Assignment #3

UW-Madison MATH 421

GEOFF YOERGER March 10, 2021

Exercise #1: Prove the following theorem:

Theorem. If $A \subset \mathbb{R}$, $A \neq \emptyset$, and A is bounded below, then A has a greatest lower bound.

Proof. Consider $-A = \{-a : a \in A\}$. It follows that $A \subset R \implies -A \subset R$, and $A \neq \emptyset \implies -A \neq \emptyset$. If A is bounded below, then

$$\exists x \ \forall a \in A : x \leq a \implies \exists x \ \forall a \in A : -x \geq -a$$
$$\implies \exists x \ \forall a \in -A : -x \geq a$$
$$\implies \exists y \ \forall a \in -A : y \geq a$$
$$\implies \exists y \ \forall a \in -A : a \leq y$$

Thus, by P13, -A has a least upper bound, say $-u = \sup(A)$.

Claim. u is a lower bound of A.

$$-u$$
 is an upper bound of $-A$
 $\Longrightarrow \forall a \in -A : a \leq -u$
 $\Longrightarrow \forall a \in -A : -a \geq u$
 $\Longrightarrow \forall a \in A : a \geq u$
 $\Longrightarrow \forall a \in A : u \leq a$
 $\Longrightarrow u$ is a lower bound of A

Claim. x is a lower bound of $A \implies x \le u$

$$w$$
 is an upper bound of $-A \Longrightarrow -u \le w$
 $\equiv -w$ is a lower bound of $A \Longrightarrow -u \le w$
 $\equiv -w$ is a lower bound of $A \Longrightarrow -w \le u$

Thus, by definition, u is the greatest lower bound of $A \implies A$ has a greatest lower bound.

Exercise #2: Prove: If $A, B \subset \mathbb{R}$, then

$$\sup(A \cap B) \le \min\{\sup(A), \sup(B)\}\$$

and

$$\inf(A \cap B) \ge \max\{\inf(A), \inf(B)\}.$$

Find an example where $\sup(A \cap B) < \min\{\sup(A), \sup(B)\}\$ and $\inf(A \cap B) < \max\{\inf(A), \inf(B)\}.$

```
Proof. We proceed by cases.
```

```
Case 1. A = \emptyset
```

Then $\sup(A \cap B) = \sup(\emptyset) = -\infty \le \min\{\sup(A), \sup(B)\} = \min\{-\infty, \sup(B)\} = -\infty$. Then $\inf(A \cap B) = \inf(\emptyset) = \infty \ge \max\{\inf(A), \inf(B)\} = \max\{\infty, \inf(B)\} = \infty$.

Case 2. $B = \emptyset$

Then $\sup(A \cap B) = \sup(\emptyset) = -\infty \le \min\{\sup(A), \sup(B)\} = \min\{\sup(A), -\infty\} = -\infty$ Then $\inf(A \cap B) = \inf(\emptyset) = \infty \ge \max\{\inf(A), \inf(B)\} = \max\{\inf(A), \infty\} = \infty$

Case 3. A, B both not bounded above

Then $\sup(A \cap B) = \infty \le \min\{\sup(A), \sup(B)\} = \min\{\infty, \infty\} = \infty$ Then $\inf(A \cap B) = -\infty \ge \max\{\inf(A), \inf(B)\} = \max\{-\infty, -\infty\} = -\infty$

Case 4. A not bounded above, B bounded above

Then $\sup(A \cap B) = \sup(B) \le \min\{\sup(A), \sup(B)\} = \min\{\infty, \sup(B)\} = \sup(B)$ Then $\inf(A \cap B) = \inf(B) \ge \max\{\inf(A), \inf(B)\} = \max\{-\infty, \inf(B)\} = \inf(B)$

Case 5. A bounded above, B not bounded above

Then $\sup(A \cap B) = \sup(A) \le \min\{\sup(A), \sup(B)\} = \min\{\sup(A), \infty\} = \sup(A)$ Then $\inf(A \cap B) = \inf(A) \ge \max\{\inf(A), \inf(B)\} = \max\{\inf(A), -\infty\} = \inf(A)$

Case 6. A, B both bounded above

Concerning sup:

Let $\alpha = min\{sup(A), sup(B)\}.$

Claim. α is an upper bound of $A \cap B$.

Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$.

If
$$\alpha = \sup(A)$$
, then $x \leq \sup(A) = \alpha$

If
$$\alpha = \sup(B)$$
, then $x \leq \sup(B) = \alpha$

Since $x \in A \cap B$ was arbitrary, α is an upper bound for $A \cap B$.

Claim. α is the least upper bound of $A \cap B$.

Suppose x is an upper bound of $A \cap B$. Then x is an upper bound for A or an upper bound for B.

If x is an upper bound for A, then $x \leq \sup(A) \leq \min\{\sup(A), \sup(B)\} = \alpha$.

If x is an upper bound for B, then $x \leq \sup(B) \leq \min\{\sup(A), \sup(B)\} = \alpha$.

