Исследование операций Оптимизационные модели

Виктор Васильевич Лепин

Институт математики НАН Беларуси, Минск

Математическое моделирование — общий способ исследования объектов реального мира — метод познания, конструирования, проектирования, который сочетает в себе многие достоинства как теории, так и эксперимента.

Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность без ущерба для моделируемого объекта, относительно быстро и без существенных затрат исследовать его свойства и поведение в интересующих исследователя ситуациях.

В то же время вычислительные эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам.

Основу математического моделирования составляет триада модель алгоритм — программа.

Основу математического моделирования составляет триада модель алгоритм — программа.

 строится модель исследуемого объекта, отражающая в математической форме важнейшие его свойства – законы, которым он подчиняется, связи между его составляющими элементами, и т. д.

Под моделью при этом понимается "эквивалент" объекта, отражающий в математической форме важнейшие его свойства – законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д.

Основу математического моделирования составляет триада модель алгоритм — программа.

- строится модель исследуемого объекта, отражающая в математической форме важнейшие его свойства – законы, которым он подчиняется, связи между его составляющими элементами, и т. д.
 - Под моделью при этом понимается "эквивалент" объекта, отражающий в математической форме важнейшие его свойства законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д.
- разрабатывается алгоритм для реализации модели на компьютере.
 - Необходимо получить искомые величины с заданной точностью на имеющейся вычислительной технике.
 - Алгоритмы должны быть адаптирующимися к особенностям решаемых задач и используемых вычислительных средств.

Основу математического моделирования составляет триада модель – алгоритм – программа.

- строится модель исследуемого объекта, отражающая в математической форме важнейшие его свойства – законы, которым он подчиняется, связи между его составляющими элементами, и т. д.
 - Под моделью при этом понимается "эквивалент" объекта, отражающий в математической форме важнейшие его свойства законы, которым он подчиняется, связи, присущие составляющим его частям, и т.д.
- разрабатывается алгоритм для реализации модели на компьютере.
 - Необходимо получить искомые величины с заданной точностью на имеющейся вычислительной технике.
 - Алгоритмы должны быть адаптирующимися к особенностям решаемых задач и используемых вычислительных средств.
- создается программное обеспечение (решатель) для реализации модели и алгоритма на компьютере.

• Оптимизационная модель состоит

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния,

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния.
 - внешних входных параметров и данных (неуправляемые переменные),

• Оптимизационная модель состоит

- множества переменных, используемых для описания состояния системы,
- множества ограничений, определяющих допустимые состояния,
- внешних входных параметров и данных (неуправляемые переменные),
- целевой функции, которая обеспечивает оценку того, насколько хорошо работает система (т.е. ее эффективность).

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния,
 - внешних входных параметров и данных (неуправляемые переменные),
 - целевой функции, которая обеспечивает оценку того, насколько хорошо работает система (т.е. ее эффективность).
- Мы моделируем состояние системы, задавая значения для переменных.

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния,
 - внешних входных параметров и данных (неуправляемые переменные),
 - целевой функции, которая обеспечивает оценку того, насколько хорошо работает система (т.е. ее эффективность).
- Мы моделируем состояние системы, задавая значения для переменных.
- Переменные представляют решения, которые необходимо принять для работы системы.

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния,
 - внешних входных параметров и данных (неуправляемые переменные),
 - целевой функции, которая обеспечивает оценку того, насколько хорошо работает система (т.е. ее эффективность).
- Мы моделируем состояние системы, задавая значения для переменных.
- Переменные представляют решения, которые необходимо принять для работы системы.
- Ограничения представляют собой спецификации для работы системы.

- Оптимизационная модель состоит
 - множества переменных, используемых для описания состояния системы,
 - множества ограничений, определяющих допустимые состояния,
 - внешних входных параметров и данных (неуправляемые переменные),
 - целевой функции, которая обеспечивает оценку того, насколько хорошо работает система (т.е. ее эффективность).
- Мы моделируем состояние системы, задавая значения для переменных.
- Переменные представляют решения, которые необходимо принять для работы системы.
- Ограничения представляют собой спецификации для работы системы.
- Цель состоит в том, чтобы определить наилучшее состояние, соответствующее рабочим характеристикам.

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

где

ullet $X,\,Y,\,Z$ — подмножества векторных пространств,

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

- ullet $X,\,Y,\,Z$ подмножества векторных пространств,
- x вектор контролируемых факторов,

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

- ullet $X,\,Y,\,Z$ подмножества векторных пространств,
- x вектор контролируемых факторов,
- у вектор случайных факторов,

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

- ullet $X,\,Y,\,Z$ подмножества векторных пространств,
- ullet x вектор контролируемых факторов,
- y вектор случайных факторов,
- z вектор неопределенных факторов,

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

- ullet $X,\,Y,\,Z$ подмножества векторных пространств,
- x вектор контролируемых факторов,
- y вектор случайных факторов,
- z вектор неопределенных факторов,
- f целевая функция задачи.

$$f(x, y, z) \to \min(\max)$$

$$\leq g_i(x, y, z) = 0, \quad i = 1, \dots, m,$$

$$\geq z$$

$$x \in X, \ y \in Y, \ z \in Z,$$

$$(1)$$

- ullet $X,\,Y,\,Z$ подмножества векторных пространств,
- x вектор контролируемых факторов,
- y вектор случайных факторов,
- z вектор неопределенных факторов,
- f целевая функция задачи.
- ullet условия $g_i(x,y,z) \leq (=)(\geq)0, \ i=1,\ldots,m$ $x\in X,\ y\in Y,\ z\in Z,$ называются ограничениями задачи

• Значения контролируемых факторов выбирается теми, кто принимает решение (оперирующей стороной).

