Statistical Inference-Exponential Distribution vs CLT

Devara Izaz Fathan

8/22/2020

1. Overview

This assignment evaluates the exponential distribution versus Central Limit Theorem. We will use rexp function to do the simulation. The values used in this asignment are lambda= 0.2 and number of simulation=1000. We are going to do simulation, comparing sample mean vs theoritical mean, comparing sample variance versus theoritical variance and its distribution.

2. Simulation

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. We will do 1000 simulation.

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
## -- Attaching packages ----
## v ggplot2 3.3.2
                      v purrr
## v tibble 3.0.3
                      v stringr 1.4.0
## v tidyr
            1.1.1
                      v forcats 0.5.0
## v readr
            1.3.1
## -- Conflicts ------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
lambda \leftarrow 0.2
n <- 40 #number of sample
B <- 1000 #number of simulation
set.seed(8)
## do the simulation
data_sample <- data.frame(matrix(rexp(n*B, lambda), nrow = B, ncol = n))</pre>
data_sample <- data_sample %>% mutate(mean_sample = rowMeans(data_sample))
```

3. Sample Mean VS Theoritical Mean

Based on theory, the mean for the theoritical data is 1/lambda. Here is the code:

```
theoritical_mean <- 1/lambda
print(theoritical_mean)</pre>
```

[1] 5

Then we compute the sample mean with data_sample dataset.

```
sample_mean <- mean(data_sample$mean_sample)
print(sample_mean)</pre>
```

[1] 5.006442

Based on those two codes above, we have got the theoretical mean = 5, and the sample mean = 5.018281. Those values are very close enough to each other.

```
data_sample %>% ggplot(aes(mean_sample, ..density..)) +
    geom_histogram(binwidth = 0.2, position = 'identity', col= 'black', fill='blue') +
    xlab('Sample Mean') +
    ylab('Density') +
    ggtitle('Distribution of Sample Means') +
    geom_vline(xintercept = theoritical_mean, color='black') +
    geom_vline(xintercept = sample_mean, color= 'yellow')
```

Distribution of Sample Means

4. Sample Variance versus Theoretical Variance

Based on theory, the variance for the theoretical data is sd²/n. Here is the code:

```
theoritical_variance <- (1/lambda)^2/n
print(theoritical_variance)</pre>
```

```
## [1] 0.625
```

Then we compute the sample variance using data_sample dataset that we have been created.

```
sample_variance <- var(data_sample$mean_sample)
print(sample_variance)</pre>
```

```
## [1] 0.5908158
```

Based on those two codes above, we have got the theoretical variance = 0.625, and the sample variance = 0.636219

5. Distribution

Based on Central Limit Theorem, the distribution of the sample mean should follow this theorem. We will see the density plot here

Distribution of Sample Means

To give more evidence that the distribution sample mean occurs in Central Limit Theorem, we use qq plot function.

```
mean_sample <- data_sample$mean_sample
qqnorm(mean_sample, main='Normal qq plot');qqline(mean_sample, col='3')</pre>
```

Normal qq plot

This QQ plot show a close relationship between the data sample mean and the theoritical mean. Thats why we can say that Our simulation is approximately a normal distribution.