\$50 CM ELSEVIER

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Authentication and integrity of smartphone videos through multimedia container structure analysis

Carlos Quinto Huamán, Ana Lucila Sandoval Orozco, Luis Javier García Villalba*

Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases 9, Ciudad Universitaria, 28040 Madrid, Spain

ARTICLE INFO

Article history:
Received 1 January 2020
Received in revised form 4 February 2020
Accepted 17 February 2020
Available online 20 February 2020

Keywords:
Forensic analysis
Metadata
Mobile device camera
Multimedia container structure
Social network video analysis
Video analysis
Video authenticity
Video integrity

ABSTRACT

Nowadays, mobile devices have become the natural substitute for the digital camera, as they capture everyday situations easily and quickly, encouraging users to express themselves through images and videos. These videos can be shared across different platforms exposing them to any kind of intentional manipulation by criminals who are aware of the weaknesses of forensic techniques to accuse an innocent person or exonerate a guilty person in a judicial process. Commonly, manufacturers do not comply 100% with the specifications of the standards for the creation of videos. Also, videos shared on social networks, and instant messaging applications go through filtering and compression processes to reduce their size, facilitate their transfer, and optimize storage on their platforms. The omission of specifications and results of transformations carried out by the platforms embed a features pattern in the multimedia container of the videos. These patterns make it possible to distinguish the brand of the device that generated the video, social network, and instant messaging application that was used for the transfer. Research in recent years has focused on the analysis of AVI containers and tiny video datasets. This work presents a novel technique to detect possible attacks against MP4, MOV, and 3GP format videos that affect their integrity and authenticity. The method is based on the analysis of the structure of video containers generated by mobile devices and their behavior when shared through social networks, instant messaging applications, or manipulated by editing programs. The objectives of the proposal are to verify the integrity of videos, identify the source of acquisition and distinguish between original and manipulated videos.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mobile device manufacturers struggle every year to have the best features, benefits, functionality, and faster than the competition. People on a budget can buy a smartphone whose features solve most of their needs. The criteria that users value most when purchasing a mobile phone are design, performance, autonomy (battery), and integrated cameras, all of which are available in the low, medium, and high-end terminals.

Currently, some devices use artificial intelligence to manage up to 6 cameras, and the primary sensor that reaches 108 megapixels, which capture professional-quality photos and videos, but without the need to use a professional camera with heavy and expensive accessories.

According to the Global Mobile Trends 2020 report [1], the GSM Association predicts that by 2025 smartphone penetration

will reach 80% globally, driven by India, Indonesia, Pakistan, Mexico, and a large number of users in Africa. Another feature that has burst more strongly during 2019 in the most advanced mobile ranges has been the 5G connectivity. According to Ericsson [2], this connectivity is expected to be present in up to 2600 million subscriptions worldwide by 2025. They also say that the average monthly traffic per smartphone, which currently stands at 7.2 GB, could reach 24 GB by the end of 2025, which represents a significant increase in the amount of data that each mobile can move over a month. Some new user habits will be directly involved in this monthly gigabyte increase, which will promote greater use of the data daily. In fact, in these habits, the new virtual reality contents will have particular importance, which will be more and more popular, and therefore will consume more data from the terminals. While with 7.2 GB per month, we can enjoy HD video about 21 min a day, with 24 GB users will be able to play up to 30 min in HD with up to six extra minutes of virtual reality content, which will be a significant improvement in the consumption of higher quality content. On the other hand, social platforms (social networks, instant messaging applications)

^{*} Corresponding author.

E-mail addresses: cquinto@ucm.es (C. Quinto Huamán),
asandoval@fdi.ucm.es (A.L. Sandoval Orozco), javiergv@fdi.ucm.es
(L.J. García Villalba).

have become the most used communication channel by users as a source of information and to suggest, claim, consult or share personal experiences through multimedia files (photos and videos). According to [3], currently, Facebook is the social network with the most significant number of users in the world, with more than 2414 million users, followed by Youtube com 2000 million and Instagram with 1000 million. In terms of messaging applications, WhatsApp has more than 1600 million users worldwide, followed by Facebook Messenger with 1300 million.

In this context, cyber-attacks or privacy abuses and other forms of social and economic disruption increasingly affect citizens. Likewise, it is increasingly common for citizens, companies, and institutions of all kinds to carry out digital interactions and transactions in the social, financial and commercial fields, without being clear that the platform they use (Internet) also gives rise to cyber-crimes, cyber-attacks on critical infrastructures and violations of their privacy. To anticipate, prevent, and manage these threats, it is necessary to understand the causes, develop, and apply innovative technologies, solutions, forecasting tools, and knowledge. The videos captured by mobile devices and shared by social networks are also vulnerable to this type of attack, generating much interest in the development of intelligent software platforms that facilitate forensic investigations: In [4], a video analysis platform is developed to investigate criminal and terrorist activities, achieving efficient results that comply with legal, ethical, and privacy standards. In [5], they develop technologies to identify, categorize, and classify the source of images and video, as well as to verify the integrity of their content. This work is part of the RAMSES Project [6], which aims to design and develop a holistic, intelligent, scalable, and modular platform for Law Enforcement Agencies (LEAs) and to facilitate digital forensic investigations. To this, RAMSES brings together the latest technologies to develop an intelligent software platform, combining scraping of the public and deep web, detecting manipulation and steganalysis for images and videos, tracking malware payments, extraction and analysis of malware samples and Big Data analysis and visualizations tools. Our innovative method allows verifying the integrity and authenticity of digital videos using the intrinsic features of multimedia containers. Concretely, it can determine the brand of the mobile device, the social network or instant messaging application, and the editing program that was used for the manipulation. Additionally, it identifies anomalies in the values caused by steganography tools. This work is structured in 6 sections, the first being this introduction. Section 2 examines the related works in forensic video analysis and particularly in the study of container structures. In Section 3, the proposed analysis is carried out. Section 4 describes counter-forensic methods. Finally, Section 5 presents the conclusions of the work.

2. Forensic analysis for digital videos

Most investigations to detect tampering, identify source acquisition, integrity, and authenticity analysis have been performed for static photographic images [7–10]. These techniques of forensic image analysis can be applied to the different previously extracted frames from a digital video. However, the scientific investigation requires solutions to the forensic issues related to video signals due to their peculiarities and the full range of possible alterations that can be applied.

In [11], the authors classify five methods of video manipulation detection: active techniques, passive techniques, intraframe techniques, inter-frame techniques, detection techniques, and localization techniques. They also make a classification of the different types of features and methods used to detect the manipulation or falsification of a digital video. Among the types of features are sensor artifacts, coding artifacts, motion features, and

object features. Among the types of techniques are inter-frame forgery detection and intra-frame forgery detection. However, it is necessary to add to this classification the features of the multimedia container, which allows the integrity and authenticity of digital videos to be accurately determined. Fig. 1 presents an updated classification of the types of features used to detect tampering in digital video.

In this context, research has emerged in recent years that analyzes the internal structure of multimedia containers, but mostly focuses on AVI formats, with minimal literature for MP4, MOV, and 3GP containers. Likewise, others analyze the structures of a small number of social networks and editing programs. It must be taken into account that mobile device manufacturers are continuously adding new atoms, labels, values, and other features related to each brand, model, operating system, and even the version of the latter. Social networks add different features depending on the versions of their applications and the device used to share the video. Similarly, the editing programs insert different structures depending on the type of manipulation and the version used.

In [12,13], a study is made of the features that can be subject to forensic analysis on mobile devices. The biggest problem with this approach is that the different models of digital cameras use components from a small number of manufacturers and that the algorithms they use to generate the images and videos are also very similar between models of the same brand.

In [14], a detailed comparison of the main groups of acquisition source identification techniques. These are divided into five groups and are based on metadata, image features, CFA matrix defects, and color interpolation, sensor imperfections, and wavelet transforms

In [15], the authors perform a technique to verify the integrity of AVI format videos, generated by Video Event Data Recorders (VEDRs), an analysis of the structure of 296 original videos was performed, which were later edited by five editing programs. The results of the study showed that the editors significantly changed the structure and metadata values compared to the originals. Each editing program embeds a specific structure that helps the forensic analyst to detect whether a video has been manipulated in any way.

In [16], the authors analyzed the structures of AVI and MP4 format videos, grouped in 19 models of digital cameras, 14 models of mobile phones and six editing programs. After analyzing the original videos, the authors determined that the structures of each type of container are not strictly defined as specified in the standards. Considerable differences were found between videos generated by such devices. Also, the AVI videos, after being manipulated by the editing programs, changed the internal structure, including the metadata values, essential features to know the origin of the videos.

In [17], the authors implemented an unsupervised method for verifying video integrity based on the dissimilarity between original and edited videos. They also developed a technique to identify the source of video acquisition by analyzing containers. To achieve this goal, they used the *MP4Parser* library, obtaining Extensible Markup Language (XML) files for later analysis, making great results in their experiments, arguing that the solution uses a minimum of computational resources compared to other alternatives.

