

Amendments to the Specification

Please cancel all the drawings from this application.

Please amend the paragraph starting in the specification on page 53, line 4 as follows:

Compounds, which preferentially inhibit Akt/Pdk activity are shown in the table designated Group 1 compounds figure 1.

Please amend the paragraph starting in the specification on page 61, line 17 as follows:

Compounds, which preferentially inhibit Chk activity are shown in the table designated Group 2 compounds figure 2.

Please amend the paragraph starting in the specification on page 63, line 20 as follows:

Compounds, which preferentially inhibit Akt and/or Pdk and the VEGF-R activity are shown in the table designated Group 3 compounds figure 3.

Please amend the paragraph starting in the specification on page 64, line 3 as follows:

Further, the invention is explained in more detail by the enclosed drawings and examples.

Figures:

Figure Group 1 compounds: preferred compounds inhibiting preferentially Akt, Pdk kinases

Figure Group 2 compounds: preferred compounds inhibiting preferentially Chk kinases

Figure Group 3 compounds: preferred compounds inhibiting preferentially Akt and/or Pdk and VEGF-R kinases

Please insert the following onto page 64, line 11 of the application.

Group 1 compounds:

Example	structure
313	
342	
343	
346	

444	 	Chiral
446	 	Chiral
452	 	Chiral
468	 	

471	
474	
486	
493	
498	

515	
535	
546	

394

395

255

242	<p>Chemical structures for entry 242:</p> <ul style="list-style-type: none"> (E)-2-(2-bromo-4-(2-(2-(2-fluoroacetyl)phenylamino)-6-(2-(2-methoxyethyl)imidazol-1(2H)-yl)pyrimidin-5(4H)-yl)acetic acid (2-fluoroacetyl)fluoride
220	<p>Chemical structure for entry 220:</p> <ul style="list-style-type: none"> (E)-2-(2-bromo-4-(2-(2-(2-(2-methoxyethyl)imidazol-1(2H)-yl)ethyl)imidazol-1(2H)-yl)pyrimidin-5(4H)-yl)acetic acid
389	<p>Chemical structure for entry 389:</p> <ul style="list-style-type: none"> (E)-2-(2-bromo-4-(2-(2-(2-(1-methylpropyl)imidazol-1(2H)-yl)ethyl)imidazol-1(2H)-yl)pyrimidin-5(4H)-yl)acetic acid
548	<p>Chemical structures for entry 548:</p> <ul style="list-style-type: none"> (E)-2-(2-bromo-4-(2-(2-(2-(2-methylpropyl)imidazol-1(2H)-yl)ethyl)imidazol-1(2H)-yl)pyrimidin-5(4H)-yl)acetic acid (2-(2-fluoroacetyl)fluoride)

533

Chiral

524

521

508	 Chiral
504	 Chiral
492	 Chiral

540

Group 2 compounds:

Examples	structure
509	
516	
505	
504	
410	

490	
402	
399	
476	
450	
431	
251	
99	

A16	
A17	
A18	
103	
104	
105	
A19	

108	
109	
111	
114	
115	
108	
119	
121	

123	
124	
125	
126	
127	
129	
130	
131	

132	
133	
699	
700	
701	
702	
703	
704	

Group 3 compounds:

	structures
200	
207	
222	
230	
233	

239	
241	
242	
246	
254	
259	
261	
274	

275	
289	
297	
298	
452	
394	
395	
490	

502	
508	
509	
411	
414	
535	
539	
540	
520	

546	
547	