Nested Recursive Lexicographical Search:
Structural Estimation of Dynamic
Directional Games with Multiple Equilibria
Dynamic Programming and Structural Econometrics #19

Fedor Iskhakov, Australian National University John Rust, Georgetown University Bertel Schjerning, University of Copenhagen

Estimation of stochastic dynamic games

- Several decision makers (*players*)
 Maximize discounted expected lifetime utility
- 2. A state and a state of the s
- 3. Anticipate consequences of their current actions
- 4. Anticipate actions by other players in current and future periods (*strategic interaction*)
- 5. Operate in a stochastic environment (*state of the game*) whose evolution depend on the collective actions of the players
- ► Estimate structural parameters of these models
- ▶ Data on *M* independent markets over *T* periods
- ► Multiplicity of equilibria

Markov Perfect Equilibrium

- ► MPE is a pair of strategy profile and value functions:
- Bellman Optimality
 Each players solves their Bellman equiation for values V taking other players choice probabilities P into account
- Bayes-Nash Equilibrium
 The choice probabilities P are determined by the values V
- ► In compact notation

$$\mathbf{V} = \mathbf{\Psi}^{\mathbf{V}}(\mathbf{V}, \mathbf{P}, \theta)$$

 $\mathbf{P} = \mathbf{\Psi}^{\mathbf{P}}(\mathbf{V}, \mathbf{P}, \theta)$

Set of all Markov Perfect Equilibria

$$SOL(\Psi, \theta) = \left\{ (\mathbf{P}, \mathbf{V}) \middle| \begin{array}{c} \mathbf{V} = \Psi^{\mathbf{V}}(\mathbf{V}, \mathbf{P}, \theta) \\ \mathbf{P} = \Psi^{\mathbf{P}}(\mathbf{V}, \mathbf{P}, \theta) \end{array} \right\}$$

Maximum Likelihood

- ▶ Data from M independent markets from T periods $\mathbf{Z} = \{\bar{\mathbf{a}}^{mt}, \bar{\mathbf{x}}^{mt}\}_{m \in \mathcal{M}, t \in \mathcal{T}}$ Usually assume only one equilibrium is played in the data.
- For a given θ , let $(\mathbf{P}^{\ell}(\theta), \mathbf{V}^{\ell}(\theta)) \in SOL(\Psi, \theta)$ denote the ℓ -the equilibrium
- ► Log-likelihood function is

$$\mathcal{L}(Z,\theta) = \max_{(\mathbf{P}^{\ell}(\theta), \mathbf{V}^{\ell}(\theta) \in SOL(\Psi, \theta)} \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{I} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathbf{x}}^{mt}; \theta)$$

▶ The ML estimator is $\theta^{ML} = \arg \max_{\theta} \mathcal{L}(Z, \theta)$

Estimation methods for stochastic games

Maximum likelihood estimator

- ▶ Efficient, but expensive: need full solution method
- No problem with multiple equilibria
- Borkovsky, Doraszelsky and Kryukov (2010) All solution homotopy; Iskhakov, Rust and Schjerning (2016) RLS

Two-step estimators

- Fast, but potentially large finite sample biases
- Bajari, Benkard, Levin (2007); Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008)

$$\max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{Z}, \boldsymbol{\Psi}^{\mathbf{P}}(\boldsymbol{\Gamma}(\boldsymbol{\theta}, \boldsymbol{\hat{\mathbf{P}}}), \boldsymbol{\hat{\mathbf{P}}}, \boldsymbol{\theta}))$$

Estimation methods for stochastic games

Nested psuedo-likelihood (recursive two-step)

- Bridges the gap between efficiency and tractability
- Unstable under multiplicity

Math Programming with Equilibrium Constraints (MPEC)

- Reformulates ML problem as constrained optimization
- ► Should not be affected by multiplicity
- 🔋 Su (2013); Egesdal, Lai and Su (2015)

$$\max_{(\theta, \mathbf{P}, \mathbf{V})} \mathcal{L}(\mathbf{Z}, \mathbf{P}) \text{ subject to } \mathbf{V} = \mathbf{\Psi}^{\mathbf{V}}(\mathbf{V}, \mathbf{P}, \theta), \mathbf{P} = \mathbf{\Psi}^{\mathbf{P}}(\mathbf{V}, \mathbf{P}, \theta)$$

