Name: Areeka Aijaz Rollno: 17K-3913

0

Assignment # 02

* Naive Bayes classifier

1 Calculate prior probability

P(Cheal = Yes) = 7/13, P(Cheal = No) = 6/13.

(2) Colemate probability for Refund.

P(Refund = Yes | Yes) = 4/7, P(Refund = No | Yes) = 3/7 P(Refund = Yes | No) = 3/6, P(Refund = No | No) = 3/6

3 Calculate probability por Status.

P(Single | Yes) = 1/7 , P(Single | No) = 3/6

P(Married | Yes) = 3/7 , P(Married | No) = 2/6

P(Divorced | Yes) = 3/7 , P(Divorced | No) = 1/6

(4) Calculate mean and stider.

M class = 4es = 100.71, 6^2 class = 4es = 1078.571 M class = N_0 = 74.16 6^2 class = N_0 = 64.166

(3) Predict label

> P(Yes, Single, 110) = ?

P(9ncome = 110 | 4es) = 0.0116

P(9ncome = 110/No) = 2.24 x 10-6.

P(4es, Single, 110/4es) = 1/13 × 4/7 × 1/7 × 0.0116 = 0.000509

P (4es, 5ingle, 110/No) = 4/3 x 3/6 x 3/6 x 2.24 x10-6 $= 2.584 \times 10^{-7}$

Hence P(Yes, Single, 110) can Cheal (Yes).

 $\rightarrow P(Yes, Single, 5) = ?$

P (9 ncome = 5 | 4es) - 1.7391 × 10-4 P (9 ncome = 5/No) = 3.2406 x 10-18

P(40, single, 5 No) = 4/13 x 3/6 x 3/6 x 3.2406 x 10-18 = 3.739 x10-19

P(4es, Single, S14es) = 7/13 x 4/7 x 1.7391 x 10-4 = 7.644 ×10-6.

P(Yes, Single, S) can Cheal(Yes)

-> P(Yes, Married, 95) = ? P(9ncome = 95 | Yes) = 0.0119, P(9ncome = 95 | No) = 0.0016

P(Yes, Married, 95 | Yes) = 7/3 × 4/7 × 3/7 × 0.0119 = 0.00156 P(Yes, Married, 95 | No) = 6/3 × 3/6 × 2/6 × 0.0016 = 0.07692

P(4es, Married, 95) cannol cheal (No)

> P(No, Divorced, 63) = ? P(9ncome = 63 | Yes) = 0.00628, P(9ncome = 63 | No) = 0.01887

P(No, Divorced, 63 | Yes) = 7/13 × 3/1 × 3/1 × 0.00628 = 0.000621 P(No, Divorced, 63 | No) = 6/13 × 3/6 × 1/6 × 0.01887 = 0.000725

P(No, Divorced, 63) cannol Cheal (No)

* Decision Tree Classifier

- Using C4.5

① (alculate entropy of Cheal (Label) - (4es-7, No-6) entropy $(\frac{7}{13}, \frac{6}{13}) = -\frac{7}{13} \log(\frac{7}{13}) - \frac{6}{13} \log(\frac{6}{13}) = 0.2997$.

Total attribules 3 i e Refund, Status 3 Tax nome @ Calculate information gain

- 4es-7 (4es-4, No-3)

(i) Refund

No-6 (Yes -3, No-3)

info([4,3]) = entropy (4/1, 3/7) = -4/7 log (4/7) - 3/7 log (3/7) info ([4,3]) - 0.2965

info ([3,3]) = entropy (3/6, 3/6) = - 3/6 log (3/6) - 3/6 (og (3/6) info([3,3]) = 0.3010.

over all info ([4,3][3,3]) = 7/3 (0.2965) + 6/13 (0.3010) = 0.2985

Gain (Refund) = 0.2997 - 0.2985 = 0.0D12.

Single -4 (4es-1, No-3) (ii) Status - Married - 5 (4es - 3, Ho - 2) Divorced -4 (4es-3, No-1)

info ([1,3]) - entropy (1/4,3/4) $= -\frac{1}{4} \log (\frac{1}{4}) - \frac{3}{4} \log (\frac{3}{4})$ info ([1,3]) = 0.2442.

