ENGR 504 (Fall 2024) S. Alghunaim

3. Norm and distance

- norm, distance, angle
- application examples
- standard deviation, correlation
- complexity
- clustering

Euclidean norm

Euclidean norm of vector $a \in \mathbb{R}^n$:

$$\|a\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2} = \sqrt{a^T a}$$

- reduces to absolute value |a| when n = 1
- measures the magnitude of a
- examples

$$\left\| \begin{bmatrix} 2\\ -1\\ 2 \end{bmatrix} \right\| = \sqrt{9} = 3, \quad \left\| \begin{bmatrix} 0\\ -1 \end{bmatrix} \right\| = 1$$

Properties

Positive definiteness

$$||a|| \ge 0$$
 for all a , $||a|| = 0$ only if $a = 0$

Homogeneity

$$\|\beta a\| = |\beta| \|a\|$$
 for all vectors a and scalars β

Triangle inequality

$$||a+b|| \le ||a|| + ||b||$$
 for all vectors a and b of equal length

- any real function that satisfies these properties is called a (general) norm
- Euclidean norm is often written as $||a||_2$ to distinguish from other norms
- examples are the one-norm and infinity-norm

$$||a||_1 = |a_1| + |a_2| + \dots + |a_n|$$

 $||a||_{\infty} = \max\{|a_1|, |a_2|, \dots, |a_n|\}$

Norm of block vector and norm of sum

Norm of block vector: for vectors a, b, c,

$$\left\| \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\| = \sqrt{\|a\|^2 + \|b\|^2 + \|c\|^2} = \|(\|a\|, \|b\|, \|c\|)\|$$

Norm of sum: for vectors a, b,

$$\|a+b\| = \sqrt{\|a\|^2 + 2a^Tb + \|b\|}$$

Cauchy-Schwarz inequality

$$|a^Tb| \le ||a|| ||b||$$
 for all $a, b \in \mathbb{R}^n$

moreover, equality $|a^Tb| = ||a|| ||b||$ holds if:

- a = 0 or b = 0; in this case $a^T b = 0 = ||a|| ||b||$
- $b = \gamma a$ for some $\gamma > 0$; in this case

$$0 < a^T b = \gamma ||a||^2 = ||a|| ||b||$$

• $b = -\gamma a$ for some $\gamma > 0$; in this case

$$0 > a^T b = -\gamma ||a||^2 = -||a|| ||b||$$

Proof of Cauchy-Schwarz inequality

- 1. trivial if a = 0 or b = 0
- 2. assume ||a|| = ||b|| = 1; we show that $-1 \le a^T b \le 1$

$$0 \le ||a - b||^{2} \qquad 0 \le ||a + b||^{2}$$

$$= (a - b)^{T} (a - b) \qquad = (a + b)^{T} (a + b)$$

$$= ||a||^{2} - 2a^{T}b + ||b||^{2} \qquad = ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$= 2(1 - a^{T}b) \qquad = 2(1 + a^{T}b)$$

with equality only if a = b

with equality only if a = -b

3. for general nonzero a, b, apply case 2 to the unit-norm vectors

$$\frac{1}{\|a\|}a, \quad \frac{1}{\|b\|}b$$

Triangle inequality from Cauchy-Schwarz inequality

for vectors a, b of equal size

$$||a+b||^2 = (a+b)^T (a+b)$$

$$= a^T a + b^T a + a^T b + b^T b$$

$$= ||a||^2 + 2a^T b + ||b||^2$$

$$\le ||a||^2 + 2||a|| ||b|| + ||b||^2$$

$$= (||a|| + ||b||)^2$$

- · taking square roots gives the triangle inequality
- triangle inequality is an equality if and only if $a^Tb = ||a|| ||b||$
- also note from line 3 that $||a + b||^2 = ||a||^2 + ||b||^2$ if $a^T b = 0$

Euclidean distance

Euclidean distance between two vectors a and b,

$$dist(a,b) = ||a - b||$$

• agrees with ordinary distance for n = 1, 2, 3

2-D illustration

 when the distance between two vectors is small, we say they are 'close' or 'nearby', and when the distance is large, we say they are 'far'

