Disciplina

R para Ciência de Dados Aula 1

Introdução à Lógica de Programação e Algoritmos

Alan Rodrigo Panosso

Departamento de Ciências Exatas <u>alan.panosso@unesp.br</u>

O que é Lógica

é a análise das <u>formas e leis do pensamento</u>, mas não se preocupa com a produção do pensamento, não se preocupa com o conteúdo do pensamento, mas sim com <u>a maneira pela qual os pensamentos são organizados e apresentados</u>, possibilitando que cheguemos a uma conclusão por meio do encadeamento dos argumentos.

A lógica é a ciência que estuda as leis do raciocínio.

Correção/validação do pensamento.

Encadeamento/ordem de ideias.

Arte de bem pensar.

Exemplos de aplicação da lógica

O quarto está fechado e meu livro está no quarto.

Então...

...preciso primeiro abrir o quarto para pegar o livro.

Rosa é mãe de Ana, Paula é filha de Rosa, Júlia é filha de Ana. **Então...**

...Júlia é neta de Rosa e sobrinha de Paula.

Todo mamífero é animal e todo cavalo é mamífero.

Então...

...todo cavalo é animal.

Todo mamífero bebe leite e o homem bebe leite.

Então...

...todo homem é mamífero e animal (mas não é um

cavalo).

Resolva os seguintes problemas de lógica:

- P1 Uma lesma deve subir um poste de 10m de altura. De dia sobe 2m e à noite desce 1m. Em quantos dias atingirá o topo do poste?
- P2 Três gatos comem três ratos em três minutos. Cem gatos comem cem ratos em quantos minutos?
 - P3 O pai do padre é filho do meu pai. O que eu sou do Padre?
- P4 Se um bezerro pesa 75 kg mais meio bezerro, quanto pesa um bezerro inteiro?

P5 – Qual o próximo número da sequência 7, 8, 10, 13, 17?

Resolva os seguintes problemas de lógica:

- P1 Uma lesma deve subir um poste de 10m de altura. De dia sobe 2m e à noite desce 1m. Em quantos dias atingirá o topo do poste?

 R1 9(nove) dias
- P2 Três gatos comem três ratos em três minutos. Cem gatos comem cem ratos em quantos minutos?

R2 – 3 (três) minutos.

- P3 O pai do padre é filho do meu pai. O que eu sou do Padre?
- P4 Se um bezerro pesa 75 kg mais meio bezerro, quanto pesa um bezerro inteiro?

R4 – 150 (cento e cinquenta) kg.

P5 – Qual o próximo número da sequência 7, 8, 10, 13, 17?

P6 – Três senhoras – Dona Branca, Dona Rosa e Dona Violeta – passeavam pelo parque quando Dona Rosa disse:

- Não é curioso que estejamos usando vestidos de cores branca, rosa e violeta, embora nenhuma de nós esteja usando um vestido de cor igual ao seu próprio nome?
- É uma simples coincidência, respondeu a senhora com o vestido violeta. Qual a cor do vestido de cada senhora?

		Vestidos			
		Branco	Rosa	Violeta	
Dona	Branca				
	Rosa				
	Violeta				

Utilizamos o F para indicar FALSO

Utilizamos o V para indicar VERDADEIRO

P6 – Três senhoras – Dona Branca, Dona Rosa e Dona Violeta – passeavam pelo parque quando Dona Rosa disse:

- Não é curioso que estejamos usando vestidos de cores branca, rosa e violeta, embora nenhuma de nós esteja usando um vestido de cor igual ao seu próprio nome?
- É uma simples coincidência, respondeu a senhora com o vestido violeta. Qual a cor do vestido de cada senhora?

		Vestidos			
			Branco	Rosa	Violeta
Dona	Branca		F	F	V
	Rosa		V	F	F
	Violeta		F	V	F

Utilizamos o F para indicar FALSO

Utilizamos o V para indicar VERDADEIRO

Em Lógica um conceito importante é o de "Proposição"

Você sabe o que é uma PROPOSIÇÃO?

