电源管理指南

电源管理指南 内容简介

TI 各类高性能产品,为您提供全套电源解决方案,从标准线性调节器,到高效 DC/DC 转换器,再到电源管理,TI 产品可满足您各类设计挑战。TI 为了使您的设计变得更加简单,将为您提供如 WEBENCH?设计中心、种类丰富的 EVMs、操作说明书、全面的技术文件及其他各种业界领先的支持工具。此外,TI 也提供样品和小订单服务(通过授权经销商在 24 小时内发货),以助您缩短上市时间。

本选型指南内容包括设计因素、特色产品、 产品组合展示图例及技术参数表。

欲了解关于 HiRel 和电源管理产品军用版信息,请访问网址:

www.ti.com/hirel

欲了解车载电源管理产品信息,请访问网址: www.ti.com.cn/automotive

myTI™ 账户 现在申请账户!

保持联系:

- 新推出产品
- 设计工具
- 样品
- 评估模块
- 指南
- 系统流程图

www.ti.com.cn/myTI

简易快捷!

目录

3 可携式和插线电源解决方案

- 3 插线电源解决方案
- 3 可携式电源解决方案

4 线性调节器(LDOs)

- 4 单通道 LDOs
- 5 多通道 LDOs

6 非隔离式 DC/DC 开关稳压器

- 6 概述
- 7 降压(巴克)
- 18 升压(提高)
- 22 降压/升压,反相或 Split-Rail
- 23 射频 DC/DC 转换器

24 QFN 电源模块

- 24 概述
- 25 非隔离模块

29 电池管理产品

- 29 概述
- 30 电池充电器 IC
- 32 能量收集和太阳能充电
- 33 电池燃料计量
- 34 电池监视器、保护和认证解决方案
- 35 无线电源解决方案

36 功率 MOSFET

- 36 概述
- 37 N 通道 MOSFET 晶体管
- 40 P 通道 MOSFET 晶体管
- 41 功率 MOSFET 模块

42 氮化镓(GaN)解决方案

44 MOSFET 和 IGBT 栅极驱动器

- 44 概述
- 46 低侧驱动器
- 47 半桥驱动器
- 48 汽车级栅极驱动器

49 离线式和隔离式 DC/DC 控制器和转换器

- 49 概述
- 51 脉宽调变 (PWM) 与谐振控制器
- 53 离线式转换器和同步整流器

54 数字电源控制方案

56 电源管理多通道 IC (PMIC) 解决方案

62 LCD/OLED 显示偏差解决方案

65 LED 驱动器

- 65 概述
- 66 背光
- 68 RGB/指示器
- 69 看板/线性
- 71 LED 照明 亮度
- 74 相机闪光灯 LED 驱动器

75 监控器和复位 IC

77 定序器

78 以太网电源 (PoE)/LAN 解决方案

80 保护、监视和热插拔

- 80 热插拔控制器(正向,-48V)
- 81 热插拔和 O 形环控制组合
- 82 电熔丝(集成 FET)
- 83 电流感测放大器、I²C/PMBus 监控器

84 USB 电源与充电端口控制器

- 84 固定电流限制开关
- 86 精密可调限位开关
- 86 USB 充电端口控制器
- 86 C型USB

88 集成负载开关

- 88 概述
- 89 配电与省电
- 89 电源与电流限制保护
- 89 智能高侧开关

90 DDR 内存电源解决方案

91 电压参考

91 射频功率检测器

92 资源

设备清单

TI 全球技术支持

可携式和插线电源解决方案

插线电源解决方案

可携式电源解决方案

Texas Instruments 电源管理指南 2016 │ 3

线性调节器(LDOs) 概述及选择指南

概述

TI 拥有最多元的小型 LDO 和线性调节器产品组合,可助您设计性能强劲、成本低廉、体积小巧的应用设备。一个完整的产品组合包括:低 静态电流(低 IQ) LDOs,可延长电池使用寿命;低噪音、高电源电压抑制比(PSRR) LDOs;低内噪、带快速瞬态响应的高电流 LDOs; 能适应负载汽车环境的高压 LDOs。

单通道LDOs

设备	V _{IN} 范围 (V)	I _{OUT} (mA)	汽车级	价格*
宽V _{IN}				
TPS715A	2.5 至 24	80		0.40
LM1084	5 至 27	5000		1.00
LP2951-N	2.3 至 30	100		0.25
TPS709	2.7 至 30	150	v	0.39
TPS798xx-Q1	3 至 50	50	v	0.70
LM317x	3 至 40	1500		0.27
TPS7A19	4 至 40	450		WEB
TPS7A69xx-Q1	4至40	150	·	0.60
TPS7A66xx-Q1	4至40	150	v	0.60
TPS7B67xx-Q1	4至40	450	~	0.80
TPS7B69xx-Q1	4 至 40	150	V	0.50
TPS7A16	3 至 60	100	V	1.39
LM317HV	4.2 至 60	1500		0.95
LM2936HV	5.5 至 60	50		0.62
LM9076	5.35 至 70	150		0.78
TPS7A4001	7至100	50		1.05
TL783	20 至 125	700		1.15

设备	偏离 (mV)	V _{IN} 范围 (V)	I _{OUT} (A)	汽车级	价格*	
低压差(带偏	移输入控	制)				
TPS720	130	1.1 至 4.5	0.35	v	0.37	
TPS74701	50	0.8 至 5.5	0.5	v	0.75	
LP38851	115	0.95 至 5.5	0.8		0.71	
TPS74(2/3)01	55/55/60	0.8 至 5.5	1.5	v	2.00	
LP3885(2/5/8)	130	1.15 至 5.5	1.5		1.05/0.85/0.85	
TPS7A8300	125	1.1 至 6.5	2		2.45	
TPS7A8(4/5)	185/240	1.1 至 6.5	3/4		2.90/3.50	
LP3885(3/6/9)	240	1.15 至 5.5	3		1.65/1.60/1.60	
TPS74(4/9)01	115/120	0.8 至 5.5	3		2.75/1.50	

设备	偏离 (mV)	V _{IN} 范围 (V)	I _{OUT} (A)	汽车级	价格*
低压差(无偏	移输入控制	訓)			
LP298(1/5)/A	200/280	2.2 至 16	0.1/0.15		0.29
TPS73(1/2/6)	30/40/75	1.7 至 5.5	0.15/0.25/0.40	~	0.33/0.45/0.75
TPS799	100	2.7 至 6.5	0.2	~	0.30
TPS73(5/7)	280/130	2.2 至 5.5	0.5/1	~	0.49/0.58
LP388(1/2/3)	75/110/210	1.5 至 5.5	0.8/1.5/3		1.95/1.95/2.40
LP3851(1/2/3)	135/250/425	2.25 至 5.5	0.8/1.5/3		0.60/0.75/1.00
TPS7A37	130	2.2 至 5.5	1		0.66
TPS7A7(1/2/3)00	200	1.5 至 7.0	1/2/3		0.80/1.00/1.25

^{*}建议转售价格以美元计算,以每千台为单位销售。

设备	负载瞬变 (mV)	(mV) (V)		汽车级	价格*
快速的瞬态啊	向应				
TPS717	± 65	2.5 至 5.5	0.15	V	0.36
LP5907	± 20	2.2 至 5.5	0.25	✓	0.14
TPS727	± 50	2至5.5	0.25		0.48
TPS7A37	± 25	2.2 至 5.5	1		0.66
TPS7A8101	± 50	2.2 至 6.5	1	V	1.00
LP3851(1/2/3)	± 50	2.25 至 5.5	0.8/1.5/3		0.60
TPS74(2/3/4)01	± 50	0.8 至 5.5	1.5/3		2.00/2.00/2.75

设备	噪声 (μV _{rms})	100 kHz PSRR (dB)	V _{IN} 范围 (V)	I _{OUT} (A)	价格*
超低噪音/高	PSRR				
TPS7A3501	3.8	40	1.7 至 5	1	0.75
TPS7A47	4	68	3 至 36	1	2.10
TPS7A8(4/5)	4.4	30	1.1 至 6.5	3/4	2.90/3.50
LP38798-ADJ	5	60	3 至 20	0.8	1.30
TPS7A8300	6	47	1.1 至 6.5	2	2.45
LP590(0/7)	6.5	85/70	2.2 至 5.5	0.15/0.25	0.20/0.14
LP5910	12	40	1.3 至 3.3	0.3	0.14
LP5912	12	40	1.6 至 6.5	0.5	0.40
TPS7A49	15	54	3 至 36	0.15	1.10
TPS7A30	15	55	-3 至 -36	0.2	1.50
TPS7A33	16	64	-3 至 -36	1	2.70
LP2989/LV	18	30	2.1 至 16	0.5	0.90
TPS7A8101	23.5	60	2.2 至 6.5	1	1.00

设备	I _Q (无负载) (μA)	V _{IN} 范围 (V)	I _{OUT} (mA)	汽车级	价格*
低lq					
TPS78(0/2)	0.5	2.2 至 5.5	150	V	0.35
TPS706	1	2.7 至 6.5	150		0.23
TPS709	1	2.7 至 30	150	V	0.39
TPS797	1	1.8 至 5.5	50	V	0.34
TPS715A	3	2.5 至 24	80		0.40
TPS7A16	5	3至60	100	V	1.39
TPS7A19	12	4至40	450		WEB
TPS7A69xx-Q1	12	4至40	150	V	0.60
TPS7A66xx-Q1	12	4至40	150	V	0.60
TPS7B67xx-Q1	15	4至40	450	V	0.80
TPS7B69xx-Q1	15	4至40	150	V	0.50
LP8340	19	2.7 至 10	1000		0.53

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

线性调节器(LDOs) 选择指南

单通道LDOs(持续)

设备	精度追踪 (mV)	V _{IN} 范围 (V)	I _{OUT} (mA)	汽车级	价格*
电压追踪LD0					
TPS7B4250-Q1	5	4 至 40	50	V	0.40
TPS7B4254-Q1	4	4 至 40	150	v	0.75
TPS7B4253-Q1	4	4 至 40	300	v	0.80

设备 高精度电流感	电流感应 进度: 5mA (mA)	通道	V _{IN} 范围 (V)	经过 通道的 I _{OUT} (mA)	汽车级	价格*
TPS7B7701-Q1	1	1	4.5 至 40	300	V	1.00
TPS7B7702-Q1	1	2	4.5 至 40	300	v	1.75

^{*}建议转售价格以美元计算,以每千台为单位销售。

设备	封装	V _{IN} 范围 (V)	I _{OUT} (mA)	汽车级	价格*
小型包裹					
TLV713P	1x1-mm SON	1.4 至 5.5	150	V	0.12
TLV717	1x1-mm SON	1.7 至 5.5	150		0.12
TLV707	1x1-mm SON	2至 5.5	200		0.12
TLV705	0.8x0.8-mm DSBGA	2.2 至 5.6	200		0.18
LP5907	1x1-mm SON	2.2 至 5.5	250	V	0.14
TLV733P	1x1-mm SON	1.4 至 5.5	300		0.17
LM317L-N	1.65x1-mm DSBGA	3.2 至 40	100		0.21

设备	监视模式	V _{IN} 范围 (V)	I _{OUT} (mA)	汽车级	价格*
监视LD0					
TPS7A63xx-Q1	窗口监视	4 至 40	300	V	1.30
TPS7A6401-Q1	窗口监视	4 至 40	300	V	1.30
TPS7B68xx-Q1	窗口和标准监视	4 至 40	500	V	1.50

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

多通道LDOs

			V _{DO1}	V _{D02}		输出选项			V	0		V	IN		
设备	I ₀₁ (mA)	I ₀₂ (mA)	@ I ₀₁ (mV)	@ I ₀₂ (mV)	l _Q (μΑ)	固定电压(V)	准确率 (%)	封装	(最小) (V)	(最大) (V)	启动	(最小) (V)	(最大) (V)	评论	价格*
TLV716	150	150	210	210	50	1.2/2.75, 2.8/1.8, 2.8/2.8, 3.0/3.0, 3.3/1.8	1.5	SON 6	1.8	3.3	EN	1.4	5.5	无电容功能允许最小150mA 双线LD0解决方案	0.18
LP2966	150	150	135	135	300	1.8/3.3, 2.5/1.8, 2.5/2.5, 2.8/2.8, 3.3/2.5, 5.0/5.0	3	Mini-S08	1.8	5	EN	1.8	5	各LDO调节器可单独关闭	0.70
LP3996	150	300	110	210	35	0.8/3.3, 1.0/1.8, 1.5/2.5, 1.8/3.3, 2.8/2.8, 3.0/3.0, 3.0/3.3, 3.3/0.8, 3.3/3.3	1.5	LLP10	0.8	3.3	EN	2	6	电源正常	0.30
LP5996	150	300	110	210	35	0.8/3.3, 1.0/1.8, 1.5/2.5, 2.5/3.3, 2.8/2.8, 3.0/3.0, 3.0/3.3, 3.3/0.8, 3.3/3.3	1.5	LLP10	0.8	3.3	EN	2	6		0.30
LP8900	200	200	110	110	85	2.8/2.8, 2.7/2.7, 2.8/2.7, 2.8/1.2	1	WCSP	1.2	3.6	EN	1.8	5.5	超低噪音,高精度	0.30
TLV710	200	200	175	175	70	1.8/2.8, 3.3/1.8	2	SON 6	1.2	4.8	EN	2.0	5.5	双LD0值	0.19
TLV711	200	200	175	175	70	1.2/2.5, 1.2/3.3, 1.3/2.3, 1.3/3.3, 1.5/1.8, 1.5/3.3, 1.8/1.2, 1.8/3.3, 1.9/3.0, 2.5/1.25, 2.5/2.5, 2.85/1.8, 2.85/2.85, 3.0/2.5, 3.0/3.0, 3.3/1.8, 3.3/2.85, 3.3/3.0, 3.3/3.3	2	SON 6	1.2	4.8	EN	2.0	5.5	TLV710xx w/动态输出拉停	0.19
TPS718	200	200	230	230	90	1.2/3.3, 1.8/2.7, 1.8/3.3, 2.5/1.2, 2.8/2.8, 2.8/3.0	3	QFN/WCSP	0.9	3.6	EN	2.5	6.5	高PSRR, 低噪音, 电源良好	0.55
TPS719	200	200	230	230	90	1.3/2.8, 1.8/1.2, 1.8/1.3, 2.1/2.2, 2.6/1.5, 2.8/2.8, 2.85/2.85, 3.3/2.8, 3.3/3.3, 3.6/3.15	3	QFN/WCSP	0.9	3.6	EN	2.5	6.5	TPS718xx w/动态输出拉停	0.55
LP2967	200	200	240	240	200	1.8/25, 1.8/3.3, 2.5/2.8, 2.5/3.3, 2.6/2.6, 2.8/2.8	3	Mini-S08, 微 SMD	1.8	3.3	EN	1.6	16	最小尺寸(微SND组合)	0.99
TPS712	250	250	125	125	300	1.8/2.85, 1.8/Adj., 2.8/2.8, 2.8/Adj., 2.85/2.85, Adj./Adj.	3	SON 6	1.2	5.3	EN	2.7	5.5	高PSRR, 低噪音, 电源良好	0.80
TPS7A87	500	500	65	65	2100	调整	1	QFN 20	0.8	5	EN	1.4	6.5	高PSRR, 低噪音, 电源良好	WEB
TPS7A88	1000	1000	130	130	2100	调整	1	QFN 20	0.8	5	EN	1.4	6.5	高PSRR, 低噪音, 电源良好	2.20
TPS7A89	2000	2000	260	260	2100	调整	1	QFN 20	0.8	5	EN	1.4	6.5	高PSRR, 低噪音, 电源良好	WEB

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

TI 非隔离式设备大型产品组合 DC/DC 负载点解决方案可为您解决尺寸、功效、性能或成本限制。多种解决方案可供选择,从分立器件到集成电源解决方案,均包含IC 封装磁路

当运行电压升至 100V, TI 的宽电压输入 组合套装将取消输入电压保护元件,以降 低成本,缩小设备体积。

DC/DC 降压转换器 - 采用 MOSFET 科技, 在过几年以高密度、小封装提供更高能效。 TI 的 DC/DC 转换器可提供众多令人信服 的、高达 30A 的解决方案。

升压转换器 - 数据表列出了 MOSFET 集成电源开关的电流限制。利用占空比功能,并通过下方公式对真实输出电流进行大致 预估:

I_{OUT} = 0.65 x I_{Switch(最小)} x (V_{IN}/V_{OUT})

升降压转换器 - DC/DC 转换器需在各种可能发生的输入电压条件下(包括 VIN 高出 VOUT 和 VIN 低于 VOUT)对输出电压进行调节 TI 单感应器升降压转换器整合了四类 MOSFET 内芯片,不仅节省了空间,也实现了在各种允许模式间进行无缝传输。

双电源器件转换器 - TPS6513xv 双电源器件转换器 (+V_{OUT1}/-V_{OUT2}) 产品家族的所有产品均可通过单轨提供稳定的正负电压供应。这样就可以降低 BOM 成本,节约空间,同时为商用和汽车设备提供业内最佳性能表现。

DC/DC 控制器 – 输出电流由外部 MOSFETs 设置,允许设计师优化效率,提升性能。TI 控制器拥有性能卓越的 MOSFET 驱动器,可驱动更多外部 MOSFETs。

充电泵 - TI 低压充电泵家族产品提供低噪音解决方案,在无需电感器的前提下进行升压。充电泵可达到 90% 峰值效能,当输出电流低于 300mA 时非常有用

访问 www.ti.com.cn/power, 获取最新 仅通过为您的系统提供电压及输出电流的 点荷载解决方案。

降压DC/DC转换器组合

降压 (巴克)

降压转换器, 单通道

P年 /上 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	т,	干吧児															
设备	I _{OUT}	V _{IN} (V)	V _{OUT} (V) (调整) /固定	开关频率 (典型) (kHz)	控制模式1	外部补偿	同步整流器	轻载效率	电源正常	同步至Ext.CLK引脚	可调软启动	I _Q (typ) (μΑ)	汽车级	其他功能	EVM	封装	价格*
低输入电压	(<7 V _{II}	N 最大值)															
TPS62736	0.05	2.0 至 5.5	(1.3至5.0)	2000(最大)								0.35		超低I _Q ,电池电量过低指示	V	QFN	0.80
TPS62730	0.1	1.9 至 3.9	1.9/2.1/2.3	3000	DCS		~	V				25		旁路开关;适用BLE和RF4CE	~	QFN	0.50
TPS62737	0.2	2.0 至 5.5	(1.3至5.0)	2000(最大)								0.375		超低I _Q ,电池电量过低指示	~	QFN	1.00
TPS62240	0.3	2.0 至 6.0	(0.6 至 V _{IN})/ 1.2/1.8	2250	VM		~					15		省电模式	~	TS0T-23, S0N	0.44
TPS62740	0.3	2.2 至 5.5	1.3/1.8 至 2.8/3.3	3000	DCS		V	~	V			0.3		负荷开关;4-引脚 Vselect	~	WSON	0.75
TPS62743	0.3	5.5	1.2/1.5/1.8/2.1/2.5/2.8/3.0/3.3	3000	DCS		~	~				0.3		体积最小的解决方案	~	WCSP8	0.70
TPS62746	0.3	2.2 至 5.5	1.2/1.8	1200	DCS		V	V				0.3		集成输入电压Vbatt监督	~	WCSP8	0.75
TPS62748	0.3	2.2 至 5.5	1.2/1.8	1200	DCS		~	~				0.36		集成负荷开关	~	WCSP8	0.87
LM3670	0.35	2.5 至 5.5	0.7 至 3.3	1000	VM							15			~	S0T-23	0.57
TPS62619	0.35	2.3 至 5.5	1.2/1.3/1.5/1.8/2.15	6000	VM		~	V				31		解决方案:厚度仅0.4毫米		WCSP	0.43
TPS62270	0.4	2.0 至 6.0	0.9/1.15/2.1/2.5/3.3	2250	VM		V	V				15		Vselect引脚	~	QFN	0.46
TPS62230	0.5	2.05 至 6.0	1.0 至 3.3	3000	VM		V	V				22	V	最高90 - db PSRR	~	QFN	0.46
TPS62674	0.5	2.3 至 4.8	1.05/1.2/1.26/1.5/1.8	5500	VM		V	V				17		扩频	~	WCSP	0.46
TPS62690	0.5	2.3 至 4.8	2.2/2.8/2.85	4000	VM		V	V				19		扩频	~	WCSP	0.53
LM3671	0.6	2.7 至 5.5	1.1 至 3.3	2000	VM							16			~	SOT-23, QFN	0.70
LM8801	0.6	2.3 至 5.5	1.0 至 2.9	6000	VM							27			V	CSP	0.80
TPS62260	0.6	2.0 至 6.0	(0.6 至 V _{IN})/ 1.2/1.8	2250	VM		V	V				15	V	EN	V	SOT-23, QFN	0.59
TPS62560	0.6	2.5 至 5.5	(0.6 至 V _{IN})/1.8	2250	VM		V	V				15		V _{OUT} 3%偏移容量	V	SOT-23, QFN	0.42
TPS62620	0.6	2.3 至 5.5	1.2/1.225/1.5/1.8/1.82	6000	VM		V	V				31		热关停保护	~	WCSP	0.53
TPS62250	0.7	2.0 至 6.0	(0.6 至 V _{IN})	2250	VM		V	V				15		USB应用程序		QFN	0.73
TPS62650	0.8	2.3 至 5.5	(0.75至1.44)	6000	VM		V	V				38	V	I ² C接口,输出放电		WCSP	0.63
LM2830	1	3至5.5	(0.6至4.5)	1600, 3000	CM			V				3300	V			S0T-23, WS0N	0.70
LM3691	1	2.3 至 5.5	0.75 至 3.3	4000	VM							64			V	CSP	0.80
LMR10510	1	3 至 5.5	(0.6至4.5)	1600, 3000	CM							3300		EN, SS		LLP-6, S0T-23	0.30
TLV62080	1.2	2.5 至 5.5	(0.5至4.0)	2000	DCS		V	V	V			30		输出放电	V	QFN	0.45
TPS62290	1	2.3 至 6.0	(0.6 至 V _{IN})/ 1.8/3.3	2250	VM		V	V				15	V	EN	V	QFN	0.75
TPS62660	1	2.3 至 5.5	1.2/1.8	6000	VM		V	V				31		可调放电上限	V	WCSP	0.71
LM3281	1.2	3.0 至 5.5	3.3	6000	VM							15		软启动,模拟旁通	V	CSP	0.30
TPS62080	1.2	2.3 至 6.0	(0.5至4.0)/1.8/3.3	2000	DCS		V	V	V			30		睡眠模式,活跃放电	V	QFN, MSOP	0.67
TPS62750	1.3	2.9 至 6.0	(0.8至0.85×V _{IN})	2250	VM		V	V				780		由USB充电。输入电流限制	V	SON	0.81
LM2831	1.5	3至5.5	(0.6至4.5)	550, 1600, 3000				V				2800			V	S0T-23, WS0N	0.75
LM3678	1.5	2.5 至 5.5	0.8 至 3.3	3300	VM							3650			V	QFN	1.15
LMR10515	1.5	3至5.5	(0.6至4.5)	1600, 3000	CM							3300		EN, SS		LLP-6, S0T-23	0.85
TLV62565	1.5	2.7 至 5.5	(0.6 至 V _{IN})	1500	COT		V	V	V			50		热关停保护	V	S0T-23	0.47
TPS62510	1.5	1.8 至 3.8	(0.6 至 V _{IN})	1500	VM		V	V	V			22		输出电压跟踪	V	QFN	0.79
TPS62060	1.6	2.3 至 6.0	(0.6至 V _{IN})/ 1.8/3.3	3000	VM		V	v				18		输出放电	V	QFN (2x2 mm)	0.75
LMR10520	2	3至5.5	(0.6至4.5)	1600, 3000	CM							3300		EN, SS		LLP-6	0.38
LM2832	2	3至5.5	(0.6至4.5)	550, 1600, 3000				V				2800			V	WSON, MSOP	0.80
LM2852	2	2.85 至 5.5	(0.8至3.3)	500, 1500	VM		V					850			V	HTSSOP	1.58
TLV62065-Q1	2	2.9至5.5	(0.8至5.5)	3000	VM		V	V				18	v	EN		8 WSON (2x2 mm)	0.82
TLV62084	2	2.7至5.5	(0.5至4.0)	2000	DCS		V	V	V			30		引脚到引脚TLV62080(1.2A)	V	SON	0.56
TPS54218	2	2.95 至 6.0		200至 2000	CM	V	V		V	V	V	350		EN、预偏电压	V	16 QFN (3x3 mm)	1.40
TPS57112-Q1	2	2.95 至 6.0	(0.8至4.5)	200至2000	CM	V	V		V	V	V	515	V	EN EN		16 WQFN (3x3 mm)	1.64
TPS62065	2	2.3 至 6.0	(0.6 至 V _{IN})	3000	VM		V	V				18	V	输出放电	V	2x2 QFN	0.78
TPS62067	2	2.9 至 6.0	(0.6 至 V _{IN})	3000	VM		V	V	V			18	V	输出放电	V	2x2 QFN	0.78
TPS62097	2	2.5 至 6.0	(0.8 至 V _{IN})	1500-2500	DCS		V	V	V		v	17		追踪、输出放电	V	QFN	0.77
			\ ·IIV		00										1 -		

TPS62097
 2
 2.5 至 6.0
 (0.8 至 V_{IN})
 1500-2500
 DCS
 ✔ ✔ ✔ ✔ ✔ ✔ 17

 1 VM = 电压模式, CM= 电流模式, CM= 导通时间固定, FF= 前馈, DCS = 直接控制以无缝过渡到省电模式。

 *建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

降压 (巴克)

降压转换器,单通道(持续)

										∓ ₹							
设备	I _{OUT} (A)	V _{IN} (V)	V _{OUT} (V) (调整) /固定	开关频率 (典型) (kHz)	控制模式1	外部补偿	同步整流器	轻载效率	电源正常	同步至Ext.CLK引脚	可调软启动	I _Q (typ) (μΑ)	汽车级	其他功能	EVM	封装	价格*
LM20123/33/43	3	2.95 至 5.5	(0.8至5)	250 至 1500	CM	~	~		~	~	~	3500			~	16 eTSSOP	1.36
LM2833	3	3至5.5	(0.6至4.5)	1500, 3000	CM			~				3200			~	MSOP, WSON	0.90
低输入电压(<7 V _{II}	Max) (维	불续)														
LM2853	3	3至5.5	(0.8至3.3)	550	VM		V					850			V	HTSS0P	1.84
TLV62085	3	2.5 至 6.0	(0.8至6.0)	2400	DCS		V	V	1			17		短路保护	V	QFN	0.65
TLV62090	3	2.5 至 5.5	(0.8 至 V _{IN})	1400	DCS		V	V	V		V	20		频率选择	~	QFN	0.65
TPS53311	3	2.9 至 6.0	(0.6至4.2)	1000	VM	V	~	~		V		320		EN、预偏电压交错、输出放电	~	16 QFN (3x3 mm)	2.15
TPS54318	3	2.95 至 6	(0.8至4.5)	200 至 2000	CM	V	V		V	1	V	350		EN、预偏电压	V	16 QFN (3x3 mm)	1.90
TPS54319	3	2.95 至 6.0	(0.8至4.5)	300至 2000	CM	V	V		V	~	~	360		追踪	~	16 QFN (3x3 mm)	0.80
TPS54338-Q1	3	2.95 至 6.0	(0.8至4.5)	200 至 2000	CM	~	~		~	~	~	515	~	EN	~	16 WQFN (3x3 mm)	2.35
TPS62085	3	2.5 至 6.0	(0.8 至 V _{IN})/ 1.8/3.3	2400	DCS		~	1	~			17		短路保护	1	2x2 QFN	0.84
TPS62090	3	2.0 至 5.5	(0.8 至 V _{IN}) /1.8/2.5/3.3	2800/1400	DCS		V	V	V		V	20	V	频率选择	~	3x3 QFN	0.84
TPS62360	3	2.5 至 5.5	(0.5至1.77)	2500	DCS		V	V				56		l ² C接口,不同,感应	~	WCSP	0.77
LM1770	4	2.8 至 5.5	(0.8至4.5)	500 至 2000			V					400			~	S0T-23	0.70
LM20124/34/44/54	4	2.95 至 5.5	(0.8至5)	250 至 1500	CM	V	~		~	~	~	3500			~	16 eTSSOP	1.50
LM2854	4	2.95 至 5.5	(0.8至5)	500, 1000	VM		~					1700			~	HTSS0P	2.21
TLV62095	4	2.5 至 5.5	(0.8 至 V _{IN})	1400	DCS		V	V	~		~	20		输出放电,追踪	~	3x3 QFN	0.74
TPS54478	4	2.95 至 6	(0.6至4.5)	200 至 2000	CM	~	~		~	~	~	350		EN、追踪、预偏电压	~	16 QFN (3x3 mm)	2.30
TPS57114-Q1	4	2.95 至 6.0	(0.8至4.5)	200至 2000	CM	~	~		~	V	1	515	V	EN	1	16 WQFN (3x3 mm)	2.75
TPS62095	4	2.5 至 5.5	(0.8 至 V _{IN})	1400	DCS		~	~	~		~	20		输出放电,追踪	~	3x3 QFN	1.00
TPS62366	4	2.5 至 5.5	(0.5至1.77)	2500	DCS		V	V				56		l ² C接口,不同,感应	V	WCSP	0.84
LM20125/45	5	2.95 至 5.5	(0.8至5)	250 至 1500	CM	~	~		~		~	3500			~	16 eTSSOP	1.56
TPS53316	5	2.95 至 6	(0.6至5.5)	750/1100/2000	VM	~	~	~	~			320		EN、预偏电压、输出放电	~	16 QFN (3x3 mm)	2.55
LM1771	6	2.8 至 5.5	(0.8至4.5)	500至 2000			~					400			~	VSSOP, WSON	0.75
LM20136/46	6	2.95 至 5.5	(0.8至5)	250 至 1500	CM	~	~		~	~	~	3500			~	16 eTSSOP	1.68
TPS54618	6	2.95 至 6	(0.8至4.5)	300至 2000	CM	~		~	~	~	~	250	~	EN、追踪、预偏电压	~	16 QFN (3x3 mm)	2.85
TPS54678	6	2.95 至 6	(0.6至4.5)	200至 2000	CM	~		~	V	~	~	250		EN、追踪、预偏电压	~	16 QFN (3x3 mm)	2.85
TPS62480	6	2.4 至 5.5	(0.6至5.5)	2500	CM		~	~	1		~	23		强制PWM, 二段式转换	~	3x2.5 QFN	1.29
TPS54917	9	3至4	(0.9至2.5)	280 至 1600	VM	1	~		1	1	~	9800		EN	~	34 QFN (3.5x7 mm)	3.30
LM21212-1	12	2.95 至 5.5	(0.6至5.5)	300 至 1500	VM	1	~		~	~	~	1500			~	20 eTSSOP	3.30
LM21215	15	2.95 至 5.5	(0.6至5.5)	500	VM	V	V		~		~	1500			~	20 eTSSOP	3.55
LM21215A	15	2.95 至 5.5	(0.6至5.5)	300 至 1500		1	~		1	1	~	1500			~	20 eTSSOP	3.55
LP8758-B0	16	2.5 至 5.5	1.1V/Adj.	3000	СМ				~			6		l ² C接口,不同,感应,扩展 频谱	~	CSP	2.25

¹VM = 电压模式,CM= 电流模式,COT= 导通时间固定,FF = 前馈,DCS = 直接控制以无缝过渡到省电模式。 *建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

降压 (巴克)

降压转换器,单通道(持续)

						#Dist	浜器	掛	ine.	同步至Ext.CLK引脚	1000						
设备	I _{OUT} (A)	V _{IN} (V)	V _{out} (V) (调整) /固定	开关频率 (典型) (kHz)	控制模式1	外部补偿	同步整流器	轻载效率	电源正常	同步至	可调软启	l _Q (typ) (μΑ)	汽车级	其他功能	EVM	封装	价格*
中途输入电	压 (7	至最高3	O V _{IN})														
TPS62120	0.075	2.0 至 15	(1.2 至 5.5)	800	DCS		~	~	~			11		Ext.UVL0磁滞	V	SOT-23, QFN	0.49
TPS62125	0.3	3.0 至 17	(1.2至10)	1000	DCS		~	~	~			5		程序EN阈值和磁滞	~	QFN	0.53
TPS62745	0.3	3.3 至 10	选择(1.8 至 3.3)	2500	DCS		~	~	~			0.4		整合放电功能	V	WSON	0.95
TPS62170	0.5	3.0 至 17	(0.9 至 6)/ 1.8/3.3/5.0	2500	DCS		•	•	•			17	•	整合放电功能	~	QFN	0.51
TPS62175	0.5	4.75 至 28	(1至6)	1000	DCS		~	~	~			4.8		活跃的放电输出,欠压锁定	V	10 WSON (2x3 mm)	0.58
LM2736	0.75	3至18	(1.25 至 16)	550, 1600	CM							1500			~	6 S0T	0.65
LMR12007	0.75	3至18	1.25 至 16	550, 1600								1500		EN, SS		TS0T23	0.75
TPS62050	0.8	2.7 至 10	(0.7 至 6)/ 1.5/1.8/3.3	850	VM		•	•	~	•		12		电池电量过低指示	~	MSOP	0.83
LM2734	1	3.0 至 20	(0.8至18)	550至 1600	CM							2100			1	6 TSOP	0.95
LMR12010	1	3至20	0.8 至 17	1600, 3000	CM							1500		EN, SS		TS0T-23	0.79
TLV62150	1	4.0 至 17	(0.9至5.0)	2250	DCS		~	~	~		~	19		追踪、电压和频率的选择	V	QFN	0.61
TPS62150	1	3.0 至 17	(0.9 至 6) / 1.8/3.3/5.0	2500/1250	DCS		V	•	•			17	V	追踪、电压和频率的选择	~	QFN	0.765
TPS62160	1	3.0 至 17	(0.9至6)	2500	DCS		~	•	~			17	~	追踪、电压和频率的选择	~	8 MSOP/WSON (2x2 mm)	0.73
LM2651	1.5	4至14	(3.3 至 13)/ 1.8/2.5/3.3	300		V	V	•			V				~	16 TSS0P	1.47
LM2653	1.5	4至14	(1.5至5)	300		~	~	~			1				~	16 TSSOP	1.50
LM27341	1.5	3 至 20	(1至18)	2000						~		2400			1	10 WSON, 10 MSOP	1.10
LM2738	1.5	3至20	(0.8至18)	550, 1600								16			V	8 WSON, 8 MSOP	1.20
TPS62110	1.5	3.1 至 17	(1.2 至 16)/3.3/5	1000	DCS		~	~	~	~		18	~	电池电量过低指示	~	QFN	1.15
TPS5403/05	1.7/2	4.5/6.5 至 23	3.3/5	50 至 1100	СМ	~		•			~	100			~	8 SOIC	1.05
LM27342	2	3 至 20	(1至18)	2000						~		2400			~	10 WSON, 10 MSOP	1.20
TPS54231/2/3	2	3.5 至 28	(0.8至25)	570/1000/300		~		~			1	75	~		V	8 SOIC	0.55
TPS54239/239E	2	4.5 至 23	(0.76至7)	600	D-CAP2™		~	-//			1	600			~	8 HSOIC	0.73/0.75
TPS562200/09	2	4.5 至 17	(0.76至7)	650	D-CAP2		~	V /-				230			V	S0T-23	0.69/0.58
TPS562201/08	2	4.5 至 17	(0.76至7)	580	D-CAP2		~	V /-				400			~	S0T-23	0.30/0.30
TPS562219	2	4.5 至 17	(0.76至5.5)	650	D-CAP2		~	v /-	~		~	650			V	S0T-23	0.60
TPS62140	2	3.0至17	(0.9至6.3)	2500	DCS		~	~	1		~	17		追踪、电压和频率的选择	~	16 QFN (3x3 mm)	0.85
LM2655	2.5	4至14	(3.3至13)/3.3	300		V	V	V			V				V	16 TSSOP	1.63
LM2650	3	4.5 至 18	(1.5至16)	300	D00	1	V	V		~	V	40		10 00 do 17 10 10 10 10 10 10 10 10 10 10 10 10 10	V	20 TSSOP	3.62
TLV62130	3	4.0 至 17	(0.9至5.0)	2250	DCS		V	~	V		V	19		追踪、电压和频率的选择	V	QFN	0.72
TPS54320	3	4.5 至 17	(0.8至15)	200至1200	CM	V	~		~	~	V	600		EN、追踪、预偏电压	V	14 QFN	1.70
TPS54331	3	3.5至28	(0.8至25)	570	CM	1		V			V	110	1		V	8 SOIC	0.60
TPS54339/339E	3	4.5 至 23	(0.76至7)	600	D-CAP2		V	-/V			~	850			V	8 HSOIC	0.85/0.87
TPS563200/09	3	4.5 至 17	(0.76至7)	650	D-CAP2 D-CAP2		V	V /-				190 400			V	SOT-23	0.81/0.70 0.40/0.40
TPS563201/08 TPS563219	3	4.5 至 17 4.5 至 17	(0.76至7)	580 650	D-CAP2		V	V/- V/-	V		v	650			V	SOT-23 SOT-23	0.40/0.40
TPS62130A	3	3.0 至 17	(0.9 至 6) / 1.8/3.3/5.0	2500/1250	DCS		~	•	V		~	17	~	追踪、电压和频率的选择	•	QFN	0.93
TPS62135	3.5	3.0 至 17	(0.8至12)	2500	DCS		~	~	1		1	18		强制性PWM, 输出精度1%	V	QFN (3x2 mm)	0.95
TPS54332	3.5	3.5 至 28	(0.8至25)	1000	CM	V		V			V	82			V	8 HSOIC	0.73
TPS54427/8	4	4.5 至 18	(0.76至7)	700	D-CAP2		1	-/4			1	950			~	8 HSOIC, 10 SON	0.83/0.85
TPS56428	4	4.5 至 18	(0.6至5.5)	650	D-CAP2		V	~	V			250			V	8 HSOIC	1.15

¹ VM = 电压模式,CM= 电流模式,COT= 导通时间固定,FF = 前馈,DCS = 直接控制以无缝过渡到省电模式。 *建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

Texas Instruments 电源管理指南 2016 9

降压 (巴克)

降压转换器,单通道(持续)

设备	I _{OUT}	V _{IN} (V)	V _{OUT} (V) (调整) /固定	开关频率 (典型) (kHz)	控制模式1	外部补偿	同步整流器	轻载效率	电源正常	同步至Ext.CLK引脚	可调软启动	Ι _Q (typ) (μΑ)	汽车级	其他功能	EVM	封装	价格*
中途输入电	压 (7	-最高30	V _{IN}) (持续)														
LM21305	5	3至18	0.6	300至1500	CM	V		V	V	V	V	9000			V	28 LLP	2.50
TPS54527/8	5	4.5 至 18	(0.76至6)	700	D-CAP2		V	-/ 4			~	900			~	8 HSOIC	0.98/1.00
TPS54531	5	3.5 至 28	(0.8至25)	570	CM	V		~			V	110			V	8 SOIC	0.80
TPS56520	5	4.5 至 17	(0.6至1.87)	500	D-CAP2		~	V	~		1	920			~	20 HTSSOP	1.40
TPS56528	5	4.5 至 18	(0.76至5.5)	650	D-CAP2		~	V	~			250			~	8 HSOIC	1.20
TPS53313	6	4.5 至 16	(0.6至10)	250至 1500	VM	~	~	V	~	~	~	320		EN,ILIM,输出放电,预偏电压	~	16 QFN (4x4 mm)	2.60
TPS54622	6	4.5 至 17	0.6 至 16	200至 1600	CM	~	~		~	~	~	2		EN、追踪、预偏电压	~	14 QFN (3.5x3.5 mm)	2.50
TPS54627/8	6	4.5 至 18	(0.76至5.5)	650	D-CAP2		~	-/~			~	950			~	8 HSOIC	1.30/1.35
TPS56628	6	4.5 至 18	(0.76至5.5)	700	D-CAP2		~	~	~			950			~	8 HSOIC	1.40
TPS62180	6	4至15	(0.9至6)	2000	CM	~		~	~			30				DSBGA	1.75
TPS62180	6	4至15	(0.9至6)	2000	CM				~			28		最小的6-A降压解决方案	~	DSBGA	1.40
TPS62184	6	4.0 至 17	(0.9至6)	2000	CM				~			28		最小的5-A降压解决方案	~	DSBGA	1.40
TPS56720	7	4.5 至 17	(0.6至1.87)	500	D-CAP2		~	~	~		~	920			~	20 HTSSOP	1.80
TPS53513	8	4.5 至 18	0.6 至 5.5	250至 1000	D-CAP3™			~	~		~	1350		EN, 预偏电压,ILIM		28 QFN (3.5x4.5 mm)	2.55
TPS56920	9	4.5 至 17	(0.6至1.87)	500	D-CAP2		~	~	~		~	920			~	20 HTSSOP	2.00
TPS51362	10	3.0至22	(0.6至2)	800			~	~	~		~	100			~	28 QFN	1.25
TPS54020	10	4.5 至 17	0.6 至 5.0	200至 1200	CM	~	V	~	~	~	•	600		EN、跟踪、预偏电压, 180° 异相,ILIM	•	15 QFN (3.5x3.5 mm)	3.45
TPS54A20	10	8至17	0.5 至 2.0	4000至10000	COT		V		V	V	~	5000		EN, 预偏电压,ILIM 2阶段180° 异相	~	4x3.5 mm HotRod™	3.25
TPS51367	12	3.0 至 22	(0.6至2)	800			~	V	~		~	100			~	28 QFN	1.30
TPS53515	12	4.5 至 18	(0.6至5.5)	250 至 1000	D-CAP3		~	V	~		~	1350		EN, 预偏电压,ILIM	~	28 QFN (3.5x4.5 mm)	2.70
TPS53915	12	4.5 至 18	(0.6至5.5)	250 至 1000	D-CAP3		~	~	~			1350		EN,PMBus可编程	~	28 QFN (3.5x4.5 mm)	3.05
TPS56C20	12	4.5 至 17	(0.6至1.87)	500			V	V	~		~	920			~	24 HTSSOP	2.40
TPS56C215	12	4.5 至 17	(0.6至5.5)	400, 800, 1200	D-CAP3		~	~	~			800		EN,软启动, 预偏电压,ILIM	~	3.5 x3.5毫米HotRod	2.50
TPS548A20	15	4.5 至 20	(0.6至5.5)	200至 1000	D-CAP3		~	~	~		~	1350		EN, 预偏电压,ILIM	~	28 QFN (3.5x4.5 mm)	2.89
TPS549A20	15	4.5 至 20	(0.6至5.5)	200至1000	D-CAP3		V	~	~		~	1350		EN, 预偏电压、ILIM PMBus可 编程	•	28 QFN (3.5x4.5 mm)	3.18
TPS56121	15	4.5 至 14	(0.6至12)	300/500/1000	VM	V	~		~		~	2500		EN, 预偏电压,ILIM	~	22 QFN (5x6 mm)	3.50
TPS53353	20	4.5 至 15	(0.6至5.5)	250 至 1000	D-CAP TM		~	~	~		~	320		EN, 预偏电压,ILIM	~	22 QFN (5x6 mm)	3.50
TPS544B20	20	4.5 至 18	(0.6至5.5)	250至1000	D-CAP, D-CAP2		V		V			8000		EN、遥感、ILIM、预偏电压, 带 遥测功能PMBus可编程	•	40 QFN (5x7 mm)	3.70
TPS544B25	20	4.5 至 18	(0.5至5.5)	200 至 1000	带FF的VM	~	~		~	,		9500		EN、遥感、ILIM、预偏电压, 带 遥测功能PMBus可编程	•	40 QFN (5x7 mm)	4.08
TPS56221	25	4.5 至 14	(0.6至12)	300/500/1000	VM	1	~		~		1	2500		EN, 预偏电压,ILIM	1	22 QFN (5x6 mm)	3.75
TPS53355	30	4.5 至 15	(0.6至5.5)	250至 1000	D-CAP		~	V	~		1	320		EN, 预偏电压,ILIM	1	22 QFN (5x6 mm)	3.75
TPS544C20	30	4.5 至 18	(0.6至5.5)	250至 1000	D-CAP, D-CAP2		~		~			8000		EN、遥感、ILIM、预偏电压, 带 遥测功能PMBus可编程	~	40 QFN (5x7 mm)	3.90
TPS544C25	30	4.5 至 18	(0.5至5.5)	200至1000	带FF的VM	V	V		•	V		7700		EN、遥感、ILIM、预偏电压, 带 遥测功能PMBus可编程	•	40 QFN (5x7 mm)	4.49
TPS546C20/23	35	4.5 至 18	(0.35至5.5)	200至1000	带FF的VM	V	V		~	V		7700		平行2 x,EN,遥感,ILIM, 预偏电压, 带遥测功能PMBus可编程		40 QFN (5x7 mm)	4.92
TPS548D22	40	4.5 至 16	(0.6至5.5)	425, 650, 875, 1050	D-CAP3		•	•	•			2000		EN、软启动、遥感、ILIM, 预 偏电压	•	40 QFN (5x7 mm)	4.19

¹ VM = 电压模式,CM= 电流模式,COT= 导通时间固定,FF = 前馈,DCS = 直接控制以无缝过渡到省电模式。 *建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

降压 (巴克)

降压转换器,单通道(持续)

哞	a, ,		111-7														
设备	I _{OUT} (A)	V _{IN} (V)	V _{our} (V) (调整) / 固定	开关频率 (典型) (kHz)	控制模 式 ¹	外部补偿	同步整流器	轻载效率	电源正常	同步至ExtCLK引脚	可调软启动	I _Q (典型) (μΑ)	汽车级	其他功能	EVM	封装	价格*
宽输入电压(>30 V _{IN}	最大值)															
TPS54062	0.05	4.7 至 60	(0.8至58)	100至400	CM	V	V			V		89		启用,可调式UVLO。	V	8 MSOP	1.10
LM(2)5019	0.1	7.5 至 100	(1.25至90)	50至1000	COT		~					1750			1	8 LLP, 8 PS0P	1.25
LM5009/A	0.15	9.5/6 至 95	(2.5至85)	50至600								485			V	8 LLP, 8 MSOP	1.10
LM5165	0.15	3至65	(1.23至65)	50至600	COT		V	~	~		~	10	V		V	10 VSON	1.35
TPS54061	0.2	4.7 至 60	(0.8至58)	50至1100	CM	1	V	~		1	~	90		启用,可调式UVLO。	~	8 SON (3x3 mm)	1.30
LM(2)5018	0.3	7.5 至 100	(1.25至90)	50至1000	COT		~					1750		₽-1	~	8 LLP, 8 PSOP	1.12/1.40
LMR14203	0.3	4.5 至 42	(0.765 至 34)	1250	CM							1300		启动	,	TSOT-23	0.90
LM5008/A LM(2)5007	0.35 0.5	8/6 至 95 9 至 42/75	(2.5 至 75) (2.5 至 73)	50 至 600 50 至 800	COT							485 500			V	8 LLP, 8 MSOP 8 LLP, 8 MSOP	1.18/1.20
LM(2)5007 LM2574HV	0.5	4至60	(3.3至73)	50 <u>±</u> 600	VM							5000			•	8 DIP/14 SOIC	1.45
TPS54040A/60A	0.5	3.5 至 42/60	(0.8至39/58)	100至2500	CM	V		V	~	v	V	116	V	启用、追踪、汽车版本是 TPS57040/60	~	10 MSOP, 10 SON (3x3 mm)	1.15/1.45
LM25574/5/6	0.5/1.5/3	6至42	(1.2至40)	50 至 1000	CM							1000		启用,跟踪		16 TSSOP	1.35
LM5574/5/6	0.5/1.5/3	6至75	(1.2至70)	50至500	CM							1000		启用,跟踪		16 TSSOP	1.55
LM46000/01/02	0.5/1/2	3.5 至 60	(1至28)	200至2200	CM		V	V	V	V		24		启用,跟踪		16 HTSSOP	1.65
LM43600/01/02/03	0.5/1/2/3	3.5 至 36	1至28	200至2200	CM		V	~	V	V		33/33/27/27		启用,跟踪		16 HTSSOP	1.50
LM2574/75/76	0.5/1/3	4至40	(3.3至37)	52/52/42 至 52/52/63	VM									启动		14 SOIC/ 8 PDIP	1.04
LM2594/95/96	0.5/1/3	4.5 至 40	(3.3至37)	110至173	VM							5000		启动		8 SOIC / 8 PDIP	1.20
LM22674/75/76/77	0.5/1/3/5	4.5 至 42	(1.2至37)	500								3400		启动		8 SO PowerPAD™	1.25
LM2674/75/76/77	0.5/1/3/5	6.5 至 40	(1.2至37)	260	VM							2500/2500/ 4200/4200		启动		16 WSON/ 8SOIC/ 8 PDIP	1.20
LM34919/B/C	0.6	6/4.5 至 40/50	(2.5至35)	达2600	COT				•		V	500	,		~	10 x 微SMD,12 x WSON, DSBGA	1.20/1.25
LMR14006	0.6	4至40	(0.8至30)	1100, 2100	CM			v				28		启用、预偏电压启动、可调 式UVLO		TSOT	1.10
LMR14206	0.6	4.5 至 42	(0.765至34)	1250	CM							1300		启动		TSOT-23	0.99
LMR16006	0.6	4至60	(0.8至55)	2100	CM			~				28		启用、预偏电压启动、可调 式UVLO		6S0T	1.20
LM(2)5017	0.65	7.5 至 100	(1.25至90)	50至1000	COT		~					1750			V	8 LLP, 8 PSOP	1.25/1.65
LM5006 LM53600-Q1	0.65 0.65	6至75 3.5至42	(2.5 至 75) (3.3 至 9.9)	50 至 800 2100	COT		v	V	,	,		1000 23	v	軟启动,电流限制,UVLO	v v	10 MSOP WSON	1.40
LM(2)5010/A	1	8/6 至	/3.3/5 (2.5 至 70)	50 至 1000	COT			•	•	•	V	650	<i>v</i>	· ···································	v	10 LLP, 14 eTSSOP	
LM53601-Q1	1	42/75 3.5 至 42	(3.3至9.9)	2100	CM		,	V	,	,		23	,	软启动,电流限制,UVL0	·	WSON	1.72
	1		/3.3/ 5				1	Ť	ľ	ľ			Ť		ď		
LMR24210	- 1	4.5 至 42		1000 最大值			V					700		启动		微SMD-28	1.50
TPS5410 TPS54162-Q1	1	5.5 至 36 3.6 至 48	(1.23 至 31) (0.9 至 18)	500 200 至 2200	VM	V		V	V	V	V	3000 50	V	启动	V	8 SOIC 20 HTSSOP	1.60 2.55
						7		,	•	•			V		7	5 DDPAK/ T0-263/	
LM2591HV/92HV	1/2	4.5 至 60	(3.3 至 57)	110至173	VM							1000/10000		启用、预偏电压启动、可调		5 TO-220	2.00
LMR23610/25/30	1/2.5/3	4至36	1至30	2200	CM		~	V		~		75		式UVLO 启用、预偏电压启动跟踪,可		8 x SO PowerPAD	WEB
LMR16010/20/30 TPS54162-Q1	1/2/3	4.5 至 60 3.6 至 48	(1至50)	200 至 2500 200 至 2200	CM	V		V	V	V	V	40 50	V	调式UVLO 启用、跟踪,UVLO,可编程监控器	V	8 SO PowerPAD 20 HTSSOP	WEB 2.55
LM34910/C	1.25	8至36/50	(2.5至33)	1000	COT			•			V	630		/H/II、 www.juveu, 可細性血红的		10 LLP	1.29
LM34917A	1.25	8至33	(2.5 至 30)	2000	COT						V	680				12 微 SMD	1.35
LM26001	1.5	3至38	(1.25至35)	150至500	CM	~		~	v	v		38			V	16 TSSOP	1.25
LM5160/A	1.5	4.5 至 65	(2至60)	50至1000	COT		V	V	Ĺ		V	2300			V	12 WSON	1.80
TPS54140A/60A	1.5	3.5 至 42/60		100至2500	СМ	v		V	,	v	V	116	v	启用、追踪、汽车版本是 TPS57040/60	v	10 MSOP, 10 SON (3x3mm)	1.40/1.75
LM20242	2	4.5 至 36	(0.8至32)	1000	CM	V			~		V	2000			V	16 eTSSOP	1.50
LM25011/A	2	6至42	(2.51至40)	达2000	COT/ER				~		~	1200			V	10 MSOP	1.40
LM53602-Q1	2	3.5 至 42	(3.2至9.9) /3.3/5	2100	СМ		v	~	•	V		38	V	软启动,电流限制,UVL0		HTSSOP	2.14

「VM = 电压模式,CM = 电流模式,COT = 导通时间固定,/ER = 带有模拟波纹。 * 建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

降压 (巴克)

降压转换器,单通道(持续)

设备	I _{OUT} (A)	V _{IN} (V)	V _{our} (V) (调整) / 固定	开关频率 (典型) (kHz)	控制模式1	外部补偿	同步整流器	轻载效率	电源正常	同步至Ext.CLK引脚	可调软启动	I _Q (典型) (μΑ)	汽车级	其他功能	EVM	封装	价格*
宽输入电压(>30 V _{IN}	最大值)	(继续)														
LMR14020	2	4至40	(1至36)	2500 最大值	CM			~	~	~		40		启用、预偏电压启动跟踪,可 调式UVLO		HSOIC-8	1.46
LMR24220	2	4.5 至 42	(0.8至24)	1000 最大值	COT/ER		V					700		启动		微SMD-28	2.00
TPS5420	2	5.5 至 36	(1.23至31)	500	VM							3000	~	启动	~	8 SOIC	1.70
TPS54262-Q1	2	3.6 至 48	(0.9至18)	200至 2200		~		~	~	~	~	50	~		~	20 HTSSOP	2.70
LMR14020	2	4至40	(1至36)	200至2500	CM			~	1	1		40		启用、跟踪,UVL0,可编程监控器		8S0 PowerPAD	1.46
LM(2)5005	2.5	7至 42/75	(1.23至70)	50至500	CM	~				~	~	3000			~	20 eTSSOP	1.75
TPS54240/60	2.5	3.5 至 42/60	(0.8至39/58)	100至2500	CM	V		•	V	V	V	138	~	启用,跟踪	•	10 MSOP, 10 SON (3x3mm)	1.55/1.95
LM20323/33/43	3	4.5 至 36	(0.8至32)	500	CM	~			1	1	~	2300			~	20 eTSSOP	1.43
LM26003	3	3至38	(1.25至35)	150至 500	CM	1		~	1	1		40	~		~	20 eTSSOP	1.45
LM53603-Q1	3	3.5 至 42	(3.2 至 9.9) /3.3/5	2100	CM		~	•	V	V		40	~	软启动,电流限制,UVL0	Х	HTSS0P	2.26
TPS5430	3	5.5 至 36	(1.23至31)	500								3000	V	启动	~	8 HSOIC	1.85
TPS54362-Q1	3	3.6 至 48	(0.9至18)	200至2200	VM	~		~	~	~	~	65	~	启用、跟踪,UVL0,可编程监控器	~	20 HTSSOP	2.78
TPS65281/65281-1	3	4.5 至 18	(0.8至17/16)	300至1400	CM	~	~	~	~	~	~	800			~	16 VQFN	1.20
LMR14030	3.5	4至40	(1至36)	2500 最大值	CM			•	V	V		40		启用、预偏电压启动跟踪,可 调式UVLO		HSOIC-8	1.68
TPS54340/60	3.5	4.5 至 42/60	(0.8至41/58.8)	100至2500	CM	V		~		V		146	V	启用、可调式UVLO、引导销电 荷场效应晶体管	~	8 HSOIC	1.75/2.10
TPS54341/61	3.5	4.5 至 42/60	(0.8至41/59)	100 至 2500		V		/	v	v	~	152	V	启用、可调式UVLO、引导销电 荷场效应晶体管,跟踪	,	10 SON	2.00/2.60
LM2676/77	3/5	8至40	1.2 至 37	260	VM							4200		启动		14VSON/ 7DDPAK/ T0-263/ 7T0-220	1.80
TPS65280	4	5.5 至 18	5	300至1400	CM	1	~		1	1	~	800			~	24 VQFN	1.95
TPS65282	4	4.5 至 18	(0.8至15)	300至1400	CM	~	~		V	~	V	500			~	24 VQFN	1.95
LM73605	5	3.5 至 36	1至34	2200	CM		~	~		1		15		启动		30WQFN	WEB
LMR14050	5	4至40	(1至36)	2500 最大值	CM			•	V		V	40		启用、预偏电压启动跟踪, 可 调式UVLO		HSOIC-8	1.95
TPS5450	5	5.5 至 36	(1.22至31)	500	VM							3000	~	启动	~	8 HSOIC	2.25
TPS54540/60	5	4.5 至 42/60	(0.8 至 41.1/58.8)	100至2500		V		v		V		146	~	启用、可调式UVLO、引导销电 荷场效应晶体管	V	8 HSOIC	1.95/2.30
TPS54541/61	5	4.5 至 42/60	(0.8至41/59)	100 至 2500	CM	,		~	v	~	v	152	,	启用、可调式UVLO、引导销电 荷场效应晶体管,跟踪	•	10 SON	2.30/3.00
TPS65286	6	4.5 至 28	(0.6至25)	500	CM	V	V	~	1	V		800			V	28 VQFN	2.00

[「]VM = 电压模式,CM = 电流模式,COT = 导通时间固定,/ER = 带有模拟波纹。 * 建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

降压 (巴克)

降压转换器,多通道

			V _{OUT} (V)			外部补偿	同步整流器	轻载效率	电源良好引脚	同步引脚	调整软启动		談				
设备	I _{OUT} (A)	V _{IN} (V)	(调整) / 固定	开关频率 (kHz)	控制 模式 ¹	外部	回	轻载	电源	回	调整	I _Q (typ) (μA)	汽车级	其它	EVM	封装	价格*
双通道																	
TPS62770	0.3/0.1	2.5 至 5.5	选择 (1.0 至 3.0)	1200	DCS		•	~				0.37		降压+升压+负荷 开关	•	WCSP	1.20
TPS62400	0.4/0.6	2.5 至 6.0	(0.6 至 V _{IN})/ (1.1 至 1.9/3.3)	2250	VM		•	~				32	•	EasyScale™接口	~	QFN	0.78
TPS62420	0.6/1	2.6 至 6.0	(0.6 至 V _{IN})	2250	VM		~	1				32	•	EasyScale接口	~	QFN	0.86
TPS62410	0.8/0.8	2.6 至 6.0	(0.6 至 V _{IN})	2250	VM		1	~				32	~	EasyScale接口		QFN	0.86
TPS54290/1/2	1.5/2.5	4.5 至 18	(0.8 至 16.2/ 15.3/14)	300/600/1200	СМ		~					1800			~	16 HTSSOP	2.95
TPS54294/5	2/2	4.5 至 18	(0.76至7)	700	D-CAP2™		~		v /-		-/ v	1300			~	16 HTSSOP, 16 QFN	2.40
TPS54283/6	2/2	4.5 至 28	(0.8至25.2)	300/600	CM							1800				14 HTSSOP	2.40
LM26420	2/2	3.0 至 5.5	(0.8至4.5)	550/2200	CM							900	•		V	QFN, HTSSOP	1.50
LM2717-ADJ	2.2/3.2	4至20	(1.627至3.3)	300, 600							~				1	24 TSSOP	2.65
LM2717	2.2/3.2	4至20	3.3	300, 600							~				1	24 TSSOP	2.65
TPS55383/6	3/3	4.5 至 28	(0.8至25.2)	300/600	CM	V						1800			1	16 HTSSOP	2.65
TPS65283/65283-1	3.5/2.5	4.5 至 18	0.6 最小	200至2000	CM	/	~	-/ 🗸	~			500			~	24 VQFN	2.00
TPS54494/5	4/2	4.5 至 18	0.76 至 7	700	D-CAP2		~		V /-		-/ v	1200			1	16 HTSSOP, 16 QFN	2.90
TPS65279	5/5	4.5 至 18	0.6 至 15	200 至 1600	CM	v	~	1	1	~	~	10000			1	32 HTSSOP, 36 QFN	2.50
TPS65279V	5/5	4.5 至 18	0.6 至 15	200 至 1600	CM	V	~	V	1	1	~	10000			1	32 HTSSOP, 36 QFN	2.50
三频道																	
TPS65580/1	2.5/1.5/1.5	4.5 至 18	0.76 最小	700	CM		~	V /-	1			600			V	20 TSSOP	1.72
TPS65261/-1	3/2/2	4.5 至 18	0.6 最小	250 至 2000	CM	V	~	~	1	~	~	600			~	32 VQFN	1.90
TPS65262/-1	3/1/1	4.5 至 18	0.6 最小	600	CM	V	~	~	1		~	790			~	32 VQFN	2.05
TPS65263	3/2/2	4.5 至 18	0.6 最小	600	CM	V	~	~	1		~	740/600	1		~	32 VQFN	2.35
TPS65263Q1	3/2/2	4.5 至 18	0.6 最小	200至2300	CM	V	~	~	1	~	~	1000			~	32 VQFN	3.00
TPS65265	5/3/2	4.5 至 17	0.6 最小	250 至 2300	CM	V	~	~	1	~	~	11.5			~	32 VQFN	1.25
TPS652510	3/2/2	4.5 至 16	0.8 最小	300至 2200	CM	V	~	V	1	~	~	20000	1		~	40 VQFN	2.10
TPS65251	3/2/2	4.5 至 18	0.8 至 17	300至 2200	CM	V	~	~	~	~	~	20000	~		~	40 VQFN	2.10
TPS65250	3/2/2	4.5 至 18	0.8 至 17	300至 2200	CM	V	~	~	1	~	~	1000			~	40 VQFN	2.10
TPS65251-1/-2/-3	3/2/2	4.5 至 18	0.8 至 17	300至 2200	CM	V	~	~	~	~	~	600			~	40 VQFN	2.10
TPS65257	3/2/2	4.5 至 18	0.8 至 15	300至 2200	CM	V	V	~	1	~	~	700			~	40 VQFN	2.85
TPS65287	3/2/2	4.5 至 18	0.8 至 17	300至 2200	CM	V	~	~	~	~	~	700			~	40 VQFN	2.75
TPS65288	3/2/2	4.5 至 18	0.8 至 17	300至 2200		V	V	~	1	~	~				~	40 VQFN	2.75
四通道																	
TPS65400	4/4/2/2	4.5 至 18	0.6 至 16	275 至 2200	CM	V	V	V	V	v	V	6300	V		V	48VQFN	3.20
VM	CM this															* ******************************** ******	

红色粗体标注的为新器件。

¹ VM = 电压模式,CM = 电流模式 *建议转售价格以美元计算,以每千台为单位销售。

降压 (巴克)

降压控制器 (外部开关)

各部件均有软启动、短路保护和过压锁定功能。

	a ()I db								,		计均分积							
设备	模式 控制 ¹	V _{IN} (最小/ 最大) (V)	V ₀ (最小/最大) (V)	驱动电流(A)	输出电流(A) ²	频率(kHz)	V _{REF} Tol (%)	內部引导	封装	电源良好	供应和 汲取 ³	预偏置操作	外部同步引脚	预测门驱动器™	DDR ⁴	远程感测	汽车级	价格*
通用的DC/DC	降压控制器	.																
TPS40000/2	VM	2.25 至 5.5	0.7 至 4	1	15	300/600	1	是	10 MSOP			是		是				0.99
TPS40007/9	VM	2.25 至 5.5	0.7 至 4	1	15	300/600	1	是	10 MSOP		是 ⁵	是		是				1.20
TPS40040	VM	2.25 至 5.5	0.6 至 4.95	1	15	300	1	是	8 SON		是5	是						0.90
TPS40041	VM	2.25 至 5.5	0.6 至 4.88	1	15	600	1	是	8 SON		是5	是						0.90
TPS40042	VM	3 至 5.5	0.7 至 4.95	1.2	15	600	Ext	是	10 SON		是5	是			是			0.90
LM3743	VM	3 至 5.5	0.8 至 4.6	3.1	10	300 至 1000	1.75		10 MS0P				是					0.99
LM2745	VM	1至14	0.6	1.9	20	250 至 1000	1.5		14 TSSOP	是		是	是					0.85
LM3475	滞环	2.7 至 10	0.8 至 V _{IN}	0.5	5	0至 2000	1.5		5 SOT23									0.48
TPS40190	VM	4.5 至 15	0.59 至 12.75	1.2	20	300	1	是	10 SON		是5	是						1.00
LM2742	VM	1至16	0.6 至 13.5	1.6	20	50 至 2000	1.5		14 TSSOP	是								0.80
LM2743	VM	1至16	0.6 至 13.5	1.6	20	50 至 2000	2		14 TSSOP	是								0.80
LM2744	VM	1至16	0.5 至 12.8	1.6	20	50 至 1000	1.5		14 TSSOP	是								0.80
LM2748	VM	1至16	0.6 至 12	1.9	20	50 至 1000	1.5		14 TSSOP	是		是	是					0.85
LM2747	VM	1 至 14	0.6 至 12	1.9	20	50 至 1000	1		14 TSSOP	是	_	是	是					0.85
TPS40100 ⁶	CM	4.5 至 18	0.7 至 5.5	1.3	20	600	1		24 QFN	是	是5	是	是			是		1.95
TPS40101 ⁶	VM	4.5 至 18	0.7 至 5.5	1.3	20	1000	1		24 QFN	是	是 ⁵	是	是			是		1.95
LM3754	VM	4.5 至 18	0.6 至 3.6	1.9	50	200 至 1000	1		32 LLP	是	_	是	是			是		2.95
TPS40192/3	VM	4.5 至 18	0.59 至 14.4	1.2	15/20	600/300	0.5	是	10 SON	是	是 ⁵	是						1.05
LM3153	COT	8至18	3.3	0.2	12	750	1.5		14 HTSSOP		是	是						1.35
TPS40195 ⁷	VM	4.5 至 20	0.59 至 17	1.2	20	适用600	0.5	是	16 TSSOP, 16 QFN	是	是5	是	是8					1.50
TPS40400	VFF, PMBus™	3至20	0.6 至 12	2	25	适用2000	1	是	24 QFN	是	是	是	是			是		2.15
TPS40303/4/5	VM	3至20	0.6 至 18	2	25	300/600/1200	1	是	10 SON	是	是5	是						1.50
LM27402	VM	3至20	0.6 至 19	2.6	30	200至1200	1		LLP-16, 16 TSS0P	是		是	是					1.10
LM27403	VM	3 至 20	0.6 至 19	2.6	30	200 至 1200	1		24 WQFN	是		是	是					0.95
TPS53125/6/7 (双输出)	D-CAP2™	4.5 至 26	0.76 至 5.5	1.5	15	350/700	1	是	24 QFN, 24 TSSOP		是	是						1.60
TPS53014/15	D-CAP2	4.5 至 28	0.76 至 7	1.5	25	500	1	是	10 MS0P	否/是	是	是						0.90
TPS40075	VFF	4.5 至 28	0.7 至 23	1	20	适用1000	1	是	20 QFN	是	是5	是	是	是		是		1.80
TPS40077	VFF	4.5 至 28	0.7 至 23	1	20	适用1000	1	是	16 PowerPAD™	是	是 ⁵	是		是				1.60
TPS53819A	D-CAP2, PMBus	3至28	0.6 至 5.5	2	40	270 至 1000	0.5	是	16 QFN	是	是	是						1.65
LM3152	COT	6 至 33	3.3	0.2	12	500	1.5		14 HTSSOP		是	是						1.35
LM3485	滞环	4.5 至 35	1.242 至 V _{IN}	0.4	4	0 至 1400/1000	2		8 MSOP								•	0.55
LM3489	滞环	4.5 至 35	1.239 至 V _{IN}	0.4	4	0至1400	2		8 MSOP								v	0.54
LM3477	CM	2.97 至 35	1.265 至 30.8	1.0	6	500	1.5		8 MSOP									0.85
TPS40050/1/4/5	VFF	8至40	0.7 至 35	1	20	适用1000	1	是	16 PowerPAD		55, 57 ⁵	57	是				/	1.65
TPS40056	VM	10至40	0.7 至 35	1	20	适用1000	Ext	是	16 PowerPAD		是		是		是			1.65
LM3150	COT	6 至 42	0.6 至 40	0.2	12	200 至 1000	1.5		14 HTSSOP		是	是						1.35
LM3151	COT	6至42	3.3	0.2	12	250	1.5		14 HTSSOP		是	是						1.35
TPS402008	VFF	4.5 至 52	0.7 至 46	0.2	3	适用500	1	注9	8 SOIC				是				v	0.75
TPS40170	VFF	4.5 至 60	0.6 至 58	1.2	15	适用600	1	是	20 QFN	是	是5	是	是				1	2.25
LM(2)5117	ECM	5.5 至 42/65	0.8 至 41/62	2.2	20	50 至 750	1.5		20 TSSOP, 24 LLP				是				~	1.70/2.10
LM(2)5085/A	СОТ	4.5 至 42/75	1.25/0.9 至 V _{IN}	1.5	10	1000	2		8 MSOP, 8 LLP								v	0.79/0.85/ 1.00

| 通用的DC/DC 降压控制器(持续)

¹ WM = 电压模式控制,CM = 电流模式控制,VFF = 电压前溃补偿模式, ECM = 模拟电流模式,COT = 持续接通控制 ² 普通商用 FETs 可支持该量级的电流电平 ³ 多数设备控制器将选择信源 / 汇点版本,包括二相操作或汇点输出电流

⁴ DDR = 支持 DDR 记忆体

⁵ 软启动过程中:仅指信源

⁶ 提供先进顺序启动及低输出电压差 ⁷ 双向 180 度异相位同步 ⁸ 无同步,驱动 P-FETs ⁹ 驱动高边 P-FET

^{*}建议转售价格以美元计算,以每千台为单位销售。

降压 (巴克)

降压控制器 (持续)

各部件均有软启动、短路保护和过压锁定功能。

设备	模式 控制 ¹	V _{IN} (最小/ 最大) (V)	V ₀ (最小/最大) (V)	驱动电流(A)	输出电流(A) ²	频率(kHz)	V _{REF} Tol (%)	內部引导	封装	电源良好	供应和 汲取 ³	预偏置操作	外部同步引脚	预测门驱动器TM	DDR ⁴	远程感测	汽车级	价格*
LM(2)5088	ECM	4.5 至 42/75	1.2 至 40/70	1.5	10	50 至 1000	1.5		e16 TSSOP				是				~	1.25/1.47
LM(2)5115/A	V	4.5 至 42/75	0.75 至 13.5	2.5	20	100 至 1000	1.7		16 TSS0P				是					1.05/1.80
LM(2)5116	ECM	6至100	1.2 至 80	3.5	20	50至1000	1.5		20 eTSSOP				是					1.70/2.42

TVM = 电压模式控制,CM = 电流模式控制,VFF = 电压前溃补偿模式,

ECM = 模拟电流模式,COT = 持续接通控制 2 普通商用 FETs 可支持该量级的电流电平

3. 多数设备控制器将选择信源/汇点版本,包括二相操作或汇点输出电流

⁴ DDR = 支持 DDR 记忆体 ⁵ 软启动过程中:仅指信源

6 提供先进顺序启动及低输出电压差

⁷ 双向 180 度异相位同步 ⁸ 无同步,驱动 P-FETs ⁹ 驱动高边 P-FET

*建议转售价格以美元计算,以每千台为单位销售。

设备	控制模式1	电源输出	相位	V _{IN} (最小/最大) (V)	V ₀ (最小/最大) (V)	驱动电 流(A)	输出 电流 (A) ²	频率(kHz)	V _{REF} Tol (%)	封装	电源 良好	过压保护	供应 和汲 取 ³	预偏置 操作	外部 同步 引脚	远程感 测	汽车级	价格*
多相同步	DC/DC降/	玉控制器	2															
LM2642	CM	1或2	1或2	4.5/30	1.3/96% x V _{IN}	1.1	25/阶段	300	1.8	28L TSSOP	是	是						1.48
LM2647	VFF	1或2	1或2	5.5/28	0.6/6.0	2	25/阶段	调整200至500	1.5	28L TSSOP	是	是						1.80
LM2657	VFF	1或2	1或2	4.5/28	0.6/6.0	2	25/阶段	调整200至500	1.5	28L TSSOP	是	是						1.80
LM3000	ECM	1或2	1或2	3.3/18.5	0.6/80% x V _{IN}	—	25/阶段	调整200至1500	1.5	32L LLP	是	是		是				2.75
LM3754	VFF	1或2	1或2	4.5/18	0.6/3.6	4	25/阶段	调整200至1000	1	32L LLP	是	是		是	是			2.95
LM(2)5119	ECM	1	2	4.5/5.5 至 42/65	0.8 至 41.3/64	2.2	50	50至750	1.5	32 LLP					是			2.60/3.25
LM5642	CM	1或2	1或2	4.5/36	1.3/90% x V _{IN}	1.1	25/阶段	200	1.7	28L TSSOP		是			是			1.75
LM5642x	CM	1或2	1或2	4.5/36	1.3/90% x V _{IN}	1.1	25/阶段	375	1.7	28L TSSOP		是			是			1.75
TPS40132	CM	1	2	1/40	0.6/5.8	1	50	适用1000	0.8	32 QFN	是	是	是	是	是	是		2.95
TPS40140 ⁴	CM	1或2	1或2	2/40	0.7/5.8	1.2	25/阶段	适用1000	0.5	36 QFN	是	是	是	是	是	是		3.05
TPS40180 ⁵	CM	1	1	2/40	0.7/5.8	1.2	25	适用1000	0.75	24 QFN	是	是	是	是	是	是		2.05
TPS40322	VFF	1或2	1或2	3/20	0.6/5.6	2	25/阶段	适用1000	1	32 QFN	是	是	是	是	是	是		2.40
TPS40422	VFF/PMBus	1或2	1或2	4.5/20	0.6/5.6	2	25/阶段	适用1000	1	40 QFN	是	是	是	是	是	是		3.10
TPS40425/8 ⁶	VFF/PMBus	1或2	1或2	4.5/20	0.6/5.0	2	25/阶段	调整200至1500	0.5	40 QFN	是	是	是	是	是	是		4.80
LM5140	CM	2	2	3.8/65	1.5/15	4	25/阶段	调整350至 2600	1	40 QFN	是	是	是		是		~	3.90
TPS53647	DCAP+TM/ PMBUS	1	1、2、3 或4	4.5/17	0.5/2.5	_	240	调整300至1000	1	40 QFN	是	是	是	是	是	是		3.85

				V _{IN} (最小/ 最大)	V ₀ (最小/最大)	驱动电	输出电		V _{REF} Tol				过压	电源	_	
设备	电源输出	LDO输出	相位	(V)	(V)	流(A)	流(A) ²	频率(kHz)	(%)	控制方法	内部引导	封装	保护	正常	ULQ ^{TM7}	价格*
轻载效率l	DC/DC 🖪	司步降压	控制器													
TPS53128/29	2	0	1	4.5/24	0.76/24	1.5	15	350/700	1	D-CAP2™模式	是	24 QFN, 28 TSSOP	是			1.70
TPS51220A	2	2	1	4.5/32	1.0/12.0	2	20	200 至 1000	1	电流或D-CAP™ 模式	是	32 QFN	是	是		2.25
TPS51225/B/C	2	2	1	5.5/24	3.3/5.08	1.7	10	300 至 335	1	D-CAP模式	是	20 QFN	是	是		1.05
TPS51275/B/C	2	2	1	5.0/24	3.3/5.08	1.7	20	330 至 335	1	D-CAP模式	是	20 QFN	是	是		1.05
TPS51285A/B	2	2	1	5.0/24	3.3/5.08	1.7	20	400 至 475	1	D-CAP模式	是	20 QFN	是	是	是	1.05
TPS53211	1	0	1	4.5/15	0.8/0.7 x V _{IN}	2	25	200 至 600	0.5	电压	是	16 QFN	是	是		2.00
TPS53219A	1	0	1	4.5/28	0.6/5.5	2	25	选择up to 1000	0.5	D-CAP模式	是	16 QFN	是	是		1.35
TPS59124	2	0	1	3/28	0.76/5.5	3	10	300, 360, 420	1	D-CAP模式		24 QFN	是	是		1.90

1 CM = 电流模式控制,ECM = 模拟电流模式 VFF = 电压前溃补偿模式 2 普通商用 FETs 可支持该量级的电流电平

3 多数设备控制器将选择信源/汇点版本,包括二相操作或汇点输出电流

多数以用压制的形式压制。 4 可叠起堆放至 16 个相位。 5 可叠起堆放至 8 个相位,可微调。

6 可叠起堆放至4个相位。

7 ULQ = 超低静态电流模式。

8 固定范围:"OUT1= 5.0 V±10%, OUT1 = 3.3±10%。"

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

非隔离式 DC/DC 开关稳压器 降压 (巴克)

处理器 V-Core 降压控制器

		转换电压范			最大 输出 电流						
设备	控制模式	取货电压池 围(V)	调节输出	相位	电 <i>加</i> (A)	可选择的频率	VID	CPU	平台	封装	价格*
TPS59610	D-CAP+™	3 至 28	1	1	30	200 kHz 至 500 kHz	IMVP6+	内核构架	嵌入式	5x5-mm 32 QFN	1.40
TPS59620	D-CAP+	3至28	1	2	60	200 kHz 至 500 kHz	IMVP6+	Penryn	嵌入式	6x6-mm 40 QFN	2.20
TPS51611	D-CAP+	3至28	1	1	30	250 kHz 至 500 kHz	IMVP6.5	Arrandale	客户	5x5-mm 32 QFN	1.25
TPS59621	D-CAP+	3至28	1	2	60	200 kHz 至 500 kHz	IMVP6.5	Arrandale	客户	6x6-mm 40 QFN	1.80
TPS59640	D-CAP+	3 至 28	2	3+1	90	200 kHz 至 600 kHz	IMVP7	Sandy Bridge	客户机/服务器	6x6-mm 48 QFN	2.25
TPS59650	D-CAP+	3 至 28	2	3+2	90	200 kHz 至 600 kHz	IMVP7	Ivy Bridge	客户机/服务器	6x6-mm 48 QFN	2.65
TPS59641	D-CAP+	3 至 28	2	3+1	90	200 kHz 至 600 kHz	VR 12.1	Baytrail-M / D / I	客户	6x6-mm 48 QFN	2.25
TPS51631/A	D-CAP+	3 至 28	1	3	90	300 kHz 至 1 MHz	VR 12.5	Haswell / Broadwell / Broadwell-DE	客户端/ 平板电脑	4x4-mm 32 QFN	1.65
TPS51622A	D-CAP+	4.5 至 28	1	2	40	300 kHz 至 1 MHz	VR 12.6	Haswell Broadwell-U / Y	客户端/ 平板电脑	4x4-mm 32 QFN	1.60
TPS51624	D-CAP+	4.5 至 28	1	2	40	300 kHz 至 1.5 MHz	VR 12.6	_	客户端/ 平板电脑	4x4-mm 32 QFN	1.65
TPS51678	D-CAP+, I ² C	4.5 至 28	1	2	40	300 kHz 至 1.5 MHz	VR 12.6	Broadwell-Y	客户端/ 平板电脑	4x4-mm 32 QFN	1.85
TPS51633	D-CAP+	4.5 至 28	1	3	90	300 kHz 至 1 MHz	VR 12.6	Broadwell-H	客户	4x4-mm 32 QFN	1.85
TPS51623	D-CAP+	4.5 至 28	1	2	60	300 kHz 至 1 MHz	VR 12.1	Braswell-M / D / I	客户	4x4-mm 32 QFN	1.20
TPS53640	D-CAP+, PMBus™	4.5 至 17	1	3	120	300 kHz 至 1 MHz	VR 12.5	Broadwell - EN / EP	服务器	5x5-mm 40 QFN	2.80
TPS53640A	D-CAP+, PMBus	4.5 至 17	1	4	160	300 kHz 至 1 MHz	VR 12.5	Broadwell - EN / EP	服务器	5x5-mm 40 QFN	3.10
TPS53631	D-CAP+, PMBus	4.5 至 17	1	3	120	300 kHz 至 1 MHz	VR 12.5	Broadwell - EN / EP	服务器	5x5-mm 40 QFN	2.80
TPS53641	D-CAP+, PMBus	4.5 至 17	1	4	160	300 kHz 至 1 MHz	VR 12.5	Broadwell - EN / EP	服务器	5x5-mm 40 QFN	3.30
TPS53661	D-CAP+, PMBus	4.5 至 17	1	6	240	300 kHz 至 1 MHz	VR 12.5	Broadwell - EN / EP	服务器	5x5-mm 40 QFN	3.80

^{*}建议转售价格以美元计算,以每千台为单位销售。

降压 (巴克)

Inductorless DC/DC 监管 (电荷泵) 家族产品

降压电荷泵 (Inductorless)

											特性	ŧ						
设备	I _{OUT} (mA)	V _{IN} (V)	调整V _{OUT} (V)	固定V _{OUT} (V)	效率 (%)	开关频率 (最大) (kHz)	静态电流 (典型) (mA)	关闭电流 (典型) (μA)	光	电池电量过低	电源正常	久压锁定	电流限制	发热限制	封装	EVM	汽车级	价格*
LM2772	150	2.7 至 5.5	_	1.2	_	1100	45	_	V						QFN-10	~		0.75
TPS60500	250	1.8至6.5	0.8 至 3.3	1.5, 1.8, 3.3	90	1200	40	0.05	V		~	V	1	1	MSOP-10	~		0.55
LM2771	250	2.7 至 5.5	_	1.5	_	1100	45	_	V						QFN-10			0.85
LM2773	300	2.5 至 5.5	1.6 至 1.8	_	_	1150	48	_	1						微SMD-9	~		0.90

¹ 产品家族内各设备参数、功能及价格或许相互不同 *建议转售价格以美元计算,以每千台为单位销售。

Texas Instruments 电源管理指南 2016 | 17

升压 (提高)

DC/DC 升压转换器 (集成开关)家族产品

升压 (提高)

提升转换器 (集成开关)

器件 ¹	开关电流 限制 (典型) (mA)	V _{IN} (V)	调整V _{OUT} (V)	V _{out} 固定值 (V)	峰值效率 (%)	开关频率 (典型) (KH2)	推荐电感 大小 (μH)	静态电流 (典型) (μA)	类闭电流 (典型) (JA)	同步整流	特征 ²	封装	EVM	汽车级	价格*
升压监管	器——达	10A的开	关限制电流	t t											
TPS61041	250	1.8 至 6.0	V _{IN} 至 28	_	87	1000	10	28	0.1		UVLO	S0T23-5/TS0T23-5	V	V	0.60
TPS61097A-33	350	0.9 至 5.5	_	3.3	90	_	10	4	0.005	~	UVLO	5 SOT23			0.70
TPS61040	400	1.8 至 6.0	V _{IN} 至 28	_	87	1000	10	28	0.1		UVL0	S0T23-5/TS0T23-5	V	1	0.60
TPS61220	400	0.7 至 5.5	1.8至6	3.3/5	95	_	4.7	5.5	0.2	~	UVL0	6 SOIC	~		0.83
TPS61098	450	0.7 至 4.5	1.8至4.4	_	95	_	2.2	0.3	0.1	V	自动传输功能	(1.5x1.5 mm) 6-SON	V		0.72
TPS61096	500	1.8 至 5.5	4.5 至 28	_			4.7	1	0.01		集成电平位移器	(3x2) WSON	~		0.80
LM5002	500	3.1 至 75	1.26级更高	_	95	1500	330	3100	95		UVL0	8 SOIC, (4x4 mm) SON			1.45
TL497A	500	4.5 至 12	(V _{IN} + 2) 至 30	_	85	_	_	11 mA	6000			14 TSSOP, 14 SOIC			0.90
TPS61080	500	2.5 至 6.0	V _{IN} 至 27	_	87	600/ 1200	4.7	_	_			(3x3 mm) QFN	V		0.95
TPS61240	600/700	2.3 至 5.5	_	5	90	3500	1	30	1.5	~	UVL0	(2x2 mm) SON, 6-WCSP	~	~	0.55
TPS61070	600	0.9, 2.3 至 5.5	1.8, 2.3 至 5.5	_	90	1200, 600	4.7	19	0.05	•	UVLO	6 SOT-23		•	0.45
TPS61071	600	0.9 至 5.5	VIN 至 5.5	_	100	1200	4.7	19	0.05	~	UVL0	6 SOT-23		1	0.53
TPS61029	1800	0.9 至 5.5	1.8至5.5	_	100	600	6.8	25	0.1	~	UVLO	10 VSON (3x3 mm)		~	1.30
TPS61260	700	0.8 至 4.0	1.8 至 4.0	3.3	95	2.3	4.7	29	0.1	~	UVLO	(2x2 mm) SON	~		0.55
TPS61028	800	0.9 至 5.5	1.8至5.5	_	96	600	6.8	25	0.1	/	LBI, UVLO	(3x3 mm) QFN	V		0.75
TPS61099	800	0.7 至 5.5	1.8至5.5	1.8, 4.5	95		2.2	0.8	0.3	~	关闭后断开	(1.2x0.9 mm) WCSP	~		0.68
TPS61046	900	1.8 至 5.5	4.5 至 28	_	85	1050	10	110	0.1		启动轻载效率	0.8x1.2 mm) WCSP	V		0.70
LM5001	1000	3.1 至 75	1.26级更高	_	96	1500	100	3100	95		UVL0	8 SOIC, (4x4 mm) SON	~	~	1.55
TPS61291	1000	0.9 至 5.0	_	2.5, 3, 3.3	95	_	3.3	6.1	0.015	/	UVL0,促进+旁通	(2x2 mm) QFN	V		0.68
TPS61014	1010,1060, 1130	0.8 至 3.3	_	2.8, 3, 3.3	95	500	10	36	1	•	LBI, UVLO	10 MSOP, (3x3 mm) QFN			1.32
TPS61093	1100	1.6至6	V _{IN} 至 17	_	88	1200	2.2	900	1		UVL0	(2.5x2.5 mm) SON	V	V	1.20
TPS61010	1130	0.8 至 3.3	1.5 至 3.3	_	95	500	10	36	1	~	LBI, UVLO	10 MSOP, (3x3 mm) QFN	~		1.22
LM4510	1200	2.7 至 5.5	V _{IN} 至 18	_	85	1000	4.7	1700	_		UVLO	(3x3 mm) SON	V		0.45
TPS61081	1200	2.5 至 6.0	V _{IN} 至 27	_	87	1200	4.7	6000	1			(3x3 mm) QFN	~		1.25
TPS61170	1200	3.0 至 18	V _{IN} 至 38	_	93	1200	10	2300	1		UVLO	(2x2) QFN		V	1.00
LM27313	1250	2.7 至 14	V _{IN} 至 28	_	90	1600	10	2100	_			5 SOT-23			0.61
LM2731	1500	2.7 至 14	V _{IN} 至 22	_	90	1600	10	2000	_			5 SOT-23	V		0.90
MC34063A	1500	3至40	3至39.5	_	_	100	_	_	1		UVLO	(4x4 mm) QFN, 8 SOIC	V		0.21
TPS61020	1500	0.9至5.5	1.8至5.5	_	96	600	6.8	26	0.1	~	LBI, UVLO	(3x3 mm) QFN	V		0.80
TPS61024	1500	0.9至5.5	1.8至5.5	3, 3.3, 5	96	600	6.8	26	0.1	~	LBI, UVLO	(3x3 mm) QFN			0.80
TPS61200	1500	0.3至5.5	0至V _{IN}	3.3, 5	90	<1650	2.2	50	1	~	UVLO PG. UVLO	(3x3 mm) QFN	V		1.00
TPS61251	1500	2.3 至 6	3至6.5	_	92	3500	1.5	30	0.85	V	-7	(2x2 mm) QFN	V		0.70
TPS61252 LM2733	1500 1500	2.3 至 6 2.7 至 14	3 至 6.5 V _{IN} 至 40	_	92	3250 1600	1.5 10	30 2100	0.85	V	PG, UVLO	(2x2 mm) QFN 5 SOT-23	V		0.70
LM2622	1650	2.7 至 14	V _{IN} 至 40 V _{IN} 至 12	_	90	1250	10	1300				8 MSOP	,		0.65
TPS61026	1800	0.9 至 5.5	V _{IN} 至 12 1.8 至 5.5	_	96	600	6.8	26	0.1	/	LBI, UVLO	(3x3 mm) QFN	~		0.78
LM2698	1900	2.7 至 12	V _{IN} 至 17	_	94	1250	10	1300	U. I	,	LDI, UVLU	8 MSOP	V		1.83
LM2090 LM5000	2000	3.1 至 40	1.26级更高		90	1300	33	2000	18		UVLO	16 TSSOP, (4x4 mm) SON			2.00
TPS61254	2150	2.5 至 4.85	1.20纵史向	4.5, 5	93	3500	აა 1	37	0.85	V	UVLO	(1.2x1.3 mm) 9 CSP	V		0.70
TPS61091	2200	1.8 至 5.5	_	3.3, 5	96	600	6.8	20	0.03	V	LBI, UVLO	(4x4 mm) QFN			0.70
LM2623	2200	0.8至14	1.24至14	J.J, J	90	2000	4.7	80	U.1	~	LDI, UVLU	8 MSOP, (4x4 mm) SON	V		1.09
TPS61090	2200	1.8至5.5	1.8至5.5		96	600	6.8	20	0.1	V	LBI, UVLO	(4x4 mm) QFN	V		0.95
LM3224	2450	2.7至7	V _{IN} 至 20	_	90	1250	10	1300	U.1	,	LUI, UVLU	8 MSOP	~		1.10
LM3224 LM3310	2600	2.7 至 7	V _{IN} 至 20 V _{IN} 至 20	_	93	600/1280	10	2100	_		UVLO	(4x4 mm) QFN			1.69
TPS61085	2600	2.3 至 6	(V _{IN} + 0.5) 至 18.5	_	91	650/1200		70	1		UVLO, 可调SS, sel. Fsw	8 TSSOP, 8 MSOP	V	v	0.95
TPS61086	2600	2.3 至 6	(V _{IN} + 0.5) 至 18.5	_	91	1200	3.3	70	1		UVLO, 可调SS, sel. 强制性PWM	(3x3 mm) QFN	V		0.95
LM2621	2850	1.2 至 1.4	1.24 至 14	_	90	2000	6.8	80	2.5			8 TSSOP	V		0.68
												5 SOT-23, 8 MSOP,			
LM2735	3000	2.7 至 5.5	V _{IN} 至 24		90	520/1600	15	7000	_			(3x3 mm) QFN	'		1.15

 $^{^{1}}$ 列出的所有设备均有过热和短路保护除了,TL499A 和 TL497A。 2 UVL0 = 欠压锁定 ;LBI = 电池电量过低指式 ;PG = 电源良好 ; VSEL = 可选择不同的输出电压。

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。 **蓝绿色粗体**标注的为前瞻性产品。

升压 (提高)

提升转换器 (集成开关) (持续)

器件 ¹	开关电流 限制 (典型) (mA)	V _{IN} (V)	调整V _{OUT} (V)	V _{OUT} 固定值 (V)	峰值效率 (%)	开关频率 (典型) (Kh2)	推荐电感 大小 (μH)	静态电流 (典型) (μA)	关闭电流 (典型) (μA)	同步整流	特征 ²	封装	EVM	汽车级	价格*
升压监管	器-达10A	的开关限	制电流(组	续)											
TPS61021	3500	0.5 至 4.4	1.8 至 4.0	_	97	2000	1.0	30	0.5	V	轻载PFM运行模式,关闭后断开	(2x2) WSON	~		0.60
LM2700	3600	2.2 至 12	1.26 至 17.5	_	92	1250	4.7	1300	_			14 TSSOP, (4x4) QFN	V		1.55
TPS61253	3620	2.65 至 4.85, 4.35, 4.85	_	4.5, 5, 5.1	93	3500	1	37	0.85	•	UVLO	(1.2x1.3 mm) 9 CSP	~		0.70
TPS61175	3800	2.9 至 18	V _{IN} 至38	_	93	200-2200	10	3500	1.5		UVL0	14 TSSOP	V	~	1.40
TPS61087	4000	2.5 至 6.0	(V _{IN} + 0.5) 至 18.5	_	91	650/ 1200	3.3	75	1		UVLO, 可调SS, sel. Fsw	(3x3 mm) QFN	~	V	1.60
TPS61030	4000	1.8 至 5.5	1.8 至 5.5	3.3, 5	96	600	6.8	20	0.1	V	LBI, UVLO	(4x4 mm) QFN, 16 TSSOP	~		1.25
TPS61230	5000	2.3 至 5.5	2.4 至 5.25	_	96	2000	1	35	1.5	~	UVLO	(3x3 mm) SON	~		1.15
TPS55330	6600	2.9 至 16	3至22	_	92	1200	2.2	500	2.7		PG, UVLO	(3x3) QFN	V		1.75
TPS55332-Q1	5700	1.5 至 40	2.5 至 50	_	70	2200	22	4200	2		PG、UVLO、可编程UV输出监视,如果 输出低于设置阈值,将触发复位	20 HTSSOP	~	V	2.46
TPS55340	6600	2.9 至 32	3至38	_	95	1200	10	500	2.7		PG, UVLO	14 TSOP, (3x3) QFN	~	~	1.85
TPS61236	8000	2.3 至 5.5	2.9 至 5.5	5.1	97	1000	1	10	0.2	~	SS, 过载、过电压和过热保护	QFN	~		1.60
TPS61280A	7400	2.3 至 4.85	2.85 至 4.4	_	95	2300	0.47	55.5	2.6		UVL0,旁路开关(35 mΩ)、I2C可编程 电流极限和电压输出	DSBGA	V		1.40
TPS61089	7500	2.7 至 12	4.5 至 12.6	_	93	2000	2.2	100	1	~	强制性PWM、可编程峰值电流限制	(2x2.5) VQFN	~		1.80
TPS61088	10000	2.7 至 12	4.5 至 12.6	_	95	200-2000	2.2	110	2.7	/	可调式峰值电流限制、过压保护、 欠压锁定	QFN	V		2.30

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

器件 ¹	开关电流 限制 (典型) (mA)	V _{IN} (V)	调整V _{OUT} (V)	V _{OUT} 固定值 (V)	峰值效率 (%)	开关频率 (典型) (kHz)	推荐 电感大小 (μl)	静态电流 (典型) (µA)	关闭电流 (典型) (μA)	集成LDO lour (mA)/Vour (V)	同步整流	特征 ²	封装	EVM	价格*
•)监视器		.D0(双输出)												
TL499A	_	1.1 至 10	2.9 至 30	_	85	_	_	_	15	100/Adj.			8 SOIC		1.20
TPS61120	1300	1.8 至 5.5	2.5 至 5.5	_	95	500	10	20	0.2	200/Adj.	~	PG, LBI, UVLO	16 TSSOP, (4x4) QFN	V	1.65
TPS61121	1300	1.8 至 5.5	_	1.5, 3.3	95	500	10	20	0.2	200/1.5	~	PG, LBI, UVLO	16 TSSOP, (4x4) QFN		2.00
反相调节	器														
LMR70503	300	2.8 至 5.5	-0.9 至 -5.5	_	79	500	_	0.245 mA	0.01	_		UVLO	(1.64x0.86) CSP	~	1.15
TL497A	500	4.5 至 12	-1.2 至 -25	_	85	_	_	11 mA	6000	_			14 TSSOP, 14 SOIC		0.90
TPS63700	1000	2.7 至 5.5	-2 至 -15	_	84	1400	4.7	_	0.014	_		UVLO	(3x3) SON	~	0.90
MC34063A	1500	3至38	-1.25 至 -36.3	_	-	100	_	330	0.2	_		UVLO	8 SOIC, (4x4 mm) QFN	~	0.21

SIMPLE SWITCHER® 升压/回程/ SEPIC

设备	I _{OUT} (A)	V _{IN} (最大) (V)	V _{IN} (最小) (V)	V _{OUT} (最小) (V)	频率范围(MHz)	封装	价格*
LM2585	3	40	4	1.23	100	T0-220, T0-263	3.17
LM2586	3	40	4	1.23	100 至 200	T0-220, T0-263	3.27
LM2587	5	40	4	1.23	100	T0-220, T0-263	4.17
LM2588	5	40	4	1.23	100 至 200	T0-220, T0-263	4.50

^{*}建议转售价格以美元计算,以每千台为单位销售。

 $^{^1}$ 列出的所有设备均有过热和短路保护除了, $\mathrm{TL}499A$ 和 $\mathrm{TL}497A$ 。 2 $\mathrm{UVL}0=$ 欠压锁定; $\mathrm{LB}1=$ 电池电量过低指式; $\mathrm{PG}1=$ 电源良好; VSEL= 可选择不同的输出电压。

^{*}建议转售价格以美元计算,以每千台为单位销售。

 $^{^1}$ 列出的所有设备均有过热和短路保护除了,TL499A和TL497A。 2 UVL0 = 欠压锁定;LBI = 电池电量过低指式;PG = 电源良好; VSEL = 可选择不同的输出电压。

^{*}建议转售价格以美元计算,以每千台为单位销售。

升压 (提高)

SIMPLE SWITCHER® 升压 (提高) 纳米监视器

设备	输出电流(最大)(A)	输入电压 (V)	最大输出电压(V)	频率(kHz)	特性	封装	价格*
LMR62421	2.1	2.7 至 5.5	3至24	1600	EN, SS	S0T-23, LLP-6	0.74
LMR62014	1.4	2.7 至 14	3至20	1600	EN	S0T-23	0.54
LMR64010	1	2.7 至 14	3 至 40	1600	EN	S0T-23	0.59

^{*}建议转售价格以美元计算,以每千台为单位销售。

升压控制器(外部开关)

* 1 *— 3 — :P	THH (SI MISSI	* */						
设备	V _{IN} (最小/最大) (V)	V ₀ (最小/最大) (V)	频率范围(MHz)	f _{sync}	开/关引脚	拓扑结构	封装	价格*
LM3017	5.0/18	6.0/—	600	_	_	升压,SEPIC,回程	10 QFN	0.95
LM3430	6.0/40	1.25/—	50 至 2000	V	_	升压	12 LLP	0.94
LM3478	2.95/40	1.26/—	100 至 1000	v	V	升压,SEPIC,回程	8 MSOP	0.80
LM3481	2.97/48	1.275/—	100 至 1000	V	V	升压,SEPIC,回程	10 MSOP	0.80
LM3488	2.95/40	1.26/—	100 至 1000	v	V	升压,SEPIC,回程	8 MSOP	0.80
LM5022/C	6.0/60	1.25/—	50 至 2000	V	V	升压、SEPIC	10 MSOP	1.13
LM5121/2 ¹	3.0/65	3.0/100	50 至 1000	v	V	升压	20 HTSSOP	2.05/1.80
TPS40210/1 ²	4.5/52	5/26	调至1000	V	✓	升压,SEPIC,回程	10 MSSOP/SON	1.10
TPS43000 ³	1.8/9	0.8/8	调至2000	v	~	升压,SEPIC,回程	16 TSSOP	2.25
TPS43060/61 ³	4.5/38	4.5/60	50 至 1000	V	v	同步提升(60 V)	16 QFN	1.40

升压电荷泵(无电感器)

											特性	ŧ						
设备	I _{OUT} (mA)	V _{IN} (V)	调整V _{out} (V)	固定V _{out} (V)	效率 (%)	开关频率(最 大)(kHz)	静态电流 (典型) (mA)	关闭电流 (典型) (μA)	米密	电池电量过低	电源正常	欠压锁定	电流泵制	发热限制	封装	EVM	汽车级	价格*
升压调量	器																	
LM2775	200	2.7 至 5.5	_	5	88	2000	75	0.7	V			~	~	V	WSON-8	~		0.50
LM2751	150	2.8至5.5		4.5, 5	90	725	1000	0.77	~				~	~	WS0N-10			0.77
LM2757	180	2.7至5.5		4.1, 4.5, 5	93	1240	2400	1.1	~				1	V	DSBGA-12			1.35
LM2660	100	1.5 至 5.5	_	2 V _{IN}	88	20至40	1000	_							SO-8			0.50
LM2662/3	200	1.5 至 5.5	_	2 V _{IN}	86	27.5 至 75	300	10	LM2663						SO-8			0.75
TL7660	20	1.5 至 10	_	< 2 V _{IN}	99	10.35	80	_							SOT-23, MSOP-8			0.80
TPS60202	50	1.8 至 3.6	_	3.3	90	400	35	0.05	~	1	✓ 1	V			MSOP-10	~		0.65
TPS60212	50	1.8至3.6	_	3.3	90	400	35	2	小睡模 式	v 1	v 1	•			MS0P-10	~		0.65
TPS60101	100	1.8 至 3.6	_	3.3	90	400	50	0.05	~			~	~		TSSOP-20			0.65
TPS60120	100, 200 ¹	1.8 至 3.6	_	3.0, 3.3 ¹	85	450	55	0.05	~	1	✓ 1	~	1		TSSOP-20	1		0.80
TPS60140	100	1.8至3.6	_	5.0	70	450	65	0.05	~	1	✓ 1	V	~		TSSOP-20	~		0.65
TPS60200	100	1.8 至 3.6	_	3.3	90	400	35	0.05	~	✓ 1	✓ 1	~			MS0P-10	~		0.65
TPS60210	100	1.8至3.6	_	3.3	90	400	35	2	小睡模 式	v 1	v 1	V			MSOP-10	•		0.65
TPS60150	140	2.7 至 5.5	_	5.0	90	1500	4.7	1	~					V	QFN-6	1		0.50
TPS60111	150	2.7 至 5.4	_	5.0	90	300	60	0.05	V			~	~		TSSOP-20	~		0.70
TPS60130	300 ¹	2.7 至 5.4	_	5.0	90	450	60	0.05	~	1	✓ 1	~			TSSOP-20	1		0.80
TPS60100	200	1.8至3.6	_	3.3	90	400	50	0.05	~			V	1		TSSOP-20	1		0.80
TPS60110	300	2.7 至 5.4	_	5.0	90	400	60	0.05	~			~	~		TSSOP-20	1		0.80
双输出证	周节器																	
TPS60300	20, 40	0.9 至 1.8	_	3.3, 2 V _{IN} ¹	90	900	35	1	V		V	V			MS0P-10	v		0.70
TPS60310	20, 40	0.9 至 1.8	_	3.3, 2 V _{IN} ¹	90	900	35	2	小睡模 式		~	~			MSOP-10			0.65

¹产品家族内各设备参数、功能及价格或许相互不同 *建议转售价格以美元计算,以每千台为单位销售。

Texas Instruments **电源管理指南 2016** 21

¹ 輸入电流限制和隔离开关(LM5121)。 ² 信源过压保护。 ³ 外部同步引脚。 *建议转售价格以美元计算,以每千台为单位销售。

降压/升压,反相或Split-Rail

降压/升压转换器 (集成开关)

设备	I _{OUT} 1 (mA)	开关电流 限制 (典型) (mA)	V _{IN} (V)	调整V _{OUT} (V)	V _{out} 固定值 (V)	峰值效率 (%)	开关频率 (典型)(kHz)	推荐电感器大小 (µH)	静态电流 (典型) (µA)	关闭电流 (典型) (µA)	调整输入电流限制	关闭期间断开负载	同步至Ext.CLK引脚	电源良好引脚	欠压锁定	封装	EVM	汽车级	价格*
TPIC74100-Q1	1000	2500	1.5 至 40	_	5	83	440	33	100	10				~	~	20 HTSSOP	~	~	1.70
TPIC74101-Q1	1000	2500	1.5 至 40	_	5	83	380	33	110	10				~	~	20 HTSSOP	~	~	1.70
TPS55065-Q1	500	2500	1.5 至 40	_	5	83	440	33	100	10				~	~	20 HTSSOP	~	~	1.55
LM2611	300	1200	2.7 至 14	_	-5	96	1400	22	270	0.01					~	S0T-23	~		0.95
TPS61130	300	1300	1.8 至 6.5	2.5 至 5.5	1.5, 3.3	90	500	22	40	0.2		~		~	~	QFN, TSSOP	~		1.63
TPS63030	500	1000	1.8 至 5.5	1.2 至 5.5	3.3	96	2400	2.2	29	0.1		~	~		~	10 QFN	~		0.82
TPS63050 ²	500	1000	2.5 至 5.5	2.5 至 5.5	3.3	96	2500	1.5	43	0.1	~	•		~	~	12 WCSP, HotRod™ QFN	~		0.78
TPS63000	800	1800	1.8 至 5.5	1.2 至 5.5	3.3, 5.0	90	1400	2.2	30	0.1		~	~		~	10 QFN	~		0.95
TPS63010	800, 1200	2200	2至5.5	1.2 至 5.5	2.8, 2.9, 3.3, 3.4	96	2400	1.5	5	0.1		•	~		~	20 WCSP	~	~	1.00
LM3668	1000	1850	2.8 至 5.5	2.8 至 5.0	2.8, 3.3	96	2200	2.2	45	0.01			~		~	12 QFN	~		2.25
TPS63060	1000, 1300, 2000	1800	2.5 至 12	2.5 至 8	5	93	2400	1	37	0.3		•	•	~	,	10 SON	•		1.25
TPS63024	1500	3000	2.3 至 5.5	2.3 至 3.6	2.9/3.3	97	2500	1	35	0.1		~			~	20 WCSP	~		1.00
TPS63070	2000	3000	2.0 至 16V	2.5 至 9	5.0	93	2400	1.5	50	1		~	~	~	~	HotRod QFN	~		1.43
TPS630250	2000	4500	2.3 至 5.5	2.3 至 3.6	2.9/3.3	97	2500	1	35	0.1		~			~	20 WCSP, HotRod	~		1.25
TPS63020	2000, 3000	4000	1.8至 5.5	1.2 至 5.5	3.3	96	2400	1.5	30	0.1		•	~	~	•	14 QFN	•	~	1.30

¹ 輸出电压 = 3.3 V.升压模式, **红色粗体**标注的为新器件。 ² 可调平均输入电流限制和软启动。 *建议转售价格以美元计算,以每千合为单位销售。

蓝绿色粗体标注的为前瞻性产品。

降压/升压或反相控制器 (外部开关)

设备	V _{IN} (最小/最大) (V)	V ₀ (最小/最大) (V)	频率范围(MHz)	f _{sync}	开/关引脚	拓扑结构	封装	价格*
LM5020	13/100	由外部反馈网络设置	50 至 1000	V	~	回程,反相,升压,提升,前进	10 MSOP, 10 LLP	0.99
LM(2)5118	3.0/(42/75)	1.23/38 或 70	50 至 500	V	V	降压/升压	20 eTSSOP	2.00/2.38
LM5175	3.5/42	0.8/55	100 至 600	v	~	同步降压/升压	28 HTSSOP	4.25
SM72442	4.75/5.25	_	220	_	_	降压/升压	28 TSSOP	3.95
SM72445	4.75/5.25	_	110, 135 或 215	_	_	降压/升压	28 TSSOP	3.95

^{*}建议转售价格以美元计算,以每千台为单位销售。

Split-Rail (+V_{POS}/-V_{NEG}) 集成解决方案

		11200							
	V	In	+V	POS	-v	NEG	I _{OUT}		
设备	(最小)(V)	(最大)(V)	(最小)(V)	(最大)(V)	(最小)(V)	(最大)(V)	(最大)(mA)	汽车级	价格*
TPS65130	2.7	5.5	-15	-2	3.2	15	300		1.30
TPS65131	2.7	5.5	-15	-2	3.2	15	300		1.40
TPS65131-Q1	2.7	5.5	-15	-2	3.2	15	300	v	1.63
TPS65132	2.5	5.5	-6	-4	4	6	80		0.95
TPS65133	2.9	5	-5	-5	5	5	250		0.95
TPS65135	2.5	5.5	-7	-2.5	3	6	80		1.00

^{*}建议转售价格以美元计算,以每千台为单位销售。

降压/升压,反相或 Split-Rail

降压/升压或反相电荷泵 (无电感器)

											特性	ŧ						
设备	I _{OUT} (mA)	V _{IN} (V)	调整V _{OUT} (V)	固定V _{OUT} (V)	效率 (%)	开关频率 (最大) (kHz)	静态电流 (典型) (mA)	关闭电流 (典型) (µA)	光	电池电量过低	电源正常	欠压锁定	电流限制	发热限制	封装	EVM	汽车级	价格*
降压/升	压监视	器																
REG710	30	1.8 至 5.5	_	2.5 至 5.0	90	1000	65	0.01	V				1	V	S0T-23	1		0.45
REG71050	60	2.7 至 5.5	_	5.0	90	1000	65	0.01	~				~	,	TSOT-23, TQFN-6	~		0.50
REG711	50	1.8 至 5.5	_	2.5 至 5.0	90	1000	60	0.01	~				1	V	MSOP-8			0.48
TPS60240	25	1.8 至 5.5	_	3.3	90	160	250	0.1	~				1	V	MSOP-8			0.55
反相调节	器																	
LM2776	200	2.7 至 5.5	_	V _{IN}	92	2000	100	0.1	~			V	~	V	S0T-23	1		0.36
LM27761	250	2.7 至 5.5	-5.0 至 -1.5	_	92	2000	370	7	~			~	1	V	WSON-8	1		0.78
LM2660	100	2.5 至 5.5	_	$2V_{IN}$	88	10, 80	120	_							SO-8			0.50
LM2662/3	200	2.5 至 5.5	_	2 V _{IN}	86	20, 150	300	10	LM2663						SO-8			0.75
TPS60400	60	1.6 至 5.5	-16.6至-5.25	_	99	50 至 250	125	_							S0T-23	~	~	0.40
TPS60401	60	1.6至 5.5	-16.6至-5.25	_	99	20	65	_							S0T-23		1	0.40
TPS60402	60	1.6至 5.5	-16.6至-5.25	_	99	50	120	_							S0T-23		~	0.40
TPS60403	60	1.6至5.5	-16.6至-5.25	_	99	250	425	_							S0T-23		1	0.40
LMC7660	20	1.5 至 10	-10至-1.5	_	97	10	120	_							SOIC-8, PDIP-8			0.35

¹产品家族内各设备参数、功能及价格或许相互不同 *建议转售价格以美元计算,以每千台为单位销售。

射频DC/DC 转换器

输出功率可调的射频功率放大器DC/DC开关转换器

设备	拓扑结构	V _{IN} (V)	V _{OUT} (V)	I _{OUT} (最大) (mA)	旁路模式	软启 动	开关频率(MHz)	封装	描述/功能	价格*
LM3209-G3	降压/升压	2.7 至 5.5	0.6 至 4.2	1000	无	否	2.4	12-bump微SMD		0.90
LM3269	降压/升压	2.7 至 5.5	0.6 至 3.8	1000	无	否	2.4	12-bump微SMD		0.75
LM3212	降压	2.7 至 5.5	0.5 至 3.4	2500	强迫型和活跃型	否	1.6	16-bump微SMD		1.10
TPS62730	降压	1.9 至 3.9	1.9/2.1/2.3	100	活跃型	是	3	1x1.5-mm SON	BLE,RF4CE,引脚状态	0.52
TPS62740	降压	2.2 至 5.5	1.3 至 3.3	300	无	是	3	2x3-mm WS0N	负荷开关,4-引脚 V _{select}	0.94
LM3241	降压	2.7 至 5.5	0.6 至 3.4	750	无	是	6	6-bump微SMD		0.40
LM3242	降压	2.7 至 5.5	0.4 至 3.6	750	强制型和汽车	是	6	9-bump微SMD		0.37
LM3262	降压	2.5 至 5.5	0.4 至 3.6	800	强制型和汽车	是	6	9-bump微SMD		0.40
LM3243	降压	2.7 至 5.5	0.4 至 3.6	2500	强迫型和活跃型	否	2.7	16-bump微SMD		0.45
LM3263	降压	2.7 至 5.5	0.4 至 3.6	2500	强迫型和活跃型	否	2.7	16-bump微SMD		0.48
LM3290/91	电源供应包络 跟踪	2.7 至 5.0	0.6至4.5	1300	无	否	2.7	30-bump / 12-bump 微SMD		0.80/ 0.70
LM3248	升压/降压	2.7 至 5.5	0.4 至 4.0	2500	无	否	2.7	30-bump微SMD		0.85
LM3279	降压/升压	2.7至5.5	0.4 至 4.2	1000	无	否	2.5	16-bump微SMD		0.75

^{*}建议转售价格以美元计算,以每千台为单位销售。

电源模块

概述

使用 TI 全套电源模块组合进行设计,可提供宽输入电压和输出电流范围,灵活的包装选择及操作简易的解决方案,一键适用非隔离、工业、医疗及商务应用设备。

PTH08T2xx T2 电源模块

应用程序大电流模块需要达到 50A。

- 高输出电流高达 50A
- TurboTrans ™可调的瞬态响应特性
- 分流(50A版本)

QFN 电源模块

LMZ3 SIMPLE SWITCHER® 系列

易于使用的高功率密度模块应用程序对空间 占用需求小。

- 输入电压范围:2.95 至 50 V
- 输出电流达 30 A
- 功能丰富,使用灵活
- 只需要三个外部组件

以 SIMPLE SWITCHER 包为主

应用设备易于使用模块要求输入电压达 42 V。

- 单一暴露按钮
- 支持 5 v、12 v 和 24 v 轨路
- 输出电流达 10A

MicroSiP ™模块

解决方案足迹最小。

- 输入电压范围: 2.7 至 17 V
- 集成所有必需的组件
- 达到 238 mA/mm²
- 全负载范围高效率
- 通过扩展频谱调制支持 noise-critical 应用程序
- 降压 / 升压选项

TI 电源模块包括执行 DC/DC 电源管理解决方案所必须全部关键组件,可助您简化设计过程,减小产品体积,缩短开发时间。产品最高电压可达 60V,最大电流可达50A。更多信息,请访问网址:

www.ti.com.cn/powermodules

电源模块 非隔离模块

QFN电源模块

									特性					
设备	I _{OUT} (A)	V _{IN} (V)	V _{OUT} (V)	封装θ _{JA} (°C/W)	开关频率 (kHz)	电源 良好 引脚	同步引脚	调整软 启动	180° 异相	测序/ 追踪	分流	EVM	封装	价格*
低输入电压	<u> </u>													
LMZ30602	2	2.95 至 6.0	0.8 至 3.6	12	500至 2000	V	V	V		V		V	39 QFN (9x11x2.8 mm)	2.95
LMZ30604	4	2.95 至 6.0	0.8 至 3.6	12	500至 2000	~	~	~		/		V	39 QFN (9x11x2.8 mm)	3.80
LMZ30606	6	2.95 至 6.0	0.8 至 3.6	12	500至 2000	1	~	~		✓	V	V	39 QFN (9x11x2.8 mm)	4.50
中输入电压	Ē													
LMZ31503	3	4.5 至 14.5	0.8 至 5.5	13	330 至 780	V	V	V		V		V	47 QFN (9x15x2.8 mm)	4.25
LMZ31704	4	2.95 至 17	0.6 至 5.5	13	200 至 1200	1	~	~	/	✓	V	~	44 QFN (10x10x4.3 mm)	5.25
LMZ31506	6	4.5 至 14.5	0.6至5.5	13	250至780	V	~	~		✓	V	V	47 QFN (9x15x2.8 mm)	5.45
LMZ31707	7	2.95 至 17	0.6 至 5.5	13	200 至 1200	~	~	~	V	/	V	V	44 QFN (10x10x4.3 mm)	6.50
LMZ31710	10	2.95 至 17	0.6至5.5	13	200 至 1200	V	~	V	v	v	V	V	44 QFN (10x10x4.3 mm)	8.95
LMZ31520	20	4.5 至 14.5	0.6至 2.8	8.6	500/900	~		~		✓		~	68 QFN (15x16x5.8 mm)	14.00
LMZ31530	30	4.5 至 14.5	0.6至 2.8	8.6	500/900	~		V		✓		~	68 QFN (15x16x5.8 mm)	17.00
宽输入电压	•													
LMZ34002	2	4.5 至 40	-3 至 -17	14	700至900		V	~				V	41 QFN (9x11x2.8 mm)	6.75
LMZ34202	2	4.5 至 42	2.5 至 7.5	14	200至1000	~	V	V		v		~	43 QFN (10x10x4.3 mm)	6.95
LMZ36002	2	4.5 至 60	2.5 至 7.5	14	200 至 1000	V	~	V		V		V	43 QFN (10x10x4.3 mm)	7.95
LMZ35003	2.5	7至50	2.5 至 15	12	400 至 1000	~	~	V		v		~	41 QFN (9x11x2.8 mm)	7.95

上述所有设备均内置欠压锁定和过热保护。预览设备已用蓝绿色粗体字标注。 *建议转售价格以美元计算,以每千台为单位销售。

MicroSiP™ 电源模块

设备	类型	输出 电流 (最大) (A)	输入 电压 (V)	输出 电压 (V)	峰值 效率 (%)	工作 结温 (°C)	特性	整合C _{IN} / C _{OUT}	频率 (kHz)	静态电流 (μA)	关闭电流 (μA)	CISPR22 B类EMI	包装尺寸(毫米)	价格*
LMZ10500/1	降压	0.65/1	2.7至5.5	0.6至3.6	95	-40 至 125	EN, SS	否	2000	6500	11	是	2.6 x 3 x 1.5	1.30/1.50
LMZ20501/2	降压	1/2	2.7至5.5	0.8 至 3.6	91	-40 至 125	EN,SS,PG,Eco-mode™	否	3000	64	1	是	3.5 x 3.5 x 1.75	1.70/1.90
LMZ21700/1	降压	0.65/1	3至17	0.9 至 6	95	-40 至 125	EN, SS, PG, Eco-mode	否	2000	17	1.5	是	3.5 x 3.5 x 1.75	1.55/1.75
TPS82740A	降压	0.2	2.2 至 5.5	1.8 至 2.6	S	-40 至 125	EN,轻载负荷,固定电压输出	是	2000	0.36	0.07	否	2.3 x 2.9 x 1.1	1.36
TPS82695	降压	0.5	2.3 至 5.5	2.5 至 2.85	95	-40 至 125	EN,轻载负荷,固定电压输出	是	4000	24	0.5	否	2.3 x 2.9 x 1.0	0.97
TPS82671	降压	0.6	2.3 至 4.8	1.0 至 1.9	90	-40 至 125	扩频	是	5500	17	0.5	否	2.3 x 2.9 x 1.0	1.00
TPS82693	降压	0.8	2.3 至 4.8	2.2 至 3.2	95	-40 至 125	扩频	是	3000	21	0.5	否	2.3 x 2.9 x 1.0	0.97
TPS8268180	降压	1.6	2.5 至 1.5	0.9 至 1.8	90	-40 至 125	扩频	是	3000	7000	0.5	否	2.3 x 2.9 x 1.0	1.25
TPS82084/5	降压	2/3	2.5 至 6	0.8 至 Vin	95	-40 至 125	EN,SS / TR,轻载负荷	否	3000	17	0.7	否	2.8 x 3.0 x 1.3	1.65/2.15
TPS82130	降压	3	3.0 至 17	0.9至5	95	-40 至 125	EN,SS / TR,轻载负荷	否	3000	20	1.5	否	2.8 x 3.0 x 1.5	2.35
TPS81256	升压	0.7	2.5 至 5.5	5	91	-40 至 125	真正负载断开	是	4000	37	5	否	2.6 x 2.9 x 1.0	1.10

^{*}建议转售价格以美元计算,以每千台为单位销售。

电源模块

非隔离式模块

易电源 (SWITCHER®) LMZ1 系列电源模块

	输出 电流 (最大)	输入 电压	可调节 输出 电压	峰值 效率	工作结温			22/CISPR22 认证		
设备	(A)	(V)	(V)	(%)	(°C)	特性	辐射	传导 ¹	封装	价格*
LMZ10503/04/05	3/4/5	2.95 至 5.5	0.8 至 5	96	-40 至 125	EN, SS	~	✓	TO-PMOD-7	3.95/4.50/4.95
LMZ12001/02/03	1/2/3	4.5 至 20	0.8 至 6	92	-40 至 125	EN, SS	V	✓	TO-PMOD-7	4.46/5.10/5.95
LMZ14201/02/03	1/2/3	6 至 42	0.8 至 6	90	-40 至 125	EN, SS	~	~	TO-PMOD-7	6.18/7.13/8.95
LMZ12008/10	8/10	6 至 20	0.8 至 6	92	-40 至 125	EN, SS	v	✓	TO-PMOD-11	10.93/13.30
LMZ13608/10	8/10	6 至 36	0.8 至 6	92	-40 至 125	EN, SS	•	~	TO-PMOD-11	15.68/17.10

高输出电压和扩展温度电源模块

	输出 电流 (最大)	输入 电压	可调节输出电压	峰值 效率	工作			022/CISPR22 及认证	冲击和		
设备	(A)	(V)	(V)	(%)	(°C)	特性	辐射	传导 ¹	振动合规	封装	价格*
LMZ10503/04/05EXT	3/4/5	2.95 至 5.5	0.8 至 5	96	-55 至 125	EN, SS	~	v	V	TO-PMOD-7	12.60/13.50/14.40
LMZ12001/02/03EXT	1/2/3	4.5 至 20	0.8 至 6	92	-55 至 125	EN, SS	~	v	~	TO-PMOD-7	9.50/11.40/13.80
LMZ14201/02/03EXT	1/2/3	6至42	0.8 至 6	94	-55 至 125	EN, SS	~	~	~	TO-PMOD-7	12.40/14.30/17.20
LMZ14201H/02H/03H	1/2/3	6至42	5至24	97	-40 至 125	EN, SS	~	v		TO-PMOD-7	6.18/7.13/8.95

¹ 需要额外的输入滤波器。

易电源 (SWITCHER®) LMZ2 系列电源模块

	输出电流 (最大)	输入电压	可调节 输出电压	工作结温		EMI EN5502 B级i			
设备	(A)	(V)	(V)	(°C)	特性	辐射	传导 ¹	封装	价格*
LMZ22003/5	3/5	6 至 20	0.8 至 5	-40 至 125	EN、SS、频率同步	~	~	TO-PMOD-7	5.50/6.25
LMZ23603/5	3/5	6 至 36	0.8 至 6	-40 至 125	EN、SS、频率同步	V	v	TO-PMOD-7	9.85/12.50
LMZ22008/10	8/10	6 至 20	0.8 至 6	-40 至 125	EN、SS、频率同步、均流	~	~	TO-PMOD-11	11.50/14.00
LMZ23608/10	8/10	6 至 36	0.8 至 6	-40 至 125	EN、SS、频率同步、均流	~	~	TO-PMOD-11	16.50/18.00

¹ 需要额外的输入滤波器。

非隔离式嵌入电源模块(POLA™及其它)产品系列

^{*}建议转售价格以美元计算,以每千台为单位销售。

^{*}建议转售价格以美元计算,以每千台为单位销售。

^{*}建议转售价格以美元计算,以每千台为单位销售。

电源模块 非隔离式模块

步降型(降压型)模块

器件 ¹	输入总线 电压	描述	P _{OUT} 或 I _{OUT}	V ₀ 范围 (V)	V ₀ 调节	自动跟踪™ 定序	POLA™	DDR-QDR	价格*
非隔离式单正	输出								
TH03000W	3.3 V	3.3 V 输入 6-A POL	6 A	0.8 至 2.5	V				7.59
TH03010W	3.3 V	具有自动跟踪™定序的 3.3 V 输入 15-A POL	15 A	0.8 至 2.5	V	V	~		14.04
TH03020W	3.3 V	具有自动跟踪定序的 3.3 V 输入 22-A POL	22 A	0.8 至 2.5	V	V	V		18.15
TH03030W	3.3 V	具有自动跟踪定序的 3.3 V 输入 30-A POL	30 A	0.8 至 2.5	V	V	~		20.57
TH03050W	3.3 V	具有自动跟踪定序的 3.3 V 输入 6-A POL	6 A	0.8 至 2.5	V	V	V		8.35
TH03060W	3.3 V	具有自动跟踪定序的 3.3 V 输入 10-A POL	10 A	0.7 至 2.5	V	V	~		11.86
TH04000W	3.3 V/5 V	具有自动跟踪定序的 3 V 至 5.5 V 输入 3-A POL	3 A	0.9 至 3.6	V	V	~		5.45
TH04070W	3.3 V/5 V	3 V 至 5.5 V 输入 3-A POL	3 A	0.9 至 3.6	V				4.71
TH04040W	3.3 V/5 V	具有自动跟踪定序的 3 V 至 5.5 V 输入 60-A POL	60 A	0.8 至 3.6	V	V	V		52.94
TH04T220/221W	3.3 V/5 V	采用 TurboTrans ™的 2.2- 至 5.5 V 输入, 16-A T2 第二代 PTH POL	16 A	0.7 至 3.6	V	V	~		13.86
TH04T230/231W	3.3 V/5 V	采用 TurboTrans 的 2.2- 至 5.5 V 输入, 6-A T2 第二代 PTH PO	6 A	0.7 至 3.6	V	V			8.69
TH04T240/241W	3.3 V/5 V	采用 TurboTrans 的 2.2- 至 5.5 V 输入, 10-A T2 第二代 PTH PO	10 A	0.7 至 3.6	V	V			11.88
TH04T260/261W	3.3 V/5 V	采用 TurboTrans 的 2.2- 至 5.5 V 输入, 6-A T2 第二代 PTH PO	3 A	0.7 至 3.6	V	V			6.88
TH05000W	5 V	5-V 输入 6-A POL	6 A	0.8 至 3.6	V				7.59
TH05010W	5 V	具有自动跟踪定序 的 5 V 输入 15-A POL	15 A	0.8 至 3.6	V	V	V		14.04
TH05020W	5 V	具有自动跟踪定序 的 5 V 输入 22-A POL	22 A	0.8 至 3.6	V	V	V		18.15
TH05030W	5 V	具有自动跟踪定序 的 5 V 输入 30-A POL	30 A	0.8 至 3.6	V	V	V		20.57
TH05050W	5 V	具有自动跟踪定序 的 5 V 输入 6-A POL	6 A	0.8 至 3.6	V	V	V		8.35
TH05060W	5 V	具有自动跟踪定序 的 5 V 输入 10-A POL	10 A	0.8 至 3.6	V	V	V		11.86
TH05T210W	5 V	采用 TurboTrans 的 5 V 输入. 30-A T2 第二代 PTH POL	30 A	0.7 至 3.6	V	· /	V		27.23
TH08000W	5 V/12 V	具有自动跟踪定序的 4.5 V 至 18 V 输入, 2.25-A POL	2.25 A	0.9 至 5.5	V	· ·	V		5.45
TH08080W	5 V/12 V	4.5 V 至 18 V 输入, 2.25-A POL	2.25 A	0.9 至 5.5	V		-		4.71
TH08T210W	12 V	采用 TurboTrans 的 5.5- 至 14-V 输入, 30-A T2 第二代 PTH POL	30 A	0.7 至 3.6	V	V	~		21.78
TH08T220/221W	5 V/12 V	采用 TurboTrans 的 4.5- 至 14-V 输入,16-A T2 第二代 PTH POL	16 A	0.7 至 5.5	V	V	V		15.25
TH08T230/231W	5 V/12 V	采用 TurboTrans 的 4.5- 至 14-V 输入, 6-A T2 第二代 PTH POL	6 A	0.7 至 5.5	V	· /			8.69
TH08T240/241W	5 V/12 V	采用 TurboTrans 的 4.5- 至 14-V 输入, 10-A T2 第二代 PTH POL	10 A	0.7 至 5.5	V	V			13.07
TH08T240F	5 V/12 V	用于 3 GHz DSP 系统的 4.5- 至 14 V 输入, 10-A T2 第二代 PTH POL	10 A	0.7 至 2.0	V	· /			13.07
TH08T250/255W	5 V/12 V	采用 TurboTrans 的 4.5- 至 14-V 输入, 50-A T2 第二代 PTH POL	50 A	0.7 至 5.5	~	V			43.56
TH08T260/261W	5 V/12 V	采用 TurboTrans 的 4.5- 至 14-V 输入, 3-A T2 第二代 PTH POL	3 A	0.7 至 5.5	V	V			6.88
TH12000L/W	12 V	12-V 輸入 6-A POL	6 A	0.8 至 1.8/1.2 至 5.5	~	•			7.59
TH12010L/W	12 V	具有自动跟踪定序的 12 V 输入 12-A POL	12 A	0.8 至 1.8/1.2 至 5.5	V	V	V		14.04
TH12020L/W	12 V	具有自动跟踪定序 的 12-V 输入 18-A POL	18 A	0.8 至 1.8/1.2 至 5.5	V	~	V		18.15
TH12030L/W	12 V	具有自动跟踪定序 的 12-V 输入 26-A POL	26 A	0.8 至 1.8/1.2 至 5.5	V	<i>V</i>	~		25.72
TH12040W	12 V	具有自动跟踪定序 的 12-V 输入 50-A POL	50 A	0.8 至 5.5	~	<i>'</i>	~		42.35
TH12050L/W	12 V	具有自动跟踪定序的 12-V 输入 6-A POL	6 A	0.8 至 1.8/1.2 至 5.5	~	<i>V</i>	~		8.35
TH12060L/W	12 V	具有自动跟踪定序 的 12-V 输入 10-A POL	10 A	0.8 至 1.8/1.2 至 5.5	~	<i>V</i>	V		11.86
TH03010Y	3.3 V	3.3 V 输入 15-A DDR 端接模块	15 A	遵照参考电压	V		V	V	17.55
TH03050Y	3.3 V	3.3 V 输入 6-A DDR 端接模块	6 A	遵照参考电压	~		V	V	8.35
TH03050Y	3.3 V	3.3 V 输入 10-A DDR 端接模块	10 A	遵照参考电压	~		V	V	11.86
TH050001	5.5 V	5 V 输入 15-A DDR 端接模块	15 A	遵照参考电压	~		~	V	17.55
TH05050Y	5 V	5 V 输入 6-A DDR 端接模块	6 A	遵照参考电压	V		V	V	10.44
TH05050Y	5 V	5 V 输入 10-A DDR 端接模块	10 A	遵照参考电压	~		V	~	14.83
TH12010Y	12 V	12-V 輸入 12-A DDR 端接模块	10 A	連照参考电压 連照参考电压	V		V	V	17.55
TH120101	12 V	12-V 输入 6-A DDR 端接模块	6 A	遵照参考电压	~				10.44
TH12050Y	12 V	12-V 输入 8-A DDR 端接模块	8 A	連照参考电压 遵照参考电压			V	V	14.83
TN04050C	3.3 V/5 V	3-V / 5-V 輸入, 12 W 輸出步升型(升压型) ISR	12 W	豆熙多考电压 5至15	V		~	•	10.89
									9.08
TN78000W/H	V ₀ + 2 至 36 V		1.5 A	2.5 至 12/12 至 22	V				
TN78060W/H	V ₀ + 2 至 36 V		3 A	2.5 至 12/12 至 22	V				13.31
TN78020W/H	V ₀ + 2 至 36 V		6 A	2.5 至 12/12 至 22	V				16.94
TR08060W	5 V/12 V	4.5-至14-V 输入,6-A POL	6 A	0.6 至 5.5	V				6.00
TR08100W	5 V/12 V	4.5-至 14-V 输入,10-A POL 見有自計明時中原的 5-V 於入 8-A 立士 CID	10 A	0.6 至 5.5	V				8.00
TV03010W	3.3 V	具有自动跟踪定序的 5-V 输入 8-A 立式 SIP	8 A	0.8 至 2.5	V	~	V		10.44
TV03020W	3.3 V	具有自动跟踪定序的 5-V 输入 18-A 立式 SIP	18 A	0.8 至 2.5	V	v	V		17.55
TV05010W	5 V	具有自动跟踪定序的 5-V 输入 8-A 立式 SIP	8 A	0.8 至 3.6	~	v	~		10.44
PTV05020W	5 V	具有自动跟踪定序的 5-V 输入 18-A 立式 SIP	18 A	0.8 至 3.6	V	V	V		17.55
TV08T250W	12 V	采用 TurboTrans 的 8-V 至 14-V 输入, 50-A T2 第二代 PTH POL	50 A	0.8 至 3.6	V	V			48.13
TV12010L/W	12 V	具有自动跟踪定序的12-V输入8-A立式SIP	8 A	0.8 至 1.8/1.2 至 5.5	~	v	~		10.44
	12 V	具有自动跟踪定序的12-V输入18-A立式SIP	16 A	0.8 至 1.8/1.2 至 5.5	V	v	~		14.04

¹ 如欲了解完整的产品供应信息,敬请访问 www.ti.com.cn/power。 *建议转售价格以美元计算,以每千台为单位销售。

Texas Instruments **电源管理指南 2016** 27

电源模块

非隔离式模块

MicroSiP™升压电源模块

设备	基本功能	I _{OUT} (mA)	V _{IN} (V)	固定V _{out} (V)	峰值效率 (%)	开关频率 (典型) (kHz)	静态电流 (典型) (µA)	关闭电流 (典型) (µA)	同步整流器	有源输出 电容器 放电	全方案尺寸 (mm²)	MicroSip™ 封装	EVM	特征与差异	价格*
完全集成的	的解决方案	(电源	^{該以及设备}	输入/输出电	容)										
TPS81256	升压	700	2.5 至 5.5	5	91	4000	37	0.85	V		<9	9	~	真正负载断开	1.10

升压和负输出模块

设备	输入总线电压	描述	P _{OUT} 或 I _{OUT}	V ₀ 范围 (V)	V ₀ 调节	价格*
PTN04050C	3.3 V/5 V	12 W宽输出升压电源模块	1 A	5至15	V	10.89
PTN04050A	3.3 V/5 V	3 V至5 V输入, 6-W正到负(降压 - 升压)ISR	1 A	-3.3 至 -15	V	10.89
PTN78000A	7 至 29 V	宽输入、宽输出1.5-A正到负(降压 - 升压)ISR	1.5 A	-3 至 -15	V	9.08
PTN78060A	9 至 29 V	宽输入、宽输出15-W正到负(降压 - 升压)ISR	15 W	-3 至 -15	V	13.31
PTN78020A	9 至 29 V	宽输入、宽输出25-W正到负(降压 - 升压)ISR	25 W	-3 至 -15	V	16.94

					特性		持性			
设备	I _{OUT} (A)	V _{IN} (V)	V _{OUT} (V)	封装Theta J _A (°C/W)	开关频率 (kHz)	同步 引脚	调节 软启动	EVM	封装	价格*
SWIFT™宽输之	入电源模块	夬								
LMZ34002	21	4.5 至 40	-3 至 -17	12	500/800	V	V	V	41 QFN (9x11x2.8 mm)	6.00

以上所有器件都内置欠压锁定和热保护。 *建议转售价格以美元计算,以每千台为单位销售。

以上所有器件都内置欠压锁定和热保护。 「最大电流取决于输入和输出电压。 *建议转售价格以美元计算,以每千台为单位销售。

电池管理产品

概述

无线、计算、消费、工业和医疗市场的终端应用不断拓展至便携式产品领域。TI的电池管理解决方案可帮助满足系统保护、高性价比线性及高效率开关模式电池充电的要求。开关模式充电技术的新发展提高了效率,并降低了功率耗散,从而以节能的方式推进绿色环境的建设。随着电池供电型系统可靠性要求的提高,TI 凭借可保护电池免遭过压和过流条件损坏的充电器确保了最大的产品安全性。

电池化学组成

就可充电电池而言,锂离子(Li-lon)电池是使用范围最广的化学电池系列。锂离子电池系列具有不同的化学组成和工作特性,例如:放电模式和自放电速率。TI的电池管理IC是按照电池化学组成开发的,以补偿这些差异,从而更高效地进行电池充电,并更准确地显示电池中的剩余电能。

基本状况

TI的相关产品可支持广泛的应用,如移动电话、智能手机、平板电脑、便携式消费类设备、便携式导航设备、笔记本电脑以及诸多多工业和医疗应用。TI拥有与您的设计规范相匹配的电池管理IC。此外,我们还提供必要的评估模块、应用手册、样片和数据表,以帮助您的设计更快面市。

Texas Instruments 电源管理指南 2016 | 29

电池充电器 IC

		_		€					器	封	装				
设备	电池数	V _{IN} 绝对 最大值 (V)	V _{IN} OVP (V)	充电电流	充电 电压 (V)	控制 接口	拓扑结构	集成功率 场效应管	温度监视器	WCSP	QFN/MLP	EVM	注释	汽车级	价格
多化学组成	(锂	离子	电池和镍镍	引镍氢	电池)										
bq25120	1	20	5.5	0.30	3.6 至 4.65	I ² C/独立式	线性	是	是	25		~	集成式电池管理单元,具有降压转换器、低压差线性稳压器 (LDO)、按钮控制器、电池电压监视器、JETA和电源路径		1.60
oq24030/31/35	1	18	6.4	2	4.2/4.1/4.2	独立式	线性	是	是		20	V	双路输入、稳压4.4 V输出针对交流输入条件,电源路径	~	1.80
bq24032A/38	1	18	6.4	2	4.2/	独立式	线性	是	是		20	V	双路输入、稳压4.4 V输出针对交流输入条件, 电源路径		1.80
bq24040/41	1	30	6.6/7.1	1	(4.24/4.36) 4.2	独立式	线性	是	是		10	·	次與 前沙八、 [6] 是 7.7		0.45
bq24045	1	30	6.6/7.1	1	4.2	独立式	线性	是	是		10	V			0.4
g24050/52	1	30	6.6	0.8	4.2	独立式	线性	是	是		10	V	JEITA充电(100K NTC - bg24052)		0.5
q24055	1	30	6.6	0.8	4.2	独立式	线性	是	是		12	V	JEITA、PG引脚		0.6
q24072/72T	1	28	6.6	1.5	4.3 / 4.2	独立式	线性	是	是		16	V	VOUT跟踪VBAT、VIN_DPPM、电源路径		1.0
q24073	1	28	6.6	1.5	4.2	独立式	线性	是	是		16	V	VIN DPPM、电源路径		1.0
q24074	1	28	10.5	1.5	4.2	独立式	线性	是	是		16	~	VIN DPPM、电源路径		1.0
oq24075T/79T	1	28	6.6	1.5	4.2/4.1	独立式	线性	是	是		16	V	SYSOFF引脚断开电池,VIN_DPPM,为系统供电,并为电	,	
•		-	1.1										池充电,电源路径	•	1.0
q24090/91	1	12	6.6	1	4.2	独立式	线性	是	是		10	~	10K NTC (100K NTC — bq24091)		0.4
oq24092/93	1	12	6.6	1	4.2	独立式	线性	是	是		10	V	JEITA, 10K NTC (JEITA, 100K NTC — bq24093)		0.4
oq24095	1	12	6.6	1	4.35	独立式	线性	是	是不	00	10	~	10K NTC		0.4
q24140	1	20	9.8	1.5	可调	I ² C	开关	是	否	30		V	双路输入、同时充电和USB OTG输出		1.6
q24153A/58	1	20	6.5	1.25	3.5 至 4.4	I ² C	开关	是	否	20		~	USB OTG受升压支持,无需电池上电检测(bq24158)		0.9
q24156A/59	1	20	9.8	1.5	3.5 至 4.4	I ² C	开关	是	否	20		V	无需电池上电检测(bq24159) USB OTG受升压支持,无需电池上电检测,安全定时器		0.9
q24157	1	20	6.5	1.25	3.5 至 4.4	I ² C	开关	是	否	20		~	被禁用		0.9
q24157S	1	20	6.5	1.25	3.5 至 4.4	I ² C	开关	是	否	20			扩频降低EMI。USB OTG受升压支持,无需电池上电检测,安全定时器被禁用		0.0
q24160/A	1	20	10.5/6.5(USB)	2.5/1.5	3.5 至 4.4	I ² C	开关	是	是	49	24	~	双路输入、D + / D-检测、JEITA, 3-V VBAT_SHORT, 电 源路径		1.9
q24161/B	1	20	10.5/6.5(USB)	2.5/1.5		I ² C	开关	是	是	49		~	双路输入,USB选择引脚,标准温度,电源路径		1.9
q24163	1	20	10.5/6.5(USB)	2.5/1.5	3.5 至 4.4	I ² C	开关	是	否	49	24	~	双路输入,D+/D-检测,JEITA,电源路径		1.9
q24165	1	20	10.5/6.5(USB)	2.5/1.5	4.2	独立式	开关	是	否	49		~	双路输入,IUSB1/2/3 USB选择,无温度监视器,JEITA, 电源路径		1.9
q24166	1	20	10.5/6.5(USB)	2.5/1.5	4.2	独立式	开关	是	是	49		~	双路输入, IUSB1 / 2/3 USB选择, 温度监视器, 标准温度, 电源路径		1.9
q24167	1	20	10.5/6.5(USB)	2.5/1.5	4.2	独立式	开关	是	是	49	24	~	双路输入, IUSB1 / 2/3 USB选择, 温度监视器, JEITA, 电源路径		1.9
q24168	1	20	6.5/6.5(USB)	2.5/1.5	3.5 至 4.4	独立式	开关	是	是	49	24	V	双路输入, USB选择引脚, JEITA, 无定时器, 电源路径		1.9
g24190	1	20	18	4.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	D+/D-, 1.3-A OTG, 标准温度, 12-mW电池FET		2.5
q24192	1	20	18	4.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	PSEL, 1.3-A OTG, 标准温度, 12-mW电池FET		2.5
q24192I	1	20	18	4.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	PSEL, 1.3-A OTG, 标准温度, 4.1 V和1.5-A默认充电		2.5
q24193	1	20	18	4.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	PSEL, 1.3-A OTG, JEITA, 12-mW电池FET		2.5
q24196	1	20	18	2.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	PSEL, 1.3-A OTG, 标准温度, 12-mW电池FET		2.2
q24195L	1	20	18	2.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	V	D+/D-, 5.1 V, 1.0-A移动电源同步升压		2.5
q24195	1	20	18	4.5	3.5 至 4.4	I ² C/独立式	开关	是	是		24	1	D+/D-,5.1-V, 2.1-A synchronous boost for power bank		2.8
q24232	1	28	10.5	0.5	4.2	独立式	线性	是	是		16	~	SYSOFF引脚断开电池, VIN_DPPM, 为系统供电并为电池 充电, 电源路径		1.0
q24232H	1	28	10.5	0.5	4.35	独立式	线性	是	是		16	•	更高的电压电池组灵活性(4.35 V),USB友好型,为系统供电并为电池充电,电源路径		1.1
q24250/51	1	20	10.5	2.0	3.5 至 4.4	I ² C/独立式	开关	是	是	30	24	~	EN1-2或D+/D-检测, JEITA, 电源路径		1.1
q24253	1	20	10.5	2.0	4.2	独立式	开关	是	是	30	24	~	D+/D-检测, JEITA, 电源路径		1.1
q24257	1	20	6.5	2.0	3.5 至 4.4	I ² C/独立式	开关	是	是	30	24	~	D+/D-检测,JEITA		1.1
q24295	1	16	6.4	3	3.5 至 4.4	I ² C/独立式	开关	是	是		24	•	D + / D-, USB和非标准端口检测, 1.5 A、4.5-V、5.5 V可 调移动电源OTG电压		1.6
q24296	1	16	6.4	3	3.5 至 4.4	I ² C/独立式	开关	是	是		24	~	PSEL, 兼容BC1.2, 标准温度, 运输模式		1.9
q24297	1	16	6.4	3	3.5 至 4.4	I ² C/独立式	开关	是	是		24	~	D+/D-, USB和非标准端口检测, 1.5 A, 4.5-V, 5.5 V可调OTG电压		1.9
q25040	1	30	6.9	1.1	4.2	独立式	线性	是	是		10	~	USB合规,带 50-mA集成LD0		0.5
q25050	1	30	6.5	1	4.2	单线	线性	是	是		10	~	单线接口,电源路径		0.6
q25060	1	30	10.5	1	4.2	独立式	线性	是	是		10	~	USB合规,带50-mA集成LDO,电源路径		0.6
bq25100	1	30	6.6	0.25	4.2	独立式	线性	是	是	6		V	小型线性充电器具有低至1 mA的可编程终端和75-NA电 池漏电。4.2-V电池		0.7

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

电池充电器 IC(续)

		_		€ €					器標	封	装			
设备	电池数	V _{IN} 绝对 最大值 (V)	V _{IN} OVP (V)	充电电流	充电 电压 (V)	控制 接口	拓扑 结构	集成功率 场效应管	温度监视器	WCSP	QFN/MLP	EVM	注释	价格*
多化学组	成(钽	图子 图	电池和银	镍镉/镍氢)(续)									
bq25100A	1	30	6.6	0.25	4.3	独立式	线性	是	是	6		V	小型线性充电器具有低至1 mA的可编程终端和75-NA电池 漏电。4.3 V电池	0.75
bq25100H	1	30	6.6	0.25	4.35	独立式	线性	是	是	6		•	小型线性充电器具有低至1 mA的可编程终端和75-NA电池 漏电。4.35-V电池	0.75
bq25101	1	30	6.6	0.25	4.2	独立式	线性	是	是	6		~	小型线性充电器,具有 CHG引脚,支持1 mA充电终止和75-nA电池漏电流。4.2-V电池	0.75
bq24130	1至3	20	可调	4	可调	独立式	开关	是	是		20	~	支持锂离子电池和超级电容器	1.95
bq24133	1至3	20	可调	2.5	4.2/电池	独立式	开关	是	是		24	~	具有电源路径管理功能	1.75
bq24170	1至3	20	可调	4	4.2/电池	独立式	开关	是	是		24	~	具有电源路径管理功能	1.80
bq24171	1至3	20	可调	4	可调	独立式	开关	是	是		24	~	JEITA, 电源路径	1.80
bq24172	1至3	20	可调	4	可调	独立式	开关	是	是		24	~	可调充电电压,具有电源路径管理功能	1.80
bq24707A	1至4	30	可调	8	可调	SMBus	开关	否	否		20	~	可编程开关频率	2.90
bq24735	1至4	30	可调	8	可调	SMBus	开关	否	否		20	~	支持Intel™ CPU Turbo模式	3.00
bq24617	1至5	33	32	10(外接)	可调	独立式	开关	否	是		24	~	600 kHz	2.90
bq24600	1至6	33	32	10(外接)	可调	独立式	开关	否	是		16	~	1200 kHz	2.50
bq24610	1至6	33	32	10(外接)	可调	独立式	开关	否	是		24	~	600 kHz	2.90
bq24616	1至6	33	32	10(外接)	可调	独立式	开关	否	是		24	~	JEITA	2.90
bq24618	1至6	33	32	10(外接)	可调	独立式	开关	否	是		24	~	USB VIN和转接器	2.90
bq24715	2至3	30	26	8	可调	SMBus	开关	否	否		20	~	NVDC充电器	2.25
bq24725A	1至4	30	可调	8	可调	SMBus	开关	否	否		20	~	可编程开关频率,增强的安全性,电池学习功能	2.90
bq24770	1至4	30	26	8	可调	SMBus	开关	否	否		28	~	NVDC充电器	1.50
bq24773	1至4	30	26	8	可调	I ² C	开关	否	否		28	~	NVDC充电器	1.50
bq24780S	1至4	30	26	8	可调	SMBus	开关	否	否		28	~	支持Intel™ CPU Turbo模式	1.50
bq25890	1	22	14	5	3.8 至 4.6	I ² C/独立式	开关	是	是		24	V	MaxCharge™技术, D+/D-, 2.4-A OTG, JEITA, 11-mW电池E	2.50
bq25892	1	22	14	5	3.8 至 4.6	I ² C/独立式	开关	是	是是		24	V	MaxCharge技术, PSEL, 2.4-A OTG, JEITA, 5-mW电池FET	2.50
bq25896	1	22 22	14 14	3 5	3.8 至 4.6 3.8 至 4.6	I ² C/独立式 I ² C/独立式	开关 开关	是是	是		24 24	V	MaxCharge技术, PSEL, 2.0-A OTG, JEITA, 11-mW电池FET MaxCharge技术, D+/D-, 3.1-A OTG, JEITA, 11-mW电池FET	2.00
bq25895		22		-							24	~	MaxCharge技术, D+/D-, 3.1-A UTG, JEHA, H-mw电池FEI MaxCharge技术, PSEL, 2.4-A OTG, JEHA, 5-mW电池	
bq25898	1	22	14	4	3.8至4.6	I ² C/独立式	开关	是	是	42		V	FET。WČSP封装	1.80
bq25898C	1	22	14	3	3.8 至 4.6	I ² C	开关	是	否	42		~	3-A从动充电器,WCSP封装	1.50
bq25898D	1	22	14	4	3.8 至 4.6	I ² C/独立式	开关	是	是	42		•	MaxCharge技术,D+/D-, 2.4-A OTG, JEITA, 5-mW电池 FET, WCSP封装	1.80

				a	3				niin		封	装				
设备	田路路	V _{IN} 绝对最大值(V)	V _{IN} OVP (V)	充电电流 (A)	充电电压(控制接口	拓扑结构	集成功率 场效应管	温度监视器	QFN/MLP	TSSOP	SOIC	OID	EVM	注释	价格*
LiFePO ₄																
bq25070	1	30	10.5	1	3.5	独立式	线性	是	是	10				~	LiFePO ₄ , 50-mA LDO	0.75
bq25071	1	30	10.5	1	3.5	独立式	线性	是	是	10				•	LiFePO ₄ , 50-mA LDO	0.75
bq24620	1至7	33	32	10(外接)	可调	独立式	开关	否	是	16				~	LiFePO ₄ , 300 kHz	2.90
bq24630	1至7	33	32	10(外接)	可调	独立式	开关	否	是	24				~	磷酸铁锂,300 kHz,功率选择器	2.90
超级电容器																
bq24640	1至9	33	32	10(外接)	可调	独立式	开关	否	是	16				~	超级电容器	2.90
镍镉/镍氢电	池化学	组成														
bq2002/C/E/F	多个	7	_	>2	6	独立式	限流	否	是			8	8		涓流充电	0.85
bq2004/E/H	多个	7	_	>2	5.5	独立式	开关	否	是			16	16		可选的定时器和脉冲涓流充电速率	2.15
bq2005	多个	7	_	>2	5.5	独立式	开关	否	是			20	20		两个电池组的顺序快速充电	2.15
bq24400/1	多个	7	_	>2	5.5	独立式	开关	否	是		8	8				1.55
铅酸电池化学	学															

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

电池充电器IC(续)

				€	3				财星	封装						
设备	电光数	V _{IN} 绝对 最大值 (V)	V _{IN} OVP (V)	充电电流	充电电压	控制接口	拓扑 结构	集成功率 场效应管	温度监视器	QFN/MLP	TSSOP	SOIC	딤	EVM	注释	价格*
bq24450	多个	40	_	>2	_	独立式	线性	否	否			16	16		温度补偿型内部基准	2.75
bq2031	多个	7	_	>2	_	独立式	开关	否	是			16	16	~	三个用户可选的充电算法,以适应循环和 待机应用	2.80
多化学组成	(锂离	子电池	和镍	镉/镍氢电池	.)											
bq2000/T	多个	7	_	_	_	独立式	开关	是	是		8	8	8	~	为镍镉、镍氢和锂离子电池充电	1.50
bq24650	1至6	33	32	10A(外接)	可调	独立式	开关	否	是	16				~	最大功率点跟踪	2.85
bq24765	2至4	30	_	_	_	独立式	开关	是	否	34				~	具有集成型功率FET的SMBus充电器	3.95

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

能量收集和太阳能充电

											封装					
设备	电光数	V _{IN} 绝对 最大值 (V)	V _{IN} OVP (V)	充电电流 (A)	充电电压 (V)	控制接口	拓扑结构	集成功率 场效应管	温度监视器	QFN/MLP	TSSOP	SOIC	릅	EVM	注释	价格*
太阳能/能	能量收 算	集(锂	离子	电池)												
bq24210	1	20	7.7	0.800	4.2	独立式	线性	是	是	10				~	太阳能电池板V⋈	1.10
bq25504	1	5.5	可调	0.1	2.5 至 5.25	独立式	升压	是	是	16				•	能量收集器,超低功率和静态电流,高效率, 动态最大功率点跟踪(MPPT)	2.10
bq25505	1	5.5	可调	0.1	2.5 至 5.25	独立式	升压	是	是	16				~	能量收集器,330-nA超低功耗和静态电流,高效率,动态最大功率点跟踪(MPPT),自主型电源路径复用	2.40
bq25570	1	5.5	可调	0.1	2.5 至 5.25	独立式	升压 - 降压	是	是	16				~	能量收集器,小于488 -nA超低功耗和静态电流,高效率,动态最大功率点跟踪(MPPT)	2.90
bq24650	1至6	33	32	10 (外接)	可调	独立式	开关	否	是	16				•	最大功率点跟踪	2.85

^{*}建议转售价格以美元计算,以每千台为单位销售。

单电池电量监测计

			-14-15	17 14			
设备	最小最大 串联电池	SHA-1认证	系统或 电池组	通信 协议	其他特性	封装	价格*
锂离子、铂	里聚合物!	电池化学组	戓				
bq27220	1	_	系统/电 池组	I ² C	电池组/系统CEDV电池电量监测计、3个预编程可选配置文件+自定义配置文件空间, 低功耗	9引脚 CSP	0.93
bq27426	1	_	系统	I ² C	系统侧电量监测计采用Impedance Track™技术,具有3个预编程配置文件和低功耗的特性	9引脚 CSP	0.99
bq27421	1	_	系统	I ² C	带预编程配置文件和综合感测电阻的阻抗跟踪电量监测计	9引脚 CSP	1.05
bq27411	1	_	电池组	I ² C	带预编程配置文件的阻抗跟踪电量监测计	12引脚QFN	1.15
bq27441	1	_	系统	I ² C	带预编程配置文件的阻抗跟踪电量监测计	12引脚QFN	1.15
bq27320	1	_	系统/电 池组	I ² C	采用CEDV技术的电池组/系统侧电量监测计	15引脚 CSP	1.18
bq27546-G1	1	是	电池组	I ² C/HDQ	采用阻抗跟踪技术的电池组侧电量监测计	12引脚 CSP	1.20
bq27520	1	_	系统	I ² C	阻抗跟踪电量监测计	15球CSP	1.20
bq27542-G1	1	是	电池组	I ² C/HDQ	采用阻抗跟踪技术的电池组侧电量监测计	15引脚 CSP	1.25
bq2753x	1	_	系统	I ² C	采用阻抗跟踪技术的电量监测计与充电器控制	15引脚 CSP	1.30
bq27742-G1	1	是	电池组	I ² C/HDQ	阻抗跟踪电量监测计和集成保护器	15引脚 CSP	1.35

^{*}建议转售价格以美元计算,以每千台为单位销售。

多电池电量监测计

设备	近似电池容量 (mAh)	最小最大 串联电池	发光二极管 数量	通信 协议	其他特性	封装	价格*
锂离子、锂	聚合物、磷酸	铁锂电池	化学组成				
bq28z610	100 至 14000	1至2	_	I ² C	1-2串联式阻抗跟踪(Impedance Track™)电量监测计	12引脚SON	1.65
bq78z100	100 至 14000	1至2	_	HDQ	1-2串联式阻抗跟踪电量监测计	12引脚SON	1.90
bq34z100-G1	高达650 Ah	1至16	4	I ² C 或 HDQ	采用阻抗跟踪技术的宽量程电量监测计	14引脚TSSOP	1.90
bq78350-R1	100 至 320000	3至15	5	SMBus	CEDV锂离子电池电量监测计和电池管理配套控制器	32引脚QFN	2.01
bq4050	100 至 2900	1至4	5	SMBus	1-4串联式CEDV锂离子电池组管理器,电池电量监测计	32引脚QFN	2.20
bq40z50-R1	100至 2900	1至4	5	SMBus	1-4串联式阻抗跟踪锂离子电池组管理器,电池电量监测计	32引脚QFN	2.70
bq40z60	100 至 2900	2至4	5	SMBus	带集成充电器的2-4串联式电池管理器	32引脚QFN	3.01
bq20z655-R1	800 至 32000	2至4	3, 4, 5 或 LCD	SMBus	阻抗跟踪电量监测计和LCD集成保护器	44引脚TSSOP	5.20
铅酸电池化:	学组成						
bq34z100-G1	高达650 Ah	1至16	4	I ² C 或 HDQ	采用阻抗跟踪技术的宽量程电量监测计	14引脚TSSOP	1.90
超级电容器							
bq33100	_	2至5	_	SMBus	完全集成的2、3、4和5串联式超级电容管理器	24引脚TSSOP	4.20

^{*}建议转售价格以美元计算,以每千台为单位销售。

Texas Instruments **电源管理指南 2016** │ 33

电池管理产品

选择指南

电池监视器

设备	电池数	可堆叠	通信 协议	保护特征	描述	封装	汽车级	价格*
bq76920	3至5	否	I ² C	V, I, T	Battery Monitor with digital I ² C interface, integrated ADCs and hardware protection	20引脚TSSOP		1.50
bq76930	6至10	否	I ² C	V, I, T	具有数字I2C接口、集成型ADC和硬件保护功能的电池监视器	30引脚TSSOP		2.75
bq76940	9至15	否	I ² C	V, I, T	具有数字I2C接口、集成型ADC和硬件保护功能的电池监视器	44引脚TSSOP		3.95
bq76925	3至6	否	I ² C	V, I, T	具有电池均衡和集成短路故障检测功能的主机控制显示器	20TSSOP/24VQFN		0.99
bq76PL536A	3至6	高达 192	串行外设接口(SPI)	V, T	3至6节电池EV和UPS可堆叠式监视器和电池均衡模拟前端	64引脚HTQFP		6.30
bq76PL536A-Q1	3至6	高达 192	串行外设接口(SPI)	V, T	3至6节电池符合汽车行业标准的EV与UPS可堆叠式监视器和电池均衡模拟前端	64引脚HTQFP	~	8.00
bq76PL455A-Q1	3至16	高达 256	UART	V, T	集成式电池管理单元,具有降压转换器、低压差线性稳压器(LDO)、按钮控制器、电池电压监视器、JEITA和电源路径	80引脚TQFP	~	14.95
bq77PL900	5至10	否	I ² C	V, I, T	双模式模拟前端和独立型电压、电流及温度电池组保护器	48引脚SSOP		2.95

^{*}建议转售价格以美元计算,以每千台为单位销售。

外围设备

设备	描述	封装	汽车级	价格*
bq76200	高侧N通道FET驱动器	16引脚TSSOP		1.69
EMB1428Q	用于有源电池均衡的开关矩阵栅极驱动器	48引脚WQFN	~	3.18
EMB1499Q	用于有源电池均衡的双向电流DC / DC控制器	28引脚HTSSOP	V	1.76

批量为 1,000 片时的建议转售单价。

电池充电器保护

设备	V _{IN} 最大 (V)	OVP (V)	OCP	蓄电池 OVP (V)	LD0 输出 (V)	最大工作电流 (μA)	封装	EVM	注释	价格*
bq24300/5	30	10.5	固定300 mA	4.35	5.5/5.0	400/500/500	8-QFN/SON	~	反向极性保护	0.30
bq24308	30	6.3	固定700 mA或可编程<1.5 A	4.35	5	500	8-QFN/SON	~	反向极性保护	0.30
bq24312	30	5.85	可编程<1.5 A	4.35	_	500	8/12-QFN/ SON		故障指示	0.35
bq24313	11	10.5	可编程<1.5 A	4.35	_	500	8/12-QFN/SON		故障指示	0.35
bq24314/A	30	5.85	可编程<1.5 A	4.35	_	600	8/12-QFN/SON	~	故障指示	0.35
bq24314C	30	5.85	可编程<1.5 A	4.45	_	600	8/12-QFN/SON	~	故障指示	0.35
bq24315	30	5.85	可编程<1.5 A	4.35	5.5	600	8-QFN/SON	~	故障指示	0.35
bq24316	30	6.8	可编程<1.5 A	4.35	_	600	8/12-QFN/SON	~	故障指示	0.35
bq24380	30	6.3	无OCP功能	4.35	5.5	250	8-QFN/SON	~	故障指示	0.25
bq24381	30	7.1	无OCP功能	4.35	5	300	8-QFN/SON	~	故障指示	0.25
bq24382	30	10.5	无OCP功能	4.35	5	300	8-QFN/SON		故障指示	0.25
bq24350	30	6.17	固定1.2A	4.35	5.5	500	8-QFN/SON	~	集成型充电FET	0.40
bq24351	30	10.5	固定1.2A	4.35	6.38	500	8-QFN/SON	~	集成型充电FET	0.40
bq24352	30	7.1	固定1.2A	4.35	5.5	500	8-QFN/SON	~	集成型充电FET	0.40

^{*}建议转售价格以美元计算,以每千台为单位销售。

电池(锂离子电池)保护

设备	串联电 池数量	过电压范围(V)	保护特征	描述	封装	汽车级	价格*
bq297xy	1	3.85 至 4.60 (50 mV阶)	V, I, T	锂离子/锂聚合物电池高级单芯电池保护器IC系列	6引脚SON		0.21
bq29200	2	4.35	V	具有电池均衡功能的过压安全器	8引脚SON		0.30
bq29209	2	4.3	V	具有电池均衡功能的过压安全器	8引脚SON		0.30
bq29209-Q1	2	4.3	V	具有用于紧急呼叫的电池均衡功能的过压安全器	8引脚SON	~	0.35
bq2945xy	2或3	3.850 至 4.60	V	适用于化学熔丝启动的过压安全性	6引脚SON		0.25
bq2947xy	2至4	3.850 至 4.60	V	适用于化学熔丝启动的过压安全性	8引脚SON		0.28
bq2961xy	2至4	3.850 至 4.60 (50 mV阶)	V	适用于化学熔丝启动的带LD0的过压安全器	8引脚SON		0.30
bq2946xy	1	3.850 至 4.60	V	适用于化学熔丝启动的过压安全性	6引脚SON		0.16
bq7716xy	2至4	3.85 至 4.65	V	具有外部延迟电容器的过压保护器	8引脚QFN		0.51
bq7718xy	2至5	3.85 至 4.65	V	具有内部延时定时器的过压保护器	8引脚QFN		0.69

^{*}建议转售价格以美元计算,以每千台为单位销售。

认证和鉴定

设备	接口	引脚	安全性	温度(℃)	封装	价格*
bq2022A	SDQ™	3	ID编号	-40 至 85	3 S0T-23, 3 T0-92	0.90
bq2024	SDQ	3	ID编号	-40 至 85	3 SOT-23	0.95
bq2026	SDQ	3	CRC	-20 至 70	3 S0T-23, 3 T0-92	0.90
bq2028	HDQ	12	ID编号	-40 至 85	12 DSBGA	1.10
bq26100	SDQ	6	SHA-1认证	-40 至 85	6 VSON	0.95

批量为 1,000 片时的建议转售单价。

无线电源解决方案

设备	标准	充电电流 (A)	输出电压(V)	拓扑结构	V _{IN} 绝对 最大值 (V)	控制接口	集成FET	温度监视器	QFN/ MLP	芯片级	EVM	注释	价格*
无线电源接	收器												
bq51003	WPC1.1	0.5	5	线性	20	独立式	~	~	~	3x2x0.5	~	面向可穿戴应用的2.5-W WPC1.1接收器解决方案	1.30
bq51013B	WPC1.1	1	5	线性	20	独立式	~	~	~	3x2x0.5	~	~4-W WPC1.1接收器解决方案	1.50
bq51050B/51B	WPC1.1	1	4.2/4.35	电池充 电器	20	独立式	~	•	~	3x2x0.5	•	~4-W直充式电池充电器, WPC1.1接收器解决方案	1.90
bq51010B	WPC1.1	1	7	线性	20	独立式	•	~	~	3x2x0.5	~	~4-W WPC1.1接收器解决方案,具有7V输出以降低功率损失	1.70
bq51020	WPC1.1	1.5	可调 (4-8)	线性	20	I ² C	~	~	_	3.6x2.9x0.5	~	高效率, > 5-W WPC1.1接收机解决方案, 具有可调输出电压	2.50
bq51021	WPC1.1	1.5	可调 (4-8)	线性	20	I ² C	•	~	_	3.6x2.9x0.5	~	高效率, > 5-W WPC1.1接收器解决方案, 具有可调输 出电压和I2C控制功能	2.60
bq51221	WPC1.1 / PMA	1.5	可调 (4-8)	线性	20	I ² C	~	~	_	3.6x2.9x0.5	~	双模式,高效率,>5-W WPC1.1和PMA接收器解决方案	3.00
bq51025	WPC1.1	2	可调 (4-10)	线性	20	I ² C	•	~	_	3.6x2.9x0.6	,	10-W WPC1.1接收器。与所有WPC1.1发射器兼容,但 支持10W bq500215	4.00

设备 无线电源发	标准 対器	发射器类型	支持的线 圈数目	V _{IN} (V)	功率 (W)	动态功 率限制 功能	注释	汽车级	价格*
bq50002/511	WPC1.1/1.2	A11	1	5	5	V	具有缩减的BOM、更高效率和更低待机功耗的最新WPC1.2、 5-V 2芯片发射器解决方案		1.89/2.99
bq500212A	WPC1.1	A5/A11	1	5	5	~	WPC1.1、 5-V FOD发射器		2.00
bq500412A	WPC1.1	A6/A19	1,2,3	12	5	~	具有FOD的WPC1.1、A6发射器		2.10
bq500414Q	WPC1.1	A6/A19/A21	1,2,3	12	5		面向汽车应用并符合Q100标准的A6发射器	~	3.92
bq500215	WPC1.1	A29	1	12	10		10-W WPC1.1发射器,将与bq51025配合使用。5W用于其它发射器		4.00

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

Texas Instruments **电源管理指南 2016** 35

功率MOSFET

概述

NexFET™ 技术是 TI 在电源管理方面的 首要创新成果,其将直角通电法 (vertical current flow) 与横向功率 MOSFET 完美结合在一起。该技术具有符合业界标准要求的封装外形尺寸,不仅能提供低导通电阻,而且极低的栅极电荷。对于现有的硅芯片平台而言,这种组合在以前是不可能实现的。

无论对于N通道还是P通道的功率 MOSFET器件,NexFET技术均可提供 较高的性能。因此,设计人员能使器件 从轻负载到满负载条件下都实现90%的 电源效率、高输出电流和低占空比,这 在分立式设计中代表了一项重大突破。

	NexFET™ 技术	行业 标准
控制	$R_{DS(on)} = 5.8 \text{ m}\Omega$	$R_{DS(on)} = 6.6 \text{ m}\Omega$
FET	$Q_G = 6.5 \text{ nC}$	Q _G = 12.3 nC
同步	$R_{DS(on)} = 2.5 \text{ m}\Omega$	$R_{DS(on)} = 2.3 \text{ m}\Omega$
FET	Q _G = 13.2 nC	$Q_G = 39.8 \text{ nC}$

从轻负载到满负载条件下可实现90%的效率

功率损耗不变,能使频率倍增

电源系统设计中的TI电子器件系统方框图

N 通道 MOSFET 晶体管

		典型	最	大 R _{DS(on)} (n	1Ω)	ln .	lo. 硅限制	I _{DM} (最大).	典型	典型	典型	
V _{DS} (V)	V _{GS} (V)	V _{GS(th)}	@ 10 V	@ 4.5 V	@ 2.5 V	封装限制	@ $T_C = 25^{\circ}C$	脉冲漏极电流	Q_{G}	Q _{GS} (nC)	Q _{GD} (nC)	价格
12	8	0.8	_	34	39	1.6	_	20.2	2.3	0.5	0.3	0.20
												0.21
	10	1.0		17.1	20.0	1.0		20	0.0	0.1	2.1	0.21
12	0	0.95	<u> </u>	20	22	2.5		21	2.0	1	0.4	0.25
							_					0.24
12	10	1.0		10.2	10.0	0.0		44	0.0	1.1	3.0	0.24
O.E.	10			40	E1	4.5		4.5	2.1	0.05	0.22	0.40
25	10	I	_	42	51	4.5	_	4.5	3.1	0.85	0.33	0.43
										1		
			_				_					0.06
	_		_				_					0.10
			_				_					0.10
			_				_					0.06
30	12	0.85	_	128	160	3.0	_	18	0.92	0.28	0.075	0.10
12	10	0.95	_	11.9	23	8	_	52	8.4	2.2	1.9	0.19
20	10	0.9	_	24	36	7	_	37	6.0	1.2	1.4	0.17
30	20	1.8	_	11	_	14	_	72	31	5	6	0.32
60	20	2	15	_	_	15	16	108	14	4.6	2.3	0.25
				_								0.19
00	20		20			10	11.7	40	7.2	L .1		0.10
10	0	0.0		0.2	11.6	22		76	E 1	0.00	0.76	0.16
							_					0.15
												0.14
												0.15
	-											0.18
												0.14
JU	20	1.0	44	23				33	4.4	0.3	0.0	0.14
20	10	0.9	_	27	30	5	_	26	42	11	1	0.25
												0.19
30	20	0.9	32.4	42		J		20	۷.۷	1.0	0.0	0.18
05	40	4.4				00		440	0.0	10	4.4	0.00
25 25	10	1.1	_	5.5	_	60	_	112	6.2	1.8	1.1	0.39
15	-	1.2	_	4.8 5.5	_	60		112	6.2	1.8	1.1	0.39
	40	0.05		h h	_	60	_	115	6.5	2.1	1.2	0.39
25	10	0.85	_			00		444	F 0	0.5	4.5	0.0
25 25	16	1.7	5.3	7.4	_	60	_	114	5.8	2.5	1.5	
25 25 25	16 16	1.7 2	5.3 8.2	7.4 12.4	_	60	_	90	4	2.1	1	0.33
25 25 25 25	16 16 16	1.7 2 2	5.3 8.2 10	7.4 12.4 15	_ _ _	60 56	_	90 138	4 2.9	2.1 1.5	1 0.7	0.39 0.30 0.30
25 25 25	16 16	1.7 2	5.3 8.2	7.4 12.4	_	60	_	90	4	2.1	1	0.33
	V _{DS} (V) 12 12 12 12 12 12 12 30 30 30 12 20 30 30 20 30	(V) (V) 12	V _{DS} (V) V _{GS} (V) 典型 V _{GS(th)} (V) 12 8 0.8 12 10 1.0 12 8 0.85 12 10 1.0 25 10 1 12 8 1 30 12 0.85 30 12 0.85 30 12 0.85 12 10 0.95 20 10 0.9 30 20 1.8 60 20 2 60 20 2 60 20 2 60 20 2 12 8 0.8 20 2 12 1.45 25 10 1.1 30 10 1.3 30 10 1.3 30 10 1.3 30 20 0.9	V _{OS}	映型 最大 R _{DS(on)} (n)	株型 株型 株型 株式 R _{DS(on)} (mΩ) Y _{DS} Y _{DS(th)} (V)	映画 映画 映画 映画 映画 映画 映画 映画	株型 様式 株式 株式 株式 株式 株式 株式 株式	換型	Page Rath Rosen (mC) Io Rath Rosen (mC) Io Rath Rosen Rath Rose	検型	Yes Ye

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

N通道MOSFET晶体管(续)

			典型	最:	大 R _{DS(on)} (m	1Ω)	l.	I _D , 硅限制	I _{DM} (最大),	典型	典型	典型	
设备	V _{DS} (V)	V _{GS} (V)	V _{GS(th)} (V)	@ 10 V	@ 4.5 V	@ 2.5 V	」 I _{D,} 封装限制 (A)	@ T _C = 25°C (A)	・IDM(取入), 脉冲漏极电流 (A)	Q _G (nC)	Q _{GS} (nC)	Q _{GD} (nC)	价格*
CSD17551Q3A	30	20	1.6	9	11.8		48	48	71	6	2.3	1.5	0.17
SON3×3(续)	30	20	1.0	3	11.0		40	40	71	U	2.0	1.0	0.17
单(续)													
CSD17552Q3A	30	20	1.5	6	8.1	_	60	74	84	9	3.6	2.3	0.20
CSD17577Q3A	30	20	1.4	4.8	6.4	_	35	83	239	13	4.1	2.8	0.25
CSD17578Q3A	30	20	1.5	7.3	9.4	_	20	54	142	7.9	3.3	1.7	0.22
CSD17579Q3A	30	20	1.5	10.2	14.2	_	20	39	106	5.3	2.2	1.2	0.20
CSD19537Q3	100	20	3	14.5	_	_	50	53	219	16	5.5	2.9	0.58
双路共源							- 00		2.0		0.0	2.0	0.00
CSD85312Q3E	20	10	1.1	_	14	_	39	_	76	11.7	3.5	1.6	0.46
CSD87312Q3E	30	10	1	_	38	_	39	_	45	6.3	1.9	0.7	0.35
DualCool™ SON	3x3												
单													
CSD1632303C	25	10	1.1	_	5.5	_	60	_	112	6.2	1.8	1.1	0.43
SON 5x6	20	10	1.1		0.0		00		112	0.2	1.0		0.40
単													
CSD1632105	25	10	1.1	_	2.6	_	100	_	200	14	4	2.5	0.65
CSD16322Q5	25	10	1.1	_	5.8	_	100	<u> </u>	136	6.8	2.4	1.3	0.65
CSD16325Q5	25	10	1.1	_	2.2	_	100	<u> </u>	200	18	6.6	3.5	0.41
CSD1634205A	25	10	1.1 —	_	5.5	_	100	<u> </u>	131	6.5	2.1	1.2	0.93
CSD16401Q5	25	16	1.5	1.6	2.3	_	100	_	240	21	8.3	5.2	0.42
CSD1640305A	25	16	1.6	2.8	3.7	_	100	<u> </u>	184	13.3	5.5	3.5	0.60
CSD16404Q5A	25	16	1.8	5.1	7.2	_	81	<u> </u>	135	6.5	3.5	1.7	0.39
CSD1640705	25	16	1.6	2.4	3.3	_	100		200	13.3	5.3	3.5	0.65
CSD16408Q5	25	16	1.8	4.5	6.8	_	100	<u> </u>	141	6.7	3.1	1.9	0.65
CSD16410Q5A	25	16	1.9	8.5	12	_	59	<u> </u>	158	3.9	1.8	1.1	0.43
CSD16412Q5A	25	16	2	11	16	_	52	_	91	2.9	1.4	0.7	0.32
CSD16413Q5A	25	16	1.6	3.9	5.6		100	_	156	9	3.5	2.5	0.30
CSD16414Q5	25	16	1.6	1.9	2.6	_	100		213	16.6	7.3	4.4	0.75
CSD16415Q5	25	16	1.5	1.15	1.8	_	100	<u> </u>	200	21	8.3	5.2	1.05
CSD16556Q5B	25	20	1.4	1.13	1.5	_	100	263	400	37	12	13	1.00
CSD16570Q5B	25	20	1.5	0.59	0.82		100	456	400	95	29	31	1.08
CSD17301Q5A	30	10	1.1	— —	3	_	100	-	181	19	5.7	4.3	0.60
CSD17301Q5A	30	10	1.1	_	9	_	87	<u> </u>	104	5.4	1.7	1.2	0.32
CSD17303Q5	30	10	1.1	_	2.6	_	100	<u></u>	200	18	5.6	4	0.65
CSD17305Q5	30	10	1.1	_	2.8	_	100		200	14.1	4.5	3	0.03
CSD17306Q5A	30	10	1.1	_	4.2	_	100	<u> </u>	181	11.8	3.5	2.4	0.49
CSD17307Q5A	30	10	1.3	_	12.1	_	73	_	92	4	1.3	1	0.30
CSD17307Q5A	30	10	1.3	_	5.9	_	100	<u> </u>	134	8.9	2.7	2.1	0.39
CSD17311Q5	30	10	1.2	_	2.3	_	100	<u> </u>	200	24	6.3	5.2	0.39
CSD17311Q5	30	10	1.1	_	1.7	_	100	<u> </u>	200	28	8.4	6	0.75
CSD17312Q5 CSD17322Q5A	30	10	1.6	_	12.4	_	87	<u> </u>	104	3.6	1.6	1.1	0.93
CSD17327Q5A	30	10	1.6	_	15.5	_	65	<u> </u>	85	2.8	1.0	0.8	0.32
CSD17527Q5A CSD17501Q5A	30	20	1.0	2.9	3.7	_	100	<u> </u>	187	13.2	5.4	3.5	0.60
CSD17501Q5A	30	20	1.3	3.5	4.6	_	100	<u> </u>	153	10.2	3.5	2.7	0.60
CSD17506Q5A	30	20	1.3	3.5 4	5.3	_	100	<u> </u>	150	8.3	3.5	2.7	0.49
CSD17506Q5A	30	20	1.6	10.8	16.1	_	65	_	85	2.8	1.3	0.7	0.44
CSD17507Q5A	30	20	1.5	5.2	7.3		55	_	129	6.4	2.7	1.9	0.30
CSD17510Q5A						_							
·	30	20	1.6	8.1	12.4	_	87	-	104	3.6	1.6	1.1	0.32
CSD17527Q5A	30	20	1.6	10.8	15.5	_	65	_	85	2.8	1.2	0.8	0.30
CSD17551Q5A CSD17552Q5A	30	20	1.7	8.8	11	_	48		85	6	2.8	1.4	0.28
	30	20	1.5	6.2	7.5	_	60	88	106	9	3.6	2	0.33
CSD17553Q5A	30	20	1.5	2.7	3.5		100	_	151	17.5	5.8	4.7	0.48

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

N 通道 MOSFET 晶体管(续)

			典型	最	大 R _{DS(on)} (n	1Ω)	I _{D.}	I _D , 硅限制	I _{DM} (最大),	典型	典型	典型	
设备	V _{DS} (V)	V _{GS} (V)	V _{GS(th)} (V)	@ 10 V	@ 4.5 V	@ 2.5 V	封装限制 (A)	@ T _C = 25°C (A)	脉冲漏极电流 (A)	Q _G (nC)	Q _{GS} (nC)	Q _{GD} (nC)	价格*
CSD17555Q5A	30	20	1.5	2.7	3.4	_	100	116	153	23	7.5	5	0.58
CSD17556Q5B	30	20	1.4	1.4	1.8	_	100	215	400	28.5	10.7	6.9	1.03
CSD17559Q5	30	20	1.4	1.15	1.5	_	40	_	400	39	14.4	9.3	1.12
SON 5x6(续)													
单(续)													
CSD17570Q5B	30	20	1.5	0.69	0.92	_	100	407	400	93	27	34	1.08
CSD17573Q5B	30	20	1.4	1	1.45	_	100	332	400	49	17.1	11.9	0.67
CSD17576Q5B	30	20	1.4	2	2.9	_	100	184	400	25	8.9	5.4	0.49
CSD17577Q5A	30	20	1.4	4.2	5.8	_	60	83	280	13	5.1	2.8	0.27
CSD18501Q5A	40	20	1.8	3.2	4.3	_	100	161	400	42	8.1	5.9	0.80
CSD18502Q5B	40	20	1.8	2.3	3.3	_	100	211	400	52	10.3	8.4	1.01
CSD18503Q5A	40	20	1.8	4.3	6.2	_	100	120	400	27	4.5	4.3	0.65
CSD18504Q5A	40	20	1.9	6.6	9.8	_	50	75	275	16	3.2	2.4	0.50
CSD18509Q5B	40	20	1.8	1.2	1.7	_	100	299	400	150	29	17	1.09
CSD18531Q5A	60	20	1.8	4.6	5.8	_	100	134	370	36	6.9	5.9	0.80
CSD18532NQ5B	60	20	2.8	3.4	_	_	100	163	400	49	16	7.9	1.01
CSD18532Q5B	60	20	1.8	3.2	4.3	_	100	172	400	44	10	6.9	1.01
CSD18533Q5A	60	20	1.9	5.9	8.5	_	100	103	267	29	6.6	5.4	0.63
CSD18534Q5A	60	20	1.9	9.8	12.4	_	50	69	229	17	3.2	3.5	0.50
CSD18537NQ5A	60	20	3	13	_	_	50	54	154	14	4.7	2.3	0.41
CSD18540Q5B	60	20	1.9	2.2	3.3	_	100	221	400	41	8.8	6.7	1.09
CSD18563Q5A	60	20	2	10.8	6.8	_	100	93	251	15	3.3	2.9	0.60
CSD19502Q5B	80	20	2.7	4.1	_	_	100	157	400	48	14	8.6	1.02
CSD19531Q5A CSD19532Q5B	100	20	2.7 2.6	6.4 4.9	_	_	100	110 140	337	37 48	10.5	6.6 8.7	0.90
CSD19532Q5B	100	20	2.8	9.4	_		100	75	400	27	13 7.9	4.9	1.22 0.76
CSD19533Q5A CSD19534Q5A	100	20	2.8	9.4 14.1	_	_	50	44	231 137	17	5.1	3.2	0.76
C3D19334Q3A DualCool™ SON		20	2.0	14.1	_	_	30	44	137	17	3.1	3.2	0.00
<u>单</u>	JAU												
CSD16321Q5C	25	10	1.1	_	2.6	_	100	69	81	14	4	2.5	0.75
CSD16322Q5C	25	10	1.1	_	5.8	_	97	54	91	6.8	2.4	1.3	0.45
CSD16325Q5C	25	10	1.1	_	2.2	_	100	62	72	18	6.6	3.5	1.05
CSD16407Q5C	25	16	1.6	2.4	3.3	_	100	91	96	13.3	5.3	3.5	0.75
CSD16408Q5C	25	16	1.8	4.5	6.8	_	113	_	_	6.7	3.1	1.9	0.49
T0-220													
单													
CSD18502KCS	40	20	1.8	2.9	4.3	_	100	212	400	52	10.3	8.4	0.97
CSD18503KCS	40	20	1.9	4.5	6.8	_	100	141	357	30	7.7	4.6	0.71
CSD18504KCS	40	20	1.9	7	10	_	100	89	238	19	4.4	3.5	0.58
CSD18532KCS	60	20	1.8	4.2	5.3	_	100	169	400	44	10	6.9	0.97
CSD18533KCS	60	20	1.9	6.3	9	_	100	118	293	28	9.4	3.9	0.71
CSD18534KCS	60	20	1.9	9.5	13.3	_	100	73	164	19	4.8	3.1	0.58
CSD18535KCS	60	20	1.9	2	2.9	_	200	279	400	63	15.7	10.4	1.42
CSD18536KCS	60	20	1.8	1.6	2.2	_	200	349	400	83	18	14	1.98
CSD18537NKCS	60	20	3	14	_	_	50	56	147	14	5.2	2.3	0.49
CSD19501KCS	80	29	2.7	6.6	_	_	100	129	305	38	12.4	5.8	1.02
CSD19503KCS	80	20	2.8	9.2	_	_	100	94	207	28	9.8	5.4	0.88
CSD19505KCS	80	20	2.6	3.1	_	_	150	208	400	76	25	11	1.55
CSD19506KCS	80	20	2.6	2.3	_	_	150	273	400	120	37	25	2.29
CSD19531KCS	100	20	2.7	7.7	_	_	100	110	285	37	11.9	7.5	1.02
CSD19533KCS	100	20	2.8	10.5	_	_	100	86	207	27	9	5.4	0.88
CSD19534KCS	100	20	2.8	16.5	_	_	100	54	138	17.1	5.1	3.2	0.72
CSD19535KCS	100	20	2.7	3.6	_	_	150	187	400	78	25	13	1.55
CSD19536KCS	100	20	2.5	2.7	_	_	150	259	400	118	37	17	2.29

*建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

N通道MOSFET晶体管(续)

			典型	最:	大 R _{DS(on)} (n	1Ω)	I _{D.}	I _D , 硅限制	I _{DM} (最大),	典型	典型	典型	
设备	V _{DS} (V)	V _{GS} (V)	V _{GS(th)} (V)	@ 10 V	@ 4.5 V	@ 2.5 V	封装限制 (A)	@ T _C = 25°C (A)	脉冲漏极电流 (A)	Q _G (nC)	Q _{GS} (nC)	Q _{GD} (nC)	价格*
D2PAK													
单													
CSD18542KTT	60	20	1.8	4	5.1	_	200	170	400	44	10	6.9	1.02
CSD18535KTT	60	20	1.9	2	2.9	_	200	279	400	63	15.7	10.4	1.42
CSD18536KTT	60	20	1.8	1.6	2.2	_	200	349	400	83	18	14	1.98
CSD19505KTT	80	20	2.6	3.1	_	_	150	208	400	76	25	11	1.55
CSD19506KTT	80	20	2.6	2.3	_	_	150	273	400	120	37	25	2.29
CSD19532KTT	100	20	2.6	5.6	_	_	200	136	400	44	17	5.6	1.21
CSD19535KTT	40	20	2.7	3.4	_	_	200	197	400	75	25	11	1.71
CSD19536KTT	40	20	2.5	2.9	_	_	200	272	400	118	37	17	2.36

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

P 通道 MOSFET 晶体管

			典型	最	大 R _{DS(on)} (m	Ω)	I _{D.}	I _{DM} (最大),	典型	典型	典型	
设备	V _{DS} (V)	V _{GS} (V)	V _{GS(th)} (V)	@ 4.5 V	@ 2.5 V	@ 1.8 V	封装限制 (A)	脉冲漏极电流 (A)	Q _G (nC)	Q _{GS} (nC)	Q _{GD} (nC)	价格*
LGA 1x0.6									,			
单												
CSD23381F4	-12	-8	-0.95	175	300	970	-2.3	-9	1.14	0.3	0.19	0.06
CSD23382F4	-12	-8	-0.8	76	105	199	-3.5	-22	1.05	0.5	0.15	0.10
CSD25481F4	-20	-12	-0.95	105	174	800	-2.5	-10	0.913	0.24	0.153	0.10
CSD25483F4	-20	-12	-0.95	245	390	1070	-1.6	-6.5	0.959	0.252	0.16	0.06
CSD25484F4	-20	-12	-0.95	109	180	825	-2.5	-22	1.09	0.35	0.15	0.10
WLP 1x1												
单												
CSD25213W10	-20	-6	-0.85	47	67	_	-1.6	-16	2.2	0.74	0.14	0.22
CSD23202W10	-12	-6	-0.6	53	66	92	-2.2	-25	2.9	0.55	0.28	0.20
WLP 1x1.5												
单												
CSD23203W	-8	-6	-0.8	19.4	26.5	53	-3.0	-54	4.9	1.3	0.6	0.19
CSD25211W1015	-20	-6	-0.8	33	44	_	-3.2	-9.5	3.4	1.1	0.2	0.25
CSD25304W1015	-20	-8	-0.8	32.5	45.5	92	-3.0	-41	3.3	0.7	0.5	0.25
双路共源												
CSD75208W1015	-20	-6	-0.8	108	150	295	-1.6	-22	1.9	0.48	0.23	0.24
WLP 1.5x1.5												
单			,		,		,					
CSD25202W15	-20	-6	-0.75	26	32	52	-4	-38	5.8	1.1	0.8	0.28
CSD22202W15	-8	-6	-0.8	12.2	17.4	_	-10	-48	6.5	1.6	1	0.32
CSD22204W	-8	-6	-0.7	9.9	14.0	_	-5	-80	18.9	3.2	4.2	0.30
双路共源					1							
CSD75207W15	-20	-6	-0.8	27	39	81	-3.9	-24	2.9	0.7	0.4	0.35
SON 2x2												
单												
CSD25310Q2	-20	-8	-0.8	23.9	32.5	89	-20	48	3.6	1.1	0.5	0.18
SON 3x3												
单												
CSD25402Q3A	-20	-12	-0.9	8.9	15.9	300	-35	-82	7.5	2.4	1.1	0.31
CSD22204W	-20	-12	-0.9	6.5	12.1	150	-18	-240	10.8	2.8	2.2	0.38

^{*}建议转售价格以美元计算,以每千台为单位销售。

功率MOSFET

选择指南

CSD8xxx NexFET™ 电源模块和电源模块 II 系列 在新型封装中包含两个优化 MOSFET

电源块 PWM 驱动器 PET COUT 负荷 CSD9xxx NexFET 功率级在 TI PowerStack™ 封装中集成了增强型栅极驱动器和两个 MOSFET

功率 MOSFET 模块

设备	属性	集成驱动器	V _{DS} (V)	V _{GS} (V)	功率损耗 (W)	P _{loss} 电流 (A)	最大电流 (A)	价格*
LGA电源模块II								
CSD87381P	N通道	否	30	10	1.0	8	15	0.32
CSD87588N	N通道	否	30	20	2.1	15	25	0.48
CSD87384M	N通道	否	30	10	3.7	25	30	0.67
SON 3x3电源模	块和电源级							
CSD86330Q3D	N通道	否	25	10	1.9	15	20	0.65
CSD87330Q3D	N通道	否	30	10	2.0	15	20	0.65
CSD87331Q3D	N通道	否	30	10	1.3	10	15	0.53
CSD87333Q3D	N通道	否	30	10	1.5	8	15	0.51
CSD87334Q3D	N通道	否	30	10	1.6	12	20	0.65
CSD87335Q3D	N通道	否	30	10	1.5	15	25	0.75
CSD95379Q3M	N通道	是	20	_	1.8	12	20	0.75
SON 3.5x4.5电源	原级							
CSD95375Q4M	N通道	是	20	_	2.2	15	25	0.87
CSD95377Q4M	N通道	是	20	_	1.6	15	35	0.94
CSD97394Q4M	N通道	是	30	_	2.2	12	20	0.82
CSD97395Q4M	N通道	是	30	_	2.3	15	25	0.94
CSD97396Q4M	N通道	是	30	_	2.0	15	25	1.01
SON 5x6电源模	块和电源级							
CSD86350Q5D	N通道	否	25	10	2.8	25	40	1.04
CSD86360Q5D	N通道	否	25	10	2.6	25	50	1.18
CSD87350Q5D	N通道	否	30	10	3.0	25	40	1.04
CSD87351Q5D	N通道	否	30	10	2.5	20	32	0.87
CSD87351ZQ5D	N通道	否	30	10	2.5	20	32	0.87
CSD87352Q5D	N通道	否	30	10	1.8	15	25	0.72
CSD87353Q5D	N通道	否	30	10	3.3	25	40	1.18
CSD87355Q5D	N通道	否	30	10	2.6	25	45	1.04
CSD95372AQ5M	N通道	是	25	_	3.3	30	60	1.85
CSD95372BQ5M	N通道	是	20	_	2.8	30	60	2.19
CSD95372BQ5MC	N通道	是	20	-	2.8	30	60	2.41
CSD95373AQ5M	N通道	是	20	_	2.6	25	45	1.39
CSD95373BQ5M	N通道	是	20	-	2.6	25	45	1.85
CSD95378BQ5M	N通道	是	20	_	2.8	30	60	2.19
CSD95378BQ5MC	N通道	是	20	_	2.8	30	60	2.41
CSD95472Q5MC	N通道	是	20	_	2.3	30	60	2.22
CSD96370Q5M	N通道	是	25	-	2.6	25	40	1.57
CSD96371Q5M	N通道	是	25	_	2.4	25	50	1.57
CSD97370AQ5M	N通道	是	30	_	2.8	25	40	1.57
CSD97370Q5M	N通道	是	30	_	2.8	25	40	1.69

^{*}建议转售价格以美元计算,以每千台为单位销售。

Texas Instruments 电源管理指南 2016 41

氮化镓(GaN)解决方案

功率级和驱动器

概述

有望显著提高电能转换效率的一项重要创新是氮化镓(GAN)的使用。GaN已经是一种应用成熟的半导体材料,广泛应用于LED照明,并在无线应用中发挥日益重要的地位。现在,随着工艺提高、缺陷率改善,GaN在电子电源中具有许多优点。

基于 GaN 的开关功率晶体管使得新型电源应用可在高电压下操作,它具有比传统硅(Si)晶体管更高的性能。GaN 装置采用 GaN-on-Si 工艺,非常适合现有的硅制造流程。由于针对相同电流能力的 GaN 器件尺寸要小得多,GaN 晶体管最终应与硅晶体管具有相同的成本效益。

GaN 为电源设计提供新的可能

在电源开关方面,GaN 比硅更具优势,因 为它在更高电压条件下的损耗更低。它开 关使用的能量更少。

GaN 能够让电源设计人员在更高的开关频率下操作,同时维持所期望的大范围输入和输出电压效率,以减少它们所需解决方案的物理尺寸。GaN 最有价值的应用往往是那些功率解决方案尽可能小型化的应用。

GaN 晶体管的高频处理能力要求开关驱动信号具备更高计时精度,而这些开关对于封装、互连和外部源的寄生阻抗高度敏感。 集成型硅基 GaN 驱动器可快速打开/关 闭 GaN 开关,推动着采用 GaN 的 SMPS 设计不断向前发展。例如,TI 的 LM5113 栅极驱动器用来控制处于中等电压电平的高端和低端增强模式 GaN 电源开关。现在,TI 提供可将栅极驱动器与氮化镓开关整合在一起的 LMG5200 半桥电源模块。LMG5200 不仅减小了电路板空间,而且有助于简化设计,并为氮化镓转换器的高效精准操作提供重要保护。

GaN 驱动器

TI 为 GaN 应用提供一系列优化的驱动器。例如,LM5113 可在同步降压或半桥式配置中驱动高侧和低侧增强型 GaN FET。浮动高侧驱动器能够驱动高达 80 V 的高侧GaN FET。内部保护钳位可防止栅极电压超过器件的栅极 - 源极最大电压额定值。

了解更多信息:

www.ti.com/lit/SSZY017

600-V GaN 功率级

LMG3410

12-A LMG3410 将 600-V、70m Ω 的 GaN FET 与智能驱动器相结合,可提供高功率密度和易于设计的集成解决方案。LMG3410 功率级, 连同 TI 的模数电源转换控制器使得设计人员能够创建与硅基解决方案相比更小、更高效、性能更高的设计。这些优点在隔离式高电压工业、电信、企业计算和可再生能源应用中尤为重要。

了解更多信息: www.ti.com.cn/product/cn/LMG3410

氮化镓(GaN)解决方案

GaN FET 功率级和驱动器

80-V 的 GaN 半桥功率级

LMG5200

LMG5200 为 80-V GaN 功率级,其将一个优化驱动器和两个 18-m Ω 的 GaN FET 集成在一个半桥式配置中。GaN 半桥支持在易于使用的 9 引脚 QFN 封装中进行硬开关和谐振开关应用。LMG5200 可简化电路板设计,同时尽量减少栅极和电源回路电感。LMG5200 与TPS53632G PWM 控制器相结合,可用来设计负载点解决方案,如企业服务器用 48--1-V、单级变换器和效率超过 92% 的电信应用。其它主要优点包括针对 VID 控制的快速瞬态响应和 I^2C 。

40-A, 92%, 48-1-V负载点转换器。

了解更多信息: www.ti.com.cn/product/cn/LMG5200

GaN 功率级解决方案

设备	描述	配置	V _{DS} (最大) (V)	I _D (最大) (A)	R _{DS(on)} (mW)	C _{OSS} (pF)	V _{CC} (V)	逻辑电平	传播 延迟 (ns)	传播延 迟匹配 (NS)	预估封装尺寸 (W x L) (mm)
LMG5200	80-V、10-A、GaN半桥功率级	半桥功率级	80	10	14	225	5	3-至5V CMOS和TTL	29	2	9-QFM, 6 x 8 = 48 mm ²
LMG3410	600-V、12-A、单通道、 GaN 功率级	单通道功率级	600	12	70	71	12	3-至5V CMOS和TTL	20	_	32-QFN, 8 x 8 = 64 mm ²

GaN 驱动器解决方案

设备	电压范围(V)	峰值供应/ 汲取电流(A)	配置1	传播延迟 (NS)	封装
LM5113	-5 至 80 ²	1.2/5	半桥	28	WSON-10
LM5114	4至12.6	1.3/7.6	单 - 低侧	5	S0T23-6
UCC27511	4.5 至 18	4/8	单 - 低侧	13	S0T23-6
UCC27611	4至18	4/6	单 - 低侧	14	SON-6
UCC27524A	4.5 至 18	5/5	双 - 低侧	13	S0IC-8

1分立输出。

Texas Instruments 电源管理指南 2016 | 43

²高侧輸出钳位至 5.2 V。

概述

TI 的 100 多款栅极驱动器产品组合在满足众多规范要求的同时,提供业界最快的开关电源。其优点包括强大的设计以及高开关频率下快速的通/断时间,从而降低功耗,并实现更好的系统性能。TI 栅极驱动器系列包括低侧驱动器、半桥驱动器和隔离式驱动器。

低侧栅极驱动器

产品亮点

UCC2751x 和 UCC2752xA

- A版本
- 在部分单通道驱动器上可提供非对 称的驱动器和分离的输出选项
- 具有同类最佳的传播延迟特性且与 MOSFET 电源开关的 VDD 兼容性 更高
- UCC27528 具有 CMOS 输入阈值

UCC27531, UCC27531-Q1

- 可采用 D 和 DBV 封装
- FET 和 IGBT 单栅极驱动器
- 2.5 和 5A、35-V 最大 VDD

UCC27201A, UCC27201A-Q1

• -18-V 负电压处理

UCC27611

• 高速 5-V GaN FET 驱动器

半桥栅极驱动器

产品亮点

UCC2721xA, UCC2721xA-Q1

 流行版 UCC2720x 的新一代 4-A 器件具有 120V 的启动电压、-10 V 的输入电压能力以及更强的 ESD 防护功能

LM510xx 系列

驱动能力可随电源转换器的要求而调节

LM5113

• 业界仅有的 100-V 驱动器,可用于 增强模式 GaN FET

概述

隔离式栅极驱动器

产品亮点

UCC21520

- 4-A(供应电流)或 6-A(汲取电流) 的峰值驱动电流
- PWD: <5 ns
- ESD: > 2 kV
- 通道匹配: <5 ns
- 传播延迟短,可更好地响应/控制
- 支持数模控制器
- 可编程或禁用死区时间,包括启用功能
- 提高了抗扰度

特色产品

设备	描述	特性	优点	应用	汽车级
UCC21520	2 通道隔离式栅极驱动器	● 双驱动器 ● 5-kV RMS 输入到输出 ● 1.5-kV 通道至通道隔离器 ● 4-A 供应 / 6-A 汲取 ● CMTI> 50 V / ns ● 30 ns 传播延迟 ● 8-V UVL0	・插入式替换・高/更高的驱动可消除缓冲级・灵活的设置可防止半桥击穿・为快速/高电流设计提供高抗扰度	AC / DC 和隔离式 DC-DC 转换器 高频逆变器,电机驱动器 不间断电源,太阳能发电 硅和碳化硅 MOSFET 栅极应用	V
UCC27714	高速、4-A、600-V 高 侧低侧栅极驱动器	● 同类最佳的传播延迟特性 (典型值为 90 ns) ● 允许输出 ● 独立的逻辑 / 电源接地 ● 14 引脚 SOIC	● 启用比栅极驱动发射器更高的功率 密度● iso 栅极驱动器的替代方案● 最大蠕变 / 间隙● 与模数 PWM 控制器兼容	 开关模式电源 电池充电器 太阳能逆变器 UPS 电机驱动器 HEV / EV 充电器 	V
UCC27201A	120-V 启动、3-A 峰值、 高频率、高侧 / 低侧 驱动器	 带独立输入的双通道 内置限极负载二极管 高达 1 MHz 的操作 紧密的传播延迟与高侧和低侧驱动匹配 -18-V 负电压处理 	提高 MTBF 计算和设计余量减少外部元件的数量支持更高的功率密度设计更好的通量平衡	电源半桥和全桥应用隔离总线架构双开关和有源钳位转换器	V
UCC27531 UCC27531D	2.5-A、5-A、35-VMAX VDD FET 和 IGBT 单栅极 驱动器	• 最快的传播时间: (典型值为17-ns) • UVLO设置和轨到轨输出电压 • 负输入电压的处理 • 分流输出	内置电平转换反相和非反相配置匹配寄生装置,并改善布局降低总体成本	 太阳能逆变器 电机控制 UPS HEV / EV 充电器 开关模式电源 智能电源模块 	V
LM5113	增强模式 GaN FET 用 5-A、100-V 半桥栅极 驱动器	 内部自举电源电压钳位 0.6Ω/2.1+B40-Ω 下拉 / 上拉电阻 独立的供应 / 汲取电流输出 高电流下拉 	 可在 DC-DC 模块中用作一次侧栅极驱动器 支持 GaN FET 改进的性能 优化导通和关断时间 提高效率,减少噪音 	● 高功率密度隔离式电源模块● 高电压,高效降压● D 类音频功放● 分布式电源系统	

Texas Instruments 电源管理指南 2016 | 45

选择指南

低侧栅极驱动器

设备	通道数量	电源开关	峰值 I _{OUT} 供应/ 汲取 (A)	V _{CC} 范围 (V)	上升/ 下降 时间 (ns)	传播 延迟 (ns)	输入阈值	通道输入逻辑	特殊功能	汽车级	价格
UCC27524A	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	9/7	14	TTL	双通道、非反相	启用引脚	~	0.75
UCC27525A	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	9/7	14	TTL	反相、非反相	启用引脚		0.75
UCC27526A	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	9/7	14	TTL	灵活			0.75
UCC27528	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	7/6	13	CMOS	双通道、非反相	具有负输入电压处理功能	1	0.7
UCC27523	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	9/7	14	TTL	双通道、反相	启用引脚		0.7
UCC27511	1	MOSFET, IGBT, Ganfet	4/8	4.5 至 18	9/9	14	双输入TTL	反相、非反相	分流输出	~	0.4
UCC27512	1	MOSFET, IGBT, Ganfet	4/8	4.5 至 18	9/7	14	双输入TTL	反相、非反相	分流输出		0.4
UCC27516	1	MOSFET, IGBT, Ganfet	4/4	4.5 至 18	9/7	14	TTL	反相、非反相			0.4
UCC27517A	1	MOSFET, IGBT, GaNFET	4/4	4.5 至 18	9/7	14	TTL	反相、非反相		~	0.4
UCC27518	1	MOSFET, IGBT, GaNFET	4/4	4.5 至 18	9/7	14	CMOS	反相	启用引脚	V	0.4
UCC27519	1	MOSFET, IGBT, GaNFET	4/4	4.5 至 18	9/7	14	CMOS	非反相	启用引脚	V	0.4
UCC27531	1	MOSFET, IGBT, SICFET	-2.5/5	10 至 32	15/7	17	TTL	非反相、单通道	分流输出	V	0.7
JCC27532	1	MOSFET, IGBT, SICFET	-2.5/5	10 至 32	15/7	17	CMOS	单通道、非反相	分流输出	V	0.7
UCC27533	1	MOSFET, IGBT, SICFET	-2.5/5	10 至 32	15/8	15	TTL	双通道、反相、非反相			0.7
UCC27536	1	MOSFET, IGBT, SICFET	-2.5/5	10 至 32	15/8	15	TTL	单,反相			0.7
UCC27537	1	MOSFET, IGBT, SICFET	-2.5/5	10至32	15/8	15	TTL	单通道、非反相			0.7
JCC27538	2	MOSFET, IGBT, SICFET	-2.5/5	10 至 32	15/8	15	TTL	双通道、非反相	分流输出		0.7
UCC27611	1	MOSFET, IGBT, GaNFET	-4/8	4至18	5/5	14	TTL	反相、非反相	分流输出		0.8
UCC37321	1	MOSFET, IGBT, GaNFET	9/9	4至15	20/20	30	TTL / CMOS	反相	启用引脚		0.9
UCC37322	1	MOSFET, IGBT, GaNFET	9/9	4至15	20/20	30	TTL / CMOS	非反相	启用引脚		0.9
LM5112	2	MOSFET	7/3	3.5 至 15	14/12	25	CMOS	反相、非反相	具有负输出电压能力	V	0.5
LM5111	2	MOSFET	5/3	3.5 至 15	14/12	25	TTL	反相、非反相、组合	UVLO通过OUT_A配置到驱 动PFET		0.6
LM5110	2	MOSFET	5/2	3.5 至 15	14/12	25	TTL	反相、非反相、组合	具有负输出电压能力		0.6
LM5114A/B	1	MOSFET, IGBT, GaNFET	1.3/7.6	4至12.6	8/3.2	12	TTL / CMOS	反相、非反相	可控上升和下降时间		0.6
LM5134	2	MOSFET, Ganfet	4.5 / 7.6 / 0.66 / 0.82	4 至 12.6	5.3/4.7	12	TTL / CMOS	反相、非反相	导频输出		0.6
UCD7100PWP	1	MOSFET	4/4	4.5 至 16	10/10	20	TTL / CMOS				0.9
UCD7201PWP	2	MOSFET	4/4	4.5 至 16	10/10	20	TTL / CMOS				1.2
TPS2812	2	MOSFET	2/2	4至40	25/25	40	CMOS	非反相	内部稳压器		0.9
TPS2814	2	MOSFET	2/2	4至14	25/25	40	CMOS	2输入与	每个通道2个输入栅极		0.9
TPS2828	1	MOSFET	2/2	4至14	25/25	40	CMOS	反相			0.6
TPS2829	1	MOSFET	2/2	4至14	25/25	40	CMOS	非反相			0.6
EMB1412	2	MOSFET	7/3	3.5 至 15	14/12	25	CMOS	反相、非反相	单电源		0.6
SM72482	2	MOSFET	5/3	3.5 至 15	14/12	25	TTL	反相、非反相、组合	PFET驱动能力		0.6
SM74101	1	MOSFET	7/3	3.5 至 15	14/12	25	CMOS	反相、非反相			0.5
TPS2811	2	MOSFET	2/2	4至14	14/15	25	CMOS	反相	内部稳压器		0.8
ΓPS2813	2	MOSFET	2/2	4至14	14/15	25	CMOS	反相、非反相	内部稳压器		1.0
ΓPS2815	2	MOSFET	2/2	4至14	14/15	25	CMOS	2输入与非	每个通道2个输入栅极		0.7
TPS2816	1	MOSFET	2/2	4至14	14/14	24	CMOS	反相、有源上拉	内部稳压器		0.7
PS2817	1	MOSFET	2/2	4至14	14/14	24	CMOS	非反相、有源上拉	内部稳压器		0.7
PS2818	1	MOSFET	2/2	4至14	14/14	24	CMOS	反相	内部稳压器		0.7
PS2819	1	MOSFET	2/2	4至14	14/14	24	CMOS	非反相	内部稳压器		0.7
JCC27321	1	MOSFET, IGBT, GaNFET	9/9	4至15	20/20	25	TTL / CMOS	反相	启用引脚	V	1.1
JCC27322	1	MOSFET, IGBT, GaNFET	9/9	4至15	20/20	25	TTL / CMOS	非反相	启用引脚	V	1.1
JCC27323	2	MOSFET, IGBT, GaNFET	4/4	4.5 至 15	20/15	25	TTL / CMOS		9 101		0.7
			., .		_0, 10		TTL / CMOS				0.7

选择指南

低侧栅极驱动器 (续)

设备	通道数量	电源开关	峰值 I _{OUT} 供应/ 汲取 (A)	V _{CC} 范围 (V)	上升/ 下降 时间 (ns)	传播 延迟 (ns)	输入阈值	通道输入逻辑	特殊功能	汽车级	价格*
UCC27325	2	MOSFET, IGBT, GaNFET	4/4	4.5 至 15	20/15	25	TTL / CMOS	反相、非反相			0.75
UCC27423	2	MOSFET, IGBT	4/4	4至15	20/15	25	TTL / CMOS	反相	启用引脚	V	0.75
UCC27424	2	MOSFET, IGBT	4/4	4至15	20/15	25	TTL / CMOS	非反相	启用引脚	V	0.75
UCC27425	2	MOSFET, IGBT	4/4	4至15	20/15	25	TTL / CMOS	反相、非反相	启用引脚	~	0.75
UCC27527	2	MOSFET, IGBT, Ganfet	5/5	4.5 至 18	7/6	17	CMOS	双通道、灵活、反相、 非反相	具有负输入电压处理功能		0.75

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

半桥栅极驱动器

	通道数量	,	总线电压	峰值I _{OUT} 供应/ 汲取	V _{CC} 范围	上升/ 下降 时间	传播延迟		44-4-1-1-1-1	汽车级	
设备		电源开关	(V)	(A)	(V)	(ns)	(ns)	输入阈值	特殊功能		价格*
TPS28225	2	MOSFET	至24	6/6	4.5 至 8	10/5	14	TTL	同步整流	~	0.59
TPS2838	2	MOSFET	至29	4/4	10 至 15	120	40	TTL	死区时间控制、同步整流		1.30
TPS2848	2	MOSFET	至29	4/4	10 至 15	120	20	TTL	死区时间控制、同步整流		1.25
TPS2849	2	MOSFET	至29	4/4	10 至 15	120	20	TTL	死区时间控制、同步整流		1.25
UCC27222	2	MOSFET	至12	3.3/3.3	3.7 至 20	20/20	82/103	TTL	死区时间控制、软开关、同步整流		1.70
UCC27223	2	MOSFET	至20	3.3/3.3	-0.3 至 20	25/35	82/103	TTL	死区时间控制、软开关、同步整流		1.70
TPS2830	2	MOSFET	至28	2.4/2.4	4.5 至 15	50/50	75	CMOS	死区时间控制、同步整流		1.05
TPS2831	2	MOSFET	至28	2.4/2.4	4.5 至 15	50/50	75	CMOS	死区时间控制、同步整流		1.05
TPS2832	2	MOSFET	至28	2.4/2.4	4.5 至 15	50/50	75	CMOS	死区时间控制、同步整流		1.00
TPS2833	2	MOSFET	至28	2.4/2.4	4.5 至 15	50/50	75	CMOS	死区时间控制、同步整流		1.00
TPS2834	2	MOSFET	至28	2.4/2.4	4.5 至 15	30/30	70	TTL	死区时间控制、同步整流		1.05
TPS2835	2	MOSFET	至28	2.4/2.4	4.5 至 15	30/30	70	TTL	死区时间控制、同步整流		1.05
TPS2836	2	MOSFET	至28	2.4/2.4	4.5 至 15	30/30	70	TTL	死区时间控制、同步整流		1.25
TPS2837	2	MOSFET	至28	2.4/2.4	4.5 至 15	30/30	70	TTL	死区时间控制、同步整流		1.25
TPS28225	2	MOSFET	至24	2/4	4.5 至 8	10/10	14	TTL / CMOS	同步整流	~	0.60
TPS28226	2	MOSFET	至24	2/4	6.8 至 8	10/10	14	TTL / CMOS	同步整流		0.60
LM25101A/B/C	2	MOSFET	至100	3/3	9至14	8/8	25	TTL			1.25
LM5100A/B/C	2	MOSFET	至100	3/3	9至14	8/8	25	CMOS			1.25
LM5101A/B/C	2	MOSFET	至100	3/3	9至14	8/8	25	TTL			1.25
LM5113	2	MOSFET	至100	FET	-0.3 至 7	1.2/5	30	TTL			1.49
SM72295	4	MOSFET	至100	3/3	8至14	8/8	22	TTL			1.90
UCC27200/A	2	MOSFET	至110	3/3	8至17	8/7	20	CMOS		1	1.30
UCC27201/A	2	MOSFET	至110	3/3	8至17	8/7	20	TTL		~	1.30
UCC27210	2	MOSFET, IGBT, Ganfet	至110	4/4	8至17	12/9	20	CMOS			1.50
UCC27211/A	2	MOSFET, IGBT, Ganfet	至110	4/4	8至17	12/9	20	TTL			1.50
SM74104	2	MOSFET	至110	1.8/1.8	9至14	15/15	25	TTL			1.10
UCC27714	2	MOSFET, IGBT	至600	4/4	10 至 18	15/15	90	TTL / CMOS			1.75

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

Texas Instruments 电源管理指南 2016 | 47

选择指南

隔离式栅极驱动器

设备	描述	UL 1577隔离电压 (单通道) (Vrms)	DIN V VDE V 0884-10 瞬态过电压额定值 (Vpk)	DIN V VDE V 0884-10 浪涌电压额定值 (Vpk)	DIN V VDE V 0884-10 工作电压 (Vpk)	通道数量(#)	电源开关	输出V _{CC} /V _{DD} (最大) (V)	输出V _{CC} /V _{DD} (最小) (V)	输入V _{CC} (最小) (V)	输入V _{CC} (最大) (V)	峰值输出电流 (A)	播延迟 (ns)	工作温度 范围 (°C)	封装组	预估封装尺寸 (WxL) (mm²)	汽车级	价格*
IS05451	具有高 CMTI 和米勒钳 位的增强隔离式 IGBT 栅 极驱动器	5700	8000	6000	1420	1	IGBT	30	15	3	5.5	5	110	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)		2.15
IS05452	具有高 CMTI、分流输 出与安全功能的隔离式 IGBT 栅极驱动器	5700	8000	6000	1420	1	IGBT	30	15	2.25	5.5	5	110	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)		2.25
IS05500	2.5 A 隔离式 IGBT / MOSFET 栅极驱动器	4243	6000	6000	680	1	IGBT	30	15	3	5.5	2.5	300	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)		3.00
IS05851	具有高 CMTI 和米勒钳 位的增强隔离式 IGBT 栅 极驱动器	5700	8000	8000	2121	1	IGBT	30	15	3	5.5	5	110	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)		4.50
IS05852S	具有高 CMTI、分流输出 与安全功能的增强隔离 式 IGBT 栅极驱动器	5700	8000	8000	2121	1	IGBT	30	15	2.25	5.5	5	110	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)		4.60
UCC21520	2 通道隔离式栅极驱动器	5700	8000	12800	1414	2	Si FETSiC	30	4.5	3	18	4/6	30	-40 至 125	SOIC	16-SOIC (7.5 x 10.3) (98 mm ²)	~	1.75

^{*}建议转售价格以美元计算,以每千台为单位销售。

红色粗体标注的为新器件。

汽车级栅极驱动器

设备	描述	最大V _{CC} (V)	峰值电流 (A)	传播延迟 (ns)	引脚/封装
LM5109B-Q1	高压 1-A 峰值半桥栅极驱动器	14	1	30	WSON
LM5112-Q1	微型 7-A 单通道 MOSFET 栅极驱动器	14	7	25	6WSON
TPS28225-Q1	汽车类 8 引脚高频 4-A 汲取同步 MOSFET 驱动器	8.8	6	14	SOIC, SON
UCC21520-Q1	2 通道隔离式栅极驱动器	30	4/6	30	SOIC
UCC27201A-Q1	汽车类 120-V 启动、3-A 峰值、高频率、高侧 / 低侧驱动器	17	3	20	S0 PowerPAD™
UCC27211A-Q1	120-V 启动、4-A 峰值、高频高侧和低侧驱动器	17	4	20	SO PowerPad
UCC27511A-Q1	具有分流输出和 5V 负输入电压处理能力的单通道高速、低侧栅极驱动器	18	8	13	6S0T-23
UCC27517A-Q1	具有反相或非反相配置和 5-V 负输入电压处理能力的单通道 4A 高速、低侧栅极驱动器	18	4	13	5S0T-23
UCC27518A-Q1	具有反相配置、CMOS 输入以及 5V 负输入电压处理能力的单通道 4-A 高速、低侧栅极驱动器	18	4	13	5S0T-23
UCC27519A-Q1	具有非反相配置、CMOS 输入以及 5V 负输入电压处理能力的单通道 4-A 高速、低侧栅极驱动器	18	4	13	5S0T-23
UCC27524A-Q1	具有负输入电压能力的双通道 5-A 高速、低侧栅极驱动器	18	5	14	8MSOP, 8SOIC
UCC27528-Q1	基于 CMOS 输入的 UCC27528-Q1 双 5-A 高速低侧栅极驱动器	18	5	17	SOIC
UCC27531-Q1	具有分流输出、5-V 负输入电压处理能力的单通道 2.5 A / 5-A、35-V 最大 VDD、FET 和 IGBT 栅极驱动器	35	5	17	6S0T-23
UCC27532-Q1	具有分流输出、CMOS 输入以及 5V 负输入电压处理能力的单通道 2.5 A / 5-A、35-V 最大 VDD、FET 和 IGBT 栅极驱动器	35	5	17	6S0T-23

红色粗体标注的为新器件。

离线式和隔离式 DC/DC 控制器和转换器 概述

TI 隔离式电源转换解决方案产品组合涵盖了从前端 PFC 控制器到 PWM 控制器的完整端到端电源构件。这些解决方案支持最流行的隔离式功率拓扑结构,包括先进的相移全桥。该产品组合还涵盖一系列支持一次和二次 MOSFET 驱动器应用的MOSFET 栅极驱动器,其中包括同步整流驱动器拓扑和许多其他电源配套产品。

电源解决方案

- PFC 控制器:
 - 。 过渡模式
 - 。 连续电流模式
 - 。交错
 - 。 无桥

- PWM 控制器:
 - 。 单端:反激式、正向、有源钳位
 - 。 双端: 半桥、移相全桥、推挽式、 LLC 半桥
 - 。 UCD3K 数字控制解决方案

PFC控制器和组合

Texas Instruments 电源管理指南 2016 | 49

离线式和隔离式 DC/DC 控制器和转换器

概述

低功耗 PWM(高达 150 W)

UCC28600/10 UCC28700/1/2/3/4 UCC28630/1/2/3 **UCC28740** UCC28710/1/2/3 **UCC28730** LM5021 77引脚恒压、 UCC28722 **UCC28720** UCC24650 7引脚高功率 (唤醒芯片) (BJT功率装置) LM5023 恒流(CV/CC) (BJT功率装置) 反激PSR与峰值 8引脚绿色 反激式控制器 7引脚反激式控制器, 6引脚反激式控 PSR反激式控 功率, X-CAP 模式控制器 与光耦反馈 制器,具有初级 具有初级端稳压 制器, 带快速负 放电和快速负 侧稳压(PSR) 载瞬态响应和 (PSR) 和集成 载瞬态响应选项 700-V启动 零待机 集成的特点/水平

中低功率 AC/DC 和 DC/DC PWM (25 W 至 350 W)

中高功率DC / DC PWM (> 300 W)

ŧ挽式和 ⁴桥	LM5034 双路交错、有源 箝位、HV启动		UCC28251 带预偏置 的半桥	LM5039 半桥、 HV启动	LM5035 半桥同步整流驱动器, HV启动	
.c		ij	UCC25600 皆振半桥控制	器		
⊧桥和相移 桥	LM5045 全桥控制器, 带集成驱动器、 高压启动、预偏置	UCC2895 BiCMOS、 高级相移、 PWM控制器	相科	UCC28950 绿色模式、 多、带同步整流 的全桥	LM5046 相移、全桥、 集成驱动器、 HV启动、预偏置	

离线式与隔离式 DC/DC 控制器和转换器

选择指南

脉宽调变 (PWM) 与谐振控制器

			制方											
器件 ¹	典型 功率 等级 (W)	电压模式	电流模式	平均电流模式	拓扑结构	最大 实际 频率	电源 电压 (V)	700-V 启动电路	110-V 启动电路	软启动	输出驱动 (汲取/供应) (A)	封装	汽车级	价格*
绿色模式 PWM:	空制器													
UCC28710/1/2	达 30		V		PSR 反激式	100 kHz	9至35	V		V	0.025/0.4	7-S0IC		0.42
JCC28700/1/2/3	达 30		~		PSR 反激式	130 kHz	9 至 35			V	0.025/0.4	6-S0T-26		0.35
JCC28704	达 30		~		PSR 反激式	85 kHz	9至35			~	0.032/0.4	6-S0T-26		0.30
JCC28720	达 30		~		PSR 反激式	80 kHz	9至35	1		~	0.037/1	7-S0IC		0.40
JCC28722	达 30		~		PSR 反激式	80 kHz	9 至 35			~	0.037/1	6-S0T-23		0.25
JCC28730	达 30		~		PSR 反激式	83 kHz	9 至 35	~		~	0.029/0.4	7-SOIC		0.50
JCC28740	达 30		~		SSR 反激式	100 kHz	9 至 35	1		~	0.025/0.4	7-SOIC		0.50
UCC28610	10至65		~		SSR QR 反激式,降压	140 kHz	9 至 20				_	8-SOIC		0.60
LM5023	5 至 65		~		SSR QR 反激式	130 kHz	8至15			~	0.3/0.7	8-MSOP		0.38
UCC28630/1/2/3	达 150		~		PSR 反激式控制器,带 700V 启动	120 kHz	8至18	1			1/2	7-SOIC		0.60
UCC28600	50 至 150		1		SSR QR 反激式	130 kHz	30			V	1/0.75	8-SOIC	v	0.49
带集成场效晶体	管 (FET)	的る	と换	机										
JCC28880	<3				非隔离式 AC/DC 转换用高压交换机	62 kHz	_	V		V	_	7-S0IC		0.55
JCC28881	<4.5				700V、225mA 低静态电流离线转换器	62 kHz	_	~		~	_	7-S0IC		0.62
UCC28910	7.5		~		高压反激式交换机,带 PSR	115 kHz	_	1		~	_	7-S0IC		0.75
UCC28911	10		~		高压反激式交换机,带 PSR	115 kHz	_	1		~	_	7-SOIC		0.82
通用单端控制器														
UCC3889	<10	V			反激式 (SEPIC, Cuk)	250 kHz	9			V	0.2/0.15	8-SOIC-W/DIL (PDIP)		0.59
LM5020	10至100		V		降压、升压、反激 (SEPIC, Cuk)	1 MHz	13 至 100		V	V	1	10-MSOP/QFN		0.90
LM5021	10 至 100		V		反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	8至30			V	0.7	8-MSOP		0.66
LM5022	25 至 100		V		降压、升压、反激 (SEPIC, Cuk)	2 MHz	6至60			V	1	10-MSOP		1.13
UCC3800/1/2/3/4/5	10 至 200	V	v		降压、升压、反激 (SEPIC, Cuk), 正向(包括双开 关正向), 正向 (D > 50%)	1 MHz	4.1 至 15			~	1/1	8-TSSOP/SOIC/DIL (PDIP)		1.35
UCC3807-1-2-3	10 至 200	~	V		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	6.9 至 15			~	1/1	8-SOIC/DIL (PDIP)		1.50
UCC3809-1-2	10 至 200	V	V		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	8至19			~	0.8/0.4	8-MSOP/TSSOP/SOIC/DIL (PDIP)		0.85
UCC3813-0/1/2/3/4/5	10 至 200	~	V		降压、升压、反激 (SEPIC, Cuk), 正向(包括双开 关正向) ² , 正向 (D > 50%) ²	1 MHz	7.2 至 15 ²			•	1/1	8-TSSOP/SOIC/DIL (PDIP)		0.80
UCC3884	50 至 250	~	~		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	8.9 至 15			~	1/0.5	16-SOIC/DIL (PDIP)		1.60
JCC38C40/1/2/3/4/5	10 至 250	~	~		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	5 个选项				1/1	8-MSOP/SOIC/DIL (PDIP)		0.95
TL3842B/3B/4B/5B	30 至 350	~	~		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	500 kHz	10至30				1/1	8/14-SOIC, 8-DIL (PDIP)		0.54
JC3842A/3A/4A/5A	30 至 350	~	~		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	500 kHz	10至30				1/1	8/14-SOIC, 8-DIL (PDIP)		0.80
JC28023	50 至 750	~	~		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	9 至 30			~	1.5/1.5	16-SOIC-W/DIL (PDIP)		1.35
JC3823A/B	50 至 750	~	•		降压、升压、反激 (SEPIC, Cuk), 正向 (D > 50%)	1 MHz	9至22			•	2/2	16-SOIC-W/DIL (PDIP), 20-PLCC		4.90
双输出控制器														
LM5015	30 至 250		1		正向(包括双开关正向)	750 kHz	4.25 至 75			V	1	14-TSSOP		2.05
LM5032	30 至 250		~		反激 (SEPIC, Cuk), 正向(包括双开关正向)	1 MHz	13 至 100		~	1	2.5/2.5	16-TSSOP		1.55
LM5034	30 至 250		1		反激 (SEPIC, Cuk), 正向(包括双开关正向)	1 MHz	8至100		1	1	2.5/2.5	20-TSSOP		1.90
JC3824	50 至 250	~	V		推挽、半桥、全桥	1 MHz	9 至 30			~	1.5/1.5	16-SOIC-W/DIL (PDIP)		4.55
UCC28089	25 至 250				交错正向/反激/升压、推挽、半桥、全桥	500 kHz	8至15			~	0.5/1.0	8-S0IC		0.65
LM5035/A/B/C	50 至 300	~			半桥	2 MHz	8至100		V	V	2/2	28-TSSOP, 20-HTSSOP, 24-QFN		1.90
.M(2)5037	30 至 300	~	V		推挽、半桥、全桥	2 MHz	13 至 75/100		~	~	1.2/1.2	16-TSSOP		1.35/1.6
.M5039	50 至 300	~			半桥	2 MHz	8至100		~	~	2/2	20-HTSSOP, 24-QFN		1.90
LM5045	50 至 400	~	1		全桥	2 MHz	14 至 100		~	~	1.5/2	28-HTSSOP/QFN		2.25
TL494 或 TL594	50 至 500	,			降压、升压、反激 (SEPIC, Cuk), 正向(包括双开 关正向),正向(0>50%),交错正向/反激/升压、 推挽、半桥、全桥	300 kHz	7至40				0.2/0.2	16-TSSOP/SOIC/DIL (PDIP)		0.23

¹UC2xxx 和 UCC2xxx 器件是 UC3xxx 和 UCC3xxx 器件的温度范围扩展版本。 ²数值因器件型号的不同而有所差异。请查看数据表。

红色粗体标注的为新器件。

^{**} 批量为 1,000 片时的建议转售单价 (单位:美元)。

离线式与隔离式 DC/DC 控制器和转换器

选择指南

脉宽调变 (PWM) 与谐振控制器(续)

		控	制プ	方法										
器件 ¹	典型 功率 等级 (W)	电压模式	电流模式	平均电流模式	拓扑结构	最大 实际 频率	电源 电压 (V)	700-V 启动电路	110-V 启动电路	软启动	输出驱动 (汲取/供应) (A)	封装	汽车级	价格
双输出控制器(续)													
TL598	50 至 500	~			降压、升压、反激 (SEPIC, Cuk), 正向 (包括双开 关正向),正向 (0 > 50%),交错正向 / 反激 / 升压、 推挽、半桥、全桥	300 kHz	7至40				0.2/0.2	16-SOIC/DIL (PDIP)		0.81
UC3524A	50至500	1			推挽、半桥、全桥	250 kHz	8至40			~	0.2/0.2	16-SOIC/DIL (PDIP)		1.70
UC3525B - UC3526A	50 至 500	~			推挽、半桥、全桥	250 kHz	8至40			•	0.2/0.2	16-SOIC/DIL (PDIP), 20-PLCC		1.05
UC3827-1/-2	50至500		~		电流馈电 / 电压馈电推挽	450 kHz	8.4 至 20			~	1/0.8	24-SOIC-W/DIL (PDIP), 28-PLCC		3.50
UCC3808-1/-2/A-1/A-2	50至500		~		推挽、半桥、全桥	1 MHz	4.3 至 15			~	1.0/0.5	8-TSSOP/SOIC/DIL (PDIP)		1.30
UCC38083/4/5/6	50 至 500		~		推挽、半桥、全桥	1 MHz	8.3 至 15			~	1.0/0.5	8-TSSOP/SOIC/DIL (PDIP)		1.10
UCC3810 LM5030	50 至 500 50 至 600	~	~		降压、升压、反激 (SEPIC, Cuk), 正向(包括双开 关正向), 交错正向/反激/升压	I IVII IZ	8.3 至 11				1/1	16-SOIC/DIL (PDIP)		1.85
LM5033	50 至 600	,	~		有源箝位正向 / 反激、半桥、全桥 推挽、半桥、全桥	1 MHz 1 MHz	15 至 100		V	V	1.5/1.5 1.5/1.5	20-TSSOP 10-MSOP/QFN		1.10
UC28025	50 至 750	V	V		推换、半桥、全桥	1 MHz	9至30			V	1.5/1.5	16-SOIC-W/DIL (PDIP)		1.35
UC3825	50 至 750	v	V		推挽、半桥、全桥	1 MHz	9至30			V	1.5/1.5	16-SOIC-W/DIL (PDIP), 20-PLCC		1.60
UC3825A/B	50 至 750	~	V		推挽、半桥、全桥	1 MHz	9至22			V	2/2	16-SOIC-W/DIL (PDIP), 20-PLCC		2.65
JC3846/56	50 至 750	V	~		推挽、半桥、全桥	1 MHz	8至40			~	0.5/0.5	16-SOIC-W/DIL (PDIP), 20-PLCC		1.60
UCC3806	50 至 750	~	,		推挽、半桥、全桥	350 kHz	7至15			•	0.5/0.5	16-SSOP/TSSOP/SOIC/ SOIC-W/DIL (PDIP), 20-PLCC		4.10
LM5041/A/B	50 至 800		V		电流馈电 / 电压馈电推挽	1 MHz	15 至 100		V	V	1/5/1.5	16-TSSOP/QFN		2.15
UCC28250/1	100至800	V	~		正向(包括双开关正向)、交错正向/反激/升压、 有源箝位正向/反激、推挽、半桥	1 MHz	4.7 至 17			~	_	20-TSSOP/QFN		1.70
UCC28220/1	50 至 800		V		交错正向 / 反激 / 升压	1 MHz/ch.	8至14.5		V	~	0.01/0.01	16-TSSOP/SOIC	~	1.60
软开关、ZVT 和	AVS 控制	器												
UCC29950	300		V		CCM 升压逻辑链路控制器(LLC)与组合控制器	_	-0.3 至 20				_	16-SOIC		1.20
LM5025/A/B/C	50至250	~			有源嵌位正向 / 反激	1 MHz	8至100		~	~	3/3	16-TSSOP/QFN		1.25
LM5026	50至250		1		有源嵌位正向 / 反激	1 MHz	8至100		V	~	3/3	16-TSSOP/QFN		1.30
LM5027/A	50至250	V			有源嵌位正向 / 反激	1 MHz	8至105		V	V	2/2	24-TSSOP, 20-QFN		1.75
LM5046 UCC2897A	50至400	~	V		Φ 转移反激	2 MHz	14至100		V	V	2/2	28-HTSSOP/QFN 20-TSSOP, 16-SOIC		2.45
	75 至 350 200 W 至 1		~		正向 (D > 50%), 有源箝位正向 / 反激	1 MHz	8.5 至 14.5		V	V	2/2, 2/2	, , , , , , , , , , , , , , , , , , , ,		1.50
UCC25600	200 W 至 1 kW 200 W 至 2				半桥	350 kHz	11.5 至 18			~	0.4/0.8	8-SOIC		0.80
UCC28950	kW 200 W 至 2	~	~		◆ 转移反激	1 MHz	8至17			'	— 0.1/0.1 处为 4	24-TSSOP 20-SOIC-W/DIL (PDIP)/	'	4.25
UCC3895	kW	~	1	~	□ 转移反激	1 MHz	11 至 17			~	个个	PLCC		4.35
宽输入范围电压	模式控制	器												
UCC35701/2	25 至 250	~			反激 (SEPIC, Cuk),正向(包括双开关正向),正向 (D>50%)	700 kHz	8.8 至 15			•	1.2/1.2	14-TSSOP/SOIC/DIL (PDIP)		2.95
UCC35705/6	25 至 250	V			升压、反激 (SEPIC, Cuk),正向(包括双开关正向), 正向(D > 50%)	4 MHz	8.0 至 15				0.1/0.1	8-MSOP/SOIC/DIL (PDIP)		0.75
中间母线控制器														
UCC28230/1	150 至 500				半桥、全桥	2 MHz	-0.3 至 20			V	0.2/0.2	12-SON, 14-TSSOP		1.20
二次侧、后级调	整										0/5	40.7000		1.6=1
LM(2)5115/A	_		1		同步二次侧、后级调整	1 MHz	4.5 至 42/75			~	2/2.5	16-TSSOP/QFN		1.05/1

¹UC2xxx 和 UCC2xxx 器件是 UC3xxx 和 UCC3xxx 器件的温度范围扩展版本。 ²数值因器件型号的不同而有所差异。请查看数据表。

红色粗体标注的为新器件。

^{**} 批量为 1,000 片时的建议转售单价 (单位:美元)。

离线式与隔离式 DC/DC 控制器和转换器

选择指南

离线式转换器

同步整流 (SR) 控制器

Texas Instruments 电源管理指南 2016 | 53

数字电源控制方案

概述及选择指南

了解更多信息: www.ti.com.cn/digitalpower

数字电源隔离式控制器

器件	引脚数	DPWM 输出数量	独立控制回路 数量	DPWM 分辨率 (ps)	DPWM 最大频率 (MHz)	程序闪存大小 (KB)	12 位 ADC 通道 数量	补偿器	价格*
UCD3020	48	6	2	250	2	32	9	3极/3零	2.45
UCD3028	40	8	2	250	2	32	9	3极/3零	2.35
UCD3040	64/80	8	4	250	2	32	11/15	3极/3零	3.75/4.05
UCD3138	40/64	8	3	250	2	32	7/14	2极/2零	2.70/4.10
UCD3138064	40/64	8	3	250	2	64	9	2极/2零	4.89
UCD3138A64	80	8	3	250	2	64	14	2极/2零	5.50
UCD3138128	80	8	3	250	2	128	25	2极/2零	5.90
UCD3138A	40/64	8	3	250	2	32	7/14	2极/2零	3.22/4.62
UCD3138064A	40/64	8	3	250	2	32	7/14	2极/2零	5.54

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

数字电源非隔离式控制器

器件	引脚数	输出数量	相位数	最大 F _{SW} (MHz)	PWM 分辨率 (ps)	补偿器	非易失性存 储器	价格*
UCD9222/44 ¹	48/64	2/4	1	2	250	3极/3零	3极/3零	3.15/5.85
UCD9224	48	2	4	2	250	3极/3零	3极/3零	2.65
UCD9248/6	80/64	4	8/6	2	250	3极/3零	是,带ECC	4.85/4.50

¹ UCD9222 和 UCD9244 数字 PWM 控制器可支持 TMS320C6670 和 TMS320C6678 DSP VID 接口。

^{*} 批量为 1,000 片时的建议转售价格 (单位:美元)。

数字电源控制方案

选择指南

数字电源非隔离式控制器(续)

器件	输入 电压 (V)	输出 电压 (V)	相位	输出电流(A)	频率(kHz)	电源正常	过压 保护	供应和 汲取	预偏置 操作	外部 同步 引脚	远程 感测	封装	价格*
带PMBus的数:	字电源非	隔离式D	C/DC(载荷,	点)控制器									
TPS53647	4.5 至 17	0.5至2.5	1、2、3或 4	240	调整 300 至 1000	是	是	是	是	是	是	40 WQFN	3.85
TPS53631/41/61	4.5 至 20	0.5 至 2.5	3、4或6	120/160/240	1000	是	是	是	是	是	是	40 WQFN	2.80/3.30/3.80
TPS40428	4.5 至 20	0.6至5	1或2	40	调整 200 至 1500	是	是	是	是	是	是	40 VQFN	4.80
TPS40425	4.5 至 20	0.6 至 5	1或2	40	调整 200 至 1500	是	是	是	是	是	是	40 VQFN	4.80
TPS40400	3至20	0.6至5	1	30	调整 200 至 2000	是	是	是	是	是	是	24 VQFN	2.00
TPS40422	4.5 至 20	0.6 至 5.6	1或2	60	调整 200 至 1000	是	是	是	是	是	是	40 VQFN	2.90
TPS53819A	3至28	0.6至5.5	1	40	调整275至1000	是	是	是	是	是	否	16 QFN	1.65

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

红色粗体标注的为新器件。

数字电源控制器

	1			
器件	输入电压(V)	输出配置	电流额定值(A)	价格*
数字功率级				
UCD7242	4.5 至 18	双	10/10	2.65
UCD74106	4.5 至 14	单	6	1.00
UCD74111	4.5 至 14	单	15	2.95
UCD74120	4.5 至 14	单	25	3.95

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

数字电源传动模块

器件	输入电压(V)	输出配置	电流额定值(A)	价格*
PTD08A006W	4.75 至 14	单	6	6.90
PTD08A010W	4.75 至 14	单	10	8.50
PTD08A015W	4.75 至 14	单	15	9.80
PTD08A020W	4.75 至 14	单	20	12.90
PTD08D210W	4.75 至 14	双	10/10	9.25
PTD08A210W	4.75 至 14	单	10	7.50

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

设备	输出数量	输出配置	输出类型 ¹	峰值I _{OUT} 供应/汲取 (A)	上升/下 降时间 (ns)	V _{CC} 范围 (V)	传播延迟 (ns)	输入阈值	死区时间 控制	保护特征	价格*
数字电源	NIO2LE I 岩区	列 裔									
UCD7231	2	非反相	CMOS	6/6	10/10	4.5至15.5	25	CMOS/TTL	适应	可调节	0.60
UCD7232	2	非反相	CMOS	6/6	10/10	4.5至15.5	25	CMOS/TTL	自适应	可调节	0.60
UCD7100	1	自由/非反相	TrueDrive™	4/4	10/10	4.5至16	20	CMOS/TTL	自适应	可调节	0.99
UCD7201	2	自由/非反相	TrueDrive	4/4	10/10	4.5至16	20	CMOS/TTL	自适应	可调节	1.20
UCD7138	1	非反相	CMOS	4/6	5/5	5至12	14	CMOS/TTL	自适应	可调节	0.86

¹输出类型: TrueDrive是混合双极/CMOS输出架构,可在低电压(Miller阈值)条件下实现更高的电流驱动能力。

器件	监控的电源数	序列输出数量	多相PWM时钟输出 ¹	NV故障日志	最大GPI/GP0 ¹	通信与设置2	价格*
数字电源定序器							
UCD90240	24	24	24	100	24/12	PMBus/I ² C, JTAG	10.00
UCD90160	16	16	8	18	8/16	PMBus/l ² C, JTAG	5.65
UCD90120A	13	12	8	16	8/12	PMBus/l ² C, JTAG	4.95
UCD90124A	13	12	8	12	8/12	PMBus/l ² C, JTAG	6.45
UCD9090	11	10	8	30	8/10	PMBus/l ² C, JTAG	3.60
UCD90910	13	10	8	12	8/10	PMBus/l ² C, JTAG	5.90
UCD9081	8	8	_	8	0/4	I ² C	2.95

[「]表中显示了每个器件支持的每种功能的最大数量。例如,UCD90124有12个PWM引脚,作为余量调整、PWM、风扇控制或达到最大列出的GPIO的任何组合。详情参见数据表。 ²JTAG接口仅用于设置。 **红色粗体**标注的为新器

红色粗体标注的为新器件。

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

电源管理多通道 IC (PMIC) 解决方案 选择指南_____

处理器附件 PMIC

处理器例针		plai			400		NEL P	_						
器件	V _{IN} (V)	稳压器输出数量	充电器	音频编解码器	USB 2.0 0TG 收发 器	WLED 升压	DC/DC 降压转换器	DC/DC 降压控制 器	rD0	通信接口	描述	封装	汽车级	价格*
ARM [®] Cortex ™	-R4													
TPS65381-Q1	5.8 至 36	5	_	_	_	_	1	_	4	串行外设接 口(SPI)	安全关键设备	HTSSOP-32	~	2.57
ARM Cortex A8 P	MICs													
LP3925	4.5 至 6.5	18	线性	_	_	是	3	_	15	I ² C	智能手机 PMIC	Micro SMD-81		1.40
LP3974	4.5 至 6.5	20	线性	_	_	_	4	_	16	I ² C	智能手机 PMIC	Micro SMD-100		2.46
TPS65023x	2.5 至 6.0	6	_	_	_	_	3	_	3	I ² C	挠性 6 通道 PMIC,同时也是 WCSP 封装	QFN-40	~	2.09
TPS65024x	2.5 至 6	6	_	_	_	_	3	_	3	I ² C	挠性 6 通道 PMIC	VQFN-32	~	2.09
TPS650250	2.5 至 6.0	6	_	_	_	_	3	_	3	_	带可调 V _{OUT} ,优化用于 AM335x 的 挠性 PMIC	QFN-32	~	1.80
TPS65053	2.5 至 6.0	5	_	_	_	_	2	_	3	_	低成本 5 通道 PMIC, 优化用于 DM355x	QFN-24	~	1.65
TPS65070/2/3x	2.8 至 6.3	5	线性	_	_	是	3	_	2	I ² C	带和不带触摸屏控制器, Jacinto 3	QFN-48	~	2.48
TPS65217x	2.7 至 6.5	7	线性	_	_	是	3	_	4	_	优化用于 AM335x 处理器	QFN-48		2.036
TPS65910x	2.7 至 5.5	13	_	_	_	_	3	_	9	2x I ² C	带 5V 升压电源多处理器的挠性 PMIC, 优化用于 iMX 处理器	QFN-48		1.85
TPS65921	2.7 至 4.5	7	_	_	是	_	3	_	4	2x I ² C	优化用于 0MAP ™ 35x 处理器	BGA-139		3.20
TPS65930	2.7 至 4.5	7	_	是	是	_	3	_	4	2x I ² C	优化用于 0MAP35x 处理器	BGA-139		3.80
TPS65950	2.7 至 4.5	13	线性	是	是	_	3	_	10	2x I ² C	优化用于 0MAP35x 处理器	BGA-209		4.40
TPS65951	2.7 至 4.5	13	_	是	是	_	3	_	10	2x I ² C	优化用于 OMAP35x, 0.8mm 节距	BGA-169		4.40
TPS65218	2.7 至 5.5	7	_	_	_	_	5		1	2x I ² C	用于 AM437x 以及其它许多处理器 的挠性 PMIC	QFN & QFP		2.73
ARM Cortex A9 P	MIC													
TPS65862x/4x	4.3 至 6.5	14	线性	_	_	是	3	_	11	I ² C	优化用于 Tegra [®] 2	BGA-121		5.95
TPS659110/2/3/9	2.7 至 5.5	13	_	_	_	_	3	1	9	2x I ² C	带有达 10A 的 DC/DC 控制器, TPS659119 优化用于 Jacinto 4/5 和 Tegra 3, Galelio	BGA-98	~	3.75
TPS65912x	2.3 至 5.5	14	_	_	_	_	4	_	10	I ² C/SPI	带有四台 DC/DC 转换器、电源多 处理器、i.MX6 的挠性 PMIC	WCSP-81		3.00
TWL6030/32/40/41	2.3 至 5.5	18	开关	是	_	_	7	_	11	2x I ² C	OMAP 4 电源与音频	FBGA + PBGA		4.30
TPS65218	2.7 至 5.5	7	_	_	_	_	5	_	1	2x I ² C	用于 AM437x 以及多处理器的挠性 PMIC	QFN & QFP		2.73
TPS65051-Q1	1.5 至 6.5	6	_	_	_	_	2	_	4	_	挠性 PMIC 供电多处理器,包括 IMX25	QFN-32	V	2.05
TPS80032	2.3 至 5.5	16	开关	_	_	_	5	_	11	2x I ² C	i.MX6、i.MX7 和 i.MX8 挠性 PMIC 电 源多处理器	WCSP		4.49
ARM Cortex A15	PMIC													
TPS659039-Q1	3.135 至 5.25	13	_	_	_	_	7	_	6	SPI, 2x I ² C	用于 Jacinto 6 和 TDA2X 的汽车电源 管理 IC (PMIC)	nFBGA-169	~	7.60
TPS659037	3.135 至 5.25	14	_	_	_	_	7	_	7	SPI, 2x I ² C	AM57x Sitara ™处理器用集成电源 管理 IC	nFBGA-169		7.50
TPS65916	2.3 至 7	10	_	_	_	_	6	_	5	SPI, I ² C	用于工业和 TDA2Eco 应用的集成电源管理 IC	BTSSOP-48 PowerPAD ™		4.46
TPS65913	2.3 至 5.5	18	_	_	_	1	6	_	11	2x I ² C	Cortex A15 处理器	WCSP, mrQFN		WEB
TWL6040/41	2.3 至 5.5	18	_	_	_	1	6	_	11	2x I ² C	OMAP 5 电源与音频	WCSP, mrQFN		1.70/1.50
TPS65086x	5.4 至 24	11	_	_	_	_	3	3	4	l ² C, GPIOs	挠性 PMIC 供电多处理器	QFN-64		7.80

^{*}批量为1,000片时的建议转售价格(单位:美元)。

红色粗体标注的为新器件。

电源管理多通道 IC (PMIC) 解决方案

选择指南

特殊功能 PMIC(可穿戴 PMIC)

		稳压器输出数量	充电器	WLED升压	DC/DC降压 转换器	•	DC/DC升压转换器器	通信接口			
器件	V _{IN} (V)	糠	代	⋝	の特	6	5 举		描述	封装	价格*
LM10502	2.5至5.5	3	_	_	2	1	_	串行外设接 口(SPI)	SSD存储器用PMIC	Micro SMD-34	0.90
LP3910	2.5至6	5	线性	_	2	2	1	I ² C	基于HDD的媒体播放器用PMIC	WQFN-48	2.11
LP3913	2.5至6	5	线性	_	3	2	_	I ² C	基于闪存的媒体播放器用PMIC	WQFN-48	2.11
LP3918	3至5.5	7	线性	_	_	7	_	I ² C	电池充电管理PMIC	DSBGA-25	0.53
LP3921	3至5.5	7	线性	_	_	7	_	I ² C	音频放大器用电池管理PMIC	WQFN-32	0.90
LP3923	3至5.5	8	线性	_	_	8	_	I ² C	手机PMIC	DSBGA-30	0.60
LP3925	2.5至4.5	18	线性	_	3	15	_	I ² C	手机用高性能PMIC,带USB 2.0	DSBGA-30	1.40
TPS65030	2.5至6	1	_	_	_	1	_	_	三个用于USB OTG的充电泵	25球芯片规模	2.75
TPS65090	5.0至17.0	5	开关	_	3	2	_	I ² C	2至3个串联锂离子用前端PMIC	QFN-100	4.95
TPS65200	2.5至6.5	0	开关	是	_	_	_	I ² C	带充电器+WLED的前端PMIC	WCSP, QFN	2.45
TPS65233	4.5至20	2	_	_	_	1	1	I ² C	卫星用LNB稳压器	QFN-16	0.90
TPS65235	4.5至20	2	_	_	_	1	1	I ² C	卫星用LNB稳压器	WQFN-20	1.00
TPS65291	4至10	3	_	_	2	1	_	I ² C	能量收集计+10年电池	HTSSOP-14	1.50
TPS65290	2.5至5.5	2	_	_	1	1	_	I ² C	能量收集计+10年电池	QFN-24	1.75
TPS65471	2.7至5.75	5	线性	是	_	4	1	_	手持设备用PMIC	QFN-40	2.25
TPS65510	2.7至5.5	5	_	_	_	4	1	_	电池备用IC	QFN-16	1.50
TPS65530/30A	1.5至5.5	9	_	_	7	1	1	_	数字相机用PMIC	QFN-48	3.90
TPS657120	2.8至5.5	_	_	_	3	2	_	MIPI [®] RFFE、2x GPIO	基带和RF-PA电源用PMIC	WCSP-30	1.95
TPS65735/x835	2.5至6.4	2	线性	_	_	1	_	_	3D眼镜, x835 带MSP430™	QFN-40	1.25
TPS658310	3.0至6.0	0	开关	是	_	_	_	I ² C	带充电器+闪存+WLED的前端PMIC	WCSP-49	3.45
TPS68470	2.97至3.63	6	_	是	1	5	_	I ² C	双闪存LED驱动器, CLK GPIO	WCSP	1.15
TPS65000x	1.6至6	3	_	_	1	2	_	_	用于智能手机、可穿戴设备和物联网应 用的PMIC	WQFN-16	1.40
TPS65014x	1.8至6.5	4	线性	_	2	2	_	I ² C	用于智能手机、可穿戴设备和物联网应 用的PMIC	QFN-48	2.95
TPS657095	3.7至6.0	2	_	_	_	2	_	I ² C	内置摄像头用PMIC	DSBGA-16	0.78
TPS65705x	1.7至6.0	3	_	_	2	1	_			DSBGA-16	1.20
TPS65708	0.8至6.0	4	_	_	2	2	_	_	用于物联网、可穿戴设备以及内置摄像头 应用的小型芯片组	DSBGA-16	1.65
TPS65720	1.8至5.6	2	线性	_	1	1	_	I ² C 小型电池用PMIC		DSBGA-25	0.89
TPS65721	1.8至5.6	2	线性	_	1	1	_	I ² C	小型电池用PMIC	WQFN-32	1.00

*批量为 1,000 片时的建议转售价格 (单位: 美元)。

红色粗体标注的为新器件。**蓝绿色粗体**标注的为前瞻性产品。

Texas Instruments 电源管理指南 2016 | 57

电源管理多通道 IC (PMIC) 解决方案 选择指南

通用 PMIC

器件	V _{IN} (V)	稳压器输出数量	充电器	WLED 升压	DC/DC 降压 转换器	CD0	负载开关	通信接口	描述	封装	汽车级	价格*
TPS65720/1	1.8 至 5.6	2	线性	_	1	1	_	I ² C	最小单锂离子应用	DSBGA-25, QFN-32		0.89
TPS6500x	1.8 至 6.0	3	_	_	1	2	_	_	通用	QFN-16	V	1.40
TPS65290	2.2 至 5	3	_	_	1	2	_	I ² C、SPI 和 GPIO	电池供电和能源用低 Q 值多模 PMIC	QFN-24		1.75
TPS65912x	2.3 至 5.5	14	_	_	4	10	1	I ² C/SPI	带有四台 DC/DC 转换器、电源多处理器、 i.MX6 的挠性 PMIC	WCSP-81		3.00
TPS65913	2.3 至 5.5	18	_	是	6	11	_	2x I ² C	Cortex A15 处理器	WCSP, uQFN		WEB
TPS80032	2.3 至 5.5	16	开关	_	5	11	_	2x I ² C	i.MX6, 挠性 PMIC 电源多处理器	WCSP		4.49
LP8758-E0	2.5 至 5.5	4	_	_	4	_	_	I ² C	高电流密度四边降压	DSBGA-35		2.25
TPS65050/1/2/4/6	2.5 至 6.0	6	-	_	2	4	_	逻辑 H/L	低成本 6 通道 PMIC	QFN-32	V	1.75
TPS65053/8	2.5 至 6.0	5	_	_	2	3	_	_	低成本 5 通道 PMIC	QFN-24	•	1.65
TPS65023x	2.5 至 6.0	6	_	_	3	3	_	I ² C	挠性 6 通道 PMIC,同时也是 WCSP 封装	QFN, WCSP	~	2.95
TPS650250	2.5 至 6.0	6	_	_	3	3	_	I ² C	带可调 VOUT、优化用于 AM335x 的 PMIC	QFN-32	•	1.80
LP8725	2.6 至 4.5	9	_	_	2	7	_	l ² C	通用	DSBGA-30		1.29
LP8720	2.7 至 4.5	6	_	_	1	5	_	I ² C	通用	DSBGA-20		0.70
LM3280	2.7 至 5.5	4	-	_	1	3	_	_	电池供电射频	SMD-16		0.65
LM3686	2.7 至 5.5	3	_	_	1	2	_	_	低功率 PMIC	DSBGA-12		0.40
LM3687	2.7 至 5.5	3	_	_	1	1	_	_	低功率 PMIC	DSBGA-9		0.40
LP3906	2.7 至 5.5	4	_	_	2	2	_	I ² C	通用	WQFN-24		1.17
LP3910	2.7 至 5.5	5	线性	_	3	2	_	I ² C	便携式, 带降压 - 升压	LLP-48		2.11
LP3971/2	2.7 至 5.5	9	备用	_	3	6	_	I ² C	高级应用处理器用 PMIC	WQFN-40		3.25
LP3974	2.7 至 5.5	15	线性	_	4	11	_	I ² C	高级应用处理器用 PMIC	Micro SMD-100		2.46
TPS65218	2.7 至 5.5	7	_	_	6	1	3	l ² C, GPIOs, MIPI RF	用于 AM437x 以及多处理器的挠性 PMIC	QFN-48, HQFP-48		2.73
TPS65910x	2.7 至 5.5	13	_	_	3	9	_	2x I ² C	用于 AM437x 以及多处理器的挠性 PMIC	QFN-48		1.85
TPS65911x	2.7 至 5.5	13	_	_	3	11	_	2x I ² C	带有达 10A 的 DC/DC 控制器, TPS659119 优化用于 Jacinto 4/5 和 Tegra 3, Galileo	BGA-98		2.50
TPS65266	2.7 至 6.5	3	_	_	3	_	_	_	三个降压转换器 (3 A/2 A/2 A)	QFN		2.10
TPS65266A	2.7 至 6.5	3	-	_	3	1	_	_	三个带 500mA LDO 的降压转换器(3 A/2 A/2 A)	QFN		2.10
TPS65217x	2.7 至 6.5	7	线性	是	3	4	2	_	优化用于 AM335x 处理器	QFN-48		2.04
LM26480	2.8 至 5.5	4	_	_	2	2	_	_	通用	LLP-24	•	0.95
LP3907	2.8 至 5.5	4	_	_	2	2	_	l ² C	通用	DSBGA-25, WQFN- 24		0.95
TPS65070/72/73x	2.8 至 6.3	5	线性	是	3	2	_	I ² C	带和不带触摸屏控制器, Jacinto 3	QFN-48	~	2.48
LM10503	3 至 5.5	3	_	_	3	_	_	PWI TM	ASIC 和 SOC 设计的理想之选	WQFN-36		3.75
LM10504/6	3 至 5.5	4	_	_	3	1	_	串行外设接口(SPI)	闪存和 SSD 的理想之选	DSBGA-34		1.20
LM10524	3至5.5	3	_	_	3	_	_	串行外设接口(SPI)	闪存和 SSD 的理想之选	SMD-46		2.15
LM10507	3 至 5.5	4	_	_	3	1	_	串行外设接口(SPI)	闪存和 SSD 的理想之选	DSBGA-34		1.20
LM10692	3至5.5	6	_	_	6	_	_	l ² C	闪存和 SSD 的理想之选	QFN - 36		2.80
LM26420	3至5.5	2	_	_	2	_	_	_	双 2.0A 降压	WQFN-16, HTSSOP-20	v	2.05
LM26484	3至5.5	3	_	_	2	1	_	_	通用	WQFN-24		0.70
LP3905	3至5.5	4	_	_	2	2	_	_	通用	WSON-14		1.17
LM26400Y	3.0 至 20.0	2	_	_	2	_	_	_	双降压	LLP-16		2.10
TPS657051/2	3.3 至 6	3	_	_	2	1	_	_	内置摄像头用 PMIC	WCSP-16		1.20
TPS65708	3.6 至 6	4	_	_	2	2	_	-	内置摄像头用 PMIC	WCSP-16		1.65

^{*}批量为1,000片时的建议转售价格(单位:美元)。

蓝绿色粗体标注的为前瞻性产品。

电源管理多通道 IC (PMIC) 解决方案 选择指南

通用 PMIC(续)

器件	V _{IN} (V)	稳压器输出数量	充电器	WLED 升压	DC/DC 降压 转换器	rpo	负载开关	通信接口	描述	封装	汽车级	价格*
TPS65800/10/11/20	4.3 至 16	11	线性	是	2	7	_	I ² C,3个GPIO	高级 PMIC,带 LED 驱动器	QFN-56		5.75
TPS65262-1	4.5 至 18	5	_	_	3	2	_	_	三个带双 LDO(150mA/350mA)的降压转 换器(3 A/1 A/1 A)	QFN		2.05
TPS65263	4.5 至 18	3	_	_	3	_	_	I ² C	三个带I ² C接口的降压转换器(3 A/2 A/2 A)	QFN		2.35
TPS65283	4.5 至 18	3	_	_	2	_	1	_	两个带配电开关的降压转换器(3.5 A/2.5 A)	QFN		2.00
TPS65400	4.5 至 18	4	_	_	3	_	_	PMBus ™ /l ² C	四个带 PMBus/l ² C 接口的降压转换器(4 A/4 A/2 A/2 A)	QFN		3.20
TPS65286	4.5 至 28	3	_	_	3	_	_	_	一个带配电开关的降压转换器(6A)	QFN		2.00
TPS6501x	4.5 至 5.5	4	线性		2	2	_	I ² C	通用	QFN-48		1.67
TPS65083x	5.4 至 24	8	_	_	1	3	_	I ² C GPIO	带 4 个高功率轨道用控制器的高级 PMIC	BGA - 168, 7x7 & BGA- 151, 9x9		5.90
TPS65084x	5.4 至 24	11	_	_	3	4	3	I ² C, GPIOs	高级 PMIC, 带 3 个高功率轨道用控制器。	QFN-64		4.90
TPS65085x	5.4 至 24	8	_	_	1	3	_	I ² C GPIO	高级 PMIC,带 4 个高功率轨道用控制器	BGA - 168, 7x7 & BGA- 151, 9x9		6.49
TPS65086x	5.4 至 24	11	_	_	3	4	3	l ² C, GPIOs	高级 PMIC, 带 3 个高功率轨道用控制器。	QFN-64		7.80
TPS65090	6至17	5	开关	_	3	2	7	I ² C, SPI, GPIO, MIPI RF	用于 2-3 个串联电池的前端 PMIC	VQFN-100		4.95

^{*} 批量为 1,000 片时的建议转售价格 (单位:美元)。

蓝绿色粗体标注的为前瞻性产品。

电源管理多通道 IC (PMIC) 解决方案

选择指南

内置处理器以及 TI PMIC 支持的 FPGA

处理器	器件型号	PMIC
TI	C2834x	TPS65000, TPS650061, TPS65300/301-Q1 [†]
TI	C55x	TPS65000x
TI	C6742/6/8	TPS65910, TPS65070, TPS65023-Q1 [†]
TI	C6745/7	TPS65910, TPS65023
TI	C6A814x	TPS659113
TI	C6A816x	TPS659112
TI	DM335, DM355, DM365, DM367	TPS65053, TPS65070/73
TI	DM368	TPS650532, TPS65023
TI	DM385	TPS659113
TI	DM37x 800MHz	TPS6595x/30/2x/10, TPS65023, TPS650731
TI	DM37x 1GHz	TPS65950A3/x51/x21B1/x10, TPS65023, TPS650731
TI	DM643x, DM644x	TPS65023-Q1 [†] , TPS659105
TI	DM812x/ DM814x	TPS659113
TI	DM816x	TPS659112
TI	AM17x	TPS65910, TPS65000x, TPS650061, TPS65023-Q1 [†]
TI	AM18x	TPS65910, TPS65000x, TPS650061, TPS65070/73
TI	AM335x	TPS65910A/A3, TPS65217/8, TPS650250-Q1 [†]
TI	AM35x	TPS65910, TPS650732-Q1 [†] , TPS65023-Q1 [†]
TI	AM572x	TPS65913, TPS65086x, TPS659037
TI	AM437x	TPS65218
TI	AM37x 800MHz	TPS6595x/30/2x/10, TPS65023-Q1 [†] , TPS650731
TI	AM37x 1GHz	TPS65950A3/x51/x21B1/x10, TPS65023, TPS650731
TI	AM387x	TPS659113
TI	AM389x	TPS659112
TI	RM4x, TMS570	TPS65300/301-Q1 [†] , TPS6531x-Q1 [†] , TPS65381-Q1 [†]
TI	OMAP™3503/15/25/30	TPS6595x/30/2x/10, TPS65073x, TPS65023-Q1 [†]
TI	OMAP3611/21/30	TPS6595x/30/2x/10, TPS65023
TI	OMAP-L132, L137, L138	TPS65910, TPS65023, TPS650061, TPS65070
TI	OMAP4430/60/70	TWL6030/32, TWL6040/41 TPS659119-Q1 [†]
TI	OMAP543x	TWL6040/41, TPS659038-Q1 [†]
TI	Jacinto 3 (DRA5xx)	TPS650732-Q1 [†]
TI	Jacinto 4 (DRA64x)	TPS65911x, TPS659119-Q1 [†]
TI	Jacinto 5 (DRA62x/65x)	TPS65911x, TPS659119-Q1 [†]
TI	Jacinto 6 (DRA72x/74x)	TPS65916, TPS65917-Q1 [†] , TPS659038-Q1 [†]
TI	Galileo (DA10x)	TPS65911x

[†]汽车专用处理器或汽车有资格可用。

可在线获取这些 TI 处理器系列的参考设计。请将这些页面添加到您的收藏夹里,以便找到最新型 DSP 和微处理器系列的新设计。

带有和不带电池充电器的 PMIC 方案: www.ti.com.cn/pmic

TI 电源管理参考设计:

www.ti.com.cn/processorpower

/ L zm 00	00 td 7d F3	
处理器	器件型号	PMIC
Altair	3100/6200	TPS659122
Altera	Cyclone III	TPS65023, TPS65050, TPS650250
Altera	Cyclone IV	TPS65218, TPS650250, TPS65911, TPS65023
Altera	Cyclone V	TPS65086x, TPS65218
Altera	Arria II	TPS65911
Altera	Arria V	TPS65085x
Altera	Arria 10	TPS65085x, TPS650860
Altera	Max II	TPS65000
Altera	Max V	TPS65000
Altera	Max 10	TPS65218
Ambarella	A7L	TPS65217, TPS80032
Ambarella	A12	TPS65912, TPS80032
Ambarella	iOne	TPS65217
Freescale	IMX25	TPS65051/2
Freescale	IMX27	TPS65053, TPS65053-Q1 [†] , TPS659107
Freescale	IMX35/37	TPS650250-Q1 [†] , TPS659107
Freescale	IMX508	TPS659108
Freescale	IMX51	TPS659109
Freescale	IMX53	TPS659106
Freescale	IMX6 Solo/Dual/Quad/ DualPlus/QuadPlus	TPS80032, TPS65912, TPS65911, TPS65910
Freescale	IMX7 Solo/Dual	TPS80032, TPS65912, TPS65911
Freescale	IMX8x	TPS80032, TPS65911
Freescale	UltraLite, UltraLite 2	TPS65910
Freescale [†]	Qorivva (57xx)	TPS65381-Q1 [†] , TPS653850/53-Q1 [†]
Freescale [†]	Qorivva (576x)	TPS65381-Q1 [†] , TPS653850/53-Q1 [†]
Infineon†	Aurix (TC27x)	TPS65381-Q1 [†] , TPS653850/53-Q1 [†]
Marvell	PXA270	TPS65021/2
Marvell	Armada	请咨询TI
Nvidia	Tegra 2	TPS658621/2/3, TPS658640/3, TPS658629-Q1 [†]
Nvidia	Tegra 3	TPS659110/9, TPS659119-Q1 [†]
Nvidia	Tegra 4	TPS65913
Nvidia	Tegra 4 (SP30)	TPS65712x
Nvidia	Tegra K1	TPS65913
Nvidia	i450, i500	TPS659121
Renesas [†]	RH850/V850	TPS65381-Q1 [†] , TPS653850/53-Q1 [†]
Rockchip	RK29	TPS659102
Rockchip	RK30	TPS659102
Rockchip	RK31	TPS80032
三星	S5PV210, S5PC110	TPS659101
三星	S5PC100	TPS659103, LP3974
三星	S5P6440	TPS659104
三星	S5PV310	请咨询TI
三星	Exynos 4210	请咨询TI
STM	SPEAr 300	TPS650532
STM	SPEAr 1310	请咨询TI
Xilinx	Zynq-7000系列	TPS65086x, TPS65218, TPS659110
Xilinx	Spartan 6	TPS650250
Xilinx	Virtex 7	TPS650860
Xilinx	Virtex UltraScale+	TPS650864
Xilinx	Artix 7	TPS650860
Xilinx	Kintex 7	TPS650860
Xilinx	Kintex UltraScale+	TPS650864
汽车去田外押哭:	或汽车有资格可用。	

[†]汽车专用处理器或汽车有资格可用。

电源管理多通道 IC (PMIC) 解决方案 选择指南

汽车 PMIC

器件	V _{IN} (V)	稳压器输 出数量	升压	DC/DC 降压 转换器	DC/DC 降压 控制器	LD0	通信接口	描述	封装	汽车级	价格*
V _{IN} (max) ≤ 20 V											
TPS659038-Q1	3.135 至 5.25	18	_	7	_	11	SPI, 2x I ² C	OMAP54xx 用汽车 PMIC	nFBGA-169	V	8.00
TPS659039-Q1	3.135 至 5.25	13	_	7	_	6	SPI, 2x I ² C	用于 Jacinto 6 和 TDA2x 的汽车 PMIC	nFBGA-169	V	7.60
TPS659119-Q1	2.7 至 5.5	11	_	3	_	8	l ² C, GPIOs	高级 PPMIC, 带内置处理器控制器	HTQFP-80	V	4.49
LP3907	2.8 至 5.5	4	_	2	_	2	I ² C	通用	SMD-25, LLP-24	V	1.10
TPS658629-Q1	2.9 至 5.5	14	是	3	_	11	I ² C	高级 PMIC	nFBGA-169	1	7.00
LM26420	3 至 5.5	2	_	2	_	-	_	双 2.0A 降压	WQFN-16, HTSSOP-20	,	2.05
LM26480	3 至 5.5	2	_	4	_	2	_	双降压,双 LDO	LLP-24	V	1.10
LP8728	4.5 至 5.5	4	_	4	_	_	_	通用	QFN-28	1	1.60
TPS65000-Q1	2至6	3	_	1	_	2	_	通用或 C2834x	QFN-16	1	1.64
TPS65023-Q1	2.5 至 6	6	_	3	_	3	I ² C	6 通道 PMIC	QFN-40	1	3.45
TPS650241/3/4-Q1	2.5 至 6	6	_	3	_	3	I ² C	挠性 6 通道 PMIC	VQFN-32	1	3.04
TPS650250-Q1	2.5 至 6	6	_	3	_	3	_	挠性 6 通道 PMIC	VQFN-32	1	2.57
TPS65051-Q1	2.5 至 6	6	_	2	_	4	_	6 通道 PMIC, LDO 数字电压选择	QFN-32	1	2.05
TPS65053-Q1	2.5 至 6	5	_	2	_	3	_	低成本 5 通道 PMIC, 优化用于 DM355x	QFN-24	1	1.95
TPS650732-Q1	2.8 至 6.3	5	是	3	_	2	I ² C	通用5通道PMIC,带充电器	QFN-48	1	4.25
TPS65917-Q1	2.3 至 7	10	_	5	_	5	l ² C, SPI	用于 ADAS 和可缩放信息娱乐系统的 PMIC, I6Eco 优化电源	BTSSOP-48 PowerPAD ™	•	WEB
TPS652510-Q1	4.5 至 16	3	_	3	_	_	_	通用,带软启动	QFN-40	1	2.10
TPS65251	4.5 至 18	3	_	3	_	_	_	通用,带软启动	QFN-40	1	2.10
V_{IN} (max) > 20 V											
TPS43331-Q1	5 至 30	4	_	_	2	2	I ² C	用于 PMIC 和 DSP 的双降压开关、双 LDO 和高侧 开关	HTSSOP-38	~	3.20
TPS65381-Q1	5.8 至 36	5	_	1	_	4	串行外设接 口(SPI)	PMIC, 带用于保证汽车安全的 MCU 接口	HTSSOP-32	V	2.57
TPS653850-Q1	2.3 至 36	5	_	1	_	4	串行外设接 口(SPI)	PMIC, 带用于保证汽车安全的 MCU 接口和用于 启 - 停支持的降压 / 升压预调节器	HTSSOP-48	,	3.80
TPS653853-Q1	2.3 至 36	5	_	1	_	4	串行外设接 口(SPI)	PMIC(带用于保证汽车安全的 MCU 接口)和预调节器(带用于启 - 停支持的 SAM)	HTSSOP-48	V	3.95
TPS4333x-Q1	2至40	3	是	_	2	_	_	宽输入范围, 升压和降压双控制器系列	HTSSOP-38	1	2.20
TPS65320C-Q1	3.6 至 40	2	_	1	_	1	_	通用宽 Vin 3.2-A 降压和自动供电 280-mA LDO, 带软启动和经济模式™	HTSSOP-14	,	1.60
TPS65321-Q1	3.6 至 40	2	_	1	_	1	_	通用宽 Vin 3.2-A 降压和宽 Vin 280-mA LDO,带软 启动和经济模式™	HTSSOP-14	V	1.75
TPS43340-Q1	4至40	4	_	1	2	1	_	宽输入范围,四轨电源解决方案	HTQFP-48	V	3.75
TPS4335x-Q1	4 至 40	2	_	_	2	_	_	宽输入范围,双同步降压控制器系列	HTSSOP-38	1	2.60
TPS65310A/11-Q1	4 至 40	5	_	2	1	1	串行外设接 口(SPI)	优化用于汽车安全 /ADAS 的 PMIC	QFN-56	~	4.99
TPS65300-Q1	5.6 至 40	4	_	1	_	3	_	PMIC, 带软启动和电压监控器	HTSSOP-24, QFN-24	~	1.98
TPS65301-Q1	5.6 至 40	4	_	1	_	3	_	PMIC, 带软启动与电压监控器	HTSSOP-24, QFN-24	~	2.15
LM25119	4.5 至 42	2	_	_	2	_	_	带相位交错和电流共享的双通道	QFN-32	1	2.60
LM5119	5.5 至 65	2	_	_	2	_	_	带相位交错和电流共享的双通道	QFN-32	1	3.25
LM5140-Q1	3.8 至 65	2	_	—	2	—	_	带相位交错和低 lq 的双通道	QFN-40	~	3.90

^{*} 批量为 1,000 片时的建议转售价格 (单位:美元)。

红色粗体标注的为新器件。蓝绿色粗体标注的为前瞻性产品。

LCD/OLED 显示偏差解决方案

选择指南

大型 LCD(电视尺寸)用集成解决方案

		升压	降压						特征 ¹	
器件	V _{IN} (V)	I _{Limit} (min) (A)	I _{Limit} (min) (A)	隔离开关	V _{GH}	V _{GL}	GVS/ GPM	V _{COM}	其它	价格*
TPS65160/A	12	2.8	2	外部	驱动器	驱动器	_	_		2.14
TPS65161	12	2.8	2.5	外部	驱动器	驱动器	_	_		2.78
TPS65161A	12	3.7	2.5	外部	驱动器	驱动器	_	_		2.78
TPS65161B	12	3.7	2.5	外部	驱动器	驱动器	_	_		2.78
TPS65162	12	2.8	2.8	集成	驱动器	驱动器	是	2个运算 放大器		2.45
TPS65163	12	2.8	1.5	外部	控制器	控制器	是	_	9通道电平转换器,复位生成器	2.32
TPS65168	12	3.5	2.6	集成	控制器	控制器	_	_	用于VCORE、HVDD、VGH温度补偿和复位生成器的I ² C可编程其他降压	2.10
TPS65170	12	2.8	1.5	外部	控制器	控制器	_	_	复位生成器	1.40
TPS65176	12	3.5	2.5	外部	控制器	控制器	_	_		1.00
TPS65178	12	3.5	2.6	集成	控制器	控制器	_	P-VCOM	用于HVDD、VCORE和VEPI、VGH温度补偿、6通道伽马缓冲器的I ² C可编程其他降压	1.90
TPS65177A	12	4.25	2.8	集成	控制器	控制器	是	_	用于VCORE和HVDD、VGH温度补偿的I ² C可编程其他降压	1.90
TPS65175/B	12	3.5	2.6	集成	控制器	控制器	是	P-VCOM, 1个运算 放大器	用于HVDD、VGH温度补偿、6通道伽马缓冲器、复位生成器、12通道电平转换器的I ² C可编程其他降压	2.00

 $^{^{1}}V_{\mathrm{CH}}$ = 正栅极驱动器电源电压: V_{GL} = 负栅极驱动器电源电压:GVS = V_{GH} 的栅极电压整形 GPM = 栅极脉冲调制, V_{COM} = LCD常用电压参考。 *批量为 1,000 片时的建议转售价格(单位:美元)。

中等 LCD (显示器、笔记本电脑、平板设备尺寸)的集成解决方案

							4	持征 ¹				
设备	V _{IN} (V)	升压 I _{Limit} (min) (A)	过压保护	隔离开 关	V _{逻辑}	V _{GH}	V _{GL}	GVS/ GPM	V _{COM}	其它	汽车级	价格*
TPS65100/Q1	2.7至5.8	1.6	是	_	LD0控制器	集成	驱动器	_	1个 缓冲器		~	1.87
TPS65105	2.7至5.8	0.96	是	_	LD0控制器	集成	驱动器	_	1个 缓冲器			1.87
TPS65140/Q1	2.7至5.8	1.6	是	_	LD0控制器	集成	驱动器	_	_	PG生成器	~	1.71
TPS65142	2.3至6	1.8	是	_	_	驱动器	驱动器	是	1个 缓冲器	带XAO生成器,用于WLED驱动器、6通道 WLED驱动器的其他升压		1.35
TPS65145/Q1	2.7至5.8	0.96	是	_	LD0控制器	集成	驱动器	_	_	PG生成器	~	1.71
TPS65146	2.5至6	2	是	_	LD0	外部	是	是	1个 缓冲器	带XAO生成器,LCD放电		1.40
TPS65148	2.5至6	4	是	外部	_	外部	外部	是	1个 缓冲器	带XA0生成器,用于外部伽马缓冲器、高电压应力模式的其他LDO		2.10
TPS65149	3至6	4.0	是	外部	控制器	控制器	_	_	P-VCOM	VGH温度补偿,带RST生成器、高电压应力模式、10通道电平转换器		1.90
TPS65150/Q1	1.8至6	2	是	外部	_	驱动器	驱动器	是	1个 缓冲器		~	1.92
TPS65165	2.5至6	4.4	是	_	_	集成	驱动器	是	2个运 算放大 器,1个 缓冲器	高电压应力模式		1.80
TPS65642/A	2.6至6	2.5	是	集成	降压转换器	升压转 换器	外部	是	P-VCOM, 2个功率 放大器	用于VIO1的I ² C可编程其他降压,用于VIO2、VGH温度补偿的其他LDO,带RST生成器、XAO生成器、14通道10位伽马缓冲器		1.70

 $^{^{1}}V_{CH}$ = 正栅极驱动器电源电压; V_{CL} = 负栅极驱动器电源电压;GVS = V_{GH} 的栅极电压整形 GPM = 栅极脉冲调制, V_{COM} = LCD常用电压参考。 *批量为 1,000 片时的建议转售价格(单位:美元)。

LCD/OLED 显示偏差解决方案

选择指南

小型 LCD 和 AMOLED(智能手机、可穿戴设备、平板电脑大小)用集成解决方案

器件	描述	特性	V _{IN} (min) (V)	V _{IN} (max) (V)	海奉	AV _{DD} I _{Limit} (min) (mA)	AV _{DD} (max) (V)	隔离开关	V _{Logic1} I _{Limit} (min) (A)	V _{Logic1} (min) (V)	V _{GH} ¹ (I _{GH})	V _{GL} ¹ (I _{GL})	其它	封装	汽车级	价格*
TPS65120	4通道单感应器多输出 (SIMO)偏差IC,带固定式 3.3-V V _{Logic}	小形状 因数	2.5	5.5	4 MHz	7.5/25	5.6	内部	LD0控 制器	固定 3.3	集成20V最大 (6mA)	逆变器-18 V最 大 (6mA)	_	QFN-16		1.10
TPS65121	4通道单感应器多输出 (SIMO)偏差IC,带固定式 1.8-V V _{Logic}	小形状 因数	2.5	5.5	4 MHz	7.5/25	5.6	内部	LD0控 制器	固定 1.8	集成20V最大 (6mA)	逆变器-18 V最 大 (6mA)	_	QFN-16		1.10
TPS65130	双正负输出(700mA)	OLED、CCD 传感器	2.7	5.5	1.4 MHz	_	_	外部	_	_	升压15V最大 (0.7A电流限 制)	逆变器-15 V最 大 (0.7A电流 限制)	_	QFN-24		1.30
TPS65131/Q1	双正负输出(1800 mA)	OLED、CCD 传感器	2.7	5.5	1.4 MHz	_	_	外部	_	_	升压15V最大 (1.8 A电流限 制)	逆变器-15 V最 大(1.8 A电流 限制)	_	QFN-24	~	1.63
TPS65631	双输出AMOLED显示器电源	AMOLED	2.9	4.4	1.7 MHz	_	_	内部	_	_	升压固定 4.6 V (300 mA)	逆变器-1.4下 降至-4.4V最大 (300mA)	0.5% Vpos准 确率	QFN-12		1.20
TPS65631W	双输出AMOLED显示器电源	AMOLED	2.9	4.5	1.7 MHz	_	_	内部	_	_	升压固定4.6 V (300 mA)	逆变器-1.4下 降至-4.4V最大 (250 mA)	0.5% Vpos准 确率	QFN-10		1.20
TPS65632A	三输出AMOLED显示器电源	AMOLED	2.9	4.5	1.7 MHz	_	_	内部	_	_	升压固定 4.6 V (300 mA)	逆变器-1.5 下降至-5.4 V 最大(300 mA)	0.5% Vpos准确 率, AVD0固 定7.7V	QFN-16		1.50
TPS65135	正负输出单感应器多输出 (SIMO)	SFF/MFF	2.5	5.5	200 kHz 至 1.8 MHz	-	_	内部	_	_	升压至6V	逆变器降压 至-7V	80mA输出电 流,50%电流不 匹配	QFN-16		1.00
TPS65132	智能手机、平板电脑和通 用双电源用双输出SIMO	SFF/MFF	2.5	5.5	1.8 MHz	_	_	内部	_	_	升压至6V	逆变器降压 至-6 V	80mA输出电 流,100%电流 不匹配,单感 应器	CSP-15		0.95
TPS65132W	智能手机、平板电脑和通 用双电源用双输出SIMO	SFF/MFF	2.5	5.5	1.8 MHz	_	_	内部	_	_	升压至6V	逆变器降压 至-6 V	150mA输出电 流,100%电流 不匹配,单感 应器	QFN-20		1.10
TPS65133	智能手机、平板电脑和通 用双电源用双输出SIMO	SFF/MFF	2.9	5	1.7 MHz	_	_	内部	_	_	升压固定在5V	降压-升压固 定在-5 V	250mA输出电 流,100%电流 不匹配,双感 应器	QFN-12		0.95

LCD支持IC解决方案(扫描驱动器/电平转换器)

			通道数量	ŧ	V _{GH1} ¹	V _{GH2} ¹	V _{GL} ¹						
器件	描述	时钟	放电	其他	(max) (V)	(max) (V)	(max) (V)	V _{COM} 1	GVS/GPM ¹	电荷共 用	其它	封装	价格*
TPS65192	LCD显示器用10通道电平转换器	6	1	3	38	38	-13	_	是	_		QFN-28	1.40
TPS65194	LCD显示器用13通道电平转换器	6	1	6	38	38	-15		是	_	集成状态机	QFN-24	0.80
TPS65193	LCD显示器用5通道电平转换器 (双通道扫描驱动器)	2对	_	1	35	_	-28	_	_	是		QFN-24	0.80
TPS65196	LCD显示器用15通道电平转换器	8	1	6	38	38	-23	_	是	_	集成状态机, 软 启动	QFN-28	0.80
TPS65198	LCD显示器用13通道电平转换器	6	1	6	38	38	-23	1个运算 放大器	是	_	集成状态机	QFN-28	1.00
TPS65197	LCD显示器用10通道电平转换器	6	2	2	45	_	-20	_	_	是		QFN-28	1.00

 $^{^{7}}$ VGH = 正栅极驱动器电源电压:VGL = 负栅极驱动器电源电压:GVS = VGH, 的栅极电压整形 GPM = 栅极脉冲调制,VCOM = LCD 常用电压参考。

^{*}批量为1,000片时的建议转售价格(单位:美元)。

^{*}批量为1,000片时的建议转售价格(单位:美元)。

LCD/OLED 显示偏差解决方案

选择指南

电子阅读器解决方案

器件1	V _{IN} (V)	LD0 1	LD0 2	充电 泵1	充电泵2	应用	通信接口	V _{Com} 调整	有源放电	带TPS65181/2 的P2P	封装	价格*
TPS65185	3至6	15 V, 120 mA	-15 V, 120 mA	22 V, 10 mA	–20 V, 12 mA	Active Matrix E Ink [®] Vizplex [®] 面板电源	I ² C	用户可设置 (内部)	是	否	QFN-48 (0.5 mm 7x7 or 0.4 mm 6x6)	1.75
TPS65186	3至6	15 V, 120 mA	-15 V, 120 mA	22 V, 10 mA	–20 V, 12 mA	Active Matrix EInk® Vizplex® 面板电源	I ² C	用户可设置 (内部)	否	是	QFN-48 (0.5 mm 7x7)	1.75

¹有关更多规格,请参见数据库。

伽马缓冲器

通道	0-V _{Com} 通道	1-V _{Com} 通道	2-V _{Com} 通道
22 (+2静态)			BUF22821
18		LM8207	BUF18830, BUF20800, BUF20820
16			BUF16821
14			BUF16820
12	BUF12800, BUF12840		
10		BUF11702/4/5	

通道	0-V _{Com} 通道	1-V _{Com} 通道	2-V _{Com} 通道
8		BUF08821, BUF08832, BUF08630	
7		BUF08800	
6	BUF06703	BUF07702/3/4	
4	BUF04701	BUF05703, BUF05704	
0		BUF01900	

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

LED驱动器

概述

设计因素

点校正 — 可产生均匀一致的 LED 亮度提供输出电流的动态控制能力。

灰度调整 一 可为每个 LED 提供扩展的色谱,等同于可用灰阶数。

输出电压监视器 — 可监视恒定电流输出终端的电压,以检测 LED 是否存在故障和短路情况。

LED 开路检测 — 可指示某个输出终端上 是否存在破损或断开连接的 LED。 过热错误标记 一 可指示过热的状况。

看门狗定时器 —当扫描信号停止时可关闭输出。

热关断一当结温超过其限值时可关闭输出。

LED驱动器功能指南

多画道		TPS61150/1 ~14 WLEDs, 2 x 35 mA, V _{OUT} (最大值) = 27 V, V _{IN} = 2.5 至 6.0 V	TPS61185 -80 WLEDs, 8 x 25 mA, V _{OUT} (最大值) = 38 V, V _{IN} = 4.2 至 24 V TPS61183 -80 WLEDs, 6 x 30 mA, V _{OUT} (最大值) = 38 V, V _{IN} = 4.5 至 24 V LM3532 30 LEDs, 3 x 30 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.7 至 5.5 V LM3630 20 LEDs, 2 x 28 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.3 至 5.5 V LM3533 20 LEDs, 2 x 30 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.3 至 5.5 V	TPS61176 60 LEDs, 6 x 30 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.7 至 6.5 V LP8553 40-44 WLEDs, 4 x 55 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.7/4.5 至 22 V LP8545 40-44 WLEDs, 4 x 55 mA, V _{OUT} (最大值) = 40 V,* V _{IN} = 2.7/4.5 至 22 V *55 V with external FET	TPS61196 120 LEDs, 6 x 200 mA*, V _{OUT} (最大值) = 120 V, V _{IN} = 8 至 30 V *连续电流(400-mA脉冲) TPS61199 ~120 WLEDs, 8 x 80 mA, V _{OUT} (最大值) = 60 V, V _{IN} = 4.5 至 21 V TPS61195 ~96 WLEDs, 8 x 30 mA, V _{OUT} (最大值) = 45 V, V _{IN} = 4.5 至 21 V LP8856 60 LEDs, 6 x 30 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.7 至 6.5 V
東運車	TPS61166 -3s3p WLEDs, 300 mA, V _{OUT} (最大值) = 18 V, V _{IN} = 2.5 至 10 V TPS61060 -3 WLEDs, 40 mA, V _{OUT} (最大值) = 14 V, V _{IN} = 2.7 至 6.0 V TPS61061 -4 WLEDs, 30 mA, V _{OUT} (最大值) = 18 V, V _{IN} = 2.7 至 6.0 V	TPS61062 -5 WLEDs, 25 mA, V _{OUT} (最大值 = 23 V, V _{IN} = 2.7 至 6.0 V TPS61160 -6 WLEDs, 20 mA, V _{OUT} (最大值 = 26 V, V _{IN} = 2.7 至 18 V	TPS61500 -12 WLEDs, 3.8 A, V _{OUT} (最大值) = 38 V, V _{IN} = 2.9 至 18 V LM3530 10 LEDs, 1 x 30 mA, V _{OUT} (最大值) = 40 V, V _{IN} = 2.7 至 5.5 V	TPS61165 -27 WLEDs, 3s9p, 350 mA, V _{OUT} (最大值) = 38 V, V _{IN} = 3.0 至 18 V TPS61161 ~10 WLEDs, 20 mA, V _{OUT} (最大值) = 38 V, V _{IN} = 2.7 至 18 V	
	2	0 30		40) 60
			过压保护,V _{OUT} 最大值(V)		

LED 驱动器 选择指南

背光 WLED 驱动器

器件	V _{IN} (V)	回作	类型	LED 数量 ¹	OLED 能力	LED 配置	开关电流限值 (典型)(mA)	电流调节	过压保护 (最低)(V)	輸出电容器	关断期间 负荷断开	调光。	峰值频率 3 (%)	静态电流 (典型)(mA)	关闭电流 (典型)(pA)	封装	汽车级	价格*
TPS61041	1.8 至 6.0		电感	4		串联	250		否	1 μF		是	85	0.028	0.1	S0T-23	~	0.60
TPS61040	1.8 至 6.0		电感	6		串联	400		否	1 μF		是	86	0.028	0.1	S0T-23	~	0.60
TPS61043	1.8 至 6.0		电感	4		串联	400	~	17	100 nF	~	是	85	0.038	0.1	QFN-8		0.60
TPS61042	1.8 至 6.0		电感	6		串联	500	~	27.5	100 nF	V	是	85	0.038	0.1	QFN-8		0.60
TPS61045	1.8 至 6.0		电感	6	~	串联	375	~	28	100 nF	v	是	85	0.040	0.1	QFN-8		0.65
TPS61046	1.6 至 5.5		电感	_	~	_	900		28	2.2 µF	~	_	87	0.1	_	WCSP-6		0.70
TPS61140	2.5 至 6.0	~	电感	4 + 1 OLED	~	2个串联	2 x 550	~	28	_		1 引脚	82	2	1.5	QFN-10		1.00
TPS61150A	2.5 至 6.0	~	电感	最多2x6		2个串联	2 x 550	~	28	_		1个引脚	83	2	1.9	QFN-10		1.00
TPS61166	2.5 至 6.0	~	电感	5		串联	1100 ⁴	1	19	4.7 μF	~	是		1.5	1	QFN-10		1.35
TPS61160	2.7 至 18		电感	6		串联	700	~	26	1 μF		1个引脚	90	1.8	1	QFN-6		0.72
TPS61161	2.7 至 18		电感	10		串联	700	~	38	1 μF		1个引脚	90	1.8	1	QFN-6	~	0.76
TPS61165	3.0 至 18		电感	10至40		串联	1200	~	38	1 μF		1个引脚	90	2.3	1	QFN-6	~	1.10
TPS61169	2.7 至 5.5		电感	27		串联	1800	~	36	1 μF		1个引脚	90	.3	1	SC70		0.32
TPS61060	2.7 至 6.0	~	电感	3		串联	400	~	14	220 nF		是	80	<1	1	QFN-8/WCSP-8		0.70
TPS61061	2.7 至 6.0	~	电感	4		串联	400	1	18	220 nF		是	80	<1	1	QFN-8/WCSP-8		0.70
TPS61062	2.7 至 6.0	~	电感	5		串联	400	~	22	220 nF		是	80	<1	1	QFN-8/WCSP-8		0.70
REG71050	3.2 至 5.5		充电泵	3		并联	_		_	2.2 μF		否	92	0.065	0.01	S0T-23		0.55
TPS60230	2.7 至 6.5		充电泵	5, 3		并联	_	~	_	1 μF		是	85	0.200	0.1	QFN-16		0.48
TPS60250/5	2.7 至 6.0		充电泵	7		并联	_	~	_	4.7 μF		I ² C	_	6.7	1.3	QFN-16		0.80
TPS60251	3.0 至 6.0		充电泵	7+Aux		并联	_	~	_	4.7 μF		I ² C	_	6.7	1.3	QFN-24		0.80
TPS75103	2.7 至 5.5		LD0	2或4		并联	_	~	_	_		是	_	0.18	0.1	WCSP-9		0.65
TCA6507	1.65 至 3.6		并联	7		并联	_	-	_	_		_	_	_	_	WCSP-12/QFN-12		0.80
TPS61183	4.5 至 24		电感	10 x 6		6 通道	2000	~	38	10 μF		是	95	4	11	QFN-20		1.85
TPS61185	4.2 至 24		电感	10 x 8		8 通道	2000	~	38	10 μF		是	94	<3	<10	QFN-24		1.80
TPS61193	4.5 至 40		电感	36		3P12S	1800	~	45	20 μF		PWM	92	5	4.5	HTSSOP-20	~	1.00
TPS61194	4.5 至 40		电感	48		4P12S	1800	~	45	20 μF		PWM	92	5	4.5	HTSSOP-20	~	1.00
TPS61195	4.5 至 21		电感	8 x 10		10 通道	3500	~	50	10 μF		是	95	<3	<10	QFN-28		1.95
TPS61176 TPS61199 ⁵	2.7 至 6.5 8 至 30		电感电感	6 x 10/11 15 x 8		8 通道	1000 5000	V	38	4.7 μF 3 x 33 μF		混合模式	90	<3 <1.5	<4 <10	QFN-16 SOP-20/ HTSSOP-20		1.10
LP8543	4.5 至 22		电感	7 x 10		7P10S	2500	V	V _{BOOST} + 1.6 V	4.7, 10 μF		PWM、I ² C、	92	<3.5 , 升压 打开	_	QFN-24		2.30
TPS61196	8至30		电感	20 x 6		6 通道	_	V	38	100 μF		PWM	96	<1.5	<15	HTSSOP-28		1.85
LP8545	4.5 至 22		电感	6 x 10		6P10S	2500	~	V _{BOOST} + 1.6 V	4.7, 10 μF		PWM、I ² C	95	<4,升压打 开	_	QFN-24		0.99
LP8550	4.5 至 22		电感	6 x 10		6P10S	2500	~	V _{BOOST} + 1.6 V	4.7, 10 μF		PWM、I ² C	95	<3, 升压打 开	_	微 SMD-25		0.82
LP8553	4.5 至 22		电感	4 x 10		4P10S	2500	~	V _{BOOST} + 1.6 V	4.7, 10 μF		PWM、I ² C	95	<3, 升压打开	_	微 SMD-25		0.82
LP8556	2.7 至 20		电感	6 x 10		6P10S	2600	~	V _{BOOST} + 1.6 V			PWM、I ² C	95	2.2	_	Micro SMD-25/ QFN-24		0.95
LP8557	2.7 至 5.5		电感	6 x 10		6P7S	1800	~	V _{B00ST} + 1.6 V			PWM、I ² C	95	2.2	_	WCSP-16		0.82
LP8860	3至40		电感	6 x 12		6P12S	9000	~	48	10µF		PWM、I ² C	92	2.5	1	HLQFP-32	1	1.45
LP8861	4.5 至 40		电感	4 x 12		4P12S	1800	~	45	20 μF		PWM	92	5	4.5	HTSSOP-20	1	1.00
LP8862	4.5 至 40		电感	2 x 12		2P12S	1800	~	45	20 μF		PWM	92	5	4.5	HTSSOP-20	1	1.00
LM3528	2.5 至 5.5		电感	12	~	2P6S	770	~	19.25	1 μF	V	PWM、I ² C	85	0.25	1.8	WCSP-12		1.00
LM3530	2.7 至 5.5		电感	11		10 个串联	839	~	40	1 μF	V	PWM、I ² C	88	1.35	1	WCSP-12		0.47
LM3532	2.7 至 5.5		电感	30		3P10S	1000	~	40	1 μF	V	PWM、I ² C	87	1.35	1	WCSP-16		0.45

¹ 采用并联串配置时可驱动更多的 LED。 ² 可通过 ENABLE 引脚、CONTROL 引脚或模拟反馈网络来实现。 ³ 取决于 LED 电流、输入电压、LED 的数量、ILED 引脚。

⁴ 輸出电流被限制为 300mA。 5 需要外部 FT。 * 批量为 1,000 片时的建议转售价格(单位:美元)。

LED驱动器

选择指南

背光 WLED 驱动器(续)

器件	V _{IN} (V)	宣	类型	LED 数量 1	OLED 能力	LED 配置	开关电流限值 (典型)(mA)	电流调节	过压保护 (最低)(V)	输出电容器	关断期间 负荷断开	调光2	峰值频率 ³ (%)	聯态电流 (無型)(mA)	关闭电流 (典型)(pA)	封装	汽车级	价格*
LM3533	2.7 至 5.5		电感	22		2P10S	1000	~	40	1 μF	~	PWM、I ² C	87	_	_	WCSP-20		0.70
LM3535	2.7 至 5.5		充电泵	8		8P	_	~	_	1 µF	~	I ² C	92	1.1	1.7	WCSP-20		0.65
LM3537	2.7 至 5.5		充电泵	8		8P	_	~	_	1 μF	~	I ² C	92	1.1	0.2	WCSP-30		0.85
LM3538	2.7 至 5.5		充电泵	8		8P	_	~	_	1 μF	~	I ² C	92	1.1	0.2	WCSP-30		0.80
LM36272	2.5 至 5.0		电感	16		2P8S	1800	~	27	1 μF	~	PWM、I ² C	92	5	2.8	WCSP-24		1.20
LM36273	2.5 至 5.0		电感	24		3P8S	1800	V	27	1 µF	~	PWM、I ² C	92	5	2.8	WCSP-24		1.20
LM36274	2.5 至 5.0		电感	24		4P8S	1800	~	27	1 μF	~	PWM、I ² C	92	5	2.8	WCSP-24		1.20
LM3630	2.7 至 5.5		电感	20		2P10S	1200	~	40	1 μF	~	I ² C	90	_	1.8	WCSP-12		0.36
LM3631	2.7 至 5.0		电感	16		2P8S	900	V	28.8	2.2 µF	~	PWM、I ² C	92	0.06	1	WCSP-24		1.20
LM36922	2.5 至 5.5		电感	16		2P8S	1500	V	28	1 µF	~	PWM、I ² C	92		1.2	WCSP-12		0.45
LM36922H	2.5 至 5.5		电感	22		2P11S	1500	V	28	1 μF	~	PWM、I ² C	92		1.2	WCSP-12		0.45
LM36923	2.5 至 5.5		电感	24		3P8S	1500	~	28	1 μF	~	PWM、I ² C	92		1.2	WCSP-12		0.45
LM36923H	2.5 至 5.5		电感	33		3P11S	1500	~	28	1 µF	~	PWM、I ² C	92		1.2	WCSP-12		0.45
LM3697	2.7 至 5.5		电感	21		3P7S	1000	V	40	1 µF	~	I ² C	90	_	1.8	WCSP-12		0.40
LM2756	2.7 至 5.5		充电泵	8		8P	_	V	_	1 μF	~	I ² C	92	2.1	3.7	WCSP-20		1.40
LM8502	2.7 至 5.10	~	电感	10		10P	_	~	_	10 μF	V	I ² C	_	_	_	WCSP-30		1.50
TPS61046	1.8 至 5.5		电感	_	~	_	900		28	2.2 μF	~	_	87	0.1	_	WCSP		WEB

红色粗体标注的为新器件。

器件	通道数量	V _{IN} 最小 (V)	V _{IN} 最大 (V)	输出电流 I _{LED} (mA)	通道间准确率(%)	器件间 准确率(%)	短路检测	开路检测	过热检测	评论	价格*
LED驱	列										
TLC596	8	10	28	350 ¹	0.3	± 1	V	V	V	4 iHVM™输出、4 PWM控制,外部FET	1.10

¹外部FET限制了 TLC5960 的輸出电流 *批量为 1,000 片时的建议转售价格(单位:美元)。

器件	典型 功率 等级	拓扑结构	最大 实际 频率 (kHz)	启动 电流 (µA)	工作 电流 (mA)	电源 电压 (V)	UVLO: 开/关 (V)	最大占空 比 (%)	软 启动	输出驱动 (汲取/ 供应) (A)	封装	价格*
LDO控制器	K C											
UCC25600	200 W 至 1 kW	半桥	350	100	7.5	11.5至18	11.1/8.9	变量	V	0.4/0.8	8-SOIC	0.80
UCC25710	80 W 至 500 W	半桥	300	_	_	12至18	10/8.5	_	~	0.4/0.8	20-S0IC	1.50

注:UCC2xxx 器件为 UCC3xxx 器件的扩展温度范围版本。 * 批量为 1,000 片时的建议转售价格(单位:美元)。

[「]采用并联串配置时可驱动更多的 LED。 ² 可通过 ENABLE 引脚、CONTROL 引脚或模拟反馈网络来实现。 ³ 取决于 LED 电流、输入电压、LED 的数量、ILED 引脚。

⁴ 輸出电流被限制为 300mA。 5 需要外部 FET。 * 批量为 1,000 片时的建议转售价格(单位:美元)。

LED驱动器

RGB/指示器驱动器

RGB/指示器概述

TI 指示器 /RGBW 解决方案将重点放在交货指示、可设置 LED 闪烁率和边缘、自主 LED 控制以及 LED 电源上,以满足如今对 LED 日益 增长的空间需求。不管您需要多通道设备来独立控制多个 LED, 还是 RGB 色彩和序列效果, TI 都能为您提供解决方案。指示器 /RGB LED 能够通过个人电子产品、家庭自动化和可穿戴产品中的简单色彩通知或模式动画来增强终端用户体验。

RGB/指示器驱动器解决方案

器件	V _{IN} (V)	类型	LED数量 ¹	LED配置	电流调节	关断期间 负荷断开	调光 ²	封装	价格*
LP5560	2.7 至 5.5		1	1P	V	~	1个引脚	4 DSBGA	0.29
LP5522	2.7 至 5.7		1	1P	·	V	1个引脚	WCSP-06	0.40
LP5521	2.7 至 5.6	充电泵	3	3P	V	V	I ² C	WCSP-20	0.40
LP5562	2.7 至 5.5		4	4P	V		I ² C	12 DSBGA	0.27
LP5524	2.7 至 5.9		4	4P	v	V	PWM	WCSP-09	0.60
LP3944	2.3 至 5.5		8	8P			SMBUS/I2C	24 WQFN	0.90
LP5523	2.7 至 5.8	充电泵	9	9P	V	~	I ² C	WCSP-25	0.85
LP55231	2.7 至 5.8	充电泵	9	9P	V	V	I ² C	24 WQFN	0.75
LP55281	2.7 至 5.5	电感	12	12P	V		I ² C	36 DSBGA	0.90
LP3943	2.3 至 5.5		16	16P			SMBUS/I ² C	24 WQFN	0.84

[「]采用并联串配置时可驱动更多的 LED。 ² 可通过 ENABLE 引脚、CONTROL 引脚或模拟反馈网络来实现。 *建议转售价格以美元计算,以每千台为单位销售

LED 驱动器

看板/线性概况

TI 的看板和线性 LED 驱动器为要求多通道驱动器的应用提供了恒定的电流槽、RGB 和 / 或白色 LED 灯驱动器。

看板 LED 点矩阵显示驱动器

TI 引领着 LED 看板驱动器市场,拥有世界上首批 48 通道驱动器 (参见下一页的主打设备)。TLC592x/4x/5x 系列驱动器 LED 点矩阵在 LED 看板应用中显示体育场录像 / 计分显示屏、路边广告和车站 / 机场信息台。TLC592x 系列采用简单的开 / 关控制,实现灵活的系统设计,配有高功率图像处理器,而 TLC594x/5x 系列采用集成 PWM 发生器,来降低控制器的功率。

德州仪器的 LED 驱动器用于全球各地的视频 显示器。

RGB 和白色 LED 架构/照度线性驱动器

TLC597x 系列支持非典型 LED 点矩阵显示应用,如彩虹色墙壁照明/建筑装饰、LED "网"显示器和 RGB LED 照明等。

看板LED驱动器示例

了解更多信息: www.ti.com.cn/signage

Texas Instruments 电源管理指南 2016 │ 69

LED驱动器 选择指南

看板/线性

有似/线性	_											_					
器件 TL4242	通道数量	V _{IN} 最小 (V)	V _{IN} 最大 (V)	输出电流 I _{LED} (mA)	通道间 准确率 (%)	器件间 准确率 (%)	充电后的 PET		开路检测	过热检测	亮度控制 (比特)	点校正(比特)	PWM 灰度控制 (比特)	サロサ	评论	、汽车级	价格*
TPS92630-Q1	3	4.5 5	42 40	500 150	± 1.5%	± 2.5%		7	V	~				_	高侧电流感测、全诊断和支持	V	0.35 0.90
TPS92638-Q1	8	5	40	70	± 1.3%	± 2.3 %		V	,	,				_	"一损俱损" 高侧电流感测、全诊断和支持 "一损俱损",一次	<i>v</i>	1.20
TLC6C598-Q1	8	3	5.5	50	_	_								串联	带 40V 击穿电压的 8 位移位寄	~	0.34/0.38
TLC6C5912-Q1	12	3	5.5	50	_	_								串联	存器 带 40V 击穿电压的 12 位移位 寄存器	~	0.50/0.54
TLC6C5712-Q1	12	3	5.5	75	± 3%	± 3%		~	~	~		8		串行外设 接口(SPI) 串行外设	寄存器 带8位点校正的12通道、全 诊断、恒定电流LED驱动器	~	1.20
TLC5916	8	3.3	5.5	120	±3(最大)	±6(最大)			v	•	8			串行外设 接口(SPI) 串行外设		•	0.47
TLC5917	8	3.3	5.5	120	±3(最大)	±6(最大)		~	~	~	8			串行外设 接口(SPI)		~	0.60
TLC59108 TLC59108F TLC59208F TLC59116 TLC59116F	8 8 8 16 16	3 3 3 3	5.5 5.5 5.5 5.5 5.5	100 100 50 100 100	±3(最大) ±3(最下大) ±3(最下大) ±3(最大) ±3(最大)	=			2222	7777	8 8 8 8		8 8 8 8	接口(SPI)	恒定电流输出 开漏输出,可设置 I ² C 地址 恒定电流输出 开漏输出,可设置 I ² C 地址 恒定电流输出 开漏输动动能,以及用于数据锁 明确的功能,以及用于数据锁	v	0.80 0.80 0.65 1.45 1.45
TLC59210	8	3	5.5	200	_	_								并联	存器的表针 人名		0.60
TLC59211 TLC59212 TLC59213/A	8 8 8	3 3 3	5.5 5.5 5.5	200 40 -500	_ 	_ _ _								并联 并联 并联	"A"版有 15 ns (非 "A"版为		0.55 0.48 0.70
TLC5921	16	4.5	5.5	80	±1	±4(最大)			V	V				串行外设	25 ns)		1.25
TLC5922	16	3	5.5	80	±1	± 4						7		接口(SPI) 串行外设 接口(SPI)			1.35
TLC5923	16	3	5.5	80	±1	± 4			v	~		7		串行外设 接口(SPI)			1.40
TLC5924	16	3	5.5	80	±1	± 4	~		~	~		7		串行外设 接口(SPI)			1.50
TLC5925	16	3	5	45	±4(最大)	±6(最大)				~				串行外设 接口(SPI)			0.50
TLC59025	16	3	5	45	±4(最大)	±6(最大)				~				串行外设 接口(SPI)			0.55
TLC5926	16	3	5.5	120	±6(最大)	±6(最大)			~	~	8			串行外设 接口(SPI) 串行外设		~	0.60
TLC5927	16	3	5.5	120	±6(最大)	±6(最大)		~	~	~	8			串行外设 接口(SPI) 串行外设		~	0.65
TLC5928	16	3	5.5	35	±1	±1			~	~				接口(SPI) 串行外设			0.50
TLC59281	16	3	5.5	35	±1	±1								接口(SPI) 串行外设			0.43
TLC59283	16	3	5.5	45	± 1.4	±2	~							接口(SPI) 串行外设	4 通道群组延迟		0.55
TLC59284	16	3	5.5	45	± 1.4	±2								接口(SPI) 串行外设	4 通道群组延迟		0.45
TLC5929	16	3	5.5	50	±1	±2		~	~	~	7			接口(SPI) 串行外设	远程控制系统全部保护/监控		0.85
TLC5940	16	3	5.5	120 ¹ /60 ²	±1	± 2/–2.7			~	~		6	12	接口(SPI) 串行外设			1.20
TLC59401	16	3	5.5	120 ¹ /80 ²	±1	+2/-2.7			~	~		6	12	接口(SPI) 串行外设			1.20
TLC5941	16	3	5.5	80	±1	+2/-2.7			~	~		6	12	接口(SPI) 串行外设 接口(SPI)		~	0.95
TLC5942	16	3	5.5	50	± 1.5	±3			~	•	7	7	40-3	出行外设	4哺鱼群组业水。LED 开放目		1.00
TLC5943	16	3	5.5	50	± 1.5	±3				<i>V</i>	7	E	10E	接口(SPI) 串行外设	动关闭 4 通道群组延迟,LED 开放自 动关闭		1.20
TLC5944 TLC5945	16 16	3	5.5 5.5	60 80	±1 ±1	± 3 +2/-2.7	~			<i>V</i>		6	12 12	接口(SPI) 串行外设	动关闭		1.05
TLC5945	16	3	5.5	40	±1	+2/-2.7 ± 2			v	V		6	12	接口(SPI) 串行外设	4.通道群组延迟,LED 开放自		0.95
TLC59461	16	3	5.5	40	±1	± 2			v	,		6	12	132 I I (\(\text{P} \)	x71 x1		0.95
TLC5947	24	3	5.5	30	± 2	±2				v			12	串行外设 接口(SPI) 串行外设	30-V V _{LED} , 内部振荡器		1.95
TLC5948A	16	3	5.5	60 ¹ /45 ²	± 0.6	±1		v	v	,	7	7		接口(SPI) 串行外设	远程控制系统全部保护 / 监控		1.30
000 -10 A			0.0	00 / 10	± 0.0	- 1					_ ′	<u>'</u>	102/0	接口(SPI)	たっこうエック ハシルエ HP ハリ・/ 血江		1.00

红色粗体标注的为新器件。

LED驱动器

选择指南

看板/线性(续)

器件	通道数量	V _{IN} 最小 (V)	V _{IN} 最大 (V)	输出电流 I _{LED} (mA)	通道间 准确率 (%)	器件间 准确率 (%)	充电后的 PET	短路检测	开路检测	过热检测	亮度控制 (比特)	点校正(比特)	PWM 灰度控制 (比特)	サロサ	评论	汽车级	价格*
TLC59482	16	3	5.5	45 ^{1/} 35 ²	± 1	± 2					6		16E ³	串行外设 接口(SPI)	4 通道群组延迟		1.15
TLC5949	16	3	3.6	45	± 0.6	± 1		~	~	~	7		12E/C ³	串行外设接口(SPI)	远程控制系统全部保护/监控		1.25
TLC5951	24	3	5.5	40	± 1.5	±3		~	~	~	8	7	12, 10, 8	串行外设 接口(SPI)	用于 8 个 RGB LED 灯		1.55
TLC5952	24	3	5.5	35	± 1	± 3		~	~	~	7			串行外设 接口(SPI)	用于 8 个 RGB LED 灯		1.35
TLC5954	48	3	3.6	34.9	± 1	± 2		~	v		MC 3, BC 7 ³			串行外设 接口(SPI)	参考删除;省电模式		2.40
TLC5955	48	3	5.5	31.9	± 2	± 2		~	~		MC 3, BC 7 ³	7	16	串行外设 接口(SPI)	参考删除;低拐点电压		2.85
TLC5957	48	3	5.5	25	± 1	± 2	~		~	~	BC 3, CC 9 ³		9-16	串行外设 接口(SPI)	低拐点电压;去除履带;LGSE		2.85
TLC5958	48	3	5.5	25	± 1	± 1	~		~	~	BC 3, CC 9 ³		16	串行外设 接口(SPI)	集成 SRAM; LGSE		4.50
TLC59581	48	3	5.5	25	± 1	±1	~		v	~	BC 3, CC 9 ³		16	串行外设 接口(SPI)	集成 SRAM; LGSE		4.50
TLC5971	12	3	17	60	± 1	± 1				~	7		16E ³	串行外设 接口(SPI)	用于 PWM 的集成 LDO 和振荡器		1.20
TLC59711	12	3	17	60	± 1	±1				~	7		16E ³	串行外设 接口(SPI)	用于 PWM WDT 的集成 LDO 和振荡器		1.30
TLC5973	3	3	6	50	± 0.5	± 0.5							12	单线	分路调节器,内部 PWM 时钟		0.45
TLC59731	3	3	6	50	_	_							8	单线	开漏输出、分路调节器、内部 PWM 时钟		0.28

红色粗体标注的为新器件。

LED照明-亮度

	偏置	电源				æ								
	V _{CC} (最低)	V _{CC} (最低)	LED电压 (最低)		DC/DC 或AC/	离应用	非獨 內知							
器件	(V)	(V)	(V)	开关频率	DC控制	聖	平位	拓扑结构	LED配置	调光	PFC	EVM	封装	价格*
AC/DC高亮度	LED引	^図 动器												
TPS92410	9.5	450	可配置	_	AC/DC		~	线性	串联	TRIAC、TE、 模拟	~	~	13 SOIC	0.65
TPS92411	7.5	100	可配置	_	AC/DC		~	开关	串联	TRIAC, TE	~	~	5 S0T23, 8 HS0P	0.23
TPS92561	6.5	42	可配置	调整: 50 kHz 至 500 kHz	AC/DC		~	升压	串联	TRIAC, TE	~	~	8 HVSSOP	0.50
TPS92074	11	18	可配置	调整: 50 kHz 至 300 kHz	AC/DC		~	降压	串联	外部	~		6 SOT, 8 SOIC	0.35
TPS92075	11	18	可配置	调整: 50 kHz 至 300 kHz	AC/DC		~	降压	串联	TRIAC, TE	~	~	6 SOT, 8 SOIC	0.40
LM3447	7.5	17.5	可配置	68 kHz	AC/DC	~	~	反激/降压升压	串联	TRIAC、TE、 模拟	•	•	14 TSSOP	0.50
TPS92023	11.5	18	可配置	调整: 40 kHz 至 380 kHz	DC/DC	~	~	谐振半桥	多串	_			8 SOIC	0.65
TPS92315	9	35	可配置	调整: 1 kHz至130 kHz	AC/DC	~	~	反激	串联	外部		~	6 S0T23	0.35
TPS92560	6.5	42	可配置	调整: 50 kHz 至 500 kHz	AC/DC, DC/DC		~	升压	串联	外部	~	~	10 HVSSOP	0.72
TPS92314/14A	13	35	可配置	调整: 60 kHz 至 150 kHz	AC/DC	~	~	反激/降压	串联	外部	~	~	8 SOIC	0.40
TPS92310	13	36	可配置	调整: 60 kHz 至 150 kHz	AC/DC	~	~	反激/降压	串联	外部	V	~	10 VSSOP	0.40
LM3450/50A	8.5	20	可配置	调整: 60 kHz 至 120 kHz	AC/DC	~	~	反激/升压	串联	TRIAC, TE	~	~	16 TSSOP	1.00
TPS92210	9	20	可配置	调整: 26 kHz至 140 kHz	AC/DC	~	~	反激	串联	TRIAC	V	~	8 SOIC	0.60
LM3444	8	13	可配置	调整: 30 kHz 至 300 kHz	AC/DC	~	~	反激/降压/升压/ 降压-升压 反激/降压/升压/	串联	外部	~	~	10 VSSOP, 8 SOIC	0.35
LM3445	8	12	可配置	调整: 30 kHz 至 300 kHz	AC/DC	~	~	反激/降压/升压/ 降压-升压	串联	TRIAC, TE	~	~	10 VSSOP, 14 SOIC	0.40
UCC28810	15.4	18	可配置	调整: 5 kHz 至 250 kHz	AC/DC	~	~	反激/升压/降压	串联	外部	~	~	8 SOIC	0.32
UCC28811	12	18	可配置	调整: 5 kHz 至 250 kHz	AC/DC	~	~	反激/升压/降压	串联	外部	~	~	8 SOIC	0.32

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

 $^{^1}$ 输出电流 $V_{CC} > 3.6$ V_{\circ} 2 输出电流 $V_{CC} > 3.6$ V 3 16E =16位增强谱PWM。16E/C 或12E/C = 16位或12位增强谱或传统PWM可选。MC = 最大电流控制,BC = 全亮度控制,CC = 组色彩亮度控制。*批量为 1,000 片时的建议转售价格(单位:美元)。

LED 驱动器 选择指南

LED 照明 - 亮度(续)

בבט את יאו										
设备		输入电压 范围(V)	最大输出电 压 (V)	串联 LED 最 大数量	开关频率	拓扑结构	特性	封装	汽车级	价格*
DC/DC 高亮度	LED 驱动	器								
TPS92515/515HV	2.0	5.5 至 42/65	39/62	12/20	调整:50 kHz 至 2 MHz	降压	高侧感测,支持分流 FET 调光,无需外部环路补偿, PWM 和模拟调光,不支持输出电容	10 HVSSOP	V	0.52/0.73
TPS92691	5	4.5 至 65	60	20	程序:80 kHz 至700 kHz	升压、降压 - 升压、 SEPIC、降压、 反激、Cuk	高侧或低侧电流感测、LED 电流监控输出(IMON)、PWM 与模拟调光、可同步频率、支持故障报告	16 HTSSOP	,	0.80
TPS92513/513HV	1.5	4.5 至 42/60	40/58	12/17	程序:100 kHz 至 2 MHz	降压	电流模式控制、PWM 和模拟调光、 频率同步	10 HVSSOP		0.45/0.60
TPS92512/512HV	2.5	4.5 至 42/60	40/58	12/17	程序:100 kHz 至 2 MHz	降压	电流模式控制、PWM 和模拟调光、 频率同步	10 HVSSOP		0.55/0.80
TPS92690	5	4.5 至 75	75	22	程序: 200 kHz 至 2 MHz	升压、SEPIC、 Cuk、反激	可同步固定频率,带低侧感测电阻 和过压保护,PWM 和模拟调光	16 HTSSOP	~	1.25
TPS92661-Q1	2	4.5 至 60	_	12	_	开关	12 通道 LED 矩阵控制器,带 LED 开路/短路检测和保护、UART 串联通信接口	48 HTQFP	,	3.70
TPS92511	0.5	4.5 至 65	65	18	程序:50 kHz 至500 kHz	浮动降压	脉冲级调制方法、无需外部电流感 测电阻或环路补偿,支持模拟调光 和过热保护	8 HSOP		0.60
TPS92601-Q1	>3	4.0 至 40	75	22	程序: 100 kHz 至 600 kHz	升压、降压 - 升压、 SEPIC、降压、 反激	可同步固定频率,电流监控输出、 LED 开路检测、输出短路检测和保护、高侧电流感测、PWM 和模拟调光	20 HTSSOP	v	1.80
TPS92602-Q1	>3	4.0 至 40	75	22	程序: 100 kHz 至 600 kHz	升压、降压 - 升压、 SEPIC、降压、 反激	双通道可同步固定频率,电流监控输出、LED 开路检测、输出短路检测和保护、高侧电流感测、PWM 和模拟调岗	28 HTSSOP	v	3.00
TPS92638-Q1	0.56	5.0 至 40	39	12	_	线性	8 通道 LED 驱动器、开路 / 短路检测与保护、PWM 调光、过热保护	20 HTSSOP	~	1.20
TPS92630-Q1	0.45	5.0 至 40	39	12	_	线性	3 通道 LED 驱动器、开路 / 短路检测与保护、PWM 和模拟调光、过热保护	16 HTSSOP	V	0.90
TPS92660	5	8.6 至 80	78	23	程序:50 kHz 至1 MHz	降压 + 线性	2 串 LED 驱动器,带 I ² C/EPROM 电流 调节,用于 CRI 照明、PWM 调光	20 HTSSOP		1.30
TPS92560	2	6.5 至 42	42	12	调整:50 kHz 至1.5 MHz	升压、SEPIC	集成有源低侧输入整流器,无需外 部环路补偿,兼容电子变压器	10 HVSSOP		0.72
TPS92640/41	5	7至85	83	25	程序:50 kHz 至1 MHz	降压	同步降压控制器、PWM 和模拟调光;调光范围宽, 达 2000:1, 带并联 PET PWM。	14/16 TSSOP		1.20/1.40
TPS92550	0.45	4.5 至 36	34	10	400 kHz	降压	集成微型模块	7 TO-PMOD		3.00
TPS92551	0.45	4.5 至 60	58	17	800 kHz	降压	集成微型模块	7 TO-PMOD		3.25
LM3463	1.5	12 至 95	95	27	_	线性	6 个输出通道,动态净空控制、 PWM 和模拟调光	48 WQFN		2.35
LM3464/64A	1.5	12 至 80/95	80/95	23/27	_	线性	4 个输出通道,动态净空控制、 PWM 和模拟调光	28 HTSSOP		2.00/2.10
LM3466	1.5	6至70	70	20	_	线性	LED 串电流均衡化	8 HS0P/ 7 T0-220		0.75
TPS92510	1.5	3.5 至 60	58	17	程序:100 kHz 至 2.5 MHz	降压	过热保护、PWM 调光、同步频率	10 HVSSOP		1.05
LM3492/92HC	0.20/0.25	4.5 至 65	65	19	程序:200 kHz 至 1 MHz	升压 + 线性 SEPIC+ 线性	2 个输出通道、动态净空控制、 10000:1PWM 调光对比率,无需外部 环路补偿	20 HTSSOP	~	1.00/1.30

^{*}批量为1,000片时的建议转售价格(单位:美元)。

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

LED驱动器 选择指南

LED 照明-亮度(续)

设备	最大 LED 电流(A)		最大输出电 压 (V)	串联 LED 最 大数量	开关频率	拓扑结构	特性	封装	汽车级	价格*
DC/DC 高亮度	LED 驱动	器(续)								
LM3414/14HV	1	4.5 至 42/65	42/65	12/18	程序: 250 kHz 至 1 MHz	浮动降压	PWM 调光,无需外部环路补偿,支持模拟调光和过热保护	8 HSOP/ WSON		0.70/0.80
LM3433/34	30	-9.0 至 -14/-30	-11/-27	1	程序: 200 kHz 至 1 MHz	降压	驱动器共阳极 LED 与地面参考底板 相连,无输出电容器、模拟和快速 PWM 调光	24 WQFN		1.85/1.90
LM3424	5	4.5 至 75	75	22	程序: 25 kHz 至 2 MHz	升压、降压 - 升压、 SEPIC、降压、 反激	过热保护、频率可同步, PWM 调 光频率最大 50kHz、高侧电流感测、 支持模拟调光	20 HTSSOP	~	1.30
LM3421/23/29	5	4.5 至 75	75	22	程序:100 kHz 至 2 MHz	升压、降压 - 升压、 SEPIC、降压、 反激	快速 PWM 调光、故障报告、逐周 期电流限制、高侧电流感测、支持 模拟调光	14/16/20 HTSSOP	,	1.15/1.25/1.00
LM3409/09HV	5	6.0 至 42/75	42/75	12/22	调整:50 kHz 至 2 MHz	降压	PWM 和模拟调光,可实现 100% 占空比,高侧电流感测,无需外部环路补偿	10 HVSSOP/14 PDIP	V	0.70/0.75
LM3406/06HV	1.5	6.0 至 42/75	40/73	12/22	调整: 20 kHz 至 1 MHz	降压	快速 PWM 调光、真实平均输出电流、 支持陶瓷电容器和无电容型输出、 低侧感测	14 HTSSOP	,	0.95/1.00
TPS40210/211	5	4.5 至 52	52	15	程序:35 kHz 至1 MHz	升压、SEPIC、反激	可编程软启动、带自动重试的过流 保护、外部同步频率	10 HVSSOP/ VSON	V	0.80/0.75
LM3407	0.35	4.5 至 30	27	8	程序:300 kHz 至1 MHz	浮动降压	无需外部环路补偿, PWM 调光	8 VSSOP		0.55
LM3431/31A	0.6	4.5 至 36	40	12	程序: 200 kHz 至 1 MHz	升压 + 线性 SEPIC+ 线性	3 个输出通道、线性电流控制器和 升压控制器、PWM 和模拟调光	28 HTSSOP	~	1.20/1.32
LM3410X/Y	1.5	2.7 至 5.5	24	6	525 kHz/1.6 MHz	升压、SEPIC	PWM 调光、小足迹、低外部部件数	5 S0T23/6 WS0N/8 VSS0P	~	1.00
LM3405/05A	1	3至15/22	13.5/20	4/6	1.6 MHz	降压	内部补偿电流模式控制, PWM 调光	6 SOT/ 8 VSSOP		0.45/0.50
LM3401	4	4.5 至 35	33	10	调整:100 kHz 至 1.5 MHz	降压	PWM 调光,可实现 100% 占空比, 无需外部环路补偿,低侧电流感测	8 VSSOP		0.60
LM3404/04HV	1	6.0 至 42/75	40/73	12/22	调整:20 kHz 至 1 MHz	降压	快速PWM调光,无需控制环路补偿, 支持陶瓷电容器和无电容器输出	8 SOIC/HSOP		0.85/0.90
LM3402/02HV	0.5	6.0 至 42/75	40/73	12/22	调整:20 kHz 至 1 MHz	降压	快速PWM调光,无需控制环路补偿, 支持陶瓷电容器和无电容器输出	8 VSSOP/ HSOP		0.80/0.85

^{*}批量为1,000片时的建议转售价格(单位:美元)。

红色粗体标注的为新器件。 蓝绿色粗体标注的为前瞻性产品。

LED 驱动器

选择指南

摄像头闪存 LED 驱动器

串联或并联 LED 配置 - 驱动驱动器拓扑结构。 感应升压转换器为串联 LED 串提供必要的高电压。 LED 串只要求一个电流调节回路和两个连接点。

充电泵通常会驱动并联 LED, 但除非每 一个 LED 进行电流调节, 每一个接脚都 要求有一个电流设定电阻器。

现行规定一避免 LED 串或由不同正向电压 (V_f) 的 LED 组成的接脚中亮度出现变化。

过压保护 (**OVP**)一防止出现故障的 LED 打开 LED 串时感应驱动器损坏。

调光 —LED 调节器通常具有模拟和 / 或数字调光功能,对 LED 的亮度进行调节。

摄像头闪存 LED 驱动器

摄像头k	外仔 LE	ע	当区 7	列											
器件 ¹	V _{IN} (V)	LED 最大数量	私有 LED	I _{OUT} (最大) (mA)	典型开关电流(mA)	超电容器支持	当 V _{IN} > V _{OUT} 时, 降压模式	控制接口	LED 温度监控	省电模式	电池电压下降贴拉	封装	特征与差异	全方案尺寸 (mm ²)	价格*
LM3648	2.5 至 5.5	1		1500	2800		~	I ² C	v	•	~	WCSP- 12	IVFM、温度监控、12mA 电流步进、 357mA 手电筒电流	18	0.38
LM3648TT	2.5 至 5.5	1		1500	2800		V	I ² C	v	~	~	WCSP- 12	IVFM、温度监控、12mA 电流步进、 500mA 手电筒电流、1.6s 超时	18	0.38
LM3643	2.5 至 5.5	2		1500	2800		V	I ² C	v	,	V	WCSP- 12	独立电流控制、12mA 电流步进、358mA 手电筒电流	18	0.40
LM3644	2.5 至 5.5	2		2500	2800		V	I ² C	•	~	V	WCSP- 12	独立电流控制、12mA 电流步进、358mA 手电筒电流	18	0.40
LM3644TT	2.5 至 5.5	2		2500	2800		V	I ² C	v	•	V	WCSP- 12	独立电流控制、12mA 电流步进、500mA 手电筒电流	18	0.40
TPS61050	2.5 至 5.5	1	~	1200	2000			I ² C				QFN-10, WCSP-12	电压模式选择引脚	25	0.45
TPS61054	2.5 至 6	1		700/500	1500/1000			单逻辑 信号				QFN-10, WCSP-12		25	0.43
TPS61310	2.5 至 5.5	3	V	1500	_		~	I ² C	v	~	~	WCSP-20	硬件重置输入、双线摄像头模块接口、 电源良好	25	0.55
TPS61325	2.5 至 5.5	3	V	4100	_	•	~	I ² C	v	~		WCSP-20	双线摄像头模块接口、超电容器平衡、 闪存就绪输出	25	0.85
TPS61300	2.5 至 5.5	3	V	4100	1850	V	V	I ² C	V	V		WCSP-20	电压模式选择引脚(TPS61300/1) DC 照明模式选择引脚(TPS61300) 闪存就绪输出、硬件重置输入 (TPS61301/5)	25	1.70
LM3561	2.5 至 5.5	1		600	1000/1500		V	I ² C	~			WCSP-12	600mA 紧凑型方案,具有集成保护特征	15	0.55
LM3554	2.5 至 5.5	2		1200	1000/1500/2000/2500		~	I ² C	•		V	WCSP-16	1.2A 感应驱动器,带保护特征和电压模式	23	0.46
LM3555	2.5 至 5.5	2		500	1250/1500/1750/2000			I ² C	•			WCSP- 12	效率为 90%,并且带有指示器 LED 的串 联驱动器	31	0.35
LM3556	2.5 至 5.5	1		1500	1700/1900/2500/3100		V	I ² C	•		V	WCSP-16	具有微小方案尺寸和集成保护特征的 4MHz LED 驱动器	18	0.50
LM3559	2.5 至 5.5	2		1800	1400/2100/2700/3200		~	I ² C	•		~	WCSP-16	带有可编程指示灯闪烁的 1.8A 感应闪存 LED 驱动器	26	0.55
LM3560	2.5 至 5.5	2		2000	1600/2300/3000/3600		~	l ² C	•			WCSP-16	带有可编程指示灯闪烁的 1.8A 感应闪存 LED 驱动器	26	0.80
LM3550	2.5 至 5.5	4		5000	_	~		I ² C				LLP	超电容闪存 LED 驱动器,带优化模式, 用于限制功率损耗	_	0.70
LM3642	2.5 至 5.5	1		1500	1700/1900		~	I ² C	•		V	WCSP-9	具有微小方案尺寸和集成保护特征的 4MHz LED 驱动器	18	0.35
LM3646	2.5 至 5.5	1		1500	1000/3100		~	I ² C	•		•	WCSP-20	具有微小方案尺寸和集成保护特征的 4MHz LED 驱动器	22	0.45
LM3565	2.5 至 5.5	1		930	2300/2600/2900/3300		~	I ² C	•		V	WCSP-16	具有微小方案尺寸和集成保护特征的 4MHz LED 双串联驱动器	26	0.44

¹ 所有这些器件均带有 TX 标志以及安全定时器 DC/ 闪存。

^{*} 批量为 1,000 片时的建议转售价格 (单位:美元)。

监控器和复位 IC

概述及选择指南

监控电路和电压检测器系列产品

有关更多信息,请访问: www.ti.com.cn/supervisors

监控器和复位IC

器件	监控器数量	已监控 电压	封装	V _{DD} 范围 (V)	I _{DD} (典型) (μΑ)	时间 延时 (ms)	看门狗定时器WDI (秒)	复位阈值精度 (%)	手动复位/使能复位	有源低复位/输出	有源高复位/輸出	复位输出拓扑结构 ¹	电源故障PFI/PF0	过压检测	过流检测	芯片使能栅	备注	汽车级	价格*
通用																			
LM3724	1	2.32, 3.08, 4.63	S0T23-5, D, W	1至5.5	6	190		± 2.5	V	V		OD	V						0.95/0.80
LP3470	1	2.63, 2.75, 2.83, 2.93, 3.08, 3.65, 4.0, 4.38, 4.63, 4.8	S0T23-5	0.5 至 5	16	1 编程		±1		~		OD							0.595/0.562
LM3704	2	2.32, 3.08, 3.6	VSS0P	1至5.5	28	28, 200		±2	V	V		CMOS, OD	~						0.77
LM3710	2	2.32, 3.08, 4.63	VSS0P	1至5.5	28	28, 200	0.0062 至 25.6	±2	~	~		CMOS, OD	~						1.10
LM8364	1	2.0	S0T23-5	1至6	0.65	0.3		± 2.5		V		CMOS, OD							0.24
LM8365	1	2.75, 4.5	S0T23-5	1至6	0.65	0.1 编程		± 2.5		V		CMOS, OD							0.25
LM809	1	2.63, 2.93, 3.08, 4.38, 4.63	S0T23-3	1至6	15	240		± 1.5		V		CMOS							0.23
LM810	1	4.63	S0T23-3	1至6	15	240		± 1.5			1	CMOS							0.23
LMS33460	1	3	SC-70	1至7	1	0.2		±5		V		OD							0.17
LMC6953	2	3.3, 3.5	SOIC-8	1.5 至 6	800	0.0005		±3	1	V		OD							1.44
TPS3895	1	调整	SON-6	1.7至6.5	6	0.04, 编程	_	0.25	1		~	PP					超小		0.60
TPS3896	1	调整	SON-6	1.7 至 6.5	6	0.04,编程	_	0.25	1	1		PP					超小		0.60
TPS3897	1	调整	SON-6	1.7至6.5	6	0.04, 编程	_	0.25	1		~	OD					超小		0.60
TPS3898	1	调整	SON-6	1.7 至 6.5	6	0.04,编程	_	0.25	1	1		OD					超小		0.60
TLV803	1	2.5/3/3.3/5	3S0T-23	1.1 至 6	9	200	_	2.00		1		OD							0.20
TLV810	1	2.5/3/3.3/5	3S0T-23	1.1 至 6	9	200	_	2.00			1	PP							0.20

¹PP = 推挽式; OD = 漏极开路; OC = 集电极开路。 *批量为 1,000 片时的建议转售价格 (单位:美元)。 注: 可提供自定义电压。接受最小批量订单。 如欲了解详情和供货情况,敬请联系TI。

红色粗体标注的为新器件。

监控器与复位 IC

选择指南

监控器与复位 IC(续)

器件	监控器数量	已监控 电压	封装	V _{DD} 范围 (V)	I _{DD} (典型) (μΑ)	时间 延时 (ms)	看门狗定时器WDI (秒)	复位阈值精度 (%)	手动复位/使能复位	有源低复位/输出	有源高复位/输出	复位输出拓扑结构「	电源故障PFI/PF0	过压检测	过流检测	芯片使能栅	备注	汽车级	价格*
通用(绫	₹)																		
rPS3890	1	调节/1.2/1.5/1.8/2.5/3.0/3.3	SON-6	1.5 至 5.5	2.1	0.04,编程	_	0.5	V	V		OD					超小		0.55
PS3808	1	Adj./0.9/1.2/1.5/1.8/2.5/ 3.0/3.3/5.0/EEPROM	S0T-23, S0N-6	1.8至6.5	2.4	编程	_	0.5	V	V		OD						•	0.70
PS3809	1	2.5/ 5.0	S0T-23	1.8 至 6.5	10	200	_	2	V	V		PP						~	0.70
PS3103	1	1.2/1.5/2.0/3.3	S0T-23	0.4 至 3.3	1.2	130	_	0.75	~	1		OD	~						0.90
PS3123	1	1.2/1.5/1.8	S0T-23	0.75 至 3.3	14	180	1.4	3.6	~	~		PP							0.85
PS3124	1	1.2/1.5/1.8	S0T-23	0.75 至 3.3	14	180	1.4	3.6		1	~	PP							0.85
PS3125	1	1.2/1.5/1.8/3.0	S0T-23	0.75 至 3.3	14	180	_	3.6	~	1	1	PP							0.80
PS3126	1	1.2/1.5/1.8	S0T-23	0.75 至 3.3	14	180	_	3.5	~	1	1	OD							0.80
PS3128	1	1.2/1.5/1.8	S0T-23	0.75 至 3.3	14	180	1.4	3.5	V	V		OD							0.85
PS3800	1	2.7	SC-70	1.6至6.0	9	100	_	2	~	V		PP							0.40
PS3801	1	调节/1.8/2.5/3.0/3.3/5.0	SC-70	1.6 至 6.0	9	200	_	2	~	~		PP							0.40
PS3802	1	3.0/3.3	SC-70	1.6 至 6.0	9	400	_	2	~	~		PP							0.40
PS3803	1	调节/1.5	SC-70	1.3 至 6.0	3	_	_	1.5		1		OD					电压检测器	1	0.25
LV809	1	2.5/3.0/3.3/5.0	S0T-23	2.0 至 6.0	9	200	_	2.2		V		PP							0.25
PS3813	1	2.5/3.0/3.3/5.0	S0T-23	2.0 至 6.0	9	25	窗口	2.2		1		OD					窗口看门狗	1	0.90
PS3820/8	1	3.3/5.0	S0T-23	1.1 至 5.5	15	25/200	0.2/1.6	2.4	V	V		PP/OD						1	0.68
PS3823	1	2.5/3.0/3.3/5.0	S0T-23	1.1 至 5.5	15	200	1.6	2.4	V	V		PP						1	0.6
PS3824	1	2.5/3.0/3.3/5.0	S0T-23	1.1 至 5.5	15	200	1.6	2.2		V	V	PP						1	0.6
PS3825	1	3.3/5.0	S0T-23	1.1 至 5.5	15	200	_	2.2	V	V	V	PP						V	0.55
PS3831	1	_	SON-4	0.6至6.5	0.15	200	_	1.5	V	V		PP					超小		0.30
PS3839	1	_	SON-4, SOT-23	0.6 至 6.5	0.15	200	_	1.5		V		PP					超小		0.2
PS3836/8	1	1.8/2.5/3.0/3.3	S0T-23	1.6 至 6.0	0.22	10/200	_	2.5	V	V		PP/OD						V	0.8
PS3837	1	1.8/2.5/3.0/3.3	S0T-23	1.6 至 6.0	0.22	10/200	_	2.4	V		V	PP						1	0.8
LC77xx	1		SO-8, DIP-8, TSSOP-8		9	编程	_	5.5		V	V	PP						V	0.6
PS3807	2	3/3.5	SC-70	1.8 至 6.5	3.5	20	_	1		V		OD							0.95
PS3106	2	调节/0.9/1.6/3.3	S0T-23	0.4至3.3	1.2	130	_	0.75	V	V		OD							0.90
PS3110	2	调节/0.9/1.2/1.5/3.3	S0T-23	0.4 至 3.3	1.2	130	1.1	0.75	V	~		PP							0.99
PS3305	2	1.8/2.5/3.3/5.0	SO-8, MSOP-8	2.7至6.0	15	200	1.6	2.7	V	V	V	PP							1.00
PS3306	2	1.5/1.8/2.0/2.5/3.3/5.0	SO-8, MSOP-8	2.7 至 6.0	15	100	0.8	2.7	•	~	•	OD	1					,	1.05
PS3779/80	2	调整	SON-6	1.5至6.5	1.8	_	_	1			V	PP/OD					不同的磁滞 选项	·	0.50
PS3847	1	12	S0T-23	4.5 至 18	0.38	20	_	2.5	V	V		PP					~ ~		0.85
PS3700	2	调整	ThinS0T23-6, S0N-6	1.8至18	5.5	_	_	0.25		V	V	OD		V			窗口比较器	1	0.70
PS3701	2	调整	ThinS0T23-6, S0N-6	1.8至16	7	_	_	0.25		V	V	OD OD		V			窗口比较器		0.89
PS3702	2	1.0/1.2/1.8/3.3/5.0	ThinS0T23-6	1.8至18	7	_	_	0.25		V	V	OD		V			窗口比较器		0.79
PS3710	1	调整	ThinS0T23-6	1.8至18	7	_	_	0.25		V		OD OD					M C FUTAHI		0.59
PS3711	1	调整	ThinS0T23-6	1.8至16	7	_	_	0.25		V		OD OD							0.79
PS3705	2	3.0/3.3/5.0	SO-8, MSOP-8	2.0至6.0	30	200	1.6	2.1	v	V		PP	1						0.73
PS3707	2	2.5/3.0/3.3/5.0	S0-8, MS0P-8	2.0 至 6.0	20	200	_	2.2	V	V	V	PP	V						0.75
PS3805	2	调节/3.3	SC-70	1.3 至 6.0	3	_	_	1.5		V		PP					电压检测器		0.74
PS3806	2	调节/2.0/3.3	S0T-23	1.3 至 6.0	3	_	_	2		V		OD					电压检测器		0.45
PS3307	3	调节/1.8/2.5/3.3/5.0	SO-8, MSOP-8	2.0 至 6.0	15	200	_	2.7	V	~	V	PP					. O. A. T. E. K. J. R. F.	V	1.05
PS386596	4	调节/3.0	MSOP-8	1.8至6.5	7.5	编程	_	0.25	V	V		OD OD		V					1.2
L7700	1	0.5	SO-8, TSSOP-8, PDIP-8, VSSOP-8	1.8 至 40	600	编程	_	2		v		OD							1.63
PS3860x0	4	调整(包括负轨道)	QFN	1.8至6.5	9	编程	0.6	0.25	V	V	V	PP/OD		V				1	1.9
MV7231	6	调整(包括负轨道)	QFN	2.2 至 5.5		- Ind. T	_	1.5		~	V	OD		V			窗口比较器		1.4
P = 推挽式	: ; C	D = 漏极开路; OC = 集 时的建议转售价格(单	电极开路。			注: 可提 如欲了角		义电压。			小批	量订单。	'	1			红色粗体	注的。	

监控器与复位 IC 选择指南

监控器与复位 IC(续)

器件	监控器数量	已监控 电压	封装	V _{DD} 范围 (V)	I _{DD} (典型) (µA)	时间 延时 (ms)	看门狗定时器WDI (秒)	复位阈值精度 (%)	手动复位/使能复位	有源低复位/输出	有源高复位/输出	复位输出拓扑结构「	电源故障PFI/PF0	以田本道	过流检测	芯片使能栅	备注	汽车级	价格*
电池备份	切	换电源监控																	
TPS3600	1	2.0/2.5/3.3/5.0	TSSOP-14	1.6 至 5.5	20	100	0.8	2.3	V	V		PP	V			V			2.15
TPS3606-33	1	3.3	MSOP-10	1.6至5.5	20	100	0.8	2	V	1		PP	1						1.45
TPS3610	1	1.8/5.0	TSSOP-14	1.6 至 5.5	20	100	0.8	2		~		PP	1			~			1.80
TPS3613-01	1	可调	MS0P-10	1.6 至 5.5	20	100	_	1.7	~	1	~	PP				~			1.50
TPS3619	1	3.3/5.0	MSOP-8	1.6 至 5.5	15	100	_	2	~	~		PP	1						1.10
特殊功能	电	源监控器																	
TPS3510/1	3	3.3/5.0/12.0	SO-8, DIP-8	4至15	1 mA	300	_	9.1		V		OD	V	V			PC电源		0.45
TPS3513/4	3	3.3/5.0/12.0	S0-14, DIP-14	4.5 至 15	1 mA	300	_	9.1		1		OD	1	~	~		PC电源		0.70
UCC2946	1	可调	TSSOP-8	2.1 至 5.5	12	200		2	1	~		PP						~	1.65

¹PP = 推挽式; OD = 漏极开路; OC = 集电极开路。 *批量为 1,000 片时的建议转售价格(单位: 美元)。

红色粗体标注的为新器件。

序列

器件	监控器数量	已监控 电压	序列输出号	封装	V _{DD} 范围 (V)	I _{DD} (典型) (μΑ)	时间 延时 (ms)	评论	价格*
LM3880	_	_	3	S0T23-6	2.7 至 5.5	25	固定		0.50
LM3881	_	_	3	MSOP-8	2.7 至 5.5	80	编程		0.50
TPS386000	4	通过电阻器编程	_	QFN-20	1.8 至 6.5	11	编程		0.95
UCD9090	10	通过软件GUI编程	_	QFN-64	3.3 至 12	50 mA	编程		3.60
UCD90120A	13	通过软件GUI编程	_	QFN-64	3.3 至 12	50 mA	编程		4.95
UCD90124A	13	通过软件GUI编程	_	QFN-64	3.3 至 12	50 mA	编程	带风扇控制	6.45
UCD90160	16	通过软件GUI编程	16	QFN-64	3.3 至 12	50 mA	编程		5.65
UCD90910	10	通过软件GUI编程	_	QFN-64	3.3 至 12	50 mA	编程	带风扇控制	5.90
UCD90240	24	通过软件GUI编程	24	BGA-157	3.15 至 3.63	31.4 mA	编程	带黑盒记录和100个 故障记录	10.00

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

Texas Instruments 电源管理指南 2016 77

注: 可提供自定义电压。接受最小批量订单。 如欲了解详情和供货情况,敬请联系II。

以太网供电 (PoE)/LAN 解决方案 概述及选择指南

了解更多信息: www.ti.com.cn/poe

有关 PoE 解决方案的更多示 例,请访问TIDesigns库。

www.ti.com/refdesigns-poe

PoE 供电设备(PSE)控制器

器件	应用	端口数 量	最大绝对值 V _{IN} (V)	工作 温度 (°C)	IEEE 符合	工作方式	接口	接口	测量	电源FET	封装	价格*
TPS2384	路由器、开关、SOHO集线器、 中跨设备	4	80	-40 至 125	802.3af	自动、半自动、 电源管理	I ² C	AC和DC	电流、电压、电容和温度	内部	64引脚LQFP	4.75
TPS23841	外围设备、高功率24-V/48-V PoE 开关、集线器、中跨设备	4	80	-40 至 125	802.3af	自动、半自动、 电源管理	I ² C	AC和DC	电流、电压、电容和温度	内部	64引脚LQFP	7.50
TPS23861	QUAD IEEE 802.3at以太网供电PSE 控制器	4	70	-40 至 125	802.3at	自动、半自动、 手动	可选l ² C	AC和DC	电流、电压和温度	外部	28引脚 TSSOP	2.99

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

PoE 供电设备(PD)控制器

器件	描述	IEEE 802.3.at	功率级 (W)	分类	最大绝对值 V _{IN} (V)	工作温度 (℃)	浪涌电流限 值(mA)	电流 限值 (mA)	实现最大效率的第 二个栅极驱动器	封装	价格*
带集成DC/D	C控制器的PD控制器										
TPS23750/70	带PWM控制器的集成PD	1类(802.3af)	13	0-3类	100	-40 至 85	140	405	否	TSSOP-20	1.25
TPS23753A	PD+带AUX O形环的控制器	1类(802.3af)	13	0-3类	100	-40 至 85	140	405	否	TSSOP-14	1.00
TPS23754/6	高功率PD+高效控制器	2类	25	0-4类	100	-40 至 125	140	850	是	TSSOP-20 PowerPAD™	1.25
TPS23757	PD+高效控制器	1类(802.3af)	13	0-3类	100	-40 至 125	140	400	是	TSSOP-20	1.20
TPS23751/2	带绿色模式PWM的PD	2类	25	0-4类	100	-40 至 85	140	850	否	TSSOP-20	1.10

器件	描述	IEEE 802.3.	功率级 (W)	分类	最大绝对值 V _{IN} (V)	工作温度 (℃)	浪涌电流限值 (mA)	电流现值 (mA)	发生故障时自动 重试或锁闭	UVLO (V)	DC/DC 接口	封装	价格*
PD接口前	前端控制器												
TPS2375/-1	供电设备控制器	1类(802.3af)	13	0-3类	100	-40 至 85	可编程	450	闭锁/重试	30.6/39.4 V	PG	SOIC-8, TSSOP-8/ TSSOP-8	1.00
TPS2376	供电设备控制器	1类(802.3af)	13	0-3类	100	-40 至 85	可编程	450	闭锁	可调	PG	SOIC-8, TSSOP-8	1.00
TPS2376-H	高功率PD控制器	1类(802.3af) 或非标	25	0-3类	100	-40 至 85	可编程	625	自动重试	可调	PG	SOIC-8	0.59
TPS2377/-1	供电设备控制器	1类(802.3af)	13	0-3类	100	-40 至 85	可编程	450	闭锁/重试	遗留(30.5/35.0V)	PG	SOIC-8, TSSOP-8	1.00
TPS2378	带AUX控制的PD	2类	25	0-4类	100	-40 至 85	140	850	自动重试	30.5/35	PG	SOIC-8	0.65
TPS2379	高功率PD	2类或非标	+25	0-4类	100	-40 至 85	140	850	自动重试	30.5/35	PG	SOIC-8	1.00

^{*}批量为1,000片时的建议转售价格(单位:美元)。

以太网供电 (PoE)/LAN 解决方案 选择指南

以太网供电(PoE)评估模块

EVM名称 ¹	拓扑结构说明	输入电压源	输出功率	类别	全负载效率:V _{IN} PoE 端 对端 DC/DC 转换器
TPS23753AEVM-001 (HPA304)	CCM/DCM反激式二极管整流器	PoE, 24/48-V适配器输出功率 降低时的12V适配器	7 W (5 V, 1.4 A)	3	48V时为82%, PoE 48V时为80%
TPS23750EVM-107 (HPA107)	低侧降压	PoE, 48-V适配器	10 W (5 V, 2 A)	3	44 V时为84%, PoE 48V时为80%
TPS23750EVM-107 (HPA107)	低侧降压	PoE, 48-V适配器	10 W (3.3 V, 2.5 A)	3	44 V时为79%,PoE 48V时为75%
TPS23750EVM-108 (HPA108)	CCM反激式同步整流器(自驱动)	PoE, 48-V适配器	10 W (3.3 V, 3 A)	3	44 V时为84%, PoE 48V时为81%
TPS23750EVM-108 (HPA108)	CCM反激式同步整流器(自驱动)	PoE, 48-V适配器	10 W (5 V, 2 A)	3	44 V时为84%,PoE 48V时为80%
TPS23753AEVM-004 (HPA305)	CCM反激式同步整流器(自驱动)	PoE, 24/48-V适配器输出功率 降低时的12V适配器	10 W (3.3 V, 3.0 A)	3	48 V时为87%,PoE 48V时为83%
TPS23757EVM (HPA480)	CCM反激式同步整流器(驱动)	PoE, 24/48-V适配器	11 W (5 V, 2.2 A)	3	48 V时为91%, PoE 48V时为89%
TPS23757EVM (HPA480)	CCM反激式同步整流器(驱动)	PoE, 24/48-V适配器	11 W (3.3 V, 3.3 A)	3	48 V时为88%, PoE 48V时为85%
TPS2375EVM (HPA028)	仅限于PD控制器(无DC/DC)	PoE	13 W	3	不适用, PoE 48V时为95%
TPS2378EVM-105 (PWR105)	仅限于2类PD控制器(无DC/DC)	PoE, 48-V适配器	25 W	4	不适用,PoE 48V时为97.4%(2对)
TPS23751EVM-104 (PWR104)	高效CCM反激式同步整流器(自驱动)	PoE, 24/48-V适配器	25 W (5 V, 4.5 A)	4	48 V时为90%,PoE 48V时为87.5%
TPS23752EVM-145 (PWR145)	高效CCM反激式同步整流器(驱动)	PoE, 24/48-V适配器	25 W (5 V, 5.0 A)	4	48 V时为93%, PoE 48V时为90%
TPS23754EVM-383 (HPA383)	有源嵌位正向同步整流器(自驱动)	PoE, 48-V适配器	25 W (12 V, 2.0 A)	4	PoE 48V时为89%
TPS23754EVM-420 (HPA420)	CCM反激式同步整流器(驱动)	PoE, 24/48-V适配器	25 W (5 V, 5.0 A)	4	48 V时为88%,PoE 48V时为85%
TPS23754EVM-420 (PMP6672)	CCM反激式同步整流器(驱动)	PoE, 24/48-V适配器	25 W (5 V, 5.0 A)	4	48 V时为92%,PoE 48V时为89%
TPS23756EVM (HPA479)	有源嵌位正向同步整流器(自驱动)	PoE, 12/24/48V适配器	25 W (5 V, 5.0 A)	4	12V时为91%, 24V时为92%, 48V 时为88%, PoE 48V时为86%
TPS2376HEVM (HPA244)	CCM反激式同步整流器	PoE, 48-V适配器	25 W (5 V, 5 A)	4	48 V时为87%, PoE 48V时为82%
TPS2379EVM-106 (PWR106)	仅限于2类PD控制器,带外部升压 FET(无DC/DC)	PoE和扩展的PoE	60 W	4+	不适用,PoE 48V时为97.5%(4对)
TPS23753AEVM-235	CCM反激式同步整流器(自驱动)	PoE, 48-V适配器	10 W	3	PoE 48V时为92%
TPS2378EVM-602	用于强制 UPOE 51-W高功率四对PoE应 用评估模块的双TPS2378 PoE PD	PoE	51 W	UP0E	UPOE 48V时为90%

¹粗体表示可完全(按原样)订购的器件否则,PD 可以通过 BOM 变更配置。

参考设计

参考设计	描述	器件	V _{IN} (VDC)	I _{OUT} (A)时的V _{OUT} (V)	类别	拓扑结构	效率(%)
TIDA-00290	PoE PSE, 2类(30W), IEEE 802.3, 全自动四端口解决方案	TPS23861	44 至 57	0.6时为48	0-4	PoE PSE	_
PMP6672	用于PoE PD参考设计的4类同步反激式 转换器(5A时为5V)	TPS23754	21.6 至 57	5时为5	4	隔离式反激同步PoE	90
PMP7499	非标(>25.5W) PoE, 高效正向转换器(5A时为12V)	TPS2379	42 至 57	12时为5	高功率	隔离式正向有源嵌位PoE	93.6
PMP10572	隔离式Fly-Buck TM 电源模块	TPS2378	40 至 57	1时为12	3	隔离式Fly-Buck	85

检查与您的应用相似的参考设计。www.ti.com/poe

Texas Instruments **电源管理指南 2016** 79

保护、监视和热插拔

概述及选择指南

保护电源产品组合

热插拔控制器(正向,-48V)

							特征1								
器件	目标应用	通道	V _{IN} 范围 (V)	启动/ 关闭	UV	OV	故障	PG	闭锁	自动重试	斜波	FET SOA 保护	封装	汽车级	价格*
TPS2300/01	CompactPCI [®] ,通用	2	3 至13/3至5.5	1L/1H	~		~	~	~		电压	否	20引脚TSSOP		1.60
TPS2310/11	CompactPCI, 通用	2	3 至13/3至5.5	1L/1H	1		1	1	V		电压	否	20引脚TSS0P		1.60
TPS2320/21	CompactPCI, 通用	2	3 至13/3至5.5	1L/1H	1		~	~	~		电压	否	16引脚SOIC/TSSOP		1.35
TPS2330/31	CompactPCI, 通用	1	3 至 13	1L/1H	1		~	1	V		电压	否	14引脚SOIC/TSSOP		1.25
TPS2342	紧凑型PCI, PCI-X [®] , PC-X2.0	12	3.3, V _{aux} , V _{I0} , 5, +12, -12	1L	~			~	V		电压	否	80引脚HTQFP		7.00
TPS2350	全功能-48V电信, LS有源0形环	2	-12 至 -80	1H	1	~	~	1		~	电流	否	14引脚SOIC/TSSOP		1.90
TPS2358	xTCA夹层界面卡,一般12V	2	8.5 至 17	2L	~		~	1	V		电流	否	48引脚QFN		4.00
TPS2359	xTCA夹层界面卡,一般12V	2	8.5 至 17	1H/1L	V	~	V	1	S ²	S ²	电流	否	36引脚QFN		5.00
TPS2363	PCI Express [®]	6	3.3 V _{aux} , 3.3, +12	1L	~		~	~	V		电压	否	48引脚QFP		2.50
TPS2390	简单-48V电信	1	-36 至 -80	1H			~		V		电流	否	8引脚MSOP		1.00
TPS2391	简单-48V电信	1	-36 至 -80	1H			V			1	电流	否	8引脚MSOP		1.00
TPS2392	全功能-48V电信	1	-20 至 -80	1H	1	~	~	~	V		电流	否	14引脚TSSOP		1.35
TPS2393	全功能-48V电信	1	-20 至 -80	1H	~	~	~	~		~	电流	否	14/44引脚TSSOP		1.35
TPS2393A	全功能-48V电信(快速重试)	1	-20 至 -80	1H	1	~	~	1		~	电流	否	14引脚TSSOP		1.35
TPS2394	全功能,ESD强化,-48V热插拔	1	-12 至 -80	1H	~	~	~	~		·	电流	否	14引脚TSSOP		1.35
TPS2398	简单-48V电信,带PG	1	-36 至 -80	1H				1	V		电流	否	8引脚MSOP		1.35
TPS2399	简单-48V电信,带PG	1	-36 至 -80	1H				~		V	电流	否	8引脚MSOP		1.35
TPS2400	过压/欠压保护IC	1	2至100	1H	1	~			V		_	否	5引脚SOT-23		0.80
TPS2456/A	具有反向电流控制功能的浪涌控制器	2	8.5 至 15	2H	1		~	~	~		电流	否	36引脚QFN		3.75
TPS2458	xTCA夹层界面卡,一般12V	1	8.5 至 15	1L	1		~	1	V		电流	否	32引脚QFN		2.00
TPS2459	xTCA夹层界面卡,一般12V	1	8.5 至 15	1H/1L	~	~	~	~	S^2	S ²	电流	否	32引脚QFN		2.50
TPS24700	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	V			1	V		电流	否	8引脚MSOP		1.10
TPS24701	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	~			~		~	电流	否	8引脚MSOP		1.10
TPS24710	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	V		L	L	V		电流	是	10引脚MSOP	~	1.25
TPS24711	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	~		L	L		~	电流	是	10引脚MSOP		1.25
TPS24712	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	~		Н	Н	V		电流	是	10引脚MSOP		1.25
TPS24713	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	~		Н	Н		'	电流	是	10引脚MSOP		1.25

¹引脚功能:L=有源低;H=有源高²S = 可选择。`

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

保护、监视和热插拔 _{选择指南}

热插拔控制器(正,-48V)(续)

							特征 ¹								
器件	目标应用	通道	V _{IN} 范围 (V)	启动/ 关闭	UV	OV	故障	PG	闭锁	自动重试	斜波	FET SOA 保护	封装	汽车级	价格*
TPS24720	工业、大容量储存、服务器、电信	1	2.5 至 18	1H	V	~	~	~	S ²	S ²	电流	是	16引脚SON		1.40
TPS24770/1/2	高性能热插拔控制器	2	2.5 至 18	1H	~	~	L	Н	-0, -2	-1	电流	是	24引脚QFN		3.50
TPS2490	服务器、基站, +48 V, +12 V	1	9至80	1H	V			1	V		电流	是	10引脚MSOP		1.40
TPS2491	服务器、基站, +48 V, +12 V	1	9至80	1H	~			~		~	电流	是	10引脚MSOP		1.40
TPS2492	服务器、基站、工业, +48 V, +12 V	1	9至80	1H	V	~	1	1	V		电流	是	14引脚TSSOP		1.45
TPS2493	服务器、基站、工业, +48 V, +12 V	1	9至80	1H	~	~	~	~		~	电流	是	14引脚TSSOP		1.45
LM25069	具有功率限制功能的12V热插拔控制器	1	2.9 至 17	1H	V	~	~	Н	-1	-2	电流	是	10引脚MSOP		1.19
LM25061	具有功率限制功能的12V热插拔控制器	1	2.9 至 17	1H	~		~	Н	-1	-2	电流	是	10引脚MSOP		1.33
LM5060/Q	低Lq高侧保护控制器	1	5.5 至 65	1H	V	~	~	L	V		电压	否	10引脚MSOP	~	1.28/1.40
LM5069	具有功率限制功能的+48V热插拔控制器	1	9至80	1H	~	~	~	Н	-1	-2	电流	是	10引脚MSOP		1.35
LM5068	简单-48V热插拔控制器系列	1	-10 至 -90	1H	V	~	•	H/H/ L/L	-1/-3	-2/-4	电流	否	8引脚MSOP		1.35
LM5067	具有功率限制功能的-48V热插拔控制器	1	-9 至 -80	1H	~	~	~	Н	-1	-2	电流	是	10引脚MSOP/14引脚SOIC		1.50
LM9061/Q	高侧保护控制器	1	7至26	1H	~	~			V		电压	否	8引脚SOIC	~	0.79/0.93

热插拔和O形环控制组合

器件	描述	通道	V _{IN} 范围 (V)	启动/ 关闭	UV	ov	故障	PG	0形环 线性栅驱 动器	0形环 控制	封装	价格*
TPS2410	0形环FET控制器/MUX控制器	1	0.8 至 16.5	1H	V	~	~	~	~		14引脚TSS0P	1.70
TPS2411	0形环FET控制器/MUX控制器	1	0.8 至 16.5	1H						V	14引脚TSSOP	1.70
TPS2412	0形环FET控制器	1	0.8 至 16.5						~		8引脚SOIC,8引脚TSSOP	1.20
TPS2413	0形环FET控制器	1	0.8 至 16.5							~	8引脚SOIC,8引脚TSSOP	1.20
TPS2419	带0V/启动的0形环FET控制器	1	3 至 16.5	1H		~				~	8引脚SOIC	1.20
LM5050-1	带AUX输入的正极高压0形环控制器	1	5 至 80	L					~	~	6引脚TSOT	1.25
LM5050-2	具有FET试验功能的正极高压0形环控制器	1	6 至 80	L			~		~	V	6引脚TSOT	1.25
LM5051	具有FET试验功能的负极高压0形环控制器	1	-6 至 -100	L			~		~	~	8引脚SOIC	1.25
TPS24740/1/2	高性能热插拔/0型环控制器	1	2.5 至 18	1H	~	~	~	~		~	24引脚QFN	2.00
TPS2456/A	双源浪涌/反向电流控制器	2	8.5 至 15	2H	~		~	~	V		36引脚QFN	3.45
TPS2358	双12V/3.3V热插拔/0型环控制器	2	8.5 至 15	2L						~	48引脚QFN	4.00
TPS2359	双12V/3.3V热插拔/0型环控制器	2	8.5 至 15	通过I ² C						~	36引脚QFN	5.00
LM74610-Q1	零Lq反向极性保护智能二极管控制器	1	0.1 至 100	_						~	8引脚VSSOP	1.25
LM74670-Q1	具有70µA栅极驱动的零lq智能二极管整流 控制器	1	0.1 至 42	_						V	8引脚VSSOP	1.30

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

¹引脚功能: L=有源低: H=有源高²S = 可选择。 *批量为 1,000 片时的建议转售价格(单位: 美元)。

保护、监视和热插拔 _{选择指南}

电熔丝(集成FET)

				(>)								
器件	描述	運運	V _{IN} (V)	Vabsmax_comt ()	限流阈值 (典型) (A)	故障 响应	Rov (m Ω)	开 _ 关控制输 入	状态 输出	封装	汽车级	价格*
TPS2420	具有负载电流监视功能的 3 至 20V、2 至 5A 电熔丝	1	2.9 至 20	25	1至5	编程	30	EN\	FLT、 IMON、PG	16 QFN		1.38
TPS2421-1/2	3 至 20V、2 至 5A 电熔丝	1	2.9 至 20	25	1至5	闭锁/重试	33	EN\	FLT、PG	8 SO PowerPAD ™		1.06
TPS24750/1	2.5 至 18V、12A 电熔丝,仅在启动时限制电流	1	2.5 至 18	30	可调	闭锁/重试	3	ENUV	FLT、 IMON、PG\	36 VQFN		1.80
TPS2590	3 至 20V、0 至 6.5A 电熔丝	1	2.9 至 20	25	1至5	编程	30	EN\	FLT	16 QFN		0.90
TPS25910	具有 dV/dt 控制功能的 3 至 20V、2 至 5A 电熔丝	1	2.9 至 20	22	0.8 至 6.5	自动重试	30	EN\	FLT	16 QFN		0.90
UCC2912	3 至 8V、0 至 3A 单热插拔 IC 高侧 MOSFET	1	3至8	8	电流故障 +1 或 4 A	自动重试	150	关闭 \	FLT\	16 SOIC、 24 TSSOP		3.25
UCC2915	7 至 15V、0 至 30A 高侧 MOSFET, 100-μA I _Q	1	7至15	15.5	电流故障 +1 或 4 A	自动重试	150	关闭 \	FLT\	16 SOIC		5.00
UCC3912	3 至 8V、0 至 3A 单热插拔 IC 高侧 MOSFET	1	3至8	8	电流故障 +1 或 4 A	自动重试	150	关闭\	FLT\	16 SOIC、 24 TSSOP		2.30
UCC3915	0 至 3A、7 至 15V 高侧 MOSFET, 100-μA IQ	1	7至15	15.5	电流故障 +1 或 4 A	自动重试	150	关闭 \	FLT\	16 SOIC、 24 TSSOP		2.55
UCC3916	4 至 6V、1.65A 高侧 MOSFET, 100-μA IQ	1	4至6	6	2	自动重试	220	关闭\	FLT	8 SOIC		2.55
UCC3918	3 至 6V、0 至 34A 低 R _{ON} 高侧保护	1	3至6	8	0.5 至 5	自动重试	75	关闭\	FLT\	16 SOIC		2.35
TPS2556/7	2.5 至 6.5V、0.5 至 5A 精度限制电熔丝	1	2.5 至 6.5	7	0.5 至 5	自动重试	22	1L/1H	FLT\	8 QFN		0.90
TPS2560/A	2.5 至 6.5V、0.25 至 2.8A 双精度限制电熔丝	2	2.5 至 6.6	7	0.25 至 2.8	自动重试	44	2L	FLT\	10 QFN		0.90
TPS2561/A	2.5 至 6.5V、0.25 至 2.8A 双精度限制电熔 丝	2	2.5 至 6.7	7	0.25 至 2.8	自动重试	44	2H	FLT\	10 QFN		0.90
TPS25921A/L	具有精确电流限制和过压保护功能的电 熔丝	1	4.5 至 18	20	0.4 至 1.6 ± 2%@1 A	重试 / 闭锁	90	ENUV, OV, SS	FLT\	8 SOIC		0.50
TPS25940A/L	具有真实反向闭锁和 SSD 深眠模式支持 功能的电熔丝	1	2.7 至 18	20	0.65 至 5.3	重试 / 闭锁	42	EN、OV、 DEVSLP、dV/dT	PG、FLT\	20 WQFN	~	0.85
TPS25942A/L	具有多保护模式的电熔丝电源 MUX	1	2.7 至 18	20	0.65 至 5.3	重试 / 闭锁	42	EN、OV、 ENBLK\、dV/dT	PG、FLT\、 IMON	20 WQFN		1.10
TPS259250/1	5V、2至5A电熔丝/浪涌嵌位	1	4.5 至 5.5	20	2至5	闭锁/重试	28	ENUV	_	10 SON		0.38
TPS259260/1	12V、2 至 5A 电熔丝 / 浪涌嵌位	1	4.5 至 13.8	20	2至5	闭锁/重试	28	ENUV	_	10 SON		0.38
TPS259230/1	5V、2 至 5A 电熔丝/浪涌嵌位,闭锁 FET 驱动	1	4.5 至 5.5	20	2至5	闭锁 / 重试	28	ENUV	_	10 SON		0.55
TPS259240/1	12V、2 至 5A 电熔丝 / 浪涌嵌位,闭锁 FET 驱动	1	4.5 至 13.8	20	2至5	闭锁 / 重试	28	ENUV	_	10 SON		0.55
TPS259270/1	4.5 至 18V, 2 至 5A 电熔丝 / 浪涌嵌位, 闭锁 FET	1	4.5 至 18	20	2至5	闭锁 / 重试	28	ENUV	_	10 SON		0.55

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

红色粗体标注的为新器件。

保护、监视和热插拔 _{选择指南}

电流感测放大器

		共模	范围			输入抵消 (+/-)	CMRR	静态电流 (+/-)	V	's		S	
器件	描述	(最小) (V)	(最大) (V)	增益 (V/V)	输出 类型	(最大) (μV)	(最低) (dB)	(典型) (mA)	(最小) (V)	(最大) (V)	封装	汽车级	价格*
INA226	带I ² C接口的高侧测量、双向电流电源监视器	0	36	1	I ² C	10	126	0.33	2.7	5.5	MS0P-10		1.30
INA210	电压输出、高/低侧测量、双向零偏移串联电流电源监视器	-0.3	26	200	电压	35	105	0.065	2.7	26	μQFN-10, SC70-6		0.65
INA219	零偏移、双向电流电源监视器	0	26	可编程	I ² C	50	100	0.7	3	5.5	SOIC-8、 SOT-23-8		0.80
INA230	精确数字/电流/电压/电源监视器	0	28	1	I ² C	50	100	330	2.7	5.5	QFN-16		1.15
INA282	宽共模范围、双向、高精度电流电源监视器	-14	80	50	电压	70	120	0.6	2.7	18	S0IC-8	~	1.25
LMP8640	精密高压电流感测放大器	-2	76	20, 50, 100	电压	900	60	0.72	2.7	12	S0T-6		0.89
LMP8645	精密高压电流感测放大器	-2	76	可编程	电压	1000	60	0.61	2.7	12	S0T-6		0.89
LMP8646	精密电流限位器	-2	76	可编程	电压	1000	95	0.38	2.7	12	S0T-6		1.20

^{*}批量为 1,000 片时的建议转售价格(单位:美元)。

带 I²C/PMBus™ 的保护与监控

器件	V _{IN} 范围 (V)	启动/ 关闭	UV	OV	故障	PG	闭锁	自动重试	接口	FET SOA 保护	封装	价格*
LM25066/A	2.9 至 17	1H	~	~	~	~	编程	编程	I ² C、SMBus、PMBus	是	24引脚LLP	2.33/2.80
LM25066I/A	2.9 至 17	1H	~	~	~	~	编程	编程	I ² C、SMBus、PMBus	是	24引脚LLP	2.33/2.80
TPS2480/1	9 至 24	1H	~			~	编程	编程	I ² C	是	20引脚TSSOP	2.50
TPS2482/3	9 至 36	1H	~			~	编程	编程	I ² C	是	20引脚TSSOP	3.00
LM5066	10 至 80	1H	~	~	~	~	编程	编程	I ² C、SMBus、PMBus	是	28引脚eTSSOP	3.95
LM5066i	符合Intel节点管理器规格的 10至80V热插拔电源监视器	1H	~	~	V	~	编程	编程	I ² C、SMBus、PMBus	是	28引脚eTSSOP	4.45
LM5064	-10 至 -80	1H	~	~	V	~	编程	编程	I ² C、SMBus、PMBus	是	28引脚eTSSOP	3.45

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

带 I²C/PMBus 的监控

	V _{IN} 范围	启动/			遥测	遥测数据				
器件	(V)	关闭	故障	V _{IN}	I _{IN}	P _{IN}	温度	接口	封装	价格*
LM25056/A	3 至 17	1H	~	~	~	~	~	I ² C、SMBus、PMBus	24引脚LLP	1.50/1.70
LM5056	10 至 80	1H	~	~	~	~	~	I ² C、SMBus、PMBus	28引脚TSSOP	2.49

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

USB电源与充电端口控制器 选择指南

1-2 通道、4.5 至 5.5V USB 开关

通道	额定 电流 安培	启动极性	输出 放电	SOIC	MSOP DGN PowerPAD™	MSOP DGK	S0T-23	SON DRC
	0.5	L	Υ				TPS2041CDBV	
	0.5	Н	Υ				TPS2051CDBV	
		L	Υ		TPS2061CDGN		TPS2061CDBV	
	1	Н	Υ		TPS2065CDGN		TPS2065CDBV	
1		11	N		TPS2065CDGN-2		TPS2065CDBV-2	
'		L	Υ		TPS2068CDGN			
	1.5	Н	Υ		TPS2069CDGN		TPS2069CDBV	
		П	N		TPS2069CDGN-2			
	2	L	Υ		TPS2000CDGN	TPS2000CDGK		
	2	Н	Υ		TPS2001CDGN	TPS2001CDGK		
	0.5	Н	Υ		TPS2052CDGN			
			Υ	TPS2062CD	TPS2062CDGN			
		L	N					TPS2062CDRB-2
	I	Н	Y	TPS2066CD	TPS2066CDGN			
2		П	N		TPS2066CDGN-2			
2		L	Y		TPS2060CDGN			
	1.5	Н	Y		TPS2064CDGN			
		П	N		TPS2064CDGN-2			
	2	L	Υ					TPS2002CDRC
	2	Н	Υ					TPS2003CDRC

红色粗体标注的为价值器件。

固定I_{限制} 单通道、2.7 至 5.5V USB 开关

额定 电流安培	启动 极性	输出 放电	SOIC D	MSOP DGN PowerPAD™	SOT-23 DBV	P
0.1	L	N	TPS2049D			
0.2	L	N	TPS2020D, TPS2020IDRQ1			
0.2	Н	N	TPS2030D, TPS2030DRQ1			TPS2030P
0.25	L	N	TPS2045AD			
0.25	Н	N	TPS2055AD			
0.5	L	N	TPS2041BD, LM3525M-L	TPS2041BDGN	TPS2530BV, TPS2041BDBV, TPS2041BMDBVTEP, TPS2041BQDBVRQ1	
	Н	N	TPS2051BD, TPS2051BD, LM3525M-H	TPS2051BDGN	TPS2051BDBV	
0.6	L	N	TPS2021D, TPS2021DRQ1			TPS2021P
0.6	Н	N	TPS2031D			TPS2031P
	L	N	TPS2022D, TPS2022DRQ1, TPS2061D	TPS2061DGN	TPS2061DBV	
1		Υ		TPS2065DGN-1		
	Н	N	TPS2065D, TPS2032D, TPS2032DRQ1	TPS2065DGN, TPS2065DGNRQ1	TPS2065DBV	
1.5	L	N	TPS2023D, TPS2068D, TPS2068IDGNRQ1	TPS2068DGN		TPS2023P
	Н	N	TPS2033D	TPS2069DGN		
2	L	N	TPS2024D, TPS2024IDRQ1			TPS2024P
2	Н	N	TPS2034D			TPS2034P

红色粗体标注的为价值器件。

大部分的TI USB开关都依照UL2367得到了UL认可。有关最新状态,请查询数据表。

USB电源与充电端口控制器

选择指南

固定 I_{限制} 双通道、2.7 至 5.5V USB 开关

额定 电流 安培	启动 极性	输出 放电	SOIC D	MSOP DGN PowerPAD™	SON DRC
0.25	L	N	TPS2046BD		
0.25	Н	N	TPS2056AD		
0.5	L	N	TPS2042BD, TPS2042BQDRQ1, LM3526M-L	TPS2042BDGN	TPS2042BDRB
	Н	N	TPS2052BD, LM3526M-H	TPS2052BDGN	TPS2052BDRB
		Υ	TPS2062D-1		
1	L	N	TPS2062AD, TPS2062D	TPS2062QDGNRQ1, TPS2062DGN	TPS2062ADBR
1		Υ		TPS2066DGN-1	
	Н	N	TPS2066AD, TPS2066D	TPS2066DGN, TPS2066DGNRQ1	TPS2066ADBR
1.5	L	N		TPS2060DGN	TPS2060DBR
1.0	Н	N		TPS2064DGN	TPS2064DBR

固定 I_{限制} 3 和 4 通道、2.7 至 5.5V USB 开关

工作电压	通道数量	额定 电流 安培	启动 极性	SOIC D16
		0.25	L	TPS2047BD
		0.25	Н	TPS2057AD
	3	0.5	L	TPS2043BD
	3	0.5	Н	TPS2053BD
		4	L	TPS2063D
2.7 至 5.5		l l	Н	TPS2067D
		0.25	L	TPS2048AD
		0.25	Н	TPS2058AD
	4	0.5	L	TPS2044BD, LM3544M-L
		0.5	Н	TPS2054BD, LM3544M-H

带升压转换器 USB 开关的固定 I限制

工作电压	USB 通道数量	I _{限制} 调节范围 (安培/通道)	3.3V LD0	启动极性	F _{变量} Eco-mode™	QFN20	SON10 DRC
	4	0.10 75 1.4	N.		Υ		TPS250
1.8 至 5.5	I	0.13 至 1.4	N	Н	N		TPS250
	2	0.1 至 1.1	Υ		Y	TPS2505	
	,						

USB 电源与充电端口控制器

选择指南

精密可调限位开关

	I _{CONT.} 调节范围	v		可编程阈值			有源反向电流闭	R _{ON}		
通道数量	(安培/通道)	工作	V _{ABSMAX}	数量	闭锁/重试	输出放电	锁阈值(mV)	(mΩ)	封装	器件
	0.1 至 1.0							85	SOT 23-6	TPS2551QDBVRQ1
					重试			85	SOT 23-6	TPS2552DBV
								100	S0N6 2x2 mm	TPS2552DRV
					闭锁			85	SOT 23-6	TPS2552DBV-1
		2.5 至 6.5	7	1	内加坝	N	135	100	S0N6 2x2 mm	TPS2552DRV-1
	0.075 至 1.5	2.3 ± 0.3	,	'	重试	IN IN	133	85	SOT 23-6	TPS2553DBV TPS2553QDBVRQ1
								100	S0N6 2x2 mm	TPS2553DRV
1					277.6-14			85	SOT 23-6	TPS2553DBV-1
'					闭锁			100	S0N6 2x2 mm	TPS2553DRV-1
	0.075 至 2.5	2.5 至 6.5	20	1	闭锁	N	不适用	60	SOT 23-6	TPS25200DRV TPS25200QDRVRQ1
	0.5 至 2.5	4.5 至 5.5	7	2	重试	γ	不适用	73	S0N10 3x3 mm	TPS2555DRC
	双可调, 可选	4.5 至 5.5	′	2	里瓜	T	小 坦用	13	SON10 3x3 mm	TPS2554DRC
	0.5 至 5.0	2.5 至 6.5	7	1	重试	N	不适用	22	SON8 3x3 mm	TPS2556DRB TPS2556QDRBRQ1
	0.5 ± 5.0	2.5 主 0.5	,	ı	里 씨	IN	小 坦用	22	SON8 3x3 mm	TPS2557DRB TPS2557QDRBRQ1
									SON10 3x3 mm	TPS2560DRC
2	0.25 至 2.8	2.5 至 6.5	7	1	重试	N	不适用	45	SON10 3x3 mm	TPS2561DRC TPS2561QDRCRQ1
2	0.25 至 2.8		· '		里以	IN	小迫用	40	SON10 3x3 mm	TPS2560ADRC
	(微调I _{LIMIT} = 2.3 ± 0.2 A)								SON10 3x3 mm	TPS2561ADRC TPS2561AQDRCRQ1
1	1.2至4.7 ± 4.4%	2.5 至 6.5	7	1	重试	N	不适用	13	S0N10 3x3 mm	TPS2559DRC

大部分的TI USB开关都依照UL2367得到了UL认可。有关最新状态,请查询数据表。

USB充电端口控制器

					DCP/自动							
器件	内部电源 开关	CDP	SDP	BC1.2 模式	分频器模式1 2.0/2.7V	分频器模式2 2.7/2.0 V	1.2/1.2 V	分频器模式 3 2.7/2.7V	SW鼠标HID 唤醒	负载检测	UL认证	封装
TPS2513A/3AQ100/4A	否	否	否	是	是	是	是	是	否	否	否	S0T-23
TPS2513/14	否	否	否	是	是	是	是	否	否	否	否	S0T-23
TPS2511/Q100	是	否	否	是	是	是	是	否	否	I _{LIMIT} 的50%	是	MSOP 8
TPS2546	是	是	是	是	是	是	是	否	LS/FS	50 mA	是	QFN 16
TPS2544	是	是	是	是	是	是	是	否	LS/FS	否	是	QFN 16
TPS2543/Q100	是	是	是	是	是	是	否	否	LS	50 mA	是	QFN 16

- 所有开关设备均得到 UL 认可。
- SDP = BC1.2 标准下游端口,支持 USB 2.0 (500 mA)和 USB 3.0 (900 mA)。
- CDP = BC1.2 充电下游端口, 支持充电至 1.5A。
- DCP = BC1.2 专用下游端口,单机充电器,无数据路径(壁挂式充电器)
- 分频器模式 2 允许充电至 2.1A。
- TPS2546 引脚 / 功能与 TPS2543 相兼容; TPS2544 引脚 / 功能与 TPS2543/6 相兼容。
- TPS2513/A = 2 个通道; TPS2514/A = 1 个通道; TPS2513A/14A 支持 2.7/2.7-V 分频器模式

大部分的 TI USB 开关都依照 UL2367 得到了 UL 认可。有关最新状态,请查询数据表。

带电源开关的 USB C 类控制器

器件	电源的作用	电流容量	外部电源 路径控制	可选模式	VBUS应用	VCONN应用	封装
TPS25810	DFP	C类3.0A USB电源	否	否	是	是	QFN 20
TPS25740/A	DFP	C类PD 5.0A USB电源	是	否	是	否	QFN 24

红色粗体标注的为新器件。

USB 电源与充电端口控制器

USB 充电信号交换概况

TI USB 充电控制器不同程度上支持目前流行的四种手持媒体与 移动设备中最常见的充电方案:

- USB 电池充电规范 BC 1.2
- 中国电信行业标准 YD/T 1591-2009
- 分频器模式 1 和分频器模式 2
- 1.2V 模式

YD/T 1591-2009 是 BC1.2 规范的子类,支持执行 USB 充电的大部分设备。分频器模式 1 和 2 以及 1.2V 充电方案支持特定供应商常见的设备。BC1.2 列出了三种不同的端口,如下所列。

USB充电控制器信号交换接口

TI USB 充电控制器支持的信号交换方案

	Я	关	节点(V)					
模式	D-	D+	Α	В	C			
BC1.2	200 W 至 D+	200 W 至D-	_	_	_			
分频器 1	2.7 V	2.0 V	2.7	_	2.0			
分频器 2	2.0 V	2.7 V	2.0	_	2.7			
分频器 3	2.7 V	2.7 V	2.7	_	2.7			
1.2 V	1.2 V	1.2 V	_	1.2	_			

DCP BC1.2 和 YD/T 1591-2009

这两个标准都规定 D+ 和 D- 数据行应在主机端一起缩短,最大 串联阻抗为 200W,如下表和图所示。

DCP 分频器充电方案

某些充电控制器支持分频器模式 1 和 2。分频器 1 和分频器 2 的 DCP 接口配置如表和图中所示。分频器 1 充电将 2.0V 和 2.7V 分别用于 D+ 和 D_数据行。在分频器 2 中顺序相反。分频器模式 3 将 2.7V 用于 D+ 和 D-,并且支持 2.4A 充电。

DCP 1.2V 充电方案

一些手持设备使用 1.2V 充电方案在 2.0A 的电流下启动快速充电。一些设备(如图所示)在设备进入 BC1.2 短模式之前,支持 DCP 自动模式下的方案。为了模拟这一充电方案,D+/D- 行缩短,并推送至 1.2V 固定期间;然后设备移动至 DCP 短模式,如 BC1.2 规范中所规定。

大部分的 TI USB 开关都依照 UL2367 得到了 UL 认可。有关最新状态,请查询数据表。

Texas Instruments 电源管理指南 2016 │ 87

集成负载开关

概述

集成开关产品组合

负载开关的集成/尺寸优势

集成负载开关 选择指南

配电与省电

器件	输入电压 范围(V)	3.3 V时R _{ON} (典型) (mΩ)	关断电流 (I _{SD}) (典型) (μA)	I _{MAX} (A)	通道数量	专用特征	封装	汽车级	价格*
TPS22915	1.05 至 5.5	38	0.5	2	1	磁滞输入、快速输出放电	CSP-4		0.24
TPS22918	1.0 至 5.5	50	0.5	2	1	可配置上升时间、可配置快速输出放电	S0T23-6	~	0.21
TPS22920	0.75 至 3.6	5.3	5.5	4	1	快速输出放电	CSP-8		0.25
TPS22925	0.65 至 3.6	9.2	0.5	3	1	反向电流保护、快速输出放电	CSP-6		0.25
TPS22954	0.7 至 5.7	16	4.3	5	1	电源良好、可调上升时间、快速输出放电	QFN-10		0.29
TPS22959	0.8 至 5.5	4.4	1.1	15	1	快速输出放电	QFN-8		0.54
TPS22964C	1 至 5.5	13.8	0.76	3	1	反向电流保护、快速输出放电	CSP-6		0.28
TPS22965	0.8 至 5.7	16	0.2	6	1	可调上升时间、快速输出放电	QFN-8	~	0.26
TPS22968	0.8 至 5.5	25	0.5	4	2	可调上升时间、快速输出放电	QFN-14 (两侧性侧面)	~	0.27
TPS22994	1至3.6	41	7	1	4	可配置上升时间、I ² C 可控、快速输出放电	QFN-20		0.60

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

红色粗体标注的为新器件。

电源与电流限制保护

器件	通道数量	V _{IN} (最低) (V)	Vabsmax_cont (V)	限流阈 值 (典型) (A)	故障 响应	R _{on} (mΩ)	专用特征	封装	汽车级	价格*
TPS22946	1	1.62 至 5.5	0.2	155/70/30	闭锁/重试	400	故障报告、热停机	6 CSP		0.49
TPS24750/1	1	2.5 至 18	30	可调	闭锁/重试	3	上升时间可调、电流感测/监控、故障报告、过压保护、电源良好、 反向电流保护、热关断、欠压保护	36 VQFN		1.65
TPS25910	1	2.9 至 20	22	0.8 至 6.5	重试	30	上升时间可调、故障报告、热关断	16 QFN		0.90
TPS25924	1	4.5 至 5.5	20	2至5	闭锁/重试	28	上升时间可调、过压保护、反向电流保护、热关断、欠压保护	10 SON		0.55
TPS25923	1	4.5 至 13.8	20	2至5	闭锁/重试	28	上升时间可调、过压保护、反向电流保护、热关断、欠压保护	10 SON		0.55
TPS25927	1	4.5 至 18	20	2至5	闭锁/重试	28	上升时间可调、反向电流保护、热关断、欠压保护	10 SON		0.55
TPS25921A/L	1	4.5 至 18	20	0.4至1.6 ± 2%@1 A	闭锁/重试	90	上升时间可调、故障报告、过压保护、欠压保护	8 SOIC		0.50
TPS25940	1	2.7 至 18	20	0.65 至 5.3	闭锁/重试	42	上升时间可调、电流感测/监控、故障报告、过压保护、电源良好、 反向电流保护、热关断、欠压保护	20 WQFN	~	0.75
TPS25942A/L	1	2.7 至 18	20	0.65 至 5.3	闭锁/重试	42	上升时间可调、电流感测/监控、故障报告、过压保护、电源良好、 反向电流保护、热关断、欠压保护	20 WQFN		1.10

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

蓝绿色粗体标注的为前瞻性产品。

智能高侧开关

器件	输入电压 范围(V)	最大 电压(V)	R _{ON} (mΩ)	通道数量	专用特征	封装	汽车级	价格*
TPS1H100-Q1	5至40	48	80	1	电流感应输出、数字输出、可编程电流限制	14-HTSSOP	~	1.40
TPS2HA08-Q1	3至28	43	8	2	全诊断和保护特征、准确的电流感测输出(+/-5%)、 可选的看门狗定时器	24-HTSSOP	~	WEB
TPS4H160-Q1	3.5 至 40	48	160	4	40-V / 160-mΩ 四通道智能高侧开关	28-HTSSOP	~	3.60
TPS2H160-Q1	3.5 至 40	48	160	2	40-V / 160-mΩ 双通道智能高侧开关	28-HTSSOP	~	2.16
TPS2H000-Q1	3.4 至 40	-	1000	2	40-V / 1000-mΩ 双通道智能高侧开关	16-HTSSOP	~	WEB
TPS4H000-Q1	3.4 至 40	-	1000	2	40-V / 1000-mΩ 四通道智能高侧开关	16-HTSSOP	~	WEB

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

蓝绿色粗体标注的为前瞻性产品。**红色粗体**标注的为新器件。

DDR 内存电源解决方案

应用及选择指南

TI DDR 电源应用

DDR 内存电源解决方案

器件	V _{IN} (V)	I _{OUT} (A)	提供	DDR类型	汽车级
插件模块					
PTH03010/50/60W	2.95 至 3.65	6/10/15	VTT	1, 2, 3	
PTH05010/50/60W	4.5 至 5.5	6/10/15	VTT	1, 2, 3	
PTH12010/50/60L	10.8 至 13.2	6/10/12	VTT	1, 2, 3	
控制器					
TPS40042	2.25 至 5.5	达15	VTT	1、2、3、4、LV3、LP3	
TPS40057	8至40	达20	VTT	1, 2, 3	
TPS53647	4.5 至 17	达240	VDDQ	1, 2, 3, 4, LV3, LP3	
TPS40425/8	4.5 至 20	达40	VDDQ	1、2、3、4、LV3、LP3	
控制器+LD0					
TPS51116/59116、TPS51216/716/916	3至28 ¹	对于 VDDQ,达25A(对于 TPS51216/916,2A VTT)	VTT、VDDQ、VREF	1、2、3、4、LV3、LP3	
双控制器					
TPS51020	4.5 至 28	达15	VTT、VDDQ、VREF	1, 2	
终端电压(源库)LDO					
TPS51100	1.2至3.6 ²	达3	VTT、VREF	1、2、3、4、LV3、LP3	
TPS51200	1.1至3.5 ³	达3	VTT、VREF	1, 2, 3, 4, LV3, LP3	✓
TPS51206	VTT+0.4 V至3.5 V	达2	VTT、VREF	1, 2, 3, 4, LV3, LP3	
LP2995	2.2 至 5.5	1.5	VTT、VREF	1	
LP2996	1.8 至 5.5	1.5	VTT、VREF	1, 2	
LP2996A	1.5 至 5.5	1.5	VTT、VREF	1, 2, 3	
LP2997	1.8 至 5.5	0.5	VTT、VREF	1, 2	
LP2998	1.35 至 5.5	1.5	VTT、VREF	1, 2, 3	✓
带集成场效晶体管(FET)的3	を換机				
TPS54372/672	3至6	3/6	VTT	1, 2, 3	✓
TPS53317/A	3至6	6	VIT	1、2、3、4、LV3、LP3 、LP4	
TPS54972	3至4	9	VTT	1, 2, 3	
TPS51362/7	3至22 ¹	10/12	VDDQ	1、2、3、LV3、LP3	
TPS560200	4.5 至 17	0.5	VPP	4	
TPS54116-Q1	2.95 至 6	4/1	VTT、VDDQ、VREF	1、2、3、LV3、LP4	v

¹需要 4.5 - 至 5.5-V 偏移

蓝绿色粗体标注的为前瞻性产品。

²需要 4.75 - 至5.25-V 偏移 ³需要 2.4 - 至 3.5-V 偏移

电压参考

概述及选择指南

电压参考

低噪音以及优异的长期稳定性等。串联和 及低噪音传感器调节参考。电压参考通常

TI 的宽电压参考组合提供了各种性能特 并联参考提供了各种应用,包括达 20 位 征,如低温系数、精确的初始化准确率、 精度准确率的高精度数字转换器参考,以

也用作电压监控器、电流限位器以及可编 程电流源。

电压参考

器件	初始精度 (%)	可调	输出电压(V)	温度偏移 (ppm/°C)	封装	汽车级	价格*
并联 V _{REF}							
LM2/385/B	1.0, 2.0	_	1.2, 2.5	20	TSSOP、SOIC-8、TO-92		0.28
LM4040 A/B/C	0.1, 0.2, 0.4	_	2.0、2.5、3.0、4.0、5.0、8.2	100	3S0T-23, SC-70, T0-92	✓	1.30
LM4050A/B/C	0.1, 0.2, 0.5	_	2.048、2.5、4.096、5.0、 8.192、10	50	S0T-23	~	0.70
TL431/2 A/B	0.5, 1.0, 2.0	达36 V	2.5	150	3/5S0T-23	✓	0.11
TLV431 A/B	0.5, 1.0	达6 V	1.24	150	3/5S0T-23、T0-92`	✓	0.23
TL4050/1 A/B/C	0.1, 0.2, 0.5	达10 V	1.2, 2.5, 4, 5, 10	50	3/5S0T-23	v	1.15
串联 V _{REF}							
REF50xx	0.05	_	2.0、2.5、3.0、4.1、4.5、 5.0、10	3	MSOP-8		1.35
REF50xxA-Q1	0.1	-	2.048、2.5、3.0、4.096、 4.5、5.0	8	SOIC-8	~	1.60
LM4132A/E	0.05, 0.5	_	1.8, 2.0, 2.5, 3.3, 4.1	10/30	5S0T-23	✓	0.78
LM4128A/B/C/D	0.1, 0.2, 0.5, 1	_	1.8、2.048、2.5、3.0、 3.3、4.096	75/100	5S0T-23	~	0.52
LM4140C	0.1	_	1.0, 1.2, 2.0, 2.5, 4.1	10	SOIC-8		1.35
LM4120/1/5 A	0.5, 0.2	达5 V	1.8、2.0、2.5、3.0、3.3、 4.1、5.0	50	5S0T-23		0.70
REF29xx	2.0	_	1.2、2.0、2.5、3.0、3.3、4.1	100	3S0T-23		0.49

^{*}批量为 1,000 片时的建议转售价格 (单位: 美元)。

射频功率检测器 选择指南

射频功率检测器

器件	应用	通道数量	电源电压范围 (V)	动态范围 (dB)	频率范围 (MHz)	类型	封装	EVM	价格*
LMV221	CDMA、WCDMA、GSM、GPRS	1	2.7 至 3.3	40	50 至 3500	LOG放大器	LLP-6	V	0.90
LMV225	CDMA、WCDMA、GSM、EDGE、GPRS、TDMA	1	2.7 至 5.5	>30	450 至 2000	L0G放大器	Micro SMD-4、LLP-6	V	0.32
LMV226	CDMA、WCDMA、GSM、EDGE、GPRS、TDMA	1	2.7 至 5.5	>30	450 至 2000	L0G放大器	micro SMD-4	V	0.42
LMV228	CDMA、WCDMA、GSM、EDGE、GPRS、TDMA	1	2.7 至 5.5	>30	450 至 2000	L0G放大器	micro SMD-4	V	0.36
LMV232	3G、UMTS、WCDMA、CDMA2000、LAN、GPS	2	2.5 至 3.3	20	50 至 2000	LIN MS放大器	micro SMD-8	~	0.85
LMV242	GSM、GPRS、TDMA、LAN	2	2.6 至 5.5	50	450 至 2000	L0G放大器	LLP-10	v	0.55
LMH2100	CDMA、WCDMA、GSM、GPRS	1	2.7 至 3.3	40	50 至 4000	L0G放大器	micro SMD-6	v	0.95
LMH2110	LTE、UMTS、WCDMA、CDMA2000、GSM/EDGE	1	2.7 至 5	45	50 至 8000	LOG RMS	micro SMD-6	~	0.80
LMH2120	LTE、UMTS、WCDMA、CDMA2000、GSM/EDGE	1	2.7 至 5	40	50 至 6000	LIN RMS	micro SMD-6	v	0.80
LMH2121	LTE, UMTS, WCDMA	1	2.7 至 5	40	100 至 3000	快速LIN放 大器	micro SMD-4		0.60

^{*}批量为 1,000 片时的建议转售价格 (单位:美元)。

器件索引

器件	页码	器件	页码	器件	页码	器件	页码	器件	页码
bq2000/T	32	bq24313	34	bq27542-G1	33	BUF16821	64	CSD17483F4	
bq2002/C/E/F		bq24314/A		bq27546-G1	33	BUF18830	64	CSD17484F4	
bq2004/E/H	31	bq24314C	34	bq27742-G1	33	BUF20800	64	CSD17501Q5A.	
bq2005	31	bq24315	34	bq28z610	33	BUF20820	64	CSD17505Q5A.	
bq2022A	35	bq24316	34	bq29200	34	BUF22821	64	CSD17506Q5A.	
bq2024	35	bq24350	34	bq29209	34	CSD13201W10	37	CSD17507Q5A.	
bq2026	35	bq24351	34	bq29209-Q1	34	CSD13202Q2	37	CSD17510Q5A.	
bq2028	35	bq24352	34	bq2945xy	34	CSD13302W	37		
bq2031	32	bq24380	34	bq2946xy		CSD13303W1015	37	CSD17527Q5A.	
bq20z655-R1	33	bq24381		bq2947xy	34	CSD13306W		CSD17551Q3A.	
bq24030/31/35	30	bq24382	34	bq2961xy	34	CSD13381F4	37	CSD17551Q5A.	
bq24032A/38	30	bq24400/1	31	bq297xy	34	CSD13383F4	37	CSD17552Q3A.	
bq24040/41		bq24450		bq33100		CSD15571Q2			
bq24045		bq24600		bq34z100-G1	33	CSD16301Q2			
bq24050/52		bq24610		bq4050		CSD16321Q5			
bq24055		bq24616		bq40z50-R1		CSD16321Q5C			
bq24072/72T		bq24617		bq40z60		CSD16322Q5			
bq24073		bq24618		bq50002/511		CSD16322Q5C			
bq24074		bq24620		bq500212A		CSD16323Q3			
bq24075T/79T		bq24630		bq500215		CSD16323Q3C			
bq24090/91		bq24640		bq500412A		CSD16325Q5			
bq24092/93		bq24650		bq500414Q		CSD16325Q5C			
bq24095		bq24707A		bq51003		CSD16327Q3			39
bq24130		bq24715		bq51010B		CSD16340Q3			38
bq24133		bq24725A		bq51013B		CSD16342Q5A			
bq24140		bq24735		bq51020		CSD16401Q5			39
bq24153A/58		bq24765		bq51021		CSD16403Q5A			
bq24156A/59bq24157		bq24770 bq24773		bq51025 bq51050B/51B		CSD16404Q5A CSD16406Q3			
bq24157S		bq24780S		bq51221		CSD16407Q5			
bq24160/A		bq25040		bq76200		CSD16407Q5C			
bq24161/B		bq25050		bq76920		CSD16408Q5			
bg24163		bq25060		bq76925		CSD16408Q5C			
bg24165		bq25070		bq76930		CSD16409Q3			39
bq24166		bq25071		bq76940		CSD16410Q5A			
bq24167		bq25100		bq76PL455A-Q1		CSD16411Q3			3
bg24168		bq25100A		bq76PL536A		CSD16412Q5A			
bq24170		bq25100H		bq76PL536A-Q1		CSD16413Q5A			
bq24171		bq25101	31	bq7716xy		CSD16414Q5		CSD18533Q5A.	
bq24172	31	bq25120	30	bq7718xy	34	CSD16415Q5	38	CSD18534KCS.	
bq24190	30	bq25504	32	bq77PL900	34	CSD16556Q5B	38	CSD18534Q5A.	
bq24192	30	bq25505	32	bq78350-R1	33	CSD16570Q5B	38	CSD18535KCS.	
bq24192I	30	bq25570	32	bq78z100	33	CSD17301Q5A	38	CSD18535KTT.	
bq24193	30	bq25890		BUF01900	64	CSD17302Q5A		CSD18536KCS.	
bq24195		bq25892		BUF01901	64	CSD17303Q5			
bq24195L		bq25895		BUF04701		CSD17304Q3			S
bq24196		bq25896		BUF05703		CSD17305Q5A			A
bq24210		bq25898		BUF05704		CSD17306Q5A			
bq24232		bq25898C		BUF06703		CSD17307Q5A			40
bq24232H		bq25898D		BUF06704		CSD17308Q3			39
bq24250/51		bq26100		BUF07702/3/4		CSD17309Q3			39
bq24253		bq27220		BUF08630		CSD17310Q5A			39
bq24257		bq27320		BUF08800		CSD17311Q5 CSD17312Q5			
bq24295 bq24296		bq27411 bq27421		BUF08832		CSD17312Q5			
bq24297		bq27426		BUF11702/4/5		CSD17313Q2Q1			
bq24300/5		bq27441		BUF12800		CSD17313Q2Q1			
bq24308		bq27520		BUF12840		CSD17327Q5A			
bg24312		bq2753x		BUF16820		CSD17381F4			
•		•							

器件索引

器件 页码	器件 页码	器件 页码	器件 页码	器件 页码
CSD19532KTT	CSD95373BQ5M	LM21215A8	LM274514	LM344571
CSD19532Q5B39	CSD95375Q4M	LM2130510	LM274714	LM344771
CSD19533KCS39	CSD95377Q4M	LM22674/75/76/77	LM274814	LM3450/50A
CSD19533Q5A39	CSD95378BQ5M	LM25011/A	LM2751	LM346372
CSD19534KCS39	CSD95378BQ5MC 41	LM25056/A	LM2756	LM3464/64A
CSD19534Q5A39	CSD95379Q3M	LM25061	LM2757	LM346672
CSD19535KCS39	CSD95472Q5MC	LM25066/A	LM277117	LM347514
CSD19535KTT	CSD96370Q5M	LM25066I/A83	LM277217	LM347714
CSD19536KCS39	CSD96371Q5M	LM2506981	LM277317	LM347821
CSD19536KTT	CSD97370AQ5M	LM25101A/B/C	LM277521	LM348121
CSD19537Q338	CSD97370Q5M	LM2511961	LM277623	LM348514
CSD22202W1540	CSD97394Q4M	LM25574/5/6	LM2776123	LM348821
CSD22204W	CSD97395Q4M	LM2574/75/76	LM28307	LM348914
CSD23202W10	CSD97396Q4M	LM2574HV11	LM28317	LM34910/C
CSD23203W	EMB1412	LM258520	LM28327	LM34917A11
CSD23381F440	EMB1428Q	LM258620	LM28337	LM34919/B/C
CSD23382F4	EMB1499Q34	LM258720	LM28527	LM3492/92HC
CSD25202W15	INA21083	LM258820	LM28538	LM3525M-H
CSD25211W1015	INA21983	LM2591HV/92HV	LM28548	LM3525M-L84
CSD25213W10	INA226	LM2594/95/9611	LM2936HV4	LM3526M-H
CSD25304W1015	INA23083	LM2600111	LM300015	LM3526M-L85
CSD25310Q240	INA282	LM2600312	LM301721	LM3528
CSD25402Q3A40	ISO5451 45, 48	LM2611	LM315014	LM3530
CSD25481F440	ISO5452	LM262119	LM315114	LM3532
CSD25483F4	ISO5500 45, 48 ISO5851 45, 48	LM2622	LM315214 LM315314	LM3533
CSD75207W15	IS05852S	LM26400Y58	LM317HV4	LM3537
CSD75208W1015	LM(2)500512	LM264215	LM317L-N	LM3538
CSD83325L	LM(2)500711	LM26420	LM317x	LM3544M-H
CSD85301Q237	LM(2)5010/A	LM2647	LM3209-G323	LM3544M-L85
CSD85302L	LM(2)501711	LM2648058, 61	LM321223	LM355074
CSD85312Q3E38	LM(2)501811	LM2648458	LM322419	LM355474
CSD86311W172337	LM(2)501911	LM26509	LM3241	LM355574
CSD86330Q3D41	LM(2)503751	LM26519	LM3242	LM355674
CSD86350Q5D41	LM(2)5085/A	LM26539	LM324323	LM355974
CSD86360Q5D41	LM(2)508815	LM26559	LM324823	LM3560
CSD87312Q3E	LM(2)5115/A 15, 52	LM265715	LM3262	LM3561
CSD87330Q3D41	LM(2)511615	LM2660 21, 23	LM326323	LM3565
CSD87331Q3D41	LM(2)511714	LM2662/3 17, 21, 23	LM326923	LM36272
CSD87333Q3D	LM(2)511822	LM2674/75/76/77	LM327923	LM36273
CSD87334Q3D	LM(2)511915	LM2676/77	LM328058	LM36274
CSD87335Q3D41	LM1050257	LM269819	LM32817	LM3630
CSD87350Q5D 41, 54	LM1050358	LM2700	LM3290/91	LM3631
CSD87351Q5D41 CSD87351ZQ5D41	LM10504/6	LM2717	LM331019 LM340173	LM364274 LM364374
CSD87352Q5D41	LM1052458	LM273119	LM3402/02HV	LM364474
CSD87353Q5D41	LM1069258	LM2731319	LM3404/04HV	LM3644TT74
CSD87355Q5D41	LM10844	LM273319	LM3405/05A	LM364674
CSD87381P41	LM17708	LM27349	LM3406/06HV	LM364874
CSD87384M	LM17718	LM273419	LM340773	LM3648TT74
CSD87501L	LM2/385/B	LM273429	LM3409/09HV	LM366822
CSD87502Q237	LM20123/33/437	LM273519	LM3410X/Y	LM36707
CSD87588N41	LM20124/34/44/54 8	LM27369	LM3414/14HV	LM36717
CSD88537ND	LM20125/45 8	LM27389	LM3421/23/2973	LM36787
CSD88539ND	LM20136/46 8	LM2740214	LM342473	LM368658
CSD95372AQ5M	LM2024211	LM2740314	LM343021	LM368758
CSD95372BQ5M	LM20323/33/4312	LM274214	LM3431/31A	LM36917
CSD95372BQ5MC	LM21212-1	LM274314	LM3433/34	LM36922
CSD95373AQ5M	LM212158	LM274414	LM344471	LM36922H67

Texas Instruments 电源管理指南 2016 | 93

器件索引

器件	页码	器件 页码	器件	页码	器件	页码	器件	页码
LM36923	67	LM5109B-Q148	LMR23610/25/30		LP3885(2/5/8)	4	PTH03020W	
LM36923H	67	LM5110	LMR24210		LP3885(3/6/9)		PTH03030W	
LM3697	67	LM5111	LMR24220		LP38851	4	PTH03050W	
LM3704	75	LM5112 44, 46	LMR62014	21	LP3905	58	PTH03050Y	
LM3710	75	LM5112-Q1	LMR62421	21	LP3906	58	PTH03060W	
LM3724	75	LM511342-45, 47, 54	LMR64010	21	LP3907	58, 61	PTH03060Y	
LM3743	14	LM5114 43, 44	LMR70503	18, 20	LP3910	57, 58	PTH04000W	
LM3754	14, 15	LM5114A/B	LMS33460	75	LP3913	57	PTH04040W	24, 27
LM3880	77	LM511961	LMV221	91	LP3918	57	PTH04070W	
LM3881	77	LM5121/2	LMV225	91	LP3921	57	PTH04T220/221W	1
LM4040 A/B/C	91	LM5134	LMV226	91	LP3923	57	PTH04T230/231W	1
LM4050A/B/C	91	LM514015	LMV228	91	LP3925	56, 57	PTH04T240/241W	
LM4120/1/5 A	91	LM5140-Q161	LMV232		LP3927	57	PTH04T260/261W	
LM4128A/B/C/D		LM5160/A	LMV242	91	LP3943		PTH05000W	
LM4132A/E		LM516511	LMV7231		LP3944		PTH05010/50/60V	W90
LM4140C		LM517522	LMZ10500/1		LP3971/2		PTH05010W	
LM43600/01/02/03		LM53600-Q111	LMZ10503/04/05		LP3974		PTH05010Y	27
LM4510		LM53601-Q111	LMZ10503/04/05EX		LP3996		PTH05020W	
LM46000/01/02		LM53602-Q111	LMZ12001/02/03		LP5521		PTH05030W	
LM5000		LM53603-Q112	LMZ12001/02/03EX		LP5522		PTH05050W	
LM5001		LM5574/5/6	LMZ12008/10		LP5523		PTH05050Y	
LM5002		LM564215	LMZ13608/10		LP55231		PTH05060W	
LM5006		LM5642x	LMZ14201/02/03		LP5524		PTH05060Y	
LM5008/A		LM7360512	LMZ14201/02/03EXT		LP55281		PTH05T210W	
LM5009/A		LM74610-Q181	LMZ14201H/02H/03		LP5560		PTH08000W	
LM5015		LM74670-Q181	LMZ20501/2		LP5562		PTH08080W	
LM5020		LM809	LMZ21700/1		LP590(0/7)		PTH08T210W	
LM5021 LM5022		LM810	LMZ22003/5 LMZ22008/10		LP5907		PTH08T220/221W PTH08T230/231W	
LM5022/C		LM8364	LMZ23603/5	,	LP5910		PTH08T240/241W	
LM5023		LM8365	LMZ23608/10	,	LP5996		PTH08T240F	
LM5025/A/B/C		LM850267	LMZ30602	,	LP8340		PTH08T250/255W	
LM5025A-D		LM88017	LMZ30604	,	LP8543		PTH08T260/261W	
LM5026		LM9061/Q	LMZ30606	,	LP8545		PTH12000L/W	
LM5027		LM90764	LMZ31503		LP8550	66	PTH12010/50/60L	
LM5027/A		LMC695375	LMZ31506	24, 25	LP8553	65, 66	PTH12010L/W	
LM5030	49, 50, 52	LMC766023	LMZ31520	24, 25	LP8556	66	PTH12010Y	
LM5032	51	LMG3410 42, 43	LMZ31530	25	LP8557	66	PTH12020L/W	
LM5033	52	LMG5200 42, 43	LMZ31704	24, 25	LP8720	58	PTH12030L/W	
LM5034	49-51	LMH210091	LMZ31707	24, 25	LP8725	58	PTH12040W	
LM5035	49-51	LMH211091	LMZ31710	25	LP8728	61	PTH12050L/W	
LM5035/A/B/C		LMH212091	LMZ34002	. 24, 25, 28	LP8755	60	PTH12050Y	
LM5039		LMH212191	LMZ34202	24, 25	LP8758-B0	8	PTH12060L/W	
LM5041/A/B		LMP864083	LMZ35003		LP8758-E0	58	PTH12060Y	
LM5045		LMP864583	LMZ36002		LP8860	66	PTN04050A	
LM5046		LMP864683	LP2951-N		LP8861		PTN04050C	
LM5050-1		LMR105107	LP2966		LP8862		PTN78000A	
LM5050-2		LMR105157	LP2967		LP8900		PTN78000W/H	
LM5051		LMR105207	LP298(1/5)/A		MC34063A		PTN78020A	
LM5056		LMR120079	LP2989/LV		PTD08A006W		PTN78020W/H	
LM5060/Q		LMR120109	LP2995		PTD08A010W		PTN78060A	
LM5064	,	LMR1400611 LMR1402012			PTD08A015W		PTN78060W/H	
LM5066i		LMR1402012	LP2996A		PTD08A020W PTD08A210W		PTR08060W PTR08100W	
LM5067		LMR1405012	LP2998		PTD08A210W		PTV03010W	
LM5068		LMR1420311	LP3470		PTH03000W		PTV03010W	
LM5069		LMR1420611	LP3851(1/2/3)		PTH03010/50/60W .		PTV05010W	
LM5100A/B/C		LMR1600611	LP38798-ADJ		PTH03010W		PTV05020W	
LM5101A/B/C		LMR16010/20/30	LP388(1/2/3)		PTH03010Y		PTV08T250W	

器件索引

器件页	码 器件	页码	器件	页码	器件	页码	器件	页码
PTV12010L/W	27 TLC59461		TPS2023D		TPS2062D		TPS23753A.	
PTV12020L/W	27 TLC5947	69, 70	TPS2023P		TPS2062D-1		TPS23754/6.	
REF29xx	91 TLC59482		TPS2024D		TPS2062DGN		TPS23757	
REF50xx	91 TLC5948A	69, 70	TPS2024IDRQ1		TPS2062QDGNRQ	1	TPS2376	
REF50xxA-Q1	91 TLC5949		TPS2024P		TPS2063D		TPS2376-H .	
REG710	23 TLC5951	69, 71	TPS2030D		TPS2064CDGN		TPS2377/-1.	
REG71050 23,	66 TLC5952	69, 71	TPS2030DRQ1		TPS2064CDGN-2		TPS2378	78, 79
REG711	23 TLC5954	69, 71	TPS2030P		TPS2064DBR		TPS2379	78, 79
SM72295	47 TLC5955	69, 71	TPS2031D		TPS2064DGN		TPS2384	
SM72442		69, 71	TPS2031P		TPS2065CDBV		TPS23841	
SM72445		69, 71	TPS2032D		TPS2065CDBV-2		TPS23861	78, 79
SM72482	46 TLC59581		TPS2032DRQ1		TPS2065CDGN		TPS2390	
SM74101	46 TLC5960		TPS2033D		TPS2065CDGN-2		TPS2391	
SM74104	47 TLC5971		TPS2034D		TPS2065D		TPS2392	
TCA6507		69, 71	TPS2034P		TPS2065DBV		TPS2393	
TL3842B/3B/4B/5B	51 TLC5973	69, 71	TPS2041BD		TPS2065DGN,		TPS2393A	
TL4050/1 A/B/C	91 TLC59731		TPS2041BDBV		TPS2065DGN-1.		TPS2394	
TL4242	70 TLC6C5712-0)1	TPS2041BDGN.		TPS2065DGNRQ1	84	TPS2398	
TL431/2 A/B	91 TLC6C5912-0)1	TPS2041BMDBV	TEP84	TPS2066AD		TPS2399	
TL494	51 TLC6C598-Q1		TPS2041BQDBVF	RQ184	TPS2066ADBR	85	TPS2400	
TL497A 19,	20 TLC77xx	75, 76	TPS2041CDBV.		TPS2066CD		TPS2410	
TL499A 19,	20 TLV431 A/B .		TPS2042BD		TPS2066CDGN		TPS2411	
TL594	51 TLV62065-Q1		TPS2042BDGN.		TPS2066CDGN-2		TPS2412	
TL598	52 TLV62080		TPS2042BDRB.		TPS2066D		TPS2413	
TL7660	21 TLV62084		TPS2042BQDRQ	1	TPS2066DGN	85	TPS2419	
TL7700 75,	76 TLV62085	8	TPS2043BD		TPS2066DGN-1.	85	TPS2420	80, 82
TL783	.4 TLV62090	8	TPS2044BD		TPS2066DGNRQ1	85	TPS2421-1/2	
TLC59025	70 TLV62095	8	TPS2045AD		TPS2067D	85	TPS2456/A .	80, 81
TLC59108 69,	70 TLV62130		TPS2046BD		TPS2068CDGN		TPS2458	
TLC59108F	70 TLV62150		TPS2047BD		TPS2068D		TPS2459	
TLC59116 69,	70 TLV62565		TPS2048AD		TPS2068DGN		TPS24700	
TLC59116F	70 TLV705		TPS2049D		TPS2068IDGNRQ1		TPS24701	
TLC5916 69,	70 TLV707		TPS2051BD		TPS2069CDBV		TPS24710	
TLC5917	70 TLV710		TPS2051BDBV		TPS2069CDGN		TPS24711	
TLC59208F	70 TLV711		TPS2051BDGN.		TPS2069CDGN-2		TPS24712	
TLC5921	70 TLV713P		TPS2051CDBV		TPS2069DGN		TPS24713	
TLC59210	70 TLV716		TPS2052BD		TPS22915	88, 89	TPS24720	
TLC59211	70 TLV717		TPS2052BDGN.		TPS22918		TPS24740/1/2	2 80, 81
TLC59212	70 TLV733P		TPS2052BDRB		TPS22920	88, 89	TPS24750/1.	82, 89
TLC59213/A	70 TLV77xxA		TPS2052CDGN.		TPS22925	88, 89	TPS24770/1/2	2 80, 81
TLC5922			TPS2053BD		TPS22946			
TLC5923	70 TLV809		TPS2054BD		TPS22954		TPS2482/3	
TLC5924			TPS2055AD		TPS22959	88, 89	TPS2490	
TLC5925	70 TPIC74100-Q	122	TPS2056AD		TPS22964C		TPS2491	
TLC5926	70 TPIC74101-Q	122	TPS2057AD		TPS22965	88, 89	TPS2492	
TLC5927	70 TPS1H100-Q1		TPS2058AD		TPS22968	88, 89	TPS2493	
TLC5928		K84	TPS2060CDGN.		TPS22994			18, 85
TLC59281	70 TPS2000CDG	N	TPS2060DBR		TPS2300/01		TPS2501	
TLC59283 69,	70 TPS2001CDG	K84	TPS2060DGN		TPS2310/11		TPS2505	
TLC59284	70 TPS2001CDG	N	TPS2061CDBV		TPS2320/21		TPS2511/Q10	
TLC5929 69,	70 TPS2002CDR	C84	TPS2061CDGN.		TPS2330/31		TPS2513/14.	
TLC5940		C84	TPS2061D		TPS2342		TPS2513A/3A	Q100/4A86
TLC59401		84	TPS2061DBV		TPS2350			V
TLC5941		11	TPS2061DGN		TPS2358			RVRQ186
TLC5942			TPS2062AD		TPS2359			84
TLC5943		184	TPS2062ADBR.		TPS2363			00
TLC5944		84	TPS2062CD		TPS2375/-1			
TLC5945			TPS2062CDGN.		TPS23750/70			86
TLC5946		184	TPS2062CDRB-2		TPS23751/2			VRQ186

Texas Instruments 电源管理指南 2016 | 95

器件索引

器件	页码	器件 〕	页码	器件	页码	器件	页码	器件	页码
TPS2552DBV	86	TPS2833	47	TPS3895	75	TPS51678	16	TPS544C25	
TPS2552DBV-1	86	TPS2834	47	TPS3896	75	TPS53014/15	14		
TPS2552DRV	86	TPS2835	47	TPS3897	75	TPS53125/6/7	14	TPS54527/8	
TPS2552DRV-1	86	TPS2836	47	TPS3898	75	TPS53128/29	15	TPS54531	
TPS2553DBV	86	TPS2837	47	TPS40000/2	14	TPS53211	15	TPS54540/60	
TPS2553DBV-1	86	TPS2838	47	TPS40007/9	14	TPS53219A	15	TPS54541/61	
TPS2553DRV	86	TPS2848	47	TPS40040	14	TPS53311	8	TPS54618	8
TPS2553DRV-1	86	TPS2849	47	TPS40041	14	TPS53313	10	TPS54622	
TPS2553QDBVRQ1	86	TPS2H160-Q1	89	TPS40042	14, 90	TPS53316	8	TPS54627/8	
TPS2554DRC	86	TPS2HA08-Q1	89	TPS40050/1/4/5	14	TPS53317/A	90	TPS54678	8
TPS2555DRC	86	TPS3103 75	, 76	TPS40056	14	TPS53353	10	TPS546C20/23	
TPS2556/7	82	TPS3106 75	, 76	TPS40057	90	TPS53355	10	TPS548A20	
TPS2556DRB	86	TPS3110 75	, 76	TPS40075	14	TPS53513	10	TPS548D22	
TPS2556QDRBRQ1	86	TPS3123 75	, 76	TPS40077	14	TPS53515	10	TPS54917	8
TPS2557DRB	86	TPS3124 75	,	TPS40100	14	TPS53631		TPS54972	
TPS2557QDRBRQ1		TPS3125 75	, 76	TPS40101	14	TPS53631/41/61	55	TPS549A20	
TPS2559DRC		TPS3126	76	TPS40132		TPS53640	16		
TPS2560/A		TPS3128	76	TPS40140	15	TPS53640A	16	TPS55065-Q1.	
TPS2560ADRC	86	TPS3305	76	TPS40170	14	TPS53641		TPS55330	18, 20
TPS2560DRC		TPS3306		TPS40180		TPS53647 15			
TPS2561/A		TPS3307		TPS40190		TPS53661			18, 20
TPS2561ADRC		TPS3510/1		TPS40192/3		TPS53819A	,		
TPS2561AQDRCRQ1		TPS3513/4		TPS401957		TPS53915			
TPS2561DRC		TPS3600 75		TPS40200		TPS54020			
TPS2561QDRCRQ1		TPS3606-33		TPS40210/1		TPS5403/05			
TPS25740/A		TPS3610 75		TPS40210/21		TPS54040A/60A			
TPS25810		TPS3613-01		TPS40303/4/5		TPS54061			
TPS2590		TPS3619		TPS40322		TPS54062			
TPS25910 80		TPS3700	*	TPS40400 14,		TPS5410			9
TPS25921A/L		TPS3701	•	TPS40422 15,	,	TPS54116-Q1			
TPS25923		TPS3702	,	TPS40425 15, TPS40425/8		TPS54140A/60A TPS54162-Q1			
TPS25924		TPS3707 75		TPS40428		TPS5420			
TPS259240/1		TPS3710	*	TPS43000		TPS54218			
TPS259250/1		TPS3711		TPS43060/61		TPS54231/2/3			
TPS259260/1		TPS3779/8075		TPS43331-Q1		TPS54239/239E			
TPS25927		TPS3800	•	TPS4333x-Q1		TPS54240/60			
TPS259270/1		TPS3801 75		TPS43340-Q1		TPS54262-Q1			
TPS25940		TPS3802		TPS4335x-Q1		TPS54283/6			10
TPS25940A/L		TPS3803		TPS4H160-Q1		TPS54290/1/2		TPS57112-Q1 .	
TPS25942A/L		TPS3805 75		TPS51020		TPS54294/5		TPS57114-Q1 .	
TPS2660		TPS3806 75	, 76	TPS51100		TPS5430	12	TPS59124	
TPS2811	. 44, 46	TPS3807 75	, 76	TPS51116/59116	90	TPS54318	8	TPS59610	
TPS2812		TPS3808 75		TPS51200		TPS54319	8	TPS59620	
TPS2813	. 44, 46	TPS3809		TPS51206	90	TPS54320	9	TPS59621	
TPS2814		TPS3813	76	TPS51216/716/916	90	TPS54331	9	TPS59640	
TPS2815	46	TPS3820/875	, 76	TPS51220A	15	TPS54332	9	TPS59641	
TPS2816	. 44, 46	TPS3823 75	, 76	TPS51225/B/C	15	TPS54338-Q1	8	TPS59650	
TPS2817	46	TPS3824 75	, 76	TPS51275/B/C	15	TPS54339/339E	9	TPS60100	17, 21
TPS2818	46	TPS3825 75	, 76	TPS51285A/B	15	TPS54340/60	12	TPS60101	
TPS2819		TPS3831 75	, 76	TPS51362	10, 90	TPS54341/61	12	TPS60110	17, 21
TPS28225		TPS3836/8		TPS51362/7		TPS54362-Q1		TPS60111	
TPS28225-Q1	48	TPS3837 75		TPS51367		TPS54372/672		TPS60120	
TPS28226		TPS3839		TPS51611		TPS54427/8		TPS60130	
TPS2828		TPS3847 75		TPS51622A		TPS54478		TPS60140	
TPS2829		TPS386000 75		TPS51623		TPS54494/5		TPS60150	
TPS2830		TPS3860x0		TPS51624		TPS544B20		TPS60200	
TPS2831		TPS386596 75		TPS51631/A		TPS544B25		TPS60202	
TPS2832	47	TPS3890	/6	TPS51633	16	TPS544C20	10	TPS60210	17, 21

器件索引

器件 页	码 器	件 页码	B 器件	页码	器件	页码	器件	页码
TPS60212	21 TP:	S61175 18, 20	TPS62619		TPS65084x		TPS65251-1.	/-2/-313
TPS60230	66 TP:	S61176 65, 66	5 TPS62620		TPS65085x	59, 60	TPS65257 .	
TPS60240 17,	23 TP	S61183 65, 66	5 TPS62650		TPS650860	60	TPS65261/-1	
TPS60250/5	66 TP:	S61185 65, 66	TPS62660		TPS650864	60	TPS65262/-1	
TPS60251	66 TP:	S61193	5 TPS62674		TPS65086x	56, 59, 60	TPS65262-1	
TPS60300	21 TP:	S61194	TPS62690		TPS65090	57, 59	TPS65263	13, 59
TPS60310	21 TP:	S61195 65, 66	5 TPS62730	7, 23	TPS65100/Q1		TPS65263Q1	
TPS60400 17,	23 TP	S61196 65, 66	5 TPS62736		TPS65105		TPS65265	
TPS60401	23 TP	S61199	5 TPS62737		TPS65120		TPS65266	
TPS60402	23 TP	S61200	PS62740	7, 23	TPS65121		TPS65266A	
TPS60403	23 TP	S61220	PS62743		TPS65130	22, 63	TPS65279.	
TPS60500	17 TP:	S61230 18, 20	TPS62745		TPS65131	22, 63	TPS65279V	
TPS61010	19 TP:	S61236	TPS62746		TPS65131/Q1			
TPS61014		S61240 18, 19) TPS62748				TPS65281/6	5281-112
TPS61020 18,	19 TP:	S61251	TPS62750			22, 63	TPS65282.	
TPS61021 18,	20 TP:	S61252) TPS62770		TPS65132W		TPS65283.	13, 59
TPS61024	19 TP:	S61253 18, 20			TPS65133	22, 63	TPS65283/6	5283-113
TPS61026		S61254	7 TPS63010		TPS65135	22, 63	TPS65286 .	12, 59
TPS61028		S61260			TPS65140/Q1		TPS65287	
TPS61029 18,		S61280A 18, 20						
TPS61030		S61291 18, 19) TPS630250)		62	TPS65290 .	57, 58
TPS61040 18, 19,		S61300						
TPS61041 19,		S61310						01-Q160
TPS61042		S61325						1
TPS61043		\$62050				62		1
TPS61045		\$62060		18, 20				11-Q161
TPS61046 18, 19, 66,		\$62065		60				1
TPS61050		\$62067		·Q1				Q1
TPS61060 18, 65,		S62085		1				1 56, 60, 61
TPS61061		S62090						53-Q160
TPS61062 65,		S62095		·				Q1
TPS61070 18,		S62097						Q1
TPS61071		S62110		2				13. 59
TPS61080	19 TP:	S62120	TPS65023				TPS65471	
TPS61081 18,	19 TP:	S62125	TPS65023-	·Q1 60, 61	TPS65175/B .		TPS65510.	
TPS61085 18,	19 TP:	S62130A) TPS65023x	· 56, 58	TPS65176		TPS65530/3	DA57
TPS61086	19 TP:	S62135	7PS650241	1/3/4-Q1 61	TPS65177A		TPS65580/1	
TPS61087 18,	20 TP:	S62140) TPS65024x	·	TPS65178		TPS65631 .	
TPS61088 18,	20 TP:	S62150) TPS650250	0 56, 58, 60	TPS65185		TPS65631W	
TPS61089		S62160) TPS650250	D-Q1 60, 61	TPS65186			
TPS61090 18,		S62170						
TPS61091		S62175		58, 60				2
TPS61093 18,		\$62180		/1/2/4/658				
TPS61096		\$62184		2				57, 58
TPS61097A-33		\$62230		·Q1 56, 61				57
TPS61098 18,		\$62240		56, 58, 60		63		57
TPS61099		S62250		′8				
TPS61121		S62270		·Q1 60, 61				57, 58
TPS61130		S62290		56, 58, 60		56, 58		57
TPS61140		S62360		/2/3x		56, 58, 60		
TPS61150A		S62366		72/73x				335
TPS61160 65,		S62400		73 60				0/11/20 58
TPS61161 65,		S62410		1				
TPS61165 65,		S62420		2-Q1 60, 61				2/3 60
TPS61166		S62480	3 TPS650732	2-Q1† 60, 61	TPS65251	13, 61	TPS658629-	Q1 60, 61
TPS61169		S62510		(lx
TPS61170 18,	19 TP:	S62560	7 TPS65083x	(TPS652510-Q	1 61	TPS658640/	3

Texas Instruments 电源管理指南 2016 | 97

器件索引

器件	页码	器件 页	码	器件	页码	器件	页码	器件	页码
TPS659037	. 56. 60	TPS7A30	4	TPS92661-Q1	72	UCC27531	44-46	UCC3895.	
TPS659038-Q1		TPS7A33		TPS92690	72	UCC27531-Q1		UCC38C40	/1/2/3/4/5
TPS659039-Q1	. 56, 61	TPS7A3501		TPS92691	72	UCC27532	46		
TPS65910	60	TPS7A37	4	TWL6030/32	56, 60	UCC27532-Q1	48	UCC3915.	
TPS659101	60	TPS7A4001	4	TWL6030/32/40/41	56	UCC27533	46	UCC3916.	
TPS659102		TPS7A47	4	TWL6040/41	56, 60	UCC27536		UCC3918.	
TPS659103	60	TPS7A49	4	UC28023	51	UCC27537	46	UCCx808A	-2
TPS659104	60	TPS7A63xx-Q1	5	UC28025		UCC27538		UCD3020.	
TPS659105	60	TPS7A6401-Q1	5	UC3524A	52	UCC27611	43, 44, 46	UCD3028.	
TPS659106	60	TPS7A66xx-Q1	4	UC3525B - UC3526A	52	UCC27714	44, 45, 47	UCD3040.	
TPS659107	60	TPS7A69xx-Q1	4	UC3823A/B	51	UCC28019A	49	UCD3138.	
TPS659108	60	TPS7A7(1/2/3)00	4	UC3824	51	UCC28050	49	UCD31380	6454
TPS659109	60	TPS7A8(4/5)	4	UC3825	52	UCC28051	49	UCD31380	64A54
TPS65910A/A3	60	TPS7A8101	4	UC3825A/B	52	UCC28070	49	UCD31381	2854
TPS65910x	. 56, 58	TPS7A8300	4	UC3827-1/-2	52	UCC28089		UCD3138A	53, 54
TPS65911	60	TPS7A87	5	UC3842A/3A/4A/5A	51	UCC28180	49	UCD3138A	6454
TPS659110	. 56, 60	TPS7A88	5	UC3846/56	52	UCC28220/1	52	UCD7100.	44, 55
TPS659110/2/3/9	56	TPS7A89	5	UCC21520	45, 48	UCC28230/1	52	UCD7100P	WP46
TPS659110/9		TPS7B4250-Q1	5	UCC21520-Q1	48	UCC28250/1	52	UCD7138.	49, 53, 55
TPS659112		TPS7B4253-Q1	5	UCC24610	53	UCC28251	,		44, 55
TPS659113		TPS7B4254-Q1		UCC24630		UCC285xx			WP
TPS659119-Q1	, -	TPS7B67xx-Q1		UCC24636		UCC28600			
TPS65911x		TPS7B68xx-Q1		UCC25600 49, 50,		UCC28610			
TPS65912		TPS7B69xx-Q1		UCC25710		UCC28630/1/2/3			
TPS659121		TPS7B7701-Q1		UCC27200/A		UCC28700/1/2/3	•		
TPS659122		TPS7B7702-Q1		UCC27201/A		UCC28704			
TPS65912x	,	TPS80032 56, 58,		UCC27201A	,	UCC28710/1/2	•		
TPS65913 50		TPS81256 24, 25,		UCC27201A-Q1		UCC28720	,		A 55, 77
TPS65916	,	TPS82084/524,		UCC27210		UCC28722 UCC28730	•		A 55, 77
TPS65921		TPS82671		UCC27211/A		UCC28740			55, 77
TPS65930		TPS8268180		UCC27222		UCC28810	,		
TPS65950		TPS82693		UCC27223		UCC28811			
TPS65950A3/x51/x21B1		TPS82695 24,		UCC27321		UCC28880			55. 77
TPS65951		TPS82740A		UCC27322		UCC28881	. ,		14
TPS6595x/30/2x/10		TPS92023		UCC27323		UCC28910	. ,		
TPS68470	57	TPS92074	.71	UCC27324	46	UCC28911	51, 53		5 54
TPS706		TPS92075	.71	UCC27325	47	UCC28950			
TPS709		TPS92210	.71	UCC27423	44, 47	UCC2897A	49, 50, 52		
TPS712	5	TPS92310	.71	UCC27424	47	UCC2912	82		
TPS715A	4	TPS92314/14A	.71	UCC27425	47	UCC2915	82		
TPS717	4	TPS92315	.71	UCC27511	43, 46	UCC2946	77		
TPS718	5	TPS92410	.71	UCC27511A-Q1	48	UCC29950	49, 52		
TPS719	5	TPS92411	.71	UCC27512	46	UCC29950	49, 52		
TPS720		TPS92510		UCC27516	46	UCC35701/2			
TPS727		TPS92511		UCC27517A		UCC35705/6			
TPS73(1/2/6)		TPS92512/512HV		UCC27517A-Q1		UCC37321			
TPS73(5/7)		TPS92513/513HV		UCC27518		UCC37322			
TPS74(2/3)01		TPS92515/515HV		UCC27518A-Q1		UCC3800/1/2/3/4/5.			
TPS74(2/3/4)01		TPS92550		UCC27519		UCC3806			
TPS74(4/9)01		TPS92551		UCC27519A-Q1		UCC3807-1-2-3			
TPS74701		TPS92560 71,		UCC2752343,		UCC3808-1/-2/A-1/A			
TPS75103		TPS92561		UCC27524A		UCC38083/4/5/6 UCC3809-1-2			
TPS78(0/2) TPS797		TPS92602-Q1		UCC27525A		UCC3810			
TPS798xx-Q1		TPS92630-Q1 70,		UCC27526A		UCC3813-0/1/2/3/4/			
TPS799		TPS92638-Q1 70,		UCC27527		UCC385xx			
TPS7A16		TPS92640/41		UCC27528		UCC3884			
TPS7A19		TPS92660		UCC27528-Q1		UCC3889			
					• •				

快速开始您的设计

- 综合的参考设计
- 完整的原理图/方框图
- 材料清单
- 设计文件与试验报告
- ▶按照产品类型、应用或关键词搜索,找到下一代设计的灵感www.ti.com.cn/tidesigns

Texas Instruments 电源管理指南 2016 │ 99

TI全世界技术支持

网址

德州仪器半导体产品信息中心主页

support.ti.com

TI E2E™ 社区主页

e2e.ti.com

产品信息中心

美国 +1(512) 434-1560 巴西 电话 0800(-891) -2616-1560 墨西哥 电话 0800(-670) -7544-1560 传真 +1(972) 927-6377

> 网址/电子邮箱 support.ti.com/sc/pic/americas.htm

欧洲、中东和非洲

电话

欧洲免费电话 00800-ASK-TEXAS

(00800 275 83927)

国际 +49 (0) 8161 80 2121 俄罗斯支持 +7 (4) 95 98 10 701

注: 欧洲免费电话号码在所有国家均未激活

如果拨打免费电话存在苦难,请使用以上国际电话号码。

传真 +(49) (0) 8161 80 2045 网址 www.ti.com/asktexas 直接电子邮箱 www.ti.com/asktexas

日本

传真 国际 +81-3-3344-5317 国内 0120-81-0036 网址/电子邮箱 国际 support.ti.com/sc/pic/japan.htm 国内 www.tij.co.jp/pic

亚洲 电话

国际 +86-21-23073444 国内 免费电话号码

注:免费电话号码可能不支持手机和IP电话。

澳大利亚 1-800-999-084 马来西亚 1-800-80-3973 中国 800-820-8682 新西兰 0800-446-934 香港 800-96-5941 菲律宾 1-800-765-7404 印度 000-800-100-8888 新加坡 800-886-1028 印尼 001-803-8861-1006 台湾 0800-006800 080-551-2804 001-800-886-0010 韩国 表国

传真 +86-21-23073686

tiasia@ti.com or ti-china@ti.com 电子邮箱 网址: support.ti.com/sc/pic/asia.htm

重要通知: 此处所描述的TI股份有限公司及其附属公司的产品与设备是 符合TI销售条款和条件的销售主体。我们建议客户在下单前先获取TI产 品及服务的最新最全信息。TI对应用支持、客户应用、产品设计、软件 性能以及专利侵权不承担任何责任。在此对其他公司产品或服务的信 息公开不构成对TI的批准、授权或背书。

B021014

商标:The platform bar、Auto-Track、D-CAP、D-CAP+、D-CAP2、D-CAP3、DCS-Control, DualCool, E2E, EasyScale、Eco-mode、Fly-Buck、HotRod、iHVM、Impedance Track、 MicroSiP、MSP430、my.Tl、NexFET、OMAP、POLA、PowerPAD、PowerPAD、PowerStack、Predictive Gate Drive、PWI, SDQ、Sitara、SWIFT、TrueDrive、TurboTrans 和 ULQ 为德州仪器 公司的商标,SIMPLE SWITCHER 和 WEBENCH 为德州仪器公司的注册商标。ARM7 和 Cortex 为 ARM 有限公司的商标,ARM 为 ARM 有限公司的注册商标。Artix、 KINTEX、Spartan 和 Virtex 为 Xilinx 有限公司的注册商标。CompactPCI 为 PCI 计算机制造集团有限公司的注册商标。Cyclone 为 Altera 公司的注册商标。E Ink 和 Vizplex 为 E Ink 公司的注册商标。PCI Express 和 PCI-X 为 PCI-SIG 公司的注册商标。PMBus 为 SMIF 有限公司的商标。MIPI 为 MIPI Alliance 有限公司的注册商标。 Tegra 为 NVIDIA 公司的商标。. 其余商标分属各自所有企业。

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成的任何损失。

在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或"增强型塑料"的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有法律和法规要求。

は田

TI 己明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要求,TI不承担任何责任。

立 口

	产品		巡用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP应用处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity	德州仪器在线技术支持社区	www.deyisupport.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated