clase-02

martes 22 marzo 2022, presencial

repaso clase anterior y programa hoy (5 min)

la clase pasada aprendimos:

- presentaciones
- · contexto artes mediales y Arduino
- Git, GitHub y Markdown

hoy aprenderemos:

- señales analógicas y digitales
- computadores y microcontroladores
- programar semáforo usando Processing

señales analógicas y digitales (45 min)

supondremos que nuestras señales son del mundo real:

- señales unidimensionales
- señales en función del tiempo t

más (demasiada) información:

• señales y sistemas, Alan V. Oppenheim y Alan S. Willsky.

señales analógicas

las señales analógicas tienen valores continuos en todo momento:

- notación y(t)
- t es continuo
- y(t) es continuo

ejemplos de señales analógicas:

- presión atmosférica
- fotografía polaroid
- temperatura de un lugar
- sonido en un disco de vinilo
- salida de un micrófono

análogo significa similar, porque las señales analógicas también se parecen a otras.

una señal analógica se puede obtener desde un sensor,

ejemplos de transductores / sensores análogos:

sensor	entrada	salida
micrófono	presión atmosférica	voltaje
cápsula de guitarra	vibración de cuerda	voltaje
fotoresistor	intensidad de luz	resistencia
perilla	posición (ángulo)	resistencia

la transducción no es perfecta, siempre introduce errores y distorsión.

esto no necesariamente es malo, de hecho en música estas diferencias resultan en sabores musicales distintos. más info sobre distintos tipos de compresores https://reverb.com/news/what-are-the-types-of-compressor-effects-the-basics

señales digitales

las señales digitales tienen valores discretos en momentos discretos:

- notación y[n]
- n es discreto
- y(t) es discreto

ejemplos de señales digitales:

- · sonido en un disco compacto
- imagen en un computador
- tiempo en un reloj digital

conjuntos y sistemas de números (30 min)

conjuntos:

- números naturales: los que contamos con los dedos. (supuesto: cada unidad es equivalente) por qué contamos con diez dedos? 1,2,3,...
- números enteros: números que pueden ser escritos sin fracciones ..., -3, -2, -1,0,1,2,3,....
- números racionales: números que pueden ser escritos como fracciones de dos números enteros.
- números reales: números con parte decimal, sirven para medir distancias.
- números irracionales: números que son reales, pero no racionales, como $\sqrt{2}$ y π .
- números complejos: números que poseen coordenadas reales e imaginarias.

demostración interesante:

- los números naturales son infinitos.
- los números enteros se pueden contar con naturales, son igualmente infinitos.
- los números racionales son aún más infinitos.

sistemas:

decimal: base 10

binario: base 2

• hexadecimal: base 16

actividad: escribamos los primeros 20 números, empezando desde 0, usando los sistemas decimal, binario y hexadecimal.

pausa: materiales (10 min)

los materiales necesarios para esta clase están descritos en la página principal de este repositorio.

se recomienda adquirir el kit de MCI electronics, disponible en Mercado Libre a 13.990 CLP.

coordinar con profesor si quieren comprar en grupo.

computadores y microcontroladores (45 min)

definición de computador:

- máquina digital electrónica programable con lógica y aritmética
- está compuesto de muchos elementos reemplazables: CPU, GPU, memorias, etc
- características: + velocidad, + tareas, + costo, + complejidad

definición de microcontrolador:

- máquina digital electrónica programable con lógica y aritmética
- computador pequeño que cabe en un único chip
- el chip incluye CPU, memoria, timer, puertos seriales, input/output
- características: velocidad, tareas, costo, complejidad

actividad: hacer una lista sobre tareas fáciles y difíciles para computadores y personas.

más info sobre personas pioneras en computación:

- Alan Turing
- Ada Lovelace
- Programmed inequality, libro de Mar Hicks

programar semáforo en Processing (45 min)

usando la aplicación Processing 4.x, programamos un semáforo de 3 luces, usando variables para definir colores, duraciones de luces y posiciones.

la solución propuesta está en la carpeta asociada a esta clase.

actividad: cuántos números enteros de 8 bits caben en nuestro computador? https://www.wolframalpha.com/input?i=2+GB+%2F+8+bit

https://github.com/montoyamoraga/infinite-folders

próxima clase (5 min)

- · electricidad y magnetismo
- · componentes eléctricos

- programar semáforo en Arduino
- construir circuito para semáforo