Informatyczny kącik olimpijski (2)

$$\sum_{i=1}^{N} |a_i - b_i|$$

była najmniejsza możliwa oraz $b_i \leq b_{i+1}$ dla $1 \leq i < N$.

Na początek zajmijmy się trochę prostszym zadaniem. Oznaczmy $S = \sum_{i=1}^{N} |a_i - b_i|$ i spróbujmy obliczyć minimalną możliwą wartość S. Zadanie to ma proste rozwiązanie, korzystające z metod programowania dynamicznego. Niech liczba $A_k(v)$ oznacza minimalną wartość sumy $\sum_{i=1}^k |a_i-b_i|$, przy założeniu, że $b_k=v$, dla $1 \leq k \leq N$. Dla ułatwienia obliczeń przyjmijmy, że $A_0(v) = 0$ dla dowolnego v. Łatwo zauważyć, że optymalny ciąg b_i nie ma wartości mniejszych, niż najmniejsze a_i , ani większych, niż największe a_i . Oznaczmy te najmniejsze i największe a_i , odpowiednio, przez X i Y, zaś T niech oznacza liczbę możliwych wartości, jakie moga przybierać elementy ciągu a_i (T = Y - X + 1). Zauważmy też, że optymalny ciąg b_i nie zawiera żadnych wartości poza wartościami występującymi w a_i – ta obserwacja przyda nam się później. Teraz $S = \min_{X \leq v \leq Y} A_N(v)$, zaś na $A_k(v)$, dla $1 \leq k$, mamy prosty wzór:

$$A_k(v) = |v - a_k| + \min_{X \le v' \le v} A_{k-1}(v').$$

Wzór ten daje nam algorytm, który w czasie O(NT) oblicza minimalne możliwe S (jeśli tylko, dla v > X, będziemy pamiętać minimalne $A_{k-1}(v')$, co pozwoli obliczyć $A_k(v)$ na podstawie $A_k(v-1)$ w czasie stałym). Potrzebujemy tylko O(T) pamięci, ponieważ do wyliczenia wartości A_k potrzebne są tylko wartości A_{k-1} , które możemy nadpisać przy zwiększaniu k. Jeśli jednak chcemy znaleźć sam ciąg b_i , musimy dla każdego $A_k(v)$ zapamiętać, jakie v' daje taką jego wartość. Liczby v i v' to nic innego, jak wartości b_k i b_{k-1} . W ten sposób złożoność pamięciowa rośnie do O(NT), a czasowa pozostaje taka sama.

Dodatkowo, możemy obniżyć złożoność, ograniczając T. Jak zauważyliśmy, wyrazy ciągu b_i nie przyjmują innych wartości, jak te występujące w ciągu a_i . Tych wartości jest co najwyżej N. Możemy więc obliczać wartości $A_k(v)$ tylko dla O(N) różnych wartości v. W ten sposób, po wstępnym "wyjęciu" i posortowaniu możliwych wartości elementów ciągu b_i w czasie $O(N \log N)$, główna część algorytmu będzie mieć złożoność czasową i pamięciową $O(N^2)$.

Ale istnieje też rozwiązanie o lepszej złożoności. Na początek dziedzinę A_k rozszerzmy na wszystkie liczby naturalne, nie tylko te, które leżą w przedziale [X,Y]. Wzór $A_k(v) = |v-a_k| + \min_{v' \leqslant v} A_{k-1}(v')$ wciąż ma sens, ponieważ dla v < X liczba $A_k(v)$ jest coraz większa dla coraz mniejszych v (poza przypadkiem, gdy

k=0). Oznaczmy $f\diamondsuit(v)=f(v-1)+f(v+1)-2f(v)$. Jest to podwójna pochodna dyskretna ciągu f, przesunięta o 1 pozycję. Ta "pochodna" ma własność:

$$f \diamondsuit + g \diamondsuit = (f + g) \diamondsuit.$$

co widać wprost z definicji $f \diamondsuit$. Zastanówmy się, jak – łatwo i szybko – znając $A_k \diamondsuit$, znaleźć $A_{k+1} \diamondsuit$? Przejście od A_k do A_{k+1} podzielimy na dwa etapy – najpierw wyliczymy $B_k(v) = \min_{v' \leq v} A_k(v')$, a następnie do tego ciągu dodamy ciąg $C_k(v) = |v - a_{k+1}|$, otrzymując A_{k+1} . Stąd $C_k \diamondsuit$ jest ciągiem samych zer, poza jedynym wyrazem $C_k \diamondsuit (a_{k+1}) = 2$. Ciąg B_0 składa się z samych zer, a więc $A_1 = C_0$. Zastanówmy się teraz, jak wyglądają ciągi A_k dla k > 0. Dla odpowiednio dużych v mamy $A_k(v+1) - A_k(v) = 1$, ponieważ ciąg b_i , dla $1 \le i < k$ zachowuje optimum, i zmienia się tylko b_k . Co więcej, jak się za chwilę okaże, ciąg $A_k \diamondsuit$ ma wyrazy nieujemne. Niech t_k będzie największym indeksem takim, że $A_k \diamondsuit (t_k) > 0$. W takiej sytuacji $B_k(v) = A_k(v)$ dla każdego $v \leq t_k$, oraz $B_k(v) = A_k(t_k)$ dla pozostałych v. Podobnie, dla $v \neq t_k \text{ mamy } A_k \diamondsuit(v) = B_k \diamondsuit(v), \text{ a dla } v = t_k \text{ mamy }$ $A_k \diamondsuit (v) = B_k \diamondsuit (v) + 1$. A skoro $A_{k+1} \diamondsuit = B_k \diamondsuit + C_k \diamondsuit$, to $A_{k+1}\diamondsuit$ ma wyrazy nieujemne. Warto zauważyć w tym momencie, że $A_k(t_k)$ jest najmniejszą wartością ciągu A_k .

Jak teraz opisać funkcję $A_k \diamondsuit$? Zapamiętajmy ją jako multizbiór – jeśli funkcja ma na pozycji 4 wartość 2, to w zbiorze znajdą się dwie czwórki itp. Przejście z $A_k \diamondsuit$ do $B_k \diamondsuit$ wymaga znalezienia największego elementu i usunięcia go (tylko raz, jeśli się powtarza). Przejście z $B_k \diamondsuit$ do $A_{k+1} \diamondsuit$ to dodanie do zbioru dwóch wartości a_{k+1} . W takim razie widać już, jak znaleźć opis funkcji $A_N \diamondsuit$ w czasie $O(N \log N)$ i pamięci O(N). Ile wynosi zatem najmniejsze możliwe S? Oczywiście, jest to $A_N(t_N)$. Jak z kolei wyliczyć kolejne wartości $A_k(t_k)$? Wiemy na pewno, że

$$A_{k+1}(t_{k+1}) = B_k(t_{k+1}) + |t_{k+1} - a_{k+1}|.$$

Jeśli jeszcze zauważymy, że dla k < N mamy $A_k(t_k) = B_k(t_k) = B_k(t_{k+1})$, to nie tracąc na złożoności możemy rozszerzyć algorytm obliczania $A_N \diamondsuit$ o obliczanie $A_k(t_k)$. Podobnie, nie tracąc nic na złożoności, możemy skorzystać ze spostrzeżenia, że $b_N = t_N$, a dla k < N mamy $b_k = \min(t_k, b_{k+1})$, i obliczyć również optymalny ciąg b_k .

Filip WOLSKI