Teorías

Semana $(12)_2 = 1100$

Lógica para Ciencia de la Computación - IIC2213

Prof. Sebastián Bugedo

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Recordatorio: el símbolo ⊨

Definición

Decimos que un conjunto de \mathcal{L} -oraciones Σ es satisfacible si existe \mathfrak{A} tal que para toda fórmula $\varphi \in \Sigma$ se cumple que $\mathfrak{A} \models \varphi$. Lo denotamos por $\mathfrak{A} \models \varphi$

Definición

Sean una \mathcal{L} -oración φ y un conjunto de oraciones Σ . Decimos que φ es consecuencia lógica de Σ , denotado por $\Sigma \vDash \varphi$ si, y solo si, para toda \mathcal{L} -estructura $\mathfrak A$ se tiene

si
$$\mathfrak{A} \models \Sigma$$
 entonces $\mathfrak{A} \models \varphi$

Recordar que su significado cambia según los elementos que relaciona

Teorema de compacidad

Teorema (compacidad)

Un conjunto de \mathcal{L} -fórmulas Σ es satisfacible si, y solo si, Σ es finitamente satisfacible

Sistema de Hilbert

La lógica de primer orden tiene un sistema de deducción con buenas propiedades

Teorema (correctitud)

Dado un conjunto de fórmulas $\Sigma \cup \{\varphi\}$,

si
$$\Sigma \vdash_{\mathcal{H}} \varphi$$
, entonces $\Sigma \vDash \varphi$

Teorema (completitud de Gödel)

Dado un conjunto de \mathcal{L} -fórmulas $\Sigma \cup \{\varphi\}$,

si
$$\Sigma \vDash \varphi$$
, entonces $\Sigma \vdash_H \varphi$

El sistema solo deduce consecuencias y puede deducirlas todas

¿Qué diantres es eso?

En esencia una Teoría es un cúmulo de información

¿Todo conjunto de información es útil?

Hoy comenzamos nuestro estudio de

- ¿Qué propiedades tienen los conjuntos de información?
- ¿Qué se puede deducir de ellos?
- ¿Qué relación hay entre los modelos que los satisfacen?
- ¿Toda teoría tiene buenas propiedades?
- ¿Podemos definir algoritmos para verificar conclusiones de una teoría?

Playlist Unidad IV y Orquesta

Playlist: LogiWawos #4

Además sigan en instagram: @orquesta_tamen

Objetivos de la clase

- Comprender concepto de teoría
- ☐ Construir teorías a partir de objetos
- Comprender el concepto de teoría completa
- ☐ Introducir el concepto de teoría categórica

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Teorías

Definición

Dado un vocabulario \mathcal{L} , un conjunto de \mathcal{L} -oraciones Σ se dice una teoría si cumple

- 1. Σ es satisfacible
- 2. Σ es cerrado bajo consecuencia lógica, es decir, para toda oración φ se tiene que

si
$$\Sigma \vDash \varphi$$
 entonces $\varphi \in \Sigma$

Una teoría Σ no tiene contradicciones y contiene todas sus consecuencias lógicas

Teorías

¿Cómo podemos construir teorías?

- No nos pueden faltar oraciones (toda consecuencia lógica debe estar)
- Además debe ser satisfacible...
- ¿De qué ingredientes podemos partir para formar una?

Veremos dos formas de definir teorías

Teoría de una estructura

Proposición

Sea ${\mathfrak A}$ una ${\mathcal L}$ -estructura. El siguiente conjunto es una teoría

$$\mathsf{Th}(\mathfrak{A}) = \{\varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración tal que } \mathfrak{A} \vDash \varphi\}$$

Demostración

Para probar que $\mathsf{Th}(\mathfrak{A})$ es satisfacible, basta notar que

$$\mathfrak{A} \models \mathsf{Th}(\mathfrak{A})$$

Para probar que es cerrada bajo cons. lógica, sea φ una \mathcal{L} -oración tal que $\mathsf{Th}(\mathfrak{A}) \vDash \varphi$. En particular,

$$\mathfrak{A} \models \mathsf{Th}(\mathfrak{A}) \Rightarrow \mathfrak{A} \models \varphi \quad (\mathsf{cons. lógica})$$

 $\Rightarrow \mathfrak{A} \in \mathsf{Th}(\mathfrak{A}) \quad (\mathsf{def. de Th}(\mathfrak{A}))$

¿Qué teorías ya podemos definir con esta herramienta?

