<u>공공데이터를 활용한</u> 해외국가의 국내품목 수입액 예측

2021 공공데이터 활용 빅데이터 분석 경진대회

PRESENTATION AGENDA

소개

데이터 설명

분석 및 결과

결론 및 사업화 가능성

개선점

1. Introduction

<u>1.주제 및 목표</u>

KOTRA의 특정 품목, 특정 국가의 데이터를 분석해 다음 해에 어떠한 국가가 어떤 품목을 한국으로부터 얼마만큼 수입할지에 대한 예측하는 과제

<u>2. 배경 및 필요성</u>

KOTRA의 기존 역할인 중소, 중견 기업의 해외 진출과 수출을 지원하기 위해 데이터를 활용해 어떤 국가가 특정품목을 한국에서 얼마나 수입할지 예측해 중소, 중견 기업이 수출할 시장을 탐색하는데 도움을 주고자 함

<u>3. 활용 데이터</u>

전년도 한국 수입액이 포함된 최근 2개년 KOTRA에서 제공하는 무역 데이터와 World Bank Group에서 제공하는 WDI(World Development Indicators) 데이터

2. DATA_데이터 설명 및 추가변수

목적: 추가 변수 사용 및 파생변수

차년도에 해당국가 해당품목을 한국에서 얼만큼 수입할지 예측하는 과제이므로 해당 국가의 수입과 무역에 관련된 데이터를 추가 및 변형하여 활용하고자 한다.

추가변수 (1) Imports of goods and services (% of GDP)

Imports of goods and services는 전체 GDP에서 해당국가가 수입한 제품 혹은 서비스의 비율을 일컫는다. 이 수치는 해당 국가가 전세계에서 받은 제품과 그 이외의 시장 서비스의 가치를 반영한다. 또한, 상품, 화물, 보험, 교통, 관광, 저작권, 자격 비용 그리고 통신, 건축, 금융, 정보, 비즈니스, 개인 혹은 정부 서비스와 같은 그 이외의 서비스의 가치를 포함한다. 고용인의 보상과 투자 이익과 이전 지출을 배제하는 수치이다.

추가변수 (2) Merchandise trade (% of GDP)

Merchandise trade는 U.S. dollar로 상품 수출과 수입을 GDP로 나눈 것의 총합을 나타내는 수치이다. 집계 방법은 가중 평균을 이용하였으며, 연간 주기로 설명된 데이터이다.

2. DATA_파생변수 생성 및 다중공선성 문제

- ✓ 두 변수 추가 후, 전체 변수에 대한 상관표를 그린 결과, NY_GDP_MKTP와 NY_GDP_MKTP_1Y 그리고 추가된 변수인 Imports of goods and services와 Merchandise trade가 서로 강한 양의 상관관계를 보임.
- ✓ NY_GDP_MKTP와 NY_GDP_MKTP_1Y는 TRADE_COUNRYCD와도 강한 양의 상관관계를 보임.
- ✓ 이와 같이 독립변수들 간의 높은 선형관계를 보여주면 다중공선성 문제를 일으켜 최종적으로 해당 국가의 해당 품목 수입금액을 예측하는데 문제가 생길 수 있음.

2. DATA_파생변수 생성 및 다중공선성 문제

- ✓ 다중공선성 문제를 해결하기 위해서 우선 NY_GDP_MKTP와 NY_GDP_MKTP_1Y를 삭제
- ✓ 그 다음, 경제성장률 지표의 공식은 *{(금년도 실질 GDP 전년도 실질 GDP) ÷ 전년도 실질 GDP} × 100* 이기 때문에 NY_GDP_MKTP와 NY_GDP_MKTP_1Y를 활용하여 경제성장률(Economic_growth)라는 파생변수 생성.
- ✓ Imports of goods and services와 Merchandise trade의 다중공선성 문제를 해결하기 위해 두개 변수 중에 더 좋은 예측 정확도를 보인 것을 선택
- ✓ Imports of goods and services를 추가한 모델이 더 정확한 예측을 보여줬기 때문에 최종적으로 Imports of goods and services의 변수를 추가 (Merchandise trade 12.78 MAPE, Imports of goods and services 12.49 MAPE, 두 변수 다 사용 13.40 MAPE)

