The Semantics for QL

LOGIC I Benjamin Brast-McKie November 7, 2023

Examples

Monadic: Casey is dancing.

Dyadic: Al loves Max.

Triadic: Kim is between Boston and New York.

Constants and Referents

Constants: Constants are interpreted as referring to individuals.

Existence: Thus we need to know what things there are.

Domain: A *domain* is any nonempty set \mathbb{D} .

Referents: Interpretations assign constants to elements of \mathbb{D} .

Question 1: How are we going to interpret predicates?

Predicates and Extensions

Example: 'Al loves Max' is true *iff* Al bears the loves-relation to Max.

Dyadic Predicates: Dyadic predicates are interpreted by sets of ordered pairs in \mathbb{D}^2 .

Question 2: How are we to interpret *n*-place predicates?

Cartesian Power: $\mathbb{D}^n = \{ \langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle : \mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{D} \}.$

Extensions: n-place predicates are interpreted by subsets of \mathbb{D}^n .

Singletons: 1-place predicates are interpreted by subsets of $\mathbb{D}^1 = \{ \langle \mathbf{x} \rangle : \mathbf{x} \in \mathbb{D} \}.$

Question 3: How are we to interpret 0-place predicates? What is \mathbb{D}^0 ?

n-Tuples: Let
$$\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle = \{\langle 1, \mathbf{x}_1 \rangle, \dots, \langle n, \mathbf{x}_n \rangle \}$$
.
0-Tuple: $\langle \rangle = \varnothing$.

Truth-Values: 0-place predicates are interpreted by subsets of $\mathbb{D}^0 = \{\emptyset\}$.

Ordinals: Let $1 = \{\emptyset\}$ and $0 = \emptyset$ be the first two von Neumann ordinals.

QL Models

Interpretations: \mathcal{I} is an QL interpretation over \mathbb{D} *iff* both:

- $\mathcal{I}(\alpha) \in \mathbb{D}$ for every constant α in QL.
- $\mathcal{I}(\mathcal{F}^n) \subseteq \mathbb{D}^n$ for every *n*-place predicate \mathcal{F}^n .

Question 4: What happens if $\mathbb{D} = \emptyset$?

Model: $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ is a model of QL *iff* \mathcal{I} is a QL interpretation over $\mathbb{D} \neq \emptyset$.

Task 1: Regiment and interpret the sentences above.

- Dc, Lam, Bkbn.
- $\mathbb{D} = \{c, a, m, k, b, n\}.$
- $\mathcal{I}(D) = \{\langle c \rangle\}.$
- $\mathcal{I}(L) = \{\langle a, m \rangle\}.$
- $\mathcal{I}(B) = \{\langle k, b, n \rangle\}.$
- $\mathcal{I}(c) = c$, $\mathcal{I}(a) = a$, ...

Lagadonian: We often take constants to name themselves.

Question 5: Do models give us truth-values?

Variable Assignments

Assignments: A variable assignment $\hat{a}(\alpha) \in \mathbb{D}$ for every variable α in QL.

Singular Terms: We may define the referent of α in $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ as follows:

$$\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\alpha) = egin{cases} \mathcal{I}(\alpha) & ext{if } \alpha ext{ is a constant} \ \hat{a}(\alpha) & ext{if } \alpha ext{ is a variable.} \end{cases}$$

Variants: A \hat{c} is an α -variant of \hat{a} *iff* $\hat{c}(\beta) = \hat{a}(\beta)$ for all $\beta \neq \alpha$.

Example: Let $\mathbb{D} = \{1, 2, 3, 4, 5\}$ where $\hat{a}(x) = 1$, $\hat{a}(y) = 2$, and $\hat{a}(z) = 3$.

Task 2: If \hat{c} is a *y*-variant of \hat{a} , what is $\hat{c}(1)$, $\hat{c}(2)$, and $\hat{c}(3)$?

Example

Universal: Al loves everything, i.e., $\forall x Lax$.

Existential: Someone is dancing, i.e., $\exists x (Px \land Dx)$.

Mixed: Everyone loves someone, i.e., $\forall x (Px \supset \exists y Lxy)$.

Complex: Everything everything loves loves something, i.e., $\forall x (\forall y L y x \supset \exists z L x z)$.

