Health and eating dataset

Notebook link: • ML healthy eating.ipynb

Brief description of each dataset and tasks

- **Description**: This dataset is about what makes a dish healthy. The data includes information such as: Fat, Sugar, Calories, Cooking method,...
- <u>Tasks</u>: Our task is to build a model to predict if a dish is healthy or not based on the provided features.

Summary of model architectures and training strategies

a. Model architecture:

- The model architectures I used were 2 **Relu** layers, 1 **Dropout** layer, and 1 **sigmoid** layer.
- → The reason why I used this model architecture is that:
 - ◆ RELU: Because it is fast and safe
 - ◆ Dropout: As mentioned in class, Dropout might make the learning process more efficient by creating more difficulties for the model
 - ◆ Softmax: Because our output is binary

b. Training Strategies:

- My approach was to clean all the data, followed by splitting the train and the test set. Then I did the preprocessing process before actually training the model, and finally ended with validating and testing the model. Along the way, I did add EarlyStopping to make sure the learning process was 'safe'. Specifically in this dataset, I used class_weight to help my model focus more on the minority, which is very significant in this dataset, where it heavily shifted to unhealthy.

Comparative analysis of performance and feature importance

a. Analysis of performance:

- The model stopped at epoch 26, with loss: 0.0639 - precision: 0.6624 - recall: 1.0000 - val loss: 0.1989 - val precision: 0.5152 - val recall: 0.6071

- Test loss : 0.1801 - Test precision: 0.6047 - Test recall : 0.7027

Confusion Matrix:

[[346 17]

[11 26]]

Classification Report:

precision recall f1-score support 0.0 0.97 0.95 0.96 363 1.0 0.70 37 0.60 0.65 accuracy 0.93 400 macro avg 0.79 0.83 0.81 400 weighted avg 0.94 0.93 0.93 400

→ Despite using class weight to focus more on the minority, my model still performs very bad with healthy food.

b. Feature Importance:

Feature Importance Table:

	Feature	Importance
3	minmaxscalerfat_g	0.295380
5	minmaxscalersugar_g	0.271978
0	minmaxscalercalories	0.211739
34	onehotencodercooking_method_Raw	0.154545
44	onehotencodermeal_Wrap	0.138199
15	onehotencodercuisine_Italian	0.136895
42	onehotencodermeal_Soup	0.136801
31	onehotencodercooking_method_Boiled	0.135203
24	onehotencoderdiet_type_Balanced	0.135168
43	onehotencodermeal_Stew	0.133315
37	onehotencodermeal_Curry	0.132092
41	onehotencodermeal_Sandwich	0.129632
33	onehotencodercooking_method_Grilled	0.129111

27	onehotencoderdiet_type_Paleo	0.128861
7	minmaxscalercholesterol_mg	0.128311
25	onehotencoderdiet_type_Keto	0.127910
10	minmaxscalercook_time_min	0.127676
18	onehotencodercuisine_Mexican	0.126329
26	onehotencoderdiet_type_Low-Carb	0.126240
6	minmaxscalersodium_mg	0.124831
17	onehotencodercuisine_Mediterranean	0.124563
28	onehotencoderdiet_type_Vegan	0.122959
29	onehotencoderdiet_type_Vegetarian	0.122251
2	minmaxscalercarbs_g	0.121748
20	onehotencodermeal_type_Breakfast	0.121134
32	onehotencodercooking_method_Fried	0.119973
40	onehotencodermeal_Salad	0.119619
9	minmaxscalerprep_time_min	0.118990
39	onehotencodermeal_Rice	0.118852
1	minmaxscalerprotein_g	0.118366
22	onehotencodermeal_type_Lunch	0.118272
23	onehotencodermeal_type_Snack	0.118205
14	onehotencodercuisine_Indian	0.117720
36	onehotencodercooking_method_Steamed	0.116033
13	onehotencodercuisine_Chinese	0.115148
19	onehotencodercuisine_Thai	0.114427
35	onehotencodercooking_method_Roasted	0.112300

11	minmaxscalerrating	0.112236
30	onehotencodercooking_method_Baked	0.111803
8	minmaxscalerserving_size_g	0.110121
12	onehotencodercuisine_American	0.109715
4	minmaxscalerfiber_g	0.109225
16	onehotencodercuisine_Japanese	0.107582
21	onehotencodermeal_type_Dinner	0.107279
38	onehotencodermeal_Pasta	0.100040

- The features are somewhat similar in terms of importance in this model.

Insights into what you discovered in your experiments

- Different usage of metrics in different cases. For example, my first approach was to use accuracy, but when I thought deeply about it, accuracy was not a good choice to evaluate in this situation, especially in cases where the label is so shifted to one specific character.
- I can not fully rely on the model and let it learn by itself. In my first attempt, I did not use class weight to make the model focus on the minority value (1). This led to a very bad result, which was the reason why I approached it in this way. But in the end, it is still very vulnerable with a minority label, so there must be a better way to do this.