

FCC PART 95 MEASUREMENT AND TEST REPORT

For

Shenzhen Genvict Technologies Co.,Ltd

12th Floor, Block A, Tsinghua Hi-tech Park, Nanshan District, Shenzhen, Guangdong, China

FCC ID: 2AL59WB-L20B

Report Type: **Product Type: DSRC** Original Report **Report Number:** RDG170516801-00 **Report Date:** 2017-11-02 Jerry Zhang Jerry Zhang **Reviewed By:** EMC Manager Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC \$1.1310 & \$2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	8
FCC §2.1046, §95.639 &ASTM E2213-03§8.9.1- RF OUTPUT POWER	10
APPLICABLE STANDARD	10
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	10
TEST DATA	10
FCC §2.1049& ASTM E2213-03§8.9.2– OCCUPIED BANDWIDTH AND EMISSION MASK	12
APPLICABLE STANDARD	12
TEST PROCEDURE	12
TEST EQUIPMENT LIST AND DETAILS	12
TEST DATA	12
FCC §2.1051& ASTM E2213-03§8.9.2 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	20
APPLICABLE STANDARD	20
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1053& ASTM E2213-03§8.9.2 - RADIATED SPURIOUS EMISSION	24
APPLICABLE STANDARD	
TEST PROCEDURE	24
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC§2.1055& ASTM E2213-03§8.9.5 - FREQUENCY STABILITY	27
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	27

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Shenzhen Genvict Technologies Co.,Ltd* 's product, model number: *WB-L20B* (*FCC ID: 2AL59WB-L20B*) or the "EUT" in this report was a *DSRC*, which was measured approximately: 17.5 cm (L) x 14.5 cm (W) x 3 cm (H), rated input voltage: DC9-36V.

*All measurement and test data in this report was gathered from production sample serial number: 170516801 (Assigned by BACL, Dongguan). The EUT was received on 2017-05-17.

Report No.: RDG170516801-00

Objective

This report is prepared on behalf of *Shenzhen Genvict Technologies Co.,Ltd* in accordance with Part 2 and Part 95, Subpart E and Subpart L of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AL59WB-L20B. FCC Part 15C DSS submissions with FCC ID: 2AL59WB-L20B.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with Part 95 Subpart L and Subpart E of the Federal Communication Commissions rules.

Applicable Standards: TIA/EIA 603-D-2010, and ASTM E2213-03.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.64dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.32 dB 1G~40GHz: 5.13 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

FCC Part 95 Page 3 of 28

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Report No.: RDG170516801-00

Bay Area Compliance Laboratories Corp. (Dongguan) has been accredited to ISO 17025 by CNAS(Lab code: L5662). And accredited to ISO 17025 by NVLAP(Test Laboratory Accreditation Certificate Number 500069-0), the FCC Designation No. CN5002 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Dongguan) was registered with ISED Canada under ISED Canada Registration Number 3062D.

FCC Part 95 Page 4 of 28

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

The device is a class A private On-Board Unit(DSRCS-OBUs), operating at ASTM-DSRC channel 172-184,

Report No.: RDG170516801-00

Channel No.	Frequency range (MHz)
172	5855-5865
174	5865-5875
176	5875-5885
178	5885-5895
180	5895-5905
182	5905-5915
184	5915-5925

The device have two DSRC output, channel 178 works at DSRC1 port, and other channels works at DSRC2 port, they can't transmisit simultaneously.

Test Software Configuration

The software "Launch GVWBL20BTools.exe" was used for testing, and the commands were provided by manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power across all data rates bandwidths, and modulations.

Test Software Version		Launch GVWBL20BTools.exe			
	Antenna Port	Channel No.	Data Rate (Mbps)	Power Level	
	DSRC1 Port	178	3	1	
	DSRC2 Port	172	3	1	
DSRC		174	3	1	
Dorce		176	3	1	
		180	3	1	
		182	3	1	
			3	1	

Equipment Modifications

No modification was made to the EUT tested.

FCC Part 95 Page 5 of 28

Block Diagram of Test Setup

FCC Part 95 Page 6 of 28

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
FCC§1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
\$2.1046, \$95.639 ASTM E2213-03\$8.9.1	RF Output Power	Compliance
\$2.1049, \$95.633(c) \$95.635(b)(1)(3)(7) ASTM E2213-03\$8.9.2	Occupied Bandwidth&Emission Mask	Compliance
\$2.1051, \$95.635 ASTM E2213-03\$8.9.2	Spurious Emission at Antenna Terminal	Compliance
\$2.1053, \$95.635 ASTM E2213-03\$8.9.2	Spurious Radiated Emissions	Compliance
§2.1055(d), §95.626(b) ASTM E2213-03§8.9.5	Frequency Stability	Compliance

Report No.: RDG170516801-00

FCC Part 95 Page 7 of 28

Report No.: RDG170516801-00

Applicable Standard

According to 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz;

MPE Calculation

Prediction of power density at the distance of the applicable MPE limit

$$S = PG/4\pi R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW); G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

FCC Part 95 Page 8 of 28

^{* =} Plane-wave equivalent power density;

Calculated Data:

Module	Frequency	Antenna Gain		Tune Pov	-	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)
2.4G	2402-2480	3	2.00	15	31.62	20.00	0.0126	1.0
2.40	2412-2462	3	2.00	15	31.62	20.00	0.0126	1.0
DSRC	5860-5920	5	3.14	0	1.0	20.00	0.0006	1.0

Note: The maximum tune-up power including tolerance was declared by manufacturer.

The WLAN or Bluetooth can transmit simultaneously with DSRC:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$

$$\begin{array}{l} = & S_{2.4}/S_{limit\text{-}2.4} + S_{DSRC}/S_{limit\text{-}DSRC} \\ = & 0.0126/1 + 0.0006/1 \\ = & 0.0132 \\ < 1.0 \end{array}$$

Result: The device meet FCC MPE at 20 cm distance

FCC Part 95 Page 9 of 28

FCC §2.1046, §95.639 & ASTM E2213-03§8.9.1- RF OUTPUT POWER

Report No.: RDG170516801-00

Applicable Standard

Per FCC §2.1046, §95.639&ASTM E2213-03§8.9.1

Test Procedure

Conducted RF Output Power:

TIA-603-D section 2.2.1

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU 26	200256	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/
Unknown	RF Attenuator	10dB	10dB-1	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	27.4 ℃
Relative Humidity:	49 %
ATM Pressure:	100.1 kPa

⁻The testing was performed by Gavin Xu on 2017-10-26.

FCC Part 95 Page 10 of 28

Test Mode: Transmitting

Test Result: Compliance.

Channel No.	Frequency (MHz)	Antenna Output Power (dBm)	Antenna Output Power Limit (dBm)	Antenna Gain (dBi)	e.i.r.p (dBm)	e.i.r.p Limit (dBm)
172	5860	-0.53	28.8		4.47	33
174	5870	-0.4	28.8		4.6	33
176	5880	-0.55	28.8		4.45	33
178	5890	-0.55	28.8	5.0	4.45	33
180	5900	-1.41	20		3.59	23
182	5910	-1.55	20		3.45	23
184	5920	-0.96	28.8		4.04	33

Report No.: RDG170516801-00

FCC Part 95 Page 11 of 28

FCC §2.1049& ASTM E2213-03§8.9.2– OCCUPIED BANDWIDTH AND EMISSION MASK

Report No.: RDG170516801-00

Applicable Standard

According to FCC §2.1049 and ASTM E2213-03§8.9.2

Test Procedure

TIA-603-D, section 2.2.11

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU 26	200256	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/
Unknown	RF Attenuator	10dB	10dB-1	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.6 ℃
Relative Humidity:	43%
ATM Pressure:	101.9 kPa

The testing was performed by Gavin Xu on 2017-11-02.

Test Mode: Transmitting

Channel No.	Frequency (MHz) 99% Occupied Bandwidth (MHz)		26 dB Bandwidth (MHz)	
172	5860	8.096	9.379	
174	5870	8.056	9.419	
176	5880	8.096	9.339	
178	5890	8.016	9.419	
180	5900	8.096	9.419	
182	5910	8.096	9.499	
184	5920	8.096	9.499	

Please refer to the following plots:

FCC Part 95 Page 12 of 28

5870 MHz

FCC Part 95 Page 13 of 28

5890 MHz

FCC Part 95 Page 14 of 28

5910 MHz

FCC Part 95 Page 15 of 28

Emission Mask:

5860 MHz

FCC Part 95 Page 16 of 28

5880 MHz

FCC Part 95 Page 17 of 28

5900 MHz

FCC Part 95 Page 18 of 28

5920 MHz

FCC Part 95 Page 19 of 28

FCC §2.1051& ASTM E2213-03§8.9.2 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG170516801-00

Applicable Standard

According to FCC §2.1051 and ASTM E2213-03§8.9.2

Test Procedure

Adjust the spectrum analyzer for the following settings:

- 1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1 GHz.
- 2) Video Bandwidth ≥3 times the resolution bandwidth.
- 3) Sweep Speed ≤ 2000 Hz per second.
- 4) Detector Mode = mean or average power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU 26	200256	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/
Unknown	RF Attenuator	10dB	10dB-1	Each Time	/
R&S	Spectrum Analyzer	FSP 38	100478	2016-12-08	2017-12-08

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.6 ℃	
Relative Humidity:	43%	
ATM Pressure:	101.9 kPa	

The testing was performed by Gavin Xu on 2017-11-02.

FCC Part 95 Page 20 of 28

Test Mode: Transmitting(all spurious emission under limit -25dBm)

FCC Part 95 Page 21 of 28

Date: 2.NOV.2017 14:01:45

5890 MHz

FCC Part 95 Page 22 of 28

Date: 2.NOV.2017 14:02:19

FCC Part 95 Page 23 of 28

FCC §2.1053& ASTM E2213-03§8.9.2 - RADIATED SPURIOUS EMISSION

Report No.: RDG170516801-00

Applicable Standard

FCC §2.1053 and ASTM E2213-03§8.9.2

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

FCC Part 95 Page 24 of 28

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-09-01	2018-09-01
Sunol Sciences	Antenna	JB3	A060611-1	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2017-09-01	2018-09-01
R&S	Spectrum Analyzer	E4440A	SG43360054	2016-12-08	2017-12-08
ETS LINDGREN	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
MITEQ	Amplifier	AFS42- 00101800-25- S-42	2001271	2017-09-05	2018-09-05
Quinstar	Amplifier	QLW- 18405536-JO	15964001001	2017-06-27	2018-06-27
HP	Signal Generator	1026	320408	2016-12-08	2017-12-08
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2017-06-16	2020-06-15
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-02 1302	2016-11-18	2019-11-18
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1302	2016-11-18	2019-11-18
Unknown	Coaxial Cable	Chamber A-1	4m	2017-09-05	2018-09-05
Unknown	Coaxial Cable	Chamber B-1	0.75m	2017-09-05	2018-09-05
Unknown	Coaxial Cable	Chamber A-2	10m	2017-09-05	2018-09-05
Unknown	Coaxial Cable	Chamber B-2	8m	2017-09-05	2018-09-05

Report No.: RDG170516801-00

Test Data

Environmental Conditions

Temperature:	24.7 ℃	
Relative Humidity:	33 %	
ATM Pressure:	101.9 kPa	

The testing was performed by Gavin Xu on 2017-10-22.

FCC Part 95 Page 25 of 28

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Mode: Transmitting

30MHz-40GHz:

			Sul	bstituted Metl	nod		Limit (dBm)	Margin (dB)
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)		
			freq	uency: 5890 N	ИНz			
375.320	Н	44.71	-38.7	0.0	0.6	-39.3	-25	14.3
375.320	V	38.78	-42.3	0.0	0.6	-42.9	-25	17.9
11780.000	Н	48.64	-51.3	12.8	1.8	-40.3	-25	15.3
11780.000	V	49.76	-48.9	12.8	1.8	-37.9	-25	12.9
17670.000	Н	45.98	-47.9	12.1	2.2	-38.0	-25	13
17670.00	V	46.75	-45.9	12.1	2.2	-36.0	-25	11
			freq	uency: 5870 N	ИHz			
375.320	Н	41.20	-42.2	0.0	0.6	-42.8	-25	17.8
375.320	V	38.83	-42.2	0.0	0.6	-42.8	-25	17.8
11740.00	Н	47.63	-52.3	12.9	1.8	-41.2	-25	16.2
11740.00	V	47.88	-50.7	12.9	1.8	-39.6	-25	14.6
17610.00	Н	46.23	-48.2	12.5	2.1	-37.8	-25	12.8
17610.00	V	46.75	-46.8	12.5	2.1	-36.4	-25	11.4

Report No.: RDG170516801-00

FCC Part 95 Page 26 of 28

FCC§2.1055& ASTM E2213-03§8.9.5 - FREQUENCY STABILITY

Applicable Standard

According to FCC §2.1055 and & ASTM E2213-03§8.9.5

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Frequency Counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Report No.: RDG170516801-00

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the Frequency Counter.

Frequency Stability vs. Voltage:

- 1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The output frequency was recorded for each voltage.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU 26	200256	2016-12-08	2017-12-08
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-4	2017-09-10	2018-09-09
UNI-T	Multimeter	UT39A	M130199938	2017-04-02	2018-04-02
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.6 ℃	
Relative Humidity:	43%	
ATM Pressure:	101.9 kPa	

The testing was performed by Gavin Xu on 2017-11-02.

FCC Part 95 Page 27 of 28

Test Mode: Transmitting

DSRC1 Port

Test Frequency:5890MHz						
Temperature	Voltage	Measured Frequency	Frequency Stabilty	Limit		
$^{\circ}$	$\mathbf{V}_{\mathbf{DC}}$	MHz	ppm	ppm		
-30		5890.014	2.38	+/-10		
-20		5890.007	1.19	+/-10		
-10		5890.009	1.53	+/-10		
0		5890.004	0.68	+/-10		
10	36	5890.006	1.02	+/-10		
20		5890.012	2.04	+/-10		
30		5890.015	2.55	+/-10		
40		5890.012	2.04	+/-10		
50		5890.012	2.04	+/-10		
25	9	5890.008	1.36	+/-10		

Report No.: RDG170516801-00

DSRC2 Port:

Test Frequency:5870MHz						
Temperature	Voltage	Voltage Measured Frequency		Limit		
${\mathfrak C}$	$\mathbf{V}_{\mathbf{DC}}$	MHz	ppm	ppm		
-30		5870.018	3.07	+/-10		
-20		5870.012	2.04	+/-10		
-10		5870.013	2.21	+/-10		
0		5870.014	2.39	+/-10		
10	36	5870.017	2.90	+/-10		
20		5870.011	1.87	+/-10		
30		5870.016	2.73	+/-10		
40		5870.012	2.04	+/-10		
50		5870.013	2.21	+/-10		
25	9	5870.018	3.07	+/-10		

***** END OF REPORT *****

FCC Part 95 Page 28 of 28