Magnetic Field

Origin of the Magnetic Field

Biot-Savart Law:

$$d\mathbf{B} = \frac{\mu_0}{4 \,\pi} \, \frac{I \, d\mathbf{L} \times \hat{\mathbf{r}}}{r^2}$$

Origin of the Electric Field

Comparison with Electric Field

Source of an electric field: ΔQ

Field from the source:

$$\Delta E = \frac{k\Delta Q}{r^2} \; \hat{r} = \frac{1}{4\pi\epsilon_0} \frac{\Delta Q}{r^2} \; \hat{r}$$

Origin of the Magnetic Field

Comparison with Electric Field

Source of a magnetic field $I\Delta L$

Field from the source:

$$\Delta B = \frac{k_{\rm m}(I\Delta L)}{r^2} (\hat{L} \times \hat{r})$$
$$= \frac{\mu_0}{4\pi} \frac{I\Delta L}{r^2} (\hat{L} \times \hat{r})$$

Origin of the Magnetic Field

Biot-Savart Law:
$$d\mathbf{B} = \frac{\mu_0}{4 \pi} \frac{I d\mathbf{L} \times \hat{\mathbf{r}}}{r^2}$$

$$\frac{\mu_0}{4 \pi} = 10^{-7} \ N / A^2 = 10^{-7} \ T \cdot m / A$$

permeability constant

$$\mathbf{B} = \frac{\mu_0}{4\pi} \int \frac{I \ d\mathbf{L} \times \hat{\mathbf{r}}}{r^2} = \frac{\mu_0}{4\pi} \int d^3 r \ \frac{\mathbf{J} \times \hat{\mathbf{r}}}{r^2}$$

C.f.
$$\mathbf{E} = \frac{1}{4 \pi \varepsilon_0} \int d^3 r \, \frac{\rho}{r^2} \, \hat{\mathbf{r}}$$

Current Loop

Find the magnetic field at an arbitrary point *P* on the axis of a circular loop of radius *a* carrying current *I*.

$$\mathbf{B} = \frac{\mu_0}{4 \,\pi} \int \frac{I \, d\mathbf{L} \times \hat{\mathbf{r}}}{r^2}$$

By symmetry, only $B_x \neq 0$.

$$(d\mathbf{L} \times \hat{\mathbf{r}})_{x} = \cos \theta \, dL = \frac{a}{r} \, dL$$

$$B_{x} = \frac{\mu_{0}}{4 \, \pi} \int \frac{I \, a}{r^{3}} \, dL = \frac{\mu_{0}}{4 \, \pi} \frac{I \, a}{r^{3}} \left(2 \, \pi \, a \right) = \frac{\mu_{0}}{2} \frac{I \, a^{2}}{r^{3}}$$

$$= \frac{\mu_{0}}{2} \frac{I \, a^{2}}{\left(x^{2} + a^{2} \right)^{3/2}}$$

Straight Line

Find the magnetic field produced by an infinitely long straight wire carrying current I.

$$\vec{B}$$

$$\mathbf{B} = \frac{\mu_0}{4 \,\pi} \int \frac{I \, d\mathbf{L} \times \hat{\mathbf{r}}}{r^2}$$

$$d\mathbf{L} \times \hat{\mathbf{r}} = \sin \theta \ dL \ \hat{\mathbf{z}} = \frac{y}{r} \ dL \ \hat{\mathbf{z}}$$

$$B_z = \frac{\mu_0}{4 \pi} \int \frac{I y}{r^3} dL = \frac{\mu_0}{4 \pi} I y \int_{-\infty}^{\infty} \frac{1}{\left(x^2 + y^2\right)^{3/2}} dx$$

$$=\frac{\mu_0 I}{2 \pi y}$$

$$\int \frac{1}{\left(x^2 + a^2\right)^{3/2}} \, dx = \frac{x}{a^2 \sqrt{x^2 + a^2}}$$

$$\lim_{x \to \pm \infty} \frac{x}{a^2 \sqrt{x^2 + a^2}} = \lim_{x \to \pm \infty} \frac{x}{a^2 |x|} = \pm \frac{1}{a^2}$$

$$\mathbf{B} = \frac{\mu_0 I}{2 \pi d} \hat{\mathbf{\phi}}$$

Ampere's law

Field around long wire carrying current *I*:

$$\mathbf{B} = \frac{\mu_0 I}{2 \pi r} \,\hat{\mathbf{\phi}} \qquad \text{from Biot-Savart law}$$

$$\rightarrow \oint \vec{B} \cdot d\vec{r} = \int_0^{2\pi} \frac{\mu_0 I}{2 \pi r} r d\varphi = \mu_0 I$$

True for arbitrary closed paths & steady currents:

$$\oint \vec{B} \cdot d\vec{r} = \mu_0 \ I_{enclosed}$$
 Ampere's law

net field from ALL sources

Ampere's law

Using Ampere's Law

STRATEGY Ampère's Law:

Base on symmetry, choose the amperian loop such that ${\bf B}$ is either // or \bot to it.

Outside & Inside a Wire

A long, straight wire of radius *R* carries a current *I* distributed uniformly over its cross section.

Find the magnetic field

- outside and (a)
- (b) inside the wire.

By symmetry, **B** is azimuthal.

Amperian loop is a circle.

$$\oint \vec{B} \cdot d\vec{r} = 2 \pi r B$$

(a)
$$I_{enclosed} = I$$

$$B = \frac{\mu_0 I}{2 \pi r}$$

(b)
$$I_{enclosed} = I \frac{\pi r^2}{\pi R^2}$$
 $B = \frac{\mu_0 I r}{2 \pi R^2}$

$$B = \frac{\mu_0 I r}{2 \pi R^2}$$

Current Sheet

An infinite flat sheet carries current out of this page.

The current is distributed uniformly along the sheet, with current per unit width given by J_{S} . Find the magnetic field of this sheet.

By symmetry, **B** is // to sheet & \perp /.

Amperian loop is a rectangle.

$$\oint \vec{B} \cdot d\vec{r} = 2 B L$$

$$I_{\it enclosed} = J_{\it S} \; L$$

$$B = \frac{1}{2} \mu_0 J_S$$

The Magnetic Force Between Conductors

Hum from electric equipments are vibrations of transformers in response to AC.

Definition: 1 A is the current in two long, parallel wire 1 m apart & exerting 2×10^{-7} N per meter of length.

1C is the charge passing in 1s through a wire carrying 1A.

The Magnetic Force Between Conductors

The Magnetic Force on a moving charge

Force on carrier in wire:

$$\mathbf{f} = q \ \mathbf{v}_d \times \mathbf{B}$$

F out of paper

e moving left deflected upward ...

wire

 \mathbf{F}_{mag} on + charge is also upward

The Hall Effect

e moves to left & deflected upward

E_H is upward

p moves to right & deflected upward

Direction of **F**_B depends on **I**, not on sign of charged carriers.

Carriers of both signs are deflected upwards

Direction of **E** due to built-up charges depends on signs of charged carriers: Hall effect.

p moves to right & deflected upward

The Hall Effect

e moves to left & deflected upward

E_H is upward

Steady state, $F_z = 0$: $q E_H + q v_d B = 0$

$$q E_H + q v_d B = 0$$

$$\rightarrow$$
 $E_H = -v_d B$

p moves to right & deflected upward

Hall potential: $V_H = v_d B h = \frac{I}{n q A} B h = \frac{I}{n q t} B$

Hall coefficient:
$$R_H = \frac{1}{n \ q}$$

A mass spectrometer

Two isotopes of an element with masses m_1 and m_2 are accelerated by a potential difference V. They then enter a uniform field B normal to the magnetic field lines. What is the ratio of the radii of their paths

The Cyclotron

Period of particle in circular orbit in uniform **B**:

$$T = \frac{2 \pi r}{v} = \frac{2 \pi}{v} \frac{m v}{q B} = \frac{2 \pi m}{q B}$$

$$\omega = \frac{2 \pi}{T} = \frac{q B}{m}$$
 Cyclotron frequency

Motion // B not affected by it

Trajectory in 3-D

Charged particles frozen to **B** field lines.

Application: The Cyclotron

Whole device in vacuum chamber.

Small V across the dee's, which alternates polarities at the cyclotron frequency.

Particle injected at center of gap & spirals out.

E ~ MeVs.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Applications:

Manufacture of radioactive isotopes. e.g., PET (Positron Emission Tomography).

Higher energies:

Relativity effects → Synchrotron (**B** also varies)

Application: Electric Motors

26.6. Magnetic Dipoles

... but close in, Far away, fields look they're different. similar ...

Field on axis of current loop of radius a:

$$B_{x} = \frac{\mu_{0}}{2} \frac{I a^{2}}{\left(x^{2} + a^{2}\right)^{3/2}} \xrightarrow{x ? a} \frac{\mu_{0}}{2} \frac{I a^{2}}{x^{3}} = \frac{\mu_{0}}{2} \frac{I A}{\pi x^{3}}$$

C.f. electric dipole:
$$E = 2k \frac{p}{x^3}$$

Setting
$$k \leftrightarrow \frac{\mu_0}{4\pi} \rightarrow p \leftrightarrow \mu = IA$$
 magnetic dipole

N-turn current loop:
$$\mu = N I A$$

Detailed calculations show:

- $\mu = IA$ valid for arbitrary loop.
- Vector behavior of μ similar to that of p for r >> a.

Multi-turn loops = electromagnets

Very strong field requires superconducting wires, e.g., MRI scanners.

Orbiting e in atom $\rightarrow \mu$.

Example

A square loop has sides of length 20cm. It has 5 turns and carries a current of 2A. Find: (a) The magnetic moment; (b) the torque on the loop if the B field is at 37° to the direction of the normal to the loop. (c) The work needed to rotate the loop from its position of minimum energy to the given orientation

Symmetric Counterparts of Electrostatics & Magnetostatics

Physical Quantity	Electrostatics	Magnetosatics (steady current)
Source:	ΔQ	$\Delta(I*\vec{L}) = I\Delta\vec{L}$
Field:	$\Delta E = K_{E} \left(\frac{\Delta Q}{r^{2}} \right) \cdot \hat{r}$ $\vec{E} = \int K_{E} \left(\frac{dQ}{r^{2}} \right) \cdot \hat{r}$	$\Delta B = K_B \left(\frac{I\Delta(\vec{L})}{r^2} \right) \times \hat{r}$ $\vec{B} = \int K_B \left(\frac{Id\vec{L}}{r^2} \right) \times \hat{r}$
Force:	$\vec{F} = \Delta Q \cdot \vec{E}$	$\vec{F} = \Delta(I * \vec{L}) \times \vec{B}$
Potential:	$\Delta V = -\int_{r_A}^{r_B} \vec{E} \cdot d\vec{r}$	"Vector Potential" Complicated
Dipole:	$\vec{p} = Qd$	$\vec{\mu} = NI\vec{A}$
Source moving at a constant velocity	$I = \frac{\Delta Q}{\Delta t} = nAq\overrightarrow{v_d}$	Not Applicable

$$K_E = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{C^2}$$
 $K_B = \frac{\mu_0}{4\pi} = 10^{-7} \frac{T \cdot A}{m}$

Symmetric Counterparts of Electrostatics & Magnetostatics

Dipole in a homogeneous field		
Torque:	$\vec{\tau} = \vec{p} \times \vec{E}$	$\vec{\tau} = \vec{\mu} \times \vec{B}$
Potential Energy:	$U = -\vec{p} \cdot \vec{E}$	$U = -\vec{\mu} \cdot \vec{B}$
Gauss's Law in Vacuum	$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\epsilon_0}$	$\oint \vec{B} \cdot d\vec{A} = 0$
Ampère's Law in Vacuum	Not Applicable	$ \oint \vec{B} \cdot d\vec{r} = \mu_0 \int \vec{I} \cdot d\vec{A} = \mu_0 I_{enc} $