Problem Set 2

Gus Lipkin

CAP 4763 Time Series Modelling and Forecasting

All <u>underlined</u> portions are the corrections

All uncited quotes are from the problem set

Table of Contents

Section
Part A
Part B
3 Autocorrelation and Weak Dependence
4 ARDL Model and Breusch-Godfrey Test
5 Dynamically Complete Models and Newey-West Standard Errors
Appendix A
Appendix B

Part A

- 1. Writethemodel $y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + r$ in first differences.
- $\Delta y_t = \delta + \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \Delta r_t$
- 2. Suppose after first differencing a model is $\Delta y_t = \delta \varphi 2\varphi t + \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \Delta r_t$. What was it before the first difference was taken? (Hint: both t and t^2 are in it.)
- $y_t = \delta t + \varphi t^2 + \varphi t \varphi + \rho y_{t-1} + \beta x_{t-1} + r_t \leq WRONG$
- $\Delta y_t = \delta \phi + 2\phi t +
 ho \Delta t_{t-1} + eta \Delta x_{t-1} + \Delta r_t \leq ext{- RIGHT}$
- 3. Suppose you are originally interested in the model $y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + r_t$, where $r_t = \gamma r_{t-1} + \varepsilon_t$ and ε_t is an independent random disturbance. Write the dynamically complete model in first differences. Hint: first substitute to make the model dynamically complete, and then take the first difference.
- $y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + \gamma r_{t-1} + \varepsilon_t \leq WRONG$
- $\Delta y_t = \delta + \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \gamma \Delta r_{t-1} + \Delta \varepsilon_t$ <- WRONG
- $\Delta y_t = \delta(1-\gamma) + (\rho+\gamma)\Delta y_{t-1} \gamma\rho\Delta y_{t-2} + \beta\Delta x_{t-2} + \varepsilon_t \varepsilon_{t-1}$ <- RIGHT

Part B

3. Autocorrelation and Weak Dependence

1. Obtain the correlation of each variable with its one period lag.

<u>Variable</u>	Correlation with Lag
<u>Inflnonfarm</u>	<u>.9981</u>
InflIf	<u>.9994</u>
<u>Inusepr</u>	<u>.9821</u>
<u>Inflbp</u>	<u>.9477</u>

(obs=875)	corr ln_us_epr l1.ln_us_epr
	L.
	ln_us~ <i>r ln_us</i> ~r
In_us_epr	
	1.0000
L1.	0.9758 1.0000

(obs=983)	corr ln_fl_nonfarm l1.ln_fl_nonfarm
	L.
	ln_fl~ <i>m</i> ln_fl~m
ln_fl_nonf~m	
	1.0000
L1.	0.9999 1.0000

(obs=539)	corr In_fl_lf l1.ln_fl_lf
	L.
	In_fl_lf In_fl_lf
ln_fl_lf	
	1.0000
L1.	0.9997 1.0000

(obs=395)	corr ln_fl_bp l1.ln_fl_bp
	L.
	In_fl_bp In_fl_bp
In_fl_bp	
-	1.0000
L1.	0.9470 1.0000

- There appears to be very high correlation between the log form of each variable and its first lag. The highest is ln_fl_nonfarm with a correlation of .9999, followed by ln_fl_lf, ln_us_epr, and ln_fl_bp with .9997, .9758, and .9470 respectively.
- 2. Obtain the autocorrelogram and partial autocorrelagram for each variable.

For the above three graphs, because all of the points are outside and above the cone, we can conclude that there is an autoregressive term in the data and should consult the partial autocorrelation graph. The PAC suggests that this is a higher order moving average.

For the last graph, the autocorrelation is not all outside of the confidence interval. When we look at the PAC we see that there are significant correlations in the first few terms followed by insignificant correlations in the rest. This suggests the order of the autoregressive term.

3. Conduct the Dickey-Fuller unit root rest for each variable.

<u>Variable</u>	<u>Dickey-Fuller p-value</u>
<u>Inflnonfarm</u>	<u>.0328</u>
Infllf	<u>.6285</u>
lnusepr	<u>.2246</u>
<u>Inflbp</u>	<u>.7774</u>

Dickey-Fuller test for unit root		root	Number of obs	=	875
		——— Inter	rpolated Dickey-Fu	ller	
	Test	1% Critical	5% Critical	10%	Critical
	Statistic	Value	Value		Value
Z(t)	-4.020	-3.960	-3.410		-3.120
MacKinnon	approximate p-valu	e for Z(t) = 0.008 2	2		

. dfuller ln_us_epr, trend regress

D.ln_us_epr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_us_epr L1.	0392314	.0097585	-4.02	0.000	0583843	0200784
_trend _cons	4.02e-06 .1583652	1.84e-06 .0392952	2.18 4.03	0.030 0.000	3.99e-07 .0812411	7.63e-06 .2354894

