Teoria erorilor și aritmetică în virgulă flotantă Erorile sunt omniprezente

Radu Tiberiu Trîmbiţaş

Universitatea "Babeș-Bolyai"

Februarie 2010

Tipuri de erori

Aprecierea preciziei rezultatelor calculelor este un obiectiv important în Analiza numerică. Se disting mai multe tipuri de erori care pot limita această precizie:

- erori în datele de intrare sunt în afara (dincolo de) controlului calculelor. Ele se pot datora, de exemplu, imperfecțiunilor inerente ale măsurătorilor fizice.
- erori de rotunjire apar dacă se fac calcule cu numere a căror reprezentare se restrânge la un număr finit de cifre.
- **3** erori de aproximare -multe metode nu dau soluția exactă a problemei P, ci a unei probleme mai simple \widetilde{P} , care aproximează P: integralele se aproximează prin sume finite, derivatele prin diferențe (divizate), etc. Aceste erori se numesc erori de discretizare.

Exemplu de eroare de aproximare

• (P) Dorim să aproximăm

$$e = 1 + \frac{1}{1!} + \dots + \frac{1}{n!} + \dots$$

• Problema se înlocuiește cu problema mai simplă (\widetilde{P}) a însumării unui număr finit de termeni -eroare se trunchiere

$$(\widetilde{P})$$
 $e=1+\frac{1}{1!}+\cdots+\frac{1}{n!}.$

• În acest capitol ne interesează doar erorile în datele de intrare și erorile de rotunjire.

 Combinația dintre o problemă matematică (PM), (de natură constructivă) și specificațiile de precizie ale rezultatului (SP) se numește problemă numerică.

- Combinația dintre o problemă matematică (PM), (de natură constructivă) și specificațiile de precizie ale rezultatului (SP) se numește problemă numerică.
- Exemplu: Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$ și $x \in \mathbb{R}$. Dorim să calculăm y = f(x). În general x nu este reprezentabil în calculator; din acest motiv vom lucra cu o aproximare x^* a sa, $x^* \approx x$. De asemenea este posibil ca f să nu poată fi calculată exact; vom înlocui f cu o aproximantă a sa f_A . Valoarea calculată în calculator va fi $f_A(x^*)$. Deci problema numerică este următoarea:

- Combinația dintre o problemă matematică (PM), (de natură constructivă) și specificațiile de precizie ale rezultatului (SP) se numește problemă numerică.
- Exemplu: Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$ și $x \in \mathbb{R}$. Dorim să calculăm y = f(x). În general x nu este reprezentabil în calculator; din acest motiv vom lucra cu o aproximare x^* a sa, $x^* \approx x$. De asemenea este posibil ca f să nu poată fi calculată exact; vom înlocui f cu o aproximantă a sa f_A . Valoarea calculată în calculator va fi $f_A(x^*)$. Deci problema numerică este următoarea:

PM. dându-se x și f, să se calculeze f(x);

- Combinația dintre o problemă matematică (PM), (de natură constructivă) și specificațiile de precizie ale rezultatului (SP) se numește problemă numerică.
- Exemplu: Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$ și $x \in \mathbb{R}$. Dorim să calculăm y = f(x). În general x nu este reprezentabil în calculator; din acest motiv vom lucra cu o aproximare x^* a sa, $x^* \approx x$. De asemenea este posibil ca f să nu poată fi calculată exact; vom înlocui f cu o aproximantă a sa f_A . Valoarea calculată în calculator va fi $f_A(x^*)$. Deci problema numerică este următoarea:

PM. dându-se x și f, să se calculeze f(x); SP. $|f(x) - f_A(x^*)| < \varepsilon$, ε dat.

Măsuri ale erorii

- X spațiu liniar normat, $A \subseteq X$, $x \in X$. Un element $x^* \in A$ se numește aproximantă a lui x din A (notație $x^* \approx x$).
- $x^* \approx x$ o aproximantă a lui x, diferența $\Delta x = x x^*$ se numește eroare, iar

$$\|\Delta x\| = \|x^* - x\| \tag{1}$$

se numește eroare absolută.

•

$$\delta x = \frac{\|\Delta x\|}{\|x\|}, \quad x \neq 0 \tag{2}$$

se numește eroare relativă.

• Deoarece în practică x este necunoscut, se folosește aproximarea $\delta x = \frac{\|\Delta x\|}{\|x^*\|}$. Dacă $\|\Delta x\|$ este mic comparativ cu $\|x^*\|$, atunci aproximanta este bună.

Eroarea propagată

- $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, $x = (x_1, \dots, x_n)$, $x^* = (x_1^*, \dots, x_n^*)$. Dorim să evaluăm eroarea absolută și relativă Δf și respectiv δf când se aproximează f(x) prin $f(x^*)$.
- Aceste erori se numesc erori propagate, deoarece ne spun cum se propagă eroarea inițială (absolută sau relativă) pe parcursul calculării lui f.
- Presupunem $x=x^*+\Delta x$, $\Delta x=(\Delta x_1,\ldots,\Delta x_n)$. Aplicăm formula lui Taylor

$$\Delta f = f(x_1^* + \Delta x_1, \dots, x_n^* + \Delta x_n) - f(x_1^*, \dots, x_n^*)$$

= $\sum_{i=1}^n \Delta x_i \frac{\partial f}{\partial x_i^*}(x_1^*, \dots, x_n^*) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \Delta x_i \Delta x_j \frac{\partial^2 f}{\partial x_i^* \partial x_j^*}(\theta),$

$$\theta \in [(x_1^*, \dots, x_n^*), (x_1^* + \Delta x_1, \dots, x_n^* + \Delta x_n)].$$

