How many QCD muons with a given p_T cut?

Spectrum for "physics muons"

Sample	cross-section	k in $Ae^{-k pT}$	$(A/k)e^{-k \cdot 20 \text{ GeV}}$
QCD 0-30 GeV	54.71 mb	0.30/GeV?	0.4520?
QCD 30-50 GeV	0.1553 mb	0.25/GeV	0.0042
QCD 50-80 GeV	0.0216 mb	0.17/GeV	0.0042
QCD 80 GeV– ∞	0.0037 mb	0.11/GeV	0.0037

30–50 GeV: 0.46% have muons 50–80 GeV: 1.1% have muons 80 GeV– ∞ : 2% have muons

0–30 GeV: <0.01% have muons. Forget about that.

Fraction with $p_T > 20$ GeV QCD 30–50 GeV 3% QCD 50–80 GeV 9% QCD 80 GeV $-\infty$ 21%

$$\frac{\sigma_{\text{QCD}\mu}}{\sigma_{\text{"physics"}\mu}} = \frac{0.000058 \text{ mb}}{7.1 \text{ nb}} = 8.2$$

Do that out more explicitly, for the record

$$\frac{\sigma_{\text{QCD}\mu}}{\sigma_{\text{"physics"}\mu}} = (0.1553 \text{ mb} \cdot 0.0046 \cdot 0.03 + 0.0216 \text{ mb} \cdot 0.011 \cdot 0.09 + 0.0037 \text{ mb} \cdot 0.02 \cdot 0.21)/(7.1 \text{ nb}) = \frac{0.000058 \text{ mb}}{7.1 \text{ nb}} = 8.2$$

where each term in the numerator has three factors:

- cross-section of the QCD process
- fraction with $p_T > 6$ GeV muons

- ▶ 100k "physics" muon events is 25 pb⁻¹ and quite enough for a good alignment (2.5 pb⁻¹ is barely enough).
- ▶ To get the same muons from a realistic soup with a 20 GeV cut, anticipate (8.2 + 1) times as many = 1 million
- ▶ 17kB per muon \rightarrow 16GB? That's not very large.
- ▶ If we try to go down to a $p_T > 10$ GeV cut (redo all math), we find QCD sample is $61 \times$ the "physics" sample $\rightarrow 6.1$ million $\rightarrow 100$ GB... that's something.

cut	events	disk space	alignment time/iteration
10 GeV	6.1 million	100 GB	76.3 hours
15 GeV	2.3 million	37 GB	28.7 hours
20 GeV	0.94 million	16 GB	11.8 hours
25 GeV	0.45 million	7.3 GB	5.6 hours
30 GeV	0.25 million	4.0 GB	3.1 hours
35 GeV	0.17 million	2.8 GB	2.1 hours
40 GeV	0.14 million	2.3 GB	1.8 hours

We want realistic soups of the 15 GeV cut, 25 GeV, and 35 GeV. This will cost 50 GB. We want the following features:

- ▶ Statistically independent samples: *different* events
- Miscalibrated chambers (doesn't hurt: bring it on!)
 - ▶ Realistically misaligned tracker (only ONE times the short-term scenario, or the 10 pb⁻¹ sample, whichever is most appropriate)
- directions/angles

 Chambers misaligned 3 mm and 1 mrad in all

▶ Wheels/disks misaligned 3 mm and 1 mrad in all

- directions/angles \blacktriangleright CSC layers misaligned 191 μ m in x, 335 μ m in y and
- 0.04 mrad in ϕ_z
- No DT layer/superlayer misalignment
 The events can come from the "QCDmu_Pt_30_50".

"QCDmu_Pt_50_80", "QCDmu_Pt_80_120", "QCDmu_Pt_120_170", "QCDmu_Pt_170_230" GEN-SIM samples.

What will we do with them?

- ▶ Wheel/disk alignment in each of the three samples with a few thousand global muons: well under an hour.
- ▶ Global muon alignment on each sample (with deweighting). 1 iteration = 28.7 hours, 5.6 hours, 2.1 hours in parallel. Actually, break each of these samples into three parts: 90%, 9%, and 1% of the events, so you have 9 globalmuon jobs.
- ➤ Standalone muon alignment on 1/10th of the 15 GeV cut, half of the 25 GeV cut, all of the 35 GeV cut (NO deweighting). 7 iterations = 20.1 hours, 19.6 hours, 14.7 hours in parallel. Do the 90%/9%/1% thing, so you have 9 standalonemuon jobs running.
- ▶ Global muon alignment of layers with the three samples in parallel: 28.7 hours, 5.6 hours, 2.1 hours *after* the chamber alignment is done. 90%/9%/1% makes for 9 layer jobs. The clock is now at 2.5 days and we have been using 18 CPUs.
- ▶ When they are done, re-reconstruct *N* events in each of the 27 conditions. NO APEs!!!