[Enter Post Title Here]

ICE 2154 NETWORK ANALYSIS AND SIGNALS

Symbols and Units:

Quantity	Symbols	Unit	Equivalent Unit	Unit
				Abbreviation
Charge	q	Coulomb	-	C
Current	I, i	Ampere	Coulomb/Second	amp
Flux Linkages	Ψ	Weber-Turn	-	Wb
Energy	W, w	Joul	Newton-Meter	J
Voltage	V ,v	Volt	Joul/Coulomb	V
Power	P , p	Watt	Joul/Second	W
Capacitance	С	Farad	Coulomb/Volt	F
Inductance	M,L	Henry	Weber/Ampere	Н
Resistance	R	Ohm	Aolt/Ampere	Ω
Conductance	G	Mho	Ampere/Volt	
Time	t	Second	-	sec
Frequency	f	Hertz	cycles/second	ZH
Frequency	ω	Radian/second	-	-

Relationships between the network parameters:

Parameter	Basic Relationship	Voltage-Current Relationship	Energy
$G = \frac{1}{R}$	v= Ri	$v_R = i_R R$ $i_R = G v_R$	$w_R = \int_{-\infty}^t v_R i_R \ dt$
L(orM)	$\Psi = Li$	$v_L = L \frac{di}{dt}$ $i_L = \frac{1}{L} \int_{-\infty}^t v_L \ dt$	$w = \frac{1}{2}Li^2$
C $D = \frac{1}{C}$	Q = Cv	$v_C = \frac{1}{C} \int_{-\infty}^t i_C \ dt$ $i_C = C \frac{dv}{dt}$	$w = \frac{1}{2}Cv^2$

Star Delta Conversion:

1. Start - delta (wyedelta) conversion

Star to delta conversion:

$$R_{AB} = \frac{R_A R_B + R_B R_C + R_A R_C}{R_C}$$

$$R_{BC} = \frac{R_A R_B + R_B R_C + R_A R_C}{R_A}$$

$$R_{AC} = \frac{R_A R_B + R_B R_C + R_A R_C}{R_B}$$

Delta to star conversion:

$$R_A = \frac{R_{AB}R_{AC}}{R_{AB} + R_{BC} + R_{AC}}$$

$$R_B = \frac{R_{AB}R_{BC}}{R_{AB} + R_{BC} + R_{AC}}$$

$$R_C = \frac{R_{BC}R_{AC}}{R_{AB} + R_{BC} + R_{AC}}$$

Delta (Δ) Network

Star (Y) Network

Network Theorems:

TRANSIENT ANALYSIS:

Equivalent form of elements in terms of the initial and final condition of element:

Element	Equivalent circuit at t=0 +	Equivalent circuit at $t = \infty$
L I=0		S.C.
L I=I0		sc I ₀
C 	S.C.	O.C.
C ————————————————————————————————————	Vo +	Vo O.C.

First order differential equations:

Source free RL circuit	$\frac{di}{dt} + \frac{R}{L}i = 0$ $i(t) = I_0 e^{-\frac{Rt}{L}} \text{ where,}$ $I_0 \text{ is the initial current at time } t = 0$	$ \begin{array}{c c} i(t) \\ + \\ v_R \geqslant R \\ - \\ \end{array} $
Source free RC circuit	$\frac{dv}{dt} + \frac{v}{RC} = 0$ $v(t) = v(0)e^{-\frac{t}{RC}}$ $v_0 \text{ is the initial voltage across capacitor}$ $\text{at time } t = 0$	C
Solution of standard first order differential equation	$\frac{di}{dt} + Pi = Q$ $i = e^{-Pt} \int Q e^{Pt} dt + Ae^{-Pt}$	Total response = Forced response + Natural response

Solution of second order differential equation:

Second order differential equation representing **source free** RLC circuit is of the form

$$\frac{d^2x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2x(t) = 0 \text{ and characteristic equation } s^2 + a_1s + a_2 = 0$$

