LAUREA TRIENNALE IN SCIENZA E TECNOLOGIA DEI MEDIA, UNIVERSITÀ DI ROMA TOR VERGATA

Calcolo delle Probabilità

Anno accademico: 2018-2019. Titolare del corso: Claudio Macci

Appello del 3 Settembre 2019

Esercizi 1,2,3,4,5 per gli studenti che sostengono l'esame da 6 crediti.

Esercizi 1,2,3,4,5,6 per gli studenti che sostengono l'esame da 8 crediti.

Esercizio 1.

Un'urna ha 2 palline bianche, 2 nere e 1 rossa. Si estraggono a caso 3 palline, una alla volta e con reinserimento.

- D1) Calcolare la probabilità di estrarre al più 1 pallina bianca.
- D2) Calcolare la probabilità di estrarre 3 colori diversi (una bianca, una nera e una rossa in un qualsiasi ordine).
- D3) Calcolare la probabilità di estrarre 3 palline bianche sapendo di aver estratto 3 palline dello stesso colore.

Esercizio 2.

Abbiamo due monete: la moneta 1 e la moneta 2. Per $i \in \{1,2\}$ sia p_i la probabilità di ottenere testa lanciando la moneta i. Poi si lancia un dado equo. Se esce 1 si lancia la moneta 1, altrimenti (se esce un numero diverso da 1) si lancia la moneta 2.

D4) Calcolare la probabilità che esca testa nel lancio di moneta effettuato.

Esercizio 3.

Siano $p, q \in (0, 1)$. Consideriamo la seguente densità congiunta: $p_{X_1, X_2}(x_1, x_2) = \binom{x_2}{x_1} p^{x_1} (1-p)^{x_2-x_1} (1-q)^{x_2} q$ per $0 \le x_1 \le x_2$ interi.

- D5) Calcolare $P(X_1 = X_2)$.
- D6) Calcolare $P(X_1 = 0 | X_2 = 2)$.

Esercizio 4. Sia b > 0. Sia X una variabile aleatoria continua con densità continua $f_X(x) = bx^{b-1}1_{(0,1)}(x)$.

- D7) Trovare la funzione di distribuzione di $Y = \frac{e^X 1}{e^{-1}}$.
- D8) Dire per quale valore di b si ha $\mathbb{E}[X] = \frac{1}{2}$.

Esercizio 5.

Poniamo $\Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{x^2}{2}} dx$.

D9) Sia X una variabile aleatoria Normale con media 2 e varianza 144. Trovare il valore $y \in \mathbb{R}$ per cui si ha $P(X < y) = \Phi(3)$.

D10) Sia $\{X_n : n \ge 1\}$ una successione di variabili aleatorie i.i.d. (indipendenti e identicamente distribuite), con media μ e varianza 121. Calcolare, al variare di $y \in \mathbb{R}$,

$$\lim_{n\to\infty}P\left(\frac{\frac{X_1+\dots+X_n}{n}-\mu}{1/\sqrt{n}}>y\right),$$

esprimendo il limite con la funzione Φ .

Esercizio 6.

Consideriamo una catena di Markov omogenea $\{X_n : n \geq 0\}$ con spazio degli stati $E = \{1, 2, 3\}$ e matrice di transizione

$$P = \left(\begin{array}{ccc} 1 - p & p & 0 \\ 0 & 1 - q & q \\ 0 & 1 - q & q \end{array} \right),$$

dove $p, q \in (0, 1)$.

- D11) Supponiamo che $P(X_0 = 1) = 1$. Calcolare la densità discreta di X_2 .
- D12) Calcolare i tempi medi di primo passaggio per lo stato 3 partendo da 1 e da 2.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

 ${\tt D1})$ Sia X la variabile aleatoria che conta il numero di palline bianche estratte. La probabilità richiesta è $P(X \le 1) = \sum_{k=0}^{1} P(X = k) = \binom{3}{0} (\frac{2}{5})^0 (1 - \frac{2}{5})^{3-0} + \binom{3}{1} (\frac{2}{5})^1 (1 - \frac{2}{5})^{3-1} = \frac{27 + 54}{125} = \frac{81}{125}.$ D2) Con riferimento alla distribuzione multinomiale, la probabilità richiesta è $\frac{3!}{1!1!1!} (\frac{2}{5})^1 (\frac{1}{5})^1 = \frac{24}{125}.$

