

UNCLASSIFIED

AD 404 8171

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

404 817

633-5

404817

BOEING

CATALOGED BY JSTIA
AS AD NO.

SEATTLE, WASHINGTON

**Best
Available
Copy**

Lefc

BOEING AIRPLANE COMPANY

NUMBER 12-2772

CODE IDENT. NO. 81205
UNCLASSIFIED TITLE TEST REPORT FOR THE MIL-I-6951 TEST,
DR-6004-5 VOLUME 1, ON GTM DO/C IN MAB 2

MODEL NO. WS-133 CONTRACT NO. AF-64 (147) - 209
ISSUE NO. 12 ISSUED TO *D. J. clark*

CLASSIFIED TITLE
(STATE CLASSIFICATION)

-78170-5200-30664-4-1034-1

CHARGE NUMBER

—SPECIAL LIMITATIONS ON ASTIA DISTRIBUTION—

ASTIA may distribute this report to requesting agencies subject to their security agreement approved limits of interest, and the following:

UNLIMITED-To all agencies of the Department of Defense and their contractors

LIMITED-To U. S. Military organizations only

This report may be distributed to nonmilitary agencies not approved above subject to EAC approval of each request.

NOTE: the LIMITED category may be checked only because of actual or potential patent, proprietary, ethical, or similar implications.

PREPARED BY *F. E. Geczi* 3/3/62

F. E. GECZI

SUPERVISED BY *P. D. Gutowitz* 3-30-62

P. D. GUTOWITZ

APPROVED BY *R. T. Swanson* 4-2-62

R. T. SWANSON

CLASS. & DISTR.

APPROVED BY *R. T. Swanson*

R. T. SWANSON

(DATE)

VOL. NO. 1 OF 2

SECTION NO.

PAGE 1

3/20/62
REVISED

US 4287 9000 (WAS BAC 4515A)

TITLE PAGE

ACTIVE-CHANGED PAGE

ACTIVE		CHANGED			ACTIVE		CHANGED				
SECTION	PAGE	SECTION	PAGE	REvised	ADDED	DELETED	SECTION	PAGE	REvised	ADDED	DELETED
1	3-30-62						41	3-30-62			
2							42				
3							43				
4							44				
5							45				
6							46				
7							47				
8							48				
9							49				
10							50				
11							51				
12							52				
13							53				
14							54				
15							55				
16							56				
17							57				
18							58				
19							59				
20							60				
21							61				
22							62				
23							63				
24							64				
25							65				
26							66				
27							67				
28							68				
29							69				
30							70				
31							71				
32							72				
33							73				
34							74				
35							75				
36							76				
37							77				
38							78				
39							79				
40	3-30-62		3-30-62				80				
							81				
							82				
								3-30-62			

3-30-62

REF ID: A

BOEING

VOL 1

NO. T2-2279

SEC

PAGE 2

ACTIVE-CHANGED PAGE

ACTIVE			CHANGED			ACTIVE			CHANGED		
SECTION	PAGE	DATE	SECTION	PAGE	REvised ADDED DELETED	SECTION	PAGE	DATE	SECTION	REvised ADDED DELETED	DATE
83		3-30-62									
84											
85											
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104											
105											
106											
107											

3-30-62

REVISED _____

2025 RELEASE UNDER E.O. 14176

BOEING

VOL 1

NO. T2-2279

SEC.

PAGE 13

TABLE OF CONTENTS

	PAGE
TITLE PAGE	1
ACTIVE CHANGE PAGE	2
TABLE OF CONTENTS	4
LIST OF FIGURES	5
LIST OF APPENDICES	5
REFERENCES	6
1. OBJECTIVES	7
2. INTRODUCTION	3
3. TEST ARTICLE CONFIGURATION	9
4. ABSTRACT	10
5. EQUIPMENT TESTED	12
6. INSTRUMENTATION	13
7. TEST PROCEDURES	14
8. TEST RESULTS	14
9. CONCLUSIONS	21

3-20-62

REVISED _____

US GOVERNMENT PRINTING OFFICE 1961 6-6201

BOEING | VOL. 1 | NO 72-2279 →
SEC. | PAGE 4

LIST OF FIGURES

FIGURE	PAGE
1 AC MATCHING NETWORK	30
2 DC MATCHING NETWORK	31

LIST OF APPENDICES

APPENDIX	PAGE
I COMPUTER ANALYSIS OF PCM/FM STEADY STATE DATA	31
II PCM/FM OSCILLOSCOPE PLOTS	52
III EQUIPMENT TESTED	94
IV TEST EQUIPMENT USED	104

30-62

REVISED _____

US 6000 2000 (HAS BAC LISTEN)

RECORDED VOL 1 NO 72-2279
SEC PAGE 5

REFERENCES

- a) D2-6004-5 Vol. I MIL-I-6061 Test Requirements and Procedure, STM 004 in Missile Assembly Building
- b) MIL-I-6061B Electrical/Electronic System Compatibility and Interference Control Requirements for Aeromical Weapon Systems and Associated Subsystems
- c) D2-3602-2 Vol. I Model Specification for Airborne Vehicle WS-133A and WS-133A-M Minuteman (P-133-143)
- d) D2-3602-2 Vol. II, Deviations and Variations from Specification P-133-143 for R&D Missiles
- e) D2-3602-2 Vol III Addendum IV PCM/FM System - Channel Accuracy STM 004C; Addendum IV B FM/FM System Linearity - STM 004C
- f) 25-33418 Sheet 1 PCM Telemetry Train Data Chart - STM 004C - MAB 2
- g) 25-33418 Sheet 2 PCM Telemetry Group Data Chart - STM 004C - MAB 2
- h) 25-33418 Sheet 3 PCM Telemetry Supplemental Data Sheets - STM 004C - MAB 2
- i) Minuteman AMR Coordination Bulletin AN-522, dated 15 February, 1962, J. L. Melgaudi (A/N) to R. F. Person (BATC), Subject: Electromagnetic Interference Experienced on STM 004C in MAP 1 and 2.
- j) AF-0300-004C Volume 2, Minuteman CR Field Test Report - STM 004C - MAB 2 Processing (Confidential)

3-3-1-4

REVISED _____

US 4288 2000 /WAS BAC 413101

BOEING | VOL | NO T 2-2274
| SEC. | PAGE | 6 | →

1. OBJECTIVES

1.1 Steady State Compatibility

Determine that the most sensitive outputs of CTM 004C and each TSE subsystem are within the stated limits while CTM 004C and all electrical/electronic test support and facility equipment is energized in a steady state manner.

1.2 Dynamic Compatibility

Determine that the dynamic operations of each Airborne and TSE subsystem do not cause interference in excess of the steady state limits to any other Airborne or TSE subsystem operated in a steady state mode. Also determine the absence of crosstalk within the airborne data collection system.

1.3 Facility Dynamic Compatibility with Airborne and TSE

Determine that dynamic operation of the facility electrical equipment does not cause interference to the Airborne and Test Support Equipment in excess of the stated limits, the latter being operated in a steady state mode.

3-30-6 L

REVISED _____

U3 4288 2000 (WAS DUC 61310)

BOEING VOL NO →
SEC PAGE 7

2.

INTRODUCTION

This test was planned in accordance with paragraph 4.3.1 of MIL-I-6051B. Paragraph 4.3.1 calls for a test on the complete weapon system, in this case, GTM 004C (less re-entry vehicle) and Missile Assembly Building #2.

The test consisted of five parts. The first part consisted of monitoring all sensitive outputs of GTM 004C and the Test Support Equipment with all electrical/electronic equipment and GTM 004C in a fully energized steady state mode. The second part consisted of monitoring all sensitive equipment in the steady state mode while operating all electrically powered equipment one at a time. The next three parts demonstrated the ability to calibrate the telemetry system in an energized environment.

S-3-1-2

REVISED _____

U3 4288 2000 (WAS BAC 4131C)

BOEING

VOL 1

NET 2-2279

REV

PAGE 3

3.

X-15 ARTICLE CONFIGURATION

GTM GC4C was electrically complete except for the recent vehicle which is absent. XAB 2 was in a configuration which would support a PCM missile.

2-4-6-L

REVISED _____

U3 4288 2000 (WAS RAC 41310)

BOEING

VOL 1

NO 1

55

4.

ABSTRACT

4.1 General - Below is a brief description of the interference encountered during the MIL-1-4 test on GPM 0040 in May 1968. Complete details on the interference problem can be found in paragraph 8, Test Results, of this test report.

4.2 Steady State Compatibility Test - During the steady state test the real time monitor point and the FM/FM playback monitor point failed to show any out-of-tolerance interferences. The PCM/PM playback monitor points which were analyzed using standard oscillograph analysis and computer analysis showed some out-of-tolerance interferences. There were 226 PCM/FM channels analyzed using standard oscillograph analysis. 201 of these channels were analyzed with a computer. The oscillograph analysis showed that a total of 47 channels (18.6% of the total) are out of tolerance due to steady state noise. 17 of these have random transients (one sample drop outs occurring randomly) which do not affect or hide the DC level. The computer analysis showed that 74 channels out of a total of 201 (36.7% of the total) are out of tolerance when the 3⁻ limit is used. If the 2⁻ limit had been used there would be only 19 channels (9.5% of the total) out of tolerance. One sample drop out may be the cause of more noise at the 3⁻ than the 2⁻ limit. Because the 2⁻ limit will disregard more of the one sample drop outs which do not degrade the data, than the 3⁻ limit it would be more desirable to use the 2⁻ limit.

4.3 Dynamic Test Results - During the Dynamic test the real time monitor points showed that ordnance hazardous current monitor tripped twice during the operation of the instrumentation power transfer switch and once when the 1st stage ignition F/T box was placed in the armed condition. All three hazardous currents were resettable.

The FM/FM playback monitor points failed to show any out-of-tolerance interferences.

The PCM/PM playback monitor points showed the following interferences: 1) A transient occurred on 25 T/M channels and the VTR monitor failed for .7 seconds when the power transfer switch was activated from ground power to missile power. 2) The steady state noise on P018P and S003X decreased when the channel 4 tone was turned off and increased when the Destruct Receivers were turned on. S003X also had a change in steady state noise when the channel 4 tone was turned on and the Destruct Receiver were turned off. 3) S003E and S035E had DG level shifts when the EFC-106 frequency meters and the VTR were turned off. There was also another DG level shift on these channels which is unexplained. 4) When the NCU hydraulic system was energized there were 51 additional channels out during the first operational test, 33 during the second operational test and 26 during the Nozzle Step Check. Most of these channels only had 2% noise on them. This noise is not present when operating on battery (or airborne) power.

4.4

BTS-19 and BTS-152 Dynamic Calibration Test - The real time monitor points and the FM/FM playback monitor points failed to show any out-of-tolerance interferences.

The PCM/FM monitor points did show several interferences. 1) S030E and S061E shifted in DC level 15 times during the Section 47 BTS-19 operations and the BTS-152 dynamic operations. Some of the shifts were uncorrelated; therefore, it is possible that some of the shifts which seem to be correlated are not. 2) During the DC simulation sequencer operation A115T had a 6% increase in noise which lasted for 2 seconds. 3) During the BTS-152 Dynamic Operation C032A, H115T, and G041E had many DC level shifts and increase in steady state noise. This was due to the fact that the leads which connect BTS-152 to the transducers are not terminated unless BTS-152 steps on them and a stimulus is sent out. Because the leads are properly terminated when stepped on the noise disappears; therefore, there is no problem during calibration.

2-32-62

REVISED _____

US 4288 2000 (WAS BAC 4131G)

BOEING

VOL. 1

SEC

NDT2-2274

PAGE 11

5.

EQUIPMENT TESTED

The equipment that was tested is listed along with its part number and serial number in Appendix III.

3-30-62

REVISED _____

US 4288 2000 (WAS DDC 4131D)

BOEING VOL 1 NO T 227
SEC PAGE 12 →

INSTRUMENTATION

The part number and serial number of all test equipment used will be found in Appendix IV.

- 6.1 Power Supplies - A 36 channel CEC oscilloscope was used to monitor the power supplies. The following power supplies were monitored with AC coupling as shown in Figure 1: BTS-170 for PCM/FM, BTS-162 for Transducer Excitation, BTS-162 for FM/FM #1, BTS-162 for FM/FM #2, BTS-169 for 1st and 2nd NCU Electronics, BTS-168 for G&C Electronics, BTS-161 for Command Destruct Receiver A, and BTS-161 for Command Destruct Receiver B. The following power supplies were monitored by DC coupling as shown in Figure #2: BTS-165 for 3rd Stage NCU Hydraulics, BTS-164 for Stage 1 & 2 NCU Hydraulics, BTS-168 for C19A, BTS-168 for PSUR, BTS-163 for the T/M Calibration Cards, D204 Resync Power Supply, Ablation Gauge Power Supply, and the Voltage Comparator trip circuit.
- 6.2 Facilities Power Lines - The Facilities 3-phase 60 cycle power was monitored for transients with Power Line Transient Probes GWF 10192. The Probes are 60cycle rejection filters which allowed frequencies above 200 cycles to be recorded but attenuated the 60 cycles by approximately 50 db. The outputs of the Power Line Transient Probes were recorded on the CEC Oscilloscope.
- 6.3 Events - A dynamic event marker was connected to the CEC oscilloscope monitoring the power supplies and to the input of DOBLE so that the time of all dynamic events except destruct could be recorded on the CEC oscilloscope and the Multistylus recorder at the PCM/FM ground station. This gave a time correlation between the two records and the time that each dynamic event occurred.
- 6.4 Ordnance Safe and Armed Devices - The Ordnance Safe and Armed Devices were replaced by Safe and Armed Test Boxes. The following simulated squibs were then installed in the boxes, two second stage ignition squibs, two 1-2 stage separation squibs, two third stage ignition squibs, two 2-3 stage separation squibs and 4 thrust termination squibs. Since a first stage ignition simulated squib cannot be fired in MAP I, it was not installed. Since the Model Specification S-1000-133A required that the current through the destruct lines be measured, a 0.2 ohm resistor was used in place of the simulated squib. A six channel oscilloscope was then connected across the 0.2 ohm resistors to measure the current which flowed during the destruct test.
- 6.5 Re-entry Vehicle Simulator - A Re-entry Vehicle Simulator, AVCO SKT-319 was connected to the G & C R/V Interface.

