Interest Rate

Interest rate is a compensation

$$r = R_f + IRP + DRP + LRP + MRP$$

- $\hookrightarrow R_f$ the risk-free real rate
- \hookrightarrow IRP, **inflation** risk premium \rightarrow change in purchasing power
- $\hookrightarrow DRP$, **default** risk premium \to possibility of borrower's default
- $\hookrightarrow LRP$, **liquidity** risk premium \rightarrow conversion to cash
- $\hookrightarrow MRP,$ $\mathbf{maturity}$ risk premium \to market value of long-term debt

Equivalent annual rate (EAR)

compounding will occur in one year. Equivalently,

$$EAR = (1 + r_m)^m - 1$$

In case of continuous compounding:

$$EAR = e^{r_s} - 1$$

Time Value of Money(TVM)

1. $PV(C \text{ in perpetuity}) = \frac{C}{r}$ remember that the first cash flow is in the start of year 1 (the end of year 0)

$$PV(C \text{ in } N \text{ years}) = \frac{C}{r} - \frac{C}{r} \frac{1}{(1+r)^N} = \frac{C}{r} \left(1 - \frac{1}{(1+r)^N}\right)$$

PV(growing perpetuity) = $\frac{C}{r-g}$ if we know C0 then C=C0*(1+g)!!

PV(growing annuity in N years) =
$$\frac{C}{r-g} (1 - (\frac{1+g}{1+r})^N)$$

2. $FV(C \text{ in } N \text{ years}) = \frac{C}{r}((r)^N - I)$