Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

11 сентября 2025 г.

Содержание

1	Линейные разностные уравнения с постоянными коэффициентами (ЛОС)	2
2	Синтез разностного уравнения по заданным решениям	4
3	Нелинейные 2D-системы: равновесия, линеаризация, классификация	5
4	Линейные ОДУ 2-го порядка: нормальная форма, вронскиан, короткие доказательства	7
5	ПЧП 1-го порядка (задача Коши по кривой)	9
6	Глава М6. Системы разностных: диагонализуемые матрицы, Phi t равно ${\bf A}$ в степени ${\bf t}$, вариация постоянных	10
7	Нелинейные 2D-системы: линеаризация, классификация по tr, det, D	11

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

1. Тип экзаменационной задачи (полное условие)

Найдите общее решение:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9,$$

где $t \in \mathbb{Z}$, $(y_t)_{t \in \mathbb{Z}} \subset \mathbb{R}$ (или \mathbb{C}).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано ЛОС порядка $n \in \mathbb{N}$:

$$a_n y_{t+n} + a_{n-1} y_{t+n-1} + \dots + a_1 y_{t+1} + a_0 y_t = f(t),$$

где $a_n \neq 0$, $a_k \in \mathbb{R}$ (или \mathbb{C}), $t \in \mathbb{Z}$. Вводим: $\chi(r) := r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$ — характеристический многочлен (после нормировки $a_n = 1$); $k_{\chi}(\lambda) \in \mathbb{N}$ — кратность корня λ в χ ; $P_d(t) \in \mathbb{R}[t]$ — произвольный полином степени $\leq d$; $Q_{\lambda,\theta}(r) := r^2 - 2\lambda \cos \theta \, r + \lambda^2$.

Шаг 0. Привести уравнение к канонической форме.

Разделить на a_n (если $a_n \neq 1$) и написать

$$y_{t+n} + b_{n-1}y_{t+n-1} + \dots + b_1y_{t+1} + b_0y_t = f(t).$$

Шаг 1. Построить $\chi(r)$ и зафиксировать кратности корней.

Выписать $\chi(r) = r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$, найти все λ_j и $k_{\chi}(\lambda_j)$.

Шаг 2. Записать общее решение однородной части $y_t^{(h)}$.

Для каждого корня λ кратности $s=k_{\chi}(\lambda)$ включить базис

$$t^0\lambda^t$$
, $t^1\lambda^t$, ..., $t^{s-1}\lambda^t$;

для пары $\lambda = \rho e^{i\theta}$, $\bar{\lambda} = \rho e^{-i\theta}$ — реальный базис $\rho^t \cos(\theta t)$, $\rho^t \sin(\theta t)$.

Таблица соответствий (множитель \Rightarrow вклад в $y^{(h)}$):

Множитель	Вклад в y(h)	
$(r-\lambda)^s$	$P_{s-1}(t)\lambda^t$	
$(r^2 - 2\rho\cos\thetar + \rho^2)^s$	$P_{s-1}(t)\rho^t\cos(\theta t), P_{s-1}(t)\rho^t\sin(\theta t)$	

Шаг 3. Выбрать пробную форму $y_t^{(p)}$ по атомам f(t) и признакам резонанса через χ . Разложить f(t) на атомы и применить правила из таблицы:

Атом	Резонанс?	Вклад в у(р)
λ^t	$k_{\chi}(\lambda) = 0$?	$A \lambda^t$
$P_d(t)$	$k_{\chi}(1) = 0?$	$c_0 + c_1 t + \dots + c_d t^d$
$\lambda^t P_d(t)$	$k_{\chi}(\lambda) = 0?$	$\lambda^t(c_0+c_1t+\cdots+c_dt^d)$
$\lambda^t \cos(\theta t)$	$Q_{\lambda,\theta} \mid \chi$?	$\lambda^t (A\cos(\theta t) + B\sin(\theta t))$
$\lambda^t \sin(\theta t)$		
При резонансе:	любая форма	умножить на t^s

Шаг 4. Определить коэффициенты пробной формы.

Подставить $y^{(p)}$ в уравнение, сгруппировать по независимым типам (λ^t , t^k , $\lambda^t \cos / \sin$) и решить линейную систему на коэффициенты.

Шаг 5. Собрать общий ответ и учесть начальные условия (при наличии).

Записать $y_t = y_t^{(h)} + y_t^{(p)}$. При наличии y_0, \dots, y_{n-1} подставить соответствующие t и решить систему для констант при $y^{(h)}$.

3. Сопроводительные материалы (таблицы и обозначения)

Атом \rightarrow пробная форма (до резонанса):

$$\lambda^t \mapsto A \lambda^t, \qquad P_d(t) \mapsto c_0 + c_1 t + \dots + c_d t^d, \qquad \lambda^t P_d(t) \mapsto \lambda^t (c_0 + c_1 t + \dots + c_d t^d),$$

$$\lambda^t \cos(\theta t), \ \lambda^t \sin(\theta t) \mapsto \lambda^t (A \cos(\theta t) + B \sin(\theta t)).$$

Правило резонанса (через χ): $s = k_{\chi}(1)$ для $P_d(t)$; $s = k_{\chi}(\lambda)$ для $\lambda^t P_d(t)$; если $Q_{\lambda,\theta} \mid \chi$, умножить триг-форму на t^s .

4. Применение алгоритма к объявленной задаче

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

Шаг 0. Канонический вид зафиксирован.

Уравнение уже записано как $y_{t+3} + (-1)y_{t+2} + 4y_{t+1} + (-4)y_t = f(t)$, нормировка не требуется.

Шаг 1. Построить $\chi(r)$ и кратности корней.

$$\chi(r) = r^3 - r^2 + 4r - 4 = (r-1)(r^2+4)$$
; корни 1, $\pm 2i$, все кратности равны 1: $k_{\chi}(1) = 1$, $k_{\chi}(\pm 2i) = 1$.

Шаг 2. Записать $y_t^{(h)}$ по найденному спектру.

$$y_t^{(h)} = C_1 \cdot 1^t + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right).$$

Шаг 3. Выбрать $y_t^{(p)}$ по атомам RHS и признакам резонанса на χ . $f(t) = 26 \cdot 3^t + P_1(t)$, где $P_1(t) = 10t + 9$.

- Для 3^t : $k_{\gamma}(3) = 0$ (3 не корень) $\Rightarrow A \cdot 3^t$
- Для $P_1(t)$: $k_\chi(1)=1$ (1- корень кратности $1)\Rightarrow t(\tilde{a}t+\tilde{b})=\tilde{a}t^2+\tilde{b}t$

Итого

$$y_t^{(p)} = A \cdot 3^t + a t^2 + b t.$$

Шаг 4. Найти коэффициенты пробной формы, учитывая разложение по типам. Подстановка даёт

$$L[y^{(p)}] = 26A \cdot 3^t + 10at + (9a + 5b) \stackrel{!}{=} 26 \cdot 3^t + 10t + 9 \Rightarrow A = 1, \ a = 1, \ b = 0.$$

Следовательно, $y_t^{(p)} = 3^t + t^2$.

Шаг 5. Собрать общий ответ и отметить, как добавляются начальные условия.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right) + 3^t + t^2$$

При наличии y_0, y_1, y_2 — подставить t = 0, 1, 2 и решить систему для C_1, C_2, C_3 .

2 Синтез разностного уравнения по заданным решениям

1. Тип экзаменационной задачи (полное условие)

Задача. Построить линейное однородное разностное уравнение с постоянными коэффициентами минимально возможного порядка, частными решениями которого являются

$$y_t^{(1)} = 3^t, y_t^{(2)} = 2^t \sin \frac{\pi t}{3}.$$

(Решение здесь не приводится; это контекст для главы.)

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано множество частных решений $\{y_t^{(k)}\}_{k=1}^K$ ЛОС. Требуется построить характеристический полином $p(\lambda)$ минимального порядка N такой, что все $y_t^{(k)}$ являются решениями уравнения $p(L)[y_t]=0$, где L — оператор сдвига $Ly_t=y_{t+1}$.

Вводим: $\alpha \in \mathbb{R}$ — основание экспоненты; $\omega \in \mathbb{R}$ — частота тригонометрических функций; $s \in \mathbb{N}_0$ — степень полинома t^s ; $p(\lambda) \in \mathbb{R}[\lambda]$ — характеристический полином.

Шаг 0. Распознать «атом» каждого данного решения.

Для каждого $y_t^{(k)}$ определить одну из форм: α^t ; $t^s\alpha^t$; $\alpha^t\cos(\omega t)$ или $\alpha^t\sin(\omega t)$; $t^s\alpha^t\cos(\omega t)$ или $t^s\alpha^t\sin(\omega t)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

По таблице соответствий заменить атом на множитель $p(\lambda)$ с учётом кратности (s+1).

Шаг 2. Собрать общий характеристический полином минимального порядка.

