Correlación

Xochitl Cárdenas

Puedes encontrar esta presentación y materiales adicionales en mi perfil de Github: https://github.com/xochitlcardenas

Objetivos de aprendizaje

- 1. Definir relación, covarianza y coeficiente de correlación.
- 2. Identificar estrategias para determinar si existe una relación, exponiendo ventajas y desventajas.
- 3. Calcule el valor de Pearson r.
- 4. Interpretar el coeficiente de pearson a partir de 3 criterios: fuerza, dirección y significancia.
- 5. Explicar por qué correlación no necesariamente implica causalidad.
- 6. Reforzar lo aprendido con un ejercicio.

Estadistica Inferencial

		Tipos de pruebas					
		Relación o asociación	Comparación / diferencias			Predicción o estimación	
			Muestras indepe	endientes	Muestras rela	acionadas	
	Nivel de medición de la variable dependiente		1 o 2 gpos	Más de 2 gpos	2 mediciones	Más de 2 medicione s	
No param étrica	Nominal		X ²	X²	Mc Nemar	Q de Cochran	
etrica	Ordinal	Spearman	U de Mann Whitney	Kruskall Wallis	Wilcoxon	Friedman	
Param étrica	Intervalar	Pearson	t de Student	ANOVA	t de Student	ANOVA	Regresión lineal
	De razón						

Coeficiente de Correlación de Pearson

Diagrama de dispersión

- -ldentificar el tipo de relación (forma)
- -Punto (Xi, Yi)
- -No refleja el grado de la relación

Coeficientes de correlación

-Expresa cuantitativamente la magnitud y dirección de la relación.

Estrategías:

- Proporción de puntos
- Puntuaciones diferenciales x = (X-X').

Igualmente fallan al tratar de reflejar la magnitud exacta, por lo que se proponen las siguientes:

- $-\sum x^2$ y covarianza
- Coeficiente de correlación de Pearson

Covarianza

Sujetos	X(Sueño)	Y(Estrés)	х	у	ху
1	1	6	-1.6	-22.9	36.64
2	1	7	-1.6	-21.9	35.04
3	2	19	-0.6	-9.9	5.94
4	2	25	-0.6	-3.9	2.34
5	2	23	-0.6	-5.9	3.54
6	3	37	0-4	8.1	3.24
7	3	30	0-4	1.1	0.44
8	4	45	1.4	16.1	22.54
9	4	47	1.4	18.1	25.34
10	4	50	1.4	21.1	29.54
Medias	2.6	28.9		Σ	164.6

'La relación lineal entre 2 variables es tanto más intensa cuanto mayor es la suma de esos productos (en valor absoluto)'

Incorporar el tamaño de la muestra: covarianza

$$S_{XY} = \frac{\Sigma_I x_i y_i}{n-1} = \frac{164.6}{9} = 18.28$$

Un valor de covarianza igual a cero indica ausencia de relación, sin embargo, este método no cuenta con un límite superior que indique una relación perfecta.

Solución: relativizar la covarianza

Coeficiente de correlación de Pearson

Sujetos	X(Sueño)	Y(Estrés)	XY	X^2	Y^2
1	1	6	6	1	36
2	1	7	7	1	49
3	2	19	38	4	361
4	2	25	50	4	625
5	2	23	46	4	529
6	3	37	111	9	1369
7	3	30	90	9	900
8	4	45	180	16	2025
9	4	47	188	16	2209
10	4	50	200	16	2500
SUMATORIAS	26	289	916	80	10603
PRODUCTOS	ΣΧΣΥ=	7514		50	×
CUADRADOS	676	83521			

$$R_{XY}=rac{S_{XY}}{S_XS_Y}$$
 $S_X=\sqrt{rac{\Sigma\left(X_i-ar{X}
ight)^2}{n-1}}$

La ecuación se interpreta como el grado en que la covarianza alcanza su máximo.

$$R_{XY} = rac{n\Sigma X_i Y_i - \Sigma X_i \Sigma Y_i}{\sqrt{n\Sigma X_i^2 - (\Sigma X_i)^2} \sqrt{n\Sigma Y_i^2 - (\Sigma Y_i)^2}}$$

$$R_{XY} = \frac{19(916) - 7514}{\sqrt{10(80) - 676}\sqrt{10(10603) - 83521}} = \frac{1646}{1669.72} = 0.985$$

Coeficiente de correlación de Pearson

Valor	Interpretación
0	Relación nula
0 - 0.2	Relación muy baja
0.2 - 0.4	Relación baja
0.4 - 0.6	Relación moderada
0.6 - 0.8	Relación alta
0.8 - 1	Relación muy alta
1	Relación perfecta

Signo	Dirección
+	Positiva
-	Negativa

Signo: positivo o negativo

Valor entre -1 y 1

$$R_{XY} = 0.985$$

Relación muy alta

Hipótesis nula de independencia lineal

Probabilidad de aceptar o rechazar la hipótesis nula. De acuerdo a ello se debe planear la regla de decisión.

- 1. Plantear la hipótesis y determinar el nivel de significancia

Ho: No existe correlación significativa

H1: Existe correlación significativa

- 2. Comparar el valor R contra el valor crítico R de tablas.
- 3. Regla de decisión

Rt≥R, se acepta la Ho y se rechaza H1, las variables no están relacionadas

Rt < R, se rechaza la Ho y se acepta H1, las variables están relacionadas

Hipótesis nula de independencia lineal

$$N = 10 \ gl = N - 2 = 10 - 2 = 8$$

$$R_{XY} = 0.985 \gt R_t = 0.6319$$

Por lo tanto, rechazamos Ho y aceptamos H1.

Existe correlación entre las variables.

