CS 6501 Natural Language Processing

Feed-forward Neural Networks

Yangfeng Ji

November 5, 2019

Department of Computer Science University of Virginia

Overview

- 1. Introduction
- 2. Feed-forward Neural Networks
- 3. Back Propagation

1

Introduction

Classification

Decision function

$$\Psi(x,y) = w_y^{\top} f(x,\theta) \tag{1}$$

- x: data point
- ▶ *y*: label
- \triangleright w_y : classification weights with respect to label y
- $ightharpoonup f(x, \theta)$: feature function
- \triangleright θ : parameter of feature function

Example: Feature engineering

How to construct $f(x; \theta)$?

Example sentence

I love drinking coffee

- Unigram: I, love, drinking, coffee
- ▶ Bigram: I love, love drinking, ...
- ▶ POS tags: ⟨ I, IN⟩, . . .
- ▶ Production rules: $S \rightarrow NP VP, ...$
- **.** . . .

Example: Feature engineering

How to construct $f(x; \theta)$?

Example sentence

I love drinking coffee

$$\begin{split} f(x;\theta) &= \mathbf{V}x \\ \Psi(x,y) &= w_y^\top f(x;\theta) = w_y^\top (\mathbf{V}x) \end{split}$$

Each column of W is a corresponding word embedding

An Alternative View

Vocab	I	love	drinking	hate	coffee	tea
x^{\top}	[1	1	1	0	1	o]
V	$[v_{ m I}$	$v_{ m love}$	$v_{ m drinking}$	v_{hate}	$v_{ m coffee}$	v_{tea}

An Alternative View

$$f(x, \theta) = v_{\rm I} + v_{\rm love} + v_{\rm drinking} + v_{\rm coffee}$$
 (2)

Linear Functions

Looking for a more powerful model then $f(x, \theta) = \mathbf{V}x$?

How about

$$f(x, \theta) = \mathbf{U}\mathbf{V}x$$

Linear Functions

Looking for a more powerful model then $f(x, \theta) = \mathbf{V}x$?

How about

$$f(x,\theta) = UVx$$
$$= \underbrace{(UV)}_{V'} x$$

Not really, maybe a little. Essentially, it is still a linear function with a single matrix decomposed as **UV**.

7

Nonlinearity

Add a nonlinear function *h*

$$f(x, \theta) = h(\mathbf{V}x)$$

$$\Psi(x, y) = w_y^{\top} h(\mathbf{V}x)$$

Now, it is a neural network!

8

Nonlinearity

Add a nonlinear function *h*

$$f(x, \theta) = h(\mathbf{V}x)$$

$$\Psi(x, y) = w_y^{\mathsf{T}} h(\mathbf{V}x)$$

Now, it is a neural network!

Example: Sigmoid function

$$h(t) = \frac{1}{1 - e^{-t}}$$

Feed-forward Neural Networks

A Simple Feed-forward Network

A fully-connected feed-forward neural network

$$\Psi(x,y) = w_y^{\mathsf{T}} h(\mathbf{V}x) \tag{3}$$

Another Feed-forward Network

$$\Psi(x,y) = \boldsymbol{w}_{y}^{\top} \cdot \underbrace{\boldsymbol{h}_{2}(\mathbf{U} \cdot \boldsymbol{h}_{1}(\mathbf{V} \cdot \boldsymbol{x}))}_{f(x,\theta)} \tag{4}$$

where h_1 and h_2 are nonlinear functions without parameters (hidden units).

Softmax Function

Normalize the score function to make a probability

$$P(y \mid x) = \sigma(\Psi(x, y))$$

$$= \frac{\exp(\Psi(x, y))}{\sum_{y'} \exp(\Psi(x, y'))}$$
(5)

Softmax Function

Normalize the score function to make a probability

$$P(y \mid x) = \sigma(\Psi(x, y))$$

$$= \frac{\exp(\Psi(x, y))}{\sum_{y'} \exp(\Psi(x, y'))}$$
(5)

► This neural network model is not probabilistic — it is a determinstic transformation from x to $\Psi(x, y)$

Softmax Function

Normalize the score function to make a probability

$$P(y \mid x) = \sigma(\Psi(x, y))$$

$$= \frac{\exp(\Psi(x, y))}{\sum_{y'} \exp(\Psi(x, y'))}$$
(5)

