1 Skalární součin

Definice 1.1 (Standardní skalární součin)

Buďte $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$. Pak standardní skalární součin \mathbf{u} a \mathbf{v} definujeme jako $\mathbf{u} \cdot \mathbf{v} = \overline{u_1} \cdot v_1 + \ldots + \overline{u_n} \cdot v_n$.

Definice 1.2 (Euklidovská norma)

Nechť · je standardní skalární součin na \mathbf{V} . Potom $\forall \mathbf{v} \in \mathbf{V}$ definujeme euklidovskou normu jako $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

Definice 1.3 (Skalární součin)

Nechť ${\bf V}$ je vektorový prostor nad $\mathbb C$. Skalární součin je zobrazení $\cdot: {\bf V} \times {\bf V} \to \mathbb C$, které $(\forall {\bf u}, {\bf v}, {\bf w} \in {\bf V} \ {\bf a} \ \forall t \in \mathbb C)$ splňuje:

$$\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$$
, (Symetričnost)

$$\mathbf{u} \cdot (t\mathbf{v}) = t(\mathbf{u} \cdot \mathbf{v}), \ \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}.$$
 (Linearita)

Definice 1.4 (Hermitovsky sdružená matice)

Necht $A = (a_{ij}) \in \mathbb{C}^{m \times n}$, potom hermitovsky sdružená matice je $A^* = (\overline{a_{ji}})$.