PER3/2.

info ([3,2]) = entropy (3/5, 2/5) = -3/5 log (3/5) - 2/5 log (2/5) info ([3,2]) = 0.2922

overall info ([1,3],[3,2],[3,1])
= 1/3 (0.2442) + 5/13 (0.2922) + 1/13 (0.2442)
= 0.2626.

Gain (Status) = 0.2997 - 0.2626.

(iii) Tax Income.

50	60	65	70	75	80	80	80	90	115	125	130	130	
										Yes			

	55		5 62		67		72		77		80		85		102		120		127	
	<=	>	< =	7	<=	>	<-	7	L =	>	<-	>	L =	>	L =	>	<=	7	<-	7
																Par I				
Yes	1	6	1	6	2	5	2	5	2	5	2	5	2	5	3	4	.4	3	5	2
No	0	6	1	5	1	5	2	4	3	3	C	0	6	0	G	0	C	0	6	0
Gain	0.2	778	0.2	9941	0.20	152	0.2	991	0.2	892	0.1	502	0.1	502	0.1	913	0. 2	2248	0-2	1531
																	112)			

- Using CART.

(1)	Cheat	17 52 16, 52
Yes	7	Gini (Cheal) = 1 - (7/13) - (6/13)2
No	C	= 0.4970

(11)	Petu	ind	Gini (Refund) = $\frac{7}{13} \left[1 - (\frac{4}{7})^2 - (\frac{3}{7})^2 \right] +$
	Yes	No	
Yes	4	3	$\frac{6}{13}\left[1-\left(\frac{3}{6}\right)^2-\left(\frac{3}{6}\right)^2\right]$
No	3	3	Gini (Refund) = 0.4945

(111)	Status		The York	
	Single	Married	Bivoked	
Yes	1	3	3	10 25 JES 23 LOS 102 L
No	3	2	1	eres the later that the later

Gini (Status) =
$$\frac{1}{13} \left[1 - (\frac{1}{4})^2 - (\frac{3}{4})^2 \right] + \frac{5}{13} \left[1 - (\frac{3}{5})^2 - (\frac{2}{5})^2 \right] + \frac{9}{13} \left[1 - (\frac{1}{4})^2 - (\frac{3}{4})^2 \right]$$

(9V) Taxable 9ncome

Cheal	Ye	3 1	10	40	,	No	1	10		N.	,	No	N	0	Yes	4.	es	Yes	4	es	4.	es
1/3 8 9 1	50		0.0	65		70	75				80		-		90		15 17		5 130		130	
			1	. 2	6	7									1	102		120	127		130	
	Z =	7	4-	7	4-	>	<.	>	4	7	(=	>	4	>	<=	7	(-	7	4	7	<=	>
Yes		4	1	6	2	5	2	5	2	5	2	5	2	5	3	4	4	3	5	2	7	0
No	0	G	1	5	1	5	2	4	3	3	Ç	0	4	0	6	0	6	0	C	O	6	0
gini	0.92	30	0.4	1965	0.4	871	0.5	518	0.4	730	0-2	307	0 - 2	307	6.3	3076	0-	3692	0-0	1195	0.4	970

$$\frac{2}{13}\left(1-\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\right)+\frac{11}{13}\left(1-\left(\frac{2}{11}\right)^{2}-\left(\frac{5}{11}\right)^{2}\right)$$

* Support Vector Machine (SVM)

2. Support vectors be

4 Adding bias to support vectors

$$\tilde{s}_{1} = (1, 1, 1), \quad \tilde{s}_{2} = (1, 0, 1), \quad \tilde{s}_{3} = (3, 1, 1)$$

to find values of x, computing the dol product of the result

$$3\alpha_1 + 2\alpha_2 + 5\alpha_3 = -1$$

$$\alpha_{1} = -1.05$$
, $\alpha_{2} = -2$, $\alpha_{3} = 1.05$

Now,
$$\vec{N} = 20.5$$
?
$$= -1.5 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

We can plot line as;

1 -> hyperplane