

Accelerating Scientific Applications with Automatic BLAS Offload on NVIDIA Grace-Hopper

Summary of Work 12/19/2024

PRESENTED BY:

Junjie Li (jli@tacc.utexas.edu)

Texas Advanced Computing Center,

The University of Texas at Austin

Outline

- Quick review of GPU architecture (conventional & Grace-Hopper)
- Design philosophy of automatic BLAS offload library
- Application tests includes:
 - 1. PARSEC: real-space DFT
 - 2. LSMS/MuST: linear-scaling DFT

All tests in GH200 are performed with:

- CUDA driver 560.35.03
- CUDA version 12.6
- NVHPC 24.9 suite (compiler, NVPL, cuBLAS)

Conventional GPU memory architecture

- Conventional disjoint page tables
- CPU and GPU manages their own memory
- No direct access to each other's data
- Data on main mem needs to be copied to GPU memory for use.
- GPU mem allocated by CudaMalloc

Grace-Hopper (GH200): Key features

- New architecture release in 2023
- Available on Vista @ TACC https://tacc.utexas.edu/systems/vista
- Superchip design
- Chip-to-Chip (C2C) NVLink at 450 GB/s per direction
- PCle Gen 5 x 16 only has 64 GB/s
- Conventional memory management
- Unified memory management with cache coherency

Grace-Hopper (GH200): unified memory

- (supports conventional GPU memory management)
- Single system page table for LPDDR5X + HBM3
- Coherent memory at cache line level through C2C NVLINK
- Cache coherency is critical for Unified memory access
- Different from CUDA managed memory (used to called unified memory) which relies on page-fault mechanism and page movement.

cache coherency: data consistency of shared data that is stored in multiple local caches accessible by multiple processors

Allocator	Initial Page Table Entry	Cache Coherent
malloc	СРИ	yes
cudaMallocManaged	CPU	yes
cudaMalloc	GPU	no
cudaMallocHost	CPU	no

Grace-Hopper (GH200): Stream & HPL

STREAM TRIAD Bandwidth (GB/s)

	CPU	GPU
LPDDR5X	418	610
HBM	142	3680

Astonishing bandwidth. Data locality still matters.

- HPL benchmark, used by Top500 ranking
- Highly FP64 capable GPU
- cuBLAS can use tensor core
- Big incentives to use GPU for FP64 calculations

HPL (FP64)

	Rmax (Tflops)
Grace (72C)	2.8
Hopper	52.9

BLAS (Basic Linear Algebra Subprograms)

- One of the fundamental building blocks of many scientific applications
- Basis of other linear algebra libraries: LAPACK, ScaLAPACK
- Linear algebra → natural language of quantum mechanics
- Many quantum physics/chemistry codes heavily relies on FP64 BLAS (well-fit for GPU)

How I started: Porting PARSEC to GPU

- real-space DFT code at UT Austin by Prof. Chelikowsky
- PARSEC heavily relies on dgemm (77% runtime)
- Most dgemm comes from ScaLAPACK (pdgemm, pdtrsm)
- Never run on GPU before
- But now HPC is more GPU centric
- BLAS -> cuBLAS?
 - no way to rewrite ScaLAPACK
 - cuBLAS: different interface
 - no intent to rewrite user code
 - Something automatic for users?
 - symbols interception with BLAS wrapper for automatic offload?

Auto BLAS Offload Attempts

- Cray LIBSci (since Titan@ORNL), IBM ESSL, NVidia NVBLAS (heavy overheads)
- Some require relink, or only work for dynamically linked BLAS
- All performs mandatory data copies to/from GPU (even with unified memory)
 - copy data costs more time than compute in practice
- hardly useful in practice.
- Coherent unified memory in Grace-Hopper opens up new opportunities
 - SCILIB-Accel: a new tool to overcome all these issues
 & do performant auto offload!

