Deriving the Luminosity of the Photosphere

MICHAEL Moss^{1, 2}

¹ The Department of Physics, The George Washington University, 725 21st NW, Washington, DC 20052, USA

² Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Keywords: Gamma-Ray Bursts (629)

1. DERIVATION

This follows from the work of Hascoët et al. (2013).

 $_{\rm 8}$ $\,$ The thermal energy injected into the outflow at the $_{\rm 9}$ origin of the jet can be obtained from

10 11

$$\dot{E}_{\rm th} = \epsilon_{\rm th} \dot{E} = \epsilon_{\rm th} \frac{\Omega}{4\pi} \dot{E}_{\rm iso} = aT_0^4 cS_0 \tag{1}$$

where \dot{E} is the total power injected into the outflow, $\dot{E}_{\rm iso}$ is the isotropic equivalent total injected power, $\epsilon_{\rm th}$ is the fraction of energy stored in thermal form, T_0 is the temperature at the origin of the flow, $S_0=\pi\ell^2$ is the cross section of the outflow at the origin, ℓ is the initial jet radius, $a=4\sigma/c$ is the radiation constant, σ is the Stephan-Boltzmann constant, c is the speed of light, and fraction of solid angle is $\frac{\Omega}{4\pi}\simeq\frac{\theta^2}{4}$, where θ is the jet opening angle.

The radius at which the material becomes transparent to photons and releases thermal radiation is known as the photosphere,

$$R_{\rm ph} \simeq \frac{\kappa \dot{M}}{8\pi c \Gamma^2}$$

$$\simeq \frac{\kappa \frac{\dot{E}}{c^2 \Gamma}}{8\pi c \Gamma^2} = \frac{\kappa \dot{E}}{8\pi c^3 \Gamma^3}$$

$$\simeq 2.9 \times 10^3 \frac{\kappa_{0.2} \dot{E}_{\rm iso,53}}{(1+\sigma) \Gamma_2^3} \text{ cm}$$
 (2)

²⁸ where κ ($\kappa_{0.2}$ in units of 0.2 cm² g⁻¹) is the material ²⁹ opacity, Γ (Γ_2 in units of 100) the Lorentz factor of the ³⁰ shell, and σ is the magnetization of the material.

Assuming no dissipation takes place below the photo-32 sphere, mass and entropy conservation lead to the ex-33 pressions

Corresponding author: Michael Moss mikejmoss3@gmail.com

$$\beta \Gamma \rho S(R) = Const. \tag{3}$$

$$\frac{T}{\rho^{1/3}} = Const. \tag{4}$$

 $_{^{37}}$ where ρ is the comoving density, $S(R)=\pi\theta^2R^2$ is the $_{^{38}}$ surface perpendicular to the flow at a radius $R,~\beta=_{^{39}}v/c\sim1$ where v is the velocity of the flow, and $\Gamma=_{^{40}}(1-\beta^2)^{-1/2}.$ Equating the two above expressions leads $_{^{41}}$ to

$$\beta \Gamma T^3 S(R) = const. \tag{5}$$

 $_{\mbox{\tiny 44}}$ allowing us the define the temperature at a radius R to $_{\mbox{\tiny 45}}$ be

$$T(R) \simeq T_0 \times (\theta^{-2/3} R^{-2/3} \ell^{2/3} \Gamma^{-1/3})$$
 (6)

Using Equations 1, 2, and 6, the luminosity of the 49 thermal radiation released at the photosphere can be 50 expressed as

$$L_{\rm th} = \Gamma^2 a T^4(R_{\rm ph}) c S(R_{\rm ph})$$

$$= \dot{E}_{\rm th} \times (\theta^{-2/3} R_{\rm ph}^{-2/3} \ell^{2/3} \Gamma^{2/3})$$

$$= \epsilon_{\rm th} \dot{E} \theta^{-2/3} \ell^{2/3} \left(\frac{\kappa \dot{E}}{8\pi c^3 \Gamma^3} \right)^{-2/3} \Gamma^{2/3}$$

$$= \epsilon_{\rm th} c^2 \dot{E}^{1/3} \left(\frac{8\pi \ell}{\kappa \theta} \right)^{2/3} \Gamma^{8/3}$$
(7)

So, we can see that the photospheric luminosity is strongly dependent on only the Lorentz factor of the material in the outflow.

59 Questions:

1. Why is there a factor of Γ^2 in Equation 7?

2 Moss M.

2. In the equation for R ph (Eq 9 in Hascoët et al. 2013), why is \dot{M} associated with the isotropic

equivalent energy and not the beaming corrected? (Note in Eq 2 here I write the beaming correct, but this leads to incorrect results.)

REFERENCES

63

64

Hascoët, R., Daigne, F., & Mochkovitch, R. 2013, A&A,
 551, A124, doi: 10.1051/0004-6361/201220023