Define $(a_i, b_i)' = (a, \infty) \cap (a_i, b_i)$ and $(a_i, b_i)'' = (-\infty, a] \cap (a_i, b_i)$. Notice $((a, \infty) \cap (a_i, b_i)) \cup$ $((-\infty, a] \cap (a_i, b_i)) = (a_i, b_i)$. Then, $m^*(a_i, b_i) = b_i - a_i = m^*((a_i, b_i)') + m^*((a_i, b_i)'')$. Since $E \subset (a_i, b_i)$ for any i and $E \cap (a, \infty) \subset (a_i, b_i) \cap (a, \infty) \subset \bigcup_{i=1}^{\infty} (a_i, b_i)'$. So, by monotonicity and subadditivity of m^* , $m^*(E \cap (a,\infty)) \le m^*\left(\bigcup_{i=1}^{\infty} (a_i,b_i)'\right) \le \sum_{i=1}^{\infty} m^*((a_i,b_i)').$ Similarly, since $E \subset (a_i, b_i)$ for any i and $E \cap (-\infty, a] \subset (a_i, b_i) \cap (-\infty, a] \subset \bigcup_{i=1}^{\infty} (a_i, b_i)''$. So, by monotonicity and subadditivity of m^* , $m^*(E \cap (-\infty, a]) \le m^* \left(\bigcup_{i=1}^{\infty} (a_i, b_i)''\right) \le \sum_{i=1}^{\infty} m^*((a_i, b_i)'')$. Thus, $m^*(E \cap (a, \infty)) + m^*(E \cap (-\infty, a]) \le \sum_{i=1}^{\infty} m^*((a_i, b_i)') + \sum_{i=1}^{\infty} m^*((a_i, b_i)'') = \sum_{i=1}^{\infty} \left(m^*((a_i, b_i)') + m^*((a_i, b_i)'')\right)$ $=\sum_{i=1}^{\infty}(b_i-a_i)\leq m^*(E)+\varepsilon. \text{ Hence, } m^*(E)\geq m^*(E\cap(a,\infty))+m^*(E\cap(-\infty,a]).$ Thus, (a, ∞) is m^* -measurable. \begin{homeworkProblem}[Exercise 3.2.21: Let \$G\$ be a group. The set \$Z(G \begin{proof} math formatting. Stay beautiful. Note \$e \in Z(G)\$ since \$eg=ge\$ for all \$g \in G\$. Also, all \$x ' \end{proof} \noindent \textbf{(b)Show that $Z(G)=\big\{a \in G\}C(a)$.} \begin{proof} \textbf{(show \$Z(G)\subseteq \bigcap_{a \in G}C(a)\$)} Consider an $\text{textbf}((show $Z(G) \simeq \frac{a \in G}C(a)$)) Consider any $x \in \frac{a \in G}C(a)$.$ *Proof.* (show $Z(G) \subseteq \bigcap_{a \in G} C(a)$) Consider any $x \in Z(G)$. Then, for all $g \in G$, xg = gx. \end{proof} \noindent \textbf{(c) Compute the center of \$5 3\$. } Consider the multiplication table of \$S 3\$: \begin{array}{c||c|c|c|c|c} \circ & (1) & (12) & (13)& (23) & (123)& (132)\\ \hline (1) & (1) & (12) & (13)& (23) & (123)& (132)\\ \hline (12) & (12) & (1) & (132)& (123) & (23)& (13)\\ \hline (13) & (13) & (123) & (1)& (132) & (12)& (23)\\ (23) & (23) & (132) & (123)& (1) & (13)& (12)\\ \hline (123) & (123) & (13) & (23)& (12) & (132)& (1)\\ \hline (132) & (132) & (23) & (12)& (123) & (1)& (123)\\ \end{array}

```
\item If f_n \ \ is a sequence of Lebesgue measurable real-valued functions, prove that \\ f_n \in \mathbb{R}
                              \end{pf}
                              \item Let $f \colon \R \rightarrow [0, \infty)$ be Lebesgue measurable.
                              \begin{enumerate}[(a)] % (a), (b), (c), ...
                              \item Let E_m=\ x \in \mathbb{R} \ \colon f(x)> 1/m }. Use the monotone convergence theorem to show
                              \begin{equation*}
                               \lim_{m \rightarrow \infty} \inf_{E_m} f dm = \inf_{R} f dm.
                              \begin{pf}
                               \item Prove that if \int \frac{dm<\left(\frac{y}{n}\right)}{1} \, dm
                              \begin{equation*}
                               \int_{\R} f dm < \int_{A} f dm + \varepsilon.
                              \end{equation*}
                              \begin{pf}
                                     Assume \int R fdm \in \. Then, f \in L^+\ and [
                                     \int R f \ d m = \sup \left\{ \int M = \sup \left\{ \right\} \right\}.
                                     Thus, for any $\epsilon>0$, we can find a simple function $\phi$ such that \[
                                      Let \[
                                                                       :{ Then, } \int \phi \ dm = \sum_1^n a_j m(E_j).
                      Dear LaTex.
                                                                      of all such integrals and $\int f \ dm < \infty$. $\int \phi \ dm < \inf
                                                                      1^k E i
I love your syntax. Thanks for the nice
                                                                        5. Also, $m(A_j) < \infty$ for all $j$ implies $m(\cup_1^k A_j) = m(A)</pre>
```

Kailee

Equivalently for all $a \in G$, xa = ax. Thus, $x \in C(a)$ for all $a \in G$ so $x \in \bigcap_{a \in G} C(a)$. (show $Z(G) \supseteq \bigcap_{a \in G} C(a)$) Consider any $x \in \bigcap_{a \in G} C(a)$. Then, for all $a \in G$, $x \in C(a)$. So, for all $a \in G$, xa = ax. Equivalently, for all $g \in G$, xg = gx so $x \in Z(G)$.

) = \sum_1^k a_j m(E_j) = \sum_1^k a_j m(A_j) = \int_A \phi \ dm

it_A \phi \ dm : 0 \leq \phi \leq f, \phi \$ simple \$ \}\$, we have \$\i

(c) Compute the center of S_3 . Consider the multiplication table of S_3 :

0	(1)	(12)	(13)	(23)	(123)	(132)
(1)	(1)	(12)	(13)	(23)	(123)	(132)
(12)	(12)	(1)	(132)	(123)	(23)	(13)
(13)	(13)	(123)	(1)	(132)	(12)	(23)
(23)	(23)	(132)	(123)	(1)	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	(1)
(132)	(132)	(23)	(12)	(123)	(1)	(123)