Neuronowe modele sekwencyjne

Zaawansowane Przetwarzanie Języka Naturalnego

Mateusz Lango

Zakład Inteligentnych Systemów Wspomagania Decyzji Wydział Informatyki i Telekomunikacji Politechnika Poznańska

"Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (Al Tech)", projekt finansowany ze środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Problem predykcji sekwencji/struktur

Ukryte Modele Markowa

$$P(x_1^n, y_1^n) = \prod_{i=1}^n P(x_i|y_i) \prod_{i=1}^{n+1} P(y_i|y_{i-1})$$

Modele Markowa o Maksymalnej Entropii (MEMM)

$$P(y_1^n|x_1^n) = \prod_{i=1}^n P(y_i|y_{i-1}, x_1^n) = \prod_{i=1}^n \frac{e^{w^T \phi(x_i, y_{i-1}, y_i)}}{\sum_{y'} e^{w^T \phi(x_i, y_{i-1}, y')}}$$

Warunkowe pola losowe (CRF)

$$P(y|x) = \frac{e^{\sum_{i=1}^{n} w^{T} \phi(y_{i}, y_{i-1}, x)}}{\sum_{y'} \prod_{i=1}^{n} e^{w^{T} \phi(y'_{i}, y'_{i-1}, x)}}$$

Ograniczenia Ukrytych Modeli Markova¹

- HMM przyjmują jeden z |C| stanów ukrytych (np. po jednym dla każdej części mowy), które zmieniają się zgodnie z prawdopodobieństwami tranzycji $P(y_t|y_{t-1})$ a wyjścia są stochastyczne $P(x_t|y_t)$
- ullet Można zapisać rozkład prawdopodobieństwa |C| stanów poprzez |C| liczb
- Innymi słowy: w każdym kroku czasowym wybiera się jeden z |C| stanów, więc można zapisać jedynie $\log |C|$ bitów informacji
- Załóżmy, że chce się wykorzystać HMM do modelowania języka tj. przewidywać kolejne słowa. Co trzeba wziąć pod uwagę?
 - semantykę
 - gramatykę
 - ...
- Ile to bitów? 100? Potrzeba więc 2¹⁰⁰ stanów!
- Każdy poznany model ma składniki zależące tylko od jednego (dwóch) poprzednich tagów...

¹za slajdami Geoffrey Hinton Neural Networks for Machine Learning

Ograniczenia Ukrytych Modeli Markova¹

- HMM przyjmują jeden z |C| stanów ukrytych (np. po jednym dla każdej części mowy), które zmieniają się zgodnie z prawdopodobieństwami tranzycji $P(y_t|y_{t-1})$ a wyjścia są stochastyczne $P(x_t|y_t)$
- Można zapisać rozkład prawdopodobieństwa |C| stanów poprzez |C| liczb
- Innymi słowy: w każdym kroku czasowym wybiera się jeden z |C| stanów, więc można zapisać jedynie log |C| bitów informacji
- Załóżmy, że chce się wykorzystać HMM do modelowania języka tj. przewidywać kolejne słowa. Co trzeba wziąć pod uwagę?
 - semantyke
 - gramatykę
 - ...
- Ile to bitów? 100? Potrzeba wiec 2¹⁰⁰ stanów!
- Każdy poznany model ma składniki zależące tylko od jednego (dwóch) poprzednich tagów...

¹za slajdami Geoffrey Hinton Neural Networks for Machine Learning

MEMM - powtórka

$$P(y_1^n|x_1^n) = \prod_{i=1}^n P(y_i|y_{i-1}, x_1^n) = \prod_{i=1}^n \frac{e^{w^T \phi(x_i, y_{i-1}, y_i)}}{\sum_{y'} e^{w^T \phi(x_i, y_{i-1}, y')}}$$

$$STOP$$

$$START Ale$$

$$STOP$$

$$STOP$$

"Neuronowy" MEMM: Sieć rekurencyjna Jordana

- zastępujemy w MEMM klasyfikator softmax siecią neuronową, otrzymując model rekurencyjny
- nadal ta sieć jest w zasadzie "zwykłą" siecią neuronową, uczoną na specjalnie stworzonym zbiorze uczącym (analogicznie jak dla MEMM)

• Warstwa ukryta obliczana wzorem:

$$h_t = \sigma(W[start]; Ala] + b)$$

gdzie zapis [start]; Ala oznacza konkatenację reprezentacji cech "start" i "Ala"

Uogólniając:

$$h_t = \sigma(W_h[y_{t-1}; x_t] + b_h)$$
$$\hat{y}_t = softmax(W_v h_t + b_v)$$

 Alternatywnie, zamiast konkatenować wejście, można rozbić macierz wag na dwie części:

$$h_t = \sigma(W_{h,y}y_{t-1} + W_{h,x}x_t + b_h)$$

• Warstwa ukryta obliczana wzorem:

$$h_t = \sigma(W[start]; Ala] + b)$$

gdzie zapis [start]; Ala oznacza konkatenację reprezentacji cech "[start]" i "Ala"

Uogólniając:

$$h_t = \sigma(W_h[y_{t-1}; x_t] + b_h)$$

$$\hat{y}_t = softmax(W_y h_t + b_y)$$

 Alternatywnie, zamiast konkatenować wejście, można rozbić macierz wag na dwie części:

$$h_t = \sigma(W_{h,v}y_{t-1} + W_{h,x}x_t + b_h)$$

• Warstwa ukryta obliczana wzorem:

$$h_t = \sigma(W[start]; Ala] + b)$$

gdzie zapis [start]; Ala oznacza konkatenację reprezentacji cech "[start]" i "Ala"

• Uogólniając:

$$h_t = \sigma(W_h[y_{t-1}; x_t] + b_h)$$

$$\hat{y}_t = softmax(W_y h_t + b_y)$$

 Alternatywnie, zamiast konkatenować wejście, można rozbić macierz wag na dwie części:

$$h_t = \sigma(W_{h,y}y_{t-1} + W_{h,x}x_t + b_h)$$

$$h_t = \sigma(W_h[y_{t-1}; x_t] + b_h)$$

- Nadal decyzja jest uzależniona tylko od poprzedniej decyzji (choć ta zależy od jeszcze poprzedniej itd.)
- ullet Na wejściu można zastosować warstwę zanurzeń, poprawiając reprezentację x_t

$$h_t = \sigma(W_h[h_{t-1}; x_t] + b_h)$$

• Decyzja jest uzależniona tylko od poprzedniej reprezentacji

- Decyzja jest uzależniona tylko od poprzedniej reprezentacji
- Ale poprzednia reprezentacja, zależy od jeszcze poprzedniej
- RNN: te same wagi w czasie, CNN: te same wagi w przestrzeni

Zauważ, że prawdopodobieństwo $P(y_1,y_2,...y_n|x_1^n)$ można rozbić (bezstratnie) regułą łańcuchową na:

$$P(y_1, y_2, ...y_n | x_1^n) = \prod_{t=1}^n P(y_t | x_1^n, y_1^{t-1})$$

W MEMM wprowadziliśmy założenie

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|x_1^n, y_{t-1})$$

W modelu rekurencyjnym Elmana wprowadziliśmy założenie:

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|\underbrace{f(x_1^t, y_1^{t-1})}_{h_t})$$

gdzie $h_t = f(x_1^t) = g(x_t, f(x_1^{t-1})) = g(x_t, g(x_{t-1}, f(x_1^{t-2}))) = \dots$ jest stanem ukrytym sieci neuronowej będącym wynikiem funkcji, której argumentem jest cała sekwencja x_1^t (i pośrednio lub bezpośrednio y_1^{t-1})

Zauważ, że prawdopodobieństwo $P(y_1,y_2,...y_n|x_1^n)$ można rozbić (bezstratnie) regułą łańcuchową na:

$$P(y_1, y_2, ...y_n | x_1^n) = \prod_{t=1}^n P(y_t | x_1^n, y_1^{t-1})$$

W MEMM wprowadziliśmy założenie:

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|x_1^n, y_{t-1})$$

W modelu rekurencyjnym Elmana wprowadziliśmy założenie

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|\underbrace{f(x_1^t, y_1^{t-1})}_{h_t})$$

gdzie $h_t = f(x_1^t) = g(x_t, f(x_1^{t-1})) = g(x_t, g(x_{t-1}, f(x_1^{t-2}))) = \dots$ jest stanem ukrytym sieci neuronowej będącym wynikiem funkcji, której argumentem jest cała sekwencja x_1^t (i pośrednio lub bezpośrednio y_1^{t-1})

