1. **(3 marks)** Recall the definition of the *iterated logarithm* function: $\log^* n$ is the number of times that you have to take the log of n for it to be at most 1.

Give the tightest asymptotic relation between the following two functions.

$$f(n) = \log(\log^* n)$$
, and
 $g(n) = \log^*(\log n)$.

Solution: From the definition of $\log^* n$, we can write $g(n) = \log^* (\log n) = (\log^* n) - 1 = \Theta(\log^* n)$. Since $f(n) = \log(\log^* n)$ and the function $\log^* n$ is monotonically non-decreasing, we can conclude that f(n) = o(g(n)).

2. (3 marks) Consider the following statement: "In every instance of stable matching between courses and students, if the Gale-Shapley algorithm is run with the students applying to courses, at least one of the students will be alloted a course that is his/her first preference".

If this statement is true, prove it. Otherwise, provide a counter-example.

Solution: Consider the following instance of stable matching

$$S_1: C_1, C_2, C_3$$
 $C_1: S_2, S_3, S_1$
 $S_2: C_2, C_1, C_3$ $C_2: S_3, S_1, S_2$
 $S_3: C_1, C_3, C_2$ $C_3: S_1, S_2, S_3$

If we start with S_1 applying to C_1 , and S_2 applying to C_2 , both are accepted. When S_3 applies to C_1 , S_1 is rejected. S_1 applies to C_2 and S_2 is rejected. S_2 applies to C_3 and S_4 is rejected, which applies to C_3 . So the stable matching is (S_1, C_2) , (S_2, C_1) , (S_3, C_3) .

- 3. Show that squaring an $n \times n$ matrix is no easier that computing the product of two $n \times n$ matrices in the following way: Suppose that there is a T(n)-time algorithm for squaring an $n \times n$ matrix, where $T(n) = O(n^c)$, for $c \ge 2$.
 - (a) (2 marks) Given two $n \times n$ matrices A and B, show that you can compute AB + BA in time $3T(n) + O(n^2)$.

Solution: We can write $AB + BA = (A + B)^2 - A^2 - B^2$ and since time for squaring a matrix is T(n), we get the running time as $3T(n) + O(n^2)$.

(b) **(2 marks)** Use the part above to show that given two $n \times n$ matrices X and Y, we can compute XY in time $3T(2n) + O(n^2)$, and hence conclude that multiplying two matrices also takes time $O(n^c)$.

Solution: Consider the following $2n \times 2n$ matrices

$$A = \begin{pmatrix} Y & 0 \\ 0 & 0 \end{pmatrix}, \text{ and } B = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$$

Now, we can verify that

$$AB + BA = \begin{pmatrix} 0 & 0 \\ XY & 0 \end{pmatrix}$$

So, we can apply the algorithm in Part (a) to get the product of X and Y in time $3T(2n) + O(n^2)$

4. **(5 marks)** Suppose you are given an array A[1, 2, ..., n] of elements such that you are allowed queries of the form "Is A[i] < A[j]" and "Is A[i] = k". Give an O(n)-time algorithm to check if there is an element that occurs at least n/4 times. You cannot assume that the elements in the array are numbers.

Hint: This is slightly different from the question in the problem set. Try using order statistics.

Solution: Consider the k^{th} smallest elements where k = in/5 for $1 \le i \le 4$. We are taking n/5 to avoid any funny business that might arise due to floors and ceilings.

Now, if there is an element in the array that occurs at least n/4 times, it must be one of these four elements. We can prove this by contradiction. Suppose not; then any other element will lie between in/5 and (i+1)n/5 of which there are only at most n/5 < n/4 elements.

Hence we use the median-of-medians algorithm taught in class four times with k = in/5, where $1 \le i \le 4$ to obtain these elements. After this, we scan the array to count the number of occurrences of these elements, and answer yes if at least one of the occurs more than n/4 times. The total running time will be O(n).