CSE 100: Algorithm Design and Analysis Chapter 03: Growth of Functions

Sungjin Im

University of California, Merced

Last Update: 01-27-2023

Never allow waiting to become a habit. Live your dreams and take risks.

Life is happening now.

Unknown?

Outline

- ▶ Asymptotic notations. Comparing asymptotic quantities.
- Mathematical notations.

Asymptotic notations

Asymptotically,

- O: at most, \leq . Ω : at least, \geq . Θ : equal, =. o: < (will be skipped). w: > (will be skipped).

Notation T(n)

We often use T(n) to denote the (maximum) running time of our algorithm for any input of size n. T is usually assumed to be a function whose domain is $\{0,1,2,...,\}$. (You can also use A,B,C,... whatever you like..)

Eg. In the sorting problem, n is the number of 'elements/numbers.'

(The input size can be described by multiple parameters. For example, if the input is a graph, then we often use T(m, n) where m and n refer to the numbers of edges and vertices, respectively.)

$$O(n) = O(2n) = O(3n+5)$$

Definition 2n 1 € 0(n)

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } \underline{c} \text{ and } n_0 \}$$

st. $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

So, technically $f(n) \in O(g(n))$ makes more sense than f(n) = O(g(n)) But the latter is more popular.

We say that g is an asymptotic upper bound for f.

 $\begin{cases} 2n^2 \leq Cn^3 \\ for all n \geq n_6 \end{cases}$ C=2 n=1 (=1 N= 2

Eg. $2n^2 = O(n^3)$ since the condition holds

Definition

 $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ s.t. } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

So, technically, $f(n) \in O(g(n))$ makes more sense than f(n) = O(g(n)). But the latter is more popular. We say that g is an asymptotic upper bound for f.

Eg. $2n^2 = O(n^3)$ since the condition holds for c = 1 and $n_0 = 2$.

O-notation Informal definition

O(g(n)) is the family of functions that are asymptotically smaller than or equal to g(n).

So, f(n) = O(g(n)) means $f(n) \le g(n)$ 'asymptotically'.

O-notation Examples

O-notation Examples

Examples of (functions in) $O(n^2)$:

 \triangleright 10000 $n^2 + 500n$

Examples

- $ightharpoonup 10000n^2 + 500n$
- \triangleright 50($\sqrt[n]{2}$)² + 2015

Examples

- $ightharpoonup 10000n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ► 100 ≤ " n" = ()(N)

Examples

- $ightharpoonup 10000n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ▶ 100
- $\triangleright n^{1.99} \leq n^{2}$

Examples

- \triangleright 10000 $n^2 + 500n$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$
- ▶ 100
- $n^{1.99}$

Examples

- $ightharpoonup 10000n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100
- $n^{1.99}$
- $ightharpoonup n \log n$
- $ightharpoonup 1000 n^2 \log n$

Examples

$$10000n^2 + 500n$$

- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100
- $n^{1.99}$
- \triangleright $n \log n$

Examples

- $ightharpoonup 10000n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100
- $n^{1.99}$
- $ightharpoonup n \log n$
- $ightharpoonup 1000 n^2 \log n \text{ (No!!!!)}$
- $(n^2) \log n$

Examples of (functions in) $O(n^2)$:

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100
- $n^{1.99}$
- \triangleright $n \log n$
- ► $1000n^2 \log n$ (No!!!!)
- $ightharpoonup n^2/\log n$

So, you can say $n^2/\log n = O(n^2)$, but not $n^2\log n = O(n^2)$. Note that f = O(g) does not imply g = O(f).

Intuitive understanding

$$2^{\eta} = x$$
.
 $1 + x = x$.

1.
$$\log n < (n) < (2^n)$$

So, $(\log n)^{100} = O(n)$ and $n^{10000} = O(2^n)$.

2. Substitution.

We can derive $\log n = O(n)$ from $n = O(2^n)$ by setting $n = \log_2 k$.

3. Keep the most significant term and drop its coefficient along with floor/ceiling.

Eg.
$$100 + 50n^3 \log n + (50n^5) = O(1)$$

But don't mess up with exponents! Eg. 2^{4n} vs 2^n .

$$2^{n} \ll 4^{n} = 2^{\frac{1}{2n}}$$

Intuitive understanding

4. Sufficient Condition.

If there exists a constant $c \ge 0$, such that $\lim_{n \to \infty} \frac{f(n)}{g(n)} \le c$, then f = O(g).

