Laboratorium grafiki i multimediów Krzywe B-sklejane (B-spline)

Bartosz Ziemkiewicz

Wydział Matematyki i Informatyki UMK, Toruń

2 marca 2014

Funkcje sklejane (spline)

Funkcją sklejaną (ang. spline) stopnia n nazywamy dowolną funkcję $S:[a,b]\to\mathbb{R}$ taką, że

- istnieje podział $a = t_0 < t_1 < \ldots < t_m = b$, taki że na każdym przedziale $[t_i, t_{i+1}]$, S jest wielomianem stopnia co najwyżej n,
- funkcja S oraz jej pochodne rzędu $1, 2, \ldots, n-1$ są ciągłe na przedziale [a, b].

Jeżeli wszystkie odcinki $[t_i,t_{i+1}]$ są równej długości, funkcję sklejaną nazywamy jednorodną. Każdą funkcję sklejaną można przedstawić jako kombinację liniową pewnych funkcji bazowych tzw. B-spline.

Przykład — funkcje sklejane 3-go stopnia

Jeżeli $S:[a,b] \to \mathbb{R}$ jest funkcją sklejaną 3-go stopnia, to istnieje podział $a=t_0 < t_1 < \ldots < t_m = b$, oraz wielomiany P_1,P_2,\ldots,P_m stopnia co najwyżej 3, takie, że

$$S(t) = egin{cases} P_1(t) & \mathsf{dla} \ t \in [t_0, t_1] \ P_2(t) & \mathsf{dla} \ t \in [t_1, t_2] \ dots \ P_m(t) & \mathsf{dla} \ t \in [t_{m-1}, t_m] \end{cases}$$

•

$$P_i(t_i) = P_{i+1}(t_i)$$

 $P'_i(t_i) = P'_{i+1}(t_i)$
 $P''_i(t_i) = P''_{i+1}(t_i)$

dla
$$i = 1, 2, ..., m-1$$

- P_0, P_1, \ldots, P_m punkty kontrolne $(m \ge 3)$,
- Krzywa B-sklejana 3-go stopnia określona przez te punkty składa się z m-2 segmentów Q_3, Q_4, \ldots, Q_m .
- Każdy segment jest krzywą wielomianową stopnia co najwyżej 3.
- Każdy z m-2 segmentów krzywej jest określony przez 4 punkty kontrolne. Segment Q_i jest określony przez punkty $P_{i-3}, P_{i-2}, P_{i-1}, P_i$.
- W szczególności, jeżeli m=3, to krzywa składa się z jednego segmentu określonego przez punkty od P_0 do P_3 .

Źródło: J.D. Foley, et al., "Wprowadzenie do grafiki komputerowej", WNT, Warszawa, 1995

• Segment krzywej Q_i określony przez punkty $P_{i-3}, P_{i-2}, P_{i-1}, P_i$ opisuje równanie parametryczne

$$Q_i(t) = \frac{-t^3 + 3t^2 - 3t + 1}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i,$$

 $\mathsf{gdzie}\ t \in [0,1].$

- Najczęściej określamy wspólny zakres parametru t (tzn. dla całej krzywej, a nie dla każdego segmentu osobno). Możemy np. przyjąć, że $t \in [0, m-2]$. Wówczas dla segmentu Q_3 parametr t zmienia się od $t_3=0$ do $t_4=1$, dla segmentu Q_4 od $t_4=1$ do $t_5=2$, a dla ostatniego segmentu Q_m od $t_m=m-3$ do $t_{m+1}=m-2$.
- Wtedy w równaniu określającym segment Q_i wszystkie wystąpienia t należy zamienić na $t-t_i$.
- Punkty t_i nazywamy węzłami krzywej. Jeżeli sa one równomiernie rozmieszczone, to krzywą nazywamy jednorodną.

Własności

- Segment krzywej Q_i określony przez punkty P_{i-3} , P_{i-2} , P_{i-1} , P_i zaczyn się w okolicy punktu P_{i-2} , a kończy w okolicy punktu P_{i-1} .
- Segment Q_i jest ograniczony wielokątem rozpiętym na jego 4 punktach kontrolnych.
- Na segment Q_i mają wpływ tylko punkty P_{i-3}, P_{i-2}, P_{i-1}, P_i.
 Zmiana położenia żadnych innych punktów nie ma wpływu na ten segment.
- Każdy punkt kontrolny (oprócz początkowych i końcowych) wpływa na cztery segmenty krzywej i nie ma wpływu na jej pozostałą część.
- Sąsiednie segmenty Q_i i Q_{i+1} w miejscu połączenia mają ciągłość C^0 , C^1 i C^2 .

Literatura

J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Wprowadzenie do grafiki komputerowej, WNT 1995