# Arquitetura e Organização de Computadores Uma Introdução

Gabriel P. Silva – José Antonio Borges

## A informação e sua representação

Capítulo 1

### Sistemas de Numeração





#### **Pré-História**

Muitas cavernas pré-históricas registram contagens, provavelmente de animais, na forma de riscos colocados um ao lado do outro, e agrupados por traços diagonais, para melhorar a leitura





#### Sistema de Contagem Sumério ou Babilônico

A contagem básica estendia-se até 60 (correspondendo a 5 dedos em uma mão e 12 falanges na outra).

#### Sistema de Contagem Sumério ou Babilônico

- Tanto naqueles povos antigos quanto no mundo de hoje, a contagem de pequenas quantidades poderia facilmente ser feita com uma ou duas mãos.
- Note que o uso da contagem até 60 é muito interessante, esse número é múltiplo de 2, 3, 4, 5 e 6 (além de outros), trazendo simplicidade para as operações aritméticas envolvendo divisão, quando realizadas mentalmente.







#### Odômetro Mecânico

É fácil perceber que o odômetro tradicional apresenta números formados de maneira idêntica aos que estamos acostumados a usar na nossa civilização, ou seja, são compostos por dígitos de 0 a 9, e os dígitos são colocados lado a lado, indicando as casas de unidades, dezenas, centenas, etc.

#### Representação Posicional de Números

$$372 = 3 \times 100 + 7 \times 10 + 2 \times 1$$

$$100 = 10^2$$
;  $10 = 10^1 e^1 = 10^0$ 

$$372 = 3 \times 10^2 + 7 \times 10^1 + 2 \times 10^0$$

#### **Base Decimal**

|     | Exemplo |     |     |     |     |     |     |     |     |
|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 1       | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| 10  | 11      | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  |
| 20  | 21      | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  |
|     |         |     |     | ••• | ••• |     |     | ••• |     |
| 80  | 81      | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  |
| 90  | 91      | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  |
| 100 | 101     | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |

#### Representação Binária

$$000_{(2)} = 0_{(10)}$$

$$001_{(2)} = 1_{(10)}$$

$$010_{(2)} = 2_{(10)}$$

$$011_{(2)} = 3_{(10)}$$

$$100_{(2)} = 4_{(10)}$$

$$101_{(2)} = 5_{(10)}$$

#### **Base Octal**

|     | Exemplo |     |     |     |     |     |     |  |
|-----|---------|-----|-----|-----|-----|-----|-----|--|
| 0   | 1       | 2   | 3   | 4   | 5   | 6   | 7   |  |
| 10  | 11      | 12  | 13  | 14  | 15  | 16  | 17  |  |
| 20  | 21      | 22  | 23  | 24  | 25  | 26  | 27  |  |
|     |         |     |     |     | ••• |     |     |  |
| 60  | 61      | 62  | 63  | 64  | 65  | 66  | 67  |  |
| 70  | 71      | 72  | 73  | 74  | 75  | 76  | 77  |  |
| 100 | 101     | 102 | 103 | 104 | 105 | 106 | 107 |  |

#### **Base Hexadecimal**

 $A_{(16)}$  equivale a  $10_{(10)}$ 

 $B_{(16)}$  equivale a  $11_{(10)}$ 

 $C_{(16)}$  equivale a  $12_{(10)}$ 

 $D_{(16)}$  equivale a  $13_{(10)}$ 

 $E_{(16)}$  equivale a  $14_{(10)}$ 

 $F_{(16)}$  equivale a  $15_{(10)}$ 

#### **Base Hexadecimal**

|     |     |     |     | 0   |     |            | Exer | nplo | ·   |     |     | Î   | 5   |     |     |
|-----|-----|-----|-----|-----|-----|------------|------|------|-----|-----|-----|-----|-----|-----|-----|
| 0   | 1   | 2   | 3   | 4   | 5   | 6          | 7    | 8    | 9   | Α   | В   | С   | D   | E   | F   |
| 10  | 11  | 12  | 13  | 14  | 15  | 16         | 17   | 18   | 19  | 1A  | 1B  | 1C  | 1D  | 1E  | 1F  |
| 20  | 21  | 22  | 23  | 24  | 25  | 26         | 27   | 28   | 29  | 2A  | 2B  | 2C  | 2D  | 2E  | 2F  |
|     |     | ••• |     |     |     |            |      | •••  |     |     | ••• |     |     | ••• |     |
| E0  | E1  | E2  | E3  | E4  | E5  | <b>E</b> 6 | E7   | E8   | E9  | EA  | EB  | EC  | ED  | EE  | EF  |
| F0  | F1  | F2  | F3  | F4  | F5  | F6         | F7   | F8   | F9  | FA  | FB  | FC  | FD  | FE  | FF  |
| 100 | 101 | 102 | 103 | 104 | 105 | 106        | 107  | 108  | 109 | 10A | 10B | 10C | 10D | 10E | 10F |

