the quotient map induced by the group action, and let $\{V_\alpha\}_{\alpha \in \mathcal{A}}$ be an open cover for M with $q^{-1}(V_\alpha) = \bigsqcup_1^r U_\alpha^i$ and $q|_{U_\alpha^i}: U_\alpha^i \xrightarrow{\cong} V_\alpha$. Now let $\{\eta_\alpha\}_{\mathcal{A}}$ be a partition of unity subordinate to the V_α , we consider the following diagram, and local invertibility of q to define a section $V_\alpha \to \Lambda^n TV_\alpha$ which is either everywhere positive or negative, since $q|_{U_\alpha^i}$ is a diffeomorphism, it induces an isomorphism of tangent bundles $\det dq|_{U_\alpha^1}$, since this is a smooth map which is everywhere non-zero, it is in particular everywhere positive or negative.

$$\begin{array}{ccc} U_{\alpha}^{1} \stackrel{s}{\longrightarrow} \Lambda^{n}TU \\ & \downarrow^{q|_{U_{\alpha}^{1}}} & \downarrow^{\det(dq|_{U_{\alpha}^{1}})} \\ V_{\alpha} & \Lambda^{n}TV_{\alpha} \end{array}$$

So that we get the section $\bar{s}: x \mapsto \sum_{\alpha} \eta_{\alpha} \det dq|_{U_{\alpha}^{1}}(s(q|_{U_{\alpha}^{1}}^{-1}(x)))$, to check it is everywhere non-zero suppose that $\eta_{\alpha_{1}}(x), \ldots, \eta_{\alpha_{s}}(x) > 0$, notice that for each j letting $y_{k} = q|_{U_{\alpha_{j}}^{1}}^{-1}(x)$ we have on some neighborhood of y_{j}

$$q|_{U_{\alpha_{j}}^{1}} = q|_{U_{\alpha_{1}}^{1}} \left(q|_{U_{\alpha_{1}}^{1}}^{-1} q|_{U_{\alpha_{j}}^{1}} \right) = q|_{U_{\alpha_{1}}^{1}} g_{j}$$

for some $g_j \in G$, this gives us that (using functoriality of det)

$$\det d_{y_j} q|_{U_{\alpha_j}^1} = \det d_{y_j} q|_{U_{\alpha_1}^1} g_j = \left(\det d_{y_1} q|_{U_{\alpha_1}^1}\right) \left(\det d_{y_j} g_j\right)$$

Since $\det dg_j > 0$, this implies that each term of the sum $\sum_{\alpha} \eta_{\alpha} \det dq|_{U_{\alpha}^1}(s(q|_{U_{\alpha}^1}^{-1}(x)))$ is a positive multiple of $\det dq|_{U_{\alpha_1}^1}(s(q|_{U_{\alpha}^1}^{-1}(x)))$, then since each term is nonzero and has the same sign this suffices to show nowhere vanishing at the point x, and since x was arbitrary, the section is nowhere vanishing. \square

Denote $j: S^d \to S^d$ as the antipodal map. When d is odd, we have an isotopy $1_{S^d} \sim j$ via $H((z_1,\ldots,z_{\frac{d+1}{2}}),t)=(e^{i\pi t}z_1,\ldots,e^{i\pi t}z_{\frac{d+1}{2}})$, denoting H(x,t) as $j_t(x)$ we find each induced $\det dj_t:\Lambda^dTS^d\to\Lambda^nTS^d$ is non-vanishing by virtue of being an embedding, moreover by IVT and smoothness in t, we find that $\det dj_t>0$ on M for all t, and hence the antipodal map satisfies the conditions of the lemma, applying the lemma we find $\mathbb{RP}^d=S^d/(\mathbb{Z}/2\mathbb{Z})$ has an induced orientation for odd n.

In the case that d is even, suppose for the sake of contradiction that \mathbb{RP}^d is orientable. We first check that the antipodal map j is indeed orientation reversing on S^d . Consider S^d as embedded in \mathbb{R}^{d+1} via the standard embedding, we get the decomposition $T\mathbb{R}^{d+1}|_{S^d} = TS^d \oplus (TS^d)^{\perp}$, since $T\mathbb{R}^{d+1}|_{S^d}$ is trivial, we can fix a section t for it, we can also take nonvanishing the outward normal section $n: S^d \to (S^d)^{\perp}$ via n(x) = x, this gives an orientation on $(S^d)^{\perp}$ since we have the canonical isomorphism $\Lambda(S^d)^{\perp} \cong (S^d)^{\perp}$. We have that j extends to the map $\hat{j}: x \mapsto -x$ on \mathbb{R}^{d+1}