Перемножить paзныe множители (комплексные корни берутся парой \Rightarrow реальный квадратичный множитель). Повторы дают максимальную кратность.

Шаг 3. Записать разностное уравнение.

Привести $p(\lambda)$ к виду $\lambda^N + a_{N-1}\lambda^{N-1} + \cdots + a_1\lambda + a_0$ и выписать

$$y_{t+N} + a_{N-1}y_{t+N-1} + \dots + a_1y_{t+1} + a_0y_t = 0.$$

Шаг 4. Проверить минимальность и корректность.

Убедиться, что N равен сумме степеней множителей; проверить зануление $p(\lambda)$ на атомах (для тригонометрических — на $\lambda = \alpha e^{\pm i\omega}$).

3. Сопроводительные материалы (таблицы и обозначения)

Таблица соответствий (атом \Rightarrow множитель \Rightarrow кратность):

Атом	Множитель	Кратность
α^t	$(\lambda - \alpha)$	1
$t^s \alpha^t$	$(\lambda - \alpha)^{s+1}$	s+1
$\alpha^t \cos(\omega t), \alpha^t \sin(\omega t)$	$\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2$	1
$t^s \alpha^t \cos(\omega t), t^s \alpha^t \sin(\omega t)$	$(\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2)^{s+1}$	s+1

Быстрые значения $\cos \omega$:

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \cos \frac{\pi}{2} = 0.$$

Правила сборки: (i) Пара $\{\cos, \sin\}$ с одинаковыми α, ω даёт один и тот же квадратичный множитель (не удваивать). (ii) При нескольких степенях t^s берётся максимальная кратность.

4. Применение алгоритма к объявленной задаче

Дано: $y_t^{(1)} = 3^t$, $y_t^{(2)} = 2^t \sin \frac{\pi t}{3}$.

Шаг 0. Распознать «атом» каждого данного решения.

Атомы: $3^t \ (\alpha = 3)$; $2^t \sin(\pi t/3) \ (\alpha = 2, \ \omega = \pi/3)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

Множители: $(\lambda - 3)$ и $\lambda^2 - 2 \cdot 2\cos(\pi/3)\lambda + 2^2 = \lambda^2 - 2\lambda + 4$.

Шаг 2. Собрать общий характеристический полином минимального порядка.

Сборка: $p(\lambda) = (\lambda - 3)(\lambda^2 - 2\lambda + 4)$.

Шаг 3. Записать разностное уравнение.

Развёртка: $p(\lambda) = \lambda^3 - 5\lambda^2 + 10\lambda - 12$. Соответствующее ЛОС:

$$y_{t+3} - 5y_{t+2} + 10y_{t+1} - 12y_t = 0$$

Шаг 4. Проверить минимальность и корректность.

Минимальность: порядок N=3; проверка p(3)=0 и $\lambda=2e^{\pm i\pi/3}$ зануляют квадратичный множитель.

3 Нелинейные 2D-системы: равновесия, линеаризация, классификация

1. Тип экзаменационной задачи (полное условие)

Условие. Найдите положения равновесия автономной системы уравнений, определите их характер, и нарисуйте фазовые портреты в окрестности положений равновесия

$$\begin{cases} \dot{x} = 2 - 2\sqrt{1 + x + y}, \\ \dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1. \end{cases}$$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана автономная система $\dot{x} = f(x,y), \, \dot{y} = g(x,y), \, \text{где}$ $f,g \in C^1(\mathbb{R}^2)$. Требуется найти положения равновесия (x_0,y_0) такие, что $f(x_0,y_0) = 0, \, g(x_0,y_0) = 0,$ и классифицировать их характер.

Вводим: J(x,y) — матрица Якоби; ${\rm tr}\,J=f_x+g_y$ — след; ${\rm det}\,J=f_xg_y-f_yg_x$ — определитель; $D={\rm tr}^2-4\,{\rm det}$ — дискриминант; $\lambda_{1.2}$ — собственные значения J.

Шаг 0. Найти положения равновесия.

Решить систему f(x,y) = 0, g(x,y) = 0 и найти все точки (x_0,y_0) такие, что $f(x_0,y_0) = 0$, $g(x_0,y_0) = 0$.

Шаг 1. Составить матрицу Якоби.

Вычислить частные производные и составить

$$J(x,y) = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}.$$

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Для каждой точки (x_0, y_0) вычислить:

$$\operatorname{tr} J(x_0, y_0), \quad \det J(x_0, y_0), \quad D = \operatorname{tr}^2 - 4 \det.$$

Шаг 3. Классифицировать тип точки по детектору.

