$Formulaire\ scientifique\ interdisciplinaire$

I Calcul littéral

1 Identités remarquables

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2 - b^2$$

2 Équations de degré 2 à coefficients réels

On considère l'équation : $ax^2 + bx + c = 0$ d'inconnue $x \in \mathbb{K} = \mathbb{R}$ ou \mathbb{C} et avec $(a, b, c) \in \mathbb{R}^3$ On appelle **discriminant** de l'équation le réel $\Delta = b^2 - 4ac$.

- Si $\Delta > 0$, l'équation admet deux solutions réelles : $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$
- Si $\Delta = 0$, l'équation admet une unique solution réelle (solution double) : $x_0 = \frac{-b}{2a}$
- Si $\Delta < 0$, l'équation admet deux solutions complexes : $x_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$ et $x_2 = \frac{-b i\sqrt{|\Delta|}}{2a}$

3 Équations de degré 3 à coefficients réels

On considère l'équation $ax^3 + bx^2 + cx + d = 0$ d'inconnue $x \in \mathbb{K} = \mathbb{R}$ ou \mathbb{C} et avec $(a, b, c, d) \in \mathbb{R}^4$. Il n'existe pas de méthode générale pour résoudre les équations de degré 3. Voici la méthode que vous devez connaître :

- 1. On trouve une première racine r: soit une racine évidente (à chercher parmi -2, -1, 0, 1 ou 2) soit une racine proposée par l'exercice.
- 2. On effectue la division euclidienne de $ax^3 + bx^2 + cx + d$ par x r. (On doit trouver un reste nul!!) On note Q le quotient de cette division, c'est un polynôme de degré au plus 2. On a alors $ax^3 + bx^2 + cx + d = (x r)Q(x)$.
- 3. On a donc: $ax^3 + bx^2 + cx + d = 0 \iff (x r)Q(x) = 0 \iff x r = 0$ ou $Q(x) = 0 \iff \dots$

4 Puissances, exponentielle, logarithme

• Puissances : soit $(x, y, \alpha, \beta) \in \mathbb{R}^4$.

$$x^{\alpha} \times x^{\beta} = x^{\alpha+\beta} \qquad \qquad \frac{x^{\alpha}}{x^{\beta}} = x^{\alpha-\beta} \qquad \qquad \frac{1}{x^{\alpha}} = x^{-\alpha}$$
$$x^{\alpha} \times y^{\alpha} = (x \times y)^{\alpha} \qquad \qquad \frac{x^{\alpha}}{y^{\alpha}} = \left(\frac{x}{y}\right)^{\alpha} \qquad \qquad (x^{\alpha})^{\beta} = x^{\alpha\beta}$$

• Exponentielle : soit $(x, y, a) \in \mathbb{R}^3$

$$e^{0} = 1 \forall x \in \mathbb{R}, \ e^{x} > 0 Si \ a > 0, \ a^{x} = e^{x \ln(a)}$$

$$e^{x} \times e^{y} = e^{x+y} \frac{e^{x}}{e^{y}} = e^{x-y} \frac{1}{e^{x}} = e^{-x} (e^{x})^{y} = e^{xy}$$

• Logarithme népérien (et décimal) : soit $(x,y) \in]0; +\infty[^2$ et $\alpha \in \mathbb{R}$

$$\ln(1) = 0 \qquad \forall x \in \mathbb{R}, \ \ln(e^x) = x \qquad e^x = y \Longleftrightarrow x = \ln(y) \qquad 10^x = y \Longleftrightarrow x = \log(y)$$

$$\ln(e) = 1 \qquad \forall x > 0, \ e^{\ln(x)} = x \qquad \forall x > 0, \ \log(x) = \frac{\ln(x)}{\ln(10)}$$

$$\ln(x \times y) = \ln(x) + \ln(y) \qquad \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) \qquad \ln\left(\frac{1}{x}\right) = -\ln(x) \qquad \ln(x^{\alpha}) = \alpha \ln(x)$$

\mathbf{II} Trigonométrie

$$\overline{OP} = \cos(\theta)$$

$$\overline{OQ} = \sin(\theta)$$

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \text{ pour } \theta \neq \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$$

$$\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \text{ pour } \theta \neq k\pi \ (k \in \mathbb{Z})$$

Valeurs remarquables:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Les formules basiques, à connaitre parfaitement :

$$\cos^2(a) + \sin^2(a) = 1$$

$$1 + \tan^2(a) = \frac{1}{\cos^2(a)}$$

$$1 + \cot^2(a) = \frac{1}{\sin^2(a)}$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$2\sin^2(a)$$

