Alumno: Francisco Javier Bolívar Expósito

1. Usando la notación O, determinar la eficiencia de los siguientes segmentos de código:

```
int n, j; int i=1; int x=0;
                                                              O(1)
do{
                                              O(1)
                                                                              Bucle y producto
       j=1;
                                              Bucle y prod.
       while (j \le n)
               j=j*2; O(1) |Suma
                                              |O(\log_2 n)|
                                                              Suma
                                                                              |O(n * log_2n)|
               x++; O(1)
                              |O(1)|
                                                              |O(\log_2 n)|
       i++;
                                              O(1)
}while (i<=n);</pre>
```

Eficiencia \rightarrow **O**(n log₂n)

Aunque el orden de ejecución cambie, el bucle while ($j \le i$) se ejecuta el mismo número de veces que ($j \le n$) ya que la variable **i** aumenta progresivamente hasta **n**. El resto del código es igual que el segmento de código anterior y por lo tanto la eficiencia es igual también. Eficiencia \rightarrow **O(n log_n)**

2. Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamaño de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, f(n) x 10^{-6} sg.)

	t				
f(n)	1 sg.	1 h.	1 semana	1 año	1000 años
log ₂ n	10300000	2 ³⁶⁰⁰⁰⁰⁰⁰⁰⁰	2 ^(6x10^11)	2 ^(3,15x10^13)	2 ^(3,15x10^16)
n	1000000	3600000000	6,048 x 10 ¹¹	3,15 x 10 ¹³	3,15 x 10 ¹⁶
nlog ₂ n	6,27 x 10 ⁴	1,33 x 10 ⁸	1,77 x 10 ¹⁰	7,9 x 10 ¹¹	6,4 x 10 ¹⁴
n^3	100	1532	8456	31581	315817
2 ⁿ	19	31	39	44	54
n!	9	12	14	16	18