Dijkstra's Shortest Path Search

Course 4, Module 3, Lesson 2

Learning Objectives

- Understand the difference between weighted and unweighted graphs
- Recognize the value of weighted graphs to the mission planning problem
- Be able to implement Dijkstra's algorithm in a mission planning context to find the shortest path to a destination in a graph

Unweighted Graph

Weighted Graph

Dijkstra's Algorithm

Algorithm Dijkstra's(G,s,t)

```
Sorts keys according to their associated values from smallest to large st ex: vertex: accumulated cost
       open ← MinHeap()
       closed \leftarrow Set()
      predecessors ← Dict()
       open. push(s, 0)
      while!open.isEmpty() do
6.
         u, uCost \leftarrow open. pop()
         if isGoal(u) then
            return extractPath(u, predecessors)
         for all v \in u. successors()
10.
            if v \in closed then
11.
               continue
12.
           uvCost \leftarrow edgeCost(G, u, v)
13.
           if v \in \text{open then}
14.
               if uCost + uvCost < open[v] then
15.
                   open[v] \leftarrow uCost + uvCost
16.
                   predecessors [v] \leftarrow u
17.
           else
18.
               open. push(v, uCost + uvCost)
19.
               predecessors[v] \leftarrow u
20.
         closed. add(u)
```

Example - Processing s

Open Min Heap:

Node	Cost to vertex
С	2
а	5
b	7

Closed Set: s

Example - Processing c

Open Min Heap:

Node	Cost to vertex
а	5
b	7
е	10

Closed Set: s

C

Example - Processing a

Open Min Heap:

Node	Cost to go
b	6
d	7
е	10

Closed Set: s

C

a

Example - Processing b

Open Min Heap:

Node	Cost to go
d	7
е	9

Closed Set: s

C

a

b

Example - Processing d

Open Min Heap:

Node	Cost to go
t	8
е	9

Closed Set: s

a

b

d

Example - Optimal Path

Search on a Map

- Example map of Berkeley, California
 - o 2,097 vertices -intersections
 - 0 5,740 edges -> wad segments
- Example map of New York City, New York
 - 54,837 vertices
 - o 140,497 edges

Summary

- Introduced the concept of a weighted graph
- Developed the use case of a weighted graph for mission planning
- Introduced Dijkstra's algorithm for searching weighted graphs for the shortest path to a destination

