What to know in Algebre Lineaire?

Chapitre 1 : Equations Linéaires

Définitions:

- Equation d'une droite dans le plan : $a_1x + a_2y = b$
- Equation linéaire en les variables $x_1, ..., x_n : a_1x_1 + ... + a_nx_n = b$
- Soit l'équation a₁x₁ + ... + a_nx_n = b
 Un ensemble de solution de l'équation est un n-uplet (s₁, ..., s_n) de réels tels que a₁s₁ + ... + a_ns_n = b. Résoudre l'équation c'est rendre apparente les valeurs que peuvent prendre les inconnues
- Un système d'équations linéaires est un ensemble fini d'équations
- Une solution du système d'équations linéaires est un n-uplet (s₁, ..., s_n) vérifiant chacune des équations du système
- Un système ayant au moins une solution est dit consistant
- La matrice augmentée d'un système linéaire est la matrice rassemblant sur ses les coefficients de chacune des équations du système
- Sont appelées opérations élémentaires : la permutation de deux lignes ($L_i <-> L_j$), multiplier une ligne par une constante non nulle ($L_i <- kL_i$) et ajouter un multiple d'une ligne à une autre ($L_i <- L_i + kL_j$)
- Une matrice ayant n lignes et p colonnes est appelée matrice de taille n*p et s'écrit M_{np}
- Une matrice colonne est une matrice de taille n*1
- Une matrice est échelonnée lorsque dans toute ligne non nulle, le premier élément non nul vaut 1 (c'est le 1 directeur de la ligne), que les lignes dont les éléments sont tous nuls sont regroupés en bas de la matrice et que dans deux lignes non nulles successives, le 1 directeur de la ligne inférieur est plus à droite que celui de la ligne supérieure. Elle est réduite lorsque toute colonne ayant un 1 directeur n'a que des 0 sinon
- On dit qu'un système d'équations linéaires est homogène quand il est de la forme AX = 0

Théorèmes:

- Les opérations élémentaires conservent toutes les solutions d'un système
- Si le système S₂ est le résultat de l'opération élémentaire E sur le système S₁, la matrice augmentée de S₂ est le résultat de l'opération élémentaire de E sur S₁
- On peut transformer toute matrice en matrice échelonnée réduite par une suite d'opérations élémentaires
- Résoudre un système dont la matrice augmentée est échelonnée réduite : S'il existe une ligne $0x_1 + ... + 0x_n = B$ (avec $B \neq 0$), alors le système n'a pas de solutions. Les variables correspondants à des 1 directeurs sont dites **directrices**, les autres sont dites **libres**. Les variables libres peuvent prendre des valeurs arbitraires
- Tout système homogène d'équations linéaire est consistant
- Si on a p équations à n inconnues, où p < n, il y a une infinité de solutions

Chapitre 2 : Calcul Matriciel

Définitions :

- La matrice nulle est la matrice dont tous les coefficients sont nuls
- Multiplier une matrice par un scalaire revient à multiplier tous ses coefficients par ce scalaire
- Pour multiplier deux matrices entre elle, il faut que la matrice à gauche ait autant de colonnes que la matrice de droite à de lignes
- La matrice identité de taille n est une matrice de n lignes et n colonnes dont tous les coefficients sont nuls sauf la diagonale qui vaut 1
- Une matrice A est dite inversible lorsqu'il existe une matrice carrée B de même taille telle que $AB = I_n$ et $BA = I_n$
- $A^m = A \dots A$ quand $m \in N$
- Si A est inversible et m € -N, A^m = A...A (valeur absolue de m fois)
- Si A est inversible $A^{-k} = (A^{-1})^{-k}$
- Il existe 3 matrices élémentaires : E_i(c) (la matrice unité sauf la i-ème ligne où il y aura le scalaire « c » à la condition que i soit non nul), E_{ij} (la matrice unité sauf échange des i-ème et j-ème ligne, avec i != j) et E_{ij}(d) (la matrice unité où on ajoute à la i-ème ligne la j-ème ligne, avec i != j)
- Deux matrices (de même tailles) sont appelées équivalentes par lignes lorsque l'on peut transformer l'une en l'autre au moyen d'une suite d'opérations élémentaires
- On appelle une matrice $A = (a_{ij})$ € M_{nn} (R) triangulaire supérieure lorsque pour tout i > j, $a_{ij} = 0$. Elle est appelée triangulaire inférieure lorsque pour tout i < j $a_{ij} = 0$
- Soit $A = (a_{ij})$ € M_{pn} (R) on désigne par ^tA (ou A^T) la matrice obtenue en échangent lignes et colonnes de A
- Soit $A = (a_{ij}) \in M_{nn}$ (R), on appelle trace(A) le réel obtenu en sommant tous les termes de la diagonale
- Une matrice est symétrique lorsqu'elle est égale à sa transposée
- Une matrice est antisymétrique lorsque sa transposée est égale à l'opposé de la matrice de départ

