



## **Fairness Impact of Privacy**

Milestone #2 Presentation

Blake Bullwinkel, Scarlett Gong, Kristen Grabarz, Lily Ke October 28, 2021

#### **Problem statement**

| Original Data |       |  |  |
|---------------|-------|--|--|
| Age           | State |  |  |
| 23            | NY    |  |  |
| 47            | NE    |  |  |
| 35            | NY    |  |  |
| 29            | СТ    |  |  |
|               |       |  |  |
| 52            | СТ    |  |  |





| Private Data |       |  |
|--------------|-------|--|
| Age          | State |  |
| Age<br>24    | NY    |  |
| 45           | NY    |  |
| 33           | NY    |  |
| 31           | СТ    |  |
|              |       |  |
| 51           | СТ    |  |

Average Age: 45 State: 0% NE Differential privacy protects sensitive information by adding noise to data. However, it can have a disparate impact on model accuracy.

Our goal is to understand how changing  $\varepsilon$  (privacy loss) across various differentially private synthesizers affects our ability to achieve "fair" outcomes.

#### Synthesizers produce differentially private data



- Synthesizers are trained on original non-private dataset
- **Models** are then trained on the resulting differentially private synthetic data

#### Privacy parameter (ε)

Smaller values of epsilon indicate that more privacy is preserved



#### Our approach

Using popular datasets in the fairness literature, we will:

- **Generate** synthetic datasets using synthesizers and 8 ε values.
- Perform tasks including binary classification and hypothesis testing on the differentially private synthetic data
- Measure and compare fairness outcomes across these variants to understand the tradeoff between privacy and fairness.



## **Metrics & Synthesizers**

#### **Fairness metrics**

#### **Core Fairness Metrics:**

- **Binary Classification:** Understand model performance
  - True positive, False positive rate
  - Equalized Odds Distance:

$$\delta_{y} = \Pr(\hat{y}=1|A=0,Y=y) - \Pr(\hat{y}=1|A=1,Y=y), y \in \{0,1\}$$



- Predicted
- **Hypothesis Testing:** Understand how synthetic data compares to non-private data
  - Method: Difference in proportions hypothesis testing
  - Target outcomes across protected / unprotected groups
  - Target outcomes across original versus synthetic data for protected and unprotected groups

#### Differentially private synthesizers







- Earliest and simplest synthesizer (2012)
- Fewer computational resources

- Ensemble-based
- Helps reallocate the ε budget, for the ML task
- Recent (2020)

- More recent (2018-2019)
- GAN-based
- More computationally expensive

#### Ensuring our data is relevant to latest literature

- **August 2021:** Ding et al. publish paper noting limitations and idiosyncrasies with classic Adult dataset (taken from 1994 Census data) and recommend substitutes
  - o Age
  - Documentation
  - Outdated feature encodings
  - Fairness criteria and trade-offs are sensitive to income threshold (\$50k default)



#### Classic adult data distribution



#### ACS income data distribution: more fair



### **Key Takeaways so Far**

Based on experiments and comparisons to non-private baseline data

#### **Baseline Performance: Non-Private Data**

|                                  | Adult | ACS Income | COMPAS |
|----------------------------------|-------|------------|--------|
| Accuracy<br>(Unprivileged Group) | 0.897 | 0.712      | 0.638  |
| Accuracy<br>(Privileged Group)   | 0.764 | 0.715      | 0.608  |
| Equalized Odds (y=1)             | 0.268 | 0.419      | 0.339  |
| Equalized Odds<br>(y=0)          | 0.095 | 0.175      | 0.171  |

#### **Key takeaway #1**

MWEM creates synthetic data with more balanced classes across all values of epsilon considered, thereby improving fairness metrics but decreasing accuracy.



