US. Unemployment rate forecast using Time Series

Bhargavi Katta

Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ Project Supervisor: Dr. Hadi Safari Katesar

Abstract

This project aims to forecast the US unemployment rate using time series analysis techniques. We collected monthly data on the unemployment rate from January 2000 to March 2022 and applied a variety of methods to model and forecast the series. Specifically, we explored the use of univariate models, such. as. AARIMA and also tested for stationarity, autocorrelation, and other statistical properties of the data to inform our modeling choices.

Non Seasonal DATASET: US Unemployment rate

Data Source: https://tradingeconomics.com/united-states/unemployment-rate (https://tradingeconomics.com/united-states/unemployment-rate) "

Data Description: Data has unemployment rates of US for every month from 2000 to 2022

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
## Registered S3 methods overwritten by 'TSA':
## method from
## fitted.Arima forecast
## plot.Arima forecast
```

```
##
## Attaching package: 'TSA'
```

```
## The following objects are masked from 'package:stats':
##
## acf, arima
```

```
## The following object is masked from 'package:utils':
##
##
       tar
##
## Attaching package: 'dplyr'
  The following objects are masked from 'package:stats':
##
##
##
       filter, lag
   The following objects are masked from 'package:base':
##
##
##
       intersect, setdiff, setequal, union
setwd("/Users/gopalrao000/Desktop/Spring-2023/Time series/project")
data=read.csv("seas unemployment.csv")
```

Data

