Skripta: Napredna Kvantna Mehanika

Adrian Udovičić

 $March\ 31,\ 2022$

Uvod

Svrha ove skripte je upoznati studente različitih smjerova s kolegijem napredne kvantne mehanike.

Contents

1	Ket i Bra notacija	1
_	1.1 Vektori baze i matrična reprezentacija	1
	1.1.1 Operatori	
	1.1.2 Komutatori	
	1.1.3 Vanjski produkt	
	1.1.4 Hermitski operatori	2
	1.2 Mjerenja, opservable i relacija neodređenosti	3
	1.3 Promjena baze	
	1.4 Položaj, moment i translacija	
	1.5 Valna funkcija u prostoru položaja i momenta	
	, J F F J	
2	Kvantna dinamika	3
3	Teorija angularnog momenta	3
4	Simetrije Kvantne mehanike	3
•	Simolific Irvanine menanike	•
5	Aproksimacijske metode	3
6	Teorija raspršenja	3

Ket i Bra notacija 1

Vektori baze i matrična reprezentacija

Kvantno stanje opisujemo sa $|\psi\rangle$ koji razapinju Hilbertov prostor s definiranim skalarnim produktom i svojstvima:

- $|\alpha\rangle + |\beta\rangle = \langle\gamma|$,
- $\mathbf{c} \cdot |\alpha\rangle = |c \cdot \alpha\rangle$,
- Postoji operator \hat{A} t.d. $|\beta\rangle$.

Dimenzija prostora određenja je problemom, npr. za 1 elektron imamo dimenzije momenta, angularnong momenta i spina $\rightarrow 3 + 3 + 2 = 8D$. Baza $\{|\alpha\rangle\}$, gdje ket $|\alpha\rangle$ sadrži sve informacije o sistemu, ali do informacije dolazimo skalarni produkt: $\langle \beta | | \alpha \rangle$, gdje je $\langle \beta |$ iz dualnog prostora ket prostora. Korespondencija:

$$C_1 |\alpha\rangle + C_2 |\beta\rangle \Leftrightarrow C_1^* \langle \alpha | C_2^* \langle \beta | \tag{1.1}$$

Svojstva skalarnog produkta:

- $\langle \beta | | \alpha \rangle = \langle \alpha | | \beta \rangle^*$,
- Pozitivna definitnost $\Rightarrow \langle \alpha | | \alpha \rangle > 0$,
- Ortogonalnost $\Rightarrow \langle \alpha | | \beta \rangle = 0 = \langle \beta | | \alpha \rangle$,
- Normalizacija $\Rightarrow |\hat{\alpha}\rangle = \frac{|\alpha\rangle}{\sqrt{\langle\alpha||\alpha\rangle}} \Rightarrow \langle\alpha\alpha\rangle = 1.$

Svaki vektor možemo razviti po vektorima baze:

$$|\alpha\rangle = \sum_{n=1}^{N} c_n |\alpha\rangle; c_n = \langle \alpha_n | \alpha \rangle$$
 (1.2)

1.1.1 Operatori

Operatori predstavljaju observable, tj. pomoću operatora pridružujemo fizikalne veličine opažanom sustavu. Npr. Operator položaja \hat{x} koristi se za određivanje položaja sustav, operator momenta \hat{p} za određivanje momenta, itd. Dijelovanje operatora na neko stanje može promijeniti to stanje:

$$\hat{A} |\alpha\rangle = |\beta\rangle \tag{1.3}$$

tj.

$$\hat{A} |\alpha\rangle = a |a\rangle, \tag{1.4}$$

gdje je $|a\rangle$ svojstveni vektor (svj. v.) operatora \hat{A} , a a svojstvena vrijednost (svj. vrij.).

Svojstva operatora:

- Zbrajanje
 - Komutativnost: $\hat{A} + \hat{B} = \hat{B} + \hat{A}$,
 - Asocijativnost: $\hat{A} + (\hat{B} + \hat{C}) = (\hat{A} + \hat{B})\hat{C}$,
 - Linearnost: $\hat{A}(a|a\rangle + b|b\rangle) = a\hat{A}|a\rangle + b\hat{A}|b\rangle$,
 - Hermetičnost: $\hat{A} |a\rangle = \langle a | \hat{A}^*$
- Množenje
 - (Anti-)Komutativnost: $\hat{A}\hat{B} \neq \hat{B}\hat{A}$,
 - Asocijativnost: $\hat{A}\left(\hat{B}\hat{C}\right) = \left(\hat{A}\hat{B}\right)\hat{C}$,
 - tj. $\hat{A}\left(\hat{B}|a\rangle\right) = \hat{A}\hat{B}|a\rangle$,
 - Hermetičnost: $\left(\hat{A}\hat{B}\right)^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$, tj. $\hat{A}\hat{B}|a\rangle = \langle a|\hat{B}^{\dagger}\hat{A}^{\dagger}$.

tj.
$$\hat{A}\hat{B}|a\rangle = \langle a|\hat{B}^{\dagger}\hat{A}^{\dagger}$$
.

1.1.2 Komutatori

$$\left[\hat{A},\hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A} \tag{1.5}$$

U klasičnoj mehanici to s ubili generatori koordinata i impulsa. Glavna značajka prelaska iz klasične u kvantnu mehaniku je $[p,q] \neq 0 = i\hbar$.

1.1.3 Vanjski produkt

$$|\beta\rangle\langle\alpha|$$
 (1.6)

je operator sa sljedećim svojstvima:

- $(|\beta\rangle\langle\alpha|)|\gamma\rangle = |\beta\rangle\langle\alpha|\gamma\rangle = c_{\alpha\gamma}|\beta\rangle$,
- $\hat{X} = |\beta\rangle\langle\alpha| \rightarrow \hat{X}^{\dagger} = |\alpha\rangle\langle\beta|$,
- $(\langle \beta |) \hat{X} | \alpha \rangle = \langle \beta | \hat{X} | \alpha \rangle = (\langle \alpha | \hat{X}^{\dagger} | \beta \rangle)^{\dagger},$
- $\langle \beta | \hat{X} | \alpha \rangle = \langle \alpha | \hat{X} | \beta \rangle^{\dagger}$.

1.1.4 Hermitski operatori

 $\hat{A} = \hat{A}^{\dagger}$ je jednadžba hermetičnosti. Ako jednakost vrijedi operator \hat{A} je hermetičan.

Teorem 1.1 Svojstvene vrijednosti hermitskog operatora su realne, a vektori su međusobno ortogonalni.

Dokaz 1.1

$$\hat{A} | n \rangle = a_n | n \rangle
\langle n | \hat{A}^{\dagger} = \langle n | a_n^*
\langle n | \hat{A} | m \rangle = \langle n | m \rangle a_n^*
m \langle n | m \rangle = a_n^* \langle n | m \rangle \Rightarrow (a_n^* - a_m) \langle n | m \rangle = 0$$
(1.7)

Imamo 2 slučaja:

- \bullet n=m
- $n \neq m$

Za $n = m \Rightarrow a_n^* = a_n \Rightarrow \langle n|m \rangle > 0$ (Nisu ortogonalni) t.d.:

- $\forall |m\rangle \neq |n\rangle \Rightarrow a_m \neq n \Rightarrow a_n a_m \neq 0 \Rightarrow \langle n|m\rangle = 0$
- $\forall |m\rangle \neq |n\rangle \Rightarrow a_m \neq n \rightarrow$

različite funkcije s istim stanjima

Koliko različitih svojstvenih funkcija može imati istu svojstvenu vrijednost?

Za $k \neq |m\rangle \exists k$ istih svojstvenih vrijednosti za k različitih svojstvenih vektora \Rightarrow k puta degenerirane svojstvene vrijednosti \Rightarrow Kako je $a_n - a_m = 0 \Rightarrow \langle n|m\rangle =$? U prostoru možemo izabrati vektore koji su međusobno ortogonalni (Gram-Schmidtov postupak ortogonalizacije), te time dobivamo $\langle n|m\rangle = \delta_{n,m}$ što je relacija ortonormiranosti. Vlastite funkcije (time i vektori) hermitskog operatora čine potpun skup, sve druge vektore možemo napisati kao linearnu kombinaciju pa su to vektori baze $\{|n\rangle\}$

$$|\alpha\rangle = \sum_{n} c_n |n\rangle \Rightarrow \langle m|\alpha\rangle = \sum_{n} c_n \langle m|n\rangle = c_m$$
 (1.8)

$$|\alpha\rangle = \sum_{n} c_n |n\rangle = |n\rangle \langle n|\alpha\rangle \Rightarrow \sum_{n} |n\rangle \langle n| = 1.$$
 (1.9)

Zadnji dio jednadžbe 1.9 je relacija potpunosti.

Vjerojatnost:

$$\langle \alpha | \alpha \rangle = \langle \alpha | \sum_{n} | n \rangle \langle n | \alpha \rangle =_{n} \langle n | \alpha \rangle^{2} = \sum_{n} c_{n}^{2} = 1$$
 (1.10)

Gornji izvod nam govori da ćemo uvjek, npr.naći česticu u nekom stanju. Uvjek ćemo "nešto" izmjeriti \Rightarrow normalizacija (Jer $\sum_n c_n^2 = c_1 c_1^* + c_2 c_2^*$...).

- 1.2 Mjerenja, opservable i relacija neodređenosti
- 1.3 Promjena baze
- 1.4 Položaj, moment i translacija
- 1.5 Valna funkcija u prostoru položaja i momenta
- 2 Kvantna dinamika
- 3 Teorija angularnog momenta
- 4 Simetrije Kvantne mehanike
- 5 Aproksimacijske metode
- 6 Teorija raspršenja