Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	(c
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#1}\alpha\beta == 0$	$ \iota_{1}^{\#1}{}^{\alpha\beta} + i k \ \sigma_{1}^{\#1}{}^{\#\alpha\beta} == 0 \ \partial_{\chi} \partial^{\alpha} \iota^{\beta\chi} + \partial_{\chi} \partial^{\beta} \iota^{\chi\alpha} + \partial_{\chi} \partial^{\chi} \iota^{\alpha\beta} +$	3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{lpha\chieta}$	
$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha}$	
$\tau_{2}^{\#1}\alpha\beta==0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} +$	
	$3\partial_{\delta}\partial_{\lambda}\partial_{\lambda}\partial^{\beta}\tau^{\alpha\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$	
$\sigma_{2}^{\#1}\alpha\beta==0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{X\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{X\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	uge generators:	24

Ouadratic (free) action $S = \iiint \{\frac{1}{6} (-4t_3 \ \omega_{\alpha}^{\kappa} \ \omega_{r}^{\kappa} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + 8t_3 \ \omega_{\alpha}^{\kappa} \ \partial_{r} f^{\alpha} - 8t_3 \ \omega_{r}^{\kappa} \ \partial_{r} f^{\alpha} + 4t_3 \ \partial_{r} f^{\kappa} \ \partial_{r} f^{\alpha} - 12 \Gamma_{1} \partial_{\beta} \omega_{\beta}^{\beta} \partial_{r} \partial_{\alpha} + 12 \Gamma_{1} \partial_{\alpha} \omega^{\alpha\beta} \partial_{\theta} \omega_{\beta}^{\beta} - 12 \Gamma_{1} \partial_{\beta} \omega_{\beta}^{\beta} \partial_{r} \partial_{\beta} \partial_{\alpha}^{\beta} \partial_{r} + 12 \Gamma_{1} \partial_{\alpha} \omega^{\alpha\beta} \partial_{\theta} \omega_{\beta}^{\beta} \partial_{r} - 12 \Gamma_{1} \partial_{\alpha} \omega^{\alpha\beta} \partial_{\theta} \partial_{\beta}^{\beta} \partial_{r} - 12 \Gamma_{1} \partial_{\alpha} \omega^{\alpha\beta} \partial_{\beta} \partial_{\alpha}^{\beta} \partial_{r} - 12 \Gamma_{1} \partial_{\alpha} \omega^{\alpha\beta} \partial_{\beta} \partial_{\alpha}^{\beta} \partial_{r} - 12 \Gamma_{2} \partial_{\alpha} \partial_{\beta} \partial_{\alpha}^{\beta} \partial_{r} - 12 \Gamma_{2} \partial_{\beta} \partial_{\alpha} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\beta}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_{\beta}^{\beta} \partial_{\alpha}^{\beta} \partial_{\beta}^{\beta} \partial_$
--

 $\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_1t_3}$

 $-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$

0

0

0

0 0

0

0

0

0

0

 $\sigma_1^{\#^2} +^{\alpha}$

 $\sigma_{1^{\bar{-}}}^{\#_1} +^{\alpha}$

0

0

0

0

0

0

 $\frac{1}{3}\,\bar{l}\,\sqrt{2}\,\,kt_3$

0

0

0

 $\frac{\sqrt{2}t_3}{3}$ $\frac{2ikt_3}{3}$

 $\frac{2k^2t_3}{3}$

0

 $-\frac{1}{3}\,\bar{l}\,\sqrt{2}\,kt_3$

0

0

 $\omega_1^{\#2} + \alpha$ $f_1^{\#1} + \alpha$

 $\omega_{2^{-}}^{\#1}$ $_{lphaeta}$

 $f_2^{\#1}$

 $\omega_{2}^{\#1}{}_{\alpha\beta}$

 $f_{0}^{#1}$ †

 $au_{0}^{\#1}$ †

0

 $0 k^2 r_2 + t_2$

 $\frac{1}{k^2 r_2 + t_2}$

 $-i\sqrt{2} kt_3$ 0

 $\tau_{0}^{\#1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

0

 $2k^2t_3$

 $i \sqrt{2} kt_3$

 $\frac{1}{(1+2\,k^2)^2\,t_3}$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $-\frac{2}{3}ikt_3$

0

 $\begin{array}{c|c}
0 & \frac{\sqrt{2}t_3}{3} \\
0 & 0
\end{array}$

0

0

0

 $f_1^{\#_1} + ^{\alpha \beta}$

 $\omega_{1^{\bar{-}}}^{\#_1} +^\alpha$

0

0

0

0

0

0 0

 $\omega_{1^{^{-}}\alpha}^{\#2}$

 $\omega_{1^{^{-}}\alpha}^{\#1}$

 $\omega_1^{\#_+^2} _{\alpha\beta}$

 $\omega_1^{\#1}{}_+ \alpha eta$

Massive	and	massless	spectra

Massive particle	(No
Pole residue: $-\frac{1}{r_2} > 0$	massle
Polarisations: 1	S _E
Square mass: $-\frac{t_2}{r_2} > 0$	ss pa
Spin: 0	particle
Parity: Odd	les)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$