Introduction et motivation

M. Kinnaert

Service d'Automatique et d'Analyse des Systèmes - ULB Bâtiment L, porte E, local L2.210

Année 2020-2021

Organisation

- Organisation
- 2 Introduction et terminologie

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire
- 4 Control Engineering: The Hidden Technology

Outline

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire
- 4 Control Engineering: The Hidden Technology

 Feedback Control of Dynamic Systems, G.F. Franklin, J.D.
 Powell, A. Emami-Naeini, 7^e édition, Pearson-Paperback, 2014 (10 exemplaires de la 6^e édition à la BST)

- Feedback Control of Dynamic Systems, G.F. Franklin, J.D.
 Powell, A. Emami-Naeini, 7^e édition, Pearson-Paperback, 2014 (10 exemplaires de la 6^e édition à la BST)
- Linear Systems, Thomas Kailath, Englewood Cliffs, N.J., 1980.

- Feedback Control of Dynamic Systems, G.F. Franklin, J.D.
 Powell, A. Emami-Naeini, 7^e édition, Pearson-Paperback, 2014 (10 exemplaires de la 6^e édition à la BST)
- Linear Systems, Thomas Kailath, Englewood Cliffs, N.J., 1980.
- Modern Control Engineering, Katsuhiko Ogata, 5^e édition, Pearson, 2010.

- Feedback Control of Dynamic Systems, G.F. Franklin, J.D.
 Powell, A. Emami-Naeini, 7^e édition, Pearson-Paperback, 2014 (10 exemplaires de la 6^e édition à la BST)
- Linear Systems, Thomas Kailath, Englewood Cliffs, N.J., 1980.
- Modern Control Engineering, Katsuhiko Ogata, 5^e édition, Pearson, 2010.
- fichier pdf des "slides" placé au moins une semaine avant le cours sur l'université virtuelle

 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre

- 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre
- Evaluation (si TP en présentiel)

- 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre
- Evaluation (si TP en présentiel)
 - TP 20 pourcents, examen écrit 30 pourcents, examen oral 50 pourcents

- 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre
- Evaluation (si TP en présentiel)
 - TP 20 pourcents, examen écrit 30 pourcents, examen oral 50 pourcents
 - évaluation des TP : note de rapports + évaluation activité

- 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre
- Evaluation (si TP en présentiel)
 - TP 20 pourcents, examen écrit 30 pourcents, examen oral 50 pourcents
 - évaluation des TP : note de rapports + évaluation activité
 - Une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 26 (date limite: 14/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin des vacances de printemps (date limite: 18/4 à minuit).

- 6 séances de travaux pratiques de 4h durant les 6 dernières semaines du 2^e quadrimestre
- Evaluation (si TP en présentiel)
 - TP 20 pourcents, examen écrit 30 pourcents, examen oral 50 pourcents
 - évaluation des TP : note de rapports + évaluation activité
 - Une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 26 (date limite: 14/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin des vacances de printemps (date limite: 18/4 à minuit).
 - -2 sur la note finale pour MATH-H-304 pour chaque absence non justifiée aux TP

 En cas de problèmes d'horaire pour les TP, contacter Robin Wilmart (Robin.Wilmart@ulb.ac.be)

- En cas de problèmes d'horaire pour les TP, contacter Robin Wilmart (Robin.Wilmart@ulb.ac.be)
- Evaluation (si TP à distance et examens en présentiel)
 Examen écrit 50 pourcents, examen oral 50 pourcents

- En cas de problèmes d'horaire pour les TP, contacter Robin Wilmart (Robin.Wilmart@ulb.ac.be)
- Evaluation (si TP à distance et examens en présentiel)
 Examen écrit 50 pourcents, examen oral 50 pourcents
- Evaluation (si TP à distance et examens à distance) Examen oral uniquement

• 3 séances d'exercices de 2h + PROH-H-3000

- 3 séances d'exercices de 2h + PROH-H-3000
- Evaluation (si examens en présentiel)

- 3 séances d'exercices de 2h + PROH-H-3000
- Evaluation (si examens en présentiel)
 - Examen écrit 50 pourcents, examen oral 50 pourcents

- 3 séances d'exercices de 2h + PROH-H-3000
- Evaluation (si examens en présentiel)
 - Examen écrit 50 pourcents, examen oral 50 pourcents
 - Une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 26 (date limite: 14/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin des vacances de printemps (date limite: 18/4 à minuit).

