携帯マルチメディア・プロセッサ 技術情報

技術通知		文書番号		R19TU0001JJ0400			1/13			
			発行日		2013年8月23日					
EMMA Mobile EV(Ver.3)										
使用制限事項の件			発行元		ルネサスモバイル株式会社					
文書分類	0	使用制限事項		バージョン・ア	アップ		ドキュメント修正		その他	
関連資料	連資料 Multimedia Processor for Mobile Applications EMMA Mobile EV2 User's Manual 各編(下記参照)									

Document Name	Document No.	Document Name	Document No.	
1chip	R19UH0036EJxxxx	LP-DDR/DDR2 Controller	R19UH0039EJxxxx	
System Management Unit	R19UH0037EJxxxx	SD Memory Card Interface	R19UH0061EJxxxx	
Rotator	R19UH0057EJxxxx	CF Card Interface	R19UH0062EJxxxx	
Image Composer	R19UH0038EJxxxx	Unified Serial Interface	R19UH0047EJxxxx	

[※]末尾4桁は版数を示す

1. 対象製品

EMMA Mobile EV

製品名: μPD7764xB, μPD7764xC, MC-10280A

本文書では、上記製品における制限事項について記載します。

2. 発行文書履歴

EMMA Mobile EV 使用制限事項一覧 発行文書履歴

文書番号	発行日	記事
R19TU0001JJ0100	2011年5月31日	
R19TU0001JJ0200	2011年7月12日	制限事項 No.9 誤記訂正
R19TU0001JJ0300	2011年10月18日	制限事項 No.16 追加
R19TU0001JJ0400	2013年8月23日	制限事項 No.17 追加

3. 使用制限事項の詳細

制限事項一覧

No.	制限概要
1	SDC の DMA 不具合
2	USI(PCM)使用時、Tx 送信開始の先頭に不正データが出力
3	ROT で RGB565 時に画像が乱れる
4	A3D のクロック自動制御制限
5	AHB_HCLK,AHB_CLK,PBL0_CLK,PBL1_CLK のクロック自動制御制限
6	LCD 同期モードで、IMC_REFRESH レジスタ Write できない場合がある
7	INTT のローカルタイマー使用不可
8	CPU のクロック同期モード使用不可
9	SDC で Read 時に DMA 転送が停止する場合がある
10	SDC DMA Write バースト転送使用不可
11	<u>CFI の DMA 転送使用不可</u>
12	IMC/IMCW マクロ内部のクロック自動制御機能使用不可
13	USI PCM モードにて不正データが出力される
14	LCD Underrun が発生する場合がある
15	USI PCM モードで R チャネルにデータが出ない場合がある
16	メモリ I/F の CS0 と CS1 の両方にメモリを接続した場合、自動セルフリフレッシュ機能
	を使用することができない
17	USB2.0 Host/Device での高速挿抜時に再接続しても正常に認識できない場合がある

(表内の制限概要<u>詳細</u>をクリックすると該当ページにジャンプします)

4. 使用制限事項の詳細

No.1. SDC の DMA 不具合

■内容

•事象:

①SDリード・ライト転送において、誤ったアドレスにリード・ライトされる。

什様:

SDリード転送時のアドレスはSDC_RXMEM_ADDROL/Hレジスタに設定した値、SDライト転送時のアドレスはTX MEMADDROレジスタに設定したとなる。

実際の動作:

SDライト転送時にSDC_TXMEM_ADDR0L/Hレジスタ設定値でなく
SDC_RXMEM_ADDR0L/Hレジスタ設定が、SDリード転送時にSDC_RXMEM_ADDR0L/Hレジスタ設定値でなくSDC TXMEM ADDR0L/Hレジスタ設定値が反映される場合がある。

②SDライト転送時、SDCのアドレス(0xe210_0000~0xe210_0200)にアクセスするとDMA転送が停止する。

•条件:

- ①はAHBマスターIFのDMA機能を使用した場合で、SDリード・ライトの場合に発生。
- ②はAHBマスターIFのDMA機能を使用した場合で、ライトDMAのみで発生。リードは問題ない。

