- PART-C

- Q4

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_
from sklearn.ensemble import RandomForestClassifier
from datascience import *
from sklearn.model_selection import cross_val_score
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
%matplotlib inline
```

Data Validation

data=pd.read_csv("/content/ckd_full.csv")
data.head()

	Age	Blood Pressure	Specific Gravity	Albumin	Sugar	Red Blood Cells	Pus Cell	Pus Cell clumps	Bacteria	Blood Glucose Random	• • •
0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	
1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	
2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	
4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	

5 rows × 25 columns


```
#Data Cleaning
```

```
data['Hypertension'] = data['Hypertension'].replace(to_replace={'yes':1,'no':
data['Diabetes Mellitus'] = data['Diabetes Mellitus'].replace(to replace={'yes
data['Coronary Artery Disease'] = data['Coronary Artery Disease'].replace(to_
data['Appetite'] = data['Appetite'].replace(to_replace={'good':1,'poor':0})
data['Pedal Edema'] = data['Pedal Edema'].replace(to replace={'yes':1,'no':0}
data['Anemia'] = data['Anemia'].replace(to_replace={'yes':1,'no':0})
data['Red Blood Cells'] = data['Red Blood Cells'].replace(to_replace={'abnormations')
data['Pus Cell'] = data['Pus Cell'].replace(to replace={'abnormal':1, 'normal'
data['Pus Cell clumps'] = data['Pus Cell clumps'].replace(to_replace={'presen'}
data['Bacteria'] = data['Bacteria'].replace(to_replace={'present':1, 'notpresent':1, 'not
data['Class'] = data['Class'].replace(to_replace={'ckd':1.0,'ckd\t':1.0,'notc'
data.to_csv("Out1.csv")
data['Pedal Edema'] = data['Pedal Edema'].replace(to_replace='good',value=0) =
data['Appetite'] = data['Appetite'].replace(to_replace='no',value=0)
data['Coronary Artery Disease'] = data['Coronary Artery Disease'].replace(to_
data['Diabetes Mellitus'] = data['Diabetes Mellitus'].replace(to_replace={'\tilde{to_replace}})
data1=data.dropna(axis=0)
data1.shape
         (158, 25)
data1.isna().sum().sort_values(ascending=False)
         Age
         Potassium
                                                             0
         Anemia
         Pedal Edema
         Appetite
         Coronary Artery Disease
                                                             0
         Diabetes Mellitus
                                                             0
         Hypertension
         Red Blood Cell Count
         White Blood Cell Count
                                                             0
         Packed Cell Volume
                                                             0
         Hemoglobin
```

0

0

0

Sodium

Blood Pressure Serum Creatinine

Pus Cell clumps

Blood Glucose Random

Blood Urea

Bacteria

```
Pus Cell 0
Red Blood Cells 0
Sugar 0
Albumin 0
Specific Gravity 0
Class 0
dtype: int64
```

<ipython-input-7-27a1ceaba938>:2: DeprecationWarning: `np.bool` is a deprecated alias for the
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.2
mask = np.zeros_like(corr_df, dtype=np.bool)


```
def standard_units(x):
    return (x - np.mean(x))/np.std(x)
ckd = pd.DataFrame(
    {'Hemoglobin':standard_units(data1['Hemoglobin']),
    'Glucose':standard_units(data1['Blood Glucose Random']),
    'Class':data1['Class']}
)
color_table = pd.DataFrame(
    {'Class':np.array([1, 0]),
    'Color':np.array(['darkblue', 'gold'])}
)
ckd = pd.merge(ckd, color_table, on='Class')
ckd
         Hemoglobin
                                      Color
                     Glucose Class
           -0.865744 -0.221549
      0
                                1.0 darkblue
      1
           -1.457446 -0.947597
                                1.0 darkblue
           -1.004968 3.841231
                                1.0 darkblue
           -2.814879 0.396364
      3
                                1.0 darkblue
           -2.083954 0.643529
                                1.0 darkblue
            0.700526 0.133751
     153
                                0.0
                                       gold
     154
            0.978974 -0.870358
                                0.0
                                       gold
     155
            0.735332 -0.484162
                                0.0
                                       gold
     156
            0.178436 -0.267893
                                0.0
                                       gold
     157
            0.735332 -0.005280
                                0.0
                                       gold
    158 rows × 4 columns
```

#Alice in Scatter plot
alice = np.array([0, 1.1])

ckd darkblue = ckd[ckd['Color'] == 'darkblue']

ckd_gold = ckd[ckd['Color'] == 'gold']

fig, ax = plt.subplots(figsize=(6,6))