Théorèmes:

- Un système d'équations linéaires admet soit aucune, soit une, soit une infinité de solutions
- Si A et B sont dans $M_{nn}(R)$ et inversibles alors AB est inversible et (AB)-1 = $B^{-1}A^{-1}$
- Soit A et B deux matrices appartenant à $M_{nn}(R)$, alors AB = I_n est équivalent à BA = I_n
- Les 5 propositions suivantes sont inversibles (pour une matrice A € M_{nn}(R)): A est inversible, quelle que soit b €M_{n1}(R) le système AX = b admet une unique solution X = A-1b, l'équation matricielle AX = 0 admet une unique solution X = 0, A est équivalente par lignes à la matrice I_n et A est un produit de matrices élémentaires
- Une matrice triangulaire est inversible si et seulement si les termes de sa diagonale sont tous non nuls

Chapitre 3 : Déterminants

Définitions :

- On appelle permutation de l'ensemble des entiers {1, ..., n} toute liste (ou arrangement) de ceux-ci sans omission, ni répétition ; une permutation de {1, ..., n} définit donc une bijection de {1, ..., n} sur lui-même. Pour un ensemble de n éléments, il y a n ! éléments
- Dans une permutation de l'ensemble des entiers $\{1, ..., n\}$ on dira qu'il y a une inversion lorsqu'un nombre plus grand j_u précède (u < v) un nombre plus petit j_v (la bijection associé a donc « renversé l'ordre u < v en $j_u > j_v$ »
- On dira qu'une permutation est paire lorsqu'elle admet un nombre pair d'inversions ; on dira que sa signature, sgn, est égale à 1. Une permutation impaire a une signature de -1
- On appelle produit élémentaire de A tout produit de n termes de la matrice, pris de telle sorte qu'il y ait un et un seul élément de chaque ligne et un et un seul par colonne. On appellera produit élémentaire signé les termes de la forme sgn * produit élémentaire
- Le déterminant d'une matrice A, noté det(A), la somme de tous les produits élémentaires signés

Théorèmes:

- Si A possède une ligne ou une colonne nulle, det(A) = 0
- Si A est triangulaire supérieure ou inférieure, det(A) = produit des termes de la diagonale
- Si A possède deux lignes égales, det(A) = 0
- $det(E_{ij}) = -1 \ (i != j)$
- $det(E_i(k)) = k$
- $det(E_{ij}(k)) = 1$
- Pour toute matrice A, matrice E élémentaire, det(EA) = det(E)det(A)
- Soit A € M_{nn}(R), A est inversible si et seulement si det(A) != 0
- Dans ce cas, $det(A^{-1}) = 1/det(A)$
- Pour toutes matrices A, B € $M_{nn}(R)^2$, det(AB) = det(A)det(B)
- Pour tout A € $M_{nn}(R)$, $det(^tA) = det(A)$
- <u>Toutes les propriétés des déterminants relatives aux lignes sont</u> aussi vraies pour les colonnes