

Test report no.: 118553 -4

Item tested: Epoke Radio Module - RX001

Type of equipment: 2.4 GHz Transceiver

FCC ID: WXURX001

Client: Epoke AS

FCC Part 15.247

Digital Transmission System

RSS-210, Issue 7

Low Power Licence-Exempt Radiocommunication Devices

30 March 2009

Frace

Authorized by:

Frode Sveinsen Technical Verificator

CONTENTS

1	GENERAL INFORMATION	3
1.1	Testhouse Info	
1.2	Client Information	
1.3	Manufacturer (if other than client)	
2	Test Information	
2.1	Test Item	
2.2	Test Environment	
2.2.1	Normal test condition	
2.3	Test Period	5
3	TEST REPORT SUMMARY	6
3.1	General	
3.2	Test Summary	
3.3	Description of modification for Modification Filing	
3.4	Comments	
3.5	Family List Rational	/
4	TEST RESULTS	8
4.1	Power Line Conducted Emissions	
4.2	Minimum 6 dB Bandwidth	
4.3	Peak Power Output	
4.4 4.5	Spurious Emissions (Radiated)	
4.5	•	
5	GRAPHS	. 18
6	LIST OF TEST EQUIPMENT	44
7	BLOCK DIAGRAM	45
7.1	System set up	
7.2	Power Line Conducted Emission	
73	Test Site Radiated Emission	46

1 GENERAL INFORMATION

1.1 Testhouse Info

Name: Nemko AS

Address: Nemko Comlab

Gåsevikveien 8, Box 96 N-2027 Kjeller, NORWAY

Telephone: +47 64 84 57 00
Fax: +47 64 84 57 05
E-mail: post@comlab.no

FCC test firm

registration #: 994405

IC OATS

registration #: 2040D-1

Total Number of Pages: 46

1.2 Client Information

Name: Epoke A/S

Address: P.O.Box 230, DK-6600 Vejen, Denmark

Telephone: +45 76962205

Fax:

Contact:

Name: Jan Hedegaard
Telephone: +4576962205
E-mail: jhe@epoke.dk

1.3 Manufacturer (if other than client)

"

2 Test Information

2.1 Test Item

Name :	Epoke Radio Module
FCC ID :	WXURX001
Industry Canada ID :	8072A-RX001
Model/version :	RX001
Serial number :	-
Hardware identity and/or version:	439018 rev. 0.06
Software identity and/or version :	TX:EMITEST006, RX: RECTEST002/PA
Frequency Range :	2405 – 2480 MHz
Tunable Bands :	None
Channel Spacing :	5 MHz
Transmitter data rate:	250 kbit/s
Number of Channels :	16
Operating Modes :	TX & RX
Type of Modulation :	DSSS
User Frequency Adjustment :	None
Rated Output Power :	15.7 mW
Type of Power Supply :	3.0 - 3.5 V DC
Antenna Connector *:	Module with integral antenna(F-type, 0dBi) and module with antenna connector type MCx for antenna RPSMA(1 dBi) & UFL (3dBi)
Antenna Diversity Supported :	N/A
Desktop Charger :	N/A

^{*} The device delivered for testing with integral antenna and antenna connector type MCx. The MCx can be connected to a RPSMA connector and then to Rubber antenna- 3dBi (Part no.2,4 RO-3-100) or to Omni antenna – 1dBi (Part no. 2,4-SO-0)

Description of Test Item

The tested equipment is a transceiver module compliant with IEEE® 802.15.4. This module operates in the 2.4 GHz ISM frequency band.

2.2 Test Environment

2.2.1 Normal test condition

Temperature: 20 - 24 °C Relative humidity: 20 - 50 % Normal test voltage: 3.3 V DC

The values are the limit registered during the test period.

