

Hardware/Software Co-Design

Übung 5 - Wiederholung M.Sc. Fabian Lesniak

Agenda

- Wiederholung ausgewählter Themen
 - Schätzung der Entwurfsqualität
 - Exaktheit & Treue
 - Hardware-Performanz
 - Taktschlupfminimierung

3.3 Optimale Entwurfspunkte Ausführungszeit

3.4 Metriken und Exaktheit der Schätzung

- Qualitätsmaße/Metriken:
 - Performance, Kosten (Fläche), Leistungsaufnahme, Energiebedarf, Zuverlässigkeit, Testbarkeit, Time-to-market, ...

Built in Self-tests, Scan-Path Schieberegister

- Definition: Exaktheit
 - Sei E(D) eine abgeschätzte und M(D) die exakte (gemessene) Metrik einer Implementierung D.
 - Die Exaktheit A der Abschätzung ist gegeben durch : $A = 1 \frac{|E(D) M(D)|}{|M(D)|}$

3.4 Treue der Schätzung

- Definition :
 - Sei D = { D1, D2,..., Dn } eine Menge von Implementierungen
 - Bsp. D1= ASIC, D2= FPGA
 - Die Treue F ist ein Maß für die Zuverlässigkeit einer Schätzmethode, welche die Implementierungen Di gegeneinander vergleicht:

3.4 Beispiel: Treue

Inhalt

- 3.1 Abstraktionsebenen
- 3.2 Systemsynthese
- 3.3 Graphenmodelle für Kontroll- und Datenfluss
- 3.4 Parameter von Schätzverfahren
- 3.5 Schätzung von Hardwaremetriken
- 3.6 Schätzung von Softwaremetriken

3.5 Hardware - Performanz

Taktperiode T

Beeinflusst von Technologie, Ressourcen

Latenz L

Anzahl der Taktschritte, abhängig von Datenpfadoptimierung (Logikminimierung, Scheduling,

Retiming)

 $T_{ex} = T \cdot L$

Durchsatz:

R= 1/ T_{ex} (entspr. zeitl. Häufigkeit des Berechnungsergebnisses)

3.5 Hardware-Performanz: Beispiel (I)

- Taktperiode T=380 ns
- Latenz L=1
- Ausführungszeit Tex= 380 ns
- Ressourcen: 2 * , 4 +

3.5 Hardware-Performanz: Beispiel (II)

- Taktperiode T=150 ns
- Latenz L=4
- Ausführungszeit Tex= 600 ns
- Ressourcen: 1 * , 1 +
- Keine Änderung der Inputs über die 4 Takte.
- Erst danach neue Inputs anlegen.

3.5 Hardware-Performanz: Beispiel (III)

- Taktperiode T=80 ns
- Latenz L=5
- Ausführungszeit Tex= 400 ns
- Ressourcen: 1 * , 1 +
- Vergleich mit Beispiel 1:
 - Weniger Ressourcen nötig
 - Taktperiode kleiner
 - T_{ex} etwas größer

3.5 Hardware-Performanz: Pipelining

Pipelining mit P gleich langen Stufen

$$R = P / T_{ex}$$

 T_{ex}

$$R = 5 / T_{ex}$$

3.5 Hardware-Performanz: Schätzung der Taktperiode

- Funktionale Einheiten v_k mit jew. Delay delay(v_k)
 - Methode der maximalen Operatorverzögerung

$$T = \max_{k} \left(delay(v_k) \right)$$

- Nachteil: es muss mit einer erheblichen Unterauslastung der schnelleren Funktionseinheiten gerechnet werden.
- Methode der Minimierung des Taktschlupfs (clock slack)
 - Suche im Intervall T_{min} ... T_{max} nach der Taktperiode T mit maximaler Taktauslastung (minimalem Taktschlupf), Scheduling oft als Nachfolgeschritt zur Bestimmung der Gesamtausführungszeit T_{exec}.
- ILP-Suche:
 - Modellierung eines Latenzminierungsproblems als ILP für diskrete Werte der Taktperiode zur Minimierung von T_{exec}.

3.5 Hardware-Performanz: *Taktschlupf*

$$slack(T, v_k) = (\lceil delay(v_k)/T \rceil) \cdot T - delay(v_k)$$

3.5 Hardware-Performanz: Taktschlupfminimierung

Mit occ(vk), der Anzahl der Operationen vom Typ v_k, und |V_T|, der Anzahl unterschiedlicher Operationstypen, ist der mittlere Schlupf für eine Taktperiode T:

$$avgslack(T) = \frac{\sum_{k=1}^{|V_T|} (occ(v_k) \cdot slack(T, v_k))}{\sum_{k=1}^{|V_T|} occ(v_k)}$$

- Ein geringerer mittlerer Taktschlupf impliziert auch eine geringere Ausführungszeit für eine feste Anzahl Ressourcen.
- Taktauslastung

$$util(T) = 1 - \frac{avgslack(T)}{T}$$

bezeichnet die prozentuale mittlere Auslastung aller Funktionseinheiten.

