济南华茂科技有限公司

- 2 专业的蓝牙产品供应商
- 2 国内最早的蓝牙串口模块开发商
- 2 专业提供蓝牙模块整体解决方案
- 2 可根据客户要求定制各种蓝牙模块及蓝牙方案
- 2 SD001, PAYPAL, ALIBABA, ZOL 认证商家
- 2 济南市高新技术企业
- 2 十一届全运会综合缴费通信技术软件系统提供商

地址:济南市高新区环保科技园 4-4019、4020

电话: 0531-85117999

网站: http://www.jnhuamao.cn

销售: jnhuamao@163.com

技术: webmaster@j nhuamao.cn

最齐全、最方便、最稳定的 HM 系列蓝牙转串口(透明串口)模块解决方案

----主从一体,透明传输,替代串口线

一、产品参数

- Ø 蓝牙协议: Bluetooth Specification v2.0+EDR、V2.0、V1.2
- Ø USB 协议: USB V1.1、V2.0
- Ø 工作频率: 2.4GHz ISM band
- Ø 调制方式: GFSK(Gaussian Frequency Shift Keying)
- Ø 发射功率: ≤4dBm, Class 2
- **Ø** 灵敏度: ≤-84dBm at 0.1% BER
- Ø 传输速率: Asynchronous: 2.1Mbps(Max) / 160 kbps
 - Synchronous: 1Mbps/1Mbps
- Ø 安全特性: Authentication and encryption
- Ø 支持服务: Bluetooth SPP(主模式 & 从模式)
- Ø 供电电源: +3.3VDC 50mA
- **Ø** 工作温度: -5~+65 Centigrade
- **Ø** 外观尺寸: 26.9mm x 13mm x 2.2 mm、27.4*12.5*4.3mm、etc.

二、产品概述

HM 系列蓝牙模块采用 CSR BlueCore 芯片,配置 6-8Mbit 的软件存储空间,支持 AT 指令,用户可根据需要更改 SPP 角色(主、从模式)以及串口波特率、设备名称、配对密码等参数,使用灵活。

HM 系列蓝牙模块经过多年研发,已经开发出 5 个系列,15 个品种的蓝牙模块产品(客户定制产品未列入其中),目前是蓝牙模块提供厂商中系列最多,产品线最丰室的厂家。有完整的蓝牙解决方案及完善的服务体质,同时也使得 HM 系列蓝牙模块极具市场影响力。

HM 系列蓝牙模块使用 4 层半板,半孔、沉金工艺,真材实料,与市面上的所谓多层、甚至双层板的蓝牙模块有着本质的区别,并且绝对不使用翻新、拆机 IC,充分保证了产品的稳定性。

HM 系列蓝牙模块从管脚至 AT 指令完全兼容 HC06 等双芯片蓝牙模块,无须更改电路及软件,直接替换即可。

HM-01、HM-02 系列蓝牙模块采用邮票孔方式,适用于批量贴片生产,引出 IO 多,适合于不用要求的客户。

HM-03 系列蓝牙模块采用插座方式,载板上只需要焊接一个 2*6PIN, pitch=2.0mm 的插针,避免蓝牙模块再次经过回流焊接,同时方便客户更换,适用于 DIY 或小批量的客户,大批量客户同样适用。

HM-04 系列蓝牙模块采用 IC 封装方式(天线需 Layout 到您的电路板上),您 只需要按照我们的技术规格进行 PCB 排布使用即可,无需专用的底板和转接板, 产品功能更稳定,保密性更好。适合成熟产品批量生产。

HM-05 系列蓝牙模块,采用最小的封装,只有 13.5MM*18.5MM*2.3MM 大小,适用于袖珍设备的使用,方便灵活。

三、应用领域

- Ø 工业遥控、遥测
- Ø POS 系统,蓝牙键盘、鼠标、游戏手柄
- Ø 汽车检测设备
- Ø 便携、电池供电医疗器械
- **Ø** 自动化数据采集
- Ø 蓝牙遥控玩具
- Ø 无线 LED 显示系统
- Ø 蓝牙打印机
- Ø 智能家居、工业控制