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$
$$\sin(2a) = 2\sin(a)\cos(a) \qquad \cos^2(a) = \frac{1 + \cos^2(a)}{2}$$

$$\cos^2(a) = \frac{1 - 2\sin^2(a)}{2}$$

$$\sin^2(a) = \frac{1 - \cos(2a)}{2}$$

Les formules dont il faut connaître l'existence et qu'il faut savoir retrouver :

$$cos(-\theta) = cos(\theta)
cos(\theta + \pi) = -cos(\theta)
cos(\pi - \theta) = -cos(\theta)
cos(\text{\theta} + \frac{\pi}{2}) = -sin(\theta)
cos(\theta + \frac{\pi}{2}) = cos(\theta)
cos(\text{\theta} + \frac{\pi}{2}) = cos(\theta)
cos(\text{\theta} + \frac{\pi}{2}) = cos(\theta)
cos(\text{\theta} + \frac{\pi}{2}) = cos(\theta)
cos(\theta + \frac{\pi}{2}) = cos(\theta)
cos(\theta + \frac{\pi}{2}) = cos(\theta)
cos(\theta + \frac{\pi}{2}) = cos(\theta)$$

$$\cos(a)\cos(b) = \frac{1}{2}[\cos(a-b) + \cos(a+b)]$$

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)]$$

$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin(a)\cos(b) = \frac{1}{2}[\sin(a+b) + \sin(a-b)]$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

III Nombres complexes

Soit z un nombre complexe quelconque et i le nombre complexe tel que $i^2 = -1$.

Forme algébrique Forme trigonométrique z = x + i y $z = \rho e^{i\theta} = \rho (\cos(\theta) + i \sin(\theta))$ avec x et y réels. avec $\rho \in \mathbb{R}^+ \text{ et } \theta \in \mathbb{R}$.

Vocabulaire

- Partie réelle de z : $Re(z) = x = \rho \cos(\theta)$
- Partie imaginaire de $z : Im(z) = y = \rho \sin(\theta)$
- Conjugué de $z: \overline{z} = x \mathrm{i} y = \rho \ \mathrm{e}^{-\mathrm{i} \theta}$
- Module de $z : |z| = \sqrt{x^2 + y^2} = \rho$
- Argument de z: Arg $(z) = \theta \mod (2\pi)$.

Interprétation géométrique

On munit le plan \mathscr{P} affine euclidien d'un repère orthonormal (O, \vec{i}, \vec{j}) . Le point de coordonnées (x, y) s'appelle **le point d'affixe** z, on le note parfois M(z).

Si A, B, \dot{C} et D sont quatre points du plan d'affixes respectifs z_A, z_B, z_C , et z_D alors :

$$AB = |z_B - z_A|$$
 $\left(\overrightarrow{AB}, \overrightarrow{CD}\right) = \operatorname{Arg}\left(\frac{z_D - z_C}{z_B - z_A}\right) \mod(2\pi).$

Module et argument d'un produit, d'un quotient

 $\overline{z'}$ désigne un autre complexe quelconque : $z' = x' + iy' = \rho'$ $e^{i\theta'}$.

$$zz' = \rho \rho' e^{i(\theta + \theta')} \qquad |zz'| = |z| \times |z'| \qquad \operatorname{Arg}(zz') = \operatorname{Arg}(z) + \operatorname{Arg}(z') \bmod (2\pi)$$

$$\frac{z}{z'} = \frac{\rho}{\rho'} e^{i(\theta - \theta')} \qquad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|} \qquad \operatorname{Arg}\left(\frac{z}{z'}\right) = \operatorname{Arg}(z) - \operatorname{Arg}(z') \bmod (2\pi)$$

$$\forall n \in \mathbb{Z}, \quad z^n = \rho^n e^{in\theta} \qquad |z^n| = |z|^n \qquad \operatorname{Arg}(z^n) = n \operatorname{Arg}(z) \bmod (2\pi)$$

Complexes et trigonométrie

- Formules d'Euler : $\forall \theta \in \mathbb{R}, \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$ $\sin(\theta) = \frac{e^{i\theta} e^{-i\theta}}{2i}.$
- Formule de Moivre : $\forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R}, (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$

