ACA228 - Modelos de Regressão e Previsão

Regressão Linear Simples (RLS)

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 3

Modelo de Regressão Linear Simples

Estimação

Exemplos no R

Algumas razões para estudar analise de dados:

- A análise de dados é muito importante para as grandes empresas.
- Oportunidades de trabalho em alta
- Salario competitivo
- Oportunidades de trabalho em diversos setores
- As tomadas de decisão nas empresas são influenciadas pelos dados (cultura Data-Driven).

A modelagem entra em cena quando:

- Temos uma teoria econômica para testar
- Temos em mente uma relação que apresenta alguma importância na tomada de decisão
- Queremos explicar determinados fenômenos
- Queremos saber como o aumento/diminuição em uma variavel influencia em outra.
- Queremos fazer previsão

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \ldots, X_p) + u$$

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \ldots, X_p) + u$$

em que *u* é uma perturbação aleatoria.

▶ Na prática nunca conhecemos $f(\cdot)$,

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \dots, X_p) + u$$

- ▶ Na prática nunca conhecemos $f(\cdot)$,
- ▶ mas utilizando os dados vamos estimar $f(\cdot)$ por $\hat{f}(\cdot)$

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \ldots, X_p) + u$$

- ▶ Na prática nunca conhecemos $f(\cdot)$,
- ▶ mas utilizando os dados vamos estimar $f(\cdot)$ por $\hat{f}(\cdot)$
- ightharpoonup Assim, $\widehat{Y} = \widehat{f}(X_1, X_2, \dots, X_p)$

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \ldots, X_p) + u$$

- ▶ Na prática nunca conhecemos $f(\cdot)$,
- ▶ mas utilizando os dados vamos estimar $f(\cdot)$ por $\hat{f}(\cdot)$
- ightharpoonup Assim, $\widehat{Y} = \widehat{f}(X_1, X_2, \dots, X_p)$

Suponha que estamos interessados em entender/explicar/prever Y em função de um conjunto de p características (variáveis) X_1, X_2, \ldots, X_p .

Vamos supor também que a relação entre Y e X_1, X_2, \ldots, X_p é da forma

$$Y = f(X_1, X_2, \ldots, X_p) + u$$

em que u é uma perturbação aleatoria.

- ▶ Na prática nunca conhecemos $f(\cdot)$,
- ▶ mas utilizando os dados vamos estimar $f(\cdot)$ por $\hat{f}(\cdot)$
- Assim, $\widehat{Y} = \widehat{f}(X_1, X_2, \dots, X_p)$

Nota: O chapeuzinho significa "estimado"

Nesta disciplina focaremos no caso em que

$$Y = \underbrace{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}_{f(X_1, \dots, X_p)} + u$$

Nesta disciplina focaremos no caso em que

$$Y = \underbrace{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}_{f(X_1, \dots, X_p)} + u$$

variável dependente variável dependente variável explicada variável resposta variável prevista regressando regressando variável target X

Estrutura de dados

No processo de modelagem, lidamos com diversos tipos de dados, eles podem ser classificados em:

- Corte transversal
- Séries temporais
- Corte transversal agrupados
- ► Painel (ou longitudinais)

Para cada tipo de dado, teremos uma abordagem de modelagem diferente que nos permitirá explotar a informação contida nos dados.

Corte transversal

Consiste em uma amostra de indivídios* (consumidores, empresas, cidades, paises, etc) tomadas em determino período no tempo. Podemos pensar nesse conjunto de dados como quando tiramos uma **foto** (panoramica).

Corte transversal

Consiste em uma amostra de indivídios* (consumidores, empresas, cidades, paises, etc) tomadas em determino período no tempo. Podemos pensar nesse conjunto de dados como quando tiramos uma **foto** (panoramica).

Séries temporais

Consiste em observações sobre uma (ou várias) variaveis ao **longo do tempo**. A diferença dos dados e corte transversal, dados de séries temporais são ordenados de forma cronológica.

