STA130 Study Guide

[Sections] Types of variables Histogram Boxplot Barplot Center & Spread Tidy Data Data wrangling Summary table Missing values Statistical Inference Hypothesis Testing Steps of hypothesis testing P-value Two group hypothesis Type of Error Bootstrapping Confidence Interval Scatterplot Correlation Simple Linear Regression Model Least Squares Regression Line

[Different types of data in R]

Data type	Symbol	Description	Examples
Integer	int	Numbers (w/ decimals)	1, - 2, 3, - 4
Double	dbl	Numbers (w/ or w/o decimals)	2, 2.02, 22222
Logical	lgl	TRUE or FALSE	TRUE, FALSE
Character	chr	Words, surrounded by quotation marks	"I", "love", "stats"
Factor	fct	Looks like "character" type, but only take values from a prespecified list	If continents list →can't take "blue"

[Logical operators]

[Logical operators]	
Operator	Syntax
equal	==
not equal	!=
less than (less than or equal to)	< (<=)
greater than (greater than or equal to)	> (>=)
not	!
and	&
or	

Vectors

- c() function combines single elements into a vector
- is. functions to check the data type of a vector (e.g. is.numeric(), is.character())

Coercion

- R switches between data types automatically for certain operations
- ex) sum(c(TRUE, FALSE)) becomes sum(c(1, 0))
 - o Counts the number of values of TRUE in a vector

Data frames

rows	Individual observations / records
columns	Variables

read_csv()	Load data in R the resulting object type is called a "tibble"
------------	---

glimpse()	 Tells how many rows and columns there are Listing out the column names Tells what their data type is Giving a peak at the first few values 	
head()	Shows what the top couple rows of the data look like	
Pipes %>%	Make it easy to apply functions to our data, step-by-step	

[Types of Variables]

	Nominal vari <mark>able</mark>	Unordered descriptions (ex: turtle, butterfly, snail)
Categorical Variables	Ordinal variable	Ordered descriptions (ex: unhappy, ok, awesome)
	Binary variable	Only 2 mutually exclusive outcomes (ex: yes, no)
Quantitative (numerical)	Continuous variable	Measured data, can have infinite values within possible range (ex: 3.2 inch, 34.16g)
Variables	Discrete variable	Observations can o <mark>nly ex</mark> ist at limited values, often counts (ex: 7, <mark>5, 9)</mark>

[Visualizing and describing the distribution of a quantitative(numerical) variable]

Histogram		
	 Height of each bar counts the # of values of the variable which fall within the corresponding bin Horizontal axis: numerical (no gaps between bins) Vertical axis: the number of values which fall within each bin 	
Features	 Shape: overall pattern of the values of the variable Center: describes a 'typical' value of the variable Spread: describes how concentrated the values of the variables are 	
Shape	Skewness Symmetric (not skewed) Left-skewed Right-skewed Modality Unimodal Bimodal Multimodal Uniform	
Creating a histogram in R	 Replace blue part ggplot(data = data_name, aes(x = numerical variable)) + geom_histogram(color = "black", 	

	fill = "gray", bins = #) + labs(x = "horizontal axis name")
mean / median / modality	 Left skewed mean < median < mode Right skewed mode < median < mean Symmetric mode ≈ median ≈ mean

[Measuring the center & spread of a numerical distribution]

Center		Spread	
Mean	$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Variance	$s^2 = \frac{(x_1 - \bar{x})^2 + \cdots + (x_n - \bar{x})^2}{n - 1} = \frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ Average squared distance between the values and their mean
Median	Half of the values are smaller/larger than the median	Standard Deviation	$s = \sqrt{s^2}$

	Boxplot
	 Summarizes the distribution of a quantitative variable using five statistics Plot unusual observations (outliers)
Features of the plot	 Median: line in the middle of the box First quartile (Q₁): one quarter (25%) of the data values are smaller than it Third quartile (Q₃): three quarters (75%) of the data values are smaller than it Inter-quartile range (IQR): Q₃ - Q₁, 50% of the values Whiskers extend within 1.5 x IQR Outliers: points beyond the whiskers
Creating a boxplot in R	 Replace blue part ggplot(data = data_name, aes(x = "", y = numerical variable)) + geom_boxplot(color = "black", fill = "gray") + labs(y = "vertical axis name") When comparing distributions across different categories ggplot(data = data_name, aes(x = categorical variable, y = numerical variable)) + geom_boxplot(color = "black", fill = "gray") + labs(y = "vertical axis name", X = "horizontal axis name")

[Histogram vs. boxplot for the same distribution]

[Visualizing and describing the distribution of a categorical variable]

[visualizing and describing the distribution of a categorical variable]		
	Barplots	
	 One bar for each category Height of a bar →# of values of the variable which fall within the corresponding category Arbitrary widths (should all be the same) Gap between each bar Arbitrary order of the bars Shape or center don't make sense 	
Creating a barplot in R	ggplot(data = data_name, aes(x = categorical variable)) + geom_bar(color = "black", fill = "gray") + labs(x = "horizontal axis name") • Flipped version ggplot(data = data_name, aes(x = categorical variable)) + geom_bar(color = "black", fill = "gray") + labs(x = "horizontal axis name") + coord_flip()	

[Tidy Data]

Dataset is tidy because:

- ☐ Each value has its own cell
- ☐ Each observation has its own row
- ☐ Each variable has its own column

Tidy (data exa	mples
--------	----------	-------