Байесовский выбор моделей: обоснованность и отбор признаков в линейной и логистической регрессии

Александр Адуенко

17е октября 2023

Содержание предыдущих лекций

- lacktriangle Формула Байеса: $P(A|B) = \frac{P(B|A)P(A)}{P(B)};$
- \blacksquare Формула полной вероятности: $\mathsf{P}(B) = \mathsf{P}(B|A)\mathsf{P}(A) + \mathsf{P}(B|\overline{A})\mathsf{P}(\overline{A});$
- Определение априорных вероятностей и selection bias;
- (Множественное) тестирование гипотез
 Экспоненциальное семейства. Достаточные статистики.
- Наивный байесовский классификатор. Связь целевой функции и вероятностной модели.
- lacktriangle Линейная регрессия: связь МНК и ${f w}_{
 m ML}$, регуляризации и ${f w}_{
 m MAP}$.
- Свойство сопряженности априорного распределения правдоподобию.
- Прогноз для одиночной модели: $p(\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\mathbf{X}_{\text{train}},\mathbf{y}_{\text{train}}) = \int p(\mathbf{y}_{\text{test}}|\mathbf{w},\mathbf{X}_{\text{test}})p(\mathbf{w}|\mathbf{X}_{\text{train}},\mathbf{y}_{\text{train}})d\mathbf{w}.$
- Связь апостериорной вероятности модели и обоснованности $p(M_i|\mathbf{X}_{\text{train}},\ \mathbf{y}_{\text{train}}) \propto p(M_i)p_i(\mathbf{y}_{\text{train}}|\mathbf{X}_{\text{train}}).$
- $p(M_i|\mathbf{X}_{\mathrm{train}}, \mathbf{y}_{\mathrm{train}}) \propto p(M_i)p_i(\mathbf{y}_{\mathrm{train}}|\mathbf{X}_{\mathrm{train}}).$ Обоснованность: понимание и связь со статистической значимостью.

Обоснованность для линейной регрессии

 $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\varepsilon}, \ \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \ \mathbf{A}^{-1}), \ \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \ \sigma^2 \mathbf{I})$

Совместное правдоподобие: $p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}, \sigma^2) = p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2)p(\mathbf{w}|\mathbf{A}).$

Обоснованность:
$$p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \sigma^2) = \int p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}, \sigma^2) d\mathbf{w} = \int p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2) p(\mathbf{w}|\mathbf{A}) d\mathbf{w}.$$

 $\mathbf{y}|\mathbf{X}, \mathbf{A}, \sigma^2 \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{X} \mathbf{A}^{-1} \mathbf{X}^{\mathsf{T}})$

Поэтому:

 $\log p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \sigma^2) \propto -\frac{1}{2} \log \det(\sigma^2 \mathbf{I} + \mathbf{X} \mathbf{A}^{-1} \mathbf{X}^\mathsf{T}) - \frac{1}{2} \mathbf{y}^\mathsf{T} (\sigma^2 \mathbf{I} + \mathbf{X} \mathbf{A}^{-1} \mathbf{X}^\mathsf{T})^{-1} \mathbf{y}.$

Пример

$$y_i = \sin x_i + \varepsilon_i$$
, x_i равномерно выбрано на $[-\pi/2, \pi/2]$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^{-1}\mathbf{I})$

Значения параметров: $\alpha = 0.01, \ \sigma^2 = 0.1.$

Признаки: $1, x_i, x_i^2, \ldots, x_i^k, \ldots$

Пример: сравнение моделей

Байесовская логистическая регрессия

Пусть $\mathbf{X} \in \mathbb{R}^{m \times n}$ – признаковая матрица, а $\mathbf{y} \in \{\pm 1\}^m$ – метки класса.

Вопрос 1: как выбрать $p(\mathbf{w}|\mathbf{A})$?

Вопрос 2: Пусть $p(\mathbf{w}|\mathbf{A}) = \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}), \mathbf{A} = \operatorname{diag}(\boldsymbol{\alpha})$ Что происходит, когда $\alpha_i \to \infty$?

