Hidden Markov Model

Content

- Markov chain
- Hidden Markov model (HMM)
- Three problems of HMM

Discrete Markov chain

- Set of state $S = \{s_1, s_2, ..., s_N\}$. N is the number of states (s1=Sunny; s2=Rainy).

- Regularly spaced discrete times: t = 1,2,...
- The initial state distribution π (= prior probability) where $\pi_{_{_{\! 1}}}$ represents the

probability that the process begin in state s_i . Eg: π = (0.2, 0.8)

- Set **Q** =
$$\{q_1, q_2, ..., q_T\}$$

q, is a state at time point t

Eg:

$$s1 \rightarrow s1 \rightarrow s2 \rightarrow s1 \rightarrow s2 \rightarrow s2$$

 $q1 \rightarrow q2 \rightarrow q3 \rightarrow q4 \rightarrow q5 \rightarrow q6$

Discrete Markov chain

- Future state q_t only depends on present state q_{t-1} , not relevant to any further past state $(q_{t-2}, q_{t-3}, ..., q_1)$.

$$P[q_t = S_i | q_{t-1} = S_i, q_{t-2} = S_k...] = P[q_t = S_i | q_{t-1} = S_i]$$

- Transition probability matrix A and transition probability distribution \mathbf{a}_{ij} $a_{ij} \geq 0$, $\sum_{i=1}^{N} a_{ij} = 1$

$$A = a_{ij} =$$

	S	R
S	8.0	0.2
R	0.4	0.6

$$1 \le i, j \le N$$

- Given sunny at t=1:

What is the probability that the weather for the next 5 days will be sunny-rainy-sunny-rainy-rainy? What is P(Q|Model)?

$$P(O=\{s_1, s_1, s_2, s_1, s_2, s_2\} | A, q_1=S_1)$$

$$P(O=\{S,S,R,S,R,R\} | A, q_1=S_1)$$

$$= \pi \times a_{_{11}} \times a_{_{12}} \times a_{_{21}} \times a_{_{12}} \times a_{_{22}}$$

 $= 0.2 \times 0.8 \times 0.2 \times 0.4 \times 0.2 \times 0.6$

$$P(Q \mid \lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \cdots a_{q_{T-1} q_T}$$

Hidden Markov Model (HMM)

- There are a lot of cases where we can't observe the state (S) that we are interested in.
- We can only see the **output (observation O)**

$$O = \{o_1, o_2, ..., o_T\}$$

Eg:

$$O = {o_1, o_2, ..., o_T}$$

= H, H, G, H, ..., G

Hidden Markov Model (HMM)

A hidden Markov model has:

- N (hidden) states.

$$S = \{S_1, S_2, S_3, S_4, S_5, \dots, S_N\}$$

state at time t is $q_t \quad \forall i : q_i \in S$

- M, the number of observations (Happy, Grumpy)

$$V = \{V_1, V_2, V_3, V_4, V_5, \dots, V_M\}$$

- State transition matrix A

$$A = \{a_{ij}\}\$$

$$a_{ij} = P(q_t = S_j | q_{t-1} = S_i) \quad 1 \le i, j \le N$$

• if $a_{ij} = 0$ then a transition between S_i and S_j is not possible $\sum_{i=1}^{N} a_{ij} = 1$

$$A = \begin{bmatrix} S & R \\ S & 0.8 & 0.2 \\ R & 0.4 & 0.6 \end{bmatrix}$$

Hidden Markov Model (HMM)

A hidden Markov model has:

- Emission probabilities (B) = Observation probabilities

$$B = \{b_j(k)\}$$

$$b_j(k) = P(v_k \text{ at } t | q_t = S_j)$$

$$1 \le j \le N$$

$$1 < k < M$$

$$b_R(H) = 0.8, b_S(G) = 0.2$$

$$b_R(H) = 0.4, b_R(G) = 0.6$$

- Initial probability distribution π

$$\pi = \{\pi_i\}$$

$$\pi_i = P(q_1 = S_i) \quad 1 \le i \le N$$

- Model $\lambda = (A,B,\pi)$

$$O = \{O_1, O_2, O_3, \dots, O_T\}$$

$$O_i \in V$$

Three problems of HMM

1. Given $\lambda = (A, B, \pi)$ and a sequence of observations $O = O_1 O_2 ... O_T$. Compute the probability that λ generated a sequence of observations, $P(O | \lambda) = ?$

