Dataframe

```
In [1]: import pandas as pd, IPython.display as dp

eq_df = pd.read_csv('earthquakes-1.csv')
fb_2018 = pd.read_csv('fb_stock_prices_2018.csv')

dp.display(fb_2018, eq_df)
```

	date	open	high	low	close	volume
0	2018-01-02	177.68	181.58	177.5500	181.42	18151903
1	2018-01-03	181.88	184.78	181.3300	184.67	16886563
2	2018-01-04	184.90	186.21	184.0996	184.33	13880896
3	2018-01-05	185.59	186.90	184.9300	186.85	13574535
4	2018-01-08	187.20	188.90	186.3300	188.28	17994726
•••	•••					•••
246	2018-12-24	123.10	129.74	123.0200	124.06	22066002
247	2018-12-26	126.00	134.24	125.8900	134.18	39723370
248	2018-12-27	132.44	134.99	129.6700	134.52	31202509
249	2018-12-28	135.34	135.92	132.2000	133.20	22627569
250	2018-12-31	134.45	134.64	129.9500	131.09	24625308

251 rows × 6 columns

	mag	magType	time	place	tsunami	parsed_place
0	1.35	ml	1539475168010	9km NE of Aguanga, CA	0	California
1	1.29	ml	1539475129610	9km NE of Aguanga, CA	0	California
2	3.42	ml	1539475062610	8km NE of Aguanga, CA	0	California
3	0.44	ml	1539474978070	9km NE of Aguanga, CA	0	California
4	2.16	md	1539474716050	10km NW of Avenal, CA	0	California
•••	•••		•••		***	
9327	0.62	md	1537230228060	9km ENE of Mammoth Lakes, CA	0	California
9328	1.00	ml	1537230135130	3km W of Julian, CA	0	California
9329	2.40	md	1537229908180	35km NNE of Hatillo, Puerto Rico	0	Puerto Rico
9330	1.10	ml	1537229545350	9km NE of Aguanga, CA	0	California
9331	0.66	ml	1537228864470	9km NE of Aguanga, CA	0	California

9332 rows × 6 columns

Activity

```
In [3]: import pandas as pd, matplotlib.pyplot as plt
        eq_df = pd.read_csv('earthquakes-1.csv')
        fb_2018 = pd.read_csv('fb_stock_prices_2018.csv')
        # Plot the rolling 20-day minimum of the Facebook closing price with the pandas plo
        fig, ax = plt.subplots()
        fb_2018['close'].rolling(window=20).min().plot(ax=ax)
        ax.set_title('20-day Rolling Minimum Closing Price')
        ax.set_xlabel('Days')
        ax.set_ylabel('Price')
        # Create a histogram and KDE of the change from open to close in the price of Faceb
        fig1, (ax1, ax2) = plt.subplots(1, 2)
        (fb_2018['open'] - fb_2018['close']).plot(kind='hist', ax = ax1)
        ax1.set_title('Histogram')
        (fb 2018['open'] - fb 2018['close']).plot(kind='kde', ax = ax2)
        ax2.set title('KDE')
        # Box plots for the magnitudes of each magType used in Indonesia
        fig2, ax3 = plt.subplots()
        eq_df[eq_df['parsed_place'] == 'California'].boxplot(column='mag', by='magType', sh
        ax3.set title('Magtype Magnitudes')
```

```
# Make a line plot of the difference between the weekly maximum high price and the
print(fb 2018['date'].dtype) # Check for type first
fb_copy = fb_2018.copy() # Make dataframe copy
fb_copy['date'] = pd.to_datetime(fb_copy['date']) # Convert to datetime
fb_copy.set_index('date', inplace = True)
fig3, ax4 = plt.subplots()
(fb_copy.resample('W').max() - fb_copy.resample('W').min()).plot(kind = 'line', ax=
ax4.set title('Weekly High-Low Difference')
# Using matplotlib and pandas, create two subplots side-by-side showing the effect
'''The first subplot will contain a line plot of the daily difference between that
price (be sure to review the Time series section of Aggregating Pandas DataFrames f
fb\_copy2 = fb\_2018.copy()
fb copy2['date'] = pd.to datetime(fb copy2['date'])
fb copy2.set index('date', inplace = True)
fig4, (ax5, ax6) = plt.subplots(1,2)
(fb_copy2['open'] - fb_copy2['close'].shift(1)).plot(ax=ax5)
# The second subplot will be a bar plot showing the net effect this had monthly, us
monthly open = fb copy2['open'].resample('ME').first()
monthly_close = fb_copy2['close'].resample('ME').last()
monthly difference = (monthly open - monthly close.shift(1))
# Bonus #1: Color the bars according to whether they are gains in the stock price (
bar = ['green' if x > 0 else 'red' for x in monthly_difference]
monthly_difference.plot(kind='bar', ax=ax6, color = bar)
# Bonus #2: Modify the x-axis of the bar plot to show the threeletter abbreviation
ax6.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
plt.show()
```

object

md

ml

mw

mh

To summarize, this activity taught me that there is probably a method for every niche thing that I'm trying to do. Some examples of this are the shift() and resample() methods. I learned that through experience, I'll get to know more of these niche methods, which makes studying more exciting.