REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale et de la Reforme du Système Educatif Direction des Examens et des Concours

Baccalauréa

Sciences physiques session normale 2022

Honneur Fraternité Justice Série: Sciences de la nature

Durée: 4H Coefficient: 7

Exercice (5pts)

En présence d'ions H_3O^+ ; on mélange dans un ballon la quantité n_0 =0,5mol d'acide propanoïque

CH₃-CH₂-COOH avec la même quantité n₀ =0,5mol de propan-2-ol CH₃-CH(OH)-CH₃; puis on chauffe le mélange réactionnel pendant une certaine durée.

1. Quel est le nom de la réaction qui se produite entre l'acide propanoïque et le propan-2-ol?

Citer deux caractéristiques de cette réaction.

0.75pt

2. Ecrire à l'aide des formules semi-développées, l'équation bilan de la réaction et donner le nom du produit organique E obtenu.

3. La figure donne la représentation graphique de la quantité $n_{\scriptscriptstyle E}$ d'ester formé en fonction du temps 3.1. Indiquer la composition du mélange réactionnel à l'état d'équilibre et calculer la constante d'équilibre K. 1,25pt

3.2. Calculer le rendement de cette réaction. Conclure.

0,5pt

3.3. Donner le nom et la formule semi-développée d'un autre composé organique dont la réaction totale avec le propan-2-ol donne le même composé E?

0,5pt

3.4. Calculer la vitesse de la réaction à l'instant t=3,5h.

0,5pt

3.5. Quel est le rôle des ions H₃O⁺ dans cette réaction? Quels noms donne-t-on aux composés qui jouent le même rôle?

Exercice2 (4pts)

L'ammoniac NH₃ est un gaz soluble dans l'eau qui donne une solution basique.

Les solutions commerciales d'ammoniac très concentrées sont utilisées dans les produits de nettoyage après dilution.

Cet exercice vise à étudier certaines caractéristiques de l'ammoniac et de l'hydroxylamine NH₂OH dissouts dans l'eau et déterminer la concentration de l'ammoniac dans un produit commercial à l'aide de son dosage par une solution d'acide chlorhydrique de concentration connue.

Données :peau=1000g/L, H:1g/mol; C/:35,5g/mol.

1. Préparation de la solution d'acide chlorhydrique.

On prépare une solution S_A d'acide chlorhydrique de concentration C_A=0,015mol/L en diluant une solution commerciale de cet acide de concentration C_0 de densité d=1,15 et de pourcentage massique 37%. Montrer que C₀=11,66mol/L environ. 0,5pt

2. Etude de quelques propriétés d'une base dissoute dans l'eau.

2.1. On considère une solution de base B faible de concentration C; On représente le taux d'avancement par τ et la constante d'acidité du couple BH/B par K_A. en utilisant le tableau d'avancement, montrer que

$$\tau = \frac{[OH^{-}]}{C}$$
, et que $K_A = \frac{Ke(1-\tau)}{C.\tau^2}$

2.2. On mesure le pH₁ d'une solution S₁ d'ammoniac NH₃ et le pH₂ d'une solution S₂ d'hydroxylamine NH₂OH de mêmes concentrations C=10⁻² mol/L et on trouve pH₁=10,6 et pH₂=9. Calculer les valeurs τ_1 et τ₂ du taux d'avancement respectivement de la dissolution de NH₃ et de NH₂OH dans l'eau. 0,5pt

2.3. Calculer les valeurs des constantes pK_{A1} et pK_{A2} des couples NH⁺₄/NH₃ et NH₃OH⁺/ NH₂OH On donne Ke=10⁻¹⁴

1pt

3. Dosage de la solution diluée d'ammoniac :

A partir d'une solution commerciale S_B d'ammoniac de concentration C_B, on prépare par dilution une solution S de concentration C'=CB/1000.

Pour déterminer la concentration CB, on réalise un dosage pH-métrique d'un volume V=20mLde la solution S par la solution SA d'acide chlorhydrique de concentration CA=0,015mol/L.

3.1. Ecrire l'équation de la réaction du dosage.

0,5pt

3.2. Sachant que le volume versé à l'équivalence est VAE=14,2mL, calculer la valeur de C' pûis CB. 0,5pt 1/2

Série Sciences de la nature

Baccalauréat de Sciences Physiques

Session Normale 2022

Exercice3 (6pts)

On dispose d'un ressort à spires non jointives, de masse négligeable et de raideur K. A l'une des extrémités du ressort, on accroche un solide S cylindrique creux de masse m et on fixe l'autre extrémité. L'ensemble (ressort-solide) peut glisser sans frottement sur une tige horizontale.

