5 (1. Halbtag) | Operationsverstärker

Angelo Brade*1 and Jonas Wortmann†1 1 Rheinische Friedrich—Wilhelms—Universität Bonn

September 7, 2024

Contents

1 Introduction						
2	heory	1				
3	reliminary Tasks	1				
	1 A					
	2 B	1				
	3 C					
	4 D	1				
	${f 5}$ ${f E}$	2				
4	uswertung	3				

1 Introduction

2 Theory

3 Preliminary Tasks

3.1 A

The equation hold

$$\frac{1}{\nu} = \frac{1}{\nu_0} + k \qquad \qquad \nu = \frac{1}{\frac{1}{\nu_0} + k}. \tag{3.1}$$

For k = 0.1, $\nu_0 = 10^4$ and $\nu_0 = 10^5$

$$\nu_1 \approx 9.990 \qquad \qquad \nu_2 \approx 9.999. \tag{3.2}$$

The approximation $\nu = \frac{1}{k}$ results in

$$\nu_{\text{N\ddot{a}h}} = 10. \tag{3.3}$$

The deviation of ν_1 and ν_2 from $\nu_{\text{N\"{a}h}}$ lie at 0.001% and 0.0001% respectively.

3.2 B

It hold

$$U_{x} = U_{\rm in} - kU_{\rm out}$$

$$\Leftrightarrow \qquad = U_{\rm in} - kv_{0}U_{x}$$

$$\Leftrightarrow \qquad = \frac{U_{\rm in}}{1 + v_{0}k}.$$
(3.4)
$$(3.5)$$

For k = 0.1, $v_0 = 10^5$ and $U_{\rm in} = 1 \, {\rm V}$

$$U_x \approx 0.0001 \,\text{V}.$$
 (3.6)

3.3 C

Let there be a common mode signal with $\Delta U_{+} = \Delta U_{-} = +\Delta U_{\rm in}$. then

$$\Delta U_{+} = \Delta U_{E} + \Delta U_{1} \quad \Delta U_{-} = \Delta U_{E} + \Delta U_{1}.$$
(3.7)

from this follows $\Delta U_{\rm in} = \Delta U_E + \Delta U_1$. The output voltage is

$$\Delta U_{\rm out} = R_C \cdot \Delta I_C. \tag{3.8}$$

At point 1,

$$I_1 = 2I_E.$$
 (3.9)

Therefore

$$\Delta U_{\rm in} = R_E \cdot \Delta I_E + R_1 \cdot 2\Delta I_E$$
$$= \Delta I_E (R_E + 2R_1) \approx \Delta I_E \cdot 2R_1. \quad (3.10)$$

At the node U_{out} applies

$$\Delta I_E = \Delta I_C \Rightarrow \Delta U_{\text{out}} = R_C \cdot \Delta I_E.$$
 (3.11)

The amplification results in

$$v_{CM} = \frac{\Delta U_{\text{out}}}{\Delta U_{\text{in}}} = \frac{R_C}{2R_1}.$$
 (3.12)

The common mode suppression is

$$10\log\left(\frac{R_E}{R_1}\right) = 10\log\left(\frac{1\,\mathrm{k}\Omega}{100\,\mathrm{k}\Omega}\right) = -20\,\mathrm{dB}. \tag{3.13}$$

3.4 D

The frequency dependence of the impedance of a capacitor is

$$Z_1 = \frac{1}{\mathrm{i}\omega C} = \frac{1}{\mathrm{i}2\pi fC} \tag{3.14}$$

$$|Z_1| = \left| \frac{1}{i\omega C} \right| = \frac{1}{2\pi f C}.$$
 (3.15)

The gain as a function of frequency is

$$v(f) = 1 + \frac{Z_2}{|Z_1|} = 1 + R2\pi fC.$$
 (3.16)

The limits are

$$\lim_{f \to 0} [1 + R2\pi f C] = 1 \quad \lim_{f \to \infty} [1 + R2\pi f C] = \infty. \quad (3.17)$$

For $|Z_1| = R$ it has to hold that

$$\frac{1}{2\pi fC} = R \Leftrightarrow f = \frac{1}{2\pi RC}.$$
 (3.18)

With concrete values $Z_1 = R = 100 \,\mathrm{k}\Omega$ and $Z_1 = C = 100 \,\mathrm{nF}$, the frequency is

$$f = \frac{1}{2\pi RC} \approx 15.92 \,\text{Hz} \Rightarrow v(f) \approx 2. \tag{3.19}$$

Figure 1: Time dependend amplification of a non-invertible amplifier as a Bode-plot

3.5 E

Let

$$v = \frac{U_{\text{out}}}{U_{\text{in}}} = -\frac{Z_2}{Z_1}.$$
 (3.20)

The minus sign results from the negative feedback. Because of the golden rule $U_{-}=U_{+}=0\,\mathrm{V}$, the negative feedback has a different sign compared to the input signal.

The input impedance is very high and the output impedance very low.

3 4 AUSWERTUNG

4 Auswertung

4 SOURCE

\mathbf{List}	of	Fig	ures
~~	<u> </u>		CLE CN

		a and a	and the second second		
1	Time depender	nd amplification of a ne	on-invertible amplifier as	a Robe-plot	•
1	Time depender	na ampimeanon or a m	m-mvermore ampimer as	a DODE-piot	

List of Tables

Source