

Rodrigo Hernández Zavala 08 de marzo de 2025 Ing. Mecatrónica 22310215

Funcionamiento, Recomendaciones y Posibles mejoras de la practica 1

Visión Artificial

Objetivo de la Práctica: Carga y Visualización de Imágenes con OpenCV

El objetivo principal de esta práctica es **aprender a cargar, visualizar y manipular imágenes en OpenCV**, comprendiendo el manejo de formatos de color y la importancia de la conversión entre espacios de color.

Objetivos Específicos:

Comprender la carga de imágenes en distintos formatos (escala de grises y color). Distinguir la diferencia entre los espacios de color BGR y RGB y cuándo es necesario convertir entre ellos.

Aprender a visualizar imágenes correctamente en OpenCV y Matplotlib. Explorar el impacto del formato de color en la percepción de imágenes en visión artificial.

Resultado Esperado:

Al final de la práctica, el estudiante podrá cargar imágenes en **escala de grises y color**, mostrarlas correctamente en OpenCV y Matplotlib, y entender la necesidad de la conversión de espacios de color en diferentes entornos.

Carga y Visualización de Imágenes en OpenCV Explicación

OpenCV permite cargar imágenes en diferentes formatos:

- Escala de grises: cv2.IMREAD_GRAYSCALE
- Color (BGR): cv2.IMREAD COLOR
- Sin cambios: cv2.IMREAD UNCHANGED

Una vez cargada, la imagen puede mostrarse con cv2.imshow(), pero OpenCV usa el formato **BGR** en lugar de **RGB**.

Recomendaciones y Observaciones

```
-Siempre verifica si la imagen se cargó correctamente: if img is None:

print("Error: No se pudo cargar la imagen.")

exit()
```

-Para mostrar imágenes con **Matplotlib**, convierte de BGR a RGB con:

```
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(img_rgb)
plt.show()
```

Diferencia entre BGR y RGB Explicación

- OpenCV usa BGR (Blue-Green-Red) como formato por defecto.
- Otras herramientas como Matplotlib, PIL y muchas APIs gráficas usan RGB (Red-Green-Blue).
- Un píxel rojo en RGB es (255, 0, 0), pero en BGR es (0, 0, 255).

Recomendaciones y Observaciones

- -Si trabajas solo con OpenCV, no necesitas convertir el formato.
- -Si vas a usar Matplotlib u otras bibliotecas gráficas, usa la conversión:

```
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
```

Percepción del Color en Visión Artificial Explicación

La visión humana interpreta los colores basándose en tres componentes:

- Matiz (Hue): Tipo de color (rojo, verde, azul, etc.).
- Saturación (Saturation): Intensidad o pureza del color.
- Brillo (Brightness o Value): Cantidad de luz reflejada.

Recomendaciones y Observaciones

Para **segmentación de colores**, se recomienda convertir la imagen a **HSV** en lugar de usar BGR o RGB, ya que el matiz es más fácil de diferenciar. img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)

Percepción Humana y Procesamiento de Imágenes Explicación

 Percepción Acromática: Detección de tonos de gris en baja iluminación (visión nocturna).

- Sensibilidad Luminosa: Adaptación del ojo a diferentes niveles de luz.
- **Contraste:** Diferencia de brillo entre un objeto y su fondo.

Recomendaciones y Observaciones

-Para mejorar el contraste en imágenes digitales, usa **ecualización de histograma** con OpenCV:

img eq = cv2.equalizeHist(img gray)

-Si trabajas con imágenes en escala de grises, recuerda que los valores van de **0 (negro) a 255 (blanco)**.

Concepto	Explicación	Recomendaciones
Carga de imágenes	OpenCV usa cv2.imread() con diferentes modos (color, escala de grises, etc.).	Siempre verifica que la imagen se haya cargado correctamente.
BGR vs. RGB	OpenCV usa BGR , mientras que Matplotlib usa RGB .	Convierte con cv2.cvtColor(img, cv2.COLOR_BGR2RGB) si usas Matplotlib.
Matiz y Saturación	Definen el tipo y la intensidad del color.	Usa el espacio de color HSV para segmentación de colores.
Percepción luminosa	El ojo se adapta a la luz y el contraste.	Usa ecualización de histograma para mejorar imágenes con bajo contraste.

Conclusión

- -OpenCV es una herramienta poderosa para la visión artificial, pero es importante conocer cómo maneja los colores y la iluminación.
- -El formato BGR vs. RGB es clave cuando trabajamos con otras bibliotecas de visualización como Matplotlib.
- -El ojo humano tiene diferentes mecanismos de percepción, y conocerlos ayuda a mejorar el procesamiento digital de imágenes en sistemas de visión artificial.

```
File Edit Format Run Options Window Help

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
cv2.imshow('image',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