```
ax.scatter(ckd_darkblue['Hemoglobin'],
           ckd darkblue['Glucose'],
            label='Color=darkblue',
           color='darkblue')
ax.scatter(ckd gold['Hemoglobin'],
           ckd_gold['Glucose'],
           label='Color=gold',
           color='gold')
ax.scatter(alice[0],
           alice[1],
           color='red',
            s = 30)
y_vals = ax.get_yticks()
plt.ylabel('Glucose')
ax.legend(bbox_to_anchor=(1.04,1), loc="upper left")
plt.xlabel('Hemoglobin')
plt.xlim(-4, 2)
plt.ylim(-2, 6);
plt.show()
       6
                                                   Color=darkblue
                                                   Color=gold
       5
       4
       3
       2
       1
       0
      -1
      -2
              -3
                        Hemoglobin
#Euclidean Distance
def distance(point1, point2):
    return np.sqrt(np.sum((point1 - point2)**2))
def distance_from_alice(row):
    return distance(alice, np.array(row))
```

ckd1=ckd[['Hemoglobin','Glucose']]
ckd1

	Hemoglobin	Glucose	7
0	-0.865744	-0.221549	
1	-1.457446	-0.947597	
2	-1.004968	3.841231	
3	-2.814879	0.396364	
4	-2.083954	0.643529	
153	0.700526	0.133751	
154	0.978974	-0.870358	
155	0.735332	-0.484162	
156	0.178436	-0.267893	
157	0.735332	-0.005280	

158 rows × 2 columns

distances = ckd1.apply(distance_from_alice, axis=1)
ckd_with_distances = ckd.copy()
ckd_with_distances['Distance from Alice'] = distances

ckd_with_distances

	Hemoglobin	Glucose	Class	Color	Distance from Alice	7
0	-0.865744	-0.221549	1.0	darkblue	1.579875	
1	-1.457446	-0.947597	1.0	darkblue	2.513325	
2	-1.004968	3.841231	1.0	darkblue	2.919641	
3	-2.814879	0.396364	1.0	darkblue	2.901491	
4	-2.083954	0.643529	1.0	darkblue	2.133361	
153	0.700526	0.133751	0.0	gold	1.193471	
154	0.978974	-0.870358	0.0	gold	2.200159	
155	0.735332	-0.484162	0.0	gold	1.746506	
156	0.178436	-0.267893	0.0	gold	1.379482	
157	0.735332	-0.005280	0.0	gold	1.327537	

158 rows × 5 columns

sorted_by_distance = ckd_with_distances.sort_values(by=['Distance from Alice'
sorted_by_distance

	Hemoglobin	Glucose	Class	Color	Distance from Alice
14	0.839750	1.215099	1.0	darkblue	0.847601
35	-0.970162	1.276890	1.0	darkblue	0.986156
84	-0.030400	0.087407	0.0	gold	1.013049
152	0.143630	0.087407	0.0	gold	1.022728
6	-0.413266	2.049282	1.0	darkblue	1.035338
2	-1.004968	3.841231	1.0	darkblue	2.919641
12	-2.292790	-0.854910	1.0	darkblue	3.013065
41	-0.378460	4.520935	1.0	darkblue	3.441806
42	-3.685029	0.689873	1.0	darkblue	3.707782
36	-0.761326	5.540492	1.0	darkblue	4.505285

158 rows × 5 columns

alice_5_nearest_neighbors = sorted_by_distance.take(np.arange(5))
alice_5_nearest_neighbors

	Hemoglobin	Glucose	Class	Color	Distance from Alice	7
14	0.839750	1.215099	1.0	darkblue	0.847601	
35	-0.970162	1.276890	1.0	darkblue	0.986156	
84	-0.030400	0.087407	0.0	gold	1.013049	
152	0.143630	0.087407	0.0	gold	1.022728	
6	-0.413266	2.049282	1.0	darkblue	1.035338	

a=alice_5_nearest_neighbors.groupby('Class').count()

nothaving_ckd=a.iloc[0,3]
nothaving_ckd

2

Having_ckd=a.iloc[1,3]
Having_ckd

3

if nothaving_ckd>Having_ckd:
 print("Alice does not have Chronic Kidney disease")

else: print("Alice has Chronic Kidney disease") Alice has Chronic Kidney disease

RandomForest

data1.head()

	Age	Blood Pressure	Specific Gravity	Albumin	Sugar	Red Blood Cells	Pus Cell	Pus Cell clumps	Bacteria	Blood Glucose Random	• • •	Packe Cel Volum
3	48.0	70.0	1.005	4.0	0.0	0.0	1.0	1.0	0.0	117.0		32
9	53.0	90.0	1.020	2.0	0.0	1.0	1.0	1.0	0.0	70.0		29
11	63.0	70.0	1.010	3.0	0.0	1.0	1.0	1.0	0.0	380.0		32
14	68.0	80.0	1.010	3.0	2.0	0.0	1.0	1.0	1.0	157.0		16
20	61.0	80.0	1.015	2.0	0.0	1.0	1.0	0.0	0.0	173.0		24

5 rows × 25 columns

ckd.head()

	Hemoglobin	Glucose	Class	Color	7
0	-0.865744	-0.221549	1.0	darkblue	
1	-1.457446	-0.947597	1.0	darkblue	
2	-1.004968	3.841231	1.0	darkblue	
3	-2.814879	0.396364	1.0	darkblue	
4	-2.083954	0.643529	1.0	darkblue	