Arbeitsphase

- Aufgabe 3.01: Design Space, Pareto Punkte
 - Realisierungsmöglichkeiten mit verfügbaren Komponenten je nach Kosten und Ausführungsgeschwindigkeit
- Aufgabe 3.02: Exaktheit & Treue
 - Metriken und Entwurfsqualität mit geschätzten und gemessenen Werte
- Aufgabe 3.03: Taktschlupf
 - Taktschlupfminimierung, Slack, mittlerer Schlupf

Hardware/Software Co-Design

Übung 5 - Lösung M.Sc. Fabian Lesniak

Aufgabe 3.01: Design Space, Pareto Punkte

 Task-Graph: Tasks (T1 ... T4), wobei T4 erst ausgeführt werden, wenn T2 und T3 abgearbeitet wurden. T2 und T3 hingegen können parallel ausgeführt werden.

- Verfügbaren Komponenten: MIPS, DSP, FPGA, ASIC
 - Jeweils maximale Anzahl, Kosten und Ausführungsgeschwindigkeit
 - Bspw. kostet der MIPS Prozessor 200 Einheiten und kann Task T1 in 5 und T4 in 2ms ausführen.

Kampananta	Anzahl	Kooton [6]	Ausführungszeit [ms]			
Komponente		Kosten [€]	T1	T2	T3	T4
MIPS	1	200	5	-	-	2
DSP	1	100	-	20	18	5
FPGA	1	250	-	12	10	-
ASIC	1	400	-	-	0,8	-

- Vervollständigen Sie die Ausführungszeit und Kosten der folgenden Tabelle. Sie zeigt sämtliche Realisierungsmöglichkeiten, welcher Task auf welchem Prozessor ausgeführt werden kann.
- Tragen Sie die Lösungen aus Aufgabe a) in folgendes Kosten-Zeitdiagramm ein und markieren Sie die Pareto-Punkte.
- Was passiert, wenn die Anzahl der Komponenten nicht auf 1 beschränkt ist? Welche zusätzlichen Design-Möglichkeiten ergeben sich? Verändert sich die Menge der Pareto-Punkte?

Vervollständigen Sie die Ausführungszeit und Kosten der folgenden Tabelle. Sie zeigt sämtliche Realisierungsmöglichkeiten, welcher Task auf welchem Prozessor ausgeführt werden kann.

# .		Tasks			Ausführungszeit [ms]	Kosten	
"	T1	T2	T3	T4	Adordin drigozoft [mo]	Rooton	
1	MIPS	DSP	DSP	MIPS	5 + 20 + 18 + 2 = 45	200+100= 300	
2	MIPS	DSP	DSP	DSP	5 + 20 + 18 + 5 = 48	200+100= 300	
3	MIPS	DSP	FPGA	MIPS	$5 + \max(20, 18) + 2 = 27$	200+100+250= 550	
4	MIPS	DSP	FPGA	DSP	$5 + \max(20, 18) + 5 = 30$	200+100+250= 550	
5	MIPS	DSP	ASIC	MIPS	$5 + \max(20, 0.8) + 2 = 27$	200+100+400= 700	
6	MIPS	DSP	ASIC	DSP	$5 + \max(20, 0.8) + 5 = 30$	200+100+400= 700	
7	MIPS	FPGA	DSP	MIPS	$5 + \max(12, 18) + 2 = 25$	200+250+100= 550	
8	MIPS	FPGA	DSP	DSP	$5 + \max(12, 18) + 5 = 28$	200+250+100= 550	
9	MIPS	FPGA	FPGA	MIPS	5 + 12 + 10 + 2 = 29	200+250= 450	
10	MIPS	FPGA	FPGA	DSP	5 + 12 + 10 + 5 = 32	200+250+100= 550	
11	MIPS	FPGA	ASIC	MIPS	$5 + \max(12, 0.8) + 2 = 19$	200+250+400= 850	
12	MIPS	FPGA	ASIC	DSP	$5 + \max(12, 0.8) + 5 = 22$	200+250+400+100=950	

■ Tragen Sie die Lösungen aus Aufgabe a) in folgendes Kosten-Zeitdiagramm ein und markieren Sie die Pareto-Punkte.

Was passiert, wenn die Anzahl der Komponenten nicht auf 1 beschränkt ist? Welche zusätzlichen Design-Möglichkeiten ergeben sich? Verändert sich die Menge der Pareto-Punkte?

#		Tasks				Accessible and a second formal	Maratan.	
	#	T1	T2	T3	T4	Ausführungszeit [ms]	Kosten	
	13	MIPS	DSP	DSP	MIPS	$5 + \max(20, 18) + 2 = 27$	200+100+100= 400	
	14	MIPS	DSP	DSP	DSP	$5 + \max(20, 18) + 5 = 30$	200+100+100= 400	
	15	MIPS	FPGA	FPGA	MIPS	$5 + \max(12, 10) + 2 = 19$	200+250+250= 700	
	16	MIPS	FPGA	FPGA	DSP	$5 + \max(12, 10) + 5 = 22$	200+250+250+100=800	

- Dadurch ändert sich die Menge der Pareto-Punkte
 - Lösung #15 ist genauso schnell wie Lösung #11, kostet aber weniger.
 - Lösung #13 überdeckt Lösung #9 in Kosten und Ausführungszeit.

