Übung "Grundbegriffe der Informatik"

Karlsruher Institut für Technologie

Matthias Schulz, Gebäude 50.34, Raum 034

email: schulz@ira.uka.de

Am besten in while Schleifen:

while B do

:

od

Am besten in while Schleifen:

```
Schleifeninvariante gilt while\ B\ do Schleifeninvariante gilt : Schleifeninvariante gilt od Schleifeninvariante gilt
```

Am besten in while Schleifen:

```
Schleifeninvariante gilt while\ B\ do Schleifeninvariante gilt : Schleifeninvariante gilt od Schleifeninvariante gilt
```

Programmstück bildet Belegung B_1 auf Belegung B_2 ab.

_

Am besten in while Schleifen:

```
Schleifeninvariante gilt while\ B\ do Schleifeninvariante gilt : Schleifeninvariante gilt od Schleifeninvariante gilt
```

Programmstück bildet Belegung B_1 auf Belegung B_2 ab. Jede Belegung B' am Schleifenende wird auf B_2 abgebildet.

Nicht so gut bei for Schleifen:

```
Schleifeninvariante gilt for i \leftarrow x \ to \ y \ do Schleifeninvariante gilt I : Schleifeninvariante gilt II od Schleifeninvariante gilt II
```

Nicht so gut bei for Schleifen:

```
Schleifeninvariante gilt for \ i \leftarrow x \ to \ y \ do Schleifeninvariante gilt I : Schleifeninvariante gilt II od Schleifeninvariante gilt II
```

Problem: Änderung von i zwischen II und I.

_

Nicht so gut bei for Schleifen:

```
Schleifeninvariante gilt for \ i \leftarrow x \ to \ y \ do Schleifeninvariante gilt I : Schleifeninvariante gilt II od Schleifeninvariante gilt II
```

Lösung: Verwende in SI Variable j, die im Schleifenrumpf den Wert von i annimmt.

Nicht so gut bei for Schleifen:

```
\begin{array}{l} j \leftarrow x \\ \text{Schleifeninvariante gilt} \\ for \ i \leftarrow x \ to \ y \ do \\ \text{Schleifeninvariante gilt I} \\ j \leftarrow j + 1 \\ \vdots \\ \text{Schleifeninvariante gilt II} \\ od \\ \text{Schleifeninvariante gilt} \end{array}
```

Beispiel:

$$x \leftarrow a, y \leftarrow b$$

 $s_1 \leftarrow 1, s_2 \leftarrow 0, t_1 \leftarrow 0, t_2 \leftarrow 1$
 $while \ y > 0 \ do$
 $q \leftarrow x \ div \ y$
 $v \leftarrow y, \quad y \leftarrow x - qy, \quad x \leftarrow v,$
 $v \leftarrow s_2, \quad s_2 \leftarrow s_1 - qs_2, \quad s_1 \leftarrow v$
 $v \leftarrow t_2, \quad t_2 \leftarrow t_1 - qt_2, \quad t_1 \leftarrow v$
 $s_1 \leftarrow v \leftarrow v$

Anfang:

$$\begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Schleife:

$$\begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \rightarrow \begin{pmatrix} y & x - qy \\ s_2 & s_1 - qs_2 \\ t_2 & t_1 - qt_2 \end{pmatrix}$$

Anfang:

$$\begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \rightarrow \begin{pmatrix} a & b \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Schleife:

$$\begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \rightarrow \begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix}$$

Falls vor Schleife
$$A \cdot \begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} = 0$$
 gilt, gilt das auch nach der Schleife.

Falls vor Schleife $A \cdot \begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} = 0$ gilt, gilt das auch nach der Schleife.

$$0 = A \cdot \begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \rightarrow A \cdot \begin{pmatrix} x & y \\ s_1 & s_2 \\ t_1 & t_2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} = 0 \cdot \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix} = 0$$

_

Anfang:

$$A \cdot \left(\begin{array}{cc} a & b \\ 1 & 0 \\ 0 & 1 \end{array} \right) = 0$$

Anfang:

$$A \cdot \left(\begin{array}{cc} a & b \\ 1 & 0 \\ 0 & 1 \end{array} \right) = 0$$

$$A = \left(\begin{array}{ccc} 1 & -a & -b \end{array} \right)$$

Schleifeninvariante: $x - s_1a - t_1b = y - s_2a - t_2b = 0$

Nachrechnen: Zu Beginn der Schleife gelte SI für Belegung x, y, s_1, s_2, t_1, t_2 .

Berechne Belegung am Ende der Schleife $x', y', s'_1, s'_2, t'_1, t'_2$.

Zeige: SI gilt für $x', y', s'_1, s'_2, t'_1, t'_2$.

Bemerkung: Am Ende gilt x = ggt(a,b), und es gilt $s_1a + t_1b = ggt(a,b)$.

Nützlich zum Invertieren modulo n!

Präziser Formalismus ...

Präziser Formalismus ...

für grobes Abschätzen.

Aufgabentypen:

• Zeigen Sie: $f(n) \in O(g(n)) \Rightarrow O(f(n)) \subseteq O(g(n))$.

• Zeigen Sie: $f(n) \in O(g(n))$.

• Zeigen Sie: $f(n) \notin O(g(n))$.

Zeigen Sie: $f(n) \in O(g(n)) \Rightarrow O(f(n)) \subseteq O(g(n))$.

Sei $h(n) \in O(f(n))$. Dann gilt:

$$\exists n_1, n_2 \in \mathbb{N}_0 \exists c_1, c_2 \in \mathbb{R}_+ :$$

 $\forall n \ge n_1 : h(n) \le c_1 f(n) \land \forall n \ge n_2 : f(n) \le c_2 g(n)$

•

Zeigen Sie: $f(n) \in O(g(n)) \Rightarrow O(f(n)) \subseteq O(g(n))$.

Sei $h(n) \in O(f(n))$. Dann gilt:

$$\exists n_1, n_2 \in \mathbb{N}_0 \exists c_1, c_2 \in \mathbb{R}_+ :$$

 $\forall n \ge n_1 : h(n) \le c_1 f(n) \land \forall n \ge n_2 : f(n) \le c_2 g(n)$

Sei $n_0 = \max\{n_1, n_2\}$ und $c = c_1c_2$.

Dann gilt: $\forall n \geq n_0 : h(n) \leq c_1 f(n) \leq c_1 c_2 g(n) = c_2 g(n)$.

Zeigen Sie: $f(n) \in O(g(n)) \Rightarrow O(f(n)) \subseteq O(g(n))$.

Also gilt $h(n) \in O(g(n)) \Rightarrow O(f(n)) \subseteq O(g(n))$.

Zeigen Sie:
$$\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$$

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

Suche n_0, c so, dass gilt: $\forall n \geq n_0 : \sum_{i=2}^n \frac{1}{i} \leq c \log_2 n$.

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

Suche n_0, c so, dass gilt: $\forall n \geq n_0 : \sum_{i=2}^n \frac{1}{i} \leq c \log_2 n$.

Wir wählen $n_0 = 2$ und c = 2.

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

$$\sum_{i=2}^{2^n} \frac{1}{i} = \sum_{k=1}^n \left(\sum_{i=2^{k-1}+1}^{2^k} \frac{1}{i} \right)$$

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

$$\sum_{i=2}^{2^n} \frac{1}{i} = \sum_{k=1}^n \left(\sum_{i=2^{k-1}+1}^{2^k} \frac{1}{i} \right) \le \sum_{k=1}^n \left(\sum_{i=2^{k-1}+1}^{2^k} \frac{1}{2^{k-1}+1} \right)$$

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

$$\sum_{i=2}^{2^n} \frac{1}{i} \le \sum_{k=1}^n \left(\sum_{i=2^{k-1}+1}^{2^k} \frac{1}{2^{k-1}+1} \right) = \sum_{k=1}^n \frac{2^{k-1}}{2^{k-1}+1}$$

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

$$\sum_{i=2}^{2^n} \frac{1}{i} \le \sum_{k=1}^n \frac{2^{k-1}}{2^{k-1} + 1} \le n$$

Zeigen Sie: $\sum_{i=2}^{n} \frac{1}{i} \in O(\log(n))$

$$\sum_{i=2}^{2^n} \frac{1}{i} \le \sum_{k=1}^n \frac{2^{k-1}}{2^{k-1} + 1} \le n$$

$$\Rightarrow \text{ für } 2^{n-1} < k \le 2^n \text{ gilt}$$

$$\sum_{i=2}^k \le \sum_{i=2}^{2^n} \le n \le \log_2 k + 1 \le 2\log_2 k.$$

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

Idee: Wir suchen $n>n_0$ so, dass f(n) verglichen mit \sqrt{n} möglichst groß ist.

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

Idee: Wir suchen $n>n_0$ so, dass f(n) verglichen mit \sqrt{n} möglichst groß ist.

Also: n Primzahl $> n_0$ (gibt es immer!)

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

n Primzahl $> n_0$ (gibt es immer!)

Dann ist $f(n) = n = \sqrt{n} \cdot \sqrt{n}$.

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

n Primzahl $> n_0$ (gibt es immer!)

Dann ist $f(n) = n = \sqrt{n} \cdot \sqrt{n}$.

Wenn $\sqrt{n} > c$ ist, haben wir Widerspruch.

Für $n \in \mathbb{N}_0$ sei f(n) die größte Primzahl, die n teilt.

Zeigen Sie: $f(n) \notin O(\sqrt{n})$

Angenommen, für $n_0 \in \mathbb{N}_0$ und c > 0 gilt:

$$\forall n \geq n_0 : f(n) \leq c\sqrt{n}$$

Sei n Primzahl $> \max(n_0, c^2)$.

Dann gilt $f(n)=n=\sqrt{n}\cdot\sqrt{n}>\sqrt{c^2}\sqrt{n}=c\sqrt{n}$, im Widerspruch zur Annahme.