- Proposição: é um enunciado verbal, ao qual deve ser atribuído, <u>sem ambiguidade</u>, um valor lógico verdadeiro (V) ou falso (F).
 - Exemplos de proposições:
 - Robson Fidalgo é Professor. (V)
 - 3 + 5 = 10 (F)
 - 5 < 8 (V)
 - Contra-exemplos de Proposições:
 - Onde você vai?
 - 3+5
 - Os estudantes jogam vôlei. (Quais ?)

A realidade é complexa e rica em detalhes!

O que você abstrai dessa realidade?

Operação mental que observa a realidade e captura apenas os aspectos relevantes para um contexto

 Passe alguns segundos olhando para a figura abaixo e diga o que você consegue abstrair dela.

- Conseguiu ver uma jovem mulher?
- Ou um pássaro?

- Perceba que a realidade é a mesma.
 - Isto é, uma figura em preto e branco.

 Mas, dependendo da observação da realidade, você pode ter abstrações diferentes.

 Por isso, a abstração depende mais do observador do que da realidade observada.

 A tarefa de programar sistemas computacionais envolve o exercício constante da abstração da realidade e sua codificação em uma linguagem de programação.

Sistema Computacional

- O hardware de um sistema computacional pode ser agrupado nas seguintes categorias básicas:
 - Dispositivo de entrada de dados
 - Dispositivo de saída
 - Unidade Central de Processamento UCP
 - Memória Principal
 - Memória Auxiliar

Exemplo 1 – Exibir a média de dois números

O que é uma Linguagem de Programação?

Linguagem de programação =

conjunto de palavras e regras que permitem **comunicar** ao computador o que este deve **executar**

Em computação, uma linguagem de programação é a ferramenta de comunicação entre o programador que visa resolver um problema e o computador que irá ajudá-lo a resolver.

Tipos de Linguagens de Programação

1 – Linguagem de Máquina

• Possuía uma notação binária (zeros e uns), a qual tornava a programação trabalhosa, cansativa e fortemente sujeita a erros.

2 – Linguagem Assembly

- Surgiu para minimizar as dificuldades da programação em notação binária.
- Códigos de operação e endereços binários foram substituídos por mnemônicos.

3 – Linguagem de Alto Nível

- Aproxima-se das linguagens utilizadas por humanos para expressar problemas.
- Cada declaração numa linguagem de alto nível equivale a várias declarações numa linguagem de baixo nível.

Tipos de Linguagens de Programação

- 1 Totalmente codificadas em binário (0's e 1's).
- 2 Usa instruções simbólicas para representar os 0's e 1's.
- 3 Voltadas para facilitar o raciocínio humano.

Se o computador só entende linguagem de máquina, o que deve ser feito para que ele entenda programas em linguagem assembly ou de alto nível?

Usar um tradutor!

Programas no contexto de linguagens de programação são programas que recebem como entrada um programa em linguagem assembly ou de alto nível (dita linguagem fonte) e produzem como saída as instruções deste programa traduzidas para linguagem de máquina.

- Existem basicamente três tipos de tradutores:
 - Compilador
 - Interpretador
 - Montadores

Tipos de Tradutores

- 1) COMPILADOR: traduz de uma vez só todo o programa escrito em linguagem de alto nível (código-fonte) para um programa equivalente escrito em linguagem de máquina (código-objeto).
- 2) INTERPRETADOR: traduz (sem gerar código-objeto) e em seguida executa, uma-a-uma, as instruções de um programa em linguagem de alto nível (código-fonte).
- 3) MONTADOR (ou Assembler): faz a tradução direta das instruções Assembly para um programa equivalente escrito em linguagem de máquina.

Tipos de Tradutores

COMPILADOR X INTERPRETADOR

 O código objeto (tradução para a linguagem de máquina) que é produzido por um compilador pode ser executado várias vezes sem a necessidade de re-compilação. Essa só é necessária se o código-fonte for alterado.

 Todo programa interpretado deve re-executar o processo de interpretação, independentemente de ter havido ou não modificações no seu código-fonte.

- Tipos de Tradutores
 - COMPILADOR X INTERPRETADOR

Tópicos Iniciais

Identificadores e Palavras Reservadas

Identificadores:

 São nomes únicos definidos pelos programadores para identificar/distinguir os elementos de um programa.

