

Varianta 075

Subjectul I

a) 25 . b)
$$2\sqrt{2}$$
 . c) x-y=4. d) L, M, N coliniare $\Leftrightarrow 2\overrightarrow{LM} = \overrightarrow{LN}$ e) $V = = \frac{91}{6}$. f) a=18 şi b=-26.

Subjectul II

1.a) Se verifica prin calcul direct.b)
$$\frac{99}{100}$$
.c) Probabilitatea ceruta este $\frac{3}{4}$.d) x=1 solutie unica. e) -24 .

2.a)
$$f'(x)=1-2^{-x}\ln 2.b$$
) $\int_0^x f(x)dx = \frac{1}{2} + \frac{1}{2\ln 2}.c$) $f''(x)dx = 2^{-x} \cdot (\ln 2)^2 > 0 \ \forall \ x \in \mathbf{R} \Rightarrow f$

convexa pe **R**.d)
$$\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = 1 - \frac{\ln 2}{2}$$
.f) $\lim_{x\to \infty} (f(x)-x) = 0 \in \mathbf{R} \Rightarrow y=x$ asimptota oblica la $+\infty$

Subjectul III

- a) f(0)=0 obtinem, daca in relatia ceruta se inlocuieste x=y=0.
- b) Pentru y=-x din relatia data \Rightarrow $f(x)+f(-x)=0 \Rightarrow$ $f(-x)=-f(x), \forall x \in \mathbf{R}$.

c) Fie P(n):
$$f(a_1 + a_2 + ... a_n) = f(a_1) + f(a_2) + ... + f(a_n), n \in \mathbb{N}, a_1, a_2, ... a_n \in \mathbb{R}$$

Pentru n=1, P(1): $f(a_1) = f(a_1)$ este adevarata.

$$\begin{aligned} & \text{P(n+1): } f\left(a_1 + a_2 + ... a_{n+1}\right) = f\left(a_1\right) + f\left(a_2\right) + ... + f\left(a_{n+1}\right), n \in \mathbb{N}, a_1, a_2, ... a_{n+1} \in \mathbf{R} \\ & \text{Avem } \frac{f\left(a_1 + a_2 + ... a_{n+1}\right) = f\left(\left(a_1 + a_2 + ... + a_n\right) + a_{n+1}\right) = f\left(a_1 + a_2 + ... + a_n\right) + f\left(a_{n+1}\right) = f\left(a_1 + a_2 + ... + a_n\right) + f\left(a_{n+1}\right) = f\left(a_1 + a_2 + ... + a_n\right) + f\left(a_n\right) + f\left(a_$$

d) Pentru
$$a_1 = a_2 = ... = a_n = \frac{1}{n}$$
 in relatia c) avem $f(1) = f\left(\frac{1}{n} + \frac{1}{n} + ... + \frac{1}{n}\right) = n \cdot f\left(\frac{1}{n}\right)$.

$$\Rightarrow f\left(\frac{1}{n}\right) = \frac{1}{n}$$

e)
$$f\left(\frac{m}{n}\right) = f\left(\sum_{i=1}^{m} \frac{1}{n}\right) = m \cdot f\left(\frac{1}{n}\right) = \frac{m}{n}, \forall \frac{m}{n} \in \mathbf{Q}_{+} \text{ si } f\left(-\frac{m}{n}\right) = -f\left(\frac{m}{n}\right) = -\frac{m}{n} \forall n \in \mathbf{N}^{*} \Rightarrow f(x) = x, \forall x \in \mathbf{Q}$$

f) Fie b-a=c>0
$$\Rightarrow \exists n_0 \in \mathbb{N}^* : \frac{1}{n_0} < c$$
. Deoarece şirul $\left(\frac{n}{n_0}\right)$, $n \in \mathbb{N}^*$ este progresie

aritmetica ⇒ cel puţin unul dintre termenii progresiei se află în (a,b).

g) Reducere la absurd: presupunem $\exists x \in \mathbf{R}$: $f(x) \neq x \Rightarrow f(x) < x$ sau f(x) > x. Tratăm primul caz: $f(x) < x \Rightarrow \exists r \in \mathbf{Q}$: $f(x) < r < x \Leftrightarrow f(r) < f(x)$ dar $f(r) = r \Rightarrow r < f(x)$ contradicție. La fel se tratează și al doilea caz.

Subjectul IV

a)
$$f'(x) = -\frac{1}{(x+1)^2} - \frac{1}{x+\frac{3}{2}} + \frac{1}{x+\frac{1}{2}} = \frac{1}{(2x+1)(2x+3)(x+1)^2}$$

$$g'(x) = -\frac{1}{(x+1)^2} - \frac{1}{x+\frac{5}{3}} + \frac{1}{x+\frac{2}{3}} = \frac{-3x-1}{(3x+5)(3x+2)(x+1)^2}.$$

b)
$$\lim_{x \to \infty} f(x) = \ln 1 = 0; \lim_{x \to \infty} g(x) = 0.$$

c)
$$f'(x)>0$$
, $\forall x>0$ si $g'(x)<0$, $\forall x>0$ (din a)

c)
$$f'(x) > 0$$
, $\forall x > 0$ si $g'(x) < 0$, $\forall x > 0$ (din a)
d) Din (c) \Rightarrow
$$\begin{cases} f \text{ strict crescatoare pe } \mathbf{R} \text{ si din (b)} \Rightarrow f(x) < \lim_{x \to \infty} f(x) = 0 \\ g \text{ strict descrescatoare pe } \mathbf{R} \text{ si din (b)} \Rightarrow g(x) > \lim_{x \to \infty} g(x) = 0 \end{cases}$$

deci $f(x) < 0 < g(x), \forall x \in \mathbf{R}$.

e) Se verifica prin calcul ca a_{n+1} - a_n =g(n)>0, $\forall n \in \mathbb{N} \Rightarrow (a_n)_{n \in \mathbb{N}}$ este strict crescător și b_{n+1} - b_n =f(n)<0, $\forall n \in \mathbb{N} \Rightarrow (b_n)_n \in \mathbb{N}$ strict descrescător.

f)
$$b_n$$
- a_n = $ln\left(1+\frac{1}{6n+3}\right)<\frac{1}{6n+3}<\frac{1}{6n}, \forall n \in \mathbb{N}^* \text{ si din (e)} \Rightarrow b_n$ - $a_n>0, \forall n \in \mathbb{N}.$

g) din e), f), $\Rightarrow a_1 < a_2 < ... < a_n < ... < b_1 \Rightarrow$ şirurile $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ sunt mărginite si strict monotone, deci sunt convergente. Dar f) $\Rightarrow \lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{1}{6n} = 0 \Rightarrow \text{cele}$ două șiruri au aceeași limită.