Третий курс, осенний семестр 2017/18 Конспект лекций по алгоритмам

Собрано 16 сентября 2017 г. в 21:07

Содержание

1.	FFT и его друзья	1
	1.1. FFT	1
	1.1.1. Прелюдия	1
	1.1.2. Собственно идея FFT	1
	1.1.3. Крутая реализация FFT	1
	1.1.4. Обратное преобразование	2
	1.1.5. Два в одном	3
	1.1.6. Умножение чисел, оценка погрешности	3
	1.2. Разделяй и властвуй	3
	1.2.1. Перевод между системами счисления	3
	1.2.2. Деление многочленов с остатком	3
	1.2.3. Вычисление значений в произвольных точках	4
	1.2.4. Интерполяция	4
	1.2.5. Извлечение корня	4
	1.3. Литература	5
2.	Деление многочленов	6
	2.1. Быстрое деление многочленов	6
	2.2. Быстрое деление чисел	6
	2.3. Быстрое извлечение корня для чисел	6
	2.4. Обоснование метода Ньютона	7
	2.5. Линейные рекуррентые соотношения	7
	2.5.1. Матрица в степени	7
	2.5.2. Деление многочленов	7
2.	Автоматы	7
	2.1. Определения, изоморфизм	8
	2.2. Минимальность, эквивалентность	8
	2.3. Алгоритм Хопкрофта	8
3	Суффиксный автомат	9
υ.	3.1. Введение, основные леммы	9
	3.2. Алгоритм построения за линейное время	10
	3.3. Реализация	10
	3.4. Линейность размера автомата, линейность времени построения	

Лекция #1: FFT и его друзья

5 сентября

1.1. FFT

1.1.1. Прелюдия

Пусть есть многочлены $A(x) = \sum a_i x^i$ и $B(x) = \sum b_i x^i$.

Посчитаем их значения в точках x_1, x_2, \ldots, x_n : $A(x_i) = fa_i, B(x_i) = fb_i$.

Значения C(x) = A(x)B(x) в точках x_i можно получить за линейное время:

$$fc_i = C(x_i) = A(x_i)B(x_i) = fa_i fb_i$$

Схема быстрого умножения многочленов:

$$a_i, b_i \stackrel{\mathcal{O}(n \log n)}{\longrightarrow} fa_i, fb_i \stackrel{\mathcal{O}(n)}{\longrightarrow} fc_i = fa_i fb_i \stackrel{\mathcal{O}(n \log n)}{\longrightarrow} c_i$$

Осталось подобрать правильные точки x_i .

FFT расшифровывается Fast Fourier Transform и за $\mathcal{O}(n\log n)$ вычисляет значения многочлена в точках $w_j=e^{\frac{2\pi ij}{n}}$ для $n=2^k$ (то есть, только для степеней двойки).

1.1.2. Собственно идея FFT

 $A(x) = \sum a_i x^i = (a_0 + x^2 a_2 + x^4 a_4 + \dots) + x(a_1 x + a_3 x^3 + a_5 x^5 + \dots) = B(x^2) + xC(x^2)$ – обозначили все чётные коэффициенты A многочленом B, а нечётные соответственно C.

Заметим, что если все $w_j^2=w_{n/2+j}^2$, поэтому многочлены B и C нужно считать уже не в n, а в $\frac{n}{2}$ точках. Итого алгоритм:

```
def FFT(a):
    n = len(a)
    if n == 1: return a[0] # посчитать значение A(x) = a[0] в точке 1
    a ---> b, c
    b, c = FFT(b), FFT(c)
    w = exp(2*pi*i/n)
    for i=0..n-1: a[i] = b[i % (n/2)] + w^i * c[i % (n/2)]
    return a
```

Время работы $T(n) = 2T(n/2) + \mathcal{O}(n) = \mathcal{O}(n \log n)$.

1.1.3. Крутая реализация FFT

Чтобы преобразование работало быстро, нужно заранее предподсчитать все $w_j = e^{\frac{2\pi i j}{n}}$. Заметим, что b и c можно хранить прямо в массиве a. Тогда получается, что на прямом ходу рекурсии мы просто переставляем местами элементы a, а уже на обратном делаем какие-то по-

лезные действия. Число a_i перейдёт на позицию $a_{r(i)}$, где rev(i) – перевёрнутая битовая запись i. Кстати, rev(i) мы уже умеем считать динамикой для всех i.

При реализации на C++ можно использовать стандартные комплексные числа complex<double>.

```
1    const int K = 20, N = 1 << K;
2    complex < double > root[N];
3    int rev[N];
4    void init() {
5        for (int j = 0; j < N; j++) {
6            root[j] = exp(2π*i*j/N); // cos(2πj/N), sin(2πj/N)
7            rev[j] = rev[j >> 1] + ((j & 1) << (K - 1));
8        }
9    }</pre>
```

Теперь, корни из 1 степени k хранятся в root[j*N/k], $j \in [0, k)$. Доступ к памяти при этом не последовательный, проблемы с кешом. Чтобы корни, мы 2N раз вычисляли тригонометрические функции. Можно лучше (версия #2):

```
for (int k = 1; k < N; k *= 2) {
   num tmp = exp(π/k);
   root[k] = {1, 0}; // в root[k..2k) хранятся первые k корней степени 2k
   for (int i = 1; i < k; i++)
      root[k + i] = (i & 1) ? root[(k + i) >> 1] * tmp : root[(k + i) >> 1];
}
```

Теперь код собственно преобразования Фурье может выглядеть так:

```
1
   void FFT(a, fa) { // a --> fa
2
     for (int i = 0; i < N; i++)</pre>
3
       fa[rev[i]] = a[i];
     for (int k = 1; k < N; k *= 2) // уже посчитаны FFT от кусков длины k
4
5
       for (int i = 0; i < N; i += 2 * k) // [i..i+k) [i+k..i+2k) --> [i..i+2k)
         for (int j = 0; j < k; j++) { // оптимально написанный стандартный цикл FFT
6
7
           num tmp = root[k + j] * fa[i + j + k]; // вторая версия root[]
8
           fa[i + j + k] = fa[i + j] - tmp;
9
           fa[i + j] = fa[i + j] + tmp;
10
         }
11
```

1.1.4. Обратное преобразование

```
Теперь имея при w=e^{2\pi i/n}: fa_0=a_0+a_1+a_2+a_3+\dots fa_1=a_0+a_1w+a_2w^2+a_3w^3+\dots fa_2=a_0+a_1w^2+a_2w^4+a_3w^3+\dots \dots
```

Нам нужно научиться восстанавливать коэффициенты a_0, a_1, a_2, \dots

Заметим, что $\forall j \neq 0 \ \sum k = 0^{n-1} w^{jk} = 0$ (сумма геометрической прогрессии).

И напротив при j = 0 получаем $\sum k = 0^{n-1} w^{jk} = n$.

```
Поэтому fa_0+fa_1+fa_2+\cdots=a_0n+a_1\sum_k w^k+a_2\sum_k w^{2k}+\cdots=a_0n Аналогично fa_0+fa_1w^{-1}+fa_2w^{-2}+\cdots=\sum_k a_0w^{-k}+a_1n+a_2\sum_k w^k+\cdots=a_1n И в общем случае \sum_k fa_kw^{-jk}=a_jn.
```

Заметим, что это ровно значение многочлена с коэффициентами fa_k в точке w^{-j} .

Осталось заметить, что множества чисел $\{w_i|j=0..n-1\}$ и $\{w_{-i}|j=0..n-1\}$ совпадают \Rightarrow

```
void FFT_inverse(fa, a) { // fa --> f
FFT(a, fa)
reverse(fa + 1, fa + N) // w^j <--> w^{-j}
for (int i = 0; i < N; i++) fa[i] /= N;
}</pre>
```

1.1.5. Два в одном

Часто коэффициенты многочленов – вещественные числа.

Если у нас есть многочлены $A(x), B(x) \in \mathbb{R}[x]$, возьмём числа $c_j = a_j + ib_j$ и посчитаем fc = FFT(c). Тогда по fc за $\mathcal{O}(n)$ можно легко восстановить fa и fb.

Для этого вспомним про сопряжения комплексных чисел: $\overline{x+iy} = x - iy, \overline{a \cdot b} = \overline{a} \cdot \overline{b}, w^{n-j} = w^{-j} = \overline{w^j} \Rightarrow \overline{fc_{n-j}} = \overline{C(w^{n-j})} = \overline{C}(w^j) \Rightarrow fc_j + \overline{fc_{n-j}} = 2A(w^j) = 2fa_j$. Аналогично $fc_j - \overline{fc_{n-j}} = 2B(w^j) = 2fb_j$.

Итого для умножения двух многочленов можно использовать не 3 преобразования Фурье, а 2.

1.1.6. Умножение чисел, оценка погрешности

Число длины n. в системе счисления 10 можно за $\mathcal{O}(n)$ представить как число в системе счисления 10^k , а его как многочлен длины n/k. Умножения многочленов такой длины будет работать за $\frac{n}{k}\log\frac{n}{k}$. Отсюда возникает вопрос, какое максимальное k можно использовать? Коэффициенты многочлена-произведения будут целыми числами до $(10^k)^2\frac{n}{k}$. Чтобы типе double целое число хранилось с погрешностью меньше 0.5 (тогда мы его сможем правильно округлить к целому), оно должно быть не более 10^{15} . Получаем при $n\leqslant 10^6$, что $(10^k)^210^6/k\leqslant 10^{15}\Rightarrow k\leqslant 4$. Аналогично для типа long double имеем $(10^k)^210^6/k\leqslant 10^{18}\Rightarrow k\leqslant 6$. Это оценка сверху, предполагающая, что само FFT погрешность не накапливает... на самом деле эта оценка очень близка к точной.

1.2. Разделяй и властвуй

1.2.1. Перевод между системами счисления

Чтобы перевести число X длины $n=2^k$ в системе счисления с основанием a в систему счисления с основанием b, разобьём X на n/2 старших цифр – X_0 и n/2 младших цифр – X_1 . Тогда $F(X) = F(X_0)F(a^{n/2}) + F(X_1)$, где F(X) – число X в системе счисления b, а умножения и сложения выполняются в системе счисления b. Сложение = $\mathcal{O}(n)$, умножение = $\mathcal{O}(n\log n)$. Предподсчёт $F(a^1)$, $F(a^2)$, $F(a^4)$, $F(a^8)$, . . . , $F(a^n)$ займёт $\left(\sum_k \mathcal{O}(2^k k)\right) = \mathcal{O}(n\log n)$ времени.

Два рекурсивных вызова от задач размера n/2, итого $T(n) = 2T(n/2) + \mathcal{O}(n \log n) = \mathcal{O}(n \log^2 n)$.

1.2.2. Деление многочленов с остатком

Задача: даны $A(x), B(x) \in \mathbb{R}[x]$, найти Q(x), R(x): $\deg R < \deg B \wedge A(x) = B(x)Q(x) + R(x)$. Зная Q мы легко найдём R, как A(x) - B(x)Q(x) за $\mathcal{O}(n\log n)$. Сосредоточимся на поиске Q. Пусть $\deg A = \deg B = n$, тогда $Q(x) = \frac{a_n}{b_n}$. То есть, Q(x) можно найти за $\mathcal{O}(1)$. Из этого мы делаем вывод, что Q зависит не обязательно от всех коэффициентов A и B.

<u>Lm</u> 1.2.1. $\deg A = m, \deg B = n \Rightarrow \deg Q = m - n$, и Q зависит только от m-n+1 коэффициентов A и m-n+1 коэффициентов B.

Доказательство. У A и $Z=B\cdot Q$ должны совпадать m-n+1 старший коэффициент ($\deg R < n$). В этом сравнении участвуют только m-n+1 старших коэффициентов A. При домножение B на $x^{\deg Q}$, сравнятся как раз m-n+1 старших коэффициентов A и B. При домножении B на меньшие степени x, в сравнении будут участвовать лишь какие-то первые из этих m-n+1 коэффициентов.

Теперь будем решать задачу: даны n старших коэффициентов A и B, найти такой C из n коэффициентов, что у A и BC совпадает n старших коэффициентов. Давайте считать, что младшие коэффициенты лежат в первых ячейках массива.

