FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION

Lenguaje Interpretado en el cliente - G01T

Primer Avance del Proyecto de Catedra:

"Visualizador gráfico de métodos de ordenamiento"

Docente:

Ing. Carmen Morales

Estudiantes:

•	Bryan José Fuentes Molina	FM230331
•	Héctor Vicenzo Rodríguez Vaquerano	RV230476
•	Adal Isaac Cárcamo Sánchez	CS230279
•	Inmer Sebastián Hernández Contreras	HC220343
•	Fernando José López Domínguez	LD230289

30 de agosto del 2025

ÍNDICE

DESCRIPCION DEL EJERCICIO	. 3
PROPUESTA DE MAQUETADO	. 4
ESQUELETO HTML	. 7
DISEÑO CSS	17
IMÁGENES, TIPOGRAFIA Y ELEMENTOS ADICIONALES	20
REPOSITORIO Y CONTROL DE INVERSIONES	22
FUENTES DE CONSULTA	23
ANEXOS	24

DESCRIPCION DEL EJERCICIO

El presente proyecto consiste en el desarrollo de un sitio web interactivo orientado a la enseñanza y comprensión de los métodos de ordenamiento más comunes y utilizados en el ámbito de la programación. La propuesta busca transformar el aprendizaje tradicional de algoritmos, que usualmente se limita a explicaciones teóricas o ejemplos en pseudocódigo, en una experiencia visual, dinámica y práctica, facilitando así el entendimiento de los procesos internos que realizan los algoritmos para organizar un conjunto de datos.

Objetivo principal:

Crear un sitio web que permita a los usuarios visualizar en tiempo real el funcionamiento de distintos algoritmos de ordenamiento, comparando sus rendimientos y comprendiendo su lógica paso a paso.

Algoritmos incluidos:

El sistema contempla los siguientes métodos de ordenamiento:

- Burbuja (Bubble Sort): tanto en su versión simple como en la variante bidireccional o cocktail sort. Este método, aunque poco eficiente en grandes volúmenes de datos, es de los más didácticos para iniciar el estudio del ordenamiento.
- 2. **Selección (Selection Sort):** un algoritmo intuitivo que selecciona el menor (o mayor) elemento en cada iteración y lo coloca en la posición correcta.
- 3. **Inserción (Insertion Sort):** simula la forma en que muchas personas ordenan cartas en la mano, insertando elementos en la posición adecuada a medida que se recorren.
- 4. **Quicksort:** un algoritmo mucho más eficiente, basado en la estrategia de "divide y vencerás", que divide la lista en subgrupos y los ordena recursivamente.

Cada uno de estos algoritmos será representado gráficamente, mostrando los movimientos internos que realiza y el número de pasos que emplea para llegar a la lista ordenada.

También el usuario podrá interactuar con el grafico modificando la velocidad, la cantidad de datos, desordenar los valores o agregarle valores aleatorios. Esto con la finalidad de que se pueda conocer más sobre el funcionamiento y la eficacia de cada algoritmo.

Se contará con una sección dónde el usuario pondrá a prueba cada algoritmo con fines de que pueda verificar la eficacia de cada uno dada una cantidad X de datos que el usuario pueda definir. Existirá una tabla con las métricas de cada algoritmo a modo de que el usuario pueda sacar con más facilidad las decisiones.

PROPUESTA DE MAQUETADO

El sistema contará con distintas secciones que facilitarán la interacción del usuario:

- Una página inicial donde se presenta el propósito del sitio.
- Un menú con acceso a los algoritmos, cada uno acompañado de una descripción breve y su animación correspondiente.
- Una sección de prueba de rendimiento en la que los cuatro algoritmos se ejecutan simultáneamente sobre los mismos datos, para que el usuario pueda observar cuál finaliza primero.
- Una sección de ordenamiento personalizado, en la que el usuario podrá ingresar una lista de números de su elección y elegir el algoritmo que desee aplicar.

