Problema 1

De a): Obtengamos una parametrización de la rurva plana C (en el plano xz) tomando como linea raleje

Z. Digamos que $C = Tr \alpha$, donde $\alpha(s) = (x(s), 0, z(s))$ es la parametrización por longitud de arco de C, la Cual cumple que:

$$\alpha(s) + \alpha'(s) = (0,0,u(s)) ; \alpha(s) - \alpha'(s) = (0,0,u(s))$$

Con u(s) una Junción de S. Entonces

$$\chi(s) + \chi'(s) = 0$$
 6 $\chi(s) - \chi'(s) = 0$

Analicemos ambos cusos:

1) $\chi(s) + \chi'(s) = 0$, estu es una E.D.O de primer orden con solución $\chi(s) = ce^{-s}$. Como a estú parametrizada por longitud de arco, se Cumple que $\|\alpha'(s)\|^2 = 1 \Rightarrow \chi'(s)^2 + \chi'(s)^2 = 1$. Sabomos que en S = 0, $\alpha(0) = (1,0,0)$, por tunto $\chi(0) = 0$, luego $\chi(s) = \chi(s) - \chi(0) = \pm \int_0^s \sqrt{1-c^2e^{-2s}} \, ds$, dónde la integral se encuentra bien detinidasi s > 0. Por comodidad, tomamos la parte positiva (que nos dará la parte positiva de la tractrix). Por tanto con $\chi(0) = 1 = ce^{-s} = c$: $\chi(s) = (e^{-s}, 0, \int_0^s \sqrt{1-e^{-2s}} \, ds$). $\chi(s) = (e^{-s}, 0, \int_0^s \sqrt{1-e^{-2s}} \, ds$

2) $\chi(s) - \chi'(s) = 0$. Nuevamonte esta es una E.D.O de primer orden pero que tiene solución $\chi(s) = ce^{s}$, como $\chi(0) = 1 = ce^{s}$. Como $\chi(0) = 1 = ce^{s}$. Como $\chi(0) = 1 = ce^{s}$. Así de torma análoga a 1): $\chi(s) = e^{s}$ y $\chi(s) = s^{s}$. Poro ahoro $s \leq 0$ (para que la integral tenya sentido). Por tanto:

$$\alpha(s) = (e^{s}, 0, \int_{0}^{s} \sqrt{1 - e^{2\overline{s}}} d\overline{s}), \forall s \in 0.$$

Tunto 1) romo 2) parametrizan a la parte positiva de la tructrix (para la negativa, hay que tomur - 50 1-e25 d5). Usumos la obtenida en 2) para parametrizarla y, para que seu suave, hacemos

$$S \neq 0$$
:
$$\alpha(s) = (e^{s}, 0, \int_{0}^{s} \sqrt{1 - e^{2\bar{s}}} d\bar{s}), S < 0$$

De b): Rotemos la tractix alredevor del e; e z, usando la matiz de intación

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La sup de rev obtenida será parametrizada por:

$$\bar{X}(s,\theta) = \left(e^{S}\cos\theta, e^{S}\sin\theta\right) \int_{0}^{S} \sqrt{1-e^{2s}} ds$$

Donde SEIR, O(O < 211. Obtengamos el dominio U = IRX]0,2 Ti [dónde & parametriza a una sup. regular.

 \overline{X} es diferenciable y luego continua, pues sus funciones coordenadas son clase C^{∞} . Veamos Cuando $d\bar{x}_4: \mathbb{R}^2 \to \mathbb{R}^3$ es inyectivo. Para ello, veamos:

$$\bar{\chi}_{s}(s,\theta) = (e^{s}\cos\theta, e^{s}\sin\theta, (1-e^{2s})^{2})$$

$$\underline{X}_{\theta}(s,\theta) = (-e^{S}sen\theta, e^{S}cos\theta, 0)$$

$$= > \bar{X}_{s} \hat{X}_{e} = \begin{vmatrix} \hat{J} & \hat{J} & \hat{K} \\ e^{S} \cos \theta & e^{S} \cos \theta & (1 - e^{2s})^{2} \\ -e^{S} \sin \theta & e^{S} \cos \theta & 0 \end{vmatrix} = (-(1 - e^{2s})^{2s} e^{S} \cos \theta, -(1 - e^{2s})^{2s} e^{S} \cos \theta, -($$

$$= \| \overline{\chi}_{s}^{5} - \overline{\chi}_{\theta} \|^{2} = (|-e^{2s}|) e^{2s} \cos^{2}\theta + (|-e^{2s}|) e^{2s} \sin^{2}\theta + e^{4s}$$

$$= (|-e^{2s}|) e^{2s} + e^{2s} \cdot e^{2s} = e^{2s} (|-e^{2s}| + e^{2s}) = e^{2s} \neq 0 \quad \forall s < 0$$