Zauważ, że prawdopodobieństwo $P(y_1, y_2, ...y_n | x_1^n)$ można rozbić (bezstratnie) regułą łańcuchową na:

$$P(y_1, y_2, ...y_n | x_1^n) = \prod_{t=1}^n P(y_t | x_1^n, y_1^{t-1})$$

W MEMM wprowadziliśmy założenie:

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|x_1^n, y_{t-1})$$

W modelu rekurencyjnym Elmana wprowadziliśmy założenie:

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|\underbrace{f(x_1^t, y_1^{t-1})}_{h})$$

gdzie $h_t = f(x_1^t) = g(x_t, f(x_1^{t-1})) = g(x_t, g(x_{t-1}, f(x_1^{t-2}))) = \dots$ jest stanem ukrytym sieci neuronowej będącym wynikiem funkcji, której argumentem jest cała sekwencja x_1^t (i pośrednio lub bezpośrednio y_1^{t-1})

Neuron rekurencyjny

• Neuron rekurencyjny oblicza funkcję:

$$h_t = \sigma(W_h[h_{t-1}; x_t] + b_h)$$

gdzie h_t to wejście do kolejnych warstw, jak i reprezentacja stanu dla kolejnej chwili czasowej

- W_h nie zmienia się w czasie!
- Uniwersalność: może nauczyć się dowolnej funkcji wykonywalnej na maszynie Turinga.
- Problem wyboru h_0 (a.k.a. start)
 - ullet stała wartość $h_0=0$
 - ullet stałe zanurzenie, które jest uczone h_0

- Sieć ma tyle warstw ile jest chwil czasowych (słów)
- Uogólnianie wiedzy następuje, bo warstwa "FC" ma zawsze te same wagi
- Informacja ucząca (gradient) jest dostarczana poprzez przyłączenie po każdej warstwie warstwy softmax (znów: takie same wagi, niezależnie od t)
- Typowy problem sieci wielowarstwowych?

- Sieć ma tyle warstw ile jest chwil czasowych (słów)
- Uogólnianie wiedzy następuje, bo warstwa "FC" ma zawsze te same wagi
- Informacja ucząca (gradient) jest dostarczana poprzez przyłączenie po każdej warstwie warstwy softmax (znów: takie same wagi, niezależnie od t)
- Typowy problem sieci wielowarstwowych?

- Sieć ma tyle warstw ile jest chwil czasowych (słów)
- Uogólnianie wiedzy następuje, bo warstwa "FC" ma zawsze te same wagi
- Informacja ucząca (gradient) jest dostarczana poprzez przyłączenie po każdej warstwie warstwy softmax (znów: takie same wagi, niezależnie od t)
- Typowy problem sieci wielowarstwowych?

- Sieć ma tyle warstw ile jest chwil czasowych (słów)
- Uogólnianie wiedzy następuje, bo warstwa "FC" ma zawsze te same wagi
- Informacja ucząca (gradient) jest dostarczana poprzez przyłączenie po każdej warstwie warstwy softmax (znów: takie same wagi, niezależnie od t)
- Typowy problem sieci wielowarstwowych?
 Zanikający gradient...
 Okazuje się, że w sytuacji współdzielenia macierzy wag ten problem jest jeszcze gorszy...

Problem eksplodującego/zanikającego gradientu

$$h_t = \sigma(W_{hh}h_{t-1} + W_{hx}X_t + b_h)$$

• Błąd jest liczony po wszystkich wyjściach sieci:

$$L = \sum_{t=1}^{N} \ell(\hat{y}_t, y_t) = \sum_{t=1}^{N} \ell_t$$

ullet W związku z tym gradient po wagach W_{hh} to

$$\frac{\partial L}{\partial W_{hh}} = \sum_{t=1}^{N} \frac{\partial \ell_t}{\partial W_{hh}}$$

