

Re-sampling, Costsensitive learning and Probability Calibration

ML model outputs and probability

Logistic Regression returns calibrated probabilities

- Some machine learning models return uncalibrated probabilities
 - Decision trees
 - ➤ Naïve Bayes

Imbalance data techniques and probabilities

Over-sampling, under-sampling and cost-sensitive learning distort the relationship between the returned probabilities and the fraction of positive observations.

- > The first distort the distribution of classes.
- > The second modifies the learning function.

Re-sampling – Logistic Regression

0.8

0.6

Probability Predictions

1.0

0.0

0.2

0.4

Random under-sampling

0.6

Probability Predictions

0.8

1.0

Borderline SMOTE

0.0

0.2

40000

30000

10000

Re-sampling – Random Forest

Data Random under-sampling

mpling Borderline SMOTE

Cost-sensitive – Logistic Regression

Raw Data

Cost-Sensitive Learning

Very similar to Random Undersampling!!!

Cost-sensitive – Random Forest

Raw Data

Cost-Sensitive Learning

Very similar to Random Undersampling!!!

Probability as certainty

Probabilities can be much more informative than labels.

• "The model predicts this claim is fraudulent" vs "The model predicts this claim is 90% likely to be fraudulent"

• To convey likelihood, we need <u>calibrate</u> the probabilities after resampling or cost-sensitive learning

THANK YOU

www.trainindata.com