THE EISENSTEIN SERIES

TIANJIAO NIE

Contents

0.1.	Review of algebraic groups	1
0.2.	Setup	1
0.3.	The Eisenstein Series	2
0.4.	Intertwining Operators	2

0.1. Review of algebraic groups.

Remark 0.1.1. Where are "connected" and "reductive" used?

Let k be a field of characteristic zero. Let G be a connected reductive algebraic group over k. Let T_0 be a maximal split torus in G. Let $M_0 = C_G(T_0)$ be the centralizer of T_0 in G.

Lemma 0.1.2. The minimal parabolic subgroups of G are all conjugate by G(k).

Let $\Phi(G, T_0)$ be the set of roots.

Lemma 0.1.3. There is a bijection between the set of minimal parabolic subgroups of G containing M_0 , and the set of root basis of $\Phi(G, T_0)$.

Let R_uG be the unipotent radical of G. A subgroup M of G is a Levi subgroup if $G = M \ltimes R_uG$.

Lemma 0.1.4. The subgroup M_0 is a Levi subgroup of P_0 .

A parabolic subgroup P of G is standard if $P_0 \subset P$. A Levi subgroup M of a parabolic subgroup P is standard if $M_0 \subset M$.

Lemma 0.1.5. Every standard parabolic subgroup of G has a unique standard Levi subgroup.

Let G be a split reductive group over k. Then there exists a maximal torus T in G that splits, i.e. T is isomorphic to $\mathbb{G}_{\mathrm{m}}^r$ for some $r \geq 1$. Then $X^*(G)$ is a free \mathbb{Z} -module of rank r.

0.2. **Setup.** Let F be a number field. Let \mathbb{A} be the ring of adèles of F.

Let G be a connected algebraic group over F. Denote by $X^*(G) = \operatorname{Hom}_F(G, \mathbb{G}_{\mathrm{m}})$ the group of characters of G. It is a commutative group and the group law is written additively. Define $\mathfrak{a}_G = \operatorname{Hom}(X^*(G), \mathbb{R})$ to be the set of group maps from $X^*(G)$ to \mathbb{R} , and set $\mathfrak{a}_G^* = \operatorname{Hom}_{\mathbb{R}}(\mathfrak{a}_G, \mathbb{R})$ be the linear dual of \mathfrak{a}_G .

Remark 0.2.1. Another approach is to first define $\mathfrak{a}_G^* = X^*(G) \otimes_{\mathbb{Z}} \mathbb{R}$ and then set $\mathfrak{a}_G = (\mathfrak{a}_G^*)^*$.

The Harish-Chandra map $H_G: G(\mathbb{A}) \to \mathfrak{a}_G$ is defined by $x \in G(\mathbb{A}) \mapsto (\chi \in X^*(G) \mapsto \log |\chi(x)|)$, where |-| is the idèle norm. Denote by $G(\mathbb{A})^1$ the kernel of H_G .

Lemma 0.2.2. The map H_G is surjective.

Remark 0.2.3. In the case that F is a function field, the Harish-Chandra map is not surjective.

Now suppose G is reductive. Let Z_G be the center of G. Let $G_{\mathbb{Q}}$ be the restriction of scalars from F to \mathbb{Q} of G. Let A_G be the neutral component of the group of \mathbb{R} -points of the maximal split torus of the center of $G_{\mathbb{Q}}$. Then A_G is a connected Lie subgroup of $Z_{\infty} = Z_G(F \otimes_{\mathbb{Q}} \mathbb{R}) \subset Z_G(\mathbb{A})$.

Remark 0.2.4. Another source: A_G is contained in $Z_G(F_\infty)$, where F_∞ is the Archimedean part of \mathbb{A} .

The restrction of H_G induces an isomorphism $A_G \to \mathfrak{a}_G$.

Now fix a minimal parabolic subgroup P_0 of G.

Lemma 0.2.5. There exists a maximal compact subgroup $K = \prod_v K_v$ of $G(\mathbb{A})$ such that

- (1) Each K_v is a maximal compact subgroup of $G(k_v)$.
- (2) $G(\mathbb{A}) = P_0(\mathbb{A})K$.

2

- (3) $P(\mathbb{A}) \cap K = (M(\mathbb{A}) \cap K) \ltimes (U(\mathbb{A}) \cap K)$ for every standard parabolic subgroup P = MU of G.
- (4) $M(\mathbb{A}) \cap K$ is a maximal compact subgroup of $M(\mathbb{A})$ for every standard parabolic subgroup P = MU of G.

Remark 0.2.6. The group K is said to be in good position with respect to (P_0, M_0) in some literature.

