Blog Notes 5-Option Pricing On bonds

Min Wang

University of Leicester

July 1, 2020

Introduction

► Option Pricing on Bonds

Problem

Problem: Consider a T-Bond option, it has a bond maturity T. Assume the option maturity is S, with S < T. The bond option has a strike price K. Assume the short rate process is r(t), the T-bond price at time t is denoted by B(t,T). The forward bond price at t is denoted by $B(t;S,T) = \frac{B(t,T)}{B(t,S)}$. Define a discount process given by $\frac{1}{B(t)} = \exp\{-\int_0^t r(u)du\}$, which gives you the present value for one unit of currency which will be received in a future time t.

At the option expiry time S, the European call option on the bond has a payoff $V(S) = (B(S,T)-K)^+$, which is the bond option price at time S. Calculate the bond option price at time t.

Risk-Neutral Option Pricing formula

According the generic pricing formula, a derivative security process can be replicated with a portfolio process, where the discounted value of the portfolio process is a martingale under the risk-neutral probability measure \mathbb{Q} . Then, the discounted value of the derivative security process is also a martingale.

We have an option pricing formula for the European call option on T-bond, with the time S payoff $(B(S,T)-K)^+$. That is $\frac{V(t)}{B(t)}=E_t^\mathbb{Q}[\frac{V(S)}{B(S)}]=E^\mathbb{Q}[\frac{(B(S,T)-K)^+}{B(S)}|\mathcal{F}_t].$

The arbitrage pricing theorem states that, under the risk-neutral probability measure \mathbb{Q} , The return on any traded asset with positive price process S(t) is an Itô process with a risk-free short rate drift r(t) and volatility $\sigma(t)$; In differential form, it is $\frac{dS(t)}{S(t)} = r(t)dt + \sigma(t)d\widetilde{W}(t), \text{ where } \widetilde{W}(t) \text{ is a Brownian motion under the risk-neutral measure.}$

Bond price process is a positive process, according to the arbitrage pricing theorem, in the risk-neutral probability measure \mathbb{Q} , the bond is a trading asset with the risk-free drift r(t) and the T-bond volatility $\Sigma(t,T)$, satisfying $dB(t,T)=r(t)B(t,T)dt+\Sigma(t,T)B(t,T)d\widetilde{W}(t)$.

Under the risk-neurtal measure, assuming the short rate process r(t) follows $dr(t) = \mu(t, r(t))dt + \sigma_r(t, r(t))d\widetilde{W}(t)$, we can find the T-bond volatility $\Sigma(t, T)$ satisfies $\Sigma(t, T) = -\sigma_r(t, r(t)) \cdot G(t, T)$, with

$$\begin{split} & \Sigma(t,T) = -\sigma_r(t,r(t)) \cdot G(t,T), \text{ with } \\ & G(t,T) = \int_t^T e^{-\kappa(u-t)} du = e^{\kappa t} \int_t^T e^{-\kappa u} du = e^{\kappa t} \cdot \frac{e^{-\kappa t} - e^{-\kappa T}}{\kappa} = e^{\kappa t} \cdot e^{\kappa t} \frac{1 - e^{-\kappa(T-t)}}{\kappa} = \frac{1 - e^{-\kappa(T-t)}}{\kappa}. \text{ The equation works for both Vasicek model and Hull-White model. It can be tested that the derivation of } \Sigma(t,T) \text{ are the same for both models. The proof is done as follows.} \end{split}$$

Proof:

Assuming the *T*-bond price at time *t* has the form $B(t,T) = e^{f(t,T)+r(t)g(t,T)} = F(t,r(t)).$

