

경기종합지수에 대한 시계열분석

2012.01 ~ 2019.01.01

21410757신용원21310774조환민21410785황희21510690권혜진

01. 분석데이터 설명 03. 모형추정 및 진단

START _____ END

02. 분석모형식별

04. 예측

♣ 경기 종합 지수

※출처: KOSIS 국가통계포털

	2012. 01	2012. 02	2012. 03	2012. 04	2012. 05	2012. 06	2012. 07	2012. 08	2012. 09	2012. 10	2012. 11	2012. 12	2013. 01	2015.
A V -	A V -	A V -	A V -	A V -	A V -	A V -	A V -	A V -	A V -	A V -	^ v -	^ v -	A V -	AVL
선행종합지수(2015=100)	86.6	87.1	87.5	87.8	88.0	88.3	88.4	88.5	88.6	88.9	89.2	89.6	89.8	9ι
재고순환지표(%p)	-13.5	-12.1	-11.3	-9.3	-8.2	-5.1	-3.3	-4.2	-3.9	-3.1	-0.7	-0.2	-2.3	-4.
소비자기대지수	94.8	93.9	94.9	97.4	99.2	98.9	96.8	94.7	94.1	94.0	94.0	94.6	95.9	96.9
기계류내수출하지수(선박 제외)(2015=100)	113.6	116.9	117.6	115.8	111.7	110.2	107.8	105.6	103.5	102.4	102.1	102.7	101.1	100.0
건설수주액(실질)(십억 원)	8,206.0	9,057.2	8,557.3	7,994.5	7,066.6	7,589.7	7,551.1	7,313.3	6,554.8	6,006.1	5,947.0	5,845.1	5,356.3	5, 196.3
수출입물가비율 (2015=100)	84.5	84.2	83.7	83.6	84.0	85.3	86.1	86.2	85.4	85.1	85.4	85.9	86.2	86.
구인구직비율(%)	65.1	68.1	67.4	67.9	67.2	67.2	68.4	68.1	68.4	69.3	70.5	69.5	68.1	65.2
코스피지수 (1980.1.4=100)	1,871.0	1,919.1	1,972.5	2,007.5	1,968.6	1,910.3	1,853.9	1,864.8	1,902.3	1,940.8	1,936.1	1,940.2	1,954.9	1,979.
장단기금리차(%p)	0.25	0.26	0.33	0.38	0.35	0.26	0.14	0.04	-0.04	-0.04	0.02	0.13	0.15	0.1
동행종합지수(2015=100)	89.9	90.5	90.7	90.8	91.0	91.2	91.6	91.3	91.5	91.5	91.9	92.1	92.3	92.0
광공업생산지수 (2015=100)	97.8	98.9	99.8	100.1	99.9	99.9	99.3	97.8	97.5	98.0	99.5	100.4	101.1	100.9
서비스업생산지수(도소매 업제외)(2015=100)	91.0	91.6	92.3	92.5	92.3	92.3	92.7	92.9	93.3	93.1	93.0	92.5	92.7	93.0
건설기성액(실질)(십억 원)	6,986.9	7,003.0	6,785.3	6,834.7	6,816.1	6,691.9	6,785.5	6,675.1	6,744.0	6,746.7	6, 926.5	7,074.7	7,070.5	7,137.
소매판매액지수 (2015=100)	92.9	93.4	93.2	92.7	93.1	93.8	94.6	94.2	94.1	93.8	94.4	94.6	94.5	94.3
내수출하지수(2015=100)	99.1	99.9	99.7	99.5	99.3	99.8	100.0	98.7	98.5	98.2	99.1	100.0	100.0	99.
수입액(실질)(백만불)	37,534.7	37,828.7	37,812.7	37,663.2	37,787.0	38, 167.5	38,607.3	38, 248.6	38, 182.0	37,716.2	37,772.8	38, 236.6	38,248.7	38,726.
비농림어업취업자수(천 명)	23, 197.7	23, 253.2	23, 306.4	23, 353.4	23, 402.5	23,431.3	23,460.6	23,467.4	23,485.0	23,503.4	23,491.3	23,474.3	23,473.5	23, 480.
후행종합지수(2015=100)	89.6	89.8	89.9	90.0	90.2	90.4	90.6	90.8	91.0	91.2	91.4	91.7	92.0	5
사자제품재고지수 20)	87.9	87.7	86.9	86.8	87.2	86.8	86.1	86.4	86.3	86.9	87.5	90.0	92.4	

경기 종합 지수란?

