

FIG. - 2

FIG. - 3

FIG. - 5A

Di

Di

R,

DEPTH

- 13_

<u>FIG. - 6</u>

				Γ		T	0.		5	- =	_		90	_								
	The Sun		204	+	HVID (mm)				1.45	FOR SPHERICAL FRONTS target	edge thrckness below		0.18	SPHERICAL FRONTS	thickness peripheral to J1 before	ientic (in mm > Delta 2) see below		0.01	before lentic (in mm > Delta 1) see	below		0.01
		7 (7	(202)	-	ellipticity of the comea	0	Door	landed at full Diameter = 0.083	Ab, the long axis of the ellipse				0.40	Af, the long axis of the ellipse	creating the front curve edge (below)		0.40	7	٠ و			0.25
		200	-	lens / comea power (D)	unrerence wanted	-4.50	I power (D) difference on be and apical comes	-4.35	Recommended diameter 6.	lentic = 8.024	True center thickness (mm) = Landing Zone and comea (uL) recommended and a second to 152	lentic = 8.106		Origin for lentic curve is on y axis displaced from anex of from	curve = 8.068 (below)	Estimated elevation at 12 -	0.070		fixed (tear thickness)			0.006
				1 comeal apical radius (mm)		86./	Volume between BC and	(dL.) = 0.994	Front Surface central radius = Volume between S curve and 8.37	сотеа (uL) = 1.739 Volume hot	Landing Zone and comea (uL)	= 0.718		OLUME =	5.451(UL)		∞	Dia giving desired LZ lift =			0.094	
	0,000	0.10 Suggested Base Curve is 8.4			1.00 EYE	Ref. Index of material used =	input RI in Cell H4		0.50 8.37		True center thickness $(mm) = 0.14 \cdot 0.152$	177		true offset between landing 0.18 zones at $12 = 0.179$	Present lens height (mm)	-35.00 tangential touch = 0.040		Diameter recommended from Dia giving desired LZ lift =	900	nended depth (mm) S		218
	~	\perp		3.00	1.0	-212	HDS	214		222	6			0.18	216	-35.00	209		200		0.500 @6u/D	• •
208	Selected bc (6.9-10.4/0.1) (7.70	Radial distance (OZ/2) from the	S.9/0.1)	T^{-}	Width of the S curve mm (.75,1)	Lens material (FP30, FP60, FP92		0.00, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0	2.5)	Delta R (mm) translation of 1st junction radially from BC	_	Delte B	Junction radially from RC crisis	(0.1-0.22/0.02)	Angle of the landing zone	(-25.5 to -50.0/.5)	selected lens diameter mm		Selected denth of the o	(.15-1.0/.05) (0.3-0.65/ .025) use	The state of the s	220/
l	BC		_5	1	AS.		MAT		۵		å			45	 :	<		<u>0</u>		SD SD	7	

F 16 - 9

and the same was not a manager than the

-] :<u>:</u>_

- :5_

FIG.-12

FIG.-13

ĺ							
	Selected bc (6.9-10.4/0.1) (7.70-9.1/.05)	36.8	8.90 Suggested Base Curve is 8.9			020	
	Radial distance (OZ/2) from the lens center to 1st junction mm (1.0-5 0.0 1)				lens / comea power (D)	()	
	0.2/0.1)	3.00 28	ZB	corneal apical radius (mm)	difference wanted	ellipticity of the comea	HVID (mm)
	Width of the S curve mm (.75,1)	1.00	1.00 EYE	8.03	-4.00	90	
MAT	Lens material (FP30, FP60, FP92, FP151, HDS, Other)	HDS	Ref. Index of material used = 1.449 If 'other' was selected input RI in Cell H4	was selected Volume between BC and Cell H4 comea (uL) = 0.926	Actual power (D) difference between be and apical comea = Desired edge lift (nm) when 4.11	Desired edge lift (mm) when	P.111
	lens power desired (-1.00, -0.50, 0.00, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5)	Fron 0.50 8.88	t Surface cer	ntral radius = Volume between S curve and comea (uL) = 1.742	Recommended diameter for lentic = 6.006	Ab, the long axis of the ellipse creating the base curve edge (helow)	1.45 FOR SPHERICAL FRONTS target
	Delta R (mm) translation of 1st junction radially from BC origin (0.08-0.2/0.02)	232 True o	True center thickness (mm) = 0.214	Volume between pretouch Landing Zone and comea (uL) = 0.867	Volume between pretouch Landing Zone and comea (uL.) recommended radius of curve for = 0.867		Culturalities delicar
	Delta R (rrm) translation of 2nd junction radially from BC origin (0.1-0.22/0.02)	0.12	true offset between landing 0.12 zones at $12 = 0.119$	TOTAL VOLUME = 3.534(uL)	Origin for lentic curve is on y Af, the long axis of the ellipse axis displaced from apex of front creating the front curve edge curve = 8,410	Af, the long axis of the ellipse creating the front curve edge	SPHERICAL FRONTS- max thickness peripheral to J1 before
	Angle of the landing zone (-25.5 to -50.0/.5)	-33.00	Present lens height (mm) above comea at diameter of -33.00 tangential touch = 0.041	where LZ would cential touch = 9.26	Estimated elevation at J2 = 0.075	0.40	tentic (in num > Delta 2) see below
	selected lens diameter mm (8.0-12.9/0.1)	10.40	Diameter recommended from Dia giving desired LZ lift = 10,40 HVID = 10.4		fixed (tear thickness)		Minimum thickness peripheral to J1 before lentic (in mm > Delta 1) see below
	Selected depth of the S curve mm (.15-1.0/.05) (0.3-0.65/ .025) use next smaller than est.	Recommend of the following the following the following of the following	nended depth (mm) S r desired correction = 0.457 mm	Edge lift at selected diameter = 0.071	9000	75	
					0000	0.43	0.01