. dfuller ln_f	l_nonfarm, tr	end regress				
Dickey-Fuller	test for unit	root		Numb	er of obs =	983
			Inter	polated	Dickey-Fuller	
	Test Statistic	1% Criti Valu	cal	5% Cri	,	Critical Value
Z(t)	-0.653	-3.	960	-	3.410	-3.120
MacKinnon appr	oximate p-val	ue for Z(t)	= 0.9761	L		
D. ln_fl_nonfarm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
ln_fl_nonfarm L1.	001659	.0025399	-0.65	0.514	0066433	.003325
_trend _cons	6.93e-07 .0159216	8.56e-06 .0160282	0.08 0.99	0.935 0.321	0000161 0155318	.000017
. dfuller ln_f	fl_lf, trend r	egress				
Dickey-Fuller	test for unit	root		Numb	er of obs =	539
			— Inter	polated	Dickey-Fuller	
	Test Statistic	1% Criti Valu		5% Cri Va	tical 10% lue	Critical Value
Z(t)	-1.724	-3.	960	-	3.410	-3.120
MacKinnon appr	oximate p-val	ue for Z(t)	= 0.7400)		
D.ln_fl_lf	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_lf L1.	0076457	.0044337	-1.72	0.085	0163552	.0010639
_trend _cons	7.40e-06 .120517	8.61e-06 .0676628	0.86 1.78	0.391 0.075	-9.52e-06 0123997	.0000243 .2534337
. dfuller ln_f	fl_bp, trend r	egress				
Dickey-Fuller	test for unit	root		Numb	er of obs =	395
					Dickey-Fuller	
	Test Statistic	1% Criti Valu		5% Cri Va	tical 10% lue	Critical Value
Z(t)	-3.256	-3.	984	-	3.424	-3.130
MacKinnon appr	coximate p-val	ue for Z(t)	= 0.0738	3		
D.ln_fl_bp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_bp L1.	0545463	.0167509	-3.26	0.001	0874792	0216134
****	0000275	0000724	0 51	0 400	0001017	0001047

_trend

-.0000375

.5091679

.0000734

.1583766

-0.51

3.21

0.609

0.001

For both Dickey-Fuller of the ln_us_epr, the p-value is extremely low at .0082 and so we accept the null hypothesis. For all others, we fail to reject the null hypothesis. Especially ln_fl_nonfarm and ln_fl_lf.

-.0001817

.1977942

.0001067

.8205417

4. "Looking at the AC and PAC, all four show strong enough first order autoregressive relationships to merit differencing. We can reject the null of an I(1) process for the log of non-farm employment. But, the partial autocorrelation coefficient is so close to one that we should difference anyway. The AC and PAC for the log difference of non-farm employment are bylow, illustrating the differences are clearly not I(1)."

4. ARDL Model and Breusch-Godfrey Test

Given the results of the previous question, transform the data as needed and estimate a dynamically complete ARDL model for non-farm employment. Include at least one lag of the relevant dependent variable. How many additional lags of the dependent variable, and how many lags of which independent variables you include, are up to you. Looking back at what you did for Problem Set 1 might be informative, but don't be limited by it. Produce and interpret the AC and PAC for the residuals and the results of a Breusch-Godfrey test. In your write up, justify your specification and interpret the results.

	regress d.ln_fl_nonfarm l(1/48)d.ln_fl_nonfarm	l(12/24)d.ln_us_epr	l(1/18, 24)d.ln_fl_lf	date
	Source SS df MS	Number of obs =	515	
	F(81, 433) =	15.48		
Model .050091055 81 .000618408	Prob > F =	0.0000		
Residual .01729335 433 .000039938	R-squared =	0.7434		
	Adj R-squared =	0.6954		
Total .067384405 514 .000131098	Root MSE =	.00632		
D.				
ln_fl_nonfarm	Coef.	Std. Err.	t	P>t
ln_fl_nonfarm				
LD.	1441103	.059346	-2.43	0.016
L2D.	1332106	.060728	-2.19	0.029
L3D.	.0520745	.060831	0.86	0.392
L4D.	.1139409	.0609067	1.87	0.062
L5D.	.066288	.0611891	1.08	0.279
L6D.	.1944856	.0614959	3.16	0.002
L7D.	.0759452	.0622902	1.22	0.223
L8D.	.0829208	.0631492	1.31	0.190
L9D.	.2532911	.0930772	2.72	0.007
L10D.	.1403499	.0960901	1.46	0.145
L11D.	.1893271	.0946093	2.00	0.046
L12D.	.4685154	.0957577	4.89	0.000

L13D.	.0758492	.1003991	0.76	0.450
L14D.	.0089228	.1008964	0.09	0.930
L15D.	.0490602	.1006788	0.49	0.626
L16D.	0187785	.1013922	-0.19	0.853
L17D.	.0547956	.1017669	0.54	0.591
L18D.	.0863921	.1011552	0.85	0.394
L19D.	25835	.1016689	-2.54	0.011
L20D.	1621826	.1009034	-1.61	0.109
L21D.	0839614	.1033319	-0.81	0.417
L22D.	1719582	.1017154	-1.69	0.092
L23D.	.0347504	.1011416	0.34	0.731
L24D.	.2927769	.0998811	2.93	0.004
L25D.	.1178616	.098203	1.20	0.231
L26D.	.0999885	.0980021	1.02	0.308
L27D.	1283723	.0980801	-1.31	0.191
L28D.	2031139	.0980964	-2.07	0.039
L29D.	2892074	.097907	-2.95	0.003
L30D.	5772115	.0991658	-5.82	0.000
L31D.	.6236058	.1020615	6.11	0.000
L32D.	.1870999	.1073141	1.74	0.082
L33D.	.1426809	.1091241	1.31	0.192
L34D.	.1068341	.1078243	0.99	0.322
L35D.	0794067	.1078368	-0.74	0.462
L36D.	.1327386	.1064489	1.25	0.213
L37D.	0639028	.099194	-0.64	0.520
L38D.	048562	.0984536	-0.49	0.622
L39D.	.0871388	.0975069	0.89	0.372
L40D.	1442082	.0974565	-1.48	0.140
L41D.	0032331	.0966638	-0.03	0.973
L42D.	.0938246	.0970599	0.97	0.334
L43D.	3559573	.0966539	-3.68	0.000
L44D.	0089124	.0978207	-0.09	0.927

