MOHAWK-MCMASTER UNIVERSITY FACULTY OF ENGINEERING

Lab #: 6 Date: 24/10/2022

COURSE NAME:

PROTECH 2IC3: Instrumentation and Control

TITLE: Hydrostatic Level Measurement

SUBMITTED BY: Yara Idris

CLASS: L04 ID#: 400393307

INSTRUCTOR: John Anger

LAB REPORT		COMMENTS	
DEFINITIONS			
INTRODUCTION, EQUIP	1		
AND OBJECTIVE			
PROCEDURE	1		
GRAPHS AND DIAGRAMS	2		
TABLES AND RESULTS	3		
CALCULATIONS	1		
CONCLUSION	2		
Mark (out of 10)	10		

Table of Contents

INTRODUCTION:	<u>3</u>
EQUIPMENT:	3
PROCEDURE:	3
GRAPHS AND DIAGRAMS:	4
TABLES AND RESULTS:	5
SAMPLE CALCULATIONS:	6
CONCLUSION:	6

Introduction:

A Thermocouple is a device made of two different metals, when heat is applied a small voltage is produced. The magnitude of the voltage is dependent on the temperature difference between the two metals. During this lab we calculated calibration points and millivoltages for a Type K thermocouple. We then calibrated the thermocouple and compare them to known standard and calculated the %Error.

Equipment:

- Thermocouple mV/I transmitter E&H TMT122
- Hart communication device
- Ametek Calibration Instruments, AMC910
- Thermocouple leads (compatible with the transmitter)
- Supply of connecting wires.

Procedure:

- 1- Connect the Thermocouple Temperature transmitter as shown in Figure 1A
- 2- Prepare a calibration line (100°C -1100°C) from 0% to 100%. Record in Table 2
- 3- Start Endress & Hauser device care and configure the temperature transmitter from 100- 1100°C and type K sensor input
- 4- Using the recorded mV values one at a time and record the output
- 5- Get two unknown temperatures from instructor and calculate the error and confirm the values using table 1
- 6- Disassemble and clean work area

Graphs and Diagrams:

Temperature (°C) vs Output (mA)

Figure 1B:

Tables and Results:

Table 1: Thermocouple calibration Line ("Hill") Data

Thermocouple Type: K type

Table 1: Thermocouple calibration Line ("Hill") Data

100% 1100°C – 44.618 mV

90% 1000°C -40.786 mV

80% 900°C - 36.767 mV

70% 800°C - 32.642 mV

60% 700°C -28.459 mV

50% 600°C – 24.239 mV

40% 500°C – 19.936 mV

30% 400°C – 15.645 mV

20% 300°C - 11.412 mV

10% 200°C – 7.299 mV

0% 100°C − 3.217 mV

Ref. $22^{\circ}C - 0.879 \text{ mV}$

Table 2: Thermocouple Calibration

Transmitter Make: Hart Communication Device

Table 2: Thermocouple Calibration					
% Of	INPUT	OUTPUT			
Range	Corrected mV	Actual mA	Ideal mA		
0% (100°C)	3.217	3.99	4.00		
10%	7.299	5.61	5.60		
20%	11.412	7.22	7.20		
30%	15.645	8.84	8.80		
40%	19.936	10.45	10.40		
50%	24.239	12.07	12.00		
60%	28.459	13.67	13.60		
70%	32.642	15.29	15.20		
80%	36.767	16.92	16.80		
90%	40.786	18.55	18.40		
100% (1100°C)	44.618	20.15	20.00		

 $\%Errors = \frac{Deviation [^{\circ}C]}{Span [^{\circ}C]} x100$

 $Deviation [^{\circ}C] = maximum \ Deviation \ [^{\circ}C]$

%Errors = 0.9375%

Table 3: Unknown Test Reading

Tuble of Chimiothin Test Heading				
Table 3 – "Unknown"	Temperature #1	Temperature #2		
Output Meter Reading (mA)	7.9751	15.9730		
Calculated Temperature	348.4	848.3		
True Temperature (given by transmitter)	350°C	850°C		
Error (% of Reading)	0.46%	0.20%		
Error (% of Span)	0.16%	0.17%		

Sample Calculations:

%Errors =
$$\frac{Deviation \ [^{\circ}C]}{Span \ [^{\circ}C]} x100$$

%Errors = $\frac{20.15 - 20.00}{20 - 4} x100$
%Errors = 0.9375%

```
Output Reading (in % of Span) = (Meter\ reading - 4\ mA) \div 16\ mA\ x100
Output Reading (in % of Span) = (7.9751\ mA - 4\ mA) \div 16\ mA\ x100
Output Reading (in % of Span) = 24.84
```

Calculated Temperature = % of Span x (Temperature Span) + LRV of Temp Range Calculated Temperature = $0.2484 \times (1000) + 100$ Calculated Temperature = 348.4

```
Deviation (Error) = Measured Value - True Value
Deviation (Error) = 348.4 - 350
Deviation (Error) = 1.6
```

Error (in % of Reading) = Deviation
$$\div$$
 True Tempereature x 100
Error (in % of Reading) = $1.6 \div 350 \times 100$
Error (in % of Reading) = 0.46%

```
Error (in % of Span) = Deviation \div Temperature Span x 100
Error (in % of Span) = 1.6 \div 1000 x 100
Error (in % of Span) = 0.16%
```

Conclusion:

After completing this lab, we noticed our numbers are very close to the expected value. Our %Error is only 0.9375% which can be because we can not calculate mV more accurately, for example our TC temperature reading for our reference point was 21.71 °C but the closest value we were able to calculate was for 22°C.