

FCC RF Test Report

For

Shenzhen Hangshi Technology Co.,Ltd

Test Standards: Part 15C Subpart C §15.249

Product Description: 2.4G MOUSE

Tested Model: MW158A

Additional Model No.: <u>N/A</u>

Brand Name:

N/A

FCC ID: 2AKH<mark>J-M</mark>W158A

Classification DXX-Low Power Communication Device Transmitter

Report No.: EC1910035RF01

Tested Date: 2019-10-21 to 2019-11-13

Issued Date: 2019-11-13

Jerry Wang

Jerry Wang / Engineer **Prepared By:**

Baron Wu Approved By:

Bacon Wu / RF Manager

Hunan Ecloud Testing Technology Co., Ltd.

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and

Technological Development Zone, Hunan, P.R.C

Tel.: +86-731-89634887 Fax.: +86-731-89634887

www.hn-ecloud.com

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2019.11.13	Valid	Original Report

Tel.:+86-731-89634887

TABLE OF CONTENTS

1	TES	T LABORATORY	5
	1.1	Test facility	5
2	GEN	IERAL DESCRIPTION	6
	2.1	Applicant	6
	2.2	Manufacturer	6
	2.3	General Description Of EUT	
	2.4	Modification of EUT	7
	2.5	Applicable Standards	7
3	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	9
	3.3	Support Equipment	10
	3.4	Test Setup	10
	3.5	Measurement Results Explanation Example	12
4	TES	T RESULT	13
	4.1	20dB Occupy Bandwidth Measurement	13
	4.2	Field Strength of The Fundamental Signal, Radiated Band Edges and Spurious E	
	4.3	AC Conducted Emission Measurement	
	4.4	Antenna Requirements	49
5	LIST	OF MEASURING EQUIPMENT	50
6	UNC	ERTAINTY OF EVALUATION	51
Α	PPEN	DIX A. SETUP PHOTOGRAPHS	
Α	PPEN	IDIX B. EUT EXTERNAL PHOTOGRAPHS	
Α	PPEN	IDIX C. EUT INTERNAL PHOTOGRAPHS	

Tel.:+86-731-89634887

Summary of Test Result

FCC Rule	Description	Limit	Result	Remark
15.215(c)	20dB Bandwidth	NA	Pass	-
15.249(a)	Field strength of the fundamental signal	15.249(a)	Pass	-
15.249(a)(d)/15.209	Radiated Band Edges and Radiated Spurious Emission	15.249(a)(d)/15.209	Pass	Under limit 5.22 dB at 4940 MHz
15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 9.01 dB at 0.541 MHz
15.203	Antenna Requirement	N/A	Pass	-

Tel.:+86-731-89634887

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number: 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Tel.:+86-731-89634887

2 General Description

2.1 Applicant

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.2 Manufacturer

Shenzhen Hangshi Technology Co.,Ltd

Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.

2.3 General Description Of EUT

Product	2.4G MOUSE
Model No.	MW158A
Additional No.	N/A
Difference Description	N/A
FCC ID	2AKHJ-MW158A
Power Supply	5Vdc (adapter or host equipment) 3.7Vdc (Li-ion)
Modulation Technology DXX-Low Power Communication Device Transm	
Modulation Type	GFSK
Operating Frequency 2405MHz~2470MHz	
Number Of Channel	8
Antenna Type	PCB Antenna type with -1.2dBi gain
I/O Ports	Refer to user's manual
Cable Supplied	N/A

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AKHJ-MW158A www.hn-ecloud.com

Tel.:+86-731-89634887 Fax.: +86-731-89634887

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.249
- ANSI C63.10-2013

Tel.:+86-731-89634887

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The Operation Frequency each of channel as follows:

Operation Frequency each of channel				
Channel	Frequency	Channel	Frequency	
01	2405MHz	05	2440MHz	
02	2413MHz	06	2450MHz	
03	2422MHz	07	2460MHz	
04	2430MHz	08	2470MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test

- Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.
- b. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Y orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Y orientation.

Tel.:+86-731-89634887

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

Summary table of Test Cases				
Test Item 2.4G Wireless				
Conducted Test Cases	Mode 1: CH01_2405 MHz			
	Mode 2: CH04_2430 MHz			
	Mode 3: CH08_2470 MHz			

3.2.2 Radiated Emission Test (Below 1GHz)

	2.4G Wireless		
Radiated	Transmitting	Mode 1: CH01_2405 MHz	
Test Cases		Mode 2: CH04_2430 MHz	
	Transmitting+Charging	Mode 3: CH08_2470 MHz	

- Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
 - 2. All above modes were tested, but only the worst case test mode 1 while transmitting was reported.

3.2.3 Radiated Emission Test (Above 1GHz)

	2.4G Wireless		
Radiated	Transmitting	Mode 1: CH01_2405 MHz	
Test Cases		Mode 2: CH04_2430 MHz	
	Transmitting+Charging	Mode 3: CH08_2470 MHz	

- Note: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
 - 2. All above modes were tested, but only the worst case transmitting was reported.

3.2.4 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : Wireless 2.4G Link + USB Cable (Charging from Adapter)
Emission	

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID: 2AKHJ-MW158A Tel.:+86-731-89634887 Fax.: +86-731-89634887

3.3 Support Equipment

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Power Adapter	N/A	TC E250	N/A	N/A	N/A
2.	Micro-USB Cable	N/A	N/A	N/A	N/A	shielded 0.8m
3.	Notebook	Lenovo	E470C	N/A	N/A	shielded cable DC O/P 1.8 m unshielded AC I/P cable1.2 m

3.4 Test Setup

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Setup diagram for Conducted Test

Setup diagram for Raidation(9KHz~30MHz) Test

Setup diagram for Raidation(Below 1G) Test

Setup diagram for Raidation(Above1G) Test

Tel.:+86-731-89634887

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$5 + 10 = 15$$
 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4 Test Result

4.1 20dB Occupy Bandwidth Measurement

4.1.1 Limit of 20dB Occupy Bandwidth

None; for reporting purposes only.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

RBW = 1% to 5% of the 20 dB bandwidth; VBW = approximately 3 times RBW; Sweep = auto;

Detector function = peak; Trace = max hold.

Tel.:+86-731-89634887

4.1.3 Test Result of 20dB Bandwidth

Test Mode :	2.4G Wireless Transmitting	Temperature	:	21~23℃
Test Engineer :	victorique Gao	Relative Humidity :		41~43%
Channel.	20dB Bandwidth [MHz]			Verdict
LCH	2.562			PASS
MCH	2.527			PASS
HCH	2.768			PASS

20dB Plot

Tel.:+86-731-89634887

4.2 Field Strength of The Fundamental Signal, Radiated Band Edges and Spurious Emission Measurement

4.2.1 Limit of Fundamental Signal, Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209&15.249 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Frequency	Field Strength	Measurement Distance
(MHz)	(millivolts/meter)	(meters)
2400-2483.5	50	3m

Note: The frequency range from 9KHz to 10th harmonic (25GHz) are checked, and no any emissions were found from 18GHz to 25GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Tel.:+86-731-89634887

4.2.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW >RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	VBW Setting			
2.4G Wireless	100	10Hz			
Spectrum Ref Level 1 Att 1Att 1AP Clrw 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	30 dB SWT 100 ms VBW 3 MHz				
CF 2.47 GHz	691 pts Measuring	10.0 ms/			
Date: 26.AUG.20		1			

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

FCC ID: 2AKHJ-MW158A www.hn-ecloud.com

4.2.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

4.2.4 Field Strength of The Fundamental Signal

FCC ID: 2AKHJ-MW158A www.hn-ecloud.com

•	Reading level dBuV	factor	loss	factor	level	level	limit	Remark
2430. 000 2430. 000								

•	Reading level dBuV	factor	loss	factor	level	level	limit	Remark
2430. 000 2430. 000								

Freq MHz	 Antenna factor dB/m	loss	factor	level	level	limit	Remark
2470. 000 2470. 000							

4.2.5 Test Result of Radiated Spurious at Band Edges

Tel.:+86-731-89634887

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2470. 040	74. 55	27. 32	3. 58	35. 66	69. 79	94. 00	-24. 21	Average
2483. 500	28. 17	27. 36	3. 59	35. 68	23. 44	54. 00	-30. 56	Average
2486. 015	30. 50	27. 36	3. 59	35. 68	25. 77	54. 00	-28. 23	Average
2500. 000	28. 71	27. 40	3. 60	35. 70	24. 01	54. 00	-29. 99	Average

Freq MHz	Reading level dBuV	factor		factor	level	Limit level dBuV/m	Over limit dB	Remark
2470. 490 2483. 500 2500. 000	44.34	27. 32 27. 36 27. 40	3.59	35.68	39.61		-34.39	Peak

