Chapitre III: Martingales à temps discrets

Probabilités II

5^{ème} année DS A.U:2021-2022

- Introduction à la notion de martingale
- 2 Exemples
- 3 Un exemple générique de martingale
- 4 Notion de temps d'arrêt

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace muni d'une tribu et d'une probabilité. On se donne $(\mathcal{F}_n, n \geq 0)$ une suite croissante de sous-tribus de \mathcal{A} . On dit alors que $(\mathcal{F}_n, n \geq 0)$ est une **filtration** sur $(\Omega, \mathcal{A}, \mathbb{P})$.

<u>Dé</u>finition 1 :

Soit $(X_n, n \ge 0)$ une suite de variables aléatoires. On dit que $(X_n, n \ge 0)$ est adaptée à la filtration $(\mathcal{F}_n, n \ge 0)$ si pour tout n, la variable aléatoire X_n est \mathcal{F}_n -mesurable.

Définition 2 :

Soit $(\mathcal{F}_n, n \ge 0)$ une filtration sur (Ω, \mathcal{A}, P) . Soit $(M_n, n \ge 0)$ une suite de variables aléatoires réelle. On dit que $(M_n, n \ge 0)$ est une \mathcal{F}_n -martingale si :

- $(M_n, n \ge 0)$ est \mathcal{F}_n -adapté,
- pour tout $n \ge 0$, $E[|M_n|] < +\infty$,
- pour tout $n \ge 0$:

$$\mathbb{E}\big(M_{n+1}|\mathcal{F}_n\big)=M_n.$$

"la meilleure prévision de M_{n+1} compte tenu de l'information disponible à l'instant n est donnée par M_n ."

Conséquence 1

Pour tout $p \ge 0$:

$$\mathbb{E}\Big(M_{n+p}|\mathcal{F}_n\Big)=M_n.$$

Conséquence 1

Pour tout $p \ge 0$:

$$\mathbb{E}\Big(M_{n+p}|\mathcal{F}_n\Big)=M_n.$$

Conséquence 2 :

Si $(M_n, n \ge 0)$ est une martingale alors :

$$\mathbb{E}(M_{n+1}) = \mathbb{E}\Big(\mathbb{E}\Big(M_{n+1}|\mathcal{F}_n\Big)\Big) = \mathbb{E}(M_n).$$

L'espérance d'une martingale est constante au cours du temps.

- 1 Introduction à la notion de martingale
- 2 Exemples
- 3 Un exemple générique de martingale
- 4 Notion de temps d'arrêt

Exemple - Marche aléatoire

- Soit $(X_n, n \ge 1)$ une suite de variables aléatoires indépendantes de même loi. On pose

$$\left\{ \begin{array}{l} S_0=0 \\ S_n=X_1+\ldots+X_n \ {\rm si} \ n\geq 1. \end{array} \right.$$

- On dit que $(S_n, n \ge 0)$ est une marche aléatoire.
- On note par $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et $\forall n \geq 1$, $\mathcal{F}_n = \sigma(X_1, ..., X_n) = \sigma(S_0, ..., S_n)$.

Trajectoire de la marche aléatoire symétrique

Proposition 1

Si
$$\mathbb{E}(|X_1|) < +\infty$$
 et $\mathbb{E}(X_1) = 0$, alors

 $(S_n, n \ge 0)$ est une \mathcal{F}_n — martingale.

Exemple - Marche aléatoire

Proposition 2

Si
$$\mathbb{E}(X_1^2) < +\infty$$
 et $\mathbb{E}(X_1) = 0$, alors

$$(V_n = S_n^2 - nE(X_1^2), n \ge 0),$$

est une \mathcal{F}_n -martingale.

Exemple - Marche aléatoire

Proposition 3

Soit λ un réel tel que

$$\phi(\lambda) := log\Big(\mathbb{E}(e^{\lambda X_1})\Big) < +\infty,$$

Alors

$$(Z_n^{\lambda} = e^{\lambda S_n - n\phi(\lambda)}, n \ge 0),$$

est une \mathcal{F}_n -martingale.

