Final Project Report Applied Data Science

Team ID	PNT2022TMID38399
Team Members	Priyankadevi R keerthana K Swetha R Lalithkamal P
Project Name	Project - Detecting Parkinson's Disease usingMachine Learning

1. INTRODUCTION

1.1 Project Overview

Parkinson's disease is a progressive disorder of the central nervous system affecting movement and inducing tremors and stiffness. It has 5 stages to it and affects more than 1 million individuals every year in India. This is chronic and has no cure yet. It is a neurodegenerative disorder affecting dopamine-producing neurons in the brain. For detecting PD, various machine learning models such as logistic regression, naive Bayes, KNN, and forest decision tree were used, with the features used here being minimum-redundancy maximum-relevance and recursive feature elimination. The accuracy obtained was 95.3% using data from the UCI machine learning repository. The researchers found that the drawing speed was slower and the pen pressure is lower among Parkinson's patients. One of the indications of Parkinson's is tremors and rigidity in the muscles, making it difficult to draw smooth spirals and waves. It is possible to detect Parkinson's disease using the drawings alone instead of measuring the speed and pressure of the pen on paper. Our goal is to quantify the visual appearance (using HOG method) of these drawings and then train a machine learning model to classify them. In this project, We are using, Histogram of Oriented Gradients (HOG) image descriptor along with a Random Forest classifier to automatically detect Parkinson's disease in hand-drawn images of spirals and waves.

Purpose

By using machine learning techniques, the problem can be solved with minimal error rate. The voice dataset of Parkinson's disease from the UCI Machine learning library is used as input. Also, our proposed system provides accurate results by integrating spiral drawing inputs of normal and Parkinson's affected patients. Machine learning also allows for combining different modalities, such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) data. in the diagnosis of PD. By using machine learning approaches, we may therefore identify relevant features that are not traditionally used in the clinical diagnosis of PD and rely on these alternative measures to detect PD in preclinical stages or atypical forms. In recent years, the number of publications on the application of machine learning to the diagnosis of PD has increased, feasibility and efficiency of different machine learning methods in the diagnosis of PD, and (c) provide machine learning practitioners interested in the diagnosis of PD with an overview of previously used models and data modalities and the associated outcomes, and recommendations on how experimental protocols and results could be reported to facilitate reproduction. As a result, the application of machine learning to clinical and nonclinical data of different modalities has often led to high diagnostic accuracies in human participants, therefore may encourage the adaptation of machine learning algorithms and novel biomarkers in clinical settings to assist more accurate and informed decision making. While Parkinson's cannot be cured, early detection along with proper medication can significantly improve symptoms and quality of life.

2. LITERATURE SURVEY

2.1 Existing Solution and Problem

[1] **Author Name:** Jie Mei, Christian Desrosiers, Johannes Frasnelli, "Machine Learning for the Diagnosis of Parkinson's Disease," 2021..

Title: "Machine Learning for the Diagnosis of Parkinson's Disease,"

Published in: 2021

This paper conveys extremely about the importance of Diagnosis of Parkinson's disease (PD) is commonly based on medical observations and assessment of clinical signs, including the characterization of a variety of motor symptoms. However, traditional diagnostic approaches may suffer from subjectivity as they rely on the evaluation of movements that are sometimes subtle to human eyes and therefore difficult to classify, leading to possible misclassification. In the meantime, early non-motor symptoms of PD may be mild and can be caused by many other conditions. Therefore, these symptoms are often overlooked, making diagnosis of PD at an early stage challenging. To address these difficulties and to refine the diagnosis and assessment procedures of PD, machine learning methods have been implemented for the classification of PD and healthy controls or patients with similar clinical presentations (e.g., movement disorders).

[2] **Author name:** C K Gomathy,

Title: "The Parkinson's Disease Detection using Machine Learning Techniques."

Published in: 2020

The Parkinson's disease is progressive neuro degenerative disorder that affects a lot only

people significantly affecting their quality of life. It mostly affects the motor functions of human. The main motor symptoms are called "parkinsonism" or "parkinsonian syndrome". The symptoms of Parkinson's disease will occur slowly, the symptoms include shaking, rigidity, slowness of movement and difficulty with walking, Thinking and behavior change, Depression and anxiety are also common. There is a model for detecting Parkinson's using voice. The deflections in the voice will confirm the symptoms of Parkinson's disease. This project showed 73.8% efficiency. In this model, a huge amount of data is collected from the normal person and previously affected person by Parkinson's disease. these data are trained using machine learning algorithms. From the whole data 60% is used for training and 40% is used for testing. The data of any person can be entered in db to check whether the person is affected by Parkinson's disease or not.

