	Things you should know:
	1) Agter mid 2 material:
	. Eigenvalues & Eigenvectors of matrices
	. If $A\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_1, \dots, \lambda_n$ are distinct.
	{v,, vn} are linearly independent.
	Characteristic polynomial of nxn metrix A:
	$\mathbf{p}(\lambda) = \det(A - \lambda \mathbf{I}).$
	=> know how to compute p(2)
	how to gird roots of PA(2)
	A is diagonalizable if all roots of p(9)
	are distinct.
	If there are repeated roots, A may or
	may not be diagonalizable.
	. Know how to pind eigenvector/eigenbasis of an
	eigenvalue, i.e. find a basis for Mul (A-AI).
	Desinition of a diagonalizable matrix A
	A is diagonalizable (=) algebraic multiplication of 1;
	= geometric multiplicity of 2:
/	for all Di
	If A is diagonalizable and $Av_i = 2 \cdot \vec{v}_i$. $P = [\vec{v}_i \vec{v}_r]$.
	$n = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
	$D = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$
	$A = PDP^{1}$

$\Rightarrow A^{k} = PD^{k}P^{1} \text{where} D^{k} = \begin{bmatrix} \gamma_{1}^{k} & \ddots & $
. Know deginition of dot/inner product; norm or longth of a vector. Know the distance between two vectors
. Des Meaning of arthogonal sets, orthonormal sets, orthogonal bases, orthonormal bases. Orthogonal projections.
If $B = \int \vec{u}_1 \cdot \vec{u}_n \vec{v}_n$ or the gence basis for subspace $W \subset \mathbb{R}^m$. $proj_W \vec{v} = \sum_{i=1}^n \vec{v} \cdot \vec{u}_i \cdot \vec{v}_i$ $i=1 \ v_i\ _2^2$
. If $U = [\vec{u}_1 \vec{u}_n]$ is an $n \times n$ matrix, the following are equivalent:
i) U is an orthogonal matrix $U^TU = I = UU^T$.
ii) the Columns of U form an orthonormal basis for 12th
. Gran-Schmidt process QR Decomposition.

2) Midterm 2 review material.
· Vector spaces?
. Subspaces and important subspaces (e.g. Pn =
polynomials of degree at most n.)
. How to determine if a set the V a subspace
or not.
linear independence, span of vectors
basis, dimension, and coordinates relative to a basis
. Can check if vectors in Rm are a basis or not
by putting the vectors in the columns of a motine
and row reducing.
if n > m the number of vectors, they are
linearly dependent.
if n < m, they dee do not span Rm.
. Matrix operations.
. Notion of linear transformation. T: V > W.
Mul(T) = { \$\varphi \in V : T(\$\varphi) = \varphi \varphi}.
Tis one-to-one iff Nul(T) = [0].
if $T(x) = Ax$, be able to find a basic for
Nul (A)
Ran(T) = {T(J) ∈W: J∈V}.
Know how to find a beisis for Col(A), Row(A)
dim Row(A) = dim Col(A) = rank(A)
. Understand the rank-nullity theorem
Theorem 14, p. 233.

other is A not aquare, A is not invertible.
Thmi is A nxn, the sollowing are equivalent:
a) A invertible.
b) $col(A) = \mathbb{R}^n \iff dim \operatorname{Row} A = n$.
c) $Row(A) = R^n$.
d) $Nul(A) = {0}$.
e) $det(A) \neq 0$
g) RREF(A) = I.
. Can find At using [AII] ~> [I [A1]
. Know how to compute determinante of matrices.
know the determinants behavior under row and
operations.
' '
3) Midterm 1 Review meterial.
$A\vec{x} = \vec{b}$
thm: if $AP = \vec{b}$, then general solution to $A\vec{x} = \vec{b}$ is $\vec{x} = \vec{p} + \vec{v}_h$, where \vec{v}_h is the solution to $A\vec{v}_h = \vec{0}$.
is $\vec{x} = \vec{p} + \vec{v}_h$, where \vec{v}_h is the solution to
$AG_{1}=0$.
· Linear independence/ dependence.
. Know how to get REF and RREF.
. Can write down the general solution to Az = b
. Know how to get REF and RREF. . Can write down the general solution to $A\vec{x} = \vec{b}$ and condition gind out the condition of \vec{b} such that
$A\bar{z}^2 = \bar{B}$ Consistent / Inconsistent.

