

Sheet for Written Examinations

(Can also be used in the examinations box.)

This sheet should always be submitted.

NB Any loose sheets must always be attached to the examination script

School Computer Science											
Written examination in sub-component course							Examination code 1001				
Course / degree progra 1DT301 - Compute		ology			<u>L</u> _						
Date 2019-10-28			me 3.00 – 13.00	Pla Ste		(77) / Gu	lan (2) /	N1013K ((13)		
Total number of pages 1 cover sheet, 15 exam			camination a nly language								
Miscellaneous		"									
Teacher responsible fo Anders Haggren	or examinat	ion			ed examinat Växjö.	tion hall					
Can be reached on the Anders Haggren - 04	_	-				Time 8	- 13				
Examinee's name (or c	,	stated)									
Programme / course											
No. of credits		Grad	de			Teacher co	ode				
nstructions xamination scripts ca e thereby given the o								nation (any	late exam	inee	
ID shown Yes No	Exami	nation scrip	t submitted	at (time)		Signature of	of invigilato	r			
oäng:											
1. 2.	3.	4.	5.	6.	7.	8.	9.	Sum:	Grade:		

Name:

Exam in Computer Technology, 1DT301. 2019-10-28.

Time: 08.00 - 13.00

Allowed tools: Only language dictionaries.

Total score: 50 credits. Pass: 20 credits. Grade 4: 30 credits. Grade 5: 40 credits.

Grade F: 0-19, Grade E: 20-25, Grade D: 26-32, Grade C: 33-38, Grade B: 39-44: Grade A: 45-50.

Write clearly and legibly! Answer in Swedish or English!

CPU: ATMEL AVR ATMega2560 in all tasks, unless otherwise indicated.

1.

a) Convert these numbers to **decimal** numbers:

1111₂ (2-complement form, 4-bit number, signed)

1111₂ (unsigned number)

1111₈ (octal number)

1111₁₆ (hexadecimal number)

4p

b) Convert the decimal number -3823₁₀ to a binary number in two's complement form, with 13 bits. After that, convert the binary number to a hexadecimal value. Give the answer in hexadecimal! Show your calculations.

2p

4p

Linneuniversitetet

2. Machine code

Below is part of a program, cut out from the disassembler. The machine code is printed with the most significant byte first, ie as it is described in the Instruction Set Manual. Example: For the instruction \mathbf{ret} , machine code is $\mathbf{9508}$. On lines B -11 the assembler code is removed. Branch or rjump-instructions should be given with an offset to PC, example: BRNE PC -0x06.

- a) Recreate the assembler code by interpreting machine code. Use the enclosed examples from the Instruction Set Manual.
- b) Make a flowchart of the complete program and explain the function of the program.

@0000003:

+00000003:	936F	PUSH	R22	Push register on stack
+00000004:	935F	PUSH	R21	Push register on stack
+00000005: @00000006:		RJMP	PC+0x0005	Relative jump
+00000006: @00000007:		SWAP	R20	Swap nibbles
+00000007:	915F	POP	R21	Pop register from stack
+00000008:	916F	POP	R22	Pop register from stack
+00000009:		RET		Subroutine return
+0000000A:	2F54	MOV	R21,R20	Copy register
+0000000B:	705F			
+000000C:	2F64			
+000000D:	7 F 60			
+0000000E:	9562			
+000000F:	1756			
+00000010:	F3AC			
+00000011:	CFF5			

Linneuniversitetet

3. Assembler programming.

Below is an assembler program for a subroutine. The subroutine is called from a timer interrupt.

a) Make a flowchart of the assembler program below.

4p

b) Analyze the program and explain what the program will do, the function. Which registers will be used as input/outputs and what do you think they will contain?

4p

```
exam_subr:
    inc r17
    cpi r17,0x3c
    brlo exam
    clr r17
    inc r18
    cpi r18, 0b00111100
    brlt exam
    eor r18, r18
    inc r19
    cpi r19, 0x18
    brlt exam
    andi r19, 0x00
    adiw r24,1
exam:
    ret
```


4. Interrupts.

Se text from manual doc2549_ATmega2560 below.

a) Write 2 lines of assembler code to set the flags in register EICRA to get this function:

Interrupt when pin 3 on port D goes from low to high.

