Robot Operating System (ROS)

Lab 7: Kalman Filters in ROS

Haitham El-Hussieny, PhD

December 20, 2022

Department of Mechatronics and Robotics Engineering Egypt-Japan University of Science and Technology (E-JUST) Alexandria, Egypt.

OUTLINE

- 1. Recap of Kalman Filters
- 2. 2D Object Tracking with Kalman Filter
- 3. 1-D Localization with Laser Scanner

Recap of Kalman Filters

LINEAR KALMAN FILTER

A more general model:

Suppose we have a LTI system

$$\mathbf{x}_k = A \mathbf{x}_{k1} + B \mathbf{u}_k + \mathbf{w}_k$$

 $\mathbf{z}_k = C \mathbf{x}_k + \mathbf{v}_k$

 x_0 and P_0 are initialized first.

1. Prediction of system state:

$$\hat{\mathbf{x}}_k = A \, \hat{\mathbf{x}}_{k-1} + B \, \mathbf{u}_k$$

$$P_k = A \, P_{k-1} \, A^T + Q$$

- A, B, C, and D are the system matrices.
- \mathbf{w}_k and \mathbf{v}_k are process and measurement noise with covariance $Q \in \mathbb{R}^{n_s \times n_s}$ and $R \in \mathbb{R}^{n_z \times n_z}$.
- \blacksquare n_s and n_z are number of states and measurements respectively.
 - 2. Update of system state:

$$G_{k} = P_{k} C^{T} (C P_{k} C^{T} + R)^{-1}$$
$$\hat{\mathbf{x}}_{k} \leftarrow \hat{\mathbf{x}}_{k} + G_{k} * (\mathbf{z}_{k} - C \hat{\mathbf{x}}_{k})$$
$$P_{k} \leftarrow (I - G_{k} C) P_{k}$$

2D Object Tracking with Kalman

Filter

2D OBJECT TRACKING WITH KALMAN FILTER

Problem Definition

2D Tracking

In this example, we would like to estimate the vehicle's location on the XY plane. The vehicle has an onboard location sensor that reports X and Y coordinates of the system. We assume constant acceleration dynamics.

2D OBJECT TRACKING WITH KALMAN FILTER

Problem Definition

$$\begin{bmatrix} \hat{X}_{n+1} \\ \hat{X}_{n+1} \\ \hat{X}_{n+1} \\ \hat{Y}_{n+1} \\ \hat{Y}_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t & 0.5\Delta t^2 & 0 & 0 & 0 \\ 0 & 1 & \Delta t & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \Delta t & 0.5\Delta t^2 \\ 0 & 0 & 0 & 0 & 1 & \Delta t \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{X}_n \\ \hat{X}_n \\ \hat{Y}_n \\ \hat{Y}_n \\ \hat{Y}_n \\ \hat{Y}_n \end{bmatrix} Q = \begin{bmatrix} \frac{\Delta t^4}{4} & \frac{\Delta t^3}{2} & \frac{\Delta t^2}{2} & 0 & 0 & 0 \\ \frac{\Delta t^3}{2} & \Delta t^2 & \Delta t & 0 & 0 & 0 \\ \frac{\Delta t^2}{2} & \Delta t & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\Delta t^4}{4} & \frac{\Delta t^3}{2} & \frac{\Delta t^2}{2} \\ 0 & 0 & 0 & \frac{\Delta t^4}{4} & \frac{\Delta t^3}{2} & \Delta t^2 & \Delta t \\ 0 & 0 & 0 & \frac{\Delta t^3}{2} & \Delta t^2 & \Delta t & 1 \end{bmatrix} \sigma_0^{-1}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{R}_{n} = \begin{bmatrix} \sigma_{\mathsf{X}_{m}}^{2} & 0\\ 0 & \sigma_{\mathsf{V}_{m}}^{2} \end{bmatrix}$$

