

(19) BUNDESREPUBLIK **DEUTSCHLAND**

(f) Int. Cl.⁷: **B 21 D 26/02**

DEUTSCHES PATENT- UND MARKENAMT ② Aktenzeichen:

199 09 924.3-14

② Anmeldetag:

6. 3.1999

(3) Offenlegungstag:

14. 9.2000

(45) Veröffentlichungstag

der Patenterteilung:

3. 4.2003

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

AUDI AG, 85057 Ingoistadt, DE

② Erfinder:

Zuber, Armin, Dipl.-Ing., 74909 Meckesheim, DE; Leitermann, Wulf, Dipl.-Ing., 74206 Bad Wimpfen, DE; Hoffmann, Alexander, Dipl.-Ing., 74626 Bretzfeld, DE

56 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 44 41 192 C2 DE 43 22 711 A1

- (4) Verfahren zum Innenhochdruck-Umformen
- Verfahren zum Innenhochdruck-Umformen eines Hohlprofiles in einem Umformwerkzeug, wobei ein Fluid mit hohem Druck in das Hohlprofil eingebracht wird, um dieses über eine plastische Verformung von einem Ausgangszustand in einen Endzustand zu bringen, dadurch gekennzeichnet, daß ein Untermaß unabhängig von den weiteren Hohlprofil-Abmessungen als absolutes Maß vorgegeben wird.

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren zum Innenhochdruck-Umformen eines Hohlprofiles in einem Umformwerkzeug, wobei ein Fluid mit hohem Druck in das Hohlprofil eingebracht wird, um dieses über eine plastische Verformung von einem Ausgangszustand (Istmaß) in einen Endzustand (Nennmaß) zu bringen.

[0002] Das Verfahren zum Innenhochdruck-Umformen ist sowohl in der allgemeinen Literatur als auch in der Patentli- 10 teratur eingehend beschrieben und gewürdigt worden. Beispielhaft sei hier auf die DE 44 41 192 C2 verwiesen, die sich der Aufgabe widmet, die Verfahrensweise so auszugestalten, daß eine exakte Regelung der Umformparameter, insbesondere des Innendruckes, erfolgen kann.

[0003] Das Innenhochdruck-Umformen wird beispielsweise auch zum Kalibrieren von Strangpreßprofilen eingesetzt. Da solche Profile nur mit einer begrenzten maßlichen Genauigkeit gefertigt werden können, ist eine nachfolgende Kalibrierung häufig unumgänglich, Zu diesem Zweck wird 20 das Strangpreßprofil beträchtlich unter dem geforderten Nennmaß gefertigt (Untermaß!), um beim nachfolgenden Innenhochdruckumformen eine Verformung im plastischen Bereich zu gewährleisten.

[0004] Nach bekanntem Stand der Technik wird ein der 25 Bauteilgeometrie entsprechendes prozentuales Untermaß gewählt. Nun wurde erkannt, daß diese Vorgehensweise nicht immer geeignet ist, beim Umformen eine Dehnung im plastischen Bereich in einem Maße zu ermöglichen, wie sie zum Erreichen des Nennmaßes nötig wäre. Anhand Fig. 1 30 $\Delta I = \varepsilon \times I_0$ läßt sich dies näher erläutern:

Dabei ist ein Hohlprofil 1, hier mit einen Steg 2 versehen, in ein Werkzeug 3 eingelegt, wobei die Hohlräume von einem Fluid mit hohem Druck PI beaufschlagt werden, um das Hohlprofil 1 letztlich so weit aufzuweiten, daß es sich an die 35 Innenwand 4 des Werkzeuges 3 anlegt. Wie der mit strichpunktierten Linie 5 angedeutete Endzustand des Hohlprofiles 1 verdeutlicht, gelingt dies mit der Vorgehensweise nach dem Stand der Technik nicht in optimaler Weise.

[0005] So legen sich bei steigendem Fluiddruck P_I zu- 40 nächst die mittigen Abschritte der Seitenwände (9-12) an die Werkzeuggravur an. Aufgrund des hohen Fluiddruckes P_I und der damit verbundenen Normalkraft F_N, die für eine große Reibungskraft zwischen Hohlprofil 1 und Werkzeug-Innenwand 4 sorgt, kommt es an diesem tribologischem Sy- 45 stem zum Haften der Seitenwände 9-12 an der Werkzeuggravur. Die Folge ist, daß sich der Materialfluß nicht über die gesamte Breite einer jeden Seitenwand 9-12 vollzieht. Bei der Umformung kommt es daher nur im kantennahen Bereich 6, in dem geringere Reibungskräfte herrschen, zum 50 Fließen des Werkstoffes.

