Software Architecture Document (Описание Архитектуры)

1. Introduction (Введение)

[Введение представляет собой обзор на весь документ в целом и включает в себя следующие разделы - назначение, область применения, определения и аббревиатуры, ссылки и обзор.]

1.1 Purpose

[Данный документ описывает архитектуру приложения как набор точек зрения на неё - use case view, logical view, process view, deployment view, implementation view (может быть стоит перевести названия?). Взаимодействие элементов разных точек зрения представлено в виде UML-диаграмм.]

[Укажите назначение данного документа.]

Этот документ описывает архитектуру системы ИСУВИ как набор точек зрения:

- Use Case View: Основные сценарии использования.
- Logical View: Структура приложения и взаимодействие его компонентов.
- **Process View**: Взаимодействующие процессы и их временная привязка.
- **Deployment View**: Конфигурация и развертывание системы.
- Implementation View: Технические аспекты реализации.

Документ предназначен для разработчиков, тестировщиков, проектировщиков и стейкхолдеров, чтобы обеспечить единое понимание архитектуры и ключевых решений.

[Приведите краткое описание области применения данного документа, к какому(им) проекту(ам) он относится, кем будет использоваться и т.д.]

Система ИСУВИ предназначена для автоматизации управления временными изменениями и мониторинга катаклизмов в мультивселенной.

- Пользователи: сотрудники УВИ (Агенты, Администраторы, Менеджеры, Варианты и др.).
- Область применения: мультивселенная с множественными временными линиями.
- Применение: решение задач управления временными аномалиями, контроля нагрузки станка и сбора ресурсов с самоуничтожающихся таймлайнов.

1.3 Definitions, Acronyms and Abbreviations (Определения и аббревиатуры)

[Укажите значение терминов и аббревиатур, которые употребляются в данном документе. Возможно указание ссылки на Глоссарий проекта.]

Описаны в 🗏 Gloss .

1.4 References (Ссылки)

[Перечислите списком названия документов, на которые ссылаетесь в данном, укажите их источники.]

- **I** T3
- **SRS**
- **I**UC
- Gloss

1.5 Overview (Обзор документа)

[Приведите краткое описание остальных разделов документа.]

Секция	
2	Архитектурное представление. Включает типы диаграмм для отображения разных аспектов системы.
3	Архитектурные цели и ограничения.
4	Представление сценариев использования.
5	Логическое представление компонентов и взаимодействий.
6	Представление процессов и их временной привязки.
7	Конфигурация и развертывание.
8	Описание реализованной системы.
9	Характеристики производительности.
10	Удовлетворение требованиям качества.

2. Architectural Representation (Представление архитектуры)

[Данный раздел описывает в общем архитектуру системы. Укажите, какие типы диаграмм необходимы для описания разных точек зрения. Рекомендуется воспользоваться следующей таблицей:]

Diagram\View	Use Case View	Logical View	Implementatio n view	Process view**	Deployment View
Use Case Diagram	+	-	-		-
Class Diagram	+ (Взаимодейств ие сущностей)	+ (Описание основных классов	+ (Полное описание		-

		и интерфейсов их взаимодействия)	классов с указанием их методов/поле й, указать типы связей между классами)	
Activity Diagram	+ (Абстрактное описание)	+ (Более подробное описание, уровни взаимодействия должны совпадать с диаграммой пакетов)	+ (Полное описание прецедента с указанием вызываемых методов, используемых классов и объектов).	-
State Machine Diagram	+ (Абстрактное описание)	+ (Более подробное описание, уровни взаимодействия должны совпадать с диаграммой пакетов)	+ (Полное описание прецедента с указанием вызываемых методов, используемых классов и объектов).	-
Sequence Diagram	+ (Абстрактное описание)	+ (Более подробное описание, уровни взаимодействия должны совпадать с диаграммой пакетов)	+ (Полное описание прецедента с указанием вызываемых методов, используемых классов и объектов).	-
Cooperative Diagram	+ (Абстрактное описание)	+ (Более подробное описание, уровни взаимодействия должны совпадать с диаграммой пакетов)	+ (Полное описание прецедента с указанием вызываемых методов, используемых классов и объектов).	-

Package Diagram	-	+	-		-
Data Base Diagram	-	-	+ (Полная ER модель базы данных + её даталогическа я модель)		-
Deployment Diagram	-	-	-		+ (Подробная диаграмма развертывания с указанием характеристик машин и интерфейсов взаимодействи я)
Timeline diagram				+	

^{*}Activity, Sequence, Cooperative и State Machine диаграммы составляются на основе одного прецедента (каждый тип диаграмм - на основе своего).

