# 第七讲数列极限的概念

● 庄子《天下篇》



庄子,战国(宋) (公元前369-公元前286)

一尺之锤,日取其半,万世不竭……



● 庄子《天下篇》

 $\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{8} \quad \frac{1}{16} \dots$ 



庄子,战国(宋) (公元前369-公元前286)

一尺之锤,日取其半,万世不竭 ……



## ● 刘徽"割圆术"



刘徽 , 魏晋 ( 约公元225—295 )



## ● 刘徽"割圆术"



刘徽 , 魏晋 ( 约公元225—295 )

"割之弥细, 所失少,割 之又割,以 之不可割, 一 一 写。"



边数:6,12,24,…,2°-6,…



# 内接正24边形部分

 $\frac{a_{12}}{2}$ 



边数:6,12,24,…,2<sup>n</sup>·6,…

面积:  $6 \cdot \frac{a_6}{2}, 12 \cdot \frac{a_{12}}{2}, \dots \rightarrow \pi$ 



 $a_{12}$ 

数列极限的直观描述

数列极限的算术定义

数列极限的几何解释

割圆术与圆周率





#### 1. 数列的定义

定义 按一定规律排列的无穷多个(相同或不相同的)数称为<mark>数列.</mark> 记为

$$a_1, a_2, \cdots, a_n, \cdots,$$

也可简记 $\{a_n\}$ ,其中 $a_n$ 为数列的第n项,称为通项或一般项.

例  $a_2$  — 数列的第2项

*a*<sub>101</sub> ——数列的第101项



## 整标函数

$$a_n = f(n), n = 1, 2, \cdots$$

• 在几何上数列的项  $a_n$ 可以用平面上的点列  $(n,a_n)$   $(n=1,2,\cdots)$ 





## 2. 数列的表示方法

● 列表法

$$\{\frac{\ln n}{n}\}:\frac{\ln 2}{2},\frac{\ln 3}{3},\cdots,\frac{\ln n}{n},\cdots$$

| n     | 10      | 30      | 50      | 70      | 90      |
|-------|---------|---------|---------|---------|---------|
| lnn n | 0.2303  | 0.1134  | 0.07824 | 0.06069 | 0.05000 |
| n     | 120     | 140     | 160     | 180     | 200     |
| lnn n | 0.03990 | 0.03530 | 0.03172 | 0.02885 | 0.02649 |

# $\{\sin n\}$ : $\sin 1$ , $\sin 2$ , $\sin 3$ , $\sin 4$ , ..., $\sin n$ , ...

| n       | 1       | 2      | 3      | 4       | 5       |
|---------|---------|--------|--------|---------|---------|
| Sin [n] | 0.8415  | 0.9093 | 0.1411 | -0.7568 | -0.9589 |
| n       | 6       | 7      | 8      | 9       | 10      |
| Sin [n] | -0.2794 | 0.6570 | 0.9894 | 0.4121  | -0.5440 |



### ● 几何法

# 方法一 将数列 {a<sub>n</sub>} 的项所对应数值表示在数轴上



## 方法二 散点图

$$a_n = \frac{\ln n}{\sin n}$$

$$\begin{cases} n = 1, 2, \dots, 10 \\ n = 10, 20, \dots, 100 \end{cases}$$





#### 3. 数列的例子

(a) 
$$\left\{\frac{n}{n+1}\right\}$$

$$\left\{ \frac{1}{2}, \frac{2}{3}, \frac{3n}{n+1}, \dots \right\}$$

$$(b) \left\{ \frac{(-1)^n (n+1)}{3^n} \right\}$$

(b) 
$$\left\{ \frac{(-1)^n (n+1)}{3^n} \right\} \left\{ \frac{2}{3^n} = \frac{3(-1)^n (n-1)^n (n-1)^n (n+1)}{3^n}, \dots \right\}$$

$$(c) \left\{ n^{(-1)^n} \right\}$$

$$\left\{1a_{n}^{2} = \frac{1}{3}n^{(4^{1})^{n}} \frac{1}{5}, \dots, n^{(-1)^{n}}, \dots\right\}$$

$$(d) \left\{ \cos \frac{n\pi}{6} \right\}_{n=0}^{\infty}$$





#### 4. 数列极限的描述性的定义

"对于数列  $\{a_n\}$  , 如果存在一个常数 a , 当 n 无限增大时  $(记为n\to\infty)$  ,  $a_n$  与常数 a 无限接近 , 则称常数 a 为数列  $\{a_n\}$  的极限 . 记为  $\lim a_n = a$  或  $a_n \to a \ (n \to \infty)$ ."

