Cours de cinétique *

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Pas de corrigé pour cet exercice.

3 DYN

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Cours de cinétique *

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Corrigé voir 3.

Pas de corrigé pour cet exercice.

Mouvement RR 3D ★★

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- ► $G_1 = B$ désigne le centre d'inertie de **1**, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- ► G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en B.

Question 2 Déterminer $\delta(A, 1+2/0) \cdot \overrightarrow{k_0}$

Question 3 Déterminer les lois de mouvements.

Corrigé voir 5.

Mouvement RR 3D ★★

S DAN

C2-09

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en B.

Par définition,
$$\{\mathfrak{D}(1/0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(1/0)} \\ \overleftarrow{\delta(B,1/0)} \end{array}\right\}_B$$
.

Calculons $\overrightarrow{R_d(1/0)}$

$$\overrightarrow{R_d(1/0)} = m_1 \overrightarrow{\Gamma(G_1, 1/0)} = m_1 \overrightarrow{\Gamma(B, 1/0)}$$

Calcul de
$$\overrightarrow{V(B,1/0)}$$
: $\overrightarrow{V(B,1/0)} = \frac{d}{dt} \left[\overrightarrow{AB} \right]_{\Re_0} = \frac{d}{dt} \left[\overrightarrow{Ri_1} \right]_{\Re_0} = \overrightarrow{RB} \overrightarrow{i_1}$.

$$\textbf{Calcul de } \overrightarrow{\Gamma(B,1/0)} \colon \overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R \dot{\theta} \overrightarrow{j_1} \right]_{\mathcal{R}_0} = R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1}.$$

Au final,
$$\overrightarrow{R_d(1/0)} = m_1 \left(R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right).$$

Calculons $\overrightarrow{\delta(B,1/0)}$ B est le centre d'inertie du solide 1; donc d'une part, $\overrightarrow{\delta(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(B,1/0)} \right]_{\Re_0}$.

D'autre part,
$$\overrightarrow{\sigma(B, 1/0)} = I_B(1) \overrightarrow{\Omega(1/0)} = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{G}_B} \dot{\theta} \overrightarrow{k_0} = C_1 \dot{\theta} \overrightarrow{k_0}.$$

Par suite,
$$\overrightarrow{\delta(B, 1/0)} = C_1 \ddot{\theta} \overrightarrow{k_0}$$
.

Au final,
$$\{\mathfrak{D}(1/0)\} = \left\{ \begin{array}{l} m_1 \left(R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right) \\ C_1 \ddot{\theta} \overrightarrow{k_0} \end{array} \right\}_B$$
.

Question 2 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Tout d'abord, $\overline{\delta(A, 1 + 2/0)} = \overline{\delta(A, 1/0)} + \overline{\delta(A, 2/0)}$.

Calcul de $\overrightarrow{\delta(A,1/0)} \cdot \overrightarrow{k_0}$ – Méthode 1

$$\overrightarrow{\delta(A,1/0)} \cdot \overrightarrow{k_0} = \left(\overrightarrow{\delta(B,1/0)} + \overrightarrow{AB} \wedge \overrightarrow{R_d(1/0)} \right) \cdot \overrightarrow{k_0} = \left(C_1 \overrightarrow{\theta} \overrightarrow{k_0} + R \overrightarrow{i_1} \wedge m_1 \left(R \overrightarrow{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right) \right) \cdot \overrightarrow{k_0} = C_1 \overrightarrow{\theta} + m_1 R^2 \overrightarrow{\theta}.$$

Calcul de $\overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0}$ – Méthode 1

A est un point fixe. On a donc $\overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} \right]_{\Re_0} - \overrightarrow{\sigma(A,2/0)} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{k_0} \right]_{\Re_0}.$

A est un point fixe. On a donc $\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \left(I_A(2) \overrightarrow{\Omega(2/0)}\right) \cdot \overrightarrow{k_0}$

$$I_{A}(2) = I_{G_{2}}(2) + \begin{pmatrix} 0 & 0 & 0 \\ 0 & m_{2}R^{2} & 0 \\ 0 & 0 & m_{2}R^{2} \end{pmatrix}_{\mathcal{R}_{2}} \operatorname{et} \overline{\Omega(2/0)} = \dot{\theta} \overrightarrow{k_{1}} + \dot{\varphi} \overrightarrow{i_{2}} = \dot{\theta} \left(\cos \varphi \overrightarrow{k_{2}} + \sin \varphi \overrightarrow{j_{2}} \right) + \ddot{\varphi} \overrightarrow{i_{2}}$$