L45D.	0882528	.0966085	-0.91	0.361
L46D.	.1086727	.091884	1.18	0.238
L47D.	.0313382	.091654	0.34	0.733
L48D.	.0609195	.091323	0.67	0.505
ln_us_epr				
L12D.	0155085	.1744885	-0.09	0.929
L13D.	3056076	.153451	-1.99	0.047
L14D.	5608006	.1545155	-3.63	0.000
L15D.	3645519	.1519838	-2.40	0.017
L16D.	.0029936	.1580302	0.02	0.985
L17D.	.0422232	.1559561	0.27	0.787
L18D.	.3199335	.1565006	2.04	0.042
L19D.	07463	.0988972	-0.75	0.451
L20D.	.0625226	.0999685	0.63	0.532
L21D.	0436852	.1002131	-0.44	0.663
L22D.	.2231831	.0985078	2.27	0.024
L23D.	0081188	.0960409	-0.08	0.933
L24D.	2688582	.1616447	-1.66	0.097
In_fl_lf				
LD.	.1762398	.0704433	2.50	0.013
L2D.	1356975	.0715783	-1.90	0.059
L3D.	1659446	.0715828	-2.32	0.021
L4D.	0977864	.0709175	-1.38	0.169
L5D.	1364495	.0722069	-1.89	0.059
L6D.	2270642	.0723796	-3.14	0.002
L7D.	1332104	.0724525	-1.84	0.067
L8D.	2396185	.0727056	-3.30	0.001
L9D.	1256755	.079465	-1.58	0.114
L10D.	180737	.0797732	-2.27	0.024
L11D.	005726	.0808095	-0.07	0.944

L12D.	.0558537	.1334055	0.42	0.676
L13D.	.0173463	.1262683	0.14	0.891
L14D.	.2969825	.1275491	2.33	0.020
L15D.	.125207	.1266497	0.99	0.323
L16D.	0665773	.1288379	-0.52	0.606
L17D.	1292395	.1273895	-1.01	0.311
L18D.	2883037	.1278108	-2.26	0.025
L24D.	.2278015	.1255369	1.81	0.070
date	-8.65e-06	3.19e-06	-2.72	0.007
_cons	.0058495	.0022338	2.62	0.009

I don't think there's any correlation because almost everything is inside the interval.

. estat bgodfrey, lag(1/48)	
Breusch-Godfrey LM test for	autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.617	1	0.4321
2	1.630	2	0.4427

3	1.639	3	0.6506
4	1.665	4	0.7970
5	1.730	5	0.8850
6	2.757	6	0.8387
7	8.252	7	0.3109
8	8.536	8	0.3830
9	8.707	9	0.4648
10	8.803	10	0.5509
11	9.015	11	0.6205
12	10.913	12	0.5364
13	12.697	13	0.4715
14	12.775	14	0.5443
15	14.075	15	0.5198
16	15.212	16	0.5091
17	15.284	17	0.5751
18	18.315	18	0.4351
19	18.317	19	0.5014
20	19.893	20	0.4647
21	19.920	21	0.5263
22	20.203	22	0.5704
23	20.218	23	0.6287
24	20.362	24	0.6760
25	21.112	25	0.6864
26	21.381	26	0.7221
27	23.290	27	0.6693
28	24.359	28	0.6624
29	25.322	29	0.6615

30	27.716	30	0.5855
31	28.706	31	0.5846
32	28.728	32	0.6330
33	29.272	33	0.6533
34	30.894	34	0.6207
35	30.897	35	0.6666
36	33.834	36	0.5720
37	35.071	37	0.5597
38	35.519	38	0.5847
39	38.229	39	0.5049
40	38.448	40	0.5402
41	38.548	41	0.5801
42	39.001	42	0.6034
43	39.107	43	0.6408
44	39.122	44	0.6804
45	39.431	45	0.7061
46	39.812	46	0.7278
47	40.011	47	0.7550
48	40.617	48	0.7664
H0: no serial correlation			

4) Given the results of the previous question, transform the data as needed and estimate a dynamically complete ARDL model for non-farm employment. Include at least one lag of the relevant dependent variable. How many additional lags of the dependent variable, and how many lags of which independent variables you include, are up to you. Looking back at what you did for Problem Set 1 might be informative, but don't be limited by it. Produce and interpret the AC and PAC for the residuals and the results of a Breusch-Godfrey test. In your write up, justify your specification and interpret the results.

I estimated two models, one with all lags back 12 months and one going back 24 months. Breush-Godfrey test results are in the table below. In the first case, the null of no serial correlation is rejected. For the second, the null can't be rejected at 24 lags, but it neither is it convincingly rejected (p=0.16). However, examining the PACs for the residuals in the figure below gives a bit more confidence in the second model. It also suggests some lags from year 3 and 4 may be worth including.

Breush-Godfrey tests for question 4 p > chiLags Model 1 Model 2 1 0.8812 0.4861 2 0.0332 0.778 3 0.0074 0.0585 4 0.0129 0.0386 5 0.0266 0.0709 6 0.0475 0.0774 7 0.0787 0.1049 8 0.1426 0.0453 9 0.1042 0.068 10 0.0467 0.1464 11 0.0688 0.1728 12 0.005 0.2121 13 0.2321 0.0035 14 0.0047 0.1206 15 0.0064 0.1304 16 0.0007 0.1483 17 0.0012 0.1816 18 0.0019 0.2039 19 0.0028 0.2119 20 0.0037 0.2138 21 0.0056 0.255 22 0.006 0.2065

0.0066

0.0079

0.2485

0.1618

23

24

A more parsimonious model, possibly with

selected lags out further, might be a good idea. However, with some careful thought and exploration, I still have not come up with one that passed a Breusch-Godfrey test. Perhaps you did... Really, we will need more model selection tools to help us choose if we want to forecast. If we need to estimate parameters, we need to choose the appropriate model for the purpose, even if not dynamically complete, and then use appropriately adjusted standard errors. That is the point of the next problem.