2.1. Digital video

Digital videos are composed of a sequence of images and audio that are previously encoded and then encapsulated in a multimedia container [18]. For the generation of digital videos, two procedures are performed in parallel (image sequence processing

Fig. 1. Features used to detect manipulation in digital videos.

and audio sequence processing) [19]. On the one hand, the lens system captures the light of the scene by controlling exposure, focus, and image stabilization. This light enters the camera through the lens system and applies various filters to improve the visual quality of the image (infrared and anti-aliasing). The light then passes to the image sensor through the color filter array, which are light-sensitive elements called pixels. This signal is converted into a digital signal, which is transmitted to the Digital Signal Processor (DSP) and specifically to the Digital Image Processor (DIP), which performs different camera processes to stabilize the signal and correct artifacts such as removing noise and other introduced anomalies [20,21]. Then the compression process is carried out using a codec, after synchronization and finally, it is encapsulated in a multimedia container.

On the other hand, the sound signal, transmitted through the air, is captured through the microphone that works as an electroacoustic sensor. The microphone transforms the sound waves into an electrical signal to increase its intensity and transmit it to an Analog to Digital Converter (ADC), which converts it into a digital signal. The Digital Audio Processor then improves the quality of the audio before compression (volume and frequency control). Then the signal is compressed with an encoding algorithm and finally encapsulated in a multimedia container.

In [22], it is indicated that video compression is achieved by eliminating the temporal redundancy that exists between the frames that make up a sequence, thus only obtaining components necessary for faithful reproduction of the data. There are different video compression standards, but currently, the most used by mobile devices are H264/AVC or MPEG-4 Part 10 [23] and H265/HEVC or MPEG-H Part 2 [24].

2.2. Multimedia containers

A wide variety of formats, called media containers, are used to store video, audio, metadata, sync information, and error correction information, following a pre-defined format in current standards. As its name suggests, a multimedia container is a file that contains several elements, at least the video and audio tracks [25–27]. Some containers also allow you to include other elements such as images or subtitles without the need for external files. Fig. 2 shows the elements of the media container and the interlacing of the content. The multimedia containers most used by mobile devices currently are MP4, MOV, and 3GP. Table 1 presents the primary multimedia containers with their respective descriptions.

Metadata records information related to the conditions of image/video capture, such as date and time of generation, presence or absence of flash, the distance of objects, exposure time, shutter aperture and GPS information, among others. In other words, information of interest that complements the main content of a digital document. Metadata is also used as a powerful help to organize the search within image and video libraries.

Digital images are stored in a variety of formats such as TIFF, JPEG [31] or PSD. Some metadata containers for the different image formats are IFD Exif, TIFF, Adobe XMP, and IPTC-IIM. The Exif specification [32] is most commonly used as the most common metadata container in digital cameras [33]. The Exif specification includes hundreds of labels, including brand and model, although it is noteworthy that the specification itself does not make its existence mandatory in archives.

In the videos, the metadata is stored in the media container and key-value format. They are also distributed in all the tracks of the video.

2.3. MP4, MOV, and 3GP containers

Currently, 100% of mobile device manufacturers use MP4, MOV, or 3GP multimedia containers to encapsulate digital video captured by integrated cameras. All three containers are based on the MPEG-4 part-14 [28] and QuickTime [27] standards, which define their structure and content. In this context, the MP4, MOV, and 3GP multimedia containers are composed of a set of elements called atoms. A 32 bit unsigned integer specifies the types of atoms, typically interpreted as a four-character lowercase ASCII code. The atoms are hierarchical by nature. That is, an atom can contain other atoms, which in turn can contain other atoms, and so on. Each atom carries its size and type information as well as its data.

The format of the data stored in a given atom cannot always be determined only by the "type" field of the atom. The type of the parent atom can also be important. In other words, a given type of atom may contain different types of information depending on its root atom. Atoms usually do not follow any particular order. The head of the atom contains the following fields:

- **size**: A 32 bit unsigned integer that indicates the size of the atom. However, this field may contain special values indicating an alternative method for determining the size of the atom. These special values are normally used only for data medium "mdat" atoms:
 - O: Allowed only by a higher level atom, designates the last atom in the file and indicates that the atom extends to the end of the file
 - 1: Indicates that the actual size of the atom is in the "extended size" field.

The actual size of an atom cannot be less than 8 bytes.

- **type**: A 32 bit integer that specifies the type of atom. For example, "moov" 0x6D6F6F76 for a film atom, "trak" 0x7472616B for a track atom. Knowing the type of an atom allows you to interpret your data.
- **extended size**: A 64 bit field that is used by atoms with data containing more than 232 bytes. In this case the "size" field is set to 1.

Fig. 2. Multimedia container elements and content interlacing.

Table 1Main multimedia containers.

Container	Owner	Metadata	Frame rate	Bit rate	Video codec	Audio coded	OS
MOV [27]	Apple Inc.	Yes	Yes	Yes	H.264, H265	AAC	iOS
MP4 [28]	Mpeg	Yes	Yes	Yes	H.264, H265	AAC	Android
3GP [29]	3GPP	Yes	Yes	Yes	H.264	HE-AAC v2	Android
AVI [30]	Microsoft	Yes	Yes	Yes	VFW/MIPEG	ACM/PCM	Windows

Some atoms also contain the "version" and "flags" tags. These atoms are called complete atoms and are not treated as part of the atom header but as specific data fields for each type of atom containing them. The main types of atoms are:

- "ftyp": File compatibility type, identifies the file type and differentiates it from similar file types, such as MPEG-4 and IPEG-2000 files.
- "mdat": Media sample samples from films such as frames and groups of video audio samples. Usually, this data can be interpreted only by using the movie resource.
- "free": The unused space available in the file.
- "moov": Metadata of movie resources (number and type of tracks, location of sample data, and so on). Describe where they are and how the movie data is interpreted. This atom contains at least two "trak" atoms, one to store the video track information, and one for the audio track. Both atoms have a similar structure. However, the most recent mobile devices generate videos that contain more than two "trak" atoms and add new child atoms.

These atoms contain the fields shown in Table 2.

Fig. 3 shows the updated structure of the MP4, MOV, and 3GP multimedia containers.

Therefore, in the videos, the atoms are features that distinguish each brand, model, social platform and editing program. Hierarchically, an atom can be represented as follows: /moov/. In turn, these atoms have child atoms, e.g., Path-tag: /moov/mvhd/. Each atom can have a set of tags, e.g., /moov/mvhd/version. Also, these tags contain values e.g., Path-tag-value: /moov/mvhd/version, value: 0. This feature set is called the multimedia container structure.

3. Multimedia container structure analysis

This work proposes a technique for the verification of video integrity, identification of the source of acquisition, and differentiation between original and manipulated videos. Three phases compose the technique: (1) Preparation of the set of original and manipulated videos; (2) Extraction of the information contained

in each video with the atom extraction algorithm; (3) Multimedia containers structure analysis. Fig. 4 shows the three phases for the multimedia containers structure analysis.

3.1. Dataset preparation

In the literature, there are few video datasets generated by mobile devices that have been shared by Social Networks (SN), Instant Messaging Applications (IMA), and Editing Programs (EP). Having an organized, robust, balanced, and above all, up-to-date video data set is a challenge. For that reason, a heterogeneous and sufficiently large dataset has been generated, to evaluate the proposed method in real scenarios and thus obtain valid results. Tables 3 and 4 show the set of 1957 original videos generated by 86 devices, 66 models, and 11 brands of mobile devices most used today. These videos were generated with the default settings, different camera angles, different light conditions, and scenes.

Tables 5 and 6 show the set of videos shared through SN and IMA. For this purpose, 100% of the videos from the devices marked with (*) in Table 3 were shared, making a total of 3682 videos. Also, the settings that were used to perform the process of uploading, downloading, and transfer of videos are detailed.

In Table 7, the 721 videos manipulated with five EP and their respective configurations are presented. For this purpose, 100% of videos from the devices marked with (*) in Table 3 were used.

3.2. Atom extraction

Atom extraction consists of storing the atoms, tags, values, order of appearance of atoms, and all kinds of relevant information from the video generated by a mobile device. To process this information, we use the Atom Extraction Algorithm [34]. The process starts by obtaining the initial byte, size, and type of atom with a length of 4 bytes, represented by a string of characters. Next, the duplicity of atoms and the existence of child atoms are verified. Finally, a DataFrame is obtained with the set of atoms and tags with their respective values and order of appearance.

Table 2
Atoms format

Atom	Contain	
"ftyp"	Size	Specifies the number of bytes in this atom (32 bits).
	Туре	"ftyp" (32 bits);
	Major Brand	Identifies the type of movie file. If a file is compatible with multiple marks, these are specified in the "Compatible Brands" fields, and in this field the preferred mark (32 bits) is identified.
	Minor version	Identifies the type of movie file, it is represented in binary coded decimal form (BCD) indicating year, month and a code in binary zero. For example "BCD 20 04 06 00" (32 bits).
	Compatible Brands	List of supported file formats (32 bits).
"mdat"	Size	Specifies the number of bytes in this atom (32 bits).
	Туре	"mdat" (32 bits).
	Data	Contains the audio and video data of the movie.
"free"	Size	Specifies the number of bytes in this atom (32 bits).
	Туре	"free" (32 bits).
	Free Space	Contains bytes of free space. These bytes are all 0 (32 bits).
"moov"	Size	Indicates the number of bytes in this atom (32 bits).
	Туре	"moov" (32 bits).

