Taller 19/20

Introducción al aprendizaje automático (Machine Learning)

¿Que es el aprendizaje automático? (1)

- Técnicas para que las computadoras
 - Aprender automáticamente
 - Sin haber sido programadas explícitamente.
 - Realizar predicciones

¿Que es el aprendizaje automático? (2)

¿Qué hacen las técnicas de aprendizaje automático?

Aprenden

Detectan patrones en los datos.

Predicen

 Ajustan las acciones del programa a patrones detectados.

¿Que vamos a aprender?

- Aprenderemos
 - Aprendizaje supervisado.
 - Aprendizaje no supervisado.

Usaremos Python 3 + Scikit-learn

Preparando el entorno

Python 3

- Linux Ubuntu
 - sudo apt-get install python3 python3-pip
- Windows
 - https://www.python.org/downloads/windows/
 - Alternativa Anaconda
 - https://www.anaconda.com/distribution/

Scikit-learn

- pip3 install -U scikit-learn
- Alternativa Anaconda
 - conda install scikit-learn

Conceptos previos (1)

Ejemplo (Muestra)

- Dato con un conjunto de características (Edad, peso, etc.)
 - Etiquetado: incluye una etiqueta con su valor esperado.
 - No etiquetado: no incluye una etiqueta.

Corpus:

Conjunto de ejemplos a aprender.

Conceptos previos (2)

Entrenamiento:

- Cada técnica entrena de una forma
- Se entrena con ejemplos (aprende)
- Cuando se entrena con ejemplos se genera un modelo.

Conceptos previos (3)

Modelo (1)

- Estructura que representa el conocimiento aprendido (resultado del entrenamiento)
 - Por ejemplo una red neuronal.
- Depende de la técnica usada.

Conceptos previos (4)

- Modelo (2)
 - El modelo se utiliza para predecir
 - Obtener un valor
 - Predecir precio de un piso
 - Clasificar un ejemplo
 - Indicar según edad/peso/altura si es hombre o mujer.

Aprendizaje supervisado (1)

- ¿Que es el aprendizaje supervisado?
 - Aprender a partir de ejemplos de los que conocemos su valor o su clasificación

Aprendizaje supervisado (2)

- ¿Como son los datos de entrenamiento?
 - Vector de características

	Metros Cuadrados	Habitaciones	Baños	Precio
Piso 1	100	3	2	100000
Piso 2	88	2	1	85000

Etiqueta o resultado esperado

	Metros Cuadrados	Habitaciones	Baños	Precio
Piso 1	100	3	2	100000
Piso 2	88	2	1	85000

Aprendizaje supervisado (3)

- Problemas de regresión
 - A partir de una muestra se predice el valor de una variable.

	Metros Cuadrados	Habitaciones	Baños	Precio
Piso 1	100	3	2	100000
Piso 2	88	2	1	85000
Piso 3	88	2	1	????

Aprendizaje supervisado (4)

- Problemas de clasificación
 - Se predice la clase de la muestra
 - Número de clases finito

	Peso	Altura	Sexo
Persona A	80	185	Hombre
Persona B	50	170	Mujer

Dorcona C	00	177	222
Persona C	00	1//	""

Aprendizaje supervisado (5)

- Ejemplo 1 Regresión:
 - Número de coches a una hora del día
 - Datos → Predicción
 - □ 8:00 → 1000
 - \square 09:00 \rightarrow 1500
 - □ 10:00 → 700
 - □ 14:00 → 170

Aprendizaje supervisado (6)

- Ejemplo 2 Regresión:
 - Horas estudiadas, nota obtenida
 - Datos → Predicción
 - □ 30 horas → 6
 - □ 50 horas → 10
 - □ 35 horas → 4
 - \square 20 horas \rightarrow 5
 - \square 38 horas \rightarrow 7.5

Aprendizaje supervisado (7)

- Ejemplo 1 Clasificación:
 - Temperatura
 - Posibles clases (Frio/Calor)
 - □ 25° \rightarrow Calor
 - □ 22° → Calor
 - □ 10° → Frio
 - \square 0° \rightarrow Frio

Aprendizaje supervisado (8)

- Ejemplo 2 Clasificación 2:
- Velocidad respecto a velocidad máxima de la vía
 - Posibles clases (Lento/Adecuado/Peligro)
 - □ 50, 120 → Lento
 - □ 40, 50 → Adecuado
 - □ 80, 60 → Peligro
 - □ 100, 120 → Adecuado
 - □ 140, 120 → Peligro

Caso Estudio Regresión

- Caso de estudio Regresión
 - Algoritmo: Regresión lineal mínimos cuadrados
 - Corpus simple precio pisos en relación a metros cuadrados.
 - Ver "RegresionPisos.py"
 - Saber mas

Caso Estudio Clasificación (1)

- Caso de estudio Clasificación (1)
 - Juego que juega aleatoriamente a 3 en raya.
 - Haremos que la máquina aprenda de distintas formas.

Caso Estudio Clasificación (2)

- Paso 1: Generar corpus (1)
 - Programa que juega millones de partidas automáticamente
 - Ver "GeneraCorpus3EnRaya.py"

Caso Estudio Clasificación (3)

Paso 1: Generar corpus (2)

De cada partida, guardamos para todos los movimientos, como estaba el tablero y que movimiento se hizo.

Caso Estudio Clasificación (4)

- Paso 1: Generar corpus (3)
 - Datos: Estado del tablero y que movimiento se hizo.
 - Clasificación de los datos
 - Si el que hizo el movimiento al finalizar la partida acabó ganando o no

Caso Estudio Clasificación (5)

Paso 2: Entrenamiento (1)

- Entrenamos con el corpus generado y guardamos entrenamiento para ser usado en otros ficheros
 - Árbol de decisión
 - Ver fichero "EntrenaModeloTree.py"
 - SVM (Maquinas de vectores de soporte)
 - Ver fichero "EntrenaModeloSVM.py"

Caso Estudio Clasificación (6)

- Paso 2: Entrenamiento (2)
 - Uso de puntuación de la calidad de la predicción
 - Algoritmo usado: Árbol de decisión
 - Uso de clasificador y seleccionando aleatorio entre candidatos
 - Algoritmo usado: SVM

Caso Estudio Clasificación (7)

- Paso 3: Comparativa
 - Usamos el entrenamiento para jugar y probar efectividad
 - Con score "3EnRayaJuego.py"
 - Sin score

"3EnRayaJuegoSinScore.py"

Caso Estudio Clasificación (8)

- Caso de estudio Clasificación (4)
 - Saber más
 - http://www.aprendemachinelearni ng.com/principales-algoritmos-us ados-en-machine-learning/

Aprendizaje no supervisado (1)

- ¿Que es el aprendizaje no supervisado? (1)
 - No hay etiquetado de los ejemplos.
 - Busca agrupaciones
 - Eso no implica que dichas agrupaciones tengan sentido o utilidad

Aprendizaje no supervisado (2)

- ¿Que es el aprendizaje no supervisado? (2)
 - El modelo se va ajustando según las observaciones.
 - Cada ejemplo introducido, genera un nuevo modelo

Aprendizaje no supervisado (3)

Ejemplo: Algoritmo K-Means (1)

http://exponentis.es/ejemplo-de-clustering-conk-means-en-python

Aprendizaje no supervisado (4)

Ejemplo: Algoritmo K-Means (2)

- Elegimos cuantos K grupos queremos
 - Se eligen K ejemplos aleatorios y se establecen como centros.
 - Procedemos uno a uno a ir añadiendo el resto de ejemplos de entrenamiento

Aprendizaje no supervisado (5)

Ejemplo: Algoritmo K-Means (3)

- Cada nuevo ejemplo introducido
 - Se clasifica asocia a su centro más cercano
 - Algoritmo re-calcula la posición de los centros
 - Se vuelven a asignar todos los ejemplos a su centro más cercano

Aprendizaje no supervisado (6)

Caso de estudio (1)

 Datos: número de goles y de asistencias en una temporada

	Goles	Asistencias
C. Ronaldo	24	5
Messi	25	13
Xavi	3	16
Pique	4	2

Fichero "NoSupervisadoKMeans.py"

Aprendizaje no supervisado (7)

- Caso de estudio (2)
 - Ajustamos el modelo en base a observaciones
 - Elegimos cuantos grupos distintos
 - Observamos datos agrupados y les buscamos sentido

Aprendizaje no supervisado (8)

- Caso de estudio (3)
 - Observaciones y posibles grupos
 - Grupos solo goleadores
 - Grupos solo asistentes
 - Grupos goleadores y asistentes
 - Grupos ni goleadores ni asistentes

Para saber más

Enlaces interesantes

- Mi curso favorito!!
- https://es.coursera.org/learn/machine-learning
- Otros enlaces interesantes
- https://medium.com/datos-y-ciencia/introduccion-al-machine-learning-una-gu%C3%ADa-desde-cero-b696a2ead359
- https://relopezbriega.github.io/blog/2015/10/10/machine-learn ing-con-python/
- https://eu.udacity.com/course/intro-to-artificial-intelligence--cs271
- https://www.coursera.org/lecture/machine-learning-with-python/introduction-to-machine-learning-zSm8k