

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

Лабораторная Работа №8 «Графы»

Вариант №7

Студент	Поляков Андрей Игоревич
Группа	ИУ7-32Б
Название п	предприятия НУК ИУ МГТУ им. Н. Э. Баумана
Студент	Поляков А.И.
Проверяю	ций
Оценка _	

Описание условия задачи

Обработать графовую структуру в соответствии с заданным вариантом. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Результат выдать в графической форме.

Техническое задание

Исходные данные:

Пункты меню, выраженные целыми числами 0-9. Внутри некоторых пунктов вводятся числа.

Матрица смежности:

- 1) Ввести граф
- 2) Вывести матрицу
- 3) Вывести граф
- 4) Найти минимальные пути

Список смежности

- 5) Ввести граф
- 6) Вывести список
- 7) Вывести граф
- 8) Найти минимальные пути
- 9) Сравнение структур
- 0) Выход

Результат:

Граф, матрица смежности, список смежности, результаты анализа производительности

Описание задачи:

Для каждой пары вершин графа найти длину кратчайшего пути между ними.

Способ обращения к программе:

Запуск с помощью ./арр.exe

Аварийные ситуации и ошибки:

- 1. Некорректная команда
- 2. Не введена матрица
- 3. Не введен список
- 4. Ошибка выделения памяти

Описание внутренних структур данных

Матрица смежности

```
typedef struct
{
   int** matrix;
   int vertices;
} graph_mtr_t;
```

- 1. matrix матрица
- 2. vertices размер матрицы (количество вершин)

Список смежности

```
typedef struct node
{
   int vertex;
   int weight;
   struct node* next;
} node_t;

typedef struct
{
   node_t** adjacency_list;
   int vertices;
} graph_list_t;
```

node – узел списка

- 1. vertex связанная вершина
- 2. weight длина пути

3. next – следующий узел

graph_list_t - Список

- 1. adjacency_list массив списков для каждой из вершин
- 2. vertices размер (кол-во вершин)

Описание алгоритмов

- 1. Отобразить пользователю список команд и дождаться ввода номера нужной команды.
- 2. Для создания графа у пользователя поочередно запрашиваются длины путей, которые затем вводятся в матрицу или список смежности в зависимости от выбранной команды.
- 3. Команда вывода матрицы/списка выводит структуру.
- 4. Команда вывода графа создает dot файл и вызывает graphwiz.
- 5. Команда сравнения структур, генерирует случайный граф размером от 10 до 510, а затем засекает время поиска путей. Все замеры производятся путем многочисленных запусков с ожиданием RSE < 5. Затем производится анализ затраченного времени и памяти.

Алгоритм поиска кратчайших путей

Алгоритм Флойда-Уоршелла используется для нахождения кратчайших путей между всеми парами вершин во взвешенном ориентированном графе.

Алгоритм Флойда-Уоршелла выполняется в следующих шагах:

- 1. **Инициализация**: Создаю копию D матрицы/списка смежностей. Если между вершинами нет ребра, то значение принимается равным бесконечности.
- 2. **Обновление расстояний**: Для каждой пары вершин (i, j) проверяем, можно ли улучшить текущее расстояние между ними, используя промежуточную вершину k. Для этого сравниваем значение D[i][j] с суммой D[i][k] и D[k][j]. Если сумма меньше, чем текущее значение D[i][j], то обновляем D[i][j] этой суммой. Повторяем шаг 2 для всех возможных промежуточных вершин k от 1 до n.
- 3. **Получение кратчайших путей**: После завершения алгоритма, матрица D содержит кратчайшие расстояния между всеми парами вершин.

Алгоритм Флойда-Уоршелла выполняется за $O(n^3)$ операций, где n- количество вершин в графе. Это делает его эффективным для небольших графов, но может быть менее эффективным для графов с большим количеством вершин.

Тестовые данные

Позитивные тесты

Тест	Входные данные	Результат
	Связный гра	ф
Ввод связного графа	количество вершин графа: 3 1 - 2: 1 1 - 3: 2 2 - 3: 3	
Получить матрицу смежности графа	количество вершин графа: 3 1 - 2: 1 1 - 3: 2 2 - 3: 3	Матрица связности (3 x 3): 0 1 2 1 0 3 2 3 0
Получить список смежности графа	количество вершин графа: 3 1 - 2: 1 1 - 3: 2 2 - 3: 3	Список смежности: Вершина 1: -> 3(вес 2) -> 2(вес 1) -> NULL Вершина 2: -> 3(вес 3) -> 1(вес 1) -> NULL Вершина 3: -> 2(вес 3) -> 1(вес 2) -> NULL
Найти минимальные пути	количество вершин графа: 3 1 - 2: 1 1 - 3: 2 2 - 3: 3	Кратчайшие пути между всеми парами вершин: Кратчайший путь между вершинами 1 и 2: 1 Кратчайший путь между вершинами 1 и 3: 2 Кратчайший путь между вершинами 2 и 3: 3

Несвязный граф					
Ввод несвязного графа	количество вершин графа: 3	2 1			
	1 - 2: 0	3			
	1 - 3: 0				
	2 - 3: 3	3			
Получить матрицу смежности графа	количество вершин графа: 3	Матрица связности (3 x 3): 0 0 0			
	1 - 2: 0	0 0 3 0 3 0			
	1 - 3: 0				
	2 - 3: 3				
Получить список смежности графа	количество вершин графа: 3	Список смежности: Вершина 1: -> NULL			
	1 - 2: 0	Вершина 2: -> 3(вес 3) -> NULL			
	1 - 3: 0	Вершина 3: -> 2(вес 3) -> NULL			
	2 - 3: 3				
Найти минимальные пути	количество вершин графа: 3	Кратчайшие пути между всеми парами вершин: Кратчайший путь между вершинами 1 и 2: Нет пути Кратчайший путь между вершинами 1 и 3: Нет пути Кратчайший путь между вершинами 2 и 3: 3			
	1 - 2: 0				
	1 - 3: 0				
	2 - 3: 3				
	Кратчайший путь	– не прямой			

Кратчайший путь в графе – не прямой		Кратчайшие пути между всеми парами вершин: Кратчайший путь между вершинами 1 и 3: 1 Кратчайший путь между вершинами 2 и 3: 2
Анализ производительности	-	Результаты анализа

Негативные тесты

Вывод невведенного графа	-	Граф не введен
Вывод невведенной матрицы	-	Граф не введен
Вывод невведенного списка	-	Граф не введен
Некорректная команда	abc	Неверная команда

Замеры

Программа генерирует случайный граф размером от 10 до 510, а затем засекает время поиска путей. Все замеры производятся путем многочисленных запусков с ожиданием RSE < 5. Затем производится анализ затраченного времени и памяти.

Размер графа: 10

Реализация с помощью матрицы:

	Время, нс	Кол-во итераций	RSE
1	6976.53	30	3.68

Занимаемая память - 400 байт

Реализация с помощью списка:

	Время, нс	Кол-во итераций		RSE	
1	22173.10	20		2.98	

Занимаемая память - 1440 байт

Разность производительности = 15196.57 нс

Реализация с помощью списка дольше на 217.824039 %

Разность занимаемой памяти = 1040 байт

Реализация с помощью списка больше на 260.000000 %

Размер графа: 110

Реализация с помощью матрицы:

	Время, нс	Кол-во итераций	RSE
	3520893.77	70	4.40

Занимаемая память - 48400 байт

Реализация с помощью списка:

	Время, нс	Кол-во итераций	RSE
	5171694.70	20	3.01

Занимаемая память - 191840 байт

Разность производительности = 1650800.93 нс

Реализация с помощью списка дольше на 46.885849 %

Разность занимаемой памяти = 143440 байт

Реализация с помощью списка больше на 296.363636 %

Размер графа: 210

Реализация с помощью матрицы:

Время, нс	Кол-во итераций	RSE
21734911.70	10	0.15

Занимаемая память - 176400 байт

Реализация с помощью списка:

Время, нс	Кол-во	итераций	RSE
29593145.90		10	0.52

Занимаемая память - 702240 байт

Разность производительности = 7858234.20 нс

Реализация с помощью списка дольше на 36.154894 %

Разность занимаемой памяти = 525840 байт

Реализация с помощью списка больше на 298.095238 %

Размер графа: 310

Реализация с помощью матрицы:

Время, нс	Кол-во итераций	RSE
67937167.90	10	0.19

Занимаемая память - 384400 байт

Реализация с помощью списка:

Время, нс	Кол-во итераций	RSE
93987158.30	10	1.83

Занимаемая память - 1532640 байт

Разность производительности = 26049990.40 нс

Реализация с помощью списка дольше на 38.344240 %

Разность занимаемой памяти = 1148240 байт

Реализация с помощью списка больше на 298.709677 %

Размер графа: 410

Реализация с помощью матрицы:

Время, нс	Кол-во итераций	RSE
156777068.80	10	0.18

Занимаемая память - 672400 байт

Реализация с помощью списка:

Время, нс	Кол-во итераций RSE
206093558.00	10 0.27

Занимаемая память - 2683040 байт

Разность производительности = 49316489.20 нс

Реализация с помощью списка дольше на 31.456443 %

Разность занимаемой памяти = 2010640 байт

Реализация с помощью списка больше на 299.024390 %

Размер графа: 510

Реализация с помощью матрицы:

Время, нс	Кол-во итераций	RSE
304284850.80	10	0.09

Занимаемая память - 1040400 байт

Реализация с помощью списка:

Время, нс	Кол-во итераций	RSE
400158256.20	10	0.14

Занимаемая память - 4153440 байт

Разность производительности = 95873405.40 нс

Реализация с помощью списка дольше на 31.507781 %

Разность занимаемой памяти = 3113040 байт Реализация с помощью списка больше на 299.215686 %

Результаты анализа:

По результатам анализа ясно, что наиболее подходящая для данной задачи структура — матрица, так как она выигрывает по скорости и по памяти. В алгоритме Флойда-Уоршелла, на каждом шаге, для каждой пары вершин (i, j) проверяется, можно ли улучшить текущее расстояние между ними, используя промежуточную вершину k. Это требует прямого доступа к весам ребер между каждой парой вершин, что удобно для матрицы смежности.

Ответы на вопросы

1. Что такое граф?

Граф - это абстрактная математическая структура, представляющая собой множество вершин (или узлов), соединенных рёбрами (или дугами). Графы используются для моделирования отношений между объектами.

2. Как представляются графы в памяти?

Графы могут быть представлены различными способами в памяти компьютера. Некоторые из распространенных представлений включают матрицы смежности и списки смежности. В матрице смежности используется двумерный массив для хранения информации о связях между вершинами, а в списке смежности каждая вершина имеет список своих соседей.

3. Какие операции возможны над графами?

Операции над графами включают добавление и удаление вершин и рёбер, проверку наличия ребра между двумя вершинами, нахождение соседей вершины, обход графа и нахождение кратчайших путей.

4. Какие способы обхода графов существуют?

Обходы графов могут быть в глубину (DFS - Depth-First Search) и в ширину (BFS - Breadth-First Search). DFS исследует как можно глубже в структуру графа, прежде чем возвращаться, в то время как BFS идет по уровням, исследуя вершины на текущем уровне перед переходом к следующему.

5. Где используются графовые структуры?

Графовые структуры широко используются в различных областях, таких как информатика, транспортное планирование, социальные сети, биоинформатика, графовые базы данных, анализ сетей и др.

6. Какие пути в графе Вы знаете?

В графе могут существовать различные типы путей, включая простой путь (без повторяющихся вершин), цикл (замкнутый путь), путь между двумя вершинами, кратчайший путь (с минимальной суммой весов рёбер) и др.

7. Что такое каркасы графа?

Каркас графа - это подграф, который включает в себя все вершины и некоторое подмножество рёбер исходного графа, образующее дерево. Каркасы часто используются в алгоритмах поиска минимального остовного дерева, где стремятся найти подграф с минимальной суммой весов рёбер, охватывающий все вершины исходного графа.

Вывод

Результаты экспериментов показали, что для поставленной задачи оптимальнее всего использовать матрицу смежностей и алгоритм Флойда-Уоршелла. Данную программу можно использовать, когда задана система двусторонних дороги для каждой пары городов найти длину кратчайшего пути между ними