

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

G01N 33/00	A2	 (11) Internationale Veröffentlichungsnummer: WO 98/45700 (43) Internationales Veröffentlichungsdatum: 15. Oktober 1998 (15.10.98)
(21) Internationales Aktenzeichen: PCT/DE (22) Internationales Anmeldedatum: 8. April 1998 (6 (81) Bestimmungsstaaten: US, europäisches Patent (AT, BE, CH CY, DE, DK, ES, FL FR, GB, GR, IF, IT, LIJ, MC, NI
(30) Prioritätsdaten: 197 14 558.2 9. April 1997 (09.04.97) (71)(72) Anmelder und Erfinder: ENGELS, Joachi	m, <u>v</u>	veröffentlichen nach Erhalt des Berichts.
[DE/DE]; Feldbergstrasse 1, D-61476 Kronber WÖRNER, Karlheinz [DE/DE]; Feldbergstra D-63303 Dreieich (DE). FAULSTICH, Konrad [Brunnenweg 3, D-36115 Ehrenberg (DE). BRIL nelore [DE/DE]; Kastanienweg 7 F, D-61462 Ko (DE).	sse 1 DE/DE L. Hai	
(74) Anwalt: SCHULER, Peter, Arnulfstrasse 25, I München (DE).	D-8033	

(54) Title: METHOD FOR THE MASS SPECTROMETRIC SEQUENCING OF BIOPOLYMERS

(54) Bezeichnung: VERFAHREN ZUR MASSENSPEKTROMETRISCHEN SEQUENZIERUNG VON BIOPOLYMEREN

(57) Abstract

The invention relates to a new method for sequencing biopolymers by mass spectrometry. The sequencing of biopolymers is either lengthy or requires exact determination of the mass of the fragments, which is difficult, especially in the case of long polymers. The speed of hydrolysis of phosphodiester, -peptide or -glycoside bonds with exo/endonucleases, -peptidases, -glycosidases or other hydrolytically acting substances is used in the inventive method for the sequence analysis of nucleic acids or other biopolymers. Separation and detection of the fragments produced take place by mass spectrometry by determining the mass and the different peak intensities. The main advantage of the method is that an exact determination of the mass is no longer necessary, and also that low-resolution mass spectrometers can be used. Furthermore, analysis and separation of fragments is extremely rapid, as there is no electrophoresis and the sequence of modified nucleic acids can be determined. A further advantage is that unmarked nucleic acids can be used and no radioactivity is need. The method can be conducted in parallel with a simultaneous sequence analysis of various nucleic acids, which increases sequencing speed. The method can also be used for detecting and determining organisms (fingerprint, footprint), whereby the finger and footprints are more precise than in previous methods: both cleavage fragments are detected after hydrolysis of a phophodiester bond, whereas hitherto known methods could detect only a marked fragment. Finally, the method can contribute to elucidation of the secondary structure of nucleic acids by mass spectrometry. These principles can also be applied to sequencing or secondary structure determination of other biopolymers, like, for example, peptides and oligosaccharides.

(57) Zusammenfassung

Es wird ein neues Verfahren zur Sequenzierung von Biopolymeren mit Massenspektrometrie beschrieben. Die Sequenzierung von Biopolymeren ist entweder langwierig oder benötigt eine genaue Massenbestimmung von Fragmenten. Dies ist vor allem für lange Polymere schwierig. Die Geschwindigkeit der Hydrolyse von Phosphodiester-, Peptid- oder Glycosidbindungen mit Exo-/Endonukleasen, -peptidasen, -glycosidasen oder anderen hydrolytisch wirkenden Substanzen wird in unserem Verfahren zur Sequenzanalyse von Nukleinsäuren oder anderen Biopolymeren herangezogen. Trennung und Detektion der erzeugten Fragmente erfolgt mit Massenspektrometrie durch Bestimmung der Masse und unterschiedlichen Peakintensitäten. Der primäre Vorteil der Methode liegt darin, daß keine exakte Massenbestimmung mehr notwendig ist und auch Massenspektrometer mit geringer Auflösung verwendet werden können, Analyse und Trennung der Fragmente extrem schnell sind, da sie elektrophoresefrei sind und die Sequenz modifizierter Nukleinsäuren bestimmt werden kann. Weitere Vorteile sind, daß unmarkierte Nukleinsäuren eingesetzt werden können und keine Radioaktivität benötigt wird. Die Methode kann durch gleichzeitige Sequenzanalyse mehrerer Nukleinsäuren parallelisiert werden, wodurch die Sequenziergeschwindigkeit steigt. Die Methode kann weiterhin zur Erkennung und Bestimmung von Organismen herangezogen werden (Fingerprint, Footprint), wobei Finger- und Footprint genauer sind als bei bisherigen Methoden: Es werden nach der Hydrolyse einer. Phosphodiesterbindung beide Spaltfragmente detektiert, während herkömmliche Verfahren nur ein markiertes Fragment detektieren können. Schließlich kann die Methode zur Aufklärung der Sekundärstruktur von Nukleinsäuren mit Massenspektrometrie beitragen. Diese Prinzipien lassen sich auch auf die Sequenzierung bzw. Sekundärstrukturbestimmung anderer Biopolymere anwenden, wie z.B. Peptide und Oligosaccharide.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	12	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Osterreich	FR	Prankreich Prankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Tschad
BB	Barbados	GH	Ghana	MG	Madagaskar		Togo
BE	Belgien	GN	Guinea	MK	-	TJ	Tadschikistan
BF	Burkina Faso	GR	Griechenland	MIK	Die ehemalige jugoslawische	TM	Turkmenistan
BG	Bulgarien	HU	Ungam	ML	Republik Mazedonien	TR	Türkei
BJ	Benin	IE	Irland		Mali	TT	Trinidad und Tobago
BR	Brasilien	iL	Israel	MN	Mongolei	UA	Ukraine
BY	Belarus	IS	Island	MR	Mauretanien	UG	Uganda
CA	Kanada	IT		MW	Malawi	US	Vereinigte Staaten von
CF	Zentralafrikanische Republik		Italien	MX	Mexiko		Amerika
CG	Kongo	JP	Japan	NE	Niger	UZ	Usbekistan
CH	Schweiz	KE	Kenia	NL	Niederlande	VN	Vietnam
CI		KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zur massenspektrometrischen Sequenzierung von Biopolymeren

