Course Reminders

Due Dates:

- A1 due Sunday 4/14 (11:59 PM)
- Project Proposal due next Sunday

Notes:

- Group assignments were sent out by email. If you come off of the waitlist, you'll be assigned a group within the week.
- If you are enrolled and have not been assigned a group, I want to know that (email please)

Data Wrangling

getting the data you have in the format you need

- Reading files (CSV, JSON, XML) into Python
- pandas
 - pd.read csv()
 - Indexing & subsetting
 - Exploring the data: describe ()
 - Dropping columns: drop()
 - Missing Data

Think about the data you have & the data you want...and where things could have gone wrong during this process

Data Wrangling Warm-up

Getting to know you

g ,	weekdays - morning (9 AM - noon)	
Answers here will assist in group formation for the class project.	weekdays - afternoon (noon - 6 PM)	
	weekdays - evening (after 6 PM)	Which of the following do you enjoy thinking/learning about MOST?
	Friday nights (after 6 PM)	government & politics
First Name *		movies
Short answer text	Saturday - morning (9 AM - noon)	music
	Saturday - afternoon (noon - 6 PM)	sports (watching)
	Saturday - evenings (after 6 PM)	sports (participating)
Last Name*	Sunday - morning (9 AM - noon)	public health
Lastitainis	Sunday - afternoon (noon - 6 PM)	Climate change
Short answer text	Sunday - evenings (after 6 PM)	machine learning
	_ same, stampe (and string	ethics
		tech industry
What is your PID?		economics
Short answer text		education
		Other

When would you be available to meet and work with your group for the

course group project? SELECT all that apply.

Data Visualization

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science <u>sellis@ucsd.edu</u>

Histograms

Information about

a single quantitative variable

Range of possible height values is easily visualized

Densityplot

Information about a single

variable

quantitative

A smoothed version of a histogram - demonstrates the *distribution* of the data; helps to identify extreme values

Scatterplot

Relationship between two quantitative variables

Barplot

Count of values within a single categorical variable

Grouped Barplot

Count of values broken down across two categorical variables

Stacked Barplot

Count/proportion of values broken down across two categorical variables

Survey results

Boxplot

Summary of a quantitative variable broken down by a categorical variable

Boxplot

Summary of a quantitative variable broken down by a categorical variable

The lines give you an idea of the typical range of values for each category

Boxplot

Summary of a quantitative variable broken down by a categorical variable

Values outside the typical range are shown as circles. These are known as **outliers**.

Line plot

quantitative trend over time

Graphical Choices

You want to visualize how many people in your dataset prefer chocolate chip cookies and how many prefer oatmeal raisin cookies.

What type of visualization would be most appropriate?

Graphical Choices

Your interested in visualizing how many servings of milk an individual drinks each day among those who prefer chocolate chip cookies and those who prefer oatmeal raisin cookies.

What type of visualization would be most appropriate?

Graphical Choices

Your interested in visualizing how many servings of milk an individual drinks each year over the course of their life.

What type of visualization would be most appropriate?

Visualization Best Practices

Choose the right type of visualization

When looking at values, bar charts make it much easier to see the difference between groups!

Be mindful when choosing colors

Many color-blind individuals cannot see the difference between red and green.

Label your axes!

Make sure the text size is big enough!

Use y-axes that start at 0 for barplots

Keep it Simple

"...detailed organization chart displays a bewildering array of new government agencies, regulations and mandates" Everything on the page should <u>serve a purpose</u>. If it doesn't, remove it or edit it (declutter!).

AIM TO IMPROVE YOUR: data:ink ratio

Survey Results

PRE: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

POST: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

Pilot program was a success

How do you feel about science?

BEFORE program, the majority of children felt

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Survey Results

PRE: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

POST: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

Pilot program was a success

After the pilot program,

68%

of kids expressed interest towards science,

compared to 44% going into the program.

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Survey Results

PRE: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

POST: How do you feel about doing science?

■Bored ■Not great ■OK ■Kind of interested ■Excited

Pilot program was a success

How do you feel about science?

BEFORE program, the majority of children felt just *OK* about science

AFTER program, more children were *Kind of interested & Excited* about science.

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

less ismore

(effective)

(attractive)

(impactive)