Charles's Sensor Specification

The data transmission is organized in frames. One frame consists of 4 sub-frames.

Sub-Frame

A sub-frame consists of 13 bits and is defined as follow.

Figure 1 Sub-frame

Both start bits have to be logic "0", followed by 10 data bits. A sub-frame is completed with one parity bit to check if an error occurred.

Parity bits contain even parity regarding the sub-frame (number of bits with logic "1" within the 13 bits of the sub-frame is even).

The sub-frame is Manchester coded. Logic "1" is represented with a falling edge; a logic "0" is represented with a rising edge in the middle of the bit.

The following figure shows the timing diagram:

Figure 2 Sub-frame timing - Manchester code

Frame

A complete frame (with 4 sub-frames) is repeated every 5000us.

The timing accuracy depends on the accuracy of the oscillator frequency.

Table 1 Current-Interface Timing

Parameter	Value
Bit Time	40us

Sub-frame time	520us
Separation between two sub-frames	20us
Frame time	2140us
Min. separation between two frames	40us
Frame cycle time	5000us

Table 2 details the sub-frame allocation within a complete frame.

Table 2 Current-Interface frame – general format

Message	Identi	fier	Data (MSB first)								Check
	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Check message	0	0	C7	C6	C5	C4	C3	C2	C1	C0	Р
Data message 1	0	1	Data byte 1							Р	
Data message 2	1	0	Data byte 2							Р	
Data message 3	1	1	Data	Data byte 3							Р

Parity / CRC

Each transmitted message is protected by a parity bit, and all 3 data messages is protected by a Cyclic Redundancy Code (CRC). Any frame with incorrect parity bit or CRC should be discarded.

The parity bit P in every sub-frame is filled with even parity.

An 8 bit CRC is calculated for the data stream consisting of the all 3 data messages (MSB first). The CRC is transmitted in CRC bits as C7, C6, ..., C1 and C0.

The 8-bit CRC is specified by the initialization value 0x3C, and the pseudocode is show as following.

```
for (i = Num_Bits - 1; i >= 0; i--) {

xor_5 = CRC_4 ^ CRC_7;

xor_4 = CRC_2 ^ CRC_7;

xor_3 = CRC_1 ^ CRC_7;

xor_2 = CRC_0 ^ CRC_7;

xor_1 = data_in[i] ^ CRC_7;

CRC_7 = CRC_6;
```

```
CRC_6 = CRC_5;

CRC_5 = xor_5;

CRC_4 = CRC_3;

CRC_3 = xor_4;

CRC_2 = xor_3;

CRC_1 = xor_2;

CRC_0 = xor_1;

}
```