MA345 Differential Equations & Matrix Method

Lecture: Special cases

Professor Berezovski

COAS.301.12

Example 4

Show that

 $(x + 3x^3 \sin y) dx + (x^4 \cos y) dy = 0$ (16)

 $\frac{\partial M}{\partial x} = 3x^3 \cos y \neq \frac{\partial N}{\partial x} = 4x^3 \cos y$

is not exact but that multiplying this equation by the factor x^{-1} yields an exact equation. Use this fact to solve (16).

(1+3x2 siny) dx+ (x3cosy) dy =0

Midx = x+x38hy + g(y)

Nidy = x38hy + h(x) +0

X+X38hy = C

Integrating Factor

Definition 3. If the equation

(1)
$$M(x, y) dx + N(x, y) dy = 0$$

is not exact, but the equation

(2)
$$\mu(x, y)M(x, y) dx + \mu(x, y)N(x, y) dy = 0$$
,

which results from multiplying equation (1) by the function $\mu(x, y)$, is exact, then $\mu(x, y)$ is called an **integrating factor**[†] of the equation (1).

$$M_{y}^{*} = \frac{2}{2y} \left[M(x,y) M(x,y) \right] = \frac{2}{2x} \left[M(x,y) N(x,y) \right] = N_{x}^{*}$$

$$M_{y} \cdot M + M \cdot M_{y} = M_{x} N + M \cdot N_{x}$$

$$M_{y} \cdot M + M \cdot M_{y} = M_{x} N + M \cdot N_{x}$$

$$M_{y} \cdot M + M \cdot M_{y} = M_{x} N + M \cdot N_{x}$$

If M=M(x) only $\frac{dM}{dx} = \left(\frac{My - Nx}{N}\right)M$ $\int \frac{d\mu}{M} = \left(\frac{My - Nx}{N}\right) dx$ $M(x) = e^{\int (My - Nx) dx}$

If M=M(y) $\frac{dM}{dy} \left\{ \frac{N_{x} - M_{y}}{M} \right\} M$ $\frac{dM}{M} = \left(\frac{N_x - M_y}{N}\right) dy$

Method for Finding Special Integrating Factors

If M dx + N dy = 0 is neither separable nor linear, compute $\partial M/\partial y$ and $\partial N/\partial x$. If $\partial M/\partial y = \partial N/\partial x$, then the equation is exact. If it is not exact, consider

(10)
$$\frac{\partial M/\partial y - \partial N/\partial x}{N}.$$

If (10) is a function of just x, then an integrating factor is given by formula (8). If not, consider

$$\frac{\partial N/\partial x - \partial M/\partial y}{M}$$

If (11) is a function of just y, then an integrating factor is given by formula (9).

Special Integrating Factors

Theorem 3. If $(\partial M/\partial y - \partial N/\partial x)/N$ is continuous and depends only on x, then

(8)
$$\mu(x) = \exp\left[\int \left(\frac{\partial M/\partial y - \partial N/\partial x}{N}\right) dx\right]$$

is an integrating factor for equation (1).

If $(\partial N/\partial x - \partial M/\partial y)/M$ is continuous and depends only on y, then

(9)
$$\mu(y) = \exp\left[\int \left(\frac{\partial N/\partial x - \partial M/\partial y}{M}\right) dy\right]$$

is an integrating factor for equation (1).

Example 2 Solve

(12)
$$(2x^2+y)dx + (x^2y-x)dy = 0$$
.

My - Nx = $\frac{1-(2xy-1)}{x^2y-x} = \frac{2(1-xy)}{-x(1-xy)} = \frac{2}{x}$ in terms only.

M(x) = $e^{-\frac{2}{x}dx} = e^{-2}$.

 $(2+yx^{-2})dx + (y-x^{-1})dy = 0$.

And $(2x^2+y)dx + (y-x^{-1})dy = 0$.