IN THE CLAIMS:

Please amend the claims as set forth below:

1	1. (Currently Amended) A method of-for verifying the validity of generating-an encrypted code		
2	generated in base L, comprising the steps of:		
3	obtaining an encrypted code fashioned as a base L string derived from providing an n-bit raw		
4	number by ;		
5	producing a first string through application of applying a one-way hash function on-to the n-bit		
6	raw number with a first secret key, to generate a first strung;		
7	designating an m-bit portion of the first string as an m-bit validation number, ; and		
8	producing a second string through combination of combining-the m-bit validation number and		
9	the n-bit raw number-to-generate a second string, producing a third string through application of an		
10	encryption algorithm to the second string with a second secret key, and converting the third string to the		
11	base L string;		
12	converting the base L string to a base 2 string;		
13	decrypting the base 2 string; and		
14	verifying the validity of the encrypted code by processing the decrypted base 2 string.		
1	2. (Currently Amended) The method of claim 1, further comprising the steps wherein the encryption		
2	algorithm is of:		
3	——— aaplying a DES3 encryption algorithm to the second string with a second secret key to generate a		
4	third string; and		
5	converting the third string to base L to generate the encrypted code.		
1	3. (Original) The method of claim 1, wherein n=32, m=16, and L=29.		
1	4. (Original) The method of claim 1, wherein the one-way hash function is MD5.		
1	5. (Currently Amended) The method of claim 1, wherein the combination step of combining		
2	includes concatenating the m-bit validation number and the n-bit raw number.		
1	6. (Original) The method of claim 1, wherein the m-bit validation number is the m most significant		
2	bit (MSB) portion of the second string.		

1	7. (Currently Amended) The method of claim 1, wherein the m-bit validation number is the m most				
2	significant bit (MSB) portion of the first string.				
1	8. (Currently Amended) A method of verifying the validity validity of a code obtained by a user				
2	from an object, comprising the steps of:				
3	————generating a code with encrypted information;				
4	fixing the code on an object to be distributed to a user;				
5	obtaining the code from the object, by the user;				
6	receiving the code on lineon-line from the user, the code is generated with encrypted information				
7	as a base L string and obtained by the user off-line from the object;				
8	converting the base L string to a base 2 string;				
9	decrypting the base 2 string; and				
10	verifying the validity of the code by processing the encrypted information decrypted base 2 string.				
1	9. (Currently Amended) The method of claim 8, wherein the <u>code is generated bystep of generating</u>				
2	includes the steps of:				
3	providing an n-bit raw number;				
4	generating a first string through application of applying a one-way hash function on-to				
5	the n-bit raw number with a first secret key-to-generate a first string;				
6	designating a m-bit portion of the first string as an m-bit validation number;				
7	generating a second string by combining the m-bit validation number and the n-bit raw				
8	number-to-generate a second string;				
9	generating a third string through application of applying a DES3 encryption algorithm to				
10	the second string with a second secet secret key to generate a third string; and				
11	producing the code with the encrypted information by converting the third string to a base L				
12	stringto generate the code with the encrypted information.				
1	10. (Currently Amended) The method of claim 91, wherein the decryption of the base 2 string is				
2					
3	produces a second test code, and wherein the step of verifying further includes the steps of:				
4	converting the code in base L to generate a first test code in base 2;				

	decrypting the first test code with the second secret key using a reverse DES3 encryption				
	algorithm to generate a second test code;				
	generating a third test code through application of applying the one-way hash algorithm to the				
	second test code-to generate a third test code; and				
	comparing a designated m-bit portion of the second test code to a designated m-bit portion o				
the third test code; and declaring the code valid if the comparison is positive, declaring the code to be valid.					
	11. (Original) The method of claim 10, wherein the m-bit validation number is the m-most				
significant bit (MSB) of the first string in the generating step and the designated m-bit portion is the most					
significant bit portion of the second test code in the comparing step.					
	12. (Currently Amended) A method for awarding incentive points to a user, comprising the steps of:				
	generating a code with encrypted information;				
	providing the code to an entity for printing on an object;				
	receiving on-linethe code from a user on line, the a code having been generated with encrypted				
information and obtained by the user off-reterived from the object by the user;					
	verifying the validity of the code by processing the encrypted information; and				
	awarding incentive points to the user if the code is valid.				
	13. (Currently Amended) The method of claim 12, wherein the code is generated bystep of				
	generating includes the steps of:				
	providing an n-bit raw number;				
	generating a first string through application of applying a one-way hash function on-to the				
en-bitn-bit raw number with a first secret key-to-generate a first string;					
	designating an m-bit portion of the first string as an m-bit validation number;				
	generating a second string through combination of combining the m-bit validation number				
and the n-bit raw number to generate a scond string;					
	generating a third string through application of applying a DES3 encryption algorithm to				
the second string with a second secret key-to-generate a third string; and					
	producing the code with the encrypted information through conversion of converting the				
	third string to a base L stringto generate atch code with the encrypted information.				