(Note: not a necessary condition)

L'Hôpital's theorem can be helpful: $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$ if both f(n) and g(n) go to infinity as $n\to\infty$.

$$\lim_{n\to\infty}\frac{n}{e^n}=\lim_{n\to\infty}\frac{1}{e^n}=0,\quad \Rightarrow \quad n=o(e^n).$$

O is transitive

 \leq_{α} \leq_{α} If f = O(g) and g = O(h), then f = 0

If f = O(g) and g = O(h), then f = O(h). So, if you order functions so that each function is O of the function right to it, then you asymptotically sorted functions in non-decreasing order.

Exercise: Asymptotic comparison/sorting Sort the following functions in asymptotically non-decreasing order: $n \log n + \log n$, $100 \sqrt{n} \log^4 n$, $4^n + 50$, $1000^{1000^{1000}}$ n >>> (fn.) (ooo.

Definition

 $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \}$ s.t. $0 \le cg(n) \le f(n)$ for all $n \ge n_0\}$.

So, technically, $f(n) \in \Omega(g(n))$ makes more sense than $f(n) = \Omega(g(n))$. But the latter is more popular. We say that g is an asymptotic lower bound for f.

Eg.
$$n^2 - 10n = \Omega(n^2)$$
 since the condition holds

Definition

 $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ s.t. } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$

So, technically, $f(n) \in \Omega(g(n))$ makes more sense than $f(n) = \Omega(g(n))$. But the latter is more popular. We say that g is an asymptotic lower bound for f.

Eg. $n^2-10n=\Omega(n^2)$ since the condition holds for c=1/2 and $n_0=100$.

Informal definition

 $\Omega(g(n))$ is the family of functions that are asymptotically greater than or equal to g(n).

So, $f(n) = \Omega(g(n))$ means $f(n) \ge g(n)$ 'asymptotically'.

$\Omega\text{-notation}$

Examples

$\Omega\text{-notation}$

Examples

Examples of (functions in) $\Omega(n^2)$:

 \triangleright 10000 n^2 + 500n

Examples

- $ightharpoonup 10000n^2 + 500n$
- $> 50(\sqrt[4]{n/2})^2 + 2915$

Examples

- $ightharpoonup 10000n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ▶ 100

Examples

- $ightharpoonup 10000n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ► 100 (No!!!!)

Examples

- $ightharpoonup 10000n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ▶ 100 (No!!!!)
- $n^{1.99}$

Examples

- \triangleright 10000 $n^2 + 500n$
- ► $50(\lceil n/2 \rceil)^2 + 2015$
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- $ightharpoonup n \log n$

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)
- $ightharpoonup 1000 n^2 \log n$

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)
- ▶ $1000n^2 \log n$ (Yes)

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99} (No!!!!)$
- ▶ n log n (No!!!!)
- $ightharpoonup 1000 n^2 \log n \text{ (Yes)}$
- $ightharpoonup n^2/\log n$

Examples

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)
- $ightharpoonup 1000 n^2 \log n$ (Yes)
- ▶ $n^2/\log n$ (No!!!!)

Examples

Examples of (functions in) $\Omega(n^2)$:

- \triangleright 10000 $n^2 + 500n$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99} (No!!!!)$
- ▶ n log n (No!!!!)
- ▶ $1000n^2 \log n$ (Yes)

So, you can say $n^2 \log n = \Omega(n^2)$, but not $n^2 / \log n = \Omega(n^2)$. !!Note that $f = \Omega(g)$ does not imply $g = \Omega(f)$.

Definition

 $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \}$ s.t. $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

As before, people prefer to say $g(n) = \Theta(f(n))$.

We say that g is an asymptotically tight bound for f.

Theorem

 $f = \Theta(g)$ if and only if f = O(g) and $f = \Omega(g)$.

Θ-notation Informal definition

 $\Theta(g(n))$ is the family of functions that are asymptotically equal to g(n).

So, $f(n) = \Theta(g(n))$ means f(n) = g(n) 'asymptotically'.

⊖-notation Examples

Θ-notation Examples

Examples of (functions in) $\Theta(n^2)$:

 \triangleright 10000 $n^2 + 5000$

⊖-notation Examples

►
$$10\underline{000n^2} + 500n$$
 (Yes) ϵ $O(n^2)$, $\Omega(n^2)$

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ► $50(\lceil n/2 \rceil)^2 + 2015$

⊖-notation Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ▶ 100

Θ -notation

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ► 100 (No!!!!) : ← D(M²) , ♠ \(\mathcal{L}\)(m²)

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ▶ 100 (No!!!!)
- $n^{1.99}$

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- \triangleright 50($\lceil n/2 \rceil$)² + 2015 (Yes)
- ► 100 (No!!!!)
- ► $n^{1.99}$ (No!!!!) $\sim \not \sim \not \sim \not \sim (\mathring{\mathcal{N}})$

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ► $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- \triangleright $n \log n$

Θ -notation

Examples

- $ightharpoonup 10000n^2 + 500n ext{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ▶ 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► n log n (No!!!!)
- ► $1000n^2 \log n$ $\stackrel{\checkmark}{\sim} \stackrel{\checkmark}{\sim} O(N^2)$ $\in \Omega(N^2)$

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99}$ (No!!!!)
- ► *n* log *n* (No!!!!)
- ► $1000n^2 \log n$ (No!!!)