(1) 모듈 import 및 데이터 추가

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import seaborn as sns
%matplotlib inline

from sklearn.preprocessing import StandardScaler
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.optimizers import Adam
```

train_df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/kotra/공모전데이터_분석용_KOTRA_0525.csv') test_df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/kotra/공모전데이터_예측용_KOTRA_0525.csv')

train_df.head()

	UNC_YEAR	HSCD	COUNTRYCD	COUNTRYNM	TRADE_COUNTRYCD	TRADE_HSCD	TARIFF_AVG	SNDIST	NY_GDP_MKTP_CD	NY_GDP_MKTP_C(
0	2017	190590	12	Algeria	46052990973	19480986257	30.0	3878.238437	170163165961	15999483
1	2017	190590	36	Australia	228441691195	19480986257	0.0	12203.155980	1329188475752	120884699
2	2017	190590	40	Austria	166475020975	19480986257	0.0	4403.247293	417237869116	39556864
3	2017	190590	56	Belgium	406412223480	19480986257	0.0	3980.375563	502698069367	47573958
4	2017	190590	76	Brazil	150749493921	19480986257	18.0	9644.206941	2062831045936	179570016

test_df.head()

	UNC_YEAR	HSCD	COUNTRYCD	COUNTRYNM	TRADE_COUNTRYCD	TRADE_HSCD	TARIFF_AVG	SNDIST	NY_GDP_MKTP_CD	NY_GDP_MKTP_CI
0	2018	190590	12	Algeria	42196119729	2.223464e+10	27.0	3735.047389	175405660377	17016316
1	2018	190590	36	Australia	240422685574	2.223464e+10	1.2	11947.511360	1432881172002	132918847
2	2018	190590	40	Austria	186965232670	2.223464e+10	2.8	4005.020029	455094861902	41723786
3	2018	190590	56	Belgium	461444842911	2.223464e+10	2.8	4501.782826	543734366831	50269806
4	2018	190590	76	Brazil	185290138433	2.223464e+10	17.1	10015.769070	1885482534238	206283104

2017	Country_Name	Series_Code	index	
	Afghanistan	NE.IMP.GNFS.ZS	0	0
46.62445444	Albania	NE.IMP.GNFS.ZS	1	1
32.68912917	Algeria	NE.IMP.GNFS.ZS	2	2
102.2875817	American Samoa	NE.IMP.GNFS.ZS	3	3
	Andorra	NE.IMP.GNFS.ZS	4	4
90.57282302	Virgin Islands (U.S.)	NE.IMP.GNFS.ZS	212	212
52.72445437	West Bank and Gaza	NE.IMP.GNFS.ZS	213	213
	Yemen, Rep.	NE.IMP.GNFS.ZS	214	214
36.59283689	Zambia	NE.IMP.GNFS.ZS	215	215
28.08565493	Zimbabwe	NE.IMP.GNFS.ZS	216	216

| In | [10] : | Im | 2018 | Im

- 1) 데이터 분석에 활용한 언어는 python이며, 툴은 colab을 활용하며 분석을 실시
- 2) 데이터 분석에 필요한 파이썬 모듈을 import (pandas, numpy, sklearn, tensorflow 등)
- 3) 2017년도 코트라 분석용 데이터, 2018년도 코트라 훈련용 데이터 csv파일을 추가

(2) 데이터 전처리 및 정규성

Skewness: 112.976

- 1) 타깃 값인 KR_TRADE_HSCD_COUNTRYCD의 정규성 검정 결과 왜도 값이 112로 정규분포를 안 따름
- 2) 타깃 값이 정규분포를 가질 수 있도록 log(x+1)로 변환 (0값을 가진 데이터에 대응하기 위해)
- 3) 그 결과 타깃 값이 정규분포를 따르게 되고 왜도 값도 -0.908의 값으로 크게 줄어듦.

(2) 데이터 전처리 및 결측 값 처리

```
In [21]: #년도, 국가명 제거
#국가코드는 국가명이랑 중복된 정보이므로 제거
train_df.drop(['UNC_YEAR', 'COUNTRYCD'], axis=1, inplace=True)
test_df.drop(['UNC_YEAR', 'COUNTRYCD'], axis=1, inplace=True)
```

```
mc = pd.DataFrame(df.isnull().sum(), columns=["Missing Count"])
mc = mc[mc['Missing Count']!=0] #불리언 인택성
#새로운 컬럼 추가
mc['Missing %'] = (mc['Missing Count'] / df.shape[0]) * 100
mc.sort_values('Missing %',ascending=False)
```

	Missing Count	Missing %
PA_NUS_FCRF	6976	16.461371
TARIFF_AVG	754	1.779225
SNDIST	25	0.058993
TRADE_HSCD_COUNTRYCD	24	0.056633

