Teste de Matemát	ica A				
2019 / 2020					
N.º:	Turma:				
	2019 / 2020				

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Qual das seguintes proposições é verdadeira?

- **(A)** $\forall \alpha_1, \alpha_2 \in \left]0, \frac{\pi}{2}\right[, \alpha_1 < \alpha_2 \Longrightarrow \operatorname{sen} \alpha_1 > \operatorname{sen} \alpha_2$
- **(B)** $\forall \alpha_1, \alpha_2 \in \left[\frac{\pi}{2}, \pi\right[, \alpha_1 < \alpha_2 \implies \cos \alpha_1 < \cos \alpha_2\right]$
- (C) $\exists \alpha \in \left] \pi, \frac{3\pi}{2} \right[: tg \alpha = 2020$
- **(D)** $\exists \alpha \in \left] \frac{3\pi}{2}, 2\pi \right[: \operatorname{sen} \alpha = -\frac{1}{2020} \land \cos \alpha = \frac{2019}{2020} \right]$
- 2. Na figura está representado um quadrado [ABCD], de lado 2.

O ponto M é o ponto médio de [BC].

O ponto P desloca-se sobre o lado [CD] e, para cada posição do ponto P, considere β a amplitude do ângulo $PAD\left(\beta\in\left[0,\frac{\pi}{4}\right]\right)$.

2.1. Mostre que a área do triângulo [AMP] é dada, em função de β , por:

$$A(\beta) = 2 - \operatorname{tg} \beta$$

2.2. Considere agora as funções reais de variável real f e g definidas por:

$$f(x) = 2 - \operatorname{tg} x$$
 e $g(x) = 2\operatorname{sen} x \operatorname{tg} x + 2$

Determine, recorrendo a processos exclusivamente analíticos, as abcissas dos pontos de interseção dos gráficos das funções f e g.

3. Na figura está representada, num referencial o.n. Oxy, a circunferência de centro C que pode ser definida por:

Sabe-se que A e B são dois pontos da circunferência e que a área da região sombreada é $\frac{20\pi}{3}$.

3.1. Qual é o valor do produto escalar $\overrightarrow{CA} \cdot \overrightarrow{CB}$?

(A)
$$-50\sqrt{3}$$

(C)
$$5\sqrt{3}$$

(D) 5

3.2. Considere também o ponto *D*, ponto de interseção da circunferência com o semieixo positivo das abcissas.

Determine a equação reduzida da reta t, reta tangente à circunferência no ponto D.

4. Considere, num referencial o.n. *Oxyz*, um prisma triangular reto.

Sabe-se que uma das bases do prisma está contida no plano α de equação $-x+\frac{5}{2}y+z-\frac{47}{2}=0$ e que a outra base está contida no plano β que contém o ponto A de coordenadas (1,2,3).

- 4.1. Em qual das opções se encontra uma condição que define o plano β?
 - **(A)** 2x 5y 2z + 14 = 0
 - **(B)** 5x 2y + 2z 7 = 0
 - (C) $-x + \frac{5}{2}y + z + 7 = 0$
 - **(D)** 4x 10y 4z + 14 = 0
- **4.2.** Determine o valor exato da altura do prisma.
- **4.3.** Considere os pontos B, C e D, dos quais se sabe que:
 - o ponto B pertence ao plano α e tem abcissa e ordenada igual a 1;
 - o ponto C pertence ao plano α e ao eixo das ordenadas;
 - o ponto D pertence ao plano de equação y = 1 e tem cota igual ao cubo da abcissa;
 - os vetores \overrightarrow{BC} e \overrightarrow{OD} são perpendiculares.

Determine a abcissa do ponto *D*, recorrendo à calculadora gráfica.

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) que visualizar na calculadora e que lhe permite(m) resolver a equação, devidamente identificado(s);
- apresente a abcissa do ponto D, arredondada às milésimas.
- **5.** Para um determinado valor real a, considere a sucessão (u_n) definida por:

$$\begin{cases} u_1 = a \\ u_{n+1} = \frac{1 - u_n}{2}, \ \forall n \in \mathbb{N} \end{cases}$$

Qual é o terceiro termo desta sucessão?

- **(A)** $\frac{1-a}{2}$
- **(B)** $\frac{1+a}{2}$
- (C) $\frac{1+a}{4}$
- **(D)** $\frac{1-a}{4}$

- **6.** Considere a sucessão (u_n) de termo geral $u_n = \frac{2n+5}{n+1}$.
 - **6.1.** Estude a sucessão (u_n) quanto à monotonia.
 - **6.2.** Prove que a sucessão (u_n) é limitada.
 - **6.3.** Considere a progressão aritmética (v_n) , da qual se sabe que os dois primeiros termos são iguais aos dois primeiros termos da sucessão (u_n) .

Calcule a soma dos 20 primeiros termos de (v_n) .

- **7.** De dois vetores \vec{u} e \vec{v} , sabe-se que:
 - $\|\vec{u}\| = 3$
 - $\|\vec{v}\| = 5$
 - $\operatorname{sen} \alpha = \frac{4\sqrt{14}}{15}$, onde α é o ângulo agudo formado pelos vetores \vec{u} e \vec{v} .

Qual é o valor de $||\vec{u} + \vec{v}||$?

(A) $\frac{1}{15}$

(B) 6

(C) 15

(D) 36

- FIM -

COTAÇÕES

	Item													
	Cotação (em pontos)													
	1.	2.1.	2.2.	3.1.	3.2.	4.1.	4.2.	4.3.	5.	6.1.	6.2.	6.3.	7.	
Ī	8	20	20	8	20	8	20	20	8	20	20	20	8	200