- 3 séances d'exercices de 2h + PROH-H-3000
- Evaluation (si examens en présentiel)
 - Examen écrit 50 pourcents, examen oral 50 pourcents
 - Une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 26 (date limite: 14/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin des vacances de printemps (date limite: 18/4 à minuit).
- Evaluation (si examens à distance) Examen oral uniquement

Outline

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire
- 4 Control Engineering: The Hidden Technology

Figure: Schéma de principe de la régulation d'une habitation

Figure: Schéma de principe de la régulation d'une habitation

 Signal (ou grandeur) réglé(e) (controlled signal): grandeur que l'on souhaite régler afin qu'elle reste au voisinage d'une valeur fixée ou qu'elle suive un signal de consigne (ou de référence) spécifié

Figure: Schéma de principe de la régulation d'une habitation

- Signal (ou grandeur) réglé(e) (controlled signal): grandeur que l'on souhaite régler afin qu'elle reste au voisinage d'une valeur fixée ou qu'elle suive un signal de consigne (ou de référence) spécifié
- Signal réglant ou grandeur de commande (control signal or manipulated variable) grandeur permettant d'agir sur le système afin que la grandeur réglée ait le comportement souhaité

Figure: Schéma de principe de la régulation d'une habitation

- Signal (ou grandeur) réglé(e) (controlled signal): grandeur que l'on souhaite régler afin qu'elle reste au voisinage d'une valeur fixée ou qu'elle suive un signal de consigne (ou de référence) spécifié
- Signal réglant ou grandeur de commande (control signal or manipulated variable) grandeur permettant d'agir sur le système afin que la grandeur réglée ait le comportement souhaité
- Système réglé ou procédé (controlled system or process): tout système dont on veut assurer la régulation

Figure: Schéma de principe de la régulation d'une habitation

- Signal (ou grandeur) réglé(e) (controlled signal): grandeur que l'on souhaite régler afin qu'elle reste au voisinage d'une valeur fixée ou qu'elle suive un signal de consigne (ou de référence) spécifié
- Signal réglant ou grandeur de commande (control signal or manipulated variable) grandeur permettant d'agir sur le système afin que la grandeur réglée ait le comportement souhaité
- Système réglé ou procédé (controlled system or process): tout système dont on veut assurer la régulation
- Perturbation: grandeur ou signal qui tend à écarter la grandeur réglée de la consigne

Figure: Schéma de principe d'une régulation

Figure: Schéma de principe d'une régulation

 Régulation par rétroaction (feedback control): méthode permettant de réduire l'écart entre la grandeur de consigne et la grandeur réglée en présence de perturbations, en ajustant la grandeur réglante sur la base de cet écart

Figure: Schéma de principe d'une régulation

- Régulation par rétroaction (feedback control): méthode permettant de réduire l'écart entre la grandeur de consigne et la grandeur réglée en présence de perturbations, en ajustant la grandeur réglante sur la base de cet écart
- Système de régulation ou boucle fermée (closed loop): système dont l'entrée est le signal de référence et la sortie la grandeur réglée

Figure: Schéma de principe d'une régulation

- Régulation par rétroaction (feedback control): méthode permettant de réduire l'écart entre la grandeur de consigne et la grandeur réglée en présence de perturbations, en ajustant la grandeur réglante sur la base de cet écart
- Système de régulation ou boucle fermée (closed loop): système dont l'entrée est le signal de référence et la sortie la grandeur réglée
- Régulation de maintien (regulation): grandeur réglée reste dans voisinage d'une référence constante malgré les perturbations (réjection de perturbations)

Figure: Schéma de principe d'une régulation

- Régulation par rétroaction (feedback control): méthode permettant de réduire l'écart entre la grandeur de consigne et la grandeur réglée en présence de perturbations, en ajustant la grandeur réglante sur la base de cet écart
- Système de régulation ou boucle fermée (closed loop): système dont l'entrée est le signal de référence et la sortie la grandeur réglée
- Régulation de maintien (regulation): grandeur réglée reste dans voisinage d'une référence constante malgré les perturbations (réjection de perturbations)
- Suivi de trajectoire (tracking): grandeur réglée suit une consigne non constante

