МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем»

Tema: Изучение организации ветвлений в программах на языке Assembler.

Студент гр. 9382	Сорокумов С.В
Преподаватель	Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучение организации ветвлений и управляющих структур на языке Assembler.

Постановка задачи.

Разработать на языке Ассемблера IBM PC программу, которая по заданным целым значениям a, b, i, k, размером 1 слово, вычисляет:

Значения i1=f1(a,b,i) и i2=f2(a,b,i),

Значения res=f3i1,i2,k,

где функции f1 и f2 определяются из таблицы 1, а f3 - из таблицы 2 по цифрам шифра индивидуального задания.

Значения a, b, i, k являются исходными данными, которые должны быть выбраны самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть все возможные комбинации параметров a, b, i, k, позволяющие проверить различные маршруты выполнения программы.

Вариант 10:

- 2. {20-4і, при а>b -(6і-6), при а≤b
- 3. $\{i1-|i2|, при k<0 \max(7,i2), при k \ge 0\}$

Выполнение работы.

1. Используемые операции.

Для выполнения вычислений использовались операции:

- а. **ADD** для сложения двух данных и записи в регистр
- b. **SUB** для вычитания двух данных и записи в регистр
- с. **NEG** для получения противоположного значения данных в регистре Для выполнения условных переходов использовались следующие операции:
 - е. СМР сравнение двух чисел

2. Тестирование программы.

№ теста	Исходные данные	Ожидаемый результат	Полученный результат	Корректность работы программы
1	$\begin{array}{c} a=0002_{16}=2_{10}\\ b=0004_{16}=\\ 4_{10}\\ i=0001_{16}=\\ 1_{10}\\ k=0003_{16}=\\ 3_{10} \end{array}$	$i1=0009_{16}=9_{10}$ $i2=FFF4_{16}= 12_{10}$ $res=0015_{16}=21_{10}$	$i1=0009_{16} = 9_{10}$ $i2=FFF4_{16} = -12_{10}$ $res=0015_{16} = 21_{10}$	+

2	$\begin{array}{c} a=0002_{16}=4_{10}\\ b=0004_{16}=\\ 2_{10}\\ i=0005_{16}=\\ 1_{10}\\ k=0002_{16}=\\ 3_{10} \end{array}$		$i1=FFFE_{16}=-2_{10}$ $i2=0010_{16}=16_{10}$ $res=0006_{16}=6_{10}$	+
3	$\begin{array}{c} a=0002_{16}=4_{10} \\ b=0004_{16}=\\ 2_{10} \\ i=0005_{16}=\\ 1_{10} \\ k=FFFF_{16}=-\\ 1_{10} \end{array}$	$i1=FFFE_{16}=-2_{10}$ $i2=0010_{16}=16_{10}$ $res=0012_{16}=18_{10}$	$i1=FFFE_{16}=-2_{10}$ $i2=0010_{16}=16_{10}$ $res=0012_{16}=18_{10}$	+

Выводы.

В ходе данной лабораторной работы была изучена организация ветвления, а также операция сравнения, реализация меток и переход по данным меткам на языке Ассемблера. В ходе разработки программы была применена минимизация кода, результаты вычислений контролировались в режиме отладки.

Приложение А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
AStack SEGMENT STACK
DW 32 DUP(?)
AStack ENDS
DATA SEGMENT
     DW 4
В
     DW 2
     DW 1
Ι
     DW -1
Κ
I1 DW ?
     DW ?
I2
RES DW ?
DATA ENDS
CODE
          SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
mov ax, DATA
     mov ds, ax
f:
mov ax, A
mov bx, B
cmp ax, bx
jg f1
jmp f1_1
f1:
mov al, I; al = i
mov bl, 2; bl = 2
mul bl; ax = al*ab
mov si, ax; bx = ax
mov al, I; al = i
mov bl, 8; bl = 8
mul bl; ax = 1b*al
sub si, ax; bx = bx-ax
add si, 4; bx += 4
mov I1, si
jmp f_2
f1_1:
mov al, I
mov bl, 3
mul bl
add ax, 6
mov I1, ax
jmp f_2
```

