Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1-83 (canceled)

84 (previously presented): A material having a fluorogenic moiety linked to a solid support, said material having the structure:

wherein:

3

R¹, R³, R⁴ and R⁶ are each H; 4 R² is -NHR¹⁵; and 5 R^5 is $-R^{14}$ -SS. 6 7 wherein: R^{14} is $-CH_2C(O)NH-$; 8 R¹⁵ is a member selected from the group consisting of amine protecting 9 groups, -C(O)-AA and -C(O)-P: 10 wherein: 11 12 P is a peptide sequence; AA is an amino acid residue; and 13 14 SS is a solid support.

- 1 85 (previously presented): The material in accordance with claim 84, wherein 2 R¹⁵ is an amine protecting group.
- 86 (previously presented): The material in accordance with claim 85, wherein said amine protecting group is 9-fluorenylmethoxycarbonyl (Fmoc).
- 1 87 (previously presented): The material in accordance with claim 84, wherein 2 R¹⁵ is -C(O)-AA, wherein AA is an amino acid residue.
- 1 88 (previously presented): The material in accordance with claim 84, wherein 2 R¹⁵ is -C(O)-P, wherein P is a peptide sequence.
- 1 89 (previously presented): The material in accordance with claim 84, wherein 2 the solid support is a Rink resin.
- 90 (previously presented): A material having a fluorogenic moiety linked to a solid support, said material having the structure:

4 wherein:

3

5 SS is a solid support, wherein said the support is a Rink resin.

91 (previously presented): A library of fluorogenic peptides comprising sublibraries P1, P2, P3 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises

3 tetrapeptides having the structure:

4

14

1

2

5 wherein:

6 SS is a solid support, and

7 wherein:

for sub-library P1, each AA¹ is a different amino acid of the 20 amino acids, and each of AA²-AA⁴ is an isokinetic mixture of 20 amino acids;

for sub-library P2, each of AA² is a different amino acid of the 20 amino acids, and each of AA¹, AA³ and AA⁴ is an isokinetic mixture of 20 amino acids;

for sub-library P3, each of AA³ is a different amino acid of the 20 amino acids, and each of AA¹, AA² and AA⁴ is an isokinetic mixture of 20 amino acids; and

for sub-library P4, each of AA⁴ is a different amino acid of the 20 amino acids,

and each of AA¹, AA² and AA⁴ is an isokinetic mixture of 20 amino acids.

92 (previously presented): The library in accordance with claim 91, wherein the 2 20 amino acids are the 20 naturally occurring amino acids excluding cysteine and including

3 norleucine.

93 (previously presented): The library in accordance with claim 91, wherein the solid support is a Rink resin.

- 94 (previously presented): A library of fluorogenic peptides comprising sub-
- 2 libraries P1, P2, P3 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises
- 3 tetrapeptides having the structure:

5 wherein:

4

8

9

10

11

12

13

1

2

3

for sub-library P1, each AA¹ is a different amino acid of the 20 amino acids, and each of AA²-AA⁴ is an isokinetic mixture of 20 amino acids;

for sub-library P2, each of AA² is a different amino acid of the 20 amino acids, and each of AA¹, AA³ and AA⁴ is an isokinetic mixture of 20 amino acids;

for sub-library P3, each of AA^3 is a different amino acid of the 20 amino acids, and each of AA^1 , AA^2 and AA^4 is an isokinetic mixture of 20 amino acids; and

for sub-library P4, each of AA⁴ is a different amino acid of the 20 amino acids, and each of AA¹, AA² and AA⁴ is an isokinetic mixture of 20 amino acids.

- 95 (previously presented): The library in accordance with claim 94, wherein the 20 amino acids are the 20 naturally occurring amino acids excluding cysteine and including norleucine.
- 96 (previously presented): A method of determining a peptide sequence specificity profile of an enzymatically active protease, said method comprising:

(a) contacting said protease with a library of peptides according to claim 91 or 3 4 claim 94 in such a manner whereby the fluorogenic moiety is released from the peptide sequence, thereby forming a fluorescent moiety; 5 6 (b) detecting said fluorescent moiety; (c) determining the sequence of said peptide sequence, thereby determining said 7 8 peptide sequence specificity profile of said protease. 1 97 (previously presented): The method according to claim 96, further comprising 2 (d) quantifying said fluorescent moiety, thereby quantifying said protease. 98 (previously presented): The method according to claim 97, wherein said 1

protease is a member selected from the group consisting of aspartic protease, cysteine protease, metalloprotease and serine protease.

99 (previously presented): A library of fluorogenic peptides comprising sublibraries P1, P2, P3 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises hexapeptides having the structure:

5 wherein:

4

2

3

6 SS is a solid support, and

7 wherein:

for each sub-library P1, P2, P3 and P4, AA¹, AA², AA³ and AA⁴ in each of the 8 9 hexapeptides are the same amino acid residues; for sub-library P1, each of AA⁵ is a different amino acid of the 20 amino acids, 10 and each of AA⁶, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids; 11 for sub-library P2, each of AA⁶ is a different amino acid of the 20 amino acids, 12 and each of AA⁵, AA⁷ and AA⁸ is an isokinetic mixture of 20 amino acids; 13 for sub-library P3, each of AA⁷ is a different amino acid of the 20 amino acids. 14 and each of AA⁵, AA⁶ and AA⁸ is an isokinetic mixture of 20 amino acids; and 15 for sub-library P4, each of AA8 is a different amino acid of the 20 amino acids, 16 and each of AA⁵, AA⁶ and AA⁷ is an isokinetic mixture of 20 amino acids. 17

1 100 (previously presented): The library in accordance with claim 99, wherein the 2 20 amino acids are the 20 naturally occurring amino acids excluding cysteine and including 3 norleucine.

101 (previously presented): The library in accordance with claim 99, wherein the solid support is a Rink resin.

102 (previously presented): A library of fluorogenic peptides comprising sublibraries P1, P2, P3 and P4, wherein each of the sub-libraries P1, P2, P3 and P4 comprises hexapeptides having the structure:

$$\begin{array}{c} O \\ NHC - AA^{1} - AA^{2} - AA^{3} - AA^{4} - AA^{5} - AA^{6} - AA^{7} - AA^{8} - AC \\ O \\ O \\ H_{2}N \end{array}$$

5 wherein:

1

2

1

2

3

4

6	for each sub-library P1, P2, P3 and P4, AA ¹ , AA ² , AA ³ and AA ⁴ in each of the
7	hexapeptides are the same amino acid residues;
8	for sub-library P1, each of AA ⁵ is a different amino acid of the 20 amino acids,
9	and each of AA^6 , AA^7 and AA^8 is an isokinetic mixture of 20 amino acids;
10	for sub-library P2, each of AA ⁶ is a different amino acid of the 20 amino acids,
11	and each of AA ⁵ , AA ⁷ and AA ⁸ is an isokinetic mixture of 20 amino acids;
12	for sub-library P3, each of AA ⁷ is a different amino acid of the 20 amino acids,
13	and each of AA ⁵ , AA ⁶ and AA ⁸ is an isokinetic mixture of 20 amino acids; and
14	for sub-library P4, each of AA ⁸ is a different amino acid of the 20 amino acids,
15	and each of AA ⁵ , AA ⁶ and AA ⁷ is an isokinetic mixture of 20 amino acids.
1	103 (previously presented): The library in accordance with claim 102, wherein
2	the 20 amino acids are the 20 naturally occurring amino acids excluding cysteine and including
3	norleucine.
1	104 (previously presented): A method of determining a peptide sequence
2	specificity profile of an enzymatically active protease, said method comprising:
3	(a) contacting said protease with a library of peptides according to claim 99 or
4	claim 102 in such a manner whereby the fluorogenic moiety is released
5	from the peptide sequence, thereby forming a fluorescent moiety;
6	(b) detecting said fluorescent moiety;
7	(c) determining the sequence of said peptide sequence, thereby determining said
8	peptide sequence specificity profile of said protease.
1	105 (previously presented): The method according to claim 104, further
2	comprising (d) quantifying said fluorescent moiety, thereby quantifying said protease.

- 1 106 (previously presented): The method according to claim 105, wherein said 2 protease is a member selected from the group consisting of aspartic protease, cysteine protease, 3 metalloprotease and serine protease.
- 1 107 (previously presented): A library of twenty fluorogenic amino acid amides 2 having the structure:

3

4 wherein:

5 SS is a solid support, and

each AA¹ for the twenty fluorogenic amino acid amides is a different amino acid

7 residue.

- 1 108 (previously presented): The library in accordance with claim 107, wherein 2 the amino acid residues are the 20 naturally occurring amino acids excluding cysteine and
- 3 including norleucine.
- 1 109 (previously presented): The library in accordance with claim 108, wherein 2 the solid support is a Rink resin.
- 1 110 (previously presented): A library of twenty fluorogenic amino acids having 2 the structure:

34 wherein:

5

1

2

3

1

2

3

4

5

6

each AA1 for the twenty fluorogenic amino acids is a different amino acid residue

111 (previously presented): The library in accordance with claim 110, wherein the amino acid residues are the 20 naturally occurring amino acids excluding cysteine and including norleucine..

- 112 (previously presented): A method of determining an amino acid specificity profile of an enzymatically active protease, said method comprising:
- (a) contacting said protease with a library of amino acids according to claim 108 or claim 110 in such a manner whereby the fluorogenic moiety is released from the amino acid, thereby forming a fluorescent moiety;
- (b) detecting said fluorescent moiety;
- 7 (c) determining the identity of the amino acid, thereby determining said amino acid specificity profile of said protease.
- 1 113 (previously presented): The method according to claim 112, further 2 comprising (d) quantifying said fluorescent moiety, thereby quantifying said protease.
- 1 114 (previously presented): The method according to claim 113, wherein said 2 protease is a member selected from the group consisting of aspartic protease, cysteine protease, 3 metalloprotease and serine protease.