Problème. Étude de l'anneau $\mathbb{Z}[\sqrt{2}]$.

Le but du problème est l'étude de l'anneau $(\mathbb{Z}[\sqrt{2}], +, \times)$ et de ses inversibles.

La relation d'ordre utilisée en deuxième partie est la relation d'ordre usuelle sur l'ensemble des réels.

On note

$$A = \mathbb{Z}[\sqrt{2}] = \left\{ a + b\sqrt{2} \mid (a, b) \in \mathbb{Z}^2 \right\}.$$

On rappelle que $\sqrt{2}$ est un nombre irrationnel.

Partie I. Étude de l'anneau $(\mathbb{Z}[\sqrt{2}], +, \times)$.

- 1. Montrer que A, muni de la somme et de la multiplication des réels est un anneau commutatif.
- 2. Montrer que, pour tout $x \in A$, il existe un unique couple $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$.

On note \bar{x} l'élément de A défini par $\bar{x} = a - b\sqrt{2}$.

On appelle \bar{x} le conjugué de x dans A.

On note $N(x) = \bar{x}x$ la norme de x.

- 3. Montrer que pour tout $x \in A$, on a $N(x) \in \mathbb{Z}$ et $(N(x) = 0 \iff x = 0)$.
- 4. Montrer que pour tout $(x, x') \in A^2$, N(xx') = N(x)N(x').
- 5. Montrer que l'anneau A est intègre.
- 6. Soit $x \in A$.

 Montrer que x est inversible dans A si et seulement si $N(x) \in \{-1, 1\}$.

 Dans le cas où x est inversible, déterminer son inverse x^{-1} .

Partie II. Étude des inversibles de $\mathbb{Z}[\sqrt{2}]$.

On note U l'ensemble des éléments inversibles de A. On rappelle que (U, \times) est un groupe.

- 7. Soit $x \in U$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$.
 - (a) Montrer que si a et b sont de même signe alors $|x| \ge 1$.
 - (b) Montrer que si $ab \le 0$ alors $|x| \le 1$.
- 8. On note $U^+ = U \cap]1, +\infty[$.
 - (a) Montrer que U^+ admet $\alpha = 1 + \sqrt{2}$ pour plus petit élément.
 - (b) Montrer que pour tout $x \in U^+$, il existe $n \in \mathbb{N}$ tel que $\alpha^n \leq x < \alpha^{n+1}$.
 - (c) En déduire que $U^+ = \{\alpha^n \mid n \in \mathbb{N}^*\}.$
- 9. Démontrer que

$$U = \{\alpha^n \mid n \in \mathbb{N}\} \cup \{-\alpha^n \mid n \in \mathbb{N}\}\$$

- 10. Application : résolution de l'équation $a^2-2b^2=1$ pour $(a,b)\in\mathbb{N}^2.$
 - (a) Montrer que

$$a^2 - 2b^2 = \pm 1 \quad \iff \quad \exists n \in \mathbb{N} \quad a + b\sqrt{2} = \left(1 + \sqrt{2}\right)^n.$$

(b) En déduire que

$$a^2 - 2b^2 = 1 \quad \Longleftrightarrow \quad \exists n \in \mathbb{N} \quad a + b\sqrt{2} = \left(1 + \sqrt{2}\right)^{2n}.$$

(c) Conclure que

$$a^{2} - 2b^{2} = 1 \iff \exists n \in \mathbb{N} \begin{cases} a = \sum_{k=0}^{n} {2n \choose 2k} 2^{k} \\ b = \sum_{k=0}^{n} {2n \choose 2k+1} 2^{k}. \end{cases}$$