3-30-62

REVISED _____

U3 4288 2000 (WAS PAG. 41101)

BOEING

VOL. 1

NO T 2

7. TEST PROCEDURE

- 7.1 General - The test, which was conducted in Missile Assembly Building 2, consisted of the following five parts: 1) Steady State Compatibility Test, 2) Dynamic Compatibility Test, 3) Calibration Steady State Compatibility Test, 4) BTS-152 Ambient Test, and 5) Calibration Dynamic Compatibility Test.
- 7.2 Steady State Compatibility Test - The Steady State Compatibility Test consisted of monitoring all sensitive outputs of all missile and TSE subsystems, except BTS-19 and BTS-152, for one minute while they were energized and operating in a steady state condition to determine if any out-of-tolerance conditions exist. The counter 20 seconds of the T/M data as recorded on the PCM/FM and FM/FM ground stations was analyzed. The PCM/FM data was analyzed using two methods: 1) a computer analysis, and 2) standard oscillograph playback format. The FM/FM data was analyzed using standard oscillograph format only.
- 7.3 Dynamic Compatibility Test - During Dynamic Compatibility Test all missile and TSE subsystems were energized and operated in a steady state mode. One subsystem was then dynamically operated while all sensitive outputs of the steady state subsystems were monitored to determine if the dynamic subsystem caused interference in excess of the stated limits in D2-6034-5. The dynamic subsystem was also monitored for proper operation.
- 7.4 Steady State Calibration Compatibility Test - The Steady State Calibration Compatibility Test is exactly like the Steady State Compatibility, with the exception that BTS-19 and BTS-152 would have been connected to the missile. This test was not conducted because Air Force, STL, and Boeing did not consider it to be a necessary part of the test. All problems that would have been uncovered during this test were uncovered during the other parts of the MTL-I-5051 test.
- 7.5 BTS-152 Ambient Test - During this test all subsystems including BTS-19 were to be observed while BTS-152 was dynamically operated in the ambient mode to prove that it is compatible with the other subsystems. The Telemetry data was to be analyzed to prove that the BTS-152 has not disturbed any channels. The digital printer was to be analyzed to prove that BTS-152 is functional. Since STL and Boeing agreed that there is no need to use the BTS-152 in the ambient mode, this test was omitted.

3-20-62

REVISED _____

U3 4288 2000 (WAS BAC 4131D)

BOEING

VOL 1

NO 1 1004

SEC

PAGE 14

7.6

BTS-19 and BTS-152 Dynamic Calibration Test - During this test BTS-152 and one BTS-19 Calibration Cart were connected to GTM 004C. All airborne and TSM Subsystems, except the G&C Subsystem, were energized and placed in a steady state mode. BTS-19 was then dynamically operated so that it would calibrate the missile. Since only one BTS-19 T/M Calibration Cart was used it was moved from Section 43 to Sections 45 and 47 as required so that all channels calibrated by BTS-19 would be calibrated. After the BTS-19 went through all of its dynamic operations it was then disconnected, and BTS-152 was placed in a calibrate mode and dynamically operated so that the G&C inputs would be calibrated. During the dynamic operations of BTS-19 and BTS-152 all subsystems, except the G&C subsystem, were monitored to determine if any interference exists. The PCM/FM and FM/PWM Telemetry Channels were analyzed for crosstalk on unsimulated channels and for noise-free stimulus signals on the simulated channels.

3-22-112

REVISFO _____

U3 4288 2000 (WAS BAC 4131D)

BOEING | VOL | NO | →
SEC PAGE 15

3. TEST RESULTS

3.1

General - The results of this test as to whether an interference problem is within tolerance or not is based on the requirements of Section 1 of D2-6004-5 Volume 1. These requirements satisfy the requirements in D2-3602-2 Volume II, Deviations and Variations from Specification S-133-1000 for R&D missiles. Although there are out of tolerance interferences as described below, some of them are not intolerable. Whether the interference is tolerable or not will depend upon the type, magnitude, cause and effect of the interference. An example of a tolerable interference would be transients which cause excessive PCM bit drop-outs and which can be correlated to manual switching operations. This type of interference is tolerable because of the following two reasons: it will not affect flight data, and the switching operation can be controlled so that it will not occur during the acquisition of PCM/FM Telemetry data. A brief description of the different kinds of monitoring and interferences will be given below so that the discussion of the test results will be more easily understood.

3.1.1

Monitoring - There were two types of monitoring during the test, real time and playback. The real time monitoring consists of monitoring all monitor points in MAB 2 and the nixie, digital printer, and multistylus recorder at the PCM/FM Ground Station. Since all channels that were on the multistylus records were also on the playback records the multistylus records were only used to correlate range time with each dynamic event that occurred.

The playback monitoring consisted of monitoring the PCM/FM and FM/FM data which was stripped out on oscillograph records. The FM/FM data is listed as a real time monitor point in the test document but was analyzed as playback data because the data had to be processed to be analyzed.

3.1.2

Real Time Interference - Real time interferences are interferences which were observed on the real time monitor points. These interferences are recorded at the time they occurred on supplemental data sheets in Section 2 of D2-6004-5, Volume 1.

3.1.3

Playback Interferences - The PCM/FM and FM/FM oscillograph traces were analyzed for the following 4 types of noise:

3.1.3.1

Steady State Noise - This type of noise, as seen on trace 1 of part 1, is a steady noise which makes it almost impossible to determine the exact level of the transducer even though, in most cases, a close approximation is possible. Since the noise causes the trace to fluctuate randomly in magnitude and duration, the only practical way to measure the noise is in peak to peak values. This will give the absolute magnitude of the noise which is the value required in this test.

3-22-62

REVISED _____

U.S. GOVERNMENT PRINTING OFFICE: 1964 41-310-1

8.1.3.2 Random Transients - This type of noise, as seen on trace 5 (A03BT) of plot 30 is also a steady state noise which does not make it impossible to determine the DC level of the trace. The one sample drop-outs or transients are ignored by a data analyst because they do not reflect the true value of the T/M Channel. When analyzing a trace like this for noise the peak values of the positive and negative transients were recorded. To determine the peak-to-peak noise level of the trace the two values would have to be algebraically subtracted.

8.1.3.3 DC Level Shifts - A DC shift is a change in analog value on analog traces due to the operation of other equipment or equipments. This type of noise is the most serious because approximation of the actual value of the trace cannot be determined using the median value which is used for a trace with steady state noise. Since this type of noise is the most serious it should be fixed if at all possible.

8.1.3.4 Transients - A transient is a disturbance on a T/M channel which is greater than the background noise and lasts for short periods of time, less than 0.5 seconds for the purposes of this report. The transients that are recorded in this report can be caused by several types of disturbances which are:

- 1) A switching operation in the Missile, TCE, T/M Ground Station and/or T/M Playback Station.
- 2) Loss of Sync in the missile, ground station and PCM/FM playback station.
- 3) Bit drop-out in the missile, landline PCM/FM ground station and PCM/FM playback station.
- 4) A combination of skew and bit drop-outs on the PCM/FM magnetic tape.

Item 1 above applies to both FM/FM data and PCM/FM data.
Items 2, 3, and 4 apply to PCM/FM data only.

The PCM/FM bit drop-out rate that is permissible is one bit in 10^6 bits. Since there are 345.6 K bits every second it is permissible to lose approximately 1 bit every 3 seconds. This can cause one sample transient to occur which has a magnitude of up to 51% if the most significant bit of the 8 bit analog word was lost. Because of this permissible bit drop-out rate it must be realized that during the dynamic testing there are many one sample transients which look like they are correlated with switching operations but are due to random bit drop-outs.

3-38-12

REVISED _____

U3 4268 2000 (WAS D4C 4131D)

BOEING | VOL. | NOT^Y | PAGE 17 →
SEC

8.2 Steady State Compatibility Test Results

8.2.1

General - The results of the Steady State Compatibility Test will be discussed in two parts, first with respect to the Real Time Monitor Points then with respect to the Playback Monitor Points. The Playback Monitor Points will then be divided into 3 sections which are: 1) FM/FM Monitor Points, 2) PCM/FM Monitor Points, and 3) A comparison between oscillograph analysis and computer analysis of the PCM/FM Data.

8.2.2

Real Time Monitor Points - During the steady state compatibility test the real time monitor points failed to show that there were any out-of-tolerance interferences present. This was partially due to the fact that FM/FM power supplies had a capacitor ($180\text{ }\mu\text{f}$) from the positive sense lead to static ground. The capacitor reduced the ripple from 900 MV p-p to 47 MV p-p on FM/FM #1 and 200 MV p-p to 50 MV p-p on FM/FM #2. All the other power supplies were within tolerance.

After the MTL-T-6051 test was completed the power supplies were rechecked. The FM/FM fix was removed and a different fix, $100\text{ }\mu\text{f}$ capacitors between the positive sense lead and positive power lead and negative sense lead and negative power lead, was incorporated on the FM/FM supplier. This fix reduced the noise from 800 MV p-p to 100 MV p-p on FM/FM #1 and 220 MV p-p to 105 MV p-p on FM/FM #2. Although the reduction in noise with this fix was not as great as with the first fix, it is a better fix in that it eliminated the AC ground loop which was created by the first fix.

The recheck showed that the PCM/FM (120 MV p-p), Azusa (25 MV p-p), Destruct A (170 MV p-p), and Destruct B (175 MV p-p) power supplies were within tolerance.

The transducer excitation supply had 300 MV of ripple on it. The capacitor fix used on the FM/FM supplies was unsuccessful. Then it was determined that the load was generating the noise and decided that the load should be cleaned up instead of the transducer excitation ground power system. The G&G Electronics supply had 350 MV p-p of noise on the sense leads and 660 MV p-p on the output leads. The capacitor fix was also unsuccessful with this supply. A degenerative feedback circuit was placed in the power supply which eliminated the power supply amplification but did not reduce the noise so that it would be within the tolerance of 250 MV p-p, but did decrease it to 350 MV p-p.

After the above checks were made on the power supplies all fixes were removed and the equipment was restored to its original configuration. The necessary engineering required to bring the power supplies within tolerance with respect to noise will be initiated to permanently install all fixes necessary.

3-30-62

REVISED _____

U3 4288 2000 (WAS BAC 41310)

BOEING VOL 1 NO 7
SEC PAGE 18 →

- 8.2.3 FM/FM Playback Monitor Points - The FM/FM Monitor Points failed to show any out-of-tolerance interferences during the Steady State Compatibility Test.
- 8.2.4 PCM/FM Playback Monitor Points
- 8.2.4.1 Computer Analysis - The computer when analyzing test data will disregard a percentage of the samples starting with the sample furthest from the median. The number of samples that are disregarded will depend upon the confidence factor and the limit used. Since the confidence factor is 80% and a constant, the number of disregarded samples will depend upon whether the 3σ , 2σ , or 1σ limit is used.

The table below will show the number of samples that are disregarded using the 80% confidence factor and the 3σ and 2σ limits for three different sample sizes.

<u>Sample Size</u>	<u>Number of Samples on each end</u>	
	<u>3σ</u>	<u>2σ</u>
1600 to 2599	1	32 to 45
2600 to 3399	2	53 to 62
3400 to 4599	3	71 to 88

When using the 3σ limit in conjunction with the confidence factor there must be at least 1600 samples for the computer to analyze before the computer will disregard 1 sample on each end (positive and negative extremes) or .125% of the total samples. If the 2σ limit was used there would be 32 samples disregarded on each end or 4% of the total samples. Because 3σ limit eliminates only 2 or .125% of the samples it is possible that in a sample size of 1600 samples there can be a few one sample drop outs which will not be disregarded by the computer but do not degrade the data an appreciable amount. Therefore it would be better to use the 2σ limit instead of the 3σ limit.

The computer analyzed 231 PCM channels which are listed in Appendix 1. The following results were obtained:

<u>Limit Used</u>	<u>Channels Within Limit</u>	<u>Percent of Total Channels Analyzed By the Computer</u>
3σ	127	63.3
2σ	182	90.6
1σ	196	97.6

There were 5 channels which were not within limits for the 1σ limit. As can be seen there are 55 more channels that would be within tolerance if the 2σ limit were used.

8.2.4.1 (continued)

The reason that more channels were not within the 3σ limit is partially due to the fact that the channels which are sampled at $33 \frac{1}{3}$ sample/second did not have any 1 sample drop outs disregarded by the computer. This is because the sample size analyzed was only 603 samples and the computer using the 3σ limit required a sample size of at least 1600 samples to disregard any of the one sample drop outs that occur. There were 49 of these channels which were out of tolerance, using the 3σ limit. 36 of these were within tolerance using the 2σ limit which allowed some of the one sample drop outs to be disregarded. Therefore it is possible that if a larger sample size had been used for each of the 36 channels (at least 1600), allowing the computer to disregard some of the one sample drop outs, many of the 36 channels which were within tolerance using 2σ limits would be within tolerance using the 3σ limits. The 13 channels which were not within tolerance using the 2σ limits would not be in tolerance using the 3σ limit with a larger sample size.

There were an additional 19 channels which had a sample size of 1600 samples or larger as required by the computer that were within tolerance using the 2σ limit but out of tolerance using the 3σ limit. As stated before, this is due to the fact that additional one sample drop outs that do not degrade the data an appreciable amount are disregarded by the computer using the 2σ limit instead of the 3σ limit. A typical example of this type of channel is AC35P on plot 37. As one can see it would be desirable to use the 2σ limit instead of the 3σ limit.

8.2.4.2

Oscillograph Records - There were 226 PCM/FM channels analyzed on 41 oscillograph records or plots. An $8 \frac{1}{2} " \times 11 "$ section was taken out of each of these plots and placed in Appendix II. Each trace on the plots is annotated with its measurement code and the peak to peak noise values which were obtained from both manual and computer analysis. This not only gives a comparison between both methods of analysis but also allows one to see the oscillograph traces.

The manual analysis showed that there were 25 channels which had a peak to peak noise level above 1.5% (all values expressed in percentages are in reference to full scale). There are an additional 17 PCM/FM channels which had random transients which were above 1.5% peak. This gave a total of 42 channels which were out of tolerance with respect to the 1.5% peak to peak noise limit. The magnitude of the noise was up to 6% peak to peak for steady state noise and $\pm 1\%$ peak for the random transient. Examples of the steady state interferences can be seen on plot 2, measurements G073E and G074E. An example of the random transient can be seen on

8.2.4.2
(cont)

plot 26 measurements AG14T and M16T. As one can see the analog value of AG14T would be easy to determine because the random transients (or one sample dropouts) can be disregarded leaving a trace which is almost noise free. The steady state noise which is on channels G773L and G773E make it a little more difficult to obtain the DC analog value because all samples in the trace vary randomly in magnitude and duration.

There were 11 random transients recorded during the steady state test. Although the transients are random, at two times 2 transients occurred simultaneously and a third time 5 transients occurred simultaneously. Since all systems were in a static condition it is impossible to state what caused them. Some of the transients which occurred simultaneously can be seen on plot 14. These transients like the other transients recorded in the static test are only one sample.

An overall look at the results of the steady state test as to what channels were clean, had noise above 1.5% and had isolated random transients can be seen on the GTM-OC4C PCM Telemetry Gross Data Chart, 25-33418 Sheet 1. The Steady State data is listed under Mode A Frame 1. This chart along with 25-33418, SHEET 1, PCM T/M Supplemental Data Sheets TAB 2 will give a complete record of all noises on the PCM/TM Telemetry System.

8.2.4.3

Computer and Manual Analysis Comparison - There were 226 PCM/TM channels manually analyzed. 201 of these channels were analyzed with a computer. Since the computer was more critical and accurate in its analysis of the data it found a greater number of channels out of tolerance. The manual analysis revealed that there were 42 channels out of a total of 226 or 18.6% of the total out of tolerance. The computer showed that there were 74 channels out of 201 channels or 36.7% of the total out of tolerance.

A comparison between the two methods of analysis on the channels which were analyzed using both methods showed that the computer, using the 3σ limit, found 37 additional channels out of tolerance than were found using oscilloscope analysis. Out of the total 37 additional channels 15 of them had a peak-to-peak noise level between 1.51% p-p to 1.59% p-p. The remaining channels fell between 1.6% p-p and 3.3% p-p. If the 2σ limit was used instead of the 3σ limit all but one of the 37 channels would be within tolerance. A representative channel which the computer says is out of tolerance (1.93% peak-to-peak) but manual analysis says is within tolerance is AG50T on plot 22. As one can see it would be very easy to determine the DC analog level of the channel. With channels like this it would be desirable to use the 2σ limit instead of the 3σ limit.

3-30-62

REVISED _____

U3 4268 2000 /WAS BAC 8135D1

BOEING

VOL 1

1 SEC

PAGE 20

8.3

Dynamic Test Results

8.3.1

General - The dynamic test results will be discussed in two parts, first with respect to Real Time Monitor Points and then with respect to the Playback Monitor Points. The Playback Monitor Points were analyzed only using standard oscilloscope strip chart. The data was not analyzed with a computer because the type of computer program which would be necessary for the analysis required is not available.

8.3.2

Real Time Monitor Points - During the dynamic compatibility test an Ordnance Hazardous Current indication occurred when the power transfer switch was operated from ground power to missile power and missile power to ground power. It also occurred when the 1st stage ignition F/I box was placed in an armed condition. All three hazardous current indications were resettable. These are the only detected interferences to the Test Support Equipment.

8.3.3

FM/FM Playback Monitor Points - The FM/FM Playback Monitor Points failed to show any out of tolerance interferences during the Dynamic Compatibility Test.

8.3.4

HGM/FM Playback Monitor Points - During the dynamic compatibility test the data was analyzed for changes in steady state noise, random transients, correlated transients and DC level shifts. All changes in steady state noise and DC level shifts due to a dynamic operation are listed below. The random transients and part of the correlated transients are not listed below but data on these can be obtained on the GTM 304C PCM Telemetry Gross Data Chart, Sheets 1 and 3. The correlated transients which are not listed are one sample transients in which only one or two, cooccurring simultaneously, occurred during a dynamic operation. The possibility that these transients are random is much greater than the possibility of their being caused by the switching operation. When three or more transients occurred simultaneously during a switching operation they will be listed below because the possibility of their being caused by the switching operation is much greater than in the case of one or two transients occurring simultaneously.

The HGM/FM Telemetry Interferences are listed below:

1. When the instrumentation power transfer switch was operated from ground power to missile power the VSNR monitor failed for .7 seconds and a transient occurred on 2% transducers.
2. When the channel 4 tone was turned off S003X had a 5% decrease in noise the first time and a 1% decrease the second time. PC16P only had a 8% decrease in noise the first time.

3-30-62

REVISED _____

U3 4000 2000 (WAS BAC 4131D)

RECORDED	VOL 1	NO T2-277
SFC	PAGE 2	→

8.3.4 (continued)

3. There was a 3% DC level shift on S083X and a 1.5% DC level shift on S085E approximately 6 seconds after modulator frequency was turned on and six seconds before the destruct receiver power was turned off.
4. The noise on S003X increased 3% when the modulator frequency 3 (channel 4 tone) was turned on.
5. Turning the Destruct Receivers off decreased the noise on S003X 3%.
6. Turning the BPS-106 VTVW off caused a 6% DC shift on S083E and 1.5% DC shift on S085E.
7. Turning BPS-106 Frequency Meter off caused a DC shift of 2% on S083E and 1.5% on S085E. The two channels were restored to their original level when the frequency meter was turned on.
8. When the Destruct Receivers were turned on the peak-to-peak noise changed 4% p-p on S003X and 8% p-p on FC18F.
9. During the G&C operational test and the Nozzle Step Check the noise on several PCM/TM channels increased while the hydraulic pump were operating. Some of the channels were already out of tolerance but most of the channels were within tolerance before and after the hydraulic pump operation.
Prior to the MIL-I-6051 test it was determined that the noise on the PCM/TM telemetry channels increased to the point where the channels were unusable while the model "D" NCU hydraulic pump motors were operating. A 1000 μ F capacitor was then placed across the power leads of the hydraulic pump motors. This fix, used during the MIL-I-6051 test, eliminated the noise on all the PCM/TM telemetry channels except those listed in the table below. A model "E" NCU, which has more RFI fixes than the model "D" NCU, was installed on the first stage engine to find out its effect on the T/M System. The noise that its motors generated was equivalent to the model "D" NCU with the 1000 μ F capacitor fix.

3-30-6

REVISED _____

03 4288 2000 (WAS BAC 4131D)

BOEING | VOL 1 | NO 72 | 79
SFC | PAGE 22 | →

8.3.4
(continued)

The first stage model "D" NCU was also operated on battery power to determine its effect in flight. It was found out that when operating on battery power the PCM/PW telemetry system is not affected by the NCU hydraulic pump motor. This shows that although there are some PCM/PW channels out of tolerance while on ground power when the missile is on battery power there is no RTI problem. Since most of the out of tolerance channels have only 2% noise it would be desirable to fix the worst cases, like G007E and G008E with 3% p-p and 4% p-p noise, respectively, and use the other channels as they are since they are useable with 2% steady state noise which is present only while the NCU hydraulic pump motors are running on ground power.

The table below lists all affected channels with the steady state noise that was generated on each by the NCU motors. As one can see the channels which are affected are different in the different tests. The reason for this is unknown.

<u>Operational Test #1</u>	<u>Operational Test #2</u>	<u>Nozzle Step Check</u>
G006E		2
G007E	3	2
G008E	4	4
G023E	2	
G024E	2	
G025E	2	
G026E	2	
G027E	2	
G028E	2	2
G029E	2	
G035E	2	2
G037E	3	2
G040E	2	
G041E	2	
G042E	2	
G058E	2	
G070E	2	
G074E	2	
G080E	3	
G081E	2	
G082E	2	
G083E	2	
G084E	2	
G085E	2	
G090E		2
G091E	2	-C Random Transients
G092E	2	
S013E	2	
S018E	2	
S022E	2	
S080E	4	3
S081E	5	5

2-2-1-6-2

REVISED

U3 4288 2000 (WAS BAC 4131D)

BOEING

VOL 1

NO 72-1473

SEC

PAGE 23

8.3.4
(continued)Operational
Test #1Operational
Test #2Nozzle
Step Check

S083E	2		
S085E	2		
A002H			3
A071R	2		
A025P	2		
A026P	2		
A028P			
A029P	2		
A032P	2		
H003P		2	
H005P		2	2
H007P	2		
H008P	2		
H009P	2		
H010P	2		3
H011P	2	2	4
H012P	2	2	4
H013P	2	2	3
H015P	2	2	2
A001S	2		
A012T	2		
A024T	2		2
A026T	2		3
A027T			3
A043T			
A045T	2		
A046T	2		
A047T			
A050T	2	2	2
A051T	2	2	2
A053T	2		
A061T			
A063T	2		3
A090T	2	2	
A190T	2		
A535T	2		
P004X	2	2	
3001X	2	2	2
3013X	2		

from 2% random transients
to 2% steady state noise

Noise increased from 2% to 3%

3-30-62

REVISED _____

U3 4288 2000 (WAS BAC 6131D)

BOEING

VOL. 1

NO. 7217279

SEC.

PAGE 2

8.4

BTS-19 and BTS-152 Dynamic Calibration Test

8.4.1

General - The objectives of the test were to prove that 1) no excessive crosstalk existed between data channels, 2) the calibration equipment injected noise-free stimulus signals, and 3) the calibration equipment did not affect all other subsystems, except the GMC subsystem.

When a BTS-19 calibration cart was connected to the missile, it was discovered that 60 cycle noise was injected on the unsimulated channels connected to the calibration cart. If three Telemetry Calibration Carts would have been used the 60 cycle noise that each would inject in the Telemetry Channels would have covered some of other interferences. When the BTS-19 Calibration Cart steps on to a channel to calibrate it, the 60 cycle noise disappears and the calibration stimulus is clean.

Since the interest is only in the simulated channels which are clean during calibration the 60 cycle noise is not a problem during normal calibration, but only when looking for interference problems such as crosstalk. Therefore Boeing and STI agreed that only one telemetry calibration cart instead of three would be connected to the missile for this test. A revision to the BTS-19 has since been made eliminating this interference on the unsimulated channels.

This test, like the other tests, will be discussed in two parts, first with respect to the Real Time Monitor Points, then with respect to the Playback Monitor Points. The Playback Monitor points were analyzed using only standard oscillograph strip out methods because the computer program necessary for the type analysis which is required was not available.

8.4.2

Real Time Monitor Points - The Real Time Monitor Points failed to show any out of tolerance interferences during the BTS-19 and BTS-152 Dynamic Compatibility Test.

8.4.3

PW/PW Playback Monitor Points - The PW/PW Playback Monitor Points failed to show any out of tolerance interferences during the BTS-19 and BTS-152 Dynamic Compatibility Test.

8.4.4

PCM/PW Playback Monitor Points

8.4.4.1

General - During the calibration compatibility test the PCM/PW telemetry data was analyzed for the different types of noise as stated in paragraphs 8.1.3 but because of the objectives of the Calibration Dynamic Compatibility Test as stated in 8.4.1, changes in steady state noise and DC level shifts only will be listed below. The reason that steady state noise is not listed is that in a dynamic test of this type only the changes in steady state noise are of interest. The details on steady state noise can be obtained from 25-33418 Sheet 2 - OTM 004C PCM Gross Telemetry Data

3-70-62

REVISED

U3 0800 2000 (WAS SAC 011101)

BOEING

VOL /

NO T2-2274

SEC

PAGE 25

8.4.4.1 (cont)

Chart. The transients are not listed because they will not present any calibration problems unless they are present in excessive numbers which may hide the level of the calibration stimuli. In this test all of the calibration stimuli were clean and the transients recorded were on the T/M channels while they were in a steady state condition. The number of transients which occurred on the T/M channels during the Dynamic Calibration Test are recorded on 25-33418 Sheet 2 and the details on each transient can be found on the supplemental data sheets in 25-33418 Sheet 3, PCM Supplemental Data Sheets.

8.4.4.2

BT3-19 Dynamic Operations at Missile Sections 43 and 45

The PCM/FM monitor points failed to show any changes in steady state noise or DC level shift for the Section 43 and Section 45 BT3-19 dynamic operations.

