

**Application
for
United States Letters Patent**

KE-WEN DONG, SERGIO C. OEHNINGER AND WILLIAM E. GIBBONS

To all whom it may concern:

Be it known that KE-WEN DONG, SERGIO C. OEHNINGER AND WILLIAM E. GIBBONS

has invented certain new and useful improvements in

HUMAN ZONA PELLUCIDA PROTEIN 3 AND USES THEREOF

of which the following is a full, clear and exact description.

5

HUMAN ZONA PELLUCIDA PROTEIN 3 AND USES THEREOF

This application claims priority of U.S. Serial No. 09/252,828, filed February 19, 1999, which claims 10 priority of U.S. Serial No. 60/075,079, filed February 19, 1998. The content of these applications is incorporated by reference into this application.

15 Throughout this application, various references are referred to within parenthesis. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which 20 this invention pertains.

FIELD OF THE INVENTION

A method to determine sperm activity and a 25 diagnostic kit for the same purpose.

BACKGROUND OF THE INVENTION

30 Earlier studies have led to the characterization of the protein components of the zona pellucida (ZP) from a variety of mammalian species, with the majority of the work being performed in the murine and porcine species. The reported number of 35 discrete proteins comprising the ZP from different mammalian species varies (Dunbar et al, 1981; 1994; Timmons and Dunbar, 1988; Bleil and Wassarman, 1980). Murine studies have revealed that the ZP is composed of three sulfated glycoproteins, referred 40 to as ZP1, ZP2 and ZP3. Extensive work in this model has resulted in the identification and isolation of the primary receptor for sperm located at the level

5 of the zona pellucida, a glycoprotein called zona
pellucida protein 3 (ZP3) (Bleil and Wassarman,
1980; Wassarman, 1990 a and b). The binding of sperm
to ZP is supported by ZP3 and complementary binding
protein(s) present in the sperm plasma membrane
10 (Saling, 1989; Wassarman, 1990; Saling, 1991).
Genes homologous to the ZP2 and/or ZP3 genes have
been cloned for the mouse (ZP3 and ZP2), hamster
(ZP3), human (ZP3), rabbit (rc75), and marmoset
(Ringuette et al., 1986; Liang et al., 1990; Kinloch
15 et al., 1990; Chamberlin & Dean, 1990; Liang & Dean,
1993; Lee et al., 1993; Thillai-Koothan et al.,
1993). Genes encoding ZP2 and ZP3 are conserved
among mammals and sequences of ZP3 cDNA coding
regions show extensive homology between species
20 studied so far.

Cloning cDNAs encoding ZP3 has made the expression
of recombinant ZP3 in tissue culture cell lines
possible and represents the potential to obtain
25 large amounts of recombinant ZP3. The expression of
biologically active recombinant ZP3 has been
reported, at least, in the mouse (Kinloch et al,
1991; Beebe et al, 1992) and human (van Duin et al,
1994; Barratt et al, 1994; Burks et al, 1995). In
30 the mouse, some of these recombinant proteins have
demonstrated partial or full biological activity in
ligand-receptor or acrosome reaction assays.
Expression of recombinant ZP proteins is not
restricted to those of the mouse and human species.
35 Prasad et al (1996) demonstrated that recombinant
rabbit 55 kDa protein (which is thought to be the
rabbit homologue of mouse ZP1) purified from a
baculovirus expression system could be used to
generate a polyclonal antiserum which was then

5 employed to study the localization of the native 55
kDa protein in rabbit zona.

On the other hand, recombinant human ZP3 has been
expressed using several approaches, i.e.,
10 *Escherichia coli* (Chapman and Barratt, 1996), *in*
vitro transcription and translation systems
(Whitmarsh *et al*, 1996), Chinese hamster ovary (CHO)
cells (van Duin *et al*, 1994; Barratt and Hornby,
1995; Brewis *et al*, 1996) and in African green
15 monkey kidney (COS) cells (Burks *et al*, 1995). In
the human, however, full biological activity, which
includes the ability to bind spermatozoa in a
specific fashion and to induce the acrosome
reaction, has not been fully demonstrated for such
20 products. This is possibly due, among other reasons,
to inadequate or incomplete glycosylation of the
recombinant protein (Chapman and Barratt, 1997).

In the human system, production of a pure
25 recombinant ZP3 glycoprotein in a biologically
active form has been fraught with technical
difficulties. Expressing recombinant ZP3 protein
with *in vitro* transcription and translation systems
and in *Escherichia coli* has shown a variable
30 acrosome reaction-inducing activity. However, no
direct or specific sperm-binding ability using
homologous sperm-ZP bioassays has been reported for
such non-glycosylated products. In addition, protein
solubility has been a major difficulty encountered
35 (Chapman and Barratt, 1997). The rhZP3 expressed in
CHO cells has been shown to possess acrosome
reaction-inducing activity. However, no data are
available regarding sperm binding in validated
assays (van Duin *et al*, 1994; Barratt and Hornby,

5 1995). The fact that such recombinant proteins lack
full sperm binding activity points to inadequate
glycosylation of the protein core by the host cells.

In our studies we have cloned and expressed the cDNA
10 of human ZP3 by stable transfection in a human
ovarian cell line (PA-1 cells). This cell line was
chosen to fit the glycosylation criterion, since
glycosylation is tissue- and species-specific
(Varki, 1993). The PA-1 cells produce glycosylated
15 proteins such as lactosaminoglycan-carrier
glycoprotein (Fukuda et al, 1985), heparin-binding
protein (Furukawa et al, 1990) and fibronectin
(McLlinney and Patel, 1983), and have been
successfully used as an expression host to express
20 other glycoproteins such as Interleukin-6 receptor
(Lust et al, 1995). We purified the recombinant
glycoprotein product and characterized its
biological activities as sperm ligand (in
competition studies using a homologous sperm-zona
25 pellucida binding bioassay) and as physiologic
inducer of the acrosome reaction (triggering
exocytosis of sperm in suspension and assessing the
frequency of acrosome reaction by lectin binding
fluorescence). A first description of the full
30 biological activities of this product has been
reported (Dong et al, 2000). Here we have focused in
the molecular biology and biochemical steps involved
in cloning and expression as well as in glycoprotein
purification.

35

The zona pellucida protein 3 (ZP3) is an essential
component of the reproductive system as it functions
as sperm receptor on the zona and as trigger of the
acrosome reaction. To date, no recombinant human

5 ZP3 (rhZP3) with well-documented and characterized
biological activity is available. The aim of these
studies was to clone and express a biologically
active rhZP3 in human ovarian cells. A full-length
10 human ZP3 cDNA was generated by RT-PCR using mRNA
isolated from a human ovary. Sequencing of both
strands demonstrated identical composition to the
previously published cDNA sequence. An *in vitro*
transcription and translation system revealed a
protein core of 47 Kd for the product. To express
15 the human ZP3 *in vitro*, the ZP3 cDNA with a six-
histidine tail in its 3' end was inserted into a
pcDNA vector with a CMV promoter. The expression
construct was introduced into PA-1 cells by stable
transfection. The purification of rhZP3 was
20 performed using Wheat Germ Agglutinin, DEAE ion
exchange and Ni-NTA affinity chromatography.
Western blot analysis confirmed a molecular weight
of approximately 65 Kd for the secreted glycoprotein
which had a PI of 4.60 ± 0.05 . Glycosylation labeling
25 experiments demonstrated incorporation of ^{3}H -
galactose by the transfected cells. The rhZP3
demonstrated specific activities as ligand and
inducer of the acrosome reaction of live human
sperm.

5 **SUMMARY OF THE INVENTION**

The present invention provides a method to determine sperm activity comprising the steps of: (a) contacting an appropriate concentration of human zona pellucida protein 3 with an appropriate amount of sperm under conditions permitting the formation of a complex between the human zona pellucida protein 3 and the sperm; and (b) determining the complex form.

15

The invention further provides A method to determine sperm activity comprising the steps of (a) contacting an appropriate concentration of human zona pellucida protein 3 with an appropriate amount of sperm under conditions permitting an acrosome reaction to occur; and (b) determining the extent of the acrosome reaction.

This invention also provides a diagnosis kit for sperm activity comprising compartments with (a) an appropriate amount of human zona pellucida protein 3 and (b) the reagents used for establishing the conditions for allowing the binding of sperm.

30 Furthermore, this invention provides a diagnosis kit for sperm activity comprising compartments with (a) an appropriate amount of human zona pellucida protein 3 and (b) the reagents used for establishing the conditions for allowing an acrosome reaction.

35

Finally, this invention provides a diagnosis kit for sperm activity comprising three (3) compartments with (a) an appropriate amount of human zona pellucida protein 3; (b) the reagents used for establishing the conditions for allowing the binding

5 of sperm; and (c) the reagents used for establishing the conditions for allowing an acrosome reaction.

CONFIDENTIAL - SECURITY INFORMATION

5 DETAILED DESCRIPTION OF THE FIGURES

Sabu A.

Fig. 1. Western Blot Analysis of protein sample from Caov-3, Caob-4, OVCAR-3, EB2, PA-1, SK-OV-3, and SW626 which were transfected with human ZP3 cDNA.

Fig. 2. Determination of expression of recombinant ZP3 in transfected PA-1 cells by RT-PCR. A) RT-PCR amplification of first strand of cDNA from the RNA sample of PA-1 cells stable transfected with human ZP3 cDNA with primers A(CH1)/B(CH2) and A/C(B1). Location of PCR primers (Primer A 5' - TAGGATCCACCATGGACTGAGCTATAGG-3', Primer B 5' - TTATTCGGAAGCAGACACAGGGTGGGAGGCAGT-3', Primer C 5' - TTCTCGAGTTAATGATGATGATGATGTTCGGAAGCAGACACAGGGTGGG AGGCAGT-3').

Fig. 3. Protein Sample (rhZP3) from PA-1 cells stable transfected with human ZP3 cDNA and solubilized zona (hZP3) was separated by SDS-PAGE. One of the gels was stained by Coomassie Blue. The other gel was analyzed by Western Blot. The human recombinant ZP3 has an identical molecular weight as the native ZP3 from the solubilized zona.

Fig. 4. Study of the expression of recombinant human ZP3 using ELISA. Results are expressed as mean +/- SEM.

Fig. 5. Western blot analysis of recombinant human ZP3 isolated from WGA, DEAE and Ni-NTA columns. Western blot analysis of recombinant human ZP3 protein which was purified with WGA columns only(WGA), WGA and DEAE columns (DEAE) as well as

5 WGA, DEAE and Ni-NTA columns(Ni-NTA). The protein
samples purified from non-transfected PA-1 cells
(PA-1 without rhZP3) was used as a negative control.

10 **Fig. 6.** Determination of isoelectric point of
rhZP3 using isoelectric focusing electrophoresis.
A) Photo of rhZP3 on the isoelectric focusing gel.
The protein sample isolated from the non-transfected
PA-1 cells was used as a negative control. B) The
computer graphics represent the photo of rhZP3 on
15 the isoelectric focusing gel (A). C) Regression
analysis of isoelectric point electrophoresis.

