MONITORING REPORT FORM (CDM-MR) * Version 01 - in effect as of: 28/09/2010

CONTENTS

- A. General description of the project activity
 - A.1. Brief description of the project activity
 - A.2. Project participants
 - A.3. Location of the project activity
 - A.4. Technical description of the project
 - A.5. Title, reference and version of the baseline and monitoring methodology applied to the project activity
 - A.6. Registration date of the project activity
 - A.7. Crediting period of the project activity and related information
 - A.8. Name of responsible person(s)/entity(ies)
- B. Implementation of the project activity
 - B.1. Implementation status of the project activity
 - B.2. Revision of the monitoring plan
 - B.3. Request for deviation applied to this monitoring period
 - B.4. Notification or request of approval of changes
- C. Description of the monitoring system
- D. Data and parameters monitored
 - D.1. Data and parameters used to calculate baseline emissions
 - D.2. Data and parameters used to calculate project emissions
 - D.3. Data and parameters used to calculate leakage emissions
 - D.4. Other relevant data and parameters
- E. Emission reductions calculation
 - E.1. Baseline emissions calculation
 - E.2. Project emissions calculation
 - E.3. Leakage calculation
 - E.4. Emission reductions calculation
 - E.5. Comparison of actual emission reductions with estimates in the registered CDM-PDD
 - E.6. Remarks on difference from estimated value

^{*} as contained within the document entitled "Guidelines for completing the monitoring report form (CDM-MR)" (EB 54 meeting report, annex 34).

MONITORING REPORT

Version 01; 19/05/2011

Project Title: Replacement of Fossil Fuel by Palm Kernel Shell Biomass in the production of Portland Cement

Reference number: 247

Monitoring period number 03 (01/01/2010 - 30/04/2010)

SECTION A. General description of the project activity

A.1. Brief description of the project activity:

The project activity was developed by Lafarge Malayan Cement Bhd (LMCB). The purpose of the project activity is to substitute the coal used for clinker production in the cement kilns at Kanthan and Rawang plants in Malaysia with Palm Kernel Shell (PKS) Biomass from the Oil Palm Industry and some other type of biomass. Project activity reduces GHG emissions which would have otherwise been emitted from fossil fuel burning in the cement kilns.

The technology implemented in the project activity incorporates technologies for fuel reception, sorting and size reduction together with the necessary conveyors and hoppers to feed the fuels into the kilns. More details are provided in section A.4.

The project was commissioned on 01/05/2000 by Lafarge Malayan Cement Bhd (LMCB) at Kanthan and Rawang plants in Malaysia. The project activity did not face any major shutdown during the current monitoring period.

The project activity has achieved emission reductions equivalent to 41,150 tCO₂.

A.2. Project Participants

Name of Party involved (*)((host) indicates a host Party)	Private and/or public entity(ies) project participants (*) (as applicable)	Kindly indicate if the Party involved wishes to be considered as project participant (Yes/No)	
	Private entity: Lafarge Malayan Cement Bhd, LMCB	No	
France	Private entity: Lafarge S.A No		

A.3. Location of the project activity:

The project activity includes two plants located at Rawang (latitude 3^0 and longitude $101^034.5^\circ$ E) next to the road leading to Kuang from the junction off the trunk road Rawang – Batu Arang. It is approximately 4km from North –South Expressway Interchange and 2 km from Rawang town, Selangor and at Kanthan (Latitude 4^046° N and Longitude 101^007° E) next to the trunk road Ipoh-Kuala Kangsar , Perak .

The addresses of these of the two plants are as follows.

Kanthan Works

Batu 13½, Jalan Kuala Kangsar, 31200 Chemor, Perak Darul Ridzuan, Malaysia

Rawang Works

48000 Rawang, Selangor Darul Ehsan, Malaysia

A.4. Technical description of the project

The technology implemented in the project activity incorporates technologies for fuel reception, sorting and size reduction together with the necessary conveyors and hoppers to feed the biomass. The technology development consisted of the in-house design for a new and additional fuel feed system to sit alongside the existing coal system. This new PKS system incorporates technologies for reception, sorting and material size reduction together with the necessary conveyors and hoppers to feed the PKS into the process at a point where optimum combustion conditions and residence time are available. The plant's central control computer automatically manages the associated reduction in pulverised coal required to maintain process stability and product quality. The main technological input to this process is from Europe, and latterly from the Lafarge Asia Technical Centre in Kuala Lumpur. Their contribution has been in the following areas: research and management of trials on chemistry and process burning conditions to ensure complete combustion, sizing of the material handling equipment required, calculation and guidance on feed rates and mix ratios of PKS and coal critical to the efficiency of the operation and product quality. Initial issues related to material handling, high moisture content, high abrasivity and long burnout time have generally been accommodated through process adaptation, invention and modification. This knowledge and skills based technology transfer is very exclusive to Lafarge Malayan Cement.

