1) At a certain temperature the following data were collected for the decomposition of HI.

$$2HI \rightarrow H_2 + I_2$$

Determine the rate law for the reaction.

Experiment	Initial [HI] (mol L ⁻¹)	Initial rate of reaction (mol L ⁻¹ s ⁻¹)
1 +2	-1.0×10^{-2}	44 ~ 4.0 × 10 ⁻⁶
2	2.0×10^{-2}	1.6×10^{-5}
3	3.0×10^{-2}	3.6×10^{-5}

What is the value of the rate constant for the decomposition of HI? *Include units in your answer*.

2) Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ The rate data in the table was collected at 225°C.

Determine the rate law for the reaction

Exp	[NO] ₀ (M)	[O ₂] ₀ (M)	Initial Rate, $-\Delta[O_2]/\Delta t$ $(M s^{-1})$			
1	<1.3 x 10 ^{−2}	2 $^{1.1}$ x 10^{-2}	$\geq 1.6 \times 10^{-3}$			
2	1.3×10^{-2}	2.2×10^{-2}	$\frac{1}{3.2 \times 10^{-3}}$			
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}			

Calculate the value of the rate constant at 225°C.

Calculate the rate of appearance of NO_2 when [NO] = [O₂] = 6.5 x 10^{-3} M.

Calculate the rate of appearance of NO2 when [NO] = [02] = 0.5 × 10 M.

$$R_{a} L_{e} = \left(860 \text{ m}^{-2} \text{ s}^{-1}\right) \left[6.5 + 10^{-3} \text{ m}\right] = 2.4 + 10^{-4} \text{ m} \text{ s}^{-1} \left(-\frac{600}{2}\right)$$

$$O_{2} \text{ and } NO_{3} = 2.4 + 10^{-4} + 2 = 14.8 + 10^{-4} \text{ m} \text{ s}^{-1}$$

Determine the rate law for the reaction.	Exp	[NO] ₀ (M)	$[H_2]_0$ (M)	$-\Delta[NO]/\Delta t$			
Rate = K(NO) (H2)		. ,		$(M s^{-1})$			
	1	-6.4×10^{-3}	2.2×10^{-3}	2.6×10^{-5} 1.0×10^{-4}			
Calculate the value of the rate constant at 225 °C.	2	1.3×10^{-2}	2.2×10^{-3}	1.0×10^{-4}			
V = Rate = 2.6 HG = MS=	3	6.4×10^{-3}	4.4×10^{-3}	$\int_{5.1 \times 10^{-5}}$			
$X = \frac{\text{Rate}}{\text{[6.4 \times 10^{-3}]}^2 \text{[2.2 + 16]}^3} = \frac{2.6 \times 10^{-3} \times 10^{-3}}{\text{[6.4 \times 10^{-3}]}^2 \text{[2.2 + 16]}^3} = \frac{3}{290} \times \frac{6.4 \times 10^{-3}}{\text{[6.4 \times 10^{-3}]}^2 \text{[3.1 \times 10^{-3}]}^3}$							
Calculate the rate of appearance of N_2O when $[NO] = [H_2] = 6.6 \times 10^{-3} M$.							
Rate=(290 m-25-) (6.6410-3) [6.6410-3m] = 8.3410-5m5-							
2:1 radio -> 8.3+10-5-2=4.2 ×10-5M							
Evaluate the following mechanism does it match the rate law. Which step is fast? $2NO \Rightarrow N_2O_2 \leftarrow S$							
$N_2O_2 + H_2 \rightarrow N_2O + H_2O \leq \omega$							
N202 1s an intermediate, 2nd Order wirespect to NO and 1st Order wirespect to Ho							
and 1	St C	rder -	ul respec	+ 10 45			
4) The major pollutants NO (g), CO (g), NO ₂ (g) and CO ₂ (g) are emitted by cars and can react according to the following equation: NO ₂ (g) + CO (g) \rightarrow NO (g) + CO ₂ (g) The rate data was collected at 225°C.							
Determine the rate law for the reaction.				Initial Rate,			
Rate = K[NO3]3			O ₂] ₀ [CO] ₀ M) (M)	$-\Delta[CO_2]/\Delta t$ $(M s^{-1})$			
Calculate the value of the rate constant at 225 °C.		1 0.2	0.826	1.44×10^{-5}			
Calculate the value of the rate constant at 225 °C. $K = \frac{R^{2} + e}{(NO_{2})^{2}} = \frac{1.44 + 10^{-5} \text{ M s}^{-1}}{(O.263 \text{ M})^{2}} = 2.08 + 10$ $M^{-1} = \frac{1.44 + 10^{-5} \text{ M s}^{-1}}{(O.263 \text{ M})^{2}} = 1.44 + 10^{-$	-4/	2 0.2	263 0.413	1.44×10^{-5}			
(s) (o ses w.)	5	3 0.5	0.413	5.76 x 10 ⁻⁵			
Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M.							
Rate=(2.08+10+ m-15-1) (0.500m) = [5.20+10-5 m 5-1)							
\$ 1:1 ratio							
Evaluate the following mechanism for the reaction based on the NO ₂ + NO ₂ \rightarrow NO + NO ₃ \leq \(\text{V} \) \sim \(\text{V} \\ \text{V} \\ \text{V} \\ \ext{V} \\ \(\text{V} \\ \text{V} \\ \ext{V} \\	form o	f the rate la	w. Explain y	ou answer.			

3) Nitric oxide, a noxious pollutant, and hydrogen react to give nitrous oxide and water according to the

Initial Rate,

reaction: 2NO (g) + H_2 (g) \rightarrow N_2 O (g) + H_2 O (g) The following rate data was collected at 225°C.