```
#결측값 처리 어떻게 할지 다시 고민 필요

df['PA_NUS_FCRF'] = df['PA_NUS_FCRF'].interpolate(method = 'linear' , limit_direction = 'forward')

df['TARIFF_AVG'] = df['TARIFF_AVG'].fillna(df['TARIFF_AVG'].min())

df['SNDIST'] = df['SNDIST'].fillna(df['SNDIST'].min())

df['TRADE_HSCD_COUNTRYCD'] = df['TRADE_HSCD_COUNTRYCD'].fillna(df['TRADE_HSCD_COUNTRYCD'].min())
```

- 1) 국가명과 국가코드는 중복된 정보이므로 국가코드를 제거
- 2) 데이터 중 년도 데이터는 수입액 예측 분석에 관련성이 없다고 간주하여 제거
- 3) 결측 값이 10% 이상인 PA_NUS_FCRF 같은 경우에는 pandas의 interpolate 메소드를 사용해 선형적으로 동일한 간격으로 채워줌
- 4) 나머지 독립변수들은 결측 값 비율이 10% 미만이기 때문에 결측 값의 영향을 최소화하기 위해 최소값으로 치환
- 5) 0값을 가진 타깃 값은 평균으로 치환

(2) 데이터 전처리 및 결측 값 처리

결측치 처리

Pandas에서 제공하는 누락 데이터에 특정 값을 채우는 함수로, 각 함수의 기준에 맞게 NaN 값을 지정한 값으로 바꾸는 역할 제공

Interpolate()

인덱스를 무시하고 값들을 선형적으로 같은 간격으로 결측 값을 처리하는 방법

결측치 처리 가이드라인

결측치 비율	처리방법
10% 미만	삭제 or 대치
10% ~ 50%	regression or model based imputation
50% 이상	해당 컬럼(변수) 자체 제거

(2) 데이터 전처리_정규성 및 원 핫 인코딩

```
        TRADE_HSCD_COUNTRYCD
        30.100387

        TARIFF_AVG
        20.037292

        TRADE_HSCD
        6.440118

        PA_NUS_FCRF
        4.149168

        SP_POP_TOTL
        3.897122

        TRADE_COUNTRYCD
        2.924412

        Imports of goods and services (% of GDP)
        2.546442

        Economic_growth
        -1.875440

        SNDIST
        0.923553

        IC_BUS_EASE_DFRN_DB
        -0.698085

        KMDIST
        0.601935
```

```
In [41]: 
# 스케일 범위가 크고 skew 값이 0.5 보다 큰 것들은 log(x+1)로 변환
#Economic_growth는 0보다 작은 값이 있어서 변화 안함
#ICBUS_EASE_OFAN_0B는 0~100점 사이의 값을 가지고 있기 때문에 변환 안함

df['TRADE_COUNTRYCD'] = np.log1p(df['TRADE_EASCD'])

df['TRADE_HSCD'] = np.log1p(df['TRADE_HSCD'])

df['TRADE_HSCD'] = np.log1p(df['TRADE_HSCD'])

df['SNDIST'] = np.log1p(df['SNDIST'])

df['SNDIST'] = np.log1p(df['SNDIST'])

df['SP_POP_TOTL'] = np.log1p(df['SP_POP_TOTL'])

df['FA_NUS_FCRF'] = np.log1p(df['FA_NUS_FCRF'])

df['TRADE_HSCD_COUNTRYCD'] = np.log1p(df['TRADE_HSCD_COUNTRYCD'])