The physical equipment developed to allow the project activity to proceed is restricted to the fuel processing and feeding system and has no additional environmental impact. It allows reduced running hours of existing coal processing equipment and therefore efficiency can be maintained.

A.5. Title, reference and version of the baseline and monitoring methodology applied to the project activity:

Title: ACM0003, Version 1 "Emissions reduction through partial substitution of fossil fuels with alternative fuels in cement manufacture"

Reference:

http://cdm.unfccc.int/UserManagement/FileStorage/CDMWF_ACM_YOZT4HEMDMXQROFYK0LVBGFYJL2E2Q.pdf

A.6. Registration date of the project activity:

The project activity was registered on 07/04/2006 and can be accessed at:

http://cdm.unfccc.int/Projects/DB/DNV-CUK1137498953.91/view

A.7. Crediting period of the project activity and related information (start date and choice of crediting period):

Start date of crediting period: 01/05/2000 Choice of crediting period: 10 years fixed

There has been no change in the start date of the crediting period post registration of the project activity.

A.8. Name of responsible person(s)/entity(ies):

The person responsible for completing the monitoring report is Ms. Hooi Ping Seet. Her contact details are mentioned below:

Organization:	Lafarge Malayan Cement Bhd
Building:	L12, Bangunan TH Uptown 3
Street/P.O.Box:	Jalan SS21/39

City:	Petaling Jaya
State/Region:	Selangor Darul Ehsan
Postcode/ZIP:	47400
Country:	Malaysia
Telephone:	+60 3 77238332
E-Mail:	-
Represented by:	
Title:	Vice President, Legal and Business Affairs
First Name:	Hooi Ping
Last Name:	Seet
Personal E-Mail:	Hooi-Ping.Seet@my.lafarge.com

SECTION B. Implementation of the project activity

B.1. Implementation status of the project activity

The commissioning date of the project activity is 01/05/2000. Both Rawang and Kanthan plants were commissioned on this date

Both the plants in the project activity operated as per expectations during the current monitoring period with no major stoppages.

B.2. Revision of the monitoring plan

There is no revision applied in the monitoring plan.

B.3. Request for deviation applied to this monitoring period

No deviation has been applied to this monitoring period.

B.4. Notification or request of approval of changes

No notification or request of approval of changes from the project activity as described in the registered CDM-PDD has been made.

SECTION C. Description of the monitoring system

All the key monitoring parameters required for this project can be obtained from Senior Works Manager Report compiled on monthly basis. This report is prepared by the Plant Controller and approved by the Senior Works Manager. LMCB head quarters receive all the individual works reports and compile them as per standard ISO requirements. Monitoring data for validation and registration for the project and CERs can be obtained from LCMB HQ.

Data recording approach is as per standard business accountancy procedures (Opening Stock plus deliveries minus closing stock = utilization) and thus minimizes the possibilities of mistakes and misconceptions. Simplistic in that it requires only inputs that are generated as part of the standard business accountancy system and/or ISO registered and audited quality procedures. These are part of the normal KPIs (Key Performance Indicators) measured by the respective plant.

Internal Key Performance Indicators in the Senior Works Manager Report will track the following on a monthly basis;

- 1. Cement clinker produced per plant per annum in units of tonnes. This is a published business accountancy figure and audited internally and externally. (Data monitored: C, tonnes of clinker per year)
- 2. Net Total specific Heat Consumption of each plant to produce above clinker tonnes per annum in units of kJ/kg clinker. This is a calculated figure based on the management accounts using weighbridge tickets of fuel supplies to generate payments to fuel suppliers and 'weigher-totalisers' to record consumption of heat bearing raw materials. The laboratory quality procedures determine the frequency of fuel/raw material calorific value testing and this value is applied to the amounts of each fuel/raw material used. Procedures, frequency and test methods are all defined within each plants quality management systems.

