p-Laplacian solved, and line search it's nice for SNES to have an objective

Ed Bueler
Dept. of Mathematics and Statistics, UAF

19 April 2016

outline for today

Chapter 5 of book:

recall p-Laplacian equation

$$-\nabla \cdot \left(|\nabla u|^{p-2} \nabla u \right) = f$$

- arises from minimizing objective $I[u] = \int_{\Omega} \frac{1}{p} |\nabla u|^p fu$
- discretized with Q¹ structured-grid finite element method
- code c/ch5/plap.c:
 - objective-only prototype implementation:
 - ▶ i.e. option -snes_fd_function
 - severe scalability problems
 - o add residual to succeed:
 - compare -snes_fd and -snes_fd_color
 - show clear evidence of convergence
 - compare quadrature degree
- line search for Newton's method

optimization vs solving equations

- it is possible to lose track of which "level" stuff is at
- ▶ a correspondence (N = number of unknowns):

output din	n optimization	\leftrightarrow	solving equations
1	min I[u] objective		?
N	$\nabla I[u] = 0$ gradient		$\mathbf{F}(u) = 0$ <u>residual</u>
N^2	$H_{ij}(u) = \frac{\partial^2 I}{\partial u_i \partial u_j}(u)$ Hessian		$J_{ij}(u) = \frac{\partial F_i}{\partial u_j}(u)$ Jacobian

- c/ch5/plap.c implements
 - objective in FormObjectiveLocal()
 - gradient (=residual) in FormFunctionLocal ()
 - but not Hessian (=Jacobian)

structure of c/ch5/plap.c

with objective-only: breaks easily

try it out:

```
$ cd c/ch5
$ make plap
$ ./plap -snes_monitor -snes_fd_function -snes_fd
$ ./plap -snes_monitor -snes_fd_function -snes_fd_color
```

► flaky behavior under refinement; if LEV= 1,2,3 then

```
$ ./plap -snes_monitor -snes_fd_function -snes_fd_color \
    -snes_converged_reason -da_refine $LEV
```

gives DIVERGED for 1,3 levels and CONVERGED for 2 level

fixable with weaker Newton tolerance:

```
$ ./plap -snes_monitor -snes_fd_function -snes_fd_color \
    -snes_converged_reason -da_refine $LEV \
    -snes_linesearch_type basic -snes_rtol 1e-6
```

... but this is unsustainable (next slide)

with objective-only: too many objective evaluations

- **count evaluations of** FormObjectiveLocal() = $I^h[u]$
- ▶ for LEV= 0, 1, 2, 3 do:

```
$ ./plap -snes_fd_function -snes_fd_color \
    -snes_linesearch_type basic -snes_rtol 1e-6 \
    -log_view -da_refine $LEV |grep Eval
```

result:

level	grid	error	# of objective evals
0	3×3	$8.1 imes 10^{-3}$	1428
1	5×5	$2.9 imes 10^{-3}$	4636
2	9×9	$9.3 imes 10^{-4}$	12444
2	17×17	$2.6 imes 10^{-4}$	104160

- evidence for convergence at $O(\Delta x^2)$ or $O(\Delta x^{1.5})$??
- but it is too much work per grid point

back to calculus: get gradient of objective

we can differentiate the thing we are optimizing:

$$I[u + \epsilon v] - I[u] = \int_{\Omega} \frac{1}{\rho} |\nabla u + \epsilon \nabla v|^{\rho} - \frac{1}{\rho} |\nabla u|^{\rho} - \epsilon f v$$
$$= \epsilon \left(\int_{\Omega} |\nabla u|^{\rho - 2} \nabla u \cdot \nabla v - f v \right) + O(\epsilon^{2}).$$

- ∘ if u is minimum of I[u] then $I[u + \epsilon v] I[u] \ge 0$
- get formula for the gradient:

$$\nabla I[u](v) = \lim_{\epsilon \to 0} \frac{I[u + \epsilon v] - I[u]}{\epsilon} = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v - fv$$

∘ for each $u \in W^{1,p}(\Omega)$ it's a map $\nabla I[u] : W^{1,p}(\Omega) \to \mathbb{R}$

p-Laplacian weak formulation: $\mathbf{F}(u) = 0$

▶ the equations we want to solve are "derivative = 0":

$$\nabla I[u](v) = 0 \quad \forall v \qquad \iff \qquad \mathbf{F}(u) = 0$$

equation is the weak form

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v - fv = 0$$

- each $v \in W_0^{1,p}(\Omega)$ gives an equation which unknown $u \in W_q^{1,p}(\Omega)$ must satisfy
- $F_i(u) = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v_i fv_i$ is a scalar component of the residual
- additional integration-by-parts gives strong form

