

Network Forensics

Presenter

Ali(阿里)

30 November 2016

Introduction

Introduction - Contd.

Network Forensics NSLab 3/42

Introduction - Contd.

Network Forensics NSLab 4/42

In Computer Networks

Network Forensics NSLab 5/42

Problem

- □ IDS/IPS
- UTM
- DPI
- Firewall

News

'Grand Theft' of intellectual property

By David Becker, Special to ZDNet 22 October 2004

Search:

Forward in E-MAIL Format for PRINTER

Add your opinion TALK BACK!

A stolen copy of the latest sequel in one of the top-selling video game series of all time began circulating on the Web late Wednesday in the US, the second high-profile game theft in a week.

'Rolex' spam taps into blin Worldwide Technology

culture

By Will Sturgeon Silicon.com October 25, 2004, 9:37

WEB TECHN

Add your opinion TALKBACK Forward in EMAIL Forma Spam and phishing

Rolex watches have long been seen as a must-ha among the aspiring nouveau riche--but the brand high standards of quality and prohibitive costs, is being sullied by unsolicited e-mail.

In the same way that Viagra has been a brand made s

By Todd Bishop October 18, 2004 4:26PM

The Internet leak of Halo 2, the latest installment of Microsoft's best-selling Xbox video game, is not expected to affect its release, planned for November 9th. Downloading the Halo 2 code or making it available for others to download will be viewed as theft,

© COMPLETE STORY →

Network Forensics

A science that deals with capture, recording, and analysis of network traffic for detecting and investigating intrusions.

Network Forensics NSLab 7/42

Outline

- Introduction to Network Forensics
- Payload Attribution Systems
 - Bloom Filters
 - BBF & HBF
 - Others
 - Payload Attribution via Character Dependent Multi-Bloom Filters

Network Forensics NSLab 8/42

Introduction to NF

Network Forensics NSLab 9/42

Goal

- Who
- How
- When
- What reason

Challenges

- Large amount of data
 - Storage
 - Search

Different types of network protocol

Network Forensics NSLab 11/42

Classification

Purpose

- ✓ General Network Forensics
- Collection of
- ✓ Strict Network Forensics
- Nature

- ✓ Catch it as you can
- ✓ Stop look and listen
- ✓ Hardware and pre-installed software
- Software tool

Network Forensics NSLab

Different Works

Distributed systems based frameworks

Network Forensics NSLab 13/42

Payload Attribution Systems

Network Forensics NSLab 14/42

Packet Digests

Compute and store Synopsis

Representing a set of elements
succinctly with predefined loss in information and
has the ability to recall the original set of elements
with a preset accuracy

Network Forensics NSLab 15/42

Bloom Filter

Network Forensics NSLab 16/42

Bloom Filter - Contd.

$$\Box FP = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k$$

Network Forensics NSLab 17/42

Block-based Bloom Filter

Network Forensics NSLab 18/42

Block-based Bloom Filter - contd.

Network Forensics NSLab 19/42

Block-based Bloom Filter - contd.

P1 =	A	В	R	A	C	A	
P2 =	= C D		A B		R	A	
BBF =	(A o)	(B 1)	(R 2)	(A 3)	(C 4)	(A 5)	
	(C o)	(D 1)	(A 2)	(B 3)	(R 4)	(A 5)	

"Offset Collisions"

For query strings: "AD", "CB", "DR", "AA" etc. BBF falsely identifies them as seen in the payload!

Because BBF cannot distinguish between P1 and P2

Network Forensics NSLab 20/42

Hierarchical Bloom Filter

21/42 **Network Forensics NSLab**

Hierarchical Bloom Filter - Contd.

HBF hierarchies for two payloads

$X_0X_1X_2X_3 \parallel 0$										
XoX	X ₁ 0	$X_2X_3 1$								
X ₀ 0	X₁∥1	$X_2 2$	$X_3 3$							
•										

$Y_0Y_1Y_2Y_3 \parallel 0$									
Y ₀ \	Y 1 0	$Y_{2}Y_{3} 1$							
Y ₀ 0	Y ₁ 1	Y ₂ 2	Y ₃ 3						

٧Y

false match for an excerpt X1Y2

Network Forensics NSLab 22/42

Others - FBS

two payloads processed by FBS method: $\overline{X_0}$ \mathbf{X}_1 **X**3 X4 X_2 common part Y_0 Y2 query excerpt - collision (shingling failed) $\overline{\mathbf{X}_1}$ $\overline{\mathbf{Y}_1}$ $\overline{Y_2}$ X_0

23/42 **Network Forensics NSLab**

Others - VBS

- □ slide a window of size w bytes through the whole payload
- Compute fingerprint

$$F(c_1,...,c_w) = (c_1p^{w-1} + c_2p^{w-2} + ... + c_w) \mod M$$

$$F(c_1,...,c_{w+1}) = (pF(c_1,...,c_w) + c_{w+1} - c_1p^w) \mod M$$

payload blocks boundaries blocks with overlaps

Network Forensics NSLab 24/42

Others - WBS

- Compute the fingerprint of payload like VBS method
- Get an array of hashes
 - *i*-th element is the hash of bytes $c_i,...,c_{i+w-1}$
 - c_i is the *i*-th byte of the payload
- □ Slide a winnowing window of size ww through the array
- put a boundary immediately before the position of the maximum hash value for each position of the winnowing window

Network Forensics NSLab 25/42

Others - WBS (Contd.)

