

FIG. 1B PART ONE: TRIGGER REACTION

DOSSEDSY LOSSES

MAJORITY	MAJORITY ATGXXGGCGATGCTTCCCCTCTTTGAGCCCCAAAGGCCGGGTCCTCCTGGTGGAGGGCGGCACCTGGCT	
DNAPTAQ DNAPTFL DNAPTTH	A666	70 67 70
MAJORITY	MAJORITY ACCGCACCTTCTTCGCCCTGAAGGGCCTCACCACCACCOGGGGGGAACCGGTGCAGGCGGTTTACGGCTT	
DNAPTAQ DNAPTFL DNAPTTH	CA	140 137 140
MAJORITY	CGCCAAGAGCCTCCTCAAGGCCCCTGAAGGAGGACGGGGACXXGCCGGTGXTCGTGGTCTTTGACGCCAAG	
DNAPTAQ DNAPTFL DNAPTTH	AA	207 204 280
MAJORITY	MAJORITY GCCCCCTCCTTCCGCCACGAGGCCTACGAGGCCTACAAGGCGGGCCGGGCCCCCCCC	
DNAPTAQ DNAPTFL DNAPTTH		277 274 280
MAJORITY		
DNAPTAQ DNAPTFL DNAPTTH	A	347 344 350

FIG.2A

MAJORITY	MAJORITY CGAGGCGGACGAXCTGGCCACCCTGGCCAAGAAGGCGGAAAAGGAGGGGGTACGAGGTGCCATCCTC	
DNAPTAQ DNAPTFL DNAPTTH	T	417 414 420
MAJORITY	ACCGCCGACCGCGACCTCTACCAGCTCCTTTCCGACCGCATCGCCGTCCTCCACCCCGAGGGGTACCTCA	
DNAPTAQ DNAPTFL DNAPTTH		487 484 490
MAJORITY	TCACCCCGGCGTGGCTTTGGGAAGTACGGCCTGAGGCCGGAGCAGTGGGTGG	
DNAPTAQ DNAPTFL DNAPTTH	ACA	557 554 560
MAJORITY	GGGGGACCCCTCCGACAACCTCCCCGGGGTCAAGGGGCATCGGGGAGAAGACCGCCCXGAAGCTCCTCXAG	
DNAPTAQ DNAPTFL DNAPTTH	CGAGTGG CGAGTGG GGAGTA GGAGTGG AGGAGG AGGAGG AGGAGG AGG AGG AGG AGG AGG AGG	627 624 630
MAJORITY	GAGTGGGGGGGCCTGGAAACCTCCTCAAGAACCTGGACCGGGTGAAGCCCGC···CXTCCGGGAGAAGA	
DNAPTAQ DNAPTFL DNAPTTH	GCT.CCAT.GC	694 691 700

FIG. 2B

DOSEES, LOISOL

MAJORITY	TCCAGGCCCACATGGAXGACCTGTCTCCTGGGAGCTXTCCCAGGTGCGCACCGACCTGCCCTTGGA	
DNAPTAQ DNAPTFL DNAPTTH	764 	410
MAJORITY	MAJORITY GGTGGACTTCGCCAAGXGGCGGGGGCCCGGGGGGGGGGCTTAGGGGCCTTTCTGGAGAGGCTGGAGTTT	
DNAPTAQ DNAPTFL DNAPTTH	AA	440
MAJORITY	GGCAGCCTCCTCCACGAGTTCGGCCTCCTGGAGGGCCCCCAAGGCCCTGGAGGAGGCCCCCCCTGGCCCCCCCGC	
DNAPTAQ DNAPTFL DNAPTTH	904 A	440
MAJORITY	MAJORITY CGGAAGGGGCCTTCGTGGGCTTTGTCCTTTCCCGCCCCGAGCCCATGTGGGGCCGAGCTTCTGGCCCTGGC	
DNAPTAQ DNAPTFL DNAPTTH	974 T.TTTC.TT	4-10
, MAJORITY	CGCCGCCAGGGAGGGCCGGGTCCACCGGGCACCCCTTTAXGGGCCTXAGGGGACCTXAAGGAGGTG	
DNAPTAQ DNAPTFL DNAPTTH	T.66GTGCTAAA.CCGTG	44 41 50

