Medically Informed Stable Diffusion (MISD)

Laura Rojas, Nishanth Marer, Hebron Taylor

Introduction

Medical Interpretability

Importance:

- Clinical Relevance
- Diagnostic Insights
- Ethical Considerations

Challenges:

- Data Complexity
- Biological Realism
- Validation / Evaluation
- Incorporating Domain Knowledge

Data Augmentation for Medical Imaging

- Data Transformation
 - Affine Transformation
 - Erasing Transformation
 - Elastic Transformation
 - Pixel-Level Transformation
- Generation of Artificial Data
 - Generative Adversarial Networks
 - Feature Mixing Methods
 - Model-based Modification
 - Reconstruction-based Methods

Gaussian Blur Crop **Ghosting Artefact** Spike Artefact Random Swap Original image Flip Gaussian Noise Affine transformation **Motion Artefact Biasfield Artefact**

Image to Image with GAN

- Generative Adversarial Network
 - Generator vs Discriminator
- Source-Target Mapping
 - Capture characteristics of image collection
 - Translate characteristics into other images
- Synthetic Data
 - Cheaper
 - Cannot be re-identified

Image to Image with Stable Diffusion

- Diffusion Model
 - Generates realistic, high-resolution images
 - Class-conditional image synthesis
- Trainable with limited data
 - Requires 200 images to fine-tune
- Synthetic Data
 - Cheaper
 - Cannot be re-identified

Proposal

Proof of Concept - Model Structure

- 1. ControlNet
 - "Conditioning Image" guides image generation by adding constraints
- 2. StableDiffusion
 - Uses prompt to generate image
- 3. UNet
 - Image to image training to refine generated image
- 4. Textual Inversion
 - Trains text embeddings

Diagram

Proof of Concept

Prompt Engineering

- Training images require custom captions
- image-to-caption generators are not so good
- Must engineer effective & unique captions

- Intricate brain MRI reveals neural networks in stunning detail
- 2 CT scan showcases brain structures with high-resolution clarity
- B Detailed MRI maps brain activity patterns for neurological insights
- CT imaging unveils brain anatomy in precise cross-sectional views
- 5 Brain MRI offers unparalleled insights into neural connectivity
- 6 CT scan captures intricate brain structures in detailed cross-sections

Stable Diffusion: prompt only

"brain CT scan"

- Abstract concept of 'brain'
- Cinematographic
- Not medically accurate
- Undesired details

No Style

Default - Cinematographic

ControlNet: image-guided with prompt

"brain CT scan"

- No concept of 'brain'
- Follows depth-map
- Not medically accurate
- Undesired details

Original

ControlNet

Fine Tuned: pretrained model with prompt only

"brain CT scan"

- Fine-tuned concept of "brain"
- Ability to create multiple images with slight variations in the internal structure while maintaining overall integrity
- Needs more guidance in terms of more finer details for better image generation

Fine Tuned + ControlNet: image and prompt

"brain CT"

- Fine-tuned concept of "brain"
- Guided image generation
- Enforces constraints

Original

Fine Tuned + ControlNet

Next Steps

Biology-Informed Neural Network

- Add constraints to optimization algorithm
- Constraints inform model how to properly create images

Conclusion

Thank You

References

- https://hai.stanford.edu/news/could-stable-diffusion-solve-gap-medical-i maging-data
- https://ieeexplore.ieee.org/document/10049010
- https://arxiv.org/abs/2303.13430
- https://www.sciencedirect.com/science/article/pii/S001048252201099X#b
 34
- https://openaccess.thecvf.com/content iccv 2017/html/Zhu Unpaired Image-To-Image Translation ICCV 2017 paper.html
- https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dat aset