Sec.4.7: Change of Basis

Objective: To determine the change-of-coordinates matrix from a basis \mathcal{B}_1 to a different basis \mathcal{B}_2 .

Sec.4.7

1/11

Recall

Let V be a vector space with a basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then if

$$\vec{u} = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_n \vec{b}_n$$

is a vector in V, then the coordinate vector of \vec{u} relative to \mathcal{B} (or the \mathcal{B} -coordinate vector of \vec{u}) is given by

$$[\vec{u}]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Let $\mathcal{C} = \{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ be another basis for V.

Given the \mathcal{B} -coordinate vector of \vec{u} , how to compute \mathcal{C} -coordinate vector of \vec{u} ?

Example

Let V be a 2-dimensional vector space and let $\mathcal{B}=\{\vec{b}_1,\vec{b}_2\}$ and $\mathcal{C}=\{\vec{c}_1,\vec{c}_2\}$ be bases for V. Suppose

$$\vec{b}_1 = 4\vec{c}_1 + \vec{c}_2$$
 and $\vec{b}_2 = -6\vec{c}_1 + \vec{c}_2$

Let \vec{u} be in V such that

$$\vec{u}=3\vec{b}_1+\vec{b}_2,$$
 i.e. $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{cc} 3 \\ 1 \end{array}\right]$

Find $[\vec{u}]_{\mathcal{C}}$.

Sec.4.7

3 / 11

Theorem

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ be bases of an n-dimensional vector space V. Then there is a unique matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ such that

$$[\vec{u}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\vec{u}]_{\mathcal{B}}$$

The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are the \mathcal{C} -coordinates of the vectors in the basis \mathcal{B} . That is

$$P_{\mathcal{C}\leftarrow\mathcal{B}}=\left[\begin{array}{cccc} [\vec{b}_1]_{\mathcal{C}} & [\vec{b}_2]_{\mathcal{C}} & \cdots & [\vec{b}_n]_{\mathcal{C}} \end{array}\right]$$

Definition (Change-of-coordinates matrix from \mathcal{B} to \mathcal{C})

The matrix $P_{\mathcal{C}\leftarrow\mathcal{B}}=\left[\begin{array}{ccc} [\vec{b}_1]_{\mathcal{C}} & [\vec{b}_2]_{\mathcal{C}} & \cdots & [\vec{b}_n]_{\mathcal{C}} \end{array}\right]$ is called the **change-of-coordinates** matrix from \mathcal{B} to \mathcal{C} . So for every $\vec{u}\in V$:

$$[\vec{u}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\vec{u}]_{\mathcal{B}}$$

5 / 11

360

Note

The columns of $P_{\mathcal{C}\leftarrow\mathcal{B}}$ are linearly independent, hence $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is invertible. Multiplying the equality

$$[\vec{u}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\vec{u}]_{\mathcal{B}}$$

by $\left(P_{\mathcal{C}\leftarrow\mathcal{B}}\right)^{-1}$ we have

$$(P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} \ [\vec{u}]_{\mathcal{C}} = (P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\vec{u}]_{\mathcal{B}}$$

So

$$(P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1} \ [\vec{u}]_{\mathcal{C}} = [\vec{u}]_{\mathcal{B}}$$

Thus the matrix $(P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$ is the matrix that convert \mathcal{C} -coordinates to \mathcal{B} -coordinates, that is

$$P_{\mathcal{B}\leftarrow\mathcal{C}} = (P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$$

Change of Basis in \mathbb{R}^n

Let $\mathcal{E} = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ be the standard basis for \mathbb{R}^n , and let $\mathcal{B} = \{\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}\}$ be a nonstandard basis for \mathbb{R}^n .

We have seen from Sec.4.4 that the change-of-coordinates matrix from ${\cal B}$ to ${\cal E}$ is given by

$$P_{\mathcal{B}} = \left[\begin{array}{cccc} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_n \end{array} \right]$$

That is

$$P_{\mathcal{B}} = P_{\mathcal{E} \leftarrow \mathcal{B}}$$

7 / 11

Example

Let
$$\vec{b}_1=\left[\begin{array}{c}-9\\1\end{array}\right]$$
, $\vec{b}_2=\left[\begin{array}{c}-5\\-1\end{array}\right]$, $\vec{c}_1=\left[\begin{array}{c}1\\-4\end{array}\right]$, and $\vec{c}_2=\left[\begin{array}{c}3\\-5\end{array}\right]$. Let

 $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ be bases for \mathbb{R}^2 . Find the change of coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

Observe from the previous example that

$$\left[\begin{array}{cc|c} \vec{c}_1 & \vec{c}_2 & \vec{b}_1 & \vec{b}_2 \end{array} \right] \sim \left[\begin{array}{cc|c} I_2 & P_{\mathcal{C} \leftarrow \mathcal{B}} \end{array} \right]$$

Sec.4.7

Note

In general, if $\mathcal{B}=\{\vec{b}_1,\vec{b}_2,\ldots,\vec{b}_n\}$ and $\mathcal{C}=\{\vec{c}_1,\vec{c}_2,\ldots,\vec{c}_n\}$ are two different bases for \mathbb{R}^n , then

$$\left[\begin{array}{ccc|ccc} \vec{c}_1 & \cdots & \vec{c}_n & \vec{b}_1 & \cdots & \vec{b}_n \end{array}\right] \xrightarrow{RREF} \left[\begin{array}{ccc|ccc} I_n & P_{\mathcal{C} \leftarrow \mathcal{B}} \end{array}\right]$$

and

$$\left[\begin{array}{ccc|ccc} \vec{b}_1 & \cdots & \vec{b}_n & \vec{c}_1 & \cdots & \vec{c}_n \end{array}\right] \xrightarrow{\textit{RREF}} \left[\begin{array}{ccc|ccc} \textit{I}_n & \textit{P}_{\mathcal{B} \leftarrow \mathcal{C}} \end{array}\right]$$

Fact (Relation between $P_{\mathcal{B}}=P_{\mathcal{E}\leftarrow\mathcal{B}},\ P_{\mathcal{C}}=P_{\mathcal{E}\leftarrow\mathcal{C}}$, and $P_{\mathcal{C}\leftarrow\mathcal{B}}$)

Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ be nonstandard bases for \mathbb{R}^n . For each \vec{x} in \mathbb{R}^n , we have

$$\vec{x} = P_{\mathcal{B}} [\vec{x}]_{\mathcal{B}}$$
 $\vec{x} = P_{\mathcal{C}} [\vec{x}]_{\mathcal{C}}$

with $P_{\mathcal{B}} = \left[\begin{array}{cccc} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_n} \end{array} \right]$ and $P_{\mathcal{C}} = \left[\begin{array}{cccc} \vec{c_1} & \vec{c_2} & \cdots & \vec{c_n} \end{array} \right]$. Therefore

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C}}^{-1} \ \vec{x} = P_{\mathcal{C}}^{-1} \ P_{\mathcal{B}} \ [\vec{x}]_{\mathcal{B}}$$

So

$$P_{\mathcal{C}\leftarrow\mathcal{B}}=P_{\mathcal{C}}^{-1}P_{\mathcal{B}}$$

