Getting and cleaning data

ADS2 week 7

Dmytro Shytikov (adapted from Xianghua Li's slides)

2023-10-30

Why do we care about cleaning data?

What you imagine a data scientists do:

What data scientists really do:

Data analysis workflow

Before you analyze your data, answer these questions:

- Is your data ready to be analyzed?
- Is your data ready to be modelled?
- Is your data ready to be plotted?

What does it mean – raw data?

Raw data are "raw" if:

- No software processed it;
- No values are modified;
- No data are removed;
- No summary available.

Examples:

- RNA- and RNA-sequencing data;
- Data from flow cytometry;
- Data from image analysis;
- HTML data after data mining;
- Data from observations;
- etc.

Why do we need to clean raw data?

I want to make use of my flow cytometry data. But there are a few issues:

- 1. The data are not summarized;
- From the current output, you get no valuable information;
- 3. You need to process it to get anything valuable.

	FSC.H	SSC.H	FITC.H	APC.H	Other	data
1	370669	40987	309	102564		
2	4007789	289260	3751	29742		
3	1827661	613884	5290	3685276		
4	7669807	727412	9280	52017		
5	1228843	229826	3162	705259		
6	1315640	289438	6748	1313375		
7	1799229	99692	1558	2105		
8	12735706	1892834	17371	339346		
9	4009833	400802	2410	17196		
10						

Can these data be analyzed?

head (weather, 9) %>% select (2:14) X3 X4 X5 X6 X7 X8 X9 X10 Other data year month measure X1 X2 1 2014 Max.TemperatureF 64 42 51 43 42 45 38 29 49 48 2 2014 12 Mean. Temperature F 52 38 44 37 34 42 30 24 39 43 3 2014 Min.TemperatureF 39 33 37 30 26 38 21 18 38 4 2014 Max.Dew.PointF 46 40 49 24 37 45 36 28 49 45 12 MeanDew.PointF 40 27 42 21 25 40 20 16 41 5 2014 12 39 6 2014 12 Min.DewpointF 26 17 24 13 12 36 -3 3 37 7 2014 12 Max. Humidity 74 92 100 69 85 100 92 92 100 100 8 2014 12 Mean. Humidity 63 72 79 54 66 93 61 70 9 2014 12 Min. Humidity 52 51 57 39 47 85 29 47

"Dirty" data is a problem

The data may not be analyzed easily due to:		<pre>weather %>% head(9) %>% select(2:8)</pre>							
			year	month	measure	Х1	X2	Х3	X4
Special characters where	e not needed;	1	2014	12	Max.TemperatureF	64	42	51	43
Use of the wrong data st	ructures;	2	2014	12	Mean.TemperatureF	52	38	44	37
 Duplicated rows; 		3	2014	12	Min.TemperatureF	39	33	37	30
 Misspelling; 		4	2014	12	Max.Dew.PointF	46	40	49	24
 White spaces; 		5	2014	12	MeanDew.PointF	40	27	42	21
 Missing data; 		6	2014	12	Min.DewpointF	26	17	24	13
Zeroes instead of NULL of	or NA values;	7	2014	12	Max.Humidity	74	92	100	69
 Other inaccuracies; 		8	2014	12	Mean.Humidity	63	72	79	54
 Poor structure. 		9	2014	12	Min.Humidity	52	51	57	39

What data scientists really do:

They take these dirty and messy data:

- Special characters where not needed;
- Use of the wrong data structures;
- Duplicated rows;
- Misspelling;
- White spaces;
- Missing data;
- Zeroes instead of NULL or NA values;
- Other inaccuracies;
- Poor structure.

And make it clean and tidy:

- Free of duplicate rows/values
- Error-free (e.g. free of misspellings)
- Relevant (e.g. free of special characters)
- The appropriate data type for analysis
- Free of outliers (or only contain outliers that have been identified/understood)
- Follows a "tidy data" structure.

