6.3 H Σ YNAPTH Σ H $f(x) = \alpha x + \beta$

Συντελεστής διεύθυνσης ευθείας

Έστω Οχη ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα χ'χ στο σημείο Α.

Τη γωνία ω που διαγράφει η ημιευθεία Ax, όταν στραφεί γύρω από το A κατά τη θ ετική φ ορά⁽¹⁾ μέχρι να πέσει πάνω στην ευθεία ε , τη λέμε γωνία που σχηματίζει η ε με τον άζονα x'x. Αν η ευθεία ε είναι παράλληλη προς τον άξονα x'x ή συμπίπτει με αυτόν, τότε λέμε ότι η ευθεία ε σχηματίζει με τον άξονα x'x γωνία $\omega = 0^\circ$. Σε κάθε περίπτωση για τη γωνία ω ισχύει

$$0^{\circ} < \omega < 180^{\circ}$$
.

Ως συντελεστή διεύθυνσης ή ως κλίση μιας ευθείας ε ορίζουμε την εφαπτομένη της γωνίας ω που σχηματίζει η ε με τον άξονα x'x. Ο συντελεστής διεύθυνσης μιας ευθείας ε συμβολίζεται συνήθως με λ_{ϵ} ή απλά με λ . Είναι φανερό ότι ο συντελεστής διεύθυνσης της ευθείας ε είναι θετικός, αν η γωνία ω είναι οξεία, αρνητικός, αν η γωνία ω είναι αμβλεία και μηδέν, αν η γωνία ω είναι μηδέν. Στην περίπτωση που η γωνία ω είναι ίση με 90° , δηλαδή όταν η ευθεία ε είναι κάθετη στον άξονα x'x, δεν ορίζουμε συντελεστή διεύθυνσης για την ϵ .

⁽¹⁾ Ως θετική φορά περιστροφής εννοούμε τη φορά κατά την οποία πρέπει να περιστραφεί ο ημιάζονας Οχ για να συμπέσει με τον ημιάζονα Ογ, αφού προηγουμένως διαγράψει γωνία 90°.

Γραφική παράσταση της συνάρτησης $f(x) = \alpha x + \beta$

Ας θεωρήσουμε τη συνάρτηση f(x) = 0.5x + 1. Όπως πρακτικά διαπιστώσαμε στο Γυμνάσιο, η γραφική παράσταση της f είναι ευθεία γραμμή με εξίσωση y = 0.5x + 1 (Σχήμα).

Η ευθεία αυτή:

- ✓ Τέμνει τον άξονα x'x στο σημείο A(-2,0), αφού για y = 0 βρίσκουμε x = -2, και τον άξονα y'y στο σημείο B(0,1), αφού για x = 0 βρίσκουμε y = 1 και
- ✓ Έχει κλίση:

$$\lambda = \epsilon \phi \omega = \frac{\text{(OB)}}{\text{(OA)}} = \frac{1}{2} = 0,5.$$

Παρατηρούμε, δηλαδή, ότι η κλίση λ της ευθείας y = 0.5x + 1 είναι ίση με το συντελεστή του x.

Γενικά, όπως θα αποδείξουμε στη Β΄ Λυκείου, η γραφική παράσταση της συνάρτησης $f(x) = \alpha x + \beta$ είναι μία ευθεία, με εξίσωση $y = \alpha x + \beta$, η οποία τέμνει τον άξονα των y στο σημείο $B(0,\beta)$ και έχει κλίση $\lambda = \alpha$. Είναι φανερό ότι:

- $\alpha v \alpha > 0$, tóte $0^{\circ} < \omega < 90^{\circ}$
- $\alpha v \alpha < 0$, the $90^{\circ} < \omega < 180^{\circ}$
- $\alpha v \alpha = 0$, $\tau \acute{o} \tau \epsilon \omega = 0^{\circ}$.

Στην περίπτωση που είναι $\alpha = 0$, η συνάρτηση παίρνει τη μορφή $f(x) = \beta$ και λέγεται σταθερή συνάρτηση, διότι η τιμή της είναι η ίδια για κάθε $x \in \mathbb{R}$.

Aς θεωρήσουμε τώρα δύο τυχαία σημεία $A(x_1,y_1)$ και $B(x_2,y_2)$ της ευθείας $y=\alpha x+\beta$.

