13 ACTR/ AZ 7:8/MODC-1145

MDDC - 1145

UNITED STATES ATOMIC E NERGY COMMISSION

SOME EXCITATION FUNCTIONS OF ALPHAS AND DEUTERONS ON BISMUTH

by

E. L. Kelly and E. Segrè

University of California

US DEPOSITOR!

This document consists of 2 page.

Date of Manuscript: June 18, 1947

Date Declassified: July 15, 1947

This document is for official use.
Its issuance does not constitute authority
for declassification of classified copies
of the same or similar content and title
and by the same author(s).

Technical Information Division, Oak Ridge Directed Operations
Oak Ridge, Tennessee

SOME EXCITATION FUNCTIONS OF ALPHAS AND DEUTERONS ON BISMUTH

By E. L. Kelly and E. Segrè

As a part of a systematic investigation of excitation functions, the absolute cross sections for the reactions $(\alpha,2n)$, $(\alpha,3n)$, (d,p), (d,n), and (d,3n) on bismuth will be presented. See graphs. The technique used is the usual one of bombarding stacked foils, with some improvement of the definition of energy and measurement of current. The improvements consisted of a collimating slit system that produced a beam of 2 per cent straggling or less, and a means of continuously recording the beam current during bombardment of the stack of foils. The $(\alpha,3n)$ reaction on Bi leading to the formation of At²¹⁰ has been identified. At²¹⁰ has a half-life of 8.3 hr, decaying by K-capture to Po²¹⁰, accompanied by emission of 1.0-Mev gamma rays. Branching decay of At²¹⁰ by alpha emission is less than 1 per cent, if it exists.

The integrated mass stopping power of Bi, Cu, Ag, Ta, Tl, and U have been redetermined with respect to Al, using 36-Mev alphas. The tabulated results are listed in Table 1.

The unexpected rise of the (d,n) cross section above 13 Mev is taken to indicate the presence of the (d,2n) reaction. An attempt will be made to disentangle the (d,2n) cross section and identify the resulting product.

Table 1.

Energy range	Integrated mass stopping power relative to aluminum	
36-28	0.801	
27 – 15	0.781	
36-28	0.671	
27-15	0.650	
36~28	0.548	
27-15	0.516	
. 36-6	0.488	
36-28	0.505	
27 – <u>1</u> 5	n 477	
36 – 28	0.487	
27 – 15	0.472	
	36-28 27-15 36-28 27-15 36-28 27-15 . 36-6 36-28 27-15 36-28	

2] MDDC - 1145

Figure 1

Figure 2

UNIVERSITY OF FLORIDA
3 1262 08907 9783