极限  $\lim_{n\to\infty} a_n = a$  几何意义:

点列  $\{(n,a_n)|n=1,2,\cdots\}$  随 n 无限增大而无限 接近水平直线 y=a.





(a) 
$$\left\{\frac{n}{n+1}\right\}$$
  $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$ 



$$\lim_{n\to\infty}\frac{n}{n+1}=1$$



(b) 
$$\left\{ \frac{(-1)^n(n+1)}{3^n} \right\} \left\{ -\frac{2}{3}, \frac{3}{9}, \dots, \frac{(-1)^n(n+1)}{3^n}, \dots \right\}$$



$$\lim_{n \to \infty} \frac{(-1)^n (n+1)}{3^n} = 0$$



$$(c) \left\{ n^{(-1)^n} \right\}$$

$$\left\{1, 2, \frac{1}{3}, 4, \frac{1}{5}, \dots, n^{(-1)^n}, \dots\right\}$$



# 数列不存在极限!







# 数列不存在极限!



定义 对于数列  $\{a_n\}$  ,若存在常数 a ,对于任意给定的正数  $\epsilon$  均存在正整数 N ,当 n > N 时,恒有

$$|a_n - a| < \varepsilon$$

成立,则称数列  $\{a_n\}$  存在极限(或收敛),常数 a 称为数列的极限,记为

$$\lim_{n\to\infty} a_n = a \quad \text{ if } \quad a_n \to a \ (n\to\infty).$$

若上述常数不存在,则称数列不存在极限(或发散).

• 称上述定义数列极限的语言为 " $\varepsilon$ -N" 语言 . 数列极限的定义称为 " $\varepsilon$ -N" 定义.



#### 柯西关于极限的定义

"当一个变量逐次取的值无限趋近一个定值时,如果最终变量的值与该定值的差要多小就有多小,那么,这一定值就称为所有其它值的极限."



柯西 [法] (1789-1857)

极限定义的算术化



魏尔斯特拉斯[德] (1815~1897)



例1 用数列极限定义验证  $\lim_{n\to\infty}\frac{n+1}{n}=1$ .

∀ — 对任意 (For Any ) ∃ — 存在 (Exist )

极限  $\lim_{n\to\infty} a_n = a$  的 " $\varepsilon$ -N" 定义(简洁形式):

 $\forall \varepsilon > 0, \exists N,$  当 n > N 时,恒有  $|a_n - a| < \varepsilon$ .

(证)  $\forall \varepsilon > 0$ ,  $\exists N = \left[\frac{1}{\varepsilon}\right] + 1$  ,  $\exists n > N$  时,恒有  $\left|\frac{n+1}{n} - 1\right| = \frac{1}{n} < \frac{1}{\left[\frac{1}{-}\right] + 1} < \frac{1}{-} = \varepsilon$  所以  $\lim_{n \to \infty} \frac{n+1}{n} = 1$ .



例2 设  $\alpha$  为正常数,证明:  $\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0$ .

例3 设 
$$a_n = 0.9 \cdots 9$$
  $(n = 1, 2, \cdots)$  ,证明  $\lim_{n \to \infty} a_n = 1$ .

例4 设 
$$a_n = (-1)^n (n = 1, 2, \dots)$$
 , 证明数列 $\{a_n\}$ 发散.



• 极限  $\lim_{n\to\infty} a_n = a$  的几何解释:



对于任意给定的两平行线  $y = a + \varepsilon$  与  $y = a - \varepsilon$ ,一定可以找到正整数 N,对于 n > N 的所有点  $(n, a_n)$  均落在这两条平行线之间.