20 **Fig. 7.** ^{3}H -Metabolic Labeling Study of PA-1 cells
with or without transfected human ZP3 cDNA.
Results are expressed as mean +/- SEM.

25 **Fig. 8.** *In vitro* transcription and translation of
human ZP3 cDNA. Human ZP3 cDNA was transcribed and
translated *in vitro* by a reticulocyte lysate system
from both 5' and 3' directions. A 47-kDa protein
(indicated by arrow) was observed in the cDNAs only
in 5' direction. A cDNA encoding luciferase was
transcribed and translated as a positive control.

30 **Fig. 9.** A glycoprotein sample (purified by
sequential WGA-DEAE-Ni-NTA chromatography) from PA-1
cells transfected with human ZP3 (rhZP3) and human
solubilized zona pellucida (hZP3) were separated by
SDS-PAGE. Left gel: Coomasie staining of SDS
35 denaturing gel. Right gel: Western blot analysis.
The rhZP3 has an identical molecular weight as the
native ZP3 from human solubilized zona pellucida.

5 **Figure 10.** Dose-dependent competitive inhibitory
effect of rhZP3 on sperm-zona binding in the HZA.
HZI: Hemizona index. Overall effect by ANOVA, p <
0.0001.

10 **Figure 11.** Dose-dependent induction of acrosomal
exocytosis of live sperm in suspension by rhZP3.
Overall effect by ANOVA, p < 0.001.

15 **Figure 12.** The acrosome reaction-inducing activity
of rhZP3 is mediated via pertussis toxin-sensitive G
proteins. Negative control 1: Ham's F-10 plus HSA;
negative control 2: culture medium from non-
transfected PA-1 cells; positive control: calcium
ionophore (5 μ M); rhZP3 tested at 500 ng/mL;
20 pertussis toxin (100 mg/mL) treated sperm then
tested with rhZP3 (500 ng/mL).

5 **DETAILED DESCRIPTION OF THE INVENTION**

As used herein, "human zona pellucida protein 3" is defined as a peptide or a polypeptide comprising the binding and/or the acrosome reaction inducement domain of the native human zona pellucida protein 3.

As appreciated by an ordinary skilled artisan, the amino acid sequences of the binding and/or the acrosome reaction inducement domain may be altered 10 without affecting the binding and/or the acrosome reaction inducement activity. Accordingly, the term 15 "human zona pellucida protein 3" covers any variation in the amino acid sequences of the binding and/or the acrosome reaction inducement domain 20 without affecting the biological activities of the said domains.

The present invention provides a method to determine sperm activity comprising the steps of: (a) 25 contacting an appropriate concentration of human zona pellucida protein 3 with an appropriate amount of sperm under conditions permitting the formation of a complex between the human zona pellucida protein 3 and the sperm; and (b) determining the 30 complex form. In an embodiment, this invention provides the above method, wherein the concentration of the human zona pellucida protein 3 is 0.01 nanograms per ml to 10,000 nanograms per ml.

35 In a separate embodiment, the invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 5,000 nanograms per ml. In another embodiment, the invention provides the above method, wherein the concentration is 0.01 nanograms 40 per ml to 2,500 nanograms per ml. In yet another

5 embodiment, the invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 1,000 nanograms per ml. In another embodiment, this invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 500
10 nanograms per ml.

In a separate embodiment, this invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 100 nanograms per ml. In still
15 another embodiment, this invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 30 nanograms per ml. In a separate embodiment, the invention provides the above method, wherein the human zona pellucida
20 protein 3, or the sperm, is fixed on a matrix.

The invention further provides a method to determine sperm activity comprising the steps of (a) contacting an appropriate concentration of human
25 zona pellucida protein 3 with an appropriate amount of sperm under conditions permitting an acrosome reaction to occur; and (b) determining the extent of the acrosome reaction.

30 In an embodiment, this invention provides the above method, wherein the concentration of the human zona pellucida protein 3 is 0.01 nanograms per ml to 10,000 nanograms per ml. In a separate embodiment, the invention provides the above method, wherein the
35 concentration is 0.01 nanograms per ml to 5,000 nanograms per ml. In another embodiment, the invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 2,500 nanograms per ml.

5

In yet another embodiment, the invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 1,000 nanograms per ml. In another embodiment, this invention provides the 10 above method, wherein the concentration is 0.01 nanograms per ml to 500 nanograms per ml. In a separate embodiment, this invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 100 nanograms per ml.

15

In still another embodiment, this invention provides the above method, wherein the concentration is 0.01 nanograms per ml to 30 nanograms per ml. In a separate embodiment, the invention provides the 20 above method, wherein the human zona pellucida protein 3, or the sperm, is fixed on a matrix.

This invention also provides a diagnosis kit for sperm activity comprising compartments with (a) an 25 appropriate amount of human zona pellucida protein 3 and (b) the reagents used for establishing the conditions for allowing the binding of sperm.

Furthermore, this invention provides a diagnosis kit 30 for sperm activity comprising compartments with (a) an appropriate amount of human zona pellucida protein 3 and (b) the reagents used for establishing the conditions for allowing an acrosome reaction.

Finally, this invention provides a diagnosis kit for sperm activity comprising three (3) compartments 35 with (a) an appropriate amount of human zona pellucida protein 3; (b) the reagents used for establishing the conditions for allowing the binding

2025 RELEASE UNDER E.O. 14176

5 of sperm; and (c) the reagents used for establishing
the conditions for allowing an acrosome reaction.

First Series Of Experiments

10 Materials and methods

Isolation of human ovarian mRNA and construction of cDNA for hZP3

Total RNA was isolated from the human ovary (the utilization of human tissue was approved by the Institutional Review Board of Eastern Virginia Medical School) by using the guanidium thiocyanate method (Chirgwin, et al, 1979). A pair of primers was designed based on the published sequence of hZP3 cDNA with additional restriction enzyme sites and histidine tail (Chamberlin and Dean, 1990). The sense primer was located between base 1 to 22 with Bam HI site in the 5' end (5'-TAGGATCCACCATGGAGTGAGCTATAGG-3'). The antisense primer was located between base 1256 and 1262 (5'-TTCTCGAGTTAACATGATGATGATGAGATGTTCGGAAGCAGACACAGGGTG GGAGGCAGT-3'). A sequence of Xho I restriction site and a sequence coding for six histidine residues were introduced into 5' end of this primer for the purpose of the purifying the recombinant protein as well as for subcloning. RT-PCR of the mRNA samples from human ovaries revealed a single band of approximately 1,300 bases. This PCR product was purified and inserted into a mammalian cell expression vector, pcDNA 3.1(Invitrogen, Carlsbad, CA). The positive clone was sequenced and found to be identical to those of the published hZP3 (Chamberlin and Dean, 1990).

5 *Stable-transfection of PA-1 cells with hZP3 cDNA*
PA-1 cells (American type Culture Collection, ATCC, Rockville, MA) were selected for stable-transfection of hZP3 cDNA. The cells were grown in MEM medium (Sigma, St. Louis, MO) supplemented with 5% Fetal
10 Bovine Serum (FBS). When the cells reached 70% confluence, the medium was changed and was transfected with 5 µg of purified hZP3 cDNA by calcium precipitation method (Sambrook et al, 1989). After 24 hours, the cells were washed three times to
15 remove the calcium and continued to culture in the MEM medium for an additional 24 hours. Two milligrams per milliliter of neomycin were used to select the cells stable-transfected with hZP3. Approximately 10 single colonies of stable-
20 transfected PA-1 cells were obtained. To examine whether hZP3 was expressed in these cells, RT-PCR was used with 2 primers specific to hZP3 as described above.

25 *Cell culture and medium collection*
PA-1 cells were routinely cultured in MEM medium supplemented with 5% FBS in a humidified atmosphere of 5% CO₂ at 37°C. The medium was changed every two days. After two weeks, cell number was amplified and cells were transferred from 100mm culture dishes to 150mm cell culture dishes. MEM containing 50% FBS and 5% DMSO was used for freezing the transfected PA-1 cells (at -196°C in liquid nitrogen). Since human ZP3 is a secretion protein,
30 the culture medium from the stable transfected PA-1 cells was collected for further purification. Twenty-five dishes (150 mm) were cultured and 20 ml of medium were collected from each plate every 48

5 hr. The collected medium was then centrifuged at 1000 g for 10 minutes to remove cellular debris and stored at 4°C with the addition of protease inhibitors (100µg/ml PMSF, 2µg/ml Leupeptin, 1µg/ml Pepstatin and 2mM EDTA). Glycoprotein purification
10 was performed within a one-week period.

Sequential affinity chromatography

A sequential procedure combining WGA (*Wheat Germ Agglutinin*) (Vector laboratories, Burlingame, CA),
15 DEAE ion exchange and Ni-NTA (nitrilo-tri-acetic acid, Qiagen) affinity chromatography was developed to successfully purify bioactive rhZP3. The collected medium was first passed through a 10 ml agarose-bond WGA (Vector Laboratories, Burlingame,
20 CA) column at the rate of three resin volumes per hour at 4°C, to initially achieve glycoprotein separation. The glycoproteins bound to the WGA resin were eluted with WGA elution buffer (10mM PBS, 0.15M NaCl, 0.5M N-acetyl-D-glucosamine, pH 7.4).

25

The eluted glycoproteins were dialyzed against DEAE cellulose binding buffer (5 mM PBS, pH 8.0) overnight at 4°C. The glycoprotein fraction isolated from the previous affinity chromatography was applied to the DEAE-Cellulose column (1x5 cm) at the flow rate of three to four resin volumes per hour. The bound protein was eluted with the same binding buffer with pH gradient from pH 8.0 to pH 3.5. Human recombinant ZP3 was eluted out between pH 6 to
30 pH 4. The fractions containing recombinant hZP3 were dialyzed against Ni-NTA binding buffer (50mM PBS, 300mM NaCl, pH 8.0) overnight at 4°C. The dialyzed glycoproteins were then applied to the Ni-
35

5 NTA column at a flow rate of three to four resin
volumes per hour. The specific bond glycoproteins
were eluted with binding buffer containing different
concentrations of imidazole. The purified
glycoprotein was either used immediately upon
10 collection for testing of biological activity or
stored at -20 °C.

Western blotting

The protein samples, purified by sequential affinity
15 chromatography, were separated with 8% SDS-PAGE gels
using Hoefer SE 220 minigel electrophoresis
apparatus (Hoefer). An anti-ZP3 antiserum was
purchased from Cocalico Biologicals, Inc.
19 (Reamstown, PA). This decapeptide is a conserved
epitope among different mammalian ZP3 including the
human. The antiserum was produced by immunizing a
rabbit with the synthetic decapeptide D-V-T-V-G-P-L-
I-F-L (Hinsch et al, 1994) which was linked to
keyhole limpet hemacyanin (KLH). Wet transfer of
25 proteins from gel to hybond ECL nitrocellulose
membrane (Amersham) was performed at 100 Volts for
2.5 hours at 4°C with the transfer buffer (25 mM
Tris-HCl; 192 mM glycine (Fisher); 20% methanol, pH
8.3). After transferring, the nitrocellulose
30 membrane was blocked with blocking buffer (80% Tris-
HCl buffer, pH 7.5; 15% H₂O; 5% BSA) at room
temperature for 3 hours by gently shaking. The
rabbit anti-ZP3 antiserum was used as primary
antibody which was diluted at 1: 1000 in solution A
35 (80% Tris-HCl, pH 7.5; 20% BSA). Blocked
nitrocellulose membrane was incubated in the primary
antibody solution at room temperature for one hour
with gentle shaking. The nitrocellulose membrane

5 was washed with washing buffer A (PBS containing 0.4% Tween 20). The secondary antibody [goat anti-rabbit IgG-HRP antibody conjugate (Amersham)] was diluted by the washing buffer A at 1:2000 dilution. After washing with washing buffer, the
10 nitrocellulose membrane was incubated in secondary antibody solution at room temperature for one hour. The membrane was washed with washing buffer B (PBS containing 0.3% Tween 20) for five minutes three times with fresh changes which was followed by
15 washing buffer C (PBS containing 0.1% Tween 20) for five minutes three times with fresh changes of the washing buffer. The nitrocellulose membrane was exposed to the detection solution [detection reagent 1 and detection reagent 2 (1:1, v/v, Amersham)].
20 The membrane was placed with protein side face to film and exposed in the film cassette for 30 to 60 seconds. The film was developed with a Konica developing machine.

25 *Metabolic labeling experiment*

In order to label the new synthesis of glycoproteins by the PA-1 cells, a ^3H -galactose metabolic labeling experiment was performed (Lennarz and Hart, 1994). PA-1 cells stable-transfected with or without hZP3 cDNA were cultured for 4 hours until attached to the plate surface, and then washed by 1xPBS to remove the cell-debris. A "radioactive" medium containing 250 μCi of ^3H -galactose was added and cultured for additional 16 hours. The medium was collected and the unincorporated ^3H -galactose was removed from the collected medium with Centriprep with a 30 kDa cut-off range ($1,500 \times g$ for 30 min.). The remnant was washed three times with PBS buffer. Both the
30
35

5 remnant and the washing solutions were collected for
further analysis. The remnant was concentrated
using Centricon until the final volume was 2.0 ml
and passed through a WGA lectin column prepared as
described previously. The WGA column was washed
10 with ten bed volumes of WGA washing buffer, and
eluted by elution buffer. Both WGA bound and non-
bound fractions were collected respectively and
loaded in SDS-PAGE gel with 4% stacking gel and 8%
separation gel. The gel was then dried and exposed
15 to an X-ray film.

Hemizona assay

Hemizona assay was conducted to demonstrate the
binding activity of rhZP3 to human sperm (Burkman et
20 al, 1988; Oehninger et al, 1990, 1995). An inverted,
phase-contrast microscope equipped with a
micromanipulation system was routinely employed to
cut the oocyte into halves to obtain matching
hemizonae. Oocytes used in the experiments were
25 obtained from surgically-removed ovarian tissue or
discarded from IVF therapy under approval of the
Institutional Review Board at Eastern Virginia
Medical School. The hemizonae were washed in PBS to
completely deplete the cytoplasm. Sperm samples were
30 from healthy fertile donors. A swim-up procedure
was applied to obtain motile sperm, which were then
adjusted to 0.5 million/ml in Human Tubal Fluid
(HTF) supplemented with 0.3% Human Serum Albumin
(HSA) for hemizona assay. In one Petri dish, one
35 droplet of 100 ul of sperm suspension was placed as
a control. Another droplet of sperm was pre-treated
with rhZP3. One hemizona was placed into the
control droplet and the matching hemizona was placed
in the sperm droplet treated with rhZP3. Five pairs

5 of hemizona were used for each experiment. All dishes were incubated at 37°C, 5% CO₂ for 4 hours. Each hemizona was removed and rinsed 15 times in PBS, and transferred to the counting dish. The number of sperm bound to the surface of each 10 hemizona was counted under phase microscopy. The HZI was calculated to evaluate rhZP3-binding activity (competitive inhibition) as follows: number of sperm bound for treatment/number of sperm bound for control x 100.

15

Assessment of acrosome reaction

The purified rhZP3 was also applied to test its activity to induce human sperm acrosome reaction. The motile sperm obtained by swim-up procedure were 20 allowed to capacitate in HTF/ 0.5% HSA for four hours at 37°C in 5% CO₂ in huminified air. The motile sperm concentration used to detect acrosome reaction was set at 2 million /ml. A series of 100 ul of capacitated sperm aliquots with different inducers 25 were prepared in Eppendorf vials and cultured in the incubator in 95% air, 5% CO₂, at 37°C for 30 minutes. The test was conducted as follows: positive control: calcium ionophore A23187 (Sigma) at 5 μM; negative controls: 1) sperm culture medium alone, and 2) 30 protein isolated from the culture media of non-transfected PA-1 cells (NT); test: rhZP3. Triple slides were made for each assay. Hoechst 33258 stain was used for determination of sperm viability. Fluorescein isothiocyanate conjugated Pisum sativum 35 agglutinin (FITC/PSA) (Sigma) staining technique was employed to evaluate the acrosome reaction (Cross et al, 1986). Blind reading was required for evaluation and at least 100~200 cells from 5 random

5 fields were evaluated per spot on the slide. Spermatozoa demonstrating no fluorescence over sperm head or only fluorescence at the equatorial region were considered to be acrosome-reacted. The results were expressed as percentage of acrosome-reacted
10 spermatozoa in the total population counted (Cross, 1986).

In some experiments, Solubilized zona pellucida were used as control to test its function to induce sperm
15 acrosome reaction. The solubilized zona pellucida were prepared according to Franken et al (1996). Ooplasm was removed using a small glass micropipette. A vigorous pipetting action would break their zona causing ooplasm to be spilled into
20 surrounding medium. The chosen amount of zonae was transferred into an eppendorf tube and was centrifuged for 15 minutes at 300xg. Using a steromicroscope, the media were removed with
25 pipette, making sure not to disturb zona. The final result was to remove maximum medium. A chosen volume (depending on the zona concentration needed) of 10 mM HCl was added. Under the microscopic vision, zona /HCl was pipetted up and down until all
30 zona were dissolved. Then 10 mM NaOH of equal volume as the HCl was added and mixed well to obtain the stock zona solution.

Results

*In vitro expression of recombinant human ZP3 in PA-1
35 cells*

A full-length human ZP3 cDNA was generated by RT-PCR using mRNA isolated from human ovarian cells. A 1,278 bp DNA fragment (full length of human ZP3

5 cDNA) was obtained after PCR amplification and further characterized by restriction mapping, Southern blot analysis and sequencing of both strands demonstrated identical composition to the published sequence (Chamberlin and Dean, 1990). In
10 addition, the use of an in vitro transcription and translation system (reticulocyte lysate) demonstrated the expression of a 47 KD protein, the exact molecular weight as predicted from the DNA sequence (Dong et al, 2000).

15 In order to obtain high levels of expression of ZP3 in mammalian cells, the ZP3 cDNA was inserted into a pcDNA3.1 vector (Invitrogen, Carlsbad CA) with a CMV promoter. To insure biological activity of ZP3, the
20 human ovarian cell was used to express the recombinant ZP3. Seven human ovarian cell lines (EB2, Caov-3, Pa-1, Caob-4, OVCAR-3, SK-OV-3, and SW626) were purchased from ATCC (Rockville, MD) and transiently transfected with pcDNA/ZP3 expression
25 construct. After several trials only PA-1 cells were found to exhibit high levels of expression of ZP3 with biological activity (Fig 1). The pcDNA/ZP3 expression construct was transferred into PA-1 cells and treated with neomycin for selection of stable
30 transfection. After three months of treatment, ten positive clones were selected. RT-PCR of the mRNA isolated from these clones, with human ZP3's specific primers, displayed high expression levels of human ZP3 (Fig. 2). ELISA analysis using the
35 polyclonal anti-human ZP3 (anti-decapeptide antiserum) demonstrated expression of rhZP3 by the cells. One of the ten positive clones was chosen for subsequent study, as it expressed the highest levels of ZP3 with biological activity. Western Blot

5 analysis of this protein reveals that it has an identical molecular weight, approximately 65KD, as native human ZP3 from the solubilized zona (Fig 3).

10 In order to study the expression level of hZP3 in the transfected PA-1 cell, ELISA assay was carried out. Fig. 4 shows that recombinant human ZP3 was detectable in three hours (data not shown), reaching to its peak in twenty-four hours. The recombinant human ZP3 production gradually decreased after 15 forty-eight hours.

Isolation and purification of recombinant human ZP3

20 Since human ZP3 is a glycoprotein, a wheat germ agglutinin (WGA) column was used to carry out the first isolation. These isolated glycoproteins were further purified using DEAE-ion exchange and Ni-NTA affinity chromatography. Approximately 3 to 5 mg of recombinant ZP3 containing glycoprotein was isolated from one liter of media (Fig 5). Since six 25 histidines have been added to the C-terminal of rhZP3, a Ni-NTA column was used to further purify the recombinant ZP3. Western blot analysis of this Ni-NTA mediated purification displayed a high purity of human ZP3. In parallel experiments, the protein 30 samples were also analyzed with SDS-PAGE electrophoresis, and stained with Coomassie Blue. According to densitometer scanning analysis, rhZP3 accounted for 80% to 90% of the total purified proteins. Thus, 1 milligrams to 1.5 milligrams of 35 rhZP3 was finally purified from one litter of culture medium (Fig 6).

5 *Measuring the isoelectric point of recombinant human
ZP3*

For further biochemical analysis, isoelectric focusing electrophoresis was performed. Approximately five microgram of recombinant ZP3 was loaded into an isoelectrophoresis tube with ampholytes (pH 3-10) in a wide range, and ampholytes (pH 4-8) in a narrow range. The same amount protein sample isolated from the PA-1 cells without transfected with hZP3 cDNA was used as a control. As shown in Fig. 6, recombinant human ZP3 had an isoelectric point of 4.60 ± 0.05 .

20 *Determination of glycosylation by ^3H -galactose metabolic labeling experiment*

In order to study if the new synthesis of recombinant ZP3 by the PA-1 cells is glycosylated, a ^3H -galactose metabolic labeling experiment was carried out. Fig 7 reveals that the PA-1 cell without stable-transfected with hZP3 has relatively low incorporation ^3H . However, after stable-transfection with hZP3 cDNA, the relative incorporated radioactivity dramatically increased, thus indicating that a large amount of new synthesis protein was glycosylated. Electrophoresis of the product of this ^3H -galactose metabolic labeling product has demonstrated that a great amount of ^3H labeled protein was crowded at the regions near 65 KD (data not shown)

35 *Testing the sperm binding activity of recombinant human ZP3 by the hemizona assay*

Sperm culture medium (HTF/0.5%HSA) or protein isolated from medium collected from PA-1 cells which

5 were not transfected with ZP3 cDNA (NT) was used as
 the internal control in each experiment. Hemizona
 assay results demonstrated a dramatic decrease of
 sperm-ZP binding when sperm were pre-incubated for
 30 min with rhZP3 (approximately 60% inhibition at
 10 30 ng/ml)). These data demonstrated that rhZP3
 effects a specific and potent competitive inhibition
 of sperm binding to the homologous zona pellucida
 (Table 1).

