Consumer, Producer Surplus, and Government Policy

Econ 50 | Lecture 18 | March 3, 2016

Lecture

- Welfare Analysis:
 Consumer & Producer Surplus
- Market Interventions:
 Taxes, Subsidies, and
 Wage and Price Controls
 - Under perfect competition
 - With market power

Group Work

- Price ceilings, market power, and consumer surplus [HW8 #1]
- Solving for an equilibrium with taxes [HW8 #2]

Part I Welfare Analysis: Consumer and Producer Surplus

Total Welfare for an Economy

Consumer welfare is total benefit minus total expenditure:

Producer welfare is total revenue minus total cost:

Total welfare = Consumer welfare + producer welfare

$$TB(Q) - PQ + PQ - TC(Q) = TB(Q) - TC(Q)$$

Total Welfare for an Economy

Total welfare = Consumer welfare + producer welfare

$$TB(Q) - PQ + PQ - TC(Q) = TB(Q) - TC(Q)$$

Marginal welfare:

Price-taking consumers set this equal to zero

Price-taking firms set this equal to zero

• Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

$$P_x = rac{MU_x}{\lambda}$$

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

$$P_x = rac{MU_x}{\lambda}$$

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

$$P_x = \frac{MU_x}{\lambda}$$

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

$$P_x = \frac{MU_x}{\lambda}$$

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

Dollars per unit
$$P_x = \frac{MU_x}{\lambda}$$

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

Dollars per unit
$$P_x = \frac{MU_x}{\lambda}$$
 Utils per unit of X

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

Dollars per unit
$$P_x= \frac{MU_x}{\lambda}$$
 Utils per unit of X λ Utils per dollar

Think about the consumer optimization problem:

$$u(x,y) + \lambda(I - P_x x - P_y y)$$

The FOC for good X is:

$$MU_x - \lambda P_x = 0$$

Marginal Benefit to Consumers [Dollars per unit]

Rearranging:

Dollars per unit P_x Utils per unit of X λ Utils per dollar

Think about the consumer optimization problem:

"Consumers set Price = Marginal Benefit"

Marginal Benefit to Consumers [Dollars per unit]

Rearranging:

Dollars per unit $[P_x]$

Utils per unit of X

Utils per dollar

Firm Optimization

"Firms set Price = Marginal Cost"

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive and Quantity Demanded = Quantity Supplied then Marginal Benefit = Marginal Cost

and Total Surplus is Maximized

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive and Quantity Demanded = Quantity Supplied then Marginal Benefit = Marginal Cost and Total Surplus is Maximized

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive
and Quantity Demanded = Quantity Supplied
then Marginal Benefit = Marginal Cost
and Total Surplus is Maximized

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive and Quantity Demanded = Quantity Supplied then Marginal Benefit = Marginal Cost and Total Surplus is Maximized

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive and Quantity Demanded = Quantity Supplied then Marginal Benefit = Marginal Cost and Total Surplus is Maximized

Why?

"The marginal benefit of the last unit consumed is equal to the marginal cost of producing it."

Welfare Analysis: Graphical Analysis

- CS and PS are represented by areas in a graph showing P vs. Q
 - Measured in dollars
 - Check the units: Price (\$/unit) x Quantity (units) = \$
- As areas, they represent the summation (integrals) of marginal benefit and marginal cost.
- Constant of integration (economic profit, economic rents) not included in calculation of consumer and producer surplus

Start with the total benefit to consumers... add the total (variable) cost to firms...

Part II Market Interventions: Taxes and Price Controls

Firms set Price Firms Receive = Marginal Cost

If Price Consumers Pay = Price Firms Receive and Quantity Demanded = Quantity Supplied then Marginal Benefit = Marginal Cost and Total Surplus is Maximized

Taxes, Subsidies and Price Controls

Taxes or subsidies:

Price consumers pay different from price firms receive Quantity demanded equals quantity supplied

Price ceiling or price floor:

Price consumers pay same as price firms receive Quantity demanded (may be) difference