[0006] Wird ein prozentuales Untermaß gewählt, so bezieht man den Prozeß der plastischen Verformung auf die gesamte Breite einer Seitenwand 9-12. Es wird damit nicht berücksichtigt, daß sich die Formänderung zum Ausbilden 55 der Kanten 7 nur in einem bestimmten Bereich (kantennaher Bereich 6) vollzieht. Es ergibt sich der Nachteil, daß sich das Hohlprofil 1, insbesondere jedoch die Kanten 7, nicht richtig

[0007] Liegt ein Mehrkammerprofil vor, wie aufgrund des 60 vorhandenen Steges 2 gemäß Fig. 1 der Fall, so ergeben sich weitere nachteilige Auswirkungen. Bei der herkömmlichen Ausführung des Steges 2 ergibt sich, daß sich dieser bei der Innenhochdruckumformung geringfügiger verformt als die äußere Hohlprofilwandung. Die Folge ist, daß sich das 65 Hohlprofil 1 nicht symmetrisch umformt, Im Anschlußbereich 8 des Steges 2 entsteht eine nach innen gewölbte Vertiefung, der Steg 2 hält die Hohlprofilwandung während des

Innenhochdruckumformens zurück.

[0008] Der Erfindung liegt die Aufgabe zugrunde, die Verfahrensweise zum Innenhochdruckumformen nach dem Oberbegriff des Patentanspruches 1 in der Weise weiterzubilden, daß das Hohlprofil 1 nach erfolgter Umformung in sämtlichen Wandbereichen das geforderte Nennmaß er-

[0009] Die erfindungsgemäße Lösung ist im Kennzeichen des Patentanspruches 1 zu sehen. Vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Verfahrensweise sind in den Unteransprüchen angegeben.

[0010] Das Istmaß des Hohlprofiles 1 ist also so gewählt, daß bei der Innenhochdruckumformung noch so viel Freiraum verbleibt, daß das Hohlprofil 1 bis in den plastischen Bereich gedehnt werden kann. Andererseits ist der Freiraum nicht zu groß gewählt, so daß nicht die Gefahr besteht, daß zu viel Material dem kantennahen Bereich 6 zufließen müßte. Dies würde den Nachteil nach sich ziehen, daß sich die Hohlprofilwandung im Kantenbereich einschnürt.

[0011] Wie erwähnt ist der kantennahe Bereich 6, in dem das Material nachfließen kann, begrenzt. In Versuchen hat sich gezeigt, daß dieser Bereich 6 etwa 15 mm breit ist. Dabei ist es unerheblich, welche Abmessungen das Hohlprofil 1 ansonsten aufweist. Um bei der Innenhochdruckumformung eine plastische Formänderung zu erreichen, sollte beispielsweise das Material des Hohlprofiles 1 eine Dehnung von 0,5% erfahren. Demzufolge wäre aufgrund der Bezie-

 $(\Delta I = Differenz von Istmaß zu Nennmaß, \varepsilon = Dehnung in$ Prozent, I₀ = Breite des in die Kante 7 nachsließenden kantennahen Bereiches 6 des Hohlprofiles 1)

ein absolutes Untermaß von etwa 0,75 mm angebracht. Auch mit 0,5 mm und 1,0 mm sind noch gute Ergebnisse erzielbar.

[0012] In einer Weiterbildung der Erfindung wird, wie in Fig. 2 schematisch angedeutet, bei Mehrkammerprofilen der Steg 2 so ausgeführt (etwas breiter als die Seitenwände 9, 10), daß dieser recht nahe an die Werkzeug-Innenwand 4 herangeführt wird und sich damit bei der späteren Innenhochdruckumformung ein geringerer Umformweg für den Steg 2 ergibt.

Patentansprüche

- 1. Verfahren zum Innenhochdruck-Umformen eines Hohlprofiles in einem Umformwerkzeug, wobei ein Fluid mit hohem Druck in das Hohlprofil eingebracht wird, um dieses über eine plastische Verformung von einem Ausgangszustand in einen Endzustand zu bringen, dadurch gekennzeichnet, daß ein Untermaß unabhängig von den weiteren Hohlprofil-Abmessungen als absolutes Maß vorgegeben wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Untermaß von 0,5 bis 1.0 mm, vorzugsweise 0,75 mm gewählt wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß im Anschlußbereich eines Steges (2) an eine Hohlprofilwand (11, 12) durch entsprechende Bema-Bung des Steges (2) ein geringeres Untermaß gewählt wird, so daß dort die Hohlprofilwand (11, 12) naher an die Werkezug-Innenwand (4) heranreicht, als in den übrigen Bereichen der Hohlprofilwand (11, 12).

Hierzu 1 Seite(n) Zeichnungen

Nummer: Int. Ci.7:

DE 199 09 924 C2 B 21 D 26/02 3. April 2003

Veröffentlichungstag:

