

DP on Trees

- Raghav Goel

Goal

- DP on Trees
- Rerooting

DP on Trees - Subtree Df

- DP states are defined for subtrees rooted at a node.
- State: dp[node] stores information for the subtree rooted at node.
- Transitions: Aggregate results from child nodes using recursive relations.
- **Example:** Finding the size of each subtree.

Problem: Sum of Distances in Subtree

Given a tree with N (1 <= N <= 10^5) nodes where the nodes are numbered

from 1 to N. The tree is rooted at node 1.

For each node, print the sum of distances to all nodes in its subtree.

Example:

The answer for each node is written in blue.

node State sum de [node] = from node to all nodes in the subtree delloge (dellos) (dellos) (dellos)

Problem: House Robber 3

Given a tree of N (1 <= N <= 10^5) nodes, where the i-th node has C_i (1 <= C_i <= 10^4) coins. You need to choose a subset of nodes such that every pair of nodes in this subset is not connected by an edge. Find the maximum number of coins you can get.

Problem Link - https://leetcode.com/problems/house-robber-iii

Made with Goodnotes

max. and that we $dp[u][o] \rightarrow 1$ can get if we don't pick u. dp[4][j]

max. ans (pick)

 $dp[u][i] = c[u] + \int dp[c_i][0]$ GE children

Made with Goodnotes

dp[u][o] = \(\text{max (dp[ci][o], dp[ci][i])} \) Ciechilylopen

pick

Rerooting

Rerooting is a technique where we calculate results for every node in the tree by systematically "re-rooting" the tree at each node and reusing previously computed subtree results to maintain efficiency.

Subtree dp, to all node the subtee distances in sum tree change Root(old Root, new Root) φ [root] \rightarrow dp[1] = dp[2]+52[2] dp[2] += dp[1] + s2[1] s2[2] += 52[1] SZ[1] == SZ[2]

Made with Goodnotes

find some information > froblem --for all nodes info for one node subtree dp calculated of states check ef

changeRoot

(undo, redo') Revooting < for all nodes where de [node] -> some info for subtree node

Steps for Rerooting

- Compute Results for One Root:
 - Solve the problem for the root using Subtree DP.
- Shift the Root:
 - Using the result from the first root, shift the root to each of its children without recomputing everything from scratch.
 - Update the result for the new root based on the relationship between the old root and the new one

Problem: Tree XOR

D. Tree XOR

time limit per test: 3 seconds memory limit per test: 512 megabytes

You are given a tree with \underline{n} vertices labeled from $\underline{1}$ to \underline{n} . An integer $\underline{a_i}$ is written on vertex i for $\underline{i=1,2,\ldots,n}$. You want to make all $\underline{a_i}$ equal by performing some (possibly, zero) spells

Suppose you root the tree at some vertex. On each spell, you can select any vertex v and any non-negative integer c. Then for all vertices i in the subtree v of v, replace v with v with v the cost of this spell is v where v is the number of vertices in the subtree. Here v denotes the bitwise XOR operation.

Let m_r be the minimum possible total cost required to make all a_i equal, if vertex r is chosen as the root of the tree. Find m_1, m_2, \ldots, m_n .

Link: https://codeforces.com/contest/1882/problem/D

 $^{^{\}dagger}$ Suppose vertex r is chosen as the root of the tree. Then vertex i belongs to the subtree of v if the simple path from i to r contains v.

s some into for all nodes

one node

Subtree DP

Tree

all at equal

(ai) n= c if subtree (v)

$$ans[root] = \sum_{\alpha} (a[u] \land a[\alpha]) * sz[\alpha]$$

$$ans[root] = \sum_{\alpha} (a[u] \land a[\alpha]) * sz[\alpha]$$

$$ans[root] = \sum_{\alpha} (a[u] \land a[\alpha]) * sz[\alpha]$$

276:=74 node To W

$$\frac{\sum_{u} (a[u] \land a[p]) * sz[u]}{cost(p,u)} = \frac{\sum_{u} cost(p,u)}{ans(poor)^{2}} = \frac{\sum_{u} cost(p,u)}{$$

Made with Goodnotes

 $\frac{dp(u)}{dp(u)} = \frac{(a(u)^a(u)) * s_2(u)}{dp(u)} * s_2(u)$ $\frac{dp(u)}{dp(u)} = \frac{dp(u)}{dp(u)} * s_2(u)$ $\frac{dp(u)}{dp(u)} * s_2($

problem -> all nodes

-> 1 node -

Subtree DP ->

undo

Rerouting,

Homework

Problem: Maximum Distance to any node

Given a tree with N (1 <= N <= 10^5) nodes where the nodes are numbered from 1 to N.

For each node, print the maximum distances to any node in the tree.

Example:

The answer for each node is written in blue.

Homework:

· Subtree DP problems re do all problems d'isussed

- Revooting:

 - · redo first problem (spend good enough)

 · attempt the second problem