■対処方法·回避策

① の回避策

転送開始前にSDC_TXMEM_ADDR0L/HとSDC_RXMEM_ADDR0L/Hに同一のアドレスを設定してください。

② の回避策

DMA転送の完了は、割り込み、もしくはSDC_INT_ORGレジスタポーリングで検出してください。

デバッグ中にDMA転送中にICEのSDCモジュールレジスタのモニタをオンにした場合、ICEプログラムがSDCのレジスタ(0xe210_0000~0xe210_0200)にリードアクセスしてしまい、DMA転送が途中で停止する可能性がありますので注意してください。。

(資料参考: SD Memory Card Interface User's Manual R19UH0061EJxxxx)

No.2. USI (PCM) 使用時、Tx 送信開始の先頭に不正データが出力

■内容

•事象:

USI(PCM)の Tx 送信開始時、先頭に不正データ(high レベル)が出力される可能性があります。

•条件:

以下の設定条件にて、送信実行(PCM_TXRX_EN.TX_EN="1")する場合

- ① mode0+Left アジャスト時
 - -PCM_FUNC_SEL.MODE_SEL="000"
 - -PCM FUNC SEL.LR AJUST="0"
- ② mode1+Left アジャスト時
 - -PCM_FUNC_SEL.MODE_SEL="001"
 - -PCM_FUNC_SEL.LR_AJUST="0"
- ③ mode2 時
 - -PCM_FUNC_SEL.MODE_SEL="010"
- ④ mode3 時
 - -PCM_FUNC_SEL.MODE_SEL="011"
- ⑤ mode5 時
 - -PCM_FUNC_SEL.MODE_SEL="101"
- ⑥ mode6 時
 - -PCM_FUNC_SEL.MODE_SEL="110"

■対処方法·回避策

送信許可(TX_EN="1")設定の前後に、PCM_TXQにall "0"(無音)データをライトしてください。

- 1. PCM_TXQにall "0"ライト 送信許可前の準備動作であり、本all "0"データは破棄される(実際に送信されることはない)
- 2. 送信許可(PCM_TXRX_EN.TX_EN= "1")設定
- 3. PCM_TXQに1フレーム分のall "0"ライト 送信データの最初の1フレームは、必ずall "0" データが送信される。
- 4. データ送信開始(送信DMA起動/PCM TXQに送信データライト)

(資料参考: Unified Serial Interface User's Manual R19UH0047EJxxxx)

No.3. ROT で RGB565 時に画像が乱れる

■内容

•事象:

ROTで RGB565 処理時、画像が乱れる。(横線または縦線が入る。)

•条件:

- Raster Order Mode時
- -RGB565(SRCFMT_CH0[2:0] = 0x2) 処理を行った場合

■対処方法·回避策

Rasterモードを使わないか、もしくはRasterモード使用時はSRCFMT_CH0[2:0] に 0x2以外を設定してください。

(資料参考: Rotator User's Manual R19UH0057EJxxxx)

No.4. A3D のクロック自動制御制限

■内容

•事象:

A3D_MEM_CLKとA3D_CORE_CLKの自動制御ONにした状態で、A3D機能を使用すると、CPUがハングアップする可能性があります。

•条件:

-A3D_MEM_CLK, A3D_CORE_CLK のクロック自動制御ON時

■対処方法·回避策

A3D 起動時に下記を設定してください。 AHBCLKCTRL1[16]=0:A3D_MEM_CLK自動制御OFF CLKCTRL[2]=0:A3D_CORE_CLK自動制御OFF

(資料参考: System Management Unit User's Manual R19UH0037EJxxxx)

No.5. AHB_HCLK,AHB_CLK,PBLO_CLK,PBL1_CLK のクロック自動制御制限

■内容

•事象:

AHB_HCLK,AHB_CLK,PBL0_CLK,PBL1_CLKのクロック自動制御ONにしているとSIO,M2P,P2Mモジュールが正常動作しない。

•条件:

- -AHB_HCLKの自動制御ON時
- -AHB_CLKの自動制御ON時
- -PBL0 CLKの自動制御ON時 かつM2P/P2M DMA転送時
- -PBL1_CLKの自動制御ON時 かつM2P/P2M DMA転送時

■対処方法・回避策

- SIO,P2M 使用時 起動前に下記を設定してください。 AHBCLKCTRL0 [31:0] = 0x03373271 (AHBHLP, AHBLP ⇒ 0x0 (自動制御 OFF))