Semantics for QL

- (A) $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\mathcal{F}^{n}\alpha_{1},\ldots,\alpha_{n})=1$ iff $\langle \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\alpha_{1}),\ldots,\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\alpha_{n})\rangle\in\mathcal{I}(\mathcal{F}^{n}).$
- (\forall) $\mathcal{V}_{\mathcal{T}}^{\hat{a}}(\forall \alpha \varphi) = 1$ iff $\mathcal{V}_{\mathcal{T}}^{\hat{c}}(\varphi) = 1$ for every α-variant \hat{c} of \hat{a} .
- $(\exists) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\exists \alpha \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\varphi) = 1 \ \text{for some} \ \alpha\text{-variant} \ \hat{c} \ \text{of} \ \hat{a}.$
- $(\neg) \ \mathcal{V}_{\tau}^{\hat{a}}(\neg \varphi) = 1 \ \textit{iff} \ \mathcal{V}_{\tau}^{\hat{a}}(\varphi) = 0.$
- $(\vee) \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi \vee \psi) = 1 \ \ \textit{iff} \ \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi) = 1 \ \text{or} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi) = 1 \ \text{(or both)}.$
- $(\wedge) \ \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\phi \wedge \psi) = 1 \ \textit{iff} \ \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\phi) = 1 \ \textit{and} \ \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\psi) = 1.$
- $(\supset) \ \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi \supset \psi) = 1 \ \text{iff} \ \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\varphi) = 0 \text{ or } \mathcal{V}_{\mathcal{T}}^{\hat{a}}(\psi) = 1 \text{ (or both)}.$
- $(\equiv) \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi \equiv \psi) = 1 \ \text{iff} \ \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\phi) = \mathcal{V}_{\mathcal{I}}^{\hat{a}}(\psi).$

Truth and Entailment

Truth: $\mathcal{V}_{\mathcal{T}}(\varphi)=1$ *iff* $\mathcal{V}_{\mathcal{I}}^{\hat{a}}(\varphi)=1$ for some \hat{a} where φ is a sentence of QL.

Satisfaction: $\mathcal{M} = \langle \mathbb{D}, \mathcal{I} \rangle$ satisfies Γ *iff* $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ for every $\varphi \in \Gamma$.

Singletons: As before \mathcal{M} satisfies φ *iff* \mathcal{M} satisfies $\{\varphi\}$.

Entailment: $\Gamma \vDash \varphi$ just in case every model \mathcal{M} that satisfies Γ also satisfies φ .

Tautology: φ is a tautology *iff* $\models \varphi$.

Contradiction: φ is a contradiction *iff* $\vDash \neg \varphi$.

Contingent: φ is contingent *iff* \vDash and $\nvdash \neg \varphi$.

Consistent: Γ is consistent *iff* Γ is satisfiable.

Minimal Models

Task 3: Provide minimal models in which the examples above are true/false.

Regimentation

- Every rose has its thorn.
- At least the guests that remained were pleased with the party.
- I haven't met a cat that likes Merra.
- Kate found a job that she loved.
- Everybody everybody loves loves somebody.
- No set is a member of itself.
- There is a set with no members.

Arguments

Love: Regiment the following argument:

- Cam doesn't love anyone who loves him back.
- May loves everyone who loves themselves.
- ... If Cam loves himself, he doesn't love May.

Bigger: Regiment the following argument:

- Whenever something is bigger than another, the latter is not bigger than the former.
- ... Nothing is bigger than itself.

Relations

Domain: Let the *domain D* be any set.

Relation: A relation R on D is any subset of D^2 .

Reflexive: A relation *R* is *reflexive* on *D* iff $\langle x, x \rangle \in R$ for all $x \in D$.

Non-Reflexive: A relation *R* is *non-reflexive* on *D iff R* is not reflexive on *D*.

Question 1: What is it to be *irreflexive*?

Irreflexive: A relation *R* is *irreflexive* on *D* iff $\langle x, x \rangle \notin R$ for all $x \in D$.

Symmetric: A relation *R* is *symmetric iff* $\langle y, x \rangle \in R$ whenever $x, y \in R$.

Question 2: Why don't we need to specify a domain?

Question 3: Why is a relation reflexive or irreflexive with respect to a domain?

Asymmetric: A relation *R* is asymmetric iff $\langle y, x \rangle \notin R$ whenever $\langle x, y \rangle \in R$.

Question 4: What is it to be non-symmetric? How about non-asymmetric?

Task 1: Show that every asymmetric relation is irreflexive.

Transitive: A relation *R* is *transitive* iff $\langle x, z \rangle \in R$ whenever $\langle x, y \rangle, \langle y, z \rangle \in R$.

Intransitive: A relation *R* is *intransitive* iff $\langle x, z \rangle \notin R$ whenever $\langle x, y \rangle, \langle y, z \rangle \in R$.

Question 5: Is every symmetric transitive relation reflexive? (No: $R = \emptyset$)

Task 2: Show that every transitive irreflexive relation asymmetric?

Euclidean: A relation *R* is *euclidean iff* $\langle y, z \rangle \in R$ whenever $\langle x, y \rangle, \langle x, z \rangle \in R$.

Task 3: Show that every transitive symmetric relation is euclidean.