A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications

Análise do artigo

Lucas Pereira Reis

Introdução

Problema Observado

- Computação em nuvem entra em conflito com os princípios da Indústria 4.0.
 - o Descentralização de decisões.
 - o Controle confiável em tempo real.
- Depende de uma constante conexão em serviços centralizados.
- Pode gerar um custo alto dependendo da implementação.

Solução Proposta

- Utilização de fog computing (computação em névoa).
 - o remove dependência de conexão externa.
 - o diminui o tráfego de rede.
 - o aumenta a segurança dos dados.
 - o descentraliza a solução.
 - o diminuição de custos.

Solução Proposta

Solução Proposta

Metodologia/Ferramentas Utilizadas

- Testes de stress aplicados para validar confiabilidade e consistência.
- Ambientes de testes controláveis e isolados.
- Testes executados com o JMeter.
 - o Diferentes cenários de testes para conexões concorrentes e requisições por conexão.
- Utilização da engine OpenScoring para execução de modelos (SVM).
 - o Predição de quantas falhas de aquecimento nas unidades de tratamento de ar.

Resultados Obtidos

Table 1
Summary of maximum execution times for fog and cloud interfaces (milliseconds).

No. Connections	Fog Max.	Cloud Max.	Difference Max.	Difference Max. (%)
50	2571	36,034	33,463	92.9%
50 100	436	70,397	69,961	99.4%
250	32,798	101,401	68,603	67.7%
500	7536	83,370	75,834	91.0%

Table 2
Summary of failed communications for fog and cloud interfaces.

No. Connections	Fog (Failed)	Fog (% of All)	Cloud (Failed)	Cloud (% of All)	Failed Diff. (%)
50	0	0.00%	0	0.00%	0.00%
100	0	0.00%	112	0.11%	0.11%
250	0	0.00%	3556	1.42%	1.42%
500	0	0.00%	32,994	6.60%	6.60%

Conclusão

- Dependendo do cenário, a fog computing minimiza falhas e possui comunicações de alta latência.
- Sua utilização vem crescendo na Indústria 4.0.
- Esta arquitetura permite maior segurança dos dados.
- A fog computing apresenta limitações quando é necessário um alto poder de processamento.
- Necessita de máquinas potentes para ter escalabilidade.
- Menor custo comparado à soluções com cloud computing;

A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications

Análise do artigo

Lucas Pereira Reis

Obrigado!