BIG DATA SCIENCE

Albert Bifet (@abifet)
Paris, 7 October 2015
albert.bifet@telecom-paristech.fr

DATA SCIENCE

Data Science is an interdisciplinary field focused on extracting knowledge or insights from large volumes of data.

Figure 1: http://www.marketingdistillery.com/2014/11/29/is-data-science-a-buzzword-modern-data-scientist-defined/

Figure 2: Drew Convay's Venn diagram

Definition

Given n_C different classes, a classifier algorithm builds a model that predicts for every unlabelled instance I the class C to which it belongs with accuracy.

Example

A spam filter

Example

Twitter Sentiment analysis: analyze tweets with positive or negative feelings

Data set that describes e-mail features for deciding if it is spam.

Example Contains "Money"	Domain type	Has attach.	Time received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Assume we have to classify the following new instance:

Domain	Has	Time	
type	attach.	received	spam
edu	yes	day	?
	type	type attach.	type attach. received

k-NEAREST NEIGHBOURS

k-NN Classifier

- · Training: store all instances in memory
- Prediction:
 - Find the k nearest instances
 - Output majority class of these k instances

Naïve Bayes

· Based on Bayes Theorem:

$$P(c|d) = rac{P(c)P(d|c)}{P(d)}$$
 $posterior = rac{prior imes likelikood}{evidence}$

- Estimates the probability of observing attribute a and the prior probability P(c)
- Probability of class c given an instance d:

$$P(c|d) = \frac{P(c) \prod_{a \in d} P(a|c)}{P(d)}$$

Multinomial Naïve Bayes

- · Considers a document as a bag-of-words.
- Estimates the probability of observing word w and the prior probability P(c)
- Probability of class c given a test document d:

$$P(c|d) = \frac{P(c)\prod_{w\in d}P(w|c)^{n_{wd}}}{P(d)}$$

PERCEPTRON

- Data stream: $\langle \vec{x}_i, y_i \rangle$
- Classical perceptron: $h_{\vec{w}}(\vec{x}_i) = \operatorname{sgn}(\vec{w}^T\vec{x}_i)$,
- Minimize Mean-square error. $J(\vec{w}) = \frac{1}{2} \sum (y_i h_{\vec{w}}(\vec{x}_i))^2$

PERCEPTRON

• We use sigmoid function $h_{\vec{w}} = \sigma(\vec{w}^T \vec{x})$ where

$$\sigma(x) = 1/(1 + e^{-x})$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

- Minimize Mean-square error. $J(\vec{w}) = \frac{1}{2} \sum (y_i h_{\vec{w}}(\vec{x}_i))^2$
- Stochastic Gradient Descent: $\vec{w} = \vec{w} \eta \nabla J \vec{x}_i$
- Gradient of the error function:

$$\nabla J = -\sum_{i} (y_i - h_{\vec{w}}(\vec{x}_i)) \nabla h_{\vec{w}}(\vec{x}_i)$$

$$\nabla h_{\vec{w}}(\vec{x}_i) = h_{\vec{w}}(\vec{x}_i)(1 - h_{\vec{w}}(\vec{x}_i))$$

Weight update rule

$$\vec{w} = \vec{w} + \eta \sum_{i} (y_i - h_{\vec{w}}(\vec{x}_i)) h_{\vec{w}}(\vec{x}_i) (1 - h_{\vec{w}}(\vec{x}_i)) \vec{x}_i$$

RESTRICTED BOLTZMANN MACHINES (RBMS)

Energy-based models, where

$$P(\vec{x}, \vec{z}) \propto e^{-E(\vec{x}, \vec{z})}$$
.

• Manipulate a weight matrix W to find low-energy states and thus generate high probability $P(\vec{x}, \vec{z})$, where

$$E(\vec{x},\vec{z}) = -W.$$

 RBMs can be stacked on top of each other to form so-called Deep Belief Networks (DBNs) Data set that describes e-mail features for deciding if it is spam.

Example Contain "Mone	ns Doma		Time n. receive	d spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Basic induction strategy:

- A ← the "best" decision attribute for next node
- Assign A as decision attribute for node
- For each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Example

Dataset of 4 Instances : A, B, C, D

Classifier 1: B, A, C, B Classifier 2: D, B, A, D Classifier 3: B, A, C, B Classifier 4: B, C, B, B Classifier 5: D, C, A, C

Bagging builds a set of *M* base models, with a bootstrap sample created by drawing random samples with replacement.

RANDOM FORESTS

- Bagging
- Random Trees: trees that in each node only uses a random subset of the attributes

Random Forests is one of the most popular methods in machine learning.