Beschreibung

5

10

15

20

Die zunehmenden Aktivitäten in der Forschung von Nukleinsäuren, besonders von Ribonukleinsäuren sowie von Peptiden und Oligosacchariden in den letzten Jahren, erfordern eine schnelle Standard-Sequenziermethode, die auch Modifikationen detektieren kann. Bisherige Methoden für die Sequenzierung von RNA beruhen auf zweidimensionalen chromatographischen Methoden 1.3, Maxam-Gilbert-Sequenzierung⁴⁻⁷ oder Reverse Transkriptase Sanger Sequenzierung^{8,9}. Neuere Entwicklungen benutzen Massenspektrometrie zur Primärstrukturbestimmung¹⁰. Eine Reihe von Arbeiten in den letzten Jahren haben sich mit dem physikalischen Abbau von Oligonukleotiden beschäftigt, wie z. B. Tandem Massenspektrometrie mit Elektrospray Ionisierung, ESI (CID, collision induced dissociation)¹¹⁻¹³, enzymatische Reaktionen unter Verwendung von Exonukleasen 10,14 oder Oligonukleotid-Aufbau mit Polymerasen^{15,16} und physikalische spontane Fragmentierung wie "nozzle skimmer dissociation" (NS) von ESI generierten Nukleinsäure Ionen 17,18 oder spontane Dissoziation der Nukleinsäuren nach Infrarot-Laser Beschuß einer in einer Matrix kristallisierten Probe 18-24. Diese Methoden versagen aber bei der Sequenzierung von RNA, da die Nukleotide Uridin (U, 306,17) und Cytidin (C, 305,18) fast gleiche Massen besitzen. Deshalb wurde argumentiert, daß die Sequenzierung von RNA durch Exonuklease Abbau (Verdau) und Detektion der erhaltenen Fragmente mit Massenspektrometrie nicht möglich sei²⁵.

25

Wir beschreiben hier eine Methode, mit der man RNA durch Exonukleaseverdau, Trennung und Detektion der erzeugten Fragmente mit Massenspektrometrie, sequenzieren kann. Die Methode kann besonders nützlich sein für die Primärstrukturbestimmug von RNA (oder auch DNA), die länger als 20 Basen ist oder modifizierten Nukleinsäuren, da die Auflösung von Massenspektrometern ein limitierender Faktor für die Sequenzanalyse längerer Nukleinsäurefragmente darstellt. Sie kann auch wertvoll bei der Bestimmung der Sekundärstruktur von Nukleinsäuren sein. Die Nukleinsäurefragmente werden durch unterschiedliche

Massen, der beim Verdau von Exonukleasen (vornehmlich 5'→3'-Exonuklease aus Kalbsmilz und 3'→5'-Exonuklease aus Schlangengift von crotalus durissus) austretenden Nukleotide, massenspektrometrisch bestimmt. U und C werden aber durch unterschiedliche Peakintensitäten im Massenspektrum erkannt. Die Unterschiede in den Peakintensitäten werden durch unterschiedliche Geschwindigkeiten bei der Hydrolyse der Phosphodieseterbindungen durch das Enzym hervorgerufen. Dadurch werden Fragmente, die am 5'-Ende ein C enthalten durch 5'→3'-Phosphodiesterase weniger schnell abgebaut und liegen deshalb in viel größeren Konzentrationen vor als z.B. 5'-U enthaltende Fragmente. Die gleiche Beobachtung wird auch für 5'-A-Fragmente gemacht. Adenosin ist jedoch auch durch seine Masse von den anderen Nukleotiden leicht zu unterscheiden. Es ist möglich mehrere Nukleinsäuren gleichzeitig dieser Enzymkinetik zu unterwerfen, um die Sequenziergeschwindigkeit zu erhöhen. Auch der Einsatz von basenspezifischen Exo-/Endonukleasen kann zur Sequenzanalyse und zur schnellen Erkennung und Bestimmung von Organismen, z. B. Viren herangezogen werden, deren RNA oder DNA einem "Fingerprinting" (Verdau von RNA oder DNA mit Exo-/Endonukleasen, die nicht an jedem Nukleotid basenspezifisch schneiden) oder "Footprinting" (Verdau von RNA oder DNA, die mit Nukleinsäure fremden Molekülen wechselwirken und der Hydrolyse mit Exo-/Endonukleasen ausgesetzt werden) unterworfen wird. Die Trennung und Detektion der erzeugten Fragmente durch Massenspektrometrie kann so z.B. zur Prävention von Seuchen oder zur Bestimmung von Organismen und biologischen Waffen eingesetzt werden. Fingerund Footprint sind genauer als bisherige Methoden: Es werden nach der Hydrolyse einer Phosphodiesterbindung beide Spaltfragmente detektiert, während herkömmliche Verfahren nur das markierte Fragment detektieren können. Eine Sekundärstrukturvorhersage von Nukleinsäuren ist schließlich dadurch möglich, daß die Enzyme oft bevorzugt an einzelsträngigen, linearen Bereichen schneiden. Somit können Domänen, Sekundär- und Tertiärstrukturen wie z. B. 'Hairpins' oder 'internal loops' an ihren doppelsträngigen Bereichen erkannt werden.

30

5

10

15

20

25

Diese Prinzipien lassen sich auch auf die Sequenzierung bzw. Sekundärstrukturbestimmung anderer Biopolymere anwenden, wie z.B. Peptide und Oligosaccharide. Die Methode ist sowohl mit MALDI als auch mit DE-MALDI^{26,27} durchführbar.

Beispiele

Beispiel 1: Sequenzierung eines 8mers mit 5'→3' Phosphodiesterase und (siehe Fig. 1)

Sequenzierung eines 8mers mit mit RNase CL3 (siehe Fig. 2)

10 Tabelle 1: Massen und Sequenzen (5'→3'Richtung) der Sequenzierfragmente eines 8mers, die durch enzymatischen Verdau erzeugt wurden

a) mit 5'→3' Phosphodiesterase (aus Kalbsmilz)

15

	Peak	Sequenz	Masse [Da]	Massendifferenzen [Da] (Peak x-Peak (x + 1))
	1	CAUGUGAC	2503,7	
	2	AUGUGAC	2199,1	304,6
	3	UGUGAC	1871,1	328,0
20	4	GUGAC	1565,9	305,2
	5	UGAC	1221,3	344,6
	6	GAC	915,3	306,0
	7	AC	571,1	344,2

25

b) mit RNase CL3 (aus Hühnerleber)

	Peak	Sequenz	Masse	Massendifferenzen (Da)
			[Da]	(Peak x-Peak $(x + 1)$)
30	2	AUGUGAC	2199,8	/

Experimentelles:

