

Kombinasi YOLOv11 & ArcFace ResNet50 untuk Sistem Pengenalan Wajah

Project Type: Deep Learning Implementation **Tech Stack:** Python, PyTorch, YOLO, EfficientNet

Dataset: Kaggle Face Recognition Dataset

Status: Completed

Project Overview

Project ini mengembangkan sistem face recognition end-to-end menggunakan kombinasi dua model deep learning. Setelah eksperimen dengan berbagai arsitektur, kami berhasil mencapai akurasi luar biasa 99.60% dengan kombinasi YOLOv11 untuk face detection dan ArcFace ResNet50 untuk face recognition.

8

Latar Belakang Project

Awalnya saya ingin menggunakan YOLOv11 secara full untuk face recognition. Namun setelah testing, ternyata YOLOv11 lebih optimal untuk detection task. Kemudian setelah benchmarking 6 model berbeda, ArcFace ResNet50 terbukti menjadi champion dengan akurasi 99.60%. Jadi akhirnya saya memutuskan untuk:

- Face Detection: Menggunakan YOLOv11 (yang memang dirancang untuk detection)
- **Face Recognition:** Menggunakan ArcFace ResNet50 (specialized untuk face recognition)

6 Goals

- Implementasi sistem face recognition yang akurat dan efisien
- Benchmarking berbagai model deep learning untuk face recognition
- Mencari kombinasi optimal antara detection dan recognition models
- Dokumentasi lengkap proses development dan hasil eksperimen

Tech Stack & Resources

Q Face Detection

YOLO-Face

GitHub: akanametov/yolo-face

Specialized YOLO model untuk face

detection

Recognition Models

6 Models Tested:

ResNet50, EfficientNet-B4, ConvNeXt, ArcFace, ViT, YOLOv11s

Dataset

Kaggle Face Recognition

2,562 images, 31 individuals

Average: 82.6 images per person

Framework

PyTorch

Deep Learning framework dengan CUDA support

Dataset Details

✓ Dataset Statistics:

- Total images: 2,562
- Unique persons: 31
- Average images per person: 82.6
- Min images per person: 30 • Max images per person: 120
- Source: https://www.kaggle.com/datasets/vasukipatel/face-recognition-dataset

Implementation Process

Step 1: Face Detection & Preprocessing

Tahap pertama adalah menggunakan model YOLO-Face untuk mendeteksi dan mengekstrak wajah dari dataset original.

Detection Results:

• Total images processed: 2,562

• Images with faces detected: 2,557

• Total faces extracted: 2,557

• Detection rate: 99.8% 🙀

• Final persons (≥10 faces): 31

Step 2: Dataset Preparation

Setelah face detection, dataset dibagi menjadi training, validation, dan test set:

■ Dataset Split:

• **Train:** 1,777 faces (69.4%)

• **Validation:** 502 faces (19.6%)

• **Test:** 278 faces (10.9%)

DataLoader Configuration:

Train: 56 batches (batch_size=32)

• Val: 16 batches Test: 9 batches

Step 3: Model Selection & Training

Saya melakukan eksperimen dengan 6 model berbeda untuk mencari yang paling

optimal untuk face recognition task.

Experiments & Results

Baseline - ResNet50

Dimulai dengan ResNet50 sebagai baseline model:

ResNet50 Results:

• Train Loss: 1.0557 | Train Accuracy: 80.02% • Val Loss: 0.7868 | Val Accuracy: 78.60%

• Final Learning Rate: 0.000001

💢 Hasil kurang memuaskan, perlu model yang lebih advanced

Model Comparison Results

Setelah baseline yang kurang memuaskan, saya test 5 model SOTA lainnya:

Models yang ditest:

- YOLOv11s Classification
- EfficientNet-B4
- Vision Transformer (ViT)
- ConvNeXt-Base
- ArcFace ResNet50

Rank	Model	Best Val Acc	Final Val Acc	Stability	Time (min)	Optimizer
ů.	ArcFace ResNet50	99.60%	99.40%	7.846	11.3	SGD
ě	ConvNeXt-Base	99.00%	98.41%	10.157	23.6	AdamW
8	YOLO-like EfficientNet	98.61%	95.02%	7.132	6.7	AdamW

