Neural Networks

Seminar - Week 4

Seminar - Week 4 Assignment 3 Goals

- Implement optimizers
 - SGD with Momentum
 - RMSProp
 - Adam

Gradient Descent

Gradient Descent

 $W := W - \alpha dW$

 $b := b - \alpha db$

Gradient Descent - Momentum

Gradient Descent

$$W := W - \alpha dW$$

$$b := b - \alpha db$$

Gradient Descent with Momentum

$$V_{dW} := (1 - \beta)dW + \beta V_{dW}$$

$$V_{db} := (1 - \beta)db + \beta V_{db}$$

$$W := W - \alpha V_{dW}$$

$$b := b - \alpha V_{db}$$

RMSProp

$$S_{dW} := (1 - \beta) \frac{dW^2}{dW} + \beta S_{dW}$$

 $S_{db} := (1 - \beta) \frac{db^2}{db} + \beta S_{db}$

$$W \coloneqq W - \alpha \frac{dW}{\sqrt{S_{dW}}}$$

$$b := b - \alpha \frac{db}{\sqrt{S_{db}}}$$

Adam

Combines ideas from momentum and RMSProp

$$V_{dW} := (1 - \beta_1)dW + \beta_1 V_{dW}$$

$$S_{dW} := (1 - \beta_2)dW^2 + \beta_2 S_{dW}$$

$$\widehat{V}_{dW} := \frac{V_{dW}}{1 - \beta_1^t}$$

$$\widehat{S}_{dW} := \frac{S_{dW}}{1 - \beta_2^t}$$

$$W := W - \alpha \frac{\widehat{V}_{dW}}{\sqrt{\widehat{S}_{dW} + \epsilon}}$$

Small value for numerical stability