Roots of the characteristic equation are

$$s_1, s_2 = \frac{-a_1}{2} \pm \sqrt{\left(\frac{a_1}{2}\right)^2 - a_2}$$

Response in terms of coefficient conditions:

case	Coefficient Condition	Nature of Roots	Descriptive Name	Form of Solution
1	$a_1^2 > 4a_2$	Negative real and unequal	Overdamped	$x(t) = K_1 e^{s_1 t} + K_2 e^{s_2 t}$
2	$a_1^2 = 4a_2$	Negative real and equal	Critically damped	$x(t) = K_1 e^{s_1 t} + K_2 t e^{s_2 t}$
3	$a_1^2 < 4a_2$	Conjugate Complex	Underdamped	$x(t)$ $= e^{\sigma t} (K_1 cos \omega t + K_2 sin \omega t)$ $s_1, s_2 = \sigma \pm j \omega$
4	$a_1 = 0 \text{ and } a_2 \neq 0$	Conjugate imaginary	Oscillatory	$x(t) = K_1 cos\omega t + K_2 sin\omega t$ $s_1, s_2 = \pm j\omega$

Second order differential equation representing RLC circuit with excitation is of the form

$$\frac{d^2x(t)}{dt^2} + a_1 \frac{dx(t)}{dt} + a_2 x(t) = v(t)$$

Has a solution (total) $x(t) = x_c(t) + x_p(t)$: $x_c(t)$ is complementary function and $x_p(t)$ is particular integral

Case	Factor in $v(t)$ {	Necessary choice for the particular integral
	excitation}	
1	V (a Constant)	A
2	a_1t^n	$B_0t^n + B_1t^{n-1} + B_2t^{n-2} + \dots + B_{n-1}t + B_n$
3	a_2e^{rt}	Ce ^{rt}
4	a ₃ cosωt	$D \cos \omega t + E \sin \omega t$
	a_4 $sin\omega t$	
5	$a_5 t^n e^{rt} \cos \omega t$	$(F_1t^n + \dots + F_{n-1}t + F_n)e^{rt}\cos\omega t + (G_1t^n + \dots + G_{n-1}t + \dots + G_n)e^{rt}\cos\omega t$
	$a_6 t^n e^{rt}$ sos ωt	$G_n)e^{rt}$ sin ωt

Note: The initial condition must always to be applied to the total solution – never to the complementary function alone unless $x_p(t) = 0$.

LAPLACE TRANSFORMS;

Laplace Transform: $L\{f(t) = F(s) = \int_0^{+\infty} f(t) e^{-st} dt$

Inverse Laplace Transform: $f(t) = \frac{1}{2\pi i} \int_{\sigma_0 - j\infty}^{\sigma_0 + j\infty} e^{st} F(s) ds$

Standard Laplace Transforms:

f(t)	$F(s) = \int_0^\infty f(t)e^{-st}dt$
u(t)	1_
t	$\frac{1}{s^2}$ $\frac{1}{s^n}$
$\frac{t^{n-1}}{(n-1)!}$ n is a integer	$\frac{1}{s^n}$
e^{at}	$\frac{1}{s-a}$
e - at	$\frac{s-a}{\frac{1}{s+a}}$
te ^{at}	$\frac{1}{(s-a)^2}$
te^{-at}	$\frac{1}{(s+a)^2}$
$\frac{1}{(n-1)}t^{n-1}e^{at}$	$\frac{s+a}{1}$ $\frac{1}{(s-a)^2}$ $\frac{1}{(s+a)^2}$ $\frac{1}{(s-a)^n}$ $\frac{1}{(s+a)^n}$ $\frac{-a}{s(s-a)}$ $\frac{1}{s^2+\omega^2}$ $\frac{s}{s^2+\omega^2}$ ω^2
$\frac{1}{(n-1)}t^{n-1}e^{at}$ $\frac{1}{(n-1)}t^{n-1}e^{-at}$ $1-e^{at}$	$\frac{1}{(s+a)^n}$
$1-e^{at}$	$\frac{-a}{a}$
$\frac{1}{\omega}\sin \omega t$	$\frac{s(s-a)}{\frac{1}{2+\cdots 2}}$
$\frac{\omega}{\cos \omega t}$	$\frac{s + \omega}{\frac{s}{s^2 + \omega^2}}$
$1-\cos\omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$
$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$
$e^{-at} \sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{at} \sin \omega t$	$\frac{\omega}{(s-a)^2+\omega^2}$
$e^{-at}\cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$

