Phys 111: Lecture 25

Ross Miller

University of Idaho

November 19, 2019

The 25th Day: "Too Hot!"

Homework Wk #13 Due Thursday

Today's Topics

- 1. Temperature Scales
- 2. Heat (Transfer of Thermal Energy)
- 3. Linear Thermal Expansion

Motivation

How can we prevent pipes from bursting in the winter?

Figure: 25.1 Water freezes and then expands¹

¹C&J Figure 12.21

Temperature

Temperature (T) is a measure of the average kinetic energy of a system. High kinetic energy means high temperature.

Usually we discuss how 'hot' the system is.

Rank the following from highest temperature to lowest:

- ▶ liquid nitrogen
- boiling water
- ▶ iced tea
- ▶ hot coffee

Common Temperature Scales

Figure: 25.2 Celsius and Fahrenheit temperature scales²

²C&J Figure 12.1

Temperature Scales in Science

Figure: 25.2 Celsius and Kelvin temperature scales²

²C&J Figure 12.2

Why Kelvin?

Below is an ideal version of the trendline Sir William Thompson (Lord Kelvin) extrapolated from pressure data measured when cooling gases.

Figure: 25.2 Pressure as temperature changes³

³C&J Figure 12.4

Temperature Scales Summary

Quantities	Fahrenheit	Celsius	Kelvin
Water Boiling	212.0°F	100°C	373.15~K
Water Freezing	32.0°F	$0^{\circ}C$	273.15 K
Equal ΔT	1.8°F	$1.0^{\circ}C$	1.0~K

$$T_K = \left(\frac{1}{1} \frac{K}{C}\right) T_C + 273.15 K$$

$$T_C = \left(\frac{5^{\circ} C}{9^{\circ} F}\right) \left(T_F - 32.0^{\circ} F\right)$$

$$T_F = \left(\frac{9^{\circ} F}{5^{\circ} C}\right) T_C + 32.0^{\circ} F$$

Electrical Thermometers: Thermocouples

"Thermocouples are used to measure temperatures as high as $2300^{\circ}C$ or as low as $-270^{\circ}C$." C&J pg. 329

Figure: 25.3 Diagram for a thermocouple measurement⁴

⁴C&J Figure 12.5

Exercise #1

C&J 12.1 Suppose you are hiking down the Grand Canyon. At the top, the temperature early in the morning is a cool $3^{\circ}C$. By late afternoon, the temperature at the bottom of the canyon has warmed to a sweltering $34^{\circ}C$. What is the difference between the higher and lower temperatures in

- a. Fahrenheit degrees and
- b. kelvins?

Exercise #1 Translation

C&J 12.1 Determine how to report a change of $\Delta T=31^{\circ}C$ in $^{\circ}F$ and kelvins.

Strategy: Use the conversions for changes in temperature, not the equations for finding temperatures in different scales.

$$1^{\circ}C=1.8^{\circ}F$$

$$1^{\circ}C=1\;K$$

Exercise #1 Answer

C&J 12.1 A change of $\Delta T = 31^{\circ}C$ is equal to

- a. $\Delta T = 55.8^{\circ}F$ and
- b. $\Delta T = 31 \ K$

Exercise #2

C&J 12.5 Dermatologists often remove small precancerous skin lesions by freezing them quickly with liquid nitrogen, which has a temperature of $77\ K$. What is this temperature on the

- a. Celsius and
- b. Fahrenheit scales?

Exercise #2 Translation

C&J 12.5 Determine how to report a temperature of T=77~K in $^{\circ}C$ and $^{\circ}F$.

Strategy: Use the conversions for temperatures, meaning the equations for finding temperatures in different scales.

$$T_K = T_C + 273.15$$

$$T_F = \left(\frac{9}{5}\right)T_C + 32.0$$

Exercise #2 Answer

C&J 12.5 A temperature of $T=77\ K$ is equal to

- a. $T=-196^{\circ}C$ and
- b. $T = -383^{\circ}F$

Linear Thermal Expansion

In general most objects expand when heated and contract when cooled and the change depends on the original length (L_o) as well as the material (α)

$$\Delta L = \alpha L_o \Delta T$$

Figure: 25.4 Thermal expansion of 'normal' solids⁵

⁵C&J Figure 12.9

Linear Expansion Demo

In this context, α is used for the coefficient of linear expansion and is recorded with units of $1/^{\circ}C$.

Figure: 25.5 Thermal expansion of two different metals⁶

⁶C&J Figure 12.15

Linear Expansion Application

Thermal expansion used in product engineering

Figure: 25.6 Thermal expansion used in a water kettle⁶

⁶C&J Figure 12.16

Exercise #3

C&J 12.10 A steel section of the Alaskan pipeline had a length of 65~m and a temperature of $18^{\circ}C$ when it was installed. What is its change in length when the temperature drops to a frigid $-45^{\circ}C$?

We need to know the linear coefficient for steel: $\alpha = 12 \times 10^{-6} \, (^{\circ}C)^{-1}$.

Exercise #3 Answers

C&J 12.10 The linear coefficient for steel is $\alpha=12\times 10^{-6}~(^{\circ}C)^{-1}$, the original length was measured to be $L_o=65~m$, and the temperature change was measured to be $\Delta T=-63^{\circ}C$. What is the change in length for such a temperature change?

We need to use the reported values with the relationship

$$\Delta L = \alpha L_o \Delta T$$

$$\Delta L = -4.9 \ cm$$

$$\%\Delta L = \left(\frac{\Delta L}{L_o}\right) \times 100\% = (\alpha \Delta T) \times 100\% = 0.756\%$$

Ex. 4 Thinking About Possible Applications

C&J 12.19 The brass bar and the aluminum bar in the drawing are each attached to an immovable wall. At $28^{\circ}C$ the air gap between the rods is $1.3 \times 10^{-3}~m$. At what temperature will the gap be closed?

Figure: 25.7 Thermal expansion based device⁷

⁷C&J Figure for Problem 12.19

Motivation

How can we prevent pipes from bursting in the winter? Loosen the faucet just enough to leak a little bit so pressure doesn't build up.

Figure: 25.1 Water freezes and then expands¹

¹C&J Figure 12.21

Heat

Heat (Q) is energy that flows from a higher-temperature object to a lower-temperature object because of the difference in temperatures.

SI units are joules (J) because it's energy.

Heat flows from a hotter object to a cooler object when the two are placed in contact.

'Heat Flow'

Why is it that a cup of hot coffee feels hot to the touch, while a glass of ice water feels cold?

Figure: 25.8 Two common instances of 'heat transfer'8

⁸C&J Figure 12.22

Necessary for Thursday

Knowledge of how to use the following relationships

$$T_K = T_C + 273.15$$

$$T_C = (\frac{5}{9})(T_F - 32.0)$$

$$\Delta L = \alpha L_o \Delta T$$

$$\blacktriangleright \ Q = mc\Delta T$$