5. Dynamically Complete Models and Newey-West Standard Errors

. reg d.ln_fl_nonfarm 1(0/4)d.ln_fl_bp if tin(1948m1,2020m1)

Source	SS	df	MS	Number o		000
				- F(5, 374	.) =	2.97
Model	.00146591	5	.000293182	Prob > F	=	0.0122
Residual	.036972226	374	.000098856	R-square	d =	0.0381
				- Adj R-sq	uared =	0.0253
Total	.038438136	379	.00010142	Root MSE	=	.00994
D.						
_						
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t [95% Conf.	Interval]
ln_fl_bp						
D1.	0043445	.0035864	-1.21	0.227	0113965	.0027075
LD.	0115113	.0040594	-2.84	0.005	0194935	0035291
L2D.	.0019871	.0041056	0.48	0.629	0060858	.01006
L3D.	0011778	.0040768	-0.29	0.773	0091941	.0068385
L4D.	0028262	.0036121	-0.78	0.434	0099287	.0042763
_cons	.0015358	.0005101	3.01	0.003 .	0005328	.0025387

. newey d.ln_fl_nonfarm $1(0/4)d.ln_fl_bp$ if tin(1948m1,2020m1), lag(4)

Regression with Newey-West standard errors	Number of	obs =	380
maximum lag: 4	F(5,	374) =	4.01
	Prob > F	=	0.0015

D. ln_fl_nonf~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	. Interval]
ln_fl_bp						
D1.	0043445	.003622	-1.20	0.231	0114665	.0027776
LD.	0115113	.0036606	-3.14	0.002	0187093	0043133
L2D.	.0019871	.0043475	0.46	0.648	0065616	.0105358
L3D.	0011778	.004813	-0.24	0.807	0106416	.008286
L4D.	0028262	.003664	-0.77	0.441	0100308	.0043783
_cons	.0015358	.0004154	3.70	0.000	.0007189	.0023526

if fuller high, can't reject

5) Suppose you are interested in the relationship between the first difference in non-farm employment and the lags 0 to 4 of the differences of Florida building permits, controlling for seasonal impacts, but not controlling for any other variables or lags, including lags of employment. That is, you explicitly do not want to a dynamically complete model. (Don't worry about why, for this purpose.) Estimate the model both with and without Newey-West standard errors and discuss the difference that makes.

The results of interest are in the table at right. Note that the Newey-West standard errors are larger for the first three coefficients and smaller for the last. The regular standard errors are misleading regarding the precision of the estimates.

M	lodels for quest	ion 5
Std Err	Regular	Newey-West
D.lnflbp	0.00820***	0.00820**
	(0.00203)	(0.00250)
LD.lnflbp	0.00793***	0.00793**
•	(0.00236)	(0.00294)
L2D.lnflbp	0.00627^{*}	0.00627
•	(0.00244)	(0.00348)
L3D.lnflbp	0.00730**	0.00730^*
•	(0.00237)	(0.00300)
L4D.lnflbp	0.00430*	0.00430^*
•	(0.00204)	(0.00199)
N	379	379
R^2	0.764	

Standard errors in parentheses

* *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

Constant, trend, and month coefficients omitted for space

Appendix A

```
1
    clear
2
    set more off
3
   cd "/Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem Sets/Problem
4
    Set 2"
5
6
    *2a
7
    *Done
8
9
    *2b Load the data
10
    import delimited "Assignment 1 Monthly.txt"
11
12
   rename lnu02300000 us epr
   rename flnan fl nonfarm
13
14
   rename fllfn fl lf
15
   rename flbppriv fl_bp
    rename date datestring
```

```
17
    *2c Turn on a log file
18
19
    log using "Problem Set 1", replace
20
    *2d Generate a monthly date variable (make its display format monthly time, %tm)
21
22
    gen datec=date(datestring, "YMD")
    gen date=mofd(datec)
23
    format date %tm
24
25
26
    *2e tsset your data
27
    tsset date
28
    *2f
29
30
    gen ln us epr=log(us epr)
    gen ln fl nonfarm=log(fl nonfarm)
31
    gen ln fl lf=log(fl lf)
32
33
    gen ln fl bp=log(fl bp)
34
35
    *3a
36
    corr ln us epr 11.ln us epr
37
    corr ln_fl_nonfarm l1.ln_fl_nonfarm
    corr ln fl lf l1.ln fl lf
38
    corr ln fl bp 11.ln fl bp
39
40
41
    *3b
42
    ac ln us epr, saving(ac ln us epr.gph, replace)
    pac ln_us_epr, saving(pac_ln_us_epr.gph, replace)
43
44
    graph combine ac ln us epr.gph pac ln us epr.gph, saving(combo ln us epr.gph,
    replace)
45
46
    ac ln fl nonfarm, saving(ac ln fl nonfarm.gph, replace)
47
    pac ln_fl_nonfarm, saving(pac_ln_fl_nonfarm.gph, replace)
    graph combine ac ln fl nonfarm.gph pac ln fl nonfarm.gph,
48
    saving(combo_ln_fl_nonfarm.gph, replace)
49
50
    ac ln fl lf, saving(ac ln fl lf.gph, replace)
    pac ln fl lf, saving(pac ln fl lf.gph, replace)
51
52
    graph combine ac_ln_fl_lf.gph pac_ln_fl_lf.gph, saving(combo_ln_fl_lf.gph, replace)
53
    ac ln_fl_bp, saving(ac_ln_fl_bp.gph, replace)
54
    pac ln fl bp, saving(pac ln fl bp.gph, replace)
55
56
    graph combine ac_ln_fl_bp.gph pac_ln_fl_bp.gph, saving(combo_ln_fl_bp.gph, replace)
57
58
    *3c
59
    dfuller ln us epr, trend regress
60
    dfuller ln fl nonfarm, trend regress
    dfuller ln fl lf, trend regress
61
62
    dfuller ln fl bp, trend regress
63
    *4
64
```

```
65
    regress d.ln fl nonfarm 1(1/48)d.ln fl nonfarm 1(12/24)d.ln us epr 1(1/18,
    24)d.ln fl lf date
    predict res, residual
66
    ac res, saving(p4_ac.gph, replace)
67
68
    pac res, saving(p4_pac.gph, replace)
69
    graph combine p4_ac.gph p4_pac.gph, saving(p4_combo.gph, replace)
    estat bgodfrey, lag(1/48)
70
71
72
    *5
73
    reg d.ln fl nonfarm 1(0/4)d.ln fl bp if tin(1948m1,2020m1)
    newey d.ln fl nonfarm 1(0/4)d.ln fl bp if tin(1948m1,2020m1), lag(4)
74
75
76
    log close
```

