

DISCRETE MATHEMATICS

Prepared By
Nuren Nafisa
Assistant Lecturer(CSE)
International Islamic University Chittagong

1.2 Propositional Equivalence

Introduction

What is Propositional Equivalence?

- Two logical expressions are said to be equivalent if they have the same truth value in all cases.
- Sometimes this fact helps in proving a mathematical result by replacing one expression with another equivalent expression, without changing the truth value of the original compound proposition.
- To prove two Compound Propositions logically equivalent we use the symbol " ≡ "

Classification

Classification

Tautology, Contradiction & Contingency (Example)

b)
$$q \wedge \neg q$$

c)
$$(p \rightarrow q)$$

Solution :	p	q	!p	!q	/		
	F	F	Т	Т	Т	F	Т
	F	Т	Т	F	Т	F	Т
	Т	F	F	T	Т	F	F

Contradiction

Tautology

Contingency

DEFINITIONS

- <u>Tautology:</u> A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a "Tautology".
- <u>Contradiction:</u> A compound proposition that is always false, no matter what the truth values of the propositions that occur in it, is called a "Contradiction".
- <u>Contingency:</u> A compound proposition that is neither tautology nor contradiction is called "Contingency".

Tautology using Truth Table

Example-1

Show that, $(p \to q) \land (q \to r) \to (p \to r)$ is a tautology using the truth table.

Solution:

p	q	r					
F	F	F	Т	Т	Т	Т	T
F	F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	T
F	Т	Т	Т	Т	Т	T	T
Т	F	F	F	Т	F	F	Т
Т	F	Т	F	Т	Т	F	Т
Т	Т	F	Т	F	F	F	T
Т	Т	Т	Т	Т	Т	Т	T

This compound proposition is a tautology

Example-2

Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow p$ is a tautology.

Solution: F F F F F F

This compound proposition is a tautology

Logical Equivalence

Ways to prove logical equivalence

Example-1

Show that, $p \rightarrow q$ and $(\neg p \lor q)$ are logically equivalent.

Solution:

р	q			
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	Т	F	Т	Т

This two compound proposition are logically equivalent as they have the same truth values.

$$\therefore (p \to q) \equiv (\neg p \lor q)$$

Example-2

Show that, $(p \to r) \lor (q \to r)$ and $(p \land q) \to r$ are logically equivalent.

Solution:

p	q	r					
F	F	F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т	F	Т
F	Т	F	Т	F	Т	F	Т
F	Т	Т	Т	Т	Т	F	Т
Т	F	F	F	Т	Т	F	Т
Т	F	Т	Т	Т	Т	F	Т
Т	Т	F	F	F	F	Т	F
Т	Т	Т	Т	Т	Т	Т	Т

$$\therefore (p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Exercises

I. Show that, $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$ are logically equivalent.

II. Show that, $(p \to q) \to r$ and $p \to (q \to r)$ are logically equivalent.

Logic Law

DEFINITIONS

• Logic law:

Logic laws are such formula which are used for compound and complex propositions to simply them

TABLE o Logical Equivalences.	
Equivalence	Name
	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Logic Laws

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Red mark laws are imp

Logic Laws(DE Morgan's Law)

DE Morgan's Law

_

De Morgan's Law:

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т
Т	F	F	Т	Т	F	F
Т	Т	F	F	Т	F	F

Proving Tautology using Logic Law

Examples

Example-1

Example-2

(a) $(p \land q) \rightarrow p$

Solution:

$$(p \land q) \rightarrow p$$

 $\equiv \neg (p \land q) \lor p$ [Conditional Law]
 $\equiv \neg p \lor \neg q \lor p$ [De Morgan's Law]
 $\equiv (\neg p \lor p) \lor \neg q$ [Associative law]
 $\equiv T \lor \neg q$ [Negation Law]
 $\equiv T$ [Domination Law] [Proved]

(b) $(p \land q) \rightarrow (p \lor q)$

Solution:

$$(p \land q) \rightarrow (p \lor q)$$

 $\equiv \neg (p \land q) \lor (p \lor q)$ [Conditional law]
 $\equiv \neg p \lor \neg q \lor (p \lor q)$ [De Morgan's law]
 $\equiv (\neg p \lor p) \lor (\neg q \lor q)$ [Associative law]
 $\equiv T \lor T$ [Negation law]
 $\equiv T$ [Proved]

Proving Logical Equivalence using Logic Law

Examples

Example-1

(a)
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

Solution:

L.H.S. =
$$\neg(p \rightarrow q)$$

 $\equiv \neg (\neg p \lor q)$ [Conditional Law]

 $\equiv \neg(\neg p) \land \neg q$ [De Morgan's Law]

=p∧¬q [Double Negation Law]

= R.H.S

Example-2

(b)
$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

Solution:

L.H.S.=
$$\neg(p \lor (\neg p \land q))$$

 $\equiv \neg p \land \neg(\neg p \land q)$ [De Morgan's law]
 $\equiv \neg p \land \neg(\neg p) \lor \neg q)$ [De Morgans law]
 $\equiv \neg p \land (p \lor \neg q)$ [Double Negation
Law]
 $\equiv (\neg p \land p) \lor (\neg p \land \neg q)$ [distributive
law]
 $\equiv F \lor (\neg p \land \neg q)$ [negation law]

Examples

Example-3

Simply the expression: $\neg (R \land S \land T) \land \neg (R \lor S \lor T)$

Solution:

$$\neg (R \land S \land T) \land \neg (R \lor S \lor T)$$

$$\equiv (\neg R \lor \neg S \lor \neg T) \land \neg (R \lor S \lor T) \text{ [::DE Morgan's Law]}$$

$$\equiv (\bar{R} + \bar{S} + \bar{T}) \cdot (\bar{R} \cdot \bar{S} \cdot \bar{T}) \text{ [changing into algebraic form]}$$

$$\equiv \bar{R} \cdot \bar{R} \cdot \bar{S} \cdot \bar{T} + \bar{R} \cdot \bar{S} \cdot \bar{T} \cdot \bar{S} + \bar{R} \cdot \bar{S} \cdot \bar{T} \cdot \bar{T}$$

$$\equiv \bar{R} \cdot \bar{S} \cdot \bar{T} + \bar{R} \cdot \bar{S} \cdot \bar{T} + \bar{R} \cdot \bar{S} \cdot \bar{T} \text{ [::Idempotent Law]}$$

$$\equiv \bar{R} \cdot \bar{S} \cdot \bar{T}$$

$$\equiv \neg R \land \neg S \land \neg T$$

DE MORGANS LAW:

Negation Using De Morgan's Law

Exercises

- Use **De Morgan's Law** to find the negation of each of the following statements:
- a) John is rich and happy.

Solution: John is rich and happy.

b) Carlos will bicycle or run tomorrow.

Solution: Carlos will bicycle or run tollionow.

$$\Rightarrow \neg(p \land q) = \neg p \lor \neg q$$

\Rightarrow John is not happy.

$$\Rightarrow \neg(p \lor q) = \neg p \land \neg q$$
$$\Rightarrow Carlos \ will \ not \ bicycle \ and \ not$$
$$run \ tomorrow.$$

THANK YOU!!!!