Campo de cargas puntuales I

Dos cargas puntuales, -q y $\frac{1}{2}q$ se sitúan en el origen y en el punto (a,0,0) respectivamente. ¿En qué punto del eje x se anula el campo eléctrico?

Solución

El campo eléctrico en un punto cualquiera del eje x será:

 $\mathbf{E}(x,0,0) = \mathbf{E}_1(x,0,0) + \mathbf{E}_2(x,0,0)$, donde \mathbf{E}_1 es el campo debido a la carga en el origen y \mathbf{E}_2 es el campo debido a la carga restante.

Cada uno de los campos se calculará a partir de la ley de Coulomb:

$$\mathbf{E}(\mathbf{r}) = kq \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

donde q es la carga fuente del campo eléctrico, \mathbf{r}' es su posición (punto fuente), \mathbf{r} es el punto donde se calcula el campo (punto campo) y $k \equiv \frac{1}{4\pi\epsilon_0}$, siendo ϵ_0 la permitividad del vacío.

 \mathbf{E}_1 :

$$\mathbf{r} = (x,0,0)$$

$$\mathbf{r}'_1 = (0,0,0)$$

$$\mathbf{E}_1(x,0,0) = -\frac{kq}{|x|^3}(x,0,0)$$

 \mathbf{E}_2 :

$$\mathbf{r} = (x,0,0)$$

$$\mathbf{r}'_2 = (a,0,0)$$

$$\mathbf{E}_2(x,0,0) = \frac{kq}{2|x-a|^3}(x-a,0,0)$$

Luego, el campo total es:

$$\mathbf{E}(x,0,0) = -\frac{kq}{|x|^3}(x,0,0) + \frac{kq}{2|x-a|^3}(x-a,0,0)$$
$$= kq(-\frac{x}{|x|^3} + \frac{x-a}{2|x-a|^3},0,0)$$

Entonces pedimos

$$E_x = 0 = kq \left[-\frac{x}{|x|^3} + \frac{x-a}{2|x-a|^3} \right]$$

$$\frac{x}{x-a} = \frac{|x|^3}{2|x-a|^3}$$

Divido en casos

1)
$$x > 0$$
; $x - a > 0$ $(x > a)$

O

2)
$$x < 0$$
; $x - a < 0$ ($x < 0 < a$)

no hay soluciones si

3)
$$x > 0; x - a < 0$$
 $(0 < x < a)$

Entonces:

$$\frac{1}{x^2} = \frac{1}{2(x-a)^2}$$

$$\left(\frac{x-a}{x}\right)^2 = \frac{1}{2}$$

$$1 - \frac{a}{x} = \pm \frac{1}{\sqrt{2}} \Rightarrow x = \frac{a}{1 \pm \frac{1}{\sqrt{2}}}$$

solo el signo - , cumple a>a y nunca se cumple x<0.