 Test Mode :
 Mode 3: CH08_2470 MHz
 Temperature :
 21~23℃

 Test Engineer :
 Jerry Wang
 Relative Humidity :
 63~65%

 Frequencey Range
 2.465GHz~2.51GHz
 Polarization :
 Vertical

Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2470. 040	75. 23	27. 32	3. 58	35. 66	70. 47	94. 00		Average
2483. 500	27. 35	27. 36	3. 59	35. 68	22. 62	54. 00		Average
2486. 015	30. 16	27. 36	3. 59	35. 68	25. 43	54. 00		Average
2500. 000	27. 89	27. 40	3. 60	35. 70	23. 19	54. 00		Average

Tel.:+86-731-89634887

4.2.6 Test Result of Radiated Spurious Emission

Tel.:+86-731-89634887

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

Tel.:+86-731-89634887

4.2.7 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

4.3 AC Conducted Emission Measurement

4.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of emission (MUz)	Conducted limit (dBμV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

4.3.2 Test Procedures

- 6. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 7. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 8. All the support units are connecting to the other LISN.
- 9. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 10. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 11. Both sides of AC line were checked for maximum conducted interference.
- 12. The frequency range from 150 kHz to 30 MHz was searched.
- 13. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

4.3.3 Test Result of AC Conducted Emission

Tel.:+86-731-89634887

Test Mode :	Mode 1		Temperature : 2°		21~2	21~23 ℃			
Test Engineer :	Jerry Wang		-		41~43	41~43%			
Test Voltage :	120Vac / 60Hz		-		Neutr	al			
Function Type :	Wireless 2.4	4G Link +	USB Ca	able (Cha	harging from Adapter)				
70 Level (dBuV 47.5		5	7	9	Att	11 12 12 (1/10*)	,	019-10-2	22 ———————————————————————————————————
-20.15 .2				2			40	20	
.15 .2	.5	1	Freq	∠ uency (MH	5 z)		10	20	30
Freq MHz			able oss	Result level dBuV	Limit level dBuV	Over limit dB	Remark		
0.150 0.150			.04).04	33.03 23.30		-32.97 -32.70	QP Average		
0.244 0.244	18.00 9 7.83 9).65 0	0.04	27.69 17.52	61.95 51.95	-34.26 -34.43	Peak Average		
0.637 0.637).04).04	28.78 19.06		-27.22 -26.94	QP Average		
1.303 1.303 2.678	15.57 9 5.97 9	9.85 0 9.85 0	0.05 0.05 0.06	25.47 15.87 30.48	56.00 46.00	-30.53	_		
2.678 6.121 6.121	10.69 9 18.52 9	9.82 0 9.89 0).06).09).09	20.57 28.50 17.08	46.00 60.00	-25.43 -31.50 -32.92	Average QP Average		

ECLOUD

4.4 Antenna Requirements

4.4.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

4.4.2 Antenna Connected Construction

An embedded-in antenna design is used.

4.4.3 Antenna Gain

The antenna peak gain of EUT is -1.2 dBi.

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (YY-MM-DD)	Due Date (YY-MM-DD)	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2019-01-23	2020-01-22	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2019-01-23	2020-01-22	Conducted
Thermal Chamber	Sanmtest	SMC-408-CD	2435	2019-07-05	2020-07-04	Conducted
Base Station	R&S	CMW 270	101231	2019-01-23	2020-01-22	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2019-04-10	2020-04-09	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2019-01-23	2020-01-22	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (YY-MM-DD)	Due Date (YY-MM-DD)	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2019-02-18	2020-02-17	Radiation
Amplifier	Sonoma	310	363917	2019-01-22	2020-01-21	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2019-01-22	2020-01-21	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2019-07-18	2020-07-17	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2017-03-03	2020-03-02	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2017-03-03	2020-03-02	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2017-03-03	2020-03-02	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2018-06-20	2021-06-19	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

N/A: No Calibration Required

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID: 2AKHJ-MW158A www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY		
Conducted emissions	9kHz~30MHz	2.60dB		
Radiated emission	30MHz ~ 1GMHz	5.05dB		
	1GHz ~ 18GHz	5.06 dB		
	18GHz ~ 40GHz	3.65dB		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Tel.:+86-731-89634887

APPENDIX A. SETUP PHOTOGRAPHS

Fig. 1 Radiated emission setup photo(Below 30MHz)

Fig. 2 Radiated emission setup photo(30MHz-1GHz)

Fig. 3 Radiated emission setup photo(Above 1GHz)

Fig. 4 Power line conducted emission setup photo