01 - Successioni Generalizzate e Limiti

Successioni generalizzate

₩ Definizione: Relazione filtrante, insieme diretto

Sia D un insieme.

Sia \leq una relazione d'ordine parziale su D.

 \leq si dice **relazione filtrante** quando

 $\forall \alpha, \beta \in D, \ \exists \gamma \in D : \gamma \succeq \alpha \land \gamma \succeq \beta.$

Data una relazione filtrante \leq su D, l'insieme ordinato (D, \leq) si dice **insieme diretto**.

₩ Definizione: Successione generalizzata

Sia (D, \preceq) un insieme diretto.

Sia X un insieme non vuoto.

Si dice **successione generalizzata** su X una funzione del tipo $\varphi: D \to X$.

Fissato $\alpha \in D$, l'elemento $\varphi(\alpha)$ si denota con x_{α} , e la successione generalizzata φ si denota con $\{x_{\alpha}\}_{\alpha \in D}$.

Per indicare che il codominio della successione è X, si scrive $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$.

Limiti e punti limite di successioni generalizzate

Sia X uno spazio topologico.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata su X.

Sia $x \in X$.

x si dice **limite** di $\{x_{lpha}\}_{lpha \in D}$ quando

 $\forall U \text{ intorno di } x, \ \exists \alpha_0 \in D : \forall \alpha \succeq \alpha_0, \ x_\alpha \in U.$

In tal caso, si scrive $x = \lim_{\alpha} x_{\alpha}$.

x si dice **punto limite** di $\{x_{\alpha}\}_{{\alpha}\in D}$ quando

 $\forall U ext{ intorno di } x, orall lpha \in D: \exists eta \succeq lpha, \ x_eta \in U.$

Osservazione: Relazione tra limiti e punti limiti

Un limite per una successione generalizzata è anche punto limite per questa.

Il viceversa generalmente non è vero.

Caratterizzazioni di enti e proprietà topologiche tramite le successioni generalizzate

Proposizione 1.1: Limite di una successione generalizzata su uno spazio di Hausdorff è unico

Sia X uno spazio topologico.

Sono equivalenti i seguenti fatti:

- 1. X è di Hausdorff;
- 2. Vale l'unicità del limite di successioni generalizzate in X, ossia Per ogni successione generalizzata $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ e per ogni $x,y\in X$ limiti per $\{x_{\alpha}\}_{{\alpha}\in D}$, si ha x=y.

Si supponga per assurdo che $x \neq y$.

Essendo X di Hausdorff, esistono U intorno di x e V intorno di y tali che $U \cap V = \emptyset$.

Essendo $x=\lim_{\alpha}x_{\alpha}$, in corrispondenza all'intorno U esiste $\alpha_{x}\in D$ tale che $x_{\alpha}\in U$ per ogni $x\succeq\alpha_{x}$; essendo $y=\lim_{\alpha}x_{\alpha}$, in corrispondenza all'intorno V esiste $\alpha_{y}\in D$ tale che $x_{\alpha}\in V$ per ogni $x\succeq\alpha_{y}$.

Per filtranza di \leq , esiste $\beta \succeq \alpha_x, \alpha_y$.

Allora, $x_{\beta} \in U$ e $x_{\beta} \in V$, il che è contraddittorio in quanto $U \cap V = \emptyset$.

\bigcap Dimostrazione (2. \Rightarrow 1.)

Si provi la contronominale.

Dunque, si supponga che esistano $x, y \in X$ con $x \neq y$, tali che, per ogni U intorno di x e V intorno di y, si abbia $U \cap V \neq \emptyset$;

l'obiettivo è provare l'esistenza di una successione generalizzata $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ che possiede almeno due limiti distinti.

Sia \mathcal{U} la famiglia degli intorni di x.

Sia \mathcal{V} la famiglia degli intorni di y.

Si consideri l'insieme $\mathcal{U} \times \mathcal{V}$, e si consideri su di esso la relazione \preceq , definita ponendo

 $(U, V) \preceq (U', V')$ quando $U' \subseteq e V' \subseteq V$.

 \leq è filtrante; infatti, dati $(U_1, V_1), (U_2, V_2) \in \mathcal{U} \times \mathcal{V}$, si ha $(U_1 \cap U_2, V_1 \cap V_2) \in \mathcal{U} \times \mathcal{V}$, in quanto l'intersezione di due intorni di uno stesso punto è ancora un suo intorno, e inoltre $(U_1, V_1), (U_2, V_2) \leq (U_1 \cap U_2, V_1 \cap V_2)$.

