# 서울시 오존 농도 시계열 예측



# 착한 오존?

성층권의 오존은 해로운 자외선이 지표면에 도달하기 전에 흡수하여 지구의 생명체를 보호해주는 역할을 하기 때문에 '착한 오존'이라고 불립니다.



# 나쁜 오존?

성층권에서 우리를 보호해주는 오존은 지상에서는 유해한 존재가 될 수 있다는 사실! 대류권에 있는 오존은 사람의 호흡기나 눈을 자극하고, 농작물에도 피해를 주기 때문에 '나쁜 오존'이라고 불립니다.

| 7분       |        | 예보등급            |                |                 |               |       |
|----------|--------|-----------------|----------------|-----------------|---------------|-------|
| 예측농<br>도 | 좋음     | 보통              | 민감군            | 나쁨              | 매우나<br>쁨      | 위험    |
|          | 0~0.04 | 0.041~<br>0.080 | 0.081~<br>0.12 | 0.121~<br>0.300 | 0.301~<br>0.5 | 0.501 |

출처: 웨더뉴스

### **TABLE OF CONTENTS**







#### **DATA**

TIME:2000.01

~ 2021.07

COUNT:139

단위: ppm



MIN: 0.009

1ST QU:0.015

**MEDIAN:0.024** 

3RD QU:0.03



| 구분       | 예보등급       |    |         |                     |          |      |
|----------|------------|----|---------|---------------------|----------|------|
| 예측<br>농도 | 좋음         | 보통 | 민감<br>군 | 나쁨                  | 매우<br>나쁨 | 위험   |
|          | 0~0.<br>04 |    |         | 0.12<br>1~0.<br>300 |          | 0.50 |

SOURCE: 환경부

# DATA PLOT(서울)



#### Series data



#### Series data



## **DATA DECOMPOSITION**

- TREND
- SEASONALITY



차분 & 계절 차분

#### Decomposition of additive time series



# (계절차분 후)1번 차분

# (계절차분 후)2번 차분



큰 차이 없어서 1번차분 선택







ARIMA(2,1,0)(0,1,1)
ARIMA(1,1,0)(1,1,0)
ARIMA(0,1,0)(1,1,1)
ARIMA(0,1,1)(2,1,1)
ARIMA(0,0,0)(0,1,1)
ARIMA(0,0,0)(2,1,0)



# 잔차 검정(p-value)

|                     | ARIMA(2,1,0)(0, 1,1) | ARIMA(1,1,0)(1,<br>1,0) | ARIMA(0,1,0)(1,<br>1,1) | ARIMA(1,1,1)(0,<br>1,0) | ARIMA(0,0,0)(1,<br>1,0) | ARIMA(0,0,0)(2,<br>1,0) |
|---------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Ljung-Box Q         | 0.8539               | 0.0494                  | 0                       | 0.0044                  | 0.0989                  | 0.3474                  |
| McLeod-Li Q         | 1                    | 0.6517                  | 7e-04                   | 0.0105                  | 0.1838                  | 0.7857                  |
| Turning points<br>T | 0.0069               | 0.2802                  | 0.0103                  | 0.2802                  | 0.9462                  | 0.7872                  |
| Diff signs S        | 0.5582               | 0.3798                  | 0.1432                  | 0.0404                  | 0.0192                  | 0.0192                  |
| Rank P              | 0.877                | 0.439                   | 0.4742                  | 0.6217                  | 0.8713                  | 0.682                   |

## **INFORMATION CRITERIA**

|      | ARIMA(2,1,0)(0, 1,1) | ARIMA(1,1,0)(1, 1,0) | ARIMA(0,1,0)(1, 1,1) | ARIMA(1,1,1)(0, 1,1) | ARIMA(0,0,0)(1,<br>1,0) | ARIMA(0,0,0)(2,<br>1,0) |
|------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|
| RMSE | 0.00349181           | 0.004322327          | 0.004430695          | 0.004445668          | 0.004071558             | 0.003925299             |
| MAE  | 0.002410227          | 0.002882814          | 0.002927182          | 0.003002925          | 0.002700955             | 0.002566955             |
| MAPE | -2.763059            | 13.37884             | 12.91164             | 13.47914             | 11.777263               | 11.07753                |
| AIC  | -1025.64             | -992.95              | -960.37              | 987.84               | -1019.99                | -1025.64                |
| BIC  | -1014.297            | -984.4431            | -951.8654            | -979.3326            | -1014.304               | -1017.107               |

