1 Algebra

Note: Any reference numbers are to the lecture notes

Functions and Symmetries

Definition 0.1.1: Functions

A function $f: X \to Y$ is called

- injective if $f(x_1) = f(x_2) \implies x_1 = x_2$. f is said to be one-to-one on X
- surjective if for every $y \in Y$, $\exists x \in X$ s.t. f(x) = y. f is said to take X onto Y
- bijective if it is both injective and surjective

Definition 1.1.3: Graph Isomorphisms

An **isomorphism** between two graphs is a *bijection* between them that preserves all edges. More precisely, if Γ_1 and Γ_2 are graphs, with sets of vertices V_1 and V_2 respectively, then an isomorphism from Γ_1 and Γ_2 is a bijection

$$f: V_1 \to V_2$$

such that $f(v_1)$ and $f(v_2)$ are joined by an edge if and only if v_1 and v_2 are also joined by an edge. We say that Γ_1 and Γ_2 are isomorphic if there exists an isomorphism $f:\Gamma_1\to\Gamma_2$

Definition 1.1.9: Symmetry

A **symmetry** of a graph is an *isomorphism* from the graph to itself, i.e. if the set of vertices is V, then the symmetry is a bijection $f: V \to V$ that preserves edges. That is, a symmetry is a bijection $f: V \to V$ such that $f(v_1)$ and $f(v_2)$ are joined by an edge if and only if v_1 and v_2 are joined by an edge.

Groups

Definition 1.2.3: Groups

For an operation *, We say a non-empty set G is a **group** under * if the following four axioms hold:

- G1 Closure: * is a binary operation on G, that is $a*b \in G$ for all $a,b \in G$.
- **G2** Associativity: (a*b)*c = a*(b*c) for all $a,b,c \in G$
- G3 Identity: There exists an *identity* element of G such that e*q=q*e=q for all $q\in G$.
- **G4 Inverse:** Every element $g \in G$ has an inverse g^{-1} such that $q * q^{-1} = q^{-1} * q = e$

Definition 1.2.6: Abelian Group

The definition of a group doesn't require that a*b=b*a. We say that a group is **abelian** or **commutative** if a*b=b*a for every $a,b\in G$. We say that a commutes with b, or that a and b commute

Subgroups

Definition 2.1.1: Subgroups

Let G be a group. We say that a non-empty subset H of G is a **subgroup** of G if H itself is a group (under the operation from G). We write $H \leq G$ if H is a subgroup of G. If $H \neq G$, we write H < G and say H is a proper subgroup

Theorem 1: Subgroup Test

 $H \subseteq G$ is a subgroup of G if and only if:

- S1: H is not empty
- S2: If $h, k \in H$ then $h * k \in H$
- S3: If $h \in H$ then $h^{-1} \in H$

Alternative test for subgroups:

- $\widetilde{S1}$: H is not empty.
- $\widetilde{S2}$: If $h, k \in H$ then $h * k^{-1} \in H$

Definition 2.2.4: Order of an Element

Let G be a group and $g \in G$. Then the **order** o(g) of g is the *least* natural number n such that

$$g^n = e$$

If no such n exists, we say that a has infinite order

Definition 2.2.3: Order of a Group

The **order** of a finite group, written |G|, is the number of elements in G. If G is infinite we say that $|G| = \infty$, or the order of G is infinite.

Theorem 2: Order of a Finite Group

In a finite group, every element has finite order.

If g is an element of a finite group G, then there exists $k\in\mathbb{N}$ such that $g^k=g^{-1}$

Definition 2.2.8: Generating Subset

Let G be a group and let $g \in G$ be an element. We define the subset

$$\langle g \rangle := \{ g^k \mid k \in \mathbb{Z} \} = \{ \dots, g^{-2}, g^{-1}, e, g, g^2, \dots \}$$

Note that if G is finite, then by 2 $\langle g \rangle$ is finite, and we can think of $\langle g \rangle$ as

$$\langle q \rangle = \{e, q, \dots, q^{o(g)-1}\}\$$

Definition 2.2.10: Cyclic Subgroup

A subgroup $H \leq G$ is **cyclic** if $H = \langle h \rangle$ for some $h \in H$. In this case, we say that H is the *cyclic subgroup generated by h*. If $G = \langle g \rangle$ for some $g \in G$, then we say that the group G is *cyclic*, and that g is a *generator*.

Remark 2.2.12 - 16: Consequences of Cyclic groups

- **2.2.12** If $g \in G$, then $o(g) = |\langle g \rangle|$
- 2.2.13: If G is cyclic, then G is abelian.
- 2.2.14: Let G be a finite group. Then

G is cyclic \iff G has an element of order |G|

- 2.2.15: Let G be a cyclic group and let H be a subgroup of G. Then H is cyclic.
- 2.2.16: Let $m, n \in \mathbb{N}$, let $G = \langle g \rangle$ be a cyclic group of order m and $H = \langle h \rangle$ be a cyclic group of order n. Then

 $G \times H$ cyclic $\iff m$ and n are coprime $(\gcd(m,n) = 1)$

Cosets and Lagrange

Definition 2.3.2: Relation

Let X be a set, and R a subset of $X \times X$; thus R consists of some ordered pairs (s,t) with $s,t \in X$. If $(s,t) \in R$ we write $s \sim t$ and say "s is related to t". We call \sim a **relation** on X.

