Examen la Fundamente ale Matematicii 21.I.2022, ora 11:00, IR1, grupele 1, 2

P 1. Fie $A \in \mathcal{M}_2(\mathbb{Z})$ matricea $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, iar $(F_n)_{n \in \mathbb{N}}$ şirul lui Fibonacci, definit prin $F_0 = 0$, $F_1 = 1$ şi $F_n = F_{n-1} + F_{n-2}$ pentru orice $n \geq 2$. Arătați că

$$A^n = \left(\begin{array}{cc} F_{n-1} & F_n \\ F_n & F_{n+1} \end{array} \right) \,, \quad \text{pentru orice } n \in \mathbb{N}^*,$$

și că $F_{n-1} \cdot F_{n+1} = F_n^2 + (-1)^n$, $(\forall) n \in \mathbb{N}^*$.

P 2. a) Fie $m, n, r \in \mathbb{N}^*$ numere naturale cu proprietatea că r este restul împărțirii numărului m prin numărul n. Arătați că restul împărțirii numărului $M = 2^m - 1$ prin $N = 2^n - 1$ este $R = 2^r - 1$.

b) Arătați că pentru orice numere naturale nenule m,n are loc egalitatea

$$(2^m - 1, 2^n - 1) = 2^{(m,n)} - 1.$$

P 3. Determinați inversa matricei $A \in \mathcal{M}_{6\times 6}(\mathbb{Q})$,

$$A = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

P 4. Fie A și B două puncte fixe în planul \mathcal{P} , iar k > 0, $k \neq 1$, un număr real pozitiv fixat. Arătați că mulțimea

$$\mathcal{M} = \{ P \in \mathcal{P} | PA = k \cdot PB \}$$

este un cerc. Arătați că centrul acestui cerc se află pe dreapta AB, dar nu pe segmentul [AB].

P 5. Fie $n \in \mathbb{N}^*$, $n \geq 3$, $A_1 A_2 \dots A_n$ un poligon oarecare cu n laturi în plan, iar G centrul de greutate al acestuia. Arătați că pentru orice punct M din plan are loc egalitatea

$$n^2 M G^2 = n \sum_{i=1}^n M A_i^2 - \sum_{1 \le i < j \le n} A_i A_j^2$$
.

P 6. Fie $(a_n)_{n\in\mathbb{N}^*}$ şi $(b_n)_{n\in\mathbb{N}^*}$ şirurile definite prin

$$a_n = \frac{{}^{n+1}\sqrt{(n+1)!}}{{}^{n}\sqrt{n!}}, \qquad b_n = {}^{n+1}\sqrt{(n+1)!} - {}^{n}\sqrt{n!}.$$

Arătați că $\lim_{n\longrightarrow\infty}\frac{n}{\sqrt[n]{n!}}=e,$ $\lim_{n\longrightarrow\infty}a_n=1,$ $\lim_{n\longrightarrow\infty}a_n^n=e$ și că

$$a_n^n = \left((1 + (a_n - 1))^{\frac{1}{a_n - 1}} \right)^{\frac{n}{\sqrt[n]{n!}} \cdot b_n}$$
.

Deduceți că $\lim_{n \to \infty} b_n = \frac{1}{e}$.