Accelerated Crowding

Processor Advantage

 Processor advantage of an algorithmic instance is the ratio of the number of processors available to the problem size

> input of size: n # processors: p processoradvantage. P/n

Accelerated Crowding

- Suppose for a problem P we have a super-fast but wasteful-inprocessors algorithm
- Say, we want to design a moderately fast, economic-in-processors algorithm for P
- Sometimes a solution can be found by iteratively reducing the problem size so that the processor advantage of the new instances increases exponentially through the iterations

Minimum on COMMON CRCW PRAM

O(1) time
using not processor
processor adv: $\frac{h^2}{\eta} = \eta$

MIN1

Input: Array $A[1 \dots n]$ of integers.

Output: The minimum integer R in A. Model: COMMON CRCW PRAM

Step 1: pardo for $1 \le i \le n$, $1 \le j \le n$ B[i][j] = (A[i] > A[j]);

Step 2: pardo for $1 \le i \le n$ C[i] = OR-COMMON(B[i]);

Step 3: pardo for $1 \le i \le n$ if (C[i] == 0) R = A[i];

Step 4: return R;

MINIMUM 1

- Exercise: Rewrite the above algorithm so that the processor allocation is obvious
- Hereafter, in algorithm descriptions the pardo variable will not always represent processor indices, but will still be indicative of the parallelism
- In each case, figure out how the processor allocation should go

- Algorithm MINIMUM-1 runs in O(1) time with n^2 processors
- Super-fast, but wasteful-in-processors
- Now, suppose we want to design an algorithm that uses nr processors, for 1 < r < n
- \bullet That is, the initial processor advantage is r
- We divide the array into segments of size r each, allocate r^2 processors for each, solve each in O(1) time; so, we are left with an instance of size n/r—the processor advantage is now r^2

Minimum on COMMON CRCW PRAM

Input: Array $A[1 \dots n]$ of integers; r the processor advantage.

Output: The minimum integer R in A. Model: COMMON CRCW PRAM

Step 0: if (n == r) return MIN1(A[1 ... n]);

Step 1: pardo for $1 \le i \le n/r$ $B[i] = MIN1(A[(i-1)r + 1 \dots ir]);$

Step 2: return MIN2($B[1...n/r], r^2$);

$$\frac{T(n,r) = T(\frac{n}{r}, r^2) + c}{\frac{n/r}{r^2} = n/r^3 \text{ segment}}$$

$$\frac{r^2}{r^2} = \frac{nr}{n/r^3} = r^4$$

If T(n,r) is the time taken by a call MIN2(A[1...n],r), then for some constant c,

$$T(n,r) = T(n/r, r^2) + c = T(n/r^3, r^4) + 2c = T(n/r^7, r^8) + 3c = \dots = T(n/r^{2^s-1}, r^{2^s}) + sc$$
With $s = O(\log(\frac{\log n}{\log r}))$, thus $T(n,r) = O(s) = O(\log(\frac{\log n}{\log r}))$.

$$\log_{r} n + 1 = 2^{s+1}$$

$$\log_{2} \left(\log_{r} n + 1\right) = s+1$$

$$s \cdot \log_{2} \left(\log_{r} n + 1\right) - 1$$

$$\geq 0 \left(\log_{2} \log_{r} n\right)$$

if
$$r = n$$

ie, $p = nr = n$

for a small costst \in
 $log r = \in log n$

ie, $log n = log r^{n} = \frac{1}{E}$

$$\log_2(\log_r n) = \log_2(\frac{1}{\epsilon})$$

$$= O(1)$$

$$O(1) \text{ time using } n^{1+\epsilon} \text{ processors}$$

$$O(\log_{\frac{1}{\epsilon}})$$

if
$$V == 2$$

$$O(\log_2 \log_2 n) \text{ time}$$

$$\# \text{ processors} = 2n$$

$$loglog(265536) = log 65536 = 16$$

$$O(\log\log n) \text{ time } n \text{ processors}$$

For some constant ϵ , $0 < \epsilon < 1$, let $r = n^{\epsilon}$. Then $T(n, n^{\epsilon}) = O(1/\epsilon) = O(1)$. That is, the minimum of n numbers can be found in O(1) time with $n^{1+\epsilon}$ processors on a COMMON CRCW PRAM.

Instead let r=2. Then $T(n,2)=O(\log\log n)$. That is, the minimum of n numbers can be found in $O(\log\log n)$ time with n processors on a COMMON CRCW PRAM.

4 D 8 9 9 9

Prefix Sums 2

PREFIX-SUMS-2

```
Input: Array A[1\dots n] of integers. For simplicity, assume that n is a power of 2. Output: An array B[1\dots n] such that B[i] = \sum_{j=1}^i A[j]. Model: CREW PRAM.  \{ & \text{if } (n==1) \text{ return A}; \\ & \text{pardo for } 0 \leq i \leq 1 \\ & B[in/2+1\dots(i+1)n/2] = \text{PREFIX-SUMS-2}(A[in/2+1\dots(i+1)n/2]); \\ & \text{pardo for } 1 \leq i \leq n/2 \\ & B[n/2+i] + = B[n/2]; \\ & \text{return } B; \\ \}
```

(1) (b) (2) (9) (9)

Prefix Sums 2

$$T(n) = T(n/2) + C_1$$

= $T(n/4) + 2C_1$
= $T(n/8) + 3C_1$
= $T(n/2^k) + kC_1$

Time: $T(n) = T(n/2) + c_1 = O(\log n)$. Cost: $C(n) = 2C(n/2) + c_2 n = O(n \log n)$.

$$= T(1) + C_1 \log n$$

$$= O(\log n)$$

Pi Pr ... Ryloghogh

-loglogn > rocessors are there

sequentially: O(loglogn)

n/loglogn local minima