МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет естественных наук	
Кафедра органической химии	
Направление подготовки Химия (020100.62)	
ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА	А БАКАЛАВРА
Ищенко Роман Александрович	
(Фамилия, Имя, Отчество автора)	
Тема работы: Синтез донорно-акцепторных красителей с изолир полифторзамещенных триарилпиразолинов	рующими блоками на основе
«К защите допущена»	Научный руководитель
Заведующий кафедрой,	к.х.н.,
д.х.н., проф.	с.н.с. ЛОСМ НИОХ СО РАН
/	/
(Резников , В., А.) / (подпись)	(Орлова , Н., А.) / (подпись)
«»20г.	«»20г.

Содержание

Cı	іисок	с сокращений	
1	Вве	цение	
2	Син	тез и свойства пиразолинов (Обзор литературы) 6	
	2.1	Подходы к синтезу 2-пиразолинов	
	2.2	Синтез других изомеров пиразолина	
	2.3	Реакции пиразолинов	
3	Резу	льтаты и обсуждение	
	3.1	Взаимодействие декафтортриарилпиразолина 1 с бинуклеофилами	
	3.2	Методика введения разделительного блока	
	3.3	Синтез красителей	
4	Экс	периментальная часть	
5	Вын	оды	
Cı	іисок	литературы	
Пı	холис	кение А ЯМР спектры некоторых соединений	

Список сокращений

Вп Бензил Вz Бензоил

рір 4-Гидроксипиперидин

DIAD Диизопропилазодикарбоксилат

DMAР 4-Диметиламинопиридин

ДМФА (DMF) N,N-Диметилформамид

DCC 1,3-Дициклогексилкарбодиимид

д Дублет

дд Дублет дублетов

isoph Изофорон

КССВ Константа спин-спинового взаимодействия

м Мультиплет

НСМО Низшая Свободная Молекулярная Орбиталь

руг Пиразолин

с Синглет

ТСХ Тонкослойная хроматография

Су Циклогексил

ЭСП Электронный Спектр Поглощения

in situ В реакционной смеси

IDATBS Isodurilic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-

тио}метил)-2,4,6-триметилбензоил)

TAFS Toluic Acid Fluorinated Sulfide (бис[4-метил-3,5-бис({[2,3,5,6-тет-

рафтор-4-(трифторметил)фенил]тио}метил)бензоил)

TATBS Toluic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-

тио } метил) 4-метилбензоил)

1 Введение

Увеличивающиеся объемы передаваемой информации ставят задачу создания новых методов ее обработки, в том числе оптических. Большую перспективу имеют электрооптические (ЭО) модуляторы — устройства сопрягающие оптические и электрические линии передачи сигналов. Рабочей средой в таких устройствах является органический донорноакцепторный хромофор, проявляющий нелинейность второго порядка, заключенный в полимерную матрицу.

Отличительным свойством органических нелинейно-оптических (НЛО) материалов является возможность получения хромофоров, поглощающих в заданной области спектра. В настоящее время актуальны разработки материалов, работающих в широкой спектральной области — от 500 нм до 1550 нм.

Органические НЛО материалы обладают важным преимуществом относительно неорганических — на порядок более высокими значениями НЛО восприимчивости второго порядка и, соответственно, меньшими величинами управляющих напряжений, и относительно полупроводниковых — высокой температурной стабильностью спектральных ЭО свойств. Также они отличаются сверхбыстрым откликом, возможностью изменять их свойства в широких пределах и формировать из них планарные микроструктуры.

В контексте НЛО свойств также важны взаимодействия между хромофором и полимерной матрицей, так как эффективность, температурная и временная стабильность ЭО модулятора зависит, в том числе, от эффективности ориентации молекул хромофора в полимерной матрице. С этой целью в структуру хромофоров вводятся разветвленные (дендроидные) заместители, препятствующие агрегации молекул хромофора в полимере при больших концентрациях.

Для поиска новых НЛО сред, исследования взаимодействий хромофора с матрицей необходимы хромофоры с максимум поглощения около 532 нм (излучение Nd:YAG лазера).

Синтез хромофоров для ЭО модуляторов является одним из основных направлений научной тематики в Лаборатории органических светочувствительных материалов НИОХ СО РАН. В качестве таких хромофоров используются полиметиновые красители биполярной структуры с различной длиной полиметиновой цепи. Ранее в лаборатории был синтезирован ряд новых хромофоров для спектральной области 720 – 760 и 500 – 550 нм с использованием полифторированных триарилпиразолинов в качестве донорных блоков [1, 2].

Цель и задачи работы. Исходя из описанного была сформулирована цель данной работы — синтез новых нелинейных хромофоров на основе полифторированных триарилпиразолинов. Были поставлены следующие задачи:

- 1. Разработать подход к синтезу нелинейных хромофоров с разветвленными заместителями на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами.
- 2. Оптимизировать методику введения в молекулу хромофора разветвленных заместителей.
- 3. Наработать нелинейные хромофоры на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами, в количествах, достаточных для дальнейших исследований.

Вклад автора. Дипломная работа полностью выполнена автором. Подбор и анализ литературы по теме «Синтез и свойства пиразолинов», написание обзора сделаны автором полностью самостоятельно. Планирование и проведение эксперимента, обсуждение и анализ полученных результатов требовали минимального участия руководителя. Экспериментальная часть выполнена полностью автором. Всего в работе получено, выделено и охарактеризовано 11 новых соединений.

Благодарности. Автор выражает искреннюю благодарность научному руководителю к.х.н. Наталье Алексеевне Орловой.

Регистрация спектров (ЯМР, ЭСП, МС) осуществлена сотрудниками Исследовательском химическом центре коллективного пользования СО РАН; масс-спектры высокого разрешения соединений с молекулярной массой более 1000 Да зарегистрированы сотрудником Центра масс-спектрометрического анализа ИХБСФМ СО РАН к.х.н. Александром Анатольевичем Черноносовым; изолирующие блоки, использованные в работе, были предоставлены сотрудниками НИОХ СО РАН к.х.н. Александром Михайловичем Максимовым, к.х.н. Викторией Николаевой Бережной и Никитой Дмитриевичем Рязановым; один из красителей для модификации изолирующими блоками был предоставлен сотрудником ЛОСМ НИОХ СО РАН Ириной Юрьевной Каргаполовой, за что автор выражает им благодарность.

2 Синтез и свойства пиразолинов (Обзор литературы)

Сопряжённые донорно-акцепторные хромофоры представляют большой интерес изза их электрооптических свойств: система сопряженных двойных связей позволяет образовать низколежащую НСМО и реализовать внутримолекулярный перенос заряда. Они применяются в таких областях, как органическая электроника, электрооптика, фотовольтаика [3].

Общая структура донорно-акцепторного хромофора представлена на Рис. 2.1 и включает в себя донорный блок (**D**), π -сопряженный мостик (π) и акцепторный блок (**A**).

Рис. 2.1: Общая структура донорно-акцепторных хромофоров

Внутримолекулярный перенос заряда хорошо заметен при сравнении спектров поглощения анилина, нитробензола, *пара-* и *мета-*нитроанилина. В спектре *пара-*нитроанилина присутствует интенсивная полоса переноса заряда из-за сопряжения, присутствующего в молекуле, и возможности образования цвиттерионной резонансной структуры. В спектре *мета-*нитроанилина соответствующая полоса имеет гораздо меньшую интенсивность из-за отсутствия сопряжения между нитрогруппой и аминогруппой [3].

Рис. 2.2: Сравнение спектров поглощения анилина, нитробензола, *пара-* и *мета-*нитроанилина [3]

Формилированные арилзамещенные пиразолины можно рассматривать как гетероциклические аналоги N,N-диалкилбензальдегидов, которые широко применяются в качестве донорных блоков для донорно-акцепторных красителей. Красители на основе полифторированных арилзамещенных пиразолинов обладают более высокой термической стабильностью, а наличие атомов фторов позволяет функционализировать их далее с помощью ароматического нуклеофильного замещения атомов фтора [1].

В связи с изложенным, будет полезно рассмотреть пути синтеза пиразолинов (в частности 2-пиразолинов, как наиболее известных) и их производных.

2.1 Подходы к синтезу 2-пиразолинов

2-Пиразолины (Рис. 2.3) были впервые синтезированы в 19 веке Фишером и Кнёвенагелем реакцией α,β-ненасыщенных альдегидов и кетонов с фенилгидразином при кипячении в уксусной кислоте.

Рис. 2.3: Структура и нумерация атомов 2-пиразолина

Химия пиразолинов получила развитие в середине XX века в связи с применением арилпиразолинов в качестве оптических отбеливателей и органических сцинтиляторов. Благодаря их люминесцентным свойствам в настоящее они используются для создания органических светодиодов (OLED) [4-6].

Производные пиразолина проявляют биологическую активность, поэтому их синтез представляет большой интерес [7–9]. Пиразолины проявляют противомикробную [10], противодиабетическую [11], противоэпилептическую [12], антиоксидантную [13], противовоспалительную [14] активность.

2.1.1 Синтез из халконов и гидразинов

Основным способом синтеза 2-пиразолинов является реакция конденсации халконов с гидразинами (Схема 2.1). Этот подход является достаточно общим, как было показано в работе [15], где таким способом была получена библиотека из 7680 1,3,5-триарилпиразолинов с различными заместителями во всех трех ароматических ядрах.

Халконы представляют собой соединения с двумя электрофильными центрами — карбонильной группой и сопряженной связью C=C. Однако в реакциях халконов с гидразинами

Схема 2.1

наблюдается высокая региоселективность (в отличие от, например, 1,3-дикетонов), в реакцию с атомом азота первой вовлекается карбонильная группа. Такое поведение обычно объясняют повышенной нуклеофильностью первичного атома азота в замещенных гидразинах по сравнению с вторичным.

Механизм образования пиразолинов (Схема 2.2) включает в себя образование гидразона и атаку вторичного атома азота на сопряженную двойную связь, замыкающую цикл. Стадия замыкания цикла является лимитирующей и ее скорость значительно зависит от пространственного и электронного строения гидразона, а также от кислотности среды.

Схема 2.2

В случае фенилгидразина лимитирующей стадией является дегидратация, а стадия циклизации является быстрой и самопроизвольной. На ход реакции в наибольшей мере влияет заместитель при карбонильной группе (R_1) и его влияние мало зависит от кислотности среды. Было показано, что реакция фенилгидразина с диарилиденацетонами происходит по фрагменту, содержащему донорную группу [16].

Обычно сначала получают халкон конденсацией Кляйзена-Шмидта в основных условиях и вводят его в реакцию с арилгидразином в кислых условиях. Однако описаны как конденсация в кислых условиях [17, 18], так и циклизация в основных [19–23].

Существует *one-pot* модификация этого метода (Схема 2.3), в этом варианте халкон не выделяется в индивидуальном виде, а сразу же реагирует с фенилгидразином, присутствующим в реакционной смеси. При этом реакция проводится целиком в основной среде [24].

$$R_1 = H, 4-Me, 4-Cl, 4-OMe$$
 $R_2 = H, 4-Br, 4-Cl, 4-OMe, 4-NO_2$

Схема 2.3

В недавнее время были предприняты попытки проводить реакцию в более экологичных условиях, используя в качестве циклизующего агента вольфрамсерную кислоту [25] и целлюлозосульфоновую кислоту [26]. Также в качестве экологически чистых методов исследовались синтез в водных растворах [27], механохимический синтез [28], микроволновый синтез [29] и ультразвуковой синтез [30].

Получение полифторированных триарилпиразолинов несет в себе больше сложностей: в случае разных заместителей в молекуле халкона часто не удается подобрать условия реакции таким образом, чтобы получать селективно один региоизомер — образуется смесь продуктов с разными заместителями в положениях 3 и 5.

Авторами [31] было обнаружено, что халконы с акцепторным заместителем при двойной связи при кипячении с фенилгидразином образуют один региоизомер пиразолина (Схема 2.4), а халконы с акцепторным заместителем при карбонильной группе — два региоизомера в сравнимых количествах (Схема 2.5).

Схема 2.4

Это можно объяснить большим различием σ^* -констант заместителей при двойной связи (C_6F_5CO и Ph), из-за чего усиливается электрофильный характер β -атома углерода, что дает возможность нуклеофильной атаки фенилгидразина как по карбонильной группе, так и по двойной связи.

Схема 2.5

2.1.2 Синтез из аналогов халконов

Сопряженные енины можно считать аналогами халконов, поскольку при гидратации тройной связи образуется соответствующий кетон. В работе [32] была исследована реакция циклизации арилгидразинов с 1,3-енинами при катализе различными металлсодержащими реагентами (Схема 2.6). Было показано, что при микроволновом облучении смеси сопряженных енинов с арилгидразинами в присутствии Zn(OTf)₂ наблюдается наилучший выход соответствующих пиразолинов. В ходе реакции происходит двойное гидроаминирование сначала тройной, а потом двойной связи.

$$R_1$$
 R_2 R_2 R_1 R_2 R_3 R_4 R_5 R_6 R_1 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_9 R_9 R_1 R_9 R_9

Схема 2.6

Некоторые пропаргиловые спирты способны вступать в перегруппировку с образованием халконов. Эта реакция в кислых условиях известна под названием перегруппировки Мейера-Шустера; перегруппировка в основных условиях не имеет индивидуального названия. Так, в работе [33] была разработана и оптимизирована методика синтеза пиразолинов из пропаргиловых спиртов и арилгидразинов в присутствии tBuOK (Схема 2.7).

При исследовании реакции сочетания Соногаширы вторичных пропаргиловых спиртов с арилгалогенидами было обнаружено, что при наличии акцепторных заместителей в арилгалогениде такая же перегруппировка может происходить даже под действием триэтиламина, который присутствует в реакционной смеси (Схема 2.8) [34].

OH
$$R_1 = H, 4-F, 4-Me, 2-Br, 2-OH$$
 $R_2 = H, 4-OMe,$ $R_3 = H, 4-OMe,$ $R_3 = H, 4-OMe,$ $R_3 = H, 4-OMe,$ $R_4 = H, 4-OMe,$ $R_5 = H, 4-OMe,$ $R_7 = H, 4-OMe,$

Схема 2.7

Схема 2.8

2.1.3 Синтез с помощью цвиттерионов Хьюсгена

R₃ = H, 4-Me, 3-Cl, 4-Cl, 4-OMe

Взаимодействие азадикарбоксилатов с трифенилфосфином (Схема 2.9) дает соединения, получившие название цвиттерионов Хьюсгена. Они являются основным интермедиатом в реакции Мицунобу и также способны реагировать с карбонильными соединениями [35].

Схема 2.9

Обычно взаимодействие халконов с цвиттерионом Хьюсгена дает 3-пиразолины, однако при наличии двух карбонильных групп, сопряженных с двойной связью (как в случае с производныи 1,3-индандиона), приводит к 2-пиразолину (Схема 2.10) [36].

R = Et, iPr, Bn **R**' = 2-нафтил, Ph, 4-CN-Ph, 4-NO₂-Ph, 4-Cl-Ph, 4-OCF₃-Ph, 4-Me-Ph, 4-OEt-Ph, 3-Me-Ph, 3-Cl-Ph, 2-Me-Ph, 2-Cl-Ph, 2-F-Ph, 3,4-Cl-Ph, 1-нафтил, 4-пиридил, *E*-стирил, Cy

Схема 2.10

Реакцией цвиттерионов Хьюсгена с сопряженными эфирами, дополнительно замещенными акцепторными группами по двойной связи, могут быть получены 2-пиразолины, замещенные по атомам азота (Схема 2.11) [37].

$$RO_2C$$
 N CO_2R + X CO_2R , PPh_3 N $R = Me, Et $X = CF_3$, CN , CO_2tBu , $PO(OMe)_2$ $R' = Me, Et$, $tBu$$

Схема 2.11

Взаимодействие азиридинов с этими цвиттерионами дает аминозамещенные 2-пиразолины (Схема 2.12) [38].

$$RO_2C$$
 N CO_2R + HN R_2 RO_2C R_1 NH RO_2C R_1 NH RO_2C R_1 NH RO_2C R_2 R_3 R_4 R_5 R_5

Схема 2.12

Образование того или иного региоизомера пиразолина обусловлено начальной атакой цвиттериона. При атаке атома азота на карбонильную группу образуется 3-пиразолин. Если двойная связь имеет несколько акцепторных заместителей, это повышает ее электрофильность и направляет атаку азота на двойную связь, что дает 2-пиразолин (Схема 2.13).

Схема 2.13

2.1.4 Синтез [3 + 2] циклоприсоединением

Другой способ синтеза пиразолинов использует [3 + 2] циклоприсоединение илидов азометиновых иминов к алкинам. Циклоприсоединение 1,3-диполей к диполярофилам является удобным способом получения пятичленных циклов. Наиболее известным примером таких реакций является присоединение азидов к алкинам. Считается, что [3 + 2] циклоприсоединение идет по согласованному механизму. Использование комплексов металлов с хиральными лигандами в качестве катализаторов позволяет селективно получать энантиомерно чистые пиразолины. Циклоприсоединение илидов азометиновых иминов к алкенам дает полностью насыщенные аналоги пиразолинов — пиразолидины [39].

Схема 2.14

Азометиновые илиды можно представить в виде четырех резонансных структур (Рис. 2.4) — двух иминиевых (I и II) и двух диазониевых (III и IV). Чаще всего их

изображают с зарядами, локализованными на атомах азота, такое распределение зарядов соотносится с квантовомеханическими расчетами [39].

Рис. 2.4: Резонансные структуры илидов азометиновых иминов

Синтез пиразолинов, исходя из ациклических илидов азометиновых иминов, получаемых $in\ situ$, был подробно изучен в работе [40] (Схема 2.15). В этой работе было синтезировано более 18 пиразолинов и проведена оптимизация условий реакции: было изучено влияние различных солей Cu(I) и заместителей лигандов и субстратов. Было обнаружено, что наилучший выход целевого продукта и энантиоселективность достигается при исполььзовании ацетата меди (I) и диметилфенилсилильного заместителя в бинафтольном катализаторе.

Схема 2.15

В [21] библиотека 2-пиразолинов с различными заместителями в положениях 3 и 4 была получена с помощью [3 + 2] циклоприсоединения нитрилиминов, получаемых *in situ* из гидразидов галогенангидридов кислот, к сопряженным оксазолидинонам под действием основания (Схема 2.16). При использовании хирального катализатора реакция является энантиоселективной. Среди изученных условий реакции наилучшим подходом оказалось охлаждение до -78 °C и использование Mg(NTf₂)₂ в качестве кислоты Льюиса.

$$Ar_{1}$$
 Ar_{2} Ar_{2} Ar_{2} Ar_{2} Ar_{2} Ar_{3} Ar_{4} Ar_{5} Ar_{1} Ar_{1} Ar_{1} Ar_{2} Ar_{2} Ar_{3} Ar_{4} Ar_{5} Ar_{5} Ar_{5} Ar_{5} Ar_{7} Ar_{1} Ar_{1} Ar_{2} Ar_{3} Ar_{4} Ar_{5} A

Схема 2.16

2.1.5 Синтез с образовнием связи N-N

Все рассмотренные выше способы синтеза пиразолинов основаны на использовании соединений, изначально содержащих в своей структуре связь между атомами азота. Способы синтеза гетероциклов, основанные на образовании связи N–N, малоизвестны [41].

Так, в статье [42] авторы исходят из предположения, что DCC, как эффективный водоотнимающий агент, успешно используемый для получения лактонов и лактамов, сможет способствовать образованию связи N–N в β-аминооксимах. Упомянутые β-аминооксимы легко получаются из кетонов с помощью реакции Манниха, а затем образования оксима. Таким образом удалось получить пиразолин, сконденсированный с циклогексаном, из производного циклогексанона (Схема 2.17). Такой же результат наблюдается при взаимодействии с PCl₅.

При этом геометрическое строение оксима играет большую роль в реакции; изза механизма реакции циклизация возможна только при расположении ОН-группы в (E)-положении к аминогруппе. Также метод неприменим к оксимам альдегидов, поскольку они подвергаются дегидратации с образованием нитрилов.

Схема 2.17

В [43] используется схожий подход на основе эфиров оксимов с использованием солей меди в качестве катализатора (Схема 2.18), которые давно используются в синтезе гетероциклов. В этом подходе эфир оксима используется в качестве предшественника енамина,

который вступает в реакцию с N-сульфаниламидом. Реакция малочувствительна к электронным свойства заместителя как эфира оксима, так и сульфаниламида.

$$R_1$$
 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_9 R_9

 $\mathbf{R_1}$ = Ph, 3-Me-Ph, 4-Cl-Ph, 3-OMe-Ph, 4-OMe-Ph, 2-фурил, 2-тиенил $\mathbf{R_2}$ = Ph, 4-Me-Ph, 4-OMe-Ph, 4-Cl-Ph, 4-NO $_2$ -Ph, 4-CN-Ph, 4-CO $_2$ Me-Ph, 1-нафтил

Схема 2.18

Принциально иной способ образования связи N-N был обнаружен авторами [44] при попытке получить спироциклический алкалоид аматаспирамид с помощью реакции Нефа в восстановительных условиях с низковалентным титаном в качестве модификации методики, описанной в [45]. Но вместо целевого продукта неожиданно был получен бициклический пиразолин (Схема 2.19).

Схема 2.19

Этот подход авторы [44] использовали для получения алкалоида ньюбулдина (newbouldine) (Схема 2.20).

Схема 2.20

Механиз реакции (Схема 2.21) включает в себя восстановление нитрогруппы до нитрозогруппы с помощью Ti(III) и последующее присоединение вторичного атома азота по связи N=O, активированной донорно-акцепторным взаимодействием титана и атома кислорода. Элиминирование $TiCl_2(OH)_2$ завершает образование пиразолина.

Схема 2.21

Таким образом, можно заключить, что 2-пиразолины являются наиболее распространенными региоизомерами пиразолинов. Методы их синтеза включают в себя различные реакции кондесации, реакции циклоприсоединения и реакции с образованием связи N-N.

2.2 Синтез других изомеров пиразолина

2.2.1 Синтез 1-пиразолинов

В работах [46–49] описан синтез 1-пиразолинов из соединений, содержащих двойную связь, и производных диазометана. Обычно 1-пиразолины нестабильны и склонны к перегруппировке в соответствующие 2-пиразолины (Схема 2.22 [47], Схема 2.23 [48]).

$$R = H, Me, Ph$$
 $R' = Me, Et, tBu, ментил$
 $R' = Me, Et, tBu, Meнтил$
 $R' = Me, Et, tBu, Mentun$
 R'

Тетразамещенные 1-пиразолины, полученные в работе [49] из защищенных аддуктов Бейлиса-Хиллмана и ацилдиазометанов, имеют по два заместителя в положениях 3 и 5, и поэтому не могут перегруппироваться в соответствующие 2-пиразолины (Схема 2.24).

R = H, Me, CO₂Et N=N, Me

$$R' = H, Me$$

Схема 2.23

 $\bf R$ = 4-NO₂-Ph, 4-CN-Ph, 4-F-Ph, 4-Cl-Ph, 4-Br-Ph, Ph, 4-Me-Ph, 3-CF₃-Ph, 3-Me-Ph, 2-Br-Ph, 2-нафтил, 2-пиридинил, *E*-стирил, Et $\bf R'$ = Me, Et

Схема 2.24

В [46] взаимодействием цефалоспорина, содержащего экзоциклическую связь, и диазометана был получен сравнительно стабильный 1-пиразолин. Полученное соединение не подвергается никакому изменению при кипячении в толуоле в течение восьми дней, но в диметилформамиде дает смесь двух продуктов: циклопропана, соответствующего присоединению карбена по исходной двойной связи, и винильного производного (Схема 2.25).

PhO

$$H = Me$$
 $H = Me$
 $H = Me$

2.2.2 Синтез 3-пиразолинов

3-Пиразолины существуют только в 1,2-дизамещенном виде за исключением нескольких примеров. Для 3-пиразолинов, незамещенных по обоим атомам азота, существует лишь

Схема 2.25

один пример, описанный в [50]; 3-пиразолины, замещенные только по одному атому азота, несколько более известны [51-54].

Главным способом синтеза 1,2-замещенных 3-пиразолинов является реакция Манниха симметричных дизамещенных гидразинов с формальдегидом и кетоном. Получающееся основание Манниха вступает во внутримолекулярную циклизацию с образованием соответствующего 3-пиразолина (Схема 2.26) [55]. Положение двойной связи была подтверждена с помощью ИК-спектроскопии, показавшей наличие сопряжения между двойной связью пиразолина и бензольным кольцом.

$$\begin{array}{c}
O \\
+ & HN-NH * 2HCI
\end{array} \xrightarrow{CH_2O} \begin{array}{c}
CH_2O \\
EtOH
\end{array}$$

$$R = Me, Et, nPr$$

Схема 2.26

Конденсация гидразида фталевой кислоты с коричным альдегидом дает региоизомерные 3-пиразолины (Схема 2.27), которые при гидролизе превращаются в соответствующие 2-пиразолины. Образование 3-пиразолина было подтверждено с помощью расщепления молекулы [55].

Схема 2.27

Взаимодействие халконов с азадикарбоксилатами в присутствии трифенилфосфина позволяет получать 3-пиразолины, замещенные по положениям 3 и 5 и по обоим атомам азота [56].

Аналогично можно получить 3-пиразолины из сопряженных эфиров [57].

$$RO_2C$$
 N CO_2R + R_1 PPh₃ R_2 PPh₃ R_2 RO₂C N $R_$

Схема 2.28

$$RO_2C_1N^2N_2CO_2R$$
 + CO_2R^2 PPh_3 Ar CO_2R^2 $R = iPr, Et, tBu, CH_2Ph$ $R' = Me, Et$

Ar = Ph, 4-OMe-Ph, 4-Me-Ph, 3-F-Ph, 3-Br-Ph, 4-Br-Ph, (*E*)-стирил

Схема 2.29

2.3 Реакции пиразолинов

2.3.1 Реакции окисления

Пиразолины неустойчивы к окислению — они могут быть переведены в соответствующие пиразолы действием различных окислителей (Схема 2.30). При этом возможно как простое окисление [58 – 62], так и каталитическое [63 – 65].

$$Ar_3$$
 // Ar_2 ОКИСЛИТЕЛЬ Ar_3 // Ar_4 Ar_4 Ar_4

Схема 2.30

Также описано окисление пиразолинов в хлорированных растворителях (1,2-дихлорэтан и CCl₄) под действием видимого света. В этом случае в качестве окислителя выступает растворитель. Для этой реакции в работах [66, 67] был предложен механизм (Схема 2.31), включающий фотовозбуждение молекулы пиразолина, перенос электрона на молекулу растворителя и дальнейшие превращения получившегося катион-радикала.

Радкикальный характер этой реакции подтверждается тем, что добавление в реакционную смесь радикальных ингибиторов замедляет реакцию. Однако полного ингибирования не наблюдается, поскольку стадия образования пиразолиниевого радикала не является лимитирующей [67].

$$Ar^{3} \xrightarrow{N-N} Ar^{2} \xrightarrow{hv} Ar^{3} \xrightarrow{\oplus} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{N-N} Ar^{2} \xrightarrow{Ar^{3}} Ar^{2} \xrightarrow{N-N} Ar^{2} \xrightarrow{H} Ar^{3} \xrightarrow{N-N} Ar^{3} \xrightarrow{N-N$$

Схема 2.31: Предполагаемый механизм окисления пиразолинов под воздействием света

2.3.2 Реакции восстановления

Двойная связь C=N в пиразолинах может быть восстановлена типичными реагентами — комплексными гидридами. В работах [68] (Схема 2.32) и [69] (Схема 2.33) авторы использовали триэтилборгидрид лития в тетрагидрофуране, а в [70] — цианоборгидрид натрия в уксусной кислоте (Схема 2.34).

 \mathbf{R} = Me, Ph, 4-OMe-Ph, C₆F₅, 2,4,6-Me-Ph, 1-нафтил

Схема 2.32

R = Ph, 4-Me-Ph, 2-фурил, *t*Bu, 4-OMe-Ph **R**' = Me, Ph

Схема 2.33

Подбор конкретного комплексного гидрида для восстановления свзяи C=N для каждого субстрата осуществлялся индивидуально, с учетом выхода целевого продукта и образования побочных продуктов.

Схема 2.34

В других условиях пиразолины можно восстановить с расщеплением связи N-N. Восстановление пиразолинов натрием в этаноле можно использовать для получения 1,3-диаминозамещенных пропанов [55] (Схема 2.35).

$$N-N$$
 $N=0$
 $N=0$

Схема 2.35

Для получения 1,3-диаминокарбоновых кислот в работе [71] использовали восстановление водородом под давлением на никеле Ренея (Схема 2.36).

Схема 2.36

Стадии восстановления и расщепления связи N-N могут проводиться раздельно. В [40] пиразолины восстанавливали водородом на палладиевом катализаторе и расщепляли связь N-N под действием SmI_2 , энантиоселективно получая 1,3-аминозамещенные соединения (Схема 2.37).

Схема 2.37

Подводя итог вышесказанному, можно сделать вывод, что пиразолины — весьма широко используемые гетероциклы, которые могут быть получены различными способами в зависимости от требуемой структуры, регио- или стереоселективности. В основном они исследуются как потенциальные биологически активные вещества и как составляющие части донорно-акцепторных флуоро- и хромофоров. Для получения рацемических 1,3,5-арилзамещенных 2-пиразолинов основным методом синтеза остается конденсация халконов с фенилгидразинами. Описанный метод, как было отмечено выше, является универсальным и региоселективным. Пиразолины могут служить прекурсорами для пиразолов, пиразолидинов и 1,3-диаминосоединений.

3 Результаты и обсуждение

Ранее было показано [1, 2], что формильные производные триарилпиразолинов, содержащих полифторфенильные остатки в положениях 5 или 3 пиразолинового цикла, могут служить эффективными донорами в синтезе сопряженных донорно-акцепторных хромофоров с максимумом поглощения при 720 – 760 нм и 510 – 515 нм. В развитие этой тематики была поставлена задача синтеза Д-А хромофоров с использованием декафторзамещенных производных триарилпиразолина. Наличие двух пентафторфенильных групп дает дополнительные возможности для модификации донорного фрагмента.

Альдегид **1** был наработан по литературной методике [31, 72]. Его получение представляет собой многостадийный процесс. Альдольно-кротоновой конденсацией пентафторацетофенона **2** с пентафторбензальдегидом **3** получали декафторхалкон **4** [73] (Схема 3.1).

Схема 3.1

Декафторхалкон затем переводили в пиразолин **5** конденсацией с фенилгидразином [31] (Схема 3.2).

Схема 3.2

Далее пиразолин **5** формилировали в условиях реакции Вильсмайера по [72], получая альдегид **1** (Схема 3.3). Выходы продуктов сопоставимы с приведенными в литературе.

Схема 3.3

3.1 Взаимодействие декафтортриарилпиразолина 1 с бинуклеофилами

Следующий этап работы заключался в исследовании взаимодействия альдегида 1 с бифункциональным нуклеофильным реагентом — 4-гидроксипиперидином. Как было по-казано ранее [1], в отсутствие оснований нуклеофильное замещение фтора в пентафторзамещенных триарилпиразолинах протекает по аминогруппе реагента и в полярных растворителях приводит к замещению *пара*-атома фтора. Нами показано, что в ДМФА при 60 °C реакция замещения фтора в обеих пентафторфенильных группах на гидроксипиперидиногруппы не идет до конца, в смеси присутствует примесь исходного соединения наряду с продуктом замещения фтора в одном из колец. Поэтому реакционную смесь выдерживали при 100 °C. Из реакционной смеси были выделены два соединения — целевой альдегид 6а с двумя гидроксипиперидиногруппами и альдегид 6b, содержащий в одном из колец диметиламиногруппу (Схема 3.4).

Схема 3.4

Положение диметиламиногруппы было установлено реакцией альдегида **1** с недостатком 4-гидроксипиперидина. Основанием для установления структуры соединения **6b** является спектр ЯМР ¹⁹F реакционной смеси. (см. Приложение). Особенностью спектров ЯМР ¹⁹F полифторзамещенных триарилпиразолинов является уширение сигналов *орто*-атомов фтора полифторированного кольца в положении 5 пиразолинового цикла, обусловленное взаимодействием с атомом водорода. Перфторфенильное кольцо в положении 3 имеет типичный спектр ЯМР ¹⁹F. Из данных спектра следует, что незамещенным и, следовательно, менее реакционноспособным оказалось перфторфенильное кольцо в положении 3 (Схема 3.5). В настоящее время образец соединения **6b** исследуется методом РСА.

Схема 3.5

Спектры ЯМР продукта **6a** соответствуют его структуре (Схема 3.4). В спектре ЯМР 1 Н наблюдаются сигнал слабопольный альдегидного протона; сигналы системы AA'BB' napa-фениленового кольца; три дублета дублетов, соответствующие системе ABX-протонов пиразолинового кольца; в сильном поле — мультиплеты, соответствующие протонам пиперидиногруппы, в том числе сложный мультиплет, принадлежащий протону С<u>Н</u> – ОН. Спектр ЯМР 19 Г также имеет характерный вид и содержит уширенный синглет, который соответствует атомам фтора в opmo-положении кольца в 5 положении пиразолина.

3.2 Методика введения разделительного блока

Следующая задача нашей работы — введение в молекулу альдегида **6a** объемных разделительных блоков. Разделительные блоки (Рис. 3.1) доступны в виде кислот и хлорангидридов, следовательно, требуется найти оптимальные условия ацилирования гидроксигруппы в соединении **6a**. В качестве модельной реакции мы выбрали реакцию ацилирования хлористым бензоилом.

Рис. 3.1: Структуры использованных разделительных блоков

Были испытаны два подхода: бензоилирование избытком хлористого бензоила и бензоилирование с катализом DMAP и небольшим избытком хлористого бензоила. Обнаружено, что использование DMAP позволяет сократить время реакции с 6-8 часов до 2 часов и требует гораздо меньшего избытка хлорангидрида; выходы бензоилового эфира **7a** в обоих случаях не отличаются (Таблица 3.1).

В спектре ЯМР 1 Н соединения **8** наблюдается слабопольный сдвиг сигнала двух протонов СН-ОН на \sim 1.5 м.д..

Полученный альдегид **8** был введен в реакцию конденсации Кнёвенагеля с дицианоизофороном **9** [74], которая протекает при кипячении в н-бутаноле в присутствии каталитических количеств морфолина [2] и дает краситель **7a** с выходом 24 % (Схема 3.6).