ロト 4億ト 4 重ト 4 重ト 重 めの(で

Eroarea propagată II

neglijând termenii de ordinul al doilea (mici) obţinem

$$\Delta f \approx \sum_{i=1}^{n} \Delta x_i \frac{\partial f}{\partial x_i^*} (x_1^*, \dots x_n^*).$$
 (3)

Pentru eroarea relativă avem

$$\delta f = \frac{\Delta f}{f} \approx \sum_{i=1}^{n} \Delta x_{i} \frac{\frac{\partial f}{\partial x_{i}^{*}}(x^{*})}{f(x^{*})}$$

$$= \sum_{i=1}^{n} \delta x_{i} \frac{x_{i}^{*} \frac{\partial f}{\partial x_{i}^{*}}(x^{*})}{f(x^{*})}$$
(4)

Eroarea propagată III

- Problema inversă: cu ce precizie trebuie aproximate datele pentru ca rezultatul să aibă o precizie dată?
- Adică, dându-se $\varepsilon > 0$, cât trebuie să fie Δx_i sau δx_i , $i = \overline{1, n}$ astfel încât Δf sau $\delta f < \varepsilon$?
- principiul efectelor egale: se presupune că toți termenii care intervin în
 (3) sau (4) au același efect, adică

$$\frac{\partial f}{\partial x_1^*}(x^*)\Delta x_1 = \ldots = \frac{\partial f}{\partial x_n^*}(x^*)\Delta x_n.$$

• se obține

$$\Delta x_i \approx \frac{\Delta f}{n \left| \frac{\partial f}{\partial x_i^*}(x^*) \right|}.$$
 (5)

$$\delta x_i = \frac{\delta f}{n \left| \frac{x_i^* \frac{\partial}{\partial x_i^*} f(x^*)}{f(x^*)} \right|}.$$
 (6)

Exemple

Exemplu. Găsiți o margine a erorii absolute și relative pentru volumul sferei $V=\frac{\pi d^3}{6}$ cu diametrul egal cu $3.7cm\pm0.04cm$ și $\pi\approx3.14$.

• Calculăm derivatele parțiale

$$\frac{\partial V}{\partial \pi} = \frac{1}{6}d^3 = 8.44, \qquad \frac{\partial V}{\partial d} = \frac{1}{2}\pi d^2 = 21.5.$$

Aplicând formula (3) și definiția erorii relative obținem:

$$\Delta V = \left| \frac{\partial V}{\partial \pi} \right| |\Delta \pi| + \left| \frac{\partial V}{\partial d} \right| |\Delta d| = 8.44 + 21.5 \cdot 0.05 \approx 1.0888,$$

$$\delta_V = \frac{1.0888}{274} \approx 4\%.$$

Radu Tiberiu Trîmbitas (Universitatea "BabeTeoria erorilor și aritmetică în virgulă flotantă Februarie 2010

Exemple - continuare

Exemplu. Un cilindru are raza $R \approx 2m$, înălținea $H \approx 3m$. Cu ce erori absolute trebuie determinate R, H și π astfel încât V să poată fi calculat cu o eroare $< 0.1m^3$.

Se aplică principiul efectelor egale (5):

$$V = \pi R^2 H, \quad \Delta V = 0.1 m^3,$$

$$\frac{\partial V}{\partial \pi} = R^2 H = 12, \quad \frac{\partial V}{\partial R} = 2\pi R H = 37.7, \quad \frac{\partial V}{\partial H} = \pi R^2 = 12.6.$$

n = 3, erorile absolute ale argumentelor:

$$\Delta\pi \approx \frac{\Delta V}{3\frac{\partial V}{\partial \pi}} = \frac{0.1}{3.12} < 0.003,$$

$$\Delta R \approx \frac{0.1}{3 \cdot 37.7} < 0.001, \qquad \Delta H \approx \frac{0.1}{3 \cdot 12.6} < 0.003.$$

Aritmetică în virgulă flotantă

Parametrii reprezentării

- Parametrii reprezentării în virgulă flotantă sunt următoarele numere naturale
 - baza β (întotdeauna pară);
 - precizia p;
 - exponentul maxim e_{max};
 - exponentul minim e_{min};
- În general, un număr în virgulă flotantă se reprezintă sub forma

$$x = \pm d_0.d_1d_2...d_{p-1} \times \beta^e, \quad 0 \le d_i < \beta$$
 (7)

 $d_0.d_1d_2...d_{p-1}$ - semnificant sau mantisă, e exponent.

Valoarea lui x este

$$\pm (d_0 + d_1 \beta^{-1} + d_2 \beta^{-2} + \dots + d_{p-1} \beta^{-(p-1)}) \beta^e.$$
 (8)

Parametrii reprezentării

- Unicitatea se asigură prin normalizare: se modifică reprezentarea (nu valoarea) astfel încât $d_0 \neq 0$.
- Zero se reprezintă ca $1.0 imes eta^{e_{\min}-1}$
- Ordinea numerică uzuală a numerelor reale nenegative corespunde ordinii lexicografice a reprezentării lor flotante (cu exponentul în stânga semnificantului).
- număr în virgulă flotantă = număr real care poate fi reprezentat exact în virgulă flotantă

