ARTICLE DE ABBOTT HANSON

November 27, 2020

GENERALISATION DU PROBLÈME

- On généralise le problème aux ensembles dont les éléments ne vérifient pas: $\sum_{i=0}^{t} a_i x_i = \sum_{i=t+1}^{l} a_i x_i$
- Sous certaines conditions sur les entiers M et N, on définit h(M,N) comme le plus petit nombre d'ensemble partitionnant 1,2...M pour lequel aucun de ces ensembles a des éléments vérifiants:
 - $\sum_{i=0}^{t} a_i x_i = \sum_{i=t+1}^{l} a_i x_i + \mu N$ avec μ variant sur un intervalle donné
- En posant h(m) = min h(M,N), on obtient le résultat suivant: $f(n+h(m)) \ge N_1 f(n) + M_1$

En particulier en utilisant l'équation suivante $2x_1 + x_2 = 2x_3$, on obtient: $f(n+3) \ge 12f(n) + 9$

1

Cas particulier du théorème de Ramsey

• $R_n(k,2)$ correspond au plus petit nombre tel que si G est un graphe ayant R sommets avec $R \ge R_n(k,2)$ dont chaque arrête est coloré par une couleur parmi les n possibles, alors il existe un sous-graphe de G ayant k sommets tel que toutes les arrêtes du sous-graphe soient de même couleur.

• $f_k(n)$ correspond au plus grand nombre tel que 1,2,... $f_k(n)$ peut être partitionné en n ensembles dont aucun ne contient de solution à:

(S):
$$x_{i,j} + x_{j,j+1} = x_{i,j+1}$$
 $1 \le i < j \le k-1$

En particulier, $f_3(n) = f(n)$

RELATION ENTRE $R_n(k, 2)$ ET $f_k(n)$

$$R_n(k,2) \geq f_k(n) + 2$$

En effet soit $C_1, ... C_n$ n classes (S)-libre, partitionnant 1,2... $f_k(n)$ Soit G un graphe de sommets $P_1, ... P_{f_k(n)}$ et d'arrête (P_i, P_j) de couleur c_r si $|i-j| \in C_r$

Soient $P_{i_1},...,P_{i_k}$ les sommets d'un sous-graphe monochromatique de couleur c_r

On a alors: pour tout $1 \le t < s \le k, i_s - i_t \in C_r$ et: $(i_t - i_s) + (i_s - i_{s+1}) = i_t - i_{s+1}$ $1 \le t < s \le k-1$

Ce résultat permet alors de minorer $R_n(k,2)$, par exemple, pour k=3, on obtient la minoration: $R_n(3,2) \ge c89^{n/4}$