```
f 2:
mov ax, A
mov bx, B
cmp ax, bx
jg f2
jmp f2_2
f2:
mov al, I; al = i
mov bl, 4; bl = 2
mul bl; ax = al*ab
mov si, ax; bx = ax
mov al, I; al = i
mov bl, 8; bl = 8
mul bl; ax = 1b*al
sub si, ax; bx = bx-ax
add si, 20
mov I2, si
jmp f_3
f2 2:
mov al, I; al = i
mov bl, 2; bl = 2
mul bl; ax = al*ab
mov si, ax; bx = ax
mov al, I
mov bl, 8; bl = 8
mul bl; ax = 1b*al
sub si, ax; bx = bx-ax
sub si, 6
mov I2, si
jmp f_3
f_3:
mov ax, I1
mov bx, I2
mov si, 0
cmp si, K
jg f3
jmp f3_2
f3:
mov cx, 0
cmp cx, ax
jg NEG_AX
cmp cx, bx
jg NEG_BX
add ax, bx
mov RES, ax
jmp f_end
```

```
f3_2:
cmp ax, 6
jg SET_RES_I
mov si, 6
cmp si, ax
jg SET_RES_6
NEG_AX:
neg ax
jmp f3
NEG_BX:
neg bx
jmp f3
SET_RES_6:
mov res, 6
jmp f_end
SET_RES_I:
mov ax, I1
mov res, ax
f_end:
mov ah, 4ch
                 ;завершаем программу
int 21h
Main
          ENDP
CODE
          ENDS
END Main
                           ;ENDS CODE
```

ПРИЛОЖЕНИЕ Б ФАЙЛ ЛИСТИНГА

Microsoft (R) Macro Assembler Version 5.10 10/14/20 23:03:4 Page 1-1 0000 AStack SEGMENT STACK DW 32 DUP(?) 0000 0020 3333] AStack ENDS 0040 DATA SEGMENT 0000 0000 0004 DW 4 Α 0002 0002 В DW 2 DW 1 Ι 0004 0001 0006 FFFF Κ DW -1 0008 0000 **I**1 DW ? 000A 0000 I2 DW ? 000C RES DW ? 0000 000E DATA ENDS 0000 CODE **SEGMENT** ASSUME CS:CODE, DS:DATA, SS:AStack 0000 Main PROC FAR 0000 B8 ---- R mov ax, DATA 0003 8E D8 mov ds, ax 0005 f: 0005 A1 0000 R mov ax, A mov bx, B 0008 8B 1E 0002 R 000C 3B C3 cmp ax, bx 000E 7F 03 jg f1 0010 EB 1D 90 jmp f1 1 0013 f1: 0013 A0 0004 R mov al, I; al = iLAB3.ASM(29): warning A4031: Operand types must match 0016 B3 02 mov b1, 2; b1 = 20018 F6 E3 mul bl; ax = al*ab001A 8B F0 mov si, ax; bx = ax001C A0 0004 R mov al, I; al = iLAB3.ASM(33): warning A4031: Operand types must match mov bl, 8; bl = 8001F B3 08 0021 F6 E3 mul bl; ax = lb*al0023 2B F0 sub si, ax; bx = bx-ax

0025 83 C6 04

0028 89 36 0008 R

add si, 4; bx += 4

mov I1, si