Definition 2.3.2: Equivalence Relation

- Reflexive: $x \sim x$ for all $x \in X$
- Symmetric: $x \sim y$ implies that $y \sim x$ for all $x, y \in X$
- Transitive: $x \sim y$ and $y \sim z$ implies that $x \sim z$ for all $x,y,z \in X$

A relation \sim is called an **equivalence relation** on X if it satisfies the following three axioms:

Definition 2.3.4: Coset

Let $H \leq G$ and let $g \in G$. Then a *left coset* of H in G is a subset of G of the form gH, for some $g \in G$. We denote the set of left cosets of H in G by G/H

(Notation) Let A,B be subgroups of a group G and let $g \in G$. Then

$$AB := \{ab \mid a \in A, b \in B\}, \quad qA := \{qA \mid a \in A\}$$

Theorem 3: Lagrange's Theorem

Suppose that G is a finite group.

- If H < G, then |H| divides |G|
- Let $q \in G$. Then o(q) divides |G|
- For all $q \in G$, we have that $q^{|G|} = e$

Theorem 4: Coset Rules

Let $H \leq G$

- For all $h \in H$, hH = H. In particular eH = H
- For $g_1, g_2 \in G$, the following are equivalent
 - $-g_1H=g_2H$
 - there exists $h \in H$ such that $g_2 = g_1 h$
 - $-g_2 \in g_1H$
- For $g_1, g_2 \in G$, define $g_1 \sim g_2$ if and only if $g_1 H = g_2 H$. Then \sim defines an equivalence relation on G.

Theorem 5: Index of a Subgroup

The **index** of $H \leq G$ is defined as the number of distinct left cosets of H in G, which by Lagrange's is $|G/H| = \frac{|G|}{|H|}$

Remark 2.4.6 - 8: Consequences of Lagrange

- 2.4.6: Suppose that G is a group with |G|=p, where p is prime. Then G is a cyclic group
- 2.4.7: Suppose that G is a group with |G| < 6. Then G is abelian
- 2.4.8: If p is a prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$

Homomorphisms and Isomorphisms

Definition 3.1.1: Group Homomorphism

Let $(G,*),(H,\circ)$ be groups. A map $\phi:G\to H$ is called a homomorphism if

$$\phi(x * y) = \phi(x) \circ \phi(y)$$
 for all $x, y \in G$

Note that the product on the left is formed using *, while the product on the right is formed using \circ

Definition 3.1.2: Group Isomorphism

A group homomorphism $\phi: G \to H$ that is also a bijection is called an **isomorphism** of groups. In this case we say that G and H are *isomorphic* and we write $G \cong H$. An isomorphism $G \to G$ is called an **automorphism** of G.

Theorem 6: Cyclic Isomorphisms

All finite cyclic groups with the same order are isomorphic to each other. Therefore, cyclic groups of order n are isomorphic to $(\mathbb{Z}_n, +)$

All infinite cyclic groups are *isomorphic* to each other. Therefore, each cyclic group of infinite order is isomorphic to $(\mathbb{Z}, +)$

Remark 3.1.5: Consequences of Homomorphisms

Let $\phi: G \to H$ be a group homomorphism. Then

- $\phi(e_G) = e_H$
- $\phi(g^k) = (\phi(g))^k$ and $\phi(g^{-1}) = (\phi(g))^{-1}$ for all $g \in G$
- If ϕ is injective, the order of $g \in G$ equals the order of $\phi(g) \in H.$

Definition 3.1.7: Normal Subgroup

A subgroup $N \leq G$ is **normal** if the left and right cosets of N are equal, i.e. gN = Ng for all $g \in G$. If N is a normal subgroup of G, we write $N \triangleleft G$. Kernels of homomorphisms are always normal subgroups

Definition 3.1.6: Image and Kernel of a Group

Let $\phi: G \to H$ be a group homomorphism.

• The **image** of ϕ is defined to be

$$\operatorname{im} \phi := \{ h \in H \mid h = \phi(q) \text{ for some } q \in G \}$$

• The **kernel** of ϕ is defined to be

$$\ker \phi := \{ g \in G \mid \phi(g) = e_H \}$$

Note: $\operatorname{im} \phi$ is a subgroup of H and $\operatorname{ker} \phi$ is a subgroup of G

Theorem 7: Product Isomorphisms

Let $H, K \leq G$ be subgroups with $H \cap K = \{e\}$.

- The map $\phi: H \times K \to HK$ given by $\phi: (h,k) \to hk$ is bijective
- If every element of H commutes with every element of K when multiplied in G (i.e. $hk=kh \quad \forall h\in H, k\in K$), then HK is a subgroup of G, and it is isomorphic to $H\times K$ via ϕ

Theorem 8: Size of Product Group

Let $H,K \leq G$ be finite subgroups of a group G such that $H \cap K = \{e\}$ Then $|HK| = |H| \times |K|$.

Group Actions

Definition 4.1.1: Group Action

Let (G, *) be a group, and let X be a nonempty set. Then a (left) **action** of G on X is a map

$$G \times X \to X$$

written $(q, x) \mapsto q \cdot x$, such that

$$q_1 \cdot (q_2 \cdot x) = (q_1 * q_2) \cdot x$$
 and $e \cdot x = x$

for all $g_1, g_2 \in G$ and all $x \in X$.

