

Analog Integrated Systems Design

Lecture 15 Oversampling Data Converters (2)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Why Oversampling?

- ☐ Technology scaling enable very fast MOS transistors
 - GHz sampling and processing is possible
 - We can build faster ADCs for broadband signals
- ☐ But signals in many applications have limited bandwidth
 - Ex: sensors (baseband) and communication systems (passband)
- \Box Oversampling: $f_S \gg f_N = 2BW$
 - Make use of the high sample rate to improve the resolution
 - Oversampling Ratio (OSR)

$$OSR = \frac{f_S}{f_N} = \frac{f_S}{2BW}$$

- Also simpler antialiasing filter
- But higher digital power consumption

Nyquist vs Oversampling ADC

Noise Shaping

■ Noise transfer function (NTF) is a HPF (differentiator)

- \Box For 1st order NTF: The shaped noise has twice the noise power
 - But IBN is significantly reduced

15: Oversampling (2) [M. Pelgrom, 2017]

Sigma-Delta $(\Sigma \Delta)$ ADC

- Closed loop negative feedback system
- \Box H(z) is the loop filter
- \Box The B-bit quantizer is typically 1-5 bit
 - Single bit: One bit DAC is inherently linear
 - We care more about DAC linearity (we will know why later)
 - Multibit: Each bit in the ADC/DAC adds 6dB to the SNR

First-Order $\Sigma \Delta M$

Let
$$H(z) = \frac{z^{-1}}{1-z^{-1}}$$
 and $k_q = 1$

$$STF(z) = \frac{H(z)}{1+H(z)} = z^{-1}$$
 \rightarrow Delay

$$NTF(z) = \frac{1}{1+H(z)} = 1 - z^{-1}$$
 Noise shaping

$$Y = STF \cdot X + NTF \cdot E = z^{-1} \cdot X + (1 - z^{-1}) \cdot E$$

Higher-Order $\Sigma \Delta M$

Let
$$H(z) = \left(\frac{z^{-1}}{1-z^{-1}}\right)^L$$
 and $k_q = 1$

$$STF(z) = \frac{H(z)}{1+H(z)} = z^{-L}$$
 \longrightarrow Delay

$$NTF(z) = \frac{1}{1+H(z)} = (1-z^{-1})^L$$
 Noise shaping

$$Y = STF \cdot X + NTF \cdot E = z^{-L} \cdot X + (1 - z^{-1})^{L} \cdot E$$

$$SQNR = 10 \log \left(\frac{P_{sig}}{IBN} \right)$$

$$\approx 1.76 + 6.02N + 10 \log \left(\frac{2L+1}{\pi^{2L}}\right) + (2L+1)10 \log(OSR)$$

Noise Shaping Gain

$$SQNR \approx 1.76 + 6.02N + 10 \log\left(\frac{2L+1}{\pi^{2L}}\right) + (2L+1)10 \log(OSR)$$

 $ENOB \ Gain = \frac{(2L+1)10 \log(OSR)}{6} \approx (2L+1) \times 0.5 \log_2(OSR)$

- \square SNQR increases with OSR by 3(2L + 1) dB/octave
- \square ENOB increases with OSR by (L + 0.5) bit/octave
- \square Need OSR > 4 (more than two octaves) to reap $\Sigma\Delta M$ benefits

Order (L)	Static SNR loss	SNR gain	Static ENOB loss	ENOB gain
0	0	3 dB/octave	0	0.5 bit/octave
1	-5.2 dB	9 dB/octave	-0.86 bit	1.5 bit/octave
2	-12.9 dB	15 dB/octave	-2.14 bit	2.5 bit/octave
3	-21.4 dB	21 dB/octave	-3.55 bit	3.5 bit/octave
4	-30.2 dB	27 dB/octave	-5.02 bit	4.5 bit/octave

$\Sigma\Delta$ vs Nyquist ADC

- \square $\Sigma\Delta$ ADC behaves quite differently from Nyquist converters
- ☐ Digital codes only display an "average" impression of the input
- \square INL, DNL, monotonicity, missing code, etc. do not directly apply in $\Sigma\Delta$ converters
- ☐ Usually only dynamic ccs are important (SNR, SNDR, SFDR, etc.)