2.3 Test Period

Item received date: 2009-01-06

Test period: from 2009-01-07 to 2009-01-28

3 TEST REPORT SUMMARY

3.1 General		
Manufacturer:	Epoke AS	
Model No.:	RX001	
Serial No.:	-	
All measurements are tra	acable to national	standards.
The tests were conducte paragraph 15.247 and Ir		of demonstrating compliance with FCC CFR 47 Part 15, SS-210 Issue 7.
Radiated tests were con a semi-anechoic chambe		nce with ANSI C63.4-2003. The radiated tests were made in stances of 3m and 10m.
New Submission ■ New Submission New Submission ■ New Submission N		⊠ Production Unit
Class II Permissive C	hange	☐ Pre-production Unit
DTS Equipment Code		☐ Family Listing

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

TEST REPORT #: 118553-4

TESTED BY: DATE: 30.03.2009

G.Suhanthakumar, Test engineer

Nemko Group authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

3.2 Test Summary

Name of test	FCC Part 15 reference	RSS210 Issue 7 & RSS Gen Issue 2	Result
Supply voltage variations	15.31 (e)	8 (RSS-GEN)	Complies ²
Number of operating frequencies	15.31 (m)	A8.1	Complies
Power-line Conducted Emissions (Receiver)	15.107(a)	7.2.2 (RSS-GEN)	ref. 15.207(a)
Radiated Emissions limits (receiver)	15.109(a)	6 (RSS-GEN)	ref. 15.209(a)
Antenna requirement	15.203	7.1.4 (RSS-GEN)	Complies ¹
Radiated emissions limits for restricted bands	15.205(a)		Complies
Power Line Conducted Emissions	15.207(a)	7.2.2 (RSS-GEN)	Complies
Radiated emission limits	15.209(a)	A8.5	Complies
Bandwidth	15.247(a)(2)	A8.2	Complies
Peak Power Output	15.247(b)(3)	A8.4	Complies
Power Spectral Density	15.247(d)	A8.2	Complies
Out-of-band emissions (Antenna Conducted)	15.247(c)	A8.5	Complies ¹
Out-of-band emissions (Radiated)	15.247(c)	A8.5	Complies
Lower band edge radiated emission	15.247(c)	A8.5	N/A ³
Upper band edge radiated emission	15.247(c)	A8.5	Complies

¹ Integral antenna module and module with MCX connector.

3.3 Description of modification for Modification Filing

Not applicable.

3.4 Comments

The channels are selected with a laptop PC connected to the EUT via RS232 port. The laptop is only used for selection of channels. During the measurements the lap top is removed. The measurements are performed at channels near top Ch 15, near middle Ch 07 and near bottom Ch 00. And the out put level is set to maximum (P16), P11 & P08 in the software. The EUT complies at these channels.

The radiated measurements are tested on three axis

There are no ports to be populated during spurious emission measurements.

A temporary antenna connector is used only for making conducted RF measurements for evaluation purposes.

Nominal voltage is 3.3 VDC .Power supply variation within 2.805 to 3.795Vdc has no influence on Peak Output Power and spurious emissions.

3.5 Family List Rational

Not Applicable.

 $^{^{2}}$ The manufacturer specified voltage range is 2.805 – 3.795 V DC

³The Ch0 is well away from 2.39GHz.

4 TEST RESULTS

4.1 Power Line Conducted Emissions

Para. No.: 15.207 (a)

Test Performed By: - Date of Test: -

Measurement procedure: ANSI C63.4-2003 using 50 μ H/50 ohms LISN.

Test Results: N/A*

*: This radio module is installed in mobile winter road maintenance equipment. Primary power is supplied by vehicle battery power.

Measurement Data: -

4.2 Minimum 6 dB Bandwidth

Para. No.: 15.247 (a)(2)

Test Performed By: G.Suhanthakumar Date of Test: 07.01.2009

Test Results: Complies

Measurement Data:

Measured 6 dB Bandwidth (MHz)						
Ch 0/2405MHz Ch 07/2440MHz Ch 15/2480Mhz						
1.71	1.60	1.63				

Requirements:

For Digital Transmission Systems in the 2400-2483.5 MHz band the minimum 6 dB bandwidth shall be at least 500 KHz.

