Radioactivity Group Meeting 9 January 2008

# Advances in the SRM Program + some metrology

Brought to you by

Ron Collé

Lizbeth Laureano-Perez

#### Includes major contributions by

Ryan Fitzgerald

lisa Outola

Brian Zimmerman

And some minor ones by

Dan Golas Jerry LaRosa

Leticia Pibida Evan Crawford

Ken Inn Lynne King

Nicholas Perichon Bruce Norman

#### Last time (29 march 2007) we talked about

```
new SRM production & standardization
                <sup>60</sup>Co <sup>137</sup>Cs
                             <sup>55</sup>Fe <sup>210</sup>Pb
new SRMS of others --nat'l matrix (2); <sup>226</sup>Ra-Rn (6)
                                                                    completed
re-certifications (w & w/o meas.)
                                                                    work
ongoing & future SRMs
<sup>55</sup>Fe std. + BIPM intercomparison (link to calorimetry)
<sup>209</sup>Po / <sup>210</sup>Pb problems — papers
<sup>209</sup>Po half-life (Poland, France, NIST?) died
63Ni standardization & half-life --38 years (LNHB) ← paper
calorimetry / 14C half-life / (Columbia Univ.) died
Si(Li) x-ray detection ✓ It's here – no time!
```

#### New stuff

#### **Standardizations & SRMs**



#### **NEXT** (approx. order)

228Ra
 239Pu
 209Po
 244Cm
 63Ni
 238Pu

 $^{243}Am$ 

#### Other projects:

LS  $\alpha$  wall effect studies (w/ Ryan)

NPL / NIST <sup>210</sup>Pb std. comparison

Si(Li) detector system (w/ Brian)

cryogenic cal.  $\alpha$  spect. (collaboration with Boulder / Los Alamos / LNHB)

measurement comparisons (w/ Ryan, Brian, Iisa, others)

<sup>241</sup>Am links – 4 std solutions – LS & anticoin.

<sup>241</sup>Pu LS CNET & TDCR / NIST & LNHB / <sup>241</sup>Am ingrowth

<sup>229</sup>Th – LS – CNET & TDCR & anticoin. – LNHB, Los alamos

<sup>99</sup>Tc – CNET & TDCR & anticoin.

#### **SRMs to Inventory**



## Lizbeth

<sup>230</sup>Th

<sup>241</sup>Am

<sup>241</sup>Pu

Th-230

## Thorium-230



## Th-230

- LS Measurement
  - Corrected for Ra-226 subseries ingrowth

69 determinations; variables include:

- 3 counters
- 1 composition
- 3 sources per composition
- 1 to 5 cycles / 60 to 360 minutes per measurement
- 5 40 days of aging
- Impurities
  - Alpha Spectrometry

## Th-230 Results

- Certified activity = 40.83 ± 0.16 Bq•g⁻¹ at 1200EST 1 April 2007
- Preliminary Measurement by Lucas, A= 40.90
   Bq•g<sup>-1</sup> at 1200EST 1 April 2007
- Activity by α spectrometry = 41.0 ± 1.2 Bq•g⁻¹ lisa
- Attempted confirmation by Ingrowth of Ra-226 with PIC measurements were 9% different -Peter

## Am-241



## Am-241



## LS CNET

- 130 determinations; variables include:
  - 3 counters
  - 5 compositions
  - 5 scintillants
  - 2 sources per composition
  - 3 to 5 cycles / 100 minutes per measurement
  - 30 days of aging

## Am-241 Spectra



## Am-241



## Pu-241

$$^{241}$$
Pu (14.290 y)  
 $^{5/2+}$  0.0  
 $^{99.99}$   $^{99.99}$ 

$$\beta_1 \rightarrow \frac{241}{\text{Am (432.6 y)}}$$
 0.0 5/2-

## Pu-241



## Pu-241 Results

| Measurement<br>Method | Activity<br>(Bq•g <sup>-1</sup> ) | Uncertainty (%) |  |
|-----------------------|-----------------------------------|-----------------|--|
| LS CNET               | 258.5                             | 0.5+            |  |
| TDCR (NIST)           | 239.6                             | 2.1             |  |
| TDCR (LNHB)           | 240.1                             | 1.3             |  |

