Problemet

På en pind afmærkes to tilfældige punkter uafhængigt af hinanden, hvorefter pinden saves over på afmærkningerne. Hvad er sandsynligheden for, at de tre stykker kan samles til en trekant?

Løsningen

Først skal det klargøres, hvornår stykkerne rent faktisk udgør en trekant. Dette kommer til udtryk af følgende Lemma:

Lemma 1. Tre linjestykker a, b, c kan samles til en trekant hvis:

$$|b - c| < a < b + c$$

Bevis. Det anses for velkendt at a, b, c kan samles til en trekant hvis følgende uligheder gælder:

$$a < b + c$$
 $b < a + c$ $c < a + b$

De to sidste uligheder kan omskrives til:

$$b < a + c \Leftrightarrow b - c < a$$
 $c < a + b \Leftrightarrow b + c < a$

Sammenlagt betyder dette netop at trekanten kan samles hvis |b-c| < a < a + c.

Herefter kan sandsynlighedsfordelingen udregnes i følgende sætning:

Sætning 2. Et linjestykke med længde l opsplittes i to stykker med længde a og d, og efterfølgende opslitter $\max\{a,d\}$ i to stykker med længde b og c. Da vil sandsynligheden P(a) for at a, b og c kan samles til en trekant være fordelt efter funktionen:

$$P(a,l) = \frac{a}{l}$$

Bevis. Man kan opfatte situationen som værende en problemstilling i sandsynlighedsmålrummet $([0,l],\mathcal{B}([0,l]),P)$. Først antages det at a < l/2 uden tab af generalitet da hvis a > l/2, kan d og a blot ombyttes, og hvis a = 1/2 kan de tre stykker ikke blive en trekant pga. de skarpe uligheder i 1. Da a = 1/2 blot er en singleton og dermed er en P-nulmængde, kan det dermed antages at a < l/2.

Når snittet af d skal foretages, skal de to resulterende linjestykker b, c opfylde uligheden fra 1:

$$|b - c| < a$$

Betragt punktet x := (a+l)/2, som er midtpunktet af d. Da må det andet snit maksimalt afvige a/2 fra dette punkt, og snittet må altså kun ligge i intervallet:

$$I := ((a+l)/2 - a/2, (a+l)/2 + a/2) = (l/2, l/2 + a)$$

Længden af intervallet er da a, og da vil P(I) = P(a, l) = a/l.

Slutteligt kan det endelige resultat da formuleres i følgende korollar:

Korollar 3. Hvis et linjestykke opdeles i tre stykker, da er sandsynligheden P for at de tre stykker kan samles til en trekant være:

$$P = \frac{1}{4}$$

Bevis. Af Sætning 2 følger det at sandsynlighedsfordelingen P(a) for at de tre kan samles til en trekant, vil være P(a) = a/l, hvor 0 < a < l/2 per antagelse i beviset for Sætning 2. Da kan den samlede sandsynlighed udregnes som:

$$P(l) = \frac{1}{l/2} \int_0^{l/2} \frac{a}{l} da = \frac{2}{l} \frac{1}{l} \int_0^{l/2} aDa(!) = \frac{2}{l} \frac{1}{l} \left[\frac{1}{2} a^2 \right]_0^{l/2} = \frac{2}{l} \frac{1}{l} \frac{1}{2} \frac{l^2}{4} = \frac{1}{4}$$

Altså er den samlede sandsynlighed 1/4.

Ekstraopgaven

Ekstraopgaven kan løses lignende, ved blot at se bort fra de korte stykke i beviset for Sætning 2, som dermed vil resultere i at P(a, l) = a/(l - a). Dermed kan P udregnes:

$$P(l) = \frac{1}{l/2} \int_{0}^{l/2} \frac{a}{l-a} da = \frac{2}{l} \frac{l}{2} (\log(4) - 1) = \log(4) - 1$$

Dermed er P i dette tilfælde $\log(4) - 1$.