# FORECASTING(ARIMA(0,0,0)(2,1,0))

|      |      | Point Forecast | 10.80       | H1 X()     | 10.95       | H1 95      |
|------|------|----------------|-------------|------------|-------------|------------|
| Διια | 2021 |                | 0.019336317 |            |             |            |
|      | 2021 |                | 0.021450955 |            |             |            |
|      | 2021 |                | 0.015478481 |            |             |            |
|      | 2021 |                | 0.003470401 |            |             |            |
|      | 2021 |                | 0.000219390 |            |             |            |
|      | 2021 |                | 0.007400131 |            |             |            |
|      |      |                |             |            |             |            |
|      | 2022 |                | 0.014701207 |            |             |            |
|      | 2022 |                | 0.021005167 |            |             |            |
|      | 2022 |                | 0.029478817 |            |             |            |
| •    | 2022 |                | 0.031968466 |            |             |            |
| Jun  | 2022 | 0.04127744     | 0.036014678 | 0.04654021 | 0.033228740 | 0.04932614 |
| Jul  | 2022 | 0.03443695     | 0.029174185 | 0.03969971 | 0.026388247 | 0.04248565 |
| Aug  | 2022 | 0.02449818     | 0.018635282 | 0.03036109 | 0.015531649 | 0.03346472 |
| Sep  | 2022 | 0.02636878     | 0.020505879 | 0.03223168 | 0.017402246 | 0.03533532 |
| 0ct  | 2022 | 0.02113204     | 0.015269142 | 0.02699495 | 0.012165509 | 0.03009858 |
| Nov  | 2022 | 0.01375492     | 0.007892014 | 0.01961782 | 0.004788381 | 0.02272145 |
| Dec  | 2022 | 0.01262320     | 0.006760300 | 0.01848610 | 0.003656667 | 0.02158974 |
| Jan  | 2023 | 0.01425475     | 0.008391849 | 0.02011765 | 0.005288216 | 0.02322129 |
| Feb  | 2023 |                | 0.014137758 |            |             |            |
| Mar  | 2023 |                | 0.020259475 |            |             |            |
|      | 2023 |                | 0.029778314 |            |             |            |
|      | 2023 |                | 0.030241791 |            |             |            |
| Hay  | 2023 | 0.03010403     | 0.030241/31 | 0.04130733 | 0.02/130130 | 0.0430/123 |

#### Forecasts from ARIMA(0,0,0)(2,1,0)[12]



## NO<sub>2</sub>





### NO<sub>2</sub>



#### Series data2



#### Series data2



Series: data2 ARIMA(1,0,1)(0,1,1)[12] with drift

#### Coefficients:

ar1 ma1 sma1 drift 0.9309 -0.8010 -0.6100 -1e-04 s.e. 0.0745 0.1162 0.0896 1e-04

sigma^2 = 9.613e-06: log likelihood = 552.71 AIC=-1095.43 AICC=-1094.93 BIC=-1081.21

## NO<sub>2</sub>

#### **SARIMA**(0,0,0)(2,1,0)

#### **SARIMA**(1,0,1)(0,1,1)



#### **ADF.TEST**

## 1번 차분후 검정

Augmented Dickey-Fuller Test

data: ozon
Dickey-Fuller = -11.6, Lag order = 0, p-value = 0.01
alternative hypothesis: stationary

Warning message: In adf.test(ozon, k = 0): p-value smaller than printed p-value Augmented Dickey-Fuller Test

data: no2 Dickey-Fuller = -10.526, Lag order = 0, p-value = 0.01 alternative hypothesis: stationary

Warning message:
In adf.test(no2, k = 0) : p-value smaller than printed p-value

# VAR(8)모형

no2.18

const

0.3825976

0.0004574

0.1243519

0.0003745

```
> VARselect(set, lag. max=10, type='const')
$selection
AIC(n) HQ(n)
                     SC(n) FPE(n)
Estimated coefficients for equation ozon:
_____
call:
ozon = ozon. 11 + no2. 11 + ozon. 12 + no2. 12 + ozon. 13 + no2. 13 + ozon. 14 + no2. 14 + ozon. 15 + no2. 15 + ozon. 16 + no2. 16 + ozon.
n.17 + no2.17 + ozon.18 + no2.18 + const
     ozon. 11
               no2. 11
                         ozon. 12
                                   no2.12
                                             ozon. 13
                                                       no2.13
                                                                 ozon, 14
                                                                           no2.14
-0.8190598328 -0.0317211380 -0.5608199794 -0.0735423608 -0.3854174273 -0.0871300246 -0.2990041220
                                                                       0.3676391134
     ozon, 15
               no2.15
                         ozon. 16
                                   no2.16
                                             ozon, 17
                                                       no2.17
                                                                 ozon, 18
-0.2070856097 0.6652812038 -0.3526087188 0.6367448843 -0.3115239837 0.7888435298 -0.1790676066 0.3825976402
      const
 0.0004573635
               Estimate Std. Error t value Pr(>|t|)
  ozon. ll -0.8190598
                            0.0886793
                                           -9.236 1.79e-15
  no2.11
             -0.0317211
                            0.1214290
                                           -0.261
                                                     0.79439
  ozon. 12 -0. 5608200
                            0.0965206
                                          -5.810 5.85e-08
  no2.12
             -0.0735424
                            0.1376594
                                           -0.534
                                                     0.59423
  ozon. 13 -0.3854174
                            0.0898494
                                           -4.290 3.79e-05
  no2.13
             -0.0871300
                            0.1466426
                                          -0.594
                                                     0.55359
  ozon. 14 -0.2990041
                            0.0935175
                                          -3.197
                                                     0.00180
  no2.14
              0.3676391
                            0.1466427
                                            2.507
                                                     0.01360
  ozon.15 -0.2070856
                            0.1013731
                                           -2.043
                                                     0.04340
  no2.15
              0.6652812
                            0.1397045
                                            4.762
                                                    5.73e-06
  ozon.16 -0.3526087
                            0.1062286
                                           -3.319
                                                     0.00122
              0.6367449
  no2.16
                            0.1326727
                                          4.799 4.91e-06
  ozon. 17 -0.3115240
                            0.1022638
                                           -3.046
                                                     0.00288
  no2.17
              0.7888435
                            0.1273833
                                            6.193 9.82e-09
  ozon. 18 -0.1790676
                            0.0849458
                                           -2.108
                                                     0.03724
```

3.077

1.221

0.00263

0.22449

# **FORECASTING(VAR(8))**



# 정리

|                                                                   | SARIMA(0,0,0)(2,1,0)                | VAR(8)                                                                                              |
|-------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|
| MAX & MIN(미래 2년치 평균)                                              | 6월: 0.041481705<br>12월: 0.012673045 | 6월: 0.029302249<br>12월: 0.00308323                                                                  |
| 예보 등급                                                             | 6월: 보통<br>12월: 좋음                   | 6월: 좋음<br>12월: 좋음                                                                                   |
| MAX증가폭<br>MAX감소폭                                                  | 3월~4월<br>7월~8월                      | 2월~3월<br>6월~7월                                                                                      |
| MSPE for 1-step ahead prediction covariance maxtrix of residuals: | sigma^2 estimated as 1.686e-05:     | Covariance matrix of residuals:<br>no2 ozon<br>no2 1.037e-05 2.116e-07<br>ozon -9.116e-07 1.781e-05 |

## 정리



출처: 케이웨더

# THANK YOU!

CREDITS: This presentation template was create d by Slidesgo, including icons by Flaticon, and info graphics & images by Freepik.