MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2014 SOLUTION KEY.

Team Round

A) Solution #1: (Angle of incidence equals angle of reflection.) Let $F_1 = (-c, 0)$ and $F_2 = (c, 0)$. Let the slope of $\boldsymbol{\mathcal{L}}$ be m_2 .

Then:
$$\overline{PF_1} \perp \overline{PF_2} \Rightarrow \frac{3-0}{4+c} \cdot \frac{3-0}{4-c} = -1 \Rightarrow c^2 - 16 = 9 \Rightarrow c = 5, F_1(-5,0), F_2(5,0)$$

Since $m\angle APF_2 = m\angle CPF_1$, these angles both measure 45°. The slope of $\overline{F_2P} = \frac{0-3}{5-4} = -3$.

The angle θ between two lines can be determined on the basis of the slopes of the two lines,

namely
$$\left(\tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2}\right)$$
. Thus, we have $1 = \frac{m_2 + 3}{1 - 3m_2} \Rightarrow 1 - 3m_2 = m_2 + 3 \Rightarrow m_2 = -\frac{1}{2}$ and the

equation of
$$\mathcal{L}$$
 is $y-3=-\frac{1}{2}(x-4) \Rightarrow \underline{x+2y=10}$.

Solution #2:

As an exterior angle of $\triangle PF_2A$, $m\angle APF_2 + m\angle PF_2A = m\angle PAB$.

The slope m of any non-vertical line equals the tangent of its angle of inclination. Therefore,

$$\tan(\angle PAB) = \tan(\angle APF_2 + \angle PF_2A) = \frac{\tan(\angle APF_2 + \tan(\angle PF_2A))}{1 - \tan(\angle APF_2 \cdot \tan(\angle PF_2A))} = \frac{1 + (-3)}{1 - (1)(-3)} = -\frac{1}{2}$$

and the same result follows.

Solution #3: (In any <u>non-right</u> triangle *ABC*, $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$.) Applying the theorem, in $\triangle APF_2$, $\tan F_2 = -3$, $\tan P = \tan 45^\circ = 1$.

If
$$\tan A = x$$
, we have $x + (-3) + 1 = -3x \Rightarrow x = \frac{1}{2}$.

As supplementary angles, $\tan \angle PAF_2 = \frac{1}{2} \Rightarrow \tan \angle PAB = m_2 = -\frac{1}{2}$ and the same result follows.

Solution #4:

(The tangent line to ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (or $b^2x^2 + a^2y^2 = a^2b^2$) at $P(m, n)$ is $b^2mx + a^2ny = a^2b^2$.)

To get the equation of the ellipse with vertices V_1 and V_2 , first note that $2a = V_1V_2 = PF_1 + PF_2$.

$$PF_1^2 = 9 + 81 = 90, PF_2^2 = 9 + 1 = 10$$
, so $2a = 3\sqrt{10} + \sqrt{10} \Rightarrow a = 2\sqrt{10}$.

Substituting,
$$b^2 = a^2 - c^2 = (2\sqrt{10})^2 - 5^2 = 15 \Rightarrow b = \sqrt{15}$$

Thus, the equation of the ellipse is $15x^2 + 40y^2 = 600$, or reducing $3x^2 + 8y^2 = 120$ The equation of \mathcal{L} is 3(4)x + 8(3)y = 120 and the result follows.