

DERWENT-ACC-NO: 1996-159022

DERWENT-WEEK: 199616

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Photothermoplastic material for holographic recording - uses N-epoxy:propyl:carbazole polymer or its copolymer with glycidyl ester as polymeric photoconductor, and sensitiser

INVENTOR: MYSYK, D D; PEREPICHKA, I F ; SOKOLOV, N I

PATENT-ASSIGNEE: AS UKR PHYS ORG CHEM COAL CHEM INST[AUPHR] , DON POLY [DONE], UNIV KIEV SHEVCHENKO [KISU]

PRIORITY-DATA: 1989SU-4736918 (September 11, 1989)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
PAGES MAIN-IPC		
SU 1743300 A1	August 27, 1995	R
007 G03G 005/09		

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO
APPL-DATE		
SU 1743300A1	N/A	1989SU-4736918
September 11, 1989		

INT-CL (IPC): G03G005/07, G03G005/09

ABSTRACTED-PUB-NO: SU 1743300A

BASIC-ABSTRACT:

A photothermoplastic material for holographic recording uses poly-N-epoxypropyl carbazole copolymer or N-epoxypropyl carbazole and glycidyl ester of formula (I) of mol. wt. 800-900 units, where x = 0-0.14, n = 3-5, R is C₂H₅, C₃H₇, iso-C₃H₇, C₄H₉, C₅H₁₁, C₇H₁₅, C₁₀H₂₁, C₆H₅, p-CH₃O_C6H₄ or C₆H₅CH₂ as photoconductor, and 2,7-di-p-undecyloxycarbonyl-4,5-dinitro-9-dicyanomethylenefluorene of formula (II) as sensitiser,

added in
amounts of 5-12 % w.r.t. (I).

USE - In holographic recording.

ADVANTAGE - Increased holographic range and sensitivity and low values of parasitic memory without affecting its max. diffraction efficiency.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: PHOTOTHERMOPLASTIC MATERIAL HOLOGRAM RECORD N EPOXY PROPYL

CARBAZOLE POLYMER COPOLYMER GLYCIDYL ESTER POLYMERISE PHOTOCONDUCTOR SENSITIVE

DERWENT-CLASS: A21 A89 G08 P84 S06

CPI-CODES: A05-H; A12-L02E; G06-D; G06-E; G06-F03A; G06-F03D; G06-F06;

EPI-CODES: S06-A01A1; S06-A01A3;

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1]

018 ; H0000 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34 D07 D73
D79 D41 D42 D50 D93 F08 F07 ; P0055 ; P0975*R P0964 F34 D01 D10
; H0317

Polymer Index [1.2]

018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34
D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1558*R D01 F47 D11 D10 D23
D22 D31 D73 D42 D50 D85 D86 D87 D90 ; P0055 ; P0975*R P0964 F34
D01 D10 ; H0317

Polymer Index [1.3]

018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34
D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1558*R D01 F47 D11 D10 D19
D18 D23 D22 D32 D73 D76 D50 D89 ; P0055 ; P0975*R P0964 F34 D01
D10 ; H0317

Polymer Index [1.4]

018 ; H0022 H0011 ; G1581 G1558 D01 F47 D11 D10 D23 D22 D25 D34
D07 D73 D79 D41 D42 D50 D93 F08 F07 ; G1581 G1558 D01 F47 D11 D10
D23 D22 D73 D42 D50 D90 F34 D19 D18 D32 D76 ; P0055 ; P0975*R
P0964
F34 D01 D10 ; H0317

Polymer Index [1.5]

018 ; ND01 ; Q9999 Q8640 Q8606 ; B9999 B5094 B4977 B4740 ;
K9847*R
K9790 ; Q9999 Q8628 Q8617 Q8606

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1996-050163

Non-CPI Secondary Accession Numbers: N1996-133281

(19) SU (11) 1743300 (13) A1

(51) 6 G03G5/09, G03G5/07

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству СССР

Статус: прекратил действие (по данным на 16.06.2005)

(14) Дата публикации: 1995.08.27

(21) Регистрационный номер заявки: 4736918/04

(22) Дата подачи заявки: 1989.09.11

(46) Дата публикации формулы изобретения:
1995.08.27

(56) Аналоги изобретения: Авторское свидетельство СССР N 1228672, кл. G 03G 5/022, 1986.
Авторское свидетельство СССР N 1441964, кл. G 03G 5/022, 1988. Sulzberg T., Cotter R.J.
Electron Acceptors Perived from Fluorenecarboxylic Acids and Their Charge - Transfer Complexes. - J.Org. Chem., 1970, 35, N 8, p.2762-2769.

(71) Имя заявителя: Институт физико-органической химии и углехимии АН УССР; Киевский государственный университет; Донецкий политехнический институт

(72) Имя изобретателя: Перепичка И.Ф.; Мысык Д.Д.; Соколов Н.И.; Костенко Л.И.; Перельман Л.А.; Гребенюк С.А.; Попов А.Ф.; Баженов М.Ю.; Барабаш Ю.М.

(54) ФОТОТЕРМОПЛАСТИЧЕСКИЙ НОСИТЕЛЬ ИНФОРМАЦИИ

Использование: оптическая голограмма. Сущность изобретения: фототермопластический носитель состоит из подложки, электропроводящего покрытия и светочувствительного слоя, содержащего в качестве полимерного фотопроводника поли-N-эпоксипропилкарбазол или сополимер N-эпоксипропилкарбазола с глицидиловым эфиром общей формулы (см.ниже) мол. м. 800 900 а. е. м. где x 0 0,14, n 3 5, R = C₂H₅, C₃H₇, i-C₃H₇, C₄H₉, C₅H₁₁, C₇H₁₅, C₁₀C₂₁, C₆H₅, n-CH₃OCH₂H₄, C₆H₅CH₂ а в качестве сенсибилизатора 2,7-ди-n-ундекилоксикарбонил-4,5-динитро-9-дицианометиленфлуорен формулы (см.ниже) в количестве 5-12% от массы полимерного фотопроводника. Материал имеет голографическую чувствительность S_n = 1% = 15-27 м²/Дж при λ 750 нм, дифракционную эффективность h_{max} 20-25% и значение "паразитной памяти" 0,8-1,5% 2 ил. 1 табл.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к химико-фотографической промышленности, в частности к записи информации на бессеребряных носителях, и касается создания фотопроводниковых термопластических сред, которые могут быть использованы для регистрации оптических голограмм.

Целью изобретения является создание однослоиного фототермопластического носителя (ФТПН) с высокими значениями голографической чувствительности в видимой области спектра, расширенной областью фоточувствительности в длинноволновую часть спектра при сохранении высоких значений максимальной дифракционной эффективности и низких значений "паразитной памяти". На чертеже показано спектральное распределение электрофотографической чувствительности

фототермоластических носителей: 1 ПЭПК- 5% УдДДФК (прототип);

2 ПЭПК 10% Уд₂ДДФК.

В качестве сенсибилизатора используют 2,7-ди-н-ундецилксикарбонил-4,5-динитро-9-дицианометиленфлуорен (IV) синтезированный по схеме

Пример 1. Синтез 2,7-ди-н-ундецилоксикарбонил-4,5-динитрофлуоренона (СН).

0,72 г 4,5-динитрофлуоренон-2,7-дикарбоновой кислоты (I), 10 мл хлористого тионила и 2 капли диметилформамида нагревают до кипения (полное растворение через 3-4 мин) и кипятят с обратным холодильником 1 ч. В вакууме водоструйного насоса на масляной бане отгоняют досуха хлористый тионил, к остатку хлорангидрида (II) добавляют 5 мл свежеперегнанного н-ундецилового спирта и нагревают массу 1,5 ч при 110-120°C. Реакционную массу охлаждают до 90°C, добавляют 10 мл этилового спирта и оставляют на кристаллизацию. Осадок отфильтровывают, промывают на фильтре 2 раза этиловым спиртом (по 3 мл) и сушат в вакууме (1 мм рт.ст. 100°C) 1 ч.

Выход соединения (II) 1,18 г (88,0% от теоретического), т.пл. 117,5-119°C.

