Functional Bus Description Language

Revision 0.0

9 March 2023

Abstract

keywords: bus interface, code maintenance, computer languages, control interface, design automation, design verification, documentation generation, electronic design automation, EDA, electronic systems, Functional Bus Description Language, FBDL, hardware design, hardware description language, HDL, hierarchical register description, memory, programming, register addressing, register synthesis, software generation, system management

Table of Contents

1. Overview		•	٠	٠	•	•	•	•	•	•	•	•	٠	•		٠	•	٠	٠	٠	٠	٠	3
1.1. Scope																							3
1.2. Purpose																							3
1.3. Motivation																							3
1.4. Concept																							3
1.5. Word usage																							3
1.6. Syntactic description .																							4
1.0. Syntactic description.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
2. References																							5
3. Lexical elements																							6
3.1. Comments																							6
3.1.1. Documentation com	nmen	ts																					6
3.2. Identifiers																							6
3.2.1. Declared identifier																							7
3.2.2. Qualified identifier																							7
3.3. Indent																							7
3.4. Keywords																							7
3.5. Literals																							8
3.5.1. Number literals .																							8
3.5.2. Integer literals .																							8
3.5.3. Real literals																							8
3.5.4. String literals																							8
3.5.5. Bit string literals																							8
4. Data types																							9
4.1. Bit string																							9
4.2. Bool																							9
4.3. Integer																							9
4.4. Real																							9
4.5. String																							9
4.6. Time																							9
4.0. Time		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
5. Expressions																							11
5.1. Operators																							11
5.2. Functions																							11
3.2. I directions		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
6. Functionalities						•																	12
6.1. Properties			•															•					12
6.2. Instantiation																							12
6.3. Block																							13
6.4. Bus																							13
6.5. Config																							14
6.6. Mask																							14
6.7. Memory																							15
6.8 Param																							15

	6.9. Proc																15
	6.10. Return																16
	6.11. Static																
	6.12. Status																
	6.13. Stream																
7.	. Parametrization .																19
	7.1. Constant .																19
	7.2. Type definition	on															19
	7.3. Type extending																
8.	. Scope and visibili	ity															21
	8.1. Import and pa	acka	ıge	SVS	ten	1											21
	8.2. Scope rules .		_	-													
9.	. Grouping																23
	9.1. Single registe																
	9.2. Multi register																
	9.3. Array groups																
	9.4. Mixed groups																
	9.5. Virtual group																
	9.6 Registerificat																24

Participants

 $Michal\ Kruszewski,\ Chair,\ Technical\ Editor,\ mkru@protonmail.com$

1. Overview

1.1. Scope

This document specifies the syntax and semantics of the Functional Bus Description Language (FBDL).

1.2. Purpose

This document is intended for the implementers of tools supporting the language and for users of the language. The focus is on defining the valid language constructs, their meanings and implications for the hardware and software that is specified or configured, how compliant tools are required to behave, and how to use the language.

1.3. Motivation

Describing and managing registers can be a tedious and error-prone task. The information about registers is utilized by software, hardware and verification engineers. Typically a specification of the registers is designed by the hardware designer or system architect. During the design and implementation phases it changes multiple times due to different reasons such as bugs, requirement changes, technical limitations, etc. A simple change in a single register may imply adjustments in both hardware and software. These adjustments cost money and time.

Several formal and informal tools exist to address issues related with registers management. However, they all share the same concept of describing registers at very low level. That is, the user has to implicitly define the registers layout. For example, in case of register containing multiple statuses, its user responsibility to specify the bit position for every status.

The FBDL is different in this terms. The user specifies the functionalities that must be provided by the registers. The register layout is generated based on the functional requirements. Such an approach allows to generate much more hardware description and software code than classical approach. Not only the register masks, addresses, and single read, write functions can be generated, but complete custom functions with optimized access methods. This in turn leads to shorter design iterations and fewer bugs.

1.4. Concept

The concept behind the FBDL is based on the fact, that if there is a part with the registers that can be accessed, then there is at least one more part accessing these registers. The part accessing the registers is called the *requester*. The part containing the registers is called the *provider* as it provides functions via particular functionalities.

