Math265 Real Analysis Class Notes

Based on lectures by Prof. Huang

Notes taken by Kaifeng Lu

Errata: klu15 at u dot rochester dot edu

Fall 2024

1 Preliminaries

1.1 Sets and Functions

Definition (<u>Image and Inverse Image</u>). Let $A, B \subseteq \mathbb{R}, f : A \to B$.

If $E \subseteq A$, then the **image** of E is the set

$$f(E) = \{ f(x) : x \in E \} \subseteq B$$

If $H \subseteq B$, the **inverse image** of H is the set

$$f^{-1}(H) = \{x \in A : f(x) \in H\} \subseteq A$$

Definition. Let $A, B \subseteq \mathbb{R}, f : A \to B$.

• f is $\underline{injective}$ (or $\underline{one-to-one}$) if

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

• f is $\underline{surjective}$ (or \underline{onto}) if

$$f(A) = B$$

• f is <u>bijective</u> if it is both injective and surjective

Definition (*Inverse Function*).

Let $A, B \subseteq \mathbb{R}$, $f: A \to B$. If f is bijective, then we can define a function $g: B \Rightarrow A$ such that

$$g(y) = x$$
 if and only if (iff or \Leftrightarrow) $f(x) = y$

g is called *inverse function* of f and denoted by $g = f^{-1}$

Definition. Let $A, B \subseteq \mathbb{R}$, $f: A \to B$, $A_1 \subseteq A$. The **restriction of** f **to** A_1 is the function $f|_{A_1}: A_1 \to B$ defined by

$$f|_{A_1}(x) = f(x)$$
 for all $x \in A_1$

Example. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$. Notice that f is not injective. However,

$$f|_{[0,\infty)}:[0,\infty)\to\mathbb{R}$$

is injective.

Proof. Suppose there are $x_1, x_2 \ge 0$ such that $f|_{[0,\infty)}(x_1) = f|_{[0,\infty)}(x_2)$. Then

$$x_1^2 = x_2^2$$

$$(x_1 + x_2)(x_1 - x_2) = 0$$

Thus $x_1 = -x_2$ or $x_1 = x_2$. Since x_1, x_2 are positive,

$$x_1 = x_2 = 0 \text{ or } x_1 = x_2$$

Hence, $x_1 = x_2$ and we conclude that $f|_{[0,\infty)}$ is injective.

Definition (*Relation*). Let $A, B \subseteq \mathbb{R}$. A <u>relation</u> R from A to B is a subset of $R \subseteq A \times B$. We write aRb or $a \sim b$ to express $(a, b) \in R$

Example.

• Equality relation on \mathbb{R} , denoted by =, is defined by

$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y\} = \{(x, x) : x \in \mathbb{R}\}\$$

Definition (*Equivalence Relation*). Let $A \subseteq \mathbb{R}$. A relation R from A to A is an *equivalent relation* if it satisfies all of following:

- 1. $\forall a \in A, \ aRa \ (Reflexivity)$
- 2. If for $a, b \in A$, aRb, then bRa. (Symmetry)
- 3. If for $a, b, c \in A$, aRb and bRc, then aRc. (Transitivity)

Definition (<u>Equivalence Class</u>). Let $A \subseteq \mathbb{R}$ with an equivalent relation \sim . An <u>equivalence class</u> under \sim is a subset $B \subseteq A$ such that for some $a \in A$

$$\forall b \in B, \ a \sim b \Leftrightarrow a \in B$$

Example. Define relation R by $aRb \Leftrightarrow 3|a-b$. Then R is an equivalent relation (Try to prove it!)

Define $3\mathbb{Z} = \{n \in \mathbb{Z} : 3 | n\} \subset \mathbb{Z}$. Then $3\mathbb{Z}$ is an equivalence class under R

Proof. Let $a \in 3\mathbb{Z}, b \in \mathbb{Z}$. Suppose aRb, then

$$3|a-b$$

 $a-b=3n$ for some $n \in \mathbb{N}$
 $b=a-3n$

Since $a \in 3\mathbb{Z}$, a = 3m for some $m \in \mathbb{N}$. Thus,

$$b = 3m - 3n = 3(m - n) \in 3\mathbb{Z}$$

Proposition. Let S be a non-empty set, and \sim be an equivalent relation on S. Then for any distinct equivalent classes A, B under R,

$$A \cap B = \phi$$

that is, equivalence classes of an equivalence relation are disjoints.

Proof. Let A, B be two distinct equivalence classes under \sim in S

Assume $\exists c \in A \cap B$, then $\forall a \in A$, $a \sim c$ and $\forall b \in B$, $b \sim c$. Thus by transitivity,

$$\forall a \in A, b \in B, a \sim b$$

Thus

$$A \subseteq B$$
 and $B \subseteq A$

$$A = B$$

which contradicts to the fact that $A \neq B$.

Proposition. Let S be a non-empty set, and \sim be an equivalent relation on S. For all element $x \in A$, x is confined in a unique equivalence class denoted by $[x]_{\sim}$

Definition (<u>Quotient</u>). Let S be a non-empty set, and \sim be an equivalent relation on S. The <u>quotient</u> of S under \sim is the set S/\sim defined by

$$S/\sim = \{[x]_{\sim} : x \in S\}$$

Example.
$$\mathbb{Z}/\sim = \{3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z}\} = \{\dots, [-1]_{\sim}, [0]_{\sim}, [1]_{\sim}, \dots\}$$

1.2 Mathematical Induction

The reader should consult pages 12-15 on the textbook.

1.3 Finite and Infinite Sets

Definition ($\underline{Cardinality}$). The number of elements a set S have is called the $\underline{cardinality}$ \underline{of} S.

• The empty set ϕ has 0 elements, called *cardinality* $\boldsymbol{0}$, denoted by

$$|\phi| = \#\phi = card(\phi) = 0$$

• Let $n \in \mathbb{N}$, a set $S \in \mathbb{R}$ has n elements, called <u>cardinality</u> n denoted by

$$|S| = \#S = card(S) = n$$

if there exists a bijection

$$f: \mathbb{N}_n \to S$$

Definition. Let S be any set.

- S is said to be *finite* if it is empty or has cardinality n for some $n \in \mathbb{N}$.
- S is said to be *infinite* if it is not finite.

Theorem (<u>Uniqueness Theorem</u>). If S is a finite set, then the number of elements in S is a unique number in \mathbb{N} .

Theorem. The set \mathbb{N} of natural numbers is an infinite set.

Proof. Assume \mathbb{N} is finite. Then there exists a natural number $n \in \mathbb{N}$ such that

$$|\mathbb{N}| = n$$

However, if we choose the first n+1 elements in \mathbb{N} , then

$$\{1, 2, \ldots, n, n+1\} \subset \mathbb{N}$$

$$|\{1, 2, \ldots, n, n+1\}| = n+1 < |\mathbb{N}| = n$$

which is a contradiction.

Theorem.

(a) Let A, B be sets and $\exists m, n \in \mathbb{N}$ s.t. |A| = m, |B| = n, $A \cap B = \phi$, then

$$|A \cup B| = m + n$$

(b) Let A be a set with |A| = m for some $m \in \mathbb{N}$ and $C \subseteq A$ be a set with |C| = 1, then

$$|A \backslash C| = m - 1$$

(c) If C is an infinite set and B is a finite set, then

$$C\backslash B$$
 is an infinite set

Proof. (a) By definition of cardinality, there exists two bijective function

$$f: \mathbb{N}_m \to A, \ g: \mathbb{N}_n \to B$$

We define $h: \mathbb{N}_{n+m} \to A \cup B$ such that

$$h(x) = \begin{cases} f(x) & \text{if } x \le m \\ g(x-m) & \text{if } x > m \end{cases}$$

• \underline{Claim} : h is injective.

Suppose $\exists x_1, x_2 \in \mathbb{N}_{n+m}$ s.t. $h(x_1) = h(x_2)$.

Case 1: $x_1, x_2 \leq m$. Then $f(x_1) = f(x_1) \Rightarrow x_1 = x_2$ since f is injective.

Case 2: $x_1 \leq m, x_2 > m$. Then $f(x_1) = g(x_2 - m)$ contradiction. Impossible.

Case 3: $x_1, x_2 > m$. Then $g(x_1 - m) = g(x_2 - m) \Rightarrow x_1 = x_2$ since g is injective.

We conclude that h is injective

• *Claim*: *h* is surjective.

Let $y \in A \cup B$.

Case 1: $y \in A$. Then $\exists x \in \mathbb{N}_m \subseteq \mathbb{N}_{n+m}$ s.t. f(x) = y since f is onto.

Case 2: $y \in B$. Then $\exists x \in \mathbb{N}_n \subseteq \mathbb{N}_{n+m}$ s.t. g(x) = y since f is onto.

Since $x + m \in \mathbb{N}_{m+n}$ and x + m > m,

$$h(x+m) = g(x+m-m) = g(x) = y$$

We conclude that h is surjective.

(b)(c): *Exercise*.

Theorem. Let S, T be set such that $S \subseteq T$. Then

- 1. If T is finite, then S is finite.
- 2. If S is infinite, then T is infinite

Proof. (a) Prove by induction on cardinality of T.

For |T| = 0, $T = \phi \Rightarrow S = \phi$. Thus S is finite for |T| = 0

Suppose that the claim holds for all $S \subseteq T$ where |T| = k.

If |T| = k + 1, there are two cases:

Case 1: If S = T, then S is finite.

Case 2: $\exists t \in T \text{ s.t. } t \notin S$, then

$$|T \setminus \{t\}| = k \text{ and } S \subseteq T \setminus \{t\}$$

Then S is finite by induction hypothesis. Thus, we can prove for the rest of cases by induction.

(b) This assertion is the contrapositive of (a).

Definition.

- A set is said to be <u>countably infinite</u> if there exists a bijection of \mathbb{N} onto S.
- A set is said to be *countable* if it is either finite or countably infinite.
- A set is said to be *uncountable* if it is not countable.

Example.

- N is countably infinite.
- $S = \{2, 3, 4, \dots\} \subseteq \mathbb{N}$ is countably infinite.
- The set of even natural numbers is countably infinite.
- \mathbb{Z} is countably infinite.

Theorem. If A, B are both countably infinite, then $A \cup B$ is countably infinite.

Proof. By definition of countably infinity, $\exists f : \mathbb{N} \to A, \ g : \mathbb{N} \to B$ bijective.

Define $h: \mathbb{N} \to A \cup B$ by

$$h(n) = \begin{cases} f(\frac{n+1}{2}) & \text{if } n \text{ is odd} \\ g(\frac{n}{2}) & \text{if } n \text{ is even} \end{cases}$$

It suffices to show that h is surjective.

Let $x \in A \cup B$. If $x \in A$, then since f is surjective, $\exists n \in \mathbb{N}$ s.t. f(n) = x.

Consider m = 2n - 1. Then

$$h(m) = f(\frac{m+1}{2}) = f(n) = x$$

We leave the rest of proof as exercise.

Theorem. The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Proof. $\forall m, n \in \mathbb{N}$, we can enumerate these (m, n) pairs as

$$(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), \dots$$

We see that the total number of points in diagonals 1 through k is given by $\psi : \mathbb{N} \to \mathbb{N}$

$$\psi(k) = \begin{cases} 0 & \text{if } k = 0\\ \frac{1}{2}k(k+1) & \text{if } k \in \mathbb{N} \end{cases}$$

We define $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by

$$h(m,n) = \psi(m+n-2) + m$$

= $\frac{1}{2}(m+n-2)(m+n-1) + m$

Claim: h is a bijection. See Appendix B.

Theorem. The following statement are equivalent (Abbv.: TFAE):

- (a) S is a countable set.
- (b) There exists a surjection of \mathbb{N} onto S.
- (c) There exists an injection of S onto \mathbb{N}

Proof.

- (a) \Rightarrow (b): Suppose S is a countable set.
 - If S is finite, then $\exists f : \mathbb{N}_n \to S$ a bijection for some $n \in \mathbb{N}$, and $\exists g : \mathbb{N} \to \mathbb{N}_n$ s.t. $\forall m \in \mathbb{N}, \ g(m) = m \mod n$. Thus g is onto. We have $f \circ g : \mathbb{N} \to S$ is onto by exercise in homework
 - If S is countably infinite, then $\exists f: \mathbb{N} \to S$ onto.
- (b) \Rightarrow (c): Suppose $\exists f: \mathbb{N} \to S$ onto. Define $g: S \to \mathbb{N}$ by

$$g(s) = \min\{n \in \mathbb{N} : f(n) = s\}$$

Suppose $\exists s, t \in S \text{ s.t. } g(s) = g(t) = n \text{ for some } n \in \mathbb{N}.$ We have

$$f(g(s)) = s$$
 and $f(g(t)) = t$
 $s = t$

Thus q is injective.

• (c) \Rightarrow (a): Suppose $\exists f: S \to \mathbb{N}$ injective. Then $\exists \hat{f}: S \to f(S)$ a bijection. Since $f(S) \subseteq \mathbb{N}$, f(S) is countable by the previous theorem. Hence

$$\exists h: \mathbb{N} \to f(s)$$

It follows that

$$\hat{f} \circ h : \mathbb{N} \to S$$

is a bijection.

Theorem. \mathbb{Q} is *countable*.

Proof. Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}_+$ where $\mathbb{Q}_+ = \{x \in \mathbb{Q}: x > 0\}$ by

$$f(m,n) = \frac{n}{m}$$

It is easy to see that f is surjective (Try to prove it!).

Since $\mathbb{N} \times \mathbb{N}$ is countable, $\exists g : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ a bijection.

We compose f and g to get:

$$f \circ q : \mathbb{N} \to \mathbb{Q}_+$$

Thus \mathbb{Q}_+ is countable by the previous theorem.

Similarly, we can prove that $\mathbb{Q}_- = \{x \in \mathbb{Q} : x < 0\}$ is countable. Thus, $\mathbb{Q} = \mathbb{Q}_- \cup \mathbb{Q}_+ \cup \{0\}$ is countable by the previous theorem.

Theorem (<u>union of countable sets is countable</u>). If A_n is a countable set for $n \in \mathbb{N}$, then the union

$$A = \bigcup_{n=1}^{\infty} A_n$$

is countable. That is, the union of countable sets is countable.

Proof. $\forall n \in \mathbb{N}, \exists \psi_n : \mathbb{N} \to A_n \text{ a bijection.}$

Define $f: \mathbb{N} \times \mathbb{N} \to A$ by

$$f(m,n) = \psi_m(n)$$

Then f is surjective (Try to prove it!).

Since $\mathbb{N} \times \mathbb{N}$ is countable, by previous theorem, $\exists g : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ a bijection. Thus

$$f \circ g : \mathbb{N} \to A$$

We conclude that by definition, A is countable.

Theorem ($\underline{Cantor's\ Theorem}$). If A is a set, there is no surjection of A onto the power set of A.

Proof. Assume $\exists \psi : A \to P(A)$. For any element $a \in A$, $\psi(a) \subseteq A$. Thus either $a \in \psi(a)$ or a does not belong to this set. We define

$$D = \{ a \in A : a \neq \psi(a) \}$$

Since $D \subseteq A$, if ψ is a surjection, then $\exists a_0 \in A \text{ s.t. } D = \psi(a_0)$.

- If $a_0 \in D$, then since $D = \psi(a_0)$, we must have $a_0 \in \psi(a_0)$ a contradiction to definition of D.
- Similarly, if $a_0 \notin \psi(a_0)$, then $a_0 \notin \psi(a_0)$ so that $a_0 \in D$, which is also a contradiction

We thereby conclude that ψ cannot be a surjection.

Remark. This implies that the power set of natural number $\mathcal{P}(\mathbb{N})$ is uncountable.

2 The Real Numbers

2.1 The Algebraic and Order Properties of $\mathbb R$

Axiom (<u>Algebraic Property of \mathbb{R} </u>). On the set R of real numbers there are two binary operations, denoted by + and \cdot called <u>addition</u> and <u>multiplication</u>, respectively. These operations satisfy the following properties.

Axioms for Addition

- **(A1)** For all $a, b \in \mathbb{R}$, a + b = b + a (commutative property of addition)
- **(A2)** For all $a, b, c \in \mathbb{R}$, (a+b)+c=a+(b+c) (associative property of addition)
- (A3) There exists an element $0 \in \mathbb{R}$ such that 0 + a = a + 0 = a for all $a \in \mathbb{R}$ (existence of zero element (additive identity))
- (A4) For all $a \in \mathbb{R}$, there exists an element $-a \in \mathbb{R}$ s.t. a + (-a) = (-a) + a = 0 (existence of negative element (additive inverse))

Axioms for Multiplication

- (M1) For all $a, b \in \mathbb{R}$, $a \cdot b = b \cdot a$ (commutative property of multiplication)
- (M2) For all $a, b, c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associative property of multiplication)
- (M3) There exists an element $1 \in \mathbb{R}$, $1 \neq 0$, s.t. $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathbb{R}$ (existence of unit element (multiplicative identity))
- (M4) For all $a \in \mathbb{R}$, $a \neq 0$, there exists an element $\frac{1}{a} \in \mathbb{R}$ s.t. $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$ (existence of reciprocals (multiplicative inverse))

Distributive Law

(**D**) For all $a, b, c \in \mathbb{R}$, $a \cdot (b+c) = a \cdot b + a \cdot c$ (distributive law of multiplication over addition)

Theorem.

- (a) If $z, a \in \mathbb{R}$ with z + a = a, then z = 0.
- (b) If $u, b \in \mathbb{R}$, $u, b \neq 0$ with $u \cdot b = b$, then u = 0.
- (c) If $a \in \mathbb{R}$, then $a \cdot 0 = 0$.

Proof. (a) Axiom (A3), (A4), (A2) gives

$$z = z + 0 = z + (a + (-a)) = (z + a) + (-a) = a + (-a) = 0$$

(b) Axiom (M3), (M4), (M2) gives

$$u = u \cdot 1 = u \cdot (b \cdot \frac{1}{b}) = (u \cdot b) \cdot \frac{1}{b} = b \cdot \frac{1}{b} = 1$$

(c) Axiom (M3), (D), (A3), theorem (a) gives

$$a + a \cdot 0 = a \cdot 1 + a \cdot 0 = a \cdot (1 + 0) = a \cdot 1 = a$$

 $a \cdot 0 = 0$

Theorem.

- (a) If $a, b \in \mathbb{R}$, $a \neq 0$ with $a \cdot b = 1$, then $b = \frac{1}{a}$.
- (b) If $a \cdot b = 0$, then either a = 0 or b = 0.

Proof. (a) Axiom (M3), (M4), (M2), $a \cdot b = 1$, (M3) gives

$$b = 1 \cdot b = (\frac{1}{a} \cdot a) \cdot b = \frac{1}{a} \cdot (a \cdot b) = \frac{1}{a} \cdot 1 = \frac{1}{a}$$

(b) It suffices to assume $a \neq 0$ and prove b = 0. (M2), (M4), (M3), and previous theorem(c) gives

$$b = 1 \cdot b = (\frac{1}{a} \cdot a) \cdot b = \frac{1}{a} \cdot (a \cdot b) = \frac{1}{a} \cdot 0 = 0$$

Definition.

• We define –, called <u>substraction</u>, as a - b = a + (-b) for all $a, b \in \mathbb{R}$.

• We define \div , called <u>division</u>, as $a \div b = a \cdot b = \frac{a}{b}$ for all $a, b \in \mathbb{R}$.

• We define a^n , called <u>natural power</u>, as $a^n = (((a \cdot a) \cdot a) \cdot ...) \cdot a$ (n-times) for all $a \in \mathbb{R}, n \in \mathbb{N}$.

Theorem ($\sqrt{2}$ *Is Irrational Number*). There is no rational number $r \in \mathbb{Q}$ such that $r^2 = 2$.

Proof. We will prove this by <u>contradiction</u>.