- Значения контролируемых факторов выбирается теми, кто принимает решение (оперирующей стороной).
- Случайные и неопределенные факторы это неконтролируемые факторы для оперирующей стороны.

- Значения контролируемых факторов выбирается теми, кто принимает решение (оперирующей стороной).
- Случайные и неопределенные факторы это неконтролируемые факторы для оперирующей стороны.
- Оперирующей стороне известны

- Значения контролируемых факторов выбирается теми, кто принимает решение (оперирующей стороной).
- Случайные и неопределенные факторы это неконтролируемые факторы для оперирующей стороны.
- Оперирующей стороне известны
 - законы распределения случайных факторов, например, y_5 есть нормальная случайная величина с матожиданием $m \in [m_1, m_2]$ и стандартным отклонением $\sigma \in [\sigma_1, \sigma_2]$;

- Значения контролируемых факторов выбирается теми, кто принимает решение (оперирующей стороной).
- Случайные и неопределенные факторы это неконтролируемые факторы для оперирующей стороны.
- Оперирующей стороне известны
 - законы распределения случайных факторов, например, y_5 есть нормальная случайная величина с матожиданием $m \in [m_1, m_2]$ и стандартным отклонением $\sigma \in [\sigma_1, \sigma_2]$;
 - только области значений неопределенных факторов, например, переменная z_3 принимает значения из отрезка [1, 7].

Математические дисциплины

• математическое программирование: $X \neq \emptyset, Y = Z = \emptyset;$

Математические дисциплины

- ullet математическое программирование: $X
 eq \emptyset, Y = Z = \emptyset;$
- стохастическое программирование: $X \neq \emptyset, Y \neq \emptyset, Z = \emptyset$;

Математические дисциплины

- ullet математическое программирование: $X
 eq \emptyset, Y = Z = \emptyset;$
- ullet стохастическое программирование: $X \neq \emptyset, Y \neq \emptyset, Z = \emptyset;$
- теория игр и робастная оптимизация: $X \neq \emptyset, Z \neq \emptyset$.

3адача P Hайти:

$$\min f(x) \tag{1}$$

при условии, что

$$g_i(x) \le 0, \quad i = 1, 2, \dots m,$$
 (2)

$$x \in X \subseteq \mathbb{R}^n$$
 или \mathbb{Z}^n или \mathbb{B}^n . (3)

3адача P Найти:

$$\min f(x) \tag{1}$$

при условии, что

$$g_i(x) \le 0, \quad i = 1, 2, \dots m,$$
 (2)

$$x \in X \subseteq \mathbb{R}^n$$
 или \mathbb{Z}^n или \mathbb{B}^n . (3)

Это задача определения условного экстремума функции многих переменных.

3адача P Найти:

$$\min f(x) \tag{1}$$

при условии, что

$$g_i(x) \le 0, \quad i = 1, 2, \dots m,$$
 (2)

$$x \in X \subseteq \mathbb{R}^n$$
 или \mathbb{Z}^n или \mathbb{B}^n . (3)

Это задача определения условного экстремума функции многих переменных.

Общего подхода, как для задачи на безусловный экстремум, не существует.

3адача P Найти:

$$\min f(x) \tag{1}$$

при условии, что

$$g_i(x) \le 0, \quad i = 1, 2, \dots m,$$
 (2)

$$x \in X \subseteq \mathbb{R}^n$$
 или \mathbb{Z}^n или \mathbb{B}^n . (3)

Это задача определения условного экстремума функции многих переменных.

Общего подхода, как для задачи на безусловный экстремум, не существует.

В зависимости от вида функций g_i и f, а также от свойств множества допустимых решений разработаны такие разделы математического программирования, как нелинейное программирование, выпуклое программирование, квадратичное программирование, линейное программирование и др.

Допустимые решения

любой вектор x удовлетворяющий ограничениям (2),(3), называется допустимым решением задачи P. $Q(P)=\{x\in X|g_i(x)\leq 0,\ i=1,2,\ldots,m\}$ – множество допустимых решений задачи P.

Допустимые решения

любой вектор x удовлетворяющий ограничениям (2),(3), называется допустимым решением задачи P.

 $Q(P) = \{x \in X | g_i(x) \leq 0, \ i = 1, 2, \dots, m\}$ – множество допустимых решений задачи P.

Оптимальное решение (глобальный минимум):

любое допустимое решение задачи P на котором достигается минимум целевой функции f на множестве Q(P).

Задача математического программирования

Допустимые решения

любой вектор x удовлетворяющий ограничениям (2),(3), называется допустимым решением задачи P.

 $Q(P) = \{x \in X | g_i(x) \leq 0, \ i = 1, 2, \dots, m\}$ – множество допустимых решений задачи P.

Оптимальное решение (глобальный минимум):

любое допустимое решение задачи P на котором достигается минимум целевой функции f на множестве Q(P).

