- Exercício 1 Desenhe em ambiente computacional, utilizando sistemas de computação simbólica, incluindo a animação do vetor tangente percorrendo as seguintes parametrizações da parábola $\alpha(t)=(t,t^2)$ e $\gamma(t)=(t^3,t^6)$. Mostre que α é curva regular e γ não é regular. Qual seria a função naturalmente candidata a ser uma reparametrização entre as duas parametrizações? Porque falha?
 - **Solução 1** Veja que $\alpha'(t) = (1, 2t^2)$ e $\gamma'(t) = (3t^2, 6t^5)$. Por conta da coordenada constante, $\alpha'(t) \neq 0 \ \forall \ t \in \mathbb{R}$, logo é regular. Já γ' é anulada para t = 0, logo não é regular.

Antes de definir reparametrização vamos fixar algumas coisas. Seja I_1 o domínio de α e I_2 o domínio de γ ; Vamos considerar neste caso $I_1 = I_2 = \mathbb{R}$. γ é reparametrização de α se existe um **difeomorfismo** $\phi: I_2 \to I_1$ tal que $\gamma(t) = \alpha(\phi(t)) \ \forall t \in I_2$.

Assim a função naturalmente candidata à reparametrização de α é $\phi(t)=t^3$.

Porque falha? Pois ϕ não é um difeomorfismo, logo não é reparametrização segundo a definição dada! Sua inversa $\phi^{-1}(t) = t^{1/3}$ não é diferenciável em todos os pontos do domínio, pois a derivada $\frac{1}{3}t^{-2/3}$ não está definita em t=0.

- **Exercício 2** Mostre que as curvas regulares $\alpha(t)=(t,e^t),\,t\in\mathbb{R}$ e $\beta(s)=(\log(s),s),\,s\in(0,\infty)$ têm o mesmo traço.
 - **Solução 2** Queremos provar que $\alpha(\mathbb{R}) = \beta(\mathbb{R}_{>0})$. Tome

$$\phi: \mathbb{R}_{>0} \to \mathbb{R}$$
$$\phi(s) = \log(s)$$

Afirmo que ϕ é bijetiva. A injetividade segue da monotonicidade estrita do logaritmo¹. Segue um rascunho da prova da sobrejetividade:

Usando a definição $\log x := \int_1^x \frac{1}{u} du$, pelo Teorema Fundamental do Cálculo[1], temos que log é diferenciável em todo seu domínio ($\mathbb{R}_{>0}$), disso segue a continuidade.

Para todo inteiro k no contradomínio \mathbb{R} conseguimos encontrar um elemento x no domínio tal que $\log(x) = k$ usando que $\log(e) = 1$ e a propriedade $\log(ab) = \log(a) + \log(b)$, os inteiros positivos são atingidos pelas potências positivas de e e os negativos pelas potências negativas. Pela continuidade, e pelo Teorema do Valor Intermediário[1], segue que $\forall k \in \mathbb{Z}$, vale que $\forall r \in (k, k+1)$, $\exists x \in \mathbb{R}_{>0}$ tal que $\log(x) = r$, que prova a sobrejetividade.

Uma outra prova (rascunho) rápida: $\log(x) = \log(y) = b \Rightarrow e^b = x$ e $e^b = y \Rightarrow x = y$

Acima já demos o motivo de ϕ ser diferenciável, se verificarmos que ϕ^{-1} é diferenciável, teremos que ϕ é um difeomorfismo. De fato $\phi^{-1}: \mathbb{R} \to \mathbb{R}_{>0}$ definida pel exponencial, não só é diferenciável como pertence a C^{∞} .

Sendo assim ϕ é difeomorfismo. Note que $\beta(s) = \alpha(\phi(s))$.

O traço de α , $\alpha(\mathbb{R})$ é o conjunto $\{(x,y); x \in \mathbb{R}, y \in \mathbb{R}_{>0}\}$, pois a segunda entrada exponencial é estritamente positiva.

O difeomorfismo ϕ (por ser bijetivo) leva todos os pontos $s \in \mathbb{R}_{>0}$ em \mathbb{R} . Sendo assim,

$$\beta(\mathbb{R}_{>0}) = \alpha(\phi(\mathbb{R}_{>0})) = \alpha(\mathbb{R})$$

Como queríamos demonstrar.

Exercício 3 Calcule o comprimento de arco das seguintes curvas:

- a. $\alpha(t) = (3\cosh 2t, 3\sinh 2t, 6t), t \in [0, \pi]$
- b. Catenária: $\gamma(t) = (t, \cosh(t))$, a partir do ponto (0, 1).