四、产品型号

HM 系列蓝牙模块共分为 5 个系列, 15 个子型号, 根据封装、主控 IC、蓝牙版本的不同划分不同的产品型号, 请按照您的需求进行选用:

型号	电压	尺寸(mm)	容量	主控 IC	蓝牙版本	备注
HM-01A	3.3V	26.9*13*2.2	外置 8M	BC417143	V2.1+EDR	
HM-01B	3.3V	26.9*13*2.2	外置 8M	BC417143	V2.1+EDR	
HM-02A	2-3.7V	26.9*13*2.2	内置 6M	BC31A223	V1.2	
HM-02B	2-3.7V	26.9*13*2.2	内置 6M	BC31A223	V2.0	
HM-02C	2-3.7V	26.9*13*2.2	内置 6M	BC41C671	V2.0+EDR	

HM-03A	2-3.7V	27.4*12.5*4.3	内置 6M	BC31A223	V1.2
HM-03B	2-3.7V	27.4*12.5*4.3	内置 6M	BC31A223	V2.0
HM-03C	2-3.7V	27.4*12.5*4.3	内置 6M	BC41C671	V2.0+EDR
HM-04A	3.3V	暂不外售			
HM-04B	3.3V	暂不外售			
HM-04C	3.3V	暂不外售			
HM-05/06A	2-3.7V	13.5*18.5*2.3	内置 6M	BC31A223	V1.2
HM-05/06B	2-3.7V	13.5*18.5*2.3	内置 6M	BC31A223	V2.0
HM-05/06C	2-3.7V	13.5*18.5*2.3	内置 6M	BC41C671	V2.0+EDR

五、产品图片

HM-04 系列产品,目前尚未投放国内市场销售,图片及相关技术参数涉及商业机密,在此不便一一列出。

六、产品技术规格说明

6.1、HM-01 系列电路系统整合图

6.2、HM-01 系列原理图

6.3、HM-01, HM-02 产品尺寸及标注

6.4、HM-01, HM-02 焊盘尺寸及间距

6.5、HM-01, HM-02 管脚定义

管脚序号	管脚名称	管脚说明	
1	UART_TX	UART	
2	UART_RX	UART	
3	UART_CTS	UART	
4	UART_RTS	UART	
5	PCM_CLK	PCM 数字音频接口,接外部 CODEC	
6	PCM_OUT	PCM 数字音频接口,接外部 CODEC	
7	PCM_IN	PCM 数字音频接口,接外部 CODEC	
8	PCM_SYNC	PCM 数字音频接口,接外部 CODEC	
9	AIO0	模拟输入、输出 IO 口	
10	AIO1	模拟输入、输出 IO 口	
11	RESETB	系统复位,低电平有效	
12	VCC	电源 3.3V	
13	GND	地	
14	GND	地	

15	USB D-	USB DATA 负极,差分线
16	SPI_CSB	SPI 调试端口,悬空
17	SPI_MOSI	SPI 调试端口,悬空
18	SPI_MISO	SPI 调试端口,悬空
19	SPI_CLK	SPI 调试端口,悬空
20	UB_D+	USB DATA 正极,差分线
21	GND	地
22	GND	地
23	PIO0	按键管脚,详见附注说明
24	PIO1	LED 管脚,详见附注说明
25	PIO2	数字输入、输出 IO 口
26	PIO3	数字输入、输出 IO 口
27	PIO4	数字输入、输出 IO 口
28	PIO5	数字输入、输出 IO 口
29	PIO6	数字输入、输出 IO 口
30	PIO7	数字输入、输出 IO 口
31	PIO8	数字输入、输出 IO 口
32	PIO9	数字输入、输出 IO 口
33	PIO10	数字输入、输出 IO 口
34	PIO11	数字输入、输出 IO 口

