(i) $x_1' \not\in q$ and $x_2' \in q$ (or $x_1' \in q$ and $x_2' \not\in q$)

. p \$ sx. x (ii)

hence x_1') and so $x_1' \mid x_2'$, that is $x_1 \mid x_2$. And in the second subfamily of the family of valued primes containing x(and In the first case if x' is not a unit, x' belongs to a

Combining all the above cases we conclude that $(p_{\mathbf{z}})$ case $x_t^{1,n}|d$ (t=1,2.) for each n and so $x_t|x_s^2$ and $x_s|x_t^3$.

holds for x. In other words x is a packet.

n, then $d^n|x$ for each n in R_p and so $x \in A$ $d^nR_p = P_1R_p$ tive integer n such that $d^n \! \setminus \! x$. For if not let $d^n \! \mid \! x$ for each minimal subvalued primes. We claim that there exists a posiati To and as 4 asd b and ϵ (nismob noitsulay s at ${}_{
m q}{}_{
m H}$ bas verified easily by using the fact that R is an HCF domain (x) and consider $y \in P - Q$, then $(x,y) = d \in P - Q$ (can be further let P, Q be two distinct minimal subvalued primes of $\{P_{\mathcal{B}}\}$ be the family of all the valued primes containing x, Conversely let x be a packet in an HCF domain R and let

hence there exists a positive integer n such that dulx. that P is one of the minimal subvalued primes of x, and minimal subvalued prime a contradiction to the assumption primes in $R_{
m p}$ and those contained in P, x has ${
m P_1}R_{
m p}$ \cap R as its x e PiRp A R , and by the one-one correspondence between where PiRp is a prime ideal properly contained in PRp i.e.

d" x in Rp , a contradiction establishing the claim. at tand so a lo in Rp and consequently ah bh in Rp that is x = bh and (a,b) = 1. We claim that $b \notin P$ for if $b \in P$, then Now consider $h = (x, d^n)$ where d^n/x in R_p then $d^n = \sinh x$

Further had and so h & g but since bh e g;b e g (Q

being a prime) that is we have x = bh where