$$\operatorname{On a \, donc} \overrightarrow{\sigma(A,2/0)} = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 + m_2 R^2 & 0 \\ 0 & 0 & C_2 m_2 R^2 \end{pmatrix}_{\mathcal{R}_2} \begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \sin \varphi \\ \dot{\theta} \cos \varphi \end{pmatrix}_{\mathcal{R}_2} = \begin{pmatrix} A_2 \dot{\varphi} \\ \dot{\theta} \sin \varphi \left(B_2 + m_2 R^2 \right) \\ \dot{\theta} \cos \varphi \left(C_2 + m_2 R^2 \right) \end{pmatrix}_{\mathcal{R}_2}.$$

De plus $\overrightarrow{k_1} = \cos \varphi \overrightarrow{k_2} + \sin \varphi \overrightarrow{j_2}$. On a alors $\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \dot{\theta} \sin^2 \varphi \left(B_2 + m_2 R^2 \right) + \dot{\theta} \cos^2 \varphi \left(C_2 + m_2 R^2 \right)$.

Enfin, $\overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0} = (B_2 + m_2 R^2) (\ddot{\theta} \sin^2 \varphi + 2\dot{\theta}\dot{\varphi} \cos \varphi \sin \varphi) + (C_2 + m_2 R^2) (\ddot{\theta} \cos^2 \varphi - 2\dot{\theta}\dot{\varphi} \cos \varphi \sin \varphi).$

Conclusion

$$\overrightarrow{\delta(A,1+2/0)} \cdot \overrightarrow{k_0} = C_1 \ddot{\theta} + m_1 R^2 \ddot{\theta} + \left(B_2 + m_2 R^2\right) \left(\ddot{\theta} \sin^2 \varphi + 2\dot{\theta} \dot{\varphi} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos^2 \varphi - 2\dot{\theta} \dot{\varphi} \cos \varphi \sin \varphi\right).$$

Question 3 Déterminer les lois de mouvements.

Cours de cinétique ★

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Pas de corrigé pour cet exercice.

3 DYN

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Corrigé voir 3.

Pas de corrigé pour cet exercice.

Mouvement RR 3D ★★

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, $r = 5 \,\mathrm{mm}$, $L = 10 \,\mathrm{mm}$. De plus :

- ► G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H\overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$; $G_2 = C \text{ désigne le centre d'inertie de 2, on note } m_2 \text{ la masse de 2 et } I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \end{pmatrix}$

3 DYN

Pas de corrigé pour cet exercice.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI★

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\delta(A, 1 + 2/0) \cdot \overrightarrow{j_0}$

Question 3 Déterminer les lois de mouvements.

Corrigé voir 5.

2 DAN

Pas de corrigé pour cet exercice.

Mouvement RR 3D ★★

C2-09

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en *B*.

Par définition,
$$\{\mathfrak{D}(2/0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(2/0)} \\ \overleftarrow{\delta(B,2/0)} \end{array}\right\}_B$$
.

Calculons
$$\overline{R_d(2/0)}$$
: $\overline{R_d(2/0)} = m_2 \overline{\Gamma(G_2, 2/0)} = m_2 \overline{\Gamma(C, 2/0)}$

Calcul de $\overrightarrow{V(C,2/0)}$:

$$\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\mathcal{R}_0} = \frac{d}{dt} \left[\overrightarrow{Hj_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2} \right]_{\mathcal{R}_0}$$

Calculons:

$$\begin{array}{l} \bullet \quad \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_0} \right]_{\mathcal{R}_0} = \overrightarrow{0} \; ; \\ \bullet \quad \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \dot{\theta} \, \overrightarrow{j_1} \wedge \overrightarrow{i_1} = -\dot{\theta} \, \overrightarrow{k_1} \; ; \\ \bullet \quad \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{i_2} = \left(\dot{\theta} \, \overrightarrow{j_1} + \dot{\phi} \, \overrightarrow{k_2} \right) \wedge \overrightarrow{i_2} = \dot{\theta} \, \overrightarrow{j_1} \wedge \overrightarrow{i_2} + \dot{\phi} \, \overrightarrow{k_2} \wedge \overrightarrow{i_2} = -\dot{\theta} \cos \phi \, \overrightarrow{k_1} + \dot{\phi} \, \overrightarrow{j_2} \; . \end{array}$$

On a donc $\overrightarrow{V(C,2/0)} = -R\dot{\theta}\overrightarrow{k_1} + L\left(-\dot{\theta}\cos\varphi\overrightarrow{k_1} + \dot{\varphi}\overrightarrow{j_2}\right)$.

Calcul de $\overrightarrow{\Gamma(C,2/0)}$:

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_{t}}$$

$$=\frac{\mathrm{d}}{\mathrm{d}t}\left[L\dot{\varphi}\overrightarrow{j_2}-\dot{\theta}\left(R\overrightarrow{k_1}+L\cos\varphi\overrightarrow{k_1}\right)\right]_{\mathcal{R}_0}.$$

Calculons:

$$\bullet \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\dot{\theta} \, \overrightarrow{j_1} + \dot{\varphi} \, \overrightarrow{k_1} \right) \wedge \overrightarrow{j_2} = \dot{\theta} \, \overrightarrow{j_1} \wedge \overrightarrow{j_2} + \dot{\varphi} \, \overrightarrow{k_1} \wedge \overrightarrow{j_2} = \dot{\theta} \sin \varphi \, \overrightarrow{k_1} - \dot{\varphi} \, \overrightarrow{i_2}.$$

$$\blacktriangleright \ \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{k_1} \right]_{\Re o} = \dot{\theta} \overrightarrow{i_1}.$$

Avec les hypothèses, on a $\overrightarrow{\Gamma(C,2/0)} = L\dot{\varphi}\left(\dot{\theta}\sin\varphi\overrightarrow{k_1} - \dot{\varphi}\overrightarrow{i_2}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{i_1} + L\cos\varphi\dot{\theta}\overrightarrow{i_1} - L\dot{\varphi}\sin\varphi\overrightarrow{k_1}\right)$.

Calculons $\overrightarrow{\delta(C,2/0)}$

C est le centre d'inertie du solide 2; donc d'une part, $\overrightarrow{\delta(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{\sigma(C,2/0)} \right]_{\Re_0}$

D'autre part, $\overrightarrow{\sigma(C,2/0)} = I_C(2) \overrightarrow{\Omega(2/0)}$.

$$\operatorname{Or} \, \overrightarrow{\Omega(2/0)} = \dot{\theta} \overrightarrow{j_1} + \dot{\varphi} \overrightarrow{k_2} = \dot{\theta} \left(\cos \varphi \overrightarrow{j_2} + \sin \varphi \overrightarrow{i_2} \right) + \dot{\varphi} \overrightarrow{k_2}.$$

$$\overrightarrow{\sigma\left(C,2/0\right)} = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2} \begin{pmatrix} \dot{\theta} \sin \varphi \\ \dot{\theta} \cos \varphi \\ \dot{\varphi} \end{pmatrix}_{\mathcal{B}_2} = \begin{pmatrix} \dot{\theta} A_2 \sin \varphi \\ \dot{\theta} B_2 \cos \varphi \\ C_2 \dot{\varphi} \end{pmatrix}_{\mathcal{B}_2}.$$

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{j_0}$

Question 3 Déterminer les lois de mouvements.

Cours de cinétique ★

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Cours de cinétique ★

Question 1 Donner l'expression du moment cinétique en un point quelconque.

Question 2 Donner l'expression du moment dynamique en un point quelconque.

Question 3 Donner l'expression du torseur cinétique.

Question 4 Donner l'expression du torseur dynamique.

Question 5 Proposer une expression de la matrice d'inertie du solide au point de votre choix.

Mouvement RTR ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \lambda(t)\overrightarrow{i_2} + r\overrightarrow{j_2}$. Le solide 1 est de masse m_1 et le plan $(A, \overrightarrow{i_1}, \overrightarrow{j_1})$ est plan de symétrie. Le solide 2 est de masse m_2 est axisymétrique d'axe $(B, \overrightarrow{i_2})$.

Question 2 Déterminer $\overrightarrow{\delta(D,2/0)} \cdot \overrightarrow{i_1}$.

Question 3 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$.

Pas de corrigé pour cet exercice.

Corrigé voir 3.

Pas de corrigé pour cet exercice.

A DAN

Pas de corrigé pour cet exercice.

Corrigé voir 5.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI★

Pas de corrigé pour cet exercice.

Mouvement RTR \star

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$.

Question 2 Déterminer $\overrightarrow{\delta(D,2/0)} \cdot \overrightarrow{i_1}$.

Question 3 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$.