Τότε θα ισχύει:

$$y_1 = \alpha x_1 + \beta$$
 kat $y_2 = \alpha x_2 + \beta$,

οπότε θα έχουμε:

$$y_2 - y_1 = (\alpha x_2 + \beta) - (\alpha x_1 + \beta) = \alpha (x_2 - x_1).$$

Επομένως θα είναι:

$$\alpha = \frac{y_2 - y_1}{x_2 - x_1}$$

Για παράδειγμα, η ευθεία που διέρχεται από τα σημεία A(-1,3) και B(3,6) έχει κλίση $\alpha = \frac{6-3}{3-(-1)} = 0,75.$ Επομένως, η ευθεία αυτή σχηματίζει με τον άξονα x'x γωνία ω με εφω = 0,75, οπότε θα είναι ω $\simeq 36,87^\circ$.

H συνάρτηση f(x) = ax

Αν $\beta = 0$, τότε η f παίρνει τη μορφή $f(x) = \alpha x$, οπότε η γραφική της παράσταση είναι η ευθεία $y = \alpha x$ και περνάει από την αρχή των αξόνων. Ειδικότερα:

Για α = 1 έχουμε την ευθεία y = x. Για τη γωνία ω, που σχηματίζει η ευθεία αυτή με τον άξονα x'x, ισχύει εφω = α = 1, δηλαδή ω = 45°. Επομένως η ευθεία y = x είναι η διχοτόμος των γωνιών xÔy και x'Ôy' των αξόνων.

Για α = -1 έχουμε την ευθεία y = -x. Για τη γωνία ω, που σχηματίζει η ευθεία αυτή με τον άξονα x'x, ισχύει εφω = α = -1, δηλαδή ω = 135°.

Επομένως η ευθεία y = -x είναι η διχοτόμος των γωνιών $y \hat{O} x'$ και $y' \hat{O} x$ των αξόνων.

Σχετικές θέσεις δύο ευθειών

Ας θεωρήσουμε δύο ευθείες $ε_1$ και $ε_2$ με εξισώσεις $y=\alpha_1x+\beta_1$ και $y=\alpha_2x+\beta_2$ αντιστοίχως και ας υποθέσουμε ότι οι ευθείες αυτές σχηματίζουν με τον άξονα x'x γωνίες $ω_1$ και $ω_2$ αντιστοίχως.

- An $\alpha_1=\alpha_2$, tóte eq $\omega_1=$ eq ω_2 , opóte $\omega_1=\omega_2$ kai ára oi eubeíez ε_1 kai ε_2 eínai parállhaez ή sumpípitoun. Eidikótera:
 - ✓ Aν $\alpha_1 = \alpha_2$ και $\beta_1 \neq \beta_2$, τότε οι ευθείες είναι παράλληλες (Σχ. α'), ενώ
 - ✓ Αν $\alpha_1 = \alpha_2$ και $\beta_1 = \beta_2$, τότε οι ευθείες ταυτίζονται.

• An $\alpha_1 \neq \alpha_2$, tóte eq $\omega_1 \neq \epsilon \varphi \omega_2$, opóte $\omega_1 \neq \omega_2$ kai ára oi eubeíez ϵ_1 kai ϵ_2 témnontai. (Sci. b')

Σύμφωνα με τα παραπάνω συμπεράσματα:

Οι ευθείες της μορφής y = αx + 1, με α∈ℝ, όπως είναι για παράδειγμα οι ευθείες: y = x +1, y = -x + 1, y = 2x+1 κτλ., διέρχονται όλες από το ίδιο σημείο, το σημείο 1 του άξονα y'y.

Γενικά, οι ευθείες της μορφής $y = \alpha x + \beta$, όπου β σταθερό και α μεταβλητό διέρχονται όλες από το σημείο β του άξονα y'y.

• Οι ευθείες της μορφής $y = 2x + \beta$, $\beta \in \mathbb{R}$, όπως είναι για παράδειγμα οι ευθείες: y = 2x, y = 2x-1, y = 2x+3 κτλ., είναι παράλληλες μεταξύ τους, αφού έχουν όλες κλίση $\alpha = 2$.

Γενικά, οι ευθείες της μορφής $y = \alpha x + \beta$, όπου α σταθερό και β μεταβλητό, είναι όλες παράλληλες μεταξύ τους.

163

$H \sigma v v \acute{a} \rho \tau \eta \sigma \eta f(x) = |x|$

Σύμφωνα με τον ορισμό της απόλυτης τιμής έχουμε:

$$f(x) = |x| = \begin{cases} -x, & \text{av } x < 0 \\ x, & \text{av } x \ge 0 \end{cases}$$

Επομένως η γραφική παράσταση της συνάρτησης f(x) = |x| αποτελείται από τις δύο ημιευθείες:

$$\checkmark \ y = -x, \ \mu\epsilon \ x \leq 0 \ \kappa \text{al}$$

 \checkmark y = x, με x \ge 0 που διχοτομούν τις γωνίες x'Ôy και xÔy αντιστοίχως.