#### Conversão para a base 10

$$142_{(8)} = 1 \times 8^2 + 4 \times 8^1 + 2 \times 8^0$$

$$142_{(8)} = 1 \times 64 + 4 \times 8 + 2 \times 1$$
$$142_{(8)} = 64 + 32 + 2 = 98_{(10)}$$

#### Conversão para a base 10

$$1001_{(2)} = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 0 + 0 + 1 = 9_{(10)}$$

$$1C7A_{(16)} = 1 \times 16^3 + C \times 16^2 + 7 \times 16^1 + A \times 16^0$$

$$1C7A_{(16)} = 7290_{(10)}$$

$$103/5=20$$
, resto 3  $20/5=4$ , resto 0  $4/5=0$ , resto 4

Agora lemos os restos de trás para diante:

$$103_{(10)} = 403_{(5)}$$





$$300/16=18$$
, resto 12  $\rightarrow$  12 vale "C"  $18/16=1$ , resto 2  $1/16=0$ , resto 1

$$300_{(10)} = 12C_{(16)}$$

| C. | Exemplo |    |       |    |       |    |       |  |  |
|----|---------|----|-------|----|-------|----|-------|--|--|
| 00 | 00000   | 10 | 01000 | 20 | 10000 | 30 | 11000 |  |  |
| 01 | 00001   | 11 | 01001 | 21 | 10001 | 31 | 11001 |  |  |
| 02 | 00010   | 12 | 01010 | 22 | 10010 | 32 | 11010 |  |  |
| 03 | 00011   | 13 | 01011 | 23 | 10011 | 33 | 11011 |  |  |
| 04 | 00100   | 14 | 01100 | 24 | 10100 | 34 | 11100 |  |  |
| 05 | 00101   | 15 | 01101 | 25 | 10101 | 35 | 11101 |  |  |
| 06 | 00110   | 16 | 01110 | 26 | 10110 | 36 | 11110 |  |  |
| 07 | 00111   | 17 | 01111 | 27 | 10111 | 37 | 11111 |  |  |

 $416_{(8)}$  = vale quanto na base 2?

4 escrito em binário com 3 dígitos → 100

1 escrito em binário com 3 dígitos → 001

6 escrito em binário com 3 dígitos → 110

 $416_{(8)} = 100\ 001\ 110_{(2)}$ 

| Tabela Auxiliar |     |     |     |     |     |     |     |     |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Base 8          | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| Base 2          | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

|         | Tabela Auxiliar |         |        |  |  |  |  |
|---------|-----------------|---------|--------|--|--|--|--|
| Base 16 | Base 2          | Base 16 | Base 2 |  |  |  |  |
| 0       | 0000            | 8       | 1000   |  |  |  |  |
| 1       | 0001            | 9       | 1001   |  |  |  |  |
| 2       | 0010            | Α       | 1010   |  |  |  |  |
| 3       | 0011            | В       | 1011   |  |  |  |  |
| 4       | 0100            | С       | 1100   |  |  |  |  |
| 5       | 0101            | D       | 1101   |  |  |  |  |
| 6       | 0110            | E       | 1110   |  |  |  |  |
| 7       | 0111            | F       | 1111   |  |  |  |  |

$$3CF1_{(16)} = 0011\ 1100\ 1111\ 0001$$

 Foram deixados espaços em branco no meio do número binário que tem na verdade 16 dígitos em sequência. Isso foi feito para facilitar a leitura, de modo que você perceba claramente que foram usados os números da tabela.

#### Conversão genérica entre quaisquer bases

1. Converta o número na base B1 para a base 10.

$$317_{(8)} = 3 \times 8^2 + 1 \times 8^1 + 7 \times 8^0 = 207_{(10)}$$

#### Conversão genérica entre quaisquer bases

2. Depois converta este novo número na base 10 para a base B2.

$$207/5 = 41$$
, resto 2  
 $41/5 = 8$ , resto 1  
 $8/5 = 1$ , resto 3  
 $1/5 = 0$ , resto 1

$$317_{(8)} = 207_{(10)} = 1312_{(5)}$$

## 1.2 Operações Lógicas

#### **Função NOT**

| Função NOT |       |  |  |  |  |
|------------|-------|--|--|--|--|
| x          | NOT x |  |  |  |  |
| 0          | 1     |  |  |  |  |
| 1          | 0     |  |  |  |  |

 Se uma variável x tiver o valor '1', NOT x valerá '0'. Se a variável x tiver o valor '0', NOT x valerá '1'.

