

Signal Chain

Software para procesamiento de datos de radar

J. Oscanoa, D. Suárez y D. Scipión Radio Observatorio de Jicamarca

Encuentro Científico Internacional ECI 2013i, Lima, 31 Julio -2 Agosto 2013.

Esquema

- Introducción
- Datos del Radar
- Modelamiento en Clases
- Rama de Procesamiento
- Librerías Fase I
- Experimentos Fase I
- Librerías Fase II
- Conclusiones
- Referencias

Introducción

Figura 1. Diagrama de Bloques de la obtención de una imagen digital

- Diagrama de Bloques desde la entrada hasta la salida deseada
- División en diferentes agentes
- Tareas por agente limitadas en alcance deliberadamente
- Los agentes son tan genéricos como la tecnología/algoritmo lo permite

Datos de radar

Figura 2. Principio de Funcionamiento

- El rango del objetivo se obtiene a partir del tiempo de retorno
- Si el objetivo está en movimiento se obtendrá un cambio de frecuencia por el Efecto Doppler
- Se forman series de tiempo con muestras de pulsos diferentes para una misma altura

Figura 3. Pulso de transmisión

Figura 4. Ecos idealizados del radar

Modelamiento en Clases

Figura 5. Interacción de clases en Signal Chain (SC)

Ramas de Procesamiento

I. Integraciones Coherentese Incoherentes

Figura 7. Resultado de la Integración Incoherente

II. Remoción de Interferencias y DC

Figura 8. Inteferencia en el Espectro

III. Codificación y decodificación

Figura 9. Señal sin decodificar

Figura 10. Señal decodificada

- La Potencia transmitida es proporcional con el Ancho del Pulso
- Para aumentar el detectabilidad de los ecos, es necesario mayor potencia
- Para aumentar la resolución en alturas, es necesario un menor ancho de pulso

IV. Gráficos

Figura 11. Gráfico de Espectros

Figura 12. Gráfico RTI

Experimentos Fase I

Figura 13. Diagrama de bloques de experimento MST-ISR-EEJ

monthemental

I. Perfilador de Vientos

Figura 14. Doppler Beam Swinging

Figura 15. Spaced Antenna

- Estimaciones de vientos de neutros atmosféricos (0-100 km) en sus tres componentes vectoriales: zonal, meridional y vertical.
- Dos métodos implementados:
- DBS, utiliza tres o más beams no coplanares.
- SA, requiere un transmisor y dos o más receptores estrechemante espaciados.

Figura 16. Resultados experimento dia 20-02-2014, DBS (izquierda) y SA (derecha)

- Campaña de validación los días 19 y 20 de Febrero 2014
- Se hizo toma de datos con configuración DBS y SA alternadamente

II. Detección de Meteoros

Figura 17. Meteoro Especular

Figura 19. Sky Map

Figura 20. Resultados experimento dia 16-04-2014, EMDR (izquierda), SC (medio) y Scatter Plots (derecha)

- Campaña de validación los días 15 y 16 de Abril 2014
- Con los meteoros detectados, se procedió a realizar estimaciones de vientos.
- Se comparó los resultados con los obtenidos con el software Enhanced
 Meteor Detection Radar (EMDR) de ATRAD Pty Ltd.

III. East West Ionospheric Drifts

$$f(\mathbf{m}) = \sum_{i=1}^{m} (\frac{G(\mathbf{m})_i - d_i}{\sigma_i})^2$$

Fórmula 1. Ecuación a minimizar en el Ajuste Espectral

Figura 21. Ajuste Espectral

- Las estimaciones de velocidades de drifts de plasma ionosféricos constituye el principal uso de radares de dispersión incoherente.
- Se tienen dos beams apuntando hacia el Este y otros dos al Oeste, perpendiculares al campo magnético
- Se realiza un ajuste Espectral para obtener velocidades doppler.

Figura 22. Primeros resultados experimento dia 06-09-2012, Madrigal (izquierda), SC (derecha)

- Campaña de validación del 4 al 7 de Setiembre 2012
- Se realizaron estimaciones de drifts para las direcciones zonal y vertical
- Se comparó los resultados con los almacenados en la base de datos
 Madrigal, los cuales fueron obtenidos con librerías desarrolladas en IDL

Conclusiones

- El proyecto Signal Chain es un software que funciona como herramienta de procesamiento de datos para el Radio Observatorio de Jicamarca.
- El uso de herramientos de software libre como Python y Eclipse han sido una poderosa ayuda, así como el soporte brindado por la comunidad de software libre.
- El diseño flexible del software permitió, en su primera etapa, el procesamiento de datos de diferentes experimentos como el MST-ISR-EEJ.
- El mismo diseño ha permitido el desarrollo de diversos módulos destinados a realizar algoritmos más avanzados como los requeridos en Perfilador de Vientos, Meteoros, Drifts.
- Las validaciones han permitido mejorar y evaluar el verdadero desempeño de las librerías desarrolladas.

Referencias

- Balsey, Ben (1981). The MST technique a brief review. Journal of Atmospheric and Terrestrial Physics, 43(5/6).
- Briggs, B.H. (1984). The analysis of spaced sensor records by correlation techniques. International Council of Scientific Unions Middle Atmosphere Program, Vol. 13, pp. 166-186.
- Holdsworth, D.A., I.M. Reid y M.A. Cervera, (2004). Buckland Park all-sky interferometric meteor radar. Radio Science, 39 (5).
- Jones, J., A.R. Webster y W.K. Hocking (1998). An improved interferometer design for use with meteor radars. Radio Science, 33(1).
- Kudeki, E., S. Bhattacharya y R. Woodman (1999). A new approach in incoherent scatter F region ExB drift measurements at Jicamarca. Journal of Geophysical Research: Space Physics, Vol. 104.
- Suárez, D. (2013). Signal Chain: Reporte 2013. Radio Observatorio de Jicamarca, Lima, Perú.
- Scipión, D. (2011). Characterization of the Convective Boundary Layer through a combintion of Large-Eddy Simulations and a Radar Simulator (Grado de Doctor). Norman, Oklahoma. University of Oklahoma, School of Electrical and Computer Engineering, 2011, pp. 43-48.