

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Midterm Question Reattempts: tonight @ 11:59 pm
 - Lab 10: Tuesday 4/11 May 1 @ 11:59 pm
 - Lab 11: Tuesday 4/18 May 1 @ 11:59 pm
 - Lab 12: May 1 @ 11:59 pm
 - Homework 11: Friday 4/14 May 1 @ 11:59 pm
 - Homework 12: May 1 @ 11:59 pm
 - Assignment 4: Friday 4/14 May 1 @ 11:59 pm
 - Support video and slides on Canvas + Solutions for Labs 8 and 9
 - Assignment 5: May 1 @ 11:59 pm
 - to be posted tonight

Final Exam

- Friday 4/28 12:00-13:50
 - 169 Crawford Hall
- Same format as midterm
- Non-cumulative
- Study guide and practice test on Canvas
- Review Session during Finals' Week
 - Date and time TBD
 - recorded

Bonus Opportunities

Bonus Lab

- worth up to 1%
- lowest two labs still dropped

Bonus Homework

- worth up to 1%
- lowest two homework assignments still dropped
- bonus point for class when

OMETs response rate >= 80%

- Currently at 12%
- Deadline is Sunday 4/23

Previous Lecture

Dynamic Programming: Typical question in coding interviews!

- More Examples:
 - 0/1 Knapsack
 - Change Making
 - Subset Sum
 - Edit Distance

This Lecture

Dynamic Programming:

Typical question in **coding interviews**!

- More Examples:
 - Longest Common Subsequence
 - Reinforcement Learning
- Maximum Flow Problem: useful for problem solving
 - Ford Fulkerson
 - Push Relabel

Example 7: Longest Common Subsequence

Given two sequences, return the longest common

subsequence

o Example:

```
    A Q S R J K V B I
    Q B W F J V I T U
    A Q S R J K V B I
    Q B W F J V I T U
```

We'll consider a relaxation of the problem and only look for

the *length* of the longest common subsequence

LCS dynamic programming example

X	A	0	S	R	J	B	Ι
		T			_		

V =	0	B	Ι	J	Т	U	Т
	•			_		_	

i∖j	Q	В	I	J	Т	U	Т
A							
Q							
S							
R							
J							
В							
I							

LCS dynamic programming solution

```
int LCSLength(String x, String y) {
   int[][] m = new int[x.length + 1][y.length + 1];
   for (int i=0; i <= x.length; i++) {
            for (int j=0; j <= y.length; j++) {</pre>
                  if (i == 0 | | i == 0) m[i][i] = 0;
                  if (x.charAt(i) == y.charAt(j))
                        m[i][j] = m[i-1][j-1] + 1;
                  else
                        m[i][j] = max(m[i][j-1], m[i-1][j]);
   return m[x.length][y.length];
```

Example 8: Reinforcement Learning

- A type of Machine Learning
 - an agent (e.g., a robot)
 - learns an optimal policy
 - only by getting rewards from the environment

Example

Input: Markov Decision Process

- A set of states
 - o e.g., maze locations, agent health
- A set of agent actions
 - o e.g., move left, move right, etc.

- Probabilities of ending up in a state given a current state and an action
 - e.g., move left action → moving left with 1.0 prob. if no wall
 - e.g., if wall, move left action → moving right or up or down with 0.33 prob.
- Reward function
 - depends on state and action
 - o e.g., high reward for moving up from below cheese
- Starting state

Input: Markov Decision Process

- A set of states
 - think graph vertices
- A set of agent actions
 - think graph edges
- Probabilities of ending up in a state given a current state and an action
- Reward function
 - think edge weights
- A special case: all information readily available
 - called **Planning**

Output: Optimal Agent Policy

- An agent policy determines the probability of taking an action given a state
 - o e.g., prob. 1.0 for moving left from start
- An optimal policy gives the maximum total

reward

- Let's embed rewards into state values
 - think distance[] in Bellman-Ford

An optimal policy gives the maximum total

state value

Expectations

- Expected value of a state?
 - depends on actions
 - O Max_{all actions}:

- prob. of action (from policy) * expected reward
- Expected reward from an action depends on
 - immediate reward (from reward function)
 - values of states reachable through the action
 - O Sum_{all states}:
 - prob. of reaching state * state value

Using Dynamic Programming to Solve an MDP

- Data Structure: Array of state values
- Step 0: Start with an **initial** policy and initial state values
 - e.g., all actions equally likely and state values = 0
- Step 1: Compute expected state values
 - o optional: iterate until values converge
- Step 2: **Modify** policy to take the best action with probability 1.0 (given the current state values)
- Repeat Step 1 and 2 until policy converges

Problem of the Day: Finding Bottlenecks

- send a large file from S to T over a computer network
 - as fast as possible
 - over multiple network paths if needed
- Input:
 - computer network
 - nodes and links
 - links labeled by link speed in Mbps
 - nodes A and B
- Output:
 - The maximum network speed possible

Defining flow network

- directed, weighted graph G(V, E)
 - Weights are applied to edges to state their capacity
 - c(u, w) is the capacity of edge (u, w)
 - \blacksquare if there is no edge from u to w, c(u, w) = 0
- Consider two vertices, a source s and a sink t
 - determine maximum flow from s to t in G
 - o with constraints!

