

BGS12SL6

0.1 - 6.0 GHz SPDT Switch in ultra small package with 0.77mm² footprint

Data Sheet

Revision 1.2, 2014-05-23 Final

Edition May 23, 2014

Published by Infineon Technologies AG 81726 Munich, Germany

©2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History

Document No.: BGS12SL6.pdf

Previous Version: Revision 1.1, October 22, 2013

Page	Subjects (major changes since last revision)
10	Updated Temperature Range in Table 6

Trademarks of Infineon Technologies AG

 $AURIX^{TM}, C166^{TM}, CanPAK^{TM}, CIPOS^{TM}, CIPURSE^{TM}, CoolGaN^{TM}, CoolMOS^{TM}, CoolSiC^{TM}, CoolSiC^{TM}, CORECONTROL^{TM}, DAVE^{TM}, DI-POL^{TM}, EasyPIM^{TM}, EconoBRIDGE^{TM}, EconoDUAL^{TM}, EconoPACK^{TM}, EconoPIM^{TM}, EiceDRIVER^{TM}, eupec^{TM}, FCOS^{TM}, HITFET^{TM}, HybridPACK^{TM}, ISOFACE^{TM}, IsoPACK^{TM}, MIPAQ^{TM}, ModSTACK^{TM}, my-d^{TM}, NovalithIC^{TM}, OmniTune^{TM}, OptiMOS^{TM}, ORIGA^{TM}, OPTIGA^{TM}, PROFET^{TM}, PRO-SIL^{TM}, PRIMARION^{TM}, PrimePACK^{TM}, RASIC^{TM}, ReverSave^{TM}, SatRIC^{TM}, SIEGET^{TM}, SIPMOS^{TM}, SOLID FLASH^{TM}, SmartLEWIS^{TM}, TEMPFET^{TM}, thinQ!^{TM}, TriCore^{TM}, TRENCHSTOP^{TM}.$

Other Trademarks

Advance Design SystemTM (ADS) of Agilent Technologies, AMBATM, ARMTM, MULTI-ICETM, PRIMECELLTM, REALVIEWTM, THUMBTM of ARM Limited, UK. AUTOSARTM is licensed by AUTOSAR development partnership. BluetoothTM of Bluetooth SIG Inc. CAT-iqTM of DECT Forum. COLOSSUSTM, FirstGPSTM of Trimble Navigation Ltd. EMVTM of EMVCo, LLC (Visa Holdings Inc.). EPCOSTM of Epcos AG. FLEXGOTM of Microsoft Corporation. FlexRayTM is licensed by FlexRay Consortium. HYPERTERMINALTM of Hilgraeve Incorporated. IECTM of Commission Electrotechnique Internationale. IrDATM of Infrared Data Association Corporation. ISOTM of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLABTM of MathWorks, Inc. MAXIMTM of Maxim Integrated Products, Inc. MICROTECTM, NUCLEUSTM of Mentor Graphics Corporation. MifareTM of NXP. MIPITM of MIPI Alliance, Inc. MIPSTM of MIPS Technologies, Inc., USA. muRataTM of MURATA MANUFACTURING CO., MICROWAVE OFFICETM (MWO) of Applied Wave Research Inc., OmniVisionTM of OmniVision Technologies, Inc. OpenwaveTM Openwave Systems Inc. RED HATTM Red Hat, Inc. RFMDTM RF Micro Devices, Inc. SIRIUSTM of Sirius Sattelite Radio Inc. SOLARISTM of Sun Microsystems, Inc. SPANSIONTM of Spansion LLC Ltd. SymbianTM of Symbian Software Limited. TAIYO YUDENTM of Taiyo Yuden Co. TEAKLITETM of CEVA, Inc. TEKTRONIXTM of Tektronix Inc. TOKOTM of TOKO KABUSHIKI KAISHA TA. UNIXTM of X/Open Company Limited. VERILOGTM, PALLADIUMTM of Cadence Design Systems, Inc. VLYNQTM of Texas Instruments Incorporated. VXWORKSTM, WIND RIVERTM of WIND RIVER SYSTEMS, INC. ZETEXTM of Diodes Zetex Limited.

