Design Matrices and Experimental Data

Bayesian Modeling for Socio-Environmental Data

N. Thompson Hobbs and Christian Che-Castaldo

April 16, 2019

Analyzing experimental data: Why Bayes?

Design or Purpose	Measurement Variables	Ranked Variables	Attributes
Examination of a single sample	Procedure for grouping a Frequency distribution, Box 2,1: stem and leaf display, Section 2,1: esting for outlens. Section 13.4 Computing median of frequency distribution, Box 4.1 Computing arthribution (Box 4.2 Computing arthribution), Box 4.3 unsolved sample. Box 4.2: frequency distribution, Box 4.3 unnovelend sample, Box 4.2: frequency distribution, Box 4.3 Secting confidence limits: mean, Box 7.2: variance, Box 7.3 Computing 2, and 2, Box 6.2.		Confidence limits for a percentage, Section 17.1 Runs test for randomness in dichotomized data, Box 18.3
Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness off it tests; parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2 Kolmogorov-Smirrov test of goodness of fit, Box 17.3 Graphic Tests' for normality: large sample sizes, Box 6.3, small sample sizes trankit test), Box 6.4 Test of sample statics against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
Single classification	Single, Classification annys. Single, Classification annys. Planned comparison of means in anova, Bos 9.8. Planned comparison of means in anova, Bos 9.8. Planned comparison of means. The method, equal sample sizes, Bos 9.9. Ti, GT2, and Tiday-Naturus, unqual sample sizes, Bos 9.9. Ti, GT2, and Tiday-Naturus, unqual sample sizes, Bos 9.9. Ti, GT2, and Tiday-Naturus, unqual sample sizes, Bos 9.9. Ti, and GT2, Bos 9.12, multiple confidence limits, Section 14.10 betfer, Estimate variance components: unequal sample sizes, Bos 9.2, equal sample sizes, Bos 9.3. Tests of homogeneity of variances, Box 13.1 Tests of equality of means when variances are heterogeneous, Box 13.2.	Kruskal-Wallis test, Box 13.5 Unplanned comparison of means by a ong-summerric STP, Box 17.5	Greate for homogeneity of percentages, Boxes 17:3 and 17:8. Comparison of several samples with an expected frequency distribution, Box 17:4 unplanned analysis of replicated tests of goodness of fir, Box 17:5.
Nested classification	Two-level nested anova: equal sample sizes, Box 10.1; unequal sample sizes, Box 10.4 Three-level nested anova: equal sample sizes, Box 10.3; unequal sample sizes, Box 10.5		
Two-way or multi-way classification	Two way anous with replication, Box 11.1; without replication, Box 11.2; usual bit propriets under the box 11.5 without replication, Box 11.2; when a single missing observation, Box 11.5 Trees way anous, Box 12.1 More than three way classification, Section 12.3 and Box 12.2 Test for nonadiativity in a tow way anous, Box 13.4	Friedman's method for randomized blocks, Box 13.9	Three-way log-linear model, Box 17.9 Randomized blocks for frequency data repeated testing of the same individuals), Box 17.11

Experimental designs expressed as joint distributions

$$\left[\alpha, \beta, \sigma \mid \mathbf{y} \right] \propto \prod_{i=1}^{N} \prod_{j=1}^{M} \operatorname{normal} \left(y_{i,j} \mid g\left(\alpha, \beta, x_{i,j}, w_{i,j}\right), \sigma^{2} \right) \times \\ \operatorname{normal} \left(\alpha \mid 0, 1000 \right) \operatorname{normal} \left(\beta_{1} \mid 0, 1000 \right) \times \\ \operatorname{normal} \left(\beta_{2} \mid 0, 1000 \right) \operatorname{uniform} \left(\sigma \mid 0, 100 \right)$$

$$g\left(\alpha, \beta, x_{i,j}, w_{i,j} \right) = \alpha + \beta_{1} x_{i,j} + \beta_{2} w_{i,j}$$

Photo c/o of the Minnesota Agricultural Experiment Station at http://www.maes.umn.edu.

Design matrix: What is this?

- Great! But how do we handle categorical experimental treatments?

Parameterize a model with categorical predictors

Simulate data for CRD Design

- Completely randomized design (CRD) with 1 factor and 5 levels
- Simulate data for a factor with 5 levels
- 10 replicates per level, 50 replicates overall

Parameterize a model with categorical predictors

Cell Means Model: Joint and DAG

$$\begin{bmatrix} \boldsymbol{\alpha}, \sigma \mid \mathbf{y} \end{bmatrix} \propto \prod_{i=1}^{N} \prod_{j=1}^{M} \begin{bmatrix} y_{i,j} \mid g(\boldsymbol{\alpha}, \mathbf{x}), \sigma^{2} \end{bmatrix} \begin{bmatrix} \alpha_{j} \end{bmatrix} \begin{bmatrix} \sigma \end{bmatrix} \qquad y_{\mathbf{i}, \mathbf{j}}$$
$$g(\boldsymbol{\alpha}, \mathbf{x}) = \alpha_{j} x_{i,j}^{(j)}$$
$$\alpha_{\mathbf{j}} \qquad \sigma$$

- Interest in group means and not effects
- Have prior information for group means
- Lack prior information for group means use vague priors
- Number of parameters = number of unknowns
- Recover effects or grand mean as derived quantities

Cell Means Model: Design Matrix

Cell Means Model: JAGS

```
#priors
for (i im 1:5) {
    alpha[i] - dnorm(0, 0.001)
}
sigma - dunif(0, 100)
tau <- 1 / ( sigma * sigma)

# Likelihood
for (i im 1:50) {
    y[i] - dnorm(alpha[x[i]], tau)
}

# Derived quantities
effect.2.1 <- mu[2] - mu[1]
effect.3.1 <- mu[3] - mu[1]
grandMean <- mean(mu[])</pre>
```

- Use the index trick!
- Compute effects and grand mean as derived quantities

Parameterize a model with categorical predictors

Effects Models - Set to Zero: Joint and DAG

$$[\mu, \boldsymbol{\alpha}, \boldsymbol{\sigma} \mid \mathbf{y}] \propto \prod_{i=1}^{N} \prod_{j=1}^{M} \left[y_{i,j} \mid g(\mu, \boldsymbol{\alpha}, \mathbf{x}), \sigma^{2} \right] [\mu] [\boldsymbol{\alpha}] [\boldsymbol{\sigma}]$$

$$g(\mu, \boldsymbol{\alpha}, \mathbf{x}) = \mu + \sum_{j=2}^{M} \alpha_{j} x_{i,j}^{(j)}$$

$$\mu \qquad \alpha_{j=2...N} \qquad \sigma$$

- Interest in effects and not means
- Have prior information for effect sizes
- Lack prior information for effect sizes can estimate conservatively
- Number of parameters > number of unknowns requires constraint
- Recover group means as derived quantities

Effects Model- Set to Zero: Design Matrix

$$\begin{bmatrix} \widehat{y_{n,5}} \\ \widehat{y_{n,1}} \\ \widehat{y_{n,2}} \\ \widehat{y_{n,3}} \\ \widehat{y_{n,4}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} \mu \\ \mu + \alpha_1 \\ \mu + \alpha_2 \\ \mu + \alpha_3 \\ \mu + \alpha_4 \end{bmatrix}$$

- CRD with 1 factor and 5 levels - Remove parameter by setting $\alpha_5=0$ - Group 5 is now represented by intercept μ - α_j represent deviations from this baseline/control group

Effects Models - Set to Zero: JAGS

```
# Priors
for (i in 1:4){
  alpha[i] ~ dnorm(0, 0.001)
mu ~ dnorm(0, 0.001)
sigma ~ dunif(0, 100)
tau <- 1 / ( sigma * sigma)
# Likelihood
for (i in 1:50) {
 v[i] ~ dnorm(yhat[i], tau)
  yhat[i] <- mu + alpha[1] *treatment1[i] + alpha[2] *treatment2[i] + alpha[3] *treatment3[i] +
    alpha[4]*treatment4[i]
# Derived quantities
cell[5] <- mu
for (i in 1:4){
  cell[i] <- mu + alpha[i]
grandMean <- mean(cell[])
```

Compute cell and grand means as derived quantities

Parameterize a model with categorical predictors

Effects Model - Multi-level: Joint and DAG

- Interest in effects and not means
- Have prior information for effect sizes
- Lack prior information for effect sizes can estimate conservatively
- Number of parameters > number of unknowns is ok! Why?
- Recover group means as derived quantities

Effects Model - Multi-Level: Design Matrix

$$\begin{bmatrix} \widehat{y_{n,1}} \\ \widehat{y_{n,2}} \\ \widehat{y_{n,3}} \\ \widehat{y_{n,4}} \\ \widehat{y_{n,5}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{bmatrix} = \begin{bmatrix} \mu + \alpha_1 \\ \mu + \alpha_2 \\ \mu + \alpha_3 \\ \mu + \alpha_4 \\ \mu + \alpha_5 \end{bmatrix}$$

- CRD with 1 factor and 5 levels
- Intercept, μ , is the grand mean
- \bullet α_i represent deviations from the grand mean
- ullet α_j are partially pooled allowing us to estimate all of them directly

Effects Models - Multi-level: JAGS

```
# Priors
mu ~ dnorm(0, 0,001)
for (i in 1:2){
  sigma[i] ~ dunif(0, 100)
  tau[i] <- 1 / ( sigma[i] * sigma[i])
# Likelihood
for (i in 1:5){
  alpha[i] ~ dnorm (0, tau[2])
for (i in 1:50) {
  v[i] ~ dnorm(v.hat[i], tau[1])
  v.hat[i] <- mu + alpha[x[i]]</pre>
# Derived quantities
for (i in 1:5){
  cell[i] <- mu + mean(alpha[i])</pre>
```

- Use index trick!
- Compute cell means as derived quantities

Bayesian Approach to Experimental Analysis

- Flexible framework
- Ease of interpreting effects

Make statements like:

$$Pr(Browsed > Unbrowsed) = .8$$

Cl95: effect of browse = -4.0

Bayesian ANOVA

A way to summarize the "relative importance of different sources of variation in a dataset." $(Gelman\ and\ Hill,\ 2007)$

- Uses the finite-population SD and not the superpopulation SD
- Can show variation decomposition across multiple levels
- Unbalanced data and complex or incomplete designs easily handled
- Can still be done with "fixed" effects

Fig. 1. Seaweed example, with ANOVA display of the estimated standard deviation of the estimated variance components showing a general pattern similar to that of the conventional ANOVA. Circles are estimated posterior means, short thick lines are the 50% posterior credible intervals, and the long thin lines are the 59% posterior credible intervals,

Fig. 2. Estimated treatment main effect of the seaweed grazer example shows that the regeneration rate decreases, grazing pressure increases. The six treatments are: C, control, no grazers allowed; L, nolly simplest allowed; f, nolly small allowed; Lf, large fish excluded; fF, limpets excluded; and LfF, all erazers allowed. The largest difference between treatments

Hector et al. 2011. Qian and Shen 2007. Gelman 2005

Bayesian ANOVA: JAGS

Compute finite-population SDs computation as derived quantities

```
# Priors
mu ~ dnorm(0, 0.001)
for (i in 1:2){
  sigma[i] ~ dunif(0, 100)
  tau[i] <- 1 / ( sigma[i] * sigma[i])
# Likelihood
for (i in 1:5){
  alpha[i] ~ dnorm (0, tau[2])
for (i in 1:50) {
  y[i] ~ dnorm(y.hat[i], tau[1])
  y.hat[i] <- mu + alpha[x[i]]
  s.verr[i] <- v[i] - v.hat[i]
# Derived quantities
for (i in 1:5){
  cell[i] <- mu + mean(alpha[i])
s.alpha <- sd(alpha[])
s.y <- sd(y.err[])
```

Mutiple Mean Comparison

- Fundamentally different approach to mean comparisons
- Shrinkage and/or informed priors

Figure 1. Treatment effect point estimates and 95% intervals across the eight Infant Health and Development Program sites. Note. The left panel display classical estimates from a linear regression. The middle panel displays the same point estimates as in the left panel but with confidence intervals adjusted to account for a Bonferroni correction. The right panel displays posterior means and 95% intervals for each of the eight site-specific treatment effects from a fitted multilevel model.

Gelman et al. 2012

References

- [1] A. Gelman. Analysis of variance why it is more important than ever. Annals of Statistics, 33(1):1-31, 2005.
- [2] A. Gelman and J. Hill. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Boston, MA, USA, 2007.
- [3] A. Gelman, J. Hill, and M. Yajima. Why we (usually) don't have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5(2):189-211, 2012.
- [4] A. Hector, T. Bell, Y. Hautier, F. Isbell, M. Kéry, P. B. Reich, J. van Ruijven, and B. Schmid. BUGS in the analysis of biodiversity experiments: Species richness and composition are of similar importance for grassland productivity. PLoS ONE, 6(3):e17434, 2011.
- [5] S. S. Qian and Z. Shen. Ecological applications of multilevel analysis of variance. Ecology, 88(10):2489-2495, 2007.
- [6] A. Gelman and E. Loken. The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time. Department of Statistics, Columbia University, 2013.

Exercise

You have 60 plots spread out over a large area. For each plot, you apply one of three possible treatments (treatment A, B, or C). In addition, you are concerned about the effect of rainfall on these plots so you measure total rainfall on each plot during the course of the experiment.

- What experimental design is this?
- What would the design matrix look like?
- Write the DAG and joint for this experiment.

Let's say you thought the effects of rainfall varied by treatment.

Modify your DAG and joint distribution to measure these effects.

Exercise

You have 60 plots organized into groups of three. For each group, you apply all three treatments, one treatment per plot. The plots are in a small area so you ignore rainfall this time.

- What experimental design is this?
- What would the design matrix look like?
- Write the DAG and joint for this experiment.

Now assume the number of treatments is 10 instead of 3.

• How would you model the effects hierarchically?