Aula – Computação Gráfica	
Rasterização	
Rasterização	
Drummdish sc://commons.wikimedia.org/wiki/File Pisel vs. subpisel.precision.gif CO2 es para uso pessoal e exclusivo durante o período de aula. Distribuição ou quer uso fora do escopo da disciplina é expressamente proibido.	
iquer uso tora do escopo da disciplina e expressamente proibido.	
Conversão Analítica para Discreta	
Problema Converter valores contínuos para coordenadas discretas	
 Por quê isso é um problema? Imagine que queira-se: Desenhar uma reta pintando pontos com coordenadas discretas de 	
um grid, a partir de dois pontos. — Por quê isso é difícil? • Precisamos definir o que é desenhar em um dispositivo raster • Precisamos definir o que é uma linha em um dispositivo raster	
Precisamos ponderar eficiência e aparência	
2	
Conversão Analítica para Discreta	
 É o passo final do pipeline de rasterização É o processo de pegar os objetos e converter em pixels 	
Os frameworks gráficos fazem isso no final do pipeline É feito a todo momento e para cada objeto Portanto, deve ser rápido	
 Para a renderização 3D também leva em consideração Luz, shading, etc. 	

	Conversão de uma Linha		
-	Casos especiais	_	
	- Horizontal		
	Desenhe o pixel P e incremente a coordenada x de 1		
	 Vertical Desenha o pixel P e incremente a coordenada y de 1 		
	Diagonal		
	Desenhe o pixel P e incremente as coordenadas x e y de 1		
	O que fazer no caso geral?		
	 Para uma inclinação < 1 		
	 Incremente a coordenada x de 1 e escolha o pixel mais perto da linha 		
	Outras inclinações são feitas por reflexão		
	 Porém, como medimos "mais perto da linha"? 		
	4	1	
4			
7			
	Conversão de uma Linha		
	Conversão de uma Linna		
_		_	
	 Por quê podemos usar distâncias verticais? 		
	 Porque é proporcional a distância verdadeira 		
	 Portanto, o ponto com a distância vertical menor é o mais 		
	próximo		
	 Lembrar que a inclinação considerada é <= 1 (primeiro octante) 		
	Y ↑ •		
	<u> </u>		
	×		
	5	5	
5			
	Conversão de uma Linha		
	Conversao de uma Liima		
_		_	
	• Algoritmo Básico		
	 Ache a equação que conecte dois pontos P e Q Comece com o ponto mais a esquerda 		
	 Cornece com o ponto mais a esquerda Incremente x_i de 1 para calcular y_i = m*x_i + B 		
	• M é a inclinação, B = intercepção em y, e y _i é um float		
	- Desenhe o pixel $(x_i, Round(y_i))$, em que Round $(y_i) = [.5 + y_i]$		
	• Algoritmo incremental		
	 Cada iteração requer uma multiplicação de ponto flutuante Modifique o algoritmo para usar um incremento 		
	• $(y_{i+1} - y_i) = m * (x_{i+1} - x_i)$		
	• $y_{i+1} = y_i + m * (x_{i+1} - x_i)$ • If $\Delta x = x_{i+1} - x_i = 1$, then $y_{i+1} = y_i + m$		
	 A cada iteração fazemos um incremento em y para achar o 		
	próximo valor, e arredondamos para inteiro		

· Algoritmo incremental

7

Conversão de uma Linha

· Algoritmo incremental

8

Conversão de uma Linha

- Algoritmo do ponto médio
 - Assuma que a inclinação da reta é baixa (0 < m < 1)
 - Outras inclinações podem ser tradas por reflexões
 - Chame o ponto mais baixo da esquerda de (x_0, y_0)
 - Chame o ponto mais alto da direita de (x_1, y_1)
 - Assuma que acabamos de selecionar o pixel P em (x_p, y_p)
 - Em seguida, devemos escolher entre
 - O pixel da direita (E pixel), ou o pixel da direita acima (NE pixel)
 - Considere V o ponto de interseção entre a linha de interesse e a reta vertical $x=x_P+1$

9

• Algoritmo do ponto médio

10

Conversão de uma Linha

- · Algoritmo do ponto médio
 - A linha passa entre E e NE
 - O ponto que está mais perto da interseção V deve ser escolhido
 - Observe em que lado da linha o M está:
 - E está mais próximo da linha se o ponto do meio M está acima da linha
 - NE está mais próximo da linha se o ponto do meio M está abaixo da
 - A distância entre o pixel escolhido e a linha é sempre menor ou

