HW# 5 Solm CS 721

2) For is1, n let ci be the cretual east of insuration.

Let Di represents the table that results after ; the operation performed on Di-1.

The amp amortized with \hat{c}_i of the ith operation is $\hat{c}_i = c_i + \phi(D_i) - \phi(D_{i-1})$

where $\phi(Di)$ is the potential function after operation i.

of elements in table I and size (T) to indicate rumbin size of the table.

(a) Accounting method

Consider the situation when atable of size m is full.

9t is expanded and all m items are capied to the new table. Now these m items does not have any credit to be capied further. And new insurted items must pay for them.

Suppose we charge a unit for each insurtion.

total credit = 2000. Out of the 2m months were pard (1 unit for each 2m insett).

thus remaining credit = 2 mc - 2 m. This eredit must be enough for tuture expension when our 3m items mud to be copied to the larger table of size 3x3m = 9m.

Therefore we must charge \$72 unit for each new item insurt.

For total on insuct, total amorbied with Ensuch is O(n)

(b) Potential method

At any point the table is at lest good one third full.

Note that any item, after insert, has 92-1=3/2 credit left. Therefore are define potential function to be $\emptyset(T)=\frac{3}{2}\left[\operatorname{rum}(T)-\operatorname{size}(T)\right]$

Donnediatoly after expension

$$rum(T) = \frac{size(T)}{3} + 1 \implies \phi(T) = \frac{3}{2} > 0.$$

Immediates before expension

$$rum(T) = size(T) \Rightarrow \phi(T) = \frac{3}{2} \left[size(T) - size(T) \right]$$

$$= -size(T) > 0$$

At any other point so num(T) > star(T) => \$\phi(T) 7,0.

Let ê: be the amortised cost of the ith appention.

then .ê: = Ci + \$\psi_i - \$\psi_{i-1}\$

9.f it table insert does not trigger expansion

C'121 (only copy this item)

$$\phi_i = \frac{3}{2} \left(rand rum(T) - \frac{1}{3} size(T) \right)$$

stre of the table is some. The number of items was I am during last insurt.

2. $\hat{e}_{i} = c_{i} + \phi_{i} - \phi_{i-1}$ $= 1 + \frac{3}{2} \left[\text{num}(T) - \frac{1}{3} \text{ share}(T) \right]$ $- \frac{3}{2} \left[\text{num}(T) - 1 - \frac{\text{share}(T)}{3} \right]$ $= 1 + \frac{3}{2} \text{num}(T) - \frac{1}{2} \text{ share}(T) - \frac{3}{2} \text{ num}(T)$ $+ \frac{3}{2} + \frac{1}{2} \text{ shar}(T)$ = 572.

Of ith table must toiggers table expansion

Ci = rum (T) rest to copy all rum (T) items.

Size of the table was 13th of the table size during

(i-i)th ensert.

$$\phi_{i+} = \frac{3}{2} \left[num(T) - \frac{1}{3} si Re(T) \right]$$

$$\phi_{i+} = \frac{3}{2} \left[num(T) - 1 - \frac{1}{3} \cdot \frac{si Re(T)}{3} \right]$$

Note that now rumbur of items satisfy.

$$-\frac{3}{2}\left[sum(T) - 1 - \frac{1}{3} - \frac{size(T)}{3} \right]$$

=
$$\frac{\text{size}(T)}{3} + 1 - \frac{1}{2} \text{size}(T) + \frac{3}{2} + \frac{1}{5} \text{size}(T)$$

$$= \frac{5}{2} + sir(T) \left\{ \frac{2-3+1}{6} \right\} = \frac{5}{2}.$$

- (3) Let clisi) be the minimum ust obtainable cohen storing j fills using bottles I through i.

 Using dynamic programming our solution call be

 E [77, W]
 - we will that weite solution of a problem in terms of solution of subproblems. While writing the expression of eli, i) we will consider whether the bottle i is used or not.
 - cose #1: Bottle i is used. Thus testale cost is ei plus oftimal cost of storing j-p; pill is bottles 1 thorough. (i-1).
 - Case #2: Bottle i is not ased. For gen this case of Heral cast is to stor of the pills on bottles I through (i-1).

Thus we can write

crini) = min { ci+cli-vi-pi] g c[i-vi] } (++)

So for so good.

Only problem is if 3-b; is regative.

Howeverte thus are new to consider the cost when bi >j.

In this case the pressors removemen relation become c [i,j] = minf ci, c[i+,j]}

Because ij- bottle i' is used it is not filled!

Thus, are have

$$c[i,j] = \begin{cases} min\{ci, c[i-1,j]\} & \text{if } pi > j \\ min\{ci+c[i-1,j-pi], c[i-1,j]\} & \text{if } p < j \end{cases}$$

of matix

cri-1, t) and cri-1, t) and

Thus as long as are fill the table reactive out sub problem solutions should be available.

for i + 1 to W

C [0, j] = 0,

for it I to m for it I to W if Pi \(\delta\) is cit \(\cent{5-1}\), \(\delta\)-Pi] with = \(\cent{ci}\) \(\cent{ci}\)

without = et i-1, 5]

cli, i] = min{ with, without]

Two nusta for books. Rung fine O(nW).

Thewast case is other the binary truis a lengthai (a) and addis new elements make this chain even longer.

Totaloost is To Insuct the ith element from

A it muds to visit the complete depth of the tree

before being Insula. That is not is (801+1).

 $\sum_{i=1}^{j=1} (\omega + i) = \sum_{i=1}^{j} \omega \omega + \sum_{i=1}^{j+1} z \quad \omega \omega + \omega \left(\frac{1}{\omega} + i \right) = O(\omega \omega + \omega_{\sigma})$

(b) come the desire come ion where the element one

Bush cope is when the tree is chair and all nods form a balance borners tree strating at the other child node,

= 0 (wpad u - vr); 2 pr2v+ 2 (pr2v-1) + 2 (pr2v-5)+...

- (a) colored red: No. Because it will be a red child of a rud node which will violate R-B true property.
 - colored block: No. Beaux it will richate the propul; that our paths from good node will have same number of internal block node.
 - (b) On longest porth every other node will be block, i.e., and and block nodes will alternate. In shortest path there will be no red nodes all block rodes.
 - (c) 22R-1 & (largest)
 This will happen when on in every path
 red and black nodes alternate.
 - Smallest: 2K-1. This will happen when the true has only black roods. No red nodes.
 - (d) The largest ratio is 2, when each black node has two red children.

 The smallest ratio is 0, when there are no gred rodes.