Наряду с вышеописанным подходом, мы исследовали альтернативную последовательность реакций: конденсацию альдегида **6a** с дицианоизофороном **9** и последующее ацилирование полученного ОН-красителя **10a** (Схема 3.6).

Схема 3.6

При сопоставимых выходах (около 75 %) на стадии ацилирования более выгодным является второй подход, поскольку он позволяет использовать меньшее количество хлорангидрида, получение которого представляется собой значительную сложность. В итоге оптимизированная последовательность реакций и методика ацилирования позволила снизить требуемое количество ацилирующего реагента и повысить выход целевого продукта (Таблица 3.1).

В спектре ЯМР 1 Н соединения **10а** характеристическими являются сигналы AB-системы двойной связи с КССВ около $15\,\Gamma$ ц, что указывает на E-конфигурацию двойной связи, синглет при $6.72\,\mathrm{M.g.}$, соответствующий протону при двойной связи дицианоизофорона, два синглета при $2.61\,\mathrm{u}\,2.55\,\mathrm{m.g.}$, принадлежащих $\mathrm{CH_2}$ группам дицианоизофорона и синглет при $1.04\,\mathrm{m.g.}$, принадлежащий двум метильными группам дицианоизофорона.

При длительной выдержке реакционной смеси в реакции бензоилирования **10a** мы обнаружили, что вместо пиразолина **7a** образуется соответствующий пиразол **11** (Рис. 3.2). На образование пиразола указывает отсутствие сигналов *ABX*-системы пиразолина и появление синглета протона при двойной связи пиразола при 6.84 м.д. в ¹H ЯМР спектре, а также отсутствие в спектре ЯМР ¹⁹F уширенного синглета.

Рис. 3.2: Структура полученного пиразола 11

Также мы наблюдали окисление пиразолина **7a** в пиразол даже при кратковременной выдержке в темноте в хлорированных растворителях (CH₂Cl₂ и CDCl₃). При этом для предшественника соединения **7a** — альдегида **6a** окисления не наблюдалось даже при длительной выдержке в хлороформе на свету. Это может быть связано с предполагаемым механизмом окисления (Схема 2.31 на стр. 21); введение в молекулу акцептора упрощает образование цвиттерионной структуры, играющей ключевую роль в процессе окисления. В дальнейшем при получении производных соединения **6a** мы старались избегать хлорсодержащих растворителей и длительного пребывания этих соединений на свету.

3.3 Синтез красителей

Найденные оптимальные условия ацилирования были применены для введения разветвленных заместителей в структуру красителей. Кроме синтезированного в работе красителя 10a, был использован полученный ранее в лаборатории краситель $12a^2$, содержащий одно 4-гидроксипиперидинозамещенное тетрафторфенильное кольцо.

¹Реагенты в виде кислот и хлорангидридов предоставлены сотрудниками НИОХ Максимовым А.М., Бережной В.Н. и Рязановым Н.Л.

²Соединение предоставлено сотрудником НИОХ Каргаполовой И.Ю.

$$10a \xrightarrow{\text{R-Cl}} 7a-c$$

$$0 \text{DMAP} \qquad R = \text{Bz(a); TAFS(b); TATBS(c)}$$

R = Bz(a); TAFS(b); TATBS(c); IDATBS(d)

Схема 3.7

Таблица 3.1: Условия ацилирования соединений 6а, 10а и 12а и выходы продуктов

Субстрат	Реагент	Экв.	Условия реакции	Время реакции, ч	Продукт	Выход, %
6a	PhCOCl	6	PhH, Et ₃ N	24	8	74
6a	PhCOCl	3	PhH, Et ₃ N, DMAP	6	8	74
10a	PhCOCl	3	PhH, Et ₃ N, DMAP	1	7a	25
10a	TAFS-Cl	3	PhH, Et ₃ N, DMAP	2	7b	30
10a	TATBS-Cl	3	PhH, Et ₃ N, DMAP	6	7c	55
12a	PhCOCl	1.5	PhH, Et ₃ N, DMAP	4	13a	92
12a	TAFS-Cl	1.5	PhH, Et ₃ N, DMAP	2.5	13b	97
12a	TATBS-Cl	1.5	PhH, Et ₃ N, DMAP	3	13c	59
12a	TATBS-OH	1	ТГФ, DIAD, PPh_3	3	13c	70
12a	TATBS-OH	1	PhH, DCC, DMAP	3	13c	22
12a	IDATBS-Cl	1.5	PhH, Et ₃ N, DMAP	12	13d	7.5
12a	IDATBS-Cl	1.5	MeCN, Et ₃ N, DMAP	36	13d	7.5
12a	IDATBS-Cl	1.5	PhMe, Et ₃ N, DMAP	0.5^{1}	13d	2.5

 $^{^{1}}$ Реакцию проводили в микроволновом реакторе при температуре 150 $^{\circ}\mathrm{C}$

В целом, реакция ацилирования идет достаточно быстро и с хорошим выходом (Таблица 3.1), однако при получении соединения **13d** реакция не идет до конца, основной выделенный из реакционной смеси продукт — исходный краситель **12a**. Это может быть связано с тем, что хлорангидрид IDATBS—СI является стерически затрудненным, а следовательно, затруднен подход ОН-группы к карбонильной группе. Для получения соединения **13d** мы использовали несколько вариаций общей методики: увеличение времени реакции, замена растворителя с бензола на ацетонитрил, проведение реакции при повышенной температуре с нагревом микроволновым излучением, однако это не привело к повышению выхода.

В качестве альтернативных способов получения целевых эфиров мы также исследовали реакцию Мицунобу и реакцию Штеглиха (взаимодействие спирта с кислотой в присутствим DCC и DMAP). Реакция Штеглиха дает выход даже ниже, чем простое ацилирование хлорангидридом.

Реакция Мицунобу позволяет получать эфиры из спиртов и карбоновых кислот в присутствим диизопропилазодикарбоксилата (DIAD) и трифенилфосфина. Применение этой реакции для получения соединения **13c** позволило еще больше снизить требуемое количество ацилирующего реагента (в реакции Мицунобу он берется эквимолярно) и получить целевое соединение с большим выходом (Таблица 3.1), чем при ацилировании с помощью хлорангидрида, а также позволяет использовать для ацилирования более доступную кислоту вместо ее хлорангидрида (Таблица 3.1).

Схема 3.8

В спектрах ЯМР ¹Н соединений **13b–d** наблюдается сигнал около 4.2 м.д., соответствующий S–CH₂ фрагменту разделительного блока и сигналы около 2.5 м.д., принадлежащие метильным группам в ароматическом кольце. В спектрах соединений **13c,d** присутствует сигнал *трет*-бутильной группы при 1.2 м.д.. В спектрах соединений **7a–c** описанные сигналы выглядят как дублеты из-за неэквивалентности двух заместителей. Спектры ЯМР ¹⁹F соединений **7b** и **13b** соответствуют структуре красителей с TAFS-фрагментом.

Синтезированные красители имеют длинноволновый максимум поглощения при длине волны 490–500 нм в ацетоне, который не зависит от структуры введенного разделительного блока, поскольку тот не включен в цепь сопряжения (Рис. 3.3).

Рис. 3.3: Нормированные электронные спектры поглощения полученных красителей

Полученные красители обладают флуоресценцией с максимумом возбуждения около 490 нм и стоксовым сдвигом около 210 нм

Рис. 3.4: Спектры флуоресценции (сплошная линия) и возбуждения флуоресценции (пунктирная линия) соединения **7b**

Таким образом, в работе полностью выполнена поставленная цель по синтезу новых донорно-акцепторных красителей, содержащих в качестве донорных блоков производные

полифтортриарилпиразолинов с разветвленными фрагментами на основе п-толуиловой и β-изодуриловой кислот. В ходе исследования выявлены рациональные последовательности стадий синтеза и найдены оптимальные условия модификации красителей разветвленными группами.

4 Экспериментальная часть

В работе использовались следующие коммерчески доступные реактивы и растворители, которые дополнительно не очищали, если не указано иное.

Таблица 4.1: Использованные коммерчески доступные реактивы и растворители и методы их очистки

Название	Производитель	Чистота	Примечание		
DCC	DCC Alfa Aesar		_		
4-Гидроксипиперидин	Alfa Aesar	97%	_		
DMAP	Sigma Aldrich	99%	_		
DIAD	Sigma Aldrich	98%	_		
Морфолин	Реахим	Ч	_		
Пентафторацетофенон	P&M Invest	99%	_		
Пентафторбензальдегид	ОХП НИОХ СО РАН	99%	_		
Пиперазин	Aldrich	99%	_		
Трифенилфосфин	Lancaster	99%	_		
Триэтиламин	AppliChem	99.5%	_		
Фенилгидразин	Acros Organics	97%	_		
Хлористый бензоил	Реахим	Ч	Предварительно перегоняли		
Ацетон	ЭКОС 1	ЧДА			
			Перегоняли над P_2O_5 ,		
Ацетонитрил	Реахим	ЧДА	хранили над молекулярными		
			ситами 4 Å		
Бензол	Реахим	ЧДА	Хранили над Na		
Бутанол	Реахим	ЧДА	_		
Гексан	Реахим	ЧДА	_		
Диэтиловый эфир	Кузбассоргхим	ЧДА	_		
ПМФА	** D 1111		Хранили над		
ДМФА	Реахим	ЧДА	молекулярными ситами 4 Å и 13 Å		
ТГΦ	Реахим	ЧДА	Хранили над Na		
Толуол	Реахим	ЧДА Хранили над Na			
Хлористый метилен	Реахим	ЧДА	_		
			Перегоняли над СаО,		
Этанол	Реахим	ЧДА	хранили над молекулярными		
			ситами 4 Å		
Силикагель 60-200 мкм	Machery Nagel		_		

Реакцию с микроволновым нагреванием проводили в микроволновом реакторе Anton Paar Monowave 300 в режиме поддержания постоянной температуры.

Температуру плавления определяли на приборе Stuart SMP30 или на столике Кофлера.

Спектральные данные получены в Исследовательском химическом центре коллективного пользования СО РАН. Спектры ЯМР регистрировали на спектрометрах Bruker AV-300 (1 H, 300.13 МГц; 19 F, 282.37 МГц) и Bruker AV-400 (1 H, 400.13 МГц) в дейтерохлороформе, ацетонитриле- d_{3} и ацетоне- d_{6} . Значения химических сдвигов протонов приведены относительно сигналов остаточных протонов растворителей (δ_{H} = 7.26, 1.94, 2.05 м.д. соответственно). При регистрации спектров ЯМР 19 F в качестве внутреннего стандарта использовали $C_{6}F_{6}$ (δ_{F} = 0 м.д.).

Электронные спектры поглощения регистрировали на спектрофотометре Hewlett Packard 8453, спектры флуоресценции — на спектрофлуориметре Cary Eclipse (Varian).

Масс-спектры для соединений с молекулярными массами до 800 Да получены на масс-спектрометре высокого разрешения Thermo Electron DFS GC-MS (США) в условиях прямого ввода с ионизирующим напряжением 70 эВ. Масс-спектры высокого разрешения соединений с массой более 1000 Да получены на приборе Q Exactive HF Thermo Fisher Scientific (США) в режиме прямого анализа без хроматографического разделения³. Анализ проведен в режиме изократического элюирования 50 % метанолом, содержащим 0.1 % муравьиной кислоты. Масс-спектр получен в режиме полного сканирования с разрешением 120 000, диапазон сканирования варьировался в зависимости от массы соединения, AGS target-10⁶.

Альдегид 1 синтезировали по [31, 72, 73]. Дицианоизофорон 9 получали по [74].

