Guest Lecture — Change of Basis & Matrix Diagonalization

(Jonathan) Tyler Reichanadter

O Introduction ~ Who am 1?

Howdy!

Im Tyler

- * I'm a GSI, but behind the curtains!
- * 4th year PhD, research in "computational quantum materials"
- * Enjoy weight-lifting, soccer, improv, through-hiking, moshi, etc.
- * Raised in Seattle, undergrad for math and physics in Boulder, Colorado.

Let's zoom out for one moment ... and take in the forest for the trees.

1 Recap

"What have we done in EECS IGA so far?"

- (1) set of egns
- (2) matrix-vector
- (3) gaussian elimination
- (4) Span, linear independence
- (5) matrices as transformations
- (6) matrix inversion
- (7) column space, null space
- (8) eigenvalue : eigenspace
- (9) change of basis

Today

- Let's cover our eigenstuff once more. Just to check our bases.

2 Eigenvalues : Eigenvectors

Any non-zero vector Why not V=0? $A \vec{v} = \lambda \vec{v}$ V=0 becomes trivial Must be case (AS = & regordless Any number at all! square! Anxi But why? What does h=0 imply? TEXTER AV = 0 A has a nontrivial nullspace! Otherwise an equation VI (a) V2 (de) ··· Vn de like this could never be true * Equivalent statements: (1) Columns of A are linearly dependent (lin. ind.) (2) A is <u>not</u> invertible.

Refresher!

Suppose we have a vector - space as defined 7

Span { \$\dag{a}_1, \alpha_2, \ldots, \dag{a}_k} \rightarrow \text{Spans R", if at least k\text{k\text{n}} AND \dag{s}_j's are lin. ind.

(note each \alpha_j \in R") | Is a Basis for R", if k=n AND ALL \dag{s}_j's are lin. ind.

(3) det(A) = 0.

Eigenvalue/vector Machinery:

- 1. Form B,= A- AI
- Getting eigenvalues 2. Find each & yielding a non-empty null space for Bx (equivalently, solve det(Bx)=0).
- 3. For each λ , get the vector-space $\text{null}(B_{\lambda}) = \text{span}\{\vec{v}_1, ..., \vec{v}_k\}$
- * Note 1. If you are given his already, you can skip to step 3. * Note 2. If you are given v's already, you get l's literally through matrix multiplication Avj.

"In a broader sense, the eigenvalues form the heart of a matrix A, and the eigenvectors frame these eigenvalues"

Getting Eigenvectors

Example:
$$A = \begin{bmatrix} 7 & 5 \\ 1 & 3 \end{bmatrix}$$
 $\lambda I = \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Step 1: $B_{\lambda} = A - \lambda I = \begin{bmatrix} 7 - \lambda & 5 \\ 1 & 3 - \lambda \end{bmatrix}$

If $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Step 2: $\det(B_{\lambda}) = a \cdot d - bc$

$$= (7 - \lambda)(3 - \lambda) - 5 \quad \beta$$

$$= (7 - \lambda)(3 - \lambda) - 5 \quad \beta$$

$$= (2 - 10)\lambda + 21 - 5$$

$$= (2 - 10)\lambda + 16 \quad \equiv 0$$

You can always use quadratic formula for A^{exc} case!

$$= \lambda^{2} - 10\lambda + 16 \quad \equiv 0$$

$$= \lambda^{2} \pm \frac{1}{2}\sqrt{\beta^{2} - 42}$$

$$= 5 \pm \frac{1}{2}\sqrt{36}$$

$$= 6 \pm \frac{1}{2}\sqrt{36}$$

$$= 6$$

 $\begin{bmatrix} 5 & 5 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \rightarrow V_1^{(1)} + \alpha = 0$

Free parameter!

 $V_{\alpha}^{(1)} = \alpha$

(any a ER)

Finding
$$\vec{V}^{(2)}$$
 for B_{λ_2} is left as an exercise \vec{v}

 $\begin{cases} R_1 \rightarrow \pm R_1 \\ R_2 \rightarrow R_2 - R_1 \end{cases}$

~ Note! There are "infinite" choices for \$\forall (1)\)
but it must live in the null-space
of Bx, which happens to be a
1-dimensional vector space;

 $\vec{\nabla}^{(1)} = \begin{bmatrix} -\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} -1 \\ +1 \end{bmatrix}$

3 Change of Basis

When we started, we just thought of \vec{r} as an ordered list of numbers. Now we can see it as "coordinates" as well!