Appendix B

```
log: /Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem S
> ets/Problem Set 2/Problem Set 1.smcl
  log type: smcl
 opened on: 26 Feb 2021, 18:08:56
. *2d Generate a monthly date variable (make its display format monthly time, %tm)
. gen datec=date(datestring, "YMD")
. gen date=mofd(datec)
. format date %tm
. *2e tsset your data
. tsset date
        time variable: date, 1939m1 to 2020m12
delta: 1 month
. *2f
. gen ln_us_epr=log(us_epr)
(108 missing values generated)
. gen ln_fl_nonfarm=log(fl_nonfarm)
. gen ln_fl_lf=log(fl_lf)
(444 missing values generated)
 gen ln_fl_bp=log(fl_bp)
(588 missing values generated)
. corr ln_us_epr l1.ln_us_epr
(obs=875)
                ln_us_~r ln_us_~r
   ln_us_epr
                   1,0000
          L1.
                           1.0000
                  0.9758
 . corr ln_fl_nonfarm l1.ln_fl_nonfarm
(obs=983)
                ln_fl_~m ln_fl_~m
ln_fl_nonf~m
                   1.0000
                  0.9999
                            1.0000
. corr ln_fl_lf l1.ln_fl_lf
(obs=539)
                ln_fl_lf ln_fl_lf
    ln_fl_lf
```

```
1.0000
                                                        0.9997
  . corr ln_fl_bp l1.ln_fl_bp
 (obs=395)
                                                  ln_fl_bp ln_fl_bp
              ln_fl_bp
                                                        1.0000
                              L1.
                                                        0.9470
                                                                                     1.0000
. *3b
  . ac ln_us_epr, saving(ac_ln_us_epr.gph, replace)
 (file ac_ln_us_epr.gph saved)
   . pac ln_us_epr, saving(pac_ln_us_epr.gph, replace)
(file pac_ln_us_epr.gph saved)
 . graph combine ac_ln_us_epr.gph pac_ln_us_epr.gph, saving(combo_ln_us_epr.gph, rep
(file combo_ln_us_epr.gph saved)
    ac ln_fl_nonfarm, saving(ac_ln_fl_nonfarm.gph, replace)
(file ac_ln_fl_nonfarm.gph saved)
. pac ln_fl_nonfarm, saving(pac_ln_fl_nonfarm.gph, replace)
(file pac_ln_fl_nonfarm.gph saved)
  . graph combine ac_ln_fl_nonfarm.gph pac_ln_fl_nonfarm.gph, saving(combo_ln_fl_nonf
 > arm.gph, replace)
(file combo_ln_fl_nonfarm.gph saved)
. ac ln_f1_lf, saving(ac_ln_f1_lf.gph, replace)
(file ac_ln_f1_lf.gph saved)
. pac ln_fl_lf, saving(pac_ln_fl_lf.gph, replace)
(file pac_ln_fl_lf.gph saved)
 . graph combine ac_ln_fl_lf.gph pac_ln_fl_lf.gph, saving(combo_ln_fl_lf.gph, replaced) actions as a second combine ac_ln_fl_lf.gph pac_ln_fl_lf.gph, saving(combo_ln_fl_lf.gph, replaced) actions action action actions are second combined actions. The same action action actions are second combined actions action action action actions action act
(file combo_ln_fl_lf.gph saved)
  . ac ln_fl_bp, saving(ac_ln_fl_bp.gph, replace)
(file ac_ln_fl_bp.gph saved)
. pac ln_fl_bp, saving(pac_ln_fl_bp.gph, replace)
(file pac_ln_fl_bp.gph saved)
 . graph combine ac_ln_fl_bp.gph pac_ln_fl_bp.gph, saving(combo_ln_fl_bp.gph, replaced actions are supplied to the same combine ac_ln_fl_bp.gph pac_ln_fl_bp.gph, saving(combo_ln_fl_bp.gph, replaced actions are supplied to the same combine action and the same combine actions are supplied to the same combine action and the same combine actions are supplied to the same combine action and the same combine actions are supplied to the same combine actions are supplied to the same combine action and the same combine actions are supplied to the same combine action and the same combine actions are supplied to the same combine action and the same combine actions are supplied to the same combine action actions are supplied to the same combine action and the same combine actions are supplied to the same combine action actions are supplied to the same combine action and the same combine action actions are supplied to the same combine action actions are supplied to the same combine action and the same combine actions are supplied to the same combine action actions are supplied to the same combine action actions are supplied to the same combine action action
(file combo_ln_fl_bp.gph saved)
. *3c
. dfuller ln_us_epr, trend regress
Dickey-Fuller test for unit root
                                                                                                                                                                       Number of obs =
                                                                                                                                                                                                                                                       875

    Interpolated Dickey-Fuller

                                                                                                      1% Critical
                                                                                                                                                                                                                          10% Critical
                                                            Test
                                                                                                                                                                  5% Critical
                                                  Statistic
                                                                                                                    Value
                                                                                                                                                                              Value
                                                                                                                                                                                                                                           Value
    Z(t)
                                                            -4.020
                                                                                                                       -3.960
                                                                                                                                                                                  -3.410
                                                                                                                                                                                                                                              -3.120
MacKinnon approximate p-value for Z(t) = 0.0082
    D.ln_us_epr
                                                                  Coef.
                                                                                            Std. Err.
                                                                                                                                                              P>|t|
                                                                                                                                                                                               [95% Conf. Interval]
          ln_us_epr
                                                      -.0392314
                                                                                             .0097585
                                                                                                                                                              0.000
                                                                                                                                                                                            -.0583843
                                                                                                                                                                                                                                   -.0200784
                                                                                                                                    -4.02
                                                        4.02e-06
                                                                                            1.84e-06
                                                                                                                                       2.18
                                                                                                                                                               0.030
                                                                                                                                                                                               3.99e-07
                                                                                                                                                                                                                                       7.63e-06
                                                                                             .0392952
                      _cons
                                                        .1583652
                                                                                                                                       4.03
                                                                                                                                                              0.000
                                                                                                                                                                                                .0812411
                                                                                                                                                                                                                                        .2354894
 . dfuller ln_fl_nonfarm, trend regress
Dickey-Fuller test for unit root
                                                                                                                                                                       Number of obs =
                                                                                                                                                                                                                                                       983
                                                                                                                                        - Interpolated Dickey-Fuller
                                                                                                      1% Critical
                                                            Test
                                                                                                                                                                  5% Critical
                                                                                                                                                                                                                          10% Critical
                                                                                                                    Value
                                                  Statistic
                                                                                                                                                                              Value
```

