Bergman kernels on punctured Riemann surfaces

Xiaonan Ma With Hugues Auvray (Orsay), George Marinescu (Köln)

University Paris 7, France

Intercity Seminar in Arakelov Geometry 2018 Copenhagen, 5 September 2018

Jean-Michel Bismut

- ► Thesis (1973): backward stochastic differential equations
- ► Malliavin Calculus : 1977-1983
- ▶ Local index theory : 1983–
- ▶ Geometric hypoelliptic Laplacians : 2002–

Bergman kernel on complex manifolds

Dolbeault cohomology Kodaira map Bergman kernel

Our point of view: spectral gap + localization

Punctured Riemann surfaces

Bergman kernel on complete manifolds Punctured Riemann surfaces Applications : Cusp forms

Dolbeault complex

- ightharpoonup X compact complex manifold, $n = \dim X$.
- \blacktriangleright E a holomorphic vector bundle on X.
- $\overline{\partial}^E: \Omega^{0,q}(X,E) := \mathscr{C}^{\infty}(X,\Lambda^q(T^{*(0,1)}X) \otimes E) \to \Omega^{0,q+1}(X,E) \text{ the Dolbeault operator :}$

$$\overline{\partial}^{E} \Big(\sum_{j} \alpha_{j} \xi_{j} \Big) = \sum_{j} (\overline{\partial} \alpha_{j}) \xi_{j}.$$

 ξ_j local hol. frame of E, and $\alpha_j \in \Omega^{0,q}(X)$.

$$(\overline{\partial}^E)^2 = 0.$$

Dolbeault cohomology

ightharpoonup Dolbeault cohomology of X with values in E:

$$H^{q}(X,E) := H^{(0,q)}(X,E) := \frac{\ker(\overline{\partial}^{E}|_{\Omega^{0,q}})}{\operatorname{Im}(\overline{\partial}^{E}|_{\Omega^{0,q-1}})}.$$

finite dimensional!

Measure the obstruction to solve the equation $\bar{\partial}g = f$.

▶ $H^0(X, E)$ space of holomorphic sections of E on X.

Kodaira embedding

- \blacktriangleright L positive line bundle/compact complex manifold X.
- ► Kodaira embedding theorem (1954) : $\exists p_0$, s.t. for $p \ge p_0$, Kodaira map

$$\Phi_p: X \longrightarrow \mathbb{P}(H^0(X, L^p)^*),$$

$$\Phi_p(x) = \{ s \in H^0(X, L^p) : s(x) = 0 \},$$

is well-defined, and is a holomorphic embedding.

▶ + Chow theorem, this implies X is algebraic variety : \exists homogenous polynomials $\{f_j\}_j$ on $z \in \mathbb{C}^N$ s.t. $X = \{[z] \in \mathbb{CP}^{N-1} : f_j(z) = 0 \ \forall j\}.$

Metric aspect of Kodaira map

- ▶ (L, h^L) positive hol. Herm. line bundle on X
- ▶ Kodaira map $\Phi_p: X \longrightarrow \mathbb{P}(H^0(X, L^p)^*)$. We have $\Phi_p^*\mathscr{O}(1) \simeq L^p$, and

$$h^{\Phi_p^* \mathcal{O}(1)}(x) = P_p(x, x)^{-1} h^{L^p}(x).$$

 $P_p(x,x) \in \mathscr{C}^{\infty}(X)$ Bergman kernel on the diagonal.

Bergman kernel

- (E, h^E) hol. Herm. vector bundle on X. $\omega = \frac{\sqrt{-1}}{2\pi} R^L$ Kähler form. $dv_X = \frac{\omega^n}{n!}$ Riem. vol. form on X
- L^2 -metric on $H^0(X, \stackrel{\sim}{L^p} \otimes E)$

$$\langle s, s' \rangle = \int_X \langle s, s' \rangle (x) dv_X(x).$$

- ▶ $P_p: \mathscr{C}^{\infty}(X, L^p \otimes E) \to H^0(X, L^p \otimes E)$ orth. proj. Bergman kernel $P_p(x, x') \in (L^p \otimes E)_x \otimes (L^p \otimes E)_{x'}$ smooth kernel of P_p .
- $\{s_j\}$ orth. basis of $H^0(X, L^p \otimes E)$, then

$$P_p(x, x') = \sum_j s_j(x) \otimes s_j(x')^*.$$

If
$$E = \mathbb{C}$$
, $P_p(x, x) = \sum_i |s_i(x)|^2$.

