

Helsinki 12.5.2004

E T U O I K E U S T O D I S T U S  
P R I O R I T Y D O C U M E N T

RECD 03 JUN 2004

WIPO PCT



Hakija  
Applicant

Outokumpu Oyj  
Espoo

Patentihakemus nro  
Patent application no

20030508

Tekemispäivä  
Filing date

03.04.2003

Kansainvälinen luokka  
International class

C22C

Keksinnön nimitys  
Title of invention

"Hapeton kupariseos"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä Patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista ja tiivistelmästä.

This is to certify that the annexed documents are true copies of the description, claims and abstract originally filed with the Finnish Patent Office.

**PRIORITY  
DOCUMENT**  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH RULE 17.1(a) OR (b)

*Markkula Tehikoski*

Markkula Tehikoski  
Apulaistarkastaja

Maksu 50 €  
Fee 50 EUR

Maksu perustuu kauppa- ja teollisuusministeriön antamaan asetukseen 1027/2001 Patentti- ja rekisterihallituksen maksullisista suoritteista muutoksineen.

The fee is based on the Decree with amendments of the Ministry of Trade and Industry No. 1027/2001 concerning the chargeable services of the National Board of Patents and Registration of Finland.

## HAPETON KUPARISEOS

### Tekniikan ala

5

Keksintö koskee hapetonta kupariseosta, johon on seostettu lämpötilankestävyyttä lisäävä ainetta. Seos soveltuu käytettäväksi erityisesti kohteissa, joissa seokselta vaaditaan sekä hyvää lämpötilankestävyyttä että hyvää sähköjohtavuutta.

10

### Tekniikan tausta

- Yleisimmin käytetyn kuparilaadun, ns. ETP-kuparin (electrolytic tough pitch) haptipitoisuus on tyypillisesti 200 – 400 ppm. Happea sitoutuu kupariin luonnostaan tavanomaisessa valmistusprosessissa. Happipitoisuutta voidaan myös tarkoituksella pitää halutulla tasolla, sillä happy sitoo haitallisia aineita vähemmän haitallisiksi oksideiksi. Kuparin sähköjohtavuus on sitä suurempi mitä puhtaampaa kupari on, ja myös kupariin sitoutunut happy pienentää johtavuutta. Kuparin lämmönjohtavuus on verrannollinen sähköjohtavuuteen. Erityisesti sähköjohtavuuden parantamiseksi valmistetaankin myös niin sanottua hapetonta kuparia, jonka haptipitoisuus on enintään 10 ppm. Hapettoman kuparin valmistuksessa happen pääsy kontaktiin sulan kuparin kanssa estetään käyttämällä sulan päällä suojaavaa pelkistäävä kerrosta (esim. grafiittia), käyttämällä suojakaasua (esim. typpeä) tai käytämällä vakuumia.
- 25 Hapettoman kuparin lämpötilankestävyyttä on parannettu seostamalla kupariin hopeaa esimerkiksi 0,02 – 0,3 % seoksen painosta.

### 30 Keksinnön yhteenveto

Nyt on keksitty patenttivaatimuksen 1 mukainen hapeton kupariseos. Keksinnön eräitä edullisia sovelluksia esitetään muissa vaatimuksissa.

- 35 Keksinnön mukaisesti hapettomaan kupariin on seostettu magnesiumia yli 30 ppm seoksen painosta laskettuna. Näin saadaan lämpötilankestävyyttä parannetuksi sähköjohtavuuden ja näin myös lämmönjohtavuuden säilyessä kuitenkin korkealila tasolla.

Seos soveltuu käytettäväksi erityisesti tuotteissa, joilta vaaditaan hyvää lämpötilankestävyttä ja samalla hyvää sähköjohtavuutta tai lämmönjohtavuutta.

5

### Keksinnön yksityiskohtainen kuvaus

Keksinnön mukaisen hapettoman kupariseoksen Mg-pitoisuus on yli 30 ppm, parhaiten yli 50 ppm. Mg-pitoisuus on edullisesti enintään 180 ppm, parhaiten enintään 150 ppm. Seoksen happipitoisuus on enintään 10 ppm, parhaiten enintään 5 ppm, kuten 1 – 3 ppm.

Keksinnön mukaisella Mg-seostuksella kuparin lämpötilankestävyys paranee huomattavasti.

15

Kuparin lämpötilankestävyys ilmaistaan tavallisesti niin sanotulla puoliksiemenemislämpötilalla ( $T\frac{1}{2}$ ).  $T\frac{1}{2}$  riippuu kuitenkin huomattavasti muokkausasteesta. Vertailukelpoisten arvojen saamiseksi  $T\frac{1}{2}$  määritetään tavallisesti 40 %:n ja 94 %:n muokkausasteella.