#### Função AND

| Função AND |   |         |  |  |  |  |
|------------|---|---------|--|--|--|--|
| x          | у | x AND y |  |  |  |  |
| 0          | 0 | 0       |  |  |  |  |
| 0          | 1 | 0       |  |  |  |  |
| 1          | 0 | 0       |  |  |  |  |
| 1          | 1 | 1       |  |  |  |  |

 Podemos resumir seu funcionamento numa tabela na qual o resultado da função será '1', apenas quando ambas variáveis forem '1'.

#### **Função NAND**

| Função NAND |   |          |  |  |  |  |
|-------------|---|----------|--|--|--|--|
| x           | у | x NAND y |  |  |  |  |
| 0           | 0 | 1        |  |  |  |  |
| 0           | 1 | 1        |  |  |  |  |
| 1           | 0 | 1        |  |  |  |  |
| 1           | 1 | 0        |  |  |  |  |

 A função NAND é muito utilizada e é equivalente a um AND seguido de um NOT em sua saída (tabela da verdade do AND com a saída invertida).

#### Função OR

|   | Função Of | ₹      |
|---|-----------|--------|
| x | у         | x OR y |
| 0 | 0         | 0      |
| 0 | 1         | 1      |
| 1 | 0         | 1      |
| 1 | 1         | 1      |

 Podemos resumir seu funcionamento numa tabela na qual o resultado da função será '0', apenas quando ambas variáveis forem '0'.

#### **Função NOR**

| Função NOR |   |         |  |  |  |  |  |
|------------|---|---------|--|--|--|--|--|
| x          | у | x NOR y |  |  |  |  |  |
| 0          | 0 | 1       |  |  |  |  |  |
| 0          | 1 | 0       |  |  |  |  |  |
| 1          | 0 | 0       |  |  |  |  |  |
| 1          | 1 | 0       |  |  |  |  |  |

 A função NOR é também comum em eletrônica e é equivalente a um OR com um NOT na sua saída (tabela da verdade do OR com a saída invertida);

#### Função XOR

| Função XOR |   |         |  |  |  |  |  |
|------------|---|---------|--|--|--|--|--|
| X          | у | x XOR y |  |  |  |  |  |
| 0          | 0 | 0       |  |  |  |  |  |
| 0          | 1 | 1       |  |  |  |  |  |
| 1          | 0 | 1       |  |  |  |  |  |
| 1          | 1 | 0       |  |  |  |  |  |

 Na função XOR o resultado é '1' quando as variáveis forem diferentes. O XOR é uma comparação, com a indicação se as variáveis têm valores iguais ou diferentes.

#### Função XNOR

| Função XNOR |   |          |
|-------------|---|----------|
| x           | у | x XNOR y |
| 0           | 0 | 1        |
| 0           | 1 | 0        |
| 1           | 0 | 0        |
| 1           | 1 | 1        |

 A função XNOR é equivalente a XOR seguido de um NOT em sua saída (tabela da verdade do XOR com a saída invertida).

# 1.3 Operações Aritméticas

#### **Soma Decimal**







- É necessário o uso de uma tabuada, que por eficiência deve ser decorada.
- A conta é feita da direita para a esquerda. Mas poderia ser da esquerda para a direita?

#### Tabuada Soma Binária

$$0+0=0$$
 $0+1=1$ 
 $1+0=1$ 
 $1+1=0$  e vai 1

• Explicando a última conta:  $1 + 1 = 10_{(2)}$  (claro, o número  $10_{(2)}$  vale 2 em decimal), ou em outras palavras, 0 e vai 1.

### Soma Binária







- Dígito mais à direita: 1 + 1 = 0 e vai 1.
- Próximo dígito: 1 + 0 + 1 = 10<sub>(2)</sub> ou 2 em decimal, ou seja,
   '0' e vai '1'.

### Tabuada Subtração Binária

$$0 - 0 = 0$$

0-0=0 0-1=1e pede emprestado da próxima casa

$$1 - 0 = 1$$

1 - 1 = 1 e pede emprestado da próxima casa

### Subtração Binária







- Da direita para a esquerda: 0 1 = 1 e emprestou da próxima casa.
- O resto é trivial e o resultado final é 001<sub>(2)</sub>.