```
##
        Year Month Value
## 1
        2000
                   1
                        4.0
## 2
        2000
                        4.1
                   2
## 3
        2000
                   3
                        4.0
## 4
        2000
                   4
                        3.8
##
   5
        2000
                   5
                        4.0
##
   6
        2000
                   6
                        4.0
                   7
##
   7
        2000
                        4.0
## 8
        2000
                   8
                        4.1
## 9
        2000
                   9
                        3.9
## 10
        2000
                  10
                        3.9
## 11
        2000
                  11
                        3.9
##
   12
        2000
                  12
                        3.9
                   1
## 13
        2001
                        4.2
                   2
                        4.2
## 14
        2001
## 15
        2001
                   3
                        4.3
##
   16
        2001
                   4
                        4.4
##
   17
        2001
                   5
                        4.3
                        4.5
##
   18
        2001
                   6
## 19
        2001
                   7
                        4.6
```

##	20	2001	8	4.9
##	21	2001	9	5.0
##	22	2001	10	5.3
##	23	2001	11	5.5
##	24	2001	12	5.7
##	25	2002	1	5.7
##	26	2002	2	5.7
##	27	2002	3	5.7
##	28	2002	4	5.9
##	29	2002	5	5.8
##	30	2002	6	5.8
##	31	2002	7	5.8
##	32	2002	8	5.7
##	33	2002	9	5.7
##	34	2002	10	5.7
##	35	2002	11	5.9
##	36	2002	12	6.0
##	37	2003	1	5.8
##	38	2003	2	5.9
##	39	2003	3	5.9
##	40	2003	4	6.0
##	41	2003	5	6.1
##	42	2003	6	6.3
##	43	2003	7	6.2
##	44	2003	8	6.1
##	45	2003	9	6.1
##	46	2003	10	6.0
##	47	2003	11	5.8
##	48	2003	12	5.7
##	49	2004	1	5.7
##	50	2004	2	5.6
	51	2004		5.8
##			3	
##	52	2004	4	5.6
##	53	2004	5	5.6
##	54	2004	6	5.6
##	55	2004	7	5.5
##	56	2004	8	5.4
##	57	2004	9	5.4
##	58	2004	10	5.5
##	59	2004	11	5.4
##	60	2004	12	5.4
##	61	2005	1	5.3
##	62	2005	2	5.4
##	63	2005	3	5.2
##	64	2005	4	5.2
##	65	2005	5	5.1
##	66	2005	6	5.0

,, ,,	6 7	0005	7	- 0
##	67	2005	7	5.0
##	68	2005	8	4.9
##	69	2005	9	5.0
##	70	2005	10	5.0
##	71	2005	11	5.0
##	72	2005	12	4.9
##	73	2006	1	4.7
##	74	2006	2	4.8
##	75	2006	3	4.7
##	76	2006	4	4.7
##	77	2006	5	4.6
##	78	2006	6	4.6
##	79	2006	7	4.7
##	80	2006	8	4.7
##	81	2006	9	4.5
##	82	2006	10	4.4
##	83	2006	11	4.5
##	84	2006	12	4.4
##	85	2007	1	4.6
##	86	2007	2	4.5
##		2007	3	4.4
	87			
##	88	2007	4	4.5
##	89	2007	5	4.4
##	90	2007	6	4.6
##	91	2007	7	4.7
##	92	2007	8	4.6
##	93	2007	9	4.7
##	94	2007	10	4.7
##	95	2007	11	4.7
##	96	2007	12	5.0
##	97	2008	1	5.0
##	98	2008	2	4.9
##	99	2008	3	5.1
##	100	2008	4	5.0
##	101	2008	5	5.4
##	102	2008	6	5.6
##	103	2008	7	5.8
##	104	2008	8	6.1
##	105	2008	9	6.1
##	106	2008	10	6.5
##	107	2008	11	6.8
##		2008	12	7.3
##		2009	1	7.8
##		2009	2	8.3
	111	2009	3	8.7
