SCTLR_EL1, System Control Register (EL1)

The SCTLR EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration

AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register SCTLR[31:0].

Attributes

SCTLR EL1 is a 64-bit register.

Field descriptions

	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
	TIDCP	SPINTMASK	NMI	EnTP2	TCSO	TCS00	EPAN	EnALS	EnAS0	EnASR	TME	TME0	TMT	TMT0	٦
	EnIA	EnIB	LSMAOE	nTLSMD	EnDA	UCI	EE	E0E	SPAN	EIS	IESB	TSCXT	WXN	nTWE	RES0 _r
•	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17

TIDCP, bit [63] When FEAT TIDCP1 is implemented:

Trap implementation defined functionality. When <u>HCR_EL2</u>.{E2H, TGE} $!=\{1,1\}$, traps EL0 accesses to the encodings reserved for implementation defined functionality to EL1.

TIDCP	Meaning	
0d0	No instructions accessing the System register or System instruction spaces are trapped by this mechanism.	

- In AArch64 state, EL0 access to the encodings in the following reserved encoding spaces are trapped and reported using EC syndrome 0x18:
 - implementation defined System instructions, which are accessed using SYS and SYSL, with CRn == {11, 15}.
 - implementation defined System registers, which are accessed using MRS and MSR with the S3_<op1>_<Cn>_<Cm>_<op2> register name.
- In AArch32 state, EL0 MCR and MRC access to the following encodings are trapped and reported using EC syndrome 0x03:
 - o All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
 - o All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
 - o All coproc==p15, CRn==c11,
 opc1=={0-7}, CRm == {c0-c8,
 c15}, opc2 == {0-7}.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

SPINTMASK, bit [62] When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask, and controls the value of PSTATE.ALLINT on taking an exception to EL1.

SPINTMASK	Meaning	

0b0	Does not cause
	PSTATE.SP to mask
	interrupts.
	PSTATE.ALLINT is set to
	1 on taking an exception
	to EL1.
0b1	When PSTATE.SP is 1
	and execution is at EL1,
	an IRQ or FIQ interrupt
	that is targeted to EL1 is
	masked regardless of
	any denotion of
	Superpriority.
	PSTATE.ALLINT is set to
	0 on taking an exception
	to EL1.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NMI, bit [61] When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI	Meaning	
0d0	This control does not affect interrupt masking behavior.	
0b1	This control enables all of the following:	
	 The use of the PSTATE.ALLINT interrupt mask. IRQ and FIQ interrupts to have Superpriority as an additional attribute. PSTATE.SP to be used as an interrupt mask. 	

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnTP2, bit [60] When FEAT SME is implemented:

Traps instructions executed at EL0 that access <u>TPIDR2_EL0</u> to EL1, or to EL2 when EL2 is implemented and enabled for the current Security state and <u>HCR_EL2</u>.TGE is 1. The exception is reported using ESR ELx.EC value 0x18.

EnTP2	Meaning	
0b0	This control causes execution of	
	these instructions at ELO to be	
	trapped.	
0b1	This control does not cause	
	execution of any instructions to	
	be trapped.	

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and $\frac{HCR_EL2}{E2H}$, TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCSO, bit [59] When FEAT_MTE_STORE_ONLY is implemented:

Tag Checking Store Only.

TCSO	Meaning
0b0	This field has no effect on Tag
	checking.

0b1	Load instructions executed in
	EL1 are Tag Unchecked.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCSO0, bit [58] When FEAT_MTE_STORE_ONLY is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, Tag Checking Store Only in EL0.

TCS00	Meaning	
0d0	This field has no effect on Tag checking.	
0b1	Load instructions executed in ELO are Tag Unchecked.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EPAN, bit [57] When FEAT PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page with stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never mechanism.

EPAN	Meaning	
0b0 No additional Permission fault		
	are generated by this	
	mechanism.	

0b1	An EL1 data access to a page with stage 1 EL0 data access
	permission or stage 1 EL0
	instruction access permission
	generates a Permission fault.
	Any speculative data accesses
	that would generate a
	Permission fault as a result of
	PSTATE.PAN = 1 if the accesses
	were not speculative, will not
	cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnALS, bit [56] When FEAT LS64 is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS	Meaning	
0b0	Execution of an LD64B or	
	ST64B instruction at EL0 is	
	trapped to EL1.	
0b1	This control does not cause any	
	instructions to be trapped.	