15 **Table 1. Hemizona index for testing of recombinant
 human ZP3 (rhZP3)**

N=5 semen donors × 5 pairs of matching hemizonae per sample

Sperm exposed to test reagent	Sperm exposed to control conditions	HZI (Mean ± SEM)	p-value (paired t-test)
30 ng/ml rhZP3	HTF/0.5% HSA	43.6 (3.3)	<0.01
30 ng/ml rhZP3	30 ng/ml NT	44.5 (3.6)	<0.01
30 ng/ml NT	HTF/0.5% HSA	94.2 (0.3)	>0.5

Analysis of the ability of recombinant human ZP3 to
 20 induce sperm acrosome reaction

The analysis of the acrosome reaction observed in
 response to purified rhZP3, natural solubilized
 human ZP and the calcium ionophore revealed that all
 agonists enhanced the percentage of acrosome reacted
 25 sperm when compared to control conditions (i.e.,
 culture medium alone or protein purified from non-
 transfected PA-1 cells) (Table 2). First the time
 course study of sperm capacitation was conducted.
 After different period of capacitation time, sperm
 30 were treated with rhZP3 (30ng/ml) for thirty minutes
 to trigger acrosome reaction. The results indicated
 that there was a trend of increase in the percentage

5 of acrosome-reacted sperm as the capacitation time
 prolonged (data not shown) up to 8~10 hours. In our
 ongoing series of experiments, 4 hour capacitation
 was used because at this time frame the sperm are
 10 99% alive as compared to 86%, 82% and 66% of live
 sperm for 8, 12 and 24 hours of capacitation time
 respectively. So all experiments were performed
 after 4 hours of capacitation. The rhZP3 increased
 the percentage of acrosome-reacted by 150% from
 control conditions after 30 minutes of pre-
 15 incubation with sperm at 30 ng/ml. [This activity is
 much stronger than that reported for the CHO cell
 product which induced a similar percentage of
 acrosome reaction in human sperm following 24 hour
 sperm capacitation at a dose of 15-20 ng/ μ l (van
 20 Duin et al, 1994).]

Table 2. Analysis of the percentage of acrosome-reacted sperm by FITC-PSA.

	Negative control	Non-transfected (NT, 30 ng/ml)	Calcium ionophore (5 μ M)	rhZP3 (30ng/ml)	Solubilized zona (0.5ZP/ μ l)
% acrosome reacted-sperm	7.7 (3.2)	9.5 (2.4)	22.5 (4.1)*	18.3 (1.4)*	14.8 (6.2)*
% sperm viability	95.1 (2.6)	98.0 (1.0)	96.5 (2.0)	96.7 (3.2)	97.2 (2.5)

25 *P < 0.05 compared to control conditions

Mean (\pm SEM), n= 29 ejaculates from 11 different donors, 3 different purification lots of rhZP3.

5 **Discussion**

ZP3 is an essential protein in the reproductive system. Because of the difficulty in obtaining human ZP3 from native sources, the mechanism(s) throughout which ZP3 is involved in human
10 fertilization as well as the molecular structure of human ZP3 are poorly understood. Using molecular and cell biology technologies, several groups have attempted to produce biologically active recombinant human ZP3. Analysis of the current knowledge
15 indicates that no rhZP3 with well-documented and characterized biological activities is available. Because human ZP3 has a strong hydrophobic protein backbone (Chamberlin and Dean, 1990), as well as probably large carbohydrate side chains, the
20 glycoprotein is extremely difficult to be produced by recombinant DNA technology. Some groups have expressed ZP3 in E.Coli; this results in a low-soluble and non-glycosylated ZP3 protein (Champan and Barratt, 1996). Other groups have also
25 attempted a cell-free translation of ZP3, also resulting in incomplete biological activity human ZP3 (Whitmarsh, et al, 1996). Other groups have used CHO cells to express ZP3 (van Duin et al, 1994). This recombinant hZP3 displayed an acrosome
30 reaction-inducing activity only at very high levels of recombinant protein (15 to 20 µg/ml) after a long preincubation time (maximal effects observed after 18 hours). Furthermore, this recombinant protein did not demonstrate any binding activity to human
35 sperm; therefore, it is considered that this protein only has partial biological activity.

5 Using RT-PCR we have generated a full length human
ZP3 from the mRNA isolated from human ovary. DNA
sequencing analysis of the cDNA revealed that it is
identical to the published sequence (Chamberlin and
Dean, 1990). In addition, the use of an *in vitro*
10 transcription and translation system (reticulocyte
lysate) demonstrated the expression of a 47 KD
protein, the exact molecular weight as predicted
from the DNA sequence (Dong et al, 2000).

15 Optimal glycosylation is a crucial step to produce a
biologically active rhZP3. The carbohydrate side
chains are important to provide solubility of the
protein, and also appear to be essential for the
binding activity for rhZP3. O-linked has been
20 demonstrated to be required for the binding of mouse
sperm to zona pellucida (Florman et al, 1985). Up
to now there is no efficient way to modify the
glycosylation of ZP3 under *in vitro* conditions.
Therefore, selecting an expression system for the
25 production of recombinant human ZP3 with correct
glycosylation is extremely important. We believe
that since glycosylation is tissue- and species-
specific, expression of ZP3 cDNA in a human ovarian
cell line could produce recombinant human ZP3 with
30 full biological activity. As described in the
result section, we initially tried several available
human ovarian cell lines. After a long period of
study, we discovered that only PA-1 cells could
express the biologically active recombinant ZP3.
35 Never before has a recombinant ZP3 protein have been
shown to possess both the ability to bind to human
sperm, as well as the ability to induce the acrosome
reaction; yet through our studies, we have been able
to generate a recombinant protein with both those

5 abilities. Interestingly, Whitmarsh et al (1996)
showed that with their in vitro transcription-
translation system, their recombinant ZP3 (rZP3)
supposed to be without glycosylation could have
binding activity to sperm using bead coated with
10 rZP3; they also reported that rZP3 from CHO cells
could induce sperm acrosome reaction.

The biochemical studies using a cell-free
15 translation system have demonstrated that this
protein has a collect size of protein backbone (47
KD). Western blot analysis has demonstrated that
this recombinant protein has approximately 65 KD,
thus agreeing with the native human ZP3 (Shabanowitz
et al, 1988). The result from these studies reveals
20 that an approximately 18 KD difference between
glycosylated recombinant protein and the ZP3 protein
backbone may result from the glycan side chains.
Furthermore, the metabolic labeling study has
demonstrated that the PA-1 cells transfected with
25 ZP3 expression vector produces a great amount of
newly synthesized glycoprotein. All of these data
strongly suggest that PA-1 cells can glycosylate the
ZP3 protein backbone. More importantly, our rhZP3
not only can induce the acrosome reaction in
30 capacitated human sperm, but can also function as a
ligand to human sperm. Furthermore, our initial
studies demonstrated that these biological
activities display a dose-responsive pattern. (Dong
et al, 2000)

35

Isoelectrical point studies have shown that the
rhZP3 has PI values approximately near pH 5.60,
suggesting that our recombinant ZP3 produced by the
PA-1 cells may have different degrees of

5 glycosylation. As control, we have used a protein
sample that was collected from PA-1 cells not
transfected with the hZP3 cDNA; these samples were
purified by the sequential affinity chromatographic
procedures used to purify rhZP3. This control
10 sample displayed a different pattern (with PI values
approximately near pH 5.4) from that of human
recombinant ZP3; thus rejecting possibilities of
contamination with other secretion proteins from PA-
1 cells. Since glycosylation is a major
15 contribution to the PI value of glycoprotein, our
ZP3 shows similarities with the native ZP3 (PI
value) suggesting that rhZP3 may have a similar
glycoside chain pattern as native human ZP3.

20 Our rhZP3 demonstrated ligand activity by
competitively inhibiting sperm-zona pellucida
binding in the HZA. The HZA is a useful tool to
examine the mechanisms of initial sperm-oocyte
interaction by providing a homologous, internally
25 controlled test that assesses the specific,
irreversible and tight binding of sperm to the zona
pellucida as well as the zona-induced acrosome
reaction (Oehninger, 1990). To the best of our
knowledge, this is the first time that a rhZP3 has
30 been proven to competitively inhibit sperm-zona
pellucida binding in a controlled fashion. Our
rhZP3 also demonstrated a potent ability to induce
the acrosome reaction in live spermatozoa. Here, we
have proven that this effect is capacitation-
35 dependent. Previously, we demonstrated that both
ligand and acrosome reaction-inducing activities are
dose-dependent, with maximal effects in the range of
30-1,000 ng/ml (Dong et al; 2000). This activity is
much stronger than that reported for the CHO cell

5 product which induced a similar percentage of acrosome reaction in human sperm following 24 hour sperm capacitation at a dose of 15-20 ng/ μ l (van Duin et al, 1994). The level of induction of acrosomal exocytosis was similar to the one observed
10 for two well-known agonists used as positive controls; i.e., a calcium ionophore and solubilized human zona pellucida. The structural features of acrosome-reacted spermatozoa (assessed by transmission electronmicroscopy) also showed
15 similarity to the acrosomal exocytotic changes observed with the control agonists (Dong et al, 2000).

In the zona pellucida, ZP3 associates with ZP2 and
20 ZP1 to form a network structure (Wassarman, 1988). This network structure prevents aggregation of these glycoproteins. However, in solution these glycoproteins tend to aggregate together. This phenomenon has been observed in several recombinant
25 glycoproteins, including ZP3 (Champan and Barratt, 1997). In purifying rhZP3, we have avoided this problem by obtaining a highly purified product, and testing its biological activities within a week-period while maintaining the protein at 4°C. However,
30 we have found similar problems of aggregation of the glycoprotein as we attempted freezing the product. This problem becomes worse as larger amounts of the glycoprotein are trying to be produced. Different strategies are being looked into in order to produce
35 and purify large amounts of biologically active rhZP3 in our laboratory.

5 In summary, using a human ovarian cell line, we have
successfully cloned and expressed, and purified a
biologically active recombinant human ZP3. This
protein has a molecular weight of 65KD, with an PI
in the range of 4.6 ± 0.05 . In vitro translation by a
10 cell-free system and ^3H metabolic labeling
experiments revealed that our recombinant ZP3 has a
large glycan side chain (approximately 18KD).
Importantly, the present data and the results of our
15 previous studies (Dong et al, 2000) unequivocally
present evidence showing that the glycoprotein has
biological activity as it acts as ligand to human
sperm and induces the acrosome reaction. The
complete biochemical and functional characterization
of this recombinant human ZP3 (rhZP3) may allow us
20 in the future to (1) further examine the physiology
of human gamete interaction including the
identification of the putative receptor(s) on the
surface of human sperm; (2) develop new assays to
test for male infertility; and (3) investigate new
25 contraceptive strategies.

5 REFERENCES

Barratt, C.L.R., Whitmarsh, A., Hornby, D.P. et al. (1994) Glycosylation of human recombinant ZP3 is necessary to induce the human acrosome reaction.
10 [Abstr. No. 033] *Hum. Reprod.*, **9** (Suppl.).

Barratt, C.L.R., and Hornby, D.P. (1995) Induction of the acrosome reaction by rhuZP3. In Frenichet, P. and Parinaud, J. (eds), *Human sperm acrosome reaction*. Colloque INSERM, John Libey Eurotext, Paris, Vol. 236, 105-122.
15

Beebe, S.J., Leyton, L., Burks, D. et al. (1992) Recombinant mouse ZP3 inhibits sperm binding and induces the acrosome reaction. *Dev. Biol.*, **151**, 48-54.
20

Bleil, J.D., and Wassarman, P.M. (1980) Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zona pellucida possessing receptor activity for sperm. *Cell*, **20**:3, 873-882.
25

Brewis, I.A., Clayton, R., and Barratt, C.L.R. (1996) Characterization of the calcium influx and the acrosome reaction in human spermatozoa in response to recombinant ZP3. *Mol. Human Reprod.*, **2**, 583-589.
30

Burkman, L.J., Coddington, C.C., Franken, D.R. et al. (1988) The hemizona assay (HZA): development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. *Fertil. Steril.* **49**, 688-697.
35

5 Burks, D.J., Carballada, R., Moore, H.D. et al.
(1995) Interaction of a tyrosine kinase from human
sperm with the zona pellucida at fertilization.
Science, 269, 83-86.

10 Chamberlin, M.E. and Dean, J. (1990) Human homology
of the mouse sperm receptor. *Proc. Natl. Acad. Sci.
USA*, 87, 6014-6018.

15 Chapman, N.R. and Barratt, C.L.R. (1996) The role of
carbohydrates in spermatozoa-zona pellucida
adhesion. *Mol. Human Reprod.*, 2, 767-774.

20 Chapman, N.R. and Barratt, C.L.R. (1997) Sperm-zona
interaction and recombinant DNA technology. *Mol.
Human Reprod.*, 3, 646-650.

25 Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. et
al. (1979) Isolation of biologically active
ribonucleic acid from sources enriched in
ribonuclease. *Biochem.*, 18, 5294-5299.

Cross, N.L., Morales, P., Overstreet, J.W. et al.
(1986) Two simple methods for detecting acrosome-
reacted human sperm. *Gamete Research*, 15, 213-226.

30 Dong, K.W., Chi, T.F., Juan Y.W. et al. (2000)
Characterization of the biological activities of a
recombinant human zona pellucida protein 3 (ZP3)
expressed in human ovarian (PA-1) cells. *Am. J.
Obstet. Gynecol.* (in press)

35 Dunbar, B.S., Avery, S., Lee, V. et al. (1994) The
mammalian zona pellucida: its biochemistry,

5 immunochemistry, molecular biology, and developmental expression. *Reprod. Fertil. Dev.*, **6**, 331-347.

10 Dunbar, B.S., Liu, C., and Sammons, D.W. (1981) Identification of the three major proteins of procine and rabbit zona pellucida by high resolution two-dimensional gel electrophoresis: comparison with serum, follicular, fluid, and ovarian cell proteins. *Bio. Reprod.*, **24**, 1111-1124.

15 Florman, H.M. and Wassarman, P.M. (1985) O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. *Cell* **41**, 313-324.

20 Franken, D.R., Morales, P.J. and Habenicht, U.F. (1996) Inhibition of G protein in human sperm and its influence on acrosome reaction and zona pellucida binding. *Fertil. Steril.* **66**, 1009-1011.

25 Fukuda, M.N., Dell, A., Oates, J.E. et al. (1985) Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl alpha 2----9 sialyl) terminals isolated from PA1 human embryonal carcinoma cells. *J. Biol. Chem.*, **260**, 6623-6631.

30 Furukawa, T., Ozawa, M., Huang, R.P. et al. (1990) A heparin binding protein whose expression increases during differentiation of embryonal carcinoma cells to parietal endoderm cells: cDNA cloning and sequence analysis. *J. Biochem. (Tokyo)*, **108**, 297-302.

5 Hinsch, K.D., Hinsch, E., Meinecke, B. et al. (1994) Identification of mouse ZP3 protein in mammalian oocytes with antisera against synthetic ZP3 peptides. *Biol. Reprod.* **51**, 193-204

10 Kinloch, R.A., Ruiz-Seiler, B., and Wassarman, P.M. (1990) Genomic organization and polypeptide primary structure of zona pellucida glycoprotein hZP3, the hamster sperm receptor [published erratum appears in *Dev. Biol.* 1991 May; 145(1): 203]. *Dev. Biol.* **142**, 414-421.

15

Kinloch, R.A., Ruiz-Seiler, B. and Wassarman, P.M. (1991) Genomic organization and polypeptide primary structure of zona pellucida glycoprotein hZP3, the hamster sperm receptor. *Dev. Biol.*, **145**, 203-204.

20

Lee, V.H., Schwoebel, E., Prasad, S. et al. (1993) Identification and structural characterization of the 75-kDa rabbit zona pellucida protein. *J. Biol. Chem.* **268**, 12412-12417.

25

Lennartz, W.J. and Hart, G.W. (1994) *Methods in Enzymology*. **230** (2), 16-32.

30 Liang, L.F., Chamow, S.M. and Dean, J. (1990) Oocyte-specific expression of mouse ZP-2: Developmental regulation of the zona pellucida genes. *Mol. Cell. Biol.*, **10**, 1507-1515.

35 Liang, L.F., and Dean, J. (1993) Conservation of mammalian secondary sperm receptor genes enables the promoter of the human gene to function in mouse oocytes. *Dev. Biol.* **156**, 399-408.

5

Lust, J.A., Jelinek, D.F., Donovan, K.A. et al.
(1995) Sequence, expression and function of an mRNA
encoding a soluble form of the human interleukin-6
receptor (sIL-6R). *Curr. Top. Microbiol. Immunol.*
10 **194**, 199-206.

McLlinney, R.A.J. and Patel, S. (1983)
Characterization of the fibronectin synthesized by
human germ cell tumors. *Cancer Research*, **43**, 1282-
15 1288.

Oehninger, S., Acosta, A.A., and Hodgen, G.D. (1990)
Antagonistic and agonistic properties of saccharide
moieties in the hemizona assay. *Fertil. Steril.* **55**,
20 165-169.

Oehninger, S., Coddington, C.C., Hodgen, G.D. et al.
(1995) Factors affecting fertilization: endometrial
placental protein 14 reduces the capacity of human
25 spermatozoa to bind to the human zona pellucida.
Fertil. Steril. **67**, 1121-1127.

Prasad, S.V., Wilkins, B., Skinner, S.M. et al.
(1996) Evaluating zona pellucida structure and
30 function using antibodies to rabbit 55 kDa ZP
protein expressed in baculovirus expression system.
Mol. Reprod. Dev., **43**, 519-529.

Ringuette, M.J., Sobieski, D.A., Chamow, S.M. et al.
35 (1986) Oocyte-specific gene expression: molecular
characterization of a cDNA coding for ZP3, the sperm
receptor of the mouse zona pellucida. *Proc. Natl.
Acad. Sci. USA*, **83**:12, 4341-4345.

Saling, P.M. (1989) Mammalian sperm interaction with extracellular matrices of the egg. *Oxf Rev Reprod Biol*, **11**, 339-388.

10 Saling, P.M. (1991) How the egg regulates sperm function during gamete interaction: facts and fantasies. *Biol. Reprod.*, **44**, 246-251.

15 Sambrook J., Fritsch E.F., and Manatis T. (1989) Molecular cloning: a laboratory manual. (2nd ed) p.16.32-16.37, Cold Spring Harbor laboratory Press.

20 Shabanowitz, R.B. and O'Rand M.G. (1988) Characterization of the human zona pellucida from fertilized and unfertilized eggs. *J. Reprod. Fert.* **82**, 151-161.

25 Thillai-Koothan, P., van Duin, M., and Aitken, R.J. (1993) Cloning, sequencing and oocyte-specific expression of the marmoset sperm receptor protein, ZP3. *Zygote* **1**, 93-101.

30 Timmons, T.M. and Dunbar, B.S. (1988) in Mathur, S. & Fredericks, C.M. (eds), *Perspectives in immunoreproduction: conception and contraception*. Hemisphere publishing Co., New York, pp 242-260

35 van Duin, M., Polman, J., De Breet, T.M., et al. (1994) Recombinant human zona pellucida protein ZP3 produced by Chinese hamster ovary cells induces the human sperm acrosome reaction and promotes sperm-egg fusion. *Biol. Reprod.*, **51**, 607-617.

5 Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. *Glycobiology*, **3**, 97-130.

10 Wassarman, P.M. (1988) Zona Pellucida glycoproteins. *Ann. Rev. Biochem.* **57**, 415-442.

Wassarman, P.M. (1990 a) Profile of a mammalian sperm receptor. *Development*, **108**, 1-17.

15 Wassarman, P.M. (1990 b) Regulation of mammalian fertilization by zona pellucida glycoproteins. *J. Reprod. Fertil. Suppl.*, **42**, 79-87.

20 Whitmarsh, A.J., Woolnough, M.J., Moore, H.D.M. et al (1996) Biological activity of recombinant human ZP3 produced in vitro: potential for a sperm function test. *Mol. Human Reprod.*, **2**, 911-919.

5 Second Series Of Experiments

10 **Objectives:** To clone and express a recombinant human ZP3 (rhZP3) and to characterize its biological activities as sperm ligand and inducer of the acrosome reaction.

15 **Study design:** Human ovarian teratocarcinoma (PA-1) cells were transfected with an expression vector containing human ZP3 cDNA with a sequence coding for a six histidine tail introduced into its 3' end. Purification of the secreted glycoprotein was performed by sequential affinity (lectin and nickel-nitrilotriacetic) and ion exchange chromatography.

20 **Results:** Western blot analysis confirmed a molecular weight of approximately 65 kDa of the purified product. A cell-free translation system revealed a correct size protein backbone of 47 kDa. The rhZP3 demonstrated specific, potent and dose-dependent competitive inhibition of sperm-zona pellucida binding *in vitro* under hemizona assay conditions. Recombinant hZP3 also stimulated the acrosome reaction of live sperm. This effect was fast, dose- and capacitation time-dependent. Furthermore, preincubation with pertussis toxin, an inactivator of heterotrimeric G proteins blocked rhZP3-induced acrosomal exocytosis.

35 **Conclusion:** The rhZP3 expressed in PA-1 cells manifests the full spectrum of expected biological activities and, therefore, represents a valuable tool for examination of human fertilization and the

5 design of new strategies in diagnostic male
infertility and contraception.

