Examination of Data Mining, AV 2018

Time: 2018-03-21

Total: 100

A: 90

B: 80

C: 70

D: 60

E: 50

Fail < 50

The use of dictionaries and calculators are permitted.

Good Luck

- 1. (8 p) Briefly describe the process of data mining process.
- 2. (8 p) List out three normalization methods. In which cases, attributes should be normalized?
- 3. (8 p) In which situation, we need to transform Numeric data to nominal data. Briefly describe two transform methods.
- 4. (8 p) What is bootstrap? In which situation, bootstrap method is more preferred? Given 5000 instance, the success rate of testing data set is 80% and the success rate of training data is 90%, what is the estimated success rate?
- 5. (8p) Given the following 2 cost matrix and prediction accurate results model 1 and model 2.

Model 1		Predicted class		
		yes	no	total
Actual class	yes	$TP = 100, \cos t = 0$	FN= 50, cost =10	150
	no	FP=20, $cost=5$	TN = 50, $cost = 0$	70

Model 2		Predicted class		
		yes	no	total
Actual class	yes	$TP = 90, \cos t = 0$	FN= 60, cost =10	150
	no	$FP = 40, \cos t = 5$	TN = 30, $cost = 0$	70

What model is better? Why?

- 6. (20 p) Bayes
- a) Based on the following training instances, Build a naïve Bayes classifier to classify the target variable.
- b) From your classification model from above question, predict lens type given age is 34, astigmatic is no, tear reduction is normal,

Attribute variables			Target variable	
age	Astigmatic	Tear production	Lens type	
		rate		
18	No	Normal	Α	
18	No	Reduced	Α	
20	No	Normal	Α	
20	No	Normal	Α	
21	yes	Normal	Α	
21	yes	Normal	Α	
25	yes	Reduced	Α	
26	yes	Normal	Α	
29	yes	Normal	Α	
30	yes	Normal	A	
31	No	Normal	A	
33	No	Normal	A	
40	No	Reduced	No	
45	No	Reduced	В	
45	No	Normal	В	
46	No	Normal	В	
47	No	Normal	A	
48	No	Normal	A	
51	yes	Reduced	No	
59	yes	Reduced	A	
70	yes	Normal	No	

c) Given the following Bayes network. What is $P(x_2 = 1)$? What is $P(x_5 = 1 | x_1 = 1)$?

 $P(x_3|x_1)$

$$P(x_3=0|x_1=0)=0.7$$

$$P(x_3 = 0 | x_1 = 1) = 0.3$$

$$P(x_{3} = 1 | x_{1} = 0) = 0.3$$

$$P(x_{2} | x_{1})$$

$$P(x_{2} = 0 | x_{1} = 0) = 0.7$$

$$P(x_{2} = 1 | x_{1} = 0) = 0.3$$

$$P(x_{4} = 0 | x_{2} = 0, x_{3} = 0) = 0.8,$$

$$P(x_{4} = 0 | x_{2} = 0, x_{3} = 1) = 0.5,$$

$$P(x_{4} = 0 | x_{2} = 1, x_{3} = 0) = 0.4,$$

$$P(x_{4} = 0 | x_{2} = 1, x_{3} = 0) = 0.4,$$

$$P(x_{4} = 0 | x_{2} = 1, x_{3} = 1) = 0.1,$$

$$P(x_{4} = 1 | x_{2} = 0, x_{3} = 0) = 0.2$$

$$P(x_{4} = 1 | x_{2} = 0, x_{3} = 0) = 0.5$$

$$P(x_{4} = 1 | x_{2} = 1, x_{3} = 0) = 0.6$$

$$P(x_{4} = 1 | x_{2} = 1, x_{3} = 0) = 0.6$$

$$P(x_{4} = 1 | x_{2} = 1, x_{3} = 0) = 0.6$$

$$P(x_{4} = 1 | x_{2} = 1, x_{3} = 1) = 0.9$$

$$P(x_{5} = 1 | x_{4} = 0) = 0.7,$$

$$P(x_{5} = 1 | x_{4} = 0) = 0.3,$$

$$P(x_{5} = 0 | x_{4} = 1) = 0.2,$$

$$P(x_{5} = 1 | x_{4} = 1) = 0.8$$

$$P(x_{1} = 0) = 0.2, P(x_{1} = 1) = 0.8$$

7. (20 p) Association rules

a) What is overfitting problem in the association rules finding? How to prevent overfitting?

b) Briefly describe Prior method

c) Given the following dataset, use prior method to find all association rules with coverage is 5 and accuracy is more than 80%.

Attribute	variables		Target variable
age	Astigmatic	Tear production	Lens type
		rate	
У	No	Normal	A
У	No	Reduced	A
v	No	Normal	A
V	No	Normal	A
У	yes	Normal	A
y	yes	Normal	Α
y	yes	Reduced	A
y	yes	Normal	Α
у	yes	Normal	Α
У	yes	Normal	A
m	No	Normal	A
m	No	Normal	A
m	No	Reduced	No
m	No	Reduced	В
m	No	Normal	В
m	No	Normal	В
m	No	Normal	A
0	No	Normal	A
0	yes	Reduced	No
0	yes	Reduced	A
0	yes	Normal	No

8. (20p) Instance based learning

- a) What is instanced based learning. When can the instance based learning be used? Give an example that the instance based learning is suitable. Given an example that instance based learning is not preferred.
- b) How to decide k in K-NN methods?
- c) Briefly describe two methods that can be used to reduce the sample dataset in instance based learning.

Index: distributions and formulas

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\Pr(E \mid H) = \prod_{i=1}^{i=k} \left[\binom{N - \sum_{i=1}^{i-1} n_i}{n_i} p_i^{n_i} \right] = N! \prod_{i=1}^{i=k} \frac{p_i^{n_i}}{n_i!}$$

$$p\left(\log\left(\frac{p}{t}\right) - \log\left(\frac{p}{T}\right)\right)$$

$$entropy(a) = \sum_{i} p_{i} \log(\frac{1}{p_{i}}) = -\sum_{i} p_{i} \log(p_{i})$$

$$\inf(node) - \sum_{i} \frac{|subnode_{i}|}{|node|} \inf(subnode_{i})$$

$$d([x_1,...,x_n],[y_1,...,y_n]) = \frac{\sum_{i} x_i y_i}{\sqrt{\sum_{i} x_i^2} \sqrt{\sum_{i} y_i^2}}$$

$$\rho = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)$$

$$\left(1 - \frac{1}{n}\right)^n = e^{-1} = 0.368$$

Let f(x) is the logistic function, then f(x)' = f(x) (1-f(x))

$$\frac{mean_{x} - \mu}{\sqrt{\sigma_{x}^{2}/k}},$$

$$\frac{mean_d}{\sqrt{\sigma_d^2/k}}$$

$$\chi^2 = \sum_{i} \sum_{j} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}}$$

$$U(A,B) = \frac{\sum_{i} \sum_{j} (a_{i} - a)(b_{j} - b)}{\sqrt{\left(\sum_{i} (a_{i} - a)^{2}\right) \left(\sum_{i} (b_{i} - b)^{2}\right)}}$$

ent's Distribution
ar to the commence of the transmission of the commence of the

Table 5.1 Confidence Limits for the Normal Distribution		
$Pr[X \ge z]$		
0.1%	3.09	
0.5%	2.58	
1%	2.33	
5%	1.65	
10%	1.28	
20%	0.84	
40%	0.25	