GPU Memory

System Memory

SCILIB-Accel: workflow

SCILIB-Accel:

hacks user binary and redirects BLAS call to a custom-built BLAS wrapper

```
User application:
...
call dgemm(...)
```

```
mydgemm( ...) {
  manage data for gpu
  call cublasDgemm(...)
  timer()
}
```

CPU BLAS Library

```
dgemm( ...) {
    ...
}
```

SCILIB-Accel: intercept BLAS calls

Replace BLAS calls with CUBLAS calls (all level-3 BLAS implemented)

- Symbol interception by trampolinebased Dynamic Binary Instrumentation (DBI)
- DBI widely used in profiling
- rewriting in-process binary image
- No need to recompile
- Effective for both dynamically and statically linked BLAS.
- Negligible overhead when replacing function with same signature.

Yinzhi Wang and Junjie Li, "PEAK: a Light-Weight Profiler for HPC Systems", https://dl.acm.org/doi/abs/10.1145/3624062.3624143

SCILIB-Accel: data movements

strategy 1/3
1. Mem-copy: cudaMemCpy Matrices between CPU mem to GPU mem for every CUBLAS call (all other tools do this)

cudaMalloc device A, device B, device C

cudaMemCpy matrix A, B, C to GPU

cublasDgemm(..., device A, .., device B, .., device C, ..)

cudaMemCpy matrix C back to CPU

Runtime of cublasDgemm w/ cudaMemCpy (transA='T', transB='N', M=32, N=2400, K=93536)

	GH200	H100-PCIe	GH200	H100-PCIe
Offload Strategy	Strategy 1	Strategy 1	NVBLAS	NVBLAS
Total time	5.50ms	32.80ms	54.8 ms	134.0ms
1. cudaMemcpy [†]	4.96 ms	31.79ms	-	-
cublasDgemm	0.52 ms	0.99ms	-	-
3. other	0.02 ms	0.02ms	-	-

- A lot more time moving data than compute
- Not useful even with NVLink
- NVBLAS is supposed to be equivalent to SCILIB-Accel Strategy 1
- but NVBLAS has ridiculous overhead, not usable at all.

Pseudocode:

Including copying matrices A, B and C to GPU memory and C back to host memory.

SCILIB-Accel: data movements

strategy 1/3Mem-copy: cudaMemCpy Matrices between CPU mem to GPU mem for every CUBLAS call (all other tools do this)

Pseudocode:

```
cudaMalloc device A, device B, device C
cudaMemCpy matrix A, B, C to GPU
cublasDgemm(..., device A, .., device B, .., device C, ..)
cudaMemCpy matrix C back to CPU
```

PARSEC Test: Si₁₉₄₇H₆₀₄, 2 SCF iterations

Method		application total runtime	dgemm time	data movement
Grace-Grace (1	.44 cores)	415.1s	270.1s	0
Auto offload	S1: cudaMemcpy	425.7s	12.4s	220.7 s

- This is why the existing tools are not useful
- Data reusability is the key to success

SCILIB-Accel: data movements strategy 2/3

2. Coherent Access: just pass the CPU malloc pointer to GPU kernel let counter-based migration to move frequently used data to GPU

Pseudocode: cublasDge

cublasDgemm(..., host_A, .., host_B, .., host_C, ..)

PARSEC Test: Si₁₉₄₇H₆₀₄, 2 SCF iterations

Method		application total runtime	dgemm time	data movement
Grace-Grace (144	4 cores)	415.1s	270.1s	0
Ata afflood	S1: cudaMemcpy	425.7s	12.4s	220.7s
Auto offload	S2: counter-based migration	470.0s	234.0s	in dgemm

Counter-based migration works poorly as of today, it fails to move key data to GPU

How to avoid frequent data

movement?
Case 1: block matrix multiplication, e.g. ScalAPACK.

• Case 1: block matrix multiplication, e.g. ScaLAPACK. Every submatrix of A multiplies with submatrix of B

	bs			
bs	A ₁₁	A ₁₂		A _{1n}
	A ₂₁	A ₂₂		A _{2n}
	:	:	:	:
	A _{n1}	A _{n2}		A _{nn}

	bs			
bs	B ₁₁	B ₁₂		B _{1n}
х	B ₂₁	B ₂₂		B _{2n}
^		:	::	:
	B _{n1}	B _{n2}		B _{nn}

	bs				
os	C ₁₁	C ₁₂		C _{1n}	
	C ₂₁	C ₂₂		C _{2n}	
	:	:	:	:	
	C _{n1}	C _{n2}		C _{nn}	