Palavras Reservadas

 São instruções primitivas que têm significados prédeterminados e fazem parte da estrutura de qualquer linguagem de programação.

Nomes de Identificadores

Algumas regras para os nomes de Identificadores:

- 1) Devem começar por um caractere alfabético.
- 2) Podem ser seguidos por mais caracteres alfabéticos e/ou numéricos e/ou ponto "."
- Não é permitido o uso de espaço em branco ou de caracteres especiais, como: @, #, &, *, +, ?,\$ (exceto o _).
- 4) Não poderá ser uma palavra reservada a uma instrução do algoritmo.
- 5) Devem ser significativos.
- 6) Não podem ser repetidos dentro de um mesmo programa

Atividade

- Identifique os erros e reescreva os identificadores abaixo:
 - vm
 - 13salário
 - salário\$
 - salario_minimo
 - salario+reajuste
 - novoSalario
 - fumante?
 - preço medio
 - %desconto
 - km/h

Atividade - Respostas

- Identifique os erros e reescreva os identificadores abaixo:
 - vm → sem significado → valor_médio ou valor.medio
 - 13salário → não começa com caractere alfabético → salario13
 - salário\$ → usa caractere especial → salario ou salário
 - salario_minimo → correto
 - salario+reajuste → usa caractere especial → salário_reajustado
 - novoSalario → correto
 - fumante? → usa caractere especial → fumante
 - preço medio → tem espaço em branco → preço_medio
 - − %desconto → não começa com caractere alfabético → percentual_desconto
 - km/h usa caractere especial → km_por_hora

Tipos de Dados

 As fases de Entrada, Processamento e Saída podem manipular vários tipos primitivos de dados, a saber:

Tipo Primitivo	Descrição
Inteiro	Representa o conjunto de números inteiros
Real	Representa o conjunto de números reais
Caracter	Representa um ou mais caracteres do teclado
Lógico	Representa um valor lógico (V ou F).

- Obs: Um Caractere SEMPRE deve estar entre " "
 - EX: "A", "Fone 3333-3333", "1",

Atividade

Classifique os dados de acordo com o seu tipo, sendo (I = Inteiro, R = Real, C = Caractere e L = Lógico):

$$m()$$
 "o" $n() + 0.05$

Atividade - Respostas

Classifique os dados de acordo com o seu tipo, sendo
 (I = Inteiro, R = Real, C = Caractere e L = Lógico):

Constante e Variável

 Constante é um identificador que representa valores constantes, ou seja, que não variam no decorrer do programa.

 Seu uso poupa tempo quando tem que alterar o seu valor no programa.

 Ao trocar o valor de uma constante, todas as instruções que a usam irão manipular, automaticamente, o novo valor.

Variável e Constante

 Variável é um endereço físico da memória principal, que é representado por um identificador que, ao longo do seu tempo de existência, pode armazenar vários conteúdos de um único tipo pré-determinado.

Endereço Físico	Identificador	Conteúdo	Tipo
1000:2000	Nome	"João"	Caracter
2001:3000	RG	12345	Inteiro
3001:4000	Salário	999,99	Real
4001:5000	Fumante	F	Lógico

Variável e Constante

- Simplificando...
 - Considere que a memória principal do seu computador é um armário, onde cada gaveta é a uma variável.

RESOLVER A LISTA 01

Expressões

- Uma expressão é uma fórmula para processamento de um valor.
- As principais expressões são as seguintes:
 - Aritméticas: Retornam um valor numérico (inteiro ou real).
 - EX: 10+(3+1)/2
 - Lógicas: Retornam um valor lógico V ou F.
 - EX: (3=2+1) e (3>2)

- Obs: Ter atenção com as prioridades dos operadores!
 - -3+2*2=7

Use corretamente os parênteses!

-(3+2)*2 = 10

- Os operadores podem ser classificados em:
 - Binários: atuam sobre dois operandos.
 - Ex: operadores aritméticos básicos (+ * /)
 - Unários: atuam sobre um único operando.
 - Ex.: o sinal de (-) na frente de um número para inverter seu sinal.