Calculating dB(t,T)=dF(t,r(t))=dF(t,X) using Itô formula, we have $F_t(t,X)=(\frac{\partial f}{\partial t}+X\cdot\frac{\partial g}{\partial t})F(t,X),$ $F_X(t,X)=g(t,T)F(t,X),$ $F_{X,X}(t,X)=g^2(t,T)F(t,X),$ we have $dB(t,T)=dF(t,r(t))=F_t(t,X)dt+F_X(t,X)dX(t)+\frac{1}{2}F_{X,X}(t,X)(dX(t))^2=\frac{\partial B}{\partial t}dt+\frac{\partial B}{\partial X}dX(t)+\frac{1}{2}\frac{\partial^2 B}{\partial X^2}(dX(t))^2$

Substitute
$$dX(t) = dr(t) = \mu(t, r(t))dt + \sigma_r(t, r(t))dW(t)$$
, $(dX(t))^2 = \sigma_r^2(t, r(t))dt$, we have $dB(t, T) = [(\frac{\partial B}{\partial t} + \frac{\partial B}{\partial X}\mu(t, r(t)) + \frac{1}{2}\frac{\partial^2 B}{\partial X^2}\sigma_r^2(t, r(t))]dt + \frac{\partial B}{\partial X}\sigma_r(t, r(t))d\widetilde{W}(t)$

Equating the dB(t, T) to the other form of $dB(t, T) = r(t)B(t, T)dt + \Sigma(t, T)B(t, T)d\widetilde{W}(t)$.

Denote r(t) by X = r(t). Equating the Brownian motion term $d\widetilde{W}(t)$, the T-bond volatility at time t is

$$dW(t)$$
, the T -bond volatility at time t is $\Sigma(t,T) = \frac{\partial B}{\partial X}\sigma_r(t,X)\frac{1}{B} = \sigma_r(t,X)\frac{\partial lnB(t,T)}{\partial X} = \sigma_r(t,X)\cdot g(t,T)$

g(t,T) is calculated by equating the dt term of the two form of dB(t,T), we have $\frac{\partial B}{\partial t} + \frac{\partial B}{\partial Y} \mu(t,r(t)) + \frac{1}{2} \frac{\partial^2 B}{\partial Y^2} \sigma_r^2(t,r(t)) = r(t)B(t,T)$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} =$$

Substitute $\frac{\partial B}{\partial t}$, $\frac{\partial B}{\partial X}$, $\frac{\partial^2 B}{\partial X^2}$, simplify the equation, we have $(\frac{\partial f}{\partial t}(t,T)+X\cdot\frac{\partial g}{\partial t}(t,T))+g(t,T)\mu(t,X)+\frac{1}{2}g^2(t,T)\sigma_r^2(t,X)=X$

In the Vasicek model, under the risk-neutral probability measure \mathbb{Q} , the dynamics of the short rate process is $dr(t) = (\theta - \kappa r(t))dt + \sigma d\widetilde{W}(t)$, with $\mu(t, r(t)) = (\theta - \kappa r(t))$, $\sigma_r(t, r(t)) = \sigma$. We have $\mu(t, X) = (\theta - \kappa X)$, $\sigma_r(t, X) = \sigma$. Substitute $\mu(t, X)$, $\sigma_r(t, X)$,

and equate the coefficient of X on both sides of the equation, we have an equation $\frac{\partial g}{\partial t}(t,T) - \kappa g(t,T) = 1$, together with a bound condition g(T,T) = 0, since $1 = B(T,T) = e^{f(T,T)+r(t)g(T,T)}$.

In Hull-White model, in the risk-neutral probability measure \mathbb{Q} , the dynamics of the short rate process is $dr(t)=(\theta(t)-\kappa r(t))dt+\sigma(t)d\widetilde{W}(t)$, with $\mu(t,r(t))=(\theta(t)-\kappa r(t))$, $\sigma_r(t,r(t))=\sigma(t)$. We have $\mu(t,X)=(\theta(t)-\kappa X)$, $\sigma_r(t,X)=\sigma(t)$. Substitute $\mu(t,X)$, $\sigma_r(t,X)$, and equate the coefficient of X on both sides of the equation, we have the equation $\frac{\partial g}{\partial t}(t,T)-\kappa g(t,T)=1$, together with a bound condition g(T,T)=0, since $1=B(T,T)=e^{f(T,T)+r(t)g(T,T)}$.

