

Abel-konkurransen 1997–98 Fasit til andre runde

Oppgave 1: La a og b være antall jenter som tar hhv. tysk og fransk; la c og d være antall gutter som tar hhv. tysk og fransk. Da er b+c=16, b+d=10, a+b=11 og a+c+d=16. Ved å summere de tre første ligningene og trekke fra den siste blir 3b=21: alltså er b=7. Dette gir a+b+c+d=16+7=23.

Oppgave 2: Anta først at x - |2x + 1| = 3. Dette er ekvivalent med at $x - 3 = |2x + 1| \ge 0$. Siden dette gir $x \ge 3$ er da x - 3 = |2x + 1| = 2x + 1. Dette gir x = -3, men det er ikke en løsning fordi vi også skulle ha $x \ge 3$.

Anta så at x - |2x + 1| = -3. Da er x + 3 = |2x + 1| der vi må ha $x \ge -3$. For $2x + 1 \ge 0$ gir dette x + 3 = 2x + 1 som gir x = 2 som løsning. For 2x + 1 < 0 gir dette x + 3 = -2x - 1 som gir x = -4/3 som løsning.

Oppgave 3: Vi har at $f_3(x) = x$ og at 3 deler 1998, dermed blir $f_{1998}(x) = x$.

Oppgave 4: Det er 16 punkter, så det er mulig å velge 3 punkter på $\binom{16}{3} = 560$ forskjellige måter. Vi må så trekke fra de tilfeller der de tre punktene ligger på linje. Det finnes 10 linjer som inneholder fire punkter: de horisontale, de vertikale og de to diagonalene. Dette gir 40 degenererte trekanter. I tillegg finnes fire linjer parallelle med diagonalene som inneholder tre punkter. Antall ikke-degenererte trekanter blir dermed 560 - 40 - 4 = 516.

Oppgave 5: Siden x^3 -koeffisienten er null er summen av løsningene lik null; for å være en aritmetisk følge må de da være 3a, a, -a og -3a for en passende a. Dette gir $(x+3a)(x+a)(x-a)(x-3a) = (x^2-a^2)(x^2-9a^2) = x^4-10a^2x^2+9a^4$. Da er $m=3a^2$ og $3m+2=10a^2$, hvilket gir $a^2=2$ og dermed m=6.

Oppgave 6: La BC og AD skjære i P. Da er trekantene PAB, PMN og PDC likeformede og arealene dermed proporsjonale med a^2 , MN^2 og b^2 . Siden arealet av PMN er snittet av arealene til PAB og PDC, må $MN^2 = (a^2 + b^2)/2$.

Oppgave 7: Ved å sette inn y = mx - 1, får vi 13x + 11my - 11 = 700 eller (11m + 13)x = 711. Mulige verdier av 11m + 13 er da ..., $-20, -9, 2, 13, \ldots$: tall som gir 2 (eller -9) som rest hvis de deles med 11. Siden $711 = 3^2 \cdot 79$ kan vi finne alle faktorer av 711 som gir denne resten: de eneste er 79 og -9. Disse svarer til m = 6 og m = -2.

Oppgave 8: La kvadratet ha hjørner ABCD der en av sirklene ligger i hjørnet A (tangerer AB og AD): sentrum i denne kalles E og ligger på AC. De to andre sirklene tangerer AC i F samt linjen BC eller CD og de har sentrum i hhv. P og Q. La sirklene ha radius r. Da er $AE = \sqrt{2}r$. Siden EP = 2r, PF = r og EFP er rettvinklet, er $EF = \sqrt{3}r$. Høyden fra F til BC er $FQ/\sqrt{2} + r$ (r =høyden fra P til BC) hvilket gir at FC som er $\sqrt{2}$ ganger dette blir $r + \sqrt{2}r$. Vi får nå at $AC = AE + EF + FC = (\sqrt{2} + \sqrt{3} + 1 + \sqrt{2})r$. Siden $AC = \sqrt{2}$ gir dette $r = \sqrt{2}/(1 + 2\sqrt{2} + \sqrt{3})$.

Oppgave 9: Vi har at 1/n(n+1)(n+2) = (1/n(n+1) - 1/(n+1)(n+2))/2. Ved å skrive ut summen med denne regelen kanselerer alle ledd untatt $(1/1 \cdot 2)/2$ og $-(1/1997 \cdot 1998)/2$, og man får $1/4 - 1/2 \cdot 1997 \cdot 1998$. **E**

Oppgave 10: Dersom a, c > 0 uttrykker formellen avstanden man går dersom man går a + c nedover og b bortover ved først å gå a ned og x bort og dernest c ned og b - x bort: som på figuren. Korteste vei er i en rett linje, hvilket ved Pytagoras gir $\sqrt{(a+c)^2 + b^2}$.

Det ble oppdaget, men for sent, at dersom a og b har forskjellig fortegn må man bruke |a|+|c| i stedet for a+c, og da passer ingen av alternativene. Dermed er alternativ E det rette, men det ble vedtatt under noe tvil, også å gi poeng for alternativ C. $\mathbf{E}(/\mathbf{C})$