Algorithm for computing k

 $A \approx BC + N$. Notation $l(i) = \arg \max_{l} B_{il}$ (row max). ε_1 is the reciprocal of an integer.

Assumptions for computing k

- 1. Catchword Assumption There is at least one catchword for each of the k topics:
 - (a) For each l, l = 1, 2, ..., k, there is an i(l) with $B_{i(l)l'} \leq \rho B_{i(l),l} \forall l' \neq l$.
- 2. Dominant Topic and Pure Records
 - (a) $\exists T_1, T_2, \dots, T_k \subseteq [n]$ disjoint ²
 - i. $\forall j \in T_l, C_{lj} \geq \alpha \; ; \; \forall j \notin T_l, C_{lj} \leq \beta.$
 - ii. $|T_l| \geq w_0 n \forall l$.
 - iii. $\forall l, \exists \varepsilon_1 n \ j' \text{ s with } C_{lj} \geq 1 \varepsilon_3.$
- 3. Subset Noise³

$$\forall i : \forall W \subseteq [n] \text{ with } |W| \ge \varepsilon_1 n : \frac{1}{|W|} \left| \sum_{i \in W} N_{ij} \right| \le \frac{B_{i,l(i)} \varepsilon_2}{2}.$$

For each i, we do the following: Sort A_{ij} is non-increasing order and group $\{A_{ij}, j = 1, 2, ..., n\}$ into groups of size $\varepsilon_1 n$ as follows:

 $G_{1,i}$ consists of the largest $\varepsilon_1 n$ A_{ij} 's, $G_{2,i}$ the next largest $\varepsilon_1 n$ A_{ij} 's etc. Let a(t,i) be the sum of $G_{t,i}$.

Lemma below proves two things which we state here verbally: The first is that for **any** i,... The second assertion is that for i(l), (Catchword for topic l),

¹Don't need (D1c) of ICML - high-freq of each catchword, nor (D1b) that total freq of catchword is high. High $\equiv \Omega^*(1)$. This is more realistic- empericlaly, lot of topics don't have high-freq catchwords.

²Crucially, don't need $\cup_l T_l = [n]$ i.e., don't need every doc to have a dominant topic - more realistic-empirically only about 50% docs have dom topic.

³This is subset noise for each i individually. This is in a way stronger than our ICML assumption. But, it is quite reasonable: In Topic Modeling, $\{A_{ij}, j=1,2,\dots n\}$ are INDEPENDENT, so by Chernoff, this holds provided $\sum_{j\in W} (BC)_{ij} \in \Omega^*(1)$, which is a mild condition (possibly after pruning away i with $\sum_j A_{ij} \in O(1)$ - Explain More).

Lemma 0.1 For each i:

$$\forall i, a \left(\lfloor \frac{|T_{l(i)}|}{\varepsilon_1 n} \rfloor, i \right) \qquad \geq (\alpha - \varepsilon_2) B_{i, l(i)} \varepsilon_1 n \tag{1}$$

$$\forall l, a \left(\left\lceil \frac{|T_l|}{\varepsilon_1 n} \right\rceil + 1, i(l) \right)$$
 $< (\beta + \rho + \varepsilon_2) B_{i(l), l} \varepsilon_1 n$ (2)

Proof: For the first statement fix attention on one i. Let $m = \lfloor \frac{|T_{l(i)}|}{\varepsilon_1 n} \rfloor - 1$. We have $|T_{l(i)} \setminus (G_{1,i} \cup G_{2,i} \cup \ldots G_{m,i})| \ge \varepsilon_1 n$. a(m+1,i) must be at least the sum of the set R consisting of the highest $\varepsilon_1 n$ A_{ij} 's in $T_l(i) \setminus (G_{1,i} \cup G_{2,i} \cup \ldots G_{m,i})$. Now, for each $j \in T_{l(i)}$, we have $(BC)_{ij} \ge B_{i,l(i)}C_{l(i),j} \ge B_{i,l(i)}\alpha$ by Assumption 2 (a) i. So, $\sum_{j \in R} (BC)_{ij} \ge |R|B_{i,l(i)}\alpha$ and by the Noise assumption, we have $\sum_{j \in R} A_{ij} \ge (\alpha - \varepsilon_2)B_{i,l(i)}\varepsilon_1 n$ proving the first assertion of the Lemma.

To prove the second assertion, let i = i(l). Note for each $j \notin T_l$, we have using 2(a)i and 1(a):

$$(BC)_{i,j} = B_{i,l}C_{l,j} + \sum_{l' \neq l} B_{il'}C_{l'j} \le B_{il}(\beta + \rho).$$

So there are at least $m_1 = \lfloor (n - |T_l|)/\varepsilon_1 n \rfloor$ disjoint sets, say, $W_1, W_2, \ldots, W_{m_1}$ each with $\varepsilon_1 n \ j$'s with $\sum_{j \in W_t} (BC)_{ij} \leq \varepsilon_1 n B_{il} (\beta + \rho)$. By Noise condition, $\sum_{j \in W_t} A_{ij} \leq \varepsilon_1 n B_{il} (\beta + \rho + \varepsilon_2)$. By the ordering of the A_{ij} and the groups, the last $m_1 \ a(t, i(l))$, each must be at most $\varepsilon_1 n B_{il} (\beta + \rho + \varepsilon_2)$. So, we get the second assertion of the Lemma since

$$\lceil (n/\varepsilon_1 n) \rceil - m_1 = \lceil (n/\varepsilon_1 n) \rceil - \lfloor (n - |T_l|)/\varepsilon_1 n \rfloor \le \lceil (|T_l|/\varepsilon_1 n) \rceil,$$

assuming $\varepsilon_1 = 1/\text{integer}$.

Lemma 0.2

$$\forall i, a(\lfloor |T_{l(i)}|/(\varepsilon_1 n)\rfloor, i) \ge (\alpha - 2\varepsilon_2)a(1, i) \tag{3}$$

$$\forall l, a(\lceil |T_l|/(\varepsilon_1 n)\rceil + 1, i(l)) \le \frac{\beta + \rho + \varepsilon_2}{1 - \varepsilon_3 - \varepsilon_2} a(1, i(l)). \tag{4}$$

Proof: The proof of this Lemma uses the Pure records condition: 2 (a) iii. For the first statement, let Q_i be a set of $\varepsilon_1 n$ j's with $C_{l(i),j} \geq 1 - \varepsilon_3$. Then

by Assumption 3:

$$\sum_{j \in Q_i} (BC)_{ij} \ge (1 - \varepsilon_3) B_{i,l(i)} |Q_i| \Rightarrow \sum_{j \in Q_i} A_{ij} \ge (1 - \varepsilon_3 - \varepsilon_2) B_{i,l(i)} |Q_i|$$

$$\Rightarrow a(1, l(i)) > (1 - \varepsilon_3 - \varepsilon_2) B_{i,l(i)} \varepsilon_1 n. \tag{5}$$

Also, since for any i, j, we have $(BC)_{ij} = \sum_{l=1}^k B_{il} C_{lj} \leq B_{i,l(i)} \sum_l C_{lj} = B_{i,l(i)}$, we have using Noise assumption:

$$a(1,i) \le B_{i,l(i)}(1+\varepsilon_2)\varepsilon_1 n.$$
 (6)

So, now from (1), we get using (5):

$$a(\lfloor |T_{l(i)}|/(\varepsilon_1 n)\rfloor, i) \ge \frac{\alpha - \varepsilon_2}{1 + \varepsilon_2} a_{1,i} \ge (\alpha - 2\varepsilon_2) a_{1,i}.$$

Similarly from (2), we get the second assertion of the current Lemma using (6).

Algorithm Sketch

The algorithm needs two parameters: $\gamma \in [0, 1]$ and s a positive integer, which have to be tuned.

- 1. For each i, i = 1, 2, ..., d do the following:
 - (a) Sort the *i* th row of *A* and find a(1,i) = sum of highest n/s elements of the row; a(2,i) = sum of the next highest n/s elements and so on up to a(s,i).
 - (b) Find largest $t \in \{1, 2, ..., s\}$ with $a(t, i) \ge \gamma a(1, i)$.
 - (c) Set Q_i = the set of tn/s j 's (t as in last step) consisting of the highest tn/s elements of row i of A.
- 2. Set R = [d]. Sort the $|Q_i|$ in ascending order. For convenience, renumber the i so that now $|Q_i|$ are in the ascending order.
- 3. For $i = 1, 2, \ldots$, in R: (If $Q_i \subseteq Q_{i'}$, we "prune" i' out of R.)
 - (a) For i' > i with $i' \in R$, and $|Q_i| \leq |Q_{i'}| 2(n/s)$, if $Q_i \subseteq Q_{i'}$, ⁴ delete i' from R.
- 4. Find the minimum k such that there are k disjoint subsets K_1, K_2, \ldots, K_k of [n] such that for every $i \in R$, $|Q_i \triangle K_r| \leq (3n/s)$ for some $r \in \{1, 2, \ldots, k\}$.

⁴If $Q, Q' \subseteq [n]$, we write $Q \subseteq Q'$ to denote: $|Q \setminus Q'| \le 2n/s$.