Beispiel: Blitz

Wie gross ist die Kraft des Basler Erdmagnetfelds auf einen 15 m langen, vertikalen Blitzableiter, durch den 10 kA nach oben fliessen? In welche Richtung zeigt die Kraft? (Abbildung 300)

Abbildung 300: Die magnetischen Feldlinien respektive die B-Vektoren zeigen nach geografisch Nord schräg in den Boden hinein. Der Leiter resp. die technische Stromrichtung zeigt vertikal nach oben.

$$F = Il \cdot \underbrace{B \sin \alpha}_{B_H} = IlB_H = 10 \cdot 10^3 \text{ A} \cdot 15 \text{ m} \cdot 21.238 \cdot 10^{-6} \text{ T} = \underbrace{3.2 \text{ N}}_{B_H}$$

Die Kraft wirkt senkrecht zum Leiter und zu den Feldlinien, also in Ost- oder West-Richtung. Die rechte-Hand Regel (Daumen in Stromrichtung, Zeigefinger in Feldrichtung, Mittelfinger in Kraftrichtung) ergibt eine nach Westen weisende Kraft.

Bemerkung

Die technische Stromrichtung eines solchen Blitzes ist aufwärts, aber die Elektronen bewegen sich von der Wolke zur Erde. Die magnetische Kraft wirkt auch auf den Blitz ausserhalb des Leiters.

Vektorielle Rechnung

Wir wählen die x-Achse horizontal nach Norden, die y-Achse nach Westen und die z-Achse vertikal nach oben.

$$B_x = B_H \qquad B_y \approx 0 \qquad B_z = B_H \tan \varphi_I = 21.238 \,\mu\text{T} \cdot \tan(-63.38 \,^\circ) = -42.374 \,\mu\text{T}$$

$$\vec{F} = I \cdot \vec{l} \times \vec{B} = I \cdot \begin{pmatrix} 0 \\ 0 \\ l \end{pmatrix} \times \begin{pmatrix} B_H \\ 0 \\ B_z \end{pmatrix} = \begin{pmatrix} 0 \\ IlB_H \\ 0 \end{pmatrix} = \dots = \begin{pmatrix} 0 \\ 3.2 \,\text{N} \\ 0 \end{pmatrix}$$