Per ogni $(U, V) \in \mathcal{U} \times \mathcal{V}$, sia $z_{U,V} \in X$ tale che $z_{U,V} \in U \cap V$, che esiste per ipotesi.

Sorge così la successione generalizzata $\{z_{U,V}\}_{(U,V) \in \mathcal{U} \times \mathcal{V}} \subseteq X$.

x e y sono entrambi limiti di $\{z_{U,V}\}_{(U,V) \in \mathcal{U} \times \mathcal{V}}$.

Infatti, per ogni U intorno di x, ossia per ogni $U \in \mathcal{U}$, fissato $V \in \mathcal{V}$ si ha $z_{U,V} \in U \cap V \subseteq U$; inoltre, per ogni $(U',V') \succeq (U,V)$ si ha allora $z_{U',V'} \in U' \cap V' \subseteq U \cap V \subseteq U$.

Proposizione 1.2: Caratterizzazione della chiusura di un insieme in uno spazio topologico

Sia X uno spazio topologico.

Sia $A \subseteq X$.

Sia $x \in X$.

Sono equivalenti i seguenti fatti:

- 1. $x \in \overline{A}$;
- 2. Esiste una successione generalizzata $\{x_{lpha}\}_{lpha\in D}\subseteq A$ tale che $x=\lim_{lpha}x_{lpha}.$

\bigcirc Dimostrazione $(2. \Rightarrow 1.)$

Si supponga che esiste una successione generalizzata $\{x_{lpha}\}_{lpha\in D}\subseteq A$ tale che $x=\lim_{lpha}x_{lpha}.$

Sia U un intorno di x.

Per definizione di limite, esiste $\alpha_0 \in D$ tale che $x_\alpha \in U$ per ogni $\alpha \succeq \alpha_0$.

Poiché $x_{\alpha} \in A$ per ogni $\alpha \in D$ per ipotesi, si ha $x_{\alpha} \in U \cap A$ per ogni $\alpha \succeq \alpha_0$, dunque $U \cap A$.

Allora, $A \cap U \neq \emptyset$ per ogni U intorno di x, ossia $x \in \overline{A}$.

ho Dimostrazione $(2. \Rightarrow 1.)$

Si supponga che $x \in \overline{A}$.

Sia \mathcal{U} la famiglia degli intorni di x;

si introduca su di essa la relazione d'ordine \subseteq^{-1} , definita ponendo $U \subseteq^{-1} V :\Leftrightarrow V \subseteq U$.

 \subseteq^{-1} è filtrante;

infatti, fissati $U, V \in \mathcal{U}$, si ha $U \cap V \in \mathcal{U}$, in quanto l'intersezione di due intorni di uno stesso punto è ancora un suo intorno, e $U, V \subseteq^{-1} U \cap V$.

Essendo $x \in \overline{A}$ per ipotesi, si ha $U \cap A \neq \emptyset$ per ogni $U \in \mathcal{U}$.

Dunque, per ogni $U \in \mathcal{U}$, sia x_U tale che $x_U \in U \cap A$.

Si consideri la successione generalizzata $\{x_U\}_{U\in\mathcal{U}}$.

Si ha $\{x_U\}_{U\in\mathcal{U}}\subseteq A$ per come è stato definito x_U .

Inoltre, si ha $x = \lim_{U} x_{U}$.

Infatti, per ogni intorno U di x, ossia per ogni $U \in \mathcal{U}$, si ha $x_U \in U$ per definizione di x_U ; inoltre, per ogni $V \in \mathcal{U}$ tale che $V \supseteq^{-1} U$, ossia $V \subseteq U$, si ha $x_V \in V \subseteq U$.

Proposizione 1.3: Caratterizzazione della finezza di topologie

Sia $X \neq \emptyset$ uno spazio topologico.

Siano τ_1, τ_2 due topologie su X.

Sono equivalenti i seguenti fatti:

- 1. τ_1 è meno fine di τ_2 , ossia $\tau_1 \subseteq \tau_2$;
- 2. Per ogni successione generalizzata $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ e per ogni $x\in X$, si ha

$$x = \lim_{lpha} x_{lpha} ext{ in } au_2 \Longrightarrow x = \lim_{lpha} x_{lpha} ext{ in } au_1.$$

Osservazioni preliminari

 au_1 è meno fine di au_2 , se e solo se ogni chiuso secondo au_1 è chiuso secondo au_2 .

\bigcirc Dimostrazione (1. \Rightarrow 2.)

Si supponga τ_1 meno fine di τ_2 .

