

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年10月18日(18.10.2001)

PCT

(10) 国際公開番号 WO 01/76565 A1

(51) 国際特許分類?:

A61K 9/20, 45/00, 47/18, 47/12, 47/44, 47/26, 47/04, 47/38, 47/36, A61P 25/00, 27/00, 37/08, 9/00, 11/00, 1/00, 5/00, 15/00, 3/02, 7/00, 35/00, 43/00, 33/00

(21) 国際出願番号:

PCT/JP01/03114

(22) 国際出願日:

2001年4月11日(11.04.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-110396 2000年4月12日(12.04.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 萬有製薬 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都中央区日本橋本町2丁目2 番3号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 鳴島真人 (NARUSHIMA, Makoto) [JP/JP]. 相澤和年 (AIZAWA, Kazutoshi) [JP/JP]. 下山博保 (SHIMOYAMA, Hiroyasu) [JP/JP]. 石川清文 (ISHIKAWA, Kiyofumi) [JP/JP]; 〒360-0214 埼玉県大里郡妻沼町大字西城810番地 萬 有製薬株式会社 妻沼工場内 Saitama (JP).
- (74) 代理人: 的場基憲(MATOBA, Motonori); 〒113-0033 東京都文京区本郷1-30-17 M·Rビル3階 的場国際特許 事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

[続葉有]

(54) Title: COMPOSITIONS DISINTEGRATING IN ORAL CAVITY AND PREPARATIONS DISINTEGRATING IN ORAL CAVITY

(54) 発明の名称: 口腔内崩壊型組成物及び口腔内崩壊型製剤

(57) Abstract: Compositions quickly disintegrating in the oral cavity which contain a filler comprising a sugar alcohol, a disintegrating agent and a lubricant. The penetration rate of ethanol into this lubricant is 3.0 x 10⁻³g²/sec or above. The tablet strength is 20 N or above. The compositions disintegrate in the oral cavity of normal adults within 90 seconds. Preparations disintegrating in the oral cavity which are prepared by adding drug components to these compositions disintegrating in the oral cavity. Thus, both of an appropriate strength needed in handling the preparations and quick disintegration in the oral cavity can be achieved without resort to any special production procedures or instruments.

(57) 要約:

口腔内で速やかに崩壊する成型組成物である。糖アルコールから成る 賦形剤と、崩壊剤と、滑沢剤を含有する。この滑沢剤に対するエタノー ルの浸透速度が 3.0×10⁻³g²/sec以上である。錠剤強度が 20 N以上で、健常成人での口腔内崩壊時間が90秒以内である。

口腔内崩壊型製剤は、このような口腔内崩壊型組成物に薬効成分を添 加して成る。

特殊な製造方法・機器を必要とすることなく製剤の取扱上必要とされ る適切な強度と、口腔内での速やかな崩壊性を両立する。

WO 01/76565

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, 添付公開書類: PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, — 国際調査報告書 TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

口腔内崩壊型組成物及び口腔内崩壊型製剤

技術分野

本発明は、口腔内崩壊型組成物及び口腔内崩壊型製剤に係り、更に詳細には、製剤の取扱い上必要な強度を有し、しかも口腔内において速やかに崩壊する口腔内崩壊組成物、及びこれを用いた口腔内崩壊型製剤に関する。

背景技術

高齢化社会の到来に当たり、老化に関する多方面からの研究開発が盛んに行われるようになり、その一分野として、高齢者に投与最適な新規製剤についての調査研究報告がなされている。この調査研究報告では、内服薬の自己服薬の可否、服用する際に摂取する飲食物、及び剤形の服用性について調査が行われており、また、現在使用されている剤形の中で最も服用しやすい剤形、将来希望する剤形及び内服薬の味の嗜好についても患者の希望が調査された。

かかる調査研究報告によって、高齢者が医薬品の服用において剤形の 面から多くの問題点を抱えていることが指摘され、この結果、現在用い られている剤形の多くは一般成人向けのものであることから、介添えを 必要とする身体不自由な高齢者でも容易に服用でき、更に服用しにくさ から服用拒否を示す高齢者のためにも服用しやすい剤形の開発が望まれ るようになった。また、高齢者でも容易に服用できる剤形は、小児や一 般成人にとっても好ましいものである。

更に、この調査研究報告によれば、高齢者にとって好ましい新規製剤

として、口腔内崩壊型製剤、ペースト状製剤及びゼリー状製剤が提案さ れているが、特に口腔内崩壊型製剤はその流通過程での安定性等を考慮 すると最も現実的な製剤であると考えられており、この観点から、この タイプの製剤がさかんに検討・開発されている。

上述のような背景において、特公昭62-50445号公報には、ゼ ラチン、デキストリン、加水分解デキストリン又はアルギネート、又は 上記物質1種以上とポリビニルアルコール、ポリビニルピロリジン又は アラビアガムとの混合物、又はポリビニルアルコールとポリビニルピロ リジンとの混合物又はアラビアガムとポリビニルピロリジンとの混合物 から選んだ医薬的に許容可能な水溶性又は水分散性重合体単体物質のネ ットワークを含み、そして10~200mg/mlの密度を有する、経 口投与用の固形医薬剤形が記載されている。

しかしながら、かかる製剤は、凍結乾燥により調製されるため、凍結 乾燥のための製造設備が必要であり、コスト高となる。また、凍結乾燥 で得られた製剤は強度が小さいため、一般に取扱が不便であるという課 題がある。

また、国際公開W〇93/12769号には、活性成分と乳糖及び/ 又はマンニトールからなる糖類と、固形成分に対し、0.12~1.2 - w/w%の寒天からなる密度が400mg/ml乃至1000mg/m 1 である製剤取扱い上十分な強度を有する口腔内崩壊性の固形製剤が記 載されている。

しかしながら、この固形製剤の製造方法は、懸濁液を鋳型に流し込み、 この懸濁液を乾燥するというものであり、一般の錠剤の製造方法と異な り煩雑であるという課題がある。

国際公開WO95/20380号には、成形性の低い糖及び成形性の 高い糖類を含有してなる、口腔内において速やかな崩壊性、溶解性を有

WO 01/76565

する口腔内溶解型圧縮成型物が記載されている。

しかしながら、この圧縮成型物を製造するに当たっては、成形性の高い糖類が造粒物の表面にあるため、打錠時にスティッキング等の打錠障害が発生するという課題が残されている。

特開平9-48726号公報には、薬物及び加湿により成形可能に湿潤し且つ成形後の乾燥により該形状を維持する物質からなり、これら成分が低密度で加湿、成形されることにより崩壊容易に構成されてなる口腔内速崩壊性製剤が記載されている。また、特開平8-291051号公報には、薬剤、水溶性結合剤及び水溶性賦形剤を含む乾燥状態の錠剤材料を錠剤の形態として次段の製造工程へ移行させる際にその形態を維持可能な硬度をとるために、最低必要な低圧力で加圧成形する打錠工程と、上記打錠工程で成形された錠剤に吸湿させるための加湿工程と、上記打錠工程で成形された錠剤に吸湿させるための加湿工程と、上記加湿工程で加湿された錠剤を乾燥させる乾燥工程とを備えることを特徴とする速溶解性錠剤の製造方法が記載されている。