The code generated from the FBDL description can be conceptually divided into two parts, the requester part and the provider part. The requester code usually refers to the generated software or firmware implemented in typical programming languages such as: Ada, C, C++, Go, Java, Python, Rust etc. The provider code usually refers to the generated gateware or hardware implemented in hardware description languages or frameworks such as: VHDL, SystemVerilog, SystemC, Bluespec, PipelineC, MyHDL, Chisel etc. However, implementing the provider for example as a firmware, using the C language and a microcontroller, is practically doable and valid.

1.5. Word usage

The terms "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may", and "optional" in this document are to be interpreted as described in the IETF Best Practices Document 14, RFC 2119.1.

1.6. Syntactic description

The formal syntax of the FBDL is described by means of context-free syntax using a simple variant of the Backus-Naur Form (BNF). In particular:

a) Lowercase words in constant-width font, some containing embedded underscores, are used to denote syntactic categories, for example:

```
single_import_statement
```

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, underscores are replaced with spaces thus, "single import statement" would appear in the narrative description when referring to the syntactic category.

b) Boldface words are used to denote keywords, for example:

mask

Keywords shall be used only in those places indicated by the syntax.

- c) A production consists of a left-hand side, the symbol "::=" (which is read as can be replaced by), and a right-hand side. The left-hand side of a production is always a syntactic category, the right-hand side is a replacement rule. The meaning of a production is a textual-replacement rule. Any occurrence of the left-hand side may be replaced by an instance of the right-hand side.
- d) A vertical bar (|) separates alternative items on the right-hand side of a production unless it occurs immediately after an opening brace, in which case it stands for itself, for example:

```
decimal_digit ::= zero_digit | non_zero_decimal_digit
choices ::= choice { | choice }
```

In the first instance, an occurrence of decimal digit can be replaced by either zero digit or non zero decimal digit. In the second case, "choices" can be replaced by a list of "choice", separated by vertical bars, see item f) for the meaning of braces.

e) Square brackets [] enclose optional items on the right-hand side of a production. For example, the following two productions are equivalent:

```
parameters_list ::= ( [ parameters ] ) parameters_list ::= () \mid ( parameters )
```

Note, however, sometimes square brackets in the right-hand side of the production are part of the syntax. In such cases bold font is used.

- f) Braces { } enclose a repeated item or items on the right-hand side of a production. The items may appear zero or more times.
- g) The term *declared identifier* is used for any occurrence of an identifier that already denotes some declared item.

2. References

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

- IETF Best Practices Document 14, RFC 2119,
- IEEE Std 754TM-2019, IEEE Standard for Floating-Point Arithmetic.

3. Lexical elements

FBDL has following types of lexical tokens:

- comment,
- · identifier.
- indent,
- · keyword,
- literal.
- · newline.

3.1. Comments

There is only a single type of comment, a *single-line comment*. A single line comment starts with '#' character and extends up to the end of the line. A single-line comment can appear on any line of a FBDL file and may contain any character, including glyphs and special characters. The presence or absence of comments has no influence on whether a description is legal or illegal. Their sole purpose is to enlighten the human reader.

3.1.1. Documentation comments

Documentation comments are comments that appear immediately before package scope constant definitions and before functionality instantiations with no intervening newlines. Following code shows examples of documentation comments:

3.2. Identifiers

Identifiers are used as names. An identifier shall start with a letter.

```
uppercase_letter ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
N | O | P | R | S | T | U | V | W | X | Y | Z

lowercase_letter ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
n | o | p | r | s | t | u | v | w | x | y | z

letter ::= uppercase_letter | lowercase_letter
letter_or_digit ::= letter | decimal_digit
identifier ::= letter { underscore | letter_or_digit }
```

Following code contains some valid and invalid identifiers.

```
const C_20 = 20 # Valid
const _C20 = 20 # Invalid
Main bus
    cfg1 config # Valid
    lcfg config # Invalid
```

3.2.1. Declared identifier

Declared identifier is used for any occurrence of an identifier that already denotes some declared item.

```
declared_identifier ::= letter { underscore | letter_or_digit }
```

3.2.2. Qualified identifier

The qualified identifier is used to reference a symbol from foreign.

```
qualified_identifier ::= declared_identifier.declared_identifier
```

The first declared identifier denotes the package, and the second one denotes the symbol from this package.

