Neural networks Cours 2/3

Machine Learning ModIA 2022

Enseignant: Sixin Zhang
sixin.zhang@toulouse-inp.fr

Training Neural networks

Under-fitting and over-fitting

 $Regularization \ methods \ for \ generalization$

Stochastic optimization methods

As the size (width or depth) of a neural network increases, certain problems appear (under-fitting or over-fitting, *vanishing* and *exploding gradients*, etc.) which requires careful analysis and practice.

Empirical error and generalization error

- Empirical error: prediction error on a training set (with a finite number of samples).
- **Generalization error**: prediction error on a test set (ideally with infinite number of samples). ... **Unknown!**

The goal of a machine learning algorithm is to minimize the generalization error, but we are only able to optimize the **empirical error**.

Under-fitting vs. over-fitting

We say a model is under-fitting if it learns too badly on a training set.

We say a model is *over-fitting* if it learns very well on a training set, but generalizes badly to test set.

Example: https://playground.tensorflow.org/

- \bullet Learn a classifier on the spiral data using a MLP of size (2,4,1), tanh activation, 20% training / test set ratio.
- \bullet Learn a classifier on the spiral data using a MLP of size (2,8,8,8,1), tanh activation, 10% training / test set ratio.

How to avoid under-fitting?

One interesting property of Neural networks is their universal approximation.

Théorème d'approximation universelle (Cybenko 1989)

Toute fonction h, continue, de $[0,1]^m$ dans \mathbb{R} , peut être approximée par un perceptron à une couche cachée comportant suffisamment de neurones (avec une fonction d'activation sigmoïde).

In theory, one can avoid under-fitting by increasing the width of an 1-layer perceptron !

Question: Can we also avoid over-fitting?

How to detect over-fitting: Cross-validation

In practice, one may not have access to the whole test data (such as in Kaggle), one can then split the training data into 2 parts to estimate whether there is over-fitting: one for training, the other for validation.

One often uses N fold cross-validation:

- Step 1: Partition the training set into *N* subsets (folds).
- Step 2: Take one subset among the N subsets as a validation set, use the rest N-1 subsets for training.
- Step 3: Repeat Step 2 multiple times, each time using a different subset for validation. Check if the average error on the validation sets is very different to the average error on the training sets.

Regularization methods for generalization

How to avoid over-fitting?

- Early stopping (optimization specific)
- Data augmentation (data specific)
- Dropout (neural network specific)
- Ensemble methods (classification specific)

Early stopping

To avoid over-fitting, one can trace how the validation error changes during the training: stop the training when it starts to increase while the training error still goes down.

In practice: the validation error is noisy if using stochastic gradient descent methods, one should train for a longer time to decide whether to stop or not.

Image from [Goodfellow et al. 2015] Deep Learning

Data augmentation

Use a small set of training data may result in over-fitting in classification \rightarrow Increase artificially the training data by controlled transformations.

Useful in image processing based on affine transformations:

- Translation: $x(u) \to x(u-\tau), \quad \tau \in \mathbb{R}^2.$
- Rotation: $x(u) \rightarrow x(r_{\theta}u)$, rotation matrix r_{θ} in 2d.
- Scaling: $x(u) \rightarrow x(u/s)$, s > 0.

Image from https://github.com/aleju/imgaug

Data augmentation

Results on MNIST from 'Regularization of Neural Networks using DropConnect', Li et al. 2013

crop	rotation	model	error(%)	voting
	scaling		5 network	error(%)
no	no	No-Drop	0.77 ± 0.051	0.67
		Dropout	0.59 ± 0.039	0.52
		DropConnect	$0.63 {\pm} 0.035$	0.57
yes	no	No-Drop	0.50 ± 0.098	0.38
		Dropout	0.39 ± 0.039	0.35
		DropConnect	0.39 ± 0.047	0.32
yes	yes	No-Drop	0.30 ± 0.035	0.21
		Dropout	$0.28 {\pm} 0.016$	0.27
		DropConnect	$0.28{\pm}0.032$	0.21

Table 3. MNIST classification error. Previous state of the art is 0.47% (Zeiler and Fergus, 2013) for a single model without elastic distortions and 0.23% with elastic distortions and voting (Ciresan et al., 2012).

One cause of over-fitting is due to some preferential paths learnt in neural networks, e.g. MLP:

Dropout

In order to avoid this phenomenon, one may randomly "dis-connect" some neurons in a network during the training. This allows to favor various paths to make decisions collectively.

How it works during training?

For an element-wise layer a=f(z), introduce a random mask $M\in\{0,1\}^N$ such that

$$a_i = f_M(z_i) = M_i f(z_i), \quad i \leq N$$

We also write: $a = f_M(z) = M \cdot f(z)$.

Dropout

• During training: $a_i^{[1]} = M_i f_i^{[1]} (W^{[1]} x + b^{[1]})$ may be dropped randomly

In practice, M_i is drawn from a Bernoulli random variable (with probability p = 0.5, $M_i = 1$).

• During test: $a_i^{[1]} = pf_i^{[1]}(W^{[1]}x + b^{[1]})$ is fixed to be an average value.