Portunto, $d\Sigma_4$ es in yectivo, $\forall q \in U = IR^- \times]0,2\pi [.Por un ejemplo del libro, So sigue que <math>\bar{X}$ es homeomortismo (pues α es curva regular dúnde $z(s) > 0, \forall s < 0$). Luego $\bar{x}(u)$ es sup. regular Con

$$\underline{X}(S,\theta) = (e^{S}\cos\theta, e^{S}\sin\theta, \int_{0}^{S}\sqrt{1-e^{2\bar{s}}} d\bar{s}), \forall S < 0, \forall \theta \in]0, 2\pi[$$

Que parametriza a la parte positiva de la tractrix, excepto con θ = 0, para parametrizar esa parte usamos la misma x cambiando el dominio de θ de]0,2π (a]-π, π [

Para la parte negativa usamos:

$$\overline{Y}(3,\theta) = (e^{S}\cos\theta, e^{S}\sin\theta, -\int_{0}^{S} \sqrt{1-e^{2\overline{3}}} d\overline{s}), \forall S < 0, \forall \theta \in]0, 2\pi[$$

Para cubrir la tranja tultante hacemos (como con €) que θ ∈]- 11, 11 [.

De c): Obtengamos la curvatura de un punto pe X(u). Veamos que:

$$\overline{X}_{s}(s,\theta) = \left(e^{S}\cos\theta, e^{S}\sin\theta, \left(1-e^{2s}\right)^{N}\right)$$

$$\underline{X}_{\theta}(s,\theta) = (-e^{S}sen\theta, e^{S}cos\theta, 0)$$

$$\overline{\chi}_{5}^{\Lambda} \overline{\chi}_{\theta} = \left(-\left(1-e^{2s}\right)^{1/2} S \cos \theta - \left(1-e^{2s}\right)^{1/2} S \sin \theta e^{2s}\right)$$

y II Xs^ Xo II = e . Portunto:

$$N(p) = (-(1-e^{2s})^{1/2}\cos\theta, -(1-e^{2s})^{1/2}\sin\theta, e^{S})$$

y :

 $\bar{\chi}_{ss}(s,\theta) = (e^{S}\cos\theta)e^{S}\sin\theta \frac{-e^{2s}}{(1-e^{2s})^{1/2}}), \bar{\chi}_{s\theta}(s,\theta) = (-e^{S}\sin\theta)e^{S}\cos\theta, 0), \bar{\chi}_{\theta\theta}(s,\theta) = (-e^{S}\cos\theta, -e^{S}\sin\theta, 0)$

Por tunto:

$$E = \langle \bar{\chi}_s, \bar{\chi}_s \rangle = 1$$

$$F = \langle \bar{\lambda}_s, \bar{\lambda}_e \rangle = 0$$

$$G = \langle \bar{\chi}_{\Theta}, \bar{\chi}_{\Theta} \rangle = e^{2s}$$

$$e = \langle N, \overline{X}_{ss} \rangle = -(1 - e^{2s})^{1/2} e^{s} - \frac{e^{3s}}{(1 - e^{2s})^{1/2}}$$

$$= \frac{-e^{s} + e^{3s} - e^{3s}}{(1 - e^{2s})^{1/2}}$$

$$= -\frac{e^{s}}{(1 - e^{2s})^{1/2}}$$

$$f = \langle N, \overline{X}_{se} \rangle = 0$$

La curvatura K será entonces:

$$K = \frac{eq - \frac{1}{2}}{E6 - F^2} = -\frac{e^{25}}{e^{25}} = -1$$

Esto pura el lado positivo. Como el lado negativo es una reflexión del positivo, se seguirá cumpliendo que K = -1. (en el sig. problema se verá que, para superficies de rev. generadas por curvos regalares. K no depende de Z(s), lo cuál justificará esta atirmación).

Problema 2.

De a): Sea $\mathbb{Z}(u,v) = (\mathcal{C}(v)\cos u, \mathcal{C}(v)\sin u, \mathcal{C}(v))$ parametrización de la sup de revolución con Curvatura constante K, con $0 < u < 2\pi y$ u < v < 5. Calculemos los coef. de \mathbb{I}_p y \mathbb{I}_p : $\mathbb{Z}_u = (-\mathcal{C}(v)\sin u, \mathcal{C}(v)\cos u, \mathcal{C}(v)\sin u, \mathcal{C}(v))$

