

Dr. Mukta Bansal

School of Chemistry, Chemical Engineering & Biotechnology (CCEB)

Office: N1.2 - B2 - 28

Email: mbansal@ntu.edu.sq

Chapter Overview

This chapter consists of the following topics:

- 1. Definition of Stability and System Stability
- 2. Poles and Zeros and Their Effects
 - Central Idea
 - Real Pole
 - Special Case: Pole at Zero
 - Complex Poles
 - Special Case: Pure Imaginary Poles
 - Repeated Real Poles
- 3. Numerator Dynamics
 - Gain/ Time Constant Form
 - Effect of Zeros
 - Process with Inverse Response

Chapter Overview

This chapter consists of the following topics:

- 4. Processes with Time Delays
 - Effect of Time Delays
 - Approximation of Dead Time
 - Taylor Series Approximation
 - Pade Approximation
- 5. Approximation of Higher Order
 - Approximation of Higher Order Transfer Functions
 - Skogestad's "half rule" Approximation
- 6. Interacting and Non-interacting Processes

Learning Objectives

At the end of this chapter, you will be able to:

- Explain the notion of stability of linear systems
- Explain the relationship between location of the poles of the transfer functions (TF) and stability
- Plot the poles and zeros of a TF in a complex plane
- Apply more complex TFs in process response
- Apply TFs in process with time delays
- Approximate complicated TFs by simpler-low order models

What is Stability?

 An intuitive definition of stability is that the process output must remain bounded in response to all bounded inputs.

System Stability

- If the system is stable, the response must be bounded for *all* bounded inputs.
- Checking response for different bounded inputs can be cumbersome (and impossible).
- Non-trivial fact: The response of a linear system is bounded for all bounded inputs,
 - If the response is bounded for unit impulse change in input.
 - The response approaches zero asymptotically.

Example 1

Consider the following process

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s+10}$$

For U(s) = 1 (unit impulse change)

$$Y(s) = \frac{1}{s+10}$$

$$y(t) = L^{-1}[Y(s)] = e^{-10t}$$

G(s) is stable!

Remark

- Being able to access stability of linear systems by simulating the response for unit impulse changes in input makes stability analysis tractable.
- Can we do better?
- It turns out that the stability of linear systems depends only on the location of the poles.

Poles and Zeros and Their Effects

$$G(s) = \frac{b_0 s^m + ... + b_m}{a_0 s^n + ... + a_n} = \frac{Z(s)}{P(s)}$$

- Poles
 - The roots of the polynomial P(s)
 - P(s) is also called the characteristic polynomial
- Zeros
 - The roots of the polynomial Z(s)
 - Numerator dynamics
- The dynamic behavior of a transfer function model can be characterized by the numerical value of its poles and zeros.

Central Idea

- For unit impulse, U(s) = 1 and Y(s) = G(s).
- Consider the partial fraction expansion of Y(s) = G(s):

repeated real poles

Central Idea (Cont'd)

• System is stable if y(t) remains bounded:

$$y(t) = L^{-1}[Y(s)]$$

$$= L^{-1} \left[\frac{a}{s - \alpha} \right] + L^{-1} \left[\frac{bs + c}{(s - \beta - jy)(s - \beta + jy)} \right]$$

$$+ L^{-1} \left[\frac{d_1}{(s - \eta)} + \frac{d_2}{(s - \eta)^2} + \dots + \frac{d_r}{(s - \eta)^r} \right]$$

- y(t) is bounded, if each term is finite.
- Analyze the contribution by each term.

Real Pole

• Consider
$$G_1(s) = \frac{a}{s - \alpha}$$
 $\alpha \neq 0$

- Inverse Laplace Transform: $L^{-1}[G_1(s)] = g_1(t) = ae^{\alpha t}$
- As time increases, g(t) becomes:

The system is unstable if it has positive poles.

Special Case: Pole at Zero

- When $\alpha = 0$, Y(s) = G(s) has a pole at zero.
- In this case, partial fraction expansion gives:

$$Y(s) = \frac{a}{s} + \text{Other terms}$$

$$y(t) = L^{-1}[Y(s)]$$

$$= a + \text{Other terms}$$
Bounded but asymptotically not zero

 Systems with pole at zero lie on the boundary of stability and are called marginally or critically stable systems.

Complex Poles

• Consider
$$G_2(s) = \frac{bs + c}{(s - \beta - j\gamma)(s - \beta + j\gamma)}$$

Inverse Laplace Transform

$$L^{-1}[G_2(s)] = g_2(t) = e^{\beta t} \left(b \cos(\gamma t) + \frac{c + \beta b}{\gamma} \sin(\gamma t) \right)$$

- The sine and cosine terms cause oscillatory behavior but their contribution is always finite.
- Stability depends on the exponential term.

