Física 1 - Lista S5 Força e Movimento II

Felipe Pinto - 61387 21 de Abril de 2021

Conteúdo

Ι	Questões	2
Q1		2
$\mathbf{Q2}$		2
п	Problemas	2
P3	P3 - a)	2
P9		3
	P9 - a)	3
	P9-b)	3
	P9 - c) $R = 100 m$ $\theta = 10^{\circ}$ $\mu = 0.10 \dots \dots \dots \dots \dots$	4

Parte I

Questões

$\mathbf{Q}\mathbf{1}$

O ponto mais baixo pois sua normal será máxima igual a centrípeta mais gravidade

$\mathbf{Q2}$

Para girar o balde de agua de forma que ele percorra o circulo sua velocidade deve ser tal que a aceleração centrípeta seja no mínimo de mesmo modulo que a da gravidade, dessa forma no ponto mais alto sua velocidade vai ser tangencial seguindo o percurso do balde.

Parte II

Problemas

P3

P3 - a)

$$\vec{a}_1 = a \,\hat{j}; \ \vec{a}_2 = a \,\hat{i}; \ \vec{a}_3 = -a \,\hat{j}; \ a \, m_2 \,\hat{i} = g \, m_2 - g \, m_1 - \mu \, (g \, m_2 - g \, m_1)$$

P9

P9 - a)

 $D(|\overrightarrow{v}|) = [v_{min}, v_{max}];$

$$\begin{cases} v_{min}^2 \, \hat{r}/R = \vec{a}_c; \; \left| \sum \vec{F} \right| = m \, a_c \, \cos(\theta) + \mu \, (m \, g \, \cos(\theta) + m \, a_c \, \sin(\theta)) + \\ -m \, g \, \sin\theta = 0 \quad \forall \, \theta \in (0, 90) \implies v_{min} = \sqrt{R \, \frac{m \, g \, \sin(\theta) - \mu \, m \, g \, \cos(\theta)}{m \, \cos(\theta) - \mu \, m \, \sin(\theta)}} = \\ = \sqrt{R \, g \, \frac{\sin(\theta) - \mu \, \cos(\theta)}{\cos(\theta) - \mu \, \sin(\theta)}} \quad \forall \, \theta \in (0, 90) \end{cases} ;$$

$$\begin{cases} v_{max}^2 \, \hat{r}/R = \vec{a}_c; \; \left| \sum \vec{F} \right| = m \, a_c \, \cos(\theta) - \mu \, (m \, g \, \cos(\theta) + m \, a_c \, \sin(\theta) + \\ -m \, g \, \sin(\theta) = 0 \quad \forall \, \theta \in (0, 90) \implies v_{max} = \sqrt{R \, \frac{m \, g \, \sin(\theta) + \mu \, m \, g \, \cos(\theta)}{m \, \cos(\theta) - \mu \, m \, \sin(\theta)}} = \\ = \sqrt{R \, g \, \frac{\sin(\theta) + \mu \, \cos(\theta)}{\cos(\theta) - \mu \, \sin(\theta)}} \quad \forall \, \theta \in (0, 90) \end{cases} \implies$$

$$\implies D(|\vec{v}|) = \begin{cases} v \in \mathbb{R} : \sqrt{R \, g \, \frac{\sin(\theta) - \mu \, \cos(\theta)}{\cos(\theta) + \mu \, \sin(\theta)}} < v < \sqrt{R \, g \, \frac{\sin(\theta) + \mu \, \cos(\theta)}{\cos(\theta) - \mu \, \sin(\theta)}} \\ \forall \, \theta \in (0, 90) \end{cases}$$

P9 - b)

$$\sqrt{Rg\frac{\sin(\theta) - \mu\cos(\theta)}{\cos(\theta) + \mu\sin(\theta)}} = v_{min} = 0 \implies \mu = \sin(\theta)/\cos(\theta) = \tan(\theta)$$

P9 - c)
$$R = 100 \, m$$
 $\theta = 10^o$ $\mu = 0.10$

$$D(|\vec{v}|) = [v_{min}, v_{max}];$$

$$\left\{ v_{min} = \sqrt{R g \frac{\sin(\theta) - \mu \cos(\theta)}{\cos(\theta) + \mu \sin(\theta)}} \approx 8.6 \, m/s \right\}$$

$$\left\{ v_{max} = \sqrt{R g \frac{\sin(\theta) + \mu \cos(\theta)}{\cos(\theta) - \mu \sin(\theta)}} \approx 17 \, m/s \right\}$$

$$\implies D(|\vec{v}|) = (8.6, 16.6)$$