Interrupt when pin 2 on port D goes from high to low.

Interrupt when pin 1 on port D goes from high to low or from low to high.

Interrupt when pin 0 on port D goes has low level.

The register EICRA is placed on address 0x69.

6p

b) Which other flags have to be set to get the external interrupts in a) working?

2p

15.2 Register Description

15.2.1 EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit	7	6	8	4	3	2	1	0	
(0x69)	15C31	ISC30	15C21	ISC20	ISC11	ISC10	ISC01	ISC00	EICRA
Read/Write	RW	R/W	R/W	R/W	RW	R/W	RW	R/W	
Initial Value	0	0	0	0	0	G	0	0	

. Bits 7:0 - ISC31, ISC30 - ISC00, ISC00: External Interrupt 3 - 0 Sense Control Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag and the corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that activate the interrupts are defined in Table 15-1 on page 114. Edges on INT3:0 are registered asynchronously. Pulses on INT3:0 pins wider than the minimum pulse width given in Table 15-2 on page 114 will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an interrupt request as long as the pin is held low. When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its Interrupt Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-enabled.

Table 15-1. Interrupt Sense Control (1)

ISCn1	ISCn0	Description
0	0:	The low level of INTn generates an interrupt request
0	1	Any edge of INTn generates asynchronously an interrupt request
1	0	The falling edge of INTn generates asynchronously an interrupt request
1	1	The rising edge of INTn generates asynchronously an interrupt request

Note: 1.

n = 3, 2, 1or 0.

When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

Table 15-2. Asynchronous External Interrupt Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{INT}	Minimum pulse width for asynchronous external interrupt			50		ns

13.3.4 Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 13-12.

Table 13-12. Port D Pins Alternate Functions

Port Pin	Alternate Function
PD7	T0 (Timer/Counter0 Clock Input)
PD6	T1 (Timer/Counter1 Clock Input)
PD5	XCK1 (USART1 External Clock Input/Output)
PD4	ICP1 (Timer/Counter1 Input Capture Trigger)
PD3	INT3/TXD1 (External Interrupt3 Input or USART1 Transmit Pin)
PD2	INT2/RXD1 (External Interrupt2 Input or USART1 Receive Pin)
PD1	INT1/SDA (External Interrupt1 Input or TWI Serial DAta)
PD0	INTO/SCL (External Interrupt0 Input or TWI Serial CLock)

Linneuniversitetet

5. Assembler program.

Analyze the program below. It is a subroutine that will do some kind of conversion. Try to figure out what! The input value to the subroutine is in register r24. Outputs in register **r16**, **r17**, **r18** and **r19**.

- Make a flowchart of the program. a) 4p
- b) Explain what the program is doing and which values will be in the output registers. 4p

convert:

```
ldi
                    r16, 54
           mu1
                    r24, r16
                    r21, r1
           mov
           mov
                    r20, r0
           clr
                    r16
           clr
                    r17
           clr
                    r18
                    r19
           clr
           ldi
                    r22, low(1000)
_m:
           ldi
                    r23, high(1000)
           ср
                    r20, r22
                    r21, r23
           срс
           brlt
                    _c
                    r20, low(1000)
           subi
           sbci
                    r21, high(1000)
           inc
                    r16
           rjmp _m
_c:
           ldi
                    r22, low(100)
                    r23, high(100)
           ldi
                    r20, r22
           ср
                    r21, r23
           срс
           brlt
                     d
           subi
                    r20, low(100)
           sbci
                    r21, high(100)
                    r17
           inc
           rjmp _c
_d:
           ldi
                    r22, low(10)
           ldi
                    r23, high(10)
                    r20, r22
           ср
                    r21, r23
           срс
           brlt
                    _n
                    r20, low(10)
           subi
           sbci
                    r21, high(10)
           inc
                    r18
           rjmp
                    _d
_n:
           mov
                    r19, r20
           ret
```

_ _

Name:

Linneuniversitetet

C programming.

6. (4p)

a.

Assuming the following integer array

```
arr: 7 9 33 77 8
```

and the statement

```
arr[X] = 99;
```

What should X be set to if You want to replace 77 with 99?

b.

Turn the following sentence into a C statement:

A char pointer references memory location 332.

c.

Describe shortly how the union statement works.

d.