Fig. 3. Structure of the MP4, MOV, and 3GP multimedia containers.

Fig. 4. Phases of the proposed technique.

3.3. Multimedia containers structure analysis

The features that come from the extraction of atoms are structured in a DataFrame with the following columns: *Path-file-name* is the path of the video followed by the video name, *Path-origin* is the path of the video, *Class-label* is the identification of each

social network and messaging application. *File-name* is the name of the video, *Marker* is the brand of the mobile device, *Model* is the model of the mobile device, *PathOrder-tag* is the set of atoms with their relative order, *Value* is the value of each label, *Reading-orders* is the absolute order of each atom, also called the order of appearance. Table 8 details the contents of the DataFrame.

Table 3 Original video dataset.

Brand (ID)	Model (ID)	Id device	OS version	Video codec	#vOrig	SN and MSN apps	Editing program
	Inad 2 (M01)	D01	iOS 7.1.1	H.264	16		
	Ipad 2 (M01)	D02	iOS 9.3.5	H.264	20	×	×
	Ipad Air (M02)	D03	iOS 11.3	H.264	20	×	X
	Ipad Mini (M03)	D04	iOS 8.4	H.264	16		
	Iphone 4 (M04)	D05	iOS 7.1.2	H.264	19		
	Inhana 45 (MOE)	D06	iOS 7.1.2	H.264	20		
	Iphone 4S (M05)	D07	iOS 8.4.1	H.264	15		
		D08	iOS 7.0.4	H.264	20	×	X
	Iphone 5 (M06)	D09	iOS 9.3.3	H.264	19		
		D10	iOS 8.4	H.264	32		
		D11	iOS 7.0.3	H.264	19		
	Iphone 5C (M07)	D12	iOS 8.4.1	H.264	21		
		D13	iOS 10.2.1	H.264	19		
	Iphone 5S (M08)	D14	iOS 9.2	H.264	20	×	
APPLE	• • • • •	D15	iOS 8.4	H.264	17	×	X
(B01)		D16	iOS 9.2	H.264	20		
` ,	Iphone 6 (M09)	D17	iOS 10.1.1	H.264	18		
		D18	iOS 11.2.0	H.264	20		
		D19	iOS 11.2.6	H.264	24	×	X
	Iphone 7 (M10)	D20	iOS 10.2.6	H.264	20		
		D21	iOS 11.0.3	H.264	20		
	Iphone 7 Plus (M11)	D22	iOS 11.0.3	H.264	20		
	Iphone 8 (M12)	D23	iOS 12.1.4	H.264	18		
		D24	iOS 11.2.5	H.265	18	×	X
	Iphone 8 Plus (M13)	D25	iOS 11.2.6	H.265	21		
	Iphone 6 Plus (M14)	D26	iOS 10.2.1	H.264	19		
	Int VD (M15)	D27	iOS 12.1.1	H.264	16		
	Iphone XR (M15)	D28	iOS 12.1.4	H.265	16		
	Iphone X (M16)	D29	iOS 11.4.1	H.264	20	×	
	Iphone XS (M17)	D30	iOS 12.1.1	H.264	20		
	Iphone XS Max (M18)	D31	iOS 12.1.0	H.264	20	×	
PO (PO2)	Aguaris E5 (M19)	D32	Android	H.264	40		
BQ (B02)	Aquaris E4.5 (M20)	D33	Android	H.264	40		
	Ascend (M21)	D34	Android	H.264	19	×	X
	DO (M22)	D35	Android	H.264	19		
	P8 (M22)	D36	Android	H.264	20		
	P9 (M23)	D37	Android	H.264	19	×	X
	P9 Lite (M24)	D38	Android	H.264	19		
	Y5 (M25)	D39	Android	H.264	20		
Huawei (B03)		D40	Android	H.264	20		
, ,	Y635-L01 (M26)	D41	Android	H.264	21		
	Honor 5C (M27)	D42	Android	H.264	19		
	P10 (M28)	D43	Android	H.264	20	×	
	P30 (M29)	D44	Android	H.264	20		
	PSmart Plus (M30)	D45	Android	H.264	20		
	G7 (M31)	D46	Android	H.264	20		

Given a video X, it contains a set of atoms $(a_1, \ldots a_n)$, represented by /ftyp-1/. These atoms may contain other atoms and tags: $a=((a_1), w_1 \ldots (a_n), w_n)$ represented by /ftyp-1/majorBrands. Also, these tags have values: /ftyp-1/majorBrands: @mp42. In this sense, the PathOrder-tag includes 2 types of features: Sequence of atoms (/ftyp-1/) and sequence of atoms with their tags (/ftyp-1/) majorBrands).

To know the structure that each tool inserts into the multimedia containers, we compared the structure of an original video (Apple brand, Ipad Air model), with the same video after being shared through Facebook HD, Youtube, WhatsApp, Linkedin, Telegram. Figs. 5 and 6 show the individual comparison of the multimedia container structure.

We can see that the original video has four root atoms (ftyp-1, wide-2, mdat-3, moov-4). The value of the @majorBrands and compatibleBrand tags is qt in both cases. The path to get the value of the @timeScale tag is /ftyp-1/wide-2/mdat-3/moov-4/mvhd-1/ @timeScale:600. The moov-4 atom contains four trak atoms, 1 for the video track, 1 for the audio track, and two exclusively for metadata. The structure of the container is composed of 651 features.

The Facebook HD video, it has four root atoms (ftyp-1, moov-2, free-3, mdat-4). The values of the @compatibleBrand and @major-Brands tags are isomiso2avc1mp41 and isom respectively. The path to get the value of the @timeScale tag is /ftyp-1/moov-2/mvhd-1/@timeScale:1000. The moov-2 atom contains two trak atoms, 1 for the video track, 1 for the audio track. The structure of the container is composed of 267 features.

The Youtube video, it has three root atoms (ftyp-1, moov-2, mdat-3). The values of the @majorBrands and @compatibleBrand tags are mp42 and isommp42 respectively. The path to get the value of the @timeScale tag is /ftyp-1/moov-2/mvhd-1/@timeScale: 1000. The moov-2 atom contains two trak atoms, 1 for the video track, 1 for the audio track. The structure of the container is composed of 250 features.

The WhatsApp video, it has four root atoms (ftyp-1, beam-2, moov-3, mdat-4). The values of the @majorBrands and @compatibleBrand tags are mp42 and mp41mp42isom respectively. The path to get the value of the @timeScale tag is /ftyp-1/beam-2/moov-3/mvhd-1/@timeScale:44100. The moov-3 atom contains two trak atoms, 1 for the video track, 1 for the audio track. The structure of the container is composed of 237 features.

Table 4
Original video dataset

Brand (ID)	Model (ID)	Id device	OS version	Video Codec	#vOrig	SN and MSN apps	Editing programs
	D290 (M32)	D47	Android	H.264	19		
LG (B04)	Nexus 5 (M33)	D48	Android	H.264	30	×	
LG (DO-1)	` ,	D49	Android	H.264	26		
	G6 (M34)	D50	Android	H.264	30	×	
Microsoft (B05)	Lumia 640 LTE (M35)	D51	Windows Phone	H.264	80	×	
	Moto G1 (M36)	D52	Android	H.264	15		
	Moto G1 (M30)	D53	Android	H.264	15		
Motorola (B06)	Moto G2 (M37)	D54	Android	H.264	15	X	
	Nexus 6 (M38)	D55	Android	H.264	15	×	
	G7 Play (M39)	D56	Android	H.264	20		
Nokia (B07)	808 Pureview (M40)	D57	Symbian	H.264	80		
	A0001 (M41)	D58	Android	H.264	20	X	
One Plus (B08)	A3000 (M42)	D59	Android	H.264	19		
	A3003 (M43)	D60	Android	H.264	36		
	Galaxy A6 (M44)	D61	Android	H.264	20	X	X
	Galaxy Nexus (M45)	D62	Android	H.264	20		
	Galaxy GT-I8190N (M46)	D63	Android	H.264	22		
	Galaxy GT-I8190 (M47)	D64	Android	H.264	16		
	Galaxy S3 (M48)	D65	Android	H.264	20		
	Galaxy GT-I9300 (M49)	D66	Android	H.264	19		
	Galaxy S3 Neo (M50)	D67	Android	H.264	18		
	Galaxy S4 Mini (M51)	D68	Android	H.264	39		
	Galaxy S4 (M52)	D70	Android	H.264	20		
Samsung (B9)	Galaxy S5 (M53)	D71	Android	H.264	20		
	, ,	D72	Android	H.264	19	X	
	Galaxy S6 (M54)	D73	Android	H.264	20		
	Galaxy S7 (M55)	D74	Android	H.264	20	X	
	Galaxy S9 Plus M56	D75	Android	H.264	20		
	Guiday 55 Trus Wiso	D76	Android	H.265	20	X	×
	Galaxy J5 2016 (M57)	D77	Android	H.264	24	×	X
	Galaxy Tab 3 (M58)	D78	Android	H.264	37		
	Galaxy Trend Plus (M59)	D79	Android	H.264	16		
	Galaxy Tab A (M60)	D80	Android	H.264	16	×	×
Wiko (B10)	Ridge 4G (M61)	D81	Android	H.264	88		
	Mi3 (M62)	D82	Android	H.264	24	×	
	Redmi Note 3 (M63)	D83	Android	H.264	20		
Xiaomi (B11)	Redmi Note 5 (M64)	D84	Android	H.264	20	X	×
	PocoPhone (M65)	D85	Android	H.264	20	X	
	Redmi 5 Plus (M66)	D86	Android	H.264	20		
otal videos					1957		

