

پاسخ تمرینها را به صورت خوانا و تمیز در قالب HW?_Name_StudentNumber (به عنوان مثال، الله عنوان مثال، الله عنوان مثال، الله عنوان مثال، الله تمرینها را به تمرینها را به

۱. الف) با توجه به ماتریس های زیر:

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

مقدار عبارت $det(A^2B^{-1}A^{-2}B^2)$ را بدست آورید.

ب) مقادیر x را طوری بیابید که ماتریس A معکوس پذیر باشد (اعداد a, b, c ثابت هستند و a
eq 0 است)

$$A = \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^2 \end{bmatrix}$$

ارا در اختیار داریم: Bx=b را در اختیار داریم:

$$B = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 4 \end{pmatrix}, \qquad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}.$$

با استفاده از روش کرامر (Cramer's rule) پاسخ آن را بیابید.

را مثلثی با رئوس (x_1,y_1) , (x_2,y_2) , (x_2,y_2) , (x_1,y_1) در نظر بگیرید. نشان دهید مساحت مثلث برابر R .۳

{area of triangle} =
$$\frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

 2^{n-1} . اگر A ماتریس $n \times n$ باشد که فقط از ± 1 تشکیل شده است، نشان دهید دترمینان آن بر ± 1 . بخش پذیر است.

۵. اگر H و K زیر فضاهایی از فضای برداری V باشند، تقاطع H و K که به صورت H نوشته می شود، مجموعه تمام uهایی است در u که به هر دوی u و u تعلق دارند. نشان دهید که u است. (u است.

سپس یک مثال در R^2 ارائه دهید که نشان دهد در حالت کلی اجتماع دوزیرفضا، یک زیرفضا را تشکیل نمی دهد.

8. فرض کنید V نشان دهنده فضای برداری ماتریس های 2×2 و W برابر فضای برداری ماتریس های $T\colon V o W$ را به صورت زیر تعریف می کنیم : 2×2

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & 2d \\ 2b-d & -3c \\ 2b-c & -3a \end{bmatrix}$$
.

یک یایه برای دامنه (range) تبدیل T بیابید.

 $T: R^n \to R$ عددی صحیح و مثبت است و T تبدیلی است خطی و غیر صفر به طوری که R عبارت های زیر را ثابت کنید:

الف) فضای پوچ(nullspace) تبدیل T دارای n-1 بعد میباشد.

ب) فرض کنید T بیدیل N(T) بیدیل N(T) بیدیل N(T) بیدی کنید N(T) بیدی کنید N(T) بیدی که در N(T) قرار ندارد . ثابت کنید N(T) قرار ندارد . ثابت کنید N(T) میباشد.

ج) (امتیازی) هربردار $u \in N(T)$ را میتوان به صورت $u = v + rac{T(u)}{T(w)} w$ نشان داد که $u \in R^n$ را میتوان به صورت

تیم تدریسیاری جبرخطی