CSCI 6515 - Machine Learning for Big Data (Fall 2023)

Final Project

Group_ID: 7

Group Members:

- 1. Xiaoting_B00685239
- 2. Xuelian_B00977221
- 3. Siqi_B00976996

1. Dataset Information

Dataset Name: Airlines

Link to the Dataset:

https://www.kaggle.com/datasets/teejmahal20/airline-passenger-satisfaction

Dataset Description:

This data set collects passenger information from an airline, including personal information and information on flying habits.

2. Task Information

Task Goal: Evaluate which factors are highly correlated with satisfaction.

Task Description:

This task assesses passenger satisfaction levels based on the information provided and in-flight preferences such as seat position, in-flight beverages and entertainment. Additionally, this task will build four ML models for comparison, which are respectively logistic regression, random forest, KNN and naive bayes.

3. Task Implementation: Coding

3.1 Preprocessing

```
In [ ]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
In []: df=pd.read csv('train.csv')
In [ ]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 103904 entries, 0 to 103903
       Data columns (total 25 columns):
       #
           Column
                                                             Dtype
                                             Non-Null Count
          Unnamed: 0
                                             103904 non-null int64
       0
       1
           id
                                             103904 non-null int64
        2
           Gender
                                             103904 non-null object
        3
           Customer Type
                                             103904 non-null object
                                             103904 non-null int64
          Type of Travel
                                             103904 non-null object
       5
                                             103904 non-null object
       6
           Class
       7 Flight Distance
                                             103904 non-null int64
       8 Inflight wifi service
                                             103904 non-null int64
           Departure/Arrival time convenient 103904 non-null int64
       10 Ease of Online booking
                                             103904 non-null int64
       11 Gate location
                                             103904 non-null int64
       12 Food and drink
                                             103904 non-null int64
        13 Online boarding
                                             103904 non-null int64
        14 Seat comfort
                                            103904 non-null int64
       15 Inflight entertainment
                                           103904 non-null int64
       16 On-board service
                                            103904 non-null int64
       17 Leg room service
                                             103904 non-null int64
                                            103904 non-null int64
       18 Baggage handling
       19 Checkin service
                                            103904 non-null int64
       20 Inflight service
                                             103904 non-null int64
        21 Cleanliness
                                             103904 non-null int64
       22 Departure Delay in Minutes
                                             103904 non-null int64
       23 Arrival Delay in Minutes
                                             103594 non-null float64
                                             103904 non-null object
       24 satisfaction
       dtypes: float64(1), int64(19), object(5)
       memory usage: 19.8+ MB
In [ ]: df
```

_			- 7	
n	ut	- 1	- 1	=
U	uι	- L		

		Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance
	0	0	70172	Male	Loyal Customer	13	Personal Travel	Eco Plus	460
	1	1	5047	Male	disloyal Customer	25	Business travel	Business	235
	2	2	110028	Female	Loyal Customer	26	Business travel	Business	1142
	3	3	24026	Female	Loyal Customer	25	Business travel	Business	562
	4	4	119299	Male	Loyal Customer	61	Business travel	Business	214
	•••		•••	•••		•••	•••	•••	
1	03899	103899	94171	Female	disloyal Customer	23	Business travel	Eco	192
1	03900	103900	73097	Male	Loyal Customer	49	Business travel	Business	2347
1	03901	103901	68825	Male	disloyal Customer	30	Business travel	Business	1995
1	03902	103902	54173	Female	disloyal Customer	22	Business travel	Eco	1000
1	03903	103903	62567	Male	Loyal Customer	27	Business travel	Business	1723

103904 rows × 25 columns

In []: df.describe()

Out[]:

	Unnamed: 0	id	Age	Flight Distance	Inflight ser
count	103904.000000	103904.000000	103904.000000	103904.000000	103904.000
mean	51951.500000	64924.210502	39.379706	1189.448375	2.729
std	29994.645522	37463.812252	15.114964	997.147281	1.327
min	0.000000	1.000000	7.000000	31.000000	0.000
25%	25975.750000	32533.750000	27.000000	414.000000	2.000
50%	51951.500000	64856.500000	40.000000	843.000000	3.000
75%	77927.250000	97368.250000	51.000000	1743.000000	4.000
max	103903.000000	129880.000000	85.000000	4983.000000	5.000

In []: df['Unnamed: 0'].unique()

Out[]: array([0, 1, 2, ..., 103901, 103902, 103903], dtype=int6 4)

Finding and Processing:

- 1. The first column: Unnamed:0 is the number of index. We decided to delete it.
- 2. "id" is not relevant to our learning process. We decided to delete it.
- 3. Categorized features and label need to be changed to number:Gender/Customer Type/Type of Travel/Class/satisfaction
- 4. Other continuous feature need to be normalized: Age/Flight Distance/Departure Delay in Minutes/Arrival Delay in Minutes

```
In [ ]: df=df.drop(['Unnamed: 0','id'],axis = 1)
In [ ]: df.head()
```

Out[]:

	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrivatime convenier
0	Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3	
1	Male	disloyal Customer	25	Business travel	Business	235	3	
2	Female	Loyal Customer	26	Business travel	Business	1142	2	
3	Female	Loyal Customer	25	Business travel	Business	562	2	
4	Male	Loyal Customer	61	Business travel	Business	214	3	

5 rows × 23 columns

```
In [ ]: df = df.drop_duplicates()
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 103904 entries, 0 to 103903
       Data columns (total 23 columns):
           Column
                                             Non-Null Count
                                                              Dtype
                                                              ____
        0
           Gender
                                             103904 non-null object
        1
           Customer Type
                                             103904 non-null object
        2
                                             103904 non-null int64
           Type of Travel
                                             103904 non-null object
        3
                                             103904 non-null object
           Class
           Flight Distance
        5
                                             103904 non-null int64
           Inflight wifi service
                                             103904 non-null int64
        6
        7
           Departure/Arrival time convenient 103904 non-null int64
                                             103904 non-null int64
           Ease of Online booking
           Gate location
                                             103904 non-null int64
        10 Food and drink
                                             103904 non-null int64
        11 Online boarding
                                             103904 non-null int64
        12 Seat comfort
                                            103904 non-null int64
        13 Inflight entertainment
                                            103904 non-null int64
        14 On-board service
                                            103904 non-null int64
        15 Leg room service
                                             103904 non-null int64
        16 Baggage handling
                                            103904 non-null int64
        17 Checkin service
                                            103904 non-null int64
        18 Inflight service
                                             103904 non-null int64
        19 Cleanliness
                                             103904 non-null int64
        20 Departure Delay in Minutes
                                             103904 non-null int64
        21 Arrival Delay in Minutes
                                             103594 non-null float64
                                             103904 non-null object
        22 satisfaction
       dtypes: float64(1), int64(17), object(5)
       memory usage: 18.2+ MB
In []: df['satisfaction'].unique()
Out[]: array(['neutral or dissatisfied', 'satisfied'], dtype=object)
In [ ]: from sklearn.preprocessing import LabelEncoder
In [ ]: label_encoder = LabelEncoder()
        df['Gender'] = label_encoder.fit_transform(df['Gender'])
        df['Customer Type'] = label encoder.fit transform(df['Customer Type'])
        df['Type of Travel'] = label_encoder.fit_transform(df['Type of Travel'])
        df['Class'] = label_encoder.fit_transform(df['Class'])
        df['satisfaction'] = label_encoder.fit_transform(df['satisfaction'])
In [ ]: df.head()
```

Out[]:		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	E b ₍
	0	1	0	13	1	2	460	3	4	
	1	1	1	25	0	0	235	3	2	
	2	0	0	26	0	0	1142	2	2	
	3	0	0	25	0	0	562	2	5	
	4	1	0	61	0	0	214	3	3	