Nyquist ADC output

ΣΔMs Classification

- \Box Single-Bit vs Multibit $\Sigma \Delta M$ s
- \Box First-order vs Higher-order $\Sigma \Delta M$ s
 - Order of the loop filter
- \Box Single-Loop vs Cascade or MASH $\Sigma \Delta M$ s
 - Single-loop: uses only one quantizer
 - Cascade or MASH: uses several quantizers

15: Oversampling (2)

Second-order $\Sigma \Delta M$

- ☐ Two DT integrators are cascaded
 - Each integrator receives a weighted feedback path

$$Y(z) = \frac{k_{q} a_{1} a_{2} \frac{z^{-2}}{(1-z^{-1})^{2}} X(z) + E(z)}{1 + k_{q} a_{1} a_{2} \frac{z^{-2}}{(1-z^{-1})^{2}} + k_{q} a_{2} \frac{z^{-1}}{(1-z^{-1})}}$$

$$Y(z) = z^{-2} X(z) + (1 - z^{-1})^{2} E(z)$$

$$k_{\mathbf{q}}a_1a_2 = 1$$
$$k_{\mathbf{q}}a_2 = 2$$

Second-order $\Sigma \Delta M$

Second-order $\Sigma \Delta M$

- ☐ Two alternative representations are possible
 - (a) suits system level
 - (b) suits circuit level

13

Second-order $\Sigma \Delta M$: SC Implementation

Second-order $\Sigma \Delta M$: SC Implementation

Second-order $\Sigma \Delta M$: SC Implementation

Second-order $\Sigma \Delta M$: Design Examples

$$k_{\mathbf{q}}a_1a_2 = 1$$
$$k_{\mathbf{q}}a_2 = 2$$

$$g_1 = g_1' = \frac{C_S}{C_{I1}}$$
 $g_2 = \frac{C_{S1} + C_{S2}}{C_{I2}}, \quad g_2' = \frac{C_{S2}}{C_{I2}}$

$$a_1 = \frac{g_1' g_2}{g_2'}$$

$$a_2 = g_2'$$

g_1, g_1' g_2, g_2'	1/2, 1/2 1/2, 1/2	1/4, 1/4 1/2, 1/4	1/2, 1/2 1, 1/2	1/3, 1/3 3/5, 2/5
a_{1}, a_{2}	0.5, 0.5	0.5, 0.25	0.5, 0.5	0.5, 0.4
Overload level Integrator output swing Unit capacitors (2× in fully diff)	-4 dBFS $\pm 1.5 V_{\text{ref}}$ $6(= 3 + 3)$	-4 dBFS $\pm 0.75 V_{\text{ref}}$ 11 (= 5 + 6)	-4 dBFS $\pm 1.25 V_{\text{ref}}$ 9 (= 5 + 4)	-4 dBFS $\pm 1.0 V_{\text{ref}}$ 12 (= 4 + 8)

First- vs Second-order SDM

- The dual integration of the signal and the two feedback paths from the quantizer create a much more complex pattern
 - Less correlated products → Less idle tones
- Higher-order converters scramble the pattern even more due to the extra integration stages in the filters
 - Third and fourth order show hardly any idle tones

15: Oversampling (2) [M. Pelgrom, 2017]

Higher-order $\Sigma \Delta M$ with Distributed FB

- ☐ Simply include L integrators before the quantizer
- Derive a set of relations between the integrator scaling coefficients to fulfill pure differentiator noise shaping

$$Y = z^{-L} \cdot X + (1 - z^{-1})^{L} \cdot E$$

- lacksquare But pure-differentiator NTFs are prone to instability if L > 2
 - Instability appears at the modulator output as a large-amplitude and low-frequency oscillation
 - Long bitstreams of alternating +1s and −1s

15: Oversampling (2)

ΣΔMs Classification

- \Box Single-Bit vs Multibit $\Sigma \Delta M$ s
- \Box First-order vs Higher-order $\Sigma \Delta M$ s
 - Order of the loop filter
- \Box Single-Loop vs Cascade or MASH $\Sigma\Delta M$ s
 - Single-loop: uses only one quantizer
 - Cascade or MASH: uses several quantizers

15: Oversampling (2) 20

Cascade $\Sigma \Delta Ms$

- \Box A.k.a. multiloop $\Sigma \Delta M$ or multistage noise shaping (MASH) $\Sigma \Delta M$
- An alternative approach to obtain a high-order noise shaping while avoiding instabilities
- $\Box L = \Sigma L_i$
- \square Unconditionally stable if $L_i \leq 2$
- ☐ No inter-stage feedback
- Digital cancelation logic (DCL) combines outputs such that only e_3 appears at output (shaped by $L = \Sigma L_i$)
- \Box L limited by circuit non-idealities (noise leakage)
 - Practically e_1 (shaped by L_1) and e_2 (shaped by $L_1 + L_2$) will leak to output

MASH ΣΔMs Topologies

- ☐ The first stage is usually 2nd order SDM
 - Reduce noise leakage
 - Avoid idle tones
- ☐ Example MASH toplogies
 - **2**-1

→ 3rd order

2-2

→ 4th order

2-1-1

→ ...

- **2**-2-1
- **2**-1-1-1
- **2**-2-2
- etc.

15: Oversampling (2)

Two-Stage Cascade $\Sigma \Delta M$ s Example

- $\square \ X_1(z) = X(z)$
- $\square X_2(z) = -c_1 E_1(z)$
- The digital transfer function should track the analog transfer function
 - Imperfect tracking means E_1 will leak to output (not completely canceled)

Two-Stage Cascade $\Sigma \Delta M$ s Example

- $\square X_1(z) = X(z)$
- $\square X_2(z) = -c_1 E_1(z)$
- ☐ The digital transfer function should track the analog transfer function
 - Imperfect tracking means E_1 will leak to output (not completely canceled)

$$Y_1(z) = \text{STF}_1(z)X_1(z) + \text{NTF}_1(z)E_1(z)$$

 $Y_2(z) = \text{STF}_2(z)X_2(z) + \text{NTF}_2(z)E_2(z)$

$$\begin{split} Y(z) &= H_{\mathrm{d1}}(z)Y_{1}(z) + H_{\mathrm{d2}}(z)Y_{2}(z) \\ &= \mathrm{STF}_{\mathrm{casc}}(z)X(z) + \mathrm{NTF}_{\mathrm{1,casc}}(z)E_{1}(z) + \mathrm{NTF}_{\mathrm{2,casc}}(z)E_{2}(z) \end{split}$$

$$\begin{split} &\operatorname{STF}_{\operatorname{casc}}(z) = H_{\operatorname{d1}}(z)\operatorname{STF}_{1}(z) \\ &\operatorname{NTF}_{1,\operatorname{casc}}(z) = H_{\operatorname{d1}}(z)\operatorname{NTF}_{1}(z) - c_{1}H_{\operatorname{d2}}(z)\operatorname{STF}_{2}(z) \\ &\operatorname{NTF}_{2,\operatorname{casc}}(z) = H_{\operatorname{d2}}(z)\operatorname{NTF}_{2}(z) \end{split} \Rightarrow \begin{cases} H_{\operatorname{d1}}(z) = \operatorname{STF}_{2}(z) \\ H_{\operatorname{d2}}(z) = \frac{1}{c_{1}}\operatorname{NTF}_{1}(z) \end{cases} \Rightarrow \begin{cases} H_{\operatorname{d2}}(z) + H$$

