Twierdzenie 1 (zbieżność w L^1). (M_n, \mathcal{F}_n) martyngał, NWSR:

- a) $\{M_n\}_{n\geqslant 0}$ jednostajnie całkowalna,
- b) M_n zbieżny w L^1 (czyli $\exists_M \mathbb{E} |M_n M| \to 0$),
- c) M_n jest prawostronnie domknięty (czyli \exists_M , M całkowalne, $M_n = \mathbb{E}(M|\mathcal{F}_n)$),
- $c') \ \exists M_{\infty} \ \mathcal{F}_{\infty} = \sigma \left(\bigcup_{n=1}^{\infty} \mathcal{F}_{n} \right) \text{-mierzalna}, \ M_{n} = \mathbb{E}(M_{\infty} | \mathcal{F}_{n}) \ p.n..$

Ponadto wtedy $M_n \to M_\infty$ p.n. $i \ w \ L^1$.

Twierdzenie 2 (zbieżność w L^p). (M_n, \mathcal{F}_n) martyngał, p > 1, $\forall_n \mathbb{E} |M_n|^p < \infty$, NWSR:

- a) $\sup_n \mathbb{E}|M_n|^p < \infty$,
- b) $|M_n|^p_n$ jednostajnie całkowalne,
- c) M_n zbieżny w L^p (czyli $\exists M, \mathbb{E}|M|^p < \infty, \mathbb{E}|M_n M|^p \to 0$),
- d) M_n jest prawostronnie domknięty przez zmienną z L^p (czyli $\exists M, \mathbb{E}|M|^p < \infty, \forall_n \mathbb{E}(M|\mathcal{F}_n) = M_n$),
- $d') \ \exists M \mathcal{F}_{\infty}\text{-mierzalna}, \ \mathbb{E}|M_{\infty}| < \infty, \forall_n \mathbb{E}(M_{\infty}|\mathcal{F}_n) = M_n.$

Ponadto wtedy $M_n \to M_\infty$ p.n. i w L^p .

Uwaga 3. Istnieje martyngał jednostajnie całkowalny $(M_n)_{n\geqslant 0}$ taki, że $\sup_n \mathbb{E}|M_n|=\infty$.

Łańcuchy Markowa

E – skończona lub przeliczalna przestrzeń stanów.

Definicja 4 (łańcuch Markowa). Proces $(X_n)_{n\geqslant 0}$ o wartościach w skończonej lub przeliczalnej przestrzeni E nazywamy lańcuchem Markowa, jeśli zachodzi warunek $\mathbb{P}(X_{n+1} = a_{n+1}|X_n = a_n, \ldots, X_0 = a_0) = \mathbb{P}(X_{n+1} = a_{n+1}|X_n = a_n)$ o ile $\mathbb{P}(X_n = a_n, \ldots, X_0 = a_0) > 0$.

Przykład 5. X_0, X_1, X_2, \ldots niezależne, to (X_n) ł.M.

Przykład 6. X_0, X_1, \ldots niezależne, to $(S_n = X_n + S_{n-1})$ ł.M.

Przykład 7. Błądzenie po wierzchołkach.

Definicja 8 (macierz przejścia). X_n jest ł.M., macierzą przejścia w n-tym kroku $(P_n(a,b))_{a,b\in E}$ nazywamy macierz elementów $P_n(a,b) = \mathbb{P}(X_n = b, X_{n-1} = a)$ o ile $\mathbb{P}(X_{n-1} = a) > 0$.

Uwaga9. P_n macierz przejścia w n-tymkroku, $\mathbb{P}(X_{n-1}=a)>0,$ wtedy

- $\forall_b P_n(a,b) \geqslant 0$,
- $\sum_{b} P_n(a,b) = 1$.

Definicja 10 (macierz stochastyczna). Macierz $P = (p(a,b))_{a,b \in E}$ nazywamy stochastyczną, jeśli $\forall_{a,b}p(a,b) \geq 0$ oraz $\forall_a \sum_b p(a,b) = 1$.

Definicja 11 (jednorodny ł. M.). Łańcuch Markowa (X_n) nazywamy *jednorodnym* z macierzą przejścia P = (p(a,b)), jeśli $\forall_{n,a,b} \mathbb{P}(X_n = b | X_{n-1} = a) = p(a,b)$ o ile $\mathbb{P}(X_{n-1} = a) > 0$.

Przykład 12. X_0, X_1, \ldots niezależne, (X_n) jednorodny ł.M. wtw, gdy X_n mają jednakowy rozkład.

Przykład 13. X_i niezalezne, $(S_n = X_0 + \ldots + X_n)$ jednorodny wtw, gdy X_n mają jednakowy rozkład.

Przykład 14. Błądzenie losowe po trójkące, błądzenie losowe na $\{-a,\ldots,b\}$ z odbiciem lub pochłanianiem są jednorodne.

Definicja 15 (rozkład początkowy). Rozkładem początkowym ł.M. $(X_n)_{n\geqslant 0}$ nazywamy rozkład X_0 , czyli ciąg $(\pi_a)_{a\in E}$ taki, że $\mathbb{P}(X_0=a)=\pi_a$.

Fakt 16. P = (p(a, b)) macierz stochastyczna, $\Pi = (\pi_a)$ rozkład na E. (X_n) jest (jednorodnym) ł.M. o macierzy przejścia P i rozkładzie poczatkowym Π wtw, gdy $\mathbb{P}(X_0 = a_0, \dots, X_n = a_n) = \pi_{a_0} p(a_0, a_1) \cdot \dots \cdot p(a_{n-1}, a_n)$.

Twierdzenie 17 (o istnieniu ł.M.). $\Pi = (\pi_a)_{a \in E}$ dowolny rozkład na E, $P = (p(a,b))_{a,b \in E}$ macierz stochastyczna na E, wówczas istnieje (jednorodny) ł.M. o rozkładzie początkowym Π i macierzy przejścia P.