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of $0 \times 0 A$, with an ISS code of 0×00000002 .

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnASO, bit [55] When FEAT LS64 ACCDATA is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0	Meaning	
0b0	Execution of an ST64BV0	
	instruction at EL0 is trapped to EL1.	
0b1	This control does not cause any instructions to be trapped.	

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnASR, bit [54] When FEAT_LS64_V is implemented:

When <u>HCR_EL2</u>.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR	Meaning	
0b0	Execution of an ST64BV	
	instruction at ELO is trapped to	
	EL1.	
0b1	This control does not cause any	
	instructions to be trapped.	

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TME, bit [53] When FEAT TME is implemented:

Enables the Transactional Memory Extension at EL1.

TME	Meaning
0b0	Any attempt to execute a TSTART
	instruction at EL1 is trapped to
	EL1, unless <u>HCR_EL2</u> .TME or
	SCR EL3.TME causes TSTART
	instructions to be undefined at
	EL1.
0b1	This control does not cause any TSTART instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TME0, bit [52] When FEAT_TME is implemented:

Enables the Transactional Memory Extension at ELO.

TME0	Meaning	
0b0	Any attempt to execute a	
	TSTART instruction at EL0 is	
	trapped to EL1, unless	
	<u>HCR_EL2</u> .TME or	
	SCR_EL3.TME causes TSTART	
	instructions to be undefined at	
	ELO.	
0b1	This control does not cause any	
	TSTART instruction to be	
	trapped.	

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and $\underline{HCR_EL2}$.{E2H, TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TMT, bit [51] When FEAT TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT	Meaning
0b0	This control does not cause any
	TSTART instruction to fail.
0b1	When the TSTART instruction is
	executed at EL1, the transaction
	fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TMT0, bit [50] When FEAT TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at ELO.

TMT0	Meaning
0b0	This control does not cause any
	TSTART instruction to fail.
0b1	When the TSTART instruction is
	executed at EL0, the transaction
	fails with a TRIVIAL failure
	cause.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and $\frac{HCR_EL2}{E2H}$, TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWEDEL, bits [49:46] When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a trap of WFE* caused by SCTLR_EL1.nTWE as 2^(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TWEDEn, bit [45] When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR EL1.nTWE.

TWEDEn	Meaning
0b0	The delay for taking the trap
	is implementation defined.
0b1	The delay for taking the trap
	is at least the number of
	cycles defined in
	SCTLR EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DSSBS, bit [44] When FEAT SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS	Meaning	
DSSDS	Meaning	

0b0	PSTATE.SSBS is set to 0 on an	
	exception to EL1.	
0b1	PSTATE.SSBS is set to 1 on an	
	exception to EL1.	

• On a Warm reset, this field resets to an implementation defined value.

Otherwise:

Reserved, res0.

ATA, bit [43] When FEAT MTE2 is implemented:

Allocation Tag Access in EL1.

When $\underline{SCR_EL3}$.ATA == 1 and $\underline{HCR_EL2}$.ATA == 1, controls access to Allocation Tags and Tag Check operations in EL1.

ATA	Meaning	
0b0	Access to Allocation Tags is	
	prevented at EL1.	
	Memory accesses at EL1 are not	
	subject to a Tag Check operation.	
0b1	This control does not prevent access	
	to Allocation Tags at £L1.	
	Tag Checked memory accesses at	
	EL1 are subject to a Tag Check	
	operation.	
	The Tag Check operation depends on	
	the type of tag at the memory being	
	accessed:	
	T 411 T 1	
	• For Allocation Tagged memory,	
	an Allocation Tag Check	
operation.		
	• If	
	FEAT_MTE_CANONICAL_TAGS	
	is implemented, for	
	Canonically Tagged memory, a	
	Canonical Tag Check	
	operation.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ATA0, bit [42] When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0.

When $\underline{SCR_EL3}$.ATA == 1, $\underline{HCR_EL2}$.ATA == 1, and $\underline{HCR_EL2}$. {E2H, TGE} != {1, 1}, controls access to Allocation Tags and Tag Check operations in EL0.

ATA0	Meaning	
0b0	Access to Allocation Tags is prevented at EL0. Memory accesses at EL0 are not subject to a Tag Check operation.	
0b1	This control does not prevent access to Allocation Tags at EL0. Tag Checked memory accesses at EL0 are subject to a Tag Check operation. The Tag Check operation depends on the type of tag at the memory being accessed:	
	 For Allocation Tagged memory, an Allocation Tag Check operation. If FEAT_MTE_CANONICAL_TAGS is implemented, for Canonically Tagged memory, a Canonical Tag Check operation. 	