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata.

Sia $x = \lim_{\alpha} x_{\alpha}$ in τ_2 ;

si provi che $x = \lim_{\alpha} x_{\alpha}$ in τ_1 .

Sia U un intorno di x secondo τ_1 .

Allora, esso è intorno di x anche secondo au_2 per ipotesi;

dunque, per definizione di x,

 $\exists \alpha_0 \in D : \forall \alpha \succeq \alpha_0, \ x_\alpha \in U.$

Pertanto, $x = \lim_{\alpha} x_{\alpha}$ in τ_1 .

\bigcap Dimostrazione (2. \Rightarrow 1.)

Intanto, si denoti con $\operatorname{cl}_{\tau}(A)$ la chiusura dell'insieme A rispetto alla topologia τ .

Sia C un insieme chiuso secondo τ_1 .

Sia $x \in \operatorname{cl}_{\tau_2}(C)$.

Si provi che $x \in C$, mostrando così che $\operatorname{cl}_{\tau_2}(C) \subseteq C$, ossia C è chiuso secondo τ_2 .

Per la [proposizione 1.2], esiste $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ tale che $x=\lim_{\alpha}x_{\alpha}$ in τ_2 .

Per ipotesi, segue allora $x = \lim_{\alpha} x_{\alpha}$ in τ_1 .

Pertanto, $x \in \operatorname{cl}_{\tau_1}(C)$ ossia, essendo C chiuso secondo τ_1 per definizione, $x \in C$, come volevasi dimostrare.

Proposizione 1.4: Caratterizzazione della compattezza

Sia X uno spazio topologico.

Sono equivalenti le seguenti affermazioni:

- 1. X è compatto;
- 2. Ogni successione generalizzata in X ammette almeno un punto limite.

Dimostrazione (1. \Rightarrow 2.)

Si supponga X compatto.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata in X.

Si supponga per assurdo che ogni $x \in X$ non è punto limite per $\{x_{\alpha}\}_{{\alpha} \in D}$.

Cioè, per ogni $x\in X$, esistono U_x intorno aperto di x e $\alpha_x\in D$ tali che $x_{\beta}\notin U_x$ per ogni $\beta\succeq \alpha_x$.

Si consideri la famiglia $\{U_x \mid x \in X\}$; essa è un ricoprimento di aperti per X in quanto $x \in U_x$ per ogni $x \in X$.

Per compattezza di X, esistono allora $x_1,\ldots,x_n\in X$ tali che $\bigcup_{i=1}^n U_{x_i}=X$.

Si considerino $\alpha_{x_1},\ldots,\alpha_{x_n}$; per filtranza di \preceq , esiste $\beta\in D$ tale che $\beta\succeq\alpha_{x_i}$ per ogni $i\in\{1,\ldots,n\}$.

Ma allora, per definizione di $\alpha_{x_1}, \dots, \alpha_{x_n}$, essendo β successivo a ognuno di questi si ha $x_\beta \notin U_{x_i}$ per ogni $i \in \{1, \dots, n\}$, segue allora $x_\beta \notin \bigcup_{i=1}^n U_{x_i}$;

ciò risulta contraddittorio in quanto $igcup_{i=1}^n U_{x_i}=X,$ e $x_eta\in X$ in quanto $\{x_lpha\}_{lpha\in D}\subseteq X.$

Dimostrazione (2. \Rightarrow 1.)

Si supponga che ogni successione generalizzata in X ammetta almeno un punto limite.

Sia \mathcal{F} una famiglia di chiusi con la proprietà d'intersezione finita.

Sia \mathscr{G} la famiglia delle sottofamiglie finite di \mathcal{F} con la relazione d'ordine \subseteq ;

essa è filtrante in quanto, fissati $\mathcal{G}_1, \mathcal{G}_2 \in \mathcal{G}$, si ha $\mathcal{G}_1 \cup \mathcal{G}_2 \in \mathcal{G}$ e $\mathcal{G}_1, \mathcal{G}_2 \subseteq \mathcal{G}_1 \cup \mathcal{G}_2$.

Poiché \mathcal{F} soddisfa la proprietà d'intersezione finita, per ogni $\mathcal{G} \in \mathcal{G}$ si ha $\bigcap \mathcal{G} \neq \emptyset$;

Per ogni $G \in \mathcal{G}$, sia dunque $x_{\mathcal{G}} \in \bigcap \mathcal{G}$.

Si consideri la successione generalizzata $\{x_{\mathcal{G}}\}_{{\mathcal{G}}\in\mathscr{G}}\subseteq X$.

