Kmeans pro Poker Hands

Martin Lukeš

TABLE I TAULKA ATRIBUTŮ

Atribut	Význam	Rozsah
C1	Barva první karty	1-4
S1	Hodnota první karty	1-13
C2	Barva druhé karty	1-4
S2	Hodnota druhé karty	1-13
C3	Barva třetí karty	1-4
S3	Hodnota třetí karty	1-13
C4	Barva čtvrté karty	1-4
S4	Hodnota čtvrté karty	1-13
C5	Barva páté karty	1-4
S5	Hodnota páté karty	1-13
Hand Power	Síla ruky	0-11

Abstrakt—Rozpoznání síly ruky v pokeru spolu s pozorováním tellů (manýr, výraz, emoce či zvyk vyjadřující informaci o stavu ruky hráče) oddělují špatné hráče od dobrých. Tento dokument se zaměril na zkoumání síly jednotlivých rukou.

I. ASSIGNMENT

Vyberte si data, která jsou použitelná pro klasifikaci nebo regresi. Data předzpracujte a naimportujte do DM aplikace. Zvolte si shlukovací algoritmus (k-means, hierarchické shlukování, SOM). Najděte nastavení parametrů zvoleného algoritmu tak, aby produkoval co nejlepší výsledky. Interpretujte výsledky.

II. INTRODUCTION

Jako shlukovací algoritmus jsem si vybral K-means. Data byla již v číselné podobě a bylo nutné je jen normalizovat. Atributy a jejich význam je zachycen v tabulce 1. Poslední atribut Hand Power je tzv. učitel, který vyjadřuje sílu dané ruky. Položek v datech je přes jeden milion, proto jsem použil náhodný vzorek asi 3000 instancí, který pro mé účely postačil.

III. METHODOLOGY

K-means je shlukovací algoritmus, který je zařazován do skupiny tzv centroidních algoritmů. K-means nahrazuje všechny shluky jejich reprezentanty (centroidy) a nemusí tak vypočítávat všechny vzdálenosti, ale jen vzdálenosti všech bodů od centroidů.

K měření vzdáleností můžeme využít různých měřících metod (metrik). V pokusech byla použita eukleidovská, manhattanská a cosinova metrika. Eukleidovská - E(P,Q) - metrika měří vzdálenost dvou bodů (P a Q) v n-rozměrném prostoru jako odmocninu z součtu kvadrátů rozdílů odpovídajících souřadnic.

TABLE II Tabulka porovnávající vzdálenosti podle hodnoty silhouette

1

Počet shluků	Eukleidovská vzd	Manhattonská vzd	Cosinova vzd
2	0,17	0,09	0,17
5	0,15	0,07	0,16
10	0,15	0,06	0,15
15	0,15	0,07	0,16
20	0,15	0,07	0,16

$$P = (p_1, p_2, \dots, p_n)$$

$$Q = (q_1, q_2, \dots, q_n)$$

$$E(P, Q) = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Manhattanská metrika - M (P,Q) - měří vzdálenost dvou bodů (P a Q) v n-rozměrném prostoru jako součet absolutních hodnot rozdílů odpovídajících souřadnic.

$$P = (p_1, p_2, ..., p_n)$$

$$Q = (q_1, q_2, ..., q_n)$$

$$M(P, Q) = \sum_{k=1}^{n} |p_k - q_k|$$

Kosinova metrika - dist (P,Q) - je hodnota podobnosti (úhlu), který svírají P a Q.

$$P = (p_1, p_2, ..., p_n)$$

$$Q = (q_1, q_2, ..., q_n)$$

$$dist(P, Q) = \arccos \frac{\sum_{k=1}^{n} p_k * q_k}{\sqrt{\sum_{k=1}^{n} p_k^2 * \sum_{k=1}^{n} q_k^2}} =$$

$$= \arccos \left(\frac{P * Q}{|P| * |Q|}\right)$$

Na Figure 1 vidíme porovnání všech tří metrik. Nezávislá proměnná je počet centroidů a závislá je hodnota silhouette. Data jsou nejlépe shlukovaná pro dva shluky u všech metrik. Na Figure 2, 3, 4 vidíme grafy pro nejlepší počty shluků (2).

IV. CONCLUSION

Při měření jsem zjistil, že model je nejlepší pro počet shluků roven 2 u všech metod, což je trochu zvláštní. Je možné, že data nejsou pro K-means úplně ideální, protože jeden parametr je nejlepší pro všechny modely, navíc pro dva s absolutně stejnou hodnotou silhouette. Nejlépe tedy dopadl model Cosinovy a Eukleidovské vzdálenosti.

REFERENCES

[1] Materiály z přednášek.

Fig. 1. Graf porovnání metrik podle hodnoty silhouette

Fig. 3. Silueta Cosinovy vzd

Fig. 4. Silueta Eukleidovské vzd