COMP8760 Lecture - 4

 $Lagrange's \ Theorem, \ Fermat's \ Theorem, \ Primality \ Testing, \ Contrapositivity$

Sanjay Bhattacherjee

University of Kent

Study Material

Book 1 Cryptography Made Simple
Author Nigel P. Smart.
Link to eBook

Section 1.1.1 Groups
Section 1.1.3 Euler's Functions
Section 1.1.5 The Set \mathbb{Z}_N^* Section 2.1.1 The Prime Number Theorem
Section 2.1.2 Trial Division
Section 2.1.3 Fermat's Test

 $\mathbb{Z}_{12} = \{0, 1, 2, 3, \dots, 11\}$

For $a,b\in\mathbb{Z}_{12}$, the following table shows all possible $a\times b=a\cdot b$ (except 0's)

(We use the notations \times and \cdot interchangeably to denote multiplication.)

а	1	2	3	4	5	6	7	8	9	10	11
b											
1	1	2	3	4	5	6	7	8	9	10	11
2	2	4	6	8	10	0	2	4	6	8	10
3	3	6	9	0	3	6	9	0	3	6	9
4	4	8	0	4	8	0	4	8	0	4	8
5	5	10	3	8	1	6	11	4	9	2	7
6	6	0	6	0	6	0	6	0	6	0	6
7	7	2	9	4	11	6	1	8	3	10	5
8	8	4	0	8	4	0	8	4	0	8	4
9	9	6	3	0	9	6	3	0	9	6	3
10	10	8	6	4	2	0	10	8	6	4	2
11	11	10	9	8	7	6	5	4	3	2	1

Note that the rows of $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$ have the element 1 but no 0, while the other rows have 0 but not 1.

- Row b has 0 when gcd(b, 12) > 1
- Row b has 1 when gcd(b, 12) = 1

$$\mathbb{Z}_{12}^{\star} = \{1, 5, 7, 11\}$$

So,

а	1	2	3	4	5	6	7	8	9	10	11
b											
1	1	2	3	4	5	6	7	8	9	10	11
2	2	4	6	8	10	0	2	4	6	8	10
3	3	6	9	0	3	6	9	0	3	6	9
4	4	8	0	4	8	0	4	8	0	4	8
5	5	10	3	8	1	6	11	4	9	2	7
6	6	0	6	0	6	0	6	0	6	0	6
7	7	2	9	4	11	6	1	8	3	10	5
8	8	4	0	8	4	0	8	4	0	8	4
9	9	6	3	0	9	6	3	0	9	6	3
10	10	8	6	4	2	0	10	8	6	4	2
11	11	10	9	8	7	6	5	4	3	2	1

Arr \mathbb{Z}_{12}^* is the set of elements in \mathbb{Z}_{12} that are mutually prime with 12. In other words, for all $a \in \mathbb{Z}_{12}^*$,

$$gcd(a, 12) = 1.$$

Note that only if $a \in \mathbb{Z}_{12}^{\star}$, then there is a solution to the equation

$$a \cdot x = 1$$
.

In other words, only elements in $\{1, 5, 7, 11\}$ have multiplicative inverses!

$$\mathbb{Z}_{13}^{\star} = \{1, 2, 3, \dots, 12\}$$

Here,

а	1	2	3	4	5	6	7	8	9	10	11	12
b												
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	1	3	5	7	9	11
3	3	6	9	12	2	5	8	11	1	4	7	10
4	4	8	12	3	7	11	2	6	10	1	5	9
5	5	10	2	7	12	4	9	1	6	11	3	8
6	6	12	5	11	4	10	3	9	2	8	1	7
7	7	1	8	2	9	3	10	4	11	5	12	6
8	8	3	11	6	1	9	4	12	7	2	10	5
9	9	5	1	10	6	2	11	7	3	12	8	4
10	10	7	4	1	11	8	5	2	12	9	6	3
11	11	9	7	5	3	1	12	10	8	6	4	2
12	12	11	10	9	8	7	6	5	4	3	2	1

▶ All positive integers between 1 and 12 are mutually prime with 13. In other words, for all $a \in \mathbb{Z}_{3}^*$,

$$gcd(a, 13) = 1.$$

▶ All elements in {1,2,...,12} have multiplicative inverses!

\mathbb{Z}_N^{\star} is a Multiplicative Abelian Group

It satisfies the following properties with respect to modular multiplication.

- Closure:
 - For any two elements $x, y \in \mathbb{Z}_N^*$,

$$x \cdot y \in \mathbb{Z}_N^{\star}$$

- Associativity:
 - For any three elements $x, y, z \in \mathbb{Z}_N^*$,

$$x\cdot (y\cdot z)=(x\cdot y)\cdot z$$

- ► Identity:
 - The element $1 \in \mathbb{Z}_N^{\star}$ is the identity such that, for all $x \in \mathbb{Z}_N^{\star}$,

$$x \cdot 1 = x$$

- Inverse:
 - For any element $x \in \mathbb{Z}_N^*$, there is a unique $\bar{x} \in \mathbb{Z}_N^*$ such that,

$$x \cdot \bar{x} = 1$$

- Commutativity:
 - For any two elements $x,y\in\mathbb{Z}_N^\star,$

```
Group: (\underbrace{\mathbb{Z}_{11}^{\star}}_{\text{The set}}, \underbrace{\times \text{ (mod 11)}}_{\text{The operation}})
```

where the set $\mathbb{Z}_{11}^{\star} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Closure:

For any two elements $x, y \in \mathbb{Z}_{11}^{\star}$, $x \times y \pmod{11} \in \mathbb{Z}_{11}^{\star}$.