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99} (No!!!!)$
- ▶ n log n (No!!!!)
- ► $1000n^2 \log n$ (No!!!)

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99} (No!!!!)$
- ▶ n log n (No!!!!)
- ► $1000n^2 \log n$ (No!!!)
- $n^2 / \log n$ (No!!!!)

Examples

- $ightharpoonup 10000n^2 + 500n \text{ (Yes)}$
- ▶ $50(\lceil n/2 \rceil)^2 + 2015$ (Yes)
- ► 100 (No!!!!)
- $ightharpoonup n^{1.99} (No!!!!)$
- ▶ n log n (No!!!!)
- ► $1000n^2 \log n$ (No!!!)
- $n^2 / \log n$ (No!!!!)

Transitivity

▶ $f = \Theta(g)$ and $g = \Theta(h)$ imply

Transitivity

• $f = \Theta(g)$ and $g = \Theta(h)$ imply $f = \Theta(h)$.

- $f = \Theta(g)$ and $g = \Theta(h)$ imply $f = \Theta(h)$.
- ightharpoonup f = O(g) and g = O(h)

- $f = \Theta(g)$ and $g = \Theta(h)$ imply $f = \Theta(h)$.
- f = O(g) and g = O(h) imply f = O(h).

- $f = \Theta(g)$ and $g = \Theta(h)$ imply $f = \Theta(h)$.
- f = O(g) and g = O(h) imply f = O(h).
- ▶ $f = \Omega(g)$ and $g = \Omega(h)$

Transitivity

- $f = \Theta(g)$ and $g = \Theta(h)$ imply $f = \Theta(h)$.
- f = O(g) and g = O(h) imply f = O(h).
- $f = \Omega(g)$ and $g = \Omega(h)$ imply $f = \Omega(h)$.

Symmetry

• $f = \Theta(g)$ if and only if $g = \Theta(f)$.

Transpose Symmetry

• f = O(g) if and only if $g = \Omega(f)$.

O and Θ in equations and inequalities

In equation, we may use O() or $\Theta()$ to refer to a function that we do not care to name. For example, say we want to hide messy details of $2n^3 + n^2 + 10n + 5$. Then, we can simply say $2n^3 + n^2 + 10n + 5 = 2n^3 + O(n^2)$ or $2n^3 + n^2 + 10n + 5 = 2n^3 + O(n^2)$.

O and Θ in equations and inequalities

In equation, we may use O() or $\Theta()$ to refer to a function that we do not care to name. For example, say we want to hide messy details of $2n^3 + n^2 + 10n + 5$. Then, we can simply say $2n^3 + n^2 + 10n + 5 = 2n^3 + O(n^2)$ or $2n^3 + n^2 + 10n + 5 = 2n^3 + \Theta(n^2)$.

If we want to simplify it further, we can say $(2n^3 + \Theta(n^2)) = \Theta(n^3)$, meaning that for any function in $\Theta(n^2)$, the LHS is in $\Theta(n^3)$.

Asymptotic notation in summation or recursion

Examples:

Asymptotic notation in summation or recursion

Examples:
$$T(n) = 2T(n/2) + O(n)$$

Asymptotic notation in summation or recursion

Examples:

- T(n) = 2T(n/2) + O(n)
- $\triangleright \sum_{i=1}^n O(i)$. $\leq ci$.

Mathematical notation

- ▶ f is monotonically increasing (or equivalently non-decreasing) if (m < n) implies $f(m) \le f(n)$.
- ▶ f is monotonically decreasing (or equivalently non-increasing) if $m \le n$ implies $f(m) \ge f(n)$.
- f is strictly increasing if m < n implies f(m) < f(n).
- f is strictly decreasing if m < n implies f(m) > f(n).

Mathematical notation in this book

- ▶ $\lg n = \log_2 n$ (binary \log).
- ▶ $\ln n = \log_e n$ (natural log).
- $\blacktriangleright \lg^k n = (\lg n)^k.$
- $\blacktriangleright \lg \lg n = \lg(\lg n).$