Last Trademarks Update 2012-12-13

Data Sheet 3 Revision 1.2 - 2014-05-23

Contents

1	Features	7
2	Product Description	7
3	Maximum Ratings	9
4	Operation Ranges	9
5	RF Characteristics	10
6	Pin Description	12
7	Package Information	12

Data Sheet 4 Revision 1.2 - 2014-05-23

BGS12SL6

List of Figures

1	BGS12SL6 Block Diagram
2	Pin Configuration
3	Package Outline
4	Footprint
5	Pin 1 Marking (top view)
6	Tape Drawing for TSLP-6-4

Data Sheet 5 Revision 1.2 - 2014-05-23

List of Tables

1	Ordering Information
	Truth Table
3	Maximum Ratings
4	Operation Ranges
5	RF Input Power
6	RF Characteristics
7	Pin Description
8	Mechanical Data

Data Sheet 6 Revision 1.2 - 2014-05-23

BGS12SL6 0.1 - 6.0 GHz SPDT Switch in ultra small package with 0.77mm² footprint

1 Features

- 2 high-linearity TRx paths with power handling capability of up to 27.5 dBm
- · High switching speed, ideal for WLAN and Bluetooth applications
- All ports fully bi-directional
- Low insertion loss
- · Low harmonic generation
- High port-to-port isolation
- 0.1 to 6 GHz coverage
- High ESD robustness
- On-chip control logic
- Very small leadless and halogen free package TSLP-6-4 (0.7x1.1mm²) with super low height of 0.31 mm
- No decoupling capacitors required if no DC applied on RF lines
- RoHS compliant package

The BGS12SL6 RF MOS switch is a general purpose 0.1 - 6.0 *GHz* SPDT Switch suitable for band/mode switching in cellular systems and WLAN applications. Any of the 2 ports can be used as termination of the diversity antenna handling up to 27.5 dBm.

This single supply chip integrates on-chip CMOS logic driven by a simple, single-pin CMOS or TTL compatible control input signal. The 0.1 dB compression point exceeds the switch's maximum input power level, resulting in linear performance at all signal levels. The RF switch has a very low insertion loss of 0.25 dB in the 1 GHz and 0.35 dB in the 2.5 GHz range.

The BGS12SL6 RF switch is manufactured in Infineon's patented MOS technology, offering the performance of GaAs with the economy and integration of conventional CMOS including the inherent higher ESD robustness.

The device has a very small size of only 0.7x1.1mm² and a low height of 0.31mm. No decoupling capacitors are required in typical applications as long as no DC is applied to any RF port.

Table 1: Ordering Information

Туре	Package	Marking
BGS12SL6	TSLP-6-4	S

Data Sheet 7 Revision 1.2 - 2014-05-23

Figure 1: BGS12SL6 Block Diagram

Table 2: Truth Table

Switched Paths	Ctrl
RFin - RF1	0
RFin - RF2	1

Data Sheet 8 Revision 1.2 - 2014-05-23

3 Maximum Ratings

Table 3: Maximum Ratings at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Supply Voltage	V _{dd}	-0.5	_	5.5	V	_
Control Voltage	V _{Ctrl}	-0.3	_	3.6	V	_
Storage Temperature Range	T _{STG}	-55	_	150	°C	_
RF Input Power	P _{RF}	-	_	29	dBm	_
Junction Temperature	T _j	Ī —	_	125	°C	_
ESD Capability			<u>'</u>	<u>.</u>		
Human Body Model 1)	V _{ESD_HBM}	-1	_	+1	kV	_
ESD Capability RFin Port 2)	V _{ESD_RFin}		_	+8	kV	RFin versus GND, with
						27 nH shunt inductor

¹⁾ Human Body Model ANSI/ESDA/JEDEC JS-001-2012 ($R = 1.5 \text{ k}\Omega$, C = 100 pF).

Attention:

Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

4 Operation Ranges

Table 4: Operation Ranges

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Ambient Temperature	T _A	-40	25	85	°C	_
RF Frequency	f	0.1	_	6	GHz	_
Supply Voltage	V _{dd}	2.4	_	3.6	V	_
Control Voltage Low	V _{Ctrl_L}	-0.3	_	0.3	V	_
Control Voltage High	V _{Ctrl_H}	1.4	_	V _{dd}	V	_

Table 5: RF Input Power

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
RF Input Power (50Ω)	P _{In}	_	_	27.5	dBm	_

Data Sheet 9 Revision 1.2 - 2014-05-23

 $^{^{2)}}$ IEC 61000-4-2 ($R=330~\Omega,~C=150~\mathrm{pF}),$ contact discharge.