Examples:
$$3\times 2 = 6 \text{ (mod 11)} \in \mathbb{Z}_{11}^{\star}.$$

$$3 \times 4 = 1 \pmod{11} \in \mathbb{Z}_{11}^{*}.$$

 $9 \times 3 = 5 \pmod{11} \in \mathbb{Z}_{11}^{*}.$

$$9\times 1=9\ (\text{mod }11)\in \mathbb{Z}_{11}^{\star}.$$

Associativity:

For any three elements $x, y, z \in \mathbb{Z}_{11}^*$, $x \times (y \times z) \pmod{11} = (x \times y) \times z \pmod{11}$.

$$1 \times (2 \times 3) \pmod{11} = (1 \times 2) \times 3 \pmod{11}$$
.

$$9 \times (8 \times 7) \pmod{11} = (9 \times 8) \times 7 \pmod{11}$$
.

$$1 \times (7 \times 8) \pmod{11} = (1 \times 7) \times 8 \pmod{11}$$
.

$$0\times(7\times8)\ (\text{mod }11)=(0\times7)\times8\ (\text{mod }11).$$


```
Group: (\underline{\mathbb{Z}_{11}^*}, \underline{\times \pmod{11}})
```

The set The operation

 $(\mathbb{Z}_{11}^*, \times \pmod{11})$ satisfies all four properties and hence is a group.

The set The operation

► Identity:

The element $1 \in \mathbb{Z}_{11}^{\star}$ is unique. For all $x \in \mathbb{Z}_{11}^{\star}$, $x \times 1 \pmod{11} = x$.

$$0 \times 1 \pmod{11} = 0.$$

$$1 \times 1 \pmod{11} = 1.$$

$$9 \times 1 \pmod{11} = 9$$
.

Inverse:

For any element $x \in \mathbb{Z}_{1}^{\star}$, there is a unique $\bar{x} \in \mathbb{Z}_{1}^{\star}$ such that, $x \times \bar{x} \pmod{11} = 1$. Examples:

$$3 \times 7 \pmod{11} = 1$$
.

$$4 \times 6 \pmod{11} = 1.$$

$\phi(N)$ elements in \mathbb{Z}_N^{\star}

We note here that,

The group \mathbb{Z}_N^* has all elements of \mathbb{Z}_N that are mutually prime to N.

We recollect here that,

 $\phi(N)$ is the number of integers between 1 and N that are mutually prime to N.

In other words,

$$|\mathbb{Z}_{\mathsf{N}}^{\star}| = \phi(\mathsf{N}).$$

Lagrange's Theorem

Theorem

For any $a \in G$,

$$a^{|G|} = 1.$$

Corollary

We apply this Theorem to the group \mathbb{Z}_N^* .

For any $a \in \mathbb{Z}_N^{\star}$,

$$a^{\phi(N)} = 1$$
.

Fermat's Little Theorem

Theorem

Let p be a prime number and a be an integer. Then,

$$a^p = a \mod p$$
.

Proof Idea.

In Lagrange's Theorem, consider the group $(Z_{\rho}^{\star} = \{1, 2, \dots, p-1\}.$

For any $a \in \mathbb{Z}_p^{\star}$,

$$a^{p-1}=1\mod p.$$

And hence,

$$a^p = a \mod p$$
.

Prime Numbers

Definition:

A positive integer p is prime if it is only divisible by 1 and p.

Some prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

The Prime Number Theorem

Conjectured by Gauss (in early 1800s):

Let $\pi(X)$ be the function that counts the number of primes less than X. We have the approximation

$$\pi(X) \approx \frac{X}{\log_e X}.$$

Primes are quite common

Example: Number of primes less than 216 is

$$\underbrace{\approx}_{\text{approximately}} \frac{2^{16}}{\log_e{(2^{16})}} = \frac{2^{16}}{\log_2{(2^{16})}/\log_2{e}} \approx \frac{2^{16}}{16} = \frac{2^{16}}{2^4} = 2^{12}.$$

Example: Number of primes less than 21024 is

$$\approx \frac{2^{1024}}{\log_e\left(2^{1024}\right)} = \frac{2^{1024}}{\log_2\left(2^{1024}\right)/\log_2e} \approx \frac{2^{1024}}{1024} = \frac{2^{1024}}{2^{10}} = 2^{1014}.$$

Choose a Random Number: Is it Prime?

Probability

If a number is chosen at random from $\{1, \dots X\}$, the probability that it will be a prime is approximately:

$$\approx \frac{\pi(X)}{X}$$
.

