

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

CIÊNCIA DA COMPUTAÇÃO

MARCO AURÉLIO LUNARDI

Disciplina: Circuitos Digitais

Batalha Naval

Chapecó 12 de julho de 2023

1. APRESENTAÇÃO.

O projeto de batalha naval proposto na matéria de Circuitos Digitais do segundo semestre de Ciência da Computação foi realizado usando os seguintes softwares: BoleanTT, usado para simplificar as equações obtidas; Logisim, onde foi montado o circuito com auxílio das ferramentas do programa; e Tinkercad, software online onde foi montado o circuito usando protoboards e Cl's. Todas essas ferramentas fizeram parte do desenvolvimento do projeto em suas respectivas partes: desenvolvimento da codificação, tabela verdade, simplificação e construção do circuito.

2. DESCRIÇÃO DA SOLUÇÃO:

2.1 Codificações

Na codificação das posições da matriz 4x4, os valores originais das posições (Figura 1) foram embaralhados, e a partir disso, teve origem uma nova matriz 4x4(Figura1.1), selecionada no arquivo disponibilizado pelo professor(foi escolhido a codificação 13).

Linhas				
00	0000	0001	0010	0011
01	0100	0101	0110	0111
10	1000	1001	1010	1011
11	1100	1101	1110	1111
Colunas	00	01	10	11

Figura 1.

No final, cada posição faz "referência" a outra posição diferente da tabela original. Por exemplo: na Figura 1, a posição 0101, recebe na Figura 1.1 a "posição codificada" 0111, não representando mais o valor anterior.

Linhas				
00	0101	0000	1111	1110
01	1010	0111	0100	1000
10	1100	0110	0010	1011
11	0001	1101	1001	0011
Colunas	00	01	10	11

Figura 1.1.

2.2 Tabela verdade

Entradas Codificadas		Saídas decodificadas nas posições 4x4				6 4x4		
E1	E2	E3	E4	S1	S2	S3	S4	
0	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	1	1
1	1	1	1	0	0	1	0	2
1	1	1	0	0	0	1	1	3
1	0	1	0	0	1	0	0	4
0	1	1	1	0	1	0	1	5
0	1	0	0	0	1	1	0	6
1	0	0	0	0	1	1	1	7
1	1	0	0	1	0	0	0	8
0	1	1	0	1	0	0	1	9
0	0	1	0	1	0	1	0	10
1	0	1	1	1	0	1	1	11
0	0	0	1	1	1	0	0	12
1	1	0	1	1	1	0	1	13
1	0	0	1	1	1	1	0	14
0	0	1	1	1	1	1	1	15

Figura 2.

A tabela verdade foi construída com base na tabela codificada da Figura 2. A partir do método de Soma de Produtos (SoP), é possível obter as expressões. A linha 0, por exemplo, representa a posição na matriz 0000 (primeira linha e primeira coluna) e sua posição codificada é 0101. Pegando cada resultado (S1, S2, S3 e S4) e usando o método SoP, conseguimos desta forma obter as equações e posteriormente simplificá las, como veremos no próximo tópico.

2.2 Simplificações

```
EQ1 = (A * B * C' * D')+(A' * B * C * D')+(A' * B' * C *D')+ (A * B' * C *
               D)+
               (A' * B' * C' * D)+(A * B * C' * D)+(A * B' * C' * D)+(A' * B' * C * D)
               EO2 = (A * B' * C * D')+(A' * B * C * D)+(A' * B * C' * D')+(A * B' * C' *
               D')+
               (A' * B' * C' * D)+(A * B * C' * D)+(A * B' * C' * D)+(A' * B' * C * D)
 Equações
   gerais
               EQ3 = (A * B * C * D)+(A * B * C * D')+(A' * B * C' * D')+(A * B' * C' *
               D')+
               (A' * B' * C * D')+(A * B' * C * D)+(A * B' * C' * D)+(A' * B' * C * D)
               EQ4 = (A' * B' * C' * D')+(A * B * C * D')+(A' * B * C * D)+(A * B' * C' *
               D')+
               (A' * B * C * D')+(A * B' * C * D)+(A * B * C' * D)+(A' * B' * C * D)
               S1 = A'.C.D' + A.B.C' + B'.D
               S2 = A'BC'D' + AC'D + B'C'D + A'CD + AB'D'
 Equações
simplificadas s3 = A'BC'D' + B'CD + AB'C' + A'B'C + ABC
               S4 = ABC'D + B'C'D' + A'CD + B'CD + BCD'
```

Figura 3.

