

Mathématiques et Calculs 1 : Contrôle continu nº 3 11 janvier 2010

L1: Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de pages de l'énoncé : 2. Durée 2h 30.

Tout document est interdit.

Les calculatrices et les téléphones portables, même à titre d'horloge, sont interdits.

Exercice 1. Donner les développements limités en 0,

- 1. à l'ordre 2 pour la fonction $f(x) = \frac{\cos x}{\sqrt{1+x}}$
- 2. à l'ordre 3, pour la fonction $g(x) = e^{\sin x}$

Exercice 2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 1} \end{cases}$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- 2. Vérifier que $u_n^2 u_n 1 \le 0$ et en déduire que : $u_n \le \frac{1 + \sqrt{5}}{2}$ $\forall n \ge 0$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite.

Exercice 3.

- 1. Mettre le nombre complexe $z = \frac{1 i\sqrt{3}}{1 + i}$ sous la forme : $z = \Re c(z) + i \operatorname{Im}(z)$ et calculer \bar{z} .
- 2. Mettre le nombre complexe $\left(\frac{1+i}{1-i}\right)^3$ sous forme trigonométrique et donner son conjugué.

Exercice 4.

- 1. Quel est le domaine de définition de la fonction arctangente et où est-elle dérivable?
- 2. Quelle est la dérivée de arctan x? et que vaut arctan 1?
- 3. Montrer, en utilisant le théorème des accroissements finis que :

$$\forall a, b \in \mathbb{R}, \ a < b, \quad \frac{b-a}{1+b^2} \le \arctan b - \arctan a \le \frac{b-a}{1+a^2}$$

4. En choisissant des valeurs appropriées pour a et b, montrer que : $\frac{\pi}{4} + \frac{3}{25} \le \arctan\left(\frac{4}{3}\right) \le \frac{\pi}{4} + \frac{1}{6}.$

$$\frac{\pi}{4} + \frac{3}{25} \le \arctan\left(\frac{4}{3}\right) \le \frac{\pi}{4} + \frac{1}{6}$$

.../...

Exercice 5. Dans l'espace vectoriel $E = \mathbb{R}^3$, on considère la partie :

$$F = {\vec{u} = (x, y, z) | x + 2y = 0 \text{ et } x + y + z = 0}$$

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Donner une base de F.

Exercice 6.

- 1. Montrer que les vecteurs $\vec{v}_1 = (0,1,1,1), \ \vec{v}_2 = (1,0,1,1), \ \vec{v}_3 = (1,1,0,1), \ \vec{v}_4 = (1,1,1,0)$ forment une base de l'espace vectoriel \mathbb{R}^4
- 2. Calculer les coordonnées du vecteur $\vec{v} = (1, 1, 1, 1)$ sur cette base.

Exercice 7. Calculer le rang de la matrice suivante :

$$\left(\begin{array}{rrr}
1 & 3 & 1 \\
2 & -1 & 1 \\
-1 & 1 & 2
\end{array}\right)$$

Exercice 8.

1. Soit la matrice :

$$M = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right)$$

et D son déterminant.

- (a) Calculer *D* et montrer que *M* est inversible.
- (b) Inverser M par la méthode du pivot de Gauß et vérifier votre calcul en calculant MM^{-1} .
- 2. On considère l'application : $f: \mathbb{R}^3 \mapsto \mathbb{R}^3$ définie par :

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (x + y + 2z, 2x + y + z, x + y + z)$$

- (a) Montrer que f est linéaire.
- (b) Calculer la matrice M_f de f par rapport à la base canonique de \mathbb{R}^3
- (c) Montrer que f est bijective et calculer la bijection réciproque.

Mathématiques et Calculs 1 : Corrigé du contrôle continu nº 3

L1: Licence sciences et technologies, mention mathématiques, informatique et applications

1. On sait par le cours qu'au voisinage de 0, le développement limité à l'ordre 2 de $\cos x$ est :

$$\cos x = 1 - \frac{x^2}{2} + x^2 \varepsilon(x)$$

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)$$

Celui de
$$(1+x)^{-\frac{1}{2}}$$
 est :
$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)$$
 En multipliant les deux, on obtient :
$$\frac{\cos x}{\sqrt{1+x}} = (\cos x) \cdot (1+x)^{-1} = \left(1 - \frac{x^2}{2} + x^2\varepsilon(x)\right) \cdot \left(1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)\right) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)$$
2. En 0, le développement limité à l'ordre 3 de sin x est :
$$\sin x = x - \frac{x^3}{3} + x^3\varepsilon(x)$$

$$\sin x = x - \frac{x^3}{3!} + x^3 \varepsilon(x)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x)$$

Sin
$$x = x - \frac{x^3}{3!} + x^3 \varepsilon(x)$$

Celui de e^x est:
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x)$$
Puisque sin $0 = 0$, on peut composer les deux développements limités:
$$e^{\sin x} = 1 + \left(x - \frac{x^3}{3!}\right) + \frac{1}{2}\left(x - \frac{x^3}{6}\right)^2 + \frac{1}{6}\left(x - \frac{x^3}{6}\right)^3 + x^3 \varepsilon(x) = 1 + x + \frac{1}{2}x^2 + x^3 \varepsilon(x)$$

Exercice 2.

1. La fonction associée à cette suite récurrente est : $x \longmapsto \sqrt{x+1}$; c'est une fonction croissante. On sait par le cours que la suite sera croissante si $u_1 \ge u_0$.

$$u_1 = \sqrt{u_0 + 1} = \sqrt{1 + 1} = \sqrt{2} \ge 1 = u_0$$
. La suite est donc croissante.

2. (a) Par récurrence : $u_0^2 - u_0 - 1 = -1 \le 0$. Supposons que pour $1 \le k \le n$, $u_k^2 - u_k - 1 \le 0$.

Au rang
$$n+1:u_{n+1}^2-u_{n+1}-1=u_n+1-\sqrt{u_n+1}-1=u_n-\sqrt{u_n+1}$$

Or $\forall n\in\mathbb{N},\quad u_n\geq 0$ puisque $u_0\geq 0$ et que la suite est croissante. Donc :

$$u_n - \sqrt{u_n + 1} \le 0 \quad \Leftrightarrow \quad u_n^2 \le u_n + 1 \quad \Leftrightarrow \quad u_n^2 - u_n - 1 \le 0$$

Ce qui est l'hypothèse de récurrence.

(b) Un trinôme du second degré, dont le coefficient du terme de degré deux est positif, sera négatif pour x compris entre les racines. Les racines de $x^2 - x - 1$ sont : $\frac{1 \pm \sqrt{5}}{2}$.

Donc, puisque $u_n \ge 0$, $u_n \le \frac{1+\sqrt{5}}{2}$.

3. La suite est croissante d'après 1.; elle est majorée d'après 2. Toute suite croissante et majorée est convergente, donc la suite est convergente.

Puisque la fonction $x \mapsto \sqrt{x+1}$ est continue, la limite ℓ de cette suite vérifie :

$$\sqrt{\ell+1} = \ell \quad \Leftrightarrow \quad \ell^2 - \ell - 1 = 0$$

 ℓ est donc la racine positive de cette équation : $\lim_{n\to\infty}u_n=\ell=\frac{1+\sqrt{5}}{2}$.

Exercice 3.

1. On multiplie le numérateur et le dénominateur de z par le conjugué du dénominateur :

$$z = \frac{(1-i\sqrt{3})(1-i)}{(1+i)(1-i)} = \frac{1-\sqrt{3}-i(1+\sqrt{3})}{|1+i|^2} = \frac{1-\sqrt{3}}{2} - i\frac{1+\sqrt{3}}{2}$$

$$\bar{z} = \frac{1-\sqrt{3}}{2} + i\frac{1+\sqrt{3}}{2}$$

$$\frac{1+i}{2} = \frac{(1+i)^2}{2} = i$$

$$2. \frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$

$$Donc: \left(\frac{1+i}{1-i}\right)^3 = i^3 = -i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right) = e^{i\frac{3\pi}{2}}$$

$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = \cos\left(\frac{3\pi}{2}\right) - i\sin\left(\frac{3\pi}{2}\right) = e^{-i\frac{3\pi}{2}}$$

1. La fonction arctangente est la fonction réciproque de la fonction tangente, elle est définie et dérivable sur \mathbb{R} .

2.
$$\arctan'(x) = \frac{1}{1+x^2}$$

 $\tan(\frac{\pi}{4}) = 1 \iff \arctan 1 = \frac{\pi}{4}$

3. La fonction arctangente est continue et dérivable sur $\mathbb R$ donc le théorème des accroissements finis s'applique sur tout intervalle de \mathbb{R} :

$$\forall a, b \in \mathbb{R}, a < b \quad \exists c \in]a, b[\text{ tel que}: \quad \arctan b - \arctan a = (b-a)\arctan'(c) = (b-a)\frac{1}{1+c^2}$$

Puisque
$$a < c < b$$
, on a : $\frac{1}{1+b^2} < \frac{1}{1+c^2} < \frac{1}{1+a^2}$.

On a donc:

$$\forall a, b \in \mathbb{R}, \ a < b, \quad \frac{b-a}{1+b^2} \le \arctan b - \arctan a \le \frac{b-a}{1+a^2}$$

4. Puisque $\arctan 1 = \frac{\pi}{4}$, si on prend a = 1 et $b = \frac{4}{3}$, en utilisant la question 3., on a :

$$\frac{\frac{1}{3}}{1 + (\frac{4}{3})^2} \le \arctan\left(\frac{4}{3}\right) - \arctan 1 \le \frac{\frac{1}{3}}{1 + 1^2}$$

Soit:

$$\frac{\pi}{4} + \frac{3}{25} \le \arctan\left(\frac{4}{3}\right) \le \frac{\pi}{4} + \frac{1}{6}$$

Exercice 5.

1. Un sous-espace vectoriel est une partie d'un espace vectoriel, non vide et stable pour les deux

F est non vide car le vecteur $\vec{0}$ lui appartient : $\vec{0} = (0,0,0)$, $0 + 2 \times 0 = 0$ et 0 + 0 + 0 = 0.

Stabilité : $\forall \vec{u}, \vec{v} \in F, \ \forall \alpha \in \mathbb{R}, \quad \alpha \cdot \vec{u} + \vec{v} \in F$

$$\vec{u} = (x_1, y_1, z_1) \quad \vec{v} = (x_2, y_2, z_2) \in F \quad \Leftrightarrow \quad \begin{cases} x_1 + 2y_1 = 0 & \text{et} \quad x_1 + y_1 + z_1 = 0 \\ x_2 + 2y_2 = 0 & \text{et} \quad x_2 + y_2 + z_2 = 0 \end{cases}$$

Stabilite:
$$\forall u, v \in F, \ \forall \alpha \in \mathbb{R}, \quad \alpha \cdot u + v \in F$$

$$\vec{u} = (x_1, y_1, z_1) \quad \vec{v} = (x_2, y_2, z_2) \in F \quad \Leftrightarrow \quad \begin{cases} x_1 + 2y_1 = 0 & \text{et} \quad x_1 + y_1 + z_1 = 0 \\ x_2 + 2y_2 = 0 & \text{et} \quad x_2 + y_2 + z_2 = 0 \end{cases}$$

$$\alpha \cdot \vec{u} + \vec{v} = (\alpha x_1 + x_2, \alpha y_1 + y_2, \alpha z_1 + z_2)$$
Alors:
$$\begin{cases} \alpha x_1 + x_2 + 2(\alpha y_1 + y_2) & = \quad \alpha(x_1 + 2y_1) + x_2 + 2y_2 = 0 \\ \alpha x_1 + x_2 + \alpha y_1 + y_2 + \alpha z_1 + z_2 & = \quad \alpha(x_1 + y_1 + z_1) + x_2 + y_2 + z_2 = 0 \end{cases}$$

$$\dim : \vec{u} \cdot \vec{u} + \vec{v} \in F$$

2. Si un vecteur $\vec{u} = (x, y, z) \in F$, on a nécessairement : $x + 2y = 0 \iff x = -1$

On doit aussi avoir : x + y + z = 0.

