# МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС «ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ» НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

Лабораторна робота №9 з курсу «Чисельні методи»

тема: «Диференціальні рівняння

у частинних похідних»

Виконав: студент 3 курсу

групи КА-23

Деундяк О.В.

Прийняла: Кузнєцова Н. В.

# Рівняння коливань струни.

Розв'язати рівняння гіперболічного типу  $u_{tt} = u_{xx} + F(t,x)$ , 0 < x < L = 1, (2) для функції u(t,x) з початковими  $u(0,x) = u_0(x)$ ,  $u_t(0,x) = 0$  та крайовими  $u(t,0) = u_1(t)$ ;  $u(t,L) = u_2(t)$  умовами.

6  $(x+0,2)\sin(\pi x/2)$ 

$$u(t,x) = (x + 0.2)\sin\left(\frac{\pi x}{2}\right)\cos(\pi t)$$

## Текст програми:

### TMA.h

```
#pragma once
#include <vector>
class TMA
{
  std::vector<double> c, d, r;
  size_t i; // number of iterations
  size_t n; // size of system
public:
  TMA(size_t n) : i(0), c(n), d(n), r(n)
    this->n = n;
  }
  std::vector<double> Result();
  void Iterate(double a, double b, double c, double d);
};
TMA.cpp
#include "TMA.h"
void TMA::Iterate(double A, double B, double C, double D)
  if (i == n)
    return;
  if (i == 0)
    c[i] = C / B;
    d[i] = D / B;
  }
  else
    c[i] = C / (B - A*c[i - 1]);
    d[i] = (D - A*d[i - 1]) / (B - A*c[i - 1]);
  }
  i++;
std::vector<double> TMA::Result()
  if (i != n)
    return std::vector<double>();
  r[n-1] = d[n-1];;
  for (size_t i = n - 1; i > 0; i--)
    r[i-1] = d[i-1] - c[i-1] * r[i];
  return r;
};
```

