# Machine Learning, test 3

| Student Number:                 |                                                                                                                       |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Complete the following statemen | ts about sampling methods                                                                                             |
| Uniform sampling(1)             | A. is used to draw samples from normal distribution                                                                   |
| Rejection sampling(2)           | B. is to select samples from proposal distribution with the probability given by the value of the source distribution |
| Importance sampling(3)          |                                                                                                                       |
| Box-Muller method(4)            | C. is used to draw distribution within an interval with the same probability                                          |
|                                 | D. is to draw samples with weights given by the proposal and source distribution.                                     |
|                                 | E. is to select samples from mixture distribution                                                                     |

## 1C, 2B, 3D, 4A

Name: .....

#### Circle T if the following statement is true or F if it is false

| 5. We can draw sample from normal distribution using uniform distribution                                                | Т | F |
|--------------------------------------------------------------------------------------------------------------------------|---|---|
| 6. We can draw sample from GMM distribution using one uniform/multinomial distribution and another Gaussian distribution | Т | F |
| 7. When we sample $x \sim U(0, 1)$ then $y = (x<0.5)$ is an uniform distribution                                         |   | F |
| 8. When we sample $x1 \sim U(0, 1)$ and $x2 \sim U(0, 1)$ then $y = x1-x2$ is zero                                       | Т | F |

## 5T, 6T, 7T, 8F

## Complete the following statements about sampling methods for optimization

| Gibss sampling(9)       | A. is used to explore all the points the constrained subspace with the same probability                        |
|-------------------------|----------------------------------------------------------------------------------------------------------------|
| Simulated Annealing(10) |                                                                                                                |
| Uniform sampling(11)    | B. is to list or to dump all the point in the constrained subspace with certain order                          |
| Enumeration(12)         | C. is to select samples from Gausian distribution                                                              |
|                         | D. is to explore the space and move on to the next state with certain probability based on a control variable. |
|                         | E. is to generate the sequence of points based on the conditional distribution of one variable given the rest. |

9E, 10D, 11A, 12B

#### Label the nodes



## 13. When the number of clusters is 2 then the label will be

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
| 1 | 1 | 2 | 2 | 2 | 2 |

## 14. When the number of clusters is 3 then the label will be

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
| 1 | 1 | 2 | 2 | 2 | 3 |

## Complete the values for the model



Remember the sum-to-one

## Complete the alpha table with the model above and the given sequence S = (x, u, \$)

| 16. The first column         | 17. The second column        |
|------------------------------|------------------------------|
| alpha(A, 1) = <b>0.18</b>    | alpha(A, 2) = <b>0</b>       |
| alpha(B, 1) = <b>0</b>       | alpha(B, 2) = <b>0.144</b>   |
| alpha(C, 1) =0               | alpha(C, 2) = <mark>0</mark> |
| alpha(D, 1) = <b>0.18</b>    | alpha(D, 2) = <mark>0</mark> |
| alpha(E, 1) =0.05            | alpha(E, 2) = <mark>0</mark> |
| alpha(F, 1) = <mark>0</mark> | alpha(F, 2) = <mark>0</mark> |
| alpha(T, 1) =0               | alpha(T, 2) =0               |