

We Claim:

1. A pharmaceutical composition comprising:

(a) a compound of general formula (I)

wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl-C₁-C₄-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-

NR^6R^7 , $-\text{COOH}$, $-\text{CO-C}_1\text{-C}_6\text{-alkyl}$, $-\text{O-CO-C}_1\text{-C}_4\text{-alkyl}$, $-\text{CO-O-C}_1\text{-C}_4\text{-alkyl}$, $-\text{O-CO-C}_1\text{-C}_4\text{-alkyl}$, $-\text{CO-NR}^6\text{R}^7$, $-\text{OH}$, $-\text{O-C}_1\text{-C}_6\text{-alkyl}$, $-\text{S-C}_1\text{-C}_6\text{-alkyl}$, $-\text{NR}^6\text{R}^7$ and an aryl group optionally mono or polysubstituted by halogen atoms, $-\text{NO}_2$, $-\text{SO}_2\text{H}$, or $\text{C}_1\text{-C}_4\text{-alkyl}$;

R^5 , each of which are identical or different, are each a group selected from a $\text{C}_1\text{-C}_6\text{-alkyl}$ group optionally substituted by one or more halogen atoms, phenyl- $\text{C}_1\text{-C}_4\text{-alkyl}$, halogen, $-\text{CN}$, $-\text{NO}_2$, $-\text{SO}_2\text{H}$, $-\text{SO}_3\text{H}$, $-\text{SO}_2\text{-C}_1\text{-C}_6\text{-alkyl}$, $-\text{SO-C}_1\text{-C}_6\text{-alkyl}$, $-\text{SO}_2\text{-NR}^6\text{R}^7$, $-\text{COOH}$, $-\text{CO-C}_1\text{-C}_6\text{-alkyl}$, $-\text{O-CO-C}_1\text{-C}_4\text{-alkyl}$, $-\text{CO-O-C}_1\text{-C}_4\text{-alkyl}$, $-\text{O-CO-C}_1\text{-C}_4\text{-alkyl}$, $-\text{CO-NR}^6\text{R}^7$, $-\text{OH}$, $-\text{O-C}_1\text{-C}_6\text{-alkyl}$, $-\text{S-C}_1\text{-C}_6\text{-alkyl}$, $-\text{NR}^6\text{R}^7$, and an aryl group optionally mono or polysubstituted by halogen atoms, $-\text{NO}_2$, $-\text{SO}_2\text{H}$, or $\text{C}_1\text{-C}_4\text{-alkyl}$; and

n and m , which are identical or different, are each 0, 1, 2, or 3,

with the proviso that naphtho[1,8-de]-2,3-dihydro-1,1-dioxide-1,2-thiazine is excluded,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof; and

(b) a pharmaceutically acceptable excipient or carrier.

2. A pharmaceutical composition comprising:

(a) a compound of general formula (I)

wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl-C₁-C₄-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O- C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, -C₁-C₄-alkyl-O-, C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group

optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof; and

(b) a pharmaceutically acceptable excipient or carrier.

3. A method of treating neurodegenerative diseases and/or cerebral ischaemia of various origins in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl-C₁-C₄-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷ and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R⁵, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

with the proviso that naphtho[1,8-de]-2,3-dihydro-1,1-dioxide-1,2-thiazine is excluded,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

4. The method according to claim 3, wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, -C₁-C₄-alkyl-NR⁷R⁸, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, benzyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₂-alkyl, and

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

5. The method according to claim 3, wherein:

R¹ is hydrogen, C₁-C₄-alkyl, or benzyl,

R² and R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl, or

R¹ and R² together are a butylene bridge;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group
optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH,
-CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl,
-CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group
optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH,
-CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl,
-CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

6. The method according to claim 3, wherein:

R¹, R², R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group
optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-
alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷;

R^5 , which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

7. The method according to claim 3, wherein:

R^1 is methyl, ethyl, isopropyl, *n*-butyl, or benzyl,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

8. The method according to claim 3, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

9. The method according to claim 3, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

10. A method of treating neurodegenerative diseases and/or cerebral ischaemia of various origins in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-O$, phenyl- C_1-C_4 -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , and $-C_1-C_4$ -alkyl-O- C_1-C_4 -alkyl, and C_3-C_6 -cycloalkyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-NO_2$, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , $-C_1-C_4$ -alkyl-O-, C_1-C_4 -alkyl, and C_3-C_6 -cycloalkyl, or

R^1 and R^2 together are a C_4 - C_6 -alkylene bridge;

R^6 and R^7 , which are identical or different, are each hydrogen, C_1 - C_4 -alkyl, or $-CO-C_1-C_4$ -alkyl;