Numere denormalizate

- ullet Dupa normalizarea semnificanților ramâne un "gol" între 0 și $eta^{e_{min}}$
- Aceasta poate avea ca efect x-y=0 chiar dacă $x\neq y$, iar un fragment de cod de tipul **if** $x\neq y$ **then** z=1/(x-y) poate eşua
- Soluție: se admit semnificanți nenormalizați când exponentul este e_{min} (gradual underflow). Aceste numere se numesc numere denormalizate. Ele garantează că

$$x = y \iff x - y = 0$$

• Distribuția fără denormalizare și cu denormalizare

Parametrii reprezentării

 Mulțimea numerelor în virgulă flotantă pentru un set de parametri dați ai reprezentării se va nota cu

$$\mathbb{F}(\beta, p, e_{\min}, e_{\max}, denorm), denorm \in \{true, false\}.$$

- Această mulțime nu coincide cu $\mathbb R$ din următoarele motive:
 - este o submulţime finită a lui Q;
 - 2 pentru $x \in \mathbb{R}$ putem avea $|x| > \beta \times \beta^{e_{\max}}$ (depășire superioară) sau $|x| < 1.0 \times \beta^{e_{\min}}$ (depășire inferioară).
- Operațiile aritmetice uzuale pe $\mathbb{F}(\beta, p, e_{\min}, e_{\max}, \text{denorm})$ se notează cu \oplus , \ominus , \otimes , \oslash , iar funcțiile uzuale cu SIN, COS, EXP, LN, SQRT ș.a.m.d. $(\mathbb{F}, \oplus, \otimes)$ nu este corp deoarece

$$(x \oplus y) \oplus z \neq x \oplus (y \oplus z) \qquad (x \otimes y) \otimes z \neq x \otimes (y \otimes z)$$
$$(x \oplus y) \otimes z \neq x \otimes z \oplus y \otimes z.$$

Erori

- Eroarea relativă
- ulps units in the last place (unități în ultima poziție): dacă $z = d_0.d_1d_2...d_{p-1}... \times \beta^e$, atunci eroarea este

$$|d_0.d_1d_2...d_{p-1}-z/\beta^e|\beta^{p-1}$$
ulps.

• Eroarea relativă ce corespunde la $\frac{1}{2}$ ulps este

$$\frac{1}{2}\beta^{-p} \le \frac{1}{2} \text{ulps} \le \frac{\beta}{2}\beta^{-p},$$

căci eroarea absolută este $\underbrace{0.0\ldots0}_p\beta'\times\beta^e$, cu $\beta'=\frac{\beta}{2}$. Valoarea eps $=\frac{\beta}{2}\beta^{-p}$ se numește epsilon-ul mașinii.

• Echivalent rezoluția relativă (distanța relativă între doi vecini)

Rotunjire

- Rotunjirea implicită se face după regula cifrei pare: dacă $x=d_0.d_1\dots d_{p-1}d_p\dots$ și $d_p>\frac{\beta}{2}$ rotunjirea se face în sus, dacă $d_p<\frac{\beta}{2}$ rotunjirea se face în jos, iar dacă $d_p=\frac{\beta}{2}$ și printre cifrele eliminate există una nenulă rotunjirea se face în sus, iar în caz contrar ultima cifră păstrată este pară.
- Alte tipuri de rotunjiri: în jos, în sus, spre zero, trunchiere

Aritmetică în virgulă flotantă

- Definim $\mathrm{fl}(x)$ ca fiind cea mai apropiată aproximare în virgulă flotantă a lui x
- Din definiția eps avem pentru eroarea relativă:

$$\forall x \in \mathbb{R}$$
, $\exists \epsilon \ cu \ |\epsilon| \le \text{eps astfel încât } \mathrm{fl}(x) = x(1+\epsilon)$

- Rezultatul unei operații \odot în virgulă flotantă este $\mathrm{fl}(a \circ b)$
- Dacă fl(a o b) este cel mai apropiat număr în virgulă flotantă de a o b, operațiile aritmetice se rotunjesc corect (standardul IEEE o face), ceea ce ne conduce la următoarea proprietate:

Pentru orice numere în virgulă flotantă x, y, există ϵ cu $|\epsilon| \leq \exp$ astfel încât

$$x \odot y = (x \circ y)(1 + \epsilon)$$

numită axioma fundamentală a aritmeticii în virgulă flotantă

• Rotunjire la cel mai apropiat par în caz de ambiguitate

Anularea

• Din formulele pentru eroarea relativă (4), dacă $x \approx x(1+\delta_x)$ și $y \approx y(1+\delta_y)$, avem următoarele expresii pentru erorile relative ale operațiilor în virgulă flotantă:

$$\delta_{xy} = \delta_x + \delta_y \tag{9}$$

$$\delta_{x/y} = \delta_x - \delta_y \tag{10}$$

$$\delta_{x+y} = \frac{x}{x+y} \delta_x + \frac{y}{x+y} \delta_y \tag{11}$$

- Singura operație critică din punct de vedere al erorii este scăderea a două cantități apropiate $x \approx y$, caz în care $\delta_{x-y} \to \infty$.
- Acest fenomen se numește anulare

Anularea II

- Anularea este de două tipuri:
 - benignă, când se scad două cantități exacte
 - 2 catastrofală, când se scad două cantități deja rotunjite.
- Programatorul trebuie să fie conștient de posibilitatea apariției anulării și să încerce să o evite.
- Expresiile în care apare anularea trebuie rescrise, iar o anulare catastrofală trebuie întotdeauna transformată în una benignă.