ЕФАРМОГН

Στο διπλανό σχήμα δίνεται η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη σε όλο το \mathbb{R} .

- i) Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και Β και στη συνέχεια να δείξετε ότι η ευθεία αυτή διέρχεται και από το σημείο Γ.
- ii) Να λύσετε γραφικά την ανίσωση $f(\mathbf{x}) > -0.5\mathbf{x} + 1 \ .$

ΛΥΣΗ

 i) Η ευθεία AB έχει εξίσωση της μορφής y = αx + β και επειδή διέρχεται από τα σημεία A(2,0) και B(0,1) θα ισχύει:

$$0 = \alpha \cdot 2 + \beta \ \text{kat} \ 1 = \alpha \cdot 0 + \beta,$$
 opóte θα έχουμε:

$$\alpha = -0.5 \text{ kat } \beta = 1.$$

Άρα η εξίσωση της ΑΒ είναι:

$$y = -0.5 \cdot x + 1.$$

Για να δείξουμε τώρα ότι το σημείο Γ

164

ανήκει στην ευθεία AB, αρκεί να δείξουμε ότι το ζεύγος (-2,2) των συντεταγμένων του επαληθεύει την εξίσωση αυτής, δηλαδή αρκεί να δείξουμε ότι $2=-0,5\cdot(-2)+1$, που ισχύει.

ii) Οι λύσεις της ανίσωσης $f(x) > -0.5 \cdot x + 1$ είναι οι τετμημένες των σημείων της γραφικής παράστασης της f που βρίσκονται πάνω από την ευθεία με εξίσωση $y = -0.5 \cdot x + 1$, δηλαδή πάνω από την ευθεία AB. Επομένως, η ανίσωση αυτή αληθεύει για $x \in (-2.0) \cup (2, +\infty)$.

ΑΣΚΗΣΕΙΣ Α΄ ΟΜΑΔΑΣ

1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα κ'χ η ευθεία:

i)
$$y = x + 2$$

ii)
$$y = \sqrt{3}x - 1$$

iii)
$$y = -x + 1$$

iv)
$$y = -\sqrt{3}x + 2$$
.

2. Να βρείτε την κλίση της ευθείας που διέρχεται από τα σημεία:

i)
$$A(1,2)$$
 kai $B(2,3)$

ii)
$$A(1,2)$$
 kai $B(2,1)$

iii)
$$A(2,1)$$
 kat $B(-1,1)$

iv)
$$A(1,3)$$
 kai $B(2,1)$.

3. Να βρείτε την εξίσωση της ευθείας η οποία:

- i) Έχει κλίση $\alpha = -1$ και τέμνει τον άξονα y'y στο σημείο B(0,2).
- ii) Σχηματίζει με τον άξονα x'x γωνία $\omega = 45^\circ$ και τέμνει τον άξονα y'y στο σημείο B(0,1).
- **iii)** Είναι παράλληλη με την ευθεία y = 2x 3 και διέρχεται από το σημείο A(1,1).

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία:

i)
$$A(1,2)$$
 kat $B(2,3)$

ii)
$$A(1,2)$$
 kat $B(2,1)$

iii)
$$A(2,1)$$
 kat $B(-1,1)$

iv)
$$A(1,3)$$
 kat $B(2,1)$.

5. Να αποδείξετε ότι η εξίσωση της ευθείας που παριστάνει τη σχέση μεταξύ της θερμοκρασίας C σε βαθμούς Celsius και της θερμοκρασίας F σε βαθμούς Fahrenheit είναι η

$$C = \frac{5}{9}(F - 32).$$

Γνωρίζουμε ότι το νερό παγώνει σε 0° C ή 32° F και βράζει σε 100° C ή 212° F. Υπάρχει θερμοκρασία που να εκφράζεται και στις δύο κλίμακες με τον ίδιο αριθμό;

6. Να παραστήσετε γραφικά τη συνάρτηση:

$$f(x) = \begin{cases} -x + 2, & \text{av } x < 0 \\ 2, & \text{av } 0 \le x < 1 \\ x + 1, & \text{av } 1 \le x \end{cases}$$

7. Στο διπλανό σχήμα δίνονται η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη σε όλο το $\mathbb R$ και η ευθεία $\mathbf y = \mathbf x$.

