```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
        from sklearn.datasets import make_classification
In [2]: | df=pd.DataFrame({
            'x':[1,2,3,4,5,6,7,8,9],
            'y':[4,6,2,7,8,3,1,9,0],
            'z':[0,1,0,1,1,1,0,0,1]
        plt.scatter(df['x'],df['y'],c=df['z'])
        plt.scatter(3.5,7,color='r')
Out[2]: <matplotlib.collections.PathCollection at 0x26b04541a90>
         8
         6
         4
         2
         0
In [3]: def ed(x1,y1,x2,y2):
            return np.sqrt(((x2-x1)**2)+(y2-y1)**2)
In [4]: ed(3.5,7,5,8)
Out[4]: 1.8027756377319946
In [5]: ed(3.5,7,4,7)
Out[5]: 0.5
```

In [6]: np.argmin([1.8,0.5])

Out[6]: 1

```
In [7]: dff=pd.read_csv('Social_Network_Ads.csv')
    dff.head()
```

Out[7]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

```
In [8]: dff.drop(columns='User ID',inplace=True)
```

In [9]: from sklearn.preprocessing import LabelEncoder,StandardScaler
lb=LabelEncoder()

```
In [10]: sc=StandardScaler()
```

In [12]: dff

Out[12]:

	Gender	Age	EstimatedSalary	Purchased
0	1	-1.781797	-1.490046	0
1	1	-0.253587	-1.460681	0
2	0	-1.113206	-0.785290	0
3	0	-1.017692	-0.374182	0
4	1	-1.781797	0.183751	0
395	0	0.797057	-0.844019	1
396	1	1.274623	-1.372587	1
397	0	1.179110	-1.460681	1
398	1	-0.158074	-1.078938	0
399	0	1.083596	-0.990844	1

400 rows × 4 columns

```
In [13]: ind=dff.iloc[:,:3]
dep=dff.iloc[:,-1]
```

```
In [14]: dep
Out[14]: 0
                 0
                 0
          2
                 0
          3
                 0
          4
                 0
          395
                 1
          396
                 1
          397
                 1
          398
                 0
          399
          Name: Purchased, Length: 400, dtype: int64
```

In [15]: ind

Out[15]:

	Gender	Age	EstimatedSalary
0	1	-1.781797	-1.490046
1	1	-0.253587	-1.460681
2	0	-1.113206	-0.785290
3	0	-1.017692	-0.374182
4	1	-1.781797	0.183751
395	0	0.797057	-0.844019
396	1	1.274623	-1.372587
397	0	1.179110	-1.460681
398	1	-0.158074	-1.078938
399	0	1.083596	-0.990844

400 rows × 3 columns

```
In [16]: xx = df.iloc
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(ind,dep,test_size=0.2,random_state=0)
```

```
In [17]: from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=2)
knn.fit(x_train,y_train)
```

Out[17]: KNeighborsClassifier(n_neighbors=2)

```
In [18]: testing = pd.DataFrame({
        'y' : y_test,
        'y_hat' : knn.predict(x_test)
})
testing.sample(8)
```

Out[18]:

	У	y_hat
154	0	0
303	1	0
4	0	0
102	0	0
214	0	1
310	0	0
76	0	0
14	0	0

```
In [19]: from sklearn.metrics import confusion_matrix,accuracy_score
    confusion_matrix(y_test,knn.predict(x_test))
```

```
In [20]: accuracy_score(y_test,knn.predict(x_test))
```

Out[20]: 0.925

```
In [ ]:
```