

IIC2223 — Teoría de Autómatas y Lenguajes Formales — 2' 2022

INTERROGACION 2

Preguntas en blanco: Preguntas o items entregados en blanco se evaluarán con 0.5 de 6 puntos.

Pregunta 1

Demuestre que existen transductores \mathcal{T}_1 y \mathcal{T}_2 sobre alfabetos Σ y Ω tal que la relación $[\![\mathcal{T}_1]\!] \cap [\![\mathcal{T}_2]\!] = \{(u,v) \in \Sigma^* \times \Omega^* \mid (u,v) \in [\![\mathcal{T}_1]\!] \land (u,v) \in [\![\mathcal{T}_2]\!]\}$ no es una relación racional.

Pregunta 2

Considere los siguientes lenguajes sobre el alfabeto $\{a, b, c, d\}$:

$$L_1 = \{a^i b^j c^k d^\ell \mid 2i = \ell \land 3j = k\}$$

$$L_2 = \{a^i b^j c^k d^\ell \mid 2i = k \land 3j = \ell\}$$

Uno de los lenguajes es libre de contexto y el otro no. ¿Cuál es cuál? Diga cuál lenguaje es libre de contexto y cuál no, y demuestre ambas afirmaciones.

Pregunta 3

Sean Σ y Ω alfabetos finitos. Una función $h: \Sigma^* \to \Omega^*$ respeta la concatenación si para todo $u, v \in \Sigma^*$ se cumple que $h(u \cdot v) = h(u) \cdot h(v)$. Para $L \subseteq \Sigma^*$, se define el lenguaje $h(L) = \{h(w) \mid w \in L\}$.

Demuestre que, si $L \subseteq \Sigma^*$ es un lenguaje libre de contexto y $h: \Sigma^* \to \Omega^*$ es una función que respeta la concatenación, entonces h(L) es un lenguaje libre de contexto.

Pregunta 4

Considere el siguiente problema:

Problema: #SUFFIX-DFA

Input: Un DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w = a_1 \dots a_n \in \Sigma^*$.

Output: $|\{i \in \{1,\ldots,n\} \mid a_i \ldots a_n \in \mathcal{L}(\mathcal{A})\}|.$

Esto es, el problema #SUFFIX-DFA consiste en, dado un autómata finito determinista \mathcal{A} y dado una palabra w, contar todos los sufijos de w que son aceptados por \mathcal{A} .

Escriba una algoritmo que resuelva #SUFFIX-DFA en tiempo $\mathcal{O}(|\mathcal{A}| \cdot |w|)$ donde $|\mathcal{A}|$ es el número de estados y transiciones de \mathcal{A} . Demuestre la correctitud de su algoritmo.