#### LS CNET

312 determinations; variables include:

- 3 counters
- 3 compositions
- 5 to 6 sources per composition
- 2 activity levels/solutions
- 2 to 10 cycles / 60 to 100 minutes per measurement
- 69 days of aging

## Pu-241 Results

- CNET and TDCR in serious disagreement (7.7%)
  - Presumably based on same model
  - NOT due to spectrum
  - EFFY and CN2003 codes small differences
  - CN2003 invariant of kB number
  - CN2003 agrees with LNHB tracer code

## Pu-241 Results

- CNET results correct based on
  - Agreement with old certificate
    - Based on Am-241 Ingrowth
  - Confirmation based on Am-241 Ingrowth determined
    - LS CNET
    - Alpha Spectrometry
    - LS Spectra

|                                   | Activity<br>(Bq•g <sup>-1</sup> ) | Difference<br>(%) |
|-----------------------------------|-----------------------------------|-------------------|
| Old<br>Certificate<br>(SRM 4340A) | 250.4                             | -                 |
| LS CNET                           | 253.3                             | 1.4               |
| Alpha<br>Spectrometry             | 258.0                             | 3                 |
| LS Spectra                        | 253.9                             | 1.4               |



<sup>90</sup>Sr -- history

<sup>210</sup>Pb – NPL / NIST

LS wall effect for  $\alpha$ 's

Si(Li) detector

Cryogenic calorimeter ( $\alpha$  spectrometry)

<sup>229</sup>Th



90Sr-90Y

fairly easy case





$$4919I = 4.261 \text{ kBq g}^{-1} \pm 0.48 \% (k = 2)$$

$$4239 = 31.79 \text{ kBq g}^{-1} \pm 0.46 \%$$

(LS CNET 3 cocktail compositions / 3 counters)

precision < 0.1 % (
$$v_{eff}$$
 = 293); normal

#### Measurement comparison

 $CNET/TDCR = 1.00094 \pm 0.55 \% (k = 1)$ 

A Half-Century of Radioactivity Solution Standards of 90Sr-90Y

R. Collé, L. Laureano-Perez, and B.E. Zimmerman

| Series | Instrumen<br>t                             | Age<br>/ d | N<br>d | ε <sub>H-3</sub> | $\epsilon_{\mathrm{Sr-90}}$ | $arepsilon_{	ext{Y-90}}$ | Average<br>/ kBq•g <sup>-</sup> | s /<br>% |
|--------|--------------------------------------------|------------|--------|------------------|-----------------------------|--------------------------|---------------------------------|----------|
| I      | В                                          | 2          | 35     | 0.29 -<br>0.43   | 0.974 -<br>0.983            | 0.997 -<br>0.998         | 31.82                           | 0.02     |
|        | P                                          | 6          | 21     | 0.23 -<br>0.35   | 0.968 -<br>0.979            | 0.996 -<br>0.997         | 31.77                           | 0.02     |
|        | W                                          | 9          | 21     | 0.23 -<br>0.35   | 0.968 -<br>0.979            | 0.996 -<br>0.998         | 31.78                           | 0.02     |
|        | В                                          | 14         | 21     | 0.30 -<br>0.43   | 0.974 -<br>0.982            | 0.997 -<br>0.998         | 31.83                           | 0.02     |
| II     | В                                          | 2          | 35     | 0.28 -<br>0.41   | 0.973 -<br>0.981            | 0.997 -<br>0.998         | 31.82                           | 0.03     |
|        | P                                          | 6          | 21     | 0.21 -<br>0.33   | 0.966 -<br>0.977            | 0.996 -<br>0.997         | 31.78                           | 0.03     |
|        | W                                          | 9          | 21     | 0.21 -<br>0.33   | 0.966 -<br>0.977            | 0.996 -<br>0.998         | 31.78                           | 0.04     |
|        | В                                          | 14         | 21     | 0.28 -<br>0.40   | 0.972 -<br>0.981            | 0.997 -<br>0.998         | 31.81                           | 0.04     |
| III    | В                                          | 2          | 35     | 0.28 -<br>0.42   | 0.973 -<br>0.982            | 0.997 -<br>0.998         | 31.79                           | 0.04     |
|        | Р                                          | 6          | 21     | 0.21 -<br>0.34   | 0.966 -<br>0.977            | 0.996 -<br>0.997         | 31.73                           | 0.01     |
|        | W                                          | 9          | 21     | 0.21 -<br>0.34   | 0.966 -<br>0.977            | 0.996 -<br>0.998         | 31.75                           | 0.05     |
|        | В                                          | 14         | 21     | 0.28 -<br>0.41   | 0.972 -<br>0.982            | 0.997 -<br>0.998         | 31.81                           | 0.02     |
| All    | Unweighted grand mean                      |            |        |                  |                             | 31.79                    |                                 |          |
| All    | relative standard deviation of mean (n=12) |            |        |                  |                             |                          | 0.10                            |          |



