Differentiation under integral (Sign (DUIS rile) Differentiation under integral sign is an operation in calculus used to evaluate certain integrals. There are two rules of DUIS: Rule 1) If I(v) = (f(x, x)dx) Here $\alpha = parameter, x = variable of integration in$ gail bare the limits of integration which are constant then d I(x) = d sf(x,x)dx = 5 3x fcx, x) dx ie Total deriative becomes partial derivative under integral sign. is show that Sx-1 dx = log(a+1) Here Prina a is parameter & limits of are constants.

consider $T(a) = \int \frac{x^{q-1}}{x^{q-1}} dx$ By 1st rule of DUIS $\frac{d}{da} T(a) = \frac{d}{da} \int \frac{x^{q-1}}{x^{q-1}} dx$ $\frac{d}{da} T(a) = \frac{d}{da} \int \frac{x^{q-1}}{x^{q-1}} dx$

Scanned by CamScanner

da
$$T(a) = \int_{\alpha}^{\alpha} dx$$

$$= \begin{bmatrix} \frac{\alpha+1}{\alpha+1} \\ \frac{1}{\alpha+1} \end{bmatrix}$$

How details and a (vsf)

integrate both side

Substitute suitable value of a in (1) fe to find (

from (1) $T(a) = \int_{1}^{\infty} \frac{1}{\log x} dx = 0$

from (1) $T(a) = \int_{1}^{\infty} \frac{x^{2}-1}{\log x} dx = 0$

from (1) $T(a) = \int_{1}^{\infty} \frac{x^{2}-1}{\log x} dx = 0$

$$T(a) = \int_{1}^{\infty} \frac{x^{2}-1}{\log x} dx = \log(a+1)$$

ex. (2) Using DUTs, evaluate $\int_{1}^{\infty} e^{-\frac{x}{2} \sin x} dx = \frac{x}{2} dx$

that $\int_{1}^{\infty} \frac{\sin x}{x} dx = \int_{1}^{\infty} e^{-\frac{x}{2} \sin x} dx = \int_{1}^{\infty} e^{-\frac{x}{2} \sin x} dx$

Here a is parameter, limits a to a circ constant

i. By 1st rule of DUTS

da $T(a) = \int_{1}^{\infty} \frac{e^{-\frac{x}{2} \sin x}}{x} dx$

$$= \int_{1}^{\infty} \frac{e^{-\frac{x}{2} \sin x}}{x} dx$$

Scanned by CamScanner

$$\frac{d}{da} T(a) = -\left[\frac{e^{-ax}}{a^2 + 1}\left(-a\sin x - \cos x\right)\right]_0^\infty$$

$$= -\left[\frac{e^{-a(a)}}{a^2 + 1}\left(-\frac{e^{-a(a)}}{a^2 + 1}\right)\right] = \frac{-1}{a^2 + 1}$$

$$\frac{d}{da} T(a) = \frac{1}{a^2 + 1}$$

. . . Integrating writ a

Put a = 00 in (1) 4 (2).

put
$$a=0$$
 : $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \frac{TT}{2}$

Here consider a as parameter or b as parameter.

$$T(a) = \begin{cases} \frac{e^{-ax}}{e^{-bx}} dx - 0 \end{cases}$$

$$\frac{dI}{da} = \int_{0}^{2\pi} \frac{\partial}{\partial a} \left(\frac{e^{-\alpha x}}{2} - e^{-bx} \right) dx$$

$$= \int_{0}^{2\pi} -\frac{\sqrt{e^{-\alpha x}}}{2\pi} dx = \int_{0}^{2\pi} e^{-ax} dx$$

$$=\int_{-\alpha}^{-\alpha}\frac{e^{-\alpha x}}{a}\int_{0}^{\infty}=\frac{1}{a}\int_{0}^{\infty}\frac{1}{a}$$

Put a=b in (D)
$$4$$
 (2)

Prove that
$$\int \frac{x^{2}-x^{b}}{x} dx = \frac{109(\frac{b}{a})}{109x}$$

T(b)=
$$\int \frac{x^{2}-x^{b}}{x} dx = \frac{109(\frac{b}{a})}{109x}$$

$$= \int \frac{x^{2}-x^{b}}{x} dx = \frac{109(\frac{b}{a})}{109x} dx$$

$$= \int \frac{x^{2}-x^{b}}{109x} dx$$

$$= \int \frac{x^{2}-x^{b}}{$$

I(b) = - log (b+1) + log (a+1)