祖冲之,南北朝 (429-500)

在南北朝(429-500) 时期,祖冲之利用极限的思 想计算圆周率,取得了很大 的成功。他利用圆内接多边 形的面积逼近圆的面积,即 所谓"割圆术",该方法被 写入他与儿子祖恒合著的 《缀术》中。不幸的是,该 书在北宋中期失传.



# 内接正24边形部分



边数: $6,12,24,\dots,2^n\cdot 6,\dots$ 面积:  $6\cdot \frac{a_6}{2},12\cdot \frac{a_{12}}{2},\dots \to \pi$ 



 $a_{12}$ 

## 在 Rt ΔBCD 中

$$BC = \sqrt{BD^2 + CD^2}$$

$$= \sqrt{\left(\frac{AB}{2}\right)^2 + \left(1 - OD\right)^2}$$

$$OD = \sqrt{1 - \left(\frac{AB}{2}\right)^2} \quad (Rt \, \Delta BDO)$$

$$B_1C = \sqrt{\left(\frac{\alpha_6}{22}\right)^2 + \left(1 + 1 + 1 + 1 + \frac{\alpha_6}{22}\right)^2}$$





$$a_{12} = \sqrt{\left(\frac{a_6}{2}\right)^2 + \left(1 - \sqrt{1 - \left(\frac{a_6}{2}\right)}\right)^2}$$

$$a_{24} = \sqrt{\left(\frac{a_{12}}{2}\right)^2 + \left(1 - \sqrt{1 - \left(\frac{a_{12}}{2}\right)}\right)^2}$$

$$a_{6\cdot2^{n+1}} = \sqrt{\left(\frac{a_{6\cdot2^n}}{2}\right)^2 + \left(1 - \sqrt{1 - \left(\frac{a_{6\cdot2^n}}{2}\right)^2}\right)^2} \quad (n = 0, 1, \dots)$$







## 正 6·2" 边形的面积为

$$S_{6\cdot 2^{n+1}} = 6 \cdot 2^n \cdot \frac{a_{6\cdot 2^n}}{2} (n = 0, 1, \cdots)$$

# 与单位圆面积的比较

$$S_{12} < \pi < S_{12} + (S_{12} - S_6)$$

$$S_{24} < \pi < S_{24} + (S_{24} - S_{12})$$

$$S_{6\cdot 2^{n+1}} < \pi < S_{6\cdot 2^{n+1}} + (S_{6\cdot 2^{n+1}} - S_{6\cdot 2^n})$$

下界

上界





| n  | 边数    | 下界          | 上界          |
|----|-------|-------------|-------------|
| 1  | 24    | 3.105828541 | 3.211657082 |
| 2  | 48    | 3.132628613 | 3.159428685 |
| 3  | 96    | 3.139350203 | 3.146071793 |
| 4  | 192   | 3.141031951 | 3.142713699 |
| 5  | 384   | 3.141452472 | 3.141872994 |
| 6  | 768   | 3.141557608 | 3.141662744 |
| 7  | 1536  | 3.141583892 | 3.141610176 |
| 8  | 3072  | 3.141590463 | 3.141597034 |
| 9  | 6144  | 3.141592106 | 3.141593749 |
| 10 | 12288 | 3.141592517 | 3.141592927 |
| 11 | 24576 | 3.141592619 | 3.141592722 |



## 正 6·2" 边形的面积为

$$S_{6\cdot 2^{n+1}} = 6\cdot 2^n \cdot \frac{a_{6\cdot 2^n}}{2} (n = 0, 1, \cdots)$$

# 与单位圆面积的比较

$$S_{12} < \pi < S_{12} + (S_{12} - S_6)$$

$$S_{24} < \pi < S_{24} + (S_{24} - S_{12})$$

$$S_{6 \cdot 2^{n+1}} < \pi < S_{6 \cdot 2^{n+1}} + (S_{6 \cdot 2^{n+1}} - S_{6 \cdot 2^{n}})$$

# 当 n=11 时得到

 $3.14159261 < \pi < 3.14159272$ 