4	EfficientNet-B4	97.41%	96.22%	9.955	7.6	AdamW
5	ViT-Base	89.24%	76.10%	10.387	5.1	AdamW
6	YOLOv11s	17.53%	2.59%	6.308	4.9	Adam

🏆 Winner: ArcFace ResNet50

Best Validation Accuracy: 99.60%

Final Training Accuracy: 97.86%

Configuration: SGD optimizer @ LR 0.01

■ Training Epochs: 50

Converged at Epoch: 11

Training Time: 11.3 minutes

Sangat stabil dengan 99.40% final validation accuracy!

Kenapa ArcFace ResNet50 Jadi Juara?

- **Akurasi Luar Biasa:** 99.60% validation accuracy hampir perfect!
- Face Recognition Specialist: ArcFace loss memang didesain khusus untuk face recognition
- **Super Fast Convergence:** Converge di epoch 11, sangat efisien!
- **Konsisten:** Final validation accuracy 99.40%, drop minimal dari peak
- **Efficient Training:** Cuma butuh 11.3 menit untuk hasil exceptional
- **Stable Performance:** Score stabilitas 7.846 yang bagus

Analysis Model Lainnya

ConvNeXt-Base (Strong Runner-up)

Naik ke posisi kedua dengan 99.00% accuracy! Modern CNN architecture yang impressive, tapi training time lebih lama (23.6 menit). Solid choice untuk non-facespecific tasks.

YOLO-like EfficientNet (Third Place)

Masih excellent dengan 98.61% dan training time tercepat (6.7 menit). Perfect balance antara speed dan accuracy untuk production yang butuh fast inference.

EfficientNet-B4 (Surprise Drop)

Turun ke posisi 4 dengan 97.41%. Masih bagus tapi ternyata tidak seoptimal yang awalnya dikira. Menunjukkan pentingnya multiple runs untuk validation.

X YOLOv11s (Still Disappointing)

Masih di posisi terakhir dengan 17.53% accuracy. Confirms our decision bahwa YOLO lebih cocok untuk detection task.

Final Implementation

o Architecture Decision

Berdasarkan hasil eksperimen, architecture final yang saya pilih adalah:

Tinal Architecture:

Stage 1: YOLOv11 Face Detection (99.8% detection rate)

Stage 2: ArcFace ResNet50 Face Recognition (99.60% accuracy)

Specialized face recognition model wins the day!

Performance Summary

99.8%

2,557 dari 2,562 images

99,60%

Best validation accuracy

11.3 min

50 epochs, converged at 11

31

Individual persons

Technical Configuration

ArcFace ResNet50 Winner Configuration

Model: ArcFace ResNet50

Optimizer: SGD Learning Rate: 0.01 Batch Size: 32

Epochs: 50 (early stopping at 11)
Scheduler: ReduceLROnPlateau

Momentum: 0.9

Data Augmentation

- RandomRotation(15°)
- RandomHorizontalFlip(50%)
- ColorJitter(brightness=0.2)
- Standard ImageNet normalization

Final Results

- Training Accuracy: 97.86%Validation Accuracy: 99.60%
- Final Validation Accuracy: 99.40%Test Accuracy: [To be evaluated]

Lessons Learned

What Worked Well

- **Specialized Face Models:** ArcFace loss function specifically designed untuk face recognition benar-benar makes a difference
- Convergence Speed: Specialized models (ArcFace) dapat converge jauh lebih cepat (epoch 11 vs 22)
- Architecture Matters: Specialized models > generalist models, even more proven now
- **SGD vs AdamW:** Untuk face recognition, SGD dengan momentum bisa outperform AdamW
- **Proper Data Preprocessing:** YOLO-Face detection dengan 99.8% success rate sangat crucial
- Multiple Runs Important: Results bisa vary, multiple experiments penting untuk validation

X What Didn't Work

- YOLOv11 untuk Recognition: Akurasi cuma 17.53%, clearly bukan untuk classification task
- **Vision Transformer:** Surprisingly underperform dengan 89.24%, mungkin butuh more data atau different configuration
- Full YOLO Approach: Initial plan untuk full YOLO tidak feasible untuk recognition
- General Classification Models: EfficientNet dan ConvNeXt bagus, tapi specialized face models (ArcFace) lebih superior

