Тренировочная работа по МАТЕМАТИКЕ 11 класс

21 декабря 2017 года Вариант МА10209 (профильный уровень)

	, .		*		
Выполнена: ФИО				класс	

Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Математика. 11 класс. Вариант МА10209

Часть 1

Ответом к каждому из заданий 1–12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

1	Держатели дисконтной карты книжного магазина получают при покупке скидку 3 %. Книга стоит 300 рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу?
	Ответ:
2	На диаграмме показано распределение выплавки меди в 10 странах мира (в тысячах тонн) за 2006 год. Среди представленных стран первое место по выплавке меди занимали США, десятое место — Казахстан. Какое место занимала Россия?
	1400 1200 1000 800 600 400 200 0 1000 1000 1000 1000 1000 10
	Ответ:
3	На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите её площадь.
	Ответ:
4	Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию A = {сумма очков равна 9}?

Ответ:

5 Найдите корень уравнения $-\frac{2}{9}x = 1\frac{1}{9}$.

Ответ:

6 Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 150°. Боковая сторона треугольника равна 26. Найдите площадь этого треугольника.

Ответ: ______

На рисунке изображён график функции y = f'(x) — производной функции f(x), определённой на интервале (-9;5). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Ответ:

8 Во сколько раз уменьшится объём правильного тетраэдра, если все его рёбра уменьшить в три раза?

Ответ: .

Часть 2

9 Найдите значение выражения $8^{\sqrt{8}+6} \cdot 8^{-5-\sqrt{8}}$.

Ответ:

Для определения эффективной температуры звёзд используют закон Стефана—Больцмана, согласно которому $P = \sigma S T^4$, где P — мощность излучения звезды (в ваттах), $\sigma = 5,7 \cdot 10^{-8} \frac{\mathrm{BT}}{\mathrm{M}^2 \cdot \mathrm{K}^4}$ — постоянная, S — площадь поверхности звезды (в квадратных метрах), а T — температура (в кельвинах). Известно, что площадь поверхности некоторой звезды равна $\frac{1}{729} \cdot 10^{20} \; \mathrm{M}^2$, а мощность её излучения равна $5,13 \cdot 10^{25} \; \mathrm{BT}$. Найдите температуру этой звезды в кельвинах.

Ответ: .

Васе надо решить 245 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днём. Известно, что за первый день Вася решил 11 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 7 дней.

Ответ:

12 Найдите наибольшее значение функции $y = 8x - 4\text{tg}x - 2\pi + 2$ на отрезке $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right]$.

Ответ: _____

5

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- a) Решите уравнение $\sin 2x + 2\cos^2 x + \cos 2x = 0$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left| -\frac{9\pi}{2}; -3\pi \right|$.
- В правильной треугольной пирамиде SABC с основанием ABC боковое ребро равно 7, а сторона основания равна 6. На продолжении ребра SA за точку A отмечена точка P, а на продолжении ребра SB за точку B точка Q, причём AP = BQ = SA.
 - а) Докажите, что прямые PO и SC перпендикулярны друг другу.
 - б) Найдите угол между плоскостями АВС и СРО.
- Решите неравенство $\log_6 \left(64^x + 36^x 65 \cdot 8^x + 64 \right) \ge 2x$.
- Окружность с центром O, вписанная в треугольник ABC, касается его сторон BC, AB и AC в точках K, L и M соответственно. Прямая KMвторично пересекает в точке P окружность радиуса AM с центром A. а) Докажите, что прямая AP параллельна прямой BC.
 - б) Пусть $\angle ABC = 90^{\circ}$, AM = 3, CM = 2, O точка пересечения прямых KM и AB, а T — такая точка на отрезке PQ, что $\angle OAT = 45^{\circ}$. Найдите QT.
- Строительство нового завода стоит 115 млн рублей. Затраты на производство x тыс. единиц продукции на таком заводе равны $0.5x^2 + x + 9$ млн рублей в год. Если продукцию завода продать по цене p тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит $px - (0.5x^2 + x + 9)$. Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении p строительство завода окупится не более чем за 5 лет?

- 18 Найдите все целые отрицательные значения параметра a, при каждом из которых существует такое действительное число b > a, что неравенство $21b \ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16$ не выполнено.
- 19 Шесть экспертов оценивали фильм. Каждый из них выставил оценку целое число баллов от 0 до 10 включительно. Все эксперты выставили различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки, и подсчитывается среднее арифметическое четырёх оставшихся оценок.
 - а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{10}$?
 - б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{12}$?
 - в) Найдите наибольшее возможное значение разности старого и нового рейтингов.