IVFonctions usuelles

Variations, représentation graphique 1

a < 0					
x	$-\infty$	$+\infty$			
f(x)	$+\infty$	$-\infty$			

 $f: x \to ax + b$

 \boldsymbol{x}

f(x)

Fonction	carré	f	:	\boldsymbol{x}	\rightarrow	x^2
----------	-------	---	---	------------------	---------------	-------

$-\infty$	0	$+\infty$
$+\infty$		$+\infty$

0

 $f: x \to x^3$ Fonction cube

 $f: x \to \frac{1}{x}$ Fonction inverse

x	$-\infty$	0	$+\infty$
f(x)	0	+∞ <u></u>	0

Fonction racine carré $f: x \to \sqrt{x}$

$$\forall \alpha > 0, \quad \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \qquad \lim_{x \to 0} x^{\alpha} \ln(x) = 0$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

3 Développements limités

• Formule de **Taylor-Young** : Si f est une fonction de classe \mathscr{C}^{n+1} sur un intervalle I et si $x_0 \in I$ alors f admet un développement limité d'ordre n au voisinage de x_0 :

$$f(x_0 + h) \underset{h \to 0}{=} \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + o(h^n).$$

• Développements limités usuels :

$$\begin{split} &\mathbf{e}^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) \\ &\frac{1}{1-x} \underset{x \to 0}{=} 1 + x + x^2 + x^3 + \dots + x^n + o(x^n) \\ &\frac{1}{1+x} \underset{x \to 0}{=} 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n) \\ &(1+x)^a \underset{x \to 0}{=} 1 + ax + \frac{a(a-1)}{2!} x^2 + \dots + \frac{a(a-1) \dots (a-n+1)}{n!} x^n + o(x^n) \\ &\sqrt{1+x} \underset{x \to 0}{=} 1 + \frac{1}{2} x - \frac{1}{8} x^2 + \frac{1}{16} x^3 + o(x^3) \\ &\frac{1}{\sqrt{1+x}} \underset{x \to 0}{=} 1 - \frac{1}{2} x + \frac{3}{8} x^2 - \frac{5}{16} x^3 + o(x^3) \\ &\ln(1+x) \underset{x \to 0}{=} x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1} x^n}{n} + o(x^n) \\ &\ln(1-x) \underset{x \to 0}{=} -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots - \frac{x^n}{n} + o(x^n) \\ &\cos(x) \underset{x \to 0}{=} 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) \\ &\sin(x) \underset{x \to 0}{=} x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1}) \\ &\arctan(x) \underset{x \to 0}{=} x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{(-1)^n}{2n+1} x^{2n+1} + o(x^{2n+1}) \\ &\tan(x) \underset{x \to 0}{=} x + \frac{x^3}{3} + o(x^3). \end{split}$$

En physique et en SII uniquement :

On pourra « oublier » le $o(x^n)$ et on remplacera alors le signe = par le signe \approx .

Par exemple on écrira $e^x \approx 1 + x + \frac{x^2}{2}$.

V Dérivées

1 Dérivées usuelles

I	f(x)	f'(x)
$\mathbb{R} \text{ si } n \geqslant 0, \mathbb{R}^{+*} \text{ ou } \mathbb{R}^{-*} \text{ si } n < 0$	$(n \in \mathbb{Z}) \ x^n$	nx^{n-1}
\mathbb{R}^{+*} ou \mathbb{R}^{-*}	$\frac{1}{x}$	$-\frac{1}{x^2}$
\mathbb{R}^{+*}	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
\mathbb{R}^{+*}	$(\alpha \in \mathbb{R}) \ x^{\alpha}$	$\alpha x^{\alpha-1}$
\mathbb{R}^{+*} ou \mathbb{R}^{-*}	$\ln x $	$\frac{1}{x}$
\mathbb{R}	e^x	e^x
\mathbb{R}	$(a > 0) a^x$	$\ln(a) \times a^x$
\mathbb{R}	$\cos(x)$	$-\sin(x)$
\mathbb{R}	$\sin(x)$	$\cos(x)$
$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}_{k \in \mathbb{Z}}$	$\tan(x)$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
$\mathbb{R}\setminus\{k\pi\}_{k\in\mathbb{Z}}$	$\cot an(x)$	$-\frac{1}{\sin^2(x)} = -1 - \cot^2(x)$
] - 1; 1[$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
] — 1; 1[$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
\mathbb{R}	$\arctan(x)$	$\frac{1}{1+x^2}$

2 Opérations et dérivées

Soient u et v deux fonctions dérivables sur un ensemble \mathscr{D} . Alors sous condition d'existence

$$(u+v)' = u' + v' \qquad \forall \lambda \in \mathbb{R}, \ (\lambda u)' = \lambda u' \qquad \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$(u\times v)' = u'\times v + u\times v' \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \qquad (v\circ u)' = u'\times v'\circ u$$

$$\forall \alpha \in \mathbb{R}, \ (u^{\alpha})' = \alpha u'\times u^{\alpha-1} \qquad (e^u)' = u'e^u \qquad (\ln|u|)' = \frac{u'}{u}$$

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}} \qquad (\cos(u))' = -u'\sin(u) \qquad (\sin(u))' = u'\cos(u)$$

3 Tangente

Soit f une fonction définie sur un intervalle I de $\mathbb R$ et à valeurs dans $\mathbb R$. On appelle $\mathscr C$ la courbe représentative de f dans un repère du plan.

• Si f est dérivable en $a \in I$, alors $\mathscr C$ admet une tangente au point d'abscisse a d'équation :

$$y = f'(a)(x - a) + f(a)$$

• Si $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a} = \pm \infty$ alors $\mathscr C$ admet une demi-tangente verticale au point d'abscisse a (idem pour la limite en a^-).

VI Primitives

f(x)	F(x)	I		
$x^n \ (n \in \mathbb{N})$	$\frac{x^{n+1}}{n+1}$	\mathbb{R}		
$\frac{1}{x^n} \ (n \in \mathbb{N} \setminus \{1\})$	$\frac{-1}{(n-1)x^{n-1}}$	\mathbb{R}^{+*} ou \mathbb{R}^{-*}		
$x^{\alpha} \ (\alpha \in \mathbb{R} \setminus \{-1\})$	$\frac{x^{\alpha+1}}{\alpha+1}$	R ^{+*}		
$u'(x)(u(x))^n \ (n \in \mathbb{N})$	$\frac{1}{n+1}(u(x))^{n+1}$	$I\subset \mathscr{D}_u$		
$\frac{u'(x)}{(u(x))^n} \ (n \in \mathbb{N} \setminus \{1\})$	$\frac{-1}{(n-1)(u(x))^{n-1}}$	$I \subset \mathcal{D}_u$ et u ne s'annule par sur I		
$u'(x)(u(x))^{\alpha} \ (\alpha \in \mathbb{R}^+)$	$\frac{1}{\alpha+1}(u(x))^{\alpha+1}$	u strictement positive sur I		
$\frac{u'(x)}{(u(x))^{\alpha}} \ (\alpha \in \mathbb{R}^+ \setminus \{1\})$	$\frac{-1}{(\alpha-1)(u(x))^{\alpha-1}}$	u strictement positive sur I		
$\frac{u'(x)}{u(x)}$	$\ln u(x) $	u ne s'annule pas sur I		
$u'(x)e^{u(x)}$	$e^{u(x)}$	$I \subset \mathscr{D}_u$		
ln(x)	$x \ln(x) - x$	\mathbb{R}^{+*}		
$\tan(x)$	$-\ln \cos(x) $	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[_{k \in \mathbb{Z}}$		
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$\tan(x)$	$\left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[_{k \in \mathbb{Z}}$		
$\frac{1}{\sin^2(x)}$	$-\cot(x)$	$]k\pi;(k+1)\pi[_{k\in\mathbb{Z}}$		
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$] - 1; 1[
$\frac{1}{x^2 + a^2}, \ a \in \mathbb{R}^*$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$	\mathbb{R}		

VII Équations différentielles

1 Ordre 1

Dans cette partie on s'intéresse à l'équation différentielle linéaire d'ordre 1 suivante :

$$y' + a(t)y = b(t) (E)$$

où a et b désignent deux fonctions **continues** de I (intervalle de \mathbb{R}) dans \mathbb{R} ou \mathbb{C} et à son équation homogène associée :

$$y' + a(t)y = 0 (H)$$

Méthode générale

- 1. Si l'équation de l'énoncé n'est pas sous la forme y' + a(t)y = b(t) (par exemple dans l'énoncé il y a un coefficient devant le y') se ramener à une telle forme. (En faisant attention de ne pas diviser par 0...)
- 2. On travaille maintenant avec une équation sous la forme y' + a(t)y = b(t)
 - On cherche **TOUTES** les solutions de l'équation homogène (H): y' + a(t)y = 0On commence par déterminer, sur l'intervalle I, une primitive de la fonction a. On note A cette primitive.

Les solutions de l'équation homogène sur I sont alors de la forme

$$y_H(t) = C e^{-A(t)}$$
 où $C \in \mathbb{R}$ ou \mathbb{C}

- On cherche **UNE** solution particulière de l'équation (E): y' + a(t)y = b(t)
 - On peut parfois trouver une solution évidente : constante, polynômiale, sinusoidale . . .
 - Si pas de solution évidente, on applique la **méthode de variation de la constante** : On cherche une solution de la forme $y_p(t) = z(t)e^{-A(t)}$ avec z une fonction dérivable sur I.
- L'ensemble des solutions de (E) sur I est alors $\mathscr{S}_E = \{t \to y_p(t) + Ce^{-A(t)}/C \in \mathbb{R} \text{ ou } \mathbb{C}\}.$

3. Condition initiale

Si on dispose d'une condition initiale, on l'utilise pour déterminer la constante dans la solution générale y(t).

$\overline{\textit{Cas particulier à connaître par cœur}: y' + lpha y = 0, \ lpha \in \mathbb{R} \ \textit{ou} \ \mathbb{C} }$

Les solutions de l'équation $y' + \alpha y = 0$ avec α constante réelle ou complexe sont les fonctions de la forme $y(t) = Ce^{-\alpha t}$ avec C constante réelle ou complexe.

2 Ordre 2 à coefficients constants

Dans cette partie on s'intéresse à l'équation différentielle linéaire d'ordre 2 à coefficients constants suivante :

$$y'' + ay' + by = f(t) \qquad (E)$$

où a et b sont deux **réels** et f désigne une fonction continue de I (intervalle de \mathbb{R}) dans \mathbb{R} ou \mathbb{C} et à son équation homogène associée :

$$y'' + ay' + by = 0 \qquad (H)$$

Méthode générale

1. On cherche **TOUTES** les solutions réelles de l'équation homogène (H)

On cherche y_H sous la forme e^{rt} avec $r \in \mathbb{C}$ solution de l'équation caractéristique : $r^2 + ar + b = 0$.

— Si l'équation caractéristique admet deux solutions réelles distinctes r_1 et r_2 alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = Ae^{r_1t} + Be^{r_2t}$$

— Si l'équation admet une seule solution réelle $r = -\frac{b}{2a}$ alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = (A + Bt)e^{rt}$$

— Si l'équation caractéristique admet deux solutions complexes (conjuguées) $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ alors les solutions réelles de l'équation (H) sont de la forme :

$$y_H(t) = e^{\alpha t} (A\cos(\beta t) + B\sin(\beta t))$$

2. On cherche **UNE** solution particulière de l'équation complète (E)

- Si la fonction f est constante alors une solution particulière est $y_p(t) = \frac{f}{b}$.
- Si la fonction f est de la forme $Ke^{\gamma t}$ (K et $\gamma \in \mathbb{R}$ ou \mathbb{C}) on cherche la solution particulière sous la forme :
 - $\rightarrow y_p(t) = \lambda e^{\gamma t}$ si γ n'est pas une solution de l'équation caractéristique.
 - $\rightarrow y_p(t) = t \times \lambda e^{\gamma t}$ si γ est une solution simple de l'équation caractéristique.
 - $\to y_p(t) = t^2 \times \lambda \mathrm{e}^{\gamma t}$ si γ est une solution double de l'équation caractéristique.
- Pour une fonction f exprimée à l'aide de fonctions cos ou sin on « passera dans le monde des complexes ». Et pour une fonction f qui est un polynôme on pourra chercher la solution particulière sous forme d'un polynôme aussi.

3. Ensemble des solutions

Les solutions réelles de l'équation sont toutes les fonctions de la forme $y(t) = y_H(t) + y_p(t)$.

4. Valeur de A et B

À l'aide des conditions initiales on trouve les valeurs des constantes A et B qui apparaissent dans y_H .

$\overline{\textit{Cas particuliers}}$ à connaître par cœu $r:y''\pm\omega^2y=0$

- Les solutions réelles de l'équation $y'' + \omega^2 y = 0$ avec ω constante réelle sont les fonctions de la forme $y(t) = A\cos(\omega t) + B\sin(\omega t)$.
- Les solutions réelles de l'équation $y'' \omega^2 y = 0$ avec ω constante réelle sont les fonctions de la forme $y(t) = Ae^{\omega t} + Be^{-\omega t}$.

