Initial conditions (at first time slice $t=t_1$): $\lambda(t=t_1)=0$, choose $B(t=t_1,u)$

Get the subtracted fields σ , $\dot{\sigma}$, \dot{b} and a at first time slice:

• By solving the 4 radial differential equations. Spectral method. With Eigen library (LU decomposition with Full Pivoting).

Get λ and b at the second time slice:

- Calculate $\partial_t b$ and $\partial_t \lambda$ at first time slice.
- Integrate the interpolation of $\partial_t b$ from $t = t_1$ to $t = t_2$ to get $b(t = t_2, u)$. Same for λ .

Get the subtracted fields at the second time slice:

• By solving the 4 radial differential equations. Spectral method. With Eigen library (LU decomposition with Full Pivoting).

Get λ and b at the 3rd time slice:

 \circ Calculate $\partial_t b$ and $\partial_t \lambda$ at second time slice.

- m = min (6, number of the current time slice)
- o Interpolation of $\partial_t b$ using the values of $\partial_t b$ at the last m previous time slices. Same for λ .
- o Integrate interpolation of $\partial_t b$ from $t=t_2$ to $t=t_3$ to get $b(t=t_3,u)$. Same for λ .

and so on ...

How to get λ and b at next time slice after a couple of time slices:

• Use Adams Bashforth method of 5 steps.

How to get λ and b at next time slice:

(in more detail)

Adaptive time stepping:

• **Define table dts** of 10 elements:

$$10^{-4}$$
 , $10^{-3.5}$, 10^{-3} , $10^{-2.5}$, 10^{-2} , $10^{-1.5}$, 10^{-1} , $10^{-0.5}$, (1- sum of first part), 1

- dt = 1/2000
- t = t + dt * dts[[Min[Length[dts], Length[timelist]]]];
- Equidistant time steps starting from 10th time slice.

Store the t_values in timelist. (timelist[[-1]] is the current time.)

How to get λ and b at next time slice:

lf

- we are at least at 6th time slice
- AND (timelist[[-6]]-timelist[[-5]])-(timelist[[-3]]-timelist[[-2]])<10⁻¹²

then use Adams Bashforth method of 5 steps (to get λ and b at next time slice).

Else integrate a polynomial Interpolation of $\partial_t b$ to get b at the next time slice. Same for λ

Horizon gauge fixing

Fix $\lambda(t=t_1)=0$ at the first next slice.

Solve the eoms for the subtracted fields.

Find the position u_h of the horizon (u_h is the root of $\dot{\Sigma}$). Root found using Newton Raphson method.)

The horizon stationarity condition fixes $\partial_t \lambda$. Use $\partial_t \lambda$ to get λ at the next slice.