Формальные языки

домашнее задание до 23:59 05.03

1. Доказать или опровергнуть утверждение: произведение двух минимальных автоматов всегда дает минимальный автомат (рассмотреть случаи для пересечения, объединения и разности языков).

Решение

Ответ: Нет.

(а) Для объединения. Возьмем в качестве первого языка $L_1=1^{2n}$ и в качестве второго $L_2=1^{2n+1}$ Міп ДКА для L_1 :

Min ДКА для L_2 :

Их произведение для объединения:

Міп ДКА для объединения:

(b) Для пересечения:

Возьмем такие же L_1 и L_2 .

Их произведение для пересечения:

Міп ДКА для пересечения:

(с) Для разности:

Возьмем произведение двух автоматов для языка $L=1^{2n+1}.$ Их произведение:

Міп ДКА для разности:

2. Для регулярного выражения:

$$(a\mid b)^+(aa\mid bb\mid abab\mid baba)^*(a\mid b)^+$$

Построить эквивалентные:

Решение

Эта регулярка эквивалетна $(a \mid b)^+(a \mid b)^+.$

(a) Недетерминированный конечный автомат **Решение**

(b) Недетерминированный конечный автомат без ε -переходов **Решение**

(c) Минимальный полный детерминированный конечный автомат **Решение**

3. Построить регулярное выражение, распознающее тот же язык, что и автомат:

Решение

$$(a\mid b\mid c)^*((a(b\mid c)^*a)\mid (b(a\mid c)^*b)\mid (c(a\mid b)^*c))$$

4. Определить, является ли автоматным язык $\{\omega\omega^r\mid \omega\in\{0,1\}^*\}$. Если является — построить автомат, иначе — доказать.

Решение

Пусть L - автоматный. Тогда для него верна лемма о накачке.

Возьмем n из леммы и возьмем слово $\alpha = (1)^n 00(1)^n$.

Мы знаем что есть слова $u,v,w\in L$, такие что $|uv|\leq n,|v|\geq 1$

Тогда $|v| = \{1\}^+$. Рассмотрим слово $uvvw = (1)^{n+|v|}00(1)^n$, оно должно лежать в языке по лемме.

Ho, с другой стороны, это слово не является палиндромом. Противоречие.

5. Определить, является ли автоматным язык $\{uaav \mid u, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$. Если является — построить автомат, иначе — доказать.

Решение

Пусть L - автоматный. Тогда для него верна лемма о накачке.

Возьмем n из леммы и возьмем слово $\alpha = (b)^n aa(ba)^n$.

Мы знаем что есть слова $u, v, w \in L$, такие что $|uv| \le n, |v| \ge 1$

Тогда $v \in \{b\}^+$. Рассмотрим $uw = (b)^{n-|v|}aa(ba)^n$, оно должно лежать в языке по лемме. Но, с другой стороны, его нельзя представить в виде двух слов U и V, что uw =

UaaV, $|U|_b \ge |U|_a$, так как $(n - |v| = |U|_b < |U|_a = n)$.

Противоречие.

Пример применения алгоритма минимизации

Минимизируем данный автомат:

Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное δ отображение.

δ^{-1}	0	1
A		В
В	_	A
С	ΑВ	_
D	С	С
\mathbf{E}	D	_
\mathbf{F}	$\rm E~F$	DFG
G	G	${ m E}$

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом ε : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A,F) не дает нам новых неэквивалентных пар. Для (B,F) находится 2 пары: (A,D),(A,G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

	Α	В	С	D	\mathbf{E}	F	G
A							
В							
С	√	√					
D	✓	\checkmark	✓				
Е	√	√	√	√			
F	✓	\checkmark	✓	\checkmark	✓		
G	√	\checkmark	√	\checkmark	√		

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин: $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$. Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

