ECE 550/650 QC **Grover Search**

Robert Niffenegger

UMassAmherst | College of Engineering

Grover Search

Multi-qubit superposition state $\equiv |s\rangle$

$|s\rangle \equiv$ superposition state

Answer is equally likely as the other N-1 possibilities

$$|s\rangle = |+\rangle |+\rangle |+\rangle |+\rangle = |+\rangle^{\bigotimes N}$$

The angle will be $\theta = \arcsin(1/\sqrt{N}) = \arcsin(1/4) \approx 15 \deg$

Superposition state $\equiv |s\rangle$ in the 'answer basis'

$|s\rangle \equiv$ superposition state

Answer is equally likely as the other N-1 possibilities

$$|s\rangle = \frac{1}{\sqrt{N}} \left((N-1)|s\rangle' + |w\rangle \right)$$

Apply the "Oracle"

Real Amplitude (ρ)

Apply the "Oracle"

Real Amplitude (ρ)

What do we measure?

Max of 4 qubit register = 15
Solution= 12
Binary String of solution = 1100
$$\frac{1}{4}|0000\rangle + \frac{1}{4}|0001\rangle + \frac{1}{4}|0010\rangle + \frac{1}{4}|0011\rangle + \frac{1}{4}|0100\rangle + \frac{1}{4}|0101\rangle + \dots + \frac{1}{4}|1011\rangle - \frac{1}{4}|1100\rangle + \frac{1}{4}|1110\rangle + \frac{1}{4}|1111\rangle$$

Real Amplitude (p)

All measurement probabilities are still equal!

Flipping the phase of the amplitude doesn't change the measurement outcomes!

Amplitude Amplification

Increasing amplitude Increases measurement probability

$$U_s \equiv \text{Reflect about } |s\rangle$$

answer

- What gates can flip the <u>sign</u> of a state?
- What gates do we have?
 - -CX
 - CZ
- CX flips the bit value but not the sign
- CZ flips the sign
- → We need a CCZ

$$U_s \equiv \text{Reflect about } |s\rangle$$

answer

CZ flips the sign → we need a CCZ

But that flips $|111...1\rangle$ to $-|111...1\rangle$

New problem:

• Use CCZ (which flips $|111\rangle$ to $-|111\rangle$) to invert about $|s\rangle$ instead

Solution:

- Convert $|111\rangle$ to $|s\rangle$ and back again as needed
- How?

$$U_s \equiv 2|s\rangle\langle s| - 1$$

$$CP \equiv 1 - 2|11\rangle\langle 11|$$

$$Circuit = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Real Amplitude (p)

CP

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

|11\(\dagger{11}|

$$U_s \equiv 2|s\rangle\langle s| - 1$$

$$CP \equiv 1 - 2|11\rangle\langle 11|$$

$\mathbf{Z}^{\otimes N} \cdot \mathbf{CP} \equiv 2|\mathbf{00}\rangle\langle\mathbf{00}| - 1$

$$U_s \equiv 2|s\rangle\langle s| - 1$$

 $\mathbf{Z}^{\otimes N} \cdot \mathbf{CP} \equiv 2|\mathbf{00}\rangle\langle\mathbf{00}| - 1$

$$Circuit = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\text{Circuit} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Imaginary Amplitude (p)

Real Amplitude (p)

Imaginary Amplitude (p)

Real Amplitude (ρ)

Imaginary Amplitude (ρ)

$$U_{s} \equiv 2|s\rangle\langle s| - 1$$

$$Z^{\otimes N} \cdot CP \equiv 2|00\rangle\langle 00| - 1$$

Altogether the CZ gate plus Z gates create:

$$= 2|00\rangle\langle 00| - \mathbb{1} =$$

Real Amplitude (p)

 $\text{Circuit} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$

Imaginary Amplitude (p)

$$\equiv 2|00\rangle\langle00|-1$$

0

Amplitude Amplification Circuit

$$CP \equiv 1 - 2|11\rangle\langle 11|$$

$$= X^{\otimes n} (1 - 2|11\rangle\langle 11|) X^{\otimes n}$$

= 1 - 2|00\\\ \langle \quad 00|

$$= \mathbf{H}^{\otimes n} (\mathbb{1} - 2|\mathbf{00}\rangle\langle\mathbf{00}|) \mathbf{H}^{\otimes n}$$

$$= \mathbb{1} - 2|++\rangle\langle++|$$

$$= \mathbb{1} - 2|s\rangle\langle s|$$

 $U_s \equiv \text{Reflect about } |s\rangle$

answer

 $U_s \equiv \text{Reflect about } |s\rangle$

answer

$$|s\rangle \Rightarrow |0000\rangle \Rightarrow |1111\rangle$$

$$q_{0} - H - X - X - H - Q_{1} - H - X - X - H - Q_{2} - H - X - X - H - Q_{3} - H - X - X - H - Q_{1} - H - X - X - H - Q_{2} - H - X - X - H - Q_{3} - H - X - X - H - Q_{4} - Q_{5} - Q_{5$$

 $U_s \equiv Reflect about |s\rangle$

answer

$$|s\rangle \Rightarrow |0000\rangle \Rightarrow |1111\rangle \Rightarrow -|1111\rangle$$

$$q_{0} - H - X - X - H$$

$$q_{1} - H - X - X - H$$

$$q_{2} - H - X - X - H$$

$$q_{3} - H - X - X - H$$

$$|1111\rangle \Rightarrow -|1111\rangle$$
Flip ONLY
$$|1111\rangle \Rightarrow -|1111\rangle$$

 $U_s \equiv \text{Reflect about } |s\rangle$

answer

$$|s\rangle \rightarrow |0000\rangle \rightarrow |1111\rangle \rightarrow -|1111\rangle \rightarrow -|0000\rangle$$

 $U_s \equiv Reflect about |s\rangle$

answer

$U_s \equiv Reflect about |s\rangle$

answer

$$|s\rangle \Rightarrow |0000\rangle \Rightarrow |1111\rangle \Rightarrow -|10000\rangle \Rightarrow -|s\rangle$$

$$q_{0} - H - X - X - H - X$$

$$q_{1} - H - X - X - H - X$$

$$q_{2} - H - X - X - H - X$$

$$q_{3} - H - X - X - H - X$$

$$CCCZ \equiv 2|1111\rangle\langle 1111| - 1$$

$$U_{S} \equiv 2|++++\rangle\langle ++++|-1|$$

$$CCCZ \Rightarrow |1111\rangle\langle ++++|-1|$$

CCCZ - decomposed

$$CCCZ \equiv 2|0000\rangle\langle0000| - 1$$

$$U_s \equiv 2|++++\rangle\langle++++|-1|$$

Amplify the Amplitude – First Iteration

O · |s)

 $U_s \cdot O \cdot |s\rangle$

Repeat -> Amplify the Amplitude again

Repeat -> Amplify the Amplitude again and Again!?

Repeat $\frac{\pi}{4}\sqrt{16}$ times (~3)

Overrotated!!

Now we see that we've actually over rotated past the optimal answer and the further interations would just continue to rotated us farther from the answer.

The angle is now $\theta = 7 \cdot \arcsin(1/\sqrt{N}) = 7 \cdot \arcsin(1/4) \approx 105 \deg$ Only 3 iteractions were needed!

Turns out it can be shown that the optimal number of iterations is: $\frac{\pi}{4}\sqrt{N}$

This is because we always want a final angle of $\frac{\pi}{4}$ (90°) and the initial angle of the superposition state will always be : $\arcsin(1/\sqrt{N})$

Thus dividing them gives the optimal number of iterations.

See Thomas Wong's Textbook

Which for n=4 and N=16 means the optimal number of iterations is : $\frac{\pi}{4}\sqrt{16}=\pi pprox 3$

Getting the Oracle to ask interesting questions

Sudoku

- Logical checks → Oracle
- Use CNOTs (CXs)

	Classical		Reversible/Quantum	
_	NOT	$A - \overline{A}$	X-Gate	$A - \overline{X} - \overline{A}$
	AND	A - B - AB	Toffoli	$ \begin{array}{ccc} A & \longrightarrow & A \\ B & \longrightarrow & B \\ 0 & \longrightarrow & AB \end{array} $
	OR	$A \longrightarrow A + B$	anti-Toffoli	$ \begin{array}{cccc} A & \longrightarrow & A \\ B & \longrightarrow & B \\ 1 & \longrightarrow & A+B \end{array} $
	XOR	$A \to B$	CNOTs	$ \begin{array}{cccc} A & & & & & A \\ B & & & & & B \\ 0 & & & & & A \oplus B \end{array} $
	NAND	$A - B - \overline{AB}$	Toffoli	$ \begin{array}{ccc} A & & & A \\ B & & & B \\ 1 & & & \overline{AB} \end{array} $
	NOR	$A \longrightarrow A + B$	anti-Toffoli	$ \begin{array}{cccc} A & \longrightarrow & A \\ B & \longrightarrow & B \\ 0 & \longrightarrow & \overline{A+B} \end{array} $

Getting the Oracle to ask interesting questions

Sudoku

- Logical checks → Oracle
- Use CNOTs (CXs)

Getting the Oracle to ask interesting questions

Sudoku

Logical checks → Oracle

Queens Puzzle

• Logical checks → Oracle

The only symmetrical solution to the eight queens puzzle (up to rotation and reflection)

Classically scales exponentially

Toffoli gate (CCNOT)