 $\overline{X}_{uu} = \left(-\frac{\varphi(v)\cos u}{\varphi(v)\sin u}\right), \quad \overline{X}_{uv} = \left(-\frac{\varphi'(v)\sin u}{\varphi'(v)\cos u}\right), \quad \overline{X}_{vv} = \left(\frac{\varphi''(v)\cos u}{\varphi'(v)\sin(u)}\right)$

у:

$$\overline{X}_{u} \wedge \overline{X}_{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{x} \\ -4(u)senu & 4(v)cosu \end{vmatrix} = (4'(u)4(v)cosu, 4'(v)4(v)senu, -4(u)4'(v))$$

$$(4'(v)cosu & 4'(v)sinu & 4'(v)$$

=> $\|X_u \wedge X_v\| = \sqrt{(\Psi^1(v))^2 \Psi(v)^2 + \Psi(v)^2 (\Psi^1(v))^2} = |\Psi(v)| \sqrt{(\Psi^1(v)^2 + \Psi^1(v)^2)} = |\Psi(v)| \frac{1}{2} P_{\alpha r \alpha} q_{\alpha r \alpha} n_{\alpha} h_{\alpha r \alpha} h_{\alpha r \alpha}$

$$N(p) = (\Psi'(v)\cos u, \Psi'(v) \operatorname{senu} - \Psi'(v))$$

Los coet de la Ip y Ip serán:

$$E = \langle \overline{X}_{u}, \overline{X}_{u} \rangle = \mathcal{C}(v)^{2}$$

$$e = \langle N, \overline{X}_{uu} \rangle = -\mathcal{C}(v) \psi'(v)$$

$$F = \langle \overline{X}_{u}, \overline{X}_{v} \rangle = 0$$

$$G = \langle \overline{X}_{v}, \overline{X}_{v} \rangle = 1$$

$$g = \langle N, \overline{X}_{uv} \rangle = \Psi'(v) \psi''(v) - \psi''(v) \psi''(v)$$

Lueyo:

$$K = \frac{e^{3} - y^{2}}{E^{3} - F^{2}} = \frac{-e^{3}(r) + e^{3}(r) + e$$

Como (e'(s)2+4'(v)2=1=> (e'(v)(v)(v)=-4)(v)4"(v). Por tunto:

$$=>K=-\frac{\psi'(v)^{2}\psi''(v)+\psi''(v)\psi'(v)^{2}}{\psi(v)}=-\frac{\psi''(v)}{\psi(v)}=>\psi''(v)+K\psi(v)=0$$

:. " + K & = O (i.e. K no depende de 4)

y además, como $(\ell'(v))^2 + (\ell'(v))^2 = 1 \Rightarrow \ell'(v) = \pm \sqrt{1 - (\ell'(v))^2}$, tomando la parte positiva tene-

mos que

$$\Psi'(v) = \sqrt{1 - \left(\frac{u}{v}\right)^2} \Rightarrow \Psi(v) = \int_{\alpha}^{v} \sqrt{1 - \left(\frac{u}{v}(\bar{v})\right)^2} d\bar{v}$$

donde c es m $\Psi(c) = 0$

9.0.0

De b): Cuundo K = 1, obtenemos la E.D.O

Lu cuultiene como tumilia de soluciones: $V(v) = c_1 cos(v+c_1)$, donde $c_1, c_2 \in \mathbb{R}$. Como intersectun perpendicularmente al pluno (dígamos en v=0), tenemos que

$$\Psi'(0) = 0$$
 $\Psi'(0) = 1$

 $C_{on} (\varphi'(u)) = -c_2 \sin(v+c_1) + (\varphi'(u)) = \sqrt{1-c_2^2 \sin^2(v+c_1)} \cdot Lueyo:$

$$-C_2 \sin(c_1) = 0$$
 $y (-c_2^2 \sin^2(c_1) = 1)$

Como pedimos que $\ell(v) \neq 0, \forall v$, entonces $\sin(c_i) = 0$. Por tunto, podemos hucer $c_i = 0$. Lueyo: $\ell(v) = C \cos(v)$

y como $\Psi'(v) = \sqrt{1-c^2 \operatorname{sen}^2(v)} \Rightarrow \Psi(v) - \Psi(0) = \int_0^v \sqrt{1-c^2 \operatorname{sen}^2(\overline{v})} d\overline{v}$. Pero en O como la curva intersectu al plano $x \circ y = y \circ \Psi(0) = 0$. Por lo tunto:

$$\Psi(v) = \int_{0}^{v} \sqrt{1-c^{2} \operatorname{sen}^{2}(\bar{x})} \, d\bar{x}$$

Vermos los casos:

1) S_{i} $c = 1 \Rightarrow V(v) = \cos v$, $V(v) = \int_{0}^{v} \sqrt{1-\sin^{2}v} dv = \int_{0}^{v} |\cos v| dv$. Como V(v) > 0, $V(v) = \sin v$, $-\frac{\pi}{2} (v < \frac{\pi}{2}) |uego| \int_{0}^{v} |\cos v| dv = \int_{0}^{v} \cos v dv = \sin v = \int_{0}^{v} V(v) = \sin v$,

$$Y(v) = \cos v \quad Y \quad Y(v) = \sin v \quad -\frac{11}{2} < v < \frac{11}{2}$$

i.e tenemos Como sup. de rev. una estera sin los polos.

