Temporal Difference Learning

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Bible in this area.

Acknowledgement:

• Some of the slides in this chapter are partially modified from those by Hsin-Ti Tsai (蔡心迪) and Kun-Hao Yeh (葉騉豪).

Outline

- Reinforcement Learning
- Temporal Difference Learning
- Case Studies
 - -2048
 - Connect6

Reinforcement Learning

- A computational approach to learning from interaction
 - Explore designs for machines that are effective in
 - solving learning problems of scientific or economic interest,
 - evaluating the designs through mathematical analysis or computational experiments.
 - Focus on goal-directed learning from interaction, when compared with other approaches to machine learning.
 - The learner must discover which actions yield the most reward by trying them.
 - ▶ Two characteristics: most important distinguishing features of reinforcement learning.
 - trial-and-error search
 - delayed reward
 - different from **supervised learning**, like statistical pattern recognition, and artificial neural networks.

Successful Examples

- In AI, it has been used to defeat human champions at games of skill (Tesauro, 1994);
 - For Connect6/2048/Threes!, it has been used to reach the top levels.
 - For Go, it has been used in Monte-Carlo Tree Search.
- In robotics, to fly stunt maneuvers in robot-controlled helicopters (Abbeel et al., 2007).
- In neuroscience it is used to model the human brain (Schultz et al., 1997);
- In psychology to predict animal behavior (Sutton and Barto, 1990).
- In economics, it is used to understand the decisions of human investors (Choi et al., 2007), and to build automated trading systems (Nevmyvaka et al., 2006)
- In engineering, it has been used to allocate bandwidth to mobile phones and to manage complex power systems (Ernst et al., 2005).

Agent-Environment Interaction Framework

- Agent: The learner and decision-maker.
- Environment: The thing it interacts with, comprising everything outside the agent.
- State: whatever information is available to the agent.
- Reward: single numbers.

Agent-Environment Interaction

- The agent and environment interact at each of a sequence of discrete time steps, t = 0, 1, 2, ..., or t = 0, 1, 2, ..., T (T: the terminated time, if any.)
 - $S = \{s_0, s_1, s_2, ..., s_t, ...\}.$
 - s_t : some representation of the environment's state at time step t.
 - a_t : action at time step t,
 - r_t : rewards at time step t,
 - π_t : the agent's policy,
 - a mapping from states to probabilities of selecting each possible action
 - $\pi_t(s, a)$: the probability that $a_t = a$ if $s_t = s$.

Examples

- 2048-like games:
 - Make moves with rewards. Then, tiles are popped up randomly.
- Bioreactor:
 - Suppose reinforcement learning is being applied to determine moment-by-moment temperatures and stirring rates for a bioreactor
- Pick-and-Place Robot:
 - Consider using reinforcement learning to control the motion of a robot arm in a repetitive pick-and-place task.
- Recycling Robot
 - A mobile robot has the job of collecting empty soda cans in an office environment.
 - This agent has to decide whether the robot should
 - ▶ (1) actively search for a can for a certain period of time,
 - ▶ (2) remain stationary and wait for someone to bring it a can, or
 - (3) head back to its home base to recharge its battery.

Example: Recycling Robot

Figure 3.3:Transition graph for the recycling robot example.

$s = s_t$	$s' = s_{t+1}$	$a = a_t$	$\mathcal{P}^a_{ss'}$	$\mathcal{R}^a_{ss'}$
high	high	search	α	$\mathcal{R}^{ ext{search}}$
high	low	search	$1-\alpha$	$\mathcal{R}^{ ext{search}}$
low	high	search	$1-\beta$	-3
low	low	search	β	$\mathcal{R}^{ ext{search}}$
high	high	wait	1	$\mathcal{R}^{ ext{wait}}$
high	low	wait	0	$\mathcal{R}^{ ext{wait}}$
low	high	wait	0	$\mathcal{R}^{ ext{wait}}$
low	low	wait	1	$\mathcal{R}^{ ext{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Tic-Tac-Toe

Rewards

- Rewards: A way of formulating goal:
- Example: 2048
 - Straightforwardly set the earned scores to rewards.
- Example: recycling robot.
 - 0 for most of the time,
 - +1 for each can collected,
 - -3 in case of running out of electricity.
- Example: learning to play checkers/chess/Go,
 - +1 for winning,
 - -1 for losing, and
 - 0 for drawing and for all nonterminal positions.

Comments

Critical:

- the rewards we set up truly indicate what we want accomplished.

• Reward signals:

- A way of "what" you want to achieve, not "how" you want to it achieved. (no prior knowledge about "how")
- Not the place to impart to the agent prior knowledge about how to achieve what we want it to do.
- Example: for chess-playing, rewarded only for real winning, not for sub-goals, like taking pieces.

Goals

- Goal: Maximize the *expected return*.
- Returns: Total rewards of the episode

$$- R_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots$$

- Episodic tasks: (with a terminal state)
 - Example: 2048, chess, Go, etc.

$$- R_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$$

- ightharpoonup T: a final time step. (s_T is a terminal state.)
- ► Episode: $S^+ = \{s_{t+1}, s_{t+2}, s_{t+3}, ..., s_T\}$. Note that: $S = \{s_{t+1}, s_{t+2}, s_{t+3}, ..., s_{T-1}\}$.
- Continuing tasks: $T=\infty$.
 - Example: Recycling Robot.
 - Problem: R_t could be infinite.
 - Solution: Add the concept of "discounting".
 - Change it to "discounted return":
 - $R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots$
 - γ : discount rate. $0 \le \gamma \le 1$

Goal

- Rewards: A way of formulating goal:
 - Example: 2048
 - Straightforwardly set the earned scores to rewards.
- Goal: Maximize the *expected return*.
 - Returns: Total rewards of the episode
 - R_t = $r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$ T: a final time step. (s_T is a terminal state.)
 - ► Example: 2048, chess, Go, etc.
- Episodic tasks: (with a terminal state)
 - Example: 2048, chess, Go, etc.
 - $R_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$
 - ightharpoonup T: a final time step. (s_T is a terminal state.)
 - ► Episode: $S^+ = \{s_{t+1}, s_{t+2}, s_{t+3}, ..., s_T\}$. Note that: $S = \{s_{t+1}, s_{t+2}, s_{t+3}, ..., s_{T-1}\}$.

Temporal Difference (TD) Learning

- Temporal Difference Learning
 - Is a kind of reinforcement learning
 - Is to adjust weights automatically
 - Was successfully applied to many games such as
 - Backgammon
 - Checkers
 - Chess
 - Shogi
 - Go
 - Chinese Chess
 - Connect6
 - ▶ 2048

Value Function

- Expected return or
 - Estimate how good it is for the agent to be in a given state
 - V(s): the estimated value of state s.
 - ▶ the expected return when starting in *s* thereafter.
 - ▶ also called the state-value function.
 - Q(s, a): the value of taking action a in state s under a policy π .
 - the expected return starting from s, taking the action a:
 - called the action-value function.
 - Omit policy π . (See Reinforcement Learning)

TD Prediction

• Prediction:

- $V(s_t)$ is approximate to actual return R_t .
- Error: $\delta_t = R_t V(s_t)$.
- Adjust: $V(s_t) = V(s_t) + \alpha \delta_t = V(s_t) + \alpha (R_t V(s_t))$
 - \bullet α : a step-size parameter to control the learning rate.

• Problem:

- To get R_t , we must wait until the episode ends.
- Can we do that earlier?

TD(0)

- Change error:
 - From: $\delta_t = R_t V(s_t)$

- To:
$$\delta_t = (r_{t+1} + V(s_{t+1})) - V(s_t)$$

= $r_{t+1} + V(s_{t+1}) - V(s_t)$

- For simplicity, $\gamma = 1$.
- Thus, change value function
 - From: $V(s_t) = V(s_t) + \alpha (R_t V(s_t))$
 - To: $V(s_t) = V(s_t) + \alpha (r_{t+1} + V(s_{t+1}) V(s_t))$
- This is called TD(0).

$TD(\lambda)$

- Change error:
 - From: $\delta_t = R_t V(s_t)$
 - To:

$$\delta_t = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} V(s_{t+n}) + \lambda^{T-t-1} V(s_T) - V(s_t)$$

• This is called $TD(\lambda)$.

TD Learning

• $TD(\lambda)$

TD Learning

• $TD(\lambda)$

TD Learning

• $TD(\lambda)$

Given Weights

Figure 7.4: Weighting given in the λ -return to each of the n-step returns.

The Forward View

TD(1)

Monte-Carlo tree search.

$$\Delta V(s_t) = \alpha [V(s_T) - V(s_t)]$$

$$V(s_t) = V(s_t) + \Delta V(s_t)$$

TD(0)

$$\Delta V(s_t) = \alpha [V(s_{t+1}) - V(s_t)]$$

$$V(s_t) = V(s_t) + \Delta V(s_t)$$

Case Study: 2048

• [Szubert and Jaskowaski 2014]

N-Tuple Network

- Example: 8 4-tuple networks as shown.
 - Each cell has 16 different tiles
 - 16⁴ features for this network.
 - ▶ But only one is on, others are 0.
 - ▶ So, we can use table lookup to find the feature weight.