Note

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCF, bits [41:40] When FEAT MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT MTE3 is not implemented, the value 0b11 is reserved.

TCF	Meaning	Applies when
0b00	Tag Check Faults have no effect on the PE.	
0b01	Tag Check Faults cause a synchronous	
0b10	exception. Tag Check Faults are	
0b11	asynchronously accumulated. Tag Check Faults cause a synchronous	When FEAT_MTE3 is
	exception on reads, and are asynchronously accumulated on writes.	implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TCF0, bits [39:38] When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When <u>HCR_EL2</u>.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to Loads and Stores in EL0.

If FEAT MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

		Applies
TCF0	Meaning	when
0b00	Tag Check	
	Faults have no	
	effect on the	
	PE.	
0b01	Tag Check	
	Faults cause a	
	synchronous	
	exception.	
0b10	Tag Check	
	Faults are	
	asynchronously	
	accumulated.	
0b11	Tag Check	When
	Faults cause a	FEAT MTE3
	synchronous	is
	exception on	implemented
	reads, and are	
	asynchronously	
	accumulated on	
	writes.	

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

ITFSB, bit [37] When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are reported asynchronously, are synchronized into <a href="https://doi.org/10.1001/j.com/nc/10.1001/j.

ITFSB	Meaning	

0b0	Tag Check Faults are not
	synchronized on entry to EL1.
0b1	Tag Check Faults are
	synchronized on entry to EL1.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BT1, bit [36] When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1	Meaning
0b0	When the PE is executing at EL1, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.
0b1	When the PE is executing at EL1, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

BT0, bit [35] When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0	Meaning
0b0	When the PE is executing at ELO, PACIASP and PACIBSP are compatible with PSTATE.BTYPE == 0b11.

When the PE is executing at ELO, PACIASP and PACIBSP are not compatible with PSTATE.BTYPE == 0b11.

When the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, the value of SCTLR EL1.BT0 has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [34]

Reserved, res0.

MSCEn, bit [33]

When FEAT_MOPS is implemented and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0):

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set instructions at ELO.

MSCEn	Meaning
0b0	Execution of the Memory Copy
	and Memory Set instructions is
	undefined at EL0.
0b1	This control does not cause
	any instructions to be
	undefined.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

CMOW, bit [32] When FEAT CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at ELO.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW	Meaning
0b0	These instructions executed at
	EL0 with stage 1 read
	permission, but without stage 1
	write permission, do not
	generate a stage 1 permission
	fault.
0b1	If enabled as a result of
	$\underline{\text{SCTLR}}\underline{\text{EL1}}$.UCI==1, these
	instructions executed at EL0
	with stage 1 read permission,
	but without stage 1 write
	permission, generate a stage 1
	permission fault.

When AArch64.HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

- AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
- Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIA, bit [31] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA	Meaning
0d0	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is not enabled.
0b1	Pointer authentication (using the
	APIAKey_EL1 key) of instruction
	addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

EnIB, bit [30] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB	Meaning
0b0	Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not enabled.
0b1	Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field is 1,

AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

LSMAOE, bit [29] When FEAT LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE	Meaning
0b0	For all memory accesses at
	EL0, A32 and T32 Load
	Multiple and Store Multiple
	can have an interrupt taken
	during the sequence memory
	accesses, and the memory
	accesses are not required to
	be ordered.
0b1	The ordering and interrupt
	behavior of A32 and T32
	Load Multiple and Store
	Multiple at EL0 is as defined
	for Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1,1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

nTLSMD, bit [28] When FEAT LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD	Meaning
0b0	All memory accesses by A32
	and T32 Load Multiple and
	Store Multiple at EL0 that
	are marked at stage 1 as
	Device-nGRE/Device-nGnRE/
	Device-nGnRnE memory are
	trapped and generate a stage
	1 Alignment fault.
0b1	All memory accesses by A32
	and T32 Load Multiple and
	Store Multiple at EL0 that
	are marked at stage 1 as
	Device-nGRE/Device-nGnRE/
	Device-nGnRnE memory are
	not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1,1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

EnDA, bit [27] When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA	Meaning
0d0	Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

Pointer authentication (using the
APDAKey EL1 key) of data
addresses is enabled.

