P-119-2012

노후설비의 관리에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 한국안전전문기관협의회 김 기 영
- O 제 · 개정 경과
 - 2012년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - 영국 HSE, "Managing Ageing Plant A Summary Guide", 2010
 - 영국 HSE Research Report RR823, "Plant Ageing Study Phase 1 Report", 2010
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 11월 29일

제 정 자: 한국산업안전보건공단 이사장

노후설비의 관리에 관한 기술지침

1. 목적

이 지침은 정유, 석유화학 및 화학공장에서 화학물질을 취급하는 설비의 노후화로 인한 화재 등의 사고를 예방하는데 필요한 사항을 제공하는데 그 목적이 있다.

2. 적용범위

이 지침은 정유, 석유화학 및 화학공장에서 화학물질을 취급하는 설비의 관리시에 적용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다
 - (가) "노후설비 (Ageing equipment)"라 함은 노후화된 설비를 말한다.
 - (나) "노후화"라 함은 그 설비의 사용기간을 말하는 것이 아니고, 그 설비를 사용한 기간 동안 재질의 열화, 부식, 마모 및 피로 등에 의하여 손상을 입은 상태를 말 한다.
 - (다) "스폴링 (Spalling)"이라 함은 표면 균열이나 개재물(介在物) 등이 있는 곳에 하 중이 가해져서 표면이 서서히 박리(剝離)하는 현상을 말하며, 표면은 요철(凹 凸)이 많은 거친 면이 되는 것이 특징이다
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

4. 관리하여야 할 노후설비

- (1) 관리하여야 할 노후설비를 분류하면 다음과 같다.
 - (가) 압력용기, 탱크 및 관련 배관 설비

<표 6> 노후설비의 종류별 상세항목

분류	상세 항목					
압력용기, 탱크	고정 설비 : 압력용기, 탱크, 배관 시스템 등					
및 관련 배관	회전 설비 : 펌프, 압축기, 터빈, 교반기, 송풍기 등					
	공정안전설비 :					
	① 안전밸브, 진공방지장치, 파열판, 벤트, 플레어 등 기계적 과압방지장치					
	② 오버풀로우, 비상배출장치 등 기계적인 과충전 방지장치					
	③ 접지, 설비밀폐 등 점화원 제어장치					
	④ 질소 밀봉 및 퍼징 등 불활성화 시스템					
	⑤ 히트 트레이싱, 냉각, 보온 등 보온 시스템					
	2·3차 확산 완화 시스템					
	① 이중 용기 및 이중 배관					
	② 방류제, 포장, 배수조					
	③ 배수 시스템					
	④ 누출물 처리 설비					
안전관련 설비	⑤ 비상저조					
	통제·완화 시스템					
	① 소화설비					
	② 화재경보설비					
	③ 비상연락 시스템					
	④ 확산방지도구					
	⑤ 비상등					
	⑥ 비상용 개인보호구					
	⑦ 비상용 구조장비					
	외부 위험 및 환경보호설비					
	① 홍수 방지 시스템					
	② 낙뢰 보호 시스템					
	트립, 경보, 공정 비상정지 시스템 등 안전계기 시스템					
전기 및 계장	화재감지, 가스누출감지 및 비상정지 시스템					
설비	비상전력공급 시스템, UPS시스템, 비상발전기 등 비상전원 시스템					
	CCTV 모니터링 시스템					
	설비지지 철 구조물					
구조물	설비 기초 구조물					
1	제어실, 사무실, 정비실 및 비상대피소 등 구축물					
	비상대피로 및 접근로					

P-119-2012

- (나) 안전관련 설비, 전기 및 계장 설비
- (다) 구조물
- (2) 노후설비의 종류별 상세항목은 <표 1>과 같다.

5. 노후화 메커니즘

- 5.1 설비 종류별로 영향을 주는 노후화 메커니즘
 - (1) 설비 종류별로 영향을 주는 노후화 메커니즘은 <표 2>와 같다.