Assume there are $p, q \in \mathbb{Z}$ satisfying $(\frac{p}{q})^2 = 2$. Without loss of generality, assume p, q > 0 and $\gcd(p, q) = 1$. Then

$$p^2 = 2q^2$$

So p^2 is even. This implies that p is also even (try to prove it!). Let p=2m for some $m\in\mathbb{Z}.$ Then

$$p^2 = 4m^2 = 2q^2$$
$$2m^2 = q^2$$

By the same argument, if q^2 is even, then q is even. Since p, q are even, gcd(p, q) is at least 2, which contradicts our condition.

Axiom (<u>Order of</u> \mathbb{R}). There is a non-empty set $\mathbb{P} \subset \mathbb{R}$ called the set of <u>positive real</u> <u>numbers</u> that satisfies the following properties:

- 1. If $a, b \in \mathbb{P}$, then $a + b \in \mathbb{P}$.
- 2. If $a, b \in \mathbb{P}$, then $a \cdot b \in \mathbb{P}$.
- 3. If $a \in \mathbb{R}$, then one and only one of following holds:

$$a \in \mathbb{P}, \ a = 0, \ -a \in \mathbb{P}$$

Note: for all $a \in \mathbb{R}$

- we write a > 0 and say a is **positive** if $a \in \mathbb{P}$,
- we write $a \geq 0$ and say a is **non-negative** if $a \in \mathbb{P} \cup \{0\}$.
- we write a < 0 and say a is **negative** if $a \in \mathbb{P}$,
- we write $a \leq 0$ and say a is **non-positive** if $-a \in \mathbb{P} \cup \{0\}$.

Definition. Let $a, b \in \mathbb{R}$.

- 1. If $a b \in \mathbb{P}$, we denote that a > b or b < a.
- 2. If $a b \in \mathbb{P} \cup \{0\}$, we denote that $a \geq b$ or $b \leq a$.

Note: For all $a, b \in \mathbb{R}$, there is one and only one of following holds:

$$a < b, \ a = b, \ a > b$$

And we call them a is *greater than*, *equal to*, or *less than* b respectively.

Theorem. Let $a, b, c \in \mathbb{R}$.

- 1. If a > b and b > c, then a > c.
- 2. If a > b, then a + c > b + c.
- 3. If a > b and c > 0, then ca > cb. If a > b and c < 0, than ca < cb.

Proof.

1.By definition, $a - b \in \mathbb{P}$ and $b - c \in \mathbb{P}$. Then

$$(a-b) + (b-c) = a-c \in \mathbb{P} \Rightarrow a > c$$

2. By definition, $a - b \in \mathbb{P}$, then

$$(a+c)-(b+c) \in \mathbb{P} \Rightarrow a+c > b+c$$

3. By dfinition, $a - b \in \mathbb{P}$, then

If
$$c > 0$$
, $c \in \mathbb{P}$, $ca - cb = c(a - b) \in \mathbb{P} \Rightarrow ca > cb$

If
$$c < 0$$
, $-c \in \mathbb{P}$, $cb - ca = (-c)(a - b) \in \mathbb{P} \Rightarrow cb > ca$

Theorem.

- 1. If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
- $2. \ 1 > 0$
- 3. If $n \in \mathbb{N}$, then n > 0.

Proof.

- 1. Since $a \neq 0$, there are only two cases:
 - If $a \in \mathbb{P}$, then $a^2 \in \mathbb{P}$.
 - If $-a \in \mathbb{P}$, then $(-a)(-a) = a^2 \in \mathbb{P}$. Proof of $(-a)(-a) = a^2$ is exercise
- 2. $1 \in \mathbb{P}$, so $1^2 \in \mathbb{P}$ by (1)
- 3. For all $n \in \mathbb{N}$, $n = (((1+1)+1)+\cdots+1)+1$. Thus, this is true by induction.

Theorem. If $a \in \mathbb{R}$, $0 < a < \varepsilon$ for all $\varepsilon > 0$, then a = 0.

Proof. Assume that a > 0. Then if we take $\varepsilon_0 = \frac{1}{2}a$, we have $0 < \varepsilon_0 < a$ a contradiction.

Thus we conclude that a = 0.

Theorem. If ab > 0, then either

- a > 0 and b > 0, or
- a < 0 and b < 0

Proof. Exercise.

Corollary. If ab < 0, then either

- a > 0 and b < 0, or
- a < 0 and b > 0

Proof. Exercise.

Proposition. Let $a \ge 0$, $b \ge 0$. Then

$$a < b \text{ iff } a^2 < b^2 \text{ iff } \sqrt{a} < \sqrt{b}$$

Proof.

- If a = 0, then it holds.
- If a > 0, then

$$b^{2} - a^{2} = (b+a)(b-a) > 0 \Leftrightarrow b-a > 0$$

And $\sqrt{a} < \sqrt{b} \Leftrightarrow a < b$ is a consequence of $a < b \Leftrightarrow a^2 < b^2$

Theorem (Arithmetic-geometric Mean Inequality). For all $a, b \in \mathbb{R}$, $a, b \geq 0$, $\sqrt{ab} \leq \frac{a+b}{2}$. Moreover, the inequality holds iff a = b.

Proof. If $a \neq b$, $\sqrt{a} \neq \sqrt{b}$, then

$$(\sqrt{a} - \sqrt{b})^2 > 0$$

$$a + b - 2\sqrt{ab} > 0$$

$$\sqrt{ab} < \frac{a+b}{2}$$

 (\Leftarrow) If a = b, then the equality holds.

 (\Rightarrow) If $\sqrt{ab} < \frac{a+b}{2}$, then we reverse the previous working,

$$(\sqrt{a} - \sqrt{b})^2 = 0$$
$$a = b$$

Theorem (**Bernoulli's Inequality**). If x > -1, then for all $n \in \mathbb{N}$,

$$(1+x)^n \ge 1 + nx$$

Proof. We will prove this by mathematical induction.

- n = 1, then $1 + x \ge 1 + x$, so P(1) holds.
- Assume P(k) holds for all $k \in \mathbb{N}$. We want to show that P(k+1) holds.

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\geq (1+kx)(1+x) = 1 + (k+1)x + kx^2$$

$$\geq 1 + (k+1)x$$

Thus P(k+1) holds.

We conclude that P(n) holds for all $n \in \mathbb{N}$.

2.2 Absolute Value and the Real Line

Definition. The <u>absolute value</u> of a real number a, denoted by |a|, is defined by

$$|a| = \begin{cases} a & \text{if } a > 0\\ -a & \text{if } a < 0\\ 0 & \text{if } a = 0 \end{cases}$$

Theorem.

1. $|ab| = |a| \cdot |b|$ for all $a, b \in \mathbb{R}$.

2.
$$|a|^2 = |a^2|$$
 for all $a \in \mathbb{R}$.

3. If $c \in \mathbb{R}$, $c \ge 0$, then

$$|a| < c \text{ iff } -c < a < c$$

 $4. - |a| \le a \le |a|.$

Proof. Exercise.

Theorem (*Triangle Inequality*). Let $a, b \in \mathbb{R}$. Then

$$|a+b| \le |a| + |b|$$

Proof. By previous theorem(4), we have

$$-|a| \le a \le |a|$$
 and $-|b| \le b \le |b|$

$$-(|a| + |b|) \le a + b \le |a| + |b|$$

Thus, by previous theorem(3),

$$|a+b| \le |a| + |b|$$

Remark. $ab \ge 0 \text{ iff } |a + b| \le |a| + |b|$

Proof. Exercise.

Corollary. Let $a, b \in \mathbb{R}$. Then

1.
$$||a| - |b|| \le |a - b|$$
.

2.
$$|a - b| \le |a| + |b|$$
.

Proof.

1. We write a = a - b + b. By triangle inequality,

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

 $|a| - |b| \le |a - b|$

Similarly

$$|b|-|a| \leq |a-b|$$

We thereby conclude that (1) holds.

2. We "put -b in b" of triangle inequality:

$$|a - b| \le |a| + |b|$$

Corollary. If $a_1, a_2, \ldots, a_n \in \mathbb{R}$, then

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$

Proof.

$$|a_1 + a_2 + \dots + a_n| \le |a_1 + a_2 + \dots + a_{n-1}| + |a_n|$$

$$\le |a_1 + a_2 + \dots + a_{n-2}| + |a_{n-1}| + |a_n|$$

$$\dots$$

$$\le |a_1| + |a_2| + \dots + |a_n|$$

Definition. Let $a \in \mathbb{R}$, $\varepsilon > 0$. Then the ε -neighborhood of a is the set

$$V_{\varepsilon}(a) = \{x \in \mathbb{R} | |x - a| < \varepsilon \}$$

$$a - \varepsilon \qquad a \qquad a + \varepsilon$$

Theorem. Let $a \in \mathbb{R}$. If $\forall \varepsilon > 0$, $x \in V_{\varepsilon}(a)$, then x = a.

Proof. By definition of neighborhood, $\forall \epsilon > 0, |x - a| < \varepsilon$. Thus by previous theorem,

$$|x-a| = 0 \Rightarrow x-a = 0 \Rightarrow x = a$$

Proposition. Let $a, b \in \mathbb{R}$ with a < b. Consider the **open interval**

$$(a,b) = \{x | a < x < b\}$$

Then for all $x \in (a, b)$, $\exists \varepsilon > 0$ s.t.

$$V_{\varepsilon}(x) \subset (a,b)$$

Proof. Choose $\varepsilon = \min\{|x-a|, |x-b|\}$. Suppose $y \in V_{\varepsilon}(x)$, then

$$|x-y|<\varepsilon$$

$$x - \varepsilon < y < x + \varepsilon$$

So it is either

- -a < -b < y < b if a > b, or
- -b < -a < y < a if a < b

We conclude that $y \in (a, b)$

Proposition. Let $a, b \in \mathbb{R}$ with a < b. Consider the <u>closed interval</u>

$$[a, b] = \{x | a \le x \le b\}$$

Then for all $\varepsilon > 0$,

$$V_{\varepsilon}(x) \not\subseteq (a,b)$$

Proof. Exercise.

Proposition. Let $x, y, a, b \in \mathbb{R}$. If $x \in V_{\varepsilon}(a), y \in V_{\varepsilon}(b)$, then

$$x + y \in V_{2\varepsilon}(a + b)$$

Proof. By definition of neighborhood,

$$|(x+y) - (a+b)| = |(x-a) + (y-b)|$$

$$\leq |x-a| + |y-b|$$

$$< \varepsilon + \varepsilon = 2\varepsilon$$

Thus $x + y \in V_{2\varepsilon}(a + b)$.

2.3 The Completeness Property of \mathbb{R}

Definition. Let $S \subseteq \mathbb{R}$ be a nonempty.

- 1. S is said to be <u>boudned above</u> if there exists a number $u \in \mathbb{R}$ such that $s \leq u$ for all $s \in S$. We say u is an <u>upper bound</u> of S.
- 2. S is said to be <u>boudned below</u> if there exists a number $u \in \mathbb{R}$ such that $u \geq s$ for all $s \in S$. We say u is an <u>lower bound</u> of S.
- 3. S is said to be **boudned** if it is both bounded above and below.
- 4. We say S is **unbounded** if it is not bounded above or bounded below.

Definition. Let $S \subseteq \mathbb{R}$ be nonempty.

- 1. If S is bounded above, then u is the **supremum** or **least upper bound** of S if
 - u is an upper bound, and
 - If v is an upper bound of S, then $u \leq v$.
- 2. If S is bounded below, then w is the <u>infimum</u> or <u>greatest lower bound</u> of S if
 - w is an lower bound, and
 - If t is an lower bound of S, then $t \leq w$.

Supremum and infimum are denoted by

$$\sup S$$
, inf S

Proposition. If S is bounded above, then $\sup S$ is *unique*.

Proof. Suppose u_1 , u_2 are supremum of S. Since u_1 is the supremum of S and u_2 is the upper bound of S,

$$u_1 \leq u_2$$

Similarly, we have

$$u_2 \le u_1$$

Thus

$$u_1 = u_2$$

Theorem. Let $S \subseteq \mathbb{R}$ be nonempty. If $\exists u = \sup S$, then the following statements are equivalent:

- 1. If v is an upper bound of S, then $u \leq v$.
- 2. If z < u, then z is not an upper bound of S.
- 3. If z < u, then there exists $s_z \in S$ such that $z < s_z$.
- 4. If $\varepsilon > 0$, then there exists $s_{\varepsilon} \in S$ such that $u \varepsilon < s_{\varepsilon}$.

Proof. Exercise.

Lemma (*Alternative Definition*). Let $S \subseteq \mathbb{R}$ be nonempty. $\exists u = \sup S$ iff

- $s \le u$ for all $a \in S$.
- If v < u, then there exists $s' \in S$ such that v < s'.

Proof. Exercise.

Lemma ($\underline{\varepsilon}$ *Definition*). An upper bound u of nonempty set $S \subseteq \mathbb{R}$ is the supremum of S iff

 $\forall \epsilon > 0, \ \exists s_{\epsilon} \in S \text{ s.t.}$

$$u - \varepsilon < s_{\varepsilon}$$

Proof. (\Rightarrow) Suppose $u = \sup S$. $\forall \varepsilon > 0, u - \varepsilon$ is NOT an upper bound of S. Thus

$$\exists s_{\varepsilon} \in S \text{ s.t. } u - \varepsilon < s_{\varepsilon}$$

 (\Leftarrow) Suppose u is an upper bound satisfying: $\forall \epsilon > 0, \exists s_{\epsilon} \in S \text{ s.t. } u - \varepsilon < s_{\varepsilon}.$

Let v be an upper bound of S.

Goal: $u \leq v$

Assume u > v. Let $\varepsilon = u - v > 0$. Then $\exists s_{\varepsilon} \in S$ s.t. $u - \varepsilon < s_{\varepsilon}$. Thus $u - \varepsilon$ is NOT an upper bound of S, which is a contradiction.

We thereby conclude that $u \leq v$.

Remark (*Maximum v.s. Supremum*). If a set is bounded above, then the *maximum* of a set may not exist, but the *supremum* of the set always exists.

Example. Let S = (1, 2). Then there does NOT exist a maximum of S, but $\exists \sup S = 2$. This is also true for *minimum* and *infimum*.

Remark. If a set S is bounded above, then $\sup S$ may NOT be an element of S.

Example. Let S = (1, 2). $\exists \sup S = 2 \notin S$

Axiom (Completeness Property of \mathbb{R}).

Every nonempty set of real numbers has a supremum in $\mathbb{R} \cup \{\infty\}$. It is also called *least-upper-bound-property* or \underline{LUP} or \mathbb{R} .

2.4 Applications of Supremum

Definition. Let $S \subseteq \mathbb{R}$, $a \in \mathbb{R}$. We define

$$a + S = \{a + s : \forall s \in S\}$$

More generally,

$$A + B = \{a + b : \forall a \in A, b \in B\}$$

Proposition. $\sup(a+S) = a + \sup S$

Proof. Let $u = \sup S$. Then $\forall s \in S, u \geq s$. Thus

$$a + u \ge a + s$$

It follows that a + u is an upper bound of a + S. Thus,

$$\sup(a+S) \le a+u$$

Let v be an upper bound of a + S, so $\forall s \in S$

$$v - a > s$$

Thus v - a is an upper bound of S.

$$v - a \ge \sup S = u$$

$$v \ge a + u$$

$$\sup(a+S) \ge a+u$$

Thus,

$$a + \sup(S) = \sup(a + S)$$

Proposition. Suppose $A, B \subseteq \mathbb{R}$. Then

$$\sup(A+B) = \sup A + \sup B$$

Proof. Exercise.

Proposition. Suppose $A, B \subseteq \mathbb{R}$ satisfying $\forall a \in A, b \in B, a \leq b$. Then

$$\sup A \leq \inf B$$

Proof. $\forall a \in A, \ b \in B, \ a \leq b \Rightarrow b \text{ is an upper bound for A.}$

$$\sup A \le b$$

Thus $\sup A$ is a lower bound for B.

$$\sup A \leq \inf B$$

Exercise. Provide an example of $A, B \subseteq \mathbb{R}$ s.t. $\forall a \in A, b \in B, a < b$ but

$$\sup A = \inf B$$

Example.

$$A = (2,3), B = [3,4]$$

Proposition. Let $D \subseteq \mathbb{R}, \ f, g : D \to \mathbb{R}$. If $\forall x \in D, \ f(x) \leq g(x)$, then

$$\sup_{x \in D} f(x) \le \sup_{x \in D} g(x)$$

Proof. $\exists u = \sup g(D)$. Then $\forall x \in D$,

$$f(x) \le g(x) \le \sup g(D)$$

so $\sup g(D)$ is an upper bound of f(D). Thus

$$\sup f(D) \le \sup g(D)$$

Remark. $\forall x \in D, \ f(x) \leq g(x)$ does not imply any relation between $\sup f(D)$ and $\inf g(D)$.

Proposition. If $\forall x,y \in D$, $f(x) \leq g(y)$, then we may conclude that $\sup f(D) \leq \inf g(D)$.

Proof. It is a direct consequence of proposition.

Theorem (<u>Archimedean Property</u>). $\forall x \in R, \exists n_x \in \mathbb{N} \text{ s.t. } x \leq n_x.$

Proof. Assume $\forall n \in \mathbb{N}, n < x$. We have

$$\sup \mathbb{N} \le x$$

. Consider sup $\mathbb{N} - 1$. Then $\exists n \in \mathbb{N} \text{ s.t.}$

$$\sup \mathbb{N} - 1 < n$$

$$\sup \mathbb{N} < 1 + n \in \mathbb{N}$$

thus $\sup \mathbb{N}$ is NOT an upper bound of \mathbb{N} , which is a contradiction.

Corollary. If $S = \{\frac{1}{n} : \forall n \in \mathbb{N}\}$, then

$$\inf S = 0$$

Proof. $\forall \varepsilon > 0$, by Archimedean Property, $\exists n \in \mathbb{N}$ s.t.

$$\frac{1}{\varepsilon} < n \Rightarrow \frac{1}{n} < \varepsilon$$

$$0 \le \inf S \le \frac{1}{n} < \varepsilon$$

By previous theorem of ε ,

$$\inf S = 0$$

Corollary. $\forall y > 0, \exists n_y \in \mathbb{N} \text{ s.t.}$

$$0 < \frac{1}{n_u} < y$$

Proof. Let $x = \frac{1}{y} \in \mathbb{R}$. By Archimedean Property, $\exists m_y \in \mathbb{N}$ s.t.

$$m_y \ge x = \frac{1}{y}$$

Let $n_y = m_y + 1 \in \mathbb{N}$. Then

$$n_y > \frac{1}{y} \Rightarrow 0 < \frac{1}{n_y} < y$$

Corollary. $\forall y > 0, \exists n_y \in \mathbb{N} \text{ s.t.}$

$$n_y - 1 \le y < n_y$$

Proof. Construct

$$E_y = \{ m \in \mathbb{N} : y < m \}$$

By Archimedean Property, $E_y \neq \phi$. By Well-Ordering of \mathbb{N} , $\exists n_y \in \mathbb{N}$ s.t.

$$\exists n_y = \min E_y \Rightarrow y < n_y$$

Since we cannot have $y < n_y - 1$

$$n_y - 1 \le y < n_y$$

Theorem. (**Existence of** $\sqrt{2}$) $\exists x \in \mathbb{R}, x > 0 \text{ s.t. } x^2 = 2$

Proof. Let $S = \{s \in \mathbb{R} : s^2 < 2\}$. <u>Claim:</u> sup S satisfies $(\sup S)^2 = 2$.

Since $1^2 = 1 < 2$, $1 \in S$, so S is nonempty.

Assume 2 is not an upper bound of S. Then, $\exists s \in S \text{ s.t. } s > 2$. Thus

$$s^2 > 4 \land s^2 < 2$$

a contradiction. Thus, 2 is an upper bound of S. $\forall s \in S, s \leq 2$.

By Completeness Theorem Property, $\exists x = \sup S \in \mathbb{R}$.

Since we want to show $x^2 = 2$. it suffices to show that

$$x^2 > 2 \land x^2 < 2$$

We will prove those two statement by contradiction.

