RNN LSTM, её устройство и применение для анализа макроэкономических рядов

Зехов Матвей Факультет экономических наук НИУ ВШЭ

Что это такое?

Сети долгой краткосрочной памяти(Long Short-Term Memory) представляют собой специальный подкласс архитектур рекуррентных нейронных сетей, предназначенных для обработки различных форм последовательностей. Они были представлены Зеппом Хохрайтером и Юргеном Шмидхубером в 1997 году. Наиболее яркими примерами применения таких сетей являются проекты по обработке текстов и временных рядов.

Теоретические принципы

Не секрет, что для обработки долговременных зависимостей классические RNN модели слабо подходят, так как их архитектура не подразумевает какого-либо вида памяти. Структура LSTM решает эту проблему.

В том случае, когда расстояние между актуальной информацией и местом, где она пригодилась, невелико, RNN вполне адекватно справляются с задачей, однако при увеличении расстояния эта связь теряется. Ключевым понятием для построения блока является состояние ячейки. Этот вектор проходит через все итерации внутри клетки и несёт в себе информацию о всей последовательности в целом. Схематично блок сети LSTM можно представить следующим образом:

Зависимость сходимости от количества слоёв

Предсказания методов

Прогноз метода сдвигающегося окна, полный градиентный спуск

Прогноз метода сдвигающегося окна, "minibatch_size" = 50

Прогноз метода расширяющегося окна

Методы построения модели

При анализе данной архитектуры было использовано два различных метода: расширяющееся окно и сдвигающееся окно.

$$train \rightarrow [x_1, x_2, x_3, x_4, | x_5, x_6, x_7] \leftarrow test$$

Получив на основе части train предсказание относительно элемента x_5 , сравним его с маркером x_5 . После этого перенесём элемент x_5 из test в train:

$$train \rightarrow [x_1, x_2, x_3, x_4, x_5, | x_6, x_7] \leftarrow test$$

Метод сдвигающегося окна почти аналогичен, только перемещаются и правая и левая границы окна, и далее строится стандартная таблица пример-признак. На графиках слева отображается зависимость сходимости алгоритма расширяющегося окна от количества скрытых слоёв нейросети. По оси абсцисс - количество нейронов скрытого слоя, по оси ординат - итерация, на которой сошёлся алгоритм. Для анализа были взяты шесть рядов различной длины:

Year: 30 | Quarter: 24 | Month: 50 | Week: 70 | Day: 90 | Hour: 100

Очевидно, что самый эффективный алгоритм - однослойный. При этом тонкая подстройка выявила, что корреляция длины ряда с оптимальной размерностью скрытого слоя равна 0.76!

Анализ предсказаний модели

Обратите внимание на графики слева и таблицу внизу. Ошибка наивного прогноза равна 65.62. Ошибка в скобках - на тренировочных данных.

- 1. Модель расширяющегося окна явно переобучается. Длины ряда недостаточно, но повысить её нельзя из-за вычислительной сложности.
- 2. Модель полного градиентного спуска на всём сете эффективна, но не победила наивный прогноз. Кроме того, время исполнения довольно велико.
- 3. Стохастический спуск по одному примеру эффективен, но подстраивается под наивный прогноз, что очевидно из графика.
- 4. Алгоритм с пятьюдесятью примерами за итерацию самый эффективный. Притом он подстраивается не под наивный прогноз, а под реальную картину.

Сравнение показателей

Тип модели	Сдвигающееся окно		Расширяющееся окно	
Стохастический спуск	Time	MSE	Time	MSE
$"minibatch_size" = 1$	0.0348	60.4925	0.0857	$\geq 10^{6}$
	(0.3291)	(0.5553)	(0.3695)	(≤ 0.01)
"minibatch_size" = 50	0.1132	43.3558		
	(0.4313)	(0.2564)		
Полный градиентный спуск	0.1226	69.6659		_
	(0.3590)	(16.2584)		_