Analyse Numérique 1

Chap.1: Introduction

R	С
Transposé (T)	Transconjugé (*)
<ax,y> = <x,aty></x,aty></ax,y>	<ax,y>=<x,a*y></x,a*y></ax,y>
Symétrique (A ^t = A)	Hermitienne (A*=A)
A Orthogonale $\langle = \rangle$ (A ^t A=AA ^t =I et A ⁻¹ =A ^t)	A Unitaire <=> (A*A=AA*=I et A ⁻¹ =A*)
A Orthogonale => Ax = x	U Unitaire => Ux = x U =1
Théoreme Spectral : A Symétrique => Existe O Orthogonale et D Diagonale tq A = O ^t DO	Théoreme Spectral : A Hermitienne => Existe U Unitaire et D Diagonale tq A = U*DU
A def positive <=> tous ses VP sont >0	A def positive <=> tous ses VP sont >0

Det(Matrice Triangulaire/Diagonale) = Produit des éléments de la diagonale = Produit des val propres

Matrices Definies positives : Soit A symétrique(Hermitienne).

ou

{(Methode de Sylvester)Les déterminant des sous matrices de A sont >0}

Calcul de A⁻¹:

$$A^{-1} = 1/det(A)$$
. Comatrice (A)

Exple:

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & -4 & -1 \end{pmatrix}; |B| = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & -4 & -1 \end{vmatrix} = +6$$

$$com(B) = \begin{pmatrix} +\begin{vmatrix} 1 & 2 \\ -4 & -1 \end{vmatrix} & -\begin{vmatrix} 0 & 2 \\ -1 & -1 \end{vmatrix} & +\begin{vmatrix} 1 & 3 \\ -1 & -1 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ -1 & -4 \end{vmatrix} \\ +\begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} & +\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 7 & -2 & 1 \\ -10 & 2 & 2 \\ 1 & -2 & 1 \end{pmatrix}$$

$${}^{t}com(B) = \begin{pmatrix} 7 & -10 & 1 \\ -2 & 2 & -2 \\ 1 & 2 & 1 \end{pmatrix};$$

$$d'où B^{-1} = \frac{1}{6} \begin{pmatrix} 7 & -10 & 1 \\ -2 & 2 & -2 \\ 1 & 2 & 1 \end{pmatrix}$$

Valeurs et Vecteurs propres :

Valeurs:

Les racines du poly caractéristique : det(Xid-A)

Vecteurs:

AV = Valprop.V

Rayon spectral = max|lamda|

Normes Matricielles:

 $||A||_1$ = max sur colones (somme des valeurs absolus des élement de chaque colone)

||A||_{infinie} = max sur les lignes (Somme des valeurs absolues des élements)

 $||A||_2$ = racine(rayon spectral(A*A))

[Si de plus A normale (A*A=AA*) alors ||A||₂=rayon spectral(A)]

Norme Subordonné \iff {||Id||= 1 {||Ax||<||A||.||x||

Conditionnement d'une matrice:

$$Cond_p(A) = ||A||_{p} \cdot ||A^{-1}||_{p}$$

Chap.2 : Méthodes directes de resolution des systémes linéaires

Opérations élémentaires sur les lignes :

*La multiplication se fait toujours a gauche

Multiplication par un scalaire $\alpha \le$ matrice identité avec α a l'indice ii

Permutation de I et j \ll matrice identité avec Id[I,j]=id[j,i]=1 et Id[i,i]=id[j,j]=0

Opération Li=Li + α .Lj <=> matrice identité avec id[I,j] = α

Methodes de resolution :

Gauss Classique (On n'effectue pas des permutations sauf si on trouve un pivot nul)

Gauss pivot total (On effectue des changements pour avoir le plus grand pivot (sur lignes & colones))

Gauss pivot partiel (On effectue des permutations pour avoir le plus grand pivot dans la partie qu'on est en train de travailler dessous (sur lignes uniquemenet))

Factorisation LU:

Critére : Les sous matrices principales sont inversibles A=LU

$${Ax=b <=> LU.x=B <=> {Ux = y} }$$

Si on trouve des permutations lors de methode gauss classique la factorisatin devient PA = LU

$${Ax=b <=> P.Ax = Pb <=> PLU.x=PB <=> {Ux = y} }$$
 ${Ly = PB}$

$$U = P^{3} E^{2} P2 E1 A$$

 $A = L^{1} P^{2} L^{2} P^{3} U$
Donc

A =
$$P^{2}P^{3}LA^{1}LA^{2}U$$

Avec:
 $LA^{1} = P^{3}P^{2}L^{1}P^{2}P^{3}$
 $LA^{2} = P^{3}L^{2}P^{3}$
=> $PA = LU$
Avec:
 $P = P^{3}P^{2}$
 $L = LA^{1}LA^{2}$

Factorisation de Cholesky:

Conditions:

*Symétrique & def positive

*Inversible

Méthode:

$$L = \begin{bmatrix} a & 0 & 0 \\ b & c & 0 \\ d & e & f \end{bmatrix} L^{T} = \begin{bmatrix} a & b & d \\ 0 & c & e \\ 0 & 0 & f \end{bmatrix}$$

$$LL^{T} = \begin{bmatrix} a^{2} & ab & ad \\ ab & b^{2} + c^{2} & bd + ce \\ ad & bd + ce & d^{2} + e^{2} + f^{2} \end{bmatrix}$$

On Identifie $L.L^{t} = A$

Si il nous demande de resoudre un systéme avec la facto de Cholesky :

$$Ax = B$$

=> L.L^t x= B
=> Ly = B & L^t x = y

Si la question est : 'En déduire a partir de la facto LU' :
On pose A = RDR

Chap. 3 : Methodes itératives de resolution

Systeme Ax = b

Il faut écrire A sous la forme A = M - N

On prend:

$$M = Diag(A)$$

 $N = E + F$:

 $E = -(A_{i>j})$ (Matrice des Sous-diag)

 $F = -(A_{i \le j})$ (Matrice des Sur-diag)

Methode De Jacobi:

 $J = Matrice de Jacobi = M^{-1}(E+F)$

Ou bien:

Si la matrice A est a diagonale strict dominante

Définition Une matrice A est dite à diagonale strictement dominante si :

$$\forall i, \ 1 \le i \le n, \ |a_{ii}| > \sum_{j=1, j \ne i}^{n} |a_{ij}|$$

, La méthode de Jacobi est convergente.

Condition de convergence de la methode :

• RaySpec(J) < 1

$$Ax = b \iff (M-N)x = b \iff x^{k+1} = Jx^k + M^{-1}b$$

Algorithme:

Données : $A,\,b,\,x^0,\,n,\,\varepsilon$ et MAXITER début

Methode de Relaxation:

$$A = M - N$$
 $M = 1/w \cdot D - E$
 $N=(1-w)/w D + F$
Matrice d'itération $L_w=M^{-1}N$

Etapes:

On cherche w pour lesquels la methode cv

On cherche w optimal qui verifie RayonSepc(L_W) =

inf(RayonSpec(L_W))

Le système devient
$$x_{k+1} = L_w x_k + M^{-1} b$$

- {La méthode de relaxation cv => w in]0,2[}<=> qqs w in R\]0,2[la methode div
- Si A est Hermitienne (Symétrique) def positive => {w in]0,2[<=> La methode de relaxation cv}

Condition Nécessaire :

Il faut que le rayon spectral de la matrice d'itération soit

Condition Nécessaire et suffisante :

A Hermitienne def positive => { Méthode de relaxation cv <=> w in]0,2[}

Gauss-Seidel (Cas Particulier w=1)
Algorithme:

Jacobi A diag strict dominante / ray spec <1 Gauss Seidel A sym def pos w in 0,2