Distinction "entrée/sortie" physique et grandeur réglante/réglée"

Ex: régulation du niveau d'un réservoir par action sur le débit de sortie

Figure: Schéma fonctionnel de la régulation de vitesse

Modèle de la voiture

$$y = 10(u - 0, 5w)$$

Figure: Schéma fonctionnel de la régulation de vitesse

Modèle de la voiture

$$y = 10(u - 0, 5w)$$

• y vitesse de la voiture (supposée mesurée parfaitement) [km/h]

Figure: Schéma fonctionnel de la régulation de vitesse

Modèle de la voiture

$$y = 10(u - 0, 5w)$$

- y vitesse de la voiture (supposée mesurée parfaitement) [km/h]
- u angle du papillon des gaz [°]

Figure: Schéma fonctionnel de la régulation de vitesse

Modèle de la voiture

$$y = 10(u - 0, 5w)$$

- y vitesse de la voiture (supposée mesurée parfaitement) [km/h]
- u angle du papillon des gaz [°]
- w pente de la route [%]

Régulation en boucle ouverte

Choix du signal réglant

$$u = r/10$$

Vitesse résultante

$$y_{bo} = 10(\frac{r}{10} - 0, 5w)$$

= $r - 5w$

Erreur sur la sortie

$$e_{bo} = r - y_{bo}$$

$$= 5w (1)$$

Pas de compensation de la perturbation et forte sensibilité à une erreur de modélisation

Régulation en boucle fermée

Loi de réglage

$$u = 10(r - y)$$

Vitesse résultante

$$y_{bf} = 100r - 100y_{bf} - 5w$$

$$101y_{bf} = 100r - 5w$$

$$y_{bf} = \frac{100}{101}r - \frac{5}{101}w$$

Erreur sur la sortie

$$e_{bf} = \frac{r}{101} + \frac{5w}{101}$$

Erreur vis-à-vis de la perturbation diminuée d'un facteur 101; faible erreur vis-à-vis de la référence pour autant que le produit du gain du régulateur par le gain du système réglé soit grand; pas de connaissance précise du gain du système réglé requise.

Précautions pour boucle fermée

Assurer la stabilité

Figure: Système haut-parleur / microphone

Précautions pour boucle fermée

Assurer la stabilité

 Limitation du gain de la boucle fermée pour conserver la "qualité" de la réponse et la stabilité de la boucle fermée

Figure: Système haut-parleur / microphone

Précautions pour boucle fermée

Assurer la stabilité

- Limitation du gain de la boucle fermée pour conserver la "qualité" de la réponse et la stabilité de la boucle fermée
- Exemple: augmentation du gain d'un amplificateur connecté à un microphone
 bruit et parole déformée

Figure: Système haut-parleur / microphone

Nature physique des éléments d'une boucle de régulation (1)

Régulation de distance

Placer le robot mobile à une distance d de l'obstacle, sachant qu'il part en face de l'obstacle à une distance $d_i > d$

Nature physique des éléments d'une boucle de régulation (1)

Régulation de distance

Placer le robot mobile à une distance d de l'obstacle, sachant qu'il part en face de l'obstacle à une distance $d_i > d$

Nature physique des éléments d'une boucle de régulation (1)

Régulation de distance

Placer le robot mobile à une distance d de l'obstacle, sachant qu'il part en face de l'obstacle à une distance $d_i > d$

Nature physique des éléments d'une boucle de régulation (2)

Mise en oeuvre de la boucle fermée

Nature physique des éléments d'une boucle de régulation (2)

Mise en oeuvre de la boucle fermée

Nature physique des éléments d'une boucle de régulation (3)

Mise en oeuvre d'un régulateur analogique

Schéma d'un régulateur à avance ou à retard de phase [Ogata, 2010]

Outline

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire
- 4 Control Engineering: The Hidden Technology

Régulateur de Watt

Figure: Illustration du principe du régulateur centrifuge de Watt

Régulateur de Watt

Figure: Illustration du principe du régulateur centrifuge de Watt

• Régulation de vitesse des machines à vapeur

Régulateur de Watt

Figure: Illustration du principe du régulateur centrifuge de Watt

- Régulation de vitesse des machines à vapeur
- Principe
 augmentation de la charge de la machine
 - -> diminution de la vitesse de rotation
 - -> ouverture du cône décrit par les boules décroit
 - -> ouverture de la vanne d'admission de vapeur par transmission via leviers