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, phenyl- C_1-C_4 -alkyl, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-SO_2-NR^6R^7$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-NR^6R^7$, and an aryl group optionally mono or polysubstituted by halogen atoms, $-NO_2$, $-SO_2H$, or C_1-C_4 -alkyl;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, phenyl- C_1 - C_4 -alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

11. A method of treating schizophrenia in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl- C_1 - C_4 -alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C_3 - C_6 -cycloalkyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl,

-S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷ and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R⁵, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

with the proviso that naphtho[1,8-de]-2,3-dihydro-1,1-dioxide-1,2-thiazine is excluded,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

12. The method according to claim 11, wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, -C₁-C₄-alkyl-NR⁷R⁸, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, benzyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₂-alkyl, and

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

13. The method according to claim 11, wherein:

R¹ is hydrogen, C₁-C₄-alkyl, or benzyl,

R² and R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl, or

R¹ and R² together are a butylene bridge;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

14. The method according to claim 11, wherein:

R¹, R², R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷;

R^5 , which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

15. The method according to claim 11, wherein:

R^1 is methyl, ethyl, isopropyl, *n*-butyl, or benzyl,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

16. The method according to claim 11, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

17. The method according to claim 11, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

18. A method of treating schizophrenia in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-O$, phenyl- C_1-C_4 -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , and $-C_1-C_4$ -alkyl-O- C_1-C_4 -alkyl, and C_3-C_6 -cycloalkyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-NO_2$, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , $-C_1-C_4$ -alkyl-O-, C_1-C_4 -alkyl, and C_3-C_6 -cycloalkyl, or

R^1 and R^2 together are a C_4 - C_6 -alkylene bridge;

R^6 and R^7 , which are identical or different, are each hydrogen, C_1 - C_4 -alkyl, or $-CO-C_1-C_4$ -alkyl;

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, phenyl- C_1-C_4 -alkyl, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-SO_2-NR^6R^7$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-NR^6R^7$, and an aryl group optionally mono or polysubstituted by halogen atoms, $-NO_2$, $-SO_2H$, or C_1-C_4 -alkyl;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, phenyl- C_1 - C_4 -alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂- C_1 - C_6 -alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C_1 - C_4 -alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

19. A method of treating memory disorders in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl- C_1 - C_4 -alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C_3 - C_6 -cycloalkyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂,

-SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷ and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R⁵, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

with the proviso that naphtho[1,8-de]-2,3-dihydro-1,1-dioxide-1,2-thiazine is excluded,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

20. The method according to claim 19, wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-O$, $-C_1-C_4$ -alkyl- NR^7R^8 , and $-C_1-C_4$ -alkyl- $O-C_1-C_4$ -alkyl, benzyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-NO_2$, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , and $-C_1-C_4$ -alkyl- $O-C_1-C_4$ -alkyl, or

R^1 and R^2 together are a C_4 - C_6 -alkylene bridge;

R^6 and R^7 , which are identical or different, are each hydrogen, C_1 - C_4 -alkyl, or $-CO-C_1-C_2$ -alkyl, and

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, and $-NR^6R^7$;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, and $-NR^6R^7$; and

n and m , which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

21. The method according to claim 19, wherein:

R¹ is hydrogen, C₁-C₄-alkyl, or benzyl,

R² and R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl, or

R¹ and R² together are a butylene bridge;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷;

R⁵, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

22. The method according to claim 19, wherein:

R¹, R², R³, which are identical or different, are each hydrogen or C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-NO_2$, $-O-CO-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-O-C_1-C_6$ -alkyl, and $-NR^6R^7$; and

n and m , which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

23. The method according to claim 19, wherein:

R^1 is methyl, ethyl, isopropyl, *n*-butyl, or benzyl,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

24. The method according to claim 19, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

25. The method according to claim 19, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

26. A method of treating memory disorders in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl-C₁-C₄-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O- C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, -C₁-C₄-alkyl-O-, C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, phenyl- C_1 - C_4 -alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

27. A method of treating dementias in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl- C_1 - C_4 -alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂,

-SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O-C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷ and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R⁵, each of which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

with the proviso that naphtho[1,8-de]-2,3-dihydro-1,1-dioxide-1,2-thiazine is excluded,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

28. The method according to claim 27, wherein:

R^1 is a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-O$, $-C_1-C_4$ -alkyl- NR^7R^8 , and $-C_1-C_4$ -alkyl- $O-C_1-C_4$ -alkyl, benzyl,

R^2 and R^3 , which are identical or different, are each a group selected from hydrogen, a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-NO_2$, $-SO_2H$, $-SO_2-C_1-C_6$ -alkyl, $-SO-C_1-C_6$ -alkyl, $-CO-C_1-C_6$ -alkyl, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, $-C_1-C_4$ -alkyl- NR^6R^7 , and $-C_1-C_4$ -alkyl- $O-C_1-C_4$ -alkyl, or

