Project Design Phase-I Proposed Solution

Date	25 october 2023
Team ID	2.1
Project Name MALWARE DETECTION AND CLASSIFICAT	
Maximum Marks	2 Marks

Proposed Solution:

Our Project information in proposed solution:

S.No **Parameter** Description The problem at hand is the need to develop 1. Problem Statement (Problem to be effective strategies and solutions to mitigate solved) malware attacks in systems. Existing security measures often fall short of protecting devices and networks from sophisticated malware attacks. In today's digital landscape, malware is a 2. Idea / Solution description significant threat to the security of organizations' digital assets. The "Malware Detection and Classification the development of an advanced system that harnesses the power of artificial intelligence to identify and categorize different types of malware accurately. Organizations can bolster their cybersecurity defenses by leveraging cutting-edge AI techniques, proactively detecting malicious software, and enhancing their incident response capabilities In this paper, a framework has been developed to 3. Novelty / Uniqueness detect and classify different files (e.g exe, pdf, php, etc.) as benign and malicious using two level classifier namely, Macro (for detection of malware) and Micro (for classification of malware files as a Trojan, Spyware, Adware, etc.). We used for generating static and dynamic analysis report by executing files in the virtual environment. In addition, a novel model is developed for extracting features based on static, behavioral and network analysis using analysis report generated. Weak Framework is used to develop machine learning models by using training datasets. Annual Worldwide Economic Damages from 4. Social Impact / Customer Satisfaction Malware Exceed \$13 Billion. Computer Economics recently conducted a survey of IT security professionals and managers on the frequency and economic impact of malware attacks on their organizations in the previous 12 months. Malware in action can consume a substantial amount of your computer's memory, leaving limited resources for other legitimate programs to use. This can lead to extremely sluggish performance of vital programs, like your Internet browser or operating system and a slow PC overall. The malware to create and run a botnet is Business Model (Revenue Model) 5. developed by developers and can be rented or sold to a botmaster. The devices needed to create the

		hatnot are infacted by malyyare distributors against
		botnet are infected by malware distributors against
		a cost of less than 10 cents per infection. Data
		stolen from victims is stored by bulletproof
		hosting providers. Ransomware is the fastest
		growing malware threat, targeting users of all
		types—from the home user to the corporate
		network. On average, more than 4,000
		ransomware attacks have occurred daily since
		January 1, 2016. This is a 300-percent increase
		over the approximately 1,000 attacks per day seen
		in 2015.
6.	Scalability of the Solution	A scalable malware detection system capable of
		detecting complex attacks is the need of time. This
		article discusses a scalable and distributed deep
		learning approach for malware detection using
		convolutional neural network and bidirectional
		long short-term memory (CNN-BiLSTM).