Anularea III

- **Exemplu.** Dacă $a \approx b$, atunci expresia $a^2 b^2$ se transformă în (a b)(a + b). Forma inițială este de preferat în cazul când $a \gg b$ sau $b \gg a$.
- **Exemplu.** Dacă anularea apare într-o expresie cu radicali, se amplifică cu conjugata:

$$\sqrt{x+\delta} - \sqrt{x} = \frac{\delta}{\sqrt{x+\delta} + \sqrt{x}}, \quad \delta \approx 0.$$

• Exemplu. Diferența valorilor unei funcții pentru argumente apropiate se transformă folosind formula lui Taylor:

$$f(x+\delta)-f(x)=\delta f'(x)+\frac{\delta^2}{2}f''(x)+\cdots \quad f\in C^n[a,b].$$

Anularea IV

La ecuația de gradul al doilea $ax^2+bx+c=0$, anularea poate să apară dacă $b^2\gg 4ac$. Formulele uzuale

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \tag{12}$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \tag{13}$$

pot să conducă la anulare astfel: pentru b>0 anularea apare la calculul lui x_1 , iar pentru b<0 anularea apare la calculul lui x_2 . Remediul este să amplificăm cu conjugata

$$x_1 = \frac{2c}{-b - \sqrt{b^2 - 4ac}} \tag{14}$$

$$x_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}} \tag{15}$$

și să utilizăm în primul caz formulele (14) și (13), iar în al doilea caz (12) și (15). ../demo/html/ecgr2.html

Teorema asupra pierderii preciziei

- Problemă: Câte cifre semnificative se pierd la scăderea x y când x este apropiat de y?
- Apropierea lui x de y este măsurată convenabil de $1 \frac{y}{x}$.

Teoremă (Loss of precission theorem)

Fie $x \neq y$ NVF normalizate, unde x > y > 0. Dacă

$$2^{-p} \le 1 - \frac{y}{x} \le 2^{-q}$$

pentru p, $q \in \mathbb{N}$, atunci se pierd cel puțin q și cel mult p cifre binare semnificative la scăderea x-y.

Teorema asupra pierderii preciziei - demonstrație

Demonstrație.

Vom demonstra partea a doua, lăsând prima parte ca exercițiu. Fie $x=s\times 2^n,\ y=r\times 2^m$ NVF normalizate. Deoarece $y< x,\ y$ va trebui deplasat înaintea scăderii, pentru a avea același exponent ca x. Deci, $y=(s2^{m-n})\times 2^n$ și

$$x - y = (r - s2^{m-n}) \times 2^n$$

Semnificantul satisface

$$r - s2^{m-n} = r\left(1 - \frac{r \times 2^m}{s \times 2^n}\right) = r\left(1 - \frac{y}{x}\right) < 2^{-q}$$

Deci, pentru normalizarea reprezentării lui x-y, este nevoie de o deplasare de q biți la stânga. Astfel se introduc cel puțin q zerouri false la capătul drept al semnificantului. Aceasta înseamnă o pierdere a preciziei de cel puțin q biți.

Reducerea rangului I

Exemplu

Pentru $\sin x$, câți biți semnificativi se pierd la reducerea la intervalul $[0,2\pi)$?

Soluție. Dându-se $x>2\pi$, vom determina întregul n ce satisface $0 \le x-2n\pi < 2\pi$. Apoi la evaluare vom utiliza periodicitatea $f(x)=f(x-2n\pi)$. La scăderea $x-2n\pi$, va fi o pierdere de precizie. Conform teoremei 1 se vor pierde cel puțin q biți dacă

$$1 - \frac{2n\pi}{x} \le 2^{-q}$$

Deoarece

$$1 - \frac{2n\pi}{x} = \frac{x - 2n\pi}{x} < \frac{2\pi}{x}$$

- **4**ロト 4個 ト 4 種 ト 4 種 ト ■ 9 へ () へ

Reducerea rangului II

conchidem că cel puțin q biți se pierd dacă $2\pi/x < 2^{-q}$, sau echivalent, dacă $2^q < x/2\pi$. \blacksquare

Exemplu numeric. Să se calculeze sin(12532.14).

Avem $\sin(12532.14) = \sin(12532.14 - 2k\pi)$, cu k = 1994 și $12532.14 - 2k\pi \approx 3.47$ și rezultatul va fi eronat. Dacă reducerea s-ar fi putut face cu precizie mai bună și rezultatul ar fi fost mai bun. MATLAB dă $\sin(12532.14) = -0.321113319309938$ și $\sin(3.47) = -0.322535900322479$.

Standardele IEEE

- Există două standarde diferite pentru calculul în virgulă flotantă:
 - **1 IEEE** 754 care prevede $\beta = 2$
 - ② IEEE 854 care permite $\beta=2$ sau $\beta=10$, dar lasă o mai mare libertate de reprezentare.
- Parametrii standardului IEEE 754

	Precizia			
	Simplă	Simplă extinsă	Dublă	Dublă extinsă
р	24	≥ 32	53	≥ 64
e_{max}	+127	$\ge +1023$	+1023	$\ge +16383$
e_{min}	-126	≤ -1022	-1022	≤ -16382
dim. exponent	8	≥ 11	11	≥ 15
dim. număr	32	≥ 4 3	64	≥ 7 9

Tabela: Parametrii reprezentării flotante

IEEE 754 II

Motivele pentru formatele extinse sunt:

- o mai bună precizie;
- pentru conversia din binar în zecimal şi invers este nevoie de 9 cifre în simplă precizie şi de 17 cifre în dublă precizie.

Motivul pentru care $|e_{min}| < e_{max}$ este acela că $1/2^{e_{min}}$ nu trebuie să dea depășire.