しかしながら、何れの製剤又は製造方法においても、成形された成型物を加湿する工程が必要であり、この加湿工程で錠剤がふやけて錠剤の外観が損なわれ、商品価値が低下するという課題がある。

特開平5-271054号公報には、薬効成分と糖類と上記糖類の粒子表面が湿る程度の水分を含む混合物を打錠する口腔内溶解型錠剤の製造方法が記載されているが、この製造方法は、打錠用の混合物に強制的に水分を添加し、湿った状態で打錠を行う湿式打錠法を用いたものであり、打錠障害により生産性が十分でないという課題を残している。これと同様に湿式打錠法に分類されるものとして、欧州特許出願公開EP0590963A1号記載の製造方法があるが、この製造方法では、湿式打錠時の打錠障害を解消するために、非常に特殊な製造機器を用いており、製造コスト及び生産性の問題を含んでいる。

また、国際公開WO95/34290号及び国際公開WO93/15724号公報記載の製造方法はともに湿式打錠法に分類されるが、特殊な賦形剤を使用しているか又は生産性が低いといった課題がある。

特公昭 5 8 − 2 4 4 1 0 号公報には錠剤内容物を錠剤内容物に対して不活性な − 3 0 ℃乃至 + 2 5 ℃で凍結する溶剤と混合し、この際、溶剤を全混合物の 5 乃至 8 0 重量%とし、混合物を不活性冷却媒体中に入れることにより固化させ、溶剤の凍結点より低い温度で圧縮して錠剤とし、さらに凍結乾燥又は自然乾燥により溶剤を揮発させて崩壊性の良好な多孔性錠剤を製造する方法が記載されている。また、特開平 3 − 8 6 8 3 7 号公報には、水溶性、水和性のゲルあるいは泡沫物質からなる組成物から実質的に全ての水分が除去されるまで、約0℃又はそれ以下の温度で無水エタノールのような無水液体乾燥剤に接触させることによって得られる、十分な強度を備えた容易に溶解しうる担体物質が記載されている。

しかしながら、何れの製造方法も製造工程が複雑で、且つ凍結乾燥機等の製造設備が必要となりコストが高くなるという課題があった。

国際公開W093/01805号と米国特許第5178578号明細書には、放出制御粒子を含む口腔内崩壊型製剤についての記載があるが、これは単なる混合物又は配合物を打錠するだけのことであるため、口腔内崩壊型製剤の特性である口腔内における速やかな崩壊性について検討の余地が残る。

また、特開平8-301751号公報には、未硬化剪断型マトリックスと放出制御型システムを混合し、成形・硬化する急速溶解性食用単位が記載されているが、未硬化剪断型マトリックスとして、具体的には非晶質化した糖類を使用しなければならず、かかる非晶質化処理が煩雑である。

特開平2-32014号公報には、経口投与に適した湿製錠剤の形態の固形製剤が記載されているが、スプレードライ工程、続いてエタノール/水又は水単独で湿潤塊を調製し、鋳型に入れ乾燥させて錠剤を得る方法であるため、製造工程が煩雑であり生産性が低いことが予想される。

また、特開昭61-15830号公報には、制酸剤と製菓用甘味料及び可塑剤を含む製菓用基材を含み、多孔性極微細結晶構造を有する制酸剤組成物が記載されているが、製造方法が煩雑であり生産性に課題がある。

発明の開示

本発明は、上述したような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、製剤の取扱いにおいて必要とされる適切な強度を有し、しかも口腔内において速やかに崩壊する口腔内崩壊型組成物及び口腔内崩壊型製剤を提供することにある。

また、本発明の他の目的は、上記のような優れた特性を持った口腔内崩壊型組成物及び口腔内崩壊型製剤を、複雑な工程及び特殊設備を要することなく、実質的に乾燥状態で打錠工程を行い、製造可能とすることにある。

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、特定の 賦形剤と崩壊剤を用い、これらの混合物又は造粒物に特定の滑沢剤を添加し、打錠することによって、予想外にも製造工程や保存及び流通過程 で壊れない程度の適当な強度を有し、且つ口腔内での速やかな崩壊性を 有する組成物が得られることを見出し、本発明を完成するに至った。

即ち、口腔内崩壊型組成物は、口腔内で速やかに崩壊する成型組成物であって、糖アルコールから成る賦形剤と、崩壊剤と、滑沢剤を含有して成り、この滑沢剤に対するエタノールの浸透速度が3.0×10⁻³g

2/sec以上であることを特徴とする。

この場合、上記滑沢剤に対するエタノールの浸透速度が 5.0×10 $^{-3}$ g 2 / s e c 以上であることが望ましい。

また、本発明の口腔内崩壊型組成物の好適形態は、上記滑沢剤が、ロイシン及び/又はフマル酸ステアリルナトリウム、あるいはステアリン酸及び/又はタルクであることを特徴とする。

更に、本発明の口腔内崩壊型組成物の他の好適形態は、上記糖アルコールがマンニトール及び/又はエリスリトールであることを特徴とする。

更にまた、本発明の口腔内崩壊型組成物の更に他の好適形態は、上記崩壊剤が、低置換度ヒドロキシプロピルセルロース、結晶セルロース、ヒドロキシプロピルスターチ、カルボキシメチルスターチナトリウム、コムギデンプン、コメデンプン、トウモロコシデンプン及びバレイショデンプンから成る群より選ばれた少なくとも1種の難水溶性の結合性崩壊剤であるか、あるいはクロスカルメロースナトリウム、カルメロースカルシウム、クロスポビドン、水酸化アルミナマグネシウム、炭酸マグネシウム及びリン酸二水素カルシウムから成る群より選ばれた少なくとも1種のものであることを特徴とする。

また、本発明の口腔内崩壊型組成物の他の好適形態は、上記賦形剤を32~99.2%、上記崩壊剤を0.5~60%、上記滑沢剤を0.3~8.0%の割合で配合して成ることを特徴とする。

更に、本発明の口腔内崩壊型組成物の更に他の好適形態は、錠剤強度が20N以上であることを特徴とし、また、健常成人での口腔内崩壊時間が90秒以内であることをが好ましい。

一方、本発明の口腔内崩壊型製剤は、上述の如き口腔内崩壊型組成物 に、薬効成分を添加して成ることを特徴とし、この場合、上記薬効成分 としては、中枢神経系用薬、末梢神経系用薬、感覚器官用薬、アレルギ 一用薬、循環器官用薬、呼吸器官用薬、消化器官用薬、ホルモン剤、泌尿生殖器官及び肛門用薬、ビタミン剤、滋養強壮変質剤、血液及び体液用薬、代謝性医薬品、細胞賦活用薬、腫瘍用薬、診断用薬、物理的障害用薬、抗生物質、化学療法剤、生物学的薬剤、生理活性ペプチド類又は寄生動物に対する薬、並びにこれらの任意の混合薬を用いることができる。

以下、本発明の口腔内崩壊型組成物及び口腔内崩壊型製剤について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表す。