5 rows × 23 columns

From the above plot, we know that ease of online booking and inflight wifi service has a higher postive correlationship. Cleanliness and food and drink, seat comfort and inflight entertainment have higher positive correlationship. Baggage handling and inflight service has a higher positive correlationship.Regarding to the final target:satisfaction, it has very little correlationship with Gender and Gate location

For those have low correlationship with the target(satisfaction), plot the pictures below to decide whether delete them:

Gender

Gate Location


```
In []: ratio_gl0 = round(len(df[(df['Gate location'] == 0) & (df['satisfaction'] ratio_gl1 = round(len(df[(df['Gate location'] == 1) & (df['satisfaction'] ratio_gl2 = round(len(df[(df['Gate location'] == 2) & (df['satisfaction'] ratio_gl3 = round(len(df[(df['Gate location'] == 3) & (df['satisfaction'] ratio_gl4 = round(len(df[(df['Gate location'] == 4) & (df['satisfaction'] ratio_gl5 = round(len(df[(df['Gate location'] == 5) & (df['satisfaction'] print(ratio_gl0) print(ratio_gl1) print(ratio_gl2) print(ratio_gl3) print(ratio_gl4) print(ratio_gl5)
```

1.0 0.5 0.46 0.35 0.39

0.57

In []: categories = ['gl0','gl1','gl2','gl3','gl4','gl5']
 ratios = [ratio_gl0,ratio_gl1,ratio_gl2,ratio_gl3,ratio_gl4,ratio_gl5]
 plt.bar(categories, ratios, color=['gold', 'yellowgreen','skyblue','pink'
 plt.xlabel('Gate Location')
 plt.ylabel('Ratio of Satisfied Experience')
 plt.title('Ratio of Satisfied Experience - Departure/Arrival time conveni

 for i in range(len(categories)):
 plt.text(categories[i], ratios[i], str(ratios[i]), ha='center', va='b
 plt.show()

Ratio of Satisfied Experience - Departure/Arrival time convenient

Through the plots above, we decided to delete the gender column which has almost no effects on the final target results as no matter whether the customer is female or male, there is almost no difference on choosing the experience feeling

```
In []: df_train=df
    df_train = df_train.dropna(axis=0)
    df_train.head()
```

t[]:		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	E b
	0	1	0	13	1	2	460	3	4	
1	1	1	25	0	0	235	3	2		
	2	0	0	26	0	0	1142	2	2	
	3	0	0	25	0	0	562	2	5	

0

0

3

214

61

5 rows × 23 columns

4

```
In []: from sklearn.preprocessing import MinMaxScaler
    columns_to_normalize = ['Age', 'Flight Distance', 'Departure Delay in Min
    scaler = MinMaxScaler()
    df_train[columns_to_normalize] = scaler.fit_transform(df_train[columns_to
    df_train.head()
```

Out[]:		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arriv time convenie
	0	1	0	0.076923	1	2	0.086632	3	
	1	1	1	0.230769	0	0	0.041195	3	
	2	0	0	0.243590	0	0	0.224354	2	
	3	0	0	0.230769	0	0	0.107229	2	
	4	1	0	0.692308	0	0	0.036955	3	

5 rows × 23 columns

Processing the original test data csv:

```
In []: df_test=pd.read_csv('test.csv')
In []: df_test = df_test.dropna(axis=0)
In []: df_test.info()
```

<class 'pandas.core.frame.DataFrame'> Index: 25893 entries, 0 to 25975 Data columns (total 25 columns):

