TD No 3: Estimation et tests

EXERCICE 1. (ADN et test d'adéquation à une loi uniforme)

Le tableau ci-dessous représente le nombre observé de palindromes pour 10 segments de l'ADN du CMV. Ces données suivent-elles une loi uniforme? Décrivez votre démarche pour conclure.

Segment	1	2	3	4	5	6	7	8	9	10	Total
Effectifs	29	21	32	30	32	31	28	32	34	27	296

Remarque : une sortie numérique donne comme statistique associée $T_{obs} \approx 4.14$.

EXERCICE 2. (Jeux vidéos)

Sur 91 étudiants ayant participé à un sondage sur les jeux vidéos, on a relevé les résultats suivants :

Note	A	В	С	D	F	Total
Effectifs	31	52	8	0	0	91

Ces observations sont-elles en adéquation avec la distribution 20% de A, 30% B, 40% C et 10% de D et F?

EXERCICE 3. (Déterministe vs. aléatoire) Rappelons que si X suit une loi de Poisson de paramètre θ , alors pour tout entier $k \in \mathbb{N}$:

$$p(k) = \mathbb{P}(X = k) = \frac{\theta^k}{k!} e^{-\theta}.$$

On rappelle aussi que l'espérance d'une telle loi vaut $\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot \frac{\theta^k}{k!} e^{-\theta} = \theta$. Pour un processus de Poisson homogène de taux λ par heure, montrez que le nombre d'occurrences sur deux intervalles disjoints de 1 heure chacun suit une loi de Poisson de paramètre 2λ , et donner l'espérance de cette loi.

Aide:

 $\mathbb{P}[n \text{ occurrences en deux heures}] = \sum_{k=0}^{n} \mathbb{P}[k \text{ occurrences la } 1^{\text{re}} \text{ heure}, n-k \text{ occurrences la } 2^{\text{nde}}],$

et

$$\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} = 2^{n}.$$

EXERCICE 4. (Méthode des moments - Loi uniforme)

Soient $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}(0, \theta)$ de loi commune la loi uniforme sur l'intervalle $[0, \theta]$ (avec $\theta > 0$).

- a) Donner f, la densité de la loi de X_1 , et calculer son espérance.
- b) Proposez un estimateur de θ par la méthode des moments.
- c) Trouvez l'estimateur du maximum de vraisemblance de θ .
- d) Calculez l'erreur quadratique moyenne pour ces deux estimateurs. Discutez.

EXERCICE 5. (Maximum de vraisemblance - loi de Pareto)

Trouvez l'estimateur du maximum de vraisemblance pour $\theta > 0$ à partir de n observations X_1, \ldots, X_n suivant une loi de Pareto

$$f(x;\theta) = \theta \mu^{\theta} x^{-\theta-1}, \qquad x \ge \mu,$$

où $\mu > 0$ est inconnu.