• Assume $x^2 < 2$. Then $\forall n \in \mathbb{N}$

$$(x+\frac{1}{n})^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} = x^2 + \frac{1}{n}(2x+\frac{1}{n}) \le x^2 + \frac{1}{n}(2x+1)$$

Goal: Choose a $N \in \mathbb{N}$ large enough such that $(x + \frac{1}{n})^2 < 2$. Thus,

$$x^{2} + \frac{1}{n}(2x+1) < 2$$

$$\frac{1}{n}(2x+1) < 2 - x^{2}$$

$$\frac{1}{n} < \frac{2 - x^{2}}{2x+1}$$

$$n > \frac{2x+1}{2-x^{2}}$$

Thus by Archimedean Property, $\exists n \in \mathbb{N}, \ n = \left\lceil \frac{2x+1}{2-x^2} \right\rceil$ s.t.

$$(x + \frac{1}{n})^2 \le x^2 + \frac{1}{n}(2x + 1) < 2$$
$$x + \frac{1}{n} \in S$$

which is a contradiction to $x = \sup S$.

• Assume $x^2 > 2$. Then $\forall m \in \mathbb{N}$,

$$(x - \frac{1}{m})^2 = x^2 - \frac{2x}{n} + \frac{1}{m^2} > x^2 - \frac{2x}{m}$$

Goal: find $m \in \mathbb{N}$ large enough such that $(x - \frac{1}{m})^2 > 2$. It follows that

$$x^{2} - \frac{2x}{m} > 2$$

$$\frac{2x}{m} < x^{2} - 2$$

$$m > \frac{2x}{x^{2} - 2}$$

By Archimedean Property, $\exists m \in \mathbb{N}, \ m = \left\lceil \frac{2x}{x^2 - 2} \right\rceil$ s.t.

$$(x - \frac{1}{m})^2 > x^2 - \frac{2x}{x^2 - 2} > 2$$

thus $(x-\frac{1}{m})^2$ is an upper bound of S. However, since

$$x < x - \frac{1}{m}$$

so x is NOT an supremum of S, which is a contradiction.

Thus, we conclude that $\exists x \in \mathbb{R} \text{ s.t. } x^2 = 2.$

Remark. By Binomial Expansion, one may show the existence of positive n-th roots for all $n \in \mathbb{N}$.

Theorem (<u>Rationals Are Dense in \mathbb{R} </u>). If $x, y \in \mathbb{R}$ with x < y, then there exists a <u>rational number</u> $r \in \mathbb{Q}$ such that x < r < y.

Proof. WLOG, we may assume that x, y > 0.

Since $y - x > 0 \Rightarrow \frac{1}{y - x} > 0, \exists n \in \mathbb{N} \text{ s.t. } n > \frac{1}{y - x} \text{ by Archimedean Property. Thus}$

$$1 < ny - nx \Rightarrow nx + 1 < ny$$

By Archimedean Property, $\exists m \in \mathbb{N} \text{ s.t.}$

$$m-1 \le nx < m$$

$$nx < m \le nx + 1 < ny$$

$$x < \frac{m}{n} < y$$

Corollary (<u>Irrationals Are Dense in \mathbb{R} </u>). If $x, y \in \mathbb{R}$ with x < y, then there exists an <u>irrational number</u> $z \in \mathbb{Q}$ such that x < z < y.

Proof. Apply the density theorem of rationals to real number $\frac{x}{\sqrt{2}}$ and $\frac{y}{\sqrt{2}}$, we have

$$\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$$

$$x < \sqrt{2}r < y$$

Goal: Prove $\sqrt{2}r$ is irrational by contradiction.

Assume that $\sqrt{2}r$ is rational. Then $\exists p, q \in \mathbb{Z}, \ q \neq 0$ s.t.

$$\sqrt{2}r = \frac{p}{q}$$

$$\sqrt{2} = \frac{p}{q}r \in \mathbb{Q}$$

which is a contradiction since $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$. Thus we conclude that $\sqrt{2}r \in \mathbb{R} \setminus \mathbb{Q}$.

2.5 Intervals

Definition (*Intervals*). Let $a, b \in \mathbb{R}$. If

- a < b, then define <u>open interval</u> to be the set $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- $a \leq b$, then define <u>closed interval</u> to be the set $[a,b] = \{x \in \mathbb{R} : a \leq x \leq b\}$
- a < b, then define <u>half-open interval</u> to be the set $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$, or $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$

Theorem (*Characterization Theorem*). If $S \subseteq \mathbb{R}$ s.t. S contains at least 2 points and satisfies

$$\forall x, y \in S \land x < y \Rightarrow [x, y] \subseteq S$$

then S is an interval.

Proof. Let $a = \inf S$, $b = \sup S$. Then $S \subseteq [a, b]$. If $a = -\infty$ or $b = \infty$, treat the boundary as open and this remains true.

Goal: Show that $S \supseteq (a, b)$

If $z \in (a, b)$, then z is NOT a lower bound of S. So $\exists x \in S$ with a < x < z.

Similarly, x is NOT an upper bound of S, so $\exists y \in S$ with z < y < b. Thus

$$z \in [x, y] \subseteq S$$

Therefore, the desire result then follows only on whether S includes a, b.

Definition (<u>Nested Sequence of Intervals</u>). A sequence of intervals $\{I_n\}_n \in \mathbb{N}$ is **nested** if

$$I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \ldots$$

Example. Consider $I_n = [0, \frac{1}{n}]$. Then $\forall n \in \mathbb{N}$,

$$I_n \supseteq I_{n+1}$$

 $\underline{Claim:} \bigcap_{n=1}^{\infty} I_n = \{0\}.$

Proof.

 $(\supseteq): \forall n \in \mathbb{N}, \ 0 \in I_n.$

 (\subseteq) : Assume $\exists x \in \mathbb{R} \setminus \{0\}$ s.t. $x \in \bigcap_{n=1}^{\infty} I_n$ Assume x > 0. Then by Archimedean Property,

 $\exists n \in \mathbb{N} \text{ s.t. } n > \frac{1}{x} \Rightarrow x > \frac{1}{n}.$ Thus $x \notin I_n$, which is a contradiction.

Since x can not be negative, we conclude that x = 0 and $\bigcap_{n=1}^{\infty} I_n \subseteq \{0\}$

Remark. Not all nested sequence of intervals has single common point.

•
$$I_n = [0, 1 + \frac{1}{n}] \Rightarrow \bigcap_{n=1}^{\infty} I_n = [0, 1]$$

•
$$I_n = [0, \frac{1}{n}] \Rightarrow \bigcap_{n=1}^{\infty} I_n = \phi$$

Theorem (Nested Interval Property).

If $\forall n \in \mathbb{N}, \ \exists a_n, b_n \in \mathbb{R} \text{ s.t. } I_n = [a_n, b_n] \text{ is a nested sequence of } \underline{\boldsymbol{closed}} \text{ intervals, then there exists a real number } \xi \text{ such that } \forall n \in \mathbb{N}, \ \xi \in I_n$

Proof. Observe that $\forall n \in \mathbb{N}, \ a_n \leq b_1$.

Hence $\{a_n : \forall n \in \mathbb{N}\}$ is bounded above.

Let $\xi = \sup\{a_n : \forall n \in \mathbb{N}\}\$, then $\forall n \in \mathbb{N}, \ \xi \geq a_n$.

It suffices to show $\forall n \in \mathbb{N}, \ \xi \leq b_n$.

Observe that $\forall n \in \mathbb{N}$, b_n is an upper bound of $\{a_n : \forall n \in \mathbb{N}\}$. Thus by definition of supremum, $\forall n \in \mathbb{N}$

$$\xi < b_n$$

We thereby conclude that $\forall n \in \mathbb{N}, \ \xi \in I_n$.

Theorem. If $\forall n \in \mathbb{N}$, $\exists a_n, b_n \in \mathbb{R}$ s.t. $I_n = [a_n, b_n]$ is a nested sequence of <u>closed</u> intervals, and the length $b_n - a_n$ satisfies

$$\inf\{b_n - a_n : \forall n \in \mathbb{N}\} = 0$$

then $\xi \in \bigcap_{n=1}^{\infty} I_n$ is unique.

Proof. Assume $\exists \xi, \ \eta \in \mathbb{R} \text{ s.t.}$

$$\xi, \eta \in \bigcap_{n=1}^{\infty} I_n$$

Thus

$$0 \le |\xi - \eta| \le \inf\{b_N - a_N\} = 0$$

We thereby conclude that $\xi = \eta$.

Theorem. \mathbb{R} is uncountable.

Proof. Goal: Show that I = [0, 1] is uncountable.

Assume I = [0, 1] is countable. Then we can enumerate the set as

$$I_0 = \{x_1, x_2, \dots, x_n, \dots\}$$

For all $n \in \mathbb{N}$, we choose a closed bounded interval $I_n \in I_{n-1}$ s.t. $x_n \notin I_n$. Then we have

$$I_1 \supset I_2 \supset \dots$$

By Nested Interval Property, $\exists \xi \in \bigcap^{\infty} I_n$. It follows that $\forall n \in \mathbb{N}, \xi \neq x_n$.

This means that I_0 is not a complete listing of elements of I_0 , which contradicts the assumption that I_0 is countable. We thereby conclude that I is an uncountable set.

Alternative Proof: Cantor's Diagonal Argument.

Assume [0,1] is countable. Then

$$[0,1] = \{x_1, x_2, \dots, x_i, \dots\}, \forall i \in \mathbb{N}$$

Consider the decimal representation of x_i :

$$x_1 = 0.b_{11}b_{12}b_{13}\dots$$

$$x_2 = 0.b_{21}b_{22}b_{23}...$$

$$x_i = 0.b_{i1}b_{i2}b_{i3}...$$

for all $j \in \mathbb{N}$ s.t. $b_{ij} \in \{0, 1, \dots, 9\}$. Here we define

$$y = 0.y_1y_2 \dots \in [0, 1] \text{ where } y_k = \begin{cases} 1 & \text{if } b_{kk} \neq 1 \\ 0 & \text{if } b_{kk} = 1 \end{cases}, \ \forall k \in \mathbb{N}$$

Then $\forall i \in \mathbb{N}, y \neq x_i$ since $y_i \neq b_{ii}$. Thus $y \notin [0, 1]$, a contradiction.

3 Sequences and Series

3.1 Sequences and their limits

Definition (Sequence). A sequence of real numbers is a function from \mathbb{N} to \mathbb{R} .

We adopt the notation with a *sequence*:

$$a: \mathbb{N} \to \mathbb{R}$$

where instead of writing $a(1), a(2), \ldots$, we write it as a_1, a_2, \ldots which we called them <u>terms</u> or <u>elements</u> of the sequence.

Notation.

$$(a_n)_{n=1}^{\infty}$$
 or $(a_n)_{n\in\mathbb{N}}$ or (a_n) or $(a_n|n\in\mathbb{N})$

Definition (Converge to x). A sequence $(x_n) \in \mathbb{R}$ <u>converges</u> to $x \in \mathbb{R}$ if

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } n \geq N_{\varepsilon} \rightarrow |x_n - x| < \varepsilon$$

We write

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (x_n) = x.$$

Definition (Convergent & Divergent). A sequence is <u>convergent</u> if it has a <u>limit</u> in \mathbb{R} , and is <u>divergent</u> if it has <u>no limit</u> in \mathbb{R} .

Theorem (Uniqueness of Limit). A sequence in \mathbb{R} can have <u>at most one</u> limit. Or, the limit of a sequence is <u>unique</u> if the limit exists

Proof. Let (x_n) be a sequence of real numbers. Suppose x, x' are limits of (x_n) . We want to prove x = x' by contradiction.

Assume |x - x'| > 0. If we consider $\varepsilon := \frac{1}{3} |x - x'| > 0$, then The existence of $\lim_{x_n \to x} \text{implies that } \exists N_1 \in \mathbb{N} \text{ such that } |x_n - x| < \varepsilon \text{ if } n \ge \mathbb{N}_1$. Similarly, existence of $\lim_{x_n \to x'} \text{implies that } \exists N_2 \in \mathbb{N} \text{ such that } |x_n - x'| < \varepsilon \text{ if } n \ge \mathbb{N}_2$. Thus,

$$|x - x'| \le |x - x_{N_1 + N_2} + x_{N_1 + N_2} - x'|$$

$$\le |x - x_{N_1 + N_2}| + |x_{N_1 + N_2} - x'| \text{ by triangle inequality}$$

$$< \varepsilon + \varepsilon$$

$$= \frac{2}{3} |x - x'|$$

Then,

$$\frac{1}{3}|x-x'| < 0$$
, which is a contradiction

we thereby prove by contradiction that

$$|x - x'| = 0$$
, which is equivalent to $x = x'$

Example.

$$\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$$

Goal: $\forall \varepsilon > 0$, want to find N_{ε} such that $\left| \frac{1}{n} - 0 \right| < \varepsilon$ for n > N, so it suffices to show that

$$\frac{1}{n} < \varepsilon \Leftrightarrow \frac{1}{\varepsilon} < n$$

Proof. Let $\varepsilon > 0$. Apply Archimedean's property to $\frac{1}{\varepsilon}$, then

$$\exists N \in \mathbb{N} \text{ such that } \frac{1}{\varepsilon} < N$$

$$\Rightarrow \forall n \ge N, \left| \frac{1}{n} - 0 \right| = \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$$

Theorem. Let (x_n) be a sequence of real numbers, and let $x \in \mathbb{R}$. The following are equivalent:

- 1. $x_n \to x$
- 2. $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |x_n x| < \varepsilon, \text{ for } n \ge \mathbb{N}$
- 3. $\dots x \varepsilon < x_n < x + \varepsilon \dots$
- 4. $\forall \varepsilon$ -neighborhood $V_{\varepsilon}(x), \exists N \in \mathbb{N}$ such that $x_n \in V_{\varepsilon}(x)$ for $n \geq N$

Sketch of proof:

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$

Proposition.

$$\lim_{n \to \infty} \left(2\sqrt{2n+1} - \sqrt{2n}\right) = 0$$

Proof. Let $\varepsilon > 0$. Consider

$$N = \lceil \frac{1}{2} (\frac{1}{2\varepsilon})^2 \rceil \in \mathbb{N}$$

$$n > N \Rightarrow n > \frac{1}{2} (\frac{1}{2\varepsilon})^2 \Rightarrow \frac{1}{2\sqrt{2n}} < \varepsilon \Rightarrow \left| \sqrt{2n+1} - \sqrt{2n} \right| = \dots = \frac{1}{\sqrt{2n+1} + \sqrt{2n}} < \varepsilon$$

Remark.

$$\lim_{n\to\infty} (-1)^n \text{ does not exist.}$$

Definition (m-tail). If (x_n) is a sequence of real numbers and $m \in \mathbb{N}$, then the <u>m-tail</u> of (x_n) is the sequence

$$\{x_{n+m}: n \in \mathbb{N}\} = \{x_{m+1}, x_{m+2}, \dots\}$$

Theorem. Let (x_n) be a sequence and $m \in \mathbb{N}$. Then (x_n) is <u>convergent</u> iff (x_{n+m}) is <u>convergent</u>. Moreover,

$$\lim_{n \to \mathbb{N}} (x_n) = \lim_{n \to \mathbb{N}} (x_{n+m})$$

Proof. (\Rightarrow)

Suppose $x_n \to x$. Let

$$\varepsilon > 0, \exists N_{\varepsilon} > 0, \text{ such that } |x_n - x| < \varepsilon \text{ for } n \ge N_{\varepsilon}$$

Consider $N_{\varepsilon}' := N_{\varepsilon} + m$ then

$$n+m \ge N_{\varepsilon}' \Rightarrow n \ge N_{\varepsilon} \Rightarrow n+m \ge N_{\varepsilon} \Rightarrow |x_{n+m}-x| < \varepsilon$$

It follows that

$$n \ge N_{\varepsilon} \Rightarrow n + m \ge N_{\varepsilon} \Rightarrow |x_{n+m} - x| < \varepsilon$$

 (\Leftarrow)

Suppose $x_{n+m} \to x$.

$$\forall \varepsilon > 0, \exists N_{\varepsilon} > 0 \text{ such that } |x_{n+m} < \varepsilon|, \forall n \geq N_{\varepsilon}$$

Consider $N := N_{\varepsilon} + m$. Then

$$n \ge N = N_{\varepsilon} + m$$

$$\Rightarrow n - m \ge N_{\varepsilon}$$

$$\Rightarrow |x_{(n-m)+m} - x| < \varepsilon$$

$$\Rightarrow |x_n - x| < \varepsilon$$

Remark. We say that a sequence (x_n) *ultimately* has a property if that property holds for some tail of (x_n)

Theorem. Let x_n be a sequence of real numbers. Let a_n be a sequence of positive real numbers such that $\lim_{n\to\infty} a_n = 0$. If $\exists c > 0, m \in \mathbb{N}, x \in \mathbb{R}$ such that

$$|x_n - x| \le c \cdot a_n, \forall n \ge m$$

then

$$x_n \to x$$

Proof. We know that

$$\forall \varepsilon > 0, \exists N \ge 0 \text{ s.t. } |a_n| < \frac{\varepsilon}{c}, \forall n \ge N$$

Consider $N' = max\{N, m\}, \forall n \geq N'$. Then

$$|x_n - x| \le Ca_n = c |a_n| < c \cdot \frac{\varepsilon}{c} = \varepsilon$$

 $\Rightarrow x_n \to x$

Proposition.

$$\lim_{n \to \infty} \frac{17}{2 + 3n} = 0$$

Proof.

$$\left| \frac{17}{2+3n} - 0 \right| = \frac{17}{2+3n} \le \frac{13}{3n} = \frac{17}{3} \cdot \frac{1}{n}$$

Apply the theorem above with

$$a_n = \frac{1}{n}, c = \frac{17}{3}, m = 1$$

$$\Rightarrow \lim_{n \to \infty} \frac{17}{2 + 3n} = 0, \text{ since } \lim_{n \to \infty} \frac{1}{n} = 0$$

Proposition.

$$\forall c > 0, \lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Proof. Case 1: c = 1

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Case 2: c > 1

Let $d_n = c^{\frac{1}{n}} - 1$. Then $\forall n, d_n > 0$. It follows that

$$(d_n + 1) = c^{\frac{1}{n}} \Rightarrow c = (1 + d_n)^n \ge 1 + n \cdot d_n$$
 by Bernoulli's inequality
$$\Rightarrow d_n \le (c - 1) \cdot \frac{1}{n}$$

$$\Rightarrow \left| c^{\frac{1}{n}} - 1 \right| = d_n \le (c - 1) \cdot \frac{1}{n}$$

Apply the theorem with

$$C = c - 1, a_n = \frac{1}{n}, m = 1, x = 1$$

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

Case 3: c < 1(Note that we cannot use Bernoulli inequality here)

Define e_n to be a sequence that satisfies

$$c^{\frac{1}{n}} = \frac{1}{1 + e_n}$$

Then $e_n > 0 \forall n$.

$$c = \frac{1}{(1+e_n)^n} \le \frac{1}{1+n \cdot e_n} < \frac{1}{n \cdot e_n}$$

$$\Rightarrow e_n < \frac{1}{c} \cdot \frac{1}{n}$$

$$1 - c^{\frac{1}{n}} = 1 - \frac{1}{1+e_n} = \frac{e_n}{1+e_n} < e_n < \frac{1}{c} \cdot \frac{1}{n}$$

Apply the theorem with

$$a_n = \frac{1}{n}, m = 1, C = \frac{1}{c}, x = 1$$

$$\lim_{n \to \infty} c^{\frac{1}{n}} = 1$$

3.2 Limit Theorems

Definition (Bounded sequence). A sequence $(x_n) \in \mathbb{R}$ is **bounded** if

$$\exists M > 0 \text{ s.t. } \forall n \in \mathbb{N}, |x_n| \leq M$$

Theorem. A convergent sequence $(x_n) \in \mathbb{R}$ is bounded.

