- 1. Find the **multiplicative inverse** of each nonzero element in \mathbb{Z}_7 . (10%)
- 2. The purpose of this problem is to set an upper bound on the number of iterations of the **Euclidean** algorithm.
 - (a) Suppose that m = qn + r with integers $q \ge 1$ and $0 \le r < n$. Show that m/2 > r. (5%)
 - (b) Let a_i be the value of a in the Euclidean algorithm after the ith iteration (see Figure 2.2 of the textbook or the lecture slide). Show that $a_{i+2} < a_i/2$. (5%)
 - (c) Show that if m, n, and N are integers with $(1 \le m, n \le 2^N)$, then the Euclidean algorithm takes at most 2N steps to find gcd(m, n). (5%)
- 3. Using the extended Euclidean algorithm, find the multiplicative inverse of
 - (a) 135 mod 61 (10%)
 - (b) 7465 mod 2464 (10%)
- 4. Use **Euler's theorem** to find a number a between 0 and 92 with a congruent to 7^{1013} modulo 93. (You should not need to use any brute-force searching.) (10%)
- 5. Use **Euler's theorem** to find a number a between 0 and 9 such that a is congruent to 9^{101} modulo 10. (10%)

-14×135-5×61=1