No requirements for Frequency Hopping Systems.

4.3 Peak Power Output

Para. No.: 15.247 (b)

Test Performed By: G.Suhanthakumar Date of Test: 07.01.2009

Test Results: Complies Measurement Data:

Maximum Conducted Peak Output Power, mWatts

RF channel	Ch0/2405MHz	Ch7/2440MHz	Ch15/2480MHz
Measured value,P16	15.70	14.85	13.74
Measured value,P11	5.00	5.04	5.04
Measured value,P08	3.49	3.57	3.57

Maximum field strength with rubber antenna

RF channel	Ch0/2405MHz	Ch 07/2440MHz	Ch 15/2480MHz	
Measured value (dBμV/m)	107.32	107.80	108.26	

Maximum EIRP, mWatts

RF channel	Ch0/2405MHz	Ch7/2440MHz	Ch15/2480MHz
Measured EIRP with integral antenna, P16	10.21	9.68	8.05
Measured EIRP with antenna 1dBi, P11	11.67	13.03	15.10
Measured EIRP with antenna 3dBi, P08	11.67	15.88	14.39
Integral Antenna gain dBi	-1.87	-1.86	-2.32
Omni Antenna gain dBi	3.68	4.13	4.76
Rubber Antenna gain dBi	5.24	6.48	6.05

Antenna gain = 10*log(EIRP/Conducted power) dBi

The EIRP is measured using substitution method.

Nominal voltage is 3.3 VDC .Power supply variation within 2.805 to 3.795Vdc has no influence on Peak Output Power and spurious emissions.

TEST REPORT FCC part 15D Project no.: 118553-4 FCC ID: WXURX001

See attached graphs.		
Detachable antenna?	Yes	☐ No
If detachable, is the antenna connector non-standard?	Yes	No

If detachable, is the antenna connector non-standard? Type of antenna connector: MCX to RPSMA

Requirements:

The maximum peak output power shall not exceed the following limits:

For frequency hopping systems employing at least 75 hopping channels: 1 Watt

For all other frequency hopping systems in the 2400 - 2483.5 MHz band: 0.125 Watts

For Digital Transmission Systems in the 2400 - 2483.5 MHz band: 1 Watt

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.4 Spurious Emissions (Radiated)

Para. No.: 15.247 (c)

Test Performed By: G.Suhanthakumar Date of Test: 07.01.09

Test Results: Complies

Measurement Data:

Band-edge conducted power.

Frequency	Power below nearest channel, dB	Limit	Margin
GHz	RF ch 0/15 DSSS	dB	dB
2.39	-	-20	-
2.4835	40.08	-20	20.08

See attached graph

Nominal voltage is 3.3 VDC .Power supply variation within 2.805 to 3.795Vdc has no influence on Peak Output Power and spurious emissions.

Upper Band-edge field strength 2.4835 GHz.

Max field strength upper channel, 1 MHz BW: 108.19 dBμV/m

Delta marker 100 kHz BW: 40.08 dB

Field strength at 2,4835 GHz Peak: 68.11 dBμV/m

Margin:74 $dB\mu V/m - 68.11 dB\mu V/m = 5.89 dB$.

Field strength at 2,4835 GHz Average 68.11 dB μ V/m - 20 dB =48.11 dB μ V/m.

See attatched plots.

RF conducted power to 25 GHz see attached graph.

Maximum RF level outside operating band:

RF ch 00: 32.94 dB/C, margin 12.94 dB

RF ch 07: 33.80 dB/C, margin 13.80 dB

RF ch 15: 34.80 dB/C, margin 14.80 dB

Duty Cycle Calculation:

RF duty cycle: Calculation according to RF burst Para 15.35 (c)

 $-20*\log (4.1/50) = 21.7 dB*$

Maximum duty cycle according to Para 15.35 (b): 20 dB

This value is used when calculating average field strength above 1 GHz from measurement performed with Peak Detector.

Epoke Radio module RX001 Dwell –time and duty cycle

Rev 0.3

To Command duration: (4.1ms (1.3ms aug)

Ta Acknowledge duration: 0.7ms
Duty cycle: <9.6% (4.0% avg)

Fig 1. RX001 dwell-time chronogram (worst case)

The worst case accumulated dwell-time in a 100ms window is 2*(4.1+0.7)=9.6ms

The worst case duty cycle is 2*(4.1+0.7)/100=9.6%

Rev 0.1/JB090114 First issue

Rev 0.2/JB090325 Further text added. Chronogram for target rate added.

Rev 0.2/JB090325 Revised to consider worst case dwell time for single module.

Revised to reflect actual message rate (avg. 17 messages/second)

^{*} Please see the manufacturer explaination for duty cycle below.

Radiated Emissions, 1-25 GHz, peak

1-18 GHz measured at a distance of 3m, 18-25 GHz measured at 1m.

The spurious emissions are scaned with all three antannas (integral, 1 dBi antenna & 3dBi antenna).

The maximum spurious emission is obtained with 3 dBi rubber antenna with power setting 8.

The test results shown in the table below is for this antanna.

Radiated Emission 1 - 25 GHz, Peak

Measured with Peak Detector

Frequenc y	RF channel	Dist. corr. factor	Polariza tion	Power settin g	Antenn a	Field strength, Peak, 3m	Duty cycle corr. factor	Limit	Margin
GHz	0 - 15	dB			dBi	dBμV/m	dB	dBμV/ m	dB
4.809	0	0	HP	8	3	69.66	-	74	4.34
4.959	7	0	HP	8	3	68.00	-	74	6.00
4.958	15	0	VP	8	3	69.90	-	74	4.10
7.213	0	0	HP	8	3	65.79	-	74	8.21
7.321	7	0	HP	8	3	67.24	-	74	6.76
7.438	15	0	HP	8	3	67.28	-	74	6.72
9.622	0	0	VP	8	3	65.02	-	74	8.98
9.757	7	0	HP	8	3	67.82	-	74	6.18
9.918	15	0	HP	8	3	69.74	-	74	4.26
12.022	0	0	HP	8	3	67.33	-	74	6.67
12.197	7	0	HP	8	3	69.23	-	74	4.77
12.397	15	0	HP	8	3	69.11	-	74	4.89
14.433	0	0	HP	8	3	57.07	-	74	16.93
14.643	7	0	HP	8	3	57.38	-	74	16.62
14.877	15	0	HP	8	3	60.11	-	74	13.89
15 - 25	0,7,15	-	VP/HP	8	3	None detected	-	-	-

Antenna factor, amplifier gain and cable loss are included in spectrum analyzer "Transducer factor".

Nominal voltage is 3.3 VDC .Power supply variation within 2.805 to 3.795Vdc has no influence on Peak Output Power and spurious emissions.

See attached graphs.

Radiated emission 1-25 GHz, Average

The spurious emissions are scaned with all three antannas (integral, 1 dBi antenna & 3dBi antenna). The maximum spurious emission is obtained with 3 dBi rubber antenna with power setting 8. The test results shown in the table below is for this antanna.

Calculated value from Peak Detector

Frequenc y	RF channel	Dist. corr. factor	Pola rizati on	Power settin g	Anten na	Field strength, Peak, 3m	Duty cycle corr. factor	Limit	Margin
GHz	0 - 15	dB			dBi	dBμV/m	dB	dBμV/m	dB
4.809	0	0	HP	8	3	69.66	20	54	4.34
4.959	7	0	HP	8	3	68.00	20	54	6.00
4.958	15	0	VP	8	3	69.90	20	54	4.10
7.213	0	0	HP	8	3	65.79	20	54	8.21
7.321	7	0	HP	8	3	67.24	20	54	6.76
7.438	15	0	HP	8	3	67.28	20	54	6.72
9.622	0	0	VP	8	3	65.02	20	54	8.98
9.757	7	0	HP	8	3	67.82	20	54	6.18
9.918	15	0	HP	8	3	69.74	20	54	4.26
12.022	0	0	HP	8	3	67.33	20	54	6.67
12.197	7	0	HP	8	3	69.23	20	54	4.77
12.397	15	0	HP	8	3	69.11	20	54	4.89
14.433	0	0	HP	8	3	57.07	20	54	16.93
14.643	7	0	HP	8	3	57.38	20	54	16.62
14.877	15	0	HP	8	3	60.11	20	54	13.89
15 - 25	0,7,15	-	VP/	8	3	None detected	-	-	-

