Package 'cosmoFns'

October 12, 2022

Title Functions for Cosmological Distances, Times, Luminosities, Etc

Type Package

Version 1.1-1
Date 2022-05-08
Author Andrew Harris
Maintainer Andrew Harris harris@astro.umd.edu>
Description Package encapsulates standard expressions for distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Currently coded for a flat universe only.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-09 07:20:05 UTC
R topics documented:
cosmoFns-package
D.A
D.L
D.M
dimmingFactor
lineLum
lookbackTime
Lprime
mass.CO
sedFitThin
Index 14

D.A

cosmoFns-package

Cosmology functions

Description

Package contains functions for computation of distances and luminosities in a flat cosmology.

Details

Package: cosmoFns
Type: Package
Version: 1.1-1
Date: 2022-05-08
License: GPL

LazyLoad: yes

Author(s)

A. Harris

Maintainer: <harris@astro.umd.edu>

References

"Distance Measures in Cosmology," D.W. Hogg (2000), arXiv:astro-ph/9905116; "Warm Molecular Gas in the Pirmeval Galaxy 10214+4724", P.M. Solomon, D. Downes, and S.J.E. Radford (1992), Ap.J. 398, L29; "First-year WMAP observations...", Spergel et al., ApJS 148:175 (2003). "Submillimetre and far-infrared spectral energy distributions of galaxies...", A.W. Blain, V.E. Barnard & S.C. Chapman 2003, MNRAS 338, 733.

Examples

D.L(z=2.3)

D.A

Angular diameter distance

Description

Function computes angular diameter distance

D.L 3

Usage

```
D.A(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

z	Redshift
omega.m	Omega matter parameter
omega.lambda	Omega lambda parameter
H.0	Hubble constant in km/s/Mpc

Value

Angular distance in Mpc

Note

For flat universe, omega. k = 0.

Author(s)

A. Harris

References

```
Hogg (2000), arXiv:astro-ph/9905116, equation (18)
```

Examples

```
D.A(2.3)

z <- seq(0.1, 5, 0.1)
d <- D.A(z)
plot(z, d/max(d), t='l', xlab='z', ylab='Normalized D.A')</pre>
```

D.L

Luminosity distance

Description

Function computes luminosity distance in a flat cosmology.

Usage

```
D.L(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

D.M

Arguments

z Redshift

omega.m Omega matter parameter
omega.lambda Omega lambda parameter
H.0 Hubble constant in km/s/Mpc

Value

Luminosity distance in Mpc

Author(s)

A. Harris

References

Hogg (2000), arXiv:astro-ph/9905116, equation (21)

Examples

D.L(2.3)

D.M

Comoving distance

Description

Function computes comoving distance in a flat cosmology.

Usage

```
D.M(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

z Redshift

omega.m Omega matter parameter
omega.lambda Omega lambda parameter
H.0 Hubble constant in km/s/Mpc

Value

Comoving distance in Mpc

Note

For flat universe, omega.k = 0, so transverse and line-of-sight comoving distances are equal.

dComovVol 5

Author(s)

A. Harris

References

```
Hogg (2000), arXiv:astro-ph/9905116, equations (16) and (15)
```

Examples

D.M(2.3)

dComovVol

Differential comoving volume

Description

Function computes differential comoving volume in a flat cosmology.

Usage

```
dComovVol(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

z Redshift

omega.m Omega matter parameter
omega.lambda Omega lambda parameter
H.0 Hubble constant in km/s/Mpc

Value

Differential comoving volume in Mpc^3

Author(s)

A. Harris

References

```
Hogg (2000), arXiv:astro-ph/9905116, equation (28)
```

```
dComovVol(2.3)
```

6 dimmingFactor

dimmingFactor

Flux dimming factor

Description

Function computes flux dimming factor in a flat cosmology.

Usage

```
dimmingFactor(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

z	Redshift
omega.m	Omega matter parameter
omega.lambda	Omega lambda parameter
H.0	Hubble constant in km/s/Mpc

Value

Flux dimming factor, unnormalied. Mathematically, it is $(1+z)/D.L^2$. This is the factor that scales luminosity density in the observed frame to flux density in the observed frame.

Author(s)

A. Harris

References

```
Hogg (2000), arXiv:astro-ph/9905116: section 7, part of equation (22)
```

See Also

D.L

```
z <- seq(0.1, 5, 0.1)
df <- dimmingFactor(z)
plot(z, df/max(df), t='l', xlab='z', ylab='Normalized dimming factor')</pre>
```

lineLum 7

lineLum	Line luminosity
	ziite tiiiittiesti)

Description

Compute rest-frame line luminosity.

Usage

```
lineLum(intInt, z, f.rest = 115.27, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

intInt	Integrated intensity in Jy km/s
z	Redshift
f.rest	Line rest frequency in GHz
omega.m	Omega matter parameter
omega.lambda	Omega lambda parameter
H.0	Hubble constant in km/s/Mpc

Value

Rest-frame line luminosity in solar luminosities.