R^1 and R^2 together are a C_4 - C_6 -alkylene bridge;

R^6 and R^7 , which are identical or different, are each hydrogen, C_1 - C_4 -alkyl, or $-CO-C_1-C_2$ -alkyl, and

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, and $-NR^6R^7$;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, $-CN$, $-NO_2$, $-SO_2H$, $-SO_3H$, $-COOH$, $-CO-C_1-C_6$ -alkyl, $-O-CO-C_1-C_4$ -alkyl, $-CO-O-C_1-C_4$ -alkyl, $-O-CO-O-C_1-C_4$ -alkyl, $-CO-NR^6R^7$, $-OH$, $-O-C_1-C_6$ -alkyl, $-S-C_1-C_6$ -alkyl, and $-NR^6R^7$; and

n and m , which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

29. The method according to claim 27, wherein:

R^1 is hydrogen, C_1 - C_4 -alkyl, or benzyl,

R^2 and R^3 , which are identical or different, are each hydrogen or C_1 - C_4 -alkyl, or

R^1 and R^2 together are a butylene bridge;

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO- C_1 - C_6 -alkyl, -O-CO- C_1 - C_4 -alkyl, -CO-O- C_1 - C_4 -alkyl, -O-CO-O- C_1 - C_4 -alkyl, -CO-NR⁶R⁷, -OH, -O- C_1 - C_6 -alkyl, -S- C_1 - C_6 -alkyl, and -NR⁶R⁷;

R^5 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -CN, -NO₂, -COOH, -CO- C_1 - C_6 -alkyl, -O-CO- C_1 - C_4 -alkyl, -CO-O- C_1 - C_4 -alkyl, -O-CO-O- C_1 - C_4 -alkyl, -CO-NR⁶R⁷, -OH, -O- C_1 - C_6 -alkyl, -S- C_1 - C_6 -alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

30. The method according to claim 27, wherein:

R^1 , R^2 , R^3 , which are identical or different, are each hydrogen or C_1 - C_4 -alkyl;

R^4 , which are identical or different, are each a group selected from a C_1 - C_6 -alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO- C_1 - C_4 -alkyl, -O-CO-O- C_1 - C_4 -alkyl, -O- C_1 - C_6 -alkyl, and -NR⁶R⁷;

R^5 , which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -O-CO-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -O-C₁-C₆-alkyl, and -NR⁶R⁷; and

n and m, which are identical or different, are each 0, 1, or 2,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

31. The method according to claim 27, wherein:

R^1 is methyl, ethyl, isopropyl, *n*-butyl, or benzyl,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.

32. The method according to claim 27, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

33. The method according to claim 27, wherein:

R^1 is methyl,

or a pharmacologically acceptable salt thereof.

34. A method of treating dementias in a patient, the method comprising administering to the patient an effective amount of a compound of formula (I)

wherein:

R¹ is a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -O, phenyl-C₁-C₄-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, and -C₁-C₄-alkyl-O- C₁-C₄-alkyl, and C₃-C₆-cycloalkyl,

R² and R³, which are identical or different, are each a group selected from hydrogen, a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, halogen, -NO₂, -SO₂H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -CO-C₁-C₆-alkyl, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -C₁-C₄-alkyl-NR⁶R⁷, -C₁-C₄-alkyl-O-, C₁-C₄-alkyl, and C₃-C₆-cycloalkyl, or

R¹ and R² together are a C₄-C₆-alkylene bridge;

R⁶ and R⁷, which are identical or different, are each hydrogen, C₁-C₄-alkyl, or -CO-C₁-C₄-alkyl;

R⁴, which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl;

R^5 , which are identical or different, are each a group selected from a C₁-C₆-alkyl group optionally substituted by one or more halogen atoms, phenyl-C₁-C₄-alkyl, halogen, -CN, -NO₂, -SO₂H, -SO₃H, -SO₂-C₁-C₆-alkyl, -SO-C₁-C₆-alkyl, -SO₂-NR⁶R⁷, -COOH, -CO-C₁-C₆-alkyl, -O-CO-C₁-C₄-alkyl, -CO-O-C₁-C₄-alkyl, -O-CO-O-C₁-C₄-alkyl, -CO-NR⁶R⁷, -OH, -O-C₁-C₆-alkyl, -S-C₁-C₆-alkyl, -NR⁶R⁷, and an aryl group optionally mono or polysubstituted by halogen atoms, -NO₂, -SO₂H, or C₁-C₄-alkyl; and

n and m, which are identical or different, are each 0, 1, 2, or 3,

or an enantiomer or diastereomer thereof, or a pharmacologically acceptable salt thereof.