Laplace Equation

Definitions

- [Laplace Equation] $-\Delta u = 0$
- [Fundamental Solution] Let \mathcal{P} be an operator and $y \in \mathbb{R}^d$. The <u>fundamental solution</u> E_y for \mathcal{P} at y is a distribution $E_y \in \mathcal{D}'(U)$ satisfying $\mathcal{P}E_y = \delta_y$.
- [Subharmonic] u is subharmonic in U if $-\Delta u \le 0$ in U
 - Maximum principle holds
- [Superharmonic] u is superharmonic in U if $-\Delta u \ge 0$ in U
 - Minimum principle holds
- [Green's Function] Let U be a domain. Then G(x,y) is a Green's function on U if $G(\cdot,y)$: $\in \mathcal{D}'(U) \cap C^1(\overline{U} \setminus \{y\})$ and $-\Delta G(\cdot,y) = \delta_y$ in U and $G(\cdot,y) = 0$ on ∂U
 - o Green's function is unique
 - Smooth for $x \in U \setminus \{y\}$ for each $y \in U$
 - o $G(\cdot, y)$ is smooth in $U \setminus \{y\}$
 - o [4.18] G(x,y) = G(y,x)

Properties

- [Translation Invariance] $-\Delta(u(x-x_0)) = (-\Delta u)(x-x_0)$
- [Rotational Invariance] Given $O^T O = \mathbb{I}_d$, then $-\Delta(u(Ox)) = (-\Delta u)(Ox)$
- [Homogeneity] For $\lambda > 0$, $-\Delta(u(\lambda x)) = \lambda^2(-\Delta u)(\lambda x)$
- $f(x) = \lim_{\epsilon \to 0} \int f(y)\phi_{\epsilon}(x-y) dy = \lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x)$

Results

- [Fundamental Solution] $E_0(r) = \begin{cases} -\frac{1}{2\pi}\log r, & d=2\\ \frac{1}{d(d-2)\alpha(d)r^{d-2}}, & d\geq 3 \end{cases}$
 - o $E_0(r)$ is locally integrable near 0 i.e. is a distribution
 - $\circ \quad -\Delta E_0 = \delta_0 \text{ in } \mathbb{R}^d$
- [Solution] A solution for $-\Delta u = f$ on \mathbb{R}^d is u = f * E
- [Uniqueness] If $u \in C_0^\infty(\mathbb{R}^d)$, then $u = (-\Delta u) * E$ i.e. u can be recovered from the Laplacian by convolving with the fundamental solution
- [Regularity] If $-\Delta u = 0$ and $u \in \mathcal{D}'(U)$, then u is smooth
- [Derivative Estimates] Let u be a harmonic function on U. Then, for any ball $B_r(x)$ s.t. $\overline{B_r(x)} \subset U$, we have: $|D^\alpha u(x)| \leq \frac{\mathcal{C}_\alpha}{r^{d+|\alpha|}} ||u||_{L^1(B_r(x_0))}$ for some constant \mathcal{C}_α
- [Liouville] Let u be harmonic on \mathbb{R}^d and bounded. Then $u \equiv c$.
- [4.8] Let $f \in \mathcal{C}(\mathbb{R}^d)$ be compactly supported.
 - If $d \ge 3$, then any bounded solution of $-\Delta u = f$ has form $u = E_0 * f + c$ for some constant c
 - o If d=2, then any locally integrable solution of $-\Delta u=f$ satisfying $\sup_{x\in\mathbb{R}^d}|Du(x)|<\infty$ has form $u=E_0*f+b^Tx+c$
- [Mean Value Property] Let u be such that $-\Delta u = 0$ in U, $\overline{B_r(x)} \subset U$, then $u(x) = \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) \, \mathrm{d}y = \frac{1}{|\partial B_r(x)|} \int_{\partial B_r(x)} u(y) \, \mathrm{d}S(y)$
- [Maximum Principle] Let U be a connected, open, bounded domain and $u \in C(\overline{U})$ with $\Delta u = 0$ in U. Then u admits maximum and minimum.
 - $\circ \quad [\mathsf{Weak}] \, \max_{u} u = \max_{u} u$
 - o [Strong] If $u(x_0) = \max_{\overline{u}} u$ for $x_0 \in U$, then $u \equiv c$ for some constant c