Learning objectives

- 1. Describe features of **tidy** data and explain advantages of tidy datasets
- 2. Explain the process of cleaning data
- 3. Describe ways of handling different data types and data structures in R
- 4. Introduce the key data cleaning tools: tidyverse package and its elements

TIDY DATA, ITS FEATURES AND ADVANTAGES

Tidy data: main features

Tidy data: advantages

head(weather, 9) %>% select(2:15) X6 X7 X8 X9 X10 X11 Other data X3 X4 X5 year month measure X1 X2 1 2014 45 38 29 Max. Temperature F 64 42 51 43 42 . . . 2 2014 12 Mean. Temperature F 52 38 44 37 34 42 30 24 . . . 3 2014 37 30 26 Min.TemperatureF 39 33 38 21 18 38 4 2014 Max.Dew.PointF 46 40 49 24 37 45 36 28 12 49 45 5 2014 MeanDew.PointF 40 27 42 21 25 12 40 20 16 39 31 . . . 24 13 12 6 2014 12 Min.DewpointF 26 17 36 -3 3 . . . 7 2014 12 Max. Humidity 74 92 100 69 85 100 92 92 100 100 . . . 8 2014 12 Mean. Humidity 63 72 79 54 66 93 61 70 9 2014 12 Min. Humidity 52 51 57 39 47 85 29 47

Tidy data: advantages

head(tidyWeather, 10) %>% select(1:6) Date CloudCover Events Max.Dew.PointF Other data year month 2.014 12 2014-12-01 Rain 46 12 2014-12-02 7 Rain-Snow 2014 40 2014 12 2014-12-03 Rain 49 12 2014-12-04 2014 24 12 2014-12-05 2014 Rain 37 2014 12 2014-12-06 Rain 45 2014 12 2014-12-07 Rain 36 12 2014-12-08 2.014 Snow 28 2.014 12 2014-12-09 Rain 49 10 2014 12 2014-12-10 Rain 45

Wide data format

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

table1

Long data format

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

variables

observations

DATA CLEANING

The key steps of data cleaning

The key steps of the data cleaning:

- **Screen**: Check the data set systematically
- Diagnose: Find out the nature of the problem.
- Treat: Delete, edit, or leave the data as it is.
- Document: Comment on each step to make sure you will not forget the reason of the action and the original state.

The key steps of data cleaning: Screening

Possible signs of the bad data:

- Lack of data: Some columns/rows have fewer values. Why?
- Excess of data: Some rows are duplicated or include more values than it should be. Were some rows duplicated? Were there some additional values added?
- Outliers: Some values are far beyond the limits of the data. An error is possible.
- Strange patterns of data or results: The results look quite weird. Was there an error or falsification?

The key steps of data cleaning: Diagnosis

Possible reasons of the bad data:

- Missing data: Some answers were not recorded or test subjects were lost for the follow-up (dropped out from the study).
- Errors or typos: Errors can always take place.
- No error: The value is strange, but is actually valid.
 The researcher has to accept it.

The key steps of data cleaning: Treatment

Possible actions to take:

- Leave as it is: Consider not changing anything. The larger the sample size is, the less influencing the suspect observation is.
- Correct it: You may change the value if you have figured out the source of the problem (for example, clear typos).
- Delete it: It may be reasonable to get rid of the suspect values. But which one to discard? And is there a really good reason for it? Avoid cherry picking!
- Repeat the measurement.

The key steps of data cleaning: Documenting

Important principles of documenting your data cleaning:

- Clearly document the data cleaning process.
- Keep track of all changes. Create some sort of a change log with all the relecant information about where changes were introduced:

Table;

Column, row;

Date changed -> Changed by;

Old value -> New value;

Comments.

- Document which procedures were done, by whom, why, and how many responses were affected.
- This information must be accessible by you and by those with whom you share your data.

HANDLING DATA IN R

Data types and structures in R

The main classes of data:

- Character
- Numeric
- Integer
- Logical
- Complex

Data structures:

- Vectors
- Factors
- Lists
- Matrices and arrays
- Data frames
- ..

Check properties of the object

There is a set of commands that allow you to check the properties of the studied object

```
class(), mode(), typeof()
is.<DATA_CLASS/TYPE>(), as.<DATA_CLASS/TYPE>()

str(), summary()

attributes(), names()
dimnames(), colnames(), rownames()

dim(), length()

...
```

Subsetting and rearranging data in R

Subset or rearrange 1D data structures

```
vec.num <- c(1, 2.8, 3, 4.4)
vec.num[2]
[1] 2.8
vec.num[c(1, 4)]
[1] 1.0 4.4
vec.num_2 <- vec.num[c(2, 4, 3, 1)]

someList <- list(first vec = vec.num, second_vec = vec.num_2)
someList[[2]]
[1] 2.8 4.4 3.0 1.0</pre>
```

Subset or rearrange 2D data structures

Working with data frames in R

he	ad(diar	monds, 10)	%>% as	s.data.fi	rame()					
	carat	cut	color	clarity	depth	table	price	X	У	Z
1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63
5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.48
7	0.24	Very Good	I	VVS1	62.3	57	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55	337	4.07	4.11	2.53
9	0.22	Fair	Ε	VS2	65.1	61	337	3.87	3.78	2.49
10	0.23	Very Good	Н	VS1	59.4	61	338	4.00	4.05	2.39

Working with data frames in R

```
head(diamonds[diamonds$cut == "Ideal", ], 3)
        cut color clarity depth table price x
   0.23 Ideal
                                  55 326 3.95 3.98 2.43
                      SI2
                          61.5
   0.23 Ideal
                      VS1 62.8
                                  56 340 3.93 3.90 2.46
14 0.31 Ideal
                      SI2 62.2 54 344 4.35 4.37 2.71
diamonds [diamonds $cut == "Ideal" & diamonds $clarity == "VS1", ][1:3,]
        cut color clarity depth table price x
                                                     Z
                                  56 340 3.93 3.90 2.46
12 0.23 Ideal
                      VS1 62.8
52
   0.23 Ideal G
                      VS1
                          61.9
                                 54 404 3.93 3.95 2.44
                                  57 552 4.54 4.59 2.78
61 0.35 Ideal T
                      VS1
                          60.9
```

CLEANING DATA IN R: tidyverse and related packages

tidyverse and friends

```
library(tidyverse)
- Attaching core tidyverse packages ----
                                                ----- tidyverse 2.0.0 --

√ dplyr 1.1.2 ✓ readr

                                2.1.4
\checkmark forcats 1.0.0 \checkmark stringr 1.5.0
√ ggplot2 3.4.3 √ tibble 3.2.1
✓ lubridate 1.9.2 ✓ tidyr 1.3.0
√ purrr 1.0.2
                                                    tidyverse_conflicts() —
- Conflicts -
X dplyr::filter() masks stats::filter()
X dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all
conflicts to become errors
```

Cleaning data in R: dplyr

Subsetting tables in R

```
tibble(), as tibble()
select(dataframe, variables)
relocate (dataframe, variables)
rename(dataframe, variables)
filter(dataframe, variable == value)
slice(dataframe, rows)
```

Modifying tables in R

```
mutate(dataframe, new_variable =
your_code)

transmute()

arrange(dataframe, variable_to_arrange)
group_by(dataframe, grouping_variable)

summarise(dataframe, summary_stat =
your_code)

Pipe operator (%>%)
```

ADS2, week 1, R refresher

- 1. Create a vector consisting of 5 numbers: 5, 6, 4, 5, 10.
- 2. Add "1" to all elements of the vector.
- 3. Extract the first element of the vector and add 3 to it.
- 4. Add the resultant number as the sixth element of the vector.
- 5. Take the square root from the resultant vector and assign it as a new vector.
- 6. Convert it to a matrix with 3 columns

Regular way of solving the task

```
vec < -c(5, 6, 4, 5, 10)
   vec <- vec + 1
   vec[6] < - vec[1] + 3
   vec
    [1] 6 7 5 6 11 9
   vec new <- sqrt(vec)</pre>
   vec new <- matrix(data = vec new, ncol</pre>
   = 3, byrow = T)
   vec new
            [,1] [,2] [,3]
    [1,] 2.44949 2.645751 2.236068
    [2,] 2.44949 3.316625 3.000000
```

ADS2, week 1, R refresher

- 1. Create a vector consisting of 5 \qquad vec <- c(5, 6, 4, 5, 10) numbers: 5, 6, 4, 5, 10.
- 2. Add "1" to all elements of the vector.
- 3. Extract the first element of the vector and add 3 to it.
- 4. Add the resultant number as the sixth element of the vector.
- 5. Take the square root from the resultant vector and assign it as a new vector.
- 6. Convert it into a matrix with 3 columns

