

Name: K.KARTHIK Batch: cometfwc026 Date:15 may 2025

Q.12

Question: For the output \mathbf{F} to be 1 in the logic circuit shown, the input combination should be:

Options:

(A)
$$A = 1$$
, $B = 1$, $C = 0$ (C) $A = 0$, $B = 1$, $C = 0$

(B)
$$A = 1$$
, $B = 0$, $C = 0$ (D) $A = 0$, $B = 0$, $C = 1$

Detailed Solution

We analyze the circuit step by step:

$$X = A \oplus B$$
 (XOR gate output)
 $Y = (A \oplus B)'$ (XNOR gate output)
 $Z = X + Y$ (OR gate output)

 $F = Z \oplus C$ (Final XOR with input C)

Option (A):
$$A = 1, B = 1, C = 0$$

$$X = 1 \oplus 1 = 0$$

$$Y = (1 \oplus 1)' = 1$$

$$Z = 0 + 1 = 1$$

$$F = 1 \oplus 0 = 1 \quad \checkmark$$

Option (B):
$$A = 1, B = 0, C = 0$$

$$X = 1 \oplus 0 = 1$$

$$Y = (1 \oplus 0)' = 0$$

$$Z = 1 + 0 = 1$$

$$F = 1 \oplus 0 = 1 \quad \checkmark$$

Option (C):
$$A = 0, B = 1, C = 0$$

$$X = 0 \oplus 1 = 1$$

$$Y = (0 \oplus 1)' = 0$$

$$Z = 1 + 0 = 1$$

$$F = 1 \oplus 0 = 1 \quad \checkmark$$

Option (D): A = 0, B = 0, C = 1

$$X = 0 \oplus 0 = 0$$

$$Y = (0 \oplus 0)' = 1$$

$$Z = 0 + 1 = 1$$

$$F = 1 \oplus 1 = 0 \times$$

Conclusion

Options (A), (B), and (C) all result in F = 1.

Correct Answers: (A), (B), and (C)