5

10

15

20

25

Für alle Beispiele der massenspektrometrischen RNA Sequenzierungen gilt, falls nicht anders angegeben: Linear kontinuierliche MALDI-TOF Massenspektrometrie wurde mit einem Fisons VG TOF spec Massenspektrometer (8mer, 9mere RNA und DNA, 16mer, 22mer, 120mer) und DE-MALDI-TOF Messungen mit einem PerSeptive Biosystems Voyager Massenspektrometer (16mer) durchgeführt, die einen UV Stickstofflaser mit einer Emissionsfrequenz von 337nm enthalten. Die Laser Pulsbreite ist 4 ns. Die Spektren wurden im negativ Modus aufgenommen mit Ausnahme des 16mers und des 32 mers. Diese wurden im positiv Modus 2,4,6-Trihydroxyacetophenon/Ammoniumcitrat wurde in allen Sequenzierexperimenten als Matrix verwendet. Herstellung der Matrix: Lösung 1 (2,4,6-Trihydroxyacetophenon gesättigt in Ethanol:Wasser, 1:1) und Lösung 2 (0,1 M Ammoniumcitratin Wasser ~ pH 5,5) werden im Verhältnis 2:1 gemischt. Enzyme wurden von Boehringer Mannheim bezogen: 5'→3' Phosphodiesterase aus Kalbsmilz: Das Enzym greift das Oligonukleotid am 5'-Ende an und hinterlässt 3' Nukleotide. 3'→5' Phosphodiesterase aus crotalus durissus: Das Enzym greift das Oligonukleotid am 3'-Ende an und hinterlässt 5' Nukleotide. RNase CL3 aus Hühnerleber: Das Enzym spaltet RNA bevorzugt an Cp/N-Bindungen und produziert Fragmente mit 3' endständigem Cytidinphosphat. Ap/N- und Gp/N-Bindungen werden viel langsamer hydrolysiert, Up/N-Bindungen sehr selten. RNase CL3/Pufferlösung (denaturierend): 2 μ l RNase CL3 (0,2U/ μ l) + 6 μ l 8 M Harnstoff in Wasser resultieren in 8 μ l 50 mU/ μ l Enzymlösung. 3' \rightarrow 5'-Phosphodiesterase/Pufferlösung: 2 μ l (4 mU/ μ l) 3' \rightarrow 5'-Phosphodiesterase + 18 μ l 0.1 M Ammonium citrat, pH 5,5 resultieren in 20 μ l 0.2 mU/ μ l Enzymlösung. Sequenzen der untersuchten RNA-Stücke waren wie folgt:

8mer: 5'-HO-CAUGUGAC-OH-3':

9mer (RNA): 5'-HO-GCAUGUGAC-OH-3';

9mer (DNA): 5'-HO-GTCACATGC-OH-3';

30 16mer: 5'-HO-GCGUACAUCUUCCCCU-OH-3';

22mer: 5'-HO-GCUCUUUUCU*UUUUCUUUUCC-OH-3'; (U* = 13 C markiertes

Uridin an allen fünf Kohlenstoffatomen des Zuckerbausteins);

120mer (5s-ribosomale RNA): 5'-pUGCCUGGCGGCCGUAGCGCGGUGGUCCCAC CUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUG

35 UGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU-OH-3'.

In allen Experimenten wurden Proben von je 1μ l nach einer Inkubationszeit von 1, 3, 6, 10, 20 und 60 Minuten genommen (es sind meist nicht alle Spektren

Tabelle 2:

30

5

gezeigt). Die Proben wurden mit der Matrix im Verhältnis 1:1 gemischt, auf die Probenplatte des Spektrometers pipettiert und ca. 20 Minuten an der Luft getrocknet. Die Trocknungs- und Kristallisationszeit kann durch vorsichtiges Anfönen verkürzt werden. Der enzymatische Verdau stoppt, wenn die Proben mit der Matrix vermischt werden.

	RNA 8n	ner (0,1 OD)		9,0 <i>μ</i> Ι						
	5′→3′-P	hosphodiesterase (24	mU)	6,0 µl						
10	Σ			15,0 μΙ						
	Inkubat	ionstemperatur:	22°C							
	Inkubat	ionszeit:	6 Minuten							
	RNA 8n	ner (0,1 OD)	9,0 <i>µ</i> l							
15	RNase (CL3/Pufferlösung (400) mU; denaturierend)	8,0 <i>µ</i> l						
	Σ			17,0 µI						
	Inkubati	ionstemperatur:	50°C							
20	Inkubati	ionszeit:	10 Minute	n						
25	Beispiel 2:	Sequenzierung eines Fig. 3)	16mers mit 5'→3' F	Phosphodiesterase (siehe						
		Sequenzierung eines Fig. 4)	16mers mit 3'→5' P	Phosphodiesterase (siehe						

eines 16 mers (aufgenommen mit DE-MALDI)

Massen und Sequenzen (5'→3'Richtung) der Sequenzierfragmente

a) mit 5'→3' Phosphodiesterase (aus Kalbsmilz)

5	Peak	Sequenz	Masse	Masse	Massendifferenzen [Da]
			berechnet	gefunden	(Peak x-Peak (x + 1))
			[Da]	[Da]	
	1	GCGUACAUCUUCCCCU	4954, 0	4954,2	
	2	CGUACAUCUUCCCCU	4608,8	4609,1	345,1
	3	GUACAUCUUCCCCU	4303.6	4304,0	305,1
	4	UACAUCUUCCCCU	3958,4	3959,2	344,8
10	5	ACAUCUUCCCCU	3652,2	3652,7	306,5
	6	CAUCUUCCCCU	3323,0	3323,6	329,1
	7	AUCUUCCCCU	3017,8	3018,6	305,0
	8	ucuuccccu	2688,6	2689,1	329,5
	9	cuuccccu	2382,4	2383,0	306,1
15	10	uuccccu	2077,2	2077,7	305,3
	11	uccccu	1771,0	1771,9	305,8
	12	ccccu	1464,8	1465,7	306,2
	13	cccu	1159,6	1160,2	305,5
	14	ccu	854,4	855,5	304,7
20	Į.	' '	l		

b) mit 3'→5' Phosphodiesterase (aus crotalus durissus)