Let P = MU be a standard parabolic subgroup of G. Then $G(\mathbb{A}) = P_0(\mathbb{A})K = P(\mathbb{A})K = U(\mathbb{A})M(\mathbb{A})K$. Write every $g \in G(\mathbb{A})$ as g = umk, with $u \in U(\mathbb{A})$, $m \in M(\mathbb{A})$, and $k \in K$. This gives a well-defined map $G(\mathbb{A}) \to M(\mathbb{A})/(M(\mathbb{A}) \cap K)$ by sending g to the equivalence class of m. The map $H_M : M(\mathbb{A}) \to \mathfrak{a}_M$ is a continuous map of groups, and thus H_M kills every compact subgroup of $M(\mathbb{A})$ because \mathfrak{a}_M is a finite dimensional real vector space. In particular $M(\mathbb{A}) \cap K$ is contained in $M(\mathbb{A})^1$. Therefore a well-defined map $m_P : G(\mathbb{A}) \to M(\mathbb{A})/M(\mathbb{A})^1$ is obtained.

Let $t = (t_{\alpha})_{\alpha \in \Delta_0} \in \mathbb{R}^{\Delta_0}_{>0}$. Define $A_{M_0}(t)$ to be the subset of A_{M_0} of elements $x \in A_{M_0}$ such that $\alpha(x) > t_{\alpha}$ for all $\alpha \in \Delta_0$.

Lemma 0.2.7. There exists a compact subset $\omega \subset P_0(\mathbb{A})$ such that for sufficiently small t, it holds that $G(\mathbb{A}) = G(F)S$ where $S = \omega A_{M_0}(t)K$.

The set S is called a Siegel set.

Fix a faithful representation $i': G \to \operatorname{GL}_n$. Define $i: G \to \operatorname{SL}_{2n}$ by

$$g \mapsto \begin{bmatrix} i(g) & & \\ & t_i(g)^{-1} \end{bmatrix}$$
.

The height function $|-|:G(\mathbb{A})\to\mathbb{R}_{>0}$ is defined by

$$g \mapsto \prod_{v} \sup_{1 \le r, s \le 2n} |i(g)_{r,s}|_v,$$

where v runs through all places of F. A function $\phi: G(\mathbb{A}) \to \mathbb{C}$ has moderate growth if there exists $c \in \mathbb{R}_{>0}$ and $r \in \mathbb{R}$ such that $|\phi(g)| \le c|g|^r$ for all $g \in G(\mathbb{A})$.

0.3. The Eisenstein Series.

Definition 0.3.1. Let $\xi, \lambda \in X_P$. Let $\phi \in \mathcal{A}(\mathfrak{X}_P)_{\xi}$, i.e. ϕ is an automorphic form on $\mathfrak{X}_P = P(F)U(F)\backslash G(\mathbb{A})$ such that $\phi(ag) = a^{\xi}\phi(g)$ for all $a \in A_M$. The Eisenstein series is $E(g, \phi, \lambda) = \sum_{\gamma \in P(F)\backslash G(F)} \phi_{\lambda}(\gamma g)$.

Lemma 0.3.2. There exists an open cone \mathcal{C} in \mathfrak{a}_P^* such that $E(g, \phi, \lambda)$ converges absolutely for $\lambda \in X_P$ with $\text{Re}(\lambda) \in \mathcal{C}$, and locally uniformly in (g, λ) . Moreover, the function $E(-, \phi, \lambda)$ has moderate growth.

0.4. **Intertwining Operators.** Let P = MU and P' = M'U' be two standard parabolics in G. Suppose $w \in G(\mathbb{Q})$ is an element such that $wMw^{-1} = M'$. The element w induces isomorphism $X_P \to X_{P'}$ denoted by $\lambda \mapsto w\lambda$.

Definition 0.4.1. Let $\varphi \in \mathcal{A}(\mathfrak{X}_P)$ be an automorphic form. Let $\lambda \in X_P$. Write $(M(w,\lambda)\varphi)_{w\lambda}$ for the function

$$g \in G(\mathbb{A}) \mapsto \int_{(wUw^{-1} \cap U')(\mathbb{A}) \setminus U'(\mathbb{A})} \varphi_{\lambda}(w^{-1}ug) du$$

whenever the integral converges.

Lemma 0.4.2. There exists an open cone $\mathcal{C} \subset \mathfrak{a}_P^*$ such that the integral converges absolutely and locally uniformly in g and λ when $\text{Re}(\lambda) \in \mathcal{C}$. Moreover, for such λ , the map $(M(w,\lambda)\varphi)_{w\lambda}$ is an automorphic form on $\mathfrak{X}_{P'}$.

Proof. Reduce to the Eisenstein case.

Lemma 0.4.3. Fix standard parabolic subgroups P and P' of G. Fix $\varphi \in \mathcal{A}(\mathfrak{X}_P)$.

- (1) The partially defind map $\lambda \in X_P \mapsto M(w,\lambda)\varphi \in \mathcal{A}(\mathfrak{X}_{P'})$ has a meromorphic extension to all $\lambda \in \mathfrak{X}_P$. (2) $E(M(w,\lambda)\varphi,w\lambda) = E(\varphi,\lambda)$ for all $\lambda \in X_P$.
- (3) Let P'' be another standard parabolic subgroup of G. Suppose $w'M'(w')^{-1} = M''$. Then $M(w'w, \lambda) =$ $M(w', w\lambda) \circ M(w, \lambda)$.

 $Email\ address: \verb|nietianjiao@outlook.com||$