Ответы на тренировочные варианты 10209-10212 (профильный уровень) от 21.12.2017

	1	2	3	4	5	6	7	8	9	10	11	12
10209	291	6	31,5	4	- 5	169	- 7	27	8	9000	59	- 2
10210	144	3	8	1	- 15	400	21	729	5	4000	20	- 1
10211	7	13	24,5	0,13	39	55	6	55	15	0,4	36	- 15
10212	6	11	22,5	0,09	23	108	9	70	16	0,5	34	- 11

Критерии оценивания заданий с развёрнутым ответом

- a) Решите уравнение $\sin 2x + 2\cos^2 x + \cos 2x = 0$.
 - б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-\frac{9\pi}{2}; -3\pi\right]$.

Решение.

а) Преобразуем уравнение:

$$2\sin x \cos x + 2\cos^2 x + \cos^2 x - \sin^2 x = 0$$
;

$$3\sin x \cos x + 3\cos^2 x - \sin x \cos x - \sin^2 x = 0;$$

$$(\sin x + \cos x)(3\cos x - \sin x) = 0.$$

Получаем $\sin x + \cos x = 0$; $\sin x = -\cos x$; tgx = -1; $x = -\frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$, или $3\cos x - \sin x = 0$; $\sin x = 3\cos x$; tgx = 3; $x = \arctan 3 + \pi n$, $n \in \mathbb{Z}$.

б) С помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-\frac{9\pi}{2}; \ -3\pi\right]$. Получим числа $-\frac{17\pi}{4}; \ \arctan 3 - 4\pi; \ -\frac{13\pi}{4}$.

Otbet: a)
$$x = -\frac{\pi}{4} + \pi n$$
, $n \in \mathbb{Z}$; $\arctan 3 + \pi n$, $n \in \mathbb{Z}$; 6) $-\frac{17\pi}{4}$; $\arctan 3 - 4\pi$; $-\frac{13\pi}{4}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при этом	
имеется верная последовательность всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

© СтатГрад 2017-2018 уч. г.

- В правильной треугольной пирамиде SABC с основанием ABC боковое ребро равно 7, а сторона основания равна 6. На продолжении ребра SA за точку A отмечена точка P, а на продолжении ребра SB за точку B точка Q, причём AP = BQ = SA.
 - а) Докажите, что прямые PQ и SC перпендикулярны друг другу.
 - б) Найдите угол между плоскостями АВС и СРО.

Решение.

а) Пусть M — середина ребра AB, N — середина отрезка PQ. В равнобедренных треугольниках ASB и PSQ медианы SM и SN являются биссектрисами и высотами. Следовательно, точки S, M и N лежат на одной прямой. Треугольник PCQ равнобедренный, так как треугольники PAC и QBC равны, а значит, PC = CQ. В треугольниках ABC и PCQ высотами служат отрезки CM и CN соответственно. Из того, что отрезок PQ перпендикулярен отрезку SN и отрезку CN следует, что прямая PQ перпендикулярна плоскости SNC, но перпендикуляр к плоскости перпендикулярен любой прямой, лежащей в ней, следовательно, прямые PQ и SC перпендикулярны.

б) Из решения предыдущего пункта видно, что плоскость NSC перпендикулярна плоскостям ABC и PCQ, а потому $\angle MCN = \alpha$ искомый. Найдём стороны треугольника MCN .

Ясно, что
$$MN = SM = \sqrt{SA^2 - AM^2} = 2\sqrt{10}$$
 и $CM = AM \cdot \sqrt{3} = 3\sqrt{3}$.

В треугольнике имеем $SBC \cos \angle CSB = \frac{SB^2 + SC^2 - CB^2}{2 \cdot SB \cdot SC} = \frac{31}{49}$

Из треугольника SCQ по теореме косинусов находим

$$CQ^2 = CS^2 + SQ^2 - 2 \cdot CS \cdot SQ \cdot \cos \angle CSB = 121$$
.

Следовательно
$$CN = \sqrt{CQ^2 - NQ^2} = \sqrt{121 - 36} = \sqrt{85}$$
. Из треугольника MCN

по теореме косинусов находим $\cos \alpha = \frac{27 + 85 - 40}{2 \cdot 3\sqrt{3} \cdot \sqrt{85}} = \frac{4\sqrt{3}}{\sqrt{85}}$

OTBET: $\arccos \frac{4\sqrt{3}}{\sqrt{85}}$

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	2
обоснованно получен верный ответ в пункте δ	
Верно доказан пункт а.	1
ИЛИ	
Верно решён пункт δ при отсутствии обоснований в пункте a	
Решение не соответствует ни одному из критериев, перечис-	0
ленных выше	
Максимальный балл	2

15 Решите неравенство $\log_6 \left(64^x + 36^x - 65 \cdot 8^x + 64 \right) \ge 2x$.

Решение.