Each term tells us how far to move in some "direction"; which is also a vector!

What if we choose a new set of "directions" instead of E; s?

$$\overrightarrow{r} = r \overrightarrow{e}_1 + r \overrightarrow{e}_2$$
New basis

$$= r(v) \overrightarrow{\chi}' + r(v) \overrightarrow{y}'$$
But check this out!

But we want to get $\overrightarrow{r}(v)$ from \overrightarrow{r} !

So we must invert:

So we must invert:

So we must invert:

but written in V basis.

Example: Map + from {x, y3 basis to {x', y'3 basis!

$$\begin{array}{c}
\cos(\Theta) = C_{\Theta} \\
\sin(\Theta) = S_{\Theta}
\end{array}$$

$$\begin{array}{c}
x' = \begin{bmatrix} C_{\Theta} \\ S_{\Theta} \end{bmatrix} & y' = \begin{bmatrix} -S_{\Theta} \\ C_{\Theta} \end{bmatrix}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ S_{\Theta} \end{bmatrix} & C_{\Theta}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}
\end{array}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}$$

$$\begin{array}{c}
C_{\Theta} \\ C_{\Theta}
\end{array}$$

Viewing T(1) in V basis:

Just like from the original diagram, the change of basis here appears as a rotation by - 0 ccw of F!

This was a cute example, but can we generalize?

"What conditions are needed on

Hint 1: Recall that 7(1) = V'7.

Hint 2: What spaces do r and r (") live in?

1: All column vectors must be linearly independent.

2: V must be square since \vec{r}, \vec{r} (v) $\in \mathbb{R}^n$.
Implies there are 'n' \vec{V} 's

Thus ...

The Vj's must form a basis!

We may want transform between two distinct bases {\vec{v}_1,\vec{v}_2\vec{v}_3} and {\vec{v}_1,\vec{v}_2\vec{v}_3}:

Epiphany moment

"Can we use eigenvectors as our basis??" (Terrible pikachu)

15 that legal? Yes!

Well, terms & conditions apply...

Yes, always if all is are distinct.

Most times yes, even if some is repeat.

BUT WAIT!! What if the eigenvectors are linearly dep? Fear Not! * Claim: Given the eigenvals | vecs (), >2, ..., >n) } (\(\tau_1, \tau_2, ..., \tau_n \) for matrix A_{η} if $\lambda_1 \neq \lambda_2$ then $\vec{\nabla}_1 \neq \vec{\nabla}_2$ are linearly ind. BY CONTRADICTION "There exists" such that" Suppose they are lin. dep., then I ap to s.t. $\alpha \vec{v}_1 + \beta \vec{v}_2 = \vec{0}$. Now A (x Vi+BV2) = a AV, + BAV2 = a l, V, + Blz Vz $= \lambda_1 \left(\alpha \vec{\nabla}_1 + \beta \vec{\nabla}_2 \right) + \left(\lambda_2 - \lambda_1 \right) \beta \vec{\nabla}_2$ However, $A(\alpha \vec{v}, + \beta \vec{v}_z) = A\vec{o} = \vec{o}$. Can't be \vec{o} by assumption So... $\vec{O} = \lambda(\vec{O}) + (\lambda_2 - \lambda_1) \vec{B} \vec{V}_2$ Can't be \vec{O} by eigvee Contradiction! Non-zero by initial setup

°° αV,+BV, ≠ Ö

Thus Vi & V2 most be linearly independent!

Bonus Note: So if all 1 eigenvalues lis are distinct for A & Rnin then span $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ forms a basis for \mathbb{R}^n !!

But ... what if you have less than 'n' eigenvalues for A ?? Answer: 1. There are always 'n' eigenvalues, but some may be identical, eg 2=3. 2. If $\lambda_1 = \lambda_2 = 3$ for example, then $null(A - \lambda_1 II)$ will most often be 2D.