### Tabuada Multiplicação Binária

$$0 \times 0 = 0$$
$$0 \times 1 = 0$$
$$1 \times 0 = 0$$
$$1 \times 1 = 1$$

### Multiplicação Binária



### Multiplicação por potência de 2



Para multiplicar um número binário por uma potência de dois, basta agregar ao final uma quantidade de zeros exatamente igual a esta potência

### Divisão Binária

- Aqui usamos o mesmo algoritmo de divisão usado na base decimal, subtraindo e deslocando o resultado para a direita.
- Os dois primeiros dígitos do dividendo são comparados com o divisor e, se o número for maior ou igual, é escrito 1 no quociente.
- Esse valor é multiplicado pelo divisor e subtraído dos dois primeiros dígitos.
- O processo se repete até chegar ao fim do dividendo, quando o resultado da subtração é o resto da divisão.

### Divisão Binária

```
11011
            11
11
            1001
000
 00
  00\underline{1}
   00
    01\underline{1}
      11
      00
```

### Divisão por potência de 2

$$1001101101_{(2)} \div 10000_{(2)} = 100110_{(2)}$$

Para fazer uma divisão inteira de um número binário por uma potência de dois, basta retirar do final uma quantidade de bits exatamente igual a esta potência.

$$1001101101_{,(2)} \div 10000_{(2)} = 100110, 1101_{(2)}$$

No caso da divisão fracionária, basta andar com a vírgula o mesmo número de casas.

### Conversão número binário fracionário

$$\begin{split} 1 \times 2^5 &= 1 \times 100000_{(2)} + \\ 0 \times 2^4 &= 0 \times 10000_{(2)} + \\ 0 \times 2^3 &= 0 \times 1000_{(2)} + \\ 1 \times 2^2 &= 1 \times 100_{(2)} + \\ 1 \times 2^1 &= 1 \times 10_{(2)} + \\ 0 \times 2^0 &= 0 \times 1_{(2)} + \\ 1 \times 2^{-1} &= 1 \times 1/2 = 1 \times 0, 1_{(2)} + \\ 1 \times 2^{-2} &= 1 \times 1/4 = 1 \times 0, 01_{(2)} + \\ 0 \times 2^{-3} &= 0 \times 1/8 = 0 \times 0, 001_{(2)} + \\ 1 \times 2^{-4} &= 1 \times 1/16 = 1 \times 0, 0001_{(2)} \end{split}$$

$$1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-1} + 0 \times 2^{-3} + 1 \times 2^{-4} = 32 + 0 + 0 + 4 + 2 + 0 + 0, 5 + 0, 25 + 0 + 0, 0625 = 38,8125$$

### Conversão número decimal fracionário

- Quando o número tem uma parte fracionária, temos que fazer a conversão em dois passos:
  - o Primeiro convertemos a parte inteira como já mostramos.
  - Depois, temos que usar um método específico para a conversão da parte à direita da vírgula, que é conhecido por "multiplicações sucessivas".
- Multiplica-se a parte fracionária do número desejado pela base para a qual se deseja converter – neste caso, 2 – até que a mesma seja ZERO.
- O número convertido é igual a concatenação de todas as partes inteiras obtidas nos resultados das multiplicações.