Probability for $X = 2^{1024}$

If a 1024-bit number (between $0,\ldots,2^{1024}-1$) is chosen at random, the probability that it will be a prime is approximately:

$$\approx \frac{\pi(2^{1024})}{2^{1024}} = \frac{\left(\frac{2^{1024}}{\log_e 2^{1024}}\right)}{2^{1024}}$$
$$= \frac{1}{\log_e(2^{1024})} = \frac{1}{(\log_2 2^{1024}/\log_2 e)} = \frac{1}{709}$$

Generate 1024-bit random numbers.

How many have to be generated to get a prime?

Primality Testing

But how do we test if a randomly generated number *n* is prime or not?

Trial Division

Exhaustive Search

- For each $2 \le d \le \sqrt{n}$
 - if n mod d = 0, then n is not a prime; hence, break the loop
- if the above loop was not broken, then *n* is a prime

When p is not a prime, the value of d (the least factor) will be the certificate of compositeness!

If *n* is prime, there is no certificate of primality! To verify, one has to run the test once again!

Partial Trial Division

Search till a bound Y

- ▶ For each 2 < d < Y</p>
 - if n mod d = 0, then n is not a prime; hence, break the loop
- if the above loop was not broken, then *n* is a prime

Eliminating Composites

Let $\{2,3,\ldots,p_k\}$ be the set of all prime numbers less than Y. Partial Trial Division will eliminate all but

$$\prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$$

fraction of composites.

For all $p_i < 100$, we have $\prod_{i=1}^k \left(1 - \frac{1}{p_i}\right) \approx 0.12$

Recall: Lagrange's Theorem

Theorem

For any $a \in G$,

$$a^{|G|} = 1$$
.

Corollary

We apply this Theorem to the group \mathbb{Z}_N^* .

For any $a \in \mathbb{Z}_N^{\star}$,

$$a^{\phi(N)}=1$$
.

Recall: Fermat's Little Theorem

Theorem

Let p be a prime number and a be an integer. Then,

$$a^p = a \mod p$$
.

Proof Idea.

In Lagrange's Theorem, consider the group $\mathbb{Z}_p^{\star} = \{1, 2, \dots, p-1\}$.

For any $a \in \mathbb{Z}_p^{\star}$,

$$a^{p-1}=1\mod p.$$

And hence,

$$a^p = a \mod p$$
.

Fermat's Test

$a^{n-1} \mod n$.

If the *n* is prime, then value is 1.
This implies (by contrapositivity):
if the value is not 1, then *n* is composite.

If the value is 1, then n is prime (with high probability).

```
The Test for n:
for i=0 to k-1 do
Pick a \in [2, ..., n-1]
b \leftarrow a^{n-1} \mod n
if b \neq 1, return (Composite, a)
return "Probably Prime"
```


Fermat's Test

```
The Test for n:
for i=0 to k-1 do
Pick a \in [2, ..., n-1]
b \leftarrow a^{n-1} \mod n
if b \neq 1, return (Composite, a)
return "Probably Prime"
```

Properties:

- a is the "witness of compositeness"
- Very efficient (fast)
- No proof of primality
 As the value of k is increased, there is increased probability that n is indeed a prime.

Carmichael Numbers: Failure of Fermat's Test

Carmichael Numbers

Composite numbers for which the Fermat Test will always output "Probably Prime" for every *a* coprime to *n*.

Properties:

- Always odd
- At least three prime factors
- Square free
- ▶ If p divides n, then p-1 divides n-1
- ► The first three are 561, 1105 and 1729.
- Rare but infinitely many!

Contrapositive Argument

```
Consider the function B() below with A() as a subroutine:
```

```
B(){
      ... (little computation)
      A();
      ... (little computation)
      A();
      ... (little computation)
}
```

Statement A: algorithm A runs in polynomial time (is efficient) Statement B: algorithm B runs in polynomial time (is efficient)

If algorithm $\mathbb A$ runs in polynomial time, then algorithm $\mathbb B$ runs in polynomial time. If $\mathcal A$, then $\mathcal B$.

```
\iff (is equivalent to)
```

If algorithm B is not polynomial time, then algorithm A is not polynomial time.

```
If \neg \mathcal{B}, then \neg A
```


Contrapositivity

\mathcal{A}	\mathcal{B}	If A , then B
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

\mathcal{A}	\mathcal{B}	If A , then B	$\neg A$	$\neg B$	If $\neg \mathcal{B}$, then $\neg A$
Т	Т	Т	F	F	Т
Т	F	F	F	T	F
F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т

Truth values of equivalent statements are the same for all value assignments. Hence, they are equivalent:

If A, then $\mathcal{B} \iff \text{If } \neg \mathcal{B}$, then $\neg A$.

Example:

A: there is a smoke

 \mathcal{B} : there is fire

If there is smoke, then there must be a fire.

If there is no fire, then there can be no smoke.

Example:

A: there is a shadow

B: there is light

If there is a shadow, then there must be a light.

If there is no light, then there can not be a shadow.

Example:

A: rain in the past 5 minutes

B: wet streets

If it has rained in the past 5 minutes, then the streets must be wet.

If the streets are not wet, then it has not rained in the past 5 minutes.

Thank you for your kind attention!