Triangle inequality

- triangle with vertices at positions *a*, *b*, *c*
- edge lengths are ||a-b||, ||b-c||, ||a-c||
- by triangle inequality

$$||a-c|| = ||(a-b) + (b-c)|| \le ||a-b|| + ||b-c||$$

i.e., third edge length is no longer than sum of other two

Angle between vectors

the angle between nonzero real vectors a, b is defined as

$$\theta = \angle(a,b) = \arccos\left(\frac{a^Tb}{\|a\|\|b\|}\right)$$

- this is the unique value of $\theta \in [0, \pi]$ that satisfies $a^T b = ||a|| ||b|| \cos \theta$
- coincides with ordinary angle between vectors in 2-D and 3-D
- symmetric: $\angle(a,b) = \angle(b,a)$
- unaffected by scaling: $\angle(\alpha a, \beta b) = \angle(a, b)$

Classification of angles

$$\begin{array}{c|ccc}
\theta = 0 & & a^{T}b = ||a||||\\
0 \le \theta < \pi/2 & & a^{T}b > 0\\
\theta = \pi/2 & & a^{T}b = 0\\
\pi/2 < \theta \le \pi & & a^{T}b < 0\\
\theta = \pi & & a^{T}b = -||a|||
\end{array}$$

Example: Spherical distance

if a,b are on sphere of radius R, distance along the sphere is $R \angle (a,b)$

norm, distance, angle SA — ENGR504 3.12

Norm of sum via angles

for vectors a and b we have

$$||a + b||^2 = ||a||^2 + 2a^T b + ||b||^2$$
$$= ||a||^2 + 2||a|| ||b|| \cos \theta + ||b||^2$$

- if a and b are aligned $(\theta = 0)$, then ||a + b|| = ||a|| + ||b||
- if a and b are orthogonal $(\theta = 90^{\circ})$, then

$$||a + b||^2 = ||a||^2 + ||b||^2$$

and $||a + b|| = \sqrt{||a||^2 + ||b||^2}$ (called the Pythagorean theorem)

Units for heterogeneous vector entries

$$||a-b||^2 = (a_1-b_1)^2 + \cdots + (a_n-b_n)^2$$

- suppose entries of vectors a_i, b_i represent different types of quantities
- choice of units for each entry affects the distance/angle between a and b
- general rule: choose units so typical vector entries have similar ranges of values

Outline

- norm, distance, angle
- application examples
- standard deviation, correlation
- complexity
- clustering

Feature distance and nearest neighbors

Feature distance

- let x and y be feature vectors for two entities
- ||x y|| is the *feature distance*; gives a measure of how different the objects are
 - example: features associated with patients in a hospital (weight, age, results of tests)
 - feature vector distance gives similarity between one patient case and another one

Nearest neighbor

- z_1, \ldots, z_m is a list of vectors
- z_i is the nearest neighbor of x if

$$||x-z_i|| \le ||x-z_i||, \quad i = 1, \dots, m$$

Document dissimilarity

- if x_i represent histogram of word occurrence in document i
- $||x_i x_j||$ measures the dissimilarity between documents

Example

- 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- · word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans	Memorial	Academy	Golden Globe	Super Bowl	
	Day	Day	Awards	Awards	Super bowi	
Veterans Day	0	0.095	0.130	0.153	0.170	
Memorial Day	0.095	0	0.122	0.147	0.164	
Academy A.	0.130	0.122	0	0.108	0.164	
Golden Globe A.	0.153	0.147	0.108	0	0.181	
Super Bowl	0.170	0.164	0.164	0.181	0	

Document dissimilarity by angles

- if *n*-vectors x_i are word counts for documents, their angle $\angle(x_i, x_j)$ can be used as a measure of document dissimilarity
- example: pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans		Memorial	Academy	
	Day	Day	Awards	Awards	
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A.	87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

application examples SA_FNGF04 3.17

Outline

- norm, distance, angle
- application examples
- standard deviation, correlation
- complexity
- clustering

RMS value

the *root-mean-square* value of $a \in \mathbb{R}^n$ is the root of the average squared entry

$$\mathrm{rms}(x) = \sqrt{\frac{a_1^2 + \cdots + a_n^2}{n}} = \frac{\|a\|}{\sqrt{n}}$$

