EXAMEN 4: MODELOS DE CLASIFIACIÓN

Bonilla Flores Emmanuel García Morales Marcos Hernández Galicia Alberto Leyva Díaz Eduardo Tomás

LIBRERÍAS

2025-06-12

```
library(readxl)
library(MASS) #Para poder usar la función lda/qda
library(nortest)
library(ggpubr)
library(MVN)
library(biotools) # test de Matriz de Covarianzas
library(ggplot2)
library(caTools)
library(caret)
library(purrr) # La función map
library(patchwork) # Ordenar gráficos ggplot2
library(GGally) #pairplot
library(tidyr) # Para utilizar la función drop.na
library(dplyr)
library(car)
library(rpart)
library(rpart.plot)
library(randomForest) # Librería específica para el modelo de Random Forest
library(MLmetrics) # Para F1 Score
setwd("~/Octavo Semestre/Análisis de Datos/Machine Learning")
```

PREPARACIÓN DE DATOS

Base de Datos

Este conjunto de datos contiene 11 características médicas que pueden utilizarse para predecir una posible enfermedad cardiaca, fue obtenido del repositorio en línea *Kaggle*, una plataforma de ciencia de datos que permite compartir y acceder a datasets públicos para el desarrollo de modelos de aprendizaje automático y análisis estadístico.

-Soriano, F. (2021). Heart Failure Prediction Dataset [Dataset]. Kaggle. https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction (https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction)

Para la construcción del dataset se integraron datos clínicos de cinco bases públicas (Statlog, Cleveland, Hungarian, Switzerland y Long Beach VA), cada una con registros similares en las 11 columnas principales generando 918 observaciones (filas) y 12 variables (columnas) considerando la predicción. En la siguiente tabla se puede var un fragmento de estos datos:

```
heart<-read.csv("heart.csv")
head(heart[,1:6],10)</pre>
```

```
Age Sex ChestPainType RestingBP Cholesterol FastingBS
##
                              140
                                    289
## 1
     40
          Μ
                     ATA
                                                     0
      49
          F
                      NAP
                               160
                                          180
                                                     0
## 2
## 3
      37
          Μ
                      ATA
                               130
                                          283
                                                     0
      48
          F
                      ASY
                               138
                                          214
                                                     0
                      NAP
                                          195
      54
          М
                               150
                                                     0
      39
                      NAP
                               120
                                          339
                                                     0
## 7
      45
          F
                      ATA
                               130
                                          237
                                                     0
## 8
      54
          Μ
                      ATA
                               110
                                          208
                                                     0
## 9
      37
                      ASY
                               140
                                          207
                                                     0
## 10 48 F
                      ATA
                               120
                                          284
```

head(heart[,7:12],10)

##	RestingECG	MaxHR	ExerciseAngina	01dpeak	ST_Slope	HeartDisease	
## 1	Normal	172	N	0.0	Up	0	
## 2	Normal	156	N	1.0	Flat	1	
## 3	ST	98	N	0.0	Up	0	
## 4	Normal	108	Υ	1.5	Flat	1	
## 5	Normal	122	N	0.0	Up	0	
## 6	Normal	170	N	0.0	Up	0	
## 7	Normal	170	N	0.0	Up	0	
## 8	Normal	142	N	0.0	Up	0	
## 9	Normal	130	Υ	1.5	Flat	1	
## 16	Normal	120	N	0.0	Up	0	

Descripción de Variables

De las 12 variables de todo el conjunto de datos hay algunas que son numéricas y otras que son categóricas, a continuación se presenta una breve descripción de cada una para entender de mejor manera los valores disponibles.

NUMÉRICAS

- Age: Edad del paciente (años).
- RestingBP: Presión arterial en reposo (mm Hg).
- Cholesterol: Nivel de colesterol (mg/dl).
- MaxHR: Frecuencia cardíaca máxima alcanzada durante una prueba de esfuerzo.
- Oldpeak: Depresión del segmento ST inducida por ejercicio.

CATEGÓRICAS

- Sex: Sexo del paciente (M: Male, F: Female).
- ChestPainType: Tipo de dolor en el pecho, hay cuatro resultados posibles:TA-Angina Típica, ATA-Angina Atípica, NAP-Dolor no anginoso y ASY-Asintomático.
- FastingBS: Glucosa en ayunas, si es mayor a 120 mg/dl se le asigna el valor de 1 (hiperglusemia) y si no toma el valor de 0.
- RestingECG: Electrocardiograma en reposo, puede resultar en Normal, LVH y ST.
- ExerciseAngina: Angina inducida por ejercicio, si hay un dolor o molestia en el pecho cuando la persona hace actividad física vale 1 y si no 0.
- ST_Slope: Pendiente del segmento ST al final del ejercicio, puede ser Up (ascendente), Down (descendente) o Flat (plana).
- HeartDisease: Es el target o la clase objetivo, indica la presencia (1) o ausencia (0) de la enfermedad cardíaca.

Al momento de realizar los modelos se tomarán en cuenta todas las variables debido a que representan distintos aspectos de la salud física y hábitos de vida que combinados permiten identificar señales tempranas o patrones comunes en personas con enfermedad cardíaca, es decir, ayuda a médicos o investigadores a determinar factores de riesgo clave.

Propósito

Se desarrollarán y evaluarán cuatro modelos de clasificación supervisada a través de una Matriz de Confusión donde se permite visualizar los aciertos o errores de cada modelo (métricas), estos son:

- Regresión Logística
- · Análisis Discriminante Cuadrático (QDA)
- Árbol de Decisión
- Bosque Aleatorio

El objetivo principal es seleccionar el modelo que logre una clasificación precisa entre personas con y sin enfermedad cardíaca, priorizando la capacidad del modelo para identificar correctamente a los pacientes que sí presentan la enfermedad. Por esta razón se dará especial énfasis a la **Sensibilidad o Recall**, métrica clave para minimizar los errores Tipo II (falsos negativos), ya que estos representan un riesgo mayor al no detectar a personas que requieren atención médica.

Limpieza y Preparación

Antes de realizar cualquier cosa se va a generar una copia de la base de datos para que la información original no sufra cambios. Es en ese nuevo data frame donde se harán todas las modificaciones comenzando por el nombre de las columnas para hacer referencia con mayor facilidad y también para la interpretación de resultados.

```
Edad Sexo Dolor_Pecho Presión_Reposo Colesterol Glucosa_Ayunas
## 1
       40
                       ATA
                                       140
                                                  289
## 2
       49
             F
                       NAP
                                       160
                                                  180
                                                                    0
## 3
       37
             Μ
                       \mathsf{ATA}
                                       130
                                                  283
                                                                    a
## 4
       48
            F
                       ASY
                                       138
                                                  214
                                                                    0
                                                                    0
## 5
       54
             М
                                       150
                                                  195
                       ΝΔΡ
                                                                    0
       39
             М
                       NAP
                                       120
                                                  339
## 6
## Electrocardiograma_Reposo Frecuencia_Máxima Angina_Ejercicio Depresión_ST
## 1
                        Normal
                                              172
                                                                 Ν
## 2
                                              156
                                                                 Ν
                        Normal
                                                                             1.0
## 3
                            ST
                                              98
                                                                 Ν
                                                                             0.0
                                              108
## 4
                        Normal
                                                                 Υ
                                                                             1.5
## 5
                        Normal
                                              122
                                                                 N
                                                                             0.0
## 6
                        Normal
                                              170
                                                                  Ν
                                                                             0.0
##
     Pendiente_ST Enfermedad_Cardíaca
## 1
               Up
                                     0
## 2
             Flat
                                     1
## 3
              Up
                                    0
## 4
             Flat
                                    1
## 5
                                    0
               Up
## 6
               Up
                                     0
```

Valores Faltantes

Verificamos si tiene registros que estén incompeltos para tomar una decisión de que hacer con ellos antes de hacer cualquier análisis.

```
colSums(is.na(enfermedad))
##
                        Fdad
                                                                       Dolor_Pecho
                                                    Sexo
##
                           0
                                                       0
##
              Presión_Reposo
                                             Colesterol
                                                                    Glucosa_Ayunas
##
## Electrocardiograma Reposo
                                      Frecuencia Máxima
                                                                  Angina Ejercicio
##
##
                Depresión_ST
                                           Pendiente_ST
                                                               Enfermedad_Cardíaca
##
                                                       0
                           0
```

La información está completa y no le falta ningún dato.

Variables Categóricas

Como ya se mencionó, dentro de la base de datos tenemos algunas variables que son binarias como el Sexo, Glucosa_Ayunas, o Angina_Ejercicio, además de otras que tienen más valores posibles como Dolor_Pecho, Electrocardiograma_Reposo o Pendiente_SP. Lo que se va a hacer es convertirlas a factor para que puedan ser consideradas en el modelo.

NOTA: En algunos casos se cambiaron los valores originales por otros que son más fáciles de entender y de interpretar.

```
## Rows: 918
## Columns: 12
## $ Edad
                           <int> 40, 49, 37, 48, 54, 39, 45, 54, 37, 48, 37, ...
## $ Sexo
                           ## $ Dolor Pecho
                           <fct> ATA, NAP, ATA, ASY, NAP, NAP, ATA, ATA, ASY,...
                           <int> 140, 160, 130, 138, 150, 120, 130, 110, 140,...
## $ Presión Reposo
## $ Colesterol
                           <int> 289, 180, 283, 214, 195, 339, 237, 208, 207,...
## $ Glucosa Ayunas
                           ## $ Electrocardiograma_Reposo <fct> Normal, Normal, ST, Normal, Normal, Normal, ...
                           <int> 172, 156, 98, 108, 122, 170, 170, 142, 130, ...
## $ Frecuencia Máxima
## $ Angina_Ejercicio
                           <fct> No, No, No, Sí, No, No, No, No, Sí, No, No, ...
## $ Depresión_ST
                           <dbl> 0.0, 1.0, 0.0, 1.5, 0.0, 0.0, 0.0, 0.0, 1.5,...
## $ Pendiente ST
                           <fct> Up, Flat, Up, Flat, Up, Up, Up, Flat, Up...
## $ Enfermedad Cardíaca
                           <fct> Sin Enfermedad, Con Enfermedad, Sin Enfermed...
```

Manipulación de Datos

Lo primero que se va a realizar es un análisis exploratorio de la base para conocer un poco más de información sobre las variables predictoras y de respuesta, específicamente se hará un resumen estadístico con las medidas más importantes acompañadas de gráficos como boxplots o histogramas.

Resumen Estadístico

Es posible armar una tabla que contenga la información estadística más relevante de las variables numéricas debido a que nos ayudará a saber el comportamiento general de los datos.

```
##
             Variable Mínimo Bigote_Inferior
                                              01 Mediana
                                                              Media
                                       28 47.00
## 1
                Edad 28.0
                                                    54.0 53.5108932 60.0
       Presión_Reposo
                       0.0
                                        92 120.00
                                                   130.0 132.3965142 140.0
## 2
                      0.0
           Colesterol
                                       85 173.25
                                                   223.0 198.7995643 267.0
## 4 Frecuencia_Máxima 60.0
                                       67 120.00
                                                   138.0 136.8093682 156.0
         Depresión_ST -2.6
                                       -2 0.00
## 5
                                                     0.6 0.8873638 1.5
##
    Bigote_Superior Máximo
## 1
              77.0 77.0
             170.0 200.0
## 2
             407.0 603.0
## 3
             202.0 202.0
## 4
## 5
               3.7
                      6.2
```

Una vez armada la tabla es posible rescatar lo siguiente:

- La edad promedio es de 53.51 años, el paciente más joven tiene 28 y el más grande 77.
- El 25% de estos pacientes alcanzan una Frecuencia Máxima que supera los 156, esto indica que se aceleraron mucho al hacer el esfuerzo físico, incluso el valor más alto es de 202.
- Hay casos donde posiblemente haya outliers debido a que los valores del Bigote Inferior o Superior no coinciden con el Mínimo o el Máximo, esto ocurre en todas las variables menos para la Edad.
- Viendo la asimetría de los datos, existe un sesgo hacia la izquierda Edad, Colesterol y Frecuencia Máxima (la mediana supera a la media), mientras que hay un sesgo a la derecha para la Presión en Reposo y la Depresión del Segmento T.
- · Para el Colesterol y la Presión en Reposo aparecen valores iguales a 0, esto es improbable y puede ser que haya un error en el registro.

• La depresión ST es la única variable que tiene algunos valores negativos, el 50% es menor o igual a los 0.6.

Histogramas

En los Histogramas de Frecuencia se puede apreciar los sesgos mencionados con anterioridad, por eso se le colocó el número de bins correspondiente a la regla de FD (datos con sesgos).

Boxplots

-2

2 Valores

Boxplot Edad

Boxplot Presión_Reposo

Boxplot Colesterol

Boxplot Frecuencia_Máxima

Boxplot Depresión_ST

- Aquí se confirma la presencia de los valores atípicos (puntos debajo o por arriba de los bigotes) en casi todas las variables.
- La Frecuencia Máxima y el Colesterol tienen el mayor rango intercuantil (IQR), lo cual muestra que para estas dos variables hay dispersión de los datos
- Para la Presión en Reposo se ve que la caja es la más pequeña y equilibrada, además de que se observan los datos registrados como 0 cuando dentro del contexto es imposible porque los marca como outliers.

Proporciones

Es importante tener presente la cantidad de datos que corresponden a cada clase, esto para ver si no hay algún desbalance o que la mayoría de datos pertenezcan solamente a una porque puede impactar en las predicciones.

```
barplot(Total ~ Enfermedad_Cardíaca, data = proporciones,xlab="Estatus",
    main="Cantidad de Datos por Clase",col=c("forestgreen","firebrick"))
```

Cantidad de Datos por Clase

de la enfermedad cardíaca, pero podemos ver que la proporción no varía mucho y están equilibrados.

Por otro lado, podemos observar los niveles o categorías de cada variable convertida a factor con el objetivo de tener presente cuáles son los posibles valores que pueden salir en cada una.

```
# Niveles
variables_factor <- sapply(enfermedad, is.factor)
for (variable in names(enfermedad)[variables_factor]) {
  cat("Variable:", variable, "\n")
  print(levels(enfermedad[[variable]]))
  cat("\n")
}</pre>
```

```
## Variable: Dolor_Pecho
## [1] "ASY" "ATA" "NAP" "TA"
##
## Variable: Glucosa_Ayunas
## [1] "No" "Sí"
##
## Variable: Electrocardiograma_Reposo
               "Normal" "ST"
## [1] "LVH"
##
## Variable: Angina_Ejercicio
## [1] "No" "Sí"
##
## Variable: Pendiente ST
## [1] "Down" "Flat" "Up"
## Variable: Enfermedad_Cardíaca
## [1] "Sin Enfermedad" "Con Enfermedad"
```

```
head(heart[,c(1,4,5,8,10)],10)
```

```
Age RestingBP Cholesterol MaxHR Oldpeak
## 1
       40
                  140
                                289
                                       172
                                                0.0
##
        49
                                180
                                       156
                                                1.0
##
   3
        37
                  130
                                283
                                        98
                                                0.0
                  138
## 4
        48
                                214
                                       108
                                                1.5
                  150
                                195
                                       122
                                                0.0
##
        54
                  120
        39
                                339
                                       170
                                                0.0
##
##
        45
                  130
                                237
                                       170
                                                0.0
                                                0.0
##
        54
                  110
                                208
                                       142
   9
        37
                  140
                                207
                                       130
                                                1.5
##
## 10
                  120
                                284
                                       120
                                                0.0
```

```
head(heart[,-c(1,4,5,8,10)],10)
```

```
Sex ChestPainType FastingBS RestingECG ExerciseAngina ST_Slope HeartDisease
##
                                   0
                                          Normal
                                                                         Up
##
                      NAP
                                          Normal
                                                                       Flat
                                                                                         1
                      ATA
                                   0
                                              ST
                                                                Ν
                                                                         Up
                                                                                         0
                      ASY
                                          Normal
                                                                Υ
                                                                       Flat
                                                                                         1
                      NAP
                                          Normal
                                                                N
                                                                         Up
                                                                                         a
                                          Normal
                      NAP
                                                                N
                                                                                         a
                                                                         Up
                                                                N
                                                                                         0
##
                      ATA
                                          Normal
                                                                         Up
                      ATA
                                          Normal
                                                                N
                                                                                         a
                                                                         Up
##
   9
                      ASY
                                          Normal
                                                                                         1
                                                                       Flat
                                                                                         0
## 10
                      ATA
                                          Normal
                                                                         Up
```

MODELO LOGÍSTICO

Separación de Clases

```
# Hacer el ggpairs solo con las numéricas
enfermedad_num$Enfermedad_Cardíaca<-enfermedad_Enfermedad_Cardíaca
enfermedad_num<- enfermedad_num %>% dplyr::select(Enfermedad_Cardíaca,everything())
ggpairs(data = enfermedad_num, aes(color=Enfermedad_Cardíaca))
```


Boxplots

Comparan las distribuciones de variables continuas según la presencia o ausencia de enfermedad, estas mismas muestran la mediana, cuartiles y posibles outliers.

- Las personas con enfermedad cardíaca tienden a ser mayores que las que no la tienen.
- · Las personas con enfermedad tienen, en general, menor frecuencia cardíaca máxima.
- En todas las variables existen valores atípicos, lo cual se debe tomar en cuenta para pruebas posteriores.

Histogramas

Representan la distribución de cada variable individualmente. Están separados por color según presencia o ausencia de enfermedad.

- · No se observan diferencias claras entre los grupos, si acaso en la edad o en la Frecuecia Máxima.
- Para el histograma de Depresión ST se aprecia un pico en los valores para las personas que no tienen la enfermedad.

Graficos de dispersión

Muestran relaciones bivariadas entre pares de variables

Correlaciones Incluyen el coeficiente de Pearson, en este caso vemos el grado de correlación:

- · Correlaciones bajas, ya sean positivas o negativas
- Edad correlaciona positivamente con Depresión_ST.

Aplicación del Modelo

Dividimos nuestros datos en "Entrenamiento" y "Prueba" aplicando una proporción de 80% y 20% respectivamente.

```
set.seed(123)
barajeado <- slice_sample(enfermedad, prop = 1)
split <- sample.split(barajeado$Edad, SplitRatio = 0.8) # Vector Lógico
enfermedad_train <- subset(barajeado, split == TRUE)
enfermedad_test <- subset(barajeado, split == FALSE)
head(enfermedad_train)</pre>
```

```
Edad Sexo Dolor Pecho Presión Reposo Colesterol Glucosa Ayunas
##
## 3
        37
                        NAP
                                                   194
## 5
        41
              F
                        ATA
                                        125
                                                   184
                                                                    No
## 6
        60
              Μ
                        ASY
                                        125
                                                   258
                                                                    No
## 8
        51
              М
                        ASY
                                        110
                                                     0
                                                                    Sí
## 10
       43
              F
                        ATA
                                        120
                                                   266
                                                                    No
                        ASY
## 11
       49
              М
                                        140
                                                   234
                                                                    No
##
      Electrocardiograma_Reposo Frecuencia_Máxima Angina_Ejercicio Depresión_ST
## 3
                         Normal
                                               150
                                                                  No
                                                                              0.0
## 5
                         Normal
                                               180
                                                                  No
                                                                              0.0
## 6
                                               141
                            LVH
                                                                 Sí
                                                                              2.8
## 8
                         Normal
                                               92
                                                                  No
                                                                              0.0
## 10
                         Normal
                                               118
                                                                  No
                                                                              0.0
                         Normal
                                               140
      Pendiente_ST Enfermedad_Cardíaca
                        Sin Enfermedad
## 3
                Up
## 5
                Up
                        Sin Enfermedad
                        Con Enfermedad
## 6
              Flat
## 8
              Flat
                        Con Enfermedad
## 10
               Up
                        Sin Enfermedad
              Flat
                        Con Enfermedad
## 11
```

```
head(enfermedad_test)
```

```
Edad Sexo Dolor_Pecho Presión_Reposo Colesterol Glucosa_Ayunas
## 1
        54
                        ASY
                                      130
                                                  0
## 2
        59
              М
                        ASY
                                       122
                                                  233
                                      130
## 4
        45
             М
                        ΝΔΡ
                                                  236
                                                                  Nο
                                      130
        59
             F
                        ASY
                                                  338
                                                                  Sí
## 7
                        ATA
                                       120
                                                  295
## 9
        41
             М
                                                                  No
             М
                        ATA
                                       160
                                                  267
                                                                  Sí
## 25
        60
##
      Electrocardiograma_Reposo Frecuencia_Máxima Angina_Ejercicio Depresión_ST
## 1
                         Normal
                                              110
                                                                Sí
                                                                            3.0
## 2
                         Normal
                                              117
                                                                Sí
                                                                            1.3
## 4
                         Normal
                                              144
                                                                No
                                                                            0.1
## 7
                            ST
                                              130
                                                                Sí
                                                                            1.5
## 9
                         Normal
                                              170
                                                                No
                                                                            0.0
## 25
                             ST
                                              157
                                                                No
                                                                            0.5
##
      Pendiente_ST Enfermedad_Cardíaca
## 1
             Flat
                       Con Enfermedad
## 2
              Down
                        Con Enfermedad
                        Sin Enfermedad
## 4
              Up
                       Con Enfermedad
## 7
              Flat
## 9
              Up
                        Sin Enfermedad
                        Con Enfermedad
## 25
              Flat
```

```
##
## Call:
## glm(formula = Enfermedad_Cardíaca ~ ., family = binomial, data = enfermedad_train)
##
## Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                              0.933773 1.592334 0.586 0.557595
## Edad
                             0.014353 0.014419 0.995 0.319515
## SexoM
                             1.494420 0.306023 4.883 1.04e-06 ***
## Dolor_PechoATA
                             -1.719950 0.364735 -4.716 2.41e-06 ***
## Dolor_PechoNAP
                             -1.667207 0.296148 -5.630 1.81e-08 ***
## Dolor_PechoTA
                             -1.756828    0.492318    -3.568    0.000359 ***
## Presión_Reposo
                             ## Colesterol
                             ## Glucosa_AyunasSí
                             1.013087 0.306824 3.302 0.000961 ***
## Electrocardiograma_ReposoST -0.584791 0.392611 -1.489 0.136358
## Frecuencia_Máxima
                            0.846031
                                      0.277896
                                                3.044 0.002331 **
## Angina_EjercicioSí
## Depresión ST
                             0.343046
                                      0.130885
                                                2.621 0.008768 **
                             0.912305
                                       0.522237
                                                1.747 0.080652 .
## Pendiente_STFlat
## Pendiente_STUp
                             -1.518302
                                      0.549238 -2.764 0.005703 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1008.78 on 735 degrees of freedom
## Residual deviance: 482.37 on 720 degrees of freedom
## AIC: 514.37
##
## Number of Fisher Scoring iterations: 5
```

Antes de pasar a la interpretación de cada uno de los coeficientes, vamos a analizar por qué tiene sentido clínico que ciertas variables hayan resultado **significativas** en el modelo, veamos:

 SexoM: Ser hombre aumenta significativamente el riesgo de enfermedad cardíaca, esto porque los hombres suelen tener mayor riesgo cardiovascular que las mujeres antes de la menopausia por diferencias hormonales. Esto era esperado

- Dolor_Pecho: El dolor torácico típicamente anginoso es el que más se asocia a enfermedad coronaria. Los atípicos o no anginosos, aunque pueden ser dolorosos, son menos específicos de enfermedad cardíaca.
- Glucosa: Tener glucosa alta incrementa significativamente la probabilidad de enfermedad.
- Colesterol: El coeficiente negativo indica que a mayor nivel de colesterol, menor es la probabilidad de enfermedad cardíaca, lo cual parece contradictorio clínicamente.
- · Glucosa_Ayunas: Tener glucosa alta incrementa significativamente la probabilidad de enfermedad.
- Depresión: Cada unidad de depresión del ST incrementa el riesgo de enfermedad cardíaca. Coherente con la evidencia médica.

Interpretación de Coeficientes

En términos de Log-odds y odds.

- SexoM (1.4944)(4.46): Ser hombre multiplica por 4.46 las odds de tener enfermedad cardiaca
- Dolor_Pecho (-1.7199,-1.6672,-1.7568)(0.18,0.19,0.17): Dado que es negativo el coeficiente, esto nos quiere decir que reduce en (1-odd) la odd.
- Colesterol(-0.0034)(0.9966): Cada unidad adicional de colesterol reduce las odds en 0.34%.
- Glucosa_AyunasSí (1.013087)(2.75): Si tiene glucosa en ayunas alta, las odds aumentan 2.75 veces.
- Angina_EjercicioSí (0.846031)(2.33): Tener angina con ejercicio duplica las odds de enfermedad cardíaca.
- Depresión ST (0.343046)(1.41): Cada unidad más de depresión ST aumenta las odds en 41%.
- Pendiente STUp (-1.518302)(0.22): Reduce las odds en 78% si la pendiente del ST sube.

Matriz de Confusión

El siguiente paso es hacer la evaluación del modelo, así que se calculan las predicciones con el conjunto de prueba y se genera la matriz de confusión.

```
# Paso 1: Calcular las probabilidades para los datos de prueba
probabilidades <- predict(modelo_logistico,newdata=enfermedad_test,type="response")
head(probabilidades)</pre>
```

```
## 1 2 4 7 9 25
## 0.99585363 0.90040092 0.06354911 0.88505106 0.03776027 0.64845292
```

```
# Paso 2: Convertir probabilidades en clases 0 o 1 con umbral 0.5
predicciones_clase <- ifelse(probabilidades < 0.5, "Sin Enfermedad", "Con Enfermedad")
head(predicciones_clase)
```

```
## 1 2 4 7
## "Con Enfermedad" "Con Enfermedad" "Con Enfermedad"
## 9 25
## "Sin Enfermedad" "Con Enfermedad"
```

```
# Hay que asegurarse que ambas estén como factores
y_real<-enfermedad_test$Enfermedad_Cardíaca
y_pred<-factor(predicciones_clase,levels=c("Sin Enfermedad","Con Enfermedad"))

# Matriz de confusión y métricas
conf_matrix <- confusionMatrix(data=y_pred,reference=y_real,positive="Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 71 8
## Con Enfermedad 17 86
```

```
# Métricas individuales
accuracy <- conf_matrix$overall["Accuracy"] # Proporción total de predicciones correctas.
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8626374
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.8349515
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.9148936
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8730964
```

```
cm table <- as.data.frame(conf matrix$table)</pre>
# Invertir el orden de los niveles del eje Y
cm_table$Prediction <- factor(cm_table$Prediction, levels = rev(levels(cm_table$Prediction)))</pre>
ggplot(cm_table, aes(x = Reference, y = Prediction, fill = Freq)) +
 geom_tile(color = "white") +
 geom_text(aes(label = Freq), color = "white", size = 6, fontface = "bold") +
 scale_fill_gradient(low = "lightblue", high = "darkblue",name="Frecuencia") +
 labs(
   title = "MATRIZ DE CONFUSIÓN",
   x = "Valor Real",
   y = "Predicción"
 ) +
 theme_minimal() +
   plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
   axis.text = element_text(size = 12,face="bold"),
   axis.title = element_text(size = 12,face="bold")
 )
```

MATRIZ DE CONFUSIÓN

- Accuracy(Exactitud): El modelo clasifica correctamente al 86.3% de los casos
- Precision (Precisión): De todas las personas clasificadas como con enfermedad, el 83.5% realmente la tienen.
- Recall (Sensibilidad): De todas las personas que realmente tienen enfermedad cardíaca, el 91.5% fueron correctamente detectadas.
- F1 Score: El modelo tiene un muy buen balance entre precisión y sensibilidad. El modelo tiene balance entre detectar correctamente a los enfermos (recall) y no generar demasiados falsos positivos (precisión).

En el contexto de salud, un falso negativo (no detectar a alguien enfermo) puede tener consecuencias graves. Por eso, la alta sensibilidad (91.5%) es la métrica más relevante en este caso. El modelo prioriza correctamente la detección de pacientes con riesgo, lo cual es deseable para la prevención y tratamiento oportuno.

Modelo Step

A continuación, utilizamos el método step() para realizar una selección automática de variables en nuestro modelo de regresión logística. Este procedimiento parte de un modelo completo con todas las variables, y mediante un proceso llamado selección hacia adelante y hacia atrás (direction = "both"), elimina o incluye variables en función del criterio AIC (Criterio de Información de Akaike), buscando obtener el modelo más eficiente sin variables innecesarias. Esto nos ayuda a simplificar el modelo, manteniendo solo aquellas variables que realmente aportan a la predicción de la enfermedad cardíaca.

modelo_step <-step(glm(Enfermedad_Cardíaca~ ., family = binomial, data = enfermedad_train), direction = "both")</pre>

```
## Enfermedad_Cardíaca ~ Edad + Sexo + Dolor_Pecho + Presión_Reposo +
##
      Colesterol + Glucosa_Ayunas + Electrocardiograma_Reposo +
##
      Frecuencia_Máxima + Angina_Ejercicio + Depresión_ST + Pendiente_ST
##
                            Df Deviance AIC
##
                            1 482.42 512.42
## - Presión_Reposo
## - Electrocardiograma_Reposo 2 484.97 512.97
                           1 483.36 513.36
## - Edad
                                482.37 514.37
## <none>
## - Frecuencia_Máxima
                            1 484.59 514.59
## - Depresión_ST
                            1 489.49 519.49
1 490.37 520.37
## - Colesterol
## - Angina_Ejercicio
                            1 491.63 521.63
                           1 493.77 523.77
## - Glucosa_Ayunas
                            1 507.96 537.96
## - Sexo
                           3 531.46 557.46
## - Dolor_Pecho
                           2 572.03 600.03
## - Pendiente_ST
##
## Step: AIC=512.42
## Enfermedad_Cardiaca ~ Edad + Sexo + Dolor_Pecho + Colesterol +
      Glucosa Ayunas + Electrocardiograma Reposo + Frecuencia Máxima +
      Angina Ejercicio + Depresión ST + Pendiente ST
##
##
                            Df Deviance
## - Electrocardiograma_Reposo 2 485.04 511.04
## - Edad
                            1 483.36 511.36
## <none>
                                482.42 512.42
## - Frecuencia_Máxima
                          1 484.63 512.63
                          1 482.37 514.37
## + Presión_Reposo
## - Depresión_ST
                           1 489.49 517.49
                           1 490.95 518.95
## - Colesterol
## - Angina_Ejercicio
                          1 491.63 519.63
## - Glucosa_Ayunas
                           1 493.80 521.80
                           1 508.05 536.05
## - Sexo
## - Dolor_Pecho
                           3 532.09 556.09
## - Pendiente_ST
                            2 572.15 598.15
##
## Step: AIC=511.04
## Enfermedad_Cardíaca ~ Edad + Sexo + Dolor_Pecho + Colesterol +
##
      Glucosa_Ayunas + Frecuencia_Máxima + Angina_Ejercicio +
##
      Depresión_ST + Pendiente_ST
##
                            Df Deviance ATC
##
## - Frecuencia_Máxima
                            1 486.34 510.34
## - Edad
                            1 486.76 510.76
## <none>
                                485.04 511.04
## + Electrocardiograma Reposo 2 482.42 512.42
## + Presión_Reposo 1 484.97 512.97
## - Colesterol
                           1 492.21 516.21
## - Depresión_ST
                          1 492.29 516.29
## - Angina_Ejercicio
                          1 493.52 517.52
## - Glucosa_Ayunas
                           1 495.95 519.95
                           1 510.78 534.78
## - Sexo
                           3 535.22 555.22
## - Dolor_Pecho
## - Pendiente ST
                          2 577.14 599.14
##
## Step: AIC=510.34
## Enfermedad_Cardíaca ~ Edad + Sexo + Dolor_Pecho + Colesterol +
      Glucosa_Ayunas + Angina_Ejercicio + Depresión_ST + Pendiente_ST
##
##
##
                            Df Deviance AIC
## <none>
                                486.34 510.34
## + Frecuencia_Máxima
                            1 485.04 511.04
                            1 489.48 511.48
## - Edad
## + Presión_Reposo 1 486.29 512.29
## + Electrocardiograma_Reposo 2 484.63 512.63
## - Depresión_ST 1 492.89 514.89
                            1 495.62 517.62
## - Colesterol
## - Angina_Ejercicio
                           1 496.75 518.75
```

```
## - Glucosa_Ayunas 1 497.05 519.05

## - Sexo 1 512.68 534.68

## - Dolor_Pecho 3 539.74 557.74

## - Pendiente_ST 2 586.59 606.59
```

```
summary(modelo_step)
```

```
##
## Call:
## glm(formula = Enfermedad Cardíaca ~ Edad + Sexo + Dolor Pecho +
##
      Colesterol + Glucosa Ayunas + Angina Ejercicio + Depresión ST +
      Pendiente_ST, family = binomial, data = enfermedad_train)
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
                   -1.139067 0.959594 -1.187 0.235216
## (Intercept)
## Fdad
                   0.022857 0.012915 1.770 0.076753 .
                    1.509953 0.304802 4.954 7.28e-07 ***
## SexoM
## Dolor_PechoATA -1.770548 0.359945 -4.919 8.70e-07 ***
## Dolor_PechoNAP -1.715847 0.294574 -5.825 5.72e-09 ***
## Dolor_PechoTA
                    ## Colesterol
                    -0.003445 0.001157 -2.978 0.002904 **
## Glucosa_AyunasSí 0.975918 0.305241 3.197 0.001388 **
## Angina_EjercicioSí 0.863893 0.267546 3.229 0.001242 **
## Depresión_ST 0.322509 0.128134 2.517 0.011837 *
## Pendiente STFlat 0.897922 0.517184 1.736 0.082533 .
## Pendiente_STUp -1.613669 0.544351 -2.964 0.003033 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1008.78 on 735 degrees of freedom
##
## Residual deviance: 486.34 on 724 degrees of freedom
## AIC: 510.34
##
## Number of Fisher Scoring iterations: 5
```

Obtuvimos un modelo más compacto y eficiente, que mantiene las variables clínicamente más relevantes, como el tipo de dolor en el pecho, los niveles de colesterol y glucosa, y la presencia de angina inducida por ejercicio.

- SexoM: Ser hombre incrementa significativamente el riesgo de enfermedad cardíaca. Esto se explica por el mayor riesgo cardiovascular
 que presentan los hombres en edad media, debido en parte a la protección hormonal que tienen las mujeres antes de la menopausia.
- Dolor_Pecho: El tipo de dolor en el pecho es uno de los indicadores clínicos más fuertes. El dolor típicamente anginoso (ASY) está más
 estrechamente relacionado con enfermedad coronaria, mientras que los dolores atípicos (ATA, NAP, TA) tienen menor especificidad
 diagnóstica.
- Glucosa_Ayunas: La presencia de glucosa elevada en ayunas es un claro marcador de alteraciones metabólicas como la diabetes o la resistencia a la insulina, condiciones altamente asociadas a eventos cardiovasculares.
- Colesterol: Aunque clínicamente se asocia un mayor nivel de colesterol con mayor riesgo cardiovascular, en este modelo su coeficiente
 resultó negativo. Esto podría explicarse por la presencia de pacientes tratados o con valores anómalos que distorsionan esta relación, o
 porque otras variables explican mejor el riesgo.
- Angina_Ejercicio: La presencia de angina inducida por el ejercicio es un signo de isquemia cardíaca, lo que la convierte en un fuerte predictor de enfermedad coronaria.
- Depresión_ST: Cada unidad adicional en la depresión del segmento ST refleja un mayor grado de isquemia durante el esfuerzo. Este hallazgo es coherente con lo observado en pruebas de esfuerzo y tiene alta relevancia clínica.
- Pendiente_ST: La morfología del segmento ST es un indicador clave en los estudios electrocardiográficos. Una pendiente "plana" o
 descendente suele asociarse a mayor riesgo, mientras que una pendiente "ascendente" (Up) generalmente se considera normal.

Interpretación de Coeficientes

En términos de Log-odds y odds.

- SexoM (1.5099)(4.53): Ser hombre multiplica por 4.53 las odds de presentar enfermedad cardíaca.
- Dolor_Pecho (-1.7705,-1.7158,-1.8029)(0.17,0.18,0.16): Estos tipos de dolor reducen las odds de enfermedad cardíaca en más del 80% respecto al tipo de referencia (ASY).

- Colesterol(-0.0034)(0.9966): Cada unidad adicional de colesterol reduce las odds en 0.9966%.
- Glucosa AyunasSí (0.9759)(2.65): Si tiene glucosa en ayunas alta, las odds aumentan 2.65 veces.
- Angina EjercicioSí (0.8639)(2.37): Tener angina con ejercicio duplica las odds de enfermedad cardíaca.
- Depresión ST (0.3225)(1.38): Cada unidad más de depresión ST aumenta las odds en 38%.
- Pendiente_ST (0.8979,-1.6137)(2.45,0.20): Una pendiente plana multiplica por 2.45 las odds de enfermedad, mientras que una pendiente ascendente reduce las odds en 80%.

Matriz de Confusión

Esto permite interpretar mejor los factores de riesgo sin sacrificar capacidad predictiva. Que lo veremos a continuación

```
# Paso 1: Calcular las probabilidades para los datos de prueba
probabilidades <- predict(modelo_logistico,newdata=enfermedad_test,type="response")</pre>
head(probabilidades)
                        2
                                               7
                                                           9
                                                                      25
                                   4
            1
## 0.99585363 0.90040092 0.06354911 0.88505106 0.03776027 0.64845292
# Paso 2: Convertir probabilidades en clases 0 o 1 con umbral 0.5
predicciones\_clase \ \leftarrow \ ifelse(probabilidades \ \leftarrow \ 0.5,"Sin \ Enfermedad","Con \ Enfermedad")
head(predicciones_clase)
##
                   1
                                     2
                                                                         7
## "Con Enfermedad" "Con Enfermedad" "Sin Enfermedad" "Con Enfermedad"
##
                                   25
## "Sin Enfermedad" "Con Enfermedad"
# Hay que asegurarse que ambas estén como factores
y_real<-enfermedad_test$Enfermedad_Cardíaca</pre>
y_pred<-factor(predicciones_clase,levels=c("Sin Enfermedad","Con Enfermedad"))</pre>
# Matriz de confusión y métricas
conf_matrix <- confusionMatrix(data=y_pred,reference=y_real,positive="Con Enfermedad")</pre>
print(conf_matrix$table)
##
                    Reference
                    Sin Enfermedad Con Enfermedad
## Prediction
     Sin Enfermedad
                                 71
                                                  8
     Con Enfermedad
                                  17
                                                 86
# Métricas individuales
accuracy <- conf_matrix$overall["Accuracy"] # Proporción total de predicciones correctas.
precision <- conf_matrix$byClass["Precision"]</pre>
recall <- conf matrix$byClass["Recall"]</pre>
f1 <- conf_matrix$byClass["F1"]</pre>
# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")
## Accuracy (Exactitud): 0.8626374
cat("Precision (Precisión):", precision, "\n")
## Precision (Precisión): 0.8349515
cat("Recall (Sensibilidad):", recall, "\n")
## Recall (Sensibilidad): 0.9148936
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8730964
```

```
cm_table <- as.data.frame(conf_matrix$table)</pre>
# Invertir el orden de los niveles del eje Y
cm_table$Prediction <- factor(cm_table$Prediction, levels = rev(levels(cm_table$Prediction)))</pre>
ggplot(cm_table, aes(x = Reference, y = Prediction, fill = Freq)) +
  geom_tile(color = "white") +
  geom_text(aes(label = Freq), color = "white", size = 6, fontface = "bold") +
  scale_fill_gradient(low = "lightblue", high = "darkblue",name="Frecuencia") +
    title = "MATRIZ DE CONFUSIÓN",
    x = "Valor Real",
    y = "Predicción"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
    axis.text = element_text(size = 12,face="bold"),
    axis.title = element_text(size = 12,face="bold")
```

MATRIZ DE CONFUSIÓN

Se obtuvieron las mismas métricas que en el primer modelo logístico, por lo que la interpretación es la misma.

ANÁLISIS DISCRIMINANTE LINEAL (LDA) O CUADRÁTCIO (QDA)

Para empezar el modelado de nuestro LDA O QDA, primero tenemos que separar nuestras varaibles númericas, haciendo caso omiso por el momento de las categóricas, asi mismo esto lo haremos para train y test.

Ahora sí se da paso a la verifiación de los 4 supuestos.

Normalidad Univariada

Verificar la normalidad de los datos para cada variable en cada grupo y la normalidad multivariada.

```
vars <- names(enfermedad_train_num)[-6] # Excluye La columna de La clase
sapply(vars, function(var) {
    # Separación por clases para verificar normalidad
    tapply(enfermedad_train_num[[var]],enfermedad_train_num$Enfermedad_Cardíaca,function(x){
    p <- lillie.test(x)$p.value
    if (p > 0.05) {
        return(paste0("p = ", round(p, 4), " → Normal"))
     } else {
        return(paste0("p = ", round(p, 4), " → No normal"))
    }
})
})
```

```
## Edad Presión_Reposo Colesterol ## Sin Enfermedad "p = 0.0278 \rightarrow \text{No normal}" "p = 0 \rightarrow \text{No normal}" ## Sin Enfermedad "p = 0.016 \rightarrow \text{No normal}" "p = 0 \rightarrow \text{No normal}" "p = 0 \rightarrow \text{No normal}" ## Con Enfermedad "p = 0.016 \rightarrow \text{No normal}" "p = 0 \rightarrow \text{No normal}"
```

Aquí estamos aplicando el test de Lilliefors para cada variable, separando por dos grupos: - Sin enfermedad cardíaca - Con enfermedad cardíaca Para ver si la distribución de cada variable es normal en cada grupo:

En este caso, todas las variables tienen p menor al nivel de significancia, por lo tanto en el contexto de LDA (Linear Discriminant Analysis), esta es una señal de que los supuestos de normalidad no se cumplen.

Ahora vamos con la normalidad multivariada (que es más importante para LDA).

Normalidad Multivariada

Se utilizó el test de Henze-Zirkler (HZ) debido a que es una prueba robusta ante valores atípicos y por el tamaño de los datos.

```
## $multivariate_normality
##
             Test Statistic p.value
## 1 Henze-Zirkler 3.154 <0.001 X Not normal
##
## $univariate_normality
##
                              Variable Statistic p.value
                Test
                                                           Normality
                                                            √ Normal
## 1 Anderson-Darling
                                  Edad 0.640 0.095
## 2 Anderson-Darling
                        Presión_Reposo
                                           4.060 <0.001 X Not normal
                                          7.028 <0.001 X Not normal
## 3 Anderson-Darling
                           Colesterol
## 4 Anderson-Darling Frecuencia_Máxima
                                         1.623 <0.001 X Not normal
## 5 Anderson-Darling
                         Depresión_ST
                                          46.500 <0.001 X Not normal
##
## $descriptives
##
             Variable n
                            Mean Std.Dev Median Min
                                                      Max
## 1
                 Edad 322 50.550 9.372 51.0 28.0 76.0 43.00 57.00 0.057
## 2
       Presión_Reposo 322 130.969 16.670 130.0 94.0 190.0 120.00 140.00 0.709
## 3
           Colesterol 322 227.478 66.606 226.5 0.0 412.0 199.00 264.75 -1.061
## 4 Frecuencia_Máxima 322 148.385 23.748 150.0 80.0 202.0 134.25 166.00 -0.415
         Depresión_ST 322 0.404 0.703
## 5
                                           0.0 -0.1 4.2 0.00 0.60 2.023
## Kurtosis
## 1
       2.618
## 2
       3.810
## 3
       6.431
## 4
       2.653
## 5
## $data
##
       Edad Presión_Reposo Colesterol Frecuencia_Máxima Depresión_ST
## 3
        37
                      130
                                 194
                                                  150
                                                               0.0
                      125
## 5
        41
                                 184
                                                  180
                                                               0.0
                      120
## 10
        43
                                 266
                                                  118
                                                               0.0
                      108
## 16
        54
                                 267
                                                  167
                                                               0.0
## 18
        49
                      110
                                 208
                                                  160
                                                               0.0
## 22
                      138
                                                  182
        35
                                 183
                                                               1.4
## 23
                      130
                                 209
                                                  178
                                                               0.0
        36
## 26
        35
                      122
                                 192
                                                  174
                                                               0.0
## 27
        41
                      112
                                 250
                                                   179
                                                               0.0
## 31
                      155
                                 175
                                                   160
                                                               0.3
## 34
         58
                      150
                                 283
                                                   162
                                                               1.0
## 38
        65
                      120
                                 177
                                                   140
                                                               0.4
## 41
        49
                      124
                                 201
                                                   164
                                                               0.0
## 43
        61
                      130
                                 294
                                                   120
                                                               1.0
## 44
                      152
                                                  178
        52
                                 298
                                                               1.2
## 45
                      120
                                                  185
                                                               0.0
        33
                                 298
## 48
                      120
                                                  180
                                                               0.0
        36
                                 166
## 50
        44
                      130
                                 215
                                                  135
                                                               0.0
## 51
        37
                      118
                                 240
                                                  165
                                                               1.0
## 56
        40
                      130
                                 275
                                                  150
                                                               0.0
## 60
                      150
                                                  130
                                                               0.0
        54
                                 230
## 62
        55
                      140
                                                  110
## 64
        48
                      120
                                 195
                                                  125
                                                               0.0
## 67
        51
                      114
                                 258
                                                   96
                                                               1.0
## 68
                      120
                                 193
                                                  162
                                                               1.9
## 70
        59
                      154
                                  0
                                                  131
                                                               1.5
                      120
                                                  148
## 72
        48
                                 177
                                                               0.0
## 74
        67
                      152
                                 277
                                                  172
                                                               0.0
                      130
## 75
        28
                                 132
                                                  185
                                                               0.0
## 76
        55
                      132
                                 342
                                                  166
                                                               1.2
                      130
## 79
        63
                                  0
                                                  160
                                                               3.0
        39
                      120
                                 204
                                                  145
                                                               0.0
## 80
## 82
        57
                      132
                                 207
                                                  168
                                                               0.0
## 88
        48
                      110
                                 211
                                                  138
                                                               0.0
## 89
                      180
                                                   140
                                                               1.5
        60
                                  0
## 90
        51
                      110
                                 190
                                                  120
                                                               0.0
## 91
        41
                      105
                                 198
                                                   168
                                                               0.0
## 93
        39
                      190
                                 241
                                                   106
                                                               0.0
## 94
        49
                      140
                                 185
                                                   130
                                                               0.0
## 97
        51
                      132
                                 218
                                                  139
                                                               0.1
## 100
                      132
                                 297
                                                   144
                                                               0.0
        45
## 104
        37
                      120
                                                   170
                                                               0.0
                                 215
```

, 12:	28 a.m.	•			EXAMEN	4: MO
##	106	44	120	218	115	0.0
##	107	59	140	287	150	0.0
##	109	39	120	200	160	1.0
##	113	34	130	161	190	0.0
##	118	52	134	201	158	0.8
##	122	64	128	263	105	0.2
##	123	60	102	318	160	0.0
##	124	39	130	215	120	0.0
##	126	58	140	385	135	0.3
##	127	50	120	219	158	1.6
##	130	41	120	291	160	0.0
##	132	54	150	195	122	0.0
##	134	45	138	236	152	0.2
##	135	54	130	253	155	0.0
##	136	41	150	171	128	1.5
##	149	62	160	193	116	0.0
##	151	63	145	233	150	2.3
	153	53	138	234	160	0.0
##		42	120	196	150	0.0
	165	52	160	196	165	0.0
	171	59	140	221	164	0.0
	184	61	140	298	120	0.0
	185	48	150	227	130	1.0
	188	57	130	308	98	1.0
	196	41	130	245	150	0.0
	198	54	140	309	140	0.0
	199	48	133	308	156	2.0
	202	53	142	226	111	0.0
	206 207	56 63	130 135	184 252	100 172	0.0 0.0
	209	34	118	182	174	0.0
	219	57	180	347	126	0.8
	220	47	130	235	145	2.0
	223	54	120	230	140	0.0
	224	54	120	217	137	0.0
	226	72	160	0	114	1.6
	229	58	130	197	131	0.6
	235	43	122	213	165	0.2
	236	62	124	209	163	0.0
	237	66	110	213	99	1.3
##	238	41	126	306	163	0.0
##	240	47	160	263	174	0.0
##	241	50	110	254	159	0.0
##	242	60	120	178	96	0.0
##	245	54	108	309	156	0.0
##	246	55	120	256	137	0.0
##	251	52	130	180	140	1.5
	252	61	150	243	137	1.0
##	256	38	138	175	173	0.0
	260	42	140	226	178	0.0
	269	42	134	240	160	0.0
	271	68	118	277	151	1.0
	274	58	140	179	160	0.0
	276	41	112	250	142	0.0
	278	40	106	240	80	0.0
	281	58	105	240	154	0.6
	284	41	130	204	172	1.4
	290	59	130	188	124	1.0
	293	59 47	140	169	140	0.0
	295		140	257	135	1.0
	298	68	134	254	151	0.0
	301 303	63 45	140 128	195 308	179 170	0.0 0.0
	303	46	150	163	116	0.0
	309	51	125	188	145	0.0
	310	52	128	205	184	0.0
	313	52	118	186	190	0.0
	314	49	130	207	135	0.0
	318	29	130	204	202	0.0
	323	43	120	249	176	0.0
	326	58	140	211	165	0.0
1	5_0					

,	12:28 a.r	n.			EXAME	:N 4: MO
ĺ	## 328	53	130	246	173	0.0
	## 329	57	140	260	140	0.0
	## 337	52	172	199	162	0.5
	## 339	54	120	273	150	1.5
	## 341	58	100	248	122	1.0
	## 343	51	128	0	107	0.0
	## 345	42	130	180	150	0.0
	## 349	31	100	219	150	0.0
	## 351	53	128	216	115	0.0
	## 354	52	125	272	139	0.0
	## 358	51	150	200	120	0.5
	## 361	50	140	216	170	0.0
	## 363	41	125	269	144	0.0
	## 364	34	150	214	168	0.0
	## 366	48	120	284	120	0.0
	## 367	71	110	265	130	0.0
	## 368	52	108	233	147	0.1
	## 372	46	101	197	156	0.0
	## 373	50	120	244	162	1.1
	## 376	54	110	208	142	0.0
	## 380	69	160	234	131	0.1
	## 381	54	110	214	158	1.6
	## 384	54	120	221	138	1.0
	## 386	55	140	196	150	0.0
	## 388	35	120	160	185	0.0
	## 395	70	156	245	143	0.0
	## 396	46	138	243	152	0.0
	## 399	51	140	308	142	1.5
	## 400	46	130	238	90	0.0
	## 407	35	120	308	180	0.0
	## 410 ## 419	49 53	134 130	271 197	162 152	0.0 1.2
	## 422	41	120	157	182	0.0
	## 424	37	130	250	187	3.5
	## 425	50	120	328	110	1.0
	## 427	65	155	0	154	1.0
	## 428	71	112	149	125	1.6
	## 429	44	130	209	127	0.0
	## 433	34	118	210	192	0.7
	## 439	39	138	220	152	0.0
	## 443	43	100	223	142	0.0
	## 447	51	110	175	123	0.6
	## 449	46	120	230	150	0.0
	## 454	57	130	207	96	1.0
	## 455	51	132	227	138	0.2
	## 457	48	108	163	175	2.0
	## 461	36	112	340	184	1.0
	## 462	53	120	195	140	0.0
	## 466	49	120	297	132	1.0
	## 467	35	123	161	153	-0.1
	## 472	46	180	280	120	0.0
	## 476	41	110	235	153	0.0
	## 478	54	150	365	134	1.0
	## 480	43	130	315	162	1.9
	## 481	49	100	253	174	0.0
	## 489	53	140	216	142	2.0
	## 491 ## 494	49	130	269	163	0.0
	## 494	42 56	160	147	146	0.0
	## 500	38	130 145	221 292	163 130	0.0 0.0
	## 501	62	128	208	140	0.0
	## 501	54	132	288	159	0.0
	## 505	48	140	238	118	0.0
	## 506	59	180	213	100	0.0
	## 508	65	155	269	148	0.8
	## 510	39	110	182	180	0.0
	## 515	46	110	238	140	1.0
	## 517	60	152	0	118	0.0
	## 520	54	150	232	165	1.6
	## 526	58	130	251	110	0.0
	## 532	52	140	100	138	0.0

5,	12:2	28 a.m.				EXAMEN 4	4: MOI
	##	537	57	120	354	163	0.6
	##	539	48	130	245	180	0.2
	##	541	60	136	195	126	0.3
	##	542	56	120	240	169	0.0
	##	543	39	120	241	146	2.0
	##	544	56	120	0	97	0.0
	##	549	40	130	281	167	0.0
	##	550	43	115	303	181	1.2
	##	553	54	140	239	160	1.2
	##	557	47	110	249	150	0.0
	##	562	48	122	222	186	0.0
	##	563	50	110	202	145	0.0
	##	566	50	150	215	140	0.0
	##	568	47	112	204	143	0.1
	##	577	59	150	212	157	1.6
	##	581	45	110	0	138	-0.1
	##	582	45	120	225	140	0.0
	##	590	55	122	320	155	0.0
	##	592	66	160	228	138	2.3
	##	594	44	120	226	169	0.0
	##	595	41	130	214	168	2.0
	##	597	55	130	262	155	0.0
	##	598	59	140	274	154	2.0
	##	600	59	130	318	120	1.0
	##	601	49	130	266	171	0.6
	##	606	29	140	263	170	0.0
	##	607	67	106	223	142	0.3
	##	609	39	140	321	182	0.0
	##	610	42	120	240	194	0.8
	##	611	45	180	295	180	0.0
		615	58	135	222	100	0.0
		618	57	150	168	174	1.6
		619	62	135	139	137	0.2
		621	55	120	220	134	0.0
		626	45	115	260	185	0.0
		629	51	160	194	170	0.0
		631	39	94	199	179	0.0
		633	51	94	227	154	0.0
		635	32	110	225	184	0.0
		638	45	140	224	122	0.0
		640	37	130	173	184	0.0
		647	63	136	165	133	0.2
		649	53	140	320	162	0.0
		651	54	160	305	175	0.0
		653	40	140	235	188	0.0
		658	53	130	182	148	0.0
		660	59	178	270	145	4.2
		662	32	105	198	165	0.0
		667	56	130	219	164	0.0
		670 677	52 44	120 108	210 141	148 175	0.0 0.6
		679	76	140	197	116	1.1
		683	52	138	223	169	0.0
		686	62	140	394	157	1.2
		692	51	125	245	166	2.4
		693	38	140	297	150	0.0
		695	56	120	85	140	0.0
		701	43	110	211	161	0.0
		703	46	110	240	140	0.0
		707	54	135	304	170	0.0
		712	51	130	179	100	0.0
		714	56	130	276	128	1.0
		717	51	120	295	157	0.6
		718	44	140	235	180	0.0
		719	42	115	211	137	0.0
		723	53	130	264	143	0.4
		725	43	120	201	165	0.0
		731	45	140	224	144	0.0
		733	48	130	275	139	0.2
		735	64	170	227	155	0.6
		736	55	130	394	150	0.0

12.4	20 a.iii.	•			EXAMEN	4. IVIC
##	737	45	135	192	110	0.0
##	739	52	140	259	170	0.0
	743	51	130	220	160	2.0
##	744	57	128	303	159	0.0
	748	54	120	238	154	0.0
	749	43	150	254	175	0.0
	752	48	120	254	110	0.0
	753	39	110	273	132	0.0
	758	56	124	224	161	2.0
	759	42	120	295	162	0.0
	763	74	138	0	116	0.2
	764	50	129	196	163	0.0
	766	61	125	292	115	0.0
	769	58	120	340	172	0.0
	772	51	130	224	150	0.0
	777	64	130	223	128	0.5
	781	62	140	271	152	1.0
	782	43	150	247	171	1.5
	783	66	150	226	114	2.6
	787	42	148	244	178	0.8
##	790	74	120	269	121	0.2
##	792	53	140	243	155	0.0
##	795	44	120	220	170	0.0
##	796	42	150	268	136	0.0
##	797	51	130	256	149	0.5
##	799	57	110	201	126	1.5
##	802	44	150	412	170	0.0
##	803	64	110	211	144	1.8
##	814	64	180	325	154	0.0
##	816	41	104	0	111	0.0
##	818	48	124	255	175	0.0
##	819	35	150	264	168	0.0
##	826	55	150	160	150	0.0
##	828	65	160	360	151	0.8
	832	45	130	234	175	0.6
	835	43	150	186	154	0.0
	837	65	140	252	135	0.3
	838	50	140	129	135	0.0
	841	64	140	313	133	0.2
	845	37	120	223	168	0.0
	847	52	120	284	118	0.0
	849	56	126	166	140	0.0
	850	44	130	219	188	0.0
	852	59	138	271	182	0.0
	860	52	120	325	172	0.2
	861	55	120	270	140	0.0
	865	50	170	209	116	0.0
	867	66	146	278	152	0.0
	872	56	130	167	114	0.0
	873	53	124	260	112	3.0
	874	62	120	220	86	0.0
	875	54				
		43	125 142	273	152	0.5
	878			207	138	0.0
	882	54	133	203	137	0.2
	883	42	140	358	170	0.0
	885	41	112	268	172	0.0
	888	68	139	181	135	0.2
	890	37	130	283	98	0.0
	896	60	120	0	133	2.0
	899	62	120	220	86	0.0
	901	50	120	168	160	0.0
	904	59	135	234	161	0.5
	905	54	160	201	163	0.0
	908	30	170	237	170	0.0
	909	37	120	260	130	0.0
	910	69	140	239	151	1.8
	913	54	120	246	110	0.0
##						
##	\$subse	et				
##	NULL					
##						

```
## $outlierMethod
## [1] "none"
##
## attr(,"class")
## [1] "mvn"
```

```
## $multivariate_normality
##
            Test Statistic p.value
## 1 Henze-Zirkler 2.285 <0.001 X Not normal
##
## $univariate_normality
                                                       Normality
##
                            Variable Statistic p.value
               Test
                               Edad 2.330 <0.001 X Not normal
## 1 Anderson-Darling
## 2 Anderson-Darling Presión_Reposo
                                       2.816 <0.001 X Not normal
                         Colesterol 26.975 <0.001 X Not normal
## 3 Anderson-Darling
## 4 Anderson-Darling Frecuencia_Máxima 0.535
                                               0.17
                                                       √ Normal
## 5 Anderson-Darling Depresión_ST
                                        7.712 <0.001 X Not normal
##
## $descriptives
##
            Variable n Mean Std.Dev Median Min Max 25th 75th
                Edad 414 55.829 8.941 57.0 31 77.0 51 62 -0.385
## 1
       Presión_Reposo 414 133.486 19.918 132.0
## 2
                                               0 200.0 120 144 -0.200
## 3
         Colesterol 414 175.203 126.225 217.0
                                               0 529.0 0 268 -0.299
## 4 Frecuencia_Máxima 414 127.882 23.493 126.0 60 195.0 112 145 -0.041
         ## 5
## Kurtosis
## 1
      2.967
## 2
      7.787
      1.988
## 4
       2.773
## 5
       3.765
## $multivariate_outliers
##
      Observation Mahalanobis.Distance
## 1
             289
                             83.101
## 2
             578
                              46.783
## 3
             344
                             39.165
## 4
                             39.000
             710
## 5
             129
                             38.372
## 6
             672
                              37.652
## 7
             691
                              36.012
## 8
             839
                              35.997
## 9
             659
                              35.383
## 10
             536
                              35.309
## 11
             561
                              35.276
## 12
             181
                              35.226
## 13
             286
                              35.151
## 14
             108
                              34.775
## 15
             815
                             33.833
## 16
             572
                             33.565
## 17
             423
                             33,421
## 18
             304
                             33.339
## 19
             133
                             33.329
## 20
             622
                             33.294
## 21
             811
                             33.228
## 22
             327
                             32.742
## 23
             333
                             32.451
## 24
             709
                             32.407
## 25
             511
                             32.357
## 26
             117
                             32.204
## 27
             576
                             31.927
## 28
             194
                             31.917
## 29
             634
                             31.745
## 30
             273
                             31,730
             756
## 31
                              31.609
## 32
             856
                              31.509
## 33
             365
                              31.456
## 34
             247
                              31.404
## 35
             353
                              31.147
## 36
             593
                              31.081
## 37
             503
                              30.965
## 38
             436
                              30.738
## 39
             336
                              30.625
## 40
             387
                              30.412
## 41
             216
                              30.367
## 42
             708
                              30.271
```

12:28 a.m.		
## 43	232	30.125
## 44	8	30.061
## 45	168	29.953
## 46	434	29.858
## 47	862	29.736
## 48	789	29.440
## 49	617	29.173
## 50	512	29.155
## 51	266	29.062
## 52	479	29.049
## 53	637	28.877
## 54	464	28.796
## 55	57	28.725
## 56	83	28.693
## 57	812	28.657
## 58	317	28.609
## 59	412	28.580
## 60	521	28.552
## 61	587	28.373
## 62	297	28.296
## 63	24	28.235
## 64	21	28.145
## 65	854	27.875
## 66	727	27.828
## 67	727	27.751
## 68	548	27.731
## 69 ## 70	218 63	27.614 27.499
## 71 ## 72	157 751	27.467
	751	27.266
## 73	696	27.250
## 74	211	27.181
## 75	809	26.844
## 76	19	26.801
## 77	605	26.745
## 78	139	26.708
## 79	715	26.661
## 80	155	26.654
## 81	214	26.624
## 82	846	26.573
## 83	458	26.546
## 84	915	26.503
## 85	669	26.476
## 86	632	26.448
## 87	786	26.402
## 88	362	26.341
## 89	291	26.341
## 90	726	26.235
## 91	664	26.218
## 92	791	26.114
## 93	322	26.002
## 94	858	25.992
## 95	331	25.974
## 96	431	25.964
## 97	420	25.908
## 98	716	25.872
## 99	829	25.854
## 100	513	25.833
## 101	694	25.795
## 102	222	25.750
## 103	900	25.717
## 104	493	25.713
## 105	201	25.689
## 106	180	25.603
## 107	389	25.600
## 108	285	25.580
## 109	655	25.543
## 110	652	25.529
## 111	487	25.478
## 112	754	25.315
## 113	177	25.264

114

720

##	114		720	25.256		
##	115		379	25.175		
##	116		61	25.151		
##	117		738	25.144		
##	118		398	25.035		
##	119		258	25.022		
	120		406	24.952		
	121		773	24.935		
			869			
	122			24.933		
	123		42	24.855		
	124		12	24.847		
	125		750	24.569		
##	126		174	24.534		
##	127		394	24.508		
##	128		87	24.416		
##	129		347	24.415		
##	130		111	24.245		
##	131		173	23.559		
	132		259	21.815		
	133		884	20.502		
	134		518	19.578		
	135		203	18.451		
				17.037		
	136		868			
	137		440	16.445		
	138		547	14.938		
##	139		567	14.644		
##	140		250	14.547		
##	141		827	14.531		
##	142		574	12.995		
##						
##	\$dat	a				
##		Edad	Presión_Reposo	Colesterol F	recuencia_Máxima	Depresión_ST
##	6	60	125	258	141	2.8
##	8	51	110	0	92	0.0
##		49	140	234	140	1.0
##		59	135	0	115	1.0
##		65	150	225	114	1.0
##		61	140	284	123	1.3
##		61	120	337	98	0.0
##		54	110	206	108	0.0
##	19	48	115	0	128	0.0
##	20	59	170	326	140	3.4
##	21	55	120	0	92	0.3
##	24	48	102	0	110	1.0
##	28	48	106	263	110	0.0
##	29	74	140	237	94	0.0
##	35	47	160	291	158	3.0
##		70	170	192	129	3.0
##		66	178	228	165	1.0
##		62	130	263	97	1.2
##		58	115	0	138	0.5
##						
		46	140	272	175	2.0
##		39	110	280	150	0.0
##		69	142	210	112	1.5
##		52	160	331	94	2.5
##	55	62	140	268	160	3.6
##	57	65	115	0	93	0.0
##	58	51	135	160	150	2.0
##	59	57	130	236	174	0.0
##	61	57	128	0	148	1.0
##	63	74	145	0	123	1.3
##		33	100	246	150	1.0
##		66	112	212	132	0.1
##		44	130	290	100	2.0
	77	57	140	241	123	0.2
##		59 53	110	9	94	0.0
##		52	170	223	126	1.5
	97	62	133	0	110	1 2
##					119	1.2
##	92	47	135	248	170	0.0
## ##	92 95	47 46	135 120		170 125	
##	92 95	47	135	248	170	0.0

25.256

, 12:	28 a.m.	•			EXAMEN .	4: MO
##	101	44	110	197	177	0.0
	105	50	130	233	121	2.0
	108	47	160	0	124	0.0
##	110	46	134	310	126	0.0
	111	60	130	0	130	1.1
##	112	55	180	327	117	3.4
	114	50	140	288	140	0.0
	115	61	120	260	140	3.6
	116	65	138	282	174	1.4
	117	57	95	0	182	0.7
	119	55	160	292	143	2.0
	120	51	140	298	122	4.2
	125	42	136	315	125	1.8
	129	51	140	0	60	0.0
	131	57	154	232	164	0.0
	133	42	105	0		-1.5
##	137	55	140	295	136	0.0
##	138	58	132	224	173	3.2
	139	63	140	0	149	2.0
	140	39	118	219	140	1.2
	142	58	136	203	123	1.2
	143	57	152	274	88	1.2
	144	64	134	273	102	4.0
	145	67	140	219	122	2.0
	152	58	128	216	131	2.2
	154	62	135	297	130	1.0
	155	52	130	0	120	0.0
	156	56	132	184	105	2.1
	157	61	134	0	86	1.5
	158	36	120	267	160	3.0
	159	45	110	264	132	1.2
	161	47	120	205	98	2.0
	162	63	110	252	140	2.0
	163	54	140	216	105	1.5
	164	74	145	216	116	1.8
	166	50	144	349	120	1.0
	167	53	140	203	155	3.1
	168	70	115	0	92	0.0
	170	57	122	264	100	0.0
	172	56	134	409	150	1.9
##		62	160	164	145	6.2
	174	63	133	0	120	1.0
	175	52	125	212	168	1.0
	177	59	140	0	117	1.0
	179	49	130	341	120	1.0
	180	62	110	0	120	0.5
	181	58	170	0	105	0.0
	186	61	120	282	135	4.0
	190	47	140	193	145	1.0
	191	58	160	211	92	0.0
	192	64	150	193	135	0.5
##	194	40	125	0	165	0.0
##	197	74	150	258	130	4.0
##	201	56	125	0	103	1.0
##	203	56	200	288	133	4.0
##	204	60	130	206	132	2.4
	205	60	150	258	157	2.6
	210	54	110	239	126	2.8
	211	69	135	0	130	0.0
	212	62	138	294	106	1.9
	214	67	120	0	150	1.5
	215	31	120	270	153	1.5
	216	61	120	0	80	0.0
	218	46	115	0	113	1.5
	221	57	128	229	150	0.4
	222	59	120	0	115	0.0
	225	57	124	261	141	0.3
	228	54	130	202	112	2.0
	230	67	125	254	163	0.2
	231	71	144	221	108	1.8
	232	61	160	0	145	1.0
1				-	-	

,	12:28 a.m	١.			EXAMEN	4: MC
	## 233	61	146	241	148	3.0
	## 234	51	160	303	150	1.0
	## 239	59	126	218	134	2.2
	## 243	67	146	369	110	1.9
	## 247	55	140	0	83	0.0
	## 248	38	120	282	170	0.0
	## 250	77	125	304	162	0.0
	## 258	54	130	0	117	1.4
	## 259	40	120	466	152	1.0
	## 261	54	125	216	140	0.0
	## 265	64	145	212	132	2.0
	## 266	61	150	0	105	0.0
	## 267	54	120	188	113	1.4
	## 268	44	150	288	150	3.0
	## 272	44	112	290	153	0.0
	## 273	47	155	0	118	1.0
	## 279	64	125	309	131	1.8
	## 280	49	130	206	170	0.0
	## 282	61	142	200	100	1.5
	## 285	61	110	0	113	1.4
	## 286	38	105	0	166	2.8
	## 287	57	130	311	148	2.0
	## 289	55	0	0	155	1.5
	## 291 ## 292	57	105	0	148	0.3
	## 292	47 50	108 145	243 0	152 139	0.0 0.7
	## 300	41	120	336	118	3.0
	## 304	38	135	0	150	0.0
	## 305	60	130	253	144	1.4
	## 306	67	160	286	108	1.5
	## 308	48	160	329	92	1.5
	## 311	52	140	266	134	2.0
	## 312	43	132	341	136	3.0
	## 315	58	150	270	111	0.8
	## 317	53	120	0	95	0.0
	## 319	58	130	263	140	2.0
	## 320	60	145	282	142	2.8
	## 322	52	135	0	128	2.0
	## 327	63	150	0	154	3.7
	## 331	56	120	0	148	0.0
	## 332	59	160	273	125	0.0
	## 333	65	145	0	67	0.7
	## 335	61	140	207	138	1.9
	## 336	53	145	518	130	0.0
	## 338	54	127	333	154	0.0
	## 340	55	142	228	149	2.5
	## 344	54	180	0	150	1.5
	## 346	59	124	160	117	1.0
	## 347	58	116	0	124	1.0
	## 350 ## 352	53 56	144	300 282	128 126	1.5 1.2
	## 352	38	137 110	0	156	0.0
	## 356	57	180	285	120	0.8
	## 360	63	130	254	147	1.4
	## 362	60	115	0	143	2.4
	## 365	60	160	0	149	0.4
	## 369	61	148	203	161	0.0
	## 371	55	122	223	100	0.0
	## 375	43	132	247	143	0.1
	## 378	62	138	204	122	1.2
	## 379	51	120	0	127	1.5
	## 383	52	130	298	110	1.0
	## 385	55	158	217	110	2.5
	## 387	43	140	0	140	0.5
	## 389	64	144	0	122	1.0
	## 393	48	160	193	102	3.0
	## 394	62	120	0	123	1.7
	## 397	46	118	186	124	0.0
	## 398	53	130	0	135	1.0
	## 402	71	130	221	115	0.0
	## 404	48	130	256	150	0.0

,	12:28 a.m	١.			E	EXAMEN 4: MC
	## 406	53	125	0	120	1.5
	## 409	60	100	248	125	1.0
	## 411	61	145	307	146	1.0
	## 412	65	160	0	122	1.2
	## 413	62	112	258	150	1.3
	## 414	40	150	392	130	2.0
	## 415	63	140	187	144	4.0
	## 416	56	137	208	122	1.8
	## 417	41	120	237	138	1.0
	## 418	55	136	228	124	1.6
	## 420	61	130	0	115	0.0
	## 421	54	140	166	118	0.0
	## 423	60	135	0	63	0.5
	## 430	57	150	276	112	0.6
	## 431	50	115	0	120	0.5
	## 434	61	130	0	77	2.5
	## 436	40	95	0	144	0.0
	## 437	45	142	309	147	0.0
	## 438	66	112	261	140	1.5
	## 440	34	140	156	180	0.0
	## 441	50	150	243	128	2.6
	## 442	67	152	212	150	0.8
	## 445	53	120	246	116	0.0
	## 446	65	170	263	112	2.0
	## 448	56	128	223	119	2.0
	## 453	49	118	149	126	0.8
	## 458	61	150	0	117	2.0
	## 459	56	155	342	150	3.0
	## 463	48	160	355	99	2.0
	## 464	64	95	0	145	1.1
	## 468	60	130	186	140	0.5
	## 469	53	124	243	122	2.0
	## 470	53	180	285	120	1.5
	## 471	57	150	255	92	3.0
	## 473	65	136	248	140	4.0
	## 477	60	130	186	140	0.5
	## 479	51	95	0	126	2.2
	## 482	56	125	249	144	1.2
	## 484	60	140	293	170	1.2
	## 485	68	150	195	132	0.0
	## 486	58	120	284	160	1.8
	## 487	69	130	0	129	1.0
	## 488 ## 490	65 46	144	312 202	113 150	1.7 0.0
	## 490	60	110 158	305	161	0.0
	## 492	44	135	491	135	0.0
	## 498	67	100	299	125	0.9
	## 499	69	140	208	140	2.0
	## 502	49	128	212	96	0.0
	## 503	63	100	0	109	-0.9
	## 509	60	141	316	122	1.7
	## 511	35	120	0	130	1.2
	## 512	70	140	0	157	2.0
	## 513	64	110	0	114	1.3
	## 516	59	140	264	119	0.0
	## 518	54	200	198	142	2.0
	## 519	52	130	225	120	2.0
	## 521	43	122	0	120	0.5
	## 522	68	180	274	150	1.6
	## 523	63	124	197	136	0.0
	## 524	64	140	335	158	0.0
	## 525	55	140	201	130	3.0
	## 528	63	170	177	84	2.5
	## 530	65	135	254	127	2.8
	## 535	51	140	299	173	1.6
	## 536	32	95	0	127	0.7
	## 540	46	120	249	144	0.8
	## 546	60	140	185	155	3.0
	## 547	55	140	217	111	5.6
	## 548	62	120	0	134	-0.8
	## 554	46	110	236	125	2.0

Э,	12:2	28 a.m.				EXAMI	N 4: IVIO
	##	555	59	130	126	125	0.0
	##	556	57	165	289	124	1.0
	##	558	50	140	233	163	0.6
	##	559	51	130	305	142	1.2
	##	560	61	141	292	115	1.7
		561	56	125	0	98	-2.0
		565	53	123	282	95	2.0
		567	58	180	393	110	1.0
		569	46	120	231	115	0.0
		572 574	56 58	115	0	82 140	-1.0
		576	73	114 160	318	121	4.4 0.0
		578	64	200	0	140	1.0
		580	54	138	274	105	1.5
		584	48	124	274	166	0.5
		585	50	140	231	140	5.0
	##	586	55	145	248	96	2.0
	##	587	57	140	0	100	0.0
	##	588	57	144	270	160	2.0
	##	591	48	132	220	162	0.0
	##	593	38	115	0	128	0.0
		602	58	110	198	110	0.0
		603	62	120	254	93	0.0
		605	66	150	0	108	2.0
		608	67	120	237	71	1.0
		614	60	140	281	118	1.5
		617 622	49 52	130 95	0 0	145 82	3.0 0.8
		623	59	134	204	162	0.8
		627	63	108	269	169	1.8
		628	63	160	267	88	2.0
		632	55	115	0	155	0.1
	##	634	36	110	0	125	1.0
	##	636	46	140	311	120	1.8
	##	637	63	150	0	86	2.0
	##	639	55	172	260	73	2.0
	##	642	55	120	226	127	1.7
	##	644	60	117	230	160	1.4
		645	65	150	235	120	1.5
		646	46	150	231	147	3.6
		648	63	130	308	138	2.0
		650	40	152	223	181	0.0
		652	56	140	0	121	1.8
		654 655	61 57	130 140	330	169 120	0.0 2.0
		656	55	132	353	132	1.2
		657	38	110	196	166	0.0
		659	42	145	0	99	0.0
		661	59	170	288	159	0.2
		663	37	140	207	130	1.5
	##	664	63	130	0	111	0.0
	##	668	77	124	171	110	2.0
	##	669	61	110	0	108	2.0
	##	672	59	178	0	120	0.0
		673	58	112	230	165	2.5
		674	57	156	173	119	3.0
		676	59	110	239	142	1.2
		681	48	138	214	108	1.5
		682	59	174	249	143	0.0
		684	41	110	289	170	0.0
		685 688	64 55	143 140	306 268	115 128	1.8 1.5
		690	58	125	300	171	0.0
		691	38	150	0	120	0.7
		694	54	192	283	195	0.0
		696	53	126	0	106	0.0
		697	58	130	213	140	0.0
		698	62	160	254	108	3.0
		704	63	96	305	121	1.0
	##	706	59	125	222	135	2.5
	##	708	56	120	0	100	-1.0

, 12:	28 a.m.	•			EXAMEN -	4: MO
##	709	53	160	0	122	0.0
##	710	32	118	529	130	0.0
##	713	52	128	255	161	0.0
##	715	54	120	0	155	0.0
##	716	55	120	0	125	2.5
	720	58	120	0	106	1.5
		52	122	0	110	2.0
	727	51	120	0	104	0.0
	728	54	130	294	100	0.0
	729	58	136	319	152	0.0
	730 732	54 52	124 120	266 182	109 150	2.2 0.0
	734	64	142	276	140	1.0
	738	58	126	0	110	2.0
	741	54	120	237	150	1.5
##	742	55	128	205	130	2.0
##	745	63	139	217	128	1.2
##	750	56	130	0	122	1.0
##	751	50	120	0	156	0.0
	754	51	128	0	125	1.2
	755	56	130	283	103	1.6
	756	56	155	0	99	0.0
	761	69	140	254	146	2.0
	765	60	132	218	140	1.5
	768 773	75	170	203	108	0.0
	774	65 62	134 120	267	112 99	1.1
		56	130	256	142	0.6
	778	67	145	0	125	0.0
	780	38	110	289	105	1.5
	785	57	130	131	115	1.2
##	786	69	140	0	118	2.5
##	788	45	130	219	130	1.0
##	789	43	100	0	122	1.5
##	791	62	115	0	128	2.5
	793	70	145	174	125	2.6
		65	150	236	105	0.0
	798	55	136	245	131	1.2
	800	72	160	123	130	1.5
	801	41	110	172	158	0.0
##	808 809	56 68	130 135	203	98 120	1.5 0.0
	810	69	145	289	110	1.8
	811	34	115	0	154	0.2
	812	43	115	0	145	2.0
##	815	62	115	0	72	-0.5
##	823	58	100	234	156	0.1
##	824	66	160	246	120	0.0
	825	44	120	169	144	2.8
	827	38	120	231	182	3.8
	829	58	130	0	100	1.0
	830	63 43	160	230 247	105	1.0
	834 836	52	150 112	230	130 160	2.0 0.0
	839	62	160	0	72	0.0
	840	58	170	225	146	2.8
	842	52	140	404	124	2.0
	843	55	116	186	102	0.0
	844	49	131	142	127	1.5
	846	68	145	0	136	1.8
##	848	70	160	269	112	2.9
##	853	40	110	167	114	2.0
##	854	47	110	0	149	2.1
##	855	54	130	242	91	1.0
	856	66	155	0	90	0.0
	857	68	144	193	141	3.4
	858	53	120	0	120	0.0
	859	60	142	216	110	2.5
	862	63	136	0	84	0.0
	863	35	110	257	140	0.0
##	868	63	150	407	154	4.0

```
## 869
                                      0
         57
                        110
                                                        131
                                                                      1.4
## 870
         62
                        120
                                     281
                                                        103
                                                                      1.4
## 871
         35
                        126
                                     282
                                                        156
                                                                      0.0
## 877
         62
                        152
                                     153
                                                         97
                                                                      1.6
## 880
                                                        139
         49
                        120
                                     188
                                                                      2.0
## 881
         48
                        160
                                     268
                                                        103
                                                                      1.0
## 884
         76
                         104
                                     113
                                                        120
                                                                      3.5
## 886
         55
                        160
                                     289
                                                        145
                                                                      0.8
##
   887
         58
                         136
                                                         99
                                                                      2.0
                                     164
   892
         58
                         137
                                     232
                                                        124
                                                                      1.4
## 894
                         139
                                     170
                                                        120
         62
                                                                      3.0
## 897
         69
                         140
                                     110
                                                        109
                                                                      1.5
## 898
         38
                        110
                                     190
                                                        150
                                                                      1.0
## 900
         64
                        120
                                      0
                                                        106
                                                                      2.0
## 902
         67
                        120
                                     229
                                                        129
                                                                      2.6
## 903
         75
                        136
                                                        112
                                                                      3.0
                                     225
                                                        102
## 906
         72
                        120
                                     214
                                                                      1.0
                        150
                                                         98
## 907
         47
                                     226
                                                                      1.5
                        125
                                                        105
                                                                      0.0
## 915
         61
                                      0
## 916
                        122
                                     275
                                                        150
                                                                      2.0
         48
##
## $subset
## NULL
##
## $outlierMethod
## [1] "quan"
##
## attr(,"class")
## [1] "mvn"
```

Ahora vemos la normalidad multivariada con el test de Henze-Zirkler (HZ), y también viendo la normalidad univariada con el test de Anderson-Darling, ambos realizados por grupo (Sin Enfermedad y Con Enfermedad).

En el grupo sin enfermedad y con enfermedad vemos que se ocupa el test de Henze-Zirkler, donde nos arroja un p-value de <0.001, eso nos quiere decir que se rechaza H0 con la hipotesis de que habia normalidad multivariada. Lo cual, es un problema importante para el supuesto LDA, entonces procedemos a ocupar un modelo QDA(Quadatric Discriminant Analysis).

Igualdad de Varianzas

La varianzas NO son iquales

leveneTest(Colesterol~Enfermedad_Cardíaca,data=enfermedad_train_num)

Aquí verificamos si la varianza de cada variable es igual entre los grupos, más que nada para verificar o detectar desequilibrios que podrían afectar la estabilidad del modelo, ya desde el punto de vista univariado, dado que solo dos variables cumplen la igualdad de varianzas, el supuesto de homocedasticidad se viola parcialmente.

```
# La varianzas son iguales
leveneTest(Edad~Enfermedad_Cardíaca,data=enfermedad_train_num)
## Levene's Test for Homogeneity of Variance (center = median)
##
         Df F value Pr(>F)
## group 1 1.9777 0.1601
##
        734
# La varianzas NO son iguales
leveneTest(Presión_Reposo~Enfermedad_Cardíaca,
           data=enfermedad_train_num)
## Levene's Test for Homogeneity of Variance (center = median)
##
         Df F value
                      Pr(>F)
## group 1 7.2949 0.007075 **
##
        734
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# La varianzas son iguales
leveneTest(Frecuencia_Máxima~Enfermedad_Cardíaca,
data=enfermedad_train_num)
```

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.0747 0.7848
## 734
```

Matriz de Varianzas y Covarianzas

boxM(data=enfermedad_train_num[,-6],grouping=enfermedad_train_num\$Enfermedad_Cardíaca)

```
##
## Box's M-test for Homogeneity of Covariance Matrices
##
## data: enfermedad_train_num[, -6]
## Chi-Sq (approx.) = 238.38, df = 15, p-value < 2.2e-16</pre>
```

```
# Las matrices de covarianza NO son iguales.
```

Podemos ver que nuestro p-value < 2.2e-16, es decir que rechazamos nuestra hipotesis nula, lo que significa que las matrices de covarianza son significativamente distintas entre grupos. Esta es una violación crítica para LDA, ya que el método asume que todos los grupos tienen la misma estructura de covarianza. La desigualdad genera decisiones de clasificación subóptimas o sesgadas.

Modelo QDA

El modelo QDA (Análisis Discriminante Cuadrático) estima una función discriminante diferente para cada grupo, permitiendo que cada clase tenga su propia matriz de covarianzas y vector de medias. Esto le permite modelar fronteras no lineales entre las clases. Aunque QDA no entrega coeficientes como LDA, podemos identificar la importancia relativa de cada variable comparando las medias de cada grupo. **Cuanto mayor es la diferencia entre medias, mayor es su capacidad para discriminar entre clases.**

```
modelo_qda<-qda(Enfermedad_Cardíaca~.,data=enfermedad_train)
modelo_qda$prior # prior probabilities</pre>
```

```
## Sin Enfermedad Con Enfermedad
## 0.4375 0.5625
```

```
modelo_qda$scaling # coeficientes / parámetros
```

```
## , , Sin Enfermedad
##
##
                                                    2
## Fdad
                                 0.1066992 0.004890856 -0.02426602 -0.008574099
## SexoM
                                 0.0000000 2.081965928 -0.08009939 -0.083080197
## Dolor PechoATA
                                 0.0000000 0.000000000 -2.15510680 -1.237001591
## Dolor_PechoNAP
                                 0.0000000 0.000000000 0.00000000 -2.477324196
## Dolor_PechoTA
                                 ## Presión Reposo
                                 0.0000000 0.000000000 0.00000000
                                                                   0.000000000
## Colesterol
                                 0.0000000 0.000000000
                                                       0.00000000
                                                                   0.000000000
## Glucosa_AyunasSí
                                 0.0000000 0.000000000
                                                       0.00000000
                                                                   0.000000000
## Electrocardiograma_ReposoNormal 0.0000000 0.000000000
                                                       0.00000000
                                                                   0.000000000
## Electrocardiograma_ReposoST
                                 0.0000000 0.000000000
                                                       0.00000000
## Frecuencia Máxima
                                 0.0000000 0.000000000
                                                       0.00000000
## Angina_EjercicioSí
                                 0.0000000 0.000000000
                                                       0.00000000
                                                                   0.000000000
## Depresión_ST
                                 0.0000000 0.000000000 0.00000000
                                                                   0.000000000
## Pendiente_STFlat
                                 0.0000000 0.000000000 0.00000000
                                                                   0.000000000
## Pendiente_STUp
                                 0.0000000 0.000000000 0.00000000
                                                                   0.000000000
##
                                                        6
## Edad
                                 -0.008556193 0.022423194 0.005574307
## SexoM
                                  0.033407590 0.209759913 0.424924043
## Dolor PechoATA
                                  ## Dolor PechoNAP
                                  0.852493833 -0.007280617 0.097008048
## Dolor_PechoTA
                                  4.289411819 0.446900006 0.009604391
## Presión_Reposo
                                  0.000000000 -0.062041485 -0.003223150
## Colesterol
                                  0.000000000 0.000000000 0.015419931
## Glucosa_AyunasSí
                                  0.00000000 0.00000000 0.000000000
## Electrocardiograma_ReposoNormal
                                  0.00000000 0.00000000 0.000000000
## Electrocardiograma_ReposoST
                                  0.00000000 0.000000000 0.000000000
## Frecuencia_Máxima
                                  0.00000000 0.000000000 0.000000000
## Angina_EjercicioSí
                                  0.00000000 0.00000000 0.000000000
## Depresión_ST
                                  0.00000000 0.000000000 0.000000000
## Pendiente_STFlat
                                  0.00000000 0.000000000 0.000000000
                                  0.000000000
## Pendiente_STUp
                                               0.000000000 0.000000000
##
                                             8
                                                          9
## Edad
                                 -0.0255713031 -0.0042979916 -0.011314590
## SexoM
                                 -0.2571445671 0.0953788418 -0.097071324
## Dolor_PechoATA
                                 -0.2532684212
                                               0.3700764876 -0.138021554
## Dolor_PechoNAP
                                 -0.3683668960 0.1634649854 -0.349869573
## Dolor_PechoTA
                                 -0.5038350856 -0.3838717721 -0.493994080
## Presión_Reposo
                                  0.0021714787 -0.0025438904 0.004861328
## Colesterol
                                 -0.0008804994 -0.0003064347 -0.003247872
## Glucosa_AyunasSí
                                  3.2668987392 -0.3503191140 -0.178458430
## Electrocardiograma_ReposoNormal 0.0000000000 -2.1640178899 -1.563799384
## Electrocardiograma_ReposoST
                                  0.0000000000 0.0000000000 -3.553705746
## Frecuencia Máxima
                                  0.000000000 0.000000000 0.000000000
## Angina EjercicioSí
                                  0.0000000000 0.0000000000
                                                             9.99999999
## Depresión ST
                                  0.000000000 0.0000000000
                                                             0.000000000
## Pendiente STFlat
                                  0.0000000000 0.0000000000
                                                             0.000000000
## Pendiente_STUp
                                  0.0000000000
                                               0.0000000000
##
                                           11
                                                        12
## Edad
                                 -0.048880335 -0.0141541722 -0.0185057481
## SexoM
                                 -0.056471410 -0.0088025047 0.0786403138
## Dolor_PechoATA
                                  0.386752283 0.5042786336 0.2709462143
## Dolor_PechoNAP
                                  0.355433363  0.4374806216  -0.0331139945
## Dolor_PechoTA
                                  0.472154471 0.7176127011 -0.6300976515
## Presión_Reposo
                                  0.002116349 -0.0010554278 -0.0033702242
## Colesterol
                                  0.001417860 -0.0001939534 0.0006118138
## Glucosa_AyunasSí
                                  ## Electrocardiograma_ReposoNormal -0.413396531 0.0623172535 0.1097038023
## Electrocardiograma_ReposoST
                                 -0.770237408 -0.0091379269 0.0774294186
## Frecuencia_Máxima
                                 -0.048144588 0.0062170345 -0.0049993545
## Angina_EjercicioSí
                                  0.000000000
                                               3.1206766056 -0.6198077308
## Depresión_ST
                                  0.000000000
                                               0.0000000000 1.5407848907
## Pendiente STFlat
                                  0.000000000
                                               0.0000000000 0.0000000000
## Pendiente_STUp
                                  0.000000000
                                               0.0000000000
                                                            0.0000000000
##
                                            14
                                                         15
                                  0.0033345983 0.0027663556
## Edad
                                 -0.1595788077 -0.1775150486
## SexoM
## Dolor_PechoATA
                                 -0.2166066653 -0.0537148366
```

```
## Dolor PechoNAP
                                 -0.0790294061 -0.1756021541
## Dolor_PechoTA
                                  0.0687202355 -0.6246133450
                                 -0.0052706251 0.0006036685
## Presión Reposo
## Colesterol
                                 -0.0001625777 -0.0007643365
## Glucosa AyunasSí
                                 -0.1398981554 -0.2362802452
## Electrocardiograma ReposoNormal -0.2706628297 0.1614100108
## Electrocardiograma_ReposoST
                                 -0.3088486208 0.3078900861
## Frecuencia_Máxima
                                 ## Angina_EjercicioSí
                                  0.8940549406 0.1262801507
## Depresión_ST
                                  0.6140045481 -0.7013597251
## Pendiente_STFlat
                                 -3.0819961399 -6.5051988234
## Pendiente_STUp
                                  0.0000000000 -7.2747560596
##
##
    , Con Enfermedad
##
##
                                          1
                                 -0.1118494 -0.001428042 -0.0007210335
## Edad
## SexoM
                                  0.0000000 -3.241032533 0.1033660827
## Dolor PechoATA
                                  0.0000000
                                             0.000000000 4.6606129577
## Dolor PechoNAP
                                  0.0000000
                                             0.000000000 0.0000000000
## Dolor_PechoTA
                                  0.0000000
                                             0.000000000
                                                         0.0000000000
                                             0.000000000 0.0000000000
## Presión_Reposo
                                  0.0000000
## Colesterol
                                  0.0000000
                                             0.000000000 0.0000000000
## Glucosa AyunasSí
                                  0.0000000
                                            0.00000000 0.0000000000
## Electrocardiograma_ReposoNormal 0.0000000
                                            0.000000000 0.0000000000
## Electrocardiograma_ReposoST
                                  0.0000000
                                             0.00000000 0.0000000000
## Frecuencia_Máxima
                                  0.0000000
                                             0.00000000 0.000000000
## Angina_EjercicioSí
                                  0.0000000
                                             0.000000000 0.0000000000
## Depresión_ST
                                  0.0000000
                                             0.000000000 0.0000000000
## Pendiente_STFlat
                                  0.0000000
                                             0.000000000 0.0000000000
## Pendiente_STUp
                                  0.0000000
                                            0.000000000 0.00000000000
##
                                                       5
## Edad
                                 -0.01151009 0.003027583 0.02969305
                                 -0.09491222 -0.228060561 -0.47251413
## SexoM
## Dolor_PechoATA
                                  0.43532313 0.238453960 0.37694845
## Dolor_PechoNAP
                                  2.86569150 0.247855130 -0.12599820
## Dolor_PechoTA
                                  0.00000000 5.221734303 0.12078527
## Presión_Reposo
                                  0.00000000 0.000000000 -0.05266940
## Colesterol
                                  0.00000000 0.000000000 0.00000000
## Glucosa_AyunasSí
                                  0.00000000 0.000000000 0.00000000
## Electrocardiograma_ReposoNormal 0.00000000 0.000000000 0.000000000
## Electrocardiograma_ReposoST
                                  0.00000000 0.000000000 0.00000000
## Frecuencia Máxima
                                  0.0000000 0.00000000 0.00000000
## Angina EiercicioSí
                                  0.00000000 0.000000000 0.00000000
## Depresión ST
                                  0.00000000 0.000000000 0.00000000
## Pendiente_STFlat
                                  0.00000000 0.000000000 0.00000000
## Pendiente_STUp
                                  0.00000000
                                              0.00000000 0.00000000
##
                                           7
                                                        8
## Edad
                                 -0.013809532 -0.006981295 -0.0306448364
                                 ## SexoM
## Dolor_PechoATA
                                  0.360694955 -0.067659942 -0.2049241356
## Dolor_PechoNAP
                                  ## Dolor_PechoTA
                                  0.111091443 -0.160950730 -0.1975845531
## Presión Reposo
                                  0.011094337 -0.002403282 -0.0028086329
                                 -0.008244375 0.002681677 -0.0008127475
## Colesterol
## Glucosa AyunasSí
                                  0.000000000 2.260530154 -0.1613377746
## Electrocardiograma ReposoNormal 0.000000000 0.000000000 -2.1179355283
## Electrocardiograma_ReposoST
                                  0.00000000 0.00000000 0.0000000000
## Frecuencia_Máxima
                                  0.00000000 0.000000000 0.0000000000
## Angina_EjercicioSí
                                  0.000000000
                                              0.000000000 0.0000000000
## Depresión_ST
                                  0.000000000
                                              0.000000000
                                                           0.0000000000
                                  0.000000000
                                              0.000000000 0.0000000000
## Pendiente STFlat
## Pendiente_STUp
                                  0.000000000
                                              0.000000000 0.0000000000
##
                                           10
                                                       11
                                                                    12
## Edad
                                 -0.003024598 0.029250376 -0.003037786
## SexoM
                                 -0.248430081 0.449040200 0.167470793
## Dolor_PechoATA
                                  0.160203917 -0.228838379 -0.646578476
## Dolor PechoNAP
                                 -0.119306085 -0.192743001 -0.371326068
## Dolor PechoTA
                                  0.222330242 -0.808881592 -0.911465811
                                 -0.001407589 0.005729532 0.007689447
## Presión Reposo
## Colesterol
                                  0.001276083 -0.001649999 0.001318904
```

```
## Glucosa_AyunasSí
                                 -0.307477421 -0.189317781 -0.292745845
## Electrocardiograma_ReposoNormal 1.559071843 0.615410018 0.128517076
## Electrocardiograma_ReposoST
                                 3.145145241 0.555626381 0.380625177
                                 0.000000000 0.047435782 -0.010096527
## Frecuencia_Máxima
## Angina_EjercicioSí
                                 0.000000000 0.000000000 -2.263451992
## Depresión ST
                                 0.000000000 0.000000000 0.000000000
## Pendiente_STFlat
                                 0.00000000 0.000000000 0.000000000
## Pendiente_STUp
                                 0.00000000 0.00000000 0.000000000
##
                                         13
                                                    14
                                                                  15
## Edad
                                 -0.017779070 0.010491681 0.003212873
## SexoM
                                 ## Dolor_PechoATA
                                 0.330929953 -0.041049641 -0.206441613
## Dolor_PechoNAP
                                 0.179273267 -0.340956702 0.094844493
## Dolor_PechoTA
                                 0.096129097 -0.278728776 0.157416914
## Presión_Reposo
                                -0.004791482 -0.007170629 -0.004032947
                                -0.001391978 -0.001519791 -0.000233797
## Colesterol
                                 0.041326473 -0.059634882 0.233251663
## Glucosa_AyunasSí
## Electrocardiograma_ReposoNormal -0.034034735 -0.335676303 0.067255296
## Electrocardiograma_ReposoST
                                -0.108518166 -0.047399472 -0.011868200
## Frecuencia Máxima
                                 -0.005600880 0.010245101 -0.007125329
## Angina_EjercicioSí
                                -0.485579994 -0.152048520 0.262349630
## Depresión_ST
                                 0.929887557 0.124529099 0.304708103
## Pendiente_STFlat
                                 0.000000000 2.477185380 2.654463652
## Pendiente_STUp
                                 0.00000000 0.000000000 4.431571443
```

predicciones<-predict(object=modelo_qda,newdata=enfermedad_test)
predicciones\$posterior</pre>

```
Sin Enfermedad Con Enfermedad
## 1
         9.548246e-08
                        9.99999e-01
## 2
         6.843071e-10
                        1.000000e+00
## 4
         9.994513e-01
                        5.486752e-04
## 7
         2.320611e-02
                        9.767939e-01
## 9
         9.999991e-01
                        9.381664e-07
## 25
         7.114465e-01
                        2.885535e-01
## 30
         1.107749e-09
                        1.000000e+00
## 32
         9.999992e-01
                        7.789477e-07
##
  33
         8.222642e-03
                        9.917774e-01
##
  37
         5.092263e-04
                        9.994908e-01
##
  49
         1.568113e-03
                        9.984319e-01
##
  54
         1.669458e-01
                        8.330542e-01
##
  65
         9.999951e-01
                        4.934909e-06
##
  71
         9.915556e-01
                        8.444363e-03
## 78
         1.195292e-01
                        8.804708e-01
## 81
         2.498681e-07
                        9.999998e-01
## 84
         1.722396e-06
                        9.999983e-01
## 86
         8.339002e-01
                        1.660998e-01
## 96
         9.489294e-01
                        5.107061e-02
## 98
         4.749018e-04
                        9.995251e-01
         8.760647e-04
## 102
                        9.991239e-01
## 103
         9.99999e-01
                        8.133707e-08
## 121
         1.014074e-01
                        8.985926e-01
## 128
         9.999639e-01
                        3.614026e-05
## 141
         9.99999e-01
                        6.449729e-08
## 146
         3.132811e-02
                        9.686719e-01
## 147
         1.616174e-02
                        9.838383e-01
## 148
         3.606271e-04
                        9.996394e-01
## 150
         5.614337e-01
                        4.385663e-01
                        6.994292e-04
## 169
         9.993006e-01
## 176
         7.852329e-02
                        9.214767e-01
## 178
         1.903094e-05
                        9.999810e-01
## 182
         9.978842e-01
                        2.115829e-03
## 183
         4.060626e-04
                        9.995939e-01
## 187
         7.491627e-06
                        9.999925e-01
##
  189
         9.999969e-01
                        3.074384e-06
##
  193
         1.139806e-02
                        9.886019e-01
##
  195
         9.999926e-01
                        7.423926e-06
##
  200
         9.999998e-01
                        1.981013e-07
##
  208
         8.129812e-04
                        9.991870e-01
##
  213
         9.999636e-01
                        3.642399e-05
## 217
         5.701993e-03
                        9.942980e-01
## 227
         9.772404e-05
                        9.999023e-01
## 244
         9.995142e-01
                        4.857729e-04
## 249
         9.759284e-01
                        2.407158e-02
## 253
         2.704886e-10
                        1.000000e+00
## 254
         2.061623e-09
                        1.000000e+00
## 255
         9.816585e-01
                        1.834153e-02
## 257
         2.200457e-02
                        9.779954e-01
## 262
         1.043055e-03
                        9.989569e-01
## 263
         2.718525e-07
                        9.999997e-01
## 264
         9.998692e-01
                        1.308063e-04
## 270
         2.360020e-01
                        7.639980e-01
## 275
         8.691452e-03
                        9.913085e-01
## 277
         1.323143e-01
                        8.676857e-01
## 283
         9.993629e-01
                        6.370663e-04
## 288
         1.577276e-02
                        9.842272e-01
## 294
         8.581973e-04
                        9.991418e-01
## 296
         8.000948e-02
                        9.199905e-01
##
  299
                        4.699664e-08
         1.000000e+00
##
  302
         2.278402e-02
                        9.772160e-01
##
  316
         3.350711e-10
                        1.000000e+00
##
  321
         5.959191e-02
                        9.404081e-01
## 324
         7.004106e-07
                        9.999993e-01
## 325
         2.270455e-03
                        9.977295e-01
## 330
         9.999907e-01
                        9.269205e-06
## 334
         2.893724e-04
                        9.997106e-01
## 342
         1.906132e-04
                        9.998094e-01
                        1.656998e-05
## 348
         9.999834e-01
```

5, 12:28 a.n	٦.	
## 355	4.504113e-05	9.999550e-01
## 357	2.487803e-13	1.000000e+00
## 359	1.751229e-02	9.824877e-01
## 370	4.133490e-06	9.999959e-01
## 374	5.959813e-07	9.999994e-01
## 377	9.999727e-01	2.732453e-05
## 377	1.792787e-02	
		9.820721e-01
## 390	9.999995e-01	4.514940e-07
## 391	9.960923e-01	3.907662e-03
## 392	9.999991e-01	9.480877e-07
## 401	5.712108e-01	4.287892e-01
## 403	9.999965e-01	3.522122e-06
## 405	1.777110e-03	9.982229e-01
## 408	1.114819e-06	9.999989e-01
## 426	9.999606e-01	3.939650e-05
## 432	1.000000e+00	2.087222e-08
## 435	9.995042e-01	4.957850e-04
## 444	1.279669e-03	9.987203e-01
## 450	9.889130e-01	1.108703e-02
## 451	9.962583e-01	3.741743e-03
## 452	5.057197e-05	9.999494e-01
## 456	9.990778e-01	9.221632e-04
## 460	9.999960e-01	3.997781e-06
## 465	9.999988e-01	1.242287e-06
## 474	2.790343e-02	9.720966e-01
## 475	1.419533e-01	8.580467e-01
		1.352888e-04
## 483 ## 495	9.998647e-01	
	9.886960e-01	1.130404e-02
## 497	9.720065e-01	2.799346e-02
## 507	9.970209e-01	2.979093e-03
## 514	2.639469e-02	9.736053e-01
## 527	9.999996e-01	3.537817e-07
## 529	9.999940e-01	6.031722e-06
## 531	5.778604e-01	4.221396e-01
## 533	9.526542e-01	4.734578e-02
## 534	3.865020e-01	6.134980e-01
## 538	9.999992e-01	7.708045e-07
## 545	2.094283e-09	1.000000e+00
## 551	1.618060e-02	9.838194e-01
## 552	1.440868e-04	9.998559e-01
## 564	9.999994e-01	6.376235e-07
## 570	2.920655e-04	9.997079e-01
## 571	1.184224e-02	9.881578e-01
## 573	9.859103e-01	1.408971e-02
## 575	9.778981e-01	2.210186e-02
## 579	9.999986e-01	1.360757e-06
## 583	2.796877e-03	9.972031e-01
## 589	9.782115e-01	2.178846e-02
## 596	2.504586e-02	9.749541e-01
## 599	1.166225e-03	9.988338e-01
## 604	9.869009e-01	1.309907e-02
## 612	9.607698e-01	3.923022e-02
## 613	9.833181e-01	1.668194e-02
## 616	6.352502e-03	9.936475e-01
## 620	9.748855e-01	2.511455e-02
## 624	8.575085e-01	1.424915e-01
## 625	7.736974e-05	9.999226e-01
## 630	4.103066e-05	9.999590e-01
## 641	9.344220e-11	1.000000e+00
## 643	9.999855e-01	1.452548e-05
## 665	9.995936e-01	4.064239e-04
## 666	1.230044e-01	8.769956e-01
## 671	1.000000e+00	1.917009e-08
## 675	9.999343e-01	6.570844e-05
## 678	3.130298e-02	9.686970e-01
## 680	1.212251e-03	9.987877e-01
## 687	2.436404e-03	9.975636e-01
## 689	5.504986e-03	9.944950e-01
## 699	8.660774e-05	9.999134e-01
## 700	5.226118e-03	9.947739e-01
## 702	3.875071e-09	1.000000e+00

```
## 705
         6.116230e-03 9.938838e-01
## 711
         4.510544e-01 5.489456e-01
                       9.996964e-01
         3.036418e-04
## 721
## 722
         9.828534e-01
                       1.714660e-02
## 724
         2.829794e-04
                       9.997170e-01
## 740
         9.811110e-01
                       1.888896e-02
         5.594611e-01
## 746
                        4.405389e-01
## 747
         6.185015e-03
                        9.938150e-01
## 757
         5.963808e-02
                        9.403619e-01
   760
         3.136956e-01
                        6.863044e-01
         8.627369e-03
                        9.913726e-01
   762
##
  767
         4.990290e-11
                        1.000000e+00
## 770
         9.979180e-01
                        2.082020e-03
## 771
         7.700024e-03
                        9.923000e-01
## 776
         1.311211e-07
                        9.999999e-01
## 779
         9.999883e-01
                        1.170702e-05
## 784
         9.999988e-01
                        1.230915e-06
## 804
         5.646149e-01
                        4.353851e-01
## 805
         4.349057e-04
                        9.995651e-01
## 806
         5.822333e-04
                        9.994178e-01
         1.329685e-03
                        9.986703e-01
## 813
         6.041719e-01
                        3.958281e-01
## 817
         9.169612e-01
                        8.303876e-02
## 820
        1.654749e-04
                        9.998345e-01
## 821
        1.546873e-02
                       9.845313e-01
## 822
         9.994136e-01
                       5.864491e-04
## 831
         1.952990e-02
                       9.804701e-01
## 833
         8.727793e-01
                       1.272207e-01
## 851
         3.724506e-05
                       9.999628e-01
## 864
         9.900639e-01
                        9.936128e-03
## 866
         9.989506e-01
                        1.049400e-03
## 876
         9.999995e-01
                        5.323193e-07
## 879
         8.055444e-01
                        1.944556e-01
## 889
         5.514978e-04
                        9.994485e-01
## 891
         1.000000e+00
                        4.192221e-08
## 893
         9.989715e-01
                        1.028549e-03
## 895
         9.999973e-01
                        2.710543e-06
## 911
         4.562707e-06
                        9.999954e-01
## 912
         9.753094e-01
                        2.469064e-02
## 914
         8.185800e-13
                        1.000000e+00
## 917
         1.991696e-05
                        9.999801e-01
## 918
         3.135748e-03
                        9.968643e-01
```

clase_predicha<-predicciones\$class
clase_predicha</pre>

```
[1] Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad
    [6] Sin Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
##
   [11] Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad
##
   [16] Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad
##
   [21] Con Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
   [26] Con Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
##
   [31] Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
##
##
   [36] Sin Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad
   [41] Sin Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
##
   [46] Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
##
##
   [51] Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
   [56] Sin Enfermedad Con Enfermedad Con Enfermedad Con Enfermedad
   [61] Con Enfermedad Con Enfermedad Con Enfermedad Con Enfermedad
##
##
   [66] Sin Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad
##
   [71] Con Enfermedad Con Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad
##
   [76] Con Enfermedad Sin Enfermedad Sin Enfermedad Sin Enfermedad Sin Enfermedad
##
   [81] Sin Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
## [86] Sin Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad
## [91] Sin Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## [96] Sin Enfermedad Sin Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad
## [101] Sin Enfermedad Sin Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad
## [106] Sin Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad
## [111] Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad Sin Enfermedad
## [116] Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad
## [121] Sin Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
## [126] Con Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Sin Enfermedad
## [131] Con Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## [136] Con Enfermedad Con Enfermedad Con Enfermedad Con Enfermedad
## [141] Con Enfermedad Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad
## [146] Sin Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad Con Enfermedad
## [151] Con Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## [156] Sin Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## [161] Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## [166] Sin Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad
## [171] Sin Enfermedad Sin Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad
## [176] Sin Enfermedad Sin Enfermedad Con Enfermedad Sin Enfermedad Con Enfermedad
## [181] Con Enfermedad Con Enfermedad
## Levels: Sin Enfermedad Con Enfermedad
```

- Frecuencia_Máxima: Es la variable más discriminante. Los pacientes sin enfermedad tienden a alcanzar frecuencias cardíacas máximas más altas.
- · Depresión_ST: Segundo indicador más importante; los pacientes con enfermedad tienen valores mucho mayores.
- Colesterol y Edad también presentan diferencias marcadas, siendo útiles para la separación.
- · Variables como Angina_EjercicioSí y Pendiente_STUp también aportan información valiosa.
- Algunas variables categóricas (como Dolor_Pecho en sus variantes) también aportan discriminación, aunque en menor grado.

Matriz de Confusión

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 72 10
## Con Enfermedad 16 84
```

```
# Métricas individuales
accuracy <- conf_matrix$overall["Accuracy"] # Proporción total de predicciones correctas.
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8571429
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.84
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.893617
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8659794
```

```
cm table <- as.data.frame(conf matrix$table)</pre>
# Invertir el orden de los niveles del eje Y
cm_table$Prediction <- factor(cm_table$Prediction, levels = rev(levels(cm_table$Prediction)))</pre>
ggplot(cm_table, aes(x = Reference, y = Prediction, fill = Freq)) +
 geom_tile(color = "white") +
 geom_text(aes(label = Freq), color = "white", size = 6, fontface = "bold") +
 scale_fill_gradient(low = "lightblue", high = "darkblue",name="Frecuencia") +
 labs(
   title = "MATRIZ DE CONFUSIÓN",
   x = "Valor Real",
   y = "Predicción"
 ) +
 theme_minimal() +
   plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
   axis.text = element_text(size = 12,face="bold"),
   axis.title = element_text(size = 12,face="bold")
 )
```

MATRIZ DE CONFUSIÓN

- Accuracy (Exactitud): El 85.7% de las predicciones fueron correctas.
- Precision (Precisión): El 84% de las veces que se predijo "Con Enfermedad", realmente era cierto.
- Recall (Sensibilidad): El modelo identifica correctamente el 89.4% de los pacientes que realmente tienen enfermedad.
- F1 Score: Es el promedio armónico entre precisión y recall. Una métrica balanceada, útil si hay desbalance de clases.

Chequemos los dos posibles errores, en este caso en FP, el cual tenemos 16, se predijo enfermedad en pacientes sanos, esto puede generar ansidedad o intervenciones médicas innecesarias. Ahora , el otro error, los FN, que tenemos 10, se predijo "sin enfermedad" en pacientes enfermos, esto es crítico, ya que el paciente enfermo no recibe tratamiento a tiempo. En este sentido nos interesa la sensibilidad, ya que es crítico en contextos médicos para no pasar por alto pacientes enfermos

ÁRBOL DE DECISIÓN

El planteamiento para esta técnica será crear 5 árboles de decisión distintos donde cada uno será producto de una modificación en la función rpart, al final se eligirá el que arroje la mejor métrica del Recall o Sensibilidad. Lo que se va a realizar es:

- · Índice de Gini
- Profundidad
- · Ganancia de Información
- · Validación Cruzada
- Poda del Árbol

Índice de Gini

Entrenamiento del árbol con el índice de Gini, el índice de Gini es una medida de impureza que indica la probabilidad de que una instancia sea clasificada incorrectamente.

```
# Entrenamiento del árbol con índice Gini
modelo <- rpart(Enfermedad_Cardíaca ~ ., data = enfermedad_train, method = "class", parms = list(split = "gini"))
```

Visualizamos el árbol

```
rpart.plot(modelo, type = 2, extra = 104)
```



```
y_pred <- predict(modelo, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

										•
##	Con	1 Enformedad	Con	2 Enfermedad	Sin	4 Enformedad	Con	7 Enformedad	Sin	9 Enfarmedad
##	COII	25	COII	30	3111	32	COII	33	3111	37
##	Sin		Con	Enfermedad	Sin		Con		Con	
##		49		54		65		71		78
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		81		84		86		96		98
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		102		103		121		128		141
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		146		147		148		150		169
##	Con		Con	Enfermedad	Con		Con		Con	
##	.	176	6	178	c :	182	6	183	C	187
##	Con	189	Con	Enfermedad 193	51n	195	Con	200	Con	208
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##	31	213	CO	217	3111	227	31	244	CO	249
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		253		254		255		257		262
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		263		264		270		275		277
##	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##	_	283		288	_	294	_	296		299
##	Con		Sin	Enfermedad	Con		Con		Sin	
##	C	302	C	316	C	321	c:	324	C	325
##	Con	330	Con	Enfermedad 334	Con	342	2111	348	Con	355
##	Sin		Con	Enfermedad	Con		Sin		Con	
##	31	357	CO	359	COII	370	3111	374	CO	377
##	Con		Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	
##		382		390		391		392		401
##	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		403		405		408		426		432
##	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		435	_	444		450		451	_	452
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##	Cin	456	cin	460 Enfermedad	cin	465	Con	474	Con	475
##	3111	483	2111	495	2111	497	COII	507	COII	514
	Sin		Sin	Enfermedad	Sin		Sin		Con	
##		527		529		531		533		534
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		538		545		551		552		564
##	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		570		571		573		575		579
	Con		Con	Enfermedad	Sin		Sin		Sin	
##	C	583	C	589	C	596	C	599 Enformeded	C:	604
##	con	Entermedad 612	con	Enfermedad 613		Entermedad 616		Entermedad 620	21N	Entermedad 624
	Sin		Sin	Enfermedad					Con	
##		625		630		641		643		665
	Con		Con	Enfermedad	Con		Sin		Sin	
##		666		671		675		678		680
##	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		687	_	689		699	_	700		702
	Con		Con	Enfermedad	Con				Con	
##	C	705	c :	711	C	721		722	C	724
##	con	Enfermedad 740	51n	Enfermedad 746	con	Enfermedad 747	con	Enfermedad 757	con	Enfermedad 760
	Sin		Con	746 Enfermedad	Con		Con		Con	
##	J±11	762	COII	767	COII	770		771	COII	776
	Con		Con	Enfermedad	Con				Con	
##		779		784		804		805		806
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		807		813		817		820		821
	Con		Con	Enfermedad	Con		Con		Con	
##	_	822	_	831	٠.	833	_	851	_	864
	Con		Con	Enfermedad	Sin		Con		Con	
##	Sin	866 Enfermedad	Sin	876 Enfermedad	Sin	879	Con	889	Sin	891
ππ	J±11	ci iiicuau	J±11	cicuau	2111	ci iiicuau	2011	au	J±11	

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad

## 917 918

## Con Enfermedad Con Enfermedad

## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 62 7
## Con Enfermedad 26 87
```

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8186813
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.7699115
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.9255319
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8405797
```

Máximo de Niveles

Se trabajará con el mejor árbol que cumpla tener 3 o menos niveles

```
modelo2 <- rpart(Enfermedad_Cardíaca ~ ., data = enfermedad_train, method = "class", parms = list(split = "gini"), control =
rpart.control(maxdepth = 3))</pre>
```

Visualizamos el árbol

```
rpart.plot(modelo2, type = 2, extra = 104)
```



```
y_pred <- predict(modelo2, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

		1		2		4		7		0
##	Con	1 Enfermedad	Con	2 Enfermedad	Sin	4 Enfermedad	Con	7 Enfermedad	Sin	9 Enfermedad
##		25		30		32		33		37
	Sin		Con	Enfermedad	Sin		Con		Con	
##	Con	49 Enfermedad	Con	54 Enfermedad	Sin	65 Enfermedad	Sin	71 Enfermedad	Con	78 Enfermedad
##	COII	81	COII	84	3111	86	3111	96	COII	98
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		102		103		121		128		141
##	Con	Enfermedad 146	Sin	Enfermedad 147	Sin	Enfermedad 148	Sin	Enfermedad 150	Sin	Enfermedad 169
##	Con		Con	Enfermedad	Con		Con		Con	
##		176		178		182		183		187
##	Con		Con	Enfermedad	Sin		Con		Con	
##	Sin	189 Enfermedad	Con	193 Enfermedad	Sin	195 Enfermedad	Sin	200 Enfermedad	Con	208 Enfermedad
##	52	213		217	52	227	52	244		249
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##	C	253	C	254	C:	255	C	257	C	262
##	Con	263	Con	Enfermedad 264	2111	270	Con	275	Con	277
##	Con		Sin	Enfermedad	Sin		Con		Con	
##		283		288		294		296		299
##	Con	Enfermedad 302	Sin	Enfermedad 316	Con	Enfermedad 321	Con	Enfermedad 324	Sin	Enfermedad 325
##	Con		Con	Enfermedad	Con		Sin		Con	
##		330		334		342	52	348		355
##	Sin		Con	Enfermedad	Con		Sin		Con	
##	C	357	C	359	C	370	C	374	C	377
##	Con	382	Con	Enfermedad 390	Con	391	Con	392	2111	401
##	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		403		405		408		426		432
##	Sin	Enfermedad 435	Con	Enfermedad 444	Con	Enfermedad 450	Con	Enfermedad 451	Sin	Enfermedad 452
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##		456		460		465		474		475
##	Sin		Sin	Enfermedad	Sin		Con		Sin	
##	Sin	483	Sin	495 Enfermedad	Sin	497 Enfermedad	Sin	507 Enfermedad	Con	514 Enfermedad
##	3111	527	3111	529	3111	531	3111	533	COII	534
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		538		545		551	_	552		564
##	Sin	Enfermedad 570	Con	Enfermedad 571	Con	Enfermedad 573	Con	Enfermedad 575	Sin	Enfermedad 579
	Con		Con	Enfermedad	Sin		Sin		Sin	
##		583		589		596		599		604
	Con		Con	Enfermedad	Con				Sin	
##	Sin	612 Enfermedad	Sin	613 Enfermedad	Con	616 Enfermedad		620 Enfermedad	Con	624 Enfermedad
##		625		630	-011	641		643	-011	665
	Con		Con	Enfermedad	Con		Sin		Sin	
##	Con	666	cin	671	cin	675	cin	678	Con	680
##	Con	687	2111	Enfermedad 689	2111	699	2111	700	Con	702
	Con		Con	Enfermedad	Con		Sin		Con	
##		705		711		721		722		724
	Con		Sin	Enfermedad	Con		Con		Con	
##	Sin	740 Enfermedad	Con	746 Enfermedad	Con	747 Enfermedad	Con	757 Enfermedad	Sin	760 Enfermedad
##		762	2011	767	-011	770		771		776
	Con		Con	Enfermedad	Con		Con		Con	
##	Con	779	C:~	784 Enfermedad	Con	804	C0~	805	C:~	806
##	COII	807	וובכ	813	COII	817	COII	820	וודכ	821
	Con		Sin	Enfermedad	Con		Con		Con	
##	_	822	_	831	٠.	833	_	851	_	864
##	Con	Enfermedad 866	Con	Enfermedad 876	Sin	Enfermedad 879	Con	Enfermedad 889	Con	Enfermedad 891
	Sin		Sin	Enfermedad	Sin		Con		Sin	

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad

## 917 918

## Con Enfermedad Con Enfermedad

## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 64 11
## Con Enfermedad 24 83
```

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8076923
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.7757009
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8258706
```

Ganancia de Información

Recall (Sensibilidad): 0.8829787

```
modelo3 <- rpart(Enfermedad_Cardíaca ~ ., data = enfermedad_train, method = "class", parms = list(split = "information"))</pre>
```

Visualizamos el árbol

```
rpart.plot(modelo3, type = 2, extra = 104)
```



```
y_pred <- predict(modelo3, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

##		1		2		4		7		9
##	Con		Con	Enfermedad	Sin		Con		Sin	
##	Sin	25 Enfermedad	Con	30 Enfermedad	Sin	32 Enfermedad	Sin	33 Enfermedad	Con	37 Enfermedad
##		49		54		65		71		78
##	Con	Enfermedad 81	Con	Enfermedad 84	Sin	Enfermedad 86	Sin	Enfermedad 96	Con	Enfermedad 98
##	Con		Con	64 Enfermedad	Con		Sin		Con	
##		102		103		121		128		141
##	Con	Enfermedad 146	Sin	Enfermedad 147	Sin	Enfermedad 148	Sin	Enfermedad 150	Sin	Enfermedad 169
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##	Con	176	Con	178 Enfermedad	Cin	182	Con	183	Con	187
##	COII	189	COII	193	2111	195	COII	200	COII	208
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##	Sin	213 Enfermedad	Sin	217 Enfermedad	Con	227 Enfermedad	Sin	244 Enfermedad	Sin	249 Enfermedad
##		253		254		255		257		262
##	Con	Enfermedad 263	Con	Enfermedad 264	Sin	Enfermedad 270	Con	Enfermedad 275	Con	Enfermedad 277
##	Con		Sin	Enfermedad	Sin		Con		Sin	
##	C:	283	C:	288	C = 11	294	C	296	C	299
##	2111	302	2111	Enfermedad 316	Con	321	Con	324	2111	325
##	Con		Con	Enfermedad	Con		Sin		Con	
##	Sin	330 Enfermedad	Con	334 Enfermedad	Con	342 Enfermedad	Sin	348 Enfermedad	Con	355 Enfermedad
##	3111	357	COII	359	COII	370	3111	374	COII	377
##	Con	Enfermedad 382	Con	Enfermedad 390	Con	Enfermedad 391	Con	Enfermedad 392	Sin	Enfermedad 401
##	Con		Sin	Enfermedad	Sin		Sin		Con	
##		403		405		408		426		432
##	Sin	Enfermedad 435	Con	Enfermedad 444	Con	Enfermedad 450	Con	Enfermedad 451	Sin	Enfermedad 452
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##	Sin	456	Sin	460 Enfermedad	Sin	465 Enfermedad	Con	474 Enfermedad	Con	475 Enfermedad
##	3111	483	3111	495	3111	497	COII	507	COII	514
##	Sin		Sin	Enfermedad	Sin		Sin		Con	
##	Sin	527 Enfermedad	Sin	529 Enfermedad	Sin	531 Enfermedad	Sin	533 Enfermedad	Con	534 Enfermedad
##		538		545		551		552		564
##	Sin	Enfermedad 570	Con	Enfermedad 571	Con	Enfermedad 573	Con	Enfermedad 575	Sin	Enfermedad 579
	Con		Con	Enfermedad	Sin		Sin		Sin	
##	Con	583	Con	589 Enfermedad	Con	596	Con	599	Cin	604
##	COII	612	COII	613	COII	616	COII	620	2111	624
	Sin		Sin	Enfermedad	Con		Sin		Con	
##	Con	625 Enfermedad	Con	630 Enfermedad	Con	641 Enfermedad	Sin	643 Enfermedad	Sin	665 Enfermedad
##		666		671		675		678		680
##	Con	Enfermedad 687	Sin	Enfermedad 689	Sin	Enfermedad 699	Con	Enfermedad 700	Sin	Enfermedad 702
	Con		Con	Enfermedad	Con		Con		Con	
##	6	705	C	711	C	721	C	722	c :	724
##	con	Entermedad 740	con	Enfermedad 746	con	Entermedad 747	con	Entermedad 757	51N	Entermedad 760
	Sin		Sin	Enfermedad	Con		Con		Sin	
##	Con	762 Enfermedad	Con	767 Enfermedad	Con	770 Enfermedad	Con	771 Enfermedad	Con	776 Enfermedad
##		779		784		804		805		806
##	Con	Enfermedad 807	Sin	Enfermedad 813	Con	Enfermedad 817	Con	Enfermedad 820	Sin	Enfermedad 821
	Sin		Sin	Enfermedad	Con		Con		Con	
##	Cc:-	822	Cc	831	c :	833	Cc	851	Cc	864
##	con	Entermedad 866	con	Enfermedad 876	21N	Entermedad 879	con	Entermedad 889	con	Entermedad 891
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad

## 917 918

## Con Enfermedad Con Enfermedad

## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 69 12
## Con Enfermedad 19 82
```

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8296703
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.8118812
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.8723404
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.8410256
```

Validación Cruzada

Ajustamos el modelo con un cp bajo de 0.001 y 10 folds (divisiones), activamos validación cruzada.

```
modelo4 <- rpart(Enfermedad_Cardíaca ~ ., data = enfermedad_train, method = "class", control = rpart.control(cp = 0.001, xva l = 10))
```

Revisamos la tabla de complejidad del modelo.

```
printcp(modelo4)
```

```
## Classification tree:
## rpart(formula = Enfermedad_Cardíaca ~ ., data = enfermedad_train,
      method = "class", control = rpart.control(cp = 0.001, xval = 10))
##
##
## Variables actually used in tree construction:
## [1] Angina_Ejercicio Colesterol
                                        Depresión_ST
                                                          Dolor_Pecho
## [5] Edad
                       Frecuencia_Máxima Pendiente_ST
                                                          Presión_Reposo
## [9] Sexo
##
## Root node error: 322/736 = 0.4375
##
## n= 736
##
##
           CP nsplit rel error xerror
## 1 0.5962733 0 1.00000 1.00000 0.041796
                  1 0.40373 0.40373 0.032130
## 2 0.0496894
                 2 0.35404 0.37888 0.031331
## 3 0.0201863
                 4 0.31366 0.34783 0.030263
## 4 0.0155280
## 5 0.0046584
                 6 0.28261 0.33230 0.029698
               10 0.26398 0.33851 0.029926
## 6 0.0031056
## 7 0.0010000
              13 0.25466 0.34472 0.030151
```

Visualizamos el árbol

```
rpart.plot(modelo4, type = 2, extra = 104)
```



```
y_pred <- predict(modelo4, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

##	6	1	C	2	c :	4	C	7	c:	9
##	Con	Entermedad 25	Con	Enfermedad 30	Sin	Entermedad 32	Con	Entermedad 33	Sin	Entermedad 37
##	Con		Con	Enfermedad	Sin		Con		Con	
##		49		54		65		71		78
##	Con		Con	Enfermedad	Sin		Sin		Con	
##	Con	81 Enformedad	Con	84 Enfermedad	Con	86 Enformedad	Sin	96 Enformedad	Con	98 Enfarmedad
##	COII	102	COII	103	COII	121	3111	128	COII	141
##	Con		Sin	Enfermedad	Sin		Sin		Sin	
##		146		147		148		150		169
##	Con		Con	Enfermedad	Con		Sin		Con	
##	6	176	C	178	c :	182	6	183	6	187
##	Con	189	Con	Enfermedad 193	51n	195	Con	200	Con	208
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##		213		217		227		244		249
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		253		254		255		257		262
##	Con		Con	Enfermedad	Sin		Con		Con	
##	Sin	263 Enfermedad	Sin	264 Enfermedad	Sin	270 Enfermedad	Con	275 Enfermedad	Con	277 Enfermedad
##	31	283	3111	288	31	294	COII	296	COII	299
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		302		316		321		324		325
##	Con		Con	Enfermedad	Sin		Sin		Con	
##	cin	330	Con	334 Enfermedad	Can	342	cin	348	Can	355
##	2111	357	Con	359	COII	370	2111	374	COII	377
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		382		390		391		392		401
##	Con		Sin	Enfermedad	Sin		Sin		Con	
##	Cin	403	Con	405 Enfermedad	Con	408	Cin	426	Cin	432
##	3111	435	COII	444	COII	450	3111	451	2111	452
##	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		456		460		465		474		475
##	Sin		Sin	Enfermedad	Sin		Con		Con	
##	Sin	483 Enfermedad	Sin	495 Enfermedad	Sin	497 Enfermedad	Sin	507 Enfermedad	Con	514 Enfermedad
##	31	527	3111	529	31	531	3111	533	COII	534
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		538		545		551		552		564
	Sin		Con	Enfermedad	Con		Con		Sin	
##	Con	570 Enfermedad	Con	571 Enfermedad	Sin	573 Enfermedad	Sin	575 Enfermedad	Sin	579 Enfermedad
##		583		589	52	596		599	52	604
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		612		613		616		620		624
	Sin		Sin	Enfermedad	Con		Sin		Con	
##	Con	625 Enfermedad	Con	630 Enfermedad	Con	641 Enfermedad	Sin	643 Enfermedad	Sin	665 Enfermedad
##	COII	666	COII	671	COII	675	3111	678	2111	680
	Con		Sin	Enfermedad	Sin		Con		Con	
##		687		689		699		700		702
	Con		Con	Enfermedad	Con				Con	
##	_	705	_	711	_	721		722	_	724
##	Con	Enfermedad 740	Con	Enfermedad 746	Con	Enfermedad 747	Sin	Enfermedad 757	Con	Enfermedad 760
	Sin		Con	Enfermedad	Con		Con		Sin	
##		762		767		770		771		776
	Con		Con	Enfermedad	Con		Con		Con	
##	c ±	779	C ±	784	C	804	C	805	C	806
##	51n	Enfermedad 807	51n	Enfermedad 813	con	Enfermedad 817	con	Enfermedad 820	con	Enfermedad 821
	Con		Sin	Enfermedad	Sin		Con		Con	
##		822		831		833		851		864
	Con		Con	Enfermedad	Sin		Con		Sin	
##	٠.	866	c <u>:</u>	876	٠.	879	C -	889	٠.	891
##	51n	⊾ntermedad	51n	Enfermedad	51n	∟ntermedad	Con	∟ntermedad	51n	∟ntermedad

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad

## 917 918

## Con Enfermedad Con Enfermedad

## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 68 8
## Con Enfermedad 20 86
```

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]
# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8461538
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.8113208
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.9148936
```

```
cat("F1 Score:", f1, "\n")
```

```
## F1 Score: 0.86
```

Árbol Podado

Podamos el árbol al mejor cp

```
mejor_cp <- modelo4$cptable[which.min(modelo4$cptable[, "xerror"]), "CP"]
modelo4_podado <- prune(modelo4, cp = mejor_cp)</pre>
```

Visualizamos el árbol despúes de la poda

```
rpart.plot(modelo4_podado, type = 2, extra = 104)
```



```
y_pred <- predict(modelo4_podado, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

				2				7		0
##	Con	1 Enfermedad	Con	2 Enfermedad	Sin	4 Enfermedad	Con	7 Enfermedad	Sin	9 Enfermedad
##		25		30	J	32		33	J	37
##	Sin		Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		49		54		65		71		78
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		81		84		86		96		98
##	Con		Con	Enfermedad	Con		Sin		Con	
##	Can	102	cin	103	Con	121	cin	128	cin	141
##	Con	146	2111	Enfermedad 147	COII	148	2111	150	2111	169
##	Con		Con	Enfermedad	Con		Con		Con	
##		176		178		182		183		187
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		189		193		195		200		208
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##	C	213	C =	217	C	227	c:	244	c :	249
##	COII	253	2111	Enfermedad 254	COII	255	2111	257	2111	262
##	Con		Con	Enfermedad	Sin		Con		Con	
##		263		264		270		275		277
##	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		283		288		294		296		299
##	Con		Sin	Enfermedad	Con		Con		Sin	
##	_	302	_	316	_	321	٠.	324	_	325
##	Con	Entermedad 330	Con	Enfermedad 334	Con	Entermedad 342	Sin	Entermedad 348	Con	Entermedad 355
##	Sin		Con	Enfermedad	Con		Sin		Con	
##	31	357	COII	359	COII	370	3111	374	COII	377
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad
##		382		390		391		392		401
##	Con		Sin	Enfermedad	Sin		Sin		Con	
##	٠.	403	_	405	_	408	_	426	٠.	432
##	Sin	Entermedad 435	Con	Enfermedad 444	Con	Entermedad 450	Con	Entermedad 451	Sin	Entermedad 452
##	Sin		Con	Enfermedad	Sin		Sin		Con	
##	52	456		460	J	465	J	474		475
##	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		483		495		497		507		514
	Sin		Sin	Enfermedad	Sin		Sin		Con	
##	٠.	527	٠.	529	٠.	531	٠.	533	_	534
##	Sin	Entermedad 538	Sin	Enfermedad 545	Sin	Entermedad 551	Sin	Entermedad 552	Con	Entermedad 564
	Sin		Con	Enfermedad	Con		Con		Sin	
##	52	570		571		573		575	52	579
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		583		589		596		599		604
##	Con	Enfermedad	Con	Enfermedad					Sin	
##	c ±	612	c :	613		616		620	C	624
##	21N	Entermedad 625	21N	Enfermedad 630	con	Entermedad 641	21N	Entermedad 643	con	Entermedad 665
	Con		Con	Enfermedad	Con		Sin		Sin	
##		666		671		675		678		680
	Con		Sin	Enfermedad	Sin		Con	Enfermedad	Con	
##		687		689		699		700		702
	Con		Con	Enfermedad	Con				Con	
##	_	705	٠.	711	_	721		722	_	724
##	Con	Enfermedad 740	51n	Enfermedad 746	Con	Enfermedad 747	Con	Enfermedad 757	Con	Enfermedad 760
	Sin		Con	Enfermedad	Con		Con		Con	
##	2411	762	2011	767	2011	770		771	2011	776
	Con		Con	Enfermedad	Con				Con	
##		779		784		804		805		806
	Con		Sin	Enfermedad	Con		Con		Sin	
##	_	807	_	813	_	817	_	820	_	821
	Con		Con	Enfermedad	Con		Con		Con	
##	Con	822 Enfermedad	Con	831 Enfermedad	Sin	833 Enfermedad	Con	851 Enfermedad	Con	864 Enfermedad
##	COII	866	COII	876	J±11	879	COII	889	COII	891
	Sin		Sin	Enfermedad	Sin		Con		Sin	

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad

## 917 918

## Con Enfermedad Con Enfermedad

## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 62 7
## Con Enfermedad 26 87
```

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")</pre>
```

```
## Accuracy (Exactitud): 0.8186813
```

```
cat("Precision (Precisión):", precision, "\n")
```

```
## Precision (Precisión): 0.7699115
```

```
cat("Recall (Sensibilidad):", recall, "\n")
```

```
## Recall (Sensibilidad): 0.9255319
```

```
cat("F1 Score:", f1, "\n")
```

F1 Score: 0.8405797

Elección del Mejor Árbol

Métrica	Índice de Gini	Máximo de Niveles	Ganancia Información	Validación Cruzada	Poda
Verdaderos Negativos (TN)	62	64	69	68	62
Falsos Positivos (FP)	7	11	12	8	7
Falsos Negativos (FN)	26	24	19	20	26
Verdaderos Positivos (TP)	87	83	82	86	87
Exactitud (Accuracy)	81.86%	80.76%	82.96%	84.61%	81.86
Precisión (Precision)	76.99%	77.57%	81.18%	81.13%	76.99
Sensibilidad (Recall)	92.55%	88.29%	87.23%	91.48%	92.55
F1 Score	84.05%	82.85%	84.1%	86%	84.05

Elección del mejor modelo.

Validación Cruzada:

- Exactitud (84.61%): La más alta entre todos los modelos.
- Precisión (81.13%): Segunda más alta, cercana al modelo de "Ganancia Información".

- Sensibilidad (91.48%): Muy alta, solo superada por los modelos de "Índice de Gini" y "Podado".
- F1 Score (86%): El más alto, lo que indica un buen equilibrio entre precisión y sensibilidad.

Ganancia Información:

• Buen desempeño en exactitud (82.96%) y F1 Score (84.1%), pero con menor sensibilidad (87.23%) comparado con la validación cruzada.

Índice de Gini y Podado:

 Alta sensibilidad (92.55%), pero menor precisión (76.99%) y exactitud (81.86%). Esto sugiere que pueden estar sobreajustados o favorecer falsos positivos.

Se puede concluir que el modelo de **Árbol Podado** es el mejor debido al valor más alto que maneja en el Recall de 92.55% que va alineado con los objetivos del análisis.

Mejor Árbol

Podamos el árbol al mejor cp

```
mejor_cp <- modelo4$cptable[which.min(modelo4$cptable[, "xerror"]), "CP"]
modelo4_podado <- prune(modelo4, cp = mejor_cp)
mejor_cp</pre>
```

[1] 0.004658385

Visualizamos el árbol despúes de la poda

```
rpart.plot(modelo4_podado, type = 2, extra = 104)
```


- cp: Parámetro de complejidad; su función es determinar que tan buena debe ser una división para que el algoritmo decida realizarla
- nsplit: Divisiones en el árbol, nsplit=0 es el nodo raíz
- · rel error: Error relativo despecto al error del nodo raíz
- xerror: Desviación estándar del error de validación cruzada. Ayuda a evaluar la estabilidad del modelo.
- El mejor cp es el que tiene el xerror más bajo, en este caso 0.32919, un cp de 0.0046584 y 6 divisiones

El árbol está dividido en dos ramas principales según la variable Pendiente_ST, que son la subida o bajada del electrocardiograma, de ahí, cada rama se subdivide según otras variables médicas, como el colesterol, dolor de pecho, anginas y frecuencia.

La predicción del nodo terminal es si el paciente está enfermo o no, el porcentaje indica los casos en ese nodo que tienen alguna enfermedad cardiaca y también se presenta la proporción total de pacientes que caen en ese nodo

Ejemplo de interpretación: Supongamos que un paciente tiene:

- Pendiente_ST = Up
- Colesterol >= 43
- Dolor_Pecho = ASY
- Angina_Ejercicio = No
- → Este paciente terminaría en un nodo hoja que predice "Sin Enfermedad" con una precisión del 80% y representa al 9% de los casos.

Notemos que Pendiente_ST es la variable más importante (raíz del árbol): indica su alta relevancia en la predicción.

En la rama derecha (Down, Flat): La Frecuencia Máxima y el Dolor de Pecho tienen un papel relevante en la predicción.

```
y_pred <- predict(modelo4_podado, newdata = enfermedad_test, type = "class")
y_pred</pre>
```

##	C	1	C	2	c :	4	C	7	c:	9
##	Con	Entermedad 25	Con	Enfermedad 30	51n	Entermedad 32	Con	Entermedad 33	51n	Entermedad 37
##	Sin		Con	Enfermedad	Sin		Con		Con	
##		49		54		65		71		78
##	Con		Con	Enfermedad	Sin		Sin		Con	
##	Con	81 Enfermedad	Con	84 Enfermedad	Con	86 Enfermedad	Sin	96 Enfermedad	Con	98 Enfermedad
##	COII	102	COII	103	COII	121	3111	128	COII	141
##	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		146		147		148		150		169
##	Con	Enfermedad 176	Con	Enfermedad 178	Con	Enfermedad 182	Con	Enfermedad 183	Con	Enfermedad 187
##	Con	_, _	Con	Enfermedad	Sin		Con		Con	==:
##		189		193		195		200		208
##	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##	6	213	c :	217	C	227	c:	244	c :	249
##	Con	253	Sin	Enfermedad 254	Con	Entermedad 255	Sin	Entermedad 257	51n	262
##	Con		Con	Enfermedad	Sin		Con		Con	
##		263		264		270		275		277
##	Con		Sin	Enfermedad	Sin		Con		Con	
##	Con	283 Enfermedad	Sin	288 Enfermedad	Con	294 Enfermedad	Con	296 Enfermedad	Sin	299 Enfermedad
##	COII	302	3111	316	COII	321	COII	324	51	325
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		330		334		342		348		355
##	Sin	Enfermedad 357	Con	Enfermedad 359	Con	Enfermedad 370	Sin	Enfermedad 374	Con	Enfermedad 377
##	Con		Con	Enfermedad	Con		Con		Sin	
##		382		390		391		392		401
##	Con		Sin	Enfermedad	Sin		Sin		Con	
##	Cin	403	Con	405 Enfermedad	Con	408	Con	426	Cin	432
##	2111	435	COII	444	COII	450	COII	451	2111	452
##	Sin	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Con	Enfermedad
##		456		460		465	_	474		475
##	Sin	Entermedad 483	Sin	Enfermedad 495	Sin	Entermedad 497	Con	Entermedad 507	Con	Entermedad 514
##	Sin		Sin	Enfermedad	Sin		Sin		Con	
##		527		529		531		533		534
##	Sin	Enfermedad	Sin	Enfermedad	Sin		Sin	Enfermedad	Con	Enfermedad
##	Sin	538 Enformedad	Con	545 Enfermedad	Con	551	Con	552 Enformedad	Sin	564 Enfermedad
##	3111	570	COII	571	COII	573	COII	575	3111	579
##	Con	Enfermedad	Con	Enfermedad	Sin	Enfermedad	Sin	Enfermedad	Sin	Enfermedad
##		583		589		596		599		604
##	Con	Entermedad 612	Con	Enfermedad 613	Con	Entermedad 616	Con	Entermedad 620	Sin	Entermedad 624
	Sin		Sin	Enfermedad	Con		Sin		Con	
##		625		630		641		643		665
	Con		Con	Enfermedad	Con		Sin		Sin	
##	Con	666 Enfermedad	Sin	671 Enfermedad	Sin	675 Enfermedad	Con	678 Enfermedad	Con	680 Enfermedad
##	COII	687	3111	689	3111	699	COII	700	COII	702
##	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad	Con	Enfermedad
##		705		711		721		722		724
##	Con	Enfermedad 740	Sin	Enfermedad 746	Con	Enfermedad 747	Con	Enfermedad 757	Con	Enfermedad 760
	Sin		Con	Enfermedad	Con		Con		Con	
##		762		767		770		771		776
	Con		Con	Enfermedad	Con		Con		Con	
##	Con	779	C:~	784 Enfermedad	Con	804	C0~	805	C:~	806
##	CON	Entermedad 807	וודכ	Entermedad 813	COII	Entermedad 817	COII	820	וודכ	821
	Con		Con	Enfermedad	Con		Con		Con	
##	_	822	_	831		833	_	851	_	864
##	Con	Enfermedad 866	Con	Enfermedad 876	Sin	Enfermedad 879	Con	Enfermedad 889	Con	
	Sin		Sin	876 Enfermedad	Sin		Con		Sin	891 Enfermedad

```
## 893 895 911 912 914

## Con Enfermedad Sin Enfermedad Con Enfermedad Con Enfermedad
## 917 918

## Con Enfermedad Con Enfermedad
## Levels: Sin Enfermedad Con Enfermedad
```

```
y_real <- enfermedad_test$Enfermedad_Cardíaca
conf_matrix <- confusionMatrix(data = y_pred, reference = y_real, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 62 7
## Con Enfermedad 26 87
```

```
cm_table <- as.data.frame(conf_matrix$table)</pre>
# Invertir el orden de los niveles del eje Y
\label{lem:cm_table} $$\operatorname{prediction} \leftarrow \operatorname{factor}(\operatorname{cm_table}\operatorname{prediction}, \ \operatorname{levels} = \operatorname{rev}(\operatorname{levels}(\operatorname{cm_table}\operatorname{prediction})))$$
ggplot(cm_table, aes(x = Reference, y = Prediction, fill = Freq)) +
  geom_tile(color = "white") +
  geom_text(aes(label = Freq), color = "white", size = 6, fontface = "bold") +
  scale_fill_gradient(low = "lightblue", high = "darkblue",name="Frecuencia") +
    title = "MATRIZ DE CONFUSIÓN",
     x = "Valor Real",
    y = "Predicción"
  ) +
  theme_minimal() +
  theme(
     plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
     axis.text = element_text(size = 12,face="bold"),
     axis.title = element_text(size = 12,face="bold")
```

MATRIZ DE CONFUSIÓN

 Verdaderos negativos (TN = 62): El modelo clasificó correctamente a 62 personas como no enfermas, y efectivamente no tienen una enfermedad cardiaca.

- Verdaderos positivos (TP = 87): El modelo clasificó correctamente a 87 personas como enfermas, y en realidad sí tienen una enfermedad cardiaca
- Falsos negativos (FN = 7): El modelo no detectó enfermedad en 7 personas, pero en realidad sí lo estaban. Esto es delicado en un problema médico, pues son pacientes con alguna enfermedad cardiaca no detectados por el modelo.
- Falsos positivos (FP = 26): El modelo clasificó incorrectamente a 26 personas como si tuvieran alguna enfermedad cardiaca, cuando en realidad no la tienen.

Extraemos las métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Imprimir métricas
cat("Accuracy (Exactitud):", accuracy, "\n")

## Accuracy (Exactitud): 0.8186813

cat("Precision (Precisión):", precision, "\n")

## Precision (Precisión): 0.7699115

cat("Recall (Sensibilidad): ", recall, "\n")

## Recall (Sensibilidad): 0.9255319

cat("F1 Score:", f1, "\n")</pre>
```

- Accuracy (Exactitud): El 81.86% de las predicciones fueron correctas.
- Precision (Precisión): El 76.99% de las veces que se predijo "Con Enfermedad", realmente era cierto.
- Recall (Sensibilidad): El modelo identifica correctamente el 92.55% de los pacientes que realmente tienen enfermedad.
- F1 Score: Es el promedio armónico entre precisión y recall, debido a que la precisión es un valor más bajo al ponderar quedó en 84.05% reflejando ciertos detalles para los falsos positivos.

BOSQUE ALEATORIO

Hiperparámetros

**Número de Árboles*

```
set.seed(123)
# Crear vector con diferentes números de árboles
n_pacientes <- seq(10, 300, by = 10)

# Vector vacío para almacenar F1 Score
f1_scores <- c()

# Entrenar bosques y calcular F1 para cada uno
for (n in n_pacientes) {
    cat("Entrenando con", n, "árboles...\n")

    bosque <- randomForest(Enfermedad_Cardíaca ~ ., data = enfermedad_train, ntree = n, importance = T, keep.inbag = T, oob.pr
ox = T)

# Obtener predicciones OOB
predicciones_oob <- predict(bosque, type = "response")

# Calcular F1
f1 <- F1_Score(y_true = enfermedad_train$Enfermedad_Cardíaca, y_pred = predicciones_oob, positive = "Con Enfermedad")
f1_scores <- c(f1_scores, f1)
}</pre>
```

```
## Entrenando con 10 árboles...
## Entrenando con 20 árboles...
## Entrenando con 30 árboles...
## Entrenando con 40 árboles...
## Entrenando con 50 árboles...
## Entrenando con 60 árboles...
## Entrenando con 70 árboles...
## Entrenando con 80 árboles...
## Entrenando con 90 árboles...
## Entrenando con 100 árboles...
## Entrenando con 110 árboles...
## Entrenando con 120 árboles...
## Entrenando con 130 árboles...
## Entrenando con 140 árboles...
## Entrenando con 150 árboles...
## Entrenando con 160 árboles...
## Entrenando con 170 árboles...
## Entrenando con 180 árboles...
## Entrenando con 190 árboles...
## Entrenando con 200 árboles...
## Entrenando con 210 árboles...
## Entrenando con 220 árboles...
## Entrenando con 230 árboles...
## Entrenando con 240 árboles...
## Entrenando con 250 árboles...
## Entrenando con 260 árboles...
## Entrenando con 270 árboles...
## Entrenando con 280 árboles...
## Entrenando con 290 árboles...
## Entrenando con 300 árboles...
```

```
# Graficar F1 vs. número de árboles
df_f1 <- data.frame(n_pacientes, f1_scores)

ggplot(df_f1, aes(x = n_pacientes, y = f1_scores)) +
   geom_line(color = "blue3", linewidth = 1.2) +
   geom_point(color = "red", linewidth = 3) +
   labs(x = "Número de árboles", y = "Puntaje F1", title = "Impacto del número de árboles en el F1-score") +
   theme_minimal()</pre>
```


Buscamos el F1 más alto

Podríamos decir que más árboles deberían ser capaces de producir un resultado más generalizado, pero al elegir un mayor número de árboles, la complejidad temporal del modelo también aumenta. En este gráfico, podemos ver claramente que el rendimiento del modelo aumenta drásticamente y luego se estanca en cierto nivel. Esto significa que elegir un gran número de estimadores en un modelo de bosque aleatorio no es la mejor idea. Si bien esto no degrada el modelo, puede ahorrarse complejidad computacional y una sobrecarga a la computadora. Notemos que con 240 árboles es suficiente para este modelo.

```
df_f1$n_pacientes[df_f1$f1_scores==max(df_f1$f1_scores)]
```

[1] 240

Número de Nodos Terminales

```
set.seed(123)
# Definir los valores de max_depth
max_profundidad \leftarrow seq(2, 60, by = 2)
f1_scores <- c()
# Iterar sobre cada valor de max_depth
for (max_depth in max_profundidad) {
  cat("Entrenando con max_depth =", max_depth, "...\n")
  # Entrenar el modelo con el valor de max_depth
  bosque <- randomForest(Enfermedad_Cardíaca ~ ., data = enfermedad_train, ntree = 240, maxnodes = max_depth, importance =
T, keep.inbag = T, oob.prox = T)
  # Obtener las predicciones fuera de bolsa
  predicciones_oob <- predict(bosque, type = "response")</pre>
  # Calcular la matriz de confusión
  conf_matrix <- confusionMatrix(predicciones_oob, enfermedad_train$Enfermedad_Cardíaca, positive = "Con Enfermedad")</pre>
  # Extraer el F1-score de la matriz de confusión
  f1_scores <- c(f1_scores, conf_matrix$byClass["F1"])</pre>
```

```
## Entrenando con max_depth = 2 ...
## Entrenando con max_depth = 4 ...
## Entrenando con max_depth = 6 ...
## Entrenando con max_depth = 8 ...
## Entrenando con max_depth = 10 ...
## Entrenando con max_depth = 12 ...
## Entrenando con max_depth = 14 ...
## Entrenando con max_depth = 16 ...
## Entrenando con max_depth = 18 ...
## Entrenando con max depth = 20 ...
## Entrenando con max_depth = 22 ...
## Entrenando con max_depth = 24 ...
## Entrenando con max_depth = 26 ...
## Entrenando con max_depth = 28 ...
## Entrenando con max_depth = 30 ...
## Entrenando con max_depth = 32 ...
## Entrenando con max_depth = 34 ...
## Entrenando con max_depth = 36 ...
## Entrenando con max_depth = 38 ...
## Entrenando con max_depth = 40 ...
## Entrenando con max_depth = 42 ...
## Entrenando con max depth = 44 ...
## Entrenando con max depth = 46 ...
## Entrenando con max_depth = 48 ...
## Entrenando con max_depth = 50 ...
## Entrenando con max_depth = 52 ...
## Entrenando con max_depth = 54 ...
## Entrenando con max_depth = 56 ...
## Entrenando con max_depth = 58 ...
## Entrenando con max_depth = 60 ...
```

```
# Graficar F1 vs. número de árboles
df_f2 <- data.frame(max_profundidad, f1_scores)

ggplot(df_f2, aes(x = max_profundidad, y = f1_scores)) +
   geom_line(color = "blue3", size = 1.2) +
   geom_point(color = "red", size = 3) +
   labs(x = "Máxima Profundidad", y = "Puntaje F1", title = "Impacto de max_depth en el F1-score") +
   theme_minimal()</pre>
```


La profundidad máxima de un árbol en Random Forest se define como la ruta más larga entre el nodo raíz y el nodo hoja; en este gráfico, podemos ver claramente que, a medida que aumenta la profundidad máxima del árbol de decisión, el rendimiento del modelo en el conjunto de entrenamiento aumenta continuamente. Por otro lado, a medida que aumenta el valor de max depth, el rendimiento en el conjunto de prueba

aumenta inicialmente, pero a partir de cierto punto, comienza a disminuir periódicamente. La profundidad max es de 56.

```
df_f2$max_profundidad[df_f2$f1_scores==max(df_f2$f1_scores)]
```

```
## [1] 56
```

Máximo de Características

```
set.seed(123)
# Definir el rango de max_features
max_variables <- 1:(ncol(enfermedad_train) - 1) # -1 para excluir la columna de respuesta</pre>
# Inicializar un vector para almacenar los F1-scores
f1_scores <- c()
# Entrenar el modelo con diferentes valores de max_features
for (max_features in max_variables) {
  cat("Entrenando con max_features =", max_features, "...\n")
  # Entrenar el randomForest con el valor de max_features
  bosque <- randomForest(Enfermedad_Cardíaca ~ ., data = enfermedad_train, ntree = 240, mtry = max_features, importance = T,
keep.inbag = T, oob.prox = T)
  # Obtener Las predicciones OOB
  predicciones_oob <- predict(bosque, type = "response")</pre>
  # Calcular la matriz de confusión
  conf_matrix <- confusionMatrix(predicciones_oob, enfermedad_train$Enfermedad_Cardíaca, positive = "Con Enfermedad")</pre>
  # Calcular el F1-score
  f1_scores <- c(f1_scores, conf_matrix$byClass["F1"])</pre>
```

```
## Entrenando con max_features = 1 ...
## Entrenando con max_features = 2 ...
## Entrenando con max_features = 3 ...
## Entrenando con max_features = 4 ...
## Entrenando con max_features = 5 ...
## Entrenando con max_features = 6 ...
## Entrenando con max_features = 7 ...
## Entrenando con max_features = 8 ...
## Entrenando con max_features = 9 ...
## Entrenando con max_features = 10 ...
## Entrenando con max_features = 11 ...
```

```
# Crear un data frame para graficar
df_f3 <- data.frame(max_features = max_variables, f1_score = f1_scores)

# Graficar F1-score vs max_features
ggplot(df_f3, aes(x = max_features, y = f1_score)) +
    geom_line(color = "blue", lwd = 1.2) +
    geom_point(color = "red", size = 3) +
    labs(x = "Máximo número de características", y = "F1-score", title = "Impacto de max_features en el F1-score") +
    theme_minimal()</pre>
```


El número máximo de características proporcionadas a cada árbol en un bosque aleatorio. Sabemos que el bosque aleatorio selecciona muestras aleatorias de las características para encontrar la mejor distribución. Podemos observar que el rendimiento del modelo aumenta inicialmente a medida que aumenta el número de características máximas. Sin embargo, a partir de 3 características, la puntuación de prueba se satura e incluso comienza a disminuir hacia el final, lo que claramente indica que el modelo comienza a sobreajustarse. Con 2 características son más que suficientes, es recomendable considerar el valor predeterminado de este parámetro, que se establece como la raíz cuadrada del número de características presentes en el conjunto de datos.

df_f3\$max_features[df_f3\$f1_score==max(df_f3\$f1_score)]

[1] 2

Construcción del Modelo

Una vez tenemos las características necesarias para realizar el modelo de forma óptima, procedemos con él.

set.seed(123)
modelo1 <- randomForest(Enfermedad_Cardíaca ~ ., data = enfermedad_train,ntree=240,mtry=2,maxnodes=56) # Por defecto lo hace
con gini</pre>

Error 00B (ya viene incluido en el modelo)
modelo1\$err.rate

##	00B	Sin Enfermedad Co	n Enfermedad
##	[1,] 0.2158273	0.2195122	0.21290323
##	[2,] 0.2590090	0.2894737	0.23622047
##	[3,] 0.2509091	0.2946058	0.21682848
##	[4,] 0.2340426	0.2716981	0.20520231
##	[5,] 0.2162577	0.2261484	0.20867209
##	[6,] 0.2049780	0.2207358	0.19270833
##	[7,] 0.2022631	0.2265372	0.18341709
##	[8,] 0.1972222	0.2070064	0.18965517
##	[9,] 0.1774415		0.16545012
##	[10,] 0.1712329		0.16707022
##	[11,] 0.1839237		0.18599034
##	[12,] 0.1689373		0.17149758
##	[13,] 0.1646259		0.16666667
##	[14,] 0.1646259		0.16666667
##	[15,] 0.1551020	0.1526480	0.15700483
##	[16,] 0.1551020	0.1557632	0.15458937
##	[17,] 0.1523810	0.1464174	0.15700483
##	[18,] 0.1564626	0.1619938	0.15217391
##	[19,] 0.1591837		0.15942029
##	[20,] 0.1537415		0.15217391
##	[21,] 0.1510204		0.14009662
##	[22,] 0.1537415		0.14734300
##	[23,] 0.1537415		0.14009662
##	[24,] 0.1455782	0.1619938	0.13285024
##	[25,] 0.1413043		0.12801932
##	[26,] 0.1453804	0.1552795	0.13768116
##	[27,] 0.1399457	0.1583851	0.12560386
##	[28,] 0.1453804	0.1645963	0.13043478
##	[29,] 0.1399457	0.1583851	0.12560386
##	[30,] 0.1372283	0.1583851	0.12077295
##	[31,] 0.1290761	0.1552795	0.10869565
##	[32,] 0.1358696	0.1583851	0.11835749
##	[33,] 0.1358696		0.11835749
##	[34,] 0.1331522		0.11111111
##	[35,] 0.1304348		0.10628019
##	[36,] 0.1317935		0.11352657
##	[37,] 0.1372283	0.1645963	0.11594203
##	[38,] 0.1358696		0.11111111
##	[39,] 0.1345109	0.1677019	0.10869565
##	[40,] 0.1317935	0.1645963	0.10628019
##	[41,] 0.1345109	0.1677019	0.10869565
##	[42,] 0.1358696	0.1645963	0.11352657
##	[43,] 0.1358696	0.1708075	0.10869565
##	[44,] 0.1358696		0.11111111
##	[45,] 0.1290761	0.1552795	0.10869565
##		0.1583851	0.10386473
	[46,] 0.1277174		
##	[47,] 0.1277174	0.1583851	0.10386473
##	[48,] 0.1290761	0.1614907	0.10386473
##	[49,] 0.1304348	0.1614907	0.10628019
##	[50,] 0.1277174	0.1583851	0.10386473
##	[51,] 0.1263587	0.1583851	0.10144928
##	[52,] 0.1290761	0.1614907	0.10386473
##	[53,] 0.1290761	0.1614907	0.10386473
##	[54,] 0.1290761	0.1677019	0.09903382
##	[55,] 0.1290761	0.1645963	0.10144928
##	[56,] 0.1304348	0.1677019	0.10144928
##	[57,] 0.1277174		0.09903382
##	[58,] 0.1304348	0.1645963	0.10386473
##	[59,] 0.1290761	0.1614907	0.10386473
##	[60,] 0.1263587	0.1614907	0.09903382
##	[61,] 0.1290761	0.1614907	0.10386473
##	[62,] 0.1317935		0.10144928
##	[63,] 0.1317935	0.1677019	0.10386473
##	[64,] 0.1317935	0.1708075	0.10144928
##	[65,] 0.1358696		0.10628019
##	[66,] 0.1317935		0.10144928
##	[67,] 0.1331522		0.10144928
##	[68,] 0.1304348	0.1708075	0.09903382
##	[69,] 0.1290761	0.1708075	0.09661836

	1			
##	[70,]	0.1304348	0.1739130	0.09661836
##	[71,]	0.1277174	0.1708075	0.09420290
##	[72,]	0.1277174	0.1708075	0.09420290
##	[73]	0.1277174	0.1739130	0.09178744
##	[74,]		0.1677019	0.09178744
		0.1250000		
##	[75,]	0.1277174	0.1708075	0.09420290
##	[76,]	0.1290761	0.1739130	0.09420290
##	[77,]	0.1250000	0.1677019	0.09178744
##	[78,]	0.1263587	0.1708075	0.09178744
##	[79,]	0.1263587	0.1708075	0.09178744
##	[80,]	0.1263587	0.1708075	0.09178744
##	[81,]	0.1277174	0.1739130	0.09178744
##	[82,]	0.1277174	0.1739130	0.09178744
##	[83,]	0.1290761	0.1739130	0.09420290
##	[84,]	0.1290761	0.1770186	0.09178744
##	[85,]	0.1290761	0.1739130	0.09420290
##	[86,]	0.1317935	0.1801242	0.09420290
##	[87,]	0.1331522	0.1832298	0.09420290
##	[88,]	0.1304348	0.1801242	0.09178744
##	[89,]	0.1304348	0.1801242	0.09178744
##	[90,]	0.1304348	0.1770186	0.09420290
##	[91,]	0.1331522	0.1801242	0.09661836
##	[92,]	0.1317935	0.1770186	0.09661836
##		0.1317935	0.1770186	0.09661836
	[93,]			
##	[94,]	0.1304348	0.1739130	0.09661836
##	[95,]	0.1304348	0.1770186	0.09420290
##	[96,]	0.1331522	0.1801242	0.09661836
##	[97,]	0.1358696	0.1832298	0.09903382
##	[98,]	0.1317935	0.1832298	0.09178744
##	[99,]	0.1304348	0.1770186	0.09420290
##	[100,]	0.1317935	0.1770186	0.09661836
##	[101,]	0.1331522	0.1801242	0.09661836
##	[102,]	0.1317935	0.1770186	0.09661836
##	[103,]	0.1304348	0.1739130	0.09661836
##	[104,]	0.1277174	0.1708075	0.09420290
##	[105,]	0.1277174	0.1708075	0.09420290
##	[106,]	0.1277174	0.1739130	0.09178744
##				
	[107,]	0.1277174	0.1770186	0.08937198
##	[108,]	0.1277174	0.1770186	0.08937198
##	[109,]	0.1263587	0.1739130	0.08937198
##	[110,]	0.1290761	0.1770186	0.09178744
##	[111,]	0.1290761	0.1770186	0.09178744
##	[112,]	0.1290761	0.1770186	0.09178744
		0.1290761	0.1770186	0.09178744
##		0.1277174	0.1739130	0.09178744
##		0.1277174	0.1739130	0.09178744
##	[116,]	0.1277174	0.1739130	0.09178744
##	[117,]	0.1263587	0.1677019	0.09420290
##	[118,]	0.1277174	0.1770186	0.08937198
##	[119,]	0.1277174	0.1770186	0.08937198
##	[120,]	0.1250000	0.1708075	0.08937198
##		0.1250000	0.1708075	0.08937198
##		0.1250000	0.1708075	0.08937198
##	[123,]	0.1250000	0.1708075	0.08937198
##		0.1222826	0.1677019	0.08695652
##	[125,]	0.1236413	0.1708075	0.08695652
##	[126,]	0.1236413	0.1708075	0.08695652
##	[127,]	0.1236413	0.1708075	0.08695652
##		0.1236413	0.1708075	0.08695652
##	[129,]	0.1222826	0.1677019	0.08695652
##	[130,]	0.1236413	0.1708075	0.08695652
##	[131,]	0.1222826	0.1645963	0.08937198
##	[132,]	0.1236413	0.1677019	0.08937198
##	[133,]	0.1236413	0.1645963	0.09178744
##	[134,]	0.1236413	0.1645963	0.09178744
##		0.1222826	0.1645963	0.08937198
##		0.1222826	0.1645963	0.08937198
##		0.1236413	0.1645963	0.09178744
##		0.1222826	0.1645963	0.08937198
##	[139,]	0.1222826	0.1645963	0.08937198
##	[140,]	0.1222826	0.1645963	0.08937198

, 12:28 a.m.		
## [141,] 0.1222826	0.1645963	0.08937198
## [142,] 0.1222826	0.1645963	0.08937198
## [143,] 0.1250000	0.1645963	0.09420290
## [144,] 0.1263587	0.1677019	0.09420290
## [145,] 0.1250000	0.1677019	0.09178744
## [146,] 0.1250000	0.1677019	0.09178744
## [147,] 0.1236413	0.1645963	0.09178744
## [148,] 0.1236413	0.1645963	0.09178744
## [149,] 0.1236413	0.1645963	0.09178744
## [150,] 0.1236413	0.1645963	0.09178744
## [151,] 0.1250000	0.1677019	0.09178744
## [152,] 0.1250000	0.1677019	0.09178744
## [153,] 0.1236413	0.1645963	0.09178744
## [154,] 0.1222826	0.1614907	0.09178744
## [155,] 0.1195652	0.1614907	0.08695652
## [156,] 0.1222826	0.1645963	0.08937198
## [157,] 0.1209239	0.1614907	0.08937198
## [158,] 0.1222826	0.1645963	0.08937198
## [159,] 0.1222826	0.1677019	0.08695652
## [160,] 0.1250000	0.1677019	0.09178744
## [161,] 0.1236413	0.1677019	0.08937198
## [162,] 0.1222826	0.1677019	0.08695652
## [163,] 0.1236413	0.1708075	0.08695652
## [164,] 0.1236413	0.1708075	0.08695652
## [165,] 0.1236413	0.1708075	0.08695652
## [166,] 0.1250000	0.1708075	0.08937198
## [167,] 0.1236413	0.1708075	0.08695652
## [168,] 0.1250000	0.1739130	0.08695652
## [169,] 0.1250000	0.1739130	0.08695652
## [170,] 0.1277174	0.1739130	0.09178744
## [171,] 0.1250000	0.1708075	0.08937198
	0.1708075	0.08937198
## [173,] 0.1250000	0.1708075	0.08937198
## [174,] 0.1250000	0.1708075	0.08937198
## [175,] 0.1263587	0.1739130	0.08937198
## [176,] 0.1277174	0.1708075	0.09420290
## [177,] 0.1263587	0.1708075	0.09178744
## [178,] 0.1277174	0.1739130	0.09178744
## [179,] 0.1277174	0.1739130	0.09178744
## [180,] 0.1263587	0.1708075	0.09178744
## [181,] 0.1250000	0.1708075	0.08937198
## [182,] 0.1290761	0.1739130	0.09420290
## [183,] 0.1277174	0.1708075	0.09420290
## [184,] 0.1290761	0.1708075	0.09661836
## [185,] 0.1331522	0.1770186	0.09903382
## [186,] 0.1290761	0.1677019	0.09903382
## [187,] 0.1277174	0.1677019	0.09661836
## [188,] 0.1263587	0.1677019	0.09420290
## [189,] 0.1304348	0.1708075	0.09903382
## [190,] 0.1290761 ## [191] 0.1317935	0.1708075	0.09661836
## [191,] 0.1317935	0.1708075	0.10144928
## [192,] 0.1317935	0.1708075	0.10144928
## [193,] 0.1304348	0.1708075	0.09903382
## [194,] 0.1345109	0.1770186	0.10144928
## [195,] 0.1331522	0.1739130	0.10144928
## [196,] 0.1317935	0.1739130	0.09903382
## [197,] 0.1317935	0.1708075	0.10144928
## [198,] 0.1304348	0.1739130	0.09661836
## [199,] 0.1331522	0.1739130	0.10144928
## [200,] 0.1317935	0.1770186	0.09661836
## [201,] 0.1317935	0.1770186	0.09661836
## [202,] 0.1317935	0.1770186	0.09661836
## [203,] 0.1317935	0.1770186	0.09661836
## [204,] 0.1317935	0.1739130	0.09903382
## [205,] 0.1304348	0.1739130	0.09661836
## [206,] 0.1317935	0.1770186	0.09661836
## [207,] 0.1317935	0.1770186	0.09661836
## [208,] 0.1331522	0.1770186	0.09903382
## [209,] 0.1317935	0.1739130	0.09903382
## [210,] 0.1331522	0.1770186	0.09903382
## [211,] 0.1331522	0.1770186	0.09903382
I .		

```
## [212,] 0.1317935
                        0.1770186
                                     0.09661836
## [213,] 0.1317935
                        0.1801242
                                     0.09420290
## [214,] 0.1331522 0.1770186
                                     0.09903382
## [215,] 0.1304348
                        0.1770186
                                     0.09420290
## [216,] 0.1304348
                       0.1770186
                                     0.09420290
## [217,] 0.1290761
                        0.1739130
                                     0.09420290
## [218,] 0.1304348
                        0.1770186
                                     0.09420290
## [219,] 0.1277174
                        0.1708075
                                     0.09420290
## [220,] 0.1290761
                        0.1739130
                                     0.09420290
## [221,] 0.1263587
                        0.1708075
                                     0.09178744
## [222,] 0.1290761
                        0.1770186
                                     0.09178744
## [223,] 0.1304348
                        0.1801242
                                     0.09178744
## [224,] 0.1290761
                        0.1770186
                                     0.09178744
## [225,] 0.1290761
                        0.1770186
                                     0.09178744
## [226,] 0.1277174
                        0.1739130
                                     0.09178744
## [227,] 0.1290761
                        0.1770186
                                     0.09178744
                        0.1770186
## [228,] 0.1290761
                                     0.09178744
## [229,] 0.1290761
                        0.1770186
                                     0.09178744
## [230,] 0.1290761
                        0.1770186
                                     0.09178744
## [231,] 0.1290761
                        0.1770186
                                     0.09178744
## [232,] 0.1277174
                        0.1739130
                                     0.09178744
## [233,] 0.1277174
                        0.1739130
                                     0.09178744
## [234,] 0.1277174
                        0.1739130
                                     0.09178744
## [235,] 0.1277174
                        0.1739130
                                     0.09178744
## [236,] 0.1290761
                        0.1770186
                                     0.09178744
## [237,] 0.1290761
                        0.1770186
                                     0.09178744
## [238,] 0.1277174
                        0.1770186
                                     0.08937198
## [239,] 0.1277174
                        0.1770186
                                     0.08937198
## [240,] 0.1277174
                        0.1770186
                                     0.08937198
```

```
exactitud_oob <- 1 - modelo1$err.rate[which.min(modelo1$err.rate[,"00B"])]
cat("La exactitud 00B es:", round(exactitud_oob * 100, 1), "%\n")</pre>
```

```
## La exactitud OOB es: 88 %
```

- Conforme se agregan más árboles, el bosque mejora su capacidad de generalización, aprox. después del arbol 148, el error OOB
 (porcentaje de predicciones correctas sobre el los datos OOB) se estabiliza y deja de mejorar, usualmente oscilando el 0.125000.
- Una OOB accuracy del 88% quiere decir que el modelo predice correctamente el diagnóstico (enfermedad cardiaca o no) en el 88% de los casos del conjunto de datos fuera de entrenamiento.

```
head(modelo1$votes)
```

```
##
      Sin Enfermedad Con Enfermedad
## 3
                          0.0000000
          1,00000000
## 5
                          0.0000000
          1,00000000
## 6
          0.00000000
                          1.0000000
          0.04210526
                          0.9578947
          1.00000000
## 10
                          0.0000000
          0.0444444
## 11
                          0.955556
```

```
tail(modelo1$votes)
```

```
##
       Sin Enfermedad Con Enfermedad
## 908
           0.90109890
                          0.09890110
## 909
           0.97916667
                          0.02083333
## 910
           0.77011494
                          0.22988506
## 913
           0.95238095
                          0.04761905
## 915
           0.05319149
                          0.94680851
## 916
           0.06097561
                          0.93902439
```

· Notemos que las clasificaciones son consistentes y no hay sesgo respecto al como se clasifica el estado del paciente.

Realizamos las predicciones

```
# Predicciones 00B
predicciones_oob <- modelo1$predicted</pre>
```

Matriz de Confusión

```
reales <- enfermedad_train$Enfermedad_Cardíaca # Valores reales
# Matriz de confusión
conf_matrix <- confusionMatrix(data = predicciones_oob, reference = reales, positive = "Con Enfermedad")
print(conf_matrix$table)</pre>
```

```
## Reference
## Prediction Sin Enfermedad Con Enfermedad
## Sin Enfermedad 265 37
## Con Enfermedad 57 377
```

```
cm_table <- as.data.frame(conf_matrix$table)</pre>
# Invertir el orden de los niveles del eje Y
cm_table$Prediction <- factor(cm_table$Prediction, levels = rev(levels(cm_table$Prediction)))</pre>
ggplot(cm_table, aes(x = Reference, y = Prediction, fill = Freq)) +
  geom_tile(color = "white") +
  geom_text(aes(label = Freq), color = "white", size = 6, fontface = "bold") +
  scale_fill_gradient(low = "lightblue", high = "darkblue",name="Frecuencia") +
  labs(
    title = "MATRIZ DE CONFUSIÓN",
    x = "Valor Real",
    y = "Predicción"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
    axis.text = element_text(size = 12,face="bold"),
    axis.title = element_text(size = 12,face="bold")
```

MATRIZ DE CONFUSIÓN

- Verdaderos negativos (TN = 265): El modelo clasificó correctamente a 266 personas como no enfermas, y efectivamente no tienen una enfermedad cardiaca.
 - Verdaderos positivos (TP = 377): El modelo clasificó correctamente a 378 personas como enfermas, y en realidad sí tienen una enfermedad cardiaca.
 - Falsos negativos (FN = 37): El modelo no detectó enfermedad en 36 personas, pero en realidad sí lo estaban. Esto es delicado en un problema médico, pues son pacientes con alguna enfermedad cardiaca no detectados por el modelo.

 Falsos positivos (FP = 57): El modelo clasificó incorrectamente a 56 personas como si tuvieran alguna enfermedad cardiaca, cuando en realidad no la tienen.

Métricas

```
# Extraer métricas
accuracy <- conf_matrix$overall["Accuracy"]
precision <- conf_matrix$byClass["Precision"]
recall <- conf_matrix$byClass["Recall"]
f1 <- conf_matrix$byClass["F1"]

# Mostrar resultados
cat("Accuracy (Exactitud):", accuracy, "\n")

## Accuracy (Exactitud): 0.8722826

cat("Precision (Precisión): ", round(precision, 4), "\n")

## Precision (Precisión): 0.8687

cat("Recall (Sensibilidad): ", round(recall, 4), "\n")

## Recall (Sensibilidad): 0.9106

cat("Puntaje F1: ", round(f1, 4), "\n")</pre>
```

- Accuracy (Exactitud) = 87.22%: El 86.95% de todas las predicciones del modelo fueron correctas, tanto para personas con una enfermedad cardiaca como sin ella.
 - Precision (Precisión) = 86.87%: De todas las personas que el modelo clasificó como enfermas, el 86.87% realmente lo eran. Esta métrica es importante para evitar falsos positivos, es decir, no generar diagnósticos erróneos en personas sanas.
 - Recall (Sensibilidad) = 91.06%: El modelo fue capaz de detectar correctamente el 91.06% de los verdaderos casos de enfermedad cardiaca. Esta métrica es clave en el área médica, porque queremos identificar a la mayor cantidad de pacientes enfermos posible.
 Aprox un 10% de los casos no fueron detectados (falsos negativos).
 - F1 Score = 88.92%: Este es un balance entre precisión y recall. Un F1 alto indica que el modelo tiene un buen compromiso entre detectar correctamente a quienes están enfermos y no clasificar erróneamente a quienes no lo están.

CONCLUSIONES

Puntaje F1: 0.8892

Comparación de Modelos

En la siguiente tabla se puede observar los valores de la matriz de confusión, métricas más importantes y las ventajas o limitaciones que presenta cada uno de los 4 modelos finales que se utilizaron para clasificar a los pacientes que sí presentan la enfermedad cardíaca, esto nos ayudará a elegir el modelo que mejor se ajusta a los objetivos iniciales.

Métrica	Logístico	\mathbf{QDA}	Árbol de Decisión	Bosque Aleatorio
Verdaderos Negativos (TN)	86	84	87	377
Falsos Positivos (FP)	17	16	26	57
Falsos Negativos (FN)	8	10	7	37
Verdaderos Positivos (TP)	71	72	62	265
Exactitud (Accuracy)	86.26%	85.71%	81.86%	87.22%
Precisión (Precision)	83.49%	84%	76.99%	86.87%
Sensibilidad (Recall)	91.48%	89.36%	92.55%	91.06%
F1 Score	87.30%	86.59%	84.05%	88.92%
Ventajas	Interpretación de Variables	Equilibrado	Mejor Recall	Superior en Métricas
Limitaciones	Suponer relación lineal	Supuestos	Errores (falsos positivos)	Visualización y Costo

Selección del Mejor Modelo

Tras evaluar múltiples enfoques predictivos sobre el diagnóstico de enfermedad cardíaca, se concluye lo siguiente: El Bosque Aleatorio demostró ser el modelo con mejor rendimiento global, destacando en precisión, sensibilidad y F1 Score. Su capacidad para manejar relaciones no lineales, interacciones complejas y su resistencia al sobreajuste lo hacen ideal para aplicaciones clínicas automatizadas. La Regresión Logística es una excelente alternativa cuando se prioriza la interpretabilidad y el análisis de factores clínicos individuales. Aunque su desempeño fue ligeramente inferior al Random Forest, su facilidad de implementación y explicación la hacen muy valiosa en la práctica médica. Los modelos basados en Árboles de Decisión, en especial el con validación cruzada, mostraron un buen equilibrio entre interpretabilidad y rendimiento. Son ideales cuando se busca visualizar el proceso de decisión, aunque con menor precisión que los modelos de ensamble. El QDA funcionó bien, pero su uso está condicionado al cumplimiento de supuestos estadísticos (normalidad y heterocedasticidad), lo que puede limitar su aplicabilidad en datos reales clínicos. En síntesis, aunque todos los modelos ofrecieron buenos resultados, el Bosque Aleatorio representa la mejor combinación de sensibilidad, precisión y robustez, especialmente importante en contextos donde los errores de diagnóstico pueden tener consecuencias graves.

Conclusiones y Recomendaciones

Este trabajo representó una oportunidad valiosa para integrar conocimientos estadísticos, clínicos y computacionales en el análisis predictivo de una problemática médica relevante como es la enfermedad cardíaca. A través de las distintas etapas del proyecto desde la limpieza y exploración de los datos hasta la evaluación de modelos predictivos fue posible comprender cómo las técnicas estadísticas y de aprendizaje automático pueden aportar significativamente en contextos reales, donde las decisiones tienen impacto directo sobre la salud de las personas. El proceso permitió observar que, más allá de la aplicación técnica de los modelos, es fundamental contar con una base de datos bien estructurada y clínicamente coherente. El análisis cuidadoso de las variables, el tratamiento adecuado de las transformaciones y la validación del comportamiento de los algoritmos fueron aspectos centrales para asegurar la confiabilidad de los resultados. También se hizo evidente que la elección de un modelo no puede basarse únicamente en métricas de desempeño: la interpretabilidad, la robustez frente al ruido, la facilidad de implementación y el contexto de uso deben ser considerados al momento de seleccionar una herramienta predictiva. En conjunto, este estudio refleja cómo la estadística, aplicada de manera crítica y contextualizada, puede apoyar de forma efectiva el diagnóstico clínico. La tecnología no reemplaza al criterio médico, pero sí lo complementa, ofreciendo una visión basada en evidencia y datos objetivos. A medida que estas herramientas se integren más en el ámbito de la salud, será clave mantener una mirada ética, crítica y orientada al beneficio del paciente.