Solução 3 Usaremos a fórmuma $\int_{t_0}^t ||\gamma'(u)|| du$ para calcular o comprimento de arco de γ entre t_0 e t.

a. Para $\alpha(t) = (3\cosh 2t, 3\sinh 2t, 6t)$ com $t \in [0, \pi]$, temos

$$\int_{0}^{\pi} ||\alpha'(u)|| du$$

$$= \int_{0}^{\pi} ||(3\cosh 2u, 3\sinh 2u, 6u)'|| du$$

$$= \int_{0}^{\pi} ||(6\sinh 2u, 6\cosh 2u, 6)|| du$$

$$= \int_{0}^{\pi} (36(\sinh^{2} 2u + \cosh^{2} 2u + 1))^{1/2} du$$

$$= \int_{0}^{\pi} 6(2\cosh^{2} 2u - 1 + 1)^{1/2} du$$

$$= 6\sqrt{2} \int_{0}^{\pi} \cosh 2u \ du$$

$$= 3\sqrt{2} \sinh 2u|_{0}^{\pi}$$

$$= 3\sqrt{2}(\sinh(2\pi) - \sinh(0))^{0}$$

$$= \frac{3}{2}\sqrt{2}(e^{2\pi} - e^{-2\pi})$$

b. Para $\gamma(t)=(t,\cosh(t))$, a partir de (0,1), quer dizer a partir de t=1, e iremos calcular a distância parametrizada por s.

$$\int_{1}^{s} ||(t, \cosh(t))'|| dt$$

$$= \int_{1}^{s} ||(1, \sinh(t))|| dt$$

$$= \int_{1}^{s} (1 + \sinh^{2} t)^{1/2} dt$$

$$= \int_{1}^{s} (\cosh^{2} t)^{1/2} dt$$

$$= \int_{1}^{s} \cosh t dt$$

$$= \sinh t|_{t=1}^{t=s}$$

$$= \sinh(s) - \sinh(0)^{s}$$

$$= \sinh(s)$$

Exercício 4 Mudanças de parâmetro:

- a. Demonstrar que $s(\theta) = \frac{\theta^2}{\theta^2 + 1}$ é uma mudança de parâmetro diferenciável que transforma o invervalo $(0, \infty)$ no intervalo (0, 1).
- b. Mostrar que a função $\lambda:(-1,1)\to (-\infty,+\infty)$ definida por $\lambda(t):=\tan(\pi t/2)$ é uma mudança de parâmetro.
- c. Provar que qualquer curva pode ser reparametrizada de forma tal que o domínio da reparametrização seja um intervalo de extremos 0 e 1.
- Solução 4 a. Primeiramente precisamos mostrar que $s(\mathbb{R}_{>0})=(0,1)$, ou seja, que $s(\mathbb{R}_{>0})\subseteq(0,1)$ e $(0,1)\subseteq s(\mathbb{R}_{>0})$ Tome $x\in s(\mathbb{R}_{>0})$, é fácil ver que x>1, pois x é divisão de dois números estritamente positivos: $\frac{\theta^2}{\theta^2+1}$, $\theta\in\mathbb{R}_{>0}$, para provar a continência em (0,1) basta provar que x<1. Veja que, dado $\theta>0$, temos $\frac{\theta^2}{\theta^2+1}=\frac{1}{1+1/\theta^2}<1$, ou seja, x<1, o que implica finalmente, que $x\in(0,1)$. Para provar a continência inversa, tome $x\in(0,1)$, vamos provar que $x\in s(\mathbb{R}_{>0})$ exibindo um $\theta\in\mathbb{R}_{>0}$ tal que $s(\theta)=x$. Com um algebrismo simples², chega-se

²Não houve nenhuma divisão por zero no processo, pode confiar

em
$$\theta=\left(\frac{x}{1-x}\right)^{1/2}\in\mathbb{R}_{>0}$$
, veja então, que $s(\theta)=\frac{1}{1+1/\theta^2}=\frac{x}{1+(1-x)/x}=\frac{x^2}{x+1-x}\cdot\frac{1}{x}=x^2/x=x$

Logo $(0,1) \subseteq s(\mathbb{R}_{>0})$, e portanto $(0,1) = s(\mathbb{R}_{>0})$.

Agora resta provar que a aplicação é um difeomorfismo. A sobrejetividade já for demonstrada do fato de que $(0,1) \subseteq s(\mathbb{R}_{>0})$ que equivale à $\forall x \in (0,1), \exists \theta \in \mathbb{R}_{>0}$ tal que $s(\theta) = x$.

Para provar a injetividade, vamos pela contrapositiva da definição. $s(\theta_1) = s(\theta_2) \Rightarrow \theta_1 = \theta_2$:

$$s(\theta_1) = s(\theta_2)$$

$$\Rightarrow \frac{1}{1 + 1/\theta_1^2} = \frac{1}{1 + 1/\theta_2^2}$$

$$\Rightarrow 1 + 1/\theta_1^2 = 1 + 1/\theta_2^2$$

$$\Rightarrow 1/\theta_1^2 = 1/\theta_2^2$$

$$\Rightarrow \theta_1^2 = \theta_2^2$$

Como $\theta_1, \theta_2 > 0$, então segue que $\theta_1 = \theta_2$

Conclui-se então que s é bijetiva, e sua inversa $s^{-1}:(0,1)\to\mathbb{R}_{>0},$ é dada por $s^{-1}(x)=\left(\frac{x}{1-x}\right)^{1/2}.$

Vamos provar, por fim a diferenciabilidade de s e s^{-1} .