Network Forensics NSLab 26/42

Others - WMH

use multiple instances of WBS

Differ in hash functions

- reduce the probability of false positives
- ☐ Final answer for *t* instances is positive only if all *t* answers are positive.

Network Forensics NSLab 27/42

Results

length	7	0 Bytes		1(00 Bytes	;	120 Bytes			
answer	YES	NO	N/A	YES	NO	N/A	YES	NO	N/A	
HBF	10000	0	0	10000	0	0	10000	0	0	
FB\$	10000	0	0	9794	206	0	8874	1126	0	
VBS	473	4973	4554	412	7233	2355	370	8156	1474	
EVBS	9210	0	790	6063	3924	13	3036	6962	2	
WBS	2118	7683	199	488	9512	0	137	9863	0	
VD	1508	4291	4201	1445	6416	2139	118 1	7484	1335	
WMH	1974	8022	0	377	9623	0	130	9870	0	

Network Forensics NSLab 28/42

length	15	0 Bytes	;	2	00 Bytes	,	250 Bytes			
answer	YES	NO	N/A	YES	NO	N/A	YES	NO	N/A	
HBF	10000	0	0	3384	6616	0	117	9883	0	
FB\$	4906	5094	0	338	9662	0	20	9980	0	
VBS	260	9046	694	88	9733	179	37	9920	43	
EVBS	676	9324	0	32	9968	0	1	9999	0	
WBS	24	9976	0	0	10000	0	0	10000	0	
VD	834	8539	627	413	9431	156	146	9815	39	
WMH	22	9978	0	0	10000	0	0	10000	0	

Network Forensics NSLab 29/42

Payload Attribution via Character Dependent Multi-Bloom Filter

Network Forensics NSLab 30/42

Goals & Structure

- Support RegEx Queries
 - *ABC* *DEF*
- Better Data Reduction Ratio

☐ Use 256 Bloom Filters

Network Forensics NSLab 31/42

CMBF

fingerprint(
$$c_i, c_{i+1}, ..., c_{i+w-1}$$
) =
$$(c_i mod \ q) \times p_{w-1} + (c_{i+1} mod \ q) \times p_{w-2} + \cdots + (c_{i+w-1} mod \ q) \times p_0$$

Network Forensics NSLab 32/42

CMBF - Contd.

- ☐ Find the corresponding bloom filter
 - The first byte that was involved in the aggregated fingerprint calculation

■ Store the aggregated fingerprints

Network Forensics NSLab 33/42

Theoretical Analysis

- Bloom Filter Collision
- ☐ Fingerprint Collision

Theoretical Analysis

$$P = \frac{\left(1 + 255 \times \sqrt[g]{a}\right)^l - 1}{256^l}$$

$$\Box \quad a = \left(1 - \left(1 - \frac{1}{m}\right)^{\frac{n}{256g}}\right)$$

$$g = \frac{n}{256 \times m \times \ln 2}$$

Network Forensics NSLab

Results

- \square Querying "S₁.....S₂"
 - CMBF
 - less that 1 second

- Previous works
 - Estimate more than 4500 years!

Query		CMBF			FBS			VBS			WBS			WMH	
Length	Yes	N/A	No	Yes	N/A	No	Yes	N/A	No	Yes	N/A	No	Yes	N/A	No
25	17480	0	2520	0	20000	0	8001	8334	3665	0	20000	0	0	20000	0
50	6619	0	13381	19514	0	486	8908	1373	9719	5937	6067	7996	9800	3912	6288
75	3582	0	16418	19998	0	2	5978	181	13841	5343	0	14657	5412	0	14588
100	911	0	19089	18386	0	1614	3511	13	16476	2122	0	17878	2035	0	17965
150	101	0	19899	6121	0	13879	1248	0	18752	353	0	19647	323	0	19677
200	14	0	19986	884	0	19116	448	0	19552	51	0	19949	61	0	19939
250	2	0	19998	90	0	19910	174	0	19826	12	0	19988	4	0	19996
300	0	0	20000	14	0	19986	57	0	19943	1	0	19999	1	0	19999

Network Forensics NSLab 37/42

Network Forensics NSLab 38/42

Network Forensics NSLab 39/42

Network Forensics NSLab 40/42

Summary & Discussion

- Network Forensics
- Payload Attribution Systems
- CMBF

- Just Yes/No answers
 - Who?

Thanks for your attention!

Network Forensics NSLab 42/42