### Conversão número decimal fracionário

$$0,75 \times 2 = 1,50$$

$$0,50 \times 2 = 1,00$$

$$0,75_{(10)} = 0,11_{(2)}$$

# 1.4 Representação de Caracteres

|   |             | i i         | Valores    | em Hexa   | adecimal  |           |           |             |
|---|-------------|-------------|------------|-----------|-----------|-----------|-----------|-------------|
|   | 0           | 1           | 2          | 3         | 4         | 5         | 6         | 7           |
| 0 | NUL<br>0000 | DLE<br>0010 | SP<br>0020 | 0<br>0030 | @<br>0040 | P<br>0050 | 0060      | р<br>0070   |
| 1 | SOH<br>0001 | DC1<br>0011 | !<br>0021  | 1<br>0031 | A<br>0041 | Q<br>0051 | a<br>0061 | q<br>0071   |
| 2 | STX<br>0002 | DC2<br>0012 | 0022       | 2<br>0032 | B<br>0042 | R<br>0052 | b<br>0062 | r<br>0072   |
| 3 | ETX<br>0003 | DC3<br>0013 | #<br>0023  | 3<br>0033 | C<br>0043 | S<br>0053 | c<br>0063 | s<br>0073   |
| 4 | EOT<br>0004 | DC4<br>0014 | \$<br>0024 | 4<br>0034 | D<br>0044 | T<br>0054 | d<br>0064 | t<br>0074   |
| 5 | ENQ<br>0005 | NAK<br>0015 | %<br>0025  | 5<br>0035 | E<br>0045 | U<br>0055 | e<br>0065 | u<br>0075   |
| 6 | ACK<br>0006 | SYN<br>0016 | &<br>0026  | 6<br>0036 | F<br>0046 | V<br>0056 | f<br>0066 | v<br>0076   |
| 7 | BEL<br>0007 | ETB<br>0017 | 0027       | 7<br>0037 | G<br>0047 | W<br>0057 | g<br>0067 | w<br>0077   |
| 8 | BS<br>0008  | CAN<br>0018 | 0028       | 8<br>0038 | H<br>0048 | X<br>0058 | h<br>0068 | x<br>0078   |
| 9 | HT<br>0009  | EM<br>0019  | 0029       | 9 0039    | 0049      | Y<br>0059 | i<br>0069 | y<br>0079   |
| A | LF<br>000A  | SUB<br>001A | *<br>002A  | :<br>003A | J<br>004A | Z<br>005A | j<br>006A | z<br>007A   |
| В | VT<br>000B  | ESC<br>001B | +<br>002B  | ;<br>003B | K<br>004B | [<br>005B | k<br>006B | {<br>007B   |
| С | FF<br>000C  | FS<br>001C  | ,<br>002C  | <<br>003C | L<br>004C | \<br>005C | 006C      | 007C        |
| D | CR<br>000D  | GS<br>001D  | -<br>002D  | =<br>003D | M<br>004D | ]<br>005D | m<br>006D | )<br>007D   |
| E | SO<br>000E  | RS<br>001E  | 002E       | ><br>003E | N<br>004E | 005E      | n<br>006E | ~<br>007E   |
| F | SI<br>000F  | US<br>001F  | /<br>002F  | ?<br>003F | O<br>004F | 005F      | 0<br>006F | DEL<br>007F |

### **Tabela ASCII**

|   |      |        | Valores   | em Hexa   | adecimal  |           |           |           |
|---|------|--------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | 8    | 9      | A         | В         | С         | D         | E         | F         |
| 0 | 0080 | 0090   | NBSP      | 0         | À         | Đ         | à         | ð         |
|   |      |        | 00A0      | 00B0      | 00C0      | 00D0      | 00E0      | 00F0      |
| 1 | 0081 | 0091   | i         | ±         | Á         | Ñ         | á         | ñ         |
|   |      | 100.00 | 00A1      | 00B1      | 00C1      | 00D1      | 00E1      | 00F1      |
| 2 | 0082 | 0092   | ¢         | 2         | Â         | Ò         | â         | ò         |
| 2 | 0002 | 0000   | 00A2      | 00B2      | 00C2<br>Ã | 00D2      | 00E2      | 00F2      |
| 3 | 0083 | 0093   | £<br>00A3 | 00B3      | 00C3      | 00D3      | ã<br>00E3 | 0<br>00F3 |
| 4 | 0084 | 0094   | DUA3      | 0003      | Ä         | ÛÛD3      | ä         | ô         |
| 4 | 0084 | 0094   | 00A4      | 00B4      | 00C4      | 00D4      | 00E4      | 00F4      |
| 5 | 0085 | 0095   | ¥         | μ         | Å         | Õ         | å         | Õ         |
| 3 | 0003 | 0075   | 00A5      | 00B5      | 00C5      | 00D5      | 00E5      | 00F5      |
| 6 | 0086 | 0096   | -         | 1         | Æ         | Ö         | æ         | ö         |
|   |      |        | 00A6      | 00B6      | 00C6      | 00D6      | 00E6      | 00F6      |
| 7 | 0087 | 0097   | §         |           | Ç         | ×         | ç         | ÷         |
|   |      |        | 00A7      | 00B7      | 00C7      | 00D7      | 00E7      | 00F7      |
| 8 | 0088 | 0098   | ••        | 00B8      | È         | Ø         | è         | Ø         |
|   |      |        | 00A8      |           | 00C8      | 00D8      | 00E8      | 00F8      |
| 9 | 0089 | 0099   | ©         | 1         | É         | Ù         | é         | ù         |
|   |      |        | 00A9      | 00B9      | 00C9      | 00D9      | 00E9      | 00F9      |
| Α | 008A | 009A   | a         | 0         | Ê         | Ú         | ê         | ú         |
|   |      |        | 00AA      | 00BA      | 00CA      | 00DA      | 00EA      | 00FA      |
| В | 008B | 009B   | «<br>•    | »         | Ë         | Û         | ë         | û         |
|   | 0000 | 0000   | 00AB      | 00BB      | 00CB      | 00DB      | 00EB      | 00FB      |
| C | 008C | 009C   | 00AC      | %<br>00BC | 00CC      | Ü<br>00DC | 00EC      | ü<br>00FC |
| D | 008D | 009D   | SHY       | 1/2       | í         | Ý         | í         |           |
|   | UOOD | 0090   | 00AD      | 00BD      | 00CD      | 00DD      | 00ED      | ý<br>00FD |
| E | 008E | 009E   | ®         | 3/4       | Î         | þ         | î         | þ         |
| - | OUGL | OUTE   | 00AE      | 00BE      | 00CE      | 00DE      | OOEE      | 00FE      |
| F | 008F | 009F   | /         | i         | Ï         | ß         | ï         | ÿ         |
|   |      |        | 00AF      | 00BF      | 00CF      | 00DF      | 00EF      | 00FF      |
|   | 1    |        |           |           |           |           |           |           |

### Tabela ISO/IEC 8859-1

### Padrão Unicode

- O Unicode é um padrão que permite a codificação, representação e manipulação de textos de uma forma consistente na maioria dos sistemas de escrita do mundo.
- Esse padrão é mantido pelo Unicode Consortium, sendo que na versão de março de 2020 (Unicode 13.0) tinha um total de 143.859 caracteres, cobrindo 154 sistemas de escrita (scripts em inglês) modernos e históricos, além de vários conjuntos de símbolos e também emojis.
- O repertório de caracteres do padrão Unicode é sincronizado com a norma ISO/IEC 10646 (UCS - Universal coded character set) e ambos possuem códigos idênticos.

### Codificação UTF-8

| Comparação UTF                |        |         |         |  |  |  |
|-------------------------------|--------|---------|---------|--|--|--|
| Nome                          | UTF-8  | UTF-16  | UTF-32  |  |  |  |
| Menor ponto de código         | 0000   | 0000    | 0000    |  |  |  |
| Maior ponto de códigio        | 10FFFF | 10FFFF  | 10FFFF  |  |  |  |
| Tamanho da unidade do código  | 8 bits | 16 bits | 32 bits |  |  |  |
| Mínimo de bytes por caractere | 1      | 2       | 4       |  |  |  |
| Máximo de bytes por caractere | 4      | 4       | 4       |  |  |  |

- Se a mensagem contiver apenas pontos de código da tabela ASCII, ela deve ter o mesmo tamanho da codificação em 8 bits - na verdade, por simplicidade, o código deve ser o mesmo;
- Os pontos de código do conjunto Unicode que não pertencessem à tabela ASCII seriam transformadas em um conjunto de 2, 3 ou 4 bytes.

### **Codificação UTF-8**

|                                      | UTF-8                                         |
|--------------------------------------|-----------------------------------------------|
| intervalo do código<br>(hexadecimal) | sequência de bytes UTF-8 (binário)            |
| 0000 0000 -> 0000 007F               | 0xxxxxxx (7 bits)                             |
| 0000 0080 -> 0000 07FF               | 110xxxxx 10xxxxxx (11 bits)                   |
| 0000 0800 -> 0000 FFFF               | 1110xxxx 10xxxxxx 10xxxxxx (16 bits)          |
| 0001 0000 -> 0010 FFFF               | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx (21 bits) |

|           | Exemplo |          |    |                      |                 |  |  |  |
|-----------|---------|----------|----|----------------------|-----------------|--|--|--|
| caractere | Unicode | binário  |    | UTF-8<br>(binário)   | UTF-8<br>(hexa) |  |  |  |
| a         | 61      | 01100001 | -> | 01100001             | 61              |  |  |  |
| ç         | E7      | 11100111 | -> | 11000011<br>10100111 | C3 A7           |  |  |  |
| õ         | F5      | 11110101 | -> | 11000011<br>10110101 | C3 B5           |  |  |  |
| e         | 6F      | 01101111 | -> | 01101111             | 6F              |  |  |  |
| S         | 73      | 01110011 | -> | 01110011             | 7F              |  |  |  |

### Padrão UCS

- O Universal coded character set (UCS) é um conjunto padrão de caracteres definido pela norma internacional ISO/IEC 10646 que é a base de muitas codificações de caracteres.
- A versão mais recente, de 2020, contém mais de 136.000 caracteres abstratos, cada um identificado por um nome não ambíguo e um número inteiro chamado ponto de código.
- Este padrão é mantido em conjunto com o padrão Unicode e ambos possuem códigos idênticos.