20

Kuparin sähköjohtavuus ilmaistaan tavallisesti niin sanotulla IACS-arvolla (International Anneal Copper Standard). Se ilmaisee sähköjohtavuuden prosentteina standardin mukaisen seostamattoman kuparin johtavuudesta. Hapettoman kupari-laadun sähköjohtavuus on vähintään 100 % IACS.

25

Keksinnön mukaisten kupariseosten puoliksiemenemislämpötilat ovat vähintään samaa luokkaa kuin 0,3 – 0,25 % hopeaa sisältävillä seoksilla. 40 %:n muokkausasteella  $T\frac{1}{2}$  on vähintään 340 °C, parhaiten vähintään 380 °C. 94 %:n muokkausasteella  $T\frac{1}{2}$  on vähintään 300 °C, parhaiten vähintään 335 °C. Seostuksesta huolimatta sähköjohtavuus pysyy kuitenkin korkealla tasolla (yli 100 % IACS). Parhaiten johtavuus on vähintään noin 101 % IACS.

Yli 180 ppm:n pitoisuuksilla lämpötilankestävyden paraneminen suhteessa Mg:n määrään olennaisesti heikkenee. Myös sähköjohtavuus ja valettavuus heikkenevät. Alle 30 ppm:n Mg-pitoisuuksilla ei käytännössä saavuteta enää olennaista parannusta lämpötilankestävytteen.

Magnesium kohottaa tässä puhtaan kuparin rekristallisaatiolämpötilaa. Mg-atomit ovat suurempia kuin Cu-atomit, ja näin hilarakenne vääristyy ja muodostuu jännityksiä. Näin dislokaatioiden liike vaikeutuu.

- 5 Keksinnöllä saavutetaan hopean käyttöön verrattuna kustannussäästöjä, koska magnesium on huomattavasti halvempaa kuin hopea ja sitä tarvitaankin huomattavasti vähemmän kuin hopeaa. Pienen seosaineen määrään vuoksi voidaan myös seostustekniikka valita vapaammin.
- 10 Mg-seostettua kuparia voidaan valmistaa samoilla valmistusmenetelmillä kuin muitakin hapettomia kuparilaatuja kuten esimerkiksi laatta- tai pötkyvalulla joko vaaka- tai pystyvaluna. Sulaan lisätään sopivassa vaiheessa, esimerkiksi valu-uuniin, tarvittava määärä magnesiumia. Koska magnesium reagoi herkästi hapen kanssa, on ilmalta suojaukseen kiinnitettävä erityistä huomiota. Myös sulan kanssa kosketukseen joutuvissa laitteissa on edullista käyttää sellaisia oksidittomia materiaaleja, joista magnesium ei voi sitoa happea.
- 15

Valua seuraa yleensä lämpökäsittely ja muokkaus. Tyypillinen valmistusreitti voisi olla laattavalu alaspäin ja muokkaus kuuma- ja kylmävalssauksella.

- 20
- Magnesium voi näissä pitoisuksissa aiheuttaa sekundaarista raerakennetta, mikä tulee muokkauslämpötilaa valittaessa ottaa huomioon.
- 25
- Fosfori, pii ja rikki voivat reagoida magnesiumin kanssa heikentäen lämpötilankestävyyden paranemista. Sen vuoksi näiden epäpuhtauksien pitoisuus on parhaiten yhteensä enintään 10 ppm.

- 30
- Keksinnön mukaista kuparia voidaan käyttää kohteisiin, joissa vaaditaan hyvää lämpötilankestävyyttä. Tällaisia ovat esimerkiksi sähkömoottorien kommutaattorit ja korkeassa lämpötilassa pinnoitettavat alusmateriaalit. Korkean lämpötilan pinnoitusprosesseilla valmistetaan muun muassa aurinkopaneeleja.

- 35
- Magnesiumia on aikaisemmin käytetty mikroseosaineena yleensä hyvin pieninä pitoisuksina. Tyypillisesti on samalla käytetty muita seosaineita. Esimerkiksi julkaisussa US-5118470, JP-A-62080241 ja JP-A-03291340 on esitetty tällaisia seoksia, joista on muodostettu puolijohdetekniikassa käytettävää liitinlankaa. Langasta saadaan sulattamalla tarkasti pallon muotoisia pisaroita. Materiaalilla on myös hyvä murtoluuus. Magnesiumia on ehdotettu muiden aineiden ohella seosaineeksi

myös esimerkiksi julkaisussa ja JP-A-63140052. Tässä magnesium pitoisuudessa 3 – 10 ppm alentaa kuparin pehmenemislämpötilaa.

