DIGITAL CIRCUITS

Week-12, Lecture-1 Sequential Circuits

Sneh Saurabh 30th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Analysis

Sequential Circuit: Behavior

Sequential Circuit Behavior:

Determined by the inputs, outputs and the state of the circuit.

State of a Sequential Circuit: The value at the output of all the flip-flops in a circuit at any given time defines the state of the circuit

Output of a Sequential Circuit: In general, output depends on the inputs and the current state of the circuit

- Analysis of Sequential Circuits: Given a circuit, determine its behavior
- Behavior expressed as: State Equation, State Table and State Diagram

Sequential Circuit: State Equation

State Equation (Transition Equation): specifies the next state as a function of the present state and inputs.

Problem:

Write the State Equation for the circuit shown alongside.

$$A(t+1) = f(A(t), B(t), x(t))$$

$$B(t+1) = g(A(t), B(t), x(t))$$

Answer:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = A'(t)x(t)$$

Output Equation:

$$y(t) = (A(t) + B(t))x'(t)$$

Sequential Circuit: State Table

State Table (Transition Table)

- Enumerates present state, input, next state, and output in a table
- Can be derived from the circuit or state equation

Problem:

Given state equations and output equations as follows, draw the state table

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'x$$

$$y(t) = (A+B)x'$$

Present State		Next Input State			Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
_1	1	1	1	0	0	

Sequential Circuit: State Diagram (1)

State Diagram (Transition Table)

- Graphical representation of the information available in a state table
- States represented as circle
- Transitions between states are indicated by directed lines connecting circles

Sequential Circuit: State Diagram (2)

			-		
	sent ate	Input	Next State		Output
Α	В	X	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

- States identified by binary numbers inside the circle
- Directed lines are marked as "Input/Output"
- State diagram more suitable for human interpretation

Sequential Circuit: Input Equations

Input Equations of Flip-flops (Excitation Equation)

 Set of Boolean functions describing the functionality at the inputs to the flip-flops in a sequential circuit

For D flip-flops State Equations and Input Equations are the same

State Equation:

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'x$$

• Inputs Equation:

$$D_A = Ax + Bx$$

$$D_B = A'x$$

- For other types of flip-flops State
 Equations and Input Equations can be different
- Using Input Equations and Characteristics Equation of the flip-flops, State Equations for a circuit can be derived

Sequential Circuit: Input Equations for JK Flip-flops (1)

Problem:

Write the input equations for the flipflops shown in the circuit alongside.

Answer:

$$I_A = B$$
, $K_A = Bx'$

$$J_A = B$$
, $K_A = Bx'$
 $J_B = x'$, $K_B = A \oplus x$

Sequential Circuit: Input Equations to State Table

Problem:

Draw the state table for the circuit whose input equations are given as follows:

$$J_A = B$$
, $K_A = Bx'$

$$J_B = x', K_B = A \oplus x$$

Present State		Input	Next State		Flip-Flop Inputs				
A	В	x	A	В	J _A	K _A	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

JK Flip-Flop

J	K	Q(t + 1))
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Sequential Circuit: Input Equations to State Equations

Problem:

Derive the state equation for the circuit whose input equations are given as follows:

$$J_A = B$$
, $K_A = Bx'$

$$J_B = x', K_B = A \oplus x$$

Characteristics equation for JK flip-flop (Week 11, Lecture-1):

$$Q(t+1) = JQ' + K'Q$$

Answer:

$$A(t+1) = J_A A' + K_A' A$$

$$= BA' + (Bx')' A$$

$$= A'B + AB' + Ax$$

$$B(t+1) = x'B' + (A \oplus x)' B$$

$$= B'x' + ABx + A'Bx'$$

Sequential Circuit: State Diagram

Problem:

Draw the state diagram for the circuit whose state table is shown alongside.

Present State		Input	Next State		Flip-Flop Inputs				
A	В	x	Α	В	J _A	K _A	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

No output given in this case

Finite State Machine: Moore and Mealy

Finite State Machine:

- Finite non-empty set of states
- Transition from one state to another
- Inputs and Outputs
- Two Types: Moore and Mealy

- **1. Moore machine**: output depends on current state only
- **2. Mealy machine**: output depends on current state and inputs