#	Column	Non–Nu	ıll Count	Dtype
0	Unnamed: 0	25893	non-null	int64
1	id	25893	non-null	int64
2	Gender	25893	non-null	object
3	Customer Type	25893	non-null	object
4	Age	25893	non-null	int64
5	Type of Travel	25893	non-null	object
6	Class	25893	non-null	object
7	Flight Distance	25893	non-null	int64
8	Inflight wifi service	25893	non-null	int64
9	Departure/Arrival time convenient	25893	non-null	int64
10	Ease of Online booking	25893	non-null	int64
11	Gate location	25893	non-null	int64
12	Food and drink	25893	non-null	int64
13	Online boarding	25893	non-null	int64
14	Seat comfort	25893	non-null	int64
15	Inflight entertainment	25893	non-null	int64
16	On-board service	25893	non-null	int64
17	Leg room service	25893	non-null	int64
18	Baggage handling	25893	non-null	int64
19	Checkin service	25893	non-null	int64
20	Inflight service	25893	non-null	int64
21	Cleanliness	25893	non-null	int64
22	Departure Delay in Minutes	25893	non-null	int64
23	Arrival Delay in Minutes	25893	non-null	float64
24	satisfaction	25893	non-null	object
d+vn	ac: float64(1) int64(10) object(5)	: 1		

dtypes: float64(1), int64(19), object(5)

memory usage: 5.1+ MB

In []: df_test.head()

Out[]:		Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Infliç v serv
	0	0	19556	Female	Loyal Customer	52	Business travel	Eco	160	
	1	1	90035	Female	Loyal Customer	36	Business travel	Business	2863	
	2	2	12360	Male	disloyal Customer	20	Business travel	Eco	192	
	3	3	77959	Male	Loyal Customer	44	Business travel	Business	3377	
	4	4	36875	Female	Loyal Customer	49	Business travel	Eco	1182	

5 rows × 25 columns

```
In [ ]: df_test=df_test.drop(['Unnamed: 0','id'], axis=1)
        df_test.head()
```

Out[]:		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrivatime convenier
	0	Female	Loyal Customer	52	Business travel	Eco	160	5	

Business

Eco

2863

192

1

2

Loyal Business 44 **Business** 0 3 Male 3377 Customer travel Business Loval 49 2 Female Eco 1182 travel Customer

Business

Business

travel

travel

5 rows × 23 columns

Female

Male

2

Loval

Customer

Customer

disloyal

36

20

```
In []:
        df_test['Gender'] = label_encoder.fit_transform(df_test['Gender'])
        df_test['Customer Type'] = label_encoder.fit_transform(df_test['Customer
        df_test['Type of Travel'] = label_encoder.fit_transform(df_test['Type of
        df_test['Class'] = label_encoder.fit_transform(df_test['Class'])
        df_test['satisfaction'] = label_encoder.fit_transform(df_test['satisfacti
In []:
        continuous_columns = ['Age', 'Flight Distance', 'Departure Delay in Minut
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Plotting boxplots for continuous columns to identify outliers
        plt.figure(figsize=(8, 8))
        for i, col in enumerate(continuous_columns, 1):
            plt.subplot(2, 2, i)
            sns.boxplot(y=df_test[col])
            plt.title(col)
        plt.tight layout()
        plt.show()
```


In []: columns_to_normalize = ['Gender','Age', 'Flight Distance', 'Departure Del
 scaler = MinMaxScaler()
 df_test[columns_to_normalize] = scaler.fit_transform(df_test[columns_to_n
 df_test.head()

Out[]:		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arriv time convenie
	0	0.0	0	0.576923	0	1	0.026050	5	
	1	0.0	0	0.371795	0	0	0.571890	1	
	2	1.0	1	0.166667	0	1	0.032512	2	
	3	1.0	0	0.474359	0	0	0.675687	0	
	4	0.0	0	0.538462	0	1	0.232431	2	

5 rows × 23 columns

```
In [ ]: df_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 25893 entries, 0 to 25975
Data columns (total 23 columns):
 # Column
                                                           Non-Null Count Dtype
____
 0 Gender
                                                           25893 non-null float64
                                                          25893 non-null int32
 1 Customer Type
                                                         25893 non-null float64
                                                         25893 non-null int32
 3 Type of Travel
                                                         25893 non-null int32
 4 Class
 5 Flight Distance
                                                         25893 non-null float64
 5 Flight Distance 25893 non-null float6
6 Inflight wifi service 25893 non-null int64
 7 Departure/Arrival time convenient 25893 non-null int64
 8 Ease of Online booking 25893 non-null int64
9 Gate location 25893 non-null int64
10 Food and drink 25893 non-null int64
25893 non-null int64
12 Seat comfort 25893 non-null int64
13 Inflight entertainment 25893 non-null int64
14 On-board service 25893 non-null int64
15 Leg room service 25893 non-null int64
16 Baggage handling 25893 non-null int64
17 Checkin service 25893 non-null int64
18 Inflight service 25893 non-null int64
19 Cleanliness 25893 non-null int64
 11 Online boarding
                                                         25893 non-null int64
20 Departure Delay in Minutes 25893 non-null float64
21 Arrival Delay in Minutes 25893 non-null float64
22 satisfaction 25893 non-null float64
 22 satisfaction
                                                           25893 non-null int32
dtypes: float64(5), int32(4), int64(14)
memory usage: 4.3 MB
```

3.2 Model development and training

3.2.1 Logistic Regression

```
In [ ]: from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report, accuracy_score
        X train = df train.iloc[:,0:22]
        y_train = df_train.iloc[:,-1]
        X_test = df_test.iloc[:,0:22]
        y_test = df_test.iloc[:,-1]
In [ ]: from sklearn.model_selection import GridSearchCV
        # define param grid
        param_grid = {
            'C': [0.001, 0.01, 0.1, 1, 10],
            'penalty': ['l1', 'l2', 'elasticnet'],
            'tol': [1e-4, 1e-3, 1e-2],
            'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
        }
        # build model
        logistic = LogisticRegression(max_iter=1000)
        grid_search = GridSearchCV(logistic, param_grid, cv=5, scoring='accuracy'
```

```
grid_search.fit(X_train, y_train)

# get best params and score
best_params = grid_search.best_params_
best_score = grid_search.best_score_

# use best params
best_logistic = LogisticRegression(**best_params, max_iter=1000)
best_logistic.fit(X_train, y_train)
y_pred_best = best_logistic.predict(X_test)
accuracy_best = accuracy_score(y_test, y_pred_best)
class_report = classification_report(y_test, y_pred_best)

print("Classification Report:\n", class_report)
print("Best Parameters:", best_params)
print("Best Cross-Validation Score:", best_score)
print("Test Set Accuracy:", accuracy_best)
```

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.90	0.89	14528
1	0.87	0.83	0.85	11365
accuracy			0.87	25893
macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87	25893 25893
				==000

Best Parameters: {'C': 10, 'penalty': 'l1', 'solver': 'liblinear', 'tol':
0.001}

Best Cross-Validation Score: 0.8755719852758717

Test Set Accuracy: 0.8712393310933457

3.2.1.1 Model evaluation

```
In [ ]: import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        # get result
        results = pd.DataFrame(grid_search.cv_results_)
        # choose parameters
        param_1 = 'param_C'
        param_2 = 'param_solver'
        # plot
        pivot_table = results.pivot_table(values='mean_test_score',
                                           index=[param_1],
                                           columns=[param_2])
        plt.figure(figsize=(10, 6))
        sns.heatmap(pivot_table, annot=True, cmap='YlGnBu')
        plt.title('Grid Search Scores')
        plt.xlabel('Solver')
        plt.ylabel('C (Regularization Strength)')
        plt.show()
```


