

Übungsblatt LA 3

Computational and Data Science FS2024

Mathematik 2

Lernziele:

- > Sie kennen die Begriffe Exponentialform einer komplexen Zahl, Eulersche Formel Potenzgleichungen und deren Eigenschaften.
- > Sie können komplexe Zahlen in der arithmetischen, in der trigonometrischen und Exponentialform darstellen und von einer in die andere Form umwandeln.
- > Sie können die Grundrechenarten für die komplexen Zahlen anwenden.
- Sie können komplexe Zahlen sowohl potenzieren als auch aus ihnen die Wurzel ziehen.

1. Aussagen über die Exponentialform

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Jede komplexe Zahl lässt sich in Exponentialform darstellen.	7	
b) Jede komplexe Zahl lässt sich eindeutig in Exponentialform		\times
darstellen.		
c) Der Term $2e^{i\pi}$ ist die Exponentialform von -2.	~	
d) Der Term $2e^{-i\pi}$ ist die Exponentialform von -2.	\times	
e) Der Term $-2e^{-i\pi}$ ist die Exponentialform von -2.		~

2. Konversion zwischen arithmetischer und Exponentialform

Wandeln Sie folgende komplexe Zahlen in Exponentialform bzw. in arithmetische Form um.

a)
$$4 - 4i$$

b)
$$-\sqrt{3} + i$$

c)
$$2e^{-i\pi/6}$$

d)
$$\sqrt{2}e^{i3\pi/4}$$

3. Umwandlung komplexer Zahlen

Berechnen Sie $2e^{-i\pi/3} - \sqrt{3} + i$ und geben Sie das Ergebnis sowohl in arithmetischer als auch in Exponentialform an.

4. Potenzgleichungen

Bestimmen Sie die Lösungsmenge der jeweiligen Potenzgleichung.

a)
$$z^2 = -49$$

b)
$$z^{2} = i$$

c)
$$z^3 = -8$$

d)
$$z^3 = -27i$$

e)
$$z^3 = 1 - \sqrt{3}i$$

f)
$$z^4 = -8 + 8\sqrt{3}i$$

5. Aussagen über Potenzgleichungen

Gegeben sei die Potenzgleichung

 $z^n = w \text{ mit } w \in \mathbb{C}, n \in \mathbb{N}.$

Welche der folgenden Aussagen sind wahr und welche falsch?

		wahr	falsch
a)	Für jede Wahl von w hat die Gleichung mindestens 1 Lösung in	(/	
	$\mathbb{C}.$		
b)	Für jede Wahl von w hat die Gleichung genau n Lösungen in \mathbb{C} .		
c)	Ist n gerade und z eine Lösung der Gleichung, dann ist auch $-z$		
	eine Lösung.		
d)	Sei $w \in \mathbb{R}$ und z eine Lösung der Gleichung, dann ist auch z^*		
	eine Lösung.		
e)	Alle Lösungen der Gleichung haben denselben Betrag.		
f)	Alle Lösungen der Gleichung haben dasselbe Argument.		

6. Aussagen über komplexe ZahlenWelche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Für alle $z \in \mathbb{R}$ gilt $Re(z) \in \mathbb{R}$.		
b) Es gilt $z = 1$ genau dann, wenn $Im(z) = Re(z) = 1$.		
c) Es gilt $z_1^* = z_2$ genau dann, wenn $z_2^* = z_1$.		
d) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = i$.		
e) Falls $ z_1 \le z_2 $, dann gilt auch $z_1 \le z_2$.		

Übungsblatt LA 3

Computational and Data Science BSc FS 2023

Analysis und Lineare Algebra 2

Lernziele/Kompetenzen

- Sie kennen die Begriffe Euler-*Formel, exponentielle Form und Potenz-Gleichungen* sowie deren wichtigsten Eigenschaften.
- Sie kennen die Umkehrungen der Euler-Formel und können diese anwenden.
- Sie können komplexe Zahlen von der arithmetischen Form in die exponentielle Form konvertieren und umgekehrt.
- Sie können die reelle und komplexe Lösungsmenge von Potenz-Gleichungen mit natürlichen Exponenten bestimmen und beurteilen.

1. Aussagen über die exponentielle Form komplexer Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Jede komplexe Zahl lässt sich in exponentieller Form darstellen.	₹	0
b) Jede komplexe Zahl lässt sich eindeutig in exponentieller Form darstellen.	0	X
c) Der Term $2e^{i\pi}$ ist eine <i>exponentielle Form</i> von -2 .	×	0
d) Der Term $2 e^{-i\pi}$ ist eine <i>exponentielle Form</i> von -2 .	×	0
e) Der Term $-2e^{i\pi}$ ist eine exponentielle Form von -2 .	0	₩

2. Umkehrungen der Euler-Formel

Die Euler-Formel lässt sich auch umkehren, so dass Sinus und Cosinus mit Hilfe der natürlichen Exponentialfunktion ausgedrückt werden können. Beweisen Sie dazu für alle $\varphi \in \mathbb{R}$ mit Hilfe der Euler-Formel die beiden Umkehrformeln

$$\sin(\varphi) = \frac{e^{i\varphi} - e^{-i\varphi}}{2i} \quad \text{und} \quad \cos(\varphi) = \frac{e^{i\varphi} + e^{-i\varphi}}{2}.$$
 (1)

3. Potenz-Gleichungen mit komplexen Lösungen Bestimmen Sie jeweils die Lösungsmenge der Potenz-Gleichung in $z^2 = -49$ c) $z^3 = -8$ **e)** $z^3 = 1 - \sqrt{3}i$ **b)** $z^2 = i$ **d)** $z^3 = -27i$ f) $z^4 = -8 + 8\sqrt{3}i$ $= \frac{1}{2} \left(\frac{1}{4} \right) = \frac{1}{2} \left(\frac{5}{4} \right) \left(\frac{5}{$ = - 7 · i => zz= - 7 · c) $z^{3} = -8$ $z_{1} = \sqrt{3}8 \cdot e^{i(1)}$ $z_{2} = \sqrt{8}e^{i(3)}$ $z_{3} = \sqrt{8}e^{i(3)}$ $z_{4} = \sqrt{8}e^{i(3)}$ $z_{5} = 2e^{i(3)}$ $z_{7} = 2e^$ (= { + (1 + 1) } WIE FINDE ICH DEN WINESC NEARUS 1= 2-2, 1= 53.3 $z_1 = \frac{3}{2}i$ $z_2 = -\frac{5}{2}(\sqrt{3} + i)$ $V = \begin{cases} 3i & -\frac{3}{2}(\sqrt{3} + i), \frac{3\sqrt{3}}{2} - \frac{3}{2}i \end{cases}$ WAS MUSS ICH ADDIEREN, MUER 200 2h UM WEITERE LSG 20 FLUDEN

3. Potenz-Gleichungen mit komplexen Lösungen

Bestimmen Sie jeweils die Lösungsmenge der Potenz-Gleichung in

$$\mathbb{C}$$
. **a)** $z^2 = -49$

c)
$$z^3 = -8$$

e)
$$z^3 = 1 - \sqrt{3}i$$

b)
$$z^2 = i$$

d)
$$z^3 = -27i$$

f)
$$z^4 = -8 + 8\sqrt{3}i$$

4. Aussagen über Potenz-Gleichungen mit komplexen Lösungen

Es seien $w \in \mathbb{C}$ und $n \in \mathbb{N}^+$. Betrachten Sie die allgemeine *Potenz-Gleichung*

$$z^n = w. (2)$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Für jede Wahl von w hat (2) mindestens eine $L\ddot{o}sung$ in \mathbb{C} .	X	0
b) Für jede Wahl von w hat (2) genau n Lösungen in \mathbb{C} .	0	×
c) Ist n gerade und z eine $L\ddot{o}sung$ von (2), dann ist auch $-z$ eine $L\ddot{o}sung$ von (2).	×	0
d) Ist $w \in \mathbb{R}$ und z eine $L\ddot{o}sung$ von (2), dann ist auch z^* eine $L\ddot{o}sung$ von (2).	8	0
e) Alle <i>Lösungen</i> von (2) haben den gleichen <i>Betrag</i> .	0	×
f) Alle Lösungen von (2) haben das gleiche Argument.	0	A

5. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Für alle $z \in \mathbb{C}$ gilt $\text{Re}(z) \in \mathbb{R}$.	X	0
b) Es gilt $z = 1$ genau dann, wenn $\text{Im}(z) = \text{Re}(z) = 1$. $1 + 1 \neq 1$	0	8
c) Es gilt $z_1^* = z_2$ genau dann, wenn $z_2^* = z_1$.	8	0
d) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = i$.	Q	0
e) Falls $ z_1 \leq z_2 $, dann gilt auch $z_1 \leq z_2$.	0	\otimes