4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигид-ро-1H-пиразол-1-ил}бензальдегид (ба). Раствор 3.00 г (6.30 ммоль) альдегида 1 и 1.80 г (17.80 ммоль) 4-гидроксипиперидина в 50 мл сухого ДМФА (DMF) нагревали до 100 °С, выдерживали при этой температуре 6 часов и оставляли на ночь. Реакционную смесь выливали в 400 мл воды со льдом, перемешивали до таяния льда и отфильтровывали осадок. Осадок на фильтре промывали водой до нейтральной реакции, затем гексаном и сушили на воздухе. Желто-оранжевый порошок, выход 3.70 г — смесь 6а и 6b. Продукт очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 : ацетонитрил, градиент 5:1 — 2:3. Собирали желтые фракции, анализировали ТСХ (CH_2Cl_2 : ацетонитрил, 2:1, $R_f \approx 0.25$ – 0.3). Желтый порошок, выход 6а 2.00 г (52 %). $T_{nл.}$ 155–159 °C. ЯМР 1 Н (ацетон- 1 д) 1 д, 1 д, 2 д, 3

³Исследование выполнено в центре масс-спектрометрического анализа ИХБФМ СО РАН

3.83 (д, 1 H, OH, J = 4.3 Гц, 3.86 – 3.69 (м, 2 H, 2 CH_{pip}), 3.63 – 3.47 (м, 3 H, CH_{2pip}, 1 H_{pyr}), 3.47 – 3.31 (м, 2 H, CH_{2pip}), 3.28 – 3.17 (м, 2 H, CH_{2pip}), 3.17 – 3.03 (м, 2 H, CH_{2pip}). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 22.27, 18.05, 12.62, 11.67 (1:1:1:1). МС: Найдено [М⁺]: 668.2023. С₃₂H₂₈F₈N₄O₃. Рассчитано: М 668.2028.

4-{3-(4-Диметиламино-2,3,5,6-тетрафторфенил)-5-[4-(4-гидроксипиперидин-1-ил)-2,3,5,6-тетрафторфенил]-4,5-дигидро-1*H*-пиразол-1-ил}бензальдегид (6b). Желтый порошок, выход 0.41 г (11%). $T_{пл.}$ 180°C. ЯМР ¹H (ацетон-d₆) δ , м.д.: 9.77 (c, 1 H, CHO), 7.76 (д, 2 H_{Ar}, J = 8.6 Γ ц), 7.17 (д, 2 H_{Ar}, J = 8.6 Γ ц), 5.97(дд, 1 H_{pyr}, J = 13.1, 5.1 Γ ц), 4.15(дд, 1 H_{pyr}, J = 18.2, 5.1 Γ ц), 3.93 (д, 1 H, OH, J = 4.0 Γ ц), 3.88 – 3.77 (м, 1 H, CH_{pip}), 3.59 – 3.46 (м, 3 H, CH_{2pip}, 1 H_{pyr}), 3.29 – 3.15 (м, 2 H, CH_{2pip}), 2.92 (c, 6 H, NMe₂), 1.96 – 1.80 (м, 2 H, CH_{2pip}), 1.72 – 1.57 (м, 2 H, CH_{2pip}). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 22.24, 17.86, 11.95, 11.68 (1:1:1). МС: Найдено [М⁺]: 612.1758. $C_{29}H_{24}F_8N_4O_2$. Рассчитано: М 612.1766.

Взаимодействие соединения 6а с недостатком 4-гидроксипиперидина. Раствор 0.10 г (0.20 ммоль) альдегида 6а и 0.03 г (0.30 ммоль) 4-гидроксипиперидина в 2 мл сухого ДМФА нагревали с перемешиванием при 60 °C 3 часа, оставляли на ночь. Наблюдается ярко-оранжевое окрашивание. Выливали на лед, выпавший осадок отфильтровывали и анализировали с помощью спектров ЯМР ¹Н и ¹⁹F. Основным продуктом реакции является альдегид, замещенный гидроксипиперидиногруппой в одном из фторированных колец, наряду с дизамещенным альдегидом; соотношение 4:1. Данные спектра ЯМР ¹⁹F указывают на то, что незамещенным остается пентафторфенильное кольцо в положении 3 пиразолинового цикла, в котором отсутствует характерное уширение сигнала *орто-*атомов фтора.

(*E*)-2-[3-(4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигидро-1*H*-пиразол-1-ил}стирил)-5,5-диметилциклогекс-2-ен-1-илиден]малононитрил (10а). К раствору 0.25 г (0.37 ммоль) альдегида ба и 0.07 г (0.37 ммоль) дицианоизофорона в 5 мл бутанола прибавляли 5 капель морфолина, кипятили в атмосфере аргона 7 часов и оставляли на ночь. Выпавший осадок отфильтровывали, промывали этанолом и диэтиловым эфиром. Темно-красный порошок, выход 0.13 г (42%). $T_{пл.}$ 239-241 °C. ЭСП (ацетон) $\lambda_{\text{тах}}$ ($\lg \varepsilon$): 501 нм (4.47). ЯМР 1 Н (CDCl₃) δ , м.д.: 7.37 (д, $2\,H_{\text{Ar}}$, J=8.7 Гц), 7.05 (д, $2\,H_{\text{Ar}}$, J=8.7 Гц), 6.96 (д, $1\,H$, $2\,H_{\text{CH}}$, $2\,H_{\text{CH}}$, 3.99-3.76 (м, $3\,H$, $2\,H_{\text{CH}}$, 3.75-3.60 (м, $3\,H$, 3.75-3.60 (м, $3\,H$, 3.75-3.44 (м, $3\,H$, 3.75-3.60 (м, 3.75-3.60 (м, 3.75-3.60 (м, 3.75-3.60 (м, 3.75-3.60 (м, 3.75-3.60 (м, 3.75-3.60 (м,

{[1-(4-Формилфенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тет-рафтор-4,1-фенилен)}бис(пиперидин-1,4-диил)дибензоат (8). Способ 1. Суспензию 0.50 г (0.75 ммоль) альдегида ба в 10 мл сухого бензола доводили до кипения и прибавляли к ней 0.62 мл (4.50 ммоль) триэтиламина и 0.35 мл (3.00 ммоль) хлористого бензоила. После двух часов кипячения прибавляли еще столько же триэтиламина и хлористого бензоила и кипятили еще сутки. Реакционную смесь выливали в 100 мл воды и добавляли бензол до разделения фаз. Органическую фазу отделяли, сушили над Na₂SO₄ и удаляли растворитель в вакууме. Твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол : CHCl₃, градиент 1:0 – 0:1. Собирали желтые фракции, элюент удаляли в вакууме и повторно очищали колоночной хроматографией на SiO₂, элюент — смесь бензол : CH₂Cl₂ 1:1. Собирали желтые фракции, растворитель удаляли в вакууме. Желтое масло, выход 0.49 г (74 %).

Способ 2. К суспензии $0.20\,\Gamma$ ($0.30\,\mathrm{mmonb}$) альдегида ба в 5 мл сухого бензола, прибавляли $0.11\,\mathrm{mn}$ ($0.90\,\mathrm{mmonb}$) хлористого бензоила, $0.13\,\mathrm{mn}$ ($0.90\,\mathrm{mmonb}$) триэтиламина и 2 мг DMAP. Реакционную смесь кипятили 6 часов, оставляли на ночь и удаляли растворитель в вакууме. Полученное масло очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : $\mathrm{CH}_2\mathrm{Cl}_2$, градиент 1:1-8:1, собирали желтую фракцию, элюент удаляли в вакууме, полученное масло промывали смесью гексана с диэтиловым эфиром 1:1. Светло-желтый порошок, выход $0.19\,\Gamma$ ($74\,\%$). $\mathrm{T_{nn}}\,180-183\,^{\circ}\mathrm{C}$. ЯМР $^1\mathrm{H}$ (CDCl $_3$) δ , м.д.: $9.77\,\mathrm{(c, 1\,H, CHO)}$, $8.00-8.14\,\mathrm{(m, 4\,H_{Ar})}$, $7.73\,\mathrm{(g, 2\,H_{Ar}, \it J=8.4\,\Gamma\mu)}$, $7.61-7.52\,\mathrm{(m, 2\,H_{Ar})}$, $7.50-7.39\,\mathrm{(m, 4\,H_{Ar})}$, $7.13\,\mathrm{(g, 2\,H_{Ar}, \it J=8.4\,\Gamma\mu)}$, $5.75\,\mathrm{(gg, 1\,H_{pyr}, \it J=13.0, 5.9\,\Gamma\mu)}$, $3.95\,\mathrm{(gg, 1\,H_{pyr}, \it J=17.8, 5.9\,\Gamma\mu)}$, $5.35-5.11\,\mathrm{(m, 3\,H, 2\,CH_{pip}, 1\,H_{pyr})}$, $3.65-3.41\,\mathrm{(m, 4\,H, 2\,CH_{2pip})}$, $3.41-3.13\,\mathrm{(m, 4\,H, 2\,CH_{2pip})}$, $2.26-2.03\,\mathrm{(m, 4\,H, 2\,CH_{2pip})}$, $2.03-1.87\,\mathrm{(m, 4\,H, 2\,CH_{2pip})}$. ЯМР $^{19}\mathrm{F}\,\mathrm{(CDCl}_3$) δ , м.д.: 21.14, 16.72, 11.74, $10.43\,\mathrm{(1:1:1:1)}$. МС: Найдено $\mathrm{[M^+]}$: 876.2548. $\mathrm{C_{46}H_{36}F_8N_4O_5}$. Рассчитано: $\mathrm{M}\,876.2553$.

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]ви-нил}фенил)-4,5-дигидро-1H-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)-}бис(пиперидин-1,4-диил)дибензоат (7а). Способ 1. К суспензии $0.48\,\Gamma$ ($0.55\,\text{ммоль}$) альдегида $8\,$ в $15\,$ мл бутанола прибавляли $0.10\,\Gamma$ ($0.55\,$ ммоль) дицианоизофорона и $5\,$ капель морфолина. Смесь кипятили в атмосфере аргона $7\,$ часов, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 : гексан, градиент 1:1-0:1, затем ацетонитрил. Собирали красные фракции, растворитель удаляли в вакууме. Темно-красный порошок, выход $0.14\,\Gamma$ ($24\,\%$).

Способ 2. К суспензии 0.15 г (0.18 ммоль) соединения **10а** в 5 мл сухого бензола прибавляли 0.07 мл (0.56 ммоль) хлористого бензоила, 0.08 мл (0.56 ммоль) триэтиламина

(*E*)-{[1-(4-{2-[3-(дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил)дибензоат (11). ЯМР 1 Н (CDCl₃) δ , м.д.: 8.12–8.01 (м, 4 1 H $_{Ar}$), 7.62–7.33 (м, 10 1 H $_{Ar}$), 7.00 (дд, 2 1 H, CH=CH, J=16.3 1 H $_{Ar}$), 6.89 (с, 1 1 H, =CH $_{isoph}$), 6.84 (с, 1 1 H $_{pyrazole}$), 5.31–5.18 (м, 2 1 H, 2 1 CH $_{pip}$), 3.67–3.46 (м, 4 1 H, 2 CH $_{2pip}$), 3.42–3.22 (м, 4 1 H, 2 CH $_{2pip}$), 2.59 (с, 2 1 H, CH $_{2isoph}$), 2.45 (с, 2 1 H, CH $_{2isoph}$), 2.21–2.07 (м, 4 1 H, 2 CH $_{2pip}$), 2.05–1.88 (м, 4 1 H, 2 CH $_{2pip}$), 1.07 (с, 6 1 H, 2 CH $_{3isoph}$). ЯМР 19 F (CDCl₃) δ , м.д.: 21.27, 18.98, 11.47, 10.33 (1:1:1:1).