Corte transversal agrupados

Agrupar várias amostras de corte transversal (cada uma tomada em diferentes períodos de tempo)

Corte transversal agrupados

Agrupar várias amostras de corte transversal (cada uma tomada em diferentes períodos de tempo)

Painel (ou longitudinais)

Consiste em uma série temporal para cada observação de corte transversal. A diferença dos dados de *corte transversal agrupados*, nos dados de painel as **mesmas unidades** são acompanhadas ao longo do tempo

Corte transversal agrupados

Agrupar várias amostras de corte transversal (cada uma tomada em diferentes períodos de tempo)

Painel (ou longitudinais)

Consiste em uma série temporal para cada observação de corte transversal. A diferença dos dados de *corte transversal agrupados*, nos dados de painel as **mesmas unidades** são acompanhadas ao longo do tempo

Nesta disciplina, estudaremos dados de corte transversal e de séries temporais

Sejam X e Y duas variáveis e suponha que queremos **explicar** Y **em termos de** X, **estudar como varia** Y **com variações de** X, **predizer** Y **utilizando** X.

Sejam X e Y duas variáveis e suponha que queremos **explicar** Y **em termos de** X, **estudar como varia** Y **com variações de** X, **predizer** Y **utilizando** X.

MRL Simples

$$Y = \beta_0 + \beta_1 X + u$$

em que

- Y variável dependente,
- X variável independente,
- $\beta = [\beta_0 \quad \beta_1]'$, β_0 é parâmetro de intercepto e β_1 é o parâmetro de inclinação e
- u é o termo de erro ou perturbação (representa outros fatores, além de X, que afetam Y)

Exemplos

► Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

Exemplos

► Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

▶ Vendas do Galaxy Note 20 e gasto em publicidade

Vendas =
$$\beta_0 + \beta_1$$
Gasto em publicidade + u

Exemplos

► Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

▶ Vendas do Galaxy Note 20 e gasto em publicidade

Vendas =
$$\beta_0 + \beta_1$$
Gasto em publicidade + u

Pressão arterial e dosagem de um determinada medicamento

Pressão =
$$\beta_0 + \beta_1$$
Dosagem + u

Exemplos

► Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

Vendas do Galaxy Note 20 e gasto em publicidade

Vendas =
$$\beta_0 + \beta_1$$
Gasto em publicidade + u

Pressão arterial e dosagem de um determinada medicamento

Pressão =
$$\beta_0 + \beta_1 \mathsf{Dosagem} + u$$

Notas do ENEM e horas semanais de estudo

Nota do ENEM =
$$\beta_0 + \beta_1$$
Horas de estudo + u

Exemplos

► Salario e educação

Salario =
$$\beta_0 + \beta_1$$
Educação + u

▶ Vendas do Galaxy Note 20 e gasto em publicidade

Vendas =
$$\beta_0 + \beta_1$$
Gasto em publicidade + u

Pressão arterial e dosagem de um determinada medicamento

Pressão =
$$\beta_0 + \beta_1 \text{Dosagem} + u$$

Notas do ENEM e horas semanais de estudo

Nota do ENEM
$$= \beta_0 + \beta_1$$
Horas de estudo $+ u$

Satisfação dos trabalhadores e horas em reuniões virtuais

Satisfação =
$$\beta_0 + \beta_1$$
Horas de reunião + u

▶ Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

Exemplo

▶ A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- ▶ A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20
- A cada hora adicional de reunões virtuais por semana, em média, o indice de satisfação do trabalhadores cai em 5%

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20
- A cada hora adicional de reunões virtuais por semana, em média, o indice de satisfação do trabalhadores cai em 5%
- A cada hora de estudo semanal adicional, em média, o aluno obtem 1 ponto adicional na nota do ENEM.

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- ▶ A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20
- A cada hora adicional de reunões virtuais por semana, em média, o indice de satisfação do trabalhadores cai em 5%
- A cada hora de estudo semanal adicional, em média, o aluno obtem 1 ponto adicional na nota do ENEM.
- etc

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

- ▶ A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20
- A cada hora adicional de reunões virtuais por semana, em média, o indice de satisfação do trabalhadores cai em 5%
- A cada hora de estudo semanal adicional, em média, o aluno obtem 1 ponto adicional na nota do ENEM.
- etc

- Nos exemplos anteriores, estamos interessados em saber como X afeta/explica/ajuda a predizer Y.
- ► Um problema de bastante interesse é saber qual é o efeito de X sobre Y mantendo fixos os outros fatores

Exemplo

- ▶ A cada 10K em publicidade, são vendidos, em média 22 Galaxy Note 20
- ► A cada hora adicional de reunões virtuais por semana, em média, o indice de satisfação do trabalhadores cai em 5%
- A cada hora de estudo semanal adicional, em média, o aluno obtem 1 ponto adicional na nota do ENEM.
- etc

Nota: mantendo fixos os outros fatores é conhecido como efeito Ceteris paribus.