[3] Author name: Iqra Nissar, Waseem Ahmad Mir, Izharuddin, Tawseef Ayoub Shaikh, Title: "Machine Learning Approaches for Detection and Diagnosis of Parkinson's Disease," Published in: 2021

Parkinson's disease (PD) is disabling disease that affects the quality of life. It happens due to the death of cells that produce dopamine's in the substantia nigra part of the central nervous system (CNS) which affects the human body. People who have Parkinson's disease feel difficulty in doing activities like speaking, writing, and walking. However, speech analysis is the most considered technique to be used. Researches have shown that 90% of the people who suffer from Parkinson's disease have speech disorders. With the increase in the severity of the disease, the patient's voice gets more and more deteriorated. The proper interpretation of speech signals is one of the important classification problems for Parkinson's disease diagnosis. This paper contemplates the survey work of the machine learning techniques and deep learning procedures used for Parkinson's disease classification.

[4] Author name: Radouani Laila, Lagdali Salwa, Rziza Mohammed

Title: "Detection of voice impairment for parkinson's disease using machine learning tools," **Published in:** 2021

In this paper, it proposes that Parkinson's disease (PD) is disabling disease that affects the quality of life. It happens due to the death of cells that produce dopamine's in the substantia nigra part of the central nervous system (CNS) which affects the human body. People who have Parkinson's disease feel difficulty in doing activities like speaking, writing, and walking. Speech analysis is the most considered technique to be used. Researches have shown that 90% of the people who suffer from Parkinson's disease have speech disorders. With the increase in the severity of the disease, the patient's voice gets more and more deteriorated. The proper interpretation of speech signals is one of the important classification problems for Parkinson's disease diagnosis. The main purpose of this paper is to contemplate the survey work of the machine learning techniques and deep learning procedures used for Parkinson's disease classification.

2.2 References

- [1] Jie Mei, Christian Desrosiers, Johannes Frasnelli, "Machine Learning for the Diagnosis of Parkinson's Disease," 2021.
- [2] C K Gomathy, "The Parkinson's Disease Detection using Machine Learning

2.3 Problem Statement Definition

It processes the breathing signals using a neural network that infer whether the person has parkinson's disease, and if they are identified then it assesses the severity of their disease in accordance with the Movement Disorder Society Unified Parkinson's Disease using ML algorithms. Great classification of the right variation of true and fake samples of data that is created by users in the application

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy map canvas

3.2 Ideation & brainstorming

3.3 Proposed Solution

S.NO	Parameter	Description
1.	Problem Statement (Problem to	Parkinson's disease is a
	be solved)	neurodegenerative
		movement disease
		where the symptoms
		gradually develop start
		with a slight tremor in
		one hand and a feeling
		of stiffness in the body
		and it became worse
		over time.
		It affects over 6 million
		people worldwide. At
		present there is no
		conclusive result for
		this disease by non-
		specialist clinicians,
		particularly in the early
		stage of the disease
		where identification of
		the symptoms is very
		difficult in its earlier
		stages. The disease is
		majorly is affects the

individuals who living in village areas with their respective ages over 40 and 50 which outcomes itself reason for Parkinson's disease to occur at unexpected times. Lack of adequate knowledge poses barrier in the provision appropriate treatment and care for with individuals Parkinson's Disease which causes Dopamine deficiency in the secondary stage. We researched and analyzed the data that was gathered from all over the network for figuring the out accurate for reason this disease why majorly affects the agricultural life. So, we found that Parkinson's disease is believed to be caused by a combination of environmental risk factors and genetic susceptibility. As use of pesticides and Parkinson's disease have been associated,

		but it has not been
		narrowed down to
		specific pesticides or
		how the amount of
		exposure contributed.
		So most specifically,
		farmers are more prone
		to Parkinson's Disease
		than the general
		population people.
2.		It processes the
		breathing signals using
		a neural network that
		infer whether the
		person has Parkinson's
		disease, and if they are
		identified then it
		assesses the severity of
		their disease in
		accordance with the
		Movement Disorder
		Society Unified
		Parkinson's Disease
		using ML algorithms.
		User can place their
		values and interact with
		the friendly user
		assistance bot which
		guides the person in
		using the application.
		Great classification of
		the right variation of
		true and fake samples
		of data that is entered
		by users in the
		application.
3.	Novelty / Uniqueness	Parkinson's Disease is

detected at the secondary stage only (Dopamine deficiency) which leads to medical challenges. Also, doctor must manually examine and suggest medical diagnosis in which the symptoms might vary from person to person so suggesting medicine is also a challenge. So, the disease examination varies at different instances of the medical operations. Here by using machine learning methods, the problem can be addressed with very less error rate. The voice dataset of Parkinson's disease from the UCI Machine learning library is used as input. Also, our proposed system provides accurate results by integrating spiral drawing inputs of normal and Parkinson's affected patients. We propose a hybrid and accurate results analyzing patient both voice and spiral drawing data. This application offers medical advice and solutions as the next step after user is confirmed based on the presence of Parkinson's disease. This can be used direct by medical team

