Linear Algebra HW3

1

(a)

$$A = LDU$$

$$A^T = U^TD^TL^T \ D \quad and \quad D^T \quad have \quad same \quad pivots. - < ans >$$

(b)

$$egin{aligned} A & is \quad symmetric
ightarrow A^T = A \ & \left(AA^{-1}
ight)^T = \left(A^{-1}
ight)^T A^T = I \ & \Rightarrow \left(A^{-1}
ight)^T = \left(A^T
ight)^{-1} = A^{-1} - < ans > \end{aligned}$$

(c)

$$egin{aligned} & :: A \quad is \quad symmetric
ightarrow A = A^T \ & (R^TAR)^T = R^TA^TR = R^TAR \ & \Rightarrow R^TAR \quad is \quad symmetric. - < ans > \ & dim((R^T)_{nm}A_{mm}R_{mn}) = n*n - < ans > \end{aligned}$$

2

(a) True

for any triangular matrix A, A can be factorized by LD or DU. where $L=L_1L_2\ldots L_n,\ U=U_1U_2\ldots U_n$ can be solved by Gauss Elimination. inverse of $L_1,\ldots,L_n,U_1,\ldots,U_n$ are also triangular matrices $Hence,A^{-1}=D^{-1}L^{-1}$ or $D^{-1}L^{-1}$ is also a triangular matrix. -< ans >

(b) True

From the result in 1(b), we can get
$$(A^{-1})^T = A^{-1} - \langle \, ans \,
angle$$

(c) False

proof by contradiction:

$$A = egin{bmatrix} 1 & 2 & 0 \ 3 & 4 & 5 \ 0 & 6 & 7 \end{bmatrix}, \quad A^{-1} = egin{bmatrix} rac{1}{22} & rac{7}{22} & rac{-5}{22} \ rac{21}{44} & rac{-7}{44} & rac{5}{44} \ rac{-9}{22} & rac{3}{22} & rac{1}{22} \end{bmatrix}$$

(d) False

When calculating A^{-1} by Gauss-Jordan method, all entries might not be whole numbers after calculation.

(e) True

- $:: fractions \in \mathbb{Q}, \quad and \quad \mathbb{Q} \quad is \quad a \quad field.$
- \therefore fractions have closure with operations(+,-,*,/).

3

$$D_{j+1} - 2D_j + D_{j-1} = h^2 f(jh)$$
 $j = 1, \dots, 5$

$$egin{bmatrix} 1 & -2 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & -2 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & -2 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & -2 & 1 \end{bmatrix} egin{bmatrix} D_0 \ D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 \end{bmatrix} = egin{bmatrix} h^2 f(h) \ h^2 f(2h) \ h^2 f(3h) \ h^2 f(4h) \ h^2 f(5h) \end{bmatrix}$$

because of initial conditions, $D_0 = D_1 = 0$, the equations can be reduced to

$$egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ -2 & 1 & 0 & 0 & 0 \ 1 & -2 & 1 & 0 & 0 \ 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 1 & -2 & 1 \end{bmatrix} egin{bmatrix} D_2 \ D_3 \ D_4 \ D_5 \ D_6 \end{bmatrix} = egin{bmatrix} h^2 f(2h) \ h^2 f(3h) \ h^2 f(4h) \ h^2 f(5h) \end{bmatrix}$$

Since final speed equals to 0, $D_5 = D_6$.

 $the \ equation \ can \ be \ represented \ as \ below:$

$$egin{bmatrix} -2 & 1 & 0 & 0 & 0 \ 1 & -2 & 1 & 0 & 0 \ 0 & 1 & -2 & 1 & 0 \ 0 & 0 & 1 & -2 & 1 \ 0 & 0 & 0 & 1 & -1 \end{bmatrix} egin{bmatrix} D_1 \ D_2 \ D_3 \ D_4 \ D_5 \end{bmatrix} = egin{bmatrix} h^2f(2h) \ h^2f(3h) \ h^2f(4h) \ h^2f(5h) \end{bmatrix}$$

