DQN. Отчет

Содержание

DQN	!. Отчет	1
1. Me		o)
	Вывод:	
2.	Реализовать с сравнить (на выбранной ранее среде) друг с другом и с обычным DQN едующие его модификации:	
•	DQN c Hard Target Update;	4
•	DQN c Soft Target Update;	4
•	Double DQN	4
	Вывод:	

1. Обучить Агента решать Acrobot-v1, MountainCar-v0, или LunarLander-v2 (одну на выбор) методом DQN. Найти оптимальные гиперпараметры. Сравнить с алгоритмом Deep Cross-Entropy на графиках.

Выбранная игра: Acrobot-v1.

Результаты можно посмотреть в ClearML

Исследуемые гиперпараметры для алгоритма **DQN** в 10 версиях:

• gamma: [0.9, 0.99]

• learning rate: [0.1, 0.01, 0.001]

• batch size: [64, 128, 256]

epsilon decrease: [0.01, 0.001]epsilon min: [0.1, 0.01, 0.001]

Также было произведено сравнение с алгоритмов **Deep Cross Entropy** (DCEM) с лучшими параметрами для данной игры (см. дз-2):

learning rate: 0.01q params: 0.6

• trajectory length: 500

Общие гиперпараметры для алгоритмов:

• episode_n (epochs): 100

• t_max (максимальное кол-во итераций для одной игры): 500 (из документации gym)

Reward на итерациях обучения:

Reward на итерациях обучения (двух лучших DQN и DCEM):

Reward на итерациях обучения для DCEM из дз-2:

^{*}PS при запуске DCEM почему-то показывал константу на графике, поэтому для него также приведет график из дз-2

Вывод:

Лучший результат DQN достиг при следующих гиперпараметрах:

• **gamma:** 0.99

learning rate: 0.001batch size: 256

• epsilon decrease: 0.001

• epsilon min: 0.1

Так как при обучении ведет себя более стабильно без выбросов. Однако на мой взгляд, если сравнивать графики обучения DCEM из ДЗ-2, DCEM показывает более лучшую и быструю сходимость, поэтому для этой задачи можно отдать пальму первенства ему. Возможно, стоило дополнительно настроить Q-function, чтобы результаты DQN стали лучше, чем DCEM, но всё же DQN не сильно уступает DCEM и тоже сходится.

- 2. Реализовать с сравнить (на выбранной ранее среде) друг с другом и с обычным DQN следующие его модификации:
 - DQN c Hard Target Update;
 - DQN c Soft Target Update;
 - Double DQN.

Выбранная игра: Acrobot-v1.

Результаты можно посмотреть в ClearML

Исследуемые гиперпараметры для алгоритма **DQN с Hard Target Update** в 10 версиях:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64epsilon min: 0.01

- q_function_update_epoch (обновляем зафиксированную q-funciton между эпохами): [None, 1, 10, 50]
- q_function_update_step (обновляем зафиксированную q-funciton между шагами, то есть может обновиться внутри одной эпохи обучения): [None, 1, 50, 250]

Исследуемые гиперпараметры для алгоритма **DQN c Soft Target Update** в 10 версиях:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64
epsilon min: 0.01
tau: [0.01, 0.1, 0.5, 0.9]

Исследуемые гиперпараметры для алгоритма **Double DQN** в 10 версиях:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64
epsilon min: 0.01
tau: [0.01, 0.1, 0.5, 0.9]

Описанные выше алгоритмы сравнивались с **DQN**:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64epsilon min: 0.01

Reward на итерациях обучения (три лучших DQN с Hard Target Update):

Reward на итерациях обучения (два лучших DQN c Soft Target Update):

Reward на итерациях обучения (два лучших Double DQN):

Reward на итерациях обучения (оригинальный DQN и лучшие модификации этого алгоритма):

Вывод:

Самые **стабильные результаты и более быструю сходимость** показал алгоритм DQN в модификации **Soft Target Update** с гиперпараметрами:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64epsilon min: 0.01

• tau: 0.1

DQN в модификации **Hard Target Update** так же показывает лучше результаты, чем обычный DQN. Лучшие гиперпараметры:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64epsilon min: 0.01

q_function_update_epoch: 10q_function_update_step: None

Double DQN в целом показывает лучше результаты, чем обычный DQN, так как ведет себя во время обучения более стабильно, но уступает двум другим модификациям этого алгоритма. Лучшие гиперпараметры:

gamma: 0.99learning rate: 0.01batch size: 64

epsilon decrease: 64epsilon min: 0.01

• tau: 0.01

Все модификации показали себя лучше, чем обычный DQN, так как они более стабильные и быстрее сходятся во время обучения.