CS345

Algorithms -II Indian Institute of Technology, Kanpur

Anshit Arya (190158), Saket Dhakar (190739)

Assignment 2

Question 1

We have already seen Bellman Ford algorithm which solves single source shortest paths (SSSP) problem in O(mn) time for directed graphs with potentially negative weighted edges but no negative cycle......

Solution

We have to consider the following

- 1. There can be negative weight edge (but no negative weight cycle).
- 2. The vertices are labelled form 1 to n.(1, 2, ..., n)

Ans a

- $\to \delta^0(i,j)$ there is no 0 vertex so if there is edge then value will be w_{ij} otherwise value will be infinite. (where w_{ij} is the weight of the edge from i to j
 - \rightarrow From the optimal sub-path property

$$\delta^k(i,j) = \min(\delta^{k-1}(i,j), \delta^{k-1}(i,k) + \delta^{k-1}(k,j))$$

 \Rightarrow When k = n , the smallest path between any two vertex will be p^n (i, j) which have weight δ^n (i, j) .

Algorithm (a) ::: All Pair Shortest Path length

Let G be the Adjacency List of the Directed Graph . $n \equiv \text{No.}$ of nodes

 \rightarrow DP[][] will be the output matrix that will finally have the shortest distances between every pair of vertices

```
func APSP(G, n)
```

```
DP[n+1][n+1] = G \rightarrow Initialize the solution matrix same
                             as input graph matrix(i.e.
                             the initial values of shortest distances
                             are based on considering
                            no intermediate vertex.)
         for k=0 to n
            for i=0 to n
              for j=0 to n
                  if DP[i][k] != inf and <math>DP[k][j] != inf
                    DP[i][j] = min(DP[i][j], DP[i][k] + DP[k][j]) \rightarrow If vertex k is on the
                                              shortest path from i to j, then update
                                              the value of DP[i][j]
                  endif
               endfor
            endfor
         endfor
        Return DP
endfunc
```

GP 2

Ans B

- \rightarrow now we get shortest path between 2 vertices
- ightarrow In the k^{th} iteration if the value of DP array is changed we can say that k is in between the path from i to j
- \rightarrow We will now recursively check for vertices in between i to k and k to j
- \rightarrow For optimal answer run it for only the number of vertices in the path .

Algorithm b ::::Pre-Computation for finding path in Optimal Time

Let G be the Adjacency List of the Directed Graph.

 $n \equiv \text{No. of nodes}$

endfunc

func APSP2(G, n)

```
DP1[n+1][n+1] = G \rightarrow Initialize all values to the values of Graph
DP2[n+1][n+1] \rightarrow If the path exists between two nodes then DP2[i][j] = j
                    (that is the direct edge from i \rightarrow j)else DP2[i][j] = -1
   for k=0 to n
      for i=0 to n
         for j=0 to n
            if DP1[i][k] = \inf and DP1[k][j] = \inf We cannot travel through
                                                       edge that doesn't exist
               if DP1[i][j] > DP1[i][k] + DP1[k][j]
                  DP1[i][j] = DP1[i][k] + DP1[k][j]
                 DP2[i][j] = DP2[i][k] \rightarrow we found the shortest path between
                                      i, j through an intermediate node k).
            endif
         endif
      endfor
   endfor
  endfor
```

GP 3

Algorithm c ::: Finding path

```
Let G be the Adjacency List of the Directed Graph.
n \equiv \text{No. of nodes}
   DP \equiv APSP2(G, n)
   Path \equiv []
   func smallest-path(i, j)
      if i == j then
         Path = [i]
       else
         if Path is empty
            Path = [i, j]
         else if
         if DP2[i][j] != 0
            Path.insert(DP2[i][j])
            Smallest-path(i, k)
            Smallest-path(k, j)
         endif
       endif
   endfunc
   Path is our required path from i to j.
```

GP 4