No modelo

$$Y = \beta_0 + \beta_1 X + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u = 0$), temos

$$\Delta Y = \beta_1 \Delta X$$

No modelo

$$Y = \beta_0 + \beta_1 X + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u=0$), temos

$$\Delta Y = \beta_1 \Delta X$$

Se X varia em uma unidade, Y varia em β_1 unidades.

No modelo

$$Y = \beta_0 + \beta_1 X + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u=0$), temos

$$\Delta Y = \beta_1 \Delta X$$

Se X varia em uma unidade, Y varia em β_1 unidades.

Mas...como podemos manter fixos *todos os outros fatores* quando na verdade estamos ignorando eles?

No modelo

$$Y = \beta_0 + \beta_1 X + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u=0$), temos

$$\Delta Y = \beta_1 \Delta X$$

Se X varia em uma unidade, Y varia em β_1 unidades.

Mas...como podemos manter fixos *todos os outros fatores* quando na verdade estamos ignorando eles?

Na verdade, somente podemos obter estimadores *confiáveis* de β_0 y β_1 quando fazemos hipotesis sobre u e como se relaciona com X

No modelo

$$Y = \beta_0 + \beta_1 X + u$$

se todos os outros fatores são mantidos fixos (de modo que $\Delta u=0$), temos

$$\Delta Y = \beta_1 \Delta X$$

Se X varia em uma unidade, Y varia em β_1 unidades.

Mas...como podemos manter fixos *todos os outros fatores* quando na verdade estamos ignorando eles?

Na verdade, somente podemos obter estimadores *confiáveis* de β_0 y β_1 quando fazemos hipotesis sobre u e como se relaciona com X

Nota: Não assumimos hipóteses, estabelecemos hipóteses e as verificamos.

 $ightharpoonup \mathbb{E}(u) = 0$

- $ightharpoonup \mathbb{E}(u) = 0$
- $ightharpoonup \mathbb{E}(u|X) = \mathbb{E}(u)$

- $ightharpoonup \mathbb{E}(u) = 0$
- $ightharpoonup \mathbb{E}(u|X) = \mathbb{E}(u)$

- $ightharpoonup \mathbb{E}(u) = 0$
- $\mathbb{E}(u|X) = \mathbb{E}(u)$

O qué implicam essas hipoteses?

- $ightharpoonup \mathbb{E}(u) = 0$
- $\mathbb{E}(u|X) = \mathbb{E}(u)$

O qué implicam essas hipoteses?

1. No modelo com intercepto (ou seja com β_0), sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero ($\mathbb{E}(u)=0$)

- $ightharpoonup \mathbb{E}(u) = 0$
- $\mathbb{E}(u|X) = \mathbb{E}(u)$

O qué implicam essas hipoteses?

- 1. No modelo com intercepto (ou seja com β_0), sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero $(\mathbb{E}(u)=0)$
- 2. $\mathbb{E}(u|X) = \mathbb{E}(u)$ diz que o valor médio dos fatores não observáveis (u) é o mesmo para todo valor de X e que é igual à media de u.

- \triangleright $\mathbb{E}(u) = 0$
- $\mathbb{E}(u|X) = \mathbb{E}(u)$

O qué implicam essas hipoteses?

- 1. No modelo com intercepto (ou seja com β_0), sem perda de generalidade, sempre podemos assumir que que o valor médio de u é zero ($\mathbb{E}(u)=0$)
- 2. $\mathbb{E}(u|X) = \mathbb{E}(u)$ diz que o valor médio dos fatores não observáveis (u) é o mesmo para todo valor de X e que é igual à media de u.
- 3. No MRLS, se aplicarnos $\mathbb{E}(\cdot|X)$, temos que

$$\mathbb{E}(Y|X) = \mathbb{E}(\beta_0 + \beta_1 X + u|X) = \beta_0 + \beta_1 \underbrace{\mathbb{E}(X|X)}_{X} + \underbrace{\mathbb{E}(u|X)}_{0} = \beta_0 + \beta_1 X$$

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 X$$

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 X$$

a média de Y aumenta em β_1 por unidade em X.

