Статистика для анализа данных

Лабораторная работа 1 Расчет геометрической вероятности

Участники:

Карташов Игорь Олегович, 466135, J3112

Содержание

1	Вы	полнение лабораторной работы	2
2	Основная часть: описание каждого шага, промежуточные		
результаты и их анализ		2	
	2.1	Шаг 1: Задание параметров эксперимента	2
	2.2	Шаг 2: Расчёт истинной геометрической вероятности	2
	2.3	Шаг 3: Генерация случайных точек в квадрате Ω	3
	2.4	Шаг 4: Определение попадания точек в круг $A(r)$	3
	2.5	Шаг 5: Вычисление оценочной вероятности $\hat{p}(n)$	3
	2.6	Шаг 6: Построение графика $\hat{p}(n)$	3
	2.7	Шаг 7: Вычисление и построение графика ошибки $\varepsilon(n)$	3
	2.8	Шаг 8: Определение необходимого количества точек $N(\varepsilon)$.	4
3	Пример кода на Python		6
4	Заключение		9

1 Выполнение лабораторной работы

- Ход работы
 - Определение параметров эксперимента
 - Расчёт истинной геометрической вероятности
 - Генерация случайных точек
 - Определение попадания точек в круг
 - Вычисление оценочной вероятности
 - Построение графиков
 - Анализ результатов

2 Основная часть: описание каждого шага, промежуточные результаты и их анализ

2.1 Шаг 1: Задание параметров эксперимента

Описание: Задаются значения параметров:

- a половина длины стороны квадрата Ω . Пример: $\Omega = [-a,a] \times [-a,a]$.
- r радиус круга A(r), где $r \in (0, a]$.
- ullet N общее количество точек, генерируемых для оценки вероятности.

Определены основные параметры, которые будут использованы в последующих расчетах.

2.2 Шаг 2: Расчёт истинной геометрической вероятности

Описание: Истинная вероятность попадания точки в круг вычисляется как отношение площади круга к площади квадрата:

$$p = \frac{\pi r^2}{(2a)^2} = \frac{\pi r^2}{4a^2}.$$

Получено теоретическое значение p, которое служит контрольной точкой для оценки результатов, полученных методом Монте-Карло.

2.3 Шаг 3: Генерация случайных точек в квадрате Ω

Описание: С использованием генератора случайных чисел генерируются N точек с координатами (x,y), равномерно распределёнными по интервалу [-a,a] для каждой координаты. Создан массив случайных точек для дальнейшего анализа.

2.4 Шаг 4: Определение попадания точек в круг A(r)

Описание: Для каждой сгенерированной точки проверяется условие попадания в круг:

$$x^2 + y^2 < r^2$$
.

Если условие выполняется, точка считается попавшей в круг. Получена логическая маска (или массив индикаторов), показывающая, какие точки находятся внутри круга.

2.5 Шаг 5: Вычисление оценочной вероятности $\hat{p}(n)$

Описание: Для различных значений n (например, с шагом 100 от 100 до N) вычисляется оценка вероятности:

$$\hat{p}(n) = \frac{\text{число точек, попавших в круг}}{n}.$$

Получена последовательность оценок $\hat{p}(n)$, что позволяет наблюдать сходимость оценки к истинному значению p.

2.6 Шаг 6: Построение графика $\hat{p}(n)$

Описание: Построен график зависимости оценочной вероятности $\hat{p}(n)$ от числа точек n. На графике также нанесена горизонтальная линия, соответствующая истинному значению p. При увеличении n наблюдается, что оценка $\hat{p}(n)$ сходится к p. Это подтверждает закон больших чисел, поскольку с ростом числа точек флуктуации уменьшаются.

2.7 Шаг 7: Вычисление и построение графика ошибки $\varepsilon(n)$

Описание: Ошибка оценки определяется как абсолютная разность между оценкой и истинным значением:

$$\varepsilon(n) = |\hat{p}(n) - p|.$$

Для каждого значения n вычисляется соответствующая ошибка. **Промежуточный результат:** Получена последовательность значений ошибки $\varepsilon(n)$, отражающая улучшение точности оценки с увеличением числа точек. **Анализ:** График ошибки показывает, что при росте n значение $\varepsilon(n)$ уменьшается, что соответствует теоретическому соотношению $\varepsilon(n) \propto \frac{1}{\sqrt{n}}$.