Compte tenu de l'égalité précédente, on doit avoir : $-2y + y + z = 0 \Leftrightarrow z = y$.

Tout vecteur non nul de la forme (-2y, y, y) est donc un générateur de F, par exemple : (-2, 1, 1). Comme tout vecteur non nul est libre, (-2,1,1) est une base de F.

Exercice 6.

1. Comme \mathbb{R}^4 est de dimension 4, pour montrer que $\{\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}\}$ est une base, il suffit de montrer que ces vecteurs sont libres. Soit : $\alpha \cdot \vec{v_1} + \beta \cdot \vec{v_2} + \gamma \cdot \vec{v_3} + \delta \cdot \vec{v_4} = \vec{0}$.

On obtient un système de quatre équations :
$$\begin{cases} \beta + \gamma + \delta = 0 \\ \alpha + \gamma + \delta = 0 \\ \alpha + \beta + \gamma + \delta = 0 \\ \alpha + \beta + \gamma = 0 \end{cases}$$

En retranchant la 1^{re} de la 2^e et la 4^e de la 3^e, on obtient : $\alpha = \beta$ et $\gamma = \delta$.

En reportant ces résultats dans la 1^{re} et la 3^e, on obtient respectivement : $\alpha + 2\gamma = 0$ et $2\alpha + \gamma = 0$, donc finalement : $\alpha = \beta = \gamma = \delta$.

Par conséquent, n'importe quelle équation donne : $3\alpha = 0$ et finalement : $\alpha = \beta = \gamma = \delta = 0$. Le système de vecteurs est donc libre.

2. Si on additionne ces quatre vecteurs, on obtient : $\vec{v}_1 + \vec{v}_2 + \vec{v}_3 + \vec{v}_4 = (3,3,3,3)$.

Alors: $(1,1,1,1) = \frac{1}{3} \cdot \vec{v}_1 + \frac{1}{3} \cdot \vec{v}_2 + \frac{1}{3} \cdot \vec{v}_3 + \frac{1}{3} \cdot \vec{v}_4$. Les coordonnées du vecteur (1,1,1,1) sur la nouvelle base sont donc toutes égales à $\frac{1}{2}$.

Exercice 7. On effectue les transformations élémentaires suivantes : $L_2 - 2L_1 \rightsquigarrow L_2$ et $L_3 + L_1 \rightsquigarrow L_3$. On obtient alors la matrice :

$$\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -7 & -1 \\
0 & 4 & 3
\end{array}\right)$$

Puis on effectue : $L_3 \rightsquigarrow L_3 + 2L_2$ et on obtient

$$\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -7 & -1 \\
0 & -17 & 0
\end{array}\right)$$

Enfin on permutte les deux dernières colonnes :

$$\left(\begin{array}{cccc}
1 & 1 & 3 \\
0 & -1 & -7 \\
0 & 0 & -17
\end{array}\right)$$

La matrice est donc de rang 3. (On pouvait aussi calculer le déterminant et voir qu'il n'est pas nul).

Exercice 8.

1. (a) On exécute les opérations élémentaires : $C_2 \rightsquigarrow C_2 - C_1$ et $C_3 \rightsquigarrow C_3 - 2C_1$ et on développe le déterminant obtenu par rapport à sa première ligne :

$$D = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & -3 \\ 1 & 0 & -1 \end{vmatrix} = \begin{vmatrix} -1 & -3 \\ 0 & -1 \end{vmatrix} = 1$$

Comme $D \neq 0$, la matrice M est inversible.

(b) On pose:

On effectue les opérations élémentaires : $L_2 \rightsquigarrow L_2 - 2L_1$ et $L_3 \rightsquigarrow L_3 - L_1$:

$$\left(\begin{array}{ccc|ccc|c}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & -1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1
\end{array}\right)$$

3

On effectue maintenant : $L_1 \rightsquigarrow L_1 + 2L_3$ et $L_2 \rightsquigarrow -L_2 + 3L_3$:

$$\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & -1 & 0 & 2 \\
0 & 1 & 0 & -1 & -1 & 3 \\
0 & 0 & -1 & -1 & 0 & 1
\end{array}\right)$$

Enfin : $L_1 \rightsquigarrow L_1 - L_2$, puis on multiplie L_3 par -1 :

$$\left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 & -1 & 3 \\
0 & 0 & 1 & 1 & 0 & -1
\end{array}\right)$$

On a donc
$$M^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & -1 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$

On vérifie par le calcul que $MM^{-1} = I_3$.

2. (a) Une application est linéaire si elle vérifie pour tous vecteurs \vec{u} et \vec{v} de \mathbb{R}^3 et tout réel α : $f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$ et $f(\alpha \cdot \vec{u}) = \alpha \cdot f(\vec{u})$.

On pose : $\vec{u} = (x_1, y_1, z_1)$ et $\vec{v} = (x_2, y_2, z_2)$.

$$f(\vec{u} + \vec{v}) = ((x_1 + x_2) + (y_1 + y_2) + 2(z_1 + z_2), 2(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2), (x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2))$$

$$= (x_1 + y_1 + 2z_1, 2x_1 + y_1 + z_1, x_1 + y_1 + z_1) + (x_1 + y_2 + 2z_2, 2x_2 + y_2 + z_2, x_2 + y_2 + z_2)$$

$$= f(\vec{u}) + f(\vec{v})$$

$$f(\alpha \cdot \vec{u}) = (\alpha x_1 + \alpha y_1 + 2\alpha z_1, 2\alpha x_1 + \alpha y_1 + \alpha z_1, \alpha x_1 + \alpha y_1 + \alpha z_1)$$

$$= (\alpha (x_1 + y_1 + 2z_1), \alpha (2x_1 + y_1 + z_1), \alpha (x_1 + y_1 + z_1))$$

$$= \alpha (x_1 + y_1 + 2z_1, 2x_1 + y_1 + z_1, x_1 + y_1 + z_1)$$

$$= \alpha \cdot f(\vec{u})$$

(b) La matrice M_f de f par rapport à la base canonique est obtenue en mettant en colonnes les coordonnées des images de chaque vecteur de cette base par f:

f((1,0,0)) = (1,2,1), f((0,1,0)) = (1,1,1), f((0,0,1)) = (2,1,1), ce qui donne la matrice M de la première partie.

(c) Puisqu'on a vu que la matrice M est inversible, l'application f est bijective et sa matrice est la matrice M^{-1} . On a donc :

$$f^{-1}(x,y,z) = (y-z,-x-y+3z,x-z)$$

Mathématiques et Calculs 1 : Examen de 2^e session 8 juin 2010

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications Nombre de pages de l'énoncé : 1. *Durée : 1h30*

Tout document est interdit.

Les calculatrices et les téléphones portables, même à titre d'horloge, sont interdits.

Exercice 1. Soit $\{u_n\}_{n\in\mathbb{N}}$ la suite définie par récurrence par la relation : $u_n=\frac{u_{n-1}}{1+3\,u_{n-1}}$ et $u_0=1$.

- 1. Montrer que u_n est positif quel que soit $n \in \mathbb{N}$
- 2. Montrer que la suite $\{u_n\}_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que la suite $\{u_n\}_{n\in\mathbb{N}}$ est convergente.
- 4. Calculer $\ell = \lim_{n \to \infty} u_n$

Exercice 2.

- 1. Donner une développement limité à l'ordre 4 au voisinage de zéro, pour la fonction : $x \mapsto e^x$.
- 2. En déduire le développement limité à l'ordre 4 au voisinage de 0 pour la fonction

$$f: x \longmapsto f(x) = e^x + e^{-x}$$

3. Calculer la limite suivante :

$$\lim_{x \to 0} \left(\frac{e^x + e^{-x} - 2}{x^2} - 1 \right)$$

Exercice 3. Dans l'espace vectoriel \mathbb{R}^3 , on considère les deux familles de vecteurs suivantes :

- 1. $\vec{u_1} = (0, 1, 3), \vec{u_2} = (2, 0, -1), \vec{u_3} = (2, 0, 1)$
- 2. $\vec{v_1} = (1, 2, 3), \ \vec{v_2} = (-2, 3, 1), \ \vec{v_3} = (0, 7, 7)$

Ces deux familles sont-elles linéairement indépendantes ?

Exercice 4. Monter que la matrice :

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

est inversible et calculer son inverse.

Exercice 5. Soit le nombre complexe $z = i \left(\frac{1 + e^{i\alpha}}{1 - e^{i\alpha}} \right)$.

- 1. Pourquoi doit-on avoir : $\alpha \neq 2k\pi$ pour tout $k \in \mathbb{Z}$?
- 2. Montrer que z est un nombre réel.

Exercice 6.

- 1. Citer le théorème des accroissements finis pour une fonction f définie sur un intervalle [a,b] de \mathbb{R} .
- 2. On considère la fonction f, définie sur l'intervalle [0,1] par $f:[0,1] \mapsto \mathbb{R}$ $t \mapsto \arcsin(t')$
 - (a) Quelle est la dérivée de f?
 - (b) En appliquant le théorème des accroissements finis à la fonction arcsin sur l'intervalle [0, x] pour $x \in]0, 1[$, démontrer l'inégalité :

$$\forall x \in]0, 1[\arcsin x \le \frac{1}{\sqrt{1-x^2}}$$

Mathématiques et calculs : Contrôle continu n°1 18 Octobre 2010

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de pages de l'énoncé : 2. Durée 1h30.

Documents et calculatrices sont interdits.

L'usage des téléphones portables est interdit dans les salles d'examen

NB : Ce sujet contient 4 exercices. Chaque résultat doit être démontré clairement. La question marquée (*) est une question bonus.

Exercice 1

Soit x un réel. Pour un entier naturel n, on considère la somme $S_n(x) = 1 + 2\sum_{k=1}^n \cos(kx)$

- 1. Calculer la somme $T_n(x) = \sum_{k=0}^n e^{ikx}$ comme somme de termes consécutifs d'une suite géométrique.
- 2. Exprimer $S_n(x)$ à l'aide de $\Re(T_n(x))$
- 3. En déduire la valeur de $S_n(x)$

Exercice 2

On considère les polynômes $P(X) = X^2 - 2X + 2$ et $Q(X) = X^4 - 2X^2 + 2$

- 1. Calculer les racines de P
- 2. Montrer que ces racines s'écrivent :

$$\{\sqrt{2} e^{\frac{i\pi}{4}} ; \sqrt{2}e^{-\frac{i\pi}{4}}\}$$

3. En déduire que celles de Q s'écrivent :

$$\{2^{1/4} e^{\frac{i\pi}{8}}; 2^{1/4} e^{-\frac{i\pi}{8}}; -2^{1/4} e^{\frac{i\pi}{8}}; -2^{1/4} e^{-\frac{i\pi}{8}}\}$$

- 4. Ecrire les racines carrées de (1+i) et de (1-i) sous forme algébrique.
- 5. En déduire la valeur de $\cos(\frac{\pi}{8})$
- 6. (*) Ecrire une factorisation de Q(X) en polynômes du second degré, à coefficients réels.

