Lec 32 任意项级数

定义 32.1 (绝对收敛与条件收敛)

设
$$\sum_{n=1}^{\infty} a_n$$
 是一个级数, 如果 $\sum_{n=1}^{\infty} |a_n|$ 收敛, 则称 $\sum_{n=1}^{\infty} a_n$ 绝对收敛; 如果 $\sum_{n=1}^{\infty} a_n$ 收敛, 但 $\sum_{n=1}^{\infty} |a_n|$ 发散, 则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛.

若正项级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛, 则 $\forall m > 1, \sum_{n=1}^{\infty} a_n^m$ 收敛.

证明 $\sum_{n=1}^{\infty} a_n$ 收敛 $\Rightarrow S_n = \sum_{k=1}^n a_k$ 有界 $\Rightarrow a_1^m + a_2^m + \dots + a_n^m \leqslant \left(\sum_{k=1}^n a_k\right)^m$ 有界 $\Rightarrow \sum_{k=1}^{\infty} a_k^m$ 收

32.1 例题

例 32.1 判断下列级数的敛散性:($\alpha > 0$ 为常数)

$$1. \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\alpha}};$$

2.
$$\sum_{n=3}^{\infty} \frac{1}{n(\ln n)(\ln \ln n)^{1+\alpha}};$$

3.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(e^{\frac{1}{n^2}} - 1 \right);$$

4.
$$\sum_{n=1}^{\infty} \left(\frac{\lambda n}{n+1} \right)^n, \lambda > 0;$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
;

6.
$$\sum_{n=1}^{\infty} \frac{n+5}{\sqrt{(n^2+1)(n^3+4)}}.$$

1.
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{\alpha}} dx = \int_{\ln 2}^{\infty} \frac{1}{t^{\alpha}} dt. \, \exists \, \alpha > 1 \, \text{th, } \psi \, \text{sh}; \, \exists \, 0 < \alpha \leqslant 1 \, \text{th, } \xi \, \text{th}.$$
2.
$$\int_{3}^{\infty} \frac{1}{x(\ln x)(\ln \ln x)^{1+\alpha}} dx = \int_{\ln \ln 3}^{\infty} \frac{1}{t^{1+\alpha}} dt. \, \exists \, \alpha > 0 \, \text{th, } \psi \, \text{sh}; \, \exists \, \alpha \leqslant 0 \, \text{th, } \xi \, \text{th}.$$

3.
$$e^{\frac{1}{n^2}} - 1 \sim \frac{1}{n^2}$$
, 故收敛.

4.
$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{\lambda n}{n+1} = \lambda$$
. 当 $\lambda < 1$ 时, 收敛; 当 $\lambda \geqslant 1$ 时, 发散. 当 $\lambda = 1$ 时, $a_n = 1$

$$\left(\frac{n}{n+1}\right)^n \to e^{-1} \neq 0.$$
 故发散.

5. 比值法: $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = 0.$ 故收敛. 6. $\frac{n+5}{\sqrt{(n^2+1)(n^3+4)}} \sim \frac{1}{n^{\frac{3}{2}}}$, 故收敛.

6.
$$\frac{n+5}{\sqrt{(n^2+1)(n^3+4)}} \sim \frac{1}{n^{\frac{3}{2}}}$$
, 故收敛.

32.2 交错级数 $\sum_{n=0}^{\infty} (-1)^{n-1} a_n$ 的 Leibniz 判别法

定理 32.1 (Leibniz 判别法)

设 $\{a_n\}$ 递减趋于零,则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛.

例 32.2 $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ 是交错级数, 且 $a_n = \frac{1}{n}$ 递减趋于零, 故收敛. 而且 $\sum_{i=1}^{\infty} \frac{1}{n} = \infty$, 故 $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n}$ 是条件收敛的.

32.3 重排定理

定理 32.2 (绝对收敛的重排定理)

若 $\sum_{n=0}^{\infty} a_n$ 绝对收敛,则任意改变项和顺序后所得的新级数仍收敛,并且其和不变.