- Case 2: Self-Consistent Field calculation, calculations are performed on the same matrix until convergence is reached.
- Case 3: a sequence of matrix multiplications.
 Each matrix is involved in multiply BLAS calls

- In these common cases, if we move the matrices to GPU in the beginning
- They will be re-used by later BLAS calls
- Assume CPU access of the matrices are relatively trivial (trace, scale, add, etc..), matrices can be kept resident on GPU
- Sounds familiar? OpenMP first touch

Strategy 3: **GPU first use**

- matrices are moved to GPU mem the first time used by cuBLAS kernel.
- matrices stay on GPU throughout their lifetime

OpenMP first touch vs GPU first use

GPU first use policy resembles features of OpenMP first touch in CPU NUMA programming.

(NUMA: Non-Unified Memory Access)

OpenMP First touch	GPU First use
for dual socket CPU	for CPU-GPU superchip
allocate space on local memory of OpenMP threads upon initialization	migrate data from CPU memory to local memory of GPU upon first access by GPU kernel
assume remote memory access is trivial (e.g. CPU0 accessing CPU1's memory)	assume remote memory access is trivial (CPU accessing GPU's memory)

How to migrate data &PU GPU (1)

- At the time BLAS symbols are intercepted, data has already been allocated on CPU
- Can't reallocate as we only have array address in BLAS subroutine
- How to migrate the data to GPU?

How to migrate data &PU GPU (2)

Review of memory management in modern operating system

Page: smallest unit of data for memory management in an operating system that uses virtual memory

physical memory

swap/page file

How to migrate data EPU GPU (3)

- On Grace-Hopper
 - CPU mem (LPDDR5x) in NUMA0
 - GPU mem (HBM) in NUMA1
 - Single page table
- Similar to dual-socket CPU system
- Move data without reallocating
 - 1. Copy physical page from NUMA0 to NUMA1
 - 2. Unmap original NUMA0 page
 - 3. Update page table
 - 4. No change to virtual page
 - -> your code sees nothing different
- Linux system call move_pages()
- Move page NUMA 0 -> NUMA1 (CPU) (GPU)
- https://docs.kernel.org/mm/page_migration.html

SCILIB-Accel: data movements strategy 3/3

GPU First Use Policy: matrices are moved to GPU the first time they are used by cuBLAS.

- Matrices stay on GPU memory throughout their lifetime
- Implemented by migrating memory pages from NUMA0 to NUMA1 (move_pages).

```
if (on numa 0) move_pages (host_A, to NUMA1);
if (on numa 0) move_pages (host_B, to NUMA1);
if (on numa 0) move_pages (host_C, to NUMA1);
cublasDgemm(..., host_A, .., host_B, .., host_C, ..)
```

Pseudocode:

SCILIB-Accel: data movements strategy 3

First Use Policy, best performance!

PARSEC performantly runs on GPU for the first time ever!

Matrix reuse: every matrix moved to GPU gets reused 570 times on average by subsequent dgemm calls.

Setup		application total runtime	dgemm time	data movement
Grace-Grace (144	l cores)	415.1s	270.1s	0
	S1: CudaMemCpy	425.7s	12.4s	220.7s
Grace-Hopper Auto offload	S2: counter-based migration	470.0s	234.0s	in dgemm
7.0.00 0.11000	S3: GPU First Use	220.3s	29.1s	1.3s Matrix r

Application Tests: MuST (1)

MuST (Multiple Scattering Theory) is an ab initio electronic structure calculation software suite. It's LSMS method performs DFT calculation with linear scalability to system size (Gordon-Bell prize 1998 & 2009)

https://github.com/mstsuite/MuST

- LSMS in MuST
- 5600-atom CoCrFeMnNi allov
- 50 Grace-Grace CPU nodes
- 5,600 CPU cores used
- >80% runtime in BLAS

Scientific Library Profiler

for application: /scratch/07893/junjieli/must/vista-large-scale-test/mst2 total runtime (s): 2614.173, library time (s): 2207.067, lib percentage: 84.4%.

