Đề cương ôn tập Topology

Nguyễn Tú Anh - A29888 - ntanhtm@gmail.com Ngày 16 tháng 5 năm 2019

Phần I **Định nghĩa**

1 Điểm trong

Điểm $a \in A$ gọi là điểm trong nếu $\exists r > 0$ để $B^S(a,r) \subset A$

2 Điểm biên

Điểm $b \in S$ gọi là điểm biển của A nếu $\forall r > 0$, $B^S(b,r)$ chứa ít nhất một điểm thuộc A và 1 điểm thuộc S - A

3 Tập mở, tập đóng

Tập mở : Tập $A \subset S$ gọi là mở trong S nếu $\forall a \in A$ đều là điểm trong.

Tập đóng : Tập $A \subset S$ gọi là đóng trong S nếu S-A là tập mở trong S.

4 Tập lồi

Tập $C \subset \mathbb{R}^n$ là tập lồi nếu nó chứa mọi đường thẳng đi qua 2 điểm bất kì nằm trong nó. Hay nói cách khác, nếu $(1 - \lambda)a + \lambda b \in C$, với a, b là 2 điểm bất kì trong C và $0 \le \lambda \le 1$ thì ta nói C là tập lồi.

Phần II

Phát biểu kết quả

1 Điều kiện cần và đủ để một hàm là liên tục

Định lý 13.3.4

Cho $f: \mathbb{R}^n \to \mathbb{R}^m$, f là liên tục nếu và chỉ nếu một trong các điều kiện tương đương sau được thỏa mãn:

- (a) $f^{-1}(U)$ là tập mở với mọi tập mở U trong \mathbb{R}^m
- (b) $f^{-1}(F)$ là tập đóng với mọi tập đóng F trong \mathbb{R}^m

2 Định lý cực đại

Định lý 13.4.1

Giả sử f là một hàm liên tục từ $X\times Y$ đến \mathbb{R} , với $X\subseteq\mathbb{R}^n$, $Y\subseteq\mathbb{R}^m$, và Y là tập 'compact', $X,Y\neq\varnothing$. Thì:

- (a) Hàm giá trị $V(x) = \max_{y \in Y} f(x, y)$ là một hàm liên tục của x.
- (b) Nếu bài toán cực đại có duy nhất một lời giải y=y(x) với mọi x, thì y(x) là một hàm liên tục của x.

Phần III

Chứng minh định lý

1 Bolzano-Weierstrass

Định lý 13.2.5

1.1 Phát biểu

Một tập con S của \mathbb{R}^n là **compact** (đóng và bị chặn) nếu và chỉ nếu mọi dãy các điểm trong S có một dãy con hội tụ tới một điểm trong S.

1.2 Chứng minh

1.2.1 Định lý bổ trợ

Định lý 13.2.3 (Bao đóng và hội tụ)

- Với bất kỳ tập $S \subseteq \mathbb{R}^n$, một điểm a trong \mathbb{R}^n thuộc S nếu và chỉ nếu a là giới hạn của một dãy $\{x_k\}$ trong S.
- Một tập $S \subseteq \mathbb{R}^n$ bị đóng nếu và chỉ nếu mọi chuỗi hội tụ của các điểm trong S có giới hạn của nó trong S.

Định lý 13.2.4 Một tập con $S \subseteq \mathbb{R}^n$ bị chặn nếu và chỉ nếu mỗi dãy của các điểm trong S có một dãy con hội tụ.

1.2.2 Chứng minh

Chiều thuận

Giả thiết	$S\subseteq\mathbb{R}^n$ là tập compact, $\{\mathbf{x}_k\}$ là một dãy trong S
Kết luận	$\{\mathbf{x}_k\}$ chứa một dãy con hội tụ tới một điểm trong S.

Chứng minh:

Do $S \subseteq \mathbb{R}^n$ và bị chặn (compact) $\Rightarrow \{\mathbf{x}_k\}$ chứa một dãy con hột tụ (Định lý 13.2.4).

Do S đóng nên giới hạn của dãy con phải nằm trong S (Định lý 13.2.3).

Vậy $\{\mathbf{x}_k\}$ chứa một dãy con hội tụ tới một điểm trong S.

Chiều ngược

	Mọi dãy các điểm trong S có một dãy con hội tụ tới một điểm trong S .
Kết luận	S đóng và bị chặn.

Chứng minh:

Theo định lý 13.2.4 thì S bị chặn.

Đặt \mathbf{x} là điểm tùy ý trong bao đóng của S.

