

Analog to Digital Converter

HCS12의 ATD module의 특성

- ATDCTL0, ATDCTL1 (Reserved register)
- ATDCTL2 레지스터

- ADPU : ATD 모듈에 전원 공급
- ASCIE: ATD 처리 완료 인터럽트 활성화
 - ACSIF = 1 일 때마다 set
- ASCIF: ATD 처리 완료 인터럽트 플래그
 - ■ATDSTAT0 레지스터의 SCF 플래그와 동일

■ ATDCTL3 레지스터

- S8C, S4C, S2C, S1C : 시퀀스 당 변환 횟수
 - ■샘플링 횟수
 - ■디폴트 값이 4회

S8C	S4C S2C		S1C	Number of Conversions per Sequence
0	0	0	0	8
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	Х	Х	Х	8

■ ATDCTL3 레지스터 (계속)

FIFO:

■'1': 변환 결과를 FIFO(First Input First Output) 방식으로 저장

■'0': 변환 결과를 각 채널의 데이터 레지스터에 저장

■ FRZ[1:0] : Freeze Mode 발생 시 처리 방식 결정

FRZ1	FRZ0	Freeze Mode 시 동작
0	0	계속 변환
0	1	-
1	0	현재 변환 완료 후 Freeze
1	1	즉시 Freeze

■ ATDCTL4 레지스터

	7	6	5	4	3	2	1	0
R W	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
RESET:	0	0	0	0	0	1	0	1

■ SRES8 : A/D Resolution 선택

'0': 10 bit resolution

'1': 8 bit resolution

■ SMP1 ~ SMP0 : 클럭 단위 샘플링 시간 선택

SMP1	SMP0	Length of 2nd phase of sample time		
0	0	2 A/D conversion clock periods		
0	1	4 A/D conversion clock periods		
1	0	8 A/D conversion clock periods		
1	1	16 A/D conversion clock periods		

■ PRS4 ~ PRS0 : ATD 내부 클럭 설정

$$-ATDclock = \frac{[BusClock]}{[PRS+1]} \times 0.5$$

- ATDCTL4 레지스터 (계속)
 - PRS4 ~ PRS0 : Prescale Value 표

Table 8-8. Clock Prescaler Values

Prescale Value	Total Divisor Value	Maximum Bus Clock ⁽¹⁾	Minimum Bus Clock ⁽²⁾
00000	Divide by 2	4 MHz	1 MHz
00001	Divide by 4	8 MHz	2 MHz
00010	Divide by 6	12 MHz	3 MHz
00011	Divide by 8	16 MHz	4 MHz
00100	Divide by 10	20 MHz	5 MHz
00101	Divide by 12	24 MHz	6 MHz
00110	Divide by 14	28 MHz	7 MHz
00111	Divide by 16	32 MHz	8 MHz
01000	Divide by 18	36 MHz	9 MHz
01001	Divide by 20	40 MHz	10 MHz
01010	Divide by 22	44 MHz	11 MHz
01011	Divide by 24	48 MHz	12 MHz
01100	Divide by 26	52 MHz	13 MHz
01101	Divide by 28	56 MHz	14 MHz
01110	Divide by 30	60 MHz	15 MHz
01111	Divide by 32	64 MHz	16 MHz
10000	Divide by 34	68 MHz	17 MHz
10001	Divide by 36	72 MHz	18 MHz
10010	Divide by 38	76 MHz	19 MHz
10011	Divide by 40	80 MHz	20 MHz
10100	Divide by 42	84 MHz	21 MHz
10101	Divide by 44	88 MHz	22 MHz
10110	Divide by 46	92 MHz	23 MHz
10111	Divide by 48	96 MHz	24 MHz
11000	Divide by 50	100 MHz	25 MHz
11001	Divide by 52	104 MHz	26 MHz
11010	Divide by 54	108 MHz	27 MHz
11011	Divide by 56	112 MHz	28 MHz
11100	Divide by 58	116 MHz	29 MHz
11101	Divide by 60	120 MHz	30 MHz
11110	Divide by 62	124 MHz	31 MHz
11111	Divide by 64	128 MHz	32 MHz