Assuming

```
int i = 5:
```

Write a C statement that shifts i left by two positions.

7. (4p)

Given the following assembly program

```
ldi r16, 5
ldi r17, 0
myLabel:
add r17, r16
dec r16
brne myLabel
```

Create an equivalent C program.

Note! A main() is not required, only its body.

Note! You are not allowed to use labels (goto).

8. (2p)

Create a function having an unsigned char as a parameter and returning 1 if bits 2 and 5 are set otherwise 0.

Note! Use the return statement.

Name:

9. (2p)

Assuming the following

```
int i = 5;

int k = 8;

int *p1 = &i;

int *p2 = p1;

/* A */

i = 55;

*p1 = 88;

/* B */

*p1 = 444;

*p2 = 555;

/* C */
```

What different values does i and k have when A, B and C is reached?

Linneuniversitetet

From m2560def:

; ***** .equ .equ .equ .equ	INTERRUI INTOaddi INT1addi INT2addi INT3addi INT4addi	r r r	= = = =	0x0002 0x0004 0x0006 0x0008 0x000a		,	External External External External	Interrup Interrup Interrup Interrup	********** t Request t Request t Request t Request t Request	0 1 2 3
. equ . equ	PCMSKO EICRB EICRA PCICR OSCCAL PRR1 PRR0 CLKPR WDTCSR EEUK EECR GPIOR0 EIMSK EIFR PCIFR	= 0x6c = 0x6b = 0x6a = 0x69 = 0x66 = 0x65 = 0x64 = 0x61 = 0x60 = 0x1f = 0x1e = 0x1d = 0x1c = 0x1a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY	MAPPED MAPPED MAPPED MAPPED MAPPED MAPPED MAPPED MAPPED		. equ . equ	PORTE DDRE PINE PORTD DDRD PIND PORTC DDRC PINC PORTB DDRB PINB PORTA DDRA PINA	= 0x0e = 0x0d = 0x0c = 0x0b = 0x0a = 0x09 = 0x08 = 0x07 = 0x06 = 0x05 = 0x04 = 0x03 = 0x02 = 0x01 = 0x00	

Linneuniversitetet

■ ATmega16(L)

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIO	ONS .			
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	Rd ← Rd + Rr + C	Z,C,N,V,H	1
ADIW	RdI,K	Add Immediate to Word	Rdh:Rdl +- Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1.
SBC	Rd. Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	RdI,K	Subtract Immediate from Word	Rdh Rdl ← Rdh Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd. K	Logical AND Register and Constant	Rd ← Rd • K	2,N,V	1.
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd.K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd.K	Clear Bit(s) in Register	Rd ← Rd • (\$FF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z.N.V	1
SER	Rd	Set Register	Rd ← SFF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd. Rr		R1:R0 ← Rd x Rr	Z,C	2
FMUL.	Rd, Rr	Multiply Signed with Unsigned Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr		R1:R0 + (Rd x Rr) << 1	Z,C	2
FMULSU	Rd. Rr	Fractional Multiply Signed Fractional Multiply Signed with Unsigned	R1 R0 +- (Rd x Rr) << 1	ZC	2
BRANCH INSTRU		Fractional muniply Signed with Unsigned	R1 R0 4- (R0 x R0) 1	65	- 2
RJMP	k.	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC←Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k		PC ← PC + k + 1	None	3
ICALL		Relative Subroutine Call Indirect Call to (Z)	PC ← Z	None	3
7779770	k		10.000		1 2 2 2
RET	K.	Direct Subroutine Call Subroutine Return	PC ← k PC ← STACK	None None	4
(454749)))				PACING	-
RETI	040-	Interrupt Return	PC ← STACK # (Rd = Rr) PC ← PC + 2 or 3	Mario	4
CPSE	Rd,Rr	Compare, Skip if Equal	1979/1970	None	1/2/3
CP	Rd,Rr	Compare	Rd - Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	# (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
onno		the state of the state of the state of	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared		100000000000000000000000000000000000000	
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BREQ BRNE	k k	Branch if Equal Branch if Not Equal	if (Z = 0) then PC +- PC + k + 1	None	1/2
BREQ BRNE BRCS	k k	Branch if Equal Branch if Not Equal Branch if Carry Set	if (Z = 0) then PC ← PC + k + 1 if (C = 1) then PC ← PC + k + 1	None None	1/2
BREQ BRNE BRCS BRCC	k k k	Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH	k k k k	Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None None None None	1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO	k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$	None None None None	1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI	k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO	k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI	k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$	None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL	k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE	k k k k k k k k k k k k k k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLY	k k k k k k k k k k k k k k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS	k k k k k k k k k k k k k k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS BRHC	k k k k k k k k k k k k k k k k k k k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N = V = 0)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT BRHS BRHC BRTS	k	Branch if Egual Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared Branch if T Flag Set	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 0)$ then $PC \leftarrow PC + k + 1$ if $(C = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 1)$ then $PC \leftarrow PC + k + 1$ if $(N = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$ if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$ if $(H = 1)$ then $PC \leftarrow PC + k + 1$ if $(H = 0)$ then $PC \leftarrow PC + k + 1$ if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None None None None None None None None	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