F 16 - 14

FIG.-15

FIG.-16

FIG.-17

-	⊋√_		11.2		1.45	i di	5	 	0.18	Γ-		1 3	0.01	5 g	_	T)1
200	702	HVID (mm)			-1	FOR SPHERICAL FRONTS target	edge thickness below			SPHERICAL FRONTS- max thickness peripheral to J1 before	lentic (in mm > Delta 2) see below		0.0	Minimum thickness peripheral to JI before lentic (in mm > Delta 1) see	below		0.01
608		ellipticity of the comea	0.4	Desired edge lift (nm) when = landed at full Diameter =	0.09272	Ab, the long axis of the ellipse creating the base curve edge			0.40	Af, the long axis of the ellipse creating the front curve edge	(below)	6	U.4U	transition from base elipse to	front elipse is found (below)		0.25
200 ک	lens / comea power (D)	difference wanted		Actual power (D) difference between bc and apical comea =	-0.13	Recommended diameter for	101110 - 0.784	True center thickness (mm) = Landing Zone and comes (uL) recommended radius of curve for 1.48 1.0.122 1.50	CIO	Origin for lentic curve is on y Af, the long axis of the ellipse axis displaced from apex of front creating the front curve edge	14C - 7.341	Estimated elevation at J2 = 0.040		fixed (fear thickness)			0.006
	Compa private leading	Conical apical radius (mm)	(7.7)	Volume between BC and comea (uL) = 0.699		Volume between S curve and comea (uL) = 2.812	Volume between preforch	Landing Zone and comea (uL) = 0.122		TOTAL VOLUME = 3.633(uL)		Diameter where LZ would make tangential touch = 9.21		Dia giving desired LZ lift = 10.53		Edge lift at selected diameter = 0.071	
8.35 Suggested Base Curve is 8.3	3B	EYE	Ref. Index of material used =	1.449 If 'other' was selected Volume between BC and input RI in Cell H4 comea (uL) = 0.699		Front Surface central radius = Volume between S curve and 8.32 comea (uL) = 2.812		True center thickness (mm) = 0.148		true offset between landing 0.18 zones at $12 = 0.179$	T	above comea at diameter of langential touch = 0.038	i	10.20 HVID = 10.2		nended depth (mm) S r desired correction = 1.116 mm	
8.35	J210 2.5013B	212 2.00 EYE		HDS	214	0.50 8.32		0.14 0.148		0.18		-38.00		10.20		Kecomir Curve fo 1.116 @6u/D	
Selected bc (6.9-10.4/0.1) (7.70-9.1/.05) Radial distance (OZZ2) from the	lens center to 1st junction mm (1.0-5.9/0.1)	Width of the S curve mm (.75,1)		2,	lens power desired (-1.00, -0.50,	2.5)	Delta R (mm) translation of 1st	(0.08-0.2/0.02)	Jelts D (mm) and the	junction radially from BC origin (0.1-0.22/0.02)	Angle of the landing gong	(-25.5 to -50.0/.5)	selected lens diameter mm	(8.0-12.9/0.1)	Selected denth of the S curie mm	(.15-1.0/.05) (0.3-0.65/.025) use next smaller than est.	
BC	5	SW		MAT		<u>a</u>		Q		42 1 11 (3)		∀	se	© Q	Š	SD ne	