		for analyzing and
		offering the solutions at
		much positive scaling
		time.
4.	Social Impact /	An automated chatbot
	Customer Satisfaction	controls the user
		interaction environment.
		Personalize the UI
		experience. Improves
		accurate result as
		expected. Accurate
		prediction at good time
		complexity.
5.	Business Model	Solutions prospects of
	(Revenue Model)	improvement. Suits for
		better saving of
		involvements.
		Economical Development
		. Easy interface.
6.	Scalability of the	Good conversation
	Solution	with ethnicity people .
		Saves enough time for
		performing internal
		operations. On the spot
		result for the users. It
		does not require for the
		users to spend some
		money in offering their
		basic data into the
		model.

3.4 Problem solution fit

4. REQUIREMENTS ANALYSIS

4.1Functional requirement

Following are the functional requirements of the proposed solution.

FR NO.	Functional	Sub
	requirements(Epic)	requirements(story/sub-
		task)
FR-1	User Registration	Registration through Form.
		Registration through Gmail.
FR-2	User Authorization	Verifying the user's account.
FR-3	Input data	Application received the data
		and processes its roles.
FR-4	Data classification	Classification of the real data for
		the user.
FR-5	Accuracy verification	Accuracy is determined in the
		application.
FR-6	Time efficient usage	Interaction with the chatbot till

		the result gets generated for the
		user
FR-7	Medical	User receives the medical
	recommendations	suggestions and assistance for to
		offer speed
FR-8	Data extraction	User gets their personal disease
		report data from the application.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The application can be used for
		accurate prediction and classifier
		of the true and fake input data
		sample.
NFR-2	Security	User's data is well
		encrypted using stable
		machine learning
		algorithms.
NFR-3	Reliability	The application is
		monitored periodically in
		terms of its constant
		prediction ability, quality,
		and availability towards
		the user.
NFR-4	Performance	It classifies the images
		and predicts the disease
		with careful accuracy
		output
NFR-5	Availability	The application is active
		throughout the day. While
		awaiting the prediction
		result, User can interact
		with the chatbot for
		knowing important
		details. If the application
		doesn't respond for the
		user, then the automated

	chatbot will forward the
	issue to our server then it
	can be resolved at that
	instance

5. PROJECT DESIGN

5.1Data Flow Diagram

Data flow diagram – Detecting Parkinson's Disease using Machine Learning

5.2 Solution & Technical Architecture

Solution Architecture

Technical Architecture

Table-1 Components & technology

S.No		Description	Technology
	Components		
1		How user interacts with	HTML, CSS,
	User Interface feature	application e.g.,Web UI	JavaScript, Firebase
			(Web techniques)
2		Logic for a process in	React and Firebase
	Application Logic-1	the application	
3		Information visibility of	IBM Watson Assistant
	Application Logic-2	the disease towards the	(Cloud)
		user	
4		Database Service on	IBM DB2
	Cloud Database	Cloud	
5	_	Data preprocessing and	Data collection and
	Data Analysis	machine learning	preprocessing,
			Exploratory Data
			Analysis (EDA), Data

			visualization
6			Data mining –
	Machine Learning	Important methods of	Regression,
		Machine Learning	Classification and
			Clustering
7	_		Random Forest
	Machine learning	Data mining	classifier (ML), Support
	methods		Vector
			Machines(SVM), Label
			encoding and One-hot
			encoding, K Nearest
			Neighbor (KNN)
			algorithm, XG boost
			algorithm (Gradient
			boosting)
8			Computer vision with
	Artificial Intelligence	Computer vision to	OpenCV
		detect the Parkinson's	
		disease C	
9	Mah application	Altomotivo to python	React and alternative
	Web application	Alternative to python flask	web framework
		HdSK	technique
10	In functions of the Comment	Amaliantian	Cloud Server
	Infrastructure (Server /	Application	Configuration: IBM
	Cloud)	Deployment on Local	Watson (Cloud)
		System / Cloud	

Table-2 Application Characteristics

S.NO	Characteristics	Description	Technology
1	Machine learning python Frameworks	List the open-source frameworks used	Numpy, Pandas, metrics, XG boost, Python Flask (Web), Scikit learn (Sklearn), Tensor flow
2	Security Implementations	List all the security / access controls implemented, use of	Encryptions, Decryptions

		firewalls etc.	
3	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Justify the scalability of architecture (3 – tier, Micro-services)
4	Availability	Justify the availability of application (e.g., use ofload balancers, distributed servers etc.)	IBM Watson – Can easily be accessed
5	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Web applications (React, JavaScript, Firebase)

