MIN 3 - 2

STRINGS & RECURSIVE DEF. S CH 5.3

GIVEN AN ALPHABET E,									
NE DEFINE THE SET OF STRINGS OVER THE ALPHABET	DEPIN	E CONCATENA							
			the concerte	enation of w	y + W2				
· BASIS: A is a string (this is the empty swing)		W • Y = M							
· RECURSIVE STEP: if w is a string + x & E, then wx is a string		REGURSIVE:	w w2 X =	(W1 • W2) X	→ 1100 · 100) [e econstikuct	INTO	
like puting string n another symbol together to make a new string.					((1100-10)0)	7	11001001		
Ex: id w = 0110 , X=1 , WX = 01101					(((11 00 - 1) 0)				
					(((((100 Å))) A REDUCE TI)0)0)1 LL Wz=X			
NOW WE WANT A FUNCTION FOR THE LENGTH OF THE STRING	Des	INE REVERSAL		Rev (abb) :					
		REVERSE (A)		/	C. b. ROVCA)				
Langth (1) = 0					C.b.a.A = C				
length (wx) , where w is a swing in $x \in \Sigma$, a length $(w) + 1$		REVERSE CABC			B X by HSOIF IS NOT IT MAKES I	A STRING , E		ATING A W.	/ X
4 all the symbols from w +1 from x		RECURSIVE : R	EVERSE (WX) = A • X • RevC	w)				
CIPILCIUS AL INCULCIUM!									
STRUCTURAL INDUCTION									
CLAIM: FOR ALL STRINGS W, NW = W									
PROOF: BASIS - \(\lambda \times \lambda \), by def. of concertonation									
INDUCTIVE - ASSUME A.W. = W., show A.W.X. = WX Where X & Z									
	N STRINGS OF	LENGTH K,							
		R THE NEXT LENG	ITH VP						
[
λ·wx = Cλ·w) x def. of concatenation									
= WX by H (ASUME A.W = M)									
SO A.WX = WX									