Stochastic Processes and Simple Decisions

Review

Guiding Question

What does "Markov" mean in "Markov Decision Process"?

Stochastic Process

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_1, x_2, x_3, \ldots\}$
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

Stochastic Process

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

$$P(x_{1:n}) = \prod_{t=1}^n P(x_t \mid \mathrm{pa}(x_t))$$

For this particular process,

$$P(x_{1:n}) = \prod_{t=1}^n P(x_t \mid x_{t-1})$$

Joint

	x 0	x1	x2	P(x1, x2, x3)
	0	0	0	0.25
	0	0	1	0.25
	0	1	1	0.25
	0	1	2	0.25

Marginal

For this particular process, since $pa(x_t) = x_{t-1}$, if $P(x_{t-1})$ is known,

$$egin{align} P(x_t) &= \sum_{k \in x_{t-1}} P\left(x_t \mid x_{t-1} = k
ight) P(x_{t-1} = k) \ &= 0.5 \, P(x_{t-1} = x_t - 1) + 0.5 \, P(x_{t-1} = x_t)_5 \end{split}$$

Stochastic Process

Expectation

$$E[x_t] = \sum_{x \in x_t} x P(x_t = x)$$

For this particular process, $x_t = \sum_{i=1}^t v_t$, so

$$E[x_t] = E\left[\sum_{i=1}^t v_t
ight] = \sum_{i=1}^t E[v_t] = 0.5t$$

Expectation of a function (such as reward)

$$E[f(x_t)] = \sum_{x \in x_t} f(x) P(x_t = x)$$

Simulating a Stochastic Process

030-Stochastic-Processes.ipynb

Markov Process

- ullet A stochastic process $\{s_t\}$ is *Markov* if $P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0) = P(s_{t+1} \mid s_t)$
- ullet s_t is called the "state" of the process

Break

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. **What information should be in the state of the model?**Assume:

- The population mixes thoroughly (i.e. there are no geographic considerations).
- COVID patients may be contagious up to 14 days after they contract the disease.
- The number of people infected by each person on day d of their illness is roughly $\mathcal{N}(\mu_d, \sigma^2)$

Hidden Markov Model

(Often you can't measure the whole state)

Simple Decisions

Simple Decisions

Outcomes

 $S_1 \dots S_n$

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succ [B:p;C:1-p]$

von Neumann - Morgenstern Axioms

These constraints imply a utility function U with the properties:

- U(A) > U(B) iff A > B
- U(A) = U(B) iff $A \sim B$
- $ullet \ U([S_1:p_1;\ldots;S_n:p_n]) = \sum_{i=1}^n p_i \, U(S_i)$

Decision Networks

Markov Decision Process

Finite MDP Objectives

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight] \qquad egin{aligned} \mathsf{discount}\ \gamma\in[0,1) \ \mathsf{typically}\ \mathsf{0.9},\ \mathsf{0.95},\ \mathsf{0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

Guiding Question

What does "Markov" mean in "Markov Decision Process"?