

دانشکده مهندسی برق

الكترونيك آنالوگ

پروژه پایانی هلیا شاکری – ۴۰۰۱۰۱۳۸۹ مینه کلنتریان – ۴۰۰۱۰۱۸۱۵

دکتر اکبر نیمه دوم سال تحصیلی ۱۴۰۲–۱۴۰۳

۱ پرسش ها:

پرسش ۱. شکل کلی مدار

یک تقویت کننده عملیاتی CMOS با مشخصات زیر را با کمک ترانزیستور های PMOS و NMOS در تکنولوژی 180 نانومتر طراحی نمایید (مدل ترانزیستور های MOS برای طراحی و شبیه سازی در SPICE داده شده است.)

$$V_{DD} = 1.8V \qquad V_{SS} = 0V$$

سایر مشخصات تقویت کننده را تعیین و در جدولی ارائه نمایید.

شكل ١: مدار اصلى

Transistor	W	L
X1	$W_2(\mu m)$	L(nm)
X2	$W_2(\mu m)$	L(nm)
X3	$W_1(\mu m)$	L(nm)
X4	$W_1(\mu m)$	L(nm)
X5	$W_2(\mu m)$	L(nm)
X6	$W_2(\mu m)$	L(nm)
X7	$W_2(\mu m)$	L(nm)
X8	$W_2(\mu m)$	L(nm)
X9	$500(\mu m)$	180(nm)
X11	$W_3(\mu m)$	180(nm)
X12	$W_3(\mu m)$	180(nm)
X13	$239.58(\mu m)$	800(nm)
X14	$36(\mu m)$	180(nm)
X15	$36*n(\mu m)$	L(nm)
X16	$36*n(\mu m)$	L(nm)

پرسش ۲. بهره دیفرانسیلی و حاشیه فاز

بهره دیفرانسیلی و حاشیه فاز باید با اندازه های زیر باشند.

 $A_{Vd} \ge 110dB$ & $Phase Margin > 45^{\circ}$

شکل ۲: بهره دیفرانسیلی و حاشیه فاز

 $180^\circ - 134.4^\circ = 45.6^\circ$ حاشیه فازی که گرفتیم برابر است با : 110.177dB همچنین بهره دیفرانسیلی برابر است با

پرسش ۳. نویز

برای نویز باید مقدار به صورت زیر باشد.

$$V_{in,noise} \le 7 \frac{nV}{\sqrt{Hz}}$$

که $V_{in,noise}$ بیانگر نویز کل ارجاع داده شده به ورودی است.

شكل ٣: نويز

برای محاسبه نویز در ورودی داریم:

$$\frac{V_{out,noise}}{mag} = 6.958 * 10^{-9} = 6.958 \frac{nV}{\sqrt{Hz}}$$

پرسش ۴. توان مصرفی

توان مصرفی باید به اندازه زیر باشد.

$Power\ Consumption \leq 5mW$

time	TRAN.I_Probe2.i*1.8*1000
0.0000 sec	-4.417
10.00 nsec	-4.417
20.00 nsec	-4.417
50.00 nsec	-4.417
140.0 nsec	-4.417

شکل ۴: توان مصرفی

با توجه به جدول، توان مصرفی ما برابر است با:

4.417mW

 $egin{aligned} \textbf{CMRR} & \textbf{.a.} \end{aligned}$ پرسش CMRR مقدار CMRR باید به صورت زیر باشد.

$CMRR \ge 110dB$

شکل ۵: بهره مد مشترک

میدانیم که فرمول CMRR به صورت زیر است.

$$CMRR = 20*log_{10}(\frac{A_{Vd}}{A_{Vcm}})$$

همچنین با توجه به شکل 2 در پرسش 2 که در آن بهره تفاضلی را به دست آوردیم و همچنین با توجه به شکل 5 که در همین پرسش هست، را حساب می کنیم و مقدارش برابر است با :

 $CMRR = 20 * log_{10}(\frac{A_{Vd}}{A_{Vcm}}) = 20 * log_{10}(A_{Vd}) - 20 * log_{10}(A_{Vcm}) = 110.177 - (-50.927) = 161.104dB$

پرسش ۶ سویینگ

سویینگ خروجی در حالت فیدبک می بایست حداقل، V_{p-p} باشد. این تقویت کننده در فیدبک واحد به صورت زیر مورد استفاده قرار می گیرد.

شکل ۶: تقویت کننده در فیدبک واحد

شکل ۷: سویینگ

یس از اتصال مدار به صورت فیدبک با توجه به شکل 6 ، سویینگ peak-to-peak پس از اتصال مدار به صورت فیدبک با توجه به شکل $V_{p-p}=1.734-0.059=1.675V$

پرسش ۱۷. Slew rate و زمان نشست

ر این مدار، Slew rate باید بهتر از $\frac{V}{\mu s}$ و زمان نشست مدار به 99% مقدار نهایی باید بهتر از 50 نانو ثانیه باشد.

شکل ۱۸: Slew rate و زمان نشست

ا با توجه به نمودار، Slew rate ما برابر است با:

$$\frac{1.179 - 1.019}{0.002} = 80 \frac{V}{\mu s}$$

برای زمان نشست، یک پالس به ورودی مدار داده و خروجی آن در تصویر قابل مشاهده است و زمان نشست مدار نیز به %99 مقدار نهایی، تقریبا برابر 10 نانو ثانیه شده است.