	 	 _						
Reg. No								

B.Tech DEGREE EXAMINATION, MAY 2024

Fifth Semester

18AIC303T - FORMAL LANGUAGES AND AUTOMATA THEORY

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

ii. Pa	art - B and Part - C should be answered in answ		Max. N	Tarke	. 100
Tim	e: 3 Hours	1	VIAA. IV	Lai Ro	. 100
	PART - A $(20 \times 1 = 20)$ Answer all Questio		Mark	is BL	CO
1.	Given Language: L= {ab U aba}* If X is the minimum number of states for a construct the NFA, X-Y =?	DFA and Y is the number of states to	1	3	1
	(A) 2 (C) 4	B) 3 D) 1			
2.		iven DFA (x is a binary string B) divisible by 2 D) divisible by 3 and 2	1	3	Ye.
3.	(-) 1	among the following are the epsilon B) q2,q3,q4 D) q1,q2,q3,q4	1	2	1
4.	For NFA with ε -moves, which among the followard (A) Δ : O X (Σ U { ε }) -> P(Q)		1	2	1
5.	Which of the following is same as the given Γ (A) $(0+1)*001(0+1)*$	OFA? (B) 1*001(0+1)* (D) None of the mentioned	1	3	2
6.	Generate a regular expression for the given la $L(x)$: $\{x \mid \{0,1\}^* \mid x \text{ ends with } 1 \text{ and does not } (A) (0+01)^*$	nguage: contain a substring 01} (B) (0+01)*1 (D) All of the mentioned	1	3	2
7	The minimum number of transitions to particle following regular expression is: {a,b}*{baaa} (A) 4 (C) 6	(B) 5 (D) 3		1	2
8	Normal Form, the number of variables to be seen S->ABa A->aab B->Ac	of a context free grammar to Chomsky introduced for the terminals are: (B) 3	y 1	3	2
	(C) 2	(D) 5			

Which of the following option resembles the given PDA?

- (A) $\{0^n1^n|n>=0\}$
- (C) $\{0^{2n}1^n|n>=0\}$

- (B) $\{0^n1^{2n}|n>=0\}$
- (D) None of the mentioned
- 10. A PDA machine configuration (p, w, y) can be correctly represented as:

(A) (current state, unprocessed input,

stack content)

- (C) (current state, stack content, unprocessed input)
- (B) (unprocessed input, stack content, current state)
- (D) none of the mentioned

11.

Which one of the following is the Language for the given diagram

- (A) $L = \{ ww^R \mid w = (a+b)^* \}$
- (B) $L = \{ wcw^R \mid w = (a+b)^* \}$
- (C) $L = \{ ww \mid w = (a+b)^* \}$
- (D) None
- 12. Which of the following grammars are ambiguous?

2

1

3

1

3

1

3

3

3

- $(A)S\rightarrow SS|aSb|bSa|\epsilon$
- (B)S→aSbS|bSaS | ε
- (C)S→aAB
- (D)B \rightarrow A| ϵ

Choose the correct answer from the options given below:

(A) (A) and (C) only

(B) (B) only

(C) (B) and (C) only

- (D) (A)(B) and (C)
- 13. If T1 and T2 are two Turing machines. The composite can be represented using the expression:
 - (A) T1 U T2

(B) T1 X T2

(C) T1T2

(D) None of the mentioned

21. Construct the DFA equivalent to the NFA N=($\{q0,q1,q2\},\{0,1\},\delta,q0,\{q1\}$) and the diagram is given by

22. Construct Regular Expression for the give

~	onsu uce IX	×ι	Hai	Expression	IOL	tne	given	DFA
	tates/Input			•			Ø	
	->q1	q2	q I					
	q 2	q3	q1					
	*q 3	q3	q2					

23. Show that the following language is not regular

A-> 1A0 | S | ε

- a. L={ww | w {a,b}*} b. L= {a' b' c^k | k>=i+j, i, j>=1}
- 24. Construct PDA for the language $L=\{a^m b^m c^n \mid m, n \ge 1\}$
- 25. Design a Turing machine to check whether a string over {a, b} contains equal number of a's and b's. Also verify the string "w = baab" is accepted or not.
- 26. Show that the following grammar is ambiguous by showing (a) two parse trees (b) 2 2 two leftmost derivations (c) rightmost derivations $S \rightarrow a \mid abSb \mid aAb$ A -> bS | aAAb
- 27. Convert the grammar to a PDA that accepts the same language by empty stack and 3 trace for the string 01. $S \rightarrow 0S1 \mid A$

PART - C (
$$5 \times 12 = 60$$
 Marks)
Answer all Questions

Marks BL CO

3

3

2

2

3

12

3

2

(b) Convert the following s-NFA into DFA.

$$S \rightarrow 0A0 \mid 1B1 \mid BB$$

 $A \rightarrow C$
 $B \rightarrow S \mid A$
 $C \rightarrow S \mid \epsilon$

- i. Are there any useless symbols? If any, eliminate them
- ii. Eliminate ε Productions
- iii. Eliminate Unit Productions

Convert the grammar to Chomsky Normal Form

(OR)

(b) Convert the following grammar into Greibach Normal Form

S-->AA

A-->BB |0

B-->SS |1

(a) Design a PDA for the language i. $L = \{a^{2n}b^{n+1} | n>=1\}$ ii. $L = \{a^nb^mc^md^n | n, m>=1\}$ 30.

(OR)

(b) Convert the PDA P= $(\{q_0, q_1\}, \{0, 1\}, \{x, z_0\}, \delta, q_0, z_0, \phi)$ to a CFG if δ is given by

 $\delta(q_0, 0, z_0) = (q_0, x z_0)$ $\delta(q_{0,0}, x) = (q_{0}, xx)$

- $\delta(q_{0,1}, x) = (q_1, x)$

- $\delta(q_0, 1, x) = (q_1, \xi)$ $\delta(q_1, 0, x) = (q_1, \xi)$ $\delta(q_1, 1, z_0) = (q_0, z_0)$ $\delta(q_0, \xi, z_0) = (q_0, \xi)$
- 31. (a) Design a Turing machine

12 3

3

12

(i) F(x, y) = x + y if $x \ge y$ y - x if $y \ge x$

simulate the working of machine for x=0,y=2

(ii) L= { Start with a and has odd number of a's and start with b and has even number of b's }

(OR)

- (b) Design a Turing machine that computes the function
 - (i) f(m,n) = m+n
 - (ii) f(m,n) = m-n
- 32. (a) i) Explain post correspondence problem with an example.

12

ii) Prove that the halting problem of a Turing machine is unsolvable.

(OR)

(b) i) Explain Time and space complexity of Turing Machines

ii) Explain in detail the complexity Class P,NP,NP hard and NP Completeness.