Forward procedure, backward procedure

2. Given observation sequence $O = O_1O_2...O_T$ and λ . What sequence of states $(Q = q_1q_2...q_t)$ best explains a sequence of observations

Forward-backward algorithm, Viterbi

3. How to estimate $\lambda = (A, B, \pi)$ so as to maximize $P(O | \lambda)$ $\lambda = (A, B, \pi)$?

Baum-Welch (Expectation maximization)

$$(A,B,\pi) = \underset{A,B,\pi}{\operatorname{argmax}} P(O | \lambda)$$

• Let's start by imagining all possible state sequences

$$Q = q_1, q_2, q_3, \dots, q_T$$

$$O = \{O_1, O_2, O_3, \dots, O_T\}$$
 $\lambda = (A, B, \pi)$

 Probability of seeing observations given those states is

$$P(O \mid Q, \lambda) = \prod_{t=1}^{I} P(O_t \mid q_t, \lambda)$$

$$P(O \mid Q, \lambda) = b_{q_1}(O_1) \cdot b_{q_2}(O_2) \cdot \cdot \cdot b_{q_T}(O_T)$$

Probability of seeing those state transitions is

$$P(Q \mid \lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \cdots a_{q_{T-1} q_T}$$

Probability of those seeing observations
 and those state transitions is

$$P(O, Q \mid \lambda) = P(O \mid Q, \lambda)P(Q \mid \lambda)$$

- But we want the probability of the observations
- regardless of the particular state sequence

$$P(O \mid \lambda) = \sum_{all \ Q} P(O \mid Q, \lambda) P(Q \mid \lambda)$$

$$P(O \mid \lambda) = \sum_{q_1, q_2, \dots, q_T} \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) a_{q_2 q_3} \cdots a_{q_{T-1} q_T} b_{q_T}(O_T)$$

Given O = H H G H G H

• Suppose sequence Q = S R R S R R

$$P(O|Q,\lambda) = b_S(H) \times b_R(H) \times b_R(G) \times b_S(H) \times b_R(G) \times b_R(H)$$

= 0.8 x 0.4 x 0.6 x 0.8 x 0.6 x 0.4

$$P(Q | \lambda) = \pi_S a_{SR} a_{RR} a_{RS} a_{SR} a_{RR}$$

= 0.2 x 0.2 x 0.6 x 0.4 x 0.2 x 0.6

• Suppose sequence Q = R S R S S R

$$P(O|Q,\lambda) = b_R(H) \times b_S(H) \times b_R(G) \times b_S(H) \times b_S(G) \times b_R(H)$$

= 0.4 x 0.8 x 0.6 x 0.8 x 0.2 x 0.4

$$P(Q | \lambda) = \pi_R a_{RS} a_{SR} a_{RS} a_{SS} a_{SR}$$

= 0.8 x 0.4 x 0.2 x 0.4 x 0.8 x 0.2

- => Each given path Q has a probability for O
- => Each given path Q has its own probability

$$b_s(H) = 0.8, b_s(G) = 0.2$$

$$b_{R}(H) = 0.4, b_{R}(G) = 0.6$$

	S	R
S	8.0	0.2
R	0.4	0.6

Therefore, total probability of O = H H G H G H

Sum over all possible paths Q: each Q with its own probability multiplied by the probability of O given Q

$$P(O \mid \lambda) = \sum_{all \ Q} P(O \mid Q, \lambda) P(Q \mid \lambda)$$

$$P(O \mid \lambda) = \sum_{q_1, q_2, \dots, q_T} \pi_{q_1} b_{q_1}(O_1) a_{q_1 q_2} b_{q_2}(O_2) a_{q_2 q_3} \cdots a_{q_{T-1} q_T} b_{q_T}(O_T)$$

- Calculating this directly is infeasible
- ullet How many state sequences are there? N^T
- ullet How many multiplications per state sequence? 2T-1
- Total number of operations?

$$(2T - 1)N^T + (N^T - 1)$$

N: the number of states; T observations

• T=100 and N=5, How many operations? $(2T-1)N^T + (N^T - 1)$

$$(2(100) - 1)5^{100} + (5^{100} - 1)$$

$$199 \cdot 5^{100} + 5^{100} - 1$$

$$200 \cdot 5^{100} - 1$$

$$\approx 5^{103}$$

$$\approx 10^{72}$$

Solution for Problem 1: Forward procedure

$$\alpha_t(i) = P(O_1, O_2, O_3, \dots, O_t, q_t = S_i \mid \lambda)$$

The joint probability $\alpha_{i}(i)$ is called **forward variable** at time point t and state s_{i}

 $\alpha_t(i)$ is the probability of seeing observations O_1 , O_2 , ..., O_t and then ending up in state s_i at time q_t given the model λ

 α helps to reduce time and the number of repeated calculations, because it only considers all possible state sequences up to time t, not considering all possible path Q

Solution for Problem 1: Forward procedure

- base case: $\alpha_1(i) = \pi_i b_i(O_1)$ $1 \le i \le N$
- inductive step:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij} \right] b_j(O_{t+1}) \qquad 1 \le t \le T - 1$$

$$1 \le j \le N$$

• final step:

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{t}(i)$$

$$O = H H G$$

$$\alpha_{1}(S) = \pi_{S}b_{S}(H) = 0.2 \times 0.8 = 0.16$$

$$\alpha_{1}(R) = \pi_{R}b_{R}(H) = 0.8 \times 0.4 = 0.32$$

$$\alpha_2(S) = (\alpha_1(S)a_{SS} + \alpha_1(R)a_{RS})b_S(H) = (0.16 \text{ x } 0.8 + 0.32 \text{ x } 0.4)\text{x } 0.8 = 0.2048$$

 $\alpha_2(R) = (\alpha_1(S)a_{SR} + \alpha_1(R)a_{RR})b_R(H) = (0.16 \text{ x } 0.2 + 0.32 \text{ x } 0.6)\text{x } 0.4 = 0.0896$

Solution for Problem 1: Forward procedure

- base case: $\alpha_1(i) = \pi_i b_i(O_1)$
 - $1 \le i \le N$

• inductive step:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i)a_{ij}\right] b_j(O_{t+1}) \quad 1 \le t \le T-1$$
 $1 \le j \le N$

• final step:

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_{i}(i)$$

Possible path Q:

S-S-S

S-S-R

S-R-R

S-R-S

R-R-R

R-S-S

R-S-R

R-R-S

O = H H G

$$\alpha_{_{3}}(S) = (0.2048 \text{ x } 0.8 + 0.0896 \text{ x } 0.4)\text{x } 0.2 = 0.039936$$

$$\alpha_{3}(R) = (0.2048 \times 0.2 + 0.0896 \times 0.6) \times 0.6 = 0.056832$$

$$P(O | \lambda) = \alpha_{3}(S) + \alpha_{3}(R) = 0.096768$$

Solution for Problem 1: Backward procedure

$$\beta_t(i) = P(O_{t+1}, O_{t+2}, \cdots O_T \mid q_t = Si, \lambda)$$

- base case: $\beta_T(i) = 1$ $1 \le i \le N$
- inductive step:

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$$

$$t = T - 1, T - 2, \dots, 1 \quad 1 \le i \le N$$

Final:

$$P(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i)$$

Both forward and backward could be used to solve problem 1, which should give identical results

Solution for Problem 1: Backward procedure

- base case: $\beta_T(i) = 1$ $1 \le i \le N$
- inductive step:

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$$

$$t = T - 1, T - 2, \dots, 1 \quad 1 \le i \le N$$

Final:

$$P(O|\lambda) = \sum_{i=1}^{N} \pi_i b_i(O_1) \beta_1(i)$$

$$\begin{split} \beta_{\text{T-1}}\left(S\right) &= a_{\text{SS}}b_{\text{S}}(G) \text{ x 1 + } a_{\text{SR}}b_{\text{R}}(G) \text{ x 1 = 0.8 x 0.2 + 0.2 x 0.6 = 0.28} \\ \beta_{\text{T-1}}\left(R\right) &= a_{\text{RS}}b_{\text{S}}(G) \text{ x 1 + } a_{\text{RR}}b_{\text{R}}(G) \text{ x 1 = 0.4 x 0.2 + 0.6 x 0.6 = 0.44} \\ \beta_{\text{T-2}}\left(S\right) &= a_{\text{SS}}b_{\text{S}}(H) \text{ x 0.28 + } a_{\text{SR}}b_{\text{R}}(H) \text{ x 0.44 = 0.2144} \\ \beta_{\text{T-2}}\left(R\right) &= a_{\text{RS}}b_{\text{S}}(H) \text{ x 0.28 + } a_{\text{RR}}b_{\text{R}}(H) \text{ x 0.44 = 0.1952} \\ P(O|\lambda) &= \sum_{i=1}^{N} \pi_{i}b_{i}(H)\beta_{1}(i) = 0.2*0.8*0.2144 + 0.8*0.4*0.1952 = 0.096768 \end{split}$$

Three problems of HMM

1. Given $\lambda = (A, B, \pi)$ and a sequence of observations $O = O_1 O_2 ... O_T$. Compute the probability that λ generated a sequence of observations, $P(O | \lambda) = ?$

Forward procedure, backward procedure

2. Given observation sequence $O = O_1O_2...O_T$ and λ . What sequence of states $(Q = q_1q_2...q_t)$ best explains a sequence of observations

Forward-backward algorithm, Viterbi

3. How to estimate $\lambda = (A, B, \pi)$ so as to maximize $P(O | \lambda)$ $\lambda = (A, B, \pi)$?

Baum-Welch (Expectation maximization)

$$(A,B,\pi) = \underset{A,B,\pi}{\operatorname{argmax}} P(O | \lambda)$$

- "Go through all possible Q and pick the one leading to maximizing the criterion $P(Q|Q,\lambda)$ "

$$Q = \operatorname{argmax}(P(Q|O,\lambda))$$

Impossible if the number of states and observations is huge.

forward-backward algorithm

 $\mathbf{v}_{\cdot}(\mathbf{i})$ is the probability in state i at time q given observations and model λ = the probability in a particular position given all the observations that had come before and all the observations that are coming after + model λ O = H H G H G H

γ_i(i) is also called individually optimal criterion

$$\gamma_t(i) = P(q_t = S_i \mid O, \lambda)$$

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(O \mid \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum\limits_{j=1}^{N} \alpha_t(j)\beta_t(j)}$$

Problem 2: Forward-Backward algorithm

 α_t (i) is the probability given regardless of the way that we got to state i at time t after seeing all observations up until time t

 $\beta_{t}\!(i)$ is the probability starting in state i and we will see all remainder of observations up until time T

- Run forward α and backward β separately
- Keep track of the scores at every point

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{P(O \mid \lambda)} = \frac{\alpha_t(i)\beta_t(i)}{\sum\limits_{j=1}^{N} \alpha_t(j)\beta_t(j)}$$

- Determining optimal state q_t of Q at time point t to maximizes γt (i) over all values s_i

$$q_t = \underset{1 \le i \le N}{argmax} [\gamma_t(i)], \quad 1 \le t \le T$$

$$α_1(R) = π_R b_R(H) = 0.8 \times 0.4 = 0.32$$
 $α_2(S) = 0.2048$
 $α_2(R) = 0.0896$
 $α_3(S) = 0.039936$
 $α_3(R) = 0.056832$

$$β_3(S/R) = 1$$
 $β_2(S) = a_{RS}b_S(G) \times 1 + a_{RR}b_R(G) \times 1 = 0.28$
 $β_2(R) = a_{RS}b_S(G) \times 1 + a_{RR}b_R(G) \times 1 = 0.44$
 $β_1(S) = a_{RS}b_S(H) \times 0.28 + a_{RR}b_R(H) \times 0.44 = 0.2144$
 $β_1(R) = a_{RS}b_S(H) \times 0.28 + a_{RR}b_R(H) \times 0.44 = 0.1952$

$$γ_1(S) = 0.354$$
 $γ_1(R) = 0.646$
 $γ_2(S) = 0.594$
 $γ_2(S) = 0.594$
 $γ_2(S) = 0.412$
 $γ_3(S) = 0.412$
 $γ_3(S) = 0.412$
 $γ_3(S) = 0.588$

Consider $γ$ in all states at every time t and choose the best one $γ_3(S) = 0.412$
 $γ_3(S) = 0.588$

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

O = H H G

 α_1 (S) = $\pi_S b_S$ (H) = 0.2 x 0.8 = 0.16

Problem 2: Forward-Backward algorithm

 γ choose states that are **individually** most likely. This will maximize the expected correct states at each time from $1 \rightarrow T$

However, HMM is a model that deals with **sequential data** (the current state affects the next result).

γ reflects that we solve each step **independently**

In some cases, the solution gets stuck. Eg:

From γ we have sequence Q = {0,1,2,0}

But there's no link from $2 \rightarrow 0$

- Choose the path that is most likely to give the observations
- **5**(i) is called joint optimal criterion at time point t
- Ψ_i(i) means "what state it comes from"
- Viterbi algorithm
- Initialization $\delta_1(i) = \pi_i b_i(O_1)$ $\psi_{1}(i) = 0$
- Inductive step

$$\delta_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i)a_{ij}] \cdot b_j(O_t) \qquad 2 \le t \le T$$

$$\psi_t(j) = \underset{1 \le i \le N}{argmax} [\delta_{t-1}(i)a_{ij}] \qquad 1 \le j \le N$$
Termination

Termination

Termination
$$P^* = \max_{1 \leq i \leq N} [\delta_T(i)]$$

$$q_T^* = \argmax_{1 \leq i \leq N} [\delta_T(i)]$$

$$q_t^* = \underset{1 \leq i \leq N}{argmax} [\delta_T(i)] \quad q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Path (state sequence) backtracking

$$q_t = \psi_{t+1}(q_{t+1}), t=T-1,T-2,...,1$$

$$O = H H G$$

initialization

$$\delta_1(S) = 0.2x0.8 = 0.16$$

$$\delta_1(R) = 0.8x0.4 = 0.32$$

$$\Psi_1(S) = \Psi_1(R) = 0$$

inductive step

```
\begin{split} \delta_{_{2}}(S) &= [\max_{i}(\delta_{_{1}}(S)a_{_{SS}}, \ \delta_{_{1}}(R)a_{_{RS}})]b_{_{S}}(H) = \max(0.128, 0.128)x0.8 = 0.1024 \\ \delta_{_{2}}(R) &= [\max_{i}(\delta_{_{1}}(S)a_{_{SR}}, \ \delta_{_{1}}(R)a_{_{RR}})]b_{_{R}}(H) = \max(0.032, 0.192)x0.4 = 0.0768 \\ \Psi_{_{2}}(S) &= \underset{i}{\operatorname{argmax}}[\delta_{_{1}}(S)a_{_{SS}}, \ \delta_{_{1}}(R)a_{_{RS}}] = \underset{i}{\operatorname{argmax}}(0.128, 0.128) \\ &=> i = \underset{i}{\operatorname{sunny/rainy}} \\ \Psi_{_{2}}(R) &= \underset{i}{\operatorname{argmax}}[\delta_{_{1}}(S)a_{_{SR}}, \ \delta_{_{1}}(R)a_{_{RR}}] = \underset{i}{\operatorname{argmax}}(0.032, 0.192) \\ &= \delta 1(R) => i = \underset{i}{\operatorname{rainy}} \end{split}
```



```
O = H H G
- inductive step
\delta_{3}(S) = [\max(\delta_{2}(S)a_{SS}, \delta_{2}(R)a_{RS})]b_{S}(G) = \max(0.082, 0.031)x0.2 = 0.0164
\delta_{3}(R) = [\max_{i}(\delta_{2}(S)a_{SR}, \delta_{2}(R)a_{RR})]b_{R}(G) = \max(0.02, 0.046)x0.6 = 0.0276
\Psi_{3}(S) = \underset{i}{\operatorname{argmax}}[\delta_{2}(S)a_{SS}, \delta_{2}(R)a_{RS}] = \underset{i}{\operatorname{argmax}}(0.082, 0.031)
= > i = \underset{i}{\operatorname{sunny}}
\Psi_{3}(R) = \underset{i}{\operatorname{argmax}}[\delta_{2}(S)a_{SR}, \delta_{2}(R)a_{RR}] = \underset{i}{\operatorname{argmax}}(0.02, 0.046)
= \delta_{2}(R) = > i = \underset{i}{\operatorname{rainy}}
```


$$O = H H G$$

Termination

According to state sequence backtracking of Viterbi algorithm

$$q_3 = \underset{i}{\operatorname{argmax}}[\delta_3(i)] = \underset{i}{\operatorname{argmax}}[\delta_3(S), \ \delta_3(R)] = \underset{i}{\operatorname{argmax}}[0.016, \ 0.028]$$

=> i= rainy

$$q_2 = \Psi_3(q_3 = R) = \Psi_3(R) = rainy$$

$$q_1 = \Psi_2(q_2 = R) = \Psi_2(R) = rainy$$

So $Q = \{R,R,R\}$ most likely to give O = HHG

Termination

$$P^* = \max_{1 \leq i \leq N} [\delta_T(i)]$$

$$q_T^* = \operatorname*{argmax}_{1 \leq i \leq N} [\delta_T(i)] \quad q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Step Ψ1		<u> </u>		
	Probability max (δ)	0.10		Probability max (δ)
State = S	0.16	0.16*0.2*0.4	State = S	0.1024
State = R	0.32	0.32*0.6*0.4	State = R	0.0768
		0.32 0.0 0.4		

The most likely ending state would be state = R, and the rest of the previous states could be back-traced through the arrows, which are state R at Ψ 1, state R at Ψ 2, and state R at Ψ 3 (R-R-R). The second likely path is R-S-S or S-S-S.

Three problems of HMM

1. Given $\lambda = (A, B, \pi)$ and a sequence of observations $O = O_1 O_2 ... O_T$. Compute the probability that λ generated a sequence of observations, $P(O | \lambda) = ?$

Forward procedure, backward procedure

2. Given observation sequence $O = O_1O_2...O_T$ and λ . What sequence of states $(Q = q_1q_2...q_t)$ best explains a sequence of observations

Forward-backward algorithm, Viterbi

3. How to estimate
$$\lambda = (A, B, \pi)$$
 so as to maximize $P(O | \lambda)$ $\lambda = (A, B, \pi)$?

Baum-Welch (Expectation maximization)

$$(A,B,\pi) = \underset{A,B,\pi}{\operatorname{argmax}} P(O | \lambda)$$

Adjust parameters such as initial state distribution π , transition probability matrix A, and observation probability matrix B so that given HMM λ gets more appropriate to an observation sequence $O = \{o_1, o_2, ..., o_T\}$

Note that λ is represented by these parameters (A,B, π)

$$(A,B,\pi) = \underset{A,B,\pi}{\operatorname{argmax}} P(O | \lambda)$$

The Expectation Maximization (EM) algorithm is applied successfully into solving problem 3, which is well-known as Baum-Welch algorithm.

The Expectation-Maximization (EM) algorithm is a general method of finding the maximum likelihood estimate of the parameters of an underlying distribution from a given data set when the data is incomplete or has missing values.

Supplementary Figure 1 Convergence of the EM algorithm. Starting from initial parameters $\theta^{(\varepsilon)}$, the E-step of the EM algorithm constructs a function g_{ε} that lower-bounds the objective function $\log P(x;\theta)$. In the M-step, $\theta^{(\varepsilon+1)}$ is computed as the maximum of g_{ε} . In the next E-step, a new lower-bound $g_{\varepsilon+1}$ is constructed; maximization of $g_{\varepsilon+1}$ in the next M-step gives $\theta^{(\varepsilon+2)}$, etc.

Computational Statistics in Python, Duke University

EM is **iterative** algorithm that **improves parameters** after iterations **until reaching optimal parameters**.

Each iteration includes two steps: \mathbf{E} (xpectation) step and \mathbf{M} (aximization) step.

In E-step, the missing data are estimated given the observed data and current estimate of the model parameters.

In M-step, the likelihood function is maximized under the assumption that the missing data are known. The estimate of the missing data from the E-step are used in lieu of the actual missing data.

 $\boldsymbol{\xi_t(i,j)}$ is the joint probability that at time t, the state is s_i and at time t+1, it is state s_j given observations O and model λ .

$$\xi_t(i,j) = P(q_t = S_i, q_{t+1} = S_j \mid O, \lambda)$$

 $\xi_t(i,j)$ captures two different states

 $\xi_t(i,j)$ is constructed from forward variable and backward variable

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(O_{t+1})\beta_{t+1}(j)}{P(O \mid \lambda)}$$

 $\xi_t(i,j)$ is related to $\gamma_t(i)$

$$\gamma_t(i) = \sum_{j=1}^{N} \xi_t(i,j)$$

$$\sum_{t=1}^{T-1} \gamma_t(i) = \text{expected number of transitions from } S_i$$

 $\sum_{t=1}^{T-1} \xi_t(i,j) = \text{expected number of transitions from } S_i \text{ to } S_j$

- So now...
 - We have an existing model, $\lambda = (A, B, \pi)$
 - We have a set of observations, O
 - We have a set of tools $\alpha_t(i), \beta_t(i), \gamma_t(i), \xi_t(i,j)$
- How do we use these to improve our model?

$$\bar{\lambda} = ?$$

 $\bar{a}_{ij} = \frac{\text{expected number of transitions from } S_i \text{ to } S_j}{\text{expected number of transitions from } S_i}$

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\bar{b}_j(k) = \frac{\text{expected number of times in state } j \text{ and observing } v_k}{\text{expected number of times in state } j}$$

$$\bar{b}_j(k) = \frac{\sum\limits_{t=1}^{t=1} \gamma_t(i)}{\sum\limits_{t=1}^{T} \gamma_t(i)}$$

$$\hat{\pi}_j = \frac{\gamma_1(j)}{\sum_{i=1}^n \gamma_1(i)}$$

Given
$$\lambda = (A, B, \pi)$$
 and O we can produce $\alpha_t(i), \beta_t(i), \gamma_t(i), \xi_t(i, j)$

Given $\alpha_t(i), \beta_t(i), \gamma_t(i), \xi_t(i,j)$ we can produce $\bar{\lambda} = (\bar{A}, \bar{B}, \bar{\pi})$

Problem 3: Baum-Welch algorithm

Starting with initial value for λ (a_{ij} , $b_{j}(k)$, π), each iteration in EM algorithm has two steps:

- 1. E-step: Calculating $\xi_t(i,j)$ and $\gamma_t(i)$ given the current parameters
- 2. M-step: Calculating the estimate $\bar{\lambda} = (\bar{a}_{ij}, \bar{b}_{j}(k), \bar{\pi})$ based on $\xi_t(i,j)$ and $\gamma_t(i)$ determined at E step.

 The estimate $\bar{\lambda}$ becomes the current parameter for next iteration

EM algorithm stops when it meets the terminating condition, for example, the difference of current parameter λ and next parameter λ is insignificant (convergence).

Problem 3: Baum-Welch algorithm

$$O = H H G$$

Assume that we have initial λ as described in the table and picture

At the first iteration (r=1) of E-step, we have:

$$\begin{array}{l} \alpha_{_1} \; (S) \; = \; \pi_{_S} b_{_S}(H) \; = \; 0.16 \\ \\ \alpha_{_1} \; (R) \; = \; \pi_{_R} b_{_R}(H) \; = \; 0.32 \\ \\ \alpha_{_2} \; (S) \; = \; (\alpha_{_1}(S) a_{_{SS}} \; + \; \alpha_{_1}(R) a_{_{RS}}) b_{_S}(H) \; = \; 0.2048 \\ \\ \alpha_{_2}(R) \; = \; (\alpha_{_1}(S) a_{_{SR}} \; + \; \alpha_{_1}(R) a_{_{RR}}) b_{_R}(H) \; = \; 0.0896 \\ \\ \alpha_{_3}(S) \; = \; (\alpha_{_2}(S) a_{_{SS}} \; + \; \alpha_{_2}(R) a_{_{RS}}) b_{_S}(G) \; = \; 0.039936 \\ \\ \alpha_{_3}(R) \; = \; (\alpha_{_2}(S) a_{_{SR}} \; + \; \alpha_{_2}(R) a_{_{RR}}) b_{_R}(G) \; = \; 0.056832 \end{array}$$

$$\beta_3$$
 (S/R) = 1
 β_2 (S) = $a_{SS}b_S(G)$ x 1 + $a_{SR}b_R(G)$ x 1 = 0.28
 β_2 (R) = $a_{RS}b_S(G)$ x 1 + $a_{RR}b_R(G)$ x 1 = 0.44
 β_1 (S) = $a_{SS}b_S(H)$ x 0.28 + $a_{SR}b_R(H)$ x 0.44 = 0.2144
 β_1 (R) = $a_{RS}b_S(H)$ x 0.28 + $a_{RR}b_R(H)$ x 0.44 = 0.1952

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(O_{t+1})\beta_{t+1}(j)}{P(O \mid \lambda)}$$

$$\xi$$
1 (S,S) = 0.2962963
 ξ 1 (S,R) = 0.05820106
 ξ 1 (R,S) = 0.2962963
 ξ 1 (R,R) = 0.34920634
 ξ 2 (S,S) = 0.338624
 ξ 2 (S,R) = 0.253875
 ξ 2 (R,S) = 0.074074
 ξ 2 (R,R) = 0.333427

$$b_s(H) = 0.8, b_s(G) = 0.2$$

$$b_{R}(H) = 0.4, b_{R}(G) = 0.6$$

	S	R
π	0.2	8.0
S	0.8	0.2
R	0.4	0.6

At the first iteration (r=1) of M-step:

$$a_{SS} = (0.028672 + 0.032768)/(0.034304 + 0.057344) = 0.6703911$$

 $a_{SS} = (0.005632 + 0.024576)/(0.034304 + 0.057344) = 0.3296089$

$$c_{SR} = (0.028672 + 0.024376)/(0.062464 + 0.039424) = 0.3517588$$

$$a_{RS} = (0.028672 + 0.007168)/(0.062464 + 0.039424) = 0.3517588$$

 $a_{RS} = (0.033792 + 0.032256)/(0.062464 + 0.039424) = 0.6482412$

$$b_sH = (0.034304 + 0.057344)/(0.034304 + 0.057344 + 0.039936) = 0.6964981$$

 $b_sG = 0.039936/(0.034304 + 0.057344 + 0.039936) = 0.3035019$

$$b_gG = 0.039936/(0.034304 + 0.057344 + 0.039936) = 0.3035019$$

 $b_gH = (0.062464 + 0.039424)/(0.062464 + 0.039424 + 0.056832) = 0.6419355$

$$b_RG = 0.056832/(0.062464 + 0.039424 + 0.056832) = 0.3580645$$

$$\pi_{\rm S}$$
 = 0.354/(0.354 + 0.646) = 0.354

$$\pi_{R} = 0.646/(0.354 + 0.646) = 0.646$$

$$\bar{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\bar{b}_j(k) = \frac{\sum_{t=1}^{T} \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}$$

$$\hat{\pi}_j = \frac{\gamma_1(j)}{\sum_{i=1}^n \gamma_1(i)}$$

E-step at r=2:

$$\alpha_1$$
 (S) = $\pi_S b_S(H)$ = 0.2469068

$$\alpha_{_{1}}(R) = \pi_{_{R}}b_{_{R}}(H) = 0.414371$$

$$\alpha_2$$
 (S) = $(\alpha_1(S)a_{SS} + \alpha_1(R)a_{RS})b_S(H) = 0.2168079$

$$\alpha_{2}(R) = (\alpha_{1}(S)a_{SR} + \alpha_{1}(R)a_{RR})b_{R}(H) = 0.2246742$$

$$\alpha_3(S) = (\alpha_2(S)a_{SS} + \alpha_2(R)a_{RS})b_S(G) = 0.06809891$$

$$\alpha_{3}(R) = (\alpha_{2}(S)a_{SR} + \alpha_{2}(R)a_{RR})b_{R}(G) = 0.07773755$$

 β_{s} (S/R) = 1

$$\beta 2$$
 (S) = $a_{ss}b_{s}(G) \times 1 + a_{sp}b_{p}(G) \times 1 = 0.3214862$

$$\beta 2$$
 (R) = $a_{pp}b_{p}(G) \times 1 + a_{pp}b_{p}(G) \times 1 = 0.3388716$

$$\beta$$
1 (S) = $a_{sg}b_{g}(H) \times 0.3214862 + a_{sg}b_{g}(H) \times 0.3388716 = 0.2218114$

$$\beta 1$$
 (R) = $a_{pp}b_{p}$ (H) x 0.3214862 + $a_{pp}b_{p}$ (H) x 0.3388716 = 0.2197782

γ1	(S)	=	0.21492184
γ1	(R)	=	0.78507816
γ2	(S)	=	0.42680338
γ2	(R)	=	0.57319662
γ3	(S)	=	0.45070115
γ3	(R)	=	0.54929885

	S	R
π	0.3544974	0.6455026
S	0.6703911	0.3296089
R	0.3517588	0.6482412

	Н	G
S	0.6964981	0.3035019
R	0.6419355	0.3580645

At the second iteration (r=2) of M-step:

 $a_{SS} = 0.64757753$ $a_{SR} = 0.35242247$

 $a_{RS} = 0.34009149$

 $a_{RR} = 0.65990851$

 $b_{S}H = 0.5874311$

 $b_sG = 0.4125689$

 $b_R H = 0.71204317$ $b_R G = 0.28795683$

R -

 $\pi_{S} = 0.21492184$ $\pi_{R} = 0.78507816$

At r = 25

At r = 26

BAUM-WELCH ALGORITHM

- There is no known way to solve for the globally optimal parameters of lambda
- We will search for a locally optimal result
 - A result that converges to a stable good answer but isn't guaranteed to be the best answer.

References

- https://www.youtube.com/watch?v=J_y5hx_ySCg&list=PLix7 MmR3doRo3NGNzrq48FItR3TDyuLCo
- https://liulab-dfci.github.io/bioinfo-combio/hmm.html
- Tutorial on Hidden Markov Model. Loc Nguyen (2016)
- https://medium.com/analytics-vidhya/viterbi-algorithm-for-prediction-with-hmm-part-3-of-the-hmm-series-6466ce2f5dc6