3.3. Indent

The indentation has semantics meaning in the FBDL. There is only single indent character, the horizontal tab (U+0009). It is hard to express the indent and dedent using BNF. Ident is the increase of the indentation level and dedent is the decrease of the indentation level. In the following code the indent happens in the lines number 2, 5 and 7 and the dedent happens in the line number 4. What is more 2 dedents happens at the EOF. The number of indents always equals the number of dedents in the syntactically and semantically correct file.

```
1: type cfg_t config
2: atomic = false
3: width = 64
4: Main bus
5: C cfg_t
6: Blk block
7: C cfg_t
8: S status
```

Not only the indent alignment is important, but also its level. In the following code the first type definition is correct, as the indent level for the definition body is increased by one. The second type definition is incorrect, even though the indent within the definition body is aligned, as the indent level is increased by two.

```
type cfg1_t config
   atomic = false
   width = 8
type cfg2_t config
   atomic = false
   width = 8
```

3.4. Keywords

Keywords cannot be used as identifiers.

FBDL has following keywords: atomic, block, bus, const, default, doc, false, import, mask, memory, param, proc, range, return, static, stream, true.

3.5. Literals

3.5.1. Number literals

```
underscore ::= _ zero_digit ::= 0  
    non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  
    decimal_digit ::= zero_digit | non_zero_decimal_digit  
    binary_base ::= 0B | 0b  
    binary_digit ::= 0 | 1  
    octal_base ::= 0O | 0o  
    octal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  
    hex_base ::= 0X | 0x  
    hex_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | a | B | b | C | c | D | d  
    | E | e | F | f
```

3.5.2. Integer literals

```
decimal_literal ::= non_zero_decimal_digit {[underscore] decimal_digit}
binary_literal ::= binary_base binary_digit {[underscore] binary_digit}
octal_literal ::= octal_base octal_digit {[underscore] octal_digit}
hex_literal ::= hex_base hex_digit {[underscore] hex_digit}
```

3.5.3. Real literals

The real literals shall be represented as described by IEEE Std 754, an IEEE standard for double-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 17.83) or in scientific notation (for example, 13e8, which indicates 13 multiplied by 10 to the eighth power). Real numbers expressed with a decimal point shall have at least one digit on each side of the decimal point.

3.5.4. String literals

3.5.5. Bit string literals

4. Data types

There are 6 data types in FBDL:

- bit string,
- bool,
- integer,
- real,
- string,
- time.

Types are implicit and are not declared. The type of the value evaluated from an expression must be checked before any assignment or comparison. If there is a type mismatch that can be resolved with implicit rules, then it should be resolved. In case of type mismatch that cannot be resolved, an error must be reported.

Conversion from integer to real in expressions is implicit. Conversion from real to integer must be explicit, and must be done by calling any function returning integer type, for example <code>ceil()</code>, <code>floor()</code>. Conversion from integer to bool in expressions is implicit. Bool cannot be converted to any type.

4.1. Bit string

4.2. Bool

The value of bool type can be created explicitly using true or false literals. The value of bool type shall be implicitly converted to the value of integer type in places where the value of integer type is required. The boolean false value shall be converted to integer value 0. The boolean true value shall be converted to integer value 1. In the following example, the value of I1 evaluates to 1, and the value of I2 evaluates to 2.

```
const B0 = false
const B1 = true
const I1 = B0 + B1
const I2 = B1 + B1
```

The bool - integer conversion is asymmetric. Implicit conversion of a value of the integer type to a value of the bool type is forbidden. This is because values of the bool type are often used to count the number of elements or to arbitrarily enable/disable an element generation. However, a value of the integer type appearing in a place where a value of the bool type is required is usually a sign of a mistake. To convert a value of the integer type to a value of the bool type the built-in **bool** () function must be called.

4.3. Integer

4.4. Real

4.5. String

4.6. Time

The value of time type can be created explicitly using the time literal.

```
\label{eq:time_unit} \begin{array}{l} \texttt{time\_unit} ::= ns \, |\, us \, |\, ms \, |\, s \\ \\ \texttt{time\_literal} ::= \text{integer\_literal time\_unit} \end{array}
```

The time type is only used for assigning value to the properties expressed in time. Values of time type can be added regardless of their time units. Values of the time type can also be multiplied by values of the integer type. All of below property assignments are valid.

```
delay = 1 \mathbf{s} + 1 \mathbf{ms} + 1 \mathbf{us} + 1 \mathbf{ns} delay = 5 * 60 \mathbf{s} # Sleep for 5 minutes. delay = 10 \mathbf{ms} * 4 + 7 * 8 \mathbf{us}
```

5. Expressions

An expression is a formula that defines the computation of a value.