- M2P 使用時

起動時に上記 SIO,P2M 起動時の設定に加え、M2P の reset 解除後に下記を設定してください。 AHBCLKCTRL0 [31:0] = 0x03373271 (AHBHLP, AHBLP ⇒ 0x0 (自動制御 OFF)) BUS1_M2P_CONF [31:0] = 0x00000008

(資料参考: System Management Unit User's Manual R19UH0037EJxxxx 1chip User's Manual R19UH0036EJxxxx)

No.6. LCD 同期モードで、IMC_REFRESH レジスタ Write できない場合がある

■内容

•事象:

LCD同期モードで、レジスタ設定を完了後、更新予約レジスタ(IMC_REFRESH)に1をWriteしても、レジスタ更新割り込みが発行できない場合がある。

•条件:

- -LCD同期モードで動作時
- -IMC REFRESHに1をWriteし、レジスタ更新割込みを使用する場合

■対処方法·回避策

LCD 同期モードで IMC_REFRESH に 1 を Write した後、IMC_REFRESH を Read して状態確認を 行い、IMC_REFRESH=0 の場合は再度更新予約レジスタに 1 を Write してください。

(資料参考: Image Composer User's Manual R19UH0038EJxxxx)

No.7. INTT のローカルタイマー使用不可

■内容

•事象:

INTTのローカルタイマーのTimer Counter Registerに100usec以内に2回書き込みを行うと、Timerが停止します。

•条件:

- -OneShot 動作時
- ■対処方法·回避策

INTT のローカルタイマーを使用しないでください。

No.8. CPU のクロック同期モード使用不可

■内容

•事象:

CPU のクロック同期モードが使用できません。

■対処方法·回避策

電源 ON 後、PowerON モード時に CPU クロック非同期モードに変更してください。

(資料参考: System Management Unit User's Manual R19UH0037EJxxxx)

No.9. SDC で Read 時に DMA 転送が停止する場合がある

■内容

•事象:

SDCが初期化されていないとDMA転送が停止する可能性があります。

- •条件:
 - -DMA転送時 (Read)
- ■対処方法·回避策
 - 1. DMA 起動前に 0xe2100210 レジスタに 0x7 を Write。
 - 2. 0xe2100210 レジスタに 0x0 を Write し、内部状態をクリアしてください。

(資料参考: SD Memory Card Interface User's Manual R19UH0061EJxxxx)

No.10. SDC DMA Write バースト転送使用不可

■内容

•事象:

SDCにおいてDMA Writeバースト転送時転送が停止する可能性があります。

•条件:

-DMAでバースト転送時 (Write)

■対処方法·回避策

```
DMA Write は、シングル転送で行ってください。
-SDC_BUSIF_CTRL[2:1]=0x0
```

(資料参考: SD Memory Card Interface User's Manual R19UH0061EJxxxx)

No.11. CFIの DMA 転送使用不可

■内容

•事象:

CFIのDMA転送を使用すると転送データが不正になる可能性があります。

•条件:

- DMA転送時 (Single, Burst問わず)
- DMA FIFO (DMA専用FIFO) Full時 (高負荷時にはDMA FIFO Fullが発生)
- -PIOモードのみ

■対処方法·回避策

DMA 転送を使用せず、CPU 転送を使用してください。

(資料参考: CF Card Interface User's Manual R19UH0062EJxxxx)

No.12. IMC/IMCW マクロ内部のクロック自動制御機能使用不可

■内容

•事象:

IMC/IMCW内部のクロック自動制御機能は使用できません。非使用としてください。

- •条件:
 - 一特になし
- ■対処方法·回避策

下記設定で非使用としてください。 IMC_CONTROL[19:8]=0 IMCW_CONTROL[19:8]=0

(資料参考:Image Composer User's Manual R19UH0038EJxxxx)

No.13. USI PCM モードにて不正データが出力される

■内容

•事象:

USIのPCM送信停止時に、最終データ直後に不正データ(highレベル)が出力される。

- •条件:
 - ーエラッタNo.2と同等。
- ■対処方法・回避策

送信停止直前に128byte以上のall'0'(無音)データをPCM_TXQにWriteしてください。 (送信の最終データ128byte以上をall'0'データとしてください。)