5.3 User stories

Use the below template to list all the user stories for the product

User Type	Functional	User Story	User	Acceptance	Priority	Release
	Requireme	Number	Story/	criteria		
	nts(epic)		Task			
Customer	Account	USN-1	As a user, I	As a user, I	High	Sprint-1
(public user)	creation		can connect	can retrieve		
			my google	the result		
			into the	data from		
			application	the		
				application		
				for data		
				storage for		
				further		
				medical		
				research		
				uses.		
Input data	Adding data	USN-2	As a user, I	I can cross	High	Sprint-1
			can feed my	verify the		

			data as the input into the application for it to classify the true fake data	data that entered in the initial step		
Data validation	Checking accuracy	USN-3	As a user, I can check the ability and accuracy of the model in obtaining the required information	I can log into my account and check the capability of the model	High	Sprint-2
Classificati on	Data classificati on	USN-4	As a user, I can view the real data	I can verify my data with the real data	High	Sprint-2
App work	Work flow	USN-5	As a user, I can examine the working action of the application model	I can view how the application works and responds to the actions imposed	High	Sprint-2
Image classificati on	Checking for the disease	USN-6	As a user, I can verify with the application that the image is identified with the actual disease with the	I can confirm that the data shows the accurate result	High	Sprint-3

			help of the trained and tested data's			
User interaction	AI-powered chatbot	USN-7	As a user, I can interact with the automated chatbot to engage my time till the application processed the accurate result in a meanwhile	I can see the results from the interaction with the chatbot	High	Sprint-3
Medical assistance	Medical Suggestion	USN-8	As a user, I can get medical advises and recommenda tions for to boost the action of curing the disease	I can get enough assistance by getting the suggestions for curing the disease	High	Sprint-3
Data extraction	Obtaining the data	USN-9	As a user, I can retrieve the result data from the application for data storage for further medical research uses.	I can download the result in the form of data as a proof to show to medical teams	High	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint planning &Estimation

Sprint	Functional Requireme nts(Epic)	User story number	User story/task	Story points	Priority	Team Members
Sprint-1	Viewing Home Page for the web application	USN-1	As a user, I can research and know the sample disease images of Parkinson. Also collecting sample data to learn more about the disease.	4	Low	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-1	Sign Up Page	USN-2	I need to collect data (images of spirals and waves drawn by healthy people and Parkinson's patients).	4	High	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-1	Login	USN-3	As a user, I can log into the application by entering email & password after creation of the account	2	High	Priyankadevi Keerthana Swetha Lalithkamal

Sprint-2	Authorizati on	USN-4	As a user, I will receive confirmation email once I have registered for the application.	6	High	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-2	Dashboard	USN-5	As a user, I can research and know the sample disease images of Parkinson. Also collecting sample data to learn more about the disease.	6	High	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-2	Data Collection (Dataset)	USN-6	I need to collect data (images of spirals and waves drawn by healthy people and Parkinson's patients).	6	Medium	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-2	Data checking	USN-7	I need to learn and understand the data	2	Medium	Priyankadevi Keerthana Swetha Lalithkamal
Sprint-3	Data pre- processing and EDA	USN-8	I need to prepare, clean the data, and process the data for	4	High	Priyankadevi Keerthana Swetha Lalithkamal

			modelbuildi			
			ng by doing			
			preprocessi			
			ng			
			activities			
			such as EDA			
			and data			
			visualization.			
Sprint-3	data	USN-9	I need to	7	Medium	Priyankadevi
	visualizati		visualize the			Keerthana
	on		data for to			Swetha
			check for			Lalithkamal
			any			
			outliers and			
			processing			
			the data			
			accordingly			
Sprint-3	Model	USN-10	I need to	4	High	Priyankadevi
Spriiit-3		0311-10	build the	4	Illgii	Keerthana
	building (Training		model using			
	and testing)		Data mining			Swetha
	and testing)		processes			Lalithkamal
			such as			
			Random			
			ForestClassif			
			ier, K			
			Nearest			
			Neighbor			
			(KNN) from			
			regression,			
			classificatio			
			n, and			
			clustering			
			techniques.			
Sprint-3	Assessing	USN-11	I need to	5	Medium	Priyankadevi
	the model		measure the			Keerthana
	using		performance			Swetha
	metrics		of the			Lalithkamal
			model using			

			regression			
			metrics			
Sprint-4	Application	USN-12	I need to	4	Medium	Priyankadevi
оргии .	Building	0011 12	build the		TVICUIUIII	Keerthana
	Building		website for			Swetha
			the model			
			application			Lalithkamal
			using HTML,			
			CSS,			
			JavaScript			
			etc followed			
			by user sign			
			up page			
			creation in			
			sprint 1. It is			
			then			
			completed			
			by designing			
			the			
			application			
			website.			
Sprint-4	Model	USN-13	I need to	6	High	Priyankadevi
	Verification		check that			Keerthana
			model works			Swetha
			fine in the			Lalithkamal
			application			
			for the user.			
Sprint-4	Model	USN-14	I need to	5	Medium	Priyankadevi
	Deployment		deploy the			Keerthana
	(IBM Cloud)		Machine			Swetha
			Learning			Lalithkamal
			model iiithat			
			was built			
			using cloud			
			environment			
			from IBM.			
			And			
			configuring			
			the data of			
			the user in			

			IBM warehouse service called as db2.			
Sprint-4	Results	USN-15	As a user, I can receive a diagnosis in addition to recommend ations on what I should do now.	5	High	Priyankadevi Keerthana Swetha Lalithkamal

6.2 Sprint delivery schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. Coding & Solutioning

7.1 Feature 1

We have performed Data preprocessing & Exploratory Data Analysis (EDA), Data visualization, Data mining (model building) and Performance metrics. Finally, we have saved the mode

```
Machine Learning Algorithm for Parkinson Disease

Importing libaries

In [5]:

import warnings
warnings.filterwarnings("ignore") #Not to display the warnings
import numpy as np
import pandas as pd
import os, sys
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score #NodeLmetrics
```

```
Data preprocessing and Exploratory Data Analysis(EDA)
 parkinson_data = pd.read_csv('parkinsons.data')
print(parkinson_data)
     name MDVP:Fo(Hz) MDVP:Fhi(Hz) MDVP:Flo(Hz) MDVP:Jitter(%) \
phon_R01_S01_1 119.992 157.302 74.997 0.00784 
phon_R01_S01_2 122.400 148.650 113.819 0.00968 
phon_R01_S01_3 116.682 131.111 111.555 0.01050 
phon_R01_S01_4 116.676 137.871 111.564
         phon R01 S01 5
                                                116.014
                                                                          141.781
                                                                                                     110.655
                                                                                                                                    0.01284
.. 190 phon_R01_S50_2
                                               174.188
                                                                          230.978
                                                                                                       94.261
                                                                                                                                   0.00459
190 phor_R01_550_2
191 phor_R01_550_3
192 phor_R01_550_4
193 phor_R01_550_5
194 phor_R01_550_6
                                               209.516
174.688
198.764
214.289
                                                                          253.017
240.005
396.961
260.277
                                                                                                       89.488
74.287
                                                                                                                                   0.00564
0.01360
                                                                                                       74.904
                                                                                                                                   0.00740
         MDVP:Jitter(Abs) MDVP:RAP MDVP:PPQ Jitter:DDP MDVP:Shimmer
0.00007 0.00370 0.00554 0.01109 0.04374
0.00008 0.00465 0.00596 0.01304 0.06134
0.00009 0.00544 0.00781 0.01633 0.05233
                          0.00009
                                             0.00502
0.00655
                                                                0.00698
0.00908
                                                                                       0.01505
0.01966
                                                                                                                  0.05492
0.06425
190
191
192
193
                          0.00003
0.00003
0.00008
0.00004
                                            0.00263
0.00331
0.00624
0.00370
                                                               0.00259
0.00292
0.00564
0.00390
                                                                                       0.00790
0.00994
                                                                                                                  0.04087
                                                                                                                  0.02751
0.02308
0.02296
                                                                                       0.01873
0.01109
 194
                                                                                                                   0.01884
                                              0.00295
                                                                 0.00317
                                                                                       0.00885
```

```
MDVH denotes Maximum or Minimum Vocal Fundamental Frequency

In [11]: parkinson_data
Button(description='Toggle Pandas/Lux', layout=Layout(top='Spx', width='140px'), style=ButtonStyle())

In [12]: parkinson_data.head(n=20)
Button(description='Toggle Pandas/Lux', layout=Layout(top='Spx', width='140px'), style=ButtonStyle())
output()

In [14]: parkinson_data.tail(50)
Button(description='Toggle Pandas/Lux', layout=Layout(top='Spx', width='140px'), style=ButtonStyle())
output()

In [15]: parkinson_data.shape
#(rows, columns)

Out[15]: (195, 24)

In [17]: #Capturing for null values if any of it is available
parkinson_data.isuul().sum()

Button(description='Toggle Pandas/Lux', layout=Layout(top='Spx', width='140px'), style=ButtonStyle())
output()
No rull values are present in the data
```


Converging the above classification algorithms and performance metric using Voting Classifier. In [37]: from sklearn.ensemble import VotingClassifier VC = VotingClassifier(estimators=[('Classification_model',Classification_model),('Classification_tree',Classification_tree),('Classification_random',C Model_vC = VC.fit(x_train, y_train) Model_prediction = VC.predict(x_test) Model_accuracy = accuracy_score(y_test,pred_gnb) print(Model_accuracy) 0.8813559322033898 XGBClassification - Supervised Machine Learning In [38]: Model_XG = XGBClassifier(random_state=0) Model_XG.fit(x_train,y_train) Out[38]: XGBClassifier()

```
Converging the above classification algorithms and performance metric using Voting Classifier.

In [37]: 
from sklearn.ensemble import VotingClassifier
VC = VotingClassifier(estimators=[('Classification_model',Classification_model),('Classification_tree',Classification_tree),('Classification_random',C
Model_VC = VC.fit(x_train, y_train)
Model_accuracy = accuracy_score(y_test,pred_gnb)
print(Model_accuracy)

0.8813559322033898

XGBClassification - Supervised Machine Learning

In [38]: 
Model_XG = XGBClassifier(random_state=0)
Model_XG.fit(x_train,y_train)

Out[38]: XGBClassifier()
```

```
Saving the model
```

```
In [44]:
import pickle
with open( 'Parkinson_MLmodel.sav', 'wb') as f:
    pickle.dump(Model_XG,f)
with open('standardScalar.sav', 'wb') as f:
    pickle.dump(Scalar_data,f)
```

7.2 Feature 2

We have created an Application with Home Page (After logging in by the user), Layout and Predict Page.

```
<!DOCTYPE html>
This is a starter template page. Use this page to start your new project from
scratch. This page gets rid of all links and provides the needed markup only.
<html lang="en">
 <head>
   <meta charset="utf-8" />
   <meta name="viewport" content="width=device-width, initial-scale=1" />
   <title>Parkinson Detection</title>
   <!-- Google Font: Source Sans Pro -->
   klink
     rel="stylesheet"
     href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,400i,700&display=fallback"
   <!-- Font Awesome Icons -->
   k
     rel="stylesheet"
     href="../static/plugins/fontawesome-free/css/all.min.css"
   <link rel="stylesheet" href="../static/dist/css/adminlte.min.css" />
   klink
     rel="stylesheet"
     href="https://cdn.jsdelivr.net/npm/admin-lte@3.1/dist/css/adminlte.min.css"
  </head>
  <body
   class="hold-transition layout-top-nav layout-footer-fixed layout-navbar-fixed"
   <div class="wrapper">
```

```
<a class="nav-link" href="{{url for('Home page')}}"><b>Home</b></a>
            <a class="nav-link" href="{{url_for('info_page')}}"><b>Info</b></a>
            <a class="nav-link" href="{{url_for('Predict_page')}}"><b>Predict</b></a>
          </div>
Value : <input type="radio" name="parkinsons.data" value="MDVP:Fo(Hz)" /> MDVP:Fo(Hz)
Value : <input type="radio" name="parkinsons.data" value="MDVP:Fhi(Hz)" /> MDVP:Fhi(Hz)
Value : <input type="radio" name="parkinsons.data" value="MDVP:Flo(Hz)" /> MDVP:Flo(Hz)
Value : <input type="radio" name="parkinsons.data" value="MDVP:Jitter(%)" /> MDVP:Jitter(%)
Value : <input type="radio" name="parkinsons.data" value="MDVP:Jitter(Abs)" /> MDVP:Jitter(Abs)
Value : <input type="radio" name="parkinsons.data" value="MDVP:RAP" /> MDVP:RAP
Value: <input type="radio" name="parkinsons.data" value="MDVP:PPO" /> MDVP:PPO
Value : <input type="radio" name="parkinsons.data" value="Jitter:DDP" /> Jitter:DDP
Value : <input type="radio" name="parkinsons.data" value="MDVP:Shimmer" /> MDVP:Shimmer
Value : <input type="radio" name="parkinsons.data" value="MDVP:Shimmer(dB)" /> "MDVP:Shimmer(dB)
Value : <input type="radio" name="parkinsons.data" value="Shimmer:APQ3" /> Shimmer:APQ3
Value : <input type="radio" name="parkinsons.data" value="Shimmer:APQ5" /> Shimmer:APQ5
Value: <input type="radio" name="parkinsons.data" value="MDVP:APQ" /> MDVP:APQ
Value : <input type="radio" name="parkinsons.data" value="Shimmer:DDA" /> Shimmer:DDA
Value : <input type="radio" name="parkinsons.data" value="NHR" /> NHR
Value : <input type="radio" name="parkinsons.data" value="HNR" /> HNR
Value : <input type="radio" name="parkinsons.data" value="status" /> status
Value : <input type="radio" name="parkinsons.data" value="RPDE" /> RPDE
Value : <input type="radio" name="parkinsons.data" value="MDVP:Fo(Hz) /> MDVP:Fo(Hz)
Value : <input type="radio" name="parkinsons.data" value="DFA" /> DFA
Value : <input type="radio" name="parkinsons.data" value="spread1" /> spread1
Value : <input type="radio" name="parkinsons.data" value="spread2" /> spread2
Value : <input type="radio" name="parkinsons.data" value="D2" /> D2
Value : <input type="radio" name="parkinsons.data" value="PPE" /> PPE
<button type="PREDICT">Send your prediction data</putton>
```

```
<script src="../static/plugins/jquery/jquery.min.js"></script>
<!-- Bootstrap 4 -->
<script src="../static/plugins/bootstrap/js/bootstrap.bundle.min.js"></script>
<!-- AdminLTE App -->
<script src="../static/dist/js/adminlte.min.js"></script>
<!-- AdminLTE for demo purposes -->
<script src="../static/dist/js/demo.js"></script>
<script src="https://cdn.jsdelivr.net/npm/admin-lte@3.1/dist/js/adminlte.min.js"></script>
<script>
  var currentTheme = sessionStorage.getItem("theme");
  var mainHeader = document.querySelector(".main-header");
  if (currentTheme) {
    if (currentTheme === "dark") {
      if (!document.body.classList.contains("dark-mode")) {
        document.body.classList.add("dark-mode");
      if (mainHeader.classList.contains("navbar-light")) {
        mainHeader.classList.add("navbar-dark");
        mainHeader.classList.remove("navbar-light");
      toggleSwitch.checked = true;
```

```
<!DOCTYPE html>
This is a starter template page. Use this page to start your new project from
scratch. This page gets rid of all links and provides the needed markup only.
<html lang="en">
 <head>
   <meta charset="utf-8" />
   <meta name="viewport" content="width=device-width, initial-scale=1" />
   <title>Parkinson Detection</title>
    <!-- Google Font: Source Sans Pro -->
    klink
     rel="stylesheet"
     href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,400i,700&display=fallback"
    <!-- Font Awesome Icons -->
    klink
      rel="stylesheet"
     href="../static/plugins/fontawesome-free/css/all.min.css"
    <link rel="stylesheet" href="../static/dist/css/adminlte.min.css" />
    <!-- dropzonejs -->
    klink
     rel="stylesheet"
     href="../static/plugins/dropzone/min/dropzone.min.css"
  </head>
  <body
    class="hold-transition layout-top-nav layout-footer-fixed layout-navbar-fixed"
    <div class="wrapper">
```

```
<div class="collapse navbar-collapse order-3" id="navbarCollapse">
 <!-- Left navbar links -->
 class="nav-item">
    <a href="/" class="nav-link">Home</a>
  <a href="/info" class="nav-link">Info</a>
  <a href="/test" class="nav-link">Predict</a>
  </div>
<!-- Right navbar links -->
<button
    type="button"
    onclick="switchTheme()"
    class="btn btn-primary btn-block btn-sm"
    <i class="fa fa-bell"></i> Switch Theme
```

```
var previewNode = document.querySelector("#template");
previewNode.id = "";
var previewTemplate = previewNode.parentNode.innerHTML;
previewNode.parentNode.removeChild(previewNode);
var myDropzone = new Dropzone(document.body, {
 url: "/predict", // Set the url
  thumbnailWidth: 80,
  thumbnailHeight: 80,
  parallelUploads: 20,
  previewTemplate: previewTemplate,
  autoQueue: false, // Make sure the files aren't queued until manually added
  previewsContainer: "#previews", // Define the container to display the previews
  clickable: ".fileinput-button", // Define the element that should be used as click trigger to select files.
  success: function (file, response) {
   if (response === "healthy") {
     $("#successModel").click();
   } else {
     $("#dangerModel").click();
myDropzone.on("addedfile", function (file) {
 file.previewElement.querySelector(".start").onclick = function () {
   myDropzone.enqueueFile(file);
```

```
var predict = function(input) {
    if (window.model) {
        window.model.predict([tf.tensor(input).reshape([1, 28, 28, 1])]).array().then(function(scores){
            scores = scores[0];
            predicted = scores.indexOf(Math.max(...scores));
            $('#number').html(predicted);
        });
    } else {
        // The model takes a bit to load, if we are too fast, wait
        setTimeout(function(){predict(input)}, 50);
    }
}

$('#clear').click(function(){
        context.clearRect(0, 0, canvas.width, canvas.height);
        $('#number').html('');
    });
    </script>
    </body>
</html>
```

Login Page

Disease input data by registering in this Page:

Predict result side:

Predict Page:

8.Testing

8.1 Test Cases

		Date Team ID	17-Nov-22 PNT2022TMID38399					
				Project Name	Project - Detecting Parkinson's			
				Maximum Marks	4 marks			
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Expected Result	Actual Result	Status
TC_001	Functional	Home Page	Verify user is able to visit home	PC or Laptop & URL	1. Login and enter the input data	User able to visit home page	Working as	Pass
TC_002	Functional	Home Page	Verify user is able to enter the input	PC or Laptop, URL & Hand-	1. Enter the input data and click	User is able to enter the input data	Working as	Pass
TC_003	Functional	Home page	Verify user is able to get the result	PC or Laptop, URL & Hand-	1. Enter input data 2. Click the get	Verify user is able to get the result	Working as	Pass
	UI	Home page	Verify user is able to identify	PC or Laptop & URL	1.Enter input data and click go	User is able to identify the correct	Working as	Pass
TC_004	01							
TC_004 TC_005	UI	Home page	Verify user is able to see the get the	PC or Laptop, URL & Hand-	1. Know about the disease in the	User is able to see the get the correct	Working as	Pass

17-Nov-22 PNT2022TMID38399 Project - Detecting Parkinson's						
4 marks						
Steps To Execute	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	Executed By
1. Login and enter the input data	User able to visit home page	Working as	Pass	Easy to access	N	Priyankadevi R
1. Enter the input data and click	User is able to enter the input data	Working as	Pass	Less time taken	N	Swetha R
1. Enter input data 2. Click the get	Verify user is able to get the result	Working as	Pass	Accurate result	N	Keerthana K
1.Enter input data and click go	User is able to identify the correct	Working as	Pass	Easy to identify the upload	N	Priyankadevi R
1. Know about the disease in the	User is able to see the get the correct	Working as	Pass	Easy to identify the get result	N	All team members

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT)

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	1	1	0	2
Duplicate	0	0	0	0	0
External	2	2	0	1	5
Fixed	1	0	0	0	1
Not Reproduced	0	0	0	0	1
Skipped	0	0	0	0	0
Won't Fix	0	0	0	0	0
Totals	3	3	1	1	8

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Login / Register	8	0	0	8
Home page	1	0	0	1
Logout page	2	0	1	1
Prediction	10	0	0	10
Version control	2	0	0	2

9. RESULTS

9.1 Performance Metrics

Classification Model: Confusion Matrix, Accuracy Score & Classification Report

10. ADVANTAGES & DISADVANTAGES

10.1 Advantages

- ➤ We developed a model using the XG Boost Classifier using sklearn module of python to detect if an individual has Parkinson's Disease or not. We got the machine learning model with 96.61% accuracy, which is good as our dataset contains good labels and values.
- ➤ More accuracy in the model
- ➤ The data of any person can be entered in db to check whether the person is affected by Parkinson's disease or not.

10.2 Disadvantages

- ➤ Packages to be installed
- ➤ It produces fake results if the input data is entered wrong

11. CONCLUSION

It is possible to detect Parkinson's disease using the drawings alone instead of measuring the speed and pressure of the pen on paper. Here, we presented included studies in a high-level summary, providing access to information including machine learning methods that have been used in the diagnosis of PD and associated outcomes, types of clinical, behavioral, and biometric data that could be used for rendering more accurate diagnoses, potential biomarkers for assisting clinical decision making, and other highly relevant information, including databases that could be used to enlarge and enrich smaller datasets. In summary, realization of machine learning-assisted diagnosis of PD yields high potential for a more systematic clinical decision-making system, while adaptation of novel biomarkers may give rise to easier access to PD diagnosis at an earlier stage.

12. FUTURE SCOPE

Following years of minimal progress in the treatment of Parkinson's disease, pioneering pipeline therapies such as those previously discussed offer hope to those affected by this devastating condition.

13. APPENDIX

13.1 Source Code

Machine Learning code: https://github.com/IBM-EPBL/IBM-Project-43936-1660720716/tree/main/Project%20Development%20Phase/Sprint%203/Machine%20Learning%20Algorithm

Web development code: https://github.com/IBM-EPBL/IBM-Project-43936-1660720716/tree/main/Project%20Development%20Phase/Sprint%204

13.2 Github Link:

Repository link: https://github.com/IBM-EPBL/IBM-Project-43936-166072071**6** 13.3 Project Demo:

Link: https://drive.google.com/file/d/1d97lm4RKxtEp6x6vPnyfZAYhlImBG3Rp/view