Einführung in die

Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

8. Übungsblatt

Aufgabe 29 (Satz von der konvergenten Reihe, 4 = 1.5 + 1 + 1.5 Punkte).

Beweisen Sie den **Satz von der konvergenten Reihe**: Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen aus $\mathcal{L}_1(\Omega, \mathcal{A}, \mathbb{P})$ mit $\sum_{n\in\mathbb{N}} \mathbb{E}(|X_n|) < \infty$. Dann gilt:

- (i) $\mathbb{P}\left(\sum_{n\in\mathbb{N}}|X_n|<\infty\right)=1$
- (ii) $\sum_{n\in\mathbb{N}} X_n \in \mathscr{L}_1$
- (iii) $\mathbb{E}\left(\sum_{n\in\mathbb{N}}X_n\right) = \sum_{n\in\mathbb{N}}\mathbb{E}(X_n)$

Aufgabe 30 (Alternative Formeln für den Erwartungswert, 4 = 2 + 1 + 1 Punkte).

(a) Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und sei $X \in \overline{\mathcal{A}}^+$ eine Zufallsvariable. Zeigen Sie, dass dann gilt:

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > y) \, dy$$

Hinweis: Schreiben Sie $\mathbb{P}(X > y)$ als Integral und verwenden Sie den Satz von Fubini.

- (b) Berechnen Sie mittels der Formel aus (a) den Erwartungswert einer exponentialverteilten Zufallsvariable $X \sim \operatorname{Exp}_{\lambda}$ mit Parameter $\lambda > 0$.
- (c) Sei $X:\Omega \longrightarrow \mathbb{N}=\{1,2,3,...\}$ eine diskrete Zufallsvariable. Die Formel für den Erwartungswert aus (a) wird dann zu

$$\mathbb{E}X = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n).$$

Berechnen Sie unter Verwendung dieser Formel den Erwartungswert im Falle, dass $X \sim \text{Geo}_p$ eine geometrisch verteilte Zufallsvariable mit Parameter $p \in (0,1)$ ist.

Aufgabe 31 (Eigenschaften der (Ko-)Varianz, 4 = 1 + 2 + 1 Punkte).

Beweisen Sie Lemma 24.03 aus der Vorlesung: Seien $X, Y, Z \in \mathcal{L}_2$ und $a, b \in \mathbb{R}$.

- (a) Es gilt Var(X) = 0 genau dann, wenn P(X = E(X)) = 1.
- (b) \mathbb{C} ov : $\mathcal{L}_2 \times \mathcal{L}_2 \longrightarrow \mathbb{R}^+$ ist eine positiv semi-definite, symmetrische Bilinearform, d.h.

1

$$ightharpoonup$$
 (symmetrisch) $\mathbb{C}ov(X,Y) = \mathbb{C}ov(Y,X)$

- $(linear) \ \mathbb{C}ov(aX + bY, Z) = a\mathbb{C}ov(X, Z) + b\mathbb{C}ov(Y, Z)$
- ▶ (positiv semi-definit) $Cov(X, X) \ge 0$.

und es gilt $\mathbb{C}ov(a, X) = 0$.

- (c) \mathbb{V} ar : $\mathscr{L}_2 \longrightarrow \mathbb{R}^+$ ist die von \mathbb{C} ov induzierte quadratische Form, sodass
 - $ightharpoonup Var(aX + b) = a^2 Var(X)$
 - $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$

gelten.

Aufgabe 32 (Enten, Jäger*innen und die Tschebycheff Ungl., 4 = 1.5 + 1.5 + 1 Punkte).

Seien $m, n \in \mathbb{N}$. Eine Gruppe von n (perfekten) Jäger*innen schießt auf m Enten, wobei sich jede Jäger*in ihr Opfer zufällig und unabhängig von den anderen Jäger*innen auswählt. Insbesondere kann eine Ente also von mehreren Jäger*innen ausgewählt werden. Sei X die Anzahl der bei diesem Massaker überlebenden Enten.

(a) Berechnen Sie Erwartungswert von X.

Hinweis: Nummerieren Sie die Enten von 1 bis m und definieren Sie das Ereignis $A_i :=$ "Die i-te Ente überlebt". Drücken Sie X durch die Zufallsvariablen $X_i := \mathbb{1}_{A_i}$ aus. Nutzen Sie dann die Linearität des Erwartungswerts und ermitteln Sie $\mathbb{E}X_i$.

(b) Berechnen Sie die Varianz von X.

Hinweis: Benutzen Sie die Formel $\mathbb{V}ar(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$. Nun müssen Sie sich Gedanken über den Erwartungswert $\mathbb{E}[X_iX_i]$ machen.

(b) Sei nun m=n=50. Nutzen Sie die **Tschebyscheff-Ungleichung** (24.08) und die Ergebnisse aus (a), um ein Intervall $[m_1, m_2], m_1, m_2 \in \mathbb{N}$, anzugeben, in dem mit einer Wahrscheinlichkeit von 90% die Anzahl der überlebenden Enten liegt.

Anmerkung: Wir suchen also ein 90%-Konfidenzintervall.

Abgabe:

In Zweiergruppen, bis spätestens Montag, den 25. Januar 2021, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/