1

Homework 19 Section 4.4

Mark Petersen

Exercises 3,4,5,6,9

07/15/2020

Exercise 1. (Q3): Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on the set $[1, \infty)$ but not on the set (0, 1].

Proof: We will first show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on the set $[1, \infty)$. Let $c \in [1, \infty)$. Given an $\epsilon > 0$, let $\delta = \frac{\epsilon}{2}$, then using the definition of continuous we get

$$\left| \frac{1}{x^2} - \frac{1}{c^2} \right| = \frac{\left| c^2 - x^2 \right|}{x^2 c^2}$$
$$= \frac{\left| c + x \right| \left| c - x \right|}{x^2 c^2}.$$

Let $b = \max(c, x)$ and $a = \min(c, x)$, then

$$\frac{|c+x||c-x|}{x^2c^2} \le \frac{|c-x||2b}{ba^2}$$

$$= \frac{|c-x||2}{a^2}$$

$$\le |c-x||2$$

$$< \frac{\epsilon 2}{2}$$

$$= \epsilon.$$

Since δ only depends on ϵ , the function f(x) is uniformly continuous on the set $[1, \infty)$.

Next we want to show that f(x) is not uniformly continuous on the set (0,1]. We show this by contradiction. Suppose that given an $\epsilon > 0$, there exists a $\delta = g(\epsilon) > 0$, where g is only a function of ϵ , such that when

$$|c-x|<\delta$$
,

then

$$\left| \frac{1}{x^2} - \frac{1}{c^2} \right| < \epsilon.$$

Manipulating the last term we get

$$\begin{split} \left| \frac{1}{x^2} - \frac{1}{c^2} \right| &= \frac{|c+x| \, |c-x|}{x^2 c^2} \\ &\leq \frac{2 \, |c-x|}{x^2 c^2} \\ &< \frac{2\delta}{x^2 c^2} \\ &= \frac{2g \, (\epsilon)}{x^2 c^2}. \end{split}$$

Since the terms x^2 and c^2 can be arbitrarily close to 0 and $g\left(\epsilon\right)$ is independent of x and c, the term $\frac{2g\left(\epsilon\right)}{x^2c^2}$ can become arbitrarily large, which means that it can be greater than ϵ . Thus, this contradicts that $f\left(x\right)$ is uniformly continuous on the set $\left(0,1\right]$; therefore, it is not uniformly continuous on that set.

Exercise 2. (Q4): Decide whether each of the following statements is true or false, justifying each conclusion.

- a) If f is continuous on [a,b] with f(x) > 0 for all $x \in [a,b]$, then $\frac{1}{f}$ is bounded on [a,b].
 - a) True

Proof: According to the algebraic limit theorem, since $f(x) \neq 0$ for all x, the function $\frac{1}{f}$ is continuous. Also, since [a,b] is compact, the set 1/f([a,b]) is also compact according to the theorem of preservation of compact sets. Thus $\frac{1}{f}$ is bounded on [a,b].

b) If f is uniformly continuous on a bounded set A, then f(A) is bounded.

a) True

Proof: We suppose directly that f is uniformly continuous on a bounded set A. Since A is bounded, the closure of A, \overline{A} , is bounded and thus compact. Thus $f(\overline{A})$ is compact since f is continuous. Since $A \subseteq \overline{A}$, then $f(A) \subseteq f(\overline{A})$. Since $f(\overline{A})$ is compact, it is bounded. This implies that f(A) is also bounded.

c) If f is defined on \mathbb{R} and f(K) is compact whenever K is compact, then f is continuous on \mathbb{R} .

a) False,

Disproof: To disprove this, we will show a counter example. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} -1 & \text{if } x \ge 0\\ 1 & \text{else} \end{cases}.$$

The image $f(K) \subseteq \{-1,1\}$ which is always compact; however, f is discontinuous at x=0.

Exercise 3. (Q5): Assume that g is defined on an open interval (a, c) and it is known to be uniformly continuous on (a, b] and [b, c), where a < b < c. Prove that g is uniformly continuous on (a, c).