$e^{at}\cos \omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
sinh at	$\frac{a}{s^2 - a^2}$
cosh <i>at</i>	$\frac{s}{s^2-a^2}$

Laplace Transform Operations:

Nature of operation	f(t)	F(s)
Definition	f(t)	$F(s) = \int_0^\infty f(t)e^{-st}dt$
Linear Operation	$af_1(t) \pm bf_2(t)$	$aF_1(s) \pm bF_2(s)$ $sF(s) - f(0-)$
	$\frac{d}{dt}f(t)$	$sF\left(s\right) - f\left(0 - \right)$
	$\frac{\frac{d}{dt}f(t)}{\frac{d^2}{dt^2}f(t)}$ $\frac{\frac{d^3}{dt^3}f(t)}{\frac{d^3}{dt^3}f(t)}$	$s^{2}F(s) - sf(0-) - \frac{d}{dt}f(0-)$
Differentiation	$\frac{d^3}{dt^3}f(t)$	$s^{3}F(s) - s^{2}f(0-) - s\frac{d}{dt}f(0-) - \frac{d^{2}}{dt^{2}}f(0-)$ $\underline{F(s)}$
	$\int_0^t f(t)dt$	$\frac{F(s)}{s}$ $\frac{F(s)}{s} + \frac{f(0)}{s}$
Integration	$\int_{-\infty}^{t} f(t)dt$	· ·
Shifting in time domain	f(t-a)u(t-a)	$e^{-as}F(s)$
Multiplication by exponential	$e^{-at}f(t)$	F(s-a)
	t f(t)	$\frac{-d}{ds}F(s)$
Multiplication by t	$t^n f(t)$	$(-1)^{n} \frac{d^{n}}{ds^{n}} F(s)$ $\frac{1}{a} F(\frac{s}{a})$ $aF(s)$ $F(s) = \frac{1}{1 - e^{-sT}} F_{1}(s),$
Time scaling	f(at)	$\frac{1}{a}F(\frac{s}{a})$
Magnitude scaling	af(t)	aF(s)
	$\frac{af(t)}{f(t) = f(t + nT)}$	$F(s) = \frac{1}{1 - e^{-sT}} F_1(s),$
Periodic function	<i>n</i> is an integer	Where $F_1(s) = \int_0^\infty f(t)e^{-st}dt$:
		Laplace transform of one cycle of the periodic function

Initial value $f(0^+)$	$\lim_{t\to 0} f(t) =$	$=\lim_{s\to\infty}sF(s)$
Final value $f(\infty)$	$\lim_{t\to\infty}f(t)=$	$=\lim_{s\to 0} sF(s)$

Transformed Network representation for Basic Elements R, L and C:

(a) Resistor (R)

(b) Inductor (L)

(c) Capacitor

TWO PORT PARAMETERS:

Name	Equations
Z parameters(Open-circuit	$V_1 = Z_{11}I_1 + Z_{12}I_2$
Impedances)	$V_2 = Z_{21}I_1 + Z_{22}I_2$
Y parameters(Short-circuit	$I_1 = Y_{11}V_1 + Y_{12}V_2$
admittances)	$I_2 = Y_{21}V_1 + Y_{22}V_2$
h(Hybrid) parameters	$V_1 = h_{11}I_1 + h_{12}V_2$
	$I_2 = h_{21}I_1 + h_{22}V_2$
T (Transmission)	$V_1 = AV_2 - BI_2$
parameters (ABCD)	$I_1 = CV_2 - DI_2$

Relationship between parameter sets:

	[z]	[y]	[T]	[h]
[z]	$egin{array}{ccc} Z_{11} & Z_{12} \ Z_{21} & Z_{22} \ \end{array}$	$ \frac{y_{22}}{\Delta_y} \qquad -\frac{y_{12}}{\Delta_y} \\ -\frac{y_{21}}{\Delta_y} \qquad \frac{y_{11}}{\Delta_y} $	$egin{array}{ccc} rac{A}{C} & rac{\Delta_T}{C} \ rac{1}{C} & rac{D}{C} \end{array}$	$egin{array}{ccc} rac{\Delta_h}{h_{22}} & rac{h_{12}}{h_{22}} \ -rac{h_{21}}{h_{22}} & rac{1}{h_{22}} \end{array}$
[y]				

	$\begin{bmatrix} \frac{z_{22}}{\Delta_z} & -\frac{z_{12}}{\Delta_z} \\ -\frac{z_{21}}{\Delta_z} & \frac{z_{11}}{\Delta_z} \end{bmatrix}$	y_{11} y_{12} y_{21} zy_{22}	$ \frac{D}{B} \frac{\Delta_T}{C} \\ -\frac{1}{B} \frac{A}{B} $	$egin{array}{cccc} rac{1}{h_{11}} & -rac{h_{12}}{h_{11}} \ rac{h_{21}}{h_{11}} & rac{\Delta_h}{h_{11}} \end{array}$
[<i>T</i>]	$egin{array}{ccc} rac{z_{11}}{z_{21}} & rac{\Delta_z}{z_{21}} \ rac{\Delta_z}{z_{21}} & rac{z_{11}}{z_{21}} \end{array}$	$ -\frac{y_{11}}{y_{12}} - \frac{1}{y_{12}} \\ -\frac{\Delta_y}{y_{12}} - \frac{y_{11}}{y_{12}} $	A B C D	$ \begin{array}{ccc} -\frac{\Delta_h}{h_{21}} & & -\frac{h_{11}}{h_{21}} \\ -\frac{h_{22}}{h_{21}} & & -\frac{1}{h_{21}} \end{array} $
[h]	$\begin{array}{ccc} \frac{\Delta_z}{z_{22}} & \frac{z_{12}}{z_{22}} \\ -\frac{z_{21}}{z_{22}} & \frac{1}{z_{22}} \end{array}$	$ \frac{1}{y_{11}} \qquad -\frac{y_{12}}{y_{11}} \\ \frac{y_{21}}{y_{11}} \qquad \frac{\Delta_y}{y_{11}} $	$ \begin{array}{ccc} \frac{B}{D} & \frac{\Delta_T}{D} \\ -\frac{1}{D} & \frac{C}{D} \end{array} $	$egin{array}{ccc} h_{11} & h_{12} \ h_{21} & h_{22} \end{array}$

Some Parameter Simplification for Passive, Reciprocal Networks:

Parameter	Condition for Passive networks	Condition for Electrical symmetry
z	$z_{12} = z_{21}$	$z_{11} = z_{22}$
y	$y_{12} = y_{21}$	$y_{11} = y_{22}$
ABCD	AD - BC = 1	A = D
h	$h_{12} = -h_{21}$	$\Delta_h = 1$

SIGNALS AND SYSTEMS

Elementary signals:

Name	Continuous time	Discrete time
Impulse function	$\delta(t) = 0, t \neq 0$	$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$
Unit step function	$u(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$	$u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$
Unit Ramp	$r(t) = \begin{cases} t, t \ge 0 \\ 0, t < 0 \end{cases}$	$r[n] = \begin{cases} n, n \ge 0 \\ 0, n < 0 \end{cases}$
Exponential	$x(t) = e^{at}$	$x[n] = a^n$
Sinusoid	$x(t) = \sin(\omega t + \phi)$	$x[n] = \sin(\Omega n + \theta)$
Sinc function	$sinc(\omega_0 t) = \frac{sin(\pi \omega_0 t)}{\pi \omega_0 t}$	$sinc[\Omega_0 n] = \frac{sin(\pi \Omega_0 n)}{\pi \Omega_0 n}$
Rectangular pulse	$x(t) = \begin{cases} 1, t \le T_0 \\ 0, t > T_0 \end{cases}$	$x[n] = \begin{cases} 1, n \le M \\ 0, otherwise \end{cases}$
Triangular pulse	$\Lambda\left(\frac{t}{\tau}\right) = \begin{cases} 1 - \left \frac{t}{\tau}\right , t \le \tau \\ 0, t > \tau \end{cases}$	$\Lambda\left[\frac{n}{N}\right] = \begin{cases} 1 - \frac{ n }{N}, n \le N\\ 0, otherwise \end{cases}$

Important properties of signals:

	Properties		
Name	Continuous time	Discrete time	
Impulse properties	$\int_{t=-\infty}^{\infty} \delta(t)dt = 1$ $\int_{t=-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$ $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$ $\delta(at) = \frac{1}{ a }\delta(t)$	$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$	

	$x_e(t) = x_e(-t)$	$x_e[n] = x_e[-n]$
	$x_o(t) = -x_o(-t)$	$x_o[n] = -x_o[-n]$
Even and Odd symmetry	$x_e(t) = \frac{x(t) + x(-t)}{2}$	$x_e[n] = \frac{x[n] + x[-n]}{2}$
symmetry	$x_o(t) = \frac{x(t) - x(-t)}{2}$	$x_o[n] = \frac{x[n] - x[-n]}{2}$
Periodicity	For $x(t) = x(t+T)$, fundamental period $T = \frac{2\pi}{\omega}$	$x(n) = x(n + N),$ fundamental period $N = \frac{2\pi}{\Omega}m,$
Common Periodicity	$T = \frac{T1}{T2} = \frac{n}{m}$ T1 & T2 are periods of functions, n & m are the integers	$T = \frac{N1}{N2} = \frac{n}{m}$ N1 & N2 are periods of functions, n & m are the integers
	$E = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt$	$E = \sum_{n = -\infty}^{\infty} x[n] ^2$
Energy of a signal	For non-periodic signal	
	$E = \int_{t=-\infty}^{\infty} x(t) ^2 dt$	
	$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^{2}(t) dt$	$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{n=N} x[n] ^2$
Power of a signal	For periodic signal	For periodic sequence
	$P = \frac{1}{T} \int_{t=-T/2}^{T/2} x(t) ^2 dt$	$P = \frac{1}{N} \sum_{n=0}^{N-1} x[n] ^2$
Linear combination of N signals	$\sum_{i=1}^{N} a_i x_i(t)$	$\sum_{i=1}^{N} a_i x_i[n]$

Convolution between two non-periodic signals $x_1(t) * x_2(t) = \int_{\tau=-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau $ $x_1[n]$	$[n] * x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]$
---	--

LTI system analysis:

	Continuous time system	Discrete time system
	x(t):input	x[n]:input
Name	y(t): output	y[n]:output
	$h(t): impulse\ response$	$h[n]: impulse\ response$
	Causality:h(t)=0, t<0	Causality: h[n] = 0, n < 0
Causality and stability in-terms of Impulse response	stability: $\int_{t=-\infty}^{t} h(t) d\tau < \infty$	$stability: \sum_{n=-\infty}^{n} h[n] < \infty$
	memoryless: $h(t) = c\delta(t)$	memoryless: $h[n] = c\delta[n]$
Response to any input	y(t) = x(t) * h(t)	y[n] = x[n] * h[n]
Step response	$s(t) = \int_{\tau = -\infty}^{t} h(\tau) d\tau$	$s[n] = \sum_{m=-\infty}^{n} h[n]$
Differential/Difference equation description	$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t) ; a_0 \neq 0$	$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k] ; a_0 \neq 0$

Geometric Series Formulas:

1	$\sum_{n=0}^{M} a^n = \frac{1 - a^{M+1}}{1 - a}$
2	$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}, \qquad a<1 $

3	$\sum_{n=M_1}^{M_2} a^n = \frac{a^{M_1} - a^{M_2 + 1}}{1 - a}$
4	$\sum_{n=1}^{M} n = \frac{M(M+1)}{2}$

FOURIER ANALYSIS

Fourier representation of continuous time signals:

Time domain representation		Fourier representation		
$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	 Continuous Periodic Period=T, Fundamental frequency ω₀=2π/T rad/sec 	$a_k = \frac{1}{T} \int_{t=-T/2}^{T/2} x(t) e^{-jk\omega_0 t} dt$	DiscreteNon periodic	FS
$x(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	ContinuousNon-Periodic	$X(\omega) = \int_{t=-\infty}^{\infty} x(t)e^{-j\omega t}dt$	ContinuousNon periodic	FT

Properties of Fourier Transform:

Droporty	Continuous time signals		
Property	Time domain	Frequency domain (FT)	
Notation	$x(t)$ $x_i(t)$	$X(\omega) \ X_i(\omega)$	
Linearity	$\sum_{i=1}^{N} a_i x_i(t)$	$\sum_{i=1}^{N} a_i X_i(\omega)$	
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$	
Frequency shift	$e^{j\gamma t}x(t)$	$X((\omega-\gamma))$	

Time reversal	x(-t)	$X(-\omega)$ $X_1(\omega)X_2(-\omega)$
Correlation	$r_{x_1x_2}(\tau)$	$X_1(\omega)X_2(-\omega)$
Differentiation in time	$ = x_1(\tau) * x_2(-\tau) $ $ \frac{d}{dt}x(t) $	$j\omega X(\omega)$
Differentiation in frequency	-jtx(t)	$\frac{d}{d\omega}X(\omega)$
Integration /summation	$\int_{\tau=-\infty}^{t} x(\tau)d\tau$	$\frac{\frac{d}{d\omega}X(\omega)}{\frac{X(j\omega)}{j\omega} + \pi X(j0)\delta(\omega)}$
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi} \int_{\vartheta=-\infty}^{\infty} X_1(\vartheta) X_2(\omega-\vartheta) d\vartheta$
	x(t) real	$X^*(\omega) = X(-\omega)$
	x(t) imaginary	$X^*(\omega) = -X(-\omega)$
Symmetry	x(t) real & even	$Im\{X(\omega)\}=0$
	x(t) real & odd	$Re\{X(\omega)\}=0$
Parseval's Theorem	$t=-\infty$	$dt = \frac{1}{2\pi} \int_{\Omega = -\infty}^{\infty} X(\omega) ^2 d\Omega$
Duality	$X(t) \leftarrow$	$\xrightarrow{FT} 2\pi x(-\omega)$

Properties of Fourier Series: Continuous time signal: Periodic, Period=T, Fundamental frequency $\omega_0 = \frac{2\pi}{T} \ radian/sec$

Duamanty	Continuous time signals	
Property	Time domain	Frequency domain (FS)
Notation	x(t) $y(t)$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	$x(t-t_0)$	$e^{-jk\omega_0t_0}a_k$
Frequency shift	$e^{jk_0\omega_0t}x(t)$	a_{k-k_0}
Differentiation in time	$\frac{d}{dt}x(t)$	$jk\omega_0a_k$
Convolution	$x_1(t) * x_2(t)$	$Ta_{k1}a_{k2}$
Multiplication	$x_1(t)x_2(t)$	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Symmetry	x(t) real	$a_k^* = a_{-k}$
	x(t) imaginary	$a_k^* = -a_{-k}$
	x(t) real & even	$Im\{a_k\}=0$
	x(t) real & odd	$Re\{a_k\}=0$

Parseval's Theorem
$$\frac{1}{T} \int_{t=0}^{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

FT representation for a continuous-time periodic signal *g*(*t*):

$$g(t) \stackrel{FT}{\longleftrightarrow} G(\omega) = 2\pi \sum_{k=-\infty}^{\infty} g_k \, \delta(\omega - k\omega_0)$$

Where g_k are the FS coefficients and ω_0 is the fundamental frequency.

Sampling:

Continuous time signal x(t) with FT $X(j\omega)$ is sampled at sampling interval T_s to get $x_{\delta}(t)$

$$x_{\delta}(t) = \sum_{n = -\infty}^{\infty} x[nT_{s}] \, \delta(t - nT_{s}) \stackrel{FT}{\longleftrightarrow} X_{\delta}(j\omega) = \frac{1}{T_{s}} \sum_{k = -\infty}^{\infty} X\left(j\left(\omega - k\frac{2\pi}{T_{s}}\right)\right)$$

Basic Fourier Series pairs:

Time domain	Frequency domain
$x(t) = \sum_{k=-\infty}^{\infty} X(k)e^{jk\omega_0 t}$ $Period = T$	$a_k = \frac{1}{T} \int_{t=-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-jk\omega_0 t} dt$ $\omega_0 = \frac{2\pi}{T}$
$x(t) = \begin{cases} 1, t \le T_0 \\ 0, T_0 < t \le \frac{T}{2} \end{cases}$	$a_k = \frac{\sin(k\omega_0 T_0)}{k\pi}$
$x(t) = e^{jp\omega_0 t}$	$a_k = \delta[k - p]$
$x(t) = cos(p\omega_0 t)$	$a_k = \delta[k-p]$ $a_k = \frac{1}{2}\delta[k-p] + \frac{1}{2}\delta[k+p]$ 1
$x(t) = \sin(p\omega_0 t)$	$a_k = \frac{1}{2j}\delta[k-p] - \frac{1}{2j}\delta[k+p]$
$x(t) = \sum_{p=-\infty}^{\infty} \delta(t - pT)$	$a_k = \frac{1}{T}$

Basic Fourier Transform pairs:

Time domain	Frequency domain
	$X(\omega) = \int_{t=-\infty}^{\infty} x(t)e^{-j\omega t}dt$ $X(\omega) = \frac{2\sin(\omega T_0)}{\omega}$ $X(\omega) = \begin{cases} 1, \omega \le W \\ 0, \text{ otherwise} \end{cases}$
$x(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$ $x(t) = \begin{cases} 1, t \le T_0 \\ 0, t > T_0 \end{cases}$	$X(\omega) = \frac{2\sin(\omega T_0)}{\omega}$
$x(t) = \frac{1}{\pi t} \sin(Wt)$	$X(\omega) = \begin{cases} 1, \omega \le W \\ 0, \text{ otherwise} \end{cases}$
$x(t) = \delta(t)$	$X(\omega) = 1$
x(t) = 1	$X(\omega) = 2\pi\delta(\omega)$
x(t) = u(t)	$X(\omega) = \frac{1}{j\omega}\pi\delta(\omega)$
$x(t) = e^{-at}u(t) Re\{a\} > 0$	$X(\omega) = \frac{1}{a + j\omega}$
$x(t) = te^{-at}u(t), Re\{a\} > 0$	$X(\omega) = \frac{1}{a + j\omega}$ $X(\omega) = \frac{1}{(a + j\omega)^2}$ $X(\omega) = \frac{2a}{a^2 + \omega^2}$ $X(\omega) = e^{-\omega^2/2}$
$x(t) = e^{-a t }, a > 0$	$X(\omega) = \frac{2a}{a^2 + \omega^2}$
$x(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$ $x(t) = \cos(\omega_0 t)$	
$x(t) = cos(\omega_0 t)$	$X(\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$
$x(t) = \sin(\omega_0 t)$	$X(\omega) = \pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)$ $X(\omega) = \frac{\pi}{j} \delta(\omega - \omega_0) - \frac{\pi}{j} \delta(\omega + \omega_0)$
$x(t) = e^{j\omega_0 t}$	$X(j\omega) = 2\pi\delta(\omega - \omega_0)$
$x(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$	$X(\omega) = \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k \frac{2\pi}{T_s}\right)$