Exclusive Times

	group	function	count [imb%]	time(s) [imb%]
1	BLAS	zgemm_	35947260 [0.0%]] 1581.283 [14.3%]
2	BLAS	ztrsm_	86688 [0.0%]	571.972 [13.6%]
3	LAPACK	zgetrf_	1968 [0.0%]	51.125 [12.1%]
4	LAPACK	zlaswp_	1968 [0.0%]	2.327 [19.6%]
5	BLAS	zcopy_	127381 [25.5%]	0.296 [105.1%]
6	BLAS	zaxpy_	316800 [0.0%]	0.027 [15.8%]
7	LAPACK	zgetrs_	1968 [0.0%]	0.017 [37.4%]
8	BLAS	dscal_	4 [0.0%] 0	.008 [811.2%]
9	BLAS	zscal_	8736 [0.0%]	0.006 [22.9%]
10	BLAS	izamax_	1584 [39.4%]	0.004 [67.2%]
11	BLAS	zgeru_	576 [0.0%]	0.001 [263.2%]
12	BLAS	dcopy_	152 [0.0%]	0.000 [40.8%]
13	LAPACK	ilaenv_	24 [0.0%]	0.000 [167.7%]

total library time (s): 2207.067

^{*} exclusive time: time excluding all children functions

^{*} average count and timing reported.

^{*} imblance metric: imb% = (max-min)/avg*100%.

Application Tests: MuST (2)

- Native CUDA implementation available using cuSolver.
- SCILIB-Accel auto offload performs 2x better than the native CUDA code.

Matrix reuse: every matrix moved to HBM gets reused 780 times on average by subsequent zgemm & ztrsm calls.

Setup:

- 5600-atom CoCrFeMnNi alloy,
 32 energy points
- 50 Grace-Grace (**GG**) CPU nodes
- or 50 Grace-Hopper (GH) GPU nodes

Setup	Total runtime	zgemm+ztrsm	Data movement	
GG, 5600 CPU cores used	2450s	~2153s	0	
GH, native CUDA	1685s	NA	NA	
GH, auto offload (S1: cudaMemcpy)	1098s	450s	337s	
GH, auto offload (S3: GPU first-use policy)	824s	600s	5.0 s mat	rix reus

780

Application Tests: MuST (3)

- Using the optimal S3: GPU First Use policy
- Highly scalable with SCILIB-Accel auto BLAS offload
- Consistently 2x faster than native CUDA port

N. 1		Time including IO (s)	
Node Count	CPU: (2x Grace) 144 cores/node	GPU: Native CUDA	GPU: SCILIB-Accel	GPU/CPU speedup
25	4896.4	3223.3	1550.9	3.2
50	2449.5	1685.2	823.8	3.0
75	1965.8	1244.7	623.1	3.2
100	1255.2	903.9	446.8	2.8
150	997.0	673.6	357.5	2.8
200	NA	493.9	253.3	N.

- TACC charges 1 SU for GH node-hour, and 0.33 SU for GG node-hour
- >3x speedup means SU profitability
- savings in both time and cost

SCILIB-Accel: easy to use

Just LD_PRELOAD it!

No matter if BLAS is statically or dynamically linked.

All level-3 BLAS are implemented!

LD_PRELOAD=\$PATH_TO_LIB/scilib-dbi.so run your cpu code.

get code from here https://github.com/nicejunjie/scilib-accel

Summary

- Auto BLAS offload is made performant for the first time
- LD_PREPLOAD my library, and run CPU binary on GPU
- Easy way to explore GPU capability for BLAS heavy codes
- Get incentives to fully port CPU codes to GPU
- Performance may further improve as there is still outstanding performance issues on Grace-Hopper

https://github.com/nicejunjie/scilib-accel

Outlooks

- Similar methodology will also work on AMD GPUs
- Especially the AMD MI300A APU where CPU + GPU are packed with the same HBM memory.
 - MI300A available on El Capitain @ Lawrence Livermore National Laboratory
 - All math libs possible: BLAS, LAPACK, FFTW, etc...
- Promising to port dozens of legacy quantum chem/physics codes (in particular real-space or plane-wave based where matrices are large) to GPU with acceptable performance.

Comments and questions?

nicejunjie@gmail.com