df['Imports of goods and services (% of GDP)'] = np.log1p(df['Imports of goods and services (% of GDP)'])
```

df = pd.get_dummies(df)
print(df.shape)

(42378, 554)

COUNTRYNM_Belgium	COUNTRYNM_Brazil	COUNTRYNM_Canada	COUNTRYNM_Chile	COUNTRYNM_China	Hong Kong SAR	COUNTRYNM_Czechia
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
1	0	0	0	0	0	0
0	1	0	0	0	0	0
	422	111	522	144	1223	The last
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

- 1) 독립변수의 정규 분포를 따르기 위하여 왜도 값이 0.5 보다 큰 값으로 log(x+1)로 변환.
- 2) 스케일의 범위가 큰 변수도 log(x+1)로 변환.
- 3) ICBUS_EASE_DFRN_DB는 0에서 100 점 사의 값을 가지고 있어 스케일의 범위가 크지 않고 왜도 값이 0.5 보다 크지만 0.5와 차이가 크지 않기 때문에 변환안함.
- 4) Economic_growth는 0보다 작은 값이 있기 때문에 log(x+1)로 변환할 수 없음.
- 5) HSCD, COUNTRYNM은 범주형 변수이기 때문에 이를 DNN 회귀 모델에 적용하기 위해 더미함수를 통하여 원 핫 인코딩으로 변환.

(2) 데이터 전처리_데이터 분리 및 스케일링

- 1) 타깃변수: KR_TRADE_HSCD_COUNTRYCD
- 2) train 데이터로 학습을 진행하고 test 데이터로 성능 평가하기 위해 분리
- 3) test 데이터는 전체 훈련 데이터의 20%, train 데이터 는 80% 비율로 분리
- 4) StandardScaler로 평균 0, 분산 1의 분포를 가지도록 데이터 스케일링

(3) 모델 소개 _ DNN

DNN

- ✓ 심층 신경망은 입력층과 출력층 사이에 여러 개의 은닉층들로 이루어진 인공 신경망이다.
- ✓ 예측하려는 타깃 값은 연속형 변수이기 때문에 심층 신경망을 이용한 회귀분석을 실시
- ✓ 심층 신경망은 일반적인 인공 신경망과 마찬가지로 복잡한 비선형 관계들을 모델링 할 수 있기 때문에 독립변수가 많은 이 모델에 적합.

(3) 모델 정의 및 모델 구축