l innounivaroitatat

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (1 = 1) then PC +- PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (1 = 0) then PC ← PC + k + 1	None	1/2
DATA TRANSFER	INSTRUCTIONS	- que	ip:	191	
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd +- Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	Rd ← (X)	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	Rd ← (X), X ← X * 1	None	2
LD	Rd, - X	Load Indirect and Pre-Dec	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	Y ← Y - 1, Rd ← (Y)	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	Rd +- (Y + q)	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	RdZ	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDO	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X * 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	Y ← Y − 1, (Y) ← Rr	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	-2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) ← Rr, Z ← Z + 1	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	Rd ← (Z), Z ← Z+1	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	2.5
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
BIT AND BIT-TES	TINSTRUCTIONS				200
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	VO(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	2,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Anthmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30)\leftarrow Rd(74), Rd(74)\leftarrow Rd(30)$	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	5	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	1000000000	Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	c	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z←1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	1	1
CLI		Global Interrupt Disable	1←0	1.	-1
SES		Set Signed Test Flag	S ← 1	s	1
CLS		Clear Signed Test Flag	S+0	s	1
SEV		Set Twos Complement Overflow.	V+-1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	v	1
SET		Set T in SREG	T-1	Ť	1
CLT		Clear T in SREG	T ← 0	Ť	1
76 Mar 5		Set Half Carry Flag in SREG	H ← 1	Н	1

Mnemonics Operands		Description	Operation	Flags	#Clocks	
CLH		Clear Half Carry Flag in SREG	H ← 0	H.	1	
MCU CONTROL	INSTRUCTIONS	5/	57		0.	
NOP	T	No Operation	2 - 01 - 2 - 2012 - 2 - 2012	None	1	
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1	
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1	
BREAK		Break	For On-Chip Debug Only	None	N/A	

