Data Types and Storage FIT1043 2017 Lecture 4

Monash University

Reminder: Assessment

- all the Python you need to know is covered in tutorials
- Assignment 1: motion chart using Python code
 - Also: expect a question in exam like:
 - "compare Python as a data science tool with X" or
 - "interpret a given line of Python code"...
- ► the exam is based on the lectures
 - use Alexandria as readings to support understanding

Discussion: Python Language

- easy to learn
- ► flexible and multi-purpose
- ► great libraries
- good visualization for basic analysis

Unit Schedule: Modules

Module	Week	Content
1.	1	Overview and look at projects
	2	(Job) roles, and the impact
2.	3	Data business models / application areas
3.	4	Characterising data and "big" data
	5	Data sources and case studies
4.	6	Resources and standards
	7	Resources case studies
5.	8	Data analysis theory
	9	Regression and decision trees
	10	Data analysis process
6.	11	Issues in data management
	12	GUEST SPEAKER & EXAM INFO

Characterising Data (ePub section 3.1)

some general characteristics of data sets used to assess a data science project

- > the Four V's of big data
- metadata data about data is critical to understanding
- growth laws understanding the exponential growth

Characterising Data The V's

The Four V's of Big Data

"The Four V's of Big Data," by IBM (infographic)

Big Data

From Big data on Wikipedia:

Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process data within a tolerable elapsed time. Big data "size" is a constantly moving target, ...

Big Data and "V"s

- 2001 Doug Laney produced report describing 3 V's:
 "3-D Data Management: Controlling Data Volume, Velocity and Variety"
- these characterise bigness, adequately
- other V's characterise problems with analysis and understanding

Veracity: correctness, truth, *i.e.*. lack of ... Variability: change in meaning over time, *e.g.*, natural language

think of any more? write a blog!

MARS Question

The 3Vs of big data are important because:

- A. they are an industry standard.
- B. they are the basis for the development of more Vs (e.g. Value).
- C. they are used to describe in what way a dataset may be too big to handle.
- D. they are from the influential Gartner Inc.

MARS Question

video "Big Ideas: How Big is Big Data?" by Patricia Florissa

Summary

BIG DATA is ANY attribute that challenges CONSTRAINTS of a system CAPABILITY or BUSSINESS NEED

Characterising Data Metadata

data about data is critical to understanding

MetaData

metadata ::= structured information that describes, explains, locates, or otherwise makes it easier to retrieve, use or manage an information resource.

metadata is:

- data about data
- structured so that a computer can process & interpret it

Why Use Metadata

- facilitate data discovery
- help users determine the applicability of the data
- enable interpretation and reuse
- clarify ownership and restrictions on reuse

MetaData (cont.)

MetaData can be:

Descriptive: describes content for identification and retrieval e.g. title, author of a book

Structural: documents relationships and links e.g. chapters in a book, elements in XML, containers in MPEG

Administrative: helps to manage information e.g. version number, archiving date, Digital Rights Management (DRM)

MARS Question

Name a type of metadata might be associated with an image.

EXIF Metadata

Book Metadata

Copyright © 1994 by John Wiley & Sons Ld.
Baffins Lane, Chichester
West Sussex POI9 IUD, England
National Chichester (0243) 779777
International (+44) 243 779777

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Jacaranda Wiley Ltd., 33 Park Road, Milton, Oueensland 4064, Australia

John Wiley & Sons (Canada) Ltd., 22 Worcester Road, Rexdale, Ontario M9W ILI, Canada

John Wiley & Sons (SEA) Pte Ltd. 37 Jalan Pemimpin #05-04, Block B, Union Industrial Building, Singapore 2057

book metadata listed on about third page

Library of Congress Cataloging-in-Publication Data Bernardo, José M.

Bayesian theory / José M. Bernardo, Adrian F.M. Smith. p. cm. — (Wiley series in probability and mathematical

statistics)
Includes bibliographical references and indexes.
ISBN 0-471-92416-4

Bayesian statistical decision theory. I. Smith, Adrian F.M.
 II. Title. III. Series.
 OA279.5 B47 1993

93-37554 CIP

British Library Cataloguing in Publication Data

519 5'42-dc20

A catalogue record for this book is available from the British Library

TERN 0.471 97416.4

Media Metadata

Format Container: .avi, .mp4, .mov, .ogg, .flv, .mkv, etc.

Video codec:

H.264, VC-1, Theora, Dirac 2.1, H.263, etc. Audio codec:

AAC, WMA, Vorbis, PCM, etc. Captioning, Video description:

SAMI, SMIL, Hi-Caption, CMML, DXFP, 3GPP TS 26.245, MPSub, etc. Metadata:

Author, Title, Location, Date, Copyright, License, etc.