Además, el sistema registrará el tiempo de ejecución de los algoritmos, presentado en segundos, minutos u horas, según la duración. Esto permitirá analizar la eficiencia y comparar la rapidez de cada método de manera objetiva. También la cantidad de datos y el como estos se ordenan en el gráfico

Utilidad para los usuarios:

- Estudiantes: podrán comprender visualmente el funcionamiento de los algoritmos, reforzando la teoría aprendida en clase.
- Docentes: dispondrán de una herramienta interactiva para demostrar de forma didáctica cómo se comportan los algoritmos en diferentes escenarios.
- **Profesionales de TI:** contarán con una herramienta para comparar rendimientos y seleccionar algoritmos adecuados según la magnitud y naturaleza de los datos.

Justificación del proyecto:

El aprendizaje de algoritmos de ordenamiento suele ser complejo cuando se limita únicamente a la lógica matemática o al pseudocódigo. Muchos estudiantes encuentran dificultades para comprender el proceso interno, lo que repercute en su desempeño en asignaturas como estructuras de datos, programación avanzada o análisis de algoritmos.

El visualizador gráfico propuesto atiende esta necesidad al convertir el proceso abstracto en una animación tangible y comprensible, mejorando significativamente la experiencia de aprendizaje. Asimismo, al ofrecer la posibilidad de ingresar valores personalizados, el usuario adquiere un rol activo y puede experimentar directamente con diferentes tamaños y configuraciones de listas.

En conclusión, el proyecto no solo busca cumplir un objetivo académico, sino también convertirse en una herramienta de apoyo en la enseñanza y práctica de conceptos fundamentales de la programación.

ESQUELETO DEL SITIO WEB (HTML5)

index.html

```
<!DOCTYPE html> <!-- documento HTML5 -->
<html lang="es">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0"> <!-- Hace la web
responsive -->
  <title>Ordena GX</title> <!-- Título que se muestra en la pestaña del navegador -->
  <!-- Librería externa de FontAwesome para usar iconos -->
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/6.5.1/css/all.min.css">
</head>
<body>
  <header id="header-content"> <!-- Contenedor del encabezado -->
    <div class="title"> <!-- Contenedor para el título principal -->
      <h1 class="title-txt">Ordena GX</h1>
    </div>
    <div class="space"></div>
    <div class="buttons-content"> <!-- Contenedor para subtítulos e iconos -->
      <div class="namespace-content">
        <h3>Proyecto Catedra LIC-2025</h3> <!-- Subtítulo del encabezado -->
      </div>
      <i class="fa-solid fa-address-card"></i> <!-- Icono de tarjeta (ejemplo de FontAwesome) -->
```

```
<!-- Contenedor para icono de modo noche/día -->
   <div class="moon-sun">
     <i class="fa-solid fa-moon"></i> <!-- Icono de luna -->
   </div>
 </div>
</header>
<main id="main-content"> <!-- Contenedor principal de la página -->
 <!-- Sección de introducción -->
 <section id="main-title-content">
   <div class="main-title">
     <h2>Algoritmos de Ordenamiento</h2> <!-- Subtítulo principal -->
   </div>
   <div class="main-text">
     >Del Caos al ORDEN: Algoritmos de ordenamiento explicado y puestos en prueba
   </div>
 </section>
 <!-- Sección de tarjetas con los algoritmos -->
 <section id="main-content">
   <section id="cards-content"> <!-- Contenedor de todas las tarjetas -->
     <!-- Tarjeta 1: Método de Burbuja -->
     <div class="card">
       <article>
         <span class="card-title">Metodo de Burbuja</span>
```

```
Burbuja unidireccional con 10 datos
          </article>
          <!-- Enlace a la página del algoritmo con botón -->
          <a href="burbuja/burbuja.html"><button class="button-ej">Visualizar</button></a>
        </div>
        <!-- Tarjeta 2: Burbuja V2 -->
        <div class="card">
          <article>
            <span class="card-title">Metodo de Burbuja V2</span>
            Burbuja bidireccional con 10 datos
          </article>
          <a href="burbujaV2/burbujaV2.html"><button class="button-
ej">Visualizar</button></a>
        </div>
        <!-- Tarjeta 3: Quicksort -->
        <div class="card">
          <article>
            <span class="card-title">Metodo de Quicksort</span>
            Quicksort tradicional con 15 datos
          </article>
          <a href="insercion/insercion.html"><button class="button-ej">Visualizar</button></a>
        </div>
        <!-- Tarjeta 4: Selección -->
        <div class="card">
          <article>
            <span class="card-title">Metodo de Selección</span>
```

```
Seleccion de una lista de 10 datos
          </article>
          <a href="seleccion/seleccion.html"><button class="button-ej">Visualizar</button></a>
        </div>
        <!-- Tarjeta 5: Prueba de Rendimiento -->
        <div class="card">
          <article>
            <span class="card-title">Prueba de Rendimiento</span>
            Se pondran a prueba cada algoritmo con una lista de 8 datos
          </article>
          <a href="rendimiento/rendimiento.html"><button class="button-
ej">Visualizar</button></a>
        </div>
        <!-- Tarjeta 6: Inserción -->
        <div class="card">
          <article>
            <span class="card-title">Metodo de Inserción</span>
            Selección de una lista de 10 datos
          </article>
          <a href="insercion/insercion.html"><button class="button-ej">Visualizar</button></a>
        </div>
      </section>
    </section>
  </main>
  <!-- ========== PIE DE PÁGINA ========== -->
  <footer id="footer-content"> <!-- Contenedor del pie de página -->
```

```
<!-- Lista de integrantes -->
<div class="integrantes-content-footer">
  <h5>Desarolladores</h5>
  Sryan Josué Fuentes Molina
    Adal Isaac Carcamo Sanchez
    Hector Vicenzo Rodriguez Vaquerano
    Fernando Jose Lopez Dominguez
    Inmer Sebastian Hernandez Contreras
  </div>
<!-- Espacio para una imagen/logo de la UDB) -->
<div class="udb-image"></div>
<!-- Texto explicativo del proyecto -->
<div class="text-content-footer">
  <span>
```

El presente proyecto consiste en el desarrollo de una página web interactiva cuyo objetivo principal es ilustrar, de manera didáctica y visual, el funcionamiento de diversos algoritmos de ordenamiento. La plataforma fue diseñada para el proyecto de catedra para la materia de Lenguaje interpretado en el Cliente, esperemos aprendan :)

```
</span>
</div>
</footer>
</body>
</html>
```

inserción.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>Ordena GX | Inserción</title>
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/6.5.1/css/all.min.css">
</head>
<body>
  <header id = "header-content">
    <div class = "title">
      <h1 class = "title-txt">Ordena GX | Insercions</h1>
    </div>
    <div class ="space">
    </div>
    <div class ="buttons-content">
      <div class = "namespace-content">
        <h3>Proyecto Catedra LIC-2025</h3>
      </div>
      <i class="fa-solid fa-address-card"></i>
      <!--Para cambiar de color dependiendoo si es modo noche o día-->
      <div class ="moon-sun">
        <i class="fa-solid fa-moon"></i>
      </div>
```

```
</div>
  </header>
  <main id ="main-content">
    <!-- Descripción detallada del funcionamiento del código-->
    <section id = "description-content">
      <h2>Metodo de Insercion</h2>
      El ordenamiento por inserción itera a través de un array y, en cada iteración, elimina un
elemento, encuentra su ubicación y lo inserta. Si bien tiene una complejidad temporal promedio
de O(n^2), su rendimiento es excepcional en arrays pequeños o casi ordenados, con un rendimiento
óptimo de O(n). El ordenamiento por inserción es un algoritmo adaptativo, estable e in situ que
funciona de forma similar a cómo se ordenan las cartas en la mano.
    </section>
    <!-- Grafico para visualizar el contenido en el array. También para el ordenamiento del mismo-
->
    <section id = "diagram-content">
      <section id = "config-content">
         <div class = "title-content">
           <h5>Configuraciones</h5>
         </div>
         <div class ="radiobox-content">
           <form>
             <label for="velotxt">Velocidad:</label>
             <input type="range" id="velotxt" name="velotxt" min="1" max="100" step="5"
value="50">
             <span class ="placeholder-txt">Velocidad de ordenamiento</span>
             <label for="datostxt">Datos:</label>
             <input type="range" id="datostxt" name="datostxt" min="3" max="10" step="1"
value="15">
             <span class ="placeholder-txt">Cantidad de datos a ordenar (min. 3)</span>
           </form>
```

