Analysis of Algorithms

Sorting – Part B

Sorting

Insertion sort

– Design approach: incremental

Sorts in place: Yes

- Best case: $\Theta(n)$

- Worst case: $\Theta(n^2)$

Bubble Sort

Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Sorting

Selection sort

– Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Merge Sort

Design approach: divide and conquer

Sorts in place: No

– Running time: Let's see!!

Divide-and-Conquer

- Divide the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions of the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[p . . r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Merge Sort

- ▶ Check for base case
- **Divide**
- ▶ Conquer
- ▶ Conquer

Initial call: MERGE-SORT(A, 1, n)

Example – n Power of 2

Example – n Power of 2

Conquer and Merge

Example – n Not a Power of 2

Example – n Not a Power of 2

Merging

- Input: Array A and indices p, q, r such that
 p ≤ q < r
 - Subarrays A[p..q] and A[q+1..r] are sorted
- Output: One single sorted subarray A[p . . r]

Merging

Idea for merging:

- Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
- Repeat the process until one pile is empty
- Take the remaining input pile and place it face-down onto the output pile

Example: MERGE(A, 9, 12, 16)

Example: MERGE(A, 9, 12, 16)

Example (cont.)

Example (cont.)

Example (cont.)

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute n₁ and n₂
- 2. Copy the first n_1 elements into $n_1 = n_2 + 1$ and the next n_2 elements into $R[1 ... n_2 + 1]$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. for $k \leftarrow p$ to r
- 6. do if $L[i] \leq R[j]$
- 7. then $A[k] \leftarrow L[i]$
- 8. $i \leftarrow i + 1$
- 9. else $A[k] \leftarrow R[j]$
- 10. $j \leftarrow j + 1$

Running Time of Merge (assume last **for** loop)

- Initialization (copying into temporary arrays):
 - $-\Theta(n_1+n_2)=\Theta(n)$
- Adding the elements to the final array:
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:

Analyzing Divide-and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size
 n/b: takes D(n)
 - Conquer (solve) the subproblems aT(n/b)
 - Combine the solutions C(n)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

MERGE-SORT Running Time

Divide:

- compute q as the average of p and r: $D(n) = \Theta(1)$

Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

Combine:

- MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(n) = \Theta(n)$

$$\begin{cases} \Theta(1) & \text{if } n = 1 \\ T(n) = \begin{cases} 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases} \end{cases}$$

Solve the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cn

Merge Sort - Discussion

Running time insensitive of the input

- Advantages:
 - Guaranteed to run in ⊕(nlgn)
- Disadvantage
 - Requires extra space ≈N

Sorting Challenge 1

Problem: Sort a file of huge records with tiny keys

Example application: Reorganize your MP-3 files

Which method to use?

- A. merge sort, guaranteed to run in time ~NIgN
- B. selection sort
- C. bubble sort
- D. a custom algorithm for huge records/tiny keys
- E. insertion sort

Sorting Files with Huge Records and Small Keys

- Insertion sort or bubble sort?
 - NO, too many exchanges
- Selection sort?
 - YES, it takes linear time for exchanges
- Merge sort or custom method?
 - Probably not: selection sort simpler, does less swaps

Sorting Challenge 2

Problem: Sort a huge randomly-ordered file of small records

Application: Process transaction record for a phone company

Which sorting method to use?

- A. Bubble sort
- B. Selection sort
- C. Mergesort guaranteed to run in time ~NIgN
- D. Insertion sort

Sorting Huge, Randomly - Ordered Files

- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, quadratic time for randomly-ordered keys
- Insertion sort?
 - NO, quadratic time for randomly-ordered keys
- Mergesort?
 - YES, it is designed for this problem

Sorting Challenge 3

Problem: sort a file that is already almost in order

Applications:

- Re-sort a huge database after a few changes
- Doublecheck that someone else sorted a file

Which sorting method to use?