3.2.2 KNN Classifier

```
In []: from sklearn.model_selection import cross_val_score
    from sklearn.metrics import classification_report, accuracy_score
    from sklearn.neighbors import KNeighborsClassifier

X_train = df_train.iloc[:,0:22]
    y_train = df_train.iloc[:,-1]
    X_test = df_test.iloc[:,0:22]
    y_test = df_test.iloc[:,-1]

KNN = KNeighborsClassifier(n_neighbors=10)
    KNN.fit(X_train.to_numpy(), y_train.to_numpy())
    y_pred = KNN.predict(X_test.to_numpy())

cm = classification_report(y_test.to_numpy(),y_pred)
    print(cm)
```

	precision	recall	f1-score	support
0 1	0.91 0.96	0.97 0.88	0.94 0.92	14528 11365
accuracy macro avg weighted avg	0.94 0.93	0.93 0.93	0.93 0.93 0.93	25893 25893 25893

3.2.2.1 Hyperparameter tune

```
In []: k_range = range(1,50)
k_scores = []
```

```
#for i in cv_range:
for k in k_range:
    KNN = KNeighborsClassifier(n_neighbors=k)
    scores = cross_val_score(KNN, X_train.to_numpy(), y_train.to_numpy(),
    k_scores.append(scores.mean())
    #cv_scores[i,:] = k_scores
print(k_scores)
print(k_scores.index(max(k_scores)))
```

 $[0.9228912895767802, \ 0.9214723017047085, \ 0.9310578261642555, \ 0.928055752165222, \ 0.9325444132850735, \ 0.9296677976847395, \ 0.9325540685901244, \ 0.9299573962692991, \ 0.9324478900521471, \ 0.9300346247327134, \ 0.9322065614702453, \ 0.9296002198673788, \ 0.9313474405894041, \ 0.929687112022038, \ 0.931038520213151, \ 0.9292333946830038, \ 0.930295236902535, \ 0.9286735248963746, \ 0.929532643913617, \ 0.9279591935239198, \ 0.9288569337613646, \ 0.9272738196804224, \ 0.9282101615702834, \ 0.9270324836441256, \ 0.927910922589463, \ 0.9266849905012371, \ 0.9273510518710346, \ 0.9261637437984094, \ 0.9266849942284348, \ 0.9256424756641959, \ 0.9262602511907465, \ 0.9254011349689021, \ 0.9259030859704188, \ 0.9250053597099643, \ 0.9253818178362053, \ 0.92478333380109661, \ 0.9254204343974111, \ 0.924783339874565, \ 0.9252466854964684, \ 0.92430069855135, \ 0.9248412679776712, \ 0.9238759676270536, \ 0.924348959236014, \ 0.9235380962444385, \ 0.924020753408244, \ 0.9233064304219821, \ 0.9237601188752362, \ 0.9230458005479727, \ 0.9237408082651349]$

```
In []: plt.plot(k_range, k_scores)
  plt.xlabel('Value of K for KNN')
  plt.ylabel('Cross-Validated Accuracy')
```

Out[]: Text(0, 0.5, 'Cross-Validated Accuracy')

