Commitment Capacity under Cost Constraints

Anuj Kumar Yadav IIT Patna

Joint work with:

Manideep Mamindlapally IIT Kharagpur

Manoj Mishra NISER, HBNI

Amitalok J. Budkuley IIT Kharagpur

Laboratoire ETIS
CY Cergy Paris Université, ENSEA, CNRS
France

The Problem

Alice's turn, but its bed time

Alice can think about her next move for the whole night

A Solution - Trusted Third Party

That night:

Alice "commits" move to Mom.

Guarantee: the move is **concealed** from Bob

The next morning:

The move is "revealed" to Bob.

Guarantee: Alice is **bound** to her initial choice

What if there is no **Trusted Third Party**?

The Commit Phase

Sealed Bid Auction

Alice "commits" her message to Bob without him knowing what it is.

The Reveal Phase

Alice "reveals" her choice to Bob and he decides whether or not she is being truthful

"Commitment" via Sealed bid Auction Example

- Introduced by [Blum '83] parties are computationally bounded i.e., conditionally secure.
- Commitment based on noisy channels can be unconditionally or information-theoretically secure [Crepéau-Kilian '88].
- Two phases viz., Commit Phase followed by Reveal Phase.

Commitment

A good commitment protocol aims to be

- sound: when both Alice and Bob honestly follow the protocol
- concealing: when Alice honestly follows the protocol but a dishonest Bob may deviate
- binding: when Bob honestly follows the protocol but a dishonest Alice may deviate

Soundness

Bob's Test always passes!

Concealment

At the end of commit phase:

Malicious Bob can not learn Alice's Bid!

Bindingness

Bob's Test rejects dishonest Alice's cheating string

Commitment Capacity: DMCs with constrained inputs

Goal: To characterize Commitment Capacity for cost constrained DMCs.

**View: collection at the end of commit phase

$$S(\Gamma) := \{ \mathbf{x} : \sum_{i=1}^{n} \rho_X(x_i) \le n\Gamma \}$$

Security guarantees

Let $\epsilon > 0$. Let \mathcal{P} be a commitment protocol

 ϵ -sound: When both Alice and Bob are honestly executing the protocol:

$$\mathbb{P}(T(C, \mathbf{X}, V_B) = REJECT) \le \epsilon$$

 ϵ -concealing: For an honest Alice and under any dishonest strategy of Bob,

$$I(C; V_B) \le \epsilon$$

 ϵ -binding: For an honest Bob and under any dishonest strategy of Alice,

$$\mathbb{P}\left(T(\bar{c}, \bar{\mathbf{X}}, V_B) = ACCEPT \quad \& \quad T(\hat{c}, \hat{\mathbf{X}}, V_B) = ACCEPT\right) \leq \epsilon$$

$$\forall (\bar{c}, \bar{\mathbf{X}}), (\hat{c}, \hat{\mathbf{X}}) : \bar{c} \neq \hat{c}$$

Security guarantees

Let $\epsilon > 0$. Let \mathcal{P} be a commitment protocol

 ϵ -sound: When both Alice and Bob are honestly executing the protocol:

$$\mathbb{P}(T(C, \mathbf{X}, V_B) = REJECT) \le \epsilon$$

 ϵ -concealing: For an honest Alice and under any dishonest strategy of Bob,

$$I(C; V_B) \le \epsilon$$

 ϵ -binding: For an honest Bob and under any dishonest strategy of Alice,

$$\mathbb{P}\left(T(\bar{c}, \bar{\mathbf{X}}, V_B) = ACCEPT \quad \& \quad T(\hat{c}, \hat{\mathbf{X}}, V_B) = ACCEPT\right) \le \epsilon$$

$$\forall (\bar{c}, \bar{\mathbf{X}}), (\hat{c}, \hat{\mathbf{X}}) : \bar{c} \neq \hat{c}$$

Rate R > 0 is "achievable" if $\forall \epsilon > 0, \forall n$ sufficiently large. \exists an (n; R)-commitment protocol $\mathcal{P}: \mathcal{P}$ is ϵ -sound, ϵ - binding and ϵ -concealing.

$$\mathbb{C} := \sup\{R : R \text{ is achievable }\}$$

Main Results: Commitment Capacity for cost constraints

$$\mathbb{C}(\Gamma) = \max_{P_X : \mathbb{E}(\rho_X) \le \Gamma} H(X|Y)$$

- Generalisation of the result by [Winter et. al, '03] for general $\rho_X : \mathcal{X} \to \mathbb{R}^+$ function
- With stronger achievability: stronger semantic security (concealment)
- With stronger converse: weaker average error condition

