Algoritmizace

Třídění

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 3 Sorting and Searching Second Edition

DONALD E. KNUTH

Osnova

- Třídění v poli
 - přímé metody (BubbleSort, SelectionSort, InsertionSort)
 - haldové třídění (HeapSort)
- Složitost problému vnitřního třídění
- Třídění v lineárním čase

Vnitřní třídění

<u>Vstup</u>: pole a s prvky, které lze porovnávat <u>Výstup</u>: pole a s prvky uspořádanými vzestupně <u>Bublinkové třídění BubbleSort</u>

- projdi pole a porovnej dvojice sousedních prvků
- v případě potřeby dvojici vyměň
- po dosažení konce seznamu začni znovu od začátku
- pokračuj až na pozici poslední výměny v předchozím kroku
- není-li již žádná dvojice pro výměnu, výpočet končí

Bublinkové třídění BubbleSort

```
def bubbleSort(a):
     = len(a)
   while n > 1:
     vymena = 0
     for i in range(n-1):
         if a[i] > a[i+1]:
             a[i+1], a[i] = a[i], a[i+1]
            vymena = i+1
       - vymena
   return a
```

 \bigstar Časová složitost $\Theta(n^2)$

Třídění výběrem SelectionSort

První krok

- najdi minimální prvek
- a vyměň s prvkem na pozici 0

Další krok

- mezi zbývajícími prvku najdi minimální
- a vyměň s prvkem na pozici 1

Invariant cyklu

- po provedení i-tého kroku
- tvoří a[0], a[1],...,a[i-1] setříděný úsek
- který obsahuje i minimálních prvků pole a

Třídění výběrem SelectionSort

```
def selectionSort(a):
  for i in range(len(a) - 1):
    # a[i] vyměň s minimem z a[j], j≥i
    minIndex = i
    for j in range(i+1,len(a)):
      if a[minIndex] > a[j]:
           minIndex = j
    a[i],a[minIndex] = a[minIndex], a[i]
  return a
```

Třídění výběrem – analýza

X Proti: Časová složitost $\Theta(n^2)$

Data malého rozsahu (desítky prvků)

• lepší nežli BubbleSort

✓ Pro:

- Jen n-1 výměn
- jen O(n) zápisů do pole a

Třídění vkládáním InsertionSort

Jako třídíme karty

- vezměte novou kartu z balíčku
- a postupným porovnáváním zprava doleva
- s již setříděnými kartami, které držíte v ruce

Třídění vkládáním InsertionSort

```
def insertionSort(a):
   for i in range(1,len(a)):
     # vlož a[i] do setříděného
     \# a[0..i-1]
       , j = a[i], i
      while j > 0 and a[j-1] > x:
         a[j] = a[j-1]
         j -= 1
      a[j] =
   return a
```

Invariant: po i-tém kroku je a [0 . . i] setříděno

Třídění vkládáním – analýza

- \bigstar Časová složitost $\Theta(n^2)$
- Vhodné pro data malého rozsahu (desítky prvků)
 - lepší nežli BubbleSort

Srovnání s SelectionSort

- SelectionSort musí vždy projít zbývající prvky pro nalezení maxima
- InsertionSort může stačit jen jediné porovnání
- výhodné pro částečně setříděné vstupy
- v průměrném případě provede cca polovinu porovnání nežli SelectionSort

Haldové třídění HeapSort

Datová struktura binární halda (binary heap)

Operace

- Přidej vložení nového prvku
- OdeberMin odebrání minimálního prvku
- lze provést v čase O(log n)
- n = počet prvků uložených v haldě

HeapSort

- z *n* zadaných prvků postav haldu : čas O(*n* log *n*)
- n-krát odeber minimum : čas $O(n \log n)$
- třídění v čase $O(n \log n)$

Graf

Graf

Graf je

- souvislý mezi každou dvojící vrcholů existuje cesta
- strom souvislý a acyklický

Kořenový strom

Vzdálenost vrcholů u a v

délka nejkratší cesty mezi u a v

Výška stromu

délka nejdelší cesty z kořene do listu

Kořenový strom

i-tá hladina

• je tvořena vrcholy ve vzdálenosti *i* od kořene

Binární halda

je binární strom splňující následující podmínky:

- v každé hladině od první do předposlední je max # vrcholů
- poslední hladina se zaplňuje zleva
- hodnoty uložené ve vrcholech splňují podmínku haldového uspořádání

Pro každý vrchol platí, že hodnota v něm uložená je

- menší nebo rovna než hodnota v libovolném z jeho dětí (min-halda)
- Větší nebo rovna než hodnota v libovolném z jeho dětí (max-halda)

◆□▶◆□▶◆■▶◆■▶ ■ めぬ@

Binární halda – vlastnosti

Mějme haldu výšky *h* o *n* vrcholech:

15

6

Pak platí

- na *i*-té hladině je 2^i vrcholů $(0 \le i \le h 1)$
- na poslední hladině je alespoň 1 vrchol

Tedy
$$n \ge \sum_{i=0}^{h-1} 2^i + 1 = 2^h \implies h \le \log_2 n$$

Binární halda – vlastnosti

0	1	2	3	4	5	6	7	8	9
5	7	6	9	8	15	11	16	14	10

Binární halda – vlastnosti

0	1	2	3	4	5	6	7	8	9
5	7	6	9	8	15	11	16	14	10

0										
5	7	6	9	8	15	11	16	14	10	5

0										
5	7	6	9	8	15	11	16	14	10	5

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	5	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	5	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	5	6	9	7	15	11	16	14	10	8

0										
5	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
5	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
	5	6	9	7	15	11	16	14	10	8

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
8	5	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	8	6	9	7	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	8	15	11	16	14	10	

0	1	2	3	4	5	6	7	8	9	10
5	7	6	9	8	15	11	16	14	10	

Haldové třídění

Vstup: pole a

- 1 Z prvků pole a vybuduj haldu
 - začni s triviální haldou obsahující jen a [0]
 - postupně vkládej a [1], a [2],... pomocí Přidej
 - v poli a je nyní uložena halda
- 2 Z haldy postupně odebírej minima
 - pomocí OdeberMin

Na Problém

• jak zajistíme třídění na místě (in situ)?

Problémy

1 V jazyce Python sestavte funkci

heapSort(a)

která setřídí prvky zadaného pole a vzestupně haldovým tříděním. Váš algoritmus byl měl třídit na místě, tj. může využívat jen konstantní pracovní paměť.

Dolní odhad časové složitosti třídění

Porovnávací třídící algoritmus

třídí na základě porovávání dvojic prvků

$$a_i < a_j, \ a_i > a_j, \ a_i \le a_j, \ a_i \ge a_j, \ a_i = a_j$$

hodnoty tříděných prvků nevyužívá

Rozhodovací strom

- reprezentuje průběh porovnání prováděných
- (konkrétním) porovnávacím algoritmem
- nad vstupem délky n
- vnitřní vrcholy porovnání
- listy koncové stavy výpočtu

Rozhodovací strom pro InsertionSort

listů = # permutací množiny $\{0,1,2\} = 3!$

Zobecnění: Každý rozhodovací strom porovnávacího algoritmu nad vstupem délky *n* má alespoň *n*! listů.

◆ロト ◆同ト ◆三ト ◆三 ◆のQ@

Rozhodovací stromy – vlastnosti

Cesta z kořene do listu = výpočet

délka cesty = # porovnání

Maximální # porovnání nad vstupem délky n

výška rozhodovacího stromu

listů binárního stromu výšky h je $\leq 2^h$

• # listů rozhodovacího stromu $\geq n!$

$$\approx 2^h \ge n!$$
 $\approx h \ge \log_2(n!)$

Hrátky s funkcí n!

$$n! = \sqrt{n!} \cdot \sqrt{n!} = \sqrt{n \cdot (n-1) \cdot \dots \cdot 1} \cdot \sqrt{1 \cdot 2 \cdot \dots \cdot n}$$
$$= \sqrt{n \cdot 1} \cdot \sqrt{(n-1) \cdot 2} \cdot \dots \cdot \sqrt{1 \cdot n}$$

Pro $0 \le k \le n-1$ platí:

$$(n-k)(k+1) = nk + n - k^2 - k$$

$$= n + k(n-1-k) \ge n$$

$$n! \ge (\sqrt{n})^n = n^{n/2}$$

$$\log_2(n!) \ge \log_2(n^{n/2}) = \frac{1}{2} \cdot n \cdot \log_2 n$$

Maximální počet porovnání nad vstupem délky n je \geq konstanta $\cdot n \cdot \log_2 n$

Složitost problému třídění

- 2 **Závěr:** Každý porovnávací třídící algoritmus provede v nejhorším případě $\Omega(n \log n)$ porovnání.
- Důsledek: Algoritmus haldového třídění má asymptoticky optimální časovou složitost.
- Důsledek: Složitost problému vnitřního třídění porovnávacím algoritmem je $\Theta(n \log n)$.

Problémy \(\)

- ② Uvažte třídící algoritmus, který pro libovolné dva prvky a_i , a_j na vstupu může na dotaz a_i ? a_j obdržet jednu ze tří možných odpovědí:
 - $a_i < a_i$
 - $a_i > a_j$
 - $a_i = a_j$

Bude náš dolní odhad platit i tomto případě?