Extensive work in the murine model has resulted in
the identification and isolation of the primary
10 receptor for sperm located at the level of the zona
pellucida, a glycoprotein called zona pellucida
protein 3 (ZP3) (1,2). Sperm binding to the zona
pellucida is supported by the interaction of ZP3 and
putative complementary binding protein(s) present in
15 the sperm plasma membrane. In the mouse, bound sperm
undergo the acrosome reaction (triggered by ZP3) and
start penetration of the zona matrix (1,2). It has
been proposed that GTP-binding proteins (G_i class)
function as a signal transducer element distal to
20 ZP3-mediated interactions (3). ZP3-activated,
heterotrimeric G proteins (pertussis toxin-
sensitive) may stimulate changes in ionic
conductance and/or a variety of intracellular second
messenger systems resulting in acrosomal exocytosis
25 (3).

Recently, full-length cDNA clones of ZP3 for
different mammalian species have been isolated
(reviewed in 4). Cloning cDNAs encoding ZP3 has made
30 the expression of recombinant ZP3 in tissue culture
cell lines possible and represents a potential
option to obtain large amounts of ZP3. The
expression of recombinant ZP3s has been reported, at
least in the mouse and human (2,5-8). In the human,
35 recombinant ZP3 has been expressed using several
approaches; i.e., *Escherichia coli*, in vitro
transcription and translation systems, Chinese
hamster ovary (CHO) cells and in African green
monkey kidney (COS) cells (reviewed in 6-8).

5 However, full biological activity of a human product
has not been demonstrated, which is possibly due to
inadequate or incomplete glycosylation of the
recombinant protein (6,7).

10 The production of a purified, glycosylated
recombinant human ZP3 (rhZP3) in a biologically
active form is fraught with technical difficulties.
In vitro transcription and translation systems and
expression in *Escherichia coli* have lead to the
15 production of recombinant products showing variable
acrosome reaction-inducing activity (6,7). However,
no direct or specific sperm-ligand capacity using
homologous sperm-zona pellucida binding bioassays
has been reported for such non-glycosylated
20 products. In addition, protein solubility has been a
major difficulty encountered. The CHO cell product
has been shown to possess acrosome reaction-inducing
activity. However, no data are available related to
sperm binding in validated assays (6-8).

25 Male infertility is present in 30% to 50% of
childless couples and may represent the commonest
single defined cause of infertility (9). Defects of
sperm-zona pellucida interaction can be diagnosed in
30 a high proportion of infertile men in the presence
or absence of abnormalities of the basic sperm
parameters and are associated with fertilization
failure in assisted reproduction (10,11). Although
sperm-zona pellucida binding and acrosome reaction
35 bioassays have been validated in the clinical arena
(10-14) the development of simpler, more
standardized and universally applicable diagnostic
methods are warranted. A biologically active, rhZP3
might prove to be instrumental in such an endeavor.

5 The objectives of these studies were: (1) to clone
and express human ZP3; and (2) to characterize the
biological properties of the recombinant product as
sperm ligand and inducer of acrosomal exocytosis.
10 For these purposes, we cloned and expressed the cDNA
of human ZP3 by stable transfection in a human
ovarian cell line (PA-1 cells). We selected this
cell line since glycosylation is tissue- and
species- specific and because the PA-1 cells have
been successfully used as an expression host to
15 express other glycosylated native proteins, such as
lactosaminoglycan-carrier glycoprotein, heparin-
binding protein and recombinant fibronectin (15). We
purified the recombinant glycoprotein product and
characterized its biological activities using
20 validated bioassays. We further investigated whether
rhZP3 induction of acrosomal exocytosis is mediated
via signaling cascades involving activation of
heterotrimeric G proteins.

25 **MATERIALS AND METHODS**

These studies were approved by the Bio-safety
Committee and by the Institutional Review Board at
Eastern Virginia Medical School.

30 *Isolation of human ovarian mRNA and construction of
cDNA for human ZP3-*Total RNA was isolated from the
human ovary by using the guanidinium thiocyanate
method. A pair of primers was designed based on the
published sequence of hZP3 cDNA with additional
35 restriction enzyme sites and a histidine tail (12).
The sense primer is located between bases 1 to 22
with Bam HI site in the 5' end (5'-
TAGGATCCATGGAGCTGAGCTATAGGC-3'). The antisense

Sabatini

5 primer is located between base 1256 and 1262 (5'-
TTCTCGAGTTAATGATGATGATGATGTTCGGAAGCAGACACAGGGTGGG
AGGCAGT -3'). A sequence of Xho I restriction site
and a sequence coding for six histidine residues
were introduced into 5' end of this primer for the
10 purpose of the purifying the recombinant protein as
well as for subcloning. Reverse transcription-
polymerase chain reaction (RT-PCR) of the mRNA
samples from the human ovary revealed a single band
of approximately 1,278 bp. This PCR product was
15 further characterized by restriction mapping,
Southern blotting and sequencing analysis
demonstrating identical composition to the published
human ZP3 (16). The PCR product was inserted into a
mammalian cell expression vector, pcDNA 3.1
20 (Invitrogen, Carlsbad, CA). An in vitro
transcription and translation system (Reticulocyte
Lysate System; Promega, Madison, WI) was used to
determine the molecular weight of the (non-
glycosylated) protein core of the recombinant ZP3.

25

Stable-transfection of PA-1 cells with human ZP3
cDNA-PA-1 cells (human ovarian teratocarcinoma
cells, American Type Culture Collection; Rockville,
MA) were grown in MEM (Minimal Essential Medium;
30 Sigma Chemical Co., St. Louis, MO) supplemented with
5% Fetal Bovine Serum (FBS; Sigma). The cells were
transfected with purified hZP3 cDNA using the
calcium phosphate precipitation method. Neomycin
was used to select the cells stable-transfected with
35 human ZP3. After collection, the cell culture
medium was centrifuged at 1000 g for 10 minutes to
remove cellular debris and stored at 4°C with the
addition of protease inhibitors (100µg/ml
phenylmethylsulfonyl, 2µg/ml leupeptin, 1µg/ml

5 pepstatin and 2mM ethylenediaminetetraacetic acid; Sigma). The medium was maintained for no more than 5 days before glycoprotein purification and testing of biological activity.

10 Sequential chromatography-The collected medium was first passed through an agarose-based WGA column (Wheat Germ Agglutinin; Vector, Burlingame, CA) at the flow rate of three resin volumes per hour at 4°C, to initially achieve glycoprotein separation. The 15 resin was washed with a buffer (10mM PBS, 0.15M NaCl, pH 7.4) until the flow-through A_{280} was less than 0.01. The glycoproteins bound to the WGA resin were eluted with another buffer (10mM PBS, 0.15M NaCl, 20mM N-acetyl-D-glucosamine, pH 7.4). The 20 eluted glycoproteins were dialyzed against DEAE-cellulose binding buffer (5 mM PBS, pH 8.0).

The glycoprotein fraction was then applied to the DEAE-cellulose column and washed with binding buffer 25 until the A_{280} was less than 0.01. The binding protein was eluted with the same binding buffer with different pH values (from pH 7.4 to pH 3.0). Human recombinant ZP3 was eluted out between pH 4 to pH 6. This fraction was subsequently dialyzed against Ni- 30 NTA (nitrilotriacetic acid) binding buffer (50mM PBS, 300mM NaCl, pH 8.0) overnight at 4°C. Before binding, the Ni-NTA resin (Qiagen, Valencia, CA) was equilibrated with ten bed volumes of Ni-NTA binding buffer. The dialyzed WGA-DEAE isolated glycoprotein 35 was then applied to the Ni-NTA column at a flow rate of 3 to 4 resin volumes per hour. Afterwards, ten resin volumes of washing buffer (50mM PBS, 300mM NaCl, 0.1% Tween 20, 10mM 2-mercaptoethanol, pH 8.0) were used to remove non-specific binding proteins.

5 The rhZP3 was eluted using a binding buffer
containing various concentrations of imidazole
(Sigma).

10 *Western blotting*-The isolated glycoprotein samples
were separated with SDS-PAGE and transferred to a
nitrocellulose membrane by electrophoresis. A rabbit
polyclonal ZP3 peptide antiserum (at 2,000 x
dilution) produced by Dr. K. Hinsch and
collaborators and kindly donated to us was used for
15 immunologic identification of the rhZP3 (17). A
synthetic ZP3 decapeptide (D-V-T-V-G-P-L-I-F-L) was
used as antigen; this peptide antiserum detects ZP3
on the zona pellucida of human oocytes obtained for
in vitro fertilization therapy and also on fixed
20 ovarian tissue (18). A secondary antibody system
(goat anti-rabbit IgG-Horseradish Peroxidase
Antibody; Amersham Life Science, Buckinghamshire,
England) was used for further identification.

25 *Semen samples and sperm capacitation*-Semen was
collected by masturbation by healthy, fertile men
(donors). Sperm motion parameters (% progressive
motility, curvilinear and straight-line velocities,
amplitude of lateral head displacement and
30 linearity) were assessed with a computer analyzer
(HTM-IVOS; Hamilton-Thorn Research, Danvers, MA).
Sperm morphology was evaluated with strict criteria.
The lower limits of normal parameters of samples
used in the experiments were as follows: sperm
35 concentration: 50 x 10⁶/ml, progressive motility:
50%, and strict sperm morphology: 14% (10,11).
After liquefaction, samples were washed twice in
Ham's F-10 (Gibco Lab., Grand Island, NY)
supplemented with 0.5% human serum albumin (HSA;

5 Irvine Sci., Santa Ana, CA). The final undisturbed
pellet was gently over layered with 1 ml of the
culture medium and the specimen was incubated for 1
hour at 37°C in 5% CO₂ in humidified air to achieve
separation of the highly motile sperm fractions by
10 swim-up. Thereafter, aliquots were incubated under
capacitating conditions (in Ham's F-10 plus 0.5% HSA
at 37°C in 5% CO₂ in humidified air) for various
periods of time according to the experimental
design.

15 *Measurement of sperm-zona pellucida binding*-Salt-
stored, immature (prophase I) human oocytes were
used in the experiments. Oocytes were desalted and
microdissected into matching halves (hemizonae) using
20 a micromanipulator (Narishige, Tokyo, Japan)
following techniques published elsewhere (10,11,19).
Control and test sperm droplets (100 µl each of a
final dilution of 0.5 x 10⁶ motile sperm/ml 1 hour
post-swim-up) were incubated separately under heavy
25 mineral oil (Sigma) with a hemizona from the same
matching pair for 4 hours at 37°C in 5% CO₂ in
humidified air. After the co-incubation period, the
hemizonae were washed to remove loosely attached
sperm using a finely drawn glass pipette, and the
30 sperm tightly bound to the outer zona surface were
counted under phase microscopy (x 200). The hemizona
assay index (HZA) was calculated as follows: # of
sperm bound for test sample / # of sperm bound for
control sample x 100. An HZA of 100 indicates no
35 inhibition whereas an HZA of 0 reflects complete
inhibition of binding.