Asymptotic expansion

- ▶ Take $E = \mathbb{C}$. $\omega = \frac{\sqrt{-1}}{2\pi} R^L$ Kähler form.

$$\left| P_p(x,x) - \sum_{r=0}^k b_r(x) p^{n-r} \right|_{\mathscr{C}^l} \leqslant C_{k,l} p^{n-k-1}.$$

- ▶ Initial by Tian, established by Catlin, Zelditch (1998) by using parametrix of Boutet de Monvel-Sjöstrand (1976) for Bergman kernel on the disc bundle $\Omega = \{z \in L^* : |z|_{h^L} \leq 1\}.$
- ▶ Corollary (Tian 1990) : Set of Fubini-Study forms is dense in space of Kähler forms in Kähler class $c_1(L)$.

$$\left| \frac{1}{p} \Phi_p^*(\omega_{FS}) - \omega \right|_{\mathscr{C}^l(X)} \leqslant C_l/p.$$

More applications

- Lu compute some coefficients b_r by using peak section method (L^2 -method) in complex geometry.
- ▶ Donaldson : existence of constant scalar curvature Kähler metric $\omega \in c_1(L)$ relates to Mumford-Chow stability of X.

Spectral gap property: our starting point

- $D_p := \sqrt{2} \left(\overline{\partial}^{L^p} + \overline{\partial}^{L^p,*} \right). \text{ (Dirac operator!)}$
- ► Hodge + Kodaira : for $p \gg 0$, $H^0(X, L^p) = \text{Ker } D_p$.
- ▶ Spectral gap property : for $p \gg 0$,

$$\operatorname{Spec}(D_p^2) \subset \{0\} \cup [4\pi p - C_L, +\infty[.$$

Bismut-Vasserot : complex case Ma, Marinescu : symplectic case

Dai-Liu-Ma, Ma-Marinescu: Idea of the proof

► Spec(D_p^2) $\subset \{0\} \cup [4\pi p - C_L, +\infty[\implies p \gg 0,$

$$P_p = e^{-tD_p^2} - e^{-tD_p^2} 1_{[2\pi p, \infty[}(D_p^2).$$

- ▶ When $p \to \infty$, $P_p \sim e^{-tD_p^2}$. Use heat kernel $e^{-tD_p^2}$.
- ightharpoonup Principal: spectral gap \Longrightarrow the problem is local
 - Analytic localization technique of Bismut-Lebeau in local index theory \Longrightarrow Asymptotic expansion and the effective way to compute the coefficients.
- ▶ Dai-Liu-Ma : Asymptotic expansion for $P_p(x, x')$, works for \circ orbifold \circ symplectic

Toeplitz operator I

- ▶ $P_p: \mathscr{C}^{\infty}(X, L^p \otimes E) \to H^0(X, L^p \otimes E)$ orthogonal projection. Bergman projection!
- ▶ Berezin-Toeplitz quantization of $f \in \mathscr{C}^{\infty}(X, \text{End}(E))$:

$$T_{f,p} = P_p f P_p \in \operatorname{End}(H^0(X, L^p \otimes E)).$$

▶ A Toeplitz operator is a family of operators $\{T_p \in \text{End}(H^0(X, L^p \otimes E))\}_{p \in \mathbb{N}^*}$ s. t. $\exists g_l \in \mathscr{C}^{\infty}(X, \text{End}(E))$ s.t. $\forall k \in \mathbb{N}, p \in \mathbb{N}^*$,

$$\left\| T_p - \sum_{l=0}^k p^{-l} T_{g_l,p} \right\| \leqslant C_k \, p^{-k-1}.$$

Berezin (1970), Boutet de Monvel-Guillemin (1981), Bordemann-Meinrenken-Schlichenmaier, Ma-Marinescu

Geometric Quantization (Kostant, Souriau)

- ► Classical phase space $:(X, \omega)$ Quantum phase space $H^0(X, L)$
- ► Classical observables : Poisson algebra $\mathscr{C}^{\infty}(X)$, Quantum observables : linear operators on $H^0(X, L)$
- ▶ Semi-classical limit : $H^0(X, L^p)$, $p \to \infty$ is a way to relate the classical and quantum observables.

