Vedremo come una fattorizzazione analoga a quella vista nelle lezioni precedenti, si possa ottenere con minor costo per matrici tridiagonali Caso particolare: cerco di risolvere un sistema lineare con A matrice tridiagonale ₌ LU matrici NORD-OVEST Quello che vedremo ora, è un algoritmo che ci permette oltre che di ricavare queste matrici L e U, ci permette di calcolare i determinanti dei minori di nord ovest do = 1 serve salo per far tornare l'algoritmo a = Det (=) = a $d_2 = Det() = a_1 \cdot a_2 - b_2 \cdot c_1 = d_1 \cdot a_2 - b_3 \cdot c_1 \cdot d_0$ d3 = Det (*) = d2 a3 + b3 c2 d4 *d = d - a - b c - d - 3 Facendo il prodotto riga-colonna LU, data quella definizione di determinanti appena trovata, si può verificare che questa fattorizzazione restitusce la matrice di partenza. Ma quanto ci costa l'algoritmo dei determinanti? somme = n-1 prodoti = 3(n-1) E il costo di L? somme = 0 prodoHi = n-1 divisioni = n-1 E per il calcolo di U? divisioni = n-1 Quindi, globalmente, questo algoritmo quanto costa? Essendo una matrice più sparsa, ma organizzata con una particolare struttura, il costo di fattorizzazione di una matrice tridiagonale è dell'ordine di n. [che rispetto all'n^3 delle matrici piene, è

mo	lto	più	bas	sso].																									
C'è	à ur	na o	lues	stione	: io ł	าด ม	na '	fatt	ori	778	zic	ne	che	e m	i cc	sta	11	Jе	poi	avı	rei ı	ın a	alac	ritr	no	di s	ost	ituz	ione
				ndiet																									
				soluz																		•					,		
				di do									Т																
	-			a Ax																									
					<u> </u>				0	,,,,,,																			
•			LUX:																										
ly = t			-	atrice bi	diaaan	ale in	.ferior	,																					
					9																								
ry	. t																												
6	1 0		= t	1 _n = t _n																									
) b	d, a d,	a, .	2 2 4 = t																										
1	d ₂	02	93																										
	dn-	·2 u																											
	a,	1-1 0 Y	1-1	on - n																									
Di ·	fatt	o rii	mar	ne una	a ma	tric	e tri	iang	lop	are	int	ferio	ore	, la	risc	lve	rò (quir	ndi:										
							o comp											•											
,] _		do	у.			ľ																						
\ ,	2 = t	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																											
	3	3	d ₂	02																									
1	_ t	b_	d _n .	1 y																									
	n		d _n .	-1																									
No	n a	bbi	amo	risol	to il	nos	tro	sist	ten	na l	line	are	di	par	ten	za,	do	bbi	am	o to	orna	are	ind	ietr	ое	risc	olve	ere	
	<u>x</u> = y																												
	- <u>v</u>																												
d	1 .x.	+ C.	x_ = '	ч.																									
d	o '	<u>'</u>	X, = '	V1																									
d	2 · X.	+ C.	x, = 9	4.																									
ď	1 '		3	- 1																									
{ a	3 . x	+ C_	* ₄ = \	4.																									
Ι.																													
q	n-I .	×	+ C	× _n = y _n																									
a	M-2	11-1	n-	, ,,	7																								
		· ·																											
l d,	1-1		-																										
Da	ris	olve	ere d	on a	gori	tmo	di	sos	titu	uzio	one	all	inc	lietr	О														
(×	, = y	n (di	n-1																				Cos	o com	putas	ionale	: (n	-1) SOI	nme
		d	ソ																										prode#i
) x	n-: =	3	- c,	a _{n-}	2) ce	li sia	imo g	jā co	lcolat	- S01	no la	Soffod	iagon	ale d	i L						TOT	ALE: (0 (n)		
] :	1	n-1	n-1	" an.					/		L.																		
, ×	, . <u>y</u>	- c_ >		n d _{n-}																									
\\x	. 4	C. :		2			\nearrow																						

Su Matlab, la struttura di una matrice ci permette di risparmiare costo computazionale e creare degli algoritmi ad hoc per la struttura particolare.

Vediamo quando una struttura di questo tipo può emergere per farci risolvere un problema.

Supponiamo di avere l'equazione del calore:

$$\begin{cases} \delta^2 u = f(x) & x \in (0,1) \\ \delta x^2 & u(0) = 0 \end{cases}$$

$$u(1) = b$$

u è l'incognita e alla fine mi dovrà dire come è distribuita la temperatura lungo la barretta ab.

