Logika matematyczna II

 \sim notatki z wykładu \sim

Wersja z dnia: 6 marca 2017

Streszczenie

Notatki do wykładu *Logika matematyczna II* dra Leszka Kołodziejczyka, prowadzonego w semestrze letnim roku akademickiego 2016/17. Spisywane przez Jędrzeja Kołodziejskiego i Bartosza Piotrowskiego. Uwagi o błędach są mile widziane – proszę pisać na bartoszpiotrowski@post.pl

Uwagi wstępne

Teorie aksjomatyczne są dwojakiego rodzaju:

- ladne (pod takim, czy innym względem) da się zrozumieć zbiory w nich definiowalne, jak również struktury ich modeli; są rozstrzygalne. Przykładem tego typu teorii są gęste liniowe porządki bez końców (DLO), czyli $\mathrm{Th}(\mathbb{Q},\leqslant),\mathrm{Th}(\mathbb{R},+,\cdot,\leqslant)$, etc. Tego typu ladne teorie są przedmiotem zainteresowania teorii modeli.
- straszne (tzw. smoki) teorie te nie spełniają żadnych warunków ladności. Przykłady: ZFC, Th($\mathbb{N},+,\cdot,\leqslant$).

Pierwsza część niniejszego kursu będzie dotyczyła teorii ladnych, druga zaś – smoków.

Polecane podręczniki do pierwszej części to:

- David Marker, *Model Theory: An Introduction*, Graduate Texts in Mathematics, Springer, 2002,
- Katrin Tent, Martin Ziegler, A Course in Model Theory, Cambridge University Press, 2012.

1 Eliminacja kwantyfikatorów

Definicja 1.1. Teoria T ma eliminację kwantyfikatorów (q.e.) wtedy i tylko wtedy, gdy dla dowolnej formuły $\psi(\bar{x})$ istnieje taka formuła bezkwantyfikatorowa $\phi(\bar{x})$, że $T \models \forall \bar{x}(\psi(\bar{x}) \iff \phi(\bar{x}))$.

Uwaga 1.2. Jeśli w sygnaturze teorii T nie występują żadne stałe, wówczas teoria ta nie ma zdań bezkwantyfikatorowych. W takiej sytuacji można:

- albo dopuścić sytuację, że dla zdania ϕ bierzemy formułę bezkwantyfikatorową ψ taką, że $T \vdash \forall x (\phi \Leftrightarrow \psi(x)),$
- ullet albo wprowadzić zmienne zdaniowe \top i \bot i żądać zupełności teorii T.

Przykład 1.3. W Th($\mathbb{R}, +, \cdot, \leq$) formuła $\phi(y, z, w) \equiv y \neq 0 \land \exists x (yx^2 + 2x + w = 0)$ jest równoważna formule bezkwantyfikatorowej $y \neq 0 \land z^2 - 4yw \geqslant 0$.

Z eliminacji kwantyfikatorów typowo wynikają następujące korzyści:

- zrozumienie zbiorów definiowalnych w danej teorii (no bo więcej, niż trzy bloki kwantyfikatorów sprawiają niemożliwym zrozumienie definicji),
- uzyskanie zupełności teorii,
- uzyskanie rozstrzygalności teorii.

Ale z drugiej strony trzeba uważać, bo:

Stwierdzenie 1.4. Dla dowolnej niesprzecznej teorii T istnieje jej niesprzeczne rozszerzenie $T^+ \supseteq T$ z eliminacją kwantyfikatorów.

Dowód. Dla każdej formuły $\phi(\bar{x})$ dodajemy nowy symbol relacyjny $R_{\phi}(\bar{x})$.

$$T^+ := T \cup \{ \forall \bar{x} (\phi(\bar{x}) \Leftrightarrow R_{\phi}(\bar{x})) \}$$

A nadawanie niezrozumiałym formułom nazw nie czyni ich zrozumiałymi.

Twierdzenie 1.5. DLO (teoria gęstych liniowych porządków) posiada q.e.

Dowód. Niech ϕ to formuła DLO w zmiennych x_1, \ldots, x_n . (Jak wiemy) DLO jest zupełna (bo ma tylko jeden, z dokładnością do izomorfizmu, przeliczalny model, tzn. jest ω-kategoryczna, a mamy twierdzenie Löwenheima-Skolema).

Zauważmy, że:

- jeśli $a_1, \ldots, a_n, b_1, \ldots b_n \in \mathbb{Q}$ są takie, że dla każdej formuły bezkwantyfikatorowej ϕ zachodzi $(\mathbb{Q}, \leqslant) \models \phi(\bar{a}) \Leftrightarrow \phi(\bar{b})$, to istnieje autoizomorfizm $h(\mathbb{Q}, \leqslant)$ taki, że $h(a_i) = b_i$ dla $i \in \{1, \ldots, n\}$, a zatem dla każdej formuły $\gamma(\bar{x})$ mamy $(\mathbb{Q}, \leqslant) \models \gamma(\bar{a}) \Leftrightarrow \gamma(\bar{b})$,
- z dokładnością do równoważności w DLO istnieje tylko skończenie wiele formuł bezkwantyfikatorowych w zmiennych x_1, \ldots, x_n każda jest alternatywą koniunkcji takich, jak na przykład ta: $x_1 = x_2 \wedge x_1 \leqslant x_3 \wedge \neg x_3 \leqslant x_1$. Takie koniunkcje oznaczamy przez $\psi_1(\bar{x}), \psi_2(\bar{x}), \ldots$ W takim razie

$$(\mathbb{Q}, \leqslant) \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \bigwedge \psi_i(\bar{x}))$$

$$i \text{ takie, } \dot{z}e \text{ istnieje } \bar{a} \in \mathbb{Q}^n$$

$$\text{takie, } \dot{z}e (\mathbb{Q}, \leqslant) \models \phi(\bar{a}) \land \psi_i(\bar{a})$$

Zatem z zupełności

$$\begin{array}{c} \mathsf{DLO} \models \forall \bar{x}(\phi(\bar{x}) \Leftrightarrow \bigwedge \psi_i(\bar{x})) \\ \quad i \text{ takie, \dot{z}e istnieje $\bar{a} \in \mathbb{Q}^n$} \\ \quad \text{takie, \dot{z}e $(\mathbb{Q}, \leqslant) \models \phi(\bar{a}) \land \psi_i(\bar{a})$} \end{array}$$

Wniosek 1.6. DLO jest o-minimalna, tj. dla dowolnego $A \models \mathsf{DLO}$ i dowolnej formuły $\phi(x,\bar{a})$, gdzie $a \in A^n$ zbiór definiowalny $\{x \in A : A \models \phi(x,\bar{a})\}$ jest skończoną sumą przedziałów (być może jednopunktowych).

Dla dowolnej teorii T, równoważne są następujące warunki:

- (i) T ma q.e.
- (ii) dla dowolnego $\psi \in T$ i dowolnych modeli A, B dla T i struktury D w ich przecięciu, to dla dowolnej krotki $d \in D$, mamy $A \models \exists_y [\psi(d,y)] \iff B \models \exists_y [\psi(d,y)]$

Dowód:

(i) \Rightarrow (ii) - proste, bo wywalamy kwantyfikator i wtedy nasza formuła patrzy tylko na d. (ii) \Rightarrow (i) $[\ldots]$

Definicja A jest minimalne \iff każdy definiowalny podzbiór A jest skończony lub koskończony; jest silnie minimalna \iff każde B elmentarnie równoważne z A jest minimalne