上述の如く、本発明の口腔内崩壊型組成物は、代表的には、非多孔質の圧縮成型組成物であり、糖アルコールから成る賦形剤と、崩壊剤と、 所定の滑沢剤を含有する。

ここで、賦形剤としては、水溶性で適度な甘味と冷涼感があるものが 好ましく、各種糖アルコールを用いることができるが、特にマンニトー ル又はエリスリトール及びこれらの混合物を好適に使用することができ、 特にマンニトールが望ましい。

また、崩壊剤としては、結合剤的性能をも併せ持つ難水溶性の結合性 崩壊剤、例えばヒドロキシプロピルスターチ、低置換度ヒドロキシプロ ピルセルロース、結晶セルロース、カルボキシメチルスターチナトリウ ム、コムギデンプン、コメデンプン、トウモロコシデンプン又はバレイ ショデンプン及びこれらの任意の混合物を使用することができる。

かかる結合性崩壊剤によれば、結合剤又は崩壊剤を添加した錠剤より も速崩性に優れ、しかも成型性が良好な錠剤が得られやすいという利点 がある。但し、本発明においては、結合剤は必須成分ではない。

一方、本発明においては、結合剤的性能を有さない通常の崩壊剤、例 えばクロスカルメロースナトリウム、カルメロースカルシウム、クロス ポビドン、水酸化アルミナマグネシウム、炭酸マグネシウム又はリン酸 二水素カルシウム及びこれらの任意の混合物も使用することができる。

更に、本発明で用いる所定の滑沢剤は、この崩壊型組成物が口腔内で崩壊する際、組成物内部への水の浸入を容易にする機能を有し、当該滑沢剤に対するエタノールの浸透速度が3.0×10⁻³g²/秒以上であるものが該当する。

具体的には、ロイシン、フマル酸ステアリルナトリウム、タルク及びステアリン酸等を挙げることができ、ロイシン及びフマル酸ステアリルナトリウムを好適に用いることができ、これらは単独で又は2種以上を混合して使用することが可能である。

なお、本発明においては、従来から頻用されているステアリン酸マグネシウムのような滑沢剤であってもエタノールの浸透速度が3.0×10⁻³g²/秒未満のもの自体の使用は望ましくなく、このような滑沢剤の使用は組成物や製剤の崩壊時間の延長を招く。

但し、本発明では、上述したエタノールの浸透速度を逸脱しない限りにおいて、他の滑沢剤、例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリルアルコール、水添植物油、マクロゴール、ショ糖脂肪酸エステル、軽質無水ケイ酸、ラウリル硫酸ナトリウム、安息香酸ナトリウム、含水二酸化ケイ素及びグリセリルベヘネートなどをロイシン等と併用することが可能であり、特にステアリン酸マグネシウム、ステアリン酸カルシウム、水添植物油、ショ糖脂肪酸エステル及び軽質無水ケイ酸を好ましく併用することができる。

更に、本発明においては、上記エタノールの浸透速度を満足するのであれば、一般に「滑沢剤」と称されているもののみならず、滑沢機能、即ち、

①「摩擦減少能」:粉体間又は粉体と打錠機の臼杵との摩擦を減少させ、

錠剤の圧縮及び臼杵からの放出を容易にする機能、

- ②「流動性改善能」:粉体の流動性を改善する機能、及び
- ③「付着防止能」:粉体成形時に粉体が機器との接触面に付着するのを 防止する機能、のいずれか又は組合せ、特に摩擦減少能を有する材料を 滑沢剤と同様に用いることができる。

本発明の口腔内崩壊型組成物における上記各成分の配合比は、特に限定されるものではないが、後述する錠剤強度と口腔内崩壊時間を実現できるように処方することが好ましく、代表的には、上記賦形剤を32~99.2%、上記崩壊剤を0.5~60%、上記滑沢剤を0.3~8.0%の割合で配合することが望ましい。

なお、上記結合性崩壊剤として、低置換度ヒドロキシプロピルセルロースを用いる場合、その配合量は10~40%が適量であり、結晶セルロース又はヒドロキシプロピルスターチを用いる場合、その配合量は10~60%が適量である。 また、上記崩壊剤として、クロスカルメロースナトリウムを用いる場合、その配合量は0.5~5%とすることが好ましい。クロスポビドンを用いる場合は、その配合量は2~20%が適量である。

本発明の口腔内崩壊型組成物の必須成分は、上述した糖アルコールから成る賦形剤、結合性崩壊剤又は通常の崩壊剤、及び所定の滑沢剤であるが、後述する崩壊性その他の特性に悪影響を与えない限り、錠剤製造に一般に用いられる各種の添加剤を含有させることも可能である。

かかる添加剤としては、例えば、結合剤、甘味料、香料及び着色剤な どが挙げられる。

結合剤としては、アラビアゴム、アルギン酸ナトリウム、ビニルピロリドン及びプルランなどが挙げられる。甘味料としては、アスパルテームやアセスルファムK等が挙げられ、香料としては、レモンライム、オ

レンジ及びメントール等が挙げられる。また、着色料としては、食用黄色 5号、食用赤色 5号、食用レーキ色素及び黄色三二酸化鉄等が挙げられる。

上述の添加剤は、単独で又は2種以上を組み合わせて使用することができ、更に、これらの添加剤は、後述する本組成物の製造工程の何れの 段階においても添加することができる。

上述した本発明の口腔内崩壊型組成物は、優れた特性を有し、代表的には、錠剤強度が20N以上であり、健常成人での口腔内崩壊時間が通常90秒以内、好ましくは40秒以内、より好ましくは30秒以内であることが望ましい。

かかる特性の兼備により、本発明の組成物や製剤は、製剤の取扱い上必要な強度を有し、しかも口腔内において速やかに崩壊するという優れた性能を発揮する。

次に、本発明の口腔内崩壊型組成物の製造方法について説明する。

本発明の口腔内崩壊型組成物は、上述した賦形剤、結合性崩壊剤(又は通常の崩壊剤)及び所定の滑沢剤を混合した後に打錠する方法、混合してから乾式造粒した後に打錠する方法、又は賦形剤と結合性崩壊剤(又は通常の崩壊剤)を湿式造粒後に乾燥し、乾燥状態の造粒物と所定の滑沢剤を混合後に打錠する方法、の3種類の一般的な製造方法によって製造され、特別な製造装置を必要としない。

また、上記製造方法において、混合、造粒、乾燥及び打錠方法は、特に限定されるものではないが、打錠するための混合物又は造粒物を実質的に乾燥状態にすることを要する。

混合物又は造粒物が乾燥状態でない場合は、打錠時にスティッキングを起こし易くなる他、原料粉体を打錠する際に連続的且つ定量的に供給できないことがあり、好ましくない。

次に、本発明の口腔内崩壊型製剤について説明する。

本発明の口腔内崩壊型製剤は、上述した口腔内崩壊型組成物に薬効成分を加えたものであり、原則として、本発明の組成物と同等の特性を有する。

ここで、薬効成分としては、中枢神経系用薬、末梢神経系用薬、感覚器官用薬、アレルギー用薬、循環器官用薬、呼吸器官用薬、消化器官用薬、ホルモン剤、泌尿生殖器官及び肛門用薬、ビタミン剤、滋養強壮変質剤、血液及び体液用薬、代謝性医薬品、細胞賦活用薬、腫瘍用薬、診断用薬、物理的障害用薬、抗生物質、化学療法剤、生物学的薬剤、生理活性ペプチド類、寄生動物に対する薬などを挙げることができ、所要に応じて、これらの薬効成分の一種又は複数の成分を混合して用いることができる。

上記薬効成分の配合量は、その性質にもよるが、固形成分、即ち本発明の口腔内崩壊型組成物全体の80%以下、好ましくは0.03~50%、更に好ましくは0.03~20%とすることが望ましい。

薬効成分の配合量が80%を超えると、最終製品の口腔内崩壊性と錠 剤強度との良好なバランスが得られず、好ましくない。

なお、本発明の製剤は、固形製剤、代表的には錠剤形態を採るが、従来公知の手法により、苦味マスキング等のマスキングを施すことができる。

かかるマスキングは、薬効成分の原末や顆粒に施し、これを打錠する ことによって行える。

本発明の製剤は、上述した本発明の組成物の製造方法と同様にして製造できるが、この際、薬効成分の添加は上記打錠前までに行えばよい。

図面の簡単な説明

図1は、ヒドロキシプロピルスターチ系処方錠剤の口腔内崩壊時間と該錠剤に使用した滑沢剤に対するエタノールの浸透速度の関係を示すグラフ、図2は、低置換度ヒドロキシプロピルセルロース系処方錠剤の口腔内崩壊時間と該錠剤に使用した滑沢剤に対するエタノールの浸透速度の関係を示すグラフ、図3は、結晶セルロース系処方錠剤の口腔内崩壊時間と該錠剤に使用した滑沢剤に対するエタノールの浸透速度の関係を示すグラフ、図4は、ヒドロキシプロピルスターチ系処方錠剤における口腔内崩壊時間と滑沢剤の種類及び滑沢化での回転数との関係を示すグラフである。

なお、図中で滑沢剤を次のように略記する。

Leucine…Lーロイシン、Mg-St…ステアリン酸マグネシウム、Ca-St…ステアリン酸カルシウム、SSF…フマル酸ステアリルナトリウム、Talc…タルク、SEFA…ショ糖脂肪酸エステル、St…ステアリン酸

発明を実施するための最良の形態

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、各例で得られた組成物や製剤につき、下記の性能評価を行った。

また、実施例において、ヒドロキシプロピルスターチにはHPS-101(フロイント産業(株)製商品名)を、結晶セルロースにはアビセルPH-102(旭化成工業(株)製商品名)を、低置換度ヒドロキシプロピルセルロースにはL-HPC(LH-21)(信越化学工業(株)製商品名)を使用した。

[錠剤強度]

錠剤硬度計(Schleuniger社製,型式:6D)を用いて測定した。測定は5回行い、その平均値を示した。

[口腔内崩壊時間]

健康な成人男子の口腔内で唾液により、錠剤が完全に崩壊するまでの時間を測定した。測定は実施例 $1 \sim 3$ については 5 人、実施例 $4 \sim 1$ 8 については 3 人、実施例 1 $9 \sim 2$ 6 及び比較例 $1 \sim 6$ については 4 人を被験者として行い、その平均値を示した。

[エタノールの浸透速度]

計測には自動表面張力計(KRUSS GmbH社製、type; K 121)を用いた。対象とする滑沢剤サンプルを内径1.2cmのサンプルホルダーに測定に必要な十分量を充填する。その後、ホルダー内のサンプルをシリンダーにより荷重200gで10秒間圧縮して測定に供する。

浸透溶媒にはエタノールを用いた。測定は3回行い、その平均曲線について浸透速度を算出した。

液体の粉体に対する浸透速度は、Washburnの式(Washburn, E. W.: Phys. Rev., 27273(1921))において、 L^2/t (L は粉体層への液面の浸透距離、t は時間を示す)と表されるが、ここでは、液体の浸透距離Lの代わりに浸透した液体の重量増加Wに置き換えた W^2/t [g^2/s ec]を浸透速度とした。

[各種滑沢剤に対するエタノールの浸透速度]

7種の滑沢剤について、上述の方法によりエタノールの浸透速度を測定した。得られた結果を表1に示す。なお、ショ糖脂肪酸エステルとステアリン酸についてはエタノールに溶解するため、予めショ糖脂肪酸エステルとステアリン酸で飽和させたエタノールを浸透液とした。

滑沢剤	メーカー名	浸透速度
	•	(× 1 0 ⁻³ g ² ∕ sec)
L-ロイシン	協和発酵工業(株)	20.2
ステアリン酸	日本油脂(株)	8.8
ステアリン酸 M g	Mallinckrodt Inc.	0.9
ステアリン酸 C a	日本油脂(株)	2. 4
フマル酸ステアリルNa	Penwest Pharm. Inc.	6. 1
タルク	日本タルク(株)	: 11.6
ショ糖脂肪酸エステル	三菱化成食品(株)	2. 7

- 14 -

次に、結合性崩壊剤として3種(ヒドロキシプロピルスターチ:40%、結晶セルロース:30%、低置換度ヒドロキシプロピルセルロース:10%)、滑沢剤として7種(Lーロイシン、ステアリン酸、ステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、タルク及びショ糖脂肪酸エステル)、いずれも添加量は滑沢剤も含めた顆粒全体の3%)、賦形剤としてはマンニトール(適量)から成る計21種の製剤処方について、錠剤化して口腔内崩壊時間を評価した。

以下、結合性崩壊剤の種類ごとに製法を記載する。なお、造粒はいずれも100gスケールで複数バッチ行った。

(実施例1)

[結合性崩壊剤がヒドロキシプロピルスターチの場合]

60gのマンニトール粉末と、40gのヒドロキシプロピルスターチ 粉末を乳鉢で約5分間混合した。得られた混合物100gに対して15

m1 の精製水を添加し、約5分間混合して造粒した後、目開き1700 μ m (10 メッシュ) の篩を通し、60 Γ で4時間乾燥した。この乾燥混合物を目開き600 μ m (28 メッシュ) の篩を介して整粒し、顆粒を得た。

得られた顆粒の14.55gに対し、上記滑沢剤の1種を選択して全体重量に対して3%(0.45g)になるように添加した。

次いで、この顆粒を蓋付き容器に充填し、この容器をターピュラーシェーカー(Willy A. Bachofen AG Machine nfabrik type: T2C)で50回転処理に供し、滑沢剤を顆粒になじませて滑沢化を行った。

しかる後、滑沢化を行った顆粒を、表 2 に示すように、錠剤硬度が約 2 0~3 0 N になるような圧力で油圧式プレスを用いて圧縮し、錠剤に成型した。なお、錠剤形状は直径 7.9 4 m m、重量 2 0 0 m g の隅角 平錠である。得られた錠剤につき上述の性能評価を行い、その結果を表 2 に示した。なお、滑沢剤として、ステアリン酸 M g、ステアリン酸 C a 又はショ糖脂肪酸エステルを用いたものは、本発明の範囲外の処方に相当する。