Here a 4 b are the Jimits which are functions of parameter &

then
$$\frac{dI}{dx} = \frac{d}{dx} \int_{0}^{1} f(x,x) dx$$

$$= \left[\int_{0}^{1} \frac{dx}{dx} + f(b,x) \frac{db}{dx} - f(a,x) \frac{da}{dx} \right]$$

It is also called as Leibnitz rule.

eg. 1) Verify Leibnitz rule of DUIS for the integral

$$I(a) = \begin{cases} \frac{dx}{dx} \\ \frac{dx}{x+a} \end{cases}$$

$$= [log(x+a)]_{a}^{a}$$

$$= log(a+a^{2}) - log(aa)$$

$$= log(a+a^{2}) + log(aa)$$

$$= log(a+a^{2})$$

$$= log(a^{2}) + log(aa)$$

1. 760 2 you (But)

Here a 4 b are the Jimits which are functions of

then
$$\frac{dI}{dx} = \frac{d}{dx} \int_{0}^{1} f(x,x) dx$$

$$= \left[\int_{0}^{1} \frac{\partial x}{\partial x} f(x,x) dx \right] + f(b,x) \frac{db}{dx} - f(a,x) \frac{da}{dx}$$

It is also called as Leibnitz rule.

eg. 1) Verify Leibnitz rule of DUIS for the integral

$$T(a) = \begin{cases} \frac{d^2}{dx} \\ \frac{dx}{x+a} \end{cases}$$

$$= \left[\frac{\log (x+a)}{3} \right]_{a}^{a^2}$$

$$= \frac{\log (a+a^2) - \log (2a)}{2a}$$

$$= \frac{\log \frac{a+a^2}{2a}}{2a}$$

$$= \frac{\log \frac{\alpha(1+a)}{2\alpha}}{2\alpha}$$

Now By DVIS

$$\frac{dI}{da} = \frac{1}{da} \left(\frac{dx}{2+a} \right)$$

$$= \left[\left(\frac{3}{2a} \right) \frac{dx}{2+a} \right] + \frac{1}{a^2+a} \frac{d}{da} \left(\frac{a^2}{a^2} \right) - \frac{1}{a^2+a} \frac{d}{da} \left(\frac{a^2}{a^2} \right)$$

$$= \left(\frac{3}{2a} \right) \frac{dx}{2+a} + \frac{2a}{a^2+a} - \frac{1}{2a}$$

$$= \left(\frac{1}{2+a} \right)^{a^2} + \frac{2}{1+a} - \frac{1}{2a}$$

$$= \left(\frac{1}{2+a} \right)^{a^2} + \frac{2}{1+a} - \frac{1}{2a}$$

$$= \left(\frac{1}{2+a} \right)^{a^2} + \frac{1}{2a} + \frac{2}{2a}$$

$$= \frac{1}{a^2+a} - \frac{1}{2a} + \frac{2}{a+1} - \frac{1}{2a}$$

$$= \frac{1}{a^2+a} - \frac{1}{2a} + \frac{2}{a+1} - \frac{2}{2a}$$

$$= \frac{1}{a^2+a} - \frac{1}{2a} + \frac{2}{a+1} - \frac{2}{a}$$

$$= \frac{1}{a^2+a} - \frac{1}{a^2+a} - \frac{2}{a^2+a}$$

$$= \frac{1}{a^$$

= sina3 _ sina2 + 2sina3 _ sina2

dI = 85ing3 _ 25ing2

If
$$y = \int_{0}^{\infty} f(t) \sin h(x-t) dt$$
 then show that

 $\frac{dy}{dx^2} + ay = af(x)$.

 $y = \int_{0}^{\infty} f(t) \sin h(x-t) dt$, Here x is parameter?

By 2^{nd} rule of DUIS

 $\frac{dy}{dx} = \left[\int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt\right] + f(t) \sin h(x-t) \frac{1}{2x}(t)$
 $= \int_{0}^{\infty} f(t) \cos h(x-t) dt$
 $+ a \int_{0}^{\infty} f(t) \cos h(x-t) dt$
 $+ a \int_{0}^{\infty} f(t) \cos h(x-t) dt$
 $+ f(x) \cos h(x-t) \frac{1}{2x}(t)$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \cos h(x-t) dt$
 $+ f(x) \cos h(x-t) \frac{1}{2x}(t)$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) \sin h(x-t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty} \frac{1}{2x} f(t) dt$
 $+ \frac{d^{2}y}{dx^{2}} = a \int_{0}^{\infty$

131 = 2G(x).

Scanned by CamScanner