VIII Géométrie

1 Repères et coordonnées

— Coordonnées cartésiennes

Suivant les matières, un repère orthonormé peut être noté $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$ (en maths), $(O, \vec{u}_x, \vec{u}_y, \vec{u}_z)$ (en physique) ou $(O, \vec{x}, \vec{y}, \vec{z})$ (en SII).

— Repères orthonormés directs

— Coordonnées polaires

2 Produit scalaire et norme

L'espace est muni d'une base orthonormée $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. On considère deux vecteurs $\vec{a} = a_x \vec{u}_x + a_y \vec{u}_y + a_z \vec{u}_z$ et $\vec{b} = b_x \vec{u}_x + b_y \vec{u}_y + b_z \vec{u}_z$.

$$\vec{a}.\vec{b} = a_x b_x + a_y b_y + a_z b_z$$
 $||\vec{a}|| = \sqrt{\vec{a}.\vec{a}} = \sqrt{a_x^2 + a_y^2 + a_z^2}$

•
$$\vec{a}.\vec{b} = ||\vec{a}|| \times ||\vec{b}|| \times \cos(\vec{a}, \vec{b}) \Longleftrightarrow \cos(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{||\vec{a}|| \times ||\vec{b}||}$$

- $||\vec{a} + \vec{b}||^2 = ||\vec{a}||^2 + ||\vec{b}||^2 + 2||\vec{a}|| \ ||\vec{b}|| \cos(\vec{a}, \vec{b}).$
- (Physique et SII) Projection du vecteur \vec{a} sur la droite dirigée par \vec{u}_x : $a_x = \vec{a}.\vec{u}_x = ||\vec{a}|| \times \cos(\vec{a},\vec{u}_x)$.

3 Produit vectoriel

L'espace est muni d'une base orthonormée $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. On considère deux vecteurs $\vec{a} = a_x \vec{u}_x + a_y \vec{u}_y + a_z \vec{u}_z$ et $\vec{b} = b_x \vec{u}_x + b_y \vec{u}_y + b_z \vec{u}_z$.

$$\vec{a} \wedge \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \wedge \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$= \begin{vmatrix} a_y & b_y \\ a_z & b_z \end{vmatrix} \vec{u}_x + \begin{vmatrix} a_z & b_z \\ a_x & b_x \end{vmatrix} \vec{u}_y + \begin{vmatrix} a_x & b_x \\ a_y & b_y \end{vmatrix} \vec{u}_z$$

- $--||\vec{a}\wedge\vec{b}||=||\vec{a}||\times||\vec{b}||\times|\sin(\vec{a},\vec{b})|.$
- $||\vec{a} \wedge \vec{b}||$ est égal à l'aire du parallélogramme défini par \vec{a} et $\vec{b}.$
- $\vec{a} \wedge \vec{b} = 0 \iff$ les vecteurs \vec{a} et \vec{b} sont colinéaires.

4 Périmètres, aires et volumes

 $(O, \vec{u}_x, \vec{u}_y)$ est un repère orthonormé direct.

Cercle et disque

- Équation cartésienne : $(x x_A)^2 + (y y_A)^2 = r^2$.
- Équation paramétrique : $\begin{cases} x(\theta) = x_A + r\cos(\theta) \\ y(\theta) = y_A + r\sin(\theta) \end{cases}.$
- Périmètre du cercle : $\mathscr{P} = 2\pi r = \pi d$.
- Aire du disque : $\mathscr{A} = \pi r^2$.

Triangle

- Périmètre : $\mathscr{P} = AB + BC + AC$.
- $\text{ Aire} : \mathscr{A} = \begin{cases} \frac{BC \times AH}{2} \\ \frac{1}{2} \left| \left| \overrightarrow{AB} \wedge \overrightarrow{AC} \right| \right| \\ \frac{1}{2} \left| \det_{(\vec{u}_x, \vec{u_y})} (\overrightarrow{AB}, \overrightarrow{AC}) \right|. \end{cases}$
- Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. **Attention** : $AB + BC \neq AC$.

Sphère et boule

- Aire : $\mathscr{A} = 4\pi r^2$.
- Volume : $\mathscr{V} = \frac{4}{3}\pi r^3$.

Cylindre

- Aire : $\mathscr{A} = 2 \times \underbrace{\pi r^2}_{\text{aire d'une base}} + \underbrace{2\pi rh}_{\text{aire latérale}}$.
- Volume : $\mathscr{V} = \pi r^2 h$.