Photonics: Laser -II

Vandana Sharma

Molecules have many energy levels.

•A typical molecule's energy levels:

As a result, molecules generally have very complex spectra.

Atoms and molecules can also absorb photons, making a transition from a lower level to a more excited one.

Absorption lines in an otherwise continuous light spectrum due to a cold atomic gas in front of a hot source.

Decay from an excited state can occur in many steps.

The light that's eventually re-emitted after absorption often occurs at other colors.

Calculating the gain: Einstein A and B coefficients

Einstein considered the various transition rates between molecular states (say, 1 and 2) involving light of irradiance, *I*:

Stimulated emission rate
$$= B N_2 I \longrightarrow$$

where N_i is the number density of molecules in the i^{th} state, and I is the irradiance.

Blackbody Radiation

Blackbody radiation results from a combination of **spontaneous emission**, **absorption**, **and stimulated emission** occurring in a medium at a given temperature.

It assumes that the box is filled with many different molecules that together have transitions (absorptions) at every wavelength.

In what energy levels do molecules reside? Boltzmann Population Factors

Population density → (Number of molecules per unit volume)

 N_i is the number density (also known as the population density) of molecules in state i (i.e., the number of molecules per cm³).

T is the temperature, and k_B is Boltzmann's constant = 1.3806503 × 10⁻²³ J/ $^{\circ}$ K

The Maxwell-Boltzmann Distribution

In the absence of collisions, (low T) molecules tend to remain in the lowest energy state available.

Collisions can knock a molecule into a higher-energy state. The higher the temperature, the more this happens.

The ratio of the population densities of two states is:

$$N_2$$
 / $N_1=\exp(-\Delta E/k_BT)$, where $\Delta E=E_2-E_1=h\,
u$

frequency of a photon for an $E_2 - E_1$ transition

As a result, higher-energy states are always less populated than the ground state, and absorption is stronger than stimulated emission.

Einstein A and B Coefficients

In 1916, Einstein considered the various transition rates between molecular states (say, 1 and 2) involving light of intensity, *I*:

Spontaneous emission rate = $A N_2$ Absorption rate = $B_{12} N_1 I$ Stimulated emission rate = $B_{21} N_2 I$

In equilibrium, the rate of upward transitions equals the rate of downward transitions:

Now solve for the intensity in: $(B_{12}I)/(A+B_{21}I) = \exp(-hv/k_BT)$

Multiply by $(A + B_{21}I) \exp(h\nu/k_BT)$: $B_{12}I \exp(h\nu/k_BT) = A + B_{21}I$

Solve for *I*: $I = A / [B_{12} \exp(hv/k_BT) - B_{21}]$

Dividing numerator and denominator by B_{21} :

$$I = (A/B_{21}) / [(B_{12}/B_{21}) \exp(hv/k_BT) - 1]$$

Now, when $T \to \infty$, I should also. As $T \to \infty$, $\exp(h\nu/k_BT) \to 1$.

So: $(B_{12}/B_{21}) - 1 = 0$

And: $B_{12} = B_{21} \equiv B \leftarrow \text{Coeff up = coeff down!}$

And: $I = (A/B) / [\exp(hv/k_BT) - 1]$

$$I = (A/B) / \left[\exp(h v/k_B T) - 1 \right]$$

Compare the above expression with Planck's expression for I_{ν} :

$$I_{v} = \frac{8\pi h v^{3} / c^{2}}{\exp(hv / k_{B}T) - 1}$$

$$\frac{A}{B} = \frac{8\pi h v^3}{c^2}$$

The X-ray lasers are difficult to make.

Stimulated emission leads to a chain reaction and laser emission.

If many molecules in a medium are excited, one photon can become many.

This is the essence of the laser. The factor by which an input beam is amplified by a medium is called the **gain** and is represented by G.

Gain

A laser is a medium that stores energy, surrounded by two mirrors. A partially reflecting output mirror lets some light out.

A laser will lase if the beam increases in intensity during a round trip: that is, if $I_3 \ge I_0$

Usually, additional **losses** in intensity occur, such as absorption, scattering, and reflections. In general, the laser will lase if, in a round trip:

Gain > Loss

This is called achieving **Threshold**.

Laser gain

Laser medium

Neglecting spontaneous emission:

$$\frac{dI}{dt} = c\frac{dI}{dz} \propto BN_2I - BN_1I$$
$$\propto B[N_2 - N_1]I$$

[Stimulated emission minus absorption]

The solution is:

$$I(z) = I(0) \exp\left\{\sigma \left[N_2 - N_1\right] z\right\}$$

Proportionality constant is the absorption/gain cross-section, σ

There can be exponential gain or loss in irradiance.

Normally, $N_2 < N_1$, and there is loss (absorption).

But if $N_2 > N_1$, there's gain, and we define the gain, G:

$$G \equiv \exp\left\{\sigma\left[N_2 - N_1\right]L\right\}$$

If
$$N_2 > N_1$$
: $g \equiv \left[N_2 - N_1 \right] \sigma$ If $N_2 < N_1$: $\alpha \equiv \left[N_1 - N_2 \right] \sigma$

If
$$N_2 < N_1$$
: $\alpha \equiv [N_1 - N_2] \sigma$

Inversion

In order to achieve G > 1, stimulated emission must exceed absorption:

$$B N_2 I > B N_1 I$$

Or, equivalently,

$$N_2 > N_1$$

This condition is called **inversion**. It does not occur naturally. It is inherently a non-equilibrium state.