Преобразуем неравенство:

$$\log_{6} \left(64^{x} + 36^{x} - 65 \cdot 8^{x} + 64 \right) \ge 2x; \qquad \log_{6} \left(64^{x} + 36^{x} - 65 \cdot 8^{x} + 64 \right) \ge \log_{6} 36^{x};$$

$$64^{x} - 65 \cdot 8^{x} + 64 \ge 0; \qquad \left(8^{x} - 1 \right) \left(8^{x} - 64 \right) \ge 0.$$

Получаем $x \ge 2$ и $x \le 0$.

Ответ: $(-\infty; 0]$; $[2; \infty)$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Решение содержит вычислительную ошибку, возможно, приведшую	1
к неверному ответу, но при этом имеется верная последовательность	
всех шагов решения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	2

Окружность с центром O, вписанная в треугольник ABC, касается его сторон BC, AB и AC в точках K, L и M соответственно. Прямая KM вторично пересекает в точке P окружность радиуса AM с центром A.

а) Докажите, что прямая AP параллельна прямой BC.

б) Пусть $\angle ABC = 90^{\circ}$, AM = 3, CM = 2, Q — точка пересечения прямых KM и AB, а T — такая точка на отрезке PQ, что $\angle OAT = 45^{\circ}$. Найдите QT.

Решение.

а) Поскольку CK = CM и AP = AM, треугольники MCK и PAM равнобедренные, причём $\angle CMK = \angle AMP$ — углы при их основаниях MK и MP. Значит, $\angle MKC = \angle MPA$. Следовательно, прямая AP параллельна прямой BC.

б) Обозначим BK=BL=x . Тогда CK=CM=2 , AL=AM=3 , BC=2+x , AB=3+x .

По теореме Пифагора $AC^2 = BC^2 + AB^2$, или $25 = (2+x)^2 + (3+x)^2$, откуда x = 1. Значит, BC = 3, AB = 4.

Поскольку BC = AP = 3 и $BC \parallel AP$, четырёхугольник ABCP — прямоугольник, значит, CP = AB = 4. Треугольник AMQ подобен треугольнику CMP с коэффициентом $\frac{AM}{MC} = \frac{3}{2}$, поэтому $AQ = \frac{3}{2}CP = \frac{3}{2} \cdot 4 = 6$.

По теореме Пифагора $PQ = \sqrt{AP^2 + AQ^2} = \sqrt{9 + 36} = 3\sqrt{5}$.

Обозначим $\angle BAC = \alpha$. Тогда $\angle MAO = \frac{\alpha}{2}$, $\angle MAT = 45^{\circ} - \frac{\alpha}{2}$,

$$\angle PAT = 90^{\circ} - \angle QAT = 90^{\circ} - \left(45^{\circ} + \frac{\alpha}{2}\right) = 45^{\circ} - \frac{\alpha}{2}$$

поэтому AT — биссектриса, а значит, и высота равнобедренного треугольника MAP .

Таким образом, AT — высота прямоугольного треугольника PAQ, прове-

дённая из вершины прямого угла, следовательно, $QT = \frac{AQ^2}{PQ} = \frac{36}{3\sqrt{5}} = \frac{12}{\sqrt{5}}$.

Ответ:
$$\frac{12}{\sqrt{5}}$$
.

© СтатГрад 2017-2018 уч. г.

© СтатГрад 2017-2018 уч. г.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и	3
обоснованно получен верный ответ в пункте δ	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а, и при	
обоснованном решении пункта σ получен неверный ответ из-за	
арифметической ошибки	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	Í
арифметической ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	Í
утверждения пункта a , при этом пункт a не выполнен	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	3

Строительство нового завода стоит 115 млн рублей. Затраты на производство х тыс. единиц продукции на таком заводе равны $0.5x^2 + x + 9$ млн рублей в год. Если продукцию завода продать по цене p тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит $px - (0.5x^2 + x + 9)$. Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении р строительство завода окупится не более чем за 5 лет?

Решение.

Прибыль фирмы (в млн рублей) за один год составляет

$$px - (0.5x^2 + x + 9) = -0.5x^2 + (p-1)x - 9.$$

Это выражение является квадратным трёхчленом и достигает своего наибольшего значения при x = p - 1. Наибольшее значение равно $\frac{(p-1)^2}{2}$ – 9. Строительство завода окупится не более чем за 5 лет, если

$$\frac{(p-1)^2}{2} - 9 \ge \frac{115}{5}; (p-1)^2 \ge 64; (p-9)(p+7) \ge 0,$$

то есть при $p \ge 9$, поскольку цена продукции не может быть отрицательной. Таким образом, наименьшее значение p = 9.

Ответ: p = 9.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки	
Верно построена математическая модель, и решение сведено	1
к исследованию этой модели, при этом решение не завершено	
Решение не соответствует ни одному из критериев, пере-	0
численных выше	
Максимальный балл	3

Найдите все целые отрицательные значения параметра a, при каждом из которых существует такое действительное число b > a, что неравенство $21b \ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16$ не выполнено.