Complex Poles (Cont'd)

• Consider
$$g_2(t) = e^{\beta t} \left(b \cos(\gamma t) + \frac{c + \beta b}{\gamma} \sin(\gamma t) \right)$$

 System is unstable, if it has complex poles with positive real parts.

Special Case: Pure Imaginary Poles

- When $\beta = 0$, the system has pure imaginary poles.
- In this case, $g_2(t)$ becomes:

$$g_2(t) = b\cos(\gamma t) + \frac{c}{\gamma}\sin(\gamma t)$$

- $g_2(t)$ does not grow with time, but shows sustained oscillations.
- Systems with pure imaginary poles lie on the boundary of stability and are called marginally or critically stable systems.

Repeated Real Poles

• Consider
$$G_3(s) = \frac{d_1}{(s-\eta)} + \frac{d_2}{(s-\eta)^2} + \dots + \frac{d_r}{(s-\eta)^r}$$

• Inverse Laplace Transform:

$$L^{-1}[G_3(s)] = g_3(t) = e^{\eta t} \left(d_1 + d_2 t + \frac{d_3 t^2}{2!} + \dots + \frac{d_r t^{r-1}}{(r-1)!} \right)$$

- $\eta \geq 0$: $g_3(t)$ becomes unbounded, as one or both of $e^{\eta t}$ and h(t) grow with time.
- $\eta < 0$: $g_3(t)$ remains bounded, as $e^{\eta t}$ decays faster than h(t) grows (verify using L'Hospital's rule).
- Same conclusions as obtained for non-repeated poles.

Summary

- A linear dynamic system is stable if all its poles have negative real parts.
- Even if one pole has positive real part, system is unstable.
- These conclusions still hold, when the system has repeated complex poles.
- Locations of the zeros have no effect on the stability of the process.

Stability of Linear Systems

Exercise

System	Poles	Stable/Unstable?
$\frac{1}{(s-1)}$	•	
$\frac{1}{(s^2+s+1)}$	+	
$\frac{(s-10)}{(s^2+s+1)}$	+	
$\frac{(s-10)}{s(s+1)}$		

Numerator Dynamics

- Additional complexity arises if the transfer function contains functions of s in the numerator
- Example: Lead-lag element
- Differential equation

$$\tau_1 \frac{dy}{dt} + y = K(\tau_a \frac{du}{dt} + \mathbf{u}) \tag{5-3}$$

Transfer function

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K(\tau_a s + 1)}{\tau_1 s + 1}$$
 Numerator dynamics
Zero at $s = -1/\tau_a$

Numerator Dynamics

Standard transfer function form:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{i=0}^{m} b_i \, s^i}{\sum_{i=0}^{n} a_i \, s^i} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_0}$$
(3 - 41)

- Quantitative dynamics characteristics can be determined.
 - Analyzing the form of numerator & denominator:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{b_m(s - z_1)(s - z_2) \dots (s - z_m)}{a_n(s - p_1)(s - p_2) \dots (s - p_n)}$$
(5-7)

Poles? Zeros? Characteristic equation?

Gain/ Time Constant Form

■ If all the roots are real then the equation (3 – 41) can be written:

$$G(s) = \frac{Y(s)}{X(s)} = \frac{b_0(\tau_a s + 1)(\tau_b s + 1) \dots (\tau_m s + 1)}{a_0(\tau_1 s + 1)(\tau_2 s + 1) \dots (\tau_n s + 1)}$$

$$z_1 = -1/\tau_a, z_2 = -1/\tau_b, \dots$$

$$p_1 = -1/\tau_1, p_2 = -1/\tau_2, \dots$$

$$K = \frac{b_0}{a_0} = G(s = 0)$$

$$(5 - 8)$$

$$(5 - 9)$$

$$(5 - 10)$$

K: steady state gain.

Effect of Zeros

- The presence or absence of zeros has no effect on the number and location of the poles and their associated response modes.
 - Unless there is an exact cancellation of a pole by a zero with the same numerical value.
- The zeros exert a profound effect on the coefficients of the response modes (coefficients are found by partial fraction expansion).