FIG. 2C

MAJORITY	MAJORITY CGGGGXCTCCTCGCCAAGGACCTGGCCGTTTTGGCCCTGAGGGGGGGCCTXGACCTCXTGCCCGGGGACG
DNAPTAQ DNAPTFL DNAPTTH	GTAAGCAT.GCCCCC
MAJORITY	ACCCCATGCTCCTCGCCTACCTCCTGGACCCCTTCCAACACCCCCCGGGGGGGG
DNAPTAQ DNAPTFL DNAPTTH	1184
MAJORITY	GGGGGAGTGGACGGAGGGAGGGGGGCCCTCCTXTCCGAGAGGCTCTTCCXGAACCTXXXGGAG
DNAPTAQ DNAPTFL DNAPTTH	C
MAJORITY	MAJORITY CGCCTTGAGGGGGGGGGGGGCTCCTTTGGCTTTACCAGGAGGTGGAGAAGCCCCTTTCCCGGGTCIGG
DNAPTAQ DNAPTFL DNAPTTH	A.GA.A.A.C.C.GGGGGT1324
MAJORITY	CCCACATGGAGGCCACGGGGGTXCGGCTGGACGTGGCCTACCTCCAGGCCCTXTCCCTGGAGGTGGCGGA
DNAPTAQ DNAPTFL DNAPTTH	66

FIG. 21

D998255.101801

MAJORITY	GGAGATCCGCCGCCTCGAGGAGGAGGTCTTCCGCCTGGCCGGCC	
DNAPTAQ DNAPTFL DNAPTTH		64 61 70
MAJORITY	CAGCTGGAAAGGGTGCTCTTTGACGAGCTXGGGCTTCCCGCCATCGGCAAGACGGAGAGACXGGCAAGC	
DNAPTAQ ONAPTFL DNAPTTH	153 153 154	337 40 40 40
MAJORITY	GCTCCACCAGCGCCGCGTGCTGCTGCCCTXCGXGAGGCCCCACCCCA	
DNAPTAQ DNAPTFL DNAPTTH	1604 TCC	01
MAJORITY	CCGGGAGCTCACCAAGCTCAAGAACACCTTACATXGACCCCCTGCCXGXCCTCGTCCACCCCCAGGACGGGC	
DNAPTAQ DNAPTFL DNAPTTH	1674	74 71 80
MAJORITY	CGCCTCCACACCCGCTTCAACCAGACGGCCACGGCCACGGGCAGGCTTAGTAGTAGCTCCGACCCCAACCTGC	
DNAPTAQ DNAPTFL DNAPTTH	GC. 1744	44 41 50

FIG. 2E

DOSESSY LOYACT

MAJORITY	MAJORITY AGAACATCCCCGTCCGCACCCCXCTGGGCCAGAGGATCCGCCGGGCCTTCGTGGCCGAGGAGGGXTGGGT	
DNAPTAQ DNAPTFL DNAPTTH	G.T.G.T.GA.CB1 TCTA.CA	4110
MAJORITY	MAJORITY GTTGGTGGCCCTGGACTATAGCCAGATAGAGCTCCGGGTCCTGGCCCACCTCTCCGGGGGACGAGGAACCTG	
DNAPTAQ DNAPTFL DNAPTTH	A	88 90 90
MAJORITY	ATCCGGGTCTTCCAGGAG	
DNAPTAQ DNAPTFL DNAPTTH		4 11 0
MAJORITY	' AGGCCGTGGACCCCCTGATGCGCCGGGCGGCCAAGACCATCAACTTCGGGGTCCTCTACGGCATGTCGGC	
DNAPTAQ DNAPTFL DNAPTTH	202 202 203	22 30 30
MAJORITY	CCACCGCCTCTCCCAGG	
DNAPTAQ DNAPTFL DNAPTTH		94

