## Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

# Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2016/2017

## **I ELABORATO**

Si considerino il telaio multipiano "shear-type" ed il portale monopiano in C.A. in figura. Si ritengano le colonne assialmente inestensibili, con rigidezza flessionale indicata e prive di massa; gli impalcati infinitamente rigidi. Il portale può considerare la presenza di un isolatore sismico elastico lineare di rigidezza nota.



#### Dati:

- parametri allievo:  $\gamma = \gamma_a = 1 + 0.015$  (N C),  $\delta_a = 10 + 0.13$  (N C) (N = n. lettera iniziale nome, C = n. lettera iniziale cognome);
- momento d'inerzia:  $J = J_a = 0.0005 + 0.00001 (N C) \text{ m}^4$ ;
- altezza caratteristica delle colonne: h=3.5 m;

- modulo di elasticità: *E*=32000 MPa;
- massa degli impalcati: m=40000 kg;
- rigidezza isolatore:  $k_i = 2 \gamma EJ/h^3$ .

### Richieste:

- Si consideri inizialmente il solo **portale monopiano** ponendo  $k_i \rightarrow \infty$  ("isolatore inattivo", **sistema SDOF**):
  - 1. Determinare e rappresentare la risposta non forzata del sistema, considerando i valori  $\delta$ =0,  $\delta$ = $\delta_a$ ,  $\delta$  $\rightarrow$  $\infty$ , con condizioni iniziali  $u_0$ =2 cm,  $\dot{u}_0$ =20 cm/s, per i fattori di smorzamento  $\zeta$ =0%, 3.5%, 7%.
  - 2. Assumendo  $\delta = \delta_a$  e  $\zeta = 3.5\%$ , determinare e rappresentare la risposta con c.i. nulle  $u_0 = \dot{u}_0 = 0$  dovuta a forzante armonica  $F(t) = F\cos(\omega t)$  di ampiezza F = 15000 N e periodo T = 0.5 s. Verificare se spostamento e velocità massimi a regime risultano inferiori a 3 cm e 40 cm/s. Rappresentare il diagramma di Argand delle risposte z(t),  $\dot{z}(t)$ ,  $\ddot{z}(t)$  a forzante armonica  $F(t) = Fe^{i\omega t}$  e delle forze in gioco: forzante  $Fe^{i\omega t}$ , forza elastica  $F_e = kz$ , forza smorzante  $F_d = c\dot{z}$  ( $F_e = F_d$  positive se opposte a z = z), forza d'inerzia  $F_i = -m\ddot{z}$ . Indicare lo sfasamento tra risposta e forzante ed il modulo di tutte le forze sopra indicate.
- Si consideri quindi il **telaio multipiano** (**sistema MDOF**):
  - 1. Si determinino: a) matrici di massa e rigidezza M e K della struttura; b) modi principali di vibrare, fornendo autovettori  $\phi_i$ , pulsazioni proprie  $\omega_i$  e periodi propri  $T_i$  (utilizzare il metodo dell'iterazione vettoriale inversa e soluzioni alternative; rappresentare graficamente i modi principali di vibrare corrispondenti agli autovettori determinati); c) matrici degli autovettori e degli autovalori  $\Phi$  e  $\Omega$  (verificare le relazioni matriciali seguenti:  $K\Phi = M\Phi\Omega^2$ ,  $\mathcal{M} = \Phi^T M\Phi = diag[\mathcal{M}_i]$ ,  $\mathcal{K} = \Phi^T K\Phi = diag[\mathcal{K}_i]$ ,  $\Omega^2 = \mathcal{M}^{-1}\mathcal{K} = diag[\mathcal{K}_i/\mathcal{M}_i]$ ); d) trasformazioni diretta  $q = \Phi p$  ed inversa  $p = \Phi^{-1}q$  tra coordinate principali p e lagrangiane q.
- 2. Assumendo uno smorzamento strutturale "alla Rayleigh",  $C = \alpha M + \beta K$ , con i parametri  $\alpha$ ,  $\beta$  da calibrare in modo che i fattori di smorzamento per i due modi risultino pari a  $\zeta_1$ =5%,  $\zeta_2$ =2.5%, si valuti la risposta del sistema ad un'eccitazione sismica secondo lo spettro di risposta di accelerazione relativo al terremoto de L'Aquila del 06/04/2009, stazione AQV (dati scaricabili dalla pagina del corso o dal sito dell'Itaca). Considerare la componente orizzontale WE del sisma (periodo proprio in s,  $\zeta$ =5%). Per ottenere lo spettro di risposta associato a  $\zeta$  differenti si moltiplichino le ordinate per il fattore  $\eta = \sqrt{[0.10/(0.05 + \zeta)]}$ . In particolare, si determinino: a) fattori di partecipazione e masse modali efficaci; b) spostamenti massimi attesi degli impalcati (stima SRSS); c) forze equivalenti modali ed azioni interne ad esse corrispondenti (rappresentare i diagrammi N,T,M, N esclusa per le travi); d) valori massimi attesi delle azioni interne (SRSS) nelle sezioni caratteristiche del telaio; e) considerando anche la risposta sismica del portale ( $\delta$ = $\delta_a$ ,  $\zeta$ =3.5%) per  $k_i$  infinito ("isolatore inattivo"), determinare il valore minimo della distanza  $\Delta$  tra le due strutture tale da impedire il fenomeno del "martellamento" tra gli edifici.
- *Facoltativo*: Riconsiderare la risposta sismica del portale per  $k_i$  finito assegnato ("isolatore attivo"), confrontandola con quella del caso precedente. Determinare quindi la risposta sismica (spostamento, velocità ed accelerazione) del portale per  $k_i$  infinito e/o  $k_i$  finito all'accelerogramma sismico scaricabile dalle stesse fonti (time step:  $\Delta t = 0.005$  s), mediante integrazione diretta con metodo di Newmark e/o integrale di Duhamel. Confrontare gli esiti con quelli delle stime precedenti.