1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2018

Recitation #2

nanoHUB and Visual Molecular Dynamics Nanowire Tensile Deformation Lab

Recitation instructor: Francisco Martin-Martinez

email: fmartinm@mit.edu

Review from last week

- Working groups for Psets
- Checking on VMD installation and nanoHUB configuration.
- Review on basics concepts on Molecular Dynamics
- QM vs MD simulations
- Questions?

Getting to work with nanoHUB and VMD: Nanowire Tensile Deformation Lab

Simulation index (MIT tools for IM/S):

http://star.mit.edu/molsim/nanohub/index.html

star > molsim > StarMolsim NanoHub Tools

Home

Tools

Donate

StarMolsim Tools on NanoHUB.org

The StarMolsim tools are hosted on nanohub.org. Below is a list of links to the StarMolsim tools migrated to nanohub.org:

- stretchfcc simulates a continuous expansion of an FCC crystal while measuring the energy, stresses, etc
- deformnanowire simulates tensile deformation of a copper nanowire
- crackprop models supersonic crack propagation in a 2D triangular lattice
- stretchmol stretching simulation of an alpha-helical protein domain
- tad temperature-accelerated dynamics simulation
- atomic scale modeling toolkit this set of simulation tools provides students with the fundamentals of computational problem-solving techniques that are used to understand and predict properties of nanoscale systems.

https://nanohub.org/tools/deformnanowire

Nanowire Tensile Deformation Lab

By Markus Buehler¹, Justin Riley¹, Joo-Hyoung Lee, Jeffrey C Grossman²

1. Massachusetts Institute of Technology (MIT) 2. Massachusetts Institute of Technology

Simulates tensile deformation of a copper nanowire

2014

doi:10.4231/D3901ZG81 cite this

View All Supporting Documents

Tool Audience Unrated

₁ 36 users, detailed usage

66 0 Citation(s)

0 questions (Ask a question)

★ 0 review(s) (Review this)

0 wish(es) (New Wish)

→ Share: 🚹 💆 💥

Real experiment

Our simulation

Some atoms at boundary clamped (move in a prescribed way)

Our quick note on units

In the molecular modeling code:

Reference **length** is $I^* = 1 \text{ A}^\circ = 1\text{E}-10 \text{ m}$

Reference **energy** is E* = 1 eV (Amount of energy gained by an electron moved across an electric potential difference of one volt)

Reference **mass** $m^* = 1$ a.m.u. (1/12 the mass of an atom of carbon-12)

All input and output from the simulation code is expressed in these units.

e.g.,

P* = [Force]/[Length]² = [Energy]/[Length]/[Length]² = E*/I*³ = eV/A°³ 1 eV/A°³ = 160.2 GPa

Units of Temperature

Temperature: average kinetic energy of all the particles in a system.

The velocities (kinetic energy) follow a Maxwell–Boltzmann distribution

We can use units of Energy for Temperature, if we know the relationship between them: the Boltzmann constant

$$E = K_B T$$

 $K_B = 1.38064852 \times 10^{-23} \text{ J K}^{-1}$

Our units of temperature are eV (based on a Maxwell–Boltzmann distribution).

 $T^* = [Energy]/K_B = E^*/K_B = eV/K_B = 1.6022 \times 10-19 \text{ J}/(1.3806 \times 10-23 \text{ J/K}) = 11605 \text{ K}$

5% of 10GB

^√ 609 x 526

< Simulation Parameters

Storage (manage)

Code output

Simulation step = # of iterations written HERE: 5000 steps, written every 5 steps, a total of 1000 iterations written