Proof. By definition of convergent sequence, let $\varepsilon = 1$:

$$\exists N > 0 \text{ s.t. } \forall n \geq N, |x_n - x| < 1$$

Thus we have

$$-1 < x_n - x < 1$$

$$\Rightarrow \qquad -1 + x < x_n < x + 1, \, \forall n \ge N$$

Then define

$$M := \max \{ |x_1|, |x_2|, |x_3|, \dots, |-1+x|, |x+1| \}$$

 $|x_n| \le M$

Remark. By contrapositive, an unbounded sequence is divergent.

Definition. Given sequence $(x_n), (y_n) \in \mathbb{R}$, we define following operations of sequence:

- $\underline{Sum}(x_n + y_n)$
- <u>Difference</u> $(x_n y_n)$
- **Product** $(x_n \cdot y_n)$
- **Quotient** $(\frac{x_n}{y_n})$ if $\forall n \in \mathbb{N}, y_n \neq 0$
- $\underline{\boldsymbol{Multiple}} (c \cdot x_n)$

Theorem (Limit Laws). Let $(x_n), (y_n) \in \mathbb{R}$ be sequences of real numbers with $x_n \to x, y_n \to y$, and let $c \in \mathbb{R}$. Then

- $x_n + y_n \to x + y$
- $x_n y_n \to x y$
- $x_n \cdot y_n \to x \cdot y$
- $c \cdot x_n \to c \cdot x$
- If $\forall n \in \mathbb{N}, y_n \neq 0$ and $y \neq 0$, then $\frac{x_n}{y_n} \to \frac{x}{y}$

Proof of Sum. :

 $\forall \varepsilon > 0,$

$$\exists N_1 \in \mathbb{N} \text{ s.t. } \forall n \geq N_1, |x_n - x| < \frac{\varepsilon}{2}$$

 $\exists N_2 \in \mathbb{N} \text{ s.t. } \forall n \geq N_2, |y_n - y| < \frac{\varepsilon}{2}$

Consider

$$N := \max\{N_1, N_2\}$$

Then

$$\forall n \ge N, |(x_n + y_n) - (x + y)|$$

$$= |x_n - x + y_n - y|$$

$$\le |x_n - x| + |y_n - y|$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Proof of Difference. :

Similarly,

$$\forall n \ge N, |(x_n - y_n) - (x - y)|$$

$$\le |x_n - x| + |y_n - y|$$

Proof of Product. : Since (x_n) is convergent, it is also bounded. Thus,

$$\exists M \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, |x_n| \leq M$$

By definition of convergence, $\forall \varepsilon > 0$:

$$\exists N_1 > 0 \text{ s.t. } \forall n \ge N, |x_n - x| < \frac{\varepsilon}{2|y|}$$

$$\exists N_2 > 0 \text{ s.t. } \forall n \ge N, |y_n - y| < \frac{\varepsilon}{2M}$$

Then, $\exists N = \max \{N_1, N_2\} \text{ s.t. } \forall n \geq N$,

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy|$$

$$= |x_n (y_n - y) - y(x_n - x)|$$

$$\leq |x_n| |y_n - y| + |y| |x_n - x|$$

$$\leq M \cdot |y_n - y| + |y| |x_n - x|$$

$$< M \cdot \frac{\varepsilon}{2M} + |y| \cdot \frac{\varepsilon}{2|y|} = \varepsilon$$

Proof of Multiply.:

Exercise

Proof of Quotient.

$$\left| \frac{x_n}{y_n} - \frac{x}{y} \right| = \left| \frac{x_n y - y_n x}{y_n y} \right|$$

$$= \left| \frac{x_n y - -x_n y_n + x_n y_n - y_n x}{y_n y} \right|$$

$$\leq \left| \frac{1}{y_n y} (|x_n| |y_n - y| + |y_n| |x_n - x|) \right|$$

Since $y_n \to y$

$$\exists N_1 \in \mathbb{N} \text{ s.t. } \forall n \ge N, ||y_n| - |y|| \le |y_n - y| < \frac{|y|}{2}$$

Then

$$\Rightarrow \qquad -\frac{|y|}{2} < |y| - |y| < \frac{|y|}{2}$$

$$\Rightarrow \qquad \frac{|y|}{2} < |y_n|$$

$$\Rightarrow \qquad \frac{1}{|y_n|} < \frac{2}{|y|}$$

$$\Rightarrow \qquad \frac{1}{|y_n y|} < \frac{2}{|y^2|}$$

Define $F := \frac{2}{|y^2|}$.

Since (x_n) and (y_n) are bounded,

 $\exists G \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}$

$$|x_n| \le G, |y_n| \le G$$

Thus $\forall n > 0$

$$\exists N_2 > 0 \text{ s.t. } \forall n \ge N_2, |x_n - x| < \frac{\varepsilon}{2GF}$$

 $\exists N_3 > 0 \text{ s.t. } \forall n \ge N_3, |y_n - y| < \frac{\varepsilon}{2GF}$

Define $N:=\max\{N_1,N_2,N_3\}$, then $\exists N\in\mathbb{N} \text{ s.t. } \forall n>N$,

$$\left| \frac{x_n}{y_n} - \frac{x}{y} \right| < F(G \cdot \frac{\varepsilon}{2GF} + G \cdot \frac{\varepsilon}{2GF}) = \varepsilon$$

Theorem. If (x_n) is a convergent sequence in \mathbb{R} of non-negative terms with $(x_n) \to x$, then $x \ge 0$.

Sketch.: Assume x < 0, choose $\varepsilon \le |x|$, then $\forall n > N, x_n < 0$, which is a contradiction.

Theorem. If $x_n \to x, y_n \to y$ are sequences in \mathbb{R} such that $\forall n \in \mathbb{N}, x_n \leq y_n$, then $x \leq y$.

Proof. Consider $z_n := y_n - x_n$. Then $z_n \ge 0$ and $z_n \to y - x$ by the limit law.

$$\Rightarrow y - x \ge 0$$

$$y \ge x$$

Theorem. If $x_n \to x$ is a sequence in \mathbb{R} , and let $a, b \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, a \leq x_n \leq b$, then $a \leq x \leq b$.

Proof. Consider constant sequence $a_n = a$ and $b_n = b$. Then this is true by the last theorem.

Theorem (Squeeze Theorem). Suppose $(x_n), (y_n), (z_n)$ are sequences of real numbers such that $\forall n \in \mathbb{N}, x_n \leq y_n \leq z_n$. If $\lim (x_n) = \lim (z_n)$, then (y_n) is convergent and

$$\lim (x_n) = \lim (y_n) = \lim (z_n)$$

Proof. Let $\forall \varepsilon > 0$.

Write $L = \lim (x_n)$. Then by definition of limit,

 $\exists N_1 \in \mathbb{N} \text{ s.t. } \forall n \geq N,$

$$|x_n - L| < \varepsilon, |z_n - L| < \varepsilon$$

$$\Rightarrow \qquad -\varepsilon < x_n - L \le y_n - L \le z_n - L < \varepsilon$$

$$\Rightarrow \qquad |y_n - L| < \varepsilon$$

Thus (y_n) converges to L by definition of limit.

Proposition. $\ln(n)$ is divergent.

Proof. Since ln(n) is unbounded, it is divergent.

Exercise. $\lim \frac{3n^2+2n+1}{5n^2-4} = \frac{3}{5}$

$$\lim \frac{3n^2 + 2n + 1}{5n^2 - 4} = \lim \frac{3 + 2\frac{1}{n} + \frac{1}{n^2}}{5 - 4\frac{1}{n^2}}$$

Notice that each term of $\frac{1}{n}$ and $\frac{1}{n^2}$ converges to 0. Thus by limit law,

$$\lim \frac{3 + 2\frac{1}{n} + \frac{1}{n^2}}{5 - 4\frac{1}{n^2}} = \frac{\lim \{3 + 2 \cdot 0 + 0\}}{\lim \{5 - 4 \cdot 0\}} = \frac{3}{5}$$

Proposition. $(-1)^n$ is divergent.

Proof:Exercise.

Theorem. If $x_n \to x$, then $|x_n| \to |x|$

Sketch of the proof. :

$$||x_n| - |x|| \le |x_n - x|$$

Theorem. Suppose (x_n) is a sequence of non-negative real numbers, satisfying $x_n \to x$. Then $\sqrt{x_n} \to \sqrt{x}$.

Proof. Let $\forall \varepsilon > 0$

Case1: x = 0

 $\exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N,$

$$|x_n - 0| < \varepsilon^2$$

\Rightarrow \left| \sqrt{x} - 0 \right| < \varepsilon

Case2: x > 0

 $\exists N \text{ s.t. } \forall n > N,$

$$|x_n - x| < \sqrt{x} \cdot \varepsilon$$

Notice that

$$\left|\sqrt{x_n} - \sqrt{x}\right| = \left|\frac{x_n - x}{\sqrt{x_n} + \sqrt{x}}\right|$$

$$\leq \frac{|x_n - x|}{\sqrt{x}} < \varepsilon$$

Theorem. Let (x_n) be a sequence of positive real numbers such that $L = \lim(\frac{x_{n+1}}{n})$ exists. If L < 1, then (x_n) converges to 0.

Proof. $\exists N_1 \in \mathbb{N} \text{ s.t. } \forall n > N_1$

$$\left| \left| \frac{x_{n+1}}{x_n} \right| - |L| \right| \le \left| \frac{x_{n+1}}{x_n} - L \right| < \frac{1 - L}{2}$$

Thus

$$\left| \frac{x_{n+1}}{x_n} \right| < \frac{1+L}{2}$$

Note that $\frac{1+L}{2} < 1$, write $r = \frac{1+L}{2}$. Then $\forall m \in \mathbb{N}$,

$$x_{N_1+m} < x_{N_1+(m-1)}r < x_{N_1+(m-2)}r^2 < \dots < x_{N_1}r^m$$

Consider $(y_m) = (x_{N_1+m}), (z_m) = (x_{N_1}r^m).$ Then

$$0 \le y_m \le z_m$$

Since $z_m \to 0$

$$(y_m) \to 0$$
 by squeeze theorem

Thus we conclude that $(x_n) \to 0$ by m-th tail theorem.

3.3 Monotone sequence

Definition. Let (x_n) be a sequence of real. We say (x_n) is ...

- *increasing* if $\forall n \in \mathbb{N}, x_{n+1} \geq x_n$.
- **strickly increasing** if $\forall n \in \mathbb{N}, x_{n+1} > x_n$.
- $\underline{decreasing}$ if $\forall n \in \mathbb{N}, x_{n+1} \leq x_n$.
- **strickly decreasing** if $\forall n \in \mathbb{N}, x_{n+1} < x_n$.

Theorem (Monotone Convergence Theorem). A monotone sequence of real numbers is <u>convergent</u> iff it is bounded. Moreover, if (x_n) is increasing, then

$$\lim(x_n) = \sup \{x_n : n \in \mathbb{N}\}\$$

If (x_n) is decreasing, then

$$\lim(x_n) = \inf \{x_n : n \in \mathbb{N}\}\$$

Proof. (\Rightarrow)

A convergent sequence is always bounded.

 (\Leftarrow)

Suppose (x_n) is a monotone and bounded sequence.

Case 1: (x_n) is increasing.

Write $x = \sup \{x_n : n \in \mathbb{N}\}.$

Let $\varepsilon > 0$. Since $x = \sup (x_n)$:

 $x-\varepsilon$ is NOT an upper bound of (x_n)

Then

$$\exists N \in \mathbb{N} \text{ s.t. } x_N > x - \varepsilon$$

Since (x_n) is increasing,

$$\forall n \geq N, x_n > x - \varepsilon$$

On the other hand, $x + \varepsilon$ is an supper bound since x is an upper bound. Thus,

$$x_n < x + \varepsilon$$

$$\Rightarrow \forall n \ge N, x - \varepsilon < x_n < x + \varepsilon$$

$$\Rightarrow |x_n - x| < \varepsilon \Rightarrow (x_n) \to x$$

Case 2: (x_n) is decreasing.

Write
$$y = \inf(x_n)$$
. Let $\varepsilon > 0$

Since $y = \inf(x_n)$,

 $y + \varepsilon$ is NOT and upper bound of (x_n)

Thus

$$\exists N \in \mathbb{N} \text{ s.t. } x_n < y + \varepsilon$$

Since (x_n) is decreasing,

$$\forall n > N, x_n < y + \varepsilon$$

On the other hand, $y - \varepsilon$ is a lower bound since y is a lower bound. Hence,

$$\forall n \in \mathbb{N}, y - \varepsilon < x_n$$

$$\forall n \ge N, y - \varepsilon < x_n < y + \varepsilon \Rightarrow |x_n - y| < \varepsilon$$

 $\Rightarrow (x_n) \to y$

Remark. One can prove case 2 by following:

 $(-x_n)$ is increasing and converges to $\sup (-x_n)$ by case 1. Also note that

$$(x_n) = (-(-x_n)) \to -\sup(-x_n)$$

by limit law. So it is easy to prove that

$$-\sup\left(\left(-x_{n}\right)\right)=\inf\left(x_{n}\right)$$

Example. Consider the sequence (x_n) is given by

$$\begin{cases} x_0 = \frac{1}{2} \\ x_{n+1} = \frac{3}{2}x_n(1 - x_n) \end{cases}$$

 (x_n) is decreasing and bounded.

Thoughts: Assume (x_n) converges, then by limit law,

$$x = \frac{3}{2}x(1-x)$$
 where $x = \lim(x_n) \Rightarrow x = 0$ or 3

then, by proof of contradiction, it is not convergent.

Proof. Claim: $\frac{1}{3} < x_{n+1} < x_n \le \frac{1}{2}, \forall n \in \mathbb{N} \cup \{0\}$

Proof of the claim by induction:

When n = 0:

$$x_0 = \frac{1}{2}, x_1 = \frac{3}{2} \cdot \frac{1}{2} (1 - \frac{1}{2}) = \frac{3}{8}$$

$$\frac{1}{3} < \frac{3}{8} < \frac{1}{2} \le \frac{1}{2}$$

Suppose this is true for n=k:

$$\frac{1}{3} < x_{k+1} < x_k \le \frac{1}{2}$$

Goal:

$$\frac{1}{3} < x_{k+2} < x_{k+1} \le \frac{1}{2}$$

$$x_{k+1} = \frac{3}{2}x_k(1 - x_k)$$

$$\frac{1}{3} < x_k \le \frac{1}{2} \Rightarrow \frac{2}{3} > 1 - x_k \ge \frac{1}{2}$$

$$x_{k+1} < \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{2}$$

Complete the square:

$$x_{k+1} - \frac{1}{3} = \frac{3}{2}x_k(1 - x_k) - \frac{1}{3}$$
$$= -\frac{3}{2}[(x_k - \frac{1}{2})^2 - \frac{1}{36}]$$

So

$$\frac{1}{3} < x_k \le \frac{1}{2} \Rightarrow \left| x_k - \frac{1}{2} \right| < \frac{1}{6}$$

$$\Rightarrow (x_k - \frac{1}{2})^2 < \frac{1}{36}$$

$$\Rightarrow x_{k+1} - \frac{1}{3} > 0$$

$$\Rightarrow \frac{1}{3} < x_{k+1} \le \frac{1}{2}$$

With the similar process, we can derive that

$$\frac{1}{3} < x_{k+2} \le \frac{1}{2}$$

$$x_{k+2} = \frac{3}{2} x_{k+1} (1 - x_{k+1}) < \frac{3}{2} x_{k+1} \cdot \frac{3}{2} = x_{k+1}$$

Therefore, this claim is also true for n=k+1:

$$\frac{1}{3} < x_{k+2} < x_{k+1} \le \frac{1}{2}$$

We thereby prove the theorem by induction:

$$\frac{1}{3} < x_{n+1} < x_n \le \frac{1}{2}$$

Exercise: Textbook p.75: A sequence that converges to \sqrt{a} for a > 0.

Definition (Euler's Number).

$$e = \lim(1 + (\frac{1}{n})^n)$$

Goal: (x_n) is convergent where $x_n = (1 + \frac{1}{n})^n$

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1 + nC1 \cdot \frac{1}{n} + nC2 \cdot \frac{1}{n^2} + \dots + nCn\frac{1}{n^n}$$

$$= 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot 3 \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^2}$$

$$= 1 + 1 + \frac{1}{2}(1 - \frac{1}{n}) + \frac{1}{6}(1 - n)(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n}) \dots \frac{2}{n} \cdot \frac{1}{n}$$

Write x_{n+1} in a similar way, we observe that

$$x_n < x_{n+1}$$

<u>Facts</u> $2^{m-1} \le m!$ for $m \in \mathbb{N} \Rightarrow \frac{1}{m!} \le \frac{1}{2^{m-1}}$

$$x_n < 1 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} < 3$$

 \Rightarrow (x_n) is increasing and bounded

3.4 Subsequence and the Bolzano-Weierstrass Theorem

Example.

$$(x_n) = ((-1)^n)$$
$$x_{2n} = (-1)^{2n}$$
$$x_{2n+1} = (-1)^{2n-1}$$

So $a_n = x_{2n}$ is a sequence, while $b_n = x_{2n+1}$ is a subsequence of x_n .

Definition (Subsequences). Let (x_n) be a real sequence and consider a strictly increasing sequence of natural numbers $n_1 < n_2 < n_3 < \dots$ The sequence

$$(x_{n_k}:k\in\mathbb{N})$$

is called a **subsequence** of (x_n)

Example. Any tails of a sequence is a subsequence: (x_n) n-th tail: (x_{m+k}) , where $n = m + k, k \in \mathbb{N}$, is a subsequence.

Theorem. Suppose (x_n) converges to x. Then $x_{x_k} \to x$ for any subsequence of (x_n) .

Proof. Let $\varepsilon > 0$, then

$$\exists N_{\varepsilon} > 0 \text{ s.t. } |x_n - x| < \varepsilon \text{ for } n > N_{\varepsilon}.$$

Note that

$$n_k > k, \, \forall k \in \mathbb{N}.$$

Exercise. By induction, $n_1 \ge 1, n_2 \ge n_1 \ge 1 \Rightarrow n_2 \ge 2$

When $k > N_{\varepsilon}$, $n_k > N_{\varepsilon}$, thus

$$|x_{n_k} - x| < \varepsilon$$

Therefore

$$(x_{n_k}) \to x$$

Theorem. Let (x_n) be a sequence of real numbers, and let $x \in \mathbb{R}$. Then the following are equivalent:

- 1. (x_n) does not converge to x.
- 2. $\exists \varepsilon_0 > 0$, s.t. $\forall k \in \mathbb{N}, \exists n_k \in \mathbb{N}$ s.t.

$$n_k \ge k \, \& \, |x_{n_k} - x| > \varepsilon_0$$

3. $\exists \varepsilon_0 > 0$ and a subsequence (x_{n_k}) s.t.

$$|x_{n_k} - x| > \varepsilon_0, \, \forall k \in \mathbb{N}$$

Example.

$$x_n = (-1)^n \Rightarrow (x_n)$$
 does not converge to 1

Proof.

 $3 \rightarrow 1$: by the contrapositive statement of definition

 $3 \rightarrow 2$: 3 is a stronger statement of 2

 $1 \rightarrow 2$: left as exercise

Theorem. If (x_n) satisfies either of the following property, then it is **divergent**:

1. There exists two subsequence (x_{n_k}) & (x_{m_k}) whose limits are NOT equal.

2. (x_n) is unbounded.

Example.

- 1. $(-1)^n$
- 2. (n)
- 3. (x_n) such that

$$x_{2k} = k$$
$$x_{2k+1} = (-1)^k$$

Proof. exercise

Theorem (Bolzano-Weierstrass Theorem). A bounded sequence of real numbers has a <u>convergent subsequence</u>. Example.

$$x_n = (-1)^n$$

Proof.

Lemma. If (x_n) is a sequence of real numbers, there exists a subsequence of (x_n) which is monotone.

proof of lemma:

Call the m-th term x_m a "peek" if x_m is at least as large as any term after it in the sequence.