Здесь Subtract – хитрая функция. Она знает длины многочленов, которые ей передали, и сдвигает вычитаемый многочлен так, чтобы старшие коэффициенты совместились.

1.2.3. Вычисление значений в произвольных точках

Дан многочлен A(x), $\deg A = n$ и точки $x_1, x_2, \ldots x_n$. Мы хотим найти $A(x_1), A(x_2), \ldots A(x_n)$. Заметим, что $A(x_i) = (A(x) \bmod \prod_{j=1..n} (x-x_j))(x_i)$. За $\mathcal{O}(1)$ делений с остатком можно разделить задачу на две независимых: посчитать значения $B(x) = (A(x) \bmod \prod_{j=1..n/2} (x-x_j))$ в точках $x_1, \ldots, x_{n/2}$ и посчитать значения $C(x) = (A(x) \bmod \prod_{j=n/2+1..n} (x-x_j))$ в точках $x_{n/2+1}, \ldots, x_n$. Итого $T(n) = 2T(n/2) + \mathcal{O}(\operatorname{div}(n)) = \mathcal{O}(\operatorname{div}(n) \log n)$.

1.2.4. Интерполяция

Даны пары $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. Задача — найти многочлен A степени n-1, $\forall i$ дающий в точке x_i значение y_i . Будем решать задачу интерполяции по Ньютону методом разделяй и властвуй. Сперва найдём интерполяционный многочлен B для $(x_1, y_1), (x_2, y_2), \ldots, (x_{n/2}, y_{n/2})$. $A = B + C \cdot \prod_{j=1...n/2} (x-x_j) = B + C \cdot D$. Чтобы у A были правильные значения в точках $x_{n/2+1}, \ldots, x_n$, вычислим значения B и D в точках $x_{n/2+1}, \ldots, x_n - b_j$ и d_j , и возьмём C, как интерполяционный многочлен от точек $(x_j, -b_j/d_j)$ при j = n/2+1..n. Время работы $T(n) = 2T(n/2) + 2\mathcal{O}(\text{calcValue}(n/2)) = \mathcal{O}(\text{calcValue}(n) \log n)$.

1.2.5. Извлечение корня

Дан многочлен A(x): $\deg A \equiv 0 \mod 2$. Задача — найти R(x): $\deg(A-R^2)$ минимальна. Пусть мы уже нашли старшие k коэффициентов R, обозначим их R_k . Найдём 2k коэфф-тов: $R_{2k} = R_k x^k + X, R_{2k}^2 = R_k^2 x^{2k} + 2R_k X \cdot x^k + X^2$. Правильно подобрав X, мы можем "обнулить" k коэффициентов $A - R_{2k}^2$, для этого возьмём $X = (A - R_k^2 x^{2k})/(2R_k)$. В этом частном нам интересны только k старших коэффициентов, поэтому переход от R_k к R_{2k} происходит за $\mathcal{O}(\mathfrak{mul}(k) + \operatorname{div}(k))$. Итого суммарное время на извлечение корня — $\mathcal{O}(\operatorname{div}(n))$.

1.3. Литература

- 1. Слайды от sankowski по FFT и всем идеям разделяй и властвуй.
- 2. e-maxx про FFT и оптимизации к нему.
- 3. Задачи с codeforces на тему FFT.
- 4. Краткий конспект похожих идей в vk.

Лекция #2: Деление многочленов

12 сентября

2.1. Быстрое деление многочленов

Цель – научиться делить многочлены за $\mathcal{O}(n \log n)$.

Очень хочется считать частное многочленов A(x)/B(x), как $A(x)B^{-1}(x)$. К сожалению, у многочленов нет обратных. Зато обратные есть у рядов, научимся сперва искать их.

• Обращение ряда

Задача. Дан ряд $A \in [[\mathbb{R}]], a_0 \neq 0$. Найти ряд $B \colon A(x)B(x) = 1 + x^nC(x)$.

Можно это сделать за $\mathcal{O}(n^2)$:

 $b_0 = 1/a_0$

 $b_1 = -(a_1b_0)/a_0$

 $b_2 = -(a_2b_0 + a_1b_1)/a_0$

. . .

А можно за $\mathcal{O}(n \log n)$. Для этого достаточно, зная $B_k(x)$: $A(x)B_k(x)=1+x^kC_k(x)$,

научиться за $\mathcal{O}(k \log k)$ вычислять $B_{2k}(x)$: $A(x)B_{2k}(x) = 1 + x^{2k}C_{2k}(x)$.

 $B_{2k} = B_k + x^k Z \Rightarrow A \cdot B_{2k} = 1 + x^k C_k + x^k A \cdot Z = 1 + x^k (C_k - A \cdot Z).$

Выберем $Z = B_k \cdot C_k \Rightarrow C_k - A \cdot Z = C_k - (1 + x^k C_k)C_k = x^k C_{2k}$.

Итого $B_{2k} = B_k + B_k (1 - A \cdot B_k) = B_k (2 - A \cdot B_k)$. Вычисляется за 2 умножения $= \mathcal{O}(k \log k)$.

Конечно, мы обрежем B_{2k} , оставив лишь 2k первых членов.

• Деление многочленов

Теперь, когда мы умеем обращать ряды, как это применить к делению многочленов?

Делим A(x) степени m на B(x) степени n. Перевёрнутый многочлен обозначим $A^{r}(x)$.

Заметим, что $(PQ)^r = P^rQ^r$. Поделим A на B с остатком: A = BQ + R.

Заметим, что у A и BQ совпадают (m+1)-n старших коэффициентов \Rightarrow

 $A^r - B^r Q^r \equiv 0 \bmod x^{m+1-n}$

Обозначим первые m+1-n членов обратного ряда $(B^r)^{-1}$, как D.

Возьмём $Q^r = D \cdot A^r \Rightarrow B^r Q^r = (B^r D) A^r = (1 + x^{m+1-n} C) A^r \equiv A^r \mod x^{m+1-n}$

2.2. Быстрое деление чисел

Для нахождение частного чисел, достаточно научиться с большой точностью считать обратно. Рассмотрим метод Ньютона поиска корня функции f(x):

 $x_0=$ достаточно точное приближение корня

$$x_{i+1} = x_i - f(x_i)/f'(x_i)$$

Решим с помощью него уравнение $f(x) = x^{-1} - a = 0$.

 $x_0 =$ обратное к старшей цифре a

$$x_{i+1} = x_i - (\frac{1}{x_i} - a)/(-\frac{1}{x_i^2}) = x_i + (x_i - a \cdot x_i^2) = x_i(2 - ax_i).$$

Любопытно, что очень похожую формулу мы видели при обращении формального ряда...

Утверждение: каждый шаг метода Ньютона удваивает число точных знаков x.

Итого, имея x_i с k точными знаками, мы научились за $\mathcal{O}(k \log k)$ получать x_{i+1} с 2k точными знаками. Суммарное время получения n точных знаков – $\mathcal{O}(n \log n)$.

2.3. Быстрое извлечение корня для чисел

Продолжаем пользоваться методом Ньютона. $x_{i+1} = \frac{1}{2}(x_i + \frac{a}{x_i})$

2.4. Обоснование метода Ньютона

Цель: доказать, что каждый шаг удваивает число точных знаков x.

Сдалем замену переменных, чтобы было верно $f(0) = 0 \Rightarrow$ корень, который мы ищем, – 0.

Сейчас находимся в точке x_i . По Тейлору $f(0) = f(x_i) - x_i f'(x_i) + x_i^2 f''(\alpha)$ ($\alpha \in [0..x_i]$). Получаем $\frac{f(x_i)}{f'(x_i)} = x_i + x_i^2 \frac{f''(\alpha)}{f'(x_i)}$. Передаём Ньютону $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - x_i - x_i^2 \frac{f''(\alpha)}{f'(x_i)}$. Величина $\frac{f''(\alpha)}{f'(x_i)}$ ограничена сверху константой C.

Получаем, что если $x_i \leqslant 2^{-n}$, то $x_{i+1} \leqslant 2^{-2n + \log C}$.

То есть, число верных знаков почти удваивается.