8.4.4.3

BT3-19 Dynamic Operations at Missile Section 47 - The PCM/PM Telemetry interferences which occurred during the Section 47 BT3-19 dynamic operations are listed below.

- 1) The DC level of S080E and S081E shifted +2% one second after the BIS-19 vibrator supply switch was turned off. The two transducers returned to their original level 7.8 seconds after the switch was turned on.
 - 2) During the operation of the AC Simulation Sequencer A015T had a 6% increase in steady state noise for 2 seconds.
 - 3) During the operation of the DC Simulation Sequencer two DC level shifts occurred on the following two transducers:
S080E +2% and +1%
S081E +1% and +2%
 - 4) Turning the DC Simulation Switch off caused the following DC level shifts:
S080E -4%
S081E -4%
 - 5) Turning the DC voltage measurements switch on caused the following DC level shifts:
S080E +3%
S081E +4%
 - 6) During the operation of the DC voltage measurements sequencer the following DC level shifts occurred:
S080E -2%
S081E -2%
 - 7) Operating the AC Transducer Output Sequencer caused S081E to have a +1% DC level shift.

2-30-62

REVISED

OPENING

| v0

| NO T2-2279

PAGE 26

- 8.4.4.3 (cont)
- 8) Placing the AC Voltage Measurement switch to the MOM position caused a DC level shift on the following channels:
 S080E +1%
 S081E +4%
 - 9) During the operation of the AC Voltage Measurement switch the following DC level shifts occurred:
 S080E -1%
 S081E -3%
 - 10) Switching the AC voltage supply frequency switch from the 100 cps position to the 20 cps position caused the following DC level shifts:
 S080E -2%
 S081E -3%
 - 11) During the BTS-19 calibration sequence two DC level shifts which can not be correlated with any switching operation were noted on the following transducers:
 S080E +2% and -2%
 S081E +2% and -4%

Since S080E and S081E shifted its DC analog value even when no dynamic operation was taking place, it is very probable that some of the interferences recorded on these two channels as listed above may be random and are not correlated with the BTS-19 dynamic operations.

8.4.4.4 BTS-152 Dynamic Operations - The PCM/FM interferences which occurred during the dynamic operations below are listed below.

- 1) During the BTS-152 Automatic Calibration Sequence three channels shifted their DC level and became noisy. The reason for this is that the leads which connect BTS-152 to the missile transducers are left open in BTS-152 unless BTS-152 is sending out a stimulus. If leads were properly terminated the noise would not be present. Since the leads are properly terminated when BTS-152 is simulating the transducers the noise disappears and a clean stimulus is present. Because the interest is only in the simulated channels, this is not a problem. The three channels which are affected are:

	<u>DC Shift</u>	<u>Steady State Noise Increase</u>
G032E	6	18
KW15P	2	6
G041E	2	6

S080E and S081E also had DC level shifts each being approximately 3%.

3-30-67

REVISED _____

US 4286 2000 (WAS DAC 4131C)

- 5.4.4.4 (cont)
- 2) Turning the B73-15 Frequency Meter off caused S081E and S081F to have a DC shift of 3%.
 - 3) Turning the B73-152 digital printer off caused S080E and S081E to have a DC shift of 3%.
 - 4) An uncorrelated DC shift of 3% also occurred on S080E and S081E. As stated before since S080E and S081E shifted when no dynamic operation was taking place, it is very probable that some of the above interferences recorded above are random and are not due to the B73-152 dynamic operations.

3-30-62

REVISED _____

US 4288 2005 (WAS BAC 41110)

BOEING

VOL. 1

NO T2-2279

SEC

PAGE 25

9.

CONCLUSIONS

The objectives of this test were to determine if a PCM/FM missile can be processed in MAB 2 and to prove that the PCM/FM missile is free from crosstalk.

The results of this test have proved that a PCM/FM missile can be processed in MAB 2 successfully. The test results have also showed that the T/M channels are free from crosstalk, except for G080E and G081E which fluctuated frequently during dynamic operations and while all systems were in a static condition. Since they fluctuated while all systems were in a static condition it is possible that most of the other fluctuations which look like they are correlated are random. Also P018F and S003X were affected during the dynamic test but not while the T/M channels were calibrated. This indicates that no crosstalk exists between P018F and S003X and the other T/M channels.

3-20-67L

REVISED _____

U3 AS88 3000 (WAS BAC 61310)

BOeing | VOL. | NO. T2-2279 →
| SEC | PAGE 29

FIGURE - 1

REF DESIGN.	PART NUMBER	DESCRIPTION	MATERIAL	SIZE
J1	XLR-3-11C	CONNECTOR - PLUG	CANNON ELEC. (OR EQUIV)	
J2	210	BANANA PLUG - DBL	H.H. SMITH (OR EQUIV)	
R1	MS85044-21	RESISTOR - 6.8K, 1W	(RC32GF6A2J, OR EQUIV)	
R2	MS35044-84	RESISTOR - 200Ω, 1W	(RC32GF201J, OR EQUIV)	
WB1	-	SECOND SHIELDED WIRE	BMS 13-50, TYPE III, CLASS B	#16 X 20 FT

FIGURE - 2

REF DESIGN.	PART NUMBER	DESCRIPTION	MATERIAL	SIZE
J1	XLR-3-11C	CONNECTOR - PLUG	CANNON ELEC. (OR EQUIV)	
J2	210	BANANA PLUG - DBL	H.H. SMITH (OR EQUIV)	
R1	MS35044-57	RESISTOR - 15Ω, 1W	(RC32GF150J, OR EQUIV)	
R2	MS35044-84	RESISTOR - 200Ω, 1W	(RC32GF201J, OR EQUIV)	
CR1,CR2	1SEZ5.6T10	ZENER DIODE	INTERNATIONAL REGIST. CORP. (OR EQUIV)	
WB1	-	SECOND SHIELDED WIRE	BMS 13-50, TYPE III, CLASS B	#16 X 20 FT
C1	113D6062-17000ML	CAPACITOR - U.P. CONFD	SPRAGUE ELECT (OR EQUIV)	

3-30-62

REVISED

US 4500 2000 (WAB BAC 6131D)

BOEING

VOL 1

NO T2-2279

SEC.

PAGE 30

APPENDIX I

COMPUTER ANALYSIS OF PCM/FM DATA

3-36-62

REVISED _____

U3 4266 2000 (WAS BAC 6131D)

BOEING VOL 1 NO T2-2279 →
SEC PAGE 31

TEST PAGE 2 STATIC CAPACITIVITY TEST GRK 001P
PERIOD OF ANALYSIS 20 SEC TO SEC 0 SEC TO 20 SEC 10 SEC 20 SEC

MEAS	SAMPLE	EXP.	OUTER SIZE	INNER SIZE	MEDIUM	OFFSET	ACCURACY	REFERENCE		MEAN	OTHER	PARAMS
								VAL	VAL			
NAME	SIZE	VAL	VAL	VAL	VAL	VAL	VAL	RAT.	PCT	PCT	STD. DEV.	DEV.
0013D	1959	52.30	54.80	2.80	3.75	10.00	0.95	0.20	-0.15	54.80	0.13	
					2.22		-0.58	-0.20	-0.15			
0014D	1959	51.00	55.20	4.20	4.79	10.00	0.59	0.23	-0.15	55.20	0.14	
					2.62		-0.58	-0.22	-0.15			
0015D	1959	52.00	54.04	2.04	2.95	10.00	0.95	0.54	0.22	54.07	0.20	
					1.89		-0.24	-0.23	-0.17			
0016D	1959	51.90	54.50	3.00	3.98	10.00	0.98	0.20	0.15	54.51	0.13	
					2.75		-0.30	-0.20	-0.15			
0017D	1959	51.50	53.20	1.70	2.69	10.00	0.98	0.30	0.15	53.21	0.14	
					1.50		-0.20	-0.20	-0.15			
0018D	1959	52.00	54.80	2.80	3.79	10.00	0.92	0.22	0.15	54.81	0.14	
					2.60		-0.20	-0.20	-0.15			
0019D	1959	52.00	54.42	2.42	3.28	10.00	0.97	0.52	0.16	54.43	0.17	
					2.20		-0.22	-0.21	-0.16			
0020D	1959	52.00	55.21	3.21	3.80	10.00	0.59	0.42	0.15	55.21	0.14	
					2.64		-0.57	-0.25	-0.15			
0021D	1959	52.00	55.60	3.60	4.55	10.00	0.95	0.20	0.15	55.60	0.13	
					3.02		-0.58	-0.20	-0.15			
0022D	1959	52.00	55.63	3.63	4.59	10.00	0.95	0.54	0.18	55.66	0.19	
					3.12		-0.23	-0.22	-0.17			

3-30-62

REVISED

U1 4288 2000 (WAS BAC 4131D)

BOEING

VOL
SEC

NO
PAGE

TESTS	NAME	SAMPLE EXP.	INPUT VALUE	MEDIUM	OFFSET	VALUE	TOL.	ACCURACY	TOLERANCE	RATIO	LIMITS	OTHER	PARTS
											99.473 PCT	95.5 PCT	68.3 PCT
00230	1959	51.50	54.39	2.89	3.49	10.00	0.59	0.20	-0.15	54.39	0.17		
00230	1959	51.00	53.61	2.61	3.59	10.00	0.59	-0.39	-0.15				
00235	653	3.00	0.38	-2.62	-1.70	5.00	0.92	2.51	0.15	53.62	0.16		
00062	653	7.00	0.40	-6.60	-5.70	10.00	0.90	0.46	0.16	0.40	0.17		
00082	653	78.00	67.20	-10.80	-7.18	-10.00	-0.58	-0.44	-0.16				
0023E	653	82.00	81.54	-0.46	0.28	10.00	0.20	0.19	0.15	67.20	0.12		
0024E	653	48.00	46.81	-1.19	-0.23	10.00	0.65	0.34	0.20	31.61	0.32		
0025E	653	50.50	49.20	-1.30	-0.73	10.00	0.57	0.21	-0.15	46.83	0.16		
0026E	653	52.00	52.04	0.04	0.93	10.00	0.89	0.54	0.35	52.05	0.28		
0027E	653	26.00	55.21	-0.79	0.19	10.00	0.89	0.42	0.15	55.21	0.24		

3 - 3 - 62

REVISED

US 4200 2000 (WAS 8 AC 81310)

BOEING

VOL.
SECNOT 2
PAGE 3

100

MEAS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEDIAN OFFSET	ACCURACY VALUE	TOLERANCE PC%	REGION		LIMITS PC%	OTHER PC%	PARAMS STD DEV.
						99.73	95.5			
GC23E	653	49.00	49.52	0.52	1.18	10.00	0.66	0.36	59.59	0.23
GC25E	653	23.00	22.46	-0.60	-1.63	10.00	0.57	0.28	-0.50	-0.33
GC32E	653	17.50	17.30	-0.50	1.00	10.00	1.50	-0.20	-0.20	0.12
GC33E	653	1.00	0.77	-0.23	0.37	10.00	0.60	-0.56	-0.52	0.18
GC37E	653	72.50	62.60	-10.90	-10.70	10.00	0.20	0.19	-0.17	0.12
GC39E	653	51.00	51.18	0.18	0.42	20.00	0.22	0.21	0.26	0.17
GC40E	653	51.30	55.27	-0.73	-1.35	10.00	1.38	0.33	0.25	0.24
GC41E	653	40.50	40.03	-0.47	-0.47	10.00	0.24	0.54	0.37	0.19
GC42E	653	50.30	49.85	-0.15	0.57	10.00	0.71	-0.45	-0.22	-0.17
GC43E	1957	51.00	52.16	0.16	0.76	10.00	0.62	0.24	0.32	0.23

3-30-6

REVISED _____

US 4800 2000 (WAS DDC 6131D)

BOEINGVOL. 1
SECNO 7
PAGE 34

MEAS	SAMPLE	EXP.	OUTPUT	MEDIAN	OFFSET	ACCURACY	TOLERANCE		EJECTION	LIMITS	OTHER	PARAMS
							NAME	SIZE	VALUE	TCL.	PCT	MEAN
0044E	1959	53.00	52.40	-0.60	0.39 -0.80	10.00	0.93 -0.20	0.19 -0.19	0.15 -0.25	52.41 -0.25	52.41 -0.25	0.24
0045E	1959	57.00	53.21	-3.79	-2.82 -4.28	12.00	0.97 -0.40	0.36 -0.20	0.15 -0.15	53.21 -0.15	53.21 -0.15	0.14
0059E	3918	46.00	45.79	-0.91	0.20 -2.46	10.00	1.11 -1.55	0.94 -1.03	0.35 -0.35	45.95 -0.35	45.95 -0.35	0.46
0060E	3918	46.00	44.65	-1.35	0.98 -2.58	10.00	2.25 -1.23	1.36 -0.79	0.60 -0.37	44.73 -0.37	44.73 -0.37	0.50
0061E	3918	49.50	49.62	0.12	1.05 -0.48	12.00	0.93 -0.60	0.50 -0.22	0.15 -0.16	49.64 -0.16	49.64 -0.16	0.16
0062E	3918	49.00	49.59	0.59	1.54 -0.00	12.00	0.95 -0.58	0.51 -0.52	0.13 -0.13	49.58 -0.13	49.58 -0.13	0.32
0063E	3918	50.00	49.94	-0.06	0.57 -0.60	12.00	0.63 -0.54	0.25 -0.51	0.18 -0.23	49.91 -0.23	49.91 -0.23	0.21
0070E	3918	50.00	49.59	-0.41	0.57 -1.00	10.00	0.98 -0.59	0.58 -0.56	0.35 -0.35	49.59 -0.35	49.59 -0.35	0.30
0071E	3918	50.00	49.99	-0.01	0.90 -0.60	12.00	0.21 -0.58	0.21 -0.45	0.15 -0.15	49.97 -0.15	49.97 -0.15	0.17
0072E	3918	50.00	49.99	-0.01	0.90 -0.60	12.00	0.66 -0.50	0.26 -0.26	0.17 -0.17	49.96 -0.17	49.96 -0.17	0.22
0058E	3918	56.00	55.68	-0.32	-0.38 -1.00	15.00	1.22 -1.00	0.38 -0.40	0.54 -0.54	55.64 -0.54	55.64 -0.54	0.41

