Bell Lempert August 2015

Jelena Mojsilovic

June 2022

Problem 1 1

If $\Omega \subset \mathbb{C}$ is open, $f \in \mathcal{O}(\Omega)$ and u = Ref, v = Imf then

$$\det\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = |f'|^2.$$

Proof. Since $f \in \mathcal{O}(\Omega)$, then f = u + iv is holomorphic so that u_x, u_y, v_x, v_y exist and the Cauchy-Reimann equations hold: $u_x = v_y$ and $u_y = -v_x$.

Thus
$$\det \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = u_x v_y - u_y v_x = u_x^2 + v_x^2$$
.

Namely since f is holomorphic by Red box 1: $f' = u_x + iv_x \implies |f'| = \sqrt{u_x^2 + v_x^2} \implies$

Thus
$$\det\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = |f'|^2$$
. \Box