2.5. Линейные рекуррентые соотношения

2.5.1. Матрица в степени

TODO

2.5.2. Деление многочленов

TODO

Лекция #2: Автоматы

12 сентября

2.1. Определения, изоморфизм

TODO

2.2. Минимальность, эквивалентность

TODO

2.3. Алгоритм Хопкрофта

TODO

Лекция #3: Суффиксный автомат

19 сентября

3.1. Введение, основные леммы

Def 3.1.1. Суффиксный автомат (суффавтомат) строки s, SA(s) – min по числу вершин ДКА A:

 $L(A) = \{ cy \phi \phi u \kappa c \omega s \}$

Def 3.1.2. $R_s(u)$ – правый контекст строки и относительно строки s.

$$R_s(u) = \{x \mid ux - cy\phi\phi u\kappa c \ s\}$$

Пример: $s = abacababa \Rightarrow R_s(ba) = \{cababa, ba, \epsilon\}$

Мы будем рассматривать правые контексты только от подстрок $s \Rightarrow R_s(v) \neq \varnothing$.

Def 3.1.3. $V_A = \{u \mid R_s(u) = A\}$ – все строки с правым контекстом A.

Замечание 3.1.4. Каждому классу V_A соответствует ровно одна вершина суффавтомата.

Следствие 3.1.5. Каждому правому контексту A соответствует ровно одна вершина суффавтомата. В дальнейшем мы будем отождествлять правые контексты и вершины автомата. V_A — множество строк, заканчивающихся в вершине автомата A.

Def 3.1.6. A(w) – вершина автомата: $w \in V_A$ (вершина по строке).

Следствие 3.1.7. Рёбра между вершинами проводятся однозначно: $(\exists x, c \colon x \in V_A, xc \in V_B) \Leftrightarrow (\text{между вершинами } A \text{ и } B \text{ есть ребро по символу "} c").$

Lm 3.1.8. $R_s(v) = R_s(u), |v| \leq |u| \Rightarrow v$ – суффикс u.

<u>Lm</u> 3.1.9. v – суффикс $u \Rightarrow R_s(u) \subseteq R_s(v)$ (у суффикса правый контекст шире).

Следствие 3.1.10. \forall строки w несколько самых больших суффиксов w имеют такой же, как w, правый контекст, затем идёт суффикс со строго меньшим правым контекстом.

 ${f Def 3.1.11.}\ str[{f A}]\ (cmpoка\ вершины\ A)$ – максимальная по длине строка из $V_A.$

Def 3.1.12. len[A] (длина A) = |str[A]|.

Def 3.1.13. suf[A] (суффиксная ссылка A) – вершина автомата, соответствующая самому длинному суффиксу str[A] с отличным от A правым контекстом.

Замечание 3.1.14. suf [A] корректно определена iff len [A] $\neq 0$.

 $\underline{\text{Lm}}$ 3.1.15. Для суффавтомата строки s терминальными являются вершины A(s), suf[A(s)], suf[suf[A(s)]], . . .

 $\underline{\operatorname{Lm}}$ 3.1.16. $\min_{w \in V_A} |w| = \operatorname{len}[\operatorname{suf}[A]] + 1$

3.2. Алгоритм построения за линейное время

Алгоритм будет онлайн наращивать строку s. Начинаем с пустой строки s. Осталось научиться, дописывая к s символ a, от SA(s) переходить к SA(sa).

Будем в каждый момент времени поддерживать:

- (a) $start A(\epsilon)$ (стартовая вершина)
- (b) last -A(s) (последняя вершина)
- (c) suf [A] для каждой вершины автомата суффиксную ссылку (суффссылку)
- (d) len[A] для каждой вершины автомата максимальную длину строки
- (e) next[A,c] рёбра автомата

База: $s = \epsilon$, start = last = 1.

Для того, чтобы понять, как меняется автомат, нужно понять, как меняются его вершины – правые контексты. Переход: $s \to sa \Rightarrow R_s(v) = \{z_1, \dots, z_k\} \to R_{sa}(v) = \{z_1a, \dots, z_ka\} +?$ ϵ .

<u>Lm</u> 3.2.1. $(\epsilon \in R_{sa}v) \Leftrightarrow (v - \text{суффикс } sa).$

TODO

3.3. Реализация

TODO

3.4. Линейность размера автомата, линейность времени построения ТООО