Cuadal crogumocono

] $X-K.D. \Rightarrow \exists energy where no hopine : <math>\alpha n \Rightarrow \alpha \in \mathbb{R}$ $\|\alpha n - \alpha\|_{n\to\infty} \circ (current)$ enorgy enorgy 4 X 3 X*- consumeruse necompaniembo

Х* - сопринсённое пространство — пространство шийнам и ограниченным функционацов на X.

Monero bleemu exogumbemo grynny enocotou:

cuatar crogumocons: $x_n \longrightarrow x$ b X, even $f(x_n) \longrightarrow f(x)$ $\forall f \in \chi^*$ $(x_n \xrightarrow{w} x_n)$

Choisemba cuatroi exaguesame

1. Th (egunembernoemb cuations negena)

] $\alpha n \rightarrow \alpha_1$ b X. Morga $\alpha_1 = \alpha_2$

 $\frac{\text{Doc-bo}}{\text{f(an)}} \Rightarrow f(\text{re}), \forall f \in X^*$ nocuegobameubroomb ca. k f(re)

т.е. одна и та тее чисиован m.k. gue vucuobore nocules-3 esuremb. noeseur uuleem weemo:

 $f(x_i) = f(x_2)$ $\forall f \in X^* = \Rightarrow f(x_1 - x_2) = 0$, $\forall f \in X^* \Rightarrow x_1 - x_2 = 0$ Lb cause were abording Lb cause broken Pyrkyuokaua cuescribius meopeus Хана - Банагеа

a. ymb] ren -> re & X Morga ren → re b X

9006-80: D] $f \in X^*$ (OZP. WH. PYHKUS) OZPAHUNEHHOCMB SWI WH. ONEPAMOROB SKB-HA Henderollhocmu => f - kenp => $f(x_n) \rightarrow f(x)$ => $\Rightarrow \alpha_n \rightarrow \alpha \blacktriangleleft$

(Tower): (cuatau ca-mb ke buerëm cuub кизю)

У простебиле Г.П. ℓ^2 У в нёш ортонори. базие: $[ei]_{i\in N}$ -0.К.б. в ℓ^2

 $\begin{aligned} & \text{ if } |_{l=0} = 0, \text{ i. 5. b } \ell^* \\ & \text{ e}_{l} = (0, \dots, 1, 0, \dots) \\ & \text{ final nosusus} \\ & \text{ final nosus} \\ & \text{ final nosus } \\ & \text{ final nosus } \\ & \text{ final nos$

cuebro caogumbal k 0 ei nuvak ne avoncem m.k. ||ei||=1 y ||ei-0|=1

 $\frac{C_{\text{loc-bo:}}}{A_{\text{oc-bo:}}} \times \text{ Sasus } 6 \, \mathbb{R}^n$: $e_1, ..., e_n$; $\infty \in \mathbb{R}^n$: $n = \sum_{i=1}^n a_i e_i$ $\times f(\infty) = a_i, 1 \le i \le n \qquad \text{ sawned a op-u unreer.}$ Li-au koopgunama

B \mathbb{R}^n bee normal seb-noi:] $\|x\|_0 = \sum_{i=1}^n |d_i|$, morga $|f(x)| = |d_i| \le \|x\|_0$ Maximu obpassous $f - \min u$ orp., m.e. $f \in (\mathbb{R}^n)^*$

The year $\alpha_k \longrightarrow \alpha = f(\alpha_k) \longrightarrow f(\alpha)$ это значит, что $(d_k)_i \xrightarrow{k \to \infty} d_i$ т.е. сиабаи см-ть в \mathbb{R}^n поротедает покоорящиатния сходишость, а она вченёт см-ть по норне, а все норшя в \mathbb{R}^n экв-ня : $\alpha_k \longrightarrow \infty$

4.] $A \in B(X, Y)$, age $X, Y - \kappa \cdot n$. Luck. ozp. onepamop (kenp.) Ly: $n \in A$ $b \in A$ b

a wow bygem how $\alpha_n \longrightarrow \alpha$ b X (a bygem:=> $A_{\alpha n} \longrightarrow A_{\alpha}$)

Th $J A \in B(X,Y)$, age $X, Y - \mu.\Pi$. $J \sim n \rightarrow \infty \quad b X$ $J \log \alpha \quad A \propto n \rightarrow A \propto b Y$

Shok-Bo: \triangleright bosoureu $f \in V^*$ (with orp.) u noranceu $f(Ax_n) \xrightarrow{n \to \infty} f(Ax_n)$ $\not\leftarrow V(x) = f(Ax_n), \forall x \in X$

- WHETHOETE: $Y(d_{1}x_{1}+d_{2}x_{2})=f(A(d_{1}x_{1}+d_{2}x_{2}))=f(d_{1}A(d_{1}x_{1}+d_{2}Ax_{2})=d_{1}Y(x_{1})+d_{2}Y(x_{2})$ WHETHOETE

 WHETHOETE

 THERETHOETE

 OP- UP
- OPPOHEUREMOCHS: $|\Psi(\alpha)| = |f(A\alpha)| \leq ||f||_{y} ||Ax||_{y} \leq ||f||_{y} ||A|| ||\alpha||_{y}, \quad \forall \alpha \in X \quad \text{(m.e. uopua overub-culture)}$ $\text{Top-mb op-ua} f \text{ Top-mb on-pa} A \qquad \qquad \text{np-u} \quad ||f||_{y} ||A||$

=> $\forall \in X^*$.

Pas $\alpha_n \rightarrow \alpha => \forall (\alpha_n) \rightarrow \forall (\alpha) \Rightarrow f(A\alpha_n) \rightarrow f(A\alpha) \blacktriangleleft$

5. Th: сиабай пошунепрерывность корию

] X-4.n.] an →a Torga |a| ≤ <u>lim</u> |an||

(такиш оброзош нории ивинется поличепрерывной снизи относитеньно спабой сходишости) (нориа непрерывна относ-но сильной сх-ти)

Aok-bo: \triangleright blegën voosharennul: $d=\lim_{n\to\infty}\|\alpha_n\|$ hunching needen voosharenthe Peannsyemen ha kakar-mo nocheaolamenthhochn $\{\alpha_n\}$ $\exists \{\alpha_{n+1} \subset \{\alpha_n\} : \|\alpha_{n+1}\| \longrightarrow d$

1-oe cuescribue th Naha- \pm ahara: $\exists f \in X^*: \|f\|_{X^*} = 1$

 $n \rightarrow \alpha \Rightarrow \alpha_{n_k} \rightarrow \alpha \Rightarrow f(\alpha_{n_k}) \rightarrow f(\alpha) = \|\alpha\|$

orderen repeat coocupy more $f(\alpha_{n_k})$: $f(\alpha_{n_k}) \leq \|f(\alpha_{n_k})\| \leq \|f\|_{X^k} \|\alpha_{n_k}\|_X \longrightarrow d$ $f(\alpha_{n_k}) \leq \|f(\alpha_{n_k})\| \leq d$

 $cl \leftarrow \cdots \geqslant f(\alpha_{nk}) \Longrightarrow f(\alpha) = \|\alpha\|$ nepercose k neesews 8 Nep-Be $\|\alpha\| \le d$