Definition 4.2.1: Orbit, Stabilizer, and Fix

• Suppose that G acts on X. Then the set

$$N:=\{g\in G\mid g\cdot x=x\quad \forall x\in X\}$$

is a subgroup of G, and is called the **kernel** of the action. If $N = \{e\}$, then we say the action is **faithful**

• For every x in X, the **orbit** of x is a subset of X defined by $\operatorname{Orb}_G(x) = \{q \cdot x \mid q \in G\}$

• For every
$$x$$
 in X , the **stabilizer** of x is a subgroup of G

For every x in X, the stabilizer of x is a subgroup of G
defined by

$$\operatorname{Stab}_{G}(x) = \{ g \in G \mid g \cdot x = x \}$$

• For every g in G, the fix of g is a subset of X defined by $\operatorname{Fix}(g) = \{x \in X \mid g \cdot x = x\}$

• Let
$$G$$
 act on X , let $x \in X$ and set $H := \operatorname{Stab}_G(x)$. If $y = g \cdot x$ for some $g \in G$, then

$$send_x(y) = qH$$

• Let $h \in H$ and $g \in G := X$. The **conjugate action** is:

$$h \cdot g := hgh^{-1}$$

- An action of G on X is **transitive** if for all $x,y\in X$ there exists $g\in G$ such that $y=g\cdot x$. Equivalently, X is a single orbit under G
- We define the **centre** of a group G to be

$$C(G) := \{ g \in G \mid hg = gh \text{ for all } h \in G \}$$

The **centralizer** of q in G is defined as

$$G(g) := \{h \in G \mid gh = hg\}$$

Theorem 9: Orbit Equivalence

Let G act on X. Then

$$x \sim y \iff y = g \cdot x \text{ for some } g \in G$$

defines an equivalence relation on X. The equivalence classes are the orbits of G. Thus when G acts on X, we obtain a partition of X into orbits

Theorem 10: Orbit-Stabilizer Theorem

Suppose G is a finite group acting on a set X, and let $x \in X$. Then $|\operatorname{Orb}_G(x)| \times |\operatorname{Stab}_G(x)| = |G|$, or in words:

size of orbit \times size of stabilizer = order of group

Theorem 11: Orbit Send Theorem

Let G act on X, let $x \in X$, and let set $H := \operatorname{Stab}_G(x)$. Then $\operatorname{send}_x : \operatorname{Orb}_G(x) \to G/H$ which sends $y \mapsto \operatorname{send}_x(y)$

Theorem 12: Cauchy's Theorem

Let G be a group, p be prime. If p divides |G|, then G contains an element of order p

2 Analysis

Note: Any reference numbers are to the lecture notes

Real Numbers and Bounds

Definition 1.1: The Real Numbers

 \mathbb{R} is defined as the set of real numbers. It has two operations + and *, and it is a field, i.e. satisfies group axioms for both operations, in addition to the Distributive law:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

The set of real numbers is also ordered, i.e. there is a relation < which satisfies pretty much what you think it does

Finally, the set of real numbers is complete, i.e. there are no gaps between any numbers.

Definition 1.2.3: Triangle Inequality

The most important property of the absolute value |a|:

$$|a+b| \le |a| + |b|$$
 and $||a| - |b|| \le |a-b|$

Definition 1.3.2: Suprema and Bounds

Let $E \subset \mathbb{R}$ be nonempty

- The set E is said to be bounded above if there is $M \in R$ such that $a \leq M$ for all $a \in E$
- A real number M is called an upper bound of the set E if a < M for all $a \in E$
- A real number s is called the **supremum** of the set E if
 - -s is an upper bound of E
 - $-s \le M$ for all upper bounds M of the set E

If a number s exists, we shall say that E has a supremum and write $s=\sup E$

If the supremum s exists, then s is the least upper bound of the set E. The supremum is also unique if it exists.

If the same properties as a supremum apply but in the other direction, a number s is instead called the **infimum** of the set E. Infimum and Supremum are related via the reflection principle:

- Set E has a supremum if and only if the set -E has an infimum. Also $\inf(-E) = -\sup(E)$
- Set E has an infimum if and only if the set -E has a supremum. Also $\sup(-E) = -\inf(E)$

Theorem 1: Suprema Approximation Property

If the set $E\subset\mathbb{R}$ has a supremum then for any positive number $\epsilon>0$ there exists $a\in E$ such that

$$\sup E - \epsilon < a \le \sup E$$

Theorem 2: Archimedean Principle

Given positive real numbers $a,b \in \mathbb{R}$ there is an integer $n \in N$ such that b < na

Definition 1.5.2: Countability

Let E be a set. E is said to be:

- Finite if either $E = \emptyset$, or there is an integer $n \in \mathbb{N}$ and a bijection $f : \{1, 2, 3, \ldots, n\} \to E$. We say that the set E has n elements
- Countable if there is a bijective function $f: \mathbb{N} \to E$
- At most countable if E is finite or countable
- Uncountable if E is neither finite nor countable

Additionally, a nonempty set E is at most countable if and only if there is a surjective function $f: \mathbb{N} \to E$

Sequences and Series

Definition 2.1.1: Convergence of a Sequence

A sequence of real numbers (x_n) is said to converge to a real number a if for every $\epsilon > 0$ there is a $N \in \mathbb{N}$ where for every $n \geq N$ we have that $|x_n - a| < \epsilon$

For a sequence (x_n) , we write $\lim x_n = +\infty$ if for each M > 0 there is a number N such that n > N implies $x_n > M$. Reverse every inequality for $-\infty$ case.

Definition 2.1.9: Bounds of Sequences

Let (x_n) be a sequence of real numbers.