Для очистки продукт растворяют в 5 мл горячего ацетона, фильтруют, добавляют 10 мл горячего этилового спирта и оставляют на кристаллизацию. Осадок отфильтровывают, дважды промывают на фильтре этиловым спиртом (по 5 мл), сушат.

Выход соединения (III) 1,12 г (95% на стадии очистки; 83,6% на соединение I), бледно-желтые мелкие кристаллы, т.пл. 119,0-119,5°C.

Найдено, С 66,78; 66,86; Н 7,70, 7,83; N 4,17; 4,34.

C₃₇H₅₀N₂O₉.

Вычислено, С 66,65; Н 7,56; N 4,20.

ИК-спектр (вазелиновое масло, ν (см⁻¹): 3090 (C-H), 1740 (C=O), 1635, 1560 (NO₂), 1460, 1420, 1350 (NO₂), 1305, 1290, 1245, 1190, 1110, 1095, 1045, 970, 940, 930, 835, 790, 770, 750, 730, 710,

Пример 2. Синтез 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлуорена (IV).

1,0 г (0,0015 моль) 2,7-ди-н-ундецилоксикарбонил-4,5-динитрофлуоренона (III) растворяют в 7 мл диметилформамида при небольшом подогреве. Добавляют 0,3 г (0,0045 моль) малонодинитрила и перемешивают при комнатной температуре 2 ч. К реакционной массе приливают 20 мл этилового спирта и оставляют на кристаллизацию. Отфильтровывают выпавший осадок, промывают этиловым спиртом и сушат.

Выход соединения (IV) 0,98 г (91,6% от теоретического), т.пл. 118-121°C.

Продукт растворяют в 4 мл кипящего ацетона, приливают 20 мл горячего этилового спирта и оставляют на кристаллизацию. Выход соединения IV 0,93 г (94,9% на стадии очистки; 86,9% в расчете на соединение III), т.пл. 119-122,3°C.

После перекристаллизации из 170 мл н-гексана получают 0,81 г (87,1% на стадии кристаллизации; 75,7% в расчете на соединение III) ярко-желтых мелких кристаллов 2,7-ди-н-ундецилоксикарбонил-4,5-динит-ро-9-дицианометиленфлуорена (IV), т.пл. 122-123,4°C.

Найдено, С 67,09; 67,28; Н 7,04; 7,15; N 7,61; 7,77.

Вычислено, С 67,21; Н 7,05; N 7,84.

ИК-спектр (вазелиновое масло), ν (cm^{-1}): 3105 (С-Н), 2240 (С N), 1740 (С= О), 1630, 1555 (NO_2), 1545 (NO_2), 1460, 1355 (NO_2)- 1315, 1290, 1265, 1185, 1125, 920, 840, 830, 790, 780, 770, 760, 745, 695.

П р и м е р 3. Фототермопластический носитель ПЭПК + 3% $\text{Ud}_2\text{ДДФДК}$.

0,5 г поли-N-эпоксипропилкарбазола (ПЭПК) и 0,015 г 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлуорена ($\text{Ud}_2\text{ДДФДК}$) растворяют каждый в отдельности, в 5 мл толуола. Растворы сливают и фильтруют. Полученный раствор наносят на стеклянные подложки с электропроводящим покрытием SnO_2 , сушат (после сушки толщина слоя составляет $1,2 \pm 1 \text{ мкм}$) и проводят испытания полученного фототермопластического носителя. Результаты испытаний представлены в таблице.

П р и м е р 4-8. ПЭПК + 5, 8, 11, 15, 20% $\text{Ud}_2\text{ДДФДК}$.

Отличаются от примера 3 тем, что при приготовлении раствора сенсибилизатора берут соответственно 0,025; 0,04; 0,055; 0,075; 0,1 г $\text{Ud}_2\text{ДДФДК}$. Результаты испытаний представлены в таблице.

П р и м е р 9-26. Фототермопластические носители П(ЭПК + ГЭ) + $\text{Ud}_2\text{ДДФДК}$.