**Table 1**. Solution standards of  $^{90}\text{Sr-}^{90}\text{Y}$  disseminated by NBS/NIST from c.1950 to 2007.

| SRM   | Reference<br>time   | Primary<br>standardizatio<br>n method | Solution (a) $\frac{90 Sr/Sr}{90 Y/Y}$           | 90Sr<br>massic activity<br>kBq·g⁻¹ | Reported uncertainty | Uncertainty method |
|-------|---------------------|---------------------------------------|--------------------------------------------------|------------------------------------|----------------------|--------------------|
| 4919  | (c. 1950)           | ?                                     | ?                                                | ? (b)                              | ?                    | ?                  |
| 4919A | (1953)              | 4π PC                                 | $\frac{(10^{-4})}{(10^{-7})}$                    | ≈ 5 <sup>(b)</sup>                 | (≈2%)                | ? (c)              |
| 4919B | (1957)              | 4π PC                                 | $\frac{(10^{-4})}{(10^{-7})}$                    | ≈ 5 <sup>(b)</sup>                 | (≈ 2 %)              | ? (c)              |
| 4919C | 1973<br>19 march    | 4π PC                                 | $\frac{1.3(10^{-6})}{2.9(10^{-10})}$             | 0.1120 <sup>(b)</sup>              | 2.0 %                | LC (d)             |
| 4919D | 1975<br>26 april    | 4π PC                                 | $\frac{7.7(10^{-6})}{2.0(10^{-9})}$              | 2.017 <sup>(b)</sup>               | 2.1 %                | LC (d)             |
| 4234  | 1975<br>4 august    | 4π PC                                 | $\frac{1.6(10^{-3})}{4.2(10^{-7})}$              | 626.0 <sup>(b)</sup>               | 1.47 %               | LC (d)             |
| 4919E | 1983<br>1 may       | 4π PC                                 | $\frac{1.3(10^{-5})}{3.3(10^{-9})}$              | 3.375                              | 1.77 %               | LC2 (e)            |
| 4423L | 1985<br>16 november | 4π PC                                 | $\frac{4.1(10^{-3})}{1.0(10^{-6})}$              | 4403                               | 1.05 %               | 3×QC (f)           |
| 4919F | 1988<br>1 may       | 4π PC                                 | $\frac{4.7(10^{-5})}{1.3(10^{-8})}$              | 4.094                              | 1.16 %               | 3×QC (f)           |
| 4919G | 1990<br>1 august    | 4π LS                                 | $\frac{9.1(10^{-6})}{2.3(10^{-9})}$              | 4.514                              | 1.05 %               | 3×QC (f)           |
| 4234A | 1995<br>13 march    | 4π LS                                 | $\frac{1.7(10^{-3})}{4.5(10^{-7})}$              | 2494.                              | 0.56 %               | 2×QC (g)           |
| 4919H | 1995<br>1 july      | 4π LS                                 | 6.9(10 <sup>-6</sup> )<br>2.2(10 <sup>-9</sup> ) | 4.010                              | 0.74 %               | 2×QC (g)           |
| 4919I | 2006<br>25 december | 4π LS                                 | 4.1(10 <sup>-5</sup> )<br>9.1(10 <sup>-9</sup> ) | 4.261                              | 0.48 %               | 2×QC (g)           |
| 4239  | 2006<br>25 december | 4π LS                                 | $\frac{2.5(10^{-4})}{6.0(10^{-8})}$              | 31.79                              | 0.46 %               | 2×QC (g)           |