Диэфиры 7b,с (общая методика). К раствору соединения **10a** в 6 мл сухого бензола добавляли соответствующий хлорангидрид, триэтиламин и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO_2 . Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

(*E*)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)-}бис(пиперидин-1,4-диил)бис[4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)-фенил]тио}метил)бензоат] (7b). Получен по общей методике из 0.10 г (0.12 ммоль) соединения 10a, 0.24 г (0.36 ммоль) ТАFS-Сl, 0.10 мл (0.72 ммоль) триэтиламина и 1 мг DMAP. Время реакции 2 часа. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO₂, элюент — CH₂Cl₂. Темно-красный порошок, выход 0.08 г (30 %). $T_{пл.}$ 93–95 °C. ЭСП (ацетон) λ_{max} (lg ε): 491 нм (4.73). ЯМР ¹H (CD₃CN) δ , м.д.: 7.68–7.61 (м, 4 H_{TAFS}), 7.57 (д, 2 H_{Ar}, J = 8.6 Гц), 7.22 (д, 1 H, CH=, J = 16.2 Гц), 7.15 (д, 2 H_{Ar}, J = 8.6 Гц), 7.09 (д, 1 H, = CH, J = 16.2 Гц), 6.87 (с, 1 H, = CH_{isoph}), 5.95 (дд, 1 H_{pyr}, J = 11.3, 3.4 Гц), 5.28–5.09 (м, 2 H, 2 CH_{pip}), 4.49–4.37 (м, 8 H, 4 CH_{2TAFS}), 4.24–3.99 (м, 1 H_{pyr}), 3.73–3.23 (м, 9 H, 1 H_{pyr}, 4 CH_{2pip}), 2.60 (с, 2 H, CH_{2isoph}),

2.21 (c, 6 H, 2 $\text{CH}_{3\text{TAFS}}$), 2.18 – 2.11 (м, 4 H, 2 $\text{CH}_{2\text{pip}}$), 2.00 – 1.80 (м, 4 H, 2 $\text{CH}_{2\text{pip}}$), 1.45 – 1.34 (м, 2 H, $\text{CH}_{2\text{isoph}}$), 1.14 (c, 6 H, 2 $\text{CH}_{3\text{isoph}}$). ЯМР ¹⁹F (CD_3CN) δ , м.д.: 107.27, 32.00, 21.82, 17.84, 12.52, 11.34 (6:4:5:1:1). МС: Найдено [М – H]⁻: 2119.2502. $\text{C}_{92}\text{H}_{56}\text{F}_{36}\text{N}_6\text{O}_4\text{S}_4$. Рассчитано: [М – H] 2119.2598.

(E)-{[1-(4-{2-|3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1*H*-пиразол-3,5-диил|бис(2,3,5,6-тетрафтор-4,1-фенилен)-**}бис(пиперидин-1,4-диил)бис[3,5-бис({[4-(***трет***-бутил)фенил]тио}метил)-4-метил**бензоат] (7с). Получен по общей методике из 0.06 г (0.07 ммоль) соединения 10а, 0.12 г (0.22 ммоль) TATBS-Cl, 0.14 мл (1.10 ммоль) триэтиламина и 1 мг DMAP. Время реакции 6 часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO₂, элюент — бензол. Темно-красный порошок, выход 0.07 г (55 %). ЯМР ¹Н (ацетон-d₆) δ , м.д.: 7.78 (c, 2 H_{TATBS}), 7.75 (c, 2 H_{TATBS}), 7.60 (д, 2 H_{Ar}, J = 8.7 Гц), 7.37 - 7.25 (м, $16 \, \mathrm{H_{TATBS}}$), 7.20 (д, $2 \, \mathrm{H_{Ar}}$, $J = 7.3 \, \Gamma \mathrm{H}$), 7.13 - 7.05 (м, $2 \, \mathrm{H}$, $\mathrm{CH} = \mathrm{CH}$), 6.78 (с, $1 \, \mathrm{H}$, =CH_{isoph}), 5.98 (дд, 1 H_{pvr}, J = 13.0, 5.6 Гц), 5.21 – 5.04 (м, 2 H, 2 CH_{pip}), 4.27 (с, 4 H, $2 \text{ CH}_{2\text{TATBS}}$), 4.25 (c, 4 H, 2 CH $_{2\text{TATBS}}$), 4.14 (дд, 1 H $_{pyr}$, J = 18.0, 13.0 Гц), 3.65 – 3.21 (м, 9 H, $4\,CH_{2pip},\ 1\,H_{pyr}),\ 2.62\ (c,\ 2\,H,\ CH_{2isoph}),\ 2.59-2.56\ (M,\ 2\,H,\ CH_{2isoph}),\ 2.50\ (c,\ 3\,H,\ CH_{3TATBS}),$ 2.48 (c, 3 H, CH_{3TATBS}), 2.14-2.07 (M, 4 H, 2 CH_{2pip}), 1.99-1.75 (M, 4 H, 2 CH_{2pip}), 1.27 (c, 18 H, tBu_{TATBS}), 1.25 (c, 18 H, tBu_{TATBS}), 1.07 (c, 6 H, 2 CH_{3isoph}). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 22.23, 18.47, 12.75, 11.83 (1:1:1:1). МС: Найдено $[M + H]^+$: 1785.7141. $C_{104}H_{108}F_8N_6O_4S_4$. Рассчитано: [М + Н] 1785.7260.

Моноэфиры 13а–d (общая методика). К раствору 0.10 г (0.15 ммоль) соединения **12а** в 6 мл сухого бензола добавляли 0.2-0.3 ммоль соответствующего хлорангидрида , 0.2-0.3 ммоль триэтиламина и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол. Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

(*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-илбензоат (13а). Получен по общей методике из $0.10\,\mathrm{r}$ ($0.15\,\mathrm{mmonb}$) соединения 12а, $0.03\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) хлористого бензоила, $0.04\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) триэтиламина и 1 мг DMAP. Время реакции 4 часа. Темно-красный порошок, выход $0.11\,\mathrm{r}$ ($92\,\%$). $T_{\mathrm{пл.}}$ 145–147 °C. ЭСП (ацетон) λ_{max} ($10\,\mathrm{g}\,\mathrm{e}$): 499 нм (4.68). ЯМР ¹H (ацетон- $10\,\mathrm{mm}$) λ_{max} ($10\,\mathrm{g}\,\mathrm{e}$): 499 нм (4.68). ЯМР ¹H (ацетон- $10\,\mathrm{mm}$) λ_{max} ($10\,\mathrm{g}\,\mathrm{e}$): 499 нм (4.68). ЯМР ¹H (ацетон- $10\,\mathrm{mm}$) λ_{max} ($10\,\mathrm{g}\,\mathrm{e}$): 499 нм (4.68). ЯМР ¹H (ацетон- $10\,\mathrm{mm}$) λ_{max} ($10\,\mathrm{g}\,\mathrm{e}$) λ_{max}

 $\mathrm{CH_{2isoph}}$), 1.94—1.75 (м, 4 H, 2 $\mathrm{CH_{2pip}}$), 1.06 (с, 6 H, 2 $\mathrm{CH_{3isoph}}$). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 18.23, 12.70 (1:1). МС: Найдено [М⁺]: 769.3036. $\mathrm{C_{46}H_{39}F_4N_5O_2}$. Рассчитано: М 769.3034.

(*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил]-тио}метил)фенил-4-ил-4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]-тио}метил)бензоат (13b). Получен по общей методике из $0.10\,\mathrm{r}$ ($0.15\,\mathrm{mmonb}$) соединения 12a, $0.15\,\mathrm{r}$ ($0.23\,\mathrm{mmonb}$) ТАFS-С1, $0.04\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) триэтиламина и $1\,\mathrm{mr}$ DMAP. Время реакции $2.5\,\mathrm{часа}$. Темно-красный порошок, выход $0.19\,\mathrm{r}$ ($97\,\%$). $T_{\mathrm{пл.}}$ $108-111\,^{\circ}\mathrm{C}$. ЭСП (ацетон) λ_{max} ($1010\,\mathrm{s}$) ($1010\,\mathrm{s}$) $1010\,\mathrm{s}$ ($1010\,\mathrm{s}$) $1010\,\mathrm{s}$) $1010\,\mathrm{s}$ ($1010\,\mathrm{s}$) $1010\,\mathrm{s}$) $1010\,\mathrm{s}$ ($1010\,\mathrm{s}$) $1010\,\mathrm{s}$ ($1010\,\mathrm{s}$) $1010\,\mathrm{s}$) $1010\,\mathrm{s}$ (10

(*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил-3,5-бис({[4-(*трет*-бутил)фенил]тио}метил)4-метилбензоат (13с). Способ 1. Получен по общей методике из 0.10 г (0.15 ммоль) соединения 12а, 0.12 г (0.23 ммоль) ТАТВЅ-Сl, 0.06 мл (0.4 ммоль) триэтиламина и 1 мг DМАР. Время реакции 3 часа. Темно-красный порошок, выход 0.10 г (59 %).

Способ 2. К раствору $0.05\,\Gamma$ ($0.75\,\text{ммоль}$) соединения 12a, $0.04\,\Gamma$ ($0.75\,\text{ммоль}$) ТАТВS—ОН и $0.03\,\Gamma$ ($0.11\,\text{ммоль}$) трифенилфосфина в 6 мл сухого ТГФ при перемешивании в атмосфере аргона по каплям прибавляли раствор $0.02\,\text{мл}$ DIAD в 4 мл сухого ТГФ. Реакционную смесь выдерживали при комнатной температуре $2.5\,$ часа, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.06\,\Gamma$ ($70\,\%$).

Способ 3. Раствор $0.05\,\Gamma$ ($0.75\,\text{ммоль}$) соединения 12a, $0.04\,\Gamma$ ($0.75\,\text{ммоль}$) ТАТВS-ОН, $0.02\,\Gamma$ ($0.83\,\text{ммоль}$) DCC и $1\,\text{м}\Gamma$ DMAP в $6\,\text{м}\Pi$ сухого бензола выдерживали $5\,$ часов, после кипятили $7\,$ часов. Растворитель удаляли в вакууме, Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.02\,\Gamma$ ($22\,\text{%}$). $T_{\text{пл.}}\,108-110\,^{\circ}\text{C}$. ЭСП (ацетон) $\lambda_{\text{max}}\,$ ($\lg\varepsilon$): $499\,\text{нм}\,$ (4.67). ЯМР $^1\text{H}\,$ (ацетон- d_6) δ , м.д.: $7.82\,$ (д, $2\,\text{H}_{\text{Ar}},\,J=8.5\,$ Гц),

7.72 (c, $2\,\mathrm{H_{TATBS}}$), 7.57 (д, $2\,\mathrm{H_{Ar}}$, $J = 8.5\,\mathrm{\Gamma u}$), 7.48 – 7.37 (м, $3\,\mathrm{H_{Ph}}$), 7.32 (c, $2\,\mathrm{H_{Ph}}$), 7.30 – 7.21 (м, $8\,\mathrm{H_{TATBS}}$), 7.20 – 7.00 (м, $2\,\mathrm{H}$, CH=CH), 6.75 (с, $1\,\mathrm{H}$, =CH_{isoph}), 5.94 (дд, $1\,\mathrm{H_{pyr}}$, J = 12.9, 5.6 Ги), 5.06 (м, $1\,\mathrm{H}$, CH_{pip}), 4.23 (с, $4\,\mathrm{H}$, $2\,\mathrm{CH_{2TATBS}}$), 4.07 (дд, $1\,\mathrm{H_{pyr}}$, J = 17.8, 12.9 Ги), 3.62 – 3.38 (м, $3\,\mathrm{H}$, $1\,\mathrm{H_{pyr}}$, CH_{2pip}), 3.34 – 3.16 (м, $2\,\mathrm{H}$, CH_{2pip}), 2.60 (с, $2\,\mathrm{H}$, CH_{2isoph}), 2.55 (с, $2\,\mathrm{H}$, CH_{2isoph}), 2.47 (с, $3\,\mathrm{H}$, CH_{3TATBS}), 1.90 – 1.73 (м, $2\,\mathrm{H}$, CH_{2pip}), 1.38 – 1.18 (м, $20\,\mathrm{H}$, $2\,\mathrm{tBu_{TATBS}}$, CH_{2pip}), 1.05 (с, $6\,\mathrm{H}$, $2\,\mathrm{CH_{3isoph}}$). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 18.29, 12.74 (1:1). МС: Найдено [М + H]⁺: 1140.4823. C₆₉H₆₉F₄N₅O₂S₂. Рассчитано: [М + H] 1140.4902.