表 2

滑沢剤	打圧(MPa)	錠剤硬度(N)	口腔内崩壊時間(秒)
L-ロイシン.	158	25.2	2 1
ステアリン酸	158	26.2	2 8
ステアリン酸 M g	7 9 2	25.2	8 0
ステアリン酸Ca	7 9 2	21.0	. 88
フマル酸ステアリ	198	29.7	2 5
ルNa		·	
タルク	158	25.8	2 5
ショ糖脂肪酸エス	1 5 8	28.8	4 6
テル			·

(実施例2)

[結合性崩壊剤が低置換度ヒドロキシプロピルセルロースの場合]

90gのマンニトール粉末と、10gの低置換度ヒドロキシプロピルセルロース粉末を乳鉢で約5分間混合した。得られた混合物100gに対して20m1の精製水を添加し、約5分間混合して造粒した後、目開き $1700\mu m$ (10メッシュ)の篩を通し、60で4時間乾燥した。この乾燥混合物を目開き $600\mu m$ (28メッシュ)の篩を介して整粒し、顆粒を得た。

以下、実施例1と同様に錠剤を調製し性能評価を行った。但し、錠剤 硬度は約30~40Nになるように圧縮成型した。その結果を表3に示 した。なお、滑沢剤として、ステアリン酸Mg、ステアリン酸Ca又は ショ糖脂肪酸エステルを用いたものは、本発明の範囲外の処方に相当す る。

表 3

滑沢剤	打圧(MPa)	錠剤硬度(N)	口腔内崩壊時間(秒)
L-ロイシン	1 3 9	37.6	1 6
ステアリン酸	7 9	35.6	2 3
ステアリン酸 M g	178	35.0	3 9
ステアリン酸Ca	1 5 8	3 4 . 0	2 8
フマル酸ステアリ	1 1 9	3 2 . 2	2 1
JVN a			
タルク .	158	35.4	2 3
ショ糖脂肪酸エス	1 3 9	39.0	. 37
テル・			

(実施例3)

[結合性崩壊剤が結晶セルロースの場合]

目開き840 μ m(20メッシュ)の篩を通過させた70gのマンニトール粉末と、30gの結晶セルロースを乳鉢で約5分間混合した。得られた混合物100gに対して20m1の精製水を添加し、約5分間混合して造粒した後、目開き1700 μ m(10メッシュ)の篩を通し、60℃で3時間乾燥した。この乾燥混合物を目開き600 μ m(28メッシュ)の篩を介して整粒し、顆粒を得た。

以下、実施例1と同様に錠剤を調製し性能評価を行った。但し、錠剤 硬度は約30~40Nになるよう圧縮成型した。その結果を表4に示し た。なお、滑沢剤として、ステアリン酸Mg、ステアリン酸Ca又はショ糖脂肪酸エステルを用いたものは、本発明の範囲外の処方に相当する。

表 4

滑沢剤	打圧(MPa)	錠剤硬度(N)	口腔内崩壊時間(秒)
L-ロイシン	5 9	35.0	1 6
ステアリン酸	4 0	3 3 . 8	2 2
ステアリン酸Mg	7 9	35.0	3 3
ステアリン酸Ca	7 9	35.2	3 7
フマル酸ステアリ	7 9	38.4	2 5
ルNa			
タルク	5 9	3 6 2	2 1
ショ糖脂肪酸エス	5 9	39.6	2 9
テル	:		

上述した実施例1~3の処方系ごとに、横軸に錠剤の口腔内崩壊時間、 縦軸に該錠剤に使用した滑沢剤に対するエタノールの浸透速度をとった 相関図を図1~図3に示す。

これらの図から分かるように、浸透速度が 5 × 1 0 ⁻³ g ² / 秒以上であるロイシン、タルク、ステアリン酸、フマル酸ステアリルナトリウムはいずれの処方系でも口腔内崩壊時間が最短の群(3 0 秒以内)に属し口腔内崩壊時間短縮に有用であることがわかった。

(実施例4)

乳鉢に、マンニトールと、ヒドロキシプロピルスターチを表 5 に示した配合で添加し、約 3 分間混合した。次いで、得られた混合物 3 9 . 2 gに対して 6 m 1 の精製水を添加して約 2 分間混合した後、6 0 0 で 2 時間乾燥した。この乾燥した混合物を 6 0 0 μ m 目開きの篩を介して整粒し、さらにフマル酸ステアリルナトリウムを添加し混合した。油圧式

プレスを用いて、この混合物を198MPaの圧力で圧縮し、錠剤に成型した。得られた錠剤は、直径7.94mm、重量200mgの隅角平錠である。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表 5

原料名	添加量(mg/錠)
マンニトール	166
ヒドロキシプロピルスターチ	3 0
フマル酸ステアリルN a	4

(実施例5)

実施例4と同様の操作を繰り返し錠剤を得た。但し、マンニトールや ヒドロキシプロピルスターチの配合割合は表6に従い、また、139M Paの圧力で錠剤を成型した。得られた錠剤につき、上述の性能評価を 行い、得られた結果を表20に示した。

表 6

原料名	添加量(mg/錠)
マンニトール	1 3 6
ヒドロキシプロピルスターチ	6 0
フマル酸ステアリルN a	4.

(実施例6)

実施例4と同様の操作を繰り返し錠剤を得た。但し、マンニトールや ヒドロキシプロピルスターチの配合割合は表7に従い、また、119M Paの圧力で錠剤を成型した。得られた錠剤につき、上述の性能評価を 行い、得られた結果を表20に示した。

表 7

原料名	添加量(mg/錠)
マンニトール	9 6
ヒドロキシプロピルスターチ	1 0 0
フマル酸ステアリルNa	. 4

(実施例7)

表8に示すように、ヒドロキシプロピルスターチの代わりに低置換度 ヒドロキシプロピルセルロースを用いた以外は、実施例4と同様の操作 を行い錠剤を得た。但し、この場合の精製水の添加量は10mlであり、 錠剤成型圧力は99MPaである。

表 8

原料名	添加量(mg/錠)
マンニトール	166
低置換度ヒドロキシプロピルセルロース	3 0
フマル酸ステアリルNa	4

(実施例8)

実施例7と同様の操作を繰り返し錠剤を得た。但し、マンニトールや 低置換度ヒドロキシプロピルセルロースの配合割合は表9に従い、また、 59MPaの圧力で錠剤を成型した。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表 9

原料名	添加量(mg/錠)
マンニトール	1 3 6
低置換度ヒドロキシプロピルセルロース	6 0
フマル酸ステアリルNa	4

(実施例9)

実施例7と同様の操作を繰り返し錠剤を得た。但し、マンニトールや低置換度ヒドロキシプロピルセルロースの配合割合は表10に従い、また、79MPaの圧力で錠剤を成型した。

表10

原料名	添加量(mg/錠)
マンニトール	9 6
低置換度ヒドロキシプロピルセルロース	1 0 0
フマル酸ステアリルNa	4

(実施例10)

表11に示すように、ヒドロキシプロピルスターチの代わりに結晶セルロースを用いた以外は、実施例5と同様の操作を行い、錠剤を得た。但し、この場合の精製水の添加量は8mlであり、錠剤成型圧力は59MPaである。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表 1 1

原料名	添加量(mg/錠)
マンニトール	1 3 6
結晶セルロース	6 0
フマル酸ステアリルNa.	4

(実施例11)

表12に示すように、マンニトールの代わりにエリスリトールを用いた以外は、実施例5と同様の操作を行い、錠剤を得た。但し、この場合の精製水の添加量は6m1であり、錠剤成型圧力は119MPaである。得られた錠剤につき、上述の性能評価を行い、得られた結果を表20に示した。

表 1 2

原料名	添加量(mg/錠)
エリスリトール	136
ヒドロキシプロピルスターチ	6 0
フマル酸ステアリル N a	4

(実施例12)

実施例11と同様の操作を繰り返し錠剤を得た。但し、エリスリトールやヒドロキシプロピルスターチの配合割合は表13に従い、また、79MPaの圧力で錠剤を成型した。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表13

原料名	添加量(mg/錠)
エリスリトール	9 6
ヒドロキシプロピルスターチ	100
フマル酸ステアリルNa	4

(実施例13)

表14に示すように、マンニトールの代わりにエリスリトールを用いた以外は、実施例7と同様の操作を行い錠剤を得た。但し、この場合の精製水の添加量は8mlであり、錠剤成型圧力は139MPaである。

表 1 4

原料名	添加量(mg/錠)
エリスリトール	166
低置換度ヒドロキシプロピルセルロース	3 0
フマル酸ステアリルN a	4

(実施例14)

実施例13と同様の操作を繰り返し錠剤を得た。但し、配合割合は表15に従い、精製水の添加量は10ml、錠剤成型圧力は59MPaである。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表 1 5

原料名	添加量(mg/錠)
エリスリトール	1 3 6
低置換度ヒドロキシプロピルセルロース	6 0
フマル酸ステアリルNa	4

(実施例15)

実施例13と同様の操作を繰り返し錠剤を得た。但し、配合割合は表16に従い、精製水の添加量は8m1、錠剤成型圧力は40MPaである。

表 16

原料名	添加量(mg/錠)
エリスリトール	9 6
低置換度ヒドロキシプロピルセルロース	100
フマル酸ステアリルNa	4

(実施例16)

表17に示すように、マンニトールの代わりにエリスリトールを用いた以外は、実施例10と同様の操作を行い錠剤を得た。

得られた錠剤につき、上述の性能評価を行い、得られた結果を表 2 0 に示した。

表 17

原料名	添加量(mg/錠)
マンニトール	1 3 6
結晶セルロース	6 0
フマル酸ステアリルNa	4

(実施例17)

ヒドロキシプロピルスターチの代わりにクロスカルメロースナトリウムを用いた以外は、実施例4と同様の操作を行い錠剤を得た。但し、配合割合は表18に従い、またこの場合の精製水の添加量は6mlであり、錠剤成型圧力は158MPaである。

表18

原料名	添加量(mg/錠)
マンニトール	1 9 2
クロスカルメロースNa	4
フマル酸ステアリルNa	4

(実施例18)

乳鉢にエリスリトール、ヒドロキシプロピルスターチ、アスパルテーム及び萬有製薬(株)化合物コード: J-104135を表19に示す割合で添加し、約3分間混合した。次いで、この混合物15.68gに対して精製水を2m1添加して約2分間混合した後、60℃で6時間乾燥した。乾燥した混合物を600 μ m目開きの篩を介して整粒し、さらにフマル酸ステアリルナトリウムを添加し、混合した。油圧式プレスを用いて、この混合物を238MPaの圧力で圧縮し、錠剤に成型した。錠剤形状は実施例4と同様である。得られた錠剤につき、上述の性能評価を行い、得られた結果を表20に示した。

- 26 -

表19

原料名	添加量(mg/錠)
エリスリトール	1 1 6
ヒドロキシプロピルスターチ	6 0
アステルパーム	1 6
J - 1 0 4 2 3 5	2
フマル酸ステアリルNa	4
1-メントール	微量

表 2 0

実施例	錠剤硬度(N)	口腔内崩壞時間(秒)
4	3 5 . 3	1 9
5	3 3 . 3	2 0
6	29.4	2 0
7	52.3	2 2 .
8	43.1	3 1
9	4 2 : 1	6 9
1 0	41.2	1 9
1 1	44.1	3 1
1 2	37.2	. 2 7
1 3	42.1	2 6
1 4	412	2 7
1 5	44.1	5 2
1 6	49.0	2 6
1 7	46.1	28 .
1 8	3 5 . 3	2 9

表20より、本発明の範囲に属する実施例4~18によれば、製造時及び流通時の衝撃に十分耐え、且つ速やかに口腔内にて崩壊する錠剤が得られることが分かる。なお、現時点では、低い成型圧力で高い硬度が得られ、口腔内崩壊時間が短いという観点から、実施例7及び10が最も良好であるといい得る。

(実施例19~24、比較例1~3)

目開き840 μ m(20メッシュ)の篩を通過させた60gのマンニトール粉末と、40gのヒドロキシプロピルスターチ粉末を乳鉢で約5分間混合した。得られた混合物100gに対して15m1の精製水を添加し、約5分間混合して造粒した後、目開き1700 μ m(10メッシュ)の篩を通し、60 ∇ で3時間乾燥した。この乾燥混合物を600 μ m目開きの篩を介して整粒し、顆粒を得た。

得られた顆粒に対し、フマル酸ステアリルナトリウム (SSF) 又はステアリン酸マグネシウム (Mg-St) を表21に示す割合で添加し、即ち実施例19、21及び23、比較例1~3では、上記顆粒29.7gに対してSSF又はMg-Stを300mg添加し、実施例20、22及び24では上記顆粒29.4gに対してSSFを600mg添加した。

次いで、この顆粒を蓋付き容器に充填し、この容器を①10回の倒立回転(蓋と底が逆転する回転方式)、②10回の傾斜付き倒立回転、③10回の倒立回転を1セットとする回転処理に供し、滑沢剤たるSSF又はMg-Stを顆粒になじませて滑沢化を行った。なお、この際の合計回転数は30×N(セット数)になる。各例での回転数を表21に示す。

しかる後、滑沢化を行った顆粒を、表21に示すように、錠剤硬度が約40Nになるような圧力で圧縮し、錠剤に成型した。なお、錠剤形状は実施例4と同様である。

得られた錠剤につき上述の性能評価を行い、得られた結果を表 2 1 に 併記するとともに、図 4 に示した。

表 2 1

	滑沢剤及	混合時の	打圧	錠剤硬度	口腔内崩壊
	び含量	回転数	(MPa)	(N)	時間(秒)
比較例1	Mg-St:1%	120回	297	40.6(38.2-44.1)	3 7
実施例19	SSF :1%	120回	198	39.6(36.3-44.1)	2 8
実施例20	SSF :1%	120回	218	38.2(34.3-41.2)	2 9
比較例2	Mg-St:1%	300回	336	37.4(34.3-40.2)	3 8
実施例21	SSF :1%	300回	208	38.2(36.3-40.2)	2 9
実施例22	SSF : 2%	300回	238	38.0(35.3-41.2)	3 3
比較例3	Mg-St:1%	450回	554	39.0(35.3-42.1)	4 5
実施例23	SSF :1%	450回	238	39.4(36.3-42:1)	3 0
実施例24	SSF : 2%	450回	257	39.4(37.2-43.1)	3 1