BOOSTING

The strength of Weak Learnability, Schapire 90

A boosting algorithm transforms a weak learner into a strong one

A formal description of Boosting (Schapire)

- given a training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T
 - construct distribution D_t
 - · find weak classifier

$$h_t: X \to \{-1, +1\}$$

with small error $\varepsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]$ on D_t

output final classifier

AdaBoost

- 1: Initialize $D_1(i) = 1/m$ for all $i \in \{1, 2, ..., m\}$
- 2: **for** t = 1, 2, ... T **do**
- 3: Call **WeakLearn**, providing it with distribution D_t
- 4: Get back hypothesis $h_t: X \to Y$
- 5: Calculate error of h_t : $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
- 6: Update distribution

$$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \left\{ egin{array}{ll} arepsilon_t / (1-arepsilon_t) & ext{if } h_t(x_i) = y_i \\ 1 & ext{otherwise} \end{array}
ight.$$

where Z_t is a normalization constant (chosen so D_{t+1} is a probability distribution)

7: **return**
$$h_{fin}(x) = \arg\max_{y \in Y} \sum_{t:h_t(x)=y} -\log \varepsilon_t/(1-\varepsilon_t)$$

AdaBoost

- 1: Initialize $D_1(i) = 1/m$ for all $i \in \{1, 2, ..., m\}$
- 2: **for** t = 1, 2, ... T **do**
- 3: Call **WeakLearn**, providing it with distribution D_t
- 4: Get back hypothesis $h_t: X \to Y$
- 5: Calculate error of h_t : $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
- 6: Update distribution

$$D_t: D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \frac{\varepsilon_t}{1 - \varepsilon_t} & \text{if } h_t(x_i) = y_i \\ 1 - \varepsilon_t & \text{otherwise} \end{cases}$$

where Z_t is a normalization constant (chosen so D_{t+1} is a probability distribution)

7: **return**
$$h_{fin}(x) = \arg\max_{y \in Y} \sum_{t:h_t(x)=y} -\log \varepsilon_t/(1-\varepsilon_t)$$

STACKING

Use a classifier to combine predictions of base classifiers Example

- Use a perceptron to do stacking
- · Use decision trees as base classifiers

CLUSTERING

Definition

Clustering is the distribution of a set of instances of examples into non-known groups according to some common relations or affinities.

Example

Market segmentation of customers

Example

Social network communities

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(I)

a clustering algorithm computes an assignment of a cluster for each instance

$$f: I \rightarrow \{1, \ldots, K\}$$

that minimizes the objective function cost(I)

CLUSTERING

Definition

Given

- a set of instances I
- a number of clusters K
- an objective function cost(C,I)

a clustering algorithm computes a set C of instances with |C| = K that minimizes the objective function

$$cost(C,I) = \sum_{x \in I} d^2(x,C)$$

where

- d(x,c): distance function between x and c
- $d^2(x,C) = min_{c \in C}d^2(x,c)$: distance from x to the nearest point

- 1. Choose *k* initial centers $C = \{c_1, \dots, c_k\}$
- · 2. while stopping criterion has not been met
 - For i = 1, ..., N
 - find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - For k = 1, ..., K
 - set c_k to be the center of mass of all points in C_i

- 1. Choose a initial center c₁
- For $k = 2, \dots, K$
 - select $c_k = p \in I$ with probability $d^2(p, C)/cost(C, I)$
- · 2. while stopping criterion has not been met
 - For i = 1, ..., N
 - find closest center $c_k \in C$ to each instance p_i
 - assign instance p_i to cluster C_k
 - For k = 1, ..., K
 - set c_k to be the center of mass of all points in C_i

PERFORMANCE MEASURES

Internal Measures

- Sum square distance
- Dunn index $D = \frac{d_{min}}{d_{max}}$
- C-Index $C = \frac{S S_{min}}{S_{max} S_{min}}$

External Measures

- Rand Measure
- F Measure
- Jaccard
- Purity

DBSCAN

- ε -neighborhood(p): set of points that are at a distance of p less or equal to ε
- Core object: object whose ε -neighborhood has an overall weight at least μ
- A point p is directly density-reachable from q if
 - p is in ε -neighborhood(q)
 - q is a core object
- A point p is density-reachable from q if
 - there is a chain of points $p_1, ..., p_n$ such that p_{i+1} is directly density-reachable from p_i
- A point p is density-connected from q if
 - there is point o such that p and q are density-reachable from o

DBSCAN

- A cluster C of points satisfies
 - if $p \in C$ and q is density-reachable from p, then $q \in C$
 - all points $p, q \in C$ are density-connected
- A cluster is uniquely determined by any of its core points
- A cluster can be obtained
 - choosing an arbitrary core point as a seed
 - retrieve all points that are density-reachable from the seed

Figure 3: DBSCAN Point Example with μ =3

DBSCAN

- select an arbitrary point p
- retrieve all points density-reachable from p
- if p is a core point, a cluster is formed
- If p is a border point
 - no points are density-reachable from p
 - DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

FREQUENT PATTERN MINING

Suppose \mathcal{D} is a dataset of patterns, $t \in \mathcal{D}$, and min_sup is a constant.