Poisson Equation

Definitions

- [Poisson]
 - $\circ \quad -\Delta u = f \text{ in } U$
 - $\circ \quad u = g \text{ in } \partial U$
- [Green's Function] Let U be a domain. The <u>Green's function</u> is $G(x,y): U \times U \to \mathbb{R}$ s.t. for all fixed $y \in U$
 - $\circ \quad -\Delta G(\cdot, y) = \delta_y(\cdot) = \delta_0(\cdot y)$
 - o $G(\cdot, y) = 0$ on ∂U
 - o If $f \in C_0^{\infty}(U)$, then $u(x) = \int_U G(x, y) f(y) dy$ solves $-\Delta u = f$ in U and u = 0 on ∂U
 - o (Physical Idea)
 - $G(\cdot, y)$ is the potential from a point charge at position y
 - f(y) is the charge at position y
 - u(x) is the sum of potential contributions from all point charges
 - o Remark: in general, G may be solved in a larger domain. In that case, cut-off $\bar{G} = G\mathbb{1}_U$
- [Properties of Green's Function]
 - $G(x,y) E(x,y) = h(x,y) \text{ with } h \text{ satisfying } -\Delta_x h(x,y) = 0$
 - o [Symmetric] G(x, y) = G(y, x)
 - [Uniqueness] \exists at most one Green's function G(x, y)
 - o If exists G(x, y) on U, then $u(x) = \int_U G(x, y) f(y) dy$ gives a solution to:
 - $-\Delta u = f$ in U
 - u = 0 in ∂U
- [Poisson Integral Formula] Let U be C^1 domain and suppose exists G(x,y) on U. Then, $\forall u \in C^2(U) \cap C(\overline{U}), \ u(x) = \int_U (-\Delta u)(z) G(z,x) \ \mathrm{d}z \int_{\partial U} u(z) \nu(z) \cdot \nabla_z G(z,x) \ \mathrm{d}S$
 - o If $-\Delta u = 0$, then $u(x) = -\int_{\partial U} u(z) v(z) \cdot \nabla_z G(z, x) dS$
 - [Poisson Kernel] $K: \partial U \to \mathbb{R}$ with $K(x,y) := \nu(y) \cdot \nabla_{\nu} G(x,y)$

Method of Images

- Typically, the form of G(x,y) is: $G(x,y) = E(y-x) + \sum q_i E(y-\bar{x}_i)$ for $x_i \notin U$
- [Half-Plane] $G(x, y) = E(y x) E(y \bar{x})$
- [Unit Ball] $G(x,y) = E(y-x) E(|x|(y-\bar{x}))$

Complex Analysis

Definitions

- [Holomorphic] f is holomorphic in U if $(\partial_x + i\partial_y)f = 0$ in U
 - o f is a smooth solution to the Cauchy-Riemann equations
- [Cauchy-Riemann Operator] $\partial_x + i\partial_y$
- [Cauchy-Riemann Equations]

$$\circ \quad f_y = if_x$$

$$\circ \quad (\partial_x + i\partial_y)f = 0$$

Theorems

- [4.25] If $f \in \mathcal{D}'(U)$ is a solution to $(\partial_x + i\partial_y)f = 0$ in U, then f is smooth in U
- [Morera] Let f be a continuous function on U s.t. $\forall \Omega$ bounded domain, $\Omega \subset U$, $\partial \Omega$ triangle, $\int_{\partial \Omega} f \, dz = 0$. Then f is holomorphic in U
- Let f be a continuous, complex-valued function on open set U satisfying $\oint_{\gamma} f(z) dz = 0 \ \forall \gamma$ closed, piecewise C^1 . Then f must be holomorphic.
- [4.27] Let Ω . Then $\int h(z) (\partial_x + i\partial_y) 1_{\Omega} dz = i \int_{\partial \Omega} h(z) dz$
- [Cauchy Integral Formula] Let f be holomorphic in U. Then, for every bounded piecewise C^1 domain Ω and $z_0 \in \Omega$, $f(z_0) = \frac{1}{2\pi i} \int_{\Omega} \frac{f(z)}{z-z_0} dz$
- [4.30] Let f be a continuous function on domain U. The following are equivalent:
 - f is complex-differentiable
 - \circ f is a solution to the Cauchy-Riemann equation i.e. f is holomorphic
 - o f is complex-analytic i.e. at every point $z_0 \in U$, $\exists r > 0$ and coefficients c_j s.t. $f(z) = \sum_{i=0}^{\infty} c_i (z z_0)^i$ for $|z z_0| < r$
- [Schwartz Reflection Principle]

Results

- [Fundamental Solution] $E_0 = \frac{1}{2\pi} \frac{1}{z}$ is a fundamental solution for $\partial_x + i\partial_y$.
- If f = u + iv solves the Cauchy-Riemann equations, then u, v harmonic.