■ ATDCTL5 레지스터

▶ DJM : 변환 결과 레지스터(ATDDRx) 데이터 정렬

┗ '0' : 왼쪽 정렬 모드

-'1': 오른쪽 정렬 모드

■ DSGN : 변환 결과 레지스터 데이터 부호 설정

"'0': Unsigned

■ '1' : Signed (오른쪽 정렬 모드 시 가능)

■ SCAN : 변환 모드 설정

┗ '0': 한번 변환

■'1': 연속적으로 계속 변환 (scan mode)

■ ATDCTL5 레지스터 (계속)

■ MULT : 다중 채널 샘플링 모드

■MULT = 0 : 한 채널만 사용

■MULT = 1 : 동시에 여러 채널 사용

■ CC, CB, CA : 아날로그 입력 채널 설정

■MULT = 1 일 시 시작 채널 설정

Table 8-12. Analog Input Channel Select Coding

CC	СВ	CA	Analog Input Channel
0	0	0	AN0
0	0	1	AN1
0	1	0	AN2
0	1	1	AN3
1	0	0	AN4
1	0	1	AN5
1	1	0	AN6
1	1	1	AN7

- ATD 변환 결과 레지스터 (ATDDRx) (x : 채널 번호)
 - 변환 완료된 데이터 저장
 - 왼쪽 정렬

2	7	6	5	4	3	2	1	0	
R	BIT 9 MSB	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	10-bit data
W	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	8-bit data
Reset	0	0	0	0	0	0	0	0	
	7	6	5	4	3	2	1	0	
R	BIT 1	BIT 0	0	0	0	0	0	0	10-bit data
W	U	U	0	0	0	0	0	0	8-bit data
Reset	0	0	0	0	0	0	0	0	

■ 오른쪽 정렬

	7	6	5	4	3	2	1	0	83
R	0	0	0	0	0	0	BIT 9 MSB	BIT 8	10-bit data
W	0	0	0	0	0	0	0	0	8-bit data
Reset	0	0	0	0	0	0	0	0	4
	7	6	5	4	3	2	1	0	92
R	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	10-bit data
W	BIT 7 MSB	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	8-bit data
Reset	0	0	0	0	0	0	0	0	3

■ ATD 상태 레지스터 0 (ATDSTAT0)

- SCF (Sequence Complete Flag)
 - 변환 완료될 때마다 1로 자동 설정 (변환 중일 시 SCAN = 1)
 - ■클리어 방법
 - ➤ SCF 비트에 1을 씀
 - ➤ ATDCTL5에 씀 (새로운 변환 시작)

HCS12 보드 구성

- A/D 컨버터
 - 2V 3.3V 가변 전압 : ATD Channel 0 번에 연결
 - 4cm 30cm 거리측정 적외선 센서: ATD Channel 1번에 연결

■ IR SENSOR란?

■ 발광부 : 적외선 발산

■ 수광부 : 들어온 적외선의 양에 따라 저항 값이 변동

■ 전류가 발생하여 옴의 법칙에 따른 전압 값을 MCU에 입력

■ IR SENSOR 구동 원리

- 흰색 : 반사도가 높으므로 들어오는 값이 크다.
- 검은색 : 흡수도가 높으므로 들어오는 값이 작다.

■ IR SENSOR의 회로

▶ IR SENSOR의 배치에 따른 사용예

- 반사식 배치
 - 물체가 적외선을 반사하는 점을 이용
 - 반사하여 돌아오는 빛의 양으로 물체와의 거리 감지
- 투과식 배치
 - ■물체가 적외선을 통과시키지 못하는 점을 이용
 - 빛의 차단을 감지하여 물체를 감지

Analog to Digital Converter

- 실습 1
 - ▶ VR1을 조절하여 변환된 전압을 9단계로 나눠 7segment로 출력
 - 전압이 클수록 7segment 값 증가

ATD 실습

■ 실습 2

- 적외선 센서 값을 10단계로 나눠 LED에 출력
- 적외선 센서와 손 사이 거리가 가까울수록 LED 적색 Bar 수 증가

ATD 실습

■ 실습 3

- SW2를 누르면 VR1을 조절하여 변환된 전압을 7segment에 출력
- SW3을 누르면 적외선 센서 값을 7segment에 출력