	Level of Significance for One-Tailed Test, $lpha_{1 ext{ tail}}$						
16 N A	.05	.025	.01	.005	.0005		
df = N - 2	Level of Significance for Two-Tailed Test, $\alpha_{2 \text{ tail}}$						
	.10	.05	.02	.01	.001		
1	.9877	.9969	.9995	.9999	1.0000		
2	.9000	.9500	.9800	.9900	.9990		
3	.8054	.8783	.9343	.9587	.9912		
4	.7293	.8114	.8822	.9172	.9741		
5	.6694	.7545	.8329	.8745	.9507		
6	.6215	.7067	.7887	.8343	.9249		
7	.5822	.6664	.7498	.7977	.8982		
8 ———	.5494	→ .6319	.7155	.7646	.8721		
9	.5214	.6021	.6851	.7348	.8471		
10	.4973	.5760	.6581	.7079	.8233		
11	.4762	.5529	.6339	.6835	.8010		
12	.4575	.5324	.6120	.6614	.7800		
13	.4409	.5139	.5923	.6411	.7603		
14	.4259	.4973	.5742	.6226	.7420		
15	.4124	.4821	.5577	.6055	.7246		
16	.4000	.4683	.5425	.5897	.7084		
17	.3887	.4555	.5285	.5751	.6932		
18	.3783	.4438	.5155	.5614	.6787		
19	.3687	.4329	.5034	.5487	.6652		
20	3508	4227	4921	5368	6524		

Correlación

Para identificar el nivel de relación entre dos variables podemos hacer uso de un estadístico que cuantifica el grado de relación, y este puede interpretarse de acuerdo con 3 puntos:

- 1. Fuerza (valor arrojado por coeficiente de Pearson)
- 2. Dirección (signo del coeficiente)
- 3. Significancia (prueba de hipótesis nula)

Correlación no implica causalidad.

Ejercicio 1

Un grupo de investigadores desea conocer si existe relación entre el estrés percibido y la memoria. Para esto, comparan la puntuación obtenida en una escala de estrés percibido y la puntuación obtenida en una prueba de memoria de 10 sujetos.

X (estrés)	Y (Memoria)
64	66
40	79
30	98
71	65
55	79
31	83
61	68
42	80
57	72
38	95

Ejercicio 1

- 1. Ubicar los puntos en un diagram de dispersión
- 2. Obtener el valor R
 - a. Elevar al cuadrado cada valor de X y Y
 - b. Obtener los productos de X y Y
 - c. Efectuar las sumatorias $\sum X$, $\sum Y$, $\sum X^2$, $\sum Y^2$, $\sum XY$
 - d. Aplicar la ecuación

$$R_{XY} = rac{n\Sigma X_i Y_i - \Sigma X_i \Sigma Y_i}{\sqrt{n\Sigma X_i^2 - (\Sigma X_i)^2} \sqrt{n\Sigma Y_i^2 - (\Sigma Y_i)^2}}$$

- e. Interpretar valor de R obtenido
- 3. Comprobar relación por hipótesis nula
 - a. Calcular grado de libertad gl = N-2
 - b. Identificar valor de R en tablas y comparar con valor obtenido
 - Aplicar regla de decisión
 Rt ≥ R, se acepta la Ho y se rechaza H1, las variables no están relacionadas
 Rt < R, se rechaza la Ho y se acepta H1, las variables están relacionadas

X (estrés)	Y (Memoria)	X	Y	XY
64	66	4096	4356	4224
40	79	1600	6241	3160
30	98	900	9604	2940
71	65	5041	4225	4615
55	79	3025	6241	4345
31	83	961	6889	2573
61	68	3721	4624	4148
42	80	1764	6400	3360
57	72	3249	5184	4104
38	95	1444	9025	3610
∑ = 489	∑ = 785	∑ = 25801	∑ = 62789	∑ = 37079

$$R_{XY} = rac{n\Sigma X_i Y_i - \Sigma X_i \Sigma Y_i}{\sqrt{n\Sigma X_i^2 - (\Sigma X_i)^2} \sqrt{n\Sigma Y_i^2 - (\Sigma Y_i)^2}}$$

$$R_{XY} = \frac{10(37079) - (489*785)}{\sqrt{10(25801) - (489)^2}\sqrt{10(62789) - (785)^2}} = \frac{-13075}{14843.07} = 0.88$$

Valor	Interpretación
0	Relación nula
0 - 0.2	Relación muy baja
0.2 - 0.4	Relación baja
0.4 - 0.6	Relación moderada
0.6 - 0.8	Relación alta
0.8 - 1	Relación muy alta
1	Relación perfecta

Signo	Dirección
+	Positiva
-	Negativa

 $R_{XY} = 0.88$

Interpretación: Relación negativa muy alta

		Level of Significan		
16 N 2	.05	.025		
df = N - 2	Level of Significan			
	.10	.05		
1	.9877	.9969		
2	.9000	.9500		
3	.8054	.8783		
4	.7293	.8114		
5	.6694	.7545		
6	.6215	.7067		
7	.5822	.6664		
8 —	.5494	.6319 v		
9	.5214	.6021		
10	.4973	.5760		

$$gl = 10 - 2 = 8$$

$$R_{XY} = 0.88$$
 > $R_t = 0.63$

Rt≥R, se acepta la Ho y se rechaza H1, las variables no están relacionadas

Rt < R, se rechaza la Ho y
se acepta H1, las variables
están relacionadas

Por lo tanto, podemos afirmar que existe una relación negativa muy alta entre las variables, la cual es significativa.

JASP

Programa para análisis estadístico.

- Análisis frecuentistas
- Análisis bayesianos

Descargar JASP:

https://jasp-stats.org/

Video Introductorio:

https://youtu.be/HxqB7CUA-XI