In both Vasicek model and Hull-White model, the value of g(t,T) is calculated by

$$\begin{cases} \frac{\partial g}{\partial t}(t,T) - \kappa g(t,T) = 1 \\ g(T,T) = 0 \end{cases}$$

it is the same as solving g(t, T) satisfying

$$\begin{cases} d(e^{-\kappa t} \cdot g(t, T)) &= e^{-\kappa t} \\ g(T, T) &= 0 \end{cases}$$

$$\leftrightarrow \begin{cases} e^{-\kappa t} \cdot g(t, T) &= \int_0^t e^{-\kappa u} du + C \\ g(T, T) &= 0 \end{cases} \Rightarrow C = -\int_0^T e^{-\kappa u} du$$

$$\Rightarrow \begin{cases}
g(T,T) = 0 \\
\Rightarrow e^{-\kappa t} \cdot g(t,T) = \int_0^t e^{-\kappa u} du - \int_0^T e^{-\kappa u} du
\end{cases}$$

 $\Rightarrow g(t,T) = e^{-\kappa t} \cdot \left(-\int_t^T e^{-\kappa u} du\right) = -\int_t^T e^{-\kappa(u-t)} du = -G(t,T)$ with $G(t,T) = \int_t^T e^{-\kappa(u-t)} du = e^{\kappa t} \int_t^T e^{-\kappa u} du =$

with
$$G(t,T) = \int_t^T e^{-\kappa(u-t)} du = e^{\kappa t} \int_t^T e^{-\kappa u} du = e^{\kappa t} \cdot \frac{e^{-\kappa t} - e^{-\kappa T}}{\kappa} = e^{\kappa t} \cdot e^{\kappa t} \frac{1 - e^{-\kappa(T-t)}}{\kappa} = \frac{1 - e^{-\kappa(T-t)}}{\kappa}$$
.

To summary, in the Hull-White model, the bond price volatility is $\Sigma(t, T) = -\sigma_r(t, r(t)) \cdot G(t, T)$, with $\sigma_r(t, r(t)) = \sigma(t)$.

In the Vasicek model, the bond price volatility is $\Sigma(t, T) = -\sigma_r(t, r(t)) \cdot G(t, T)$, with $\sigma_r(t, r(t)) = \sigma$.

Back to the option pricing formula for the European call option on T-bond, with the time S payoff $(B(S,T)-K)^+$. That is $\frac{V(t)}{B(t)} = E^{\mathbb{Q}}[\frac{(B(S,T)-K)^+}{B(S)}|\mathcal{F}_t].$

Substitute $B(t) = e^{\int_0^t r(u)du}$, $B(S) = e^{\int_0^S r(u)du}$, we have $V(t) = E^{\mathbb{Q}}[e^{\int_t^S r(u)du} \cdot (B(S,T)-K)^+|\mathcal{F}_t]$.

Define S-forward measure $\mathcal{P}_S \sim \mathbb{Q}$ with the Radon-Nikodym density process $Z_t = E_t^{\mathbb{Q}}[\frac{d\mathbb{P}_S}{dQ}] = e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}$, such that the Radon Nikodym random variable $Z = Z_S = E_S^{\mathbb{Q}}[\frac{d\mathbb{P}_S}{dQ}] = \frac{d\mathbb{P}_S}{dQ}$ is a positive random variable and its expectation under the measure \mathbb{Q} is 1.

