Examen partiel

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 19 mars 2013

Documentation permise : 1 feuille de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (21 points) Questions à courts développements

Répondez aux questions suivantes :

(a) Soit le circuit montré à la Figure 1. Proposez deux ajouts afin de réduire la tension de décalage à la sortie de ce circuit. Redessinez le circuit modifié. Réponse:
l'effet de V_{OS} est limité à V_{out} = V_{OS} grâce à C et l'effet de I_B est annulé si R₃ = R₂.

- (b) Soit le circuit montré à la Figure 2. En supposant A₁ idéal, donnez les valeurs de l'impédance d'entrée Zin et de l'impédance de sortie Zout de ce circuit. Réponse : Zin = ∞, Zout = R₂.
- (c) Toujours pour le circuit de la Figure 2, développez une expression pour le gain en boucle fermée (A_{BF}) en supposant que A₁ possède un gain en boucle ouverte fini noté A_{BO}. Ensuite, calculez l'erreur ε sur A_{BF} basse fréquence si A_{BO}=100 dB, R₁=10 kΩ et R₂=50 kΩ. Utilisez ε = (A_{BF_réel} A_{BF_idéal}) ÷ A_{BF_idéal} × 100. Réponse : A_{BF} ≡ V₀/V_{in} = A_{BO}/(1+ A_{BO}) ou 1/(1+1/_{ABO}) et ε = 0.001%.

(d) Dessinez le schéma d'un circuit dont l'impédance d'entrée est $Z_{in} = -K / s^3$, où K > 0. Réponse : avec $Z_1 = Z_3 = Z_5 = 1/sC$, $Z_2 = Z_4 = R$, $Z_{in} = -R_1/R_2 \times 1/(s^3 C^3 R^2)$ qui est bien de la forme recherchée avec $K = R_1/R_2 \times 1/(C^3 R^2)$.

- (e) La Figure 3 montre la réponse générique d'un filtre passe bas. Un filtre actif réalise une fonction Butterworth d'ordre 7 avec une fréquence de coupure de 10 kHz et une atténuation maximum dans la bande passante de 3 dB. Calculez l'atténuation fournie par ce filtre à $\omega_s = 30$ kHz. **Réponse**: $A(j\omega_s) = 66.8$ dB.
- (f) Pour le même filtre actif qu'en (e), donnez les zéros de la fonction de transfert et situez les pôles dans le plan complexe. Réponse : il y 7 zéro à $s = \infty$. Pour les pôle, $\omega_0 = 2\pi \times 10$ kHz. On situent les pôles dans le plan complexe comme suit :

Figure 1.

Figure 2.

Figure 3.

2. (39 points) Analyse de circuits

Soit le circuit suivant :

Figure 4.

(a) En supposant que A₁, A₂, et A₃ sont des amplis-op idéaux, développez une expression pour V_{out} en fonction de V_{inA}, V_{inB}, V_{inC} et les résistances R₁ et R₂. Réponse:

$$V_{out} = \left(1 + \frac{R_1}{R_2}\right)(V_{inB} - V_{inA}) + V_{inC}$$

(b) Le circuit de la Figure 4 est représenté dans la Figure 5 par une « boîte noire » comportant trois entrées V_{inA} , V_{inB} , V_{inC} et une sortie V_{out} . Démontrez que le courant I_{out} dans la résistance de charge R_L est donné par l'expression :

$$I_{out} = \frac{A_d V_S}{R}$$
 où $A_d = 1 + \frac{R_1}{R_2}$

4

Figure 5.

Réponse : Il suffit de remplacer V_{inB} - V_{inA} = V_S , $I_{out} \times R_L$ = V_{inC} et $I_{out}(R+R_L)$ = V_{out} dans l'expression de V_{out} trouvée en (a) pour retrouver I_{out} = A_dV_S/R .