Definition Support(t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$.

Frequent Subpattern Problem

Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathcal{D} is a dataset of patterns, $t \in \mathcal{D}$, and min_sup is a constant.

Definition Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$

Frequent Subpattern Problem

Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathcal{D} is a dataset of patterns, $t \in \mathcal{D}$, and min_sup is a constant.

Definition Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$.

Frequent Subpattern Problem

Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathcal{D} is a dataset of patterns, $t \in \mathcal{D}$, and min_sup is a constant.

Definition Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$.

Frequent Subpattern Problem

Given \mathscr{D} and min_sup , find all frequent subpatterns of patterns in \mathscr{D} .

PATTERN MINING

Dataset Example Document Patterns d1 abce d2 cde d3 abce d4 acde d5 abcde d6 bcd

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent
d1,d2,d3,d4,d5,d6	С
d1,d2,d3,d4,d5	e,ce
d1,d3,d4,d5	a,ac,ae,ace
d1,d3,d5,d6	b,bc
d2,d4,d5,d6	d,cd
d1,d3,d5	ab,abc,abe
	be,bce,abce
d2,d4,d5	de,cde

minimal support = 3

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	
6	С	
5	e,ce	
4	a,ac,ae,ace	
4	b,bc	
4	d,cd	
3	ab,abc,abe	
	be,bce,abce	
3	de,cde	

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed
6	С	С	С
5	e,ce	е	ce
4	a,ac,ae,ace	а	ace
4	b,bc	b	bc
4	d,cd	d	cd
3	ab,abc,abe	ab	
	be,bce,abce	be	abce
3	de,cde	de	cde

abce
cde
abce
acde
abcde
bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcd
d6	bcd

 $\mathbf{e} \to c\mathbf{e}$

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	се	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	ab <mark>ce</mark>
d2	cde
d3	ab <mark>ce</mark>
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

abce
cde
abce
acde
abcde
bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

а	\rightarrow	ace

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

CLOSED PATTERNS

Usually, there are too many frequent patterns. We can compute a smaller set, while keeping the same information.

Example

A set of 1000 items, has $2^{1000}\approx 10^{301}$ subsets, that is more than the number of atoms in the universe $\approx 10^{79}$

CLOSED PATTERNS

A priori property

If t' is a subpattern of t, then $Support(t') \ge Support(t)$.

Definition

A frequent pattern *t* is *closed* if none of its proper superpatterns has the same support as it has.

Frequent subpatterns and their supports can be generated from closed patterns.

MAXIMAL PATTERNS

Definition

A frequent pattern *t* is *maximal* if none of its proper superpatterns is frequent.

Frequent subpatterns can be generated from maximal patterns, but not with their support.

All maximal patterns are closed, but not all closed patterns are maximal.

NON STREAMING FREQUENT ITEMSET MINERS

Representation:

Horizontal layout

T1: a, b, c T2: b, c, e T3: b, d, e

Vertical layout

a: 100 b: 111 c: 110

Search:

- · Breadth-first (levelwise): Apriori
- · Depth-first: Eclat, FP-Growth

THE APRIORI ALGORITHM

Apriori Algorithm

- 1 Initialize the item set size k = 1
- 2 Start with single element sets
- 3 Prune the non-frequent ones
- 4 while there are frequent item sets
- 5 **do** create candidates with one item more
- 6 Prune the non-frequent ones
- 7 Increment the item set size k = k + 1
- 8 Output: the frequent item sets

Depth-First Search

- divide-and-conquer scheme: the problem is processed by splitting it into smaller subproblems, which are then processed recursively
 - · conditional database for the prefix a
 - · transactions that contain a
 - conditional database for item sets without a
 - · transactions that not contain a
- · Vertical representation
- Support counting is done by intersecting lists of transaction identifiers

Depth-First Search

- divide-and-conquer scheme: the problem is processed by splitting it into smaller subproblems, which are then processed recursively
 - · conditional database for the prefix a
 - · transactions that contain a
 - conditional database for item sets without a
 - · transactions that not contain a
- Vertical and Horizontal representation : FP-Tree
 - prefix tree with links between nodes that correspond to the same item
- Support counting is done using FP-Tree

Problem

Given a data set \mathcal{D} of graphs, find frequent graphs.

Transaction Id	Graph
	O C - C - S - N
1	Ō
2	O C - C - S - N
3	C - C - S - N

THE GSPAN ALGORITHM

```
gSpan(g, D, min\_sup, S)
      Input: A graph q, a graph dataset D, min_sup.
      Output: The frequent graph set S.
     if q \neq min(q)
        then return S
     insert q into S
     update support counter structure
  5 C \leftarrow \emptyset
     for each q' that can be right-most
          extended from g in one step
          do if support(q) > min_sup
  8
                then insert g' into C
     for each q' in C
          do S \leftarrow \mathsf{qSpan}(q', D, min\_sup, S)
10
11
     return S
```