Linneuniversitetet

Linneuniversitetet

RJMP - Relative Jump Description: Relative jump to an address within PC - 2K +1 and PC + 2K (words). In the assembler, labels are used instead of relative operands. For AVR microcontrollers with Program memory not exceeding 4K words (8K bytes) this instruction can address the entire memory from every address location. SWAP - Swap Nibbles Operation: PC - PC + k + 1 (1) Description: Syntax: Operands: Program Counter: Stack (1) RJMP k $-2K \le k < 2K$ $PC \leftarrow PC + k + 1$ Unchanged Swaps high and low nibbles in a register 16-bit Opcode: Operation: (1) $R(7:4) \leftarrow Rd(3:0), R(3:0) \leftarrow Rd(7:4)$ kkkk | Syntax: Operands: Program Counter: (1) SWAP Rd $0 \le d \le 31$ PC ← PC + 1 Status Register (SREG) and Boolean Formula: 16-bit Opcode: 0104 dead 0010 Example Status Register and Boolean Formula: #16,942 / Compare #16 to \$42 | Branch if r16 c> \$42 STEEL Z C , Onconditional branch rjep -k add #16.#17 / Add r17 to r16 inc T16 Increment #16 . Destination for risp ido nothing! hop R (Result) equals Rd after the operation. Words: 1 (2 bytes) Cycles: 2 $_{\rm F}$ Increment ± 1 gewa **r**1 , Swap high and low mibble of rl inc rî ; Increment high nibble of ri . Swap back OUT - Store Register to I/O Location bytes). Description: Stores data from register Rr in the Register File to I/O Space (Ports, Timers, Configuration Registers etc.). Operation: 1/O(A) +- Rr Program Counter: Syntax: Operands: 0 < r < 31 0 < A < 63 PC +- PC + 1 OUT A.Rr 16-bit Opcode: AAAA 1011 1AAr EYES STS - Store Direct to Data Space Description: Status Register (SREG) and Boolean Formula: Stores one byte from a Register to the data space. For parts with SRAM, the data space consists of the Register File, I/O memory and internal SRAM (and external SRAM if applicable). For parts without SRAM, the data space consists of the Register File only. The EEPROM has a separate address space. C A 16-bit address must be supplied. Memory access is limited to the current data segment of 64K bytes. The STS instruction uses the RAMPD Register to access memory above 64K bytes. To access another data segment in devices with more than 64K bytes data space, the RAMPD in register in the VO area has to be changed. Example: clr rie (Clear ris This instruction is not available in all devices. Refer to the device specific instruction set summary 88F F17 7 Set 117 Operation: but \$18, r16 , Write seros to Port B $(k) \leftarrow Rr$ nop , Wait (do nothing) put \$18, r17 , Write ones to Fort B Syntax Operands: Program Counter: (1) STS k.Rr $0 \le r \le 31, 0 \le k \le 65635$ PC +- PC + 2 Words: 1 (2 bytes) 32-bit Opcode: Cycles: 1 Status Register (SREG) and Boolean Formula Example: ri, \$P\$00 | | Load ri with the contente of data space location \$P\$10) add rl to r2 *** SFF00. #2 . Write mack

Jame.

Linneuniversitetet

EOR - Exclusive OR Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination regis er Rd. CP - Compare Operation: Rd ← Rd ⊕ Rr Description: Program Counter: This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditions Syntax: Operands: EOR Rd,Rr $0 \le d \le 31, 0 \le r \le 31$ PC +- PC + 1 ranches can be used after this instruction 16-bit Opcode: Rd - Rr ttird ildali erri Program Counter: Syntax: 0 sds31, 0 srs31 CP Rd,Rr PC - PC + 1 Status Register (SREG) and Boolean Formula: 16-bit Opcode: Ulri d444 7771 0 -Status Register (SREG) and Boolean Formula: N ⊕ V, For signed tests ** Cleared Rd3 •Rr3+ Rr3 •R3 +R3• Rd3 Set if there was a borrow from bit 3; cleared otherwise Set if MSB of the result is set, cleared otherwise. N ⊕ V. For signed tests. R7 •R6 •R5 •R4• R3• R2 •R1• R0 Rd7+ Rr7 +R7+ Rd7 +Rr7 +R7 Set if the result is \$00; cleared otherwise Set if two's complement overflow resulted from the operation, cleared otherwise R (Result) equals Rd after the operation Set if MSB of the result is set, cleared otherwise. R7. R6 -R5. R4 -R3 -R2 -R1 -R0 24,24 | Clear r4 Pitwise exclusive or between r0 and r21 Set if the result is \$00; cleared other r0, r22 F67 •Rr7+ Rr7 • R7 •R7 • R67 Vords: 1 (2 bytes) Set if the absolute value of the contents of Rr is larger than the absolute value of Rit; cleared otherwise. Cycles: 1 R (Result) after the operation. r4,x10 | Compare r4 with r15 | noteq | Branch 15 r4 e> r19 | Branch destination (45 solding)

ADD - Add without Carry

Description:

Adds two registers without the C Flag and places the result in the destination regist

Operation: (i)Rd ← Rd + Rr

(i)

ADD Rd Rr

Operands:

 $0 \le d \le 31, 0 \le r \le 31$

Program Counter:

PC + PC + 1

16-bit Opcode:

11st rtddd-TFEE

Status Register (SREG) and Boolean Formula:

	т.	н	s	v	N	z	c
-	-	69	60	=	610	65	44

Rd3+Rr3+Rr3+R3+R3+Rd3 H

Set if there was a carry from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

Rd7+Rr7+Rd7+Rd7+Rr7+R7

Set if two's complement overflow resulted from the operation, cleared other

N:

Set if MSB of the result is set, cleared otherwise.