- $(x_n)_{n\in\mathbb{N}}$ is said to be **bounded above** if $x_n\leq M$ for some $M\in\mathbb{R}$ and all $n\in\mathbb{N}$
- $(x_n)_{n\in\mathbb{N}}$ is said to be **bounded below** if $x_n\geq m$ for some $m\in\mathbb{R}$ and all $n\in\mathbb{N}$
- $(x_n)_{n \in N}$ is said to be **bounded** if it is both bounded above and below

Remark 2.2.1 - ?: Limit Theorems

- Let $E \subset \mathbb{R}$. If E has a finite supremum then there is a sequence (x_n) with each $x_n \in E$ such that $x_n \to \sup E$ as $n \to \infty$. The same goes for a finite infimum
- Comparison Theorem for sequences: Suppose that $(x_n), (y_n)$ are real sequences. If both $\lim_{n\to\infty} x_n$, $\lim_{y\to\infty} y_n$ exist and belong to $\mathbb{R}*$, and if $x_n\leq y_n$ for all $n\geq N$ for some $N\in\mathbb{N}$, then $\lim_{n\to\infty} x_n\leq \lim_{n\to\infty} y_n$

Definition 2.3.1: Monotone Sequences

Let (s_n) be a sequence of real numbers.

- (s_n) is said to be increasing if $s_1 \le s_2 \le s_3 \le \cdots$, and strictly increasing if $s_1 < s_2 < s_3 < \cdots$
- (s_n) is said to be decreasing if $s_1 \ge s_2 \ge s_3 \ge \cdots$, and strictly decreasing if $s_1 > s_2 > s_3 > \cdots$
- (s_n) is said to be monotone if it is either increasing or decreasing

Theorem 3: Top 10 Limit Theorems

- Squeeze Theorem (for sequences): Suppose that (x_n) , (y_n) , and (w_n) are real sequences
 - If both $x_n \to a$ and $y_n \to a$ as $n \to \infty$, and if $x_n \le w_n \le y_n$ for all $n \ge N_0$, then $w_n \to a$ as $n \to \infty$
 - If $x_n \to 0$ and (y_n) is bounded, $x_n y_n \to 0$ as $n \to \infty$
- Divergence Test:
 - If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.
 - If $(a_n)_{n\in\mathbb{N}}$ doesn't converge to 0, then $\sum_{n=1}^{\infty} a_n$ diverges. Be careful that the converse isn't true.
- Comparison Test: Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences such that $0 \le a_n \le b_n$ for all n.
 - If $\sum_n b_n$ converges, then $\sum_n a_n$ converges as well.
 - If $\sum_n a_n$ diverges, then $\sum_n b_n$ diverges as well.
- Limit Comparison Test: Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two real sequences with $a_n\geq 0$ and $b_n>0$ for all n. Assume that $a_n/b_n\to L$ for some $L\in(0,\infty)$. Then, $\sum_{n=1}^\infty a_n$ converges iff $\sum_{n=1}^\infty b_n$ converges.
 - If L=0 and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges
 - If $L = \infty$ and $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges
- Root Test: Let $\sum_{n=0}^{\infty} a_n$ be a series with non-negative terms such that $\sqrt[n]{a_n} \to L$ where $0 \le L \le +\infty$.
 - If $0 \le L < 1$ then the series $\sum_{n=0}^{\infty} a_n$ converges.
 - If L > 1 then the series $\sum_{n=0}^{\infty} a_n$ diverges.
 - If L=1, the series may or may not converge
- Ratio Test: Let $\sum_{n=0}^{\infty} a_n$ be a series with positive terms such that $(a_{n+1})/(a_n) \to L$, where $0 \le L \le +\infty$.
 - If $0 \le L < 1$ then the series $\sum_{n=0}^{\infty} a_n$ converges.
 - If L > 1 then the series $\sum_{n=0}^{\infty} a_n$ diverges.
 - If L=1 then compare to p series
- Cauchy's Condensation Test: Let $(a_n)_{n\in\mathbb{N}}$ be a decreasing sequence with non-negative terms. Then the following are equivalent:
 - The series $\sum_{n=1}^{\infty} a_n$ converges
 - The series $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converges.
- Alternating Series Test: Let (b_n)_{n∈N} be a decreasing sequence of non-negative real numbers that converges to zero.
 Then the series ∑_{n=1}[∞] (-1)ⁿ⁻¹b_n converges.
- Monotone Convergence Theorem: If a sequence of real numbers (s_n) is increasing and bounded above, or decreasing and bounded below, then (s_n) is convergent (and converges to the sup/inf of the set $\{x_n \mid n \in \mathbb{N}\}$ respectively).
- Geometric Series Test: Assume $a, r \in \mathbb{R}, a, r \neq 0$. Then

$$\sum_{n=1}^{\infty} a \cdot r^n = \begin{cases} \frac{a}{1-r} & \text{if } |r| < 1\\ \text{diverges} & \text{if } |r| \ge 1 \end{cases}$$

Notice that a is always the first term in the series, and r is the *common ratio*

Continuity and Functional Limits

Definition 4.1.1: Continuity

Let f be a real-valued function whose domain is a subset of \mathbb{R} . The function f is **continuous** at x_0 in dom (f) if, for every sequence (x_n) in dom (f) converging to x_0 , we have

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

If f is continuous at each $a \in S \subseteq \text{dom}(f)$ and then we say that f is continuous on S. If f is continuous on dom(f) then we say that f is continuous

Theorem 4: $\epsilon - \delta$ Definition of Continuity

A function $f:A\to\mathbb{R}$ is continuous if for all $\epsilon>0$, there exists some $\delta>0$ s.t. for all $x\in A$ for which $0<|x-c|<\delta$, we have

$$|f(x) - f(c)| < \epsilon$$

Theorem 5: Evil $\epsilon - \delta$ definition of continuity

A function $f:A\to\mathbb{R}$ is not continuous if there exists $\epsilon>0$ such that for all $\delta>0$ there exists some $x\in A$ satisfying $0<|x-c|<\delta$ for which $|f(x)-f(c)|\geq\epsilon$

Definition 4.2.1: Bounds of a Function

Let $E\subseteq \mathbb{R}$ be nonempty. A function $f:E\to \mathbb{R}$ is said to be bounded on E if

$$|f(x)| \le M$$
, for all $x \in E$

where M is some (large) real number.