- A. Mergesort, guaranteed to run in time ~NIgN
- B. Selection sort
- C. Bubble sort
- D. A custom algorithm for almost in-order files
- E. Insertion sort

Sorting Files That are Almost in Order

- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, bad for some definitions of "almost in order"
 - Ex: BCDEFGHIJKLMNOPQRSTUVWXYZA
- Insertion sort?
 - YES, takes linear time for most definitions of "almost in order"
- Mergesort or custom method?
 - Probably not: insertion sort simpler and faster

Quicksort

Sort an array A[p...r]

Divide

- Partition the array A into 2 subarrays A[p..q] and A[q+1..r], such that each element of A[p..q] is smaller than or equal to each element in A[q+1..r]
- Need to find index q to partition the array

Quicksort

Conquer

Recursively sort A[p..q] and A[q+1..r] using Quicksort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

QUICKSORT

Alg.: QUICKSORT(
$$A$$
, p , r) Initially: $p=1$, $r=n$

if $p < r$

then $q \leftarrow PARTITION(A, p, r)$

QUICKSORT (A , p , q)

QUICKSORT (A , $q+1$, r)

Recurrence:

$$T(n) = T(q) + T(n - q) + f(n)$$
 (f(n) depends on PARTITION())

Partitioning the Array

- Choosing PARTITION()
 - There are different ways to do this
 - Each has its own advantages/disadvantages
- Hoare partition (see prob. 7-1, page 159)
 - Select a pivot element x around which to partition
 - Grows two regions

$$\textbf{A[p...i]} \leq \textbf{x}$$

$$x \leq A[j...r]$$

Example

Example

Partitioning the Array

Alg. PARTITION (A, p, r)

- 1. $x \leftarrow A[p]$
- 2. $i \leftarrow p 1$
- 3. $j \leftarrow r + 1$
- 4. while TRUE
- 5. do repeat $j \leftarrow j 1$
- 6. until $A[j] \le x$
- 7. do repeat $i \leftarrow i + 1$
- 8. $until A[i] \ge x$
- 9. **if** i < j
- 10. **then** exchange $A[i] \leftrightarrow A[j]$
- 11. else return j

Each element is visited once!

j=q i

Running time: $\Theta(n)$ n = r - p + 1

Recurrence

Alg.: QUICKSORT(
$$A$$
, p , r) Initially: $p=1$, $r=n$

if $p < r$

then $q \leftarrow PARTITION(A, p, r)$

QUICKSORT (A , p , q)

QUICKSORT (A , $q+1$, r)

Recurrence:

T(n) = T(q) + T(n - q) + n

Worst Case Partitioning

- Worst-case partitioning
 - One region has one element and the other has n 1 elements
 - Maximally unbalanced
- Recurrence: q=1

$$T(n) = T(1) + T(n - 1) + n,$$

$$T(1) = \Theta(1)$$

$$T(n) = T(n - 1) + n$$

Best Case Partitioning

- Best-case partitioning
 - Partitioning produces two regions of size n/2
- Recurrence: q=n/2

$$T(n) = 2T(n/2) + \Theta(n)$$

 $T(n) = \Theta(n \log n)$ (Master theorem)

Case Between Worst and Best

9-to-1 proportional split

$$Q(n) = Q(9n/10) + Q(n/10) + n$$

- Using the recursion tree:

longest path:
$$Q(n) \le n \sum_{i=0}^{\log_{10/9} n} 1 = n(\log_{10/9} n + 1) = c_2 n \lg n$$
 $\Theta(n \lg n)$

shortest path:
$$Q(n) \ge n \sum_{i=0}^{\log_{10} n} 1 = n \log_{10} n = c_1 n lgn$$

Thus,
$$Q(n) = \Theta(nlgn)$$

How does partition affect performance?

- Any splitting of constant proportionality yields $\Theta(nlgn)$ time !!!
- Consider the (1: n-1) splitting:

ratio=
$$1/(n-1)$$
 not a constant !!!

- Consider the (n/2 : n/2) splitting:

ratio=
$$(n/2)/(n/2) = 1$$
 it is a constant !!

- Consider the (9n/10 : n/10) splitting:

ratio=
$$(9n/10)/(n/10) = 9$$
 it is a constant !!

How does partition affect performance?

```
- Any ((a-1)n/a : n/a) splitting:
ratio=((a-1)n/a)/(n/a) = a-1 it is a constant !!
```


Performance of Quicksort

Average case

- All permutations of the input numbers are equally likely
- On a random input array, we will have a **mix** of well balanced and unbalanced splits
- Good and bad splits are randomly distributed across throughout the tree

Alternate of a good and a bad split

Nearly well balanced split

 Running time of Quicksort when levels alternate between good and bad splits is O(nlgn)