Latent Variable Models

• Motivation: Find "latent" (unobserved) structure in neural population activity

Latents can be discrete or continuous

• Motivation: Find "latent" (unobserved) structure in neural population activity

Latents can be discrete or continuous

• Motivation: Find "latent" (unobserved) structure in neural population activity

Latents can be discrete or continuous

- Class 1: Intro to LVMs, Factor Analysis (FA), Gaussian Processes (GPs)
- Class 2: Hidden Markov Models (HMMs), Linear Dynamical Systems (LDS)
- Class 3: JC on GLM-HMMs and GPFA
- Class 4: Statistical inference: Expectation-Maximization, Markov Chain Monte Carlo (MCMC), Variational Inference
- Class 5: Switching Dynamical Systems, Poisson Linear Dynamical Systems, Variational Autoencoders (VAEs)
- Class 6: JC on LFADS (sequential VAEs), RSLDSs in neural data
- Anything else you'd like covered?

- Two parts of a LVM
- Prior: $z \sim p(z)$

• Conditional probability of observed data: $x \mid z \sim p(x \mid z)$

• Probability of observed data, p(x), is:

- Probability of observed data, p(x), is:
 - For discrete latents:

$$p(x) = \sum_{i=1}^{m} p(x|z=z_i)p(z=z_i)$$

- Probability of observed data, p(x), is:
 - For discrete latents:

$$p(x) = \sum_{i=1}^{m} p(x|z=z_i)p(z=z_i)$$

For continuous latents:

$$p(x) = \int p(x|z)p(z)dz$$

Intro to Latent Variable Models: Goals

Intro to Latent Variable Models: Goals

Recognition/Inference

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

Intro to Latent Variable Models: Goals

Recognition/Inference

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

- Model Fitting
 - Model including parameters is actually:

$$p(x, z|\theta) = p(x|z, \theta)p(z|\theta)$$

Learning parameters by maximum likelihood:

$$\hat{\theta} = \arg \max_{\theta} p(x|\theta) = \arg \max_{\theta} \int p(x, z|\theta) dz.$$

Factor Analysis

• Can be any Gaussian (see Murphy, book 1, section 20.2)

$$(z)$$
 $p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- z: $D \times T$ latent. dim x samples (timepoints)
- $x: N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- Ψ : $D \times D$ diagonal covariance matrix

$$\left(\begin{array}{c} z \\ \end{array}\right)$$

$$z$$
 $p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$\begin{pmatrix} \mathbf{x} \\ p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^\mathsf{T} + \boldsymbol{\Psi})$$

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \boldsymbol{\Psi})$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- $z: D \times T$ latent. dim x samples (timepoints)
- x: $N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- Ψ : $D \times D$ diagonal covariance matrix

Figure 20.9: Illustration of the FA generative process, where we have L=1 latent dimension generating D=2 observed dimensions; we assume $\Psi=\sigma^2\mathbf{I}$. The latent factor has value $z\in\mathbb{R}$, sampled from p(z); this gets mapped to a 2d offset $\delta=zw$, where $w\in\mathbb{R}^2$, which gets added to μ to define a Gaussian $p(x|z)=\mathcal{N}(x|\mu+\delta,\sigma^2\mathbf{I})$. By integrating over z, we "slide" this circular Gaussian "spray can" along the principal component axis w, which induces elliptical Gaussian contours in x space centered on μ . Adapted from Figure 12.9 of [Bis06].

$$\left(\begin{array}{c} z \\ \end{array}\right)$$

$$z$$
 $p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$\begin{pmatrix} \mathbf{x} \\ p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^\mathsf{T} + \boldsymbol{\Psi})$$

$$p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \boldsymbol{\Psi})$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- $z: D \times T$ latent. dim x samples (timepoints)
- x: $N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- Ψ : $D \times D$ diagonal covariance matrix

Shared and Unique

$$\begin{array}{ccc} \mathcal{Z} & p(\boldsymbol{z}) = \mathcal{N}(\boldsymbol{z}|\boldsymbol{0}, \boldsymbol{\mathrm{I}}) \\ & & & \\ p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi}) \\ & & & \\ \mathcal{X} & & \\ p(\boldsymbol{x}) = \int p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z})d\boldsymbol{z} \\ & & & \\ p(\boldsymbol{x}) = \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^\mathsf{T} + \boldsymbol{\Psi}) \\ & & & \\ & & & \\ \mathsf{Low} \ \mathsf{Rank} + \mathsf{Noise} \end{array}$$

- Can be any Gaussian (see Murphy, book 1, section 20.2)
- Linear Gaussian model
- z: $D \times T$ latent. dim x samples (timepoints)
- x: $N \times T$ obs. dim (neurons) x samples (timepoints)
- $\mathbf{W}: N \times D$ obs. dim. (neurons) x latent dim.
- $\Psi: D \times D$ diagonal covariance matrix

FA vs. Probabilistic PCA vs. PCA

FA vs. Probabilistic PCA vs. PCA

Probabilistic PCA is Factor Analysis where
 Ψ is the identity matrix (all observations have the same independent noise)

FA vs. Probabilistic PCA vs. PCA

- Probabilistic PCA is Factor Analysis where
 Ψ is the identity matrix (all observations have the same independent noise)
- PPCA when $\Psi \rightarrow 0$ becomes PCA

FA vs. PCA: An Example

$$(z) \quad p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

FA vs. PCA: An Example

$$(z) \quad p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(z) = \mathcal{N}(z|\mathbf{0}, \mathbf{I})$$

$$p(\boldsymbol{x}|\boldsymbol{z}) = \mathcal{N}(\boldsymbol{x}|\mathbf{W}\boldsymbol{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

$$cov(X) = WW^T + \Psi = \begin{bmatrix} 101 & 1\\ 1 & 2 \end{bmatrix}$$

FA vs. PCA: An Example

$$W = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \Psi = \begin{bmatrix} 100 & 0 \\ 0 & 1 \end{bmatrix}$$

$$cov(X) = WW^T + \Psi = \begin{bmatrix} 101 & 1\\ 1 & 2 \end{bmatrix}$$

 PCA would give a top eigenvector primarily lying along the first dimension

Factor Analysis: Inferring the latents

$$p(z \mid x) \propto p(x \mid z)p(z)$$

$$= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I)$$

Factor Analysis: Inferring the latents

$$\begin{aligned} p(z \mid x) &\propto p(x \mid z) p(z) \\ &= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I) \\ &\vdots \\ &= \mathcal{N}(\Lambda W^T \Psi^{-1} x, \Lambda) \quad \text{where} \quad \Lambda = \left(W^T \Psi^{-1} W + I \right)^{-1} \end{aligned}$$

Factor Analysis: Inferring the latents

$$\begin{split} p(z \mid x) &\propto p(x \mid z) p(z) \\ &= \mathcal{N}(x \mid Wz, \Psi) \cdot \mathcal{N}(z \mid 0, I) \\ &\vdots \\ &= \mathcal{N}(\Lambda W^T \Psi^{-1} x, \Lambda) \quad \text{where} \quad \Lambda = \left(W^T \Psi^{-1} W + I \right)^{-1} \end{split}$$

• When inferring the latent, the components of x are downweighted in proportion to their amount of independent noise (value in Ψ).

EM for Factor Analysis

- E step: Estimate the posterior, p(z|x), given set parameters
- M step: Estimate the parameters, $[W, \Psi]$, given the expectations of the latents

EM for Factor Analysis PPCA

Figure 20.10: Illustration of EM for PCA when D=2 and L=1. Green stars are the original data points, black circles are their reconstructions. The weight vector \mathbf{w} is represented by blue line. (a) We start with a random initial guess of \mathbf{w} . The E step is represented by the orthogonal projections. (b) We update the rod \mathbf{w} in the M step, keeping the projections onto the rod (black circles) fixed. (c) Another E step. The black circles can 'slide' along the rod, but the rod stays fixed. (d) Another M step. Adapted from Figure 12.12 of [Bis06].

Why probabilistic models, versus PCA?

- Allows having more sophisticated, and more accurate models
 - Different noise models (FA vs PPCA), mixture of factor analyzers, etc...

Principled

Better for missing data, or streaming data

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_N)]$ be the set of unknown function values at these points.

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a **Gaussian process**.

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a Gaussian process. Such a process is defined by its **mean function** $m(\mathbf{x}) \in \mathbb{R}$ and a **covariance function**, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite **Mercer kernel**

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $f_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If f_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a Gaussian process. Such a process is defined by its mean function $m(x) \in \mathbb{R}$ and a covariance function, $\mathcal{K}(x, x') \geq 0$, which is any positive definite Mercer kernel

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}'; \ell) = \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{x}'||^2}{2\ell^2}\right)$

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a **Gaussian process**. Such a process is defined by its **mean function** $m(\mathbf{x}) \in \mathbb{R}$ and a **covariance function**, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite **Mercer kernel**

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(x,x';\ell) = \exp\left(-\frac{||x-x'||^2}{2\ell^2}\right)$

Now consider a function $f: \mathcal{X} \to \mathbb{R}$ evaluated at a set of inputs, $\mathbf{X} = \{x_n \in \mathcal{X}\}_{n=1}^N$. Let $\mathbf{f}_X = [f(x_1), \dots, f(x_N)]$ be the set of unknown function values at these points. If \mathbf{f}_X is jointly Gaussian for any set of $N \geq 1$ points, then we say that $f: \mathcal{X} \to \mathbb{R}$ is a Gaussian process. Such a process is defined by its mean function $m(\mathbf{x}) \in \mathbb{R}$ and a covariance function, $\mathcal{K}(\mathbf{x}, \mathbf{x}') \geq 0$, which is any positive definite Mercer kernel

• Example Kernel ("Radial Basis Function"): $\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}'; \ell) = \exp\left(-\frac{||\boldsymbol{x} - \boldsymbol{x}'||^2}{2\ell^2}\right)$

Gaussian Processes - sampling from the prior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by gpr_demo_noise_free.ipynb.

Gaussian Processes - Example kernels

Figure 18.3: GP kernels evaluated at k(x,0) as a function of x. Generated by gpKernelPlot.ipynb.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by $gpr_demo_noise_free.ipynb$.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by $gpr_demo_noise_free.ipynb$.

Gaussian Processes - estimating a posterior

Figure 18.7: Left: some functions sampled from a GP prior with RBF kernel. Middle: some samples from a GP posterior, after conditioning on 5 noise-free observations. Right: some samples from a GP posterior, after conditioning on 5 noisy observations. The shaded area represents $\mathbb{E}[f(\mathbf{x})] \pm 2\sqrt{\mathbb{V}[f(\mathbf{x})]}$. Adapted from Figure 2.2 of [RW06]. Generated by $gpr_demo_noise_free.ipynb$.