Operațiile \oplus , \ominus , \otimes , \oslash trebuie să fie exact rotunjite. Precizia aceasta se asigură cu două cifre de gardă și un bit suplimentar.

Reprezentarea exponentului se numește reprezentare cu exponent deplasat, adică în loc de e se reprezintă e+D, unde D este fixat la alegerea reprezentării.

D=127 pentru simplă precizie și D=1023 pentru dublă precizie.

Cantități speciale

Exponent	Semnificant	Ce reprezinta	
$e=e_{min}-1$	f = 0	± 0	zero cu semn
$e=e_{min}-1$	$f \neq 0$	$0.f \times 2^{e_{min}}$	Numere denormalizate
$e_{min} \leq e \leq e_{max}$		$1.f \times 2^e$	
$e=e_{ extit{max}}+1$	f = 0	$\pm \infty$	infinit
$e=e_{\it max}+1$	$f \neq 0$	NaN	NaN-uri

Cantități speciale

- NaN. Avem de fapt o familie de valori NaN, operațiile ilegale sau nedeterminate conduc la NaN: $\infty + (-\infty)$, $0 \times \infty$, 0/0, ∞/∞ , x REM 0, ∞ REM y, \sqrt{x} pentru x < 0. Dacă un operand este NaN rezultatul va fi tot NaN.
- Infinit. Operațiile cu ∞ se definesc ca limite, ex: $1/0 = \infty$, $-1/0 = -\infty$. Valorile infinite dau posibilitatea continuării calculului, lucru mai sigur decât abortarea sau returnarea celui mai mare număr reprezentabil. $\frac{x}{1+x^2}$ pentru $x = \infty$ dă rezultatul 0.
- Zero cu semn. Avem doi de 0: +0, -0; relațiile +0 = -0 și $-0 < +\infty$ sunt adevărate. Avantaje: tratarea simplă a depășirilor inferioare și discontinuităților. Se face distincție între $\log 0 = -\infty$ și $\log x = \mathrm{NaN}$ pentru x < 0. Fără 0 cu semn nu s-ar putea face distincție la logaritm între un număr negativ care dă depășire superioară și 0.

IEEE Simplă precizie, exemple

S	Е	M	Cantitate
0	11111111	0000010000000000000000000	NaN
1	11111111	00100010000100101010101	NaN
0	11111111	000000000000000000000000000000000000000	∞
0	10000001	101000000000000000000000000000000000000	$+2^{129-127} \cdot 1.101 = 6.5$
0	10000000	000000000000000000000000000000000000000	$+2^{128-127} \cdot 1.0 = 2$
0	0000001	000000000000000000000000000000000000000	$+2^{1-127} \cdot 1.0 = 2^{-126}$
0	00000000	100000000000000000000000000000000000000	$+2^{-126} \cdot 0.1 = 2^{-127}$
0	00000000	000000000000000000000000000000000000000	$+2^{-126} \cdot 2^{-23} = 2^{-149}$
0	00000000	000000000000000000000000000000000000000	+0
1	00000000	000000000000000000000000000000000000000	-0
1	10000001	101000000000000000000000000000000000000	$-2^{129-127} \cdot 1.101 = -6.5$
1	11111111	000000000000000000000000000000000000000	$-\infty$

Pentru virgulă flotantă în MATLAB vezi ../demo/html/fpdemo.html

William Kahan, eminent matematician și informatician, contribuții importante la studiul metodelor precise și eficiente de rezolvare a problemelor numerice pe calculatoare cu precizie finită. A fost principalul arhitect al standardului IEEE 754. Distins cu premiul Turing al ACM în 1989, Fellow al ACM din 1994. Profesor la Universitatea Berkeley, California

Eșecul rachetei Patriot I

- Eșecul unui sistem de rachete antirachetă Patriot în timpul războiului din Golf din 1991 s-a datorat unei erori de conversie software.
- Ceasul sistemului măsura timpul în zecimi de secundă, dar îl memora într-un registru de 24 de biți, provocându-se astfel erori de rotunjire.
- Datele din câmp au arătat că sistemul poate eșua să urmărească și să intercepteze o rachetă după 20 de ore de funcționare și deci sistemul ar necesita rebootare.

Eșecul rachetei Patriot II

 După 100 de ore de funcționare, eșecul sistemului a cauzat moartea a 28 de soldați americani aflați într-o cazarmă din Dhahran, Arabia Saudită, deoarece nu a reușit să intercepteze o rachetă Scud irakiană. Deoarece numărul 0.1 are o dezvoltare infinită în binar (este o fracție periodică), valoare din registrul de 24 de biți este eronată

$$(0.00011001100110011001100)_2 \approx 0.95 \times 10^{-7}$$
.

Eroarea de timp după o sută de ore a fost de 0.34 secunde. Viteza rachetei Scud este de 3750 mile/oră, rezultând o eroare în distanță de aproximativ 573.59 m.

Explozia rachetei Ariane 5

- În 1996, racheta Ariane 5 lansată de Agenția Spațială European a explodat la 40 de secunde după lansarea de la Kourou, Guyana Franceză.
- Investigația de după incident a arătat că componeta orizontală a vitezei a necesitat conversia unui număr flotant în dublă precizie într-un întreg pe 16 biți.
- Deoarece numărul era mai mare decât 32,767, cel mai mare întreg reprezentabil pe 16 biți, componentele de control au intrat în procedura de autodistrugere. Valoarea rachetei și a încărcăturii a fost de 500 de milioane de dolari.