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{z_t})$$

$$\frac{\partial \ell_{t}}{\partial W_{hh}} = \frac{\partial \ell_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{hh}}$$

$$\frac{\partial h_{t}}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial z_{t}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial (W_{hh}h_{t-1} + W_{hx}x_{t} + b_{h})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial W_{hh}h_{t-1}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right)$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{z_t})$$

$$\frac{\partial \ell_{t}}{\partial W_{hh}} = \frac{\partial \ell_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{hh}}$$

$$\frac{\partial h_{t}}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial z_{t}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial (W_{hh}h_{t-1} + W_{hx}x_{t} + b_{h})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial W_{hh}h_{t-1}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right)$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{z_t})$$

$$\frac{\partial \ell_{t}}{\partial W_{hh}} = \frac{\partial \ell_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{hh}}$$

$$\frac{\partial h_{t}}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial z_{t}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial (W_{hh}h_{t-1} + W_{hx}x_{t} + b_{h})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial W_{hh}h_{t-1}}{\partial W_{hh}}$$

$$= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right)$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{z_t})$$

$$\begin{split} \frac{\partial \ell_{t}}{\partial W_{hh}} &= \frac{\partial \ell_{t}}{\partial h_{t}} \frac{\partial h_{t}}{\partial W_{hh}} \\ \frac{\partial h_{t}}{\partial W_{hh}} &= \frac{\partial \sigma(z_{t})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial z_{t}}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial (W_{hh}h_{t-1} + W_{hx}x_{t} + b_{h})}{\partial W_{hh}} = \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial W_{hh}h_{t-1}}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \end{split}$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{Z_t})$$

$$\begin{split} \frac{\partial \ell_t}{\partial W_{hh}} &= \frac{\partial \ell_t}{\partial h_t} \frac{\partial h_t}{\partial W_{hh}} \\ \frac{\partial h_t}{\partial W_{hh}} &= \frac{\partial \sigma(z_t)}{\partial W_{hh}} = \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial z_t}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial (W_{hh} h_{t-1} + W_{hx} x_t + b_h)}{\partial W_{hh}} = \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial W_{hh} h_{t-1}}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_t)}{\partial z_t} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \end{split}$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$h_t = \sigma(\underbrace{W_{hh}h_{t-1} + W_{hx}X_t + b_h}_{I_t})$$

$$\begin{split} \frac{\partial \ell_t}{\partial W_{hh}} &= \frac{\partial \ell_t}{\partial h_t} \frac{\partial h_t}{\partial W_{hh}} \\ \frac{\partial h_t}{\partial W_{hh}} &= \frac{\partial \sigma(z_t)}{\partial W_{hh}} = \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial z_t}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial (W_{hh}h_{t-1} + W_{hx}x_t + b_h)}{\partial W_{hh}} = \frac{\partial \sigma(z_t)}{\partial z_t} \frac{\partial W_{hh}h_{t-1}}{\partial W_{hh}} \\ &= \frac{\partial \sigma(z_t)}{\partial z_t} \left(h_{t-1} \frac{\partial W_{hh}}{\partial W_{hh}} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \end{split}$$

²Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach a nie liczbach). Pełne wyprowadzenie w literaturze.

$$\begin{split} \frac{\partial h_{t}}{\partial W_{hh}} &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \underbrace{\left(\frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} \left(h_{t-2} + W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \right) \right)}_{\text{jeszcze raz ten sam wzór}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} h_{t-1} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} h_{t-2} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \\ &= \sum_{i=1}^{t} \frac{\partial \sigma(z_{t})}{\partial z_{t}} \cdots \frac{\partial \sigma(z_{i})}{\partial z_{i}} W_{hh}^{t-i} h_{i-1} \end{split}$$

³Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach, a nie liczbach). Pełne wyprowadzenie w literaturze.

$$\begin{split} \frac{\partial h_{t}}{\partial W_{hh}} &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \underbrace{\left(\frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} \left(h_{t-2} + W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \right) \right)}_{\text{jeszcze raz ten sam wzór}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} h_{t-1} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} h_{t-2} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \\ &= \sum_{i=1}^{t} \frac{\partial \sigma(z_{t})}{\partial z_{t}} \cdots \frac{\partial \sigma(z_{i})}{\partial z_{i}} W_{hh}^{t-i} h_{i-1} \end{split}$$

³Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach, a nie liczbach). Pełne wyprowadzenie w literaturze.

$$\begin{split} \frac{\partial h_{t}}{\partial W_{hh}} &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \underbrace{\left(\frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} \left(h_{t-2} + W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \right) \right)}_{\text{jeszcze raz ten sam wzór}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} h_{t-1} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} h_{t-2} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \\ &= \sum_{i=1}^{t} \frac{\partial \sigma(z_{t})}{\partial z_{t}} \cdots \frac{\partial \sigma(z_{i})}{\partial z_{i}} W_{hh}^{t-i} h_{i-1} \end{split}$$

³Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach, a nie liczbach). Pełne wyprowadzenie w literaturze.

$$\begin{split} \frac{\partial h_{t}}{\partial W_{hh}} &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \frac{\partial h_{t-1}}{\partial W_{hh}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} \left(h_{t-1} + W_{hh} \underbrace{\left(\frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} \left(h_{t-2} + W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \right) \right)}_{\text{jeszcze raz ten sam wzór}} \right) \\ &= \frac{\partial \sigma(z_{t})}{\partial z_{t}} h_{t-1} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} h_{t-2} + \frac{\partial \sigma(z_{t})}{\partial z_{t}} \frac{\partial \sigma(z_{t-1})}{\partial z_{t-1}} W_{hh} W_{hh} \frac{\partial h_{t-2}}{\partial W_{hh}} \\ &= \sum_{i=1}^{t} \frac{\partial \sigma(z_{t})}{\partial z_{t}} \cdots \frac{\partial \sigma(z_{i})}{\partial z_{i}} W_{hh}^{t-i} h_{i-1} \end{split}$$

³Wyprowadzenie gradientu jest *błędne* i służy tylko pokazaniu idei (pomija się fakt, że operujemy na macierzach, a nie liczbach). Pełne wyprowadzenie w literaturze.

Problem eksplodującego/zanikającego gradientu

- ullet Gradient (a więc i jego norma) jest uzależniony od potęgi W^t_{hh}
- Rozważając wielkość gradientu powiązanego z elementem sumy do najdalszego stanu ukrytego (początek sekwencji)

$$\left\| \frac{\partial \sigma(z_t)}{\partial z_t} \cdots \frac{\partial \sigma(z_1)}{\partial z_1} W_{hh}^{t-1} h_0 \right\| \leq C ||W_{hh}||^{t-1}$$

gdzie C jest ograniczeniem górnym pozostałych elementów. Zauważ, że pochodne typowych funkcji aktywacji $\frac{\partial \sigma(z_i)}{\partial z_i} \leq 1$

- ullet Jeżeli $||W_{hh}|| < 1$ bardzo szybko gradient staje się bardzo mały $(0.5^{10}pprox0.000977)$
- ⇒ w praktyce RNN modelują zależności maksymalnie 7-gramowe
 - ullet Jeżeli $||W_{hh}||>1$ bardzo szybko gradient staje się bardzo duży (5 $^{10}=9\,765\,625)$
- ⇒ wagi w modelu wynoszą NaN, całkowite niepowodzenie procesu uczenia się
- Jak to wpływa na możliwość modelowania długich zależności?

Problem eksplodującego/zanikającego gradientu

 Problem eksplodującego gradientu można stosunkowo prosto rozwiązać, poprzez wprowadzenie górnego ograniczenia na jego wielkość (ang. gradient clipping)

Normalizacja gradientu

Oblicz gradient funkcji celu względem wag

$$\Delta = \frac{\partial L}{\partial W}$$

2 Jeżeli $\|\Delta\| \geq \gamma$ to

$$\Delta = \frac{\gamma}{\|\Delta\|} \Delta$$

Problem zanikającego gradientu, rozwiązać już nie tak łatwo...