Решим вспомогательную противоположную задачу: найдём все a, при каждом из которых неравенство $21b \ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16$ выполнено при любом b > a. Заметим далее, что данное неравенство равносильно неравенству

$$F(b) = 21b - 6|a + b| + 3|b - 2| + |a - b| + 9|a^{2} - b + 2| - 16 \ge 0,$$

причём функция F(b) строго монотонно возрастает на множестве действительных чисел и, следовательно, первоначальное неравенство выполняется для всех b > a тогда и только тогда, когда $F(a) \ge 0$, то есть $9a^2 + 12a - 12|a| + 3|a - 2| + 2 \ge 0$. Отметим, что при $a \ge 0$ полученное неравенство верно. Если a < 0, то неравенство равносильно неравенству

$$9a^{2} + 21a + 8 \ge 0; \qquad \begin{bmatrix} \frac{-7 + \sqrt{17}}{6} \le a < 0; \\ a \le \frac{-7 - \sqrt{17}}{6} \end{bmatrix}$$

Таким образом, существует только одно целое отрицательное значение a = -1, при котором условие вспомогательной задачи не выполнено. Следовательно, при значении a = -1 существует такое b > a, что неравенство $21b \ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16$ не выполнено.

Ответ: -1.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены все значения a , но ответ	3
содержит лишнее значение	
С помощью верного рассуждения получены все решения уравнения	2
Задача верно сведена к исследованию возможного значения корней	1
уравнения	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

Шесть экспертов оценивали фильм. Каждый из них выставил оценку — целое число баллов от 0 до 10 включительно. Все эксперты выставили различные оценки. Старый рейтинг фильма — это среднее арифметическое всех оценок экспертов. Новый рейтинг фильма вычисляется следующим образом: отбрасываются наименьшая и наибольшая оценки и, подсчитывается среднее арифметическое четырёх оставшихся оценок.

а) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{18}$?

б) Может ли разность рейтингов, вычисленных по старой и новой системам оценивания, равняться $\frac{1}{12}$?

в) Найдите наибольшее возможное значение разности старого и нового рейтингов.

Решение.

Обозначим рейтинг кинофильма, вычисленный по старой системе оценивания, через A, а рейтинг кинофильма, вычисленный по новой системе оценивания, через B.

а) Заметим, что $A = \frac{m}{6}$, $B = \frac{n}{4}$, где m и n — некоторые натуральные числа.

Значит, $A-B=\frac{m}{6}-\frac{n}{4}=\frac{2m-3n}{12}$. Если $A-B=\frac{1}{18}$, то $2m-3n=\frac{12}{18}$, что невозможно. Таким образом, разность рейтингов, вычисленных по старой и

новой системам оценивания, не может равняться $\frac{1}{18}$.

б) Например, для оценок экспертов 0, 1, 2, 3, 5, 6 разность рейтингов, вычисленных по старой и новой системам оценивания, равна

$$\frac{0+1+2+3+5+6}{6} - \frac{1+2+3+5}{4} = \frac{17}{6} - \frac{11}{4} = \frac{1}{12}.$$

© СтатГрад 2017-2018 уч. г.

Математика. 11 класс. Вариант МА10209

в) Пусть x — наименьшая из оценок, z — наибольшая, а y — сумма остальных четырёх оценок. Тогда

$$A - B = \frac{x + y + z}{6} - \frac{y}{4} = \frac{2x - y + 2z}{12} \le$$

$$\le \frac{2x + 2z - ((x+1) + (x+2) + (x+3) + (x+4))}{12} =$$

$$= \frac{2z - 2x - 10}{12} \le \frac{2 \cdot 10 - 2 \cdot 0 - 10}{12} = \frac{5}{6}.$$

Для оценок экспертов 0, 1, 2, 3, 4, 10 разность A-B равна $\frac{5}{6}$. Значит, наибольшее возможное значение разности рейтингов, вычисленных по старой и новой системам оценивания, равно $\frac{5}{6}$.

Ответ: а) нет; б) да, например, для оценок 0, 1, 2, 3, 5, 6; в) $\frac{5}{6}$.

Содержание критерия	Баллы
Получены верные обоснованные ответы в пунктах a , δ и ϵ	4
Получены верные обоснованные ответы в пунктах a и δ , либо	3
получены верные обоснованные ответы в пунктах б и в либо	
получены верные обоснованные ответы в пунктах а и в	
Получен верный обоснованный ответ в пункте a , пункты δ и ϵ не	2
решены, либо получен верный обоснованный ответ в пункте ϵ ,	
пункты a и δ не решены	
Приведён пример в пункте δ , пункты a и b не решены	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4