1 Let A, B, C, and D be sets. Let $f: C \to D$, $g: B \to C$, and $h: A \to B$ and $x \in A$.

$$(f \circ (g \circ h))x = f \circ g(h(x))$$

$$= f(g(h(x)))$$

$$= (f \circ g)h(x)$$

$$= ((f \circ g) \circ h)x$$

The composition of functions $f \circ (g \circ h)$ and $(f \circ g) \circ h$. take x to the same element in D for any $x \in A$. Thus, $f \circ (g \circ h) = (f \circ g) \circ h$.

2 There are 3! = 6 permutations of $A = \{1, 2, 3\}$. We can construct a permutation f by mapping 1 to one of three possible elements. Then map 2 to one of two possible elements and 3 is mapped to the remaining element.

Define I, R, and F as

$$id: 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3$$

 $R: 1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1$

and

$$F: 1 \mapsto 2, 2 \mapsto 1, 3 \mapsto 3.$$

		Ι	R	F	R^2	FR	RF
123	I	I	R	F	R^2	FR	RF
231	R	R	R^2	RF	I	F	FR
213	F	F	FR	I	RF	R	R^2
312	R^2	R^2	I	FR	R	RF	F
321	FR	FR	RF	R^2	F	I	R
132	RF	RF	F	R	FR	R^2	Ι

The table has the same pattern as the table of triangle symmetries

3 (i) non-square rectangle

We can rotate by 0° , 180° , flip about a horizontal, and flip about a vertical axis to map the rectangle onto itself.

Symmetries: $\{R_{0^{\circ}}, R_{180^{\circ}}, H, V\}$

	R_0	R_{180}	Н	V
R_0	R_0	R_{180}	Η	V
R_{180}	R_{180}	R_0	V	Н
Н	Н	V	R_0	R_{180}
V	V	Н	R_{180}	R_0

(ii) The square has 8 symmetries. R^n is a counterclockwise rotation by 90° n-times. D is a flip about a diagonal going through the upper left and bottom right corners.

	I	R	R^2	R^3	D	RD	R^2D	R^3D
I	I	R	R^2	R^3	D	RD	R^2D	R^3D
R	R	R^2	R^3	I	RD	R^2D	R^3D	D
R^2	R^2	R^3	I	R	R^2D	R^3D	D	RD
R^3	R^3	I	R	R^2	R^3D	D	RD	R^2D
D	D	R^3D	R^2D	RD	I	R^3	R^2	R
RD	RD	D	R^3D	R^2D	R	I	R^3	R^2
R^2D	R^2D	RD	D	R^3D	R^2	R	I	R^3
R^3D	R^3D	R^2D	RD	D	R^3	R^2	R	I

$4 F^2 (RF)^3 F^{-1} (R^2)^{-1} F^3$

$$F^{2}(RF)^{3}F^{-1}(R^{2})^{-1}F^{3} = I(RF)^{2}(RF)F^{-1}(R^{2})^{-1}F \qquad \text{expand terms, rule 1, 4}$$

$$= (RF)^{2}R(R^{2})^{-1}F \qquad \text{rule 1, 4}$$

$$= (RF)(RF)R(R^{2})^{-1}F \qquad \text{expand terms}$$

$$= R(FR)(FR)(R^{2})^{-1}F \qquad \text{expand terms}$$

$$= R(FR)(FR)(R^{2})^{-1}F \qquad \text{Rule 4 (x2)}$$

$$= R(FR)(FR)(R^{2})^{-1}F \qquad \text{Rule 4 (x2)}$$

$$= R(R^{2}F)(FR)(R^{2})^{-1}F \qquad \text{Rule 2}$$

$$= IIR(R^{2})^{-1}F \qquad \text{Rule 1}$$

$$= R(R^{2})^{-1}F \qquad \text{Rule 3}$$

$$= RRF \qquad \text{Rule 1,4 imply } (R^{2})^{-1} = R$$

$$= FR \qquad \text{Rule 2}$$

5 (a)

$$(RF)(RF) = R(F(RF))$$
 Rule 4
 $= R((FR)F)$ Rule 4
 $= R((R^2F)F)$ Rule 2
 $= R(R^2I)$ Rule 3
 $= R^3$ Rule 4
 $= I$ Rule 1

(b)

$$F = IF$$
 Rule 3
 $= R^3F$ Rule 1
 $= R(R^2F)$ expand, Rule 4
 $= RFR$

(6) The six symmetries of a triangle expressed in matrix form:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$F = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$R^{2} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$FR = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$RF = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

All of them are invertible since the determinant for each is non-zero. They should be invertible since each operation can be undone.