Lösungshinweise zum 1. Übungsblatt 20.10.2020

Aufgabe 1: Sei (Q, κ) ein parametrisiertes Problem mit $\kappa(x) = |x|$ und Q sei entscheidbar. Zeigen Sie, dass dann $(Q, \kappa) \in \mathsf{FPT}$ gilt.

Lösungshinweis: Q ist entscheidbar, deshalb gibt es einen Algorithmus A der Q entscheidet mit Laufzeit $r: \mathbb{N} \to \mathbb{N}$.

Behauptung: A ist ein fpt-Algorithmus.

Beweis der Behauptung:

$$r(|x|) \le f(\kappa(x)) \cdot p(|x|) = f(|x|) \cdot p(|x|)$$

Wir können daher f(|x|) := r(|x|) und p(|x|) := 1 setzen und müssen noch zeigen, dass r bzw. f berechenbar ist. Die Laufzeit r ist berechenbar durch einen Algorithmus, der bei Eingabe n den Algorithmus A auf allen Eingaben der Länge n simuliert, die Schritte zählt und das Maximum bildet.

Aufgabe 2: Sei (Q, κ) ein parametrisiertes Problem mit $\kappa(x) \geq g(|x|)$, Q sei entscheidbar und $g: \mathbb{N} \to \mathbb{N}$ eine unbeschränkte, monoton wachsende, berechenbare Funktion. Zeigen Sie, dass dann $(Q, \kappa) \in \mathsf{FPT}$ gilt.

Beispiele für ein g sind der ganzzahlige Logarithmus und die ganzzahlige Wurzelfunktion.

Lösungshinweis: Q ist entscheidbar, deshalb gibt es einen Algorithmus A, der Q mit Laufzeit r für eine berechenbare Funktion $r: \mathbb{N} \to \mathbb{N}$ entscheidet.

Wir setzen das Polynom p wieder auf 1 und suchen berechenbare f, f', so dass gilt:

$$r(|x|) < f(q(|x|)) < f'(\kappa(x))$$

Wir können g nicht einfach invertieren, da es nicht injektiv sein muss (nicht streng monoton wachsend) und auch nicht surjektiv sein muss (unbeschränkt, aber ggf. Bildbereich $\neq \mathbb{N}$). Stattdessen setzen wir $f := r' \circ h$, wobei

$$h(m) := \min\{n \mid g(n) > g(m)\}$$

und $r'(n) \ge r(n)$ eine berechenbare und monoton wachsende Funktion ist (zum Beispiel $r'(n) := \max_{m \le n} r(m)$). Dann gilt g(h(g(m)) > g(m) für alle m. Da g unbeschränkt ist, ist h wohldefiniert und berechenbar, und somit auch f. Wir erhalten:

$$h(g(|x|)) \ge |x|$$
 (da $(g(h(g(|x|))) > g(|x|), g$ monoton)
 $\Rightarrow r'(h(g(|x|))) \ge r'(|x|)$ (da r' monoton)
 $\Rightarrow f(g(|x|))) \ge r'(|x|) \ge r(|x|)$

Dies zeigt die erste Ungleichung. Für die zweite können wir wieder eine monoton wachsende berechenbare Funktion $f' \ge f$ verwenden, so dass

$$r(|x|) \le r'(|x|) \le f(g(|x|)) \le f'(g(|x|)) \le f'(\kappa(x))$$

folgt und A also ein fpt-Algorithmus ist.

Aufgabe 3: Sei (Q, κ) ein parametrisiertes Problem mit $\kappa(x) = 1$. Zeigen Sie, dass dann $(Q, \kappa) \in \mathsf{FPT} \Leftrightarrow Q \in \mathsf{P}$ gilt.

Lösungshinweis: $(Q,1) \in \mathsf{FPT}$. \iff Es gibt fpt-Algorithmus A mit Laufzeit $f(1) \cdot p(|x|) = c \cdot p(|x|)$, für eine Konstante $c \in \mathbb{N}$. \iff $Q \in \mathsf{P}$.

Aufgabe 4: Zeigen Sie, dass es einen Algorithmus gibt, der für einen gegebenen Hypergraphen H und ein $k \in \mathbb{N}$ eine Liste von allen minimalen Hitting Sets (bzgl. \subset) von H mit maximal k Elementen in Zeit

$$\mathcal{O}(d^k \cdot k \cdot ||H||)$$

berechnet, wobei $d = \max\{|e| \mid e \in E\}$ und E die Kanten von H sind. Die Liste enthält maximal d^k Mengen.

Lösungshinweis: Alle HS der Größe $\leq k$ im Suchbaum berechnen (Algorithmus zum Ende der ersten Vorlesung; Folie 8) und in \mathcal{S} speichern. Dies geht mit einer Laufzeit von $\mathcal{O}(d^k \cdot |H|)$, da der Suchbaum maximale Verzweigung d und maximale Tiefe k hat. Danach durchläuft man alle HS in \mathcal{S} (höchstens d^k) und gibt nur die minimalen HS aus. Für ein HS der Größe k kann man in $\mathcal{O}(k \cdot |H|)$ testen, ob es minimal ist.