An assumption is made based on historical lab test data that heat values of PKS fuel "as-received" is approximately the same as heat values of "as-fired". High moisture content during delivery will not be evaporated significantly even after the stock piling for a few weeks. PKS fuel on the surface of the stockpile will dry after a few days but the inner layer is still wet. High air humidity in Malaysia contributes partly to the moisture in the PKS fuel to remain the same.

QA/QC Procedures:

Quality assurance/quality control plan was prepared as per ISO-9001 guidelines. Environmental management consists of specialists who have been given the task of monitoring various parameters involved in the project activity.

SECTION D. Data and parameters

D.1. Data and parameters determined at registration and not monitored during the monitoring period, including default values and factors

Data / Parameter:	EF _{AF}
Data unit:	tCO2/t
Description:	Emission factor for NEG sludge used as alternative fuel in the project activity
Source of data used:	NCV values as provided by the Malaysia Nuclear Agency
Value(s):	1.051
Indicate what the data are	Project Emission calculations
used for (Baseline/ Project/	
Leakage emission	
calculations)	
Additional comment:	

Data / Parameter:	mp
Data unit:	MJ/kg /10% of biomass
Description:	Moisture penalty
Source of data used:	As per registered PDD
Value(s):	0.1 MJ/kg /10% of biomass
Indicate what the data are	Baseline Emission calculations
used for (Baseline/ Project/	
Leakage emission	
calculations)	
Additional comment:	

Data / Parameter:	EF_{FF}
Data unit:	tCO2/t
Description:	Emission factor for fossil fuel

Source of data used:	Registered PDD
Value(s):	94.2 (fixed ex-ante)
Indicate what the data are	Baseline Emission calculations
used for (Baseline/ Project/	
Leakage emission	
calculations)	
Additional comment:	

D.2. Data and parameter	s monitored			
Data / Parameter:	С			
Data unit:	tons			
Description:	Clinker production			
Measured /Calculated	Measured and calculate	ted		
/Default:				
Source of data:	Plant records			
Value(s) of monitored	1,341,747			
parameter:				
Indicate what the data are	Baseline emission calc	culations		
used for (Baseline/ Project/				
Leakage emission				
calculations)				
Monitoring equipment (type,	LMCB monitors the	clinker productio	on as a part of their production	
accuracy class, serial	management activitie	s and data is in	icluded in monthly production	
number, calibration	reports. Raw material	to produce clink	ker is measured using weighing	
frequency, date of last	feeders and clinker pr	oduction is calcu	lated. The weighing feeders are	
calibration, validity)	calibrated regularly. T	he calibration det	tails are as follows:	
	Accuracy class: 0.5			
	Calibration frequency	: Annual		
	Rawang works:			
	Equipment	Model number	Calibration dates	
	Shale A weigher	Model 76420	17/04/2009; 08/04/2010	
	Shale B weigher	Model 76419	17/04/2009; 08/04/2010	
	Limestone weigher	Model 75418	17/04/2009; 08/04/2010	
	Kanthan works:			
	Equipment	Model number	Calibration dates	
	KK4 –kiln feed A	Model 76420	19/01/2009; 21/01/2010	
	stream		,	
	KK4 - kiln feed B	Model 76419	19/01/2009; 01/02/2010	
	stream			
	KK 3 – Kiln feed	Model 75418	16/07/2009	
	weigher			
	The equipments were	found to be work	ing within the permissible	
	limits.			
Measuring/ Reading/	Recording frequency: Monthly			
Recording frequency:	Measuring frequency: batch-wise			
Calculation method (if	NA			
applicable):	1			
QA/QC procedures applied:	The weighing equipment is regularly calibrated			