	Peak	Sequenz	Masse berechnet	Masse gefunden	Massendifferenzen [Da]
_			[Da]	(Da)	(Peak x-Peak $(x + 1)$)
5	1	GCGUACAUCUUCCCCU	4954,0	4954,2	
	2	GCGUACAUCUUCCCC	4647,8	4648,5	305,7
	3	GCGUACAUCUUCCC	4342,6	4343,7	304,8
	4	GCGUACAUCUUCC	4037,4	4038,6	305,1
	5	GCGUACAUCUUC	3732,2	3733,4	305,2
10	6	GCGUACAUCUU	3427,0	3427,9	305,5
	7	GCGUACAUCU	3120,8	3122,2	305,7
	8	GCGUACAUC	2814,6	2815,7	306,5
	9	GCGUACAU	2509,4	2510,4	305,3
	10	GCGUACA	2203,2	2204,4	306,0
15	11	GCGUAC	1874,0	1874,9	329,5

Experimentelles:

20	RNA 16mer (0,1 OD)	15,2 <i>µ</i> l
	5'→3'-Phosphodiesterase (24mU)	6,0 <i>µ</i> l
	Σ	21,2 µl
25	Inkubationstemperatur: 22°C	
	RNA 16mer (0,1 OD)	15,2 <i>µ</i> l
	3'→5'-Phosphodiesterase/Pufferlösung (0,6 m	
30	Σ	18,2 µl
	Inkubationstemperatur: 40°C	

5

Beispiel 3: Sequenzierung eines 22mers mit 5'→3' Phosphodiesterase (siehe

Fig. 5)

Sequenzierung eines 22mers mit 3'→5' Phosphodiesterase (siehe

Fig. 6)

Tabelle 3: Massen und Sequenzen (5'→3' Richtung) der Sequenzierfragmente

eines 22mers

mit 5'→3'Phosphodiesterase (aus Kalbsmilz)

	Massendifferenzen (Da) (Peak x-Peak (x + 1))	346,3	305,8 306,7	306,3 307 6	308,1	307,7	307,2	306,3	310,3	307,1	307,4	307,2	306,4	308,1	305,8	308,4	307,2	
mit 5'→3'Phosphodiesterase (aus Kalbsmilz)	Masse (gefunden) [Da]	6712,2° 6365,9	6060,1 5753,4*	5447,2	4831,5	4523,8	4216,6"	3910,3	3599,0	3291,9	2984,5	2677,3	2370,9	2062,8	1757,0	1448,6	1141,4	
	Masse (berechnet) (Da)	6712,1	6061,7	5450,3	4837,9	4531,7	4225,5	3920,3	3609,1	3302,9	2996,7	2690,5	2384,3	2078,1	1772,9	1467,7	1161,5	•
	Sequenzen	cucuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	COOUDEN*UDUUCUUCUUCUUCUUCUUUCUUUUUUUUUUUUUUUUU	חחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחח	ววกกกวกกกกา,กวกก	າວກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸກຸ	co*unuucuuucc	0.0000000000000000000000000000000000000	***************************************	חחחחחחחחח	חחחכחחחככ	חחכחחחככ	חכחחחמכ	CNNNCC	חחחחככ	CONTRACT	OUCC	•
a)	Peak	- 2	w 4	ນບ	^	ω	6	5	=	12	13	14	15	16	17	18	19	•
		വ		5	<u>-</u>			15					20					25

ERSATZBLATT (REGEL 26)

_
S
~
ير
S
S
=
_
O
S
\supset
=
Ф
<u> </u>
0
-
ပ
S
\supset
ā
<u></u>
മാ
Ñ
ū
~
9
==
٠,
æ
=
Ō
0
_
$\overline{}$
=
9)
0
_
靣
_
•
D
Ř
T
•
က
m
=
≻
_

9

Massendifferenzen (Dal	(Peak x-Peak (x + 1))		303,8	305,9	304,6	304,6	307,7	306,7	304,1	307,7	307,1	306,8	306,8	307,4	312,1	305,8	307,9	306,4	307,1	6,908	305,6	307,3
Masse	<u> </u>	6711,1"	6407,3	6101,4	5796,8	5492,2	5184,5	4877,8	4573,7	4266,0	3958,9	3652,1	3345,3	3037,9	2725,8	2420,0	2112,1	1805,7	1498,6	1191,7	886,1	578,8
Masse	(berechnet) [Da]	6712,1	6406,9	6101,7	5795,5	5489,3	5183,1	4876,9	4571,7	4265,5	3959,3	3653,1	3346,9	3040,7	2729,5	2424,3	2118,1	1811,9	1505,7	1199,5	894,3	588,1
Sequenzen		<u>ccucuuucu*uuuucuuucc</u>	פכתכתתתתכת *תתתתתכתתתתכ	GCUCUUUUCU*UUUUCUUUU	ดะกะกกกกะก *กกกกกะกกก	פכחכחחחחכח +חחחחחכחח	פכתכתתתתכת *תתתתתכת	פכתכתתתתכת +תתתתתכ	ecncnnncn*nnnn	ecncnnncn*nnnn	ccncnnncn*nnn	פכחכתהתחכת • תח	ccucuuucu*u	€C0C000000.*	BCUCUUUC	פכתכתחתת	GCUCUUU	GCUCUU	GCUCU	CCUC	CCU	
Peak	·	-	7	ო													16					—
		ந					5					15					20					25
							_		t o	ĊA	T71	_	\ T 7	· /D	E ^	5 1	2	١.				č

ERSATZBLATT (REGEL 26)

Experimentelles:

5	RNA 22mer (0,1 OD) 5'→3'-Phosphodiesterase (24mU)	9,0 <i>μ</i> l 6,0 <i>μ</i> l				
5	Σ	15,0 <i>µ</i> l				
	Inkubationstemperatur: 22°C					
10						
	RNA 22mer (0,1 OD) 3'→5'-Phosphodiesterase/Pufferlösung (0,6 mU)	9,0 <i>μ</i> l 3,0 <i>μ</i> l				
15	Σ	12,0 μΙ				
	Inkubationstemperatur: 40°C					
20	Beispiel 4: Simultane Sequenzierung von zwei Oligo 22mer; siehe Fig. 7)	ribonukleotiden (8mer und				

25

Experimentelles:

	RNA 22mer (0,1 OD)		9,0 <i>µ</i> l
30	RNA 8mer(0,1 OD)		9,0 <i>µ</i> I
	5'→3'-Phosphodiesterase	(20mU)	5,0 <i>µ</i> l
	Σ		23,0 µl
35	Inkubationstemperatur:	22°C	
	Inkubationszeit:	20 Minuten	

Tabellen 1a und 3a.

Bezüglich Massen und Sequenzen der Sequenzierfragmente siehe

Beispiel 5: Fingerprint einer 5s-ribosomalen RNA (120mer) mit RNase CL3 (siehe Fig. 8)

5 Experimentelles:

Σ

RNA 120mer (1 OD)

10,0 *μ*l

RNase CL3/Pufferlösung (400 mU; denaturierend) 8,0 μ l

10

ال 0,81

Inkubationstemperatur:

50°C

Inkubationszeit:

15 Minuten

15

Beispiel 6: Sequenzierung eines 16mer Oligoribonukleotids (Fingerprint) mit

RNase CL3 (Sequenz aus Tabelle 2;

siehe Fig. 9)

20

25

Experimentelles:

RNA 16mer (0,1 OD)

9,0 µl

RNase CL3/Pufferlösung (100 mU; denaturierend) 15,2 µl

Timeso CEO/I directosung (100 mo, denaturierend) 15,2 p

Σ

 $24,2 \mu$ l

Inkubationstemperatur:

50°C

30 Inkubationszeit:

1 Minute

Beispiel 7: Simultansequenzierung zweier 9mere (DNA und RNA; siehe Fig. 10)

5 Tabelle 4: Fragmente und Massen des Verdaus eines RNA 9mers (5'-HO-GCAUGUGAC-OH-3') mit 3'→5'-Phosphodiesterase (aus crotalus durissus)

10	Peak 	Sequenz	Masse (berechnet) [Da]	Masse (gefunden) [Da]	Massendifferenzen [Da] (Peak x-Peak (x + 1))
	1	GCAUGUGAC	2854,8	2855,2	1
	2	GCAUGUGA	2549,6	2549,2	306,0
	3	GCAUGUG	2220,4	2220,4	328,8
	4	GCAUGU	1875,2	1875,0	345,4
15	5	GCAUG	1569,0	1568,8	306,2
	6	GCAU	1223,8	1223,4	345,4
	7	GCA	917,6	917,2	306,2

Tabelle 5: Fragmente und Massen des Verdaus eines DNA 9mers (5'-HO-d(GTCACATGC)-OH-3') mit 3'→5'-Phosphodiesterase (aus crotalus durissus)

25	Peak	Sequenz	Masse (berechnet) [Da]	Masse (gefunden) [Da]	Massendifferenzen [Da] (Peak x-Peak (x + 1))
	1	d(GTCACATGC)	2698,8	2699,8	1
	2	d(GTCACATG)	2409,6	2410,1	289,7
	3	d(GTCACAT)	2080,4	2080,4	329,6
	4	d(GTCACA)	1776,2	1776,6	303,8
30	5	d(GTCAC)	1463,0	1462,9	313,7
	6	d(GTCA)	1173,8	1173,4	289,5

Tabelle 6: DNA-Abgangsgruppen:

5	dG	dA	dC	Т
	329,20	313,20	289,18	304,20

10 Tabelle 7: RNA-Abgangsgruppen:

G	Α	C	l u
345,20	329,20	305,18	306,17

Experimentelles:

20	RNA (0,1 OD) DNA (0,1 OD) 3'→5'-Phosphodiesterase/Pufferlösi	ung (2mU)	12,5 <i>µ</i> l 2,3 <i>µ</i> l 10,0 <i>µ</i> l
	Σ Inkubationstemperatur: 4	.0°C	24,8 µl

25

15

Im folgenden werden die Vorteile der Methode nochmals aufgeführt:

- Das Verfahren arbeitet elektrophoresefrei und ist damit sehr schnell.

30

- Es wird kein zusätzlicher Marker zur Detektion benötigt auch keine Radioaktivität. Damit entfallen alle Markierungsschritte.

35

Das Verfahren nutzt nicht nur die Bestimmung der Masse zur Dateninterpretation, sondern auch die Peakintensitäten. Damit sind auch Spektrometer mit geringer Auflösung, die auch leicht bedienbar sind, einsetzbar und das Verfahren wird kostengünstig.

- Es ist keine genaue Massenbestimmung nötig. Deshalb können auch sehr lange Polymere sequenziert werden.
- Die Methode kann zur Sekundärstrukturvorhersage von Biopolymeren herangezogen werden.
 - Das Verfahren kann zur Sequenzierung von modifizierten Bioploymeren dienen.
- Das Verfahren kann zur Bestimmung von Organismen dienen (Finger-10 print/Footprint).
 - Die Methode ist automatisierbar und parallelisierbar.

10

15

25

30

35

Literatur

- (1) Sanger, F., Brownlee, G. G. and Barell, B. G., J. Mol. Biol., (1965) 13, 373
- 5 (2) Brownlee, G. G. and Sanger, F., Eur. J. Biochem., (1969) 11, 395
 - (3) Silberklang, M., Gillum, A. M. and RajBhandary, U. L., in Methods in Enzymology. Wu, R. and Grossmann, L. (eds), Academic Press Inc., London and New York, (1979) 59, 58
 - (4) Maxam, A. M. and Gilbert, W., Proc. Natl. Acad. Sci. USA, (1977) 74, 560-564
 - (5) Stahl, D. A., Krupp, G. and Stackebrandt, E., in Nucleic Acids Sequencing, a practical aproach, Howe, C. J. and Ward, E. S. (eds), IRL Press at Oxford University Press, Oxford, New York, Tokyo, (1989) 137
 - (6) Waldmann, R., Gross, H. J. and Krupp, G., Nucleic Acids Res., (1987) 15, 7209.
 - (7) Zhang, Y., Liu, W. Feng, Y. and Wang, T. P., Anal. Biochem., (1987) 163, 513
 - (8) Sanger, F. Nicklen, S., Coulson, A. R., Proc. Natl. Acad. Sci. USA, (1977) 74, 5463-5467
- 20 (9) Hahn, C, S., Strauss, E., G. and Strauss, J., H. in Methods of Enzymology, 180, 121
 - (10) Pieles, U., Zürcher, W., Schär, M., Moser, H. E., Nucleic Acids Res., (1993) 21, 3191- 3196
 - (11) McLuckey, S. A., Habibi-Goudarzi, S., J. Am. Chem. Soc., (1993) 115, 12085-12095
 - (12) Wolter, M. A., Engels, J. W., Eur. Mass Spectrom., (1995) 1, 583-590.
 - (13) Ni, J., Pomerantz, S.C., Rozenski, J., Zhang, Y. and McCloskey, J. A., Anal. Chem., (1996) 68, 1989-1999
 - (14) Limbach, P. A., McCloskey, J. A., Crain, P. F., Nucleic Acids Res. Symp. Ser., (1994) 31, 127-128
 - (15) Roskey, M. T., Juhasz, P., Smirnov, I. P., Takach, E. J., Martin, S. A. and Haff, L. A., Proc. Natl. Acad. Sci. USA, (1996) 93, 4724-4729
 - (16) Köster, H., Tang, K., Fu, D.-J., Braun, A., van den Boom, D., Smith, C. L., Cotter, R. J. and Cantor, C.R., Nature Biotechnology, (1996) 14, 1123-1128
 - (17) Loo, J. A., Udseth, H., R., Smith, R., D., Rapid Commun. Mass Spectrom. (1988) 2, 207-210
 - (18) Little, D. P., Chorush, R. A., Speir, J. P., Senko, M. W., Kelleher, N. L.,