表21及び図4より、SSFを使用した実施例19~24では、Mg-Stを使用した比較例1~3よりも、錠剤の口腔内崩壊時間が約10 秒短縮されていることが分かる。なお、各例の錠剤硬度を揃えたことから、かかる差異はSSFの添加に起因するものと考えられる。

また、滑沢化における回転数が増大するほど、即ち滑沢剤が顆粒に十分に混合されるにつれて、Mg-Stでは高い打錠圧を必要とし、口腔内崩壊時間も長くなる傾向にあるが、SSFはこのような傾向を示さず、安定した効果を発現することも分かる。

(比較例4)

49.0gのエリスリトールを目開き 840μ m (#20)の節で節過し、これに、0.5gの水溶性結合剤たるポリビニルピロリドンK 25を精製水 2.5m 1 に溶解した液を添加して造粒を行った。

次いで、この造粒物を目開き $1700\mu m$ (#10) の篩で篩過し、60℃で3時間乾燥した後、目開き $600\mu m$ (#28) の篩で篩分して整粒を行い、顆粒を得た。

この顆粒に対してSSFを1%の割合で添加し、上述のように、蓋付き容器を用い、①40回の倒立回転、②40回の傾斜付き倒立回転、③40回の倒立回転を1セットとする回転処理に供し、SSFを顆粒になじませて滑沢化を行った後、表22に示す打錠圧で加圧成型し、実施例4と同様の錠剤形状を有する本例の錠剤を得た。

得られた錠剤につき上記同様の性能評価を行い、得られた結果を表 2 2 に併記した。

(比較例5)

比較例4と同様の操作を行い、滑沢化した顆粒を得た。次いで、この 顆粒を79MPa(400kgf)圧力で打錠した後、40℃、相対湿 度75%RHの条件下で約5分間加湿し、更に5分間の乾燥を行い、実 施例4と同様の錠剤形状を有する本例の錠剤を得た。

得られた錠剤につき上記同様の性能評価を行い、得られた結果を表 2 2 に併記した。

(比較例6)

ポリビニルピロリドンK 2 5 を 1. 0 g 用いた以外は、比較例 4 と同様の操作繰り返し、本例の錠剤を得た。得られた錠剤につき上記同様の性能評価を行い、得られた結果を表 2 2 に併記した。

表 2 2

	打圧	錠剤硬度	口腔内崩壊
	(MPa)	(N)	時間(秒)
	79	11.8(10-14)	2 5
比較例4	119	10.5(10-11)キャッピングが1錠	*
	158	11.5(10-13)キャッピングが1錠	*
	238	6.0(4-9)	*
比較例 5	79	54.6(50-61)	2 5
	79	10.3(10-11)	*
比較例6	119	12.7(10-15)	2 9
	158	8.0 キャッピングが2錠	*
	238	5.0 キャッピングが2錠	*

表22より、比較例4及び6では、錠剤硬度が極めて小さく、通常の使用に耐えない錠剤しか得られなかった(通常は、20N程度の錠剤硬度が必要)。

なお、比較例 5 によれば、良好な特性を有する口腔内崩壊型錠剤が得られたものの、低圧打錠及び錠剤の加湿・乾燥を要する特殊な製造方法の適用を必要とし、この点で問題が残った。また、比較例 4 と比較例 5 の配合処方が同一であることから、通常の製造方法を適用するのであれば、比較例 5 の配合処方によっては良好な特性を有する口腔内崩壊型錠剤が得られないことも明らかである。

(実施例25)

実施例4と同様の操作を繰り返した。但し、フマル酸ステアリルナト リウムの代わりにL-ロイシンとステアリン酸マグネシウムを滑沢剤と

して用いた。配合割合は表23に従い、また、178MPaの圧力で錠 剤を成型した。

得られた錠剤につき、上述の性能評価を行い得られた結果を表 2 5 に示した。

表 2 3

原料名	添加量(mg/錠)
マンニトール	. 116. 4
ヒドロキシプロピルスターチ	77.6
L-ロイシン	5.6
ステアリン酸 M g	0.4

(実施例26)

実施例4と同様の操作を繰り返した。但し、フマル酸ステアリルナト リウムの代わりにタルクとステアリン酸カルシウムを滑沢剤として用い た。配合割合は表24に従い、また、178MPaの圧力で錠剤を成型 した。

表 2 4

原料名	添加量(mg/錠)
マンニトール	116.4
ヒドロキシプロピルスターチ	77.6
タルク	5.6
ステアリン酸 C a	0.4

表 2 5

実施例	錠剤硬度(N)	口腔内崩壊時間(秒)
2 5	29.4	2 3
2 6	30.4	2 5

産業上の利用の可能性

以上説明してきたように、本発明によれば、特定の賦形剤と崩壊剤を用い、これらの混合物又は造粒物に特定の滑沢剤を添加し、打錠することなどとしたため、製剤の取扱いにおいて必要とされる適切な強度を有し、しかも口腔内において速やかに崩壊する口腔内崩壊型組成物及び口腔内崩壊型製剤が提供される。

また、本発明によれば、特殊設備を必要とせず一般的な製造方法によって、優れた特性を有する口腔内崩壊型組成物や製剤を簡単に得ることが可能となる。

請求の範囲

- 1. 口腔内で速やかに崩壊する成型組成物であって、糖アルコールから成る賦形剤と、崩壊剤と、滑沢剤を含有して成り、この滑沢剤に対するエタノールの浸透速度が3. 0×10⁻³g²/sec以上であることを特徴とする口腔内崩壊型組成物。
- 2. 上記滑沢剤に対するエタノールの浸透速度が 5. 0×10⁻³g²/s e c 以上であることを特徴とする請求項1記載の口腔内崩壊型組成物。
- 3. 上記滑沢剤が、ロイシン及び/又はフマル酸ステアリルナトリウムであることを特徴とする請求項1又は2に記載の口腔内崩壊型組成物。
- 4. 上記滑沢剤が、更にステアリン酸マグネシウム、ステアリン酸カルシウム、水添植物油、ショ糖脂肪酸エステル又は軽質無水ケイ酸及びこれらの任意の混合物を含有することを特徴とする請求項3に記載の口腔内崩壊型組成物。
- 5. 上記滑沢剤が、ステアリン酸及び/又はタルクであることを特徴と する請求項1又は2に記載の口腔内崩壊型組成物。
- 6. 上記滑沢剤が、更にステアリン酸マグネシウム、ステアリン酸カルシウム、水添植物油、ショ糖脂肪酸エステル又は軽質無水ケイ酸及びこれらの任意の混合物を含有することを特徴とする請求項 5 に記載の口腔内崩壊型組成物。