Thus $x < \alpha$.

Since x was arbitrary, α is the least upper bound of $A \cap B$.

Concerning inf:

Let $\alpha = max\{\inf(A), \inf(B)\}.$

Claim. α is a lower bound of $A \cap B$.

Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$.

If
$$\alpha = \inf(A)$$
, then $x \ge \inf(A) = \alpha$

If
$$\alpha = \inf(B)$$
, then $x \geq \inf(B) = \alpha$

Since $x \in A \cap B$ was arbitrary, α is a lower bound for $A \cap B$.

Claim. α is the greatest lower bound of $A \cap B$.

Suppose x is a lower bound of $A \cap B$. Then x is a lower bound for A or a lower bound for B.

If x is a lower bound for A, then $x > \inf(A) > \max\{\inf(A), \inf(B)\} = \alpha$.

If x is a lower bound for B, then $x \ge \inf(B) \ge \max\{\inf(A), \inf(B)\} = \alpha$.

Thus $x > \alpha$.

Since x was arbitrary, α is the greatest lower bound of $A \cap B$.

Example. $A = \{0, 2, 4\}, B = \{1, 2, 3\}, A \cap B = \{2\}$

 $\sup(A \cap B) = 2 < 3 = \min\{3, 4\} = \min\{\sup(A), \sup(B)\}\$ $\inf(A \cap B) = 2 > 1 = \max\{0, 1\} = \max\{\inf(A), \inf(B)\}\$ Exercise #3: Prove the following lemma from class:

Lemma. If f is continuous on [a, b] and f(a) < 0 < f(b), then there exist $\delta_1, \delta_2 > 0$ such that

- 1. f is negative on $[a, a + \delta_1)$
- 2. f is positive on $(b \delta_2, b]$.

Proof of (1). By a theorem proved in class, if f(a) < 0, then $\exists \delta_1 > 0 \ \forall x : |x - a| < \delta_1 \implies f(x) < 0$. $|x-a| < \delta_1 \implies -\delta_1 < x - a < \delta_1 \implies a - \delta_1 < x < a + \delta_1 \implies x \in (a - \delta_1, a + delta_1) \supset [a, a + delta_1).$ Thus, $\exists \delta_1 \ \forall x : x \in [a, a + \delta_1) \implies f(x) < 0$.

Proof of (2). By a theorem proved in class, if
$$f(b) > 0$$
, then $\exists \delta_2 > 0 \ \forall x : |x - b| < \delta_2 \implies f(x) > 0$. $|x - b| < \delta_2 \implies -\delta_2 < x - b < \delta_2 \implies b - \delta_2 < x < b + \delta_2 \implies x \in (b - \delta_2, b + delta_2) \supset (b - \delta_2, b]$ Thus, $\exists \delta_2 \ \forall x : x \in (b - \delta_2, b] \implies f(x) > 0$.

Exercise #4: Prove the following theorem from class (in Chapter 6):

Theorem. If a < b, then there exists an irrational number x with a < x < b.

Proof. Since b - a > 0, $\exists n \in \mathbb{N}$:

$$n > \frac{\sqrt{2}}{b-a}$$

$$\Rightarrow \frac{1}{n} < \frac{b-a}{\sqrt{2}}$$

$$\Rightarrow \frac{\sqrt{2}}{n} < b-a$$

$$\Rightarrow \frac{1}{n} < \frac{\sqrt{2}}{n} < b-a$$

$$\Rightarrow a + \frac{1}{n} < a + \frac{\sqrt{2}}{n} < b$$

 $\frac{\sqrt{2}}{n} \notin \mathbb{Q}, \, \frac{1}{n} \in \mathbb{Q}.$ If $a \in \mathbb{Q}$, then $a + \frac{\sqrt{2}}{n} \notin \mathbb{Q}$. If $a \notin \mathbb{Q}$, then $a + \frac{1}{n} \notin \mathbb{Q}$. Thus, $\forall a, b \in \mathbb{R} \exists x \notin \mathbb{Q} : a < x < b$.

Exercise #5: | Spivak, Chapter 8, Problem 3 (b)

Theorem. Theorem 7-1 is provable using consideration of the set $B = \{x \in [a,b]: f(x) < 0\}$.

Proof. Let $B = \{x \in [a,b]: f(x) < 0\}$. $a \in B \implies B \neq \emptyset$.

B is bounded above by b, thus $\sup(B)$ exists, $\sup(B) \in [a,b]$, and $\sup(B)$ is the least upper bound of B.

Claim. $a < \sup(B) < b$

By the lemma discussed in the proof of 7-1 in class,

 $\exists \delta_1 : f \text{ is negative on } [a, a + \delta_1).$

and $\exists \delta_2 : f \text{ is positive on } (b - \delta_2, b].$

 $[a, a - \delta_1) \subset B \implies \sup(B) \ge a + \delta_1 > a.$

 $B \subset [a, b - \delta_2] \implies \sup(B) \le b - \delta_2 < b.$

Claim. $f(\sup(B)) = 0$

Suppose for a contradiction that $f(\sup(B)) \neq 0$

We proceed by cases

Case 1. $f(\sup(B)) > 0$

By Theorem 6.3, $\exists \delta > 0 : f$ is positive on $(\sup(B) - \delta, \sup(B) + \delta)$.