- (c) Le circuit se la Figure 5 est une source de courant contrôlée par une tension, puisque l'équation en b) nous indique que le courant I_{out} qui passe dans la charge est indépendant de la résistance de charge R_L. Calculez la résistance de sortie R_{out} de cette source de courant en procédant comme suit :
 - Éliminer toutes les sources de tension indépendantes (i.e. rendre V_S =0 en reliant V_{inB} à la masse).
 - Enlever la résistance de charge R_L et la remplacer par une source de tension V_x .
 - Déterminer $R_{out} = V_x / I_x$, où I_x est le courant débité par la source V_x .

Réponse : $\mathbf{R}_{out} = \infty$.

(d) Quelle aurait été la résistance de sortie R_{out} de cette source de courant si au lieu d'un suiveur formé par A_3 dans le circuit de la Figure 4 on avait connecté directement l'entrée V_{inC} au nœud REF?

Réponse : $R_{out} = R_1$.

3. (40 points) *Analyse et conception d'un filtre* Soit le circuit suivant :

Figure 6.

a) En supposant que A₁ soit un ampli-op idéal, démontrez que le gain de tension
H(s) de l'amplificateur de la Figure 6 s'écrit sous la forme :

$$H(s) \equiv \frac{V_{out}(s)}{V_{in}(s)} = \frac{\left(\frac{s}{\omega_2}\right)}{\left[1 + \left(\frac{s}{\omega_2}\right)\right]} \times \frac{\left[1 + \left(\frac{s}{\omega_3}\right)\right]}{\left[1 + \left(\frac{s}{\omega_1}\right)\right]}$$

où
$$\omega_1 = 1/C_1R_1$$
, $\omega_2 = 1/C_2R_3$ et $\omega_3 = 1/C_1(R_1 + R_2)$.

Réponse : Il faut trouver $V_{out}/V_{in} = (V_+/V_{in})(V_{out}/V_+)$ où (V_+/V_{in}) est une fonction passe haut de type passive et (V_{out}/V_+) est une fonction passe haut de type amplificateur non-inverseur $(1+Z_2/Z_1)$.

- b) En supposant que les composants du circuit sont choisis de façon à ce que $\omega_2 << \omega_3 << \omega_1$, déterminez les valeurs de $H(j\omega)$ aux fréquences suivantes :
 - i) $\omega = 0$
 - ii) $\omega \gg \omega_1$

Réponse : i) $H(j\omega)=0$, ii) $H(j\omega)=\omega_1/\omega_3$, soit $(R_1+R_2)/R_1$.

- c) On choisi $C_1 = C_2 = 0.1 \mu F$. Calculez R_1 , R_2 , R_3 pour avoir les caractéristiques suivantes :
 - Une fréquence de coupure à -3 dB d'environ 10 kHz.
 - Une impédance d'entrée dont le module $|Z_{in}(j\omega)|=1$ M Ω aux fréquences $\omega>>\omega_1$.
 - Un gain de tension dont le module $|H(j\omega)| = 100 \text{ V/V}$ aux fréquences $\omega >> \omega_1$. **Réponse :** R_1 =159.2 Ω , R_2 =15.9 $k\Omega$ et R_3 =1 $M\Omega$.
- d) Le circuit de la Figure 6 doit être réalisé en mille exemplaires avec des amplis-op ayant les caractéristiques suivantes :

• Produit gain bande passante : $f_T = 20 \text{ MHz}$ • Slew rate : SR = 10 V/µs

Tension de décalage : V_{OS} = 2 mV (typique), 5 mV (maximum)
Courant de polarisation : I_B = 100 nA (typique), 500 nA (maximum)
Courant de décalage : I_{OS} = 20 nA (typique), 80 nA (maximum)

Effectuez une analyse de pire cas pour déterminer la tension de décalage maximum (en valeur absolue) qu'on pourrait retrouver à la sortie de certains circuits lors des tests. Expliquez votre démarche. Réponse : $V_O = V_{OS} + I_B(R_2-R_3)+I_{OS}R_2$. Si on considère que R2 et R3 sont identiques, $V_{O_pire_cas} = 13$ mV.

Bonne chance!

Benoit Gosselin

Aide mémoire

Résumé pour la conception de filtres :

Fonctions d'ordre 1

Fonctions d'ordre 2