FIG. 21

DOSSES, LOISOL

MAJORITY	MAJORITY AGCTTCCCCAAGGTGCGGGCCTGGATTGAGAAGACCCTGGAGGGGGGGG	
DNAPTAQ DNAPTFL DNAPTTH	2164 A	64 61 70
MAJORITY	MAJORITY CCCTCTTCGGCCGCCGCGCGCTACGTGCCCGACCTCAACGCCCGGGTGAAGAGCGTGCGGGAGGCGTGCGGAGGCGTGCGGAGGCGTGCGG	
DNAPTAQ DNAPTFL DNAPTTH		34 31 40
MAJORITY	GCGCATGGCCTTCAACA	
DNAPTAQ DNAPTFL DNAPTTH	2304	01
MAJORITY	TTCCCCCGGCTXCAGGAAATGGGGGCCAGGATGCTCCTXCAGGTCCACGACGAGGTGGTGCTGGTCCTCGAGGCCC	
DNAPTAQ DNAPTFL DNAPTTH	237 237 238	74 71 80
MAJORITY	CCAAAGAGCGGGGGGGGGXGGTGGCCGCTTTGGCCAAGGAGGTCATGGAGGGGGGTCTATCCCCTGGCCGT	
DNAPTAQ DNAPTFL DNAPTTH	.AACCCGGC	44 141 150

FIG. 2G

OGGOVES, LOYACH

2499 2496 2505 MAJORITY GCCCCTGGAGGTGGAGGTGGGGGAGGACTGGCTCTCCGCCAAGGAGTAG DNAPTAQ DNAPTFL DNAPTTH

FIG. 2H

69 68 70	139 138 140	209 208 210	278 277 280	348 347 350
MXAMLPLFEPKGRVLLV.RG		TADRDLYQLLSDRIAVLHPEGYLITPAWLWEKYGLRPEQWVDYRALXGDPSDNLPGVKGIGEKTAXKLLKHHRPDAT.EIOR.IKFAIIPPOR.I	EWGSLENLLKNLDRVKP	TY GSLLHEFGLLEXPKALEEAPWPPPEGAFVGFVLSRPEPMWAELLALAAARXGRVHRAXDPLXGLRULKEV 0
MAJORITY TAD PRO TFL PRO	MAJORITY TAG PRO TFL PRO TTH PRO	MAJORITY TAG PRO TFL PRO	MAJORITY TAG PRO TFL PRO	MAJORITY TAG PRO TFL PRO TTH PRO

FIG. 34

DOSEET. IDIEOL

	418 417 420		488 487 064		558 557 560		628 627 630		698 697 700
Y RGLLAKDLAVLALREGLDLXPGDDPMLLAYLLDPSNTTPEGVARRYGGEWTEDAGERALLSERLFXNLXX	S	RLEGEERLLWLYXEVEKPLSRVLAHMEATGVRLDVAYLQALSLEVAEEIRRLEEEVFRLAGHPFNLNSRD	K	QLERVLFDELGLPAIGKT		RLHTRFNQTATATGRLSS		IRVFQEGRDIHTQTASWM	0
MAJORITY	TAQ PRO TFL PRO TTH PRO	MAJORITY	TAQ PRO TFL PRO TTH PRO	MAJORITY	TAQ PROO TFL PRO TTH PRO	MAJORITY	TAQ PRO TFL PRO TTH PRO	MAJORITY	TAQ PRO TFL PRO TTH PRO

FIG. 3E

768 767 770 833 831 835 MAJORITY SFPKVRAWIEKTLEEGRRRGYVETLFGRRRYVPDLNARVKSVREAAERMAFNMPVQGTAADLMKLAMVKL MAJORITY FPRLXEMGARMLLQVHDELVLEAPKXRAEXVAALAKEVMEGVYPLAVPLEVEVGXGEDWLSAKEX TAQ PRO TFL PRO TTH PRO TAQ PRO TFL PRO TTH PRO