Referințe WWW

Se pot găsi informații adiționale pe World Wide Web la adresa http://www.ima.umn.edu/~arnold/disasters/ sau la http://www5.in.tum.de/~huckle/bugse.html. Există și alte consemnări ale calamităților ce ar fi putut fi evitate printr-o programare mai atentă, în special la utilizarea AVF.

• Putem gândi o problemă ca o aplicație

$$f: \mathbb{R}^m \to \mathbb{R}^n, \quad y = f(x).$$
 (16)

- Ne interesează sensibilitatea aplicației într-un punct dat x la mici perturbații ale argumentului, adică cât de mare sau cât de mică este perturbația lui y comparativ cu perturbația lui x.
- În particular, dorim să măsurăm gradul de sensibilitate printr-un singur număr, numărul de condiționare al aplicației f în punctul x.
 Vom presupune că f este calculată exact, cu precizie infinită.
- Condiționarea lui f este deci o proprietate inerentă a funcției f și nu depinde de nici o considerație algoritmică legată de implementarea sa.

- Aceasta nu înseamnă că determinarea condiționării unei probleme este nerelevantă pentru orice soluție algoritmică a problemei.
- Soluția calculată cu (16), y^* (utilizând un algoritm specific și aritmetica în virgulă flotantă) este (și acest lucru se poate demonstra) soluția unei probleme "apropiate"

$$y^* = f(x^*) \tag{17}$$

CU

$$x^* = x + \delta \tag{18}$$

- distanța $\|\delta\| = \|x^* x\|$ poate fi estimată în termeni de precizie a mașinii
- dacă știm cât de tare sau cât de slab reacționează aplicația la mici perturbații, cum ar fi δ în (18), putem spune ceva despre eroarea $y^* y$ a soluției cauzată de această perturbație.

Fie $x = [x_1, ..., x_m]^T \in \mathbb{R}^m$, $y = [y_1, ..., y_n]^T \in \mathbb{R}^n$, $y_v = f_v(x_1, ..., x_m)$, $\nu = \overline{1, n} - y_{\nu}$ va fi privit ca o funcție de o singură variabilă x_{μ}

$$\gamma_{\nu\mu} = (\operatorname{cond}_{\nu\mu} f)(x) = \left| \frac{x_{\mu} \frac{\partial f_{\nu}}{\partial x_{\mu}}}{f_{\nu}(x)} \right|. \tag{19}$$

Aceasta ne dă o matrice de numere de condiționare

$$\Gamma(x) = \begin{pmatrix} \frac{x_1 \frac{\partial f_1}{\partial x_1}}{f_1(x)} & \cdots & \frac{x_m \frac{\partial f_1}{\partial x_m}}{f_1(x)} \\ \vdots & \ddots & \vdots \\ \frac{x_1 \frac{\partial f_n}{\partial x_1}}{f_n(x)} & \cdots & \frac{x_m \frac{\partial f_n}{\partial x_m}}{f_n(x)} \end{pmatrix} =: [\gamma_{\nu\mu}(x)]$$
(20)

si vom lua ca număr de conditionare

$$(\text{cond } f)(x) = \|\Gamma(x)\|. \tag{21}$$

Altfel.

$$\|\Delta y\| = \|f(x + \Delta x) - f(x)\| \le \|\Delta x\| \|\frac{\partial f}{\partial x}\|$$

unde

$$J(x) = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_m} \end{bmatrix} \in \mathbb{R}^n \times \mathbb{R}^m$$
 (22)

este matricea jacobiană a lui f

$$\frac{\|\Delta y\|_{\infty}}{\|y\|_{\infty}} \le \frac{\|x\|_{\infty} \left\|\frac{\partial f}{\partial x}\right\|_{\infty}}{\|f(x)\|_{\infty}} \cdot \frac{\|\Delta x\|}{\|x\|_{\infty}}.$$
 (23)

Cazul unidimensional

• Pentru m = n = 1 și $x \neq 0$, $y \neq 0$

$$(\operatorname{cond} f)(x) = \left| \frac{xf'(x)}{f(x)} \right|.$$

• Dacă $x=0 \land y \neq 0$ se consideră eroarea absolută pentru x și eroarea relativă pentru y

$$(\operatorname{cond} f)(x) = \left| \frac{f'(x)}{f(x)} \right|;$$

- Pentru $y=0 \land x \neq 0$ se ia eroarea absolută pentru y și eroarea relativă pentru x
- Pentru x = y = 0, se iau erorile absolute

$$(\mathsf{cond}\ f)(x) = f'(x).$$

Condiționarea absolută

• Număr de condiționare absolută al unei probleme diferențiabile f în x:

$$\hat{\kappa} = \sup_{\delta x} \frac{\|\delta f\|}{\|\delta x\|} = \|J(x)\|$$

unde $J(x) = [J_{ij}] = [\partial f_i/\partial x_j]$, este jacobianul, iar norma este indusă de normele lui δf și δx

• în cazul unidimensional

$$\hat{\kappa} = |f'(x)|.$$

Exemple

- **Exemplu**: Funcția $f(x) = \alpha x$
 - număr de condiționare absolută $\hat{\kappa} = ||J|| = \alpha$
 - număr de condiționare relativă $(\operatorname{cond} f)(x) = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{\alpha}{\alpha x/x} = 1$
- **Exemplu**: Funcția $f(x) = \sqrt{x}$
 - număr de condiționare absolută $\hat{\kappa} = \|J\| = \frac{1}{2\sqrt{\chi}}$
 - număr de condiționare relativă $(\operatorname{cond} f)(x) = \frac{\|J\|}{\|f(x)\|/\|x\|} = \frac{1/(2\sqrt{x})}{\sqrt{x}/x} = \frac{1}{2}$
- **Exemplu**: Funcția $f(x) = x_1 x_2$ (cu norma ∞)
 - număr de condiționare absolută $\hat{\kappa} = ||J|| = ||(-1,1)^T|| = 2$
 - număr de condiționare relativă

$$(\operatorname{cond} f)(x) = \frac{\|J\|}{\|f(x)\| / \|x\|} = \frac{2}{|x_1 - x_2| \max\{|x_1|, |x_2|\}}$$

• prost condiționată dacă $x_1 \approx x_2$ (anulare)

Precizia¹

ullet Pentru o funcție dată g(n) vom nota cu $\Theta(g(n))$ mulțimea de funcții

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 > 0 \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \\ \forall n \ge n_0 \}.$$

- Scriem $f(n) = \Theta(g(n))$ pentru a indica $f(n) \in \Theta(g(n))$. Spunem că g(n) este o margine asimptotică strânsă (assymptotically tight bound) pentru f(n).
- Definiția mulțimii $\Theta(g(n))$ necesită ca fiecare membru al ei să fie asimptotic nenegativ, adică $f(n) \ge 0$ când n este suficient de mare.

ullet Pentru o funcție dată g(n) vom nota cu O(g(n)) mulțimea de funcții

$$O(g(n)) = \{f(n): \exists c, n_0 \ 0 \le f(n) \le cg(n), \ \forall n \ge n_0\}.$$

- margine asimptotică superioară
- Pentru a indica faptul că f(n) este un membru al lui O(g(n)) scriem f(n) = O(g(n)).
- Observăm că $f(n)=\Theta(g(n))\Longrightarrow f(n)=O(g(n),$ sau $\Theta(g(n))\subseteq O(g(n))$
- Una dintre proprietățile ciudate ale notației este aceea că $n = O(n^2)$.

• Pentru o funcție dată g(n) vom nota prin $\Omega(g(n))$ mulțimea de funcții

$$\Omega(g(n)) = \{f(n): \exists c, n_0 \ 0 \le cg(n) \le f(n), \ \forall n \ge n_0\}.$$

- margine asimptotică inferioară
- Din definițiile notațiilor asimptotice se obține imediat:

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n)).$$

• Spunem că funcțiile f și $g: \mathbb{N} \longrightarrow \mathbb{R}$ sunt asimptotic echivalente, notație \sim dacă

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1.$$

• Extinderea notațiilor asimptotice la mulțimea numerelor reale este naturală. De exemplu f(t) = O(g(t)) înseamnă că există o constantă pozitivă C astfel încât pentru orice t suficient de apropiat de o limită subînțeleasă (de exemplu $t \to \infty$ sau $t \to 0$) avem

$$|f(t)| \le Cg(t). \tag{24}$$

- ullet Considerăm un algoritm \widetilde{f} pentru problema f
- ullet Un calcul $\widetilde{f}(x)$ are eroarea absolută $\left\|\widetilde{f}(x)-f(x)
 ight\|$ și eroarea relativă

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|}$$

Algoritmul este precis dacă (pentru orice x)

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O(\text{eps})$$

unde O(eps) este "de ordinul eps" (vezi slide-ul următor)

• Constanta din O(eps) poate fi foarte mare pentru multe probleme, căci datorită erorilor de rotunjire nu utilizăm nici chiar un x corect.

□▶ ◀圖▶ ◀불▶ ◀불▶ = = - 쒸٩♡

Detalii asupra notațiilor asimptotice

- Notația $\varphi(t)=O(\psi(t))$ înseamnă că există o constantă C a.î. pentru t apropiat de o limită (de obicei 0 sau ∞), $|\varphi(t)| \leq C \psi(t)$
- **Exemplu**: $\sin^2 t = O(t^2)$ când $t \to 0$ înseamnă $|\sin^2 t| \le Ct^2$ pentru un anumit C
- ullet Dacă ϕ depinde de variabile adiționale, notația

$$\varphi(s,t) = O(\psi(t))$$
 uniform în s

înseamnă că există o constantă C a.î. $|arphi(s,t)| \leq C \psi(t)$ pentru orice s

- **Exemplu**: $(\sin^2 t)(\sin^2 s) = O(t^2)$ uniform când $t \to 0$, dar nu dacă $\sin^2 s$ este înlocuit cu s^2
- În margini de forma $\|\widetilde{x} x\| \le C\kappa(A) \operatorname{eps} \|x\|$, C nu depinde de de A sau b, dar poate depinde de dimensiunea m

• Un algoritm \widetilde{f} pentru problema f este stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O(\text{eps})$$

• Un algoritm \widetilde{f} pentru problema f este stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O(\text{eps})$$

• "Răspuns aproape corect la problemă aproape exactă"

• Un algoritm \widetilde{f} pentru problema f este stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O(\text{eps})$$

- "Răspuns aproape corect la problemă aproape exactă"
- Un algoritm \widetilde{f} pentru problema f este regresiv stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\widetilde{f}(x) = f(\widetilde{x}).$$

• Un algoritm \widetilde{f} pentru problema f este stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O(\text{eps})$$

- "Răspuns aproape corect la problemă aproape exactă"
- Un algoritm \widetilde{f} pentru problema f este regresiv stabil dacă pentru orice x există un \widetilde{x} cu proprietatea