(*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил-3,5-бис({[4-(*трет*-бутил)фенил]тио}метил)-2,4,6-триметилбензоат (13d). Способ 1. Получен по общей методике из 0.09 г (0.14 ммоль) соединения 12а, 0.11 г (0.21 ммоль) IDATBS-Cl, 0.06 мл (0.4 ммоль) триэтиламина и 1 мг DMAP. Время реакции 12 часов. Темно-красный порошок, выход 0.01 г (7.5 %).

Способ 2. Получен по общей методике с заменой растворителя на ацетонитрил из $0.09\,\Gamma$ ($0.14\,\text{ммоль}$) соединения **12a**, $0.11\,\Gamma$ ($0.21\,\text{ммоль}$) IDATBS—Cl, $0.06\,\text{мл}$ ($0.4\,\text{ммоль}$) триэтиламина и $1\,\text{мг}$ DMAP. Время реакции $36\,$ часов. Темно-красный порошок, выход $0.01\,\Gamma$ ($7.5\,\%$).

Способ 3. Раствор 0.16 г (0.2 ммоль) соединения 12a, 0.20 г (0.4 ммоль) IDATBS – CI, 0.05 мл (0.4 ммоль) триэтиламина и 1 мг DMAP в 6 мл сухого толуола выдерживали при температуре 130 °C в микроволновом реакторе. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход 7 мг (2.5 %). $T_{III.}$ 147-150 °C. ЭСП (ацетон) λ_{max} $(lg\,\varepsilon)$: 497 нм (4.64). ЯМР 1 Н (ацетон- d_6) δ , м.д.: 7.85-7.75 (м, $2\,H_{Ar}$), 7.60-7.51 (м, $2\,H_{Ar}$), 7.49-7.38 (м, $5\,H_{Ar}$), 7.36-7.30 (м, $8\,H_{IDATBS}$), 7.19 (д, 1 H, CH=, J=16.2 Гц), 7.07 (д, 1 H, CH=, J=16.2 Гц), 6.75 (с, 1 H, =CH $_{isoph}$), 5.93 (дд, $1\,H_{pyr}$, J=13.0, 5.8 Гц), 5.31-5.16 (м, 1 H, CH $_{pip}$), 4.20 (с, $4\,H$, $2\,CH_{2IDATBS}$), 4.07-3.98 (м, $1\,H_{pyr}$), 3.52-3.37 (м, $3\,H$, $1\,H_{pyr}$, CH_{2pip}), 3.35-3.21 (м, $2\,H$, CH_{2pip}), 2.66 (с, $2\,H$, CH_{2isoph}), 2.44 (с, $3\,H$, $CH_{3IDATBS}$), 2.30 (с, $6\,H$, $2\,CH_{3IDATBS}$), 2.19-2.10 (м, $2\,H$, $2\,H_{2pip}$), 1.94-1.79 (м, $2\,H$, $2\,H_{2pip}$), 1.28 (с, $18\,H$, $2\,tBu_{IDATBS}$), 1.05 (с, $6\,H$, $2\,CH_{3isoph}$). ЯМР 19 F (ацетон- d_6) δ , м.д.: 18.38, 12.69 (1:1). МС: Найдено $[M+H]^+$: 1168.5130. $C_{71}H_{73}F_4N_5O_2S_2$. Рассчитано: [M+H] 1168.5215.

5 Выводы

- Исследована реакция 4-[3,5-бис(пентафторфенил)-4,5-дигидро-1*H*-пиразол-1-ил]бензальдегида с 4-гидроксипиперидином в диметилформамиде. Установлено, что пентафторфенильное кольцо в положении 5 пиразолинового цикла более реакционноспособно по отношению к нуклеофилу, чем C₆F₅-группа в положении 3.
- 2. Изучены две последовательности стадий в синтезе красителей на примере реакции бензоилирования; показано, что ацилирование гидроксипиперидиногруппы в красителе предпочтительнее, чем в исходном альдегиде.
- 3. Синтезирован ряд новых красителей с одним и двумя замещенными полифторированными кольцами конденсацией формильных производных трифенилпиразолинов с дицианоизофороном и их последующим ацилированием.
- 4. Испытаны различные реагенты и катализаторы для введения разветвленных фрагментов в структуру полученных красителей. Показано, что ацилирование хлорангидридом соответствующей кислоты успешно протекает в присутствии 4-диметиламинопиридина (DMAP), а использование кислоты в качестве ацилирующего агента дает высокий выход в условиях реакции Мицунобу.
- 5. Наработаны образцы новых красителей, модифицированных разветвленными фрагментами, в количествах, необходимых для дальнейших исследований.

Список литературы

- Формильные производные аминозамещенных полифторфенил-4,5-дигидро-1Н-пиразолов: синтез и использование в качестве донорных блоков в структурах нелинейно-оптических хромофоров / В. Шелковников, Н. Орлова, И. Каргаполова [и др.] // Журнал органической химии. 2019. Т. 55, № 10. С. 1551–1566.
- 2. Синтез и нелинейно-оптические свойства донорно-акцепторных красителей на основе трифенилпиразолинов в качестве донорного блока и дицианоизофорона в качестве акцептора / В. Шелковников, И. Каргаполова, Н. Орлова [и др.] // Известия Академии наук. Серия химическая. 2019. Т. 1. С. 92–98.
- 3. Bureš F. Fundamental aspects of property tuning in push–pull molecules // RSC Adv. 2014. V. 4, No 102. P. 58826 58851.
- 4. Blue organic light-emitting diodes based on pyrazoline phenyl derivative / P. Stakhira, S. Khomyak, V. Cherpak, [et al.] // Synthetic Metals. 2012. V. 162, № 3/4. P. 352 355.
- 5. *Ramkumar V.*, *Kannan P.* Highly fluorescent semiconducting pyrazoline materials for optoelectronics // Optical Materials. 2015. V. 46. P. 605–613.
- 6. *Vandana T.*, *Ramkumar V.*, *Kannan P.* Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics // Optical Materials. 2016. V. 58. P. 514–523.
- 7. A Comprehensive Review on Recent Developments in the Field of Biological Applications of Potent Pyrazolines Derived from Chalcone Precursors / V. V. Salian, B. Narayana, B. K. Sarojini, [et al.] // Letters in Drug Design & Discovery. 2018. V. 15, № 5. P. 516–574.
- 8. 2-Pyrazolines as Biologically Active and Fluorescent Agents, An Overview / P. Singh, J. Singh, G. J. Pant, [et al.] // Anti-Cancer Agents in Medicinal Chemistry. 2018. V. 18, № 10. P. 1366–1385.
- Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review) / D. D. Korablina,
 N. I. Vorozhtsov, L. A. Sviridova, [et al.] // Pharmaceutical Chemistry Journal. 2016. —
 V. 50, № 5. P. 281 295.
- 10. *Hassan S.* Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives // Molecules. 2013. V. 18, № 3. P. 2683 2711.

- 11. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents / J. H. Ahn, H.-M. Kim, S. H. Jung, [et al.] // Bioorganic & Medicinal Chemistry Letters. 2004. V. 14, № 17. P. 4461–4465.
- 12. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines / Ş. Güniz Küçükgüzel, S. Rollas, H. Erdeniz, [et al.] // European Journal of Medicinal Chemistry. 2000. V. 35, № 7/8. P. 761 771.
- 13. *Jagadish P. C., Soni N., Verma A.* Design, Synthesis, and In Vitro Antioxidant Activity of 1,3,5-Trisubstituted-2-pyrazolines Derivatives // Journal of Chemistry. 2013. V. 2013. P. 1–6.
- Barsoum F. F., Hosni H. M., Girgis A. S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties // Bioorganic & Medicinal Chemistry. 2006. V. 14, № 11. P. 3929 3937.
- 15. Automated parallel synthesis of chalcone-based screening libraries / D. G. Powers, D. S. Casebier, D. Fokas, [et al.] // Tetrahedron. 1998. V. 54, № 16. P. 4085 4096.
- Chebanov V. A., Desenko S. M., Gurley T. W. Azaheterocycles Based on α,β-Unsaturated Carbonyls. — Springer-Verlag Berlin Heidelberg, 2008.
- 17. Wang Z. Claisen-Schmidt Condensation // Comprehensive Organic Name Reactions and Reagents. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. P. 660–664.
- 18. *Nielsen A. T., Houlihan W. J.* The Aldol Condensation // Organic Reactions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. P. 1–438.
- 19. Synthesis and antimicrobial activity of quinoline-based 2-pyrazolines / M. Munawar, M. Azad, M. Athar, [et al.] // Chemical Papers. 2008. V. 62, № 3. P. 288–293.
- 20. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer's disease / C. Neudorfer, K. Shanab, A. Jurik, [et al.] // Bioorganic & Medicinal Chemistry Letters. 2014. V. 24, № 18. P. 4490 4495.
- 21. Solution-Phase Parallel Synthesis of a Library of Δ 2 -Pyrazolines / S. Manyem, M. P. Sibi, G. H. Lushington, [et al.] // Journal of Combinatorial Chemistry. 2007. V. 9, № 1. P. 20–28.
- 22. *Patel V. M.*, *Desai K. R.* Eco-friendly synthesis of pyrazoline derivatives over potassium carbonate // Arkivoc. 2004. V. 2004, № 1. P. 123.

- 23. Structure-guided discovery of 1,3,5-triazine–pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate / B. Singh, H. R. Bhat, M. K. Kumawat, [et al.] // Bioorganic & Medicinal Chemistry Letters. 2014. V. 24, № 15. P. 3321–3325.
- 24. *Farooq S.*, *Ngaini Z.* One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines // Tetrahedron Letters. 2020. V. 61, № 4. P. 151416.
- 25. Rahmatzadeh S. S., Karami B., Khodabakhshi S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid // Journal of the Chinese Chemical Society. 2015. V. 62, № 1. P. 17 20.
- 26. Daneshfar Z., Rostami A. Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis // RSC Advances. 2015. V. 5, № 127. P. 104695 104707.
- 27. *Marković V., Joksović M. D.* "On water" synthesis of N-unsubstituted pyrazoles: semicarbazide hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-carboxylate derivatives and 3,5-disubstituted pyrazoles // Green Chemistry. 2015. V. 17, № 2. P. 842 847.
- 28. An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique / S. B. Zangade, S. S. Mokle, A. T. Shinde, [et al.] // Green Chemistry Letters and Reviews. 2013. V. 6, № 2. P. 123 127.
- 29. Synthesis, characterization and pharmacological study of 4,5-dihydropyrazolines carrying pyrimidine moiety / A. Adhikari, B. Kalluraya, K. V. Sujith, [et al.] // European Journal of Medicinal Chemistry. 2012. V. 55. P. 467–474.
- 30. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives / S. N. Shelke, G. R. Mhaske, V. D. Bonifácio, [et al.] // Bioorganic & Medicinal Chemistry Letters. 2012. V. 22, № 17. P. 5727 5730.
- 31. Взаимодействие полифторхалконов с гидразингидратом и фенилгидразином / К. Шмуйлович, Н. Орлова, Е. Карпова [и др.] // Известия Академии наук. Серия химическая. 2010. Т. 5, № 7. С. 1378 1382.
- 32. *Patil N. T.*, *Singh V.* Synthesis of 1,3,5-trisubstituted pyrazolines via Zn(ii)-catalyzed double hydroamination of enynes with aryl hydrazines // Chemical Communications. 2011. V. 47, № 39. P. 11116.
- 33. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents / X. Wang, Y.-m. Pan, X.-c. Huang, [et al.] // Org. Biomol. Chem. 2014. V. 12, № 13. P. 2028–2032.

