2009-2010 学年第二学期《高等数学》期末试卷

一、填空题 (每小题 4 分, 共 32 分)

1. 设
$$\bar{a} = (2,-1,2)$$
,向量 $\bar{x} = \bar{a}$ 平行,且 $\bar{a} \cdot \bar{x} = -18$,则 $\bar{x} = \frac{-2(2,-1,2)}{}$ 。

2. 曲线
$$\begin{cases} z = x^2 + 2y^2 \\ z = 2 - x^2 \end{cases}$$
 在 xOy 平面上的投影曲线为
$$\begin{cases} x^2 + y^2 = 1 \\ 3 = 0 \end{cases}$$

3. 设
$$f(x,y) = \begin{cases} \ln(1-x^2-y^2), & x^2+y^2 < \frac{1}{2} \\ A, & x^2+y^2 \ge \frac{1}{2} \end{cases}$$
, 要使 $f(x,y)$ 处处连续,则 $A = \frac{-\ln 2}{2} \left(\frac{1}{2} \right)$

4. 曲线
$$x = t^2$$
, $y = 2t$, $z = \frac{1}{3}t^3$ 在点 $\left(1, 2, \frac{1}{3}\right)$ 处的切线方程是 $\frac{x-1}{2} = \frac{y-2}{2} = \frac{3-\frac{1}{3}}{1}$.

5. 二次积分
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} f(x,y) dy$$
 在极坐标系下先对 r 积分的二次积分为 $\int_0^{\frac{\pi}{2}} do \int_0^1 f(r\cos\theta, r\sin\theta) \cdot r dr$ 6. 设 $\Sigma: x^2 + y^2 + z^2 = R^2$, 则 $\iint_{\Sigma} z^2 dS = \underbrace{\frac{4}{3}\pi R^4}$ 。

6.
$$\Im \Sigma: x^2 + y^2 + z^2 = R^2, \quad \iiint_{\Sigma} z^2 dS = \frac{4\pi}{3} \pi R^4$$

7. 设
$$f(x) = \begin{cases} x, & 0 \le x < \frac{1}{2} \\ 0, & \frac{1}{2} \le x \le 1 \end{cases}$$
 已知 $S(x)$ 是 $f(x)$ 的以 2 为周期的正弦级数展开式的和函数,则
$$S\left(\frac{7}{4}\right) = \frac{1}{4}$$
 。

8. 若某个二阶常系数线性齐次微分方程的通解为
$$y = C_1 e^x + C_2$$
,其中 C_1, C_2 为独立的任意常数,则该方程为_____。

二**、计算题**(每小题 6 分, 共 30 分)

1.
$$\partial z = x^2 f(x + y, x - y)$$
, 其中 $f(u, v)$ 有连续二阶偏导数,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$ 。
$$\frac{\partial J}{\partial x} = 2 \times f + \chi^1 \left(f_1' + f_2' \right)$$

$$\frac{\partial^2 J}{\partial x \partial y} = 2 \times \left(f_1' - f_2' \right) + \chi^1 \left(f_1'' - f_1'' + f_2'' - f_2'' \right)$$

$$= 2 \times \left(f_1' - f_2' \right) + \chi^1 \left(f_1'' - f_2'' \right)$$

2. 设 Ω 是由 $x^2 + y^2 \le z$ 及 $1 \le z \le 4$ 所确定的有界闭区域。试计算 $I = \iiint z dv$ 。

3. 计算曲线积分 $\int -ydx + xdy$, 式中 L 是由点 A(a,b) 沿直线段到 O(0,0) 再沿直线段至 B(b,a)

$$(ab \neq 0)$$
。
 $(ab \neq 0)$
 $(ab$

4. 判别级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n2^n}$ 是否收敛? 若收敛,是绝对收敛还是条件收敛?

2)
$$77 = \frac{8}{N=1} \left| \frac{(-1)^{n-1}}{N2^{n}} \right| = \frac{5}{N=1} \frac{1}{N2^{n}}$$
 $C = \lim_{n \to \infty} \sqrt{\frac{1}{N2^{n}}} = \frac{1}{2} < 1$,

5. 求方程 $y^2 - x = 2xyy'$ 的通解。

三、综合题 (满分38分)

1. (8分)设f(x)二阶连续可微,且f(0)=0,f'(0)=1, 试确定f(x),使

方程
$$[f(x)+1]ydx-[f'(x)+x]dy=0$$
 是全微分方程。

(1)
$$f(x)+1 = -f'(x)-1$$

(1) $f'(x) + f(x) = -2$

(1) $f(0) = 0$, $f'(0) = 1$

(2) $f(0) = 0$, $f'(0) = 1$

(3) $f(x) = C \cos x + C \sin x - 2$, $f'(x) = -C \sin x + C \cos x$

2. (10 分)修建一座形状为长方体的仓库,已知仓库顶每平方米造价为 300 元,墙壁每平方米造价为 200 元,地面每平方米造价为 100 元,其它的固定费为 2 万元,现投资 14 万元,问如何设计方能使仓库的容积最大?

设仓锋与冤高分别为x,4,3 m.

| 12.]
$$300 \times 9 + 200(293 + 2\times3) + 100 \times 9 + 20000$$

= 140000 , $20. \times 9 + 93 + 100 \times 9 + 20000$
 $(10. 10. 10)$
| $(10. 10. 10)$
| $(10. 10. 10)$
| $(10. 10. 10)$
| $(10. 10. 10)$
| $(10. 10. 10)$
| $(10. 10. 10)$

以而仓许的笔品都为10m时,容积最大。

(10 分) 计算 $\iint x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中 Σ 是由曲面 z = 0, $z = \sqrt{a^2 - x^2 - y^2}$ 及

 $x^2 + y^2 \le b^2$ 所围的含 Oz 轴的那部分立体的表面外侧, $a \ni b$ 都是正数且 a > b 。

to Graves & 2'

(10分) 求幂级数
$$1 + \frac{1}{3}x^3 + \frac{1}{6}x^6 + \frac{1}{9}x^9 + \cdots$$
 的和。 $\frac{x^{(n+1)}}{\frac{x^{(n+1)}}{3n}} = 1x^3 | < 1$ 好发放。 $\frac{x^3}{3n}$ $= 1x^3 | < 1$ 好发放。

: R=1.

X=1时,别知为什器计发数

· 以知t效为. [-1,1)

$$|2||S'(x) = \sum_{n=1}^{\infty} \chi^{3n-1} = \frac{\chi^2}{1-\chi^3}, -|< x < |$$

2:8(x)在[+,1)上连续