Применить правила из таблицы классификации по знакам \det , D, tr .

Шаг 4. Определить устойчивость и направления.

По знаку tr и типу точки зафиксировать вход/выход; для седла отметить две сепаратрисы вдоль собственных направлений J.

Шаг 5. Нарисовать фазовый портрет.

Нанести типы точек и стрелки; при необходимости использовать изоклины f=0, g=0 для знаков \dot{x}, \dot{y} .

3. Сопроводительные материалы (таблицы и обозначения)

Таблица классификации равновесий:

Условие	Тип точки	Устойчивость
$\det < 0$	седло	неустойчивая
$\det > 0, \ D > 0, \ \text{tr} < 0$	узел	устойчивый
$\det > 0, \ D > 0, \ \text{tr} > 0$	узел	неустойчивый
$\det > 0, \ D < 0, \ \text{tr} < 0$	фокус	устойчивый
$\det > 0, \ D < 0, \ \text{tr} > 0$	фокус	неустойчивый
$\det > 0, \ D = 0$ или $\det = 0$	негиперболика	см. главу М10

Быстрые производные (частые атомы):

$$\begin{split} f(x,y) &= A - B\sqrt{\Phi(x,y)}: \quad f_x = -\frac{B}{2}\Phi^{-1/2}\Phi_x, \quad f_y = -\frac{B}{2}\Phi^{-1/2}\Phi_y; \\ g(x,y) &= e^{\Psi(x,y)} - 1: \quad g_x = e^{\Psi}\Psi_x, \quad g_y = e^{\Psi}\Psi_y. \end{split}$$

Правила упрощения: Если в равновесии g=0, то $e^{\Psi}=1$ и $g_x=\Psi_x,\,g_y=\Psi_y;$ если 1+x+y=1, то $\sqrt{1+x+y}=1$ и $f_x=f_y=-1.$

4. Применение алгоритма к объявленной задаче

Дано:
$$\dot{x} = 2 - 2\sqrt{1 + x + y}$$
, $\dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1$.

Шаг 0. Найти положения равновесия.

$$f=0 \Rightarrow \sqrt{1+x+y}=1 \Rightarrow x+y=0.$$
 $g=0 \Rightarrow \frac{5}{4}x+2y+y^2=0.$ Подставляя $y=-x$: $x^2-\frac{3}{4}x=0 \Rightarrow x\in\{0,\frac{3}{4}\}.$

Точки равновесия: (0,0) и $(\frac{3}{4}, -\frac{3}{4})$.

Шаг 1. Составить матрицу Якоби.

При x+y=0 и $\Psi=0$ имеем

$$J(x,y) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2+2y \end{pmatrix}.$$

Значит
$$J(0,0) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2 \end{pmatrix}$$
, $J(\frac{3}{4}, -\frac{3}{4}) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & \frac{1}{2} \end{pmatrix}$.

Шаг 2. Вычислить инварианты в каждой точке равновесия.

$$(0,0)$$
: tr = 1, det = $-\frac{3}{4} < 0$;
 $(\frac{3}{4}, -\frac{3}{4})$: tr = $-\frac{1}{2}$, det = $\frac{3}{4} > 0$, $D = \frac{1}{4} - 3 = -\frac{11}{4} < 0$.

Шаг 3. Классифицировать тип точки по детектору.

$$(0,0): \det <0 \Rightarrow$$
 седло (неустойчивая); $(\frac{3}{4},-\frac{3}{4}): \det >0,\ D<0,\ {\rm tr}<0 \Rightarrow$ фокус устойчивый.

Шаг 4. Определить устойчивость и направления.

В (0,0) — две сепаратрисы по собственным направлениям J; в $(\frac{3}{4},-\frac{3}{4})$ — спиральное вхождение.

Шаг 5. Нарисовать фазовый портрет.

Эскиз: седло в (0,0) с «крестом» сепаратрис; устойчивый фокус в $(\frac{3}{4},-\frac{3}{4})$ со стрелками внутрь. Изоклина x+y=0 помогает ориентировать знаки \dot{x} .

Две точки равновесия: седло
$$(0,0)$$
 и устойчивый фокус $(\frac{3}{4},-\frac{3}{4})$

4 Линейные ОДУ 2-го порядка: нормальная форма, вронскиан, короткие доказательства

1. Тип экзаменационной задачи (полное условие)

Стейтмент. Пусть функции p(x), q(x) непрерывны на \mathbb{R} и q(x) < 0 для всех x. Пусть y(x) — нетривиальное решение

$$y'' + p(x)y'(x) + q(x)y(x) = 0.$$

Покажите, что если решение принимает максимальное значение в некоторой точке, то это значение не может быть больше 0.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано линейное ОДУ 2-го порядка y'' + p(x)y' + q(x)y = 0, где $p, q \in C(\mathbb{R})$. Требуется доказать качественные свойства решений (экстремумы, нули, устойчивость).

