## БИЛЕТ №9

# 1.Биполярные транзисторы. Схемы включения. Основные параметры.

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают прп и рпр транзисторы (п (negative) — электронный тип примесной проводимости, р (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — большая площадь р — пперехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

#### Принцип действия транзистора

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим прп транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В прп транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Іэ=Іб + Ік). Коэффициент α, связывающий ток эмиттера и ток коллектора (Ік = а Іэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 —



0.999. Чем больше коэффициент, тем эффективней транзистор передает ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен  $\beta = \alpha / (1 - \alpha) = (10 - 1000)$ . Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

# Режимы работы биполярного транзистора

Нормальный активный режим Переход эмиттер — база включен в прямом направлении (открыт), а переход коллектор — база — в обратном (закрыт) Инверсный активный режим Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое. Режим насыщения Оба р-п перехода смещены в прямом направлении (оба открыты). Режим отсечки В данном режиме оба р-п перехода прибора смещены в обратном направлении (оба закрыты).

#### Основные параметры транзистора:

Коэфициенты усиления: по току  $k_I$ = $\Delta I_{\text{вых}}/\Delta I_{\text{вх}}$  по напряжению  $k_U$ = $\Delta U_{\text{вых}}/\Delta U_{\text{вх}}$  по мощности  $k_P$ = $\Delta P_{\text{вых}}/\Delta P_{\text{вх}}$  Сопротивления: входное  $R_{\text{вх}}$ = $U_{\text{вх}}/I_{\text{вх}}$  выходное  $R_{\text{вых}}$ = $U_{\text{вых}}/I_{\text{вых}}$ 

#### Схемы включения

Схема включения с общей базой



Любая схема включения транзистора характеризуется двумя основными показателями: коэффициент усиления по току  $I_{\rm Bhx}/I_{\rm Bx}$ . Для схемы с общей базой  $I_{\rm Bhx}/I_{\rm Bx}=I_{\rm K}/I_{\rm 3}=\alpha$  [ $\alpha$ <1]) входное сопротивление

 $R_{\rm вx6}=U_{\rm gx}/I_{\rm вx}=U_{\rm 69}/I_{\rm 9}$ . Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора. **Недостатки схемы с общей базой :** Схема не усиливает ток, так как  $\alpha$  < 1 Малое входное сопротивление Два разных источника напряжения для питания.

**Достоинства:** Хорошие температурные и частотные свойства. **Схема включения с общим эмиттером** 



 $I_{\text{вых}} = I_{\text{к}} I_{\text{вх}} = I_{\text{б}} U_{\text{вх}} = U_{\text{б}_{9}} U_{\text{вых}} = U_{\text{к}_{9}}$  Достоинства: Большой коэффициент усиления по току Большое входное сопротивление Можно обойтись одним источником питания Недостатки: Худшие температурные и частотные

свойства по сравнению со схемой

с общей базой. Выходное переменное напряжение инвертируется относительно входного.

#### Схема с общим коллектором



 $I_{\text{вых}} = I_{\text{3}} I_{\text{вх}} = I_{\text{6}} U_{\text{вх}} = U_{\text{бк}} U_{\text{вых}} = U_{\text{кэ}}$  Достоинства: Большое входное сопротивление Малое выходное сопротивление

**Недостатки:** Не усиливает напряжение Схему с таким включением также называют «эмиттерным повторителем».

## 2. Операционные усилители

Операционный усилитель (ОУ) — унифицированный многокаскадный усилитель постоянного тока, удовлетворяющий следующим требованиям к электрическим параметрам(на практике ни одно из перечисленных требований не может быть удовлетворено полностью):

- коэффициент усиления по напряжению KU стремится к бесконечности (  $K_U \to \infty$  );
- входное сопротивление стремится к бесконечности (  $R_{\it BX} 
  ightarrow \infty$  );
- выходное сопротивление стремится к нулю ( $R_{BLX} \rightarrow 0$ );



- если входное напряжение равно нулю, то выходное напряжение

также равно нулю (
$$U_{BX} = 0 \rightarrow U_{BLX} = 0$$
);

- бесконечная полоса усиливаемых частот (  $f_B \to \infty$  ). Достоверность допущений об идеальности свойств в каждом конкретном случае подтверждается сопоставлением реальных параметров ОУ и требований к разрабатываемым электронным средствам (ЭС). Так, если требуется разработать усилитель с коэф.усил. 10, то стандартный ОУ с коэф.усил. 25000 можно рассматривать как идеальный.

Операционный усилитель — это аналоговая интегральная схема, снабженная, как минимум, пятью выводами. Два вывода ОУ используются в качестве входных, один вывод является выходным, два оставшихся вывода используются для подключения источника питания ОУ. С учетом фазовых соотношений входного и выходного сигналов один из входных выводов (вход 1) называется неинвертирующим. а другой (вход 2)—инвертирующим. Выходное напряжение Uвых связано с входными напряжениями Uвх1 и Uвх2 соотношением

$$U_{\text{вых}} = K_{U0} (U_{\text{вх1}} - U_{\text{вх2}})$$

где  $K_{U0}$  — собственный коэффициент усиления ОУ по напряжению. Из приведенного выражения следует, что ОУ воспринимает только разность входных напряжений, называемую дифференциальным входным сигналом, и нечувствителен к любой составляющей входного напряжения, воздействующей одновременно на оба его входа (синфазный входной сигнал).

Как было отмечено ранее,  $K_{U0}$  в ОУ должен стремиться к бесконечности, однако на практике он ограничивается значением 105...106 или 100...120 дБ.

В качестве источника питания ОУ используют двухполярный источник напряжения ( +  $E_{\rm n}$ , -  $E_{\rm n}$ ). Средний вывод этого источника, как правило, является общей шиной для входных и выходных сигналов и в большинстве случаев не подключается к ОУ. В реальных ОУ напряжение питания лежит в диапазоне  $\pm 3B.....\pm 18~B$ . Использование источника питания со средней точкой предполагает возможность изменения не только уровня, но и полярности как входного, так и выходного напряжений ОУ.

Реальные ОУ обычно снабжаются большим числом выводов, которые используются для подключения внешних цепей частотной коррекции, формирующих требуемый вид ЛАЧХ усилителя.

Реализация перечисленных выше требований к электрическим параметрам ОУ невозможна на основе схемы однокаскадного усилителя. Поэтому реальные ОУ строятся на основе двух- или трехкаскадных усилителей постоянного тока. Функциональная схема включает в себя входной, согласующий и выходной каскады усиления.

# Основные параметры операционных усилителей.

$$K_{U0} = \frac{\Delta U_{BbIX}}{\Delta U_{BX}}$$

### Коэффициент усиления по напряжению

характеризует способность ОУ усиливать подаваемый на его входы дифференциальный сигнал. Типовое значение до 105...106 или 100...120 дБ.

**Входное напряжение смещения** – это напряжение, обусловленное неидентичностью напряжений эмнттерных переходов транзисторов входного дифференциального усилителя. Наличие этого напряжения

приводит к нарушению условия  $U_{\it BX}=0 \to U_{\it BbIX}=0$  . Численно определяется как напряжение, которое необходимо приложить ко входу усилителя, чтобы его выходное напряжение было равно нулю. Иногда это напряжение называют напряжением сдвига нуля (UCM). Типовое значение этого напряжения единицы – десятки милливольт. Входной ток  $I_{\it BX}$  (входной ток смещения) – ток, протекающий во входных выводах ОУ и необходимый для обеспечения требуемого

режима работы его транзисторов по постоянному току. Типовое значение этого тока единицы микроампер — сотни наноампер. **Разность входных токов**  $\Delta I_{BX}$  (ток сдвига). Природа этого тока кроется, в основном, в неодинаковости коэффициентов передачи тока h21 $\Im$  транзисторов входного каскада ОУ. Численно он ранен модулю

разности входных токов усилителя 
$$\Delta I = \left|I_{\hat{A} ilde{O}1} - I_{\hat{A} ilde{O}2}
ight|$$
 . Типовое

значение параметра — от единиц микроампер до единиц и десятых долей наноампера.

**Входное сопротивление Rвх**. Различают дифференциальное Rвхдиф и синфазное Rвхсин.

Rвхдиф определяется как сопротивление между входами усилителя, а Rвхсин − как сопротивление между объединенными входными выводами и нулевой шиной.

Повышают входное сопротивление дифференц. усилителя снижением базовых токов покоя транзисторов VTI и VT2 (см. рис. 7.3) до малых значений (единицы наноампер), но это ухудшает работу дифференц. усилителя из-за уменьшения его динамического диапазона(выраженного в децибелах отношения максимального сигнала к минимальному). Для предотвращения этого в качестве VT1 и VT2 применяют супербета транзисторы, отличающиеся большими коэффициентами усиления по току (единицы тысяч) за счет использования в них предельно тонкой базы. Однако применение таких транзисторов усложняет задачу стабилизации дифференциального усилителя. Поэтому в ряде случаев повышение входного сопротивления ОУ достигается использованием в его входном канале полевых транзисторов. Типовое значение входного сопротивления — сотни килоом.

**Выходное сопротивление Rвых** – это сопротивление усилителя, рассматриваемого как эквивалентный генератор. Типовое значение выходного сопротивления – сотни ом.

**Коэффициент подавления синфазного сигнала** Кп.сф определяет степень подавления (ослабления) синфазной составляющей входного сигнала. Его типовое значение – 50...70 дБ.

Максимальная скорость изменения выходного напряжения (V) характеризует частотные свойства усилителя при его работе в импульсных схемах; измеряется при подаче на вход ОУ напряжении ступенчатой формы. Типовое значение скорости изменения выход ного напряжения — единицы вольт/микросекунд.

**Частота единичного усиления Fmax** – это частота, на когорпй модуль коэффициента усиления ОУ равен единице. Обычно эта частота не превышает нескольких мегагерц.

Кроме перечисленных обычно задаются и предельно допустимые значения основных эксплуатационных параметров:

- максимально допустимое напряжение питания;
- максимально допустимый выходной ток;
- диапазон рабочих температур;
- максимально допустимая рассеиваемая мощность;
- максимально допустимое входное синфазное напряжение; макс. допуст. входное дифференц. напряжение и др.

Перечисленные параметры сильно зависит от условий эксплуатации. Эти зависимости обычно задаются графически.