Data / Parameter:	Q_{AF}			
Data unit:	Tons			
Description:	Quantity of alternative fuels used in the project activity			
Measured /Calculated /Default:	Measured			
Source of data:	Plant records			
Value(s) of monitored			_	
parameter:	Fuel	Quantity		
	Q _{AF- PKS}	8,474		
	QAF- murner	593		
	Qaf- neg	486		
	QAF- paddy husk	13,592		
	QAF- Wood			
	chips	8,033		
	QAF- Coco chips	5,406		
	Q _{AF} - SBE	8,787		
Indicate what the data are used for (Baseline/ Project/ Leakage emission calculations)	Project and basel			
Monitoring equipment (type, accuracy class, serial	Monitoring equipment: Weighing Feeders Accuracy class: 0.5			
number, calibration frequency, date of last calibration, validity)	The calibration details of the various weighing feeders used in the project activity are as follows:			
	Rawang Works :			
	Equipment	Model number	Calibration frequency	Calibration dates
	Preheater FF	FT 3290		07/12/2009;
	PKS weigher	DT2 (1.1	4 months	05/04/2010
	Shale mill	FT2611		29/10/2009;
	PKS weigher			25/02/2010
	Kanthan Works:			
	Equipment	Model number	Calibration frequency	Calibration dates
	KK4 PKS belt	FI 334.01		25/12/2009;
	weigher		6 months	26/02/2010
	KK3 PKS belt	FI 8.42		10/12/2009;
	weigher			11/03/2010
Magning/Darlin	The equipment were found to be working within the permissible limits.			
Measuring/ Reading/	Recording frequency: Monthly			
Recording frequency: Calculation method (if	Measuring frequency: batch-wise NA			
applicable):	INA			
QA/QC procedures applied:	The weighing feeders are calibrated regularly.			
	1117			

Data / Parameter:	HV_{AF}
Data unit:	Kcal/kg
Description:	Heat value of alternative fuels used in the project activity

Measured /Calculated /Default:	Measured and cal	culated		
Source of data:	Plant records			
Value(s) of monitored				
parameter:	Fuel	Calorific value		
	HV _{AF-PKS}	3,354		
	HV _{AF- murner}	1,568		
	HV _{AF-NEG}	2,526		
	HV _{AF- paddy husk}	3,356	_	
	HV _{AF- Wood chips}	2,258		
	HV _{AF- Coco chips}	3,539		
	HV _{AF-SBE}	2,335		
		ned above are average		thly values have
Indicate what the data are	been presented in section E of this monitoring report. Project and baseline emission calculations			
used for (Baseline/ Project/				
Leakage emission				
Calculations)	Manitarina aquine	mant: Damb adarim		
Monitoring equipment (type, accuracy class, serial	Monitoring equipment: Bomb calorimeter Calibration frequency: 4 months			
number, calibration	Cumoration in eque	ney. I monuis		
frequency, date of last	Location	Calibration da	ates	
calibration, validity)	Rawang plant	03/11/2009; 0		
	Kanthan plant	19/10/2009; 2	21/01/2010	
Measuring/ Reading/	Recording frequen			
Recording frequency:	Measuring frequency: batch-wise			
Calculation method (if applicable):	NA			
QA/QC procedures applied:	Regular calibration	n of the bomb calorii	meter is carried	out

Data / Parameter:	$\mathrm{HI}_{\mathrm{AF}}$
Data unit:	ТЈ
Description:	Heat content of alternative fuels
Measured /Calculated	Calculated
/Default:	
Source of data:	-
Value(s) of monitored	591
parameter:	
Indicate what the data are	Baseline and project emission calculations
used for (Baseline/ Project/	
Leakage emission	
calculations)	
Monitoring equipment (type,	NA
accuracy class, serial	
number, calibration	
frequency, date of last	
calibration, validity)	
Measuring/Reading/	Recording frequency: Monthly
Recording frequency:	
Calculation method (if	Calculation based on the monitored data by the following formula:
applicable):	$HI_{AF} = Q_{AF} * HV_{AF}$
QA/QC procedures applied:	The equipment used to calculate Q_{AF} and HV_{AF} are calibrated
	regularly.

Data / Parameter:	S_{AF}			
Data unit:	%			
Description:	Share of heat input from alternative fuels			
Measured /Calculated	Calculated			
/Default:				
Source of data:	Calculated based on monitored data			
Value(s) of monitored	12% (this is the average value for 4 months for both RW and KW. The			
parameter:	monthly values have been provided in Section E of this report)			
Indicate what the data are	Baseline emission calculations			
used for (Baseline/ Project/				
Leakage emission				
calculations)				
Monitoring equipment (type,	NA			
accuracy class, serial				
number, calibration				
frequency, date of last				
calibration, validity)				
Measuring/ Reading/	Recording frequency: Monthly			
Recording frequency:				
Calculation method (if	$S_{AF}=HI_{AF}/(\sum Q_{FF}*HV_{FF})+HI_{AF}$			
applicable):				
QA/QC procedures applied:	The equipment used to measure the monitored data are regularly			
	calibrated			

