Answer Key

1.	В	10. D	19.	В
2.	В	11. A	20.	A
3.	C	12. D	21.	E
4.	C	13. E	22.	A
5.	A managed	14. A side section is a single	23.	В
6.	D	15. C	24.	E
7.	C	16. E	25.	A
8.	C	17. C	26.	E
9.	C	18. C	27.	C

Answer Explanations

- 1. (B) All the Math class methods are static methods, which means you can't use a Math object that calls the method. The method is invoked using the class name, Math, followed by the dot operator. Thus segment II is correct, and segment I is incorrect. Segment III will cause an error: Since the parameters of pow are of type double, the result should be stored in a double.
- 2. **(B)** The Math. sqrt method must be invoked on a primitive type double, but auto-unboxing takes care of that in the line

```
double x = d;
```

The return type of the method is Double, and autoboxing takes care of that in the statement

```
return x;
```

Segment III fails because you can't use the Double constructor to create a new object without using the keyword new.

- 3. (C) The value -4.67 must be rounded to -5. Subtracting 0.5 gives a value of -5.17. Casting to int truncates the number (chops off the decimal part) and leaves a value of -5. None of the other choices produces -5. Choice A gives the absolute value of d: 4.67. Choice B is an incorrect use of Random. The parameter for nextInt should be an integer n, n ≥ 2. The method then returns a random int k, where 0 ≤ k < n. Choice D is the way to round a positive real number to the nearest integer. In the actual case it produces -4. Choice E gives the absolute value of -5—namely, 5.</p>
- 4. **(C)** The statement double x = Math.random(); generates a random double in the range $0 \le x < 1$. Suppose probDeath is 0.67, or 67%. Assuming that random doubles are uniformly distributed in the interval, one can expect that 67% of the time x will be in the range $0 \le x < 0.67$. You can therefore simulate the probability of death by testing if x is between 0 and 0.67, that is, if x < 0.67. Thus, x < probDeath is the desired condition for plant death, eliminating choices A and B. Choices D and E fail because (int) probDeath truncates probDeath to 0. The test x < 0 will always be false, and the test x = 0 will only be true if the random number generator returned exactly 0, an extremely unlikely occurrence! Neither of these choices correctly simulates the probability of death.