```
002C EB 11 90
                                jmp f_2
002F
                     f1 1:
                           mov al, I
002F A0 0004 R
LAB3.ASM(42): warning A4031: Operand types must match
0032 B3 03
                                mov bl, 3
0034 F6 E3
                                mul bl
0036 05 0006
                                add ax, 6
0039 A3 0008 R
                          mov I1, ax
003C EB 01 90
                                jmp f 2
                     f_2:
003F
003F A1 0000 R
                           mov ax, A
0042 8B 1E 0002 R
                                mov bx, B
Microsoft (R) Macro Assembler Version 5.10
                                                           10/14/20
23:03:4
                                                            Page
1-2
0046 3B C3
                                cmp ax, bx
0048 7F 03
                                jg f2
     EB 1D 90
004A
                                jmp f2_2
004D
                     f2:
                           mov al, I; al = i
004D A0 0004 R
LAB3.ASM(57): warning A4031: Operand types must match
                                mov bl, 4; bl = 2
0050 B3 04
0052 F6 E3
                                mul bl; ax = al*ab
0054 8B F0
                                mov si, ax; bx = ax
0056 A0 0004 R
                           mov al, I; al = i
LAB3.ASM(61): warning A4031: Operand types must match
0059 B3 08
                                mov bl, 8; bl = 8
005B F6 E3
                                mul bl; ax = lb*al
005D 2B F0
                                sub si, ax; bx = bx-ax
005F 83 C6 14
                                add si, 20
0062 89 36 000A R
                                mov I2, si
0066 EB 1D 90
                                jmp f 3
0069
                     f2_2:
0069 A0 0004 R
                          mov al, I; al = i
LAB3.ASM(70): warning A4031: Operand types must match
006C B3 02
                                mov bl, 2; bl = 2
006E F6 E3
                                mul bl; ax = al*ab
0070 8B F0
                                mov si, ax; bx = ax
0072 A0 0004 R
                          mov al, I
LAB3.ASM(74): warning A4031: Operand types must match
0075 B3 08
                                mov bl, 8; bl = 8
0077 F6 E3
                                mul bl; ax = 1b*al
0079 2B F0
                                sub si, ax; bx = bx-ax
007B 83 EE 06
                                sub si, 6
```