D3) Indichiamo con B, N e R gli eventi "estratte tutte bianche", "estratte tutte nere" ed "estratte tutte rosse". La probabilità richiesta è $P(B|B \cup N \cup R) = \frac{P(B \cap (B \cup N \cup R))}{P(B \cup N \cup R)} = \frac{P(B)}{P(B) + P(N) + P(R)} = \frac{\binom{2}{5}^3}{\binom{2}{5}^3 + \binom{1}{5}^3} = \binom{2}{5}^3 + \binom{2}{5}^3 +$ $\frac{8}{8+8+1} = \frac{8}{17}$.

Esercizio 2.

D4) Sia T l'evento "esce testa" e sia E l'evento "esce 1 nel lancio del dado". Allora, per la formula delle probabilità totali, la probabilità richiesta è

$$P(E) = P(T|E)P(E) + P(T|E^c)P(E^c) = \frac{p_1 + 5p_2}{6}.$$

Esercizio 3.

D5) Si ha

$$P(X_1 = X_2) = \sum_{k=0}^{\infty} p_{X_1, X_2}(k, k) = \sum_{k=0}^{\infty} {k \choose k} p^k (1 - p)^{k-k} (1 - q)^k q = q \sum_{k=0}^{\infty} (p(1 - q))^k = \frac{q}{1 - p(1 - q)}.$$

D6) Si ha

$$\begin{split} P(X_1 = 0 | X_2 = 2) &= \frac{P(X_1 = 0, X_2 = 2)}{P(X_2 = 2)} = \frac{p_{X_1, X_2}(0, 2)}{\sum_{k=0}^2 p_{X_1, X_2}(k, 2)} \\ &= \frac{\binom{2}{0} p^0 (1 - p)^{2 - 0} (1 - q)^2 q}{\sum_{k=0}^2 \binom{2}{k} p^k (1 - p)^{2 - k} (1 - q)^2 q} = \frac{(1 - p)^2 (1 - q)^2 q}{(1 - q)^2 q \sum_{k=0}^2 \binom{2}{k} p^k (1 - p)^{2 - k}} = \frac{(1 - p)^2}{\sum_{k=0}^2 \binom{2}{k} p^k (1 - p)^{2 - k}} \end{split}$$

e, osservando che $\sum_{k=0}^{2} {2 \choose k} p^k (1-p)^{2-k} = p^2 + 2p(1-p) + (1-p)^2 = p^2 + 2p - 2p^2 + 1 + p^2 - 2p = 1$ (si poteva anche dire che $\sum_{k=0}^{2} {2 \choose k} p^k (1-p)^{2-k} = (p+1-p)^2 = 1$ per il binomio di Newton), si conclude che $P(X_1=0|X_2=2) = (1-p)^2$.

Esercizio 4.

D7) Si ha $P(0 \le Y \le 1) = 1$, da cui segue $F_Y(y) = 0$ per $y \le 0$ e $F_Y(y) = 1$ per $y \ge 1$. Per $y \in (0,1)$ si ha

$$F_Y(y) = P\left(\frac{e^X - 1}{e - 1} \le y\right) = P(e^X - 1 \le (e - 1)y) = P(e^X \le 1 + (e - 1)y)$$

$$= P(X \le \log(1 + (e - 1)y)) = \int_0^{\log(1 + (e - 1)y)} bx^{b - 1} dx = b \frac{[x^{b - 1 + 1}]_{x = 0}^{x = \log(1 + (e - 1)y)}}{b - 1 + 1} = (\log(1 + (e - 1)y))^b.$$

D8) Si ha $\mathbb{E}[X] = \int_0^1 xbx^{b-1}dx = b\int_0^1 x^bdx = b[\frac{x^{b+1}}{b+1}]_{x=0}^{x=1} = \frac{b}{b+1}$. Quindi si considera l'equazione $\frac{b}{b+1} = \frac{1}{2}$, da cui segue 2b = b+1 e b=1.

Osservazione. Per b=1 la variabile aleatoria X ha distribuzione uniforme su (0,1) e in effetti, per note proprietà delle distribuzioni uniformi, il valor medio concide con il punto medio dell'intervallo (che in questo caso è 1/2).

Esercizio 5.

D9) Abbiamo

$$\Phi(3) = P(X < y) = P\left(\frac{X - 2}{\sqrt{144}} < \frac{y - 2}{\sqrt{144}}\right) = \Phi\left(\frac{y - 2}{\sqrt{144}}\right),$$

da cui segue $\frac{y-2}{\sqrt{144}} = 3$ e, con semplici calcoli, si ottiene $y = 2 + 3\sqrt{144} = 2 + 36 = 38$.

D10) In generale, se indichiamo la varianza delle variabili aleatorie $\{X_n : n \geq 1\}$ con σ^2 , per il teorema limite

centrale si ha

$$\lim_{n \to \infty} P\left(\frac{X_1 + \dots + X_n - \mu n}{\sigma \sqrt{n}} \le y\right) = \Phi(y).$$

Da questo limite, dividendo per n numeratore e denominatore, come visto a lezione si ottiene una versione con le medie al posto delle somme:

$$\lim_{n \to \infty} P\left(\frac{\frac{X_1 + \dots + X_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} \le y\right) = \Phi(y).$$

Nel nostro caso si ha

$$P\left(\frac{\frac{X_1+\dots+X_n}{n}-\mu}{1/\sqrt{n}}>y\right)=1-P\left(\frac{\frac{X_1+\dots+X_n}{n}-\mu}{\sqrt{121}/\sqrt{n}}\leq\frac{y}{\sqrt{121}}\right)\to 1-\Phi\left(\frac{y}{\sqrt{121}}\right)=1-\Phi\left(\frac{y}{11}\right).$$

Esercizio 6.

D11) La densità discreta richiesta si ottiene (come vettore riga) dalla seguente relazione matriciale:

$$(p_{X_2}(1), p_{X_2}(2), p_{X_2}(3)) = (1, 0, 0) \begin{pmatrix} 1-p & p & 0 \\ 0 & 1-q & q \\ 0 & 1-q & q \end{pmatrix} \begin{pmatrix} 1-p & p & 0 \\ 0 & 1-q & q \\ 0 & 1-q & q \end{pmatrix}.$$

Quindi si ha

$$(p_{X_2}(1), p_{X_2}(2), p_{X_2}(3)) = (1 - p, p, 0) \begin{pmatrix} 1 - p & p & 0 \\ 0 & 1 - q & q \\ 0 & 1 - q & q \end{pmatrix}$$
$$= ((1 - p)^2, (1 - p)p + p(1 - q), pq) = ((1 - p)^2, p(2 - p - q), pq).$$

D12) Indichiamo con μ_1 e μ_2 i due tempi medi richiesti. Tali valori sono soluzione del seguente sistema

$$\begin{cases} \mu_1 = 1 + (1-p)\mu_1 + p\mu_2 \\ \mu_2 = 1 + (1-q)\mu_2 \end{cases}$$

La seconda equazione fornisce il valore $\mu_2=\frac{1}{q}$ con semplici passaggi. Sostiteuendo nella prima si ottiene $p\mu_1=1+\frac{p}{q}$, da cui segue $\mu_1=\frac{1}{p}+\frac{1}{q}$. Osservazione. I valori ottenuti si potevano dedurre dalle proprietà della distribuzione geometrica traslata

Osservazione. I valori ottenuti si potevano dedurre dalle proprietà della distribuzione geometrica traslata (quella che parte da 1). Infatti il tempo di primo passaggio in 3 partendo da 2 ha tale distribuzione con parametro q, mentre il tempo di primo passaggio in 3 partendo da 1 è la somma di due variabili aleatorie indipendenti, con distribuzione geometrica traslata di parametri p e q rispettivamente (l'indipendenza è ininfluente nel calcolo della speranza matematica della somma delle variabili aleatorie).