- 7. 上記糖アルコールがマンニトール及び/又はエリスリトールである ことを特徴とする請求項1~6のいずれか1つの項に記載の口腔内崩壊 型組成物。
- 8. 上記崩壊剤が、低置換度ヒドロキシプロピルセルロース、結晶セルロース、ヒドロキシプロピルスターチ、カルボキシメチルスターチナトリウム、コムギデンプン、コメデンプン、トウモロコシデンプン及びバレイショデンプンから成る群より選ばれた少なくとも1種の難水溶性の結合性崩壊剤であることを特徴とする請求項1~7のいずれか1つの項に記載の口腔内崩壊型組成物。
- 9. 上記崩壊剤が、クロスカルメロースナトリウム、カルメロースカルシウム、クロスポビドン、水酸化アルミナマグネシウム、炭酸マグネシウム及びリン酸二水素カルシウムから成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1~7のいずれか1つの項に記載の口腔内崩壊型組成物。
 - 10. 上記賦形剤を32~99. 2%、上記崩壊剤を0. 5~60%、上記滑沢剤を0. 3~8. 0%の割合で配合して成ることを特徴とする請求項1~9のいずれか1つの項に記載の口腔内崩壊型組成物。
- 11. 錠剤強度が20N以上であることを特徴とする請求項1~10の いずれか1つの項に記載の口腔内崩壊型組成物。
- 12. 健常成人での口腔内崩壊時間が90秒以内であることを特徴とする請求項1~11のいずれか1つの項に記載の口腔内崩壊型組成物。

PCT/JP01/03114

13. 請求項1~12のいずれか1つの項に記載の口腔内崩壊型組成物 に、薬効成分を添加して成ることを特徴とする口腔内崩壊型製剤。

14. 上記薬効成分が、中枢神経系用薬、末梢神経系用薬、感覚器官用 薬、アレルギー用薬、循環器官用薬、呼吸器官用薬、消化器官用薬、ホ ルモン剤、泌尿生殖器官及び肛門用薬、ビタミン剤、滋養強壮変質剤、 血液及び体液用薬、代謝性医薬品、細胞賦活用薬、腫瘍用薬、診断用薬、 物理的障害用薬、抗生物質、化学療法剤、生物学的薬剤、生理活性ペプ チド類又は寄生動物に対する薬、並びにこれらの任意の混合薬であるこ とを特徴とする請求項13に記載の口腔内崩壊型製剤。

PCT/JP01/03114 CLASSIFICATION OF SUBJECT MATTER Int.Cl7 A61K9/20, A61K45/00, A61K47/18, A61K47/12, A61K47/44, A61K47/26, A61K47/04, A61K47/38, A61K47/36, A61P25/00, A61P27/00, A61P37/08, A61P9/00, A61P11/00, A61P1/00, A61P5/00, A61P15/00, A61P3/02, A61P7/00, A61P35/00, A61P43/00, A61P33/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ A61K9/20, A61K45/00, A61K47/18, A61K47/12, A61K47/44, A61K47/26, A61K47/04, A61K47/38, A61K47/36, A61P25/00, A61P27/00, A61P37/08, A61P9/00, A61P11/00, A61P1/00, A61P5/00, A61P15/00, A61P3/02, A61P7/00, A61P35/00, A61P43/00, A61P33/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 1,2,5-14 JP, 9-194381, A (Kowa Company, Ltd.), Х 29 July, 1997 (29.07.97), 3,4 Α (Family: none) 1,2,5-14 Х JP, 10-287555, A (Kowa Company, Ltd.), 27 October, 1998 (27.10.98), (Family: none) 1,2,5-8,10-14 Х JP, 3-227916, A (SSP Co., Ltd.), 08 October, 1991 (08.10.91), & US, 5204087, A & EP, 415326, Al JP, 2000-178182, A (Lion Corporation), 1,2,5-8,10-14 PX 27 June, 2000 (27.06.00), (Family: none) See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or Special categories of cited documents: document defining the general state of the art which is not priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention considered to be of particular relevance document of particular relevance; the claimed invention cannot be "E" earlier document but published on or after the international filing considered novel or cannot be considered to involve an inventive date step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is document of particular relevance; the claimed invention cannot be cited to establish the publication date of another citation or other considered to involve an inventive step when the document is special reason (as specified) document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 05 July, 2001 (05.07.01) 17 July, 2001 (17.07.01) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office

Telephone No.

Facsimile No.

Int. Cl' A61K9	属する分野の分類(国際特許分類(IPC)) //20, A61K45/00, A61K47/18, A61K47/12, A61K47/4 , <u>A61P37/08</u> , A61P9/00, A61P11/00, A61P1/00, A61P 	4, A61K47/26, A61K47/04, A61K47/38, A61K 5/00, A61P15/00, A61P3/02, A61P7/00, A6	47/36, A61P25/0 1P35/00, A61P43/0	
調査を行った最 Int. Cl' A61K9 O, A61P27/00	テった分野 及小限資料(国際特許分類(IPC)) か20, A61K45/00, A61K47/18, A61K47/12, A61K47/4 , A61P37/08, A61P9/00, A61P11/00, A61P1/00, A61P A61P38/00, A61P33/00	4, A61K47/26, A61K47/04, A61K47/38, A61K 5/00, A61P15/00, A61P3/02, A61P7/00, A6	47/36, A61P25/0 1P35/00, A61P43/0	
最小限資料以夕	トの資料で調査を行った分野に含まれるもの			
国際調査で使用	目した電子データベース (データベースの名称、	調査に使用した用語)		
	•	·		
	1 F7(1 > 10 7		•	
C. 関連する 引用文献の カテゴリー*	ると認められる文献 引用文献名 及び一部の箇所が関連すると	: きは、その関連する箇所の表示	関連する 請求の範囲の番号:	
X A	JP 9-194381 A(與和株式会社) 29.7 (ファミリーなし)	月. 1997 (29. 07. 97)	1, 2, 5–14 3, 4	
X	JP 10-287555 A(興和株式会社) 27.10月.1998(27.10.98) (ファミリーなし)		1, 2, 5–14	
X	JP 3-227916 A(エスエス製薬株式会社) 8.10月.1991(08.10.91) & EP 415326 A1 & US 5204087 A		1, 2, 5-8, 10-1 4	
図 C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	J紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって、出版と矛盾するものではなく、発明の原理又は理の理解のために引用するもの 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献				
国際調査を完了した日 05.07.01 国際調査報告の発送日 17.07.01				
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		特許庁審査官(権限のある職員) 富永 保 電話番号 03-3581-1101	内線 3490	

国際出願番号 PCT/JP01/03114

カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	C (続き). 関連すると認められる文献				
PX JP 2000-178182 A(ライオン株式会社) 27.6月.2000(27.06.00) 1,2,5-8,10-4 4	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
		JP 2000-178182 A(ライオン株式会社) 27.6月.2000(27.06.00)	1, 2, 5-8, 10-1		
	·				
	•				
	, ·				
		•			