Data / Parameter:	\mathbf{Q}_{FF}					
Data unit:	Tons					
Description:	Quantity of fossil fuel used					
Measured /Calculated	Measured					
/Default:						
Source of data:	Plant records					
Value(s) of monitored						
parameter:		Total				
	QFF-Coal HCV	3,426				
	QFF-Coal LCV	55,862				
	Q _{FF-Petcoke}	7,649				
		1,152				
	CII Dieser Ons					
	The monthly details	have been provided	d in Section E of this report			
Indicate what the data are	Baseline emission ca	•	•			
used for (Baseline/ Project/						
Leakage emission						
calculations)						
Monitoring equipment (type,	Monitoring equipme	0 0	rs			
accuracy class, serial	Calibration frequence	y: Annual				
number, calibration	Accuracy class: 0.5					
frequency, date of last			0.1			
calibration, validity)	The calibration detail	ls of the weighing	feeders are as follows:			
	D W 1					
	Rawang Works:					
	Equipment Model number Calibration dates					
	Equipment Kiln coal weigher	Model 76057	14/04/2009; 09/04/2010			
	Kiln coal weigher	Model 75850	15/04/2009; 04/04/2010			
	FFA	1410001 /3030	13/04/2003, 04/04/2010			
	IIA					

	Kiln coal weigher FFB	Model 73815	15/04/2009; 06/04/2010	
	Kanthan Works:			
	Equipment	Model number	Calibration dates	
	KK4 coal weigher	FI.8.063	19/01/2009, 21/01/2010	
	KK4 coal weigher	FI.8.067	19/01/2009, 21/01/2010	
	KK3 coal weigher	F.718.03	10/12/2009	
	The equipments were	found to be work	ing under the permissible limits.	
Measuring/ Reading/	Recording frequency: Monthly			
Recording frequency:	Measuring frequency: batch-wise			
Calculation method (if applicable):	NA			
QA/QC procedures applied:	LMCB monitors the amount of fossil fuel purchase as a part of the procurement and payment for the deliveries and data is included in monthly production reports. Quantity of fossil fuel is measured using weighing feeders before fired into the kiln.			

Data / Parameter:	HV _{FF}				
Data unit:	Kcal/kg				
Description:	Heat value of the foss	il fuels			
Measured /Calculated	Measured				
/Default:					
Source of data:	Plant records				
Value(s) of monitored					
parameter:	Fuel	Value			
	HV _{FF-Coal HCV}	5,063			
	HV _{FF-Coal LCV}	5,017			
	HV _{FF-Petcoke}	3,203			
	HV _{FF-Diesel Oils} 9,942				
	These are average value for the monitoring period				
Indicate what the data are	Baseline emission cal				
used for (Baseline/ Project/					
Leakage emission calculations)					
Monitoring equipment (type,	Monitoring equipmen	t: Romb calorimeter			
accuracy class, serial	Calibration frequency				
number, calibration		. I months			
frequency, date of last	Location	Calibration dates			
calibration, validity)	Rawang plant	03/11/2009; 03/03/2010			
	Kanthan plant	19/10/2009; 21/01/2010			
	The equipment were	found to be working within the permissible limits			
Measuring/ Reading/	Recording frequency: Monthly				
Recording frequency:	Measuring frequency: batch-wise				
Calculation method (if	NA				
applicable):					
QA/QC procedures applied:		e heat value of fossil fuel as a part of the			
		ment for all deliveries and data is included in			
	monthly production r	eports. The value is measured using calorimeter.			

SECTION E. Emission reductions calculation

E.1. Baseline emissions calculation

The monthly values of the monitored parameters are as follows:

• Clinker production (C):

2010	January	February	March	April
Rawang Works	145,832	85,989	146,484	48,675
Kanthan Works	150,262	177,876	296,632	289,997

• Alternative fuel quantity (Q_{AF}) :

Rawang Works:

Fuel	January	February	March	April
Q _{AF-PKS}	2,172	213	1,052	413
Q _{AF-NEG}	10	206	140	130
QAF- paddy husk	354	547	644	330
Q _{AF} - Wood				
chips	2,025	937	2,095	488
Q _{AF-SBE}	1,694	1,022	664	70

Kanthan works:

Fuel	January	February	March	April
Q _{AF-PKS}	1,961	984	1,006	673
QAF- murner	186	126	281	0
QAF- paddy husk	1,563	2,231	3,106	4,817
QAF- Wood chips	0	0	923	1,565
QAF- Coco chips	525	1,423	1,854	1,603
QAF-SBE	805	1,278	1,770	1,484

• Alternative fuel heat value (HV_{AF}):

Rawang Works:

Fuel	January	February	March	April
HV _{AF-PKS}	2,964	2,973	2,963	2,964
HV _{AF-NEG}	2,526	2,526	2,526	2,526
HV _{AF- paddy husk}	3,444	3,444	3,064	3,064
HV _{AF- Wood chips}	3,010	3,010	2,987	2,515
HV _{AF-SBE}	2,200	2,200	2,272	2,272

Kanthan works:

Fuel	January	February	March	April
HV _{AF-PKS}	3,864	3,864	3,635	3,605
HV _{AF- murner}	1,568	1,568	1,568	1,568
HV _{AF- paddy husk}	3,649	3,649	3,269	3,269
HV _{AF- Wood chips}	0	0	3,629	2,913
HV _{AF- Coco chips}	3,460	3,460	3,629	3,607
HV _{AF-SBE}	2,434	2,434	2,434	2,434

• Quantity of fossil fuels (Q_{AF}) :

Rawang Works:

Fuel	January	February	March	April
QFF-Coal HCV	0	0	0	0
QFF-Coal LCV	13,400	7,457	12,784	4,212
QFF-Petcoke	12,111	7,824	13,107	4,477
QFF-Diesel Oils	182	144	32	403

Kanthan works:

Fuel	January	February	March	April
QFF-Coal HCV	1,760	1,666	0	0
QFF-Coal LCV	17,812	21,299	38,959	39,939
QFF-Petcoke	0	0	0	130
QFF-Diesel Oils	233	90	67	2

• Heat value of fossil fuels (HV $_{\rm FF}$):

Rawang Works:

Fuel	January	February	March	April
HV _{FF-Coal HCV}	0	0	0	0
HV _{FF-Coal LCV}	4,618	4,845	4,476	4,577
HV _{FF-Petcoke}	3,958	3,958	3,958	3,786
HV _{FF-Diesel Oils}	9,528	9,528	9,528	9,528

Kanthan works:

Fuel	January	February	March	April
HV _{FF-Coal HCV}	7,595	7,595	-	-
HV _{FF-Coal LCV}	5,331	5,328	5,596	5,363
HV _{FF-Petcoke}	0	0	0	2,492
HV _{FF-Diesel Oils}	10,356	10,356	10,356	10,356

The baseline emissions are calculated following the approved methodology ACM 0003. The following stepwise approach is used as outlined in methodology.

Step 1. Calculate project heat input from alternative fuels

 $HI_{AF} = \sum Q_{AF} * HV_{AF}$ Eq -1

Where

Parameter	Details	Unit
HI_{AF}	Heat input from alternative fuels	(TJ/yr)
Q_{AF}	Quantity of each alternative fuel	(tonnes/yr)
HV_{AF}	Lower heating value of the alternative fuel(s) used	(TJ/tonnes fuel)

The values of HI_{AF} thus calculated are as follows:

Rawang Works:

Fuel Type	Jan	Feb	Mar	April
HI _{AF-PKS}	27	3	13	5
HI _{AF-NEG}	0.11	2	1	1
HI _{AF- paddy husk}	5	8	8	4
HI _{AF- Wood chips}	26	12	26	5
HI _{AF-SBE}	16	9	6	1
Total	73	34	55	17

Kanthan works:

Fuel Type	Jan	Feb	Mar	April
HI _{AF- PKS}	32	16	15	10
HI _{AF- murner}	1.2	0.8	1.8	-
HI _{AF- paddy husk}	24	34	43	66
HI _{AF- Wood chips}	0	0	14	19
HI _{AF- Coco chips}	8	21	28	24
HI _{AF-SBE}	8	13	18	15
Total	71	84	118	134

Step 2. Calculate alternative heat input as a share of total baseline fossil fuel heat input

