Variational Inference for Neural Network Compression

Bayesian Compression for Deep Learning (Louizos et al, NIPS 2017) Variational Network Quantization (Anonymous, under review for ICLR 2018)

Andrey Atanov, Polina Kirichenko CS HSE

Outline

- 1. Neural networks compression
- 2. Recap: Bayesian neural networks
- 3. Sparse Variational Dropout
- 4. Structural sparsification (Bayesian Compression for Deep Neural Networks)
- 5. Quantization (Variational Network Quantization)

Neural Networks Compression

- Over-parametrized
- Store and run on hardware limited devices
- Acceleration
- Small representations

Neural Networks Compression

- simple or structural sparsification / pruning
- quantization
- low rank approximation for weight matrices

•

Neural Networks Compression

- simple or structural sparsification / pruning
- quantization
- low rank approximation for weight matrices

•

Structural Sparsity

Unstructured

Structured

Quantization

Neural Network Compression

Neural Network Compression

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

Bayesian Inference

Given

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N - \text{training data}$$

p(w) — prior over the weights

Bayesian Inference

Given

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{N} - \text{training data}$$

p(w) — prior over the weights

Training:

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{\int p(\mathcal{D}|w)p(w)dw}$$

Bayesian Inference

Given

$$\mathcal{D} = \{(x_i, y_i)\}_{i=1}^{N} - \text{training data}$$

p(w) — prior over the weights

Training:

$$p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{\int p(\mathcal{D}|w)p(w)dw}$$

$$p(y^*|x^*, \mathcal{D}) = \int p(y^*|x^*, w)p(w|\mathcal{D})dw$$

Bayesian NNs

Figure 1. Left: each weight has a fixed value, as provided by classical backpropagation. Right: each weight is assigned a distribution, as provided by Bayes by Backprop.

Deep Bayesian NN

$$p(w|\mathcal{D}) \approx q_{\phi}(w)$$

$$p(w|\mathcal{D}) \approx q_{\phi}(w)$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) \longrightarrow \min_{\phi}$$

$$p(w|\mathcal{D}) \approx q_{\phi}(w)$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) \longrightarrow \min_{\phi}$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) = p(\mathcal{D}) - ELBO$$

$$p(w|\mathcal{D}) \approx q_{\phi}(w)$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) \longrightarrow \min_{\phi} \iff ELBO \longrightarrow \max_{\phi}$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) = p(\mathcal{D}) - ELBO$$

$$p(w|\mathcal{D}) \approx q_{\phi}(w)$$

$$D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) \longrightarrow \min_{\phi} \iff ELBO \longrightarrow \max_{\phi}$$

 $D_{\mathrm{KL}}(q_{\phi}(w)||p(w|\mathcal{D})) = p(\mathcal{D}) - ELBO$

$$ELBO = \underbrace{\sum_{n=1}^{N} \mathbb{E}_{q_{\phi}(w)} \log p(y_n | x_n, w)}_{\text{Data-term}} - \underbrace{D_{\text{KL}}(q_{\phi}(w) || p(w))}_{\text{Regularization}}$$

Which prior to choose?

$$p(w)$$
 — ?

Which prior to choose?

$$p(w)$$
 — ?

It depends...

$$p(w) \propto \frac{1}{|w|}$$

(improper) prior

$$q_{\alpha}(w) \sim \mathcal{N}(\theta, \alpha\theta^2)$$

$$p(w) \propto \frac{1}{|w|}$$

(improper) prior

Gaussian dropout

$$\theta \cdot \varepsilon = \theta \cdot \mathcal{N}(1, \alpha)$$

$$q_{\alpha}(w) \sim \mathcal{N}(\theta, \alpha\theta^2)$$

$$p(w) \propto \frac{1}{|w|}$$

(improper) prior

$$q_{\alpha}(w) \sim \mathcal{N}(\theta, \alpha\theta^2)$$

$$ELBO = \sum_{n=1}^{N} \mathbb{E}_{q_{\alpha}(w)} \log p(y_n | x_n, w) - D_{KL}(q_{\alpha}(w) || p(w))$$

$$-D_{KL}(q_{\alpha}(w) || p(w)) =$$

$$= \frac{1}{2} \log \alpha_{ij} - \mathbb{E}_{\epsilon \sim \mathcal{N}(1, \alpha_{ij})} \log |\epsilon| + C$$

$$ELBO = \sum_{n=1}^{N} \mathbb{E}_{q_{\alpha}(w)} \log p(y_n | x_n, w) - D_{KL}(q_{\alpha}(w) || p(w))$$

$$-D_{KL}(q_{\alpha}(w) || p(w)) =$$

$$= \frac{1}{2} \log \alpha_{ij} - \mathbb{E}_{\epsilon \sim \mathcal{N}(1, \alpha_{ij})} \log |\epsilon| + C$$

Bayesian Compression for Deep Learning

Christos Louizos, Karen Ullrich, Max Welling

Hierarchical prior

Scale mixture of priors
$$w \sim \mathcal{N}(w \,|\, 0, z^2)$$
 $z \sim p(z)$

$$p(w) = \int p(w \mid z)p(z)dz$$

a lot of well known sparsity inducing distributions are special cases

Normal-Jeffreys prior

$$p(z) \propto |z|^{-1}$$
 $p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w \mid 0, z^2) dz = \frac{1}{|w|}$

Group sparsity:

$$p(W,z) \propto \prod_{i=1}^{A} \left[\frac{1}{|z_i|} \prod_{j=1}^{B} \mathcal{N}(w_{ij} \mid 0, z_i^2) \right]$$

$$q_{\phi}(W, z) = \prod_{i=1}^{A} \left[\mathcal{N}(z_i \mid \mu_{z_i}, \mu_{z_i}^2 \alpha_i) \prod_{j}^{B} \mathcal{N}(w_{ij} \mid z_i \mu_{ij}, z_i^2 \sigma_{ij}^2) \right]$$

Normal-Jeffreys prior

$$p(z) \propto |z|^{-1}$$
 $p(w) \propto \int \frac{1}{|z|} \mathcal{N}(w \mid 0, z^2) dz = \frac{1}{|w|}$

Group sparsity:

$$p(W, z) \propto \prod_{i=1}^{A} \left[\frac{1}{|z_i|} \prod_{j=1}^{B} \mathcal{N}(w_{ij} \mid 0, z_i^2) \right]$$

$$q_{\phi}(W, z) = \prod_{i=1}^{A} \left[\mathcal{N}(z_i \mid \mu_{z_i}, \mu_{z_i}^2 \alpha_i) \prod_{j}^{B} \mathcal{N}(w_{ij} \mid z_i \mu_{ij}, z_i^2 \sigma_{ij}^2) \right]$$

group dropout rate: $\log \alpha_i \ge t$

Horseshoe prior

$$p(z) = \mathcal{C}^+(0,s) = 2\left(s\pi(1+(z/s)^2)\right)^{-1} \quad \text{half-Caushy distribution}$$

p(w) horseshoe

shrinkage coefficient

Horseshoe prior

$$s \sim \mathcal{C}^+(0, \tau_0);$$
 $\tilde{z}_i \sim \mathcal{C}^+(0, 1);$ $\tilde{w}_{ij} \sim \mathcal{N}(0, 1);$ $w_{ij} = \tilde{w}_{ij}\tilde{z}_i s,$ global model group sparsity sparsity

Inference:

$$q_{\phi}(s_{b}, s_{a}, \tilde{\boldsymbol{\beta}}) = \mathcal{L}\mathcal{N}(s_{b}|\mu_{s_{b}}, \sigma_{s_{b}}^{2})\mathcal{L}\mathcal{N}(s_{a}|\mu_{s_{a}}, \sigma_{s_{a}}^{2}) \prod_{i}^{A} \mathcal{L}\mathcal{N}(\tilde{\beta}_{i}|\mu_{\tilde{\beta}_{i}}, \sigma_{\tilde{\beta}_{i}}^{2})$$
$$q_{\phi}(\tilde{\boldsymbol{\alpha}}, \tilde{\mathbf{W}}) = \prod_{i}^{A} \mathcal{L}\mathcal{N}(\tilde{\alpha}_{i}|\mu_{\tilde{\alpha}_{i}}, \sigma_{\tilde{\alpha}_{i}}^{2}) \prod_{i,j}^{A,B} \mathcal{N}(\tilde{w}_{ij}|\mu_{\tilde{w}_{ij}}, \sigma_{\tilde{w}_{ij}}^{2}),$$