Case 1: (x_n) has infinitely many peaks

List the peaks of (x_n) in order of increasing index

$$x_{n_1}, x_{n_2}, \ldots$$

 $\Rightarrow (x_{n_i})$ is a decreasing sequence.

Case 2: (x_n) has a finite number of peaks

Let s_1 be the first index after the last peak of (x_n) . Then for every $n \geq s_1$, $\exists m \in \mathbb{N}$ such that $x_m > x_n$.

Choose

$$s_2 \ge s_1$$
 such that $x_{s_2} > x_{s_1}$, $s_2 \ge s_1$ such that $x_{s_2} > x_{s_1}$, ... $\Rightarrow (x_{s_i})$ is an increasing sequence.

Remark. Lemma + monotone convergent theorem implies Bolzano-Weierstrass theorem.

Second proof

Suppose (x_n) is a bounded sequence.

$$\Rightarrow \exists I_1 = [a_1, b_1] \text{ such that } (x_n) \in I_1$$

Consider

$$I_2' = [a_1, \frac{a_1 + b_1}{2}], I_2'' = [\frac{a_1 + b_1}{2}, b_1]$$

Let $I_2 = [a_2, b_2]$ be one of I'_2, I''_2 such that I_2 contains infinitely many terms of (x_n) .

For $n \in \mathbb{N}$, define $I_n = [a_n, b_n]$ in a similar way.

For $i \in \mathbb{N}$, choose a term x_{n_i} such that $x_{n_i} \in I_i$ and $n_i > n_{i-1}$

Then

$$i=1, \qquad n_i=1$$

$$i=2, \qquad \text{choose } n_2 \in \mathbb{N} \text{ such that } n_2 > n_1 \& x_{n_2} \in I_2$$

$$\vdots \qquad \vdots$$

- $\forall i \in \mathbb{N}, a_i \leq x_{n_i} \leq b_i$
- (a_i) increases, bounded above by $b_1 \Rightarrow (a_i) \rightarrow \sup(a_i)$
- (b_i) decreases, bounded below by $a_1 \Rightarrow (b_i) \rightarrow \inf(b_i)$
- $\inf |a_i b_i| = \inf \frac{b_1 a_1}{2^n} = n \Rightarrow \sup (a_i) = \inf (b_i)$

Thus (x_{n_i}) is convergent by squeeze theorem.

Theorem. Let (x_n) be a bounded sequence, and $x \in \mathbb{R}$ has the property that every convergent subsequence of (x_n) converges to x. Then x_n converges to x

Proof. Let $\forall \varepsilon > 0$

By Bolzano-Weierstrass theorem, \exists a convergent subsequence (x_{n_i}) such that

$$\exists N_{\varepsilon} \in \mathbb{N} \text{ s.t. for } i > N_{\varepsilon}, |x_{n_i} - x| < \varepsilon$$

Assume (x_n) does not converge to x. Then by previous theorem of subsequence,

$$\exists \varepsilon_0 > 0 \text{ and a subsequence } (x_{n_k}) \text{ s.t. } |x_{n_k} - x| > \varepsilon_0, \forall k \in \mathbb{N}$$

Since (x_n) is bounded, (x_{n_k}) is also bounded. Thus there exists a convergent subsequence of (x_{n_k}) as (x_{n_k}) .

Note that (x_{n_k}) is a convergent subsequence of (x_n) , thus

 $(x_{n_{k_i}}) \to x$ which is contradiction to previous assumption

Definition. Let (x_n) be a sequence of real numbers. A point is called a <u>subsequential limit</u> of (x_n) if it is the limit of a subsequence of (x_n) .

 $S = \{\alpha \in \mathbb{R} : x \text{ is a subsequential limit}\}$ NOTE: may be infinite set

Definition. Let (x_n) be a sequence of real numbers.

• The <u>limit superior</u> of (x_n) is the infimum of the set of $v \in \mathbb{R}$ s.t. $v < x_n$ for at most a finite number of $n \in \mathbb{N}$. We write it as

$$\limsup (x_n)$$
 or $\limsup x_n$ or $\overline{\lim} x_n$

• The <u>limit inferior</u> of (x_n) is the supremum of the set of $v \in \mathbb{R}$ s.t. $w > x_m$ for at most a finite number of $n \in \mathbb{N}$. We write it as

$$\liminf (x_n)$$
 or $\liminf x_n$ or $\overline{\lim} x_n$

Intuition

• Suppose $v < x_n$ for at most finitely many $n \in \mathbb{N}$, then

Theorem. Let (x_n) be a bounded sequence, and $x \in \mathbb{R}$ has the property that every convergent subsequence of (x_n) converges to x. Then x_n converges to x

Proof. Let $\forall \varepsilon > 0$

By Bolzano-Weierstrass theorem, \exists a convergent subsequence (x_{n_i}) such that

$$\exists N_{\varepsilon} \in \mathbb{N} \text{ s.t. for } i > N_{\varepsilon}, |x_{n_i} - x| < \varepsilon$$

Assume (x_n) does not converge to x. Then by previous theorem of subsequence,

$$\exists \varepsilon_0 > 0 \text{ and a subsequence } (x_{n_k}) \text{ s.t. } |x_{n_k} - x| > \varepsilon_0, \forall k \in \mathbb{N}$$

Since (x_n) is bounded, (x_{n_k}) is also bounded. Thus there exists a convergent subsequence of (x_{n_k}) as (x_{n_k}) .

Note that $(x_{n_{k_i}})$ is a convergent subsequence of (x_n) , thus

 $(x_{n_k}) \to x$ which is contradiction to previous assumption

Definition. Let (x_n) be a sequence of real numbers. A point is called a <u>subsequential limit</u> of (x_n) if it is the limit of a subsequence of (x_n) .

 $S = \{ \alpha \in \mathbb{R} : x \text{ is a subsequential limit} \}$ (NOTE: may be infinite set)

Example. Consider $(x_n) = \{(-1)^n | n \in \mathbb{N}\}$. Then

$$S \supseteq \{1, -1\}$$

Definition (\limsup and \liminf). Let (x_n) be a sequence of real numbers.

• The <u>limit superior</u> of (x_n) is the infimum of the set of $v \in \mathbb{R}$ s.t. $v < x_n$ for at most a finite number of $n \in \mathbb{N}$. We write it as

 $\limsup (x_n) = \limsup x_n = \overline{\lim} x_n = \inf \{ v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n} \}$

Example. Consider $(x_n) = \frac{1}{n}$

Let

$$X = \{v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n} \}$$

- $-1 \notin X$ because there are infinitely many x_n such that $v < x_n$.
- $-\frac{1}{2} \in X$ because there are finitely many x_n such that $v < x_n$.
- $-2 \in X$ because there is no x_n such that $v < x_n$, which is smaller than finite and thereby satisfies the definition.

We thus conclude that

$$(0,\infty)\subset X$$
 and $\limsup x_n=\inf X$

Example. Consider $(x_n) = (-1)^n$:

- $-1 \in X$ because there is no x_n such that $v < x_n$.
- $-2 \in X$ because there is no x_n such that $v < x_n$.
- $-0, -1 \notin X$ because there are infinitely many x_n such that $v < x_n$.

We thus conclude that

$$[1,\infty)\subset X$$
 (in fact they are equal)

• The <u>limit inferior</u> of (x_n) is the supremum of the set of $w \in \mathbb{R}$ s.t. $w > x_m$ for at most a finite number of $n \in \mathbb{N}$. We write it as

 $\liminf (x_n)$ or $\liminf x_n$ or $\overline{\lim} x_n = \sup \{w \in \mathbb{R} | w > x_n \text{ for at most a finite number of n} \}$

Intuition

- Suppose $v < x_n$ for at most finitely many $n \in \mathbb{N}$, then for all large $n, v \ge x_n$. \Rightarrow No subsequential limit of (x_n) can possibly exceed v.
- Similar observation for $\lim x_n$

Theorem. Let (x_n) be a bounded sequence of real numbers, and let $x^* \in \mathbb{R}$. Then TFAE:

- 1. $x^* = \limsup (x_n)$
- 2. If $\varepsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ s.t. $x^* + \varepsilon < x_n$, but infinitely many n for which $x^* \varepsilon < x_n$
- 3. If $u_m = \sup \{x_n | n \ge m\}$ (sup of (m-1)-th tail), then $x* = \inf \{u_m | m \in \mathbb{N}\} = \lim u_m$
- 4. If S is the set of subsequential limits of x_n , then $x^* = \sup S$.

Remark. .

- u_m is decreasing.
- There is a similar such list of equivalent properties for liminf.

Corollary. A bounded sequence (x_n) is convergent iff $\overline{\lim} x_n = \lim x_n$

Proof. A direct result of the theorem:

$$\overline{\lim} x_n = \sup S$$
 and $\underline{\lim} x_n = \inf S$

Proof of thm. (a) \Rightarrow (b). Let $\varepsilon > 0$. Then

 $x^* + \varepsilon > x^* = X = \inf \{ v \in \mathbb{R} | v < x_n \text{ for at most a finite number of n.} \}$

$$\Rightarrow \exists v \in \mathbb{R} \text{ s.t. } x^* \leq v < x^* + \varepsilon$$

and there are only finitely mant n with $v < x_n$.

For any n for which $x^* + \varepsilon < x_n$, $v < x_n$. Thus there are only finitely many such n.

If
$$x^* - \varepsilon \notin X$$
, then there are infinitely many n such that $x^* - \varepsilon < x_n$

Proof of thm. $(b) \Rightarrow (c)$. Fix $\varepsilon > 0$.

By (b), there are only finitely many n with $x^* + \varepsilon < x$.

Take $N \in \mathbb{N}$ large enough such that

$$x^* + \varepsilon \ge x_n \qquad \forall n \ge N$$

$$\Rightarrow \qquad x^* + \varepsilon \ge u_N$$

$$\Rightarrow \qquad x^* + \varepsilon \ge \lim u_n$$

$$\Rightarrow \qquad x^* \ge \lim u_m \qquad \forall n \ge N$$

On the other hand, there are infinitely many n with $x^* - \varepsilon < x_n \le u_n$.

Thus, there exists a subsequence of u_n , say u_{n_k} , satisfies

$$x^* - \varepsilon \le u_{n_k}$$

$$\Rightarrow \qquad x^* - \varepsilon \le \lim u_{n_k} = \lim (u_n)$$

$$\Rightarrow \qquad x^* \le \lim (u_n)$$

Proof of thm. $(c) \Rightarrow (d)$. **Goal**:

$$x* = \lim (u_m), u_m = \sup x_n | n \ge m$$

 $\Rightarrow x^* = \sup S$ where S is the set of subsequential limits.

Let (x_{n_k}) be a convergent subsequence of (x_n) . Notice that $\lim (x_{n_k}) \in S$.

$$n \ge k$$

$$\Rightarrow \qquad x_{n_k} \le \sup \{x_n | n \ge k\} = u_k$$

$$\Rightarrow \qquad \lim (x_{n_k}) \le \lim (u_k) = x^*$$

$$\Rightarrow \qquad x^* \text{ is an upper bound of S..}$$

For $1, \exists n_1 \in \mathbb{N} \text{ s.t.}$

$$u_1 - 1 \le x_{n_1} \le u_1$$

For $\frac{1}{2}$, $\exists n_2 \in \mathbb{N}$ s.t.

$$u_2 - \frac{1}{2} \le x_{n_2} \le u_2$$

. . .

For $\frac{1}{k}$, $\exists n_k \in \mathbb{N}$ s.t.

$$u_k - \frac{1}{k} \le x_{n_k} \le u_k$$

When $k \to \infty$,

$$x^* - 0 \le \lim \left(x_{n_k} \right) \le x^*$$

By squeeze theorem,

$$\lim (x_{n_k}) = x^*$$

 $\limsup x_n \le x^*$

Proof of thm. $(d) \Rightarrow (a)$. **Goal:**

$$x^* = \sup S$$

 $\Rightarrow x^* = \limsup x_n = \inf \{ v \in \mathbb{R} | v < x_n \text{ for at most finite many of n} \}$

Fix $\varepsilon > 0$

There is no subsequence of x_n which has a limit exceeding $x^* + \varepsilon$.

 \Rightarrow There is only finitely many n with $x_n > x^* + \varepsilon$.

$$\Rightarrow x^* + \varepsilon \in X$$

$$\Rightarrow \inf X \le x^* + \varepsilon$$

$$\Rightarrow \lim \sup x_n \le x^* + \varepsilon$$

 \Rightarrow

Next, consider $x^* - \varepsilon$

Then, there exists a subsequential limit of x_n which is greater or equal to $x^* - \frac{1}{2}\varepsilon$.

There exists a convergent subsequence of (x_n) , say (x_{n_k}) , such that

$$\lim (x_{n_k}) \ge x^* - \frac{1}{2}\varepsilon$$

$$\Rightarrow \qquad \text{There are infinitely many n with } x^* > x^* - \varepsilon.$$

$$\Rightarrow \qquad \forall a \in X, x^* - \varepsilon \le a$$

$$\Rightarrow \qquad \qquad x^* - \varepsilon \le \inf X$$

$$\Rightarrow \qquad \qquad \lim\sup x_n \ge x^* - \varepsilon$$

$$\Rightarrow \qquad \qquad \lim\sup x_n \ge x^* - \varepsilon$$

$$\Rightarrow \qquad \qquad \lim\sup x_n \ge x^* - \varepsilon$$

In conclusion,

 $\lim \sup x_n = x^*$

3.5 Cauchy Criterion

Definition (Cauchy Sequence). A sequence (x_n) is <u>Cauchy sequence</u> if $\forall \varepsilon > 0, \exists H \in \mathbb{N} \text{ s.t. } \forall n, m \in \mathbb{N}, n > 0, m > 0,$

$$|x_n - x_m| < \varepsilon$$

Example. $(\frac{1}{n})$ is a Cauchy sequence.

Proof. Observe that $\forall n, m \in \mathbb{N}, n \geq m$,

$$\left| \frac{1}{n} - \frac{1}{m} \right| = \left| \frac{m-n}{mn} \right| = \frac{n-m}{mn} \le \frac{n}{mn} < \frac{1}{m}$$

Choose $H = \lceil \frac{1}{\varepsilon} \rceil + 1$, Then

 $\forall n, m \geq H$,

$$\left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{m} < \varepsilon$$

Example. $(-1)^n$ is not a Cauchy sequence.

Proof. Choose $\varepsilon_0 = \frac{1}{2}, \forall H \in \mathbb{N}$, choose $n, m \geq H$ s.t. n is even, m is odd. Then

$$|(-1)^n - (-1)^m| = |1 - (-1)| = 2 > \frac{1}{2}$$

Thus $(-1)^n$ does not satisfies the definition of Cauchy sequence.

Theorem. If (x_n) is convergent, then it is Cauchy sequence.

Proof. Let $\lim (x_n) = x$.

Goal:

$$|x_n - x| < \varepsilon \Rightarrow |x_n - x_m| < \varepsilon$$

 $\forall n, m \geq N_{\varepsilon},$

$$|x_n - x_m| = |(x_n - x) + (x - x_m)|$$

 $\leq |x_n - x| + |x - x_m|$ by triangle inequality
 $< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$

Lemma. If (x_n) is Cauchy, the it is bounded.

Proof. Choose $\varepsilon = 1, \exists H \ge 0 \text{ s.t. } \forall n, m \ge H,$

$$|x_n - x_m| < 1$$

Since the choice of m satisfies $m \geq H$, we may choose m = H s.t.

$$|x_n - x_H| < 1$$

It follows that

$$|x_n| - |x_H| \le |x_n - x_H| < 1$$

 $|x_n| < |x_H| + 1, \forall n \ge H$

Let

$$M := \max\{|x_1|, |x_2|, |x_3|, \dots, |x_{H-1}|, |x_H| + 1\}$$

Thus $\forall n \in \mathbb{N}, |x_n| \leq M$

Theorem (Cauchy Convergence Theorem). A sequence of real numbers is <u>convergent</u> if and only if it is <u>Cauchy</u> sequence.

- (\Rightarrow) . Done in the previous theorem.
- (\Leftarrow) . Suppose (x_n) is Cauchy. By lemma, it is bounded.

By Bolzano-Weierstrass theorem, there exists a convergent subsequence (x_{n_k}) .

Let $\lim(x_{n_k}) = x$.

Goal: $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N$

$$|x_n - x| < \varepsilon$$

We will use the trick of *insert subsequence*:

By definition of convergence, $\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N} \text{ s.t. } \forall k \geq N_{\varepsilon}$

$$|x_{n_k} - x| < \frac{1}{2}\varepsilon$$

By definition of Cauchy sequence, $\forall \varepsilon > 0, \exists H \in \mathbb{N}, H \geq 0 \text{ s.t. } \forall n, m \geq H$

$$|x_n - x_m| < \frac{1}{2}\varepsilon$$

Thus $\forall k \geq \max\{H, N_{\varepsilon}\},\$

$$|x_k - x| = |(x_k - x_{n_k}) + (x_{n_k} - x)|$$

$$\leq |x_k - x_{n_K}| + |x_{n_k} - x| \text{ since } n_k \geq k \geq \max\{H, N_{\varepsilon}\}$$

$$< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

Example. Let (h_n) be the sequence of harmonic series such that

$$h_n = \sum_{i=1}^n \frac{1}{i}$$
, and $\lim(h_n) = \sum_{n=1}^\infty \frac{1}{n}$

Claim: (h_n) is divergent

Goal: show that it is NOT Cauchy.

Proof. $\forall m, n \in \mathbb{N}$, WLOG suppose $m \geq n, h_m > h_n$, we have

$$|h_m - h_n| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{m-1} + \frac{1}{m}$$

 $\geq \frac{m-n}{n}$

since there are (m-n)'s terms on the right side of the equation.

So we choose $\varepsilon_0 = \frac{1}{2}, \forall H \geq 0$, choose n = H, m = 2H, then

$$|h_m - h_n| \ge \frac{m-n}{m} = \frac{1}{2}$$

Thus, (h_n) is NOT Cauchy.

3.6 Property of Divergent Sequence

Example (divergent sequence).:

- $(n) \to \infty$
- $(-n) \to -\infty$
- $(-1)^n \cdot n$ is divergent and unbounded.
- $(-1)^n$ is divergent and bounded.

Definition (**Properly Divergent**). Let (x_n) be a sequence of real numbers. We say that

1. (x_n) <u>tends to</u> ∞ , or $\lim(x_n) = \infty$ if $\forall a \in \mathbb{R}, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N$,

$$x_n > a$$

2. Similarly, (x_n) <u>tends to</u> $-\infty$, or $\lim(x_n) = -\infty$ if $\forall a \in \mathbb{R}, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N$,

$$x_n < a$$

In either case, we say that (x_n) is **properly divergent**.

Example. Let C > 0. (C^n) is properly divergent. We write $\lim_{n \to \infty} (C^n) = \infty$.

Proof. Notice that

$$C^n = [1 + (C-1)]^n \ge 1 + n(C-1)$$
 by Bernoulli's inequality

Goal: $\forall a \in \mathbb{R}, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N,$

$$1 + n(C - 1) > a_n \Leftrightarrow n > \frac{a_n - 1}{C - 1}$$

Then we choose $N = \lceil \frac{a-1}{c-1} \rceil + 1$. Thus $\forall n \geq N, C^n > a$.

Theorem. A monotone sequence is *divergent* if and only if it is *bounded*.

Proof. Exercise.

Theorem (Comparison Test). Let (x_n) and (y_n) be two sequences. Suppose $\forall n \in \mathbb{N}, x_n \geq y_n$. Then,

- 1. If $(x_n) \to \infty$, then $(y_n) \to \infty$.
- 2. If $(y_n) \to -\infty$, then $(x_n) \to -\infty$.

Proof. Exercise.

Theorem (Limit Comparison Test). Let (x_n) and (y_n) be two sequences of positive real numbers. Suppose $\exists L \in \mathbb{R}, L > 0$ s.t.

$$\exists \lim (\frac{x_n}{y_n}) = L$$

then $\lim(x_n) = \infty$ if and only if $\lim(y_n) = \infty$

Proof. <u>Claim:</u> For N large enough,

$$\frac{1}{2}L \cdot y_n < x_n < 2L \cdot y_n$$

Goal: Claim+Comparison Theorem=Proof.