Keksinnön mukaisessa seoksessa voidaan käyttää myös muita seosaineita. Tällaisia ovat erityisesti Ag ja P. Ag tunnetusti kohottaa puolksipehmenemislämpötilaa. Sen pitoisuus on edullisesti enintään 500 ppm. Muita mahdollisia seosaineita ovat esimerkiksi S, Sn, Zn, Ni, Si ja Te. Pitoisuus on edullisesti enintään 50 ppm. Myös Sn kohottaa puolksipehmenemislämpötilaa, mutta se ei ole yhtä tehokas kuin Mg ja lisäksi laskee johtavuutta enemmän.

10

### **Esimerkki**

Valmistettiin Mg-seostetut hapettomat kupariseokset, joihin oli seostettu Mg:tä 50,

15 100 ja 150 ppm seoksen painosta. Seosten lämpötilankestävyttä ja sähköjohtavuutta verrattiin tunnettujen hopeakupariseosten lämpötilankestävytteen ja sähköjohtavuuteen.

Kustakin materiaalista valmistettiin hehkutettu 8 mm:n lanka. Langan sähköjohta-

20 vuus mitattiin. Sen jälkeen langat vedettiin 6,2 mm:n (muokkausaste 40 %) tai 2 mm:n (muokkausaste 94 %) paksuuteen. Langat hehkutettiin suolakylvyssä (1 h) alueella 250 – 500 °C. Tulokset esitetään oheisessa taulukossa.

| Seos     | Ag [p-%]   | Sähköjohtavuus [%IACS] | T½ 40 % [°C] | T½ 94% [°C] |
|----------|------------|------------------------|--------------|-------------|
| CuAg0,03 | 0,027-0,05 | 100,88                 | 340          | 295         |
| CuAg0,1  | 0,085-0,12 | 100,77                 | 360          | 325         |
| CuAg0,2  | 0,20-0,25  | 101,10                 | 380          | 340         |
| Mg50ppm  | -          | 101,95                 | 363          | 310         |
| Mg100ppm | -          | 101,40                 | 379          | 335         |
| Mg150ppm | -          | 100,84                 | 386          | 340         |

25 Kuten nähdään, 50 – 150 ppm:n Mg-pitoisuksilla saavutetaan vähintään yhtä hyvätkin ominaisuudet kuin 0,027 – 0,25 %:n Ag-pitoisuksilla.

**Patenttivaatimukset**

1. Hapeton kupariseos, joka sisältää happea enintään 10 ppm seoksen painosta, **tunnettu** siitä, että seos sisältää lämpötilankestävyyden parantamiseksi magnesiumia yli 30 ppm seoksen painosta.

- 5      2. Vaatimuksen 1 mukainen seos, joka sisältää magnesiumia yli 50 ppm.
3. Vaatimuksen 1 tai 2 mukainen seos, joka sisältää magnesiumia enintään 180 ppm, parhaiten enintään 150 ppm.
4. Jonkin edeltävän vaatimuksen mukainen seos, joka sisältää happea enintään 5 ppm, edullisesti 1 – 3 ppm.
- 10     5. Jonkin edeltävän vaatimuksen mukainen seos, jonka puoliksi pehmenemislämpötila 40 %:n muokkausasteella on vähintään 340 °C, parhaiten vähintään 380 °C.
6. Jonkin edeltävän vaatimuksen mukainen seos, jonka puoliksi pehmenemislämpötila 94 %:n muokkausasteella on vähintään 300 °C, parhaiten vähintään 335 °C.
- 15     7. Jonkin edeltävän vaatimuksen mukainen seos, jonka sähköjohtavuus on vähintään 100 % IACS, parhaiten vähintään 101 % IACS.
8. Jonkin edeltävän vaatimuksen mukainen seos, joka sisältää fosforia, piitä ja rikkiä yhteensä enintään 10 ppm.
- 19     9. Menetelmä hapettoman kupariseoksen valmistamiseksi, joka seos sisältää happea enintään 10 ppm, **tunnettu** siitä, että seokseen seostetaan magnesiumia yli 30 ppm ja enintään 180 ppm seoksen painosta.
- 20     10. Jonkin vaatimuksen 1 – 8 mukaisen tai vaatimuksen 9 mukaisesti valmistetun kuparin käyttö tuotteessa, jolta vaaditaan hyvää lämpötilankestävyyttä ja hyvää sähköjohtavuutta tai lämmönjohtavuutta.

L3

### Tiivistelmä

Keksintö koskee hapetonta kupariseosta, joka sisältää lämpötilankestävyyden parantamiseksi magnesiumia yli 30 ppm.