```
ckd_copy=ckd.copy()
ckd_copy=ckd_copy.drop('Color',1)
```

<ipython-input-24-31e986d8ffe8>:2: FutureWarning: In a future version of pandas all arguments
 ckd_copy=ckd_copy.drop('Color',1)

```
x=ckd_copy.drop('Class',axis=1)
y=ckd_copy['Class']
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=
print("X_train size {} , X_test size {}".format(X_train.shape,X_test.shape))
```

```
X_train size (126, 2) , X_test size (32, 2)

score=cross_val_score(RandomForestClassifier(max_depth=15,n_estimators=5),X_tention
print("Average Accuracy Score {}".format(score.mean()))

Average Accuracy Score 0.9923076923076923

rf=RandomForestClassifier(max_depth=5,n_estimators=5)
```

rt=RandomForestClassitier(max_depth=5,n_estimators=5) rf.fit(X_train,y_train)

RandomForestClassifier(max_depth=5, n_estimators=5)

y_pred=rf.predict(X_test)
confusionmatrix=confusion_matrix(y_pred,y_test)

```
plt.figure(figsize=(10,7))
p = sns.heatmap(confusionmatrix, annot=True, cmap="Blues", fmt='g')
plt.title('Confusion matrix for RandomForest Model - Test Set')
plt.xlabel('Predicted Values')
plt.ylabel('Actual Values')
plt.show()
```


score=round(accuracy_score(y_test,y_pred),3)
print("Accuracy on the Test set: {}".format(score))

Accuracy on the Test set: 0.969

```
print(classification_report(y_test,y_pred))
                          recall f1-score
                precision
                                             support
                     0.96
                                      0.98
                                                 24
            0.0
                              1.00
            1.0
                     1.00
                              0.88
                                      0.93
                                                  8
                                      0.97
                                                 32
        accuracy
                              0.94
       macro avg
                     0.98
                                      0.96
                                                 32
                                                 32
    weighted avg
                     0.97
                              0.97
                                      0.97
X_train=X_train[['Hemoglobin','Glucose']]
X_test=X_test[['Hemoglobin','Glucose']]
rf.fit(X_train,y_train)
def predict(hemo,gl):
    x=[[hemo,gl]]
    return rf.predict(x)
prediction=predict(0,1.1)[0]
prediction
    /usr/local/lib/python3.8/dist-packages/sklearn/base.py:450: UserWarning: X does not have valid
      warnings.warn(
    1.0
if prediction:
  print('Oops! You have Chronic Kidney Disease.')
else:
  print("Great! You don't have Chronic Kidney Disease.")
    Oops! You have Chronic Kidney Disease.
```

DecisionTree

```
ckd_copy2=ckd_copy.copy()
ckd_copy2
```

```
Hemoglobin
                  Glucose Class
      -0.865744 -0.221549
0
                              1.0
1
      -1.457446
                -0.947597
                              1.0
      -1.004968
                 3.841231
                              1.0
3
      -2.814879
                0.396364
                              1.0
```

X train

	Hemoglobin	Glucose	7
16	-1.561864	2.528165	
130	0.874556	-0.746776	
134	0.909362	-0.314236	
22	-2.014342	2.420030	
93	0.074018	-0.345132	
9	-1.353028	0.489051	
103	1.431451	0.010168	
67	0.282854	-0.298788	
117	0.456884	-0.561402	
. —			

126 rows × 2 columns

47

```
predict_train = model.predict(X_train)
predict_train
```

-0.239236 -0.499610

```
array([ 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0.,
      0., 1.,
              0., 0.,
                       1., 0.,
                               0.,
                                    0., 1.,
                                            0.,
                                                0.,
              0., 0.,
                      0., 0.,
                               0.,
                                   0., 0., 0.,
                               0.,
                                    0., 1., 1.,
              0., 0.,
                      0., 1.,
                               0.,
               0., 1.,
                       0., 0.,
                                    0., 1., 0.,
              1.,
                               0.,
                                                1.,
                  0.,
                       0.,
                           1.,
                                    1.,
                                       0., 0.,
              0., 1.,
                       1.,
                           0.,
                               0.,
                                    0., 1., 1.,
                                                1.,
                                    0., 0., 1., 1.,
              1., 0., 0., 1.,
                               0.,
          1.,
          0.,
              0., 0., 0., 1., 0.,
                                   0., 0., 1.,
                                                0.,
      0., 0., 1., 1., 0., 0., 0., 0.])
```

```
predict_test = model.predict(X_test)
predict_test
```

```
array([ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1.,
```

```
0., 1., 0., 0., 0., 0.])
dtc_acc = accuracy_score(y_test, dtc.predict(X_test))
print("\n")
print(f"Training Accuracy of Decision Tree Classifier is {accuracy_score(y_tree
print(f"Test Accuracy of Decision Tree Classifier is {dtc_acc} \n")
print("\n")
print(f"Confusion Matrix :- \n{confusion_matrix(y_test, dtc.predict(X_test))}
confusion = confusion_matrix(y_test, dtc.predict(X_test))
tn, fp, fn, tp = confusion.ravel()
print("\n")
print("TN -->",tn)
print("FP -->",fp)
print("FN -->",fn)
print("TP -->",tp)
print("\n")
print("\n")
print(f"Classification Report :- \n {classification_report(y_test, dtc.predic
    Training Accuracy of Decision Tree Classifier is 1.0
    Test Accuracy of Decision Tree Classifier is 1.0
    Confusion Matrix :-
    [[24 0]
    [ 0 8]]
    TN --> 24
    FP --> 0
    FN --> 0
    TP --> 8
    Classification Report :-
                precision recall f1-score support
           0.0 1.00 1.00
                                   1.00
                                              24
           1.0
                  1.00
                           1.00
                                   1.00
                                              8
```

1.00

1.00

1.00

1.00

1.00

32

32

32

```
ind_col=ckd_copy2[['Hemoglobin','Glucose']]
dep col=ckd copy2['Class']
```

1.00

1.00

accuracy

macro avg

weighted avg

```
ind_col = ind_col.astype(str)
dep_col = dep_col.astype(str)
feature names = ind col.columns.tolist()
plt.figure(figsize=(12, 12))
plot tree(model, filled=True, feature names=feature names, class names=dep co
    [Text(0.4, 0.833333333333, 'Hemoglobin <= -0.309\ngini = 0.401\nsamples = 126\nvalue = [91, 35]
    = 1.0'),
     Text(0.2, 0.5, 'gini = 0.0 \setminus samples = 33 \setminus samples = [0, 33] \setminus samples = 1.0'),
     Text(0.6, 0.5, 'Glucose <= 0.674\ngini = 0.042\nsamples = 93\nvalue = [91, 2]\nclass = 1.0'),
     Text(0.4, 0.16666666667, 'gini = 0.0\nsamples = 91\nvalue = [91, 0]\nclass = 1.0'),
     Text(0.8, 0.166666666667, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 2] \nclass = 1.0')]
                     Hemoglobin \leq -0.309
                           gini = 0.401
                          samples = 126
                         value = [91, 35]
                             class = 1.0
                                        Glucose \leq 0.674
              gini = 0.0
                                           qini = 0.042
           samples = 33
                                          samples = 93
           value = [0, 33]
                                          value = [91, 2]
             class = 1.0
                                            class = 1.0
                              gini = 0.0
                                                            gini = 0.0
                           samples = 91
                                                           samples = 2
```

```
Alice = np.array([[0, 1.1]])
final=model.predict(Alice)
final
```

value = [0, 2]

class = 1.0

value = [91, 0]

class = 1.0

```
if final==0:
  print("Alice does not have CKD")
else:
  print("Alice has CKD")
  Alice has CKD
```

array([1.])

- Q5.

Validation

wine=pd.read_csv("/content/winequality-red.csv")
wine.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	i
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	

wine.isna().any()

fixed acidity	False
volatile acidity	False
citric acid	False
residual sugar	False
chlorides	False
free sulfur dioxide	False
total sulfur dioxide	False
density	False
рН	False
sulphates	False
alcohol	False
quality	False
dtype: bool	

wine['quality'].value_counts()

- 5 681
- 6 638
- 7 199

```
4 53
8 18
3 10
Name: quality, dtype: int64
```

<ipython-input-47-af5de3b719fe>:2: DeprecationWarning: `np.bool` is a deprecated alias for the
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.2
mask = np.zeros_like(corr_df, dtype=np.bool)

Correlations between different predictors

wine.drop(["residual sugar",'free sulfur dioxide','pH'],axis = 1,inplace = Tre
wine.head()

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates	alcohol
0	7.4	0.70	0.00	0.076	34.0	0.9978	0.56	9.4
1	7.8	0.88	0.00	0.098	67.0	0.9968	0.68	9.8
2	7.8	0.76	0.04	0.092	54.0	0.9970	0.65	9.8
3	11.2	0.28	0.56	0.075	60.0	0.9980	0.58	9.8
4	7.4	0.70	0.00	0.076	34.0	0.9978	0.56	9.4

bins = [0, 4, 6, 10]

labels = ["poor","normal","excellent"]

wine['quality_label'] = pd.cut(wine['quality'], bins=bins, labels=labels)

wine.drop('quality',axis =1, inplace = True)

wine.head()

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates	alcohol	quali
0	7.4	0.70	0.00	0.076	34.0	0.9978	0.56	9.4	
1	7.8	0.88	0.00	0.098	67.0	0.9968	0.68	9.8	
2	7.8	0.76	0.04	0.092	54.0	0.9970	0.65	9.8	
3	11.2	0.28	0.56	0.075	60.0	0.9980	0.58	9.8	

sns.pairplot(wine, hue="quality_label", palette="husl",diag_kind="kde")
plt.show()

#df_wine.head()

wine.head()

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates	alcohol	quali
0	7.4	0.70	0.00	0.076	34.0	0.9978	0.56	9.4	
1	7.8	0.88	0.00	0.098	67.0	0.9968	0.68	9.8	
2	7.8	0.76	0.04	0.092	54.0	0.9970	0.65	9.8	
3	11.2	0.28	0.56	0.075	60.0	0.9980	0.58	9.8	

```
wine_label=wine['quality_label']
#wine_rest=wine.drop(['alcohol_label','quality_label'],1)
wine_rest=wine.drop(['quality_label'],1)
```

<ipython-input-53-6eaaa66e9f66>:3: FutureWarning: In a future version of pandas all arguments wine_rest=wine.drop(['quality_label'],1)

```
0
        normal
1
        normal
2
        normal
       normal
3
       normal
        . . .
1594
       normal
1595
       normal
1596
       normal
1597
       normal
1598
      normal
Name: quality_label, Length: 1599, dtype: category
Categories (3, object): ['poor' < 'normal' < 'excellent']</pre>
```

wine_rest

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates
0	7.4	0.700	0.00	0.076	34.0	0.99780	0.56
1	7.8	0.880	0.00	0.098	67.0	0.99680	0.68
2	7.8	0.760	0.04	0.092	54.0	0.99700	0.65
3	11.2	0.280	0.56	0.075	60.0	0.99800	0.58
4	7.4	0.700	0.00	0.076	34.0	0.99780	0.56
1594	6.2	0.600	0.08	0.090	44.0	0.99490	0.58
1595	5.9	0.550	0.10	0.062	51.0	0.99512	0.76
1596	6.3	0.510	0.13	0.076	40.0	0.99574	0.75
1597	5.9	0.645	0.12	0.075	44.0	0.99547	0.71
1598	6.0	0.310	0.47	0.067	42.0	0.99549	0.66

1599 rows × 8 columns

▼ KNN

X_train, X_test, Y_train, Y_test = train_test_split(wine_rest, wine_label, text)
X_train

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates
730	9.5	0.550	0.66	0.387	37.0	0.99820	0.67
932	7.6	0.400	0.29	0.078	66.0	0.99710	0.59
821	4.9	0.420	0.00	0.048	42.0	0.99154	0.74
985	7.4	0.580	0.00	0.064	11.0	0.99562	0.58
549	9.0	0.530	0.49	0.171	25.0	0.99750	0.61

X_test

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	sulphates
1429	7.9	0.180	0.40	0.049	67.0	0.99600	0.93
260	7.9	0.330	0.23	0.077	45.0	0.99625	0.65
916	5.3	0.715	0.19	0.161	62.0	0.99395	0.61
1141	8.2	0.380	0.32	0.080	71.0	0.99624	0.85
1574	5.6	0.310	0.78	0.074	92.0	0.99677	0.48
298	7.2	0.650	0.02	0.094	31.0	0.99930	0.80
571	6.2	0.360	0.24	0.095	42.0	0.99460	0.57
605	8.3	0.600	0.13	0.085	24.0	0.99840	0.59
1548	11.2	0.400	0.50	0.099	50.0	0.99783	0.58
455	11.3	0.620	0.67	0.086	19.0	0.99880	0.69

480 rows × 8 columns

```
scaler = StandardScaler()
scaler.fit(wine_rest)
scaled_features = scaler.transform(wine_rest)
wine_rest_scaled= pd.DataFrame(scaled_features, columns=wine_rest.columns)
```

X_train_sc, X_test_sc, y_train_sc, y_test_sc = train_test_split(wine_rest_scale)

```
X_train_sc = X_train_sc.to_numpy()
y_train_sc = y_train_sc.to_numpy()
```

```
def apply_knn(neigh, weight='uniform'):
    knn = KNeighborsClassifier(n_neighbors=neigh, weights=weight)
    knn.fit(X_train_sc,y_train_sc)
    pred_knn = knn.predict(X_test_sc)
    return pred_knn
```

```
model = KNeighborsClassifier()
  params = {'n neighbors':list(range(1, 50, 2)), 'weights':['uniform', 'distance
  gs = GridSearchCV(model, params, cv = 5, n jobs=-1)
  gs results = gs.fit(X train sc, y train sc)
  print('Best Accuracy: ', gs_results.best_score_)
  print('Best Parametrs: ', gs_results.best_params_)
      Best Accuracy: 0.852570467649
      Best Parametrs: {'n_neighbors': 9, 'weights': 'distance'}
  pred knn = apply knn(9)
  print('Accuracy of model at K=9 is', accuracy_score(y_test_sc, pred_knn))
      Accuracy of model at K=9 is 0.84375
      /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names,
        warnings.warn(
RandomForest
  rfc = RandomForestClassifier(n_estimators=200)
  rfc.fit(X train sc, y train sc)
  pred_rfc = rfc.predict(X_test_sc)
      /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names,
        warnings.warn(
  y_test_sc.shape
      (480,)
  pred_rfc.shape
      (480,)
  print(classification report(y test sc, pred rfc))
                            recall f1-score
                  precision
                                              support
         excellent
                       0.82
                               0.55
                                        0.66
                                                  65
                       0.89
                               0.98
                                        0.93
                                                  395
           normal
                       0.00
                               0.00
                                        0.00
             poor
                                                   20
```

```
weighted avg
                       0.84
                                0.88
                                          0.85
                                                    480
print(confusion matrix(y test sc, pred rfc))
    [[ 36 29
                0]
     [ 8 386
                1]
                011
        0 20
# the Accuracy of Random Forest is around 84%
Support Vector Classifier
svc = SVC()
svc.fit(X_train_sc, y_train_sc)
pred_svc = svc.predict(X_test_sc)
    /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names,
      warnings.warn(
print(classification_report(y_test_sc, pred_svc))
                              recall f1-score
                  precision
                                                 support
       excellent
                       0.89
                                0.25
                                          0.39
                                                     65
                       0.85
                                0.99
                                          0.92
          normal
                                                    395
                       0.00
                                0.00
                                          0.00
                                                     20
            poor
                                          0.85
                                                    480
        accuracy
       macro avg
                       0.58
                                0.41
                                          0.43
                                                    480
                                          0.81
    weighted avg
                       0.82
                                0.85
                                                    480
    /usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetri
      _warn_prf(average, modifier, msg_start, len(result))
    /usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetri
       _warn_prf(average, modifier, msg_start, len(result))
```

/usr/local/lib/python3.8/dist-packages/sklearn/metrics/_classification.py:1318: UndefinedMetri

0.88

0.53

480

480

#Support vector classifier gets 79%

_warn_prf(average, modifier, msg_start, len(result))

accuracy

0.57

0.51

macro avg

PART-D

house=pd.read_csv("/content/House.csv")

house.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheatinį
0	13300000	7420	4	2	3	yes	no	no	nc
1	12250000	8960	4	4	4	yes	no	no	nc
2	12250000	9960	3	2	2	yes	no	yes	no
3	12215000	7500	4	2	2	yes	no	yes	no
4	11410000	7420	4	1	2	yes	yes	yes	nc

house.shape

(545, 13)

house.describe()

	price	area	bedrooms	bathrooms	stories	parking	1
count	5.450000e+02	545.000000	545.000000	545.000000	545.000000	545.000000	
mean	4.766729e+06	5150.541284	2.965138	1.286239	1.805505	0.693578	
std	1.870440e+06	2170.141023	0.738064	0.502470	0.867492	0.861586	
min	1.750000e+06	1650.000000	1.000000	1.000000	1.000000	0.000000	
25%	3.430000e+06	3600.000000	2.000000	1.000000	1.000000	0.000000	
50%	4.340000e+06	4600.000000	3.000000	1.000000	2.000000	0.000000	
75%	5.740000e+06	6360.000000	3.000000	2.000000	2.000000	1.000000	
max	1.330000e+07	16200.000000	6.000000	4.000000	4.000000	3.000000	

house.isna().any()

price	False
area	False
bedrooms	False
bathrooms	False
stories	False
mainroad	False
guestroom	False
basement	False
hotwaterheating	False
airconditioning	False
parking	False
prefarea	False

```
Q1 = house.price.quantile(0.25)
Q3 = house.price.quantile(0.75)
IQR = Q3 - Q1
house = house[(house.price >= Q1 - 1.5*IQR) & (house.price <= Q3 + 1.5*IQR)]
Q1 = house.area.quantile(0.25)
Q3 = house.area.quantile(0.75)
IQR = Q3 - Q1
house = house[(house.area >= Q1 - 1.5*IQR) & (house.area <= Q3 + 1.5*IQR)]
sns.pairplot(house)
plt.show()</pre>
```

furnishingstatus False

dtype: bool

```
varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'aircondit'
def binary_map(x):
    return x.map({'yes': 1, "no": 0})
house[varlist] = house[varlist].apply(binary_map)
```

nouse[variatise] nouse[variatise].apply(binary_map)

house	.he	ad	()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheatinį
15	9100000	6000	4	1	2	1	0	1	(
16	9100000	6600	4	2	2	1	1	1	(
17	8960000	8500	3	2	4	1	0	0	(
18	8890000	4600	3	2	2	1	1	0	(
19	8855000	6420	3	2	2	1	0	0	(

status = pd.get_dummies(house['furnishingstatus'])
status.head()

furnished semi-furnished unfurnished

status = pd.get_dummies(house['furnishingstatus'], drop_first = True) house = pd.concat([house, status], axis = 1)

house.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheatin _{
15	9100000	6000	4	1	2	1	0	1	(
16	9100000	6600	4	2	2	1	1	1	(
17	8960000	8500	3	2	4	1	0	0	(
18	8890000	4600	3	2	2	1	1	0	(
19	8855000	6420	3	2	2	1	0	0	(

house.drop(['furnishingstatus'], axis = 1, inplace = True) house.head()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheatinį
15	9100000	6000	4	1	2	1	0	1	(
16	9100000	6600	4	2	2	1	1	1	(
17	8960000	8500	3	2	4	1	0	0	(
18	8890000	4600	3	2	2	1	1	0	(
19	8855000	6420	3	2	2	1	0	0	(


```
np.random.seed(0)
df_train, df_test = train_test_split(house, train_size = 0.7, test_size = 0.3
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking','price']
df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
df_train.head()
```

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterh
148	0.523810	0.526907	0.4	0.0	0.666667	1	0	0	
236	0.390476	0.114134	0.2	0.0	0.333333	1	1	1	
356	0.275238	0.072738	0.8	0.5	0.000000	0	0	1	
425	0.219048	0.151390	0.2	0.0	0.000000	1	0	1	
516	0.095238	0.157895	0.2	0.0	0.000000	0	1	0	

df_train.describe()

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	baser
count	361.000000	361.000000	361.000000	361.000000	361.000000	361.000000	361.000000	361.000
mean	0.383701	0.350081	0.390582	0.127424	0.268698	0.875346	0.168975	0.349
std	0.209712	0.207184	0.149146	0.224465	0.287833	0.330784	0.375250	0.477
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
25%	0.237143	0.189829	0.200000	0.000000	0.000000	1.000000	0.000000	0.000
50%	0.338095	0.295092	0.400000	0.000000	0.333333	1.000000	0.000000	0.000
75%	0.514286	0.491425	0.400000	0.000000	0.333333	1.000000	0.000000	1.000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000


```
plt.figure(figsize = (16, 10))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```

```
0.13
           price
                                                  0.42
                                                           0.43
                                                                                                   0.059
                                                                                                                                                     -0.28
                                        0.14
                                                           0.11
                                                                                          0.11
                                                                                                  -0.025
                                                                                                                                           0.053
                                                                                                                                                     -0.12
           area
                              0.14
                                                                     -0.013
                                                                               0.029
                                                                                          0.1
                                                                                                  -0.0066
                                                                                                                       0.13
                                                                                                                                 0.087
                                                                                                                                           0.098
                                                                                                                                                     -0.14
      bedrooms
                                                                     0.0088
                                                                                          0.12
                                                                                                   0.046
                                                                                                                                 0.029
                                                                                                                                           0.039
                                                                                                                                                     -0.12
     bathrooms
                              0.11
                                                                      0.13
                                                                               -0.019
                                                                                                   0.012
                                                                                                                      0.0036
                                                                                                                                 0.052
         stories
                                                                                          -0.2
                                                                                                                                           0.022
                                                                                                                                                    -0.033
                                       -0.013
                                                 0.0088
                                                           0.13
                                                                               0.081
                                                                                         0.048
                                                                                                   0.032
                                                                                                             0.11
                                                                                                                                           0.058
      mainroad
                                                                                                                                                     -0.11
                                       0.029
                                                           -0.019
                                                                     0.081
                                                                                                   0.024
                                                                                                             0.11
                                                                                                                       0.025
                                                                                                                                           0.043
                                                                                                                                                     -0.12
     guestroom
                                                  0.12
                                                            -0.2
                                                                     0.048
                                                                                                  0.0034
                                                                                                              0.07
                                                                                                                       0.09
                                                                                                                                           0.035
      basement
                              0.11
                                        0.1
                                                                                                                                                     -0.12
                   0.059
                                                 0.046
                                                           0.012
                                                                     0.032
                                                                               0.024
                                                                                        0.0034
                                                                                                              -0.1
                                                                                                                       0.063
                                                                                                                                           0.096
                             -0.025
                                      -0.0066
                                                                                                                                 -0.067
                                                                                                                                                    -0.071
hotwaterheating
                                                                                                                       0.12
 airconditioning
                                                                      0.11
                                                                               0.11
                                                                                         0.07
                                                                                                    -0.1
                                                                                                                                 0.11
                                                                                                                                           -0.01
                                                                                                                                                     -0.12
```

```
y_train = df_train.pop('price')
X train = df train
y_test = df_test.pop('price')
X test = df test
                            NS.
                                     ad
                                          Ε
                                                                     90
                                                                          g
X train = X train.to numpy()
y_train = y_train.to_numpy()
from sklearn.neighbors import KNeighborsRegressor
knn = KNeighborsRegressor(n_neighbors=6, weights='uniform')
knn.fit(X_train,y_train)
    KNeighborsRegressor(n_neighbors=6)
def apply knn(neigh, weight='uniform'):
    knn = KNeighborsRegressor(n_neighbors=neigh, weights=weight)
    knn.fit(X_train,y_train)
    pred_knn = knn.predict(X_test)
    return pred knn
model = KNeighborsRegressor()
params = {'n_neighbors':list(range(1, 50, 2)), 'weights':['uniform', 'distance
gs = GridSearchCV(model, params, cv = 5, n jobs=-1)
gs_results = gs.fit(X_train, y_train)
print('Best Accuracy: ', gs_results.best_score_)
print('Best Parametrs: ', gs_results.best_params_)
```

```
Best Accuracy: 0.523383914449
    Best Parametrs: {'n_neighbors': 9, 'weights': 'distance'}
pred knn = apply knn(9)
from sklearn.metrics import mean absolute error
print("MAE",mean_absolute_error(y_test,pred_knn))
    MAE 4565790.77872
    /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names,
      warnings.warn(
from sklearn.metrics import mean squared error
print("RMSE",np.sqrt(mean squared error(y test,pred knn)))
    RMSE 4876137.31684
print(knn.score(X_test,y_test))
    -7.11417318899
    /usr/local/lib/python3.8/dist-packages/sklearn/base.py:443: UserWarning: X has feature names,
      warnings.warn(
from sklearn import linear model
regr = linear_model.LinearRegression()
regr.fit(X_train, y_train)
    LinearRegression()
y_train_price = regr.predict(X_train)
res = (y_train_price - y_train)
fig = plt.figure()
sns.distplot((y_train - y_train_price), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot warnings.warn(msg, FutureWarning)
Text(0.5, 0, 'Errors')

Error Terms


```
plt.scatter(y_train,res)
plt.show()
```


- Q7

```
train=pd.read_csv("/content/train.csv")
```

test=pd.read_csv("/content/test(1).csv")

train.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

test.isnull().sum()

PassengerId	0
Pclass	0
Name	0

```
Age
                  86
    SibSp
                 0
    Parch
                  0
    Ticket
                 0
    Fare
                  1
    Cabin
                 327
    Embarked
                 0
    dtype: int64
impute value = train['Age'].median()
test['Age'] = test['Age'].fillna(impute value)
train['Age'] = train['Age'].fillna(impute_value)
train['IsFemale'] = (train['Sex'] == 'female').astype(int)
test['IsFemale'] = (test['Sex'] == 'female').astype(int)
predictors = ['Pclass', 'IsFemale', 'Age']
X train = train[predictors].values
X_train
    array([[ 3., 0., 22.],
          [ 1., 1., 38.],
          [ 3., 1., 26.],
                1., 28.],
           3.,
          [1., 0., 26.],
                0., 32.]])
          [ 3.,
X test = test[predictors].values
X_test
    array([[ 3., 0., 34.5],
          [ 3., 1., 47.],
          [ 2., 0., 62.],
          [ 3., 0., 38.5],
          [ 3., 0., 28.],
                 0., 28.]])
          [ 3.,
y train = train['Survived'].values
y_train
    array([0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1,
          1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
          0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,
          0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,
          0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
```

0

Sex

```
0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
           1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
           1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
           1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
           0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
           0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,
           1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0,
           1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
           1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,
           1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1,
           1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
           1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
           1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
           1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
           1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
           0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
           0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,
           0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
           0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
           1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
           1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
           1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1,
           0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
           0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,
           1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1,
           0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
           0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
           1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
           0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
           1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0])
X_train[:5]
     array([[ 3.,
                    0., 22.],
           [ 1.,
                    1.,
                        38.],
            [ 3.,
                    1., 26.],
            [ 1.,
                   1., 35.],
            [ 3.,
                    0., 35.]])
y_train[:5]
     array([0, 1, 1, 1, 0])
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X train, y train)
     LogisticRegression()
y predict = model.predict(X test)
y predict[:10]
```

array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0])

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Em
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
413	1305	3	Spector, Mr. Woolf	male	28.0	0	0	A.5. 3236	8.0500	NaN	

from sklearn.linear_model import LogisticRegressionCV
model_cv = LogisticRegressionCV()
model_cv.fit(X_train, y_train)

LogisticRegressionCV()

from sklearn.model_selection import cross_val_score
model = LogisticRegression(C=10)
scores = cross_val_score(model, X_train, y_train, cv=4)
scores

array([0.77578475, 0.79820628, 0.77578475, 0.78828829])