Metaheurystyki Lista 1 Problem Mobilnego Złodzieja

Testy

Parametry bazowe są takie jakie zasugerowane w opisie problemu. Zmienione parametry są podane przed każdym testem. Dodano jeden parametr – potęga do której podnosi się wartość fitness w selekcji ruletkowej. Została dodana w celu zwiększenia ciśnienia selekcyjnego.

Populacja: 1000Generacje: 100Wielkość turnieju: 5Potęga ruletki: 3

Prawdopodobieństwo krzyżowania: 70%
 Prawdopodobieństwo mutacji Swap: 1%
 Prawdopodobieństwo mutacji Inverse: 10%

Selektor turniejowyKrzyżowanie OX

Mutacja INVERSE

Badanie selektorów

Selektor turniejowy – bazowy:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-4477,36 -23008,65 -5493,63 558,2				

Selektor turniejowy – wielkość turnieju: 10:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-4672,05 -31289,35 -5723,51 798,29				

Selektor ruletkowy – bazowy:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-16072,11 -65929,06 -19161,28 1440,95				

Selektor ruletkowy – potęga ruletki: 5:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-11304,54 -54424,11 -13284,25 1196,41				

Wnioski z porównania selektorów:

Selektor turniejowy jest znacznie lepszym selektorem, jest też mniej zasobo-chłonny

Badanie krzyżowań

Krzyżowanie OX – bazowe:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-4963,01 -23648,05 -5730,90 390,50				

Krzyżowanie OX – prawdopodobieństwo 60%:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-5773,34 -26913,09 -7140,60 617,72				

Krzyżowanie OX – prawdopodobieństwo 80%:

Alg. Ewolucyjny [10x]					
Best Worst Avg Std					
-4674,84 -28961,40 -5648,14 623,61					

Krzyżowanie PMX – bazowe:

Alg. Ewolucyjny [10x]			
Best Worst Avg Std			
-6926,94	-30555,21	-7874,56	852,28

Krzyżowanie PMX – prawdopodobieństwo 60%:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-6876,024 -45849,18 -9914,21 2019,52				

Krzyżowanie PMX – prawdopodobieństwo 80%:

Alg. Ewolucyjny [10x]				
Best Worst Avg Std				
-5932,13 -31514,23 -7324,77 653,23				

Porównanie krzyżowania i prawdopodobieństw:

Krzyżowanie OX jest trochę lepsze niż krzyżowanie PMX, jednak jest dużo bardziej skomplikowane pod względem obliczeniowym – Profiler pokazał 2 razy większe zużycie. Zmniejszenie prawdopodobieństwa pogorszyło wyniki a zwiększenie minimalnie je polepszyło, jednak w OX zwiększyło się odchylenie a w PMX – zmniejszyło.

Badanie mutacji

Mutacja Inverse – bazowy:

Alg. Ewolucyjny [10x]					
Best Worst Avg Std					
-5072,30 -26131,33 -5890,45 478,54					

Mutacja Inverse – prawdopodobieństwo 15%:

Alg. Ewolucyjny [10x]					
Best Worst Avg Std					
-4505,11 -26656,54 -5064,89 450,94					

Mutacja Swap – bazowa:

Alg. Ewolucyjny [10x]				
Best	Worst	Avg	Std	
-6536,14	-29767,80	-7829,29	761,16	

Mutacja Swap – prawdopodobieństwo – 3%:

Alg. Ewolucyjny [10x]				
Best	Worst	Avg	Std	
-5634,99	-27523,41	-6419,50	445,33	

Porównanie sposobów mutacji:

Lepszym sposobem jest mutacja Inverse ze zwiększonym prawdopodobieństwem

Najlepsze ustawienie

Po testach doszedłem do wniosku, że najlepszym ustawieniem będzie:

- Selekcja Turniejowa, 1 % populacji
- Krzyżowanie OX, prawdopodobieństwo 70%
- Mutacja Inverse, prawdopodobieństwo 15%

Testowanie większego rozmiaru populacji i liczby generacji

Badanie przeprowadzono dla pliku hard_4

Alg. Losowy [10k]			Alg. Zachłanny[439]		
Best	Worst	Avg	Best	Worst	Avg
-17 598 042,31	-20 524 090,71	-19 045 492,77	-1 272 283,56	-1 462 872,93	-1 356 906,54

Parametry		Alg. Ewolucyjny [10x]			
Populacja	Generacje	Best	Worst	Avg	Std
2000	400	-2 463 427,49	-3 115 145,47	-2 656 586,17	99 851,30
5000	1000	-1 159 706,75	-1 491 947,60	-1 211 438,34	28 035,79