By definition of limit, $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n > N,$

$$L - \varepsilon < \frac{x_n}{y_n} < L + \varepsilon$$

Choose $\varepsilon = \frac{1}{2}L$, we have

$$\frac{1}{2}L \cdot y_n < x_n < \frac{3}{2}L < 2L \cdot y_n$$

since L > 0 and these are positive sequences.

Thus by Comparison Theorem,

$$\lim(\frac{1}{2}L\cdot y_n) = \infty \Rightarrow \lim(x_n) = \infty$$

3.7 Introduction to Infinite Series

Definition (Infinite Series). If (x_n) is a sequence of real numbers, then the <u>infinite series</u> generated by (x_n) is the sequence (s_k) defined by

$$s_k = \sum_{i=1}^k x_i$$

Terms s_k are called **partial sums**.

Notation. $\sum x_i$ to mean this series or its limit at infinity $\lim(x_k)$.

Theorem (Cauchy Criterion for Series). The series $\sum x_i$ <u>converges</u> if and only if $\forall \varepsilon > 0, \exists M \in \mathbb{N} \text{ s.t. } \forall n, m \in \mathbb{N}, n > m \geq M$,

$$|x_{m+1} + x_{m+2} + \dots + x_{n-1} + x_n| < \varepsilon$$

Or we write it as

$$|s_k - s_m| < \varepsilon$$

Proof: Exercise.

Theorem (Montone Convergence for Series). Let (x_n) be a sequence of non-negative real numbers. Then the series $\sum x_n$ <u>converges</u> if and only if (s_k) is bounded.

Proof. Exercise.

Example. $\sum \frac{1}{n^2}$ is convergent.

Proof. Goal: find convergent subsequence (s_{k_j}) .

Consider subsequence (s_{k_j}) where $k_j = 2^j - 1$.

Observe that:

$$\begin{aligned} s_{k_1} &= 1 \\ s_{k_2} &= 1 + \frac{1}{2^2} + \frac{1}{3^2} \\ &< s_{k_1} + 2 \cdot \frac{1}{2^2} = 1 + \frac{1}{2} \\ s_{k_3} &= 1 + (\frac{1}{2^2} + \frac{1}{3^2}) + (\frac{1}{4^2} + \frac{1}{5^2} + \dots + \frac{1}{9^2}) \\ &< s_{k_1} + 2 \cdot \frac{1}{2^2} = 1 + \frac{1}{2} \end{aligned}$$

By induction(details are left as exercise), one can show that

$$s_{k_j} < \sum_{n=0}^{j-1} \frac{1}{2^n} < \sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$
 (by limit of geometric series.)

Thus (s_{k_i}) is bounded.

By theorem proved in homework, an increasing sequence with bounded(and thus convergent) subsequence implies that the sequence is convergent.

4 Limits

4.1 Limits of Functions

Let $f: A \to B$ be a function where $A, B \subseteq \mathbb{R}$. Let $a \in A, L \in B$.

Goal: Define

$$\lim_{x \to a} f(x) = ?$$

Intuition: Define closeness on real line.

Definition (Cluster Point). Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is a <u>cluster point</u> of A if

 $\forall \delta > 0, \exists x \in A, x \neq c \text{ such that }$

$$|x - c| < \delta$$

Or

$$V_{\delta}(c) \cap (A \{c\}) \neq \phi$$

Theorem. $c \in \mathbb{R}$ is a cluster point if and only if

there exists a sequence $(a_n) \in A$ such that

$$\lim(a_n) = c$$
 and $\forall n \in \mathbb{N}, a_n \neq c$

Sketch of Proof. (\Rightarrow)

$$\delta = 1, \exists a_1 \in A \setminus \{c\} \text{ s.t. } |a_1 - c| < 1$$

$$\delta = \frac{1}{2}, \exists a_2 \in A \setminus \{c\} \text{ s.t. } |a_2 - c| < \frac{1}{2}$$
... observe that:
$$\forall \delta > 0, \exists a_n \in A \setminus \{c\} \text{ s.t. } |a_n - c| < \frac{1}{n} < \delta$$

$$\Rightarrow \lim(a_n) = c \text{ by squeeze theorem.}$$

 (\Leftarrow)

 $\forall \delta > 0, \exists N_{\varepsilon} > 0 \text{ s.t.}$

$$|a_{N_{\varepsilon}}-c|<\delta$$

Note that $a_{N_{\varepsilon}} \in A \setminus \{c\}$ where c is a cluster point of A.

Example. Let X be the set of cluster points of A.

- $A = (1,2) \cup (3,4) \Rightarrow X = [1,2] \cup [3,4]$. Proof: Exercise.
- $A = \{0\} \cup (1,2) \Rightarrow X = \phi$. Sketch of (2).:
 - 1. Let $x \in [1,2]$. Prove that $x \in X$. Thus $[1,2] \in X$.
 - 2. Prove that $0 \notin X$.
 - 3. Prove that $x \in X$ if $x \notin \{0\} \cup [1, 2]$.

Remark. A may not be a subset of the set of cluster points of A. **Example.** :

- $A = \mathbb{Z} \Rightarrow X = \phi$.
- $A = \{\frac{1}{n} | n \in \mathbb{N}\} \Rightarrow X = \{0\}$ Proof: Exercise.

Definition (**Delta-Epsilon Definition of Limit**). Let $A \subseteq \mathbb{R}$, c is a cluster point of $A, f: A \to \mathbb{R}$. A real number L is the *limit of f at c* if

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A,$$

$$0 < |x - c| < \delta \rightarrow |f(x) - L| < \varepsilon$$

Theorem (Uniqueness of Limit). If $f: A \to \mathbb{R}$ and c is a cluster of points of A, then f has at most 1 limit at c.

Proof. We will prove this by contradiction.

Let L_1 and L_2 be limits of f at c. Assume $L_1 \neq L_2$. Choose $\varepsilon = \frac{|L_1 - L_2|}{2} > 0$. Then,

$$\exists \delta_1 \text{ s.t. } 0 < |x - c| < \delta_1 \Rightarrow |f(x) - L_1| < \frac{\varepsilon}{2}$$

$$\exists \delta_2 \text{ s.t. } 0 < |x - c| < \delta_2 \Rightarrow |f(x) - L_2| < \frac{\varepsilon}{2}$$

Consider $\delta := \min\{\delta_1, \delta_2\}.$

Since c is a cluster point, $\exists x_0 \in A \text{ s.t.}$

$$0 < |x_0 - c| < \delta$$

Since

$$|f(x_0) - L_1| < \frac{\varepsilon}{2}, |f(x_0) - L_2| < \frac{\varepsilon}{2}$$

We have

$$|L_1 - L_2| \le |L_1 - f(x_0)| + |f(x_0) - L_2|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$= \frac{|L_1 - L_2|}{2}$$

which is a contradiction.

Notation.

$$L = \lim_{x \to c} f(x)$$
 or $L = \lim_{x \to c} f$

And we say that f(x) approaches to L as x approaches to c.

Remark (Divergence of function). If the limit of f(x) at c does not exists, we say that f <u>diverges</u> at c.

Theorem. Let $f: A \to \mathbb{R}$ and c be a cluster point of f. The following are equivalent:

- 1. $\lim_{x \to c} f(x) = L$
- 2. $\forall V_{\varepsilon}(L) \varepsilon$ -neighborhood of L, $\exists V_{\delta}(c) \delta$ -neighborhood of c s.t.

$$x \in V_{\delta}(c) \cap (A \setminus \{c\}) \Rightarrow f(x) \in V_{\varepsilon}(c)$$

Example. $\lim_{x\to c} f(x) = a$.

Proof. $\forall \varepsilon > 0, \exists \delta = 1 \text{ s.t.}$

$$x \in V_{\delta}(c) \cap (\mathbb{R} \setminus \{c\}) \Rightarrow f(x) = a \in V_{\varepsilon}(L)$$

Example. $\lim_{x\to c} f(x) = c$.

Proof. $\forall \varepsilon > 0, \exists \delta = \varepsilon \text{ s.t.}$

$$x \in V_{\delta}(c) \cap (A \setminus \{c\})$$

$$\Rightarrow f(x) = x \in V_{\delta}(c) \cap (A \setminus \{c\})$$

$$\Rightarrow f(x) \in V_{\varepsilon}(c) \cap (A \setminus \{c\}) \subseteq V_{\varepsilon}(c)$$

Example.

$$\lim_{x \to c} x^2 = c^2$$

Proof. **Goal**: $\forall \varepsilon > 0$, find a $\delta(c, \varepsilon) > 0$ s.t.

if
$$0 < |x - c| < \delta$$
, then $|x^2 - c^2| < \varepsilon$

which is equivalent to show

$$|x+c|\,|x-c|<\varepsilon$$

Since the choice of δ is dependent on ε and c only, |x-c| can be easily confined with some constant. Let's assume that

$$|x-c|<1$$

Now, the only task left is to find a way to confine |x + c| with a constant by manipulating |x - c| < 1.

Here we will apply a common trick that estimates addition |x+c| with subtraction |x-c|:

$$|x| - |c| \le |x - c| < 1$$
 by triangle inequality.

Rearranging the inequality, we have:

$$|x| < |c| + 1$$

Adding the second |c| to both side of inequality, then, we apply triangle inequality again:

$$|x + c| \le |x| + |c| < 2|c| + 1$$

 $|x + c| < 2|c| + 1$

Notice that this is equivalent to show

$$|x+c| |x-c| < (2|c|+\delta) |x-c| < \varepsilon$$

Rearrange the constant factor

$$|x-c| < \frac{\varepsilon}{2|c|+1}$$

Thus, our choice of δ must satisfies two conditions at the same time:

$$\begin{cases} |x - c| < 1\\ |x - c| < \frac{\varepsilon}{2|c| + 1} \end{cases}$$

We achieve this by simply choosing

$$\delta = \min\left\{\frac{\varepsilon}{2\left|c\right| + 1}, 1\right\}$$

Remark (<u>The Toolbox of Proofs</u>). The readers should develop their "toolbox" of proof techniques. That is, the <u>estimation against a constant</u> + manipulation of **triangle inequality** + choice of δ that satisfies **multiple conditions**.

Example (Harder).

$$\lim_{x \to c} \frac{1}{x} = \frac{1}{c}$$

Proof. Observe that

$$\left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x - c|}{|cx|}$$

Here, we cannot choose |x-c| smaller than some constant (why? try it on your own). Instead, we choose

$$|x - c| < \frac{|c|}{2}$$

By triangle inequality,

$$\frac{|c|}{2} < |x| < \frac{3|c|}{2}$$

Multiply |c| to each term of the inequality,

$$\frac{c^2}{2} < |cx| < \frac{3c^2}{2}$$

Thus

$$\frac{1}{|cx|} < \frac{2}{c^2}$$

It follows that

$$\frac{|x-c|}{|cx|} < \frac{2}{c^2} \left| x - c \right|$$

In order to make the left term of the inequality less than ε , it suffices to confine

$$\frac{2}{c^2} |x - c| < \varepsilon$$

$$|x - c| < \frac{c^2}{2}\varepsilon$$

Thus, our choice of δ must satisfies two conditions at the same time:

$$\begin{cases} |x - c| < \frac{|c|}{2} \\ |x - c| < \frac{c^2}{2} \varepsilon \end{cases}$$

We achieve this by simply choosing

$$\delta = \min\left\{\frac{|c|}{2}, \frac{c^2}{2}\varepsilon\right\}$$

Remark (<u>Factoring</u> |x-c|). Since we have the premise of $|x-c| < \delta$ for free, it would be much easier for us to confine |f(x)-L| if we factor |x-c| from the difference.

Example (Much Harder).

$$\forall n \in \mathbb{N}, \lim_{x \to c} x^n = c^n$$

Proof. By difference of n-th powers factorization

$$|x^{n} - c^{n}| = |x - c| \left| \sum_{i=0}^{n-1} x^{i} c^{n-1-i} \right| \le |x - c| \cdot \sum_{i=0}^{n-1} |x|^{i} |c|^{n-1-i}$$

If

$$|x-c| < 1$$

then by triangle inequality,

$$|x| < |c| + 1$$

It follows that

$$|x^{n} - c^{n}| < |x - c| \cdot \sum_{i=0}^{n-1} (|c| + 1)^{i} |c^{n-1-i}|$$

Similar to the previous example, it suffices to confine

$$|x-c| \cdot \sum_{i=0}^{n-1} (|c|+1)^i |c^{n-1-i}| < \varepsilon$$

$$|x - c| < \frac{\varepsilon}{\sum_{i=0}^{n-1} (|c| + 1)^i |c^{n-1-i}|}$$

Thus, choose

$$\delta = \min\{1, \frac{\varepsilon}{\sum_{i=0}^{n-1} (|c|+1)^i \, |c^{n-1-i}|}\}$$

Remark ($\underline{Estimate} \ x \ against \ c$). This is another trick by triangle inequality:

If
$$\exists k \in \mathbb{R}, k > 0$$
 s.t. $|x - c| < k$, then $|x| < |c| + k$

Remark (difference of n-th powers factorization).

$$(x^{n} - c^{n}) = (x - c)(x^{n-1} + cx^{n-2} + \dots + c^{n-2}x + c^{n-1}) = (x - c)\sum_{i=0}^{n-1} x^{i}c^{n-1-i}$$

Example (Some Tedious Factorization).

$$\lim_{x \to 2} \frac{x^3 + 2x - 1}{6x^2 - 5} = \frac{11}{19}$$

Proof.

$$\left| \frac{x^3 + 2x - 1}{6x^2 - 5} - \frac{11}{19} \right| = \left| \frac{19x^3 - 66x^2 + 38x + 36}{19(6x^2 - 5)} \right|$$

By some tedious factorization,

... =
$$|x - 2| \frac{|19x^3 - 28x - 18|}{19|6x^2 - 5|}$$

We estimate |x-2| with constant 1

$$|x - 2| < 1$$

$$1 < x < 3 \text{ or } |x| < 3$$

It follows that

$$1 < x^2 < 9$$

$$1 < 6x^2 - 5 < 49$$

$$1 > \frac{1}{6x^2 - 5} > \frac{1}{49}$$

So

$$\frac{1}{19|6x^2 - 5|} < \frac{1}{19}$$

Similarly,

$$\left|19x^3 - 66x^2 + 38x + 36\right| \le 19\left|x\right|^2 + 28\left|x\right| + 18 < 19 \cdot 3^2 + 28 \cdot 3 + 18 = 273$$

Thus

$$\dots \le |x - 2| \cdot \frac{273}{19} < \varepsilon$$
$$|x - 2| < \frac{19}{273}\varepsilon$$

We conclude that it suffices to choose

$$\delta = \min\left\{1, \frac{19}{273}\varepsilon\right\}$$

Theorem (<u>Sequential Criterion of Limits</u>). Let $f: A \to \mathbb{R}$ and let c be a cluster point of A. $\lim_{x\to c} f = L$ if and only if for all sequence $(x_n) \in A$ that converge to c and $(x_n) \neq c, \forall n \in \mathbb{N}, (f(x_n))$ converges to L.

Proof. (\Rightarrow). By definition of convergent sequence, $\forall \delta > 0, \exists K \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, n \geq K$,

$$|x_n - c| < \delta$$

By definition of limit, $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A,$

$$|x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

Thus, choose δ given ε , and choose K given δ , we have:

$$|x_n - c| < \delta \Rightarrow |f(x_n) - L| < \varepsilon$$

 (\Leftarrow) . We will prove this by contrapositive.

Assume that there exists $\varepsilon_0 > 0$ and a $(x_n) \in A$ converges to c with $(x_n) \neq c$ such that for all $n \in \mathbb{N}$

$$0 < |x_n - c| < \frac{1}{n} \Rightarrow |f(x_n) - L| \ge \varepsilon_0$$

Thus the function does not have a limit at c. We thereby conclude the converse of the statement.

Theorem (<u>Sequential Criterion of Divergence</u>). Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, c be a cluster point of A, $(x_n) \to c$ s.t. $(x_n) \neq c$, and $L \in \mathbb{R}^1$.

- 1. L is NOT the limit of f at $c \iff f(x_n)$ does NOT converge to L.
- 2. f diverges $\iff f(x_n)$ does NOT converge.

Proof. Exercise.

Example.

$$\lim_{x\to 0} \frac{1}{x} \text{ does NOT exists in } \mathbb{R}$$

Proof. Let $(x_n) = \frac{1}{n} \to 0$. Then

$$f(x_n) = \frac{1}{\frac{1}{n}} = n \to \infty$$

¹The following theorems are NOT equivalent!!

Example.

$$\lim_{x\to 0} \sin(\frac{1}{x}) \text{ DNE in } \mathbb{R}$$

Proof. Let
$$(x_n) = \frac{1}{2n\pi} \to 0$$
 and $(y_n) = \frac{1}{\frac{1}{2}\pi + 2n\pi} \to 0$. Then

$$f(x_n) = \sin(2n\pi) = 0$$

$$f(y_n) = \sin(\frac{1}{2}\pi + 2n\pi) = 1$$

Thus limit of f at 0 does NOT exists in \mathbb{R} .

Example.

Definition (*Signum Function*). Let $A \subseteq \mathbb{R}$ and $sgn(x) : A \to \mathbb{R}$ s.t.

$$sgn(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

$$\lim_{x\to 0} sgn(x) \text{ DNE in } \mathbb{R}$$

Proof. Let
$$(x_n) = \frac{1}{n} \to 0$$
 and $(y_n) = \frac{1}{-n} \to 0$. Then

$$f(x_n) = sgn(n) = 1$$

$$f(y_n) = sgn(-n) = -1$$

Thus limit of f at 0 does NOT exists in \mathbb{R} .

4.2 Limit Theorem

Definition (<u>Bounded Neighborhood of c</u>). Let $A \subseteq \mathbb{R}, f : A \to \mathbb{R}$, c be a cluster point of A. Then we say f is a <u>bounded Neighborhood of c</u> if there exists $\delta > 0$ and $\exists M > 0$ s.t. $\forall x \in A \cap V_{\delta}(c)$

$$|f(x)| \le M$$

Theorem (<u>Existence of Bounded Neighborhood at Limit</u>). If f has a limit at c, then f is bounded on some neighborhood of c.

Proof. By definition of limit, $\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A \setminus \{c\}$

$$0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon$$

By triangle inequality,

$$|f(x)| - |L| \le |f(x) - L| < \epsilon$$
$$|f(x)| < |L| + \epsilon$$

If f(c) is not defined on A, then let $M = |L| + \epsilon$. If f(c) is defined on A, then let $M = \max\{f(c), |L| + \epsilon\}$. Since the choice of ϵ is arbitrary, we will choose $\epsilon = 1$. Thus,

$$f(x) \le M$$

Definition. Let $A \subseteq \mathbb{R}$; $f, g: A \to \mathbb{R}$, c be a cluster point of A. Then $\forall x \in A$

- **Sum** of function: (f+g)(x) = f(x) + g(x).
- <u>Difference</u>: (f-g)(x) = f(x) g(x).
- Multiple: $(bf)(x) = b \cdot f(x)$ for some $b \in \mathbb{R}$.
- **Product:** $(f \cdot g)(x) = f(x) \cdot g(x)$.
- Quotient: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ if $g(x) \neq 0$.

Theorem (*Limit Theorem*). If $\exists L, M \in R \text{ s.t. } \lim_{x \to c} f(x) = L \text{ and } \lim_{x \to c} g(x) = M$, then

- $\lim_{x\to c} (f+q)(x) = L+M$.
- $\lim_{x\to c} (f-g)(x) = L M$.
- $\lim_{x\to c} (bf)(x) = b \cdot L$.
- $\lim_{x\to c} (f \cdot g)(x) = L \cdot M$.
- $\lim_{x\to c} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$ if $\lim_{x\to c} g(x) \neq 0$.

Proof. Exercise.

