Arquitetura de Computadores

PROF. ISAAC

Entradas e Saídas digitais

Os microcontroladores possuem uma série de pinos, sendo que boa parte deles possuem como função principal a entrada e/ou saída de dados digitais.

Entradas e Saídas digitais

Em linhas gerais, dados digitais são informações processadas por dispositivos digitais e possuem apenas dois valores:

- •Zero (0): correspondente à tensão de 0 V
- •Um (1): correspondente, em geral, à tensão de 5 V.

Entradas e Saídas digitais

Deste modo, nos pinos de entrada e saída digitais de um microcontrolador podem existir apenas dois níveis de tensão entrando ou saindo deles: 0 V ou 5 V.

- Nível lógico Baixo (LOW) = 0V
- Nível lógico Alto (HIGH) = 5V

Exemplo de entradas digitais

A adição de um resistor de externo reduz os rebotes.

A presença do diodo evita que rebotes da chave gerem uma tensão elevada sobre o pino da porta paralela.

(b) Chave com proteção.

Exemplo de entradas digitais

Resistores pull-down:

• A entrada fica sempre LOW (0V) enquanto o botão não for apertado.

Exemplo de entradas digitais

Resistores pull-up:

 A entrada fica sempre HIGH (5V) enquanto o botão não for apertado.

Exemplo de saídas digitais

Quando utilizamos o microcontrolador com saídas digitais, devemos evitar que a corrente elétrica exigida no pino de saída não seja acima da corrente máxima do microcontrolador.

Portas do 8051

No 8051, estão disponíveis quatro portas paralelas, denominadas portas P0, P1, P2 e P3. Cada bit dessas portas corresponde a um pino do microcontrolador.

Display de 7 Segmentos

Display de 7 segmentos

Display anodo comum

Decodificador para display de 7 segmentos

 O Decodificador recebe um código binário (BCD 8421) e escreve a sequencia de 0 a 9 em um display de 7 segmentos catodo comum.

Figura 1 - Display de 7 segmentos comandado por um decodificador 7447.

Decodificador para display de 7 segmentos

 Na disciplina de Sistemas Digitais vocês utilizaram o decodificador 74247 no projeto desenvolvido no programa Quartus Prime.

Figura 1 - Display de 7 segmentos comandado por um decodificador 7447.

Decodificador para display de 7 segmentos

Decodificador para display de 7 segmentos de anodo comum

N°		Entr	adas		Saídas							
IN	D	С	В	A	а	b	C	d	e	f	g	
0	0	0	0	0	0	0	0	0	0	0	1	
1	0	0	0	1	1	0	0	1	1	1	1	
2	0	0	1	0	0	0	1	0	0	1	0	
3	0	0	1	1	0	0	0	0	1	1	0	
4	0	1	0	0	1	0	0	1	1	0	0	
5	0	1	0	1	0	1	0	0	1	0	0	
6	0	1	1	0	0	1	0	0	0	0	0	
7	0	1	1	1	0	0	0	1	1	1	1	
8	1	0	0	0	0	0	0	0	0	0	0	
9	1	0	0	1	0	0	0	0	1	0	0	

Decodificador para display de 7 segmentos de catodo comum

N°		Entr	adas		Saídas						
IN	D	С	В	Α	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Decodificador para display de 7 segmentos no programa edSim51

	Saídas										
N°	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	P1		
	•	g	f	е	d	С	b	а	HEX		
0	1	1	0	0	0	0	0	0	C0		
1	1	1	1	1	1	0	0	1	F9		
2	1	0	1	0	0	1	0	0	A4		
3	1	0	1	1	0	0	0	0	В0		
4	1	0	0	1	1	0	0	1	99		
5	1	0	0	1	0	0	1	0	92		
6	1	0	0	0	0	0	1	1	83		
7	1	1	1	1	1	0	0	0	F8		
8	1	0	0	0	0	0	0	0	80		
9	1	0	0	1	1	0	0	0	98		

Exemplo 1

RET

```
start:
 MOV P3, #11111111b
                           ; HABILITA display 3
 MOV P1, #OF9h
                           ; Apresenta 1 no display
  CALL delay
 MOV P3, #11110111b
                           ; HABILITA display 2
  MOV P1, #0A4h
                           ; Apresenta 2 no display
  CALL delay
 MOV P3, #11101111b
                           ; HABILITA display 1
 MOV P1, #0B0h
                           ; Apresenta 3 no display
  CALL delay
 MOV P3, #11100111b
                           ; HABILITA display 0
 MOV P1, #099h
                           ; Apresenta 4 no display
  CALL delay
  JMP start
                           ; Salta para o start
delay:
 MOV R0, #<u>250</u>
 DJNZ R0,$
```

Exemplo 2

```
;Subrotina para atualizar o display de 7 segmentos
;RECEBE: A = número a ser mostrado no display
DEC7SEG:
      MOV DPTR,#TABELA
                                      ;DPTR = início da tabela de códigos
      MOVC A, @A+DPTR
                                      ;lê a tabela da memória de programa
      MOV P1,A
                                      ;escreve código na porta P1
      RET
¡Tabela (memória de programa) com os códigos para o display
;0123456789
TABELA:
```

DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 83H, 0F8H, 80H, 98H

Exemplo 3

```
start:
  MOV R2, #10
ROT:
  MOVA, R2
  DEC A
  CALL DEC7SEG
                                ; Chama a subrotina DEC7SEG
  CALL delay
                                ; Chama a subrotina delay
  DJNZ R2, ROT
  JMP start
                                ; Salta para o start
delay:
  MOV R0, #250
  DJNZ R0,$
  RET
DEC7SEG:
  MOV DPTR,#TABELA
                                ;DPTR = início da tabela de códigos
  MOVC A,@A+DPTR
                                ;lê a tabela da memória de programa
  MOV P1,A
                                ;escreve código na porta P1
  RET
;Tabela (memória de programa) com os códigos para o display
;0123456789
TABELA:
  DB 0C0H, 0F9H, 0A4H, 0B0H, 99H, 92H, 83H, 0F8H, 80H, 98H
```

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.