1.0000

-3.960

-3.410

-3.120

-0.653

Z(t)

D. ln_fl_nonfarm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_nonfarm L1.	001659	.0025399	-0.65	0.514	0066433	.0033253
_trend _cons	6.93e-07 .0159216	8.56e-06 .0160282	0.08 0.99	0.935 0.321	0000161 0155318	.0000175

. dfuller ln_fl_lf , trend regress

Dickey-Fuller test for unit root

Number of obs =

539

	Test Statistic	Into 1% Critical Value	erpolated Dickey-Fo 5% Critical Value	uller ———————————————————————————————————
Z(t)	-1.724	-3.960	-3.410	-3.120

MacKinnon approximate p-value for Z(t) = 0.7400

D.ln_fl_lf	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_lf L1.	0076457	.0044337	-1.72	0.085	0163552	.0010639
_trend _cons	7.40e-06 .120517	8.61e-06 .0676628	0.86 1.78	0.391 0.075	-9.52e-06 0123997	.0000243 .2534337

. dfuller ln_fl_bp, trend regress

Dickey-Fuller test for unit root

Number of obs =

		Interpolated Dickey-Fuller					
	Test	1% Critical	5% Critical	10% Critical			
	Statistic	Value	Value	Value			
Z(t)	-3.256	-3.984	-3.424	-3.130			

MacKinnon approximate p-value for Z(t) = 0.0738

D.ln_fl_bp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_bp L1.	0545463	.0167509	-3.26	0.001	0874792	0216134
_trend _cons	0000375 .5091679	.0000734 .1583766	-0.51 3.21	0.609 0.001	0001817 .1977942	.0001067 .8205417

	*4 regress d.lr n_fl_lf date		48)d.ln	_fl_nonfarm	l(12/24)d.ln_us_e	epr 1	(1/18, 24)d.1	
	Source	SS	df	MS	Number of obs	=	515	
_					F(81, 433)	=	15.48	
	Model	.050091055	81	.000618408	Prob > F	=	0.0000	
	Residual	.01729335	433	.000039938	R-squared	=	0.7434	
_					Adi R-squared	=	0.6954	
	Total	.067384405	514	.000131098	Root MSE	=	.00632	

D.						
ln_fl_nonfarm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_nonfarm						
LD.	1441103	.059346	-2.43	0.016	2607523	0274683
L2D.	1332106	.060728	-2.19	0.029	2525689	0138524
L3D.	.0520745	.060831	0.86	0.392	0674863	.1716354
L4D.	.1139409	.0609067	1.87	0.062	0057687	.2336504
L5D.	.066288	.0611891	1.08	0.279	0539766	.1865526
L6D.	.1944856	.0614959	3.16	0.002	.073618	.3153532
L7D.	.0759452	.0622902	1.22	0.223	0464836	.1983741
L8D.	.0829208	.0631492	1.31	0.190	0411963	.207038
L9D.	.2532911	.0930772	2.72	0.007	.0703519	.4362303
L10D.	.1403499	.0960901	1.46	0.145	0485112	.329211
L11D.	.1893271	.0946093	2.00	0.046	.0033766	.3752776
L12D.	.4685154	.0957577	4.89	0.000	.2803077	.6567232
L13D.	.0758492	.1003991	0.76	0.450	1214811	.2731795
L14D.	.0089228	.1008964	0.09	0.930	1893847	.2072303
L15D.	.0490602	.1006788	0.49	0.626	1488197	.24694
L16D.	0187785	.1013922	-0.19	0.853	2180605	.1805035
L17D.	.0547956	.1017669	0.54	0.591	1452228	.2548141
L18D.	.0863921	.1011552	0.85	0.394	1124241	.2852084
L19D.	25835	.1016689	-2.54	0.011	4581759	0585241
L20D.	1621826	.1009034	-1.61	0.109	360504	.0361389
L21D.	0839614	.1033319	-0.81	0.417	2870559	.1191331
L22D.	1719582	.1017154	-1.69	0.092	3718755	.0279592