Heat Equation

Definitions

- [Heat Equation] $(-\partial_t + \Delta)u = f$
- [Initial Value Problem]
 - $\circ (-\partial_t + \Delta)u = f \text{ in } (0, \infty)_t \times \mathbb{R}^d_x$
 - $o \quad u = g \text{ on } \{t = 0\} \times \mathbb{R}^d_x$
- [Initial Boundary Value Problem]
 - $\circ (-\partial_t + \Delta)u = f \text{ in } (0, \infty)_t \times U$
 - $\circ \quad u = g \text{ on } \{t = 0\} \times U$
 - $u = h \text{ on } (0, \infty)_t \times \partial U$
- [Forward (Support) Condition] E = 0 in $(-\infty, 0)_t \times \mathbb{R}^d$
- [Forward Fundamental Solution] E_{+} is the forward fundamental solution if it satisfies:
 - $\begin{array}{ll} \circ & (-\partial_t + \Delta)E_+ = \delta_0^d(t-a) \\ \circ & E_+ = 0 \text{ on } \{t < a\} \times \mathbb{R}_x^d \end{array}$

 - $o E_{+}(t,x) = \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{\|x\|^{2}}{4t}} \mathbb{1}_{(a,\infty)}(t)$
- [Duhamel's Principle]
- [Heat Ball] Denote $Q_R(t,x) := (t R^2, t) \times B_R(x)$ with $\overline{Q_R(t,x)} \subset U$ the heat ball of radius R centered at (t, x).

- [Ancient Solution] u is an ancient solution to heat equation if $(-\partial_t + \Delta)u = 0$ in $(-\infty,a)\times\mathbb{R}^d$
- [Gaussian Growth Condition]
 - Let $g \in \mathcal{D}'(\mathbb{R}^d)$. Then g satisfies the Gaussian Growth Condition if $\forall A > 0$, $\langle g, \left(\chi_{>1}\left(\frac{x}{R'}\right) - \chi_{>1}\left(\frac{x}{R}\right)\right) e^{-A|x|^2} \rangle \to 0 \text{ as } R, R' \to \infty$
 - Let $f \in \mathcal{D}'(\mathbb{R} \times \mathbb{R}^d)$, then f satisfies the Gaussian growth condition in space if $\forall \eta \in$ $C_0^{\infty}(\mathbb{R}_t)$ and A > 0, $\langle f, \eta(t) \left(\chi_{>1} \left(\frac{x}{R'} \right) - \chi_{>1} \left(\frac{x}{R} \right) \right) e^{-A|x|^2} \rangle \to 0$ as $R, R' \to \infty$

Properties

- [Properties of $-\partial_t + \Delta$]
 - o [Rotation] $(\partial_t \Delta)(u(t, Ox)) = ((\partial_t \Delta)u)(t, Ox)$
 - $\circ \quad [\text{Homogeneity}] \ (\partial_t \Delta) \left(u \left(\frac{t}{\lambda^2}, \frac{x}{\lambda} \right) \right) = \frac{1}{\lambda^2} \left((\partial_t \Delta)(u) \right) \left(\frac{t}{\lambda^2}, \frac{x}{\lambda} \right)$
 - $[t] = [x]^2$
 - o [Linearity] $(\mu u)(t,x) = \mu(u(t,x))$
 - [Conservation of Mass] $(\partial_t \Delta)u = 0 \Rightarrow \partial_t \int u(t,x) dx$
- [Properties of Heat Kernel]
 - o [Infinite Speed of Propagation] supp $E_+(t,\cdot) = \mathbb{R}^d$ for t > 0
 - [Smooth] E_+ is smooth except at (t, x) = (0,0)

Results

• [Solution Formula] Let $f \in C_0^{\infty}(\mathbb{R}^{1+d})$, then for the heat equation $(\partial_t - \Delta)u = f$, a forward solution is $u(t,x) \coloneqq (E_+ * f)(t,x) = \iint_{-\infty}^{t-a} \frac{1}{(4\pi(t-s))^{\frac{1}{2}}} e^{-\frac{\|x-y\|^2}{4(t-s)}} \mathbb{1}_{(a,\infty)}(t-s)f(s,y) \, \mathrm{d}s \, \mathrm{d}y$