On étudie le mouvement du centre d'inertie G du solide S dans le repère $(0;\bar{i})$; O étant la position de G à l'équilibre. A l'instant t_0 choisi comme origine des temps, l'abscisse de G est x_0 et sa vitesse V_0 . On donne: m=0,2kg, K=5N/m, x_0 =3cm et V_0 =- π /10 m/s. On prendra π ²=10.

1. Calculer l'énergie mécanique de l'oscillateur à l'instant t₀.

On considèrera que l'énergie potentielle de pesanteur du solide est nulle sur l'axe Ox.

101

- 2. Etablir l'équation différentielle du mouvement de G. En déduire l'équation horaire de ce mouvement en considérant les conditions initiales précisées plus haut.
- 3. En appliquant le principe de la conservation de l'énergie mécanique ; déterminer :
- 3.1. Les vitesses de G au passage par la position d'équilibre.

0,75pt

3.2. Les positions de G pour les quelles la vitesse s'annule.

0,75pt

4. Le ressort est maintenant suspendu verticalement. Son extrémité supérieure est fixée en A. L'autre extrémité est fixée à une fourche ayant 2 pointes qui trempent légèrement en O1 et O₂ à la surface d'une eau de faible profondeur comme le montre la figure 2. La fourche, imprime $\mbox{aux points } O_1 \mbox{ et } O_2 \mbox{ un mouvement rectiligne sinuso\"idal } \mbox{ } d'amplitude$ a=3cm d'équation : $y_{01} = y_{02} = a\cos(100\pi t + \pi)$

4.1. Etablir l'équation horaire du mouvement d'un point M de la surface de l'eau situé à la distance d_1 de O_1 et à la distance d_2 de O_2 .

Faire l'application numérique pour d₁= 2cm, d₂= 14cm et une célérité des ondes C=2m/s

1,5pt

0,5pt

4.2. Déterminer le nombre de franges d'amplitude maximale entre O_1 et O_2 si la distance $O_1O_2=12$ cm? Ipi

Exercice4 (5pts)

Des ions chargés positivement de masse m sont émis sans vitesse au trou F₁ par une source S. On applique dans l'espace situé entre deux plaques P₁ et P₂ parallèles distante de d, une tension constante $U=V_{P1}-V_{P2}$ telle que $|U|=10^3V$. (Voir la figure ci-contre).

1. Déterminer le signe de la tension U pour que les ions atteignent la plaque P2 avec une vitesse V.

2. Trouver l'expression de la vitesse V au point F2 en fonction de m, q et U. 0,75pt

3. La source S émet deux sortes d'ions 200 Hg²⁺ et 202 Hg²⁺.

Calculer les vitesses d'arrivée de ces deux ions au point F2.

On donne : $e=1,6.10^{-19}$ C ; mas se du nucléon $m_N = m_p = 1,67.10^{-27}$ kg.

4. Après la traversée du trou F2 les ions pénètrent dans l'espace délimité par les plaques P_2 et P_3 où règnent un champ électrique \vec{E}_1 et un champ magnétique \vec{B}_1

Montrer que seuls les ions dont la vitesse vérifie la relation V=E₁/B₁ atteignent le trou F₃.

Est-ce que les valeurs des vitesses calculées à la question 3 vérifient cette relation? On prendra E₁=6.10⁴ V/m et B₁=1 T.

5. La source S émet à présent des ions X₁, X₂ et X₃ de masses respectives m₁, m₂ et m₃ et de même charge q telle que |q|=e.

Ces ions arrivent au trou F₃ avec la vitesse V=E₁/B₁ et sont déviés après F₃ comme l'indique la figure par un autre champ magnétique B de même valeur que B, .

5.1. Sachant que B fait dévier des ions Ca²⁺ comme l'indique la figure, déterminer le sens de B et en déduire le signe de la charge de chacun des ions X₁, X₂ et X₃. 0,5pt

5.2. Calculer les masses m₁, m₂ et m₃ sachant que les rayons des trajectoires circulaires sont r₁ =2,2cm, r₂=1,44cm et r3=1,2cm.

5.3. Identifier les ions X₁, X₂ et X₃ en utilisant le tableau.