Homework 4

Problem 9

Let $V = \mathbb{R}^3$ be a vector space with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V.

b. W is the set of vectors of the form (a, 1, 1)

Proof. Axiom 1: Consider $\vec{a}, \vec{b} \in W$ where $\vec{a} = (a, 1, 1)$ and $\vec{b} = (b, 1, 1)$ for $a, b \in \mathbb{R}$.

$$\vec{a} \oplus \vec{b} = (a, 1, 1) \oplus (b, 1, 1) = (a + b, 1 + 1, 1 + 1)$$

= $(a + b, 2, 2) \notin W$

Therefore W is **not** closed under addition.

Since Axiom 1 does not hold for W, W is not a subspace of V.

c. W is the set of vectors of the form (a,b,c), where b=a+c

Proof. Axiom 1: Consider $\vec{v}, \vec{u} \in W$ where $\vec{v} = (a_1, b_1, c_1)$ and $\vec{u} = (a_2, b_2, c_2)$ for $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R}$, where $b_1 = a_1 + c_1$ and $b_2 = a_2 + c_2$.

$$\vec{v} \oplus \vec{u} = (a_1, b_1, c_1) \oplus (a_2, b_2, c_2) = (a_1 + a_2, b_1 + b_2, c_1 + c_2)$$

 $\in W$

$$b_1 + b_2 = (a_1 + c_1) + (a_2 + c_2) = (a_1 + a_2) + (c_1 + c_2) \checkmark$$

Therefore W is closed under addition.

Axiom 6: Consider $\vec{v} = (a, b, c)$ such that $a, b, c \in \mathbb{R}$ and $k \in \mathbb{R}$. Let b = a + c.

$$k\odot \vec{v} = k\odot (a,b,c) = k\odot (a,b,c) = (ka,kb,kc)$$

$$\in W$$

$$kb = k(a+c) = ka + kc \checkmark$$

Therefore W is closed under scalar multiplication.

Since Axiom 1 and Axiom 6 hold for W, \oplus and \odot are inherited from V, and $W \subseteq V$, through the use of Theorem 3, W is a subspace of V.

d. W is the set of vectors of the form (a, b, 0)

Proof. Axiom 1: Consider $\vec{v}, \vec{u} \in W$ where $\vec{v} = (a_1, b_1, 0)$ and $\vec{u} = (a_2, b_2, 0)$ for $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

$$\vec{v} \oplus \vec{u} = (a_1, b_1, 0) \oplus (a_2, b_2, 0) = (a_1 + a_2, b_1 + b_2, 0 + 0) = (a_1 + a_2, b_1 + b_2, 0)$$

 $\in W \text{ since it takes the form } (a, b, 0)$

Therefore W is closed under addition.

Axiom 6: Consider $\vec{v} = (a, b, 0)$ such that $a, b \in \mathbb{R}$ and $k \in \mathbb{R}$.

$$k \odot \vec{v} = k \odot (a, b, 0) = (ka, kb, k0) = (ka, kb, 0)$$

 $\in W$ since it takes the form $(a, b, 0)$

Therefore W is closed under scalar multiplication.

Since Axiom 1 and Axiom 6 hold for W, \oplus and \odot are inherited from V, and $W \subseteq V$, through the use of Theorem 3, W is a subspace of V.

Problem 10

Let $V = P_3$ be the vector space of all polynomials with degree up to 3, with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V

b. W is the set of polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 + a_1 + a_2 + a_3 = 0$

Proof. Axiom 1: Consider $\vec{a}, \vec{b} \in W$ where $\vec{a} = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ and $\vec{b} = b_0 + b_1 x + b_2 x^2 + b_3 x^3$ where $a_{0-3}, b_{0-3} \in \mathbb{R}$.

Let $a_0 + a_1 + a_2 + a_3 = 0$ and $b_0 + b_1 + b_2 + b_3 = 0$.

$$\vec{a} \oplus \vec{b} = (a_0 + a_1 x + a_2 x^2 + a_3 x^3) \oplus (b_0 + b_1 x + b_2 x^2 + b_3 x^3)$$

$$= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

$$= (a_0 + b_0) + (a_1 + b_1) x + (a_2 + b_2) x^2 + (a_3 + b_3) x^3$$

$$\in W$$

$$(a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2) + (a_3 + b_3) = (a_0 + a_1 + a_2 + a_3) + (b_0 + b_1 + b_2 + b_3)$$
$$= 0 + 0 = 0 \checkmark$$

Therefore W is closed under addition.

Axiom 6: Consider $\vec{a} \in W$ where $\vec{a} = a_0 + a_1x + a_2x^2 + a_3x^3$ such that $a_{0-3} \in \mathbb{R}$ and $k \in \mathbb{R}$. Let $a_0 + a_1 + a_2 + a_3 = 0$.

$$k \odot \vec{a} = k \odot (a_0 + a_1 x + a_2 x^2 + a_3 x^3) = k(a_0 + a_1 x + a_2 x^2 + a_3 x^3)$$
$$= ka_0 + ka_1 x + ka_2 x^2 + ka_3 x^3$$
$$\in W$$

$$ka_0 + ka_1x + ka_2x^2 + ka_3x^3 = k(a_0 + a_1x + a_2x^2 + a_3x^3) = k(0) = 0$$

Therefore W is closed under scalar multiplication.

Since Axiom 1 and Axiom 6 hold for W, \oplus and \odot are inherited from V, and $W \subseteq V$, through the use of Theorem 3, W is a subspace of V.

c. W is the set of polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ in which a_0, a_1, a_2 , and a_3 are integers.

Proof. Axiom 6: Consider $\vec{a} \in W$ where $\vec{a} = 1 + 1x + 1x^2 + 1x^3$ and k = 0.66.

$$k \odot \vec{a} = 0.66 \odot (1 + 1x + 1x^2 + 1x^3) = 0.66(1 + 1x + 1x^2 + 1x^3)$$

= $0.66 + 0.66x + 0.66x^2 + 0.66x^3$
 $\notin W$, since $0.66 \notin \mathbb{Z}$

Therefore W is **not** closed under scalar multiplication.

Since Axiom 6 does not hold for W, W is not a subspace of V.

Problem 11

Let $V = F(-\infty, \infty)$ be the vector space of all functions from \mathbb{R} to \mathbb{R} , with standard addition and scalar multiplication. Use Theorem 3 of Lecture Note 8 to determine whether the following sets are subspaces of V

b. W is the set of functions f in $F(-\infty,\infty)$ for which f(0)=1.

Proof. Axiom 1: Consider $\vec{f}, \vec{g} \in W$ where $\vec{f}(x) = e^x$ and $\vec{g}(x) = e^x$.

$$(\vec{f} \oplus \vec{g})(x) = \vec{f}(x) + \vec{g}(x) = e^x + e^x = 2e^x \notin W$$

when $x = 0 : 2e^0 = 2 \cdot 1 = 2 \neq 1$

Therefore W is **not** closed under addition.

Since Axiom 1 does not hold for W, W is not a subspace of V.

c. W is the set of functions \vec{f} in $F(-\infty, \infty)$ for which f(-x) = x, W

Proof. Axiom 1: Consider $\vec{f}, \vec{g} \in W$.

$$(\vec{f} \oplus \vec{g})(x) = \vec{f}(x) + \vec{g}(x)$$

when plugging in -x:

$$\vec{f}(-x) + \vec{g}(-x) = x + x = 2x$$

 $\neq x \text{ if } x \neq 0$

Therefore W is **not** closed under addition.

Since Axiom 1 does not hold for W, W is not a subspace of V.

Problem 13

Let V be a vector space. Let I be a nonempty set (often called the "index set"), and let W_i be a subspace of V for all $i \in I$. Prove that $\bigcap_{i \in I} W_i$, is a subspace of V.

Proof. Axiom 1: Consider $\vec{u}, \vec{v} \in \bigcap_{i \in I} W_i$. This implies the following:

$$\vec{u} \in W_i \quad \forall \ i \in I$$

 $\vec{v} \in W_i \quad \forall \ i \in I$

Since $\forall i \in I$, W_i is a subspace of V, by Axiom 1 for W_i

$$\forall i \in I, \ \vec{u} \oplus \vec{v} \in W_i.$$

This statement is equivalent to

$$\vec{u} \oplus \vec{v} \in \bigcap_{i \in I} W_i$$

Therefore $\bigcap_{i \in I} W_i$ is closed under addition.

Axiom 6: Consider $\vec{v} \in \bigcap_{i \in I} W_i$. This implies the following:

$$\vec{v} \in W_i \ \forall \ i \in I$$

Since $\forall i \in I$, W_i is a subspace of V, by Axiom 6 for W_i

$$\forall i \in I, \ k \odot \vec{v} \in W_i.$$

This statement is equivalent to

$$k\odot \vec{v}\in \bigcap_{i\in I}W_i$$

Therefore $\bigcap_{i \in I} W_i$ is closed under addition.

Since Axiom 1 and Axiom 6 hold for $\bigcap_{i \in I} W_i$, through Theorem 3 $\bigcap_{i \in I} W_i$ is a subspace of V.