Long short-term memory (LSTM) - intuicja

- Chcielibyśmy rozwiązać problem zanikającego gradientu, który uniemożliwia pamiętanie długich zależności...
- Naturalną koncepcją informatyczną do pamiętania informacji jest ... pamięć (!)
- Pomysł: stwórzmy sieć neuronową, która nauczy się korzystać z komórki pamięci

Long short-term memory (LSTM) - komórka pamięci

- Zaprojektujmy komórkę pamięci, która będzie przechowywała pewną wartość oraz będzie miała możliwość wykonania dwóch operacji na tej wartości:
 - wyczyścić ją (wyzerować)
 - zwiększyć ją/zmniejszyć ją o pewną wartość
- Potrzeba w związku z tym trzech sygnałów sterujących komórką:
 - sygnał "keep" (zanegowany "forget" ⁴) sygnał binarny czyszczący pamięć dla wartości 0
 - ullet sygnał "action" sygnał binarny, ale dla wygody $a\in\{-1,1\}$ oznaczający zmniejszanie i zwiększanie
 - sygnał "input" wartość binarna, o którą będzie zwiększana/zmniejszana pamięć

⁴Sygnał "keep" zwykle oznacza się literką f...

Long short-term memory (LSTM) - komórka pamięci

- Zaprojektujmy komórkę pamięci, która będzie przechowywała pewną wartość oraz będzie miała możliwość wykonania dwóch operacji na tej wartości:
 - wyczyścić ją (wyzerować)
 - 2 zwiększyć ją/zmniejszyć ją o pewną wartość
- Potrzeba w związku z tym trzech sygnałów sterujących komórką:
 - sygnał "keep" (zanegowany "forget" ⁴) sygnał binarny czyszczący pamięć dla wartości 0
 - ullet sygnał "action" sygnał binarny, ale dla wygody $a\in\{-1,1\}$ oznaczający zmniejszanie i zwiększanie
 - sygnał "input" wartość binarna, o którą będzie zwiększana/zmniejszana pamięć

⁴Sygnał "keep" zwykle oznacza się literką f...

Long short-term memory (LSTM) - sygnały sterujące

Potrzeba w związku z tym trzech sygnałów tj. neuronów sterujących komórką:

• sygnał "keep" (zanegowany "forget") – sygnał binarny czyszczący pamięć dla wartości 0

$$f_t = \sigma(w_f^T[h_{t-1}; x_t])$$

ullet sygnał "action" — sygnał binarny, ale dla wygody $a\in\{-1,1\}$ oznaczający zmniejszanie i zwiększanie

$$a_t = tanh(w_a^T[h_{t-1}; x_t])$$

sygnał "input" – wartość binarna, o którą będzie zwiększana/zmniejszana pamięć

$$i_t = \sigma(w_i^T[h_{t-1}; x_t])$$

Long short-term memory (LSTM) - sygnały sterujące

$$f_t = \sigma(w_f^T[h_{t-1}; x_t])$$

$$a_t = tanh(w_a^T[h_{t-1}; x_t])$$

$$i_t = \sigma(w_i^T[h_{t-1}; x_t])$$

A także implementujemy działanie tych sygnałów na zapisanej wartości c w pamięci.

$$c_t = f_t \cdot c_{t-1} + a_t \cdot i_t$$

Ponadto potrzeba, aby neuron (oprócz obsłużenia pamięci) zwrócił też jakąś wartość na wyjście. Wprowadzamy więc też sygnał "output", który kontroluje wynik 5 :

$$o_t = \sigma(w_o^T[h_{t-1}; x_t])$$

$$h_t = o_t \cdot tanh(c_t)$$

⁵Jest to jedna z możliwych implementacji tych intuicji – patrz kurs prof. Krawca "Głębokie uczenie maszynowe" i pracę Greff et al. *LSTM: A Search Space Odyssey*

Long short-term memory (LSTM) - sygnały sterujące

$$f_t = \sigma(w_f^T[h_{t-1}; x_t])$$

$$a_t = tanh(w_a^T[h_{t-1}; x_t])$$

$$i_t = \sigma(w_i^T[h_{t-1}; x_t])$$

A także implementujemy działanie tych sygnałów na zapisanej wartości c w pamięci.

$$c_t = f_t \cdot c_{t-1} + a_t \cdot i_t$$

Ponadto potrzeba, aby neuron (oprócz obsłużenia pamięci) zwrócił też jakąś wartość na wyjście. Wprowadzamy więc też sygnał "output", który kontroluje wynik 5 :

$$o_t = \sigma(w_o^T[h_{t-1}; x_t])$$

$$h_t = o_t \cdot tanh(c_t)$$

⁵Jest to jedna z możliwych implementacji tych intuicji – patrz kurs prof. Krawca "Głębokie uczenie maszynowe" i pracę Greff et al. *LSTM: A Search Space Odyssey*

Dalsze problemy RNN...

