Chapitre 6 : fonctions de référence. 1. Les fonctions carré et racine carrée

U			

Définition (fonction carré) : La fonction carré est la fonction, définie sur \mathbb{R} , qui à tout réel x associe le réel x^2 . Sa courbe représentative est une parabole.	2
Ainsi, x^2 est de x par la fonction carré.	
Ainsi, x est de x^2 par la fonction carré.	$\begin{bmatrix} -2 & -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$
Propriété 1: Comme $x^2 \geq 0$ pour tout réel x . La fonction carré est une fonction p	oositive.
Conséquence géométrique : La courbe représentative de la fonction carré est	
Propriété 2: Comme $x^2=(-x)^2$ pour tout réel x , la fonction carré est une fonct nombres x ont la même image que leur opposé $-x$)	ion paire (tout les
Conséquence géométrique : La courbe représentative de la fonction carré est	
Propriété 3 : la fonction carré est strictement décroissante sur $]-\infty;0]$ et stricten	nent croissante sur $[0;+\infty[$
Démonstration :	

Finalement, le **tableau de variation** de la fonction carré est :

x	
\mathbf{x}^2	

Définition (fonction racine carrée)

Pour tout nombre réel **POSITIF** x, la racine carrée de x est le nombre **POSITIF**, noté \sqrt{x} , tel que $(\sqrt{x})^2 = x$. La fonction racine carrée est la fonction qui, à tout réel **positif** x, associe le réel \sqrt{x} .

Remarque : la fonction racine carrée n'est pas définie sur \mathbb{R} mais seulement sur $[0; +\infty[$. La raison est simplement que la racine carrée d'un nombre négatif n'existe pas (pourquoi?).

Propriété 4:

1)
$$\sqrt{0} = 0$$
 et $\sqrt{1} = 1$.

2) Pour tous réels positifs
$$a$$
 et b , on a $\sqrt{ab}=\sqrt{a}\sqrt{b}$. De plus, si $b\neq 0$, alors $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

Propriété 5 : La fonction racine carrée est **strictement croissante** sur $[0; +\infty[$. En d'autres termes, si $0 \le a < b$ alors $\sqrt{a} < \sqrt{b}$ (l'ordre est conservé).

D'après la propriété 5, le tableau de variation de la fonction racine carrée est

x	0	$+\infty$
variations de f	0	

Dans un repère orthonormé, la courbe représentative de la fonction racine carrée a la forme suivante :

L'origine du repère appartient à la courbe d'après la propriété 4. Idem pour le point A(1; 1).

Le point B(4 ; 2) appartient à la courbe car $\sqrt{4}=2$.

Le point C(9 ; 3) appartient à la courbe car $\sqrt{9}=3$.

Exercice corrigé 1: x est un nombre réel.

1) Si
$$2 < x \le 8$$
, déterminer un encadrement de

$$x^2$$

a) x^2

c)
$$x^2$$
 $-$

$$-3x^2$$

2) Si
$$-5 \le x \le -2$$
, déterminer un encadrement de

b)
$$10x$$

b)
$$5x^2$$
 c) $x^2 - 10$ **d)** $-3x^2$ **b)** $10x^2$ **c)** $4x^2 + 10$ **d)** $-3x^2$

$$-3x^2$$

Correction ex corr 1:

1a)
$$4 < x^2 \le 64$$

1a)
$$4 < x^2 \le 64$$
 1b) $20 < x^2 \le 320$

1c)
$$-6 < x^2 - 10 \le 54$$

1d)
$$-192 \le x^2 < -12$$
 attention, on change l'ordre quand on multiplie par un négatif

Pour la partie 2, rappelez vous que la fonction carrée est décroissante sur $[-\infty;0[$ (penser à la courbe).

2a)
$$4 < x^2 < 25$$

2b)
$$40 < x^2 < 250$$

2c)
$$26 \le 4x^2 + 10 \le 110$$

2a)
$$4 \le x^2 \le 25$$
 2b) $40 \le x^2 \le 250$ **2c)** $26 \le 4x^2 + 10 \le 110$ **2d)** $-75 \le -3x^2 \le -12$

Exercice corrigé 2 : x est un nombre réel. Dans chaque cas, donner un encadrement de x^2 , ou une inégalité vérifiée par x^2 :

a)
$$-3 \le x \le 2$$

b)
$$x > -4$$

b)
$$x > -4$$
 c) $x < -1, 5$

Correction ex corr 2:

a) On peut reformuler la question: quels sont le minimum et le maximum de la fonction carré sur [-3;2]? Si on fait le tableau de variation de la fonction carrée sur [-3; 2], on a

Donc le maximum est 9 et le minimum est 0.

