Bike Sharing Demand

YAO YANG

Chongqing University of Posts and Telecommunications test

July 16, 2023

Overview

Problem Definition

Data Clean

Knowledge Discovery

Model Solution

Problem Definition

Bike Sharing Demand

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Variable Relationship Discovery

Target Variable Analysis

Fill In Zero Values

Model Solution

Model Building

Model Fusion Stacking

Final prediction result

Bike Sharing Demand

Data Clean

Knowledge Discovery

Model Solution

Problem Definition

Bike Sharing Demand

Problem Definition

Bike Sharing Demand

Data Clean

Knowledge Discovery

Model Solution

The goal of this project is to forecast bike rental demand given the input feature like the duration of travel, departure location, arrival location, and time elapsed.

Evaluation metrics: RMSLE(Root Mean Squard Logarithmic Error) is required to evaluate the model.

$$RMSLE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}\left[log(p_i+1)-log(\alpha_i+1)\right]^2}$$
 n is the number of test set samples, pi is the

n is the number of test set samples, pi is the test value, and ai is the actual value. When the root mean square error is smaller, it means that the fitting effect of the data is better and the test value is closer to the actual value.

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Model Solution

Data Clean

Data Describe

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Model Solution

You are provided hourly rental data spanning two years. For this competition, the training set is comprised of the first 19 days of each month, while the test set is the 20th to the end of the month. You must predict the total count of bikes rented during each hour111covered by the test set, using only information available prior to the rental period.

- train.csv It contains a training set of target variables.
- test.csv It does not contain a training set of target variables.
- **sampleSubmission.csv** It is a properly formatted sample submission file.

Data Describe

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

- datetime hourly date + timestamp
- season 1 = spring, 2 = summer, 3 = fall, 4 = winter
- holiday whether the day is considered a holiday
- workingday whether the day is neither a weekend nor holiday
- weather 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
 - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- **temp** temperature in Celsius
- atemp "feels like" temperature in Celsius
- humidity relative humidity
- windspeed wind speed
- casual number of non-registered user rentals initiated
- registered number of registered user rentals initiated
- count number of total rentals

Data Describe

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Figure 1: Describe

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Figure 2: Box Plot and Scatter Plot

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Figure 3: Line Chart

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Figure 4: Scatter Plot

Problem Definition

Data Clean

Data Describe

Data Visualization Plot

Knowledge Discovery

Figure 5: Line Chart

Data Clean

Knowledge Discovery

Variable Relationship Discovery
Target Variable Analysis
Fill In Zero Values

Model Solution

Knowledge Discovery

Variable Relationship Discovery

Problem Definition

Data Clean

Knowledge Discovery

Variable Relationship Discovery

Target Variable Analysis

Fill In Zero Values

Figure 6: Hot Map

Target Variable Analysis

Problem Definition

Data Clean

Knowledge Discovery

Variable Relationship Discovery

Target Variable Analysis

Fill In Zero Values

Figure 7: Variable Conversions

Fill In Zero Values

Problem Definition

Data Clean

Knowledge Discovery

Variable Relationship Discovery

Target Variable Analysis

Fill In Zero Values

Model Solution

The random forest model will be used to fill the zero values in the windspeed feature.

Figure 8: Relationship Between Features and Windspeed

Data Clean

Knowledge Discovery

Model Solution

Model Building

Model Fusion Stacking

Final prediction result

Model Building

Problem Definition

Data Clean

Knowledge Discovery

Model Solution

Model Building

Model Fusion Stacking Final prediction result

Summary of RMSLE scores for the 16 models

	Model	RMSLE
15	LightGBM	0.316161
11	Random Forest Regressor	0.375379
10	BaggingRegressor	0.394187
14	XGBoost	0.422559
13	GBRT	0.435759
8	DecisionTreeRegressor	0.523695
9	ExtraTreeRegressor	0.554145
12	AdaBoostRegressor	0.697286
4	KernelRidge Regression	0.813210
7	KNN	0.864965
6	SVR	1.045943
5	ElasticNet Regression	1.053736
3	Ridge Regression	1.053749
2	Lasso Regression	1.054156
0	Linear Regression	1.054414
1	Logistic Regression	1.127804

Figure 9: RMSLE Scores

Model Fusion Stacking

Problem Definition

Data Clean

Knowledge Discovery

Model Solution

Model Building

Model Fusion Stacking

Final prediction result

RMSLE For Stacking: 0.3144

Final prediction result

Problem Definition

Data Clean

Knowledge Discovery

Model Solution

Model Building

Model Fusion Stacking

Final prediction result

Result

The best two models Stacking and LightGBM are weighted and the final prediction is saved.

ensemble = stacking_pred * 0.60 + lgb_pred * 0.40