```
# 모텔 구조 정의하기
model=keras.models.Sequential([
   keras.layers.Dense(1024, input_dim = x_train.shape[1], kernel_initializer="he_normal").
   keras.layers.LeakyReLU(),
   keras.layers.BatchNormalization(),
   keras.layers.Dropout(0.4),
   keras.layers.Dense(512, kernel_initializer="he_normal"),
   keras.layers.LeakyReLU(),
   keras.layers.BatchNormalization(),
   keras.layers.Dropout(0.3),
   keras.layers.Dense(512, kernel_initializer="he_normal"),
   keras.layers.LeakyReLU(),
   keras.layers.BatchNormalization(),
   keras.layers.Dropout(0.3),
   keras.layers.Dense(units=256, kernel_initializer="he_normal"),
   keras.layers.LeakyReLU(),
   keras.layers.BatchNormalization(),
   keras.layers.Dropout(0.2),
   keras.layers.Dense(units=256, kernel_initializer="he_normal"),
   keras.layers.LeakyReLU(),
   keras.layers.BatchNormalization(),
   keras.layers.Dropout(0.01),
   keras.layers.Dense(units=128, kernel_initializer="he_normal"),
   keras.layers.LeakyReLU().
   keras.layers.Dropout(0.05),
   keras.layers.Dense(units=1, activation="linear")])
optimizer = Adam(learning_rate=0.005, decay=5e-4)
# 모텔 구축하기
model.compile(
                          # mean_squared_error(평균제곱오차)의 alias
       loss='mse',
       optimizer=optimizer, #최적화 기법 중 하나
       metrics=['mape']) # 실험 후 관찰하고 싶은 metrio 들을 나열림
```


model.summary()			
Model: "sequential"			
Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	1024)	568320
leaky_re_lu (LeakyReLU)	(None,	1024)	0
batch_normalization (BatchNo	(None,	1024)	4096
dropout (Dropout)	(None,	1024)	0
dense_1 (Dense)	(None,	512)	524800
leaky_re_lu_1 (LeakyReLU)	(None,	512)	0
batch_normalization_1 (Batch	(None,	512)	2048
dropout_1 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	512)	262656
leaky_re_lu_2 (LeakyReLU)	(None,	512)	0
batch_normalization_2 (Batch	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_3 (Dense)	(None,	256)	131328
leaky_re_lu_3 (LeakyReLU)	(None,	256)	0
batch_normalization_3 (Batch	(None,	256)	1024

- ✓ 200개 뉴런과 100개의 뉴런을 가진 두개의 은닉층과 하나의 출력층으로 구성
- ✓ 'LeakyRelu' 활성화 함수를 통하여 layer 전달
- ✓ 은닉층의 가중치 초기화는 He 초기화(kernel_initializer="he_normal") 사용
- ✓ 배치 정규화: 각 가중치의 결과값의 스케일을 조정하고 이동시킴
- ✓ Dropout : 뉴런의 개수가 많을수록 비율을 높게 지정(과대적합 규제 방법)
- ✓ 손실함수: mean_squared_error(평균 제곱근 오차)
- ✓ 최적화: Adam 학습률 0.005, decay_rate=5e-4로 지정
- ✓ Metrics: mape를 통한 성능 확인

(3) 모델 정의 및 모델 구축

$$f(x) = max(0, x)$$

- ✓ RELU 활성화 함수 일부 뉴런이 0 이외의 값을 출력 하지 않음 (가중치 합이 음수인 뉴런은 쓸 수 없게 됨)
- ✓ 이러한 문제를 해결하기 위해 LeakyReLu를 사용
- ✓ LeakyReLU 함수의 ReLU 함수의 변종
- ✓ 하이퍼파리미터 α 가 이 함수가 새는 정도를 결정
- ✓ 새는 정도란 x < 0 일 때 이 함수의 기울기 (일반적으로 0.01로 설정)</p>
- ✓ 0보다 작은 가중치의 값을 가진 뉴런을 사용할 수 없는 문제를 해결

(3) 모델 정의 및 모델 구축

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation *x* over a mini-batch.

✓ 배치 정규화

- 각 입력을 미니배치의 평균과 분산을 이용해 정규화한 다음에 가중치와 편향값을 학습하는 방식
- 레이어를 통과할 때마다 변화하는 결과값의 분 포가 바뀌는 현상으로 생기는 문제를 해결 (층 이 깊어지면서 생기는 문제를 해결)
- 가중치 초기화에 대한 민감도를 감소
- 모델의 일반화 효과가 생김

(3) 모델 정의 및 모델 구축

(a) Standard Neural Net

(b) After applying dropout.

✓ Dropout

- 임의 노드를 지정된 확률만큼 제거해 학습에 참 여하지 않도록 하는 방법
- 피드 포워드 (feed forward) 과정과 오류 역전파 과정에서 제거된 노드는 학습에 참여하지 않음
- 매 미니배치마다 랜덤으로 설정됨
- 하이퍼파라미터 드랍아웃 비율 p를 지정
- 과대적합 규제하는 방법 중에 하나

(3) 모델 정의 및 모델 구축

Adam optimizer

- ✓ 기존 경사하강법(SGD)은 local minimum에 빠질 위험 이 있음
- ✓ 각 파라미터의 기울기 값에 따라 다르게 계산하는 적응적 학습률 알고리즘이 필요함
- ✓ 따라서 모멘텀 최적화와 RMSProp을 합친 Adam 최적 화 기법을 사용 (딥러닝에서 많이 사용됨)
- ✓ 최적점에 갈수록 지정된 비율에 따라 학습률을 줄이기 위해 하이퍼파라미터 decay_rate 지정
- ✓ 드롭 아웃 규제를 적용하였을 때, Adam이 가장 빠르 게 수렴

(3) 모델 훈련

```
20개에 한 번씩 업데이터 실행
0:미출력, 1:진행상황출력, 2:에포크당 출력
'''
checkpoint_cb = keras.callbacks.ModelCheckpoint('dnn_kotra.h5')
early_stopping_cb = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
hist = model.fit(
    x_train, y_train,
    batch_size=20,
    epochs=500,
    validation_data=(x_test, y_test),
    callbacks=[checkpoint_cb, early_stopping_cb],
    verbose=1)
# 테스트 데이터 일력
scores = model.evaluate(x_test, y_test)
print('test_loss: ', scores[0])
print('test_mape: ', scores[1])
```


- Batch_size (전체 트레이닝 데이터 셋을 여러 작은 그 룹을 나누었을 때 batch size는 하나의 소그룹에 속하는 데이터 수) = 10
- Epochs(전체 트레이닝 셋이 신경망을 통과한 횟수) = 100
- EarlyStopping(조기종료) patience = 10
- ▶ 과대적합을 막기 위해 10 에포크 동안 훈련이 진행되는 동안 정확도 개선이 없으면 조기 종료.

(4) 훈련 결과

- ✓ 훈련 결과 최종 loss 값은 2.86 , 최종 mape 값은 12.01의 결과 도출
- ✓ 2개의 은닉층을 가진 간단한 구조의 DNN 모델보다 더 좋은 성능을 보여줌 (12.49 MAPE)
- ✓ 검증 데이터 손실이 훈련 데이터보다 높아지기 전 조기 종료되는 것을 볼 수 있음

4. Conclusion

4. Conclusion

- ✓ 해당 예측 모델을 통해 해외 시장에 수출하려는 기업들 에게 가이드라인을 제시할 수 있음
- ✓ 2019년에는 중국, 미국, 베트남 순으로 한국으로부터 수입액이 가장 많을 것으로 예측
- ✓ Ex) 중국이 한국에 가장 많이 수입할 품목코드를 예측 해 중국시장에 진출하려는 기업에게 어떠한 품목이 수출 전망이 좋을지 제시할 수 있음