	112		4	9.0
		2009	5	9.4
" "		_000	3	- · ·

##	114	2009	6	9.5
##	115	2009	7	9.5
##	116	2009	8	9.6
##	117	2009	9	9.8
##	118	2009	10	10.0
##	119	2009	11	9.9
##	120	2009	12	9.9
##	121	2010	1	9.8
##	122	2010	2	9.8
##	123	2010	3	9.9
##	124	2010	4	9.9
##	125	2010	5	9.6
##	126	2010	6	9.4
##	127	2010	7	9.4
##	128	2010	8	9.5
##	129	2010	9	9.5
##	130	2010	10	9.4
##	131	2010	11	9.8
##	132	2010	12	9.3
##				9.1
	133	2011	1	
##	134	2011	2	9.0
##	135	2011	3	9.0
##	136	2011	4	9.1
##	137	2011	5	9.0
##	138	2011	6	9.1
##	139	2011	7	9.0
##	140	2011	8	9.0
##	141	2011	9	9.0
##	142	2011	10	8.8
##	143	2011	11	8.6
##	144	2011	12	8.5
##			1	8.3
##	146		2	8.3
##		2012	3	8.2
##		2012	4	8.2
##		2012	5	8.2
##		2012	6	8.2
##		2012	7	8.2
##	152	2012	8	8.1
##	153	2012	9	7.8
##	154	2012	10	7.8
##	155	2012	11	7.7
##	156	2012	12	7.9
##		2013	1	8.0
##		2013	2	7.7
##			3	7.5
##			4	7.6
$\pi\pi$	100	2013	4	7.0

##	161	2013	5	7.5
##	162	2013	6	7.5
##	163	2013	7	7.3
##	164	2013	8	7.2
##	165	2013	9	7.2
##	166	2013	10	7.2
##	167	2013	11	6.9
##	168	2013	12	6.7
##	169	2014	1	6.6
##	170	2014	2	6.7
##	171	2014	3	6.7
##	172	2014	4	6.2
##	173	2014	5	6.3
##	174	2014	6	6.1
##	175	2014	7	6.2
##	176	2014	8	6.1
##	177	2014	9	5.9
##	178	2014	10	5.7
##	179	2014	11	5.8
##	180	2014	12	5.6
##	181	2015	1	5.7
##	182	2015	2	5.5
##	183	2015	3	5.4
##	184	2015	4	5.4
##	185	2015	5	5.6
##	186	2015	6	5.3
##	187	2015	7	5.2
##	188	2015	8	5.1
##	189	2015	9	5.0
##	190	2015	10	5.0
##	191	2015	11	5.1
##	192	2015	12	5.0
##	193		1	4.8
##	194	2016	2	4.9
##	195	2016	3	5.0
##	196	2016	4	5.1
##	197	2016	5	4.8
##		2016	6	4.9
##	199	2016	7	4.8
##	200	2016	8	4.9
##	201	2016	9	5.0
##	202	2016	10	4.9
##	203		11	4.7
##	204	2016	12	4.7
##	205	2017	1	4.7
##	206	2017	2	4.6
##	207	2017	3	4.4

##	208	2017	4	4.4
##	209	2017	5	4.4
##	210	2017	6	4.3
##	211	2017	7	4.3
##	212	2017	8	4.4
##	213	2017	9	4.3
##	214	2017	10	4.2
##	215	2017	11	4.2
##	216	2017	12	4.1
##	217	2018	1	4.0
##	218	2018	2	4.1
##	219	2018	3	4.0
##	220	2018	4	4.0
##	221	2018	5	3.8
##	222	2018	6	4.0
##	223	2018	7	3.8
##	224	2018	8	3.8
##	225	2018	9	3.7
##				
	226	2018	10	3.8
##	227	2018	11	3.8
##	228	2018	12	3.9
##	229	2019	1	4.0
##	230	2019	2	3.8
##	231	2019	3	3.8
##	232	2019	4	3.6
##	233	2019	5	3.7
##	234	2019	6	3.6
##	235	2019	7	3.7
##	236	2019	8	3.7
##		2019	9	3.5
##	238	2019	10	3.6
				3.6
##	239	2019	11	
##	240	2019	12	3.6
##	241	2020	1	3.5
##	242	2020	2	3.5
##	243	2020	3	4.4
##	244	2020	4	14.7
##	245	2020	5	13.2
##	246	2020	6	11.0
##	247	2020	7	10.2
##	248	2020	8	8.4
##	249	2020	9	7.9
##	250	2020	10	6.9
##	251	2020	11	6.7
##		2020	12	6.7
##	253		1	6.3
##	254	2021	2	6.2

