Reg. No.					

Question Paper Code: 20241

B.E. / B.TECH. DEGREE EXAMINATIONS, NOVEMBER / DECEMBER 2023

Seventh Semester

B.Tech. – Artificial Intelligence and Data Science

19AD784 - IMAGE ANALYSIS AND COMPUTER VISION

(Regulations: Mepco – R2019) **Duration: 3 Hours** Max.: 100 Marks Answer ALL Questions BTL, CO $PART A - (10 \times 2 = 20 Marks)$ U, CO1 1. How does picture formation in the eye vary from image formation in a camera? Justify your answer. A) Fixed focal length B) Varying distance between lens and imaging plane C) No difference D) Variable focal length R, CO1 2. Give the properties of two-dimensional DFT. U, CO2 3. Which of the following in an image can be removed by using a smoothing filter? Justify your answer. A) Sharp transitions of brightness levels B) Sharp transitions of gray levels

- C) Smooth transitions of gray levels
- D) Smooth transitions of brightness levels
- U, CO2 4. Differentiate Butterworth and Gaussian filters.
- U, CO3 5. Which of the following is the role played by segmentation in image processing?

 Justify your answer.
 - A) Deals with property in which images are subdivided successively into smaller regions
 - B) Deals with partitioning an image into its constituent parts or objects
 - C) Deals with extracting attributes that result in some quantitative information of interest
 - D) Deals with techniques for reducing the storage required saving an image, or the bandwidth required transmitting it
- U, CO3 6. Edge detection is the most common approach for detecting discontinuities. Justify your answer.

U, CO4	7.	The numerical ratio of displacement to distance for a moving object is					
		Justify your answer.					
		A) Always less than 1 B) Always e	qual to 1				
		C) Always more than 1 D) Equal or	less than 1				
U, CO4	8.	Differentiate point-based and volumetric representations.					
U, CO5	9.	A game based on which animated franchise propelled AR into the mainstream in					
		recent years. Justify your answer.					
		A) Pokemon B) Super Ma	nrio				
		C) Legend of Zelda D) Sonic the	Hedgehog				
R, CO5	10.	List the applications that perform Docume	nt Image analysis.				
		PART B $- (5 \times 16 = 80)$	Marks)				
R, CO1	11. a) i.	Explain in detail about elements of Visual	perception. (12 Ma	rks)			
A, CO1	11. a) ii.	Using DCT prove the energy compaction	n property for the given				
		image.					
		1 10 1					
		1 1 1 1					
		1 1 1 1	(4)	1 \			
		1 1 1 1	(4 Ma	rks)			
	11 b);	OR Discuss about Image Quantization. Derive	a and avalain the various				
R, CO1	11. b) i.	types of quantization with it properties and		rke)			
A, CO1	11. b) ii.	State and prove the property to obtain the	· ·				
А, СОТ	11.0)11.	State and projective property to domin the	(Till	1110)			
A, CO2	12. a)	Analyze how smoothing and sharpening	operations are performed				
		on an image using spatial filters with an ex	cample. (16 Ma	rks)			
		OR					
A, CO2	12. b)	A 4 × 4, 4 bits/pixel original image					
		histogram equalization to the image roun					
		pixels to integers. Sketch the histogran	of original image and				
		histogram equalized image.					
		10 12 8 9 10 12 12 14					
		12 13 10 9					
		14 12 10 11	(16 Ma	rks)			
		11 12 10 11	(10 1414	1110)			

0, CO3	13. a) i.	Discuss and derive the inverse filter approach restoration and	
		Weiner filter approach restoration.	(8 Marks)
U, CO3	13. a) ii.	Explain watershed algorithm using dam construction. And mention	
		how to overcome the problem of over segmentation.	(8 Marks)
		OR	
U, CO3	13. b) i.	Describe the region growing technique for image segmentation and	
		mention the problem associated with it.	(8 Marks)
U, CO3	13. b) ii.	Describe how an image is segmented using split and merge	
		technique in association with region and adjacency graph.	(8 Marks)
U, CO4	14. a)	Distinguish between Spline based motion and Optical flow layered	
		motion. ENGINES	(16 Marks)
		OR	
U, CO4	14. b)	How will you evaluate extracted shape descriptors in 3D vision?	
		Also, explain about photometric stereo.	(16 Marks)
U, CO5	15. a)	Imaging technology in Medicine made the doctors to see the	
		interior portions of the body for easy diagnosis. Describe in detail	
		the advantages of Digital Processing for Medical applications.	(16 Marks)
		OR	
U, CO5	15. b)	Virtual overlays are superimposed on top of the real objects that the	
		user sees. Analyze and describe whether this happens in Virtual	
		reality or Augmented reality. Differentiate Virtual vs Augmented	
		reality.	(16 Marks)