- 1 Introduction à la notion de martingale
- 2 Exemples
- 3 Un exemple générique de martingale
- 4 Notion de temps d'arrêt

Un exemple générique de martingale

Proposition 4:

Soit $(M_n, n \geq 0)$ une \mathcal{F}_n -martingale. Soit $(H_n, n \geq 0)$ un processus tel que H_n est \mathcal{F}_n -mesurable et borné. On se donne une variable aléatoire G_0 intégrable et \mathcal{F}_0 -mesurable. Pour $n \geq 1$, on pose :

$$G_n = G_0 + \sum_{k=0}^{n-1} H_k (M_{k+1} - M_k),$$

ou, de façon équivalente, pour $n \ge 0$,

$$G_{n+1} - G_n = H_n(M_{n+1} - M_n)$$

Alors $(G_n, n \ge 0)$ est une \mathcal{F}_n -martingale.

Exemple : gain d'une stratégie dans un jeu de hasard équilibré

On note $(H_n, n \geq 0)$ une suite de montants que l'on va parier sur une suite de tirages qui rapportent $(X_{n+1})_{n\geq 0}$ par unité pariée. On suppose que les H_n s'écrivent sous la forme $H_n=f(n,X_1,...,X_n)$ (en particulier H_0 est déterministe) et sont des variables aléatoires bornées. Si l'on note G_n le gain cumulé à l'instant n, on a :

$$G_{n+1} - G_n = H_n X_{n+1} = H_n (S_{n+1} - S_n)$$

Si $(X_n, n \ge 1)$ est une suite iid de variables aléatoires intégrables centrées $(E(X_1)=0)$, $(G_n, n \ge 0)$ est une martingale. On pose $M_n=S_n=X_1+...+X_n$. $(M_n)_{n\ge 0}$ est une martingale. L'espérance d'une martingale étant constante on en déduit que :

 Le gain moyen au bout d'un nombre fini de tirages dans un jeu équilibré est nul.

- 1 Introduction à la notion de martingale
- 2 Exemples
- 3 Un exemple générique de martingale
- Motion de temps d'arrêt

Définition 3:

On dit que au, une variable aléatoire qui prend ses valeurs dans $\mathbb{N} \cup \{+\infty\}$, est un \mathcal{F}_n -temps d'arrêt si $\forall n \in \mathbb{N}$ on a :

$$\{\tau \leq n\} \in \mathcal{F}_n$$
.

Remarque:

 $\{ au \leq n\} \in \mathcal{F}_n$ signifie que à l'instant n, on sait si $\{ au \leq n\}$ ou pas.

Exemples

1- Soit $(X_n)_{n\geq 0}$ un processus \mathcal{F}_n -adapté, la v.a :

$$\tau = \inf\{n \ge 0, X_n \in [a, b], (a, b) \in \mathbb{R}^2\}$$

est un \mathcal{F}_n -temps d'arrêt.

On dit que τ est le temps d'entrée du processus $(X_n, n \ge 0)$ dans l'intervalle [a, b].

Exemples

2- $\tau' = \sup\{n \geq 0, X_n \in [a, b], (a, b) \in \mathbb{R}^2\}$ n'est pas un temps d'arrêt. τ' est le dernier temps où un processus est dans un ensemble.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \land \tau_2 \leq n\} \in \mathcal{F}_n$. On a $\{\tau_1 \land \tau_2 \leq n\} = \{\tau_1 \leq n\} \cup \{\tau_2 \leq n\}$.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$. On a $\{\tau_1 \wedge \tau_2 \leq n\} = \{\tau_1 \leq n\} \cup \{\tau_2 \leq n\}$. Or