Summary of this paper

- Propose robust and computationally feasible MLE estimator for directional dynamic games (DDG), finite state stochastic games with particular transition structure
- Rely of full solution algorithm that provably computes all MPE under certain regularity conditions
- Employ smart discrete programming method to maximize likelihood function over the finite set of equilibria
- Provide Monte Carlo evidence of the performance
- Fully robust to multiplicity of MPE
- ► Relax single-equilibrium-in-data assumption
- ▶ Path to estimation of equilibrium selection rules

Nested Recursive Lexicographical Search (NRLS)

1. Outer loop

Maximization of the likelihood function w.r.t. to structural parameters $\boldsymbol{\theta}$

$$\theta^{ML} = \arg\max_{\theta} \mathcal{L}(Z, \theta)$$

2. Inner loop

Maximization of the likelihood function w.r.t. equilibrium selection

$$\mathcal{L}(Z,\theta) = \max_{(\mathbf{P}^{\ell}(\theta), \mathbf{V}^{\ell}(\theta) \in SOL(\Psi, \theta)} \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathbf{x}}^{mt}; \theta)$$

Max of a function on a discrete set organized into RLS tree

Branch and bound (BnB) method

Land and Doig, 1960 Econometrica

- Old method for solving discrete programming problems
- 1. Form a tree of subdivisions of the set of admissible plans
- 2. Specify a bounding function representing the best attainable objective on a given subset (branch)
- 3. Dismiss the subsets of the plans where the bound is below the current best attained value of the objective

Theory of BnB: branching

f(x) objective function

$$\max f(x)$$
 s.t. $x \in \Omega$

$$\Omega$$
 set of feasible x
$$\mathcal{P}_{j}(\Omega) \text{ partition of } \Omega \text{ into } k_{j} \text{ subsets, } \mathcal{P}_{1}(\Omega) = \Omega$$

$$\mathcal{P}_{j}(\Omega) = \{\Omega_{j1}, \dots, \Omega_{jk_{j}}: \ \Omega_{ji} \cap \Omega_{ji'} = \varnothing, i \neq i', \ \cup_{i=1}^{k_{j}} \Omega_{ji} = \Omega\}$$

$$\{\mathcal{P}_{j}(\Omega)\}_{j=1,\ldots,J}$$
 a sequence of J gradually refined partitions $k_{1} \leq \cdots \leq k_{j} \leq \cdots \leq k_{J}$ $\forall j=1,\ldots,J, \forall i=1,\ldots,k_{j}: \forall j'< j \ \exists i'_{i'} \ \text{such that} \ \Omega_{ij} \subset \Omega_{i'j'}$

Theory of BnB: branching

$$\max f(x)$$
 s.t. $x \in \Omega$

Theory of BnB: bounding

$$\max f(x)$$
 s.t. $x \in \Omega$

$$g(\Omega_{ij})$$
 bounding function: from subsets of Ω to real line $g(\Omega_{ij}) = f(x)$ for singletons, i.e. when $\Omega_{ij} = \{x\}$

Monotonicity of bounding function

$$\forall j \ \forall \Omega_{i_1 1} \supset \Omega_{i_2 2} \supset \cdots \supset \Omega_{i_j j}$$
$$g(\Omega_{i_1 1}) > g(\Omega_{i_2 2}) > \cdots > g(\Omega_{i_d l})$$

▶ Inequalities are reversed for the minimization problem

BnB with NRLS

- Branching: RLS tree
- Bounding: The bound function is partial likelihood calculated on the subset of states that

$$\mathcal{L}^{\mathsf{Part}}(Z, \theta, \mathcal{S}) = \frac{1}{M} \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{t=1}^{T} \log P_{i}^{\ell}(\bar{a}_{i}^{mt} | \bar{\mathbf{x}}^{mt}; \theta)$$
s.t. $(\bar{\mathbf{x}}^{mt}, \bar{a}_{i}^{mt}) \in \mathcal{S}$

