11) Two metrics are equivalent on X if they determine the same open sets in X. Show that two metrics are equivalent iff they determine the same convergent sequences.

Proof)

First, let's understand what the "open set" definition of equivalent metrics means. Let X be a set, and $p: (X \times X) \to R$, $d: (X \times X) \to R$ are two metrics on X. Then:

1) \underline{p} and \underline{d} are equivalent := { [The set $U \subseteq X$ is open wrt. \underline{p}] \Leftrightarrow [$U \subseteq X$ is open wrt. \underline{d}] }

And by open with respect to a metric (p or d), we mean:

A set $S \subseteq X$ is open with respect to d if:

$$\forall x \in S, \ \exists \varepsilon > 0 \ \mathrm{such \ that} \ B^d(x; \varepsilon) \subseteq S$$

And similarly, S is open with respect to p if:

$$\forall x \in S, \ \exists \delta > 0 \ \mathrm{such \ that} \ B^p(x;\delta) \subseteq S$$

2) Revisit the definition of convergence: We write $x_n \to x$ wrt. (d) iff: Every open neighbourhood (open wrt. d) of $x:U_x$ contains all but finitely many points of x_n . That is: For any d-open U_x , all but finitely many x_n lie in $U_x \Leftrightarrow x_n \to x$ wrt. (d)

Now, let's restate the question:

Show that:

(i) p and d determine the same open sets ⇔ (ii) p and d determine the same convergent sequences

<u>Part-1) (i)</u> \Rightarrow (ii) : Suppose (p and d) are equivalent, in that they determine the same open sets. Let the sequence $\{x_n\}$ in X converge to a point x wrt. the metric p.

- We want to show: $\{x_n\}$ converges to x wrt. the metric d also.
- So, we WTS: For any d-open nbhd of $x : U_x$, all but finitely many x_n are contained in U_x .

Proof:

- Let U_x be any d-open nbhd of x ("d-open" := open with respect to the metric d).
- Then, by the equivalence of p and d, U_r is also open wrt. the metric p.
- Since $x_n \to x$ wrt p, and U_x is p-open, all but finitely many x_n are contained in U_x .
- \bullet Thus: all but finitely many x_n are contained in U_x , for any $\operatorname{d-open}$ nbhd U_x
- Thus: $x_n \to x$ wrt. d.
- To really finish the proof, we'd also need to show the direction: $[x_n \text{ converges wrt. } d \Rightarrow x_n \text{ converges wrt. } p$; this is accomplished in exactly the same manner as this proof.

Part-2) (ii) \Rightarrow (i)

Suppose p and d determine the same convergent sequences. Show that they determine the same open sets. First we note that:

(S is closed wrt p) \Leftrightarrow (S^c is open wrt. p) \Leftrightarrow (S^c is open wrt. d) \Leftrightarrow (S is closed wrt. d) That is, (the metrics p and d determine the same open sets) \Leftrightarrow (p and d determine the same closed sets)

So we will show:

(p and d determine the same closed sets) \Rightarrow (p and d determine the same convergent sequences)

Also recall the *Sequential Characterization of the Closure:

- (i) [S is closed wrt. p] \Leftrightarrow (ii) [Any convergent sequence in S finds its limit in S] Proof:
 - Let S be closed wrt. p
 - Take **any** convergent (wrt. p) sequence inside $S : \{x_n\}$, where $x_n \to x$
 - By $[*(i) \Rightarrow (ii)]$, $x \in S$
 - Now, by assumption, the sequence $\{x_n\}$ is also convergent wrt. d: $x_n \to x$ wrt d.
 - Thus any convergent (wrt.d) sequence in S finds its limit in S. Hence [By *(ii) \Rightarrow (i)], S is closed wrt. d