

Deep Learning for Text Analytics

Ananth Iyer and Felix Wyss Applied Research Group www.genesys.com

{ananth.iyer, felix.wyss}@genesys.com

Agenda

- Introduction
- Word2vec
- Interaction steering application
- o Demo!

Introduction

What is Text Analytics?

Process of extracting meaning from unstructured text

- Examples:
 - Information retrieval: search engines, chat-bots
 - Context aware advertising
 - Spam detection
 - Sentiment analysis
 - Customer care

What is a neural network?

 Neural network is a biologically inspired model which enables a machine to learn from observed data

- Neural networks can function as
 - function approximators
 - Probability estimators

Linear/Logistic/Neural Network

Linear regression

$$y = w_0 + \sum_i w_i x_i$$

Linear/Logistic/Neural Network

Linear regression

$$y = w_0 + \sum_i w_i x_i$$

Logistic regression

$$P(y = 1) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

Linear/Logistic/Neural Network

What is deep learning?

 Deep learning is a set of methods to learn data representations (feature learning)

Neural networks with large number of hidden layers are referred to as deep

Feed Forward

- Feed Forward
- Convolutional

- Feed Forward
- Convolutional
- Recurrent

- Feed Forward
- Convolutional
- Recurrent
- Long short-term memory

Convolutional

- Scales up to very large inputs
 - Sparse connections
 - Parameter sharing

Convolutional

- Scales up to very large inputs
 - Sparse connections
 - Parameter sharing

Semantic vector space representation of words

One-hot encoding of words

Common approach to encode a word as vector is:

- What is the problem?
 - Vectors are very sparse

Word embedding

- Reduces dimensionality
- Learned using a simple (2-layer) neural network
- Embedded vectors maintain semantic relationship

Example:

Text pre-processing

Word tokenization

```
>>> nltk.tokenize.word_tokenize('I like Python! I really do.')
['I', 'like', 'Python', '!', 'I', 'really', 'do', '.']
```

Stemming

```
>>> nltk.stem.porter.PorterStemmer().stem('ponies')
'poni'
```

Lemmatization

```
>>> nltk.stem.WordNetLemmatizer().lemmatize('ponies')
'pony'
```

Stop word removal

Interaction steering application

Interaction steering application

Demo

Thank You

Visit www.genesys.com or call +1.855.821.0932 for more information