Dual Expression

$$\mathbb{C}(\Gamma) = \min_{\gamma \ge 0} \max_{Q_Y} \log \left[\sum_{x \in \mathcal{X}} 2^{-D(W_{Y|X}(\cdot|x)||Q_Y(\cdot)) + \gamma(\Gamma - \rho_X(x))} \right]$$

- Inspired by 'convex envelope of lines' approach [Csisźar-Korner '83]
- Computational aspect
- Unique optimising output distribution Q_Y

Main Results: Commitment Capacity for cost constraints

- Generalisation of the result by [Winter et. al, '03] for general $\rho_X : \mathcal{X} \to \mathbb{R}^+$ function
- With stronger achievability: stronger semantic security (concealment)
- With stronger converse: weaker average error condition

$$\mathbb{C}(\Gamma) = \min_{\gamma \ge 0} \max_{Q_Y} \log \left[\sum_{x \in \mathcal{X}} 2^{-D(W_{Y|X}(\cdot|x)||Q_Y(\cdot)) + \gamma(\Gamma - \rho_X(x))} \right]$$

Dual Expression

- Inspired by 'convex envelope of lines' approach [Csisźar-Korner '83]
- Computational aspect
- Unique optimising output distribution Q_Y

$$P_1^* \neq P_2^* \qquad P_1^* \longrightarrow \boxed{\begin{array}{c} \stackrel{\text{DMC}}{W_{Y|X}} \longrightarrow Q_1^* \\ P_2^* \longrightarrow \boxed{\begin{array}{c} \stackrel{\text{DMC}}{W_{Y|X}} \longrightarrow Q_2^* \end{array}} \\ \end{array}} \qquad Q_1^* = Q_2^*$$

Main Results: Commitment Capacity for a cost constrained BSC example

BSC(p) channel Hamming weight cost function

Let **x** be a bit string over binary space $\mathcal{X}^n = \{0,1\}^n$.

$$\rho_X(0) = 0$$

$$\rho_X(1) = 1$$

$$T \in \mathbb{R}^+$$

$$weight constraint$$

$$wt_H(\mathbf{x}) \le n\Gamma \qquad \Gamma \in \mathbb{R}^+$$

$$\mathbb{C}(\Gamma) = H_2(p) + H_2(\Gamma) - H_2(p \circledast \Gamma)$$

- Uses the random binning codebook [Wyner '75, Winter et al. '03]
- Employs a stochastic encoding strategy by Alice

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \le \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Binning Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

- Uses the random binning codebook [Wyner '75, Winter et al. '03]
- Employs a stochastic encoding strategy by Alice

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Binning Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

- Uses the random binning codebook [Wyner '75, Winter et al. '03]
- Employs a stochastic encoding strategy by Alice

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Binning Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

- Uses the random binning codebook [Wyner '75, Winter et al. '03]
- Employs a stochastic encoding strategy by Alice

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Binning Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

- Uses the random binning codebook [Wyner '75, Winter et al. '03]
- Employs a stochastic encoding strategy by Alice

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Binning Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

Achievability: Proof Analysis

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Commitment Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

Lemma (Codebook Construction)

 \exists a binned codebook: $\mathcal{A} = \{\bar{x}_{c,k}\}$, for $c \in [2^{nR}]$, $k \in [2^{n\tilde{R}}]$, where $|\mathcal{A}| = 2^{nR_{ov}}$ and $\bar{x}_{c,k} \in \mathcal{T}_{\delta}^{(n)}(P_X)$, such that:

- (i) $d_H(\vec{x}_{c,k}, \vec{x}_{c',k'}) \ge 2n\eta, \forall c \ne c', c, c' \in [2^{nR}], k, k' \in [2^{n\tilde{R}}]$
- (ii) for every $c \in [2^{nR}]$,

$$D\left(\frac{1}{2^{n\tilde{R}}}\sum_{k=1}^{2^{n\tilde{R}}}W_{Y|X}^{(n)}(\vec{y}|\vec{x}_{c,k})\right|\left|[P_XW_{Y|X}]_Y^{(n)}(\vec{y})\right) \le e^{-n\alpha}$$

for some $\alpha(\delta) > 0$, where $\alpha \to 0$ as $\delta \to 0$.

Achievability: Proof Analysis

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Commitment Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

Lemma (Codebook Construction)

 \exists a binned codebook: $\mathcal{A} = \{\bar{x}_{c,k}\}$, for $c \in [2^{nR}]$, $k \in [2^{n\tilde{R}}]$, where $|\mathcal{A}| = 2^{nR_{ov}}$ and $\bar{x}_{c,k} \in \mathcal{T}_{\delta}^{(n)}(P_X)$, such that:

(i)
$$d_H(\vec{x}_{c,k}, \vec{x}_{c',k'}) \ge 2n\eta, \forall c \ne c', c, c' \in [2^{nR}], k, k' \in [2^{n\tilde{R}}]$$

(ii) for every $c \in [2^{nR}]$,

$$D\left(\frac{1}{2^{n\tilde{R}}}\sum_{k=1}^{2^{n\tilde{R}}}W_{Y|X}^{(n)}(\vec{y}|\vec{x}_{c,k})\middle|\left[P_XW_{Y|X}\right]_Y^{(n)}(\vec{y})\right) \leq e^{-n\alpha} \quad \text{"minimum distance } across \ bins \ \text{property"}$$

for some $\alpha(\delta) > 0$, where $\alpha \to 0$ as $\delta \to 0$.

