

iSDX: An Industrial-Scale Software-Defined IXP Arpit Gupta, Princeton University

http://sdx.cs.princeton.edu

Robert MacDavid, Rüdiger Birkner, Marco Canini, Nick Feamster, Jennifer Rexford, Laurent Vanbever

Disclaimer

Creative Commons Attribution 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions of this Creative Commons Attribution 4.0 International Public License ("Public License"). To the extent this Public License may be interpreted as a contract, you are granted the Licensed Rights in consideration of your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives from making the Licensed Material available under these terms and conditions. For full details, explanations, and examples of the use of this License, please visit:

http://creativecommons.org/licenses/by/4.0/legalcode. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or authority.

Internet Exchange Points (IXPs)

Software Defined IXPs (SDXs)

SDX Opens Up New Possibilities

- More flexible business relationships
 - Make peering decisions based on time of day, volume of traffic & nature of application
- More direct & flexible traffic control
 - Define fine-grained traffic engineering policies
- Better security
 - Prefer "more secure" routes
 - Automatically black hole attack traffic

Deployment Ready SDX is Hard!

- Deployment Experience:
 - Inter-Agency Exchange
 - Large IXP in Europe
 - Smaller IXPs in Asia
- Challenges:
 - Scalability
 - **–** ...
- We will focus on the Scalability Challenge today

Scalability Challenge

		Data Plane Performance	
Devices	Devices Operations	State (# entries)	Update Rate (flow- mods/s)
	Match-Action on Multiple Headers	100K	2,500

Scalability Challenge

		Data Plane Performance		
Devices	Operations	State (# entries)	Update Rate (flow- mods/s)	
	Match-Action on Multiple Headers	100K	2,500	
	Matches on IP Prefixes only	~1M	N/A	

Problem: Optimize the usage of available devices

Simple Example

Forwarding Table Entries at SDX

SDN Policies	# Forwarding Table Entries	
$dPort = 443 \rightarrow fwd(C)$	1]
$dPort = 22 \rightarrow fwd(C)$	1	PASA
$dPort = 80 \rightarrow fwd(E)$	1	J -AS B

Number of forwarding table entries for A & B's Outbound SDN Policies

	Simple Example
Baseline	3

Large IXP Dataset:

- BGP RIBs & Updates from large IXP
- 511 IXP participants
- 96 million peering routes for 300K IP prefixes
- 25K BGP updates for 2-hour duration

	Simple Example	Large IXP
Baseline	3	62K (0)

Large IXP Dataset:

- BGP RIBs & Updates from large IXP
- 511 IXP participants
- 96 million peering routes for 300K IP prefixes
- 25K BGP updates for 2-hour duration

	Simple Example	Large IXP
Baseline	3	62K (0)

Satisfies design goals, but ...

	Simple Example	Large IXP
Baseline	3	62K (0)

... not congruent with BGP!

Challenge: Congruence with BGP

Ensure **p** is not forwarded to C

Solution: SDN Policy Augmentation

Match on prefixes advertised by C

Data Plane State Explosion!

SDN Policies	l	varding Entries		
	10/8	40/8	80/8	
dPort = 443 → fwd(C)	1	1	0	
dPort = 22 → fwd(C)	1	1	0	
dPort = 443 → fwd(D)	1	1	1	} -3

SDN Policy Augmentation increases forwarding table entries

	Simple Example	Large IXP
Baseline	3	62K (0)
Policy Augmentation	7	68M (16K)

Not possible to support these many forwarding table entries and update rate!

Forwarding Equivalence Classes

SDN Policies	# Forwarding Table Entries		
SDN Policies	10/8	40/8	80/8
dPort = $443 \rightarrow \text{fwd}(C)$	1	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0
$dPort = 443 \rightarrow fwd(D)$	1	1	1

10/8, 40/8 exhibit similar forwarding behavior

Leveraging Forwarding Equivalence

AS S

 $dPort = 443 \rightarrow fwd(C)$

AS C announces

10/8, 40/8

AS D

announces

10/8, 40/8, 80/8

IXP Fabric

Leveraging Forwarding Equivalence

	Simple Example	Large IXP
Baseline	3	62K (0)
Policy Augmentation	7	68M (16K)
*FEC Computation	4	21M (35K)

[*Gupta et al., SIGCOMM'14]

Still not possible to support these many forwarding table entries and update rate!

