Chapter 5: Integrals

- 5.1 Areas and Distances
- 5.2 The definite Integral
- 5.3 Evaluating Definite Integrals
- 5.4 The Fundamental Theorem of Calculus
- 5.5 The Substitution Rule

The pictures are taken from the books:

[1) James Stewart, Essential Calculus, Early Transcendentals, Cengage Learning, 2nd Edition, 2012, ISBN-13: 978-1133112280]
2) G. Strang and E. J. Herman, Calculus 1, https://openstax.org/details/books/calculus-volume-1

• Find the area of the geometric objects below.

$$A = ab$$

$$A = \frac{1}{2}ab$$

$$A = A_1 + A_2$$
$$+ A_3 + A_4 + A_5$$

• Find the area of the region S that lies under the curve $y = x^2$ from a = 0 to b = 1.

• Approximate S with n = 8 rectangles of equal width:

Left endpoints, area L_8

Right endpoints, area R_8

$$L_8 = 0.2734375 < A < 0.3984375 = R_8$$

Left endpoints, area L_8

Right endpoints, area R_8

$$L_{10} = 0.285 < A < 0.385 = R_{10}$$

Left endpoints, area L_{10}

Right endpoints, area R_{10}

• We identify

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n$$

Example:

Calculate for
$$y = x^2$$
: $A = \lim_{n \to \infty} R_n$

$$A = \lim_{n \to \infty} R_n$$

• Find the area of the region S that lies under the curve y = f(x) from a to b.

• Find the area of the region S that lies under the curve y = f(x) from a to b.

ullet A more general expression for the area of the region S is:

$$A = \lim_{n \to \infty} \sum_{i=1} f(x_i^*) \Delta x$$

5.1 Example

• Let A be the area of the region that lies under the graph of $f(x) = e^{-x}$ between x = 0 and x = 2. (a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit. (b) Estimate the area by taking the sample points to be midpoints and using four sub intervals and then ten subintervals.

5.1 The Distance Problem

Area of a rectangle= $vt = \frac{m}{sec}sec = m = Distance$

Distance =
$$\lim_{n \to \infty} \sum_{i=1}^{n} v(t_i^*) \Delta t_i$$

• Generalization: We consider limits similar in which f need not be positive or continuous and the subintervals don't necessarily have the same length.

- A partition P of [a, b]: $[x_0, x_1], [x_1, x_2,], \dots, [x_{n-1}, x_n]$
- Choose sample points (taggs): $x_1^*, x_2^*, \ldots, x_n^*$ with $x_i^* \in [x_{i-1}, x_i]$
- Riemann Sum: $\sum_{i=1}^{n} f(x_i^*) \Delta x_i = f(x_1^*) \Delta x_1 + f(x_2^*) \Delta x_2 + \dots + f(x_n^*) \Delta x_n$

• Geometric Interpretation of the **Riemann Sum**:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i = f(x_1^*) \Delta x_1 + f(x_2^*) \Delta x_2 + \dots + f(x_n^*) \Delta x_n$$

Definition of a definite Integral: If f is a function defined on [a, b], the **definite** integral of f from a to b is the number

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

provided that this limit exists. If it does exist, we say that f is **integrable** on [a,b].

Theorem If f is continuous on [a, b], or if f has only a finite number of jump discontinuities, then f is integrable on [a, b]; that is, the definite integral $\int_a^b f(x) dx$ exists.

Theorem If f is integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,$$

where
$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i\Delta x$.

Note 1 The definite integral $\int_a^b f(x) dx$ is a number, thus

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(r) dr$$

Note 2 A definite integral can be interpreted as a **net area**, that is, a difference of areas:

19

5.2 Examples

1. (a) Evaluate the Riemann sum for $f(x) = x^3 - 6x$ taking the sample points to be right endpoints and a = 0, b = 3, and n = 6. (b) Evaluate $y = \int_0^3 (x^3 - 6x) dx$.

2. Evaluate the following integrals by interpreting each in terms of areas:

(a)
$$\int_0^1 \sqrt{1-x^2} dx$$
, (b) $\int_0^3 (x-1) dx$.