A Figura 3 mostra as equações gerais de cada saída e suas simplificações. Por exemplo a EQ1, em sua forma simplificada a partir da Simplificação de Karnaugh, resulta em S1, e assim respectivamente para cada equação. Para obter a forma simplificada de cada equação foi usado o aplicativo BooleanTT, disponível na PlayStore e AppStore. A partir dos minitermos de cada equação e aplicando no aplicativo, teve origem as seguintes simplificações:

Figura 3.1. Simplificação (S1) da Equação 1 (EQ1).

Figura 3.2. Simplificação (S2) da Equação 2 (EQ2).

Figura 3.3. Simplificação (S3) da Equação 3 (EQ3).

Figura 3.4. Simplificação (S4) da Equação 4 (EQ4).

2.4 Circuito usando portas lógicas (logisim)

Figura 4. Circuito logisim completo

Figura 4.1 Barco 1 do circuito do logisim

Figura 4.2. Barco 2 do circuito do logisim

As entradas A,B,C,D correspondem ao primeiro barco, já as entradas E,F,G,H ao segundo e as entradas A1,B1,C1,D1 são as do usuário(Para melhor visualização abrir o projeto). Na primeira parte do circuito está o Barco 1 (figura 4.1) com suas devidas equações S1,S2,S3 e S4. A segunda parte contém o Barco 2 (figura 4.2) com as mesmas equações. As saídas desses barcos estão conectadas a uma "OR", se uma dessas saídas for 1 o resultado da "OR" será 1. O resultado está conectado a uma AND junto com

o botão de atirar. Se o botão estiver em 1 e o resultado for 1 (se algum barco for atingido), o led irá ligar.

2.5 Circuito usando CIs (tinkercad).

Disponível em: https://www.tinkercad.com/things/0zch2Ogf6m0?
https://www.tinkercad.com/things/0zch2Ogf6m0?

Figura 5. Foto do Circuito Completo.

Figura 5.1. Foto da protoboard de jogadas do barco e do usuário e também do botão de tiro.

Figura 5.2. Foto das protoboards com as equações simplificadas.

_

Foto 5.3. Foto da protoboard final com as comparações das equações e a jogada do usuário.

2.6 Execução do jogo

https://drive.google.com/file/d/1sn0_mM3zTJvdWvrHKLbTvA6gUN1K0s1T/view?usp=drive_link

No desenvolvimento do circuito, as entradas A,B,C e D foram relacionadas com as cores dos fios. A entrada A é representada pela cor Azul, a B cor roxa, C cor laranja e a D amarela. A primeira protoboard da Figura 5.2 representa S1, a segunda protoboard representa S2 e assim segue para as demais. A última protoboard a direita da Figura 5.3 foi utilizada para realizar a comparação da posição do barco com a jogada do usuário. A comparação foi feita usando as portas XOR e NOT, se as entradas forem iguais o resultado da XOR será 0, logo com a NOT ficará 1. Caso a posição do barco codificada coincida com a jogada pelo usuário o led irá acender.

3. CONCLUSÃO

O trabalho de desenvolver o jogo batalha naval colocou em prática grande parte do conteúdo aprendido durante o semestre de Circuitos Digitais. O trabalho proporcionou novas experiência com hardware e software, além do conhecimento que adquirimos de forma desafiadora.

A plataforma Tinkercad é muito útil para a realização do trabalho, pois simula muito bem a construção em uma protoboard real, com maior agilidade para a simulação do circuito. Os softwares Logisim e BooleanTT auxiliam na simplificação das expressões e na obtenção do circuito.