

<u> </u>	
a) a = 1 a = 3	
an=2 = 3 an= - 29	
$\lambda^2 = 3 \lambda - 2$	
λ - 3 λ + ∠ = 0	
	$\alpha_n = \alpha_1 1^n + \alpha_2 2^n$
λ²-2λ-λ+2=0	
λ (λ - ζ) - (λ -ζ) = ο	a. (1 = d, + d2
	$a_1 = d_1 + 2d_2$
$(\lambda - L)(\lambda - 2) = 0$	
	2 = d ₂ -1 = d ₁
λ=/ λ=2	-1=4
<u> </u>	$a_n = 2 \cdot 2^n - 1$
O) Co=2 Ge=1	
an+2 = 4 an+5 - 4 an	
λ2 = 4λ - 4	$\alpha_n = (\lambda n + \beta) \cdot 2^n$
λ - 4 λ + 4 = 0	
	$a_0 = 2 = (d \cdot o + /3) \cdot 2^{\circ}$
$(\lambda - 2)^2 = 0$	$\alpha_1 = \underline{\ell} = (d + p) \cdot 2^{1}$
$P_1 = P_2 = \mathcal{L} = P$	
	$\begin{cases} 2 = 1 \\ L = 2 L + 2 \beta \end{cases}$
	Z = 2d + 4 -3= 2d
	+3 = 2 L
	$\mathcal{L} = -\frac{1}{2}$
	$\alpha_n = \left(-\frac{1}{2}n + 2\right) 2^n$

Задачи

1 Решите следующие рекуррентные соотношения (найти общее решение).

a
$$a_{n+1} = -3a_n$$

$$6 \ a_{n+2} = 3a_n$$

$$a_{n+3} = 8a_n$$

$$a_{n+3} = 3a_{n+2} + 4a_{n+1} - 12a_n$$

Задачи

2 Решите следующие рекуррентные соотношения (найти частное решение).

a
$$a_0 = 1, a_1 = 3, a_{n+2} = 3a_{n+1} - 2a_n$$

6
$$a_0 = 2, a_1 = 1, a_{n+2} = 4a_{n+1} - 4a_n$$

Задачи

3 Решите следующие системы рекуррентных соотношений (найти общее решение).

a
$$\begin{cases} a_{n+1} = 2a_n + b_n \\ b_{n+1} = a_n - b_n \end{cases}$$
b
$$\begin{cases} a_{n+1} = a_n + 2b_n \\ b_{n+1} = 3a_n - 2b_n \end{cases}$$

$$b \begin{cases} a_{n+1} = a_n + 2b_n \\ b_{n+1} = 3a_n - 2b_n \end{cases} \qquad c_{n+1} - \delta_{n-1} = -2a_n + 4\delta_n \end{cases}$$

$$c_{n+1} = a_{n+1} + 2\delta_{n+1} \qquad \delta_n = \frac{1}{4} (a_{n+1} - a_n)$$

$$a_{n+2} = a_{n+1} + 6a_n - 4\delta_n \qquad a_{n+1} = a_{n+1} + 6a_n - 2a_{n+1} + 2a_n \qquad a_{n+1} = a_{n+1} + 6a_n - 2a_{n+1} + 2a_n \qquad a_{n+1} = a_{n+1} + 6a_n - 2a_{n+1} + 2a_n \qquad a_{n+1} = a_n + 2b_n \qquad a_n = a_n + 2b_n \qquad a_n = a_n + a_$$

Задачи

- 4 Найти число последовательностей длины n над алфавитом $\{0,1,2\}$, в которых нет ни двух нулей, ни двух единиц, стоящих подряд.
- 5 Определенная компьютерная система разрешает только такие пароли, которые подчиняются следующим правилам:
 - Пароль это комбинация любого из десяти цифр 0-9, буквы 52 (верхний и нижний) и восемь дополнительных символов +,-,-,-&,%,*,(,).
 - За любой буквой или символом обязательно следует цифра.

Определите количество возможных паролей, длина которых составляет восемь (используйте рекурсию).