Initial crystal

0 1 63.546 0.000000 0.000000 50.000000
1 1 63.546 1.278096 1.278096 51.807500
2 1 63.546 0.000000 2.556191 50.000000
3 1 63.546 1.278096 3.834287 51.807500
4 1 63.546 0.000000 5.112382 50.000000
5 1 63.546 1.278096 6.390478 51.807500
6 1 63.546 0.000000 7.668573 50.000000
7 1 63.546 1.278096 8.946669 51.807500
8 1 63.546 2.556191 0.000000 50.000000
9 1 63.546 3.834287 1.278096 51.807500
10 1 63.546 2.556191 2.556191 50.000000
11 1 63.546 3.834287 3.834287 51.807500
12 1 63.546 2.556191 5.112382 50.000000
13 1 63.546 3.834287 6.390478 51.807500
14 1 63.546 2.556191 7.668573 50.000000
15 1 63.546 3.834287 8.946669 51.807500
16 1 63.546 6.390478 1.278096 51.807500
17 1 63.546 5.112382 2.556191 50.000000
18 1 63.546 6.390478 3.834287 51.807500
19 1 63.546 5.112382 5.112382 50.000000
20 1 63.546 6.390478 6.390478 51.807500
21 1 63.546 5.112382 7.668573 50.000000
22 1 63.546 6.390478 8.946669 51.807500
23 1 63.546 7.668573 0.000000 50.000000
24 1 63.546 8.946669 1.278096 51.807500
25 1 63.546 7.668573 2.556191 50.000000
26 1 63.546 8.946669 3.834287 51.807500
27 1 63.546 7.668573 5.112382 50.000000
28 1 63.546 8.946669 6.390478 51.807500
29 1 63.546 7.668573 7.668573 50.000000
30 1 63.546 8.946669 8.946669 51.807500
31 1 63.546 0.000000 0.000000 53.615000
32 1 63.546 1.278096 1.278096 55.422500
33 1 63.546 0.000000 2.556191 53.615000
34 1 63.546 1.278096 3.834287 55.422500
35 1 63.546 0.000000 5.112382 53.615000
36 1 63.546 1.278096 6.390478 55.422500
37 1 63.546 0.000000 7.668573 53.615000
38 1 63.546 1.278096 8.946669 55.422500
39 1 63.546 2.556191 0.000000 53.615000
40 1 63.546 3.834287 1.278096 55.422500
41 1 63.546 2.556191 2.556191 53.615000
41 1 03.340 2.330191 2.330191 33.013000

Movie

620 CHKPT			
Cu	0.00084	0.00077	50.00000
Cu	0.00054	2.55599	50.00000
Cu	0.00051	5.11247	50.00000
Cu	0.00051	7.66815	50.00000
Cu	2.55570	0.00013	50.00000
Cu	2.55601	2.55608	50.00000
Cu	2.55607	5.11243	50.00000
Cu	2.55604	7.66837	50.00000
Cu	5.11244	2.55619	50.00000
Cu	5.11243	5.11240	50.00000
Cu	5.11243	7.66838	50.00000
Cu	7.66846	0.00094	50.00000
Cu	7.66842	2.55602	50.00000
Cu	7.66837	5.11242	50.00000
Cu	7.66841	7.66841	50.00000
Cu	1.27799	1.27792	51.80750
Cu	1.27802	3.83423	51.80750
Cu	1.27800	6.39061	51.80750
Cu	1.27824	8.94609	51.80750
Cu	3.83418	1.27812	51.80750
Cu	3.83425	3.83423	51.80750
Cu	3.83424	6.39059	51.80750
Cu	3.83424	8.94627	51.80750
Cu	6.39070	1.27808	51.80750
Cu	6.39058	3.83422	51.80750
Cu	6.39059	6.39059	51.80750
Cu	6.39063	8.94625	51.80750
Cu	8.94602	1.27819	51.80750
Cu	8.94626	3.83422	51.80750
Cu	8.94625	6.39063	51.80750
Cu	8.94599	8.94599	51.80750
Cu	0.00065	0.00061	53.61500
Cu	1.27799	1.27796	55.42250
Cu	0.00032 1.27802	2.55605 3.83423	53.61500 55.42250
Cu			
Cu	0.00029 1.27801	5.11243	53.61500
Cu Cu	0.00047	6.39059 7.66841	55.42250 53.61500
Cu	1.27826	7.66841 8.94621	55.42250
Cu	1.2/020	0.94021	33.42230

To do in class: visualize the MD simulation with VMD. Create a picture and a movie

If you have time: simulate this...

