

INTRO TO QUANTUM COMPUTING

Week 9 Lab

MATH FOR QUANTUM CONTD.

<insert TA
 name>
<insert date>

PROGRAM FOR TODAY

- Logistics
- Attendance quiz
- Pre-lab zoom feedback
- Questions from last week
- Lab content
- Post-lab zoom feedback

CANVAS ATTENDANCE QUIZ

- Please log into Canvas and answer your lab section's quiz (using the password posted below and in the chat).
 - This is lab number:
 - Passcode:

- If you have NOT attended the Friday Student Assistant Office Hours, why not? Select all that apply.
- This quiz not graded, but counts for your lab attendance!

PRE-LAB ZOOM FEEDBACK

On a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content

QUESTIONS FROM LAST WEEK

LEARNING OBJECTIVES FOR LAB 5

- Understanding vector spaces and their properties
 - Linear combinations
 - Linear independence
 - Span and Basis vectors
- Demystifying eigenvalues and eigenvectors
 - Applying gates to qubits: Review
 - Eigenvectors for the Z and X matrices
 - Applying gates to qubits using eigenvectors
- TA discussion*

GETTING DONUTS

GETTING DONUTS

LINEAR COMBINATIONS

Linear combinations of vectors

$$y = x + x^2 + x^3 + \cdots$$

EXPRESSING SUPERPOSITION STATES

Superposition state: a **linear combination** of $|0\rangle$ and $|1\rangle$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$|\psi_3\rangle = \frac{3i}{\sqrt{10}}|+\rangle - \frac{1}{\sqrt{10}}|-\rangle$$

Can make linear combinations from any vectors!

WRITING STATES AS LINEAR COMBINATIONS

• Write the state
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$$
 as a combination of $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

WRITING STATES AS LINEAR COMBINATIONS

• Write the state
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$$
 as a combination of $|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

WRITING STATES AS LINEAR COMBINATIONS

Can we do this with any two vectors?

Write the state
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$$
 as a combination of $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{8}} \begin{pmatrix} -2 \\ -2 \end{pmatrix}$

LINEAR INDEPENDENCE

• We need the two (or more) vectors to be in different directions!

Write the state
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$$
 as a combination of $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{8}} \begin{pmatrix} -2 \\ -2 \end{pmatrix}$

$$\frac{1}{\sqrt{8}} \binom{-2}{-2} = -\frac{1}{\sqrt{2}} \binom{1}{1}$$
 Linearly dependent (along the same direction)

LINEAR INDEPENDENCE

• Linearly independent vectors – Vectors that cannot be written as combinations of each other

SPAN

• Span: All the vectors that can be written as combinations of the given vector set

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

VECTOR SPACE

 Vector space: A collection of vectors (states)

Examples

- All 2-D vectors that line on the unit circle
- All vectors on the surface of the Bloch sphere

BASIS

 Can we find a way to describe each vector in this space as a combination of two vectors?

•Yes!

 These two vectors form a "basis" for this vector space – they are called **basis vectors**

BASIS

• Can we find a way to describe each vector in this space as a combination of two vectors?

• Example:
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{4}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

ANOTHER BASIS

 Can we find a way to describe each vector in this space as a combination of two vectors?

There are other options!

• Example:
$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = -\frac{\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} + \frac{7\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

 There are an infinite number of choices for basis!

QUESTIONS

Questions on content so far?

WHY USE DIFFERENT BASES?

Same vector, two

bases:

$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{4}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = -\frac{\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} + \frac{7\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

But why?

APPLYING GATES TO QUBITS: REVIEW

$$|\psi\rangle_{in}$$
 $|\psi\rangle_{out}$ $|\psi\rangle_{out}$ Multiply the matrix o

$$|\psi\rangle_{out} = Z|\psi\rangle_{in}$$

Multiply the matrix of Z with the column vector $|\psi\rangle_{in}$ to get $|\psi\rangle_{out}$

Example: Find
$$Z\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$$

APPLYING GATES TO QUBITS: REVIEW

Find
$$Z\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}\begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $Z\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}\begin{pmatrix} 0\\1 \end{pmatrix}$

EIGENVALUES AND EIGENVECTORS

$$Z\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}\begin{pmatrix} 1\\0 \end{pmatrix} = 1\cdot\begin{pmatrix} 1\\0 \end{pmatrix}$$
eigenvalue
$$Z\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}\begin{pmatrix} 0\\1 \end{pmatrix} = -1\cdot\begin{pmatrix} 0\\1 \end{pmatrix}$$

Takeaway: To find if a given vector is an eigenvector of a matrix, multiply the vector with the matrix and check if the result is a scalar times the same vector

WHY USE EIGENVECTORS?

Find
$$Z\begin{pmatrix} \frac{1}{5} \\ -\frac{4}{5} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{5} \\ -\frac{4}{5} \end{pmatrix}$$

$$Z\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = \frac{3}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{4}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$Z\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = \frac{3}{5} Z\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{4}{5} Z\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{3}{5} (1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{4}{5} (-1) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \frac{3}{5} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{4}{5} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}$$

Takeaway: Applying a gate to qubit states is really easy, if you can write the vector as a linear combination of the eigenvectors of that gate!

CARS VS EIGENVECTORS

CARS VS EIGENVECTORS

- We know how to work with wheels, engines and bodies, and we combine them in different ways to make different cars
- We know how to work with eigenvectors, and we combine them in different ways to make different qubit states

EIGENVECTORS FOR THE X GATE

Example: Find
$$X \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

EIGENVECTORS FOR THE X GATE

$$X\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = 1 \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= 1 \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -1 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = -1 \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -1 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= -1 \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -1 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

USING EIGENVECTORS OF THE X GATE

Find
$$X \begin{pmatrix} \frac{1}{5} \\ -\frac{4}{5} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{5} \\ -\frac{4}{5} \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = -\frac{\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} + \frac{7\sqrt{2}}{10} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = -\frac{\sqrt{2}}{10}X \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} + \frac{7\sqrt{2}}{10}X \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{pmatrix} = -\frac{\sqrt{2}}{10}(1) \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} + \frac{7\sqrt{2}}{10}(-1) \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{-4}{5} \\ \frac{3}{5} \end{pmatrix}$$

Takeaway: Applying a gate to qubit states is really easy, if you can write the vector as a linear combination of the eigenvectors of that gate!

IMPORTANT TAKEAWAYS

- Vector space: A collection of vectors
 - A given qubit state in a vector space can be expressed as a combination of two (or more) states in the space
 - Linear independence: These states cannot themselves be written as combinations of one another
 - **Basis**: These states can be combined to express every other state in the vector space
- Applying a gate to its eigenvector results in the same vector times a constant (called the eigenvalue)
- Applying a gate to any other vector can be broken down into two steps
 - Express the vector as a linear combination of the eigenvectors of the gate
 - Apply the gate to the eigenvectors to find the result

WHY ALL THE MATH?

- We use currents and magnetic fields to control the quantum computer, and get currents and magnetic fields out of it
- The math is our attempt at describing the physics in a quantum computer
- Why use vectors for qubits? They can't be described by just a single current or magnetic field number
- Why use matrices for quantum gates? Gates change qubits in the same way as matrices change vectors

QUESTIONS?

Questions on content so far?

POST-LAB ZOOM FEEDBACK

After this lab, on a scale of 1 to 5, how would you rate your understanding of this week's content?

- 1 –Did not understand anything
- 2 Understood some parts
- 3 Understood most of the content
- 4 Understood all of the content
- 5 The content was easy for me/I already knew all of the content

OPTIONAL CONTENT

TA discussion!