Let h = 0.2

$$egin{bmatrix} D_1 \ D_2 \ D_3 \ D_4 \ D_5 \end{bmatrix} = egin{bmatrix} 0 \ 0.0235 \ 0.090 \ 0.0325 \ 0.0325 \end{bmatrix} - < ans > \ \end{split}$$

the plot D(jh) vs. j:

4

without patial pivoting:

$$A = \begin{bmatrix} .0001 & 0 \\ 1 & 10000 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10000 & 1 \end{bmatrix} \begin{bmatrix} .0001 & 0 \\ 0 & 10000 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $with \quad partial \quad pivoting:$

$$A'=egin{bmatrix}1&10000\ .0001&0\end{bmatrix}=egin{bmatrix}1&0\ .0001&1\end{bmatrix}egin{bmatrix}1&0\ 0&-1\end{bmatrix}egin{bmatrix}1&10000\ 0&1\end{bmatrix}$$

after scaling by multiply 10000

 $without \quad patial \quad pivoting:$

$$A = egin{bmatrix} 1 & 0 \ 10000 & 10^8 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 10000 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 10^8 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

with patial pivoting:

$$A = egin{bmatrix} 10000 & 10^8 \ 1 & 0 \end{bmatrix} = egin{bmatrix} 1 & 0 \ .0001 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & -10000 \end{bmatrix} egin{bmatrix} 1 & 10^8 \ 0 & 1 \end{bmatrix}$$

after pivoting, we can get more stable pivots.

after scaling, we can avoid gettig small pivots.

5

(a) True

 $b_1=0, \quad ec{B}=(0,b_2,b_3), \quad where \quad b_2,b_3\in \mathbb{R}$

$$orall c \in \mathbb{R}, \quad and \quad orall ec{B}_1 \in ec{B}, \quad cec{B}_1 \in ec{B}$$

(b) False

 \therefore for scaling, b_1 might not be 1, as well as scaling.

(c) False

Proof by contradiction,

$$let \quad \vec{b}_1 = (0,0,1), \vec{b}_2 = (0,1,0), \vec{b}_1 + \vec{b}_2 = (0,1,1)$$

(d) True

All combinations means that for addition and scaling still in the span of given vectors.

(e) True

For addition of any two vectors which are lying in plane is still lying in plane, as well as scaling.

6

(f) False

Proof by contradictions:

$$Let \quad A = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{bmatrix}, b_1 = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}, b_2 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}$$

$$b_1+b_2=egin{bmatrix}1\1\0\end{bmatrix}, in & the & column & space & of & A.$$

(g) True

: the column space of A contains only zero vector,

 $\therefore All \quad entries \quad of \quad A \quad is \quad 0.$

(h) True

Scaling would not change column space.

(i) False

 $Proof \ \ by \ \ contradiction:$

$$A = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \quad A - I = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$$

(j) True

 $:: Dimension \ of \ \mathbb{R}^2 \ and \ \mathbb{R}^3 \ is \ different.$ $Although \ \mathbb{R}^2 \ is \ isomorphic \ to \ the \ subset(a,b,0) \ of \ R^3,$ $but \ it's \ also \ isomorphic \ to \ infinitely \ many \ other \ subspaces$ $of \ \mathbb{R}^3.$

7

(a)

$$[A \quad B] = \begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 4 & 5 & 1 & 8 & b_2 \\ 2 & 1 & 1 & 2 & b_3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 0 & -3 & 1 & -4 & b_2 - 4b_1 \\ 0 & -3 & 1 & -4 & b_3 - 2b_1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 0 & 3 & b_1 \\ 0 & -3 & 1 & -4 & b_2 - 4b_1 \\ 0 & 0 & 0 & 0 & 2b_1 - b_2 + b_3 \end{bmatrix}$$

(b)

b have to lie in the column space of A. $That \ is, \ 2b_1-b_2+b_3=0-< ans>$

(c)

$$U = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & -3 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & \frac{-1}{3} & \frac{4}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $Null \ space \ can \ be \ ontained \ from \ solving \ Ux=0$

$$Null \quad space \quad of \quad U \quad is: egin{bmatrix} 1 \ 1 \ -1 \ -1 \end{bmatrix}, egin{bmatrix} 0 \ 3 \ -1 \ -2 \end{bmatrix} - < ans >$$