$$-\nabla \cdot \left(|\nabla u|^{p-2} \nabla u \right) = f$$

discrete weak form is residual

▶ hat functions $\psi_{pq}(x,y)$ form basis of S_0^h

- we want $u \in \mathcal{S}_q^h$ so that $\nabla I^h[u](\psi_{pq}) = 0$ for all p, q
- ▶ integral over Ω is sum over elements \square_{ij} :

$$\sum_{i,j} \int_{\square_{ij}} |\nabla u|^{p-2} \nabla u \cdot \nabla \psi_{pq} - f \psi_{pq} = 0$$

ightharpoonup each grid location p, q gives one component of residual:

$$F_{pq}(u) = \sum_{i,j} \int_{\Box_{ij}} |\nabla u|^{p-2} \nabla u \cdot \nabla \psi_{pq} - f \psi_{pq}$$

residual on one element

▶ need residual on element \Box_{ij}

$$H_{ij}^{pq}(x,y) = \left[|\nabla u|^{p-2} \nabla u \cdot \nabla \psi_{pq} - f \psi_{pq} \right]_{\square_{ij}}$$

- ... but we want it on the ref. element, for quadrature
- only four ψ_{pq} are nonzero on \Box_{ij}
 - o correspond to element corners $\ell=0,1,2,3$:

$$\psi_{pq} = \chi_{\ell}$$

so define:

$$H_{ij}^{\ell}(\xi,\eta) = \left[|\nabla u|^{p-2} \nabla u \cdot \nabla \chi_{\ell} - f \chi_{\ell} \right]_{\square_*}$$

details in Exercise 5.8

discrete weak form with quadrature

recall Gauss-Legendre quadrature

$$\int_{\square_{ij}} v(x,y) dx dy = \frac{h_x h_y}{4} \int_{\square_*} v(\xi,\eta) d\xi d\eta$$

$$\approx \frac{h_x h_y}{4} \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} w_r w_s v(z_r, z_s)$$

▶ putting it all together, we loop over elements *i*, *j* and add each element's contribution to the *p*, *q* residual:

$$F_{\rho,q}(u) += \frac{h_x h_y}{4} \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} w_r w_s H_{ij}^{\ell}(z_r, z_s),$$

- o if the ℓ corner of \square_{ii} is node p, q
- details in FormFunctionLocal()
- then we solve $N = m_x m_y$ equations

$$F(u) = 0$$

it makes all the difference

- we can count evaluations of FormObjectiveLocal() = $I^h[u]$ and FormFunctionLocal() = $\mathbf{F}(u)$
- objective-only:

```
$ ./plap -da_refine 1 -log_view \
    -snes_fd_function -snes_fd_color |grep Eval
gives 5333 objective evals
```

with residual F:

```
$ ./plap -da_refine 1 -log_view |grep Eval
gives 8 objective (why?) and 45 function evals
```

- two versions give same numerical error
- residual version gives fewer Newton steps (why?)

convergence

- dots for residual version, circles for objective-only
- convergence rate: good!

effect of quadrature

► recall we implemented n = 1,2,3 order Gauss-Legendre quadrature in plap.c

compare numerical error:

```
$ timer ./plap -da_refine 4 -plap_quaddegree 1
numerical error: |u-u_exact|/|u_exact| = 1.219e-04
real 0.20
$ timer ./plap -da_refine 4 -plap_quaddegree 2
numerical error: |u-u_exact|/|u_exact| = 6.863e-05
real 0.44
$ timer ./plap -da_refine 4 -plap_quaddegree 3
numerical error: |u-u_exact|/|u_exact| = 6.863e-05
real 0.86
```

- ightharpoonup squares on prev graph show n = 1 quadrature results
- ightharpoonup conclude: n = 2 good ... thus it is the default

line search

recall Newton's method:

$$J_{\mathsf{F}}(\mathbf{x}_k)\,\mathbf{s} = -\mathbf{F}(\mathbf{x}_k)$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}$

- ▶ full step s_k may not reduce I[x] ... if there is an objective function I[x] at all!
- options:
 - if there is objective function /[x] then do line search

$$\min_{\lambda>0}$$
 /[$\mathbf{x}_k + \lambda \mathbf{s}_k$]

• if not, define *merit function* $\phi(\mathbf{x}) = \frac{1}{2} \|\mathbf{F}(\mathbf{x})\|_2^2$ and then do line search

$$\min_{\lambda>0}\phi(\mathbf{x}_k+\lambda\mathbf{s}_k)$$

line search control in PETSc

options for -snes_linesearch_type:

<u>Name</u>	Summary
basic	no line search; use full Newton step $\lambda_k=1$
bt [<i>default</i>]	polynomial-fit back-tracking; uses obj. if present
ср	assume ${\bf F}$ is gradient of obj. and find crit. point
12	secant-line minimization; fixed repeats

▶ use -snes_linesearch_monitor to see action