Quelques étapes du développement de l'automatique (1)

 1840 : G.B. Airy, Professeur de mathématique et d'astronomie (University of Cambridge)

le premier à mentionner l'instabilité d'une boucle fermée et à entreprendre son analyse à l'aide d'équations différentielles (régulation de vitesse d'un téléscope pour compenser l'effet de la rotation de la terre)

Quelques étapes du développement de l'automatique (1)

- 1840 : G.B. Airy, Professeur de mathématique et d'astronomie (University of Cambridge)
 - le premier à mentionner l'instabilité d'une boucle fermée et à entreprendre son analyse à l'aide d'équations différentielles (régulation de vitesse d'un téléscope pour compenser l'effet de la rotation de la terre)
- 1877 : E.J. Routh (University of Cambridge): critère de stabilité assurant que tous les pôles de la boucle fermée sont à partie réelle négative (critère de Routh)

Figure: Edward J. Routh, 1831-1907

Quelques étapes du développement de l'automatique (2)

 1893 : A.M. Lyapunov : étude de la stabilité des états d'équilibre pour les systèmes non linéaires

Quelques étapes du développement de l'automatique (2)

- 1893 : A.M. Lyapunov : étude de la stabilité des états d'équilibre pour les systèmes non linéaires
- 1927 : H.S. Black (Bell Telephone Laboratories): invention de l'amplificateur
 à rétroaction -> nécessité d'outils d'analyse et de conception de boucles
 fermées pour un système d'ordre élevé (équation différentielle d'ordre 50)

Quelques étapes du développement de l'automatique (2)

- 1893 : A.M. Lyapunov : étude de la stabilité des états d'équilibre pour les systèmes non linéaires
- 1927 : H.S. Black (Bell Telephone Laboratories): invention de l'amplificateur
 à rétroaction -> nécessité d'outils d'analyse et de conception de boucles
 fermées pour un système d'ordre élevé (équation différentielle d'ordre 50)
- 1932 : H. Nyquist : critère de stabilité à partir d'une représentation de la réponse fréquentielle en coordonnées polaires (**courbe de Nyquist**)

Figure: Harry Nyquist, 1889-1976

Quelques étapes du développement de l'automatique (3)

1936 : Calender: première description des régulateurs
 "Proportionnel-Intégral-Dérivé" (PID) pour les applications de régulation industrielle

Quelques étapes du développement de l'automatique (3)

- 1936 : Calender: première description des régulateurs
 "Proportionnel-Intégral-Dérivé" (PID) pour les applications de régulation industrielle
- 1945 : Bode : approche fréquentielle pour la conception d'amplificateurs à rétroaction -> outil général pour la conception des boucles fermées (courbes de Bode)

Figure: Hendrik Wade Bode, 1905-1982

Quelques étapes du développement de l'automatique (4)

 1948: W.R. Evans: guidance et régulation en aviation -> besoin d'outils pour traiter les système instables;

lieu d'Evans : évolution des pôles de la boucle fermée en fonction d'un paramètre variable

Figure: Walter R. Evans, 1920-1999

Quelques étapes du développement de l'automatique (4)

 1948: W.R. Evans: guidance et régulation en aviation -> besoin d'outils pour traiter les système instables;

lieu d'Evans : évolution des pôles de la boucle fermée en fonction d'un paramètre variable

Figure: Walter R. Evans, 1920-1999

 1950: R. Bellman et R.E. Kalman (USA), L.S. Pontryagin (URSS): théorie des régulations optimales basée sur la modélisation du système réglé par des équations différentielles ordinaires

Outline

- Organisation
- 2 Introduction et terminologie
- 3 Un peu d'histoire
- 4 Control Engineering: The Hidden Technology

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

• dans le corps humain (régulation de la température par transpiration)

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

- dans le corps humain (régulation de la température par transpiration)
- dans les instruments électroménagers et de loisir (machine à laver, lecteur de CD, ...)

