

Implementación de Cortes Generales

9 de diciembre de 2012

Investigación Operativa

Todos Tus Cortes

Integrante	LU	Correo electrónico
Brian Luis Curcio	661/07	bcurcio@gmail.com
Agustin Mosteiro	125/07	agustinmosteiro@gmail.com
Federico Javier Pousa	221/07	fedepousa@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Índice

1.	Introducción	3
2.	Cortes Cover	5
	2.1. Formulación	5
	2.2. Algoritmo de separación	5
	2.2.1. Greedv	6
	2.2.2. Programación Dinámica	7
	2.3. Lifteo	8
3.	Cortes Clique	g
	Cortes Clique 3.1. Formulación	9
	3.2. Construcción del grafo	
	3.3. Algoritmo de separación	9
4.	Resultados	10
5.	Conclusiones	11

1. Introducción

En el presente trabajo se presenta la implementación de cortes generales para la resolución de modelos de Programación Lineal Entera, en particular para problemas con todas las variables binarias.

El trabajo tiene varios objetivos, a saber

Interacción con CPLEX CPLEX es un paquete de software comercial y académico para resolución de problemas de Programación Lineal y Programación Lineal Entera. CPLEX es un framework muy poderoso para la resolución de este tipo de problemas, siendo mundialmente reconocido como uno de los dos mejores y más completos softwares para este objetivo.

Uno de los objetivos de este trabajo es conocer el funcionamiento de este paquete no solo mediante la mera interacción para la resolución de problemas, sino intentando reemplazar parte del trabajo que este realiza para lograr un mejor entendimiento.

Cortes de propósito general Otro de los objetivos de este trabajo es poder entender los cortes de propósito general vistos en la materia. Si bien cada problema de Programación Lineal Entera merece un estudio particular para atacarlo, cada vez son más las herramientas generales que se desarrollan para tratar de resolver cualquier problema. Estas herramientas son la pieza fundamental para los paquetes de software de resolución general como CPLEX. Estas herramientas son el complemento ideal a la información particular del problema que puede proporcionar el usuario de CPLEX.

En lo que respecta a planos de corte, en la mayoría de los casos, lo mejor es buscar desigualdades válidas específicas para cada problema. Sin embargo, cuando estas no son halladas, resulta muy util que CPLEX tenga formas de generar cortes sin importar el problema que se está tratando.

En nuestro caso, se vieron tres tipos de cortes de propósito general. Los cortes Cover, Clique y Gomory

Implementación de cortes Si bien en la materia se ve la teoría y la fundamentación de los cortes anteriormente mencionados, también es un objetivo de este trabajo toparse con las dificultades a la hora de implementar estos cortes. En varios de los cortes el preprocesamiento necesario y el algoritmo de separación no son triviales de implementar, incluyendo decisiones que tienen fuerte impacto en la performance de los mismos, tanto desde el punto de vista de la calidad del corte encontrado como desde el tiempo de ejecución consumido.

Por ejemplo, un caso claro donde se nota que la implementación no es trivial es en los cortes de Gomory. Estos utilizan información de la relajación lineal de cada nodo del arbol de branchand-bound, que no es facilmente accesible ya que CPLEX trabaja con una versión reducida del problema original por cuestiones de eficiencia, por lo que no es simple realizar una correspondencia entre el problema reducido y el original. Es por esto que la implementación de los cortes de Gomory quedó fuera del trabajo ya que representaba un obstáculo solamente de traducción de las variables y no de algún punto interesante para analizar de la materia.

Comparación entre diferentes métodos de resolución Por último se buscará realizar una comparación entre diferentes métodos de resolución general.

- Branch-and-Bound: Resolución automática de CPLEX, quitando todo el preprocesamiento posible y la capacidad de generar cortes, para que la resolución sea simplemente por el arbol de Branch-and-Bound.
- Cut-and-Brach: Es un caso particular de aplicación de cortes, en donde los mismos solo se aplican al nodo raíz del arbol. La idea de esto es poner bastante esfuerzo computacional es

fortalecer el problema original de la mejor manera que se pueda, para luego lanzar un Branchand-Bound clásico, pero que debería tomar menos tiempo al trabajar sobre una formulación más fuerte.

 Branch-and-Cut: Mezcla el arbol de Branch-and-Bound manejado por CPLEX con los cortes implementados en el trabajo. Los cortes se aplican en cada nodo del arbol para cortar soluciones fraccionarias óptimas.

2. Cortes Cover

2.1. Formulación

Los cortes cover son cortes generales que estan relacionados con restricciones mochila del problema a tratar.

Una restricción mochila es una desigualdad de la forma

$$\sum_{i=1}^{n} a_i . x_i \le b \tag{1}$$

En donde el b debe ser un número entero y los a_i deben ser enteros y positivos.