2) S: C<1, entonces con $\Psi(v) = Ccosv$, como $\Psi(v) > 0$ debe suceder que 0< C<1. Luego $-\frac{\pi}{2} < v < \frac{\pi}{2}$ En este intervalo $\Psi(v) = \int_{0}^{v} \sqrt{1-c^2 \sin^2 v} \, dv$ se encuentru bien detinida pues $1-c^2 \sin^2 v > 0$, $\forall v \in]-\frac{\pi}{2}, \frac{\pi}{2}$ [Se Veria asi:

3) Si c>1, pura que Y esté bien detinida, 1-c² sin² v $\geqslant 0 \Rightarrow \frac{1}{c^2} \geqslant \sin^2 v \Rightarrow |\sin v| \leqslant \frac{1}{c} \Rightarrow |v| \leqslant$ arcsin $(\frac{1}{c})$ La grática seria:

Dec): Si K=-1, tenemos la E.D.O:

$$(9'' - 4 = 0) = 5^2 - 1 = 0 = 5 = \pm 1$$

La aud tiene como tumilia de soluciones a $Q(r) = C_1 e^r + C_2 e^r$. Recordemos que:

$$\operatorname{Cosh} x = \frac{1}{2} (e^{x} + \bar{e}^{x}) y \sinh(x) = \frac{1}{2} (e^{x} - \bar{e}^{x})$$

Entonces:

$$coshx + sinhx = e^{x}$$
y $coshx - sinhx = e^{x}$

Luego:

$$Q(v) = C_1(\cosh v + \sinh v) + C_2(\cosh v - \sinh v)$$

$$= (C_1 + C_2) \cosh v + (C_1 - C_2) \sinh v$$

Si $C_1-C_2=0$, obtenemos lu sup. de rev. generada por 1). Si $(1+C_2=0)$ obtenemos lu de 2). Supongamos que $|C_1| \neq |C_2|$ entonces obtenemos $Q(u) = (1e^u + C_2)$ que es una suma de dos funciones del tipo 3)

Veamos ahora cada tipo:

1) Pura que Ylu) esté bien detinida, 1-c² sinhu > 0 => | sinhu | < = > | ul < arcsinh (=).

Se veria aprox de estu tormu: Homando a C>0).

2) Como ((v) >0 entonces si c>0 => v e IR y si c<0 => v e IR (por ser sinh creciente). Por ende, la grática sería aproximadamente (con c>0):

3) Del problema 1), vemos que estu es la misma parametrización de la tractrix. En estecaso para que 4 esté bien definida: VER, y se verta ast:

De d): Del problema 1) observamos que se tiene la misma parametrización y, como ambas giran alrededor del e;e z, tenemos que la sup. de rev. de 3) es la pseudoestera (ver problema 1)!

De c): Si K = O, tenemos la E.D.O:

$$(e^{1)} = 0 = > (e(v)) = C_1v + C_2$$

Si C. = O, como ((v) >0 => C2 >0, luego con ((v) =0 tendriumos que ((v) = v), i.e una rectualejada una dist. C2 del e; e z que al rotar genera un cilindro de radio C1.

Si $C_2 = 0 \Rightarrow C_1$ es $m C_1 v > 0$. Para que 4 esté bien detinida, $1 < |C_1|$, y seria: $\Psi(v) = \sqrt{1-C_1^2} v$

Con (1>0=>v>0. Portanto tendriamos una rectu en el pluno 22 que, al rotar, generaria un cono.

Si C1, C2 ≠ O de tormu análoga a arriba, tendriamos como sup. Je rev. un cono.

Si Ci=1=> ((v)=v y Y(v)=0, que al rotur alrededor del ejez generaria un pluno sin el

origen:

a) Sea pe S punto Critico de h, es decir dhp = 0 α :]-E, E [-> S $\gamma \alpha_{loc}$:]-E, E [-> $U \subseteq \mathbb{R}^2$ Curvus regulares $\Pi \alpha(0) = \overline{X} \circ \alpha_{loc}(0) = p$ (esto es, $\alpha(1) = \overline{X}(u(1), v(1))$, donde $\alpha_{loc}(1) = (u(1), v(1))$). Llamémos $w = \alpha'(0) = (\overline{X}(u(1), v(1)))'(0) = u'(0) \overline{X}_u(u(0), v(0)) + v'(0) \overline{X}_v(u(0), v(0))$. Para probar el resultado, notemos que:

$$H_{P}h(u'(0)X_{u}(u(0),v(0))+v'(0)X_{v}(u(0),v(0)))=H_{P}h(w)$$

Por definición de Hessiano de h en p, tenemos:

$$H_{ph}(\omega) = \frac{d^{2}}{d^{2}} \left(h_{0} \alpha(\xi) \right) \Big|_{\xi=0}$$

$$= \frac{d}{d^{2}} \left(\frac{d}{d^{2}} (h_{0} \alpha)(\xi) \right) \Big|_{\xi=0}$$

$$= \frac{d}{d^{2}} \left(\frac{d}{d^{2}} (h_{0} \alpha(\xi)) \times (\xi) \right) \Big|_{\xi=0}$$

$$= \frac{d}{d^{2}} \left(\frac{d}{d^{2}} (h_{0} \alpha(\xi)) \times (\xi) \right) \Big|_{\xi=0}$$

Recordemos que:

$$\left(\left((\xi) \vee_{i}(\xi) u \right) \underline{X} \right) \frac{d}{\xi L} \right) \frac{d}{((\xi) \vee_{i}(\xi) u) \underline{X}} db = ((\xi) \vee_{i}(\xi) u) \underline{X} \circ d) \frac{d}{\xi L}$$

$$= dh_{\underline{X}(u(t)v_{i}(t)v_{i})} \left(u'(t)v_{i}$$

Como dh_x(u(+),v(+)) es transformación lineal, entonces:

$$d_{\text{ph}}(\omega) = \frac{d}{d} \left(u^{1}(\xi) u_{i}(\xi) u_$$

$$O= \frac{d}{dt} \Big(\big((t) \mathsf{v}_{i}(t) \mathsf{u} \big) \mathsf{v}_{i} \underbrace{X}_{i(t) \mathsf{v}_{i}(t) \mathsf{u} \mathsf{l}_{i}} \Big(\mathsf{d}_{i}(t) \mathsf{v}_{i}(t) \mathsf{v}_{i} \underbrace{X}_{i(t) \mathsf{v}_{i}(t) \mathsf{u} \mathsf{l}_{i}} \Big) \Big(\Big((t) \mathsf{v}_{i}(t) \mathsf{u}_{i} \underbrace{X}_{i(t) \mathsf{v}_{i}(t) \mathsf{u} \mathsf{l}_{i}} \Big) \Big) \Big|_{t, t} + O = \frac{d}{dt} \Big(\mathsf{v}_{i}(t) \mathsf{v}_{i}(t) \mathsf{u}_{i} \underbrace{X}_{i(t) \mathsf{v}_{i}(t) \mathsf{u}_{i} \mathsf{l}_{i}} \Big) \Big(\underbrace{X}_{i(t) \mathsf{v}_{i}(t) \mathsf{u}_{i} \mathsf{l}_{i}} \Big) \Big) \Big|_{t, t} = O$$

Analicemos los términos de esta suma. Por la regla del producto, y tomando en cuenta que X(ulo), vlo1) = p

tenemos

$$\frac{d}{d} \left(u'(t) dh_{\underline{k}(u(t),v(t))} \left(\underline{X}_{u}(u(t),v(t)) \underline{X}_{u}(u(t),v(t)) \right) \right) \Big|_{t=0} = u''(0) dh_{\underline{k}(u(0),v(0))} \underline{X}_{u}(u(0),v(0)) + u'(0) \cdot \frac{d}{dt} (dh_{\underline{k}(u(t),v(t))} \underline{X}_{u}(u(t),v(t))) \Big|_{t=0}$$

$$((\xi)_{v,(t)})_{u}h = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \left(((\xi)_{v,(t)})_{u}h & ((\xi)_{v,(t)})_{u}h \end{pmatrix} = \left(((\xi)_{v,(t)})_{u}X \right)_{((\xi)_{v,(t)})_{u}X} h$$

expresando a dh_x(u(+),v(+)) en coordenadas locales. Luego:

$$\frac{d}{dt} (dh_{X(u(t),v(t))}) \int_{t}^{t} = \int_{0}^{t} ((t)v_{x}(t)u) \int_{0}^{t} \int_{0}^{t} dh_{x}(u(t)v_{x}(t)u) \int_{0}^{t} dh_{x}(u(t)v_{x}(t)u dt \int_{0}^{t} dh_{x}(u(t)v_{x}(t)u) \int_{0}^{t} dh_{x}(u(t)v_{x}(t)u dt \int_{0}^{t} dh_{x}(u(t)v_{x}(t$$

Por tunto:

$$\frac{d}{dt} \left(u'(t) \right) dh_{\underline{x}(u(t),v(t))} \left(\underline{X}_{u}(u(t),v(t)) \right) \Big|_{t=0} = \left(u'(0) \right)^{2} h_{uu}(u(0),v(0)) + u'(0)v'(0) h_{uv}(u(0),v(0)) \right)$$

De torma analoga obtenemos que:

$$\frac{d}{dt}(v'(t)dh_{vv}((0))v'(0)) + ((0)v'(0)v'(0)h_{vv}(u(0),v(0)) + (v'(0))^{2}h_{vv}(u(0),v(0))$$

Por ser h diterenciable, entonces sus derivadus parciales de todos los órdenes existen y son continuas. Por lunto:

$$h_{uv}(u(0),v(0)) = h_{vu}(u(0),v(0))$$

Luego, sustituyendo en el Hessiano obtenemos:

$$H_{p}h(u'(0)X[u(0),v(0))+v'(0)X(u(0),v(0)))=(u'(0))^{2}h_{uu}(u(0),v(0))+2u'(0)h_{uv}(u(0),v(0))+(v'(0))^{2}h_{vv}(u(0),v(0))$$

9. e. W.

Veamos que está bien detinido. Seen α , β :]- ϵ , ϵ (-> ϵ curvas regulares parametrizadas ϵ ϵ 0) = ϵ 0 ϵ 0 ϵ 10 = ϵ 10

$$\frac{\partial^{2}}{\partial t^{2}}(h \circ \alpha) \Big|_{t=0} = \mathcal{H}_{p}h(\omega)$$

$$= \mathcal{H}_{p}h(u'(0)\overline{X}_{u}(u(0),v(0)) + v'(0)\overline{X}_{v}(u(0),v(0)))$$

$$= (u'(0))^{2}h_{uu}(u(0),v(0)) + 2u'(0)v'(0)h_{uv}(u(0),v(0)) + (v'(0))^{2}h_{vv}(u(0),v(0))$$

$$= \mathcal{H}_{p}h(u'(0)\overline{X}_{u}(u(0),v(0)) + v'(0)\overline{X}_{v}(u(0),v(0)))$$

$$= \mathcal{H}_{p}h(\omega)$$

$$= \frac{d^{2}}{dt^{2}}(h \circ \beta) \Big|_{t=0}$$

i.e el Hessiano no depende de la parametrización a o B. Y estorma Cuadrática ya que:

$$H_{ph(w)} = (u'(0) v'(0)) \left(h_{w_{1}}(u(0),v(0)) h_{v_{2}}(u(0),v(0)) \right) \left(u'(0) h_{v_{2}}(u(0),v(0)) h_{v_{3}}(u(0),v(0)) \right) \left(v'(0) h_{v_{4}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0)) h_{v_{5}}(u(0),v(0)) \right) \right) \left(v'(0) h_{v_{5}}(u(0),v(0))$$

Donde la matriz B depende unicamente del punto p.

De b): Sea pe S y X: U = IR2 -> S una parametrización de S M pe X(U). El vector normal a S en p N/pl esturá dado por:

$$\mathcal{N}(b) = \frac{\overline{X}_{u} \cdot \overline{X}_{v}}{\|\overline{X}_{u} \cdot \overline{X}_{v}\|} \Big|_{b}$$

Tomomos la curva $\alpha: J-\mathcal{E}, \mathcal{E}[->S]$ de la parte al, con $\alpha(0)=p$, $\alpha(1)=\Sigma(u(1),v(1))$ y $\alpha'(0)=\omega\in T_pS$. Entonces:

$$= \langle m | N(b) \rangle + O$$

$$= \langle \alpha_{(1)}, N(b) \rangle |_{1=0} + \langle \alpha_{(1)-b}, 0 \rangle |_{1=0}$$

$$= \frac{\eta_{1}}{\eta_{1}} (\langle \alpha_{(1)-b}, N(b) \rangle) |_{1=0}$$

$$= \frac{\eta_{2}}{\eta_{1}} (\mu_{0} \alpha_{(1)}) |_{1=0}$$

Como $w \in T_P S$, entonces $\langle w, N(P) \rangle = 0$. Por tunto $dh_P(w) = 0$, $\forall w \in T_P S$. Luego $dh_P = 0$, as $p \in S$ es punto critico de h. De esta forma $H_P h$ está bien definido.

Notemos tumbién que:

$$\begin{pmatrix} (t)_{V_{i}} \begin{pmatrix} (t)_{V_{i}}(t)_{i} \end{pmatrix} \\ ((t)_{V_{i}}(t)_{i}) \end{pmatrix} = \begin{pmatrix} (t)_{V_{i}}(t)_{i} \end{pmatrix} \\ ((t)_{V_{i}}(t)_{i}) \end{pmatrix} \times Z(t)_{V_{i}}(t)_{V_{i}} Z(t)_{V_{i}}(t)_{i}) \\ ((t)_{V_{i}}(t)_{i}) \end{pmatrix} = \begin{pmatrix} (t)_{V_{i}}(t)_{V_{i}}(t)_{V_{i}}(t)_{V_{i}} Z(t)_{V_{i}}(t)_{V_{i}} Z(t)_{V_{i}}(t)_{V_{i}} Z(t)_{V_{i}}(t)_{V_{i}} Z(t)_{V_{i}} Z(t)_{V_{$$

Por tunto:

$$H_{p}h(\omega) = (u^{1}(0))^{2} \langle \underline{X}_{uu}(u(0),v(0)),h(p)\rangle + 2u^{1}(0)v^{1}(0) \langle \underline{X}_{uv}(u(0),v(0)),h(p)\rangle + (u^{1}(0))^{2} \langle \underline{X}_{uv}(u(0),v(0)),h(p)\rangle = f(u(0),v(0)),h(p)\rangle = f(u(0),v(0)),v(p)\rangle + 2u^{1}(0)v^{1}(0),v(p)\rangle + 2u^$$

$$H_{\rho}h(\omega) = \overline{II}_{\rho}(\omega)$$

Si w es tul que llw || = | entonces:

$$= \langle N(b), \alpha_{11}(0) \rangle$$

$$= \frac{1}{q} (\langle \alpha_{11}, h \rangle) + \frac{1}{p} = 0$$

$$= \frac{1}{q} (\langle \alpha_{11}, h \rangle) + \frac{1}{p} = 0$$

$$= \frac{1}{q} (\langle \alpha_{11}, h \rangle) + \frac{1}{p} = 0$$

$$= \frac{1}{q} (\langle \alpha_{11}, h \rangle) + \frac{1}{p} = 0$$

$$= \frac{1}{q} (\langle \alpha_{11}, h \rangle) + \frac{1}{p} = 0$$

Pero &"(0) = K(0)n(0). Por tunto:

$$= \langle \mathcal{N}(P), \mathcal{K}(O)\mathcal{N}(O) \rangle$$
$$= \mathcal{K}_{\mathcal{N}}(P)$$

Pues n(0) es normal a la curva Tra en p. K(0) es la curvatura de a y N(p) es el normal a Sen p. Por des. ese es la curvatura normal a pen la dir. de w.

9.0.4.

Problema 4.

De a): Sea pe S, y sea α :]-E, E[->S] Curva regular parametrizada m $\alpha(t) = \mathbb{E}(u(t), v(t))$, $\alpha(0) = p$ $\alpha'(0) = w$. Entonces:

$$dh_{rp}(\omega) = 0 \iff \frac{d}{dt} \left(h_{r} \circ \alpha(t) \right) \Big|_{t=0} = 0$$

$$\iff \frac{d}{dt} \left(\sqrt{\langle \alpha(t) - r, \alpha(t) - r \rangle} \right) \Big|_{t=0} = 0$$

$$\iff \frac{2 \langle \alpha'(0), \alpha(0) - r \rangle}{2 \sqrt{\langle \alpha(0) - r, \alpha(0) - r \rangle}} = 0$$

$$\iff \langle \omega, p - r \rangle = 0$$

Con we TpS arbitrario. Por tunto dhip = 0 (=> la linea rectu que va de rapes perpendicular a TpS.

i.e es normal a S en p.

9.0.0

De b): Veumos que:

$$\begin{aligned} H_{p} h_{r}(\omega) &= \frac{d^{2}}{dJ^{2}} (h \circ \alpha(J)) \Big|_{J=0} \\ &= \frac{d}{dJ} \Big(\frac{d}{dJ} (\sqrt{\langle \alpha(J) - r, \alpha(J) - r \rangle}) \Big) \Big|_{J=0} \\ &= \frac{d}{dJ} \Big(\frac{\langle \alpha^{l}(J), \alpha(J) - r \rangle}{\sqrt{\langle \alpha(J) - r, \alpha(J) - r \rangle}} \Big) \Big|_{J=0} \\ &= -\frac{\langle \alpha^{l}(J), \alpha(J) - r \rangle}{2(\langle \alpha(J) - r, \alpha(J) - r \rangle)^{3/2}} \cdot 2\langle \alpha^{l}(J), \alpha(J) - r \rangle \Big|_{J=0} + \frac{\langle \alpha^{ll}(J), \alpha(J) - r \rangle + \langle \alpha^{l}(J), \alpha(J) - r \rangle}{\sqrt{\langle \alpha(J) - r, \alpha(J) - r \rangle}} \Big|_{J=0} \\ &= -\frac{\langle \omega, \rho - r \rangle^{2}}{\|p - r\|^{3}} + \frac{\langle \alpha^{ll}(0), p - r \rangle + \langle \omega, \omega \rangle}{\|p - r\|} \end{aligned}$$

Como pe S es punto critico, entonces por a): $\langle w, p-r \rangle = 0$. Luego con $\langle w, w \rangle = ||w||^2 = 1$: $= \frac{1}{h_r(p)} - \langle n(o) K(o), \frac{r-p}{||r-p||} \rangle$

Donde n(0) es el vector normal a \(\alpha \) en p, Kes sa curvatura y 11-p11 es un vector normal a \(S \) en p.

De la det. de curvatura normal se sique que:

$$H_{P}h_{r}(\omega) = \frac{1}{h_{r}(P)} - K_{n}$$

g.a.U.

Seun unora e, y 02 las direcciones principales de TpS. Entonces:

$$H_{\rho}h_{r}(e_{1})=\frac{1}{h_{r}(\rho)}-K_{1}$$
 Y $H_{\rho}h_{r}(e_{2})=\frac{1}{h_{r}(\rho)}-K_{2}$

Para probai que labase lei, ez l'diagonaliza a Aphr, hay que mostrar que:

$$\langle A_p h_r(e_1), e_2 \rangle = \langle A_p h_r(e_2), e_1 \rangle = 0$$

Para ello, Se tiene que:

$$\langle A_{p}h_{r}(v),\omega \rangle = \frac{1}{2} \left[H_{p}h_{r}(v+\omega) - H_{p}h_{r}(v) - H_{p}h_{r}(\omega) \right]$$

(Por el apéndice del Do Carmo) Entonces:

$$\langle A_{p}h_{r}(e_{1}), e_{2} \rangle = \frac{1}{2} \left[H_{p}h_{r}(e_{1}+e_{2}) - H_{p}h_{r}(e_{1}) - H_{p}h_{r}(e_{2}) \right]$$

$$= \frac{1}{2} \left[2 H_{p}h_{r}\left(\frac{e_{1}+e_{2}}{\sqrt{2}}\right) - \frac{1}{h_{r}(p)} + K_{1} - \frac{1}{h_{r}(p)} + K_{2} \right]$$

$$= \frac{1}{2} \left[\frac{2}{h_{r}(p)} - 2 K_{1} \cos^{2} \frac{T_{1}}{4} - 2 K_{2} \sin^{2} \frac{T_{1}}{4} - \frac{2}{h_{r}(p)} + K_{1} + K_{2} \right]$$

Pues, por la térmula de Euler, la curvatura normal en la dirección de $\frac{1_1+e_2}{\sqrt{2}} = K_1 \cos^2 \frac{11}{4} + K_2 \sin^2 \frac{11}{4} = \frac{K_1}{2} + \frac{K_2}{2}$.
Lueyo:

$$=\frac{1}{2}\left[-K_{1}-K_{2}+K_{1}+K_{2}\right]=0$$

9. Q.d.

De c): Veumos que B es abierto. Para ello, veumos que h_r es función Morse \iff Sus puntos criticos son no degenerados. De b) subemos que $p \in S$ es punto critico degenerado de $h_r \iff h_r(p) = \frac{1}{K_r}$, $h_r(p) = \frac{1}{K_r}$

Portunto h, es Junción Morse \iff hr/p) $\neq \frac{1}{K_1}, \frac{1}{K_2}$ y pes punto ritiro, pero al ser punto critico, se cumple que N(p) || r-p, N(p) un vector normula pen S. Asi:

h, es tunción Morse \Leftrightarrow r \neq p $\pm \frac{1}{K_1}N(p)$ y r \neq p $\pm \frac{1}{K_2}N(p)$

En particular:

 $B^{c} = \{ \text{rel} \mathbb{R}^{3} \mid r = p + i \frac{1}{K}, N(p), \text{ para algán pe S, ie 1-1,1} \text{ y je \{1,2\} \}$

Si S = IR³ es cerrada, entonces B^c es un conjunto cerrado Ipues B^c es la unión de 2 expansiones y 2 contracciones de S). Lueyo B es abierto

Además, como m(S)=0 (por ser S sup. regulur) entonces $m(B^c)=0$ (m lu medidu de Lebesyue del C-onjunto). Por tunto, B es denso en IR^3 (por un resultado de análisis).

g.e.w.