P=0; for(i=1; p<=n; i++) 0+1=1 2 1+2=3 P=P+ij3 1+2+3 1+2+3+4 Assume P>n : P= K(K+1) 1+2+3+4+-+K (k(12+1) > n $O(\sqrt{n})$ K>VA

Analysis of it & while

1=1;	ī	K	
K=1;	1	1	$k \geqslant n$
while (K <n)< th=""><td>2_</td><td>1+1=2</td><td></td></n)<>	2_	1+1=2	
{	3	2+2	(m(m+1) > 1)
stut;	4	2+2+3	m²>n
k= K+i,	5	2+2+3+	4
> i++;	,	, ;	m=Nn
}	· ~	2+2+3+9	1++ m
O(N)	\mathcal{M}	m(m+1))
		2	

1 < logn < m < n < n logn < n² < n³ < - - - < 2² < 3° < - - < n° Asymptotic Notations Obig-oh upper bound Style="font-size: 150%;"> ○ theta Average bound

 $f(n) = n^2 \log n > g(n) = n(\log n)^{lo}$ Apply Log

log [n² logn] log [n(log n°]

log ni + loglogn logn + log (logn)

2 lognit boglogn lognit 10 loglogn

$$2. \log \frac{a}{b} = \log a - \log b$$

$$g(n) = \begin{cases} n \\ n^2 \end{cases} \qquad n \geq 100$$

$$g_{1}(n) = \begin{cases} n^{3} & n < 100 \\ n^{2} & n > 100 \end{cases}$$

$$g_{2}(n) = \begin{cases} n^{2} & n < 10,000 \\ n > 10,000 \end{cases}$$

$$g_{2}(n) = \begin{cases} n^{3} & n > 10,000 \\ n > 10,000 \end{cases}$$

$$9(m)>92$$
 $91=92$ $90,000$ $92>91$

Best, Worst and Average Case Analysis Linear Search B(n)=0(1) $\omega(n) = O(n)$ A 8 6 12 5 9 7 4 3 16 18 A(n) = n+1 Average case - all possible case time

no of cases

Avg time = 1+2+3+--+n = n(n+1) = n+1