5.1. Operators

FBDL operators

	-	
Operator token	Name	Name
+	foo	bar
*	foo	bar

5.2. Functions

The FBDL does not allow defining custom functions for value computations. However, FBDL has following built-in functions:

abs(x integer real) integer real

Abs returns the absolute value of x.

bool(x integer) bool

Bool returns a value of the bool type converted from a value x of the integer type. If x equals 0, then the false is returned. In all other cases the true is returned.

ceil(x float) integer

Ceil returns the least integer value greater than or equal to x.

floor(x float) integer

Floor returns the greatest integer value less than or equal to x.

log2(x float) integer | float

Log2 returns the binary logarithm of x.

log10(x float) integer | float

Log10 returns the decimal logarithm of x.

 $\mathbf{u2}(x, w integer) integer$

U2 returns two's complement representation of x as an integer assuming width w. For example u2(-1, 8) returns 255.

6. Functionalities

Functionalities are the core part of the FBDL. They define the capabilities of the provider. Each functionality is distinct and in an unambiguous way defines the provider behavior and the interface that must be generated for the requester. There are 11 functionalities:

- 1) block,
- 2) bus,
- 3) config,
- 4) mask,
- 5) memory,
- 6) param,
- 7) proc,
- 8) return,
- 9) static,
- 10) status,
- 11) stream.

6.1. Properties

Each functionality has associated properties. Properties allow configuration of functionalities. Each property must have concrete type. The default value of each property is specified in the round brackets () in the functionality subsections. If the default value is bus width, then it means that the default value equals the actual value of the bus width property. If the default value is undefined, then it shall be represented as the undefined meta value at the provider side. If the target language for the provider code does not have a concept of undefined value, then values such as 0, Null, None, nil etc. shall be used.

```
property_assignment ::= declared_identifier = expression
property_assignments ::=
    property_assignment
    { ; property_assignment }
    newline

semicolon_and_property_assignments ::= ; property_assignments
```

6.2. Instantiation

A functionality can be instantiated in a single line or in multiple lines.

```
instantiation ::= single_line_instantiation | multi_line_instantiation
single_line_instantiation ::=
   identifier
   [ array_marker ]
   declared_identifier | qualified_identifier
   [ argument_list ]
   newline | semicolon_and_property_assignments
```

Following code shows examples of single line instantiations:

```
C config
C config; width = 8
```

```
M [8]mask; atomic = false; width = 128; default = 0
err error_t(48); atomic = false
```

6.3. Block

The block functionality is used to logically group or to encapsulate functionalities. The block is usually used to separate functionalities related with particular peripherals such as UART, I2C transceivers, timers, ADCs, DACs etc. The block might also be used to limit the access for particular provider to only a subset of functionalities.

The block functionality has following properties:

```
masters integer (1)
```

The masters property specifies the number of block masters.

The following example presents how to limit the scope of access for particular requester.

```
Main bus
   C config
   Blk block
   masters = 2
   S status
```

The logical connection of the system components may look as follows:

The requester number 1 can access both config C and status S. However, the requester number 2 can access only the status S.

6.4. Bus

The bus functionality represents the bus structure. Every valid description must have at least one bus instantiated, as the the bus named Main is the entry point for the description used for the code generation.

The bus functionality has following properties:

```
masters integer (1)
```

The masters property specifies the number of bus masters.

width integer (32)

The width property defines the bus data width.

The bus address width is not explicitly set, as it implies from the address space size needed to pack all functionalities included in the Main bus description.

6.5. Config

The config functionality represents a configuration data. A configuration data is a data that is automatically read by the provider from its registers. As the config is automatically read by the provider, there is no need for additional signal, associated with the config, indicating config write by the requester. By default, a config can be written and read by the requester.

