

Lagrangian density $-t_1 \omega_{\kappa}^{a'} \omega_{\kappa\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{2} \iota_1 \partial_{\kappa} r \theta \circ r_{\lambda} = \iota_1 \circ r \alpha \circ r_{\lambda\kappa} + \frac{1}{3} r_2 \circ_{\kappa} \omega \sigma \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega_{\alpha\beta} + \frac{2}{3} r_2 \partial_{\kappa} \omega_{\alpha\beta} + \frac{2}{3} r_2 \partial_{\kappa} \omega_{\alpha\beta} + \frac{2}{3} r_2 \partial_{\beta} \omega_{\lambda\alpha} \partial_{\lambda} \omega_{\alpha\beta} $	Added source term: $\left f^{lphaeta}\;_{lpha_{eta}}+\omega^{lphaeta\chi}\;_{lpha_{eta\chi}} ight.$
--	---	---

$f_{1^{-}\alpha}^{\#2}$	0	0	0	$i k t_1$	0	0	0	
$f_{1^-}^{\#1}_{\alpha}$	0	0	0	0	0	0	0	
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$	
$\omega_{1}^{\#1}{}_{\alpha\beta}\ \omega_{1}^{\#2}{}_{\alpha\beta}\ f_{1}^{\#1}{}_{\alpha\beta}\ \omega_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_1^{\#_+^2} \alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha\beta$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	
	$^{:1}_{+} + \alpha \beta$	$^{2}_{+} + \alpha \beta$	$^{!1}_{+} + \alpha \beta$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{lpha}$	$f_{1}^{\#2} + \alpha$	
	$\omega_1^{\#1}$	$\omega_1^{\#_2}$ †	$f_1^{#1}$	3	3	f	f	

1 1 1 # 1 # 1 #	
Source constraints SO(3) irreps $ \tau_{0}^{\#2} == 0 $ $ \tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} == 0 $ $ \tau_{1}^{\#2} \alpha + 2 i k \sigma_{1}^{\#2} \alpha == 0 $ $ \tau_{1}^{\#1} \alpha == 0 $ $ \tau_{1}^{\#1} \alpha \beta + i k \sigma_{1}^{\#2} \alpha \beta == 0 $ $ \tau_{1}^{\#1} \alpha \beta - 2 i k \sigma_{2}^{\#1} \alpha \beta == 0 $ Total #:	

	$\omega_{0^+}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-\bar{l} \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

-0 O	0	0	0	$\frac{1}{k^2 r_2 - t}$	$\sigma_{2}^{\#1}$	V-1	0	0	2 t1
₊ 0,	0	0	0	0	δ	H	1		
₊ 0,	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	${\mathfrak l}_{2}^{\#1}$	1	$-\frac{2\sqrt{3} \sqrt{2} k}{(1+2k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
~ 0+	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1} = -$	0	0	$\sigma_{2+lpha eta}^{\#1}$		$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{0}^{#1} + \frac{1}{(1-\alpha)^{-1}}$	i	$\tau_{0}^{#2} +$	$\sigma_{0}^{\#1}$ †			$\sigma_2^{\#1} +^{lphaeta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} + ^{\alpha\beta\chi}$

_	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$ u_2^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$F_{2}^{#1} + \alpha \beta$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$^{\sharp_1}_2$ † $^{\alphaeta\chi}$	0	0	<u>t</u> 1 2

	Massive particle			
? $J^P = 0^{-/}$	Pole residue:	$-\frac{1}{r_2} > 0$		
$\frac{3}{2}$	Polarisations:	1		
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$		
?	Spin:	0		
·	Parity:	Odd		

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$

(No massless particles)