ASSIGNMENT-02

PERECHARLA BHAVANA

ROLL NO:21BCE9184

VITAP

bhavanaperecharla@gmail.com

bhavana.21bce9184@vitapstudent.ac.in

```
import seaborn as sns
import matplotlib.pyplot as plt
```

This code imports Seaborn, loads the 'car_crashes' dataset, and assigns it to the variable 'car_crashes'

<pre># Load the car_crashes dataset car_crashes = sns.load_dataset("car_crashes") car_crashes</pre>								
	total	speeding	alcohol	not_distracted	no_previous	ins_premium		
0	18.8	7.332	5.640	18.048	15.040	784.55		
1	18.1	7.421	4.525	16.290	17.014	1053.48		
2	18.6	6.510	5.208	15.624	17.856	899.47		
3	22.4	4.032	5.824	21.056	21.280	827.34		
4	12.0	4.200	3.360	10.920	10.680	878.41		
5	13.6	5.032	3.808	10.744	12.920	835.50		
6	10.8	4.968	3.888	9.396	8.856	1068.73		
7	16.2	6.156	4.860	14.094	16.038	1137.87		
8	5.9	2.006	1.593	5.900	5.900	1273.89		
9	17.9	3.759	5.191	16.468	16.826	1160.13		
10	15.6	2.964	3.900	14.820	14.508	913.15		
11	17.5	9.450	7.175	14.350	15.225	861.18		
12	15.3	5.508	4.437	13.005	14.994	641.96		
13	12.8	4.608	4.352	12.032	12.288	803.11		

14	14.5	3.625	4.205	13.775	13.775	710.46
15	15.7	2.669	3.925	15.229	13.659	649.06
16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
18	20.5	7.175	6.765	14.965	20.090	1281.55
19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78
21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99

40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95
47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ins_loss 145. 133. 110. 142. 165. 139. 167. 151. 136. 144. 120. 82. 139. 108. 114. 133. 137. 194. 96. 192. 135. 152.	93 AK 35 AZ 39 AR 63 CA 91 CO 02 CT 48 DE 05 DC 18 FL 80 GA 92 HI 75 ID 15 IL 92 IN 47 IA 80 KS 13 KY 78 LA 57 ME 70 MD 63 MA 26 MI 35 MN				

```
25
        144.45
                    MO
26
         85.15
                    MT
27
        114.82
                    NE
28
        138.71
                    NV
29
        120.21
                    NH
30
        159.85
                    NJ
31
        120.75
                    NM
32
        150.01
                    NY
33
        127.82
                    NC
34
        109.72
                    ND
35
        133.52
                    0H
36
        178.86
                    0K
37
        104.61
                    0R
38
                    PA
        153.86
39
        148.58
                    RI
40
                    SC
        116.29
41
         96.87
                    SD
42
        155.57
                    \mathsf{TN}
43
        156.83
                    TX
44
        109.48
                    UT
45
        109.61
                    VΤ
46
        153.72
                    VA
47
        111.62
                    WA
48
        152.56
                    WV
49
        106.62
                    WI
50
        122.04
                    WY
car crashes.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):
#
     Column
                      Non-Null Count
                                        Dtype
- - -
     -----
 0
     total
                       51 non-null
                                        float64
 1
     speeding
                       51 non-null
                                        float64
2
     alcohol
                       51 non-null
                                        float64
 3
     not distracted
                      51 non-null
                                        float64
4
     no previous
                       51 non-null
                                        float64
 5
                       51 non-null
                                        float64
     ins premium
     ins losses
6
                       51 non-null
                                        float64
     abbrev
                       51 non-null
 7
                                        object
dtypes: float64(7), object(1)
memory usage: 3.3+ KB
car crashes.head()
   total speeding alcohol not distracted no previous
                                                               ins premium
0
    18.8
              7.332
                        5.640
                                        18.048
                                                                    784.55
                                                      15.040
```

1	18.1	7.421	4.525	16.290	17.014	1053.48
2	18.6	6.510	5.208	15.624	17.856	899.47
3	22.4	4.032	5.824	21.056	21.280	827.34
4	12.0	4.200	3.360	10.920	10.680	878.41
0 1 2 3 4	ins_loss 145 133 110 142 165	. 93 AK . 35 AZ . 39 AR				

Total Number of car crash cases in every state of USA Visualized using a barplot

```
plt.subplots(figsize=(15,15))
sns.barplot(x="abbrev",y="total",data=car_crashes,color='crimson')
<Axes: xlabel='abbrev', ylabel='total'>
```


Car Crashes due to Speeding in every state of USA

```
plt.subplots(figsize=(15,15))
sns.barplot(x="abbrev",y="speeding",data=car_crashes,color='orange')
<Axes: xlabel='abbrev', ylabel='speeding'>
```


Car Crashes due to alcohol consumption in every state of USA

```
plt.subplots(figsize=(15,15))
sns.barplot(x="abbrev",y="alcohol",data=car_crashes,color='GREEN')
<Axes: xlabel='abbrev', ylabel='alcohol'>
```



```
plt.subplots(figsize=(15,15))
sns.lineplot(data=car_crashes)
<Axes: >
```


sns.heatmap(corr,annot=True)

<Axes: >

Correlation between Total crashes and new crashes Here, we are checking if increase in total number of crashes affects the car crashes with no previous crash record

```
sns.scatterplot(data=car_crashes,y='no_previous',x='total')
<Axes: xlabel='total', ylabel='no_previous'>
```


Scatterplot- Are Speeding cases related to alcohol cases? Checking whether cases of car crashes due to speeding are because of alcohol

```
sns.lineplot(data=car_crashes,x='speeding',y='alcohol')
<Axes: xlabel='speeding', ylabel='alcohol'>
```


This code snippet uses Seaborn and Matplotlib to create a histogram of the "total crashes" column from the 'car_crashes' dataset with 15 bins and a kernel density estimate (kde), and it prepares the plot for display.

histogram of the number of total crashes in the car_crashes DataFrame, with 15 bins. It also plots a smoothed version of the histogram, which can be used to better visualize the distribution of the data.

```
# Histogram of the total crashes
sns.histplot(car_crashes["total"], bins=15, kde=True)
plt.xlabel("Total Crashes")
plt.ylabel("Frequency")
plt.title("Histogram of Total Crashes")
plt.show()
```


This code generates a scatter plot using Seaborn to visualize the relationship between "total crashes" and "alcohol consumed" from the 'car_crashes' dataset. It includes labeled axes and a title for the plot

The plot can be used to visualize the relationship between alcohol consumption and the risk of car crashes..

```
sns.scatterplot(x="total", y="alcohol", data=car_crashes)
plt.xlabel("Total Crashes")
plt.ylabel("Alcohol Consumed")
plt.title("Scatter Plot: Alcohol vs. Total Crashes")
plt.show()
```


This code utilizes Seaborn to create a bar plot, displaying the mean total crashes for each abbreviation in the 'car_crashes' dataset. It also adds labels to the axes and a title to the plot for clarity.

bar plot of the mean total crashes for each abbreviation in the car_crashes DataFrame. The plt.show() function displays the plot.

```
sns.barplot(x="abbrev", y="total", data=car_crashes)
plt.xlabel("Abbreviation")
plt.ylabel("Mean Total Crashes")
plt.title("Bar Plot: Mean Total Crashes by Abbreviation")
plt.show()
```


This code employs Seaborn to generate a box plot that visualizes the distribution of "total crashes" from the 'car_crashes' dataset. It includes a labeled x-axis and a title for the plot.

box plot of the total number of crashes in the car_crashes DataFrame. The plot can be used to visualize the distribution of the data and identify outliers.

```
sns.boxplot(x="total", data=car_crashes)
plt.xlabel("Total Crashes")
plt.title("Box Plot of Total Crashes")
plt.show()
```

Box Plot of Total Crashes

This code utilizes Seaborn to create a count plot, illustrating the number of observations per abbreviation in the 'car_crashes' dataset. It includes labeled axes and a title for the plot.

count plot of the number of observations for each abbreviation in the car_crashes DataFrame. The plot can be used to identify the states or regions with the most and least car crashes.

```
sns.countplot(x="abbrev", data=car_crashes)
plt.xlabel("Abbreviation")
plt.ylabel("Count")
plt.title("Count Plot: Observations per Abbreviation")
plt.show()
```


This code uses Seaborn to generate a violin plot, displaying the distribution of "alcohol consumed" from the 'car_crashes' dataset. It includes a labeled x-axis and a title for the plot.

violin plot of the alcohol consumption for each driver in the car_crashes DataFrame. The plot can be used to visualize the distribution of alcohol consumption and identify outliers.

```
sns.violinplot(x="alcohol", data=car_crashes)
plt.xlabel("Alcohol Consumed")
plt.title("Violin Plot: Alcohol Consumption")
plt.show()
```

Violin Plot: Alcohol Consumption

This code creates a regression plot using Seaborn, illustrating the relationship between "total crashes" and "alcohol consumed" in the 'car_crashes' dataset. It includes labeled axes and a title for the plot.

regression plot of the total number of crashes versus the amount of alcohol consumed by drivers in the car_crashes DataFrame.

```
sns.regplot(x="total", y="alcohol", data=car_crashes)
plt.xlabel("Total Crashes")
plt.ylabel("Alcohol Consumed")
plt.title("Regression Plot: Total Crashes vs. Alcohol")
plt.show()
```


This code generates a Kernel Density Estimation (KDE) plot using Seaborn for the "alcohol consumed" data from the 'car_crashes' dataset. It uses shading to represent the KDE and includes labeled axes and a title for the plot.

kernel density estimation (KDE) plot of the alcohol consumption for each driver in the car_crashes DataFrame. The plot can be used to visualize the distribution of alcohol consumption and identify outliers.

```
sns.kdeplot(car_crashes["alcohol"], shade=True)
plt.xlabel("Alcohol Consumed")
plt.title("Kernel Density Estimation (KDE) Plot: Alcohol Consumption")
plt.show()

<ipython-input-16-d3625963060d>:1: FutureWarning:
    `shade` is now deprecated in favor of `fill`; setting `fill=True`.
This will become an error in seaborn v0.14.0; please update your code.
    sns.kdeplot(car_crashes["alcohol"], shade=True)
```


This code creates a swarm plot using Seaborn to visualize the relationship between "abbreviation" and "total crashes" in the 'car_crashes' dataset. It includes labeled axes, a title, and rotates the x-axis labels for better readability.

Alcohol Consumed

swarm plot of the total number of crashes for each abbreviation in the car_crashes DataFrame. The plot can be used to visualize the distribution of the data and identify outliers.

```
sns.swarmplot(x="abbrev", y="total", data=car_crashes)
plt.xlabel("Abbreviation")
plt.ylabel("Total Crashes")
plt.title("Swarm Plot: Abbreviation vs. Total Crashes")
plt.xticks(rotation=45)
plt.show()
```

Swarm Plot: Abbreviation vs. Total Crashes

This code generates a box plot using Seaborn to display the distribution of "total crashes" by "abbreviation" in the 'car_crashes' dataset. It sets the figure size, includes labeled axes, a title, and rotates the x-axis labels for better visualization.

box plot of the total number of crashes for each abbreviation in the car_crashes DataFrame. The plot can be used to visualize the distribution of the data and identify outliers.

```
plt.figure(figsize=(10, 6))
sns.boxplot(x="abbrev", y="total", data=car_crashes)
plt.xlabel("Abbreviation")
plt.ylabel("Total Crashes")
plt.title("Box Plot: Total Crashes by Abbreviation")
plt.xticks(rotation=45)
plt.show()
```