Να λύσετε γραφικά:

$$f(x) = 1 \text{ kal } f(x) = x.$$

$$f(\mathbf{x}) < 1 \text{ kat } f(\mathbf{x}) \ge \mathbf{x}.$$

8. i) Στο ίδιο σύστημα συντεταγμένων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

$$f(x) = |x| \kappa \alpha \iota g(x) = 1$$

και με τη βοήθεια αυτών να λύσετε τις ανισώσεις:

$$|\mathbf{x}| \le 1 |\mathbf{\kappa} \mathbf{\alpha} \mathbf{1}| |\mathbf{x}| > 1.$$

ii) Να επιβεβαιώσετε αλγεβρικά τις απαντήσεις σας στο προηγούμενο ερώτημα.

166

ΑΣΚΗΣΕΙΣ Β΄ ΟΜΑΔΑΣ

1. Η πολυγωνική γραμμή ΑΒΓΔΕ του παρακάτω σχήματος είναι η γραφική παράσταση μιας συνάρτησης f που είναι ορισμένη στο διάστημα [-6,5].

- i) Να βρείτε την τιμή της συνάρτησης f σε κάθε ακέραιο $x \in [-6,5]$.
- **ii)** Να λύσετε τις εξισώσεις:

$$f(x) = 0$$
, $f(x) = -1$ kat $f(x) = 1$

iii) Να βρείτε την εξίσωση της ευθείας ΒΔ και στη συνέχεια να λύσετε γραφικά την ανίσωση

$$f(\mathbf{x}) \leq 0.5 \cdot \mathbf{x}$$
.

- 2. Μια φωτεινή ακτίνα κινείται κατά μήκος της ευθείας y = 1 x και ανακλάται στον άξονα x'x. Να γράψετε την εξίσωση της ευθείας κατά μήκος της οποίας κινείται η ανακλώμενη ακτίνα.
- 3. Σε μια δεξαμενή υπάρχουν 600 λίτρα βενζίνης. Ένα βυτιοφόρο που περιέχει 2000 λίτρα βενζίνης αρχίζει να γεμίζει τη δεξαμενή. Αν η παροχή του βυτιοφόρου είναι 100 λίτρα το λεπτό και η δεξαμενή χωράει όλη τη βενζίνη του βυτιοφόρου:
 - i) Να βρείτε τις συναρτήσεις που εκφράζουν, συναρτήσει του χρόνου t, την ποσότητα της βενζίνης:
 - α) στο βυτιοφόρο και β) στη δεξαμενή.
 - ii) Να παραστήσετε γραφικά τις παραπάνω συναρτήσεις και να βρείτε τη χρονική στιγμή κατά την οποία το βυτιοφόρο και η δεξαμενή έχουν την ίδια ποσότητα βενζίνης.
- 4. Στο διπλανό σχήμα το σημείο M διαγράφει το ευθύγραμμο τμήμα AB από το A προς το B. Συμβολίζουμε με x το μήκος της διαδρομής AM του σημείου M και με f(x) το εμβαδό του τριγώνου $M\Gamma\Delta$. Να βρείτε το πεδίο ορισμού και τον τύπο της συνάρτησης E=f(x) και στη συνέχεια να την παραστήσετε γραφικά.

5. Δύο κεριά K_1 και K_2 , ύψους 20cm το καθένα, άρχισαν να καίγονται την ίδια χρονική στιγμή και το πρώτο κερί κάηκε σε 3 ώρες, ενώ το δεύτερο κάηκε σε 4 ώρες. Τα ύψη των κεριών K_1 και K_2 , συναρτήσει του χρόνου t, κατά το χρονικό διάστημα που καθένα από αυτά καιγόταν, παριστάνονται με τα ευθύγραμμα τμήματα k_1 και k_2 του παρακάτω σχήματος.

- i) Να βρείτε τις συναρτήσεις $h=h_{_1}(t)$ και $h=h_{_2}(t)$ που εκφράζουν, συναρτήσει του χρόνου t, τα ύψη των κεριών $K_{_1}$ και $K_{_2}$ αντιστοίχως.
- ii) Να βρείτε πότε το κερί K_2 είχε διπλάσιο ύψος από το κερί K_1 .
- iii) Να λύσετε το ίδιο πρόβλημα και στη γενική περίπτωση που το αρχικό ύψος των κεριών ήταν ίσο με υ. Τι παρατηρείτε;