0212网络基础

TCP/IP五层(或四层)模型

TCP/IP是一组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。 TCP/IP通讯协议采用了5层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求.

- **物理层**: 负责光/电信号的传递方式. 比如现在以太网通用的网线(双绞线)、早期以太网采用的的同轴电缆 (现在主要用于有线电视)、光纤, 现在的wifi无线网使用电磁波等都属于物理层的概念。物理层的能力决 定了最大传输速率、传输距离、抗干扰性等. 集线器(Hub)工作在物理层.
- 数据链路层: 负责设备之间的数据帧的传送和识别. 例如网卡设备的驱动、帧同步(就是说从网线上检测 到什么信号算作新帧的开始)、冲突检测(如果检测到冲突就自动重发)、数据差错校验等工作. 有以太 网、令牌环网, 无线LAN等标准. 交换机(Switch)工作在数据链路层.
- 网络层: 负责地址管理和路由选择. 例如在IP协议中, 通过IP地址来标识一台主机, 并通过路由表的方式规划出两台主机之间的数据传输的线路(路由). 路由器(Router)工作在网路层.
- 传输层: 负责两台主机之间的数据传输. 如传输控制协议 (TCP), 能够确保数据可靠的从源主机发送到目标 主机.
- 应用层: 负责应用程序间沟通,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等. 我们的网络编程主要就是针对应用层.

局域网中,两台主机是可以直接通信的

每层都有自己的协议定制方案 每层协议都啊哟有自己的协议报头

从上到下交付数据的时候,要添加报头 从下到上交付数据的时候,要去掉报头 封装的本质:添加报头 解包:去掉报头

局域网中表示主机的唯一性:MAC地址

```
> ~ 终端
 • (base) [yufc@VM-12-12-centos:~/Core]$ ifconfig
   docker0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
          inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
          ether 02:42:01:fb:ef:86 txqueuelen 0 (Ethernet)
          RX packets 0 bytes 0 (0.0 B)
          RX errors 0 dropped 0 overruns 0 frame 0
          TX packets 0 bytes 0 (0.0 B)
          TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
   eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
          inet 10.0.12.12 netmask 255.255.252.0 broadcast 10.0.15.255
          inet6 fe80::5054:ff:fe18:14a8 prefixlen 64 scopeid 0x20<link>
          ether 52:54:00:18:14:a8 tagerelon 1000 (Ethernet)
          RX packets 45891515 bytes 10579724270 (9.8 GIB) 以太网地址: MAC地址
          RX errors 0 dropped 0 overruns 0 frame 0
          TX packets 43136758 bytes 8387750320 (7.8 GiB)
          TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
   lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
          inet 127.0.0.1 netmask 255.0.0.0
          inet6 ::1 prefixlen 128 scopeid 0x10<host>
          loop txqueuelen 1000 (Local Loopback)
          RX packets 5575677 bytes 2156750201 (2.0 GiB)
          RX errors 0 dropped 0 overruns 0 frame 0
          TX packets 5575677 bytes 2156750201 (2.0 GiB)
          TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

如果是在一个局域网内的,就是下面这个过程

处理应用 FTP协议 FTP FTP 用户进程 程序细节 应用层 服务器 客户 TCP协议 TCP TCP 传输层 处理通信细节 内核 IP协议 IP IP 网络层 以太网协议 以太网驱 以太网驱 链路层 动程序 动程序 以太网

如果两个主机是跨网段的,就是通过下面这个过程

IP地址 MAC地址?他们两是什么关系?

蛋哥在这节课的解释,和画的图,忘记了要重新看看! 在使用TCP/IP协议的网络中,IP及其向上的协议,看到的报文都是一样的 通过路由器,原来以太网的报 头,被替换成了令牌环的报头 但是到了令牌环驱动程序向上 开始解包的时候,把令牌环的 报头解掉,上面看到的,都是 一样的了

MAC地址,用来在局域网中,标定主机的唯一性 IP地址,用来在广域网(公网),标定主机的唯一性 常识告诉我们,一般我们在进行路线选择的时候,我们一般有两套地址:

1. 从哪里来,到那里去

2. 上一站从哪里来,下一站要去哪里

MAC地址 : 源mac地址,目标mac地址

数据包封装和分用

- 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报 (datagram) 在链路层叫做帧(frame).
- 应用层数据通过协议栈发到网络上时,每层协议都要加上一个数据首部(header),称为封装 (Encapsulation).
- 首部信息中包含了一些类似于首部有多长, 载荷(payload)有多长, 上层协议是什么等信息.
- 数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,根据首部中的"上层协议字段"将数据交给对应的上层协议处理.
- 解包 用户数据 封装 应用程序 Appl 首部 用户数据 TCP TCP首部 应用数据 TCP段 IP IP首部 TCP首部 应用数据 IP数据报 以太网 驱动程序 以太网 以太网 IP首部 TCP首部 应用数据 首部 尾部 以太网 20 14 以太网帧 46~1500字节

- 1. 报文是如何封装的,如何解包?
- 2. 决定我们的有效载荷交付给上层的 哪一个协议的问题

每一个协议都要考虑的。

每一个协议都要有一定的方式来解决 这两个公共问题

网络中的地址管理

认识IP地址

IP协议有两个版本, IPv4和IPv6. 我们整个的课程, 凡是提到IP协议, 没有特殊说明的, 默认都是指IPv4

- IP地址是在IP协议中, 用来标识网络中不同主机的地址;
- 对于IPv4来说, IP地址是一个4字节, 32位的整数:
- 我们通常也使用 "点分十进制" 的字符串表示IP地址, 例如 192.168.0.1; 用点分割的每一个数字表示一个字节, 范围是 0 255;

认识MAC地址

- MAC地址用来识别数据链路层中相连的节点:
- 长度为48位, 及6个字节. 一般用16进制数字加上冒号的形式来表示(例如: 08:00:27:03:fb:19)
- 在网卡出厂时就确定了,不能修改. mac地址通常是唯一的(虚拟机中的mac地址不是真实的mac地址,可能会冲突; 也有些网卡支持用户配置mac地址).