Antenna factor, amplifier gain and cable loss are included in spectrum analyzer "Transducer factor".

See attached graphs.

Radiated emission 30 - 1000 MHz.

Detector: Quasi- Peak*
Measuring distance 3 m

Tested TX mode.

Frequenc y	Operationa I condition	Power setting	Antenna	Field strength	Measuring distance	Limit FCC15.209	Margin
MHz			dBi	dBμV/m	metres	dBμV/m	dB
106.65	TX on	8	3	<35.9*	3	43	>4.1
967.2	TX on	8	3	<34.1	3	54	>19.9
994.65	TX on	8	3	<34.5	3	54	>19.5

See attached graphs.

Radiated emission 10 kHz-30 MHz.

Measuring distance 10 m, measured with Peak detector.

Limit is converted to 10 m using 40 dB/decade according to 15.31 (f) (2).

No component detected, see attached graph

4.5 Power Spectral Density (PSD)

Para. No.: 15.247 (d)

Test Performed By: G.Suhanthakumar Date of Test: 09.01.09

Test Results: Comlies

Measured and Calculated Data:

Measured Conducted Values:

Ch0 - Lower Channel: Power setting P16 (maximum)

PSD = 35 - 37.73 dBm/Hz = -2.73 dBm

Ch7 - Middle Channel: Power setting P16 (maximum)

PSD = 35 - 37.97dBm/Hz = -2.97 dBm

Ch 15 - Upper Channel: Power setting P16 (maximum)

PSD = 35 - 37.87 dBm/Hz = -2.87 dBm

The spectrum line spacing is less than 3kHz, therefore used noise power density and corrected 35 dB for 3kHz

Nominal voltage is 3.3 VDC .Power supply variation within 2.805 to 3.795Vdc has no influence on Peak Output Power and spurious emissions.

Requirements:

The Power Spectral Density of a Digital Transmission System shall be no greater than +8 dBm in any 3kHz band

No requirements for Frequency Hopping Systems.

