5 Problemas para avaliação: P2, P4, P5, P9, P10 e P11.

7 Problemas para estudo: P1, P3, P6, P7, P8, e P12.

P1 - A corrente na junção p-n em polarização directa

Considere um díodo de junção p-n de silício com concentração de impurezas dadoras e aceitadoras $N_d = N_a = 10^{16}$ cm⁻³. O díodo é polarizado directamente à temperatura ambiente e há uma queda de tensão de 0.6 V através dele. A área da secção transversal do díodo é de 0.5 mm². O tempo de recombinação de portadores minoritários depende da concentração de dopantes, N_{dopant} (cm⁻³), através da seguinte relação aproximada:

$$\tau \approx \frac{5 \times 10^{-7}}{\left(1 + 2 \times 10^{-17} N_{\text{dopant}}\right)}$$

A dependência da mobilidade de deriva dos portadores minoritários na concentração de dopante é dada no gráfico seguinte (as linhas e círculos vermelhos são apenas para ilustrar um par de leituras do gráfico).

Calcule a contribuição da corrente de recombinação para a corrente total do díodo.

P2 - A junção p^+n de Si em polarização directa e inversa (avaliação)

Considere um díodo longo de junção abrupta p^+n de silício com concentração de impurezas dadoras do lado n e aceitadoras do lado p, $N_d = 2 \times 10^{15}$ cm⁻³ e $N_a = 5 \times 10^{17}$ cm⁻³. Os tempos de recombinação de portadores minoritários são $\tau_h \approx 400$ ns para buracos do lado n e $\tau_e \approx 50$ ns para electrões do lado p^+ . A área da secção transversal do díodo é de 0.1 mm². O tempo de geração térmica na região de depleção é 2 μ s. Suponha que a corrente inversa é dominada pela taxa de geração térmica na região de depleção.

- a) Calcule a corrente direta a 27 °C quando a tensão no díodo é de 0.6 V.
- b) Estime a corrente direta a 57 °C quando a tensão no díodo ainda é 0.6 V.
- c) Qual é a corrente inversa a 27°C quando a tensão do díodo é -5V.
- d) Estime a corrente inversa a 57°C quando a tensão do díodo é –5V. Nota: Suponha que a corrente directa seja determinada pela equação de Shockley (difusão de portadores minoritários).

P3 – Junção p-n de GaAs em polarização directa

Considere uma junção p-n de GaAs dopada com $N_a = 1 \times 10^{17}$ cm⁻³ no lado p e $N_d = 1 \times 10^{15}$ cm⁻³ no lado n. Num semicondutor de bandgap directo a recombinação é directa (radiativa, band-to-band) e indirecta (não-radiativa, através de centros de recombinação). O coeficiente de recombinação direta é $B \approx 2 \times 10^{-16}$ m³ s⁻¹ e a sua relação com o tempo de vida dos portadores

minoritários é $Bn_{no} = \frac{1}{\tau_h}$ para o caso de buracos e *mutatis mutandis* para electrões. A área da

secção transversal é $A=1~\mathrm{mm}\times 1~\mathrm{mm}$. O tempo de recombinação indireta (não radiativa) é de aproximadamente 200 e 150 ns para electrões e buracos, respectivamente. Quais são a corrente de difusão nas regiões neutras do díodo e a de recombinação na região de carga espacial a 300 K quando a tensão de polarização directa é 0.80 V? A mobilidade de electrões e buracos é $\mu_e=0.4504~\mathrm{m}^2~\mathrm{V}^{-1}~\mathrm{s}^{-1}$ e $\mu_b=0.0430~\mathrm{m}^2~\mathrm{V}^{-1}~\mathrm{s}^{-1}$.