Пример для радиуса 0.5 и 0.75:

2.8 Шаг 8: Определение необходимого количества точек $N(\varepsilon)$

Зафиксировав последовательность значений точности ε , для каждого значения определяется минимальное n, при котором достигается условие

 $\varepsilon(n) \leq \varepsilon$. Полученная зависимость $N(\varepsilon)$ показывает, сколько точек необходимо для достижения заданной точности. **Анализ:** Такой анализ позволяет оценить эффективность метода и определить оптимальное число точек для практических вычислений.

3 Пример кода на Python

Ниже приведён пример реализации расчета геометрической вероятности с использованием метода Монте-Карло:

Листинг 1: Пример кода для расчета геометрической вероятности

```
import numpy as np
import matplotlib.pyplot as plt
a = 1.0
r_{list} = [0.1, 0.2, 0.5, 0.75, 0.99]
N = 10000
for r in r_list:
   print("", r)
   p_true = (np.pi * r**2) / (4 * a**2)
   x = np.random.uniform(-a, a, N)
   y = np.random.uniform(-a, a, N)
   inside = (x**2 + y**2) \le r**2
   p_estimate = np.sum(inside) / N
   print("":", p_true)
   print(":", p_estimate)
   points = np.arange(100, N+1, 100)
   p_estimates = []
   errors = []
   for n in points:
       x = np.random.uniform(-a, a, n)
       y = np.random.uniform(-a, a, n)
       inside = (x**2 + y**2) \le r**2
       p_est = np.sum(inside) / n
       p_estimates.append(p_est)
       errors.append(abs(p_est - p_true))
   fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
   \verb|ax1.plot(points, p_estimates, label="|_|p(n)")|
   ax1.axhline(y=p_true, color='r', linestyle='--', label="up")
   ax1.set_xlabel("uun")
   ax1.set_ylabel("")
   ax1.set_title("____")
```

```
ax1.legend()
    ax2.plot(points, errors, label="")
    ax2.set_xlabel("___n")
    ax2.set_ylabel("")
    ax2.set_title("uuepsilon(n)")
    ax2.legend()
    plt.tight_layout()
    plt.show()
epsilons = [10**(-i) \text{ for } i \text{ in range}(1, 5)]
results = {} # , r N epsilons
for r in r_list:
    p_{true} = (np.pi * r**2) / (4 * a**2)
    N_{list} = []
        eps , |p_est - p_true| < eps
    for eps in epsilons:
       count = 100 #
                       100
       while True:
           x = np.random.uniform(-a, a, count)
           y = np.random.uniform(-a, a, count)
           inside = (x**2 + y**2) \le r**2
           p_est = np.sum(inside) / count #
           if abs(p_est - p_true) < eps:</pre>
               N_list.append(count)
               break
           else:
               count += 100 #
               if count > 1e6: #
                   N_list.append(count)
    results[r] = N_list
plt.figure(figsize=(8, 6))
for r in r_list:
    plt.plot(epsilons, results[r], marker='o', label=f"r_{\sqcup}=_{\sqcup}\{r\}")
plt.xlabel(""()")
plt.ylabel("___N")
plt.title("uNuuuuuur")
plt.xscale('log') #
```

```
plt.legend()
plt.grid(True, which="both", linestyle='--')
plt.show()
```

4 Заключение

В ходе работы я релиазовал метод Монте-Карло для оценки геометрической вероятности попадания точки в круг A(r), вписанный в квадрат Ω . Полученные результаты показывают, что:

- Оценка $\hat{p}(n)$ сходится к теоретически вычисленному значению p при увеличении числа точек.
- Ошибка $\varepsilon(n)$ уменьшается с ростом выборки, что подтверждает закон больших чисел.
- Анализ зависимости $N(\varepsilon)$ позволяет определить оптимальное число точек, необходимое для достижения заданной точности.

Таким образом, проведённый эксперимент демонстрирует корректность теоретических выкладок и эффективность применения метода Монте-Карло для расчёта геометрической вероятности.