

Localization | the Markov Approach Autonomous Mobile Robots

Roland Siegwart

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza

Markov localization | applying probability theory to localization

- Information (measurements) is error prone (uncertain)
 - Odometry
- Exteroceptive sensors (camera, laser, ...)
- Map
- Probabilistic map-based localization

(Camera, Laser, ...)

(sensor data / features)

Markov localization | basics and assumption

Discretized pose representation $x_t \rightarrow \text{grid map}$

- Markov localization tracks the robot's belief state $bel(x_t)$ using an arbitrary probability density function to represent the robot's position
- *Markov assumption*: Formally, this means that the output of the estimation process is a function x_t only of the robot's previous state x_{t-1} and its most recent actions (odometry) u_t and perception z_t .

$$p(x_t|x_0, u_t \cdots u_0, z_t \cdots z_0) = p(x_t|x_{t-1}, u_t, z_t)$$

Markov localization addresses the *global localization problem*, the *position* tracking problem, and the kidnapped robot problem.

Markov localization | applying probability theory to localization

- **ACT** | probabilistic estimation of the robot's new belief state $bel(x_t)$ based on the previous location $bel(x_{t-1})$ and the probabilistic motion model $p(x_t|u_t,x_{t-1})$ with action u_t (control input).
 - → application of theorem of total probability / convolution

$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1})bel(x_{t-1}) dx_{t-1}$$
 for continuous probabilities

$$\overline{bel}(x_t) = \sum p(x_t|u_t, x_{t-1})bel(x_{t-1})$$
 for discrete probabilities

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

Markov localization | applying probability theory to localization

- **SEE** | probabilistic estimation of the robot's new belief state $bel(x_t)$ as a function of its measurement data z_t and its former belief state $bel(x_t)$:
 - → application of Bayes rule

Margarita Chli, Paul Furgale, Marco Hutter, Martin Rufli, Davide Scaramuzza, Roland Siegwart

$$bel(x_t) = \eta p(z_t|x_t, M)\overline{bel}(x_t)$$

where $p(z_t|x_t,M)$ is the probabilistic measurement model (SEE), that is, the probability of observing the measurement data z_t given the knowledge of the map M and the robot's position x_t . Thereby $\eta = p(y)^{-1}$ is the normalization factor so that $\sum p = 1$.

Markov localization | the basic algorithms for Markov localization

For all
$$x_t$$
 do
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t|u_t,x_{t-1})bel(x_{t-1}) \qquad \text{(prediction update)}$$

$$bel(x_t) = \eta p(z_t|x_t,M)\overline{bel}(x_t) \qquad \text{(measurement update)}$$
 endfor
$$\text{Return } bel(x_t)$$

Markov assumption: Formally, this means that the output is a function x_t only of the robot's previous state x_t and its most recent actions (odometry) u_t and perception z_t .

ACT | using motion model and its uncertainties

ACT | using motion model and its uncertainties

SEE | estimation of position based on perception and map

Markov localization | extension to 2D

- The real world for mobile robot is at least 2D (moving in the plane)
 - \rightarrow discretized pose state space (grid) consists of x, y, θ
 - → Markov Localization scales badly with the size of the environment
- Space: 10 m x 10 m with a grid size of 0.1 m and an angular resolution of 1°
 - → $100 \cdot 100 \cdot 360 = 3.6 \cdot 10^6$ grid points (states)
 - → prediction step requires in worst case $(3.6 \ 10^6)^2$ multiplications and summations

- Very important processing power needed
- Large memory requirement

Markov localization | reducing computational complexity

- Adaptive cell decomposition
- Motion model (Odomety) limited to a small number of grid points
- Randomized sampling
 - Approximation of belief state by a representative subset of possible locations
 - weighting the sampling process with the probability values
 - Injection of some randomized (not weighted) samples
 - randomized sampling methods are also known as particle filter algorithms, condensation algorithms, and Monte Carlo algorithms.

