Analysis of Drugnet network

CSS 692 - Final Presentation

Ajay Kulkarni

G01024139

Objectives

 Identification of dominant people to reduce the spread of drugs and diseases

Exploration of local network structures which forms the global pattern

Comparison of observed network and simulated network

Introduction

 Network represents the interaction of 293 people from Hartford, CT in the form of an adjacency matrix

- The survey sample constructed through two methods
 - The majority (55%) was recruited through street outreach
 - The rest of the cohort was referred by the survey participants
- Eligibility criteria
 - At least 18 years of age
 - Reported active use of heroin, cocaine/crack or other injected illicit drug

Network attributes

Network has information about two attributes – Gender and Ethnicity

Network attributes

Network structure

Network structure

Drugnet (Weakly Connected Component)

- Weakly connected component
 - Number of nodes 193
 - Gender -> Male 143 and Female 43
 - Ethnicity -> White or other 15
 African American 69
 Latino 109

Drugnet (Strongly Connected Component)

- Strongly connected component
 - Number of nodes 27
 - Gender -> Male 24 and Female 3
 - Ethnicity -> Latino 27

Network structure - Gender and Ethnicity

Drugnet (Gender and Ethnicity)

In-degree centrality Drugnet (In-degree)

In-degree centrality

In-degree	Node id	Gender	Ethnicity
	30	Male	Latino
10	38	Male	African American
	50	Male	Latino
8	64	Male	Latino
7	65	Male	Latino
	22	Male	Latino
	75	Female	Latino
5	87	Male	African American
	124	Male	African American
	130	Male	African American
	165	Male	Latino
	173	Male	African American

ERGMs

 ERGMs help us to understand about local processes and their interaction to form global network patterns

 In ERGM we include a parameter for each configuration and we estimate the value of the parameter that best matches the observed network

• These coefficients are estimated using MCMC (Markov Chain Monte Carlo) technique

ERGMs

Three different models were built

- Erdos-Renyi model (p₀ model) -> Edges
- Holland and Leinhardt's p1 model -> Edges, Mutuality, Sender's effect & Receiver's effect
- Created a model by selecting attributes based on Morris et al. (2008)

Erdos-Renyi model (p₀ model)

```
Console Terminal ×
C:/Users/ajask/Downloads/Social Network Analysis/Drugnet CSV/
> m1 = ergm(net ~ edges)
Evaluating log-likelihood at the estimate.
> summary(m1)
Summary of model fit
______
Formula: net ~ edges
Iterations: 8 out of 20
Monte Carlo MLE Results:
     Estimate Std. Error MCMC % p-value
edges -5.53290 0.05458
                             0 <1e-04 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
    Null Deviance: 118606 on 85556 degrees of freedom
 Residual Deviance: 4405 on 85555 degrees of freedom
            BIC: 4416 (Smaller is better.)
AIC: 4407
```

Erdos-Renyi model (p₀ model)

Erdos-Renyi model (p₀ model)

• Model was built by selecting statistically relevant attributes from the list provided by Morris et al. (2008)

Selected attributes

Attribute	Explanation	
Edges	Edges in the network	
Mutual	Mutuality	
Asymmetric	Asymmetric dyads	
Nodefactor	Main effect of a factor attribute	
Nodematch	Interaction term - homophily	
Simmelianties	Ties in Simmelian triads	
Isolates	Isolates in the network	

```
Console Terminal ×
C:/Users/ajask/Downloads/Social Network Analysis/Drugnet CSV/
_____
Summary of model fit
_____
Formula: net ~ edges + mutual + asymmetric("Gender", diff = FALSE) + asymmetric("Ethnicity",
   diff = FALSE) + nodematch("Ethnicity", diff = F) + nodefactor("Ethnicity") +
    simmelianties + isolates
Iterations: 9 out of 20
Monte Carlo MLE Results:
                           Estimate Std. Error MCMC % p-value
edges
                           -7.61993
                                      0.24080
                                                   0 < 1e-04 ***
                           7.01078
                                      0.69272
                                                  0 < 1e-04 ***
mutual
asymmetric.Gender
                           0.94728
                                      0.15397
                                                  0 < 1e-04 ***
asymmetric.Ethnicity
                           0.91375
                                      0.34107
                                                  0 0.007385 **
nodematch.Ethnicity
                           1.49435
                                      0.26764
                                                  1 < 1e-04 ***
nodefactor. Ethnicity. Latino -0.15842
                                      0.03996
                                                  0 < 1e-04 ***
nodefactor.Ethnicity.White 0.19171
                                      0.06642
                                                  0 0.003896 **
simmelianties
                                                  5 0.000153 ***
                           0.70382
                                      0.18589
isolates
                                                  0 < 1e-04 ***
                           1.20703
                                      0.18657
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    Null Deviance: 118606 on 85556 degrees of freedom
 Residual Deviance: 3615 on 85547 degrees of freedom
            BIC: 3717
                         (Smaller is better.)
AIC: 3633
```


Conclusion

 The network is male-dominated and a high percentage of participants belongs from Latino ethnicity

 In-degree centrality is used to find important nodes and 12 nodes were selected to create the awareness about drugs as well as diseases

• Edges, mutuality, asymmetric dyads, isolates, homophily and ties in simmelian triads are the important local structures which represent some part of the global pattern in the network

References

- 1) WEEKS, M. R., CLAIR, S., BORGATTI, S. P., RADDA, K. & SCHENSUL, J. J. 2002. Social networks of drug users in high-risk sites: Finding the connections. AIDS and Behaviour, 6, 193-206.
- 2) Introduction to Exponential-family Random Graph (ERG or p*) modeling with ergm, The Statnet Devlopment Team, August 2017
- 3) ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks, Journal of Statistical Software, David R. Hunter et. al. (2008)
- Speciation of Exponential-Family Random Graph Models: Terms and Computational Aspects, Journal of Statistical Software, Martina Morris et. al. (2008)
- 5) Social Network Analysis with sna, Journal of Statistical Software, Carter T. Butts (2008)
- 6) Exponential Random Graph (ERG or p*) Models, COMM 645: Communication Networks Annenberg School of Communication University of Southern California
- 7) A statnet Tutorial, Journal of Statistical Software, Steven M. Goodreau et. al. (2008)
- 8) https://rstudio-pubs-static.s3.amazonaws.com/157501 93a72a58ec614946901e10edf78c1384.html
- 9) https://www.sci.unich.it/~francesc/teaching/network/
- 10) http://badhessian.org/2012/09/lessons-on-exponential-random-graph-modeling-from-greys-anatomy-hook-ups/
- 11) http://www.mjdenny.com/Preparing Network Data In R.html