[Total Marks: 100]

Total No. of Printed Pages:3

[Duration: Three Hours]

FE (Sem - II) (Revised Course 2016-17) EXAMINATION MAY/JUNE 2019 Engineering Mathematics - II

			, 1001
Instructions:		Please check whether you have got the right question paper. 1. Attempt any five questions, two each from part A and part B and one from pa 2. Figures to the right indicate full marks. 3. Assume suitable data, if necessary. PART A	ırt C.
Q.1	a)	Evaluate $\int_0^{\pi} \frac{\log_e(1+\alpha Cosx)}{Cosx} dx$ by applying differentiation under the integral sign.	08
	b)	Find length of the curve $y = \frac{1}{6}(x^2 + 4)^{\frac{3}{2}}$ for $0 \le x \le 3$	06
	c)	Evaluate $\int_0^\infty \int_0^x xe^{-x^2/y} dxdy$	06
Q.2	a)	Change the order of integration and evaluate $\int_0^1 \int_{-\sqrt{x}}^{\sqrt{x}} 2y + 3dxdy + \int_1^2 \int_{x-2}^{2-x} 2y + 3dxdy$, 10
	b)	Evaluate $\int_0^1 \int_0^{\sqrt{x}} \int_0^{1-x} x + y dz dy dx$	05
	c)	For the curve $\bar{r}(t) = 3\cos t\bar{\iota} + 2S int \bar{\jmath} + t\bar{k}$. Find the curvature at $t = \pi/2$.	05
Q.3	a)	The loop of the curve $9y^2 = (x-2)(5-x)^2$ is revolved about the x-axis. Find the surface area of the object generated.	07
	b)	The moving particle starting at time $t=0$ from $2\bar{\iota}+3\bar{\jmath}$ has velocity $\bar{v}=\sin 2t\bar{\iota}+2\cos 2t\bar{\jmath}+2\bar{k}$ at time t. find its position vector and acceleration at any time t.	06
	c)	Evaluate $\iiint 2y + z \ dxdydz$ over the region $\{(x,y,z)/y^2 \le x, x^2 \le y, 0 \le z \le 1\}$	07
PART B			
Q.4	a)	In which direction is the rate of change of $f(x,y,z) = 3x^2 + 2yz$ at $(-1,1,2)$ maximum? Find the magnitude of this maximum.	04
	b)	Show that $F = 8xCosy\bar{\iota} + (4_{xe} - 4x^2 siny + 6y)\bar{\jmath} + 4e^y\bar{k}$ irrotational and find its scalar potential.	06

Paper / Subject Code: FE201 / Engineering Mathematics - II

FE201

c) Solve the following

10

- i) $(x^2 + y^2)dx (x^2 + xy)dy = 0$
- ii) $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 3x^2 + 2x$
- Q.5 a) Use Stoke's Theorem to evaluate the surface integral $\iint_{S} (\nabla \times \overline{F}) . \overline{n} ds$ where $\overline{F} = (xy)\hat{\imath} + \mathbf{08}$ $(2x + 3z)\hat{\jmath} + y^{2}\hat{k}$ and \hat{n} is the unit outward normal vector to surface S. S being the surface of the tetrahedron bounded by x = 0, y = 0, z = 0 and x + y + z = 2 excluding the surface in the xy plane.
 - b) If $f(x,y,z) = 2x\overline{i} + zy\overline{j} + 3xz\overline{k}$ and $g(x,y,z) = x^2 + 2yz$ compute

06

- i) $f.\nabla g$
- ii) $\nabla |f|^2$
- c) Solve $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 5y = 2\sin(\log_e x)$
- Q.6 a) Verify Green's Theorem in the plane for $\oint (2x + y^2)dx + (5 + xy)dy$ along the boundary of the region bounded by $y^2 = 4x$ and y = 2x.
 - b) Solve $\frac{d^2y}{d^2y} = \frac{d^2y}{d^2y} = \frac{d$
 - i) $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{2x}\cos x$
 - ii) $(1+x^2)\frac{dy}{dx} + 2xy = x\sqrt{1-x^2}$
- Q.7
- a) Find the area of $r \le 3 + \cos \theta$

05

- b) If $f = x^2\bar{\imath} 2xy\bar{\jmath} + yz\bar{k}$. Compute $\int_c f \, dr$ between (1,2,1) and (2, 5, 4) where C is the path having parametric equations x = t, $y = t^2 + 1$, z = 3t 2.
- c) Solve i) $(1+x)\frac{dy}{dx} + 1 = 2e^{-y}$
- d) Define divergence of a vector filed. When is it said to be solenoidal? Show that the vector field $\bar{F} = 2x^3y\bar{\iota} + (2xz 3x^2y^2)\bar{\jmath} xy^2\bar{k}$ is solenoidal.

Paper / Subject Code: FE201 / Engineering Mathematics - II

FE201

- Q.8 a) The curve $r = 2 \cos \theta$ is revolved about the initial line. Find the volume of the object **06** generated.
 - b) Find the volume of the region $\{(x, y, z)/x^2 + y^2 \le 1, 2x + y + 2z \le 4, z \ge 0\}$ 08
 - c) Solve $x^2 \frac{d^2 y}{dx^2} 2x \frac{dy}{dx} 4y = x^2 + 2\log_e x$