```
</div>
         <button id ="randomBtn">Aleatorio</button>
         <button id = "sortBtn">Desordenar</button>
      </section>
      <!-- Acá se va a dibujar TODO -->
      <section id = "graphic-content">
      </section>
      <!-- Sección para la parte de configuraciones del gráfico-->
      <section id = "buttons-content">
         <div class ="input-content">
           Ingrese un valor...
           <input type ="number" min ="-200" max ="200" placeholder="1.. 2.. 3.. etc.">
         </div>
         <div class = "init-content">
           <!-- Apartado para las metricas del ordenamiento-->
           <div class = "btn-content">
             <button id= "leftBtn"><i class="fa-solid fa-angle-left"></i></button>
             <div class = "space">
             </div>
             <button id ="startbtn">Iniciar</button>
             <div class = "space">
             </div>
             <button id= "leftBtn"><i class="fa-solid fa-angle-right"></i></button>
           </div>
           <div class ="progress-content">
             Progreso
             <input type="range" id="rangotxt" name="rangotxt" min="0" max="100" step="1"
value="0">
```

```
</div>
     </div>
   </section>
 </section>
</main>
<footer id = "footer-content">
 <div class ="integrantes-content-footer">
   <h5>Desarolladores</h5>
   Sryan Josué Fuentes Molina
     Adal Isaac Carcamo Sanchez
     Hector Vicenzo Rodriguez Vaquerano
     Fernando Jose Lopez Dominguez
     Inmer Sebastian Hernandez Contreras
   </div>
 <div class = "udb-image">
 </div>
 <div class ="text-content-footer">
   <span>
```

El presente proyecto consiste en el desarrollo de una página web interactiva cuyo objetivo principal es ilustrar, de manera didáctica y visual, el funcionamiento de diversos algoritmos de ordenamiento. La plataforma fue diseñada para el proyecto de catedra para la materia de Lenguaje interpretado en el Cliente, esperemos aprendan :)