- Tipos de operadores da nossa linguagem:
 - Atribuição
 - Aritméticos
 - Relacionais
 - Lógicos ou Booleanos

- Atribuição: serve para atribuir um valor a uma variável.
- Operador de atribuição " ← ", "<-" ou "="
 - EX:
 - Nome <- "Um nome";
 - Idade <- 18;
 - Casado <- F;
 - Salário <- 500.50;
 - A expressão do lado direito do operador é avaliada e seu resultado é armazenado na variável à esquerda.
 - Obs: A expressão deve retornar o mesmo tipo da variável, ENTRETANTO, A ATRIBUIÇÃO PODE SER FEITA NO SENTIDO CONTRÁRIO (50 -> S)

Aritméticos: são as operações aritméticas básicas

Operador	Tipo	Operação	Prioridade	Maior
-	Unário	Inversão do Sinal	1	
+	Unário	Manutenção do Sinal	1]
RAD(x)	Binário	Radiciação	2]
POT(x,y)	Binário	Potenciação	2	
DIV	Binário	Quociente da Divisão Inteira	3] dad
MOD	Binário	Resto da Divisão Inteira	3	prioridade
1	Binário	Divisão	3	n pr
*	Binário	Multiplicação	3	Ordem
-	Binário	Subtração	4	Ĭ
+	Binário	Adição	4	Menor

• Exemplos:

Operador	Operação	Exemplo	Resultado
+	Adição	4+3	7
-	Subtração	4-3	1
*	Multiplicação	4*3	12
1	Divisão	4/3	1,33
MOD	Resto da Divisão Inteira	4 %% 3	1
DIV	Quociente da Divisão Inteira	4 %/% 3	1
POT(x,y)	Potenciação	4^3	64
RAD(x)	Radiciação	sqrt(4)	2
+	Manutenção do Sinal	+- 4	- 4
-	Inversão do Sinal	4	+4

 Relacionais: são operadores binários (de mesma prioridade) que somente retornam os valores lógicos V ou F.

Operador	Comparação
>	maior que
<	menor que
>=	maior ou igual
<=	menor ou igual
=	igual
<>	diferente

- Estes somente são usados para efetuar comparações, as quais só podem ser feitas entre dados do mesmo tipo.
- O resultado de uma comparação é sempre um valor lógico.

• Exemplos:

Operador	Comparação	Exemplo	Resultado
>	maior que	4>3	V
<	menor que	4<3	F
>=	maior ou igual	4>=3	V
<=	menor ou igual	4<=3	F
=	igual	4==3	F
<>	diferente	4!=3	V

 Lógicos ou Booleanos: são usados para combinar expressões relacionais e lógicas. Também retornam como resultado valores lógicos V ou F.

Maior

Operador	Tipo	Operação	Prioridade
NÃO	Unário	Negação	1
E	Binário	Conjunção	2
OU	Binário	Disjunção	3

Menor

• Exemplos:

Operador	Operação	Exemplo	Resultado
OU	Disjunção	V ou F	V
E	Conjunção	VeF	F
NÃO	Negação	Não V	F

Lógica de Programação

 Operações Lógicas: são usadas para formar novas proposições a partir de proposições existentes.

Operação	Símbolo	Significado
Negação	!	Não
Conjunção	&	E
Disjunção		OU

Lógica de Programação

- Exemplos de aplicação das operações lógicas
 - Resumindo:

р	q	~p	p ^ q	pvq
V	V	F	V	V
V	F	F	F	V
F	٧	V	F	V
F	F	V	F	F

- Ou seja:
 - Não (~) troca o valor lógico. Se é F passa a ser V e vice-versa.
 - E (^) só tem valor V quando as duas proposições forem V. Basta uma proposição ser F para o resultado ser F.
 - OU (v) só tem valor F quando as duas proposições forem F. Basta uma proposição ser V para o resultado ser V.

Maior

Ordem de prioridades

_		•		
Operador	Prioridade	_	/ \ 1	
Aritméticos	1		de	
Relacional	2		rdem	
Lógico	3		Prio	
			Menc	ı Sr

Observações:

- Operadores de igual prioridade, execução da esquerda para direita.
- Para alterar a ordem de prioridade, utilizar parênteses.

RESOLVER A LISTA 02