Answer Sheet to Complex Geometry

Zhan Fangrong

1. Let $\Omega \subset \mathbb{C}^n$ be a connected domain. Let $f \in \mathcal{O}(\Omega)$ be a holomorphic function on Ω . If $|f|^2$ is a constant, show that f is constant as well.

Proof. Let $f = u + \sqrt{-1}v$, then $|f|^2 = f\bar{f} = (u + \sqrt{-1}v)(u - \sqrt{-1}v) = u^2 + v^2 \equiv c$. Since $f \in \mathcal{O}(\Omega)$, there holds Cauchy-Riemann equations $\frac{\partial u}{\partial x^i} = \frac{\partial v}{\partial y^i} =: a_i, -\frac{\partial u}{\partial y^i} = \frac{\partial v}{\partial x^i} =: b_i$ for $i = 1, \dots, n$. Take derivative to $u^2 + v^2 \equiv c$ in the direction of x^i, y^i we have

$$\begin{cases} u \frac{\partial u}{\partial x^i} + v \frac{\partial v}{\partial x^i} = 0 \\ u \frac{\partial u}{\partial y^i} + v \frac{\partial v}{\partial y^i} = 0 \end{cases},$$

or,

$$\begin{cases} a_i u + b_i v = 0 \\ -b_i u + a_i v = 0 \end{cases}.$$

Solving the equations, we get either u = v = 0, which means $f \equiv 0$ is constant, or $a_i^2 + b_i^2 = 0$, which means $a_i = b_i = 0$, leading to that u, v are constant, as well as f. This completes the proof.

2. Let $\phi, \psi : \mathcal{F} \to \mathcal{G}$ be morphisms of sheaves on a topological space \mathcal{X} . Show that if $\phi_x = \psi_x$ as maps $\mathcal{F}_x \to \mathcal{G}_x$ for all $x \in \mathcal{X}$, then $\phi = \psi$ as morphisms of sheaves.

Proof. Without lose of generality, one can consider an open $U \subset X$ and a section $f \in \mathcal{F}(U)$. Since $[\phi(f)]_x = \phi_x(f_x) = \psi_x(f_x) = [\psi(f)]_x$ for all $x \in X$, where $(-)_x : \mathcal{F}(U) \to \mathcal{F}_x, \mathcal{G}(U) \to \mathcal{G}_x$ denotes the natural map, by the definition of passing to the limit, there exists a subset $x \in U_x \subset U$ such that $\phi_{U_x}(f) = \psi_{U_x}(f)$ on $\mathcal{G}(U_x)$. Hence, by the first axiom of sheaf, due to the facts that $U = \bigcup U_x$ as well as that $r_{U_x}^U(\phi(f)) = r_{U_x}^U(\psi(f))$ by the compatibility of sheave morphism with restriction map, there holds $\phi(f) = \psi(f)$ on $\mathcal{G}(U)$. Let f run over all the sections and U all the open subsets to complete the proof.

3. Let X be a compact complex manifold. Let \mathcal{O}_X be the sheaf of holomorphic functions. Show that \mathcal{O}_X is not a soft sheaf.

Proof. We can choose suitable K to be closed and to be contained in a suitable chart (U, φ) such that $0 \in \varphi(K)$, then $f \circ \varphi := \sum_{I \in \mathbb{N}^n} z^I$, where I is a multiindex and n the

dimension of X, is clearly holomorphic on $K' := K \cap \varphi^{-1}(\overline{B_{1/2}(0)})$. It is well known, however, that a holomorphic function on a compact complex manifold must be a constant. Therefore f cannot be extended to a global holomorphic function on X, i.e. the restriction $\mathcal{O}_X(X) \to \mathcal{O}_X(K')$ is not surjective, violating the definition of soft sheaf.

4. Let X be a compact complex manifold of dimension n. Let L_1, \dots, L_n be holomorphic line bundles over X. Assume that L_1 is trivial (i.e. $L_1 \cong X \times \mathbb{C}$). Then show that the intersection number $L_1 \bullet \dots \bullet L_n = 0$.

Proof. From definition we have

$$L_1 \bullet \cdots \bullet L_n = \frac{1}{(2\pi)^n} \int_X R_{h_1} \wedge \cdots \wedge R_{h_n}$$

where $R_h = -\sqrt{-1}\partial\bar{\partial}\log h$. Obviously R_h 's are (1,1)-forms, therefore $R_{h_1}\wedge\cdots\wedge R_{h_n}$ exactly gives rise to a volumn form. The triviality of L_1 leads to a globally defined h_1 , henceforth $R_{h_1} = \mathrm{d}(\frac{\partial -\bar{\partial}}{2\sqrt{-1}}(\log h_1))$ is d-exact. Applying Stokes' theorem the result is derived.

5. Show that $S^2 \times S^2$ admits a Kähler structure.

Proof. Since $S^2 \cong \mathbb{C}P^1$, we can consider $\mathbb{C}P^1 \times \mathbb{C}P^1$ with Fubini-Study metric $(\mathbb{C}P^1, \omega_{FS}) = (\mathbb{C}P^2, g, J)$. We only need to check that the product of manifolds (X_1, g_1, J_1) and (X_2, g_2, J_2) , where X_1, X_2 denote two $\mathbb{C}P^1$ components, exactly give rise to a Kähler structure.

The product metric on $(X = \mathbb{C}P^1 \times \mathbb{C}P^1, g_0, J_0)$ is given by $g_0(u, v) = g_1(P_1u, P_1v) + g_2(P_2u, P_2v)$. By letting $J_0 = J_1 \oplus J_2$, the product Kähler form given by $\omega_0(u, v) = \omega_1(P_1u, P_1v) + \omega_2(P_2u, P_2v)$, where P_- is the projective operator.

By simple calculation we derive $\omega_0(u,u) = \omega_1(P_1u,P_1u) + \omega_2(P_2u,P_2u) > 0$ by the positive definiteness of ω_1 and ω_2 , meaning that ω_0 is also positive definite. Similarly from $d\omega_0(u,v) = d\omega_1(P_1u,P_1v) + d\omega_2(P_2u,P_2v) = 0$ the d-closedness is also inherited to the product. Finally by the definition of admitting a Kähler structure, the proof is complete.