Universidade Federal de Minas Gerais Colégio Técnico - COLTEC

Cursos Técnicos Automação e Eletrônica

Prof. Márcio Fantini

Lista de Exercícios 02 - Módulo 1 - 2021

Nome:	 Data:	

Essa segunda lista contém exercícios sobre os comandos de Octave, principalmente os que se referem a matrizes e vetores.

Matrizes 1

1. Faça as operações matriciais pedidas, para as matrizes A, B, C e D. Quando as dimensões forem incompatíveis, coloque o resultado como vazio (\emptyset) .

$$A = \begin{bmatrix} 1 & 2 & -1 \\ -3 & 2 & 0 \\ 4 & 5 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 12 \\ 6 & -5 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 0 \\ 3 & 6 \end{bmatrix}, H = \begin{bmatrix} 0 & 2 \\ -1 & 7 \\ 0 & 1 \\ 1 & -2 \end{bmatrix}, M = \begin{bmatrix} 0 & 2 & 1 & 9 \\ -1 & 7 & 8 & 5 \end{bmatrix},$$

- a) A^T
- e) $A \times C C \times A$ i) $G \times H$
- m) $M \times 3H$

- b) B^T

- c) $C \times A$
- f) $B \times D$ j) $H \times G$ n) $H \times M$ g) D^{-1} k) $G^T \times H$ o) $M^T \times H$

- d) $A \times C$
- h) $(A+C)^{-1}$ l) $H \times G^{T}$ p) $M^{T} + 2G$
- s) B^2

2. Dadas as mesmas matrizes do exercício anterior, obtenha os valores pedidos. Em alguns casos usamos a notação do Octave para referenciarmos as linhas e colunas. Se a operação não puder ser executada, coloque o resultado como vazio (\emptyset) .

- a) $A_{13} + A_{22}$
- f) $([G, H])^{-1}$
- k) M(:,3:4) + H(3:4,:)

- b) $B_{2,2}^T + B_{1,1}$
- g) [H, M]

1) M(:, 1:2) - M(:, 3:4)

- c) C(1,:) + C(:,2) h) $[H, M^T]$

m) G(2:end,:) + M(:,1:3)

d) [B, D]

i) [H; M]

n) [H(:,1);H(:,2)]

e) [B;D]

j) $[H; M^T]$

- o) $[G^T; H^T; M]$
- 3. Crie uma matriz N dada por $N = [G, H, M^T]$. Para a matriz N, pede-se

- a) N^T
- b) N(:, i:j), i=2; j=4
- c) N(:, i:j), i=1; j=4

- d) Particione N para definir uma matriz quadrada, N_2 . A escolha é sua.
- e) Dada N_2 do item anterior, calcule N_2^{-1} .
- 4. Calcule a inversa e o determinante de todas as matrizes quadradas dadas no item 1 acima.

2 ${f Vetores}$

Para os exercícios sobre vetores, considere as operações de exponenciação como sendo em cada elemento do vetor.

$$v_1 = \begin{bmatrix} 1 & 3 & 5 & 6 & 9 & 10 \end{bmatrix}, v_2 = \begin{bmatrix} 2 & 4 & 8 & 12 & 0 & 7 \end{bmatrix}, v_3 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- 5. Dados os vetores v_i (i = 1, 2, 3) acima, faça as operações pedidas.
 - a) $v_1^2 + v_2^3$

- f) $v_5^{0.5}$
- b) $\sum_{i=1}^3 v_i.$ Atenção para a soma pedida.¹.
- c) $v_4 = [v_1^T, v_2^T]$

g) Coloque v_5 em ordem crescente. Guarde em v_6 .

- d) $v_5 = [v_1; v_2]$
- e) maior elemento de v_5

- h) $[v_5, v_5^2]$
- 6. Crie um vetor de números aleatórios, de tamanho 1×50 . Os números aleatórios devem estar entre 1 e 100.
- 7. Para o vetor criado no item anterior, faça o gráfico de todos os pontos, sem ligá-los.
- 8. Faa o gráfico do vetor criado, agora com a seguinte regra:
 - Para os 25 primeiros pontos, use um círculo como símbolo.
 - Para os últimos 25 pontos, use uma cruz.
- 9. Obtenha os valores pedidos:
 - a) $v_1(3:5)$

- b) $v_2(2:end) v_3(1:5)$ c) $\sum_{i=1}^5 v_i(i)$. Atenção para a soma pedida.².
- 10. Crie um vetor de 100 pontos. Calcula a média. Encontre o valor máximo e mínimo desse vetor.
- 11. Repita o item acima para um vetor de 1000 pontos.

¹Essa é a notação para somatório. No caso está sendo pedido a soma dos três vetores: $v_1 + v_2 + v_3$

²Essa é a notação para somatório. No caso está sendo pedido a soma dos elementos do vetor 1, do elemento 1 ao 5

- 12. Repita o item acima para um vetor de 10000 pontos.
- 13. Faça o gráfico do vetor aleatório de 1000 pontos. Use o símbolo da cruz (não ligue os pontos).

3 Criando Matrizes com Números Aleatórios

- 14. Faça um script para criar duas matrizes aleatórias de tamanho 3 × 3 e mostrá-las na tela com o comando disp(). O script deve também criar uma matriz identidade de ordem 4 e uma matriz nula de dimensão 2 × 3.
- 15. Faça um script para criar duas matrizes aleatórias de tamanho 3×3 . Os números aleatórios devem ser reais e estar entre 1 e 10.
- 16. Faça um script para criar duas matrizes aleatórias, M1 e M2 de tamanho 4×4 . Os números aleatórios devem ser inteiros e estar entre 1 e 20.
- 17. Repita o exercício anterior. Agora o programa deve, além de mostrar a matriz, mostrar submatrizes no intervalo dado pelo usuário. Por exemplo M1(1:3), M2(3:4), M1(:,2:3), M2(1:3,:). Ou seja sempre mostrar a matriz no intervalo $M(L_1:L_2,C_1:C_2)$, sendo L_1 e L_2 os valores iniciais e finais da linha, respectivamente e C_1 e C_2 os valores iniciais e finais da coluna, respectivamente.

4 Questões

- 14. Escreva pelo menos 20 comandos/funções que você já viu nas aulas de Octave.
- 15. Qual o comando usado para definir um vetor com valor inicial, final e incremento?
- 16. Qual o comando usado para definir um vetor com valores inicial e final e número de pontos?
- 17. Como obter todas as linhas da coluna j de uma matriz $n \times m$?
- 18. Quais as duas formas de "plotar" dois gráficos na mesma figura?
- 19. Como elevar ao cubo todos os elementos de uma matriz $n \times m$?
- 20. Que nome damos a uma matriz de dimensão $1 \times m$? e uma de dimensão 1×1 ?
- 21. O que é uma string? Como criar uma string no Octave?

 $4 \quad QUEST\tilde{O}ES$ 4

22. Explique o resultado do comando whos dado abaixo:

// WIIOS	>>	whos
----------	----	------

Attr	Name	Size	Bytes	Class
====	====	====	=====	=====
	W	1x1	4	int32
	х	1x1	8	double
	У	1x3	24	double
	Z	1x6	6	char

O material de estudo para o conteúdo dessa lista está contemplado nos capítulos 1,2 e 3 e 4 da apostila do Octave e nas videoaulas postadas.

Compilado 18 de junho de 2021 - 10:19:24