```
## 255 2021
                      6.1
## 256 2021
                      6.1
## 257 2021
                      5.8
## 258 2021
                 6
                      5.9
                 7
## 259 2021
                      5.4
## 260 2021
                 8
                      5.2
## 261 2021
                 9
                      4.8
## 262 2021
                10
                      4.5
## 263 2021
                      4.2
                11
## 264 2021
                12
                      3.9
## 265 2022
                 1
                      4.0
## 266 2022
                 2
                      3.8
## 267 2022
                      3.6
                 3
## 268 2022
                 4
                      3.6
## 269 2022
                 5
                      3.6
## 270 2022
                      3.6
## 271 2022
                 7
                      3.5
## 272 2022
                      3.7
                 8
## 273 2022
                 9
                      3.5
## 274 2022
                10
                      3.7
## 275 2022
                11
                      3.6
## 276 2022
                12
                      3.5
## 277 2023
                 1
                      3.4
## 278 2023
                 2
                      3.6
                 3
## 279 2023
                      3.5
```

```
data.ts <- ts(data$Value,start=c(2000,1), end=c(2022,12), frequency=12)
data.ts</pre>
```

```
##
           Jan
                 Feb
                       Mar
                             Apr
                                    May
                                          Jun
                                                Jul
                                                      Aug
                                                             Sep
                                                                   Oct
                                                                         Nov
                                                                               Dec
## 2000
           4.0
                 4.1
                       4.0
                                          4.0
                             3.8
                                    4.0
                                                4.0
                                                      4.1
                                                             3.9
                                                                   3.9
                                                                         3.9
                                                                               3.9
## 2001
           4.2
                 4.2
                       4.3
                             4.4
                                    4.3
                                          4.5
                                                      4.9
                                                             5.0
                                                                   5.3
                                                                         5.5
                                                                               5.7
                                                4.6
## 2002
                             5.9
                                                                   5.7
                                                                         5.9
           5.7
                 5.7
                       5.7
                                    5.8
                                          5.8
                                                5.8
                                                      5.7
                                                             5.7
                                                                               6.0
##
   2003
           5.8
                 5.9
                       5.9
                             6.0
                                    6.1
                                                                   6.0
                                                                         5.8
                                                                               5.7
                                          6.3
                                                6.2
                                                      6.1
                                                             6.1
##
   2004
           5.7
                 5.6
                       5.8
                             5.6
                                    5.6
                                          5.6
                                                5.5
                                                      5.4
                                                             5.4
                                                                   5.5
                                                                         5.4
                                                                               5.4
##
   2005
           5.3
                 5.4
                       5.2
                             5.2
                                    5.1
                                          5.0
                                                5.0
                                                      4.9
                                                             5.0
                                                                   5.0
                                                                         5.0
                                                                               4.9
## 2006
                 4.8
                       4.7
                             4.7
                                    4.6
                                          4.6
                                                             4.5
                                                                   4.4
                                                                         4.5
           4.7
                                                4.7
                                                      4.7
                                                                               4.4
   2007
##
           4.6
                 4.5
                       4.4
                             4.5
                                    4.4
                                          4.6
                                                4.7
                                                      4.6
                                                             4.7
                                                                   4.7
                                                                         4.7
                                                                               5.0
## 2008
           5.0
                 4.9
                       5.1
                             5.0
                                    5.4
                                          5.6
                                                5.8
                                                                   6.5
                                                                         6.8
                                                                               7.3
                                                      6.1
                                                             6.1
   2009
##
           7.8
                 8.3
                       8.7
                             9.0
                                    9.4
                                          9.5
                                                9.5
                                                      9.6
                                                             9.8
                                                                 10.0
                                                                         9.9
                                                                               9.9
##
   2010
           9.8
                 9.8
                       9.9
                             9.9
                                    9.6
                                          9.4
                                                9.4
                                                      9.5
                                                            9.5
                                                                   9.4
                                                                         9.8
                                                                               9.3
##
   2011
           9.1
                 9.0
                       9.0
                             9.1
                                    9.0
                                          9.1
                                                9.0
                                                      9.0
                                                             9.0
                                                                   8.8
                                                                         8.6
                                                                               8.5
                             8.2
                                                             7.8
##
   2012
           8.3
                 8.3
                       8.2
                                    8.2
                                          8.2
                                                8.2
                                                      8.1
                                                                   7.8
                                                                         7.7
                                                                               7.9
## 2013
                                    7.5
                                                                               6.7
                 7.7
                       7.5
                             7.6
                                          7.5
                                                7.3
                                                             7.2
                                                                   7.2
                                                                         6.9
           8.0
                                                      7.2
##
   2014
                       6.7
                             6.2
                                                             5.9
                                                                   5.7
                                                                         5.8
           6.6
                 6.7
                                    6.3
                                          6.1
                                                6.2
                                                      6.1
                                                                               5.6
## 2015
           5.7
                 5.5
                       5.4
                             5.4
                                    5.6
                                                                         5.1
                                          5.3
                                                5.2
                                                      5.1
                                                             5.0
                                                                   5.0
                                                                               5.0
##
   2016
           4.8
                 4.9
                       5.0
                             5.1
                                    4.8
                                          4.9
                                                4.8
                                                      4.9
                                                             5.0
                                                                   4.9
                                                                         4.7
                                                                               4.7
## 2017
           4.7
                 4.6
                       4.4
                             4.4
                                    4.4
                                          4.3
                                                4.3
                                                      4.4
                                                             4.3
                                                                   4.2
                                                                         4.2
                                                                               4.1
## 2018
                                                                         3.8
           4.0
                 4.1
                       4.0
                             4.0
                                    3.8
                                          4.0
                                                3.8
                                                      3.8
                                                             3.7
                                                                   3.8
                                                                               3.9
## 2019
                       3.8
                             3.6
                                    3.7
                                                                         3.6
           4.0
                 3.8
                                          3.6
                                                3.7
                                                      3.7
                                                             3.5
                                                                   3.6
                                                                               3.6
## 2020
           3.5
                 3.5
                       4.4 14.7
                                  13.2
                                        11.0 10.2
                                                             7.9
                                                                   6.9
                                                                         6.7
                       6.1
## 2021
           6.3
                 6.2
                             6.1
                                    5.8
                                          5.9
                                                5.4
                                                      5.2
                                                             4.8
                                                                   4.5
                                                                         4.2
                                                                               3.9
## 2022
           4.0
                 3.8
                       3.6
                             3.6
                                    3.6
                                          3.6
                                                3.5
                                                      3.7
                                                             3.5
                                                                   3.7
                                                                         3.6
                                                                               3.5
```

plot(data.ts,ylab="US Unemployment rate", main="original data plot")

original data plot

ACF Plot

acf(data.ts,main=" ACF of Original data")

ACF of Original data

PACF Plot

pacf(data.ts, main=" PACF of Original Data ")

PACF of Original Data

Staionary Test

```
adf.test(data.ts)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: data.ts
## Dickey-Fuller = -2.2171, Lag order = 6, p-value = 0.4846
## alternative hypothesis: stationary
```

Null Hypothesis: Data is not stationary Alternate hypothesis: Data is Stationary P. value > 0.05, failed to reject null hypothesis Hence data is not stationary

```
ndiffs(data.ts)
```

```
## [1] 1

nsdiffs(data.ts)
```

[1] 0

Attempt to make the data Stationary

```
new_data <- diff(data.ts, differences = 1)
acf(new_data, main = "ACF of First Difference")</pre>
```

ACF of First Difference

pacf(new_data, main = "PACF of First Difference")

PACF of First Difference


```
adf.test(new_data)
```

```
## Warning in adf.test(new_data): p-value smaller than printed p-value
```

```
##
## Augmented Dickey-Fuller Test
##
## data: new_data
## Dickey-Fuller = -7.4355, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

After first differencing, data is stationary.

KPSS Test

```
kpss.test(new_data)
```

```
## Warning in kpss.test(new_data): p-value greater than printed p-value
```

```
##
## KPSS Test for Level Stationarity
##
## data: new_data
## KPSS Level = 0.082695, Truncation lag parameter = 5, p-value = 0.1
```

Here as the p-value is greater than 0.05, the data is stationary.

```
plot(new_data ,ylab="Unemployment. rate", main="stationary data(one difference)")
```

stationary data(one difference)


```
acf(new_data,lag.max=40)
```

Series new_data

Above ACF plot is white noise

pacf(new_data,lag.max=40)

Series new_data

Above PACF plot looks like almost whitenoise and 4th lag seems to have slight significance

```
## AR/MA
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13
## 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 1 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 x x 0 0 0 0 0 0 0 0 0 0 0 0
## 3 x x x 0 0 0 0 0 0 0 0 0 0 0
## 4 0 x x 0 0 0 0 0 0 0 0 0 0
## 5 0 x x x x x 0 0 0 0 0 0 0 0
## 6 x 0 0 x x 0 0 0 0 0 0 0 0
## 7 x 0 0 0 x 0 0 0 0 0 0 0
```

From the EACF plot possible beeter model is arma(0,0) but we will see how different models are capturing the patterns

```
fit <- auto.arima(new_data)</pre>
```

```
summary(fit)
```

```
## Series: new_data
## ARIMA(0,0,0) with zero mean
##
## sigma^2 = 0.4602: log likelihood = -283.49
## AIC=568.98
              AICc=568.99
                            BIC=572.6
##
## Training set error measures:
##
                          ME
                                 RMSE
                                            MAE MPE MAPE
                                                              MASE
                                                                        ACF1
## Training set -0.001818182 0.678367 0.1887273 100 100 0.6053082 0.0270969
```

Modeling

```
# load necessary libraries
library(forecast)
library(dplyr)
# create a dataframe to store the model results
model_results <- data.frame(model = character(), AIC = numeric(), BIC = numeric(), si</pre>
gma2 = numeric(), loglik = numeric())
# create and fit ARIMA models with different parameters
model1 \leftarrow arima(new data, order = c(1,1,0))
model2 \leftarrow arima(new data, order = c(0,1,1))
model3 \leftarrow arima(new_data, order = c(1,1,1))
model4 \le arima(new data, order = c(2,1,1))
model5 \leftarrow arima(new data, order = c(1,1,2))
model6 \leftarrow arima(new data, order = c(2,1,2))
# store the results for each model in the dataframe
model results <- model results %>% add row(model = "Model 1", AIC = AIC(model1), BIC
= BIC(model1), sigma2 = summary(model1)$sigma2, loglik = as.numeric(logLik(model1)))
model_results <- model_results %>% add_row(model = "Model 2", AIC = AIC(model2), BIC
= BIC(model2), sigma2 = summary(model2)$sigma2, loglik = as.numeric(logLik(model2)))
model_results <- model_results %>% add_row(model = "Model 3", AIC = AIC(model3), BIC
= BIC(model3), sigma2 = summary(model3)$sigma2, loglik = as.numeric(logLik(model3)))
model results <- model results %>% add row(model = "Model 4", AIC = AIC(model4), BIC
= BIC(model4), sigma2 = summary(model4)$sigma2, loglik = as.numeric(logLik(model4)))
model_results <- model_results %>% add_row(model = "Model 5", AIC = AIC(model5), BIC
= BIC(model5), sigma2 =
summary(model5)$sigma2, loglik = as.numeric(logLik(model5)))
model results <- model results %>% add row(model = "Model 6", AIC = AIC(model6), BIC
= BIC(model6), sigma2 = summary(model6)$sigma2, loglik = as.numeric(logLik(model6)))
# view the results
model results
```

```
## model AIC BIC sigma2 loglik
## 1 Model 1 696.5734 703.7997 0.7327316 -346.2867
## 2 Model 2 575.5307 582.7569 0.4618582 -285.7653
## 3 Model 3 577.2718 588.1111 0.4615250 -285.6359
## 4 Model 4 576.1288 590.5813 0.4558861 -284.0644
## 5 Model 5 576.2267 590.6792 0.4564143 -284.1133
## 6 Model 6 577.4710 595.5366 0.4549605 -283.7355
```

```
model_results_sorted <- model_results %>% arrange(AIC)
# view the sorted results
model_results_sorted
```

```
## model AIC BIC sigma2 loglik
## 1 Model 2 575.5307 582.7569 0.4618582 -285.7653
## 2 Model 4 576.1288 590.5813 0.4558861 -284.0644
## 3 Model 5 576.2267 590.6792 0.4564143 -284.1133
## 4 Model 3 577.2718 588.1111 0.4615250 -285.6359
## 5 Model 6 577.4710 595.5366 0.4549605 -283.7355
## 6 Model 1 696.5734 703.7997 0.7327316 -346.2867
```

From the above, AIC and BIC values Model2 i.e arima(0,1,1) is the good for for the data and we can also test Model4 i.e(2,1,1) model

Arima(0,1,1)

```
model <- Arima(new_data, order = c(0, 1, 1))</pre>
```

Residual Analysis

```
residuals <- residuals(model)
```

```
plot(residuals, type = "l", xlab = "Time", ylab = "Residuals", main=" Residual of ARIM A(0,1,1)")
```

Residual of ARIMA(0,1,1)

Stationary test on residuals

alternative hypothesis: stationary

```
## Warning in adf.test(residuals): p-value smaller than printed p-value

## Augmented Dickey-Fuller Test
## ## data: residuals
```

ACF of residuals

Dickey-Fuller = -7.4291, Lag order = 6, p-value = 0.01

acf(residuals)

Series residuals

PACF of residuals

pacf(residuals)

Series residuals

qqnorm(residuals)
qqline(residuals)

Normal Q-Q Plot

hist(residuals, xlab='Residuals')

Histogram of residuals

Ljung-Box test:

The Ljun-Box test is a hypothesis test that checks if a time series contains an autocorrelation. The null Hypothesis H0 is that the residuals are independently distributed. The alternative hypothesis is that the residuals are not independently distributed and exhibit a serial correlation.

The Ljung-Box test uses the following hypotheses: H0: The residuals are independently distributed. HA: The residuals are not independently distributed; they exhibit serial correlation

```
ljung_box_test = Box.test(residuals, type="Ljung-Box")
ljung_box_test
```

```
##
## Box-Ljung test
##
## data: residuals
## X-squared = 0.192, df = 1, p-value = 0.6613
```

P Value is > 0.05, failed to reject null Hypothesis.

Hence, The residuals are independently distributed.

tsdiag(model)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Forecaasting:

```
library(forecast)

# Use the model to forecast future values
forecast_values <- forecast(model, h = 6)

# Print the forecast values
print(forecast_values)</pre>
```

```
##
           Point Forecast
                              Lo 80
                                        Hi 80
                                                  Lo 95
                                                           Hi 95
             -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
## Jan 2023
## Feb 2023
            -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
## Mar 2023 -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
## Apr 2023
            -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
## May 2023 -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
## Jun 2023
             -0.001818182 -0.875941 0.8723047 -1.338674 1.335037
```

```
# Create a data frame with one column containing the point forecasts
df <- data.frame(forecast_values$mean)

# Print the data frame
print(df)</pre>
```

```
# Create time series object with start and end dates
data.ts <- ts(data.ts, start = c(2000, 1), end = c(2022, 12), frequency = 12)

# Fit the ARIMA model
Forecast_model <- Arima(data.ts, order = c(0, 1, 1))

# Forecast
rate_forecast <- forecast(Forecast_model, h = 12, level = c(95))
print(rate_forecast)</pre>
```

```
##
                                          Hi 95
            Point Forecast
                                 Lo 95
## Jan 2023
                  3.496678
                            2.1653053 4.828051
## Feb 2023
                  3.496678
                             1.5810835 5.412273
## Mar 2023
                            1.1373451 5.856011
                  3.496678
## Apr 2023
                  3.496678
                             0.7647554 6.228601
## May 2023
                  3.496678
                            0.4372090 6.556147
## Jun 2023
                  3.496678
                            0.1414881 6.851868
## Jul 2023
                  3.496678 -0.1302007 7.123557
                  3.496678 -0.3829094 7.376265
## Aug 2023
## Sep 2023
                  3.496678 -0.6201348 7.613491
## Oct 2023
                  3.496678 -0.8444160 7.837772
## Nov 2023
                  3.496678 -1.0576657 8.051022
                  3.496678 -1.2613673 8.254723
## Dec 2023
```

```
# Plot the forecast
plot(rate_forecast, ylab = "unemployment rate", xlab = "Year", main = "Unemployment F
orecast", col = "red")
```

Unemployment Forecast

Actual Values: 2023 1 3.4

2023 2 3.6 2023 3 3.5

Model4 : Arima((2,1,1))

```
model4 <- Arima(new_data, order = c(2, 1, 1))</pre>
```

Residual Analysis

```
residuals4 <- residuals(model4)</pre>
```

```
plot(residuals4, type = "l", xlab = "Time", ylab = "Residuals")
```


Stationarity check on residuals

```
adf.test(residuals4)
```

Warning in adf.test(residuals4): p-value smaller than printed p-value

```
##
## Augmented Dickey-Fuller Test
##
## data: residuals4
## Dickey-Fuller = -7.2712, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
```

ACF of Residuals

acf(residuals4)

Series residuals4

PACF of Residuals

pacf(residuals4)

Series residuals4

QQ Plot of Residual

qqnorm(residuals4)
qqline(residuals4)

Normal Q-Q Plot

Histogram of Residual

hist(residuals4, xlab='Residuals')

Histogram of residuals4

L jung Box test of Residuals

```
ljung_box_test = Box.test(residuals4, lag=20, type="Ljung-Box")
ljung_box_test
```

```
##
## Box-Ljung test
##
## data: residuals4
## X-squared = 7.4279, df = 20, p-value = 0.995
```

```
tsdiag(model4)
```