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 X$$

a média de Y aumenta em β_1 por unidade em X.

Exemplos

(lembre-se que u, o termo aleatório, representa outros fatores $(\neq X)$ que também afetam Y)

Suponha que u seja **aptidão** e X seja **educação** (em anos), então $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=5)$ representa a aptidão média para o grupo de pessoas com 5 anos de educação e $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=12)$ a aptidão média para o grupo de pessoas com 12 anos de educação.

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 X$$

a média de Y aumenta em β_1 por unidade em X.

Exemplos

(lembre-se que u, o termo aleatório, representa outros fatores $(\neq X)$ que também afetam Y)

- Suponha que u seja **aptidão** e X seja **educação** (em anos), então $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=5)$ representa a aptidão média para o grupo de pessoas com 5 anos de educação e $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=12)$ a aptidão média para o grupo de pessoas com 12 anos de educação.
- lacksquare $\mathbb{E}(u|X)=\mathbb{E}(u)$ implica que ambas as médias devem ser as mesmas.

$$\mathbb{E}(Y|X) = \beta_0 + \beta_1 X$$

a média de Y aumenta em β_1 por unidade em X.

Exemplos

(lembre-se que u, o termo aleatório, representa outros fatores $(\neq X)$ que também afetam Y)

- Suponha que u seja **aptidão** e X seja **educação** (em anos), então $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=5)$ representa a aptidão média para o grupo de pessoas com 5 anos de educação e $\mathbb{E}(\operatorname{aptidão}|\operatorname{educação}=12)$ a aptidão média para o grupo de pessoas com 12 anos de educação.
- $ightharpoonup \mathbb{E}(u|X) = \mathbb{E}(u)$ implica que ambas as médias devem ser as mesmas.
- Mas se entendermos que a média da aptidão aumenta com os anos de educação formal, então $\mathbb{E}(u|X) \neq \mathbb{E}(u)$

Suponha que

$$Y = 1.05 + 0.5X + u$$

com $\mathbb{E}(u|x) = \mathbb{E}(u) = 0$. Então

$$\mathbb{E}(Y|X) = \underbrace{1.05}_{\beta_0} + \underbrace{0.5}_{\beta_1} X$$

(a média de Y aumenta em 0.5 por unidade em X).

Suponha que

$$Y = 1.05 + 0.5X + u$$

com $\mathbb{E}(u|x) = \mathbb{E}(u) = 0$. Então

$$\mathbb{E}(Y|X) = \underbrace{1.05}_{\beta_0} + \underbrace{0.5}_{\beta_1} X$$

(a média de Y aumenta em 0.5 por unidade em X).

Qual o problema com a equação acima?

Suponha que

$$Y = 1.05 + 0.5X + u$$

com $\mathbb{E}(u|x) = \mathbb{E}(u) = 0$. Então

$$\mathbb{E}(Y|X) = \underbrace{1.05}_{\beta_0} + \underbrace{0.5}_{\beta_1} X$$

(a média de Y aumenta em 0.5 por unidade em X).

Qual o problema com a equação acima?

Na prática, nunca conhecemos os valores de β_0 e β_1 e devemos estimá-los.

Por que preciso estimar os β 's?

Na prática, nunca conhecemos os valores de β_0,β_1 então precisamos estima-los utilizando os dados. Estes valores estimados serão denotados por $\hat{\beta}_0$ e $\hat{\beta}_1$, respectivamente.

Por que preciso estimar os β 's?

Na prática, nunca conhecemos os valores de β_0, β_1 então precisamos estima-los utilizando os dados. Estes valores estimados serão denotados por $\hat{\beta}_0$ e $\hat{\beta}_1$, respectivamente.

Sejam $(x_1, y_1), \ldots, (x_n, y_n)$ uma amostra aleatória (a.a.) de tamanho n da população, então

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

onde i indica a i-ésima observação.

Estamos interessados em uma reta do tipo:

Como vamos a obter essa reta?

Como vamos a obter essa reta?

▶ De forma que minimize a soma de quadrados dos resíduos $\hat{u}_i := y_i - \hat{y}_i$ em que $\hat{y}_i = b_0 - b_1 x_i$

Como vamos a obter essa reta?