P4 - Capacidade da junção p-n (avaliação)

A capacidade (C) de uma junção Si p⁺n abrupta em polarização inversa foi medida em função da tensão de polarização inversa, V_r , conforme indicado na Tabela seguinte. A área da secção transversal da junção p-n é 500 μ m \times 500 μ m. Traçando o gráfico $1/C^2$ versus V_r , obtenha o potencial intrínseco, V_o , e a concentração de dadores, N_d , na região n. Qual é o valor de N_a ?

Tabela – Capacidade para diversos valores da tensão de polarização inversa (V_r)

$\overline{V_r(\mathbf{V})}$	1	2	3	5	10	15	20
C(pF)	38.3	30.7	26.4	21.3	15.6	12.9	11.3

P5 – Junção p-n linearmente calibrada e abrupta (avaliação)

A figura mostra uma junção **linearmente calibrada** de aceitadores (B) numa bolacha de Si tipo n. $N_a(x)$ é o perfil de aceitadores para tempos arbitrários de difusão dos átomos do gás B no silício. Ao fim do tempo t_2 (> t_1) as concentrações de dadores e de aceitadores são iguais em $x = x_j$. O processo é terminado para o valor desejado de x_j . A concentração líquida de dopantes é $(N_d - N_a)$, e numa vizinhança de x_j depende linearmente de x: $N_d - N_a = Bx$.

a) Sendo V a tensão aos terminais do dispositivo, mostre que o campo na junção, $E_{\rm max}$, e a largura da região de depleção, W, são dados por $E_{\rm max} = -\frac{eBW^2}{8\varepsilon}$ e $V_o - V = \frac{eBW^3}{12\varepsilon}$.

b) Usando as equações anteriores e
$$V_o = \frac{kT}{e} \ln \left(\frac{BW_o}{2n_i} \right)^2$$
 mostre que

$$W_o^2 = \frac{6\varepsilon V_o}{en_i \exp(eV_o/2kT)}.$$

- c) Considere uma junção Si p-n calibrada linearmente em que $V_o = 0.60 \text{ V}$. Quais são B e W_o para este dispositivo? Quanto vale $N_d N_a$ no final da região de depleção em $x = W_o/2$?
- d) Compare os resultados de c) com a largura da camada de depleção e as concentrações de dopantes para o dispositivo de junção abrupta com idêntico valor de $V_o = 0.60 \ {
 m V}.$

P6 - Injecção de portadores minoritários e corrente DC em díodos longos e curtos

Considere uma junção p-n unilateral (com dopagem p⁺ muito maior no lado p). Os portadores minoritários injectados (buracos) representam um excesso de carga Q_h na região neutra. (Também há excesso de carga de portadores maioritários, de modo que a região é neutra.)

- a) Mostre que $Q_h = I\tau_h$ para um díodo longo e $Q_h = I\tau_t$ para um díodo curto. τ_h e τ_t são os tempos de difusão ou de trânsito para os buracos ao longo da espessura da região tipo-n neutra, i.e., $\tau_t = \ell_n^2/2D_h$.
- b) Mostre que a capacidade difusiva nos dois casos é dada por $r_d C_{\mathrm{diff}} = au_h$ para o díodo longo e por $r_d C_{\mathrm{diff}} = au_t$ para o díodo curto. Compare os resultados.

P7 - A tensão intrínseca num semicondutor inomogéneo

Considere um semicondutor tipo n que é dopado não uniformemente com uma distribuição de impurezas dadoras $N_d(x)$. Mostre que o campo elétrico induzido no semicondutor em equilíbrio térmico denominado campo elétrico intrínseco, E(x), é dado por:

$$E(x) = -(kT/q). (1/N_d(x)).dN_d(x)/dx$$

Dica: a relação entre o campo interno e a distribuição de dopantes pode ser entendida por meio do diagrama de bandas de energia construído tomando o nível de Fermi, $E_{\rm F}$, como nível de referência e assumindo que todos os átomos de impureza são ionizados e que nenhuma parte do semicondutor é degenerado. A expressão desejada deriva da relação entre a energia do *midgap*, $E_{\rm i}$, e a energia de Fermi, $E_{\rm F}$.

