

ZAFER CÖMERT Öğretim Üyesi

VERİ YAPILARILARI VE ALGORİTMALAR

Algorithm Analysis and Asymptotic Notations

Algoritmaları neden analiz ederiz?

• SIRALAMA

- Insertion
- Selection
- Quicksort
- Binary
- Bubble

$$|f(n)| \le c * |g(n)|, t \ddot{\mathbf{u}} m n \ge n_0$$

• Pozitif tam sayılardan pozitif tam sayılara kadar f(n) ve g(n) monotonik fonksiyonlar için c>0 ve $n_0>0$ sabitleri olduğunda f(n)=O(g(n)) şekliden ifade edilir.

$$f(n) \le c * g(n)$$
, tüm $n \ge n_0$

• Sezgisel olarak, bu f(n) fonksiyonunun g(n)'den daha hızlı büyümediği veya g(n) fonksiyonunun f(n) için, yeterince büyük olan $n \to \infty$ için bir üst sınır olduğu anlamına gelir.

$$f(n) = O(g(n))$$

• f(n) = O(g(n)) ilişkisinin grafiksel gösterimi

Çalışma Zamanı Analizi

 Çalışma zamanı giriş boyutunun boyutuna bağlı olarak artar.

• Giriş boyutu n'e bağlı olarak varsayım yapılmamalıdır.

• n her zaman küçük olmayabilir.

Çalışma Zamanı Analizi

• Büyüme Hızı (Rate of Growth): Girdinin bir fonksiyonu olarak çalışma süresinin artma hızı.

• Alt Sıradan Terimler (Lower Order Terms): Bir fonksiyonun büyüme oranına ilişkin bir tahmin verildiğinde, daha yüksek dereceli şartlar için daha az önemli olduklarından, düşük dereceden terimleri düşürme eğilimindeyiz.

$$f(n) = n^3 + 33 + 33$$

Lower Order Terms in Layman's Terms

600332

Sabit faktörler ve düşük dereceli terimler gibi ikinci dereceden ayrıntıları gizlemek ve girdi boyutu büyüdükçe bir algoritmanın çalışma süresinin nasıl ölçeklendiğine odaklanmak istiyoruz.

- 1. Giriş boyutuna bağlı karmaşıklık
- 2. Makineden bağımsız
- 3. Temel bilgisayar adımları

Ölçüm Türleri

Big-Oh

- 1. En kötü durum (worst-case)
- 2. En iyi durum (best-case)
- 3. Ortalama durum (average-case)

Genel Kurallar

1. Sabitler ihmal edilir (constant factor).

$$T(n) = 5n + 3 => O(n)$$

$$T(n) = 10n + 99 => O(n)$$

$$T(n) = 1000n => O(n)$$

Genel Kurallar

2. Baskın terim dikkate alınır.

$$O(n^2+5n+100) => O(n^2)$$

Örnekler

Fonksiyon	Big O
$n^4 + 100n^2 + 10n + 50$	O(n ⁴)
$10n^3 + 2n^2$	O(n ³)
$n^3 - n^2$	O(n ³)
10	O(1)
1273	O(1)

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

$$x^2 + 2x + 1 \le C.x^2$$
 when $x > k$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

$$x^2 + 2x + 1$$
 is $O(x^3)$

Önceki versiyonu tercih ederiz.

n! ifadesinin $O(n^n)$ olduğunu gösterelim.

$$\therefore n! \leq C.n^n \ bazi \ n > k$$

$$\therefore 1.2.3.\dots n \leq n.n.n.\dots n$$

$$C = 1$$
 ve $k = 1$ olduğunda $n! = O(n^n)$

$$f(n) = n^2$$
, $O(n)$ olmaz!

$$\therefore n^2 \le C.n$$
 for some $n > k$

$$\therefore \frac{n^2}{n} \le \frac{C.n}{n}$$

$$\therefore n \leq C$$

Burada *n değişkendir* ve *C* ise bu sabittir.

Doğrusal değildir.

Eğer $f_1(n) -> O(g_1(n))$ and $f_2(n) -> O(g_2(n))$ ise

 $f_1(n)*f_2(n)$ is $O(g_1(n)*g_2(n))$

(3n+1)*(2n+log n)

İlgili örneğin derecesi nedir?

$$3n+1 \rightarrow O(n)$$

 $2n+\log n \rightarrow O(n)$
 $(3n+1)*(2n+\log n) \rightarrow O(n*n)=O(n^2)$

n – Giriş boyutu Karmaşıklığını küçükten büyüğe doğru sıralanması.

Sabit Zaman: O(1)

Logaritmik Zaman: O(log(n))

Doğrusal Zaman: O(n)

Doğrusal-logaritmik Zaman: O(n log(n))

İkinci Dereceden Zaman: $O(n^2)$

Kubik Zaman: $O(n^3)$

Üstel Zaman: $O(b^n)$ b>1

Faktoriyel Zaman: O(n!)