4 Matrix Diagonalization

Completing the story: Eigenvectors + Basis Change

$$\overrightarrow{X} = X_1^{(v)}, \overrightarrow{\nabla}_1 + X_2^{(v)}, \overrightarrow{\nabla}_2 + \dots + X_n \overrightarrow{\nabla}_n \longrightarrow \overrightarrow{X}^{(v)} = \begin{bmatrix} X_1^{(v)} \\ X_2^{(v)} \\ \vdots \\ X_n^{(v)} \end{bmatrix}$$
where: $\overrightarrow{A} \overrightarrow{\nabla}_j = \overrightarrow{\lambda}_j \overrightarrow{\nabla}_j$

Step 1: Convert x to x(v) in eignec basis (x(v)=vx)

Step 2:
$$A\overset{\sim}{\times}^{(v)} = \underset{=}{\times_{1}^{(v)}} A\overset{\sim}{\nabla}_{1} + \underset{=}{\times_{2}^{(v)}} A\overset{\sim}{\nabla}_{2} + \dots + \underset{=}{\times_{n}^{(v)}} A\overset{\sim}{\nabla}_{n}$$

$$= \underset{=}{\times_{1}^{(v)}} \underset{=}{\times$$

Step 3: Convert back from V basis: Ax=V(Ax)(v)

Today's Pinchline

Diagonalizing Diagram

Step 1: Change to eigen-basis.

A

Step 2: Apply 'A' with
$$\Lambda$$
.

Step 3: Change back.

15 this really useful? Yes!!

$$A^{2} = V \Lambda V^{T} V \Lambda V^{T} = V \Lambda \Lambda V^{T}$$
Identity: Diagonal Matrices
$$\begin{bmatrix} \lambda_{1} \lambda_{2} O \\ O & \lambda_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} \lambda_{2} \\ \lambda_{2} & \lambda_{n} \end{bmatrix}$$

$$A^{N} = \bigvee \bigwedge \bar{\bigvee}^{1} \bigvee \bigwedge \bar{\bigvee}^{1} \dots \bigvee \bar{\bigwedge}^{N} \bar{\bigvee}^{1} = \bigvee \bigwedge^{N} \bar{\bigvee}^{1}$$

In summary, from the diagonal form we can easily compute $A_{N} = A_{N} = A_{N$

Fun fact: This works beyond integers, e.g.
$$N=1/2$$
.
Even crazier... it works for any function $f(A)$...

Ex:
$$\log(A) = \sqrt{\frac{\log(\lambda_1)}{\log(\lambda_2)}} \sqrt{\frac{1}{\log(\lambda_n)}}$$

Compute inverse
$$A^{-1}$$
Use the same trick! $A^{-1} = \sqrt{\frac{1}{\lambda_1}} \frac{1}{\lambda_2} \frac{1}{\lambda_3} \sqrt{\frac{1}{\lambda_3}} \sqrt{\frac{1}{$

 $= \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_2 \\ \lambda_2 & \lambda_2 \end{bmatrix}$

Verify
$$AA^{-1} = VAV^{-1}VA^{-1}V^{-1}$$

$$= VAA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}V^{-1}$$

$$= VA^{-1}V^{-1}V^{-1}V^{-1}$$

$$= VA^{-1}V$$

* Example 4: Transition matrices!

Suppose we have some system where

-> Start with
$$\vec{X}_0$$
, so $\vec{X}_1 = S \vec{X}_0$

$$\overrightarrow{X}_2 = S\overrightarrow{x}_1 = S(S\overrightarrow{x}_0) = S^2\overrightarrow{x}_0$$

thus
$$\overrightarrow{X}_{final} = \lim_{N \to \infty} S^N \overrightarrow{X}_o$$

Diagonalize
$$S = V \wedge V_1$$
 so then $\lim_{N \to \infty} S^N = \lim_{N \to \infty} V \wedge V_1$

$$= \sqrt{\lim_{N \to \infty} (\lambda_1)^{N}}$$

$$\lim_{N \to \infty} (\lambda_2)^{N}$$

$$\lim_{N \to \infty} (\lambda_n)^{N}$$

Cases:

(a)
$$|\lambda_2| > 1$$
, blows up $\lambda_2^{"} \rightarrow \pm \infty$

(c)
$$\lambda_2 = +1$$
, constant $\lambda_2^N = 1$

this is the steady state V

(d)
$$\lambda_2 = -1$$
, alternating! $\lambda_2^N \rightarrow \pm 1$ weird infinite oscillations, but it cannot occur if S and $\bar{\chi}_0$ all have nonnegative values. $\ddot{}$

Fin :