Donc la réponse est $0 \le x^2 \le 9$

b)
$$x^2 \ge 0$$
 (sur l'intervalle $]-4;+\infty[$ le minimum est 0 et il n'y a pas de maximum).

c)
$$x^2>2,25$$
 (en d'autres termes $x^2\in\,]2,25\,;\,+\infty[$)

Exercice corrigé 3

Compléter avec < ou > et justifier.

a)
$$\sqrt{1,98}$$
 $\sqrt{1,95}$ b) $\sqrt{\frac{4}{5}}$ 1

b)
$$\sqrt{\frac{4}{5}}$$
 1

c)
$$\sqrt{\pi^2}$$
 $\sqrt{9}$

Correction ex_corr_3:

a)
$$\sqrt{1,98} > \sqrt{1,95}$$
 car la fonction racine carrée est croissante et 1,98 > 1,95.

b)
$$\sqrt{\frac{4}{5}}$$
 < 1 car $\frac{4}{5}$ < 1 et comme la fonction racine carré est croissante on a $\sqrt{\frac{4}{5}}$ < $\sqrt{1}=1$.

c)
$$\sqrt{\pi^2} > \sqrt{9}$$
 car d'après la définition de la racine carrée $\sqrt{\pi^2} = \pi$ et $\sqrt{9} = 3$ (et $\pi > 3$).

Exercice corrigé 4 (fonction racine carrée):

1) Déterminer les images par la fonction racine carrée des nombres suivants :

a) 81

b) 10 000

c) 1

d) 0

2) Déterminer le ou les antécédents par la fonction racine carrée des nombres suivants :

a) 4

 $\mathbf{b)} \; \frac{3}{\mathtt{E}}$

c) -25

Correction ex corr 4:

1) a)
$$\sqrt{81} = 9$$

b)
$$\sqrt{10000} = 100$$
 c) $\sqrt{1} = 1$

c)
$$\sqrt{1} =$$

d)
$$\sqrt{0}=0$$

2) a) 16 est le seul antécédent de 4 ($\sqrt{16} = 4$)

b) Le seul antécédent de $\frac{3}{5}$ est $\frac{9}{25}$.

En effet, $\sqrt{\frac{9}{25}}=\frac{\sqrt{9}}{\sqrt{25}}$ d'après la propriété 4 du cours et donc on a bien $\sqrt{\frac{9}{25}}=\frac{3}{5}$.

c) -25 n'a pas d'antécédent car la fonction racine carré ne donne que des images positives (La courbe (voir cours) est toujours au dessus de l'axe des abscisses)

Exercice corrigé 5 (fonction racine carrée):

1) On considère la fonction racine carrée et sa courbe représentative $\mathcal C$ dans un repère ($\mathsf O$; $\mathsf I$, $\mathsf J$) . Indiquer, dans chacun des cas, si le point appartient à la courbe. Justifier.

A(4;2)

B(3;9)

C(1,44;1,2)

D(-16;4)

2) Dans chacun des cas, indiquer l'ensemble de définition D_f de la fonction f. Justifier.

a)
$$f(x) = \sqrt{x+2}$$
 b) $f(x) = \sqrt{x^2}$ c) $f(x) = \sqrt{-x}$

b)
$$f(x) = \sqrt{x^2}$$

c)
$$f(x) = \sqrt{-x}$$

Correction ex corr 5:

1)
$$A \in \mathcal{C}$$
 car $\sqrt{4} = 2$

$$B \notin \mathcal{C}$$
 car $\sqrt{3} \neq 9$ (par contre B est sur la courbe de la fonction carré)

$$C \in \mathcal{C} \text{ car } \sqrt{1,44} = 1,2$$

$$C\in\mathcal{C}\ \mathrm{car}\ \sqrt{1,44}=1,2$$
 $D\notin\mathcal{C}\ \mathrm{car}\ \mathrm{la}\ \mathrm{fonction}\ \mathrm{racine}\ \mathrm{carr\'{e}e}\ \mathrm{n'est}\ \mathrm{pas}\ \mathrm{d\'efinie}$ en $x=-16$ $(\sqrt{-16}\ \mathrm{n'existe}\ \mathrm{pas!})$

2) La fonction racine carrée n'est définie que pour les nombres positifs (voir la définition). Donc ce qui est sous la racine √ doit être positif!!

a) f est définie pour tout réel x tel que $x+2\geq 0 \iff x\geq -2$. (\iff signifie « est équivalent à ») L'ensemble de définition de la fonction f est donc $D_f = [-2; +\infty[$.

b) Pour tout réel x , on a $x^2 \geq 0$. Donc l'ensemble de définition de la fonction f est $D_f = \mathbb{R}$.

c) f est définie pour tout réel x tel que $-x \ge 0 \iff x \le 0$.

Donc l'ensemble de définition de la fonction f est $D_f =]-\infty ; 0].$

11. La fonction inverse.

Définition (inverse d'un nombre) : L'inverse d'un nombre x est le nombre y tel que $x \times y = 1$.

Propriétés 6 : a) 0 est le seul nombre qui n'a pas d'inverse.

- **b)** Pour tout nombre x différent de 0, l'inverse de x est le nombre $\frac{1}{x}$.
- c) L'inverse d'un nombre écrit sous la forme d'un quotient $\frac{a}{b}$ (avec a et $\,$ b non nuls) est le nombre $\frac{b}{a}$.

Démonstration:

- a) Quel que soit le nombre y on a toujours $0 \times y = 0$ et donc on a jamais $0 \times y = 1$ (0 n'a pas d'inverse).
- **b)** Si $x \neq 0$ on a toujours $x \times \frac{1}{x} = \frac{x \times 1}{x} = \frac{x}{x} = 1$ donc $\frac{1}{x}$ est bien l'inverse de x.
- c) Réfléchir par vous même ...

Exemple : l'inverse du nombre 2,5 est le nombre $\frac{1}{2,5}$. L'inverse du nombre $\frac{2}{-3}$ est le nombre $\frac{-3}{2}$.

Attention! Ne pas confondre l'inverse d'un nombre et l'opposé d'un nombre.

Notation: L'ensemble \mathbb{R}^* contient tous les nombres sauf 0. Autrement dit $\mathbb{R}^* =]-\infty$; $0[\bigcup_{i=1}^n]0$; $+\infty[$.

Définition (la fonction inverse) :

La fonction inverse est la fonction définie sur \mathbb{R}^* qui , à tout réel x

différents de 0, associe son inverse $\frac{1}{x}$. Sa courbe représentative est une hyperbole : $\frac{1}{x}$

(retenez bien la forme de cette courbe)

Définition : une fonction **IMPAIRE** est une fonction f telle que, pour tout nombre x de son ensemble de définition f(-x)=-f(x).

Conséquence géométrique :

La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.

Attention! Ne pas confondre les fonctions IMPAIRES avec les fonctions PAIRES.

Propriété 7: Comme $\frac{1}{-x} = -\frac{1}{x}$ pour tout réel x, la fonction inverse est une fonction impaire. (Sa courbe représentative dans un repère est symétrique par rapport à l'origine du repère)

Propriété 8 (pour la retenir, retenir la forme de la courbe représentative)

La fonction inverse est strictement **décroissante** sur $]-\infty$; 0[et strictement **décroissante** sur]0; $+\infty[$.

Attention! La fonction inverse n'est pas décroissante sur \mathbb{R}^* . Par exemple -2 < 3 et $\frac{1}{-2} < \frac{1}{3}$. (l'ordre n'est pas inversé)

Propriété 9 : On considère **l'équation** $x^2 = a$ avec a un nombre réel.

Selon la valeur de a, l'équation peut ne pas avoir de solution ou en avoir plusieurs :

- Si a < 0, l'équation n'a pas de solution.
- Si a=0 l'équation a une unique solution : c'est 0.
- Si a>0 l'équation a deux solutions : ce sont $x=-\sqrt{a}$ et $x=\sqrt{a}$.

On retient cette propriété en retenant le dessin à droite ---- >

Propriété 10 : On considère **l'inéquation** $x^2 \le a$ avec a un nombre réel.

- Si a < 0, l'inéquation n'a pas de solution.
- Si a=0 l'inéquation a une unique solution : c'est x=0.
- Si a>0 l'ensemble des solutions est l'intervalle $[-\sqrt{a};\sqrt{a}]$

À nouveau, tout cela est justifié par le dessin à droite ---- >

Exercice corrigé 6

1) Résoudre dans \mathbb{R} les **équations** suivantes *(en d'autres termes : trouver les x \in \mathbb{R} qui marchent)*

a)
$$x^2 = 7$$

$$x^2 = 0$$

c)
$$x^2 = 121$$

a)
$$x^2 = 7$$
 b) $x^2 = 0$ c) $x^2 = 121$ d) $x^2 = -2$ e) $x^2 = \pi^2$

e)
$$x^2 = \pi^2$$

2) Résoudre dans $\mathbb R$ les **inéquations** suivantes *(en d'autres termes : trouver les x \in \mathbb R qui marchent)*

a)
$$x^2 < 9$$

b)
$$x^2 < 25$$

c)
$$x^2 < 13$$

d)
$$x^2 \ge 9$$

a)
$$x^2 \le 9$$
 b) $x^2 < 25$ c) $x^2 < 13$ d) $x^2 \ge 9$ e) $x^2 \le -1$

Correction ex_corr_6 (pensez au dessin ci-dessus)

