TRIDONIC

IP20 SELV ♥ 🛭 💩 C € 🐒 ROHS

TALEX/converter LCBI 15 W 350/500/700 mA BASIC phase-cut SR Baureihe BASIC

Produktbeschreibung

- Dimmbar mittels Phasenan- und Phasenabschnittsdimmer
- Nominale Lebensdauer bis zu 50.000 h (bei ta max. 50 °C und einer Fehlerrate von max. 0,2 % pro 1.000 h)
- 350, 500 oder 700 mA Ausgangsstrom
- Schraubklemmen
- Anschlusskabel, Leitungsquerschnitt 0,5 − 2,5 mm²
- Ausgangsleistung 14/15 W
- SELV
- Schutzart IP20
- Ausgang wird analog gedimmt (Stromamplitude)
- Dimmbereich typ. 5 − 100 % (abhängig vom Dimmer)

Eigenschaften

- Gehäuse: Polycarbonat weiß
- Kompakte Abmessungen
- Überlastschutz
- Kurzschlussschutz
- Leerlaufschutz

Technische Daten

Netzspannungsbereich	220 – 240 V
Eingangsspannungsbereich AC	198 – 264 V
Netzfrequenz	50 / 60 Hz
Typ. Nennstrom (bei 230 V, 50 Hz, Volllast)	0,09 A
Leistungsfaktor bei Volllast®	0,99
Leistungsfaktor bei min. Last®	0,97
Ausgangsstromtoleranz bei Volllast ²³	± 7,5 %
Typischer Rippelstrom bei Volllast	± 30 %
Einschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,1 s
Abschaltzeit (bei 230 V, 50 Hz, Volllast)	≤ 0,1 s
Haltezeit bei Netzunterbrechung (Ausgang)	0 s
Umgebungstemperatur ta	-25 +50 °C
Lagertemperatur ts	-40 +85 °C
Abmessung L x B x H	102 x 51 x 30 mm

Bestelldaten

Тур	Artikelnummer	Verpackung Karton	Verpackung Palette	Gewicht pro Stk.
LCBI 15W 350mA BASIC phase-cut SR	89800266	20 Stk.	1.000 Stk.	0,075 kg
LCBI 15W 500mA BASIC phase-cut SR	89800267	20 Stk.	1.000 Stk.	0,075 kg
LCBI 14W 700mA BASIC phase-cut SR	89800268	20 Stk.	1.000 Stk.	0,075 kg

Normen, Seite 2

Anschlussdiagramme und Installationsbeispiele, Seite 2

Spezifische technische Daten

Тур	Wirkungs-	Wirkungs-	Aus-	Max. Ausgangs-	Max. Ausgangs-	Max. Ausgangs-	Max. Ausgangs-	Max.	Min.	Max.	Max.	Max.
	grad bei	grad bei	gangs-	dauerspitzenstrom	dauerspitzenstrom	stoßstrom bei	stoßstrom bei	Vorwärts-	Vorwärts-	Ausgangs-	Eingangs-	Ausgangs-
	Volllast [⊕]	min. Last®	strom	bei Volllast ^{⊕®}	bei min. Last ^{⊕®}	Volllast [®]	min. Last®	spannung®	spannung [®]	spannung [®]	leistung	leistung
LCBI 15W 350mA BASIC phase-cut SR	78 %	76 %	350 mA	540 mA	760 mA	540 mA	760 mA	42,0 V	21,0 V	51 V	19 W	15 W
LCBI 15W 500mA BASIC phase-cut SR	77 %	75 %	500 mA	780 mA	1.030 mA	780 mA	1.030 mA	30,0 V	13,5 V	34 V	20 W	15 W
LCBI 14W 700mA BASIC phase-cut SR	76 %	74 %	700 mA	1.240 mA	1.580 mA	1.240 mA	1.580 mA	20,0 V	10,0 V	24 V	19 W	14 W

Testwert bei 230 V, 50 Hz.

[®] Verlauf zwischen min. Last und Volllast linear.

[®] Ausgangsstromtoleranz bei min. Last max. 22 %.

Im Fehlermodus.

Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

Überlastschutz

Bei Überschreitung des Ausgangsspannungsbereiches wird der LED-Ausgangsstrom reduziert. Nach Behebung der Überlast erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Kurzschluss

Bei Kurzschluß am LED Ausgang schaltet das LED-Betriebsgerät in den hic-cup-Modus. Nach Behebung des Kurzschlußes erfolgt automatische Rückkehr in den nominalen Betrieb.

Verhalten bei Leerlauf

Das LED-Betriebsgerät arbeitet mit Konstantstrom. Im Leerlauf liegt am Ausgang die maximale Ausgangsspannung an (siehe Seite 1).

Installationshinweis

Beachten Sie hierzu die Vorgaben aus dem Dokument LED_Betriebsgeraete_Installationshinweis.pdf (http://www.tridonic.com/com/de/technische-doku.asp).

Hot-Plug-In oder sekundäres Schalten der LEDs ist nicht erlaubt und kann zu sehr hohem Strom in den LEDs führen.

Erwartete Lebensdauer

Тур	ta	40 °C	45 °C	50 °C	60 °C
LCBI 15W 350mA BASIC phase-cut SR	tc	75 °C	80 °C	85 °C	Х
LODI 13W 330IIIA DASIC PIIASE-CUI Sh	Lebensdauer	100.000 h	70.000 h	50.000 h	Х
LCBI 15W 500mA BASIC phase-cut SR	tc	75 °C	80 °C	85 °C	X
LODI 13W 300IIIA DASIC PIIASE-CUI Sh	Lebensdauer	100.000 h	70.000 h	50.000 h	Х
LCBI 14W 700mA BASIC phase-cut SR	tc	75 °C	80 °C	85 °C	х
LODI 14W 700IIIA DASIO pilase-cut Sh	Lebensdauer	100.000 h	70.000 h	50.000 h	х

Maximale Belastung von Leitungsschutzautomaten

Sicherungsautomat	C10	C13	C16	C20	B10	B13	B16	B20	Einsc	chaltstrom
Installation Ø	1,5 mm ²	1,5 mm²	1,5 mm ²	2,5 mm ²	1,5 mm²	1,5 mm ²	1,5 mm ²	$2,5\mathrm{mm}^2$	Imax	Pulsdauer
LCBI 15W 350mA BASIC phase-cut SR	50	65	80	100	50	65	80	100	1,7 A	40 μs
LCBI 15W 500mA BASIC phase-cut SR	50	65	80	100	50	65	80	100	1,7 A	40 µs
LCBI 14W 700mA BASIC phase-cut SR	50	65	80	100	50	65	80	100	1,7 A	40 µs

Anschlussdiagramm

Glühdrahttest

nach EN 60598-1 mit erhöhter Temperatur von 850 °C bestanden.

Leitungsart und Leitungsquerschnitt

Zur Verdrahtung können Litzendraht oder Volldraht verwendet werden. Für perfekte Funktion der Käfigzugbügelklemmen müssen die Eingangsleitungen $4-5\,\mathrm{mm}$ abisoliert werden.

Das max. Drehmoment an der Klemmschraube (M3) liegt bei 0,2 Nm.

Eingangsklemme (D2)

Ausgangsklemme (D1)

Um eine gut funktionierende Zugentlastung zu erreichen, schlagen wir vor den Durchmesser des Kabelmantels der Seite D2 im Verhältnis zur Seite D1 gemäß der folgenden Tabelle zu wählen. (Dieser Wert kann variieren wenn das verwendete Kabelmantelmaterial von Seite D2 und D1 ein unterschiedliches Quetschverhalten aufweist).

Folgende Tabelle zeigt die Verwendung der Laschen der Zugentlastung in Bezug auf die Kabelmanteldurchmesserdifferenz zwischen Seite D2 und D1:

Sei	te D1	Se	ite D2	Differenz D2 - D1
Mit Lasche	Ohne Lasche	Mit Lasche	Ohne Lasche	Dilleteliz DZ - DT
Х	_	_	Х	4 mm
_	Χ	_	Х	2 mm
Х	_	Х	_	2 mm
_	Х	Х	-	0 mm

Verdrahtungsrichtlinien

Die sekundären Leitungen sollten für ein gutes EMV-Verhalten getrennt von den Netz- Anschlüssen und -Leitungen geführt werden.

Die maximale Leitungslänge an den sekundären Klemmen ist 2 m. Für ein gutes EMV-Verhalten sollte die LED-Verdrahtung so kurz wie möglich gehalten werden.

Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 $V_{\,DC}$ während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Nullleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens $2\,\mathrm{M}\Omega$ betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V $_{\rm AC}$ (oder 1,414 x 1500 V $_{\rm DC}$). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

Zusätzliche Informationen

weitere technische Informationen auf $\underline{www.tridonic.com} \rightarrow \mathsf{Technische}$ Daten

Garantiebedingungen auf <u>www.tridonic.com</u> → Services Keine Garantie wenn das Gerät geöffnet wurde!