

GaAlAs Plastic Infrared Emitting Diodes Types OP240A, OP240B, OP240C, OP240D

Features

- Wide irradiance pattern
- Mechanically and spectrally matched to the OP550 and OP560 series phototransistors
- Wavelength matched to silicon's peak response
- Significantly higher power output than GaAs at equivalent drive currents
- Side-looking package for space limited applications

Description

The OP240 series devices are 890nm high intensity gallium aluminum arsenide infrared emitting diodes molded in IR transmissive clear epoxy packages. The side-looking packages are for use in PC board mounted slotted switches or as easily mounted interrupt detectors.

Replaces

OP240SL series

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Reverse Voltage..... Peak Forward Current (1 μs pulse width, 300 pps) 3.0 A Storage and Operating Temperature Range -40° C to +100° C Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering

- (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering. (2) Derate linearly 1.33 mW/° C above 25° C.
- (3) Ee(APT) is a measurement of the average apertured radiant incidence upon a sensing area 0.180" (4.57 mm) in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653" (16.6 mm) from the lens tip. $E_{e(APT)}$ is not necessarily uniform within the

Typical Performance Curves Percent Changes in Radiant Intensity vs Time

Coupling Characteristics of OP240 and OP550

2-32

INFRARED EMITTING DIODES

Types OP240A, OP240B, OP240C, OP240D

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence OP240D OP240C OP240B OP240A	0.05 0.20 0.40 0.60		0.86 1.20	mW/cm ² mW/cm ²	$I_F = 20 \text{ mA}^{(3)}$ $I_F = 20 \text{ mA}^{(3)}$ $I_F = 20 \text{ mA}^{(3)}$ $I_F = 20 \text{ mA}^{(3)}$
VF	Forward Voltage			1.80	V	I _F = 20 mA
IR	Reverse Current			100	μΑ	V _R = 2 V
λр	Wavelength at Peak Emission		890		nm	I _F = 10 mA
В	Spectral Bandwidth Between Half Power Points		80		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.18		nm/° C	IF = Constant
θнР	Emission Angle at Half Power Points		40		Deg.	I _F = 20 mA
tr	Output Rise Time		500		ns	$I_{F(PK)} = 100 \text{ mA},$
tf	Output Fall Time		250		ns	PW = 10 μs, D.C. = 10%