.../...

Exercice 3

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{n+1}{n^2+1}$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$
- 2. Montrer que la suite (u_n) est décroissante.
- 3. En déduire que la suite (u_n) converge vers une limite l
- 4. Quelle est la valeur de l?

Exercice 4

Soit $a \geq 0$ et (u_n) la suite récurrente définie par :

$$\begin{cases} u_0 = a \\ u_{n+1} = \frac{1}{4}u_n^2 + 1 & \forall n > 0 \end{cases}$$

- 1. Montrer que (u_n) est croissante.
- 2. Montrer que si (u_n) converge alors sa limite est 2.
- 3. On suppose $a \leq 2$. Montrer par récurrence que, pour tout $n \geq 0$, $u_n \leq 2$. En déduire que (u_n) est convergente.
- 4. On suppose a > 2. Montrer que (u_n) diverge.

Licence 1ère année, 2010-2011, Mathématiques et Calcul 1 (MC1)

Contrôle continu 2

Exercice 1

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = \frac{x}{1 + |x|}$$

- 1) Démontrer que f est bornée sur \mathbb{R} .
- 2) Etudier la parité de f.
- 3) Etudier la dérivabilité de f en 0.
- 4) Démontrer que f définit une bijection de \mathbb{R} sur]-1;1[.

Le but de l'exercice est d'étudier la bijection réciproque de la fonction tangente.

- 1) Montrer que la fonction tan :] $-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$ est dérivable et strictement croissante. Déterminer ses limites en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.

 2) En déduire que tan réalise une bijection de $]-\frac{\pi}{2},\frac{\pi}{2}[$ dans \mathbb{R} . On note arctan sa bijection réciproque.

 - 4) Montrer que, pour tout x non nul, $\arctan(x) + \arctan(\frac{1}{x}) = \begin{cases} -\frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$

Exercice 3

- 1) Montrer que pour tout x > 0, il existe $c \in]x, x+1[$ tel que $\ln\left(1+\frac{1}{x}\right)=\frac{1}{c}.$ Indication : utiliser le théorème des accroissements finis appliqué à $y \mapsto \ln(y)$ sur l'intervalle [x, x+1].
 - 2) En déduire que pour tout x > 0,

$$\frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$$

- 3) Montrer que les fonctions f et g définies sur \mathbb{R}_+^* par $f(x) = \left(1 + \frac{1}{x}\right)^x$ et $g(x) = \left(1 + \frac{1}{x}\right)^{1+x}$ sont monotones.
- 4) Montrer que f est prolongeable par continuité en 0.
- 5) Déterminer les limites en l'infini de ln(f) et ln(g), puis de f et g.

Exercice 4

Soit $f \ : \ [0,\frac{\pi}{2}] \longrightarrow \mathbb{R}$ la fonction définie par :

$$f(x) = e^{-x} - \sin(x).$$

- 1) Justifier par des opérations élémentaires sur les fonctions que f est dérivable sur $[0, \frac{\pi}{2}]$, puis calculer sa dérivée. En déduire que f définit une bijection de $[0, \frac{\pi}{2}]$ sur $[e^{-\frac{\pi}{2}} - 1, 1]$.
 - 2) Justifier qu'il existe un et un seul α dans $]0,\frac{\pi}{2}[$ tel que $f(\alpha)=0.$

On pose
$$g(x) = x + \frac{1}{2}f(x)$$

- On pose $g(x) = x + \frac{1}{2}f(x)$. 3) Justifier que g est deux fois dérivable sur $[0, \frac{\pi}{2}]$ et calculer g' et g''. 4) Montrer que g' est croissante et positive, puis en déduire que pour tout $x \in [0, \frac{\pi}{2}]$,

$$|g'(x)| \le 1 - e^{-\frac{\pi}{2}} < 1.$$

5) A l'aide du théorème des accroissements finis, déduire de la question 4) que pour tout x et y dans $\left[0,\frac{\pi}{2}\right]$ tels que $x \neq y$,

$$|g(x) - g(y)| < |x - y|.$$

6) Vérifier que α est une solution de l'équation g(x) = x, puis déduire de la question 5) que α est l'unique solution appartenant à $\left[0, \frac{\pi}{2}\right]$ (Indication : on pourra raisonner par l'absurde).

Question bonus) On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 &= 1 \\ u_{n+1} &= g(u_n) \ n\in\mathbb{N}^*. \end{cases}$

- a) Calculer u_1 et montrer que la suite (u_n) est décroissante.
- b) En déduire que (u_n) converge vers α .

1

Mathématiques et Calculs 1 : Corrigé du contrôle continu nº 3

L1: Licence sciences et technologies, mention mathématiques, informatique et applications

Exercice 1.

1. On sait par le cours qu'au voisinage de 0, le développement limité à l'ordre 2 de $\cos x$ est :

$$\cos x = 1 - \frac{x^2}{2} + x^2 \varepsilon(x)$$

Celui de $(1+x)^{-\frac{1}{2}}$ est :

$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)$$

Celui de
$$(1+x)^{-\frac{1}{2}}$$
 est :
$$(1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)$$
 En multipliant les deux, on obtient :
$$\frac{\cos x}{\sqrt{1+x}} = (\cos x) \cdot (1+x)^{-1} = \left(1 - \frac{x^2}{2} + x^2\varepsilon(x)\right) \cdot \left(1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)\right) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)$$

2. En 0, le développement limité à l'ordre 3 de $\sin x$ est :

$$\sin x = x - \frac{x^3}{3!} + x^3 \varepsilon(x)$$
Celui de e^x est:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x)$$

Celui de
$$e^x$$
 est :
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + x^3 \varepsilon(x)$$
 Puisque $\sin 0 = 0$, on peut composer les deux développements limités :
$$e^{\sin x} = 1 + \left(x - \frac{x^3}{3!}\right) + \frac{1}{2}\left(x - \frac{x^3}{6}\right)^2 + \frac{1}{6}\left(x - \frac{x^3}{6}\right)^3 + x^3 \varepsilon(x) = 1 + x + \frac{1}{2}x^2 + x^3 \varepsilon(x)$$

Exercice 2.

1. La fonction associée à cette suite récurrente est : $x \mapsto \sqrt{x+1}$; c'est une fonction croissante. On sait par le cours que la suite sera croissante si $u_1 \ge u_0$.

$$u_1 = \sqrt{u_0 + 1} = \sqrt{1 + 1} = \sqrt{2} \ge 1 = u_0$$
. La suite est donc croissante.

2. (a) Par récurrence : $u_0^2 - u_0 - 1 = -1 \le 0$. Supposons que pour $1 \le k \le n$, $u_k^2 - u_k - 1 \le 0$.

Au rang
$$n+1: u_{n+1}^2 - u_{n+1} - 1 = u_n + 1 - \sqrt{u_n + 1} - 1 = u_n - \sqrt{u_n + 1}$$

Or $\forall n \in \mathbb{N}$, $u_n \ge 0$ puisque $u_0 \ge 0$ et que la suite est croissante. Donc :

$$u_n - \sqrt{u_n + 1} \le 0 \quad \Leftrightarrow \quad u_n^2 \le u_n + 1 \quad \Leftrightarrow \quad u_n^2 - u_n - 1 \le 0$$

Ce qui est l'hypothèse de récurrence.

(b) Un trinôme du second degré, dont le coefficient du terme de degré deux est positif, sera négatif pour x compris entre les racines. Les racines de $x^2 - x - 1$ sont : $\frac{1 \pm \sqrt{5}}{2}$

Donc, puisque
$$u_n \ge 0$$
, $u_n \le \frac{1+\sqrt{5}}{2}$.

3. La suite est croissante d'après 1.; elle est majorée d'après 2. Toute suite croissante et majorée est convergente, donc la suite est convergente.

Puisque la fonction $x \mapsto \sqrt{x+1}$ est continue, la limite ℓ de cette suite vérifie :

$$\sqrt{\ell+1} = \ell \quad \Leftrightarrow \quad \ell^2 - \ell - 1 = 0$$

 ℓ est donc la racine positive de cette équation : $\lim_{n\to\infty} u_n = \ell = \frac{1+\sqrt{5}}{2}$.

Exercice 3.

1. On multiplie le numérateur et le dénominateur de z par le conjugué du dénominateur :

$$z = \frac{(1 - i\sqrt{3})(1 - i)}{(1 + i)(1 - i)} = \frac{1 - \sqrt{3} - i(1 + \sqrt{3})}{|1 + i|^2} = \frac{1 - \sqrt{3}}{2} - i\frac{1 + \sqrt{3}}{2}$$

$$\bar{z} = \frac{1 - \sqrt{3}}{2} + i\frac{1 + \sqrt{3}}{2}$$
2.
$$\frac{1 + i}{1 - i} = \frac{(1 + i)^2}{2} = i$$

$$\operatorname{Donc}: \left(\frac{1 + i}{1 - i}\right)^3 = i^3 = -i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right) = e^{i\frac{3\pi}{2}}$$

$$\left(\frac{1 + i}{1 - i} = \frac{(1 + i)^2}{2}\right)^3 = \cos\left(\frac{3\pi}{2}\right) - i\sin\left(\frac{3\pi}{2}\right) = e^{-i\frac{3\pi}{2}}$$

Exercice 4.

1. La fonction arctangente est la fonction réciproque de la fonction tangente, elle est définie et déri-

2.
$$\arctan'(x) = \frac{1}{1+x^2}$$

 $\tan(\frac{\pi}{4}) = 1 \iff \arctan 1 = \frac{\pi}{4}$

3. La fonction arctangente est continue et dérivable sur ℝ donc le théorème des accroissements finis s'applique sur tout intervalle de \mathbb{R} :

$$\forall a, b \in \mathbb{R}, a < b \quad \exists c \in]a, b[\text{ tel que} : \arctan b - \arctan a = (b - a)\arctan'(c) = (b - a)\frac{1}{1 + c^2}$$

Puisque
$$a < c < b$$
, on a : $\frac{1}{1+b^2} < \frac{1}{1+c^2} < \frac{1}{1+a^2}$.

On a donc:

$$\forall a, b \in \mathbb{R}, \ a < b, \quad \frac{b-a}{1+b^2} \le \arctan b - \arctan a \le \frac{b-a}{1+a^2}$$

4. Puisque $\arctan 1 = \frac{\pi}{4}$, si on prend a = 1 et $b = \frac{4}{3}$, en utilisant la question 3., on a :

$$\frac{\frac{1}{3}}{1 + (\frac{4}{3})^2} \le \arctan\left(\frac{4}{3}\right) - \arctan 1 \le \frac{\frac{1}{3}}{1 + 1^2}$$

Soit:

$$\frac{\pi}{4} + \frac{3}{25} \le \arctan\left(\frac{4}{3}\right) \le \frac{\pi}{4} + \frac{1}{6}$$

Exercice 5.

1. Un sous-espace vectoriel est une partie d'un espace vectoriel, non vide et stable pour les deux opérations.

F est non vide car le vecteur $\vec{0}$ lui appartient : $\vec{0} = (0,0,0)$, $0 + 2 \times 0 = 0$ et 0 + 0 + 0 = 0.