- [Solution Formula IVP] Let $f \in \mathcal{D}_0'(\mathbb{R}^{1+d}), g \in \mathcal{D}_0'(\mathbb{R}^d)$ $u(t,x) = \int_a^t \int_{\mathbb{R}^d} \frac{1}{\left(4\pi(t-s)\right)^{\frac{d}{2}}} e^{-\frac{||x-y||^2}{4(t-s)}} f(s,y) \, \mathrm{d}y \, \mathrm{d}s + \int_{\mathbb{R}^d} \frac{1}{\left(4\pi(t-a)\right)^{\frac{d}{2}}} e^{-\frac{||x-y||^2}{4(t-a)}} g(y) \, \mathrm{d}y$
- [Representation Formula] Let $u \in \mathcal{D}_0'(\mathbb{R}^{1+d})$, can recover via $u = E_+ * ((\partial_t \Delta)u)$
- [Smoothness] Let u be a solution to $(-\partial_t + \Delta)u = 0$ in $U \subset \mathbb{R}^{1+d}$ open, then u is smooth.
- [Derivative Bounds] Let $(-\partial_t + \Delta)u = 0$ in U. Then, for $(t,x) \in U$ with $Q_R(t,x) \subset U$, $\left|\partial_x^\alpha \partial_t^k u(t,x)\right| \leq C_{\alpha,k} R^{-|\alpha|-2k} \sup_{(s,y) \in Q_R(t,x)} |u(s,y)|$ • [Mean Value Property] Let $(-\partial_t + \Delta)u = 0$ in U. Let $(t,x) \in \mathbb{R}^{1+d}$. Define $\xi_r(t,x) = 0$
- [Mean Value Property] Let $(-\partial_t + \Delta)u = 0$ in U. Let $(t,x) \in \mathbb{R}^{1+d}$. Define $\xi_r(t,x) = \{(s,y) \in \mathbb{R}^{1+d} : s \le t, E_+(t-s,x-y) \ge \frac{1}{r^d}\}$. Then $u(t,x) = \frac{1}{4r^d}\iint_{\xi_r(t,x)} u(s,y) \frac{\|x-y\|^2}{(t-s)^2} \mathrm{d}s \,\mathrm{d}y$

Theorems

- [Liouville] If *u* s a bounded ancient solution, then *u* must be constant.
- [Coarea] Let $f: \mathbb{R}^d \to \mathbb{R}$ be Lipschitz continuous and assume for $\rho \in \mathbb{R}$, the level set $\{x \in \mathbb{R}^d: f(x) = \rho\}$ is smooth, (d-1)-dimensional hypersurface in d. Assume $u: \mathbb{R}^d \to \mathbb{R}$ continuous, integrable. Then $\int_{\mathbb{R}^d} u |Df| \mathrm{d}x = \int_{-\infty}^{\infty} \int_{\{f=\rho\}} u \, \mathrm{d}\sigma \, \mathrm{d}\rho$

Wave Equation

Definitions

- [Wave Equation] $\phi: \mathbb{R}_t \times \mathbb{R}_x^d \to \mathbb{R}$

 - $\circ \quad \partial_t \phi = h \text{ on } \{t = 0\} \times \mathbb{R}^d_x$
- [Null Coordinates]
 - \circ u = t r
 - \circ v = t + r
 - $\circ \Box = -4\partial_u\partial_v$
 - $\circ \quad \partial_t = \partial_u + \partial_v$
 - $\circ \quad \partial_x = -\partial_u + \partial_v$
- [Forward Fundamental Solution] E_+ is a forward fundamental solution if E_+ satisfies:
 - $\circ \Box E_+ = \delta_0$
 - $\circ \quad \operatorname{supp} E_+ \subset \{(t, x) \in \mathbb{R}^{1+d} : t \ge 0\}$
- [Finite Speed of Propagation] supp $E_+ \cap \{t \in I\}$ is compact for bounded interval I