<표 7> 설비 종류별 노후화 메커니즘

노후화 메커니즘	압력용기, 탱크 및 관련 배관	안전관련 설비	전기 및 계장 설비	구조물
부식	О	О	О	О
응력부식균열	О	О		О
마모	О	О	О	О
피로	О	О		О
취화(물러짐)	О		О	О
물리적 손상	О	О	О	О
스폴링				О
풍화(Weathering)				О
온도에 따른 팽창/수축	O	O	O	О
계기보정			0	
침하		0		О

(2) 노후화 및 부식에 관련된 자료는 다음을 참조한다.

M-69-2012 "압력용기의 잔여수명 평가에 관한 기술지침"

M-116-2012 "기기 및 배관의 부식관리 기술지침"

M-146-2012 "고령화 설비의 손상평가와 수명예측에 관한 기술지침" 등

P-119-2012

5.2 취급 유체에 따른 노후화 영향

- (1) 취급하는 유체와 사용하는 재질에 따라 설비의 노후화에 영향을 준다.
- (2) 설비의 노후화에 따른 영향은 <표 3>과 같다. 다만, 노후화는 온도, 압력, 농도, 유속, 유체 중의 산소량에 등에 영향을 많이 받으므로, <표 3>은 일반적인 가이드로 써 활용하여야 한다.

<표 8> 취급유체와 재질에 따른 노후화 영향

재질 유체	I	П	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII	X III
냉각수		중	하	하	하	하	하	하	중	하	하	하	중
공정수		상	중	샹	하	하	하	하	중	하	중	하	하
탈산소 수(Deaerated water)	중	하	하	하	하	하	하	하	하	하	중	하	하
바닷물		상	상	상	중	하	하	중	중	하	중	하	하
강산		상	상	상	중	중	하	상	상	중	상	상	중
약산		상	챵	햐	하	하	하	상	상	하	상	중	하
강 알카리		중	중	중	중	하	하	중	상	중	상	하	중
약 알카리		중	중	중	하	하	하	중	상	하	상	하	하
방향족 탄화수소		하	하	하	하	하	하	하	하	중	하	하	상
지방족 탄화수소		하	하	하	하	하	하	하	하	중	하	하	상
산성 가스		상	상	중	중	중	하	중	상	하	상	하	하
건조공기		하	하	하	하	하	하	하	하	하	하	하	하
습한 공기		중	중	하	하	하	하	하	중	하	하	하	하
수소		중	중	중	하	하	하	하	중	중	중	하	하
건조 알코올		하	하	하	하	하	하	하	하	중	하	하	중
유기아민(Organic amines)		중	중	하	하	하	하	중	중	하	중	하	중
염소가스		상	상	상	상	중	하	중	상	하	상	중	중
스팀		중	중	중	중	중	중	중	상	상	상	하	상

주) 1. 재질분류

I: 탄소강 Ⅲ: 13 Cr 강 Ⅲ: STS 304

IV: STS 316 V: 22 Cr 강(Duplex강) VI: 25% Cr 강(Super duplex 강)

VII: Hastelloy 625 VIII: Monel IX: Aluminium

X: GRE/GRP XI: Copper XII: Titanium

VII: Elastomers

P-119-2012

2. 영향분류

상 : 열화영향이 높음

중 : 열화영향이 중간임

하 : 열화영향이 낮음

5.3 부식

5.3.1 일반 사항

- (1) 부식은 금속의 표면에서 일어나는 화학반응에 의하여 금속을 물리적으로 열화시키는 현상을 말하며, 습식부식과 건식부식이 있다.
- (2) 습식부식은 부식의 일반적인 형태로 수분이 존재하는 환경에서 금속표면에서 발생한다.
- (3) 건식부식은 수분이 없는 환경에서 발생하는 것으로, 주로 400 °C 이상에서 일어나며, 금속과 산소가 금속표면에서 직접 화학반응을 일으킨다.

5.3.2 메커니즘

(1) 일반적인 부식

- (가) 일반적인 부식은 같은 조건에 노출된 금속의 전 표면에서 균일하게 일어나는 것으로, 두께를 측정하거나 금속시편의 중량 감소율을 측정하여 모니터링 한다.
- (나) 탄소강 및 저합금강에서 볼 수 있는 전형적인 부식이다.

(2) 국부 부식

- (가) 전체 금속표면 중에서 일정한 부위에서만 일어나는 특수 현상으로, 구조물을 빠른 속도로 열화시키며, 파손될 때 까지 감지하기가 어렵다.
- (나) 국부부식은 부식 저항성이 있는 합금강에서 주로 발생하지만, 특수한 환경에서 는 탄소강이나 저합금강에서도 일어난다.
- (다) 국부부식에는 다음과 같은 것들이 있다.
 - 가) 공식(Pitting corrosion): 공식은 금속표면의 아주 작은 부위에 집중적으로 일 어난 부식의 형태로, 배관 또는 용기의 대부분의 표면은 부식되지 않고, 아주

P-119-2012

작은 일정한 부위만 그 두께가 집중적으로 또한 빠른 속도로 감소되어 발생한 다.

- 나) 틈 부식(Crevice corrosion): 틈 부식은 공식과 같은 형태의 부식으로, 공식과 같은 환경조건에서 발생하며, 용액이 체류되어 있는 부위에 집중적으로 발생한다.
- 다) 전식(Galvanic corrosion): 전식은 이종 금속의 접합부에서 두 금속의 전위차에 의하여 주로 발생하며, 각 금속의 상대 표면적에 따라 전식이 매우 급속히 진행되고, 음극 금속의 표면적이 양극 금속의 표면적보다 훨씬 크면 음극 금속의 넓은 면적에서 양극 금속보다 매우 빠른 속도로 부식이 일어난다.

(3) 유속 관련 부식

- (가) 유속 관련 부식은 침식 부식(Erosion corrosion)이 대부분이며, 이는 빠른 유속 및 국부적인 난류 환경에서 일어나는 급속한 부식의 일종이다.
- (나) 부식에 의한 손상은 부식방지를 위한 보호막의 분리 및 부식방지제가 금속표면 으로 전위되는 속도의 상승에 따른 전단 응력에 의하여 증가한다.
- (다) 유체 내에 고형물이 있으면 침식은 증가한다.

(4) 기계적 손상

- (가) 진공부식(Cavitational corrosion)은 금속표면에 형성된 보호막이 손상되어 일어 나는 기계적인 손상의 일종으로, 진공거품(Cavitation bubbles)이 형성되면 금 속표면이 바로 붕괴되어 이 에너지에 의하여 금속조직이 손상을 입는다.
- (나) 진공현상은 다음 부위에서 주로 발생한다.
 - ① 펌프 흡입측 끝단
 - ② 밸브 또는 조정기(Regulator)의 토출측(특히, 거의 닫힌 상태에서 운전시)
 - ③ 배관의 엘보우 및 확장관 등과 같이 기하학적으로 흐름에 영향을 주는 부위
 - ④ 급격한 압력강하가 일어날 수 있는 갑자기 팽창하는 공정 부위

(5) 특수한 부식

- (가) 이산화탄소 부식(Sweet corrosion):
 - ① 이산화탄소가 물에 용해되면 탄산(Carbonic acid)을 만든다.

P-119-2012

- ② 이 부식은 금속 표면에 탄산 철(Iron carbonate) 막을 형성한다.
- ③ 80 ℃ 이상의 온도에서는 이 탄산 철 막이 높은 온도에서 예상되는 부식속도 보다 낮은 부식이 일어나도록 역할을 한다.
- ④ 이산화탄소 부식은 전형적으로 얇은 층의 공식을 일으킨다.

(나) 황화수소 부식(Sour corrosion)

- ① 물속에 용해된 황화수소는 황화수소 부식을 일으킨다.
- ② 이러한 부식은 황화철을 생성한다.
- ③ 물속에서 황화철의 낮은 용해도로 인하여 일반적인 부식에 견딜 수 있도록 금속표면에 검은 색의 막을 형성하지만 황화 철 막이 손상을 입으면 심각한 공식을 일으킨다.
- ④ 황화수소는 민감한 강에는 수소에 의한 손상을 일으킨다.
- ⑤ 황화 철 막에서 수소 원자가 발생되어 이 수소가 강 내부로 확산되어 수소 부 풀음(Hydrogen blister) 또는 황화물 응력부식균열(Sulfide stress corrosion cracking) 부식을 일으킨다.

(다) 세균 부식(Microbial corrosion)

- ① 세균 부식은 시스템 내에 있는 박테리아 주로 황화물 감소 박테리아(Sulfide reducing bacteria)에 의하여 발생한다.
- ② 이는 박테리아 자체에 의하여 금속이 손상되는 것이 아니고, 박테리아가 형성한 주위 환경에 의하여 부식이 발생한다.
- ③ 박테리아 부식은 주로 배관 내부에 물이 정체되어 있는 부위 및 탱크의 바닥에 주로 발생한다.
- ④ 박테리아 부식이 일어나기 위해서는 박테리아가 시스템 내부에서 생존할 수 있는 다음과 같은 조건이 이루어져야 가능하다.
 - ⑦ 시스템 내부에 박테리아 생명체의 존재
 - (나) 황화물 공급
 - 따 타소의 공급
 - 의 물의 공급
 - ® 혐기성 조건
 - 중성 pH
 - (사) 박테리아가 생존할 수 있는 온도 및 압력

P-119-2012

(라) 대기 부식

- ① 철 구조물이 대기 중에 있는 수분, 산소, 황화물, 질화물, 염소 등과 접촉하면 부식이 일어나는데, 이를 대기 부식이라 한다.
- ② 대기 부식은 습식 부식과 같은 메커니즘에 의하여 발생한다.
- ③ 대기 부식 속도에 영향을 주는 주요 인자는 수분의 양과 대기 중에 포함된 특수 화학물질의 농도로, 일반적으로 바닷가 및 환경오염이 심한 지역이 대기 부식 속도가 빠르다.

5.3.3 징후 및 증상

- (1) 부식은 설비의 내·외부에 눈으로 감지할 수 있는 부식 생성물(녹) 관련 정후가 나타나므로, 설비 노후화를 알려주는 확실한 증거 중에 하나이다.
- (2) 많은 재질 특히 탄소강 및 저합금강은 대기환경에서 부식되어 보다 안정화된 상태를 유지하려고 하는 성질을 가지고 있다. 즉, 금속상태의 강이 철광석 상태로 돌아가려고 한다.
- (3) 대부분의 설비는 설계단계에서 부식여유를 고려하여야 하므로, 부식속도 및 그에 대한 위험은 설비운전에 중요하게 고려하여야 하는 인자이다.

5.3.4 민감성(Susceptibility)

- (1) 모든 재질은 부식 및 부식균열에 대하여 민감하다.
- (2) 내부식성 합금 재질은 부식에 덜 민감하지만 부식자체가 일어나지 않는 것은 아니며, 이러한 재질은 금속 표면에 얇은 금속 산화물 막을 만들어 부식에 덜 민감한데, 이 금속 산화물 막이 손상되면 이 금속도 부식을 일으키게 된다.

5.3.5 부식 관리

- (1) 부식은 예방, 모니터링 및 제어할 수 있으며, 예방방법에는 코팅 및 음극방식 (Cathodic protection) 등이 있다.
- (2) 음극방식은 강제 전류를 사용하거나 아연 또는 알루미늄 금속편을 전기방식용 양 극으로 설치하여 부식을 예방하는 방법이다.
- (3) 코팅을 하는 경우에는 코팅 상태를 검사·확인할 수 있는 방법을 확보하여야 하며, 음극방식을 사용하는 경우에는 유지보수 및 모니터링이 되어야 한다.

P-119-2012

(4) 부식의 모니터링, 제어 및 관리는 다음 통해서 이룰 수 있다.

(가) 확인: RBI(Risk Based Inspection:위험도 기반 검사) 등을 활용한 위험 평가

(나) 감지: 적절한 검사기술 활용

(다) 정량화 : 설비의 잔여 두께 측정 등

(라) 평가 : 검사, 수선 및 수정 등을 통한 설비의 완벽성 확보 부식여유를 잔여두께와 비교하여 추가사용 여부 판정

5.4 응력부식균열(Stress corrosion cracking)

5.4.1 메커니즘

- (1) 염소응력부식균열(Chlorides stress corrosion cracking)
 - (가) 응력부식균열은 특수 환경에서 오스테나이트 스테인리스강에 발생한다. 특히, 염소가 존재하는 환경에서 주로 일어난다.
- (2) 수소유기균열(Hydrogen induced cracking)
 - (가) 수소유기균열은 황화수소가 존재하는 환경에서 주로 일어난다.
 - (나) 황화수소가 부식반응에 의하여 수소를 발생시키고, 이 수소가 강구조에 침투하여 조그만 공간을 만들고, 수소가스의 압력이 이러한 공간에 형성되어 균열을 일으킨다.
- (3) 부식피로(Corrosion fatigue)
 - (가) 부식피로는 부식 환경에서 균열이 커가는 속도를 증가시키는 현상이다.
 - (나) 피로를 일으키는 원인에는 진동, 설비의 열 변동에 따른 팽창 및 수축 등이 있다.

5.4.2 징후 및 증상

- (1) 응력부식균열은 비파괴검사(NDT) 장비를 사용하지 않고는 감지하기가 매우 어렵다.
- (2) 그러나 특수한 경우에는 응력부식균열의 징후를 쉽게 찾아낼 수도 있다. 그 예로,

P-119-2012

내부식성 합금의 용접 부위에서 공식이 이에 해당된다.

- (3) 응력부식균열은 개시 및 성장 두 단계로 진행되는데, 균열의 개시시간을 알아낼수 있는 적절한 방법도 없으며, 진행속도를 알아 예측할 수 있는 방법도 없으나, 진행속도는 매우 빠르다.
- (4) 일반적으로 응력부식균열은 계획된 설비의 검사계획에 의하여 발견된다.

5.4.3 민감성

(1) 강의 종류 및 환경에 따른 응력부식균열의 민감성은 <표 4>와 같다.

<표 9> 재질별 응력부식균열 민감성

재 질	환 경					
알루미늄 합 강	염소 용액					
마그네슘 합금강	염소 용액					
구리 합금강	암모니아+산소+물, 아민+산소+물, 질산 증기, 스팀					
탄소강 및 저합금강	질산염 용액, 가성소다 용액, 탄산염 용액, 알칸올아민+이산화탄소, 무수 암모니아+공기, 일산화탄소/이산화탄소+물, 시안화수소 용액					
오스테나이트 스테인레스 강 페라이트 스테인레스 강	염소/브롬 용액, 유기 염소/브롬+물, 가성소다 용액,					
Duplex 스테인레스 강	가정조다 공액, 황화수소 용액+염소/산화제					
니켈 합금강	가성소다 용액, 융합 가성소다, 염산, 황화수소 용액+염소/산화제					
티타늄 합금강	소금 수용액, 메탄올+할로겐, 사산화 질소					
지르코르늄 합금강	소금 수용액, 질산					
예민화 오스테나이트 스테인레스 강 (SUS 321/347)	물-산소(고온),염소 용액, 폴리치오닉산 용액, 황산					

(2) 응력부식균열은 온도, 환경의 조성, 인장응력(Tensile stress) 및 특수합금의 열처리 등에 영향을 받는다.

P-119-2012

5.4.4 관리

- (1) 응력부식균열은 재질, 인장응력 및 주위 환경에 민감하게 발생하므로, 응력부식균 열은 설계단계에서 적절한 재질을 하고, 잔류응력 수준을 제어하여야 예방할 수 있다.
- (2) 응력부식균열이 발견되면 적절히 보수하고, 또한 파손에 의한 영향을 가능한 한 최소화할 수 있는 조치를 하여야 한다.

5.5 침식(Erosion)

5.5.1 메커니즘

- (1) 침식은 마모에 의하여 금속표면이 긁혀 나가는 현상으로, 단단한 물체에 의하여 금속 표면이 깎여 나가는 것이다.
- (2) 침식은 전기화학적인 반응에 의하여 발생하지 않으므로, 부식과는 근본적으로 다르다.
- (3) 침식은 재질과 부딪치는 입자의 경도에 따라 다르며, 부딪치는 속도 및 각도에 영향을 받는다.
- (4) 침식은 고체 및 슬러리를 이송시키는 시스템에서 주로 발생하며, 또한 스팀의 응 축물과 같은 액체 입자와 충돌하여 생기기도 한다.

5.5.2 징후 및 증상

(1) 설비의 특수한 부위에서 침식에 의하여 설비의 두께가 감소되어 파손이 일어난다. 5.5.3 민감성

- (1) 모든 재질은 딱딱한 입자와 부딪치면 침식이 일어날 수 있다.
- (2) 침식은 주로 배관의 굴곡부위, 쵸크 밸브 등과 같이 흐름의 방향이 바뀌거나 유속이 변하는 부위에서 발생한다.

5.5.4 관리

(1) 침식 관리는 부식과 같은 방법으로 한다.

5.6 기타 특수 주제

5.6.1 보온하 부식(Corrosion under insulation)

- (1) 일반 사항
 - (가) 배관 및 용기의 외부에 코팅을 하지 않고 보온을 하면 일반적으로 알고 있는 것 보다 훨씬 심각하게 부식이 일어난다.
 - (나) 이러한 보온하 부식이 발생하는 이유는 여러 가지가 있다.
 - ① 설비의 외부 금속표면과 보온재 사이로 수분의 침투
 - ② 보온재 자체가 수분 흡수
 - ③ 보온재에 부식 속도를 증가시킬 수 있는 이물질 포함
 - ④ 부식에 의하여 생기는 증후를 보온재에 의하여 가려져 발견하기 어려움
 - (다) 설비 표면과 보온재 사이에 수분이 생기는 이유는 다음과 같다.
 - ① 공기 중에 함유된 수분이 온도차에 의하여 응축
 - ② 빗물, 냉각수 등이 유입
 - ③ 저온 설비 표면에 수분 응축
 - (라) 보온재 외부에 수분유입방지조치(Weatherproofing)를 하면 이러한 물의 유입을 막을 수는 있으나 완벽하게 차단할 수는 없어 보온하 부식이 일어난다.
- (2) 보온하 부식의 형태
 - (가) 보온재 하부로 침투한 물이 코팅되지 않은 탄소강 및 저합금강 재질의 설비 표면에 부식을 일으킨다.
 - (나) 부식 정도는 코팅의 상태에 많은 영향을 받는다.
 - (다) 스테인레스 강의 경우에는 유입된 물 및 보온재가 염소에 오염된 경우에 발생한다.
 - (라) 또한 스테인레스 강은 응력부식균열 및 부식피로가 보온된 부위에서 일어난다.
- (3) 보온된 설비의 검사

P-119-2012

- (가) 보온된 설비의 외부 표면을 검사하는 것은 보온재를 완전히 제거하여야 하기 때문에 어려움이 있다.
- (나) 보온 부위의 검사는 물이 스며든 흔적이 있는 특수한 부위를 대하여 실시한다.
- (다) 눈으로 확인하여 문이 침투한 흔적을 발견하지 못한 경우에는 다음과 같은 부 위에 대하여 중점적으로 검사를 실시한다.
 - ① 주기적으로 온도가 올라갔다 내려갔다 하는 설비 및 배관
 - ② 저온 설비 및 배관
 - ③ 고온 설비와 저온 설비가 연결된 부위
 - ④ 수평 배관 중에 확장되거나 연결된 부위

(4) 검사기술

- (가) 보온재를 제거 후 검사
 - ① 대부분 검사 부위는 보온재를 벗긴 후 검사하여야 하며 다음의 방법을 이용한다.
 - ⑦ 수분이 침투되어 축축할 것으로 예상되는 부위, 코팅이 손상되거나 녹이 쓴 부위의 외관 검사
 - ① 일반적인 부식으로 인하여 두께의 감소가 예상되는 부위에 대한 초음파 두께 측정
 - ① 일반적인 부식이 발생되지 않을 것으로 예상되는 스테인레스 강인 경우에는 공식 또는 틈 부식이 예상되는 특수한 부위에 대한 외관 검사 및 염료침투 시험
 - ② 보온재를 한정된 부위만 제거하고 검사하는 경우에는 두 가지 문제가 발생할 수 있다.
 - ② 보온재를 제거한 부위에 대한 수분유입방지조치 기능의 상실
 - (나) 이 부위에서 차후에 물이 침투할 가능성의 증가
- (나) 보온재를 제거하지 않은 상태로 검사
 - ① 한정된 부위만 보온재를 제거하고 검사하는 경우에 검사하지 않은 부위에서의 부식에 의한 위험이 있으므로, 이에 대비도 하여야 한다.
 - ② 이러한 검사방법은 다음과 같은 방법이 있다.
 - ⑦ 방사선 촬영(Flash radiography)

P-119-2012

- (소음파 탐상(Guided wave ultrasonic)
- 때 프로화일 방사선 촬영(Profile radiography)

5.6.2 회전 기계

- (1) 회전 기계의 부식도 고정설비의 부식과 거의 동일한 원리이다.
- (2) 그러나 회전 기계는 동적 특성에 의하여 열화 속도가 빨라질 수 있다. 그 예로, 다음과 같은 것들이 있다.
 - ① 임펠러에 고형물의 부착
 - ② 터빈의 과속방지장치의 부식 및 이물질 부착
 - ③ 회전체의 진동 등

5.6.3 가열로

가열로 튜브는 고온에 의한 산화 및 크리프(High temperature oxidation and creep) 현상이 발생하며 또한 온도 변화에 의한 피로현상이 심하게 나타난다.

5.6.4 비금속 재질

비금속 재질로 제작된 설비는 그 성분에 따라 물리적인 노후화, 기계적인 노후화 및 화학적인 노후화가 일어난다.

5.6.5 콘크리트 구조물

콘크리트 구조물 특히 강화(Reinforced) 콘크리트 구조물도 다른 재질과 같은 노후 화가 일어난다.

5.6.6 지하 배관

- (1) 지하 배관도 필요한 조치를 하지 않으면 배관 외부에 부식이 심하게 일어나며, 그 재질의 성분과 지질에 따라 상이하다.
- (2) 이러한 부식을 방지하기 위하여 외부에 코팅을 하거나 음극 방식을 이용한다.
- (3) 음극 방식을 이용하는 경우에는 배관에 대하여 전위차를 주기적으로 모니터링하여야 한다.

6. 노후화 설비 관리

- 6.1 안전보건관리시스템
 - (1) 사업장의 안전보건관리시스템에 설비의 노후화 관리에 대한 사항이 포함되도록 문서화하여야 한다.
 - (2) 안전보건관리시스템에 노후화 관리를 위하여 포함시켜야 할 사항은 다음과 같다.
 - (가) 유지보수관리 시스템
 - (나) 재산관리 및 완벽성 확보 방안
 - (다) 검사 및 자체감사 시스템
 - (라) 위험 평가 시스템
 - (마) 변경관리절차
 - (바) 작업허가절차
 - (사) 책임과 의사소통 시스템
 - (아) 교육 및 제3자 검증 시스템

6.2 평가지표

- (1) 평가지표에는 선행지표와 후행지표가 있다.
- (2) 선행지표(Leading indicators)에는 다음과 같은 사항이 포함되어야 한다.
 - (가) 계획된 검사 횟수
 - (나) 자체감사 횟수 및 주기
 - (다) 설비 및 부품의 교체 계획
 - (라) 계획된 비상대응훈련 횟수
 - (마) 필수 안전설비의 시험 횟수

P-119-2012

- (바) 관련된 인력의 교육훈련계획
- (사) 관련 절차서의 검토 주기 등
- (3) 후행지표(Lagging indicators)에는 다음 사항이 포함되어야 한다.
 - (가) 설비의 주요 실패 회수
 - (나) 위험물의 제어되는 않은 누출 횟수
 - (다) 보수작업 중 재 작업한 횟수
 - (라) 감사 및 검사 이행 사항의 미 이행 수
 - (마) 시험 중에 경보 및 계기 실패 횟수
 - (바) 허가된 작업 중에 발생한 사고 건수
 - (사) 작업자 실수에 의한 사고 건수 등

7. 전기 및 제어 시스템(E&CI)에 대한 특수 지침

7.1 일반 사항

- (1) 전기 및 제어 시스템은 노후화 관리를 다른 설비보다 높은 수준에서 실시하여야 한다.
- (2) 특히, 비상정지, 트립, 경보 시스템은 보다 높은 수준으로 노후화 관리를 하여야 하고, 이러한 시스템은 SIL, HAZID, HAZOP 평가 등을 활용하여 평가한다.
- (3) 전기 및 제어 시스템도 기계 설비와 같은 열화 메커니즘이 적용된다. 그러나 E&CI에는 특수한 열화 메커니즘이 있다.
- (4) 열화 메커니즘에는 다음과 같은 것이 있다.
 - (가) 충격 손상 또는 표면 마모
 - (나) 과열/화염에 의한 손상
 - (다) 폐색(Blockage)

P-119-2012

- (라) 오염 및 중독(Fouling and poisoning)
- (마) 주석 위스커(Tin whiskers)
- (바) 계기 오차(Instrument drift) 등
- 7.2 전기 및 제어 시스템의 노후화
- 7.2.1 전기 및 계기 시스템의 수명주기(Life cycle)
 - (1) 디지털(Digital) 시스템은 일반 기계설비보다 수명이 짧다.
- (2) 전기 및 계기 시스템은 원 공급자의 권고에 따라 관리하면 수명을 연장할 수 있다. 7.2.2 케이불의 노후화
 - (1) 케이불의 노후화는 케이불의 종류, 절연 형식, 기계적 손상 및 열에 의한 손상, 습도 등에 많은 영향을 받는다.
 - (2) 관리를 잘하면 실외에 설치된 케이불은 20년, 실내에 설치된 케이불은 30년 이상 사용할 수 있다.
- 7.2.3 고전압 설비의 기대 수명
 - (1) 고전압 설비의 고장은 갑자기 일어나며, 중대한 사고를 일으킨다.
 - (2) 고전압 설비의 기대 수명은 다음과 같다.
 - (가) 변압기(132 kV): 30 ~ 40 년
 - (나) 스윗치기어(Switchgear) : 30 ~ 60 년
 - (3) 이러한 수명은 다음에 의하여 많은 영향을 받는다.
 - (가) 환경적 요인
 - (나) 유지보수 수준
 - (다) 물리적인 손상 여부

P-119-2012

7.3 전기 및 제어 시스템의 유지보수 관리

7.3.1 유지보수 계획

- (1) 전기 및 제어 시스템의 노후화 관리에서 가장 중요한 것은 유지보수 계획이다.
- (2) 유지보수 계획 시에는 다음 사항을 신중히 고려하여야 한다.
 - (가) 실행 기준
 - (나) 보수, 검사 및 시험 계획
- (3) 시험 계획에는 안전 관련 기능 시험이 포함되어야 하며, 어떠한 경우에도 시험에 서 나타나지 않는 고장이 있어서는 안 된다.

7.3.2 구매

구매 시에는 다음 사항을 필히 고려하여야 한다.

- (1) 적절한 예비품의 확보
- (2) 장기간의 제작자의 지원 확보
- (3) 예비품이 공급되지 않을 때의 위험 등

7.4 노후화 평가지표

전기 및 제어 시스템의 평가지표는 영국 산업안전보건청(HSE)의 지침 HSG 254 등을 참조한다.