- McLafferty, F. W., J. Am. Chem. Soc. (1994) 116, 4893-4897
- (19) M. Karas, F. Hillenkamp, Anal. Chem., (1988) 60, 2299
- (20) Little, D. P., Speir, J. P., Senko, M. W., O'Connor, P. B., McLafferty, F. W., Anal. Chem., (1994) 66, 2809-2815
- 5 (21) Nordhoff, E., Karas, M., Cramer, R., Hahner, S., Hillenkamp, F., Kirpekar, F., Lezius, A., Muth, J., Meier, C., Engels, J. W., J. Mass Spectrom., (1995) 30, 99-112
 - (22) Little, D. P., McLafferty, F. W., J. Am. Chem. Soc., (1995) 117, 6783-6784
- 10 (23) Wu, K. J., Shaler, T. A. and Becker, H., Anal. Chem., (1994) 66, 1637-1645
 - (24) Nordhoff, E., Cramer, R., Karas, M., Hillenkamp, F., Kirpekar, F., Kristiansen, K. and Roepstorff, P., Nucleic Acids Res., (1993) 21, 3347-3357
- 15 (25) Kirpekar, F., Nordhoff, E., Kristiansen, K., Roepstorff, P., Lezius, A., Hahner, S., Karas, M. and Hillenkamp, F., Nucleic Acids Research, (1994) 22, 3866
 - (26) Wiley, W.C., McLaren, I. H., Rev. Sci. Instrum., (1955) 26, 1150-1157
 - (27) Juhasz, P., Roskey, M. T., Smirnov, I. P., Haff, L. A., Vestal, M. L. and Martin, S. A., Anal. Chem., (1996) 68, 941-946

Patentansprüche

Wir beanspruchen:

20

25

30

- Ein Verfahren zur Sequenzierung von Biopolymeren mit Massenspektrometrie, vornehmlich Ribonukleinsäuren (RNA) oder Nukleinsäuren (DNA) oder Peptiden oder Oligosacchariden durch Verdau des zu untersuchenden RNA- oder DNA- oder Peptid- oder Oligosaccharid- Stranges mit spezifischen Exo-/Endonukleasen, -peptidasen, -carboxyesterasen, -amidasen oder -glycosidasen oder anderen sequenz- oder basenspezifisch spaltenden Verbindungen, wobei die Trennung und Detektion der erzeugten Fragmente einer Kinetik folgend durch Massenspektrometrie, vornehmlich MALDI, erfolgt und unterschiedliche Peakintensitäten, hervorgerufen durch enzymatische oder chemische Hydrolyse der entsprechenden einzelnen Bindungen, in den Massenspektren zur Interpretation der Sequenzdaten herangezogen werden.
 - 2. Die Anwendung des Verfahrens nach Anspruch 1 zur Sequenzierung von modifizierter und unmodifizierter DNA, RNA, Peptide und Oligosaccharide. Modifikationen können bei Nukleosiden und Nukleotiden -verglichen mit Adenosin, Guanosin, Uridin, Cytidin und Thymidin bzw. deren Phosphate und Oligomere- Veränderungen an der Base, am Zucker oder an der Phosphatgruppe bzw. des Phosphatrückgrates betreffen, bei Peptiden Abweichungen der als '20 natürliche Aminosäuren' bekannten Monomere von Ppetiden und bei Oligosacchariden den bekannten 'natürlichen' Sacchariden.
 - Die Verwendung von Enzymen oder anderen sequenz- oder basenspezifisch spaltenden Verbindungen, die bei der Hydrolyse von Bindungen unterschiedliche Geschwindigkiten aufweisen und zur Sequenzierung von Nukleinsäuren (RNA/DNA), Peptiden oder Oligosacchariden in einem Verfahren nach Anspruch 1 und 2 eingesetzt werden.
 - 4. Ein Verfahren zur simultanen Sequenzierung von mehreren Ribonukleinsäuren (RNA), Nukleinsäuren (DNA), Peptiden und Oligosacchariden nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Verdau des zu untersuchenden RNA-, DNA-, Peptid- oder Oligosaccharid-Stranges mit spezifischen Exo-/Endonukleasen, -peptidasen, -amidasen, -carboxyesterasen oder Exo- und Endoglycosidasen oder anderen sequenzoder basenspezifisch spaltenden Verbindungen gleichzeitig erfolgt, wobei die

5

10

15

Trennung und Detektion der erzeugten Fragmente einer Kinetik folgend durch Massenspektrometrie, vornehmlich MALDI, erfolgt und unterschiedliche Peakintensitäten, hervorgerufen durch enzymatische oder chemische Hydrolyse der entsprechenden einzelnen Bindungen, in den Massenspektren zur Interpretation der Sequenzdaten herangezogen werden.

- 5. Ein Verfahren zur Sequenzierung von RNA, DNA, Peptiden und Oligosacchariden durch Verdau des zu untersuchenden Stranges mit spezifischen Endonukleasen, -peptidasen, -carboxyesterasen, -amidasen, Endoglycosidasen und anderen sequenz- oder basenspezifisch Endospaltenden Verbindungen, wobei die Trennung und Detektion der erzeugten Fragmente durch Massenspektrometrie, vornehmlich MALDI, erfolgt.
- 6. Ein Verfahren zur Analyse und Bestimmung von Organismen nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß deren RNA oder DNA einem "Fingerprinting" oder "Footprinting" unterworfen werden und die Trennung und Detektion der erzeugten Fragmente durch Massenspektrometrie, vornehmlich MALDI, erfolgt.
- Ein Verfahren zur Sekundärstrukturbestimmung von Nukleinsäuren (DNA/RNA), Peptiden und Oligosacchariden durch Verdau der Biopolymeren mit Exo-/Endonukleasen, -peptidasen, -carboxyesterasen, -amidasen und -glycosidasen oder anderen sequenz- oder basenspezifisch spaltenden Verbindungen und Trennung und Detektion der erzeugten Fragmente mit Massenspektrometrie, vornehmlich MALDI, nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß Sekundärstrukturbereiche (z.B. loops, doppelsträngige Bereiche) nur langsam oder gar nicht bzw. sehr viel schneller von diesen Enzymen angegriffen werden.
 - 8. Kombination der Verfahren nach Anspruch 1-7 zur Analyse von (Ribo-) Nukleinsäuren, Peptiden und Oligosacchariden.