Dos ejemplos fundamentales

Ejemplo

Consideremos $\mathcal{L} = \{0, 1, s, +, \cdot, <\}$. Recordemos las estructuras que definimos para naturales y reales en este vocabulario

$$\mathfrak{N} = \langle \mathbb{N}, 0^{\mathfrak{N}}, 1^{\mathfrak{N}}, s^{\mathfrak{N}}, +^{\mathfrak{N}}, \cdot^{\mathfrak{N}}, <^{\mathfrak{N}} \rangle$$

$$\mathfrak{R} = \langle \mathbb{R}, 0^{\mathfrak{R}}, 1^{\mathfrak{R}}, s^{\mathfrak{R}}, +^{\mathfrak{R}}, \cdot^{\mathfrak{R}}, <^{\mathfrak{R}} \rangle$$

con las interpretaciones usuales en los naturales y reales, respectivamente.

Con ellas, definimos dos teorías fundamentales

- Teoría de la aritmética: $Th(\mathfrak{N})$
- Teoría de los números reales: $Th(\mathfrak{R})$

Dos ejemplos fundamentales

Ejercicio

Dé un ejemplo de \mathcal{L} -oraciones φ_1, φ_2 tales que

- $\varphi_1 \in \mathsf{Th}(\mathfrak{N}) \ \mathsf{y} \ \varphi_1 \notin \mathsf{Th}(\mathfrak{R})$
- $\varphi_2 \notin \mathsf{Th}(\mathfrak{N}) \ \mathsf{y} \ \varphi_2 \in \mathsf{Th}(\mathfrak{R})$

¿Esta es la única forma de definir teorías?

Teoría de un conjunto de axiomas

Proposición

Sea Ψ un conjunto satisfacible de \mathcal{L} -oraciones. El siguiente conjunto es una teoría

$$\mathsf{Th}(\Psi) = \{ \varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración tal que } \Psi \vDash \varphi \}$$

A Ψ le llamamos **conjunto de axiomas** y decimos que tal teoría es **axiomatizable**

Teoría de un conjunto de axiomas

Proposición

Sea Ψ un conjunto satisfacible de \mathcal{L} -oraciones. El siguiente conjunto es una teoría

$$\mathsf{Th}(\Psi) = \{ \varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración tal que } \Psi \vDash \varphi \}$$

Demostración

Como Ψ es satisfacible, existe $\mathfrak A$ tal que $\mathfrak A \models \Psi$. Luego, por consecuencia lógica de los φ se cumple

$$\mathfrak{A} \models \Psi \quad \Rightarrow \quad \mathfrak{A} \models \varphi$$

y concluimos $\mathfrak{A} \models \mathsf{Th}(\Psi)$, por lo que es satisfacible.

Si $\mathsf{Th}(\Psi) \vDash \varphi$, consideremos $\mathfrak B$ tal que $\mathfrak B \vDash \Psi$. Ya probamos que se tiene $\mathfrak B \vDash \mathsf{Th}(\Psi)$ y por consecuencia lógica, $\mathfrak B \vDash \varphi$. Concluimos que $\varphi \in \mathsf{Th}(\Psi)$.

Un ejemplo clásico

Ejemplo

Sea $\mathcal{L} = \{e, \circ\}$ con e símbolo de constante y \circ símbolo de función binaria. Consideremos el conjunto de axiomas $\mathit{Gr} = \{\varphi_1, \varphi_2, \varphi_3\}$ con

$$\varphi_1 = \forall x \forall y \forall z. (x \circ (y \circ z) = (x \circ y) \circ z)$$

$$\varphi_2 = \forall x ((x \circ e = x) \land (e \circ x = x))$$

$$\varphi_3 = \forall x \exists y ((x \circ y = e) \land (y \circ x = e))$$

La teoría Th(Gr) es la **teoría de grupos**.

¿Qué características tienen las estructuras $\mathfrak A$ que satisfacen Th(Gr)?

- El operador ∘ es asociativo
- Existe un elemento neutro según ∘
- Existe un inverso según ∘

Definición

Una teoría Σ sobre $\mathcal L$ se dice **completa** si para toda $\mathcal L$ -oración φ ocurre alguna de las siguientes alternativas

- $\Sigma \vDash \varphi$
- $\Sigma \vDash \neg \varphi$

¿Toda teoría es completa?

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Definición

Una teoría Σ sobre $\mathcal L$ se dice **completa** si para toda $\mathcal L$ -oración φ ocurre alguna de las siguientes alternativas

- $\Sigma \vDash \varphi$
- $\Sigma \vDash \neg \varphi$

¿Toda teoría es completa?

Definición

Una teoría Σ sobre $\mathcal L$ se dice completa si para toda $\mathcal L$ -oración φ ocurre alguna de las siguientes alternativas

- $\Sigma \vDash \varphi$
- $\Sigma \vDash \neg \varphi$

Proposición

Las teorías $\mathsf{Th}(\mathfrak{N})$ y $\mathsf{Th}(\mathfrak{R})$ son completas

Este es un caso especial de un resultado general

Teorema

 $\mathsf{Th}(\mathfrak{A})$ es una teoría completa para toda \mathcal{L} -estructura \mathfrak{A}

Demostración

Sea φ una \mathcal{L} -oración cualquiera. Para \mathfrak{A} , se cumple $\mathfrak{A} \vDash \varphi$ o $\mathfrak{A} \vDash \neg \varphi$.

- Si \mathfrak{A} ⊨ φ , entonces $\varphi \in \mathsf{Th}(\mathfrak{A})$
- Si $\mathfrak{A} \models \neg \varphi$, entonces $\neg \varphi \in \mathsf{Th}(\mathfrak{A})$

En ambos casos la fórmula está en la teoría y por lo tanto, es consecuencia lógica de ella. Concluimos que $\mathsf{Th}(\mathfrak{A})$ es completa.

¿Las teorías generadas a partir de axiomas son siempre completas?

Proposición

 $\mathsf{Th}(\mathit{Gr})$ no es una teoría completa

Demostración

Sea $\varphi = \forall x \forall y (x \circ y = y \circ x)$. Demostraremos que

$$\mathsf{Th}(\mathit{Gr}) \not\models \varphi \quad \mathsf{y} \quad \mathsf{Th}(\mathit{Gr}) \not\models \neg \varphi$$

¿Qué significa (en chileno) demostrar esto?

Demostración

Primero demostraremos que $\mathsf{Th}(\mathit{Gr}) \not\models \neg \varphi$. Para esto, construiremos un grupo $\mathfrak A$ tal que

- $\mathfrak{A} \models \mathsf{Th}(\mathit{Gr})$, i.e. es un grupo
- $\mathfrak{A} \not\models \neg \varphi$, i.e. es conmutativo

Tomamos $\mathfrak{A} = \langle \mathbb{Z}, e^{\mathfrak{A}}, \circ^{\mathfrak{A}} \rangle$ donde interpretamos

- $e^{\mathfrak{A}} = 0$ (cero de los enteros)
- $a \circ^{\mathfrak{A}} b = a + b$ (suma de enteros)

Esta estructura satisface los tres axiomas de $\mathsf{Th}(\mathit{Gr})$ y además cumple $\mathfrak{A} \vDash \varphi$. Concluimos que $\mathsf{Th}(\mathit{Gr}) \not\models \neg \varphi$.

Demostración

Ahora demostraremos que $\mathsf{Th}(\mathit{Gr}) \not \models \varphi$. Para esto, construiremos un grupo $\mathfrak B$ tal que

- $\mathfrak{B} \models \mathsf{Th}(\mathit{Gr})$, i.e. es un grupo
- $\mathfrak{B} \not\models \varphi$, i.e. **no** es conmutativo

Tomamos $\mathfrak{B} = \langle B, e^{\mathfrak{B}}, \circ^{\mathfrak{B}} \rangle$ donde

- $B = \{f : \{1,2,3\} \rightarrow \{1,2,3\} \mid f \text{ es inyectiva}\}$
- ullet se interpreta como la función identidad
- ° se interpreta como la composición de funciones

$$(f_1 \circ^{\mathfrak{B}} f_2)(x) = f_1(f_2(x))$$

¿Está bien definida o®?

Demostración

Verificamos que B es un grupo

- La composición de funciones es asociativa
- Para toda $f \in B$

$$f(\circ^{\mathfrak{B}}e^{\mathfrak{B}})=(e^{\mathfrak{B}}\circ^{\mathfrak{B}}f)=f$$

■ Como toda $f \in B$ es inyectiva y ambos conjuntos en su definición son equinumerosos, f es biyectiva. Luego, existe f^{-1} y $f^{-1} \in B$. Con esto,

$$f(\circ^{\mathfrak{B}}f^{-1})=(f^{-1}\circ^{\mathfrak{B}}f)=e^{\mathfrak{B}}$$

Por lo tanto, $\mathfrak{B} \models \mathsf{Th}(\mathit{Gr})$

¿Es conmutativa la composición de funciones?

Demostración

Consideremos los siguientes elementos de B

X	$f_1(x)$	$f_2(x)$	g(x)	h(x)
1	2	1	2	3
2	3	3	1	2
3	1	2	3	1

Tenemos entonces que

$$(f_1 \circ^{\mathfrak{B}} f_2) = g \neq h = (f_2 \circ^{\mathfrak{B}} f_1)$$

Concluimos que $\mathfrak{B} \not\models \varphi$.

Esto demuestra que Th(Gr) no es completa.

¿Hay teorías definidas a partir de axiomas que sí sean completas?

Caracterizando teorías completas

Definición

Dos \mathcal{L} -estructuras $\mathfrak{A},\mathfrak{B}$ son equivalentes si para toda \mathcal{L} -oración φ ,

$$\mathfrak{A} \vDash \varphi$$
 si, y solo si, $\mathfrak{B} \vDash \varphi$

Observemos que todo par de estructuras isomorfas, son también equivalentes

¿Conocemos ejemplos de estructuras equivalentes pero no isomorfas?

Caracterizando teorías completas

Teorema

Una teoría Σ es completa si, y solo si, para cada par de estructuras $\mathfrak A$ y $\mathfrak B$ que satisfacen Σ , se tiene que $\mathfrak A$ y $\mathfrak B$ son equivalentes

Una teoría completa define sus modelos *hasta* equivalencia. No exige nada sobre isomorfismo

Demostración

Propuesta jj

Caracterizando teorías completas

Ejemplo

Sea $\mathcal{L} = \{E\}$ el vocabulario usual para grafos. Recordemos las estructuras \mathfrak{A} y \mathfrak{A}' de la clase anterior:

- $\mathfrak{A} = \langle \mathbb{N}, \{(i, i+1), (i+1, i) \mid i \in \mathbb{N} \} \rangle$
- \mathbf{Q} modelo no estándar de \mathfrak{A}

Vimos que ${\mathfrak A}$ y ${\mathfrak A}'$ no son isomorfas, pero sí equivalentes.

Recordemos que \mathfrak{A}^\prime fue definida a partir de un conjunto de oraciones

$$\Sigma = \{\varphi \mid \mathfrak{A} \vDash \varphi\}$$

 $\label{eq:interpolation} \mbox{iUna teoría! De hecho, } \Sigma = \mbox{Th}(\mathfrak{A}) \mbox{ y tenemos que } \mathfrak{A} \vDash \Sigma \mbox{ y } \mathfrak{A}' \vDash \Sigma.$

Ojo, ya sabemos gratis que Σ es completa porque es generada a partir de una estructura

Teorías categóricas

Definición

Una teoría Σ es categórica si para cada par de estructuras $\mathfrak A$ y $\mathfrak B$ que satisfacen Σ , se tiene que $\mathfrak A\cong \mathfrak B$

Una teoría categórica define sus modelos de manera más estricta

Teorías categóricas

Teorema

Si Σ es una teoría categórica, entonces Σ es una teoría completa

Notemos que esto se deduce de que dos estructuras isomorfas siempre son equivalentes

¿La dirección opuesta es cierta?

¿Es cierta al menos para teorías generadas a partir de estructuras?

Teorías categóricas

Teorema

Si Σ es una teoría categórica, entonces Σ es una teoría completa

El converso es falso:

- lacktriangle Tomemos $\mathfrak A$ y $\mathfrak A'$ su modelo no estándar del ejemplo mencionado
- $\mathsf{Th}(\mathfrak{A})$ es completa por ser generada a partir de una estructura
- \blacksquare \mathfrak{A} y \mathfrak{A}' son modelos de $\mathsf{Th}(\mathfrak{A})$
- Th(\mathfrak{A}) tiene dos modelos no isomorfos
- Th(𝔄) NO ES CATEGÓRICA

¿Hacia dónde vamos?

Nos estamos acercando a demostrar resultados muy potentes

¿Podemos diseñar algoritmos para verificar si $\varphi \in \Sigma$?

- \blacksquare Mostraremos que la teoría de la aritmética no es categórica: daremos un modelo no estándar para $\mathfrak N$
- Estudiaremos cuándo una teoría es decidible
- Enunciaremos un primer resultado de incompletitud de Gödel!

Próxima clase estudiaremos teorías decidibles

Programa

Obertura

Primer acto Teorías

Intermedio

Segundo acto Teorías completas

Epílogo

Actividad Espiritual Complementaria #2

An epic drama of adventure and exploration

Objetivos de la clase

- □ Comprender concepto de teoría
- ☐ Construir teorías a partir de objetos
- Comprender el concepto de teoría completa
- ☐ Introducir el concepto de teoría categórica

¿Qué aprendí hoy? ¿Comentarios?

Ve a

www.menti.com

Introduce el código

5420 9489

o usa el coalgo Qir