Results

- [Fundamental Solution]
 - o $E_0(t,x) = -\frac{1}{2}(H(t-x) + c_1)(H(t+x) + c_2)$
- [Forward Fundamental Solution in \mathbb{R}^{1+1}] supp $E_+ \subset \{t \geq 0\}$

o
$$E_{+}(t,x) = \frac{1}{2} \mathbb{1}_{(0,\infty)}(t-x) \mathbb{1}_{(0,\infty)}(t+x) = \frac{1}{2} H(t-x) H(t+x)$$
 (i.e. $c_1 = c_2 = 0$)

• [Forward Fundamental Solution in \mathbb{R}^{1+d}]

$$E_{+}(t,x) = -\frac{1}{2\pi^{\frac{d-1}{2}}} \mathbb{1}_{(0,\infty)} \chi_{+}^{-\frac{d-1}{2}} (t^{2} - ||x||^{2}) \text{ in } \mathbb{R}^{1+d} \setminus \{(0,0)\}$$

Properties

- [Properties of Forward Fundamental Solution]
 - Finite speed of propagation: $supp_x E_+(t,\cdot) \subset [-t,t]$ for $t \ge 0$
 - Disturbance at x = 0 at t = 0 can reach at most $|x| \le t'$ at time t'
 - Propagation of singularity
- [Symmetries of □]
 - [Lorentz Transformation]
 - A Lorentz transformation $L: \mathbb{R}^{1+d} \to \mathbb{R}^{1+d}$ is a linear transformation that keeps $s^2(t,x) := t^2 ||x||^2$ invariant i.e. $s^2(t,x) = s^2(L(t,x))$
 - $\Box(\phi \circ L) = (\Box \phi) \circ L$
 - Generated by rotations, reflections and $\mathbb{R}^{2\times 2}$ Lorentz boosts
 - $\qquad \qquad \circ \quad \text{[Scaling]} \ \Box \left(\phi \left(\frac{t}{\lambda}, \frac{x}{\lambda} \right) \right) = \frac{1}{\lambda^2} (\Box \phi) \left(\frac{t}{\lambda}, \frac{x}{\lambda} \right) \text{ for } \lambda > 0$
- [7.8 Finite Speed of Propagation]
- [Strong Huygens] Let $d \ge 3$ be odd. Let $\phi \in C^{\infty}(\mathbb{R}^{1+d})$ be a solution to $\Box \phi = f$ with initial data (g,h). If f(s,y) = 0 for $\{(s,y) \colon 0 < s < t, \|y-x\| = t-s\}$ And g(y) = h(y) = 0 for $y \in \partial B_t(x)$, then $\phi(t,x) = 0$

Homogeneity

• [Homogeneous of Degree a] A smooth function h on $\mathbb{R}^d \setminus \{0\}$ is <u>homogeneous of degree a</u> if $h(\lambda x) = \lambda^a h(x)$ for $x \neq 0, \lambda > 0$

- [Homogeneous of Degree a] Let $h \in \mathcal{D}'(\mathbb{R}^{1+d})$. Then h is homogeneous of degree $a \in \mathbb{C}$ if for every test function $\phi \in C_0^\infty(\mathbb{R}^{1+d})$ and $\lambda > 0$, $\lambda^{-d}\langle h, \phi(\lambda^{-1} \cdot) \rangle = \lambda^a\langle h, \phi \rangle$
 - o Denote h_{λ} by the distribution that satisfies $\langle h_{\lambda}, \phi \rangle = \lambda^{-d} \langle h, \phi(\lambda^{-1} \cdot) \rangle$.
- The delta distribution δ_0 on \mathbb{R}^d is homogeneous of degree -d
- Let h be homogeneous of degree a, then $D^{\alpha}h$ is homogeneous of degree $a |\alpha|$
- [Euler's Identity] Let h be homogeneous of degree a, then $\lambda \frac{d}{d\lambda} \langle h_{\lambda}, \phi \rangle = a \langle h_{\lambda}, \phi \rangle$
- [6.7 Classification] Let $h \in \mathcal{D}'(\mathbb{R})$ be a homogeneous distribution of degree a, then:
 - o h agrees with a smooth homogeneous function of degree a on $\mathbb{R}\setminus\{0\}$.
 - o If $a \ge 0$, h is uniquely determined by h(1) and h(-1)
 - o If a=-k integer, then any two homogeneous distributions h, \bar{h} of degree -k with $h(1)=\bar{h}(1), \ h(-1)=\bar{h}(-1)$ differ by a multiple of $\delta_0^{(k-1)}$
- [6.11 Classification] Let $h \in \mathcal{D}'(\mathbb{R})$ be a homogeneous distribution of degree a, then
 - If $a \notin \{-1, -2, ...\}$, $h = c_+(x_+)^a + c_-(x_-)^a$ for some $c_+, c_- \in \mathbb{R}$