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

Figur 3a: Sequenzierung eines 16mers mit 5'->3' Phosphodiesterase 3 Minuten Inkubation

Figur 3b: Sequenzierung eines 16mers mit 5'->3' Phosphodiesterase 10 Minuten Inkubation

Figur 4a: Sequenzierung eines 16mers mit 3'->5' Phosphodiesterase 20 Minuten Inkubation

5500 5000 4500 ო _ Figur 4b: Sequenzierung eines 16mers mit 3'->5' Phosphodiesterase 60 Minuten Inkubation 4000 3500 3000 2500 2000 1500 1000 gnutdäz 4000-2000 **ERSATZBLATT (REGEL 26)**

6/17

ERSATZBLATT (REGEL 26)

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Buro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: (11) Internationale Veröffentlichungsnummer: WO 98/45700 A3 C12Q 1/68, G01N 33/68 (43) Internationales Veröffentlichungsdatum: 15. Oktober 1998 (15.10.98) (21) Internationales Aktenzeichen: PCT/DE98/01016 (81) Bestimmungsstaaten: US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, (22) Internationales Anmeldedatum: 8. April 1998 (08.04.98) PT, SE). (30) Prioritätsdaten: Veröffentlicht 197 14 558.2 9. April 1997 (09.04.97) DE Mit internationalem Recherchenbericht. (88) Veröffentlichungsdatum des internationalen Recherchen-(71)(72) Anmelder und Erfinder: ENGELS. Joachim. W. richts: 11. März 1999 (11.03.99) [DE/DE]; Feldbergstrasse 1, D-61476 Kronberg (DE). WÖRNER, Karlheinz [DE/DE]; Feldbergstrasse D-63303 Dreieich (DE). FAULSTICH, Konrad [DE/DE]: Brunnenweg 3, D-36115 Ehrenberg (DE). BRILL, Hannelore [DE/DE]; Kastanienweg 7 F, D-61462 Königstein (DE). (74) Anwalt: SCHULER, Peter; Amulfstrasse 25, D-80335 München (DE).

- (54) Title: METHOD FOR THE MASS SPECTROMETRIC SEQUENCING OF BIOPOLYMERS
- (54) Bezeichnung: VERFAHREN ZUR MASSENSPEKTROMETRISCHEN SEQUENZIERUNG VON BIOPOLYMEREN

(57) Abstract

The invention relates to a new method for sequencing biopolymers by mass spectrometry. The sequencing of biopolymers is either lengthy or requires exact determination of the mass of the fragments, which is difficult, especially in the case of long polymers. The speed of hydrolysis of phosphodiester, -peptide or -glycoside bonds with exo/endonucleases, -peptidases, -glycosidases or other hydrolytically acting substances is used in the inventive method for the sequence analysis of nucleic acids or other biopolymers. Separation and detection of the fragments produced take place by mass spectrometry by determining the mass and the different peak intensities. The main advantage of the method is that an exact determination of the mass is no longer necessary, and also that low-resolution mass spectrometers can be used. Furthermore, analysis and separation of fragments is extremely rapid, as there is no electrophoresis and the sequence of modified nucleic acids can be determined. These principles can also be applied to sequencing or secondary structure determination of other biopolymers, like, for example, peptides and oligosaccharides.

(57) Zusammenfassung

Es wird ein neues Verfahren zur Sequenzierung von Biopolymeren mit Massenspektrometrie beschrieben. Die Sequenzierung von Biopolymeren ist entweder langwierig oder benötigt eine genaue Massenbestimmung von Fragmenten. Dies ist vor allem für lange Polymere schwierig. Die Geschwindigkeit der Hydrolyse von Phosphodiester-, Peptid- oder Glycosidbindungen mit Exo-/Endonukleasen, -peptidasen, -glycosidasen oder anderen hydrolytisch wirkenden Substanzen wird in unserem Verfahren zur Sequenzanalyse von Nukleinsäuren oder anderen Biopolymeren herangezogen. Trennung und Detektion der erzeugten Fragmente erfolgt mit Massenspektrometrie durch Bestimmung der Masse und unterschiedlichen Peakintensitäten. Der primäre Vorteil der Methode liegt darin, daß keine exakte Massenbestimmung mehr notwendig ist und auch Massenspektrometer mit geringer Auflösung verwendet werden können, Analyse und Trennung der Fragmente extrem schnell sind, da sie elektrophoresefrei sind und die Sequenz modifizierter Nukleinsäuren bestimmt werden kann. Diese Prinzipien lassen sich auch auf die Sequenzierung bzw. Sekundärstrukturbestimmung anderer Biopolymere anwenden, wie z.B. Peptide und Oligosaccharide.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Osterreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israei	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		•
CU	Kuba	KZ	Kasachstan	RO	Rumanien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

INTERNATIONAL SEARCH REPORT

Interr nat Application No PCT/DE 98/01016

			101/00 30/01010
IPC 6	SIFICATION OF SUBJECT MATTER C1201/68 G01N33/68		
According	to international Patent Classification (IPC) or to both national classification	fication and IPC	
	S SEARCHED		
IPC 6	documentation searched (classification system followed by classification s		
	ation searched other than minimum documentation to the extent that		
	data base consulted during the international search (name of data t	base and, where practical, so	earch terms used)
	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
Ε	WO 98 20166 A (DEN BOOM DIRK VAN CHRISTIAN (DE); HIGGINS G SCOTT 14 May 1998 see the whole document	N ;JURINKE (DE); L)	1-8
Р,Х	WO 98 03684 A (HYBRIDON INC) 29 January 1998 see page 4, line 2 - line 23		1-8
P,X	WO 97 33000 A (GENETRACE SYSTEMS 12 September 1997 see claims see page 4, line 26 - page 5, li see page 11, line 21 - page 12, see page 17, line 25 - page 18,	ne 18 line 18	1-8
		-/	
X Funt	ner documents are listed in the continuation of box C.	X Patent family mer	nbers are listed in annex.
"A" docume conside "E" earlier de filing de "L" docume which i citation "O" docume other n	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified) int referring to an oral disclosure, use, exhibition or	or priority date and no cited to understand the invention "X" document of particular cannot be considered involve an inventive s "Y" document of particular cannot be considered document is combine ments, such combina in the art.	ed after the international filing date of in conflict with the application but e principle or theory underlying the relevance: the claimed invention novel or cannot be considered to tep when the document is taken alone relevance; the claimed invention to involve an inventive step when the d with one or more other such docu- ion being obvious to a person skilled
	an the priority date claimed	"&" document member of t	
	5 October 1998	Date of mailing of the i	nternational search report
Name and m	lailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Rout 1 edge	, В

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/DE 98/01016

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	WO 96 36986 A (PERSEPTIVE BIOSYSTEMS INC) 21 November 1996 see claims see page 3, line 18 - line 28 see page 4, line 18 - line 25 see page 13, line 1 - line 4 see page 17, line 24 - page 20, line 22 see example 1	1-8
X	WO 94 21822 A (KOESTER HUBERT) 29 September 1994 see the whole document	1-8
X	WO 90 04596 A (3I RESEARCH EXPLOIT LTD) 3 May 1990 see claims see page 2, paragraph 3 see page 10, paragraph 2 - paragraph 3	1-8
X	WOERNER K ET AL: "RECENT DEVELOPMENTS IN MASS SPECTROMETRY: RNA SEQUENCING" NUCLEOSIDES & NUCLEOTIDES, vol. 16, no. 5/06, 1997, pages 573-577, XP000198057 see the whole document	1-8

INTERNATIONAL SEARCH REPORT

information on patent family members

Interr nat Application No PCT/DE 98/01016

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9820166 A	14-05-1998	AU 5106998 A AU 5247298 A WO 9820019 A AU 5198098 A WO 9820020 A	29-05-1998 29-05-1998 14-05-1998 29-05-1998 14-05-1998
WO 9803684 A	29-01-1998	AU 4042597 A	10-02-1998
WO 9733000 A	12-09-1997	AU 2069597 A	22-09-1997
WO 9636986 A	21-11-1996	EP 0827628 A	11-03-1998
WO 9421822 A	29-09-1994	AU 687801 B AU 6411694 A CA 2158642 A EP 0689610 A JP 8507926 T US 5622824 A	05-03-1998 11-10-1994 29-09-1994 03-01-1996 27-08-1996 22-04-1997
WO 9004596 A	03-05-1990	EP 0440732 A	14-08-1991

INTERNATIONALER RECHERCHENBERICHT

Interr hales Aktenzeichen PCT/DE 98/01016

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES C1201/68 G01N33/68 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETF** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C12Q G01N Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategories Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Ε WO 98 20166 A (DEN BOOM DIRK VAN ; JURINKE 1-8 CHRISTIAN (DE); HIGGINS G SCOTT (DE); L) 14. Mai 1998 siehe das ganze Dokument P,X WO 98 03684 A (HYBRIDON INC) 1-8 29. Januar 1998 siehe Seite 4, Zeile 2 - Zeile 23 P,X WO 97 33000 A (GENETRACE SYSTEMS INC) 1-812. September 1997 siehe Ansprüche siehe Seite 4, Zeile 26 - Seite 5. Zeile 18 siehe Seite 11, Zeile 21 - Seite 12, Zeile 18 siehe Seite 17, Zeile 25 - Seite 18, Zeile -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X X Siehe Anhang Patentfamilie * Besondere Kategorien von angegebenen Veröffentlichungen "T" Spatere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erkann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung

ann nicht als auf erfinderischer Täligkeit berühend betrachtet soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Veröffentlichung, die sich auf eine mündliche Offenbarung, wenn die Veröffentlichung miteiner oder mehreren anderen "O" Veröffentlichung, die sich auf eine mundliche Oherbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach und antischungen dieser Kategorie in Verbindung gebracht wird und sese Verbindung für einen Fachmann naheliegend ist '3' Veroffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 26. Oktober 1998 01/12/1998 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Routledge, B Fax: (+31-70) 340-3016

INTERNATIONALER RECHERCHENBERICHT

Interr nales Aktenzeichen
PCT/DE 98/01016

		FC17DE 98701016
	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie	Bezeichnung der Veröftentlichung, soweit erforderlich unter Angabe der in Betracht kommend	Betr. Anspruch Nr.
X	WO 96 36986 A (PERSEPTIVE BIOSYSTEMS INC) 21. November 1996 siehe Ansprüche siehe Seite 3, Zeile 18 - Zeile 28 siehe Seite 4, Zeile 18 - Zeile 25 siehe Seite 13, Zeile 1 - Zeile 4 siehe Seite 17, Zeile 24 - Seite 20, Zeile 22 siehe Beispiel 1	1-8
X	WO 94 21822 A (KOESTER HUBERT) 29. September 1994 siehe das ganze Dokument	1-8
X	WO 90 04596 A (3I RESEARCH EXPLOIT LTD) 3. Mai 1990 siehe Ansprüche siehe Seite 2, Absatz 3 siehe Seite 10, Absatz 2 - Absatz 3	1-8
X	WOERNER K ET AL: "RECENT DEVELOPMENTS IN MASS SPECTROMETRY: RNA SEQUENCING" NUCLEOSIDES & NUCLEOTIDES, Bd. 16, Nr. 5/06, 1997, Seiten 573-577, XP000198057 siehe das ganze Dokument	1-8

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intern ales Aktenzeichen
PCT/DE 98/01016

	cherchenberich es Patentdoku		Datum der Veröffentlichung		iglied(er) der atentfamilie	Datum der Veröffentlichung
WO	9820166	Α	14-05-1998	AU	5106998 A	29-05-1998
				AU	5247298 A	29-05-1998
				WO	9820019 A	14-05-1998
				AU	5198098 A	29-05-1998
				WO	9820020 A	14-05-1998
WO !	9803684	Α	29-01-1998	AU	4042597 A	10-02-1998
WO !	9733000	A	12-09-1997	AU	2069597 A	22-09-1997
WO S	9636986	Α	21-11-1996	EP	0827628 A	11-03-1998
WO S	9421822	Α	29-09-1994	AU	687801 B	05-03-1998
				AU	6411694 A	11-10-1994
				CA	2158642 A	29-09-1994
				EP	0689610 A	03-01-1996
				JP	8507926 T	27-08-1996
				US	5622824 A	22-04-1997
WO 9	9004596	Α	03-05-1990	EP	0440732 A	14-08-1991