## VISCOSITY OF FLUID

#### **Fluid Mechanics**

Mukhtiar Ali Talpur

 Resistance to flow of fluid, it can be thought of the friction between the molecules of fluid when moving

#### Causes :

- 1- Cohesive force
- 2- Intermolecular momentum transfer

## **VISCOSITY**

 Resistance to flow of fluid, it can be thought of the friction between the molecules of fluid when moving

#### Causes :

- 1- Cohesive force
- 2- Intermolecular momentum transfer

## **VISCOSITY**

Cohesive forces more common in liquids

 Intermolecular momentum transfer more common in gases

## **VISCOSITY**



I (distance I solid boundry , velocity Rafile / Dist velocity of liquid



# NEWTONS LAW OF VISCOSITY

Rate of shear stress is directly proportional to rate of shear strain

N.



- At point A velocity is U= zero
- At point B velocity is dU
- Fluid particle from point B to point C will travel distance of dU.dt (in time interval dt)

• 
$$\tan d\theta = \frac{du.dt}{dy}$$

• 
$$d\theta = \frac{du.dt}{dy}$$

• 
$$\frac{d\theta}{dt} = \frac{du}{dy}$$

• 
$$\frac{du}{dy}$$
 = change in velocity due with respect to distance is know as velocity gradient

• 
$$\frac{d\theta}{dt}$$
 = rate of shear strain

• Rate of shear strain = velocity gradient

• T proportional to  $\frac{d\theta}{dt}$ 

Or

- T proportional to  $\frac{du}{dy}$
- $T = \mu \frac{du}{dy}$  (newtons law of viscosity)

Dynamic viscosity (µ)

• 
$$T = \mu \frac{du}{dy}$$

#### S.I Unit

$$\frac{N}{m^2} = \text{m/s} \cdot 1/\text{m}$$

$$\mu = N.S/m^2$$

$$\mu = Pa \cdot S$$

#### C.G.S

T (dyne/cm<sup>2</sup>) = 
$$U' \frac{du}{dy}$$
 (cm/sec . 1/cm)

$$U = (dyne.s / cm^2) = poise$$

$$1 \text{ Pa.S} = 10 \text{ poise}$$

## KINEMATIC VISCOSITY $(\nu)$

$$\nu = \frac{\mu}{9}$$

(S.I Units m<sup>2</sup>/sec)

(C.G.S Units cm<sup>2</sup>/ sec) also known as stokes

 $1 \text{ stokes} = 10^{-4} \text{ m}^2/\text{sec}$