In order to achieve inversion, we must hit the laser medium very hard in some way and choose our medium correctly.

Achieving inversion: Pumping the laser medium

Now let *I* be the intensity of (flash lamp) light used to pump energy into the laser medium:

Will this intensity be sufficient to achieve inversion, $N_2 > N_1$? It'll depend on the laser medium's energy level system.

Rate equations for a two-level system

Rate equations for the densities of the two states:

Why inversion is impossible in a two-level system

$$\frac{d\Delta N}{dt} = -2BI\Delta N + AN - A\Delta N$$

In steady-state:
$$0 = -2BI\Delta N + AN - A\Delta N$$

$$\Rightarrow (A + 2BI)\Delta N = AN$$

$$\Rightarrow \Delta N = AN/(A+2BI)$$

$$\Rightarrow \Delta N = N/(1+2BI/A)$$

$$\Rightarrow \Delta N = \frac{N}{1 + 2I/I_{sat}} \quad \text{where:} \quad I_{sat} = A/B$$

$$I_{sat} \text{ is the saturation intensity.}$$

here:
$$I_{sat} = A/B$$

 ΔN is always positive, no matter how high I is!

It's impossible to achieve an inversion in a two-level system!

Rate equations for a three-level system

Assume we pump to a state 3 that rapidly decays to level 2. No pump stimulated emission!

The total number of molecules is
$$N$$
:
$$N \equiv N_1 + N_2$$

$$\Delta N \equiv N_1 - N_2$$

Level 3 decays fast and so is zero.

$$\frac{d\Delta N}{dt} = -2BIN_1 + 2AN_2 \leftarrow 2N_2 = N - \Delta N$$
$$2N_1 = N + \Delta N$$

$$\Rightarrow \frac{d\Delta N}{dt} = -BIN - BI\Delta N + AN - A\Delta N$$

Why inversion is possible in a three-level system

$$\frac{d\Delta N}{dt} = -BIN - BI\Delta N + AN - A\Delta N$$

In steady-state:
$$0 = -BIN - BI\Delta N + AN - A\Delta N$$

$$\Rightarrow (A + BI)\Delta N = (A - BI)N$$

$$\Rightarrow \Delta N = N(A - BI)/(A + BI)$$

$$\Rightarrow \Delta N = N \frac{1 - I / I_{sat}}{1 + I / I_{sat}}$$

Now if $I > I_{sat}$, ΔN is negative!

Rate equations for a four-level system

Now assume the lower laser level 1 also rapidly decays to a ground level 0. So $N_1 \approx 0!$ And $\Delta N \approx -N_2$

As before:
$$\frac{dN_2}{dt} = BIN_0 - AN_2$$

$$\frac{dN_2}{dt} = BI(N - N_2) - AN_2$$

Because $\Delta N \approx -N_2$

$$-\frac{d\Delta N}{dt} = BIN + BI\Delta N + A\Delta N$$

At steady state: $0 = BIN + BI\Delta N + A\Delta N$

The total number of molecules is *N*:

$$N \equiv N_0 + N_2$$

$$N_0 = N - N_2$$

Why inversion is easy in a four-level system (cont'd)

$$0 = BIN + BI\Delta N + A\Delta N$$

$$\Rightarrow (A + BI)\Delta N = -BIN$$

$$\Rightarrow \Delta N = -BIN/(A+BI)$$

$$\Rightarrow \Delta N = -(BIN/A)/(1+BI/A)$$

$$\Rightarrow \Delta N = -N \frac{I/I_{sat}}{1 + I/I_{sat}}$$

Pump Laser Transition

1
Fast decay

Fast decay

Now, ΔN is negative—always!

What about the saturation intensity?

$$I_{sat} = A/B$$

A is the excited-state relaxation rate: $1/\tau$

B is the absorption cross-section, σ , divided by the energy per photon, $\hbar\omega$: $\sigma/\hbar\omega$

Both σ and τ depend on the molecule, the frequency, and the various states involved.

 $\hbar\omega$ ~10⁻¹⁹ J for visible/near IR light

 τ ~10⁻¹² to 10⁻⁸ s for most molecules 10⁻⁹ to 10⁻³ s for laser molecules

 σ ~10⁻²⁰ to 10⁻¹⁶ cm² for molecules (on resonance)

The saturation intensity plays a key role in laser theory.

Two-, three-, and four-level systems

It took laser physicists a while to realize that four-level systems are best.

Types of lasers

- Gas
- Liquid
- Solid
- Semiconductor
- Excimer
- Gas dynamic
- E-beam
- Free electron
- Fiber
- Waveguide

Laser Classification is according to pumping mechanism

Optical Pump

 $A + hv \rightarrow A^*$

Eg. Ruby, YAG, Glass, Fiber, Dye

Electron-collision Pump

$$A + e(\varepsilon_2) \rightarrow A^* + e(\varepsilon_1)$$

Eg. Argon, Krypton, Xenon, Nitrogen, Copper

Atom-Collision Pump

$$B^m \rightarrow A$$

 $B^m + A \rightarrow B + A^*$

Eg. He-Ne, CO₂-N₂, He-Cd

He-Ne Laser

The partial pressure of helium is 1 mbar whereas that of neon is 0.1 mbar.

