Definition 0.1. A field F is a set of with two operations +(addition) and \cdot (multiplication) satisfying the following conditions.

- (i) a + b, $a \cdot b \in F \ \forall \ a, \ b \in F$.
- (ii) $a+b=b+a, a\cdot b=b\cdot a \ \forall \ a,\ b\in F.$ (commutative)
- (iii) $(a+b)+c=a+(b+c), a\cdot(b\cdot c)=(a\cdot b)\cdot c.$ (associative)
- (iv) $a \cdot (b+c) = a \cdot b + a \cdot c \ \forall \ a, \ b, \ c \in F$. (distributive)
- (v) $\exists 0, 1 \in F$ such that $a + 0 = a, a \cdot 1 = a \ \forall \ a \in F$. (identity elements)
- (vi) $\exists c \in F$ such that $a + c = 0 \ \forall \ a \in F$. (additive inverse of a)
- (vii) $\exists c \in F$ such that $a \cdot c = 1 \ \forall \ a \in F, \ a \neq 0$. (multiplicative inverse of a)

We will denote $a \cdot b$ simply by ab, additive inverse of a by -a and multiplicative inverse of a by a^{-1} . For any field F, we can deduce the following from the axioms of definition:

- 1. The identity elements are unique.
- a0 = 0.
- 3. $ab = 0 \implies a = 0 \text{ or } b = 0$.
- 4. -(-a) = a, $(a^{-1})^{-1} = a$.
- 5. (-1)a = -a, also (-a)(-a) = aa and we can continue.

0.1 Finite fields

Definition 0.2. A *finite field* is a field having a finite number of elements. The number of elements is called the *order* of the *field*.

Theorem 0.3. There exists a field of order q iff q is a prime-power. Also, if q is a prime, there is only one field, upto relabelling.

We will not go into proof as it requires some concepts of abstract algebra, which will be beyond the scope of this report. A field of order q is often called *Galois Field* of order q and is denoted by GF(q). **Note:** From now on in this report mentioning GF(q) will imply that q is a prime power.

Theorem 0.4. \mathbb{Z}_m is a field (addition and multiplication defined as modulo m) iff m is a prime.

Proof. The first six properties can be easily verified even if m is not a prime, as the addition and multiplication are modular.

Now for the multiplicative inverse property,

 \implies : Suppose m is not prime, then m = ab for some non-zero a, b < m, but then

$$ab \equiv 0 \pmod{m} \implies a = 0 \text{ or } b = 0$$

which is contradiction. Hence, m is prime.

 \Leftarrow : We have to prove that for all a in \mathbb{Z}_m , there exists a multiplicative inverse, a^{-1} . Consider the elements $a, 2a, 3a, \ldots, (m-1)a$, each of these elements will have non-zero remainder with m. Further, these remainders will be distinct, for otherwise $(i-j)a \equiv 0 \pmod{m}$ for some $i, j \in \{1, 2, \ldots, m-1\}, i \neq j$, therefore $(i-j)a \equiv 0 \pmod{m}$, which is not possible as i, j are distinct and |i-j|, a < m which is a prime. Therefore, there must exist an element with remainder 1 in the initial set. Hence, the multiplicative inverse exists.

Theorem 0.5. Suppose F is a finite field, with $\alpha \in F$, then there exists a prime number p such that $p\alpha = \alpha + \alpha + \cdots + \alpha(p \text{ terms}) = 0$. The prime number p is called *characterstic* of field F.

Proof. The term $n\alpha$ must have a same value for two different values of n as we iterate over n because F is a finite field. Let those n be a, b such that 0 < a < b, then $(b-a)\alpha = 0$. Let the minimum value of b-a be p. So, $p\alpha = 0$. If p was co-prime, then p = lm, with $0 < l, m < p \implies (lm)\alpha = (l\alpha)(m\alpha) = 0 \implies l\alpha = 0$ or $m\alpha = 0$, which is contradiction. Hence, p is a prime.

