Orthogonal projections and offer found bar	int:
-> orthogonal vectors. -> length of a vector unit vector.	4
Example: []] and []	Kho wan (
Example: [0] and [0] are or	
Divide by length to get rectors or	1 mat 1: 12 [1]
orthonormal vectors: orthogonal and we can make any orthogonal vectors.	
ofthonormal vectors.	
Example: [0], [0] are.	
(m) [] [] [] [] [] [] [] ~~~~~~~~~~~~~~~~~	. ofhow (ma).
The Octhornal vectors are lineals	independent.
Example: [9], [3], [3]	mre a basis:
Why? angles!	spom & lin.
Jun: Paintin note V= som ("	2 [67 [97 65:71
is: pnj (x) = x"	(グ・文)が、ナー・・
Why? We are doing a bound of little projection, and she we are	le of the results.

Compute Project ([2]) =

1) First orthororand back:
$$t = [0], [0]$$

2) Project project[$[0]$] = $(t = [0], [0])$

To orthogonal complement: $V^2 = [0], [0]$

The kernel of the softenant projection and V .

Example: Find V^{\perp} .

[1] $[V^{\perp}] = 0$ and $[0], [V^{\perp}] = 0$
 $[V^{\perp}] = [V^{\perp}] = 0$

Thus; $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

Thus; $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

Thus; $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

Thus; $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The project projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The project projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The project projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The project projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The project projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}] = [V^{\perp}]$

The projection and $[V^{\perp}] = [V^{\perp}] =$