1. Let 2n (equally spaced) points on a circle be chosen. Show that the number of ways to join these points in pairs, so that the resulting n line segments do not intersect, equals the nth Catalan number C_n .

Assume
$$g_n$$
 is the number of ways, and mark the points with $1.2,...,2n$ respectively. Let the point marked 1 and any one of the even point $2k$, connect point 1 and point $2k$. This line segment divided even point $2k$, connect point 1 and point $2k$. This line segment divided even point $2k$, connect point $2k$. In part $2k$, there are $2k$, th

notes:

(atalan numbers 卡特兰数 k(n)

(b)
$$h(n) = h(0) \cdot h(n-1) + h(1) \cdot h(n-2) + \cdots + h(h-1) \cdot h(0)$$
 * tith $h(0) = 1, h(0) = 1$

(2) $h(n) = \frac{4n-2}{n+1} \cdot h(n-1)$

(3) $h(n) = \frac{1}{n+1} \cdot C_{2n} \cdot (n=0,1,2,-\cdots)$

7. The general term h_n of a sequence is a polynomial in n of degree 3. If the first four entries of the 0th row of its difference table are 1, -1, 3, 10, determine h_n and a formula for $\sum_{k=0}^{n} h_k$.

25. Let t_1, t_2, \ldots, t_m be distinct positive integers, and let

$$q_n=q_n(t_1,t_2,\ldots,t_m)$$

equal the number of partitions of n in which all parts are taken from t_1, t_2, \ldots, t_m . Define $q_0 = 1$. Show that the generating function for $q_0, q_1, \ldots, q_n, \ldots$ is

$$\prod_{k=1}^{m} (1 - x^{t_k})^{-1}.$$