- ▶ De forma que minimize a soma de quadrados dos resíduos $\hat{u}_i := y_i \hat{y}_i$ em que $\hat{y}_i = b_0 b_1 x_i$
- ightharpoonup Seja $SQR=\sum_{i=1}^n \hat{u}_i^2=\sum_{i=1}^n \left(y_i-b_0-b_1x_i
 ight)^2$, então

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname*{argmin}_{b_0,b_1} SQR$$

Como vamos a obter essa reta?

- ▶ De forma que minimize a soma de quadrados dos resíduos $\hat{u}_i := y_i \hat{y}_i$ em que $\hat{y}_i = b_0 b_1 x_i$
- ightharpoonup Seja $SQR=\sum_{i=1}^n \hat{u}_i^2=\sum_{i=1}^n \left(y_i-b_0-b_1x_i
 ight)^2$, então

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname*{argmin}_{b_0,b_1} SQR$$

Como vamos a obter essa reta?

▶ De forma que minimize a soma de quadrados dos resíduos $\hat{u}_i := y_i - \hat{y}_i$ em que $\hat{y}_i = b_0 - b_1 x_i$

▶ Seja
$$SQR = \sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n \left(y_i - b_0 - b_1 x_i\right)^2$$
, então $\hat{eta}_0, \hat{eta}_1 = \operatorname*{argmin}_{b_0,b_1} SQR$

Para minimizar SQR, igualamos a primeira derivada a zero (para obter os candidatos) e depois pelo critério da segunda derivada verificamos se é ponto de mínimo.

Como vamos a obter essa reta?

▶ De forma que minimize a soma de quadrados dos resíduos $\hat{u}_i := y_i - \hat{y}_i$ em que $\hat{y}_i = b_0 - b_1 x_i$

Seja
$$SQR=\sum_{i=1}^{n}\hat{u}_i^2=\sum_{i=1}^{n}\left(y_i-b_0-b_1x_i\right)^2$$
, então $\hat{eta}_0,\hat{eta}_1=\operatorname*{argmin}_{b_0,b_1}SQR$

Para minimizar SQR, igualamos a primeira derivada a zero (para obter os candidatos) e depois pelo critério da segunda derivada verificamos se é ponto de mínimo.

▶ Derivando w.r.t b_0 e b_1 temos

$$\frac{\partial SQR}{\partial b_0} = -2\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i); \ \frac{\partial SQR}{\partial b_1} = -2\sum_{i=1}^{n} x_i (y_i - b_0 - b_1 x_i)$$

Fazendo
$$\frac{\partial SQR}{\partial b_0}=0$$
 e $\frac{\partial SQR}{\partial b_1}=0$, chegamos ao sistema:

$$-2\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=0; \quad -2\sum_{i=1}^{n}(x_{i}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i}))=0$$
 (1)

Fazendo
$$\frac{\partial SQR}{\partial b_0}=0$$
 e $\frac{\partial SQR}{\partial b_1}=0$, chegamos ao sistema:

$$-2\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=0; \quad -2\sum_{i=1}^{n}(x_{i}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i}))=0$$
 (1)

Após um pouco de matemática, temos que

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} e \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Fazendo
$$\frac{\partial SQR}{\partial b_0}=0$$
 e $\frac{\partial SQR}{\partial b_1}=0$, chegamos ao sistema:

$$-2\sum_{i=1}^{n}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=0; \quad -2\sum_{i=1}^{n}(x_{i}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i}))=0$$
 (1)

Após um pouco de matemática, temos que

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} e \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

Importante: As equações em (1) são conhecidas como condições de primeira ordem. De (1) temos que $\overline{\hat{u}} = 0$ e $\overline{\times \hat{u}} = 0$.

Como sabemos que de fato são os valores que minimizam SQR?

Como sabemos que de fato são os valores que minimizam SQR?

Precisamos utilizar o critério da segunda derivada!!!

Estimação

Como sabemos que de fato são os valores que minimizam SQR?

Precisamos utilizar o critério da segunda derivada!!!

A matriz

$$\begin{bmatrix} \frac{\partial^2 SQR}{\partial b_0^2} & \frac{\partial^2 SQR}{\partial b_0 \partial b_1} \\ \frac{\partial^2 SQR}{\partial b_1 \partial b_0} & \frac{\partial^2 SQR}{\partial b_1^2} \end{bmatrix}$$

deve ser definida positiva (todos os autovalores devem ser positivos)

Estimação

Como sabemos que de fato são os valores que minimizam SQR?

Precisamos utilizar o critério da segunda derivada!!!

A matriz

$$\begin{bmatrix} \frac{\partial^2 SQR}{\partial b_0^2} & \frac{\partial^2 SQR}{\partial b_0 \partial b_1} \\ \frac{\partial^2 SQR}{\partial b_1 \partial b_0} & \frac{\partial^2 SQR}{\partial b_1^2} \end{bmatrix}$$

deve ser definida positiva (todos os autovalores devem ser positivos)

O método descrito anteriormente e conhecido como o **método de mínimos quadrados ordinários (MQO)** e será amplamente utilizado na disciplina.

Estimadores de MQO

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 e $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Estimadores de MQO

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 e $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Note que

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})/(n-1)}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}/(n-1)} = \frac{Cov(x,y)}{\hat{\sigma}_{x}^{2}}$$

Por outro lado,
$$\hat{\rho}_{xy} := Cor(x,y) = \frac{Cov(x,y)}{\hat{\sigma}_x \hat{\sigma}_y}$$
, então
$$\hat{\beta}_1 = \frac{Cov(x,y)}{\hat{\sigma}_z^2} = \frac{\hat{\rho}_{xy} \hat{\sigma}_x \hat{\sigma}_y}{\hat{\sigma}_z^2} = \hat{\rho}_{xy} \frac{\hat{\sigma}_y}{\hat{\sigma}_x}$$

Por outro lado,
$$\hat{\rho}_{xy} := Cor(x,y) = \frac{Cov(x,y)}{\hat{\sigma}_x \hat{\sigma}_y}$$
, então
$$\hat{\beta}_1 = \frac{Cov(x,y)}{\hat{\sigma}_x^2} = \frac{\hat{\rho}_{xy} \hat{\sigma}_x \hat{\sigma}_y}{\hat{\sigma}_x^2} = \hat{\rho}_{xy} \frac{\hat{\sigma}_y}{\hat{\sigma}_x}$$

Ou seja, temos três formulas equivalentes para calcular \hat{eta}_1

Por outro lado,
$$\hat{\rho}_{xy}:=Cor(x,y)=rac{Cov(x,y)}{\hat{\sigma}_x\hat{\sigma}_y}$$
, então

$$\hat{\beta}_1 = \frac{Cov(x, y)}{\hat{\sigma}_x^2} = \frac{\hat{\rho}_{xy}\hat{\sigma}_x\hat{\sigma}_y}{\hat{\sigma}_x^2} = \hat{\rho}_{xy}\frac{\hat{\sigma}_y}{\hat{\sigma}_x}$$

Ou seja, temos três formulas equivalentes para calcular \hat{eta}_1

Nota: É comum encontrar nos livros os termos *estimador*, *estimativa* e *valor estimado* e isso pode causar um pouco de confussão.

- Estimador é a fórmula,
- Quando utilizamos os dados observados, aplicamos a fórmula e obtemos um número, esse número é a estimativa ou valor estimado

Uma vez obtidos $\hat{\beta}_0$ e $\hat{\beta}_1$, podemos obter \hat{Y} (**y chapéu**)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $(\hat{y}: valores ajustados/previstos da regressão)$

Uma vez obtidos \hat{eta}_0 e \hat{eta}_1 , podemos obter \hat{Y} (**y chapéu**)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $(\hat{y}: valores ajustados/previstos da regressão)$

Veja que

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x$$
 ou equivalentemente $\hat{\beta}_1 = \Delta \hat{y}/\Delta x$

Uma vez obtidos \hat{eta}_0 e \hat{eta}_1 , podemos obter \hat{Y} (**y chapéu**)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 $(\hat{y}: valores ajustados/previstos da regressão)$

Veja que

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x$$
 ou equivalentemente $\hat{\beta}_1 = \Delta \hat{y}/\Delta x$

 \hat{eta}_1 nos diz quanto varia \hat{y} quando x aumenta em uma unidade

Exemplos no R

Informações sobre o salario (anual em milhares de dólares) e o retorno médio sobre o patrimônio líquido dos últimos 3 anos, roe (definido como uma porcentagem do patrimônio líquido) de 209 CEOs estão disponíveis no dataset ceosal1 do pacote do R wooldridge.

Queremos estudar a relação

salario =
$$\beta_0 + \beta_1$$
roe + u

```
library(wooldridge)
library(dplyr)
ceosal1 %>% select(salary,roe) %>% head(3)

## salary roe
## 1 1095 14.1
## 2 1001 10.9
## 3 1122 23.5
```

```
library(wooldridge)
library(dplyr)
ceosal1 %>% select(salary,roe) %>% head(3)
## salary roe
```

```
## 1 1095 14.1
## 2 1001 10.9
## 3 1122 23.5
```

- ▶ Para o CEO 1, temos um salário anual de 1095.000 USD e um retorno médio sobre o patrimônio líquido de 14.1%
- ▶ Para o CEO 2, temos um salário anual de 1001.000 USD e um retorno médio sobre o patrimônio líquido de 10.9%

ceosal1 %>% select(salary,roe) %>% summary()

```
##
       salary
                      roe
##
                 Min. : 0.50
   Min. : 223
##
   1st Qu.: 736 1st Qu.:12.40
##
   Median: 1039
                 Median :15.50
                 Mean :17.18
##
   Mean : 1281
##
   3rd Qu.: 1407
                  3rd Qu.:20.00
##
   Max. :14822
                  Max. :56.30
```

$$\hat{eta}_1 = rac{cov(x,y)}{\hat{\sigma}_x}$$
 e $\hat{eta}_0 = ar{y} - \hat{eta}_1ar{x}$

```
# betas (hat)
CEOSAL1 <- ceosal1 %>% select(salary,roe)
b1_hat = cov(CEOSAL1)[1,2]/var(CEOSAL1$roe)
b0_hat = mean(CEOSAL1$salary) - b1_hat*mean(CEOSAL1$roe)
c(b0_hat,b1_hat)
```

[1] 963.19134 18.50119

Ejercicio:

Calcule $\hat{\beta}_1$ utilizando a fórmula $\hat{\beta}_1 = \hat{\rho}_{xy} \frac{\hat{\sigma}_y}{\hat{\sigma}_y}$. Os números batem?

```
lm(salary~roe, data = CEOSAL1)
##
## Call:
## lm(formula = salary ~ roe, data = CEOSAL1)
##
## Coefficients:
## (Intercept)
                         roe
##
         963.2
                        18.5
                    salario = 963.2 + 18.5 roe
```

Se o roe aumentar 1%, espera-se que o salario anual aumente em 18.500 USD.

O dataset Advertising contém informações das vendas de um determinado produto em 200 lojas diferentes junto com o gasto em publicidade em três diferentes tipos de mídia: TV, rádio e jornal.

O dataset Advertising contém informações das vendas de um determinado produto em 200 lojas diferentes junto com o gasto em publicidade em três diferentes tipos de mídia: TV, rádio e jornal.

Estamos interessados em aumentar as vendas do produto (nós não podemos diretamente aumentar as vendas, mas se existir uma relação entre vendas e gastos em publicidade, podemos construir um modelo que nos ajude a entender essa dinâmica e fazer uma melhor tomada de decisão sobre quanto gastar em publicidade em determinada mídia a fim de aumentar as vendas.)

O dataset Advertising contém informações das vendas de um determinado produto em 200 lojas diferentes junto com o gasto em publicidade em três diferentes tipos de mídia: TV, rádio e jornal.

Estamos interessados em aumentar as vendas do produto (nós não podemos diretamente aumentar as vendas, mas se existir uma relação entre vendas e gastos em publicidade, podemos construir um modelo que nos ajude a entender essa dinâmica e fazer uma melhor tomada de decisão sobre quanto gastar em publicidade em determinada mídia a fim de aumentar as vendas.)

Para fins ilustrativos vamos apenas considerar o gasto em publicidade pela TV, ou seja, estamos interessados em construir um modelo da forma

Sales =
$$\beta_0 + \beta_1 TV + u$$

```
uri <- "https://raw.githubusercontent.com/ctruciosm/ISLR/master/o
Advertising <- read.csv(uri)
head(Advertising)
         TV Radio Newspaper Sales
    1 230.1
             37.8
                       69.2 22.1
## 2 2 44.5 39.3
                      45.1 10.4
## 3 3 17.2 45.9
                      69.3 9.3
## 4 4 151.5 41.3
                      58.5 18.5
## 5 5 180.8 10.8
                      58.4 12.9
## 6 6
        8.7
             48.9
                       75.0 7.2
```

```
uri <- "https://raw.githubusercontent.com/ctruciosm/ISLR/master/o
Advertising <- read.csv(uri)
head(Advertising)
         TV Radio Newspaper Sales
    1 230.1
             37.8
                       69.2 22.1
## 2 2 44.5 39.3
                      45.1 10.4
## 3 3 17.2 45.9
                      69.3 9.3
## 4 4 151.5 41.3
                      58.5 18.5
## 5 5 180.8 10.8
                      58.4 12.9
## 6 6
        8.7
             48.9
                       75.0 7.2
```

Advertising %>% select(Sales, TV) %>% summary()

```
##
       Sales
                        TV
##
   Min. : 1.60
                  Min. : 0.70
##
   1st Qu.:10.38 1st Qu.: 74.38
##
   Median :12.90
                  Median: 149.75
##
   Mean :14.02
                  Mean :147.04
##
   3rd Qu.:17.40
                  3rd Qu.:218.82
##
   Max. :27.00
                  Max. :296.40
```

Advertising %>% select(Sales, TV) %>% summary()

```
##
       Sales
                       TV
##
   Min. : 1.60
                  Min. : 0.70
   1st Qu.:10.38 1st Qu.: 74.38
##
##
   Median :12.90
                 Median :149.75
                  Mean :147.04
##
   Mean :14.02
                  3rd Qu.:218.82
##
   3rd Qu.:17.40
##
   Max. :27.00
                  Max.
                        :296.40
```

Faremos um grafico para analisar visualmente se existe alguma relação entre Sales e TV


```
lm(Sales~TV, data = Advertising)
##
## Call:
## lm(formula = Sales ~ TV, data = Advertising)
##
## Coefficients:
## (Intercept)
                          TV
       7.03259 0.04754
##
                  Sales = 7.03259 + 0.04754 \text{ TV}
```

```
lm(Sales~TV, data = Advertising)
##
## Call:
## lm(formula = Sales ~ TV, data = Advertising)
##
## Coefficients:
## (Intercept)
                          TV
       7.03259 0.04754
##
                  Sales = 7.03259 + 0.04754 \text{ TV}
```

Exemplos no R: resultados eleitorais US

Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- ▶ Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- ▶ Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

Mas. . .

Os modelos ajustados são bons ou ruins? como avaliamos a qualidade do ajuste dos modelos?

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

Mas. . .

- Os modelos ajustados são bons ou ruins? como avaliamos a qualidade do ajuste dos modelos?
- A interpretação dos $\hat{\beta}$'s é sempre igual?

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

Mas. . .

- Os modelos ajustados são bons ou ruins? como avaliamos a qualidade do ajuste dos modelos?
- A interpretação dos $\hat{\beta}$'s é sempre igual?
- ▶ Podemos *confiar* no valor obtido pelos $\hat{\beta}$'s?

- Na aula de hoje vimos o que é um modelo de regressão linear simples, por que os parâmetros β_0 e β_1 precisam ser estimados e vimos o métodod MQO que é um método para obter $\hat{\beta}_0$ e $\hat{\beta}_1$
- Vimos dois exemplos, um deles utilizando o conjunto de dados ceosal1 do pacote wooldridge e o conjunto de dados Advertising que foi importado ao R utilizando o endereço web dele.

Mas...

- Os modelos ajustados são bons ou ruins? como avaliamos a qualidade do ajuste dos modelos?
- A interpretação dos $\hat{\beta}$'s é sempre igual?
- ▶ Podemos *confiar* no valor obtido pelos $\hat{\beta}$'s?
- essas e outras respostas veremos nas próximas aulas

Leituras recomendadas

Leituras recomendadas

- ▶ Wooldridge, Jeffrey M. (2016). Introdução à Econometria: Uma abordagem moderna. Cengage Learning. – Cap 1 e Cap 2.1–2.3
- ▶ James, G., Witten, D., Hastie, T., e Tibshirani, R. (2013). *An Introduction to Statistical Learning*. New York: Springer. **Chapter 3.1.1**
- ▶ Johnston, J. e Dinardo, J. (1997). *Econometric Methods*. 4ed, Mc Graw Hill. **Chapter 1.1–1.4.3**