5 GRAPHS

Ch0/2405MHz - 6dB Band width

Ch7/2440MHz - 6dB Band width

Ch15/2480MHz - 6dB Band width

Power setting 16, Ch0/2405MHz - peak power at 50 ohm connector

Power setting 16, Ch7/2440MHz – peak power at 50 ohm connector

Power setting 16 , Ch15/2480MHz – peak power at 50 ohm connector

Power setting 11, Ch0/2405MHz – peak power at 50 ohm connector

Power setting 11, Ch07/2440MHz – peak power at 50 ohm connector

Power setting 11, Ch15/2480MHz – peak power at 50 ohm connector

Power setting 08, Ch0/2405MHz - peak power at 50 ohm connector

Power setting 08, Ch7/2440MHz – peak power at 50 ohm connector

Power setting 08, Ch15/2480MHz – peak power at 50 ohm connector

Date: 12.FEB.1980 22:54:40

Ch0/2405MHz, Field strength - VP

Ch07/2440MHz, Field strength - VP

Ch15/2480MHz, Field strength - VP

Date: 12.FEB.1980 23:49:16

Field strength for upper band edge

Upper band edge - Delta marker

Ch0, Spurious emission at 50 ohm connector

Ch7, Spurious emission at 50 ohm connector

Ch15, Spurious emission at 50 ohm connector

HP, Ch0 – 2nd harmonic

HP, Ch7 – 2nd harmonic

VP, Ch15 – 2nd harmonic

HP, Ch0 – 3rd harmonic

HP, Ch7 – 3rd harmonic

HP, Ch15 – 3rd harmonic

VP, Ch0 – 4th harmonic

HP, Ch7 – 4th harmonic

HP, Ch15 – 4th harmonic

HP, Ch0 – 5th harmonic

HP, Ch7 – 5th harmonic

HP, Ch7 – 5th harmonic

HP, Ch15 – 5th harmonic

HP, Ch0 – 6th harmonic

HP, Ch7 – 6th harmonic

HP, Ch15 – 6th harmonic

NEMKO AS 07. Jan 09 14:00

Peak

Operator: gns
Comment: HP 4m
3m distance

Transducer No. Start Stop Name 20 30M 200M HK116

HP, 30 - 200MHz

NEMKO AS 07. Jan 09 13:50

Peak

Operator: gns
Comment: VP 3m
3m distance

Transducer No. Start Stop Name 20 30M 200M HK116

VP, 30 - 200MHz

NEMKO AS 07. Jan 09 14:44

Peak

Operator: gns
Comment: HP 4m
3m distance

HP, 200 - 1000MHz

NEMKO AS 07. Jan 09 14:29

Peak

Operator: gns
Comment: VP 1m
3m distance

VP, 200 - 1000mHz

NEMKO AS 07. Jan 09 16:05

Peak

Operator: gns Epoke

Scan Settings (4 Ranges)

Frequencies Receiver Settings						
Start	Stop	Step	IF BW	/ Dete	ctor M-Time Atten Preamp OpRge	
10k	100k	1k	1k	PK	20ms 0dBLN OFF 60dB	
20k	20k	5k	9k	PK	20ms AUTO LN ON 60dB	
20k	10M	5k	9k	PK	20ms AUTO LN OFF 60dB	
10M	30M	5k	9k	PK	20ms AUTO LN OFF 60dB	

Transducer No. Start Stop Name 13 10k 30M HFH2Z2

10kHz - 30MHz

Ch0, Power Spectral density – at 50ohm connector, Test equipment: R&S FSEK ,LR1337 (Power setting :P16(maximum)

Ch7, Power Spectral density – at 50ohm connector, Test equipment: R&S FSEK ,LR1337 (Power setting :P16(maximum)

Ch15, Power Spectral density – at 50ohm connector – Test equipment: R&S FSEK ,LR1337 (Power setting :P16(maximum)

6 LIST OF TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Test Laboratory.

No.	Instrument/ancillary	Type of instrument/ancillary	Manufacturer	Ref. no.
1	FSEK	Spectrum Analyzer	Rohde & Schwarz	LR 1337
2	ESAI	Spectrum Analyzer	Rohde & Schwarz	LR 1090
3	3115	Antenna horn	EMCO	LR 1330
4	643	Antenna horn	Narda	LR 093
5	642	Antenna horn	Narda	LR 220
6	PM7320X	Antenna horn	Siverts lab	LR 103
7	DBF-520-20	Antenna horn	Systron Donner	LR 101
8	638	Antenna horn	Narda	LR 098
9	5VF1000/2000	BP filter	Trilithic	LR 1174
10	5VF2000/4000	BP filter	Texscan	LR 42
11	ESH3-Z3	LISN	Rohde & Schwarz	LR 1076
12	8449B	Amplifier	Hewlett Packard	LR 1322
13	959C	Printer	Hewlett Packard	LR 1414
14	HFH2-Z2	Antenna loop	Rohde and Schwarz	LR 285
15	10855A	Amplifier	Hewlett Packard	LR 1445
16	HL223	Antenna log.per	Rohde & Schwarz	LR 1261
17	HK116	Antenna biconic	Rohde & Schwarz	LR 1260
18	ESVS 30	Test Receiver	Rohde & Schwarz	LR 1101
19	8300D	DC power supply	Oltrinix	LR017

7 BLOCK DIAGRAM

7.1 System set up

7.2 Power Line Conducted Emission

7.3 Test Site Radiated Emission