Example 2

• For the case of a single zero in an overdamped second order transfer function, calculate the response to a step input of magnitude M and plot the results for $\tau_1=4$ and $\tau_2=1$ and several values of τ_a .

$$G(s) = \frac{K(\tau_a s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

For a step input, the response is:

$$y(t) = KM \left(1 + \frac{\tau_a - \tau_1}{\tau_1 - \tau_2} e^{-t/\tau_1} + \frac{\tau_a - \tau_2}{\tau_2 - \tau_1} e^{-t/\tau_2} \right)$$

Important Points to Note

- Zeros do not change the ultimate value, $y_{\infty} = KM$.
- Zeros do not change the number or location of poles.
- Zeros do not change the number of response modes but they do effect the coefficient of response modes.
- Three distinct cases arise:
 - Case 1: τ_a $_{>}$ τ_1 > τ_2
 - Case 2: $0 < \tau_a \le \tau_1$
 - Case 3: $\tau_{a < 0}$

Solution to Example 2

- Effect of τ_a ($\tau_1 = 4$, $\tau_2 = 1$)
 - Case 1: $\tau_a > \tau_1 > \tau_2$ (Overshoot)
 - Case 2: $0 < \tau_a \le \tau_1$ (First-order process response)
 - Case 3: $\tau_a < 0$ (Inverse response)

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.134). Hoboken, NJ: Wiley.

Message from Example 2

- Zeros affect the process response.
 - Stable (or left half plane) zeros can cause overshoot in response for even overdamped processes.
 - The case of unstable (or right half plane) zeros is of particular interest. They give rise to "inverse" response.
- This will not occur for an overdamped second-order transfer function containing two poles but no zero.

Processes with Inverse Response

- Initially, the response of the system is in the opposite direction to where it eventually ends up.
- Unstable zeros are bad for control, as the controller may be "fooled" (output moves in opposite direction than intended).

Inverse Response

Inverse response is the result of two physical effects that act on the process output variable in opposite ways and with different time scales!

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.135). Hoboken, NJ: Wiley.

Origin of Inverse Response

• Inverse response behavior is seen if:

$$\frac{K_1\tau_2 + K_2\tau_1}{K_1 + K_2} < 0$$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.135). Hoboken, NJ: Wiley.

Conclusions

- Inverse response is obtained when:
 - K_1 and K_2 have opposite signs.
 - Sign of the overall transfer function gain (K) is the same as that of the slower process.
- Example
 - Distillation column when the steam pressure to the reboiler is suddenly changed.

Processes with Time Delays

- Time delays occur due to:
 - Fluid flow in a pipe
 - Transport of solid material (e.g., conveyor belt)
- Mathematical description:
 - Time delay, θ , between an input u and an output y results in the following expression

$$y(t) = \begin{cases} 0 & \text{for } t < \theta \\ u(t - \theta) & \text{for } t \ge \theta \end{cases}$$
 (5 – 27)

Processes with Time Delays (Cont'd)

$$G(s) = e^{-\theta s} = \frac{Y(s)}{U(s)}$$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.137). Hoboken, NJ: Wiley.

Effect of Time Delays

- $G_1(s)$ delay free part.
- If $y_1(t)$ is the step response of $G_1(s)$, then step response of G(s) is $y_1(t-\theta)$.
- Response simply gets shifted by θ units of time.
- Time delays are bad for control as information gets delayed.

$$G(s) = G_1(s)e^{-\theta s}$$

Effect of Time Delays (Cont'd)

- Time delay is inconvenient from the point of view of:
 - Analysis/ stability
 - Mathematics $(e^{-\theta s})$
 - Controller design
- Time delays are bad for control as information gets delayed.

Approximation of Dead Time

- Dead time transfer function
 - Not a rational transfer function (ratio of two polynomials in s)
 - Difficult to analyze as cannot be factored into poles and zeros
 - Approximation is necessary
- Taylor series approximation for $e^{-\theta s}$
- Padé approximation

Taylor Series Approximation

Approximation for dead time

$$e^{-\theta s} = 1 - \theta s + \frac{\theta^2 s^2}{2!} - \frac{\theta^3 s^3}{3!} + \frac{\theta^4 s^4}{4!} - \frac{\theta^5 s^5}{5!} + \dots$$

Neglecting, second and higher order terms

$$e^{-\theta s} = 1 - \theta s$$

Example

$$\frac{2}{25s^2 + 5s + 1}e^{-10s} \approx \frac{2(1 - 10s)}{25s^2 + 5s + 1}$$

Padé Approximation

■ Padé 1/1 approximation
$$e^{-\theta s} = \frac{1 - \frac{\theta}{2}s}{1 + \frac{\theta}{2}s}$$

Second order (2/2) Padé approximations

$$e^{-\theta s} = \frac{e^{-\theta s/2}}{e^{\theta s/2}} \approx \frac{1 - \theta s/2 + \theta^2 s^2/12}{1 + \theta s/2 + \theta^2 s^2/12}$$
 (2nd order Padé)

Comparison of Methods

- Both figures illustrate the unit step input response to 1/1 and 2/2 Padé approximation:
 - Time delay
 - First-order with time delay

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.139). Hoboken, NJ: Wiley.