Stabilité: $\forall \vec{u}, \vec{v} \in F, \forall \alpha \in \mathbb{R}, \quad \alpha \cdot \vec{u} + \vec{v} \in F$

$$\vec{u} = (x_1, y_1, z_1) \quad \vec{v} = (x_2, y_2, z_2) \in F \quad \Leftrightarrow \quad \left\{ \begin{array}{ll} x_1 + 2y_1 = 0 & \text{et} & x_1 + y_1 + z_1 = 0 \\ x_2 + 2y_2 = 0 & \text{et} & x_2 + y_2 + z_2 = 0 \end{array} \right.$$

$$\alpha \cdot \vec{u} + \vec{v} = (\alpha x_1 + x_2, \alpha y_1 + y_2, \alpha z_1 + z_2)$$

$$\text{Alors}: \begin{cases} \alpha x_1 + x_2 + 2(\alpha y_1 + y_2) &= \alpha (x_1 + 2y_1) + x_2 + 2y_2 &= 0 \\ \alpha x_1 + x_2 + \alpha y_1 + y_2 + \alpha z_1 + z_2 &= \alpha (x_1 + y_1 + z_1) + x_2 + y_2 + z_2 &= 0 \end{cases} \text{ donc}: \alpha \cdot \vec{u} + \vec{v} \in F$$

On doit aussi avoir : x + y + z = 0.

Compte tenu de l'égalité précédente, on doit avoir : $-2y + y + z = 0 \Leftrightarrow z = y$.

Tout vecteur non nul de la forme (-2v, v, v) est donc un générateur de F, par exemple : (-2, 1, 1). Comme tout vecteur non nul est libre, (-2,1,1) est une base de F.

2

Exercice 6.

1. Comme \mathbb{R}^4 est de dimension 4, pour montrer que $\{\vec{v}_1,\vec{v}_2,\vec{v}_3,\vec{v}_4\}$ est une base, il suffit de montrer que ces vecteurs sont libres. Soit : $\alpha \cdot \vec{v}_1 + \beta \cdot \vec{v}_2 + \gamma \cdot \vec{v}_3 + \delta \cdot \vec{v}_4 = \vec{0}$.

On obtient un système de quatre équations :
$$\begin{cases} & \beta + \gamma + \delta = 0 \\ \alpha + \gamma + \delta = 0 \\ \alpha + \beta + \gamma + \delta = 0 \\ \alpha + \beta + \gamma = 0 \end{cases}$$

En retranchant la 1^{re} de la 2^e et la 4^e de la 3^e, on obtient : $\alpha = \beta$ et $\gamma = \delta$.

En reportant ces résultats dans la 1^{re} et la 3^e, on obtient respectivement : $\alpha + 2\gamma = 0$ et $2\alpha + \gamma = 0$, donc finalement : $\alpha = \beta = \gamma = \delta$.

Par conséquent, n'importe quelle équation donne : $3\alpha = 0$ et finalement : $\alpha = \beta = \gamma = \delta = 0$. Le système de vecteurs est donc libre.

2. Si on additionne ces quatre vecteurs, on obtient : $\vec{v}_1 + \vec{v}_2 + \vec{v}_3 + \vec{v}_4 = (3,3,3,3)$.

Alors: $(1,1,1,1) = \frac{1}{3} \cdot \vec{v_1} + \frac{1}{3} \cdot \vec{v_2} + \frac{1}{3} \cdot \vec{v_3} + \frac{1}{3} \cdot \vec{v_4}$. Les coordonnées du vecteur (1,1,1,1) sur la nouvelle base sont donc toutes égales à $\frac{1}{3}$.

Exercice 7. On effectue les transformations élémentaires suivantes : $L_2 - 2L_1 \rightsquigarrow L_2$ et $L_3 + L_1 \rightsquigarrow L_3$. On obtient alors la matrice :

$$\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -7 & -1 \\
0 & 4 & 3
\end{array}\right)$$

Puis on effectue : $L_3 \rightsquigarrow L_3 + 2L_2$ et on obtient :

$$\left(\begin{array}{ccc}
1 & 3 & 1 \\
0 & -7 & -1 \\
0 & -17 & 0
\end{array}\right)$$

Enfin on permutte les deux dernières colonnes :

$$\left(\begin{array}{cccc}
1 & 1 & 3 \\
0 & -1 & -7 \\
0 & 0 & -17
\end{array}\right)$$

La matrice est donc de rang 3. (On pouvait aussi calculer le déterminant et voir qu'il n'est pas nul).

Exercice 8.

1. (a) On exécute les opérations élémentaires : $C_2 \rightsquigarrow C_2 - C_1$ et $C_3 \rightsquigarrow C_3 - 2C_1$ et on développe le déterminant obtenu par rapport à sa première ligne :

$$D = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & -3 \\ 1 & 0 & -1 \end{vmatrix} = \begin{vmatrix} -1 & -3 \\ 0 & -1 \end{vmatrix} = 1$$

Comme $D \neq 0$, la matrice M est inversible.

(b) On pose:

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 2 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)$$

On effectue les opérations élémentaires : $L_2 \rightsquigarrow L_2 - 2L_1$ et $L_3 \rightsquigarrow L_3 - L_1$:

$$\left(\begin{array}{ccc|ccc|c}
1 & 1 & 2 & 1 & 0 & 0 \\
0 & -1 & -3 & -2 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1
\end{array}\right)$$

3

On effectue maintenant : $L_1 \rightsquigarrow L_1 + 2L_3$ et $L_2 \rightsquigarrow -L_2 + 3L_3$:

$$\left(\begin{array}{ccc|ccc} 1 & 1 & 0 & -1 & 0 & 2 \\ 0 & 1 & 0 & -1 & -1 & 3 \\ 0 & 0 & -1 & -1 & 0 & 1 \end{array}\right)$$

Enfin : $L_1 \rightsquigarrow L_1 - L_2$, puis on multiplie L_3 par -1 :

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 & -1 & 3 \\ 0 & 0 & 1 & 1 & 0 & -1 \end{array}\right)$$

On a donc
$$M^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & -1 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$

On vérifie par le calcul que $MM^{-1} = I_3$.

2. (a) Une application est linéaire si elle vérifie pour tous vecteurs \vec{u} et \vec{v} de \mathbb{R}^3 et tout réel α : $f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$ et $f(\alpha \cdot \vec{u}) = \alpha \cdot f(\vec{u})$.

On pose : $\vec{u} = (x_1, y_1, z_1)$ et $\vec{v} = (x_2, y_2, z_2)$.

$$f(\vec{u} + \vec{v}) = ((x_1 + x_2) + (y_1 + y_2) + 2(z_1 + z_2), 2(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2), (x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2))$$

$$= (x_1 + y_1 + 2z_1, 2x_1 + y_1 + z_1, x_1 + y_1 + z_1) + (x_1 + y_2 + 2z_2, 2x_2 + y_2 + z_2, x_2 + y_2 + z_2)$$

$$= f(\vec{u}) + f(\vec{v})$$

$$f(\alpha \cdot \vec{u}) = (\alpha x_1 + \alpha y_1 + 2\alpha z_1, 2\alpha x_1 + \alpha y_1 + \alpha z_1, \alpha x_1 + \alpha y_1 + \alpha z_1)$$

$$= (\alpha (x_1 + y_1 + 2z_1), \alpha (2x_1 + y_1 + z_1), \alpha (x_1 + y_1 + z_1))$$

$$= \alpha (x_1 + y_1 + 2z_1, 2x_1 + y_1 + z_1, x_1 + y_1 + z_1)$$

$$= \alpha \cdot f(\vec{u})$$

(b) La matrice M_f de f par rapport à la base canonique est obtenue en mettant en colonnes les coordonnées des images de chaque vecteur de cette base par f:

f((1,0,0)) = (1,2,1), f((0,1,0)) = (1,1,1), f((0,0,1)) = (2,1,1), ce qui donne la matrice <math>M de la première partie.

(c) Puisqu'on a vu que la matrice M est inversible, l'application f est bijective et sa matrice est la matrice M^{-1} . On a donc :

$$f^{-1}(x,y,z) = (y-z,-x-y+3z,x-z)$$

Mathématiques et calculs : Contrôle continu n° 3 11 janvier 2011

L1 : Licence sciences et technologies mention mathématiques, informatique et applications

Nombre de pages de l'énoncé : 2. Durée 2h30.

Documents et calculatrices sont interdits.

L'usage des téléphones portables est interdit dans les salles d'examen

Exercice 1.

- 1. Mettre sous la forme a+ib les nombres complexes suivants : $\frac{3+6i}{3-4i}$ et $\left(\frac{1+i}{2-i}\right)^2$
- 2. Mettre sous forme trigonométrique les nombres complexes suivants : 3 + 3i et $-1 \sqrt{3}i$.
- 3. Calculer $\left(\frac{1+i\sqrt{3}}{2}\right)^{2000}$

Exercice 2. On considère la suite u_n définie par récurrence par :

$$\begin{cases} u_0 &= 1 \\ u_n &= \sqrt{2u_{n-1} + 1} \end{cases}$$

- 1. Montrer que $\forall n \in \mathbb{N}, u_n \geq 1$
- 2. On **suppose** que u_n converge vers une limite ℓ . Justifier, avec précision, que ℓ vérifie alors : $\ell = \sqrt{2\ell + 1}$ et que $\ell \ge 1$.
- 3. ℓ étant défini par la relation de la question 2., montrer l'égalité :

$$u_n - \ell = 2 \frac{u_{n-1} - \ell}{\sqrt{2u_{n-1} + 1} + \sqrt{2\ell + 1}}$$

En déduire que : $|u_n - \ell| \le \frac{1}{\sqrt{3}} |u_{n-1} - \ell|$; puis que : $|u_n - \ell| \le \left(\frac{1}{\sqrt{3}}\right)^n |u_0 - \ell|$

- 4. Soit $a \in \mathbb{R}$. À quelles conditions la suite a^n est-elle convergente et, dans les cas où elle converge, quelle est sa limite?
- 5. Montrer que la suite u_n est convergente et calculer sa limite.

Exercice 3. On considère la fonction f définie par :

$$f(x) = \frac{\arctan x}{x^3} - \frac{1}{x^2}$$

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Calculer le développement limité de $\arctan x$ à l'ordre 5, au voisinage de 0.
- 3. En déduire le développement limité de f, à l'ordre 2, au voisnage de 0.
- 4. Déduire du développement limité de f, trouvé à la question précédente, qu'en 0, f peut être prolongée en une fonction dérivable telle que $f(0) = -\frac{1}{3}$ et f'(0) = 0

Exercice 4. Soit l'espace vectoriel \mathbb{R}^3 . On considère les deux sous-ensemble suivants :

$$F = \{(x, y, z) \in \mathbb{R}^3, x + y + 2z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3, x = y \text{ et } x = -z\}$

1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .

.../...

- 2. Déterminer une base de F et donner sa dimension.
- 3. Montrer que G est un sous-espace vectoriel de F et calculer une base de G.

Exercice 5. On considère dans \mathbb{R}^3 le sous-espace vectoriel F engendré par les vecteurs : $\vec{u}=(1,\,2,\,0)$ et $\vec{v}=(0,\,1,\,1)$ et le sous-espace vectoriel G engendré par le vecteur : $\vec{w}=(1,\,1,\,1)$. Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .

Exercice 6. Soit x et y deux réels tels que : 0 < x < y. En appliquant le théorème des accroissements finis à la fonction logarithme sur l'intervalle [x, y], montrer que :

$$x < \frac{y - x}{\ln y - \ln x} < y$$

On justifiera soigneusement que ce théorème s'applique dans les conditions citées.