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = O(\text{eps})$$

a.î.

$$\widetilde{f}(x) = f(\widetilde{x}).$$

Stabilitatea AVF

- Cele două axiome ale AVF implică stabilitatea regresivă a operației ③
 - (1) $\forall x \in \mathbb{R}$, $\exists \epsilon$ cu $|\epsilon| \le \operatorname{eps} \text{ a.i. } \operatorname{fl}(x) = x(1+\epsilon)$
 - (2) Pentru orice NVF x, y, există ϵ cu $|\epsilon| \le \text{eps a.i.}$ $x \odot y = (x \circ y)(1 + \epsilon)$
- **Exemplu**: Scăderea $f(x_1, x_2) = x_1 x_2$ cu algoritmul

$$\widetilde{f}(x_1, x_2) = \mathrm{fl}(x_1) \ominus \mathrm{fl}(x_2)$$

• (1) implică existența $|\epsilon_1|, |\epsilon_2| \le \text{eps a.i.}$

$$fl(x_1) = x_1(1 + \epsilon_1), \qquad fl(x_2) = x_2(1 + \epsilon_2)$$

(continuarea exemplului)

• (2) implică existența $|\epsilon_3| \le \mathrm{eps} \ \mathrm{a.\hat{i}}.$

$$\mathrm{fl}(x_1)\ominus\mathrm{fl}(x_2)=(\mathrm{fl}(x_1)-\mathrm{fl}(x_2))(1+\epsilon_3)$$

• Combinând, rezultă existența $|\epsilon_4|$, $|\epsilon_4| \leq 2 \mathrm{eps} + O(\mathrm{eps}^2)$ a.î.

$$fl(x_1) \ominus fl(x_2) = (x_1(1+\epsilon_1) - x_2(1+\epsilon_2))(1+\epsilon_3)$$

= $x_1(1+\epsilon_1)(1+\epsilon_3) - x_2(1+\epsilon_2)(1+\epsilon_3)$
= $x_1(1+\epsilon_4) - x_2(1+\epsilon_5)$

• Deci, $fl(x_1) - fl(x_2) = \widetilde{x}_1 - \widetilde{x}_2$

• **Exemplu**: Produsul $f(x,y) = x^*y$ calculat cu \otimes și \oplus este regresiv stabil

- **Exemplu**: Produsul $f(x,y) = x^*y$ calculat cu \otimes și \oplus este regresiv stabil
- **Exemplu**: Produsul exterior $f(x, y) = xy^*$ calculat cu \otimes nu este regresiv stabil (înafară de cazul când \widetilde{f} are rangul 1)

- **Exemplu**: Produsul $f(x,y) = x^*y$ calculat cu \otimes și \oplus este regresiv stabil
- **Exemplu**: Produsul exterior $f(x, y) = xy^*$ calculat cu \otimes nu este regresiv stabil (înafară de cazul când \widetilde{f} are rangul 1)
- **Exemplu**: f(x) = x + 1 calculat cu $\widetilde{f}(x) = \mathrm{fl}(x) \oplus 1$ nu este regresiv stabil (considerăm $x \approx 0$)

- **Exemplu**: Produsul $f(x,y) = x^*y$ calculat cu \otimes și \oplus este regresiv stabil
- **Exemplu**: Produsul exterior $f(x, y) = xy^*$ calculat cu \otimes nu este regresiv stabil (înafară de cazul când \widetilde{f} are rangul 1)
- **Exemplu**: f(x) = x + 1 calculat cu $\widetilde{f}(x) = \mathrm{fl}(x) \oplus 1$ nu este regresiv stabil (considerăm $x \approx 0$)
- Exemplu: f(x,y) = x + y calculat cu $\widetilde{f}(x,y) = \mathrm{fl}(x) \oplus \mathrm{fl}(y)$ este regresiv stabil

Teoremă (Precizia unui algoritm regresiv stabil)

Daca se utilizează un algoritm regresiv stabil pentru a rezolva problema f cu numărul de condiționare κ, eroarea relativă satisface

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = O((\operatorname{cond} f)(x)\operatorname{eps})$$

Demonstrație.

Stabilitatea regresivă înseamnă $\widetilde{f}(x) = f(\widetilde{x})$, pentru un anumit \widetilde{x} a. î. $rac{\|\widetilde{x}-x\|}{\|x\|}=O(ext{eps})$. Definiția numărului de condiționare ne dă

$$\frac{\left\|\widetilde{f}(x) - f(x)\right\|}{\|f(x)\|} = \left(\left(\operatorname{cond} f\right)(x) + o(1)\right) \frac{\|\widetilde{x} - x\|}{\|x\|}$$

unde $o(1) \to 0$ la fel ca eps $\to 0$. Combinând aceste două se obține rezultatul dorit.

Bibliografie I

- James Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
- W. Gautschi, *Numerical Analysis. An Introduction*, Birkhäuser, Basel, 1997.
- D. Goldberg, What every computer scientist should know about floating-point arithmetic, Computing Surveys 23 (1991), no. 1, 5–48.
- Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
- M. L. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, Philadelphia, 2001.
- J. Stoer, R. Burlisch, Introduction to Numerical Analysis, 2nd ed., Springer Verlag, 1992.

Bibliografie II

- C. Überhuber, Computer-Numerik, vol. 1, 2, Springer Verlag, Berlin, Heidelberg, New-York, 1995.
- C. Ueberhuber, Numerical Computation. Methods, Software and Analysis, vol. I, II, Springer Verlag, Berlin, Heidelberg, New York, 1997.