- 34. *Müller T. J. J., Ansorge M., Aktah D.* An Unexpected Coupling Isomerization Sequence as an Entry to Novel Three-Component-Pyrazoline Syntheses // Angewandte Chemie International Edition. 2000. V. 39, № 7. P. 1253 1256.
- 35. Reactivity of Mitsunobu reagent toward carbonyl compounds / R. D. Otte, T. Sakata, I. A. Guzei, [et al.] // Organic Letters. 2005. V. 7, № 3. P. 495–498.
- 36. Chemo- and Diastereoselective Construction of Indenopyrazolines via a Cascade aza-Michael/Aldol Annulation of Huisgen Zwitterions with 2-Arylideneindane-1,3-diones / Y. Li, H. Zhang, R. Wei, [et al.] // Advanced Synthesis & Catalysis. 2017. V. 359, № 23. P. 4158–4164.
- 37. Triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with activated alkenes leading to pyrazolines / S. Yamazaki, Y. Maenaka, K. Fujinami, [et al.] // RSC Advances. 2012. V. 2, № 21. P. 8095−8103.
- 38. *Cui S. L.*, *Wang J.*, *Wang Y. G.* Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines // Organic Letters. 2008. V. 10, № 1. P. 13 16.
- 39. Metal-catalyzed [3+2] cycloadditions of azomethine imines / U. Grošelj, J. Svete, H. H. Al Mamari, [et al.] // Chemistry of Heterocyclic Compounds. 2018. V. 54, № 3. P. 214–240.
- 40. *Hashimoto T., Takiguchi Y., Maruoka K.* Catalytic Asymmetric Three-Component 1,3-Dipolar Cycloaddition of Aldehydes, Hydrazides, and Alkynes // Journal of the American Chemical Society. 2013. V. 135, № 31. P. 11473 11476.
- 41. *Guo Q.*, *Lu Z.* Recent Advances in Nitrogen–Nitrogen Bond Formation // Synthesis. 2017. V. 49, № 17. P. 3835–3847.
- 42. *Hassner A.*, *Michelson M. J.* The Formation of the N—N Bond in Pyrazolines // The Journal of Organic Chemistry. 1962. V. 27, № 1. P. 298 301.
- 43. Wu Q., Zhang Y., Cui S. Divergent syntheses of 2-aminonicotinonitriles and pyrazolines by copper-catalyzed cyclization of oxime ester // Organic Letters. 2014. V. 16, № 5. P. 1350 1353.
- 44. *Pangerl M.*, *Hughes C. C.*, *Trauner D.* Total synthesis of newbouldine via reductive N-N bond formation // Tetrahedron. 2010. V. 66, № 33. P. 6626–6631.
- 45. *Hughes C. C.*, *Trauner D*. The Total Synthesis of (−)-Amathaspiramide F // Angewandte Chemie International Edition. 2002. V. 41, № 23. P. 4556–4559.
- 46. *Baldwin J. E.*, *Pitlik J.* 1,3-Dipolar cycloadditions of 3-methylenecephams with diazoalkanes // Tetrahedron Letters. 1990. V. 31, № 17. P. 2483 2486.

- 47. *Mish M. R.*, *Guerra F. M.*, *Carreira E. M.* Asymmetric dipolar cycloadditions of Me3SiCHN2. Synthesis of a novel class of amino acids: Azaprolines // Journal of the American Chemical Society. 1997. V. 119, № 35. P. 8379 8380.
- 48. 1,3-Dipolar cycloadditions of trimethylsilyldiazomethane revisited: Steric demand of the dipolarophile and the influence on product distribution / D. Simovic, M. Di, V. Marks, [et al.] // Journal of Organic Chemistry. 2007. V. 72, № 2. P. 650 653.
- 49. Facile synthesis of novel tetrasubstituted 1-pyrazolines from Baylis–Hillman adducts and acyl diazomethanes / H. Sun, X. Wang, M. Zhan, [et al.] // Tetrahedron Letters. 2013. V. 54, № 29. P. 3846 3850.
- 50. *Misani F.*, *Speers L.*, *Lyon A. M.* Synthetic Studies in the Field of Fluorinated Cyclopropanes //
 Journal of the American Chemical Society. 1956. V. 78, № 12. P. 2801 2804.
- 51. *Takamizawa A.*, *Hayashi S.* Syntheses of Pyrazole Derivatives // YAKUGAKU ZASSHI. 1963. V. 83, № 4. P. 373 377.
- 52. *Takamizawa A.*, *Hayashi S.*, *Sato H.* Syntheses of Pyrazole Derivatives. VIII // YAKUGAKU ZASSHI. 1965. V. 85, № 2. P. 158–165.
- 53. *Armstrong S. E.*, *Tipping A. E.* Novel 1:1 adducts from the reaction of hexafluoroacetone azine with various olefins and 1,3-dienes; Diels-Alder adducts as intermediates in the formation of criss-cross 2:1 adducts // Journal of Fluorine Chemistry. 1973. V. 3, № 1. P. 119 121.
- 54. Synthesis of 1H-3-pyrazolines / K. Burger, H. Schickaneder, F. Hein, [et al.] // Tetrahedron. 1979. V. 35, № 3. P. 389 395.
- 55. Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings / R. H. Wiley, L. C. Behr, R. Fusco, [et al.] // Chemistry of Heterocyclic Compounds. Vol. 22. Hoboken: John Wiley & Sons, Inc., 1967.
- 56. A Novel Reaction of the "Huisgen Zwitterion" with Chalcones and Dienones: An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives / V. Nair, S. C. Mathew, A. T. Biju, [et al.] // Angewandte Chemie International Edition. 2007. V. 46, № 12. P. 2070 2073.
- 57. Zhang J.-F., Pan H., Liu T. Facile strategy for the preparation of pyrazoline derivatives through phosphine-promoted [2 + 3] cycloaddition of dialkyl azodicarboxylates with β , γ -unsaturated α -keto esters // Synthetic Communications. 2018. V. 48, No 9. P. 1085 1091.

- 58. Zolfigol M. A., Azarifar D., Maleki B. Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions // Tetrahedron Letters. 2004. V. 45, № 10. P. 2181 2183.
- 59. Dodwadmath R. P., Wheeler T. S. Studies in the chemistry of chalcones and Chalcone-Oxides // Proceedings of the Indian Academy of Sciences Section A. 1935. V. 2, № 5. P. 438-451.
- 60. *Gladstone W. A.*, *Norman R. O.* Reactions of lead tetra-acetate. Part VII. Some reactions leading to pyrazoles // Journal of the Chemical Society C: Organic. 1966. № 1536. P. 1536 1540.
- 61. Hypervalent Iodine Oxidation of 1, 3, 5-Trisubstituted Pyrazolines: A Facile Synthesis of 1,3,5-Trisubstituted Pyrazoles / S. P. Singh, D. Kumar, O. Prakash, [et al.] // Synthetic Communications. 1997. V. 27, № 15. P. 2683 2689.
- 62. Walker D., Hiebert J. D. 2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions // Chemical Reviews. 1967. V. 67, № 2. P. 153 195.
- 63. *Nakamichi N., Kawashita Y., Hayashi M.* Oxidative Aromatization of 1,3,5-Trisubstituted Pyrazolines and Hantzsch 1,4-Dihydropyridines by Pd/C in Acetic Acid // Organic Letters. 2002. V. 4, № 22. P. 3955 3957.
- 64. *Kojima M.*, *Kanai M.* Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles // Angewandte Chemie International Edition. 2016. V. 55, № 40. P. 12224 12227.
- 65. *Shah J. N.*, *Shah C. K.* Oxidative dehydrogenation of pyrazolines with cobalt(II) and oxygen //
 The Journal of Organic Chemistry. 1978. V. 43, № 6. P. 1266 1267.
- Visible light mediated metal-free oxidative aromatization of 1,3,5-trisubstituted pyrazolines /
 S. B. Annes, R. Rajmohan, S. Ramesh, [et al.] // Tetrahedron Letters. 2019. V. 60,
 № 34. P. 150932.
- 67. Traven V. F., Dolotov S. M., Ivanov I. V. Activation of fluorescence of lactone forms of rhodamine dyes by photodehydrogenation of aryl(hetaryl)pyrazolines // Russian Chemical Bulletin. 2016. V. 65, № 3. P. 735 740.
- 68. *Jakob F.*, *Herdtweck E.*, *Bach T.* Synthesis and Properties of Chiral Pyrazolidines Derived from (+)-Pulegone // Chemistry A European Journal. 2010. V. 16, № 25. P. 7537 7546.
- 69. A convenient synthesis of substituted pyrazolidines and azaproline derivatives through highly regio- and diastereoselective reduction of 2-pyrazolines / J. M. De Los Santos, Y. López, D. Aparicio, [et al.] // Journal of Organic Chemistry. 2008. V. 73, № 2. P. 550 557.

- 70. *Mish M. R.*, *Guerra F. M.*, *Carreira E. M.* Asymmetric Dipolar Cycloadditions of Me 3 SiCHN 2. Synthesis of a Novel Class of Amino Acids: Azaprolines // Journal of the American Chemical Society. 1997. V. 119, № 35. P. 8379−8380.
- 71. *Carter H. E.*, *Abeele F. R. V.*, *Rothrock J. W.* A general method for the synthesis of α, γ -diamino acids // Journal of Biological Chemistry. 1949. V. 178. P. 325–334.
- 72. Синтез несимметричных тиофлавилиевых красителей на основе производный юлолидина и полифторированных трифенилпиразолинов / И. Каргаполова, Н. А. Орлова, К. Ерин [и др.] // Журнал органической химии. 2016. Т. 52. С. 10–14.
- 73. *Filler R.*, *Beaucaire V. D.*, *Kang H. H.* Polyfluoroaryl carbonyl chemistry. Benzalacetophenones // The Journal of Organic Chemistry. 1975. V. 40, № 7. P. 935–939.
- 74. *Lemke R*. Knoevenagel-Kondensationen in Dimethylformamid // Synthesis. 1974. V. 1974, № 05. P. 359 361.

Приложение А ЯМР спектры некоторых соединений

Puc. А.1: Спектр ЯМР ¹Н соединения **6а**

Puc. A.2: Спектр ЯМР ¹⁹F соединения **6a**

Рис. А.3: Спектр ЯМР ¹⁹F реакционной смеси, полученной взаимодействием альдегида **1** с 4-гидроксипиперидином (мольное соотношение реагентов 2:3)

Puc. A.4: Спектр ЯМР 1 Н соединения **8**

Puc. A.5: Спектр ЯМР ¹⁹F соединения **8**