Universidad La Salle

Prediction of peptide MHC presentation using transformers and transfer learning in cancer immunology context

MSc. Vicente Machaca Arceda

Problem

Related Works

Proposal

Preliminary Results
Models and databases
Comparison

Problem

Related Works

Proposal

Preliminary Results

Models and databases

Problem

Less than 5% of detected neoantigens (peptides binded to MHC) succeed in activating the immune system [1]. Moreover, recent proposals only achieve 0.6 precision and 0.4 recall [2].

This is a **binary classification problem**. A peptide could be represented like: $p = \{A, ..., Q\}$ and a MHC like: $q = \{A, N, ..., Q, E\}$. Finally, we need to know the probability of affinity between p and q (pMHC)

Problem

Figure: pMHC binding prediction problem.

Proposal

Figure: Proposal for pMHC binding and presentation prediction.

Related Works

Proposal

Preliminary Results
Models and databases

Databases

We used the dataset from NetMHCIIpan3.2 [3] and HLAB [4].

Table: Number of samples used in training, evaluation and testing.

	NetMHCIIpan3.2	HLAB
Train	107424	539019
Validation	13428	179673
Testing	13429	172580

Models

Instead of ESM2 [5] model, we used TAPE [6] because it is smaller and easier to train. Moreover, the Bi-LSTM with attention layer is based on HLAB [4].

Table: Models used in experiments.

	Description
BERTMHC-LINEAR	BERT architecture followed by a linear layer
BERTMHC-RNN	BERT architecture followed by a BiL-STM layer and then a Linear layer
BERTMHC-RNN-ATT	BERT architecture followed by a BiL- STM layer with attention and then a Linear layer

Related Works

Proposal

Preliminary Results

Models and databases

Comparison

Training

Figure: AUC per epoch of models.

Comparison

Figure: Metrics comparison.

Comparison

Table: Metrics comparison of BERTMHC-LINEAR, BERTMHC-RNN and BERTMHC-RNN-ATT

Model	Acc	Precision	Recall	Fscore	AUC
LINEAR	0.8070	0.8012	0.8005	0.8009	0.8005
RNN	0.8023	0.7972	0.7932	0.7949	0.7932
RNN-ATT	0.8086	0.8082	0.7937	0.7985	0.7937

Comparison

Figure: ROC curve.

Conclusions

We evaluated a BERT architecture (transformer) with transfer learning from TAPE in these preliminary results. We choose TAPE because it is smaller and easier to train. In future experiments, we will evaluate ESM2.

According to experiments, BERTMHC-LINEAR and BERTMHC-RNN-ATT got better results in netMHCIIpan3.2 dataset. It happens because we evaluated these models in a small dataset. In future experiments, we will evaluate these models in a larger dataset.

References I

- [1] L. Mattos, M. Vazquez, F. Finotello, R. Lepore, E. Porta, J. Hundal, P. Amengual-Rigo, C. Ng, A. Valencia, J. Carrillo *et al.*, "Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the esmo precision medicine working group," *Annals of oncology*, vol. 31, no. 8, pp. 978–990, 2020.
- [2] N. A. Mill, C. Bogaert, W. van Criekinge, and B. Fant, "neoms: Attention-based prediction of mhc-i epitope presentation," *bioRxiv*, 2022.
- [3] K. K. Jensen, M. Andreatta, P. Marcatili, S. Buus, J. A. Greenbaum, Z. Yan, A. Sette, B. Peters, and M. Nielsen, "Improved methods for predicting peptide binding affinity to mhc class ii molecules," *Immunology*, vol. 154, no. 3, pp. 394–406, 2018.

References II

- [4] Y. Zhang, G. Zhu, K. Li, F. Li, L. Huang, M. Duan, and F. Zhou, "Hlab: learning the bilstm features from the protbert-encoded proteins for the class i hla-peptide binding prediction," *Briefings in Bioinformatics*, 2022.
- [5] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli et al., "Evolutionary-scale prediction of atomic-level protein structure with a language model," *Science*, vol. 379, no. 6637, pp. 1123–1130, 2023.
- [6] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, and Y. Song, "Evaluating protein transfer learning with tape," *Advances in neural information processing systems*, vol. 32, 2019.

