No se permite el uso de ningún tipo de material.

Todas las respuestas deben estar justificadas.

Ejercicio 1. (2 puntos) Sea $A \subset \mathbb{R}$ un subconjunto no vacío de \mathbb{R} y sea $\mathbb{R} - A$ su complementario. Demostrar que

$$adh(\mathbb{R} - A) = \mathbb{R} - int(A).$$

Ejercicio 2. (2 puntos) Sea $f: \mathbb{R} \to \mathbb{R}$ la función definida por

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ -x & \text{si } x \notin \mathbb{Q}. \end{cases}$$

¿Existe $\lim_{x\to a} f(x)$ para algún $a \in \mathbb{R}$?

Ejercicio 3. (2 puntos) Sea $f : \mathbb{R} \to \mathbb{R}$ una función tal que $|f(x)| \le |x|$ para todo $x \in \mathbb{R}$. Demostrar que f es continua en x = 0.

Ejercicio 4. (2 puntos) Estudiar la continuidad y derivabilidad de la función

$$f(x) = \begin{cases} \lambda \frac{\operatorname{sen} x}{x} & \text{si } x < 0\\ x + \cos x & \text{si } x \ge 0 \end{cases}$$

según los valores del parámetro real λ .

Ejercicio 5. (2 puntos) Se considera la sucesión (a_n) definida de forma recurrente por

$$a_1 = 1,$$
 $a_n = \left(1 - \frac{1}{n}\right)^n a_{n-1}$ para $n \ge 2$.

- a) ¿Es convergente la sucesión (a_n) ? Justificar la respuesta. En caso afirmativo, calcular su límite.
- b) ¿Es convergente la serie $\sum_{n} a_n^2$? Justificar la respuesta.

Tiempo: 2 horas