

Hall Effekt DC Stromsensor CYHCT-L20K

Dieser Stromsensor CYHCT-L20K basiert auf dem Hall-Effekt Messprinzip, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung entwickelt. Er kann für Messungen von DC Strom sowie von DC Impulsstrom verwendet werden. Der Ausgang des Stromwandlers stellt den zumessenden Strom im Primärleiter dar.

Produkteigenschaften	Anwendungen
 DC Strommessung Ausgangssignaloptionen (4-20mA, 0-5V, 0-10V) Hohe Isolation zwischen primären und sekundären Schaltungen Schutz gegen Überspannung Schutz gegen umgekehrter Polarität Ausgangs Schutz gegen elektrische Störungen 	 Photovoltaik-Anlagen Akku Banken, z.B. Überwachung von Laststrom und Ladestrom, Prüfeinsatz, Transportation, Messung von Zugkraft Phasenanschnittssteuerte Heizungen Direkte Verbindung zu PLC Detektion von Motor-Stillständen und Kurzschlüssen Industrie Instrumente

Spezifikationen

opezinkationen				
Nennstrom am Eingang (DC)	25A, 30A,40A,50A,60A,70A,80A,90A,100A,200A,300A,400A,500A			
Linearer Messbereich	1.2 fache des Nennstroms am Eingang			
Ausgangssignale	±5V DC, 0-5VDC, 0-10V DC, 0-20mA DC, 4-20mA DC			
Stromversorgung	+12V DC, +15V DC, +24V DC			
Messgenauigkeit	Spannungsausgang: ±1.0% bei 25A~49A, ±0.5% bei 50A~500A			
	4-20mA Ausgang: ±1.0% bei25A~49A, ±0.5% bei 50A~600A			
	0-20mA Ausgang: ±1.0% bei 25A ~ 500A			
Linearität (10% - 100%), 25°C	Spannungsausgang: ±0.5% bei 25A~49A, ±0.2% bei 50A~500A			
			5% bei 25A~49A, ±0.2%	bei 50A~500A
	0-20mA Ausgang: ±0.5% bei 25A ~ 500A			_
Null-Offsetspannung	±10mV	•	resis-Fehler	±10mV
Thermaldrift der Offsetspannung	≤300ppm/°C The		nal Drift (-10°C to 50°C)	<1000ppm /°C
Galvanische Isolation	3 kV DC, 1 min			
Isolationswiderstand	≥100MΩ			
Antwortzeit	≤10µs für momentanen Ausgang, <1ms DC Ausgang			
di/dt Folgegenauigkeit	50A/μs Frequenzbereich DC ~ 8kHz			DC ~ 8kHz
Stromüberlastbarkeit	5fache des Nennstromes			
Stromverbrauch	25mA + Ausgangsstrom, Ausgangsstrom=0 bei Spannungsausgang			
Ausgangslast	Spannungsausgang : ≥2kΩ, Stromausgang: ≤250Ω			
Montage	Schraubbefestigung			
Gehäusetyp und Fenstergröße	L20K mit Ø20mm Öffnung			
Betriebstemperatur	-40°C ~ +85°C Lagerungstemperatur: -55°C ~ + 100°C			
Relative Feuchtigkeit	≤90%			
Mittlere Zeit zwischen Fehler (MTBF)	r) ≥ 100k Stunden Schutzklasse Gehäuse IP20			IP20

Definition der Teilenummer:

СҮНСТ	-	L20K	-	М	-	х	n
(1)		(2)		(3)		(4)	(5)

(1)	(2)	(3)	(4)	(5)
Serien- name	Gehäuse- typ	Nennstrom am Eingang (M=U/B m)	Ausgangssignal	Strom- versorgung
СҮНСТ	L20K	m = 25Å, 30Å, 40Å,50Å, 60Å,70Å,80Å,90Å,100Å, 200Å, 300Å,400Å,500Å (andere Eingangs- ströme zw. 25Å-500Å)	x=1: momentane Spannung ±5VDC x=3: 0-5V DC x=4: 0-20mA DC x=5: 4-20mA DC x=8: 0-10V DC	n=2: +12V DC n=3: +15V DC n=4: +24V DC

U: unidirektional; B: bidirektional (bitte geben Sie "U" o. "B" in der Teilenummer an)

Beispiel 1: CYHCT-L20K-U100A -34, Hall Effekt DC Stromsensor mit

Ausgangssignal: 0-5V DC
Stromversorgung: +24V DC
Nennstrom am Eingang: 0-100A DC

Beispiel 2: CYHCT-L20K-U100A -54, Hall Effekt DC Stromsensor mit

Ausgangssignal: 4-20mA DC Stromversorgung: +24V DC Nennstrom am Eingang: 0-100A DC

Maße (mm)

Maße: 68 x 57 mm x 24 mm, Blende: Ø20 mm

Verbindungen

Der Dauerstromleiter muss durch das Fenster verlaufen. Die Phase des Ausgangs ist die gleiche wie der Strom, der durch das Fenster in die gleiche Richtung wie die Pfeile am Gehäuse fließt.

Schaltung der Sensoren bei Spannungsausgang

Beziehung zwischen Eingang und Ausgang:

Sensor CYHCT-L20K-U100A-34			
Eingangsstrom (A)	Ausgangsspannung (V)		
0	0		
25	1.25		
50	2.5		
75	3.75		
100	5		

Schaltung der Sensoren bei Stromausgang

Beziehung zwischen Eingang und Ausgang (bei $R_m=250 \Omega$):

Sensor CYHCT-L20K-U100A-54				
Eingangsstrom (A) Ausgangsstrom Io(mA)		Ausgangsspannung Vo (V)		
0	4	1		
25	8	2		
50	12	3		
75	16	4		
100	20	5		

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausgangs richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Zwei Potentiometer können (nur wenn es unbedingt notwendig ist) eingestellt werden, indem sie mit einem kleinen Schraubenzieher langsam zur erforderlichen Genauigkeit gedreht werden.
- 3. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Dauerstromleitern (Busleitern) gefüllt ist.
- 4. Der In-Phasenausgang wird erreicht, wenn die Richtung des Stromes des Stromkabels die gleiche ist wie die Richtung der am Gehäuse gekennzeichneten Pfeile.