"Detection of Phishing Websites Using Machine Learning"

- 1. Rohit Kundan Sonawane TE-B-59.
- 2. Sakshi Pandurang Mahajan. TE-A-55
 - 3. Chetan Jayram Mahajan. TE-A-52
 - 4. Vaishnavi Vilas Gadhe, TE-A-29

Department of Computer Engineering Under the guidance of Prof. A. T. Bhole Sir

26 March 2022

Overview

- Introduction
- **Objectives**
- Problem Defination
- Hardware and Software Requirement
- Tools Languages Used
- Implementation Steps in Project
- Modules and Libraries used in Project
- Algorithm
- Work Flow and Feature Extraction
- Data Flow Diagrams
- Use Case Diagram
- **Activity Diagram**
- Component Diagram
- Deployment Diagram
- Sequence Activity Diagram Of Phishing
- Result and Conclusion

Introduction

- Phishing costs Internet users billions of dollars per year. It refers to luring techniques used by identity thieves to fish for personal information in a pond of unsuspecting internet users.
- Phishers use spoofed e-mail, phishing software to steal personal information and financial account details such as usernames and passwords.
- This paper deals with methods for detecting phishing web sites by doing feature extraction of urls by Machine learning techniques and Natural Language Processing.

Objectives

- To explain what phishing websites are? And how they are major threat to peoples.
- To collect phishing websites database and perform processing on them
- After by applying various feature extraction techniques, fitting of the model with machine learning algorithm
- Improving accuracy of the model
- Deployment of model of web-page and make it ready mo use for end users.
- Users can enter their website on our website and check whether it is Phishing or not.

Problem Defination

- URLs sometimes known as "Web links" are the primary means by which users locate information in the Internet.
- Aim of the phishers is to acquire critical information like username, password and bank account details.
- Our aim is to derive classification models that detect phishing urls using machine learning and natural language processing. In Jupyter Environment

Hardware and Software Requirement

Hardware Requirement:-

- Intel Core i3 or above
- Processor: 1.2GHz or above.
- RAM: 2GB or above.
- Internal Storage: 100GB or above.
- Internet Connectivity

Software Requirement :-

- Windows 7 or Higher
- Python 3.6.0 or Higher
- Visual Studio Code
- Flask

Tools Languages Used

Language Used:-

- HTML
- CSS
- Python

Software Used:-

- Jupyter Notebook
- Visual Studio Code
- Python 3.6

DataSet Used:-

DataSet Of Phishing Website

Implementation Steps in Project

Implementation Steps:-

- Importing Some Useful Libraries.
- Data Preprocessing.
- Tokenizing the Strings.
- Stemming.
- Vectorization.
- Feature Extraction.
- Fitting the model in Support Vector Machine.
- Making the Pipeline.
- Loading the model with Pickle
- Predict the Output

Modules and Libraries used in Project

Modules used in Project :-

- Python Pandas.
- Python Numpy.
- Python Sklearn.
- Python Matplotlib.
- Python Nltk
- Python Pickle

Algorithm

S.V.M. = Support Vector Machine :-

- The S.V.M. performs classification by finding the hyper plane that maximizes the margin between two classes.
- The vectors that define the hyper plane are the support vectors. Below is the figure showing how it works

Work Flow and Feature Extraction Diagram

Figure: Work Flow and Feature Extraction

Data Flow Diagram

Use Case Diagram

Figure: Use Case Diagram

Activity Diagram

Figure: Activity Diagram

Component Diagram

Figure: Component Diagram

Deployment Diagram

ML model deployment Model Jupyter Notebook Prediction heroku learn Heroku Flask Model Training Paas HTTP **RESTAPI** Request Response Save model Users gunicorn to .pkl file WSGI HTTP Server

Figure: Deployment Diagram

Sequence Activity Diagram Of Phishing

Figure: Sequence Activity Diagram Of Phishing

Result and Conclusion

Result and Conclusion :-

- We have detected phishing websites using Support Vector Machine with an accuracy of 97.94 Percentage.
- For future enhancements, we intend to build the phishing detection system as a scalable web service which will incorporate online learning so that new phishing attack patterns can easily be learned and improve the accuracy of our models with better feature extraction.

References

References :-

- Detection of phishing websites using machine learning International Journal of Engineering Research Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 IJERTV10IS050235 (This work is licensed under a Creative Commons Attribution 4.0 International License.) Published by: www.ijert.org Vol. 10 Issue 05, May-2021
- Joby James, Sandhya L, Ciza Thomas Detection of phishing websites using machine learning techniques. 2013 International Conference on Control Communication and Computing (ICCC)https://www.researchgate.net/publication/269032183
- Mustafa AYDIN, Nazife BAYKAL (2015) Feature extraction and classification phishing websites based on URL. IEEE

Thank you