#### Key takeaway #2

Wrapping MWEM in **QUAIL** also creates more balanced classes, but increasing epsilon may have a disparate impact on the success rates of the classes, thereby illustrating a tradeoff between privacy and accuracy



#### **Learned Lessons**

## opendp/ smartnoise-core



**Different Smartnoise Synthesizers** 







Real-time Collaboration

**GPU** resources

Store Results Locally

# **Lessons Learned and Upcoming Plans**

#### **Learned Lessons**

- Data pre-processing
- Usages of different synthesizers
- Colab GPU on GAN models
- Store model results locally in .npy format for efficiency







#### Issues encountered









Bug in MWEM model



Get stuck in Python Panda dataframe loop for COMPAS MWEM



Long run-time in GAN-based method without GPU



Overfitting in COMPAS



#### **Upcoming plans**







## Thank you!

## I think we can end it here

#### Metrics for success

Fairness metrics

#### Baseline models and its results

Non-private data

- MWEM
- QUAIL
- CTGAN

#### Comparison with baseline model

Synthetic data with different synthesizers

#### Synthetic Adult data

- MWEM
- MWEL + QUAIL

#### Synthetic New Adult data

- MWEM
- MWEL + QUAIL

#### Synthetic COMPAS data

- MWEM
- MWEL + QUAIL
- DPCTGAN
- PATEGAN

#### **MWEM**

- Equalized odds distance:
  - distances for both TPR and FPR are smaller compared to original data
  - no clear trend across different epsilon values

MWEM: Equalized odds distances versus epsilons



#### **MWEM**

- Accuracy:
  - accuracy is lower compared to original data
  - seems bigger the epsilon values higher the accuracy



#### MWEM + QUAIL

- Equalized odds distance:
  - distances for both TPR and FPR are smaller(more fair) compared to original data
  - o seems smaller the epsilon values smaller the distances





#### MWEM + QUAIL

- o Accuracy:
  - accuracy is lower compared to original data,
  - seems bigger the epsilon values higher the accuracy
  - observe over-fitting (the accuracy for training is much higher than the accuracy for testing, (90-60)/60 = ~ 50%



## OLD

#### Lit review: Differentially private synthesizers

- 1. MWEM (2012): simple but effective with shorter runtime
- 2. PrivBayes (2014): developed by dataResponsibily
- 3. GAN-based (2018-2019): based on GAN architecture, privatized by DPSGD
  - a. PATE-GAN
  - b. DPGAN
  - c. DP-CTPGAN
- 4. FFPDG (2021): "native fair" synthesizer developed by Amazon

#### Adult data set: EDA





Both unprotected groups (Women and Nonwhite individuals) are less likely to make an income of at least \$50k

#### **Adult: Binary Classification Pipeline & Results**

We confirmed that men is the privileged class and has higher TPR and FPR than women, both of which are associated with favorable outcomes in the

Adult data set.



| Test Set Fairness<br>Metrics               | Gender |
|--------------------------------------------|--------|
| Equalized Opportunity (TP rate difference) | 0.120  |
| Equalized Odds (FP rate difference)        | 0.081  |
| Demographic Parity (FP+TP rate difference) | 0.201  |

#### **Adult: Hypothesis Test Pipeline & Results**

Compared rate of favorable outcome (>\$50k)
 across protected versus unprotected group: Men
 versus Women

### Reject the null hypothesis of no difference:

- Men significantly more likely than women to yield a positive outcome
- Plan to expand comparison to original versus synthetic data



#### **COMPAS dataset: EDA**



Histogram of decile\_score provided by COMPAS tool

Plotting the decile scores produced by COMPAS tool as a prediction score, the distribution for white individuals is right-skewed

#### **COMPAS: Binary Classification Pipeline & Results**

This shows the classifications appeared to favor white defendants over black defendants by underpredicting recidivism for white and over predicting recidivism for black defendants.





#### **COMPAS:** Hypothesis Test Pipeline & Results

Compared recidivism rate across protected versus unprotected group: African American versus Caucasian individuals.

#### Reject the null hypothesis of no difference:

- Mean of the African American predicted recidivism rate > the mean of the Caucasian predicted recidivism rate
- Mean of the African American predicted recidivism rate > the mean of the African American real recidivism rate