More Efficient FEC Computation

SDN Policies	# Forwarding Table Entries		
SDN Policies	{10/8, 40/8}	80/8	
$dPort = 443 \rightarrow fwd(C)$	1	0	
dPort = $22 \rightarrow \text{fwd}(C)$	1	0	
$dPort = 443 \rightarrow fwd(D)$	1	1	

Independent FEC Computation can be more efficient

Partitioning FEC Computation

- Large number of SDX participants
 - Many different policies on groups of prefixes
 - Leads to a large number of small FECs of prefixes
- Compute FECs independently
 - Separate computation per participant
 - Leads to small number of large FECs, and less frequent recomputation
 - Enables "scale out" of the FEC computation

FEC Computation Partitioning in Action

SDN Policies	# Forwarding Table Entries		
	{10/8, 40/8}	80/8	
dPort = $443 \rightarrow \text{fwd}(C)$	1	0	L ,
dPort = $22 \rightarrow \text{fwd}(C)$	1	0	厂*
			•••
dPort = 443 → fwd(D)	1		} -1

A & B independently compute FECs

	Simple Example	Large IXP
Baseline	3	62K (0)
Policy Augmentation	7	68M (16K)
FEC Computation	4	21M (35K)
Independent FEC Computation	3	763K (15K)

Still not possible to support these many forwarding table entries and update rate!

Undesired BGP & SDN Coupling

SDN Policies	# Forwarding Table Entries		
	10/8	40/8	80/8
dPort = 443 → fwd(C)	1	1	0
dPort = $22 \rightarrow \text{fwd}(C)$	1	1	0

$$dPort = 443 \rightarrow fwd(D) \qquad 1 \qquad 1$$

Incoming BGP Update: {AS D withdraws route for prefix 10/8}

Decoupling BGP from SDN

- Leverage advances in commodity hw switches
 - Support for Bitmask Matching (OF 1.3)
- Extend BGP "next hop" encoding
 - So far: encode FECs (single field)
 - New idea: encode reachability bitmask (multi field)
- Changing only the BGP announcements
 - No need to update the SDX data plane!

Reachability Bitmask in Action

forward to BGP Next Hop

Reachability Bitmask in Action

Reachability Bitmask in Action

SDN Policies	# Forwarding Table Entries	
	С	
dPort = $443 \rightarrow \text{fwd(C)}$	1	1,
dPort = $22 \rightarrow \text{fwd}(C)$	1	5
dPort = 443 → fwd(D)	1	} -1

Reduces Data Plane State

	Simple Example	Large IXP
Baseline	3	62K (0)
Policy Augmentation	7	68M (16K)
FEC Computation	4	21M (35K)
Independent FEC Computation	3	763K (15K)
Reachability Encoding	3	65K (0)

iSDX Evaluation Summary

- Data Plane State:
 - Requires 65K < 100K forwarding table entries
- Data Plane Update Rate:
 - Requires 0 < 2500 updates/second
- Other Goals:
 - Processes BGP update bursts in real time (50 ms)
 - Requires only 360 BGP Next Hops compared to 25K from previous solutions

You Can Run iSDX Today!

http://sdx.cs.princeton.edu

- Running code
 - Vagrant & Docker based setup
 - Instructions to run with Hardware Switches
- Ongoing efforts
 - Hosted by Open Networking Foundation
 - Community Link: https://community.opensourcesdn.org/wg/iSDX/dashboard
 - Mailing List (general info, anyone in the world can register):
 isdx@community.OpenSourceSDN.org
 - More info and project landing page: https://www.OpenSourceSDN.org
- Deployment
 - Inter-agency exchange
 - IXPs in Europe & Asia