WHAT IS CLAIMED IS:

denotes the sub-carrier index;

23

-	
2	1. A method of estimating the link quality of a channel, wherein a fading
3	value of said channel is calculated to modify a signal-to-noise ratio of said
4	channel thereby deriving the link quality of said channel.
5	2. A method of estimating the link quality of a channel composed of
6	subcarriers over which OFDM packets are transmitted, the method comprising
7	the steps of:
8	estimating a noise quantity (B) of said channel based on two long
9	training symbols contained in a received OFDM packet transmitted over said
10	channel;
11	summing the absolute values of estimated subcarrier gain values (Hk) of
12	said subcarriers thereby obtaining an estimated channel gain value (A) of said
13	channel;
14	estimating a fading value (F) of said channel based on said estimated
15	subcarrier gain values; and
16	subtracting said fading value (F) from said estimated channel gain value
17	to derive a channel gain measure (A-F), whereby the link quality of said channel
18	is defined as a ratio of the channel gain measure (A-F) to the noise quantity (B).
19	3. The method as claimed in claim 2, the noise quantity estimating step
20	further comprising:
21	receiving the first of said long training symbols from said channel to
22	obtain a first subcarrier gain value $H_{k,1}$ for each of said sub-carriers, where k

- receiving the second of said two long training symbols from said
- 2 channel to obtain a second subcarrier gain value $H_{k,2}$ for each of said subcarriers;
- 3 and
- 4 estimating the noise quantity according to the relationship
- 5 $B = \sum_{k=1}^{N} |H_{k,1} H_{k,2}|$, where N is the quantity of said subcarriers.
- 4. The method as claimed in claim 3, wherein said estimated subcarrier
- 7 gain value (H_k) of each subcarrier is calculated based on said first and second
- 8 subcarrier gain values.
- 5. The method as claimed in claim 4, wherein said estimated subcarrier
- gain value (H_k) of each subcarrier is an average value of said first and second
- 11 subcarrier gain values.
- 6. The method as claimed in claim 3, wherein said fading value (F) is
- calculated according to the relationship $F = \sum_{k=1}^{N} |H_k| \frac{A}{N}$.
- 7. The method as claimed in claim 4, wherein said fading value (F) is
- 15 calculated according to the relationship $F = \sum_{k=1}^{N} ||H_k| \frac{A}{N}|$.
- 8. The method as claimed in claim 5, wherein said fading value (F) is
- 17 calculated according to the relationship $F = \sum_{k=1}^{N} ||H_k| \frac{A}{N}|$.
- 9. An apparatus for estimating the link quality of a channel composed of
- 19 subcarriers, said apparatus comprising:
- channel gain estimating means for estimating a first and a second
- subcarrier gain values ($H_{k,1}$ $H_{k,2}$) for each subcarrier based on two sequentially
- 22 received long training symbols of a received OFDM packet;

1 calculating means for calculating a noise quantity (B), a fading value (F)

2 and an estimated channel gain value (A) based on said first and second subcarrier

- 3 gain values; and
- 4 link quality calculating means for calculating the quality of said channel,
- 5 wherein said link quality calculating means performs a subtraction of said fading
- 6 value from said estimated channel gain value (A-F) to derive a modified channel
- 7 gain value, whereby the quality of said channel is defined as a ratio of the
- 8 modified channel gain value (A-F) to the noise quantity (B).
- 9 10. The apparatus as claimed in claim 9, wherein said calculating means
- 10 calculates the noise quantity (B) based on relationship $B = \sum_{k=1}^{N} |H_{k,1} H_{k,2}|$, where
- 11 N is the quantity of said sub-carriers.
- 11. The apparatus as claimed in claim 9, wherein said calculating means
- further calculates an average value of said first and second subcarrier gain values
- 14 $(H_{k,1} H_{k,2})$ as an estimated subcarrier gain value (H_K) for each subcarrier.
- 15 12. The apparatus as claimed in claim 11, wherein said estimated
- 16 channel gain value (A) is derived by summing the absolute values of said
- 17 estimated subcarrier gain values (H_k).
- 13. The apparatus as claimed in claim 11, wherein said fading value (F)
- is calculated according to the relationship $F = \sum_{k=1}^{N} |H_k| \frac{A}{N}$, where N is the
- 20 quantity of subcarriers.
- 21 14. The apparatus as claimed in claim 12, wherein said fading value (F)
- 22 is calculated according to the relationship $F = \sum_{k=1}^{N} ||H_k| \frac{A}{N}|$, where N is the
- 23 quantity of subcarriers.