5 RF Characteristics

Table 6: RF Characteristics

Test Conditions (unless otherwise specified):

• Terminating port impedance: $Z_0 = 50 \Omega$

• Temperature range: $T_A = -40 \dots +85 \, ^{\circ}\text{C}$

• Supply voltage: $V_{dd} = 2.4 \dots 3.6 V$

• Input power: $P_{IN} = 0 dBm$

Parameter	Symbol		Values	;	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Insertion Loss						
		0.15	0.25	0.40	dB	824-915 MHz
		0.20	0.30	0.50	dB	1710-1910 MHz
All RF Ports	IL	0.28	0.35	0.60	dB	2170-2690 MHz
		0.78	1.00	1.40	dB	5000 MHz
		1.30	1.50	2.00	dB	6000 MHz
Insertion Loss ¹	•			·		
		0.24	0.25	0.30	dB	824-915 MHz
		0.28	0.30	0.38	dB	1710-1910 MHz
All RF Ports	IL	0.30	0.35	0.50	dB	2170-2690 MHz
		0.85	1.00	1.28	dB	5000 MHz
		1.35	1.50	1.80	dB	6000 MHz
Return Loss	'	1			'	
		23	27	33	dB	824-915 MHz
		19	22	24	dB	1710-1910 MHz
All RF Ports	RL	15	20	22	dB	2170-2690 MHz
		11	14	20	dB	5000 MHz
		10	12	18	dB	6000 MHz
Isolation		I.	II.	1	'	
		32	36	38	dB	824-915 MHz
		26	29	32	dB	1710-1910 MHz
RFin to RF1/RF2 Port	ISO _{RFin-RFx}	22	26	30	dB	2170-2690 MHz
		13	16	18	dB	5000 MHz
		12	15	17	dB	6000 MHz
		45	48	50	dB	824-915 MHz
RF1 to RF2 Port /		33	35	38	dB	1710-1910 MHz
RF2 to RF1 Port	ISO _{Port} _Port	27	29	32	dB	2170-2690 MHz
		15	18	20	dB	5000 MHz
		14	17	19	dB	6000 MHz

¹ $T_A = +25 \,{}^{\circ}\,C, \ V_{dd} = 3 \ V$

Data Sheet 10 Revision 1.2 - 2014-05-23

Parameter	Symbol		Values	i	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Harmonic Generation up to	12.75 GHz ¹	<u>'</u>		'	'	
All RF Ports, 2 nd Harmonic	D	_	-85	-80	dBc	$f = 824 MHz, P_{in} = 27.5 dBm,$
All RF Ports, 3 rd Harmonic	- P _{Harm}	_	-80	-75	dBc	50 % duty cycle, 50Ω
Intermodulation Distortion	in Rx Band ¹					
IMD2	IMD2	_	-110	-100	dBm	$Tx_{LB} = 15 \text{ dBm}, Tx_{HB} = 10 \text{ dBm}$
IMD3	IMD3	_	-120	-110	dBm	Interferer = -15 dBm, 50Ω
Switching Time and Curren	t Consumpt	ion				
RF Rise Time	t _{10%-90%}	_	35	100	ns	10% - 90% of RF Signal
Ctrl to RF Time	t _{Ctrl-RF}	_	125	350	ns	50% of Ctrl Signal to 90% of
						RF Signal
Supply Current	I _{dd}	_	150	200	μ A	$T_A = +25 ^{\circ} C$
Control Current	I _{Ctrl}	_	1	10	μ A	-

Note: All electrical characteristics are measured with all RF ports terminated by 50 Ω loads.

¹ $T_A = +25 \,{}^{\circ}\,C, \ V_{dd} = 3 \ V$

6 Pin Description

Figure 2: Pin Configuration

Table 7: Pin Description

Pin No.	Name	Pin	Buffer	Function
		Туре	Туре	
1	RF2	I/O		RF Port 2
2	GND	GND		Ground
3	RF1	I/O		RF Port 1
4	Vdd	PWR		Supply Voltage
5	RFIN	I/O		RF Port In
6	CTRL	1		Control Pin

7 Package Information

Table 8: Mechanical Data

Parameter	Symbol	Value	Unit
X-Dimension	X	0.7 ± 0.05	mm
Y-Dimension	Y	1.1 ± 0.05	mm
Size	Size	0.77	mm ²
Height	Н	0.31+0.01/-0.02	mm

Data Sheet 12 Revision 1.2 - 2014-05-23

Figure 3: Package Outline

Figure 4: Footprint

Figure 5: Pin 1 Marking (top view)

Data Sheet 13 Revision 1.2 - 2014-05-23

Figure 6: Tape Drawing for TSLP-6-4

Data Sheet 14 Revision 1.2 - 2014-05-23

www.infineon.com