Toeplitz operator II

▶ Ma-Marinescu (2008, 2012) : $\forall f, g \in \mathscr{C}^{\infty}(X, \operatorname{End}(E)),$ $T_{f,p}T_{g,p}$ is a Toeplitz operator, and

$$T_{f,p} T_{g,p} = T_{fg,p} + T_{-\frac{1}{2\pi} \langle \nabla^{1,0} f, \overline{\partial}^E g \rangle_{\omega,p}} p^{-1} + \mathcal{O}(p^{-2}).$$

Roughly, our character : $\{T_p \in \operatorname{End}(H^0(X, L^p \otimes E))\}$ is Toeplitz operator iff it has the same type off-diagonal asymptotics expansion as Bergman kernel $P_p(x, x')$. Thus Toeplitz operators form an algebra.

- ▶ It's useful in our recent study with Jean-Michel Bismut, Weiping Zhang on the asymptotics of the analytic torsion for flat vector bundles.
- When $E = \mathbb{C}$, in the Kähler case, B-M-S (1994): $T_{f,p} T_{g,p} = T_{fg,p} + \mathcal{O}(p^{-1})$.

Deformation quantization

► Ma-Marinescu (2008) : Symplectic case, $C_0(f,g) = fg$

$$T_{f,p} T_{g,p} = \sum_{r=0}^{\infty} p^{-r} T_{C_r(f,g),p} + \mathcal{O}(p^{-\infty}).$$

▶ For $E = \mathbb{C}$, Berezin-Toeplitz *-product :

$$f *_{\hbar} g := \sum_{l=0}^{\infty} \hbar^l C_l(f,g) \in \mathscr{C}^{\infty}(X)[[\hbar]] \text{ for } f,g \in \mathscr{C}^{\infty}(X).$$

 \implies geometric canonical, associative *-product $f *_{\hbar} g$.

$$f *_{\hbar} g - g *_{\hbar} f = \sqrt{-1} \{f, g\} \hbar + \mathcal{O}(\hbar^2).$$

► Existence of formal *-product : on symplectic manifolds by De Wilde, Lecomte (1983). on Poisson manifolds by Kontsevich (1996).

Bergman kernel on complete manifolds

- (X, ω_X) complete Kähler manifold, dim X = n, (L, h) Herm. hol. line bundle on X.
- ► Theorem (Ma-Marinescu 2007) : Assume $\exists \varepsilon, C > 0$ s.t.

$$iR^L \ge \varepsilon \omega_X$$
, $\operatorname{Ric}_{\omega_X} \ge -C\omega_M$

Then $\exists \mathbf{b}_j \in \mathscr{C}^{\infty}(M)$ s.t. \forall compact set $K \subset X$, $k, m \in \mathbb{N}, \exists C > 0$ s.t. for $p \in \mathbb{N}^*$,

$$\left\| \frac{1}{p^n} B_p(x) - \sum_{j=0}^k \boldsymbol{b}_j(x) p^{-j} \right\|_{\mathscr{C}^m(K)} \le C p^{-k-1},$$

$$\boldsymbol{b}_0 = \frac{c_1(L,h)^n}{\omega_X^n}, \ \boldsymbol{b}_1 = \frac{\boldsymbol{b}_0}{8\pi} (r_\omega - 2\Delta_\omega \log \boldsymbol{b}_0),$$

 r_{ω} , Δ_{ω} scalar curvature, Laplacian w.r.t. $\omega := c_1(L, h)$.

Punctured Riemann surfaces $\Sigma = \overline{\Sigma} \setminus D$

- ▶ $\overline{\Sigma}$ compact Riemann surface, $D = \{a_1, \dots, a_N\} \subset \overline{\Sigma}$ finite set. $\Sigma = \overline{\Sigma} \setminus D$
- ▶ L hol. line bundle on $\overline{\Sigma}$, h singular metric on L s.t.
 - (α) h smooth over Σ , \exists a trivialization of L on $\overline{V_j} \ni a_j$ s.t. $|1|_h^2(z_j) = |\log(|z_j|^2)|, \forall j$.
 - (β) ∃ε > 0 s.t. the (smooth) curvature R^L of h satisfies

$$iR^L \ge \varepsilon \omega_{\Sigma} \text{ over } \Sigma \text{ and } iR^L = \omega_{\Sigma} \text{ on } V_j := \overline{V_j} \setminus \{a_j\}.$$

▶ Poincaré metric on punctured unit disc $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$

$$\omega_{\mathbb{D}^*} := \frac{idz \wedge d\overline{z}}{|z|^2 \log^2(|z|^2)} \cdot$$

 $\blacktriangleright \implies \omega_{\Sigma} = \omega_{\mathbb{D}^*}$ on V_i and $(\Sigma, \omega_{\Sigma})$ is complete.