Algoritmanın Zaman Karmaşıklığı

	n						
Function	10	100	1,000	10,000	100,000	1,000,000	
1	1	1	1	1	1	1	
log ₂ n	3	6	9	13	16	19	
n	10	10 ²	10 ³	104	105	106	
n * log ₂ n	30	664	9,965	105	10 ⁶	10 ⁷	
n ²	10 ²	104	10 ⁶	108	10 10	10 12	
n ³	10³	10 ⁶	10 ⁹	1012	10 15	10 ¹⁸	
2 ⁿ	10³	1030	1030	103,0	10 10 30,	103 10 301,030	

Algoritmanın Zaman Karmaşıklığı

- Giriş boyutu 8 olan bir veri için algoritma 1 saniyede yanıt vermektedir, problem boyutunun 16 olması durumunda algoritmanın çalışma zamanın hesaplayınız?
- Algoritmanın derecesine göre:

```
O(1) \rightarrow T(n) = 1 saniye

O(log<sub>2</sub>n) \rightarrow T(n) = (1*log<sub>2</sub>16) / log<sub>2</sub>8 = 4/3 saniye

O(n) \rightarrow T(n) = (1*16) / 8 = 2 saniye

O(n*log<sub>2</sub>n) \rightarrow T(n) = (1*16*log<sub>2</sub>16) / 8*log<sub>2</sub>8 = 8/3 saniye

O(n<sup>2</sup>) \rightarrow T(n) = (1*16<sup>2</sup>) / 8<sup>2</sup> = 4 saniye

O(n<sup>3</sup>) \rightarrow T(n) = (1*16<sup>3</sup>) / 8<sup>3</sup> = 8 saniye

O(2<sup>n</sup>) \rightarrow T(n) = (1*2<sup>16</sup>) / 2<sup>8</sup> = 2<sup>8</sup> saniye = 256 saniye
```


Algoritmanın Zaman Karmaşıklığı

O-Notasyonu

```
O(g(n)) = \{
f(n): \\ \exists \ pozitif \ sabitler \ c \ and \ n_0, \\ \forall n \geq n_0, \\ 0 \leq f(n) \leq cg(n) \}
```


O-Notasyonu

```
\Theta(\mathsf{g}(\mathsf{n})) = \{
f(\mathsf{n}):
\exists \mathsf{pozitif} \mathsf{sabitler} \ c_1, \ c_2, \mathsf{ve} \ n_0,
\forall \mathsf{n} \geq n_0,
0 \leq c_1 \mathsf{g}(\mathsf{n}) \leq \mathsf{f}(\mathsf{n}) \leq c_2 \mathsf{g}(\mathsf{n})
\}
```


Ω -Notasyonu

```
\Omega(g(n)) =
         f(n):
         \exists pozitif sabitler c and n_0,
         \forall n \geq n_0,
         0 \le cg(n) \le f(n)
```


o - Notasyonu

```
o(g(n)) = 

{
    f(n): \forall c > 0, \exists n_0 > 0
\forall n \ge n_0,
0 \le f(n) < cg(n)
}
```

g(n) üst sınırı f(n) için asimptotik olarak sıkı değildir.

ω -Notasyonu

```
o(g(n)) = 

{
    f(n): \forall c > 0, \exists n_0 > 0
\forall n \ge n_0,
0 \le f(n) < cg(n)
}
```

g(n) alt sınırı f(n) için asimptotik olarak sıkı değildir.

Asimptotik Notasyonlar

Fonksiyonların Karşılaştırılması

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Monotonluk

- *f*(*n*) fonksiyonu:
 - Monoton artandır: eğer $m \le n \Rightarrow f(m) \le f(n)$.
 - Monoton azalandır: eğer $m \ge n \Rightarrow f(m) \ge f(n)$.
 - Kesinlikle artandır: eğer $m < n \Rightarrow f(m) < f(n)$.
 - Kesinlikle azalandır: eğer $m > n \Rightarrow f(m) > f(n)$.

Fonksiyonların Büyüme Derecelerini Karşılaştırmak için Limit Kullanımı

```
\lim_{n\to\infty} t(n)/g(n) = \begin{cases} c \text{ büyüme derecesi } \textbf{\textit{t}(n)} & < \text{büyüme derecesi } \textbf{\textit{g}(n)} \\ \\ \infty \text{ büyüme derecesi } \textbf{\textit{t}(n)} & > \text{büyüme derecesi } \textbf{\textit{g}(n)} \end{cases}
```


Örnekler

Limit kullanarak ispatlayınız.

•
$$10n - 3n \in O(n^2)$$

•
$$3n^4 \in \Omega(n^3)$$

•
$$n^2/2 - 3n \in \Theta(n^2)$$

•
$$2^{2n} \in \Theta(2^n)$$

Örnekler

Limit kullanarak ispatlayınız.

•
$$10n - 3n \in O(n^2) - Evet!$$

$$\lim_{n \to \infty} [10n - 3n / n^2] = 0$$

•
$$3n^4 \in \Omega(n^3)$$
 – Evet!
$$\lim_{n \to \infty} [3n^4/n^3] = \infty$$

•
$$n^2/2 - 3n \in \Theta(n^2) - \text{Evet!}$$

$$\lim_{n \to \infty} [n^2/2 - 3n / n^2] = 1/2$$

•
$$2^{2n} \in \Theta(2^n)$$
 – Hayır!
$$\lim_{n \to \infty} [2^{2n}/2^n] = \infty$$

Veri Yapıları ve Algoritmalar

ZAFER CÖMERT

Öğretim Üyesi

