DANDONG TU

Therefore,
$$(Y - XB)^T$$
 times $(Y - XB) = (J_1 - X^TB) - J_1 - X^TB$

to that, the result for $(Y - XB)^T$ $(Y - XB)$ is following:

$$\sum_{i=1}^{n} LY_i - X_i^TB)^T$$

$$\int_{i=1}^{n} LY_i - X_i^TB)^T$$

Finally, we have \((Y-XB)^T(Y-XB) = \((Y, -X; TB)^2 \)

$$H^{T} = [X(X^{T}X)^{-1}X^{T}]^{T} = X[CX^{T}X)^{-1}]^{T}X^{T} = X[CX^{T}X)^{T}]^{T}X^{T} = X(X^{T}X)^{T}X^{T} = H$$

$$H = [X(X^{T}X)^{-1}X^{T}][X(X^{T}X)^{-1}X^{T}]$$

$$= X(X^{T}X)^{-1}(X^{T}X)(X^{T}X)^{-1}X^{T}$$

$$= X(X^{T}X)^{-1}X^{T}$$

$$= H$$

So that, H is symmetric and idempotent

(I-H)
$$I = I^T - H^T = I - H$$

(I-H)(1-H)= I-2H+HH=I-H
So that, I-H is symmetric and idempotant

e)
$$(1-H)(Y-X\hat{\beta}) = Y-X\hat{\beta}-HY+HX\hat{\beta}$$

= $Y-HY-X\hat{\beta}+X\hat{\beta}$
= $(I-H)Y$

$$f) \quad (Y - X\hat{\beta})^{\mathsf{T}} (I - H) (Y - X\hat{\beta}) = \mathcal{J}^{\mathsf{T}} (I - H) (Y - X\hat{\beta})^{\mathsf{T}} (I - H) (Y - X\hat{\beta})$$

$$= (I - H)^{\mathsf{T}} (Y - X\hat{\beta})^{\mathsf{T}} (I - H) (Y - X\hat{\beta})$$

$$= Y^{\mathsf{T}} (I - H) Y$$

$$(wing Part c and e)$$

=
$$(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$$

= $(Y - HY)^{T} (Y - HY)$
= $(Y - HY)^{T} (I - H)^{T} (I - H)^{T}$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - X \hat{\beta})^{T} (Y - X \hat{\beta})$
= $(Y - HY)^{T} (Y - HY)^{T}$