

Département de génie électrique et de génie informatique

IDENTIFICATION DES SYSTÈMES GEL-20701/GEL-65395

Examen #2 (35% de la note finale) Mercredi 26 avril 2000, 15h30-17h20 Professeur: André Desbiens

 Document permis: une feuille 8.5 X 11 10% de la note peut être associé à la qualité du français Ne détachez pas les feuilles du questionnaire.
NOM:
MATRICULE:

QUESTION 1 (3 + 1 = 4 points)

Identification basée sur l'erreur de prédiction :

- a) Pourquoi les moindres carrés simples ont-ils une difficulté à bien identifier le gain statique des systèmes? Détaillez comment il est possible d'améliorer l'estimation du gain statique à l'aide de filtres?
- b) Quel est l'effet de l'augmentation de la période d'échantillonnage sur la répartition fréquentielle du biais?

QUESTION 2 (2 + 2 = 4 points)

Discutez de la nécessité de bien identifier la partie stochastique afin que la partie déterministe le soit également si les données ont été récoltées

- a) en boucle ouverte, et
- b) en boucle fermée.

QUESTION 3 (2 + 3.5 + 1.5 + 1 = 8 points)

Identification récursive :

- a) Comment interprétez-vous le choix $P(0) = 1 \times 10^4 I$ lorsque vous débutez une identification récursive sans connaître a priori le système à identifier?
- b) Qu'est-ce que le phénomène de l'explosion de la matrice de covariance? Quand survient-il et avec quelle méthode d'identification? Comment peut-il être évité?
- c) Pour quel type de systèmes est-il utile de maintenir constante la trace de la matrice de covariance? Expliquez.
- d) Quel compromis guide le choix du choix de la trace lors de l'utilisation d'un algorithme à trace constante?

QUESTION 4 (9 points)

Expliquez clairement trois méthodes de validation d'un modèle. Illustrez, avec des détails, chaque méthode avec un exemple fictif d'un mauvais modèle.

QUESTION 5 (3 + 3 = 6 points)

Afin de prendre en considération les points d'opération, on décide d'identifier un paramètre supplémentaire. La structure du modèle est ARX avec $n_a = n_b = 1$ et d = 0.

- a) Écrivez l'équation de l'erreur de prédiction.
- b) Quel est le lien entre le paramètre supplémentaire et les points d'opération u_{op} et y_{op} ?

QUESTION 6 (4 points)

Répondez par V (vrai), F (faux) ou JP (j'ai peur) en cochant la colonne appropriée. Une question non répondue sera interprétée comme JP. La réponse JP vaut 0 point. Une bonne réponse (V ou F) vaut 1 point. Une mauvaise réponse (V ou F) vaut -0.5 point. Exceptionnellement dans ce numéro, il n'est pas nécessaire de justifier vos réponses.

	V	F	JP
a) L'identification récursive à facteur d'oubli variable est basée sur un			
facteur d'oubli variant dans le temps et tendant asymptotiquement vers			
l'unité.			
b) La régression pseudo-linéaire est une identification récursive dont le			
modèle résultant possède la structure ARARX.			
c) Pour un procédé donné, en absence d'excitation externe,			
l'identification paramétrique en boucle fermée n'est possible que si le			
régulateur est d'ordre suffisamment élevé ou s'il varie dans le temps.			
d) Une faiblesse lors de l'implantation numérique de l'algorithme des			
moindres carrés récursifs provient du calcul de l'inversion d'une			
matrice.			