 $S_{AF} = HI_{AF} / (\sum Q_{FF} * HV_{FF}) + HI_{AF})$ Eq - 2

Where

Parameter	Details	Unit
	Alternative heat input share of total baseline fossil fuel	
S_{AF}	heat input	%
HI_{AF}	Heat input from alternative fuels	(TJ/yr)
Q_{FF}	Quantity of each fossil fuel used in baseline	(tonnes/yr)
HV_{FF}	Lower heating value of the fossil fuel(s) used in baseline	(TJ/tonne fuel)

The calculated values of S_{AF} are as follows:

	January	February	March	April
Rawang Works	14%	11%	11%	9%
Kanthan Works	14%	14%	12%	13%

Step 3. Application of project specific moisture "penalty"

 $mp = (HC_{AF(i)} - HC_{FF})/Si *10$

Eq - 3

Where

Parameter	Details	Unit
mp	Moisture penalty	MJ/tonne/10%
		alternative fuel
		share of total
		heat input
$HC_{AF(i)}$	Specific heat consumption using i % alternative fuel	MJ/ton- clinker
HC_{FF}	Specific heat consumption using fossil fuels only	MJ/ton- clinker
Si	Alternative fuel heat input share of total baseline heat input	%
	in the moisture penalty test	

Moisture penalty (mp) is fixed ex-ante (Section D.1).

The total moisture penalty is calculated as:

$$MP_{Total} = S_{AF}/10\% *C*mp$$

Eq - 4

Where

Parameter	Details	Unit
MP_{Total}	Total moisture penalty	TJ/yr
S_{AF}	Alternative heat input share of total baseline fossil fuel heat	
	input	%
C	Total clinker production	tonnes/yr
mp	Moisture penalty	MJ/tonne/10%
		alternative fuel
		share of total
		heat input

The values of total moisture penalty are as follows:

	January	February	March	April
Rawang Works	16.81	7.74	13.41	3.71
Kanthan Works	17.30	20.72	29.19	32.10

Step 5. Calculate the baseline GHG emissions from the fossil fuel(s) displaced by the alternative fuel(s)

$$FF_{GHG} = [(Q_{AF} * HV_{AF}) - MP_{total}] * EF_{FF}$$

Where

Parameter	Details	Unit
FF_{GHG}	GHG emissions from fossil fuels displaced by the alternatives	tCO ₂ /yr
Q _{AF} *HV _{AF}	Total actual heat provided by all alternative fuels	TJ/yr
MP _{total}	Total moisture penalty	TJ/yr
EF_{FF}	Emission factor(s) for fossil fuel (s) used	tCO ₂ /TJ

Eq - 6

The values of baseline emissions thus calculated are as follows:

	January	February	March	April	TOTAL
Rawang Works	5,319	2,468	3,946	1,208	12,941
Kanthan Works	5.213	6.006	8.545	9.645	29,409

Step 7. Calculate emission savings from reduction of on-site transport of fossil fuels

$$OT_{GHGFF} = OF_{FF} * EF_{t CO2e}$$

Eq. 8

where

Parameter	Details	Unit
OT- _{GHGFF}	Emissions from reduction of on-site transport of fossil fuels	tCO _{2e}
OF_{FF}	Fuel saving from on-site transportation of fossil fuels	t/yr
EF _{T CO2e}	Emission factor of fuel used for transportation	tCO _{2e} /t fuel

Emission savings from reduction of on-site transport of fossil fuel is negligible. Therefore, emission savings are not considered for emission reduction calculation.

E.2. Project emissions calculation

Step 4 Calculate GHG emissions from the use of alternative fuels in kilns (AF_{GHG})

$$AF_{GHG} = \Sigma(Q_{AF} * HV_{AF} * EF_{AF})$$

Eq - 5

Where

Parameter	Details	Unit
AF_{GHG}	GHG emissions from alternative fuels	tCO _{2e} /yr
Q _{AF}	Monitored alternative fuels input in clinker production	tonnes/yr
HV_{AF}	Lower heating value of the alternative fuel(s) used	TJ/tonne fuel
EF_{AF}	Emission factor(s) of alternative fuel(s) used	tCO _{2e} /TJ

Q_{AF} and HV_{AF} are monitored parameters.