```
</span>
</div>
</footer>
</body>
```

</html>

No se han incluido todos los archivos porque comparten la misma estructura y maquetado, cambiando únicamente el contenido específico de cada algoritmo, como el título, la descripción y los elementos gráficos asociados. Incluir todos los archivos generaría un documento demasiado extenso sin aportar información adicional sobre la estructura general de la página.

Att. Desarrolladores de Ordena GX

DISEÑO CSS

El diseño del sitio web se implementará utilizando **CSS Vanilla**, es decir, sin depender de frameworks externos como Bootstrap o Tailwind CSS. Esto permite un control completo sobre la apariencia visual, los estilos y las animaciones de los algoritmos de ordenamiento, garantizando que el sitio cumpla con los objetivos del proyecto: ofrecer un visualizador gráfico, interactivo y responsivo de los métodos de ordenamiento más comunes (Burbuja, Quicksort, Selección, Inserción, Rendimiento).

1. Tipo de diseño CSS aplicado

Se empleará un diseño modular y personalizado para cada sección del sitio: página de inicio, menú principal, demostración individual de algoritmos, prueba de rendimiento y sección de desarrolladores. Esto incluye estilos específicos para:

- Encabezados y títulos: con tipografías modernas y legibles, diferenciando títulos principales, subtítulos y textos descriptivos.
- **Botones y elementos interactivos:** con efectos visuales al pasar el cursor y estados activos/deshabilitados.
- Tarjetas (cards) para algoritmos: contenedores estilizados que muestran el nombre del algoritmo, su descripción y el botón de visualización.
- **Gráficos:** presentados con estilos consistentes, incluyendo colores y tamaños que faciliten la comprensión visual del ordenamiento.

2. Componentes preconstruidos

Aunque no se utilizará un framework, se crearán **componentes CSS reutilizables**, tales como:

- Tarjetas para cada algoritmo, adaptables a cualquier sección.
- Botones estilizados para acciones como ordenar, desordenar, agregar valores, iniciar y detener animaciones.
- Barras de progreso y sliders para representar la velocidad de ordenamiento y el progreso de ejecución.
 Estos componentes facilitan la consistencia visual, la reutilización de código y la rápida implementación de nuevas funciones o algoritmos.

3. Tipografía y estilos

Se seleccionarán tipografías que garanticen legibilidad en todos los dispositivos. Los estilos incluirán:

- Tamaños diferenciados para títulos, subtítulos y párrafos.
- Pesos de fuente adecuados para resaltar información importante.
- Colores de texto que contrasten con los fondos para facilitar la lectura.
- Efectos sutiles de transición y sombreado para mejorar la experiencia de usuario sin sobrecargar la interfaz.

4. Paleta de colores personalizada

Se definirá una paleta de colores propia que abarque:

- Colores de fondo, contenedores y tarjetas.
- Colores de botones y elementos interactivos.
- Colores para representar datos en los gráficos de los algoritmos.
 Además, se implementará modo claro y oscuro, permitiendo al usuario elegir la apariencia que prefiera, mejorando la accesibilidad y la comodidad visual.

5. Diseño responsivo

El sitio será completamente responsivo mediante **CSS Vanilla**, aplicando técnicas como:

- Media queries: para ajustar el diseño según el ancho de pantalla, reorganizando columnas, tarjetas y botones.
- Flexbox y Grid: para organizar contenidos de manera flexible, adaptando automáticamente la distribución de tarjetas y gráficos en pantallas grandes o pequeñas.
- Ajuste dinámico de fuentes, márgenes y paddings para asegurar que los elementos se vean correctamente en dispositivos móviles, tablets y escritorios.
- Gráficos y visualizaciones que se escalen proporcionalmente, garantizando claridad y legibilidad en cualquier tamaño de pantalla.

6. Compatibilidad y accesibilidad

El sitio será compatible con los principales navegadores (Chrome, Firefox, Edge y Safari). Además, se aplicarán buenas prácticas de accesibilidad:

- Uso de etiquetas HTML semánticas para mejorar la navegación y la comprensión del contenido.
- Contraste adecuado entre texto y fondo, facilitando la lectura

IMÁGENES, TIPOGRAFIA Y ELEMENTOS ADICIONALES

Imágenes: optimizadas en formatos **.svg** o **.webp** para reducir peso y conservar calidad.

Fuentes tipográficas:

- Títulos con tipografía moderna (Poppins, Montserrat).
- Texto con fuente legible (Roboto, Open Sans).
- Otros elementos:
- Íconos de Font Awesome para botones y menús.
- Animaciones con CSS Keyframes s para representar gráficamente los algoritmos en ejecución.

CABEZERA:

INICIO / HOME

PALETA DE COLORES

PAGINAS NAVEGABLES

REPOSITORIO Y CONTROL DE INVERSIONES

Se ocupara un control de versiones para el proyecto debido a la importancia de contar con un control eficiente del código, la colaboración en equipo y la trazabilidad de los cambios dentro del proyecto.

En consecuencia, cada integrante tendrá una Branch (rama) dentro de la master del proyecto:

Repositorio alojado en GitHub.

FUENTES DE CONSULTA

https://www.geeksforgeeks.org/dsa/quick-sort-algorithm/?utm_source=chatgpt.com

https://algocademy.com/blog/the-best-tools-for-visualizing-algorithms-and-datastructures/?utm source=chatgpt.com

https://en.wikipedia.org/wiki/Sorting algorithm?utm source=chatqpt.com

https://algorithm-visualizer.org/?utm_source=chatgpt.com

https://www.geeksforgeeks.org/dsa/heap-sort/

https://www.geeksforgeeks.org/dsa/quick-sort-algorithm/

https://www.geeksforgeeks.org/dsa/merge-sort/

ANEXOS

ENLACE de proyecto en FIGMA

ENLACE al repositorio en GitHub