```
#2019년에는 중국(156), 미국(842), 베트남(704) 순으로 총 수입액이 많을 것이라고 예측
plt.figure(figsize=(15, 7))
sns.barplot(x='COUNTRYCD', y='KR_TRADE_HSCD_COUNTRYCD', data=data, estimator=np.sum)
plt.show()
```


#충국이 한국에 제일 많이 수일하는 품목코드 plt.figure(figsize=(15, 7)) sns.barplot(x='COUNTRYCD', y='KR_TRADE_HSCD_COUNTRYCD', data=data[data['HSCD'] == 854232]) plt.show()

4. Conclusion

- ✓ 특정 품목코드를 어느 나라가 제일 한국에 수입을 많이 할지 예측할 수 있음
- ✓ 특정 품목을 수출하려는 기업에게 전망이 좋을 해외 시장을 예측해 수출할 국가를 제시할 수 있음
- ✓ Ex) 품목코드가 190590인 품목을 수출하려는 기업에게 미국이 제일 많이 수입할 것이라고 예측함으로써 진출 할 해외 시장을 미국으로 제시할 수 있음

#특정 품목코드를 어느 나라가 제일 한국에 수입을 많이 할지 예측할 수 있음 #품목코드가 190590인 품목은 미국(국가코드 842)이 제일 많이 한국에 수입할 것이라고 예측 plt.figure(figsize=(15, 7)) sns.barplot(x='COUNTRYCD', y='KR_TRADE_HSCD_COUNTRYCD', data=data[data['HSCD'] == 190590]) plt.show()

5. 개선점

✓ 결측 값 처리에 대해서 더 고민이 필요

- 결측 값이 10퍼센트 미만인 데이터들은 최소값으로 대치했지만 어떻게 처리해야 예측 정확도를 높일 수 있는지 더 연구가 필요
- TARIFF_AVG에 관해 결측 값이 존재할 뿐만 아니라 0값을 가진 데이터도 너무 많음

```
#전체 데이터에서 0값을 가진 TARIFF_AVG의 비율
tariff = df[df['TARIFF_AVG'] == 0]
(len(tariff.index) / df.shape[0]) * 100
```

46.502902449384116

- 이러한 데이터는 타깃 데이터를 예측하는데 방해를 줄 수 있음
- 타깃 값 중에 0인 값들도 존재 -> 그대로 두면 예측 정확도에 큰 영향을 줌
- ✓ 타깃 값에 대해 유의미한 영향을 줄 다른 독립변수에 대한 조사가 필요
- ✓ 모델 구조와 하이퍼 파라미터에 대해 더 연구가 필요
 - 일반화 성능을 높일 수 있는 모델 구조가 필요 (활성화 함수, 최적화 함수의 학습률)
 - 훈련 데이터 뿐만 아니라 검증 데이터의 정확도를 높여야 함 (과적합을 피해야함)

참고자료

- 권철민, *파이썬 머신러닝 완벽가이드*, 파주:위키북스, 2020, 353 ~ 374
- 오일석, MACHINE LEARNING 기계학습, 서울: 한빛아카데미
- "Training Neural Network for price prediction with Tensorflow", *towards data science* https://towardsdatascience.com/training-neural-networks-for-price-prediction-with-tensorflow-8aafe0c55198
- 오렐리앙 제롱, *핸즈온 머신러닝 사이킷런, 케라스, 텐서플로 2를 활용한 머신러닝, 딥러닝 완벽 실무,* 서울:한빛 미디어, 2020, 412 ~ p.459
- Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", Proceedings of the 32nd International Conference on Machine Learning (2015): 448 -456
- Diederik P. Kingma, Jimmy Ba, "Adam: A Method for Stochastic Optimization", International Conference on Learning Representations, 2015

THANK YOU HAVE A NICE DAY!