B1 (erweitert) – Gibbs-Reduktionslemma, Trotter-Stabilität und Laplace-konsistentes Coarse-Graining auf dem ST-Graph

 $\operatorname{mit} \operatorname{Code} \leftrightarrow \operatorname{Formel-Mapping} \operatorname{für} \operatorname{das} \operatorname{PoC}$

Kurzfassung. Wir arbeiten endlichdimensional (Graph-Laplaciane). Für $H = H_S \otimes \mathbf{1}_E + \mathbf{1}_S \otimes H_E$ gilt exakt $e^{-\beta H} = e^{-\beta H_S} \otimes e^{-\beta H_E}$; daraus folgt die Reduktionsformel $\operatorname{Tr}_E \frac{e^{-\beta H}}{\operatorname{Tr}_E - \beta H_S} = \frac{e^{-\beta H_S}}{\operatorname{Tr}_E - \beta H_S}$. Auf dem Sierpiński-Tetraeder (ST) definieren wir $L_{\text{lift}} = C^{\top} L_0 C$ (Aggregation C mit Zeilensummen 1, Rekonstruktion C^{\top}) und die Approximanten $L_A(\alpha) = (1 - \alpha)L + \alpha L_{\text{lift}}$. Wir zeigen: L_{lift} ist symmetrisch, positiv semidefinit (PSD) und $L_{\text{lift}} \mathbf{1} = 0$. Damit ist $L_A(\alpha)$ für $\alpha \in [0, 1]$ wieder PSD und hat $\mathbf{1}$ im Kern. Gibbs-Zustände $\rho \propto e^{-\beta L}$ bzw. $e^{-\beta L_A(\alpha)}$ sind wohldefiniert; $E = \operatorname{Tr}(\rho L)$, $S = -\operatorname{Tr}(\rho \log \rho)$, $P = \operatorname{Tr}(\rho^2)$ folgen in Spektraldarstellung.

1 Vollständiger Beweis

1.1 Faktorisierung und Teilspur

Lemma 1.1 (Kronecker-Summe, exakte Faktorisierung). Für endlichdimensionale selbstadjungierte H_S, H_E gilt

$$e^{-\beta(H_S \otimes \mathbf{1} + \mathbf{1} \otimes H_E)} = e^{-\beta H_S} \otimes e^{-\beta H_E} \qquad (\beta \in \mathbb{R}). \tag{1.1}$$

Beweis. $X := H_S \otimes \mathbf{1}$ und $Y := \mathbf{1} \otimes H_E$ kommutieren, also $e^{-(X+Y)\beta} = e^{-\beta X}e^{-\beta Y}$ (funktionaler Kalkül/Baker-Campbell-Hausdorff für [X,Y] = 0).

Lemma 1.2 (Gibbs-Reduktionslemma). Definiere $\rho_{SE}(\beta) := e^{-\beta H} / \operatorname{Tr}_{SE} e^{-\beta H}$ mit H aus Lemma 1.1. Dann

$$\operatorname{Tr}_{E} \rho_{SE}(\beta) = \frac{e^{-\beta H_S}}{\operatorname{Tr}_{S} e^{-\beta H_S}} =: \rho_{S}(\beta). \tag{1.2}$$

Beweis. Aus (1.1) folgt $e^{-\beta H} = e^{-\beta H_S} \otimes e^{-\beta H_E}$ und $\operatorname{Tr}_{SE} e^{-\beta H} = (\operatorname{Tr}_S e^{-\beta H_S})(\operatorname{Tr}_E e^{-\beta H_E})$. Weiter gilt $\operatorname{Tr}_E(A \otimes B) = (\operatorname{Tr} B) A$.

Bemerkung 1.3 (Stabilität). Für nicht kommutierende Summanden liefert die Lie-Trotter-Formel $e^{-\beta(A+B)} = \lim_{n\to\infty} (e^{-\beta A/n}e^{-\beta B/n})^n$ und die Golden-Thompson-Ungleichung Tr $e^{A+B} \leq \text{Tr}(e^A e^B)$. Wir benötigen beides nicht, es erhöht aber die Robustheit der Reduktion, falls schwache Kopplungsterme modelliert werden.

1.2 Laplacian, Lift und Approximanten

Definition 1.4 (ST-Urgraph und Laplacian). Sei G = (V, E) ein (verbundener) ST-Level-Graph; L = D - A der symmetrische Graph-Laplacian.

Lemma 1.5 (Kern und PSD). L ist PSD und $L\mathbf{1} = 0$. Für einen verbundenen Graphen ist dim ker L = 1.