### Hyper.h

```
#pragma once
#define _USE_MATH_DEFINES
#include <cmath>
#include <functional>
#include <vector>
typedef std::function<double(double)> func;
typedef std::function<double(double, double)> func2;
class Hyper
public:
  static std::vector<std::vector<double>> Process(double s, func 2 F, func u0, func u1, func u2, func v0,
size_t Nt, size_t NI, double period, double length);
};
Hyper.cpp
#include "Hyper.h"
#include "TMA.h"
std::vector<std::vector<double>> Hyper::Process(double s, func2 F,
  func u0, func u1, func u2, func v0,
  size_t Nt, size_t NI, double period, double length)
{
  std::vector<std::vector<double>> u(Nt+1, std::vector<double>(Nl+1));
  double h = length / NI;
  double dt = period / Nt;
  double q = h / dt*h / dt;
  for (size_t n = 0; n <= NI; n++)
    u[0][n] = u0(n*h);
  u[1][0] = u1(dt);
  u[1][NI] = u2(dt);
  for (size_t n = 1; n < NI; n++)
    u[1][n] = u[0][n] + dt*v0(h*n) + dt*dt / 2*((u[0][n + 1] - 2*u[0][n] + u[0][n - 1]) / h / h +F(0, h*n));
  double err = 0;
  for (size_t k = 1; k < Nt; k++)
  {
    TMA tma(NI + 1);
    tma.Iterate(0, 1, 0, u1((k + 1)*dt));
    for (size_t n = 1; n < NI; n++)
      tma.Iterate(-s, q + 2 * s, -s,
         2 * u[k][n]*q - u[k - 1][n]*q + (1 - 2 * s)*(u[k][n + 1] - 2 * u[k][n] + u[k][n - 1]) + s*(u[k - 1][n + 1])
- 2 * u[k - 1][n] + u[k - 1][n - 1])
         + (s*F((k+1)*dt, n*h) + (1-2*s)*F(k*dt, n*h) + s*F((k-1)*dt, n*h))*h*h);
```

```
tma.Iterate(0, 1, 0, u2((k + 1)*dt));
    u[k+1] = tma.Result();
  }
  return u;
}
main.cpp
#include "Hyper.h"
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <fstream>
int Test()
  size_t const Nt = 1000;
  size_t const NI = 1000;
  func u0 = [](double x)->double{ return (x + 0.2)*sin(M_PI*x / 2); };
  func u1 = [](double t)->double{ return 0.; };
  func u2 = [](double t)->double{ return 1.2*cos(M_PI*t); };
  func v0 = [](double x)->double{ return 0.; };
  func2 utt = [](double t, double x)->double{ return -M PI*M PI*(x + 0.2)*sin(M PI*x / 2)*cos(M PI*t);
};
  func2 uxx = [](double t, double x)->double{ return (-
M_PI*M_PI/4*(x+0.2)*sin(M_PI*x/2)+M_PI*cos(M_PI*x/2))*cos(M_PI*t); };
  func2 F = [utt, uxx](double t, double x)->double{ return utt(t,x)-uxx(t,x); };
  func2 answ = [](double t, double x)->double{ return (x + 0.2)*sin(M_PI*x / 2)*cos(M_PI*t); };
  double period = 2, length = 1;
  double h = length / NI;
  double dt = period / Nt;
  std::vector<std::vector<double>> res = Hyper::Process(0.75, F, u0, u1, u2, v0, Nt, Nl, period, length);
  std::ofstream out("output.txt");
  out << std::left << std::fixed;
    for (size_t k = 0; k < Nt + 1; k++)
       double m = 0;
       for (size_t n = 0; n < NI + 1; n++)
         double a1 = answ(k*dt, n*h);
         double a2 = res[k][n];
         double err = abs(a1-a2);
         m = std::max(m,err);
```

```
}
       out << std::setw(4) << k*dt << '\t'
         << std::setw(12) << m << std::endl;
    }
  }
  /*{
    for (size_t k = 0; k < Nt + 1; k++)
       double m = 0;
       for (size_t n = 0; n < NI + 1; n++)
       if (abs(res[k][n]) > m)
         m = abs(res[k][n]);
       out << std::setw(4) << k*dt << '\t'
         << std::setw(12) << m << std::endl;
   }
  }*/
  /*{
    for (size_t n = 0; n < NI + 1; n++)
    out << std::setw(4) << n*h << '\t'
       << std::setw(12) << res[Nt][n] << std::endl;
  }*/
  /*{
    for (size_t n = 0; n < NI + 1; n++)
       out << std::setw(4) << n*h << '\t'
       << std::setw(12) << answ(Nt*dt, n*h) - res[Nt][n] << std::endl;
  }*/
  /*for (size_t k = 0; k <= Nt; k++)
    out << "t=" << k*dt << std::endl;
    for (size_t n = 0; n <= NI; n++)
       out << n*h << '\t' << answ(k*dt, n*h) - res[k][n] << '\t' << answ(k*dt, n*h) - res[k][n] <<
std::endl;
    }
    out << std::endl;
  }*/
  out << std::endl;
  return 0;
}
int main()
  return Test();
}
```

