NUCL 510 Nuclear Reactor Theory I Fall 2011

Homework #5

Due September 29

1. The differential scattering cross section is generally represented by a Legendre polynomial of the cosine of the scattering angle in the center-of-mass system (μ_c) as

$$\sigma_s(E,\mu_c) = \frac{\sigma_s(E)}{2\pi} \sum_{n=0}^{N} \frac{2n+1}{2} f_n(E) P_n(\mu_c).$$

For the elastic scattering and discrete inelastic scattering, the energy transfer and the deflection angle are completely correlated, and thus the differential scattering cross section can be written as a function of the scattered neutron energy as

$$\sigma_s(E \to E') = 2\pi\sigma_s(E, \mu_c) \left| \frac{d\mu_c}{dE'} \right| = \frac{\sigma_s(E)}{(1-\alpha)E} \sum_{n=0}^{N} (2n+1) f_n(E) P_n \left[\mu_c(E, E') \right]$$

Using the data given below for incident neutron energy of 600 keV, determine and plot the energy distribution of the scattered neutrons.

	H-1	Na-23	U-238
f_0	1.00000E+00	1.00000E+00	1.00000E+00
f_1	-1.38363E-03	2.50710E-01	1.08577E-01
f_2		1.36480E-01	9.09901E-03
f_3		-3.77540E-03	4.24348E-04
f_4			1.13003E-05

2. The scattering kernel is commonly represented by a Legendre polynomial expansion in the form

$$\sigma_s(E' \to E, \mu_s) = \sum_{l=0}^{L} \frac{2l+1}{4\pi} \sigma_s^l(E' \to E) P_l(\mu_s)$$

where μ_s is the cosine of the scattering angle in the laboratory system, and the Legendre expansion coefficient of the scattering transfer cross section can be written as

$$\sigma_{s}^{l}(E \to E') = 2\pi \int_{-1}^{1} d\mu_{s} \sigma_{s}(E \to E', \mu_{s}) P_{l}(\mu_{s}) = \sigma_{s}(E \to E') P_{l}[\mu_{s}(E, E')]$$

$$= \frac{\sigma_{s}(E) P_{l}[\mu_{s}(E, E')]}{(1 - \alpha)E} \sum_{n=0}^{N} (2n + 1) f_{n}(E) P_{n}[\mu_{c}(E, E')]$$

Using the data in Problem 1, determine and plot the Legendre expansion order up to L=5.