Question de cours.

- **1.** Si $a \equiv b$ [n] alors il existe un entier relatif k tel que a = b + nk. On multiplie cette égalité par $m \neq 0$, il vient : ma = mb + n(mk) avec $mk \in \mathbb{Z}$ donc ma mb multiple de n et par suite $ma \equiv mb$ [n].
- 2. $2 \times 11 \equiv 2 \times 9$ [4] mais 11 n'est pas congru à 9 modulo 4 donc la réciproque est fausse.

Exercice 1. On raisonne modulo 3. Pour cela, on utilise un tableau de congruences:

$n \equiv \dots [3]$	0	1	2
$n^2 + 5 \equiv \dots [3]$	5 soit 2	6 soit 0	9 soit 0
$n(n^2+5) \equiv \dots [3]$	0	0	0

 $\forall n \in \mathbb{Z}, (n^2 + 5) \equiv 0$ [3] ce qui justifie que pour tout entier relatif $n, n(n^2 + 5)$ est divisible par 3.

Exercice 2. On raisonne modulo 5. Pour cela, on utilise un tableau de congruences :

$x \equiv \dots [5]$	0	1	2	3	4
$2x \equiv \dots [5]$	0	2	4	6 soit 1	8 soit 3
$x^3 \equiv \dots [5]$	0	1	8 soit 3	27 soit 2	64 soit 4

On en déduit que $2x \equiv 3$ [5] $\iff x \equiv 4$ [5] et $x^3 \equiv 3$ [5] $\iff x \equiv 2$ [5].

Exercice 3.

- 1. $2^{10} = 1024 = 100 \times 10 + 24$ donc $2^{10} \equiv 24$ [100]. $2^{20} = 2^{10} \times 2^{10}$. Comme $2^{10} \equiv 24$ [100] alors $2^{20} \equiv 24^2$ [100] soit $2^{20} \equiv 576$ [100]. Enfin $576 = 100 \times 5 + 76$ avec $0 \le 76 < 100$ donc le reste dans la division euclidienne de 2^{20} par 100 est 76.
- **2.** Soit $\mathscr{P}_n : 76^n \equiv 76 [100].$
 - Initialisation : si n=1 on a $76^1=76$ et $76\equiv 76$ [100] donc \mathscr{P}_1 est vraie.
 - Hérédité : soit $n \in \mathbb{N}^*$. Supposons \mathscr{P}_n vraie. Par hypothèse de récurrence $76^n \equiv 76$ [100] donc en multipliant par 76, il vient $76^{n+1} \equiv 76^2$ [100]. Or $76^2 = 5776 = 57 \times 100 + 76$ donc $76^2 \equiv 76$ [100] ce qui implique que $76^{n+1} \equiv 76$ [100] et par suite \mathscr{P}_{n+1} est vraie.
 - \mathscr{P}_1 est vraie et \mathscr{P}_n est vraie à partir du rang n=1, donc \mathscr{P}_n est vraie pour tout entier naturel n non nul.
- 3. $2^{1000} = (2^{20})^{50}$. Or $2^{20} \equiv 76$ [100] donc $2^{1000} \equiv 76^{50}$ [100]. D'après la question précédente, pour tout entier naturel n non nul, $76^n \equiv 76$ [100] donc $76^{50} \equiv 76$ [100] donc $2^{1000} \equiv 76$ [100] : le reste dans la division euclidienne de 2^{1000} par 100 est 76 donc les deux derniers chiffres dans l'écriture décimale de 2^{1000} sont 76 (7 et 6).

Exercice 4.

- 1. On raisonne modulo 2. On a $2 \equiv 0$ [2], $3 \equiv 1$ [2] et $6 \equiv 0$ [2] donc pour tout entier naturel n non nul, $2^n \equiv 0$ [2], $3^n \equiv 1$ [2] et $6^n \equiv 0$ [2]. Ainsi par addition : $u_n \equiv 0$ [2] ce qui démontre que u_n est pair.
- **2.** n est pair : il existe donc $k \in \mathbb{N}^*$ tel que n = 2k. On peut donc écrire : $u_n = u_{2k} = 2^{2k} + 3^{2k} + 6^{2k} - 1 = 4^k + 9^k + 2^{2k} \times 3^{2k} - 1 = 4^k + 4^k \times 9^k + 9^k - 1$. Comme $4 \equiv 0$ [4], $4^k \equiv 0$ [4] ; $4^k \times 9^k \equiv 0$ [4] ; $9 \equiv 1$ [4], donc $9^k \equiv 1$ [4], d'où par addition : $u_{2k} \equiv 0 + 0 + 1 - 1 = 0$ [4], c'est-à-dire que u_{2k} est un multiple de 4.