Sum and Product Rules

Product Rule:

Let
$$A_1, A_2, ..., A_n$$
 be finite sets. Then,
 $|A_1 \times A_2 \times ... \times A_n| = |A_1| \cdot |A_2| \cdot ... \cdot |A_n|$

· the Product Rule provides a way to count sequences.

example: A meal consists of a drink, a main, and a side.

D = { eoffce, orange juice }

M = { pancakes, eggs 3

5 = & bacon, sausage, hash browns 3

 $D \times M \times S = cartesian product = \{(d, m, s): dED, mEM, sES\}$ $|D \times M \times S| = |D| \cdot |M| \cdot |S| = 2 \cdot 2 \cdot 3 = 12$

*** the set order matters ***

Counting Strings

 Σ is an alphabet, n is the string length, Σ Σ^n is the set all n-length strings in the alphabet

$$\left| \sum_{n \text{ times}} \sum_{n \text{ t$$

ex: binary aphabet where $\Sigma = \{0,1\}$ and string length = $\{\Sigma^6 = \{0,1\}^6 \} = \{0,1\}^6 = 2^6 = 64$

When one or more characters are restricted in a string:

Let B be a set of binary strings of length 5 that start and end with 0.

$$6 = 0 * * * 0$$
 where * is a wild card * = 0 xor * = 1

 $6 = \{03 \times \{0,13 \times \{0$

The sum rule

consider n sets A_1 , A_2 ,... A_n if the sets are mutually disjoint $(A_i \cap A_j \neq \emptyset)$ for $i \neq j$

| A, U Az U ... U An | = | A, | + | Az | + + | An |

but only one selection is made

Ex: Hot drinks = $H = \mathcal{E} \cos \mathcal{E} \sec$, tea, $\cos a \mathcal{E} \sec$ Cold drinks = $C = \mathcal{E} \sec$ milk, orange juice $\mathcal{E} \sec$ customer bynys one drink Since $H \cap C$ is $\mathscr{E} (an empty set)$, then |HUC| = |H| + |C| = 3 + 2 = 5 Example: Product and sum rule combined: counting passwords

- The password string length 6-8 (inclusive)
- each character can be a lowercase letter or digit

L = all lower case charactes
$$|L| = 26$$

D = all digits 0-9 $|D| = 10$

Since $L \cap D = \emptyset$ (an empty set), then the set of all possible characters, $C = L \cup D$

- a string of length n with $\Sigma = C$ a set of all possible combinations of strings with length n in alphabet C is represented by Z^n

· the cardinality of
$$\Sigma^n = |\Sigma^n| = |\Sigma|^n = |C|^n$$

- Since Σ^6 and Σ^7 and Σ^8 are all mutually disjointed with each other.

the set of all possible passwords = $A = \Sigma^{6}U\Sigma^{7}U\Sigma^{8}$

the cardinality of
$$A = |A| = |\Sigma^6 \cup \Sigma^7 \Sigma^8|$$

= $|\Sigma^6| + |\Sigma^7| + |\Sigma^8| = |\Sigma|^6 + |\Sigma|^7 + |\Sigma|^8$
Since $|\Sigma| = |C| = 36$, then

$$= |\Sigma|^6 + |\Sigma|^7 + |\Sigma|^8 = 36^6 + 36^7 + 38^8$$