Achievability: Proof Analysis

Binned codebook construction

- $P_X : \mathbb{E}[\rho_X(X)] \leq \Gamma$
- Rate of bin occupancy $(\tilde{R}) = I(X;Y) + \varepsilon/2$
- Commitment Rate $(R) = H(X|Y) \varepsilon$
- Overall Rate $(R_{ov}) = R + \tilde{R} = H(X) \varepsilon/2$

Lemma (Codebook Construction)

 \exists a binned codebook: $\mathcal{A} = \{\bar{x}_{c,k}\}$, for $c \in [2^{nR}]$, $k \in [2^{n\tilde{R}}]$, where $|\mathcal{A}| = 2^{nR_{ov}}$ and $\bar{x}_{c,k} \in \mathcal{T}_{\delta}^{(n)}(P_X)$, such that:

(i)
$$d_H(\vec{x}_{c,k}, \vec{x}_{c',k'}) \ge 2n\eta, \forall c \ne c', c, c' \in [2^{nR}], k, k' \in [2^{nR}]$$

(ii) for every $c \in [2^{nR}]$,

$$D\left(\frac{1}{2^{n\tilde{R}}}\sum_{k=1}^{2^{n\tilde{R}}}W_{Y|X}^{(n)}(\vec{y}|\vec{x}_{c,k})\right|\left|[P_XW_{Y|X}]_Y^{(n)}(\vec{y})\right) \le e^{-n\alpha}$$

for some $\alpha(\delta) > 0$, where $\alpha \to 0$ as $\delta \to 0$.

Output distribution simulation property

Converse

A rate R scheme: $\epsilon_n - sound$, $\epsilon_n - concealing$ and $\epsilon_n - binding$

$$nR = H(C) = H(C|V_B) + I(C; V_B)$$

$$\leq H(C|\mathbf{Y}, M, K_B) + \epsilon_n$$

$$\leq H(C, \mathbf{X}|\mathbf{Y}, M, K_B) + H(C|\mathbf{X}, \mathbf{Y}, M, K_B)$$

$$+ \epsilon_n$$

$$\leq H(\mathbf{X}|\mathbf{Y}) + H(C|\mathbf{X}, V_B) + \epsilon_n$$

$$\leq \sum_{i=1}^n H(X_i|Y_i) + n\epsilon'_n + \epsilon_n$$

$$= n\left(\sum_{i=1}^n \frac{1}{n}H(X_i|Y_i)\right) + n\epsilon'_n + \epsilon_n$$

$$\epsilon_n$$
-concealing

$$I(C; V_B) \le \epsilon_n$$

Lemma:

$$H(C|\mathbf{X}, V_B) \leq n\epsilon'_n, \quad \epsilon'_n \to 0 \text{ as } \epsilon_n \to 0$$

Proof: ϵ_n -soundness, ϵ_n -bindingness, and Fano's Inequality

Converse

A rate R scheme: $\epsilon_n - sound$, $\epsilon_n - concealing$ and $\epsilon_n - binding$

$$nR = H(C) = H(C|V_B) + I(C; V_B)$$

$$\leq n \left(\sum_{i=1}^{n} \frac{1}{n} H(X_i|Y_i) \right) + n\epsilon'_n + \epsilon_n$$

$$\leq n \left(\sum_{i=1}^{n} \frac{1}{n} \mathbb{C}(\mathbb{E}[\rho_X(X_i)]) \right) + n\epsilon'_n + \epsilon_n$$

$$\leq n \mathbb{C} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\rho_X(X_i)] \right) + n\epsilon'_n + \epsilon_n$$

$$\leq n \mathbb{C} \left(\Gamma \right) + n\epsilon'_n + \epsilon_n$$

as
$$n \to \infty$$
, $R \le \mathbb{C}(\Gamma)$

From definition,

$$\mathbb{C}(\Gamma) = \max_{P_X : \mathbb{E}(\rho_X) \leq \Gamma} H(X|Y)$$

Lemma:

$$\mathbb{C}(\Gamma)$$
 is non-decreasing in Γ
 $\mathbb{C}(\Gamma)$ is concave in Γ

