.1

- א. האם הקבוצות [0,1] ו- $(\frac{1}{2},1]$ ו- $(\frac{1}{2},1]$ איזומורפיות כאשר שתיהן סדורות כרגיל?
 - ב. מצא שרשרת מקסימלית ב- $(P(Z \times Z), \subseteq)$ שהיא בת מניה.
- X ג. תהי (X,\leq) קבוצה סדורה היטב. הוכח כי לכל תת-קבוצה של sup. החסומה מלעיל יש
- ד. הוכח או הפרך: אם A קבוצה סדורה היטב שבה אין סדרה אינסופית ד. הוכח אז יש בA איבר מקסימלי.
- . יהי f:R o R איזומורפיזם של יחס הסדר הרגיל. הוכח: f:R o R יהי
- $X=N^N$ קבוצת כל הפונקציות מהטבעיים לטבעיים. $X=N^N$ נגדיר על X יחס X יחס באופן הבא: f(n) < g(n) אם ורק אם קיים מספר טבעי $X \in X$ לכל לכל $X \in X$ אם ורק אם קיים מספר טבעי $X \in X$ הולכל לכל $X \in X$ אם ורק אם קיים מספר טבעי $X \in X$ הולכל $X \in X$ אם ורק אם קיים מספר טבעי $X \in X$ הולכל $X \in X$ הולכל בית מס' $X \in X$ הולכל מה יחס סדר מלא.)
- 4. תהי (X, \leq) קבוצה סדורה חלקית. קבוצה חלקית Y של X נקראת קופינלית או עם לכל $X \in X$ יש $X \in Y$ כך ש $X \in Y$ סדורה לינארית או יש ב- X קבוצה חלקית סדורה היטב וקופינלית, לפי הסדר $X \in X$ קבוצה רמז לתרגיל זה בספר של שמרון.)
 - ? $1+\omega+1=1+\omega+1+\omega+1$ האם .5