Power presentation

1. How to charge the battery with the solar panel

- To charge the battery with the solar panel, start by using a solar panel with a voltage slightly higher than the battery's, such as a 6V or 5.5V panel for a 5V battery.
 - important as for current to flow into the battery, the voltage from the panel needs to overcome the battery's voltage.
 - current flows from higher potential to lower potential, so the solar panel's voltage must be sufficiently greater than the battery's to initiate charging.
- Next, the solar panel is soldered to a USB adapter board, such as the SparkFun USB Adapter.
 - This adapter typically provides a regulated output (like 5V) suitable for charging your USB-powered battery.
- Add a diode (an electrical component that allows current to flow in only one direction (forward direction) and blocks it from flowing in the opposite direction (reverse direction).) on the VCC (+) (the positive voltage line, where the solar panel is providing power.) line between the panel and the adapter

- to prevent the battery from discharging back into the solar panel when sunlight is not available.
- The diode ensures that the current flows only from the solar panel to the battery, preventing any reverse current flow into the panel.
- Once everything is connected, plug the battery into the USB adapter board.
- When the solar panel is exposed to sunlight, it will start charging the battery by supplying current to it.
 - o will allow CubeSat to charge the battery efficiently using solar power.

2. How to power the Raspberry Pi, IMU, and camera

- Use a rechargeable USB power bank that can power the Raspberry Pi, IMU, and camera. Make sure it fits in the 10x10x10 cm CubeSat frame.
- The power bank should be able to supply enough power for all the components, but the battery size (mAh) doesn't matter much for this project
- If you want to use a solar panel to charge the power bank:
 - Pick a 6V or 5.5V solar panel to work with a 5V power bank

- Solder the solar panel to a Sparkfun USB adapter board
- Add a diode to the VCC (+) line to stop the battery from sending power back to the panel
- For the IMU (inertial measurement unit):
 - Choose one that has 9 degrees of freedom (3 axes each for accelerometer, gyroscope, and magnetometer)
 - Adafruit IMUs are a good choice, and they work with CircuitPython libraries
- For the camera:
 - Use either the Visible or NOIR Raspberry Pi camera, but you only need one.
 - Both cameras connect the same way but detect different types of light
 - Make sure everything, including the battery and wires, fits inside the CubeSat

3. How and why to use the USB power meter

- How to Use:
 - The USB power meter measures both voltage and current through a USB connection
 - Insert the meter between your power bank and the device you want to monitor (Raspberry Pi, IMU, Camera)
 - The meter will give you real-time information about the power draw of the device(s) being powered
 - useful for tracking whether your CubeSAT system is operating within your available power budget
- Why Use:
 - Power Monitoring
 - Keeping track of the power consumption for each device ensures you don't overload the system or drain the battery too quickly
 - important in satellite operations where power availability is constrained

• Efficiency Optimization

■ If the meter shows high current draw or unexpected spikes, you may need to adjust the power distribution (e.g., by using more efficient converters or optimizing power usage patterns).

Troubleshooting

■ If one of your components isn't working as expected, the power meter will help identify whether it's a power-related issue (e.g., insufficient voltage or current).

4. Change the clock speed of the Raspberry Pi (why would you do this?)

- The Raspberry Pi's performance is tied to its clock speed, but increasing the clock speed also increases the power consumption.
 - Lowering the clock speed can reduce power draw, which is important if your
 CubeSat mission is power-limited.
 - Adjusting the clock speed is a trade-off between performance and power efficiency.
- How to Adjust the Clock Speed?
 - You can change the Raspberry Pi's clock speed by modifying its CPU governor settings.
 - The default setting is usually "ondemand", which adjusts the clock speed dynamically based on system load.
 - You can change this to "powersave" to minimize power consumption or "performance" to maximize processing power.

5. Power Draw of All Components

- Power Draw is the the amount of electrical energy used to operate a device over a period of time
- Measuring Power Draw:

- \circ Use the USB power meter to measure the current and voltage draw of each component (Raspberry Pi, IMU, and camera). The power consumption is given by the formula $P = V \times I$.
 - Raspberry Pi: The Pi may consume around 2-3W depending on its peripherals.
 - IMU: Typically consumes very little power (in the mW range).
 - Camera: Camera power consumption can vary but is usually around 0.5W to 1W.
- Total power draw can be calculated by adding up the power consumption of all components.

6. Determine how long it takes to fully drain and fully charge the battery. Can you plot the battery voltage and current over time?

- Battery Discharge Time:
 - Monitor the battery voltage over time using the USB power meter
 - The battery will typically start at around 4.2V when fully charged and drop to
 3.0V or lower when discharged
 - Measure the time it takes for the battery to discharge under typical load
 (Raspberry Pi running with the IMU and camera connected).
- Battery Charge Time:
 - Need to fully charge the battery with the solar panel and track the charging time
 - The solar panel will typically charge the power bank fully in several hours of direct sunlight, depending on the solar panel size and light conditions
- Plotting the battery's voltage and current over time will provide insight into the efficiency of the charging and discharging cycles

7. Determine the incident angle of light on the solar panels – how can you adjust this?

- an incident angle is the angle formed between a ray of light hitting a surface and a line perpendicular to that surface at the point of contact
- Why Adjust the Incident Angle?
 - The solar panel will generate maximum power when the sunlight strikes it perpendicularly (90°).
 - By adjusting the angle of the solar panel to face the Sun directly, you can maximize the energy harvested
 - critical when the CubeSat is in orbit
- How can you adjust this?
 - o can manually adjust the solar panel or use a sun-tracking system if CubeSat has one
 - The goal is to maintain an optimal angle as much as possible during the mission