	ı					
L23D.	.0347504	.1011416	0.34	0.731	1640391	.2335399
L24D.	.2927769	.0998811	2.93	0.004	.0964647	.489089
	.1178616	.098203	1.20			
L25D.				0.231	0751523	.3108754
L26D.	.0999885	.0980021	1.02	0.308	0926304	.2926074
L27D.	1283723	.0980801	-1.31	0.191	3211445	.0644
L28D.	2031139	.0980964	-2.07	0.039	3959182	0103096
L29D.	2892074	.097907	-2.95	0.003	4816395	0967753
L30D.	5772115	.0991658	-5.82	0.000	7721176	3823054
L31D.	.6236058	.1020615	6.11	0.000	.4230083	.8242034
L32D.	.1870999	.1073141	1.74	0.082	0238215	.3980212
L33D.	.1426809	.1091241	1.31	0.192	0717978	.3571596
L34D.	.1068341	.1078243	0.99	0.322	1050899	.3187581
L35D.	0794067	.1078368	-0.74	0.462	2913554	.1325421
L36D.	.1327386	.1064489	1.25	0.213	0764823	.3419594
L37D.	0639028	.099194	-0.64	0.520	2588645	.1310589
L38D.	048562	.0984536	-0.49	0.622	2420684	.1449445
L39D.	.0871388	.0975069	0.89	0.372	104507	.2787845
L40D.	1442082	.0974565	-1.48	0.140	3357548	.0473384
L41D.	0032331	.0966638	-0.03	0.973	1932218	.1867555
L42D.	.0938246	.0970599	0.97	0.334	0969425	.2845917
L43D.	3559573	.0966539	-3.68	0.000	5459264	1659882
L44D.	0089124	.0978207	-0.09	0.927	2011749	.1833501
L45D.	0882528	.0966085	-0.91	0.361	2781327	.1016272
L46D.	.1086727	.091884	1.18	0.238	0719214	.2892668
L47D.	.0313382	.091654	0.34	0.733	1488038	.2114803
L48D.	.0609195	.091323	0.67	0.505	118572	.240411
2.001	10007270				1220072	
_						
ln_us_epr						
L12D.	0155085	.1744885	-0.09	0.929	3584584	.3274413
L13D.	3056076	.153451	-1.99	0.047	607209	0040062
L14D.	5608006	.1545155	-3.63	0.000	8644942	257107
L15D.	3645519	.1519838	-2.40	0.017	6632696	0658341
L16D.	.0029936	.1580302	0.02	0.985	3076081	.3135954
L17D.	.0422232	.1559561	0.27	0.787	264302	.3487483
L18D.	.3199335	.1565006	2.04	0.042	.0123381	.6275288
L19D.	07463	.0988972	-0.75	0.451	2690083	.1197484
L20D.	.0625226	.0999685	0.63	0.532	1339614	.2590065
L21D.	0436852	.1002131	-0.44	0.663	2406498	.1532795
L22D.	.2231831	.0985078	2.27	0.024	.0295703	.416796
L23D.	0081188	.0960409	-0.08	0.933	1968832	.1806456
L24D.	2688582	.1616447	-1.66	0.097	5865639	.0488476
1 . (1 1 (
ln_fl_lf						
LD.	.1762398	.0704433	2.50	0.013	.0377865	.3146932
L2D.	1356975	.0715783	-1.90	0.059	2763815	.0049866
	1659446	.0715828				0252517
L3D.			-2.32	0.021	3066375	
L4D.	0977864	.0709175	-1.38	0.169	2371718	.041599
L5D.	1364495	.0722069	-1.89	0.059	278369	.00547
L6D.	2270642	.0723796	-3.14	0.002	3693234	0848051
L7D.	1332104	.0724525	-1.84	0.067	2756127	.0091919
L8D.	2396185	.0727056	-3.30	0.001	3825182	0967187
L9D.	1256755	.079465	-1.58	0.114	2818605	.0305095
L10D.	180737	.0797732	-2.27	0.024	3375278	0239463
L11D.	005726	.0808095	-0.07	0.944	1645537	.1531017
L12D.	.0558537	.1334055	0.42	0.676	2063492	.3180565
L13D.	.0173463	.1262683	0.14	0.891	2308286	.2655213
L14D.	.2969825	.1275491	2.33	0.020	.0462901	.547675
L15D.	.125207	.1266497	0.99	0.323	1237177	.3741316
L16D.	0665773	.1288379	-0.52	0.606	3198027	.186648
L17D.	1292395	.1273895	-1.01	0.311	3796182	.1211391
L18D.	2883037	.1278108	-2.26	0.025	5395104	037097
L24D.	.2278015	.1255369	1.81	0.070	018936	.4745389
date	-8.65e-06	3.19e-06	-2.72	0.007	0000149	-2.39e-06
_cons	.0058495	.0022338	2.62	0.009	.0014592	.0102399

