Control Systems

G V V Sharma*

CONTENTS

1	Signal Flow Graph	1
2	Gain of Feedback Circuits 2.1 Estimation of Voltage Gain .	1 1
3	Bode Plot	6
4	Second order System	6
5	Routh Hurwitz Criterion	6
6	State-Space Model	6
7	Nyquist Plot	6
8	Compensators	6
9	Gain Margin	6
10	Phase Margin	6
11	Oscillator	6
12	Root Locus	6
13	Polar Plot	6
14	PID Controller	6

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 Signal Flow Graph

2 Gain of Feedback Circuits

2.1 Estimation of Voltage Gain

2.1.1. Consider the Magnitude Bode Plot and Phase Bode Plot 2.1.1 of Open-Loop Transfer Function of an Amplifier. Estimate the Open-Loop Transfer Function. (Assume 'A' as 'G' and ' β ' as 'H')

Fig. 2.1.1: Magnitude and Phase Bode Plot

Solution: Let G(f) be the Open-Loop Transfer Function,

$$G(f) = \begin{cases} 100 & 0 < f < 10^5 \\ 200 - 20log(f) & 10^5 < f < 10^6 \\ 320 - 40log(f) & 10^6 < f < 10^7 \\ 460 - 60log(f) & 10^7 < f \end{cases}$$

$$(2.1.1.1)$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$\nabla G(f) = \frac{d(G(f))}{d(\log(f))} = \begin{cases} 0 & 0 < f < 10^5 \\ -20 & 10^5 < f < 10^6 \\ -40 & 10^6 < f < 10^7 \\ -60 & 10^7 < f \end{cases}$$
(2.1.1.2)

As we know that, When a pole is encountered the slope always decreases by 20 dB/decade and When a zero is encountered the slope always increases by 20 dB/decade. So, by observing 2.1.1 it can be concluded that we are having Poles at $f = 10^5 Hz$, $10^6 Hz$, $10^7 Hz$ and No Zeros.

So, the Open-Loop Transfer Function G(f) is

$$G(f) = \frac{10^5}{\left(1 + j\frac{f}{10^5}\right)\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)}$$
(2.1.1.3)

2.1.2. Calculate the Phase of Open-Loop Transfer Function.

Solution:

Phase of Open-Loop Transfer Function = ϕ

$$\phi = -\left[\tan^{-1}\left(f/10^{5}\right) + \tan^{-1}\left(f/10^{6}\right) + \tan^{-1}\left(f/10^{7}\right)\right]$$
(2.1.2.1)

2.1.3. Determine the Closed-Loop Voltage Gain of the System assuming $|GH| \gg 1$ and also assuming the block diagram of Control System is 2.1.3

Fig. 2.1.3

Solution:

The Closed-Loop Voltage Gain of the Control System is

$$T = \frac{V_o}{V_s} = \frac{G}{1 + GH} \tag{2.1.3.1}$$

$$20\log(T) = 20\log(G) - 20\log(1 + GH)$$
(2.1.3.2)

Considering the assumption $|GH| \gg 1$, It can be written as

$$20\log(1+GH) = 20\log(GH) \qquad (2.1.3.3)$$

So.

$$20\log(T) = 20\log(G) - 20\log(GH) \quad (2.1.3.4)$$

$$20\log(T) = -20\log(H) \ (2.1.3.5)$$

$$20\log(T) = 20\log(\frac{1}{H}) \ (2.1.3.6)$$

$$T = \frac{1}{H} \ (2.1.3.7)$$

So, The value of Closed-Loop Voltage Gain of the Control System under the assumption, $|GH| \gg 1$ is $T = \frac{1}{H}$

2.1.4. What is the value of Loop-Gain?

Solution:

The value of Loop-Gain can be calculated by the difference of 2-curves $20 \log |A|$ and $20 \log (\frac{1}{H})$. The difference between the two curves will be

$$20\log|G| - 20\log\frac{1}{H} = 20\log|GH| \quad (2.1.4.1)$$

2.1.5. Define Phase-Margin

Solution:

Phase-Margin: The phase margin is defined as the angle in degrees by which the phase angle is smaller than -180° at the gain crossover, the gain crossover being the frequency at which the open-loop gain first reaches 1.