Proof: Since g is uniformly continuous on (a,b] and [b,c), given an $\epsilon > 0$, we can find a $\delta_1 = \delta_2 = \epsilon/2$ such that

$$|x-b|<\delta_1,$$

and

$$|b-y|<\delta_2.$$

Adding the two together yields

$$|x - b| + |b - y| < \delta_1 + \delta_2$$

$$|x - b + b - y| < \delta_1 + \delta_2$$

$$|x - y| < \delta_1 + \delta_2$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

Thus, g is uniformly continuous on (a, c).

Exercise 4. (Q6): Give an example of each of the following, or state that such a request is impossible. For any that are impossible, supply a short explanation for why this is the case.

- a) A continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.
 - a) This is possible. Let f be defined as $f(x) = \frac{1}{n}$ and (x_n) be the sequence $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$, then $(f(x_n))$ is the sequence $\{2, 3, 4, 5, 6, 7, \ldots\}$ which is not a Cauchy sequence.
- b) A uniformly continuous function $f:(0,1)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.
 - a) This is impossible.

Proof: We suppose that $f:(0,1)\to\mathbb{R}$ is a uniformly continuous function, (x_n) is a Cauchy sequence and $f(x_n)$ is not a Cauchy sequence. Since (x_n) is a Cauchy sequence, given a $\delta>0$, there exists an $M\in\mathbb{N}$, such that when a,b>M,

$$|x_a - x_b| < \delta.$$

Also, since f is uniformly continuous, given an $\epsilon > 0$, there exists a $\delta > 0$ as a function of ϵ only, such that when

$$|k - l| < \delta,$$

 $|f(k) - f(l)| < \epsilon.$

In other words, we can find an M such that when

$$|x_a - x_b| < \delta,$$

$$|f(x_a) - f(x_b)| < \epsilon.$$

Thus, the sequence $f(x_a)$ is a Cauchy sequence.

- c) A continuous function $f:[0,\infty)\to\mathbb{R}$ and a Cauchy sequence (x_n) such that $f(x_n)$ is not a Cauchy sequence.
 - a) This is impossible.

Proof: Since $A = [0, \infty)$ is a closed set, any Cauchy sequence $(x_n) \subseteq A$ has it's limit point $l \in A$. Using the Characterizations of Continuity, since $(x_n) \to l$, then $f(x_n) \to f(l)$, which means that $f(x_n)$ is a Cauchy sequence.

Exercise 5. (Q9): (Lipschitz Functions). A function $f: A \to \mathbb{R}$ is called Lipschitz if there exists a bound M > 0 such that

 $\left| \frac{f(x) - f(y)}{x - y} \right| \le M$

for all $x \neq y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

a) Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A. *Proof*: We suppose directly that f is Lipschitz, then

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M,$$

which is equivalent to

$$|f(x) - f(y)| \le M|x - y|.$$

Given an $\epsilon > 0$, we can choose the distance d = |x - y| such that $\epsilon > Md$, thus

$$\left| f\left(x\right) -f\left(y\right) \right| <\epsilon ,$$

and

$$|x - y| < \epsilon/M$$
$$= \delta.$$

Thus, by letting $\delta = \epsilon/M$, when

$$|x - y| < \delta$$
,

then

$$|f(x) - f(y)| < \epsilon$$
.

Thus $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.

b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz? Disproof: We will disprove the converse with an example. Let $f:[0,\infty)\to\mathbb{R}$ be defined as $f(x)=\sqrt{x}$ which we know to be uniformly continuous. For it to be Lipschitz, we need that

$$\left|\sqrt{x} - \sqrt{y}\right| \le M\left|x - y\right|$$

for some $x, y \in \mathbb{R}$ and $M \in \mathbb{R}$. Well, $|x - y| = |\sqrt{x} + \sqrt{y}| |\sqrt{x} - \sqrt{y}|$. Using this identity in the previous equation yields

$$\left| \sqrt{x} - \sqrt{y} \right| \le M \left| \sqrt{x} + \sqrt{y} \right| \left| \sqrt{x} - \sqrt{y} \right|$$
$$1 \le M \left| \sqrt{x} + \sqrt{y} \right|.$$

For this inequality to hold for when x and y are arbitrarily small, M would have to be arbitrarily big, i.e. unbounded. Thus, no M exists. Therefore, not all uniformly continuous functions are Lipschitz.