Machine Learning: Geometric aspects

Semester 2 2018

Overview

Smooth Manifolds

19/11/2018. Notes from Lee: Intro to smooth manifolds

A topological space M is a topological manifold of dimension n if:

- \bullet M is hausdorff
- \bullet M is second countable
- $\forall p \in M \ \exists U$ a neighbourhood of $p, \ V \overset{\circ}{\subset} \mathbb{R}^n$ and a homeomorphism $\psi: U \to V$

 (U, ψ) is the coordinate pair, with U the coordinate neighbourhood and ψ the (local) coordinate map. If $\psi(p) = 0$ the chart is centred at p. We can construct from a chart that contains p, a new chart centred at p by simply subtracting $\psi(p)$.

 $\psi(p) = (x^1(p), \dots, x^n(p))$ where (x^1, \dots, x^n) are the local coordinates on U.

If M is a topological manifold:

- (a) M is locally path connected
- (b) M is connected \iff it is bath connected
- (c) the components of M are the same as it's path components
- (d) M has at most countably many components, each of which is a subset of M and a connected topological manifold

Smooth Manifolds:

We now add a smooth structure that enables calculus.

Note $f:U\subset\mathbb{R}^n\to V\subset\mathbb{R}^m$ is smooth if the partial derivatives of all orders of every component exist.

Let M be a topological manifold. Let $(U, \phi), (V, \psi)$ are be two charts. If $U \cap V \neq \emptyset$, the composite map $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is the transition map from ϕ to ψ . The charts are said to be smoothly compatible if either $U \cap V = \emptyset$ or the transition map $\psi \circ \phi^{-1}$ is a diffeomorphism (Where smoothness is interpreted in the usual sense).

An atlas is a collection of charts whose domains cover M. An atlas \mathcal{A} is a smooth atlas if every pair of charts is smoothly compatible. Equivalently if for every pair of charts ψ , ϕ , $\psi \circ \phi^{-1}$ is smooth then the atlas a smooth atlas. \mathcal{A} is maximal if it is not contained in any other smooth atlas.

A smooth structure on a topological manifold M is a maximal smooth atlas. A smooth manifold is a pair (M, \mathcal{A}) . Note it is possible to choose multiple smooth structures not compatible with each other for the same manifold.

Once we choose a chart (U,ϕ) on M, the coordinate map $\phi:U\to V$ can be thought of as an identification between U and V. We can then represent a point by it's coordinates $(x^1,\ldots,x^n)=\phi(p)$ and think of the tuple as being the point itself. $p=(x^1,\ldots,x^n)$ in local coordinates. We can also think of the map as being the identity map to simplify notation. e.g. p=(x,y) or $p=(r,\theta)$

Einstein summation convention: We write $\sum_i x^i E_i = x^i E_i$ for example. Basis vectors are written with lower indicies and components are written with upper indicies.

Smooth manifold examples:

- The zero manifold (countable discrete space).
- $\bullet \mathbb{R}^n$
- finite dimensional vector spaces
- $m \times n$ matricies, $M(m \times n, \mathbb{R})$ In the case of square matricies simply $M(n, \mathbb{R})$
- \bullet open sub-manifolds. Let (M, \mathcal{A}) be a smooth manifold.

If $U \subset M$ then take $A_U = \{(V, \phi) \in A : V \subset U\}$

- $GL(n, \mathbb{R})$ i.e. matricies with determinant non-zero. Open subset of set of matricies so clearly a smooth manifold.
- Matricies of maximal rank $M_m(m \times n, \mathbb{R})$
- \square \mathbb{C}^n
- \mathbb{RP}^n Real projective plane
- if M_1, \ldots, M_k are smooth manifolds of dimensions n_1, \ldots, n_k Then $M_1 \times \ldots \times M_n$ is a smooth manifold with charts of the form $(U_1 \times \ldots \times U_k, \phi_1 \times \ldots \times \phi_k)$
- Grassman Manifolds (important). Let V be an n-dimensional real vector space. If $0 \le k \le n$, $G_k(V)$ is the set of all k-dimensional linear subspaces of V.

Need to generalise to manifolds with boundary. We use the closed n-dimensional upper half plane, $\mathbb{H}^n = \{(x^1, \dots, x^n) \in \mathbb{R}^n : x^n \geq 0\}$. Int \mathbb{H}^n and $\partial \mathbb{H}^n$ are the interior and boundaries respectively.

Smooth maps/functions:

If M is a smooth manifold, $f: M \to \mathbb{R}^k$ is said to be smooth if $\forall p \in M \exists (U, \phi)$ for M whose domain contains p such that $f \circ \phi^{-1}$ is smooth on $V = \phi(U) \subset \mathbb{R}^n$. $f \circ \phi^{-1}$ is the coordinate represention of f. Denote the set of smooth functions $f: M \to \mathbb{R}$ as $C^{\infty}(M)$. This is a vector space.