The config functionality has following properties:

```
atomic bool (true)
```

The atomic property defines whether an access to the config must be atomic. If atomic is true, then the provider must guarantee that any change of the config value, triggered by the requester write, is seen as an atomic change by the other modules of the provider. This is especially important when the config spans more than single register, as in case of single register write the change is always atomic.

```
default bit string | integer (undefined)
```

The default property defines the initial value of the config.

```
groups string | [string] (None)
```

The groups property defines the groups the config belongs to. In case of a single group, the value can be a string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping section.

```
once bool (false)
```

The once property determines whether the config can be written only once.

```
range integer | [integer] (None)
```

The range property specifies the range of valid values. If the range value is of integer type then, the valid range is from 0 to the value, including the value. If the range value is an integer list, then it must have even number of elements. Odd elements specify lower bounds of the subranges and even elements specify upper bounds of the subranges. For instance, range = [1, 3, 7, 8] means that the valid values are: 1, 2, 3, 7 and 8. Range bound values shall not be negative. This is because the FBDL makes no assumptions on the negative values encoding. To accomplish negative range checks functions such as u2 must be explicitly called. For example, following assignment limits the possible range from -16 to -8: range = [u2(-8, 8), u2(-16, 8)]. The range property shall not be explicitly set if the width property is already set. If the range property is not set, then the actual range implies from the width property. The code generated for the provider is not required to check or report if the value provided for the config write is within the valid range. The recommended way is to implement compiler parameter allowing enabling/disabling range check generation.

```
width integer (bus width)
```

The width property defines the bit width of the config. The width property shall not be explicitly set if the range property is already set.

The code generated for the requester must provide methods for writing and reading the config.

6.6. Mask

The mask functionality represents a bit mask. The mask is a data that is automatically read by the provider from its registers. By default, a mask can be written and read by the requester. The mask is very similar to the config. The difference is that the config is value oriented, whereas the mask is bit oriented. From the provider's perspective the mask and the config are the same. From the requester's perspective the code generated for interacting the mask and the config is different.

The mask functionality has following properties:

```
atomic bool (true)
```

The atomic property defines whether an access to the mask must be atomic. If atomic is true, then the provider must guarantee that any change of the mask value, triggered by the requester write, is seen as an atomic change by the other modules of the provider. This is especially important when the mask spans more than single register, as in case of single register write the change is always atomic.

```
default bit string | integer (undefined)
```

The default property defines the initial value of the mask.

```
width integer (bus width)
```

The width property defines the bit width of the mask.

The code generated for the requester must provide methods for setting and clearing particular bits of the mask.

6.7. Memory

The memory functionality has following properties:

```
size integer (obligatory)
```

The size property determines the memory size. The size is in the number of memory words with width equal to the memory width property value.

```
width integer (bus width)
```

The width property determines the memory data width.

6.8. Param

The param functionality is an inner functionality of the proc and stream functionalities. It represents a data fed to a proc or streamed by a downstream.

The param functionality has following properties:

```
groups string | [string] (None)
```

The groups property defines the groups the param belongs to. In case of a single group, the value can be a string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping section.

```
width integer (bus width)
```

The width property defines the bit width of the param.

```
range integer | [integer] (None)
```

The range property specifies the range of valid values. The range property on param behaves exactly the same as the range property on config.

Following example presents the definition of a downstream with three parameters.

```
Sum_Reduce stream
    type param_t param; width = 16
    a param_t
    b param_t
    c param_t
```

6.9. Proc

The proc functionality represents a procedure called by the requester and carried out at the provider. The proc functionality might contain param and return functionalities. Params are procedure parameters and returns represent data returned from the procedure.

The proc has associated signals at the provider side, the call signal and the exit signal. The call signal must be driven active for one clock cycle after all registers storing the parameters have been written. The exit signal must be driven active for one clock cycle after all registers storing the returns have been read. An empty proc, proc without params and returns, by default has only the call signal. However, if an empty proc has the delay property set, then it has both, the call signal and the exit signal. A proc having only parameters has by default only the call signal. However, if a proc having only parameters has the delay property set, then it also has the exit signal. A proc having only returns has by default only the exit signal. However, if a proc having only returns has the delay property set, then it also has the call signal. Existence or absence of call and exit signals is summarized in below table.

Proc call and exit signals occurrence.