Отличаются от примера 3 тем, что в качестве фотопроводника используют сополимеры N-эпоксипропилкарбазола с глицидиловыми эфирами, а для приготовления раствора сенсибилизатора берут соответствующее количество $\text{Ud}_2\text{ДДФДК}$ (0,01-0,07 г). Результаты испытаний представлены в таблице.

П р и м е р 27. Спектральное распределение электрофоточувствительности фототермопластического носителя ПЭПК + 10% $\text{Ud}_2\text{ДДФДК}$.

Спектральное распределение электрофоточувствительности ($S_{\lambda} \text{ м}^2/\text{Дж}$) получено измерениями $\frac{S_{\Delta\lambda}}{\Delta\lambda}$ 0,2 при различных длинах волн. Результаты измерений представлены на графике. На этом же графике дано спектральное распределение электрофоточувствительности материала-прототипа ПЭПК 5% UdДДФК .

Пример 28-30 (контрольные). Фототермопластические носители ПЭПК УдДФК.

Отличаются от примера 3 тем, что в качестве сенсибилизатора берут н-ундециловый эфир 2,7-динитро-9-дицианометиленфлуорен-4-карбоновой кислоты (УдДФК) в количестве 0,015 и 0,04 г соответственно. Результаты испытаний представлены в таблице.

ПЭПК получен анионной полимеризацией N-эпоксипропилкарбазола под действием KOH. Все сополимеры П(ЭПК + ГЭ) получены аналогично ПЭПК совместной полимеризацией N-эпоксипропилкарбазола с соответствующим глицидиловым эфиром в присутствии 2-3% едкого кали от массы мономеров при 125-135°C с последующей нейтрализацией реакционной массы и высаждением продукта в гексан. Среднечисловые значения молекулярной массы как ПЭПК, так и сополимеров мало различаются между собой и составляют 800-900 м.е. остаточные эпоксидные числа не превышают 0,5%

Испытания образцов проведены методом голограммической интерферометрии в излучении НЕ-Не лазера ($\lambda = 633$ нм). Поверхностный потенциал V_o измерен динамическим зондовым методом (в таблице)

потенциал заряжения слоя фототермопластического материала стандартизован для толщины 1 мкм). Темновой спад поверхностного потенциала (ТСПП) определен как $\frac{V_o - V_T}{V_o} \cdot 100\%$ где V_T - поверхностный

потенциал слоя через время $T = 30$ с. Электрофотографическая чувствительность $S \frac{\Delta V}{V}$ 0,2 оценена по спаду поверхностного потенциала (V_o) на 20% под действием света при электрических полях $E = 1,2 \cdot 10^8$ В/м. Спектральное распределение электрофоточувствительности (S_λ) получено измерениями $S \frac{\Delta V}{V}$ 0,2 0,2 при различных длинах волн. Голограммическая чувствительность ($S_\eta = 1\% \text{ м}^2/\text{Дж}$) измерена путем регистрации голограмм плоского волнового фронта на пространственной частоте $V = 450$ линий/мм. Дифракционная эффективность η_{max} найдена как отношение интенсивности света, дифрагированного в первый порядок, к интенсивности падающего на голограмму света. "Паразитная память" (II) определена как отношение дифракционной эффективности "паразитной памяти" (η_p), возникшей при новом цикле записи после стирания предыдущей голограммы плоского волнового фронта, записанной с максимальной дифракционной эффективностью

$$\left(\Pi \frac{\eta_p}{\eta_{max}} \cdot 100 \right)$$

Таким образом, предлагаемый ФТПН обладает высокими значениями голограммической чувствительности ($S_\eta = 1\% \text{ } 110-180 \text{ м}^2/\text{Дж}$ при 633 нм, $S_\eta = 1\% \text{ } 15-27 \text{ м}^2/\text{Дж}$ при $\lambda = 750$ нм), расширенной областью фоточувствительности в длинноволновую часть спектра (на $\approx 25-30$ нм) при сохранении высоких значений максимальной дифракционной эффективности ($\eta_{max} 20-25\%$) и низких значений "паразитной памяти" ($\Pi 0,8-1,5\%$).