Learned Architecture

Network & size	Method	Pruned architecture	Bit-precision
LeNet-300-100	Sparse VD	512-114-72	8-11-14
784-300-100	BC-GNJ	278-98-13	8-9-14
	BC-GHS	311-86-14	13-11-10
LeNet-5-Caffe	Sparse VD	14-19-242-131	13-10-8-12
	GD	7-13-208-16	_
20-50-800-500	GL	3-12-192-500	-
	BC-GNJ	8-13-88-13	18-10-7-9
	BC-GHS	5-10-76-16	10-10-14-13

• BC-GNJ: normal-Jeffreys

BC-GHS: horseshoe

• Sparse VD: Variational Dropout (not structural sparsity...)

• GL: Group Lasso

• GD: Generalized Dropout

Compression Rates

			Compression Rates (Error %)		
Model				Fast	Maximum
Original Error %	Method	$\frac{ \mathbf{w}\neq 0 }{ \mathbf{w} }\%$	Pruning	Prediction	Compression
LeNet-300-100	DC	8.0	6 (1.6)	-	40 (1.6)
	DNS	1.8	28* (2.0)	-	-
1.6	SWS	4.3	12* (1.9)	-	64(1.9)
	Sparse VD	2.2	21(1.8)	84(1.8)	113 (1.8)
	BC-GNJ	10.8	9(1.8)	36(1.8)	58(1.8)
	BC-GHS	10.6	9(1.8)	23(1.9)	59(2.0)
LeNet-5-Caffe	DC	8.0	6*(0.7)	-	39(0.7)
	DNS	0.9	55*(0.9)	-	108(0.9)
0.9	SWS	0.5	100*(1.0)	-	162(1.0)
	Sparse VD	0.7	63(1.0)	228(1.0)	365(1.0)
	BC-GNJ	0.9	108(1.0)	361(1.0)	573(1.0)
	BC-GHS	0.6	156(1.0)	419(1.0)	771(1.0)
VGG	BC-GNJ	6.7	14(8.6)	56(8.8)	95(8.6)
8.4	BC-GHS	5.5	18(9.0)	59(9.0)	116(9.2)

Variational Nerwork Quantization

Anonymous authors

Variational Network Quantization

$$p(w_{ij}) \propto \sum_{k} a_k \frac{1}{|w_{ij} - c_k|}$$

$$q_{\alpha}(w) \sim \mathcal{N}(\theta, \alpha\theta^2)$$

Variational Network Quantization

(a) Pre-trained network. No obvious clusters are visible in the network trained without VNQ. No regularization was used during pre-training.

(b) Soft-quantized network after VNQ training. Weights tightly cluster around the quantization target values.

Variational Network Quantization

MNIST

Method	val. error $[\%]$	$\frac{ w\neq 0 }{ w }$ [%]	bits
Original	0.8	100	32
VNQ (no P&Q)	0.67	100	32
VNQ + P&Q	0.73	28.3	2
VNQ + P&Q (random init.)	0.73	17.7	2
Deep Compression (P&Q)	0.74	8	5 - 8
Soft weight-sharing (P&Q)	0.97	0.5	3
Sparse VD (P)	0.75	0.7	-
Bayesian Comp. (P&Q)	1.0	0.6	7 - 18
Structured BP (P)	0.86	-	-

Variational Network Quantization

CIFAR10

Method	val error $[\%]$	$\frac{ w\neq 0 }{ w }$ [%]	bits
Original	6.81	100	32
VNQ (no P&Q)	8.32	100	32
VNQ + P&Q (w/o 1)	8.78	46	2(32)
VNQ + P&Q	8.83	46	2