Table 5 Video dataset (Social networks)

Social network	Version	Upload process	Download process	Edited container	Shared videos
Facebook HD (SN01)	Website	Max 4 gb, 240 min	Firefox (Inspect element)	MP4	310
Facebook SD (SN02)	Website	Max 4 gb, 240 min	Firefox (Inspect element)	MP4	290
Youtube (SN03)	Website	Max 128 gb,12 h	Youtube studio beta	MP4	310
Flickr (SN04)	Website	Max 1 gb	Website (save as)	MP4	508
Linkedin (SN05)	Website	Max 6 gb, min 75 kb	Website (save as)	MP4	310
Instagram (SN06)	Website	Max 10 min, ratio 9:16	Firefox (Inspect element)	MP4	310
Twitter (SN07)	Website	Max 500 mb, 2.20 min	Firefox(twitervideodownloader)	MP4	240
Tumblr (SN08)	Website	Max 100 mb	Firefox (Inspect element)	MP4	320
Total videos					2598

Table 6Video dataset (Instant messaging applications).

Messaging application	Version	Features	Edited container	Shared videos
Facebook Msn (MA01)	255.0.0.13.113	-	MP4	270
WhatsApp (MA02)	2.19.20	-	MP4	504
Telegram (MA03)	5.7.1	Max 1.5 GB	MP4	310
Total videos				1084

The Linkedin video, it has four root atoms (ftyp-1, moov-2, free-3, mdat-4). The values of the @majorBrands and @compatible-Brand tags are isom and isomiso2avc1mp41 respectively. The path to get the value of the @timeScale tag is /ftyp-1/moov-2/mvhd-1/@timeScale:1000. The moov-2 atom contains two trak atoms, 1

for the video track, 1 for the audio track. The structure of the container is composed of 258 features.

The Telegram video, it has three root atoms (ftyp-1, mdat-2, moov-3). The values of the @majorBrands and @compatibleBrand tags are mp42 and mp41mp42isom respectively. The path to get

Table 7 Video dataset (Editing programs).

Editing program	Version	Settings	Container	Cantidad
Adobe Premiere (ES01)	2018-12.0	Open/Save	MP4	178
Camtasia (ESO2)	2018.0.1	Open/Save	MP4	177
FFmpeg (ES03)	3.4.4	Copy -vcodec	MOV	124
Lightworks (ES04)	14.5	Import/Export	MP4	172
Movie Maker (ES05)	2012	Open/Save	MP4	70
Total videos				721

Table 8DataFrame content description.

Column	Description	Example
Path-file-name	Contains the absolute path and name of each video (MOV, MP4, 3GP).	/home/user/videos/D29_IphoneX/IMG_2414.MOV
Path-origin	Contains only the video path (MOV, MP4, 3GP).	/home/user/videos/D29 IphoneX
Class-label	Indicates the ID of each class (brand, social network, instant messaging application, and editing program).	1=Apple
File-name	Represents the name of the video in MOV, MP4 and 3GP format.	IMG_2414.MOV
Marker	It is the brand of the device that generated the video. Metadata that usually insert Apple devices.	Apple
Model	It is the model of the device that generated the video. Metadata that usually insert Apple devices.	Iphone X
PathOrder-tag	Contains the atoms with its respective relative order of each level. Also, atoms with relative order followed of the tag.	/ftyp-1/ and /ftyp-1/majorBrand
Value Reading-orders	These are the values of each <i>PathOrder-tag</i> . It is the absolute order of each <i>PathOrder-tag</i> . Also called reading order.	qt 1

Fig. 5. Comparison of the multimedia container structure.

the value of the <code>@timeScale</code> tag is <code>/ftyp-1/mdat-2/moov-3/mvhd-1/@timeScale:44100</code>. The <code>moov-3</code> atom contains two <code>trak</code> atoms, 1 for the video track, 1 for the audio track. The structure of the container is composed of 251 features. It should be noted that after analyzing the videos on the Flickr social network, that the platform does not make any re-compression and does not change the multimedia container structure, maintaining the same features as the original video.

In summary, this analysis has shown that each social network and instant messaging application inserts a different structure. These differences derive from the order of appearance of the atoms and values assigned to each tag.

3.3.1. Massive structure analysis

To perform the massive analysis, we take advantage of the presence and absence of the extracted features. For this, binary

Fig. 6. Comparison of the multimedia container structure.

variables (0 or 1) are used, assigning the value "1" for each PathOrder-tag that is present and "0" for the absent one, obtaining structures with equal cardinality. The t-Distributed Stochastic Neighbor Embedding (t-SNE), is a dimension reduction and visualization technique for high-dimensional data [35,36]. We explore the applicability of t-SNE to the proposed datasets and make some observations. Fig. 7 shows the distribution of the samples of each brand in two dimensions. The samples from Apple, Wiko, Nokia, BQ, Samsung, LG and Microsoft are well grouped and do not overlap between classes. However, Motorola and Xiaomi overlap each other, which means they have similar features. Fig. 8 shows the distribution of samples from each social network. Although indeed, SN are not 100% grouped, its classification has a better prognosis. The samples from each editing program are better grouped, and none of them overlaps with another class (Fig. 9).

Also, we use Principal Component Analysis (PCA) because the input dimension is high, and it allows us to visualize the data in two or three dimensions [37]. Scaling is not applied because the variables only have values "0" and "1". The original videos (1957) consolidate a total of 804 PathOrder-tag (804 dimensions), and by applying PCA with the configuration of the number of components parameter to 0.99 (capture the minimum number of principal components that retain 99% of the variances of the variables), we manage to reduce the number of dimensions to 20, and with a configuration of 0.95, we obtain 13 dimensions. The first principal component /wide-2/ contains 31.1% of the variance, the second /mdat -2/ contains 13.6% and the third /moov-2/meta-6/keys-2/ has 12.7%, adding up to 57.4%; while the remaining 17 components account for 41.6% of the variance. In Fig. 10, the three-dimensional scatter plot is presented using the dataset of the brands, where it is seen that the videos of the Apple brand have PathOrder-tag similar and are grouped remarkably. However, Xiaomi, Huawei, and LG overlap because they have very similar features. In general, the differences between brands are considerable, and these differences can be improved by adding more mobile device models. On the other hand, the videos of

Fig. 7. Visualization of the dataset (Original videos) using the t-SNE.

the SN and IMA (3682) group a total of 842 dimensions, and applying PCA with a configuration of 0.99 and 0.95 was reduced to 24 and 15 dimensions, respectively. The first principal component /moov-2/trak-2/mdia-3/minf-3/dinf-2/ contains 32.8% of the variance, the second /moov-3/ contains 14.3% and the third /moov-2/trak-3/mdia-2/ has 0.92%, adding up to 48.02%; while the remaining 21 components account for 50.98% of the variance. In Fig. 11, the three-dimensional scatter plot is presented using the SN and IMA dataset. Likewise, the videos edited (721) by EP group a total of 332 dimensions, and by applying PCA with a

Fig. 8. Visualization of the dataset (SN and IMA) using the t-SNE.

Fig. 9. Visualization of the dataset (Editing programs) using the t-SNE.

configuration of 0.99 and 0.95, it was possible to reduce them to 7 and 6 dimensions, respectively. The first principal component /moov-2/trak-3/mdia-2/minf-3/stbl-3/stco-5/ contains 28.0% of the variance, the second /moov-2/trak-3 contains 25.1% and the third (/free-3/) has 17.0%, adding up to 70.1%; while the remaining 6 components account for 29.4% of the variance. In Fig. 12, the three-dimensional scatter plot using the EP dataset is presented.

To reinforce the exploratory analysis, all unique PathOrdertag were consolidated for each class and then compared to each other. The Pearson correlation coefficient was used, which represents the numerical expression that indicates the degree of correspondence or relationship that exists between two variables. These numbers vary between [-1,1]. If the value obtained is "1", it indicates that the two classes are perfectly related. If the value is "0", it indicates that there is no linear relationship between them. If the value is negative, it indicates that there is a negative correlation. Therefore, the closer the correlation value gets to -1, the higher the difference between classes will be, and this is a positive precedent to take into account in the implementation of our proposal.

