Cash Flow Forecast Challenge - Solution Development

Data Preparation

```
count_a_vals = df_train['AP Adj'].values
diffs_a = count_a_vals[:-1] - count_a_vals[1:]
count_b_vals = df_train['Cost'].values
diffs_b = count_b_vals[:-1] - count_b_vals[1:]

df_train = df_train.iloc[1:].copy().reset_index()

df_train['cash_flow'] = np.array(diffs_a)
df_train['net_cost'] = np.array(diffs_b)

df_train = df_train[['Country', 'Date', 'cash_flow', 'net_cost']]

df_train.set_index(pd.DatetimeIndex(df_train['Date']),inplace = True)
```

The target variable cash flow is calculated based on the input provided in the challenge spec.

Data Analysis

Checking Trends and Seasonality for each country in the dataset.

Most of the datapoints for each country was normally distribution with mean 0 and std 1.

Outliers detected were smoothed based on the country by either rolling mean or double exponential smoothening.

The data generally follows the pattern of steady decrease in the start of the year and the increase in post half of the year.

Data Smoothening

Double exponential smoothening -

Rolling mean/median

Training, Cross Validation & Test Data

Training Data: 54 data points extracted from anonymized_train_data.csv with one less data point for calculation of cash flow.

Cross - Validation Strategy/Justification: RMSE was used as a validation justification on different models trained on the last 18 data points for a given country.

Test Data: data was forecasted for next 5 months after 01-07-2019.

Graphs were generated for each model during model selection such as -

Linear Regression -

-1.00

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

XGB

SARIMAX

ARIMA

For Each country –

CHINA

Germany

Ireland

Switzerland

USA

Forecasting Model Selection

Automated SARIMAX parameter estimation using Grid Search

Model:				Observations:	•	54	
		SARIMA	X Log	Likelihood		2.192	
Date:	Mon,	23 Nov 202	20 AIC			-2.385	
Time:		17:36:2	27 BIC			-0.414	
Sample:		02-01-201 - 07-01-201	_			-1.627	
Covariance Type:		ор	g				
	oef	std err	z	P> z	[0.025	0.975]	
sigma2 0.0	539	0.009	6.242	0.000	0.037	0.071	
Ljung-Box (0):			31.62	Jarque-Bera	(JB):		2.95
Prob(Q):			0.83	Prob(JB):	` '		0.23
Heteroskedasticity	(H):		3.95	Skew:			0.30
Prob(H) (two-sided	l):		0.01	Kurtosis:			3.99

	Α	RIMA Model	l Results				
Dep. Variable:	D.ca	sh_flow	No. Observat	ions:		53	
Model:	ARIMA(0	, 1, 1)	Log Likeliho	ood	0.9	0.934	
Method:	css-mle		S.D. of inno	vations	0.229		
Date:	Mon, 23 Nov 2020		AIC		4.131		
Time:	1	7:36:27	BIC		10.0	10.042	
Sample:	03-	01-2015	HQIC		6.4	104	
	- 07-	01-2019					
	coef	std err	Z	P> z	[0.025	0.975]	
const	0.0041	0.002	2.069	0.039	0.000	0.008	
ma.L1.D.cash_flow	-1.0000	0.060 Root		0.000	-1.117	-0.883	
Real		Imaginar	`y	Modulus	Frequenc	:= :y	
MA.1 1.0	aaa	+0.0000	 a∹	1,0000		10	

Feature Importance

Feature importance: The "coef" column shows the weight (i.e. importance) of each feature and how each one impacts the time series.

Feature Significance: P>|z| column, informs the significance of each feature weight.

Validation: test_sheet.csv

Test_Prediction: The last five months (Aug-19 to Dec-19) in the output has been forecasted using Models for each country. The test data is never been used during parameter tuning. The forecasted Z-Score has been written in test_sheet.csv.

Germany

Ireland

Switzerland