### Padrão GB18030

- O GB18030 é um padrão do governo da República Popular da China que define o suporte de idioma e caracteres necessários para os softwares comercializados na China, que veio substituir o padrão GB2312/GBK.
- Como um formato de transformação Unicode (ou seja, uma codificação de todos os pontos de código Unicode), o GB18030 suporta caracteres chineses simplificados e tradicionais, isso inclui o padrão pré-existente GB2312/GBK, mais 6.582 caracteres do padrão Unicode Extension-A e 1.948 caracteres adicionais não incluídos no sistema de escrita Han (tais como Mongol, Uigur, Tibetano e Yi).

## 1.5 Representação de Inteiros

### Representação em BCD

- Nesta forma de representação, cada dígito do número decimal é representado por um conjunto separado de 4 bits
- É comum que dois dígitos sejam agrupados por byte (8 bits), no que é conhecido como representação BCD compactada.

| Tabela Decimal — BCD |      |      |      |      |      |      |      |      |      |      |
|----------------------|------|------|------|------|------|------|------|------|------|------|
| Decimal              | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| BCD                  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 |

### Representação em sinal magnitude

 Reserva o bit mais significativo (mais à esquerda) para representar se o número é positivo (igual a '0') ou negativo (igual a '1') e os demais bits para a magnitude.

$$\begin{array}{c} +6 \rightarrow 00000110 \\ -6 \rightarrow 10000110 \\ +100 \rightarrow 01100100 \\ -100 \rightarrow 11100100 \end{array}$$

### Representação em excesso-K

- Deve-se subtrair um valor K da representação binária para se obter o valor real do número.
- Não existe um padrão para o valor de K, mas normalmente para um número com n bits é K = 2<sup>n-1</sup>, por exemplo, o valor de K para um número binário de oito dígitos seria 2<sup>7</sup> = 128.
- Como consequência um valor negativo mínimo representado por todos os bits em '0', o valor "zero" é representado por um '1' no bit mais significativo e '0' em todos os outros bits, e o valor positivo máximo é representado por todos os bits em '1'.

### Representação em complemento a um

 Na representação em complemento a um, todos os números positivos têm o bit mais significativo igual a '0', e os números negativos são obtidos complementando-se, isto é, invertendo-se de '0' para '1' e de '1' para '0' todos os bits do respectivo número positivo.



### Representação em complemento a dois

- Na representação em complemento a dois, os números positivos têm o bit mais significativo igual a '0' e os números negativos tem o bit mais significativo igual a '1'.
- Contudo, os números negativos são obtidos complementando-se todos os bits do número positivo correspondente e somando-se 1.

$$\begin{array}{c} +6 \rightarrow 00000110 \\ -6 \rightarrow 11111010 \\ +100 \rightarrow 01100100 \\ -100 \rightarrow 10011100 \end{array}$$

2

### Soma

- No caso da soma, dados dois números representados em complemento a dois, fazemos a soma normal em base 2.
- Se o resultado ocupar mais de N bits, utilizamos apenas os N bits menos significativos, descartando o '1' mais à esquerda.

### Subtração

- As subtrações podem ser transformadas em somas.
- O procedimento é alterar o sinal do subtraendo (calculando o seu complemento a dois) e somar esse valor com o minuendo.

### Operações aritméticas em complemento a

Soma

### Operações aritméticas em complemento a

Subtração

| 00001010    |   | 10 |   | 01 | 001010 |   | 74  |
|-------------|---|----|---|----|--------|---|-----|
| 00000101    | _ | 5  | - | 11 | 010110 | _ | -42 |
| 00001010    |   | 10 |   | 01 | 001010 |   | 74  |
| 11111011    | + | -5 | 9 | 00 | 101010 | + | 42  |
| (1)00000101 |   | 5  |   | 01 | 110100 |   | 116 |
|             |   |    |   |    |        |   |     |

# 1.6 Representação de Números Fracionários

### Representação em ponto fixo

- Uma determinada quantia de bits é utilizada para representar os números, variando entre 8, 16, 32 ou 64 bits.
- Alguns desses bits são reservados para a parte inteira, e o restante para a parte fracionária.
- O número de bits utilizados para cada parte é arbitrado pelo programador.
- Ao longo deste texto chamaremos de N o número de bits reservados para representar cada número e de F o número de bits reservados para a parte fracionária (obviamente, N-F é o número de bits alocados para a parte inteira).

