MATH6710		Summer
	Probability Theory I	
	Notes	
Authors: Shaleen Baral		

Contents

1. Introduction	2
-----------------	---

1. Introduction

We will be covering the following material

- a. Measure Theory,
- b. Random Variables,
- c. Law of Large Numbers,
- d. Weak Convergence, Central Limit Theorems.

The main textbook is R. Durrett, Probability, Theory & Examples (5th edition). See the following books for an alternate perspective

- D. WIlliams, Probability with Martingales
- K.L. Chung, A Course in Probability

In *naive* probability theory, we consider a countable sample space $\Omega \subseteq \mathbb{N}$ of possible outcomes and a function $\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$ such that

- a. $\mathbb{P}(\Omega) = 1$
- b. If we have disjoint events $A, B \in \mathcal{P}(\Omega)$ then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ (finite additivity)

Proposition 1.1 (\mathbb{P} is monotone): Let $A \subseteq B \subseteq \Omega$. Then

$$\mathbb{P}(A) \leq \mathbb{P}(B)$$

Proof: Consider the disjoint events A and B - A. Then,

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B - A) \ge \mathbb{P}(A).$$

Proposition 1.2 ($\mathbb{P}(A^C)$):

$$\mathbb{P}(A^C) = 1 - \mathbb{P}(A)$$

Proof:

$$\begin{split} 1 &= \mathbb{P}(\Omega) = \mathbb{P}(\Omega - A) + \mathbb{P}(A) \\ \Longrightarrow \mathbb{P}\big(A^C\big) &= 1 - \mathbb{P}(A). \end{split}$$

Proposition 1.3 (inclusion-exclusion): For any events $A, B \subseteq \Omega$, we have

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

Proof: We have
$$A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$$
.

Corollary 1.3.1 (finite subadditivity): For any events $A, B \subseteq \Omega$, we have

$$\mathbb{P}(A \cup B) \le \mathbb{P}(A) + \mathbb{P}(B)$$

Why should we be dissatisfied with finite additivity?

Consider an infinite sequence of independent, random variables

$$X_j = \begin{cases} +1 & \text{w.p. } \frac{1}{2} \\ -1 & \text{w.p. } \frac{1}{2} \end{cases}$$

We consider the random walk defined by $S_n = \sum_{j=1}^N X_j.$ Then, define the event

$$\begin{split} A &= \{S \text{ visits 0 infinitely often}\} \\ &= \bigcap_{N \geq 1} \underbrace{\{\exists k \geq N, S_k = 0\}}_{A_n} \\ &= \bigcap_{N \geq 1} A_n \end{split}$$

We want to be able to use 'finite observations' or 'approximations', A_n to compute A. Ideally,

$$\mathbb{P}(A) = \lim_{N \to \infty} \mathbb{P}(A_N)$$

Note that for $N' \geq N$, we have $A_{N'} \subseteq A_N$. Note also that

$$\mathbb{P}\bigg(\bigcap_{N>1}A_N\bigg)=1-\mathbb{P}\bigg(\bigcup_{N>1}A_N^C\bigg)$$

The sequence of complements is increasing $A_1^C \subseteq A_2^C \subseteq \dots$

Before moving on note that the prior statement is equivalent to sayign

$$\mathbb{P}(B) = \lim_{N \to \infty} \mathbb{P}(B_N)$$

for $B_1 \subseteq B_2 \subseteq \dots$ and $B = \bigcup_{N > 1} B_N$.

We convert $\{B_N\}$ to a disjoint family by considering the family given by $B_i \setminus B_{i-1}$ (for convenience, take $B_0 = \emptyset$). Then, using finite additivity, we would like to say

$$\mathbb{P}(B) = \lim_{N \to \infty} \sum_{j=1}^N \mathbb{P}\big(B_j \setminus B_{j-1}\big)$$

Equivalently, in our theory of probability we would want, for a *countable*, disjoint family $\{C_i\}$ the following holds

$$\mathbb{P}\bigg(\bigcup_{j=1}^{\infty}C_{j}\bigg)=\sum_{j=1}^{\infty}\mathbb{P}\big(C_{j}\big).$$

Why do we want countable and not arbitrary additivity?

Consider a probability measure on [0, 1]. Then, if we have arbitrary additivity,

$$\mathbb{P}\bigg(\bigcup_{i\in I}A_i\bigg)=\sum_{i\in I}\mathbb{P}\big(A_j\big),$$

it leads to contradictions of the following form

$$\mathbb{P}\!\left(\bigcup_{j\in[0,1]}j\right) = \sum_{j\in[0,1]}\mathbb{P}(\{j\})$$

The left hand side must be 1 whereas the equality holds only under very particular probability measures. In fact, this already rules out, for example the uniform measure on [0, 1].

Now, we move on to actually developing a measure theory that incorporates these ideas.

Definition 1.1:

$$\begin{split} \mu^{\star}(A) &= \inf \biggl\{ \sum_{j=1}^{N} \lvert B_{j} \rvert \text{ for } \bigl\{ B_{j} \bigr\} \text{ such that } A \subseteq \bigcup B_{j} \biggr\} \\ \mu_{\star}(A) &= \sup \biggl\{ \sum_{j=1}^{N} \lvert B_{j} \rvert \text{ for } \bigl\{ B_{j} \bigr\} \text{ such that } A \subseteq \bigcup B_{j} \biggr\} \end{split}$$

Definition 1.2 (Jordan-measurable): We call A Jordan measurable if $\mu^{\star}(A) = \mu_{\star}(A)$.

Proposition 1.4: The Jordan measure is finitely additive.

Proof: Consider disjoint sets A, B. Then note that any open cover of A and B give rise to an open cover of $A \cup B$. From this, we immediately have $\mu(A \cup B) \leq \mu(A) + \mu(B)$.

For the converse, consider a sufficiently fine open cover $\{U_i\}$ of $A \cup B$. Then define open covers for A and B as follows.