Exercise 5.1

$$\begin{split} U \left| j \right\rangle &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} \left| k \right\rangle \\ \left\langle j' \right| U^{\dagger} U \left| j \right\rangle &= \frac{1}{N} \sum_{k'=0}^{N-1} \sum_{k=0}^{N-1} e^{-2\pi i j' k'/N} e^{2\pi i j k/N} \delta_{k,k'} = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i (j-j')k/N} = \frac{1}{N} N \delta_{j,j'} = \delta_{j,j'} \end{split}$$
 Therefore, $U^{\dagger} U = I$, hence U is unitary.

Exercise 5.2

$$|00\dots 0\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} |k\rangle = \frac{1}{2^{n/2}} \sum_{x_i \in \{0,1\}} |x_1 x_2 \dots x_n\rangle$$

Exercise 5.3

For each y_k we perform 2^n additions and there are 2^n y_k to calculate, hence in total we require $\Theta(2^{2n})$ operations.

(Cooley-Turkey Algorithm) For each x_k we can separate the sum into odd and even indices, then we require 2^n operations assuming the two separate sums are known. This can be done recursively, splitting each sum into 2 pieces. This leads to the number of operations to be $\Theta(2^n \log 2^n) = \Theta(n2^n)$.

Exercise 5.4

Let $R_k = e^{i\alpha}AXBXC$ with ABC = I. Taking $\alpha = \frac{\pi i}{2^k}$, A = I $B = R_Z(-\frac{\pi i}{2^k})$ and $C = R_Z(\frac{\pi i}{2^k})$ we see that ABC = I and $AXBXC = XR_Z(-\frac{\pi i}{2^k})XR_Z(\frac{\pi i}{2^k}) = XXR_Z(\frac{\pi i}{2^k})R_Z(\frac{\pi i}{2^k}) = R_Z(\frac{2\pi i}{2^k})$. Hence, the circuit will be,

Exercise 5.5

$$FT^{-1} = FT^{\dagger}$$

Exercise 5.6

In the circuit we have $m = \frac{n(n+1)}{2} = \Theta(n^2)$ R_k gates. Using the result of Box 4.1, $E(U,V) \leq m \frac{1}{p(n)} = \Theta(\frac{n^2}{p(n)})$

Exercise 5.7

Let
$$|j\rangle = |j_0 j_2 \dots j_{n-1}\rangle$$
, then the circuit implements the following,
 $|j\rangle |u\rangle \rightarrow |j\rangle ((U^{2^0})^{j_0}(U^{2^1})^{j_1}\dots (U^{2^{n-1}})^{j_{n-1}}) |u\rangle = |j\rangle U^{j_0 2^0 + j_1 2^1 + \dots + j_{n-1} 2^{n-1}} |u\rangle = |j\rangle U^j |u\rangle$

1

Exercise 5.8

With probability $|c_u|^2$ we will be measuring φ_u for the state $|u\rangle$. If t is of the form of 5.35 each $\tilde{\varphi}_u$ is accurate to n bits of φ_u with probability $1 - \epsilon$. Hence, the total probability of measuring φ_u accurate to n bits is $|c_u|^2(1 - \epsilon)$.

Exercise 5.9

For this $U \varphi_0 = 0$ and $\varphi_1 = \frac{1}{2}$, hence the circuit is,

hence after the measurement it will collapse into the +1 or -1 eigenbasis. For a first register with a single qubit $FT^{\dagger} = H$, hence this is the same circuit as that in Exercise 4.34.

Exercise 5.10

 $5 = 5 \mod 21$, $5^2 = 4 \mod 21$, $5^3 = 20 \mod 21$, $5^4 = 16 \mod 21$, $5^5 = 17 \mod 21$ and $5^6 = 1 \mod 21$. Hence, the order is 6.

Exercise 5.11

As gcd(x, N) = 1, from Euler's formula $x^{\varphi(N)} = 1 \mod N$. $\varphi(N)$ is the number of y such that gcd(y, N) = 1 and y < N, hence $\varphi(N) < N$. Therefore, there always exists a number $r \le N$, such that $x^r = 1 \pmod{N}$.

Exercise 5.12

$$\langle y'|U^{\dagger}U|y\rangle = \langle xy'|xy\rangle = \langle y'|y\rangle \mod N$$

 $0 \le y \le N-1$, hence $\langle y'|y\rangle \mod N = \langle y'|y\rangle = \delta_{y,y'}$. Therefore, $\langle y'|U^{\dagger}U|y\rangle = \delta_{y,y'}$. Hence, U is unitary.

Exercise 5.13

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |u_s\rangle = \frac{1}{r} \sum_{s=0}^{r-1} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^k \mod N\rangle = \frac{1}{r} \sum_{k=0}^{r-1} \sum_{s=0}^{r-1} e^{-2\pi i s k/r} |x^k \mod N\rangle = \frac{1}{r} \sum_{k=0}^{r-1} r \delta_{k0} |x^k \mod N\rangle = |1\rangle$$

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{2\pi i s k/r} |u_s\rangle = \frac{1}{r} \sum_{s=0}^{r-1} \sum_{k'=0}^{r-1} e^{2\pi i s (k-k')/r} |x^{k'} \mod N\rangle = \frac{1}{r} \sum_{k'=0}^{r-1} r \delta_{k,k'} |x^{k'} \mod N\rangle = |x^k \mod N\rangle$$

Exercise 5.14

Exercise 5.15

Exercise 5.16

Exercise 5.17

Exercise 5.18

Exercise 5.19

Exercise 5.20