Fig. 13 presents the correlation matrix between brands, where a perfect correlation is observed between videos of the same brands. Apple, Nokia, Microsoft, and BQ differ significantly from other brands. The brands (Huawei, Motorola), (Huawei, OnePlus), (Huawei, Xiaomi), (Motorola, Xiaomi), (OnePlus, Xiaomi) achieve a very high positive correlation.

Fig. 14 presents the correlation matrix between social networks and instant messaging applications. We can see that there is only a perfect correlation between similar classes. However, there is a very high positive correlation between the classes (Facebook SD, Tumblr), (Facebook Msn, Instagram), (Facebook Msn, Tumblr), (Instagram, Tumblr). On the other hand, the most separate classes are WhatsApp, Telegram, Youtube, Twitter, and Flickr (the latter for not making any additional compression on the video).

Fig. 15 presents the correlation matrix between the editing programs, and also shows that there is only a perfect correlation between similar classes. Likewise, all classes differ markedly from each other. To have a broader view of the data, Fig. 16 presents the correlation matrix between the 24 classes that make up the dataset. Again, there is only a perfect correlation between similar classes. Also, the group of brands has a higher correlation concerning the group of social networks and editing programs. Finally, it is necessary to highlight the very high correlation between the classes (Nokia, Movie Maker), (Instagram, Tumblr).

After analyzing the data using t-SNE, Pearson correlation coefficient and PCA, we have been able to confirm that there are substantial differences between classes.

Fig. 10. Principal component analysis - Original videos.

Fig. 11. Principal component analysis — SN and IMA.

 $\textbf{Fig. 12.} \ \ \textbf{Principal component analysis} - \textbf{Editing programs.}$

Fig. 13. Correlation matrix between brands.

Fig. 14. Correlation matrix between SN and IMA.

Fig. 15. Correlation Matrix between editing programs.

3.3.2. Values and metadata analysis

The values of the tags are classified into editable and non-editable values. Editable values, also called metadata, are those that are generally of the string type and are found in *meta*, *mebx*,

free, *udta* atoms. These atoms can appear at all levels of the hierarchical structure of the multimedia container. The modification of these values does not influence the reproduction of videos.

Fig. 16. Correlation matrix between all classes.

The *meta* atom contains child atoms that provide values with substantial information for analysis.

For example, an alternative for finding the brand name: com.apple.quicktime.make: Apple is to follow the path $moov \rightarrow meta \rightarrow keys \rightarrow mdta$. To know if the video was captured with the front or back camera: com.apple.quicktime.camera.identifier: Back is to follow the path $moov \rightarrow trak \rightarrow meta \rightarrow keys \rightarrow mdta$. The mebx atom usually appears in the trak-3 and trak-4 atoms of videos generated by new Apple-branded mobile phones and is intended to store metadata information. Among the fundamental values that the mebx atom possesses is com.apple.quicktime.video-orientation:90 and follow the next path: $moov \rightarrow trak \rightarrow mdia \rightarrow minf \rightarrow stbl \rightarrow stsd \rightarrow mebx \rightarrow keys \rightarrow local_key_id1 \rightarrow keyd \rightarrow keyValueArray$.

On the other hand, non-editable values are made up of bytes, and to display them. It is necessary to convert them into a hexadecimal value or any other type indicated by the specification. If an attacker deletes or modifies any of these values, it will undoubtedly affect the reproduction of the digital video. This means they are robust variables for the exploitation of forensic science. Among these values are numOfSequenceParameterSetsPaddingBits: 7, which is located in the path $moov \rightarrow trak \rightarrow mdia \rightarrow minf \rightarrow stbl \rightarrow stsd \rightarrow avc1 \rightarrow avcC$ and objectTypeIndication: 64 of the path: $moov \rightarrow trak \rightarrow mdia \rightarrow minf \rightarrow stbl \rightarrow stsd \rightarrow mp4a \rightarrow esds$.

Tables 9–13 present the analysis of the most representative editable and non-editable values of original and manipulated videos described in our datasets. Tables 9 and 10 show that Apple brand videos (Iphone XR) have more metadata information such

as brand, model, and operating system version. The three values of the *timeScale* tags (600, 600, 44100) are very different from the other models. It also has the video compression codec (HEVC) and is the only model that inserts the Color Parameter type with value *nclc*. On the other hand, Huawei P9, LG Nexus 5, Motorola Nexus 6, One Plus A3003, Samsung S9 Plus, and Xiaomi Redmi Note3 have the operating system version on the *com.android.version* tag. Samsung Galaxy S9 Plus is the only one that has values in the *com.android.capture.fps* tag, while Nokia 808 Pureview is the only one that does not have values in the *componentName* tag in the video track. Among the non-editable values are *componentSubtype:vide* (video track) and *componentSubtype:soun* (audio track).

Table 11 shows the values inserted by each social network and instant messaging application. Facebook HD and Facebook SD insert values similar to the tags, except for timeScale, metadataCompressor, mediaWidth, and mediaHeight. On the other hand, some applications insert different values according to the shared video format (MOV or MP4) such as Youtube, Linkedin, and WhatsApp. For example, Youtube embeds the value 15360 to the timeScale tag if the transferred video is MP4, and if it is MOV 1000. Linkedin, embed the value 1 in the hSpacing tag if it is MP4 and 405 if it is MOV. WhatsApp inserts the value of 1 to the minorVersion tag if the original video is MOV format and the value of 0 if it is MP4 or 3GP. Telegram and WhatsApp are the only ones that insert the value *nclx* in the *colorParameterType* tag. Tumblr adds the value 640 in the hSpacing and vSpacing tags. Finally, Youtube embeds the value of Google in the metadataCompressor tag, while WhatsApp and Telegram do not enter any value.

Table 9Values and metadata — Brands

Brand	id metadata –		BQ	Huawei	LG	Microsoft	Motorola	Nokia	One Plus	Samsung	Wiko	Xiaomi
ag/Mode		Apple Iphone XR	Aquaris4.5	P9	Nexus 5	Lu- mia640Lte	Nexus 6	808Pure- View	A3003	GalaxyS9Plus	Ridge4G	Red- miNote:
	majorBrand	qt	mp42	mp42	mp42	mp42	mp42	mp42	mp42	mp42	mp42	mp42
Format	minorVer- sion	0	0	0	0	0	0	0	0	0	0	0
	compatible- Brands	qt	isom,	isom,	isom,	mp42, 3gp6,	isom,	mp42, 3gp4,	isom,	isom,	isom,	isom,
			mp42	mp42	mp42	isom, M4V	mp42	isom, avc1	mp42	mp42	mp42	mp42
	timeScale	600	1000	1000	1000	1000	1000	10000	1000	1000	1000	1000
	nextTrackId	5	3	3	3	3	3	3	3	3	3	3
Global	preferre- dRate	1	1	1	1	1	1	1	1	1	1	1
Tags	preferred- Volume	1	1	1	1	1	1	1	1	1	1	1
	com.apple. quicktime. make	Apple	-	-	-	-	_	-	-	-	-	-
	com.apple. quicktime. model	iPhone XR	-	-	-	-	-	_	-	-	-	-
	com.apple. quicktime. software	12.1.4	-	-	-	-	-	_	-	-	-	-
	com.android. version	-	-	6.0	6.0.1	-	6.0.1	-	7.0	8.0.0	-	6.0.1
	com.android. capture.fps	-	-	-	-	-	-	-	-	1114636288	-	-
	timeScale graphic-	600 64	90000 0	90000 0	90000 0	30000 0	90000 0	30000 0	90000 0	90000 0	90000 0	90000 0
	sMode compo-	vide	vide	vide	vide	vide	vide	vide	vide	vide	vide	vide
	nentSubtype	_										
Video Frack	component- Name	Core Media Data Handler	Video- Handle	Video- Handle	Video- Handle	Video- Handler	Video- Handle	-	Video- Handle	VideoHandle	Video- Handle	Video- Handle
	component- Type	dhlr	-	-	_	-	-	_	_	-	-	-
	compressor- Name	HEVC	-	-	_	-	-	_	_	-	-	-
	extensions	hvcC	avcC, pasp	avcC, pasp	avcC, pasp	avcC	avcC, pasp	avcC	avcC, pasp	avcC, pasp	avcC, pasp	avcC, pasp
	hSpacing	_	65536	65536	65536	65536	65536	65536	65536	65536	65536	65536
	vSpacing	-	65536	65536	65536	65536	65536	65536	65536	65536	65536	65536
	spatialQual- ity	512	0	0	0	0	0	0	0	0	0	0
	verticalRes- olution	72	72	72	72	72	72	72	72	72	72	72
	horizontal- Resolution	72	72	72	72	72	72	72	72	72	72	72
	tempo- ralQuality	512	0	0	0	0	0	0	0	0	0	0
	colorTableID	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535
	depth	24	24	24	24	24	24	24	24	24	24	24
	mediaWidth	1920	1280	1920	1920	1920	1920	1920	1920	3840	1920	1920
	mediaHeight colorParam- eterType	1080 nclc	720 -	1080	1080 -	1080 -	1080	1080 -	1080 nclx	2160 nclx	1080	1080 -

Tables 12 and 13 show that Camtasia, Lightworks, and Movie Maker insert the same pattern to MP4 and MOV videos, while Adobe Premier and FFmpeg add different values to majorBrand, compatibleBrands, componentHdlrName, componentName tags. Camtasia and Lightworks have similar value tags, such as timeScale, componentName, compressorName, and differ in the value of the componentSubtype tag. FFmpeg inserts very different values in componentHdlr and componentType tags and is the only editor that maintains the original video codec type (HEVC or

H.264) and is due to the kind of manipulation that was performed (Copy -vcodec).

4. Video container counter-forensics

The proposed analysis has also determined that the multimedia container structure can be unconsciously manipulated only by sharing the videos through a social network or messaging application. Also, people with little knowledge of video editing could use some software to improve the quality of the scene or add some effects.

Table 10Values and metadata — Brands.

Brand		Apple	BQ	Huawei	LG	Microsoft	Motorola	Nokia	One Plus	Samsung	Wiko	Xiaomi
Tag/Model		Iphone XR	Aquaris4.5	P9	Nexus 5	Lu- mia640Lte	Nexus 6	808Pure- View	A3003	GalaxyS9Plus		Red- miNote3
	timeScale	44100	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000
	componentSub- type	soun	soun	soun	soun	soun	soun	soun	soun	soun	soun	soun
	component-	Core	Sound-	Sound-	Sound-	Audio-	Sound-	Sound-	Sound-	SoundHan-	Sound-	Sound-
	Name	Media Audio	Handle	Handle	Handle	Handler	Handle	Handle	Handle	dle	Handle	Handle
Audio	componentType	mhlr	-	-	-	-	-	-	-	_	-	-
Track	sampleRate	44100	48000	48000	48000	48000	48000	48000	48000	48000	48000	48000
	compressionID	65534	0	0	0	0	0	0	0	0	0	0
	dataFormat	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a	mp4a
	extensions	esds	esds	esds	esds	esds	esds	esds	esds	esds	esds	esds
	bytesPerFrame	2	-	-	-	-	-	-	-	-	-	-
	numOfChannels	2	2	2	1	1	1	2	2	2	2	2
	bytesPerPacket	1	1	1	1	1	1	1	1	1	1	1
	bytesPersample	2	2	2	2	2	2	2	2	2	2	2
	revisionLevel	0	0	0	0	0	0	0	0	0	0	0
	dataReferen- ceIndex	1	1	1	1	1	1	1	1	1	1	1
	componentSub- type	meta	-	-	-	-	-	-	-	-	-	-
Metadata Tracks	component- Name	Core Media Metadata	-	-	-	-	-	-	_	-	-	-
	component- Manufacturer	appl	_	-	-	-	-	-	-	_	-	-
	mebx/roll-angle	0	_	_	_	_	_	_	_	_	_	_
	mebx/face.face- id	0	-	-	-	-	-	-	-	-	-	-
	mebx/face.bounds	0	_	_	_	_	_	_	_	_	_	_
	mebx/video- orientation	90	-	-		-	-	-	-		-	-
	balance	0	_	-	-	-	-	_	_	_	-	-
	stsd_tmcd	False	-	-		-	-	-	-	_	-	-
	component- Flags	0	-	-	-	-	-	-	-	-	-	-

However, malicious people with a stronger knowledge of video manipulation could make use of techniques called counterforensics to hinder the process of forensic analysis [38–40]; precisely, they can manipulate atoms, remove metadata and insert information into the atoms by performing the following actions:

- The attacker could use some hex editor to edit the name of atoms (4-byte ASCII code) considered not "necessary" for the video reproduction like *free*, *thkd*, *wide*, *meta*, *data*, *and udta*. Also, he could remove or edit some metadata without causing any damage to the video, for example, the metadata of the *data* tags that indicate the make and model of the mobile device. However, there are a lot of values that are intrinsic to each tag and are not editable such as *configurationVersion*, *AVCProfileIndication*, *AVCLeveIIndication*, *lenghtSizeMinusOne*.
- The attacker could re-order the appearance of the main atoms in the multimedia container; this is because the order of appearance of the root atoms is variable *mdat*, *moov*, *wide*, *udta*, *free*, except *ftyp* which according to the specification is the one that provides the format of the file and must necessarily be the header of the multimedia container. However, this task is not easy, since changing the position of the *mdat* atom, which stores audio and video samples also imply adjusting the chunk offset tables *stco* or *co64*, which are those that describe the location of the samples and whose parent atoms are: *moov* → *trak* → *mdia* → *minf* → *stbl*.
- The attacker could insert all kinds of encrypted or unencrypted information (images, text, and so on) into a large

number of flags tags or other tags with similar characteristics. Currently, there are video steganography tools such as OpenPuff [41] that can securely hide information by replacing the value of the flags tags with other encrypted data. However, in [42], the authors propose a method to detect the presence of OpenPuff video steganography in MP4 files, achieving positive results. Our analysis proposal is also suitable for detecting anomalies in the values of flags tags and others that may be prone to attacks by this type of technique in videos with MP4, MOV, and 3GP format. The original Apple brand videos have between 61 and 65 flags tags and have as values in hexadecimal (0, 7, 15). Social networks and Instant messaging applications, reduce the number of flags to 25, and the values inserted in hexadecimal are (0, 3, 1). The editing programs insert between 23 and 32 flags, and their values are much more varied, and among them are (0, 1, 7, 11, 12, 26, 28)

We intentionally hid a 217.1 KB text file in 10 original Apple-branded videos using the *OpenPuff* tool and then extracted 100% of the features. The analysis found very high values in hexadecimal and, above all, very variable values. These values are between 0 and 13697024. Compared to the universal values of the original and manipulated video *flags*, there is a big difference. This analysis shows that these videos have hidden and encrypted elements that should be evaluated with more robust steganography techniques.

In summary, the analysis of the editable and non-editable values of each tag is fundamental to neutralize possible attacks and be more accurate in verifying the integrity and authenticity of digital videos.

Table 11Values and metadata — Social networks and Instant messaging applications.

SN/IMA		- Social networ Facebook	Facebook	Youtube	Linkedin	Instagram	Twitter	Tumblr	Facebook	WhatsApp	Telegram
Tag		HD	SD						Msn		
	majorBrand	isom	isom	mp42	isom	isom	isom	isom	isom	mp42	mp42
Format	minorVer- sion	512	512	0	512	512	512	512	512	0, 1	1
	compatible- Brands	isom, iso2	isom, iso2	isom,	isom, iso2	mp41,	mp41,				
		avc1, mp41	avc1, mp41	mp42	avc1, mp41	mp42, isom	mp42, isom				
	timeScale	1000	1000	15360, 1000	1000	1000	1000	1000	1000	48000, 44100	44100
Global	nextTrackId	3	3	3	3	3	3	3	3	3	3
Tags	preferre- dRate	1	1	1	1	1	1	1	1	1	1
	preferred- Volume	1	1	1	1	1	1	1	1	1	1
	reserved	0	0	0	0	0	0	0	0	0	0
	posterTime	0	0	0	0	0	0	0	0	0	0
	timeScale	15360	90000	15360	15360	15360	90000	15360	15360	30057, 600	600
	graphic- sMode	0	0	0	0	0	0	0	0	0	0
	compo- nentSubtype	vide	vide	vide	vide	vide	vide	vide	vide	vide	vide
Video Track	component- Name	VideoHan- dler	VideoHan- dler	ISO Media file produced by Google Inc	VideoHan- dler	VideoHan- dler	VideoHan- dler	VideoHan- dler	VideoHan- dler	Core Media Video	Core Media Video
	component- Type	-	-	-	-	_	-	_	_	-	-
	metadata- Compressor	Lavf57.71.100	Lavf56.40.101	Google	Lavf57.71.100	Lavf56.40.101	Lavf57.66.105	Lavf56.25.101	Lavf56.40.101	_	-
	extensions hSpacing	avcC -	avcC	avcC	avcC 1, 405	avcC	avcC	avcC 640	avcC	avcC	avcC 3
	vSpacing	_	_	_	1, 404	_	_	640	_	_	3
	spatialQual- ity	0	0	0	0	0	0	0	0	0	0
	verticalRes- olution	72	72	72	72	72	72	72	72	72	72
	horizontal- Resolution	72	72	72	72	72	72	72	72	72	72
	tempo- ralQuality	0	0	0	0	0	0	0	0	0	0
	colorTableID	65535	65535	65535	65535	65535	65535	65535	65535	65535	65535
	depth	24	24	24	24	24	24	24	24	24	24
	mediaWidth	1280	400	1280	1280	480	720	852	1920	848	848
	mediaHeight		224	720	720	480	1280	480	1080	480	464
	_	-	-	-	-	-	-	-	-	nclx	nclx

(continued on next page)

5. Conclusions

This paper presents a method that exhaustively analyzes the intrinsic structure of multimedia containers. The technique allows verifying the integrity and authenticity of videos in MP4, MOV and 3GP format. Concretely, it can determine the brand of the mobile device that generated the video, the social network or instant messaging application that was used to transfer it, and the editing program that was used to execute some manipulation. Additionally, the method allows for the identification of anomalies in the values of each tag, caused by steganography tools. To this end, we first studied the technical specifications that define and describe the criteria to be used by manufacturers and technology platforms, to perform the processing of digital videos. Secondly, a sufficiently large dataset was generated, consisting of 1957 original videos, captured by 86 mobile devices, 66 models and 11 brands. Besides, we shared a total of 2598 videos through 8 social networks and 1084 videos through 3 instant messaging applications. Also, we manipulated 721 videos with 5 of the most used editing programs at present. Thirdly, the multimedia container structures were extracted with the atom extraction algorithm, resulting in a set of features called *PathOrder-tag*. Finally, the multimedia container structure analysis was carried out, which has been distributed in 3 parts: preliminary analysis, massive analysis, value and metadata analysis, including possible attacks (counter-forensic).

In the preliminary analysis, we compared the structure of an original video with the structure of the same video after being shared by three social networks and two messaging applications. This analysis shows that an original video changes its original structure after being shared by some social platform (except Flickr). Likewise, it was observed that each platform inserts a unique pattern that allows easy recognition of its origin. For the massive analysis, we used the absence and presence of the variables PathOrder-tag and applied the techniques t-SNE, PCA, and the Pearson Correlation Coefficient. When applying t-SNE, it was observed that the classes (brands, social platforms and editing program) are considerably separated from each other, although Apple differs significantly from other brands. When applying PCA, with the configuration (component parameter = 99), it was observed that the brands only require 20 dimensions to explain the total variance, 24 for social platforms and 7 for editing programs. When applying the Pearson Correlation Coefficient, the

Table 11 (continued).

SN/IMA Tag		Facebook HD	Facebook SD	Youtube	Linkedin	Instagram	Twitter	Tumblr	Facebook Msn	WhatsApp	Telegram
	timeScale	44100	44100	44100	48000	48000	48000	48000	48000	48000	48000
	compo- nentSubtype	soun	soun	soun	soun	soun	soun	soun	soun	soun	soun
	component-	SoundHan-	SoundHan-	ISO Media	SoundHan-	SoundHan-	SoundHan-	SoundHan-	SoundHan-	Core Media	Core Media
Audio	Name	dler	dler	file produced by Google Inc.	dler	dler	dler	dler	dler	Audio	Audio
Track	component- Type	-	-	-	-	-	-	-	-	-	-
	sampleRate	48000, 44100	48000, 44100	44100	48000	48000, 44100	48000, 44100	48000	48000, 44100	48000, 44100	44100
	compres- sionID	0	0	0	0	0	0	0	0	0	0
	dataFormat extensions	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds	mp4a esds
	bytesPer- Frame	-	-	-	-	-	-	-	-	-	-
	numOfChan- nels	2	2	1, 2	2	2	2	2	2	2	2
	bytesPer- Packet	-	-	-	-	-	-	-	-	-	-
	bytesPer- sample	-	-	-	-	-	-	-	-	-	-
	revision- Level	0	0	0	0	0	0	0	0	0	0
	dataReferen- ceIndex	1	1	1	1	1	1	1	1	1	1

Table 12Values and metadata — Editing programs.

Tag/Editing prog	ram	Adobe Premiere	Camtasia	FFmpeg	Lightworks	Movie Maker
Format	majorBrand	qt, mp42	mp42	qt, mp42	mp42	mp42
	minorVersion	537199360	0	512	0	0
	compatibleBrands	qt, isom	isom,	qt, isom	isom,	mp41,
	•	mp42	mp42	mp42	mp42	isom
Global Tags	timeScale	30000	90000	1000	90000	48000
	nextTrackId	4	3	3	3	3
	preferredRate	1	1	1	1	1
	preferredVolume	1	1	1	1	1
	selectionTime	0	0	0	0	0
	previewDuration	0	0	0	0	0
	selectionDuration	0	0	0	0	0
	componentSubtype	-	mdir	_	_	mdir
Video Track	timeScale	30000	30000	19200	30000	29970
	graphicsMode	64	0	0	0	0
	componentHdlrName	Apple Alias Data Handler	-	DataHandler	-	-
	componentHdlr	alis		url		
	componentName	Apple Video	Mainconcept	VideoHandler	Mainconcept	- VideoHandle
	componentivanie	Media Handler	MP4 Video	Videoriandici	MP4 Video	VidCoriandic
		Wicula Halluici	Media Handler		Media Handler	
	componentType	mhlr, dhlr	_	mhlr, dhlr	_	_
	componentSubtype	vide	vide	vide	vide	vide
	compressorName	DV25 NTSC	VC Coding	HEVC, H.264	VC Coding	VC Coding
	extensions	pasp, fiel	avcC	hvcC, avcC	avcC	avcC
	hSpacing	872	_	_	_	_
	vSpacing	720	_	_	_	_
	spatialQuality	1023	0	512	0	0
	verticalResolution	72	72	72	72	72
	horizontalResolution	72	72	72	72	72
	temporalQuality	0	0	512	0	0
	colorTableID	65535	65535	65535	65535	65535
	depth	24	24	24	24	_
	mediaWidth	720	1280	1920	1280	1920
	mediaHeight	480	720	1080	720	1080
	colorParameterType	nclc	_	_	-	_

mobile device brands achieved a medium-high correlation between them, except Nokia and Microsoft. Social networks reached a medium-level correlation, except Facebook HD and Facebook

SD. The editing programs reached a very low correlation, indicating that they have more considerable differences between them.

Table 13 Values and metadata — Editing programs.

Γag/Editing program		Adobe Premiere	Camtasia	FFmpeg	Lightworks	Movie Maker
	timeScale	48000	44100	44100	48000	48000
	componentHdlrName	Apple Alias	-	DataHandler		-
		Data Handler				
	componentHdlr	alis	-	url	-	_
	componentName	Apple Sound	Mainconcept	SoundHandler	Mainconcept	SoundHandler
		Media Handler	MP4 Sound		MP4 Sound	
			Media Handler		Media Handler	
Audio Track	componentType	mhlr, dhlr	-	mhlr, dhlr	-	_
Audio IIack	componentSubtype	soun	soun	soun	soun	soun
	sampleRate	48000	44100	44100	48000	48000
	compressionID	65535	0	65534	0	0
	dataFormat	sowt	mp4a	mp4a	mp4a	mp4a
	extensions	chan	esds	esds	esds	esds
	bytesPerFrame	4	-	0	-	-
	numOfChannels	2	2	1	2	2
	bytesPerPacket	2	-	0	-	-
	bytesPersample	2	-	2	-	-
	revisionLevel	0	0	0	0	0
	dataReferenceIndex	1	1	1	1	1
	componentSubtype	meta	-	-	-	-
	componentName	Core Media	-	-		-
Metadata Tracks		Metadata				
	componentManufacturer	appl	-	-		-
	mebx/roll-angle	0	-	-		-
	mebx/face.face-id	0	-	-		-
	mebx/face.bounds	0	-	-		-
	mebx/video-orientation	90	-	-	-	-
	balance	0	-	-	-	-
	stsd_tmcd	False	-	-	-	-
	componentFlags	0	-	-	-	-

In the analysis of values and metadata, it was determined that Apple-branded devices have a higher amount of metadata because current models have up to 4 *trak* atoms. The social networks Facebook SD and Facebook HD insert similar values to almost all tags, and this is because both belong to the same technology group. Likewise, the method was evaluated against attacks that use steganography techniques such as the OpenPuff tool, managing to describe anomalies introduced into the multimedia container efficiently.

In summary, the structures and values of multimedia containers are patterns that allow determining the integrity and authenticity of digital videos (MP4, MOV, 3GP).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 700326. Website: http://ramses2020.eu

References

- [1] GSM Association, Global mobile trends 2020 new decade, new industry? 2019, https://www.gsmaintelligence.com/research/2019/11/ global-mobile-trends-2020/827/.
- [2] Ericsson, Ericsson mobility report November 2019, 2019, https://www.ericsson.com/en/mobility-report/reports/november-2019.
- [3] HOOTSUITE, Global digital reports-Oct 2019, 2019, https://hootsuite.com/resources/digital-in-2019.
- [4] European Commission, Video analysis for investigation of criminal and terrorist activities, 2019, https://www.victoria-project.eu/about-victoria/.

