

Taller 08, Diferencia de cuadrados y cubos Álgebra 8°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	_Curso:	Fecha:

Guía

A continuación se explican dos casos de factorización a abordar en este taller.

Diferencia de cuadrados

Se presenta como su nombre lo indica cuando existe una diferencia entre dos cantidades o expresiones que son cuadrados perfectos y se factoriza según el siguiente patrón:

$$a^2 - b^2 = (a - b)(a + b)$$

Siempre que se tenga una diferencia de cuadrados perfectos, se factoriza como una suma por una diferencia de sus raíces.

Ejemplo 1

Factorizar $x^2 - 16$

Se observa que tanto x^2 como 16 son cuadrados perfectos, ya que x^2 es el cuadrado de x y 16 es el cuadrado de 4. Luego factorizamos así:

$$x^{2} - 16 = x^{2} - 4^{2}$$
$$= (x - 4)(x + 4)$$

Diferencia de cuadrados suma por diferencia

Ejemplo 2:

Factorizar $4x^2 - 9y^2$

Nuevamente observamos que tanto 4 como x^2 son cuadrados perfectos, así como 9 y y^2 . Más específicamente podemos asumir que $4x^2$ es el cuadrado de 2x y que $9y^2$ es el cuadrado de 3y. Así que factorizamos así:

$$4x^2 - 9y^2 = 2^2x^2 - 3^2y^2$$
 Cada término es cuadrado perfecto
= $(2x)^2 - (3y)^2$ Se expresa como Diferencia de cuadrados
= $(2x - 3y)(2x + 3y)$ Se factoriza

A veces se debe factorizar completamente porque uno de los factores es a su vez una diferencia de cuadrados, como en los siguientes ejemplos

Ejemplo 3:

$$16x^4 - 81y^4$$

Se procede a factorizar como ya sabemos:

$$16x^4 - 81y^4 = 4^2(x^2)^2 - 9^2(y^2)^2$$
 Los términos son C. P.
$$= (4x^2)^2 - (9y^2)$$
 Se expresa como diferencia de C.P.
$$= (4x^2 - 9y^2)(4x^2 + 9y^2)$$
 El primer factor es una Dif. de C.P.
$$= [(2x)^2 - (3y)^2](4x^2 + 9y^2)$$
 Se expresa el primer factor como una D. de C.P.
$$= (2x - 3y)(2x + 3y)(4x^2 + 9y^2)$$

Quiz conceptual

Para los siguientes enunciados escriba V o F según corresponda.

- a. Un binomio que tiene dos cuadrados perfectos que se restan es una diferencia de cuadrados.
- La suma de dos cuadrados es factorizable usando enteros.
- c. La suma de dos cubos se puede factorizar usando enteros.
- d. La diferencia de dos cuadrados es factorizable.
- e. La diferencia de dos cubos es factorizable
- f. Para factorizar es aconsejable inspeccionar que se pueda aplicar factor común en primera instancia.
- g. El polinomio $4x^2+y^2$ se factoriza como (2x+y)(2x+y)

- h. La factorización completa de $y^4 81$ es $(y^2 + 9)(y^2 9)$
- i. La ecuación $x^2 = -9$ no tiene soluciones reales.
- j. La ecuación abc = 0 si y sólo sí a = 0

Ejercicios

Factorice usando el caso diferencia de cuadrados.

- 1. $x^2 9$
- 2. $4x^2 49$
- 3. $x^2 64y^2$
- 4. $x^2y^2 a^2b^2$
- 5. $x^6 9u^2$

- 6. $25 49n^2$
- 7. $(3x+5y)^2-y^2$
- 8. $x^2 (y-5)^2$
- 9. $16s^2 (3t+1)^2$
- 10. $(x-1)^2 (x-8)^2$

Factorice cada uno de los siguientes polinomios completamente. Indique cuáles no son factorizables usando coeficientes enteros. No olvide los casos vistos antes, como "factor común"

- 11. $8x^2 72$
- 12. $7x^2 + 28$
- 13. $5y^2 80$
- 14. $x^3y^2 xy^2$
- 15. $x^4 16$
- 16. $4x^2 + 9$

- 17. $20x^3 + 45x$
- 18. $12x^3 27xy^2$
- 19. $1 16x^4$
- $20. \ 20x 5x^3$
- 21. $9x^2 81y^2$
- 22. $2x^5 162x$

Para los siguientes ejercicios, use la suma o diferencia de cubos para factorizar.

- 23. $a^3 27$
- 24. $x^3 + 8$
- 25. $8x^3 + 27y^3$

- 26. $1 8x^3$
- $27. \ 125x^3 + 27y^3$
- 28. $x^6 + y^6$

Para los problemas siguientes, encuentre todos los números reales que son solución de cada ecuación.

29.
$$x^2 - 1 = 0$$

30.
$$4y^2 = 25$$

31.
$$3x^2 - 108 = 0$$

32.
$$4x^3 = 64x$$

$$33. \ 54 - 6x^2 = 0$$

34.
$$x^5 - x = 0$$

35.
$$4x^3 + 12x = 0$$

Para los problemas siguientes, plantee una ecuación y soluciónela para resolver el problema.

- 36. El cubo de un número es igual a su cuadrado. Encuentre el número
- 37. La suma de las áreas de dos cuadrados es $26 m^2$. El lado del cuadrado grande es cinco veces el lado del cuadrado pequeño. Encuentre las dimensiones de cada cuadrado.
- 38. Suponga que el largo de un rectángulo es $1\frac{1}{3}$ veces su ancho. El área del rectángulo es $48~cm^2$. Encuentre el largo y ancho del rectángulo.
- 39. La superficie total de un cono circular recto es 108π cm². Si la altura del cono es dos veces la longitud del radio de la base, encuentre la longitud del radio.
- 40. La altura de un triángulo es $\frac{1}{3}$ la longitud del lado sobre el que se dibuja la altura. Si el área del triángulo es 6 cm², encuentre su altura.