Per ipotesi, esiste $x^* \in X$ tale da essere un punto limite di $\{x_{\mathcal{G}}\}_{{\mathcal{G}} \in \mathscr{G}}$.

Si provi che $x^* \in \bigcap \mathcal{F}$.

Sia $C \in \mathcal{F}$; si provi che $x^* \in C$.

Sia U un intorno di x^* ;

si ha $\{C\} \in \mathscr{G}$ essendo sottofamiglia finita di \mathcal{F} .

Per definizione di x^* quale punto limite di $\{x_G\}_{G\in\mathcal{H}}$, esiste $\mathcal{G}\in\mathscr{G}$ con $\mathcal{G}\supseteq\{C\}$, ossia $C\in\mathcal{G}$, tale che $x_{\mathcal{G}}\in U$.

Essendo $x_{\mathcal{G}} \in \bigcap \mathcal{G}$ per definizione e $C \in \mathcal{G}$, si ha anche $x_{\mathcal{G}} \in C$.

Dunque, $x_{\mathcal{G}} \in U \cap C$.

Allora, $U \cap C \neq \emptyset$ per ogni U intorno di x^* , ossia $x^* \in \overline{C}$.

Essendo C chiuso, segue $x^* \in C$, come volevasi dimostrare.

Siano X e Y due spazi topologici.

Sia $x \in X$.

Sono equivalenti i seguenti fatti:

- 1. f è continua in x;
- 2. Per ogni successione generalizzata $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ convergente a x, si ha $f(x)=\lim_{\alpha}f(x_{\alpha})$.

\square Dimostrazione (1. \Rightarrow 2.)

Si supponga f continua in x.

Sia $\{x_{\alpha}\}_{{\alpha}\in D}\subseteq X$ una successione generalizzata convergente a x.

Sia V un intorno di f(x).

Per continuità di f, esiste un intorno U di x tale che $f(U) \subseteq V$.

Poiché $x=\lim_{\alpha}x_{\alpha}$ per ipotesi, esiste $\alpha_{0}\in D$ tale che $x_{\alpha}\in U$ per ogni $\alpha\succeq\alpha_{0}$.

Essendo $f(U) \subseteq V$, si ha allora $f(x_{\alpha}) \in V$ per ogni $\alpha \succeq \alpha_0$.

Ne segue allora che $f(x) = \lim_{\alpha} f(x_{\alpha})$.

\bigcap Dimostrazione (2. \Rightarrow 1.)

Si supponga che valga quanto dichiarato nel punto 2.

Si supponga per assurdo che f non sia continua in x;

cioè, esiste \tilde{V} intorno di f(x) tale che, per ogni U intorno di $x, f(U) \nsubseteq \tilde{V}$.

Per ogni intorno U di x, sia dunque $x_U \in U$ tale che $f(x_U) \notin \tilde{V}$.

Sia \mathcal{U} la famiglia degli intorni di x dotata della relazione d'ordine \subseteq^{-1} , che è filtrante.

Si consideri quindi la successione generalizzata $\{x_U\}_{U\in\mathcal{U}}$.

Si ha $x = \lim_{U} x_U$; infatti, per ogni U intorno di x, ossia per ogni $U \in \mathcal{U}$, si ha $x_U \in U$, dunque $x_V \in V \subseteq U$ per ogni $V \in \mathcal{U}$ con $V \supseteq^{-1} U$.

Allora, per ipotesi si ha $f(x) = \lim_{U} f(x_U)$.

Tuttavia ciò contraddice il fatto che, in corrispondenza all'intorno \tilde{V} di f(x), si ha $f(x_U) \notin \tilde{V}$ per ogni $U \in \mathcal{U}$ per definizione di x_U .

Minimo e massimo limite per successioni generalizzate

Definizione: Limite minimo e limite massimo di una successione generalizzata

Sia $\{x_{lpha}\}_{lpha\in D}\subseteq\mathbb{R}$ una successione generalizzata in \mathbb{R} .

Si dice **limite minimo** di $\{x_{\alpha}\}_{{\alpha}\in D}$ l'elemento $\liminf_{\alpha}x_{\alpha}=\sup_{{\alpha}\in D}\inf_{{\beta}\geq {\alpha}}x_{\beta}.$

Si dice **limite massimo** di $\{x_{\alpha}\}_{\alpha\in D}$ l'elemento $\limsup_{\alpha}x_{\alpha}=\inf_{\alpha\in D}\sup_{\beta\geq\alpha}x_{\beta}.$