FIG 30

Genes for Wild—Type and Pol(—)DNAPTaq

Xcm Codons essential to polymerase Whe **Polymerase** Bam HI Pst 1 A-+G BstX / BstX / Domain Coding Regions: 5' Nuclease (wt FIG. 4C FIG. 4D FIG. 4E FIG. 4B FIG. 4F FIG. 4A

Not

BstX /

FIG. 4G

Genes for Wild-Type and Pol(-)DNAPTfl

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11A

FIG. 11B

FIG. 13A

FIG. 12B

FIG. 13B

RBS: Ribosome binding site ptac: Synthetic tac promoter lac IQ: Lac repressor gene

FIG. 14

lacZ: Beta-galactosidase alpha fragment rrnBt: E. coli rrnB transcription terminator

RBS: Ribosome binding site P₀₁₀: Bacteriophage T7 010 promoter To 17 0 Terminator

FIG. 15

Site Substrate Strand 3' Substrate Strand 3' Pilot Oligonucleotide 5'

FIG. 16D

FIG. 16C

FIG. 17

FIG. 18

FIG. 19A

Ban Sst Asp 718 Ava Kpn Xma Sma Sma	SCAGCTCGGTACCCGGGATCCTC SCTCGAGCCATGGCCCTAGGAG F Pilot 30-0	SCIGITICCICICIGAAATIGITA SGACAAAGGACACACITTAACAAT
	CGCCAGGGTTTTCCCAGTCACGTGTAAAACGACGCCCAGTGAATTGTAATACGACTCACTATAGGGCCGAATTCGAGCTCGGTACCCGGGGATCCTC GCGTCCCAAAAGGGTCAGTGTTTTGCTGCCGGTCACTTAACATTATGCTGAGTGATATCCCGCTTAAGCTTCGGCCCATGGCCCCTAGGAG CCGCTCCCAAAAGGGTCAGTCTTTTGCTGCCCGGTCACTTAACATTATGCTGAGTGATATCCCGCTTAAGCTTCGGCCCATGGCCCCTAGGAG CCCTAAAAGGGTCAGTCATTTTGCTGCCCGGTCAGTTATGCTGAGTGATATCCCCGCTTAAGCTTCGGCCCATGGCCCCTAGGAG CCCAAAAAGGCTCAGTCATTTTGCTGCCCCGGCCCAGTAATACCATTATGCTCACTAAGCTTCAGGCTCGAGCCCATGGCCCCTAGGAG CCCAAAAAGCGTCAGCATTTTGCTAGCATTAACATTATCCTTAACATATCCTAAAGCTTAAGCTCGAGCCTCGAGCCCTAGGAG CCCAAAAAGCGTCAGGCTCAACATTTTGCTAACATTATCCTCACTAAAGCTTAAGCTTCGAGCTCGAGCTAAGCTTAAGCTTCAAGCTTCGGCCCTAGGAG CCCAAAAAGCGTCAAAAAAAAAA	Sal I BspM I BspM I Acc I Sph I Hind III Hind III Hind III Hinc II Hind III
	CCCCAGGGTTTTCCCCAGTCAC GCGGTCCCAAAAGGGTCAGTG	Sal Bsp Bsp Acc Hinc Hinc ATCTCACCTGCACCTCCTAC

TCCCCTCACAATTCCACACATACGA
AGGCGAGTGTTAAGGTGTGTTGTATGCT
--48 Reverse
--206

FIG. 22A

FIG. 22B

FIG. 23

FIG. 24

FIG. 25A

FIG. 25B

FIG. 28A

FIG. 28B

FIG. 29

FIG. 31

OSSESS. Koleol

5' PROBE 3'	AGAAAGGAAGGAAAGAAAGGAAAGG FLUOR.	CGGCCGCTTGCACCGCTCTTTCCTTCCTTCTTTCGCTTTCC5
5' 3'	GACGGGAAAGCCGGCGAACG	L-CTGCCCCTTTCGGCCGCTTGCAC

