B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, NOVEMBER 2023

Second Semester

21MAB102T - ADVANCED CALCULUS AND COMPLEX ANALYSIS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours

Max. Marks: 75

1

1

2

1

1

2

1

PART - A $(20 \times 1 = 20 \text{ Marks})$

Answer all Questions

Marks BL CO

1

1

Evaluation of $\int_0^1 \int_0^1 dx dy$ is

(A) 1

(B) 0

(C)2

(D) 4

2. Area of the double integral in Cartesian co-ordinate is equal to

 $(A) \iint_{R} dy dx$

(B) $\iint_{\mathbb{R}} r dr d\theta$

 $(C) \iint_{R} x dx dy$

(D) $\iint\limits_R x^2 dx dy$

3. Change the order of integration in $\int_{0}^{ax} dxdy$ is

 $\int_{0}^{ax} \int_{0}^{ax} dx dy$

 $\int_{0}^{(B)} \int_{0}^{ax} x dy dx$

 $\int_{0}^{a} \int_{y}^{a} dx dy$

 $\int_{0}^{(D)} \int_{0}^{a.y} dx dy$

 $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz$ is equal to

(A) 3

(B) 4

(C)2

(D) 6

- The unit vector normal to the surface $x^2 + y^2 z^2 = 1$ at (1,1,1,) is
 - $\begin{array}{c}
 \stackrel{\text{(A)}}{\longrightarrow} \longrightarrow \longrightarrow \\
 i+j-k \\
 \hline
 \sqrt{3}
 \end{array}$

(B) $\xrightarrow{2 \ i + 2 \ j - 2 \ k} \xrightarrow{\sqrt{2}}$

- (C) $\xrightarrow{3 \ i+3 \ j-3 \ k}$ $\xrightarrow{2\sqrt{3}}$
- $\begin{array}{c}
 \text{(D)} & \to \to \to \\
 & i+j-k \\
 \hline
 & 3\sqrt{2}
 \end{array}$
- 6. \rightarrow If r is the position vector of the point (x, y, z) w.r.to the origin, then $\nabla \cdot r$ is
- 1 2 2

1

2

2

(A) 1

(B) 2

(C) 3

- (D) 4
- 7. The connection between a surface integral and a volume integral is known as
- 2 2

(A) Green's theorem

(B) Gauss Divergence theorem

(C) Cauchy's theorem

- (D) Stoke's theorem
- 8. If $\phi = xyz$, then $\nabla \phi$ is

1 1 2

- $(A) \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow X$ $yz \ i + zx \ j + xy \ k$
- $(B) \longrightarrow Xy \quad i + yz \quad j$
- $\begin{array}{c} \xrightarrow{\text{(C)}} \rightarrow & \rightarrow & \rightarrow \\ xy \ i + yz \ j + zx \ k \end{array}$
- $\begin{array}{ccc} \stackrel{\text{(D)}}{\longrightarrow} & \longrightarrow & \longrightarrow \\ zx & i + xy & j + yz & k \end{array}$

9. $L(t^4)=$

1 2 3

 $(A) \frac{4!}{s^5}$

 $\frac{3!}{s^4}$

(C) $\frac{4!}{s^4}$

(D) $\frac{5!}{s^4}$

10. $L(\cosh t) =$

1 1 3

 $\frac{s}{s^2+1}$

 $\frac{s}{s^2-1}$

 $\frac{1}{s^2+1}$

- (D) $\frac{1}{s^2-1}$
- 11. Using the initial value theorem, find the value of the function $f(t) = 1 + e^{-t} + t^2$
- 1 % 1 3

(A) 0

(B) 1

(C) 2

(D) 3

12	2. The period of tan t is		1	1	3
1	(A) 0	(B) π			
	(C) π	(D) π			
	$\overline{2}$	$\frac{\overline{4}}{4}$			
13					
1.5	The function $f(z) = u + iv$ is a	analytic if	1	2	4
	$u_x = v_y, u_y = -v_x$	(B) $u_x = -v_y, u_y = v_x$			
	(C) $u_x + v_y = 0, u_y - v_x = 0$	$(D) u_y = v_y, u_x = v_x$			
14	 the transformation w = cz where c is real c (A) rotation (C) magnification 	constant known as (B) reflection (D) translation	1	1	4
15	The real part of $f(z) = e^{2z}$ is		I	1	4
	$e^x \cos y$	$^{(B)}e^{x}\sin y$			
	$(C) e^{2x} \cos 2y$	$e^{2x}\sin 2y$			
16.	ž +	#	1	1	4
	The invariant points of the transform	ation $w = -\left(\frac{2z+4i}{iz+1}\right)$ are			
	$^{(A)} z = 4i, -i$	$^{(B)}z=2i,i$			
	(C) $z = -4i, i$	(D) $z = -2i, i$			
17.	If $f(z)$ is analytic inside and on c , the value curve, is	of $\int_C f(z) dz$, where c is the simple closed	1	1	5
	(A) 0	(B) f(a)			
	(C) $2\pi i f(a)$	(D) πif(a)			
18.	If f(z) is analytic inside and on c, the value of curve and a is any point within c, is	of $\int_{\mathcal{C}} \frac{f(z)}{(z-z)^2} dz$, where c is the simple closed	1	1	5
	(A) f(a)	(B) 2πif(a)			
	(C) $\pi i f(a)$	(D) 2πif'(a)			
19.	Let $C_1: z-\alpha = R_1$ and $C_2: z-\alpha = R_2$ be can be expanded as a Laurent's series if	two concentric circles $(R_2 < R_1)$, the $f(z)$	1	1	5
	(A) $f(z)$ is analytic within C_{x}	(B) $f(z)$ is not analytic within C_{x}			
	(C) f(z) is analytic in the annular region	(D) f(z) is not analytic in the annular region			
20.	The residue of $f(z) = \frac{z}{(z-2)}$ is		1	1	5
	(A) 1 (C) 3	(B) 2 (D) 4			

Page 3 of 4

	PART - B (4 × 10 = 40 Marks) Answer any 4 Questions		Marks BL	
21.	Change to polar coordinates and hence evaluate $\int_{0}^{a} \int_{0}^{a} \frac{x^2 dx dy}{\sqrt{x^2 + y^2}}$	10	3	1
	$0 \times \sqrt{x} + y$			
22.	Using Green's theorem, evaluate $\int_{C} (x^2 - y^2) dx + 2xy dy$ Where C	10	3	2
	is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$.			
23.	Solve the equation by Laplace transform $y'' + 9y = 6\cos 3t$. $y(0) = 2$, $y'(0) = 0$.	10	3	3
24.	Find the analytic function $f(z) = u + iv$ if $u - v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$	10	4	4
	$u - v - \frac{1}{\cosh 2y - \cos 2x}$			
25.	Find the Laurent's series of $f(z) = \frac{z}{(z^2+1)(z^2+4)}$ in the region	10	3	5
	1 < z < 2.			
26.	Evaluate $\int_0^{2\pi} \frac{d\theta}{13 + 5\sin\theta}$	10	3	5
	PART - C (1 × 15 = 15 Marks) Answer any 1 Questions	Mar	ks BL	CO
27.	Find the area lying inside the circle $r = \underline{asin}\theta$ and outside the cardioid $r = \underline{a}(1 - \underline{\cos}\theta)$.	15	4	1
28.	Prove that $div(r^n r) = (n+3)r^n$. Deduce that $r^n r$ is solenoidal if and only if $n=-3$	15	4	2

* * * * *