Theorem 6: Extreme Value Theorem

Let $I \subseteq \mathbb{R}$ be a closed and bounded interval. Let $f: I \to \mathbb{R}$ be continuous on I. Then f is bounded on the interval I, denoted by

$$m = \inf\{f(x) \mid x \in I\}, \qquad M = \sup\{f(x) \mid x \in I\}$$

Then there exist points $x_m, x_M \in I$ such that

$$f(x_m) = m$$
 and $f(x_M) = M$

Theorem 7: $\epsilon - \delta$ Limit jr.

Let $f:I\to\mathbb{R}$ where I is an open nonempty interval. If f is continuous at a point $a\in I$ and f(a)>0 then for some $\delta,\,\epsilon>0$ we have that

$$f(x) > \epsilon$$
, for all $x \in (a - \delta, a + \delta)$

Theorem 8: Intermediate Value Theorem

Let I be a non-degenerate interval and let $f: I \to \mathbb{R}$ be a continuous function. If $a, b \in I$, a < b, then on the interval (a, b), f attains all values between f(a) and f(b). i.e. given y_0 between f(a) and f(b), there exists $x_0 \in (a, b)$ such that $f(x_0) = y_0$

Theorem 9: Bolzano's Theorem

Let f(x) be continuous on [a,b] such that f(a)f(b)<0, then there exists $c\in(a,b)$ such that f(c)=0

Theorem 10: $\epsilon - \delta$ definition of a limit

Let $f:A\to\mathbb{R}$ and let c be a limit point of A. Then we say that

$$\lim_{x \to c} f(x) = L$$

if for all $\epsilon > 0$ there exists some $\delta > 0$ such that for every $x \in A$ for which $0 < |x - c| < \delta$, we have

$$|f(x) - L| < \epsilon$$

We also say $\lim_{x\to c} f(x)$ converges to L in such a situation

Differentiation

Definition 5.1.1: First Principle Differentiation

A real function f is said to be differentiable at a point $x \in \mathbb{R}$ if f is defined at some open interval containing x, and

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. f'(x) is called the derivative of f at the point x

Theorem 11: Differentiable implies Continuous

Let I be an open interval, $x_0 \in I$ and $f: I \to \mathbb{R}$ be differentiable at x_0 . Then f is continuous at x_0 . The converse is not true, an example is f(x) = |x| which isn't differentiable at 0.

Theorem 12: Differentiable Intervals

Let $f: I \to \mathbb{R}$ be a given function, where I is an open interval. We say that f is differentiable in I iff it is differentiable at every point in I. At endpoints, derivatives only have to be one-sided

Theorem 13: Differentiation Rules

Let $f,g:(a,b)\to\mathbb{R}$ be differentiable on (a,b). Then f+g and $f\cdot g$ are differentiable on (a,b). If $g(x)\neq 0$ for all $x\in (a,b)$, then f/g is differentiable. Moreover,

- Sum rule: (f+g)' = f' + g'
- Product Rule: (fg)' = f'g + fg'
- Quotient Rule: $(f/g)' = (f'g fg')/g^2$

Theorem 14: Inverse Function Theorem

Let f be injective and continuous on an open interval I. If $a \in f(I)$ and f' at the point $f^{-1}(a) \neq 0$ exists and is nonzero, then f^{-1} is differentiable at a and

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Theorem 15: Chain Rule

Let f,g be real functions. If f is differentiable at a and g is differentiable at f(a) then $g\circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a))f'(a)$$

Theorem 16: Differentiation Theorem ladder

- Rolle's Theorem: Let $a, b \in \mathbb{R}$, a < b. If $f : [a, b] \to \mathbb{R}$ is continuous in [a, b], differentiable in (a, b) and f(a) = f(b), then there exists a point c in (a, b) such that f'(c) = 0
- Mean Value Theorem: If $f:[a,b] \to \mathbb{R}$, a < b is continuous in [a,b], differentiable in (a,b) then $\exists c \in (a,b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

• Generalised MVT: If $f, g: [a, b] \to \mathbb{R}$ is continuous in [a, b] and differentiable in (a, b), then $\exists c$ in (a, b) such that

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

If g(b) - g(a), $g'(c) \neq 0$ then this can be written as

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Theorem 17: Monotone Functions

Let a < b be real and f be continuous on [a, b] and differentiable on (a, b).

- If $f'(x) > 0 \ \forall x \in (a, b)$, then f is strictly increasing on [a, b]
- If $f'(x) < 0 \ \forall x \in (a,b)$, then f is strictly decreasing on [a,b]
- If $f'(x) = 0 \ \forall x \in (a, b)$, then f is constant on [a, b]

Additionally, if f is injective and continuous on an interval I, Then f and f^{-1} is strictly monotone on I and f(I) respectively

Theorem 18: Taylor Series

Let $f: I \to \mathbb{R}$ be n+1 times differentiable and $x_0 \in I$, for an open interval I. For each $x \in I$, there is a c between x_0 and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

(c is a value between x and x_0 (maybe))

Now suppose that $f:(a,b)\to\mathbb{R}$ is infinitely differentiable and let $x_0\in(a,b)$. Fix x in (a,b). For every positive integer N we have

$$f(x) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_N(x)$$

If $R_N(x) \to 0$ as $n \to \infty$, we have

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Made by Leon

3 Examples Catalogue

Examples of a Group

Example 1.2.4: Dihedral Group D_n

The set of symmetries of an n-gon forms a group under composition. We call this group the **Dihedral Group** D_n

