36-755 - Advanced Statistical Theory I

Fall 2017

Lecture 20: November 8

Lecturer: Alessandro Rinaldo Scribes: Minshi Peng

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 ULLN via Rademacher complexity

Theorem 20.1 Let \mathcal{F} be a class of real valued functions on \mathcal{X} (i.e. \mathbb{R}^d), s.t. $\forall f \in \mathcal{F}$, $||f||_{\infty} \leq b$ for some b > 0. Then $\forall t > 0$,

$$\mathbb{P}\Big(\|P_n - P\|_{\mathcal{F}} \ge 2\mathcal{R}_n(\mathcal{F}) + t\Big) \le \exp\Big\{-\frac{nt^2}{2b^2}\Big\}$$

where $X = (X_1, ..., X_n) \stackrel{i.i.d}{\sim} \mathcal{P}$ and $\epsilon = (\epsilon_1, ..., \epsilon_n) \stackrel{i.i.d}{\sim} Radmacher$, ϵ independent of X,

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n f(X_i) - \mathbb{E}f(X_i) \right|$$

and

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right]$$

Actually, $||P_n - P||_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + C\sqrt{\frac{\log n}{n}}$ with probability $1 - \frac{1}{n}$

Proof:

- 1) . Bounded difference inequality applied to $||P_n P||_{\mathcal{F}}$
- 2) . Symmetrization inequality

Lemma 20.2 Let \mathcal{F} be a class of integrable $(w.r.t \mathcal{P})$ real valued functions on \mathcal{X} and let

$$\|\mathcal{R}_n\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right|$$

where $X = (X_1, \ldots, X_n) \stackrel{i.i.d}{\sim} \mathcal{P}$ and $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \stackrel{i.i.d}{\sim} Radmacher$, ϵ independent of X. Then for any convex, non-decreasing $\phi : \mathbb{R}_+ \to \mathbb{R}_+$

$$\mathbb{E}_{X,\epsilon} \left[\phi(\frac{1}{2} \| \mathcal{R}_n \|_{\bar{\mathcal{F}}}) \right] \le \mathbb{E}_X \left[\phi(\| P_n - P \|_{\mathcal{F}}) \right] \le \mathbb{E}_{X,\epsilon} \left[\phi(2\mathcal{R}_n(\mathcal{F})) \right]$$

where $\bar{\mathcal{F}} = \{ f - \mathbb{E}[f(X)], f \in \mathcal{F} \}.$

20-2 Lecture 20: November 8

Remark:

1) $\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{X,\epsilon} \Big[\|\mathcal{R}_n\|_{\mathcal{F}} \Big]$

2) . Take $\phi(x) = x$ to prove the theorem.

Proof of Symmetrization lemma:

By using ghost samples $Y = (Y_1, \ldots, Y_n) \stackrel{i.i.d}{\sim} \mathcal{P}$ where Y independent of X, ϵ and the convexity of ϕ

$$\mathbb{E}\Big[\phi(\|P_n - P\|_{\mathcal{F}})\Big] \leq \mathbb{E}_{X,Y}\Big[\phi\Big(\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n \big(f(X_i) - f(Y_i)\big)|\Big)\Big]$$

$$= \mathbb{E}_{X,Y,\epsilon}\Big[\phi\Big(\sup_{f \in \mathcal{F}} \frac{1}{n} \Big|\sum_{i=1}^n \epsilon_i \big(f(X_i) - f(Y_i)\big)\Big|\Big)\Big]$$

$$\leq \mathbb{E}_{X,Y,\epsilon}\Big[\phi\Big(\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i)| + \sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^n \epsilon_i f(Y_i)|\Big)\Big]$$