Consider a \mathcal{F}_S -measurable random variable X, the Radon Nikodym derivative random variable Z_S is \mathcal{F}_S -measurable Using the Bayes'

rule,
$$E_t^{\mathcal{P}_S}[X] = \frac{E_t^{\mathbb{Q}}[Z_SX]}{Z_t} = \frac{E_t^{\mathbb{Q}}[e^{-\int_0^S r(u)du} \frac{B(S,S)}{B(0,S)}X]}{e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}} = \frac{E_t^{\mathbb{Q}}[e^{-\int_t^S r(u)du}X]}{B(t,S)},$$

then, we have $B(t,S) \cdot E_t^{\mathcal{P}_S}[X] = E_t^{\mathbb{Q}}[e^{-\int_t^S r(u)du}X]$, with X is \mathcal{F}_S -measurable.

Therefore, with a probability measure change from risk-neutral measure to an equivalent S-forward measure $\mathcal{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process $Z_t = E_t^{\mathbb{Q}} \left[\frac{d\mathbb{P}_S}{dQ} \right] = e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}$, the European call option on T-bond, with the payoff $(B(S,T)-K)^+$ at time S, the option value at time t is $V(t) = E^{\mathbb{Q}} \left[e^{\int_t^S r(u)du} \cdot (B(S,T)-K)^+ |\mathcal{F}_t \right] = B(t,S) \cdot E^{\mathbb{P}_S} \left[(B(S,T)-K)^+ |\mathcal{F}_t| \right]$.

It is observed that after changing the probability measure, the discounter factor is avoided and the option price calculating is simplified.

An important fact:

For any forward bond price process $B(t;S,T)=\frac{B(t,S)}{B(t,T)}$, that is, the T-bond price process discounted by the S-bond price process $\frac{B(t,T)}{B(t,S)}$, the forward bond price process B(t;S,T) is a martingale under the S-forward probability measure $\mathcal{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process $Z_t = E_t^{\mathbb{Q}}[\frac{d\mathbb{P}_S}{dQ}] = e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}$.

Proof:

Using the Bayes' rule, the random variable B(S; S, T) is \mathcal{F}_S -measurable, under the S-forward measure $\mathcal{P}_S \sim \mathbb{Q}$, we have $B(t,S) \cdot E_t^{\mathcal{P}_S}[\frac{B(S,T)}{B(S,S)}] = E_t^{\mathbb{Q}}[e^{-\int_t^S r(u)du}\frac{B(S,T)}{B(S,S)}] = E_t^{\mathbb{Q}}[e^{-\int_t^S r(u)du}B(S,T)] = B(t,T).$

The last equation follows the arbitrage pricing formula, any positive trading asset, its discounted share price is a martingale under the risk-neutral probability measure. so, we have $E_t^{\mathcal{P}_S}[\frac{B(S,T)}{B(S,S)}] = \frac{B(t,T)}{B(t,S)}$, or written as $E_t^{\mathcal{P}_S}[B(S;S,T)] = B(t;S,T)$.

Next, find the distribution of the forward bond price B(t; S, T) under the S-forward probability measure $\mathcal{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process $Z_t = E_t^{\mathbb{Q}}[\frac{d\mathbb{P}_S}{dQ}] = e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}$. So, find dB(t; S, T) using Itô formula.

We have $dB(t; S, T) = \frac{B(t,T)}{B(t,S)}$, using Itô formula, we have $df(X(t)Y(t)) = f_X dX(t) + f_Y dY(t) + \frac{1}{2} f_{X,X} dX(t) dX(t) + \frac{1}{2} f_{Y,Y} dY(t) dY(t) + \frac{1}{2} f_{X,Y} dX(t) dY(t)$. After using the Itô multiplication table lemma dW(t)dW(t) = dt, dtdW(t) = dW(t)dt = 0, dtdt = 0, we have df(X(t)Y(t)) = d(X(t)Y(t)) = X(t)dX(t) + Y(t)dY(t) + dX(t)dY(t). Simplify notation using X, Y, we have d(XY) = XdY + YdX + dXdY, so, $d(\frac{X}{V}) = Xd(\frac{1}{V}) + \frac{X}{V}dX + dXd\frac{1}{V}$.