Tome as funções:

$$s_1: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$$

$$x \mapsto 1/x^2$$

$$s_2: \mathbb{R}_{>0} \to \mathbb{R}_{>1}$$

$$x \mapsto x+1$$

$$s_3: \mathbb{R}_{>1} \to (0,1)$$

$$x \mapsto 1/x$$

Veja que $s(\theta) = (s_3 \circ s_2 \circ s_1)(\theta)$ Sob seus domínios, todas as funções acima são diferenciáveis, omitirei a prova. Pela Regra da Cadeia[1], a composição anterior é diferenciável $\forall \theta \in \mathbb{R}_{>0}$. Podemos calcular a derivada usando regras usuais do cálculo na fórmula principal e chegamos em $s'(\theta) = \frac{2\theta}{(\theta^2 + 1)^2}$

Pelo Corolário da Regra da Cadeia[1] que estabelece a derivada da função inversa, a função s satisfaz todas as condições que implicam a diferenciabilidade de s^{-1} : S é diferenciável no seu domínio, s^{-1} é contínua s em todos os pontos da imagem de s, e $s'(\theta) > 0$, $\forall \theta \in \mathbb{R}_{>0}$. Segue que s^{-1} é diferenciável de derivada 1/s'.

Provamos então que s é bijetiva, diferenciável e sua inversa é diferenciável, provando então que se trata de uma mudança de variáveis difeomorfa.

a. Vamos usar a interpretação do termo "mudança de parâmetro"como sendo um homeomorfismo.

Temos que provar então que λ é bijetiva e contínua com inversa contínua.

(Injetividade) Tome $t_1, t_2 \in (-1, +1)$ arbitrários. Temos então,

$$\lambda(t_1) = \lambda(t_2)$$

$$\Rightarrow \tan(\pi t_1/2) = \tan(\pi t_2/2)$$

$$\Rightarrow \pi t_1/2 = \pi t_2/2$$

$$\Rightarrow t_1 = t_2,$$
(1)

onde 1 segue da bijetividade da tangente em $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Segue então que λ é injetiva em (-1, 1).

(Sobrejetividade) Segue da bijetividade da tangente no mapeamento $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (-\infty, \infty)$, que $\forall x \in \mathbb{R}$ existe $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ tal que $\tan(\theta) = x$, sendo assim, é direto que $\exists t \in (-1, 1)$ tal que $\tan(\pi t/2) = x$.

(Continuidade) A continuidade de λ segue da continuidade da tangente. Tome $\lambda^{-1}: \mathbb{R} \to (-1,1)$ dada por $\lambda^{-1}(x) = \frac{2 \arctan(x)}{\pi}$.

Segue da continuidade da arco tangente que λ^{-1} é contínua em todos os reais, pois é apenas uma multiplicação por constante.

Exercício 5 Provar que a curva

$$\gamma(t) = \left(2t, \frac{2}{1+t^2}\right)$$

com t > 0 é regular e é uma reparametrização de

 $^{^3}$ O único ponto (real) de descontinuidade da expressão de $s^{-1}(x) = \left(\frac{x}{1-x}\right)^{1/2}$ seria x=1 que não está no domínio (0,1)

$$\alpha(t) = \left(\frac{2\cos t}{1+\sin t}, 1+\sin t\right), \quad t \in (-\pi/2, \pi/2)$$

Solução 5 ...

Exercício 6 Seja $\alpha(t) = \left(\frac{1}{\sqrt{3}}\cos t + \frac{1}{\sqrt{2}}\sin t, \frac{1}{\sqrt{3}}\cos t - \frac{1}{\sqrt{2}}\sin t\right)$. Reparametrizar α pelo comprimento do arco.

Solução 6 ...

Exercício 7 Mostre que, se todas as retas tangentes a uma curva regular passam por um mesmo ponto $P \in \mathbb{R}^2$, então seu traço está contido em uma reta.

Solução 7 ...

Exercício 8 Mostre que, se todas as retas normais a uma curva regular passam por um mesmo ponto $P \in \mathbb{R}^2$, então seu traço está contido em um círculo.

Solução 8

REFERÊNCIAS

Lista 2 Curvas e Superfícies

Rener Oliveira 6 de março de 2021

Referências

[1] E.L. Lima. Curso de Análise Vol. 1, 15ª ed., page 185. Instituto de Matemática Pura e Aplicada, CNPq, 2019.