Дата: 29.05.2023

ФИО: Пахомов Денис Владимирович

Группа: 224-321

ЛАБОРАТОРНАЯ РАБОТА №2

Сравнение различных фильтров для устранения шумов в изображении

Используемая среда разработки: Python

Используемые библиотеки: numpy, matplotlib, cv2

Цель работы: проанализировать возможности фильтров для устранения различных шумовых структур, подобрать параметры фильтрации под конкретное изображение.

Содержание работы

1. Проанализировать предложенные изображения определить тип шумовой структуры.

Исходное изображение

Глубина цвета: 8 bit

Рисунок 1 - исходное изображение

Рисунок 2 – Гистограмма исходного изображения

Анализ шумовой структуры:

Устранение шумовой структуры:

Метод устранения шумовой структуры	Non-local Means Denoising	Пространственный фильтр усреднения	Медианный фильтр	Фильтр Гаусса
Обоснование выбора метода	OpenCV <u>ссылка</u> <u>ссылка</u>	Ссылка (Цифровая обработка изображений учебное пособие)	<u>Ссылка</u> (Пухова Е., Горелик А.)	Ссылка (Цифровая обработка изображений учебное пособие)
Параметры фильтрации	H = 15, w = 7	Маска 5/5	Маска 9/9	W = 9/9 K = 3
Изображение после фильтрации	C			
Гистограмма изображения После фильтрации	20000- 20000- 20000- 20000- 20000- 10000- 5000- 0 50 100 130 200 250	100000 - 80000 - 60000 - 40000 - 0 50 100 150 200 250	20000 - 20000	23000 - 20000 - 13000 - 10000 - 0 50 100 150 200 250
PSNR	28.01	31.83	27.36	28.04

Вывод:

В лабораторной работе были проанализированы изображения с шумовыми структуры. Были определены виды этих структур, а также подобраны фильтры и соответствующие параметры, для удаления шумов с изображения.