Using Itô formula and Itô lemma calculate $d(\frac{1}{Y})$, $dXd\frac{1}{Y}$. $d(\frac{1}{Y}) = f_Y dY + \frac{1}{2} f_{Y,Y} (dY)^2 = \frac{-1}{Y^2} dY + \frac{1}{Y^3} (dY)^2$, $dXd\frac{1}{Y} = \frac{-1}{Y^2} dXdY + \frac{1}{Y^3} dX(dY)^2 = \frac{-1}{Y^2} dXdY$

Then, we have $d(\frac{X}{Y}) = X(\frac{-1}{Y^2}dY + \frac{1}{Y^3}(dY)^2) + \frac{X}{Y}dX + \frac{-1}{Y^2}dXdY$

Here, $d(\frac{X}{Y}) = d(\frac{B(t,T)}{B(t,S)})$ Substitute $dX = dB(t,T) = r(t)B(t,T)dt + \Sigma(t,T)B(t,T)d\widetilde{W}(t),$

$$dX = dB(t, T) = I(t)B(t, T)dt + \Sigma(t, T)B(t, T)dW(t),$$

$$dY = dB(t, S) = r(t)B(t, S)dt + \Sigma(t, S)B(t, S)d\widetilde{W}(t),$$

$$dXdY = dB(t, T)dB(t, S) = \Sigma(t, T)\Sigma(t, S)dt,$$

$$(AX)^2 = AB(t, S)AB(t, S) = \Sigma^2(t, S)A^2(t, S)A^2$$

 $dXdY = dB(t, I)dB(t, S) = \Sigma(t, I)\Sigma(t, S)dt,$ $(dY)^2 = dB(t, S)dB(t, S) = \Sigma^2(t, S)dt, \text{ simplify the equation,}$

we have
$$d(\frac{B(t,T)}{B(t,S)}) = \frac{B(t,T)}{B(t,S)} \left(\Sigma^2(t,S)dt - \Sigma(t,T)\Sigma(t,S)dt + (\Sigma(t,T) - \Sigma(t,S))d\widetilde{W}(t) \right) = \frac{B(t,T)}{B(t,S)} \left((\Sigma(t,T) - \Sigma(t,S))(d\widetilde{W}(t) - \Sigma(t,S)dt) \right)$$

Under the equivalent probability measure $\mathcal{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process $Z_t = E_t^{\mathbb{Q}} \left[\frac{d\mathbb{P}_S}{dQ} \right] = e^{-\int_0^t r(u)du} \frac{B(t,S)}{B(0,S)}$, the Itô process $(d\widetilde{W}(t) - \Sigma(t,S)dt)$ is a Brownian motion

the Itô process $(d\widetilde{W}(t) - \Sigma(t,S)dt)$ is a Brownian motion, denoted by $d\widetilde{W}^S(t)$.

Therefore, under the S-forward measure $\mathcal{P}_S \sim \mathbb{Q}$, the dynamics of the forward bond price process $B(t;S,T) = \frac{B(t,T)}{B(t,S)}$ is modelled by $dB(t;S,T) = ((\Sigma(t,T)-\Sigma(t,S)))\,B(t;S,T)d\widetilde{W}^S(t)$, where $\widetilde{W}^S(t)$ is a Brownian motion under the S-forward measure $\mathcal{P}_S \sim \mathbb{Q}$.

Solving the SDE can be analogously with solving the SDE $dS(t) = \sigma(t)S(t)dW(t)$. This SDE is solved as follows, 1st, find dln(S(t)) using the Itô formula and Itô lemma multiplication table. 2nd, Substitute $\frac{dS(t)}{S(t)}$ into dln(S(t)). 3rd, Integrate both sides of the obtained equation and find the formula of S(t).

 $dln(S(t)) = df(S(t)) = f_X dS(t) + \frac{1}{2} f_{X,X} (dS(t))^2 = \frac{1}{S(t)} dS(t) - \frac{1}{2} \frac{-1}{S(t)^2} (dS(t))^2 = \frac{dS(t)}{S(t)} - \frac{1}{2} \left(\frac{dS(t)}{S(t)}\right)^2.$ Using the Itô lemma multiplication table, we have $(dS(t))^2 = \sigma^2(t) S^2(t) (dW(t))^2 = \sigma^2(t) S^2(t) dt, \text{ that is } (\frac{dS(t)}{S(t)})^2 = \sigma^2(t) dt.$

Using the Itô formula, we have

Substitute $\frac{dS(t)}{S(t)} = \sigma(t)dW(t)$, $(\frac{dS(t)}{S(t)})^2 = \sigma^2(t)dt$ into $dln(S(t)) = \frac{dS(t)}{S(t)} - \frac{1}{2}\left(\frac{dS(t)}{S(t)}\right)^2$, we have $dln(S(t)) = -\frac{1}{2}\sigma^2(t)dt + \sigma(t)dW(t)$. It can be seen that after applying the function ln(x) to the asset process S(t), the drift of price process has drawn down by $\frac{1}{2}\sigma^2(t)$.

Next, integrate both sides of the equation from time t to time T $\int_t^T dln(S(t)) = \int_t^T (-\frac{1}{2}\sigma^2(t))dt + \int_t^T \sigma(t)dW(t)$ and solve for S(T) with a given value S(t). We have $InS(T) - InS(t) = \int_t^T (-\frac{1}{2}\sigma^2(u))du + \int_t^T \sigma(u)dW(u) = \int_t^T (-\frac{1}{2}\sigma^2(u))du + \int_t^T \sigma(u)du \cdot \mathcal{N}(0,1).$ Then, we have $\frac{S(T)}{S(t)} = e^{\int_t^T \sigma(u)dW(u) - \frac{1}{2}\int_t^T \sigma^2(u)du} = e^{\int_t^T \sigma(u)du \cdot \mathcal{N}(0,1) - \frac{1}{2}\int_t^T \sigma^2(u)du},$ the second equation is also written as $\frac{S(T)}{S(t)} = e^{\int_t^T \sigma(u)du \cdot Y - \frac{1}{2}\int_t^T \sigma^2(u)du}, \text{ with } Y \sim \mathcal{N}(0,1)$

Analogously, from the SDE

 $dB(t; S, T) = (\Sigma(t, T) - \Sigma(t, S)) B(t; S, T) d\widetilde{W}^{S}(t)$, with the

given value B(t; S, T), solve for B(S; S, T). we have lnB(S; S, T) - lnB(t; S, T) =

 $-\frac{1}{2}\int_{t}^{S}(\Sigma(u,T)-\Sigma(u,S))^{2}du+\int_{t}^{S}(\Sigma(u,T)-\Sigma(u,S))dW(u),$ then, we have B(S; S, T) = $B(t; S, T) \cdot e^{\int_t^S (\Sigma(u, T) - \Sigma(u, S)) dW(u) - \frac{1}{2} \int_t^S (\Sigma(u, T) - \Sigma(u, S))^2 du} =$ $B(t; S, T) \cdot e^{\pm \int_t^S (\Sigma(u,T) - \Sigma(u,S)) du \cdot Y - \frac{1}{2} \int_t^S (\Sigma(u,T) - \Sigma(u,S))^2 du}$ with

 $Y \sim \mathcal{N}(0,1)$.

Denote the volatility of the forward bond process by $\xi(t,S) = \int_{t}^{S} (\Sigma(u,T) - \Sigma(u,S))^{2} du$, we have $B(S; S, T) = B(t; S, T)e^{\pm\sqrt{\xi(t,S)}\cdot Y - \frac{1}{2}\xi(t,S)}$ with $Y \sim \mathcal{N}(0.1)$. Back to the European call option on T-bond, with the payoff $(B(S,T)-K)^+$ at time S, in the S-forward probability measure $\mathbb{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process, the option value at time t is

$$V(t) = B(t, S) \cdot E^{\mathbb{P}_{S}}[(B(S, T) - K)^{+} | \mathcal{F}_{t}] = B(t, S) \cdot E^{\mathbb{P}_{S}}[(\frac{B(S, T)}{B(S, S)} - K)^{+} | \mathcal{F}_{t}] = B(t, S) \cdot E^{\mathbb{P}_{S}}[(B(S; S, T) - K)^{+} | \mathcal{F}_{t}]$$

