Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	19 October 2022
Team ID	PNT2022TMID28399
Project Name	Project – EXPLORATORY ANALYSIS OF RAINFALL DATA IN INDIA FOR AGRICULTURE
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data collection	USN-1	The data collection will be done by downloading the weatherAUS dataset, which was available.	4	High	Deebika G (Team Member 3)
Sprint-1	Data preprocessing	USN-2	To do pre-processing we will perform data cleaning removing noisy data and do the exploratory analysis	5	High	Mahalakshmi R (Team Member 1)
Sprint-1	Data visualization	USN-3	Graphs,Pie-charts,bar plots will be used to visualize the data for better understanding.	6	High	Jesica S (Team Member 2)
Sprint-1	Feature Scaling	USN-4	Before training our dataset want our data in normalized and standard form.	7	Medium	Mahalakshmi R (Team Member 1)

Sprint-2	Splitting data into train and test	USN-5	We split the entire dataset into train and test.	5	Medium	Deebika G (Team Member 3)
Sprint-2	Training and Testing the model	USN-6	Training of the model is done after model creation	odel is 8 Medium		Jesica S (Team Member 2)
Sprint-2	Model Evaluation	USN-7	Evaluating different models by comparing their accuracy and precision	6 Low		Keerthi P (Team Leader)
Sprint-3	Build HTML code	USN-8	Further HTML pages will be developed using the same user interface and will connected to the main page	7	High	Mahalakshmi R (Team Member 1)
Sprint-3	Python code for building the web application	USN-9	Backend of the web page will be done using python.	8	High	Deebika G (Team Member 3)
Sprint-4	Train the model on IBM cloud	USN-10	Using IBM cloud Watson to store our machine learning model and connect it with the web page.	9	High	Jesica S (Team Member 2)
Sprint-4	Integrate Flask with Scoring end points	USN-11	Integrating the web page with ML model using flask	10	High	Deebika G (Team Member 3)

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV=Sprint duration /Velocity=20/5=4

Total Average Velocity=4

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time

