A Scored Human Protein-Protein Interaction Network to Catalyze Genomic Interpretations

Taibo Li^{1,4,6}, Rasmus Wernersson^{3,5}, Rasmus Borup Hansen³, Heiko Horn^{2,4}, Johnathan Mercer^{2,4}, Christopher Workman⁵, Olga Rigina⁵, Kristoffer Rapacki⁵, Hans-Henrik Stærfeldt⁵, Søren Brunak⁵, Thomas Skøt³, Kasper Lage^{1,4}

¹Stanley Center, ²Broad Institute, ³Intomics, ⁴Department of Surgery, MGH, ⁵Center for Biological Sequence Analysis, Technical University of Denmark, ⁶Department of EECS, MIT

InWeb_InBioMap (InWeb_IM) Pipeline InWeb_IM integrates interactions from 8 databases u

InWeb_IM integrates interactions from 8 databases using stringent orthology transfer to map data from 34 organisms and provides global scores.

Obtain data from BioGRID, DIP, IntAct, Reactome, WikiPathways, BIND, MatrixDB, and NetPath

Stringent orthology transfer by majority voting using eggNOGG, Ensembl, HomoloGene, InParanoid, Gene, OrthoDB, KEGG, and HOGENOM

Calculate confidence score using >68,000 publications and calibrate scores using high-confidence pathway interactions

Qualitative Comparison

InWeb_IM provides the most transparent information compared to five other widely used resources.

	Score	PMID	Source Database	Orthology Transfer
InWeb_IM				
I2D				
Mentha				
iRefIndex				
PINA				
HINT				

Quantitative Comparison

Biological Signal of InWeb IM

InWeb_IM is consistently better at learning pathway structures, annotating cancer driver genes, and corroborating quantitative proteomic experimental results.

1.00

