

Deep Learning for Bragg Coherent Diffraction Imaging: Detector Gap Inpainting and Phase Retrieval

Thesis

présentée et soutenue publiquement le

Pour l'obtention du titre de

Docteur de l'Université Grenoble Alpes

(mention Physique du rayonnement et de la matière condensée)

par Matteo Masto

sous la direction de Dr. Tobias Schülli, Dr. Vincent Favre-Nicolin, Dr. Steven Leake

Composition du Jury

XXXXXXXXX	PR, XXXXXXXXXX	Rapporteur
XXXXXXXXX	PR, XXXXXXXXXX	Rapporteur
XXXXXXXXX	PR, XXXXXXXXXX	Examinateur
XXXXXXXXX	PR, XXXXXXXXXX	Examinateur
Tobias Schülli	ESRF	Directeur de Thèse
Vincent Favre-Nicolin	ESRF UGA,	Directeur de Thèse
Steven Leake	ESRF	Directeur de Thèse

Contents

Int	troduction	iii
Ι	Bragg Coherent Diffraction Imaging	1
1	Single crystal diffraction	3
2	Phase Problem	5
II	Convolutional Neural Networks	7
3	Introduction on neural networks	9
4	Convolutional	11
5	U-Net and MSD-Net	13
II	Deep learning for Detector Gaps Inpainting	15
6	State of the art	17
7	Gap induced artifacts	19
8	Model design	21
9	Patching approach	23
10	Results in detector space	25
11	Results in real space	27
12	Fine tuning	29
13	Performances assessment	31
IV	Deep learning for Phase Retrieval	33
14	State of the art	35
15	Highly strained crystals	37
16	Reciprocal space phasing	39
17	Phase symmetries breaking	41

18 Model design	43
19 Results on 2D case	45
20 Results on 3D case	47
21 Refinement with iterative algorithms	49
22 Experimental results	5 1
V Conclusions	5 3
Bibliography	55
Table des annexes	55
Appendix A Appendix	57

Introduction

The present document is a draft of my PhD manuscript.

Part I

Bragg Coherent Diffraction Imaging

SINGLE CRYSTAL DIFFRACTION

PHASE PROBLEM

Part II Convolutional Neural Networks

Introduction on Neural Networks

Convolutional

U-NET AND MSD-NET

Part III

Deep learning for Detector Gaps Inpainting

STATE OF THE ART

GAP INDUCED ARTIFACTS

Model design

PATCHING APPROACH

RESULTS IN DETECTOR SPACE

RESULTS IN REAL SPACE

FINE TUNING

PERFORMANCES ASSESSMENT

Part IV Deep learning for Phase Retrieval

STATE OF THE ART

HIGHLY STRAINED CRYSTALS

RECIPROCAL SPACE PHASING

Phase symmetries breaking

Model design

RESULTS ON 2D CASE

RESULTS ON 3D CASE

Refinement with iterative algorithms

Experimental results

Part V

Conclusions

Annexes

Appendix A

APPENDIX