- ▶ Monotonically declines as more data is added
- ▶ Equals to the full log-likelihood at the leafs of RLS tree

 $\boxed{14} \cdot \boxed{13} \cdot \boxed{12} \cdot \boxed{11} \cdot \boxed{10} \text{ Partial loglikelihood} = -3.2$

BnB and numerical performance of NRLS estimator

Numerical performance and refinements of NRLS estimator

- ► Numerical performance of NRLS estimator depends crucially on how the data is able to distinguish between different equilibria
- ▶ Bounding criterion is deterministic → may use statistical criterion to decide whether to extend a given branch or not
- ► Have to assess potential likelihood contribution of the branches that are not fully extended → Vuong closeness test (LR-type test to assess how different two equilibria are given already computed partial likelihood)
- ⇒ Poly-algorithm with statistical decision rule

Monte Carlo simulations

Α

Single equilibrium in the model Single equilibrium in the data

В

Multiple equilibria in the model Single equilibrium in the data

C

Multiple equilibria in the model Multiple equilibria in the data

- 1. Two-step CCP estimator
- 2. Nested pseudo-likelihood

vs. NRLS estimator

3. MPEC

Implementation details

- ► Two-step estimator and NPL
 - Matlab unconstraint optimizer (numerical derivatives)
 - CCPs from frequency estimators
 - For NPL max 30 iterations
- ► MPEC
 - Matlab constraint optimizer (interior-point algorithm)
 - MPEC-VP: Constraints on both values and choice probabilities (as in Egesdal, Lai and Su, 2015)
 - MPEC-P: Constraints in terms of choice probabilities + Hotz-Miller inversion
 - Starting values from two-step estimator
- **E**stimated parameters $\theta = (k_1, k_2)$
- ► Sample size: 1000 markets in 5 time periods
- ▶ Initial state drawn uniformly over the state space

Monte Carlo A, run 1: no multiplicity

Maximum number of equilibria in the model: 1

Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.51893	3.51022	3.50380	3.50380	3.50380	
Bias	0.01893	0.01022	0.00380	0.00380	0.00380	
MCSD	0.12087	0.12635	0.11573	0.11573	0.11573	
k2=0.5	0.50860	0.50658	0.50452	0.50452	0.50452	
Bias	0.00860	0.00658	0.00452	0.00452	0.00452	
MCSD	0.06460	0.06247	0.05939	0.05939	0.05939	
log-likelihood	-1958.176	-1953.406	-1953.327	-1953.327	-1953.327	
$ \Psi^{P}(P) - P $	0.25285	0.00001	0.00000	0.00000	0.00000	
$ \Psi^{V}(v) - v $	0.50038	0.00001	0.00000	0.00000	0.00000	
Converged,%	100	100	100	100	100	
K-L divergence	0.131139	0.005020	0.006770	0.006770	0.006770	

- ▶ All MLE estimators identical to the last digit
- ▶ NPL estimator is approaching MLE

Monte Carlo A, run 2: no multiplicity at true parameter

Maximum number of equilibria in the model: 3 Number of equilibria at true parameter value: 1

Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.50467	3.51307	3.49485	3.49318	3.49318	
Bias	0.00467	0.01307	-0.00515	-0.00682	-0.00682	
MCSD	0.11252	0.00000	0.10193	0.10177	0.10177	
k2=0.5	0.50035	0.47394	0.50265	0.50157	0.50157	
Bias	0.00035	-0.02606	0.00265	0.00157	0.00157	
MCSD	0.05009	0.00000	0.04154	0.04205	0.04205	
log-likelihood	-4106.771	-3940.158	-4091.873	-4093.040	-4093.04	
$ \Psi^{P}(P) - P $	0.41453	0.00001	0.00000	0.00000	0.00000	
$ \Psi^{V}(v) - v $	1.90182	0.00005	0.00000	0.00000	0.00000	
Converged,%	100	1	98	100	100	
K-L divergence	0.188551	0.004546	0.002921	0.002921	0.002920	

- ▶ NPL estimator fails to converge
- ▶ MPEC is not affected by "nearby" equilibria with good starting values (PML2step)