- 1. PCM_TXQに128byte以上のall'0' Write(送信の最終データ128byte以上をall'0'データとする)
- 2. PCM_TXQへのデータWriteを停止
- 3. PCM_TXRX_DIS.TX_ENCLR='1' Write(送信禁止)

(手順3は以下でも可)※手順2~手順3の時間間隔が長い場合、以下と同等になる場合があります。

- 3. 1. FIFO Under Run検出までwait(割り込み待ち、ステータスポーリング等、) →FIFO Under Run検出により送信停止
- 3. 2. PCM_TXRX_DIS.TX_ENCLR='1' ライト ※Under Run発生状態からの復旧処理 (必要に応じて、割り込みステータスクリア等も実施)

(資料参考: Unified Serial Interface User's Manual R19UH0047EJxxxx)

No.14. LCD Underrun が発生する場合がある

■内容

•事象:

DRAMからの画像データリードがLCD表示に間に合わない場合にLCD Underrunが発生します。 LCD Underrunが発生すると、以降画像が正しく表示されないため、LCDCにリセットをかける必要があります。その瞬間にLCDの表示が中断し画面が黒くなります。

•条件:

CPUの連続Writeが発生した場合

■対処方法·回避策

下記のレジスタ設定にてLCD Underun対策機能を有効にしてください。

 $-MEMC_DEGFUN[10] = 1'b1$

さらに、L2 Cacheのwrite-allocation設定とCPU WriteのBand幅を1/2~1/3に制限することでCPU 連続ライトを抑止できます。

L2 Cache設定はCortex-A9のUMを参照ください。

CPU Write Band幅設定はBUS1 CPU CONFレジスタを参照してください。

(資料参考: LP-DDR/DDR2 Controller User's Manual R19UH0039EJxxxx 1chip User's Manual R19UH0036EJxxxx)

No.15. USI PCM モードで R チャネルにデータが出ない場合がある

■内容

•事象:

USI PCMモード時に下記条件の場合にRチャネルにデータが出ません。

•条件:

PCM_CYCLEレジスタのTX_PD=1、かつ、CYC_VAL=SOB (Tx/Rx同時起動の場合はCYC_VAL=SIB)。

■対処方法・回避策

TX_PD=0 とする。または、CYC_VAL>SOB(CYC_VAL>SIB)設定にてしてください。
CYC_VAL=SOB の時、TX_PD=1 は使用しないでください。

(資料参考: Unified Serial Interface User's Manual R19UH0047EJxxxx)

No.16. メモリI/FのCSOとCS1の両方にメモリを接続した場合、自動セルフリフレッシュ機能を使用することができない

■内容

事象:

メモリI/FのCS0とCS1の両方にメモリを接続して使用する場合、自動セルフリフレッシュ機能を使用するとメモリコントローラがハングアップする可能性があります。

•条件:

メモリI/FのCS0とCS1の両方にメモリを接続し、MEMC_DDR_CONFIGR2レジスタ (0xE00A2018) のCOUNT_COMMONビットの値が"1"、もしくはCSx_SREF_COUNTビットの値が"1"(自動セルフリフレッシュ有効)で、CS0およびCS1両方のメモリ領域にアクセスした場合。

■対処方法·回避策

MEMC_DDR_CONFIGR2レジスタ(0xE00A2018)に0x1313FDFDを設定して使用してください。また、PMUコードも修正が必要となりますので詳細はお問い合わせください。 尚、本設定により自動セルフリフレッシュ機能が無効となるためDRAMの消費電力が増加しますので、消費電力を抑えたい場合はCS0のみ使用されることを推奨いたします。

(資料参考: LP-DDR/DDR2 Controller User's Manual R19UH0039EJxxxx)

No.17. USB2.0 Host/Device での高速挿抜時に再接続しても正常に認識できない場合がある

■内容

•事象:

USB2.0 Host/Device において Linuxドライバを用いた場合、デバイスの高速挿抜時に正常に認識出来ない場合があります。

•条件:

- High-Speed モード
- 2 ポートのうち 1 ポートへの接続がなく、もう1 ポートへの高速挿抜時

■対処方法・回避策

起動前 (Initialize PCI Configuration Registers for OHCI/EHCI) に下記を設定してください。 PCI Configuration Register (offset F8h) 0xE27100F8=0x0801001D

(資料参考: USB2.0 Host Controller User's Manual R19UH0045EJxxxx)

以上