- Czasami jedna warstwa nie wystarcza by zamodelować użyteczne cechy
 ⇒ dodaj więcej warstw rekurencyjnych
- RNN podejmują decyzję jedynie na podstawie początku sekwencji

⇒ sieci dwukierunkowe

 RNN dzielą wiele podobieństw z MEMM, w tym lokalną normalizację wyjścia i lokalne decyzje (czy nie ma problemu obciążenia etykietą?)

⇒ sieci dwukierunkowe (?)

 \Rightarrow warstwa CRF

Dwukierunkowe sieci RNN

• W modelu rekurencyjnym wprowadziliśmy założenie:

$$P(y_t|x_1^n, y_1^{t-1}) \approx P(y_t|\underbrace{f(x_1^t)}_{h_t})$$

$$gdzie h_t = \sigma(W_h[h_{t-1}; x_t] + b_h)$$

- Ponieważ wytworzone cechy h_i są jedyną przesłanką do emisji y_i to trochę nadwyrężając⁶ można interpretować że $h_t = f(x_1^t, y_1^{t-1})$, a więc do bezstratnej⁷ dekompozycji brakuje jedynie modelowania końcówki zdania x_{t+1}^n .
- Ponadto predykcje wykonywane są zachłannie, model w ogóle nie rozważa przyszłych elementów sekwencji
- Pomysł: umożliwienie sieci patrzenia zarówno w przód jak i tył zdania.

⁷Hiperoptymistycznie zakładając, że h_t zachowuje wszystkie wymagane informacje

 $^{^{6}}$ Można też dokonać prostej modyfikacji, w każdej iteracji dodatkowo konkatenując y_{t-1} do wejścia neuronu, czyniac te interpretacje w pełni prawidłowa

Dwukierunkowe sieci RNN

 Jedna warstwa sieci dwukierunkowej w rzeczywistości posiada dwie warstwy "zwykłych" neuronów rekurencyjnych: patrzące "w przód" i "w tył"

$$h_t^{(tyl)} = \sigma(W_1[h_{t+1}^{(tyl)}; x_t] + b_1)$$

$$h_t^{(przod)} = \sigma(W_2[h_{t-1}^{(przod)}; x_t] + b_2)$$

Potencjalnie różne wektory początkowe $h_0^{(przod)}$ i $h_n^{(tyl)}$ (analogia do $_{\text{START}}$, $_{\text{STOP}}$).

- Pierwsze neurony analizują sekwencję od lewej do prawej, drugie od prawej do lewej
- Końcowy wynik warstwy to konkatenacja obydwu wyników:

$$h_t = [h_t^{(przod)}; h_t^{(tyl)}]$$

Warunkowe pola losowe - powtórzenie

$$P(y|x) = \frac{1}{Z(x)} \prod_{i=1}^{n} \Psi_i(y_i, y_{i-1}, x)$$

$$P(y|x) = \frac{1}{Z(x)} \prod_{i=1}^{n} \Psi_i(y_i, y_{i-1}, x)$$

- Dotychczas funkcje oceny były liczone wyrażeniem liniowym $\Psi_i(y_i, y_{i-1}, x) = e^{w^T \phi(y_i, y_{i-1}, x)}$, a cechy były ręcznie projektowane
- ullet Sieć neuronowa to bardzo dobry ekstraktor cech wyjścia z sieci rekurencyjnej h_t w kolejnych iteracjach potraktujmy jako wektory cech!

