Cache Memory

ABDUL HASEEB

Objectives

After studying this chapter, you should be able to:

- Present an overview of the main characteristics of computer memory systems and the use of a memory hierarchy.
- Describe the basic concepts and intent of cache memory.
- Discuss the key elements of cache design.
- Distinguish among direct mapping, associative mapping, and setassociative mapping.
- Explain the reasons for using multiple levels of cache. Understand the performance implications of multiple levels of memory.

4.1 Computer Memory System Overview

What is memory!

- ► Electronic holding/storage space:
 - ▶ To store information (data and instructions) for immediate use in computers.

Classification of Memory

Location:

- Whether memory is external or internal
- ► Internal:
 - ▶ Local to the processor
 - ▶ Normally concerned with RAM
 - ▶ But there are other types too
- **External:**
 - ▶ Peripheral storage Devices, like?

Capacity:

- Amount of data a memory can hold
- ▶ Bit is the basic unit (0 or 1)
- ▶ Byte is the smallest possible unit for storage (byte)
- ▶ Internal memory Capacity:
 - expressed in bytes (8 bits) or words which are normally 8,16 and 32 bits
- ► External memory capacity is expressed in bytes

Unit of Transfer:

- ▶ Number of electrical lines in and out of the memory
- Normally it is equal to length of a word, but can be often larger than a word such as 64,128, 256:
 - ▶ Data can be transferred in block of words

Methods of Access:

- Sequential
- Random
- Direct

Sequential Access:

- ▶ When ever an access request is made:
 - ► Memory is searched linearly in sequential fashion
 - Search is started from the first memory location
 - Incremented by moving one step ahead at a time, until desired location is found
 - ► Simple but slow technique

Α	
В	
С	
D	
F	
G	
Н	
	B C D F G

Random Access:

- Data present at any location can be accessed directly
- ▶ Time to access any memory location is same
- ► Faster way to retrieve the data
- ► RAM

Α	
В	
С	
D	
F	
G	
Н	

Direct Access:

Memory divided into blocks (multiple memory locations), used by magnetic and optical discs

▶ Like Random access:

Blocks can be accessed randomly, so block access time is same

▶ Unlike Random Access:

- ▶ But time taken to access a memory location A is different as compared to accessing a memory location J:
 - Sequential access inside the blocks

_	Α
Block 1	В
	C D
	D
7	Е
Block 2	F
	G
က	Н
Block 3	1
	J

► Performance:

- ▶ Very important for user
- ▶ Parameters for performance:
 - ► Access Time (latency)
 - ► Memory cycle time
 - ► Transfer Rate

Access Time:

- ► For Random Access Memory:
 - ▶ Time taken for a read or write operation
 - ▶ Time from the instant that an address is presented to the time instant the data is stored or made available for use
- ► For Non-Random Access Memory:
 - ▶ Time to position read-write mechanism at desired location

Memory Cycle Time:

Access Time+ Wait time (regenerate signals)

► Transfer Rate:

- ► The rate at which data is transferred in/out of the memory
- ▶ For Random-access memory, it is: 1/(cycle time)

► Transfer Rate for Non-Random Access Memory:

$$T_n = T_A + \frac{n}{R}$$

where

 T_n = Average time to read or write n bits

 T_A = Average access time

n =Number of bits

R = Transfer rate, in bits per second (bps)

Problem

- Find out the time taken for write operation to take place in RAM, when memory cycle time is 5 seconds
- Find out the Transfer Rate for a Solid State Drive, when unit to read is 16 bits, average access time for read operation is 5 seconds, and average time to read n bits is 0.001 seconds

- Physical Types:
 - Memory can be:
 - ► Semiconductor
 - ▶ Magnetic
 - ► Optical

- Physical Characteristics:
 - Memory can be:
 - ▶ Volatile/Non Volatile
 - ► Erasable/Non Erasable

Summary

 Table 4.1
 Key Characteristics of Computer Memory Systems

Location	Performance
Internal (e.g., processor registers, cache, main	Access time
memory)	Cycle time
External (e.g., optical disks, magnetic	Transfer rate
disks, tapes)	Physical Type
Capacity	Semiconductor
Number of words	Magnetic
Number of bytes	Optical
Unit of Transfer	Magneto-optical
Word	Physical Characteristics
Block	Volatile/nonvolatile
Access Method	Erasable/nonerasable
Sequential	Organization
Direct	Memory modules
Random	
Associative	

- Design constraints on Computer's memory:
 - ► How Much?
 - According to applications demand
 - ► How Fast?
 - ▶ Keep up with the processor, so that processor isn't idle
 - ► How Expensive?
 - Lets understand it

- ► How Expensive?
 - Faster access time, greater cost per bit;
 - Greater capacity, smaller cost per bit;
 - Greater capacity, slower access time.

Way out of this problem is to employ a memory hierarchy

- As one goes down the hierarchy
 - a. Decreasing cost per bit;
 - b. Increasing capacity;
 - c. Increasing access time;
 - **d.** Decreasing frequency of access of the memory by the processor.

Hit and Miss

- Hit:
 - ▶ If the accessed word is found
- Miss:
 - ▶ If the accessed word is not found

Principle of Locality of reference

- A processor executes a program:
 - A program has arrays, loops etc
 - ▶ Inside a loop there are instructions which repeat
 - ▶ Same reference is used for a particular period of time

Principle of Locality of reference

Principle of locality of reference is the:

- Tendency of a processor to access the same set of memory locations repetitively over a short period of time
- ► It makes sure frequently accessed instructions are in faster memory
- ▶ Improves the hit ratio

4.2 Cache Memory Principles

Cache Memory

- ▶ It combines the benefits of both:
 - Memory access time of high speed memory (cache itself)
 - Large memory size of less expensive, lower speed memory (main memory)

What happens when a processor wants to read a word from memory!

- Check is made in the cache
 - ▶ If available:
 - Word is delivered to the processor
 - ▶ If not available:
 - ▶ A Block of words is read from the memory, and the required word is delivered
 - ▶ But Why **Block**, Why not a single word:
 - ▶ Principle of locality of reference: Same word could be referenced again, or a word adjacent to the current word may be referenced

Cache memory

Levels of Cache

Structure of Main Memory System

- N is the length of each word in bits, so total 2ⁿ -1 words can be addressed
- ▶ Further organization can be converted to **blocks**:
 - ▶ Where each block may contain **K Words**

Structure of Cache System

Cache consists of m blocks called LINES, each line may contain K Words

Structure of Cache System

Cache consists of m blocks called LINES, each line may contain K
 Words, plus a tag

Structure of Cache

- ► Each **LINE** may also include some control bits:
 - ➤ To show whether the line has been modified since the data is loaded into it
- Line Size:
 - length of line, excluding the control and tag bits
 - Line size may be as small as 32 bits (4 words, each of one byte)

Structure of Cache

- Understanding the Tag:
 - Number of lines in cache is smaller than the number of blocks in main memory m<M</p>
 - We can not map one-one (one line to one block)
 - ► Tag is usually a **memory address** which identifies which block of memory is residing in a cache line

Figure 4.5 Cache Read Operation