

自然语言处理基础 多标签分类

杨鹏程 北京大学 yang pc@pku.edu.cn

Outline

- Background knowledge
 - Highway network.
 - Sequence-to-sequence model.
 - **Reinforcement learning:** policy gradient, SeqGAN, self-critical training.
- Introduction to multi-label classification.
- 3 Sequence generation model for multi-label classification.
- Experience.

Motivation:

- The depth of neural networks is crucial.
- Training becomes more difficult as depth increases.
 - The problem of vanishing gradients.

NLP Report

Motivation:

- The depth of neural networks is crucial.
- Training becomes more difficult as depth increases.
 - The problem of vanishing gradients.

Proposal:

- Allow unimpeded information flow across many layers on information highways.
- Use the adaptive gate.

Motivation:

- The depth of neural networks is crucial.
- Training becomes more difficult as depth increases.
 - The problem of vanishing gradients.

Proposal:

- Allow unimpeded information flow across many layers on information highways.
- ② Use the adaptive gate.

Conclusion:

• Can be trained directly using SGD, in contrast to plain networks which become hard to optimize. as depth increases.

Plain network: $y = H(x, W_H)$

Plain network: $y = H(x, W_H)$ Highway network:

General:

$$y = H(x, \mathbf{W_H}) \odot T(x, \mathbf{W_T}) + x \odot C(x, \mathbf{W_C})$$
 (1)

Ouple:

$$y = H(x, \mathbf{W_H}) \odot T(x, \mathbf{W_T}) + x \odot (1 - T(x, \mathbf{W_T}))$$
 (2)

- Two gates:
 - Transform gate H: determine the information that x need to be transformed.
 - carry gate C: determine the information that x need to be carried.

- **1** Highway network: $y = H(x, W_H) \odot T(x, W_T) + x \odot C(x, W_C)$
- ② The dimensionality of $x, y, H(x, \mathbf{W}_H)$ and $T(x, W_T)$ must be the same.

NLP Report

$$y = H(x, \mathbf{W_H}) \odot T(x, \mathbf{W_T}) + x \odot (1 - T(x, \mathbf{W_T}))$$
(3)

- Sub-sampling or zero-padding.
- Use plain layer to change dimensionality.

Sequence-to-Sequence Model (Bahdanau et al., 2014)

- Encoder: Transform the word into dense representations.
- Attention: Select the most important source words when generating different target words.
- Oecoder: Generate target words sequentially.

Introduction to Reinforcement Learning

Reinforcement Learning:

- Different from supervised, unsupervised and semi-supervised learning.
- Characteristics:
 - Don't need labeled data.
 - Still be able to achieve the goal (reward).

Introduction to Reinforcement Learning

Reinforcement Learning:

- Key concepts:
 - Agent, state, action, environment, reward.

NLP Report

8 / 27

Introduction to Reinforcement Learning

Reinforcement Learning:

- Key concepts:
 - Agent, state, action, environment, reward.

Training: maximize the expected cumulative reward.

$$L(\theta) = E(r_1 + \gamma r_2 + \gamma^2 r_3 + \dots | \pi(\theta))$$
 (4)

Policy Gradient in Text Generation (Ranzato et al., 2015)

Motivation:

• View the text generation task as a sequence decision process.

Model:

- **1 Agent:** generative model / decoder.
- **2 State:** the current produced words (y_1, \dots, y_{t-1}) .
- **3** Action: the word y_t to be generated.
- Reward: the sentence-level reward (BLEU, Rouge).

Policy Gradient in Text Generation (Ranzato et al., 2015)

Motivation:

• View the text generation task as a sequence decision process.

Model:

- **1 Agent:** generative model / decoder.
- **2 State:** the current produced words (y_1, \dots, y_{t-1}) .
- **3 Action:** the word y_t to be generated.
- Reward: the sentence-level reward (BLEU, Rouge).

Training:

$$L(\theta) = -\mathbb{E}_{\mathbf{y}^s \sim p_{\theta}}[r(\mathbf{y}^s)] \tag{5}$$

$$\nabla_{\theta} L(\theta) = -\mathbb{E}_{\mathbf{y}^{\mathsf{s}} \sim p_{\theta}} [r(\mathbf{y}^{\mathsf{s}}) \nabla_{\theta} \log(p_{\theta}(\mathbf{y}^{\mathsf{s}}))]$$
 (6)

Motivation:

$$\nabla_{\theta} L(\theta) = -\mathbb{E}_{\mathbf{y}^{s} \sim p_{\theta}} [(r(\mathbf{y}^{s}) - b) \nabla_{\theta} \log(p_{\theta}(\mathbf{y}^{s}))]$$
 (7)

- Although the estimation is unbiased, but it suffers high variance.
- Use the baseline b to reduce variance.

