Simplicial surfaces in GAP

Markus Baumeister

??.08.2017

General polygonal complexes by incidence geometry

2 Edge colouring and group properties

Abstract folding

General polygonal complexes by incidence geometry

2 Edge colouring and group properties

3 Abstract folding

Motivation

Goal: simplicial surfaces (and generalisations) in GAP

→ examples of polygonal complexes

No embedding

We do not work with embeddings (mostly)

- is very hard to compute
- if often unknown for an abstractly constructed surface
- is different from intrinsic structure
- ⇒ lengths and angles are not important
- → incidence structure is intrinsic

Incidence structure of a polygonal complex

A polygonal complex consists of

- set of vertices \mathcal{V}

 - ullet set of faces ${\cal F}$
 - transitive relation $\subseteq (\mathcal{V} \times \mathcal{E}) \uplus (\mathcal{V} \times \mathcal{F}) \uplus (\mathcal{E} \times \mathcal{F})$

- Every face is a polygon
- Every vertex lies in an edge and every edge lies in a face

Isomorphism testing

Incidence geometry allows "easy" isomorphism testing. Incidence structure can be interpreted as a coloured graph:

 \leadsto reduce to graph isomorphism problem Solved by NautyTracesInterface (by Gutsche, Niemeyer, Schweitzer)

General properties

Some properties can be computed for all polygonal complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:

- ⇒ every edge lies in at most two faces (for well–definedness)
- → ramified polygonal surfaces

Why ramified?

Typical example of ramified polygonal surface:

 \Rightarrow It is not a surface – there is a *ramification* at the central vertex A **polygonal surface** does not have these ramifications.

General polygonal complexes by incidence geometry

2 Edge colouring and group properties

Abstract folding

Embedding question

Given: A polygonal complex

- Can it be embedded?
- In how many ways?

Simplifications:

- Only polygonal surfaces (surface that is build from polygons)
- All polygons are triangles (simplicial surfaces)
- 3 All triangles are isometric
- → Edge-colouring encodes different lengths

Colouring as permutation

Consider tetrahedron with edge colouring

 $simplicial surface \Rightarrow$ at most two faces at each edge

- → every edge defines transposition of incident faces
- → every colour class defines permutation of the faces
 - (1,2)(3,4) , (1,3)(2,4) , (1,4)(2,3)
- → group theoretic considerations
 - ► The connected components of the surface correspond to the orbits of $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ on the faces

How do faces fit together?

Consider a face of the surface and a neighbouring face The neighbour can be coloured in two ways:

This gives an **mr-assignment** for the edges.

Permutations and mr-assignment uniquely determine the surface.

Constructing surfaces from groups

A general mr–assignment leads to complicated surfaces. Simplification: edges of same colour have the same type Example

has an rrr-structure
The easiest structure is an mmm-structure.

Covering

We want to characterize surfaces where all edges are mirrors.

Lemma

A simplicial surface has an mmm—structure iff it covers a single triangle, i. e. there is an incidence—preserving map to the simplicial surface consisting of exactly one face.

Consider

- Covering pulls back a colouring of the triangle.
- Colouring defines a map to the triangle.

Construction from permutations

Start with three involutions σ_a , σ_b , σ_c (like generators of a finite group)

Lemma

There exists a coloured surface with the given involutions where all edges are mirror edges.

- The faces are the points moved by the involutions
- The edges are the cycles of the involutions
- The vertices are the orbits of $\langle \sigma_a, \sigma_b \rangle$ on the faces (for all pairs)

Construction example

$$\sigma_a = (1,2)(3,4)(5,6)(7,8)$$

 $\sigma_b = (1,4)(2,3)(5,8)(6,7)$

$$\sigma_c = (1,5)(2,6)(3,7)(4,8)$$

General polygonal complexes by incidence geometry

2 Edge colouring and group properties

3 Abstract folding

What kind of folding?

There are many different kinds of folding (e.g. Origami) Here:

- Folding of surface in \mathbb{R}^3
- Possible folding edges are fixed
- Folding should be rigid (no curvature)

Goal: Classify possible folding patterns (given a net)

Embeddings

Ideally, we would like to have embeddings.

But we want to define folding independently from an embedding, since:

- They are very hard to compute (even for small examples)
- We can only show foldability for specific small examples
 - Usually using regularity (like crystallographic symmetry)
 - No general method
- It is very hard to define iterated folding in an embedding

What is folding without embedding?

Central idea:

- Don't model folding process
- Describe result of folding process
- → Only consider changes in the topology (like identification of faces)

Solution: Incidence geometry (polygonal complex/surface)

- Ignores angles and lengths (mostly)
- Keeps folding restrictions (tetrahedron is rigid)
- Allows an abstract definition of folding (still needs several steps)

How to define folding?

First idea: Incidence–respecting, surjective map Problem: Unfolding is not defined

- ⇒ Different solution:
 - Keep the original polygonal complex fixed
 - Define an equivalence relation "is folded together"