Soluciones # 13

Mínimos cuadrados

Problema 13.1

- a) Es incompatible y $x_0 = \frac{1}{50} (83,71)^t$.
- b) Es incompatible y $x_0 = \frac{1}{27} (36, 22)^t$.
- c) Es compatible con $x_1 = x_2 = 1$ y $x_0 = (1,1)^t$.

Problema 13.2

- 1) Las proyecciones son
 - a) $\frac{1}{50}$ (154, 47, 95)^t.
 - b) $\frac{1}{27}(2,14,50)^{t}$.
 - c) $(3,0,2)^{t}$.
- 2) Las diferencias $r = b A x_0$ son
 - a) $r = \frac{1}{50} (-4,3,5)^{t}$.
 - b) $r = \frac{1}{27}(-2, -14, 4)^{t}$.

c)
$$r = (0, 0, 0)^{t}$$
.

3) Claramente se cumple que $r \in N(A)$:

a)
$$N(A) = Gen((-4,3,5)^t)$$
.

b)
$$N(A) = Gen((1,7,-2)^t)$$
.

c)
$$N(A) = Gen((-2,8,3)^t)$$
.

Problema 13.3

1.
$$y = \frac{2}{7} + \frac{5}{14}x$$
.

2.
$$y = \frac{19}{132} + \frac{19}{44}x - \frac{1}{132}x^2$$
.

Problema 13.4

1. Si $x \in N(A)$, entonces $A^t A x = A^t 0 = 0$. Luego $x \in N(A^t A)$ y $N(A) \subset N(A^t A)$.

Al contrario, si $x \in N(A^t A)$, entonces $A^t A x = 0$. Si hacemos el producto escalar de esta expresión por x, tenemos que $\langle x, A^t A x \rangle = x^t A^t A x = 0$. Pero esto es equivalente a ||Ax|| = 0, luego Ax = 0, $x \in N(A)$ y $N(A^t A) \subset N(A)$.

Las dos inclusiones implican que $N(A) = N(A^t A)$.

2. Si multiplicamos por A^t a la izquierda, $A^t A x = A^t b = 0$. Luego $x \in N(A^t A) = N(A)$ y por tanto el sistema A x = b debe ser incompatible si $b \neq 0$.

Problema 13.5 El sistema se lee

$$A x_0 + r = b$$
, $A^t r = 0$.

De aquí se deduce que, si A^t A es invertible, la solución de mínimos cuadrados buscada es:

$$x_0 = (A^t A)^{-1} A^t b$$
.

Problema 13.6 Si $f_1 = 1$ y $f_2 = 2x - 1$, entonces

1.
$$\langle f_1, f_2 \rangle = 0$$
.

2.
$$\|f_1\| = 1 y \|f_2\| = 1/\sqrt{3}$$
.

3.
$$\sqrt{x} \approx \frac{4}{15} + \frac{4}{5}x$$
 en [0, 1].

Problema 13.7 Si $f_1 = 1$ y $f_2 = x$, entonces

1.
$$\langle f_1, f_2 \rangle = 0$$
.

$$2. \ \|f_1\| = \sqrt{2} \ y \ \|f_2\| = \sqrt{\frac{2}{3}}.$$

3.
$$x^{1/3} \approx \frac{9}{7} x$$
 en $[-1, 1]$.