Sammanfattning av modul 3

(G; *) är en grupp om

- G1) $\forall x, y \in G : x * y \in G$ "slutenhet"
- G2) $\forall x, y, z \in G : (x * y) * z = x * (y * z)$ "associativitet"
- G3) $\exists I \in G : \forall x \in G : I * x = x * I = x$ "identitetselement"
- G4) $\forall x \in G : \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = I$ "invers"

Om det i en grupp (G; *) gäller att

$$a * b = b * a$$

för alla a, $b \in G$, kallas G abelsk eller kommutativ.

Grupptabeller är latinska kvadrater.

$$ax = ay \Rightarrow x = y \leftarrow xa = ya$$

En grupp, G, är cyklisk om det finns ett element $g \in G$ sådant att varje element i G är av formen g^n , något $n \in \mathbb{Z}$.

Ett sådant g kallas en generator, ett genererande element för G.

$$G = \langle g \rangle$$

Om o(g) = m:

$$G = \{1, g, g^2, g^3, ..., g^{m-1}\}$$
 ser ut som $(\mathbb{Z}_m; +)$.

Om
$$G = \langle g \rangle$$
 gäller $|G| = o(g)$

$$o(g) = \infty$$
:

$$G = \{..., g^{-2}, g^{-1}, 1, g, g^{2}, ...\}$$
 ser ut som (\mathbb{Z} ; +).

Om $H \subseteq G$ och (G; *) är en grupp så är H en delgrupp till G omm:

S0:
$$H \neq \emptyset$$

S1: $x, y \in H \Rightarrow x * y \in H$
S2: $x \in H \Rightarrow x^{-1} \in H$

$$Z(G) = \{z \in G \mid zg = gz, alla g \in G\}, G:s centrum$$

$$C(g) = \{x \in G \mid xg = gx\} \text{ för alla } g \in G$$

"centralisatorn" till G

Sidoklasser (en. cosets)

Definition: Om H är en delgrupp till G, $g \in G$, så är $gH = \{gh \mid h \in H\}$ en vänstersidoklass till H (en. left coset) och $Hg = \{hg \mid h \in H\}$ en högersidoklass till H (en. right coset).

Sats:

Om H är en delgrupp till G så är g₁H och g₂H identiska eller disjunkta.

Ty: Låt
$$x \in g_1H \cap g_2H$$
, vi skall visa att $g_1H = g_2H$.
$$x = g_1h_1 = g_2h_2, \quad h_1, \, h_2 \in H \quad \text{så} \quad g_1 = g_2h_2h_1^{-1} \text{ och om}$$

$$y = g_1H \Rightarrow y = g_1(h \in H) = g_2h_2h_1^{-1}h \ (\in H) \Rightarrow y_1 \in g_2H$$
 så
$$g_1H \subseteq g_2H$$
 på samma sätt
$$g_2H \subseteq g_1H$$

De ger en partition av G (ekvivalensrelationen $g_2^{-1}g_1 \in H$)

(Om H är ändlig är) dessutom |H| = |gH| = |Hg|

Så Lagranges sats: Om G är ändlig, H en delgrupp till G:

|H| |G|

 $[G:H] = |G:H| = \frac{|G|}{|H|}$, H:s index i G, antalet (vänster eller höger) sidoklasser.

Om G är en grupp, |G| = p, p primtal så är G cyklisk.

En gruppisomorfi mellan $(G_1; *)$ och $(G_2; \circ)$ är en bijektion $\phi: G_1 \to G_2$ så att $\phi(g * g') = \phi(g) \circ \phi(g')$ för alla $g, g' \in G_1$.

Grupperna (G_1 ; *), (G_2 ; •) kallas isomorfa om det finne en isomorfi mellan dem.

$$(G_1; *) \approx (G_2; \circ)$$
 (Beteckningen $(G_1; *) \cong (G_2; \circ)$ är mycket vanligare.)

Isomorfi är en ekvivalensrelation mellan grupper.

Enradsnotation: $\phi = [1 \ 2 \ 0 \ 5 \ 3 \ 4 \ 6]$

Tvåradsnotation: $\phi = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 0 & 5 & 3 & 4 & 6 \end{pmatrix}$

Cykelnotation: $\phi = (0 \ 1 \ 2)(3 \ 5 \ 4)(6) = (0 \ 1 \ 2)(3 \ 5 \ 4)$

Ordningen för $\pi \in S_n$ är lätt att se av π :s cykelstruktour.

Ett sätt till att beskriva permutationer:

$$\pi \in S_n \text{ motsvarar } \underset{n \times n}{\boldsymbol{M}}_{\pi} \text{ med } m_{ij} = \begin{cases} 1 & \text{om } \pi(j) = i \\ 0 & \text{annars} \end{cases}.$$

$$\mathbf{M}_{\pi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \vdots & \vdots & 0 \\ 0 & \dots & 1 \\ 1 & 0 & \vdots & \vdots \\ 0 & & \vdots & \\ 0 & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

 $så \mathbf{M}_{\pi} e_j = e_{\pi(j)} där e_k =$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \hline \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{rad } k$$

Multiplikation i S_n motsvarar matrismultiplikation.

$$\boldsymbol{M}_{\pi}^{t} = \boldsymbol{M}_{\pi}^{-1} \; (\text{ortogonal matris}) = \boldsymbol{M}_{\pi^{-1}}$$

Cayleys sats:

Varje grupp G är isomorf med en delgrupp till S_G.

