Let $\gamma_1 \sim b$ (m_1, p_1) and $\gamma_2 \sim b$ (m_2, p_2) with $m_1 = m_2 = 1000$ We want to test $M_0: P_1 = P_2 \sim M_1: P_1 \neq P_2$ Let $P_1 = \gamma_1/m_1$ and $P_2 = \gamma_2/m_2$ and note that since $m_1 = m_2 = 1000$ are both large, the Central Limit Theorem guarantees that:

$$\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\int \frac{p_1(1-p_1)}{m_1} + \frac{p_2(1-p_2)}{m_2}}$$
 is approximately $N(6,1)$

Under the: $P_1 = P_2$, we may use the following pooled estimate for p_1 and p_2 : $\hat{P} = \frac{y_1 + y_2}{m_1 + m_2}$ so that the test statistic is:

That the test statistic is:

$$\frac{\hat{P}_{1} - \hat{P}_{2}}{\hat{P}_{1} - \hat{P}_{2}} = \frac{\hat{P}_{1} - \hat{P}_{2}}{\hat{P}_{1} - \hat{P}_{2}} = 0$$
approximately $N(6,1)$ and the $P_{1} - P_{2} = 0$

We reject the at significance level & if the observed value & of the test statistic Z is such that

| 2 | 7 Za/2, that is, 27, Za/2 on 26-Za/2

Critical region corresponds to shaded interes

b) Since we are given that
$$y = 37$$
 and $y = 53$, we have that

$$\hat{p} = \frac{y_1 + y_2}{y_1 + y_2} = \frac{37 + 53}{1000 + 1000} = \frac{90}{2000}$$

and

$$\frac{37}{\sqrt{\frac{90}{2000} \cdot \frac{1910}{2000} \cdot \left(\frac{1}{1000} + \frac{1}{1000}\right)}} \approx -1.73$$

At nignificance level $\alpha=0.05$, we have $z_{\alpha k}=z_{0.025}=1.96$ and so $|z|=1.73 < 1.96=z_{0.025}$. Thus, we do not reject to.