- it is root of mean-square value: $ms = (a_1^2 + \cdots + a_n^2)/n$
- RMS value useful for comparing sizes of vectors of different lengths
- rms(a) gives 'typical' value of $|a_i|$
- e.g., $rms(\alpha 1) = |\alpha|$ (independent of n)
- rms(a b) is called the RMS *deviation* between a and b

Standard deviation

the *standard deviation* of $a \in \mathbb{R}^n$ is

$$std(a) = rms(a - avg(a)1) = ||a - ((1^{T}a)/n)1|| / \sqrt{n}$$

- std is RMS deviation from the average
- std "tells" us the typical amount a vector entries deviate from their average
- $\tilde{a} = a \text{avg}(a)$ is called *de-meaned* vector (since $\text{avg}(\tilde{a}) = 0$)
- other notation: μ and σ are often used for mean and standard deviation

Standard deviation formula

$$rms(a)^2 = avg(a)^2 + std(a)^2$$

Proof

$$std(a)^{2} = \frac{\|a - \text{avg}(a)\mathbf{1}\|^{2}}{n}$$

$$= \frac{1}{n} \left(a - \frac{\mathbf{1}^{T}a}{n} \mathbf{1} \right)^{T} \left(a - \frac{\mathbf{1}^{T}a}{n} \mathbf{1} \right)$$

$$= \frac{1}{n} \left(a^{T}a - \frac{(\mathbf{1}^{T}a)^{2}}{n} - \frac{(\mathbf{1}^{T}a)^{2}}{n} + \left(\frac{\mathbf{1}^{T}a}{n} \right)^{2} n \right)$$

$$= \frac{1}{n} \left(a^{T}a - \frac{(\mathbf{1}^{T}a)^{2}}{n} \right)$$

$$= rms(a)^{2} - a v g(a)^{2}$$

Mean return and risk of investment

- vectors represent time series of returns on an investment (as a percentage)
- average value is (mean) return of the investment
- standard deviation measures variation around the mean, i.e., risk

Chebyshev inequality

- assume that k of the numbers $|x_1|, \ldots, |x_n|$ are $\geq \alpha$
- then k of the numbers x_1^2,\ldots,x_n^2 are $\geq \alpha^2$
- $\bullet \ \text{ so } \|x\|^2 = x_1^2 + \dots + x_n^2 \geq k\alpha^2$

Chebyshev inequality

$$k \le ||x||^2/\alpha^2$$

- number of x_i with $|x_i| \ge a$ is no more than $||x||^2/\alpha^2$
- in terms of RMS value:

(fraction of entries with
$$|x_i| \ge \alpha$$
) = $\frac{k}{n} \le \left(\frac{\operatorname{rms}(x)}{\alpha}\right)^2$

- for $\alpha = 5 \text{rms}(x)$, no more than $\frac{1}{25} = 4\%$ of entries of x satisfy $|x_i| \ge 5 \text{rms}(x)$
- RMS value indicate that not too many of the entries of a vector can be much bigger (in absolute value) than its RMS value

Chebyshev inequality for standard deviation

if k is the number of entries of x that satisfy $|x_i - \text{avg}(x)| \ge \alpha$, then

$$\frac{k}{n} \le \left(\frac{\operatorname{std}(x)}{\alpha}\right)^2$$

- rough idea: most entries of x are not too far from the mean
- example: for return time series with mean 8% and standard deviation (risk) 3%, loss $(x_i \le 0)$ can occur in no more than $(3/8)^2 = 14.1\%$ of periods
- by Chebyshev inequality, fraction of entries of x with

$$|x_i - \operatorname{avg}(x)| \ge \beta \operatorname{std}(x)$$

is no more than $1/\beta^2$ (for $\beta > 1$)

- fraction of entries of x within β standard deviations of avg(x) is at least $1 - 1/\beta^2$

Correlation coefficient

correlation coefficient (between a and b)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

where vectors \tilde{a} and \tilde{b} are de-meaned vectors ($\tilde{a} \neq 0, \tilde{b} \neq 0$):

$$\tilde{a} = a - \text{avg}(a)\mathbf{1}, \quad \tilde{b} = b - \text{avg}(b)\mathbf{1}$$

- $\rho = \cos \angle (\tilde{a}, \tilde{b})$ hence $-1 \le \rho \le 1$
- $\rho = 0$, a and b are uncorrelated
- $\rho > 0.8$ (or so), a and b are highly correlated
- $\rho < -0.8$ (or so), a and b are highly anti-correlated
- highly correlated "means" many a_i, b_i are both above (below) their means

Example

Examples

highly correlated vectors:

- · rainfall time series at nearby locations
- daily returns of similar companies in same industry
- word count vectors of closely related documents (e.g., same author, topic, ...)
- sales of shoes and socks (at different locations or periods)

approximately uncorrelated vectors

- unrelated vectors
- audio signals (even different tracks in multi-track recording)

(somewhat) negatively correlated vectors

daily temperatures in Palo Alto and Melbourne

Properties and standardization

Properties of standard deviation

- adding a constant: $std(a + \beta 1) = std(a)$ for vector a and number β
- multiplying by a scalar: $std(\beta a) = |\beta| std(a)$ for vector a and number β
- $sum: std(a+b) = \sqrt{std(a)^2 + 2\rho std(a) std(b) + std(b)^2}$ for vectors a, b

Standardization

de-meaned vector of a in standard units is

$$z = \frac{1}{\operatorname{std}(a)}(a - \operatorname{avg}(a)\mathbf{1})$$

- z is called *standardized* or z-scored version of a (avg(z) = 0 and std(z) = 1)
- $z_4 = 1.4$ means x_4 is 1.4 standard deviations above the mean of entries of x

Example: Hedging investments

- a and b are time series of returns for two assets with the same return (average) μ, risk (standard deviation) σ, and correlation coefficient ρ
- c = (a + b)/2 is time series of returns for an investment with 50% in each asset
- this blended investment has the same return as the original assets, since

$$avg(c) = avg((a + b)/2) = (avg(a) + avg(b))/2 = \mu$$

• the risk (standard deviation) of this blended investment is

$$\mathrm{std}(c) = \sqrt{2\sigma^2 + 2\rho\sigma^2}/2 = \sigma\sqrt{(1+\rho)/2}$$

- risk of the blended investment is never more than the risk of the original assets, and is smaller when the correlation of the original asset returns is smaller
- investing in two uncorrelated or negativ. correlated assets is called hedging

Outline

- norm, distance, angle
- application examples
- standard deviation, correlation
- complexity
- clustering

Complexity of norms

for n-vectors

- ||x|| requires 2n flops
 - n multiplications (to square each entry)
 - -n-1 additions (to add the squares)
 - one squareroot
- RMS value costs 2n (ignore two flops from division of \sqrt{n})
- distance between two vectors costs 3n flops
- angle between them costs 6n flops
- de-meaning an *n*-vector requires 2*n* flops
 - n for forming the average
 - n flops for subtracting the average from each entry
- standard deviation costs 4n flops
 - 2n for computing the de-meaned vector
 - 2n for computing its RMS value
- correlation coefficient costs 10n flops to compute

Outline

- norm, distance, angle
- application examples
- standard deviation, correlation
- complexity
- clustering

Clustering

- given Nn-vectors x_1, \ldots, x_N (features)
- goal: partition (divide, group, cluster) vectors into k groups (k << N)
- we want vectors in the same group to be close to each other

Example (N = 300, k = 3)

Examples

- topic discovery
 - x_i is word count histogram for document i
 - clustering algorithm groups documents with similar topics, genre, or author

patient clustering

- x_i are patient features (test results, symptoms, ..etc)
- clustering algorithm groups similar patients together

· customer market segmentation

- $-x_i$ is purchase quantities of items purchased by customer i
- clustering algorithm groups customers with similar purchasing patterns

financial sectors

- $-x_i$ is financial attributes of company i (total capitalization, quarterly return, profits,...)
- clustering algorithm groups companies into sectors (companies with similar attributes)

color images

- x_i are RGB pixel values
- clustering algorithm groups images with similar colors

Clustering objective

Specifying clusters assignment

- c_i is group number that x_i is assigned to (i = 1, ..., N)
- G_j is set of (indices) corresponding to group $j = 1, \ldots, k$
 - example: N = 5 vectors and k = 3 groups
 - -c = (3, 1, 1, 1, 2) means x_1 is assigned to group 3, x_2 is assigned to group 1,...
 - $-G_1 = \{2, 3, 4\}, G_2 = \{5\}, G_3 = \{1\}$

Group representatives

- *n*-vectors z_1, \ldots, z_k are group representatives
- we want $||x_i z_{c_i}||$ to be small $(z_{c_i}$ is representative vector associated x_i)

Objective: mean square distance from vectors to associated representative

$$J^{\text{clust}} = (\|x_1 - z_{c_1}\|^2 + \dots + \|x_N - z_{c_N}\|^2)/N$$

- J^{clust} small means good clustering
- ullet goal: choose clustering c_i and representatives z_i to minimize $J^{
 m clust}$

Partitioning the vectors given the representatives

- assume group representatives z_1, \ldots, z_k are given (fixed)
- how to choose c_1, \ldots, c_N to minimize J^{clust} ? (how to assign vectors to groups)

Partitioning the vectors given z_i

- c_i only appears in term $||x_i z_{c_i}||^2$ in J^{clust}
- to minimize over c_i , choose c_i to be the value of j that minimizes $||x_i z_j||^2$

$$c_i = \underset{i=1,\dots,k}{\operatorname{argmin}} \|x_i - z_j\|^2$$

i.e., assign each vector to its nearest neighbor representative

• so the value of J^{clust} is

$$J^{\text{clust}} = \left(\min_{j=1,\dots,k} \|x_1 - z_j\|^2 + \dots + \min_{j=1,\dots,k} \|x_N - z_j\|^2 \right) / N$$

this is mean squared distance from data vectors to their closest representative

Choosing representatives given the partition

given G_1, \ldots, G_k , how do we choose z_1, \ldots, z_k to minimize J^{clust} ?

Choosing z_i given G_i

• J^{clust} splits into a sum of k sums, one for each z_i :

$$J^{\text{clust}} = J_1 + \dots + J_k, \quad J_j = (1/N) \sum_{i \in G_i} ||x_i - z_j||^2$$

- so we choose z_i to minimize mean square distance to the points in its partition
- this is the mean (or average or centroid) of the points in the partition:

$$z_j = (1/|G_j|) \sum_{i \in G_j} x_i$$

(we will see later how to get this solution)

k-means algorithm

given initial representatives z_1, \ldots, z_k for the k groups and repeat:

- 1. assign x_i to the nearest group representative z_j
- 2. set the representative z_i to be the mean of the vectors in group j

Math description

given $x_1, \ldots, x_N \in \mathbb{R}^n$ and $z_1, \ldots, z_k \in \mathbb{R}^n$ repeat

- 1. partition vectors: assign i to G_j , $j = \operatorname{argmin}_{j'} \|x_i z_{j'}\|^2$
- 2. update representatives: $z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$

until z_1, \ldots, z_k stop changing

(in practice, often restarted a few times, with different starting points)

Complexity

k-means cost (3k + 1)Nn flops per iteration (order Nkn flops)

step 1:

- each distance $||x_i z_j||$ costs 3n flops
- computing all distances $||x_i z_j||$ over groups costs 3kn
- comparisons to find the minimum costs k-1 flops
- repeat above N times to get approximately 3Nkn flops

step 2: approximately Nn flops

- averaging $(1/p) \sum_{i=1}^{p} x_i$ clusters requires a total of np flops
- averaging all clusters requires a total of Nn flop

Data

clustering SA — ENGR504 3.37

Iteration 1

Iteration 2

Handwritten digit image set

- MNIST images of handwritten digits
- N = 60,000 size 28×28 images, represented as 784-vectors x_i
- 25 image samples shown below

Group representatives, best clustering

k = 20 group representatives, z_i

Document topic discovery

- N = 500 Wikipedia articles
- dictionary of n = 4423 words
- each document is represented by a word histogram vector of length n = 4423
- k = 9, run 20 times with different initial assignments
- convergence shown below (including best and worst)

Topics discovered (clusters 1-3)

words with largest representative coefficients of the word histogram

Cluster 1		Cluster 2		Cluster 3	
Word	Coef.	Word	Coef.	Word	Coef.
fight	0.038	holiday	0.012	united	0.004
win	0.022	celebrate	0.009	family	0.003
event	0.019	festival	0.007	party	0.003
champion	0.015	celebration	0.007	president	0.003
fighter	0.015	calendar	0.006	government	0.003

titles of articles closest to cluster representative of the word histogram

- "Floyd Mayweather, Jr", "Kimbo Slice", "Ronda Rousey", "José Aldo", "Joe Frazier", "Wladimir Klitschko", "Saul Álvarez", "Gennady Golovkin", "Nate Diaz", ...
- "Halloween", "Guy Fawkes Night" "Diwali", "Hanukkah", "Groundhog Day", "Rosh Hashanah", "Yom Kippur", "Seventh-day Adventist Church", "Remembrance Day", ...
- "Mahatma Gandhi", "Sigmund Freud", "Carly Fiorina", "Frederick Douglass", "Marco Rubio", "Christopher Columbus", "Fidel Castro", "Jim Webb", ...

Topics discovered (clusters 4-6)

words with largest representative coefficients of the word histogram

Cluster 4		Cluster 5		Cluster 6	
Word	Coef.	Word	Coef.	Word	Coef.
album	0.031	game	0.023	series	0.029
release	0.016	season	0.020	season	0.027
song	0.015	team	0.018	episode	0.013
music	0.014	win	0.017	character	0.011
single	0.011	player	0.014	film	0.008

titles of articles closest to cluster representative

- 4. "David Bowie", "Kanye West" "Celine Dion", "Kesha", "Ariana Grande", "Adele", "Gwen Stefani", "Anti (album)", "Dolly Parton", "Sia Furler", ...
- 5. "Kobe Bryant", "Lamar Odom", "Johan Cruyff", "Yogi Berra", "José Mourinho", "Halo 5: Guardians", "Tom Brady", "Eli Manning", "Stephen Curry", "Carolina Panthers", ...
- "The X-Files", "Game of Thrones", "House of Cards (U.S. TV series)", "Daredevil (TV series)", "Supergirl (U.S. TV series)", "American Horror Story", ...

Topics discovered (clusters 7-9)

words with largest representative coefficients

Cluster 7	Cluster 8		Cluster 9		
Word	Coef.	Word	Coef.	Word	Coef.
match	0.065	film	0.036	film	0.061
win	0.018	star	0.014	million	0.019
championship	0.016	role	0.014	release	0.013
team	0.015	play	0.010	star	0.010
event	0.015	series	0.009	character	0.006

titles of articles closest to cluster representative

- "Wrestlemania 32", "Payback (2016)", "Survivor Series (2015)", "Royal Rumble (2016)", "Night of Champions (2015)", "Fastlane (2016)", "Extreme Rules (2016)", ...
- 8. "Ben Affleck", "Johnny Depp", "Maureen O'Hara", "Kate Beckinsale", "Leonardo DiCaprio", "Keanu Reeves", "Charlie Sheen", "Kate Winslet", "Carrie Fisher", ...
- "Star Wars: The Force Awakens", "Star Wars Episode I: The Phantom Menace", "The Martian (film)", "The Revenant (2015 film)", "The Hateful Eight", ...

Applications

Classification: determine vector belongs to which group

- cluster a large collection of vectors into k groups
- · label the groups by hand
- assign new vectors to one of the k groups by choosing the nearest group representative

Recommendation engine: suggest items that user might be interested in

- example: vectors give the number of times a user has listened to or streamed each song from a library of n songs over some period
- clustering the vectors reveals groups of users with similar musical taste
- allows us to suggest new songs from those with similar tastes

References and further readings

- S. Boyd and L. Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018.
- L. Vandenberghe. *EE133A lecture notes*, Univ. of California, Los Angeles. (http://www.seas.ucla.edu/~vandenbe/ee133a.html)

references SA_FNGF504 3.49