Optimization on K-Means Clustering with OpenMP and Comparison Study

Burak Topçu 283078027 June, 2021

Overview

- Introduction
- K-Means Clustering
- Optimization
- Experiments
- Comparisons
- Conclusions

Introduction

- Clustering is an important concept to separate data among sets lots of industrial and scientific applications.
- One of them is the K-Means Clustering algorithm.
- Today, K-Means Clustering algorithm is being actively used in:
 - Document clustering
 - Identifying crime-prone areas
 - Customer segmentation
 - Insurance fraud detection
 - Public transport data analysis
 - Clustering of IT alerts

K-Means Clustering

Input:

 $D = \{d1, d2, \dots, dn\}$ //set of n data items.

k // Number of desired cluster

Output:

A set of k clusters.

Step:

- Arbitrarily choose k data-items from D as initial centroids;
- Repeat

Assign each item *d* to the cluster which has the closest centroid;

Calculate new mean for each cluster;

Until convergence criteria is met.

Optimization

- There are three important parallelization pattern in K-Means Clustering algorithm:
 - Mapping while re-assigning data samples to the clusters
 - Reduction while updating the centers of the clusters by using newly assigned points
 - Fusing the reduction and mapping methods by summing the coordinates of the reassigned data samples iteratively for each corresponding cluster.

Experiments

Experiments

Table 1: 1000000 samples and 10 clusters.

Applied optimization techniques	Elapsed time during the execution
With neither mapping nor reduction	424.63 seconds
With mapping and without reduction:	73.39 seconds
Without mapping and with reduction:	391.56 seconds
With both mapping and reduction:	66.44 seconds

Table 2: 250000 samples and 5 clusters.

Applied optimization techniques	Elapsed time during the execution
With neither mapping nor reduction	52.88 seconds
With mapping and without reduction:	12.14 seconds
Without mapping and with reduction:	48.23 seconds
With both mapping and reduction:	10.97 seconds

Comparison

For implementaiton details: https://github.com/JiaweiZhuang/

Comparison

For implementation details: https://github.com/arneish/parallel-k-means/

Conclusions

As a result, mapping, reduction and fusing them patterns are implemented to optimize the execution of the K-Means Clustering algorithm on the belonging hardware.

This optimization is done based on the OpenMP library and implemented with C programming language.

The achieved speed up is 6.4 times faster than the non-optimized code.

Thank you all for your kind attensions.