

细菌的细胞壁与革兰氏染色

刘唤明

一、细菌的细胞壁与功能

细胞壁: 位于细菌细胞外表面,是一层较坚韧、厚实、略有弹性的结构,占细胞干重的10~25%,厚度约10-80 nm。

细胞壁主要功能:

- ① 维持细胞外形,保护细胞免受外力的损伤;
- ② 具有一定屏障作用;
- ③ 为正常的细胞分裂增殖所必需;
- ④ 作为鞭毛运动的支点;
- ⑤与细菌的革兰氏染色反应密切相关。
- ⑥ 与细胞的抗原性、致病性及对噬菌体的敏感性密切相关。

二、细菌的革兰氏染色

所有细菌细胞壁的结构和化学组 成都一样吗?

丹麦医生Hans Christian Gram 于1884年发明的一种鉴别不同类 型细菌的染色方法。

革兰氏染色法

革兰氏染色呈 紫色的细菌为 革兰氏阳性菌

革兰氏染色呈 红色的细菌为 革兰氏阴性菌

为什么不同的细菌在相同的染色步骤下呈现不同的颜色?

三、细菌细胞壁的化学组成和结构

Gram Positive

革兰氏阳性菌与革兰氏阴性菌的细胞壁特征

特征	革兰氏阳性菌	革兰氏阴性菌
厚度(nm)	20~80	10~15
外膜层	无	有
肽聚糖	多层,占细胞壁干 重的50-80%	单层,占细胞壁干重的5-10%
磷壁酸	有	无
脂多糖	无	有
类脂和脂蛋白 含量	无	有

(一) 革兰氏阳性细菌细胞壁

结构: 单层; 厚度约20~80nm; 化学成分是肽聚糖和磷壁酸。

肽聚糖:占90%,原核生物特有成分

磷壁酸:占10%,革兰氏阳性菌特有成分

细菌肽聚糖化学组成

磷壁酸: 是G+细菌细胞壁中特有的一种酸性多糖。

壁磷壁酸: 只与肽聚糖层相结合

膜磷壁酸: 跨越肽聚糖层, 并与细胞质膜层相交联

磷壁酸的主要生理功能:

带负电荷,能增强细胞吸附Mg²⁺等阳离子的作用; 赋予G+细菌以特异的表面抗原,因而可用于菌株鉴定: 提供某些噬菌体的特异性吸附受体: 调节细胞内自溶素的活力,防止细菌因自溶而死亡: 增强某些致病菌(如A族链球菌)与其宿主间的黏连。

(二) 革兰氏阴性菌细胞壁 比阳性菌细胞壁要薄,厚度15~20nm; 结构复杂,有内外两层

外膜(又称外壁)层

结构:外膜层厚度8~10nm;基本结构和细胞膜类似,也是磷脂双分子层;化学成分为脂多糖、磷脂和外膜蛋白。

外膜层是革兰氏阴性菌细胞壁所特有的结构。

脂多糖

脂多糖: 是位于G-细菌细胞壁外的一层较厚(8~10nm)的类脂多糖类物质,由类脂A、核心多糖和0-特异侧链3部分组成。

脂多糖主要功能:

类脂A为G-细菌内毒素的物质基础: 具有吸附Mg²⁺、Ca²⁺等阳离子的作用; 决定了G-细菌细胞表面抗原决定族的多样性: 是许多噬菌体在细菌细胞表面的吸附受体: 具有某种选择性吸收功能。

内壁层

内壁层厚度仅有1~8nm

内壁层由一层或少数几层肽聚糖组成

与G+细菌相比,G-细菌肽聚糖四肽 尾的第三个氨基酸分子不是赖氨酸, 而是被二氨基庚二酸所取代。

内壁层

G-细菌肽聚糖无甘氨酸肽桥,四 肽链之间的链接通过第一个四肽 尾的第四个氨基酸(Ala)的羧 基与第二个四肽尾中DAP的氨基 直接相连。

G+细菌与G-细菌肽聚糖的比较:

项目	革兰氏阳性菌	革兰氏阴性菌
层次	15-20层	一层或少数几层
含量	占细胞壁干重的50-80%	占细胞干重的5-10%
四肽尾	第三个氨基酸是赖氨酸	第三个氨基酸是二氨基庚二酸
肽桥	有	无
交联度	高	低
空间结构	致密	较稀疏
机械强度	强	较差

G+细菌与G-细菌一系列生物学特性的比较

比较项目	革兰氏阳性菌	革兰氏阴性菌
1革兰氏染色反应	阻留结晶紫而染成紫色	可脱色而复染成红色
2肽聚糖层	厚,层次多	薄,一般单层
3磷壁酸	有	无
4外膜	无	有
5脂多糖	无	有
6类脂和脂蛋白含量	基本无 (仅抗酸性细菌含)	高
7鞭毛结构	基体上着生两个环	基体上着生四个环
8产毒素	以外毒素为主	以内毒素为主
9对机械力的抗性	强	弱
10抗溶菌酶	弱	强
11对青霉素	敏感	不敏感
12对链霉素、氯霉素	不敏感	敏感
13产芽孢	有的产	不产

四、革兰氏染色的机理

经过结晶紫初染和碘液媒染,细菌内形成不溶于水的结晶紫-碘复合物。

G-菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇脱色时溶解了类脂质,增加了细胞壁的通透性,使初染形成的结晶紫-碘复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。

G+菌细胞壁中几乎不含类脂质,肽聚糖层厚且交联度高,经乙醇脱色处理后肽聚糖网孔脱水收缩,结晶紫-碘复合物不同透过细胞壁被洗出,因此细菌仍保留初染时的颜色,呈现紫色。

思考题

(1) 比较革兰氏阳性菌和革兰氏阴性菌细胞壁的不同。

(2) 革兰氏染色的步骤和原理。