Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Методы машинного обучения» на тему «Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-21М Сенин С.С.

3.2. Основные характеристики набора данных

In [4]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

In [5]:

```
data = pd.read_csv('./TSLA.csv')
```

In [5]:

```
data.shape
```

Out[5]:

(24**1**6**,** 7)

In [4]:

```
data.head()
```

Out[4]:

	Date	Open	High	Low	Close	Adj Close	Volume
Đ	2010-06-29	19.000000	25.00	17.540001	23.889999	23.889999	18766300
1	2010-06-30	25.790001	30.42	23.299999	23.830000	23.830000	17187100
2	2010-07-01	25.000000	25.92	20.270000	21.959999	21.959999	8218800
3	2010-07-02	23.000000	23.10	18.709999	19.200001	19.200001	5139800
4	2010-07-06	20.000000	20.00	15.830000	16.110001	16.110001	6866900

In [5]:

data.describe()

Out[5]:

	Open	High	Low	Close	Adj Close	Volume
count	2416.000000	2416.000000	2416.000000	2416.000000	2416.000000	2.416000e+03
mean	186.271147	189.578224	182.916639	186.403651	186.403651	5.572722e+06
std	118.740163	120.892329	116.857591	119.136020	119.136020	4.987809e+06
min	16.1399 9 9	16.629999	14.980000	15.800000	15.800000	1.185000e+05
25%	34.342498	34.897501	33.587501	34.400002	34.400002	1.8992 75 e+06
50%	213.035003	216.745002	208.870002	212.960007	212.960007	4.578400e+06
75%	266.450012	270.927513	262.102501	266.7749 9 4	266.774994	7.361150e+06
max	673.690002	786.140015	673.520020	780.000000	780.000000	4.706500e+07

In [6]:

```
total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))
```

Всего строк: 2416

In [7]:

```
data.columns
```

Out[7]:

```
Index(['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume'], dty
pe='object')
```

In [8]:

```
data.dtypes
```

Out[8]:

Date object
Open float64
High float64
Low float64
Close float64
Adj Close float64
Volume int64
dtype: object

```
In [9]:

for col in data.columns:
    # Konumecmbo nycmux знамений - Bce знамения заполнены
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))

Date - 0
Open - 0
High - 0
Low - 0
Close - 0
Adj Close - 0
Volume - 0
In [10]:

data['Volume'].unique()
```

```
array([18766300, 17187100, 8218800, ..., 29005700, 15719300, 47065000],
dtype=int64)
```

3.3. Визуальное исследование датасета

Out[10]:

In [11]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Open', y='Close', data=data)
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x29a30ff5a20>

In [12]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='Open', y='Close', data=data, hue='Volume')
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x29a312e7978>

In [13]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['Close'])
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x29a310fd160>

In [14]:

```
sns.jointplot(x='Open', y='Close', data=data)
```

Out[14]:

<seaborn.axisgrid.JointGrid at 0x29a311c79e8>

In [15]:

```
sns.jointplot(x='Open', y='Close', data=data, kind="hex")
```

Out[15]:

<seaborn.axisgrid.JointGrid at 0x29a3566f4a8>

In [16]:

```
sns.jointplot(x='Open', y='Close', data=data, kind="kde")
```

Out[16]:

<seaborn.axisgrid.JointGrid at 0x29a356c7128>

In [17]:

sns.pairplot(data)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x29a35a9d208>

In []:

sns.pairplot(data, hue="Volume")

In [4]:

sns.boxplot(x=data['Close'])

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0aa94e94e0>

In [8]:

sns.boxplot(y=data['Close'])

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ad0226aeb8>

In [5]:

```
# Распределение параметра Close сгруппированные по Volume.
sns.boxplot(x='Volume', y='Close', data=data)
```

Out[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0aa98f52e8>

In [11]:

sns.violinplot(x=data['Close'])

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ad29e28358>

In [12]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['Close'])
sns.distplot(data['Close'], ax=ax[1])
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ad2ad8b0f0>

In [6]:

```
# Распределение параметра Close сгруппированные по Volume.
sns.violinplot(x='Volume', y='Close', data=data)
```

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f0a74b3a828>

In [7]:

```
sns.catplot(x='Close', y='Volume', data=data, kind="violin", split=True)
```

Out[7]:

<seaborn.axisgrid.FacetGrid at 0x7f0a82c3b358>

3.4. Информация о корреляции признаков

In [15]:

data.corr()

Out[15]:

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.999425	0.999575	0.998886	0.998886	0.501762
High	0.999425	1.000000	0.999389	0.999640	0.999640	0.512944
Low	0.999575	0.999389	1.000000	0.999447	0.999447	0.493496
Close	0.998886	0.999640	0.999447	1.000000	1.000000	0.505169
Adj Close	0.998886	0.999640	0.999447	1.000000	1.000000	0.505169
Volume	0.501762	0.512944	0.493496	0.505169	0.505169	1.000000

На основе корреляционной матрицы можно сделать следующие выводы:

- Целевой признак наиболее сильно коррелирует с High (0.51), Close (0.51), Adj C lose (0.51). Эти признаки обязательно следует оставить в модели.
- Close и Adj Close очень сильно коррелируют между собой (1.0). Поэтому из этих признаков в модели можно оставлять только один (Adj Close). Так же Adj Close си льно коррелирует с признаком High, поэтому в модели следует оставить один из ни х.
- Целевой признак слабо коррелирует с Low (0.49) и Open (0.5). Скорее всего эти признаки стоит исключить из модели, возможно они только ухудшат качество модел и.

In [16]:

data.corr(method='pearson')

Out[16]:

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.999425	0.999575	0.998886	0.998886	0.501762
High	0.999425	1.000000	0.999389	0.999640	0.999640	0.512944
Low	0.999575	0.999389	1.000000	0.999447	0.999447	0.493496
Cl o se	0.998886	0.999640	0.999447	1.000000	1.000000	0.505169
Adj Close	0.998886	0.999640	0.999447	1.000000	1.000000	0.505169
Volume	0.501762	0.512944	0.493496	0.505169	0.505169	1.000000

In [17]:

data.corr(method='kendall')

Out[17]:

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.977079	0.975793	0.963064	0.963064	0.431806
High	0.977079	1.000000	0.974701	0.977703	0.977703	0.440331
Low	0.975793	0.974701	1.000000	0.977783	0.977783	0.422738
Close	0.963064	0.977703	0.977783	1.000000	1.000000	0.431425
Adj Close	0.963064	0.977703	0.977783	1.000000	1.000000	0.431425
Volume	0.431806	0.440331	0.422738	0.431425	0.431425	1.000000

In [18]:

data.corr(method='spearman')

Out[18]:

	Open	High	Low	Close	Adj Close	Volume
Open	1.000000	0.999020	0.998976	0.997917	0.997917	0.620959
High	0.999020	1.000000	0.998844	0.999124	0.999124	0.629215
Low	0.998976	0.998844	1.000000	0.999125	0.999125	0.612200
Close	0.997917	0.999124	0.999125	1.000000	1.000000	0.620424
Adj Close	0.997917	0.999124	0.999125	1.000000	1.000000	0.620424
Volume	0.620959	0.629215	0.612200	0.620424	0.620424	1.000000

In [19]:

sns.heatmap(data.corr(), cmap='YlGnBu', annot=True, fmt='.3f')

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ad35da6be0>

In [24]:

```
# Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
# чтобы оставить нижнюю часть матрицы
# mask[np.triu_indices_from(mask)] = True
# чтобы оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ad371a0160>

In [25]:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
fig.suptitle('Корреляционные матрицы, построенные различными методами')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```


На тепловых картах видно, что признаки достаточно сильно коррелируют друг с другом. Однако, целевой признак наиболее сильно коррелирует с Наивысшей ценой (0.51), Ценой закрытия торгов (0.51), Скорректированной ценой закрытия (0.51). Эти признаки обязательно следует оставить в модели. Цена закрытия торгов и Скорректированная цена закрытия очень сильно коррелируют между собой (1.0). Поэтому из этих признаков в модели можно оставлять только один (Скорректированную цену закрытия). Так же Скорректированная цена закрытия сильно коррелирует с признаком Наивысшая цена, поэтому в модели следует оставить один из них. Целевой признак слабо коррелирует с Самой низкой ценой (0.49) и Начальной ценой (0.5). Скорее всего эти признаки стоит исключить из модели, возможно они только ухудшат качество модели.

Список литературы

- 1. Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. 2019. Режим досту- па: https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION (https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION) (дата обращения: 13.02.2019).
- 2. Tesla stock data from 2010 to 2020 [Electronic resource] // Kaggle. 2020. Access mode: https://www.kaggle.com/timoboz/tesla-stock-data-from-2010-to-2020 (https://www.kaggle.com/timoboz/tesla-stock-data-from-2010-to-2020) (online; accessed: 18.02.2020).
- 3. Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/ (https://ipython.readthedocs.io/en/) stable/ (online; accessed: 20.02.2019).
- 4. Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (https://seaborn.pydata.org/) (online; accessed: 20.02.2019).
- pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/) (online; accessed: 20.02.2019).
- Chrétien M. Convert datetime.time to seconds [Electronic resource] // Stack Over- flow. 2017. —
 Access mode: https://stackoverflow.com/a/44823381 (https://stackoverflow.com/a/44823381) (online; accessed: 20.02.2019).