• τ_1 est un temps d'arrêt, donc $\{\tau_1 \leq n\} \in \mathcal{F}_n$.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$. On a $\{\tau_1 \wedge \tau_2 \leq n\} = \{\tau_1 \leq n\} \cup \{\tau_2 \leq n\}$. Or

- τ_1 est un temps d'arrêt, donc $\{\tau_1 \leq n\} \in \mathcal{F}_n$.
- τ_2 est un temps d'arrêt, donc $\{\tau_2 \leq n\} \in \mathcal{F}_n$.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$. On a $\{\tau_1 \wedge \tau_2 \leq n\} = \{\tau_1 \leq n\} \cup \{\tau_2 \leq n\}$. Or

- τ_1 est un temps d'arrêt, donc $\{\tau_1 \leq n\} \in \mathcal{F}_n$.
- τ_2 est un temps d'arrêt, donc $\{\tau_2 \leq n\} \in \mathcal{F}_n$.
- F_n est une filtration (une famille croissante de tribu), donc elle est stable par réunion.

Exercice 1:

Soient τ_1 et τ_2 deux temps d'arrêt. Montrer que $\tau_1 \wedge \tau_2 = \inf(\tau_1, \tau_2)$ est aussi un temps d'arrêt.

Correction : Montrons que $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$. On a $\{\tau_1 \wedge \tau_2 \leq n\} = \{\tau_1 \leq n\} \cup \{\tau_2 \leq n\}$. Or

- τ_1 est un temps d'arrêt, donc $\{\tau_1 \leq n\} \in \mathcal{F}_n$.
- τ_2 est un temps d'arrêt, donc $\{\tau_2 \leq n\} \in \mathcal{F}_n$.
- F_n est une filtration (une famille croissante de tribu), donc elle est stable par réunion.

D'où $\{\tau_1 \wedge \tau_2 \leq n\} \in \mathcal{F}_n$

Processus arrêté

Définition 4:

Soit $(M_n, n \geqslant 0)$ un processus adapté à la filtration $(\mathcal{F}_n, n \geqslant 0)$ et τ un temps d'arrêt par rapport à la même filtration. On définit alors un nouveau processus par

$$N_n = M_{\tau \wedge n}$$
.

On dit que N est le processus M arrêté au temps τ .

Remarque:

$$N_n(\omega) = \left\{ egin{array}{ll} M_n(\omega), & \sin \tau(\omega) \geq n, \\ M_{\tau}(\omega), & \sin \tau(\omega) \leq n. \end{array}
ight.$$

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a
$$N_n = M_{\tau \wedge n}$$
.

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a $N_n = M_{\tau \wedge n}$. Pn peut écrire :

$$N_{n+1} - N_n = 1_{\{\tau > n\}} (M_{n+1} - M_n)$$

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a $N_n = M_{\tau \wedge n}$. Pn peut écrire :

$$N_{n+1} - N_n = 1_{\{\tau > n\}} (M_{n+1} - M_n)$$

On pose $H_n = 1_{\{\tau > n\}} = 1 - 1_{\{\tau \le n\}}$.

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a $N_n = M_{\tau \wedge n}$. Pn peut écrire :

$$N_{n+1} - N_n = 1_{\{\tau > n\}} (M_{n+1} - M_n)$$

On pose $H_n = 1_{\{\tau > n\}} = 1 - 1_{\{\tau \le n\}}$. H_n est F_n —mesurable,

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a $N_n = M_{\tau \wedge n}$. Pn peut écrire :

$$N_{n+1} - N_n = 1_{\{\tau > n\}} (M_{n+1} - M_n)$$

On pose $H_n = 1_{\{\tau > n\}} = 1 - 1_{\{\tau \le n\}}$. H_n est F_n —mesurable.

$$H_n$$
 est F_n —mesurable,

et
$$N_{n+1} - N_n = H_n(M_{n+1} - M_n)$$
.