. predict res, residual (469 missing values generated)

. ac res, saving(p4_ac.gph, replace)
(file p4_ac.gph saved)

. pac res, saving(p4_pac.gph, replace)
(file p4_pac.gph saved)

. graph combine p4_ac.gph p4_pac.gph, saving(p4_combo.gph, replace) (file p4_combo.gph saved)

. estat bgodfrey, lag(1/48)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.617	1	0.4321
2	1.630	2	0.4427
3	1.639	3	0.6506
4	1.665	4	0.7970
5	1.730	5	0.8850
6	2.757	6	0.8387
7	8.252	7	0.3109
8	8.536	8	0.3830
9	8.707	9	0.4648
10	8.803	10	0.5509

11				v,
12 10.913 12 0.5364 13 12.697 13 0.4715 14 12.775 14 0.5443 15 14.675 15 0.5198 16 15.212 16 0.5091 17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728	11	9 015	11	
13 12.697 13 0.4715 14 12.775 14 0.5443 15 15 0.5198 16 15.212 16 0.5091 17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 <td< td=""><th></th><td></td><td></td><td></td></td<>				
14 12.775 14 0.5443 15 14.075 15 0.5198 16 15.212 16 0.5091 17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897				
15 14.075 15 0.5198 16 15.212 16 0.5091 17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.728 32 0.6330 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897				
16 15.212 16 0.5091 17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834				
17 15.284 17 0.5751 18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071				
18 18.315 18 0.4351 19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6769 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519				
19 18.317 19 0.5014 20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519 38 0.5847 39 38.229				
20 19.893 20 0.4647 21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448				
21 19.920 21 0.5263 22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548				
22 20.203 22 0.5704 23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.6804 42 39.001				
23 20.218 23 0.6287 24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5402 41 38.548 41 0.5801 42 39.01 42 0.6034 43 39.107 43 0.6408 44 39.122				
24 20.362 24 0.6760 25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.671 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034				
25 21.112 25 0.6864 26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408				
26 21.381 26 0.7221 27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6339 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5492 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.01 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804				
27 23.290 27 0.6693 28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.5071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5949 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.901 42 0.6934 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011				
28 24.359 28 0.6624 29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.671 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
29 25.322 29 0.6615 30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.971 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
30 27.716 30 0.5855 31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.611 47 0.7550				
31 28.706 31 0.5846 32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.671 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
32 28.728 32 0.6330 33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.691 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
33 29.272 33 0.6533 34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
34 30.894 34 0.6207 35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
35 30.897 35 0.6666 36 33.834 36 0.5720 37 35.071 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
36 33.834 36 0.5720 37 35.671 37 0.5597 38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
37				
38 35.519 38 0.5847 39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
39 38.229 39 0.5049 40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
40 38.448 40 0.5402 41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550				
41 38.548 41 0.5801 42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550	39	38.229	39	0.5049
42 39.001 42 0.6034 43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550	40	38.448		0.5402
43 39.107 43 0.6408 44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550	41	38.548		0.5801
44 39.122 44 0.6804 45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550	42	39.001	42	0.6034
45 39.431 45 0.7061 46 39.812 46 0.7278 47 40.011 47 0.7550	43	39.107	43	0.6408
46 39.812 46 0.7278 47 40.011 47 0.7550	44	39.122		0.6804
47 40.011 47 0.7550	45	39.431	45	0.7061
	46	39.812	46	0.7278
48 40.617 48 0.7664	47	40.011	47	0.7550
	48	40.617	48	0.7664

H0: no serial correlation

. *5 . reg d.ln_fl_nonfarm l(0/4)d.ln_fl_bp if tin(1948m1,2020m1)

Source	SS	df	MS	Number of ob	s =	380
				- F(5, 374)	=	2.97
Model	.00146591	5	.000293182	Prob > F	=	0.0122
Residual	.036972226	374	.000098856	R-squared	=	0.0381
				 Adj R-square 	d =	0.0253
Total	.038438136	379	.00010142	Root MSE	=	.00994
D.						
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
ln_fl_bp						
D1.	0043445	.0035864	-1.21	0.2270113	965	.0027075
LD.	0115113	.0040594	-2.84	0.0050194	935	0035291
L2D.	.0019871	.0041056	0.48	0.6290060	858	.01006
L3D.	0011778	.0040768	-0.29	0.7730091	941	.0068385
L4D.	0028262	.0036121	-0.78	0.4340099	287	.0042763
_cons	.0015358	.0005101	3.01	0.003 .0005	328	.0025387

. newey d.ln_fl_nonfarm l(0/4)d.ln_fl_bp if tin(1948m1,2020m1), lag(4) $\,$

Number of obs = Regression with Newey-West standard errors 380 F(5, 374) = Prob > F = maximum lag: 4 4.01 0.0015

D.		Newey-West				
ln_fl_nonf~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_fl_bp						
D1.	0043445	.003622	-1.20	0.231	0114665	.0027776
LD.	0115113	.0036606	-3.14	0.002	0187093	0043133
L2D.	.0019871	.0043475	0.46	0.648	0065616	.0105358
L3D.	0011778	.004813	-0.24	0.807	0106416	.008286
L4D.	0028262	.003664	-0.77	0.441	0100308	.0043783
_cons	.0015358	.0004154	3.70	0.000	.0007189	.0023526

. log close
name: <unnamed>
log: /Users/guslipkin/Documents/Spring2020/CAP 4763 ~ Time Series/Problem S

log type: smcl closed on: 26 Feb 2021, 18:09:11