F 1G - 19

FIG.-20

FIG.-21

FIG.-22

FIG.-23

BC	Selected bc (6.9-10.4/0.1) (7.70-9.1/.05)	9.30	9.30 Suggested Base Curve is 9.3				
5	Radial distance (OZ/2) from the lens center to 1st junction mm (1.0-5.9/0.1)	3.00 4B		comeal apical radius (mm)	lens / comea power (D) difference wanted	, ellipticity of the comea	HVID (mm)
SW	Width of the S curve mm (.75,1)	1.00	1.00 EYE	8.13	-5.25	0.3	11.9
MAT	Lens material (FP30, FP60, FP92, FP151, HDS, Other)	HDS	Ref. Index of material used = 1.449 If other was selected Volume between BC and input RI in Cell H4 comea (uL) = 1.213	Volume between BC and comea (uL) = 1.213	Actual power (D) difference between be and apical comea = Desired edge lift (mm) when -5.22	Desired edge lift (mm) when landed at full Diameter = 0.0875	1.45
Ь	lens power desired (-1.00, -0.50, 0.00, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5)	Fron 0.50 9.24	Front Surface central radius = Volume between S curve and 9.24		Recommended diameter for lentic = 9.791	Ab, the long axis of the ellipse creating the base curve edge (below)	FOR SPHERICAL FRONTS target edge thickness below
Ô	Delta R (rum) translation of 1st junction radially from BC origin (0.08-0.2/0.02)	222 True o	True center thickness (mm) = 0.088	Volume between pretouch Landing Zone and cornea (uL) = 1.360	Volume between pretouch True center thickness (mm) = Landing Zone and comea (uL) recommended radius of curve for = 1.360 lentic = 10.059	2.00	0.18
\$2	Delta R (mm) translation of 2nd junction radially from BC origin (0.1-0.22/0.02)	242 0.22	Вu	TOTAL VOLUME = 4.963(uL)	Origin for lentic curve is on y Af, the long axis of the ellipse axis displaced from apex of front creating the front curve edge (below)		SPHERICAL FRONTS- max thickness peripheral to J1 before lentic (in mm > Delta 2) see below
∀	Angle of the landing zone (-25.5 to -50.0/.5)	-35.00	Present Iens height (mm) above comea at diameter of -35.00 tangential touch = 0.050	Diameter where LZ would make tangential touch = 9.47	Estimated elevation at J2 ≖ 0.106	2.00	0.01
D	selected lens diameter mm (8.0-12.9/0.1)	209	Delimeter recommended from 10.90 HVID = 10.9	mended from Dia giving desired LZ lift =	fixed (tear thickness)	base to front at which the transition from base elipse to front elipse is found (below)	Minimum thickness peripheral to JI before lentic (in mm > Delta 1) see below
SD	Selected depth of the S curve mm (.15-1.0/.05) (0.3-0.65/ .025) use next smaller than est.	Recomm curve fo 0.450 @6u/D	nended depth (mm) S r desired correction = 0.462 mm	Edge lift at selected diameter =	0.000	245.	0.01

