Formulas in PRB. 88, 220406(R) (2013)

1 Formula (1)

System Hamiltonion:

$$H = H_L + H_R + H_{sd}. (1)$$

Left lead is metallic

$$H_L = \sum_{k\sigma} \left(\varepsilon_{k\sigma} - \mu_{\sigma} \right) c_{k\sigma}^{\dagger} c_{k\sigma}, \tag{2}$$

right lead is insulating magnetic

$$H_R \approx \sum_q \hbar w_q a_q^{\dagger} a_q + \text{ constant }.$$
 (3)

The interfacial electron-magnon interaction is described by

$$H_{sd} = -\sum_{k,q} J_q \left[S_q^- c_{k\uparrow}^\dagger c_{k+q\downarrow} + S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right] \tag{4}$$

where $S_q^- \approx \sqrt{2S_0} a_q^\dagger, S_q^+ \approx \sqrt{2S_0} a_q$ are in the momentum space and J_q denotes the effective exchange coupling at the interface. The magnonic spin current operator can be obtained by

$$\hat{I}_S = \frac{d\hat{N}_R}{dt} = \frac{d}{dt} \sum_q a_q^{\dagger} a_q, \tag{5}$$

the magnonic spin current is obtained by taking average over the nonequilibrium ground state $|\psi_0\rangle$ of the interacting system H:

$$I_S = \frac{dN_R}{dt} = \frac{d}{dt} \langle \sum_q a_q^{\dagger} a_q \rangle. \tag{6}$$

Using the Heisenberg equation, we get

$$I_S = \frac{i}{\hbar} \langle [H_{sd}, \sum_q a_q^{\dagger} a_q] \rangle. \tag{7}$$

$$[H_{sd}, \sum_{q} a_q^{\dagger} a_q] = \left[-\sum_{k,q} J_q \left(S_q^- c_{k\uparrow}^{\dagger} c_{k+q\downarrow} + S_q^+ c_{k+q\downarrow}^{\dagger} c_{k\uparrow} \right), \sum_{q} a_q^{\dagger} a_q \right], \quad (8)$$

in which,

$$[a_q^{\dagger}, \sum_{q'} a_{q'}^{\dagger}, a_{q'}] = \delta_{qq'}[a_q^{\dagger}, a_{q'}^{\dagger} a_{q'}] = [a_q^{\dagger}, a_q^{\dagger} a_q] = a_q^{\dagger}[a_q^{\dagger}, a_q] = -a_q^{\dagger}.$$
 (9)

Similarly,

$$[a_q, \sum_{q'} a_{q'}^{\dagger} a_{q'}] = [a_q, a_q^{\dagger} a_q] = a_q. \tag{10}$$

So,

$$I_{S} = \frac{i}{\hbar} \langle -\sum_{kq} J_{q} \left(-S_{q}^{-} c_{k\uparrow}^{\dagger} c_{k+q\downarrow} + S_{q}^{+} c_{k+q\downarrow}^{\dagger} c_{k\uparrow} \right) \rangle$$

$$= \frac{i}{\hbar} \sum_{kq} J_{q} \left(\langle S_{q}^{-} c_{k\uparrow}^{\dagger} c_{k+q\downarrow} \rangle - \langle S_{q}^{+} c_{k+q\downarrow}^{\dagger} c_{k\uparrow} \rangle \right).$$
(11)

2 Formula (2)

$$\frac{d}{dt} \left\langle S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right\rangle = \frac{i}{\hbar} \left\langle \left[H_L + H_{sd} + H_R, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right] \right\rangle. \tag{12}$$

The rhs. of eq. (12) is decomposed into 3 terms. The first term reads

$$\left\langle \left[H_L, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right] \right\rangle = \left[\sum_{k'\sigma} \left(\varepsilon_{k'\sigma} - \mu_\sigma \right) c_{k'\sigma}^\dagger c_{k'\sigma}, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right]
= S_q^+ \left[\sum_{k'\sigma} \left(\varepsilon_{k'\sigma} - \mu_\sigma \right) c_{k'\sigma}^\dagger c_{k'\sigma}, c_{k+q\downarrow}^\dagger \right] c_{k\uparrow}
+ S_q^+ c_{k+q\downarrow}^\dagger \left[\sum_{k'\sigma} \left(\varepsilon_{k'\sigma} - \mu_\sigma \right) c_{k'\sigma}^\dagger c_{k'\sigma}, c_{k\uparrow} \right]$$
(13)

Note that,

$$\left[\sum_{k'\sigma} c_{k'\sigma}^{\dagger} c_{k'\sigma}, c_{k+q\downarrow}^{\dagger}\right] = \sum_{k'\sigma} c_{k'\sigma}^{\dagger} \delta_{k',k+q} \delta_{\sigma\downarrow} = c_{k+q\downarrow}^{\dagger}, \tag{14}$$

$$\left[\sum_{k'\sigma} c_{k'\sigma}^{\dagger} c_{k'\sigma}, c_{k\uparrow}\right] = -\sum_{k'\sigma} \{c_{k'\sigma}^{\dagger}, c_{k\uparrow}\} c_{k'\sigma} = -c_{k\uparrow}.$$
(15)

Eq. (14) (15) are derived using equity

$$[AB, C] = A[B, C] + [A, C]B$$

= $A\{B, C\} - \{A, C\}B.$ (16)

So,

$$\left[H_L, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}\right] = \left(\varepsilon_{k+q\downarrow} - \varepsilon_{k\uparrow} + \mu_{\uparrow} - \mu_{\downarrow}\right) S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}. \tag{17}$$

If $\mu_{\uparrow} = \mu_{\downarrow}$, then eq. (17) reduces to

$$\left[H_L, S_q^+ c_{k+q\downarrow}^{\dagger} c_{k\uparrow}\right] = \left(\varepsilon_{k+q\downarrow} - \varepsilon_{k\uparrow}\right) S_q^+ c_{k+q\downarrow}^{\dagger} c_{k\uparrow}. \tag{18}$$

The second term $H_R = \sum_q \hbar w_q a_q^{\dagger} a_q$, then using eq. (10), we get

$$\left[H_R, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}\right] = -\hbar \omega_q S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}. \tag{19}$$

The third term in eq. (12) reads

$$\begin{bmatrix}
H_{sd}, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}
\end{bmatrix} = -J_q \left[S_q^- c_{k\uparrow}^\dagger c_{k+q\downarrow}, S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right]
= J_q \left[S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}, S_q^- c_{k\uparrow}^\dagger c_{k+q\downarrow} \right]$$
(20)

Combine these three terms, we get

$$\frac{d}{dt} \left\langle S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right\rangle = \frac{i}{\hbar} \left(\varepsilon_{k+q\downarrow} - \varepsilon_{k\uparrow} - \hbar \omega_q \right) \left\langle S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow} \right\rangle
+ \frac{i}{\hbar} J_q \left\langle \left[S_q^+ c_{k+q\downarrow}^\dagger c_{k\uparrow}, S_q^- c_{k\uparrow}^\dagger c_{k+q\downarrow} \right] \right\rangle,$$
(21)

which is also eq. (2) in PRB. 88, 220406(R) (2013).