Лабораторная работа 4.3.3

Исследование разрешающей способности микроскопа методом Аббе

Татаурова Юлия Романовна 29 марта 2025 г.

Аннотация

В работе предлагается определить периоды сеток сначала по их спектру на удалённом экране, затем по увеличенному с помощью модели микроскопа изображению сеток на экране и, наконец, по результатам измерения разрешающей способности микроскопа, наблюдать явления саморепродукции, пространственной фильтрации и мультиплицирования.

Цель работы

Определение дифракционного предела разрешения объектива микроскопа методом Аббе.

Оборудование

Лазер, кассета с набором сеток разного периода, линзы, щель с микрометрическим винтом, оптический стол с набором рейтеров и крепёжных винтов, экран, линейка.

Теоретическая часть

Предел разрешения оптических систем

Всякая оптическая система, предназначенная для получения изображений, имеет конечный предел разрешения, обусловленный дифракцией световых волн. Разрешающая способность оптического прибора определяется минимальным расстоянием ℓ_{\min} между двумя точками в пространстве предметов, которое прибор может разрешить. Критерий Рэлея устанавливает, что две точки считаются разрешёнными, если максимум дифракционной картины от одной точки совпадает с первым минимумом от другой.

Разрешающая способность иммерсионного микроскопа

Для иммерсионного микроскопа (объект в среде с показателем преломления n) разрешающая способность при некогерентном освещении выражается формулой:

$$\ell_{\min} \approx \frac{0.61\lambda}{n\sin A},\tag{1}$$

где A — апертурный угол объектива, λ — длина волны света. Апертурный угол определяется как угол между оптической осью и лучом, направленным из центра объекта в край линзы (рис. 1).

Дифракция на периодических структурах

При когерентном освещении периодической структуры (например, дифракционной решётки) условие возникновения главных максимумов имеет вид:

$$d\sin\theta_x = m_x\lambda, \quad d\sin\theta_y = m_y\lambda, \tag{2}$$

где d — период решётки, m_x, m_y — порядки дифракционных максимумов, θ_x, θ_y — углы дифракции в горизонтальной и вертикальной плоскостях. Для двумерной сетки (двух скрещённых решёток) дифракционная картина представляет собой матрицу максимумов (рис. 2).

Формирование изображения в микроскопе

В фокальной плоскости объектива F формируется дифракционная картина Фраунгофера (первичное изображение). При установке диафрагмы, пропускающей определённые порядки дифракции $(m=0,\pm 1)$, в плоскости P_2 формируется вторичное изображение. Например:

- Вертикальная щель пропускает максимумы $m_x = 0$, формируя изображение горизонтальных штрихов.
- Горизонтальная щель выделяет $m_y = 0$, воспроизводя вертикальные штрихи.

Это явление называется пространственной фильтрацией.

Критерий разрешения для когерентного освещения

При уменьшении апертуры A волны нулевого порядка фокусируются на краю диафрагмы. Для разрешения необходимо, чтобы угол между волнами 0-го и 1-го порядков составлял 2u. Минимальное разрешаемое расстояние:

$$\ell_{\min} \approx \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},$$
(3)

где D — диаметр диафрагмы, f — фокусное расстояние объектива.

Экспериментальная установка

Схема проекционного микроскопа

Установка включает:

- Лазер с коллимированным пучком, падающим на сетку C.
- Длиннофокусный объектив Л1 $(f \approx 10 \text{ см})$ для формирования первичного изображения в плоскости F.
- Короткофокусную линзу Л2, проецирующую изображение на экран.
- Кассету с сетками различного периода d.
- Щелевые и крисовые диафрагмы в плоскости F.

Методика измерений

1. Калибровка сеток:

• По дифракции Фраунгофера: Измерение расстояния между максимумами на экране с последующим расчётом периода d по формуле:

$$d = \frac{\lambda f}{y},\tag{4}$$

где y — расстояние между максимумами.

• По увеличенному изображению: Прямое измерение периода через увеличение микроскопа.

2. **Определение разрешающей способности:** Подбор минимального размера щели в плоскости F, пропускающей максимумы $m=0,\pm 1$. Расчёт апертурного угла A по формуле:

$$\sin A = \frac{D}{2f},\tag{5}$$

где D — размер диафрагмы. Проверка соответствия с теорией через соотношение $\ell_{\min} pprox \lambda/\sin A$.

3. Пространственная фильтрация:

- Наклон щели позволяет получать изображение наклонной решётки.
- Перестановка сетки и щели вызывает мультипликацию изображения.

Особенности установки

- Для безопасности исключено визуальное наблюдение через окуляр.
- Наличие непериодического объекта (проволочки) для идентификации геометрического изображения.
- Использование крисовой диафрагмы для изменения апертуры.
- ullet Возможность установки масок в плоскости F для демонстрации пространственной фильтрации.

Результаты измерений и обработка данных

Определение периода решёток по их пространственному спектру

Соберём установку согласно описанию. Длина волны излучения лазера $\lambda=532$ Расстояние от сетки до экрана $H=100\pm 2$ см, погрешность объясняется неопределённостью положения сетки внутри кассеты, погрешностью меток на столе, использованных при измерении, и погрешностью прямого измерения. Измерим линейкой на экране расстояние Δx между n+1 максимумами и рассчитаем по второй формуле с учётом $\varphi=\frac{\Delta x}{H}$ период решетки $d=\frac{n\lambda}{\Delta x}H$. Результаты приведены в Таблице 1.

Номер	Δx , cm	n	d, MKM
решётки			
1	22.7	6	20
2	22.6	9	30
3	25.1	20	60
4	22.5	35	117
5	22.7	48	159

Таблица 1.

Дифракция Фраунгофера на двумерной решетке.

Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

Соберём модель микроскопа, добавив линзы согласно Рис. 1. Фокусные расстояния линз $F_1 = \text{мм}, F_2 = \text{мм}.$ Измеряем необходимые расстояния:

$$a_1 = 120 \pm 10,$$

 $a_2 + b_1 = 455 \pm 10,$
 $b_2 = 815 \pm 10,$

Погрешности здесь обусловлены неточностями в положения сеток и линз. Из формулы тонкой линзы $a_2 = \frac{b_2 F_2}{b_2 - F_2} = 25.79$ к откуда $a_2 \approx F_2$, поэтому в дальнейшем будем использовать это значение, следовательно $b_1 = 420 \pm 10$ мм.

Увеличение микроскопа $\Gamma = \frac{b_1 b_2}{a_1 a_2} = 114 \pm 10.$

Повторим измерения периодов изображений в новой конфигурации, погрешности считаются аналогично. Измерение представлены в Таблице 2.

3десь d определялось по формуле $d=\frac{\Delta x}{\Gamma_n}$. Обратим внимание, что значения периодов решётки совпадают в пределах погрешности.

Номер	Δx , см	n	d, mkm
решётки			
1	3.7	16	20
2	15.7	49	28
3	25.3	38	58
4	24.1	18	117
5	23.6	13	159

Таблица 2.

Увеличенное изображение сетки.

Определение периода решёток по оценке разрешающей способности микроскопа

Поместим в фокальной плоскости линзы Π_1 щелевую диафрагму с микрометрическим винтом и определим минимальную толщину D при которой на экране видна двумерная решётка. В этом случае период будет вычисляться по формуле (3) в предельном случае

$$d = \frac{2\lambda F_1}{D}$$

погрешность вычисляется по формуле

$$\sigma_d = d \frac{\sigma_D}{D}.$$

Результаты приведены в Таблице 3.

Номер решётки	D , мм	1/D, мм	d, MKM
1	=	_	=
2	4.14	0.242	28.3
3	1.96	0.510	59.7
4	1.02	0.980	114.7
5	0.81	1.240	144.5

Таблица 3.

Зависимость d = f(1/D).

Через щель проходили только нулевой (по центру) и два первых максимумы, за исключением второй щели, где нулевой максимум был помещён к краю щели. Для первой решётки период таким методом измерить не получилось, так как ширины щели не хватает.

Для проверки теории Аббе построим график $d=f\left(\frac{1}{D}\right)$ со значениями d из части 1, погрешность $\frac{1}{D}$ рассчитывается по формуле

$$\sigma_{1/D} = \frac{\sigma_D}{D^2}$$

Угловой коэффициент прямой из МНК $k=(124\pm8)\cdot10^{-9}{\rm M}^2$, в пределах погрешности он совпадает с теоретическим $2\lambda F_1=117\cdot10^{-9}{\rm M}^2$. Таким образом, теория Аббе подтвердилась.

Пространственная фильтрация и мультиплицирование

Для наблюдения фильтрации на сетке 2 откроем щель так, чтобы она пропускала только максимум нулевого порядка и, поворачивая щель, наблюдаем за изменением картины. Картины представлены на рисунках ниже.

Щель, повернутая на $45^{\circ} (m_x = m_y)$.

Горизонатальная щель $(0, m_y)$.

Схема для наблюдения интерфереционной картины.

Вывод

По измерениям спектров определены дифракционные углы и по теоретическим формулам рассчитаны периоды решеток. Полученные данные сошлись с результатами, полученными по измерениям увеличенных с помощью микроскопа изображений сеток. Построен график зависимости d=f(1/D).

Рис. 1: Схема образования изображения в объективе микроскопа.

Рис. 2: Схема экспериментальной установки: 1 — лазер (ОКГ), 2 — сетка, 3 — объектив Л1, 4 — фокальная плоскость F, 5 — линза Л2, 6 — экран.