Вводим: $\phi(x)$ — интегрирующий множитель; Q(x) — эффективный потенциал; W(x) — вронскиан; z(x) — решение в нормальной форме; x_0 — точка экстремума или нуля.

Шаг 0. Нормализация: увидеть p, q.

Привести уравнение к виду y'' + p(x)y' + q(x)y = 0 и зафиксировать знаки p(x), q(x).

Шаг 1. Нормальная форма: убрать y' при необходимости.

Взять

$$\phi(x) = \exp\left(-\frac{1}{2}\int p(x) dx\right), \quad y = \phi z,$$

тогда

$$z'' + Q(x)z = 0,$$
 $Q(x) = q - \frac{p'}{2} - \frac{p^2}{4}.$

Шаг 2. Вронскиан: независимость/масштаб.

Формула Абеля:

$$W(x) = W(x_0) \exp\left(-\int_{x_0}^x p(t) dt\right).$$

Шаг 3. Локальные/качественные выводы: «максимум/минимум/нули».

- Триггер «экстремум». В точке максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$. Подставить в уравнение.
- Триггер « ≤ 1 нуля». Перейти к z'' + Qz = 0; при $Q \leq 0$:

$$\int_{a}^{b} zz'' dx + \int_{a}^{b} Qz^{2} dx = 0 \Rightarrow -\int_{a}^{b} (z')^{2} dx + \int_{a}^{b} Qz^{2} dx = 0,$$

что невозможно при двух нулях.

Шаг 4. Итог: короткая формулировка.

Выписать использованные ϕ, Q и/или W и сформулировать вывод.

3. Сопроводительные материалы (таблицы и обозначения)

Детектор ветки Шага 3:

Признак в условии	Действие
Есть «максимум/минимум», дан знак q	Θ кстремум-тест: $y'=0$, знак y'' , подстановка в ОДУ
Требуется «не более одного нуля»	Шаг $1 \Rightarrow z'' + Qz = 0$, при $Q \le 0$
	интегральный аргумент
Нужно проверить фундаментальность пары	Абель: $W(x) = W(x_0)e^{-\int p}$

Памятка формул М4:

$$\phi(x) = \exp\left(-\frac{1}{2}\int p\right), \qquad Q = q - \frac{1}{2}p' - \frac{1}{4}p^2, \qquad W(x) = W(x_0)\exp\left(-\int_{x_0}^x p(t) dt\right).$$

Правила экстремума: В точке локального максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$; в точке локального минимума: $y'(x_0) = 0$, $y''(x_0) \ge 0$.

4. Применение алгоритма к объявленной задаче

Дано: y'' + p(x)y' + q(x)y = 0, где q(x) < 0 для всех x, и y(x) — нетривиальное решение с максимумом в точке x_0 .

Шаг 0. Нормализация: увидеть p, q.

Уравнение уже в виде y'' + py' + qy = 0 с q(x) < 0 для всех x.

Шаг 1. Нормальная форма: убрать y' при необходимости.

Переход к z не требуется для данного доказательства.

Шаг 2. Вронскиан: независимость/масштаб.

Вронскиан не нужен для данного доказательства.

Шаг 3. Локальные/качественные выводы: «максимум/минимум/нули».

В точке локального максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$. Подставляя в уравнение:

$$y''(x_0) = -p(x_0) y'(x_0) - q(x_0) y(x_0) = -q(x_0) y(x_0).$$

При $q(x_0) < 0$ из $y(x_0) > 0$ следовало бы $y''(x_0) > 0$, что противоречит максимуму. Значит $y(x_0) \le 0$.

Шаг 4. Итог: короткая формулировка.

Положительный локальный максимум невозможен при q(x) < 0

5 ПЧП 1-го порядка (задача Коши по кривой)

1. Тип экзаменационной задачи (полное условие)

Даны две задачи Коши для уравнения

$$y z_x - x z_y = 0:$$

а) z = 2y при x = 1; б) z = 2y при x = 1 + y. Искать решение в окрестности (1,0). Проверить условия теоремы существования—единственности.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано квазилинейное ПЧП 1-го порядка $a(x,y)z_x + b(x,y)z_y = 0$, где $a,b \in C^1(\Omega \subset \mathbb{R}^2)$, и начальные данные на кривой $\gamma: s \mapsto (x(s),y(s)): z(\gamma(s)) = \varphi(s)$.