5/12

Обоснованность для логистической регрессии

Пусть $\mathbf{X} \in \mathbb{R}^{m \times n}$ – признаковая матрица, а $\mathbf{y} \in \{\pm 1\}_m^m$ – метки класса.

$$p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}|\mathbf{A})$$
, где $p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{j=1}^{m} \sigma(y_j \mathbf{w}^\mathsf{T} \mathbf{x}_j)$.

Идея: выбрать модель с максимальной обоснованностью. **Вопрос 1:** чем отличаются разные модели байесовской логистической регрессии, описанные выше?

Вычисление обоснованности.

Пусть далее $p(\mathbf{w}|\mathbf{A}) = \mathcal{N}(\mathbf{0}, \ \mathbf{A}^{-1}), \ \mathbf{A} = \operatorname{diag}_{f}(\boldsymbol{\alpha}).$

Тогда $\mathbf{A}^* = \operatorname*{arg\,max}_{\mathbf{A}} p(\mathbf{y}|\mathbf{X},\ \mathbf{A}) = \operatorname*{arg\,max}_{\mathbf{A}} \int \underbrace{p(\mathbf{y}|\mathbf{X},\ \mathbf{w})p(\mathbf{w}|\mathbf{A})}_{Q(\mathbf{w})} d\mathbf{w}.$

Проблема: интеграл аналитически не вычисляется.

Аппроксимация Лапласа $\frac{-\mathbf{H}^{-1}}{\log Q(\mathbf{w}) \approx \log Q(\mathbf{w}_{\mathsf{MAP}}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}_{\mathsf{MAP}})^\mathsf{T}} \overbrace{\nabla \nabla \log Q(\mathbf{w}_{\mathsf{MAP}})}^\mathsf{T} (\mathbf{w} - \mathbf{w}_{\mathsf{MAP}}).$

$$\mathbf{A}^* = \arg\max_{\mathbf{A}} \left(Q(\mathbf{w}_{\mathsf{MAP}}) \int e^{-\frac{1}{2}(\mathbf{w} - \mathbf{w}_{\mathsf{MAP}})^{\mathsf{T}} \mathbf{H}^{-1}(\mathbf{w} - \mathbf{w}_{\mathsf{MAP}})} d\mathbf{w} \right).$$

Вопрос 2: Как определяется $\mathbf{w}_{\mathsf{MAP}}$?

Вариационные нижние оценки

Определение. $g(x, \xi)$ вариационная нижняя оценка для $f(x) \Longleftrightarrow$

2
$$f(\xi)=g(\xi,\,\xi).$$
 Вместо $f(x)\to \max_x$ рассмотрим $g(x,\,\xi)\to \max_{x,\,\xi}$

Вместо
$$f(x) \to \max_x$$
 рассмотрим $g(x, \xi) \to \max_{x, \xi}$

$$1 \xi^n = \arg\max_x g(x^{n-1}, \xi)$$

$$2 x^n = \arg\max_{\xi} g(x, \, \xi^n)$$

VLB для сигмоидной функции

VLВ для сигмоидной функции
$$\sigma(x) \geq \sigma(\xi) \exp\left(-\frac{1}{4\xi}(2\sigma(\xi)-1)(x^2-\xi^2) + \frac{x-\xi}{2}\right).$$

Вопрос: в чем преимущество использования VLB при максимизации обоснованности в логистической регрессии?

LB для обоснованности в логистической регрессии

$$p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}) = \prod_{j=1}^{m} \sigma(y_j \mathbf{w}^\mathsf{T} \mathbf{x}_j) \frac{\sqrt{\det \mathbf{A}}}{(2\pi)^{n/2}} e^{-\frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{A} \mathbf{w}} \ge \text{VLB}(\mathbf{w}, \boldsymbol{\xi}, \mathbf{A}) =$$

$$\frac{\sqrt{\det \mathbf{A}}}{(2\pi)^{n/2}} e^{-\frac{1}{2}\mathbf{w}^\mathsf{T} \mathbf{A} \mathbf{w}} \prod_{j=1}^{j=1} \sigma(\xi_j) \exp\left(-\frac{2\sigma(\xi_j) - 1}{4\xi_j} (\mathbf{w}^\mathsf{T} \mathbf{x}_j \mathbf{x}_j^\mathsf{T} \mathbf{w} - \xi_j^2) + \frac{y_j \mathbf{w}^\mathsf{T} \mathbf{x}_j - \xi_j}{2}\right) =$$

$$\frac{\sqrt{\det \mathbf{A}}}{(2\pi)^{n/2}}\prod_{j=1}^m \sigma(\xi_j)e^{\frac{2\sigma(\xi_j)-1}{4\xi_j}}\xi_j^2-\frac{\xi_j}{2}e^{-\frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{A}^\prime\mathbf{w}+\mathbf{w}^\mathsf{T}\mathbf{v}}$$
, где

