Sistemas Operacionais

Introdução

Introdução

- Componentes de um sistema computacional:
 - Hardware
 - Recursos básicos (memória, dispositivos de E/S, CPU);
 - Sistema Operacional:
 - Controla e coordena o uso do hardware pelos progr.
 - Programas aplicativos e de sistema:
 - Compiladores, editores, banco de dados.
 - Usuários:
 - Pessoas, máquinas, outros computadores.

Introdução

- Sistema Operacional: conceito.
 - Por mais complexo que possa parecer, um Sistema Operacional (SO) é um conjunto de rotinas executado pelo processador da mesma forma que outros programas;
 - O SO é um programa colocado entre o hardware do computador e os programas dos usuários de forma a permitir a execução desses programas.

PROGRAMAS (aplicativos e utilitários)

SISTEMA OPERACIONAL

HARDWARE

Onde o SO se encaixa

Objetivos do Sistema Operacional

- Objetivos do Sistema Operacional
 - O SO como Máquina Virtual:
 - Comunicação usuário máquina transparente;
 - Esconde detalhes internos;
 - Conceito de ambiente simulado.
 - O SO como Gerente de Recursos:
 - Compartilhamento de Recursos;
 - Multiplexação no tempo/espaço.

Tipos de Sistemas Operacionais

- Histórico dos Sistemas Operacionais
 - Primórdios:
 - Sistema Operacional inexistente;
 - Usuário é o programador e operador da máquina;
 - Evolução motivada por:
 - Melhor utilização dos recursos;
 - Avanços tecnológicos.

- Sistemas em lote (batch)
 - Usuário não era mais o operador da máquina;

Figura 1.3 Um sistema em lote (batch) antigo. (a) Os programadores levavam os cartões para o 1401. (b) O 1401 gravava o lote de tarefas em fita. (c) O operador levava a fita de entrada para o 7094. (d) O 7094 executava o processamento. (e) O operador levava a fita de saída para o 1401. (f) O 1401 imprimia as saídas.

- Sistemas de Tempo Compartilhado
 - Interação do usuário com o sistema;
 - Para cada usuário, o SO operacional aloca uma fatia de tempo do processador (time-sharing);
 - Compartilhamento de memória e periféricos;
 - O sistema cria para o usuário um ambiente de trabalho próprio, dando a impressão que todo o sistema está dedicado exclusivamente a ele.

- Sistemas Monoprogramados (monoprogramação):
 - Caracterizam por permitir que o processador, a memória e os periféricos fiquem dedicados a um único usuário;
 - Processador fica ocioso em atividades de E/S;
 - Sistemas mais simples: sem problemas como proteção e compartilhamento.

- Sistemas Multiprogramados (multiprogramação):
 - Cenário marcado pelo desperdício de tempo de CPU com operações de E/S;
 - Evolução:
 - Manter diversos programas na memória ao mesmo tempo;
 - Enquanto um programa realiza E/S, outro pode ser executado.

- Sistemas Multiprogramados (multiprogramação) – cont.:
 - O SO se preocupa em gerenciar o acesso concorrente aos seus diversos recursos, como memória, processador e periféricos, de forma ordenada e protegida, entre os diversos usuários;
 - Duas evoluções de hardware motivaram o surgimento da multiprogramação:
 - Interrupções;
 - Discos Magnéticos.

Conceitos Básicos

- Sistemas monousuário:
 - projetados para serem usados por um único usuário (MS-DOS, Win 3.X, Win9X);
- Sistemas multiusuário:
 - projetados para suportarem várias sessões em um computador (Unix, Win2000/NT);
- Sistemas monotarefa:
 - capazes de executar apenas uma tarefa de cada vez (MS-DOS);
- Sistemas multitarefa:
 - capazes de executar várias tarefas ao mesmo tempo.

Sistemas Distribuídos

- Distribuir a realização de uma tarefa entre vários computadores;
 - Mais que um sistema operacional de rede.
- Definição:
 - Conjunto de computadores autônomos interconectados de forma a possibilitar a execução de um serviço.
 - Existência de várias máquinas é transparente.
 - Software oferece uma visão única do sistema.
 - Palavra-chave: transparência.

Sistemas Distribuídos

- Sistemas fracamente acoplados (loosely coupled system)
 - Máquinas independentes;
 - Comunicação é feita através de troca de mensagens entre processos.
- Vantagens:
 - Compartilhamento de recursos;
 - Balanceamento de carga;
 - Aumento de confiabilidade.

Sistemas de Tempo real

- Empregado para o controle de procedimentos que devem responder dentro de um certo intervalo de tempo:
 - Experimentos científicos, processos industriais, tratamento de imagens médicas
- Noção de tempo real é dependente da aplicação:
 - Milissegundos, minutos, horas, etc...

Sistemas Paralelos

- Máquinas multiprocessadoras possuem mais de um processador;
- Sistemas fortemente acoplados (tightly coupled system)
 - Processadores compartilham memórias e relógio comuns;
 - Comunicação é feita através da memória.
- Vantagens:
 - Throughput, aspectos econômicos e confiabilidade.

Uma síntese cronológica da evolução dos SOs

- 1^a (1945~1955): <u>válvulas</u>, sem SO → um mesmo grupo de pessoas projetava, construía, programava, operava cada máquina;
- 2^a (1955~1965): <u>transistores</u>, sistemas em lote → monitor residente (ex.: FMS-Fortran Monitor System);
- 3^a (1965~1980): Cls, multiprogramação → CTSS (compatible time sharing system)/MULTICS (multiplexed information and computing service) inspiração para Unix;
- 4^a (1980~atual): <u>PC</u>, LSI → CP/M, DOS, MS...
- 5^a (1990~atual): computação móvel, telefone+pda →smartphone(symbiam,blackbarry,lOs,wphone,android).

Tráfego na internet por SO

StatCounter http://gs.statcounter.com/os-market-share OS Market Share Worldwide **StatCounter** February 2012 - February 2017 Global Stats ■ Windows ■ Android ■ iOS ■ OS X 90% 80% 70% 60% 38.6% 50% 40% 30% 20% 10% 0% Feb 2017 Feb 2012 Feb 2013 Feb 2014 Feb 2015 Feb 2016