Computer Networks. Unit 1: Introduction

Notes of the subject Xarxes de Computadors, Facultat Informàtica de Barcelona, FIB

Llorenç Cerdà-Alabern

February 19, 2021

Contents

1	Jnit 1: Introduction
	.1 Computer Networks in Modern Companies
	.2 What is a Computer Network?
	.3 Bits per second (bps)
	.4 Packet switching URL
	.5 Standardization Bodies
	.6 ISO OSI Reference Model URL
	.7 TCP/IP Architecture URL
	.8 Internet Infrastructure URL
	.9 Encapsulation URL
	.10 TCP/IP Implementation URL
	.11 Client Server Paradigm URL
	.12 Transport layer: UDP/TCP
	.13 Practical examples
	.14 List of Acronyms

1 Unit 1: Introduction

1.1 Computer Networks in Modern Companies

- Information Technology, IT, Department
 - Enables the company's employees to communicate, collaborate, automate routine tasks, etc through computer networks

• IT Functions:

- Infrastructure: Decide network hardware, maintenance, planning and growth
- Governance: Decide security policies, data management, backups, contingencies
- Functionality: Maintain operational applications and services
- Company Website

Figure 1: Racks with servers, routers and switches.

source:https://www.marqueewfs.com/four-reasons-department-work-important

1.2 What is a Computer Network?

Brief history:

- 1830 Telegraph
- 1875 Alexander Graham Bell patent the telephone
- 1951 First commercial computer
- 1960 ARPANET. Public networks rediris geant
- 1972 First International and commercial Packet Switching Network, X.25
- 1990 The Internet is opened to the general public

Figure 2: Number of hosts in the Internet: less than 10 in 1970 to 10^9 in 2018.

Acronyms:
PSTN: Public Switched Telephone network
WAN: Wide Area Network
LAN: Local Area Network
ATM: Asynchronous Transfer Mode

1.3 Bits per second (bps)

• line bitrate

Figure 3: Transmission signal: positive voltage is the bit 1, negative voltage is the bit 0.

• throughput (velocidad efectiva)

$$v_{ef}[\mathrm{bps}] = \frac{\mathrm{number\ of\ information\ bits}}{\mathrm{observation\ time}}$$

• Prefixes:

- k, kilo: 10³

- M, Mega: 10⁶

- G, Giga: 10⁹

- T, Tera: 10¹²

- P, Peta: 10¹⁵

- E, Exa: 10^{18}

1.4 Packet switching URL

- Virtual Circuit: Connection oriented, used in WANs, e.g. X.25, Frame Relay, ATM.
- Datagram: Connectionless, used in the Internet.

Figure 4: In datagram packet switching addresses identify a unique destination. At datagram arrival routers decide best next router to forward the datagram to reach the destination.

Acronyms:	
PSTN:	Public Switched Telephone network
WAN:	Wide Area Network
LAN:	Local Area Network
ATM:	Asynchronous Transfer Mode

1.5 Standardization Bodies

- 1. Int. Telecommunication Union, ITU
 - WAN standards. URL
- 2. Int. Organization for Standardization, ISO
 - Industrial standards. URL.
- 3. Institute of Electrical and Electronics Engineers, IEEE
 - LAN standards. URL.
- 4. Telecommunications Industry Association, TIA
 - Cabling standards. URL.
- 5. World Wide Web Consortium, W3C. URL

Internet:

- 1. Internet Engineering Task Force, IETF. URL.
 - Request For Comments, RFCs. URL

1.6 ISO OSI Reference Model URL

OSI: Open Systems Interconnection

Figure 5: OSI reference model. Terminal nodes have layers 1 physical, 2 data-link, 3 network, 4 transport, 5 session, 6 presentation, 7 application. Intermediate nodes have layers 1-2-3.

Definitions

- Protocols enable an entity to interact with a corresponding entity at the same layer.
- At each layer entities exchange protocol data units, PDUs.
- PDU contains a payload and protocol-related headers.

Layers

- 1. Physical: transmission of bits over a physical transmission medium.
- 2. Data Link: allows the transmission of PDUs over the physical. Framing and error detection.
- 3. Network: route packets.
- 4. **Transport**: reliability, flow control and segmentation.
- 5. Session: analogous to a UNIX user session.
- 6. **Presentation**: data representation of images, floating point numbers, etc.
- 7. **Application**: applications using the network.

1.7 TCP/IP Architecture URL

• No RFC specifies the TCP/IP model.

Figure 6: OSI layers in TCP/IP: layers 3 and 4 correspond to IP and TCP/UDP, respectively.

