Comparison of
Reinforcement Learning
Algorithms for Continuous
Problem

Swati Kar, Mahesh Banavar, Soumyabrata Dey

Outline

- Introduction
- Problem definition
- Research objective
- Algorithm Description
- Result Analysis
- Discussion

What is Reinforcement Learning?

Reward: -1

Reward: +1

Why Reinforcement Learning?

- Well suited when the environment is dynamic
- Algorithm can easily adapt environment
- No prior knowledge is required, receives feedback from the environment in the form of reward
- Due to diverse adaptability, Reinforcement Learning is applied in
 - Robotics
 - Finance
 - Healthcare etc.

Research Objective

In Reinforcement Learning, two types of environment are used:

Discrete Continuous

Our research objective is comparison among three prominent RL algorithms for Mountain car continuous problem:

- Q-Learning
- Deep Q Learning (DQN)
- Actor-Critic

Problem Definition

- We used OpenAl Gym's Mountain Car environment
- Agent must learn to navigate a car up a steep hill
- State space (position:[0.6 -1.2] and velocity:[0.07 -0.07]) and action space (action: [-1.0 1.0]) of this environment are continuous, that makes it challenging
- If it reaches to the goal position, +100 reward will be provided
- Otherwise, it will get negative reward

Q-Learning Algorithm

- Value based algorithm that learns Q-table
- Maps state-action pairs to expected rewards

Deep Q Learning Algorithm

- Uses a deep neural network to represent the Q-table
- Takes only states as input and produce output for every action

Tabular Q-learning

	Actions			
States	1	2		n
0	Q(0,1)	Q(0,2)		Q(0,n)
1	Q(1,1)	Q(1,2)		Q(1,n)
m	Q(m,1)	Q(m,2)		Q(m,n)

Deep Q-learning

Actor-Critic Algorithm

- Learns a policy and a value function simultaneously
- The actor learns a policy that maps states to actions, and the critic learns a value function that estimates the expected reward of a state.

Results (Q-Learning Algorithm)

- Environment Setup:
 - State space
 - Divided position into 12 equal chunks
 - Divided velocity into 20 equal chunks
 - Divided action space into 3 equal chunks

Converged at 21141 episode

- Environment Setup:
 - State space
 - Divided position into 16 equal chunks
 - Divided velocity into 20 equal chunks
 - Divided action space into 9 equal chunks

Converged at 23806 episode

Results (Q-Learning Algorithm)

Results (Deep Q learning)

Environment Setup:

1/9/2024

- State space is continuous
- Divided action space into 3 equal chunks

Environment Setup:

- State space is continuous
- Action space is continuous

Not Converged (expected)

Results (Actor-Critic Algorithm)

Environment Setup:

- Continuous action space
- Continuous state space

Converged at episode 56

Comparison

Q-Learning Algorithm	Deep Q learning Algorithm	Actor Critic Algorithm
Not suitable forContinuous state spaceContinuous action space	Suitable forContinuous state spaceNot suitable for continuous action space	Suitable for bothContinuous state spaceContinuous action space
Converged approximately 21K episodes	Converged at 682 episode for discrete action space	Converged at 56 episode

Conclusion

- Among three algorithms, Actor-Critic performs significantly better than other two algorithms when environment is continuous
- In future, we will explore more continuous problems

Thank You! Any Questions?

References

- https://www.google.com/search?rlz=1C1VDKB_enUS1033US1033&sxsrf=AB5stBgT956SvHcRCOECbaey_QqEIGGKqg:1690134820210&q=image+of+dqn&tbm=isch&sa=X&ved=2a hUKEwjV4dLssqWAAxXug4kEHVy0CnwQ0pQJegQIDBAB&biw=1600&bih=781&dpr=1#imgrc=5d7kyHEoKgRbOM&vwlns=WyIwQ0JFUWg2Y0dhaGNLRXdpUTh1bnVzcVdBQXhVQUF BQUFIUUFBQUFBUUJBII0=&Ins=W251bGwsbnVsbCxudWxsLG51bGwsbnVsbCxudWxsLG51bGwslkVrY0tKREJrTIRneU5HRm1MV05rWTJVdE5EUXpNQzFoTVdZNUxUbGINeIF6T0Rre FIUVTBOUklmVVRrNVZISkxVV0ZIUW1kYVNVVXhUR3gwZUVKVIRIQnZhRVJGTFcxQ1p3PT0iLG51bGwsbnVsbCxudWxsLDEsbnVsbCxudWxsLFswLDUyNDEyLDQ3NTg4LDEw MDAwMF0sbnVsbCw1XV0=
- https://www.google.com/search?q=image+of+q+learning&tbm=isch&ved=2ahUKEwjd_Z3usqWAAxW-J1kFHarVAVYQ2cCegQIABAA&oq=image+of+q+learning&gs_lcp=CgNpbWcQAzoECCMQJzoFCAAQgAQ6CQgAEBgQgAQQCjoICAAQgAQQsQM6BggAEAgQHjoHCAAQGBCABFC1BliDKGDrKmgAcAB4 AIAB2AGIAcMMkgEFOC41LjGYAQCgAQGqAQtnd3Mtd2l6LWltZ8ABAQ&sclient=img&ei=J2m9ZJ3OIL7P5NoPqquHsAU&bih=781&biw=1600&rlz=1C1VDKB_enUS1033US1033#imgr c=0shAK1RDkZZWNM