- [5] European Commission, Computer vision enabled multimedia forensics and people identification, 2019, https://warwick.ac.uk/fac/sci/dcs/research/df/ identity.
- [6] European Commission, Internet forensic platform for tracking the money flow of financially-motivated malware, 2019, https://ramses2020.eu/.
- [7] L.J. García Villalba, A.L. Sandoval Orozco, J. Rosales Corripio, J. Hernandez-Castro, A PRNU-based counter-forensic method to manipulate smartphone image source identification techniques, Future Gener. Comput. Syst. 76 (2017) 418–427.
- [8] T. Koohpayeh Araghi, A. Abd Manaf, An enhanced hybrid image water-marking scheme for security of medical and non-medical images based on DWT and 2-D SVD, Future Gener. Comput. Syst. 101 (2019) 1223–1246.
- [9] A. Roy, R.S. Chakraborty, U. Sameer, R. Naskar, Camera source identification using discrete cosine transform residue features and ensemble classifier, in: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW, 2017, pp. 1848–1854.
- [10] L.J. García Villalba, A.L. Sandoval Orozco, J. Rosales Corripio, Smartphone image clustering, Expert Syst. Appl. 42 (4) (2015) 1927–1940.
- [11] S. Raahat Devender, A. Naveen, Video content authentication techniques: A comprehensive survey, Multimedia Syst. 24 (2) (2018) 211–240.
- [12] V. Thing, K. Ng, E.C. Chang, Live memory forensics of mobile phones, Digit. Investig. 7 (2010) 74–82.
- [13] T. Van Lanh, K.S. Chong, S. Emmanuel, M.S. Kankanhalli, A Survey on digital camera image forensic methods, in: Proceedings of the IEEE International Conference on Multimedia and Expo, Beijing, ISBN: 1424410169, 2007, pp. 16–19.
- [14] A. Sandoval Orozco, D. Arenas González, J. Rosales Corripio, L. García Villalba, J.C. Hernandez-Castro, Techniques for source camera identification, in: Proceedings of the 6th International Conference on Information Technology, Amman, Jordan, ISBN: 978-9957-8583-1-5, 2013, pp. 1-9.
- [15] J. Song, K. Lee, W.Y. Lee, H. Lee, Integrity verification of the ordered data structures in manipulated video content, Digit. Investig. 18 (C) (2016) 1–7, http://dx.doi.org/10.1016/j.diin.2016.06.001.
- [16] T. Gloe, A. Fisher, M. Kirchner, Forensic analysis of video file formats, in: Proceedings of the First Annual DFRWS Europe, Munster, Germany, 2014, pp. 68–76.
- [17] M. Iuliani, D. Shullani, M. Fontani, S. Meucci, A. Piva, A video forensic framework for the unsupervised analysis of MP4-like file container, IEEE Trans. Inf. Forensics Secur. 14 (3) (2018) 635–645.
- [18] A. Murat Tekalp, Digital Video Processing, Prentice Hall, Massachusetts, USA, ISBN: 0-13-399100-8, 2015.

- [19] A.L. Sandoval Orozco, C. Quinto Huamán, J.A. Cifuentes Quintero, L.J. García Villalba, Digital video source acquisition forgery technique based on pattern sensor noise extraction, IEEE Access 7 (2019) 157363–157373.
- [20] Panasonic Corporation, Lumix digital camera know-hows, 2019, http://av. jpn.support.panasonic.com/support/global/cs/dsc/knowhow/index.html.
- [21] J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras, CRC Press, Boca Raton, FL, USA, ISBN: 0849335450, 2005.
- [22] S. Dhanani, M. Parker, Digital Video Processing for Engineers: A Foundation for Embedded Systems Design, Newnes, Newton, MA, USA, ISBN: 0124157602, 2012, 9780124157606.
- [23] International Telecommunication Union, Advanced video coding for generic audiovisual services H.264, 2016, https://www.itu.int/rec/T-REC-H.264/.
- [24] International Telecommunication Union, High efficiency video coding, 2018, https://www.itu.int/rec/T-REC-H.265.
- [25] J. Kaur, N. Sharma, Survey on the general concepts of MPEG moving picture experts group, Paripex Indian J. Res. 5 (2) (2016) 252–255.
- [26] B.G. Haskell, A. Puri, A.N. Netravali, Digital Video: An Introduction to MPEG-2 Digital Multimedia Standards, Springer US, Orlando, FL, USA, ISBN: 0412084112, 2007.
- [27] Apple, QuickTime file format specification, 2016, https://tinyurl.com/ yylr6mtb.
- [28] International Organization for Standardization, MP4 File format, 2019, https://mpeg.chiariglione.org/standards/mpeg-4/mp4-file-format.
- [29] International Organization for Standardization, 3GP file format, 2019, https://www.iso.org/standard/61988.html.
- [30] Microsoft, AVI RIFF file, 1992, https://docs.microsoft.com/en-us/windows/ win32/directshow/avi-riff-file-reference.
- [31] E. Hamilton, Embedded imaging takes off as stand-alone digital cameras stall, 1992, http://www.w3.org/Graphics/JPEG/jfif3.pdf.
- [32] Camera and Imaging Products Association, Exchangeable image file for digital still cameras: Exif version 2.3, 2010, http://www.cipa.jp/std/ documents/e/DC-008-2012_E.pdf.
- [33] R.L. Baer, Resolution limits in digital photography: The looming end of the pixel wars - OSA technical digest (CD), in: Proceedings of the Imaging Systems, Optical Society of America, 2010.
- [34] Group of Analysis, Security and Systems, Metada Video Extraction Tool, Technical Report, Faculty of Computer Science and Engineering, Universidad Complutense de Madrid, Spain, 2017.
- [35] Kaggle Inc., KAGGLE: Online community of data scientists and machine learners, 2019, https://www.kaggle.com/.
- [36] S. Arora, W. Hu, P.K. Kothari, An analysis of the t-SNE algorithm for data visualization, in: Proceedings of Machine Learning Research, 2018, pp. 1-8.
- [37] I. Jolliffe, Principal Component Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, ISBN: 978-3-642-04898-2, 2011.
- [38] M. Ramesh Chourasiya, A.P. Wadhe, Video anti forensics A review, Int. J. Recent Innov. Trends Comput. Commun. 3 (4) (2015) 2110–2114.
- [39] P.C. Su, P.L. Suei, M.K. Chang, J. Lain, Forensic and anti-forensic techniques for video shot editing in H.264/AVC, J. Vis. Commun. Image Represent. 29 (C) (2015) 103–113.
- [40] M.C. Stamm, K.J. Ray Liu, Anti-forensics for frame deletion addition in MPEG video, in: IEEE International Conference on Acoustics, Speech and Signal Processing, Maryland, USA, 2011, pp. 1876–1879.
- [41] Embedded SW, OpenPuff, 2019, https://embeddedsw.net/OpenPuff_ Steganography_Home.html.
- [42] T. Sloan, J. Hernandez Castro, Steganalysis of OpenPuff through atomic concatenation of MP4 flags, Digit. Investig. 13 (2015) 15–21.

Carlos Quinto Huamán, Computer Science degree in 2012 at Universidad Inca Garcilaso de la Vega in Lima (Perú) and a M.Sc. degree in Computer Science in 2016 from the Universidad Complutense de Madrid (Spain). He is currently a Ph.D. student in the Department of Software Engineering and Artificial Intelligence of the Faculty of Computer Science and Engineering at the Universidad Complutense de Madrid (UCM) and Member of the Complutense Research Group GASS (Group of Analysis, Security and Systems, http://gass.ucm.es). His research interests are: computer forensics,

cybersecurity, electronic warfare and cyberdefense.

Ana Lucila Sandoval Orozco was born in Chivolo, Magdalena, Colombia in 1976. She received a Computer Science Engineering degree from the Universidad Autónoma del Caribe (Colombia) in 2001. She holds a Specialization Course in Computer Networks (2006) from the Universidad del Norte (Colombia), and holds a M.Sc. in Research in Computer Science (2009) and a Ph.D. in Computer Science (2014), both from the Universidad Complutense de Madrid (Spain). She is currently a postdoctoral researcher at Universidad Complutense de Madrid (Spain). Her main research

interests are coding theory, information security and its applications.

Luis Javier García Villalba received a Telecommunication Engineering degree from the Universidad de Málaga (Spain) in 1993 and holds a Ph.D. in Computer Science (1999) from the Universidad Politécnica de Madrid (Spain). Visiting Scholar at COSIC (Computer Security and Industrial Cryptography, Department of Electrical Engineering, Faculty of Engineering, Katholieke Universiteit Leuven, Belgium) in 2000 and Visiting Scientist at IBM Research Division (IBM Almaden Research Center, San Jose, CA, USA) in 2001 and 2002, he is currently Associate Professor of the Department of

Software Engineering and Artificial Intelligence at the Universidad Complutense de Madrid (UCM) and Head of Complutense Research Group GASS (Group of Analysis, Security and Systems) which is located in the Faculty of Computer Science and Engineering at the UCM Campus. His professional experience includes the management of both national and international research projects and both public (Spanish Ministry of R&D, Spanish Ministry of Defence, Horizon 2020 — European Commission, . . .) and private financing (Hitachi, IBM, Nokia, Safelayer Secure Communications, TB Solutions Security, . . .). Author or co-author of numerous international publications is editor or guest editor of numerous journals such as Entropy MPDI, Future Generation Computer Systems (FGCS), Future Internet MDPI, IEEE Latin America Transactions, IET Communications (IET-COM), IET Networks (IET-NET), IET Wireless Sensor Systems (IET-WSS), International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), International Journal of Multimedia and Ubiquitous Engineering (IJMUE), Journal of Supercomputing, Sensors MDPI, etc.