Предлагаемый ФТПН может быть использован в голограммической интерферометрии для многократной регистрации оптических голограмм транспарантов и диффузных объектов в реальном масштабе времени.

ФОРМУЛА ИЗОБРЕТЕНИЯ

ФОТОТЕРМОПЛАСТИЧЕСКИЙ НОСИТЕЛЬ ИНФОРМАЦИИ, состоящий из подложки, электропроводящего покрытия и светочувствительного слоя, содержащего полимерный фотопроводник и сенсибилизатор, отличающийся тем, что, с целью повышения голограммической чувствительности и расширения области спектральной чувствительности в длинноволновую часть спектра при сохранении высоких значений

максимальной дифракционной эффективности и низких значений "паразитной памяти", светочувствительный слой содержит в качестве полимерного фотопроводника поли-N-эпоксипропилкарбазол или сополимер N-эпоксипропилкарбазола с глицидиловым эфиром общей формулы

мол.л. 800 900 а.е.м.

где $x \in [0, 14]$;

n 35;

R C₂H₅, C₃H₇, I-C₃H₇, C₄H₉, C₅H₁₁, C₇H₁₅, C₁₀H₂₁, C₆H₅,

n-CH₃OC₆H₄, C₆H₅CH₂,

а в качестве сенсибилизатора - 2,7-ди-н-ундецилоксикарбонил-4,5-динитро-9-дицианометиленфлуорен формулы

в количестве 5-12% от массы полимерного фотопроводника.

РИСУНКИ

[Рисунок 1](#), [Рисунок 2](#), [Рисунок 3](#), [Рисунок 4](#), [Рисунок 5](#)

$S_A, \text{m}^2/\text{A}$

Но- мер при- мера	Фотопроводник	К-во сensiбилизато- ра, мас. %	V _o В/мкм	%	TCПП.	$\lambda=633$ мм	$S \frac{\Delta V}{V} = 0,2$	$S\eta = 1$ %
							$m^2/\text{Дж}$	$m^2/\text{Дж}$
3	ПЭПК	3	100	7-8	2,8-3,0	60		
4	ПЭПК	5	165	10	4,0	120		
5	ПЭПК	8	140	20	5,0	170		
6	ПЭПК	11	120	25	4,5	130		
7	ПЭПК	15	75	30	2,5	60		
8	ПЭПК	20	50	40	1,0			
9	П(ЭПК+9% ВиГЭ)	2	170	5-6	1,2	40-45		
10	П(ЭПК+9% ВиГЭ)	4	170	6-7	2,5-3,0	80-90		
11	П(ЭПК+9% ВиГЭ)	6	155	10	4,5-5,0	140-150		
12	П(ЭПК+9% ВиГЭ)	8	140	17	5,0	160		
13	П(ЭПК+9% ВиГЭ)	10	125	25	4,0-4,5	130		
14	П(ЭПК+9% ВиГЭ)	12	80	30	2,5	70-100		
15	П(ЭПК+9% ВиГЭ)	14	60	35	1	до 20		
16	П(ЭПК+9% РтГЭ)	8	150	20	4,0-5,0	140		
17	П(ЭПК+9% НерГЭ)	8	140	20	3,0-4,0	110		
18	П(ЭПК+9% DecГЭ)	8	150	20	5,0	180		
19	П(ЭПК+9% НерГЭ)	8	140	20	3,0-4,0	120		
20	П(ЭПК+9% DzГЭ)	8	140	20	3,5-4,0	130		
21	П(ЭПК+9% PhГЭ)	8	145	20	4,0-5,0	155		
22	П(ЭПК+9% PhГЭ)	8	150	17	5,0-5,5	190		
23	П(ЭПК+14% PhГЭ)	8	130	20	4,0-4,5	135		

Продолжение таблицы

Но- мер при- мера	Фотопроводник*	К-во сенсибилизато- ра, мас. %	V ₀ , В/мкм	ТСПП, %	$\lambda=633$ мм	
					$S \frac{\Delta v}{v} = 0,2$	$S\eta = 1\% m^2/Dж$
24	П(ЭПК+17%РhГЭ)	8	125	20	2,0-3,0	90
25	П(ЭПК+14%MeOPhГЭ)	8	140	20	4,0-5,0	155
26	П(ЭПК+14%АmГЭ)	8	145	20	5,0	165
28	ПЭПК**	3	160	10	4,0	80
29	(прототип)	5	150	10	6,5	120
30		8	120	25	7,0	100

