Trabalho Individual 2 – Algoritmos Para Resolver o Problema das Oito Rainhas

Thauany Moedano – RA: 92486
Departamento de Ciência e Tecnologia
Universidade Federal de São Paulo
São José dos Campos, Brasil
t.moedano@unifesp.br

Resumo — Este trabalho mostra duas estratégias para resolver o problema das oito rainhas onde deseja-se posicionar oito rainhas em um tabuleiro de xadrez de modo que nenhuma rainha se ataque.

Keywords—Algoritmo Genético, Subida de Encosta, Busca, Oito Rainhas.

I. INTRODUÇÃO

Muitos problemas não se importam com os caminhos utilizados para chegar à solução e sim, um estado que resulta na solução. Para este tipo de problema, algoritmos de buscas comuns são ineficientes e é necessário outra abordagem para buscar uma resposta. Novos métodos de resolução foram propostos ao longo do tempo. Alguns desses métodos são *Subida de Encosta* e *Algoritmo Genético*. Este trabalho mostra a solução do problema das Oito Rainhas utilizando ambas as estratégias e comparando o desempenho para a solução desse problema.

II. PROBLEMA DAS OITO RAINHAS

O problema das Oito Rainhas é um problema clássico e muito utilizado para aplicar conceitos de Inteligência Artificial. Formalmente é descrito da seguinte maneira: Em um tabuleiro de xadrez, deseja-se colocar oito rainhas, uma em cada coluna, de modo que nenhum par de rainhas esteja se atacando.

Fig. 1. Exemplo de um estado para o problema das oitos rainhas.

Em ambas as estratégias o problema foi representado por um vetor de tamanho oito onde cada posição do vetor indica uma coluna e cada valor do vetor indica uma linha.

Portanto, para o exemplo anterior, o vetor resultante seria: rainhas = $\{6, 4, 2, 0, 5, 7, 1, 3\}$ pois ambas as linhas e colunas foram representadas de 0 a 7 no problema.

III. ESTRATÉGIAS UTILIZADAS

A. Subida de Encosta

A ideia principal da Subida de Encosta é buscar estados que se movam de maneira continua e termina quando alcança um pico (solução ótima).

Uma função de avaliação para cada estado possível estima qual o próximo estado que pode melhorar a solução e isto é feito sucessivamente até que o algoritmo não tenha mais opções.

Uma grande desvantagem da Subida de Encosta é que a mesma pode ficar presa em platôs, ou seja, quando nenhum estado gera uma melhoria sucessiva. Neste caso, o algoritmo apenas para e retorna que não tem solução.

Para o problema das oito rainhas, um estado foi representado como uma disposição de rainhas no tabuleiro e a função de avaliação foi definida da seguinte maneira: h é a quantidade de pares de rainhas se atacando. Portanto, os estados que geram menores valores de h são escolhidos.

B. Algoritmo Genético

O Algoritmo Genético define um novo conceito de busca de soluções e se baseia em princípios evolutivos. A ideia principal nesta abordagem é começar com uma população inicial P e ir evoluindo esta população até que se chegue em um resultado ótimo.

A base da evolução é utilizada na construção deste algoritmo. Os melhores indivíduos de cada população são selecionados para cruzamentos e mutações. Isto acontece sucessivas vezes até que se chegue em uma população ótima. Para o problema das Oito Rainhas, o algoritmo foi construído da seguinte forma:

1º passo — Constrói-se uma população P com N indivíduos onde cada invíduo representa uma disposição de rainhas no tabuleiro. Esta população inicial é criada a partir de uma função que cria disposições aleatórias.

2º passo – Uma função de aptidão avalia o quão bom é cada indivíduo. A mesma função do algoritmo Subida de Encosta é

utilizado aqui: h é o número de pares de rainhas se atacando e, portanto, quanto menor o h, melhor o indivíduo é.

 3° passo — Os indivíduos são ranqueados de acordo com a função de aptidão. Os indivíduos com menores h ficam a frente daqueles com maiores h. Deste ranking, é selecionado um número S de indivíduos para fazer o cruzamento e gerar uma nova população.

4º passo — Os melhores indivíduos cruzam-se entre si utilizando a técnica de cruzamento em um ponto com um ponto de cruzamento definido aleatoriamente para gerar dois indivíduos filhos. Isto é feito sucessivamente até que gere uma nova população P' do tamanho de P.

5º passo – Cada indivíduo de P' passa por uma mutação dividida em duas etapas. A primeira etapa verifica quais rainhas de um indivíduo estão localizados na mesma linha e altera aquele valor a fim de gerar indivíduos onde as rainhas não se ataquem pela linha. Após este passo, duas rainhas escolhidas aleatoriamente trocam de posição.

6º passo — Recalcula o *h* de cada indivíduo novo e verifica se algum deles é solução. Caso contrário, atribui P' a P e o processo é repetido a partir do passo 2 por no máximo um número G de gerações.

IV. ANÁLISE DOS ALGORITMOS

O Algoritmo Genético foi analisado separadamente a fim de definir a melhor combinação para a resolução do problema. As combinações alteravam o tamanho da população, a quantidade de elementos selecionados por vez e o número de gerações criadas. Com determinadas combinações, o algoritmo funcionou muito bem, encontrando a solução grande parte das vezes. Entretanto, o algoritmo fica sujeito à geração de números aleatórios da linguagem utilizada que pode viciar ou influenciar o resultado final. A tabela a seguir mostra o comportanto do algoritmo genético implementado para diferentes combinações:

Tabela I. Execução do Algoritmo Genético

#População	#Geração	#Seleção	%Acertos
10	5	10	33
10	10	10	0
20	5	10	17
30	5	10	6
40	5	10	25
40	10	20	16
50	5	10	20
50	10	20	40
35	10	15	49
25	10	5	85

A tabela anterior mostra que a configuração que apresentou os melhores resultados foi: populações de 25 indivíduos, selecionando os 5 melhores indivíduos por no máximo 10 gerações. Isso demonstra que o algoritmo implementado precisa gerar um número razoável de populações, a fim de diversificar

o espaço de busca mas que um limite bom para cruzamento é definir apenas os 5 melhores. Isto mostra que, quando se abre o espaço de seleção, é possível criar muitos indivíduos ruins e que diminuir este espaço aumenta a otimalidade da população. Entretanto, é necessário gerar uma boa quantidade de indivíduos para que o algoritmo não fique viciado.

As próximas tabelas comparam a melhor combinação do Algoritmo Genético com o algoritmo Subida de Encosta:

Tabela II. %Soluções e Falhas entre os algoritmos

Algoritmo	%Soluções	%Falhas
Subida em Encosta	17	83
Melhor AG	85	15

Tabela III. #Média de passos para cada algoritmo

Algoritmo	#Média de passos para solução	#Média de Passos para falha
Subida em Encosta	4,02	~3
Melhor AG	5,1	10

Tabela IV. Mínimo e Máximo de passos para cada algoritmo

Algoritmo	Min/Max de passos para solução	Min/Max de passos para falha
Subida em Encosta	4/6	~3 / ~5
Melhor AG	3/9	10 / 10

V. Conclusões

Como esperado, o algoritmo genético tem uma porcentagem de acertos bem maior que o algoritmo subida de encosta. Isto ocorre porque é muito comum o algoritmo Subida de Encosta ficar preso em platôs. A abordagem do Algoritmo Genético não permite isso, sempre buscando uma melhoria na população por meio de cruzamentos e mutações.

As mutações ajudam a expandir o espaço de busca, mostrando que, com as combinações corretas, dificilmente o Algoritmo Genético fica travado.

Nas tabelas, os passos para falha do algoritmo Subida de Encosta estão em valores aproximados pois como o tempo para falhar é muito rápido, era difícil capturar exatamente o momento de parada resultando em valores como 2000 movimentos. Desta maneira, foi feito uma aproximação.

Embora o Algoritmo Genético encontre a solução mais vezes, em médias necessita um pouco mais de passos para terminar.

REFERÊNCIAS

 RUSSEL, Stuart; NORVIG, Peter. Inteligência Artificial. Elsevier, 2004.
 Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol 2, Oxford: Clarendon, 1892