$L(A) = \{w \mid w \text{ is in } \{0,1\}^* \text{ and the length of } w \text{ is divisible by 3} \}$

Important Observations:

1. States possible is {0, 1, 2}

$L(A) = \{w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ is divisible by 3}\}$

Important Observations:

- **1.** States possible is {0, 1, 2}
- **2.** If w represents an integer i then $\delta(0, w) = i \% 3$
- **3.** If w0 represents an integer 2i then $\delta(i \% 3, 0) = (2i) \% 3$
- **4.** If w1 represents an integer (2i + 1) then δ (i % 3, 1) = (2i + 1) % 3

W	а	input	i	Decimal (i)	Decimal (2i)	Transition Function	State
0	-	0	0	0	0	δ(0, 0)	0
1	-	1	1	1	1	δ(0, 1)	1
1	0	10	1	1	(2i) = 2	$\delta(0, 10)$ $\delta(\delta(0, 1), 0)$ $\delta(1, 0)$	(2i) % 3 = 2
1	1	11	1	1	(2i + 1) = 3	$\delta(0, 11)$ $\delta(\delta(0, 1), 1)$ $\delta(1, 1)$	(2i + 1) % 3 = 0
10	0	100	10	2	(2i) = 4	$\delta(0, 100)$ $\delta(\delta(\delta(0, 1), 0), 0)$ $\delta(\delta(1, 0), 0)$ $\delta(2, 0)$	(2i) % 3 = 1
:							

Regular Expression (RE):

- Representing the Finite Automaton by expression
- Widely used in Computing Science
 - If a is any symbol then a is a RE, and L(a) = {a}
 - ϵ is a RE, and L(ϵ) = { ϵ }
 - \emptyset is RE, and L(\emptyset) = \emptyset

Regular Expression Operator:

- () parenthesis, used to describe the grouping of operators
- Union (∪) also called 'OR' (+): Binary Opeartor

```
If E_1 and E_2 are RE then E_1 + E_2 is a RE and L(E_1 + E_2) = L(E_1) \cup L(E_2)
```

- $L(0) \Rightarrow (0) = \{0\}$
- $L(1) \Rightarrow (1) = \{1\}$
- $L(0 + 1) \Rightarrow (0 + 1) = L(0) \cup L(1) = \{0, 1\}$
- $L(01) \Rightarrow (01) = \{01\}$
- $L(01 + 1) \Rightarrow (01 + 1) = L(01) \cup L(1) = \{01, 1\}$
- $L(11) \Rightarrow (11) = \{11\}$
- $L(01 + 11) \Rightarrow (01 + 11) = L(01) \cup L(11) = \{01, 11\}$
- L = {01, 111, 10} and M = {00, 01}L + M = {01, 111, 10, 00}
- Concatenation also called 'AND' (.) : Binary Opeartor

If E_1 and E_2 are RE then E_1E_2 is a RE and $L(E_1E_2) = L(E_1)L(E_2)$

- $L(0) = \{0\}$
- $L(1) = \{1\}$
- $L(0.1) \Rightarrow L(0) \cdot L(1) \Rightarrow L(01) \Rightarrow (01) = \{01\}$
- $L(01.11) \Rightarrow L(01) \cdot L(11) \Rightarrow L(0111) = (0111) = \{0111\}$
- L = {01, 111, 10} and M = {00, 01}
 LM = {0100, 0101, 11100, 11101, 1000, 1001}

Kleene Star also called 'Star'/ 'Closure' (*): Unary Operator
If E RE then E* is a RE and L(E*) = (L(E))*
L* = {∈} ∪ L ∪ LL ∪ LLL ∪ ...
L(0)* ⇒ (0)* ⇒ 0* = {∈, 0, 00, 000, 0000, ...}
L(ab)* ⇒ (ab)* = {∈, ab, abab, ababab, ...}
L(01)* ⇒ (01)* = {∈, 01, 0101, 010101, ...}
L = {0, 10} then {0, 10}* = {∈, 0, 10, 00, 010, 100, 1010, ...}
{a, b, c}* = ??

Kleene Plus also called 'Plus Closure' (†)

L⁺ = L
$$\cup$$
 LL \cup LLL \cup ...
L(0)⁺ \Rightarrow (0)⁺ \Rightarrow 0⁺ = {0, 00, 000, 0000, ...}
{a, b, c}⁺ = ??

Precedence of Operator:

- () Highest
- *
- •
- + Lowest

Algebraic Laws for RE's:

- (+) is commutative and associative
- (.) distributed over (+)
- (.) is not commutative
- (\varnothing) is identity for (+) \Rightarrow R + \varnothing = \varnothing + R = R
- (ϵ) is the identity for (.) $\Rightarrow \epsilon R = R\epsilon = R$
- (\varnothing) is annihilator for (.) $\Rightarrow \varnothing R = R\varnothing = \varnothing$

Example:

24.

25.26.

27.

28.

 $L((a + b) a) \Rightarrow (a + b) a \Rightarrow \{aa, ba\}$ 1. 2. $L(0 (1 + 0)) \Rightarrow 0 (1 + 0) \Rightarrow \{01, 00\}$ $a^*. b^* = ??$ 3. $(a + b)^* = ??$ 4. $(0+1)^* = ??$ 5. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and } w \text{ is odd}\}\$ 6. 7. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and } w \text{ is even} \}$ $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings starts with } 0\}$ 8. 9. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings starts with } 1\}$ $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings ends with } 0\}$ 10. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings ends with } 1\}$ 11. 12. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings starts with } \{0, 1\}^* \}$ 13. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings ends with } 01\}$ 14. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings contains } 0\}$ 15. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings holds substring } 01\}$ 16. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings starts and ends with same symbol}\}$ 17. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings starts and ends with different}\}$ symbol} $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings contains exactly 2 0's} \}$ 18. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings contains at least 2 0's} \}$ 19. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings contains at most 2 0's} \}$ 20. 21. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings contains even number of 0's} \}$ 22. $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with even length}\}$ $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with odd length} \}$ 23.

 $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with length divisible by 2}$ $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with length divisible by 3} \}$

 $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with no occurrence of } \{0, 1\}^* \}$

 $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings has no } 00\}$

 $L = \{w \mid w \text{ is in } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and all strings with exact occurrence of } \{0, 1\}^* \text{ and } \{0, 1\}^*$