$$\sum_{i=1}^{n} \mathbb{E}[\rho_X(X_i)] \le n\Gamma$$

$$\mathbb{C}(\Gamma) = \max_{P_X: \mathbb{E}(\rho_X) \le \Gamma} H(X|Y)$$

Recall, $\mathbb{C}(\Gamma)$: non-decreasing, concave in Γ

Fig: Plot of $\mathbb{C}(\Gamma)$ vs Γ

$$\mathbb{C}(\Gamma) = \max_{P_X : \mathbb{E}(\rho_X) \le \Gamma} H(X|Y)$$

Recall, $\mathbb{C}(\Gamma)$: non-decreasing, concave in Γ

Important Parameters

•
$$\Gamma_0 := \min_x \rho_X(x)$$

•
$$\Gamma^* := \min\{\Gamma : \mathbb{C}(\Gamma) = \mathbb{C}(\infty)\}$$

 $\mathbb{C}(\Gamma)$ only studied for $\Gamma \in [\Gamma_0, \Gamma^*]$

Fig: Plot of $\mathbb{C}(\Gamma)$ vs Γ

For $\Gamma_1 \in [\Gamma_0, \Gamma^*]$

 γ_1 : slope of the tangent to $\mathbb{C}(\Gamma)$ at Γ_1

 $F(\gamma_1)$: corresponding y-intercept

For $\Gamma_1 \in [\Gamma_0, \Gamma^*]$

 γ_1 : slope of the tangent to $\mathbb{C}(\Gamma)$ at Γ_1

 $F(\gamma_1)$: corresponding y-intercept

Fig: Plot of family of γ_1 -sloped lines over $\mathbb{C}(\Gamma)$ curve

For $\Gamma_1 \in [\Gamma_0, \Gamma^*]$

 γ_1 : slope of the tangent to $\mathbb{C}(\Gamma)$ at Γ_1

 $F(\gamma_1)$: corresponding y-intercept

$$F(\gamma_1) = \max_{\Gamma} \left[\mathbb{C}(\Gamma_1) - \gamma_1 \Gamma \right]$$

Fig: Plot of family of γ_1 -sloped lines over $\mathbb{C}(\Gamma)$ curve

 $\mathbb{C}(\Gamma)$ can be reconstructed from the concave envelope of its tangents

Fig: Plot of family of tangents to $\mathbb{C}(\Gamma)$ curve

$$\mathbb{C}(\Gamma_1) = \min_{\gamma \ge 0} \left[F(\gamma) + \gamma \Gamma_1 \right]$$

 $\mathbb{C}(\Gamma)$ can be reconstructed from the concave envelope of its tangents

Fig: Plot of family of tangents to $\mathbb{C}(\Gamma)$ curve

For given Γ

$$F(P_X, Q_Y) := H(P_X) - I(P_X, W_{Y|X})$$

$$- D(P_X W_{Y|X} || Q_Y) - \gamma \rho_X(P_X)$$

$$\max_{P_X} \max_{Q_Y} F(P_X, Q_Y) = F(\gamma)$$

$$\max_{Q_Y} \max_{P_X} F(P_X, Q_Y) = \max_{Q_Y} \left[\log \left(\sum_{x \in \mathcal{X}} \exp(-D(W_{Y|X}(\cdot |x) || Q_Y) - \gamma \rho_X(x)) \right) \right]$$

$$\max_{P_X} \max_{Q_Y} F(P_X, Q_Y) = \max_{Q_Y} \max_{P_X} F(P_X, Q_Y)$$

$$\Rightarrow F(\gamma) = \max_{Q_Y} \left[\log \left(\sum_{x \in \mathcal{X}} \exp(-D(W_{Y|X}(\cdot |x) || Q_Y) - \gamma \rho_X(x)) \right) \right]$$

$$- \gamma \rho_X(x)$$

$$- \gamma \rho_X(x)$$

$$\Rightarrow F(\gamma) = \max_{Q_Y} \left[\log \left(\sum_{x \in \mathcal{X}} \exp(-D(W_{Y|X}(\cdot |x) || Q_Y) - \gamma \rho_X(x)) \right) \right]$$

 $-\gamma \rho_X(x)))$

$$\mathbb{C}(\Gamma) = \min_{\gamma \geq 0} \left[F(\gamma) + \gamma \Gamma \right] = \min_{\gamma \geq 0} \left[\max_{Q_Y} \log \left(\sum_{x \in \mathcal{X}} \exp[-D(W_{Y|X}(\cdot|x)||Q_Y) - \gamma \rho_X(x)] \right) + \gamma \Gamma \right]$$

*exponent and logarithm to the same base

Conclusion

In Summary...

- Commitment capacity of DMCs under general input constraints
- Dual characterization of commitment capacity
- Capacity achieving output distribution is unique for every optimizing input distribution.

Thank you!!