证明 设

$$a_n^+ = \frac{|a_n| + a_n}{2}, \quad a_n^- = \frac{|a_n| - a_n}{2},$$

即,

$$a_n^+ = \begin{cases} a_n, & a_n \ge 0, \\ 0, & a_n > 0, \\ -a_n, & a_n \le 0. \end{cases}$$

因此由
$$a_n^+$$
 构成的级数 $\sum_{n=1}^\infty a_n^+$ 是正项级数, 并且满足
$$|a_n|=a_n^++a_n^->a_n^+,\quad a_n=a_n^+-a_n^-,$$

根据比较判别法可知
$$\sum_{n=0}^{\infty} a_n^+$$
 都收敛, 并且

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-,$$

$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

当级数 $\sum_{n=1}^{\infty} a_n$ 的求和顺序改变时, $\sum_{n=1}^{\infty} a_n^+$ 的求和顺序作相同的改变, $\sum_{n=1}^{\infty} a_n^-$ 的求和顺序作相同的改变, 因而前者的收敛性和收敛值也不会变.

推论 32.2

级数 $\sum_{n=1}^{\infty} a_n$ 绝对收敛的充分必要条件是 $\sum_{n=1}^{\infty} a_n^+$ 和 $\sum_{n=1}^{\infty} a_n^-$ 都收敛. 但如果级数是条件收敛

的,则两个级数 $\sum_{n=1}^{\infty} a_n^+$ 和 $\sum_{n=1}^{\infty} a_n^-$ 都发散到 $+\infty$.

 \bigcirc

证明 第一个结论是显然的. 对于第二个结论, 因为 $\sum_{n=1}^{\infty} |a_n|$ 发散, 故

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

中三个级数不可能有两个收敛. 所以 $\sum_{n=1}^{\infty} a_n^+$ 只可能都发散.

定理 32.3 (Riemann 重排定理)

设级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则适当改变求和的顺序可以使新级数收敛于给定的任意实数, 也可以使新级数发散到 $+\infty$ 或 $-\infty$.

证明 设 A 是任意(有限)实数,不妨设 A>0. 设 $\sum_{n=1}^{\infty}p_n$ 是级数的非负项构成的级数,它发散 $1+\infty$, $\sum_{n=1}^{\infty}q_n$ 是级数的负项构成的级数,它发散到 $1+\infty$. 我们这样确定重排:先放置

$$p_1 + p_2 + \dots + p_{m_1}$$

使得此和超过A,再放置

$$q_1 + q_2 + \dots + q_{n_1}$$

直到整个部分和又刚小于 A, 如继续下去, 上述每一步都是可行的, 因为 $\sum_{i=1}^{\infty} p_i$ 和

$$\sum_{n=1}^{\infty} q_n$$

都是发散的,增加若干项 p_n 总会使和式刚好大于 A. 增加若干项负的 q_n 总会使和式刚好小于 A.

又因为 $a_n \to 0$, 所以 $p_n \to 0$, $q_n \to 0$, 而重排后的级数的部分和与 A 的差的绝对值始终小于数列 $\{p_n\}$ 的某一项, 或小于数列 $\{q_n\}$ 的某一项, 故这样得到的重排级数收敛于 A.

为了使重排后的级数发散的 $+\infty$, 我们这样安排: 先放置

$$p_1 + p_2 + \dots + p_{m_1}$$

使其大于1,接着放一项q1,然后接在后面放置

$$p_{m_1+1}+\cdots+p_{m_2}$$

使整个部分和大于 2, 接着放一项 q_2 , 继续下去, 第 n 次放置正项和一个负项后, 整个部分和大于 $n-q_n$. 于是重排的级数发散到 $+\infty$.

作业 ex7.1:2(8)(12)(14)(15)(16),3,11,12(3)(5)(7),13.