5 Determination of the acrosome reaction-The
proportion of live acrosome-reacted spermatozoa
incubated under capacitating conditions was
determined with the fluorescent probe fluorescein
10 isothiocyanate-labeled *Pisum Sativum Agglutinin*
(FITC-PSA, Sigma) after staining with a supravital
stain (Hoechst 33258, Sigma) following established
techniques (12,13). At least 200 sperm per sample
were evaluated in duplicate at 600 x magnification
15 using an epifluorescence microscope equipped with
phase-contrast optics (Optiphot; Nikon, Melville,
NY). Slides were coded and read in a blind fashion.
Acrosome reaction was diagnosed when a total loss of
the acrosomal cap was observed (bar pattern) or no
immunofluorescence was seen at all (13).

20 A calcium ionophore agent (A23187, Sigma) tested at
5 µM and human acid solubilized zona pellucida
tested at a final concentration of 4 zona/10 µl were
used as positive controls (20). In further
25 experiments, the acrosomal status was assessed by
transmission electron microscopy. Spermatozoa were
fixed by mixing sperm suspensions with equal volumes
of 2% (v/v) glutaraldehyde (in 3 mM CaCl₂ and 0.1 M
sodium cacodylate); thereafter, samples were
30 dehydrated twice and prepared for thin sectioning
using previously published procedures.
Ultrastructural examination was performed with a
transmission electron microscope (Jeol JEM-1200 EX
II, Peabody, MA).

35

Experimental Design

Culture medium from non-transfected (NT) PA-1 cells
grown under similar conditions and treated following

5 the same purification procedures was used as a
negative control for sperm-zona pellucida binding
and acrosome reaction assays. The total protein
concentration of the medium was adjusted to match
the protein content of the transfected PA-1 cells
10 containing the purified rhZP3 at each experiment.

Experiment 1: Characterization of the sperm ligand
activity of rhZP3 in competitive HZA studies-The
ability of the rhZP3 to competitively inhibit sperm-
15 zona pellucida binding was assessed in dose-
dependency studies using the HZA. Swim up sperm were
incubated with rhZP3 (test, at a final concentration
of 0, 10, 30, 100, 250, 500 or 2,000 ng/ml of
protein) or in culture medium (control) for 30 min
20 under identical conditions. After 30 min, a hemizona
was added to the test sperm droplet whereas the
matching hemizona from the same pair was added to
the control sperm droplet. Three pairs of matching
hemizonae were tested per rhZP3 concentration per
25 semen sample in a total of three ejaculates from
different donors. These studies assessed the ability
of the rhZP3 to competitively inhibit sperm-zona
pellucida binding.

30 Additional competitive HZAs were performed where the
test sperm droplet (rhZP3) was assessed against
control sperm droplets of culture medium from non-
transfected PA-1 cells (NT). Also, competitive HZAs
were carried out where the test sperm droplet
35 (culture medium from non-transfected PA-1 cells, NT)
was assayed against sperm culture medium. Three
pairs of matching hemizonae were tested per dose per
experiment in a total of three different ejaculates.

5 These studies were carried out in order to examine
the specificity of the effect of the rhZP3.

10 *Experiment 2: Characterization of the acrosome reaction inducing activity of the rhZP3 in dose- and sperm capacitation- dependency studies*-Motile sperm fractions from 29 ejaculates of 11 different donors were incubated under capacitating conditions for 3 hours and assayed for acrosome reaction using FITC-PSA. Following swim-up, sperm aliquots were pre-
15 incubated for 30 minutes with rhZP3 (30 ng/ml), A23187 (positive control), culture medium from non-transfected PA- cells (NT) or sperm culture medium (negative controls). This was the initially selected dose of rhZP3 to be tested as it had proven to
20 effect significant inhibition of sperm-zona binding in the HZA.

25 The dose-dependent effect of rhZP3 on acrosome reaction was examined in the swim-up fractions obtained from four different donors. The fractions were capacitated for 3 hours and exposed for 30 min to rhZP3 at final concentrations of 0, 7.5, 15, 30, 60, 120, 240, 480, 960 and 1920 ng/ml. The capacitation-dependency of the acrosome reaction-
30 inducing activity of rhZP3 was assessed in the swim-up fractions of four ejaculates from four different donors. Capacitation times included: 0 (immediately post-swim-up), 1, 4, 8, 12 and 24 hours. After the capacitation period, rhZP3 was added to the sperm suspension at a final concentration of 30 ng/ml.
35

In another set of experiments, three different ejaculates were used to compare the effects of the rhZP3 (tested at 500 ng/ml) with those of

5 solubilized zonae pellucidae and the calcium
ionophore. Further, the induction of the acrosome
reaction was assessed in parallel with FITC-PSA and
transmission electron microscopy. The goal of these
studies was to compare the morphological features of
10 the acrosome reaction between agonists and also
between the agonist-induced and basal exocytosis
rates.

15 *Experiment 3: Acrosome reaction- inducing activity
of rhZP3: effect on Gi proteins-Motile sperm*
fractions were obtained from the ejaculates of three
donors and incubated under capacitating conditions.
In each experiment, the test aliquot was pre-
incubated with pertussis toxin (100 ng/ml final
20 concentration) for 4 hours followed by incubation
with rhZP3 (500 ng/ml). A control aliquot was
incubated in culture medium alone for 4 hours and
then treated with rhZP3 at the same dose. After 30
min exposure to rhZP3 or control conditions, sperm
25 were assayed for acrosome reaction using FITC-PSA.

RESULTS

30 *In vitro expression and purification of rhZP3-* The
in vitro transcription and translation system
(reticulocyte lysate) demonstrated the expression of
a 47 kDa protein, the exact molecular weight as
predicted from the DNA sequence of human ZP3 (Fig.
1). The purified glycoprotein from the culture
35 medium of the transfected PA-1 cells was identified
through SDS-PAGE and Western blotting; analysis
revealed that the rhZP3 had an identical molecular
weight (approximately 65 kDa) when compared to

5 native human ZP3 from solubilized human zona
pellucida (Fig. 2) (21,22).

Characterization of the biological activities of rhZP3

Studies addressing the specificity of the ligand activity of rhZP3 are shown in Table 3. At both 30 ng/ml and 500 ng/ml, rhZP3 produced a significant inhibition when tested against sperm culture medium or against culture medium from non-transfected PA-1 cells (paired t-test of rhZP3 versus control conditions, $p < 0.01$). There were no differences between the two control conditions (sperm culture medium versus culture medium of non-transfected PA-1 cells). These results demonstrated that the effect of rhZP3 was not only dose-dependent within the nanomolar range but was also specific. Culture medium from non-transfected PA-1 cells (cultured under identical conditions and subjected to the same procedures of isolation and purification as the transfected PA-1 cells) did not produce inhibition of binding.

10 **Table 3. Specificity of the inhibitory effect of
rhZP3 under HZA conditions.** Recombinant human ZP3
demonstrated a significant inhibitory effect on the
HZI when compared to sperm culture medium alone
(Ham's - HSA) and to culture medium of non-
transfected PA-1 cells (NT).

Test Reagent	versus Control	HZI (Hemizona index)
30 ng/mL rhZP3	Ham's F-10/0.5% HSA ^a	43.6 ± 3.3
30 ng/mL rhZP3	30 ng/mL NT ^a	44.5 ± 3.6
30 ng/mL NT	Ham's F-10-0.5% HSA ^b	94.2 ± 0.3
500 ng/mL rhZP3	Ham's F-10-0.5% HSA ^a	38.0 ± 2.7
500 ng/mL rhZP3	500 ng/mL NT ^a	41.8 ± 1.9
500 ng/mL NT	Ham's F-10-0.5% HSA ^b	93.4 ± 1.0

15 ^a p<0.01 (paired t-test for test vs. control)

^b not significant

20 Sperm motion parameters were not significantly
different under control or treatment conditions for
all of the above-mentioned experiments (data not
shown). This further demonstrated that the sperm-
zona binding inhibition produced by rhZP3 was not
due to decreased motility parameters, given
25 additional support to the specificity of its effect.

5 *Experiment 2: Induction of acrosome reaction by
rhZP3*—Recombinant hZP3 was an effective inducer of
the acrosome reaction at 30 ng/ml (the minimally
effective dose for sperm-zona binding inhibition in
the HZA) when compared to control conditions (sperm
10 culture medium or culture medium from non-
transfected PA-1 cells) ($19\pm4.1\%$ live, acrosome
reacted sperm versus $9.2\pm3.8\%$ and $10.2\pm2.7\%$ live,
acrosome reacted sperm, respectively). The magnitude
15 of the induction of acrosome reaction was similar to
that of the calcium ionophore A23187 ($19.4\pm4.1\%$)
(overall effect by ANOVA $p<0.0001$, with Bonferroni
correction for multiple comparisons demonstrating
differences between control conditions and rhZP3,
20 $p<0.01$ and between control conditions and A23187,
 $p<0.01$).

Figure 4 shows the dose-dependent agonistic effect
of rhZP3 on the induction of the acrosome reaction
(overall effect by ANOVA, $p<0.0001$). The minimally
25 effective dose was 30 ng/ml; highest stimulation
(approximately 210% increase from baseline
conditions) was observed in the range of 500-2,000
ng/ml. There was also a significant sperm
capacitation-dependency of the acrosome reaction-
30 inducing activity of rhZP3 (ANOVA, $p<0.03$) with
maximal stimulation observed between 8-10 hours
capacitation (data not shown).

In a different set of experiments, rhZP3 (at 500
35 ng/ml) produced a similar induction of the acrosome
reaction ($28.2\pm5.6\%$) when compared to solubilized
zona pellucida ($23.3\pm6.2\%$) and A23187 ($34.7\pm5.2\%$),
all of them significantly higher ($p<0.05$) than

5 negative control (sperm culture medium, 5.7±2.8%).
The ultrastructural features of the acrosome
reaction observed by transmission electron
microscopy were similar when comparing the effect of
the calcium ionophore A23187 and rhZP3. Typical
10 features of a true acrosome reaction (i.e., broken
or absent plasma and outer acrosomal membranes with
various degrees of loss of acrosomal content and
exposure of the inner acrosomal membrane up to the
equatorial region) were observed with both
15 treatments (not shown).

Experiment 3: Effect of rhZP3 on G_i proteins- Pre-
incubation of the motile sperm fractions with
pertussis toxin (100 ng/ml) inhibited the induction
20 of the acrosome reaction by rhZP3 (Figure 5).
Incubation with the toxin, however, did not modify
the basal rate of spontaneous acrosomal exocytosis.
These results demonstrate that the induction of
25 acrosomal exocytosis by rhZP3 is mediated via a
transmembrane signaling cascade involving activation
of pertussis toxin-sensitive G_i proteins.

Sperm motion parameters were not significantly
different under control (sperm culture medium or
30 culture medium of non-transfected PA-1 cells) or
treatment (rhZP3, A23187 or pertussis toxin)
conditions for experiments 2 and 3 (data not shown).