Note

0b1

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for the current Security state and <u>HCR_EL2</u>.TGE is 1, from AArch64 state only, reported using an ESR ELx.EC value of 0x18.

This applies to <u>DC CVAU</u>, <u>DC CIVAC</u>, <u>DC CVAP</u>, and <u>IC IVAU</u>.

If FEAT DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to <u>DC CIGVAC</u>, <u>DC CIGDVAC</u>, <u>DC CGVAC</u>, <u>DC CGVAP</u>, and <u>DC CGDVAP</u>.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to <u>DC CGVADP</u> and <u>DC CGDVADP</u>.

UCI	Meaning
0d0	Execution of the specified
	instructions at EL0 using AArch64
	is trapped.
0b1	This control does not cause any
	instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

If the Point of Coherency is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is implementation defined whether the execution of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is implementation defined whether the execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

EE	Meaning
0b0	Explicit data accesses at EL1, and
	stage 1 translation table walks in
	the EL1&0 translation regime are
	little-endian.
0b1	Explicit data accesses at EL1, and
	stage 1 translation table walks in
	the EL1&0 translation regime are
	big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than ELO, this bit is res0.

If an implementation does not provide Little-endian support at Exception levels higher than ELO, this bit is res1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on the PE.

• On a Warm reset, this field resets to an implementation defined value.

E0E, bit [24]

Endianness of data accesses at ELO.

EOE	Meaning
0d0	Explicit data accesses at EL0 are
	little-endian.
0b1	Explicit data accesses at EL0 are
	big-endian.

If an implementation only supports Little-endian accesses at ELO, then this bit is res0. This option is not permitted when SCTLR EL1.EE is res1.

If an implementation only supports Big-endian accesses at EL0, then this bit is res1. This option is not permitted when SCTLR_EL1.EE is res0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SPAN, bit [23] When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN	Meaning
0b0	PSTATE.PAN is set to 1 on taking
	an exception to EL1.
0b1	The value of PSTATE.PAN is left
	unchanged on taking an
	exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

EIS, bit [22] When FEAT ExS is implemented:

Exception Entry is Context Synchronizing.

EIS	Meaning
0d0	The taking of an exception to EL1
	is not a context synchronizing
	event.
0b1	The taking of an exception to EL1
	is a context synchronizing event.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1,1}, this bit has no effect on execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

- Indirect writes to <u>ESR_EL1</u>, <u>FAR_EL1</u>, <u>SPSR_EL1</u>, <u>ELR_EL1</u> are synchronized on exception entry to EL1, so that a direct read of the register after exception entry sees the indirectly written value caused by the exception entry.
- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR EL1.EIS:

- Changes to the PSTATE information on entry to EL1.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

IESB, bit [21] When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB	Meaning
0b0	Disabled.
0b1	An implicit error synchronization event is added:
	 At each exception taken to EL1. Before the operational pseudocode of each ERET instruction executed at EL1.

When the PE is in Debug state, the effect of this field is constrained unpredictable, and its Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TSCXT, bit [20] When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the <u>SCXTNUM_EL0</u> register, when EL0 is using AArch64.

TSCXT	Meaning
0b0	EL0 access to SCXTNUM EL0
	is not disabled by this
	mechanism.

0b1	EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The value of SCXTNUM_EL0 is
	treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1,1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions that are writable to be treated as XN.

WXN	Meaning
0b0	This control has no effect on
	memory access permissions.
0b1	Any region that is writable in the
	EL1&0 translation regime is
	forced to XN for accesses from
	software executing at EL1 or
	ELO.

This bit applies only when SCTLR EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

nTWE	Meaning
0b0	Any attempt to execute a WFE
	instruction at ELO is trapped, if
	the instruction would otherwise
	have caused the PE to enter a
	low-power state.
0b1	This control does not cause any
	instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [17]

Reserved, res0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and

<u>HCR_EL2</u>.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

nTWI	Meaning
0b0	Any attempt to execute a WFI
	instruction at EL0 is trapped, if
	the instruction would otherwise
	have caused the PE to enter a
	low-power state.
0b1	This control does not cause any
	instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

UCT, bit [15]

Traps EL0 accesses to the <u>CTR_EL0</u> to EL1, or to EL2 when it is implemented and enabled for the current Security state and <u>HCR_EL2</u>.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT	Meaning
0b0	Accesses to the CTR_ELO from
	EL0 using AArch64 are trapped.