Замечание

• Ограничение-равенство g(x) = 0 эквивалентно двум неравенствам $g(x) \le 0, -g(x) \le 0.$

Задача математического программирования

Допустимые решения

любой вектор x удовлетворяющий ограничениям (2),(3), называется допустимым решением задачи P.

 $Q(P) = \{x \in X | g_i(x) \le 0, \ i = 1, 2, \dots, m\}$ – множество допустимых решений задачи P.

Оптимальное решение (глобальный минимум):

любое допустимое решение задачи P на котором достигается минимум целевой функции f на множестве Q(P).

Замечание

- Ограничение-равенство g(x) = 0 эквивалентно двум неравенствам $g(x) \le 0, -g(x) \le 0.$
- Задача максимизации функции g на множестве Q сводится к задаче минимизации функции f=-g на этом же множестве.

В зависимости от природы множества X задачи оптимизации классифицируются как

• дискретные (комбинаторные) – X конечно или счетно,

- дискретные (комбинаторные) X конечно или счетно,
- целочисленные $x \in X \subseteq \mathbb{Z}^n$,

- дискретные (комбинаторные) X конечно или счетно,
- целочисленные $x \in X \subseteq \mathbb{Z}^n$,
- \bullet булевы $x \in X \subseteq \mathbb{B}^n$,

- дискретные (комбинаторные) X конечно или счетно,
- целочисленные $x \in X \subseteq \mathbb{Z}^n$,
- \bullet булевы $x \in X \subseteq \mathbb{B}^n$,
- вещественные (непрерывные) $x \in X \subseteq \mathbb{R}^n$,

- дискретные (комбинаторные) X конечно или счетно,
- целочисленные $x \in X \subseteq \mathbb{Z}^n$,
- булевы $x \in X \subseteq \mathbb{B}^n$,
- вещественные (непрерывные) $x \in X \subseteq \mathbb{R}^n$,
- $\mathsf{бесконечномерныe} X$ подмножество гильбертова пространства.

Если множество X совпадает с основным пространством \mathbb{R}^n , \mathbb{Z}^n , \mathbb{B}^n , а ограничения g_i отсутствуют (m=0), то задачу P называют задачей безусловной оптимизации. В противном случае говорят о задаче условной оптимизации.

Если множество X совпадает с основным пространством \mathbb{R}^n , \mathbb{Z}^n , \mathbb{B}^n , а ограничения g_i отсутствуют (m=0), то задачу P называют задачей безусловной оптимизации. В противном случае говорят о задаче условной оптимизации.

Если принять во внимание свойства целевой функции f и ограничений g_i , то возникает более тонкое деление конечномерных экстремальных задач на классы

• непрерывное математическое программирование $(f, g_i -$ непрерывные, произвольные, нелинейные, X — связное, компактное подмножество $\mathbb{R}^n)$

Если множество X совпадает с основным пространством \mathbb{R}^n , \mathbb{Z}^n , \mathbb{B}^n , а ограничения g_i отсутствуют (m=0), то задачу P называют задачей безусловной оптимизации. В противном случае говорят о задаче условной оптимизации.

Если принять во внимание свойства целевой функции f и ограничений g_i , то возникает более тонкое деление конечномерных экстремальных задач на классы

- непрерывное математическое программирование $(f, g_i$ непрерывные, произвольные, нелинейные, X связное, компактное подмножество $\mathbb{R}^n)$
- дискретное математическое программирование $(f, g_i$ нелинейные, X дискретное множество.)

• нелинейное целочисленное программирование $(f, g_i -$ нелинейные, $X \subseteq \mathbb{Z}^n)$

- нелинейное целочисленное программирование $(f, g_i$ нелинейные, $X \subseteq \mathbb{Z}^n)$
- непрерывная нелинейная оптимизация без ограничений (f непрерывная, произвольная, нелинейная функция m=0, $X=\mathbb{R}^n$)

- нелинейное целочисленное программирование $(f, g_i$ нелинейные, $X \subseteq \mathbb{Z}^n)$
- непрерывная нелинейная оптимизация без ограничений (f непрерывная, произвольная, нелинейная функция m=0, $X=\mathbb{R}^n$)
- целочисленная нелинейная оптимизация без ограничений (f произвольная, нелинейная функция $m=0,\, X=\mathbb{Z}^n)$

- нелинейное целочисленное программирование $(f, g_i$ нелинейные, $X \subseteq \mathbb{Z}^n)$
- непрерывная нелинейная оптимизация без ограничений (f непрерывная, произвольная, нелинейная функция m=0, $X=\mathbb{R}^n$)
- целочисленная нелинейная оптимизация без ограничений (f произвольная, нелинейная функция $m=0,\, X=\mathbb{Z}^n)$
- выпуклое программирование $(f, g_i$ произвольные, выпуклые, X -выпуклое множество из $\mathbb{R}^n)$

- нелинейное целочисленное программирование $(f, g_i$ нелинейные, $X \subseteq \mathbb{Z}^n)$
- непрерывная нелинейная оптимизация без ограничений (f непрерывная, произвольная, нелинейная функция m=0, $X=\mathbb{R}^n$)
- целочисленная нелинейная оптимизация без ограничений (f произвольная, нелинейная функция $m=0,\, X=\mathbb{Z}^n)$
- выпуклое программирование $(f, g_i$ произвольные, выпуклые, X выпуклое множество из \mathbb{R}^n)
- линейное программирование $(f, g_i$ произвольные, линейные, $X = \{x \in \mathbb{R}^n | Ax \le b\})$

