Мобильная робототехника

Сенсорная система

Классический подход

Навигация

Навигация от лат. navigo – плыву на корабле.

Навигация в узком смысле – решение навигационной задачи, т.е. определение текущих координат

Навигация в широком смысле – решение навигационной задачи и использование полученной информации для управления

Энкодеры

Инерциальная навигация

Микромеханический акселерометр

Микромеханический гироскоп

БИНС на МЭМС

Стабильность нуля до ~1°/час

Стабильность нуля до ~10°/час

Инерциальная навигация

- Автономная
- Двухкратное интегрирование
- Необходимо знать начальные значения координат
- Непрерывное определение ориентации акселерометров
- Непрерывное измерение ускорения
- Нарастающая ошибка

Виды дальнометрических систем

- Активные:
 - Ультразвуковые
 - Электромагнитные
 - Лазерные
 - Радары
 - Инфракрасные
- Пассивные:
 - Камеры
 - Тактильные

Тактильный датчик

• Контакт с объектом

- Инициация ультразвукового сигнала
- Ожидание отраженного сигнала
- Вычисление расстояния на основании пройденного времени

Вычисление расстояния

V – скорость сигнала t – время между отправкой сигнала и получением эха

Диаграмма направленности

Источники ошибок:

- Диаграмма направленности
- Перекрестное эхо
- Полное отражение

Типичный скан

Параллельная работа:

- Для перекрытия пространства вокруг робота (360°) необходимо 24 сонара с углом обзора 15°
- Пусть максимальная дальность сонаров 10 м
- Тогда максимальное время одного измерения 2*10/330 = 0.06 с
- Полный скан при последовательной работе 0.06*24 = 1.45 с
- Для быстрого перемещения необходима параллельная работа сонаров
- Это увеличивает вероятность появления перекрестного эха

- Высокая точность
- Широкий угол обзора
- Высокая скорость

- Данные лидара представляют собой массив дальностей [1; 0.4; 0; ...]
- Предположим угол измерения 180°
- С угловым разрешением 5°

Найти:

- Координаты препятствия относительно робота (лидара)?
- Координаты препятствия в глобальной системе координат?

Двухмерные

HOKUYO UTM-30LX SICK LMS-200

Трехмерные

Velodyne HDL-64E

Velodyne VLP-16

Параметр	SICK LMS-200	HOKUYO UTM-30LX	Velodyne Lidar HDL -64E	Velodyne Lidar VLP-16
Максимальная дальность измерений, м	80	30	120	100
Угол измерения, °	180	270	360 / 26,8	360 / 30
Угловое разрешение, °	0.25	0.25	0,08 / 0,4	0,4 / 2
Масса, кг	4.5	2.1	13	0,830
Размеры, мм	156 × 155 × 210	60 × 60 × 87	D223 × 283	D103 × 72

Стереокамера

 $\frac{T-d}{Z-f} = \frac{T}{Z},$

$$Z = \frac{fT}{d}.$$

Функция отклика

RGB-D камеры

Следующая лекция

Вероятностные методы в робототехнике