Exercice 2:

Soit $(M_n, n \geqslant 0)$ une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et soit τ un temps d'arrêt par rapport à la même filtration. Montrer que $(N_n = M_{\tau \wedge n}, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Correction:

On a $N_n = M_{\tau \wedge n}$. Pn peut écrire :

$$N_{n+1} - N_n = 1_{\{\tau > n\}} (M_{n+1} - M_n)$$

On pose $H_n = 1_{\{\tau > n\}} = 1 - 1_{\{\tau \le n\}}$.

 H_n est F_n —mesurable,

et $N_{n+1} - N_n = H_n(M_{n+1} - M_n)$.

D'après la proposition 4, $(N_n, n \ge 0)$ est une \mathcal{F}_n -martingale.

Ce dernier résultat a été généralisé dans le théorème suivant :

Theorème 1

Si $(M_n, n \geqslant 0)$ est une martingale par rapport à $(\mathcal{F}_n, n \geqslant 0)$ et si τ est un temps d'arrêt par rapport à la même filtration alors $(N_n, n \geqslant 0)$ est encore une \mathcal{F}_n -martingale.

Exercice 3:

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si ($M_n, n \geqslant 0$) est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}]=E[M_0].$$

Exercice 3:

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si $(M_n, n \geqslant 0)$ est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}]=E[M_0].$$

Correction:

Exercice 3:

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si ($M_n, n \geqslant 0$) est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}]=E[M_0].$$

Correction:

On a τ est borné, donc il existe un réel positif K tel que $\tau \leq K$, et donc

$$N_K = M_{\tau \wedge K} = M_{\tau} \text{ et } N_0 = M_{\tau \wedge 0} = M_0$$

Exercice 3:

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si ($M_n, n \geqslant 0$) est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}]=E[M_0].$$

Correction:

On a τ est borné, donc il existe un réel positif K tel que $\tau \leq K$, et donc

$$N_K = M_{\tau \wedge K} = M_{\tau} \text{ et } N_0 = M_{\tau \wedge 0} = M_0$$

Puisque $(N_n, n \ge 1)$ est une martingale, alors on a :

$$E[N_K] = E[N_0]$$

Exercice 3:

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si $(M_n, n \geqslant 0)$ est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}]=E[M_0].$$

Correction:

On a τ est borné, donc il existe un réel positif K tel que $\tau \leq K$, et donc

$$N_K = M_{\tau \wedge K} = M_{\tau}$$
 et $N_0 = M_{\tau \wedge 0} = M_0$

Puisque $(N_n, n \ge 1)$ est une martingale, alors on a :

$$E[N_K] = E[N_0]$$

Donc

$$E[M_{\tau}] = E[M_0]$$

Proposition 5

Si τ est un temps d'arrêt borné ($\tau \leq K$,presque surement avec K réel positif), par rapport à la filtration ($\mathcal{F}_n, n \geqslant 0$) et si ($M_n, n \geqslant 0$) est une martingale par rapport à la même filtration alors :

$$E[M_{\tau}] = E[M_0].$$

Théorème de convergence des martingales

On cherche à travers le théorème suivant à voir sous quelles conditions une suite $(M_n, n \ge 1)$ converge lorsque n tends vers $+\infty$.

Théorème 2

Supposons que $(M_n, n \ge 0)$ est une martingale par rapport à $(\mathcal{F}_n, n \ge 0)$ et que de plus :

$$\sup_{n\geq 0} E(M_n^2) < +\infty.$$

On dit que $(M_n, n \ge 0)$ est bornée en moyenne quadratique (ou dans L^2). Sous cette hypothèse il existe une variable aléatoire M_{∞} de L^2 telle que :

$$\lim_{n\to+\infty}M_n=M_\infty,$$

au sens de la convergence en moyenne quadratique et presque sûre. Cela signifie que :

- convergence en moyenne quadratique : $\lim_{n \to +\infty} E(|M_n M_{\infty}|^2) = 0$.
- convergence presque sûre : $\mathbb{P}(\lim_{n \to +\infty} M_n = M_{\infty}) = 1$.