Z R7. R6. R5. R4. R3. R2. R1. R0 Set if the result is \$00; cleared otherwise.

C Rd7 •Rr7 +Rr7 •R7+ R7 •Rd7

Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

add r1, r2 ; Add r2 to r1 (r1-r1-r2) add r28, r28 ; Add r29 to itself (r28-r29-r29)

Words: 1 (2 bytes) Cycles: 1

CPI - Compare with Immediate

This instruction performs a compare between register Rd and a constant. The register is not changed, All conditional branches can be used after this instruction.

Operation:

0) Rd - K

	Syntax:	Operands:	Program Counter
00	CPI Rd,K	$16 \le d \le 31$, $0 \le K \le 255$	PC ← PC + 1

16-bit Opcode:

KKIOK

Status Register (SREG) and Boolean Formula:

- 1	т .	н	5	V	N	z	c
22	-	80	646	84	60	0.0	00

H Rd3 •K3+ K3• R3+ R3 •Rd3

Set if there was a borrow from bit 3, cleared otherwise

5: N ⊕ V, For signed tests.

V. Rd7 •K7 •R7 •Rd7 •K7 •R7

Set if two's complement overflow resulted from the operation; cleared otherwise

N:

Set if MSB of the result is set, cleared otherwise.

R7 •R6• R5 •R4• R3• R2 •R1 •R0 2 Set if the result is \$00; cleared otherwise

C Rd7 •K7 +K7 •R7+ R7 •Rd7

Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise

R (Result) after the operation.

Example:

cpi #19,1 Chepure rif with i , Branch if rl9col

error) nop Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

SUBI - Subtract Immediate

btracts a register and a constant and places the result in the destination register Rd. This instruction is working on Re

ster R16 to R31 and is very well suited for operations on the X, Y and Z-pointers.

		VI (2006)	Relation .		5-2		
Syntax:) SUBI Rd.K		Operands: 16 < d < 31 .0 < K < 255			Program Counter PC +- PC + 1		
10		man I	error 1				
	SUBI	SUBI Rd.K. 16-bit Opcode:	SUBI Rd.K 16 ≤ d 16-bit Opcode:	SUBI Rd.K 16 ≤ d ≤ 31, 0 ≤ K 16-bit Opcode:	SUBI Rd.K 16 5 d 5 31, 0 5 K 5 255 16-bit Opcode:	SUBI Rd.K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 I 16-bit Opcode:	

8	2.00		69	68	82	- 68	-
01		energe d	1000	11			10

Rd3+ K3+K3 +R3 +R3 +Rd3 Set if there was a borrow from bit 3; cleared otherwise

N @ V, For signed tests.

Rd7 • K7 •R7 •Rd7 • K7 •R7

two's complement overflow resulted from the operation, cleared otherwise.

Set if MSB of the result is set, cleared otherwise. R7. R6. R5. R4. R3. R2. R1. R0

Rd7+ K7+K7+R7+R7+Rd7

Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise

ewn : :27,511 ; Habthart \$11 from :22 hree lested | Branch 1f :22--\$11 , Branch destination (do sorting)

lords: 1 (2 bytes)

SBCI - Subtract Immediate with Carry

Subtracts a constant from a register and subtracts with the C Flag and places the result in the destination register Rd.

Operation: $Rd \leftarrow Rd \cdot K \cdot C$

> Syntax: Operands: Program Counter: 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1 SBCI Rd.K

16-bit Opcode:

/1000

Status Register and Boolean Formula:

-	-	60	99	44	44	90	se.
						*	

Rd3 • K3 • K3 • R3 • R3 • Rd3

Set if there was a borrow from bit 3; cleared otherwise

N ⊕ V, For signed tests.

Rd7 •K7 • R7 •Rd7 •K7 •R7

Set if two's complement overflow resulted from the operation, cleared otherwise.

Set if MSB of the result is set, cleared otherwise.

R7+ R6 +R5+ R4+ R3 +R2+ R1+ R0+ Z

Previous value remains unchanged when the result is zero; cleared otherwise.

Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared other-

R (Result) equals Rd after the operation

Example:

eum; #16,523 : Subtract low byte , Subtract with carry high byte abet #17,84F

fords: 1 (2 bytes)