 \Rightarrow có một dãy $\{\mathbf x_k\}$ trong S với $\lim_{k\to\infty}\mathbf x_k=\mathbf x$

Theo giả thiết, $\{\mathbf{x}_k\}$ có một dãy con $\{\mathbf{x}_{k_j}\}$ hội tụ đến một giới hạn \mathbf{x}' trong S. Nhưng $\{\mathbf{x}_{k_j}\}$ cũng hội tụ đến \mathbf{x} .

$$\Rightarrow \mathbf{x} = \mathbf{x}' \in S$$

$$\Rightarrow S$$
 đóng.

2 Ma trận sản xuất

Định lý 13.7.2

2.1 Phát biểu

Với một ma trận vuông cấp n với các phần tử không âm \mathbf{A} , các mệnh đề sau đây là tương đương:

- (a) A là ma trận sản xuất.
- (b) $\mathbf{A}^m \to \mathbf{0}$ khi $m \to \infty$.
- (c) $(\mathbf{I} \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \dots$
- (d) $(\mathbf{I} \mathbf{A})^{-1}$ tồn tại và không âm.

2.2 Chứng minh

Chúng minh theo trình tự: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$

 $\bullet \ (a) \Rightarrow (b)$

Chọn một vector $\mathbf{a} \gg 0$ sao cho $\mathbf{a} \gg \mathbf{A}\mathbf{a}$ (Do A là ma trận sản xuất) (Mỗi phần tử của \mathbf{a} lớn hơn hẳn phần tử tương ứng của $\mathbf{A}\mathbf{a}$).

Vì thế, $\exists \lambda \text{ trong } (0,1) \text{ sao cho } \lambda \mathbf{a} \gg \mathbf{A} \mathbf{a} \gg 0.$

Khi đó,
$$\lambda^2 \mathbf{a} = \lambda(\lambda \mathbf{a}) \gg \lambda \mathbf{A} \mathbf{a} = \mathbf{A} \lambda \mathbf{a} \geq \mathbf{A} \mathbf{A} \mathbf{a} = \mathbf{A}^2 \mathbf{a} \gg 0$$

Bằng quy lạp, ta có $\lambda^m \mathbf{a} \gg \mathbf{A}^m \mathbf{a}$ với $m=1,2,\dots$

Khi $m \to \infty$ thì $\lambda^m \mathbf{a} \to 0 \ (\lambda < 1)$

$$\Rightarrow \mathbf{A}^m \mathbf{a} \to 0$$
 khi $m \to \infty$

Có
$$\mathbf{A}^m\mathbf{a}=\mathbf{A}^m(\sum_{i=1}^n a_i\mathbf{e}_i)=\sum_{i=1}^n a_i\mathbf{A}^m\mathbf{e}_i\geq a_j\mathbf{A}^m\mathbf{e}_j$$
 với $j=1,2..n$

$$\Rightarrow$$
 cột thứ j - $\mathbf{A}^m\mathbf{e}_j$ của \mathbf{A}^m tiến đến $\mathbf{0}$ khi $m\to\infty$

$$\Rightarrow \mathbf{A}^m \to \mathbf{0}$$
 khi $m \to \infty$

• $(b) \Rightarrow (c)$

Do định thức của một ma trận liên tục theo các phần tử của nó.

$$\Rightarrow \lim_{m\to\infty} |\mathbf{I} - \mathbf{A}^m| = |\lim_{m\to\infty} (\mathbf{I} - \mathbf{A}^m)| = 1 - 0 = 1$$

 $\Rightarrow |\mathbf{I} - \mathbf{A}^m| \neq 0$ với m đủ lớn.

Lại có,
$$(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A} + ... + \mathbf{A}^{m-1}) = \mathbf{I} - \mathbf{A}^m$$

$$\Rightarrow |\mathbf{I} - \mathbf{A}| \neq 0$$

 $\Rightarrow \mathbf{I} - \mathbf{A}$ khả nghịch.

$$\Rightarrow \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^{m-1} = (\mathbf{I} - \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}^m)$$

Khi
$$m \to \infty$$
 thì $\mathbf{I} + \mathbf{A} + \dots + \mathbf{A}^{m-1} = (\mathbf{I} - \mathbf{A})^{-1}$ (đpcm)

• $(c) \Rightarrow (d)$ là điều hiển nhiên.

$$\begin{split} \bullet & (d) \Rightarrow (a) \\ & \text{Chọn } \mathbf{y} \gg \mathbf{0}, \text{ đặt } \mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{y} \\ & \Rightarrow \mathbf{x} \geq \mathbf{0} \text{ và } (\mathbf{I} - \mathbf{A}) \mathbf{x} = \mathbf{y} \gg \mathbf{0} \\ & \Rightarrow \mathbf{I} \mathbf{x} - \mathbf{A} \mathbf{x} \gg \mathbf{0} \\ & \Rightarrow \mathbf{x} \gg \mathbf{A} \mathbf{x} \Rightarrow \mathbf{A} \text{ là ma trận sản xuất.} \end{split}$$