Congruences of Integers

Contents

Congruences

Congruences

Overview Section 4 (mathematical proofs)

- . even and odd #'s
- . rational and irrational #'s
- · divisibility and prime numbers
- · Congruences of integers

Definitions

Example m = 12

4 = 16 mod 12 because 12 (16-4)

Definition 1 (Congruences)

Let a, b, and m be integers. To say that a is congruent to b modulo m (written $a \equiv b \mod m$) means that m divides b - a.

• Let $x, m \in \mathbb{Z}$. Then $x \equiv 0 \mod m$ iff m divides x.

$$\nu \equiv 0 \mod m$$
 iff $m \mid (0-\alpha)$ iff $m \mid \alpha$
 $(\exists k \in \mathbb{Z})(-x = km)$

• For each integer x, x = -km = (-k)m

"
$$x$$
 is even." $\iff x \equiv 0 \mod 2$
" x is odd." $\iff x \equiv 1 \mod 2$

• For all integers a and b, $a \equiv b \mod 0$ iff a = b.

$$0 = b \mod 0$$
 iff $o(b-a)$ iff $b-a=o$ iff $a=b$.

Example M=2.

Congruences as Relation

Equality (=)
$$(\forall a)(a=a)$$

- ($\forall a,b$) ($\alpha=b \Rightarrow b=a$)
- · (\fa,b,c) [(a=b) \(\chi \chi = c) => a=c]

Theorem 2 (Congruence Is An Equivalence Relation)

Let $m \in \mathbb{Z}$. The relation of congruence modulo m satisfies the following properties:

- **1** (Reflexivity) For each $a \in \mathbb{Z}$, $a \equiv a \mod m$.
- **2** (Symmetry) For all $a, b \in \mathbb{Z}$, if $a \equiv b \mod m$, then $b \equiv a \mod m$.
- **3** (Transitivity) For all $a, b, c \in \mathbb{Z}$, if $a \equiv b \mod m$ and $b \equiv c \mod m$, then $a \equiv c \mod m$.

Proof of
$$0$$
: Let $a \in \mathbb{Z}$ be arbitrary. Then m divides $a-a=0$.
Hence $a\equiv a$ mod m .

Balancing Congruences

$$a+c=b+c$$

$$ac=bc$$

Equality (=) a=b

· a1+a2 = b1+b2 • $a_1 a_2 = b_1 b_2$

 $a_1 = b_1$, $a_2 = b_2$

Theorem 3 (Preserving Congruences) Let $m, a_1, b_1, a_2, b_2 \in \mathbb{Z}$. Suppose that $a_1 \equiv b_1 \mod m$ and $a_2 \equiv b_2 \mod m$.

Then

- $a_1 + a_2 \equiv b_1 + b_2 \mod m$.

Since
$$a_1 \equiv b_1 \mod m$$
, $m \mid (b_1 - a_1)$, so $b_1 - a_1 = \text{tem}$ for some $k \in \mathbb{Z}$.

Since $a_2 \equiv b_2 \mod m$, $m \mid (b_2 - a_2)$, so $b_2 - a_2 = 2m$ for some $2 \in \mathbb{Z}$.

Then

$$b_2 - a_2 = lm$$
 for some $l \in \mathbb{Z}$.
Then
$$(b_1 + b_2) - (a_1 + a_2) = b_1 + (b_2 - a_1) - a_2$$

$$= b_1 + (-a_1 + b_2) - a_2$$

$$= (b_1 - a_1) + (b_2 - a_2)$$

$$= km + lm = (k+l)m$$

Since let l is an integer, $m \left[(b_1 + b_2) - (a_1 + a_2) \right]$ Hence,

aitaz = bi+bz mod m

Interesting Behavior of Congruences

Let $m \in \mathbb{Z}$. Congruence modulo m shares many similarities with equality as seen in the previous slides. Differences? Recall: d = 0 mod m iff m d.

Let $a, b \in \mathbb{Z}$.

- If $ab\equiv 0$, then $a\equiv 0$ or $b\equiv 0$. (True) "there are values of there are values of the area of the second of th m=6 2.3 \equiv 0 mod M, but $2 \neq 0$ mod M and $3 \neq 0$ mod M.

Let $u, v, w \in \mathbb{Z}$. (Cancellation)

- If $w \neq 0$ and uw = vw, then u = v. (True)
- If $w \not\equiv 0$ and $uw \equiv vw \mod m$, then $u \equiv v \mod m$. (Not always true)

$$m=6$$
 5.3 = 7.3 mod m, but $6 \not\equiv 7$ mod m. (because $21-15=6$, which is divisible by m).

Question. For which m values is the second sentence in each paragraph true?

When m Is Prime

Remark 4 50. Let p be prine. If plato, then pla on plb.

When m Is Prime

Let m be prime.

- **1** Let $a,b\in\mathbb{Z}$ such that $ab\equiv 0\mod m$. Then $a\equiv 0\mod m$ or $b\equiv 0\mod m$.
- **2** Let $u, v, w \in \mathbb{Z}$ such that $w \not\equiv 0 \mod m$ and $uw \equiv vw \mod m$. Then $u \equiv w \mod m$.

Proof of a:

Recall: d = 0 mod m iff m/d.

Since ab = 0 mod m, m ab.

But then, m | a or m | b because m is prime.

by Runk. 4.50,

It fellows that a=0 mod m or b=0 mod m.

Congruence Classes

Example. (m=2) For each $x\in\mathbb{Z}$, $x\equiv 0\mod 2$ or $x\equiv 1\mod 2$:

- $x \equiv 0 \mod 2$: ..., -4, -2, 0, 2, 4, ...
- $x \equiv 1 \mod 2$: ..., -3, -1, 1, 3, ...

These two sets of integers are called the *congruence classes modulo 2*. Each integer belongs to exactly one of the two congruence classes.

Example. (m=3) For each $x\in\mathbb{Z}$,

- $x \equiv 0 \mod 3$: ..., -9, -6, -3, 0, 3, 6, 9, ...
- $x \equiv 1 \mod 3$: ..., -8, -5, -2, 1, 4, 7, 10, ...
- $x \equiv 2 \mod 3$: ..., -7, -4, -1, 2, 5, 8, 11, ...

These three sets of integers are called the *congruence classes modulo 3*. Each integer belongs to exactly one of the three congruence classes.

Division Lemma

The Division Lemma (Euclid)

Let $m \in \mathbb{N}$. For each $x \in \mathbb{Z}$, there exists a unique $k \in \mathbb{Z}$ and a unique $r \in \{0, \dots, m-1\}$ such that x = mk + r.

Using the division lemma, one can show that two integers x_1 and x_2 belong to the same congruence class modulo m if and only if they yield the same remainder upon division by m.

Congruence Class Criterion

Example 4

Let $x_1, x_2 \in \mathbb{Z}$. Let $k_1, k_2 \in \mathbb{Z}$ and let $k_1, k_2 \in \{0, \dots, m-1\}$ such that $x_1 = mk_1 + r_1$ and $x_2 = mk_2 + r_2$. Then $x_1 \equiv x_2 \mod m$ iff $r_1 = r_2$.