Motivation:

$$\nabla_{\theta} L(\theta) = -\mathbb{E}_{\mathbf{y}^{s} \sim p_{\theta}} [(r(\mathbf{y}^{s}) - b) \nabla_{\theta} \log(p_{\theta}(\mathbf{y}^{s}))]$$
 (7)

- Although the estimation is unbiased, but it suffers high variance.
- 2 Use the baseline b to reduce variance.
- 4 How to calculate the baseline?
 - Hyper-parameter.
 - MI P.
 - Self-critical

Self-critical: use the reward of the generated sequence through testing algorithm.

- Advantages:
 - Reduce variance.
 - Enhance the consistency of the model training and testing, which can effectively avoid exposure bias.

Self-critical: use the reward of the generated sequence through testing algorithm.

- Advantages:
 - Reduce variance.
 - Enhance the consistency of the model training and testing, which can effectively avoid exposure bias.
- 2 Conclusion:
 - Lower variance and better performance.

SeqGAN (Yu et al., 2017)

Motivation:

- **1** GAN has enjoyed considerable success in generating images.
- 2 Limitations on text generation task.
 - Discrete outputs from the generative model make it difficult to pass the gradient.
 - Discriminative model can only assess a complete sequence.

SeqGAN (Yu et al., 2017)

Proposal:

- The reward r is defined as the probability that the discriminator D considers the sample to be true.
- Use Monte-Carlo search method to evaluate a complete sequence.

Figure 1: The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search

SeqGAN (Yu et al., 2017)

Proposal:

- The reward r is defined as the probability that the discriminator D considers the sample to be true.
- Use Monte-Carlo search method to evaluate a complete sequence.

Figure 1: The illustration of SeqGAN. Left: D is trained over the real data and the generated data by G. Right: G is trained by policy gradient where the final reward signal is provided by D and is passed back to the intermediate action value via Monte Carlo search.

Conclusion:

 Performs better than MLE and policy gradient with sentence-level reward.

What is multi-label classification?

- Definition:
 - Assign multiple labels to each sample in the dataset.

What is multi-label classification?

- Definition:
 - Assign multiple labels to each sample in the dataset.
- Applications:
 - Text categorization.
 - Tag recommendation.
 - Information retrieval.

Example

[1] arXiv:1807.01996 [pdf]

A Formal Ontology-Based Classification of Lexemes and its Applications

Sreekavitha Parupalli, Navivoti Singh

Comments: Accepted as Oral Presentation at Second Edition of Widening Natural Language Processing (WiNLP) workshop in 16th Ann

substantial text overlap with arXiv:1804.02186
Subjects: Computation and Language (cs.CL)

[2] arXiv:1807.01956 [pdf, ps, other]

Neural Language Codes for Multilingual Acoustic Models

Markus Müller, Sebastian Stüker, Alex Waibel

Comments: 5 pages, 3 figures, accepted at Interspeech 2018

Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG); Sound (cs.SD); Audio and Speech Processing (eess.AS)

[3] arXiv:1807.01882 [pdf, ps, other]

Chinese Lexical Analysis with Deep Bi-GRU-CRF Network

Zhenyu Jiao, Shuqi Sun, Ke Sun Comments: 10 pages, 1 figure, 4 tables

Subjects: Computation and Language (cs.CL)

[4] arXiv:1807.01855 [pdf]

Zipf's law in 50 languages: its structural pattern, linguistic interpretation, and cognitive mo Shuiyuan Yu, Chunshan Xu, Haitao Liu

Comments: 18 pages, 3 figures

Subjects: Computation and Language (cs.CL)

[5] arXiv:1807.01763 [pdf. other]

Seg2RDF: An end-to-end application for deriving Triples from Natural Language Text

Yue Liu, Tongtao Zhang, Zhicheng Liang, Heng Ji, Deborah L. McGuinness

Comments: Proceedings of the ISWC 2018 Posters & Demonstrations

Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.Al)

Background

Mainstream models:

- Problem transformation methods.
- 2 Algorithm adaptation methods.
- Ensemble methods.
- Neural network models.

Background

Previous work:

- Can't capture label correlations very well or is computationally intractable..
 - Label correlations: Some labels are closely correlated.
 - Example: (green, leaf) or (green, dog).