TARGET NUCLEIC ACID

FIG. 32A

PROBE TARGET NUCLEIC ACID

FIG. 32B

TARGET NUCLEIC ACID

FIG. 32C

FIG. 34

FIG. 35

FIG. 36

-1G. 37

FIG. 38

FIG. 39

FIG. 40A

FIG.40B

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

FIG. 55

C10 90 ٥ ا 0== P. d == 0 $0 = \dot{P} - 0 -$ 70 (C10 amino T's) 74 (C6 amino T's) FIG. 56 <u>Б</u>

75

FIG. 59

FIG. 60A

FIG. 60B

FIG. 61

FIG. 62

FIG. 64

Y 5' AGAAAGGAAGGGAAGAAAGCGAAAGG 3' 3' CGGCCGCTTGCACCGCTCTTTCCCTTCCCTTCTTTCGCTTTCC 5'
5' GCCGGCGAACGTGGCGAGAAAGGAAAGGGAAAGCGAAAGG 3' 3' CGGCCGCTTGCACCGCTCTTTCCCTTCCCTTCTTTCGCTTTCC 5' FIG. 65A
5' 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'
CAGAAGGAAGGAAAGGAAAGGAAAGGAAAGGGAAAGGAAAGGGAAAGGAAAGGGAAAGGGAAAGGAAAGGGAAAGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAA
CAGGGGAAGGGAAGGGAAAGG 3'T 3' CGGCCGCTTGCACCGCTCTTTCCCTTCCCTTCTTTCGCTTTCC 5'
CAGGGGGAACGTGGCGAGAAAGGAAAGGGAAGGGAAAGGGAAAGG 3' 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5' FIG. 65C
CAGGGGAAGAAAGCGAAAGG 3' 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'
CAGGGGAACGTGGCGAGAAAGGAAGGGAAGGGAAAGGGAAAGGGAAAGGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAA

FIG. 68

FIG. 69

MGVGLWKLECSGROVSPEALEGMGVQCLWKLE

	08	90	1,00	1,10	1,20	130	140	
		1 2	VD D D D D V	EIKMKFATKK	TENNIBBENIEVAEL KMKEATKK FOFFFFAAKYAKRVSYLTP MJAFEN1. PRO	AKYAKRVSYL.	TP MJAFEN	11.PR0
64		7	VANCENCIA		KEKIKNVKKEINLINALINIILENIIN.	RYAORATRV	NE PFUFEN1	11.PR0
64		SEPPEFKKKELE	XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX	ELVI OOAOAA	EFKKKELEKKKEAKEGAGENWALALLA O. KACA: AKOGEDDAGAEKAI ONANAAGAFOFVFKFTKRLVKVTK	*KFTKRLVKV		11.PR0
7(∝	JKPPULKSGELA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		KFTKR VKV		11.PRO
9	<u>E</u>	SKPPQLKSGELA	KKNEKKAEA	してストススススにつくし	QLKSGELAKKSEKKAEAEAULQQAQEA - GIEEEVEN INGEREVEN INGEREVEN INGEREN VKVSK		CK VST510 PRO	PRO
7.1	\propto	SKPPDLKSHELT	KRSSKKVEI	EKKLARA				2 PRO
ζ.	E T	GGVPVLKRETIR	QRKERRQGK	KESAKSIAKK	LLALQLQINGS			000 710000
3 (GRAPSI KROTIO	KROARRLDR	EENATVTANK	LLALQMRHQAI	1 L L K K U A U E V		
٥		7 - Y	VPPORKOI A	SSPSRKTTEK	LLKTFLKROA	IKTERIAATV	TG HUMXPG. PRO	. PRO
6		SUAPLLNNQ1LV	**************************************	いっここと こうしょうしょう アンドランド アンドランド アンドランド アンドランド アンドランド アンドラン アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア	AT A KARABARA A STANDENTEKT I KTEL KROAL KTORI AASVTG	KTDRIAASV	TG MUSXPG. PRO	. PRO
61		GDAPLLKKUILA	KKKKKKDSA ************************************			TKAFRIAATV		PRO
61		GEAPLLKRQTLA	KKKQKIDKA	VNDAKKINDK	QTLAKKKUK I UKASINDAKIN I INENLIN I LININGALIMALIMA I GOTTALIA	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JAN LEUN LE	CELRADO PRO
9	· œ	NINASSSAHESK	DQNEFVPRK	KKSFGUSPFI		 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

