STAT 390 Final Presentation

Akhil, David, Harvey, Jeffrey, Veer

Testing Methodology

Model Testing Framework

- 1) Begin with base pre-trained network
- 2) Train models on a per-stain basis
- Tune learning rate + number epochs until consistent convergence is reached
- Use model evaluation + model architecture to identify hyperparameters to manipulate (with a focus on batch_size)
- 5) Focused on evaluating patch-level metrics

Note on RAM Constraints

- Initial plan ResNet50 with CBAM attention modules
- RAM overload even with single epoch training, persisting at low batch sizes of 8/16
- Attempt at batch size = 4 and without CBAM solved problem momentarily
- Small batch size caused problems of noisy gradients, with major spikes in training and validation metric curves
- Current setup makes it difficult to train more complex networks with a big data set at large batch sizes, especially if we want to unfreeze more layers

ResNet50

ResNet Overview

- ResNet is considered a strong baseline for histopathology image classification
- Its residual connections allow training of very deep networks, helping to capture complex tissue features. Its residual blocks include skip connections to help address vanishing gradient problems
- ResNet models are pre-trained on ImageNet data (ResNet50)
- ResNet50 has 50 layers, organized into 4 stages of convolutional blocks
- Has an in-built Adaptive Pooling layer
- Parameters ~23.5 million

Variant 1 Specifications

- Trained base ResNet50 for each stain using in-built Adaptive Pooling layer
- Removed Max Pooling layers to prevent image size compatibility issues for the smaller patches
- Batch size = 4
- Number of epochs = 20
- Learning rate = 1.00E-04
- Overall, model performed poorly (except for sox10), failing to identify features associated with high grade C-MIL

Variant 1: H&E

=== Test Set Performance ===
Accuracy : 0.4915
Precision : 0.8556
Recall : 0.4325
F1 Score : 0.5746

Classification Report:

	precision	recall	f1-score	support
Benign	0.25	0.72	0.37	1567
High-grade CMIL	0.86	0.43	0.57	6039
accuracy			0.49	7606
macro avg	0.55	0.58	0.47	7606
weighted avg	0.73	0.49	0.53	7606

Low batch size leads to very noisy gradients, as shown by volatile nature of validation accuracy curve

Variant 1: Melan

=== Test Set Performance ===
Accuracy : 0.5365
Precision : 0.9276
Recall : 0.4946
F1 Score : 0.6452

Classification Report:

	precision	recall	T1-score	support
Benign	0.21	0.78	0.33	616
High-grade CMIL	0.93	0.49	0.65	3550
accuracy			0.54	4166
macro avg	0.57	0.64	0.49	4166
weighted avg	0.82	0.54	0.60	4166

Again, really noisy gradients and high instability in validation performance. Model not generalizing well at all and probably failing to converge

Variant 1: Sox10

=== Test Set Performance ===
Accuracy : 0.8138
Precision : 0.8866
Recall : 0.8815
F1 Score : 0.8840

Classification Report:

	precision	recall	T1-score	support
Benign High-grade CMIL	0.52 0.89	0.53 0.88	0.53 0.88	666 2750
	0.09	0.00		
accuracy			0.81	3416
macro avg	0.70	0.71	0.71	3416
weighted avg	0.82	0.81	0.81	3416

Surprisingly high-grade recall given poor performance for h&e and melan stains. Validation performance seems less unstable for sox10 compared to other 2

Variant 1 Comments

- H&E and Melan performance clearly not up to the mark, with recall even below a 50/50 split
- Model seems to be better at identifying characteristics of high grade C-MIL in the sox10 stain, with a high recall of 0.88
- However, validation performance still seemed to be noisy, and convergence not seen clearly
- Can explore variants of this model for sox10 stain specifically, and retry on h&e and melan if see good results

Variant 2 Specifications

- Resized all images to 224x224, while still keeping base Adaptive Pooling layer in ResNet50 architecture
- Reintroduced Max Pooling layers
- Batch size = 4
- Number of epochs = 15
- Learning rate = 1.00E-04
- See more promising results across all 3 stains, suggesting that resizing may be the better choice going forward

Variant 2: H&E

=== Test Set Performance ===
Accuracy : 0.4942
Precision : 0.9164
Recall : 0.3994
F1 Score : 0.5563

Classification Report:

	precision	recall	T1-score	support
Benign	0.27	0.86	0.41	1567
High-grade CMIL	0.92	0.40	0.56	6039
accuracy			0.49	7606
macro avg	0.59	0.63	0.48	7606
weighted avg	0.78	0.49	0.53	7606

H&E model performed poorly again, suggesting a mix of low batch size + nature of h&e stain causing problems

Variant 2: Melan

=== Test Set Performance ===

	precision	recall	T1-score	support
Benign High-grade CMIL	0.25 0.92	0.70 0.64	0.37 0.75	616 3550
accuracy macro avg weighted avg	0.59 0.82	0.67 0.65	0.65 0.56 0.70	4166 4166 4166

Improved performance relative to baseline adaptive pooling model on melan stain. However, low batch size continues to deliver instability while training

Variant 2: Sox10

=== Test Set Performance ===
Accuracy : 0.7652
Precision : 0.9865
Recall : 0.7898
F1 Score : 0.8442

Classification Report:

	precision	recall	T1-score	support
Benign	0.43	0.66	0.52	666
High-grade CMIL	0.91	0.79	0.84	2750
accuracy		. 70	0.77	3416
macro avg	0.67	0.73	0.68	3416
weighted avg	0.81	0.77	0.78	3416

Lower sox10 accuracy compared to previous model, but still best overall out of all 3 stains

Variant 2 Comments

- Sox10-trained model continues to be the best performer
- Resizing seems to result in slightly better test performance, as seen by the improvement in melan stain
- A lot of the problems could be attributed to low batch size and the resultant noisy gradients
- Being able to unfreeze more layers should further help the model identify the more nuanced features defining C-MIL classes

Variant 3 Specifications

- Similar approach to variant 2, resizing all images to 224x224
- Kept Max Pooling layers
- Increased batch size to 8
- Number of epochs = 15
- Introduced data augmentation
- Increased learning rate to 5.00E-04 as a complement to higher batch size

Variant 3: H&E

=== Test Set Performance ===
Accuracy : 0.6591
Precision : 0.8851
Recall : 0.6557
F1 Score : 0.7534

Classification Re	eport: precision	recall	f1-score	support
Benign High-grade CMIL	0.34 0.89	0.67 0.66	0.45 0.75	1567 6039
accuracy macro avg weighted avg	0.61 0.77	0.66 0.66	0.66 0.60 0.69	7606 7606 7606

Huge jump in h&e performance, indicating batch size plays a crucial role and is an important parameter to tune

Variant 3: Melan

Accuracy : 0.6207 Precision : 0.9429 Recall : 0.5907 F1 Score : 0.7264

=== Test Set Performance ===

Classification Report:

	precision	recatt	T1-score	support
Benign High-grade CMIL	0.25 0.94	0.79 0.59	0.38 0.73	616 3550
accuracy			0.62	4166
macro avg	0.60	0.69	0.55	4166
weighted avg	0.84	0.62	0.68	4166

Similar performance to variant 2. However, the important point that stands out is the apparent lower volatility of validation performance

Variant 3: Sox10

=== Test Set Performance ===
Accuracy : 0.7796
Precision : 0.9057
Recall : 0.8105
F1 Score : 0.8555

Classification Report:

	precision	recall	f1-score	support
Benign High-grade CMIL	0.45 0.91	0.65 0.81	0.54 0.86	666 2750
accuracy macro avg	0.68	0.73	0.78 0.70	3416 3416
weighted avg	0.82	0.78	0.79	3416

Marginal improvement over variant 2, but otherwise roughly the same. Sox10 continues to deliver best performance

Variant 3 Comments

- Increasing batch size definitely seems to have helped
- First variant to include data augmentation, which could have played a part in some of the differences observed
- Further increasing batch size seems to be the way to go, assuming RAM overload problems do not persist

Final Takeaways

- Sox10 seems to be a great starting point for evaluating validity of different model architectures, delivering best performance for all 3 variations
- Resize versus adaptive pooling: resizing better pick for now, but could definitely revisit adaptive pooling at some point (especially if modifying the layer from original ResNet50 network)
- Continue increasing batch size (attempt 16 and 32 if possible) and see impact on gradient smoothing
- Introduce CBAM to allow model to focus on more relevant components of patches, which could allow improvements in h&e and melan stains
- Unfreezing more layers of the base network may not be very feasible given our computational constraints
- Training single model on all 3 stains