SDM College of Engineering & Technology, Dharwad-02 Department of Electronics & Communication Engineering <u>V Semester</u>

Date:01.09.2022

Course: Digital Signal Processing Laboratory Course Code: 18UECL505

Course Credits: 1.5 Hours: 3hrs/week

TERM WORK-I

Exp. No.	Experiment title	CO	Marks
1	Basic signal processing operations and manipulations	1	5
a)	Generate the following sequence/signal, plot and label the sequences		
	i. Unit sample sequence		
	ii. Unit step sequence		
	iii. Sinusoidal sequence with frequency fc = 2Hz.		
	iv. Exponential sequence (Exponential rise, Exponential decay), plot		
	in the same figure window and different figure windows.		
	v. Generate AM, DSBSC with fc = 100Hz, fm = 2Hz. Plot m(t),		
	c(t), AM, DSBSC in same figure window and different figure		
	windows.		
	vi. Generate a signal $s(t) = 2\cos(2*pi*10t)$. Add a random noise		
	signal. Plot the original signal, random signal and noisy signal in		
	same figure window, different figure windows, overlapped		
	figures using different colours.		
b)	Obtain transfer function, partial fractions and inverse Z-transform for		
Í	the given H(z).		
	$H(z) = \frac{(z-1)(z-2)(z-3)(z-4)}{(z+1)(z+2)(z+3)(z+4)}.$		
	i. Obtain the transfer function in terms of negative powers of z (Use		
	zp2tf). From the result, obtain the transfer function back in		
	factored form (Use tf2zp), quadratic form (Use zp2sos) and plot		
	its poles and zeros Use (zplane).		
	ii. Obtain its partial fraction expansion. (Use residuez).		
	iii. Determine its inverse z-transform up to length, L=10 (Use impz)	4	
2	Obtain Linear and circular convolution of two given sequences.	1	5
a)	Given the difference equation $y(n) - 0.2y(n-1) + 0.9y(n-2) = x(n) - 0.8x(n-2)$		
	i. Calculate and plot the impulse response h(n) at n= -20,,100.		
	ii. Calculate and plot the step response y(n) at		
	n=0,		
	iii. Calculate and plot the response for the input $x(n) = a^n$, where		
	a=0.5, n=0,,100.		
L)	• • • • • • • • • • • • • • • • • • • •		
b)	Given $h(n)=[1\ 2\ 3\ 1]$ and $x(n)=[1\ 2\ 1\ -1]$, perform Linear convolution		
-1	without and with built-in functions.		
c)	Given $h(n)=[1 \ 2 \ 3 \ 1]$ and $x(n)=[1 \ 2 \ 1 \ -1]$ perform Circulation		
	convolution without and with built in functions.		

3	Compute N-point DFT, IDFT and verify the properties.	2	5
a)	Consider any 8-point sequence.	<u> </u>	
	i. Find its DFT using the definition.	I	
	ii. Verify the result using built-in function. Plot the magnitude and	I	
	phase spectrum.	<u> </u>	
	iii. Obtain original signal from DFT values using IDFT with and	<u> </u>	
	without using built-in function.	<u> </u>	
	iv. Create dft_mtx() and idft_mtx() user defined functions to	<u> </u>	
	generate N-point kernel matrix of DFT and IDFT respectively.	<u> </u>	
	v. Find 8-point DFT of a sequence by calling user defined	<u> </u>	
	function dft_mtx().	<u> </u>	
	vi. Reconstruct the original sequence by calling user defined	<u> </u>	
	function idft_mtx().	<u> </u>	
b)	Considering suitable input sequence, verify the following properties of	<u> </u>	
	DFT.	<u> </u>	
	i. circular time shift	<u> </u>	
	ii. circular frequency shift	I	
	iii. Parsevals theorem	<u> </u>	
	iv. symmetry	I	
	v. circular convolution	ļ	

Last date to complete term work -1: 30.09.2022

Lab In-charges HOD (E&CE)

Mr. Kotresh Marali

Mr. Shrikanth K. Shirakol