Appendix

Code used to produce plots, tables, and draw conclusions. All written by Edward Huber for purposes of this analysis.

head(quality)

No	year	month	day	hour	pm2.5	DEWP	TEMP	PRES	cbwd	lws	ls	lr	
1	2010	1	1	0	NA	-21	-11	1021	NW	1.79	0	0	
2	2010	1	1	1	NA	-21	-12	1020	NW	4.92	0	0	
3	2010	1	1	2	NA	-21	-11	1019	NW	6.71	0	0	
4	2010	1	1	3	NA	-21	-14	1019	NW	9.84	0	0	
5	2010	1	1	4	NA	-20	-12	1018	NW	12.97	0	0	
6	2010	1	1	5	NA	-19	-10	1017	NW	16.10	0	0	

In [3]:

```
nrow(quality)
```

43824

In [4]:

```
quality2 = drop_na(quality)
row.names(quality2) = 1:nrow(quality2)
names(quality2) = tolower(names(quality2))
nrow(quality2)
```

In [5]:

head(quality2)

```
no year month day hour pm2.5 dewp temp pres cbwd
                                                        iws is ir
25 2010
                 2
                       0
                            129
                                         -4 1020
             1
                                  -16
                                                    SE 1.79
                                                             0 0
                                                    SE 2.68 0 0
26 2010
                           148
                                  -15
                                         -4 1020
             1
                 2
                       1
27 2010
             1
                 2
                       2
                           159
                                         -5 1021
                                                    SE 3.57 0 0
                                  -11
28 2010
                 2
                       3
                           181
                                         -5 1022
                                                    SE 5.36 1 0
                                   -7
29 2010
             1
                 2
                       4
                           138
                                        -5 1022
                                                    SE 6.25 2 0
                                   -7
                 2
                       5
                           109
                                        -6 1022
30 2010
             1
                                   -7
                                                    SE 7.14 3 0
```

In [6]:

library(tidyverse)

```
library(lubridate)
Registered S3 method overwritten by 'rvest':
 read xml.response xml2
— Attaching packages —
                                                             tidyve
rse 1.2.1 —
✓ tibble 2.1.1

✓ dplyr

                                 0.8.0.1
✓ readr
                      ✓ stringr 1.4.0
          1.3.1
                      ✔ forcats 0.4.0
✓ purrr
          0.3.3
- Conflicts
                                                       - tidyverse co
nflicts() -
# dplyr::filter() masks stats::filter()
x dplyr::lag()
                  masks stats::lag()
# dplyr::select() masks MASS::select()
Attaching package: 'lubridate'
The following object is masked from 'package:base':
   date
```

In [7]:

pm2.5	dewp	temp	pres	iws	is	ir	datetime
129	-16	-4	1020	1.79	0	0	2010-01-02 00:00:00
148	-15	-4	1020	2.68	0	0	2010-01-02 01:00:00
159	-11	-5	1021	3.57	0	0	2010-01-02 02:00:00
181	-7	-5	1022	5.36	1	0	2010-01-02 03:00:00
138	-7	-5	1022	6.25	2	0	2010-01-02 04:00:00
109	-7	-6	1022	7.14	3	0	2010-01-02 05:00:00

In [8]:

```
ggplot(data = quality3, aes(x = datetime, y = pm2.5)) +
  geom_line() +
  labs(x = "Date", y = "PM2.5 Level",
    title = "PM2.5 Concentration Varies Greatly Over Time",
  subtitle = "Beijing, China: 2010-2014")
```

PM2.5 Concentration Varies Greatly Over Time

Beijing, China: 2010-2014

In [9]:

#creating new dataframe for use in summarising statistics quality4 = quality3[-c(8)] head(quality4)

pm2.5	dewp	temp	pres	iws	is	ir
129	-16	-4	1020	1.79	0	0
148	-15	-4	1020	2.68	0	0
159	-11	-5	1021	3.57	0	0
181	-7	-5	1022	5.36	1	0
138	-7	-5	1022	6.25	2	0
109	-7	-6	1022	7.14	3	0

In [10]:

```
summary(quality4)
```

```
pm2.5
                      dewp
                                       temp
                                                       pres
                                                  Min.
                                  Min.
Min.
     : 0.00
                 Min.
                        :-40.00
                                         :-19.0
                                                         : 991
1st Qu.: 29.00
                 1st Qu.:-10.00
                                  1st Qu.:
                                                  1st Qu.:1008
                                            2.0
Median : 72.00
                 Median: 2.00
                                  Median: 14.0
                                                  Median: 1016
Mean
     : 98.61
                 Mean
                       : 1.75
                                  Mean
                                         : 12.4
                                                  Mean
                                                         :1016
3rd Qu.:137.00
                 3rd Qu.: 15.00
                                  3rd Qu.: 23.0
                                                  3rd Qu.:1025
Max.
       :994.00
                       : 28.00
                                         : 42.0
                 Max.
                                  Max.
                                                  Max.
                                                         :1046
     iws
                       is
                                          ir
Min.
                 Min.
                        : 0.00000
      :
                                    Min.
                                           : 0.0000
          0.45
1st Ou.: 1.79
                 1st Ou.: 0.00000
                                    1st Ou.: 0.0000
Median : 5.37
                 Median : 0.00000
                                    Median : 0.0000
     : 23.87
Mean
                 Mean
                      : 0.05534
                                    Mean
                                         : 0.1949
3rd Qu.: 21.91
                 3rd Qu.: 0.00000
                                    3rd Qu.: 0.0000
Max. :565.49
                        :27.00000
                                           :36.0000
                 Max.
                                    Max.
```

In [11]:

```
#plotting each variable vs. pm2.5 levels
par(mfrow = c(3,2), col.axis = "white", col.lab = "white", tck = 0)

ggplot(data = quality4, aes(x = dewp, y = pm2.5)) + geom_point()
ggplot(data = quality4, aes(x = temp, y = pm2.5)) + geom_point()
ggplot(data = quality4, aes(x = pres, y = pm2.5)) + geom_point()
ggplot(data = quality4, aes(x = iws, y = pm2.5)) + geom_point()
ggplot(data = quality4, aes(x = is, y = pm2.5)) + geom_point()
ggplot(data = quality4, aes(x = ir, y = pm2.5)) + geom_point()
#ggarrange(dewp, temp, pres, iws, is, ir, ncol = 3, nrow = 2)
```


In [12]:

```
lm(formula = pm2.5 ~ dewp + temp + pres + iws + is + ir, data = qual
ity4)
Residuals:
   Min
            10 Median
                            30
                                   Max
-163.00 \quad -52.31 \quad -15.68
                         33.09
                               874.89
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            1.728e+03 7.299e+01 23.680 < 2e-16 ***
(Intercept)
            4.282e+00 5.346e-02 80.109 < 2e-16 ***
dewp
           -6.068e+00 6.836e-02 -88.764 < 2e-16 ***
temp
           -1.529e+00 7.135e-02 -21.431 < 2e-16 ***
pres
           -2.616e-01 8.436e-03 -31.015 < 2e-16 ***
iws
is
           -2.267e+00 5.097e-01 -4.448 8.7e-06 ***
ir
           -7.206e+00 2.816e-01 -25.593 < 2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 80.46 on 41750 degrees of freedom
Multiple R-squared: 0.2361, Adjusted R-squared: 0.236
F-statistic: 2151 on 6 and 41750 DF, p-value: < 2.2e-16
```

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
dewp	1	10397039.4	10397039.366	1606.12865	0.000000e+00
temp	1	59142103.7	59142103.736	9136.23809	0.000000e+00
pres	1	2868883.7	2868883.672	443.18350	7.097183e-98
iws	1	6796714.5	6796714.523	1049.95254	1.666189e-227
is	1	102830.7	102830.737	15.88523	6.741610e-05
ir	1	4239916.8	4239916.839	654.97991	2.363577e-143
Residuals	41750	270262531.2	6473.354	NA	NA

In [13]:

Call:

```
#calculating F-statistic for initial model
qf(.95, df1 = 6, df2 = 41750)
```

2.09881381597824

In [14]:

```
#creating a matrix in order to calculate t-values for each variable and critical
t for the model
n = 41757
p = 7
quality4['B0'] = rep(1, 41757)
y = matrix(quality4$pm2.5, ncol = 1)
X = matrix(c(quality4$B0,quality4$dewp, quality4$temp, quality4$pres, quality4$i
WS,
            quality4\$is, quality4\$ir), ncol = 7, byrow = FALSE)
beta.hat = solve(t(X)%*%X)%*%t(X)%*%y
SSres = as.vector(t(y)%*%y - t(beta.hat)%*%t(X)%*%y)
sig.hat = SSres/(n-p)
SSreg = as.vector(t(beta.hat)%*%t(X)%*%y - n*mean(y)^2)
C = solve(t(X) % * % X)
beta.se = sqrt(sig.hat*diag(C))
t = beta.hat/beta.se
critical.t = qt(1-0.5/2, n-p)
abs(t)
critical.t
```

23.680393

80.108929

88.764250

21.431247

31.014553

4.447625

25.592575

0.674495626527342

In [45]:

```
#plotting normal and residual vs fitted plots for the full model
plot(quality.lm)
```


Theoretical Quantiles
Im(pm2.5 ~ dewp + temp + pres + iws + is + ir)

 $Im(pm2.5 \sim dewp + temp + pres + iws + is + ir)$

avPlots(quality.lm)

In [46]:

```
#looking at residuals relationships
studentized.residuals = rstandard(quality.lm)
r.student.residuals = rstudent(quality.lm)
residuals = data.frame(studentized.residuals, r.student.residuals)
residuals$ID = seq.int(nrow(quality2))
head(residuals)
```

ID	r.student.residuals	studentized.residuals
1	0.06219543	0.06219617
2	0.24802665	0.24802944
3	0.11832354	0.11832494
4	0.23187727	0.23187989
5	-0.27154385	-0.27154686
6	-0.67645000	-0.67645439

In [48]:

```
#claculating min in order to transform the model appropriately based on log tran
sformation
min(quality2$temp)
min(quality2$dewp)
min(quality2$pm2.5)
min(quality2$ir)
min(quality2$is)
min(quality2$is)
min(quality2$pres)
```

-19

-40

0

0

0

0.45

991

```
In [52]:
# creating logarithmic transformed model
quality.lm2 = lm(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1)
+ \log(iws) + \log(is + 1) + \log(pres), data = quality2)#\log(temp + 20) + \log(dewp)
+ 41), data = quality2)
summary(quality.lm2)
Call:
lm(formula = log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) +
    log(ir + 1) + log(iws) + log(is + 1) + log(pres), data = quality
2)
Residuals:
   Min
             10 Median
                             30
                                    Max
-3.9139 - 0.5299 0.0624 0.5947 4.6837
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
               66.246346
                           4.878310
                                    13.580
                                              <2e-16 ***
(Intercept)
log(temp + 20) -1.364319
                           0.017341 - 78.677
                                              <2e-16 ***
                           0.019710 94.561
log(dewp + 41) 1.863805
                                              <2e-16 ***
log(ir + 1)
              -0.317148
                           0.012597 - 25.176
                                              <2e-16 ***
log(iws)
               -0.137644
                           0.002805 - 49.069
                                              <2e-16 ***
log(is + 1)
               0.024739
                           0.023314
                                      1.061
                                               0.289
                           0.697051 - 13.271
                                              <2e-16 ***
log(pres)
             -9.250335
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8196 on 41750 degrees of freedom
Multiple R-squared: 0.3358, Adjusted R-squared: 0.3357
```

In [53]:

F-statistic: 3518 on 6 and 41750 DF, p-value: < 2.2e-16

$lm(formula = log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) +$ log(ir + 1) + log(iws) + log(pres), data = quality2)Residuals: 10 Median Min 30 Max -3.9147 - 0.52970.0626 0.5943 4.6923 Coefficients: Estimate Std. Error t value Pr(>|t|)<2e-16 *** (Intercept) 13.55 66.046737 4.874689 <2e-16 *** log(temp + 20) -1.366840-79.57 0.017177 log(dewp + 41) 1.866705 0.019520 95.63 <2e-16 *** log(ir + 1)-0.317493 0.012593 -25.21 <2e-16 *** log(iws) -49.16<2e-16 *** -0.1373920.002795 -9.221829 0.696534 -13.24<2e-16 *** log(pres) ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.8196 on 41751 degrees of freedom Multiple R-squared: 0.3358, Adjusted R-squared: 0.3357 F-statistic: 4221 on 5 and 41751 DF, p-value: < 2.2e-16

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
log(temp + 20)	1	21.48726	2.148726e+01	31.9896	1.560116e-08
log(dewp + 41)	1	11928.36177	1.192836e+04	17758.5943	0.000000e+00
log(ir + 1)	1	512.46088	5.124609e+02	762.9367	1.949623e-166
log(iws)	1	1597.19997	1.597200e+03	2377.8644	0.000000e+00
log(pres)	1	117.73934	1.177393e+02	175.2869	6.239461e-40
Residuals	41751	28043.94445	6.716952e-01	NA	NA

In [57]:

Call:

#plotting residual vs fitted and normal plot for the partial, transformed model
plot(quality.lm3)

Fitted values $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

Theoretical Quantiles $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

Fitted values $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

 $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws ...$

avPlots(quality.lm3)

Added-Variable Plots

In [68]:

```
#calculating PRESS statistics for each model as an indicator of predictive accur
acy
full = sum((resid(quality.lm) / (1-lm.influence(quality.lm)$hat))^2)
full
trans1 = sum((resid(quality.lm2) / (1-lm.influence(quality.lm2)$hat))^2)
trans1
trans2 = sum((resid(quality.lm3) / (1-lm.influence(quality.lm3)$hat))^2)
trans2
```

270338852.262718

28052.5727840162

28052.5011265684

In [69]:

```
library(car)
```

In [70]:

looking at influential points in the more accurate partial, transformed model
influencePlot(quality.lm3)

	StudRes	Hat	CookD
22346	-4.777892	4.571148e-05	0.0001738359
33897	3.730552	3.972530e-03	0.0092481860
33898	5.745626	6.286264e-03	0.0347793890


```
In [91]:
```

41757

40063

1694

In [78]:

Call: $lm(formula = log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws) + log(pres), data = quality3)$

Residuals:

```
Min 1Q Median 3Q Max -2.77128 -0.50820 0.05001 0.55719 2.29667
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)				<2e-16	***
log(temp + 20)	-1.567131	0.017143	-91.42	<2e-16	***
log(dewp + 41)	2.061474	0.019344	106.57	<2e-16	***
log(ir + 1)	-0.283592	0.015382	-18.44	<2e-16	***
log(iws)	-0.133139	0.002675	-49.77	<2e-16	***
log(pres)	-9.783992	0.673881	-14.52	<2e-16	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7584 on 40057 degrees of freedom Multiple R-squared: 0.3887, Adjusted R-squared: 0.3886 F-statistic: 5094 on 5 and 40057 DF, p-value: < 2.2e-16

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
log(temp + 20)	1	4.304299	4.304299e+00	7.483632	6.228975e-03
log(dewp + 41)	1	12897.795002	1.289780e+04	22424.641208	0.000000e+00
log(ir + 1)	1	228.072824	2.280728e+02	396.536869	8.324667e-88
log(iws)	1	1399.218430	1.399218e+03	2432.739182	0.000000e+00
log(pres)	1	121.242749	1.212427e+02	210.797672	1.216175e-47
Residuals	40057	23039.252650	5.751617e-01	NA	NA

In [80]:

#viewing added variable plots for the final, partial model
avPlots(quality.lm4)

Added-Variable Plots log(pm2.5 + 1) | others log(pm2.5 + 1) | others 0 7 ကု 0.0 0.5 -1.0 0.5 -1.5 -1.0 -0.5 1.0 -0.5 log(temp + 20) | others log(dewp + 41) | others log(pm2.5 + 1) | others log(pm2.5 + 1) | others 7 က္ 2 3 -2 log(ir + 1) | others log(iws) | others log(pm2.5 + 1) | others 0.01 -0.02 -0.01 0.00 0.02

In [81]:

 $\#plotting\ residual\ vs\ fitted\ and\ normal\ plot\ for\ the\ final\ model\ plot(quality.lm4)$

log(pres) | others

Fitted values $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

Theoretical Quantiles $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

Fitted values $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws \dots$

Residuals vs Leverage

 $Im(log(pm2.5 + 1) \sim log(temp + 20) + log(dewp + 41) + log(ir + 1) + log(iws ...$

In [82]:

#calculating influential points and plot, to take a look at what has changed
influencePlot(quality.lm4)

	StudRes	Hat	CookD
5867	-0.7083800	4.606775e-03	3.870696e-04
5874	-0.7093382	5.195548e-03	4.379802e-04
23196	0.1079260	5.068072e-03	9.889201e-06
34582	-3.5905763	5.603128e-05	1.203658e-04
39053	-3.6547811	3.993937e-05	8.889066e-05

In [84]:

```
#calculating PRESS statistic for the final model
trans.outliers = sum((resid(quality.lm4) / (1-lm.influence(quality.lm4)$hat))^2)
trans.outliers
```

In [86]:

```
#calculating F - statistic for the final model qf(.95, df1 = 5, df2 = 40057)
```

2.21432259342585

In [93]:

```
quality3 = quality3[-c(1,2,3,4,5,10,12,14,15,16,17)]
head(quality3)
```

pm2.5	dewp	temp	pres	iws	ir
129	-16	-4	1020	1.79	0
148	-15	-4	1020	2.68	0
159	-11	-5	1021	3.57	0
181	-7	-5	1022	5.36	0
138	-7	-5	1022	6.25	0
109	-7	-6	1022	7.14	0

In [95]:

```
#creating matrix from data to calculate t-values and critical t to determine sig
nificance.
n = 40063
p = 6
quality3['B0'] = rep(1, n)
y = matrix(quality3$pm2.5, ncol = 1)
X = matrix(c(quality3$B0,quality3$dewp, quality3$temp, quality3$pres, quality3$i
WS,
            quality3$ir), ncol = p, byrow = FALSE)
beta.hat = solve(t(X)%*%X)%*%t(X)%*%y
SSres = as.vector(t(y)%*%y - t(beta.hat)%*%t(X)%*%y)
sig.hat = SSres/(n-p)
SSreg = as.vector(t(beta.hat)%*%t(X)%*%y - n*mean(y)^2)
C = solve(t(X) % * %X)
beta.se = sqrt(sig.hat*diag(C))
t = beta.hat/beta.se
critical.t = qt(1-0.5/2, n-p)
abs(t)
critical.t
```

22.46548

83.59505

91.54862

20.17455

32.10869

21.34565

0.674495874891155

In [100]:

#calculting confidence interval on Betas in the final model
(confint(quality.lm4))

	2.5 %	97.5 %
(Intercept)	60.6699795	79.1619409
log(temp + 20)	-1.6007315	-1.5335308
log(dewp + 41)	2.0235587	2.0993897
log(ir + 1)	-0.3137412	-0.2534431
log(iws)	-0.1383821	-0.1278958
log(pres)	-11.1048140	-8.4631694