Alternately, AF_{GHG} can also be calculated as:

$$AF_{GHG} = \Sigma(Q_{AF} * EF_{AF})$$

Where,

 EF_{AF} = Emission factor(s) of alternative fuel(s) used (tCO₂/t fuel)

NEG was only used in Rawang plant. Thus,

	January	February	March	April	TOTAL
Rawang Works	11	216	147	137	511

Murner was only used in Kanthan plant. Thus,

	January	February	March	April	TOTAL
Kanthan Works	125	85	190	0	400

Step 6. Calculate GHG emissions due to on-site transportation and drying of alternative fuels

$$OT_{GHG} = OF_{AF} * (V_{EF~CO2} + VEF~_{CH4} * GWP~_{CH4}/1000 + V_{EF~N2O} * GWP~_{N2O}/1000) + (FD * FD~_{HV} * VE_{FD})$$

Where

Parameter	Details	Unit
	GHG emissions from on-site transport and drying of alternative	
OT_{GHG}	fuels	tCO _{2e} /yr
	Transportation fuel used for alternative fuels on-site during the	
OF_{AF}	year	t/yr

$V_{\rm EF~CO2}$	CO2 emission factor for the transportation fuel	tCO ₂ /tone
		kg
$V_{\rm EF\ CH4}$	CH4 emission factor for the transportation fuel	CH ₄ /tone
		Kg
$V_{\rm EF\ N2O}$	N2O emission factor for the transportation fuel	N2O/tonne
GWP _{CH4}	Global warming potential for methane	-
GWP _{N2O}	Global warming potential for N2O	-
FD	Fuel used for drying alternative fuels	t/yr
FD _{HV}	Heating value of the fuel used for drying	TJ/t fuel
VE_{FD}	Emission factor of the fuel used for drying	tCO ₂ /TJ

Project emissions from transportation of fuel are insignificant in the project activity. The energy consumption for fuel handling and crushing of coal and PKS is estimated to be about the same amount. The emissions difference from the power consumption for the fuel handling system is therefore assumed to be negligible. Please refer annex 9 of the registered PDD.

Thus,

	January	February	March	April
Rawang Works	0	0	0	0
Kanthan Works	0	0	0	0

E.3. Leakage calculation

The biomass used in the project activity is abundantly available for the project activity. Hence, leakage calculations for the same are not required.

E.4. Emission reductions calculation / table

$$AF_{ER} = FF_{GHG} - AF_{GHG}$$

where

Parameter	Details	Unit
FF_{GHG}	GHG emissions from fossil fuels displaced by the alternatives	(tCO2/yr)
AF_{GHG}	GHG emissions from alternative fuels	(tCO2/yr)

Emission reductions will be equivalent to the emissions from fossil fuels displaced by the alternatives fuels as project emissions and leakages are considered negligible. Therefore,

Rawang Works:

	Project activity	Baseline	Leakage	Emission
Period	emissions (tCO ₂ e)	emissions (tCO ₂ e)	(tCO_2e)	reductions (tCO ₂ e)
01/01/2010 -	511	12,941	0	12,431
30/04/2010				

Kanthan Works:

	Project activity	Baseline	Leakage	Emission
Period	emissions (tCO ₂ e)	emissions (tCO ₂ e)	(tCO ₂ e)	reductions (tCO ₂ e)
01/01/2010 -	400	29,409	0	29,409
30/04/2010				

Thus, the total emission reductions achieved by the project activity in the monitoring period can be summarised as:

	Period	Project activity	Baseline	Leakage	Emission
ı		emissions (tCO ₂ e)	emissions (tCO ₂ e)	(tCO_2e)	reductions (tCO ₂ e)
ĺ	01/01/2010 -	911	42,350	0	41,439
١	30/04/2010				

E.5. Comparison of actual emission reductions with estimates in the CDM-PDD

Item	Values applied in ex-ante calculation of the registered CDM-PDD	Actual values reached during the monitoring period
Emission reductions (tCO ₂ e)	20,670	41,439

E.6. Remarks on difference from estimated value in the PDD

The increase in the number of CERs is mainly due to increased use of alternative fuels in both plants, which resulted in an increased amount of coal being displaced.

However, the total actual emission reductions for the entire crediting period are less than those estimated in the registered PDD.

Values applied in ex-ante calculation of the registered CDM-PDD for the entire crediting period	Actual values reached during the entire crediting period
620,110	614,107

History of the document

Version	Date	Nature of revision
01	EB 54, Annex 34 28 May 2010	Initial adoption.
Decision Class: Regulatory Document Type: Guideline, Form Business Function: Issuance		