6.6、HM-01, HM-03 电路系统整合图

6.7、HM-03 原理图

HM-03 原理图在 HM-01 原理图的基础上省略掉了平时用不到的 PIO 口及 PCM 数字音频输入、输出口,请参照 HM-01 系列原理图。

6.8、HM-03产品尺寸及标注

6.9、HM-03 焊盘及间距

6.10、HM-03 管脚定义

管脚序号	管脚名称	管脚说明
1	PIO1	LED 管脚,见附注说明
2	SPI_CSB	SPI 调试端口,悬空
3	UART_CTS	UART
4	SPI_MOSI	SPI 调试端口,悬空
5	UART_TX	UART
6	VCC	电源 V3.3
7	UART_RX	UART
8	GND	地
9	UART_RTS	UART
10	SPI_MISO	SPI 调试端口,悬空
11	PIO0	按键管脚,详见附注说明
12	SPI_CLK	SPI 调试端口,悬空

6.11、HM-05 电路系统整合图

6.12、HM-05 原理图

HM-05 原理图在 HM-01 原理图的基础上省略掉了平时用不到的 PIO 口及 PCM 数字音频输入、输出口,请参照 HM-01 系列原理图。

6.13、HM-05 产品尺寸及标注

6.15、HM-05 焊盘尺寸及间距

6.16、HM-05 管脚定义

管脚序号	管脚名称	管脚说明
1	UART_RTS	UART
2	UART_TX	UART
3	UART_CTS	UART
4	UART_RX	UART
5	SPI_MOSI	SPI 调试端口,悬空
6	SPI_CSB	SPI 调试端口,悬空
7	SPI_CLK	SPI 调试端口,悬空
8	SPI_MISO	SPI 调试端口,悬空
9	VCC	电源 V3.3
10	NC	悬空或 VCC
11	RESETB	低电平复位,至少5ms
12	GND	地
13	PIO3	数字输入、输出 IO 口

14	PIO2	数字输入、输出 IO 口
15	PIO1	LED 管脚,见附注说明
16	PIO0	按键管脚,详见附注说明

6.17、HM 系列蓝牙模块与单片机连接注意要点:

HM 系列蓝牙模块的工作电压推荐用 3.3V,与 3.3V 单片机直接连接即可, 当需要与 5V 单片机连接时,请按照以下原理图进行连接

6.18、LAYOUT 注意要点

HM 系列蓝牙模块工作在 2.4G 无线频段,应尽量避免各种因素对无线收发的影响,注意以下几点:

- 6.18.1、包围蓝牙模块的产品外壳避免使用金属,当使用部分金属外壳时, 应尽量让模块天线部分远离金属部分。
 - 6.18.2、产品内部金属连接线或者金属螺钉,应尽量远离模块天线部分。
- 6.18.3、模块天线部分应靠载板 PCB 四围放置,不允许放置于板中,且天线下方载板铣空,与天线平行的方向,不允许铺铜或走线。直接把天线部分直接露出载板,也是比较好的选择。
 - 6.18.4、模块下方尽量铺大片 GND, 走线尽量往外围延伸。
- 6.18.5、建议在基板上的模块贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印(TopOverLay)

七、附注:

7.1、按键管脚(PIO0)说明

PIOO 为输入管脚, 短按控制, 或者输入约 100ms 的高电平单次脉冲, 可以 实现以下功能:

7.1.1、模块设置为 SPP 主机模式时:

未连接状态时,清除配对信息(若存在配对设备信息)

已连接状态时,主动发起断开连接,延时 150ms 后重启,重新搜索 连接从设备:

在断开连接时:重新搜索连接从设备。

7.1.2、模块设置为 SPP 从机时:

在已连接状态时: 主动发起断开连接,延时 150ms 后重启,重新进入被搜 索状态,等待主机配对和连接;

在断开连接时:延时 150ms 后重启,重新进入被搜索状态,等待主机配对 和连接。

注 1: PIOO 控制断开连接是主动发起连接,属于正常的断开连接,远端蓝牙 设备不会一直处于重新确认的状态。(可以用 IVT 软体观察,如果是异常断开, IVT 软体 10 秒钟左右才会提示断开连接,此时无法进行连接其他蓝牙串口模块 操作)