The Dihedral group of n has precisely $|D_n| = 2n$ elements, namely

- The identity e
- n-1 anticlockwise rotations of $\frac{2pi}{n}$. We denote this operation with q
- n reflections. If n is odd, then there are n reflections from a point to the opposite edge. If n is even, there are $\frac{n}{2}$ reflections from point to point, and $\frac{n}{2}$ from edge to edge. We denote a vertical reflection with h, and rotated reflections as compositions of h and q

From this, we see that

$$D_n = \{e, g, g^2, \dots, g^{n-1}, h, gh, g^2h, \dots, g^{n-1}h\}$$

Example 1.3.2: Symmetric Group

The set of all symmetries of $\{1, 2, ..., n\}$ is called the **symmetric group** S_n . It is a group under composition with order $|S_n| = n!$ The symmetric group can be thought of as every permutation of the set $\{1, 2, ..., n\}$, or can also be thought of as an n-gon where every edge is connected to each other.

Example $\mathbb{Z}_3 \times \mathbb{Z}_4$: Group Properties pick'n'mix

- Any group \mathbb{Z}_n is **Abelian** and **Cyclic**
- Any cross product of $\mathbb{Z}_n \times \mathbb{Z}_m$ where n and m are coprime is **Abelian** and **Cyclic**.
- Any cross product of $\mathbb{Z}_n \times \mathbb{Z}_m$ where n and m are not coprime is **Abelian** but **Not Cyclic**.
- Any dihedral group D_n is **Not Abelian**, and **Not Cyclic**
- The trivial action $g \cdot x = x$ of any group is **Not Faithful** and **Not Transitive**
- The trivial action of any group acting on {1} is Not Faithful and Transitive
- \mathbb{Z}_{an} acting on \mathbb{Z}_n , where $a \in \mathbb{Z}$ where $g \cdot x = g + x$ is **Not Faithful** and **Not Transitive**
- A symmetry group of a graph with a middle point has at least two orbits (Not Transitive) e.g.

Example 0: Example of a Coset

Consider \mathbb{Z}_4 under addition, and let $H=\{0,2\}$ (e=0.) The cosets of H in G are:

$$eH = e * H = \{e * h \mid h \in H\} = \{0 + h \mid h \in H\} = \{0, 2\}$$

$$1H = 1 * H = \{1 * h \mid h \in H\} = \{1 + h \mid h \in H\} = \{1, 3\}$$

$$2H = 2*H = \{2*h\,|\,h\in H\} = \{2+h\,|\,h\in H\} = \{0,2\}$$

$$3H = 3 * H = \{3 * h \mid h \in H\} = \{3 + h \mid h \in H\} = \{1, 3\}$$

Hence there are two cosets, namely

$$0 * H = 2 * H = \{0, 2\}$$
 and $1 * H = 3 * H = \{1, 3\}$

$$G/H = \{eH = 2H, 1H = 3H\} = \{\{0, 2\}, \{1, 3\}\}\$$

Example 3.3.5: p-series

The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1, and it diverges if $p \le 1$. At

p = 1, this series is called the **Harmonic Series**.

To show divergence/convergence of a series, we can compare it to the p-series

Example $\sum_{n=0}^{\infty}$: Deciphering Taylor Series

• Showing convergence of a Taylor Series: An infinite Taylor series will converge to f(x) iff we have $R_N(x) \to 0$ as $N \to \infty$ in the finite Taylor series

$$f(x) = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} + R_{N}(x)$$

Therefore, showing that $(R_N(x))_{n\in\mathbb{N}}$ converges to 0 is enough to show that the infinite Taylor Series converges to f(x)

• Simplifying series-like terms: If you have a Taylor Series / function that is in the same equation as a bunch of series-like terms, then a good idea is to try to expand the Taylor series at N for the N amount of elements and then try and figure something out using the remainder term $R_N(x)$ Example: extract of 2018 May A3

At some point we end up with an equation

$$0 \le \ln(x+1) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4}$$

and a Taylor Series

$$\ln(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

Expand Taylor series with N=4

$$0 \le \ln(x+1) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4}$$
$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + R_4(x) - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4}$$
$$= R_4(x)$$

The museum of $\epsilon - \delta$ limits

Example of rigour: $\epsilon - \delta$ and $\epsilon - N$ Template

Proof: Let $\epsilon > 0$ be given. Set $\delta =$ __ (If there is a constant, then set as "<" e.g. $\delta < \min\{1, \epsilon\}$). Then for all $x \in \mathbb{R}$ such that $|x - | < \delta$ we have

Optional: preliminary step to determine an upper bound

Therefore, / Therefore since "x term" < "constant",

"Same steps as rough working"

$$\cdots = \underline{} \cdot |x - \underline{}| < \underline{} \delta = \epsilon$$
 (same rule applies about constants)

Proof: Let $\epsilon > 0$ be given. Choose $N \in \mathbb{N}$ such that $N > _$, (optional(?) for example $N = _$). Then we have $_ < \epsilon$. Then for all $n \geq N$ we have

"Same steps as rough working"

 \cdots = "equation in terms of n" < "same thing in terms of N" < ϵ

Example 10000: ϵ -N Convergence

Show that the sequence $\left(\frac{2n+1}{3n+2}\right)_{n\in\mathbb{N}}$ converges to $\frac{2}{3}$ We start with the rough work. Start with an arbitrary $\epsilon>0$ and

We start with the rough work. Start with an arbitrary $\epsilon > 0$ and find an N_{ϵ} s.t. $\left| \frac{2n+1}{3n+2} - \frac{2}{3} \right| < \epsilon$ for all $n > N_{\epsilon}$. Let's explore this.