Summary about Time Delay

- Time delays shift the response, i.e. the output only starts changing after the time delay is elapsed.
- Time delay does not have any other effect on response,
 e.g. gain remains unchanged.
- To represent time delay as a rational function, first-order Padé approximation is often used. It approximates time delay better than the use of Taylor series expansion.
- Time delay is bad for control.

Why Approximation of Higher Order?

- Most chemical processes have very high-order dynamics due to imperfect mixing, wall effects, flow dynamics, etc.
 - Example: Multiple tanks in series

$$G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)....(\tau_n s + 1)}$$

 Unlike first or second order processes, it is difficult to draw any general insights.

Higher Order Process: Step Response

- With increasing order, the response becomes more sluggish.
- Note that apparent delay increases with increasing order

$$G(s) = \frac{1}{(10s+1)^n}$$

Approximation of Higher Order Transfer Functions

- Approximating high-order transfer function with low models.
- Low-order models are more convenient for control system design and analysis.
- Transfer function for a time delay can be expressed as a Taylor series expansion:

$$e^{-\theta_0 s} \approx 1 - \theta_0 s \tag{5-57}$$

Approximation of Higher Order Transfer Functions (Cont'd)€

 An alternative first-order approximation consists of the transfer function,

$$e^{-\theta_0 s} = \frac{1}{e^{\theta_0 s}} \approx \frac{1}{1 + \theta_0 s}$$
 (5 – 58)

where the time constant has a value of θ .

- These expressions can be used to approximate the pole or zero term in a transfer function.
- We can turn the same approximation around (right hand side approximated as left hand side) to approximate non-dominant (much smaller than rest) time constant with delay.

Skogestad's "half rule" Approximation

- Skogestad (2002) has proposed an approximation method for higher-order models that contain multiple time constants.
- He approximates the largest neglected time constant in the following manner.
 - One half of its value is added to the existing time delay (if any) and the other half is added to the smallest retained time constant.
- Time constants that are smaller than the "largest neglected time constant" are approximated as time delays using:

$$e^{-\theta_0 s} \approx 1 - \theta_0 s$$

Summary of Approximation of Higher Order TFs

- For process with order 3 or higher, it is difficult to draw any general insights.
- Increasing the order makes the response more sluggish.
- Approximate analysis is possible by approximating nondominant (much smaller than rest) time constants as time delay.

Example 3

$$G(s) = \frac{K(-0.1s+1)}{(5s+1)(3s+1)(0.5s+1)}$$

Derive an approximate first-order-plus-time-delay model using two methods:

- 1. Taylor's series expansion
- 2. Skogestad's half rule

Example 4

$$G(s) = \frac{K(1-s)e^{-s}}{(12s+1)(3s+1)(0.2s+1)(0.05s+1)}$$

Use Skogestad's method to derive two approximation models:

- 1. First-order-plus-dead-time model
- 2. Second-order-plus-dead-time model

Interacting and Non-interacting Processes

- Process is said to be interacting if:
 - Changes in a downstream unit affect upstream units, and vice versa.
- Otherwise the process is non-interacting.
- Example: The exit stream from the reactor serves as the feed to a distillation column.

Non-Interacting Processes

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.146). Hoboken, NJ: Wiley.

Interacting Processes

Find
$$G(s) = \frac{H_2(s)}{Q_i(s)}$$

Source: Seborg, D. E., Edgar, T. F., & Mellichamp, D. A., (2011). *Process dynamics and control* (2nd ed.)(pp.146). Hoboken, NJ: Wiley.

To Sum It All Up

Gain	Ultimate value, how much?
Time Constant	How fast?
Underdamped Process	Exhibits overshoot, oscillations
Critically Damped Process	Fastest response without overshoot and oscillations
Increase in Order	More sluggish response
Time Delay	Shifts response
Stable Zeros	"May" cause overshoot
Unstable Zeros	Inverse response

Lecture Summary

- Effect of poles on the process response
- Dynamics of the processes that cannot be described by simple transfer functions
- It may include numerator dynamics, time delay
- An observed time delay is often a manifestation of higher order dynamics
- Approximation of time delay and higher order dynamics
- Interacting and non-interacting processes
- Suggested Reading: Chapter 5 of Seborg

Review Questions

Event code

CH3101CHAPTER6

The End