Background

Previous work:

- Can't capture label correlations very well or is computationally intractable..
 - Label correlations: Some labels are closely correlated.
 - Example: (green, leaf) or (green, dog).
- Ignore differences in the contributions of textual content when predicting labels.
 - Generating descriptions for videos has many applications including human robot interaction.
 - Many methods for mage captioning rely on pretrained object classifier CNN and Long Short Term Memory recurrent networks.
 - How to learn robust visual classifiers from the weak annotations of the sentence descriptions.
 - (a) Visual analysis when the SGM model predicts "CV".

- Generating descriptions for videos has many applications including human robot interaction.
- Many methods for image captioning rely on pretrained object classifier CNN and Long Short Term Memory recurrent networks.
- How to learn robust visual classifiers from the weak annotations of the sentence descriptions.
- (b) Visual analysis when the SGM model predicts "CL".

SGW model predicts CV.

Figure 1: Visualization of attention.

Transform classification task into generation task.

- Key idea:
 - View the text as the source language and label as target language.
 - Base on sequence-to-sequence model.

Transform classification task into generation task.

- Key idea:
 - View the text as the source language and label as target language.
 - Base on sequence-to-sequence model.
- Advantages:
 - Capture label correlations: Generate labels sequentially, and predicts the next label based on its previously generated labels.
 - Model differences in contributions of textual content: Apply the attention mechanism.

Motivations:

- Capture label correlations.
- Model differences in contributions of textual content.

Motivations:

- Capture label correlations.
- 2 Model differences in contributions of textual content.

Difficulties and solutions:

- Repeated labels:
 - Use the record module to smooth the probability distribution.

Motivations:

- Capture label correlations.
- Model differences in contributions of textual content.

Difficulties and solutions:

- Repeated labels:
 - Use the record module to smooth the probability distribution.
- Exposure bias:
 - Use highway network to introduce the global information of previous time-steps.

Motivations:

- Capture label correlations.
- Model differences in contributions of textual content.

Difficulties and solutions:

- Repeated labels:
 - Use the record module to smooth the probability distribution.
- Exposure bias:
 - Use highway network to introduce the global information of previous time-steps.
- Sequence order:
 - Sort the label sequence according to the frequency.
 - Sequence-to-set model (another work).

SGM

Proposed model:

Figure 2: The overview of SGM. MS denotes the masked softmax layer. GE denotes the global embedding.

Sequence-to-Set Model

Motivation: Address the **order** problem of sequence generation.

- The Seq2Seq model requires humans to predefine the order of output labels.
- The output labels are an unordered set rather than an ordered sequence (swapping-invariance property).

Sequence-to-Set Model

Motivation: Address the **order** problem of sequence generation.

- The Seq2Seq model requires humans to predefine the order of output labels.
- The output labels are an unordered set rather than an ordered sequence (swapping-invariance property).
- Wrong penalty:
 - Model may be wrongly penalized by the MLE method due to inconsistent label order.
 - Correct: [A, B, C] Wrong: [C, A, B]

Sequence-to-Set Model

Seq2Set model: By means of **reinforcement learning**.

- Key idea:
 - **Policy gradient:** Reward *r* is independent of the label order.
 - Bi-decoders: Sequence-decoder fuses human prior knowledge and set-decoder satisfies the swapping-invariance property of the output label set.
- Overview of model:

Figure 3: The overview of sequence-to-set model.

找准自己的定位

- 职业发展
 - Research · Coding · Program Manager...
- ② 研究方向
 - 基础理论、具体应用:图像、自然语言处理...

良好的编程基础

- 動 熟练使用Python
- ② 至少精通一门深度学习框架语言
 - Tensorflow, Pytorch, Keras...
- ③ 形成自己的基准代码体系
 - 可以基于自己的基准代码体系快速实现自己的idea.
 - 自己研究领域的经典模型和主流模型.

扎实的理论基础

- ① AI的基础知识
 - 如CNN, RNN, Q-learning, Policy gradient等.
- 2 了解自己研究方向上的前沿热点
 - 掌握自己研究领域的背景知识.
 - 把握自己研究领域的发展方向.
 - 深耕于自己的研究领域.

Inner Peace

- 想不出idea, 发不出论文
 - 尝试做一个应用型任务, 学以致用.
 - 多读论文, 厚积薄发.
 - 重视小的创新, 循序渐进, 积少成多.
- ② Idea成功
 - 能否进一步创新, 拉大与baseline的gap.
 - 成功的idea是否存在什么问题, 能否进一步解决.
 - 如何解释idea成功的原因?
 - 如何设计全方位的实验来验证你的motivation?

THANK YOU