1.8 Internet Infrastructure URL

Figure 7: The Internet is an interconnection of hosts and routers that exchange IP datagrams. Premises networks (LANs) are connected to ISPs, which use network carriers WANs for global connectivity.

Acronyms:
ADSL: Asymmetric Digital Subscriber Line
ATM Asynchronous Transfer Mode
ISDN: Integrated Services Digital Network
ISP: Internet Service Provider
LAN: Local Area Network
NIC Network Interface Card
OF: Optical Fiber
Optical Network Terminal
PSTN: Public Switched Telephone network
WAN: Wide Area Network

1.9 Encapsulation URL

Figure 8: Each layer encapsulates an upper layer PDU adding a header with the information required by the protocol. Transport, network and data-link PDUs in TCP/IP are TCP-segments, IP datagrams and frames, respectively.

```
Acronyms:
PDU: Protocol Data Unit
CRC: Cyclic Redundancy Check

Network sniffers (bash)

sudo tcpdump -ni wlan0 # command line sniffer
sudo wireshark # graphical sniffer
```

Figure 9: Practical example: capturing traffic with tcpdump and wireshark.

1.10 TCP/IP Implementation URL

Figure 10: TCP/IP protocols are implemented in the operating system kernel. Networking data structures are related with the file system: applications using the network read/writed sockets instead of files.

```
TCP and UDP sockets (bash)

netstat -nt # list TCP sockets
netstat -nu # list UDP sockets
```

Figure 11: Practical example: list of TCP and UDP sockets.

```
Sockets opened by a browser (bash)

netstat -nt
```

Figure 12: Practical example: list the TCP sockets opened by a web browser.

1.11 Client Server Paradigm URL

- The server "listens" a well known port (< 1024).
- The client connects with an **ephemeral port** (>=1024).

Figure 13: Client Server Paradigm: Sockets opened by the processes are identified by *port numbers*. Client-socket ports are assigned by the operating system. They are larger than 1023 and are called *ephemeral*. Server-socket ports are assigned by the application and are called *well-known* because they are standardized and identify the service. Source and destination port numbers are sent in the TCP/UDP headers.

```
TCP and UDP servers (bash)

netstat -nat  # list all TCP sockets (client and server)
netstat -nau  # list all UDP sockets (client and server)
file /etc/services # well known ports
```

Figure 14: Practical example: list server-sockets in the host and list the well-known ports in the UNIX /etc/services file.

1.12 Transport layer: UDP/TCP

- UDP User Datagram Protocol: Connectionless, no reliable.
- TCP Transmission Control Protocol: Connection oriented, reliable.

Figure 15: Time diagram with the connection establishment and termination of a TCP connection.

1.13 Practical examples

```
tcpdump (bash)
tcpdump -ni lo
```

Figure 16: Practical example: Use tcpdump to capture the packets exchanged by a client/server using UDP and TCP.

```
Minimal UDP server (ruby)
#!/usr/bin/ruby -w
require 'socket'
server = UDPSocket.new # Server
server.bind("127.0.0.1", 2000) # bind to localhost port 2000
puts server.recvfrom(1000) # read message (max 1000 bytes)
server.close # close socket
```

```
Minimal UDP client (ruby)
#!/usr/bin/ruby -w
require 'socket'
server = UDPSocket.new
server.connect("127.0.0.1", 2000)
server.send("Hello world", 0) # send message
"1".ljust(5000, '1')
```

```
Minimal TCP server (ruby)
#!/usr/bin/ruby -w
require 'socket'
server = TCPServer.new 2000 # bind to port 2000
client = server.accept # Wait for a client to connect
puts client.gets # read message
client.close # close socket
```

```
Minimal TCP client (ruby)
#!/usr/bin/ruby -w
require 'socket'
server = TCPSocket.new('127.0.0.1', 2000)
server.puts "Hello world" # send message
server.close # close socket
```

1.14 List of Acronyms

API	Application Programming Interface	OF:	Optical Fiber
ATM	Asynchronous Transfer Mode	ONT:	Optical Network Terminal
CRC	Cyclic Redundancy Check	PDU	Protocol Data Unit
IP	Internet Protocol	PSTN	Public Switched Telephone Network
ISDN:	Integrated Services Digital Network	RFC	Request For Comments
ISP:	Internet Service Provider	TCP	Transmission Control Protocol
IT	Information Technology	UDP	User Datagram Protocol
LAN	Local Area Network	URL	Uniform Resource Locator
NIC	Network Interface Card	WAN	Wide Area Network