Interpolation.

Known: ZSW, ZSE, ZNE, ZNW: values of Field Z at locations {i,j}, {i,j+1}, {i+1,j+1}, {i+1,j} (see following figure).

Required: $Z(\theta, \Phi)$, value of field Z at longitude θ , latitude Φ .

Modus operandi:

Find indexes i and j such that: Lat(i) $\leq \theta < \text{Lat}(i+1)$; Long(j) $\leq \Phi < \text{Long}(j+1)$;

 $\Delta \text{Lat} = \text{Lat}(i+1) - \text{Lat}(i);$ $\Delta \text{Long} = \text{Long}(j+1) - \text{Long}(j);$ $a(\Phi) = (\Phi - \text{Lat}(i)) / \Delta \text{Lat};$ $b(\theta) = (\theta - \text{Long}(j)) / \Delta \text{Long};$

then ZW = (1 - a) ZSW + a ZNW; ZE = (1 - a) ZSE + a ZNE;

finally $Z(\theta, \Phi) = (1 - b) ZW + b ZE$.

However, after replacing for ZE and ZW in $Z(\theta, \Phi)$ and expanding the expression, one gets:

$$Z(\theta, \Phi) = a(\Phi) (ZNW - ZSW) + a(\Phi) b(\theta) (ZSW - ZSE + ZNE - ZNW) + b(\theta) (ZSE - ZSW) + ZSW.$$

This is a quadratic form in a and b whose geometric representation is the hyperbolic paraboloid, the doubly ruled surface seen on the following figure. I invite you to use this last expression in your programme.