FIG. 70A

COSCET TOISOR

		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
		XXPG. P. P. S.		
-	210	ΣΑΧΧΧΥΥΠΠΤΤ :	280	
	200	RNLTTTKE RNLTTTGK RHLTASEA RHLTFSEA RNMFHEKN RNFFNKK KNFFNKNK KNFFNKNK KNFFNKNK KNFFSQNK	270	
-	190	SEAQASYMAKKGDVWAVVSQDYDALLYGAPRVVRNLTTTKEM MJASEAQAAYMAAKGSVYASASQDYDSLLFGAPRLVRNLTTTGKRKLPGK PFUGEASCAALVKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ HUMEASCAALAKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ HUMSEASCAALAKAGKVYAAASEDMDTLCYRTPFLLRHLTFSEAKKEPIH YSTAEAQCAELLQLNLVDGIITDDSDVFLFGGTKIYKNMFHEKNYVE YSTAEAQCALLDLTDQTSGTITDDSDVFLFGGTRVYRNMFNKNKFVE HUMAEAOCAVLDLSDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE HUMAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE HUMAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE XENAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE XENAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE XENAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNKFVE XENAEAQCAILDLTDQTSGTITDDSDIWLFGARHVYRNFFNKNFF CEL	260	
	180	GDVWAVVSQDY GSVYASASQDY GKVYAAATEDM GKVYAAATEDM GKVYAAASEDM NLVDGIJTDDS NLVDGIVTDDS DQTSGTITDDS DQTSGTITDDS GVTSGCITTDDS	250	
	170	AQASYMAKK AQASYMAAK ASCAALVKA ASCAALAKA AQCAELLQL AQCSKLLEL AQCSKLLEL AQCAILDLT AQCAILDLT AQCAILDLT	240	
	160	PYVEAPSE PIVQAPSE PYLDAPSE, PYIDAPSE, PYITAPME, PYIQAPME, PYIQAPME, KVIIAPGD	230	
	15,0	VENCKYLLSLM IEDAKKLLELM NDECKHLLSLM NDECKHLLSLM NDECKHLLSLM INECKHLLSLM IKEVQELLSRF IKEVQELLSRF FLESQELLRLF CLESQELLRLF CLESQELLRLF CLESQELLRLF	220	
	l	130 ML 136 ML 137 QH 131 QM 131 QM 131 QM		Į.

	NEVLEDLRISLDDLIDIAIFMGTDYNPGGVKGIGFKRAYELVRSGVAKDV MJAFEN1.PRO	GEOFVOLCILLGSDYCESIRGIGPKRAVDLIQKHKSIEEIVRRLDPNKY HUMFEN1.PRO	EFHLSRVLQELGLNQEQFVDLCILLGSDYCESIRGIGANRAVDLIGN-HNSICLIVINGSCESNNTKW YSTSIO PRO FIDTELVLRGLDLTIEQFVDLCIMLGCDYCESIRGVGPVTALKLIKTHGSIEKIVEFIESGESNNTKW YSTSIO PRO	FYDAESILKILGLDRKNMIELAQLLGSDYTNGLKGMGPVSSIEVIAEFFGDTGLFEFKKWFQRLSTGHAS SPORAD13.PRO	LYLMDDMKKEFINVNQNDLINLAYLLGSDYTEGIPTVGCVTAMEILNEFPGHGLEPLLKFSEWWHEAQKNP HUMXPG.PRO YYQYVDFHNQLGLDRNKLINLAYLLGSDYTEGIPTVGCVTAMEILNEFPGHGLEPLLKFSEWWHEAQKNP HUMXPG.PRO		JASALINEATER CONTINUES STACTHOIMHLSLGRMFM CELRADZ.PRO
1988 11988 11988	PELIELNEVLEDLRISL	NVYVE-IKPELIILEEVLKELKLIKE EFHLSRILQELGLNQEQFVDLCILLG				YYQYVDFYSQLGLDRNKLINLAYLL	YYQYADIANOLGEDRONEATEE

