

Data Science Titanic Project

Introduction

As a fresh graduate in Informatics with a strong passion for data, I am particularly drawn to the fields of data analysis and data science. I have hands-on experience in the end-to-end process of data handling, from collecting data using web scraping techniques creating insightful to visualizations that highlight key patterns and trends. My portfolio showcases my ability to transform raw data into actionable insights, reflecting my dedication to leveraging data for informed decision-making.

Putri Nurrahmah Wear

About Titanic's Dataset

The Titanic dataset was created to provide a deeper understanding of the factors that influenced passenger survival during the RMS Titanic's sinking in 1912. By analyzing data such as passengers' names, ages, genders, and socio-economic classes, this dataset allows us to build predictive models that answer the question: "What types of people were more likely to survive?"

Analyzing patterns within the data helps us better understand the dynamics of safety and evacuation decisions during disasters.

Data Overview

The dataset contains 891 rows and 12 columns.

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
										111		
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 rd	ows × 12 colu	umns										

Data Dictionary

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Pre-Processing Data

Before

#show if there are any missing values
titanic.isnull().sum()

PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64

After

#Check missing values
titanic.isnull().sum()

Survived 0
Pclass 0
Sex 0
Age 0
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64

- The dataset has missing values in the Age, Cabin, and Embarked columns.
 - 'PassengerID' & 'Ticket'
 columns because they're
 just a unique codes for
 each passengger, and
 removed the 'Cabin'
 column due to many
 missing values. I also
 dropped the rows with
 missing values in
 'Embarked' since there
 were only two.

Explore Data Analysis (EDA)

Passenger Survival Rate

The data indicates that the number of passengers who survived is smaller than those who did not, with 38.2% of passengers surviving and 61.8% not surviving.

Survival Rate by Pclass, Sex, & Embarked

Higher-class passengers had a significantly higher survival rate.

There were more male passengers than female, but the survival rate for female passengers was higher.

Passengers from Southampton had the best chance of survival compared to those from Cherbourg & Queenstown.

Survival Rate by Age & Fare

• The density plot shows that children aged 0-5 had a higher survival rate. This suggests that **children** were **prioritized for survival**.

Categorizing Data

Survival by Age Group

Based on the previous insights, 'Age' is a significant feature affecting passenger survival rates. I **re-categorized** it, as fewer categories generally improve machine learning performance. It is clear from the data that the **age group 10 years & under** has a **higher survival rate**.

Age Group

• 0 : <= 10 years

• 1 : <= 30 years

• 2 : <= 50 years

• 3 : <= 70 years

• 4 : else

Survival by Fare Group

'Fare' is another feature that influences passenger survival chances. The data shows that **higher fare categories** are associated with **higher survival rates**.

Fare Group

- 0 : <= 50
- 1 : <= 150
- 2 : <= 200
- 3 : <= 300
- 4 : else

Survival by Family

- In this dataset, family members are categorized into 'SibSp' and 'Parch'. I merged these into a single 'Family' category.
- Passengers without family members had a higher survival rate compared to those with family members.

Feature Engineering

Label Encoding

• Label Encoder is a function used to convert categorical data into numeric data. The data that needs to be converted includes 'Sex' and 'Embarked'.

Before

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Family	FareGroup	AgeGroup
0	0	3	male	22.0	1	0	7.2500	S	1	0	1
1	1	1	female	38.0	1	0	71.2833	С	1	1	2
2	1	3	female	26.0	0	0	7.9250	s	0	0	1
3	1	1	female	35.0	1	0	53.1000	s	1	1	2
4	0	3	male	35.0	0	0	8.0500	S	0	0	2

Sex

0 : Female

1 : Male

Embarked

0 : C (Cherbourg)

1 : Q (Queenstown)