2D OBJECT TRACKING WITH KALMAN FILTER

Results

```
def kalman estimate(x0, A, O, P0, R, measurements, C):
    I = np.eye(x0.shape[0])
   x hat record = np.reshape(x0.T. (1.-1))
    for z in measurements T:
      #ESTIMATE: -
        x hat = A.dot(x0) # Motion model
        P = np.dot(np.dot(A, P0), np.transpose(A)) + 0 # Prediction uncertainty
        #UPDATE: -
       K = P.dot(C.T).dot(np.linalg.inv(C.dot(P).dot(C.T)+R)) # Kalman Gain
       x \text{ hat} = x \text{ hat} + K.dot((z - C.dot(x hat))) # correction of estimate
        P = (I - K, dot(C)), dot(P) \# correction of uncertainty
        x0 = x hat
        P0 = P
       print(P)
        x hat record = np.append(x hat record, (np.reshape(x hat.T, (1,-1))), axis=0)
   return x hat record
```


Download the Package

1-D Localization with Laser Scanner

Problem Definition

1-D Robot Localization

The task aims to localize the x-direction of the Turtlebot 3 robot based on the encoder readings received on the topic /odom and using the laser scanner readings received on the topic /scan.

Installation of Gazebo Simulation

- Install TurtleBot3 via Debian Packages.
 - \$ sudo apt install ros-noetic-dynamixel-sdk
 - \$ sudo apt install ros-noetic-turtlebot3-msgs
 - \$ sudo apt install ros-noetic-turtlebot3
- Install Turtlebot3 simulation

```
$ cd ~/catkin ws/src/
```

\$ git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

```
$ cd ∼/catkin_ws
```

\$ catkin make

Installation of Gazebo Simulation

- Run the gazebo simulator
- \$ roslaunch turtlebot3_gazebo turtlebot3_stage_1.launch
 - Run your 1-D Kalman node
- \$ rosrun kalman_tracking turtle3_localize.py
 - Publish a command velocity on the cmd_vel topic.
 - If you need to reset the robot's position
- \$ rosservice call /gazebo/reset_simulation

Laser Scanner Data Callback

```
def laser_ray_recieved(msg):
    obstacle_front_x_axis = 1.925000
    global robot_x_ray
    # keep the minimum distance reading from 10 rays pointing to the front
    # second min is required to filter out 'inf' values, in that case 12 is used
    front_laser_ray = min(min(msg.ranges[0:10]), 12)
    front_laser_ray = np.random.normal(front_laser_ray, .3,1)[0]
    #rospy.loginfo("Distance to object in front (front_laser_ray): %s", front_laser_ray)
    # calculate robot position in the world considering the known position of an obstacle in front
    # example: position of obstacle: 10, laser_ray_reading = 8 => robot_x_ray = 2
    # This assumes/requires a robot moving straigt and parallel to x-axis, with orientation = [0,0,0,1]
    robot_x_ray = obstacle_front_x_axis - front_laser_ray
    #rospy.loginfo("X position in map frame (robot_x_ray): %s", robot_x_ray)
    #print(robot_x_ray)
```

Linear Kalman Filter: Reception of Odometery

```
def odometry recieved(msg):
    #ESTIMATE: -
    global A, P O, Q, R, C, I, robot x ray
    x robot = np.array([msg.pose.pose.position.x, msg.twist.twist.linear.x, 0])
    print("Robot position{}".format(x robot))
    P = (A.dot(P \ 0).dot((A.T))) #+ 0 # Prediction uncertainty
    #UPDATE:-
    K = P.dot((C,T)).dot(np.reciprocal((C,dot(P).dot((C,T)))+R)) # Kalman Gain
    x robot = x robot + K.dot((robot x ray - C.dot(x robot))) # correction of estimate
    P = (I - K.dot(C)).dot(P)#.dot((I - K.dot(C)).T) + K.dot(R).dot((K.T)) # corrrection of uncertainty
    print(P)
    #print(x robot)
    P \Theta = P
    robot filtered x.x = x \text{ robot}[0]
    robot filtered x.y = robot x ray
    filtered pos pub.publish(robot filtered x)
```

Result: Moving in a Straight Line

End of Lecture