```
007E 89 36 000A R
                                 mov I2, si
      EB 01 90
                                 jmp f 3
0082
                      f_3:
0085
0085
      A1 0008 R
                           mov ax, I1
8800
      8B 1E 000A R
                                 mov bx, I2
008C
      BE 0000
                                 mov si, 0
      3B 36 0006 R
008F
                                 cmp si, K
0093
      7F 03
                                 jg f3
0095
      EB 14 90
                                 jmp f3_2
0098
                      f3:
0098
      B9 0000
                                 mov cx, 0
009B
      3B C8
                                 cmp cx, ax
009D 7F 18
                                 jg NEG_AX
009F
      3B CB
                                 cmp cx, bx
      7F 18
00A1
                                 jg NEG_BX
00A3
      03 C3
                                 add ax, bx
00A5
      A3 000C R
                           mov RES, ax
8A00
      EB 24 90
                                 jmp f_end
00AB
                      f3_2:
00AB
      3D 0006
                                 cmp ax, 6
00AE 7F 18
                                 jg SET_RES_I
00B0 BE 0006
                                 mov si, 6
00B3
      3B F0
                                 cmp si, ax
Microsoft (R) Macro Assembler Version 5.10
                                                            10/14/20
23:03:4
                                                              Page
1-3
00B5
      7F 08
                                 jg SET_RES_6
00B7
                      NEG_AX:
00B7
      F7 D8
                                 neg ax
00B9
      EB DD
                                 jmp f3
00BB
                      NEG_BX:
00BB
      F7 DB
                                 neg bx
00BD
      EB D9
                                 jmp f3
00BF
                      SET_RES_6:
00BF
      C7 06 000C R 0006
                                 mov res, 6
00C5
      EB 07 90
                                 jmp f_end
00C8
                      SET RES I:
8200
      A1 0008 R
                           mov ax, I1
      A3 000C R
00CB
                           mov res, ax
```

000 про		B4	l 4	ŀC				f	=_e	enc	1:		mo	V	ah,	40	ch		;завершаем
001		CD) 2	21		pa	IMM	у					in	t	21h				
001 001 Micr 23:0	02 ros: 03:	4		R)	Ма			C Ma:		E	Ler	٠ ٧	END END ⁄ersi	S	5.1	0	;ENDS	S CODE	10/14/20
Segi	nen [.]	ts	an	nd (·											47.		6 1: 63
						N	a r	n e	•				Le	ngt	h		Alig	gn	Combine Class
AST/ CODI DAT/	Ε.				• •	•	•		•				· ·		004 000 000)2			
Syml	bol	s:																	
							- r	n e					Ту	рe	Va	alu	e	۸++۰	
						N a	a i		2					-				Attr	
Α		•	•	•		N .	а I		•		•	•	•		L W			0000	
A B		•	•		• •	N .	а I	•	•							IOR	D		DATA
B F					• •	•									L W	IOR IOR IEA	.D .D .R	000000020005	DATA DATA CODE
B F F1		•	•		• •	•									L W L W L N	IOR IOR IEA IEA	D D R R R	0000 0002 0005 0013	DATA DATA CODE CODE
B F F1 F1_3	 1 .	•			• •	•										JOR JOR JEA JEA	D D .R .R .R	0000 0002 0005 0013 002F	DATA DATA CODE CODE CODE CODE
B F F1 F1_: F2	 1 . 	•	•	•							•	•				JOR JOR JEA JEA JEA	D D R R R R R	0000 0002 0005 0013 002F 004D	DATA DATA CODE CODE CODE CODE CODE
B F F1 F1_: F2 F2_:	 1 . 2 .	•	•	•									•			NOR NOR NEA NEA NEA	D D R R R R R R	0000 0002 0005 0013 002F 004D 0069	DATA DATA CODE CODE CODE CODE CODE CODE
B F F1 F1_: F2 F2_: F3	· · 1 · · · 2 ·	· · · ·	•													NOR NOR NEA NEA NEA NEA	D .R .R .R .R .R .R	0000 0002 0005 0013 002F 004D 0069 0098	DATA DATA CODE CODE CODE CODE CODE CODE CODE COD
B F F1 F1 F2 F2 F3 F3 F3	 1 . 2 .	•	•													NOR NOR NEA NEA NEA NEA	D .R .R .R .R .R .R .R	0000 0002 0005 0013 002F 004D 0069 0098 00AB	DATA DATA CODE CODE CODE CODE CODE CODE CODE COD
B F F1 F1 F2 F2 F3 F3 F3 F_2	· · · · · · · · · · · · · · · · · · ·	•	•													NOR NOR NEA NEA NEA NEA NEA	D R R R R R R R R R R R R	0000 0002 0005 0013 002F 004D 0069 0098 00AB 003F	DATA DATA CODE CODE CODE CODE CODE CODE CODE COD
B F F1 F1 F2 F2 F3 F3 F3	 1 . 2 . 	•														NOR NOR NEA NEA NEA NEA NEA	D .R .R .R .R .R .R .R .R .R .R	0000 0002 0005 0013 002F 004D 0069 0098 00AB	DATA DATA CODE CODE CODE CODE CODE CODE CODE COD
F F1_: F2_: F3_: F_2 F_3 F_E	 1 . 2 . 2 .															NOR IEA IEA IEA IEA IEA IEA IEA	D R R R R R R R R R R R R R R R	0000 0002 0005 0013 002F 004D 0069 0098 00AB 003F 0085	DATA CODE CODE CODE CODE CODE CODE CODE COD
B F F1 F2 F2 F3 F3 F3 F_2 F_3																NOR IEA IEA IEA IEA IEA IEA IEA	D D R R R R R R R R R R R	0000 0002 0005 0013 002F 004D 0069 0098 00AB 00AB 003F 0085 00CE	DATA CODE CODE CODE CODE CODE CODE CODE COD
B F F1 F2 F2 F3 F3 F_2 F_3 F_E I																NOR IEA IEA IEA IEA IEA IEA IEA IEA IEA	D D R R R R R R R R R R R	0000 0002 0005 0013 002F 004D 0069 0098 00AB 003F 0085 00CE	DATA CODE CODE CODE CODE CODE CODE CODE COD

MAIN	F PROC 0000 CODE Length
NEG_AX	L NEAR 00B7 CODE L NEAR 00BB CODE
RES	L WORD 000C DATA
— — —	L NEAR 00BF CODE L NEAR 00C8 CODE
<pre>@CPU</pre>	TEXT 0101h TEXT LAB3 TEXT 510

Microsoft (R) Macro Assembler Version 5.10 23:03:4

10/14/20

Symbols-2

132 Source Lines

132 Total Lines

30 Symbols

48016 + 459244 Bytes symbol space free

7 Warning Errors

0 Severe Errors