# Результати роботи програми

|            |                        | Результа  | ти роооти |
|------------|------------------------|-----------|-----------|
| t=0.000000 | 0.00000                | 0.00000   | 0.00000   |
| 0.000000   | 0.000000               | 0.000000  | 0.000000  |
| 0.100000   | 0.046930               | 0.046930  | 0.000000  |
| 0.200000   | 0.123607               | 0.123607  | 0.000000  |
| 0.300000   | 0.226995               | 0.226995  | 0.000000  |
| 0.400000   | 0.352671               | 0.352671  | 0.000000  |
| 0.500000   | 0.494975               | 0.494975  | 0.000000  |
| 0.600000   | 0.647214               | 0.647214  | 0.000000  |
| 0.700000   | 0.801906               | 0.801906  | 0.000000  |
| 0.800000   | 0.951057               | 0.951057  | 0.000000  |
| 0.900000   | 1.086457               | 1.086457  | 0.000000  |
| 1.000000   | 1.200000               | 1.200000  | 0.000000  |
| t=0.200000 |                        |           |           |
| 0.000000   | 0.000000               | 0.000000  | 0.000000  |
| 0.100000   | 0.037967               | 0.037417  | 0.000551  |
| 0.200000   | 0.100000               | 0.098975  | 0.001025  |
| 0.300000   | 0.183643               | 0.181981  | 0.001662  |
| 0.400000   | 0.285317               | 0.282884  | 0.002433  |
| 0.500000   | 0.400443               | 0.397138  | 0.003305  |
| 0.600000   | 0.523607               | 0.519373  | 0.004234  |
| 0.700000   | 0.648755               | 0.643580  | 0.005175  |
| 0.800000   | 0.769421               | 0.763342  | 0.006079  |
| 0.900000   | 0.878962               | 0.872069  | 0.006893  |
| 1.000000   | 0.970820               | 0.970820  | 0.000000  |
| t=0.400000 |                        |           |           |
| 0.000000   | 0.000000               | 0.000000  | 0.000000  |
| 0.100000   | 0.014502               | 0.019239  | -0.004736 |
| 0.200000   | 0.038197               | 0.019239  | -0.010297 |
| 0.300000   | 0.070145               | 0.086757  | -0.016237 |
| 0.400000   | 0.108981               | 0.132405  | -0.023423 |
| 0.400000   | 0.152956               | 0.132403  | -0.023423 |
|            |                        |           | -0.035705 |
| 0.600000   | 0.200000               | 0.235705  |           |
| 0.700000   | 0.247803               | 0.286332  | -0.038529 |
| 0.800000   | 0.293893               | 0.329894  | -0.036001 |
| 0.900000   | 0.335734               | 0.359594  | -0.023860 |
| 1.000000   | 0.370820               | 0.370820  | 0.000000  |
| t=0.600000 | 0.000000               | 0.000000  | 0.000000  |
| 0.000000   | -0.000000<br>-0.014502 | 0.000000  | -0.000000 |
| 0.100000   |                        | -0.001710 | -0.012792 |
| 0.200000   | -0.038197              | -0.011665 | -0.026531 |
| 0.300000   | -0.070145              | -0.028814 | -0.041331 |
| 0.400000   | -0.108981              | -0.052550 | -0.056431 |
| 0.500000   | -0.152956              | -0.082629 | -0.070326 |
| 0.600000   | -0.200000              | -0.119310 | -0.080690 |
| 0.700000   | -0.247803              | -0.163562 | -0.084241 |
| 0.800000   | -0.293893              | -0.217317 | -0.076576 |
| 0.900000   | -0.335734              | -0.283648 | -0.052086 |
| 1.000000   | -0.370820              | -0.370820 | 0.000000  |
| t=0.800000 | 0.0005                 | 0.0000    | 0.00555   |
| 0.000000   | -0.000000              | 0.000000  | -0.000000 |
| 0.100000   | -0.037967              | -0.019477 | -0.018491 |
| 0.200000   | -0.100000              | -0.063549 | -0.036451 |
| 0.300000   | -0.183643              | -0.130141 | -0.053502 |
| 0.400000   | -0.285317              | -0.216929 | -0.068388 |
| 0.500000   | -0.400443              | -0.321266 | -0.079177 |
| 0.600000   | -0.523607              | -0.440222 | -0.083384 |
| 0.700000   | -0.648755              | -0.570379 | -0.078377 |
|            |                        |           |           |