Beweis. Standard:
$$x^{\top}Lx = \frac{1}{2} \sum_{(i,j) \in E} (x_i - x_j)^2 \ge 0$$
 und $\sum_j L_{ij} = 0$.

Proposition 1.6 (Galerkin-Lift). Sei $C \in \mathbb{R}^{c \times n}$ eine Aggregationsmatrix mit Zeilensummen 1 und $R := C^{\top}$. Für einen groben Laplacian L_0 sei $L_{\text{lift}} := R L_0 C$. Dann gilt:

- i) L_{lift} ist symmetrisch und PSD: $x^{\top}L_{\text{lift}}x = (Cx)^{\top}L_0(Cx) \geq 0$.
- ii) $L_{\text{lift}} \mathbf{1} = 0$ (da $C\mathbf{1} = \mathbf{1}_c$ und $L_0 \mathbf{1}_c = 0$).

Korollar 1.7 (Approximantenfamilie). Für $\alpha \in [0,1]$ sei $L_A(\alpha) = (1-\alpha)L + \alpha L_{\text{lift}}$. Dann $L_A(\alpha)$ ist symmetrisch, PSD und $L_A(\alpha)\mathbf{1} = 0$.

B1: Gibbs-Zustände und Observablen

Satz 1.8 (B1). Für $\beta > 0$ definieren

$$\rho_U(\beta) = \frac{e^{-\beta L}}{\text{Tr } e^{-\beta L}}, \qquad \rho_A(\alpha; \beta) = \frac{e^{-\beta L_A(\alpha)}}{\text{Tr } e^{-\beta L_A(\alpha)}}.$$
 (1.3)

Dann gilt für jedes Umgebungs-Hamiltonian H_E (endlichdimensional)

$$\rho_{U}(\beta) = \operatorname{Tr}_{E} \frac{e^{-\beta(L\otimes\mathbf{1}+\mathbf{1}\otimes H_{E})}}{\operatorname{Tr} e^{-\beta(L\otimes\mathbf{1}+\mathbf{1}\otimes H_{E})}},$$

$$\rho_{A}(\alpha; \beta) = \operatorname{Tr}_{E} \frac{e^{-\beta(L_{A}(\alpha)\otimes\mathbf{1}+\mathbf{1}\otimes H_{E})}}{\operatorname{Tr} e^{-\beta(L_{A}(\alpha)\otimes\mathbf{1}+\mathbf{1}\otimes H_{E})}}.$$
(1.4)

$$\rho_A(\alpha; \beta) = \operatorname{Tr}_E \frac{e^{-\beta(L_A(\alpha) \otimes \mathbf{1} + \mathbf{1} \otimes H_E)}}{\operatorname{Tr}_E e^{-\beta(L_A(\alpha) \otimes \mathbf{1} + \mathbf{1} \otimes H_E)}}.$$
(1.5)

In Spektraldarstellung $L = Q\Lambda Q^{\top}$ ist $\rho_U = Q\operatorname{diag}(p) Q^{\top}$ mit $p_i = e^{-\beta\lambda_i}/\sum_j e^{-\beta\lambda_j}$ und analog für $L_A(\alpha)$. Die Observablen sind

$$E = \text{Tr}(\rho L) = \sum_{i} p_i \lambda_i, \qquad S = -\text{Tr}(\rho \log \rho) = -\sum_{i} p_i \log p_i, \qquad P = \text{Tr}(\rho^2) = \sum_{i} p_i^2.$$
(1.6)

Beweis. Lemmas 1.1, 1.2 und Korollar 1.7.

Thermodynamische Identitäten. Mit $Z(\beta) = \text{Tr } e^{-\beta L}$ gilt $\partial_{\beta} \log Z = -E$ und $\partial_{\beta}^2 \log Z = -E$ $\operatorname{Var}_{\rho}(L) \geq 0.$

$\mathbf{Code} \leftrightarrow \mathbf{Formel} \ (\mathbf{PoC})$

- build_graph_by_addresses(level): konstruiert Level-m-Graph (V_m, E_m) , liefert Punkte V_m , Adjazenz A_m , Laplacian L_m .
- L_A_alpha(alpha): $L_A(\alpha) = (1 \alpha)L_4 + \alpha L_{lift}$ (Urgraph-Level 4).
- C (c×n), R=C.T, L0: Aggregation/Rekonstruktion auf c=4 Superknoten; Lift $L_{lift}=$ RL_0C .
- reduced_density_via_partial_trace(L, beta, env_evals): implementiert Lemma 1.2 durch $w_{\text{env}} = e^{-\beta \mu_k}$, $Z_{\text{env}} = \sum_k w_{\text{env}}$, $p_i \propto e^{-\beta \lambda_i} Z_{\text{env}}$; $\rho = Q \operatorname{diag}(p) Q^{\top}$.
- energy_from_spectrum, entropy_from_p, purity_from_p: berechnen E, S, P wie oben.
- L_A_sub_alpha: Subgraph-Variante für Animation; beobachtete Kurven in den GIFs entsprechen $E(\alpha), S(\alpha), P(\alpha)$.