0.2 Vector spaces over finite fields

Definition 0.6. A set is V is called a **vector-space** over a field F, if + and \cdot are defined as +: $V \times V \to V$ binary-operation on V, and $\cdot : F \times V \to V$ a function, and the following axioms are satisfied.

- (i) $u + v = v + u \ \forall \ u, v \in V$.
- (ii) $u + (v + w) = (u + v) + w \ \forall \ u, v, w \in V.$
- (iii) There exists $0 \in V$ such that $\forall u \in V : v + 0 = v$.
- (iv) For every $u \in V$, $\exists w \in V$ such that v + w = 0.
- (v) $a \cdot (v + w) = a \cdot u + a \cdot v \ \forall \ u, v \in V, \ a \in F.$
- (vi) $(a+b) \cdot (u) = a \cdot u + b \cdot u \ \forall \ u \in V, \ a, b \in F.$
- (vii) $(ab) \cdot (u) = a \cdot (b \cdot u) \ \forall \ u \in V, \ a, b \in F.$
- (viii) $1 \cdot u = u \ \forall \ u \in V$ (1 is multiplicative identity of F).

Elements of V are called *vectors* and of F are called *scalars*.

The set $GF(q)^n$ of all the *n*-tuples over GF(q) will be denoted as V(n,q).

It can be seen that V(n,q) is a vector-space over GF(q) if we define addition and scalar multiplication as follows for $\mathbf{x} = \{x_1, x_2, \dots, x_n\}, \mathbf{y} = \{y_1, y_2, \dots, y_n\} \in V(n,q)$ and $a \in F$.

- $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$
- $\bullet \ a\mathbf{x} = (ax_1, ax_2, \dots, ax_n)$

Definition 0.7. A subset of V(n,q) is called a **subspace** of V(n,q) if itself is vector space under same addition and scalar multiplication.

Theorem 0.8. A subset C of V(n,q) is a subspace if and only if

- (i) If $\mathbf{x}, \mathbf{y} \in C$, then $\mathbf{x} + \mathbf{y} \in C$.
- (ii) If $a \in GF(q)$ and $\mathbf{x} \in C$, then $a\mathbf{x} \in C$.

Proof. One can easily see that if these conditions are true, then all the axioms of vector space are satisfied. Therefore, C is a subspace.

A *linear combination* of r vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ is a vector of the form $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_r\mathbf{v}_r$, where a_i are scalars. **Note:** Set of all linear combinations of a set of given vectors is a subspace of V(n, q).

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is called *linearly independent* if

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_r \mathbf{v}_r = 0 \implies a_1 = a_2 = \dots = a_r = 0.$$

If C is a subspace of V(n,q). Then a subset $\{textbfv_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ of C is called **generating set** if every vector of C can be expressed as the linear combination of these vectors. A generating set of C which is also linearly independent is called **basis** of C.

Theorem 0.9. If C is a non-trivial subspace of V(n,q). Then any generating set of C contians a basis of C.

Proof. We equate linear combination of generating matrix elements with $\mathbf{0}$, then the vectors with non-zero coefficients are removed from the generating matrix and we get a basis of C.

Theorem 0.10. Suppose $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be the basis of a subspace C of V(n,q). Then

- (i) every vector of C can be expressed uniquely as a linear combination of the basis vectors.
- (ii) C contains exactly q^k vectors.

The order of basis of C is called the **dimension** of the subspace C, denoted by dim C.

Proof. Let the basis of C be the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

- (i) If $\mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k$, and $\mathbf{x} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_k \mathbf{v}_k$, then $\mathbf{x} = (a_1 b_1) \mathbf{v}_1 + (a_2 b_2) \mathbf{v}_2 + \dots + (a_k b_k) \mathbf{v}_k = 0$, but as basis is linearly independent, $a_i b_i = 0$ for all 0 < i < k.
- (ii) q choices for coefficient of each the basis element, therefore q^k elements in the subspace.