Parallelization and Algorithm Design

Cameron Hummels
NSF Fellow, Caltech

Code should* be:

Code should* be:

- correct
- efficient
- simple
- easy to read
- concise
- accessible

Code should* be:

Algorithm Design

- Worst-case efficiency
- Big-O Notation

Concepts to remember

```
import numpy
a = 3
arr = np.arange(10)
for val in arr:
  val *= 47
  if val < a:
  val ** 2</pre>
```

Algorithm Design

- Worst-case efficiency
- Big-O Notation

Algorithm Design

- Worst-case efficiency
- Big-O Notation

Random

Random

Parallel Computation

Parallel Computation

- multithreaded
- multiprocessing
- MPI and mpi4py

import multiprocessing
p = multiprocessing.Pool(2)
p.map(func, list_of_objects)