2 : S (Southampton)

fte											
	Survived	Pclas	Sex	ge	SibSp	Parch	Fare	Embarked	Family	FareGroup	AgeGroup
0	0		1	2.0	1	0	7.2500	2	1	0	1
1	1		0	8.0	1	0	71.2833	0	1	1	2
2	. 1		0	6.0	0	0	7.9250	2	0	0	1
3	1		0	5.0	1	0	53.1000	2	1	1	2
4	0		1	5.0	0	0	8.0500	2	0	0	2

Feature Selection

- The selected features (X) for modeling include the columns 'Pclass', 'Sex', 'Family', 'AgeGroup', 'FareGroup', and 'Embarked'.
- The target **(Y)** is the **'Survived'** column.

Х						
	Pclass	5ex	Family	AgeGroup	FareGroup	Embarked
0	3	1	1	1	0	2
1	1	0	1	2	1	0
2	3	0	0	1	0	2
3	1	0	1	2	1	2
4	3	1	0	2	0	2
886	2	1	0	1	0	2
887	1	0	0	1	0	2
888	3	0	1	1	0	2
889	1	1	0	1	0	0
890	3	1	0	2	0	1
889 r	ows × 6	colu	mns			

```
Name: Survived, Length: 889, dtype: int64
```


Splitting Data

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

The data was split into 80% for training (711 data) and 20% for testing (178 data).

	Pclass	Sex	Family	AgeGroup	FareGroup	Embarked
708	1	0	0	1	2	2
240	3	0	1	1	0	0
382	3	1	0	2	0	2
792	3	0	1	1	1	2
683	3	1	1	1	0	2
107	3	1	0	1	0	2
271	3	1	0	1	0	2
862	1	0	0	2	0	2
436	3	0	1	1	0	2
103	3	1	0	2	0	2

Train Data

 Pclass
 Sex
 Family
 AgeGroup
 FareGroup
 Embarked

 281
 3
 1
 0
 1
 0
 2

 435
 1
 0
 1
 1
 1
 2

 39
 3
 0
 1
 1
 0
 0

 418
 2
 1
 0
 1
 0
 2

 585
 1
 0
 1
 1
 1
 2

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

Test Data

Modelling & Evaluation

Logistic Regression

The Logistic Regression model achieved an **accuracy of 78%**, with the following results:

- True Positives (TP): The model correctly predicted 85 positive cases.
- False Positives (FP): The model incorrectly predicted 16 positive cases as negative.
- False Negatives (FN): The model incorrectly predicted 24 negative cases as positive.
- True Negatives (TN): The model correctly predicted 53 negative cases.

Random Forest

The Logistic Regression model achieved an accuracy of 80%, with the following results:

- True Positives (TP): The model correctly predicted 93 positive cases.
- False Positives (FP): The model incorrectly predicted 20 positive cases as negative.
- False Negatives (FN): The model incorrectly predicted 16 negative cases as positive.
- True Negatives (TN): The model correctly predicted 49 negative cases.

Decision Tree

The Logistic Regression model achieved an accuracy of 80%, with the following results:

- True Positives (TP): The model correctly predicted 94 positive cases.
- False Positives (FP): The model incorrectly predicted 20 positive cases as negative.
- False Negatives (FN): The model incorrectly predicted 15 negative cases as positive.
- True Negatives (TN): The model correctly predicted 49 negative cases.

ROC Curve

 Random Forest and Decision Tree exhibit similar performance and slightly better AUC compared to Logistic Regression. A higher AUC indicates that Random Forest and Decision Tree are more effective at distinguishing between classes with lower error rates than Logistic Regression.

Conclusion

Among the three models, Random Forest performs best with an accuracy of 80% and a strong F1score for both classes. It also offers optimal balance between precision and recall, outperforming the Decision Tree, which also has an accuracy of 80%.

Although Random Forest and Decision Tree have the same AUC, the choice may depend on specific needs, such as interpretability (Decision Tree is easier to understand) or other performance metrics.

Thank Youl Have a great day ahead.