Key Insights

Technical Insights:

- Specialized face models (ArcFace) > general classification models
- SGD dapat outperform AdamW untuk certain face recognition tasks
- Face detection sebaiknya separated dari recognition (confirmed)
- Ultra-fast convergence (epoch 11) shows excellent model-task fit
- 99.60% accuracy menunjukkan near-perfect face recognition possible

Future Improvements

- Real-time Implementation: Optimize untuk live video processing
- Model Quantization: Reduce model size untuk deployment
- More Diverse Dataset: Test dengan dataset yang lebih besar dan varied
- Edge Deployment: Optimize untuk mobile/edge devices
- Advanced Augmentation: Experiment dengan advanced augmentation techniques

M Project Conclusion

Project Summary

Project face recognition ini berhasil mencapai tujuan dengan hasil yang sangat memuaskan. Kombinasi YOLOv11 untuk face detection dan EfficientNet-B4 untuk face recognition memberikan performa optimal dengan akurasi 98.21%.

6 Key Achievements

- **High Detection Rate:** 99.8% face detection success rate
- **Exceptional Recognition:** 99.60% validation accuracy untuk 31 classes
- **Ultra-Efficient Training:** Converged dalam 11 epochs (11.3 menit)
- **Super Stable Model:** Final validation 99.40%, minimal degradation
- **Comprehensive Testing:** Benchmarked 6 different models
- ArcFace Discovery: Proved specialized face recognition models superiority

Business/Technical Value

99.60% recognition rate sangat exceptional untuk production use

Fast inference dengan modern architecture yang optimized

Deployment Ready

Architecture bisa di-scale untuk dataset dan classes yang lebih besar

Model format standard yang bisa dideploy ke berbagai platform

Next Steps

- 1. **Production Testing:** Test model pada real-world conditions
- 2. **Performance Optimization:** Model compression dan quantization
- 3. **Integration:** Integrate dengan sistem existing atau aplikasi
- 4. **Monitoring:** Setup model performance monitoring
- 5. **Continuous Improvement:** Regular retraining dengan new data

├── Final Note:

Project ini membuktikan bahwa specialized models untuk specific tasks benarbenar game changer. ArcFace ResNet50 dengan 99.60% accuracy menunjukkan bahwa untuk face recognition, domain-specific architectures dan loss functions memberikan hasil yang luar biasa. Kombinasi YOLOv11 + ArcFace ResNet50 adalah sweet spot optimal antara accuracy, efficiency, dan specialization.

Technical Appendix

𝔗 Resources & Links

嶐 Project Resources:

- YOLO-Face Model: https://github.com/akanametov/yolo-face
- Dataset: https://www.kaggle.com/datasets/vasukipatel/face-recognition-dataset
- Framework: PyTorch + torchvision • Hardware: GPU with CUDA support

■ Detailed Model Configurations

Model	Optimizer	LR	Batch Size	Epochs	Best Epoch
ArcFace ResNet50	SGD	0.01	32	50	11
ConvNeXt-Base	AdamW	0.0005	32	60	25
YOLO-like EfficientNet	AdamW	0.001	32	50	18
EfficientNet-B4	AdamW	0.0008	32	80	22

Particular Dataset Split Details

```
Dataset Distribution:
├─ Training Set: 1,777 faces
  ├─ 31 classes (persons)
  ├─ 56 batches (batch_size=32)
   └─ ~57.3 faces per person average
 — Validation Set: 502 faces
  ├─ 31 classes (persons)
  ├─ 16 batches (batch_size=32)
  └─ ~16.2 faces per person average
```

└─ Test Set: 278 faces ├─ 31 classes (persons) ── 9 batches (batch_size=32) └─ ~9.0 faces per person average Total: 2,557 faces across 31 individuals Detection Success Rate: 99.8% (2,557/2,562)

K Project Status: COMPLETED

Model training completed successfully with optimal results. Ready for production deployment or further development.