Ty:
$$\phi: G \to S_G$$
 så att för $g, h \in G: \phi(g)(h) = gh$ då
$$(\phi(g_1) \circ \phi(g_2))(h) = \phi(g_1)(\phi(g_2)(h)) =$$

$$= \phi(g_1)(g_2h) = g_1(g_2h) =$$

$$= (g_1g_2)(h) = \phi(g_1g_2)h \quad \text{så}$$

$$\phi(g_1) \circ \phi(g_2) = \phi(g_1g_2)$$

$$\phi \text{ injektiv ty } g_1h = g_2h \Rightarrow g_1 = g_2$$
 så $G \cong \phi(G) = \{\phi(g) \mid g \in G\}$

Isomorfi, skrivs ibland $G \approx \varphi(G)$.

(Speciellt kan varje ändlig grupp representeras med matriser.)

Konjugering i S_n

 α , $\beta \in S_n$ är konjugerade om det finns $\sigma \in S_n$ så att $\sigma \alpha \sigma^{-1} = \beta$ (det vill säga $\sigma \alpha = \beta \sigma$).

En ekvivalensrelation på S_n (reflexiv, symmetrisk och transitiv).

Exempel:

$$\sigma = (1\ 2\ 3)(4\ 5) \ \text{\"ar} \ \text{konjugerad till} \ \beta = (1\ 3)(2\ 4\ 5).$$

$$\sigma = (1\ 5\ 3\ 4) \ \text{ger} \ \sigma\alpha\sigma^{-1} = (1\ 5\ 3\ 4)(1\ 2\ 3)(4\ 5)(1\ 4\ 3\ 5) = (1\ 3)(2\ 4\ 5)$$

 $\alpha,\,\beta\in S_n$ är konjugerande omm de har samma cykelstruktur.

Klasser av konjugerade element i S_n svarar precis mot partitioner av heltalet n.

Exempel: Alla element i S₅ konjugerade med (1 4)(2 5 3)

är de med cykelstruktur [2 3].

Exempel: $\underline{\sigma}\underline{\pi} = \sigma(\underline{\pi}\underline{\sigma})\sigma^{-1}$, så $\sigma\pi$ och $\pi\sigma$ är konjugerade.

En grövre uppdelning av S_n: jämna och udda.

En transposition: en permutation av typ $[1^{n-2} 2]$, det vill säga (ij) i \neq j.

Om
$$\pi \in S_n$$
 så finns transpositioner τ_1 , ..., τ_r så att $\pi = \tau_r \tau_{r'1} \dots \tau_2 \tau_1$ ty $(x_1 x_2 \dots x_k) = (x_1 x_k)(x_1 x_{k-1}) \dots (x_1 x_2)$.

 π är en jämn/udda permutation om r är jämnt/udda då $\pi=\tau_r\,\tau_{r-1}\,...\,\tau_1;$ sgn $\pi=(-1)^r.$

Om $\pi \in S_n$, $\pi = \tau_r \tau_{r-1} \dots \tau_1 = \tau'_r \dots \tau'_1 \quad (\tau_i, \tau'_i \text{ transpositioner})$ så har r och r' samma paritet. (Båda jämna eller båda udda.)

 $(U(G), \cdot)$ är en grupp av U(G), de invertabla elementen i G.

$$U(\mathbb{Z}_m) = \{ r \in \mathbb{Z}_m \mid sgd(r, m) = 1 \}$$

 $(R, +, \cdot)$ är en ring om (R, +) är en kommutativ grupp med identitetselement 0, (R, \cdot) är sluten och associativ med identitetselement 1 och \cdot distributiv över +.

 $(F, +, \cdot)$ är en kropp (en. field) om $(F, +, \cdot)$ är en ring och $(F\setminus\{0\}, \cdot)$ är en kommutativ grupp.

 $\phi: A \rightarrow B$ är en homomorfi mellan (A, \circ) och (B, \bullet) om

$$\phi(a \circ b) = \phi(a) \cdot \phi(b) \in B \quad \forall a, b \in A$$

En isomorfi är en bijektiv homomorfi.

Direkta produkten av (A, ∘) och (B, •):

$$(A, \circ) \times (B, \bullet) = (A \times B, *)$$

och

$$(a_1, a_2) * (b_1, b_2) = (a_1 \circ a_2, b_1 \bullet b_2)$$

N kallas en normal delgrupp till F om vänstersidoklasserna = högersidoklasserna. Det vill säga om gN = Ng \forall g \in G (ekvivalent: gNg⁻¹ = N).

Alla delgrupper till en agelskgrupp är normala delgrupper.

Då är $G/N = \{gN \mid g \in G\}$ en grupp, kvotgruppen. $g_1Ng_2N = \{h_1h_2 \mid h_1 \in g_1N, h_2 \in g_2N\} = g_1g_2N$