$$\left. \begin{array}{l} H_{\mathrm{d1}}(z) = \mathrm{STF}_2(z) \\ H_{\mathrm{d2}}(z) = \frac{1}{c_1} \mathrm{NTF}_1(z) \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} \mathrm{STF}_{\mathrm{casc}}(z) = \mathrm{STF}_1(z) \mathrm{STF}_2(z) \\ \mathrm{NTF}_{1,\mathrm{casc}}(z) = 0 \\ \mathrm{NTF}_{2,\mathrm{casc}}(z) = \frac{1}{c_1} \mathrm{NTF}_1(z) \mathrm{NTF}_2(z) \end{array} \right.$$

Example: MASH 2-1-1 SDM

More $\Sigma \Delta M$ s Classification

- \Box Low-Pass vs Band-Pass $\Sigma \Delta M$ s
- \Box Discrete-Time vs Continuous-Time $\Sigma\Delta M$ s
 - Discrete-time: uses DT filter (switched capacitor filter)
 - Continuous-time: uses CT filter (e.g., Gm-C filter)

15: Oversampling (2) 26

Band-pass SDM

- ☐ In low-pass SDM, the NTF is HPF
- In band-pass SDM, the NTF is band-stop filter
- ☐ BP-SDM is used for digitizing IF signals in wireless receivers

Continuous-Time (CT) SDMs

- ☐ The majority of SDMs are implemented using SC DT circuits
- CT SDMs can operate at higher sampling rates with lower power consumption
- The sampling operation is moved just before the quantizer

Continuous-Time Sigma-Delta modulator

Nyquist vs Oversampling DAC

- ☐ DAC with BW close to Nyquist limit
 - Requirements on the filter (sharpness) and the buffer (SR) become hard to meet

15: Oversampling (2) [M. Pelgrom, 2017]

Nyquist vs Oversampling DAC

- ☐ DAC with BW close to Nyquist limit
 - Requirements on the filter (sharpness) and the buffer (SR) become hard to meet

- Oversampling DAC
 - Simpler filter and buffer → but digital filtering required
 - sinc(x) distortion reduced \rightarrow no sinc(x) compensation required

Oversampling DAC

54 Ms/s

- Up-sampling by zero stuffing
- ☐ Digital filter is required after up-sampling to suppress alias bands
 - Performs interpolation in digital domain
- Smaller transient steps at output
 - Buffer SR and distortion specs are relaxed

Nyquist vs Oversampling DAC

- ☐ Trade-off between analog buffer and filter power/complexity and digital filter power/area
 - Modern CMOS technologies favors the oversampling solution
 - Area and power of the digital filter shrinks and the switching speed of the short channel transistors allows high oversampling frequencies
- \Box Comparison for OSR = 4:

Nyquist rate solution	Oversampling solution	
External multi-pole filter needed	Internal digital CMOS filter	
High slew current in driver	Medium current in driver	
	power for digital filter	
sin(x)/x loss of 2 dB	$\sin(x)/x \log = 0.3 dB$	
Standard sample rate	4× sample rate needed	

15: Oversampling (2) [M. Pelgrom, 2017]

Sigma-Delta DAC

- The order of the analog low pass filter should be at least one order higher than that of the modulator.
 - If the analog filter's order is equal to that of the modulator, the slope of the rising quantization noise will match the filter's falling attenuation
- Oversampling is often used with multi-bit D/A converters to reduce this analog-smoothing filter's complexity

15: Oversampling (2) [Johns & Martin, 2012]

Sigma-Delta DAC

15: Oversampling (2) [Johns & Martin, 2012]

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- J. M. de la Rosa and R. del Rio, CMOS Sigma-Delta Converters: Practical Design Guide, Wiley, 2013.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012.
- Y. Chiu, EECT 7327, UTD.

15: Oversampling (2)

Thank you!

15: Oversampling (2)