

William Won

Ph.D. Student, School of Computer Science Georgia Institute of Technology william.won@gatech.edu

Acknowledgments: Srinivas Sridharan (Facebook), Sudarshan Srinivasan (Intel)

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded

Objective

- Installing ASTRA-sim
 - Download
 - Compilation
- Writing Input Files
 - Network
 - System
 - Workload
- Running ASTRA-sim
 - Running ASTRA-sim
 - Understanding Results

Downloading ASTRA-sim

```
Prerequisite: Check installation dependencies
https://astra-sim.github.io/tutorials/mlsys-2022/installation
(1) Clone ASTRA-sim tutorials GitHub repository
$ git clone https://github.com/astra-sim/tutorials.git
$ cd tutorials/mlsys2022/
(2) Run setup script
$ ./clone astra sim.sh
```

- cf., Offers Docker Image
 - \$ docker pull astrasim/mlsys2022-tutorial
 - \$ docker run -it strasim/mlsys2022-tutorial

Compiling ASTRA-sim

- (1) Go to **Exercise 1** directory
- \$ cd exercise_1/

- (2) Compile ASTRA-sim
 - \$./build.sh

Exercise: Ring All-Reduce

Objective:

- (1) We will configure an 8-NPU Ring
- (2) And run 1 MB All-Reduce on it

Configurations: Network

- Ring topology with 8 NPUs
- 500 ns (latency), 50 GB/s (bandwidth)
- 2 links per NPU

Configurations: Network

inputs/ring.json

Configurations: System

inputs/ring.txt

```
LIFO chunk scheduling policy
scheduling-policy: LIFO
                                                        10ns delay per NPU
endpoint-delay: 10 ◀
                                                        1 active chunks
active-chunks-per-dimension: 1
                                                        4 chunks per collective
preferred-dataset-splits: 4 
                                                        fast simulation when symmetric
boost-mode: 1
all-reduce-implementation: ring 	
                                                        ring All-Reduce Algorithm
                                                        ring All-Gather Algorithm
all-gather-implementation: ring
                                                        ring Reduce-Scatter Algorithm
reduce-scatter-implementation: ring -
                                                        direct All-to-All Algorithm
all-to-all-implementation: direct ←
                                                      collective optimization
collective-optimization: localBWAware
```

Configurations: System

```
inputs/ring.txt
scheduling-policy: LIFO
endpoint-delay: 10
active-chunks-per-dimension: 1
                                                    4 chunks per collective
preferred-dataset-splits: 4
boost-mode: 1
                                                    ring All-Reduce Algorithm
all-reduce-implementation: ring -
all-gather-implementation: ring
reduce-scatter-implementation: ring
all-to-all-implementation: direct
collective-optimization: localBWAware
```

Configurations: Workload

inputs/all_reduce.txt

```
MICRO ← training loop

1 ← #layers

allreduce -1 1 NONE 0 1 NONE 0 1 ALLREDUCE 1048576 1 ← layer data
```

Meta	data		Forward		1	nput grad		V	Veight gra	d	Layer
Layer Name	(rsvd.)	Compute Time	Comm. Type	Comm. size	Compute Time	Comm. Type	Comm. Size	Compute Time	Comm. Type	Comm. Size	Delay
allreduce	-1	1	NONE	0	1	NONE	0	1	ALLREDUCE	1048576	1
										T	

Running ASTRA-sim

Run ASTRA-sim

\$./exercise_1.sh

Running ASTRA-sim

45,681 ns (45.681 μs) all passes finished at time: 45681, id of first layer: allreduce path to create csvs is: /usr/scratch/will/tutorials/asplos2022/exercise_1/result/ success in openning file **** Time to exit: Sun Feb 27 06:46:51 2022 all-reduce Collective implementation: ring reduce-scatter Collective implementation: ring all-gather Collective implementation: ring all-to-all Collective implementation: direct Collective optimization: localBWAware Total sim duration: 0:0 hours Total streams injected: 4 Total streams finished: 4 Percentage of finished streams: 100 % **** Exiting

Understanding Results

result/tutorial result.csv

Time (PDT)	Topic	Presenter
1:00 - 2:00	Introduction to Distributed DL Training	Tushar Krishna
2:00 – 2:20	Challenges on Distributed Training Systems	Srinivas Sridharan
2:20 – 3:30	Introduction to ASTRA-sim simulator	Saeed Rashidi
3:30 – 4:00	Coffee Break	
4:00 – 4:50	Hands-on Exercises on Using ASTRA-sim	William Won and Taekyung Heo
4:50 - 5:00	Closing Remarks and Future Developments	Taekyung Heo

Tutorial Website

includes agenda, slides, ASTRA-sim installation instructions (via source + docker image) https://astra-sim.github.io/tutorials/mlsys-2022

Attention: Tutorial is being recorded