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

$$(n+1)^{k+1} = n^{k+1} + \sum_{i=1}^{k} {k+1 \choose i} n^i$$

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

$$(n+1)^{k+1} = n^{k+1} + \sum_{i=1}^{k} {k+1 \choose i} n^i$$

 $\leq n^{k+1} + (2^{k+1} - 1) n^k$

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

$$(n+1)^{k+1} = n^{k+1} + \sum_{i=1}^{k} {k+1 \choose i} n^i$$

 $\leq n^{k+1} + (2^{k+1} - 1)n^k$

Wähle
$$c = \frac{1}{2^{k+1}-1}$$
 und $n_0 = 1$

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

$$(n+1)^{k+1} \le n^{k+1} + (2^{k+1} - 1)n^k$$

Wähle
$$c = \frac{1}{2^{k+1}-1}$$
 und $n_0 = 1$

$$\sum_{i=0}^{1} i^k = 1^k = 1 \ge c \cdot 1^{k+1} \checkmark$$

Zeigen Sie:
$$\sum_{i=0}^{n} i^k \in \Omega(n^{k+1})$$

$$(n+1)^{k+1} \le n^{k+1} + (2^{k+1} - 1)n^k$$

Wähle
$$c = \frac{1}{2^{k+1}-1}$$
 und $n_0 = 1$

$$\sum_{i=0}^{n+1} i^k = \sum_{i=0}^n i^k + (n+1)^k \stackrel{IV}{\ge} cn^{k+1} + n^k$$
$$= c(n^{k+1} + (2^{k+1} - 1)n^k) \ge c(n+1)^{k+1} \checkmark$$

$$x \sim y \iff x \text{ div } 23 = y \text{ div } 23$$

- 1. Zeigen Sie, dass \sim Äquivalenz ist.
- 2. Ist \sim verträglich mit Addition? Multiplikation? Division? Subtraktion?
- 3. Ist \sim verträglich mit Addition von 45, 46, 47?
- 4. Ist \sim verträglich mit Division durch 3,4,5?

$$x \sim y \iff x \text{ div } 23 = y \text{ div } 23$$

x div 23 = x div 23

Symmetrie und Transitivität vererben sich von =.

$$x \sim y \iff x \text{ div } 23 = y \text{ div } 23$$

11
$$\sim$$
 12, aber 11 + 11 = 22 $\not\sim$ 12 + 12 = 24
12 \sim 1, aber 1 = 1 \cdot 1 $\not\sim$ 144 = 12 \cdot 12
12 \sim 1, aber 24 = 25 $-$ 1 $\not\sim$ 13 = 25 $-$ 12
2 \sim 1, aber 46 = 46 div 1 $\not\sim$ 23 = 46 div 2

$$x \sim y \iff x \text{ div } 23 = y \text{ div } 23$$

$$1 + 45 \not\sim 0 + 45$$

 $x \sim y \Rightarrow x \text{ div } 23 = y \text{ div } 23 \Rightarrow x \text{ div } 23 + 2 = y \text{ div } 23 + 2 \Rightarrow$
 $(x + 46) \text{ div } 23 = (y + 46) \text{ div } 23$
 $22 + 47 \not\sim 21 + 47$

 $x \ \mathrm{div} \ k \not\sim y \ \mathrm{div} \ k \Rightarrow \exists m \in \mathbb{N}_0 : x \ \mathrm{div} \ k < 23m \land y \ \mathrm{div} \ k \geq 23m$

 $x \operatorname{div} k \not\sim y \operatorname{div} k \Rightarrow \exists m \in \mathbb{N}_0 : x \operatorname{div} k < 23m \land y \operatorname{div} k \geq 23m$

$$\Rightarrow k(x \text{ div } k) \leq 23mk - k \land y \geq 23mk$$

 $x \ \mathrm{div} \ k \not\sim y \ \mathrm{div} \ k \Rightarrow \exists m \in \mathbb{N}_0 : x \ \mathrm{div} \ k < 23m \land y \ \mathrm{div} \ k \geq 23m$

$$\Rightarrow k(x \text{ div } k) \leq 23mk - k \land y \geq 23mk$$

$$\Rightarrow k(x \text{ div } k) + x \mod k < 23mk \leq y$$

 $x \ \mathrm{div} \ k \not\sim y \ \mathrm{div} \ k \Rightarrow \exists m \in \mathbb{N}_0 : x \ \mathrm{div} \ k < 23m \land y \ \mathrm{div} \ k \geq 23m$

$$\Rightarrow k(x \text{ div } k) \leq 23mk - k \land y \geq 23mk$$

$$\Rightarrow k(x \operatorname{div} k) + x \mod k < 23mk \leq y$$

$$\Rightarrow x \nsim y$$

 $x \text{ div } k \not\sim y \text{ div } k \Rightarrow x \not\sim y$

 \Rightarrow

 $x \sim y \Rightarrow x \text{ div } k \sim y \text{ div } k$