Note

For flat universe, omega. k = 0.

Author(s)

A. Harris

References

```
Solomon, Downes & Radford (1992), ApJ 398, L29, equation (1)
```

See Also

```
Lprime
```

```
snu <- 1.e-3 # 1 mJy peak wid <- 400 # 400 km/s wide intInt <- 1.06*snu*wid # Gaussian line z <- 2.3 lineLum(intInt, z)
```

8 lookbackTime

lookbackTime

Cosmic lookback time

Description

Compute cosmic lookback time given z and cosmological parameters

Usage

```
lookbackTime(z, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

omega.m Omega matter parameter
omega.lambda Omega lambda parameter
H.0 Hubble constant in km/s/Mpc

Details

Defaults for omega.m, omega.lambda, and omega.m, are from WMAP cosmology; omega.k (curvature term) is computed from relationship between omegas in flat cosmology (omega.k = 0).

Value

Lookback time in Gyr.

Author(s)

A. Harris

References

"Principles of Physical Cosmology," P.J. Peebles, Princeton c. 1993, (5.63); "Distance Measures in Cosmology," Hogg (2000), arXiv:astro-ph/9905116, equation (30); "First-year WMAP observations...", Spergel et al., ApJS 148:175 (2003)

```
# lookback time for z = 2
lookbackTime(2)
# Inverse problem, age of Earth (4.6 Gyr) example:
uniroot(function(x) lookbackTime(x) - 4.6, c(0,2))$root
```

Lprime 9

Lprime	Line luminosity, L'

Description

Compute L' line luminosity

Usage

```
Lprime(intInt, z, f.rest = 115.27, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

intInt	Integrated intensity in Jy km/s
Z	Redshift
f.rest	Line rest frequency in GHz
omega.m	Omega matter parameter
omega.lambda	Omega lambda parameter
H.0	Hubble constant in km/s/Mpc

Value

Rest-frame line luminosity in K km/s pc^-2.

Note

For flat universe, omega.k = 0. Useful for empirical mass estimates. L' is proportional to the brightness temperature of the transition.

Author(s)

A. Harris

References

Solomon, Downes & Radford (1992), ApJ 398, L29, equation (3)

See Also

```
lineLum, mass.CO
```

```
snu <- 1.e-3 # 1 mJy peak
wid <- 400  # 400 km/s wide
intInt <- 1.06*snu*wid  # Gaussian line
z <- 2.3
Lprime(intInt, z)</pre>
```

10 mass.CO

mass.CO	Molecular mass

Description

Compute molecular mass (default CO J = 1-0) from L' and empirical conversion factor.

Usage

```
mass.CO(intInt, z, alpha = 0.8, f.rest = 115.27, omega.m = 0.27, omega.lambda = 0.73, H.0 = 71)
```

Arguments

intInt	Integrated intensity in Jy km/s
z	Redshift
alpha	Empirical mass conversion factor, see details
f.rest	Line rest frequency in GHz
omega.m	Omega matter parameter
omega.lambda	Omega lambda parameter
H.0	Hubble constant in km/s/Mpc

Details

alpha is an empirical mass conversion factor. The exact value is a topic of considerable debate. For CO, see Solomon and Vanden Bout (2005), also Tacconi et al. (2008) for reviews.

Value

Gas mass in solar masses.

Author(s)

A. Harris

References

Solomon, Downes & Radford (1992), ApJ 398, L29, equations (3) and (4); Solomon & Vanden Bout (2005) ARA&A 43, 677; Tacconi et al. (2008) ApJ 680, 246.

See Also

Lprime

sedFitThin 11

Examples

```
snu <- 1.e-3 # 1 mJy peak
wid <- 400  # 400 km/s wide
intInt <- 1.06*snu*wid  # Gaussian line
z <- 2.3
mass.CO(intInt, z)</pre>
```

sedFitThin

Optically-thin SED fit

Description

Function takes Herschel-SPIRE photometry and fits optically-thin greybody function for a single-component temperature and galaxy luminosity. Function generates nsamp realizations of observed flux densities with standard deviations for error analysis.