COMMENTS

35

Here, we successfully cloned and expressed human ZP3
in homologous ovarian cells (PA-1) and affinity-
purified a glycosylated product that demonstrated
full biological activity. The rhZP3 expressed in PA-

5 1 cells had an estimated molecular weight of
approximately 65 kDa, within the published range of
native human ZP3 (21,22). Furthermore, the molecular
weight of the product of an *in vitro* transcription
and translation system (reticulocyte lysate) using
10 our recombinant vector was 47 kDa, the exact weight
of the protein backbone as predicted from the DNA
sequence (16). The results of our studies revealed
an approximately 18 kDa difference between the rhZP3
15 produced by the PA-1 cells and the ZP3 protein
backbone; this difference is probably due to the
presence of carbohydrate side chains. Consequently,
the affinity-purified rhZP3 expressed in PA-cells
appears to be heavily glycosylated. A biologically
active recombinant human ZP3 should present two main
20 properties: (i) it should demonstrate specific
ligand activity to capacitated spermatozoa; and (ii)
it should trigger acrosomal exocytosis.

25 In the first experiments, our rhZP3 demonstrated
ligand activity by competitively inhibiting sperm-
zona pellucida binding in the HZA. The HZA is a
useful tool to examine the mechanisms of initial
internally controlled test that assesses the
30 specific, irreversible and tight binding of sperm to
the zona pellucida as well as the zona-induced
acrosome reaction (10-13,19). To the best of our
knowledge, this is the first time that a rhZP3 has
been proven to competitively inhibit sperm-zona
35 pellucida binding in a controlled fashion and
depicting a dose-dependent inhibition under sperm
capacitating conditions. Maximal inhibition was
observed in the range of 500-2000 ng/ml. This
observation is consistent with the report of Franken

5 et al. (20) who demonstrated a similar linearity of
decrease of sperm-zona pellucida binding using
solubilized human zona pellucida.

Glycosylation appears mandatory for ZP3-ligand
10 function (1-3). In the mouse, ZP3-ligand activity
seems to reside principally in its O-linked
oligosaccharides (1-3). Evidence that the amino
sugar N-acetylglucosamine is the key terminal
15 monosaccharide involved in murine gamete interaction
has also been presented (2). In the human, we
demonstrated the involvement of fucosylated and
sialylated complex-type glycans in sperm-zona
pellucida binding (reviewed in 23,24). More
recently, through the application of zona-lectin
20 binding and chemical- enzymatic treatment studies,
direct evidence was provided for the involvement of
specific carbohydrate sequences (terminal sialic
acid and other fucosylated structures) on human
gamete interaction (24). Since the PA-1 cell
25 glycoprotein can now be produced in large amounts,
we remain hopeful that advanced methods of
carbohydrate analysis will allow us to identify the
saccharide epitopes responsible for sperm-zona
pellucida binding in the human. In recent elegant
30 studies, it was shown that oligosaccharides located
in specific serine residues in a defined locus near
the carboxyl terminus encoded by exon 7 of the mouse
ZP3 gene are responsible for binding in this species
(5).

35

Our rhZP3 also demonstrated a potent, fast dose- and
capacitation-dependent ability to induce the
acrosome reaction in live spermatozoa with maximal
effects also observed in the range of 500 to 2,000

5 ng/ml. The level of induction was similar to the one
observed for two well-known agonists used as
positive controls; i.e., a calcium ionophore and
solubilized human zona pellucida. The structural
features of acrosome-reacted spermatozoa showed
10 similarity to the acrosomal exocytotic changes
observed with the control agonists. Transmission
electron microscopy is still considered the "golden
standard" for the assessment of true acrosome
reactions and it was an important step to verify the
15 PSA-FITC results (25).

The PA-1 cell product, therefore, was significantly
more potent than rhZP3 produced in CHO cells (6-8).
The CHO cell product induced acrosome reaction
20 levels up to 30%, but only after 24 hours of
incubation of the sperm with the purified rhZP3 (8).
Moreover, the dose of the rhZP3 used in those
experiments was 15-20 µg/ml, whereas the PA-1 cell-
derived rhZP3 exhibited highest activity at 0.5-2
25 µg/ml, at least 10 times more potent. When an in
vitro transcription and translation system was used
to produce immobilized rhZP3 on agarose beads, the
percentage of acrosome reaction ranged from 7 to 53%
after 3 to 18 hours of sperm-beads incubation (6,7).
Therefore, in terms of acrosome reaction-inducing
30 activity, our rhZP3 appears to be more potent than
the CHO cell product and comparable to the non-
glycosylated product of an in vitro transcription
and translation system (6-8).

35

We further investigated whether rhZP3 triggered
acrosome reaction through a signaling cascade
involving heterotrimeric G proteins (3). Pertussis
toxin can cross the plasma membrane and functionally

5 inactivate G_i by ADP-ribosylating its α subunit.
Such an effect has been demonstrated using human
solubilized zona pellucida (20). Here, the rhZP3-
acrosome reaction inducing activity was inhibited by
pre-incubation of the sperm with pertussis toxin.
10 Such treatment did not affect the spontaneous rate
of acrosomal exocytosis.

The results of our studies provide strong support
for a physiological mechanism underlying the
15 functional properties of the PA-1 cell glycoprotein
product. The affinity-purified, biologically active
rhZP3 expressed in the PA-1 cells represents a
valuable tool to approach the study of human
fertilization and the design of new diagnostic and
20 contraceptive strategies.

5 REFERENCES

21. Wassarman, P.M. (1990) Profile of a mammalian sperm receptor. *Development*, 108, 1-17

10 22. Wassarman, P.M. (1999) Mammalian fertilization: Molecular aspects of gamete adhesions, exocytosis, and fusion. *Cell* 96, 175-183

15 23. Kopf, G.S. (1990) Zona pellucida-mediated signal transduction in mammalian spermatozoa. *J. Reprod. Fert.* 42, 33-49

20 24. Harris, J., Hibler, D., Fontemot, G., Hsiu, K., Yurewicz, E., and Sacco, A. (1994) Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: ZPA, ZPB and ZPC families. *DNA Sequen. Map.* 4, 361-393

25 25. Chen, J., Litscher, E.S., and Wassarman, P.M. (1998) Inactivation of the mouse sperm receptor, mZP3, by site-directed mutagenesis of individual serine residues located at the combing site for sperm. *Proc. Natl. Acad. Sci. U.S.A.* 95, 6193-6197

30 35 26. Chapman, N.R., and Barratt, L.R. (1996) The role of carbohydrates in spermatozoa-zona pellucida adhesion. *Mol. Hum. Reprod.* 3, 646-650

27. Whitmarsh, A.J., Woolnough, M.J., Moore, H.D.M., Hornby, D.P., and Barratt, C.L.R. (1996) Biological activity of recombinant human

5 ZP3 produced in vitro: potential for a sperm
function test. *Mol. Hum. Reprod.* 2, 911-919

10 28. Van Duin, M., Polman, J.E.M., De Breet, I.T.M.,
Van Ginneken, K., Bunschoten, H., Grootenhuis,
A., Brindle, J., and Aitken, R.J. (1994)
Recombinant human zona pellucida protein ZP3
Biol. Reprod. 51, 607-617

15 29. Irvine, D.S. (1998) Epidemiology and etiology
of male infertility. *Hum. Reprod.* 13 (Suppl.
1), 33-44

20 30. Oehninger, S., Acosta, A., Veeck, L., Brzyski,
R., Kruger, T.F., Muasher, S.J., and Hodgen,
G.D. (1991) Recurrent failure of in vitro
fertilization: Role of the hemizona assay in
the sequential diagnosis of specific sperm-
oocyte defects. *Am. J. Obstet. Gynecol.* 164,
1210-121

25 31. Oehninger, S., Mahony, M., Ozgur, K., Kolm, P.,
Kruger, T., and Franken, D. (1997) Clinical
significance of human sperm-zona pellucida
binding. *Fertil. Steril.* 67, 1121-1127

30 32. ESHRE Andrology Special Interest Group (1996)
Advanced Diagnostic Andrology Techniques. *Hum.*
Reprod. 11, 1463-1479

35 33. Oehninger, S., Mahony, M., Swanson, J.R., and
Hodgen, G.D. (1993) The specificity of human
spermatozoa/zona pellucida interaction under
hemizona assay conditions. *Mol. Reprod. Dev.* 35,
59-61

5

34. Liu, D.Y., Lopata, A., Johnston, W.I.H., and Gordon Baker, H.W. (1988) A human sperm-zona pellucida binding test using oocytes that failed to fertilize in vitro. *Fertil. Steril.* 50, 782-788

10

35. Fukuda, M.N., Dell, A., Oates, J.E., and Fukuda, M. (1985) Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl alpha 2 ----9 sialyl) terminals isolated from PA1 human embryonal carcinoma cells. *J. Biol. Chem.*, 260, 6623-6631.

15

20 36. Chamberlin, M.E., and Dean, J. (1990) Human homology of the mouse sperm receptor. *Proc. Natl. Acad. Sci. U.S.A.* 87, 6014-6018

25

37. Hinsch, K.D., Hinsch, E., Meinecke, B., Topfer-Petersen, E., Pfisterer, S., and Schill, W.-B. (1994) Identification of mouse ZP3 protein in mammalian oocytes with antisera against synthetic ZP3 peptides. *Biol. Reprod.* 51, 193-204

30

38. Oehninger, S., Hinsch, E., Pfisterer, S., Veeck, L.L., Kolm, P., Schill, W.-B., Hodgen, G.D., et al. (1996) Use of specific zona pellucida (ZP) protein 3 antiserum as a clinical marker for human ZP integrity and function. *Fertil. Steril.*, 65, 139-145.

35

39. Burkman, L.J., Coddington, C.C., Franken, D.R., Kruger, T., Rosenwaks, Z., and Hodgen, G.D.

5 (1988) The hemizona assay (HZA): development
of a diagnostic test for the binding of human
spermatozoa to the human hemizona pellucida to
predict fertilization potential. *Fertil.*
Steril. 49, 688-693

10

40. Franken, D.R., Morales, P.J., and Habenicht,
U.F. (1996) Inhibition of G protein in human
sperm and its influence on acrosome reaction
and zona pellucida binding. *Fertil. Steril.*
15 66, 1009-1011

41. Shabanowitz, R.B., O'Rand, M.G. (1988)
Characterization of the human zona pellucida
from fertilized and unfertilized eggs. *J.*
20 *Reprod. Fertil.*, 82, 151-161.

42. Bercegeay, S., Jean, M., and Barriere, P.
(1995) Composition of human zona pellucida as
revealed by SDS-PAGE after silver staining.
25 *Mol. Reprod. Dev.*, 41, 355-259.

43. Oehninger, S., Patankar, M., Seppala, M., and
Clark, G.F. (1998) Involvement of selectin-like
carbohydrate binding specificity in human
30 gamete interaction. *Andrologia*, 30, 269-274

44. Ozgur, K., Patankar, M.S., Oehninger, S., and
Clark, G.F. (1998) Direct evidence for the
involvement of carbohydrate sequences in human
35 sperm-zona pellucida binding. *Mol. Hum. Reprod.*
4, 318-324

45. Kohn, E.M., Mack, S.R., Schill, W.B., and
Zaneveld, L.J.D. (1997) Detection of human

5 sperm acrosome reaction: comparison between
methods using double staining, *Pisum Sativum*
agglutinin, concanavalin A and transmission
electron microscopy. *Hum. Reprod.* 12, 714-721