3-30-62

REVISED

U3 4288 2000 (WAS DUC 41210)

BOEING

VOL.	NO.
SEC	PAGE

35

MEAS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE 99.73 PCT	REGION 95.5 PCT	LIMITS 68.3 PCT	OTHER	PARAMS STD DEV.
G073E	3918	52.00	50.99	-1.01	0.91	10.00	1.99	-1.27	50.73	0.23
G074E	3918	49.00	58.35	-1.65	0.39	10.00	1.04	0.64	0.36	0.33
G075E	3918	50.00	49.82	-0.18	1.37	10.00	1.56	1.10	0.55	0.55
G081E	653	50.00	49.99	-0.01	0.90	10.00	0.31	0.31	49.99	0.16
G082E	653	50.00	50.36	0.26	1.30	10.00	1.04	0.33	50.24	0.24
G083E	653	55.00	54.79	-0.21	0.70	10.00	0.91	0.20	54.79	0.24
G084E	653	52.00	51.69	-0.42	0.50	10.00	0.90	0.25	52.01	0.23
G087E	653	0.	0.	0.	0.20	10.00	0.20	0.19	0.15	0.22
G088E	653	0.	0.	0.	0.20	10.00	0.20	0.19	0.15	0.12
G093E	653	8.00	0.43	-7.60	-6.70	10.00	9.70	0.39	0.25	0.40
					-8.15		-0.55	-0.22	-0.15	0.14

3 - 3 - 1 - 2

REVISED _____

U3 4286 2000 (WAS BAC 41310)

 VOL 1 NO 1
 SEC PAGE 36

NAME	SAMPLE #	SIZE	INPUT VALUE	MEAN	OFFSET	ACCURACY	TOLERANCE BOUNDS			PANS STD. DEV.	
							99.73 PCT	95.5 PCT	68.3 PCT		
0092E	653	77.00	66.00	-1.00	-10.80	10.00	0.20	0.19	0.15	66.00	0.12
1004E	653	0.	0.00	0.00	0.57	1.00	0.57	0.20	0.19	0.30	0.12
1005E	653	100.00	106.40	0.40	1.35	1.00	0.95	0.26	0.15	100.41	0.13
1006E	653	0.	0.	c.	c.	0.20	0.20	0.20	0.14	c.	0.12
1007E	653	100.00	100.02	0.02	0.93	1.00	0.91	0.52	0.16	100.04	0.17
1008E	653	1.30	0.80	-0.20	0.73	2.00	0.93	0.20	0.16	0.30	0.13
1009E	653	102.00	101.60	-0.40	0.19	1.00	0.58	0.32	0.15	101.62	0.13
1010E	653	0.	21.60	21.60	21.50	21.40	0.20	0.19	0.14	21.60	0.12
1012E	653	0.	0.24	0.24	0.97	1.00	0.73	0.36	0.27	0.22	0.23
1013E	653	100.00	99.27	-0.73	0.15	1.00	0.88	0.51	0.32	99.30	0.21

3-30-62

REVISED

US 4200 2000 (BAS BAC 6131D)

NAME	SAMPLE	EXP.	OUTPUT	MEAN	OFFSET	ACCURACY	TOLERANCE		REGIMEN	LIMITS	OTHER	PARAMS	
							SIZE	VALUE	TOL.	PCT	PCT	STD	
I-142	653	0.	0.	0.	-0.21	-0.21	-0.21	-0.21	-0.19	-0.15	0.	0.12	
I015E	653	100.00	100.04	99.94	-0.09	-0.93	1.00	0.90	-0.54	-0.30	100.06	0.24	
I016E	653	1.50	0.33	-1.17	-0.52	-1.06	0.65	-0.27	-0.26	-0.29	0.22	0.22	
I017E	653	100.00	100.00	99.99	-0.01	-0.97	1.00	-0.97	-0.20	-0.15	100.01	0.14	
I018E	653	0.	0.36	0.36	-0.19	-0.38	1.00	-0.62	-0.29	-0.18	0.34	0.20	
I019E	653	100.00	99.99	-0.01	-0.92	-1.02	1.00	-0.95	-0.56	-0.25	99.96	0.25	
I020E	653	0.	0.35	0.35	-0.62	-1.75	1.00	-0.72	-0.34	-0.16	0.39	0.22	
I021E	653	00.00	100.01	1.01	-2.19	-1.00	-1.00	-1.26	-0.21	-0.16	100.06	0.28	
I022E	653	00.00	90.67	-90.67	-0.33	-0.75	-10.00	-1.00	-1.00	-0.46	-0.32	90.65	0.23
I023E	653	84.50	84.50	84.50	-0.59	-7.42	10.00	-1.01	-1.01	-0.47	-0.34	91.36	0.23

3-30-62

REVISED

U3 #288 2000 (WAS BAC 41310)

BOEING

VOL	NO	PAGE
SFC	13	35

NAME	SAMPLE SIZE	EXP. OUTPUT	MEDIAN VALUE	OFFSET	ACCURACY VALUE	TOLERANCE 99.73% PCT	LIMITS 95.5% PCT	LIMITS 68.3% PCT	OTHER MEAN	PARAMS STD DEV
SC18E	653	88.00	88.73	0.73	10.00	0.90	0.22	0.16	88.77	0.18
SC21E	653	77.00	76.81	-0.19	0.70	10.00	0.89	0.46	0.15	76.82
SC22E	653	75.00	73.00	3.00	3.96	10.00	0.96	0.20	0.15	72.01
SC62E	653	35.00	45.60	10.60	10.80	15.00	0.20	0.19	0.15	45.60
SC31E	653	82.00	71.20	10.80	-15.60	15.00	0.20	0.19	0.15	71.25
SC22E	653	42.00	43.22	1.22	2.16	10.00	0.94	0.53	0.16	43.23
SC63E	653	39.50	24.17	-5.33	-4.50	10.00	0.83	0.50	0.35	24.26
SC82E	653	1.00	0.21	-0.29	-0.76	-0.72	-0.36	-0.21	-0.16	0.23
SC62E	653	36.00	27.50	1.50	2.50	10.00	1.00	0.30	0.23	37.43
SC62	653	57.00	54.72	-2.28	-0.37	10.00	2.21	1.68	0.32	57.00

3-30-62

REVISED

U1 4288 2000 (WAS BAC 41110)

BOEING

VOL
SFCNO
PAGE

MEAS	SAMPLE	EXP.	OUTPUT	MEDIAN	OFFSET	VALUE	TOL.	ACCURACY			TOLERANCE		LIMITS		OTHER	PARAMS
								PCT	PCT	PCT	99.73	95.5	68.3	MEAN	STD	DEV
A001H	653	2.00	3.	-2.00	-1.90	2.00	0.20	0.19	0.15	0.	0.	0.12				
A002H	653	3.50	2.05	-1.45	-0.35	2.00	1.30	0.53	0.29	0.29	0.	0.22				
A003H	653	1.00	1.63	0.63	1.55	2.00	0.92	0.54	0.17	1.65		0.19				
A022H	653	C.	0.	0.	0.20	5.00	0.20	0.19	0.15	0.	0.	0.12				
A023E	653	C.	0.	0.	0.20	10.00	0.20	0.19	0.15	0.	0.	0.12				
A024H	653	1.00	0.43	-0.57	-0.00	20.00	0.57	0.53	0.22	0.42		0.22				
A025H	653	2.00	1.19	-0.91	0.13	2.00	0.95	0.43	0.16	1.13		0.18				
A026H	653	C.	1.24	1.24	2.16	2.00	0.92	0.54	0.23	2.27		0.19				
A027H	653	3.00	2.45	-0.55	-0.10	2.00	1.65	0.72	0.32	2.48		0.26				
A028H	653	2.00	2.40	0.40	1.37	2.00	0.96	0.43	0.25	2.41		0.25				

3-30-62

REVISED

U3 4888 2000 (WAS BAC 4181D)

BOEING

VOL	1	NO	7
SEC		PAGE	40

380-62

REVISED
U3 4288 2000 IWAS BAC 4131D1

NAME	SAMPLE	EXP.	OUTPUT	MEDIAN	OFFSET	ACCURACY	TOLERANCE			LIMITS	OTHER	PASMS
							VALUE	%	PCF	99.7%	95.5%	PCF
AC29U	653	2.00	1.19	-2.82	0.15	2.00	0.96	0.22	-0.36	1.18	0.17	
AC29U	653	3.00	2.41	-2.59	0.37	2.00	0.96	0.22	-0.24	2.42	0.15	
AC23P	1959	102.00	132.00	0.	0.20	21.00	0.20	0.19	0.24	12.90	0.12	
AC24P	1959	102.00	102.00	0.	0.20	20.00	0.20	0.19	0.24	10.90	0.12	
AC21P	653	94.00	96.40	4.40	5.36	10.00	0.96	0.20	-0.49	5.47	0.24	
AC22P	653	95.00	95.65	-1.35	-0.44	10.00	0.91	0.53	-0.27	9.63	0.25	
AC24T	653	95.00	93.72	3.72	4.45	10.00	0.67	0.59	0.24	8.71	0.26	
AC23P	653	97.00	95.00	-2.40	-0.31	10.00	0.59	0.40	0.17	9.66	0.26	
AC29P	653	96.00	96.00	0.00	0.55	10.00	0.55	0.20	0.15	96.00	0.22	
AC33P	653	97.50	97.20	-0.30	0.66	10.00	0.96	0.27	0.15	97.00	0.24	

BOEING

VOL. 1 NO. 1 PAGE 41

3-30-62

REVISED

U3 4288 2000 (WAS BAC 6131D)

MEAS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEDIAN VALUE	OFFSET VALUE	ACCURACY %	TOL. %	TOLERANCE RETION		LIMITS STD DEV	PARAMS MEAN
							99.73 PCT	95.5 PCT		
AC31P	653	90.00	94.81	4.81	6.10	10.30	1.39	0.53	-0.16	94.83
AC32P	653	95.00	95.26	0.26	1.17	10.30	0.91	0.53	-0.16	0.18
AC33P	1959	102.00	102.00	0.	0.20	11.00	0.20	0.19	-0.19	0.22
AC34P	1959	102.00	102.00	0.	0.20	11.00	0.20	0.19	-0.19	0.12
A025P	1959	49.00	43.00	-2.00	-2.01	13.00	0.99	0.35	-0.15	43.00
AC35P	15619	16.00	14.85	-1.15	-1.34	5.00	0.86	0.28	-0.27	0.15
A-37P	15672	15.00	14.14	-0.86	-0.93	5.30	0.83	0.45	-0.32	14.83
AC39P	25672	24.00	25.50	1.50	2.15	15.00	0.56	0.25	-0.15	25.57
AC40P	25672	23.00	23.45	0.45	1.19	16.00	0.73	0.33	-0.44	0.24
HCC1P	1959	7.00	6.65	-0.35	-0.21	8.00	0.64	0.24	-0.52	0.23

BOEING

VOL	NO
SEC	PAGE

42

MEAS. NAME	SAMPLE SIZE	EST. CUTTOFF VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE	ACTION		LIMITS	OTHER	PARAMS
							VAL.	TOL.			MEAN
H003P	1959	45.00	34.10	-11.00	-16.30	3.00	0.22	0.19	34.00	34.00	0.12
H004P	1959	42.00	32.20	-21.20	-19.80	8.00	0.20	0.19	32.00	32.00	0.12
H005P	1366	43.00	34.00	-11.00	-19.80	5.00	0.20	0.19	34.00	34.00	0.12
H006P	1959	46.00	35.20	-16.30	-19.60	5.00	0.20	0.19	35.00	35.00	0.12
H015P	1959	72.00	61.00	-13.00	-26.70	10.00	0.20	0.19	61.00	61.00	0.12
H015P	1959	2.50	2.30	0.25	0.79	2.50	0.21	0.19	2.26	2.26	0.18
H016P	1959	2.50	3.00	0.35	1.69	3.00	0.22	0.21	3.07	3.07	0.16
H018P	1959	3.00	3.20	0.20	3.59	4.50	0.30	0.42	3.00	3.00	0.45
H023	3018	100.00	99.77	-0.73	0.10	0.00	0.92	0.52	99.32	99.32	0.22
H025	3018	5.00	4.66	-0.34	0.63	5.00	0.27	0.26	4.63	4.63	0.25

3-30-62

REVISED

US 4288 2000 (WAS BAC 4131D)

BOEING | VOL 1 | NO 72 | 1/27/73 | PAGE 43

5-30-62

REVISED _____
U3 4200 2000 (WAS BAC 4131D)

MEAS.	SAMPLE	EL. SIZE	OUTPUT VALUES	MEDIAN	OFFSET	ACCURACY	TOLERANCE	REGUL.	LIMITS		OTHER	PARMS
									VAL.	TOL.	PCT	PCT
A0035	3918	100.00	99.50	-0.50	0.20	5.00	0.70	0.52	0.23	0.47	-0.33	0.25
A0043	3918	5.00	4.53	-0.47	0.35	5.00	0.82	0.46	0.32	4.55	-0.23	0.24
A0055	3918	41.50	41.60	0.10	0.90	5.00	0.80	0.22	0.34	41.61	-0.14	0.13
A0068	3918	44.50	45.54	1.04	2.03	5.00	0.38	0.51	0.20	45.52	-0.30	0.24
A0075	3918	48.00	47.94	-0.06	0.57	5.00	0.65	0.26	0.19	47.99	-0.32	0.26
A0083	3918	42.00	41.60	-0.40	0.17	5.00	0.57	0.19	0.24	41.60	-0.14	0.13
A0095	15672	62.00	61.20	-0.80	0.10	5.00	0.90	0.48	0.16	61.20	-0.16	0.18
A0108	15672	69.50	68.39	-1.11	-0.24	5.00	0.87	0.32	0.16	68.38	-0.16	0.18
A0118	15019	70.50	72.37	1.57	2.45	5.00	0.87	0.30	0.20	72.37	-0.29	0.23
A0128	15019	70.00	68.51	-1.47	-0.64	5.00	0.85	0.48	0.20	68.54	-0.21	0.23

BOEING VOL NO PAGE 44

ITEMS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEAN	OFFSET	ACCURACY	TOLERANCE PCT	POSITION PCT	LIMITS STD DEV	PARAMS	
									99.73	95.5
AC06T	653	16.36	12.51	2.51	4.93	6.39	2.43	0.75	-0.36	10.51
					5.10		-2.42	-0.62	-0.25	
AC08T	653	21.30	12.64	1.62	2.78	6.20	1.24	0.72	0.29	12.64
					5.55		-1.09	-0.43	-0.32	
AC09T	653	21.00	11.60	0.20	1.97	6.00	1.37	0.58	0.17	11.62
					5.59		-1.10	-0.34	-0.17	
AC10T	653	11.20	12.09	0.79	1.99	6.20	1.20	0.71	0.26	11.39
					5.20		-1.09	-0.55	-0.30	
AC12T	653	22.30	12.10	2.40	2.35	4.30	2.46	0.71	0.36	22.52
					5.50		-1.29	-0.63	-0.44	
AC12T	653	21.30	23.20	2.30	3.00	6.35	1.90	0.55	0.30	13.27
					5.30		-1.70	-0.42	-0.35	
AC13T	653	9.35	11.02	2.62	3.20	6.00	1.49	0.70	0.26	10.32
					5.75		-2.26	-0.40	-0.26	
AC14T	653	21.50	12.00	0.50	2.00	6.00	1.50	0.70	0.20	11.95
					5.50		-2.50	-0.40	-0.20	
AC15T	653	9.00	12.02	0.98	3.12	6.00	1.32	0.60	0.21	12.92
					5.00		-2.59	-0.38	-0.21	
AC16T	653	10.00	10.42	0.42	3.75	6.00	3.28	1.53	0.28	10.42
					5.50		-3.22	-1.37	-0.19	

3-30-62

REVISED

U3 4288.2000 (WAS BAC 4131D)

BOEING

VOL	NO
SEC	PAGE 45

3-20-62

REVISED

U3 4288 2000 I WAS BAC 4131D:

MEAS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE 99.73 PCT	REGIMEN	METERS ±S.3 RCT	PARAMS	
									MEAN	STD DEV
AC27T	653	11.00	11.38	0.28	1.19	4.00	0.91	5.70	3.35	3.22
AC27T	653	8.50	8.85	0.35	1.60	6.10	2.25	6.27	5.25	
AC28T	653	11.50	10.42	-1.09	9.60	4.00	1.69	2.74	3.16	3.25
AC28T	653	11.00	10.67	-0.33	0.40	6.00	2.16	2.26	2.16	2.22
AC28T	653	12.20	13.03	2.03	1.73	4.00	0.73	0.69	0.38	0.31
AC29T	653	12.00	12.56	2.56	0.33	4.00	2.77	3.73	5.24	5.63
AC30T	653	12.00	1.26	-25.26	-25.65	2.00	2.20	-3.73	2.32	2.43
AC31T	653	23.00	10.60	12.80	10.40	6.00	2.19	2.16	2.14	2.12
AC32T	653	3.00	2.49	-0.51	0.39	2.00	2.89	2.63	2.35	2.24
AC33T	653	2.30	2.41	-0.11	-0.37	2.00	0.96	0.44	0.17	0.21

BOEING

VOL. 1 NO. 12 PAGE 46

MEAS NAME	SAMPLE SIZE	ZP. OUTPUT VALUE	MEAN	OFFSET	ACCURACY	TOLERANCE	POSITION	LIMITS		PARAMS	
								PCT	PCT	SPL DEV	
AC38T	653	12.00	11.51	-0.49	1.75 -2.40	1.00	2.24 -1.91	0.78 -0.50	0.23 -0.35	11.49 -0.35	0.32
AC39T	653	12.00	11.62	-0.38	1.35 -1.33	8.00	1.73 -0.75	0.66 -0.22	0.27 -0.27	11.65 -0.17	0.24
AC40T	653	12.00	11.62	-0.38	0.70 -1.60	8.00	1.28 -2.22	0.57 -0.37	0.17 -0.17	11.63 -0.17	0.22
AC41T	653	12.00	11.38	-0.62	0.58 -2.08	8.00	1.26 -1.26	0.75 -0.41	0.32 -0.32	11.50 -0.22	0.29
AC42T	653	12.00	10.74	0.74	2.23 -6.45	8.00	1.39 -1.29	0.64 -0.53	0.22 -0.34	10.73 -0.40	0.28
AC43T	653	12.00	12.48	0.48	2.93 -2.30	8.00	2.46 -2.73	0.72 -0.36	0.27 -0.25	12.40 -0.25	0.41
AC44T	653	3.00	2.65	-0.35	0.38 -0.80	2.00	0.73 -0.45	0.25 -0.43	0.26 -0.32	2.62 -0.32	0.24
AC45T	653	4.00	2.39	-1.62	-0.63 -2.18	2.00	0.97 -0.57	0.33 -0.44	0.15 -0.15	2.39 -0.15	0.26
AC46T	653	3.00	4.96	-2.04	-0.43 -1.59	2.00	0.61 -0.56	0.24 -0.32	0.18 -0.24	4.94 -0.24	0.29
AC47T	653	2.0	2.11	2.11	3.37 1.92	2.00	0.37 -0.43	0.20 -0.20	0.15 -0.15	2.50 -0.20	0.25

REVISED

J3 4288 2000 (WAS SAC 4111D)

BOEING VOL NO PAGE 47 →

SEC	47
-----	----

MEAS NAME	SAMPLE SIZE	EXP. OUTPUT VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE 99.73 PCT	REGION 95.5 PCT	LIMITS 68.2 PCT	OTHER MEAN	PARAMS	
										STD DEV	STD DEV
AC4ST	653	12.00	12.61	0.61	4.99	8.00	4.29	2.18	0.33	15.62	0.65
AC49T	653	12.00	12.60	0.89	4.10	6.00	3.21	0.90	0.43	12.94	0.43
AC50T	653	12.00	12.53	-0.47	0.76	8.00	2.23	0.47	0.34	12.55	0.35
AC51T	653	14.00	14.31	0.31	2.35	6.00	1.04	0.28	0.21	14.27	0.25
AC52T	653	1.00	2.38	1.23	1.98	1.50	0.69	0.31	0.24	2.36	0.23
AC53T	653	3.00	2.51	-0.48	0.39	1.50	0.87	0.65	0.35	2.46	0.25
AC54T	653	0.	0.92	0.88	1.76	1.50	0.88	0.50	0.34	0.92	0.22
AC55T	653	2.00	1.90	-0.10	0.57	1.50	0.67	0.30	0.22	1.87	0.23
AC56T	653	2.00	2.73	0.33	2.20	2.00	1.27	0.26	0.26	2.56	0.21
AC57T	653	2.00	2.44	-0.56	0.35	2.00	0.91	0.23	0.27	2.47	0.21

REVISED

US 4268 2000 (WAS BAC 41310)

BOEING

VOL 1

NO 7

MEAS NAME	SAMPLE SIZE	EFF. CUTOFF VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE			REGION 99.73 PCT	INTERS 68.3 PCT	OTHER 95.5 PCT	MEAN	PEAMS STD DEV
						VAL	TOL.	PCT					
AC55T	653	1.30	3.83	2.83	3.59	5.00	3.76	9.53	-0.43	-0.31	-0.28	3.82	0.25
AC59T	653	69.50	69.56	0.06	1.00	10.30	9.94	0.24	-0.55	-0.52	-0.26	69.53	0.20
AC6CT	653	50.00	45.79	1.41	-5.62	16.30	6.78	2.43	-6.39	-6.38	-5.35	43.60	0.24
AC61T	653	13.50	24.00	10.50	19.71	10.00	5.20	0.19	-5.20	-5.19	-5.15	24.00	0.12
AC62T	653	2.50	0.56	-2.74	-2.24	10.30	9.30	0.43	-2.35	-2.34	-2.14	0.58	0.23
AC64T	653	83.70	72.52	11.00	-21.80	10.00	5.20	0.19	-5.20	-5.19	-5.15	72.50	0.12
AC68T	653	24.00	22.83	0.83	4.10	4.00	3.27	2.62	-3.13	-3.13	-2.22	12.36	0.44
AC69T	653	11.00	10.65	-0.35	-0.05	-1.00	0.20	0.93	-5.57	-5.57	-5.10	10.39	0.32
AC91T	653	12.00	15.87	-1.13	1.76	6.00	2.88	1.10	-5.57	-5.57	-5.30	10.32	0.35
AC94T	653	12.00	15.30	-1.30	1.76	6.00	2.20	0.20	-5.20	-5.20	-5.15	10.32	0.12

3-30-62

REVISED

US 4288 2000 (WAS BAC 41310)

BOEING

VOL	NO T
SFC	PASS
	47

S-3C-62

REVISED

U3 4288 2000 (WAS BAC 4131D)

MEAS WAS	SAMPLE SIZE	MEAN OUTPUT VALUE	MEDIAN OFFSET	OFFSET	ACCURACY	TOLERANCE		RETIC PCT	LIMITS PCT	OFFER MEAN	PARAMS STD DEV
						99.73	95.5				
A095T	653	12.05	12.42	0.42	-0.75 -0.30	6.00	1.33 -0.72	0.56 -0.49	0.16 -0.13	12.44	0.23
A196T	653	20.89	20.67	0.48	-0.57 -0.10	8.00	0.88 -0.39	0.50 -0.38	0.34 -0.21	2.53	0.23
A198T	653	3.26	2.83	-0.17	0.75 -0.74	1.50	0.92 -0.57	0.54 -0.23	0.22 -0.17	2.86	0.20
A199T	653	30.56	2.61	-0.49	-0.03 -2.45	1.50	0.96 -0.46	0.51 -0.20	0.15 -0.15	2.02	0.16
A201T	653	2.69	2.40	0.40	-0.15 -2.65	6.00	2.15 -2.05	0.74 -0.51	0.15 -0.15	2.47	0.28
A505T	653	12.39	12.35	0.52	-0.50 -0.76	6.00	1.69 -1.52	0.77 -0.59	0.30 -0.37	12.82	0.33
A533T	653	10.09	12.47	2.47	4.30 -4.30	6.00	2.83 -2.77	0.76 -0.60	0.35 -0.21	12.49	0.35
A534T	653	2.00	2.42	0.42	-1.28 -0.20	2.00	0.96 -0.22	0.56 -0.21	0.16 -0.16	2.44	0.18
A535T	653	23.09	13.37	0.37	-1.35 -1.40	6.00	1.58 -1.77	0.62 -0.75	0.35 -0.35	13.35	0.35
A536T	653	3.09	2.52	-0.48	0.37 -0.60	5.00	0.85 -0.32	0.47 -0.31	0.24 -0.23	2.56	0.23

BOEING

VOL 1
SPEC20
PAGE 5

NAME	SAMPLE	NTP.	OUTPUT VALUE	MEDIAN	OFFSET	ACCURACY	TOLERANCE		MEAN	COPR	PARAMS
							90.73 PCT	95.5 PCT			STD DEV
A5372	653	20.00	22.65	2.65	4.50	4.00	1.98	0.96	5.30	12.62	6.31
PO052	653	2.00	2.05	1.95	1.95	4.50	-1.32	-2.42	-0.31		
PO061	653	1.00	2.40	1.40	2.30	4.00	0.92	0.53	2.33	2.09	0.21
PO072	653	3.00	2.80	2.80	5.83	4.00	-1.57	-3.25	-0.18		
PO081	653	2.00	2.00	2.00	2.00	4.00	0.90	0.26	-3.15	2.39	0.14
PO092	653	3.00	2.57	2.57	2.57	4.00	0.50	0.38	0.15	2.80	0.15
PO093	653	2.00	2.65	2.65	2.76	4.00	-0.56	-0.29	-0.15		
PO094	653	3.00	2.57	2.57	2.57	4.00	0.95	0.52	0.32	1.70	0.22
PO095	653	2.00	2.57	2.57	2.57	4.00	-0.52	-0.26	-0.19		
PO096	653	3.00	2.57	2.57	2.57	4.00	0.79	0.42	0.31	2.59	0.24
PO097	653	2.00	22.35	9.85	1.37	4.00	0.57	0.26	0.15	12.30	0.13
PO098	1959	11.00	11.36	9.36	1.93	4.00	-1.37	-1.00	-1.71	12.97	0.74
PO135	15672	0.	0.	0.94	2.59	4.00	-1.63	-3.25	-1.01		
PO136	15672	0.	0.	0.94	2.59	4.00	-1.63	-1.00	-0.67	1.02	0.53
PO137	15672	0.	0.	0.94	2.59	4.00	-1.63	-1.00	-0.35	-0.33	
PO138	15672	0.	0.	0.94	2.59	4.00	-1.63	-1.00	-0.33	3.31	2.67
PO139	15672	0.	0.	0.94	2.59	4.00	-1.63	-1.00	-0.33	-3.30	

REVISED

U3 4288 2000 (WAS BAC 4131D)

BOEING

VOL.