Remark. Always check conditions before applying: this is true only if both f and g has a limit at c!

Example.
$$\lim_{x\to 4} \frac{(x-4)(x+3)}{4(x-4)(x-5)} = \lim_{x\to 4} \frac{x+3}{4(x-5)} = -\frac{7}{4}$$

Corollary (*Polynomial Function*).

$$\lim_{x \to c} p(x) = \lim_{x \to c} \sum_{i=0}^{n} a_i \cdot x^i = \sum_{i=0}^{n} a_i \cdot \lim_{x \to c} x^i = \sum_{i=0}^{n} a_i \cdot x^i = p(c)$$

Corollary (<u>Rational Function</u>). For polynomial functions p(x), q(x) s.t. $\lim_{x\to c} p(x) \to p(c), \lim_{x\to c} q(x) \to q(c) \neq 0$,

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}$$

Theorem. Let $A \subseteq \mathbb{R}$; $f, g : A \to \mathbb{R}$, c be a cluster point of A.

If $\exists a, b \in \mathbb{R}, \forall x \in A, x \neq c$ satisfying

$$a \le f(x) \le b$$
 and $\lim_{x \to c} f = L$

then

$$a \le \lim_{x \to c} f \le b$$

Proof. $\forall (x_n) \in A \setminus \{c\}, (x_n) \to c,$

$$a \le f(x_n) \le b \Rightarrow a \le L \le b$$

Theorem (*Squeeze Theorem*). Let $A \subseteq \mathbb{R}$; $f, g, h : A \to \mathbb{R}$, c be a cluster point of A.

If $\forall x \in A, x \neq c$,

$$f(x) \le g(x) \le h(x)$$
 and $\lim_{x \to c} f = L = \lim_{x \to c} h$

then

$$\lim_{x \to c} g = L$$

Proof. Exercise. Try sequeeze theorem of sequence.

Example. $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$

Proof. Notice that

$$-1 \le \sin(\frac{1}{x}) \le 1 \Rightarrow -x \le x \sin(\frac{1}{x}) \le x$$

Since

$$\lim_{x \to 0} (-x) = 0 = \lim_{x \to 0} (x)$$
$$\lim_{x \to 0} x \sin(\frac{1}{x}) = 0$$

Example. Let $b \in \mathbb{R}, b > 0$. Then $\lim_{x \to 0} x^b = 0$. Notice that when $x \in [0, 1]$

$$x^{\lceil b \rceil} \le x^b < x^{\lfloor b \rfloor}$$

The rest is left as exercise.

Theorem. Let $A \subseteq \mathbb{R}$; $f, g, h : A \to \mathbb{R}$, c be a cluster point of A. If $\lim_{x \to c} f > 0$, then $\exists \delta > 0$ s.t. $V_{\delta}(c)$ s.t. $\forall x \in A \cap V_{\delta}(c) \setminus \{c\}$,

$$f(x) > 0$$

Proof. Excercise.

5 Continuous Functions

5.1 Continuity

Definition (*Counituous*). Let $A \subseteq \mathbb{R}, \ f : A \to \mathbb{R}, \ c \in A$.

We say f is **countinuous** at c if

 $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A$

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$$

We say f is <u>discontinuous at c</u> if f is NOT continuous at c.

Definition (<u>Using Neighborhood</u>). Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, $c \in A$. Then f is continuous at c if and only if

 $\forall \varepsilon > 0$ and its ε -neighborhood at f(c), $V_{f(c)}(\varepsilon)$, $\exists \delta > 0$ and its δ -neighborhood at c, $V_c(\varepsilon)$, s.t.

$$f(V_{\delta}(c) \cap A) \subseteq V_{\varepsilon}(f(c))$$

Remark (*Comparison with Limit Definition*). Continuity has 3 good properties that will be useful in the future study of Real Analysis:

- If c is a <u>cluster point</u> of A, then f is <u>continuous</u> if and only if
 - 1. f(x) is defined at c.

Counter-example: Any function $f : \mathbb{Q} \to \mathbb{R}$ is undefined at $\mathbb{R} \setminus \mathbb{Q}$ and thus discontinuous at $\mathbb{R} \setminus \mathbb{Q}$.

2. $\lim_{x \to c} f(x)$ exists.

Counter-example: $\frac{1}{x}$ is undefined at 0 and thus discontinuous at 0.

3. $f(c) = \lim_{x \to c} f(x)$.

Counter-example:
$$f(x) = \begin{cases} 1, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is discontinuous at 0 as $f(c) = 0 \neq 1 = \lim_{x \to c} f(x)$

• If c is **NOT** a cluster point of A, then c is an **isolated** point, and

 $\exists V_{\delta}(c) \cap A = \{c\}$. Notice that an *isolated point* is *automatically continuous* as it *satisfies* the definition of continuity at c. This is because

$$|x - c| = |c - c| = 0 < \delta \Rightarrow |f(x) - f(c)| = |f(c) - f(c)| = 0 < \varepsilon$$

Theorem (Sequential Criterion for Continuity).

Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, $c \in A$. Then f is continuous at c if and only if $\forall (x_n) \subseteq A$ s.t. $(x_n) \to c$, $f((x_n)) \to f(c)$.

Proof. (\Rightarrow). Continuity of f at c implies limit of f at c exists². Thus we simply apply sequential criterion of limit.

(⇐). This is exactly the statement of sequential criterion for limit at c. Thus,

$$\exists \lim_{x \to c} f(x) = f(c)$$

Notice that $c \in A$ implies that f is defined on c. Thus, we conclude that f is continuous on c by previous remark in p.43

Corollary (Sequential Criterion for Discontinuity).

Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, $c \in A$. Then f is discontinuous at c if and only if $\exists (x_n) \subseteq A$ s.t. $(x_n) \to c$, $f((x_n)) \not\to f(c)$.

Proof. Similar. Left to reader as exercise.

Example. We begin with polynomial and rational functions:

- Constant function f(x) = b is continuous in \mathbb{R} .
- Linear function f(x) = ax + b is continuous in \mathbb{R} .
- Quadratic function $f(x) = x^2$ is continuous in \mathbb{R} .
- $f(x) = \frac{1}{x^2}$ is continuous in \mathbb{R} .
- Polynomial functions are continuous in $\mathbb{R}(\text{try to prove it!})$.
- Rational functions are continuous in \mathbb{R} (try to prove it!).
- $f(x) = \frac{1}{x}$ is NOT continuous at 0.
- f(x) = sgn(x) is NOT continuous at 0.

²proof by definition

Example (*Dirichlet's "discontinuous function"*).

Let $A = \mathbb{R}$ and define Dirichlet's "discontinuous function" by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \text{ (rational)} \\ 0 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q} \text{ (irrational)} \end{cases}$$

Claim: this function is discontinuous on \mathbb{R} .

Proof. Let $c \in A$.

• If $c \in \mathbb{Q}$, then $\exists (x_n) \in \mathbb{R} \setminus \mathbb{Q}$ s.t. $\forall n \in \mathbb{N}$,

$$c < (x_n) < c + \frac{1}{n}$$

By squeeze theorem,

$$\lim c \le \lim (x_n) \le \lim (c + \frac{1}{n})$$
$$(x_n) \to c, \ (c + \frac{1}{n}) \to c$$
$$\lim f(x_n) = 1 \ne 0 = \lim f(c + \frac{1}{n})$$

Thus, by Sequential Criterion of Discontinuity, f is discontinuous for all $c \in \mathbb{Q}$.

• If $c \in \mathbb{R} \setminus \mathbb{Q}$, then we adopt similar strategy. The rest of proofs is left as exercise.

Example ($\underline{Thomae's\ function}$). *Notice that this example is harder. We skip it on class.

Let $f: \mathbb{R}^+ \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{R} \backslash \mathbb{Q} \text{ (irrational)} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \in \mathbb{Q} \text{ (rational)} \end{cases}$$

Claim: f is discontinuous on \mathbb{Q} and continuous on $\mathbb{R}^+\backslash\mathbb{Q}$.

Proof.

• If c is rational, then $\exists (x_n) \in \mathbb{R}^+ \backslash \mathbb{Q} + \text{ s.t. } (x_n) \to c$. Then we have

$$\lim f(x_n) \to 0 \neq \frac{1}{q} = f(c)$$

Since funtion value does not equal to limit value at c, f is discontinuous at $c \in \mathbb{Q}$

• If c is irrational, <u>Goal</u>: show that $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x \in \mathbb{R}^+,$

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| = |f(x)| < \varepsilon$$

- If $x \in \mathbb{R}^+ \setminus \mathbb{Q}$, then $|f(x)| = 0 < \varepsilon$ for some arbitrary choice of δ .
- If $x \in \mathbb{Q}$, then by Archimedean Property, we could find a $\frac{1}{n_0} > \varepsilon$.

Notice that there are only finite number of $n \in \mathbb{N}$ such that $n < n_0$. Thus, there are only finite number of $\frac{p}{q} \in (c-1,c+1)$ with denominator $q < n_0$. Hence we could choose δ so small that the $V_{\delta}(c)$ contains no rational numbers with denominator less than n_0 . It follows that

$$|x-b| < \delta \Rightarrow |f(x) - f(c)| = |f(x)| \le \frac{1}{n_0} < \epsilon$$

Thus, f is continuous at $c \in \mathbb{R} \setminus \mathbb{Q}$

5.2 Combinations of Continuous Functions

Theorem. Let $A \subseteq \mathbb{R}$, $f, g : A \to \mathbb{R}$, $c \in A$, $b \in R$. Suppose f, g are <u>continuous</u> on c, then the following combination of functions are <u>continuous</u>:

- Addition: f + g
- Subtraction: f g
- **Product:** $f \cdot g$
- $Multiplication: b \cdot f$
- Quotient: $\frac{f}{g}$ if $g(x) \neq 0$
- **Absolute:** |f|(x)
- Square Root: $\sqrt{f}(x)$

Proof.

- If c is not a cluster point of A, then the theorem is automatically correct.
- If c is a cluster point of A, then we only need to show that the function value at c is equal to the limit of function at c. Detailed proof are left as exercise.

Example.

- Polynomial functions are continuous on \mathbb{R} .
- Rational functions are continuous on \mathbb{R} .

Example.

• $\sin(x)$ is continuous on \mathbb{R} .

Proof. Notice that $\forall x, y, z \in \mathbb{R}$, we have 3 inequalities:

$$|\sin(z)| \le |z|, \ |\cos(z)| \le 1, \ \sin(x) - \sin(y) = 2\sin[\frac{1}{2}(x-y)] \cdot \cos[\frac{1}{2}(x+y)]$$

Hence if $c \in \mathbb{R}$, we have

$$|\sin(x) - \sin(c)| \le 2 \cdot \frac{1}{2} |x - c| \cdot 1 = |x - c|$$

Thus sin(x) is continuous on \mathbb{R} .

• $\cos(x)$ is continuous on \mathbb{R}

Proof. Exercise. Similar techniques as above.

• tan(x), cot, sec, csc are all continuous on where they are defined.

Proof. Combinations of continuous functions on their domain are continuous.

Theorem. Let $A, B \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$, $c \in A$ s.t. $f(A) \subseteq B$. Suppose f is continuous at $c \in A$, g is **continuous** on $b = f(c) \in B$, then the composition $g \circ f$ is **continuous** at c.

Proof. Since f is continuous at c, $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\forall x \in A$,

$$|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$$

Since g is continuous at b = f(c), $f(A) \subseteq B$, $\forall \zeta > 0$, $\exists \varepsilon > 0$ s.t. $\forall f(x) \in B$,

$$|f(x) - b| < \varepsilon \Rightarrow |g(f(x)) - g(b)| < \zeta$$

Thus,

$$|x-c| < \delta \Rightarrow |g(f(x)) - g(b)| = |g \circ f(x) - g \circ f(c)| < \zeta$$

Example. $\sqrt{x^2+1}$ is continuous on \mathbb{R} .

Proof. Exercise.

5.3 Continuous Function on Bounded Intervals

Continuous function on <u>closed bounded interval</u> has many good properties.

Definition (<u>Bounded Function</u>). A function $f: A \to \mathbb{R}$ is said to be <u>bounded on A</u> if $\exists M > 0$ s.t. $\forall x \in A$

A function is <u>unbounded</u> if $\forall M > 0$, $\exists x_M \in A$ s.t.

Example. $f(x) = \frac{1}{x}$ is unbounded on $A = (0, \infty)$.

Proof. By Archimedean Property, $\forall M > 0, \exists x_M = \frac{1}{M+1} \in A \text{ s.t.}$

$$\left| f(\frac{1}{M+1}) \right| = \left| \frac{1}{\frac{1}{M+1}} \right| = |M+1| > M$$

We thereby conclude that $\frac{1}{x}$ is unbounded on A.

Theorem (<u>Boundness Theorem</u>). Let $a, b \in \mathbb{R}$, a < b, I = [a, b] a <u>closed bounded interval</u>. If $f: I \to \mathbb{R}$ is countinuous on I, then f is bounded on I.

Proof. Assume f is not bounded on I. Then, by definition, $\forall n \in \mathbb{N}, \exists x_n \in I \text{ s.t.}$

$$|f(x_n)| > n$$

Since I is bounded, the sequence $(x_n) \in I$ is bounded. Therefore, by the Bolzano-Weierstrass Theorem, there exists a convergent subsequence $(x_{n_k}) \to x$ for some number $x \in I$. Since f is continuous on I,

$$f(x_{n_k}) \to f(x)$$

We thereby conclude that $f(x_{n_k})$ is a bounded sequence, which contradicts the fact that $f(x_{n_k})$ is unbounded.

$$\forall k \in \mathbb{N}, n_k \in \mathbb{N}, |f(x_{n_k})| > n_k \ge k$$

Remark. We will give 3 counter-examples to show that all of three conditions are necessary for Boundedness Theorem to be true.

- Interval must be <u>closed</u>
 Counter-example: $f(x) = \frac{1}{x}$ on (0,1] is continuous but unbounded.
- Interval must be <u>bounded</u> Counter-example: g(x) = x is continuous but unbounded on $[0, \infty)$.
- The function must be <u>continous</u>

 Counter-example: Define $h:[0,1] \to \mathbb{R}, \ h(x) = \begin{cases} \frac{1}{x} & \text{if } x \in (0,1] \\ 1 & \text{if } x = 0 \end{cases}$ is discontinuous and unbounded.

Definition (*Maximum* and *Minimum*). Let $A \subseteq \mathbb{R}, f : A \to \mathbb{R}$.

We say that f has an <u>absolute maximum</u> on A if $\exists x^* \in A$ s.t. $\forall x \in A$

$$f(x^*) \ge f(x)$$

We say that f has an <u>absolute minimum</u> on A if $\exists x_* \in A \text{ s.t. } \forall x \in A$

$$f(x_*) < f(x)$$

Remark. Continuous function on a <u>bounded set A</u> does not necessarily have an maximum or minimum on A. For example:

- $f(x) = \frac{1}{x}$ has NO absolute maximum or absolute minimum on $A = (0, \infty)$
- $g(x) = x^2$ has only absolute minimum $x_* = 0$ on \mathbb{R} .

Theorem (<u>Maximum-Minimum Theorem</u>). Let $I = [a, b] \in \mathbb{R}$ be a <u>closed bounded</u> <u>interval</u>, $f: I \to \mathbb{R}$ be <u>countinuous</u> on I. Then f has an absolute maximum and absolute minimum on I.

Proof. By previous theorem, f is bounded on I. Thus,

$$\exists s^* = \sup f(I), \beta = \inf f(I)$$

We will first proof that f has an absolute maximum. It suffices to show that

$$\exists x^* \in I \text{ s.t. } f(x^*) = \sup f(I)$$

Since $s^* = \sup f(I)$, then $\forall n \in \mathbb{N}, s^* - \frac{1}{n}$ is not an upper bound of the set f(I). Consequently, $\exists x_n \in I \text{ s.t. } \forall n \in \mathbb{N}$

$$s^* - \frac{1}{n} < f(x^*) \le s^*$$

Since I is bounded, (x_n) is bounded, by the Bolzano-Weierstrass Theorem, there exists a subsequence $(x_{n_k}) \in I$ s.t. $(x_{n_k}) \to x^*$.

Since f is continuous on I,

$$\lim(f(x_{n_k})) = f(x*)$$

By squeeze theorem,

$$\lim(s^* - \frac{1}{n_k}) \le \lim f(x_{n_k}) \le \lim s^*$$
$$s^* \le f(x^*) \le s^*$$
$$s^* = f(x^*)$$

Thus we conclude that x^* is the absolute maximum of f on I. The proof of absolute minimum is left as exercise using similar techniques.

³The reader should find out why the strict inequality become weak inequality when limit applies.

The proof of next theorem provides an algorithm, know as <u>Bisection Method</u>, to calculate root to certain level of accuracy.

Theorem (<u>Location of Roots</u>). Let $I = [a, b], f : I \to \mathbb{R}$ be continuous on I. If f(a) < 0 < f(b) or f(b) < 0 < f(a), then $\exists c \in (a, b)$ s.t. f(c) = 0.

Proof. WLOG, let's assume that f(a) < 0 < f(b). Define a sequence of closed bounded nested interval I_n and midpoint p_n s.t. $\forall n \in \mathbb{N}$:

$$a_1 = a, b_1 = b, I_1 = [a_1, b_1], p_1 = \frac{1}{2}(a_1 + b_1)$$

Notice that if $f(p_n) = 0$, then $c = p_n$ and we are done. If not, then

$$I_n = \begin{cases} [a_{n-1}, p_{n-1}] & \text{if } f(p_{n-1}) > 0\\ [p_{n-1}, a_{n-1}] & \text{if } f(p_{n-1}) < 0 \end{cases} \subset I_{n-1}$$

Observe that

• $\{I_n\}$ is a infinite sequence of <u>nested intervals</u> where $\forall n \in \mathbb{N}, I_n \subset I_{n-1}$

•
$$\lim\{b_n - a_n\} = \lim\{\frac{b-a}{2^{n-1}}\} = 0 \Rightarrow \lim(a_n) = \lim(b_n)$$

Then by Nested Interval Property,

$$\exists c \in [a, b] \text{ s.t. } \forall n \in \mathbb{N}, \ c \in I_n, \ \bigcap_{n=1}^{\infty} I_n = \{c\}$$

Also notice that

$$a_n < c < b_n \Rightarrow \lim(a_n) \le c \le \lim(b_n)$$

By Squeeze Theorem

$$\lim(a_n) = c = \lim(b_n)$$

Notice that

$$\begin{cases} f(a_n) < 0 \Rightarrow & \lim f(a_n) \le 0 \\ 0 < f(b_n) \Rightarrow & 0 \le \lim f(b_n) \end{cases}$$

Thus

$$c = \lim(a_n) = \lim(b_n) = 0$$

Theorem (<u>Bolzano's Intermediate Value Theorem</u>). Let $I \in \mathbb{R}$ be an interval⁴, $f: I \to \mathbb{R}$ be continuous on I. If $\exists a, b \in I, k \in \mathbb{R}$ s.t.

then $\exists c \in I \text{ s.t.}$

$$f(a) < f(c) = k < f(b)$$

.

Proof. WLOG, assume a < b and define g(x) = f(x) - k. Then

$$g(a) < 0 < g(b)$$

By previous theorem, $\exists c, \ a < c < b \text{ s.t. } 0 = g(c) = f(c) - k$. Thus

$$f(c) = k$$

The similar proof also applies for b < a.

Corollary. Let $I = [a, b], f : I \to \mathbb{R}$ be continuous on I. If $\exists k \in \mathbb{R}$ s.t.

$$\inf f(I) \le k \le \sup f(I)$$

then $\exists c \in I \text{ s.t.}$

$$f(c) = k$$

Proof. This is a direct result of previous theorem.

