Additional Lecture Notes on Denavit-Hartenberg Formulation of Homogeneous Transformation

> By using John Craig Notation

> > B. Shafai

Denavit - Hontenberg Formulation of Homogeneous Transformation

Link frames are attached so that frame $\{i\}$ is attached rigidly to link i.

 $a_i = the \ distance \ from \ \hat{Z}_i \ to \ \hat{Z}_{i+1} \ measured \ along \ \hat{X}_i;$

 $\alpha_i = the \ angle \ from \ \hat{Z}_i \ to \ \hat{Z}_{i+1} \ measured \ about \ \hat{X}_i;$

 $d_i = the \; distance \; from \; \hat{X}_{i-1} \; to \; \hat{X}_i \; measured \; along \; \hat{Z}_i;$ and

 $\theta_i = \textit{the angle from } \hat{X}_{i-1} \textit{ to } \hat{X}_{i} \textit{ measured about } \hat{Z}_i.$

FIGURE 3.15: Location of intermediate frames $\{P\}$, $\{Q\}$, and $\{R\}$.

Frame $\{Q\}$ differs from $\{R\}$ by a translation a_{i-1} . Frame $\{P\}$ differs from $\{Q\}$ by a rotation θ_i , and frame $\{i\}$ differs from $\{P\}$ by a translation d_i . If we wish to write the transformation that transforms vectors defined in $\{i\}$ to their description in $\{i-1\}$, we may write

$$^{i-1}P={}^{i-1}_{R}T\,{}^{R}_{\mathcal{Q}}T\,{}^{\mathcal{Q}}_{P}T\,{}^{P}_{i}T\,{}^{i}P,$$

or

$$^{i-1}P = {}^{i-1}T \,^i P,$$

where

$$_{i}^{i-1}T={}_{R}^{i-1}T\mathop{_{Q}^{R}}T\mathop{_{P}^{Q}}T\mathop{_{i}^{P}}T.$$

Considering each of these transformations, we see that

$$_{i}^{i-1}T = R_{X}(\alpha_{i-1})D_{X}(a_{i-1})R_{Z}(\theta_{i})D_{Z}(d_{i}),$$

A three-link planar arm. On the right, we show the same manipulator by means of a simple schematic notation. Hash marks on the axes indicate that they are mutually parallel.

Link-frame assignments.

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	. 0	0	0	θ_1
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

Link parameters of the three-link planar manipulator.

Manipulator having three degrees of freedom and one prismatic joint.

Link-frame assignments.

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	θ_1
2	90°	0	d_2	0
3	0	0	L_2	θ_3

Link parameters for the RPR manipulator

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{1}_{2}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -d_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & 0 \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Some kinematic parameters and frame assignments for the PUMA 560

i	$\alpha_i - 1$	$a_i - 1$	d_i	θi
1	0	0	0	θ_1
2	-90°	0	0 .	θ_2
3	0	a_2	d_3	θ_3
4	−90°	<i>a</i> ₃	d_4	θ_4
5	90°	0	0	θ_5
6	-90°	0	0	θ_6

Link parameters of the PUMA 560.

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{2}_{3}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{4}_{5}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{5}_{6}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$