SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 2021-72

Programska potpora za upravljanje kamerom na CubeSat nanosatelitu

Nikola Gudan

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

HVALA TI KARLA

SADRŽAJ

1.	Uvod	1
2.	I ² C sučelje mikrokontrolera STM32L471VGT6	2
	2.1. I^2C protokol	2
3.	Zaključak	4
Literatura		5

1. Uvod

Uvod rada. Nakon uvoda dolaze poglavlja u kojima se obrađuje tema.

2. I²C sučelje mikrokontrolera STM32L471VGT6

Za konfiguraciju kamere Arducam 5MP Mini Plus PDH računalo koristi I²C komunikaciju. S obzirom na to da se za razvoj programske potpore PDH računala koriste *Low-Layer* biblioteke, potrebno je razumijevanje načina rada I²C periferije odabranog mikrokontrolera kako bi se ispravno implementirali upravljački programi. U nastavku slijedi općenit opis I²C komunikacije kao i njena implementacija na STM32L471VGT6 mikrokontroleru.

2.1. I²C protokol

I²C (*Inter-Integrated Circuit*) je jednostavna dvosmjerna sinkrona serijska sabirnica razvijena od strane *Philips Semiconductors* (sada *NXP Semiconductors*) 1982. godine. Koristi dvije linije:

- serijska podatkovna linija (SDA, Serial Data Line),
- serijska taktna linija (SCL, Serial Clock Line),

obje linije su pritegnute na visoku logičku razinu preko *pull-up* otpornika. Moguće brzine prijenosa su:

- do 100 kbit/s u Standard-mode načinu rada,
- do 400 kbit/s u Fast-mode načinu rada,
- do 1 Mbit/s u Fast-mode Plus načinu rada,
- do 3.4 Mbit/s u *High-speed* načinu rada.

Navedene brzine se koriste kod dvosmjernog prijenosa, a moguća je i brzina do 5 Mbit/s u jednosmjernom prijenosu. Više uređaja se može spojiti na jednu sabirnicu, a svaki uređaje je prepoznatljiv po svojoj jedinstvenoj adresi i može se ponašati kao prijamnik ili odašiljač, ovisno o funkciji uređaja. Protokol najčešće, a tako i u ovom

slučaju, koristi 7-bitno adresiranje, a moguće je i korištenje 10-bitnog adresiranja. Uz prijamnike i odašiljače uređaj također može biti upravljač ili meta tijekom prijenosa podataka. Upravljač je uređaj koji inicijalizira prijenos podataka na sabirnici i generira signal takta kako bi omogućio prijenos. U tom trenutku, bilo koji uređaj koji je adresiran smatra se metom.

Na I²C sabirnicu se također može spojiti više upravljača, a primjer jednog takvog spoja sa dva mikrokontrolera je dan na sljedećoj slici. Prijenos podataka bi možda

Slika 2.1: Primjer I²C sabirnice sa spojena dva mikrokontrolera

mogao izgledati ovako:

- 1. Mikrokontroler A želi poslati podatke mikrokontroleru B:
 - mikrokontroler A (upravljač) adresira mikrokontroler B (meta)
 - mikrokontroler A (upravljač-odašiljač) šalje podatke mikrokontroleru B (meta-prijamnik)
 - mikrokontroler A prekida prijenos
- 2. Mikrokontroler A želi primiti podatke sa mikrokontrolera B:
 - mikrokontroler A (upravljač) adresira mikrokontroler B (meta)
 - mikrokontroler A (upravljač-prijamnik) prima podtke sa mikrokontrolera
 B (meta-odašiljač)
 - mikroknotroler A prekida prijenos.

U svakom od navedenih slučajeva mikrokontroler A je generirao takt i prekidao prijenos. Upravljač uvijek generira takt na I²C sabirnici kod prijenosa podataka. U ovom radu korišten je samo jedan mikrokontroler, odnosno upravljač, pa ćemo se dalje usredotočiti samo na taj slučaj.

3. Zaključak

Zaključak.

LITERATURA

UM10204 I²C-bus specification and user manual. NXP Semiconductors, 2021. Rev. 7.0.

Wikipedia. I^2c , 2022. URL https://en.wikipedia.org/wiki/I%C2%B2C. Preuzeto: 30.05.2022.

Programska potpora za upravljanje kamerom na CubeSat nanosatelitu
Sažetak
Sažetak na hrvatskom jeziku.
Ključne riječi: Ključne riječi, odvojene zarezima.
Software for Camera Control on CubeSat Nanosatellite
Abstract
Abstract.
Keywords: Keywords.