1)

a)
$$S = \{-\sqrt{7}; \sqrt{7}\}$$

a)
$$S = \{-\sqrt{7}; \sqrt{7}\}$$

a)
$$S = [-3; 3]$$

b)
$$S = \{0\}$$

b)
$$S =]-5; 5[$$

c)
$$S = \{-11; 11\}$$

attention: les crochets sont ouverts car -5 et 5 ne sont pas solutions

d)
$$S=\emptyset$$
 (pas de solution car -2 < 0)

c)
$$S =]-\sqrt{13}; \sqrt{13}[$$
 (même remarque)

e)
$$S = \{-\pi \, ; \, \pi\}$$

d)
$$S=]-\infty\,;\,-3]\cup[3\,;\,+\infty[\,$$
 ici l'inéquation a changé de sens

e)
$$S=\emptyset$$
 « un carré n'est jamais négatif ... »

N Position des courbes sur \mathbb{R}^+ .

Objectif : comparer trois fonctions : la fonction identité i(x)=x (celle qui ne fait rien) la fonction carré $c(x)=x^2$ la fonction racine carrée $r(x)=\sqrt{x}$

On veut savoir laquelle de ces fonctions est la plus grande sur un intervalle donné ...

Remarque: Notre étude est restreinte à l'ensemble \mathbb{R}^+ . On rappelle que $\mathbb{R}^+ = [0; +\infty[$.

Avant toute chose, réfléchissez à la question suivante : Quelle est la courbe de la fonction identité i(x)=x dans un repère orthonormée ? Essayer de la dessiner dans le repère à droite ------>

Je ne vous donnerai pas la réponse à cette question, vous pouvez facilement la trouver par vous même en vous rappelant la définition de la courbe d'une fonction. (cf activité d'introduction)

On peut déjà remarquer certaines choses :

Pour le nombre 0,5 on a $0,5^2<0,5<\sqrt{0,5}$ (calculatrice). En d'autres termes c(0,5)< i(0,5)< r(0,5) Pour le nombre 1, on a $1^2=1=\sqrt{1}$ et donc c(1)=i(1)=r(1) (les courbes se croisent). Pour le nombre 2 on a $2^2>2>\sqrt{2}$. En d'autres termes c(2)>i(2)>r(2)

L'ordre semble s'inverser en $x = 1 \dots$

Propriété 11 : Soit x un réel positif ou nul

- a) Si x=0 ou x=1 alors $x^2=x=\sqrt{x}$ (en d'autres termes c(x)=i(x)=r(x)).
- **b)** Si 0 < x < 1 alors $x^2 < x < \sqrt{x}$ (en d'autres termes c(x) < i(x) < r(x)).
- c) Si x>1 alors $x^2>x>\sqrt{x}$ (en d'autres termes c(x)>i(x)>r(x)).

À nouveau, la meilleur manière de retenir cette propriété est de bien retenir le dessin à droite et de remarquer que :

- Les trois courbes se croisent en x=0 et en x=1 . C'est le point a).
- Sur l'intervalle]0 ; 1 [la bleu est en dessous, puis vient la verte et enfin rouge. C'est le point b).
- Sur l'intervalle $\]1;+\infty[$ c'est l'inverse $\ :$ rouge d'abord puis vert en enfin bleu. C'est le point c).

Exercice corrigé 7: Ranger dans l'ordre croissant les trois nombres positifs suivants :

1)
$$\pi^2$$
; π ; $\sqrt{\pi}$

2)
$$\frac{x}{5}$$
 ; $\left(\frac{x}{5}\right)^2$; $\sqrt{\frac{x}{5}}$ où x est un nombre positif strictement inférieur à 5 ($0 < x < 5$).

3)
$$x+0,8$$
 ; $(x+0,8)^2$; $\sqrt{x+0,8}$ où x est un nombre tel que $0,3 < x < 0,4$

Correction ex_corr_7 (on utilise la propriété 11)

1) Comme
$$\pi>1$$
 la réponse est $\sqrt{\pi}<\pi<\pi^2$ (propriété 11 c)

2) Comme
$$0 < x < 5$$
 alors $0 < \frac{x}{5} < 1$ et donc $\left(\frac{x}{5}\right)^2 < \frac{x}{5} < \sqrt{\frac{x}{5}}$ (propriété 11 b))

3) Comme
$$0, 3 < x < 0, 4$$
 alors $1, 1 < x + 0, 8 < 1, 2$ et en particulier , $x + 0, 8 > 1$.

Donc
$$\sqrt{x+0.8} < x+0.8 < (x+0.8)^2$$
 (propriété 11 c)