#### 第二周报告 - 于建国

- 1. 特征提取
- 2. 特征筛选
  - 2.1. 全局特征筛选
    - 2.1.1. 全连接网络结构
    - 2.1.2. 全连接网络 7-fold CV
    - 2.1.3. 全局特征选择

#### 2.2. 时序特征筛选

- 2.2.1. 一维卷积网络结构
- 2.2.2. 一维卷积网络 7-fold CV
- 2.2.3. 双向循环网络结构
- 2.2.4. 双向循环网络 7-fold CV
- 2.2.5. 时序特征选择
- 3. 特征融合
  - 3.1. 网络结构
  - 3.2. 网络结构 7-fold CV
- 4. 代码说明
  - 4.1. 特征提取
  - 4.2. 神经网络
- 5. 线上测试结果
- 6. 结论
- 7. 附:导师评语
  - 7.1. 导师1
  - 7.2. 导师2
  - 7.3. 评分

# 第二周报告 - 于建国

# 1. 特征提取

提取 OpenSMILE 全局特征 和 时序特征 后做成 tfrecord 便于特征的随意组合和 tensorflow 的训练。

| 全局特征               | 维度   | 时序特征 (IId)       | 维度                   |
|--------------------|------|------------------|----------------------|
| IS09_emotion.conf  | 384  | MFCC13*3         | timestep $\times$ 39 |
| IS10_paraling.conf | 1582 | IS10_paraling -D | timestep $\times$ 76 |

| IS13_ComParE.conf | 6373 | IS13_ComParE -D               | $timestep \times 130$ |
|-------------------|------|-------------------------------|-----------------------|
| ComParE_2016.conf | 6373 | FilterBank(40+total energy)*3 | timestep $\times$ 123 |

# 2. 特征筛选

选择出最好的 全局特征 和 时序特征 用于做特征融合。

## 2.1. 全局特征筛选

使用全连接网络进行训练,取最好的网络结构的最后隐藏层作为全局特征。

### 2.1.1. 全连接网络结构

省略输入层和输出层,D表示 dense, n表示层数



全连接网络结构

| layer | node | learning rate | batch size | epoch | update |
|-------|------|---------------|------------|-------|--------|
| 5     | 512  | 5e-4          | 96         | 50    | Adam   |

### 2.1.2. 全连接网络 7-fold CV

用全连接网络 (FC) 的结果和 Gradient Boosting Decision Tree 基线结果进行对比。

| 特征      | 维度        | GBDT rmse | GBDT pcc | FC rmse | FC pcc |
|---------|-----------|-----------|----------|---------|--------|
| IS09    | 384       | 0.7349    | 0.6772   | 0.7539  | 0.6498 |
| IS10    | 1582      | 0.6815    | 0.7307   | 0.6869  | 0.7214 |
| IS13    | 6373      | 0.6775    | 0.7343   | 0.6741  | 0.7328 |
| IS16    | 6373      | 0.6850    | 0.7274   | 0.6797  | 0.7294 |
| IS09,13 | 384+6373  | 0.6729    | 0.7342   | 0.6748  | 0.7335 |
| IS10,13 | 1582+6373 | 0.6763    | 0.7353   | 0.6616  | 0.7456 |
| IS09,16 | 384+6373  | 0.6749    | 0.7326   | 0.6787  | 0.7306 |

| IS10,16       | 1582+6373          | 0.6618 | 0.7453 | 0.6620 | 0.7459 |
|---------------|--------------------|--------|--------|--------|--------|
| IS09,10,13    | 384+1582+6373      | 0.6739 | 0.7339 | 0.6685 | 0.7386 |
| IS09,10,13,16 | 384+1582+6373+6373 | 0.6639 | 0.7429 | 0.6697 | 0.7382 |

### 2.1.3. 全局特征选择

使用 IS10,13 和 IS10,16 特征集的全连接网络效果较好。

IS09,10,13,16 在全连接网络中并不容易训练。

由于很多论文偏向于 IS13, 所以选择**使用 IS10,13 的全连接网络的最后隐藏层的输出 (512 维)** 做为全局特征。

### 2.2. 时序特征筛选

尝试 一维卷积网络结构 和 双向循环神经网络 来建模。取最好的网络结构的最后隐藏层作为时序特征。

### 2.2.1. 一维卷积网络结构

卷积网络速度快,特征集的筛选主要由它负责。 k 是 kernel size, p 是 pooling type, gp 是在时间 维上的平均池化。



| pool size | learning rate | batch size | epoch |
|-----------|---------------|------------|-------|
| 2         | 5e-5          | 32         | 100   |

### 2.2.2. 一维卷积网络 7-fold CV

| 时序特征   维度 | pool type | kernel size | rmse | pcc |  |
|-----------|-----------|-------------|------|-----|--|
|-----------|-----------|-------------|------|-----|--|

| mfcc          | 39        | max | 2 | 0.7503 | 0.6524 |
|---------------|-----------|-----|---|--------|--------|
| fb            | 123       | max | 2 | 0.7321 | 0.6716 |
| mfcc + fb     | 39+123    | max | 2 | 0.7001 | 0.7059 |
| mfcc          | 39        | avg | 2 | 0.7698 | 0.6272 |
| fb            | 123       | avg | 2 | 0.7462 | 0.6545 |
| mfcc + fb     | 39+123    | avg | 2 | 0.6969 | 0.7090 |
| mfcc          | 39        | max | 3 | 0.7471 | 0.6558 |
| fb            | 123       | max | 3 | 0.7297 | 0.6764 |
| mfcc + fb     | 39+123    | max | 3 | 0.7117 | 0.6725 |
| fb +IS10+IS13 | 39+76+130 | max | 2 | 0.6708 | 0.7348 |
| fb +IS10+IS13 | 39+76+130 | max | 3 | 0.6736 | 0.7325 |