Theorems

• [d'Alembert] Let $\phi \in C^{\infty}(\mathbb{R}^{1+1}_+)$ and $(t,x) \in \mathbb{R}^{1+1}_+$:

$$\phi(t,x) = -\frac{1}{2} \int_{0}^{t} \int_{x-t+s}^{x+t-s} (\Box \phi)(s,y) dy ds + \frac{1}{2} (\phi(0,x-t) + \phi(0,x+t)) + \frac{1}{2} \int_{x-t}^{x+t} \partial_{t} \phi(0,y) dy$$

$$\phi(t,x) = -\frac{1}{2} \int_{0}^{t} \int_{x-t+s}^{x+t-s} f(s,y) dy ds + \frac{1}{2} (g(x-t) + g(x+t)) + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$
[Solution Formula] Given E_{+} , $g,h \in C^{\infty}(\mathbb{R}^{d})$, $f \in C^{\infty}(\mathbb{R}^{1+d})$, exists unique ϕ to the initial

- [Solution Formula] Given E_+ , $g,h \in C^{\infty}(\mathbb{R}^d)$, $f \in C^{\infty}(\mathbb{R}^{1+d})$, exists unique ϕ to the initial value problem: $\phi = -E_+ * (h\delta_0(t)) \partial_t (E_+ * (g\delta_0(t))) + E_+ * (f\mathbb{1}_{(0,\infty)}(t))$
- [Representation Formula]

$$\circ \quad \phi = -\left(E_{+} * \partial_{t} \phi|_{\{t=0\}} \delta_{0}(t)\right) - \partial_{t} \left(E_{+} * \phi|_{\{t=0\}} \delta_{0}(t)\right) + \left(E_{+} * \left(\Box \phi \mathbb{1}_{(0,\infty)}(t)\right)\right)$$

- [Uniqueness] The forward fundamental solution E_+ is unique.
- [Poisson \mathbb{R}^{1+2}] Let ϕ be a solution to equation $\Box \phi = f$ with $\phi, f \in C^{\infty}(\mathbb{R}^{1+2})$. Then:

$$\phi(t,x) = \partial_t \left(\frac{1}{2\pi} \int_{B_t(x)} \frac{g(y)}{\sqrt{t^2 - \|x - y\|^2}} dy \right) + \frac{1}{2\pi} \int_{B_t(x)} \frac{h(y)}{\sqrt{t^2 - \|x - y\|^2}} dy - \frac{1}{2\pi} \int_0^t \int_{B_s(x)} \frac{f(s,y)}{\sqrt{(t-s)^2 - \|x - y\|^2}} dy ds$$

- [Kirchhoff \mathbb{R}^{1+3}] Let ϕ be a solution to equation $\Box \phi = f$ with $\phi, f \in C^{\infty}(\mathbb{R}^{1+3})$. Then:
- $[\mathbb{R}^{1+(2k+1)}]$
- [Method of Descent \mathbb{R}^{1+2k}]

Distribution Theory

Definitions

- [Homogeneous Function of Degree α] A function $h: \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ is homogeneous of degree α if $h(\lambda x) = \lambda^{\alpha} h(x) \ \forall x \neq 0, \lambda > 0$
- [Homogeneous Distribution of Degree α]

Lemmas

- Let $\chi \in C_0^{\infty}(\mathbb{R}^2)$ with $\int \chi = 1$. Then, $\delta_0(t, x) = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon^2} \chi\left(\frac{t}{\epsilon}, \frac{x}{\epsilon}\right)$.
- [7.3] Let f be a distribution with supp $f \subset \{t \in [L, \infty)\}$ for some $L \in \mathbb{R}$. Then $E_+ * f$ is well-defined.

$$0 (E_{+} * f)(t,x) = \iint \mathbb{1}_{(0,t-L)} (t-s) E_{+}(t-s,x-y) f(s,y) \, ds \, dy$$

Exam

Checks

• [Jacobian]
$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

- [Change of Variables] $\int f(u, v) du dv = \int f(t, x) |\det J| dt dx$
- Check that you transformed the PDEs correctly don't miss some terms. Transform the constraints / initial conditions too.