| 0.800000   | -0.769421 | -0.707090  | -0.062331 |
|------------|-----------|------------|-----------|
|            |           |            |           |
| 0.900000   | -0.878962 | -0.842728  | -0.036235 |
| 1.000000   | -0.970820 | -0.970820  | 0.000000  |
|            |           |            |           |
| t=1.000000 |           |            |           |
| 0.000000   | -0.000000 | 0.000000   | -0.000000 |
| 0.100000   | -0.046930 | -0.031818  | -0.015112 |
|            |           |            |           |
| 0.200000   | -0.123607 | -0.096536  | -0.027071 |
| 0.300000   | -0.226995 | -0.192813  | -0.034182 |
| 0.400000   | -0.352671 | -0.317559  | -0.035112 |
| 0.500000   | -0.494975 | -0.466066  | -0.028908 |
| 0.600000   | -0.647214 | -0.631739  | -0.015475 |
| 0.700000   | -0.801906 | -0.805259  | 0.003353  |
|            |           |            |           |
| 0.800000   | -0.951057 | -0.972999  | 0.021943  |
| 0.900000   | -1.086457 | -1.114482  | 0.028025  |
| 1.000000   | -1.200000 | -1.200000  | 0.000000  |
|            |           |            |           |
| t=1.200000 |           |            |           |
| 0.000000   | -0.000000 | 0.000000   | -0.000000 |
|            |           |            |           |
| 0.100000   | -0.037967 | -0.040829  | 0.002862  |
| 0.200000   | -0.100000 | -0.110712  | 0.010712  |
| 0.300000   | -0.183643 | -0.209974  | 0.026331  |
| 0.400000   | -0.285317 | -0.335465  | 0.050148  |
| 0.500000   | -0.400443 | -0.480689  | 0.080246  |
|            |           |            | 0.030240  |
| 0.600000   | -0.523607 | -0.635335  |           |
| 0.700000   | -0.648755 | -0.784520  | 0.135764  |
| 0.800000   | -0.769421 | -0.908130  | 0.138709  |
| 0.900000   | -0.878962 | -0.981261  | 0.102298  |
| 1.000000   | -0.970820 | -0.970820  | 0.000000  |
|            | ***       | ********** |           |
| t_1 400000 |           |            |           |
| t=1.400000 | 0.000000  | 0.000000   | 0.000000  |
| 0.000000   | -0.000000 | 0.000000   | -0.000000 |
| 0.100000   | -0.014502 | -0.049540  | 0.035038  |
| 0.200000   | -0.038197 | -0.112005  | 0.073808  |
| 0.300000   | -0.070145 | -0.188241  | 0.118095  |
| 0.400000   | -0.108981 | -0.275006  | 0.166024  |
| 0.500000   | -0.152956 | -0.364698  | 0.211742  |
|            |           |            |           |
| 0.600000   | -0.200000 | -0.445266  | 0.245266  |
| 0.700000   | -0.247803 | -0.500876  | 0.253074  |
| 0.800000   | -0.293893 | -0.514247  | 0.220354  |
| 0.900000   | -0.335734 | -0.472206  | 0.136472  |
| 1.000000   | -0.370820 | -0.370820  | 0.000000  |
| 1.000000   | 0.370020  | 0.370020   | 0.000000  |
| . 1 (00000 |           |            |           |
| t=1.600000 | 0.000000  | 0.000000   | 0.000000  |
| 0.000000   | 0.000000  | 0.000000   | 0.000000  |
| 0.100000   | 0.014502  | -0.056749  | 0.071251  |
| 0.200000   | 0.038197  | -0.102704  | 0.140900  |
| 0.300000   | 0.070145  | -0.136402  | 0.206548  |
| 0.400000   | 0.108981  | -0.154025  | 0.263007  |
| 0.500000   | 0.152956  | -0.148840  | 0.301796  |
|            |           |            |           |
| 0.600000   | 0.200000  | -0.112164  | 0.312164  |
| 0.700000   | 0.247803  | -0.036146  | 0.283948  |
| 0.800000   | 0.293893  | 0.081176   | 0.212716  |
| 0.900000   | 0.335734  | 0.228589   | 0.107144  |
| 1.000000   | 0.370820  | 0.370820   | 0.000000  |
| 1.000000   | 0.570020  | 0.570020   | 0.000000  |
| t_1 000000 |           |            |           |
| t=1.800000 | 0.000000  | 0.000000   | 0.000000  |
| 0.000000   | 0.000000  | 0.000000   | 0.000000  |
| 0.100000   | 0.037967  | -0.054388  | 0.092356  |
| 0.200000   | 0.100000  | -0.075323  | 0.175323  |
| 0.300000   | 0.183643  | -0.056816  | 0.240459  |
| 0.400000   | 0.285317  | 0.005356   | 0.279961  |
| 0.500000   |           |            |           |
| 0.300000   | 0.400443  | 0.113608   | 0.286835  |

| 0.600000   | 0.523607 | 0.266561  | 0.257046  |
|------------|----------|-----------|-----------|
| 0.700000   | 0.648755 | 0.455506  | 0.193250  |
| 0.800000   | 0.769421 | 0.660364  | 0.109057  |
| 0.900000   | 0.878962 | 0.848011  | 0.030952  |
| 1.000000   | 0.970820 | 0.970820  | 0.000000  |
|            |          |           |           |
| t=2.000000 |          |           |           |
| 0.000000   | 0.000000 | 0.000000  | 0.000000  |
| 0.100000   | 0.046930 | -0.030891 | 0.077822  |
| 0.200000   | 0.123607 | -0.016673 | 0.140280  |
| 0.300000   | 0.226995 | 0.052046  | 0.174950  |
| 0.400000   | 0.352671 | 0.178034  | 0.174637  |
| 0.500000   | 0.494975 | 0.356021  | 0.138953  |
| 0.600000   | 0.647214 | 0.570939  | 0.076275  |
| 0.700000   | 0.801906 | 0.796811  | 0.005095  |
| 0.800000   | 0.951057 | 0.998539  | -0.047482 |
| 0.900000   | 1.086457 | 1.140019  | -0.053562 |
| 1.000000   | 1.200000 | 1.200000  | 0.000000  |