3.2.2.2 Model evaluation

```
In [ ]: KNN = KNeighborsClassifier(n_neighbors=k_range[k_scores.index(max(k_score
        KNN.fit(X_train.to_numpy(), y_train.to_numpy())
        y_pred = KNN.predict(X_test.to_numpy())
        cm = classification_report(y_test.to_numpy(),y_pred)
        print(cm)
                     precision
                                recall f1-score
                                                     support
                  0
                                    0.96
                                              0.94
                          0.92
                                                       14528
                  1
                          0.95
                                    0.90
                                              0.92
                                                       11365
           accuracy
                                              0.93
                                                       25893
                          0.94
                                    0.93
                                              0.93
                                                       25893
          macro avg
                          0.93
                                    0.93
                                              0.93
                                                       25893
       weighted avg
        3.2.3 Naive Bayers
In [ ]: from sklearn.naive_bayes import GaussianNB
        GaussNB = GaussianNB()
        GaussNB.fit(X_train, y_train)
        y_pred = GaussNB.predict(X_test)
        cm = classification_report(y_test,y_pred)
        print(cm)
                     precision recall f1-score
                                                     support
                  0
                                    0.90
                          0.86
                                              0.88
                                                        14528
                  1
                          0.86
                                    0.81
                                              0.84
                                                        11365
                                              0.86
                                                       25893
           accuracy
                          0.86
                                    0.86
                                              0.86
                                                        25893
          macro avq
                          0.86
                                    0.86
                                              0.86
                                                       25893
       weighted avg
In [ ]: from sklearn.naive_bayes import BernoulliNB
        BernoNB = BernoulliNB(force_alpha=True)
        BernoNB.fit(X_train, y_train)
        y_pred = BernoNB.predict(X_test)
        cm = classification_report(y_test,y_pred)
        print(cm)
                     precision
                                recall f1-score
                                                     support
                                    0.77
                                              0.79
                  0
                          0.82
                                                        14528
                  1
                          0.73
                                    0.78
                                              0.75
                                                       11365
                                                       25893
           accuracy
                                              0.78
                          0.77
                                    0.78
                                              0.77
                                                       25893
          macro avg
       weighted avg
                          0.78
                                    0.78
                                              0.78
                                                       25893
In [ ]: from sklearn.naive_bayes import MultinomialNB
        MultiNomNB = MultinomialNB()
        MultiNomNB.fit(X_train, y_train)
        y_pred = MultiNomNB.predict(X_test)
        cm = classification_report(y_test,y_pred)
        print(cm)
```

```
precision recall f1-score support
            0
                    0.84
                               0.84
                                          0.84
                                                    14528
                                          0.79
            1
                    0.79
                               0.79
                                                    11365

      0.82
      25893

      0.81
      25893

    accuracy
   macro avg 0.82 0.81
weighted avg
                   0.82
                              0.82
                                          0.82
                                                   25893
```

3.2.4 Random Forest Classifier

```
In []: from sklearn.model selection import train test split, RandomizedSearchCV,
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import accuracy_score, classification_report, confus
In [ ]: X_train = df_train.iloc[:,0:22]
        y_train = df_train.iloc[:,-1]
        X_{\text{test}} = df_{\text{test.iloc}}[:,0:22]
        y_test = df_test.iloc[:,-1]
        X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_
In [ ]: rf_classifier = RandomForestClassifier(random_state=42)
        3.2.4.1 Hyperparameter tune
In [ ]: param dist = {
            'n_estimators': [50, 100, 150],
            'max_depth': [None, 10, 20],
            'min_samples_split': [2, 5, 10],
            'min samples leaf': [1, 2, 4],
              'max_features': ['auto', 'sqrt', 'log2']
        }
In [ ]: random_search = RandomizedSearchCV(rf_classifier, param_distributions=par
        random_search.fit(X_train, y_train)
Out[]:
                  RandomizedSearchCV
         ▶ estimator: RandomForestClassifier
               ▶ RandomForestClassifier
In [ ]: print("Best Hyperparameters_RandomSearch:", random_search.best_params_)
       Best Hyperparameters_RandomSearch: {'n_estimators': 100, 'min_samples_spli
       t': 5, 'min_samples_leaf': 1, 'max_depth': None}
In [ ]: | best_rf_model_Random = random_search.best_estimator_
        y_pred = best_rf_model_Random.predict(X_val)
In [ ]: accuracy = accuracy_score(y_val, y_pred)
        print("Random Search Validation Accuracy:", accuracy)
```

