

11: Implementación del file system

Sistemas Operativos 1 Ing. Alejandro León Liu

File system

- Definir un archivo y sus atributos
- Mapear archivos a almacenamiento secundario
 - Algoritmos
 - Estructuras de datos
 - Eficiencia de I/O: agrupar bytes en bloques
 - □ Cada bloque es formado por uno o varios sectores de disco

IMPLEMENTACIÓN

- Programación
 - Logical file system
 - Metadata: File Control Block
 - Permisos
 - □ Tiempos (Creación, modificación, acceso)
 - Owner, Grupo, ACL
 - □ Tamaño
 - Punteros a bloques
 - File organization
 - Bloques lógicos
 - Bloques físicos
 - Manejo de bloques libres
 - Basic file system
 - Simples read y write de bloques
 - I/O
 - Dispositivos

- Estructuras de datos en almacenamiento secundario
 - Boot control block
 - Información para boot un S.O.
 - Primer bloque
 - Volume control block (Partición)
 - Tamaño
 - Número de bloques
 - Bloques libres
 - FCB libres
 - Master file table
 - Directorio
 - **FCB**

- NTFS (Windows)
 - Partition boot sector
 - Master file table
 - Directorio
 - □ FCB
- UFS (Unix File System)
 - Boot block
 - Superblock
 - Directorio
 - □ Tabla de inodes
 - ▶ Inode: FCB

Estructuras en memoria

- Mount table: Información de las particiones montadas
- Directorio
 - Información reciente
- Open-file table
 - Contiene copias de los FCB
- Per process open-file table
 - Puntero a registro en open-file table
 - NTFS: File Handle
 - UFS: File descriptor

Particiones

- File system
- Raw
 - Sin formato
 - Manejo especializado de disco
 - □ Swap
 - □ Bases de datos
 - Boot space
 - □ Cargado como una imagen en memoria
 - Instrucciones para cargar un S.O.
 - Boot loader

Virtual File System

- Misma interfaz (API) para el S.O. independiente del file system
- Permite que un S.O. interprete varios file systems
 - Remotods

DIRECTORIO

- Estructura de datos para almacenar los archivos (y carpetas) dentro de una carpeta
 - Nodos: Punteros a bloques
 - Criterios:
 - Tiempo para crear un archivo
 - Tiempo para borrar un archivo
 - Tiempo para buscar un archivo

Arreglo

- Ineficiente
- Desperdicia espacio

Lista lineal

- New file: búsqueda lineal de nombre repetido
- Delete file: búsqueda de archivo a borrar
- Search file: búsqueda lineal
 - Caché: archivos recientemente utilizados
 - Sorted list. Binary search
- Todo el espacio (todos los FCB) puede ser reutilizado

Hash table

- Función (fileName) → lista de registros
 - ► Ejemplo: mod 64
 - Manejar colisiones
- Desperdicia espacio
- Búsqueda exacta es más rápida

ASIGNACIÓN DE BLOQUES

- Asignación de bloques a un archivo
- Criterio de elección: Eficiencia
- Asignación continua
 - Lectura y escritura rápida
 - Seek time mínima
 - Difícil encontrar espacio para un nuevo archivo
 - Fragmentación externa
 - Solución requiere downtime
 - □ Compactar espacio libre en uno solo
 - Mover bloques de archivos
 - Difícil determinar espacio para un archivo
 - Espacio pequeño: compactar
 - Espacio grande: desperdicio

Linked allocation

- Cada archivo es una lista encadenada de bloques
- FCB contiene puntero a bloque inicial
- Cada bloque contiene un puntero al siguiente bloque
- No existe fragmentación externa
- Únicamente puede ser utilizado para acceso secuencial
- Clusters
 - Asignar por clusters (varios bloques a la vez)
 - Aumenta fragmentación interna
 - Mejora performance
- Si se pierde un bloque, se pierde el resto de la información
 - Lista doblemente encadenada
 - Puntero a FCB en cada bloque

- File allocation table (FAT)
 - MSDOS, OS/2
 - Tabla al inicio de la partición
 - Contiene todos los punteros de la lista encadenada de bloques
 - Maneja espacio libre

Indexed allocation

- No hay fragmentación externa
- No es necesario declarar tamaño del archivo
- Utilizar un bloque como index block
 - Apunta a bloques de datos

- Tamaño del index block
 - Lista de index blocks
 - Multilevel index
 - Combined (UNIX)

Ing. Alejandro León Liu

- Mejor forma de asignación de bloques?
 - Depende del tipo de acceso
 - Acceso secuencial
 - □ Asignación continua
 - Acceso aleatorio
 - Linked allocation
- Vale la pena eficientizar la asignación de bloques
 - ▶ 1 lectura de disco = miles de instrucciones

MANEJO DE BLOQUES LIBRES

Bit vector

- Por performance, debe estar en memoria
 - Leer bit por bit es ineficiente
- Espacio adicional

$$bit[i] = \begin{cases} 0 \Rightarrow block[i] \text{ free} \\ 1 \Rightarrow block[i] \text{ occupied} \end{cases}$$

Linked list

- No requiere espacio adicional
- Algoritmo
 - Leer puntero head
 - Leer bloque libre
 - Actualizar head
- FAT
 - Maneja bloques libres

EFICIENCIA Y PERFORMANCE

- Discos: Dispositivo más lento
- Repartir inodes en todo el disco
 - Minimizar distancia entre inode y bloques
 - Minimizar seek time
- Clustering (varios bloques)
- Metadatos
 - Tiempo de último acceso
 - Una escritura adicional cada vez que se escribe sobre el archivo.
- Tamaño de punteros
 - Define el tamaño de los archivos
 - Espacio adicional

Unified virtual memory

- Mapear archivos a memoria virtual
- Page cache

Escrituras

- Asíncronas
 - Se escriben sobre page cache
 - Escrituras calendarizadas por disco

Síncronas

- No usa page cache
- Se escriben inmediatamente
- Respetar orden de peticiones
- Base de datos

RECUPERACIÓN

- Revisión de consistencia
 - ▶ Crash → File system en estado inconsistente
 - Consistency checker
 - Revisar file system y reparar
 - Punteros muertos

Backup

- Backup incremental
 - Utilizar la última fecha de escritura de archivos
 - Día 1: copia completa
 - Día 2: copia de archivos modificados desde el Día 1

Log

- Almacenar cambios en metadata
- Puntero apunta a las operaciones ya completadas
- Operaciones después del puntero no han sido completadas
- Recuperación