In [1]:

```
# Let's start with importing necessary Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

Please check the Logistic Regression videos for data set information

In [2]:

```
data=pd.read_csv("https://raw.githubusercontent.com/training-ml/Files/main/diabetes.csv") #
data.head()
```

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16 ⁻
4	0	137	40	35	168	43.1	2.28
4							·

In [3]:

```
# replacing zero values with the mean of the column

data['BMI']=data['BMI'].replace(0,data['BMI'].mean())

data['BloodPressure']=data['BloodPressure'].replace(0,data['BloodPressure'].mean())

data['Glucose']=data['Glucose'].replace(0,data['Glucose'].mean())

data['Insulin']=data['Insulin'].replace(0,data['Insulin'].mean())

data['SkinThickness']=data['SkinThickness'].replace(0,data['SkinThickness'].mean())
```

In [4]:

```
print(data.shape)
(768, 9)
```

In [5]:

```
#Let's see how data is distributed for every column
plt.figure(figsize=(20,25),facecolor='white')
plotnumber=1

for column in data:
    if plotnumber<=9:  # as there are 9 columns in the data
        ax=plt.subplot(3,3,plotnumber)
        sns.distplot(data[column])
        plt.xlabel(column,fontsize=20)

    plotnumber+=1
plt.show()</pre>
```


Apply log transformation on continues variable

it is primarily used to convert a skewed distribution to normal distribution/less-skewed distribution. In this transform, we take the log of the values in a column and use these values as the column instead

In [6]:

```
data['Insulin'] = np.log(data['Insulin'])
data['BloodPressure'] = np.log(data['BloodPressure'])
data['SkinThickness'] = np.log(data['SkinThickness'])
data['BMI'] = np.log(data['BMI'])
data['DiabetesPedigreeFunction'] = np.log(data['DiabetesPedigreeFunction'])
data['Age'] = np.log(data['Age'])
```

In [7]:

```
#Let's see how data is distributed for every column
plt.figure(figsize=(20,25),facecolor='white')
plotnumber=1

for column in data:
    if plotnumber<=9:  # as there are 9 columns in the data
        ax=plt.subplot(3,3,plotnumber)
        sns.distplot(data[column])
        plt.xlabel(column,fontsize=20)</pre>

plotnumber+=1
plt.show()
```


P	ower	Tra	nefo	rm	۵r
		- 110	111510	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	œI.

It is a data transformation technique used to stablize variance, make the data more normal distribution like

In [8]:

```
# Read files
data=pd.read_csv("https://raw.githubusercontent.com/training-ml/Files/main/diabetes.csv") #
data.head()
```

Out[8]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.16 [°]
4	0	137	40	35	168	43.1	2.28

In [23]:

```
#Replacing zero values with the mean of the column

data['BMI']=data['BMI'].replace(0,data['BMI'].mean())

data['BloodPressure']=data['BloodPressure'].replace(0,data['BloodPressure'].mean())

data['Insulin']=data['Insulin'].replace(0,data['Insulin'].mean())

data['SkinThickness']=data['SkinThickness'].replace(0,data['SkinThickness'].mean())
```

In [24]:

```
features=['Insulin','BMI','BloodPressure','SkinThickness','Age']
```

In [25]:

```
#Let's see how data is distributed for every column
plt.figure(figsize=(20,25),facecolor='white')
plotnumber=1

for column in data[features]:
    if plotnumber<=9: # as there are 9 columns in the data
        ax=plt.subplot(3,3,plotnumber)
        sns.distplot(data[column])
        plt.xlabel(column,fontsize=20)</pre>

plotnumber+=1
plt.show()
```


-Box-Cox works with only positive value(>0)

- Yeo-Johnson works with both positive and negative values.

In [26]:

from sklearn.preprocessing import PowerTransformer
scaler=PowerTransformer(method='box-cox')

In [27]:

data[features]= scaler.fit_transform(data[features].values)

In [28]:

data[features]

Out[28]:

	Insulin	ВМІ	BloodPressure	SkinThickness	Age
0	-0.350666	0.261508	-0.009147	0.956846	1.362797
1	-0.350666	-0.841776	-0.507220	0.415886	0.127990
2	-0.350666	-1.457249	-0.674630	-0.567991	0.231506
3	-0.025195	-0.584749	-0.507220	-0.246245	-1.483064
4	1.006677	1.462877	-2.750268	0.956846	0.328461
763	1.117625	0.161140	0.319657	1.873163	1.764261
764	-0.350666	0.697359	-0.174501	0.211217	-0.366775
765	0.305525	-0.912547	-0.009147	-0.246245	0.017237
766	-0.350666	-0.260838	-1.011681	-0.567991	1.236934
767	-0.350666	-0.213953	-0.174501	0.607343	-1.043135

768 rows × 5 columns

In [29]:

```
#Let's see how data is distributed for every column after powe transformer
plt.figure(figsize=(20,25),facecolor='white')
plotnumber=1

for column in data[features]:
    if plotnumber<=9: # as there are 9 columns in the data
        ax=plt.subplot(3,3,plotnumber)
        sns.distplot(data[column])
        plt.xlabel(column,fontsize=20)

    plotnumber+=1
plt.show()</pre>
```


In []:

post all transformations you can continue with train test split (you dont need to apply s