Solving the task with chaining

```
head(casel_col_desc, 4)

Var_name Difference pooledSD Description Measure_unit p_value
1 splenocytes 5.63 5.05 splenocytes 10^6^ cells 0.117
2 CD8T_cells 0.59 0.97 CD8 T-cells % 0.381
3 CD4T_cells 0.10 3.06 CD4 T-cells % 0.958
4 B_cells 0.78 1.51 B-cells % 0.440

dim(casel_col_desc)
[1] 16 6
```

```
case1 differ <- case1 col desc %>%
 filter(p value < 0.05) %>%
 mutate(Cohen d = (Difference/pooledSD) %>%
          round(2)) %>%
  select(4,2,7) %>%
  arrange(desc(Cohen d)) %>%
 rename (`Absolute difference, % = Difference,
         `Variable` = Description)
head(case1 differ, 3)
                     Variable Absolute difference, % Cohen d
                                               10.21
                                                        9.20
1 memory phenotype CD8 T-cells
2
               IgM^+^ B-cells
                                                6.16 3.08
      follicular CD4 T-cells
                                                1.58
                                                        3.04
```

Reshaping data in R: tidyr

```
tuberculosisAlgria <- who2</pre>
                                                  gather(data = tuberculosisAlgria, key =
                                                  "Group", value = "Cases",
head(tuberculosisAlgria, 9) %>%
                                                  3:ncol(tuberculosisAlgria)) %>% head(9)
select(1:4)
                                                   country year
                                                                    Group Cases
  country year sp m 014 sp m 1524 Others
                                                  1 Algeria 2000 sp m 014
                                                                              59
1 Algeria 2000
                      59
                                927
                                                  2 Algeria 2001 sp m 014
                                                                              41
2 Algeria 2001
                      41
                              1345
                                       . . .
                                                  3 Algeria 2002 sp m 014
                                                                              39
3 Algeria 2002
                      39
                              1364
                                                  4 Algeria 2003 sp m 014
                                                                              40
4 Algeria 2003
                      40
                              1316
                                       . . .
                                                  5 Algeria 2004 sp m 014
                                                                              63
5 Algeria 2004
                      63
                              1326
                                       . . .
                                                  6 Algeria 2005 sp m 014
                                                                              53
6 Algeria 2005
                      53
                              1309
                                       . . .
                                                  7 Algeria 2006 sp m 014
                                                                              41
7 Algeria 2006
                      41
                              1173
                                       . . .
                                                  8 Algeria 2007 sp m 014
                                                                              95
8 Algeria 2007
                      95
                              1388
                                                  9 Algeria 2008 sp m 014
                                                                              99
9 Algeria 2008
                      99
                               1505
                                        . . .
```

Reshaping data in R: tidyr

Separate one column into several

```
separate(data = tub AlgeriaGather, col =
"Group", into = c("Form", "Gender", "Age"), sep = "_") %>% head(9)
  country year Form Gender Age Cases
1 Algeria 2000
                            m 014
                                       59
                   sp
2 Algeria 2001
                            m 014
                                       41
                   sp
3 Algeria 2002
                            m 014
                                       39
                   sp
                            m 014
4 Algeria 2003
                                       40
                   sp
5 Algeria 2004
                            m 014
                                       63
                   sp
                                       53
6 Algeria 2005
                            m 014
                   sp
                            m 014
7 Algeria 2006
                   sp
8 Algeria 2007
                            m 014
                                       95
                   sp
9 Algeria 2008
                                       99
                            m 014
                   sp
```

Spread the dataset

```
tub AlgeriaSample <- tub AlgeriaGather %>%
separate(col = "Group", into = c("Form",
"Gender", "Age"), sep = " ") %>%
  filter(Form == "sp", Age == "2534") %>%
  select(1, 2, 4, 6)
spread(tub AlgeriaSample, key = "year",
value = "Cases") %>% select(1:5)
  country Gender 2000 2001 2002 Other data
1 Algeria
                  f 1293 782
                                 730
2 Algeria
                  m 1516 1614 1580
```

Conclusions

By now, you should

- 1. Know the criteria of the **tidy** data.
- 2. Know how to clean data.
- 3. Be aware of different ways how to handle data in R.
- 4. Got introduced to the tidyverse package.

Further reading

- library(swirl) # An R package for self-learning Exploratory data analysis course
- Wickham H. Tidy data. J Stat Softw [Internet]. 2014;59(10). Available from: http://dx.doi.org/10.18637/jss.v059.i10
- Wickham H. Ggplot2: Elegant graphics for data analysis. 2nd ed. Cham, Switzerland: Springer International Publishing; 2016.
- library(data.table) # A useful R package for data cleaning

THANK YOU FOR ATTENTION