3. Architectural Goals and Constraints (Цели и ограничения архитектуры)

[Перечислите здесь все архитектурно-значимые факторы - важные прецеденты, специфичные требования к работе системы и т.д.]

^{**}Всё представление описывается только в случае, если в системе есть процессы, жестко привязанные к определенным моментам времени (пример - наступление нового месяца, времени суток и т.д.)

3.1 Цели архитектуры

Архитектура системы ИСУВИ направлена на достижение следующих целей:

- 1. Масштабируемость: Обеспечить возможность добавления новых функциональных модулей без значительного изменения существующего кода.
- 2. **Надежность**: Система должна стабильно функционировать при высоких нагрузках и в случае сбоя обеспечивать быстрое восстановление.
- 3. Производительность: Минимизировать время отклика системы (≤ 3 секунд на запрос).
- 4. **Модульность**: Логическое разделение системы на модули (Frontend, Backend, Database) для упрощения разработки и поддержки.
- 5. **Безопасность**: Использовать шифрование данных, защиту от SQL-инъекций и строгую авторизацию для всех пользователей.

3.2 Ограничения архитектуры

Технологические:

- Фронтенд: React.
- Бэкенд: Java Spring Framework.
- База данных: PostgreSQL.
- Сервер: Helios (используется Docker для развертывания).

Ресурсные:

- Разработка ведется командой из 3 человек.
- Отсутствие выделенного бюджета.
- Ограниченные вычислительные мощности (сервер Helios).

Производительность:

- Максимальное количество одновременно активных пользователей: 100.
- Время отклика системы: ≤ 3 секунд.

Функциональные:

- Система должна поддерживать:
 - Управление катаклизмами.
 - о Контроль нагрузки на станок.
 - Назначение и выполнение заданий.

Временные:

• Срок разработки: 6 месяцев с началом тестирования на 5-м месяце.

3.3 Архитектурно значимые прецеденты по ролям

Вариант:

- Создание катаклизма.
- Просмотр активных катаклизмов.

Менеджер

- Назначение задания
- Отмена или перераспределение задания

Агент

- Выполнение задания
- Отчет о выполнении задания

Администратор

- Создание и управление учетными записями
- Удаление пользователей и их данных

Управляющий станком

- Мониторинг нагрузки на станок
- Настройка параметров работы станка

4. Use-Case View

[Данный раздел содержит описание основных сценариев использования системы разными типами пользователей. Включите сюда необходимые диаграммы, указанные в п.2, приведите краткое описание каждой диаграммы.]

4.1 Use Case Diagram

Рисунок 4.1.1 – UC

4.2 Class Diagram (Создание катаклизма)

Рисунок 4.2.1 – UC Создание катаклизма

Рисунок 4.2.2 – Class diagram (UC Создание катаклизма)

4.3 Activity Diagram (Обновление информации о катаклизме)

Рисунок 4.3.1 – UC Обновление информации о катаклизме

Рисунок 4.3.2 – Activity Diagram (UC Обновление информации о катаклизме)

4.4 State Machine Diagram (Выполнить задание)

Рисунок 4.4.1 – UC Выполнить задание

Рисунок 4.4.2 – State Machine Diagram (UC Выполнить задание)

4.5 Sequence Diagram (Создать задание)

Рисунок 4.5.1 – UC Создать задание

Рисунок 4.5.2 – Sequence Diagram (UC Создать задание)

4.6 Cooperative Diagram (Выполнить задание + Создать задание)

Рисунок 4.6.1 – UC Выполнить задание + Создать задание

Рисунок 4.6.2 – Cooperative Diagram (UC Выполнить задание)

5. Logical View

[Данный раздел содержит описание слоев, на которые делится приложение, а также интерфейсов их взаимодействия. Приведите описание каждого из слоев, как они связаны между собой, их назначение. Включите сюда необходимые диаграммы, указанные в п.2, приведите краткое описание каждой диаграммы.]

5.1 Class Diagram (Выполнить задание)

Рисунок 5.1.1 – UC Выполнить задание

Рисунок 5.1.2 – Class Diagram (UC Выполнить задание)

5.2 Activity Diagram (Создание катаклизма)

Рисунок 5.2.1 – UC Создание катаклизма

Рисунок 5.2.2 – Activity Diagram (UC Создание катаклизма)

5.3 State Machine Diagram (Создать задание)

Рисунок 5.3.1 – UC Создать задание

Рисунок 5.3.2 – State Machine Diagram (UC Создать задание)

5.4 Sequence Diagram (Обновление информации о катаклизме)

Рисунок 5.4.1 – UC Обновление информации о катаклизме

Рисунок 5.4.2 – Sequence Diagram (UC Обновление информации о катаклизме)

5.5 Cooperative Diagram (Обновление информации о катаклизме)

Рисунок 5.5.1 – UC Обновление информации о катаклизме

Рисунок 5.5.2 – Cooperative Diagram (UC Обновление информации о катаклизме)

5.6 Package Diagram

Рисунок 5.6 – Package Diagrams

6. Process View

[Данный раздел описывает систему как совокупность взаимодействующих процессов, привязанных к определенным моментам времени. Включите сюда необходимые диаграммы, указанные в п.2, приведите краткое описание каждой диаграммы.]

Неприменимо, так как в системе отсутствуют процессы, жестко привязанные к времени.

7. Deployment View

[Данный раздел содержит описание конфигурации файлов, из которых состоит система, мест их расположения и описание взаимодействия их друг с другом. Включите сюда необходимые диаграммы, указанные в п.2, приведите краткое описание каждой диаграммы.]

Resource	Quantity	Name and Type
(Pecypc)	(Количество)	(Название и тип)
Процессор	16 ядер	Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz.

Оперативная память	128 ГБ	DDR4, рабочая частота ≥ 2400 МГц.
Накопитель	6 дисков	559 ГБ x 2 SSD, 5.5 ТБ x 4 HDD.
Сетевой интерфейс	1	Intel(R) Ethernet Controller X710 для 10GbE SFP+.

Будет использовать три аккаунта разработчиков для запуска 7 микросервисов на Helios. Распределение микросервисов по аккаунтам:

- 1 аккаунт: timeline-service, auth-service, task-service
- 2 аккаунт: user-service, cataclysm-service, machine-service
- 3 аккаунт: gateway-service

Ниже представлена диаграмма развертывания системы на сервер Helios. Развертывание будет происходить с помощью bash скрипта по протоколу SSH с компьютера разработчиков.

7.1 Deployment diagram

Рисунок 7.1.1 – Диаграмма развертывания системы

8. Implementation View

[Данный раздел содержит описание системы в уже реализованном виде. Включите сюда необходимые диаграммы, указанные в п.2, приведите краткое описание каждой диаграммы.]

8.1 Class Diagram (Создать аккаунт пользователя с ролью)

Рисунок 8.1.1 – UC Создать аккаунт пользователя с ролью

Рисунок 8.1.2 – Class Diagram (UC Создать аккаунт пользователя с ролью)

8.2 Activity Diagram (Выполнить задание)

Рисунок 8.2.1 – UC Выполнить задание

Рисунок 8.2.2 – Activity Diagram (UC Выполнить задание)

д8.3 State Machine Diagram (Обновление информации о катаклизме)

Рисунок 8.3.1 – UC Обновление информации о катаклизме

Рисунок 8.3.2 – State Machine Diagram (UC Обновление информации о катаклизме)

8.4 Sequence Diagram (Установить параметры буфера станка)

Рисунок 8.4.1 – UC Установить параметры буфера станка

Рисунок 8.4.2 – Sequence Diagram (UC Установить параметры буфера станка)

8.5 Cooperative Diagram (Создать задание)

Рисунок 8.5.1 – UC Создать задание

Рисунок 8.5.2 – Cooperative Diagram (UC Создать задание)

8.6 Data Base Diagram

Рисунок 8.6.1 - Инфологическая модель

9. Size and Performance (Производительность)

Данный раздел описывает основные характеристики измерения производительности системы и их границы, которые могут оказать влияние на архитектуру,]

- На основе сериала, вычислено, что в системе работает около 100 человек единовременно и система должна выдерживать ~100 грs, т. к. каждый пользователь генерирует 1 запрос в секунду.
- Ограничение по времени ответа не более 3 секунд. SRS 3.4.1

10. Quality (Качество)

Данный раздел описывает, каким образом архитектура системы удовлетворяет её показателям качества - масштабируемости, надежности, мобильности, безопасности и т.д.]

- Максимальное время возможности восстановление системы не должно превышать 24 часа.
- Система должна демонстрировать уровень доступности, при котором допустимое время простоя:
 - в день не более 12 часов;
 - ∘ в месяц не более 24 часов.
- Система должна хранить пароли в базе данных PostgreSQL в зашифрованном виде.