$$\left|\frac{2n+1}{3n+2} - \frac{2}{3}\right| = \frac{11}{3(3n+2)} < \epsilon \quad \implies \quad n > \frac{1}{3} \left(\frac{11}{3\epsilon} - 2\right)$$

Proof: Let $\epsilon > 0$. Pick a positive integer N such that

$$N > \frac{1}{3} \left(\frac{11}{3\epsilon} - 2 \right)$$

Then,

$$\frac{11}{3(3N+2)} < \epsilon$$

For all n with n > N we have

$$|a_n - L| = \left| \frac{2n+5}{3n+2} - \frac{2}{3} \right| = \frac{11}{3(3n+2)} \le \frac{11}{3(3N+2)} < \epsilon$$

Another method of finding a limit is.

$$\left| \frac{2n+1}{3n+2} - \frac{2}{3} \right| = \frac{11}{3(3n+2)} = \frac{11}{9n+6} < \frac{11}{9n} < \epsilon$$

Since 9n+6>9n, this means that the right fraction is larger than the left fraction in all cases. This means if we can find a right fraction that is smaller than ϵ then the left fraction must also.

Proof: let $\epsilon > 0$. Pick a positive integer N such that $N > \frac{11}{9\epsilon}$. Then $\frac{11}{9N} < \epsilon$. For all n with $n \ge N$, we have

$$|a_n - L| = \left| \frac{2n+5}{3n+2} - \frac{2}{3} \right| = \frac{11}{9n+6} < \frac{11}{9n} \le \frac{11}{9N} < \epsilon$$

Example (: $\epsilon - \delta$ Continuity

Using the definition of continuity, prove that the function $f: \mathbb{R}\setminus \{\frac{9}{5}\} \to \mathbb{R}$ defined by $f(x) = \frac{x^2}{5x-9}$ is continuous at $x_0 = 2$ Since $x_0 = 2$, our delta should end up as $|x-2| < \delta$. Start with $|f(x) - f(a)| < \epsilon$

$$|f(x) - f(a)| = \left| \frac{x^2}{5x - 9} - \frac{4}{10 - 9} \right|$$

$$= \left| \frac{x^2}{5x - 9} - 4 \right|$$

$$= \left| \frac{x^2 - 20x + 36}{5x - 9} \right|$$

$$= \left| \frac{(x - 18)(x - 2)}{5x - 9} \right|$$

$$= |x - 2| \left| \frac{x - 18}{5x - 9} \right|$$

We have |x-2|, so we want to turn the RH fraction into a constant. If we let the neighbourhood around δ to be no less than $\frac{1}{10}$ (i.e. $x \in (1.9, 2.1)$) (this number can be anything, but smaller than $\frac{1}{5}$ since there is an asymptote at $\frac{9}{5}$), using the number with the largest value in that range we can get an upper bound for δ .

$$\left| \frac{x - 18}{5x - 9} \right| < \left| \frac{1.9 - 18}{9.5 - 9} \right| = \left| \frac{-16.1}{0.5} \right| = \left| -32.2 \right| \implies \left| \frac{x - 18}{5x - 9} \right| < 32.2$$

Therefore

$$|x-2| \left| \frac{x-18}{5x-9} \right| < |x-2| \cdot 32.2 < \epsilon$$

Therefore, we can take $\delta = \max\{1/10, \epsilon/32.2\}$

Proof: Let $\epsilon > 0$ be given. set $\delta = \min\{\frac{1}{10}, \frac{\epsilon}{32.2}\}$. Then for all $x \in \mathbb{R}$ such that $|x-2| < \delta$ we have

$$\left| \frac{x - 18}{5x - 9} \right| < \left| \frac{1.9 - 18}{9.5 - 9} \right| = \left| \frac{-16.1}{0.5} \right| = \left| -32.2 \right| \implies \left| \frac{x - 18}{5x - 9} \right| < 32.2$$

Therefore, since $\left|\frac{x-18}{5x-9}\right| < 32.2$,

$$|f(x) - f(a)| = \left| \frac{x^2}{5x - 9} - \frac{4}{10 - 9} \right| = \left| \frac{x^2 - 20x + 36}{5x - 9} \right|$$

$$= \left| \frac{(x-18)(x-2)}{5x-9} \right| = |x-2| \left| \frac{x-18}{5x-9} \right| \le 32.2 \cdot |x-2| < 32.2 \cdot \delta = \epsilon$$

Example Dumb Assumptions: $\epsilon - \delta$ using other limits

If $f,g:\mathbb{R}\setminus\{1\}\to\mathbb{R}$ are two functions such that $\lim_{x\to 1}f(x)=2$, $\lim_{x\to 1}g(x)=3$, show that $\lim_{x\to 1}(4f(x)+g(x)^2)=17$ We want to try and turn the limit into compositions of other limits. From the assumptions, we know that

• There exists a δ_1 s.t. $\forall x$ where $0 < |x-1| < \delta_1$, we have

$$|f(x) - 2| < \epsilon \tag{1}$$

• There exists a δ_2 s.t. $\forall x$ where $0 < |x-1| < \delta_2$, we have

$$|g(x) - 3| < \epsilon \tag{2}$$

So, start with the main function. We want to show

$$|4f(x) + g(x)^2 - 17| < \epsilon$$

We want to turn this into a composition of (1) and (2). By "Trusting our professors won't be too mean" this should be possible

$$|4f(x) + g(x)^{2} - 17| = |4(f(x) - 2) + g(x)^{2} - 9|$$

$$= |4(f(x) - 2) + (g(x) - 3)(g(x) + 3)|$$
(via triangle ineq) $\leq 4|f(x) - 2| + |g(x) - 3||g(x) + 3|$

To find an upper bound for |g(x)+3| we want to manipulate again

$$|g(x) + 3| = |g(x) - 3 + 6| \le |g(x) - 3| + 6 < \epsilon + 6$$

Therefore now we can substitute equations (1) and (2) into everything

$$4|f(x)-2|+|g(x)-3||g(x)+3| < 4\epsilon+\epsilon|g(x)+3| < 4\epsilon+\epsilon(\epsilon+6)$$

Let the epsilon boundary be less than 1. Then $\epsilon+6<7$, therefore

$$4\epsilon + \epsilon(\epsilon + 6) < 4\epsilon + \epsilon(7) = 11\epsilon$$

ish with ϵ but since (1) and (2) work for ϵ

We want to finish with ϵ but since (1) and (2) work for any ϵ by definition, set those inequalities to $\frac{\epsilon}{11}$ instead and the final result will be ϵ on its own

Proof: Let $\epsilon > 0$ be given. First assume $\epsilon \leq 1$. By our assumptions, there exists a δ_1 where $\forall x$ s.t. $0 < |x-1| < \delta_1$, we have $|f(x)-2| < \epsilon/11$, and a δ_2 where $\forall x$ s.t. $0 < |x-1| < \delta_2$, we have $|g(x)-3| < \epsilon/11$. For all x s.t. $0 < |x-1| < \delta_2$, we have

$$|g(x) + 3| = |g(x) - 3 + 6| \le |g(x) - 3| + 6 \le \frac{\epsilon}{11} + 6 \le \frac{1}{11} + 6 \le 7$$

Let $\delta = \min\{\delta_1, \delta_2\}$ Therefore, since |q(x) + 3| < 7,

$$|4f(x) + g(x)^{2} - 17| = |4(f(x) - 2) + g(x)^{2} - 9|$$

$$= |4(f(x) - 2) + (g(x) - 3)(g(x) + 3)|$$
(via triangle ineq) $\leq 4|f(x) - 2| + |g(x) - 3||g(x) + 3|$

$$<4\frac{\epsilon}{11} + 7\frac{\epsilon}{11} = \epsilon$$

Assume now that $\epsilon > 1$. By what we have shown above there exists a $\epsilon > 0$ such that for all x such that $0 < |x-1| < \epsilon$,

$$|4f(x) + g(x)^2 - 17| < 1$$

Therefore,

$$|4f(x) + g(x)^2 - 17| < \epsilon$$

Example): $\epsilon - \delta$ Discontinuity

From negation of $\epsilon - \delta$ continuity - A function $f: A \to \mathbb{R}$ is not continuous if there exists $\epsilon > 0$ such that for all $\delta > 0$ there exists some $x \in A$ satisfying $0 < |x - c| < \delta$ for which $|f(x) - f(c)| \ge \epsilon$

$$|f(x) - f(a)| < \epsilon \implies \left| \sin\left(\frac{1}{x}\right) - 0 \right| < \epsilon \implies \left| \sin\left(\frac{1}{x}\right) \right| < \epsilon$$

So we want to show that we can find an ϵ such that for every $\delta > 0$, we can find an x where $|x| < \delta$ and also $|\sin(\frac{1}{x})| \ge \epsilon$.

Since sin(x) repeats, if we can find an x such that $sin(\frac{1}{x})$ is an exact value then we can define ϵ as something lower than that. If we want a value where $sin(\frac{1}{x})=1$, this will be true if $x=1/(\frac{\pi}{2}+2N\pi)$, where N is a positive integer.

Since x has to be bounded by δ , go from δ

$$\begin{split} \left| \frac{|x| < \delta}{\frac{1}{\frac{\pi}{2} + 2N\pi}} \right| < \delta \\ \frac{1}{\frac{\pi}{2} + 2N\pi} < \delta \quad \text{(will always be positive since N positive int)} \\ \frac{\pi}{2} + 2N\pi > \frac{1}{\delta} \\ N > \frac{1}{2\pi} \left(\frac{1}{\delta} - \frac{\pi}{2} \right) \end{split}$$

Proof: Let $\epsilon = \frac{1}{2}$. Let $\delta > 0$ be given. Pick a positive integer N such that $N > \frac{1}{2\pi} \left(\frac{1}{\delta} - \frac{\pi}{2} \right)$ and set $x = \frac{1}{\frac{\pi}{2} + 2N\pi}$. Then for all $x \in \mathbb{R}$ such that $0 < x < \delta$, we have

$$|f(x)| = \left| \sin \left(\frac{1}{x} \right) \right| = \left| \sin \left(\frac{\pi}{2} + 2N\pi \right) \right| = 1 \geq \frac{1}{2} = \epsilon$$

Example Number: Roots of a Function

Prove that the equation

$$f(x) = x^5 + x^3 + x + 1$$

has exactly one real root

Part 1: The function has at least one real root. This is because as it is composed of three odd-power polynomials, so as $x \to \infty$, f(x) > 0 and as $x \to -\infty$, f(x) < 0 Therefore by the Intermediate Value Theorem, there exists at least one point where f(x) = 0.

Part 2: Differentiating the function, we get

$$f(x) = x^5 + x^3 + x + 1 \implies f'(x) = 5x^4 + 3x^2 + 1$$

However, $x^4, x^2 \ge 0$ for every $x \in \mathbb{R}$. Therefore $5x^4 + 3x^2 + 1$ is always positive, meaning there is no roots (critical points).

Part 3: Therefore, by Rolle's Theorem, since there exists no critical points, it means there is no points where f(a) = f(b) which implies that f(x) is strictly increasing/decreasing.

This means there cannot be more than 1 real root. Therefore, there is exactly one real root