7.2、LED 管脚(PIO1)说明

PIO1 为输出管脚, 显示模块当前工作状态:

待机状态慢闪——重复 2s 脉冲;

连接状态长亮——高电平。

注: 如果需要兼容 HC-06, 可以将 PIO0 输出改为 PIO3 输出, 需定制 程序。

八、AT 指令集:

HM 系列蓝牙模块出厂默认的串口配置为: 波特率 9600, 无校验, 数据位 8, 停止位1。

本说明以上位机为电脑、模块参数为出厂设置时进行配置说明。

将模块通过 RS-232 电平转换连接到电脑 COM 口,使用串口调试助手,按 照 9600,N,8,1 进行配置,打开串口后,发送 AT(无\r\n),若返回 OK,说明配置 成功。

注意:本模块不可以直接连接电脑 COM 口,需经过 RS-232 电平转换,否则 将会损坏模块。

设置 AT 指令必须在蓝牙模块未连接或断开 SPP 链接时才可以(上电或配对 后都可以,如果连接 SPP, 串口输入的数据将会直接发送到远端蓝牙设备串口输 出管脚,此时只需要断开连接既可)。

1、测试

指令	应答	参数
AT	OK	无

例:发送AT,返回OK。

2、查询、设置波特率

指令	应答	参数
查询: AT+BAUD?	OK+BAUD:[Para1]	Para1:波特率
设置: AT+BAUDPara1	OK+SetBaud:[Para1]	1~C,分别代表:1200、
		2400、4800、9600、19200、
		38400、57600、115200、
		230400、460800、921600、
		1382400
		默认:4(9600)

例子如下:

发送: AT+BAUD1

返回: OK+SetBaud:1200

发送: AT+BAUD2

返回: OK+SetBaud:2400

1-----1200

2-----2400

3-----4800

4-----9600

5-----19200

6-----38400

7-----57600

8-----115200

9-----230400

A-----460800

B-----921600

C----1382400

注:不建议用在超过 115200 的波特率,信号的干扰会使系统不稳定。设置 超过 115200 后用电脑无法使用,要用单片机编程于高于 115200 才能使用 此波特率和重新发 AT 命令设低波特率

3、查询、设置设备名称

指令	应答	参数
查询: AT+NAME?	OK+NAME[Para1]	Para1:设备名称
设置: AT+NAMEPara1	OK+SetName[Para1]	最长 12 位数字或字母,
		含中划线和下划线,不建
		议用其它字符。
		默认: HMSoft

例子如下:

发送: AT+NAMEname

返回: OK+SetName:name

参数 name: 所要设置的当前名称,即蓝牙被搜索到的名称。13 个字符以内。

例: 发送 AT+NAMEbill_gates

返回 OK+SetName:bill_gates

这时蓝牙模块名称改为 bill_gates

4、恢复默认设置

指令	应答	参数
AT+DEFAULT	OK+DEFAULT	无

恢复模块默认出厂设置值,模块的所有设置均会被重置,恢复到出厂时状态, 恢复出厂设置后,模块延时 500ms 后重启,如无必要,请慎用。

5、模块复位,重启

指令	应答	参数
AT+RESTART	OK+RESTART	无

模块延时 500ms 后重启

6、查询、设置主从模式

指令	应答	参数
查询: AT+ROLE?	OK+ROLE:Para1	Para1: M或S
设置: AT+ROLEPara1	OK+SetRole:Para1	M:主设备
		S: 从设备
		默认: S

7、查询、设置配对密码

指令	应答	参数
查询: AT+PIN?	OK+PIN:Para1	Paral: 密码
设置: AT+PINPara1	OK+SetPin:Para1	最长 13 位数字或字母
		默认: 1234

例子如下:

发送: AT+PINxxxx

返回: OK+SetPin:xxxx

例: 发送 AT+PIN8888

返回 OK+SetPin:8888

这时蓝牙模块配对密码改为8888,模块在出厂时的默认配对密码是0000。

8、查询、设置是否需要密码鉴权

指令	应答	参数
查询: AT+AUTH?	OK+AUTH:Para1	Para1: 0或1
设置: AT+AUTHPara1	OK+SetAuth:Para1	0: 不需要密码鉴权
		1: 需要密码鉴权
		默认: 0 (不需要密码鉴
		权)

为方便使用,默认为不用密码鉴权连接,搜索到蓝牙串口之后,直接连接既 可。有安全考虑的客户请选择需要密码鉴权。

注:此指令只有在从设备时才有效;主设备时不接受此指令,发送此指令没 有回复,也不执行。

9、清除主设备配对信息

指令	应答	参数
AT+CLEAR	OK+CLEAR	无

清除成功连接过的设备地址码信息

备注:此指令只有在主设备时才有效:从设备时不接受此指令,发送此指令 没有回复,也不执行。

搜索并连接新的蓝牙串口从设备(*) 10,

指令	应答	参数
AT+SEARCH	OK	无

先清除已配对信息,延时150ms 后重启进入搜索状态

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没 有回复,也不执行。

11、 连接最后一次连接的蓝牙串口从设备(*)

指令	应答	参数
AT+CONLAST	OK	无

如果配对信息已被清除或连接不到最后一次设备,则进入搜索状态。

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没 有回复,也不执行。

12、 连接指定蓝牙地址的从设备(*)

指令	应答	参数
AT+CONN[Para1]	OK	Para1:蓝牙地址码
		地址码顺序为 uap1~4,
		nap 5~6, lap7~12

如果连接不到指定设备,则进入搜索状态。

注:此指令只有在主设备时才有效;从设备时不接受此指令,发送此指令没 有回复,也不执行。

13、 查询、设置模块上电是否立即工作

指令	应答	参数
查询: AT+IMME?	OK+IMME:Para1	Para1: 0或1
设置: AT+IMMEPara1	OK+IMME:Para1	0: 上电等待
		1: 上电工作
		默认:1(上电工作)

该指令设置模块上电后是否立即开始工作。

该指令只有主模式下适用,从模式下既不工作,也不回应。

查询、设置软件版本 14,

指令	应答	参数
查询: AT+VERSION	版本信息	Para1:版本信息
15、 系统帮助		
指今	应答	参数

指令	应答	参数
查询: AT+HELP?	帮助信息	无

查询本机 MAC 地址 16.

指令	应答	参数
查询: AT+ADDR?	OK+ADDR:MAC 地址	无

立即工作指令 17、

指令	应答	参数
查询: AT+WORK	OK+WORK	无

该指令与 IMME 指令配合工作,当 IMME 指令设置为上电工作时(IMME=1), 若模块有记忆的成功连接过的设备地址,则模块会立即尝试连接,TCON数 值随之生效,若无记忆成功连接过的设备地址,则进入搜索状态。若 IMME 指令设置为上电等待时(IMME=0),则需等待该指令方进入工作状态,接收 到该指令后,模块延时 500ms 进入工作状态 (连接或搜索),进入工作状态 后 TCON 设置的数值随之生效。

该指令只有主模式下应用,从模式下既不回应,也不工作。

设置主模式下尝试连接时间 18、

指令	应答	参数
查询: AT+TCON?	OK+TCON:para	无

设置: AT+TCON[Para]	OK+SetTcon:[para]	Para 范围 0000~9999
		0000 代表持续连接, 其余
		代表尝试的秒数

注:该指令只在主模式下有效,当模块记住了上一次成功链接的地址后,再 次开机自动尝试连接该地址分钟数由此参数控制,超过该分钟数,则自动进 入搜索状态,0000 为一直尝试连接。

- 注1: 所有参数设置后存储在模块内,下次启动时无需再次设置。
- 注 2: AT 指令后标注*号的,表示目前未应用的 AT 指令。
- 注 3: 近期会增加入文件传输,图像传输,信息交换,蓝牙打印,快速打印 等标准蓝牙服务,如有更改,恕不另行通知。