ESS111 : Programming 1 (C Programming) LAB - 7

Due: 27 January, 2021 @ 11:59 pm

Part A (to be submitted)

Problem 1: Rinku and Ravi are playing a game using a bunch of coins n. Rules for the game are as follows:

- 1. A player can only make one move at a time.
- 2. In each move, a player gets to pick t number of coins, where $t = 2^m, m \ge 0$ i.e. each player can pick t number of coins from the sequence $\{1,2,4,8...\}$ while $t \le n$.
- 3. The player who picks the last coin in their move, wins the game.

Given each player plays optimally, write a (C) program that takes 2 positive integers n,id as input where n is the total number of coins at the start of the game and id depicts which player has started the game, output the name of the player would win the game.

Note: Rinku is player1 hence id being 1 depicts Rinku started the game and while id being 2 depicts Ravi started the game. It is guaranteed that, $1 \le n \le 30$ and $id \in \{1, 2\}$.

Sample Input 1:

10 1

Output 1:

Rinku

Sample Input 2:

3 2

Output 2:

Rinku

Problem 2: Write a (C) program with a recursive function with prototype int is_palindrome (int x). The function is_palindrome returns 1 if the input number x is a palindrome, and 0 elsewhere. The function is_palindrome should be called in the main function. If the function is_palindrome returns 1, output Yes else output No.

Note: A number is a palindrome if it remains the same when read from either right to left or right to left. The input x is guaranteed to be in the range of int datatype.

```
Sample Input 1:
1805781
Output 1:
No
Sample Input 2:
975579
Output 2:
Yes
Problem 3: Write a (C) program to compute the greatest common divisor of two positive
integers m and n given by Euclid's algorithm using a recursive function.
Hint: Euclid's algorithm works on the principle gcd(a,b) = gcd(a,b\%a) when a \leq b.
Sample Input 1:
91 56
Output 1:
Sample Input 2:
67\ 50
```

Problem 4: There are three pegs labeled A, B and C. Initially there are n disks placed on peg A. The bottom-most disk is largest, and disks go on decreasing in size with the topmost disk being smallest. The objective of the game is to move the disks from peg A to peg C, using peg B as an auxiliary peg. The rules of the game are as follows:

- 1. Only one disk may be moved at a time, and it must be the top disk on one of the pegs.
- 2. A larger disk should never be placed on the top of a smaller disk.

Write a (C) program to count the minimum number of steps required to move all disks from peg A to peg C given the n, the initial number of disks on peg A. Note: It is guaranteed that $1 \le n \le 30$.

```
Sample Input 1:

Output 1:
```

Output 2:

1

```
Sample Input 2:
```

4

Output 2:

15

Part B (need not be submitted)

1. What is the output of the following programs:

```
(a) #include <stdio.h>
    int main()
{
        int x = 1, y = 2;
        int *ip;
        ip = &x;
        y = *ip;
        *ip = 0;
        printf("%d %d\n",x,y);
}
```

```
(b)
       #include <stdio.h>
       int i = 0;
       void val();
       int main()
           printf("main's i = %d\n", i);
           i++;
           val();
            printf("main's i = %d\n",i);
           val();
           return 0;
       }
       void val( )
       {
            i = 100;
           printf ( "val's i = %d\n", i );
            i++;
       }
```

(c) #include <stdio.h>
 int main()
{

```
printf("count=%d\n", count--);
            if (count != 0)
                main();
            return 0;
       }
(d)
       #include <stdio.h>
       void func();
       int main()
            func();
            func();
            return 0;
       void func()
       {
            auto int i = 0;
            register int j = 0;
            static int k = 0;
            i++; j++; k++;
            printf("%d %d %d\n",i,j,k);
       }
```

static int count = 5;

- 2. Consider the following statements and indicate which of them is/are correct:
 - (a) Comparing two pointers is a valid operation.
 - (b) Adding a pointer with a positive or negative a valid operation.
 - (c) Adding two pointers is a valid operation.
 - (d) Multiplying two pointers is a valid operation
- 3. State whether the following statements are True or F
 - (a) The value of an automatic storage class variable persists between various function invocations.
 - (b) If the CPU registers are not available, the register storage class variables are treated as static storage class variables.
 - (c) The register storage class variables cannot hold float values.
 - (d) If we try to use register storage class for a **float** variable the will report an error message.

- (e) The default value for automatic variable is zero.
- (f) The life of static variable is till the control remains withing the block in which it is defined.
- (g) If a global variable is to be defined, then the **extern** keyword is necessary in its declaration.
- (h) The address of register variable is not accessible