Corollary. Let $I = [a, b], f : I \to \mathbb{R}$ be continuous on I. Then

$$f(I) = [\inf f(I), \sup f(I)]$$

Proof. Let $m = \inf f(I)$, $M = \sup f(I)$. We know by the Maximum-Minimum Theorem that $m, M \in f(I)$. Thus

$$f(I) \subseteq [m, M]$$

Then by Bolzano's Intermediate Value Theorem, $\forall k \in [m, M], \exists c_k \in I \text{ s.t. } k = f(c_k).$ We thereby conclude that

$$[m,M] \subseteq f(I)$$

It follows that

$$f(I) = [m, M]$$

⁴Not necessarily closed or bounded. Thus this theorem is stronger

Remark. End points may not be extreme points. Counter example:

$$f:[a,b]\to\mathbb{R},\ f(I)\neq[f(a),f(b)]$$

Theorem (Preservation of Interval Theorem).

Let $I \in \mathbb{R}$ be an interval⁵, $f: I \to \mathbb{R}$ be continuous on I. Then the set f(I) is an interval.

Proof. Let $\alpha, \beta \in f(I)$ with $\alpha < \beta$. Then $\exists a, b \in I$ s.t.

$$\alpha = f(a), \ \beta = f(b)$$

By Bolzano's Intermediate Value Theorem, $\forall k \in (\alpha, \beta), \exists c_k \in I \text{ s.t. } f(c) = k \in f(I).$ Thus

$$[\alpha, \beta] \subseteq f(I)$$

We conclude that f(I) is an interval

⁵Not necessarily closed or bounded. Thus this theorem is stronger

5.4 Uniform Continuity

Recall the definition of continuity of f at $u \in A$:

Let $A \subseteq \mathbb{R}, \ f: A \to \mathbb{R}, \ \forall \varepsilon > 0, \exists \delta(\varepsilon, u) \text{ s.t. } \forall x \in A$

$$|x - u| < \delta(\varepsilon, u) \Rightarrow |f(x) - f(u)| < \varepsilon$$

Here we emphasize that the choice of *delta* depends on <u>both</u> ε and $u \in A$. This implies that the change of function value f(u) depends on choice of u. Consider $f(x) = \sin(\frac{1}{x})$. As x approaches 0, the function value changes more rapidly.

Example. In this example, δ depends on ε only:

Let $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x. Then

$$|f(x) - f(u)| = 2|x - u|$$

So it suffice to choose $\delta = \frac{\varepsilon}{2}$.

Example. However, in certain cases, δ depends on both ε and u.

Let $g:(0,\infty)\to\mathbb{R},\ g(x)=\frac{1}{x}.$ Then

$$|f(x) - f(u)| = \left| \frac{u - x}{ux} \right|$$

It suffices to choose $\delta(\varepsilon,u)=\inf\{\frac{1}{2}u,\frac{1}{2}u^2\varepsilon\}.$

Notice that there is no way to choose a δ that will work for all u > 0. δ must depend on the position of u. As u tends to 0, the permissible value of δ tends to 0.

Definition (*Uniform Continuity*). Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$. We say that f is uniformly continuous on A if

 $\forall \varepsilon > 0, \exists \delta(\varepsilon) \text{ s.t. } \forall x, y \in A$

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Theorem (*Non-uniform Continuity Criterion*). Let $A \subseteq \mathbb{R}, f : A \to \mathbb{R}$. The following statements are equivalent:

- f is NOT uniformly continuous.
- $\exists \varepsilon_0 > 0 \text{ s.t. } \forall \delta > 0, \ \exists x_\delta, \ u_\delta \in A \text{ s.t.}$

$$|x_{\delta} - u_{\delta}| < \delta \Rightarrow |f(x_{\delta}) - f(u_{\delta})| \ge \varepsilon_0$$

• $\exists \varepsilon_0 > 0, \ \exists (x_n), \ (u_n) \in A \text{ s.t. } \forall n \in \mathbb{N}$

$$\lim(x_n - u_n) = 0$$
 and $|f(x_n) - f(u_n)| > \varepsilon_0$

Proof. Exercise.

Theorem (Uniform Continuity Theorem). Let I be a closed bounded interval and let $f: I \to \mathbb{R}$ be <u>continuous</u> on I. Then f is <u>uniformly continuous</u> on I.

Proof. Assume f is not uniformly continuous on I. Then by precedence result, $\exists \varepsilon_0 >$ $0, \exists (x_n), (u_n), \in I \text{ s.t. } \forall n \in \mathbb{N}$

$$\lim(x_n - y_n) = 0$$
 and $|f(x_n) - f(u_n)| \ge \varepsilon_0$

Since I is bounded, the sequence (x_n) is bounded. By Bolzano-Weierstrass Theorem, there exists a convergent subsequence (x_{n_k}) , (u_{n_k}) of (x_n) , (u_n) where

$$\lim (x_{n_k} - y_{n_k}) = 0$$
 and $|f(x_{n_k}) - f(u_{n_k})| \ge \varepsilon_0$

Since I is continuous on I

$$\lim f(x_{n_k}) = f(\lim(x_{n_k})), \lim f(u_{n_k}) = f(\lim(u_{n_k}))$$

Thus

$$\lim(f(x_{n_k})) = \lim(f(u_{n_k})) \Rightarrow \lim(f(x_{n_k}) - f(x_{n_k})) = 0$$

contradicts our assumption. We conclude that f must be uniformly continuous.

<u>Note:</u> The next property conveniently ensures uniform continuity without requiring A to be a closed and bounded interval.

Definition (<u>Lipschitz Functions</u>). Let $A \subseteq \mathbb{R}, \ f : A \to \mathbb{R}$. If there exists a constant K > 0 such that $\forall x, \ u \in A$

$$|f(x) - f(u)| \le K|x - u|$$

then f is said to be a <u>Lipschitz function</u> (<u>Lipschitz continuous</u>, or just <u>Lipschitz</u>) on A.

Remark (*Lipschitze Function and Gradient*). Rewrite the condition, we have

$$\left| \frac{f(x) - f(u)}{x - u} \right| \le K$$

It follows that the absolute value is the gradient of a line segment joining the points (x, f(x)), (u, f(u)). Thus, f is Lipschitz if and only if the gradient of all line segments joining two points on the graph of y = f(x) over I are bounded by some K.

Theorem. Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$. If f is **Lipschitz**, then it is **uniformly continuous** on A.

Proof. For all $\varepsilon > 0$, we simply choose $\delta = \frac{\varepsilon}{K}$. Then

$$|x - u| < \delta \Rightarrow |f(x) - f(u)| < K \cdot \frac{\varepsilon}{K} = \varepsilon$$

Thus f is uniformly continuous on A

Remark. The converse may NOT true!

Counter-example: $f(x) = \sqrt{x}$ on [0, 1] is uniformly continuous but NOT Lipschitz.

Example. If $f(x) = x^2$ on A = [0, b] where b > 0, then $\forall x, y \in [0, b]$

$$|f(x) - f(y)| = |x + y| |x - y| \le 2b |x - y|$$

It follows that f is Lipschitz on A given K = 2b, and thus f is uniformly continuous.

Theorem. Let $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$. If f is uniformly continuous on A, and $(x_n) \in A$ is a Cauchy sequence, then $(f(x_n))$ is a Cauchy sequence in R.

Proof. $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x, y \in \delta$

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Since (x_n) is Cauchy, for given $\delta > 0$, $\exists N_\delta \in \mathbb{N}$ s.t. $\forall n, m \in \mathbb{N}$, $n, m > N_\delta$

$$|x_n - x_m| < \delta \Rightarrow |f(x_n) - f(x_m)| < \varepsilon$$

We conclude that $(f(x_n))$ is Cauchy.

Theorem (<u>Continuous Extension Theorem</u>). A function f is <u>uniformly continuous</u> on <u>open</u> interval I = (a, b) if and only if it can be <u>defined at the endpoints</u> a and b such that the extended function is continuous on [a, b].

Proof. (\Leftarrow) . This direction is trivial.

 (\Rightarrow) Suppose $f:(a,b)\to\mathbb{R}$ is uniformly continuous.

Goal: Define f's extended function $F:[a,b] \to \mathbb{R}$ s.t.

$$F|_{(a,b)} = f$$
, F is continuous

Notice that this is equivalent to show $\lim_{x\to a} f(x)$ and $\lim_{x\to b} f(x)$ exist and define

$$F(x) = \begin{cases} f(x) & \text{if } x \in (a, b) \\ \lim_{x \to a} f(x) & \text{if } x = a \\ \lim_{x \to b} f(x) & \text{if } x = b \end{cases}$$

Choose $(x_n) \in (a, b)$ s.t. $(x_n) \to a$. Thus, (x_n) is Cauchy, and by preceding theorem, $(f(x_n))$ is Cauchy. Let $L = \lim_{n \to \infty} (f(x_n))$. Then $\forall (y_n) \in (a, b)$ s.t. $(y_n) \to a$,

$$\lim(x_n - y_n) = a - a = 0$$

By uniform continuity, we have

$$\lim(f(y_n)) = \lim(f(y_n) - f(x_n)) + \lim(f(x_n))$$
$$= 0 + L = L$$

Thus, for all sequence (u_n) converging to a, $(f(x_n)) \to L$. By sequential criterion of limit, $L = \lim_{x \to a} f(x)$. If we define f(a) = L, then f is continuous at a.

The same argument applies to b. Thus, we conclude that f has a continuous extension to the interval [a,b]

5.6 Monotone and Inverse Functions

Note: In this section, we will be focusing on **monotone functions** on an **interval** I. Specifically, we will discuss **increasing functions**. It is easy to derive corresponding results for decreasing functions wit similar proof techniques.

Theorem. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be increasing on I. Suppose that $c \in I$ is NOT an endpoint of I. Then

1.
$$\lim_{x \to c^{-}} f = \sup\{f(x) : x \in I, \ x < c\}$$

2.
$$\lim_{x \to c^{\perp}} f = \inf\{f(x) : x \in I, \ x < c\}$$

Recall: $\lim_{x\to c-} f(x) = L$ if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x \in I$

$$0 < c - x < \delta \Rightarrow |f(x) - L| < \varepsilon$$

Proof. (1). By monotonicity of f, $\forall x < c$,

$$f(x) \le f(c)$$

Thus, the set is non-empty, and f(c) is the upper bound of it. This indicates that

$$\exists L = \sup\{f(x) : x \in I, x < c\}$$

Then $\forall \varepsilon > 0, \ L - \varepsilon$ is not an upper bound of the set. Hence $\exists x_{\varepsilon} \in I, x_{\varepsilon} < c$ s.t.

$$L - \varepsilon < f(x_{\varepsilon}) \le L$$

We choose $\delta = c - x_{\varepsilon}$. Then $\forall x \in I, \ 0 < c - x < \delta \rightarrow x_{\epsilon} < x$. Thus,

$$-\varepsilon < f(x_{\delta}) - L \le f(x) - L \le 0 < \varepsilon$$

$$|f(x) - L| < \varepsilon$$

Thus

$$L = \lim_{x \to c-} f(x)$$

The proof of (2) is similar.

Corollary (<u>One-sided Limits Criterion for Continuity</u>). Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be increasing on I. Suppose that $c \in I$ is NOT an endpoint of I. Then the following statements are equivalent:

- f is continuous at c.
- $\lim_{x \to c^{-}} f(x) = f(c) = \lim_{x \to c^{+}} f(x)$.
- $\sup\{f(x) : x \in x < c\} = f(c) = \inf\{f(x) : x \in I, x > c\}.$

Proof. Exercise.

Recall. A function $f: I \to \mathbb{R}$ has **inverse function** if and only if f is **injective**.

Note: It is not difficult to prove that a $\underline{strictly\ monotone}$ function is $\underline{injective}$ and thus has an inverse.

Theorem (Continuous Inverse Theorem).

Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be <u>strictly monotone</u> and <u>continuous</u> on I. Then the inverse function $g: f(I) \to I$, $g(y) = f^{-1}(y)$ is <u>strictly monotone</u> and <u>continuous</u> on f(I).

Proof. WLOG, we assume that f is **strictly increasing**. We will first prove that g is strictly increasing.

Suppose $\exists y_1, y_2 \in f(I), y_1 < y_2$, then $\exists x_1, x_2 \in I \text{ s.t. } f(x_1) = y_1, f(x_2) = y_2$

1. Assume that $x_1 = x_2$.

Then, $y_1 = f(x_1) = f(x_2) = y_2$ contradicts assumption. So $x_1 \neq x_2$.

2. Assume that $x_1 > x_2$.

Then $y_1 = f(x_1) > f(x_2) = y_2$ contradicts assumption. So $x_1 \not> x_2$.

Thus, $x_1 < x_2$. It follows that

$$g(y_1) < g(y_2)$$

We conclude that g is strictly monotone.

Subsequently, we will prove that g is **continuous**.

Assume g is discontinuous. Then, by inverse of previous criterion, $\exists c \in f(I)$, c is not endpoints of f(I) s.t.

$$\lim_{y \to c-} g(y) < \lim_{y \to c+} g(y)$$

Let $x_0 \in (\lim_{y \to c-} g(y), \lim_{y \to c+} g(y)) \setminus g(c)$. Then

$$x_0 \not\in g(f(I)) \subseteq I$$

which contradicts that fact that $x_0 \in I$

8 Sequence of Functions

8.1 Pointwise and Uniform Convergence

Definition (*Sequence of Functions*). Let $A \subseteq \mathbb{R}$.

We say that $(f_n(x))$ is a **sequence of functions** on A to \mathbb{R} if

$$\forall n \in \mathbb{N}, \ \exists f_n : A \to \mathbb{R}$$

Definition (<u>Convergence of Sequence of Functions</u>). Let $(f_n(x))$ be a sequence of functions on A to \mathbb{R} . Let $A_0 \subseteq A$, and $f: A_0 \to \mathbb{R}$.

We say that (x_n) **converges on** A_0 **to** f if $\forall x \in A_0$,

$$\lim_{n \to \infty} (f_n(x)) = f(x) \text{ or } f_n \to f \text{ on } A_0$$

We call f the <u>limit of f_n on A_0 </u>. Or we say that (f_n) converges pointwise on A_0 .

Lemma $(\underline{\varepsilon} - \delta \ \textbf{Definition})$. Let $A_0 \subseteq A \subseteq \mathbb{R}, \ f : A_0 \to \mathbb{R}$. A sequence of functions $(f_n(x)) : A \to \mathbb{R}$ converges pointwise to f if and only if

$$\forall \varepsilon > 0, \exists N(\varepsilon, x) \in \mathbb{N} \text{ s.t. } \forall n \ge N(\varepsilon, x),$$

$$|f_n(x) - f(x)| < \varepsilon$$

Remark. We emphasize that the choice of $N(\varepsilon, x)$ depends on <u>both</u> ε and x.

Example. $\forall x \in \mathbb{R}, \lim_{n \to \infty} \frac{x}{n} = 0.$ Let $f_n(x) = \frac{x}{n}, f(x) = 0.$ We have

$$\lim_{n \to \infty} (f_n(x)) = \lim_{n \to \infty} (\frac{x}{n}) = x \lim_{n \to \infty} \frac{1}{n} = x \cdot 0 = 0 = f(x)$$

Thus $(f_n(x)) \to 0$ pointwise on \mathbb{R} .

Or, $\forall \varepsilon > 0$,

$$\left|\frac{x}{n} - 0\right| = \frac{|x|}{n} < \varepsilon$$

So, it suffices to choose $K(\varepsilon, x) = \left\lceil \frac{|x|}{\varepsilon} \right\rceil$.

Example. Consider $\forall x \in \mathbb{R}, \ n \in \mathbb{N}, \ g_n(x) = x^n$.

By previous example, we know that

$$\lim(x^n) = \begin{cases} 0 & \text{if } -1 < x < 1, \\ 1 & \text{if } x = 1 \end{cases}$$

And if x = -1, $g_n(-1) = (-1)^n$ is divergent.

If |x| > 1, (x^n) is divergent as well.

Define $g:(-1,1]\to\mathbb{R},\ g(x)=\lim(x^n)$. Then,

$$g_n \to g$$
 on $(-1,1]$

Definition (*Uniform Convergence*). A sequence of $(f_n(x))$ functions on $A \subseteq \mathbb{R}$ to \mathbb{R} *converges uniformly* on $A_0 \subseteq A$ to a function $f: A_0 \to \mathbb{R}$ if and only if $\forall \varepsilon > 0$, $\exists K(\varepsilon) \in \mathbb{N}$ s.t. $\forall n \geq K(\varepsilon)$, $\forall x \in A_0$,

$$|f_n(x) - f(x)| < \varepsilon$$

In this case, we say that (f_n) is <u>uniformly convergent</u> on A_0 .

Remark. The choice of $K(\varepsilon)$ depends on <u>only</u> ε .

Example. $f_n(x) = \frac{\sin(nx+n)}{n}$ converges uniformly to f(x) = 0.

Proof.

$$|f_n(x) - f(x)| = \left| \frac{\sin(nx+n)}{n} \right| < \frac{1}{n} < \varepsilon$$

So $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$ will satisfies the condition.

Lemma. A sequence of $(f_n(x))$ functions on $A \subseteq \mathbb{R}$ to \mathbb{R} is **NOT uniformly convergent** on $A_0 \subseteq A$ to a function $f: A_0 \to \mathbb{R}$ if and only if

• there exists $\varepsilon_0 > 0$ s.t. $\forall N \in \mathbb{N}, \exists x \in A_0, \exists n \geq N$ s.t.

$$|f_n(x) - f(x)| \ge \varepsilon_0$$

• there exists $\varepsilon_0 > 0$, a subsequence (f_{n_k}) of (f_n) , and a sequence $(x_k) \in A_0$ s.t.

$$|f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0, \ \forall k \in \mathbb{N}$$

Proof. Exercise.

Example. $f_n(x) = \frac{x}{n}$ does NOT converge uniformly to f(x) = 0 on \mathbb{R} .

Proof. Let $\varepsilon_0 = 1$

- 1. When $n_1 = 1$, $x_1 = 1$, we have $|f_1(x_1) f(x_1)| = 1$
- 2. When $n_2 = 2$, $x_2 = 2$, we have $|f_2(x_2) f(x_2)| = 1$
- 3. So choose $x_k = k$, $n_k = k$, we have

$$|f_{n_k}(x_k) - f(x_k)| = \left|\frac{x_k}{n_k} - 0\right| = 1 \ge \varepsilon_0$$

By preceding lemma, (f_n) does NOT converge to f uniformly on \mathbb{R}

Example. Let
$$f_n : \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \frac{x^2 + nx}{n}$

<u>Claim:</u> f_n does NOT uniformly converge to f(x) = x on \mathbb{R} .

Proof. Choose $\varepsilon_0 = 1$. $\forall k \in \mathbb{N}$, if we choose $n_k = k$, $x_k = -k$

$$|f_{n_k}(x_k) - f(x_k)| = \left| \frac{x_k^2 + n_k x_k}{n_k} - x_k \right|$$

$$= \left| \frac{(-k)^2 + k \cdot (-k)}{k} - (-k) \right|$$

$$= k > 1$$

Thus, by previous lemma, f_n does NOT uniformly converge to f on \mathbb{R} .

Claim: $(f_n) \to f$ uniformly on [0,1].

Proof. $\forall \varepsilon > 0$. Observe that $\forall x \in [0, 1], n \in \mathbb{N}$,

$$\left| \frac{x^2 + nx}{n} - x \right| = \left| x^2 \right| \le \frac{1}{n} < \varepsilon$$

Thus, it suffices to choose $N = \left\lceil \frac{1}{n} \right\rceil$

Example. Let $f_n:[0,1]\to\mathbb{R},\ f_n(x)=x^n.$

<u>Claim:</u> f_n does NOT converge uniformly onn [0,1).

Choose $\varepsilon_0 = \frac{1}{2}$. $\forall k \in \mathbb{N}, \exists n_k \in \mathbb{N} \text{ s.t.}$

$$n_k = k, \ x_k = (\frac{1}{2})^{\frac{1}{k}}$$

Then

$$|f_{n_k}(x_k) - f(x_k)| = |x_k^{n_k} - 0|$$

= $(x_k)^k = \frac{1}{2} \ge \varepsilon_0$

We conclude that f_n is not uniformly convergent to f on [0,1].