Nanyang Technological University School of Electrical & Electronic Engineering EE2002 Analog Electronics

Tutorial 10

1. In the AC model of the common-base circuit shown in Figure 1, the transistor Q_1 has $\beta = 100$, $V_A = \infty$, $C_{\mu} = 1$ pF and $C_{\pi} = 10$ pF. AC coupling capacitors $C_{c1} = C_{c2} = 1$ uF. Assume $V_T = 25$ mV and DC collector current $I_C = 0.5$ mA. Using the OCTC and SCTC methods, determine the upper and lower 3-dB frequency of the amplifier, ω_H and ω_L respectively, and hence the amplifier bandwidth.

(Ans: $\omega_H=813 \text{ Mrad/s}$; $\omega_L=10.5 \text{ krad/s}$; $BW=\omega_H-\omega_L=813 \text{ Mrad/s}$)

2. Using the short-circuit time constant method, determine the lower -3dB frequency (ω_L) for the amplifier circuit shown in Figure 2. M2 is a PMOS while M1 is a NMOS. A signal source v_s with a series resistance $R_S = 1$ M Ω is connected to the input at G through a coupling capacitor $C_I = 1\mu F$, while a load resistor $R_L = 10$ k Ω is connected to the output at D through a coupling capacitor $C_2 = 1\mu F$. The resistance $R_I = 5$ M Ω . For the transistors M_I and M_2 , $\mu_n C_{oxI}(W_1/L_1) = \mu_p C_{ox2}(W_2/L_2) = 50 \mu A/V^2$, $|V_{TP}| = V_{TN} = 2V$, and $\lambda = 0.005$ V⁻¹.

Ans: 34.9 rad/s

Figure 2