Задача

Экспонирование голограммы осуществляется плоским пучком с длиной волны λ , а восстановление — точечным источником с длиной волны $\lambda' = \gamma \lambda$. Предмет расположен на расстоянии a от голограммы. Источник восстанавливающего пучка v' находится в точке $(x'_0, z'_0) = (0, -f)$. Определить положение и размеры действительного изображения.

Решение:

Рассмотрим случай горизонтального опорного пучка v. Тогда

$$v(z,t) = Be^{i(kz-\omega t)}, \quad v'(z,t) = B' \exp i \left(k' \frac{x^2}{2(z-z'_0)} + k'z - \omega' t \right).$$

Рассмотрим точку предмета с координатами $(x_u, -a)$. Предметная волна от точечного источника во всем пространстве с точностью до постоянной фазы:

$$u(x, z, t) = A \exp i \left(k \frac{(x - x_u)^2}{2(z + a)} + kz - \omega t \right),$$

а в плоскости голограммы:

$$u(x, 0, t) = A \exp i \left(k \frac{(x - x_u)^2}{2a} - \omega t \right).$$

Часть $E_1 = u^*vv'$ волны при восстановлении, сразу за голограммой (при z = +0), равна:

$$E_1(x, 0, t) = u^*(x)v(x)v'(x, t) = ABB' \exp i \left(-k\frac{(x - x_u)^2}{2a} + k'\frac{x^2}{2f} - \omega' t\right).$$

Представим фазу полученной волны в виде

$$-k'\frac{\gamma(x-x_u)^2}{2a} + k'\frac{x^2}{2f} - ck't = k'\left(-\frac{\gamma(x-x_u)^2}{2a} + \frac{x^2}{2f} - ct\right).$$

Слагаемое $k'\left(-\frac{\gamma(x-x_u)^2}{2a}-ct\right)$ – это фаза, которую в плоскости z=0 имеет пучок лучей, идущих слева направо и сходящихся в точке $(x,z)=(x_u,+a/\gamma)$. При z>0 та же фаза записывается как $k'z+k'\frac{(x-x_u)^2}{2(z-a/\gamma)}-\omega't$. Слагаемое $k'\frac{x^2}{2f}$ характеризует изменение хода этих лучей при прохождении рассеивающей линзы с фокусным расстоянием f, установленной в плоскости z=0.

Тогда понятно, что ход лучей от линзы при z>0 такой же, как при формальном построении изображения предмета. Положение b изображения подчиняется формуле тонкой линзы *:

$$-\frac{\gamma}{a} + \frac{1}{b} = -\frac{1}{f} \quad \rightarrow \quad b = \frac{af}{\gamma f - a}.$$

^{*}По умолчанию предмет находится слева от линзы на расстоянии d_1 , изображение справа на расстоянии d_2 , линза собирающая с фокусным расстоянием \tilde{f} , Тогда уравнение линзы:

$$\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{\tilde{f}}.$$

В нашем случае предмет справа $(d_1 = -\frac{a}{\gamma})$, линза рассеивающая $(\tilde{f} = -f)$:

$$-\frac{\gamma}{a} + \frac{1}{b} = -\frac{1}{f} \to b = \frac{af}{\gamma f - a},$$

где при b>0 изображение располагается справа.

Если $\gamma f > a$, то b > 0 и это изображение является действительным псевдоскопическим, так как в нем сосредоточено фактическое поле, от которого исходят лучи в глаз наблюдателя.

Параметры изображения можно получить также, переписав выражение для фазы волны:

$$k'\left(-\frac{\gamma(x-x_u)^2}{2a} + \frac{x^2}{2f} - ct\right) = k'\left(-\frac{(x-\varkappa x_u)^2}{2b} - ct + \text{const}\right),$$

где $b = \frac{af}{\gamma f - a}$, а $\varkappa = \gamma \frac{b}{a} = \frac{\gamma}{\gamma - \frac{a}{f}}$.

При z>0 поле, удовлетворяющее волновому уравнению и краевому условию, равно

$$E_1(x, z, t) = ABB' \exp ik' \left(\frac{(x - \varkappa x_u)^2}{2(z - b)} + z - ct + \text{const} \right).$$

Эта фаза описывает сферическую волну с источником в точке $(x'_u, z'_u) = (\varkappa x_u, +b)$, распространяющуюся вправо от голограммы.

Координаты $(x_u, -a)$ относятся к некоторой точке предмета. Изображение любой другой точки предмета определяется по тем же правилам. Тогда нетрудно понять, что размер действительного изображения по x умножается на коэффициент \varkappa , а по z уменьшается в $(\gamma - a/f)$ раз.

Примечание. Во многих учебных материалах по голографии (см., например, на стр. 8 в предисловии к книге М. Франсона "Голография" М.: Мир, 1972) ошибочно утверждается, что увеличение составляет $\frac{\lambda'}{\lambda}$. Решение данной задачи показывает, что увеличение \varkappa достигается не столько за счет увеличения длины волны λ' , сколько выбором подходящего положения f точечного источника восстанавливающего пучка. В частности, в случае плоского восстанавливающего пучка ($f \to \infty$) увеличение \varkappa равно 1 независимо от величины $\frac{\lambda'}{\lambda}$ (что, кстати, отмечено в той же книге Франсона на стр. 130).