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Forecasting:

```
library(forecast)

# Use the model to forecast future values
forecast_values4 <- forecast(model4, h = 12)

# Print the forecast values
print(forecast_values4)</pre>
```

```
##
            Point Forecast
                                Lo 80
                                          Hi 80
                                                     Lo 95
                                                              Hi 95
## Jan 2023
               0.005458835 - 0.8661949 \ 0.8771126 - 1.327621 \ 1.338538
## Feb 2023
               0.008964180 - 0.8632760 \ 0.8812044 - 1.325012 \ 1.342940
## Mar 2023
            -0.002160215 -0.8788907 0.8745703 -1.343004 1.338683
## Apr 2023
             -0.002903615 -0.8796351 0.8738279 -1.343749 1.337941
## May 2023
              -0.001742570 -0.8785584 0.8750733 -1.342717 1.339232
## Jun 2023
             -0.001624739 -0.8784444 0.8751949 -1.342605 1.339355
## Jul 2023
             -0.001744579 -0.8785615 0.8750723 -1.342720 1.339231
## Aug 2023
              -0.001761122 -0.8785776 0.8750553 -1.342736 1.339214
## Sep 2023
             -0.001748898 -0.8785657 0.8750679 -1.342724 1.339227
## Oct 2023
             -0.001746728 -0.8785636 0.8750701 -1.342722 1.339229
## Nov 2023
              -0.001747959 -0.8785648 0.8750689 -1.342724 1.339228
## Dec 2023
              -0.001748231 -0.8785650 0.8750686 -1.342724 1.339227
```

```
# Create a data frame with one column containing the point forecasts
df <- data.frame(forecast_values4$mean)
# Print the data frame
#print(df)</pre>
```

df\$Point.Forecast

```
## NULL
```

```
# Create time series object with start and end dates
data.ts <- ts(data.ts, start = c(2000, 1), end = c(2022, 12), frequency = 12)

# Fit the ARIMA model
Forecast_model4 <- Arima(data.ts, order = c(2, 1, 1))

# Forecast
rate_forecast4 <- forecast(Forecast_model4, h = 12, level = c(95))
print(rate_forecast4)</pre>
```

```
##
                                  Lo 95
                                           Hi 95
            Point Forecast
## Jan 2023
                  3.512653
                             2.19262835 4.832677
## Feb 2023
                  3.534554
                             1.65764135 5.411466
## Mar 2023
                             1.32904585 5.771520
                  3.550283
## Apr 2023
                  3.560050
                             1.09411595 6.025983
## May 2023
                  3.565859
                             0.90623679 6.225482
## Jun 2023
                  3.569266
                             0.74451807 6.394015
## Jul 2023
                  3.571255
                             0.59881006 6.543699
                             0.46380521 6.681020
## Aug 2023
                  3.572413
## Sep 2023
                             0.33654032 6.809634
                  3.573087
## Oct 2023
                  3.573480
                             0.21525713 6.931702
## Nov 2023
                  3.573708
                             0.09884812 7.048568
## Dec 2023
                  3.573841 -0.01342717 7.161109
```

```
# Plot the forecast
plot(rate_forecast4, ylab = "unemployment rate", xlab = "Year", main = "Unemployment
Forecast", col = "red")
```

Unemployment Forecast

Forecasat of. the unemployment rate of the year 2023

```
rate_forecast4
```

##			Point Forecast	T ₁₀ 95	ні 95
		2023	3.512653		
		2023	3.534554		
##	Mar	2023	3.550283	1.32904585	5.771520
##	Apr	2023	3.560050	1.09411595	6.025983
##	May	2023	3.565859	0.90623679	6.225482
##	Jun	2023	3.569266	0.74451807	6.394015
##	Jul	2023	3.571255	0.59881006	6.543699
##	Aug	2023	3.572413	0.46380521	6.681020
##	Sep	2023	3.573087	0.33654032	6.809634
##	0ct	2023	3.573480	0.21525713	6.931702
##	Nov	2023	3.573708	0.09884812	7.048568
##	Dec	2023	3.573841	-0.01342717	7.161109

Actual values: 2023 1 3.4

2023 2 3.6 2023 3 3.5

Conclusion:

In this project, we analyzed the US unemployment rate using time series analysis. Based on our analysis, we found that the ARIMA(2, 1, 1) model was a good fit for the data, and we used this model to make forecasts for future unemployment rates. However, it is important to note that the unemployment rate is affected by various factors, such as recessions, natural disasters, and human attacks, which can impact the accuracy of our forecasts. Therefore, when making policy decisions or planning for the future, it is important to take these factors into consideration and adjust our forecasts accordingly.