Proof Practice

(a) Prove that $\forall n \in \mathbb{N}$, if n is odd, then $n^2 + 1$ is even. (Recall that n is odd if n = 2k + 1 for some natural number k.)

$$(2k+1)^{2}+1 = 4k^{2}+4k+1+1 = 2(2k^{2}+2k+1)$$

(b) Prove that $\forall x, y \in \mathbb{R}$, $\min(x, y) = (x + y - |x - y|)/2$. (Recall, that the definition of absolute value for a real number z, is

value for a real number z, is

$$\frac{x < y}{x + y - |x - y|} \qquad |z| = \begin{cases} z, & z \ge 0 \\ -z, & z < 0 \\ x + y - |x - y| \end{cases}$$

$$= \frac{x + y - (-x + y)}{2} \qquad = \frac{x + y - (x - y)}{2}$$

$$= \chi \qquad (A \subset B) \Rightarrow \vartheta(A) \subseteq \vartheta(B) \qquad = y$$

(c) Suppose $A \subseteq B$. Prove $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. (Recall that $A' \in \mathscr{P}(A)$ if and only if $A' \subseteq A$.)

For a function f, define the image of a set X to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets. By doing so, you will show that inverse images preserve set operations, but images typically do not.

Recall: For sets X and Y, X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x) ((x \in X) \implies (x \in Y))$.

(a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

1

CS 70, Fall 2020, DIS 01A

$$x \in f^{-1}(A \cup B) = x \in (f^{-1}(A) \cup f^{-1}(B))$$

(b) $f(A \cup B) = f(A) \cup f(B)$.

3 Fermat's Contradiction

Prove that $2^{1/n}$ is not rational for any integer $n \ge 3$. (*Hint*: Use Fermat's Last Theorem. It states that there exists no positive integers a, b, c s.t. $a^n + b^n = c^n$ for $n \ge 3$.)

4 Pebbles

Suppose you have a rectangular array of pebbles, where each pebble is either red or blue. Suppose that for every way of choosing one pebble from each column, there exists a red pebble among the chosen ones. Prove that there must exist an all-red column.