Delay Set	Empty	Only Params	Params & Returns	
No	call	call	exit	call & exit
Yes	call & exit	call & exit	call & exit	call & exit

The proc functionality has following properties:

```
delay time (None)
```

The delay property defines the time delay between parameters write end and returns read start.

The code generated for the requester must provide method for calling the procedure.

6.10. Return

The return functionality is an inner functionality of the proc and stream functionalities. It represents a data returned by a proc or streamed by an upstream.

The return functionality has following properties:

```
groups string | [string] (None)
```

The groups property defines the groups the return belongs to. In case of a single group, the value can be a string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping section.

```
width integer (bus width)
```

The width property defines the bit width of the return.

Following example presents the definition of a procedure returning 4 element byte array, and a single bit flag indicating whether the data is valid.

```
Read_Data proc
  data [4]return; width = 8
  valid return; width = 1
```

6.11. Static

The static functionality represents an information, placed at the provider, that shall never change.

The static functionality has following properties:

```
default bit string | integer (obligatory)
The default property defines the value of the static.
```

```
groups string | [string] (None)
```

The groups property defines the groups the static belongs to. In case of a single group, the value can be a string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping section.

```
once bool (false)
```

The once property determines whether the static can be read only once. If once is true, then after the

first read the provider must return the value of ... property on every static read.

```
width integer (bus width)
```

The width property defines the bit width of the static.

The static functionality may be used for example for versioning, bus id, bus generation timestamp or for storing secrets, that shall be read only once. Example:

```
Secret static
  width = 8
  default = 113
  once = true
  ... = 0xFF
```

6.12. Status

The status represents an information that is produced by the provider and is only read by the requester.

The status functionality has following properties:

```
atomic bool (true)
```

The atomic property defines whether an access to the status must be atomic. If atomic is true, then the provider must guarantee that any change of the status value is seen as an atomic change by the requester. This is especially important when the status spans more than single register, as in case of single register read the change is always atomic.

```
groups string | [string] (None)
```

The groups property defines the groups the status belongs to. In case of a single group, the value can be a string. In case of multiple groups the value shall be a list of strings. Groups are thoroughly described in the grouping section.

```
once bool (false)
```

The once property determines whether the status can be read only once.

```
width integer (bus width)
```

The width property defines the bit width of the status.

The code generated for the requester must provide method for reading the status.

6.13. Stream

The stream functionality represents a stream of data to a provider (downstream), or a stream of data from a provider (upstream). An empty stream (stream without any params or returns) is always a downstream. It is useful for triggering cyclic action with constant time interval. A downstream must not have any returns. An upstream shall not have any params, and must have at least one return.

The stream property is very similar to the proc property, but they are not the same. There are two main differences. The first one is that the stream must not containt both params and returns. The second one is that the code for the stream, generated for the requester, shall take into account the fact that an access to the stream is multiple and an access to the proc is single. For example lets consider the following bus description:

```
Main bus
P proc
p param
S stream
p param
```

The code generated for the requester, implemented in the C language, might include following function prototypes:

```
int Main_P(const uint32_t p);
int Main_S(const uint32_t * p, size_t count);
```

The stream functionality has following properties.

```
delay time (None)
```

The delay property defines the time delay between writing/reading consecutive datasets for a down-stream/upstream.

7. Parametrization

The FBDL provides following three ways for description parametrization:

- constants,
- · type definitions,
- · types extending.

7.1. Constant

The constant represents a constant value. The value might be used in expression evaluations. The following code presents bus with three functionalities, all having the same array dimensions and width.

```
Main width
   const ELEMENT_COUNT = 4
   const WIDTH = 8
   C [ELEMENT_COUNT] config; width = WIDTH
   M [ELEMENT_COUNT] mask; width = WIDTH
   S [ELEMENT_COUNT] status; width = WIDTH
```

Constants must be included in the generated code, both for the provider and for the requester. This allows for having a single source of the constant value.