Then $\sup(B) - \delta$ is an upper bound, but $\sup(B)$ is the least upper bound. This is a contradiction.

Case 2. $f(\sup(B)) < 0$

By Theorem 6.3, $\exists \delta > 0 : f$ is negative on $(\sup(B) - \delta, \sup(B) + \delta)$.

By a result in class, $\exists x \in B : \sup(B) - \delta < x \le \sup(B)$.

But by properties of the supremum, $x \in B$.

So f is negative on $B \cup (\sup(B) - \delta, \sup(B) + \delta)$.

Thus $B \cup (\sup(B) - \delta, \sup(B) + \delta) \subset B$, but this means $\sup(B)$ is not an upper bound of B. This is a contraction.

Thus $f(\sup(B)) = 0$

(This proof occurs in the vicinity of $x = \sup(B)$)

Exercise #6: Spivak, Chapter 8, Problem 8 (a)

Theorem. Suppose f is a function such that $a < b \implies f(a) \le f(b)$

 $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist.

Proof. $\lim_{x \to a^-} f(x)$ exists. Since $x < a \implies f(x) \le f(a)$, the set $A = \{f(x) : x < a\}$ is bounded above (one upper bound is f(a)).

Let $L = \sup(A)$.

Fix $\epsilon > 0$.

$$x < a \implies 0 < a - x \implies f(x) < L \implies f(x) < L + \epsilon$$
.

By a theorem in class, $\exists y : L - \epsilon < f(y) \le L \implies L - \epsilon < f(y)$.

Let $\delta = a - y$. It follows that

$$\forall x: y < x < a: L - \epsilon < f(y) \le f(x) \le \sup(A) = L$$

$$\Longrightarrow \forall x: y < x < a: L - \epsilon < f(y) \le f(x) \le \sup(A) = L < L + \epsilon$$

$$\Longrightarrow \forall x: y < x < a: L - \epsilon < f(x) < L + \epsilon$$

$$\Longrightarrow \forall x: -a < -x < -y: L - \epsilon < f(x) < L + \epsilon$$

$$\Longrightarrow \forall x: 0 < a - x < a - y: L - \epsilon < f(x) < L + \epsilon$$

$$\Longrightarrow \forall x: 0 < a - x < \delta: L - \epsilon < f(x) < L + \epsilon$$

Thus $\lim_{x\to a^-} f(x) = \sup(A)$ exists.

Proof. $\lim_{x \to a^+} f(x)$ exists. Since $x < a \implies f(x) \le f(a)$, the set $A = \{f(x) : x > a\}$ is bounded below. Let $L = \inf(A)$.

Fix $\epsilon > 0$.

$$x > a \implies 0 < x - a \implies L < f(x) \implies L - \epsilon < f(x)$$
.

By a theorem in class, $\exists y : L \leq f(y) < L + \epsilon \implies f(y) < L + \epsilon$.

Let $\delta = y - a$. It follows that

$$\forall x: a < x < y: L = \sup(A) \le f(x) < f(y) < L + \epsilon$$

$$\implies \forall x: a < x < y: L - \epsilon < f(x) < L + \epsilon$$

$$\implies \forall x: 0 < x - a < y - a: L - \epsilon < f(x) < L + \epsilon$$

$$\implies \forall x: 0 < x - a < \delta: L - \epsilon < f(x) < L + \epsilon$$

Thus $\lim_{x\to a^+} f(x) = \inf(A)$ exists.

1 Extra Credit Questions

Each extra credit question is worth 1 extra point.

Exercise E.C.#1: Spivak, Chapter 8, Problem 14 (a)

Theorem. Consider a sequence of closed intervals $I_1 = [a_1, b_1], I_2 = [a_2, b_2], \cdots$.

Suppose that $\forall n : a_n \leq a_{n+1} \text{ and } \forall n : b_{n+1} \leq b_n$

 $\exists x \ \forall n : x \in I_n$

Proof. Notice that $\forall n: a_1 \leq a_2 \leq \cdots \leq a_{n-1} \leq a_n \leq b_n \leq b_{n-1} \leq \cdots \leq b_2 \leq b_1$.

Let $A = \{a_n : n \in \mathbb{N}\}$

Because $a_1 \in A \implies A \neq \emptyset$, A is bounded above $(b_1 \text{ is an upper bound})$, then $x = \sup(A)$ exists.

By definition, $\forall n : a_n \leq x$.

Because $\forall n, m : a_n \leq b_m$, then $\forall m : b_m$ is an upper bound of A. Thus, $\forall m : x \leq b_m$.

Thus $\forall n : a_n \le x \le b_n \implies \forall n : x \in [a_n, b_n] \implies \forall n : x \in I_n$