Вводим: $I_1(x,y)$ — первый интеграл (инвариант); $\Delta(s)$ — определитель нехарактеристичности; $\gamma'(s)$ — касательный вектор к кривой; F — произвольная функция.

Шаг 0. Найти характеристики.

Решить систему $\frac{dy}{dx} = \frac{b}{a}$ и найти первый интеграл $I_1(x,y) = C_1$.

Шаг 1. Записать общее решение.

Общее решение имеет вид $z(x,y) = F(I_1(x,y))$, где F — произвольная функция.

Шаг 2. Сшить с начальными данными.

Подставить кривую γ в общее решение: $F(I_1(\gamma(s))) = \varphi(s)$. Если $\Delta \neq 0$, то $s = \sigma(I)$ локально и

$$z(x,y) = \varphi(\sigma(I_1(x,y))).$$

Шаг 3. Проверить нехарактеристичность.

Вычислить $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s)$. Проверить условие $(a,b) \not | \gamma'(s) \Leftrightarrow \Delta \neq 0$.

Шаг 4. Сформулировать итог.

 $\Delta \neq 0 \Rightarrow$ единственность; $\Delta = 0 \Rightarrow$ ветвление или неединственность.

3. Сопроводительные материалы (таблицы и обозначения)

Быстрые инварианты:

\mathbf{K} оэффициенты (a,b)	У равнение $\frac{dy}{dx} = \frac{b}{a}$	Инвариант $I_1(x,y)$
(y, -x)	$-\frac{x}{y}$	$x^2 + y^2$
(x, y)	$\frac{y}{x}$	$\frac{y}{x}$
$(\alpha x, \ \beta y)$	$\frac{\beta y}{\alpha x}$	$rac{y}{x^{eta/lpha}}$
$(\alpha x + \beta y, \ \gamma x + \delta y)$	$\frac{\gamma x + \delta y}{\alpha x + \beta y}$	линейная замена $\Rightarrow \frac{\eta}{\xi^{\lambda_2/\lambda_1}}$

Условие нехарактеристичности: $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s) \neq 0$.

Правила диагностики: В виде g(x,y)=0: $ag_x+bg_y\neq 0$ на γ .

4. Применение алгоритма к объявленной задаче

Дано: $y z_x - x z_y = 0$ с двумя задачами Коши в окрестности (1,0).

Шаг 0. Найти характеристики.

a = y, $b = -x \Rightarrow dy/dx = -x/y \Rightarrow I_1 = x^2 + y^2$.

Шаг 1. Записать общее решение.

Общее решение: $z = F(x^2 + y^2)$.

Шаг 2. Сшить с начальными данными.

(a)
$$x = 1$$
, $z = 2y$:

$$I_1|_{x=1} = 1 + y^2$$
, $\Delta = y \cdot 1 - (-1) \cdot 0 = y$.

В (1,0): $\Delta = 0$ (характеристическая).

Инверсия многозначна: $y = \pm \sqrt{I-1} \Rightarrow$

$$z = 2 \operatorname{sgn}(y) \sqrt{x^2 + y^2 - 1}$$

(неединственность у y = 0).

(6)
$$x = 1 + y$$
, $z = 2y$:

$$I_1|_{x=1+y} = 1 + 2y + 2y^2, \quad \Delta = 2y + 1.$$

В (1,0): $\Delta=1\neq 0$ (нехарактеристическая). $I=1+2s+2s^2\Rightarrow s=\frac{-1+\sqrt{2I-1}}{2} \ (\text{ветвь y } s\approx 0).$

$$z(x,y) = -1 + \sqrt{2(x^2 + y^2) - 1}$$

(единственно в окрестности (1,0)).

Глава M6. Системы разностных: диагонализуемые матрицы, Phi t равно A в степени t, вариация постоянных

1) Тип экзаменационной задачи

Условие.

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = A \begin{pmatrix} x_t \\ y_t \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad A = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}.$$

(a) Найти фундаментальную матрицу Φ_t . (б) Полагая $\binom{x_t}{y_t} = \Phi_t\binom{c_1^t}{c_2^t}$, выписать уравнения для c_1^t, c_2^t (не решать).