11

Conversão de uma Linha

- · Algoritmo do ponto médio
 - Como verificar quem esta mais próximo?
 - Equação da linha: $f(x) = y = mx + B = \frac{dy}{dx}x + B$
 - Forma implícita: f(x,y) = ax + by + c = 0
 - Evita inclinações infinitas
 - Da equação:

$$y dx = dy x + B dx$$

$$dy x - y dx + B dx = 0$$

$$a = dy, b = -dx, c = B dx$$

- Propriedades

 - $-f(x_m,y_m)=0$ quando o ponto m está na linha $-f(x_m,y_m)<0$ quando o ponto m está acima da linha
 - $-f(x_m, y_m) > 0$ quando o ponto m está abaixo da linha Nossa decisão será baseada no valor do ponto do meio
 - - » $m = M = (x_P + 1, y_P + .5)$

Conversão de uma Linha	_		
Algoritmo do ponto médio			
 Varável de decisão d 	_		
• Só precisamos do sinal de $f(x_P + 1, y_P + .5)$			
$-d = f(x_P + 1, y_P + .5)$	_		
• Se $d > 0$ escolha o pixel NE			
 if d < 0 escolha o pixel E 			
 if d = 0 escolha um deles consistentemente 	_		
– Porém, como atualizamos d incrementalmente?			
Baseado na escolha de E ou NE	_		
 Descubra o M do próximo pixel e o d correspondente 			
 Podemos derivar o pixel d baseado na nossa decisão corrente 	_		
	13		
	_		
Conversão de uma Linha			
	_		
			
Algoritmo do ponto médio	_		
 Incrementando d se E for escolhido 			
• $d_{old} = a(x_P + 1) + b(y_P + .5) + c$			
• $d_{new} = f(x_P + 2, y_P + .5)$ = $a(x_P + 2) + b(y_P + .5) + c$	_		
• $d_{new} - d_{old}$ é a diferença incremental ΔE			
$-a(x_P + 2) - a(x_P + 1) = a$	_		
$-d_{new}=d_{old}+a$, então $\Delta E=a=dy$ (2 slides antes)			
 Podemos calcular o próximo d incrementalmente 			
• $d_{new} = d_{old} + \Delta E = d_{old} + dy$	_		
 ΔE é o fator de atualização 			
	_		
	14		
	<i>-</i>		
Conversão de uma Linha			
	_		
 Algoritmo do ponto médio 	_		
 Incrementando d se NE for escolhido 	_	 	
• $d_{new} = f(x_P + 2, y_P + 1.5)$			
$= a(x_P + 2) + b(y_P + 1.5) + c$	_		
• $\Delta NE = d_{new} - d_{old} =$			
$a(x_P + 2) + b(y_P + 1.5) - (a(x_P + 1) + b(y_P + .5))$			
 - d_{new} = d_{old} + a + b. Thus ΔNE = a + b = dy - dx • Thus, incrementally, 	_		
• Thus, incrementally, $d_{new} = d_{old} + \Delta NE = d_{old} + dy - dx$			
$u_{new} = u_{old} + \Delta v = u_{old} + uy - ux$	_		

- · Algoritmo do ponto médio (RESUMO)
 - $-\,$ O primeiro pixel é o primeiro ponto (x_0,y_0)
 - · Pode ser calculado diretamente
 - A cada passo escolha entre 2 pixels baseado em d
 - Atualize o valor de d com o respectivo delta ΔE ou ΔNE

16

Conversão de uma Linha

• Algoritmo do ponto médio (Primeiro Ponto)

```
– O primeiro pixel é o primeiro ponto (x_0, y_0)
     • d = d_{start} is at (x_0 + 1, y_0 + .5)
          - f(x_0 + 1, y_0 + .5)
                = a(x_0 + 1) + b(y_0 + .5) + c
                = ax_0 + by_0 + a + \frac{b}{2} + c
                = f(x_0, y_0) + a + \frac{b}{2}
     - Mas (x_0,y_0) é um ponto na linha, então f (x_0,y_0)=0
          - d_{start} = a + \frac{b}{2} = dy - \frac{dx}{2}
     • Para eliminar a fração podemos multiplicar f (x, y ) por 2

    Isso não altera o sinal da variável d
```

 $-\ d_{start} = 2dy - \mathrm{dx}$

17

17

Conversão de uma Linha

```
void MidpointLine(int x0, int y0, int x1, int y1) {
   int dx = (x1 - x0), dy = (y1 - y0);
   int d = 2 * dy, - dx;
   int incrNE = 2 * dy;
   int incrNE = 2 * (dy - dx);
   int x = x0, y = y0;
   WritePixel(x, y);
        ++x;
WritePixel(x, y);
                                                                         Esse algoritmo é identico
ao de Bresenham's,
porém derivado de forma
      }
```

18

- Algoritmo do ponto médio
 - Octantes
 - O algoritmo só é valido para o primeiro octante.
 - · Descubra o octante da reta
 - Veja quem é maior entre dx e dy
 - Veja o sinal de dx e dy
 - Inverta x e y apropriadamente
 - Para colocar a reta no primeiro octante
 - · Calcule os pontos da reta
 - Inverta o x e y dos pontos calculados para o octante original

Converte (x, y) para o primeiro octante: Se estiver no octante 1: returna (x, y) Se estiver no octante 2: returna (y, x) Se estiver no octante 3: returna (y, x) Se estiver no octante 4: returna (x, y) Se estiver no octante 5: returna (x, y) Se estiver no octante 6: returna (y, x) Se estiver no octante 6: returna (y, x) Se estiver no octante 6: returna (y, x) Se estiver no octante 8: returna (x, x)

19

Conversão de uma Linha

- Esse algoritmo para linha não lida com antialiasing
- Para obter linhas com antialiasing
 - Use, por exemplo, o algoritmo de Xiaolin Wu's

simedia.org/wiki/File:LineXiaolinWu.gif

tems la gresle et le tonner tems la gresle et le tonner

erge Marie ps://commons.wikimedia.org/wiki/File:Antia ing.png blin Domein

20

20

Conversão de um Círculo

- Versão 1
 - Amostragem não uniforme!
 - Algoritmo
 - For x from -R to R
 - $-y=\sqrt{R^2-x^2};$
 - WritePixel(x, round(y))
 - − WritePixel(x, round(-y));

2:

Conversão de um Círculo

- Versão 2
 - Uniforme, mas sem controle da amostragem!
 - Algoritmo
 - For θ from 0 to 360:
 - WritePixel(round($R\cos(\theta)$), round($R\sin(\theta)$))

22

Conversão de um Círculo

- Versão 3
 - Usa simetria
 - Se (x_0+a,y_0+b) está no círculo centrado em (x_0,y_0)
 - Então, $(x_0 \pm a, y_0 \pm b)$ e $(x_0 \pm b, y_0 \pm a)$ também estão
 - Existem 8 simetrias
 - Reduz o problema
 - Em achar 1/8 dos pixels do círculo (x_0+a,y_0+b) R

 $(x-x_0)^2 + (y-y_0)^2 = R^2$

23

Conversão de um Círculo

- Versão 3
 - Ache os 1/8 de pixels no topo direito do círculo de raio R
 - O círculo começa em $(x_0, y_0 + R)$
 - Vamos usar outro algoritmo incremental com variável de decisão
 - Usando o ponto do meio

24

Conversão de um Círculo

```
• Versão 3

int x = x0, y = y0 + R; WritePixel(x, y);

for (x = x + 1; (x - x0) < (y - y0); x++) {
    if (decision_var < 0) {
        // Pixel E
        // Atualiza variável de decisão
    } else {
        // Pixel SE
        // Atualiza variável de decisão
        y--;
    }

WritePixel(x, y);
```

25

Conversão de um Círculo

- Versão 3
 - O que precisamos para o algoritmo incremental?
 - Negativo se movermos para E, ou positivo se movermos para SE
 Ou vice versa
 - Seguindo a estratégia da linha
 - Usamos a equação implícita do círculo
 - $-f(x,y) = x^2 + y^2 R^2 = 0$
 - -f(x,y) é zero no círculo, negativo dentro e positivo fora
 - Se estamos no pixel (x,y) examine o próximo pixel
 - -(x+1,y)e(x+1,y-1)
 - Compute f para o ponto do meio

Conversão de um Círculo

Versão 3

26

- Avalie $f(x,y) = x^2 + y^2 R^2$ para o ponto $\left(x + 1, y \frac{1}{2}\right)$
- ${\color{red}{\mathsf{-}}}$ Queremos saber o sinal de f para:

$$f\left(x+1,y-\frac{1}{2}\right) = (x+1)^2 + (y-\frac{1}{2})^2 - R^2$$

- Se for negativo, o ponto do meio está dentro, escolha E
- Se for positivo, o ponto do meio está fora, escolha SE

Convers	ão de	um	Círculo

	Vor	รลัก	2
•	ver	San	

- Como podemos computar a distância vertical em pontos sucessivos? $f(x,y)=d=(x+1)^2+\left(y-\frac{1}{2}\right)^2-R^2$

- Solução:

• $f(x+1,y) - f(x,y) = \Delta_E(x,y) = 2x + 3$ • $f(x+1,y-1) - f(x,y) = \Delta_{SE}(x,y) = 2x - 2y + 5$

- Outro problema:

- O incremento não é constante
- · Deve ser calculado a todo passo

32

Conversão de um Círculo

- Versão 3
 - Solução
 - Fazer a atualização do incremento a cada passo
 - Calcular a diferença entre os deltas para saber como atualizar os deltas

$$\begin{split} &\Delta_{\mathrm{E}}(x+1,y)-\Delta_{\mathrm{E}}(x,y)=2\\ &\Delta_{\mathrm{E}}(x+1,y-1)-\Delta_{\mathrm{E}}(x,y)=2 \end{split}$$

$$\begin{split} &\Delta_{\text{SE}}(x+1,y) - \Delta_{\text{SE}}(x,y) = 2 \\ &\Delta_{\text{SE}}(x+1,y-1) - \Delta_{\text{SE}}(x,y) = 4 \end{split}$$

33

33

Conversão de um Círculo

- Versão 3
 - Para cada passo, compute o novo $\Delta_{\it E}(x,y)$ a partir do antigo
 - Faça o mesmo para $\Delta_{SE}(x,y)$
 - Decida a posição do novo pixel (a+1,b) ou (a+1,b-1)
 - Usando o delta apropriado e calculado previamente
 - Resumo:
 - Look at d to decide which to draw next, update x and y
 - Update d using $\Delta_E(a,b)$ or $\Delta_{SE}(a,b)$
 - Update each of $\Delta_E(a,b)$ and $\Delta_{SE}(a,b)$ for future use
 - Draw pixel

34

Conversão de um Círculo

 Versão 3 MidpointEighthCircle(R) { /* 1/8th de um círculo com raio R */ WritePixel(x, y);
while (y > x) {
 if (decision < 0) { // Pixel E</pre> if (decision < 0) { // Pixel E
x+; WritePixel(x, y);
decision += deltaE;
deltaE += 2; deltaSE += 2; // Atualiza os deltaS
} else { // Pixel SE
y-: x+; WritePixel(x, y);
decision += deltaSE;
deltaE += 2; deltaSE += 4; // Atualiza os deltaS</pre>

35

Rasterização de polígonos

· Algoritmo clássico

- Ordene as arestas
 - Chave primária: ymin
 - · Chave secundária: xmin • Ex: (e,d,a,b,c)
- Varra de ymin até ymax
- Preencha intervalos horizontais de pares de arestas

36

Rasterização de polígonos

Algoritmo clássico

- Informação das arestas
 - Y inicial (mínimo)
 - Y final (máximo)
 - X corrente
 - Incremento em X, dx
- Lista de arestas
 - Ordenadas pelo y e x iniciais
- Lista de arestas ativas
 - Arestas tocando a linha de varredura corrente
 - Ordenadas pela coordenada x que intercepta a linha de varredura

y ,	incremento
	<u> </u>
ymin	xmin

Rasterização de polígonos

Balsa Video - http://www.youtube.com/watch?v=GXi32vnA-2A

38

Preenchimento (Flood Fill)

- Não é um algoritmo de rasterização
- Ocorre na imagem e não faz conversão de analítico para discreto
- Preenche uma região baseado na conectividade dos pixels
 - 4-connected
 - 8-connected

André Karwath aka Aka https://commons.wikimedia.org/wiki/File:Recursi ve_Flood_Fill_4_(aka).gif https://commons.wikimedia.org/wiki/File:Recursi ve_Flood_Fill_8_(aka).gif

40

Preenchimento (Flood Fill)

- Flood-fill (pixel, cor-alvo, nova-cor):
 - Se a cor do pixel for igual a nova-cor
 - Retorna sem fazer nada
 - $\,-\,$ Se a cor do pixel for diferente da cor-alvo
 - Retorna sem fazer nada
 - Atualiza a cor do pixel com a nova-cor
 - Visita os pixels vizinhos (4 ou 8 vizinhos)
 - Flood-fill (pixel do sul, cor-alvo, nova-cor)
 - Flood-fill (pixel do norte, cor-alvo, nova-cor)
 - Flood-fill (pixel do leste, cor-alvo, nova-cor)
 - Flood-fill (pixel do oeste, cor-alvo, nova-cor)

Perguntas ?????		
	_	
	,	
	,	
	,	
	42	