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

- dans le corps humain (régulation de la température par transpiration)
- dans les instruments électroménagers et de loisir (machine à laver, lecteur de CD, ...)
- dans l'industrie (régulations de température, pression, niveau, ...)

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

- dans le corps humain (régulation de la température par transpiration)
- dans les instruments électroménagers et de loisir (machine à laver, lecteur de CD, ...)
- dans l'industrie (régulations de température, pression, niveau, ...)
- dans les transports (auto-pilote d'avion, cruise control, ABS, ...)

Principe de fonctionnement

Principe de fonctionnement

 Disque (en aluminium ou céramique par ex.) recouvert d'une couche magnétique sur laquelle sont stockées les données

Principe de fonctionnement

- Disque (en aluminium ou céramique par ex.) recouvert d'une couche magnétique sur laquelle sont stockées les données
- Disque entraîné par un moteur tourne à haute vitesse

Principe de fonctionnement

- Disque (en aluminium ou céramique par ex.) recouvert d'une couche magnétique sur laquelle sont stockées les données
- Disque entraîné par un moteur tourne à haute vitesse
- Tête de lecture/écriture positionnée par un bras actionné par un moteur (régulation de position)

Principe de la coulée dans une lingotière

Principe de la coulée dans une lingotière

• Coulée dans un moule aux parois refroidies en permanence (appelé lingotière)

Principe de la coulée dans une lingotière

- Coulée dans un moule aux parois refroidies en permanence (appelé lingotière)
- Régulation de niveau de l'acier en fusion (1500°)

Principe de la coulée dans une lingotière

- Coulée dans un moule aux parois refroidies en permanence (appelé lingotière)
- Régulation de niveau de l'acier en fusion (1500°)
- Perturbation: vitesse variable d'extraction de la bande d'acier (qui sera découpée en brames)

Figure: Vue de la lingotière (Goodwin et al.)

Régulation de vitesse d'une éolienne (1)

Figure: Principe de fonctionnement d'une éolienne

Régulation de vitesse d'une éolienne (2)

```
Principe
```

Régulation de vitesse d'une éolienne (2)

Principe

 Au-dessus de la vitesse nominale de la génératrice, action sur l'orientation des pales de manière à limiter la quantité d'énergie extraite du vent à ce qui est compatible pour l'éolienne considérée (régulation de vitesse)

Régulation de vitesse d'une éolienne (2)

Principe

- Au-dessus de la vitesse nominale de la génératrice, action sur l'orientation des pales de manière à limiter la quantité d'énergie extraite du vent à ce qui est compatible pour l'éolienne considérée (régulation de vitesse)
- Perturbation vitesse du vent

• Omniprésence des régulations par rétroaction

- Omniprésence des régulations par rétroaction
- Automatique = discipline transverse; ingénieur automaticien ≃ médecin généraliste

- Omniprésence des régulations par rétroaction
- Automatique = discipline transverse; ingénieur automaticien ≃ médecin généraliste
- Boucle fermée assure la réjection de perturbations non mesurées et le suivi de trajectoire, même si l'on possède un modèle imprécis du système réglé.

- Omniprésence des régulations par rétroaction
- Automatique = discipline transverse; ingénieur automaticien ≃ médecin généraliste
- Boucle fermée assure la réjection de perturbations non mesurées et le suivi de trajectoire, même si l'on possède un modèle imprécis du système réglé.
- Liens nombreux avec les autres cours

 Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.

- Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.
- Ceci implique notamment:

- Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.
- Ceci implique notamment:
 - Comprendre le cahier des charges d'un probléme de régulation

- Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.
- Ceci implique notamment:
 - Comprendre le cahier des charges d'un probléme de régulation
 - Comprendre les différents compromis intervenant dans la conception d'un régulateur

- Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.
- Ceci implique notamment:
 - Comprendre le cahier des charges d'un probléme de régulation
 - Comprendre les différents compromis intervenant dans la conception d'un régulateur
 - Pouvoir analyser les propriétés d'une boucle fermée

Liens arec autres disciplines · Noteur électrique de puissance Mise en oeuvre électronique analogique · Vanne Sust a 11 . acc. de particules · Instrumentation · réactour chimique . Reseaux de terrain · bio réacteur . Réseaux sans fils . avion, train

eparátion eles eaux