Examples: Call Data Record

Asterix Call Detail Record for an IP phone system

Examples: Javadoc

Self documenting code

```
* <hl>Function Description</hl> using <b-HTML Tags</b> and {@literal <b- JavaDoc </b->
 * HTML list element IHTML list element 2
 * For more details: (@link http://www.dyteclipse.com/documentation/sy/Export HTNL Documentation.html DVT Documentation)
 * Oparam slave name - first param
 * Oparam min addr - second param
 * @param max addr - third param
 * Greturn min addr
 * Osee get type
 * Osee build phase
 * Gauthor Author's name
 * Oversion 1.0
function void set slave address map(string slave name.
  int min addr. int max addr):
  ubus slave monitor tmp slave monitor:
  if( bus monitor != null ) begin
    // Set slave address man for bus monitor
    bus monitor.set slave configs(slave name, min addr. max addr):
  // Set slave address map for slave monitor
  $cast(tmp slave monitor, lookup({slave name, ".monitor"}));
  tmp slave monitor.set addr range(min addr, max addr);
  return min addr:
endfunction : set slave address map
public void
                   set slave address map( string slave name, int min addr. int max addr )
                    Function Description
                    using HTML Tags and <b> JavaDoc </b>
                        . HTML list element 1
                        . HTML list element 2
                    For more details: DVT Documentation
                    Returns:
                       min addr
                    Arguments:
                       slave name - first param
                       min addr - second param
                       max addr - third param
                     See Also:
                       get type
                       build phase
                    Version
                      1.0.
```

MetaData: Key Concepts

- Machine-readable data: data (or metadata) which is in a format that can be understood by a computer e.g., XML, JSON
- Markup language: system for annotating a document in a way that is syntactically distinguishable from the text e.g., Markdown, Javadoc
- Digital container: file format whose specification describes how different elements of data and metadata coexist in a computer file e.g., MPEG

Characterising Data Kinds of data

a quick walkthrough of different data types

Geospatial Data

Linked Open Data: XML

```
- <adjunct id="com.yahoo.page.uf.hcard" updated="2009-02-05T00:04st
                                                                       Name
  - <item rel="de:subject rel:Card" resource="http://www.whiteboose.gov/
    - <type typeof="vcard: VCard" resource="http://www.wlatehouse.gov/
        <item rel="vcard:url" resource="http://www.wintehouse.gov/"/>
        <meta property="vcard:fn">Barack Obama</meta>
        <item rel="vcard:photo" resource="http://media.linkedin.com/mpr/shrink 80 80/p/2/000/000/0ca/2b9a3fb.jpg"/>
        <meta property="vcard:title">President of the United States of America</meta>
      - <item rel="vcard:adr">
        - <type typeofe"yeard:Address">
            <meta property="vcard:locality">Washington D.C. Metro Area</meta>
          </type>
        </item>
      Title
    </item>
  - <item rel="de:subject rel:Card">
    - <type typeof="yeard:VCard">
                                                                                    Organization
        <meta property="yeard:title">President</meta>
      - <item rel="vcard:org">
        - <type typeof="vcard:Organization">
            <meta property="yeard:oreanization-name">United States of America</meta>
          </type>
        </item>
      </type>
                                                             Title
    «/item>
  - <item rel="dc:subject rel:Card">
    - <type typeof="vcard:VCard">
                                                                                    Organization
        <meta property="vcard:title">US Senator</meta>
      - <item rel="vcard:ore">
        - <type typeof="vcard:Organization">
            <meta property="vcard:organization-name">US Senate (IL-D)</meta>
          </type>
        </item>
      </type>
                                                             Title
    </item>
  - <item rel="dc:subject rel:Card">
    - <type typeof="vcard:VCard">
                                                                                    Organization
        <meta property="veard:title">Senior Lecturer in Law</meta>
      - <item rel="vcard:org">
        - <type typeof="vcard:Organization">
            <meta property="yeard:organization-name">University of Chicago Law School</meta>
          c/type>
        </item>
```

IP Connection Data

Transactional Data

Twitter Data

Internet of Things Data

Source: IDC Internet of Things Spending Guide by Vertical Market 2014

Characterising Data Growth laws

understanding the exponential growth

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law

- stated to double every 2 years starting 1975
- transistor count translates to:
 - more memory
 - · bigger CPUs
 - faster memory, CPUs (smaller==faster)
- pace currently slowing

Koomey's Law

By Dr Jon Koomey CC BY-SA 3.0, via Wikimedia Commons

Koomey's Law

- corollary of Moores Law
- amount of battery needed will fall by a factor of 100 every decade
- leads to ubiquitous computing

Bell's Law

- corollary of Moore's Law and Koomey's Law
- at a broad level, whole new computing classes will emerge every decade

Yes: PCs, mobile computing, cloud, internet-of-things

No: Java, big data, Hadoop, flash memory

Zimmerman's Law

- Zimmerman is creator of Pretty Good Privacy (PGP), an early encription system
- "surveillance is constantly increasing"
- privacy constantly decreasing

Things that happen in 60secs

from GO-Gulf

Introduction to R for Data Science

MARS Question

Which of the following R commands is not a summary statistics of my_table?

- A. min(my_table\$ages)
- **B.** mean(my_table\$height)
- C. sd(my_table\$height)
- D. str(my table)

Next Week: Distributed Processing and Data Case Studies (ePub sections 3.3, 3.4)

Homework:

follow up on some of the case studies in 3.3 yourself!