Þ

$$H_{(2)}^{0}(\Sigma, L^{p}) = \left\{ S \in H^{0}(\Sigma, L^{p}) : \|S\|_{L^{2}}^{2} := \int_{\Sigma} |S|_{h^{p}}^{2} \omega_{\Sigma} < \infty \right\}$$

We have

$$H_{(2)}^0(\Sigma, L^p) \subset H^0(\overline{\Sigma}, L^p).$$

▶ Bergman kernel function : $\{S_{\ell}^p\}_{\ell=1}^{d_p}$ an orthonormal basis of $H_{(2)}^0(\Sigma, L^p)$, then

$$B_p(x) = \sum_{\ell=1}^{d_p} |S_{\ell}^p(x)|_{h^p}^2 : \Sigma \to \mathbb{R}.$$

$$B_p^{\mathbb{D}^*}$$
 w.r.t. $(\mathbb{D}^*, \omega_{\mathbb{D}^*}, \mathbb{C}, \left|\log(|z|^2)\right|^p \mid)$.

► Theorem (Auvray-Ma-Marinescu 2016): Assume that $(\Sigma, \omega_{\Sigma}, L, h)$ fulfill conditions (α) and (β) . Let $a \in D$, and $0 < r < e^{-1}$ as above. Then $\forall k \in \mathbb{N}, \ell > 0, \alpha \geq 0, \exists C \text{ s.t. for } p \gg 1, \text{ on } \mathbb{D}^*_{r/2} \times \mathbb{D}^*_{r/2}, \text{ we have}$

$$\left| B_p^{\mathbb{D}^*}(x,y) - B_p(x,y) \right|_{C^k(h^p)}$$

$$\leq Cp^{-\ell} \left| \log(|x|^2) \right|^{-\alpha} \left| \log(|y|^2) \right|^{-\alpha}.$$

► Theorem (Auvray-Ma-Marinescu 2016) : Assume that $(\Sigma, \omega_{\Sigma}, L, h)$ fulfill conditions (α) and (β) . Then $\forall \ell, m \in \mathbb{N}$, and $\delta > 0$, $\exists C > 0$ s.t. $\forall p \in \mathbb{N}^*$, and $z \in V_1 \cup \ldots \cup V_N$

$$\left| B_p - B_p^{\mathbb{D}^*} \right|_{\mathscr{L}^m}(z_j) \le C p^{-\ell} \left| \log(|z_j|^2) \right|^{-\delta}.$$

ightharpoonup Corollary : As $p \to \infty$,

$$\sup_{x \in \Sigma} B_p(x) = \sup_{x \in \Sigma, 0 \neq \sigma \in H^0_{(2)}(\Sigma, L^p)} \frac{|\sigma(x)|_{h^p}^2}{\|\sigma\|_{L^2}^2} = \left(\frac{p}{2\pi}\right)^{3/2} + \mathcal{O}(p).$$

▶ For $p \ge 2$, the set

$$\left\{ \left(\frac{\ell^{p-1}}{2\pi(p-2)!} \right)^{1/2} z^{\ell} : \ell \in \mathbb{N}, \ \ell \ge 1 \right\}$$

forms an orthonormal basis of $H^p_{(2)}(\mathbb{D}^*)$. Thus

$$B_p^{\mathbb{D}^*}(z) = \frac{\left|\log(|z|^2)\right|^p}{2\pi(p-2)!} \sum_{\ell=1}^{\infty} \ell^{p-1}|z|^{2\ell}.$$

FIGURE – Functions $\left(\frac{2\pi}{p}\right)^{3/2} \frac{\left|\log(x^p)\right|^{p+1}}{2\pi(p-1)!} \sum_{\ell=1}^{\infty} \ell^p x^{p\ell}$ on (0,1)

Geometric description

- ▶ $\overline{\Sigma}$ compact Riemann surface of genus g $D = \{a_1, \dots, a_N\} \subset \overline{\Sigma}$.
- ▶ The following conditions are equivalent :
 - (i) $\Sigma = \overline{\Sigma} \setminus D$ admits a complete Kähler-Einstein metric ω_{Σ} with $\mathrm{Ric}_{\omega_{\Sigma}} = -\omega_{\Sigma}$,
 - (ii) 2g 2 + N > 0,
 - (iii) the universal cover of Σ is the upper-half plane \mathbb{H} ,
 - (iv) $L = K_{\overline{\Sigma}} \otimes \mathscr{O}_{\overline{\Sigma}}(D)$ is ample.
 - (v) $\Sigma := \Gamma \backslash \mathbb{H}$, $\Gamma \subset \mathrm{PSL}(2, \mathbb{R})$ a geometrically finite Fuchsian group of the first kind, without elliptic elements.
- ▶ The Kähler-Einstein metric ω_{Σ} is induced by the Poincaré metric on \mathbb{H} .

 $ightharpoonup \mathbb{H} = \{z = x + iy \in \mathbb{C} : y > 0\} \subset \mathbb{C}$ upper-half plane.

$$\mathrm{PSL}(2,\mathbb{R}) = \Big\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,\mathbb{R}) : \det \gamma = 1 \Big\} / \pm 1$$

acting on \mathbb{C} as

$$\gamma z = \frac{az+b}{cz+d}$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Poincaré metric on H

$$\omega_{\mathbb{H}} = \frac{idz \wedge d\overline{z}}{4v^2}.$$

▶ S_{2p}^{Γ} space of *cusp forms* of weight 2p of Γ :

$$f \in \mathscr{O}(\mathbb{H}) : f(\gamma z) = (cz+d)^{2p} f(z), \ z \in \mathbb{H}, \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

and its limit at any cusp of Γ is zero.

▶ Mumford (1977)

$$\Phi: f \in \mathcal{S}_{2p}^{\Gamma} \to f dz^{\otimes p} \in H^0(\mathbb{H}, K_{\mathbb{H}}^p)$$

induces an isomorphism

$$\Phi: \mathcal{S}_{2p}^{\Gamma} \to H^0(\overline{\Sigma}, L^p \otimes \mathscr{O}_{\overline{\Sigma}}(D)^{-1}) \cong H^0_{(2)}(\Sigma, L^p).$$

• Petersson scalar product on $\mathcal{S}_{2p}^{\Gamma}$

$$\langle f, g \rangle := \int_{\text{fund, domain of } \Gamma} f(z) \overline{g(z)} (2y)^{2p} \frac{1}{2} y^{-2} dx dy.$$

 \bullet 4 is an isometry!

- ▶ $\Gamma \subset \operatorname{PSL}(2,\mathbb{R})$ a geometrically finite Fuchsian group of the first kind without elliptic elements. B_n^{Γ} Bergman kernel function of cusp forms of weight 2p
- ▶ Theorem (AMM) If Γ is cocompact, as $p \to +\infty$

$$B_p^{\Gamma}(x) = \frac{p}{\pi} + \mathcal{O}(1),$$
 uniformly on $\Gamma \backslash \mathbb{H}$.

• If Γ is not cocompact then

$$\sup_{x \in \Gamma \setminus \mathbb{H}} B_p^{\Gamma}(x) = \left(\frac{p}{\pi}\right)^{3/2} + \mathcal{O}(p), \quad \text{as } p \to +\infty.$$

- ▶ Let $\Gamma_0 \subset \mathrm{PSL}(2,\mathbb{R})$ be a fixed Fuchsian subgroup of the first kind without elliptic elements and let $\Gamma \subset \Gamma_0$ be any subgroup of finite index.
- ▶ Theorem (AMM) If Γ_0 is cocompact, then

$$B_p^{\Gamma}(x) = \frac{p}{\pi} + \mathcal{O}_{\Gamma_0}(1), \quad \text{as } p \to +\infty.$$

• If Γ_0 is not cocompact then

$$\sup_{x \in \Gamma \setminus \mathbb{H}} B_p^{\Gamma}(x) = \left(\frac{p}{\pi}\right)^{3/2} + \mathcal{O}_{\Gamma_0}(p), \quad \text{as } p \to +\infty.$$

and constants in $\mathcal{O}_{\Gamma_0}(1)$, $\mathcal{O}_{\Gamma_0}(p)$ depend solely on Γ_0 .

- ▶ $\Gamma_0 \subset \mathrm{PSL}(2,\mathbb{R})$ a fixed Fuchsian subgroup of the first kind. $\{x_j\}_{j=1}^q$ orbifold points of $\Gamma_0 \setminus \mathbb{H}$.
- ▶ $\Gamma \subset \Gamma_0$ subgroup of finite index, $\pi_{\Gamma} : \Gamma \backslash \mathbb{H} \to \Gamma_0 \backslash \mathbb{H}$ projection.
- ▶ Theorem (AMM) If Γ_0 is cocompact, then as $p \to +\infty$

$$B_p^{\Gamma}(x) = \frac{p}{\pi} + \mathcal{O}_{\Gamma_0}(1)$$
, uniformly on $(\Gamma \backslash \mathbb{H}) \backslash \bigcup_{j=1}^q \pi_{\Gamma}^{-1}(U_{x_j})$.

On each $\pi_{\Gamma}^{-1}(U_{x_j})$ we have as $p \to +\infty$,

$$B_p^{\Gamma}(x) = \left(1 + \sum_{\gamma \in \Gamma_{x_i^{\Gamma}} \setminus \{1\}} \exp\left(ip\theta_{\gamma} - p(1 - e^{i\theta_{\gamma}})|z|^2\right)\right) \frac{p}{\pi} + \mathcal{O}_{\Gamma_0}(1).$$

• If Γ_0 is not cocompact then as $p \to \infty$

$$\sup_{x \in \Gamma \backslash \mathbb{H}} B_p^{\Gamma}(x) = \left(\frac{p}{\pi}\right)^{3/2} + \mathcal{O}_{\Gamma_0}(p).$$

constants in $\mathcal{O}_{\Gamma_0}(1)$, $\mathcal{O}_{\Gamma_0}(p)$ depend solely on Γ_0 .

- ▶ Abbes and Ullmo (1995), Michel and Ullmo (1998)
- ► Theorem (Friedman, Jorgenson and Kramer (2013)):

$$\sup_{x \in \Gamma \setminus \mathbb{H}} B_p^{\Gamma}(x) = \begin{cases} \mathcal{O}_{\Gamma_0}(p) & \text{if } \Gamma_0 \text{ is cocompact,} \\ \mathcal{O}_{\Gamma_0}(p^{3/2}) & \text{if } \Gamma_0 \text{ is not cocompact.} \end{cases}$$

Idea of the proof

► Kodaira Laplacian

$$\square_p = \overline{\partial}^{L^p} \overline{\partial}^{L^p*} + \overline{\partial}^{L^p*} \overline{\partial}^{L^p} : \Omega^{(0,\bullet)}(\Sigma, L^p) \to \Omega^{(0,\bullet)}(\Sigma, L^p).$$

Spectral gap : Spec(\square_p) \subset $\{0\} \cup [Cp, \infty) \Longrightarrow$ The problem is local!

 Weighted elliptic estimates and Weighted Sobolev inequalities:

$$||f||_{C^0(\Sigma,\omega_{\Sigma})} \le c_0 ||f||_{\boldsymbol{L}^{1,3}_{wtd}}.$$

with

$$||f||_{L^{1,k}_{\mathrm{wtd}}} := \int_{\Sigma} \rho(|f| + \ldots + |(\nabla^{\Sigma})^k f|_{\omega_{\Sigma}}) \omega_{\Sigma}.$$

for
$$\rho \in \mathscr{C}^{\infty}(\Sigma, [1, +\infty)), \ \rho = \left| \log(|z_i|^2) \right| \text{ near } a_i \in D.$$

Idea of the proof

• for $\gamma > \frac{1}{2}, \ \ell \in \mathbb{N}^*, \ \exists C > 0 \text{ s.t. } \forall x,y \in \mathbb{D}^*_{r/2},$

$$|B_p^{\mathbb{D}^*} - B_p^{\Sigma}|_{C^0}(x, y) \le Cp^{-\ell} |\log(|x|^2)|^{\gamma} |\log(|y|^2)|^{\gamma}.$$

▶ Use the observation

$$H_{(2)}^0(\Sigma, L^p) = \{ \sigma \in H^0(\overline{\Sigma}, L^p), \sigma|_D = 0 \},$$

to conclude : $\forall \delta > 0, \ \ell \in \mathbb{N}^*, \ \exists C > 0 \text{ s.t. } \forall x,y \in \mathbb{D}^*_{r/2},$

$$|B_p^{\mathbb{D}^*} - B_p^{\Sigma}|_{C^0}(x, y) \le Cp^{-\ell} |\log(|x|^2)|^{-\delta} |\log(|y|^2)|^{-\delta}.$$

Bergman kernel on complete manifolds Punctured Riemann surfaces Applications: Cusp forms

Thank you!