Usage

```
sedFitThin(s, e = s*0.2, z = 2.5, nsamp = 100, alpha = 2, beta = 1.5, wl= c(250, 350, 500), sc.start = 1.e-6, T.start = 50)
```

Arguments

S	Vector of observed-frame flux densities [Jy]
е	Vector of standard deviation of observed-frame flux density [Jy]
z	Galaxy redshift
nsamp	Number of realizations for Monte-Carlo calculation
alpha	Index of power-law for short-wavelength extension
beta	Dust emissivity power law
wl	Vector of observed-frame wavelengths corresponding to s and e [microns]
sc.start	Initial guess for fit luminosity density scaling factor
T.start	Initial guess for dust temperature [K]

Details

Conversion from observed to rest frame is from equation (24) in Hogg 2000. Dust temperature and 8-1000 micron luminosity derivation is described in Blain, Barnard & Chapman 2003. Galaxy SEDs typically fall off more slowly than greybody on the Wien side; see plot generated by examples below to visualize power-law extension suggested by Blain et al. 2003.

12 sedFitThin

Value

t d

List of class sedfit with elements:

Mean of dust temperature distribution Standard deviation of dust temperature distribution e.td lum.gb Mean of greybody luminosity distribution e.lum.gb Standard deviation of greybody luminosity distribution lum.gbpl Mean of greybody-power law luminosity distribution Standard deviation of greybody-power law luminosity distribution e.lum.gbpl scaleFactor Conversion between observed frame flux density and rest frame luminosity density success Fraction of fit attempts that converged results Matrix with nsamp rows and 5 columns: dust temperature in K, greybody luminosity, luminosity for greybody with smoothly-joined power law to short wavelengths, luminosity density scaling, and transition frequency in GHz for power

densities s.

Note

Fit will sometimes crash on numerical derivative and throw an error. In this case the routine will halt without producing results. The more usual lack of convergence is reported as a warning, and the corresponding results will be NA in the output matrix.

law extension. The first row contains results for the center-of-error input flux

Author(s)

A. Harris

References

Hogg 2000, astro-ph 9905116v4; Blain, Barnard & Chapman 2003, MNRAS 338, 733.

```
s \leftarrow c(0.242, 0.293, 0.231)
e < -c(0.037, 0.045, 0.036)
z < -2.41
beta <- 1.5
alpha <- 2
X <- sedFitThin(s=s, e=e, z=z, alpha=alpha, beta=beta, nsamp=100)
str(X)
## Make a plot
# greybody in blue, power-law extension in red dashed line
# functions
# optically thin greybody
otGreybody <- function(nu, T, beta, sc=1) {
                        # nu in GHz, T in K, beta and sc unitless
```

sedFitThin 13

```
sc*nu^{(3+beta)/(exp(0.04801449*nu/T) - 1)}
              }
# high frequency tail
hfTail \leftarrow function(nu, alpha) nu^-alpha
# setups for 8-1000 microns:
nu.low <- 3e5/1000
nu.high <- 3e5/8
1.nue <- s*X$scaleFactor</pre>
# greybody
nue.sweep <- seq(nu.low, nu.high, len=350)</pre>
pred <- otGreybody(nue.sweep, X$results[1,1], beta=beta,</pre>
                    X$results[1,4])
ylim <- range(pred, 1.nue)</pre>
par(fig=c(0,1,0.2,1), mgp=c(1.8, 0.6, 0))
plot(3e5/nue.sweep, pred, t='l', ylim=ylim, log='xy', col=4,
     xlab='Rest frame wavelength [microns]',
     ylab=expression(paste('Luminosity density [ ', L[sun],
                             ' ', Hz^-1, ']')))
# power law
nue.sweep <- seq(X$results[1,5], nu.high, len=100)</pre>
val.t <- otGreybody(nu=X$results[1,5], T=X$results[1,1], beta=beta,</pre>
     sc=X$results[1,4])
lines(3e5/nue.sweep, val.t*hfTail(nue.sweep/X$results[1,5], alpha=alpha),
      col=2, lwd=1, lty=2)
# data
wl <- c(250, 350, 500)
nue <- 3e5/wl*(1+z)
points(3e5/nue, l.nue, pch=16, col=3)
```

Index

```
* misc
     D.A, 2
     D.L, 3
     D.M, 4
     dComovVol, 5
     {\tt dimmingFactor}, {\color{red} 6}
     lineLum, 7
     lookbackTime, 8
     Lprime, 9
     \mathsf{mass.CO}, \textcolor{red}{10}
     sedFitThin, 11
cosmoFns (cosmoFns-package), 2
cosmoFns-package, 2
D.A, 2
D.L, 3, 6
D.M, 4
dComovVol, 5
dimmingFactor, 6
lineLum, 7, 9
lookbackTime, 8
Lprime, 7, 9, 10
\mathsf{mass.CO}, \textcolor{red}{9}, \textcolor{red}{10}
sedFitThin, 11
```