64	•0	8	4
128	2•1		2
2	8•2		2
128	• ³		

0123	weight
0000	3.04
0001	-3.90
0002	-2.14
	:
0010	5.89
:	
0130	-2.01
:	:

Evaluation on Feature Weights

- General evaluation function:
 - $V(s) = F(\varphi(s))$
 - $\varphi(s)$: a vector of feature occurrences in s
- Linear evaluation function:
 - $V(s) = \varphi(s) \cdot \theta$
 - \bullet θ : a vector of feature weights

Evaluate a Position

- The value of a position is evaluated based on
 - linear combination of features, i.e.,
 - $-V(s)=\varphi(s)\cdot\theta$
 - $\varphi(s)$: a vector of feature occurrences in s
 - \bullet : a vector of feature weights
- Features:
 - $\varphi(s)$: 8 x 16⁴ features, [0, 1, 0, ..., 0, 0, 1, ..., ..., 1, 0, 0, ...]
 - ▶ All 0s, except for 8 ones.
 - One 1 every 16⁴ features.
 - Let their indices be $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8$.

• So,
$$V(s) = \varphi(s) \cdot \theta$$

$$= \sum_{i}^{8 \times 16^{4}} \varphi_{i}(s) \cdot \theta_{i}$$

$$= \sum_{i}^{8} \varphi_{f_{i}}(s) \cdot \theta_{f_{i}}$$

$$= \sum_{i}^{8} \theta_{f_{i}}$$
 (simply lookup table for f_{i})

TD(0)

• To minimize the error.

– Error:

$$\delta_t = r_{t+1} + V(s_{t+1}) - V(s_t)$$

- So, $\Delta V(s_t) = \alpha \delta_t = \alpha (r_{t+1} + V(s_{t+1}) V(s_t))$
- Adjustment

$$\Delta \theta = \Delta V(s_t) \frac{\varphi(s_t)}{\|\varphi(s_t)\|} = \alpha \delta_t \frac{\varphi(s_t)}{\|\varphi(s_t)\|}$$

- Since $\|\varphi(s_t)\|$ is constant in 2048, no need for normalization.

$$\rightarrow \Delta \theta = \alpha' \delta_t \varphi(s_t),$$

• where $\alpha' = \frac{\alpha}{\|\varphi(s_t)\|}$

Three Methods of Evaluating Values

- 1. Evaluate actions: Q(s, a). Select $arg_a \max Q(s, a)$
 - Also called Q-learning
 - Problem: Too many features.
 - ▶ 4 times more!
 - ▶ This makes learning slower.

Three Methods of Evaluating Values

- 2. Evaluate states to play: $V(s_t)$. Select $arg_a \max(R(s_t, a) \sum_{s_{t+1}} P(s_t, a, s_{t+1}) V(s_{t+1}))$
 - Problem: Higher time complexity.

Three Methods of Evaluating Values

- 3. Evaluate states after an action. $V(s'_t)$. Select $arg_amax[R(s_t,a) + V(s'_t)]$
 - These states are also called afterstates.

Afterstate Evaluation Function

```
1: function EVALUATE(s, a)

2: s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)

3: return r + V(s')

4:

5: function Learn Evaluation(s, a, r, s', s'')

6: a_{next} \leftarrow \arg\max_{a' \in A(s'')} \text{Evaluate}(s'', a')

7: s'_{next}, r_{next} \leftarrow \text{Compute Afterstate}(s'', a_{next})

8: V(s') \leftarrow V(s') + \alpha(r_{next} + V(s'_{next}) - V(s'))
```

Figure 6: The *afterstate evaluation function* and a dedicated variant of the TD(0) algorithm.

```
1: function PLAY GAME
        score \leftarrow 0
        s \leftarrow \text{Initialize Game State}
 3:
        while \negIs Terminal State(s) do
 4:
            a \leftarrow \arg\max_{a' \in A(s)} \text{EVALUATE}(s, a')
 5:
             r, s', s'' \leftarrow \text{MAKE MOVE}(s, a)
 6:
            if LEARNING ENABLED then
 7:
                 LEARN EVALUATION(s, a, r, s', s'')
 8:
 9:
             score \leftarrow score + r
             s \leftarrow s''
10:
        return score
11:
12:
13: function MAKE MOVE(s, a)
        s', r \leftarrow \text{COMPUTE AFTERSTATE}(s, a)
14:
        s'' \leftarrow \text{Add Random Tile}(s')
15:
        return (r, s', s'')
16:
```

Figure 3: A pseudocode of a game engine with moves selected according to the evaluation function. If learning is enabled, the evaluation function is adjusted after each move.

I-Chen Wu

The N-Tuple Networks Used

• Use the following [Szubert and Jaskowaski 2014]

Ours:

Issues

- Features
 - Multi-stages
 - Monotonicity
 - Number of distinct tiles
 - Number of empty squares
 - Big tiles
 - Rotation/Mirroring
 - Sizes
- Step-size parameter: α .
 - Our experience: 0.0025,
 - ▶ A better version: 0.00025 after 1,000,000 learning games.
- Learning backwards.
- Bitboard
- Expectimax search

What If V(s) is non-linear?