Flow

- f(u, w): amount of flow carried along the edge (u, w)
- Some rules on the flow running through an edge:
 - \circ f(u, w) <= c(u, w)
 - \blacksquare $\forall (u, w) \in E$
 - \circ $\Sigma_{w \in V} f(w, u) = \Sigma_{w \in V} f(u, w)$
 - incoming flow = outgoing flow
 - \blacksquare $\forall u \in (V \{s,t\})$

Residual Capacity of an edge

- Residual capacity of edge (u, w) is c(u, w) f(u, w)
- e.g., residual capacity of edge (S, A) is 1000 100 = 900

Augmenting Path

An **augmenting path** in G:

- simple path p from s to t
- all edges in p have some
 residual capacity
 - ∀(u, w) ∈ p, f(u, w) <c(u, w)
- $S \rightarrow A \rightarrow B \rightarrow T$
- $S \rightarrow A \rightarrow T \times$
- $S \rightarrow B \rightarrow T \times$

Ford Fulkerson

- Initially: $f(u, w) = 0 \forall (u, w) \in E$
- While an augmenting path p exists
 - Find an edge with minimum residual capacity in p
 - call this minimum residual capacity new_flow
 - Increase the flow on all edges in p by new_flow

Ford Fulkerson example

So what is the value of the maximum flow?

- Add up the **flow increments** in iterations of Ford-Fulkerson
- Add up the edge <u>flows</u> out of source
- Add up the edge <u>flows</u> of into sink

What if we selected augmenting paths in different order?

Can't reach maximum flow value of 15!

How does Ford-Fulkerson correct that?

- consider re-routing previously allocated flow
- when finding an augmenting path, look not only at the edges of G, but also at **backwards edges** that allow such re-routing

Backwards Edges

- For each edge (u, w) ∈ E with f(u, w) > 0, a backwards
 edge (w, u) exists
- The capacity of the backwards edge (w, u) = f(u, w)
- Adding flow to a backwards edge means rerouting flow from the corresponding forward edge

The residual graph

- searches for augmenting path on a residual graph
- The residual graph is made up of:
 - \circ V
 - An edge for each $(u, w) \in E$ where f(u, w) < c(u, w)
 - 0 flow and a capacity of c(u, w) f(u, w)
 - A backwards edge for each (u, w) ∈ E where f(u, w) > 0
 - (u, w)'s backwards edge has a capacity of f(u, w)
 - All backwards edges have 0 flow

Residual graph example

2nd Tophat Question

Another example

Worst-case Runtime of Ford-Fulkerson

- O(f * (e+v))
- f: value of maximum flow
- e+v: time to find an augmenting path
- is that polynomial in the input size?
- No! f is exponential in bitlength of f
- $O(2^{|f|} * (e+v))$

Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow
- Edmonds and Karp proposed a shortest path
 - **heuristic** for Ford Fulkerson
 - Use BFS to find augmenting paths

Another example

Edmonds Karp

• Running time is O(e² v)

But our flow graph is weighted...

Edmonds-Karp only uses BFS

- BFS finds spanning trees and shortest paths for unweighted graphs
- some weight-based measure of priority to find augmenting paths?

Maximum Capacity Path

- Proposed by Edmonds and Karp
- implemented by modifying Dijkstra's shortest paths algorithm
- Define flow[v] as the maximum amount of flow from s → v along a
 single path
- Each iteration, set curr as an unmarked vertex with the largest flow
- For each neighbor w of curr:
 - if min(flow[curr], residual capacity of edge (curr, w)) > flow[w]
 - update flow[w] and parent[w] to be curr

Flow edge implementation

- For each **edge**, we need to store:
 - from vertex
 - o to vertex
 - edge capacity
 - edge flow
 - residual capacities
 - For forwards and backwards edges

FlowEdge.java

```
public class FlowEdge {
   private final int v;
                                    // from
   private final int w;
                                    // to
   private final double capacity; // capacity
   private double flow;
                                    // flow
      public double residualCapacityTo(int vertex) {
              (vertex == v) return flow;
      else if (vertex == w) return capacity - flow;
      else throw new
       IllegalArgumentException("Illegal endpoint");
```

BFS search for an augmenting path (pseudocode)

```
edgeTo = [v]
                                  Each FlowEdge object is stored
marked = [v]
                                  in the adjacency list twice:
Queue q
                                  Once for its forward edge
q.enqueue(s)
                                  Once for its backward edge
marked[s] = true
while !q.isEmpty():
   v = q.dequeue()
   for each edge in AdjList[v]:
       if residualCapacity(other end-point) > 0:
           if !marked[w]:
              edgeTo[w] = v;
              marked[w] = true;
              q.enqueue(w);
```

Push-Relabel Algorithm for Max Flow

- More efficient than Edmonds-Karp that uses BFS
 - Running time: Theta(v³) vs. Theta(e²v)
- Local per vertex operations instead of global updates
- Each vertex has a height and excess flow value

Push-Relabel Algorithm for Max Flow

push operation:

- Flow pushed from higher vertex to lower neighbor
 - height difference of 1
 - over an edge with residual capacity > 0

relabel operation:

- If a vertex's excess flow > 0 and has no lower neighbor
 - relabel vertex's height to
 - 1 + min height of neighbors able to receive flow

Push-Relabel Algorithm for Max Flow

- push operation:
- relabel operation:
- Repeat relabel and push operations until
 - all vertices except source and sink have 0 excess flow

Push-Relabel Algorithm

- height = 0 and excess = 0 for all vertices
- excess[s] = sum of edge capacities out of s
- height[s] = v
- insert s into Q
- while Q not empty
 - v = pop head of queue
 - relabel v if needed
 - for each neighbor w of v:
 - push as much of v's excess flow to w
 - increase w's excess flow by the pushed amount
 - add w to Q if not already there

