Statistical Connectomics

Rohit Gummi

February 17, 2015

Example with Kmeans using Stochastic Block Model

Sample Space: $\mathcal{G}_n = (\mathcal{V}, \mathcal{E}, Y)$

Where $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ is the set of n vertice

 $\mathcal{E} = \text{Potential edges } \{e_{11}, \dots, e_{nn}\}$

 $Y = \{0, 1\}^n$ which are n sets of $\{0, 1\}$ vectors

Model P: $SBM_n^k(\vec{\rho}, \vec{\beta})$ where $\vec{\rho} \in \Delta_2$ and $\vec{\beta} \in (0, 1)^{2x2}$

Action Space: $A = \{y \in \{0,1\}^n\}$

Loss Function: $\mathcal{L}: \mathcal{G}_n \times \mathcal{A} \to \mathbb{R}_+$

An example for kmeans could be a total of how many vectors came to the 'truth': $\mathcal{L} = \sum_{1}^{n} I_{\hat{y}=y}$

Risk Function: $A \times A \times P$. This is the probability of getting a loss.

 $R: P \times \mathcal{L} \to \mathbb{R}_+$. An example could be the expectation of the loss function $E_p[\mathcal{L}]$