2) Универсальный алгоритм (формулы)

Ввод. $A \in \mathbb{R}^{n \times n}$, $x_t \in \mathbb{R}^n$, $b_t \in \mathbb{R}^n$. $\Phi_t := A^t$. Спектр: $A = V\Lambda V^{-1}$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Шаг 1. Спектр. Найти λ_j и базис $\{v_j\}$: $(A-\lambda_j I)v_j=0$. $\sum_j \dim \ker(A-\lambda_j I)=n \Rightarrow$ диагонализуемо.

Шаг 2. A в степени t.

$$A^t = V\Lambda^t V^{-1}, \quad \Lambda^t = \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t).$$

Если $\lambda = \rho e^{\pm i\theta}$: на \mathbb{R}^2 блок $S = \frac{a-b}{b-a}$, $a+ib = \lambda$,

$$S^{t} = \rho^{t} \begin{pmatrix} \cos(\theta t) & -\sin(\theta t) \\ \sin(\theta t) & \cos(\theta t) \end{pmatrix}.$$

Шаг 3. Phi t и однородная система.

$$x_{t+1} = Ax_t \implies x_t = \Phi_t x_0, \quad \Phi_t = A^t.$$

Шаг 4. Вариация постоянных. Полагаем $x_t = \Phi_t c^t$. Тогда

$$\Phi_{t+1}c^{t+1} = \Phi_{t+1}c^t + b_t \implies \boxed{c^{t+1} - c^t = \Phi_{t+1}^{-1}b_t}$$

Эквивалентно: $x_t = A^t x_0 + \sum_{k=0}^{t-1} A^{t-1-k} b_k$.

Шаг 5. Частные случаи. Если $b_t \equiv b$ и I-A обратима: $x_t = A^t(x_0 - (I-A)^{-1}b) + (I-A)^{-1}b$. Если $\lambda < 0$: $\lambda^t = (-1)^t |\lambda|^t$. Пара $\rho e^{\pm i\theta}$: блок $\rho^t R(\theta t)$.

3) Сопроводительные материалы

Спектр А	Φ ормула для A^t
$\lambda_j \in \mathbb{R}$ простые	$V \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t) V^{-1}$
$\rho e^{\pm i\theta}$	$W(\rho^t \frac{\cos \theta t - \sin \theta t}{\sin \theta t})W^{-1}$
смешанный	блочно по строкам выше

$$\Phi_t^{-1} = V \operatorname{diag}(\lambda_1^{-t}, \dots, \lambda_n^{-t}) V^{-1}.$$

4) Применение алгоритма к условию

Шаг 1. $\widehat{A} = \frac{-1}{3} \frac{3}{-1} \Rightarrow \sigma(\widehat{A}) = \{2, -4\}, v_1 = (1, 1), v_2 = (1, -1).$ $\sigma(A) = \{1, -2\}$ (диагонализуемо).

Шаг 2.

$$V = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \Lambda = \operatorname{diag}(1, -2), \quad V^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$\Phi_t = A^t = \frac{1}{2} \begin{pmatrix} 1 + (-2)^t & 1 - (-2)^t \\ 1 - (-2)^t & 1 + (-2)^t \end{pmatrix}.$$

Шаг 3. $x_t = \Phi_t x_0$.

Шаг 4.

$$c^{t+1} - c^t = \Phi_{t+1}^{-1}b, \quad \Phi_{t+1}^{-1} = V \operatorname{diag}(1, (-2)^{-(t+1)})V^{-1}.$$

$$\Phi_{t+1}^{-1}b = \frac{1}{2} \begin{pmatrix} 1 + (-2)^{-(t+1)} & 1 - (-2)^{-(t+1)} \\ 1 - (-2)^{-(t+1)} & 1 + (-2)^{-(t+1)} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} (-\frac{1}{2})^{t+1} \\ -(-\frac{1}{2})^{t+1} \end{pmatrix}.$$

$$c_1^{t+1} - c_1^t = (-\frac{1}{2})^{t+1}, \quad c_2^{t+1} - c_2^t = -(-\frac{1}{2})^{t+1}.$$

Шаг 5. (I-A) необратима (есть $\lambda=1)\Rightarrow$ стационарная формула неприменима; используем вариацию постоянных как выше.

7 Нелинейные 2D-системы: линеаризация, классификация по tr, det, D

1. Тип экзаменационной задачи (полное условие)

Стейтмент. Найдите положения равновесия автономной системы, определите их характер и набросайте фазовые портреты в окрестности равновесий:

$$\begin{cases} \dot{x} = 2 - 2\sqrt{1 + x + y}, \\ \dot{y} = \exp(\frac{5}{4}x + 2y + y^2) - 1. \end{cases}$$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана автономная система $\dot{x} = f(x,y), \, \dot{y} = g(x,y), \, \text{где}$ $f,g \in C^1(\mathbb{R}^2)$. Требуется найти положения равновесия (x_*,y_*) такие, что $f(x_*,y_*)=0,\, g(x_*,y_*)=0,$ и классифицировать их характер по линеаризации.

Вводим: J — матрица Якоби; $\operatorname{tr} J = f_x + g_y$ — след; $\det J = f_x g_y - f_y g_x$ — определитель; $D = \operatorname{tr}^2 - 4 \det$ — дискриминант; $\lambda_{1,2}$ — собственные значения J.

Шаг 0. Найти положения равновесия.

Решить систему f(x,y) = 0, g(x,y) = 0 и найти все точки (x_*,y_*) такие, что $f(x_*,y_*) = 0$, $g(x_*,y_*) = 0$.

Шаг 1. Вычислить матрицу Якоби.

Вычислить частные производные и составить

$$J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(x_*, y_*)}.$$

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Посчитать

$$\operatorname{tr} J = f_x + g_y, \qquad \det J = f_x g_y - f_y g_x, \qquad D = \operatorname{tr}^2 - 4 \det,$$

и применить таблицу классификации.

Шаг 3. Определить стабильность и направления.

- det < 0: седло (неустойчиво).
- $\det > 0, D > 0$: узел; знак tr даёт устойчивость.
- \bullet det > 0, D < 0: фокус; знак tr даёт устойчивость.

Шаг 4. Нарисовать локальный эскиз.

Нанести тип точки и стрелки вход/выход; для седла — сепаратрисы по собственным векторам J.

Примечание. Если $\det J \neq 0$ (гиперболическая точка), линеаризация локально адекватна типу (Хартман–Гробман).

3. Сопроводительные материалы (таблицы и обозначения)

Классификация по \det , tr , D:

Условие	Тип точки	Устойчивость
$\det < 0$	седло	неустойчивая
$\det > 0, \ D > 0, \ \text{tr} < 0$	узел	устойчивый
$\det > 0, \ D > 0, \ \text{tr} > 0$	узел	неустойчивый
$\det > 0, \ D < 0, \ \text{tr} < 0$	фокус	устойчивый
det > 0, D < 0, tr > 0	фокус	неустойчивый

Детектор гиперболичности: $\det J \neq 0 \quad \Rightarrow \quad$ линеаризация достаточна для локального типа.

Правила границ: Границы $\det = 0$ или D = 0 — вне рамок M7 (негиперболика).

4. Применение алгоритма к объявленной задаче

Дано:
$$\dot{x} = 2 - 2\sqrt{1 + x + y}$$
, $\dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1$.

Шаг 0. Найти положения равновесия.

$$f=0\Rightarrow x+y=0.$$
 $g=0\Rightarrow \frac{5}{4}x+2y+y^2=0.$ Совместно: точки $(0,0)$ и $(\frac{3}{4},-\frac{3}{4}).$

Шаг 1. Вычислить матрицу Якоби.

$$f_x = f_y = -\frac{1}{\sqrt{1+x+y}}, \quad g_x = \frac{5}{4}e^{\Phi}, \quad g_y = (2+2y)e^{\Phi}, \quad \Phi = \frac{5}{4}x + 2y + y^2.$$

В равновесиях $\sqrt{1+x+y} = 1$, $e^{\Phi} = 1$.

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Для
$$(0,0)$$
: $J = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2 \end{pmatrix}$, $\operatorname{tr} = 1$, $\det = -\frac{3}{4} < 0$.
Для $(\frac{3}{4}, -\frac{3}{4})$: $J = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & \frac{1}{2} \end{pmatrix}$, $\operatorname{tr} = -\frac{1}{2}$, $\det = \frac{3}{4} > 0$, $D = \frac{1}{4} - 3 = -\frac{11}{4} < 0$.

Шаг 3. Определить стабильность и направления.

Для (0,0): det $< 0 \Rightarrow$ седло (неустойчивая).

Для $(\frac{3}{4}, -\frac{3}{4})$: det > 0, D < 0, tr $< 0 \Rightarrow$ устойчивый фокус.

Шаг 4. Нарисовать локальный эскиз.

Седло в (0,0): одна устойчивая и одна неустойчивая сепаратриса. Фокус в $(\frac{3}{4},-\frac{3}{4})$: затухающие спирали.

Две точки равновесия: седло (0,0) и устойчивый фокус $(\frac{3}{4},-\frac{3}{4})$