This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

DZE, bit [14]

Traps EL0 execution of <u>DC ZVA</u> instructions to EL1, or to EL2 when it is implemented and enabled for the current Security state and <u>HCR_EL2</u>.TGE is 1, from AArch64 state only, reported using an ESR ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to <u>DC GVA</u> and <u>DC GZVA</u>.

DZE	Meaning
0b0	Any attempt to execute an
	instruction that this trap applies
	to at EL0 using AArch64 is
	trapped.
	Reading <u>DCZID_EL0</u> .DZP from
	EL0 returns 1, indicating that the
	instructions this trap applies to
	are not supported.
0b1	This control does not cause any
	instructions to be trapped.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EnDB, bit [13] When FEAT PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB	Meaning	
		·

Pointer authentication (using the
APDBKey EL1 key) of data
addresses is not enabled.
Pointer authentication (using the
APDBKey EL1 key) of data
addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I	Meaning
0b0	All instruction access to Stage 1 Normal memory from EL0 and EL1 are Stage 1 Non-cacheable. If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0 translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer Non-
	cacheable memory.

This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1 Normal memory from EL0 and EL1.

If the value of SCTLR_EL1.M is 0, instruction accesses from stage 1 of the EL1&0 translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the <u>HCR_EL2</u>.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

EOS, bit [11] When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

EOS	Meaning
0b0	An exception return from EL1 is
	not a context synchronizing event
0b1	An exception return from EL1 is a
	context synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1,1}, this bit has no effect on execution at ELO.

If SCTLR EL1.EOS is set to 0b0:

- Memory transactions, including instruction fetches, from an Exception level always use the translation resources associated with that translation regime.
- Exception Catch debug events are synchronous debug events.
- DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR EL1.EOS:

- The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR EL1 on exception return is synchronized.
- Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and data processing instructions.
- Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

EnRCTX, bit [10] When FEAT_SPECRES is implemented:

Enable EL0 access to the following System instructions:

- CFPRCTX, DVPRCTX and CPPRCTX instructions.
- If FEAT SPECRES2 is implemented, <u>COSPRCTX</u>.
- <u>CFP RCTX</u>, <u>DVP RCTX</u> and <u>CPP RCTX</u> instructions.
- If FEAT_SPECRES2 is implemented, <u>COSP RCTX</u>.

EnRCTX	Meaning
0b0	EL0 access to these
	instructions is disabled, and
	these instructions are trapped
	to EL1, or to EL2 when it is
	implemented and enabled for
	the current Security state and
	HCR_EL2.TGE is 1.
0b1	EL0 access to these
	instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1,1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR ELx.EC value of 0x18.

UMA	Meaning
0d0	Any attempt at ELO using AArch64 to execute an MRS,
	MSR(REGISTER), or
	MSR(IMMEDIATE) instruction that
	accesses the <u>DAIF</u> is trapped.
0b1	This control does not cause any
	instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SED, bit [8] When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED	Meaning
0b0	SETEND instruction execution is
	enabled at EL0 using AArch32.
0b1	SETEND instructions are
	undefined at EL0 using AArch32
	and any attempt at EL0 to access
	a SETEND instruction generates
	an exception to EL1, or to EL2
	when it is implemented and
	enabled for the current Security
	state and <u>HCR_EL2</u> .TGE is 1,
	reported using an ESR_ELx.EC
	value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is res1.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res1.

ITD, bit [7] When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD	Meaning
0b0	All IT instruction functionality is
	enabled at EL0 using AArch32.

- Any attempt at EL0 using AArch32 to execute any of the following is undefined and generates an exception, reported using an ESR_ELx.EC value of 0x00, to EL1 or to EL2 when it is implemented and enabled for the current Security state and https://linearchar.com/hCR_EL2.TGE is 1:
 - All encodings of the IT instruction with hw1[3:0]!
 =1000.
 - All encodings of the subsequent instruction with the following values for hw1:

 - 0b0100x1xxx1111xxx:
 ADD Rdn, PC; CMP Rn,
 PC; MOV Rd, PC; BX
 PC; BLX PC.
 - 0b010001xx1xxxx111:
 ADD PC, Rm; CMP PC, Rm; MOV PC, Rm. This pattern also covers unpredictable cases with BLX Rn.

These instructions are always undefined, regardless of whether they would pass or fail the condition code check that applies to them as a result of being in an IT block.