F1G-24

FIG.-25

FIG.-26

FIG.-27

BC	Selected bc (6.9-10.4/0.1) (7.70-9.1/.05)	8.40	8,40 Suggested Base Curve is 8.4				
5	Radial distance (OZ/2) from the lens center to 1st junction mm (1.0-5.9/0.1)	3.00 SB		comeal apical radius (mm)	lens / cornea power (D) difference wanted	ellipticity of the comea	HVID (mm)
ΝS	Width of the S curve mm (.75,1)	1.00	1.00 EYE	7.75	-3.50	0.7	11
MAT	Lens material (FP30, FP60, FP92, FP151, HDS, Other)	HDS	Ref. Index of material used = 1.449 If other was selected Volume between BC and input RI in Cell H4 cornea (uL) = 0.748		Actual power (D) difference between bc and apical comea = -3.37	= Desired edge lift (nm) when landed at full Diameter = 0.077	1.45
ď	lens power desired (-1.00, -0.50, 0.00, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5)	Fron 0.50 8.36	t Surface central radius =		Recommended diameter for lentic = 7.735	Ab, the long axis of the ellipse creating the base curve edge (below)	FOR SPHERICAL FRONTS target edge thickness below
Q	Delta R (mm) translation of 1st junction radially from BC origin (0.08-0.2/0.02)	222 True c 0.10 0.110	True center thickness (mm) = 0.110	Volume between pretouch Landing Zone and comea (uL) = 0.439	Volume between pretouch True center thickness (mm) = Landing Zone and comea (uL) recommended radius of curve for = 0.439 lentic = 9.295	0.40	0.18
\$ 2	Delta R (mm) translation of 2nd junction radially from BC origin (0.1-0.22/0.02)	<u>242</u> 0.10	gu	TOTAL VOLUME = 2.382(uL)	Origin for lentic curve is on y Af, the long axis of the ellipse axis displaced from apex of front creating the front curve edge (below)	Af, the long axis of the ellipse creating the front curve edge (below)	SPHERICAL FRONTS- max thickness peripheral to JI before lentic (in mm > Delta 2) see below
∢	Angle of the landing zone (-25.5 to -50.0/.5)	-32.50	Present lens height (mm) above comea at diameter of -32.50 tangential touch = 0.027	Diameter where LZ would make tangential touch = 8.99	Estimated elevation at J2 = 0.047	0.40	0.01
ū	selected lens diameter mm (8.0-12.9/0.1)	10.00	Diameter recommended from Dia giving desired LZ lift = 10.00 HVID = 10	Dia giving desired LZ lift = 10.59	fixed (tear thickness)	base to front at which the transition from base elipse to front elipse is found (below)	Minimum thickness peripheral to JI before lentic (in mm > Delta 1) see below
SD	Selected depth of the S curve mm (.15-1.0/.05) (0.3-0.65/ .025) use next smaller than est.	0.475	Recommended depth (mm) S curve for desired correction 0.475 @6u/D = 0.478 mm	Edge lift at selected diameter = 0.048	900:0	0.25	0.01

F1G-30

FIG.-33

FIG.-34

BC	Selected bc (6.9-10.4/0.1) (7.70-9.1/.05)	7.50	7.50 Suggested Base Curve is 7.5		7 200		
5	Radial distance (OZ/2) from the lens center to 1st junction ngn (1.0-5.9/0.1)	2.50 SB		corneal apical radius (mm)	lens / cornea power (D) difference wanted	ellipticity of the comea	HVID (mm)
SW	Width of the S curve mm (.75,1)	1.50	1.50 EYE	7.8	2.00	0.3	11.9
MAT	Lens material (FP30, FP60, FP92, FP151, HDS, Other)	-210 HDS	Ref. Index of material used = 1.449 If 'other' was selected Volume between BC and input RI in Cell H4 cornea (uL) = 0.298	Volume between BC and comea (uL) = 0.298	Actual power (D) difference between bc and apical cornea = 1.73	= Desired edge lift (mm) when landed at full Diameter = 0.062	1.45
a.	lens power desired (-1.00, -0.50, 0.00, 0.50, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5)	Fron 0.50 7.49	t Surface central radius ==	Volume between S curve and cornea (uL.) = 1.383	Recommended diameter for lentic = 5.737	Ab, the long axis of the ellipse creating the base curve edge (below)	FOR SPHERICAL FRONTS target edge thickness below
Q	Delta R (mm) translation of 1st junction radially from BC origin (0.08-0.2/0.02)	True (True center thickness (mm) = 0.149	Volume between pretouch Landing Zone and comea (uL) = 0.491	True center thickness (mm) = Landing Zone and comea (uL) recommended radius of curve for $= 0.491$ 245 lentic = 8.482	0.40	0.18
45	Delta R (mm) translation of 2nd junction radially from BC origin (0.1-0.22/0.02)	0.18	gu	TOTAL VOLUME = 2.171(uL)	Origin for lentic curve is on y Af, the long axis of the ellipse axis displaced from apex of from creating the front curve edge curve = 8.553		SPHERICAL FRONTS- max thickness peripheral to J1 before lentic (in mm > Delta 2) see below
٨	Angle of the landing zone (-25.5 to -50.0/.5)	-35.00	height (mm) :a at diameter of wch = 0.024	Diameter where LZ would make tangential touch = 9.08	Estimated elevation at J2 = 0.056	0.40	0.01
Q	selected lens diameter mm (8.0-12.9/0.1)	10.00	244 / Diameter recommended from Dia giving desired LZ lift = 10.00 HVID = 10.9		fixed (tear thickness)	base to front at which the transition from base elipse to front elipse is found (below)	Minimum thickness peripheral to JI before lentic (in mm > Delta 1) see below
SD	Selected depth of the S curve mm (.15-1.0/.05) (0.3-0.65/ .025) use next smaller than est.	Recomn curve for 0.636 @6u/D	nended depth (mm) S r desired correction = 0.646 mm	Edge lift at selected diameter = 0.047	0.024	0.25	0.01

F1G-35

FIG.-36

FIG.-38

FIG. - 40

FIG.-4