Este tipo de desigualdades indican que al juntar varias variables con pesos positivos no puede ser mayor a cierto valor b. Esto induce a ciertas desigualdades válidas que se denominan desigualdades cover. Un cover es un conjunto de variables que, al tenerlos todas juntas con valor 1, violan una desigualdad mochila ya que se exceden de lado derecho permitido.

Por ejemplo, si se tiene la desigualdad

$$3x_1 + 5x_2 + x_3 \le 7 \tag{2}$$

se observa que las variables x_1 y x_2 forman un cover, ya que no se podrían tener ambas en 1 en una solución factible. Obviamente, al tener un cover y agregar cualquier otra variable, se tiene nuevamente un cover porque ya de antemano se estaba excediendo el valor de b. Se dice que un cover es minimal, cuando no se puede sacar ninguna variable del conjunto y seguir teniendo un cover. En este caso los covers son $\{1,2,3\}$ y $\{1,2\}$, pero solamente el segundo conforma un cover minimal.

Luego, lo que dice intuitivamente esta situación es que dado un cover C, en cualquier solución factible del problema no se pueden tener todas las variables pertenecientes a C con valor 1. Al menos una de las variables debe estar apagada.

Formalmente, un cover ${\cal C}$ para una desigualdad mochila induce la siguiente desigualdad válidad para el modelo.

$$\sum_{i \in C} x_i \le |C| - 1 \tag{3}$$

2.2. Algoritmo de separación

Para lograr introducir cortes cover se guardan todas las restricciones mochila desde un principio para luego ver que desigualdades válidas están violadas en cada nodo repasando cada una de las desigualdades mochilas originales.

Si bien no todas las restricciones del problema original son restricciones mochilas con las características pedidas, hay formas de reformular las restricciones para que se conviertan en desigualdades mochilas a ser revisadas para generar potencialmente desiguadades cover.

Existen varias formas de reformulación más y menos complejas para convertir las desigualdades originales. En este caso se utilizó un preprocesamiento simple que consiste en invertir el orden de las desigualdades que en el problema original esten con signo \geq . Se notó que en varias de las instancias utilizadas, muchas de las restricciones se encuentran formuladas por mayor igual y con un simple cambio de signo se logra reformular la desigualdad de forma que si cumpla con los requisitos necesarios para ser desigualdad mochila candidata a generadora de cortes cover.

Una vez que se tienen todas las desigualdades mochila del problema original, el algoritmo de separación consiste en ver en cada nodo, cada una de las desigualdades originales, y buscar si la solución de la relajación lineal del nodo actual viola o no la desigualdad cover inducida por la mochila.

Para ver si existe un cover violado se utiliza el siguiente razonamiento, donde se denomina x^* a la solución del nodo actual.

Una desigualdad cover es de la forma

$$\sum_{i \in C} \le |C| - 1 \tag{4}$$

Despejando la desigualdad anterior se puede obtener la siguiente expresión

$$1 \le \sum_{i \in C} (1 - x_i) \tag{5}$$

Luego, ver si existe un cover violado es análogo a ver si existe un cover que cumpla la siguiente desigualdad

$$1 > \sum_{i \in C} (1 - x_i^*) \tag{6}$$

Resolver esta cuestión es análogo a resolver el siguiente problema de optimización

$$minizar \sum_{i=1}^{n} (1 - x_i^*).y_i \tag{7}$$

Sujeto a:

$$\sum_{i=1}^{n} a_i \cdot y_i > b \tag{8}$$

Donde y representa el vector característico de pertenencia a un cover.

Se esta buscando minimizar la función objetivo, pero cumpliendo la desigualdad presentada. Si el valor de la minimización da menor a 1, entonces se encontro el vector característico para un cover violado ya que, por la restricción, los pesos suman más que el b permitido y, por la función objetivo, violan fehacientemente la desigualdad cover asociada.

Algo importante a notar es que como todos los valores que se manejan son enteros, la restricción del anterior modelo se puede reemplazar por una en donde se utilice un mayor igual, en vez de un mayor estricto.

$$\sum_{i=1}^{n} a_i \cdot y_i \ge b + 1 \tag{9}$$

El problema de separación original se tradujo en resolver el problema de optimización recientemente presentado. A continuación se presentan las diferentes formas de resolver o aproximar este problema.

2.2.1. Greedy

Una primer idea posible para resolver este problema es hacerlo mediante un algoritmo goloso. Si bien esta idea no resuelve el problema hasta la optimalidad, puede dar una muy buena aproximación a la solución real. Además es importante destacar que no se necesita necesariamente el mínimo del problema presentado, con obtener cualquier y factible que su función objetivo valga menos que 1, se estará encontrando un cover violado por el óptimo de la relajación lineal del nodo actual.

En el problema hay que ver cuales variables se eligen para hacer lo más chico posible la función objetivo, pero a la vez es importante poder hacer válida la restricción, eligiendo variables que tengan costos asociados altos.

El algoritmo goloso diseñado trata de encontrar una solución teniendo en cuenta los dos factores mencionados. Lo que se hizo fue ir elegiendo las variables golosamente, para esto se ordenó las variables de forma decreciente respecto del valor $a_i/(1-x_i^*)$. Este valor asociado tiene el doble objetivo de tratar de tomar variables con costos asociados altos, pero que tengan un pequeño valor asociado en la función objetivo.

Luego de tener ordenadas las variables por el criterio expuesto, se van tomando las variables golosamente hasta que se cumpla la restricción. Cuando sucede esto solo resta saber si la función objetivo tiene valor por debajo de 1 o no.

A continuación se presenta el pseudocódigo de este algoritmo de separación aproximado.

pseudo

function CoverGreedy $y \leftarrow \overrightarrow{0}$ end function

2.2.2. Programación Dinámica

Una segunda opción para resolver el problema de optimización propuesto es utilizar un algoritmo exacto mediante la técnica de programación dinámica.

Esta técnica se basa en obtener el óptimo para un problema, asumiendo que ya se tienen los óptimos para los subproblemas que lo conforman y que el óptimo del problema original esta necesariamente conformado por algunos de los óptimos de los subproblemas.

En este caso, el problema que se irá resolviendo será el de obtener la mínima función objetivo si se usa hasta el item i de los n disponibles, y se quiere sobrepasar el peso $\tilde{\mathbf{b}}$.

Cuando i sea igual a n y $\tilde{\mathbf{b}}$ sea igual a b, se estará obteniendo la mímina función objetivo utilizando todos los items y teniendo como restricción la desigualdad original del problema que se necesitaba resolver. Luego, si este valor es menor a 1 significa que hay una desigualdad cover violada para introducir como plano de corte.

Para resolver un problema con un i y un $\tilde{\mathbf{b}}$ particulares la idea es basarse en los dos siguientes casos.

- Se usa el item i en la solución, entonces la mejor función objetivo es la que era la mejor solución cuando se utilizaba hasta el item i-1 y se quería sobrepasar \tilde{b} - a_i , sumado al valor por utilizar el item i (o sea 1- x_i^*).
- No se utiliza el item i en la solución, entonces la mejor función objetivo es la que era la mejor solución cuando se utilizaba hasta el item i-1 y se quería sobrepasar $\tilde{\mathbf{b}}$.

Luego, el óptimo para el problema actual resulta de tomar la mejor opción entre las dos propuestas.

Es importante notar que en ambas opciones se utilizan óptimos de problemas que incluyen una menor cantidad de items por lo que ya se suponen resueltos si los mismos se van resolviendo en un orden adecuado.

A continuación se presenta el pseudocódigo para este algoritmo de separación

pseudo

function COVERDP end function

A diferencia del algoritmo greedy, el algoritmo por programación dinámica siempre encuentra el óptimo al problema planteado por lo que si existe desigualdad violada, va a ser hallada por este algoritmo, mientras que podía suceder que la versión greedy no lo lograse.

Sin embargo, se nota que el algoritmo de programación dinámica tiene una complejidad temporal perteneciente a $\mathcal{O}(N*b)$, siendo N la cantidad de variables y b el rhs de la única desigualdad

del modelo. Este tipo de algoritmos, en los que la complejidad depende del valor numérico de la entrada y no de su tamaño, se denominan algoritmo pseudopolinomiales y su tiempo de ejecución podría resultar prohibitivo si se cuenta con un b muy grande; mientras que el algoritmo greedy si resulta polinomial.

2.3. Lifteo

Algo interesante a realizar con una desigualdad válida que se quiere ingresar como plano de corte, es analizar la posibilidad de *liftearla* para fortalecerla. *Liftear* una desigualdad por menor o igual significa hacer crecer los coeficientes que acompañan a las variables, obviamente siempre y cuando la desigualdad siga siendo válida. Cuando se habla de hacer crecer los coeficientes puede ser tanto incrementando los de las variables que ya se encuentran en la desigualdad, como agregando variables a la desigualdad con coeficientes positivos.

En el caso de las desigualdades cover existe un lifteo que es simple de demostrar su validez y a la vez es simple de implementar. Si ya se cuenta una desigualdad cover, se puede agregar a la desigualdad cualquier variable que tenga un a_i asociado mayor o igual a todos los a_i de las varibles que ya se encuentran en la desigualdad.

tal vez explicar porque pasa

- 3. Cortes Clique
- 3.1. Formulación
- 3.2. Construcción del grafo
- 3.3. Algoritmo de separación

4. Resultados

5. Conclusiones