Energetic and thermodynamic analysis for plasma pyrolysis:

Reaction of EVA with Water

The reaction proceeds as follows:

 $(C_2H_4)_n+(C_4H_6O_2)_m+mH_2O \rightarrow (C_2H_4)_n(C2H4)m+(CH3COOH)m$

Ethylene is recovered, and vinyl acetate breaks down into acetic acid.

Material Breakdown for 1 MW Solar Panels

Component Percentage (%) Mass (Kg)

Glass	76%	39368
Other Metals	11%	5180
Aluminium	8%	4144
EVA	8%	4144
PVF	2%	1036

EVA Composition and Breakdown

- EVA consists of:
 - 80% Ethylene (C2H4)
 - o 20% Vinyl Acetate (C4H6O2)

Component	Percentage (%) Mass (Kg) Molar Mass (g/mol) Mo			l) Moles
C2H4	80%	3315.2	28	118400
C4H6O2	20%	828.8	86	963

• Vinyl acetate fully breaks down into acetic acid (CH3COOH), yielding 963 moles of acetic acid.

Combustion Reactions and Energetics

1. Ethylene (C2H4) Combustion:

C2H4+3O2→2CO2+2H2OΔH=−1410.008 KJ/mol Energy from 118400 mol=118400×−1410.008 KJ=−166.96 GJ

Total Energy Released:

167 GJ

Electricity Generated (Efficiency = 50 % considering that 20 % heat also lost while heating the water):

167 - 20% = 133.6, almost 134GJ

133 * 0.5 = 67GJ

Energy Required for Plasma Pyrolysis

Argon Gas Ionization

Parameter	Value	
Volume of Argon	2.12 m ³ (2120 L)	
Moles (n)	87	
Ionization Energy	63.59 MJ	
(731 KJ/mol)	03.33 113	
Thermal Energy	16.27 MJ	
Total Energy (Argon)	79.86 MJ	

Energy for Metal Vaporization

Metal	Mass (Kg)	Heat of Fusion (KJ/mol)	Heat of Vaporization (KJ/mol)	Total Energy (GJ)
Si	2072	50.2	383	35
Cu	518	13.26	300.4	0.862
Ag	15	23.5	254	0.454
Pb	23	4.77	179.5	0.150
Ti	22	14.15	425	3
Sn	14	7.03	296.1	0.100

Total Energy for Metals:

(35 +3 + 0.862+0.454+0.150+0.100) GJ≈39.57 GJ

Energy for metals is calculated as:

[(From Room temperature (RT) to melting point(Tm)]

m*Cp(Tm – RT) + Heat of fusion + m*Cp(Tb-Tm) + heat of vaporization

Final Energy Requirements

Component	Energy
Component	(GJ)

Electricity generated **67GJ**

Plasma Pyrolysis Energy (Required) 39.57

Net Energy Available 27.43

Let me know if any further refinement is needed!