Teoría de Lenguajes

Práctica 2 (Expresiones regulares)

- 1. Dar expresiones regulares para los lenguajes de los ejercicios 1 a 3 de la práctica 1.
- 2. Calcular las siguientes derivadas:
 - a) $\partial_1(10^*1)$
 - b) $\partial_{\lambda}(10^*1)$
 - c) $\partial_0(10^*1)$
 - $d) \partial_a(ab^*|ac|c^+)$
 - $e) \partial_a(a^+ba)$
 - $f) \ \partial_a(a^*ba)$
 - $g) \ \partial_{01}(0(1|\lambda)|1^+)$
- 3. Pasar las siguientes expresiones regulares a autómatas finitos (mediante el método de las derivadas)
 - a) (0|1)*01
 - $b) \ (a(b|\lambda)|b^+)$
- 4. Pasar del autómata finito a la expresión regular los siguientes autómatas (mediante el método de las ecuaciones):

a)
$$A = \langle Q_1, \Sigma_1, \delta_1, q_1, F_1 \rangle$$
, donde: $Q_1 = \{0, 1\}, \Sigma_1 = \{a, b\}, q_1 = 0, F_1 = \{1\},$

$$\delta_1 = \begin{array}{c|cc} & a & b \\ \hline 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}$$

b)
$$A = \langle Q_2, \Sigma_2, \delta_2, q_2, F_2 \rangle$$
, donde: $Q_2 = \{1, 2, 3\}, \Sigma_2 = \{a, b\}, q_2 = 1, F_2 = \{2\},$

$$\delta_2 = \begin{array}{c|cc} & a & b \\ \hline 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 2 \end{array}$$

c) El autómata no determinístico $A=\langle Q_3,\Sigma_3,\delta_3,q_3,F_3\rangle,$ donde: $Q_3=\{0,1,2,3\},\Sigma_3=\{a,b\},q_3=0,F_3=\{2\},$

$$\delta_3 = \begin{array}{c|cccc} & a & b \\ \hline 0 & 1 & - \\ 1 & 1, 2 & - \\ 2 & 3 & 2 \\ 3 & 3 & 3, 0 \end{array}$$

5. Demostrar las siguientes identidades. R y S son conjuntos regulares.

a)
$$(R^*|R) = R^*$$

b)
$$R.R^* = R^*.R$$

c)
$$R.R^*.R = R.R.R^*$$

$$d) (R^*)^* = R^*$$

e)
$$R(S.R)^* = (R.S)^*.R$$

6. Dar ejemplos de conjuntos regulares que demuestren las siguientes desigualdades (es decir, que no valen las igualdades en general):

a)
$$R|\lambda \neq R$$

b)
$$R.S \neq S.R$$

c)
$$R.R \neq R$$

$$d) R|(S.T) \neq (R|S).(R|T)$$

7. Las siguientes igualdades no son válidas en general. Encontrar ejemplos de conjuntos regulares para los cuales sean válidas. Buscar condiciones bajo las cuales sean válidas.

a)
$$R|\lambda = R$$

b)
$$R.S = S.R$$
 (aun si $R \neq S$)

c)
$$R.R = R$$

$$d) R|(S.T) = (R|S).(R|T)$$

$$e)$$
 $R|S = R.S$

8. Dado el AFD $M = \langle \{0, 1, 2, 3\}, \{a, b, c\}, \delta, 0, \{2, 3\} \rangle$, donde:

$$\delta = \begin{array}{c|cccc} & a & b & c \\ \hline 0 & 1 & 3 & - \\ 1 & - & - & 2 \\ 2 & - & 1 & - \\ 3 & 3 & - & 1 \end{array}$$

Se pide una expresión regular que denote el lenguaje $(I(L))^*$

9. Para el AF $A = (\{0, 1, 2\}, \{a, b, c\}, \delta, 0, \{2\}),$ donde

$$\delta = \begin{array}{c|cccc} & a & b & c \\ \hline 0 & 0, 1 & - & - \\ 1 & 2 & - & - \\ 2 & - & 2 & - \end{array}$$

Sea L=L(A). Encontrar una expresión regular que denote el lenguaje $(L^c)^3$ (donde L^c es el complemento de L).

10. Dar un método que, dada una expresión regular E, permita obtener una expresión regular para las cadenas iniciales de L(E). Es decir, obtener E' tal que:

$$L(E') = I(L(E)) = \{ \alpha \mid \exists \beta (\alpha \beta \in L(E)) \}$$

El método se puede definir por inducción sobre la estructura de E.

Aplicar el método propuesto para obtener una expresión regular para $I(L((aa|bb)^*))$