Further, if M,N are two smooth manifolds. $F:M\to N$ is a smooth map if $\forall p\in M\exists (U,\phi)$ containing p and (V,ψ) containing F(p) such that $F(U)\subset V$ and $\psi\circ F\circ \phi^{-1}:\phi(U)\to \psi(V)$ is smooth. $\hat{F}=\psi\circ F\circ \phi^{-1}$ is the coordinate representation of F with respect to the the given coordinates.

Diffeomorphisms: $F: M \to N$ is a diffeomorphism if it is a smooth, bijective map with a smooth inverse. M is diffeomorphic to N sometimes written $M \approx N$.

 $F: M \to N$ is a local diffeomorphism if $\forall p \in M \exists$ a neighbourhood U such that F(U) is open in N and $F|_U: U \to F(U)$ is a diffeomorphism. Clearly every local diffeomorphism is an open map. Analogous to topological spaces being identified by homeomorphisms.

Interesting: If \mathcal{A}_1 and \mathcal{A}_2 are two smooth structures on \mathbb{R} , then \exists a diffeomorphism $F:(\mathbb{R},\mathcal{A}_1)\to(\mathbb{R},\mathcal{A}_2)$. More generally, every topological manifold of dimension less than or equal to 3 has a smooth structure unique up to diffeomorphism. Higher dimensions the question remains unanswered. For \mathbb{R}^n , as long as $n \neq 4$, \mathbb{R}^n has a unique smooth structure up to diffeomorphism. However \mathbb{R}^4 has uncountably many smooth structures none of which are diffeomorphic to each other(lol wtf).

Lie groups:

This is a smooth manifold G that is also a group under the multiplication map $m: G \times G \to G$ such that m(g,h) = gh and $i(g) = g^{-1}$ (inversion) are smooth.

Skipped the rest of this chapter, may come back

Tangent Vectors:

If p is a point of M, a linear map $X: C^{\infty}(M) \to \mathbb{R}$ is called a *derivation* at p if:

$$X(fg) = f(p)Xg + g(p)Xf$$

 $\forall f,g \in C^{\infty}(M)$. The set of all derivations at p is a vector space called the *tangent space* to M at p denoted by T_pM . If $M = \mathbb{R}^n$ this space is isomorphic to the geometric tangent space $\mathbb{R}^n = \{(a,v) : v \in \mathbb{R}^n\}$. Can thus visualise tangent

vectors as arrows tangent to M whose base points are attached to M.

For any $a \in \mathbb{R}^n$ the *n*-derivations

$$\left.\frac{\partial}{\partial x^i}\right|_a$$

given by

$$\frac{\partial}{\partial x^i}\Big|_a f = \frac{\partial f}{\partial x^i}(a)$$

form a basis for $T_a(\mathbb{R}^n)$

If M, N are smooth manifolds and $F: M \to N$ a smooth map, for each $p \in M$ define a map $F_*: T_pM \to T_{F(p)}N$ called the *pushforward* by:

$$F_*X(f) = X(f \circ F)$$

if $f \in C^{\infty}(N)$ then $f \circ F \in C^{\infty}(M)$

Some properties $F:M\to N, G:N\to P$ are smooth maps:

- (a) $F_*: T_pM \to T_{F(P)}N$ is linear.
- (b) $(G \circ F)_* = G_* \circ F_* : T_pM \to T_{G \circ F(p)}P$
- (c) $(\mathrm{Id}_M)_* = \mathrm{Id}_{T_pM} : T_pM \to T_pM$
- (d) If F is a diffeomorphism, then F_* is an isomorphism.

If $p \in M$ and $X \in T_pM$, and f, g are smooth functions on M that agree on some neighborhood of p then Xf = Xg.

If (U, ϕ) is a smooth coordinate chart on M, ϕ is a diffeomorphism from U to $V \stackrel{\circ}{\subset} \mathbb{R}^n$. $\phi_* : T_pM \to T_{\phi(p)}\mathbb{R}^n$ is an isomorphism. Since this has a basis as above, the pushforward of this basis under ϕ_*^{-1} form a basis for T_pM . We collapse the notation thusly:

$$\left. \frac{\partial}{\partial x^i} \right|_p = (\phi^{-1})_* \frac{\partial}{\partial x^i} \right|_{\phi(p)}$$

This acts on a smooth function $f: U \to \mathbb{R}$ by:

$$\left. \frac{\partial}{\partial x^i} \right|_p f = \frac{\partial \hat{f}}{\partial x^i} (\hat{p})$$

Which is the derivative of the coordinate representation of g at the coordinate representation of p. Such vectors are called the coordinate vectors at p associated with the given coordinate system. In \mathbb{R}^n these correspond exactly to the vetors e_i under the isomorphism $T_a\mathbb{R}^n \leftrightarrow \mathbb{R}^n_a$.

The coordinate vectors form a basis for T_pM $\forall X \in T_pM, X = X^i \frac{\partial}{\partial x^i} \Big|_p.$ $X^j = (X^i \frac{\partial}{\partial x^i})(x^j) = X^j$ F_* is represented in terms of the coordinate bases by the jacobian matrix of the coordinated representative of F.

21/11/2018: Adding a metric:

Main paper notes / questions:

Defintitions/Glossary: