Universidade de Brasília

ConTEST

27 de maio de 2017

Coordenação:

Prof. Daniel Saad (IFB)

Prof. Edson Alves (UnB/FGA)

Prof. Guilherme Ramos (UnB/CIC)

Prof. Humberto Longo (UFG)

Prof. Patrícia Moscariello (IESB)

Prof. Vinícius Borges (UnB/CIC)

Equipe de apoio:

Prof. Felipe Duerno (UnB/FGA)

Luan Guimarães (apoio técnico)

Prof. Matheus Faria (UnB/FGA)

Matheus Pimenta (criação e verificação de problemas)

Pedro Henrique (verificação de problemas)

A) Sobre a entrada

- 1. A entrada de seu programa deve ser lida da entrada padrão.
- 2. Quando uma linha da entrada contém vários valores, estes são separados por um único espaço em branco; a entrada não contém nenhum outro espaço em branco.
- 3. Cada linha, incluindo a última, contém o caractere final-de-linha.
- 4. Quando não indicada outra forma, o final da entrada coincide com o final do arquivo.

B) Sobre a saída

- 1. A saída de seu programa deve ser escrita na saída padrão.
- 2. Quando uma linha da saída contém vários valores, estes devem ser separados por um único espaço em branco; a saída não deve conter nenhum outro espaço em branco.
- 3. Cada linha, incluindo a última, deve conter o caractere final-de-linha.

C) Sobre os problemas

As situações retratadas nos problemas são inteiramente fictícias e não correspondem à realidade. Nada escrito nos enunciados tem a intenção de desrespeitar o leitor. Tudo foi escrito de maneira a se adequar às situações hipotéticas da melhor maneira possível.

A Aprovação em Processo Seletivo

Limite de Tempo: 1s

Algumas empresas, privadas ou públicas, se valem de processos seletivos para contratar novos funcionários. Há, em geral, dois critérios para a seleção dos aprovados:

- 1. aprovar todos os candidatos cuja nota obtida foi igual ou superior a uma nota de corte C;
- 2. aprovar os candidatos que obtiveram as V maiores notas (em outras, palavras, preencher as V vagas disponíveis com os candidatos com as melhores notas).

Dadas nas notas obtidas pelos N candidatos que participaram do processo seletivo e os valores de C e V, determine o número de aprovados, segundo o primeiro critério, ou a nota do último candidato aprovado, de acordo com o segundo critério.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por duas linhas: a primeira contém os valores de N, C e V ($1 \le N \le 10^6, 0 \le C \le 1.000, 1 \le V \le N$), separados por um espaço em branco. A segunda linha contém as N notas n_i ($0 \le n_i \le 1.000, 1 \le i \le N$) obtidas pelos participantes, separadas por um espaço em branco.

Atenção: como a entrada pode ser muito grande (aproximadamente 2MB), é preciso utilizar um método de leitura eficiente!

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: A B", onde t é o número do caso de teste (cuja contagem tem início com o número um), A é o número de aprovados segundo o primeiro critério e B é a nota do último candidato aprovado de acordo com o segundo critério.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: 4 750
5 500 2	Caso 2: 0 600
950 550 750 480 600	Caso 3: 2 499
4 650 3	
600 600 600 600	
3 500 3	
499 500 501	

B Bicicleta de Múltiplos Assentos

Limite de Tempo: 1s

O zoológico da Nlogônia trouxe aos turistas uma nova atração: uma bicicleta com K assentos. O primeiro assento é reservado ao funcionário do zoológico responsável pela condução do passeio, que consiste em um percurso pré-determinado entre os animais.

A atração se provou muito popular, e o diretor do zoológico precisa determinar o número mínimo de passeios necessários para atender os N turistas que visitam o zoológico diariamente. Auxilie o diretor escrevendo um programa que, dados os valores de N e K, determine este número mínimo de passeios.

Entrada

A entrada consiste em T ($1 \le T \le 1.000$) casos de teste, onde o valor de T consta na primeira linha da entrada. Cada caso de teste é representado por uma única linha, contendo os valores de N e K ($1 \le N \le 10^9, 2 \le K \le 1.000$), separados por um espaço em branco.

Saída

Para cada caso de teste imprima, em uma linha, a mensagem "Caso t: M", onde t é o número do caso de teste (cuja contagem tem início no número um) e M é o número mínimo de passeios que devem ser feitos para que cada um dos N turistas participe do passeio ao menos uma vez.

Exemplos de entradas	Exemplos de saídas	
3	Caso 1: 3	
3 2	Caso 2: 1	
3 4	Caso 3: 4	
10 4		

C Campanha de Marketing

Limite de Tempo: 2s

Uma empresa planejou uma campanha de marketing para a promoção de seu novo produto. Uma das ações é estabelecer parcerias com sites da internet. Cada um dos N sites pré-selecionados cobra c mil reais pela parceria, e a empresa tem um orçamento de B mil reais para o estabelecimento de parcerias.

Além disso, cada site i tem links com L_i outros sites. Estes links são bidirecionais e significam que ambos sites se influenciam mutuamente: se, na manhã de um dado dia, k ou mais sites que possuem links com o site s promovem uma campanha, s passará a promovê-la também, ao longo do dia, sem custo adicional, de modo que no início do próximo dia será também um promotor da campanha.

Neste cenário, a empresa solicitou a você uma simulação que identificasse qual seria a contratação que resultasse na maior abrangência possível. Mais precisamente, o problema é determinar um subconjunto dos N sites s_i tal que, uma vez firmada a parceria com os sites deste subconjunto (respeitando o limite orçamentário disponível), a campanha seja promovida pelo maior número de sites possível.

Se dois ou mais subconjuntos resultem no mesmo número máximo de sites envolvidos, deve ser escolhido então o subconjunto que resulte no menor custo possível. Se dois ou mais sites tiverem mesmo número máximo de sites e mesmo custo, deve ser escolhido aquele que levar menor tempo, em dias, para atingir este número máximo.

Pode-se considerar que as parcerias são firmadas ao longo do dia zero, e que no início do dia um os sites parceiros já estejam promovendo a campanha.

Entrada

A entrada consiste em T ($1 \le T \le 100$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto várias linhas: a primeira linha do caso de teste contém os valores de N, B e k ($1 \le N \le 50, 1 \le B \le 100, 1 \le k \le 5$), separados por um único espaço em branco. A segunda linha contém N valores c_i ($1 \le c_i \le 1.000, 1 \le i \le N$), separados por um espaço em branco, referentes ao custo que cada site i cobra por uma parceria. Pode-se assumir que há, no máximo, 10 sites $\{c_{j1}, c_{j2}, \ldots, c_{jt}\}$ tais que $c_{ji} \le B$.

A terceira linha contém o número L $(0 \le L \le N(N-1)/2)$ de links entre os sites selecionados. As próximas L linhas contém, cada uma, um link u v $(1 \le u, v \le N, u \ne v)$ entre os sites u e v. Pode-se assumir que não há links repetidos.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: S C T", onde t é o número do caso de teste (cuja contagem tem início com o número um), S é o número de sites que promoveram a campanha, C o custo pago pelas parcerias e T o tempo, em dias, necessário para que a campanha alcance os S sites (desprezado o dia zero), separados por um espaço em branco.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: 0 0 0
1 10 1	Caso 2: 2 8 0
11	Caso 3: 3 3 2
0	
3 10 1	
5 5 3	
0	
3 10 1	
5 5 3	
2	
1 2	
2 3	

D Divisores Quadrados

Limite de Tempo: 2s

Lucas observou que o fatorial de um número natural N possui uma quantidade grande de divisores, e resolveu contabilizar apenas os divisores que fossem quadrados perfeitos, isto é, divisores d de N! para os quais existe um natural k tal que $d=k^2$. Por exemplo, $7!=7\times6\times5\ldots2\times1=5040$ tem exatamente 6 divisores quadrados, a saber: 1, 4, 9, 16, 36 e 144.

Lucas se surpreendeu novamente ao descobrir que ainda assim o número de divisores é muito grande! Auxilie Lucas escrevendo um programa que, dado um natural N, determine o resto da divisão do número de divisores quadrados de N! por $10^9 + 7$.

Entrada

A entrada consiste em T ($1 \le T \le 100$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por uma única linha, contendo o valor de N ($1 \le N \le 10^5$).

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: D", onde t é o número do caso de teste (cuja contagem tem início com o número um) e D é o resto da divisão do número de divisores quadrados de N! por $10^9 + 7$.

Exemplos de entradas	Exemplos de saídas	
3	Caso 1: 2	
5	Caso 2: 6	
7	Caso 3: 30	
10		

E Embolada

Limite de Tempo: 2s

A embolada é uma forma de manifestação cultural nordestina, onde dois "cantadores", aqui representados por C_1 e C_2 , ao batuque do pandeiro, improvisam versos com o intuito de provocar e denegrir a imagem do outro, para a diversão da plateia.

Uma dupla de emboleiros notou que suas apresentações eram mais apreciadas quando a embolada era equilibrada, isto é, cada uma das provocações P_i feitas por pelo cantor C_i eram devidamente rebatidas com respostas R_j do cantor C_j , com $i \neq j, i, j \in \{1, 2\}$, sendo que cada resposta R correspondia a provocação P mais recente ainda não rebatida. Além disso, uma resposta só acontecia após uma provocação não rebatida, e nenhuma provocação ficava sem resposta. Por exemplo, as emboladas P1R2P2R1P1R2 e P1P2P1R2R1P2R1P2 são equilibradas, enquanto que as emboladas P1P2R2R2P2R1 e R1P2R1P2 não são equilibradas.

Auxilie os cantores determinando se uma dada sequência de provocações e respostas formam ou não uma embolada equilibrada.

Entrada

A entrada consiste em T ($1 \le T \le 100$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por uma única linha, contendo uma string S ($1 \le |S| \le 2 \times 10^4$) que representa uma sequência de provocações Pi e respostas Rj, com $1 \le i, j \le 2$.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: V", onde t é o número do caso de teste (cuja contagem tem início com o número um) e V é o veredito sobre a sequência formar uma embolada equilibrada: "Sim", ou "Nao".

Exemplos de entradas	Exemplos de saídas
4	Caso 1: Sim
P1R2P2R1P1R2	Caso 2: Nao
P1P2R2R2P2R1	Caso 3: Nao
R1P2R1P2	Caso 4: Sim
P1P2P1R2R1P2R1R2	

F Fórmula 1

Limite de Tempo: 1s

João ficou surpreso ao ouvir, durante uma narração de Fórmula 1, que os circuitos tinham sentido: horário ou anti-horário. Buscando maiores informações sobre o assunto ele descobriu que era possível, em alguns casos, determinar a orientação do circuito a partir das coordenadas de três pontos do circuito: a linha de largada L, o primeiro ponto de aferição P_1 (primeira parcial) e o segundo ponto de aferição P_2 (segunda parcial).

Sabendo que os carros partem da largada e passam pela primeira e pela segunda parcial, nesta ordem, determine, se possível, a orientação do circuito. Considere que os circuitos são curvas simples, isto é, não há cruzamentos.

Entrada

A entrada consiste em T ($1 \le T \le 1.000$) casos de teste. O valor de T consta na primeira linha da entrada. Cada caso de teste é composto por uma única linha, com as coordenadas inteiras x e y ($-10.000 \le x, y \le 10.000$) dos pontos L, P_1 e P_2 , nesta ordem, separadas por um espaço em branco. Pode-se assumir que os pontos L, P_1 e P_2 são distintos.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: S", onde t é o número do caso de teste (cuja contagem tem início no número um) e S é o sentido do circuito: "horario", ou "anti-horario". Se não for possível determinar a orientação, imprima, no lugar de S, a palavra "indeterminado".

Exemplos de entradas	Exemplos de saídas
3	Caso 1: anti-horario
0 0 10 10 -20 15	Caso 2: indeterminado
-10 10 5 -5 -8 8	Caso 3: horario
1 89 43 55 43 2	

G Gibis

Limite de Tempo: 2s

Pedrinho foi a uma feira de quadrinhos com R reais no bolso, e pretende adquirir, dentre os N gibis em promoção, a maior quantidade possível, gastando o mínimo possível.

Conhecidos os valores de R e N, e os valores de cada um dos N gibis expostos, determine o número de gibis que Pedrinho comprou e o total gasto. Observe que Pedrinho não quer duplicatas: ele pode comprar o i-ésimo gibi listado uma única vez.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por duas linhas: a primeira contém os valores de N e R ($1 \le N \le 10^5, 0.01 \le R \le 1000.00$), separados por um espaço em branco. Na linha seguinte há N inteiros p_i ($0.01 \le p_i \le 100.00, 1 \le i \le N$), separados por um espaço em branco, representando o preço do i-ésimo gibi exposto.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: M C", onde t é o número do caso de teste (cuja contagem tem início com o número um), M é o total de gibis adquiridos por Pedrinho e C é o valor pago por ele, no formato "reais.centavos", sendo que o valor deve ser representado sempre com duas casas decimais.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: 2 7.90
3 10.00	Caso 2: 1 0.75
5.50 3.10 4.80	Caso 3: 0 0.00
4 1.00	
0.75 0.99 0.82 0.92	
2 2.00	
3.00 4.00	

H Hourglasses

Limite de Tempo: 1s

No jogo $rougue\ like\$ Hourglasses, o jogador tem que vencer N níveis randomicamente gerados a cada partida. Em cada nível o jogador deve coletar tesouros, enfrentar monstros em combate e evitar armadilhas mortais e, como os demais jogos do gênero, a morte é definitiva!

Como incentivo aos jogadores iniciantes, o jogo dá ao jogador, no início da partida, H ampulhetas, que são itens especiais que são ativados automaticamente em caso de morte do jogador, revertendo o tempo até o momento que o jogador iniciou o nível atual (ou seja, arrumaram efeitos visuais e um nome chamativo para as velhas e boas vidas dos jogos antigos...). Cada vez que este efeito é ativado, uma das ampulhetas é destruída.

Dados os valores de N e H, e sabendo que o jogador, com base na sua perícia e habilidade, tem uma probabilidade p de vencer um nível, do início ao fim, sem morrer, determine a probabilidade que o jogador tem de finalizar todos os níveis do jogo. O uso de ampulhetas não diminui o valor de p: após o uso de uma ampulheta, o jogo prossegue como se o jogador estivesse jogando o nível atual pela primeira vez.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por uma única linha, contendo os valores de N, H e p ($1 \le N \le 24, 0 \le H \le 7, 0.01 \le p \le 0.99$), separados por um espaço em branco.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: Q", onde t é o número do caso de teste (cuja contagem tem início com o número um) e Q é a probabilidade do jogador terminar todos os N níveis do jogo. Se a resposta do juiz é R, o valor Q informado será considerado correto se $\frac{|Q-R|}{\max(1,R)} \le 10^{-6}$.

Exemplos de entradas	Exemplos de saídas
6	Caso 1: 0.50000000000000
1 0 0.50	Caso 2: 0.750000000000000
1 1 0.50	Caso 3: 0.250000000000000
2 0 0.50	Caso 4: 0.500000000000000
2 1 0.50	Caso 5: 0.687500000000000
2 2 0.50	Caso 6: 0.106090904882812
5 3 0.35	

l Irmãos

Limite de Tempo: 4s

Dois irmãos compraram uma fazenda no interior, e planejam construir suas residências em dois pontos distintos do plano P e Q, com coordenadas inteiras, tais que nenhum dos dois pontos fique a uma distância superior a R unidades de medida do marco central (o ponto de coordenadas (0,0) do plano) e que a distância entre P e Q seja menor ou igual a D unidades de medida.

Auxilie os irmãos escrevendo um programa que enumere o número de pares (P,Q) distintos que atendam às suas exigências, conhecidos os valores de R e D.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por uma única linha, contendo os valores de R ($1 \le R \le 1.000$) e D ($1 \le D \le min\{20, R\}$), separados por um único espaço em branco.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: N", onde t é o número do caso de teste (cuja contagem tem início com o número um) e P é o número de pares de pontos (P,Q) que atendem as demandas dos irmãos.

Exemplos de entradas	Exemplos de saídas
4	Caso 1: 788
5 2	Caso 2: 7688
10 3	Caso 3: 30156
15 4	Caso 4: 209204
30 5	

J Jogo de Cartas

Limite de Tempo: 2s

João e Maria são crianças que gostam de jogos, e estavam entretidas aprendendo um novo jogo de cartas, onde cada jogador, inicialmente, recebe N cartas, e cada uma delas contém um número de 1 a 100.

Em cada um dos N turnos do jogo, João escolhe uma de suas cartas e, em seguida, Maria escolhe uma das suas. Ganha o turno (e um ponto) o jogador que tiver escolhido a carta de maior número; caso ambas cartas tenham o mesmo número, o turno fica empatado e nenhum jogador soma ponto. Ao final do turno as cartas escolhidas são descartadas. Vence o jogador que, ao final dos N turnos, somar o maior número de pontos. Caso ambos tenham o mesmo número de pontos, o jogo termina empatado.

Como são crianças e ainda estão aprendendo, João e Maria jogam com as cartas com as faces para cima, de modo que cada jogador pode ver os números de todas as suas cartas e os números de todas as cartas de seu oponente.

Dadas as N cartas iniciais de João e Maria, quem seria o vencedor, caso ambos jogassem de forma ótima?

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por três linhas: a primeira contém o valor de N ($1 \le N \le 8$). A linha seguinte contém as N cartas j_i de João ($1 \le j_i \le 100, 1 \le i \le N$), e a última linha contém as N cartas m_k de Maria ($1 \le m_k \le 100, 1 \le k \le N$). Os valores das cartas são separados por um único espaço em branco.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: V", onde t é o número do caso de teste (cuja contagem tem início com o número um) e V é o vencedor do jogo: "Joao", ou "Maria", caso ambos joguem de forma ótima, ou "Empate", caso o jogo termine empatado.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: Empate
2	Caso 2: Joao
4 2	Caso 3: Maria
2 4	
4	
5 2 3 5	
4 2 1 2	
5	
5 4 3 1 2	
4 3 2 1 5	

L Lei Seca

Limite de Tempo: 2s

A polícia rodoviária está ampliando os postos de fiscalização da Lei Seca. Para atender os protocolos de segurança, é necessário que em cada posto de fiscalização estejam presentes, no mínimo, M policiais.

O capitão tem, à sua disposição, N policiais, e pretende implantar P postos (distintos) de fiscalização. Auxilie o oficial, determinando o número de maneiras distintas que o capitão pode dispôr os N policiais em P postos de fiscalização, respeitando o limite de se ter, no mínimo, M policiais em cada posto.

Entrada

A primeira linha da entrada contém o valor de M ($1 \le M \le 100$), enquanto a segunda contém o número de cenários C ($1 \le C \le 100$) a serem avaliados. As C linhas seguintes contém, cada uma, um cenário composto pelos inteiros N e P ($1 \le N, P \le 1.000$), separados por um espaço em branco.

Saída

Para cada cenário imprima, em uma linha, a mensagem "Cenario c: T", onde c é o número do cenário (cuja contagem tem início no número um) e T é o número de maneiras distintas que ele pode dispôr os N policiais em P postos, respeitando o limite descrito no problema. Como o valor de T pode ser muito grande, imprima o resto de sua divisão por $10^9 + 7$.

Exemplos de entradas	Exemplos de saídas
1	Cenario 1: 1
7	Cenario 2: 6
2 1	Cenario 3: 14
3 2	Cenario 4: 36
4 2	Cenario 5: 150
4 3	Cenario 6: 62
5 3	Cenario 7: 29635200
6 2	
10 7	

M Métrica

Limite de Tempo: 2s

Uma métrica para medir a popularidade de um sítio da internet é o número de visitantes únicos mensais V. Esta métrica ignora as múltiplas visitas de um mesmo visitante, considerando apenas os diferentes visitantes ao longo do mês.

Dado o número N de visitas que o sítio recebeu durante o mês, e o identificador único do visitante de cada uma destas visitas, determine o valor de V.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por duas linhas: a primeira contém o valor de N ($1 \le N \le 10^5$). A segunda linha contém N inteiros u_i ($1 \le u_i \le 10^9$), que correspondem ao identificador único de cada visitante.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: V", onde t é o número do caso de teste (cuja contagem tem início com o número um) e V é o número de visitantes únicos que o sítio recebeu durante o mês.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: 5
5	Caso 2: 3
1 2 3 4 5 4	Caso 3: 2
3 4 3 2 6	
1 1 1 2 1 2	

N Nlogonianos

Limite de Tempo: 1s

Os Nlogonianos são os habitantes do sistema solar Nlogol, que difere do nosso sistema solar em um ponto fundamental: toda a sua natureza, ciência e matemática são fundamentadas na aritmética dos restos da divisão por um dado número primo p.

Por conta desta diferença, somente agora o jovem cientista Elbert Ainstein descobriu a equação $E=mc^2$ (E é a energia cinética, m a massa e c é a velocidade da luz). Como a velocidade da luz c não é constante em Nlogol, notou-se dois fatos importantes: E não assume todos os valores entre 0 e p-1; e que o aumento da velocidade não necessariamente corresponde a um aumento de energia. Por exemplo, para m=2, uma velocidade c=1 resulta em maior energia (E=2) do que uma velocidade c=5 (E=1).

Auxilie o jovem cientista a determinar as menores velocidades c_m e c_M que resultem, respectivamente, na maior e na menor energia possíveis, conhecidos os valores de m e p.

Entrada

A entrada consiste em T ($1 \le T \le 10$) casos de teste, cujo valor se encontra na primeira linha. Cada caso de teste é composto por uma única linha, contendo os valores de m ($1 \le m \le p-1$) e p ($p \le 10^9$, p primo), separados por um único espaço em branco.

Saída

Para cada caso de teste deve ser impressa, em uma linha, a mensagem "Caso t: c_m c_M ", onde t é o número do caso de teste (cuja contagem tem início com o número um) e c_m e c_M são as velocidades mínimas que resultam na maior e na menor energia possíveis, respectivamente.

Exemplos de entradas	Exemplos de saídas
3	Caso 1: 2 3
2 7	Caso 2: 4 6
9 13	Caso 3: 2677 1185
238 7919	

ConTESTMatheus Pimenta

O O Convidado

Limite de Tempo: 2s

Matheus Pimenta, ex-maratonista, foi convidado para propôr um problema no ConTEST: abaixo segue o enunciado proposto.

É dada uma árvore com N vértices rotulados de 1 a N e raiz 1, onde o i-ésimo vértice possui o valor x_i . Processe uma série de, no máximo, 10^5 comandos dos seguintes tipos:

- 1. dados i e y, fazer a atribuição $x_i \leftarrow y$;
- 2. dados i e y, imprimir a quantidade M de vértices x_j na subárvore cuja raiz é i tais que $x_j \leq y$.

Entrada

A primeira linha da entrada contém o valor de N ($1 \le n \le 10^5$). As próximas N linhas descrevem a árvore: a i-ésima linha contém os inteiros p_i e x_i ($1 \le p_i \le N$, $1 \le x_i \le 10^9$, $i = 1, 2, 3, 4, \ldots, N$), separados por um espaço em branco, onde p_i é o vértice pai do vértice i. Por convenção, assuma $p_1 = 0$.

Em seguida serão dadas, no máximo, 10^5 comandos, um por linha. Cada linha possui os inteiros t, i e y ($t \in \{1, 2\}, 1 \le i \le N, 1 \le y \le 10^9$), separados por um espaço em branco, onde t é o tipo do comando.

Saída

Para cada comando do tipo 2 imprima, em uma linha, o valor de M.

ConTEST Matheus Pimenta

Exemplos de entradas	Exemplos de saídas
5	1
0 27	1
5 13	
5 43	
1 21	
1 5	
2 4 43	
1 4 50	
2 5 6	
1 4 15	
1 1 7	
1 2 5	
5 0 34 4 34 4 22 1 26 2 4 1 1 18 1 2 11 1 5 39 2 5 15 2 3 41 1 1 22	0 1