Association Analysis- Apriori Implementation

Step 1: Import the packages

In [13]:

```
# Import numpy and pandas
import numpy as np
import pandas as pd
```

Step 2: Import the dataset

In [14]:

```
# https://www.kaggle.com/shazadudwadia/supermarket#GroceryStoreDataSet.csv
# Note: I have added column name "Products" before importing into python environment
df=pd.read_csv("GroceryStoreDataSet.csv")
df
```

Out[14]:

Products MILK, BREAD, BISCUIT 0 BREAD, MILK, BISCUIT, CORNFLAKES 1 BREAD, TEA, BOURNVITA 2 3 JAM, MAGGI, BREAD, MILK MAGGI, TEA, BISCUIT 5 BREAD, TEA, BOURNVITA MAGGI, TEA, CORNFLAKES 6 MAGGI, BREAD, TEA, BISCUIT 8 JAM, MAGGI, BREAD, TEA 9 BREAD, MILK COFFEE, COCK, BISCUIT, CORNFLAKES 10 COFFEE, COCK, BISCUIT, CORNFLAKES 12 COFFEE, SUGER, BOURNVITA 13 BREAD, COFFEE, COCK 14 BREAD, SUGER, BISCUIT COFFEE, SUGER, CORNFLAKES 15 BREAD, SUGER, BOURNVITA 16 17 BREAD, COFFEE, SUGER 18 BREAD, COFFEE, SUGER 19 TEA, MILK, COFFEE, CORNFLAKES

Step 3: Perform data pre-processing

```
In [15]:
# Consider column "products"
df.columns
Out[15]:
Index(['Products'], dtype='object')
In [16]:
# Convert the column in the dataset into list of lists.
data = list(df["Products"].apply(lambda x:x.split(',')))
data
Out[16]:
[['MILK', 'BREAD', 'BISCUIT'],
['BREAD', 'MILK', 'BISCUIT', 'CORNFLAKES'],
 ['BREAD', 'TEA', 'BOURNVITA'],
 ['JAM', 'MAGGI', 'BREAD', 'MILK'],
 ['MAGGI', 'TEA', 'BISCUIT'],
 ['BREAD', 'TEA', 'BOURNVITA'],
 ['MAGGI', 'TEA', 'CORNFLAKES'],
['MAGGI', 'BREAD', 'TEA', 'BISCUIT'],
 ['JAM', 'MAGGI', 'BREAD', 'TEA'],
 ['BREAD', 'MILK'],
 ['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
['COFFEE', 'COCK', 'BISCUIT', 'CORNFLAKES'],
['COFFEE', 'SUGER', 'BOURNVITA'],
 ['BREAD', 'COFFEE', 'COCK'],
['BREAD', 'SUGER', 'BISCUIT'],
 ['COFFEE', 'SUGER', 'CORNFLAKES'], ['BREAD', 'SUGER', 'BOURNVITA'],
 ['BREAD', 'COFFEE', 'SUGER'],
['BREAD', 'COFFEE', 'SUGER'],
 ['TEA', 'MILK', 'COFFEE', 'CORNFLAKES']]
In [17]:
# import package to preprocess the data.
from mlxtend.preprocessing import TransactionEncoder
```

In [18]:

```
# Transaction encoder converts the data into a form like "one hot encoding". Algorithm
wants the data to be in this format.

te = TransactionEncoder()
te_data = te.fit(data).transform(data)
te_data

df = pd.DataFrame(te_data,columns=te.columns_)
df
```

Out[18]:

	BISCUIT	BOURNVITA	BREAD	соск	COFFEE	CORNFLAKES	JAM	MAGGI	MILK	S
0	True	False	True	False	False	False	False	False	True	
1	True	False	True	False	False	True	False	False	True	
2	False	True	True	False	False	False	False	False	False	
3	False	False	True	False	False	False	True	True	True	
4	True	False	False	False	False	False	False	True	False	
5	False	True	True	False	False	False	False	False	False	
6	False	False	False	False	False	True	False	True	False	
7	True	False	True	False	False	False	False	True	False	
8	False	False	True	False	False	False	True	True	False	
9	False	False	True	False	False	False	False	False	True	
10	True	False	False	True	True	True	False	False	False	
11	True	False	False	True	True	True	False	False	False	
12	False	True	False	False	True	False	False	False	False	
13	False	False	True	True	True	False	False	False	False	
14	True	False	True	False	False	False	False	False	False	
15	False	False	False	False	True	True	False	False	False	
16	False	True	True	False	False	False	False	False	False	
17	False	False	True	False	True	False	False	False	False	
18	False	False	True	False	True	False	False	False	False	
19	False	False	False	False	True	True	False	False	True	
4										•

Step 4: Find the frequent item sets.

In [19]:

```
# import the package to import apriori algorithm.
from mlxtend.frequent_patterns import apriori
```

In [20]:

```
# Here we can define the minimum support expected by the user.
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
frequent_itemsets
```

Out[20]:

	support	itemsets
0	0.35	(BISCUIT)
1	0.20	(BOURNVITA)
2	0.65	(BREAD)
3	0.40	(COFFEE)
4	0.30	(CORNFLAKES)
5	0.25	(MAGGI)
6	0.25	(MILK)
7	0.30	(SUGER)
8	0.35	(TEA)
9	0.20	(BREAD, BISCUIT)
10	0.20	(BREAD, MILK)
11	0.20	(BREAD, SUGER)
12	0.20	(BREAD, TEA)
13	0.20	(COFFEE, CORNFLAKES)
14	0.20	(SUGER, COFFEE)
15	0.20	(TEA, MAGGI)

Step 5:Now get the frequent association rules from frequent itemsets.

In [21]:

```
# Now get the association rules satisfing confidence defined by the user.
# import the package to find association rules
from mlxtend.frequent_patterns import association_rules
association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)
```

Out[21]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	levera
0	(MILK)	(BREAD)	0.25	0.65	0.2	0.8	1.230769	0.03
1	(MAGGI)	(TEA)	0.25	0.35	0.2	0.8	2.285714	0.11
4								

The frequent association rules are:

{Milk}-> {Bread} [s=0.2, c=0.8]

18 n=2 c=0 181\ (\text{Manni}-> (\text{Teal} | c=0 2

In []: