UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level and GCE Advanced Subsidiary Level

MARK SCHEME for the May/June 2006 question paper

9701 CHEMISTRY

9701/02

Paper 2

Maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 1		Mark Scheme	Syllabus	Paper	
			GCE A/AS Level – May/June 2006	9701	02	
1	(a)	(i)	ammonia/NH ₃		(1)	
		(ii)	NH_4^+		(1)	
		(iii)	iron(II) hydroxide/Fe(OH) ₂		(1)	[3]
	(b)	bar	ium sulphate/BaSO₄		(1)	[1]
	(c)	(i)	FeSO ₄		(1)	
			(NH ₄) ₂ SO ₄		(1)	
		(ii)	FeSO ₄ = 151.9 (allow 151.8 to 152)		(1)	
			$(NH_4)_2SO_4 = 132.1$ (allow 132)		(1)	
		(iii)	$xH_2O = 392 - (132.1 + 151.9) = 108$		(1)	
			$x = \frac{108}{18} = 6$		(1)	
			allow e.c.f. on candidate's sulphate in (c)(i) e.c.f. answer must be a whole number			[6]

[Total: 10]

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS Level – May/June 2006	9701	02

2 (a)
$$\frac{x}{C} = \frac{x}{C} = \frac{x}{C}$$

[Total: 12]

[3]

(1)

(1)

(1)

(e) (i) the enthalpy/energy change when one mole of a substance

(ii) calculation in (d) includes $H_2O(g)$ whereas ΔH_{comb} involves $H_2O(I)$ or average bond energy terms are used in the *Data Booklet*

is burned in an excess of air/oxygen

or completely combusted under standard conditions

[Total: 15]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS Level – May/June 2006	9701	02

3 (a)

halogen	colour	physical state at
		room temperature
chlorine	green/yellow	gas
bromine	orange/red	liquid
iodine	black	solid

		three colours correct		(1)		
		three	states correct	t	(1)	[2]
(b)	(i)	$MgCl_2$		white fumes/steamy fumes (of HC <i>l</i>)	(1)	
		MgBr ₂		red colour (of Br ₂) or steamy fumes (of HBr)	(1)	
		MgI_2		purple colour (of I_2) or black solid (I_2) or yellow solid (S) or stinking gas (H_2 S)	(1)	
	(ii)	MgCl ₂ +	$- H_2SO_4 \rightarrow M_2$	gSO ₄ + 2HC <i>l</i>		
			- $2H_2SO_4 \rightarrow N$	$Mg(HSO_4)_2 + 2HCl$	(1)	[4]
(c)	(i)	AgBr/sil	ver bromide		(1)	
	(ii)	AgBr(s)	+ 2NH ₃ (aq) -	\rightarrow Ag(NH ₃) ₂ Br(aq)		
		equation	n (may be ion	nic)	(1)	
		state sy	mbols		(1)	
		allow ed	of on wrong h	alide in (i)		[3]
(d)	(i)	HC1	no reaction		(1)	
		HI	purple vapo	ur/black solid	(1)	
		$2HI \rightarrow H$	$H_2 + I_2$		(1)	
	(ii)	bond er	nergy in HC <i>l</i> is	s high	(1)	
		bond er	nergy in HI is	lower/more easily broken	(1)	
	(iii)	hot glas	s rod provide	es activation energy	(1)	[6]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS Level – May/June 2006	9701	02

4

(a)	(i) BrCH ₂ CHBrCH ₂ OH	(1)	
	(ii) CH ₂ =CHCO ₂ H	(1)	[2]
(b)	oxidation	(1)	[1]
(c)	structural or functional group isomerism	(1)	[1]
(d)	step I $CH_2=CHCH_2OH \rightarrow CH_3CH_2CH_2OH$		
	H_2	(1)	
	Ni catalyst and heat or Pt at room temperature	(1)	
	step II $CH_3CH_2CH_2OH \rightarrow CH_3CH_2CHO$		
	acidified dichromate(VI)	(1)	
	heat not under reflux or distil off aldehyde as it is formed for both steps, conditions mark is only awarded if correct reagent is given	(1)	[4]
(e)	both oxidation and reduction have occurred	(1)	[1]
(f)	(i) HOCH ₂ CHOHCH ₂ OH formed		
	CH ₂ =CH- forms HOCH ₂ CHOH ⁻	(1)	
	⁻CH₂OH is unchanged	(1)	
	(ii) HO ₂ CCO ₂ H	(1) [Total	[3] : 12]

[Total: 11]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS Level – May/June 2006	9701	02

5

(a)	A re	eaction in which one atom or group of atoms replaces another.	(1)	[1]
(b)	(i)	$C_2H_5Br + NaOH \rightarrow C_2H_5OH + NaBr$		
		allow OH ⁻	(1)	
	(ii)	heat with aqueous NaOH/OH ⁻	(1)	[2]
(c)	(i)	$C_2H_5Br + KCN \rightarrow C_2H_5CN + KBr$		
		allow CN ⁻ or NaCN	(1)	
	(ii)	heat with KCN under reflux in ethanol	(1)	[2]
(d)	(i)	K is $C_2H_5CI/C_2H_5Br/C_2H_5I$	(1)	
		L is C ₂ H ₅ CN	(1)	
	(ii)	step I		
		reagent - PCl_3 or PCl_5 or $SOCl_2$ or $NaBr$ +conc H_2SO_4 or $P + Br_2$		
		or P + I_2	(1)	
		conditions - room temperature or heat under reflux depending on reagent	(1)	
		step III		
		reagent - mineral acid	(1)	
		conditions - heat under reflux	(1)	
		for both steps, conditions mark is only awarded if correct reagent is given		[6]