2.1.6. Find the frequencies for which phase margins are 90° and 45° respectively?

Solution:

Let Phase Margin be $\alpha = 90^{\circ}$. Then,

$$\alpha = \phi - (-180^{\circ}) \tag{2.1.6.1}$$

$$\phi = -180^{\circ} + \alpha \tag{2.1.6.2}$$

$$\phi = -90^{\circ} \tag{2.1.6.3}$$

So, by the definition of Phase-Margin, at $\phi = -90^{\circ}$, |GH| = 1. The value of $\phi = -90^{\circ}$ between poles $f = 10^{5}Hz$, $10^{6}Hz$. Assuming the Poles are farther apart,

$$\tan^{-1}(\frac{f}{10^7}) \approx 0 \tag{2.1.6.4}$$

where $10^5 < f < 10^6$ So,

$$-\tan^{-1}(f/10^{5}) - \tan^{-1}(f/10^{6}) = -90$$

$$(2.1.6.5)$$

$$\tan^{-1}(f/10^{5}) + \tan^{-1}(f/10^{6}) = 90$$

$$(2.1.6.6)$$

$$\tan^{-1}(f/10^{5}) = 90 - \tan^{-1}(f/10^{6})$$

$$(2.1.6.7)$$

$$\tan^{-1}(f/10^{5}) = \cot^{-1}(f/10^{6})$$

$$(2.1.6.8)$$

$$\tan^{-1}(f/10^{5}) = \tan^{-1}(10^{6}/f)$$

$$(2.1.6.9)$$

$$f^{2} = 10^{11}$$

$$(2.1.6.10)$$

$$f = 3.162 \times 10^{5}$$

$$(2.1.6.11)$$

So, the approximate value of f at which Phase Margin is 90° is $f = 3.162 \times 10^{5} Hz$.

Similarly let Phase Margin be $\alpha = 45^{\circ}$. Then,

$$\alpha = \phi - (-180^{\circ}) \tag{2.1.6.12}$$

$$\phi = -180^{\circ} + \alpha \tag{2.1.6.13}$$

$$\phi = -135^{\circ} \tag{2.1.6.14}$$

So, by the definition of Phase-Margin, at $\phi = -135^{\circ}$, |GH| = 1. The value of $\phi = -135^{\circ}$ approximately at poles $f = 10^{6}Hz$.

So, the approximate value of f at which Phase Margin is 45° is $f = 10^{6}$.

2.1.7. Find the minimum values of Closed-Loop Voltage Gain for which phase margins are 90° and 45° respectively

Solution:

For $\alpha = 90^{\circ}$,

$$f = 3.162 \times 10^5$$
 (2.1.7.1) 2.1.8.

By substituting f in Open-Loop Gain G(f)

(assuming poles are far part),

$$G(f) = 200 - 20log(3.162 \times 10^5)$$
 (2.1.7.2)

$$G(f) = 90dB$$
 (2.1.7.3)

$$G = 3.1625 \times 10^4$$
 (2.1.7.4)

At that $f = 3.162 \times 10^5$,

$$H = \frac{1}{G}$$
 (2.1.7.5)

$$H = 3.162 \times 10^{-5} \tag{2.1.7.6}$$

The minimum value of Closed-Loop Gain occurs at $|GH| \gg 1$ and the value of Closed-Loop Gain is $T = \frac{1}{H}$

$$T = \frac{1}{H} = 3.1625 \times 10^4 \tag{2.1.7.7}$$

So, The minimum value of Closed-Loop Gain with Phase Margin equal to $\alpha = 90^{\circ}$ is $T_{min} = 3.1625 \times 10^{4}$.

For $\alpha = 45^{\circ}$,

$$f = 10^6 \tag{2.1.7.8}$$

By substituting f in Open-Loop Gain G(f) (assuming poles are far part),

$$G(f) = 200 - 20log(10^6)$$
 (2.1.7.9)

$$G(f) = 80dB (2.1.7.10)$$

$$G = 10^4 \qquad (2.1.7.11)$$

At that $f = 10^6$,

$$H = \frac{1}{G} \tag{2.1.7.12}$$

$$H = 10^{-4} \tag{2.1.7.13}$$

The minimum value of Closed-Loop Gain occurs at $|GH| \gg 1$ and the value of Closed-Loop Gain is $T = \frac{1}{H}$

$$T = \frac{1}{H} = 10^4 \tag{2.1.7.14}$$

So, The minimum value of Closed-Loop Gain with Phase Margin equal to $\alpha = 45^{\circ}$ is $T_{min} = 10^4$.

(2.1.7.1) 2.1.8. Break the Transfer Function G(f) into Simple Blocks and Create a Block Diagram for G(f). Solution:

Fig. 2.1.8

2.1.9. Find the Gain of RC-Circuit shown below 2.1.9 and also identify the location of Poles.

Fig. 2.1.9

Solution:

$$I = \frac{v_{input}}{R + \frac{1}{Cs}} \qquad (2.1.9.1)$$

$$v_{output} = I \times \frac{1}{Cs} \qquad (2.1.9.2)$$

$$v_{output} = \frac{v_{input} \times \frac{1}{Cs}}{R + \frac{1}{Cs}}$$
 (2.1.9.3)

$$\frac{v_{output}}{v_{input}} = \frac{1}{RCs + 1}$$
 (2.1.9.4)

$$s = j2\pi f \qquad (2.1.9.5)$$

$$Gain = \frac{v_{output}}{v_{input}} = \frac{1}{j2\pi RCf + 1}$$
 (2.1.9.6)

So, there is a Pole at frequency $f = \frac{1}{2\pi RC}$ for the Transfer Function of Gain.

2.1.10. Find the Gain of Small-Signal of Operational Amplifier. The circuit diagram of Small-Signal Model is 2.1.10.

Fig. 2.1.10

Solution:

Applying KVL and KCl,

$$v_o = Gv_i$$
 (2.1.10.1)

As no current flows through R_s ,

$$v_i = v_c - v_f \tag{2.1.10.2}$$

$$v_f = \frac{R_1}{R_1 + R_2} v_o$$
 (2.1.10.3)
$$v_i = \frac{v_o}{G}$$
 (2.1.10.4)

$$v_i = \frac{v_o}{G}$$
 (2.1.10.4)

$$\frac{v_o}{G} = v_c - \frac{R_1}{R_1 + R_2} v_o \tag{2.1.10.5}$$

$$\frac{v_o}{v_c} = \frac{G}{1 + G\frac{R_1}{R_1 + R_2}} \tag{2.1.10.6}$$

So, Gain of the Circuit is $\frac{G}{1+G\frac{R_1}{R_1+R_2}}$ 2.1.11. Design a Circuit Model that follows the

Transfer Function G(f)

Solution:

Our Design for Modelling the Transfer Function is based on Poles of RC-Circuit and Gain of Operational Amplifier.

So, the Circuit Diagram is,

Fig. 2.1.11

Assuming, Gain of Operational Amplifier is 10^{5} .

Small Signal Model of the circuit is

Fig. 2.1.11

The cascade of RC Circuits are used to introduce poles in the circuit and Op-Amp are used to achieve the Gain required.

At the Operational Amplifier,

$$v_i = v_s (2.1.11.1)$$

$$v_a = 10^5 v_i \tag{2.1.11.2}$$

$$v_a = 10^5 v_s \tag{2.1.11.3}$$

At the first RC-Circuit,

$$2\pi RC = 10^{-7} \tag{2.1.11.4}$$

$$v_b = \frac{v_a}{1 + j\frac{f}{10^7}} \tag{2.1.11.5}$$

$$v_b = \frac{10^5 v_i}{1 + j \frac{f}{10^7}} \tag{2.1.11.6}$$

At the second RC-Circuit,

$$2\pi RC = 10^{-6} \tag{2.1.11.7}$$

$$v_c = \frac{v_b}{1 + j\frac{f}{100}}$$
 (2.1.11.8)

$$v_c = \frac{10^5 v_i}{(1 + j\frac{f}{10^6})(1 + j\frac{f}{10^7})}$$
 (2.1.11.9)

At the third RC-Circuit,

$$2\pi RC = 10^{-5} \tag{2.1.11.10}^2.$$

$$v_o = \frac{v_c}{1 + j\frac{f}{10^5}} \tag{2.1.11.11}$$

$$v_o = \frac{10^5 v_i}{(1 + j\frac{f}{10^5})(1 + j\frac{f}{10^6})(1 + j\frac{f}{10^7})}$$
(2.1.11.12)

The RC Circuits introduces poles at f = $10^7 Hz$, $10^6 Hz$, $10^5 Hz$ respectively from left to right and Op-Amp introduced a Gain = 10^5 . So, the value of v_o is

$$v_o = \frac{10^5 v_i}{\left(1 + j \frac{f}{10^5}\right) \left(1 + j \frac{f}{10^6}\right) \left(1 + j \frac{f}{10^7}\right)}$$
(2.1.11.13)

So, Open-Loop Gain is

$$G = \frac{10^5}{\left(1 + j\frac{f}{10^5}\right)\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)}$$
(2.1.11.14)

2.1.12. Design a Circuit Model that follows the Feedback Transfer Function H(f)

Solution:

On Bode Plot is *H* is independent of frequency. So, H should not involve any Reactive Elements. So, H is a combination of Resistors or a Voltage Divider.

Fig. 2.1.12

$$v_f = \frac{10}{10 + 10^5} \times v_o \tag{2.1.12.1}$$

$$v_f \approx 10^{-4} v_o$$
 (2.1.12.2)

$$\frac{v_f}{v_o} \approx 10^{-4}$$
 (2.1.12.3)
 $H(f) = 10^{-4}$ (2.1.12.4)

$$H(f) = 10^{-4}$$
 (2.1.12.4)

(2.1.11.10) 2.1.13. Design a Closed-Loop Transfer Function by combining both the Open-Loop and Feedback Circuits. Also draw its Small-Signal Model **Solution:**

The Closed-Loop Circuit is

Fig. 2.1.13

The Small-Signal Model of Closed-Loop Circuit is

Fig. 2.1.13

From the Small-Signal Model 2.1.13,

$$G = \frac{v_o}{v_i} = \frac{10^5}{\left(1 + j\frac{f}{10^5}\right)\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)}$$
(2.1.13.1)
$$H = \frac{v_f}{v_o} = 10^{-4}$$
(2.1.13.2)

The Closed-Loop Gain,

$$v_i = v_s - v_f \tag{2.1.13.3}$$

$$v_i = v_s - v_f$$
 (2.1.13.3)
 $\frac{v_o}{G} = v_s - Hv_o$ (2.1.13.4)

$$\frac{v_o}{v_s} = \frac{G}{1 + GH} \tag{2.1.13.5}$$

So, the Closed-Loop Gain,

$$T = \frac{v_o}{v_s} = \frac{10^5}{10 + \left(1 + j\frac{f}{10^5}\right)\left(1 + j\frac{f}{10^6}\right)\left(1 + j\frac{f}{10^7}\right)}$$
(2.1.13.6)

- 3 Bode Plot
- 4 SECOND ORDER SYSTEM
- 5 ROUTH HURWITZ CRITERION
 - 6 STATE-SPACE MODEL
 - 7 Nyquist Plot
 - 8 Compensators
 - 9 Gain Margin
 - 10 Phase Margin
 - 11 Oscillator
 - 12 Root Locus
 - 13 Polar Plot
 - 14 PID Controller