Monte Carlo B, run 1: moderate multiplicity

Number of equilibria in the model (at true parameter): 3 Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS	
k1=3.5	3.50081	-	3.72713	3.94941	3.49624	
Bias	0.00081	-	0.22713	0.44941	-0.00376	
MCSD	0.12050	-	0.85934	1.16633	0.09537	
k2=0.5	0.49478	-	0.56166	0.62361	0.49381	
Bias	-0.00522	-	0.06166	0.12361	-0.00619	
MCSD	0.04317	-	0.25552	0.32488	0.03510	
log-likelihood	-4070.035	-	-4080.989	-4121.102	-4049.647	
$ \Psi^{P}(P) - P $	0.50375	-	0.00000	0.00000	0.00000	
$ \Psi^{V}(v)-v $	2.83611	-	0.00000	0.00000	0.00000	
Converged,%	100	0	100	100	100	
K-L divergence	0.304411	-	0.018636	2.302525	0.006314	

- ▶ NPL estimator fails to converge
- ▶ MPEC fails to identify the equilibrium that generated the data (converges to a different MPE) as seen from MCSD and K-L divergence

Monte Carlo B, run 2: higher multiplicity

Number of equilibria in the model (at true parameter): 81 Number of equilibria in the data: 1

	PML2step	NPL	MPEC-VP	MPEC-P	NRLS
k1=3.5	3.51468	-	3.48740	3.49007	3.47786
Bias	0.01468	-	-0.01260	-0.00993	-0.02214
MCSD	0.04844	-	0.02802	0.02929	0.02731
k2=0.5	0.53780	-	0.49197	0.48944	0.49252
Bias	0.03780	-	-0.00803	-0.01056	-0.00748
MCSD	0.03894	-	0.00850	0.01033	0.00404
log-likelihood	-4038.78471	-	-4007.45663	-4010.18139	-3996.45223
$ \Psi^{P}(P) - P $	0.68907	-	0.00000	0.00000	0.00000
$ \Psi^{V}(v) - v $	5.44052	-	0.00000	0.00000	0.00000
Converged,%	100	0	100	100	100
K-L divergence	0.453917	-	0.278263	0.356678	0.000750

- ▶ NPL estimator fails to converge
- ▶ MPEC fails to identify the DGP equilibrium (converges to a different MPE)
- With good starting values, does not suffer more with higher multiplicity

NRLS Monte Carlo setup (C)

- ightharpoonup n = 3 points on the grid of the grid of costs
- ▶ 14 points in state space of the model
- ▶ 109 MPE in total
- ▶ 1000 random samples from 3 different equilibria (3 markets)
- ▶ 100 observations per market/equilibrium
- ▶ Uniform distribution over state space ↔ "ideal" data
- Estimating one parameter in cost function

Distribution of estimated k_1 parameter

MC results and numerical performance of NRLS

1. Average bias and RMSE of the estimates of the cost of investment parameter (true value is 10.0)

Bias =
$$0.0737$$

RMSE = 0.8712

- 2. Average fraction of MPE computed by BnB relative to RLS 0.321 (std=0.11635)
- 3. Average fraction of stages solved by BnB relative to RLS 0.263 (std=0.09725)
- 4. All 3 MPE correctly identified by BnB in 98.4% of runs

Identification of multiple equilibria in the data (C)

- ▶ 100 random samples
- ▶ 3 market clusters with different equilibria
- ▶ 1000 observations per market cluster/equilibrium in 3 time periods
- ▶ Among all runs, 93% of equilibria were pin-pointed exactly
- Among the misidentified equilibria, all had deviation in one point of the state space

Background Nested RLS Monte Carlo Wrap-up

Contributions and further developments

- NRLS is MLE estimator for dynamic games of a particular type, directional dynamic games (DDGs)
 - Fully robust to multiplicity of equilibria
 - Able to identify multiple equilibria in the data
- Further work on and tests of numerical performance
 - Refinements of the implementation of NRLS (optimization of BnB algorithm)
 - Statistical bounding criterion
- More detailed comparison of existing estimators using leapfrogging game
 - ▶ Refine the implementation of MPEC
 - Include recent estimators into the battery (Aguirregabiria and Marcoux, 2019, Bugni and Bunting, 2020)