5.2 Properties of the definite Integral

1.
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

$$\mathbf{2.} \quad \int^a f(x) \mathrm{d}x = 0$$

3.
$$\int_{-b}^{b} c \, \mathrm{d}x = c(b-a), \qquad c \text{ constant}$$

4.
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\mathbf{5.} \quad \int_a^b cf(x) \mathrm{d}x = c \int_a^b f(x) \mathrm{d}x$$

6.
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_a^b f(x) dx, \qquad c \in (a, b)$$

5.2 Properties of the definite Integral

7. If
$$f(x) \ge 0$$
 for $x \in [a, b]$, then $\int_a^b f(x) dx \ge 0$

8. If
$$f(x) \ge g(x)$$
 for $x \in [a, b]$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

9. If
$$m \le f(x) \le M$$
 for $x \in [a, b]$, then $m(b - a) \le \int_a^b f(x) dx \le M(b - a)$

5.2 Example

• Use Property 9 (p. 22) to estimate $\int_0^1 e^{-x^2} dx$.

(whiteboard)

5.3 Evaluating definite Integrals

Evaluation Theorem

If f is continuous on the interval [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, F' = f.

5.3 Indefinite Integrals

$$\int f(x) dx = F(x) \quad \Rightarrow \quad \frac{dF(x)}{dx} = f(x)$$

Note Distinguish between **definite** and **indefinite** integrals. A definite integral $\int_a^b f(x) dx$ is a number, whereas an indefinite integral $\int f(x) dx$ is a function (or family of functions).

5.3 Table of definite Integrals

$$\bullet \int \sinh(x) dx = \cosh(x) + C$$

$$\bullet \int a^x \mathrm{d}x = \frac{a^x}{\ln(a)} + C$$

•
$$\int \cosh(x) dx = -\sinh(x) + C$$

5.3 Example

• Find
$$\int_0^2 \left(2x^3 - 6x + \frac{3}{x^2 + 1}\right) dx$$
 and interpret the result in terms of areas.

5.3 Applications

Net Change Theorem

The integral of a rate of change is the net change: $\int_a^b F'(x) dx = F(b) - F(a)$

Displacement =
$$\int_{t_1}^{t_2} v(t) dt = A_1 - A_2 + A_3$$

Disctance = $\int_{t_1}^{t_2} |v(t)| dt = A_1 + A_2 + A_3$

5.3 Example

- A particle moves along a line so that its velocity at time t is $v(t) = t^2 t 6$ (measured in meters per second).
- (a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- (b) Find the distance traveled during this time period.

5.4 The Fundamental Theorem of Calculus

• If f is continuous on [a, b], then the function t defined by

$$g(x) = \int_{a}^{x} f(t)dt, \qquad x \in [a, b]$$

is an antiderivative of f, that is,

$$g'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) dt = f(x), \qquad x \in (a, b).$$

5.4 Examples

1. Find the derivative of the function $g(x) = \int_0^x \sqrt{1+t^2} dt$

2. Find the derivative of the function $h(x) = \int_1^{x^4} \sec(t) dt$

5.4 Average Value of a Function

• The average value of f on the interval [a, b] is given by

$$\langle f \rangle = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$\begin{pmatrix} \operatorname{proof} \\ \operatorname{whiteboard} \end{pmatrix}$$

5.4 Average Value of a Function

The Mean Value Theorem for Integrals If f is continuous on [a, b], then there exists a number $c \in [a, b]$ such that

$$f(c) = \langle f \rangle = \frac{1}{b-a} \int_a^b f(x) dx \qquad \Rightarrow \qquad \int_a^b f(x) dx = f(c)(b-a)$$

5.4 Example

Find the average value $\langle f \rangle$ of the function $f(x) = 1 + x^2$ on the interval [-1, 2] and the value c for which $f(c) = \langle f \rangle$.

5.5 The Substitution Rule (indefinite Integrals)

• If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Examples:

Find (a)
$$\int x^3 \cos(x^4 + 2) dx$$
, (b) $\int \tan(x) dx$, (c) $\int \frac{x}{\sqrt{1 - 4x^2}} dx$

5.5 The Substitution Rule (definite Integrals)

• If g'(x) is continuous on [a, b] and f is continuous on the range of u = g(x), then

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du$$

Example:

Find

(a)
$$\int_{1}^{2} \frac{1}{(3-5x)^2} dx$$
, (b) $\int_{1}^{e} \frac{\ln(x)}{x} dx$

(b)
$$\int_{1}^{e} \frac{\ln(x)}{x} dx$$

5.5 Symmetry

• Suppose
$$f$$
 is continuous on $[-a, a]$.

(a) If f is even $[f(-x) = f(x)]$, then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

(b) If f is odd $[f(-x) = -f(x)]$, then $\int_{-a}^{a} f(x) dx = 0$

(b) If
$$f$$
 is odd $[f(-x) = -f(x)]$, then $\int_{-a}^{a} f(x) dx = 0$

