# COMP90054 Workshop 2

# Recap

- Blind search: only use basic search algorithm (BFS, DFS, ID)

|     | Complete | Optimal | Time<br>Complexity | Space<br>Complexity |
|-----|----------|---------|--------------------|---------------------|
| BFS | Т        | T*      | O(b^d)             | O(b^d)              |
| DFS | F        | F       | infinity           | O(b*d)              |
| ID  | Τ        | T*      | O(b^d)             | O(b*d)              |

b = branching factor, d = depth of the optimal path

- Heuristic Search: additionally use the heuristic function to estimate the remaining cost (distance) to the goal state

### A few notations for heuristic search

- s, s', a, c(a)•  $n = \langle s, f(n), g(n), n_{parent} \rangle$ •  $h \leftrightarrow h(s), h^* \leftrightarrow h^*(s)$
- Uniform cost search: f(n) = g(n)
- Greedy: f(n) = h(s)
- $A^*$ : f(n) = h(s) + g(n)
- WA\*: f(n) = W \* h(s) + g(n)

# Weighted A\*

 $\bullet f(n) = g(n) + w * h(s)$ 

- If w == 0: f(n) = g(n) => uniform cost
- If w == 1:  $f(n) = g(n) + h(s) => A^*$
- If w == infinite: f(n) = h(s) => Greedy

# **Properties of Heuristic functions**

**Definition (Safe/Goal-Aware/Admissible/Consistent).** Let  $\Pi$  be a planning task with state space  $\Theta_{\Pi} = (S, L, c, T, I, S^G)$ , and let h be a heuristic for  $\Pi$ . The heuristic is called:

- safe if  $h^*(s) = \infty$  for all  $s \in S$  with  $h(s) = \infty$ ;
- **goal-aware** if h(s) = 0 for all goal states  $s \in S^G$ ;
- **admissible** if  $h(s) \leq h^*(s)$  for all  $s \in s$ ;
- **consistent** if  $h(s) \le h(s') + c(a)$  for all transitions  $s \stackrel{a}{\to} s'$ .

# Relationships between properties

- safe if  $h^*(s) = \infty$  for all  $s \in S$  with  $h(s) = \infty$ ;
- **goal-aware** if h(s) = 0 for all goal states  $s \in S^G$ ;
- **admissible** if  $h(s) \leq h^*(s)$  for all  $s \in s$ ;
- **consistent** if  $h(s) \leq h(s') + c(a)$  for all transitions  $s \stackrel{a}{\rightarrow} s'$ .



### **Dominant Relation**

- If heuristic h1 dominates heuristic h2:
- Then we will have h1(s) >= h2(s), for all s belongs to state space S
- And both h1 and h2 need to be admissible

# **Problem 1**



### Task 1

Which heuristics are admissible?

Which are consistent?

Does any of the heuristics dominate any other?

- **admissible** if  $h(s) \leq h^*(s)$  for all  $s \in s$ ;
- **consistent** if  $h(s) \le h(s') + c(a)$  for all transitions  $s \xrightarrow{a} s'$ .

# **Problem 1**



### Task 2

- Choose one Heuristic and perform A\*
- Choose one Heuristic and perform Greedy
- Choose one Heuristic and perform WA\*

# Node expansion order of A\*, h1

When pop up a node from the data structure:

- 1. Check if current node n contains the goal state
- 2. Generate children nodes, and put into data structure



# Node expansion order of A\*, h1

|        | 10                                   | l1                                                                                             | <b>I</b> 2 |
|--------|--------------------------------------|------------------------------------------------------------------------------------------------|------------|
| Open   | n0 = <s1, 0,="" 4,="" null=""></s1,> | n1 = <s2, ?,="" n0=""><br/>n2 = <s3, ?,="" n0=""><br/>n3 = <s4, ?,="" n0=""></s4,></s3,></s2,> |            |
| Closed |                                      | n0                                                                                             |            |
|        | <b>I</b> 3                           | <b>I</b> 4                                                                                     | <b>I</b> 5 |
| Open   |                                      |                                                                                                |            |
| Closed |                                      |                                                                                                |            |

### h

# s1

# Node expansion order of A\*, h1

|       | 10                                                                  | I1                                                                                                               | <b>I</b> 2                                                                                                        |
|-------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Oper  | n0 = < s1, 4, 0, null >                                             | n1 = <s2, 2,="" 5,="" n0=""><br/>n2 = <s3, 2,="" 7,="" n0=""><br/>n3 = <s4, 1,="" 4,="" n0=""></s4,></s3,></s2,> | $n1 = \langle s2, 5, 2, n0 \rangle$<br>$n2 = \langle s3, 7, 2, n0 \rangle$<br>$n4 = \langle s6, 4, 2, n3 \rangle$ |
| Close | d                                                                   | n0                                                                                                               | n0, n3                                                                                                            |
|       | <b>I</b> 3                                                          | <b>I</b> 4                                                                                                       | <b>I</b> 5                                                                                                        |
| Oper  |                                                                     | n6 = <s5, 4,="" 6,="" n1=""></s5,>                                                                               |                                                                                                                   |
|       | n2 = <s3, 2,="" 7,="" n0=""><br/>n5 = <s7, 6,="" n4=""></s7,></s3,> | n2 = <s3, 2,="" 7,="" n0=""><br/>n5 = <s7, 6,="" n4=""></s7,></s3,>                                              |                                                                                                                   |
| Close | n5 = <s7, 6,="" n4=""></s7,>                                        | , , ,                                                                                                            | n0, n1, n3, n4, n5                                                                                                |

### Task 2

- Choose h2 and perform A\*
- Choose h2 and perform Greedy
- Choose h2 and perform WA\*, weight =2



# Node expansion order of A\*, h2

```
nodes = [
# (state, fn, accumulated cost,
id of parent node)
('s1', 6, 0, None),
('s4', 6, 1, 0),
('s6', 6, 2, 1),
('s7', 6, 6, 2)
```



# Node expansion order of Greedy, h2

```
nodes = [
# (state, fn, accumulated cost, id
of parent node)
('s1', 6, 0, None),
('s4', 5, 1, 0),
('s6', 4, 2, 1),
('s7', 0, 6, 2)
```



# Node expansion order of WA\*, h2

```
nodes = [
# (state, fn, accumulated cost,
id of parent node)
('s1', 12, 0, None),
('s4', 11, 1, 0),
('s6', 10, 2, 1),
('s7', 6, 6, 2)
```



## Task 2

 Which is the path returned as the solution?

Is this the optimal plan?

(using h2 and A\* as example)

### Problem 2

- Consider an  $m \times m$  Manhattan Grid, and a set of coordinates G to visit in any order.
- Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them
- Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).
- What is the branching factor of this search?
- What is the size of the state space in terms of *m* and *G*?

|  | Assume<br>We are<br>here |  |
|--|--------------------------|--|
|  |                          |  |
|  |                          |  |

 $P = {S, s0, SG, A, T, C}$ 

### Consider 2 ways:

- Using a set of coordinates V' remaining to be visited,
- Or a set of coordinates *V* already visited.
- What's the difference between them

### **Problem 2**

$$ullet S = \{\langle x,y,V'
angle \mid x,y \in \{0,\ldots,m-1\} \, \wedge \, V' \subseteq G\}$$

• 
$$s_0 = \langle (0,0), G \setminus \{(0,0)\} \rangle$$

$$ullet \ S_G = \{ \langle (x,y), \{ \} 
angle \mid x,y \in \{0,\ldots,m-1\} \}$$

• 
$$A(\langle x,y,V'
angle)=\{(dx,dy)\mid$$

- $dx, dy \in \{-1, 0, 1\}$
- $ullet \wedge |dx| + |dy| = 1$
- $ullet \wedge x + dx, y + dy \in \{0, \ldots, m-1\}$
- $\bullet \ (x+dx,y+dy)\not\in W\ \}$

$$ullet T(\langle x,y,V'
angle,(dx,dy))=\langle x+dx,y+dy,V'\setminus\{(x+dx,y+dy)\}
angle$$

• 
$$c(a, s) = 1$$

|  | Assume<br>We are<br>here |  |
|--|--------------------------|--|
|  |                          |  |
|  |                          |  |

 $P = {S, s0, SG, A, T, C}$ 

### Consider 2 ways:

- Using a set of coordinates V' remaining to be visited,
- Or a set of coordinates *V* already visited.
- What's the difference between them

|  | Assume We<br>are here |  |
|--|-----------------------|--|
|  |                       |  |
|  |                       |  |

- What is the branching factor of this search?
- What is the size of the state space in terms of *m* and *G*?

|  | Assume<br>We are<br>here |  |
|--|--------------------------|--|
|  |                          |  |
|  |                          |  |

 What is the branching factor of this search?

- What is the size of the state space in terms of *m* and *G*?

If using V', then  $m^2 imes 2^{|G|}$ 

If using V, then  $m^2 imes 2^{|m imes m|}$