The Explore-Then-Commit Strategy for Multi-arm Bandits COMP 767

Pascale Gourdeau

Material from:

http://banditalgs.com/2016/09/14/first-steps-explore-then-commit/

January 13th, 2017

The Strategy

The Explore-Then-Commit (ETC) strategy is very simple:

- First suppose we stop after *n* steps.
- Explore for a fixed time (each action is selected m times).
- Exploit for the rest of the time (choose one action and stick with it).

Goal: Present how to carry out regret analysis.

Notation and Definitions

Notation

```
n — # of steps/rounds 

m — # of steps for which any action is explored 

R_t — reward at time t 

q_*(a) — expected reward of action a 

Q_t(a) — estimated value of action a at time t
```

Definitions

$$\Delta_a = \max_b q_*(b) - q_*(a)$$
: immediate regret of action a
 $J_n = \sum_{t=1}^n \mathbb{E} [\Delta_{A_t}]$: expected regret
 $R_t - \mathbb{E} [R_t]$: noise for reward

The Theorem

Theorem

Assume that the noise of the reward of each arm in a k-armed stochastic bandit problem is 1-subgaussian. Then, after $n \ge mk$ rounds, the expected regret J_n of ETC which explores each arm exactly m times before committing is bounded as follows:

$$J_n \le m \sum_{a=1}^k \Delta_a + (n - mk) \sum_{a=1}^k \Delta_a \exp\left(-\frac{m\Delta_a^2}{4}\right)$$
 (1)

Subgaussian Random Variables

Definition

A random variable X is σ^2 -subgaussian if for all $\lambda \in \mathbb{R}$

$$\mathbb{E}\left[e^{\lambda X}\right] \leq \exp\left(\frac{\lambda^2 \sigma^2}{2}\right) .$$

Lemma

Suppose that X is σ^2 -subgaussian and X_1 and X_2 are independent and σ_1^2 - and σ_2^2 -subgaussian respectively. Then

- 1. $\mathbb{E}[X] = 0$ and $Var(X) \leq \sigma^2$.
- 2. For all $c \in \mathbb{R}$, cX is $c^2\sigma^2$ -subgaussian.
- 3. $X_1 + X_2$ is $(\sigma_1^2 + \sigma_2^2)$ -subgaussian.

Proof of Lemma

1. $\mathbb{E}[X] = 0$ and $Var(X) \leq \sigma^2$:

First note that by using Taylor series:

$$\mathbb{E}\left[e^{\lambda X}\right] = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}\left[X^n\right] \tag{2}$$

And since X is σ^2 -subgaussian:

$$\mathbb{E}\left[e^{\lambda X}\right] \le \exp\left(\frac{\lambda^2 \sigma^2}{2}\right) = \sum_{n=0}^{\infty} \frac{(\lambda \sigma)^{2n}}{2^n n!} \tag{3}$$

Putting (2) and (3) together, and noting that the first term on each side of the sum is 1:

$$\sum_{n=1}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}\left[X^n\right] \le \sum_{n=1}^{\infty} \frac{(\lambda \sigma)^{2n}}{2^n n!} \tag{4}$$

Proof of Lemma Cont'd

$$\sum_{n=1}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}\left[X^n\right] \leq \sum_{n=1}^{\infty} \frac{(\lambda \sigma)^{2n}}{2^n n!}$$

Now, since the above inequality is true for all $\lambda \in \mathbb{R}$, we only keep the terms for n=1 and n=2 on the LHS and let $\lambda > 0$, $\lambda \to 0$:

$$\lambda \mathbb{E}[X] + \frac{\lambda^2}{2} \mathbb{E}[X^2] \le \frac{\sigma^2 \lambda^2}{2} + o(\lambda^2) \implies \mathbb{E}[X] \le 0$$
.

Similarly, letting $\lambda < 0$ and $\lambda \to 0$, we get $\mathbb{E}[X] \ge 0$, so $\mathbb{E}[X] = 0$. Then, again letting $\lambda \to 0$:

$$\frac{\lambda^2}{2}\mathbb{E}\left[X^2\right] \leq \frac{\sigma^2\lambda^2}{2} + o(\lambda^2) \implies \mathsf{Var}\left(X\right) \leq \mathbb{E}\left[X^2\right] \leq \sigma^2 \ .$$

Proof of Lemma Cont'd

2. For all $c \in \mathbb{R}$, cX is $c^2\sigma^2$ -subgaussian: $c\lambda \in \mathbb{R}$, so it follows by definition that

$$\mathbb{E}\left[e^{(\lambda c)X}\right] \le \exp\left(\frac{\lambda^2 c^2 \sigma^2}{2}\right) .$$

3. $X_1 + X_2$ is $(\sigma_1^2 + \sigma_2^2)$ -subgaussian: by independence,

$$\mathbb{E}\left[e^{\lambda(X_1+X_2)}\right] = \mathbb{E}\left[e^{\lambda X_1}\right] \mathbb{E}\left[e^{\lambda X_2}\right] \leq \exp\left(\frac{\lambda^2 \sigma_1^2}{2}\right) \exp\left(\frac{\lambda^2 \sigma_2^2}{2}\right) .$$

Concentration Inequality

Theorem

If X is
$$\sigma^2$$
-subgaussian, then $\mathbb{P}(X \geq \epsilon) \leq \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$.

Proof.

By Markov's inequality and subgaussianity:

$$\mathbb{P}(X \ge \epsilon) = \mathbb{P}\left(e^{\lambda X} \ge e^{\lambda \epsilon}\right)$$

$$\le \frac{\mathbb{E}\left[e^{\lambda X}\right]}{e^{\lambda \epsilon}}$$

$$\le \exp\left(\frac{\lambda^2 \sigma^2}{2} - \lambda \epsilon\right)$$

Since this relationship holds for all $\lambda \in \mathbb{R}$, we minimize the above w.r.t. λ and get $\lambda = \frac{\epsilon}{\sigma^2}$ and the result follows.

Concentration Inequality

Corollary (Hoeffding's Bound)

Let $X_1, ..., X_n$ be independent random variables with $\mathbb{E}[X_i] = \mu$. If $X_i - \mu$ are σ^2 -subgaussian, then their sample mean $\hat{\mu}$ satisfies the following:

$$\mathbb{P}\left(\hat{\mu} - \mu \ge \epsilon\right) \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right); \quad \mathbb{P}\left(\hat{\mu} - \mu \le -\epsilon\right) \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right) .$$

Proof.

This is a direct consquence of the fact that $\hat{\mu} - \mu$ is $\frac{\sigma^2}{n}$ -subgaussian.

Why use this concentration inequality?

- ▶ We are interested in how far the sample mean is from the real mean (to estimate the average reward of each action), namely the tail probabilities.
- Chebyshev's inequality is too loose.
- CLT concerns the asymptotic behaviour of the estimate, and so it is not suitable for studying regret when we are limited to a finite amount of actions.

The Theorem

Theorem

Assume that the noise of the reward of each arm in a k-armed stochastic bandit problem is 1-subgaussian. Then, after $n \ge mk$ rounds, the expected regret J_n of ETC which explores each arm exactly m times before committing is bounded as follows:

$$J_n \le m \sum_{a=1}^k \Delta_a + (n - mk) \sum_{a=1}^k \Delta_a \exp\left(-\frac{m\Delta_a^2}{4}\right)$$
 (5)

Proof

First let us decompose the regret:

$$J_n = \sum_{t=1}^n \mathbb{E}\left[\Delta_{A_t}\right]$$

$$= m \sum_{a=1}^k \Delta_a + (n - mk) \sum_{a=1}^k \Delta_a \mathbb{P}\left(a = \operatorname{arg\,max}_b Q_{mk}(b)\right) .$$

WLOG, let us assume that the optimal action is 1, namely $1 = \arg\max_a \max_b q_*(b) - q_*(a)$. Now,

$$egin{aligned} \mathbb{P}\left(a = \operatorname{arg\,max}_b Q_{mk}(b)
ight) &\leq \mathbb{P}\left(Q_{mk}(a) - Q_{mk}(1) \geq 0
ight) \ &= \mathbb{P}\left(Q_{mk}(a) - q_*(a) - Q_{mk}(1) + q_*(1) \geq \Delta_a
ight) \ &\leq \exp\left(-rac{m\Delta_a^2}{4}
ight) \ , \end{aligned}$$

as $Q_{mk}(a) - q_*(a) - Q_{mk}(1) + q_*(1)$ is $\frac{2}{m}$ -subgaussian and by the previous theorem.

Choosing m

$$J_n \le m \sum_{a=1}^k \Delta_a + (n - mk) \sum_{a=1}^k \Delta_a \exp\left(-\frac{m\Delta_a^2}{4}\right)$$

- Large m: larger first term.
- ▶ Small *m*: larger second term, as the probability of committing to the wrong arm gets bigger.

Choosing m

Suppose k=2, and 1 is the optimal arm. Then $\Delta_1=0$, and we let $\Delta_2=\Delta$.

$$J_n \leq m\Delta + (n-2m)\Delta \exp\left(-\frac{m\Delta^2}{4}\right) \leq m\Delta + n\Delta \exp\left(-\frac{m\Delta^2}{4}\right)$$

Minimizing the RHS wrt m, for n sufficiently large, we get

$$m = \left\lceil \frac{4}{\Delta^2} \ln \left(\frac{n\Delta^2}{4} \right) \right\rceil$$

and

$$J_n \leq \Delta + \frac{4}{\Delta} \left(1 + \ln \left(\frac{n\Delta^2}{4} \right) \right)$$
.

Choosing m

$$m = \left\lceil \frac{4}{\Delta^2} \ln \left(\frac{n\Delta^2}{4} \right) \right\rceil \; ; \qquad J_n \leq \Delta + \frac{4}{\Delta} \left(1 + \ln \left(\frac{n\Delta^2}{4} \right) \right)$$

- Issue: m depends on Δ (this is almost never known in practice) and n (reasonable only in certain occurences).
- ightharpoonup Very small $\Delta \implies$ large J_n , so set

$$J_n \leq \min \left\{ n\Delta, \Delta + \frac{4}{\Delta} \left(1 + \ln \left(\frac{n\Delta^2}{4} \right) \right) \right\}$$

to take into account the case for small n.