## <sup>210</sup>Pb



## <sup>210</sup>Pb

#### Liz, et alia, *ARI* **65**, 1368 (2007)

#### Old stuff

$$SRM 4337 = 9.037 \text{ Bq g}^{-1} \pm 1.2 \% \text{ (k=1)}$$

Compare to CNET

anticoin. = + 0.7 %

 $^{210}$ Po α Spect = - 3.0 % ( $^{209}$ Po 102 a)

= -1.3 % (128 a)

HPGe = +4.7%

#### new stuff

NPL Standard (333 Bq g<sup>-1</sup>) – based on dilution of PTB std.

PTB did  $^{210}$ Po  $\alpha$  Spect

NPL confirm with <sup>210</sup>Bi ingrowth by Cerenkov (CNET for <sup>210</sup>Bi efficiency)

#### NPL / NIST <sup>210</sup>Pb



Cert.=  $0.037484 \pm 1.5 \% (k = 1)$ 

$$4\pi\alpha\beta$$
 LS = 0.037542 ± 0.17 % ( + 0.15 %)

$$4\pi\gamma(\text{NaI})$$
 = 0.037373 ± 0.30 % ( - 0.30 %)

$$^{210}$$
Po assay = 0.03736 ± 0.7 % ( - 0.30 %)

HPGe = 
$$0.03754 \pm 0.7 \%$$
 (+  $0.15 \%$ )

Si(Li) = 
$$0.0374 \pm > 1 \%$$
 incomplete



### LS WALL EFFECT



Figure 7 Counting rate of a <sup>238</sup>Pu source with different wall surfaces

?? Replications

#### Can not reproduce effect (magnitude) using <sup>210</sup>Po & <sup>241</sup>Am

#### 3 experiments

Vial - 27.3 cm<sup>2</sup>

Glass beads  $34.1 - 54.4 \text{ cm}^2 + \text{area} / \text{volume ratios}$ 

Sleeves  $34.4 - 39.2 \text{ cm}^2$ 

Rods & tubes 36.9 – 45.5 cm<sup>2</sup>

#### Lots of screwy results

LS imprecision – 0.2 to 0.3 % typical funny light effects – reflections from beads tilting rods & sleeves – indeterminate volumes sample masses cocktail instability



#### <sup>241</sup>Am





### < 0.06 % effect



from Ryan



## With Brian

## Si(Li) detector

Set up this past summer

Windowless chamber

Pump problems

We have to move!

No time to work on

Can see down to Al K x rays – 1.5 keV

Can measure in ampoules

down to <sup>241</sup>Am L x rays (> 12 keV)

Point sources in range of few keV to > 100 keV





# Detector resolution -- to specs



# Cryogenic microcalorimeter for alpha spectroscopy



### Measured response to mixed Pu isotopes



Si detector for 5 unresolved lines

# Measured response to mixed Pu isotopes





results for photons





뻐 Ken – made master solution from Oak Ridge 🗸



→ Liz & I -- made <u>first</u> batch of 280 SRM ampoules (5 year supply!)



➡ Brian -- used TDCR to look at effect of resolving time on LS doubles rate



→ Started LS CNET vs <sup>3</sup>H for betas --



many calculations still to do

Ryan – primary comparison with anticoincidence counting

➡ Brian – TDCR maybe

Comparison with LNHB

Comparison with Los Alamos – maybe?