- 국민경제 전체의 경기동향을 쉽게 파악하고 예측하기 위하여 주요 경제지표의 <mark>움직임</mark>을 가공·종합하여 지수형태로 나타낸 것.

♣ 원자료에 대한 분석

The ARIMA Procedure

Name of Variable = z				
Mean of Working Series 96.32024				
Standard Deviation	8.010124			
Number of Observations	84			

	Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq			Autocor	relations	3		
6	416.96	6	<.0001	0.966	0.932	0.898	0.862	0.826	0.789	
12	674.36	12	<.0001	0.753	0.717	0.682	0.646	0.610	0.574	
18	807.58	18	<.0001	0.539	0.505	0.472	0.440	0.408	0.377	

♣ 원자료에 대한 분석

※ 분산은 크지 않아 보이나 <mark>증가하</mark> 는 추세를 보인다

→ 추세 제거를 위한 차분이 필요

◆ 원자료에 대한 분석

The ARIMA Procedure

Name of Variable = z				
Mean of Working Series 96.32024				
Standard Deviation	8.010124			
Number of Observations	84			

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq			Autocon	relations	;	
6	416.96	6	<.0001	0.966	0.932	0.898	0.862	0.826	0.789
12	674.36	12	<.0001	0.753	0.717	0.682	0.646	0.610	0.574
18	807.58	18	<.0001	0.539	0.505	0.472	0.440	0.408	0.377

♣ 원자료의 정상화

```
data a;
input z @@;
date= intnx('month','1JAN2012'd,_n_-1);
format date Monyy.;
dif1=dif(z);
dif2=dif2(z);
cards;
85.1 85.5 85.6 85.5 85.6 8;
run;
```

- ※ 비정상 시계열의 정상화
- → <mark>차분</mark>을 통한 추세성분 제거

♣ 원자료와 1차 차분자료와의 비교

※ 추세성분이 제거되었음을 알 수 있음.

♣ 1차 차분자료와 2차 차분자료와의 비교

1차 차분

2차 차분

1차 차분자료와 2차 차분자료와의 비교

1차 차분

0,0	4 - 1 - 1 - 1 - 1 - 1					
	1차 차분자료					
Mean of W	Mean of Working Series					
Standard I	Deviation	0.17412				
Number o	f Observations	83				

2차 차분

	1.00 -	$\Delta \Delta $
	2차 차분자료	
dif2	Mean of Working Series	0.632927
	Standard Deviation	0.311587
	Number of Observations	83
		an Jul Jan Jul Ja 116 2017 20

※ 1차 차분자료의 분산 〈 2차 차분자료의 분산 → 2차 차분은 과대차분

02. 분석모형식별

02. 분석모형 식별

♣ 1차 차분자료의 ARIMA 모형

02. 분석모형 식별

♣ 1차 차분자료의 ARIMA 모형

※ 포트맨토 검정

 $H_0: \rho_1(z) = \rho_2(z) = \dots = \rho_k(z) = 0$

 $H_1: not\ H_0$

자기상관이 존재한다고 할 수 있다

ACF:

- 시차 1 이후로 <mark>감소하는 사인 함수</mark> 처럼 보인다

PACF:

- 시차 1 이후로 절단 처럼 보인다.

→ ARMA(1,1)모형과 AR(1) 모형을 잠정모형으로 선택

♣ ARMA(1,1)

	Conditional Least Squares Estimation							
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag			
MU	0.31984	0.03676	8.70	⟨.0001	0			
MA1,1	-0.009116	0.19180	-0.05	0.9622	1			
AR1,1	0.57760	0.15657	3.69	0.0004	1			

1. 평균의 검정 : 유의

2. MA모수의 검정 : 유의 X

3. AR모수의 검정: 유의

♣ AR(1)

	Conditional Least Squares Estimation						
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag		
MU	0.31978	0.03668	8.72	⟨.0001	0		
AR1,1	0.58357	0.09025	6.47	⟨.0.001	1		

- 1. 평균의 검정 : 유의
- 2. AR모수의 검정:유의
 - → 모형이 적합하다

♠ AR(1)

Estimate	Standard Error					
0.31978	0.03668	8.72	⟨.0001	0		
0.58357	0.09025	6.47	⟨.0.001⟩	1		

$$(1 - B) Zt = Wt$$

 $(1 - 0.58357B)Wt = \epsilon_t + 0.133166$
 \rightarrow 절편이 존재하는 AR(1)모형 적합

♣ AR(1)

	Autocorrelation Check of Residuals								
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations					
6	6.08	5	0.2985	0.008	0.070	-0.245	0.106	0.042	0.036
12	9.82	11	0.5470	-0.050	0.063	-0.161	0.005	-0.110	-0.007
18	11.74	17	0.8158	-0.033	-0.017	0.024	-0.067	-0.100	-0.060
24	23.31	23	0.4430	0.159	0.036	0.152	0.081	0.193	-0.128

$$H_0: \rho_1(e) = \rho_2(e) = \dots = \rho_k(e) = 0$$

 H_1 : not H_0

H_0 를 기각할 수 없다.

→ 잔차가 백색잡음을 따른다고 할 수 있다.

♣ AR(1)

※ 정규성 또한 따른다고 할 수 있다.

♣ 모형 진단법 결정

CLS 방식

Constant Estimate	0.133166
Variance Estimate	0.020494
Std Error Estimate	0.143157
AIC	-85.1536
SBC	-80.3159
Number of Residuals	83

ML 방식

Constant Estimate	0.134147
Variance Estimate	0.020468
Std Error Estimate	0.143065
AIC	-84.8533
SBC	-80.0156
Number of Residuals	83

※ AIC와 SBC 모두 CLS방식이 더 작다.

→ 따라서 CLS방식을 선택

♣ 과대적합

(Conditional Least Squares Estimation						
Parameter	Estimate	Standard Error	t Value	Approx Pr > t	Lag		
MU	0.31978	0.03668	8.72	<.0001	0		
AR1,1	0.58357	0.09025	6.47	<.0001	1		

Constant Estimate	0.133166
Variance Estimate	0.020494
Std Error Estimate	0.143157
AIC	-85.1536
SBC	-80.3159
Number of Residuals	83

Conditional Least Squares Estimation							
Parameter	Parameter Estimate Standard Error t Value						
MU	0.31986	0.03667	8.72	<.0001	0		
AR1,1	0.58799	0.11181	5.26	<.0001	1		
AR1,2	-0.0075516	0.11181	-0.07	0.9463	2		

Constant Estimate	0.1342
Variance Estimate	0.020749
Std Error Estimate	0.144045
AIC	-83.1583
SBC	-75.9018
Number of Residuals	83

 $\leftarrow AR(1)$

※ 미세하지만 AR(2) 적합 시 분산이 더 커짐.

 $\leftarrow AR(2)$

♣ 최종모형 AR(1)

Name of Variable = RESIDUAL				
Mean of Working Series	-0.00135			
Standard Deviation	0.141415			
Number of Observations	83			

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr> ChiSq	Autocorrelations					
6	6.84	6	0.3362	0.004	0.069	-0.229	0.109	0.079	0.045
12	8.80	12	0.7196	-0.013	0.077	-0.113	0.005	-0.027	0.033
18	9.89	18	0.9355	0.024	-0.007	0.063	0.010	0.004	-0.074

♣ 최종모형 AR(1)

♣ AR(1)모형의 잔차 그림

04. 예측

♣ AR(1)모형을 이용한 10시점 미래까지의 예측

```
proc arima;
identify var=z(1);
estimate p=1 q=0;
forecast lead = 10 out =fore;
run; quit;
proc print data = fore;
run;
data fore;
set fore;
date= intnx('month','1JAN2012'd,_n_-1);
format date Monyy.;
run;
proc sgplot data = fore;
series y= forecast x= date;
run;
```

04. 예측

♣ AR(1)모형을 이용한 10시점 미래까지의 예측

Forecasts for variable z							
Obs	Forecast	Std Error	95% Confid	ence Limits			
85	111.7082	0.1432	111.4277	111.9888			
86	112.0213	0.2681	111.4958	112.5468			
87	112.3371	0.3844	111.5837	113.0905			
88	112.6546	0.4900	111.6942	113.6150			
89	112.9731	0.5855	111.8255	114.1207			
90	113.2921	0.6722	111.9746	114.6096			
91	113.6114	0.7514	112.1386	115.0842			
92	113.9309	0.8244	112.3151	115.5468			
93	114.2505	0.8922	112.5019	115.9992			
94	114.5702	0.9556	112.6973	116.4431			

♣ AR(1)모형을 이용한 10시점 미래까지의 예측

※ 절편이 존재하는 ARIMA(1,1,0)모형으로 꾸준히 증가하는 추세를 보인다.

감사합니다!