$$\leq \mathbb{E}_{X,Y,\epsilon}\Big[\frac{1}{2}\phi\Big(\sup_{f \in \mathcal{F}} \frac{2}{n} |\sum_{i=1}^n \epsilon_i f(X_i)|\Big) + \frac{1}{2}\phi\Big(\sup_{f \in \mathcal{F}} \frac{2}{n} |\sum_{i=1}^n \epsilon_i f(Y_i)|\Big)\Big]$$

$$= \mathbb{E}_{X,\epsilon}\Big[\phi\Big(\sup_{f \in \mathcal{F}} \frac{2}{n} |\sum_{i=1}^n \epsilon_i f(X_i)|\Big)\Big] = \mathbb{E}_{X,\epsilon}\Big[\phi(2\|\mathcal{R}_n\|_{\mathcal{F}})\Big]$$

The first inequality is because $f(X_i) - f(Y_i) \stackrel{d}{=} \epsilon_i (f(X_i) - f(Y_i)), \forall i \text{ where } \epsilon = (\epsilon_1, \dots, \epsilon_n) \stackrel{i.i.d}{\sim} \text{Radmacher.}$ This concludes the proof of upper bound. The proof of lower bound is similar (refers to Proposition 4.1. in the book).

We have seem that $||P_n - P||_{\mathcal{F}} \leq 2\mathcal{R}_n(\mathcal{F}) + t$ with probability $1 - e^{-\frac{nt^2}{2b^2}}$. Using the lower bound in the symmetrization inequality you can show that

$$||P_n - P||_{\mathcal{F}} \ge \frac{1}{2} \mathcal{R}_n(\mathcal{F}) - \frac{\sup_{f \in \mathcal{F}} |\mathbb{E}[f(X)]|}{2\sqrt{n}} - t$$

with probability at least $1 - e^{-\frac{nt^2}{2b^2}}$. It shows that class \mathcal{F} is Glwenko Cantelli w.r.t. \mathcal{P} , since $||P_n - P||_{\mathcal{F}} \stackrel{P}{\to} 0$ iff $\mathcal{R}_n(\mathcal{F}) \to 0$ as $n \to \infty$. Thus our task is to control

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right]$$

Definition 20.3 A class \mathcal{F} of real valued functions on \mathcal{X} has polynomial discrimination with parameter $\nu \geq 1$, if $\forall n$ and for each n-tuple $xn = (x_1, \ldots, x_n)$ of points in \mathcal{X} , the set $\mathcal{F}(x_1^n) = \left\{ (f(x_1), \ldots, f(x_n)) \in \mathbb{R}^n, f \in \mathcal{F} \right\}$ has cardinality $\leq (n+1)^{\nu}$.

Example $\mathcal{F} = \left\{1_{(-\infty,x]}, x \in \mathbb{R}\right\}$ has polynomial discrimination with parameter $\nu = 1$. This is because fix an n-tuple $x_1^n = (x_1, \dots, x_n)$, it splits real line into n+1 intervals

$$(-\infty, x_{(1)}], (x_{(2)}, x_{(3)}], \cdots, (x_{(n-1)}, x_{(n)}], (x_{(n)}, \infty),$$

where $x'_{(i)}s$ are order statistics $x_{(1)} \leq x_{(2)} \leq \cdots, \leq x_{(n)}$. The function $1_{(\infty,z]}$ is 1 for all i s.t. $x_{(i)} \leq z$. Thus $|\mathcal{F}(x_1^n)| \leq n+1$.

Lecture 20: November 8 20-3

Lemma 20.4 If \mathcal{F} has polynomial discrimination with parameter ν , then for any n-tuple x_1^n

$$\mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right| \right] \le 2D_{\mathcal{F}}(x_1^n) \sqrt{\frac{\nu \log(n+1)}{n}}$$

where $D_{\mathcal{F}}(x_1^n) = \sup_{f \in \mathcal{F}} \sqrt{\frac{\sum_{i=1}^n f^2(x_i)}{n}}$ is the L_2 diameter of \mathcal{F} .

Example: $\mathcal{F} = \left\{ 1_{(-\infty,z]}, z \in \mathbb{R} \right\}$ so

$$||P_n - P||_{\mathcal{F}} = \sup_{z \in \mathbb{R}} |F(z) - F_n(z)| = ||F - F_n||_{\infty}$$

where F(z) is c.d.f. of \mathcal{P} and $F_n(z)$ is empirical c.d.f.

Corollary 20.5

$$\mathbb{P}\Big(\|F - F_n\|_{\infty} \ge 4\sqrt{\frac{\log n}{n}} + t\Big) \le \exp\Big\{-\frac{nt^2}{2b^2}\Big\}$$

Which means $||F - F_n||_{\infty} \lesssim \sqrt{\frac{\log n}{n}}$ with probability at least $1 - \frac{1}{n}$.

The sharpest result is **DKW Iequality**

$$\mathbb{P}(\|F - F_n\|_{\infty} \ge t) \le 2 \exp\left\{-\frac{nt^2}{2}\right\}$$

The constants are due to (Massart 1990).

20.2 VC Theory

For now assume \mathcal{F} consists of binary 0-1-functions. Such that $\left|\mathcal{F}(x_1^n)\right| \leq 2^n$. But we want $\left|\mathcal{F}(x_1^n)\right| \leq (n+1)^{\nu}$.

Definition 20.6 We say that the n-tuple x_1^n is shattered by \mathcal{F} if $|\mathcal{F}(x_1^n)| = 2^n$. The VC-dimension of \mathcal{F} is the largest integer n for which some n-tuple $x_1^n = (x_1, \ldots, x_n) \subset \mathcal{X}$ is shattered by \mathcal{F} (If \mathcal{F} has VC-dimension ν , then if $n > \nu$, no n-tuple is shattered by \mathcal{F})

Notation change Let \mathcal{A} be a collection of subsets of \mathcal{X} and \mathcal{F} is the set of indicator functions of sets in \mathcal{A} . $A \in \mathcal{A} \iff f_A \in \mathcal{F}$, $f_A(x) = 1_A(x)$ Then we may speak of VC-dimension of \mathcal{A} .

$$\mathcal{F}(x_1^n) \Longleftrightarrow \mathcal{A}(x_1^n) = \left\{ A \cap x_1^n, A \in \mathcal{A} \right\}$$

If $|\mathcal{A}(x_1^n)| = 2^n$, \mathcal{A} picks out all subsets of coordinates of x_1^n

Examples

1)
$$\mathcal{F} = \left\{1_{(-\infty,z]}, z \in \mathbb{R}\right\} \iff \mathcal{A} = \left\{(-\infty,z], z \in \mathbb{R}\right\}. \ |\mathcal{A}(x_1^n)| \le n+1. \text{ The VC-dimension is } 1.$$

20-4 Lecture 20: November 8

2) $\mathcal{A} = \{(b,a], b < a\}$. Observe that $|\mathcal{A}(x_1^n)| \le (x+1)^2$ because each x_1^n splits \mathbb{R} into n+1 intervals so we have up to (n+1) choices of for a and up to (n+1) choices for b.

Suppose VC-dimension of \mathcal{A} is ν . Then for $n > \nu |\mathcal{A}(x_1^n)| < 2^n$ for all n-tuples x_1^n . Surprising result is that $|\mathcal{A}(x_1^n)|$ grows polynomially in n (polynomial discrimination).

Lemma 20.7 If A has VC-dimension ν . Then for each $x_1^n \subset \mathcal{X}$

$$\left|\mathcal{A}(x_1^n)\right| = \left|\left\{A \cap x_1^n, A \in \mathcal{A}\right\}\right| \le \sum_{i=0}^{\nu} \binom{n}{i} \le (n+1)^{\nu}$$

for $\forall n \geq 1 \ and \leq \left(\frac{en}{\nu}\right)^{\nu}$ for $n \geq \nu$.