Продолжение таблицы

Номер примера	$\lambda = 700$ мм		$\lambda = 750$ мм		η_{max} , %	П, %
	$S \frac{\Delta v}{v} = 0,2$	$S\eta = 1\% m^2/Dж$	$S \frac{\Delta v}{v} = 0,2$	$S\eta = 1\% m^2/Dж$		
3	1,3	30-35	0,25-0,30	8-10	27	2,0
4	1,7-2,0	60-65	0,5	12-15	25	1,0-1,5
5	2,8-3,0	80-90	0,9	20-25	25	0,8-1,0
6	2,6-2,8	60-70	0,7	15-18	22	0,5
7	1,5	25	0,3	5	7	
8					1,5	
9	0,6-0,7	20-23	0,15-0,2	4-5	27	1,5-2,0
10	1,3-1,5	45-50	0,3-0,35	10-12	25	1,2-1,5
11	2,2-2,7	70-80	0,6-0,7	20-25	25	1,0-1,2
12	2,6-2,8	80-90	0,8-1,0	22-26	25	0,8-1,0
13	2-2,2	55-60	0,6-0,5	10-15	22	0,5
14	1,2-1,3	30	0,2-0,25	5-7	15	
15						
16			0,7-0,8	19-22	23	0,8
17			0,6-0,7	17-20	18	1,0-1,5
18			0,9-1,0	24-26	25	0,8-1,0
19			0,6-0,7	17-20	20	1,0-1,5
20			0,7	19-22	20	1,5
21			0,8-0,9	20-23	25	1,5
22			0,9-1,0	25-27	25	1,0
23			0,7-0,8	19-22	23	1,0
24			0,4	10-12	20	
25			0,8-0,9	20-23	25	1,0
26			0,8-0,9	22-25	25	0,8

Продолжение таблицы

Номер примера	$\lambda = 700 \text{ м} \mu$		$\lambda = 250 \text{ м} \mu$		$\eta_{\text{max}}, \%$	$\Pi, \%$
	$S\frac{\Delta V}{V} = 0,2$	$S\eta = 1 \%$	$S\frac{\Delta V}{V} = 0,2$	$S\eta = 1 \%$		
28	1,2	30-35	0,3	6-7	0,4	40-50
29	1,8	60-65	0,5	10-12	0,4	25
30	1,8	40-50	0,4	8-10	0,4	25
					2,0	0,7

* ПЭПК – поли-N-эпоксипропилкарбазол, $\Pi(\text{ЭПК} + 9\% \text{ Ви ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 9 мол. % бензилглицидинилового эфира, $\Pi(\text{ЭПК} + 9\% \text{ Pr ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 9 мол. % фенилглицидинилового эфира, $\Pi(\text{ЭПК} - 14\% \text{ Ph ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 9 мол. % изопропилглицидинилового эфира, $\Pi(\text{ЭПК} + 9\% \text{ iPr ГЭ})$ – N-эпоксипропилкарбазола с 9 мол. % пропиляцетилового эфира, $\Pi(\text{ЭПК} + 9\% \text{ Et ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 9 мол. % этилглицидинилового эфира, $\Pi(\text{ЭПК} + 9\% \text{ Bz ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 9 мол. % Н-метоксифенилглицидинилового эфира, $\Pi(\text{ЭПК} + 14\% \text{ MeOPh ГЭ})$ – сopolимер N-эпоксипропилкарбазола с 14 мол. % амилглицидинилового эфира, $\Pi(\text{ЭПК} + 14\% \text{ Am ГЭ})$ – новой кислоты (УДДФК), $\Pi(\text{ЭПК} + 14\% \text{ Am ГЭ})$ – Сенсибилизатор – ундатумовый эфир 2,7-дийнитро-9-дицианометиленфлуорен-4-карбоновой кислоты (УДДФК).