- **І-2.** Даны векторы $\vec{a} = 2\vec{i} + 2\vec{j} \vec{k}$ и $\vec{b} = 2\vec{i} \vec{j} + 3\vec{k}$. Найти длины проекций этих векторов друг на друга.
- **І-3.** Дан вектор $\vec{p} = 2\vec{a} + 3\vec{b} 5\vec{c}$, где \vec{a} , \vec{b} и \vec{c} взаимно перпендикулярные векторы, причем $|\vec{a}|=1, |\vec{b}|=2$ и $|\vec{c}|=3$. Найти углы между вектором \vec{p}

 - а). векторами \vec{a} , \vec{b} , \vec{c} ; б). векторами $\vec{a} + \vec{b}$, $-(\vec{a} + \vec{b} + \vec{c})$.
- **І-4.** При каком значении t данные векторы компланарны?
 - a). $\vec{a} = \{3, 6, 9\}, \vec{b} = \{2, 5, 8\}, \vec{c} = \{4, 7, t\};$
 - 6). $\vec{a} = \{5, 8, 11\}, \ \vec{b} = \{3, 5, 7\}, \ \vec{c} = \{1, t, 3\};$
- **І-5.** Даны три вектора: $\vec{a} = \{1, 1, 1\}$, $\vec{b} = \{5, -3, -3\}$, $\vec{c} = \{3, -1, 1\}$. Найти координаты векторов, коллинеарных вектору \vec{c} , длины которых равны длине вектора $\vec{a} + \vec{b}$.
- При каких значениях a вектор $\vec{m} = \{-11, 6, -5\}$ можно разложить по I-6. векторам $\vec{p} = \{a, 2, -1\}$ и $\vec{q} = \{8, 9, -4\}$?
- **І-7.** При каком значении a вектор $\vec{m} = \{9,1\}$ нельзя разложить по векторам $\vec{u} = \{2, 1\}$ и $\vec{v} = \{1, a\}$? Выполнить разложение при a = 1.
- **I-8.** Параллелепипед построен на трёх некомпланарных векторах \vec{a} , \vec{b} , \vec{c} . Найти площади его диагональных сечений и объем.
- І-9. В кубической элементарной ячейке за базисные вектора выбираются $\vec{a}_x = \{1,0,0\}\,,\; \vec{a}_y = \{0,1,0\}\,,\; \vec{a}_z = \{0,0,1\}\,.$ Найти:
 - а). площади диагональных сечений куба;
 - б). углы между базисными векторами и нормалями к диагональным поверхностям.
- **I-10.** Показать, что $((\vec{r} \vec{a}) \cdot (\vec{r} + \vec{a})) = 0$ уравнение сферы. Здесь \vec{r} радиусвектор, а \vec{a} – постоянный вектор.
- **I-11.** Доказать тождество Лагранжа:

$$([\vec{a} \times \vec{n}] \cdot [\vec{c} \times \vec{m}]) = \begin{vmatrix} (\vec{a} \cdot \vec{c}) & (\vec{a} \cdot \vec{m}) \\ (\vec{n} \cdot \vec{c}) & (\vec{n} \cdot \vec{m}) \end{vmatrix}.$$

- **І-12.** Доказать, что из равенства $[\vec{a} \times [\vec{p} \times \vec{r}]] = [[\vec{a} \times \vec{p}] \times \vec{r}]$ при $(\vec{a} \cdot \vec{p}) \neq 0$ и $(\vec{p} \cdot \vec{r}) \neq 0$ следует коллинеарность векторов \vec{a} и \vec{r} .
- **I-13.** Доказать тождество Якоби:

$$\left[\vec{a} \times [\vec{b} \times \vec{c}]\right] + \left[\vec{c} \times [\vec{a} \times \vec{b}]\right] + \left[\vec{b} \times [\vec{c} \times \vec{a}]\right] = \vec{0}.$$

- **I-14.** Найти компоненты матриц поворота системы координат на угол φ вокруг оси x и вокруг оси y. Записать матрицу обратного преобразования.
- **I-15.** Доказать, что определитель матрицы поворота равен единице.
- **I-16.** Показать, что единственным «изотропным» вектором (компоненты которого одинаковы во всех системах координат) является нулевой вектор.
- **I-17.** В исходной декартовой системе координат известны компоненты вектора \vec{a} . Найти его компоненты в системе координат, повёрнутой относительно исходной на некоторый угол вокруг одной из осей:
 - а). $\vec{a} = \{1, 1, \sqrt{3}\}$, вокруг оси Ox на 30°;
 - б). $\vec{a} = \{0, 3, \sqrt{3}\}$, вокруг оси Ox на 120°;
 - в). $\vec{a} = \{2\sqrt{2}, 2\sqrt{2}, 2\sqrt{2}\}$, вокруг оси Oy на 15°;
 - г). $\vec{a} = \{0, 4, -4\sqrt{2}\}$, вокруг оси Oy на 135°;
 - д). $\vec{a} = \{0, 1, 4\}$, вокруг оси Oz на 45°;
 - е). $\vec{a} = \{1, -\sqrt{3}, 0\}$, вокруг оси Oz на 120°.
- **I-18.** В системе координат, полученной из исходной декартовой системы путем её поворота на некоторый угол вокруг одной из осей, известны компоненты вектора \vec{a}' . Найти его компоненты в исходной системе координат (до поворота):
 - а). $\vec{a}' = \{2, 0, -2\}$, вокруг оси Ox на 45° ;

- б). $\vec{a}' = \{\sqrt{2}, -1, 0\}$, вокруг оси Ox на 150°;
- в). $\vec{a}' = \{0, 1, 2\}$, вокруг оси *Oy* на 60°;
- г). $\vec{a}' = \{6, -\sqrt{3}, -2\sqrt{3}\}$, вокруг оси *Oy* на 150°;
- д). $\vec{a}' = \{\sqrt{3}/2, -1/2, 1\}$, вокруг оси Oz на 75°;
- е). $\vec{a}' = \{-1 \sqrt{2}, -1 + \sqrt{2}, 3\}$, вокруг оси Oz на 135°.
- **I-19.** В некоторой системе координат K известны компоненты вектора $\vec{a} = \{1, -1, 1\}$. В системе K', получающейся из K поворотом на угол 30° вокруг оси x, известны компоненты вектора $\vec{c}' = \{-1, 2, 2\}$. Найти скалярное произведение этих векторов.
- **I-20.** Компоненты двух векторов заданы в различных системах координат следующим образом: при повороте системы координат K вокруг оси y на 30° $\vec{a}' = \left\{1, 1, \sqrt{3}\right\}$, а при повороте K вокруг оси z на 45° $\vec{b}'' = \left\{\sqrt{2}, \sqrt{2}, 3\right\}$. Найти скалярное произведение этих векторов.
- **I-21.** Найти площадь параллелограмма, построенного на векторах \vec{m} и \vec{n} , если в системе K вектор $\vec{m} = \{2,0,2\}$, а второй вектор задан своими компонентами в системе координат, повернутой относительно K на 60° вокруг оси x: $\vec{n}' = \{1,-1,\sqrt{3}\}$.
- **I-22.** Компоненты двух векторов заданы в различных системах координат следующим образом: при повороте системы координат K вокруг оси y на 60° (система K') $\vec{a}' = \left\{1,0,\sqrt{3}\right\}$, а при повороте K вокруг оси z на 45° (система K'') $\vec{b}'' = \left\{0,-\sqrt{2},1\right\}$. Найти векторное произведение этих векторов. Будет ли его величина и направление зависеть от выбранной системы отсчета?