Najczęstsze sposoby implementacji:

• rozbicie funkcji oceny na ocenę emisji i tranzycji

$$\Psi_i(y_i, y_{i-1}, \mathsf{x}) = \exp\left(\psi(y_i, \mathsf{x}) + \psi(y_i, y_{i-1})\right)$$

Na przykład, ocena stanu przez RNN (emisja) oraz wyraz wolny związany z tranzycją

$$\Psi_{i}(y_{i}, y_{i-1}, x) = \exp(W_{y_{i}}h_{i} + b_{y_{i}, y_{i-1}})$$

• wykorzystanie RNN do pełnej oceny tranzycji i emisji

$$\Psi_i(y_i, y_{i-1}, x) = \exp(W_{y_i, y_{i-1}} h_i + b_{y_i, y_{i-1}})$$

• połączenie powyższych i różne inne modyfikacje...

$$\Psi_i(y_i, y_{i-1}, x) = \exp(W_{y_i, y_{i-1}} h_i + W_{y_i} h_i + b_{y_i})$$

- Wykorzystując sieć z warstwą CRF, cała sieć zamienia się w ekstraktor użytecznych cech dla klasyfikatora CRF (tak jak przy softmax zamienia się w ekstrakcję cech dla klasyfikacji)
- Algorytm uczenia:
 - Dla każdej epoki i paczki danych:
 - Wykonaj propagację w przód sieci neuronowej np. LSTM
 - Obliczając funkcje oceny na podstawie otrzymanych reprezentacji, wykonaj algorytm propagacji przekonania ("w przód i w tył") i oblicz prawdopodobieństwo wg. CRF
 - Zaktualizuj wagi CRF (zgodnie z gradientami)
 - Gradienty CRF propaguj dalej przez sieć neuronową (propagacja wsteczna)
- Predykcję, po obliczeniu cech, wykonuje się np. algorytmem Viterbiego

Przykładowe wyniki sieci rekurencyjnych typu LSTM 8 POS **NER**

	Dev	Test		Dev			Test	
Model	Acc.	Acc.	Prec.	Recall	F1	Prec.	Recall	F1
BiRNN	96.56	96.76	92.04	89.13	90.56	87.05	83.88	85.44
BiLSTM	96.88	96.93	92.31	90.85	91.57	87.77	86.23	87.00
BiLSTM-CNN	97.34	97.33	92.52	93.64	93.07	88.53	90.21	89.36
BiLSTM-CNN-CRF	97.46	97.55	94.85	94.63	94.74	91.35	91.06	91.21
• Tagowanie częściami mowy (POS): fragment Penn Treebank (Wall Street Journal), 45								

- tagów • Wykrywanie encji nazwanych (NER): CoNLL 2003, 4 rodzaje encji, tagowanie BIOES
- Warianty z "CNN" używaja 30-wymiarowych zanurzeń znaków, łaczonych w reprezentacje słów przez CNN (30 filtrów, długość 3, max-pooling over time)
- Warstwa LSTM używa 200 neuronów, zanurzenia słów mają 100 wymiarów, stany początkowe inicializowane $h_0=0$, normalizacja gradientu z $\gamma=5$

⁸Ma & Hovy, End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF

 "Using a CRF instead of a softmax classifieras a last layer gave a large performance increase for tasks with a high dependency between tags. This was also true for stacked-BiLSTM layers." ⁹

⁹ "Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks"

Warunkowe pola losowe jako warstwa NN – wpływ liczby warstw

Zadanie: CoNLL 2003 NER, sieć dwukierunkowa LSTM

Obserwacje z dużego studium eksperymentalnego¹⁰

parametr	wpływ na wynik	najlepsza wartość		
zanurzenia słów	duży	specjalizowane, uwzględniające		
		syntaktykę \Rightarrow kolejny moduł		
kodowanie znaków	niski	CNN (vs LSTM, bo są szybsze)		
optymalizator	duży	Adam z momentem Nesterov'a		
normalizacja/ucinanie gradientu	duży	Normalizacja gradientu		
schemat tagowania	umiarkowany	BIO		
klasyfikator	duży	CRF		
dropout	duży	variational dropout		
liczba warstw LSTM	umiarkowany	2		
liczba neuronów ukrytych	niski	100		

¹⁰Reimers et al. Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks

Ciekawostka: CRF + Transformers

- Zwycięskie rozwiązanie na konkursie SemEval-2020 Task 11 (wykrywanie propagandy w tekstach)
- Jako ekstraktor cech: sieć typu transformer
- Polski zespół, ApplicaAl ;)

Do zobaczenia!

Rzeczpospolita Polska