SEC.

NO

TR

PAGE

51

APPENDIX II

PCM/FM OSCILLOGRAPH PLOTS

The 41 oscilloscope plots which follow are annotated with the following information:

- 1) The computer analysis of the steady state noise using the 3σ limit is listed under the column marked "Computer Data".
- 2) To the right of the column labeled "Computer Data" the plots are identified with the plot number, the T/M Channel Code, and the peak-to-peak noise on the trace that was measured during the manual analysis. If the T/M channel is within tolerance (below 1.5% p-p) there will be no value listed.

3-30-62

REVISED _____

U3 4288 2000 (WAS BAC 4131D)

BOEING | VOL 1 | NO T2-2279 →
SEC | PAGE 52

		COMPONENT DATA		
1.	53	1.53	G061E-A	2%
2.	35	2.35	G058E-A	2%
3.	65	1.65	G062E-A	2%
4.	77	1.77	G059E-A	4%
5.	44	3.44	G063E-A	4%
6.	00	3.00	G060E-A	PLDT 1 TE-2673 VOL. 1 PAGE 53

1.49 GOT1E-A

2.11 GOT4E-A

1.57 GOT5E-A

5%

4.55 GOT3E-A

1.19 GOT2E-A

2%

3.15 GOT5E-A

PLOT 2

T2 2279 VOL 1
PAGE 54

2-30-62

				0043E-A 1.12	
				1.12	GO43E-A
				1.47	E A
				1.46	GO45E-A
				1.1%	GO73E-A
				1.1%	GO44E-A
				1.14	GO72E-A

PLATE 3
T-227 VOL 1

00000
DATE

GOTZE-A

618E-A

6079E-A

GOTZE-A

1.17 GOTZE-A

AO94T-A

PLOT 4

T2-2274 VOL-1

1960 62

PAGE 55

							24 AUGUST 1966	
0							117	G014D-A
							120	G016D-A
								G015E-A
							135	G013D-A
							144	GOOSEA
0							147	HOOIP-C
								PLOT 5
3-30 64				T2-2273 VOL 1				PAGE 57

COMPUTER
DATA

1.14 GO18D-A

1.16 GO20D-A

1.17 GO19D-A

1.18 GO17D-A

GO07E-C

H002P-B

PLOT 6

9 40-12

T2-2279 VOL 1

PAGE 53

COMPUTER
DATA

1.18 G022D-A

1.44 G024D-A

1.19 G023D-A

1.53 G021D-A

0.40 GOOSE-A

0.4 HOISP-B

PLOT 7

3-20 C-2

72-2279 VOL 1

PAGE 51

COMPILE
DATA

1.44 A058T-A

1.17 A060T-A

1.19 A058T-A

G030E-C

G089E-A

PLOT 2

12-2279 VOL 1
PAGE 60

COMPUTER
DATA

1.12 G023E-D

1.73 G026E-C

1.16 G034ED

0.11 G029E-C

0.4 G088E-A

0.4 G087E-A

PLOT 2

13-39-08

T2-2270 VOL 1
PAGE 61

COMPUTER DATA					
				1.16	G042E-C
					G050E-C
				1.45	G081E-C
				1.50	G052E-C
				1.45	G083E-C
				1.20	G042E-C

12-2279 VOL 1

Page 6

COMPUTER
DATA

1.04

H003P-C

1.41

H004P-C

0.4

H005P-C

0.4.

H006P-C

1.45

G090E-B

1.1F

A068T-A

PLOT II

T2 Z279 VOL 1

PAGE 63

DATA
C

H067P-B

H068P-B

H069P-B

H010P-B

H091E-B

A063T-A

PLOT 1E

T2-2279 VOL 1

PAGE 14

COMPUTER
DATA

H011P-B

H012P-B

H013P-B

270

H014P-B

4. G092E-B

5. A069T-A

PLOT 13

2.27.62

T2 2273 VOL 1

PAGE 65

COMPUTER
DATA

C

1.17

GO41E-A

1.15

GO40E-D

0.40

GO39E-D

1.05

GO25E-D.

1.35

GO27E-D

1.18

GO28E-D

PLOT 44

T2-2272 VOL 1

PAGE 66

THIS IS THE
DATA

GOODIE-B

270

2.75 G032E-B

A004A-A

BLANK

A005A-A

BLANK

PLOT 15

T2-2279 VOL 1
PAGE 67

TRANSMITTER
DATA

1.16

G033E-B

G035E-E

0.40

G037E-B

0.77

1004E-A

0.4

1006E A

1.14

1008E-A

FLOT 16

T2-2279

VOL 1

PAGE 6B

COMPUTER
DATA

2.74 S013X-B

67c

11.57 S014X-B

1.47 A040P-A

1.53 A039P-A

1.44 A036P-A

1.5 - A037P-A

PLOT 17

3 1/2 X

72-279 VOL 1
PAGE 64

							COMPUTER DATA	
							1.50	5012E-A
							1.50	5013E-A
							1.50	5018E-3
(1.13	1007E-A
							1.15	1005E-A
							0.13	1009E-A

PLOT 18

12-1274 VOL 1

PAGE 70

CONCUTT
DATE

1.44 SO83E-A

1.19 SO83E-C

2.10 SO85E-C

1.48 SO84E-C

4%

5.43 SO86E-C

DOZOA

PLOT 19

72-273 VOL 1
PAGE 71

COMPUTER
DATA

1.47 P006X-A

1.15 P007X-A

1.41 P005X-A

1.16 P009X-A

2%

3.50 P008X-A

1.12 A02M-A

PLOT 20

T8-173 VOL 1
PAGE 72

COMPUTER
DATA

1.48 A0034-A

1.43 A050T-C

2.55 A051T-C
2%

1.16 A026h-A

3.3 A026T-C

1.20 A027T-C

PLOT 32

34-62

TR-2279 VOL 1
PAge 74

							3.15 P-11 157A
C							1.24 A025H-A
							1.24 AC29P-B
							1.26 AC30P-B
C							1.86 AC31P-B
							1.52 A032P-B
							2.18 A024T-C

PLOT 23

3-30-62

T2-2279 VOL 1

PAGE 75

CHART 24
DATA

1.45 A0105-C

1.51 A0115-C

1.16 A0125-C

1.49 A0095-C

PLOT 24

B-3C-62

TZ-2279 VOL 1
PAGE 76

COMPUTER
DATA

1.17 A052T-C

1.29 A053T-C

1.16 A054T-C

1.17 A055T-C

2.0 A056T-C

1.25 A057T-C

PLUT 25

3-3-62

T2-2277 VOL 1
PAGE 77

					GONE DOWN	
						2%
					3.75	A013T-C
						6 ⁺ R
					12.00	A014T-C
						4 ⁺ R
					7.20	A016T-C
						1.19 A017T-C
						2 ⁺ R
					6.40	A089T-C
						4 ⁺ 3- R
					5.60	A049T-C

		PLATE 26
		T2-2273 VOL 1
		PAGE 78

COMPUTER
DATA

1.15 1013E-A

1.16 1012E-A

1011E-A

0.40 1010E-A

1.53 1015E-A

0.47 1014E-A

T2-2279 VOL 1
PAGE 77

					CHICAGO DATA	
					1.42	A199T-C
						Z + R
					4.20	A200T-A
						2%
						A025P-B
						2%
						A026P-B
						2%
						A027P-B
						A028P-B

PLOT 28

3-2-61

TG 2279 VOL 1

PAGE 53

COMPUTER
DATA

1.00 A0055-C

1.57 A0065-C

1.44 A0075-C

2-
R

1.11 A0085-C

1.50 A0090T-A

PLCT 23

20-12

72-2279 VOL 1
PAGE 21

COMPUTER
DATA

SOCIX-A

POC4X-A

1.15 P016P-A

0.4 A013P-A

2 +
R

4.15 A038T-C

AC23H-A

PLOT 30

5-30-62

TZ-2279 VOL 1

143682

COMPUTER
DATA

04 AUG 1T-A

1.55 A002H-A

2.50 A040T-C

2⁹

2.60 A041T-C

2+
R

2.65 A038T-C

1.17 A071H-A

PLOT 31

72-2279 VOL 1

PAGE 83

COMPUTER
DATA

1.18 A044T-C

1.17 A046T-C

1.54 A045T-C

2 +

R

1.46 A047T-C

3 +

R

5.24 A043T-D

2.54 A042T-C

PLOT 32

F2-2279 VOL 1
PAGE 24

COMPUTER
DATA

2 +
R

4.45 A011T-L

2 +
R

3.60 A012T-C

1.5 A028H-C

2.47 A009T-C

2%

2.09 A010T-C

3 +
2 -
R

4.45 A091T-C

NOT 33

72-2279 VOL

NOT 33

COMPUTER
DATA

2.67 1016E-A

1.18 1018E-A

1.27 1017E-A

1.17 1016E-A

1.93 1021E-A

1.18 1020E-A

PLOT 34

3-3-62

T2-2279 VOL 1

PAGE 26

COMPUTER
DATA

1.27 A196T-A

1.49 A196T-A

1.36 A021P-B

1.36 A022P-B

1.17 A023P-B

1.19 A024P-B

PLOT 35

2-3-62

T2-2219 VOL 1
PAGE 37

COMPUTER
DATA

1.18 A001S-C

1.81 A002SC

1.65 A003S-C

1.81 A004S-C

PLOT 36

3-312-62

T2-2279 VOL 1
PAGE 88

COMPUTER
DATA

1.18 P015P-A

C. 4 A038P-A

0.4 A034P-A

2 -
R

1.94 A035P-A

5 ±
R

1Q43 A028T-C

0.40 A022H-A

PLOT 37

10-62

TZ-2279 VCL 1
PAGE 89

						COMPUTER DATA	
						1.48	A035T-C
						1.16	A037T-C
						1.18	A534T-C
						1.17	A536T-C
						3.45	R
						E.	A533T-C
						2.70	
						3.45	A535T-C

PLOT 38

2-31-62

72-8279 VOL 1

PAGE 90

COMPUTER
DATA

0.4C A001H-A

0.4 A030T-C

0.4 A031T-C

2.05 A095T-A

2%

A029T-C

1.81 A015T-C

PLOT 39

?-3 62

T2-2279 VOL 1

PAGE 41

COMPUTER
DATA

270

2.90 A027H-A

2%

3.11 A008T-C

3.2 A537T-C

2%

3.20 A505T-C

3%

4.54 A006T-C

PLOT 40

7-20-62

T3-2279 VOL 1
PAGE 92

COMPUTER
DATA

1.10 SOBIE-A

1.16 SOBIE-A

0.40 SOBIE-B

0.40 SOBIE-B

3%

DOOZIE-A

1.49 LOOTIE-A

FLOT 41

T2-2279 VOL 1

PAGE 93

APPENDIX L

EQUIPMENT TESTED

3-30-62

REVISED _____

US 6000 2000 1000 800 600

~~SEARCHED~~ VOL 1 NO 72-2279 →
SEC PAGE 74

EQUIPMENT TO BE TESTED

PART NO.

SERIAL NO.

EAC Power and Cooling Subsystem

- (a) Instrumentation Power Transfer and Cooling Control Panel 25-18757-502 3001
- (b) Power Cetus Panel (in BTS-62) 25-17763-14 2001
- (c) EPC-168 for EPCN (part of BTS-36) 25-28104-2 1013
- (d) Battery rack, item 57. Check that batteries are all installed. Batteries Installed
- (e) Power Supply Switching Rocks (part of BTS-36) 25-14850-4113 3002
25-14850-876 3002
- (f) BTS-36 Power Conversion Radios 25-14850-8828 3002
25-14850-8836 3002
25-14850-8831 3002
25-14850-8552 3002
25-14850-8855 3002
25-14850-874 3002
- (g) BTS-150 EPCO Subsystem. Record for EPCO drawer. 25-18967-824 3002
- (h) External EPCO Boxes (in the High Bay Area) 25-14878-20 3005
25-14878-21 3006
- (i) Instrumentation Section Cooling Unit 25-5222-820 109
- (j) Equipment Cooling Arms, item 96 N/A None
- (k) BTS-62 25-14806-820 3001
- (l) BTS-45 24-2051-1 2001
- (m) Voltage Compensator Power Supply (old) 25-24369-3 1024
(new) 25-14369-3 1013

G - 3-1-1-2

REVISED _____

U.S. 4288 2000 (WAS BAC 6131D)

BOEING VOL
SEC

NOTE 2-2-79 PAGE 95

<u>EQUIPMENT TO BE TESTED</u>	<u>PART NO.</u>	<u>SERIAL NO.</u>
<u>Ordnance Subsystems</u>		
(a) Safety Monitor Panel (in BTG-62)	25-17791-50	5003
(b) Ordnance Functional Test Panel (in BTG-62)	25-18622-23	9034
(c) Ordnance Oscillograph (in BTG-62)	25-22260-27	6001
(d) BTG-21	25-14881-150	0003
(e) Safe and Arm Monitor Indicator Panels SC-LMS-23 (in the High Bay Area)	N/A N/A	None None
<u>PCM Subsystems</u>		
(a) BTG-171, for DGA reset power	25-18648-11	0002
(b) BTG-170, for PCM	25-23103-2	101-12
(c) Control and Indicator Panel (in BTG-17)	25-17782-37	0102
(d) DZCA Converter Programmer	61037-505	A054
(e) SE2A Sensor Conditioner	65191-505	A023
(f) 13-20402 Airborne PCM Equipment		Not Available
(g) 10-20410 Voltage Regulator		Not Available
(h) Airborne Patch Panels		Not Available
(i) BAI-19 Event Mark Units		Not Available
(j) BAI-9 Matching Units		None None None

3-30-6-2

REVISED

U3 4200 2000 (WAS BAC 4131D)

BOEING | VOL 1 | NO T 2 1977 | →

SER | PAGE 96

EQUIPMENT TO BE TESTED

(continued)

PART NO.

	SERIAL NO.
(4) BAI-12 T/M VDTM Monitor	1C-20467 13
(1) BAI-15 Pressure Transducers	10-20453-3 1404, 1392, 1412, 1411, 1436, 1437, 1438, 1439
(n) BAI-18 Thermocouple System & Reference Junctions (BAI-18) - 6 units	10-20478-3 1002, 101, 103, 104, 105, 106
(n) BII-162 REDUCER Regulator Power Supply (located in BIS-36)	25-28101-1 29
(o) BAI-2	Not Available
(1) FP Section	21-50103-63 103-68
(2) Multiplexer Programmer	21-50103-78 103-78
(3) Multiplexer Assembly	21-50103-38 103-38
(4) Control Box Assembly	21-50103-42 103-42
(5) Auxiliary Box Assembly	21-50103-39 103-39
(p) PCM Battery (part of BII-3G)	21-50103-40 103-40
(q) Strain Transducers	21-50103-41 103-41
	21-50103-43 103-43
	21-50103-44 103-44
	21-50103-45 103-45
	4014
	Not Available

REVISED

09-0200 2000 (WAS BAC 613101)

BOEING

VOL.
SEC.

NO.
PAGE

97

EQUIPMENT TO BE TESTED	PART NO.	SERIAL NO.
(continued)		
(r) BAI-24 Antenna Triplexer	10-20409	1015
(s) BAI-25 Power Divider		Not Available
(t) BAI-40 Calibrators		Not Available
(u) BTS-19 T/H Carts (one)		10-20423-30
(v) Control Panels for the T/H Carts (in BTS-17)		10-20423-1
(w) BTS-17 (two sets)		201
	25-14884-31	6002
	25-14884-31	
(x) BTS-19 Digital Voltmeter and Digital Printer (in BTS-17)	20-20423-32	#155343
	29-16457-1	3-02
(y) BAI-163, for the Z/H Calibration Carts	25-38103-3	101-7
(z) BAI-44 Differential Pressure Transducers		Not Available
(aa) BTS-152	25-14860-8C1	1001
(bb) BTS-152 Digital Voltmeter & Digital Printer	10-20423-32	1C3
	10-20423-32	101
(cc) Ablation Gauge Power Supply	29-18014-1	6006

3-30-62

REVISED

U2 4288 2000 (WAS BAC 418101)

BOEING

VOL 1

SEC.

NO 72

PAGE 98

<u>EQUIPMENT TO BE SHIPPED</u>	<u>PART NO.</u>	<u>SERIAL NO.</u>
(a) BAI-7 FM/TM T/R Equipment (two)	10-20433-4 10-20433-6	508 505
(b) BAI-10 Test and Calibrate Transfer Switch	10-20420-2	571
(c) BAI-12 AC Signal Conditioning Amplifiers (four)	Not Available	
(d) BAI-13 DC Signal Conditioning Amplifiers (six)	10-20459-2 10-20459-2 10-20459-2 10-20459-2 10-20459-2 10-20459-2	25 26 27 171 162 142
(e) BRS-162, for FM/TM No. 1	25-28101-1	0229
(f) BRS-162, for FM/TM No. 2	25-28101-1	0337
(g) BAI-8 "Linear" Accelerometer	10-20454-3 10-20454-4 10-20454-4	13679 10923 10937
(h) BAI-14 Vibration Transducers	Not Available	
(i) BAI-20 Staging Switch	10-20476	162
(j) BAI-42 Angular Accelerometer	28550-207-31	AC09A

REF ID: SFC

U.S. GOVERNMENT PRINTING OFFICE : 1944 : 1-1316

BOEING VOL NO *[Handwritten]* →
SEC PAGE 99

EQUIPMENT TO BE TESTED

S/N.

AUXILIARY SUBSYSTEM

5. Auxiliary Subsystems
- (a) ETS-138 (Left hand rack)
 - (b) Convair 26-14 Rack in ETS-169
 - (c) Lens Transfer Relay
 - (d) AG-4 Radio Tracking Equipment
 - (e) V.S.R. Monitor Transducer
6. Command Destruct Subsystem
- (a) ETS-106
 - (b) EMI-3 Command Destruct Receiver (two)
 - (c) EMI-38 Premature Separation Switch & Timer
 - (d) ETS-161 DC Power for Destruct "A"
 - (e) ETS-163 DC Power for Destruct "B"
 - (f) Command Destruct Power Transfer Switch
 - (g) EMI-29 Command Destruct Receiver A Battery
 - (h) Command Destruct Receiver B Battery
 - (i) Premature Separation Batteries (2) EMI-25
 - (j) EAC-33 Command Antenna Filter/Divider

REVISED

US 4800 2000 IWSB DAC 0101D1

BOEING

VOL 1 NO 7 2-12-64 PAGE 100

DOCUMENT TO BE TESTED

SEC Subsystem

- (a) PIP-20 System
- (b) C23A
- (c) C19A
- (d) BPG-163, for C19A
 - (e) 400 cycle converter for C19A
 - (f) BPG-164, for 1st and 2nd NCU hydraulics
 - (g) BPG-169, for 1st and 2nd NCU Electronics
 - (h) BPG-165, for 3rd NCU hydraulics
 - (i) BPG-166, for 3rd Electronics
- e. Support Subsystem
 - (a) RGA Time Terminal (In MAB 2) Item 34
 - (b) CMA Terminal (In MAB 2) Item 35
 - (c) MPP3, Item 32
 - (d) BPG-74
 - (e) BPG-14 (In T/M Room)
 - (f) RGA Time Terminal (In T/M Room)
 - (g) P.A. System Rack, Item 33

PART NO.

SERIAL NO.

15249-106-11	ASG40
15248-1C	10452-2-11
57600-305-11	A032
25-28104-2	1029
15652687A	1584-588
25-28224-1	204198
25-33104-3	1011
25-33205-1	15
25-38104-1	1003
EM 60-10	81
57753	S/N 1C S/N 12
None	305
25-24890-33	0002
25-14895	0001
EM 60-10	6
Not Available	

2 - 3 - 6 2

REVISED _____

U3 4288 2000 (WAS RAC 41310)

BOEING

VOL	NO
SEC	PAGE

EQUIPMENT TO BE TESTED	PART NO.	SERIAL NO.
<u>Facilities Sub-system</u>		
(a) Lights in MAB 2	500163289	80C71733
(c) Air Conditioner for MAB 2	39ACB8099-1	940366
(d) Air Conditioner for the Electronic Equipment in MAB 2	39ACB8099-1 -2	
(e) Air Compressor for MAB 2	14652687A	1562H-588
(e) 400 cycle motor generator for C19 and C1EP, item 110	GE21D5024-G2	156247
(e) Line Voltage Regulators GE21D5024-G1	GE21D5024-G1	156246
	GE21D5024-G2	156248
<u>PCM/PK Ground Station</u>		
(a) BFC-11 PCM/PK Acquisition System	25-14312-878	5601
(b) BTS-143 PCM/PK Acquisition System	25-14313-806	5601
(c) BTS-146 PCM Raster Display System	10-20407-5	5601
(d) BTS-137 Serial Tape Recorder/Reproducer (two used with BTS-11)	25-14317-80C Not Used	142
(e) BTS-137 Serial Tape Recorder/Reproducer (used with BTS-143)	25-14317-80C	141

C - 30 - 62

REVISED _____

U2 4288 2000 (WAS BAC 81810)

<u>INVENTENT NO. OR DESIGNATION</u>	<u>DATE NO.</u>	<u>SERIAL NO.</u>
<u>DATA Ground Station</u>		
(a) SVA-2 PAY/PYK Telemetry Data Acquisition Station No. 1	25-14302-823	103
(b) SVA-2 PAY/PYK Telemetry Data Acquisition Station No. 2	25-14304-823	102
<u>Quick-Look Subsystem</u>		
(a) BTS-12 PON Quick-Look System	25-14314-824	0001
(b) BTB-126 PCM Format Converter	25-14316-812	0001
(c) BTS-127 Serial Tape Recorder/Reproducer (used with BTB-126)	25-14317-800	107
(d) PTS-127 Serial Tape Recorder/Reproducer (used with BTS-12)	25-14317-800	126

3 - 30 - 67.

REVISED

U3 4200 2000 (WAS DDC 4131D)

BOEING

VOL 1
REC

NO 1
PAGE 103

TABLE IV

TEST EQUIPMENT USED

B-300-C-2

REVISED _____

U3 4200 2000 WAS BAC 8131D

BOEING | VOL 1 | NO T2-2279
SEC | PAGE 104 →

ITEM NO.	DESCRIPTION	QUANTITY	ITEM NO.	QUANTITY	ITEM NO.	QUANTITY
1.	One 25-23567 Ground Power Supply and Length Jack (PNS3462)	25-23567-833	2.	One Consolidated Electrodynamics Corporation (CEC) recording oscilloscope, type 21194-367 or equivalent CEC oscilloscope. (installed in 25-23567)	21194-367	3002
3.	List of galvanometers and parts required for the CEC oscilloscope.					
(a)	Eleven galvanometers type 7-362					
(b)	Twelve galvanometers type 7-362					
(c)	One Galvrometer type 7-362					
(d)	Resistors (511 are 1 watt 5% resistors)					
	Two 200 ohm					
	One 22K ohm					
	One 1200 ohm					
	One push button switch momentary (M)					
	One six (6) volt battery					
(e)	Six Zener diodes type International Rectifier Corporation item 10EM5.6TC					
(f)	SIX "Tungs" banana plugs					
(g)	Four German plugs 2002-110					
(h)	30' feet of 2 conductor shielded wire BIK13-5D, type III, Cimpex 2 #1					
(i)	Eight 25-23585-3 Gälvo Matching Box Modules					
(j)	Nine 25-23585-5 (preferable) or 25-23585-1 Gälvo Matching Box Modules					
(k)	Spare magazine loaded with paper.					
4.	One Variable DC Power Supply					
5.	One Hewlett Packard DC Voltmeter Model 417A					
6.	The Direct Writing Oscilloscope, Brush Mark II (ID 252160) or equivalent					
7.	Two Bellantone 3C5A peak to peak reading VOMs					

REVISED

U3 4288 2000 (WAS BAC 4131D)

STANDARD AND SPECIAL TEST EQUIPMENT REQUIRED

	<u>PART NO.</u>	<u>SERIAL NO.</u>
8.	MCD 535 TYPE D TYPE E TYPE F TYPE G	2330 C/C 2490 C/C 3516 C/C 5411
9.	Isolation Transformer with Faraday Shields:	
(a)	One 1200 VA transformer (for Tektronix scopes if needed)	N5524
(b)	Two 500 VA transformers (for Ballantine 305A)	N5724 N574
10.	One Hewlett Packard Audio Oscillator Model 230AB.	MOD 2001B
11.	Three Power Line Transient Probes. (Genitron Number GTF 10192), PNR 83028	GTF 10192 GTF 10192 GTF 10192
12.	The following Ordnance Test Boxes will be required	
(a)	Three Ignition Test Boxes (25-23808)	25-23808-1 25-23808-1 25-23808-1
(b)	Two Stage Separation Test Boxes (25-23806)	25-23806-1 25-23806-1
(c)	One Threat Terminator Test Box (25-23807)	25-23807-1
(d)	Three Destruct Test Boxes (25-23805)	25-23805-1 25-23805-1 25-23805-1

REVISED _____

US 4880 2000 1000 0000 0000

BOEING | VOL. | NO T 2-2279 →
SEC. | PAGE 106

STANDARD AND SPECIAL TEST EQUIPMENT REQUIRED

PART IV.

SERIAL NO.

13. The following simulated squibs will be required.

- (a) Two second stage ignition simulated squibs 1S3A2
1S3A2
1S3A2
N/A
N/A
- (b) Two third stage ignition simulated squibs 1S207AO
1S207AO
N/A
- (c) Two i-2 stage separation simulated squibs 1S3A2
1S3A2
1S3A2
N/A
N/A
- (d) Two 2-3 stage separation simulated squibs 1S3A2
1S3A2
1S3A2
N/A
N/A
- (e) Four thrust termination simulated squibs 1S45A1
1S45A1
1S45A1
1S45A1
N/A
N/A
- 24. One six channel Brüel oscillograph or equivalent
For Destruct Current read.
- 25. One ATCO R/V simulator SKT-319
SKT-319
N/A
- 26. Two ecoline squib jumper plugs (25-13624)
25-13624
N/A
- 27. 373-152 tapes & 2611ows: One each D2-7237-2A (Ambient tape)
D2-7237-2A
L2-7237-3C
- 16. One receptacle Sencix part number EC01E-16-8P(SR) or
3P00GP-16-8P
3P00GP-16-8P
N/A

3-30-C2

REVISED

U3 4288 2000 IWS BAC 413101

BOEING

VOL 1
SECNOT 2-2279
PAGE 107