A constant can be defined in a single line in the single line constant definition or as a part of the multi constant definition.

```
single_constant_definition ::= const identifier = expression newline
```

Examples of single constant definition:

```
const WIDTH = 16
const FOO = 8 * BAR
const LIST = [1, 2, 3, 4, 5]

multi_constant_definition ::=
   const newline
   indent
   identifier = expression newline
   { identifier = expression newline }
   dedent
```

Examples of multi constant definition:

```
const
    WIDTH = 16
    FOO = 8 * BAR
    LIST = [1, 2, 3, 4, 5]
const
    ONE = 1
    TWO = ONE + 1
    THREE = TWO + 1
```

7.2. Type definition

7.3. Type extending

The the extending allows extending any custom defined type, either by instantiation or by defining new type. This is especially, but not only, useful when there are similar blocks with only slightly different set of

functionalities.

Example:

This description is equivalent to the following description:

```
type blk_common_t block
    C1 config
    M1 mask
    S1 status
type blk_C_t blk_common_t
    C2 config
type blk_M_t blk_common_t
    M2 mask
type blk_S_t blk_common_t
    S2 status
Main bus
    Blk_C blk_C_t
    Blk_M blk_M_t
    Blk_S blk_S_t
```

The type nesting has no depth limit. However, no property already set in one of the ancestor types can be overwritten. Also no symbol identifier defined in one of the ancestor types can be redefined.

8. Scope and visibility

8.1. Import and package system

The FBDL has a concept of packages and allows importing packages into the file scope using the import statements. A package consists of files with .fbd extension placed in the same directory. A package must have at least one file and shall not be placed in more than single directory. A package is uniquely identified by its path. The name of a package is equivalent to the last part of its path. That is, it is the same as the name of the directory containing package files. However, if the package name starts with the "fbd-" prefix, then the prefix is not included in the package name. For example, two packages with following paths foo/bar/uart and baz/zaz/fbd-uart have exactly the same name uart.

A package can be imported in a single line using the single line import statement or as a part of the multi import statement.

```
single_import_statement ::= import [ identifier ] string_literal
```

Examples of single import statement:

```
import "uart"
import spi "custom_spi"

multi_import_statement ::=
   import newline
   indent
   [ identifier ] string_literal
   { [ identifier ] string_literal }
   dedent
```

Example of multi import statement:

```
import
    "uart"
    spi "custom_spi"
```

The string literal is the path of the package. The path might not but be complete, but shall be unambiguous. For example, if two paths are visible by the import statement ("foo/bar/uart" and "baz/zaz/uart"), and both ends with "uart", then "uart" path is ambiguous, but "bar/uart" and "zaz/uart" are not.

The optional identifier is an identifier that shall denote the imported packaged within the importing file. If the identifier is omitted, then the implicit identifier for the package is the last part of its path.

8.2. Scope rules

The following elements define a new scope in the FBDL:

- package,
- type definition,
- · functionality instantiation.

Following example presents all scopes.

```
const WIDTH = 16
const WIDTHx2 = WIDTH * 2
Main bus
    width = WIDTH
    const C20 = 20
    Blk block
```

```
const C30 = 30
type cfg_t(WIDTH = WIDTH) config
    atomic = false
    width = WIDTH
Cfg16 cfg_t
Cfg20 cfg_t(C20)
Cfg30 cfg_t(C30)
```

The WIDTH constant has package scope, and it is visible at the package level, in the Main bus instantiaiton and in the Blk block instantiaiton. It would also be visible in the cfg_t type definition. However, the cfg_t type has the parameter with the same name WIDTH. As a result, only the WIDTH parameter is visible within the type definition. The WIDTH parameter has default value that equals 16. This is because at this point the name WIDTH denotes the package level WIDTH constant. Type parameters are visible inside the type definition, but not in the type parameter list. The Cfg16 is thus a non-atomic config of width 16, the Cfg20 is a non-atomic config of width 20 and the Cfg30 is a non-atomic config of width 30.

9. Grouping

Grouping is a feature of the FBDL used to inform a compiler that particular functionalities might be accessed together and theirs register location must meet additional constraints. This is achieved using the groups property. The following functionalities can be grouped: config, mask, static, status. A functionality may belong to multiple groups and groups must be registerified in the order they appear. The following snippet presents three grouped configs.

```
Main bus
    type cfg_t; width = 8; groups = ["group"]
    A cfg_t
    B cfg_t
    C cfg_t
```

Any FBDL compliant compiler must place all three configs (A, B, C) in the same register.

9.1. Single register groups

The single register groups are groups of elements that fit single register. The overall width of all functionalities is not greater than the single register width. In such case all functionalities must be placed in the same register. The specification does not impose any specific order of the functionalities within the register, and it is left to the compiler implementation. The following listing presents an example bus description with three single register groups.

```
Main bus
   C0 config; width = 16; groups = ["read_write_group"]
   M0 mask; width = 15; groups = ["read_write_group"]

C1 config; width = 16; groups = ["mixed_group"]
   S11 static; width = 8; groups = ["mixed_group"]
   S12 status; width = 8; groups = ["mixed_group"]

S21 status; width = 4; groups = ["read_only_group"]
   S22 status; width = 7; groups = ["read_only_group"]
```

All functionalities of the read_write_group can be both read and written. The code generated by a compiler for the requester must provide methods for reading/writing the whole group as well as for read/writing particular functionalities of the group.

The mixed_group contains functionality that can be read and written (C1), as well as functionalities that can be only read (S11, S12). The code generated by a compiler for the requester must provide method for reading all readable functionalities and method for writing all writable functionalities. It is valid even if the group has single readable or single writable functionality. The compiler must also generate methods for reading/writing particular functionalities of the group. In case of mixed_group this will results with two methods doing exactly the same (writing the C1 config). However, it is up to the user to decide which of the methods should be used. If it makes sense, it is perfectly valid to use both of them in different contexts.

All functionalities of the read_only_group are read only. In this case the compiler must generate method only for reading the group. It must also generate methods for reading particular functionalities.

9.2. Multi register groups

The multi register groups are groups with functionalities that overall width is greater than the width of a single register. The specification does not impose any order of functionalities or registers in such case, and it is left to the compiler implementation. However, the compiler must not split functionalities narrower or equal to the register width into multiple registers. This implies that any functionality with width not greater than the register width is always read or written using single read or write access. The following snippet

presents bus description with one multi register group.

```
Main bus
   C config; width = 10; groups = ["group"]
   M mask; width = 10; groups = ["group"]
   SC static; width = 10; groups = ["group"]
   SS status; width = 10; groups = ["group"]
```

The compiler must generate code for the requester allowing to write all writable functionalities of the group as well as the code allowing reading all readable functionalities of the groups. It must also generate methods for reading or writing particular functionalities.

There are multiple ways to place functionalities from the above example into registers. The following snippet presents one possible way.

However, the above arrangement might not be optimal if there is a need to read both SC and SS at the same time as it would require reading two registers not a single one. Below listing presents how to group elements within the group using subgroups.

```
Main bus
   C config; width = 10; groups = ["csubgroup", "group"]
   M mask; width = 10; groups = ["csubgroup", "group"]
   SC static; width = 10; groups = ["ssubgroup", "group"]
   SS status; width = 10; groups = ["ssubgroup", "group"]
```

The set of possible functionalities placements within the registers is now limited as the groups are registerified in the order they appear. Below snippet shows possible arrangement.

This time reading both SC and SS requires reading only one register, while reading the whole group still requires reading two registers.

9.3. Array groups

9.4. Mixed groups

9.5. Virtual groups

Virtual groups are groups that name starts with the underscore ('_'), for example "_group". Virtual groups are used to group functionalities without generating the group interface for the requester code.

9.6. Registerification order

Groups must be registerified in the order they appear in the groups lists. If the order is not unequivocal, then the compiler is free to choose the order. A compiler must issue an error if the order of any groups is not the same in all groups lists. The order of groups might be used to prioritize the groups, so that an access to some groups is more efficient than to the other groups. Below listing serves as an example.

```
Main bus
C1 config; width = 20; groups = ["a"]
C2 config; width = 12; groups = ["a", "b"]
C3 config; width = 20; groups = ["b"]
```

As group a has higher priority than group b (its index is lower in the groups list for functionality C2), access to the group a will be more efficient, as functionalities C1 and C2 will be placed in the same register. Possible arrangement is presented in the below snippet.

If the order of the groups in the groups list for functionality C2 was reverse, then the access to the group b would be more efficient. Possible arrangement of functionalities in such case could look as follows.

Nth register	Nth + 1 register
C2 C3	C1 12 bits gap

TODO: Add example with unequivocal group order.