P8 - Estudo de uma célula solar de silício

Considere uma célula solar de junção n^+ - p de silício com um emissor degenerado ($N_d > 10^{19}$ cm⁻³) e um substrato dopado, com N_a entre 10^{15} cm⁻³ and 10^{18} cm⁻³. Assuma a concentração de portadores intrínsecos à temperatura ambiente $n_i = 1.5 \times 10^{10}$ cm⁻³, $L_n = 100 \, \mu m$, $D_n = 36 \, \text{cm}^2/\text{s}$, e $I_L/A = 35 \, \text{mA/cm}^2$ onde A é a área da célula solar. Esses valores são considerados independentes da concentração de dopagem N_a .

- a. Determine a densidade de corrente de saturação I_0/A da junção n^+ p em função de N_a .
- b. A partir da corrente total do díodo sob iluminação em função da corrente gerada pela luz I_L , deduza uma expressão para a tensão de circuito aberto $V_{\rm oc}$ da célula solar.
- c. Calcule a tensão de circuito aberto *versus* a dopagem do substrato para $N_a = 10^{15}$ cm⁻³, 10^{16} cm⁻³, 10^{17} cm⁻³ and 10^{18} cm⁻³ sob iluminação AM1.5 (100 mW/cm²). Existe algum limite para esta evolução da tensão em circuito aberto?

P9 – O efeito da iluminação no desempenho da célula solar (avaiação)

Uma célula solar sob iluminação AM1.5 tem uma corrente de curto-circuito, I_{sc} = 50 mA e uma tensão de circuito aberto, V_{oc} = 0.65 V. Quais são a corrente de curto-circuito e a tensão de circuito aberto quando a intensidade da luz é reduzida pela metade? (Assuma o factor de idealidade do díodo, η = 1)

P10 - A resistência em série (avaliação)

A resistência em série causa uma queda de tensão quando uma corrente é extraída de uma célula solar. Se V for a tensão real na saída da célula solar (medida pelo utilizador), então a tensão no diodo é $V-IR_s$. Baseado no diagrama do circuito equivalente, trace os gráficos de I vs. V para uma célula solar de Si com $\eta=1.5$ e $I_o=3\times10^{-6}$ mA para uma iluminação que gera na célula $I_{ph}=10$ mA, para os valores de $R_s=0$, 20 and 50 Ω . Comente os resultados em termos do desempenho da célula solar.

P11 – A resistência em paralelo (shunt) (avaliação)

Considere a resistência *shunt* R_p de uma célula solar. Sempre que houver uma tensão V aos terminais da célula solar, a resistência *shunt* atrai uma corrente V/R_p . Baseado no diagrama do circuito equivalente, trace os gráficos de I vs. V para uma célula solar de Si com $\eta = 1.5$ e $I_o = 3 \times 10^{-6}$ mA para uma iluminação que gera na célula $I_{ph} = 10$ mA, para os valores de $R_p = \infty$, 1000, 100 Ω . Comente os resultados em termos do desempenho da célula solar.

P12 - Células solares ligadas em série

Considere duas células solares idênticas ligadas em série. Existem duas resistências R_s em série e duas junções p-n em série. Se I for a corrente total através dos dispositivos, então a queda de tensão em cada junção p-n é $V_d = \frac{1}{2}[V - I(2R_s)]$. Assuma que as células solares têm as seguintes propriedades: $\eta = 1.5$ e $I_o = 25 \times 10^{-6}$ mA, $R_s = 20 \Omega$ e estão sob idêntica iluminação, de modo que $I_{ph} = 10$ mA.

- a.Trace as características I-V das células individuais e as das duas células em série.
- b. Qual é a potência máxima que pode ser fornecida por cada célula e pelas duas células em série?
- c. Quais são a tensão e a corrente correspondentes no ponto de potência máxima?