Bisogna ricordarsi lo sviluppo di Taylor

$$F(x+h) = F(x) + F'(x)h + F''(x)\frac{h^2}{2} + F'''(x)\frac{h^3}{3!} + F^{(v)}(x) \cdot \frac{h^4}{4!} + F^{(v)} \cdot \frac{h^5}{5!} + \dots$$

$$F(x-h) = F(x) - F'(x) \cdot h + F''(x) \cdot \frac{h^2}{2} - F'''(x) \cdot \frac{h^3}{3!} + F^{IV}(x) \cdot \frac{h^4}{4!} - F^{V}(x) \cdot \frac{h^5}{5!} + \cdots$$

$$F(x+h) - F(x-h) = F(x) - F(x) + F'(x) h - (-F'(x)h) + F''(x) \frac{h^2}{2} - F''(x) \frac{h^2}{2} \dots$$

$$= 2F'(x)h + 2F''(x) \frac{h^3}{3!} + 2F^{V}(x) \frac{h^5}{5!} + 2F^{VII}(x) \frac{h^4}{7!} + \dots$$

Potrei andare avanti, ma mi fermo, posso trovare in questo modo un'approssimazione della derivata prima di una funzione in un punto, come?

Se io ignoro tutti i termini della derivata prima, posso dire che

$$F'(x) \cong \frac{F(x+h) - F(x-h)}{2h}$$

Allora posso ottenere un'approssimazione di una derivata prima di una funzione, come differenza della funzione in due punti centrati attorno al punto in cui voglio valutare la derivata prima.

Purtroppo a noi serve la derivata seconda, come posso ottenere da quelle due espressioni F(x+h) e F(x-h), la derivata seconda togliendomi dalle scatole la derivata prima? Invece che sottrarle, posso sommarle.

$$F(x+h) + F(x-h) = 2F(x) + 2F''(x) \frac{h^2}{2} + 2F''(x) \frac{h^4}{4} + ...$$

$$F^{4}(x) \cong \frac{-2F(x)+F(x+h)+F(x-h)}{h^{2}}$$

Come faccio a sfruttare questa equazione per risolvere il sistema di partenza?

Devo creare una griglia:

Andiamo ad approssimare la derivata seconda

$$f(x_i) = u''(x_i) \stackrel{\sim}{=} \frac{u(x_{i+1}) - 2u(x_i) - u(x_{i-1})}{u(x_{i-1})}$$
 i = 1, ..., n

Questa è un'approssimazione che io do, ed la do in ogni punto che va da i a n, di fatto è come se creassi n equazioni

Se risolvessi queste n equazioni, non otterrei proprio la soluzione esatta, quindi dico che la mia soluzione approssimata, la chiamo u; ≝ u (x;) u_{i+1} - 2 u_i + u_{i-1} = f(x_i) Come è fatto questo sistema lineare? Traduciamolo in forma matriciale nota, quindi la porto al secondo membro $u_2 - 2 u_4 + u_0 = f(x_4) \cdot h^2 - u_2 - 2 u_4 = f(x_4) \cdot h^2 - u_0^2$ [i = 1 u - 2 u + u = f(x2)·h2 u4 - 24 + 4 = f(x3).h2 Questi che abbiamo visto, sono metodi diretti e hanno i corrispettivi comandi su Matlab: A*x=bRisolvere un sistema lineare in Matlab: A\b oppure mldivide(A,b) Fattorizzazione LU: [L,U] = lu(A) oppure [L, U, P] = lu (A) -> return unit lower triangular matrix L, upper triangular matrix U, and permutation matrix P such that P*A= L*U. METODI ITERATIVI Perchè uno dovrebbe essere interessato a risolvere un sistema lineare con un metodo che non ci assicura la soluzione esatta in un numeri finito di passi? I metodi iterativi si contrappongono ai metodi diretti perché la soluzione del sistema lineare Ax=b viene ottenuta "formalmente" dopo un numero infinito di passi. Come abbiamo visto, anche i metodi diretti non danno un risultato preciso e accurato e ci impiegano molto tempo, i metodi iterativi mi danno un risultato approssimato ma in meno tempo. Quindi la scelta sta nel "quanto tempo ho per ottenere un risultato?" e "quanto accurato voglio che sia il risultato?". I metodi iterativi costruiscono una successione di vettori che mi aspetto tendano alla soluzione esatta $\times \xrightarrow{(\kappa)} \times$ Solvaione esatta. di $A \times = b$ Def: Sia 🙎 " una successione di vettori di IR", essa converge al vettore 🙎 E IR" se esiste una norma vettoriale per cui: lim | | x - x (*) | = 0

)ss	: la	CC	nve	erge	enz	a si	i ha	СО	mp	one	ente	е ре	er c	om	por	nen	te												
		x	x	(K)	٤ <u>×</u>	×	(K)	4	c <u>×</u>	'ج -	'k)	_			→ 0			i:	1,, n										
		•			••			10			1																		L
loi	aco	cet	tere	emo	m	eto	di i	tera	ativi	СО	nsi	ster	nti																
Def	: ur												te s	se:															_
	×	K) E	×	e con	_	<u>×</u> (K+	1) =	×			i = 1,·																		
														_								_					_		
																			ne esa						ti i į	oas	si		
uc	ces	SIV	'I CC	ntii	nue	ero	a tr	ova	are (que	ella	ste	ssa	. SO	IUZI	ione	e es	satt	a. Rim	arro	ומ כ	occ	cata	1.)					
																													L
																													L
																													L
																													H
																													F
																													L
																													H
																													-
																													H
																													H