

Matemática Discreta Lista 3

Prof. Americo Barbosa da Cunha Junior americo@ime.uerj.br

ATENÇÃO: A solução de cada questão deve ser desenvolvida de maneira clara e objetiva. Não basta fazer contas, o raciocínio deve ser explicado através de um texto coerente. Em outras palavras, mais importante que encontrar a resposta correta é explicar como você chegou nessa resposta.

Exercício 1

De quantas maneiras 2 pessoas podem estacionar seus carros numa garagem para 6 vagas?

Exercício 2

Há 12 moças e 10 rapazes, onde 5 deles (3 moças e 2 rapazes) são filhos da mesma mãe e os restantes não possuem parentesco. Quantos são os casamentos possíveis?

Exercício 3

Quantos são os números que podemos formar com todos os dígitos 1, 1, 1, 1, 1, 1, 1, 2 e 3?

Exercício 4

Quantos números de 3 algarismos distintos podemos formar com os dígitos 5, 6 e 7?

Exercício 5

Considerando os dígitos 1, 2, 3, 4 e 5, quantos números de 2 algarismos distintos podem ser formados?

Exercício 6

Dado o conjunto $A = \{1, 2, 3, 4, 5\}$, quantos subconjuntos de 2 elementos A possui?

Exercício 7

De quantas maneiras diferentes as letras a, a, a, a, b, b, b, c, c, d, podem ser distribuídas entre duas pessoas?

Exercício 8

Quantos são os divisores de 126000?

Exercício 9

Dado $N = p_1^{a_1}.p_2^{a_2}.p_3^{a_3}.....p_n^{a_n}$, onde os p_i 's são primos e distintos, calcular o número de divisores de N.

Exercício 10

De quantas maneiras podemos distribuir n objetos iguais em 2 caixas diferentes?

Exercício 11

De quantas maneiras podemos distribuir n objetos iguais em 2 caixas diferentes, de modo que nenhuma fique vazia?

Exercício 12

Seja n um número par de objetos idênticos. De quantas maneiras podemos colocá-los em duas caixas iguais?

Exercício 13

Seja n um número ímpar de objetos idênticos. De quantas maneiras podemos colocá-los em duas caixas iguais?

Exercício 14

Seja n um número par de objetos idênticos. De quantas maneiras podemos colocá-los em duas caixas iguais, de modo que nenhuma caixa fique vazia?

Exercício 15

Seja n um número ímpar de objetos idênticos. De quantas maneiras podemos colocá-los em duas caixas iguais, de modo que nenhuma caixa fique vazia?

Exercício 16

Quantos números de 4 ou 5 algarismos distintos, e maiores do que 2000, podem ser formados com os algarismos 0, 1, 3, 5 e 7?

Exercício 17

Quantos triângulos diferentes podem ser traçados utilizando-se 14 pontos de um plano?

Exercício 18

Quantas diagonais possui um polígono regular de n lados?

Exercício 19

Dado $A = \{1, 2, 3, \dots, n\}$, de quantos modos é possível formar subconjuntos de p elementos nos quais não haja números consecutivos?

Exercício 20

Uma fila tem 20 cadeiras, nas quais devem sentar-se 8 meninas e 12 meninos. De quantos modos isso pode ser feito se 2 meninas não devem ficar em cadeiras contíguas?

Exercício 21

Um baralho tem 52 cartas. De quantos modos diferentes podemos distribuí-las entre 4 jogadores de modo que cada um receba 13 cartas?

Exercício 22

De quantos modos podemos repartir 8 brinquedos diferentes entre 3 garotos, sendo que os dois mais velhos recebam 3 brinquedos cada e o mais novo receba 2 brinquedos?

Exercício 23

De quantos modos diferentes podemos distribuir 8 bolas distintas em três caixas iguais, de modo que duas delas tenham exatamente 3 bolas cada?

Exercício 24

De quantos modos podemos separar 20 objetos distintos em 6 grupos, sendo 2 grupos com 3 objetos, 3 grupos com 4 objetos e 1 grupo com 2 objetos?

Exercício 25

Dados os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d, e, f\}$, quantas são as aplicações injetoras de A em B?

Exercício 26

Numa sala há 7 pessoas e 9 cadeiras enfileiradas, de quantas maneiras essas pessoas podem se sentar?

Exercício 27

Quantos são os números naturais de quatro algarismos distintos que existem no sistema decimal?

Exercício 28

Quantos números naturais de três algarismos, maiores que 300, é possível formar com os algarismos 2, 3, 4, 5 e 6 sem repeti-los?

