Chapter 5: Regular Expressions

U.D. Computació

. .

Construction

Syntheses of

Position Automata Follow Automaton Brzozowski's

FA Analysi Arden's Lemma

Chapter 5: Regular Expressions

U.D. Computación

DSIC - UPV

Content

Chapter 5: Regular Expressions

U.D. Computació

Construction:

Syntheses of FAs from ERs

Position Automata Follow

Follow Automaton Brzozowski's Algorithm

- Definitions
- Properties
- Constructions with regular expressions
- Synthesis of FA
- Analysis de FA

Definitions

Chapter 5: Regular Expressions

U.D. Computació

Definitions

C----

Syntheses of

FAs from ERs
Position
Automata

Follow
Automaton
Brzozowski's

- Inductively, a regular expression over Σ is defined:
 - \blacksquare \emptyset denotes the empty language.
 - lacksquare λ denotes the language $\{\lambda\}$
 - $\forall a \in \Sigma$, a denotes the language $\{a\}$
 - If r and s are regular expressions denoting L_r and L_s :
 - \blacksquare (r) denotes L_r
 - ightharpoonup r+s denotes $L_r \cup L_s$
 - \blacksquare rs denotes $L_r L_s$
 - \blacksquare $(r)^*$ denotes L_r^*
 - All the regular expressions are built using the previous steps finitely many times.

Properties

- Chapter 5: Regular Expressions
- U.D. Computació

Properties

Canatanatiana

Syntheses of FAs from ERs

Position

Automata

Automaton Brzozowski'

FA Analysi Arden's Lemma ■ Let α , β and γ be regular expressions

$$6 \quad \alpha \lambda = \lambda \alpha = \alpha$$

$$\alpha \emptyset = \emptyset \alpha = \emptyset$$

$$0 \quad \lambda^* = \lambda$$

$$0 - 10 \quad \emptyset^* = \lambda$$

$$\square \alpha^* = \lambda + \alpha \alpha^*$$

$$(\alpha^* + \beta^*)^* = (\alpha^* \beta^*)^* = (\alpha + \beta)^*$$

$$\square (\alpha\beta)^*\alpha = \alpha(\beta\alpha)^*$$

14
$$(\alpha^*\beta)^*\alpha^* = (\alpha + \beta)^*$$

$$(\alpha^*\beta)^* = (\alpha + \beta)^*\beta + \lambda$$

Constructions

Chapter 5: Regular Expressions

لا.D. Computació

Definitions

Properties

Construction

FAs from ERs
Position
Automata

Follow Automaton Brzozowski's Algorithm

- Homomorphism
- Reverse

Constructions

Chapter 5: Regular Expressions

U.D. Computació

Dellillillo

Construction

Syntheses of FAs from ER

Position Automata

Automaton Brzozowski'

FA Analysi Arden's Lemma

Homomorphism

Given a regular expression α and a homomorphism $h: \Sigma_{\alpha} \to \Delta$, to obtain a regular expression for $h(L(\alpha))$, one has to change every symbol a of α by its image h(a)

For example, let us consider $\alpha = a(bb^* + (aa)^*)^*b$ and the homomorphism: h(a) = 0 y h(b) = 11. The regular expression for $h(L(\alpha))$ is:

$$0(11(11)^* + (00)^*)^*11$$

Constructions

Chapter 5: Regular Expressions

U.D. Computació

Definition

i roperties

Construction

Syntheses of FAs from ERs

Automata
Follow
Automaton
Brzozowski's

FA Analysis Arden's Lemma

Reverse

Given a regular expression α , to obtain a regular expression for α^r such that $L(\alpha^r) = (L(\alpha))^r$, we recursively apply the following rules:

■ If
$$\alpha = \emptyset$$
, $\alpha = \lambda$ or $\alpha = a \in \Sigma$, then $\alpha^r = \alpha$

■ If
$$\alpha = \beta + \gamma$$
, then $\alpha^r = \beta^r + \gamma^r$

■ If
$$\alpha = \beta \gamma$$
, then $\alpha^r = \gamma^r \beta^r$

If
$$\alpha = \beta^*$$
, then $\alpha^r = (\beta^r)^*$

For example, let us consider $\alpha = a(b(a+b)^* + (bba)^*)^*b$. The regular expression for $(L(\alpha))^r$ is:

$$\alpha^r = b((a+b)^*b + (abb)^*)^*a$$

Syntheses of FAs from ERs

Chapter 5: Regular Expressions

U.D. Computació

Definitions

Construction

Construction

Position Automata Follow

Follow Automaton Brzozowski's Algorithm

- Position Automaton
- Follow Automaton
- Brzozowski's Algorithm

Position Automata

Chapter 5: Regular Expressions

Computació

Definition

Construction

Syntheses of

FAs from ERs Position

Follow Automaton Brzozowski's

- Local Automata. Local Languages.
- Linearized regular expressions.
- DFA for a linearized regular expression.
- Position Automaton.

Local Automata. Local Languages.

Chapter 5: Regular Expressions

U.D. Computació

.

Syntheses of FAs from ERs

Automata
Follow
Automaton

Brzozowski's Algorithm

- A DFA $A = (Q, \Sigma, \delta, q_0, F)$ is *local* if and only if for every $a \in \Sigma$ the set $\{\delta(q, a) : q \in Q\}$ has at most one element.
- If there is no arrow of the form $q \rightarrow q_0$, the automaton is called *standard local*
- A language is local if and only if it is recognized by a standard local automaton.

Linearized Regular Expression

Chapter 5: Regular Expressions

U.D. Computació

_ -----

Construction

Syntheses of FAs from ER

Position

Follow Automaton Brzozowski

FA Analysi: Arden's Lemma ■ Let α be una regular expression and let n be the number of symbols in α without parenthesis and operation symbols. The linearized expression of α (denoted by $\overline{\alpha}$) is obtained placing a subindex $j \in \{1, \ldots, n\}$ to every symbol of α that indicates its position. Example: Consider

$$\alpha = (a+b)(a^* + ba^* + b^*)^*$$

the linearized expression is

$$\overline{\alpha} = (a_1 + b_2)(a_3^* + b_4 a_5^* + b_6^*)^*$$

Linearized Regular Expression

Chapter 5: Regular Expressions

U.D. Computació

Construction

Syntheses of FAs from ERs

Position
Automata

Automaton Brzozowski's Algorithm

FA Analysis Arden's Lemma ■ If Σ_{α} and $\Sigma_{\overline{\alpha}}$ are the alphabets of α and $\overline{\alpha}$ respectively, and $h: \Sigma_{\overline{\alpha}}^* \to \Sigma_{\alpha}^*$ is a homomorphism that erases the subindexes, then:

$$h(L(\overline{\alpha})) = L(\alpha)$$

- An automaton for $L(\alpha)$ can be obtained:
 - Building an automaton for $L(\overline{\alpha})$ and
 - Removing the subindexes of this automaton (position automaton)

DFA for a Linearized Regular Expression Base cases

Chapter 5: Regular Expressions

U.D. Computació

Deminicio

Construction

FAs from ER

Position Automata

Automaton
Brzozowski's

- Every linearized regular expression denotes a local language (recognized by a standard local automaton) It can be seen by induction over the structure of the regular expressions.
- Base Cases:

DFA for a Linearized Regular Expression Building rules

Chapter 5: Regular Expressions

U.D. Computació

Demilio

. roperties

Construction

Syntheses of

FAs from ER

Automata
Follow
Automaton
Brzozowski'

FA Analysis Arden's Compound Expressions: Let $\overline{\alpha}$ and $\overline{\beta}$ be linearized regular expressions, and let $A(\overline{\alpha}) = (Q_1, \Sigma_1, \delta_1, q_1, F_1)$ and $A(\overline{\beta}) = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$, with $\Sigma_1 \cap \Sigma_2 = \emptyset$, local

automata accepting $L(\overline{\alpha})$ and $L(\overline{\beta})$ respectively:

DFA for a Linearized Regular Expression Union

Chapter 5: Regular Expressions

U.D. Computació

Definition

Properties

Construction

Synthogog of

FAs from I

Position Automata

Automaton Brzozowski'

FA Analysis Arden's

- Union $(\overline{\alpha} + \overline{\beta})$:
 - $Q = (Q_1 \{q_1\}) \cup (Q_2 \{q_2\}) \cup \{q_0\}, \ q_0 \notin Q_1 \cup Q_2.$
 - $\delta = \{(q, a, q') \in \delta_1 \cup \delta_2 : q \notin \{q_1, q_2\}\} \cup \{(q_0, a, q) : (q_1, a, q) \in \delta_1 \lor (q_2, a, q) \in \delta_2\},$

DFA for a Linearized Regular Expression Union

Chapter 5: Regular Expressions

U.D. Computació

Definition

Properties

Construction

Syntheses of

Position

Position Automata

Automaton Brzozowski':

- Union $(\overline{\alpha} + \overline{\beta})$:

 - $\delta = \{ (q, a, q') \in \delta_1 \cup \delta_2 : q \notin \{q_1, q_2\} \} \cup \{ (q_0, a, q) : (q_1, a, q) \in \delta_1 \lor (q_2, a, q) \in \delta_2 \},$

DFA for a Linearized Regular Expression Union

Chapter 5: Regular Expressions

U.D. Computació

Definition

Properties

Construction

Syntheses of

Position

Automata

Automaton Brzozowski'

- Union $(\overline{\alpha} + \overline{\beta})$:

 - $\delta = \{ (q, a, q') \in \delta_1 \cup \delta_2 : q \notin \{q_1, q_2\} \} \cup \{ (q_0, a, q) : (q_1, a, q) \in \delta_1 \lor (q_2, a, q) \in \delta_2 \},$

Chapter 5: Regular Expressions

U.D. Computaciór

Delinition

Properties

Construction

Syntheses of

FAs from ER

Follow
Automaton
Brzozowski's

FA Analysis. Arden's Lemma ■ Product $(\overline{\alpha} \cdot \overline{\beta})$ $(q_2 \notin F_2)$:

$$Q = (Q_1 \cup Q_2) - \{q_2\}),$$

■
$$\delta = \delta_1 \cup \{(q, a, q') \in \delta_2 : q \neq q_2\} \cup \{(q, a, q') : q \in F_1 \land (q_2, a, q') \in \delta_2\},$$

$$q_0 = q_1$$

$$\blacksquare F = F_2$$

Chapter 5: Regular Expressions

U.D. Computaciór

Deminicion

Properties

Construction

Syntheses of

FAs from ER

Follow Automaton

Automaton Brzozowski': Algorithm

■ Product
$$(\overline{\alpha} \cdot \overline{\beta})$$
 $(q_2 \notin F_2)$:

$$Q = (Q_1 \cup Q_2) - \{q_2\}),$$

■
$$\delta = \delta_1 \cup \{(q, a, q') \in \delta_2 : q \neq q_2\} \cup \{(q, a, q') : q \in F_1 \land (q_2, a, q') \in \delta_2\},$$

$$q_0 = q_1$$

$$\blacksquare F = F_2$$

Chapter 5: Regular Expressions

U.D. Computaciór

Delinition

Properties

Construction

Syntheses of

FAs from ERs

Follow Automaton

FA Analysis. Arden's ■ Product $(\overline{\alpha} \cdot \overline{\beta})$ $(q_2 \notin F_2)$:

$$Q = (Q_1 \cup Q_2) - \{q_2\}),$$

■
$$\delta = \delta_1 \cup \{(q, a, q') \in \delta_2 : q \neq q_2\} \cup \{(q, a, q') : q \in F_1 \land (q_2, a, q') \in \delta_2\},$$

- $q_0 = q_1$
- $\blacksquare F = F_2$

Chapter 5: Regular Expressions

U.D. Computaciór

Definition

Properties

Construction

Syntheses of

FAs from ERs

Follow Automaton

Algorithm FA Analysis

- Product $(\overline{\alpha} \cdot \overline{\beta})$ $(q_2 \in F_2)$:
 - $Q = (Q_1 \cup Q_2) \{q_2\}),$
 - $\delta = \delta_1 \cup \{(q, a, q') \in \delta_2 : q \neq q_2\} \cup \{(q, a, q') : q \in F_1 \land (q_2, a, q') \in \delta_2\},$
 - $q_0 = q_1$
 - $F = F_1 \cup (F_2 \{q_2\})$

Chapter 5: Regular Expressions

- Product $(\overline{\alpha} \cdot \overline{\beta})$ $(q_2 \in F_2)$:
 - $Q = (Q_1 \cup Q_2) \{q_2\}),$
 - $\delta = \delta_1 \cup \{(q, a, q') \in \delta_2 : q \neq q_2\} \cup \{(q, a, q') : q \in q_2\}$ $F_1 \wedge (g_2, a, g') \in \delta_2$.
 - $q_0 = q_1$
 - $F = F_1 \cup (F_2 \{q_2\})$

Chapter 5: Regular Expressions

U.D. Computaciór

Dellillition

Properties

Construction

Syntheses of

FAs from ERs

Follow Automaton Brzozowski's

FA Analysis Arden's Lemma ■ Product $(\overline{\alpha} \cdot \overline{\beta})$ $(q_2 \in F_2)$:

$$Q = (Q_1 \cup Q_2) - \{q_2\}),$$

$$\delta = \delta_1 \cup \{ (q, a, q') \in \delta_2 : q \neq q_2 \} \cup \{ (q, a, q') : q \in F_1 \land (q_2, a, q') \in \delta_2 \},$$

$$q_0 = q_1$$

$$F = F_1 \cup (F_2 - \{q_2\})$$

DFA for a Linearized Regular Expression Star closure

Chapter 5: Regular Expressions

Computació

Definition

Construction

Syntheses of

Position Automata

Automaton Brzozowski's

FA Analysis Arden's Lemma ■ Closure $(\overline{\alpha}^*)$:

$$\bullet \delta' = \delta \cup \{ (q, a, q') : q \in F \land (q_0, a, q') \in \delta \}$$

$$\blacksquare F = F_1 \cup \{q_1\})$$

DFA for a Linearized Regular Expression Star closure

Chapter 5: Regular Expressions

O.D. Computació

Definition

D

Construction

Syntheses of

Position

Automaton

FA Analysis Arden's Lemma ■ Closure $(\overline{\alpha}^*)$:

$$\bullet \delta' = \delta \cup \{(q, a, q') : q \in F \land (q_0, a, q') \in \delta\}$$

$$\blacksquare F = F_1 \cup \{q_1\})$$

DFA for a Linearized Regular Expression Example

Chapter 5: Regular Expressions

U.D. Computaciói

Definition

Propertie

Construction

Syntheses of FAs from ERs

Position

Follow
Automaton
Brzozowski's

Position automaton Algorithm

Chapter 5: Regular Expressions

U.D. Computació

Definition

Properties

Construction

Syntheses of FAs from ERs

Position Automata Follow

Automaton Brzozowski's Algorithm

FA Analysis Arden's Lemma 1: **Input:** α regular expression over Σ

2: **Output:** DFA for $L(\alpha)$

3: Method:

4: Obtain $\overline{\alpha}$ linearized version of α

5: Obtain A a Standard local automaton for $\overline{\alpha}$

6: $A_{pos} = h(A)$, where h is a homomorphism that erases subíndexes.

7: Return A_{pos}

8: End Method

Position automaton Example

Chapter 5: Regular Expressions

U.D. Computaciór

Delinitio

Propertie

Construction

Syntheses of FAs from ERs

FAs from ERs
Position

Follow Automaton Brzozowski's

FA Analysis Arden's Lemma Given $\alpha=(a+b)(a^*+ba^*+b^*)^*$ and its linearized version $\overline{\alpha}=(a_1+b_2)(a_3^*+b_4a_5^*+b_6^*)^*$, the standard local automaton for $\overline{\alpha}$ is:

Position automaton Example

Chapter 5: Regular Expressions and the Position automaton for $\alpha = (a+b)(a^*+ba^*+b^*)^*$ is:

Computació

Deminicion

Propertie

Construction

. . .

FAs from E

Position Automata

Automaton
Brzozowski's

Follow automaton

Chapter 5: Regular Expressions

Computació

_ -----

Construction

Syntheses of

Position Automata *Follow*

Brzozowski' Algorithm

Arden's

- Follow Relation
- Follow Automaton

Follow Automaton

Chapter 5: Regular Expressions

U.D. Computaciór

Delillitio

Properties

Construction

Syntheses o

Position Automata

> Follow Automaton Brzozowski's Algorithm

FA Analysis Arden's Lemma ■ The *Follow Automaton* of a regular expression α is the quotient automaton of the position automaton by the following relation:

$$p \equiv_f q \Leftrightarrow egin{cases} p,q \in F & or \ p,q \in Q - F \\ follow(p) = follow(q) \end{cases}$$

where
$$follow(p) = \{q \in Q : \exists a \in \Sigma, \delta(p, a) = q\}$$

■ The resulting quotient automaton is a partial reduction of the position automaton.

Follow Automaton

Chapter 5: Regular Expressions

U.D. Computació

Deminicion

Propertie:

Construction

Syntheses o

Position

Follow

Automaton Brzozowski Algorithm

FA Analysis Arden's Lemma We recall the position automaton for $\alpha = (a + b)(a^* + ba^* + b^*)^*$:

Follow Automaton

Chapter 5: Regular Expressions

U.D. Computació

Deminicion

Construction

Syntheses of FAs from ER

Automata

Automaton
Brzozowski's

FA Analysis Arden's Lemma The equivalence classes are: $\{q_0\}, \{q_1, q_2, q_3, q_6\}, \{q_4, q_5\},$ thus the follow automaton for α is:

Brzozowski's algorithm

Chapter 5: Regular Expressions

Computació

Deminicions

Construction

FAs from E Position Automata

Follow Automaton Brzozowski

Brzozowski' Algorithm

Arden's Lemma

- Derivatives
- Brzozowski's algorithm

Derivatives

Chapter 5: Regular Expressions

U.D. Computaciói

Definitions

Properties

Construction

Syntheses of FAs from EF

Follow
Automaton
Brzozowski'
Algorithm

FA Analysi Arden's Lemma

- Rules to calculate derivatives
 - With respect to symbols $(a, b \in \Sigma, r, s \text{ E.R.})$

$$1 \quad a^{-1}\emptyset = \emptyset$$

$$\mathbf{3} \quad \mathbf{a}^{-1}\mathbf{b} = \begin{cases} \emptyset & \text{si } \mathbf{a} \neq \mathbf{b} \\ \lambda & \text{si } \mathbf{a} = \mathbf{b} \end{cases}$$

4
$$a^{-1}(r+s) = a^{-1}r + a^{-1}s$$

$$\mathbf{5} \quad a^{-1}(r\mathbf{s}) = \begin{cases} (a^{-1}r)\mathbf{s} & \text{si } \lambda \notin r \\ (a^{-1}r)\mathbf{s} + a^{-1}\mathbf{s} & \text{si } \lambda \in r \end{cases}$$

6
$$a^{-1}r^* = (a^{-1}r)r^*$$

■ with respect to strings $(a \in \Sigma, x \in \Sigma^*)$

$$1 \quad \lambda^{-1}r = r$$

$$(xa)^{-1}r = a^{-1}(x^{-1}r)$$

Brzozowski's Algorithm

```
Chapter 5:
Regular
Expressions
```

Computaciór

Definition

Propertie

Construction

Syntheses of FAs from ERs

Position Automata

Automaton Brzozowski

```
Input: \alpha regular expression over \Sigma
Output: minimum DFA for L(\alpha)
Method:
Q = \{\alpha\}: q_0 = \alpha: F = \emptyset: \delta = \emptyset:
if \lambda \in L(\alpha) then
       F = F \cup \{\alpha\}
end if
actives = \{\alpha\}
while actives \neq \{\} do
       \beta = First(actives)
       actives = Rest(actives)
       for all a \in \Sigma do
              \beta' = a^{-1}\beta
              if \exists r \in Q : L(r) = L(\beta') then
                     Q = Q \cup \{\beta'\}
                     \delta = \delta \cup \{(\beta, a, \beta')\}\
                     actives = actives \cup \{\beta'\}
                     if \lambda \in L(\beta') then
                            F = F \cup \{\beta'\}
                     end if
              end if
       end for
end while
Return (Q, \Sigma, \delta, q_0, F)
End Method
```

Brzozowski's Algorithm Example

Chapter 5: Regular Expressions

U.D. Computació

Definition:

_ -----

C----

. .

FAs from ER

Automata
Follow
Automaton

Brzozowski' Algorithm

ra Anaiysi Arden's Lemma Consider $\alpha = (a+b)^*bb(a+b)^*$:

Brzozowski's Algorithm Example

Chapter 5: Regular Expressions

U.D. Computació

Deminición

Properties

Construction

Syntheses of

Position Automata

Follow Automate

Brzozowski Algorithm

■ Consider
$$\alpha = (a + b)^*bb(a + b)^*$$
:

$$q_0 = \alpha = (a+b)^*bb(a+b)^*; \lambda \notin L(q_0)$$
 and thus $F = \emptyset$

■
$$a^{-1}q_0 = q_0$$

 $b^{-1}q_0 = (a+b)^*bb(a+b)^* + b(a+b)^* = q_1; \lambda \notin L(q_1)$
and thus $F = \emptyset$.

$$a^{-1}q_1 = q_0 b^{-1}q_1 = (a+b)^*bb(a+b)^* + b(a+b)^* + (a+b)^* = (a+b)^* = q_2; \ \lambda \in L(q_2) \text{ and thus } F = \{q_2\}.$$

$$a^{-1}q_2 = b^{-1}q_2 = q_2$$

Brzozowski's Algorithm Example

Chapter 5: Regular Expressions

U.D. Computaciór

Definition

Properties

Constructions

Syntheses of FAs from FF

Position Automata

Automaton Brzozowski Algorithm

FA Analysis Arden's Lemma ■ Consider $\alpha = (a+b)^*bb(a+b)^*$:

$$q_0 = \alpha = (a+b)^*bb(a+b)^*; \lambda \not\in L(q_0)$$
 and thus $F = \emptyset$

■
$$a^{-1}q_0 = q_0$$

 $b^{-1}q_0 = (a+b)^*bb(a+b)^* + b(a+b)^* = q_1; \lambda \notin L(q_1)$
and thus $F = \emptyset$.

$$a^{-1}q_1 = q_0 b^{-1}q_1 = (a+b)^*bb(a+b)^* + b(a+b)^* + (a+b)^* = (a+b)^* = q_2; \lambda \in L(q_2) \text{ and thus } F = \{q_2\}.$$

$$a^{-1}q_2 = b^{-1}q_2 = q_2$$

FA Analysis

Chapter 5: Regular Expressions

U.D. Computació

Definition:

Construction

20113214221311

FAs from EF

Position Automata Follow Automaton Brzozowski's Algorithm

- Systems of equations with regular expressions
- Arden's Lemma
- FA Analysis

Systems of equations with regular expressions Arden's Lemma

Chapter 5: Regular Expressions

U.D. Computació

Definition

Propertie

Construction

Syntheses of

FAs from ER

Follow Automaton Brzozowski'

FA Analysis. Arden's Lemma equation with regular expressions: linear equation where both variables and coefficients are regular expressions.

$$X = rX + s$$

- Arden's Lemma: Let X = rX + s be an equation with regular expressions. $X = r^*s$ is a solution for the ecuation. It is the only solution if $\lambda \notin r$
 - \blacksquare we prove that r^*s is a solution:

$$rX + s = rr^*s + s = (rr^* + \lambda)s = rr^* + \lambda = r^*s$$

■ If $\lambda \in r$ there is an infinite number of solutions: $\forall t \subseteq \Sigma^*$, $r^*(s+t)$ is a solution:

$$X = rX + s = rr^*(s+t) + s = rr^*s + rr^*t + s =$$

= $(rr^* + \lambda)s + rr^*t = r^*s + r^*t = X$
 $X = r^*(s+t)$

Systems of equations with regular expressions

Chapter 5: Regular Expressions

U.D. Computació

Delinition

c . .:

Syntheses of FAs from EF Position Automata

Algorithm

FA Analysis.

Arden's

Lemma

■ Given a System of equations with regular expressions.:

$$\begin{cases} X_1 = r_{11}X_1 + r_{12}X_2 + \dots + r_{1n}X_n + s_1 \\ X_2 = r_{11}X_1 + r_{12}X_2 + \dots + r_{1n}X_n + s_2 \\ \dots \\ X_n = r_{11}X_1 + r_{12}X_2 + \dots + r_{1n}X_n + s_3 \end{cases}$$

The solution comes through applying Gauss' method, using Arden's Lemma to reduce r.e.

FA Analysis

Chapter 5: Regular Expressions

U.D. Computación

Definition

Propertie

Construction

Syntheses of FAs from ERs

Automata
Follow
Automaton
Brzozowski's

- 1: **Input:** Finite Automaton $A = (Q, \Sigma, \delta, q_1, F)$ con $Q = \{q_1, q_2, \dots, q_n\}$
- 2: Output: Regular Expression for L(A)
- 3: Metodo:
- 4: For every state q_i we introduce a variable X_i
- 5: If $q_i \in F$ then we add λ to the right side of the *i*-th equation
- 6: If $q_j \in \delta(q_i, a)$ then we add the term aX_j to the right side of the *i*-th equation, with $a \in \Sigma \cup \{\lambda\}$
- 7: Solve the system of equations with regular expressions using Arden's Lemma to reduce r.e.
- 8: Return the r.e. associated to the initial state
- 9: End Method