Random Search Validation Accuracy: 0.9622568656788455

```
In [ ]: confusion_mat = confusion_matrix(y_val, y_pred)
        print("Random Search Confusion Matrix:\n", confusion_mat)
       Random Search Confusion Matrix:
        [[11427 228]
        [ 554 8510]]
In [ ]: class report = classification report(y val, y pred)
        print("Random Search Classification Report:\n", class_report)
       Random Search Classification Report:
                      precision recall f1-score
                                                     support
                                 0.98
                  0
                          0.95
                                           0.97
                                                     11655
                  1
                          0.97
                                  0.94
                                             0.96
                                                      9064
                                             0.96
                                                      20719
           accuracy
          macro avg
                        0.96
                                  0.96
                                             0.96
                                                     20719
                                  0.96
                                             0.96
       weighted avg 0.96
                                                      20719
In [ ]: param grid = {
            'n_estimators': [50, 100, 150],
            'max_depth': [None, 10, 20],
            'min_samples_split': [2, 5, 10],
            'min_samples_leaf': [1, 2, 4],
             'max features': ['auto', 'sgrt', 'log2']
In []: grid search = GridSearchCV(rf classifier, param grid, cv=5, scoring='accu
        grid_search.fit(X_train, y_train)
Out[]: |
                     GridSearchCV
        ▶ estimator: RandomForestClassifier
               ▶ RandomForestClassifier
In [ ]: print("Best Hyperparameters_GridSearch:", grid_search.best_params_)
       Best Hyperparameters GridSearch: {'max depth': None, 'min samples leaf':
       1, 'min_samples_split': 2, 'n_estimators': 150}
        **The processing time of Grid Search is much slower than Random Search.The
        different results of these two kinds of hyperparameter tuning methods are:
        Random Search: "n_estimators": 100,
        Grid Search: "n_estimators:: 150
        Compare the performance for the validation set: (Random Search already done) **
In [ ]: best_rf_model_Grid = grid_search.best_estimator_
        y_pred = best_rf_model_Grid.predict(X_val)
In [ ]: accuracy = accuracy_score(y_val, y_pred)
        print("Grid Search Validation Accuracy:", accuracy)
       Grid Search Validation Accuracy: 0.9619672764129543
In [ ]: confusion_mat = confusion_matrix(y_val, y_pred)
```

```
print("Grid Search Confusion Matrix:\n", confusion_mat)
       Grid Search Confusion Matrix:
        [[11416 239]
        [ 549 8515]]
In [ ]: class_report = classification_report(y_val, y_pred)
        print("Grid Search Classification Report:\n", class_report)
       Grid Search Classification Report:
                      precision
                                  recall f1-score
                                                      support
                  0
                          0.95
                                    0.98
                                              0.97
                                                       11655
                  1
                          0.97
                                    0.94
                                              0.96
                                                       9064
                                              0.96
                                                       20719
           accuracy
                          0.96
                                    0.96
                                              0.96
                                                       20719
          macro avg
       weighted avg
                          0.96
                                    0.96
                                              0.96
                                                       20719
        3.2.4.2 Model evaluation
        The performances from the two grids methods are almost the same, but
        random grid is better. Just use the hyperparameter from random grid to train
        the test dataset
In []:
        best_rf_model_Random = random_search.best_estimator_
        y_test_pred = best_rf_model_Random.predict(X_test)
In [ ]: accuracy = accuracy_score(y_test, y_test_pred)
        print("Test Accuracy:", accuracy)
       Test Accuracy: 0.9623836558143127
In [ ]: confusion_mat = confusion_matrix(y_test, y_test_pred)
        print("Confusion Matrix:\n", confusion_mat)
       Confusion Matrix:
        [[14212 316]
        [ 658 10707]]
In [ ]: | class_report = classification_report(y_test, y_test_pred)
        print("Classification Report:\n", class_report)
       Classification Report:
                                   recall f1-score
                      precision
                                                      support
                                    0.98
                                              0.97
                  0
                          0.96
                                                       14528
                  1
                          0.97
                                    0.94
                                              0.96
                                                       11365
                                              0.96
                                                       25893
           accuracy
                          0.96
                                    0.96
                                              0.96
                                                       25893
          macro avq
       weighted avg
                          0.96
                                    0.96
                                              0.96
                                                       25893
```

In []: