Colle 0

Conception de la commande d'un robot chirurgical – Sujet

CCS PSI 2015.

On s'intéresse au bras esclave d'un robot chirurgical.

Objectif

Justifier la structure du bras esclave par rapport au cahier des charges.

On donne le schéma cinématique partiel du bras esclave.

Paramétrage et hypothèses

Solide	Caractéristiques	Situation géométrique/commentaires
1'	$\overrightarrow{A'B'} = -h_1 \vec{x}_0$	repère attaché : $R'_1(A', \vec{x}_0, \vec{y}_1', \vec{z}_1')$
2'		paramètres d'orientation : $\varphi(t)=(\vec{y}_0,\vec{y}_1{}')=(\vec{z}_0,\vec{z}_1{}')$ repère attaché : $R_2'(A',\vec{x}_2{}',\vec{y}_2{}',\vec{z}_1{}')$
		paramètres d'orientation : $\delta(t) = (\vec{x}_1{'}, \vec{x}_2{'}) = (\vec{y}_1{'}, \vec{y}_2{'})$
4'	$\overline{B'D'} = h_2 \vec{y}_2'$ $\overline{D'G'} = -h_4 \vec{x}_0$	
7'	$\begin{aligned} \overline{H'P'} &= -l_0 \vec{y}_2' \\ \overline{G'P'} &= -\lambda(t) \vec{y}_2' \end{aligned}$	repère attaché : $R_7'(H', \vec{x}_7', \vec{y}_2', \vec{z}_7')$
	$\overrightarrow{G'P'} = -\lambda(t) \overrightarrow{y}_2{}'$	paramètres d'orientation : $\gamma(t)=(\vec{x}_2{}',\vec{x}_7{}')=(\vec{z}_2{}',\vec{z}_7{}')$
8'	masse et inertie du motoréducteur (2) négligées inertie autour de l'axe de rotation du moteur négligée	
	rapport de réduction (ou de transmission) : k_2 tel que $ k_2 < 1$	
	$\mathrm{rayon}: r_8'$	

 $\overrightarrow{F'E'} = \overrightarrow{G'C'} \; ; \; \overrightarrow{F'G'} = \overrightarrow{E'C'} \; ; \; \overrightarrow{D'B'} = \overrightarrow{C'A'} \; ; \; \overrightarrow{D'C'} = \overrightarrow{B'A'}.$

Le point T est situé à l'intersection des axes $(A', \overrightarrow{x_0})$ et $(P', \overrightarrow{y_2'})$. Le vecteur vitesse du point T de T' par rapport à T'0, noté T'0, doit être colinéaire à T'2.

Question 1 Tracer le graphe de liaison.

Question 2 En s'appuyant sur le schéma cinématique, calculer $\overrightarrow{V(P,7'/0)}$ par dérivation du vecteur position.

Question 3 Exprimer $\overline{V(T,7'/0)}$ dans la base $(\overrightarrow{x_2'},\overrightarrow{y_2'},\overrightarrow{z_2'})$ en fonction des données de l'énoncé. Il est conseillé d'utiliser la relation de Varignon en passant par le point P'.

Question 4 Exprimer le torseur cinématique de 7'/0 réduit en T, par ses composantes dans la base $(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ et donner la liaison équivalente entre 7' et 0 au point T.

Question 5 Quelle exigence du cahier des charges (document réponse) justifie cette structure? Expliquer sans calcul.

Question 6 Mettre à jour le graphe de liaisons et donner le degré d'hyperstatisme du modèle. Vous utiliserez la méthode statique et la méthode cinématique.

Question 7 Quel peut être l'avantage de disposer d'un système hyperstatique?

Question 8 En conservant l'architecture du mécanisme, proposer des modifications de liaisons permettant de rendre le modèle isostatique.