- нелинейное целочисленное программирование $(f, g_i$ нелинейные, $X \subseteq \mathbb{Z}^n)$
- непрерывная нелинейная оптимизация без ограничений (f непрерывная, произвольная, нелинейная функция m=0, $X=\mathbb{R}^n$)
- целочисленная нелинейная оптимизация без ограничений (f произвольная, нелинейная функция $m=0,\, X=\mathbb{Z}^n)$
- выпуклое программирование $(f, g_i$ произвольные, выпуклые, X выпуклое множество из \mathbb{R}^n)
- линейное программирование $(f, g_i$ произвольные, линейные, $X = \{x \in \mathbb{R}^n | Ax \leq b\})$
- целочисленное линейное программирование $(f, g_i$ произвольные, линейные, $X \subseteq \mathbb{Z}^n)$

Задача линейного программирования

• Задача линейного программирования (ЛП) это задача нахождения экстремума линейной функции при линейных ограничениях.

Задача линейного программирования

- Задача линейного программирования (ЛП) это задача нахождения экстремума линейной функции при линейных ограничениях.
- Задачу ЛП можно записать несколькими стандартными способами.
 - Мы здесь рассмотрим только три таких способа.

Задача ЛП в канонической форме

Определение

Линейной задачей в канонической форме (другими словами, канонической линейной задачей) называется задача

$$\begin{cases} c_1 x_1 + \dots + c_n x_n \to \max \text{ (min)}, \\ a_{11} x_1 + \dots + a_{1n} x_n = b_1, \\ \vdots \\ a_{m1} x_1 + \dots + a_{mn} x_n = b_m, \\ x_i \geqslant 0, \quad i = 1, \dots, n. \end{cases}$$

Таким образом, линейной задачей в канонической форме называется задача, в которой все ограничения представлены в виде равенств, а все переменные неотрицательны.

Задача ЛП в стандартной форме

Задачей ЛП в стандартной форме называется задача, в которой все ограничения являются неравенствами типа \leq при максимизации целевой функции или все ограничения являются неравенствами типа \geq при минимизации целевой функции и все управляемые переменные и все свободные члены основных ограничений должны быть неотрицательны.

Задача ЛП в стандартной форме

Задачей ЛП в стандартной форме называется задача, в которой все ограничения являются неравенствами типа \leq при максимизации целевой функции или все ограничения являются неравенствами типа \geq при минимизации целевой функции и все управляемые переменные и все свободные члены основных ограничений должны быть неотрицательны.

Задача ЛП в стандартной форме имеет следующий вид:

$$\max\{c \cdot x : Ax \le b, \ x \ge 0\},\$$

где $A,\,c,\,b$ и x определяются также, как и для задачи ЛП в канонической форме.

Задача ЛП в стандартной форме

Задачей ЛП в стандартной форме называется задача, в которой все ограничения являются неравенствами типа \leq при максимизации целевой функции или все ограничения являются неравенствами типа \geq при минимизации целевой функции и все управляемые переменные и все свободные члены основных ограничений должны быть неотрицательны.

Задача ЛП в стандартной форме имеет следующий вид:

$$\max\{c \cdot x : Ax \le b, \ x \ge 0\},\$$

где $A,\,c,\,b$ и x определяются также, как и для задачи ЛП в канонической форме.

Для задачи ЛП в стандартной форме обычно предполагается, что A есть матрица полного строчного ранга, т. е. ${\rm rank} A = m.$

Часто встречающаяся форма задачи ЛП

Еще одна часто встречающаяся форма задачи ЛП следующая:

Часто встречающаяся форма задачи ЛП

Еще одна часто встречающаяся форма задачи ЛП следующая:

$$\max\{c^T x: Ax = b, x \ge 0\},\$$

Часто встречающаяся форма задачи ЛП

Еще одна часто встречающаяся форма задачи ЛП следующая:

$$\max\{c^T x: Ax = b, x \ge 0\},\$$

где $A,\,c,\,b$ и x определяются как и ранее, но здесь не накладывают никаких ограничений на ранг матрицы A.

• если функция f должна принять максимальное значение, то функция $f_1=(-1)f=-c_1x_1-c_2x_2-\cdots-c_nx_n$ будет принимать минимальное значение;

- если функция f должна принять максимальное значение, то функция $f_1=(-1)f=-c_1x_1-c_2x_2-\cdots-c_nx_n$ будет принимать минимальное значение;
- если в системе ограничений какой-то свободный член $b_s \leq 0$, то соответствующее ограничение (неравенство или равенство) достаточно умножить на -1;

- если функция f должна принять максимальное значение, то функция $f_1=(-1)f=-c_1x_1-c_2x_2-\cdots-c_nx_n$ будет принимать минимальное значение;
- если в системе ограничений какой-то свободный член $b_s \leq 0$, то соответствующее ограничение (неравенство или равенство) достаточно умножить на -1;
- если неравенство типа ≤ среди ограничений требуется заменить на равенство, то в модель вводится новая, так называемая дополняющая, неотрицательная неизвестная переменная, которая прибавляется к левой части рассматриваемого неравенства, тем самым превращая его в равенство. В целевую функцию эта переменная входит с коэффициентом 0;

 если неравенство типа ≥ среди ограничений требуется заменить на равенство, то в модель вводится новая неотрицательная неизвестная переменная, которая вычитается от левой части рассматриваемого неравенства, тем самым превращая его в равенство. В целевую функцию эта переменная входит с коэффициентом 0;

- если неравенство типа ≥ среди ограничений требуется заменить на равенство, то в модель вводится новая неотрицательная неизвестная переменная, которая вычитается от левой части рассматриваемого неравенства, тем самым превращая его в равенство. В целевую функцию эта переменная входит с коэффициентом 0;
- если в задаче ЛП имеются неизвестные с неопределенным знаком, то каждое из них можно заменить разностью двух неотрицательных переменных и ввести такую разность в модель. Например, вместо переменной x_j с неопределенным знаком необходимо во все соотношения модели ввести разность $x_j = x_j' x_j''$ и ограничения $x_j' \geq 0, \, x_j'' \geq 0;$

Формализация задачи. Пример

- Предприятие электронной промышленности выпус- кает две модели радиоприемников, причем каждая модель производится на отдельной линии.
- Суточный объем производства первой линии составляет не более 60 изделий, второй — 75 изделий.
- На радиоприемник первой модели расходуется 10 однотипных элементов электрических схем, на радиоприемник второй модели — 8 таких же элементов.
- Максимальный суточный запас элементов 800 единиц.
- Прибыль от реализации радиоприемника первой модели равна 30 рублей, второй модели — 20 рублей.
- Построить математическую модель для опреде- ления оптимальных (приносящих максимальную прибыль) суточных объемов производства радиоприемников первой и второй моделей.

Формализация задачи. Пример

Решение. Обозначим через x суточный объем производства приемников первого вида, а через y — суточный объем производства приемников второго вида. Тогда математическую модель можно записать в следующей форме

$$\begin{cases} 30x + 20y \to \max, \\ x \le 60, & y \le 75, \\ 10x + 8y \le 800, \\ x, y \ge 0, & x, y \in \mathbb{N}. \end{cases}$$

Решение такой задачи будет действительно определять оптимальный объем производства, так как получаемая прибыль будет максимальной, а все ограничения выполнены.

Пример

Привести к каноническому виду задачу

$$\begin{cases} z = x_1 + x_2 + 3x_3 \to \max, \\ 2x_1 + x_2 + x_3 \le 1, \\ x_2 + x_3 \ge 2, \\ x_2 \ge 0, \\ x_3 \ge 0. \end{cases}$$

Решение. Заменим имеющиеся ограничения в виде неравенств на равенства путем введения новых переменных x_4 и x_5 :

$$\begin{cases} z = x_1 + x_2 + 3x_3 \to \max, \\ 2x_1 + x_2 + x_3 + x_4 = 1, \\ x_2 + x_3 - x_5 = 2, \\ x_i \ge 0, \quad i = 2, \dots, 5. \end{cases}$$

Пример

Переменную x_1 представим в виде разности двух неотрицательных переменных x_6 и x_7 :

$$\begin{cases} z = x_6 - x_7 + x_2 + 3x_3 \to \max, \\ 2(x_6 - x_7) + x_2 + x_3 + x_4 = 1, \\ x_2 + x_3 - x_5 = 2, \\ x_i \ge 0, \quad i = 2, \dots, 7. \end{cases}$$

Таким образом, получена задача в канонической форме.

Прямая задача

• Рассмотрим задачу ЛП

$$c \cdot x \to \min,$$

 $Ax \le b,$
 $x \ge 0,$

Прямая задача

• Рассмотрим задачу ЛП

$$c \cdot x \to \min,$$

$$Ax \le b,$$

$$x \ge 0,$$

• где $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$,

Прямая задача

• Рассмотрим задачу ЛП

$$c \cdot x \to \min,$$

 $Ax \le b,$
 $x \ge 0,$

- где $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$,
- A есть действительная матрица размера $m \times n$,

Прямая задача

• Рассмотрим задачу ЛП

$$c \cdot x \to \min,$$

 $Ax \le b,$
 $x \ge 0,$

- ullet где $c\in\mathbb{R}^n,\,b\in\mathbb{R}^m,$
- A есть действительная матрица размера $m \times n$,
- ullet а $x = (x_1, \dots, x_n)^T n$ -мерный вектор переменных.

Двойственная задача для заданной задачи линейного программирования (ЛП) — это другая задача линейного программирования, которая получается из исходной (прямой) задачи следующим образом:

- Каждая переменная в прямой задаче становится ограничением двойственной задачи;
- Каждое ограничение в прямой задаче становится переменной в двойственной задаче;
- Направление цели обращается максимум в прямой задаче становится минимумом в двойственной, и наоборот.

Теоремы о двойственности

Теорема о слабой двойственности утверждает, что значение двойственной задачи для любого допустимого решения всегда ограничено значением прямой задачи для любого допустимого решения (верхняя или нижняя граница, в зависимости от того, это задача максимизации или минимизации).

Теорема о сильной двойственности утверждает, что более того, если прямая задача имеет оптимальное решение, то двойственная задача имеет также оптимальное решение, и эти два оптимума равны.

Эти теоремы принадлежат более широкому классу теорем двойственности в оптимизации. Теорема о сильной двойственности является одним из случаев, в котором разрыв двойственности (разрыв между оптимумом прямой задачи и оптимумом двойственной) равен 0.

Если дана прямая задача линейного программирования, для построения двойственной задачи может быть использован следующий алгоритм.

Пусть прямая задача определена как:

ullet Дан набор из n переменных: x_1,\ldots,x_n

Если дана прямая задача линейного программирования, для построения двойственной задачи может быть использован следующий алгоритм.

Пусть прямая задача определена как:

- ullet Дан набор из n переменных: x_1,\ldots,x_n
- Для каждой переменной i определено ограничение на знак она должна быть либо неотрицательной $(x_i \geqslant 0)$, либо неположительной $(x_i \leqslant 0)$, либо ограничение не задано $(x_i \in \mathbb{R})$.

Если дана прямая задача линейного программирования, для построения двойственной задачи может быть использован следующий алгоритм.

Пусть прямая задача определена как:

- ullet Дан набор из n переменных: x_1,\ldots,x_n
- Для каждой переменной i определено ограничение на знак она должна быть либо неотрицательной $(x_i \geqslant 0)$, либо неположительной $(x_i \leqslant 0)$, либо ограничение не задано $(x_i \in \mathbb{R})$.
- Задана целевая функция: Максимизировать $c_1x_1 + \cdots + c_nx_n$

Если дана прямая задача линейного программирования, для построения двойственной задачи может быть использован следующий алгоритм.

Пусть прямая задача определена как:

- ullet Дан набор из n переменных: x_1,\ldots,x_n
- Для каждой переменной i определено ограничение на знак она должна быть либо неотрицательной $(x_i \geqslant 0)$, либо неположительной $(x_i \leqslant 0)$, либо ограничение не задано $(x_i \in \mathbb{R})$.
- Задана целевая функция: Максимизировать $c_1x_1 + \cdots + c_nx_n$
- Задан список из m ограничений. Каждое ограничение j равно: $a_{j1}x_1+\dots+a_{jn}x_n \stackrel{<}{=} b_j$, где символ перед b_j может быть одним из трёх \geqslant , \leqslant или =.

Двойственная задача строится следующим образом.

- Каждое ограничение прямой задачи становится двойственной переменной. Таким образом, получаем m переменных: y_1, \dots, y_m .
- Знак ограничения каждой двойственной переменной "противоположен" знаку ограничения в прямой задаче. Таким образом, " $\geqslant b_j$ " становится $y_j \leqslant 0$, " $\leqslant b_j$ " превращается в $y_j \geqslant 0$, а " $= b_j$ " превращается в $y_i \in \mathbb{R}$.
- Целевая функция двойственной задачи равна (минимизировать) $b_1y_1+\cdots+b_my_m$
- Каждая переменная прямой задачи становится двойственным ограничением. Таким образом, получаем n ограничений. Коэффициент двойственной переменной в двойственных ограничениях равен коэффициенту переменной из ограничения прямой задачи. Таким образом, каждое ограничение i есть: $a_{1i}y_1+\cdots+a_{mi}y_m \lessapprox c_i$, где символ перед c_i аналогичен ограничению на переменную i в прямой задаче. Так, $x_i \leqslant 0$

превращается в " $\leqslant c_i$ ", $x_i \geqslant 0$ превращается в " $\geqslant c_i$ ", а $x_i \in \mathbb{R}$

Общее правило для записи двойственной задачи для данной задачи ЛП приведено в следующей таблице.

Прямая задача	Двойственная задача
$\max c^T x$	$\min b^T y$
$A_i x \leq b_i, i \in \mathcal{R}_1$	$y_i \ge 0, i \in \mathcal{R}_1$
$A_i x = b_i, i \in \mathcal{R}_2$	$y_i \in \mathbb{R}, i \in \mathcal{R}_2$
$A_i x \geq b_i, i \in \mathcal{R}_3$	$y_i \leq 0, i \in \mathcal{R}_3$
$x_j \geq 0, j \in \mathcal{C}_1$	$y^T A^j \ge c_j, j \in \mathcal{C}_1$
$x_j \in \mathbb{R} , j \in \mathcal{C}_2$	$y^T A^j = c_j, j \in \mathcal{C}_2$
$x_j \leq 0, j \in \mathcal{C}_3$	$y^T A^j \leq c_j, j \in \mathcal{C}_3$

$$2x_{1}-4x_{2}+3x_{3} \to \max,$$

$$x_{1}+x_{2}-x_{3}=9,$$

$$-2x_{1}+x_{2} \leq 5,$$

$$x_{1} -3x_{3} \geq 4,$$

$$x_{1} \geq 0,$$

$$x_{3} \leq 0,$$

$$y_{1}+5y_{2}+4y_{3} \to \min$$

$$y_{2} \geq 2$$

$$y_{3}+3y_{4} \leq 3$$

$$y_{4}+3y_{5} = 4$$

$$2x_{1}-4x_{2}+3x_{3} \to \max,$$

$$y_{1}: x_{1}+x_{2}-x_{3}=9,$$

$$-2x_{1}+x_{2} \leq 5,$$

$$x_{1} -3x_{3} \geq 4,$$

$$x_{1} \geq 0,$$

$$x_{3} \leq 0,$$

$$2x_{1}-4x_{2}+3x_{3} \to \max,$$

$$y_{1}: x_{1}+x_{2}-x_{3}=9,$$

$$y_{2}: -2x_{1}+x_{2} \le 5,$$

$$x_{1} -3x_{3} \ge 4,$$

$$x_{1} \ge 0,$$

$$x_{3} \le 0,$$

$$2x_{1}-4x_{2}+3x_{3} \to \max,$$

$$y_{1}: x_{1}+x_{2}-x_{3}=9,$$

$$y_{2}: -2x_{1}+x_{2} \leq 5,$$

$$y_{3}: x_{1} -3x_{3} \geq 4,$$

$$x_{1} \geq 0,$$

$$x_{3} < 0,$$

$$2x_{1}-4x_{2}+3x_{3} \to \max, \qquad 9y_{1}+5y_{2}+4y_{3} \to \min,$$

$$y_{1}: \qquad x_{1}+x_{2}-x_{3}=9, \qquad y_{1}-2y_{2}+y_{3} \geq 2,$$

$$y_{2}: \qquad -2x_{1}+x_{2} \leq 5, \qquad y_{1}+y_{2} = -4,$$

$$y_{3}: \qquad x_{1} \qquad -3x_{3} \geq 4, \qquad -y_{1} \qquad -3y_{3} \leq 3,$$

$$x_{1} \qquad \geq 0, \qquad y_{2} \qquad \geq 0,$$

$$x_{3} \leq 0, \qquad y_{3} \leq 0.$$

$$2x_1 - 4x_2 + 3x_3 \to \max, \qquad 9y_1 + 5y_2 + 4y_3 \to \min,
y_1 : x_1 + x_2 - x_3 = 9, \qquad y_1 - 2y_2 + y_3 \ge 2,
y_2 : -2x_1 + x_2 \le 5, \qquad y_1 + y_2 = -4,
y_3 : x_1 -3x_3 \ge 4, \qquad -y_1 -3y_3 \le 3,
x_1 \ge 0, \qquad y_2 \ge 0,
x_3 \le 0, \qquad y_3 \le 0.$$

$$2x_{1}-4x_{2}+3x_{3} \to \max, \qquad 9y_{1}+5y_{2}+4y_{3} \to \min,$$

$$y_{1}: \qquad x_{1}+x_{2}-x_{3}=9, \qquad y_{1}-2y_{2}+y_{3} \geq 2,$$

$$y_{2}: \qquad -2x_{1}+x_{2} \leq 5, \qquad y_{1}+y_{2} = -4,$$

$$y_{3}: \qquad x_{1} \qquad -3x_{3} \geq 4, \qquad -y_{1} \qquad -3y_{3} \leq 3,$$

$$x_{1} \qquad \geq 0, \qquad y_{2} \qquad \geq 0,$$

$$x_{3} \leq 0, \qquad y_{3} \leq 0.$$

$$2x_{1}-4x_{2}+3x_{3} \to \max, \qquad 9y_{1}+5y_{2}+4y_{3} \to \min,$$

$$y_{1}: \qquad x_{1}+x_{2}-x_{3}=9, \qquad y_{1}-2y_{2}+y_{3} \ge 2,$$

$$y_{2}: \qquad -2x_{1}+x_{2} \le 5, \qquad y_{1}+y_{2} = -4,$$

$$y_{3}: \qquad x_{1} \qquad -3x_{3} \ge 4, \qquad -y_{1} \qquad -3y_{3} \le 3,$$

$$x_{1} \qquad \ge 0, \qquad y_{2} \qquad \ge 0,$$

$$x_{3} \le 0, \qquad y_{3} \le 0.$$

$$2x_{1}-4x_{2}+3x_{3} \to \max, \qquad 9y_{1}+5y_{2}+4y_{3} \to \min,$$

$$y_{1}: \qquad x_{1}+x_{2}-x_{3}=9, \qquad y_{1}-2y_{2}+y_{3} \geq 2,$$

$$y_{2}: \qquad -2x_{1}+x_{2} \leq 5, \qquad y_{1}+y_{2} = -4,$$

$$y_{3}: \qquad x_{1} \qquad -3x_{3} \geq 4, \qquad -y_{1} \qquad -3y_{3} \leq 3,$$

$$x_{1} \qquad \geq 0, \qquad y_{2} \qquad \geq 0,$$

$$x_{3} \leq 0, \qquad y_{3} \leq 0.$$

$$2x_{1}-4x_{2}+3x_{3} \to \max, \qquad 9y_{1}+5y_{2}+4y_{3} \to \min,$$

$$y_{1}: \qquad x_{1}+x_{2}-x_{3}=9, \qquad y_{1}-2y_{2}+y_{3} \geq 2,$$

$$y_{2}: \qquad -2x_{1}+x_{2} \leq 5, \qquad y_{1}+y_{2} = -4,$$

$$y_{3}: \qquad x_{1} \qquad -3x_{3} \geq 4, \qquad -y_{1} \qquad -3y_{3} \leq 3,$$

$$x_{1} \qquad \geq 0, \qquad y_{2} \qquad \geq 0,$$

$$x_{3} \leq 0, \qquad y_{3} \leq 0.$$

Векторные формулировки

Если все ограничения имеют один и тот же знак, можно представить вышеизложенный метод в более короткой форме с помощью векторов и матриц. Следующая таблица представляет связи между различными видами прямых и двойственных задач.

Прямая	Двойственная	Примечания
Максимизировать	Минимизировать	Такая задача называется
$\mathbf{c}^T \mathbf{x}$	$\mathbf{b}^T\mathbf{y}$	«симметричной»
при ограничениях	при ограничениях	двойственной задачей
$\mathbf{A}\mathbf{x} \leqslant \mathbf{b}, \mathbf{x} \geqslant 0$	$\mathbf{A}^T \mathbf{y} \geqslant \mathbf{c}, \mathbf{y} \geqslant 0$	
Максимизировать	Минимизировать	Такая задача называется
$\mathbf{c}^T \mathbf{x}$	$\mathbf{b}^T\mathbf{y}$	«асимметричной»
при ограничениях	при ограничениях	двойственной задачей
$\mathbf{A}\mathbf{x}\leqslant\mathbf{b}$	$\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \geqslant 0$	
Максимизировать	Минимизировать	
$\mathbf{c}^T \mathbf{x}$	$\mathbf{b}^T\mathbf{y}$	
при ограничениях	при ограничениях	
$\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geqslant 0$	$\mathbf{A}^T \mathbf{y} = \mathbf{c}$	

Отношение двойственности симметрично

- В отношении к прямой задаче переменные x_j $(j=1,\ldots,n)$ называются прямыми, а переменные y_i $(i=1,\ldots,m)$ двойственными.
- Отметим также, что отношение двойственности симметрично, т. е. задача двойственная к двойственной является прямой (докажите это!).

Слабая двойственность

Теорема о слабой двойственности утверждает, что для каждого допустимого решения x прямой задачи и каждого допустимого решения y двойственной задачи: $\mathbf{c}^T\mathbf{x}\leqslant \mathbf{b}^T\mathbf{y}$. Другими словами, значение целевой функции для каждого допустимого решения двойственной задачи является верхней границей целевой функции прямой задачи, а значение целевой функции любого допустимого решения прямой задачи является нижней границей для целевой функции двойственной задачи. Из этого следует, что

$$\max_x \mathbf{c}^T \mathbf{x} \leqslant \min_y \mathbf{b}^T \mathbf{y}$$

Слабая двойственность

Теорема о слабой двойственности утверждает, что для каждого допустимого решения x прямой задачи и каждого допустимого решения y двойственной задачи: $\mathbf{c}^T\mathbf{x}\leqslant \mathbf{b}^T\mathbf{y}$. Другими словами, значение целевой функции для каждого допустимого решения двойственной задачи является верхней границей целевой функции прямой задачи, а значение целевой функции любого допустимого решения прямой задачи является нижней границей для целевой функции двойственной задачи. Из этого следует, что

$$\max_x \mathbf{c}^T \mathbf{x} \leqslant \min_y \mathbf{b}^T \mathbf{y}$$

В частности, если прямая задача не ограничена (сверху), то двойственная задача не имеет допустимого решения, а если не ограничена двойственная задача (снизу), то не имеет допустимого решения прямая задача.

Сильная двойственность

Теорема о сильной двойственности утверждает, что границы, определяемые теоремой о слабой двойственности жёсткие, то есть

$$\max_x \mathbf{c}^T \mathbf{x} = \min_y \mathbf{b}^T \mathbf{y}$$

Теоретическое приложение

Слабая двойственность имеет интересное теоретическое приложение — она показывает, что нахождение отдельного допустимого решения настолько же трудно, насколько нахождение оптимального допустимого решения.

Недопустимая задача

Задача линейного программирования может также быть неограниченной или недопустимой. Теория двойственности говорит нам, что:

 Если прямая задача является неограниченной, то двойственная задача недопустима;

Недопустимая задача

Задача линейного программирования может также быть неограниченной или недопустимой. Теория двойственности говорит нам, что:

- Если прямая задача является неограниченной, то двойственная задача недопустима;
- Если двойственная задача является неограниченной, то прямая задача недопустима.

Недопустимая задача

Задача линейного программирования может также быть неограниченной или недопустимой. Теория двойственности говорит нам, что:

- Если прямая задача является неограниченной, то двойственная задача недопустима;
- Если двойственная задача является неограниченной, то прямая задача недопустима.

Однако может быть, что обе задачи, как двойственная, так и прямая, недопустимы.

Приложения

Теорема о максимальном потоке и минимальном разрезе является специальным случаем теоремы о сильной двойственности — максимизация потока является прямой задачей линейного программирования, а минимизация разреза является двойственной задачей линейного программирования. (Теорема Форда - Фалкерсона.)

Приложения

Теорема о максимальном потоке и минимальном разрезе является специальным случаем теоремы о сильной двойственности — максимизация потока является прямой задачей линейного программирования, а минимизация разреза является двойственной задачей линейного программирования. (Теорема Форда - Фалкерсона.)

Другие теоремы, связанные с графами, могут быть доказаны с помощью теоремы о сильной двойственности, в частности, теорема Кёнига.

Приложения

Теорема о максимальном потоке и минимальном разрезе является специальным случаем теоремы о сильной двойственности — максимизация потока является прямой задачей линейного программирования, а минимизация разреза является двойственной задачей линейного программирования. (Теорема Форда - Фалкерсона.)

Другие теоремы, связанные с графами, могут быть доказаны с помощью теоремы о сильной двойственности, в частности, теорема Кёнига.

Теорема о минимаксе для игр с нулевой суммой может быть доказана с помощью теоремы о сильной двойственности.