Randfälle und Angriffspunkte 3

- Nullraum/Degeneranz. Für verbundene Graphen ist $\ker L = \operatorname{span}\{1\}$; ansonsten mischt ρ die Komponenten (kein Problem).
- Numerische Symmetrisierung. Im Code wird $L_{\text{lift}} \leftarrow (L_{\text{lift}} + L_{\text{lift}}^{\top})/2$ gesetzt; analytisch ist Symmetrie bereits durch $R = C^{\top}$ garantiert.
- Nichtkommutative Kopplung. Falls ein (schwacher) Kopplungsterm V hinzugefügt würde, sichern Lie-Trotter/Golden-Thompson Approximations- und Spurabschätzungen ab.
- Parameter β . Alle Aussagen gelten für $\beta > 0$. Thermodynamische Identitäten folgen aus $Z(\beta) = \operatorname{Tr} e^{-\beta L}$.

Quellen (Primärliteratur/Monographien)

- Horn & Johnson, *Matrix Analysis*, 2nd ed., CUP (Faktorisierung bei kommutierenden Summanden; Block/Kronecker-Kalkül).
- Nielsen & Chuang, Quantum Computation and Quantum Information, CUP (Teilspur, reduzierte Zustände).
- Fan Chung, Spectral Graph Theory, CBMS (Laplacian: PSD, Kern enthält Konstanten; Verbindung zur Random-Walk-Stationärverteilung).
- Neidhardt et al., Exner et al., Trotter-Kato-Formeln (Stabilität/Normkonvergenz).
- Notay; Huang et al., Aggregation/Galerkin in AMG (SPD-Erhaltung $P^{\top}AP$; Erhaltung der Near-Nullspace-Moden wie Konstanten).
- Forrester & Thompson, $Golden-Thompson\ inequality$ (Spurabschätzung).

Appendix A: Numerische Konsistenzchecks (ST-Graph, Level 4)

Tabelle 1: ST-Graph (Level 4): Konsistenz- und Observablen-Checks bei $\beta=3.$

α	$\lambda_{\min}(L_A)$	$\ L_A1\ _2$	E	S	P
0.00	-1.785e-15	0.000e+00	0.268043	3.447838	0.042732
0.25	2.706e-16	2.003e-13	0.277231	3.707486	0.032441
0.50	-8.407e-16	5.756e-14	0.266696	4.002944	0.022838
0.75	-1.769e-16	4.134e-14	0.311603	4.707514	0.012876
1.00	-1.800e-17	2.752e-16	0.000166	6.242199	0.001946

Reduktionsfehler: $\|\text{Tr}_E(\rho_{\text{tot}}) - \rho(L)\|_F = 1.99e - 16$. Thermo: $|E + \partial_\beta \log Z| = 9.92e - 11$, $\partial_\beta^2 \log Z = 1.075241e - 01$, Var(L) = 1.075241e - 01.

Appendix B: Urgraph (voll) vs. Approximant-Subgraph

Tabelle 2: Urgraph (voll) vs. Approximant-Subgraph (Level 4, Subgraph $N_{\rm sub}=160$) bei $\beta=3.$

Modell	E	S	P			
Urgraph (n=514)	0.268043	3.447838	0.042732			
Approximant-Subgraph $L_A^{\text{sub}}(\alpha) = (1 - \alpha)L^{\text{sub}} + \alpha L_{\text{lift}}^{\text{sub}}$						
$\alpha = 0.00$	1.435179	0.555224	0.811794			
$\alpha = 0.25$	1.288974	1.280182	0.549102			
$\alpha = 0.50$	1.224950	2.609951	0.196850			
$\alpha = 0.75$	1.003994	4.309108	0.025661			
$\alpha = 1.00$	0.000177	5.075166	0.006250			

Hinweis: Werte sind *nicht skaleninvariant* in n; der Subgraph hat geringere Dimension.