

Quantum catalysis in cavity QED

¹Institute of Theoretical Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Krakow, Poland. ²Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland

What if quantum catalysis could go beyond theory and step into practical context?

field

Main idea: $A \xrightarrow{\text{constraint}} B$ but $A+c \xrightarrow{\text{constraint}} B+c \xrightarrow{\text{constraint}} B+c$ Resource theories have uncovered fundamental limits and revelead properties of c

→ highly abstract + limited to special cases

How to make it useful?

Setting the scene

 $U := U(\tau)$

Composite system: $\rho_{S} \otimes \chi_{C} \longrightarrow \rho_{S} \rightarrow \sigma_{S} := \operatorname{Tr}_{C}[U(\rho_{S} \otimes \chi_{C})U^{\dagger}]$

while the state of the catalyst **returns** to its initial state at time: τ

$$\sigma_{\mathsf{C}} := \mathrm{Tr}_{\mathsf{S}}[U(\rho_{\mathsf{S}} \otimes \chi_{\mathsf{C}})U^{\dagger}] = \chi_{\mathsf{C}}$$
 catalytic constraint

- can always be satisfied!

P. Lipka-Bartosik, H. Wilming, and N. H. Y. Ng, arXiv. 2306.00798

Model

■ Jaynes-Cummings model ($\hbar = 1$): $H_{SC} = \omega a^{\dagger} a + \frac{\omega}{2} \sigma_z + g \left(\sigma_+ a + \sigma_- a^{\dagger}\right)$

 \rightarrow only couple pairs of atom-field states: $\{|n+1,g\rangle, |n,e\rangle\}$

The eigenvalue problem yields the eigenfrequencies:
$$\omega_{\pm}^{(n)} = \left(n + \frac{1}{2}\right)\omega \pm g\sqrt{n+1}$$

$$\sigma_{\mathsf{S}/\mathsf{C}} = \mathrm{Tr}_{\mathsf{C}/\mathsf{S}}[U(\rho_{\mathsf{S}} \otimes \chi_{\mathsf{C}})U^{\dagger}]$$

E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963)

Statement of the problem

- **Task**: generation of non-classical light in a catalytic way
- Consideration: $\rho_S = |\alpha \times \alpha|$, where $|\alpha \rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n \rangle$
- **Goal**: find χ c and τ , such that Tr_S[$U(\rho_S \otimes \chi_C)U^{\dagger}$] = χ_C and the state of the cavity is non-classical

Figures of merit

i. Second-order coherence: $g^{(2)}(\sigma_S) = \frac{\langle n_S^2 \rangle_{\sigma} - \langle n_S \rangle_{\sigma}}{\langle n_S \rangle_{\sigma}}$

R. J. Glauber, Phys. Rev. 130, 2529 (1963)

ii. Wigner logarithimic negativity: $W(\rho) := \log \left(\int dx dp \left| W_{\rho}(x, p) \right| \right)$ where W_{ρ} is the Wigner function:

$$W_{\sigma}(x,p) = \frac{1}{\pi} \int e^{2ipx'} \langle x - x' | \sigma | x + x' \rangle dx'$$

F. Albarelli, M. G. Genoni, M. G. A. Paris, A. Ferraro, Phys. Rev. A 98, 052350 (2018)

Results

Generating non-classical states of light:

(a) Generating light with **sub-Poissonian** photon statistics:

 \star Catalysis occurs at $\tau \approx 40$ for which $g^{(2)}(\tau) \approx 0.5$

Definitions $g^{(2)}(t) := g^{(2)}[\sigma_{S}(t)]$ $\Delta(t) := ||\chi_{\mathsf{C}} - \sigma_{\mathsf{C}}||_1$

Parameters $\alpha = 1/\sqrt{2}$ $\omega = 2\pi$

 $g = \pi$

(b) Generating light with **negative** Wigner Function

 \star Catalysis occurs at $\tau \approx 5$ for which $W \approx 0.1$

Which **states** lead to catalyst?

- Mechanism of catalysis?
 - i. Energy-preserving: $[U(t), n_S + n_C] = 0$
 - ii. Catalytic constraint \longrightarrow all moments of $n_{\rm C}$ are preserved and $\langle n_{\rm S} \rangle_{\scriptscriptstyle O} = \langle n_{\rm C} \rangle_{\scriptscriptstyle O}$:

$$\langle n_{\rm S}^2 \rangle_{\sigma} = \langle n_{\rm S}^2 \rangle_{\rho} + 2 \left(\langle n_{\rm S} \rangle_{\sigma} \langle n_{\rm C} \rangle_{\sigma} - \langle n_{\rm S} \otimes n_{\rm C} \rangle_{\sigma} \right)$$

- Our results also holds in the presence of dissipation
- Our results also apply to multi-mode scenarios