It is implementation defined whether the IT instruction is treated as:

- A 16-bit instruction, that can only be followed by another 16-bit instruction.
- The first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is constrained unpredictable. For more information, see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

When an implementation does not implement ITD, access to this field is **RAZ/WI**.

Otherwise:

Reserved, res1.

nAA, bit [6] When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

The following instructions generate an Alignment fault if all bytes being accessed are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH.
- STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH.

If FEAT_LRCPC3 is implemented, the following instructions generate an Alignment fault if all bytes being accessed for a single register are not within a single 16-byte quantity, aligned to 16 bytes for access:

- LDIAPP, STILP, the post index versions of LDAPR and the pre index versions of STLR.
- If Advanced SIMD and floating-point instructions are implemented, LDAPUR (SIMD&FP), LDAP1 (SIMD&FP), STLUR (SIMD&FP), and STL1 (SIMD&FP).

nAA Meaning

0d0	Unaligned accesses by the
	specified instructions generate an
	Alignment fault.
0b1	This control does not generate
	Alignment faults.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

CP15BEN, bit [5] When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the (coproc==0b1111) encoding space from ELO:

CP15BEN	Meaning
0b0	EL0 using AArch32: EL0 execution of the CP15DMB, CP15DSB, and CP15ISB instructions is undefined and generates an exception to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using an ESR_ELx.EC value
0b1	of 0x00. EL0 using AArch32: EL0 execution of the <u>CP15DMB</u> , <u>CP15DSB</u> , and <u>CP15ISB</u> instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the <u>SCTLR_EL2</u>, <u>HSCTLR</u>, and <u>SCTLR</u>.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

• On a Warm reset, this field resets to an architecturally unknown value.

When an implementation does not implement CP15BEN, access to this field is **RAO/WI**.

Otherwise:

Reserved, res0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at ELO.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

C	Meaning	
---	---------	--

0b0	All data access to Stage 1 Normal
	memory from EL0 and EL1, and all
	Normal memory accesses from
	unified cache to the EL1&0 Stage 1
	translation tables, are treated as
	Stage 1 Non-cacheable.
0b1	This control has no effect on the
	Stage 1 Cacheability of:

- Data access to Normal memory from EL0 and EL1.
- Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the Effective value of the <u>HCR_EL2</u>.DC bit in the current Security state is 1, the PE ignores SCTLR_EL1.C. This means that EL0 and EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the Effective value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

- On a Warm reset:
 - $^{\circ}$ When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

A	Meaning		
0b0	Alignment fault checking disabled		
	when executing at EL1 or EL0.		
	Instructions that load or store one		
	or more registers, other than load/		
	store exclusive and load-acquire/		
	store-release, do not check that the		
	address being accessed is aligned		
	to the size of the data element(s)		
	being accessed.		

Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an alignment check that the address being accessed is aligned to the size of the data element(s) being accessed. If this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

When FEAT_VHE is implemented, and the value of <u>HCR_EL2</u>.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M	Meaning			
0b0	EL1&0 stage 1 address translation			
	disabled.			
	See the SCTLR EL1.I field for the			
	behavior of instruction accesses to			
	Normal memory.			
0b1	EL1&0 stage 1 address translation			
	enabled.			

If the Effective value of <u>HCR_EL2</u>.{DC, TGE} in the current Security state is not {0, 0} then the PE behaves as if the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the Effective value of HCR_EL2. {E2H, TGE} is {1, 1}, this bit has no effect on the PE.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.

• Otherwise, this field resets to an architecturally unknown value.

Accessing SCTLR_EL1

When <u>HCR_EL2</u>.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TRVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x110];
    else
        X[t, 64] = SCTLR\_EL1;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        X[t, 64] = SCTLR\_EL2;
    else
        X[t, 64] = SCTLR EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = SCTLR\_EL1;
```

MSR SCTLR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x110] = X[t, 64];
    else
        SCTLR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SCTLR EL2 = X[t, 64];
    else
        SCTLR EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    SCTLR\_EL1 = X[t, 64];
```

MRS <Xt>, SCTLR_EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        X[t, 64] = NVMem[0x110];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        X[t, 64] = SCTLR\_EL1;
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        X[t, 64] = SCTLR\_EL1;
    else
        UNDEFINED;
```

MSR SCTLR EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        NVMem[0x110] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        SCTLR\_EL1 = X[t, 64];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR EL2.E2H == '1' then
        SCTLR\_EL1 = X[t, 64];
    else
        UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.