NOTES ON CHIP-FIRING FOR SIMPLICIAL COMPLEXES

Let Δ be a d-dimensional simplicial complex. Denote its set of i-faces by F_i , and define $f_i := |F_i|$.

Definition 0.1. A spanning tree of Δ is a d-dimensional subcomplex $\Upsilon \subseteq \Delta$ with $\operatorname{Skel}_{d-1}(\Upsilon) = \operatorname{Skel}_{d-1}(\Delta)$ and satisfying the three conditions:

- 1. $\widetilde{H}_d(\Upsilon) = 0$;
- 2. $\tilde{\beta}_{d-1}(\Upsilon) = 0;$
- 3. $f_d(\Upsilon) = f_d(\Delta) \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta)$.

If $0 \le k < d$, a k-dimensional (simplicial) spanning tree of Δ is a spanning tree of the k-skeleton $\operatorname{Skel}_k(\Delta)$.

Proposition 0.2. Suppose that Δ is a d-dimensional simplicial complex. Then Δ possesses a simplicial spanning tree if and only if $\tilde{\beta}_{d-1}(\Delta) = 0$. We say that such complexes are acyclic in codimension 1.

Proof. First suppose that Υ is a spanning tree of Δ . Then $C_d(\Upsilon) \subset C_d(\Delta)$, $C_{d-1}(\Upsilon) = C_{d-1}(\Delta)$, and $\operatorname{im}(\partial_{\Upsilon,d}) \subseteq \operatorname{im}(\partial_{\Delta,d})$. It follows that there is a surjection

$$\widetilde{H}_{d-1}(\Upsilon) = C_{d-1}(\Upsilon)/\operatorname{im}(\partial_{\Upsilon,d}) \twoheadrightarrow C_{d-1}(\Delta)/\operatorname{im}(\partial_{\Delta,d}) = \widetilde{H}_{d-1}(\Delta).$$

Since $\widetilde{H}_{d-1}(\Upsilon)$ is finite, it follows that $\widetilde{H}_{d-1}(\Delta)$ is also finite, hence $\widetilde{\beta}_{d-1}(\Delta) = 0$.

Now suppose that Δ is acyclic in codimension 1. To construct a spanning tree, start with $\Upsilon = \Delta$. If $\widetilde{H}_d(\Upsilon) = 0$, then Υ is a spanning tree, and we are done. If not, then there is an integer-linear combination of facets σ_i in the kernel of ∂_d :

$$a_1\sigma_1 + a_2\sigma_2 + \cdots + a_k\sigma_k$$

where we assume that $a_1 \neq 0$. If we work over the rational numbers, then we may assume $a_1 = 1$. Still working over the rationals, we see that

$$\partial_d(\sigma_1) = -\sum_{i=2}^k a_i \partial_d(\sigma_i).$$

Hence, if we remove the facet σ_1 from Υ , we obtain a smaller subcomplex Υ' without changing the image of the rational boundary map: $\operatorname{im}(\partial_{\Upsilon,d}) = \operatorname{im}(\partial_{\Upsilon',d})$. It follows from rank-nullity that

$$\tilde{\beta}_d(\Upsilon') = f_d(\Upsilon') - \text{rank im}(\partial_{\Upsilon',d}) = f_d(\Upsilon) - 1 - \text{rank im}(\partial_{\Upsilon,d}) = \tilde{\beta}_d(\Upsilon) - 1,$$

and $\tilde{\beta}_{d-1}(\Upsilon') = \tilde{\beta}_{d-1}(\Upsilon) = 0$. Continuing to remove facets in this way, we eventually obtain a spanning tree of Δ .

Corollary 0.3. If $0 \le i \le d$, then Δ has an i-dimensional spanning tree if and only if $\tilde{\beta}_{i-1}(\Delta) = 0$.

Proof. This follows from the previous proposition since $\tilde{\beta}_{i-1}(\mathrm{Skel}(\Delta)) = \tilde{\beta}_{i-1}(\Delta)$. \square

Proposition 0.4. If Δ has a unique d-dimensional spanning tree Ψ , then $\Delta = \Psi$.

Proof. To come.
$$\Box$$

Let $0 \le i \le d$. The *i-th tree number* for Δ is

$$\tau_i := \tau_i(\Delta) := \sum_{\Psi} |H_{i-1}(\Psi)|^2,$$

where the sum is over all *i*-dimensional spanning trees of Δ .

Corollary 0.5. $\tau_d(\Delta) = 1$ if and only if Δ is a tree and $\widetilde{H}_{d-1}(\Delta) = 0$, i.e., if and only if $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$.

Proof. This follows directly from the definition of $\tau_d(\Delta)$ and Proposition 0.4.

Suppose that $\tilde{\beta}_{i-1}(\Delta) = 0$. It follows that Δ has an *i*-dimensional spanning tree Υ . Let

$$\widetilde{F}_i := F_i(\Delta) \setminus F_i(\Upsilon),$$

the *i*-faces of Δ not contained in Υ , and let \widetilde{L}_i be the *i*-Laplacian of Δ with the rows and columns corresponding to faces in $F_i(\Upsilon)$ removed.

Theorem 0.6 (Duval, Klivans, Martin).

(i) If $\widetilde{H}_{i-1}(\Upsilon) = 0$, there is an isomorphism

$$\psi \colon \mathcal{K}_i(\Delta) \to \mathbb{Z}\widetilde{F}_i/\operatorname{im}(\widetilde{L}_i),$$

defined by dropping i-faces of Υ : if $c = \sum_{f \in F_i(\Delta)} c_f \cdot f \in \ker \partial_i$ represents an element of $K_i(\Delta)$, then

$$\psi(c) = \sum_{f \in \widetilde{F}_i} c_f \cdot f \mod \operatorname{im}(\widetilde{L}_i).$$

(ii) (Simplicial matrix-tree theorem)

$$\tau_{i+1} = \frac{|\widetilde{H}_{i-1}(\Delta)|^2}{|\widetilde{H}_{i-1}(\Upsilon)|^2} \det(\widetilde{L}_i).$$

Definition 0.7. Let $0 \le i \le d$. The *i-th positive kernel* for Δ is the pointed cone

$$\ker^+ L_i := \{ D \in \mathbb{Z}F_i : D(f) \ge 0 \text{ for all } f \in F_i \}.$$

Fixing an ordered Hilbert basis $H_i = (h_1, \ldots, h_\ell)$ for $\ker^+ L_i \cap \mathbb{Z}^{f_i(\Delta)}$, define the degree of $D \in \mathbb{Z}F_i$ by

$$\deg(D) := (D \cdot h_1, \dots, D \cdot h_\ell)$$

where $D \cdot h_j := \sum_{f \in F_i} D(f) h_j(f)$. We say $d \in \mathbb{Z}^{\ell}$ is a winning degree (in dimension i) if each $D \in \mathbb{Z}F_i$ with $\deg(D) \geq d$ is winnable.

Proposition 0.8. For $0 \le i \le d$,

$$(\ker L_i)^{\perp}/\operatorname{im}(L_i) \approx \mathbf{T}(\mathcal{K}_i(\Delta)).$$

This says the group of i-chains of degree 0 modulo firing rules is isomorphic to the torsion part of the i-th critical group of Δ .

Theorem 0.9. If $\tau_d(\Delta) = 1$, then 0 is a winning degree in dimension d-1.

Proof. Since $\tau_d(\Delta) = 1$, by Proposition 0.5, we have $\widetilde{H}_d(\Delta) = \widetilde{H}_{d-1}(\Delta) = 0$. Thus, ∂_d is injective, and im $\partial_d = \ker \partial_{d-1}$. The universal coefficient theorem gives an exact sequence

$$0 \to \operatorname{Ext}^1(H_{d-1}(\Delta), \mathbb{Z}) \to H^d(\Delta) \to \operatorname{Hom}(H_d(\Delta), \mathbb{Z}) \to 0,$$

which implies that $H^d(\Delta) = 0$. We have $\widetilde{H}^d(\Delta) = \widetilde{H}^d(\Delta)$ for d > 0. In the case where d = 0, we have that $\tau_d(\Delta) = 1$ implies that Δ is a single point, ∂_0 is an isomorphism, and thus, every (d-1)-cycle is linearly equivalent to 0. So we will assume d > 0 from now on.

To show 0 is a winning degree in dimension d-1, we must show $\mathcal{K}_{d-1}(\Delta)$ is also torsion-free. So let $\alpha \in \ker \partial_{d-1}$ and suppose there exists an integer n > 0 such that $n\alpha \in \operatorname{im}(L_{d-1})$. So there exists $\beta \in C_{d-1}(\Delta)$ such that

$$n\alpha = L_{d-1}\beta = \partial_d \partial_d^t \beta.$$

Since $\widetilde{H}_{d-1}(\Delta) = 0$, there exists $\gamma \in C_d(\Delta)$ such that $\partial_d \gamma = \alpha$. Since ∂_d is injective, $n\gamma = \partial_d^t \beta$. Since $\widetilde{H}^d(\Delta) = C^d(\Delta)/\operatorname{im} \partial_d^t = 0$, it follows that $\gamma = \operatorname{im} \partial_d^t$, and hence, $\alpha \in \operatorname{im} L_{d-1}$, as required.

Example 0.10. Figure 1 illustrates a 2-dimensional complex P which is a triangulation of the real projective plane. We have $\widetilde{H}_0(P) = \widetilde{H}_2(P) = 0$, and $\widetilde{H}_1(P) \approx \mathbb{Z}/2\mathbb{Z}$. From the definition of the tree number, $\tau_2(P) = 4$, and it follows from the matrix-tree theorem that $\det(\widetilde{L}_0) = 4$ with respect to any 1-dimensional spanning tree

Figure 1: A triangulation of the real projective plane, \mathbb{RP}^2 .

of P. (There are 6^4 such spanning trees since the 1-skeleton of P is the completer graph K_6 .) The cycle $C := \overline{01} + \overline{12} - \overline{02}$ has degree (0,0,0,0,0) but is not winnable. We have $\mathcal{K}_1(P) \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and hence 2C is winnable.

Question. Can we find an example where $\tau_d(\Delta) = 1$ and 0 is not a winning degree in dimension d-1? The 2-dimensional chessboard complex is an example of a non-tree for which 0 is a winning degree in dimension 1.

¹Need to say why the perp is the group of i-chains of degree 0.