SIBUR Challenge 2020

Задача "Сырьё"

команда IV & Evteev
1 место public / 2 место private

Игорь Кучеревский г. Москва Владислав Евтеев г. Краснодар

Основные этапы решения

- 1. Очистка данных
 - а. Грубая чистка
 - **b.** Поиск выбросов
 - с. Заполнение пропусков
 - d. Корректировка процентных сумм элементов
 - е. Визуальная оценка таргетов
- 2. Адаптивная система сдвигов
- 3. Обучение и постпроцессинг
 - а. Оверсэмплирование
 - **b.** Построение валидации
 - с. Обучение
 - d. Экспоненциальное сглаживание
- 4. Результаты

Очистка данных: грубая чистка

 Из тренировочной выборки были сразу выброшены два интервала данных: это очень шумные первые 200 значений и огромный бассейн пропусков и выбросов в первой половине

Очистка данных: поиск выбросов

В скользящем окне рассчитывалось среднее значение и среднеквадратичное отклонение.
 Если значение было больше mean+n*sigma или меньше mean-n*sigma, оно объявлялось как
 None.

Очистка данных: заполнение пропусков

- При восстановление значений A_rate/B_rate, если значение по одному из признаков в паре было известно, строилась регрессия в скользящем окне и предсказывался второй
- Пропуски по хим. веществам заполнялись суммой среднего значения и среднего изменение в скользящем окне

Очистка данных: корректировка процентов

• После восстановления пропусков, был проведен анализ суммы химических элементов. Если она выходила за логичные значения интервала [99.9, 100]. То пропорционально все значения элементов уменьшались или увеличивались, образуя сумму 99.95

Очистка данных: визуальная оценка таргетов

• После всех предыдущих шагов было проанализировано поведение таргетов и выброшено два интервала данных, странно сглаженный в первой половине и ужасно шумный во второй.

Адаптивная система сдвигов

- В конце соревнования была имплементирована адаптивная система сдвигов вместо константной.
- В скользящем окне размера 190 считался средний B_rate и по найденной на валидации пропорции высчитывался оптимальный сдвиг для каждого объекта. Как итог оптимальный сдвиг варьируется от 180 до 200 по всей выборке.

Обучение и постпроцессинг: оверсэмплирование

- Так как данных для обучения после очистки осталось мало, было использовано оверсэмплирование
 - 1. Между двумя соседними значениями вставлялся пропуск
 - 2. Пропуски заполнялись интерполяцией

١	f1	f2
obj1	1	10
obj2	2	15
obj3	3	20
obj4	4	25

١	f1	f2
obj1	1	10
obj2	none	none
obj3	2	15
obj4	none	none
obj5	3	20
obj6	none	none
obj7	4	25

١	f1	f2
obj1	1	10
obj2	1.5	12.5
obj3	2	15
obj4	2.5	17.5
obj5	3	20
obj6	3.5	22.5
obj7	4	25

Обучение и постпроцессинг: валидация

• Была написана собственная система кросс-валидации. Тренировочная выборка делилась на 16 пересекающихся отрезков. Модель обучалась на каждом из них и предсказывала весь train и весь test. Затем полученные значения усреднялись.

Обучение и постпроцессинг: обучение

- Были применены градиентные бустинги, опорные вектора на разных ядрах, перебран весь sklearn, ансамблирование и стэкинг, но результата это не дало
- Поэтому в итоговом решение использовалась линейная регрессия с L2 регуляризацией на базовых 10 признаках

model = Ridge()
model.fit(train, target)
result = model.predict(test)

Обучение и постпроцессинг: экспоненциальное сглаживание

• После получения предсказаний, чтобы уменьшить влияние шумов и выбросов, к каждому таргету было применено экспоненциальное сглаживание.

Приблизительные результаты этапов

параметры модели	public result	private result
мл на сырых данных	3.7281	4.2757
чистка и константный сдвиг на 195 только трейна	2.9316	3.6011
чистка и константный сдвиг на 195 всех данных	2.0913	3.0464
добавление фолдов и константный сдвиг на 192	1.7657	2.9175
добавление оверсэмплинга	1.7042	2.7880
добавление адаптивных сдвигов	1.4586	2.6632
добавление экспоненциального сглаживание	1.4205	2.6509

Что дало хороший прирост?

- Подбор системы кросс-валидацит
- Исключение аномальных участков обучающей выборки
- Применение адаптивных сдвигов
- Постпроцессинг, экспоненциальное сглаживание предсказаний