- ► This neural network model is not probabilistic it is a determinstic transformation from x to $\Psi(x, y)$
- Main advantage of the normalization term is on training

Binary classification on a single data point x with $y \in \{0, 1\}$

$$\ell = -y \log P(y = 1 \mid x) - (1 - y) \log(1 - P(y = 1 \mid x)) \tag{6}$$

Binary classification on a single data point x with $y \in \{0, 1\}$

$$\ell = -y \log P(y = 1 \mid x) - (1 - y) \log(1 - P(y = 1 \mid x)) \tag{6}$$

• if y = 1:

$$\ell = -\log P(y = 1 \mid x)$$

if y = 0:

$$\ell = -\log(1 - P(y = 1 \mid x)) = -\log P(y = 0 \mid x)$$

K-class: convert label to *K*-dimensional one-hot vector with $y_k = 1$, if k is the label

$$\ell = -\sum_{k=1}^{K} y_k \log P(y_k = 1 \mid x)$$

$$= -\log P(y_k = 1 \mid x)$$
(7)

K-class: convert label to *K*-dimensional one-hot vector with $y_k = 1$, if k is the label

$$\ell = -\sum_{k=1}^{K} y_k \log P(y_k = 1 \mid x)$$

$$= -\log P(y_k = 1 \mid x)$$
(7)

Essentially, it is the same as negative log-likelihood (NLL) in logistic regression.

Back Propagation

Online Learning

- ► Let $\theta = \{W, U, V\}$
- ► Training NNs with one example at a time

$$\ell(\boldsymbol{\theta}) = -\log P(y_k = 1 \mid x) \tag{8}$$

Gradient based Learning

Stochastic gradient descent

$$\theta \leftarrow \theta - \eta \cdot \frac{\partial \ell(\theta)}{\partial \theta} \tag{9}$$

For any subset of θ , e.g., w_k

$$w_k \leftarrow w_k - \eta \cdot \frac{\partial \ell(\theta)}{\partial w_k} \tag{10}$$

Gradient based Learning (cont.)

Recall the definition of $P(y \mid x)$

$$\log P(y_k \mid x) = w_k^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$

$$-\log \sum_{k'} \exp(w_{k'}^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$
(11)

Gradient based Learning (cont.)

Recall the definition of $P(y \mid x)$

$$\log P(y_k \mid x) = w_k^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$
$$-\log \sum_{k'} \exp(w_{k'}^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$
(11)

Gradient wrt w_k

$$\frac{\partial \ell}{\partial w_k} = -\frac{\partial}{\partial w_k} \log P(y \mid x)$$

$$= -h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$

$$+ P(y_k \mid x) \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$
(12)

One More Example

Given

$$\ell = -\log P(y \mid x)$$

= -\log \sigma(\mathbf{W} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))

with the chain rule, we have

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}}$$

Back Propagation

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}}$$
(13)

Problems of Gradients

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}} \tag{14}$$

Vanishing gradients, if $\|\frac{\partial \cdot}{\partial \cdot}\| \ll 1$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| \to 0 \tag{15}$$

Solution: initialize the parameters carefully

Problems of Gradients (cont.)

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}} \tag{16}$$

Exploding gradients, if $\|\frac{\partial \cdot}{\partial \cdot}\| > M > 1$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| > M^4 \tag{17}$$

Problems of Gradients (cont.)

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}} \tag{16}$$

Exploding gradients, if $\|\frac{\partial \cdot}{\partial \cdot}\| > M > 1$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| > M^4 \tag{17}$$

Solution: norm clipping [Pascanu et al., 2013]

$$\tilde{g} \leftarrow \lambda \cdot \frac{g}{\|g\|} \tag{18}$$

where $g = \frac{\partial \ell}{\partial \mathbf{V}}$ and $1 < \lambda \le 5$.

Summary

1. Introduction

2. Feed-forward Neural Networks

3. Back Propagation

Reference

Hinton, G. E. (2012).

A practical guide to training restricted boltzmann machines. In *Neural networks: Tricks of the trade*, pages 599–619. Springer.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop.

In Neural networks: Tricks of the trade, pages 9-48. Springer.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.

In International Conference on Machine Learning, pages 1310–1318.