

MOSFET

IR MOSFET - StrongIRFET™

Benefits

- Improved Gate and Avalanche Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Improved I_D rating
 Pb-Free ; RoHS Compliant ; Halogen-Free

Potential applications

- Brushed Motor drive applications
- BLDC Motor drive applications
- · Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC Inverters

Parameter	Value	Unit
V _{DS}	40	V
$R_{\mathrm{DS(on),typ}}$	0.59	mΩ
$R_{\mathrm{DS(on),max}}$	0.72	mΩ
I _D (Silicon Limited)	586	A
I _{D (Package Limited)}	300	A

Type / Ordering Code	Package	Marking	Related Links
IRL40T209	PG-HSOF-8	RL40T209	-

IR MOSFET - StrongIRFET™ IRL40T209

Table of Contents

Description	1
Maximum ratings	3
Thermal characteristics	3
Electrical characteristics	4
Electrical characteristics diagrams	3
Package Outlines	J
Revision History	1
Frademarks 1	1
Disclaimer	1

IR MOSFET - StrongIRFET™ IRL40T209

1 Maximum ratings at TC=25 °C, unless otherwise specified

Table 2 **Maximum ratings**

Davamatan	Ols al	Values				N
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current	I _D			300 586 347	A	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C (silicon limited) $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C (silicon limited) ¹⁾
Pulsed drain current ¹⁾	I _{D,pulse}	-	-	1200	Α	<i>T</i> _C =25 °C
Avalanche energy, single pulse ²⁾	E AS	-	-	875	mJ	$I_{\rm D}$ =100 A, $R_{\rm GS}$ =50 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	500	W	<i>T</i> _C =25 °C
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	IEC climatic category; DIN IEC 68-1 55/175/56

2 **Thermal characteristics**

Table 3 **Thermal characteristics**

Dovomotor	Symbol	Values			l lmi4	Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Thermal resistance, junction - case, bottom ³⁾	R _{thJC}	-	-	0.3	°C/W	-
Thermal resistance, junction - case, top	R _{thJC}	-	-	20	°C/W	-
Device on PCB, 6 cm² cooling area ¹⁾	R _{thJA}	-	-	30	°C/W	-
Device on PCB, RTHJA(<10s)	R _{thJA}	-	-	12	°C/W	-

 $^{^{1)}}$ See Diagram 3 for more detailed information $^{2)}$ See Diagram 13 for more detailed information $^{3)}$ R_{thJC} is measured at T_{J} approximately 90°C.

IR MOSFET - StrongIRFET™ IRL40T209

3 Electrical characteristics at T_j =25 °C, unless otherwise specified

Table 4 **Static characteristics**

Donomotor	O. was book	Values			11		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	40	-	-	V	V _{GS} =0 V, I _D =250 μA	
Breakdown voltage temperature coefficient	$dV_{(BR)DSS}/dT_{j}$	-	31	-	mV/°C	I _D =5 mA, referenced to 25 °C	
Gate threshold voltage	$V_{\mathrm{GS(th)}}$	1	-	2.4	V	V _{DS} =V _{GS} , I _D =250 μA	
Zero gate voltage drain current	I _{DSS}	-	-	1 150	μΑ	V _{DS} =40 V, V _{GS} =0 V, T _j =25 °C V _{DS} =40 V, V _{GS} =0 V, T _j =125 °C	
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	0.59 0.75	0.72 1.10	mΩ	V _{GS} =10 V, I _D =100 A V _{GS} =4.5 V, I _D =50 A	
Gate resistance ¹⁾	R _G	-	2.0	-	Ω	-	
Transconductance	g fs	-	380	-	S	$ V_{DS} \ge 2 I_D R_{DS(on)max}, I_D = 100 A$	

Table 5 **Dynamic characteristics**

Dougnator	Ob. a.l	Values			1124	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance ¹⁾	C _{iss}	-	16000	-	pF	V _{GS} =0 V, V _{DS} =20 V, <i>f</i> =1 MHz
Output capacitance ¹⁾	Coss	-	2200	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz
Reverse transfer capacitance ¹⁾	C _{rss}	-	1600	-	pF	V _{GS} =0 V, V _{DS} =20 V, f=1 MHz
Turn-on delay time	$t_{ m d(on)}$	-	60	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω
Rise time	t _r	-	230	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω
Turn-off delay time	$t_{ m d(off)}$	-	190	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω
Fall time	t _f	-	160	-	ns	$V_{\rm DD}$ =20 V, $V_{\rm GS}$ =4.5 V, $I_{\rm D}$ =30 A, $R_{\rm G,ext}$ =2.7 Ω

IR MOSFET - StrongIRFET™

IRL40T209

Gate charge characteristics¹⁾ Table 6

Parameter	Cumbal	Values			11:4	Nata / Tast Canditian
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q _{gs}	-	43	-	nC	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Gate charge at threshold	$Q_{g(th)}$	-	26	-	nC	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Gate to drain charge ²⁾	Q _{gd}	-	83	-	nC	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Switching charge	Q _{sw}	-	100	-	nC	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Gate charge total ²⁾	Qg	-	179	269	nC	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Gate plateau voltage	V _{plateau}	-	2.6	-	V	V_{DD} =20 V, I_{D} =100 A, V_{GS} =0 to 4.5 V
Gate charge total, sync. FET	Q _{g(sync)}	-	96	-	nC	V _{DS} =0.1 V, V _{GS} =0 to 4.5 V
Output charge ¹⁾	Qoss	-	84	-	nC	V _{DD} =20 V, V _{GS} =0 V

Table 7 Reverse diode

Damamatan	Cumbal	Values			I I m i4	Nata / Tast Candition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode continuous forward current ³⁾	Is	-	-	300	Α	T _C =25 °C
Diode pulse current	I S,pulse	-	-	1200	Α	T _C =25 °C
Diode forward voltage	V _{SD}	-	-	1.2	V	V _{GS} =0 V, I _F =100 A, T _j =25 °C
Reverse recovery time ²⁾	t _{rr}	-	52	-	ns	V_R =34 V, I_F =100 A, di_F/dt =100 A/ μ s, Tj=25 °C
Reverse recovery charge ²⁾	Qrr	-	79	-	nC	V _R =34 V, I _F =100 A, d <i>i</i> _F /d <i>t</i> =100 A/μs, Tj=25 °C

 $^{^{1)}}$ See "Gate charge waveforms" for parameter definition $^{2)}$ Defined by design. Not subject to production test. $^{3)}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

4 Electrical characteristics diagrams

5 Package Outlines

Figure 1 Outline PG-HSOF-8, dimensions in mm/inches

IR MOSFET - StrongIRFET™

IRL40T209

Revision History

IRL40T209

Revision: 2018-05-05, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
1.0	2018-04-24	Release of preliminary version
2.0	2018-05-05	Release of final version

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSeT™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2018 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.