Exercice 7. Soit le système linéaire suivant :

$$\begin{cases} x + y + z &= 1 \\ 2x + y + z &= 2 \\ x + 2y + z &= 1 \end{cases}$$

- 1. Écrire le système sous forme matricielle. On appellera ${\cal A}$ la matrice du système.
- 2. Calculer le déterminant de A.
- 3. Combien le système admet-il de solutions?
- 4. Résoudre le système.

Mathématiques et Calculs 1 : Examen de 2e session

7 juin 2011

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications Nombre de pages de l'énoncé : 1. *Durée : 1h30*

Tout document est interdit.

Les calculatrices et les téléphones portables, même à titre d'horloge, sont interdits.

Exercice 1. Effectuer les calculs suivants :

- 1. (2+3i)(1-3i)
- 2. Produit du nombre complexe de module 2 et d'argument $\frac{\pi}{3}$ et du nombre complexe de module 3 et d'argument $-\frac{5\pi}{6}$
- 3. $\frac{2+3i}{1-3i}$

Exercice 2. Soit a > 0. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par

$$\left\{ \begin{array}{ll} u_0 & > & 0 \\ u_{n+1} & = & \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) & \forall n > 0 \end{array} \right.$$

- 1. Montrer que : $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$
- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers \sqrt{a} .

Exercice 3. En utilisant un développement limité, calculer les limites suivantes :

$$\lim_{x \to 0} \frac{e^x - \cos(x) - x}{x^2} \qquad \lim_{x \to 0} \frac{x^3 \arctan(x) - x^4}{\cos(x^2) - 1}$$

Exercice 4. On considère les 3 vecteurs de \mathbb{R}^3 suivants :

$$\vec{e_1} = (1, 1, 1)$$
 $\vec{e_2} = (-1, 1, 0)$ $\vec{e_3} = (1, 0, -1)$

- 1. Montrer que ces trois vecteurs forment une base de \mathbb{R}^3
- 2. Calculer les coordonnées du vecteur $\vec{u} = (1, 0, 0)$ dans cette base.

Exercice 5. Montrer que la matrice :

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

est inversible et calculer son inverse.

Exercice 6.

- 1. Citer le théorème des accroissements finis pour une fonction f définie sur un intervalle [a,b] de \mathbb{R} .
- 2. On considère la fonction f, définie sur l'intervalle [0,1] par $f:[0,1] \mapsto \mathbb{R}$ $t \mapsto \arcsin(t)$
 - (a) Quelle est la dérivée de f?
 - (b) En appliquant le théorème des accroissements finis à la fonction arcsin sur l'intervalle [0, x] pour $x \in]0, 1[$, démontrer l'inégalité :

$$\forall x \in]0, 1[\arcsin x \le \frac{1}{\sqrt{1-x^2}}$$

Mathématiques et calculs : Contrôle continu nº1 17 Octobre 2011

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de page de l'énoncé : 1. Durée 1h30. Correction

Exercice 1

1) Calculer le module et l'argument de chacun des nombres complexes

$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
 et $z_2 = 1 - i$.

- 2) En déduire le module et l'argument de $z=\frac{z_1}{z_2}$.
- 3) Utiliser les résultats précédents pour calculer $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Correction de l'exercice 1 :

1)

$$|z_1| = \sqrt{2}$$
 et $\arg(z_1) = -\frac{\pi}{6}$.

$$|z_2| = \sqrt{2}$$
 et $\arg(z_2) = -\frac{\pi}{4}$.

2)

$$|z| = \frac{|z_1|}{|z_2|} = 1$$
 et $\arg(z) = \arg(z_1) - \arg(z_2) = \frac{\pi}{12}$.

3) On détermine la forme algébrique de $z = \cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12})$. On trouve

$$z = (\frac{\sqrt{6} + \sqrt{2}}{4}) + i(\frac{\sqrt{6} - \sqrt{2}}{4})$$

D'où

$$\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 et $\sin(\frac{\pi}{12}) = \frac{\sqrt{6} - \sqrt{2}}{4}$.

Exercice 2

Déterminer les racines carrées complexes de z = -8 - 6i.

Correction de l'exercice 2:

On cherche $\omega = x + iy$ tel que $\omega^2 = z$. Ici 2xy = -6 donc \underline{x} et y sont de signes contraires. Les deux racines sont $\omega_1 = 1 - i3$ et $\omega_2 = -1 + i3$.

Exercice 3

Soit
$$z = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$$
.

- 1) Calculer z^2 sous la forme algébrique puis sous forme exponentielle.
- 2) En déduire la forme exponentielle de z.
- 3) En déduire $\cos(\frac{3\pi}{8})$.

Correction de l'exercice 3 :

1) Les réponses sont :

$$z^{2} = -2\sqrt{2} + i2\sqrt{2}$$
$$z^{2} = 4e^{i\frac{3\pi}{4}}$$

$$|z^2| = 4$$
 et $\arg(z^2) = \frac{3\pi}{4}$.

2) z est une racine carrée de z^2 donc

$$z = 2e^{i\frac{3\pi}{8}}$$
 ou $z = -2e^{i\frac{3\pi}{8}}$

Comme $\cos(\frac{3\pi}{8}) > 0$ et Re(z) > 0, on en déduit que

$$z = 2e^{i\frac{3\pi}{8}}.$$

3)

$$\cos(\frac{3\pi}{8}) = \frac{\text{Re}(z)}{|z|} = \frac{\sqrt{2 - \sqrt{2}}}{2}.$$

Exercice 4

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \sqrt{\frac{u_n^2 + 4}{3}}, \forall n \ge 0 \end{cases}$$

- 1) Montrer que pour tout $n \ge 0$, $u_n \ge 0$.
- 2) Montrer que la suite (v_n) définie par $v_n = u_n^2 2$ est géométrique et préciser sa raison.
- 3) Calculer v_n en fonction de v_0 . En déduire la limite de (v_n) puis celle de (u_n) .

Correction de l'exercice 4:

- 1) On démontre par récurrence la propriété (P_n) : $u_n \ge 0$.
- <u>Initialisation</u>: $u_0 = 0 \ge 0$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors,

$$u_{n+1} = \sqrt{\frac{u_n^2 + 4}{3}}$$

est bien défini puisque $\frac{u_n^2+4}{3}\geqslant 0$ d'après l'hypothèse de récurrence. De plus $u_{n+1}\geqslant 0$ car la fonction racine carrée est positive.

Donc, par récurrence, pour tout $n \ge 0$, $u_n \ge 0$

2) On a

$$v_{n+1} = u_{n+1}^2 - 2 = \frac{u_n^2 + 4}{3} - 2 = \frac{u_n^2 - 2}{3} = \frac{1}{3}v_n.$$

Donc (v_n) est une suite géométrique de raison $\frac{1}{3}$.

3) (v_n) est une suite géométrique de raison $\frac{3}{3}$ et $v_0 = u_0 - 2 = -2$ d'où

$$v_n = -\frac{2}{3^n}.$$

On en déduit que (v_n) tend vers 0, et donc que $u_n^2 = v_n + 2$ tend vers 2. Comme $u_n \ge 0$, on a $u_n = \sqrt{u_n^2}$, d'où (u_n) tend vers $\sqrt{2}$ (par continuité de la fonction racine carrée...)

Exercice 5

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{2u_n} , \forall n \geqslant 0 \end{cases}$$

- 1) Montrer que pour tout $n \ge 0$, $u_n > 0$.
- 2) Montrer que pour tout $n \ge 0$, $u_n \le 2$.
- 3) Montrer que (u_n) est croissante (on pourra considérer le quotient $\frac{u_{n+1}}{u_n}$).

4) En déduire que (u_n) est convergente et déterminer sa limite.

Correction de l'exercice 5:

- 1) On démontre par récurrence la propriété (P_n) : $u_n > 0$.
- <u>Initialisation</u>: $u_0 = 1 > 0$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors $u_{n+1} = \sqrt{2u_n} > 0$ donc (P_{n+1}) est vraie.

Donc, par récurrence, pour tout $n \ge 0$, $u_n > 0$.

- 2) On démontre par récurrence la propriété (P_n) : $u_n \leq 2$.
- <u>Initialisation</u>: $u_0 = 1 \leq 2$ donc (P_0) est vraie.
- <u>Hérédité</u>: On suppose que (P_n) est vraie pour un certain $n \ge 0$. Alors, $2u_n \le 4$, et, comme la fonction racine carrée est croissante,

$$u_{n+1} = \sqrt{2u_n} \leqslant \sqrt{4} = 2,$$

et donc (P_{n+1}) est vraie.

Par récurrence, pour tout $n \ge 0$, $u_n \le 2$. 3) On peut considérer le quotient $\frac{u_{n+1}}{u_n}$ car pour tout $n \ge 0$, $u_n > 0$ et en particulier $u_n \ne 0$. On a

$$\frac{u_{n+1}}{u_n} = \frac{\sqrt{2u_n}}{u_n} = \sqrt{\frac{2}{u_n}}.$$

Or, d'après la question 2), $u_n \leqslant 2$, donc $\sqrt{\frac{2}{u_n}} \geqslant 1$. Ainsi, $\frac{u_{n+1}}{u_n} \geqslant 1$ pour tout $n \geqslant 0$, ce qui montre que (u_n) est croissante.

4) (u_n) est croissante et majorée par 2, donc elle converge. Sa limite l vérifie

$$l = \sqrt{2l} \quad \Leftrightarrow \quad l^2 = 2l \text{ et } l \geqslant 0 \quad \Leftrightarrow \quad l(l-2l) = 0 \text{ et } l \geqslant 0 \quad \Leftrightarrow \quad l = 0 \text{ ou } l = 2.$$

Ainsi (u_n) ne peut converger que vers 0 ou 2. Mais comme (u_n) est croissante et $u_0 = 1 > 0$, (u_n) ne peut pas converger vers 0. En conclusion, (u_n) converge vers l=2.

Mathématiques et Calcul : Contrôle continu n^o2 21 Novembre 2011

L1 : Licence Sciences et Technologies, mention Mathématiques, Informatique et Applications

Nombre de pages de l'énoncé : 2. Durée : 1h30.

NB : Ce sujet contient 5 exercices. Il n'est pas nécessaire de le traiter entièrement pour obtenir la note maximale. Chaque résultat doit être démontré clairement.

Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

Exercice 1

Déterminer les limites suivantes :

1) $\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x^3 - 5x + 6} \right)$

2) $\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x-2} \right)$

3) $\lim_{x\to 2} \left(\frac{\sqrt{2x^2+1} - \sqrt{x^2+x+3}}{x^2 - 3x + 2} \right)$

4) $\lim_{x \to 3} \left(\frac{\exp(x) - \exp(3)}{x^2 - 4x + 3} \right)$

Exercice 2

Soient deux réels a et b. On définit la fonction f sur \mathbb{R}_+ par

$$f(x) = \begin{cases} \sqrt{x} & \text{si } 0 \leqslant x \leqslant 1\\ ax^2 + bx + 1 & \text{si } x > 1 \end{cases}$$

- 1) Déterminer pour quels réels a et b la fonction f est continue sur \mathbb{R}_+ .
- 2) Calculer la dérivée de f sur]0,1[et sur $]1,+\infty[.$
- 3) Déterminer pour quels réels a et b la fonction f est dérivable sur $\mathbb{R}_+^*.$

Exercice 3

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x - 2 + \cos(x)$.

- 1) Calculer f(0) et $f(\pi)$. Que peut-on en déduire pour l'équation f(x) = 0?
- 2) Calculer la dérivée de f. En déduire que f réalise une bijection de $\mathbb R$ dans $\mathbb R$.
- 3) Démontrer que l'équation f(x)=0 possède une unique solution dans $[0,\pi]$, notée α .
- 4) Pour tout $x \in \mathbb{R}$, on pose $F(x) = (x + \alpha 2)(x \alpha) + \sin(x) \sin(\alpha)$. En étudiant les variations de la fonction F, montrer que $F \ge 0$ sur \mathbb{R} .

1

Exercice 4

Le but de l'exercice est d'étudier la bijection réciproque de la fonction tangente hyperbolique :

th:
$$\mathbb{R} \rightarrow]-1,1[$$
 $x \rightarrow \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- 1) Montrer que la fonction tangente hyperbolique est dérivable et strictement croissante. Déterminer ses limites en $-\infty$ et $+\infty$.
 - 2) En déduire que th réalise une bijection de $\mathbb R$ dans] -1,1[. On note Argth sa bijection réciproque.
 - 3) Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{th}'(x) = 1 \operatorname{th}^2(x)$.
 - 4) Calculer la dérivée de la fonction Argth.

Exercice 5

Soient $f, g : [a, b] \to \mathbb{R}$ deux fonctions continues sur [a, b] (a < b) et dérivables sur]a, b[. On suppose que $g'(x) \neq 0$ pour tout $x \in]a, b[$.

1) Montrer que $g(x) \neq g(a)$ pour tout $x \in]a,b]$.

Posons $p=\frac{f(b)-f(a)}{g(b)-g(a)}$ et considérons la fonction

$$\begin{array}{cccc} h: & [a,b] & \to & \mathbb{R} \\ & x & \mapsto & f(x) - pg(x) \end{array}.$$

- 2) Montrer que h est continue sur [a,b], dérivable sur [a,b] et que h(a)=h(b).
- 3) En déduire qu'il existe un nombre réel $c \in]a,b[$ tel que h'(c)=0, puis que

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}.$$

4) On suppose que $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=l$ où l est un nombre réel. Montrer que

$$\lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} = l.$$

5) Application. Calculer la limite suivante :

$$\lim_{x \to 1^-} \frac{\operatorname{Arccos} x}{\sqrt{1 - x^2}}.$$

Mathématiques et Calculs 1 : Contrôle continu nº 3 16 janvier 2012

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Exercice 1. Mettre sous forme algébrique, puis trigonométrique, le nombre complexe : $z = \frac{-4}{1 + i\sqrt{3}}$. Calculer z^3 .

Solution

$$z = \frac{-4(1 - i\sqrt{3})}{4} = -1 + i\sqrt{3} = 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{2\pi}{3}}$$
$$z^3 = 8e^{i\frac{6\pi}{3}} = 8$$

Exercice 2. Soit $a \in \mathbb{R}_+^*$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par récurrence par : $u_0 > 0$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$
- 2. Montrer que : $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$.
- 3. Montrer que pour $n \ge 1$, $u_n \ge \sqrt{a}$ et en déduire que la suite $(u_n)_{n \in \mathbb{N}^*}$ est décroissante.
- 4. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite.

Solution

- 1. Par récurrence : $\forall n \in \mathbb{N}, u_n > 0$
 - (i) $u_0 > 0$ par l'énoncé
 - (ii) Si pour $0 \le k \le n$ $u_k > 0$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right) > 0$ puisque a > 0.

$$2. \ u_{n+1}^2 - a = \frac{1}{4} \left(u_n + \frac{a}{u_n} \right)^2 - a = \frac{1}{4} \left(u_n^2 + 2a + \left(\frac{a}{u_n} \right)^2 - 4a \right) = \frac{1}{4} \left(u_n^2 - 2a + \left(\frac{a}{u_n} \right)^2 \right) = \frac{(u_n^2 - a)^2}{4u_n^2}.$$

3. D'après la question précédente, $u_n^2 - a$ est un carré donc positif; comme u_n et a sont positifs, on en conclut que $u_n \ge \sqrt{a}$.

Pour montrer que $(u_n)_{n\in\mathbb{N}}$ est décroissante, on montre soit que $\frac{u_{n+1}}{u_n}\leq 1$, soit que $u_{n+1}-u_n\leq 0$.

(i)
$$\frac{u_{n+1}}{u_n} \le 1$$
: $\frac{u_{n+1}}{u_n} = \frac{1}{2} \left(1 + \frac{a}{u_n^2} \right) \le \frac{1}{2} (1+1) = 1$ puisque, d'après ce qui précède, $u_n^2 \ge a$.

(ii)
$$u_{n+1} - u_n \le 0$$
: $u_{n+1} - u_n = \frac{1}{2} \left(\frac{a}{u_n} - u_n \right) = \frac{1}{2} \left(\frac{a - u_n^2}{u_n} \right) \le 0$, toujours d'après la question précédente.

4. On a montré que la suite était décroissante et qu'elle était minorée par \sqrt{a} , elle est donc convergente vers une limite ℓ .

On a, puisque $\forall n \in \mathbb{N}^*$, $u_n \ge \sqrt{a} > 0 \implies \ell \ne 0$, $\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right)$, soit : $\ell^2 - a = 0$ et on choisit la racine positive : $\ell = \sqrt{a}$.

Exercice 3.

- 1. Quel est le développement limité en 0, à l'ordre 5, de la fonction cos x. En déduire le développement limité en 0, à l'ordre 5, de $1 - \cos x$.
- 2. Quel est le développement limité en 0, à l'ordre 4, de la fonction e^x ; en déduire le développement limité en 0, à l'ordre 5, de $x(e^x - 1)$.
- 3. Calculer le développement limité en 0, à l'ordre 3, de la fonction $f(x) = \frac{1 \cos(x)}{x(e^x 1)}$
- 4. En déduire que l'on peut prolonger f par continuité en 0. Quelle est la valeur du prolongement en 0 ?

1. D'après le cours :
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + o(x^5)$$

D'où:
$$1 - \cos x = x^2 \left(\frac{1}{2} - \frac{x^2}{4!} + o(x^3) \right)$$

D'après le cours :
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + o(x^4)$$

D'où:
$$x(e^x - 1) = x^2 \left(1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \circ(x^3)\right)$$

On a donc:
$$f(x) = \left(\frac{1}{2} - \frac{x^2}{4!} + \circ(x^3)\right) \frac{1}{1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!} + \circ(x^3)}$$

Il faut calculer le développement de :
$$\frac{1}{1 + \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!}}$$

D'après le cours :
$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + o(u^3)$$
 avec $u = \frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!}$
$$\frac{1}{1 + \frac{x}{2} + \frac{x^3}{3!} + \frac{x^3}{4!}} = 1 - \left(\frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!}\right) + \left(\frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!}\right)^2 - \left(\frac{x}{2} + \frac{x^2}{3!} + \frac{x^3}{4!}\right)^3 + o(x^3)$$

$$\frac{1}{1 + \frac{x}{2} + \frac{x^{2}}{3!} + \frac{x^{3}}{4!}} = 1 - \left(\frac{x}{2} + \frac{x^{2}}{3!} + \frac{x^{3}}{4!}\right) + \left(\frac{x}{2} + \frac{x^{2}}{3!} + \frac{x^{3}}{4!}\right)^{2} - \left(\frac{x}{2} + \frac{x^{2}}{3!} + \frac{x^{3}}{4!}\right)^{3} + o(x^{3})$$

$$\frac{1 + \frac{x}{2} + \frac{x^3}{3!} + \frac{x^3}{4!}}{1 + \frac{x}{2} + \frac{x^3}{3!} + \frac{x^3}{4!}} = 1 - \frac{x}{2} - \frac{x^2}{6} - \frac{x^3}{24} + \frac{x^2}{4} + \frac{x^3}{6} - \frac{x^3}{8} + o(x^3) = 1 - \frac{x}{2} - \frac{x^2}{12} + o(x^3)$$
En ne gardant que les puissances inférieures ou égales à 3:
$$\frac{1}{1 + \frac{x}{2} + \frac{x^3}{3!} + \frac{x^3}{4!}} = 1 - \frac{x}{2} - \frac{x^2}{6} - \frac{x^3}{24} + \frac{x^2}{4} + \frac{x^3}{6} - \frac{x^3}{8} + o(x^3) = 1 - \frac{x}{2} - \frac{x^2}{12} + o(x^3)$$

$$f(x) = \left(\frac{1}{2} - \frac{x^2}{4!} + o(x^3)\right)\left(1 - \frac{x}{2} - \frac{x^2}{12} + o(x^3)\right) = \frac{1}{2} - \frac{x}{4} + \frac{x^3}{48} + o(x^3)$$

Exercice 4. Soit la fonction f, définie par : $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$

- 1. Quel est le domaine de définition de cette fonction ? Quelle est la valeur de f(0) ?
- 2. Calculer la dérivée f' de cette fonction.
- 3. Déduire des questions précédentes que, pour -1 < x < 1, f s'écrit facilement en fonction de $\arctan(x)$.

Solution

1. La fonction arcsinus est définie entre –1 et 1; on doit donc avoir : $-1 < \frac{2x}{1+x^2} < 1$, soit les deux

(i)
$$x^2 + 2x + 1 = (x+1)^2 > 0$$

(ii)
$$x^2 - 2x + 1 = (x - 1)^2 > 0$$

Les deux étant vérifiées pour tout x, la fonction f est définie sur \mathbb{R} . $f(0) = \arcsin(0) = 0$.

2. On a à dériver une fonction composée $f \circ g$ avec : $f(x) = \arcsin(x)$ et $g(x) = \frac{2x}{1+x^2}$

$$(f \circ g)'(x) = g'(x)f'(g(x)).$$

$$g'(x) = \frac{2}{1+x^2} - \frac{4x^2}{(1+x^2)^2} = 2\left(\frac{1+x^2-2x^2}{(1+x^2)^2}\right) = 2\left(\frac{1-x^2}{(1+x^2)^2}\right)$$

$$f'(g(x)) = \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} = \frac{1}{\sqrt{\frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2}}} = \frac{1}{\sqrt{\frac{(1-x^2)^2}{(1+x^2)^2}}} = \left|\frac{1+x^2}{1-x^2}\right| = \frac{1+x^2}{|1-x^2|}$$
$$g'(x)f'(g(x)) = \frac{1-x^2}{|1-x^2|} \frac{2}{1+x^2}$$

3. Pour -1 < x < 1 on $a: 1 - x^2 > 0$; donc: $\frac{1 - x^2}{|1 - x^2|} = 1$. Alors: $f'(x) = \frac{2}{1 + x^2}$ et $f(x) = K + 2 \arctan(x)$. Comme f(0) = 0, K = 0.

Exercice 5. Soit f la fonction définie sur \mathbb{R}_+^* par : $f(x) = \cos(\frac{1}{x})$.

- 1. Montrer que f est dérivable et calculer sa dérivée.
- 2. Justifier le fait que, pour tout $x \in \mathbb{R}_+^*$, on peut appliquer le théorème des accroissements finis à f sur l'intervalle [x, x+1].
- 3. Appliquer le théorème des accroissements finis à f sur l'intervalle [x, x+1] et en déduire que :

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \left| \cos \left(\frac{1}{x+1} \right) - \cos \left(\frac{1}{x} \right) \right| \leq \frac{1}{x^2}$$

4. En déduire la limite : $\lim_{x \to +\infty} x \left(\cos \left(\frac{1}{1+x} \right) - \cos \left(\frac{1}{x} \right) \right)$

.../...

Solution

- 1. f est composée de deux fonctions dérivables sur \mathbb{R}_+^* , elle est donc dérivable sur \mathbb{R}_+^* . $f'(x) = \left(-\frac{1}{v^2}\right)\left(-\sin\left(\frac{1}{v}\right)\right) = \left(\frac{1}{v^2}\right)\left(\sin\left(\frac{1}{v}\right)\right)$.
- 2. Si x > 0, la fonction f est continue sur [x, x + 1] et dérivable sur]x, x + 1[, on peut donc appliquer le théorème des accroissements finis à f sur cet intervalle.
- 3. En appliquant le théorème des accroissements finis à f sur [x, x+1], on obtient :

$$\exists c \in]x, x+1[$$
 tel que $\left|\cos\left(\frac{1}{x+1}\right)-\cos\left(\frac{1}{x}\right)\right|=(x+1-x)\left(\frac{1}{c^2}\right)\left(\sin\left(\frac{1}{c}\right)\right)$

Puisque $c \in]x, x+1[$, c > x et $\frac{1}{c^2} < \frac{1}{x^2}$ et, le sinus étant une fonction bornée par 1, on obtient :

$$\forall x \in \mathbb{R}_+^*, \quad \left| \cos \left(\frac{1}{x+1} \right) - \cos \left(\frac{1}{x} \right) \right| \le \frac{1}{x^2}$$

4. D'après la question précédente, on a :

$$\forall x \in \mathbb{R}_{+}^{*}, \quad \left| x \cos \left(\frac{1}{x+1} \right) - \cos \left(\frac{1}{x} \right) \right| \leq \frac{1}{x}$$

et donc:
$$\lim_{x \to +\infty} x \left(\cos \left(\frac{1}{1+x} \right) - \cos \left(\frac{1}{x} \right) \right) = 0$$

Exercice 6. Dans l'espace vectoriel \mathbb{R}^3 , on considère les familles de vecteurs suivantes :

i.
$$\mathcal{F}_1 = \{ \vec{u}_1 = (1, -1, -2), \quad \vec{u}_2 = (1, 0, -1), \quad \vec{u}_3 = (-5, 3, 7) \}$$

ii.
$$\mathcal{F}_2 = {\vec{v}_1 = (1, -1, -2), \vec{v}_2 = (1, 0, -1), \vec{v}_3 = (6, 4, -2)}$$

Si l'une de ces deux familles (ou les deux) est (ou sont) une (des) bases \mathbb{R}^3 , calculer les coordonnées des vecteurs $\vec{e_1} = (1, 0, 0)$ et $\vec{e_2} = (0, 1, 0)$ dans cette base.

Dans le cas contraire, quelle relation y a-t-il entre les vecteurs de la famille?

Solution

i. Au choix :
$$\det \mathcal{F}_1 = \begin{vmatrix} 1 & -1 & -2 \\ 1 & 0 & -1 \\ -5 & 3 & 7 \end{vmatrix} = \begin{vmatrix} -1 & -1 & -2 \\ 0 & 0 & -1 \\ 2 & 3 & 7 \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ 2 & 3 \end{vmatrix} = -1$$

 \mathcal{F}_1 est libre et elle est génératrice puisque \mathbb{R}^3 est de dimension 3, c'est donc une base.

Ou bien on calcule $\alpha \vec{u_1} + \beta \vec{u_2} + \gamma \vec{u_3} = \vec{0}$, ce qui donne le système :

$$\begin{cases} \alpha + \beta - 5\gamma & = & 0 \\ -\alpha + 3\gamma & = & 0 \\ -2\alpha - \beta + 7\gamma & = & 0 \end{cases}$$

La 2e équation donne : $\alpha=3\gamma$ que l'on reporte dans la $1^{\rm re}$: $\beta-2\gamma=0$ et dans la $3^{\rm e}$: $-\beta+\gamma=0$. Donc : $\alpha=\beta=\gamma=0$ le système est libre et forme une base de \mathbb{R}^3 .

Pour trouver les coordonnées de $\vec{e_1}$ et $\vec{e_2}$ dans la base \mathcal{F}_1 , il faut résoudre les systèmes :

$$(I) \left\{ \begin{array}{lll} \alpha+\beta-5\gamma & = & 1 \\ -\alpha+3\gamma & = & 0 \\ -2\alpha-\beta+7\gamma & = & 0 \end{array} \right. \qquad (II) \left\{ \begin{array}{lll} \alpha+\beta-5\gamma & = & 0 \\ -\alpha+3\gamma & = & 1 \\ -2\alpha-\beta+7\gamma & = & 0 \end{array} \right.$$

La même méthode que précédemment donne : $\vec{e_1} = -3\vec{u_1} - \vec{u_2} - \vec{u_3}$ et $\vec{e_2} = 2\vec{u_1} + 3\vec{u_2} + \vec{u_3}$.

ii.
$$\det \mathcal{F}_1 = \begin{vmatrix} 1 & -1 & -2 \\ 1 & 0 & -1 \\ 6 & 4 & -2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & -2 \\ 0 & 0 & -1 \\ 4 & 4 & -2 \end{vmatrix} = \begin{vmatrix} -1 & -1 \\ 4 & 4 \end{vmatrix} = 0$$

La famille \mathcal{F}_2 est liée et : $\vec{v}_3 = -4\vec{v}_1 + 5\vec{v}_2$, par exemple.

Exercice 7. Soit la matrice :

$$A = \left(\begin{array}{rrrr} 2 & -1 & 3 & -4 \\ 2 & 0 & 4 & -5 \\ -2 & 4 & 3 & 1 \\ 0 & -3 & 1 & -1 \end{array}\right)$$

Calculer le déterminant de A. La matrice A est-elle inversible ?

Solution

On remplace la 2^e ligne par la 2^e moins la 1^{re} et la 3^e par la 3^e plus la 1^{re} et on développe par rapport à la 1^{re} colonne :

$$\det(A) = \begin{vmatrix} 2 & -1 & 3 & -4 \\ 0 & 1 & 1 & -1 \\ 0 & 3 & 6 & -3 \\ 0 & -3 & 1 & -1 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 & -1 \\ 3 & 6 & -3 \\ -3 & 1 & -1 \end{vmatrix}$$

Dans le déterminant 3×3 , on remplace la 2^e colonne par la 2^e moins la 1^{re} et la 3^e par la 3^e plus la 1^{re} et on développe par rapport à la 1^{re} ligne :

$$\det(A) = 2 \begin{vmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ -3 & 4 & -4 \end{vmatrix} = 2 \begin{vmatrix} 3 & 0 \\ 4 & -4 \end{vmatrix} = -24$$

Le déterminant étant non-nul, la matrice est inversible.

Exercice 8. On considère le système d'équations linéaires suivant :

$$\begin{cases} x - y & = & 1 \\ -x + 2y + z & = & -1 \\ 2x + 2y + 3z & = & 1 \end{cases}$$

- 1. Mettre ce système sous forme matricielle : AX = B.
- 2. Calculer l'inverse de la matrice A par la méthode du pivot de Gauss.
- 3. Calculer les solutions de ce système.

Solution

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

2.

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{c} L_2 \leftrightsquigarrow L_2 + L_1 \\ L_3 \leftrightsquigarrow L_3 - 2L_1 \\ \end{array} \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 4 & 3 & -2 & 0 & 1 \\ \end{array})$$

$$L_3 \leftrightsquigarrow 4L_2 - L_3 \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 6 & 4 & -1 \\ \end{pmatrix} \quad \begin{array}{c} L_2 \leftrightsquigarrow L_2 - L_3 \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -5 & -3 & 1 \\ 0 & 0 & 1 & 6 & 4 & -1 \\ \end{pmatrix}$$

$$L_1 \leftrightsquigarrow L_1 + L_2 \begin{pmatrix} 1 & 0 & 0 & -4 & -3 & 1 \\ 0 & 1 & 0 & -5 & -3 & 1 \\ 0 & 0 & 1 & 6 & 4 & -1 \\ \end{pmatrix}$$

3. On a donc:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4 & -3 & 1 \\ -5 & -3 & 1 \\ 6 & 4 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Mathématiques et Calculs 1 : Examen de 2e session (11 juin 2012)

Corrigé

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Exercice 1. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par :

$$\left\{ \begin{array}{lll} a_{n+1} & = & \sqrt{a_n b_n}, & a_0 = a \\ \\ b_{n+1} & = & \frac{1}{2}(a_n + b_n), & b_0 = b \end{array} \right. \quad 0 < a < b$$

- 1. Montrer que $\forall n \in \mathbb{N}, b_n \geq a_n$.
- 2. Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et que la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- 3. En déduire que les deux suites sont convergentes et ont même limite.

Solution

1. Les deux suites sont à termes positifs puisque 0 < a < b. On a :

$$\forall n \in \mathbb{N}$$
 $b_{n+1} - a_{n+1} = \frac{1}{2} \left(a_n + b_n - 2\sqrt{a_n b_n} \right) = \frac{1}{2} \left(\sqrt{a_n} - \sqrt{b_n} \right)^2 \ge 0$

2. D'après 1., $b_n \ge a_n$, donc :

(a)
$$a_{n+1} = \sqrt{a_n b_n} \ge \sqrt{a_n a_n} = a_n$$
; la suite a_n est croissante.

(b)
$$b_{n+1} = \frac{1}{2}(a_n + b_n) \le \frac{1}{2}(b_n + b_n) = b_n$$
; la suite b_n est décroissante.

3. On a le classement : $0 < a = a_0 \le a_1 \le \cdots \le a_n \le \cdots \le b_n \le \cdots \le b_1 \le b_0 = b$.

La suite a_n est croissante et majorée par b et la suite b_n est décroissante et minorée par a, ces deux suites sont donc convergentes respectivement par ℓ et ℓ' .

Les limites vérifient : $\ell' = \frac{1}{2}(\ell + \ell')$, on en déduit : $\ell = \ell'$.

Exercice 2.

- 1. Citer le théorème des accroissements finis pour une fonction f définie sur l'intervalle [a,b] $a,b \in \mathbb{R}$. (Remarque : seules les réponses donnant toutes les hypothèses et la conclusion seront prises en compte pour la correction.)
- 2. Soit $x, y \in \mathbb{R}_+^*$ x < y. En appliquant le théorème des accroissements finis à la fonction $t \mapsto \ln(t)$, montrer les inégalités :

$$x < \frac{y - x}{\ln(y) - \ln(x)} < y$$

Solution

- 1. Soit une fonction f à valeurs réelles définie et continue sur l'intervalle [a,b] et dérivable sur l'intervalle [a,b]; il existe $c \in]a,b[$ tel que : f(b)-f(a)=(b-a)f'(c).
- 2. Sur \mathbb{R}_+^* , la fonction définie par : $x \mapsto \ln x$ est continue et dérivable, elle vérifie donc les hypothèses du théorème des accroissements finis sur tout intervalle [x, y] contenu dans \mathbb{R}_+^* . On a alors :

$$\ln(y) - \ln(x) = (y - x)\frac{1}{c}$$
 avec $0 < x < c < y$

Donc:
$$0 < x < c = \frac{y - x}{\ln(y) - \ln(x)} < y$$
.

Mathématiques et Calculs 1 : Examen du 11 juin 2013 (durée : 1h30)

L1 : Licence sciences et technologies, mention mathématiques, informatique et applications

Les documents, calculatrices, téléphones portables ne sont pas autorisés

Exercice 1. On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par :

$$\left\{ \begin{array}{lcl} a_{n+1} & = & \frac{1}{3} \, (2a_n + b_n), & a_1 = 4 \\[1mm] b_{n+1} & = & \frac{1}{3} \, (a_n + 2b_n), & b_1 = 1 \end{array} \right.$$

- 1. i. Calculer $a_{n+1} b_{n+1}$ et montrer que $\forall n \in \mathbb{N}$, $a_n > b_n$ et que $\lim_{n \to \infty} (a_n b_n) = 0$.
 - ii. Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante et que la suite $(b_n)_{n\in\mathbb{N}}$ est croissante.
 - iii. En déduire que les deux suites sont convergentes et ont même limite.
- 2. i. Calculer $\sum_{k=1}^{n-1} (b_{k+1} b_k)$ et en déduire la valeur de b_n en fonction de n.
 - ii. Calculer la limite commune des deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$.

Solution

1. i.
$$a_{n+1} - b_{n+1} = \frac{1}{3} (2a_n + b_n - a_n - 2b_n) = \frac{1}{3} (a_n - b_n)$$

On en déduit : $a_n - b_n = \frac{1}{3} (a_{n-1} - b_{n-1}) = \frac{1}{3^2} (a_{n-2} - b_{n-2}) = \dots = \frac{1}{3^{n-1}} (a_1 - b_1) = \frac{1}{3^{n-2}} > 0$
Alors : $a_n > b_n$ et $\lim_{n \to \infty} (a_n - b_n) = 0$.

ii.
$$a_{n+1} - a_n = \frac{1}{3} (2a_n + b_n) - a_n = \frac{1}{3} (b_n - a_n) = -\frac{1}{3^{n-1}} < 0$$
 la suite (a_n) est décroissante. $b_{n+1} - b_n = \frac{1}{3} (a_n + 2b_n) - b_n = \frac{1}{3} (a_n - b_n) = \frac{1}{3^{n-1}} > 0$ la suite (b_n) est croissante.

iii. On a donc : $b_1 < b_2 < \cdots < b_n < \cdots < a_1 < a_2 < a_1$. La suite (a_n) est décroissante et minorée par b_1 elle est donc convergente ; (b_n) est croissante et majorée par a_1 elle est donc convergente. De plus : $\lim_{n \to \infty} (a_n - b_n) = 0$, les deux limites sont donc égales.

2.
$$\sum_{k=1}^{n-1} (b_{k+1} - b_k) = (b_n - b_{n-1}) + (b_{n-1} - b_{n-2}) + \dots + (b_3 - b_2) + (b_2 - b_1) = b_n - b_1.$$

Or
$$b_{k+1} - b_k = \frac{1}{3^{k-1}}$$
 donc: $\sum_{k=1}^{n-1} (b_{k+1} - b_k) = \sum_{k=1}^{n-1} \frac{1}{3^{k-1}} = \frac{1 - \frac{1}{3^{n-1}}}{1 - \frac{1}{3}} = b_n - b_1$, d'où : $b_n = \frac{5}{2} - \frac{1}{2} \frac{1}{3^{n-2}}$.

On a donc:
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \frac{5}{2}$$
.

Exercice 2.

- 1. Calculer le module et l'argument, compris entre 0 et 2π , du nombre complexe : $z = (1 + i\sqrt{3})^{20}$.
- 2. Mettre le nombre complexe $z = \frac{4-3i}{i-1}$ sous la forme : z = a+ib.
- 3. Montrer que si un nombre complexe est de module 1, on a : $\overline{z} = \frac{1}{z}$.

 Soit z_1 et z_2 deux nombres complexes de module 1, tels que : $z_1z_2 + 1 \neq 0$. Montrer que le nombre $Z = \frac{z_1 + z_2}{1 + z_1z_2}$ est réel.

Solution

1.
$$1 + i\sqrt{3} = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2e^{i\frac{\pi}{3}}$$
.
D'où : $z = 2^{20}e^{i\frac{20\pi}{3}} = 2^{20}e^{i\frac{(18+2)\pi}{3}} = 2^{20}e^{i\frac{2\pi}{3}}$. On a donc : $|z| = 2^{20}$ et l'argument demandé est : $\frac{2\pi}{3}$.

2.
$$z = \frac{4-3i}{i-1} = \frac{(4-3i)(-i-1)}{(-1)^2+1^2} = -\frac{1}{2}(7+i).$$

3. Si le module de z est 1, on a : $z\overline{z} = 1$; d'où : $\overline{z} = \frac{1}{z}$

$$\overline{Z} = \frac{\overline{z_1} + \overline{z_2}}{1 + \overline{z_1} \overline{z_2}} = \frac{\frac{1}{z_1} + \frac{1}{z_2}}{1 + \frac{1}{z_1} \frac{1}{z_2}} = \frac{z_1 + z_2}{1 + z_1 z_2} = Z \in \mathbb{R}.$$

Exercice 3.

- 1. Donner le développement limité à l'ordre 2 en zéro de $\frac{\ln(1+x)}{x}$. En déduire le développement limité à l'ordre 2 en zéro de $(1+x)^{\frac{1}{x}}$ et sa limite en zéro.
- 2. Donner le développement limité à l'ordre 4 en zéro de la fonction exponentielle e^x . En déduire le développement à l'ordre 4 en zéro de $e^x + e^{-x}$ et trouver un équivalent en zéro à la fonction : $f(x) = \frac{e^x + e^{-x} 2}{x^2} 1$. Quelle est la limite de f en zéro ?

Solution

1. En zéro, on a : $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$, d'où : $\frac{\ln(1+x)}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)$

$$(1+x)^{\frac{1}{x}} = \exp\left(\frac{\ln(1+x)}{x}\right) = \exp\left(1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)\right) = e\exp\left(-\frac{x}{2} + \frac{x^2}{3} + o(x^2)\right)$$
$$= e\left(1 + \left(-\frac{x}{2} + \frac{x^2}{3}\right) + \frac{1}{2}\left(-\frac{x}{2}\right)^2 + o(x^2)\right) = e\left(1 - \frac{x}{2} + \frac{11x^2}{24} + o(x^2)\right)$$

On en déduit : $\lim_{x\to 0} \left((1+x)^{\frac{1}{x}} \right) = e$

2.
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$$
.
 $e^x + e^{-x} = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}\right) + \left(1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{24}\right) + o(x^4) = 2 + x^2 + \frac{x^4}{12} + o(x^4)$.
On en déduit : $f(x) = \frac{e^x + e^{-x} - 2}{x^2} - 1 \approx \frac{x^2}{12}$ et $\lim_{x \to 0} f(x) = 0$.

Exercice 4. On considère l'espace vectoriel \mathbb{R}^3 ; soit $E = \{(x, y, z) \mid x + 2y - 3z = 0\}$, $\vec{a} = (1, 2, -3)$ et $F = \text{Vect}(\vec{a})$.

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 et déterminer une base de E.
- 2. Montrer que $E \oplus F = \mathbb{R}^3$.

Solution

1. Soit $\vec{u} = (x, y, z)$, $\vec{v} = (x', y', z') \in E$ et $\lambda \in \mathbb{R}$.

 $\vec{u} + \lambda \vec{v} = (x + \lambda x', y + \lambda y', z + \lambda z')$ alors : $x + \lambda x' + 2(y + \lambda y') - 3(z + \lambda z') = x + 2y - 3z + \lambda(x' + 2y' - 3z') = 0$. Donc $\vec{u} + \lambda \vec{v} \in E$ et E est bien un sous-espace vectoriel de \mathbb{R}^3 .

$$\vec{u} = (x, y, z) \in E \iff x = -2y + 3z \iff \vec{u} = (-2y + 3z, y, z) = y(-2, 1, 0) + z(3, 0, 1).$$

Les vecteurs (-2, 1, 0) et (3, 0, 1) engendrent donc E.

Ils sont indépendants : $\alpha(-2, 1, 0) + \beta(3, 0, 1) = (0, 0, 0) \iff \alpha = \beta = 0$.

Donc ils forment une base de *E* qui est de dimension 2.

2. $\vec{a} \notin E$ puisque : $1 + 2 \times 2 - 3 \times (-3) = 14 \neq 0$, donc : $E \cap F = \{0\}$. De plus dim(F) = 1; on a donc : dim $(E) + \dim(F) = 3$, donc : $E \oplus F = \mathbb{R}^3$.

Exercice 5. On considère le système d'équations linéaires suivant :

$$\begin{cases}
-x + 2y - z &= 1 \\
-4x + 5y - 3z &= 2 \\
-2x + 2y - z &= 3
\end{cases}$$

1. Donner la matrice *A* de ce système.

- 2. Calculer le déterminant de A.
- 3. La matrice A est-elle inversible? Si oui, calculer son inverse A^{-1} .
- 4. Calculer les solutions du système.

Solution

1.
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -4 & 5 & -3 \\ -2 & 2 & -1 \end{pmatrix}$$

2. On remplace la première ligne par la différence entre la première et la troisième :

$$\det(A) = \begin{vmatrix} 1 & 0 & 0 \\ -4 & 5 & -3 \\ -2 & 2 & -1 \end{vmatrix} = \begin{vmatrix} 5 & -3 \\ 2 & -1 \end{vmatrix} = 1$$

3. Le déterminant de A étant non-nul, la matrice A est inversible. Calcul de l'inverse par la méthode de Gauss :

$$\begin{pmatrix} -1 & 2 & -1 & 1 & 0 & 0 \\ -4 & 5 & -3 & 0 & 1 & 0 \\ -2 & 2 & -1 & 0 & 0 & 1 \end{pmatrix} \quad L_1 - L_3 \mapsto L_1 \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ -4 & 5 & -3 & 0 & 1 & 0 \\ -2 & 2 & -1 & 0 & 0 & 1 \end{pmatrix}$$

$$L_2 + 4L_1 \mapsto L_2 \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 5 & -3 & 4 & 1 & -4 \\ 0 & 2 & -1 & 2 & 0 & -1 \end{pmatrix} \quad 3L_3 - L_2 \mapsto L_2 \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 2 & -1 & 1 \\ 0 & 2 & -1 & 2 & 0 & -1 \end{pmatrix}$$

$$2L_2 - L_3 \mapsto L_3 \quad \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 2 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 3 \end{pmatrix}$$

$$A^{-1} = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 2 & -1 & 1 \\ 2 & -2 & 3 \end{array}\right)$$

4. La solution du système est donc :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ 2 & -2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 7 \end{pmatrix}$$

Exercice 6.

- 1. Quels sont le domaine de définition et la dérivée de la fonction : $x \mapsto \arcsin(x)$.
- 2. Citer le théorème des accroissements finis avec toutes ses hypothèses.
- 3. Montrer que : $\forall x \in]0, 1[$, $\arcsin(x) < \frac{x}{\sqrt{1-x^2}}$

Solution

- 1. Voir le cours
- 2. Voir le cours
- 3. Pour tout $x \in [0, 1]$, la fonction arcsin est continue sur [0, x] et dérivable sur [0, x], on peut donc appliquer le théorème des accroissements finis :

 $\exists c \in]0, x[\text{ tel que}: \arcsin(x) - \arcsin(0) = x \arcsin'(c) = \frac{x}{\sqrt{1-c^2}} < \frac{x}{\sqrt{1-x^2}} \text{ puisque } 0 < c < x. \text{ D'où le résultat.}$