+ cal sources for Boulder

 $\Longrightarrow$  Lynne – made first cut  $2\pi\alpha$  pc measurements



➡ lisa – looked at Si spectrum



 $\implies$  Ryan & I – will redo  $2\pi\alpha$  pc with known resolving times

will need impurity analyses (probably with chemistry)

229 Th 7340 a Ex = (4.7-5.0) MEV Er = 86 Pr = 4% Er= 193 KW Pr= 4.3 % d: 100% other 25 210% X-rays 80,100 KeV C5 2,6,12 KeV 14.9±0.21 225 Ra 15+55 E3 = 320 Ker EB = 93.4 KM PB = 69.58 2: (0.026=0.006)98 to 5.5. EB = 371 KeV Ez = 105 KeV P3 = 30.5 % Ex= 40.0 Kes Py = 30,000 Promo x=1.316 B~ 100 % 225 AS 221Rn 14.93 10-05001 d Ed=(5.0-58) MeV Ex = (5.6-5.8) Mostly EX = 100 KeV PX=1.78 d: 100% not many to B: 78% 217P 1.538 221 Fr 4.9 ±0.2 m Ea = Gal MeV PL= 153 togs. Ex = 6.3 Mer Px = 87% X: 100 % Ex = 218 KeV Por = 11.2% not much else (8 ker Auger. 217 At 32.4 to. 4ms 213Pb 10.2m EX= 7.067MeV Px= 99.98 B100% d:100% 45.59±0.06M x. 2.0910.039 to 2" es EB = 983 KU FB = 320 PB = 30.8% Ex= 5549 PX = 7.4 98 togs. EB = 1420 W EB = 492 P3 = 65.9 % E8 = 44014W P8 = 25.9 % B: 97.8 1010 Ed = 5869 Pd = 92.69 +09 Er = 324 kev Pr = 8% 213 Po 4.2 ±0.8 ms 2.20to.07m d: 10000 B: 100 02 to 95, Ed = 8376 Ker Pd = 100% ER= 1827 PB=98.893 Ex= 117,465,1567 Kev Pys 7 100 % ( sun peaks) 3,253 to.014 h to 9.5. EB = 644,6 KeV EB = 197.5 KeV PB=1006 B: 100 0%

Effect of resolve time on LS doubles rate

Y= a+b/(1-e-x(c+x))

#### Th-229 deadtime Chan AB fit data

Rank 1 Eqn 8001 [UDF 1] y=Deadtime(a,b,c)

r2=0.99700798 DF Adj r2=0.99572569 FitStdErr=0.90111686 Fstat=1332.8916 a=1723.7678 b=465.73607 c=5.1189534 4~ 0.075 0.075 Residuals (% of Y) [6] 0.05 0.05 0.025 0.025 -0.025 -0.025-0.05 -0.05 2240 2240 2230 2230 LS counters? ∞ ∝ <sub>2210</sub> -2220 2220 2200 2200 5.46% 2190 2190 2180 2180 20 40 60 80 T/µs







# $2\pi\alpha$ pc

Rough approx.

Extrapolates to 27.7 cps/g

Assume  $2\pi$  eff.

No impurities or side branches

Don't know resolve time yet

If 5 alphas (see all <sup>213</sup>Po)

$$2(27.7)/5 = 11.1$$
 Bq/g

If 4 alphas (see <u>no</u>  $^{213}$ Po)  $^{2(27.7)}/4 = 13.9$  Bq/g

Th specka 12/21/07



Datasource:

**RON TH DET10 DEC2107.CNF** 

Live Time: Real Time: 11350 sec

11355 sec

Acq. Start:

12/21/2007 9:54:55 AM

Start: Stop: 1 : 2938.99 (keV) 1024 : 11963.72 (keV)

229 
$$H_1$$
  $E_1 = 1$   $A$ 
 $10$ 
 $225 R_2$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 
 $10$ 





Far, far away from being done ....

No corrections yet