- Use gradient: $\nabla V(s_t)$
 - The Normal (法向量)
 - ▶ (等高線圖的梯度最大者.)
- Adjustment:

 $- \Delta\theta = \Delta V(s_t) \times \nabla V(s_t) = \alpha \delta_t \times \nabla V(s_t)$

• Example:

- For linear: $\nabla V(s_t) = \frac{\varphi(s_t)}{\|\varphi(s_t)\|}$

Example

• x = [x1,x2]

$$f(x) = -4X_1^2 - X_2^2$$

- Find the max.
- Starting at (1,3)

Example

$$f'(x) = [-8X_1, -2X_2]$$

- From (1,3).
- Gradient: [-8, -6]
- Adjustment:
 - $\alpha = 0.1$
 - $-(1,3) + \alpha(-8,-6)$

$$=(0.2, 2.4)$$

Example

$$f'(x) = [-8X_1, -2X_2]$$

- From (0.2, 2.4)
- Gradient: [-1.6, -4.8]
- Adjustment:
 - $\alpha = 0.1$
 - $(0.2, 2.4) + \alpha(-1.6, -4.8)$ = (0.04, 1.92)

Case Study: Connect6

- Connect6 is a kind of six-in-a-row game.
 - Two players, named Black and White.
 - ▶ Place two black and white stones, respectively.
 - Black plays first and places one stone initially.
 - A player wins
 - If the player gets six or more consecutive stones horizontally, vertically or diagonally.

Evaluate a Position

- Basically, we evaluate the value of a position based on the features of Connect6.
 - Usually use linear combination $V(s) = \varphi(s) \cdot \theta$,
 - $\varphi(s)$: a vector of feature occurrences in s,
 - \bullet : a vector of feature weights

Evaluate a Position (An Illustration)

• For simplicity of discussion, use linear combination to evaluate the value of a position. E.g.,

- Black: 1600 + 200*2 +

T1: 1600 L3: 800 D3: 400 L2: 200 D2: 100

L1: 50

Evaluate a Position (An Illustration)

• For simplicity of discussion, use linear combination to evaluate the value of a position. E.g.,

- Black: $1600 + 200 \cdot 2 + 50 \cdot 7 = 2350$

T1: 1600 L3: 800 D3: 400

L2: 200 D2: 100

L1: 50

Evaluate a Position (An Illustration)

• For simplicity of discussion, use linear combination to evaluate the value of a position. E.g.,

- Black: $1600 + 200 \cdot 2 + 50 \cdot 7 = 2350$

- White: 400 + 100 * 2 + 50 * 5 = 850

- Value for Black -2350 - 850 - 1500

T1: 1600

L3: 800

D3: 400

L2: 200 D2: 100

D2: 100

L1: 50

Goal

• For simplicity of discussion, use linear combination to evaluate the value of a position. E.g.,

- Black: $1600 + 200 \cdot 2 + 50 \cdot 7 = 2350$

- White: 400 + 100 * 2 + 50 * 5 = 850

- Value for Black -2350 - 850 - 1500

We want to adjust these weights for accuracy.

TD Learning

• A sequence of positions.

TD(0)

• To minimize the error.

- Error:

$$\delta_t = V(s_{t+1}) - V(s_t)$$

$$\Delta V(s_t) = \alpha \delta_t = \alpha \big(V(s_{t+1}) - V(s_t) \big)$$

- Note: reward is at the final state s_T
- Adjustment:

$$\Delta \theta = \Delta V(s_t) \frac{\varphi(s_t)}{\|\varphi(s_t)\|} = \alpha \delta_t \frac{\varphi(s_t)}{\|\varphi(s_t)\|}$$

• $\|\varphi(s_t)\|$ is for normalization.

Threat Space Search (TSS)

• We use TSS to remove the winning positions found by TSS. (to avoid updating from these positions)

TSS

Trained Weights

• The weights of some features after training.

Feature Weights	With TSS		Without TSS
W_{T2}	0.52982	_	1.73220 Too high.
W_{T1}	0.51070	& close	0.83796
W_{L3}	0.49358		0.73046
W_{D3}	0.27506		0.25531
W_{L2}	0.20028		0.07715

- T2: double threats (or live 4)
- T1: single threat (or dead 4)
- "without TSS" overweighs threats.

Discussion

- We successfully use TD(0) to improve the strength of NCTU6, a Connect6 champion program.
 - We got 58% win rate against the original NCTU6.
- We raise an important issue.
 - It is very important to remove the winning/losing positions found by TSS (or RZOP) in TD Learning.