DOOGHEST. ICHOL

330 340 350 -NYSLSLKLPDKEGIIKFLVDENDFNYD MJAFEN1.PRO -NYNLVWRDPDEEGILKFLCDEHDFSEE PFUFEN1.PRO -ESVELKWSEPNEEELIKFMCGEKQFSEE HUMFEN1.PRO SNEINLKWSPPKEKELIEYLCDDKKFSEE YST510.PRO 4DTTPFVWGVPDLDMLRSFMKTQLGWPHE YSTRAD2.PRO SKGSFLWGKPDLDELRQFLMATVGWSKQ SPORAD13.PRO SKGSFLWGKPDLDKIREFCORYFGWNRT HUMXPG.PRO SKGSFLWGKPDLEQIREFCORYFGWNRM MUSXPG.PRO SKSAFSWGRPDLEQIREFCESRFGWYRL XENXPG.PRO	400 410 420 MJAFENI.PRO PFUFENI.PRO PHUFENI.PRO MUSFENI.PRO PSTS10.PRO PSTS10.PRO PSTS10.PRO PSTS10.PRO PRISRAVTCMLRKEREEKAPELTKVTEAM HUMXPG.PRO QRLRRAVTCMLRKEREEVEAAVAVM XENXPG.PRO PPVSSEIPKIIPRAANFQQVAEIM CELRAD2.PRO
330 3. NYSLSLKLPDKEGIIK NYNLVWRDPDEEGILK SVELKWSEPNEEELIK SVELKWSEPNEEELVK SVELKWSPPKEKELIE TTPFVWGVPDLDMLRS KQSFLWGKPDLDKIRE KGSFLWGKPDLDKIRE KGSFLWGKPDLEQIRE KSAFSWGRPDLEQIRE	360 370 380 390 400 14 RVKNGLERLKKAI

FIG. 70C

D9962667.101601

	JAFEN1 JAFEN1 USFEN1 ST510. STRAD2 PORAD1 USXPG. ELXPG.		JAFEN1 FUFEN1 USFEN1 USFEN1 STS10. STRAD2 PORAD1 UMXPG. ENXPG.
490	-68LS M -68LS	560	TKOKTL GKQSTL KTGAAG KTGGAG NKNKNK KK LKSMK-Y CKSMK-Y YPTDVI CKSMK-M
480	 	550	
	 	40	
47,0	SKNFTPIV	΄ω΄	
460	 KNQ.ISNQ DSKRKNT KRRPSG SQEDQDP DFFAATK	530	1 DKKLNTSK DKKLNTSK SSSDSDD TSSSDSED TSSSDSED
450	1 3 3 X XE	520	- PREYISG - PREY
440		510	OSEDNFLAS DVPDLVRDS GLIDKQSQS HAKRQVPDR
430	INEFF	500	KRKEPEPKGST QLAAAAKRAQE QLAAAAKRAQE QRAAAKRAQE COSSDAEDLPS RKRKRSESPQILQH
١	314 327 348 351 351 357 KR 359 SN 406 EK 403 ER 322 MK	l	314 3327 3352 SA 3354 KE 3354 KE 476 NV 469 SA 387 WM

FIG. 70D

AWFK	SWFK	FKRG	FRRG	TKGR	RK	KRRR	KRKT	RKKK	VKRK	1605
22	35	375 K	73	11	90	83	46	38	23	59

-1G. 70E

MJAFENI.PRO PFUFENI.PRO HUMFENI.PRO YST510.PRO YSTRAD2.PRO SPORAD13.PRO HUMXPG.PRO MUSXPG.PRO CELRAD2.PRO

FIG. 71

Ĭ,