#### 其余结果略

### 2.2.3. 双向循环网络结构

与循环神经网络进行对比,时间缘故,并未调节卷积层的 kernel size,只用了 1x1 conv。



双向循环网络结构

| learning rate | batch size | epoch |
|---------------|------------|-------|
|---------------|------------|-------|

| 1e-4 64 50 |
|------------|
|------------|

#### 2.2.4. 双向循环网络 7-fold CV

| 时序特征         | 维度         | rmse   | pcc    |
|--------------|------------|--------|--------|
| mfcc 39      | 39         | 0.7110 | 0.6949 |
| fb, IS10, 13 | 123+76+130 | 0.6888 | 0.7175 |

#### 其余结果略

### 2.2.5. 时序特征选择

一维卷积网络稍优于, 且快于循环网络结果。

特征上,单独的 mfcc 或 fb 都不如 IS10, 13 的特征集。

所以选择**使用 fb, IS10,13 的循环 或 卷积网络的最后隐藏层的输出 (512 维)** 做为时序特征。

# 3. 特征融合

因为全局特征和时序特征只是形式不同,但有极强的相关性和重复信息。 所以使用 correlational neural networks 进行特征融合。 优点是可以仅使用一个输入 x (全局特征) 或 y (时序特征) 进行预测而不会过分破坏表现。

## 3.1. 网络结构

全局特征 和 时序特征的网络的权重是预训练后固定的。 训练完 correlational neural networks 后,固定网络权重,取 z 作为最后的特征。 最后把 z 作为输入,只训练 dense (relu) 和 output layer (共同形成MLP) 预测 P 值。



## 3.2. 网络结构 7-fold CV

| 模型                            | 特征                                                     | 维度  | rmse   | pcc    |
|-------------------------------|--------------------------------------------------------|-----|--------|--------|
| 融合特征 using MLP                | 全局特征 (512) + 循环网络时序特征 (512)                            | 512 | 0.6486 | 0.7569 |
| 融合特征 using MLP                | 全局特征 (512) + 卷积网络时序特征 (512)                            | 512 | 0.6375 | 0.7655 |
| mean ( GBDT + 融合特征 using MLP) | IS10, IS16 (384+6373) + 全局特征 (512) +<br>卷积网络时序特征 (512) | 512 | 0.6335 | 0.7692 |

# 4. 代码说明

## 4.1. 特征提取

| 代码文件          | 作用                           | 格式变换                            |
|---------------|------------------------------|---------------------------------|
| extractor.py  | 批量提取全局、时序特征                  | .wav $\rightarrow$ .txt or .mfc |
| data_maker.py | 与标签对齐后转成<br>pandas.DataFrame | .txt → .csv                     |

| tfrecord_maker.py | 将数据转成 tfrecord 文件 | .csv or .mfc or .txt → |
|-------------------|-------------------|------------------------|
|                   | .tfrecord         |                        |
| data.py           | 帮助读写 tfrecord 文件  | null                   |

# 4.2. 神经网络

| 代码文件       | 作用         |
|------------|------------|
| DNN.py     | 全连接网络实验    |
| RNN.py     | 循环网络实验     |
| CNN.py     | 卷积网络实验     |
| Cr2NN.py   | 相关网络实验     |
| layers.py  | 搭建层的帮助文件   |
| cv_ids.npy | 交叉验证的文件 ID |

# 5. 线上测试结果

在额外测试集上表现。

| 模型                             | pcc    |
|--------------------------------|--------|
| GBDT                           | 0.7342 |
| 全连接网络                          | 0.7118 |
| 卷积网络                           | 0.7280 |
| 融合特征 using MLP                 | 0.7499 |
| 融合特征 using GBDT                | 0.7472 |
| mean ( GBDT + 融合特征 using MLP)  | 0.7544 |
| mean ( GBDT + 融合特征 using GBDT) | 0.7546 |

# 6. 结论

此任务中:

特征

- 。 全局特征 IS10,13 效果较好。
- 。 时序特征 fb 优于 mfcc。
- 。 时序特征 fb, IS10,13 效果较好。
- 。 融合特征带来的提升比较显著,即便用来融合的 卷积模型特征 和 全连接模型特征本 身效果很一般。

#### • 模型

- 。 一维卷积网络速度、参数量、效果都略优于循环网络。
- 。 融合特征不论是用神经网络还是 GBDT 都可以取得较好的结果。
- 。 平均第一周模型的结果和第二周模型的结果取得了最好的结果。

# 7. 附:导师评语

## 7.1. 导师1

- 在特征提取上继续了上周的工作,并在此基础上筛选了全局特征和时序特征,并给出了筛选的过程。
- 在网络结构上进行了7折交叉验证, 并与 GBDT 进行对比。
- 时序特征选择上使用一维卷积,双向LSTM。最后给出了融合特征的网络结构图。
- 在项目工程文档里面给出每个文件的说明, 最终给出了结论。
- 并思考了深度学习网路结构在该数据集上的一些优缺点。

### 7.2. 导师2

- 该学员在报告伊始给出目录,报告结构一目了然。
- 中间过程多次使用表格对不同的项目进行对比,结构非常清晰,条理性非常强,逻辑严谨,思路清晰,描述详细。
- 文中给出了网络结构图,非常清晰。
- 对不同网络结构和特征描述非常详细,分析透彻。
- 并在最后给出自己的感悟和结论。

### 7.3. 评分