Now, calculate $E^{\mathbb{P}_S}[(B(S; S, T) - K)^+ | \mathcal{F}_t]$. 1st, using independence lemma to change the conditional expectation to expectation. From the dynamic of the forward bond process B(t; S, T) in the S-forward measure, InB(S; S, T) - B(t; S, T) = $\int_{+}^{S} (\Sigma(u,T) - \Sigma(u,S)) d\widetilde{W}^{S}(u) - \frac{1}{2} \int_{+}^{S} (\Sigma(u,T) - \Sigma(u,S))^{2} du$ contain an Itô integral which is independent of the available information \mathcal{F}_t . If given the initial value B(t; S, T), B(S; S, T) is independent of the filtration \mathcal{F}_t , and calculating the conditional expectation is simplified to calculating the expectation. Therefore, fix the value of B(t; S, T), we calculate $E^{\mathbb{P}_S}[(B(S; S, T) - K)^+]$.

Now, calculate $E^{\mathbb{P}_S}[(B(S; S, T) - K)^+]$.

Substitute $B(S; S, T) = B(t; S, T)e^{\pm \sqrt{\xi(t,S)} \cdot Y - \frac{1}{2}\xi(t,S)}$. with $Y \sim \mathcal{N}(0,1)$ and calculate the expectation $\int_{-\infty}^{\infty} (B(t; S, T) e^{\pm \sqrt{\xi(t,S)} \cdot y - \frac{1}{2}\xi(t,S)} - K)^{+} \cdot e^{-\frac{1}{2}y^{2}} \frac{1}{\sqrt{2}} dy.$

1st, remove the + sign, by letting B(S; S, T) > K, we have $B(t; S, T)e^{\pm\sqrt{\xi(t,S)}\cdot y - \frac{1}{2}\xi(t,S)} > K$

$$B(t; S, T)e^{\pm\sqrt{\xi(t,S)}\cdot y - \frac{1}{2}\xi(t,S)} > K$$

$$\Leftrightarrow \frac{B(t; S, T)}{K} > e^{\mp\sqrt{\xi(t,S)}\cdot y + \frac{1}{2}\xi(t,S)}$$

 $\leftrightarrow \frac{1}{2}\xi(t,S) \mp \sqrt{\xi(t,S)} \cdot y < ln \frac{B(t;S,T)}{\kappa}$, here, we would like the upper bound of y, so we choose $\frac{1}{2}\xi(t,S) + \sqrt{\xi(t,S)} \cdot y < \ln \frac{B(t;S,T)}{\nu}$, then, we have

 $y < \frac{1}{\sqrt{\xi(t,S)}} \left(ln \frac{B(t;S,T)}{K} - \frac{1}{2} \xi(t,S) \right)$. Let $d_{-} = \frac{1}{\sqrt{\xi(t,S)}} \left(ln \frac{B(t;S,T)}{K} - \frac{1}{2} \xi(t,S) \right)$

Then, we have

$$E^{\mathbb{P}_{S}}[(B(S;S,T)-K)^{+}]$$

$$= \int_{-\infty}^{\infty} (B(t;S,T)e^{\pm\sqrt{\xi(t,S)}\cdot y-\frac{1}{2}\xi(t,S)}-K)^{+}\cdot e^{\frac{-1}{2}y^{2}}\frac{1}{\sqrt{2\pi}}dy$$

$$= \int_{-\infty}^{d_{-}} B(t;S,T)e^{-\sqrt{\xi(t,S)}\cdot y-\frac{1}{2}\xi(t,S)}\cdot e^{\frac{-1}{2}y^{2}}\frac{1}{\sqrt{2\pi}}dy$$

$$-\int_{-\infty}^{d_{-}} K\cdot e^{\frac{-1}{2}y^{2}}\frac{1}{\sqrt{2\pi}}dy$$

$$= \int_{-\infty}^{d_{-}} B(t;S,T)e^{-\frac{-1}{2}(2\sqrt{\xi(t,S)}\cdot y+\xi(t,S)+y^{2})}\cdot e^{\frac{-1}{2}y^{2}}\frac{1}{\sqrt{2\pi}}dy$$

$$-\int_{-\infty}^{d_{-}} K\cdot e^{\frac{-1}{2}y^{2}}\frac{1}{\sqrt{2\pi}}dy$$

$$= \int_{0.00}^{d_{-}} B(t; S, T) e^{-\frac{1}{2}(y + \sqrt{\xi(t,S)})^{2}} \cdot \frac{1}{\sqrt{2\pi}} dy - K \cdot \mathcal{N}(d_{-})$$

Next, using change of variable, let $z=y+\sqrt{\xi(t,S)}$, then, dz=dy. If $y=d_-$, then, $z=d_-+\sqrt{\xi(t,S)}$. Denoted by d_+ , let $d_+=d_-+\sqrt{\xi(t,S)}$. If $y=-\infty$, then, $z=-\infty$. Then, we have

$$= \int_{-\infty}^{d_+} B(t; S, T) e^{-\frac{1}{2}z^2} \cdot \frac{1}{\sqrt{2\pi}} dz - K \cdot \mathcal{N}(d_-)$$

$$= B(t; S, T) \cdot \mathcal{N}(d_+) - K \cdot \mathcal{N}(d_-)$$

 $E^{\mathbb{P}_S}[(B(S; S, T) - K)^+]$

with $d_{+} = d_{-} + \sqrt{\xi(t,S)} = \frac{1}{\sqrt{\xi(t,S)}} ln \frac{B(t;S,T)}{K} - \frac{1}{2} \sqrt{\xi(t,S)} + \sqrt{\xi(t,S)} = \frac{1}{\sqrt{\xi(t,S)}} \left(ln \frac{B(t;S,T)}{K} + \frac{1}{2} \xi(t,S) \right)$

Therefore, the European call option on T-bond, with the payoff $(B(S,T)-K)^+$ at time S, in the S-forward probability measure $\mathbb{P}_{S} \sim \mathbb{Q}$ with the defined Radon-Nikodym density process, with

$$(B(S,T)-K)^+$$
 at time S , in the S -forward probability measure $\mathbb{P}_S \sim \mathbb{Q}$ with the defined Radon-Nikodym density process, with given value $B(t;S,T)$ the option value at time t is $V(t)=B(t,S)\cdot E^{\mathbb{P}_S}[(B(S;S,T)-K)^+|\mathcal{F}_t]=B(t,S)\cdot E^{\mathbb{P}_S}[(B(t;S,T)e^{\pm\sqrt{\xi(t,S)}\cdot y-\frac{1}{2}\xi(t,S)}-K)^+]=B(t,S)\cdot [B(t;S,T)\cdot \mathcal{N}(d_+)-K\cdot \mathcal{N}(d_-)]=$

 $B(t,T) \cdot \mathcal{N}(d_+) - B(t,S) \cdot K \cdot \mathcal{N}(d_-)$, with $d_{+} = \frac{1}{\sqrt{\xi(t,S)}} \left(ln \frac{B(t;S,T)}{K} + \frac{1}{2} \xi(t,S) \right),$ $d_{-}=\frac{1}{\sqrt{\xi(t,S)}}\left(ln\frac{B(t;S,T)}{K}-\frac{1}{2}\xi(t,S)\right)$. This is the analytical result for the price of European call option on T-bond, with the time Spayoff claim $(B(S,T)-K)^+$.

In another way,