Lab 2

In this lab we used an Op-Amp for three circuits: a voltage buffer, a Schmitt trigger, and an inverted amplifier. We then graphed data for V_{in} vs. V_{out} from each circuit using a matlab program that pulls the data from a scope.

1. Buffer

This circuit provides variable input V_{in} and produces V_{out} equal to V_{in}

to find vout:

$$V_{in} = V_s - \Delta V$$

$$\Delta V = I^*R(1-a)$$

$$I = 2V_s/R$$

$$\Delta V = (2V_s/R)*R(1-a)$$

therefore
$$V_{in} = V_s - 2V_s*(1 - a)$$

but
$$V_{in} = V_{out}$$

Therefore
$$V_{out} = V_s - 2V_s*(1 - a)$$

This is true for region I of the graph of V_{in} vs. V_{out}

I.
$$V_{out} = V_{in}$$
 when $-V_s < V_{out} < V_s$

II.
$$V_{out} = V_s$$
 when $V_{in} > V_s$

III.
$$V_{out} = -V_s$$
 when $V_{in} < V_s$

Below is the theoretical graph followed by experimental data from the buffer.

2. Comparing two circuits

circuit 1:

$$V_{out} = V_s - \Delta V$$

$$\Delta V = I^*R_{acrossVout} = (2V_s/R_{eq})^*(R/2)$$

$$R_{eq} = .5R*R/(.5R + R) + R = 5R/6$$

$$V_{out} = V_s - (2V_s/(5R/6))*(R/2) = V_s - 12V_s/10$$

$$V_{out} = -2.4V$$

circuit 2:

$$V_{in} = V_{out}$$

$$V_{in} = V_s - \Delta V = V_s - (2V_s/R)*(R/2) = V_s - V_s = 0$$

$$V_{out} = 0$$

3. Schmitt Trigger

we know that for region I $V_{in} = V_{-} = V_{+}$ but what is V_{out} in terms of V_{in} ?

since $V_{in} = V_{+}$ and V_{+} intersects with V_{out} , it will be helpful to find V_{+}

$$V_{+} = V_{out} - I*R(1-b)$$

$$I = V_{out}/R$$

therefore $V_+ = V_{out} - (V_{out}/R)*R(1-b)$

which simplifies to $V_+ = b^*V_{out}$

but we also know that $V_{in} = V_{+}$

therefore $V_{in} = b^*V_{out}$ and we can see that our slope for region I will be 1/b

yay! know we know what our regions will look like:

I.
$$V_{in} = V_{-} = V_{+}$$
 and $V_{in} = b*V_{out}$

II.
$$V_{in} < b*V_{out}$$
 and $V_{out} = V_s$

III.
$$V_{in} > b*V_{out}$$
 and $V_{out} = -V_s$

here are the theoretical graphs for three values of potentiometer b:

here is the experimental data for three values of pot b! Any weird noise is probably a result of bad Op-Amp function.

4. non-inverting trigger

This circuit is the same as a shmitt trigger but with positive feedback instead of negative (aka positive and negative are swapped).

so all we have to do for region I is replace V_+ with V_- !

therefore $V_{in} = V_{-} = b^*V_{out}$ and for the three regions we have

I.
$$V_{in} = V_{-} = V_{+}$$
 and $V_{in} = b*V_{out}$

II.
$$V_{in} > b*V_{out}$$
 and $V_{out} = V_s$

III.
$$V_{in} < b^*V_{out}$$
 and $V_{out} = -V_s$

here are the theoretical graphs for three values of potentiometer b:

here is the experimental data for three values of pot b! Any weird noise is probably a result of bad Op-Amp function.