Iteration

$$\mathbf{A}' = \mathbf{A} + \sum_{j=1}^{m} \frac{2\sigma(\xi_j) - 1}{2\xi_j} \mathbf{x}_j \mathbf{x}_j^\mathsf{T}, \ \mathbf{v} = \frac{1}{2} \sum_{j=1}^{m} y_j \mathbf{x}_j.$$
 Тогда $p(\mathbf{y}|\mathbf{X}, \mathbf{A}) \geq \mathrm{LB}(\mathbf{A}, \boldsymbol{\xi}) = \int \mathrm{VLB}(\mathbf{w}, \boldsymbol{\xi}, \mathbf{A}) d\mathbf{w} \to \max_{\mathbf{A}, \boldsymbol{\xi}}.$

Иллюстрация отбора признаков в логистической регрессии

Апостериорное распределение в логистической регрессии

$$p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}|\mathbf{A})$$
, где $p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \prod_{j=1}^{m} \sigma(y_j \mathbf{w}^{\mathsf{T}} \mathbf{x}_j)$.
$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \mathbf{A}) = \frac{p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A})}{p(\mathbf{y}|\mathbf{X}, \mathbf{A})} = \frac{\prod_{j=1}^{m} \sigma(y_j \mathbf{w}^{\mathsf{T}} \mathbf{x}_j) \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{A}^{-1})}{p(\mathbf{y}|\mathbf{X}, \mathbf{A})}.$$

 $p(\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}}, \mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}) = \int p(\mathbf{y}_{\text{test}}|\mathbf{w}, \mathbf{X}_{\text{test}}) p(\mathbf{w}|\mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}) d\mathbf{w}.$

 $p(\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}}, \mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}}) = \int p(\mathbf{y}_{\text{test}}|\mathbf{w}, \mathbf{X}_{\text{test}})p(\mathbf{w}|\mathbf{X}_{\text{train}}, \mathbf{y}_{\text{train}})d\mathbf{w}.$ Вопрос 1: Как определить \mathbf{w}_{MAP} ? Единственное ли решение?

$$q(\mathbf{w}) = -\log p(\mathbf{y}, \ \mathbf{w} | \mathbf{X}, \ \mathbf{A}) = -\log p(\mathbf{w} | \mathbf{A}) - \log p(\mathbf{y} | \mathbf{X}, \ \mathbf{w}) = q(\mathbf{w}_{\mathrm{MAP}}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}_{\mathrm{MAP}})^{\mathsf{T}} \mathbf{H}(\mathbf{w} - \mathbf{w}_{\mathrm{MAP}}) + O(\|\mathbf{w} - \mathbf{w}_{\mathrm{MAP}}\|^{3}),$$
 где $\mathbf{H} = \mathbf{A} + \mathbf{X}^{\mathsf{T}} \mathbf{R} \mathbf{X}$, где $\mathbf{R} = \mathrm{diag}(\sigma(\mathbf{w}_{\mathrm{MAP}}^{\mathsf{T}} \mathbf{x}_{j}) \sigma(-\mathbf{w}_{\mathrm{MAP}}^{\mathsf{T}} \mathbf{x}_{j})).$

Нормальная аппроксимация: $p(\mathbf{w}|\mathbf{X},\ \mathbf{y},\ \mathbf{A}) pprox \mathcal{N}(\mathbf{w}|\mathbf{w}_{\mathrm{MAP}},\ \mathbf{H}^{-1}).$

Пример. Пусть n=1, $\mathbf{w}_{\text{MAP}}=1$. **Вопрос 2:** Что можно сказать про принадлежность объектов с $x=0;\ 1;\ -1;\ 5;\ -5$ к классу 1?

Вопрос 3: Как результат зависит от неопределенности h^{-1} ? Что происходит при $h \to 0$ и при $h \to \infty$?

Нелинейная разделяющая поверхность

$$p(\mathbf{y}_{\text{test}}|\mathbf{X}_{\text{test}},\ \mathbf{X}_{\text{train}},\ \mathbf{y}_{\text{train}}) = \int p(\mathbf{y}_{\text{test}}|\mathbf{w},\ \mathbf{X}_{\text{test}})p(\mathbf{w}|\mathbf{X}_{\text{train}},\ \mathbf{y}_{\text{train}})d\mathbf{w}.$$

Прогноз вероятности класса 1 в зависимости от неопределенности \boldsymbol{h}^{-1}

	x = -5	x = -1	x = 0	x = 1	x = 5
$h = \infty$	0.0067	0.269	0.5	0.731	0.9933
h = 1	0.169	0.301	0.5	0.699	0.831
h = 0	0.5	0.5	0.5	0.5	0.5

Вопрос 1: как учесть в модели, что классы не сбалансированы?

Bonpoc 2: что делать, если разделяющая поверхность нелинейна?

Выбросы и пропуски в данных

Вопрос 1: что делать, если разделяющая поверхность нелинейна? Идея:

$$\mathbf{x} \mapsto \varphi(\mathbf{x}) = [K(\mathbf{x}, \mathbf{x}_i), i = 1, \dots, m].$$

Вопрос 2: Чему соответствует отбор признаков при замене $\mathbf{x}\mapsto \varphi(\mathbf{x})=[K(\mathbf{x},\ \mathbf{x}_i),\ i=1,\ \dots,\ m]$?

Вопрос 3: Что если значения части признаков не заданы или некорректны? Что происходит при замене на среднее / медиану? Исходная модель: $p(\mathbf{y}, \mathbf{w}|\mathbf{X}, \mathbf{A}) = p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w}|\mathbf{A})$.

Пусть $\mathbf{X} = \tilde{\mathbf{X}} + \mathbf{Z}, \ \tilde{\mathbf{X}} \cdot \mathbf{Z} = \mathbf{0},$ где \mathbf{Z} – матрица значений пропусков.

Новая модель: $p(\mathbf{y}, \mathbf{w}, \mathbf{Z} | \tilde{\mathbf{X}}, \mathbf{A}) = p(\mathbf{y} | \tilde{\mathbf{X}}, \mathbf{Z}, \mathbf{w}) p(\mathbf{w} | \mathbf{A}) p(\mathbf{Z} | \tilde{\mathbf{X}}).$

$$p(\mathbf{w}|\mathbf{y}, \tilde{\mathbf{X}}, \mathbf{A}) \propto p(\mathbf{y}, \mathbf{w}|\tilde{\mathbf{X}}, \mathbf{A}) = \int p(\mathbf{y}, \mathbf{w}, \mathbf{Z}|\tilde{\mathbf{X}}, \mathbf{A}) d\mathbf{Z} = \int p(\mathbf{y}|\tilde{\mathbf{X}}, \mathbf{Z}, \mathbf{w}) p(\mathbf{w}|\mathbf{A}) \underbrace{p(\mathbf{Z}|\tilde{\mathbf{X}})}_{} d\mathbf{Z}.$$

Литература

- Bishop, Christopher M. "Pattern recognition and machine learning". Springer, New York (2006). Pp. 113-120, 161-171.
- 2 MacKay, David JC. Bayesian methods for adaptive models. Diss. California Institute of Technology, 1992.
- 3 Gelman, Andrew, et al. Bayesian data analysis, 3rd edition. Chapman and Hall/CRC, 2013.
- 4 Chen, Ming-Hui, and Joseph G. Ibrahim. "Conjugate priors for generalized linear models." Statistica Sinica (2003): 461-476.
- 5 Fahrmeir, Ludwig, and Heinz Kaufmann. "Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models." The Annals of Statistics (1985): 342-368.
- 6 Baghishani, Hossein, and Mohsen Mohammadzadeh. "Asymptotic normality of posterior distributions for generalized linear mixed models." Journal of Multivariate Analysis 111 (2012): 66-77.
- 7 Jaakkola, Tommi, and Michael Jordan. "A variational approach to Bayesian logistic regression models and their extensions." Sixth International Workshop on Artificial Intelligence and Statistics. Vol. 82.