Лабораторная работа 4.3.2А Дифракция света на ультразвуковой волне в жидкости

Калинин Даниил, Б01-110

11 мая 2023 г.

Цель работы: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

В работе используются: оптическая скамья, осветитель, светофильтры, конденсор, щель, 2 длиннофокусных объектива, кювета с водой, кварцевый излучаетль с микрометрическим винтом, генератор УЗ-частоты, частотомер, линза, отсчётное устройство, микроскоп.

Теоритическая справка:

При прохождении ультразвуковой (УЗ) волны через жидкость в ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и разрежения. Эти периодические неоднородности играют роль своеобразной дифракционной решётки для проходящего сквозь жидкость света.

При небольших амплитудах звуковой волны показатель преломления жидкости n меняется по закону

$$n = n_0(1 + m\cos(\Omega x))$$

где Ω - волновое число для УЗ-волны ($\Omega=\frac{2\pi}{\Lambda}$), Λ - длина УЗ-волны, m - глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны ($m\ll 1$) Пусть фаза световых колебаний на передней поверхности жидкости равна нулю. Тогда на задней поверхности (т.е. в плоскости z=0) она равна

$$\varphi = knL = \varphi_0(1 + m\cos(\Omega x))$$

Можно сформулировать качественный критерий, при выполнении которого можно считать акустическую решётку чисто фазовой, т.е. рассматривать её как тонкий фазовый экран. Для нашей задачи условие тонкого транспаранта можно записать в виде

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}}$$

Проведённое рассмотрение дифракции на фазовой решётке справедливо только в случае слабой фазовой модуляции. В общем случае после прохождения через кювету световое поле представляет совокупность не трёх, а большого числа плоских волн, распространяющихся под углами, определяемыми условием

$$\Lambda sin\Theta_m = m\lambda \ (m = 0, \pm 1, \pm 2, ...)$$

Каждая из этих волн соответствует одному из максимумов в дифракционной картине Фраунгофера.

Определяя на опыте положение дифракционных максимумов различного порядка, можно по формуле (4) найти длину Λ УЗ-волны и вычислить скорость v распространения ультразвуковых волн в жидкости, если известна частота ν колебаний кварцевого излучателя

$$v = \Lambda \nu$$

Экспериментальная установка:

Схема установки представлена на рисунке 1.

Рис. 1. Схема экспериментальной установки

Ход работы:

- 1. Собераем схему согласно описанию.
- 2. Настраиваем микроском, далее выставляем ширину щели в 25мкм.
- 3. Подбирая частоту генератора, получаем дифракционную картину в объективе микроскопа. $\nu = 1.037 \pm 0.001~\mathrm{M}\Gamma\mathrm{q}$
- 4. Крутя лимб находим расстояние между соседними наиболее чёткими дифракционными картинами. $d=760\pm10$ мкм, т.е. длина УЗ-волны порядка 1.520 ± 0.02 мм
- 5. Рассчитываем скорость звука в воде $1580 \pm 20 \frac{M}{c}$
- 6. Измеряем координаты дифракционных максимумов для разных частот. Результаты занесем в таблицы 1, 2, 3 соответственно.

$\nu = 1.037 \ \mathrm{M}\Gamma$ ц							
m	1	2	3	4	5	6	7
x_m , дел	57	88	120	150	181	214	244

Таблица 1. Координаты дифракционных максимумов на частоте $\nu=1.037~{
m M}\Gamma{
m L}$

$\nu = 1.109 \; \mathrm{M}\Gamma$ ц							
m	1	2	3	4	5	6	7
x_m , дел	60	88	121	153	190	226	258

Таблица 2. Координаты дифракционных максимумов на частоте $\nu = 1.109~{
m M}\Gamma{
m H}$

$\nu = 1.209 \; \mathrm{M}\Gamma$ ц						
m	1	2	3	4	5	
х, дел	85	118	157	195	233	

Таблица 3. Координаты дифракционных максимумов на частоте $\nu=1.209~{
m M}\Gamma{
m L}$

7. На основе каждой таблицы построим графики зависимости x(m), изобразим их на рисунках 2, 3, 4 соответственно.

Рис. 2. x(m) при $\nu = 1.037$ М Γ ц

Определим длину волны по углу наклона графика:

$$\frac{l_m}{m}=\frac{\Delta x_m}{\Delta m}=125$$
 мкм, $\Lambda=\frac{\lambda f}{l_m/m}=1590$ мкм, $\varepsilon_{\Lambda}=5.8\%$

Рис. 3. x(m) при $\nu = 1.109$ МГц

Определим длину волны по углу наклона графика:

$$rac{l_m}{m}=rac{\Delta x_m}{\Delta m}=134$$
 мкм, $\Lambda=rac{\lambda f}{l_m/m}=1430$ мкм, $arepsilon_{\Lambda}=5.7\%$

Рис. 4. x(m) при $\nu = 1.209$ М Γ ц

Определим длину волны по углу наклона графика:

$$\frac{l_m}{m}=\frac{\Delta x_m}{\Delta m}=149$$
 мкм, $\Lambda=\frac{\lambda f}{l_m/m}=1290$ мкм, $arepsilon_{\Lambda}=5.5\%$

- 8. Отмечаем координаты на шкале микроскопа, совпадающие с соседними линиями сетки $(0.20~\mathrm{mm}~\mathrm{i}~1.02~\mathrm{mm})$
- 9. Проведем измерения методом темного поля и расчитаем скорость звка для каждой частоты. Результат занесем в таблицу 4.

ν , М Γ ц	1-я полоса	последняя полоса	кол-во светлых полос	Λ , MKM	$v, \frac{\mathcal{M}}{c}$
1.068	0.4	3.64	6	1317	1407
1.096	0.22	3.42	6	1300	1425
1.127	0.2	3.84	7	1268	1429
1.156	0.06	3.66	7	1254	1450
1.186	0.04	3.48	7	1199	1422
1.216	0	3.38	7	1178	1432

Таблица 4. Результаты измерения скорости звука

Заключение:

В ходе работы было изучено явление дифракции света на стоячей УЗ-волне в воде. Была измерена скорость звука в воде 2-мя способами: по дифракционной картине и методом тёмного поля, оба способа привели к рещультату, совпадающему с табличным с учётом погрешности, но метод тёмного поля оказался более точным.