### Representação em ponto fixo

 Um programador poderia arbitrar que, para um número representado com 32 bits, seriam utilizados 12 bits para a parte fracionária.

$$11001, 01_{(2)} = 27, 25_{(10)}$$

| Parte fracionária f=12          |              |
|---------------------------------|--------------|
| 0000000000000000000000000011001 | 010000000000 |
| 20 bits                         | 12 bits      |

- O formato mais utilizado atualmente é aquele estabelecido no padrão IEEE-754.
- A precisão do número a ser representado varia de acordo com o número de bits empregados na representação do número real podendo, basicamente, ser de 32 bits (precisão simples), 64 bits (precisão dupla) ou 128 bits (precisão quádrupla).
- A precisão simples equivale a um número com 7 dígitos decimais, a precisão dupla a um número com 15 dígitos decimais e a precisão quádrupla, 34 dígitos decimais.

$$N = s \times m \times 2^e$$

|           | 5)-          | IEEE            | E-754              |              |                     |
|-----------|--------------|-----------------|--------------------|--------------|---------------------|
| Precisão  | Sinal (bits) | Expoente (bits) | Mantissa<br>(bits) | Total (bits) | Excesso<br>Expoente |
| Meia      | 1            | 5               | 10                 | 16           | 15                  |
| Simples   | 1            | 8               | 23                 | 32           | 127                 |
| Dupla     | 1            | 11              | 52                 | 64           | 1023                |
| Quádrupla | 1            | 15              | 112                | 128          | 16383               |

- Os números positivos tem o bit de sinal s = 0 e os números negativos tem s = 1.
- O expoente é polarizado, isto é, é somado um valor fixo para sua representação: 127 no caso da precisão simples, 1023 no caso da precisão dupla e 16383 no caso de precisão quádrupla.
- A mantissa é sempre normalizada para um valor entre 1 e 2, sendo que somente a parte fracionária é representada, ficando o '1' inicial implícito, ganhando-se assim um bit a mais de precisão.

| Valores Especiais Ponto Flutuante |       |          |                |  |  |  |
|-----------------------------------|-------|----------|----------------|--|--|--|
| Valor                             | Sinal | Expoente | Mantissa       |  |  |  |
| Zero                              | 0     | 0        | 0              |  |  |  |
| + Infinito                        | 0     | 1111     | 0              |  |  |  |
| - Infinito                        | 1     | 1111     | 0              |  |  |  |
| NaN                               | 0     | 1111     | Diferente de 0 |  |  |  |

### Conversão de ponto flutuante para decimal

| Valor Inicial |          |                         |  |  |  |  |
|---------------|----------|-------------------------|--|--|--|--|
| S             | e        | m                       |  |  |  |  |
| 1             | 10000010 | 00110000000000000000000 |  |  |  |  |

- 1. Convertendo o expoente  $100000010 \longrightarrow 130$ ;
- 2. Despolarizando o expoente  $\longrightarrow$  **130 127** = **3**;
- 3. Somando 1 à mantissa  $\longrightarrow$  1, 0011;
- 4. Desnormalizando de acordo com o expoente  $\longrightarrow$  **1001**, **1**;
- 5. Convertendo para decimal  $\longrightarrow$  **9**, **5**;
- 6. Adicionando o sinal  $\longrightarrow$  -9, 5.

### Operações de soma e subtração

- Equalização dos expoentes dos operandos
- Soma ou subtração das mantissas dos operandos
- Normalização da mantissa do resultado

| Soma de ponto flutuante |   |          |                         |  |  |  |
|-------------------------|---|----------|-------------------------|--|--|--|
|                         | S | expoente | mantissa                |  |  |  |
|                         | 0 | 10000101 | 01110000000000000000000 |  |  |  |
| +                       | 0 | 10000011 | 00010010000000000000000 |  |  |  |

### Operações de soma e subtração

Ajuste do expoente

| Passo a passo |                          |  |
|---------------|--------------------------|--|
| expoente      | mantissa                 |  |
| 10000011      | 00010010000000000000000  |  |
| ↓ +1          | Desloca para a direita ↓ |  |
| 10000100      | 10001001000000000000000  |  |
| ↓ +1          | Desloca para a direita ↓ |  |
| 10000101      | 01000100100000000000000  |  |

### Operações de soma e subtração

Soma das mantissas e resultado final

| Soma das mantissas |                        |  |
|--------------------|------------------------|--|
| 1,                 | 0111000000000000000000 |  |
| + 0,               | 0100010010000000000000 |  |
| 1,                 | 1011010010000000000000 |  |

| Resultado |           |                          |  |
|-----------|-----------|--------------------------|--|
| S         | expoente  | mantissa                 |  |
| 0         | 100000101 | 101101001000000000000000 |  |

# Obrigado!

# Arquitetura e Organização de Computadores: Uma Introdução

Mais recursos em: https://simulador-simus.github.io

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.