14.

1

(Currently Amended) The method of claim 1312, wherein the step of verifying includes:

2	generating a first test code by converting the code in base L string of the code to a base 2			
3	stringgenerate a first test code in base 2;			
4	generating a second test code by decrypting the first test code with the second secret key using a			
5	reverse DES3 encryption algorithm-to-generate a second test code;			
6	generating a thirst test code by applying the one-way hash algorithm to the second test code-to			
7	generate a third test code; and			
8	determining the validity of the code by comparing a designated m-bit portion of the second test			
9	code to a designated m-bit portion of the third test code, and if the comparison is positive, declaring the			
10	code to be valid .			
1	15. Canceled			
1	16. (Currently Amended) The method of claim 1514, wherein the m-bit validation number is the m most			
2	significant bit (MSB) of the first string in the generating step and the designated m-bit portion is the n			
3	significant bit portion of the second test code and third test code in the comparing step.			
1	17. (Currently Amended) An offline-online points system, comprising:			
2	a main server configured for providing a user with an interface to for submit receiving a code from a			
3	user, wherein the code is obtainable by the user offline and is associated with N points, wherein each			
4				
5	for the user; and			
6	a code server configured for maintaining valid codes and verifying, against the valid codes, the			
7	validity of that the code submitted byreceived from the user, wherein the account has a balance of points			
8	capable of growing is valid such that a balance in the account for the user is increased by a predetermined			
9	number of points if the code is valid.;			
10	means for generating the code; and			
11	means for fixing the code onto a medium such that the code is obtainable from the medium offline.			
1	18. (Currently Amended) The offline online points systemmethod of claim 1712, wherein the code is			
2	generated by: wherein the means for generating the code includes			
3	means for providing a number portion,			
4	means for deriving a validation portion from the number portion,			
5	means for appending the validation portion to the number portion to form a string,			

6	means for encrypting	the string, and

- 7 means for deriving the code from the encrypted string by converting the encrypted string to
- 8 base L string.
- 1 19. (Currently Amended) The offline-online points systemmethod of claim 18, wherein the code is a
- 2 fixed-length string with C characters, and wherein the means for step of deriving the code further includes
- 3 means for prepending a character to the base L string any number of times that is needed to achieve the
- 4 fixed-length of C characters.
- 1 20. (Currently Amended) The offline online points systemmethod of claim 18, wherein L is the
- 2 number of characters in the alphabet.
- 1 21. (Currently Amended) The offline online points systemmethod of claim 18, wherein the string is
- 2 48-bits long and the number portion is 32-bits long.
- 1 22. (Currently Amended) The offline online points systemmethod of claim 1712, wherein the code is
- 2 generated by: wherein the means for generating the code includes
- means for providing a number portion, S1_{INT}, from a first string, S1
- 4 means for arranging a first secret key, K1, next to the number portion, S1_{INT}, from S1, to
- 5 form a second string, S2,
- 6 means for applying a hash function to S2 to produce a third string, S3,
- 7 means for extracting a validation portion, S1_{VAL}, from S3 and arranging S1_{VAL}, next to
- 8 $S1_{INT}$ in S1 (S1= $S1_{VAL}$ + $S1_{INT}$),
- 9 means for encrypting S1 using a second secret key, K2, to form a fourth string, S4, and
- means for deriving the code by converting S4 to a base L fixed-length code string.
- 1 23. (Currently Amended) The offline online points systemmethod of claim 22, wherein the first and
- 2 second secret keys, K1 and K2, are 128-bits long and the encryption means-includes DES3 encryption
- 3 algorithm.
- 1 24. (Currently Amended) The offline online points systemmethod of claim 22, wherein the hash
- 2 function application means has includes MD5, a one-way hash algorithm.

1 (Currently Amended) The offline-online points systemmethod of claim 22, wherein S1 is 48-bits 25. 2 long and the number portion, S1_{INT}, is 32-bits long. 1 26. (Currently Amended) The offline-online points system of claim 17, wherein for verifying the 2 submitted code received from the user the code server includes: 3 means for converting the submitted-code from a base L string into a base 2 string, S4_{BASE2}; 4 means for decrypting S4_{BASE2} using a second secret key, K2, to form a decrypted first string, 5 S1'; 6 means for providing a number portion, S1'_{INT}, from S1'; means for arranging a first secret key, K1, next to the number portion, S1'_{INT}, from S1, to 7 8 form a second string, S2';5 9 means for applying a hash function to S2' to form a third string S3'; means for extracting a validation portion from S3' and a validation portion from S1'; and 10 11 means for determining if the code is valid by comparing the validation portion from S3' with 12 the validation portion from S1'. (Original) The offline-online points system of claim 26, wherein S3' and S1 are each 48-bits long 27. 1 2 and the secret keys, K1 and K2 are 128-bits long. 28. (Currently Amended) The offline-online points system of claim 26, wherein the decryption means 1 includes DES3⁻¹ decryption algorithm means and the hash function application means includes MD5 hash 2 3 algorithm means. (Currently Amended) A method for offline-online handling-management of incentive points, 1 29. 2 comprising: receiving generating a code, wherein wherein the code is generated by providing a number portion, 3 4 deriving a validation portion from the number portion, appending the validation portion to the number

processing the code.

5

6

7

8

fixing the code onto a medium such that the code is obtainable from the medium offline.

portion to form a string, encrypting the string, and deriving the code from the encrypted string by converting

the encrypted string to base L string, the code obtained off-line and received on-line; and

- 1 30. (Currently Amended) The method of claim 29, further comprising wherein processing the code 2 includes:
- 3 obtaining the code offline;
- submitting the code online to a server that has valid codes, wherein the code is associated with N points maintained by the server in a user account, wherein each point, characterized as a purchase or attention incentive point, is redeemable; and
- verifying the submitted-code against the valid codes to determine if it is valid, wherein if the submitted-code is valid, a predetermined number of points are added to the user account.
- 1 31. (Original) A method as in claim 29, wherein the code is a fixed-length string with C characters,
- 2 and wherein a character is prepended to the base L string any number of times that is needed to achieve
- 3 the fixed-length of C characters.
- 1 32. (Original) A method as in claim 29, wherein L is the number of characters in the alphabet.
- 1 33. (Original) A method as in claim 29, wherein the string is 48-bits long and the number portion is
- 2 32-bits long.
- 1 34. (Currently Amended) A method for offline-online handling-management of incentive points,
- 2 comprising:
- 3 generating a code by:
- 4 providing a number portion, S1_{INT}, from a first string, S1,
- arranging a first secret key, K1, next to the number portion, S1_{INT}, from S1, to form a
- 6 second string, S2,
- 7 applying a hash function to S2 to produce a third string, S3,
- 8 extracting a validation portion, S1_{VAL}, from S3 and arranging S1_{VAL}, next to S1_{INT} in S1
- 9 (S1=S1 $_{VAL}$ + S1 $_{INT}$),
- encrypting S1 using a second secret key, K2, to form a fourth string, S4, and
- deriving the code by converting S4 to a base L fixed-length code string; and
- fixing the code onto a medium such that the code is obtainable from the medium offline off-line.
- 1 35. (Currently Amended) A method as in claim 34, wherein the first and second secret keys, K1 and
- 2 K2, are 128-bits long and the encryption involves a DES3 encryption algorithm.

- 1 36. (Original) A method as in claim 34, wherein the hash function is MD5, a one-way hash algorithm.
- 1 37. (Original) A method as in claim 34, wherein S1 is 48-bits long and the number portion, S1_{INT}, is 32-
- 2 bits long.
- 1 38. (Original) A method as in claim 30 wherein the step of verifying the submitted code includes,
- 2 converting the submitted code from a base L string into a base 2 string, S4_{BASE2},
- decrypting S4_{BASE2} using a second secret key, K2, to form a decrypted first string, S1',
- 4 providing a number portion from S1'
- arranging a first secret key, K1, next to the number portion from S1' to form a second string,
- 6 S2',
- 7 applying a hash function to S2' to form a third string S3',
- 8 extracting a validation portion from S3' and a validation portion from S1', and
- determining if the code is valid by comparing the validation portion from S3' with the
- validation portion from S1'.
- 1 39. (Original) A method as in claim 38, wherein S3' and S1 are each 48-bits long and the secret keys, K1
- 2 and K2 are 128-bits long.
- 1 40. (Currently Amended) A method as in claim 38, wherein the decryption involves the DES3⁻¹
- decryption algorithm and the has hash function involves the MD5 hash algorithm.