Страхование и актуарная математика Александр Широков ПМ-1701

Преподаватель:

Радионов Андрей Владимирович

Санкт-Петербург 2020 г., 7 семестр

Список литературы

[1]

Содержание

1	01.09.2020	2
	1.1 О чём предмет	2
2	03.09.2020	2

$1 \quad 01.09.2020$

1.1 О чём предмет

Страхование вклада - если у банка возникают проблемы, то нам возвращают деньги банк в некоторой границе. Страхование - выход США из великой депрессии. Застраховать в принципе можно все что угодно.

$2 \quad 03.09.2020$

В ситуациях неопределенностей человек принимает решение не на основании математического ожидания $E\xi$, а на основании математического ожидания некоторой функции полезности $Eu(\xi)$, где u - некая функция полезности. За w - обозначим капитал, а за a - плата за риск, ξ - потенциальные убытки. Тогда ситуация будет описываться:

$$Eu(w-\xi)$$
 $u(w-a)$

Пусть W=100 и случайая величина убытков принимает следующие значения: 0 с вероятностью 0.9,1 с вероятностью 0.05,20 с вероятностью 0.05. Функция полезности - $u(x)=\ln(x+1)$. Математическое ожидание убытка $E\xi=0.55$. Приходит банк и говорит продать за 60.

 $w-\xi$ - начальное состояние, w-a - возможное состояние, сравнение полезностей

Посчитаем:

$$Eu(w-\xi) = E\ln(100-\xi+1) = \ln(101-0+1)\cdot 0.9 + \ln(100-1+1)\cdot 0.05 + \ln(100-10+1)\cdot 0.05 = 4.60941$$

$$E \ln(100 + 1 - 0.55) = 4.60966$$

Есть $W, u(\xi), \xi, f_{\xi}(x)$:

$$E(u(W - \xi)) = \int_{-\infty}^{\infty} u(W - x) f_{\xi}(x) dx$$

Вместо бесконечностей используются границы интегрирования.

$$\Delta u = \frac{\Delta W}{W}$$
 $du = \frac{dW}{W}$ $u = \ln W$

Определение 2.0.1. Пусть есть набор случайных величин ξ и будем задавать предпочтение подобным образом $\xi \geq \eta$ - предпочтение нестрого отношение, если существуют какие-то пары, которые находятся в бинарном отношении.

Мы будем говорить про свойства отношений:

- 1. Пиолнота: $\xi \ge \eta$ или $\eta \ge \xi$
- 2. Транзитивность: $\xi \geq \eta, \eta \geq \varepsilon \Rightarrow \xi \geq \varepsilon$
- 3. Из первого следует рефлексиновть

Будем говорить, что данное бинарное отношение является отношением эквивалентности - рефлексивно, транзитивно, симметрично.

Определение 2.0.2. Будем говорить, что $\xi \geq \eta$ и $\xi \not\sim \eta$ - отношение строго порядка

Определение 2.0.3. $V:\Xi\to R$ - функция V сохраняет упорядочивание, если $\xi\ge\eta$, то:

$$V(\xi) \ge V(\eta)$$

Определение 2.0.4. Пусть есть набор \mathbb{A}_j . $B \in A$ является полным по упорядочиванию, если для любых элементов $a, b \in A$ существует элемент $\exists c \in B$, что либо $a \geq c > b$ либо $a > c \geq b$.

Теорема 2.1. $Ha \Xi \leq V$ существует отношение, сохраняющее отношение, тогда и только тогда, когда в Ξ существует счетно или конечное подмножество плотное по упорядочиванию.

Как построить функцию полезности? Построим отношение порядка на множестве товаров, строим кривые безразличия - классы эквивалентности (все элементы внутри эквивалентны между собой), они не пересекаются.

Построим прямую, единичный вектор (бисскетриса). На что нужно умножить единичный вектор, чтобы попасть в точку пересечения, и высчитываем функцию полезности.

$$V^*(\xi) = V(x_1)p_1 + V(x_2)p_2$$

 $\xi : x_1 \mapsto p_1, x_2 \mapsto p_2$

Мы можем выбрать функцию полезности таким образом