Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 13 23 stycznia 2020 r.

- **M13.1.** 1 punkt Niech $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^T$. Sprawdzić, że wzór
 - a) $\|\boldsymbol{x}\|_1 := \sum_{k=1}^n |x_k|,$
 - b) $\|x\|_{\infty} := \max_{1 \leqslant k \leqslant n} |x_k|,$ definiuje normę w przestrzeni $\mathbb{R}^n.$

M13.2. 1.5 punkta Wykazać, że macierzowa norma spektralna, indukowana przez normę euklidesowa wektorów $\|\cdot\|_2$, wyraża się wzorem

$$||A||_2 = \sqrt{\varrho(A^T A)},$$

gdzie promień spektralny $\varrho(A^TA)$ macierzy A^TA jest z definicji jej największą wartością własną.

- **M13.3.** 1 punkt | Wykazać, że dla każdego $\boldsymbol{x} \in \mathbb{R}^n$ zachodzą nierówności
 - $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{1} \leqslant n\|\mathbf{x}\|_{\infty};$
 - $\|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_{2} \leqslant \sqrt{n} \|\boldsymbol{x}\|_{\infty};$
 - c) $\frac{1}{\sqrt{n}} \| \boldsymbol{x} \|_1 \leqslant \| \boldsymbol{x} \|_2 \leqslant \| \boldsymbol{x} \|_1.$
- M13.4. | 1 punkt | Wykazać, że norma macierzowa indukowana przez normę wektorową $\|\cdot\|_{\infty}$ wyraża się

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

1 punkt Wykazać, że wzór

$$||A||_E \coloneqq \sqrt{\sum_{1 \leqslant i,j \leqslant n} a_{ij}^2}$$

definiuje submultiplikatywną normę w $\mathbb{R}^{n\times n}$, zwaną normą euklidesową, zgodną z normą wektorową $\|\cdot\|_2$.

- **M13.6.** $\boxed{1 \text{ punkt}}$ Załóżmy, że nieosobliwa macierz $A = [a_{ij}^{(1)}] \in \mathbb{R}^{n \times n}$ jest symetryczna, tj. $a_{ij}^{(1)} = a_{ji}^{(1)}$ dla $\overline{i,j=1,2,\ldots,n}$. Załóżmy ponadto, że do rozwiązania układu równań liniowych $A\boldsymbol{x}=\boldsymbol{b}$ można zastosować metodę eliminacji bez wyboru elementów głównych.
 - a) Wykazać, że wówczas wielkości $a_{ij}^{(k)}$, otrzymywane w tej metodzie kolejno dla $k=2,3,\ldots,n,$ są takie, że $a_{ij}^{(k)}=a_{ji}^{(k)}$ dla $i,j=k,k+1,\ldots,n.$
 - b) Wskazać, jak można wykorzystać ten fakt dla zmniejszenia kosztu metody eliminacji.

M13.7. 1 punkt

- a) Wykazać, że jeśli L jest macierzą trójkątną dolną z jedynkami na przekątnej głównej, to L^{-1} również jest macierzą tego typu.
- b) Opracować metodę wyznaczenia macierzy odwrotnej do macierzy trójkątnej dolnej L, z jedynkami na przekątnej głównej.
- M13.8. 2 punkty. Włącz komputer. Zaprogramować efektywnie metodę eliminacji Gaussa w języku Julia. Należy zaprezentować funkcję solve! (A,b), która dla danej macierzy $A \in \mathbb{R}^{n \times n}$ i wektora $b \in \mathbb{R}^n$ znajduje rozwiązanie układu równań Ax = b. Wskazówka. Aby uzyskać efektywną implementację, można rozważyć układ równań $A^Tx = b$. Efektywna implementacja to taka, która działa co najwyżej 30-razy dłużej niż wbudowana metoda \(A,b). Ponadto, dla zaoszczędzenia na obliczeniach, można pominąć wybór elementów głównych.