Image from [Goodfellow et al. 2015] Deep Learning

Dropout for linear regression

- Let $X \in \mathbb{R}^{m \times d}$ and $Y \in \mathbb{R}^m$: m samples.
- Objective: find $w \in \mathbb{R}^d$ such that

$$\min_{w} ||y - Xw||^2 = \sum_{j \le m} |y^{\{j\}} - \langle w, x^{\{j\}} \rangle|^2$$

With dropout, the objective becomes

$$L_{p} = \sum_{j \leq m} \mathbb{E}_{M^{j}} |y^{\{j\}} - \langle w, M^{\{j\}} \cdot x^{\{j\}} \rangle|^{2}$$

• L_p behaves like a ridge regression using a dropout rate $p \in (0,1)$:

$$L_p = ||y - pXw||^2 + p(1-p)w^T \text{Diag}(X^T X)w$$

Dropout performance on MLP

crop	rotation	model	error(%)	voting
	scaling		5 network	error(%)
no	no	No-Drop	0.77 ± 0.051	0.67
		Dropout	0.59 ± 0.039	0.52
		DropConnect	$0.63 {\pm} 0.035$	0.57
yes	no	No-Drop	0.50 ± 0.098	0.38
		Dropout	0.39 ± 0.039	0.35
		DropConnect	$0.39 {\pm} 0.047$	0.32
yes	yes	No-Drop	0.30 ± 0.035	0.21
		Dropout	$0.28 {\pm} 0.016$	0.27
		DropConnect	$0.28 {\pm} 0.032$	0.21

Table 3. MNIST classification error. Previous state of the art is 0.47% (Zeiler and Fergus, 2013) for a single model without elastic distortions and 0.23% with elastic distortions and voting (Ciresan et al., 2012).

Ensemble methods: voting (classification specific)

Average the probabilities of several models, and decide based on the maximal average probability

Let $\hat{y}(x, \theta)$: softmax probability of input x with model (parameter θ).

The averaging over K MLP is similar to Bagging, but the multiple-layer perceptron (MLP) is trained independently with the same training data.

Voting performance on MLP

crop	rotation	model	error(%)	voting
	scaling		5 network	error(%)
no	no	No-Drop	0.77 ± 0.051	0.67
		Dropout	0.59 ± 0.039	0.52
		DropConnect	$0.63 {\pm} 0.035$	0.57
yes	no	No-Drop	0.50 ± 0.098	0.38
		Dropout	0.39 ± 0.039	0.35
		DropConnect	$0.39 {\pm} 0.047$	0.32
yes	yes	No-Drop	0.30 ± 0.035	0.21
		Dropout	$0.28 {\pm} 0.016$	0.27
		DropConnect	$0.28 {\pm} 0.032$	0.21

Table 3. MNIST classification error. Previous state of the art is 0.47% (Zeiler and Fergus, 2013) for a single model without elastic distortions and 0.23% with elastic distortions and voting (Ciresan et al., 2012).

Stochastic optimization methods

Training Neural networks

- Gradient-descent
- Stochastic gradient-descent (mini-batch)

Gradient-descent vs. Stochastic gradient-descent

Compute the gradient of $J(\theta)$ is computationally **costly** as it requires to evaluate all the m training samples (when m is very big or each evaluation is costly).

To reduce the cost of gradient computation, there is an alternative:

- **Stochastic** / **Mini-Batch** gradient-descent (SGD): estimate the gradient by using *k* samples among the *m* (Monte-Carlo).
- Typically, we choose $m >> k \ge 1$.

Stochastic gradient-descent (SGD)

Let $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y^{(i)}, \hat{y}(x^{(i)}, \theta))$. SGD takes a random subset $B \subseteq \{1, \cdots, m\}$ of fixed size |B| to compute an estimation of $J(\theta)$ using

$$J_B(\theta) = \frac{1}{|B|} \sum_{i \in B} \ell(y^{(i)}, \hat{y}(x^{(i)}, \theta))$$

At iteration t, a subset $B^{(t)}$ is taken, and

$$\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla J_{B^{(t)}}(\theta^{(t)})$$

Remark 1: There is no guarantee that $J(\theta^{(t+1)}) < J(\theta^{(t)})$, in particular when the mini-batch size |B| is small.

Remark 2: One often says that SGD runs an epoch when it sees the whose training data once, i.e. 1 epoch equals to m/|B| iterations.

Convergence guarantee of SGD

Unlike GD, which often has a guarantee that $J(\theta^{(t+1)}) < J(\theta^{(t)})$, SGD does not have a monotone decreasing property.

One important convergence condition of SGD is about the learning rate:

$$\eta_t > 0, \quad \sum_{t=1}^{\infty} \eta_t = \infty, \quad \sum_{t=1}^{\infty} \eta_t^2 < \infty.$$

• Analyze an ideal case $(m=\infty)$: $J(\theta)=\mathbb{E}_{\xi\sim\mathcal{N}(\mu,\sigma^2l_d)}\|\theta-\xi\|^2/2$, with $\theta,\xi\in\mathbb{R}^d$.

Exercise: SGD

Sufficient conditions of SGD convergence: assume

$$J(\theta) = \mathbb{E}_{\xi \sim \mathcal{N}(\mu, \sigma^2 I_d)} h \|\theta - \xi\|^2 / 2$$
, with $\theta, \xi \in \mathbb{R}^d$, $h > 0$.

- At each iteration, sample independently $\xi^{(t)} \sim \mathcal{N}(\mu, \sigma^2 I_d)$
- Update $\theta^{(t)}$ with $\theta^{(t+1)} = \theta^{(t)} \eta_t h(\theta^{(t)} \xi^{(t)})$

What are the following conditions sufficient for SGD convergence, i.e.

$$\mathbb{E}\|\theta^{(t)}-\mu\|^2 \to 0 \text{ as } t \to \infty$$
?

- $\eta_t > 0, \sum_{t=1}^{\infty} \eta_t = \infty, \sum_{t=1}^{\infty} \eta_t^2 < \infty$
- **0** $0 < \eta_t < 2/h$, $\sum_{t=1}^{\infty} \eta_t = \infty$, $\sum_{t=1}^{\infty} \eta_t^2 < \infty$, $\eta_t > 0$, $\sum_{t=1}^{\infty} \eta_t = \infty$