SISTEMAS DIGITAIS

AULA: PORTAS LÓGICAS

João Olegário de Oliveira de Souza

jolegario@unisinos.br

E (AND)

✓ Função lógica

A saída estará em nível lógico "1" se todas as entradas estiverem em nível lógico "1".

√ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = A \cdot B$$

E (AND)

✓ Função lógica

A saída estará em nível lógico "1" se todas as entradas estiverem em nível lógico "1".

√ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = A \cdot B$$

E (AND)

✓ Função lógica

A saída estará em nível lógico "1" se todas as entradas estiverem em nível lógico "1".

✓ Montagem no Proteus

✓ Tabela-verdade

$$S = A . B$$

E (AND)

✓ Função lógica

A saída estará em nível lógico "1" se todas as entradas estiverem em nível lógico "1".

Montagem no TinkerCAD

✓ Tabela-verdade

$$S = A \cdot B$$

E (AND)

Exemplo 1:

E (AND)

Exemplo 1:

E (AND)

Exemplo 2:

E (AND)

Exemplo 2:

OU (OR)

✓ Função lógica

A saída estará em nível lógico "1" se, pelo menos, uma entrada estiver em nível lógico "1".

√ Símbolo (ANSI)

✓ Símbolo (ABNT)

✓ Tabela-verdade

$$S = A + B$$

✓ Função lógica

A saída estará em nível lógico "1" se, pelo menos, uma entrada estiver em nível lógico "1".

✓ Símbolo (ANSI)

✓ Símbolo (ABNT)

OU (OR)

✓ Tabela-verdade

$$S = A + B$$

OU (OR)

Exemplo 3:

✓ Tabela-verdade

A	В	C	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

SAÍDA

OU (OR)

Exemplo 3:

A	В	C	S
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Inversora (NOT)

✓ Função lógica

A saída estará em nível lógico "1" se a entrada "NÃO" estiver em nível lógico "1".

✓ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = \overline{A}$$

A porta lógica NE é uma porta lógica E (AND) com a saída barrada (invertida).

✓ Símbolo (ANSI)

√ Símbolo (ABNT)

NE (NAND)

✓ Tabela-verdade

$$S = \overline{A \cdot B}$$

A porta lógica NOU é uma porta lógica OU (OR) com a saída barrada (invertida).

✓ Símbolo (ANSI)

✓ Símbolo (ABNT)

NOU (NOR)

✓ Tabela-verdade

$$S = \overline{A + B}$$

NOU (NOR)

Exemplo 4:

A	В	5
0	0	1
0	1	0
1	0	0
1	1	0

NOU (NOR)

Exemplo 3:

A	В	5
0	0	1
0	1	0
1	0	0
1	1	0

OU exclusivo (XOR)

✓ Função lógica

A saída estará em nível lógico "1" se o número de entradas em nível lógico "1" for impar.

✓ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = A \oplus B$$

OU exclusivo (XOR)

✓ Função lógica

A saída estará em nível lógico "1" se o número de entradas em nível lógico "1" for impar.

√ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = A \oplus B$$

Coincidência (XNOR)

✓ Função lógica

A saída estará em nível lógico "1" se o número de entradas em nível lógico "1" for par.

✓ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

$$S = \overline{A \oplus B}$$

Coincidência (XNOR)

✓ Função lógica

A saída estará em nível lógico "1" se o número de entradas em nível lógico "1" for par.

✓ Símbolo (ANSI)

√ Símbolo (ABNT)

✓ Tabela-verdade

A	В	5
0	0	1
0	1	0
1	0	0
1	1	1

$$S = \overline{A \oplus B}$$

Simbologia

✓ Resumo

Simbologia

✓ Resumo

Função lógica	Símbolo lógico	Tabela verdade	Expressão booleana	Função lógica	Símbolo lógico	Tabela verdade	Expressão booleana
Porta Buffer	A — Y	A Y 0 0 1 1	Y = A	Porta NAND	А	A B Y 0 0 1 0 1 1 1 0 1	Y = Ā◆B
Porta NOT - Inversora	A — Y	A Y 0 1 1 0	Y = Ā	Porta NOR	А	A B Y 0 0 1 0 1 0 1 0 0	Y = A + B
Porta AND	A	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	Y = A•B	Porta XOR	A -1 - v	A B Y 0 0 0 0 1 1	Y = A⊕B
Porta OR	А	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	Y = A + B	Politi AON	B —	1 0 1 1 1 0 A B Y 0 0 1	
'	'		I	Porta XNOR	B — Y	0 1 0 1 0 0 1 1 1	Y = <u>A⊕B</u>

Exemplo 5:

Exemplo 5:

Exemplo 6:

Exemplo 6:

Exemplo 7:

$$y = AC + B\overline{C} + \overline{A}BC$$

Exemplo 7:

$$y = AC + B\overline{C} + \overline{A}BC$$

Exemplo 8:

$$X = (A + B) (\overline{B} + C)$$

Exemplo 8:

$$X = (A + B) (\overline{B} + C)$$

Circuitos Integrados

✓ Resumo