Exercício 29

Quantas são as aplicações bijetoras de A em B, sendo dados os conjuntos $A = \{1, 2, 3, 4, 5, 6\}$ e $B = \{a, b, c, d, e, f\}$?

Exercício 30

De quantos modos se podem arrumar as letras da palavra VESTIBULAR de modo que se mantenham juntas, numa ordem qualquer, as letras VES?

Exercício 31

Se dispusermos em ordem crescente todos os números naturais de algarismos distintos que se obtém permutando os algarismos do número 52781, que lugar ele ocupa?

Exercício 32

Numa casa há oito janelas. De quantas maneiras elas podem ser abertas?

Exercício 33

Quantas são as comissões de 5 pessoas que se podem formar entre 8 rapazes e 4 moças de modo que figurem, pelo menos, duas moças?

Exercício 34

Simplifique:

- 1. (n+1)!/n!
- 2. n!/(n+2)!
- 3. (n+1)!/(n-1)!
- 4. (n-r)!/(n-r-2)!

Exercício 35

Prove as identidades:

- 1. $p C_n^p = n C_{n-1}^{p-1}$
- 2. $\frac{1}{p+1}C_n^p = \frac{1}{n+1}C_{n+1}^{p+1}$

Exercício 36

Sabendo-se que em uma reunião todos os presentes apertaram as mãos entre si e que ao todo foram feitos 66 cumprimentos. Calcule o número de pessoas presentes à reunião.

Exercício 37

Calcule o valor de n se:

- 1. $P_n = 12 C_n^2$
- 2. $C_n^6/C_{n-1}^5=1$

Todos os exercícios do Capítulo 2 da Referência [1].

Todos os exercícios do Capítulo 4 da Referência [2].

Gabarito da Lista 3

ATENÇAO: As repostas e soluções apresentadas a seguir são para auxiliar na resolução desta lista, mas não estão isentas de possíveis erros de digitação ou mesmo de desenvolvimento. Use o gabarito com cautela, exercitando sempre o seu senso crítico. Se encontrar algum erro, por favor, reporte ao professor.

Resposta do Exercício 1

Duas pessoas podem estacionar seus carros, numa garagem com 6 vagas, de 30 maneiras.

Resposta do Exercício 2

Permitido apenas casamentos heterosexuais não-fraternos, temos 114 casamentos possíveis entre 12 moças e 10 rapazes, onde 5 deles (3 moças e 2 rapazes) são filhos da mesma mãe e os restantes não possuem parentesco.

Resposta do Exercício 3

Podemos formar 72 números com todos os dígitos 1, 1, 1, 1, 1, 1, 1, 2 e 3.

Resposta do Exercício 4

Podemos formar 6 números distintos com 3 algarismos distintos utilizando 5, 6 e 7 como dígitos.

Resposta do Exercício 5

Podem ser formados 20 números de 2 algarismos distintos utilizando 1, 2, 3, 4 e 5 como dígitos.

Resposta do Exercício 6

O conjunto $A = \{1, 2, 3, 4, 5\}$ possui 10 subconjuntos com 2 elementos cada.

Resposta do Exercício 7

As letras a, a, a, a, b, b, c, c, d, podem ser distribuídas entre duas pessoas de 120 maneiras diferentes.

Resposta do Exercício 8

O número 126000 tem 120 divisores.

Resposta do Exercício 9

O número N tem $(a_1+1)(a_2+1)(a_3+1)\cdots(a_n+1)$ dividores.

Resposta do Exercício 10

Os n objetos iguais podem ser distribuídos, em 2 caixas diferentes, de n+1 maneiras.

Resposta do Exercício 11

Os n objetos iguais podem ser distribuídos de n-1 maneiras em 2 caixas diferentes de modo a não deixar alguma caixa vazia.

Resposta do Exercício 12

Esses objetos idênticos podem ser distribuídos de n/2 + 1 maneiras em 2 caixas iguais.

Resposta do Exercício 13

Esses objetos idênticos podem ser distribuídos de (n+1)/2 maneiras em 2 caixas iguais.

Resposta do Exercício 14

Esses objetos idênticos podem ser distribuídos de n/2 maneiras em 2 caixas iguais de modo a não deixar alguma caixa vazia.

Resposta do Exercício 15

Esses objetos idênticos podem ser distribuídos de (n-1)/2 maneiras em 2 caixas iguais de modo a não deixar alguma caixa vazia.

Resposta do Exercício 16

Com os algarismos 0, 1, 3, 5 e 7 podem ser formados 168 números de 4 ou 5 algarismos distintos, e maiores do que 2000.

Resposta do Exercício 17

Utilizando-se 14 pontos de um plano, podem ser traçados 364 trinângulos diferentes.

Resposta do Exercício 18

Um polígono regular com n lados possui n(n-3)/2 diagonais.

Resposta do Exercício 19

A partir dos elementos de $A=\{1,2,3,\cdots,n\}$ é possível formar subconjuntos de p elementos, nos quais não haja números consecutivos, de $\frac{(n-p+1)!}{p!(n-2p+1)!}$ maneiras.

Resposta do Exercício 20

Isso pode ser feito de $8! \, 12! \, C_{12}^8$ maneiras.

Resposta do Exercício 21

As 52 cartas podem ser distribuídas aos 4 jogadores de $52!/(13!)^4$ maneiras.

Resposta do Exercício 22

Podemos repartir 8 brinquedos diferentes, entre 3 garotos, de modo que os dois mais velhos recebam 3 brinquedos cada e o mais novo receba 2 brinquedos, de $8!/(2!(3!)^2)$ maneiras.

Resposta do Exercício 23

Podemos distribuir 8 bolas distintas em três caixas iguais, de modo que duas delas tenham exatamente 3 bolas cada, de $8!/(2!3!)^2$ maneiras distintas.

Resposta do Exercício 24

Podemos separar 20 objetos distintos em 6 grupos, sendo 2 grupos com 3 objetos, 3 grupos com 4 objetos e 1 grupo com 2 objetos, de $20!/((2!)^2(3!)^4(4!)^3)$ modos.

Resposta do Exercício 25

Existem 120 aplicações injetoras de A em B.

Resposta do Exercício 26

Essa pessoas podem se sentar de 181440 maneiras.

Resposta do Exercício 27

No sistema decimal existem 4536 números naturais de quatro algarismos disintos.

Resposta do Exercício 28

É possível formar, com os algarismos 2, 3, 4, 5 e 6 sem repeti-los, 48 números naturais de três algarismos maiores que 300.

Resposta do Exercício 29

Existem 720 aplicações bijetoras de A em B.

Resposta do Exercício 30

O agrupamento VES comporta-se como se fosse uma só letra. Portanto, teríamos a permutação de 8 elementos se as letras V, E e S permanecessem sempre nesta ordem. Como essas letras podem ficar em qualquer ordem, devemos também permutá-la dentro do grupo. Logo, pelo princípio da multiplicação, $3! \times 8! = 241920$.

Resposta do Exercício 31

Ele ocupa na ordem crescente o 58° lugar.

Resposta do Exercício 32

Elas podem ser abertas de 255 maneiras.

Resposta do Exercício 33

O número total de comissões possível é 456.

Resposta do Exercício 34

Após as simplificações temos

1.
$$(n+1)!/n! = n+1$$

2.
$$n!/(n+2)! = \frac{1}{(n+2)(n+1)}$$

3.
$$(n+1)!/(n-1)! = n(n+1)$$

4.
$$(n-r)!/(n-r-2)! = (n-r)(n-r-1)$$

Resposta do Exercício 35

Faça a prova por indução, por exemplo.

Resposta do Exercício 36

Há 12 pessoas presentes na reunião.

Resposta do Exercício 37

Os valores de n são:

- 1. 5
- 2. 6

Repostas dos Exercícios do Capítulo 2 da Referência [1]:

Disponíveis nos capítulos 7 e 8 de [1].

Repostas dos Exercícios do Capítulo 4 da Referência [2]:

Disponíveis na referência [3].

Créditos pelos Exercícios: Os exercícios 1 até 37 foram adaptados das listas do Prof. Augusto Cesar de Castro Barbosa (UERJ). Os demais exercícios indicados são das referências [1] e [2].

Referências

- [1] A. C. Morgado, J. B. Pitombeira de Carvalho, P. C. P. Carvalho e P. Fernandez, **Análise Combinatória** e **Probabilidade**, SBM, 10^a edição, 2016
- [2] E. L. Lima, P. C. P. Carvalho, E. Wagner e A. C. Morgado, A Matemática do Ensino Médio, Volume 2, SBM, 7^a edição, 2016
- [3] E. L. Lima, P. C. P. Carvalho, E. Wagner e A. C. Morgado, A Matemática do Ensino Médio, Volume 4, SBM, 2ª edição, 2016