

Coordinación Matemáticas I Primer Semestre 2015 Solución Taller 2

Semana 2: 16-20 de Marzo

Ejercicio 1

Determine todos los valores de $a \in \mathbb{R}_0^+$ para los cuales el conjunto solución de la siguiente inecuación es vacío:

$$|x-a| + |x+a| < 1$$

Solución

Analizamos los casos determinados por $x \in]-\infty, -a] \vee x \in]-a, a] \vee x \in]a, +\infty].$

Caso 1: $x \in]-\infty, -a]$

La inecuación que se debe resolver es -x + a - x - a < 1

y su solución $x > \frac{-1}{2}$

Entonces la solución de este caso es $S_1 =]-\infty, -a]\cap]\frac{-1}{2}, +\infty[$ la cual es vacío si $a \in [\frac{1}{2}, +\infty[$

Caso 2: $x \in]-a,a]$

En este caso, se tiene la inecuación -x+a+x+a<1 la cual afirma que $a<\frac{1}{2}$ Luego como $S_1=\phi$ siempre que $a\in[\frac{1}{2},+\infty[$, se tiene que $S_2=\phi$ para $a\in[\frac{1}{2},+\infty[$

Caso 3: $x \in]a, +\infty]$

Para este caso la inecuación que se debe resolver es x-a+x+a<1

con solución $S_3 = \phi$ si y solo si $a \in [\frac{1}{2}, +\infty[$

Finalmente, el conjunto solución de la inecuación es vacío si $a \in [\frac{1}{2}, +\infty[$

Ejercicio 2

- a) Demuestre que la proposición $(\exists x \in \mathbb{R}), 2x^2 + 10 < -x^2 5x$ es Falsa
- b) Demuestre que la proposición $(\forall x \in \mathbb{R})$, $x^2 + 10(x+1) > 7x$ es Verdadera

Solución

a) Demostrar que la proposición $(\exists x \in \mathbb{R})$, $2x^2 + 10 < -x^2 - 5x$ es Falsa, equivale a demostrar que su negación es verdadera.

Se demuestra que $(\forall x \in \mathbb{R})2x^2 + 10 \ge -x^2 - 5x$ es verdadera La inecuación $2x^2 + 10 \ge -x^2 - 5x$ equivale a $3x^2 + 5x + 10 \ge 0$ y el discriminante de la función cuadrática es negativo y ademas el coeficiente de x^2 es positivo, por lo tanto $3x^2 + 5x + 10 > 0$, $\forall x \in \mathbb{R}$.

Por lo tanto la proposición $(\forall x \in \mathbb{R})2x^2 + 10 \ge -x^2 - 5x$ es verdadera, quedando demostrado que $(\exists x \in \mathbb{R}), 2x^2 + 10 < -x^2 - 5x$ es Falsa

b) Se demuestra directamente que la proposición es verdadera, ya que la inecuación $x^2 + 10(x+1) > 7x$ es equivalente a $x^2 + 3x + 10 > 0$ donde la función cuadrática tiene discriminante negativo y el coeficiente de x^2 es positovo por lo tanto $x^2 + 3x + 10 > 0$, $\forall x \in \mathbb{R}$

Ejercicio 3

- a) Resuelva la ecuación $(5ax+3)^2=4x^2-4x+1$ en términos de $a\in\mathbb{R}-\{-\frac{2}{5},\frac{2}{5}\}.$
- b) Determine valores de $a \in \mathbb{R} \{-\frac{2}{5}, \frac{2}{5}\}$ para los cuales las soluciones anteriores tienen distinto signo

Solución

- a) la ecuación $(5ax+3)^2=4x^2-4x+1$ equivale a |5ax+3|=|2x-1| obteniendo las soluciones: $x_1=\frac{-4}{5a-2}, \ x_2=\frac{-2}{5a+2}$ para $a\in\mathbb{R}-\{-\frac{2}{5},\frac{2}{5}\}.$
- b) Las soluciones anteriores tienen distinto signo si $x_1x_2 < 0$ Se resuelve la desigualdad $\frac{(-4)}{(5a-2)}\frac{(-2)}{(5a+2)} < 0$ la cual equivale a $\frac{8}{(5a-2)(5a+2)} < 0$ y su solución es $a \in]\frac{-2}{5}, \frac{2}{5}[$

Ejercicio 4

- a) Dados A y B no vacíos tal que |A|=17, |A-B|=5 y $|A\cup B|=25$. Calcule $|(A-B)\cup(B-A)|$.
- b) Demuestre que si $a^2 \in \mathbb{N}$ es múltiplo de 3 entonces $a \in \mathbb{N}$ es múltiplo de 3

Solución

- a) |A|=17, |A-B|=5 y $|A\cup B|=25$. Para calcular $|(A-B)\cup(B-A)|$ observe que $|(A-B)\cup(B-A)|=|(A\cup B)-(A\cap B)|=|A\cup B|-|A\cap B|=25-|A\cap B|$ Para obtener $|A\cap B|$, tenemos que $|A-B|=|A|-|A\cap B|$ y de esta ecuación obtenemos que $|A\cap B|=12$ Finalmente, $|(A-B)\cup(B-A)|=|(A\cup B)-(A\cap B)|=|A\cup B|-|A\cap B|=25-12=13$
- b) Demuestre que si $a^2 \in \mathbb{N}$ es múltiplo de 3 entonces $a \in \mathbb{N}$ es múltiplo de 3 Se demuestra que el contrarecíproco es verdadero, es decir, Demostraremos que si $a \in \mathbb{N}$ no es múltiplo de 3 entonces $a^2 \in \mathbb{N}$ no es múltiplo de 3 Si $a \in \mathbb{N}$ no es múltiplo de 3 entonces tenemos los casos de a = 3k + 1 o bien, a = 3k + 2, para algún $k \in \mathbb{N}$. caso 1, si a = 3k + 1 entonces $a^2 = (3k + 1)^2$, luego $a^2 = 3(3k^2 + 2k) + 1$, demostrando que a^2 no es múltiplo de 3. caso 2, si a = 3k + 2 entonces $a^2 = (3k + 2)^2 = 3(3k^2 + 4k + 1) + 1$, por lo tanto se tiene que a^2 no es múltiplo de 3.

Por lo tanto se ha demostrado que si $a \in \mathbb{N}$ no es múltiplo de 3 entonces a^2 no es múltiplo de 3 y esta afirmación es equivalente a que si $a^2 \in \mathbb{N}$ es múltiplo de 3 entonces $a \in \mathbb{N}$ es múltiplo de 3