OpAmp Tutorial Sheet

Q1. In the above figures, we see a voltage source with a source resistance connected

to a load. In the case of the case of the voltage source, the voltage across the load is $v_{out} = [R_L/(R_S + R_L)] * v_s$. We have $v_{out} = v_s$, when the load is open (i.e. $R_L \to \infty$) and $v_{out} = v_s/2$ when $R_L = R_S$. We used this fact to figure out the closed loop output impedance of VCVS in the class. We can use a similar argument with current source also.

The above figure shows a current source with a source resistance R_S in parallel and a load resistance R_L . Part of the current goes through R_S and part through R_L . Obtain an expression for the current through the load i_L , in terms of i, R_S and R_L . It is straight-forward to see that $i_L(R_L = R_S) = i_L(R_L = 0)/2$. We can use this fact to obtain the output resistance on VCCS

Q2. For the Voltage Controlled Current Source, in the figure above, show that

$$i_L = \frac{1}{R_1 + \frac{R_1 + R_L}{A_{VOL}}} v_{in} \approx \frac{1}{R_1} v_{in},$$

that is, the load current depends purely on v_{in} and is independent of R_L and A_{VOL} .

- $z_{in(CL)} = (1 + A_{VOL}B)R_{in}$, where $B = R_1/(R_L + R_1)$.
- $\bullet \ z_{out(CL)} = (1 + A_{VOL})R_1.$

Q3. For the Current Controlled Voltage Source (CCVS) in the figure above, show

that

$$v_{out} = -\frac{A_{VOL}}{1 + A_{VOL}} R_f i_{in} \approx -R_f i_{in},$$

that is, the output voltage depends purely on input current.

- $\bullet \ z_{in(CL)} = R_f/(1 + A_{VOL}).$
- $z_{out(CL)} = R_{out}/(1 + A_{VOL})$.

Q4. It is straight-forward to see that, in the above circuit, $v_{out} = v_{in}$. What, then,

is the purpose of the OpAmp?

Q5. Show that, in the figure above, the voltage gain varies from -n to +n, as the

contact of the variable resistor is moved from the right end to the left end.

Q6. Obtain the relation between v_{out} , v_1 and v_2 .

Q7. Calculate the voltage gain and $z_{out(CL)}$. What is the purpose of the transistor

in this circuit?