- Was ist Pareto-optimal?
- Welche Graphenmodelle gibt es? Welche Eigenschalften haben sie?
- In welchen Graphen kann Kontrollfluss abgebildet werden?
- Wie wird Programmcode in Graphen dargestellt?

Aufgabe 3.02: Exaktheit und Treue

■ In folgender Tabelle sind für vier Entwurfspunkte Metriken und Entwurfsqualität dargestellt, und zwar geschätzt Werte E(D) sowie die gemessenen Werte M(D).

Entwurfspunkt	E(D)	M(D)
W	112	100
Χ	128	137
Υ	139	121
Z	205	132

- Bestimmen Sie die Exaktheit (A) des Entwurfspunktes W.
- Bestimmen Sie die Treue (F) des Schätzverfahrens.

Lösung Aufgabe 3.02:

Exaktheit und Treue

Bestimmen Sie die Exaktheit (A) des Entwurfspunktes W.

$$A_W = 1 - \frac{|E(D_W) - M(D_W)|}{|M(D_W)|} = 1 - \frac{|112 - 100|}{|100|} = 1 - \frac{12}{100} = \frac{88}{100} = 0.88$$

Bestimmen Sie die Treue (F) des Schätzverfahrens

	Entwurfspunkt	E(D)	M(D)
	W	112	100
>	X	128	137
	Υ	139	121
	Z	205	132

Aufgabe 3.03: Taktschlupf

Gegeben ist eine Menge von funktionale Einheiten v_k. Die mögliche Taktperiode der Zieltechnologie liegt zwischen 20 und 50 ns.

Funktionale Einheit	k	delay(v _k) [ns]	occ(v _k)
MUL	1	135	9
ADD	2	45	10
SUB	3	55	1

- Was ist der Taktschlupf?
- Was bringt die Taktschlupfminimierung?
- Berechnen Sie den slack aller funktionalen Einheiten bei einer Taktperiode von 20ns.
- Berechnen Sie den mittleren Schlupf (average slack) für eine Taktperiode von 20ns.
- Raten/Überlegen Sie, welche Taktperiode den niedrigsten mittleren Schlupf hat.

Lösung Aufgabe 3.03: Taktschlupf

- a) Was ist der Taktschlupf?
 - Der Taktschlupf bezeichnet den Anteil einer Taktperiode, der von einer funktionalen Einheit nicht ausgenutzt wird.
- b) Was bringt die Taktschlupfminimierung?
 - Bei der Taktschlupfminimierung wird versucht den durchschnittlichen Taktschlupf pro Operation zu minimieren. Dadurch steigt die Taktauslastung der Hardware und somit der Performanz.

Lösung Aufgabe 3.03: Taktschlupf

c) Berechnen Sie den slack aller funktionalen Einheiten bei einer Taktperiode von 20ns.

$$slack(20ns, v_{MUL}) = \left[\frac{delay(v_{MUL})}{20}\right] * 20 - delay(v_{MUL}) = \left[\frac{135}{20}\right] * 20 - 135 = 5$$

$$slack(20ns, v_{ADD}) = \left[\frac{delay(v_{ADD})}{20}\right] * 20 - delay(v_{ADD}) = \left[\frac{45}{20}\right] * 20 - 45 = 15$$

$$slack(20ns, v_{SUB}) = \left[\frac{delay(v_{SUB})}{20}\right] * 20 - delay(v_{SUB}) = \left[\frac{55}{20}\right] * 20 - 55 = 5$$

d) Berechnen Sie den mittleren Schlupf (average slack) für eine Taktperiode von 20ns.

$$avgslack(T) = \frac{\sum_{k=1}^{|V_{T}|} (occ(v_{k}) * slack(T, v_{k}))}{\sum_{k=1}^{|V_{T}|} occ(v_{k})}$$

$$avgslack(20ns) = \frac{occ(v_{MUL}) * slack(20ns, v_{MUL}) + occ(v_{ADD}) * slack(20ns, v_{ADD}) + occ(v_{SUB}) * slack(20ns, v_{SUB})}{occ(v_{MUL}) + occ(v_{ADD}) + occ(v_{SUB})}$$

$$= \frac{9 * 5ns + 10 * 15ns + 1 * 5ns}{9 + 10 + 1} = \frac{45ns + 150ns + 5ns}{20} = 10ns$$

Raten/Überlegen Sie, welche Taktperiode den niedrigsten mittleren Schlupf hat.

Funktionale Einheit	k	delay(v _k) [ns]	occ(v _k)
MUL	1	135	9
ADD	2	45	10
SUB	3	55	1

- Warum erfolgt eine Schätzung der Entwurfsqualität?
- Welche Metriken können geschätzt werden?
- Was ist Hardware-Performanz? Wie setzt sich diese zusammen?
- Wieso wird die Taktperiode geschätzt? Wie kann sie optimiert werden?