4							пос									-									М																		
	-			-			яд.				_	-	. ,											-		_														_			
	i	{	0	, 1	,	2	3			he	5	•	2	0		,	he	1		1		_																					
•		N	_ =	1	,	:	(0		j		1		j		2_					3																			_			
•		n	. =	2	•			0	1	j		0	2	j	2	2 2	_				3																			_			
•	1	2	=	3			() 1	0	,	j	0	2 2	0	, ,		02	2 1	,	j	2	2 2	2 . 0	ز ز		1 (0 :	<u>(</u>	<i>j</i>		1 2 2	0 2	2)	<u>f</u>	2	0	j	(,	2	r;	12	2
					0	0			1	1																														_			
2٠	F	- (n	- 1	- -)	\top			_																																		
2.	F,	-	(n	-1	.)	ĭ	0						F	, (n-1,) =	:	F,	(n	-2,) -	+	Ę	h-2	.)															_			
3 ·	F	2	(r	٦-	(۲	2 2	012																																				
		.))	F	- - -	'n	· L,) :	=	F	(n	-z)+	Ę(ń-2))	0	1																						_			
				•)	1	=_	(n-	٤)	=	•	F,	(0	-3)	+	F,	(,	1-յ	J	+	Ę	(1	(د)																
	1		(1	ı)	=	2	. F.	; (<u></u>	- :	L,	J	+	2	.(F	(4	h -	2)) 4	+	Ę	(n	-2])	-1	- ,	3 F	=	(n	-2	.)											
			F.	2 ('n) =		F,	(1	1-1	·)	+	F	- (n-	.//																								+			
							. /																																				
							;											Ę	(n	-1,)																			_			
	F	=	(n) .	_	2	F	(,) -ı) .	+ ;	2	F.(n-	1)	+	3	F,	(4	n -1	1)																			+			
											ļ																																
																												+										+	-	+			-

$$F_{0}(n) = F_{1}(n-1) + F_{2}(n-1)$$

$$F_{0}(n) = F_{1}(n-1) + F_{1}(n-1)$$

$$F_{0}(n) = \left(F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)\right)$$

$$F_{0}(n) = F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)$$

$$F_{0}(n+1) = F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)$$

$$F_{0}(n+1) = \left(F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)\right) + F_{1}(n-1)$$

$$F_{0}(n+1) = \left(F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)\right) + F_{1}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{1}(n+1) = F_{0}(n) + F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{1}(n+1) = F_{0}(n) + F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{0}(n+L) = F_{0}(n) + F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) + F_{0}(n-1)$$

$$F_{1}(n+1) = F_{0}(n) + F_{0}(n-1) + F_{1}(n-1) + F_{1}(n-1) - F_{0}(n-1)$$

$$F_{0}(n) = F_{1}(n-1) + F_{0}(n-2) + F_{0}(n-2) + F_{0}(n-1) - F_{0}(n-1)$$

$$F_{1}(n) = F_{0}(n-1) + F_{0}(n-2) + F_{0}(n-1) + F_{0}(n-1) - F_{0}(n-1)$$

$$f_{1}(n) = f_{0}(n-1) + f_{0}(n-1) + f_{0}(n-1) + f_{0}(n-1) + f_{0}(n-1)$$

$$f_{1}(n) = f_{0}(n-1) + f_{0}(n-1) + f_{0}(n-1)$$

$$f_{1}(n) = f_{0}(n-1) + f_{0}(n-1)$$

$$f_{1}(n-1) = f_{1}(n-1) + f_{1}(n-1)$$

$$f_{1}(n-1) = f_{1}(n-1) + f_{1}(n-1)$$

$$f_{2}(n-1) + f_{2}(n-1) + f_{2}(n-1)$$

$$f_{3}(n-1) + f_{3}(n-1) + f_{3}(n-1)$$

$$f_{3}(n-1) + f_{3}(n-1)$$

$$f_{3}(n-1)$$

$$\lambda_{1} = \frac{1+1\sqrt{1}}{2} = \frac{1}{2} + \sqrt{2}$$

$$\lambda_{2} = \frac{2-1\sqrt{1}}{2} = 1-\sqrt{1}$$

$$\lambda_{3} = \frac{1}{2} + \sqrt{2}$$

$$\lambda_{4} = \frac{1}{2} + \sqrt{2}$$

$$\lambda_{5} = \frac{1}{2} + \sqrt{2$$

$$= \frac{1}{2\sqrt{2}} \left[2(1+\sqrt{2})^n - 2(1-\sqrt{2})^n + (2-\sqrt{2})(1+\sqrt{2})^n + \sqrt{2}(1-\sqrt{2})^n \right] =$$

$$= \frac{1}{2\sqrt{2}} \left[(1+\sqrt{2})^n (2+2+\sqrt{2}) + (1-\sqrt{2})^n (-2+\sqrt{2}) \right] =$$

$$= \frac{1}{2\sqrt{2}} \left[(1+\sqrt{2})^n (4+\sqrt{2}) - (2-\sqrt{2})(1-\sqrt{2})^n \right]$$

$$= \frac{1}{2\sqrt{2}} \left[(4+\sqrt{2})^n (4+\sqrt{2}) - (2-\sqrt{2})(1-\sqrt{2})^n \right]$$

$$\begin{array}{c} \frac{w^{2}}{6} \\ \frac{1}{6} \\ \frac{1}{$$

$$F(n) = F_{0}(n) + F_{1}(n) + F_{2}(n) =$$

$$= F_{1}(n+1) + F_{2}(n+1) =$$

$$= 2 F(n+1) + F_{0}(n+1) + F_{0}(n+1) + F_{2}(n+1) + F_{2}(n+1$$

