Model Documentation of the Acrobot

1 Nomenclature

1.1 Nomenclature for Model Equations

- s_i center of gravity distance of the bar for i = 1, 2
- m_i mass of the bar for i = 1, 2
- J_i moment of inertia of the bar for i = 1, 2
- l_1 length of the first bar
- g acceleration due to gravity
- p_1 angle between the vertically downwards rest position and the first bar
- q_1 angle between the first and the second bar
- \vec{p}_1 angle velocity of the first bar
- $\dot{q_1}$ angle velocity of the second bar
- au_1 input force at the joint

1.2 Graphic of the Structure

Figure 1: Acrobot Source: Knoll, Carsten/Acrobot (=unteraktuierter Zweigelenkmanipulator, Stellglied im Ellenbogengelenk)

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (p_1 \ q_1 \ \dot{p_1} \ \dot{q_1})^T$$

$$\underline{u} = \tau_1$$

$$= (x_1 \ x_2 \ x_3 \ x_4)^T$$

$$= u_1$$

Kinetic Energy:

$$T = \frac{J_1 x_3^2}{2} + \frac{J_2 (x_3 + x_4)^2}{2} + \frac{m_1 x_3^2 s_1^2 \sin(x_1)^2}{2} + \frac{m_1 x_3^2 s_1^2 \cos(x_1)^2}{2}$$

$$+ m_2 (-l_1 x_3 \sin(x_1) - \frac{s_2 (x_3 + x_4) \sin(x_1 + x_2))^2}{2} + m_2 (l_1 x_3 \cos(x_1) + \frac{s_2 (x_3 + x_4) \cos(x_1 + x_2))^2}{2}$$

Potential Energy:

$$V = gm_1s_1\sin(x_1) + gm_2(l_1\sin(x_1) + s_2\sin(x_1 + x_2))$$

Parameters: $s_1, s_2, m_1, m_2, J_1, J_2, l_1, g$

Outputs: \underline{x}

2.1 Assumptions

1. The rest position of the acrobot is vertically downward.

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
center of gravity distance of first bar	s_1	0.25	m
center of gravity distance of second bar	s_2	0.25	\mathbf{m}
mass of first bar	m_1	1	kg
mass of second bar	m_2	1	kg
moment of inertia of first bar	J_1	0.006667	$\frac{kg}{\frac{kg}{m^2}}$
moment of inertia of second bar	J_2	0.01333	$\frac{kg}{m^2}$
length of first bar	l_1	0.5	m
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the acrobot.

References

[1] Knoll, Carsten: Acrobot (=unteraktuierter Zweigelenkmanipulator, Stell-glied im Ellenbogengelenk), Jupyter Notebook published 2017. https://github.com/cknoll/beispiele/blob/master/acrobot_rwa.ipynb