Mesh Smoothing

C.B. Hovey

June 29, 2022

Let the subject point $\boldsymbol{p} \in \mathbb{R}^{n_{\mathrm{sd}}}$ have coordinates (x) in 1D, (x,y) in 2D, and (x,y,z) in 3D. The subject point connects to n neighbor points \boldsymbol{q}_i for $i \in [1,n]$ though n edges. In Fig. 1, for example, the point \boldsymbol{p} connects for four neighbors.

Figure 1: Subject node p with edge connections (dotted lines) to neighbor nodes q_i with $i \in [1, n]$ (without loss of generality, the specific example of n = 4 is shown). The average position of all neighbors of p is denoted \bar{p} , and the gap (dashed line) from \bar{p} to p is gap q.

Let \bar{p} denote the average position of all neighbors of p and be defined as

$$\bar{\boldsymbol{p}} \coloneqq \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{q}_{i}. \tag{1}$$

Let the gap vector g be defined as originating at \bar{p} and terminating at p, such that

$$g := p - \bar{p}$$
, since $\bar{p} + g = p$. (2)

Let $\lambda \in \mathbb{R}^+ \subset (0,1)$ be a scaling factor for the gap \boldsymbol{g} . Then we seek to iteratively update the position of \boldsymbol{p}^k at the k^{th} iteration by an amount $\lambda \boldsymbol{g}^k$ to \boldsymbol{p}^{k+1} as

$$\mathbf{p}^{k+1} \coloneqq \mathbf{p}^k - \lambda \mathbf{g}^k, \quad \text{since}$$
 (3)

$$\bar{p} = p - g$$
 when $\lambda = 1$. (4)

We typically select $\lambda < 1$ to avoid overshoot of the update. Following are two iterations for $\lambda = 0.1$ and initial positions p = 1.5 and $\bar{p} = 0.5$ (given two neighbors, one at 0.0 and one at 1.0, that never move), a simple 1D example:

Table 1: Two iteration update of a 1D example.

\underline{k}	$ar{m{p}}$	$oldsymbol{p}^k$	$oldsymbol{g}^k = oldsymbol{p}^k - ar{oldsymbol{p}}$	λg^k
0	0.5	1.5	1.0	0.1
1	0.5	1.5 - 0.1 = 1.4	0.9	0.09
		1.4 - 0.09 = 1.31	0.81	0.081