

Matriz: vetores multidimensional

Comparando vetor x matriz

LPA

Integrado em Informática -IFSP - Hortolândia

- Ao final desta aula você deve responder: Sobre Matriz
 - Compreender que matriz nada mais é que um vetor multidimensional (vetor onde cada elemento é um vetor).
 - Qual a sua importância como estrutura de dados para armazenar informações.
 - Como declarar, inicializar e iterar(percorrer) matriz.
 - Como utilizar a instrução for encadeada (for com outro for para iterar sobre a matriz. E for aprimorado encadeado.
 - Saber realizar as operações matemáticas de Matriz de modo computacional.

Conteúdo

- Matriz: declaração, inicialização e manipulação de matriz
- Matriz com vetor multidimensional

Cap. 7 Array e ArrayLists – Java Como Programar (Deitel & Deitel)

Matriz: conceito

- A matriz ou vetores multidimensionais com duas dimensões costuma ser usados para representar tabela de valores consistindo em informações organizadas em linhas e colunas.
- Para identificar um elemento da tabela, devemos especificar dois índices. Por convenção o primeiro identifica linha do elemento e o segundo sua coluna.
- Os vetores com dois índice, são chamados de bidimensional (vetor multidimensional podem ter mais de duas dimensões).

Vetor bidimensionalchamado a com 3 linhas e 4 colunas

Coluna 0 Coluna 1 Coluna 2 Coluna 3

Linha 0 a[0][0] a[0][1] a[0][2] a[0][3]

Linha I a[1][0] a[1][1] a[1][2] a[1][3]

Linha 2 a[2][0] a[2][1] a[2][2] a[2][3]

Índice de coluna

Índice de linha Nome do array

Matriz é uma caso especial de vetor, mas tem as mesma características!!!

Declaração

vetor(unidimensional) x matriz(bidimensional)

Declaração vetor: int [] c;

Declaração matriz : int [] [] a;

c [0]	
c[1]	
c[2]	
c[3]	
c [4]	
c [5]	
c[6]	
c[7]	

- O vetor como matriz é um objeto.
- Os elementos dos vetores e matrizes podem ser de tipos primitivos ou tipos por referência.
- O índice precisa ser um valor int ou um valor de tipo que possa ser promovido a int (byte, short, char). E o primeiro índice é 0.

Declaração e instanciação (criação)

vetor(unidimensional) x matriz(bidimensional)

Declara a variável c como referência para um vetor de inteiro. int [] c;

 Cria/instância o vetor e atribui a variável c como referência para um vetor de inteiro.

DECLARA e INSTÂNCIA o vetor ` int [] c = new int [8];

c [0]	
c[1]	
c[2]	
c[3]	
c[4]	
c[5]	
c[6]	
c[7]	

 Declara a variável a como referência para uma matriz de inteiro.

 Cria/instância a matriz e atribui a variável a como referência para a matriz de inteiro 3 (linha) x 4 (coluna).

DECLARA e INSTÂNCIA o vetor
int [][] a = new int [3][4];

Criação: valores inicializados

vetor(unidimensional) x matriz(bidimensional)

Lembrando: o vetor e matriz são objetos, portanto na sua criação os seus valores são inicializados pela JVM (tempo de execução) com valores de acordo com o seu tipo.

c[0]	??
c[1]	??
c[2]	??
c[3]	??
c[4]	??
c[5]	??
c[6]	??
c[7]	??

int [][]	m = new	int[3][4];
		/

m [0] [0]	m [0] [1]	m [0] [2]	m [0] [3]
??	??	??	??
m[1][0]	m [1] [1]	m[1][2]	m[1][3]
??	??	??	??
m [2] [0]	m [2] [1]	m [2] [2]	m [2] [3]
??	??	??	??

Qual o valores no vetor c e matriz m, após a execução da linha anterior? E seu o tipo ao invés de int fosse: float, char, objeto, boolean?

Manipulação dos elementos

vetor(unidimensional) x matriz(bidimensional)

 Os elementos do vetor/matriz são acessados ou alterados por meio dos índices que indicam a posição do elemento que deseja manipular.

int
$$[]$$
 $c = new int[8];$

Para deixar o vetor conforme a fig.

c[0]	-4
c[1]	6
c[2]	0
c[3]	72
c[4]	64
c [5]	53
c[6]	78
c[7]	3

Como faz para mostrar o elemento que esta na 3 posição? Qual o seu índice?

Para deixar o vetor conforme a fig.

m[0][0] 2	m [0] [1] 4	m[0][2] 6	m[0][3] 8
m[1][0]	m [1] [1]	m [1] [2]	m [1] [3]
m[2][0]	m [2] [1]	m [2] [2]	m [2] [3]

Como faz para mostrar o elemento que esta na segunda linha e terceira coluna? Qual os seus índices?

Inicialização

vetor(unidimensional) x matriz(bidimensional)

 Pode-se criar um vetor/matriz e inicializar seus elementos com uma declaração de inicialização:

int c
$$[] = \{-4, 6, 0, 72, 64, 53, 78, 3\};$$

c[0]	-4
c[1]	6
c[2]	0
c[3]	72
c[4]	64
c [5]	53
c[6]	78
c[7]	3

int m[][] = {	{ 2,4,6,8 } ,	{ 10,12,14,16 } ,	, { 18,20,22,24 } };
---------------	---------------	-------------------	----------------------

m[0][0]	m [0] [1]	m[0][2]	m[0][3]
m[1][0] 10	m [1] [1]	m[1][2] 14	m[1][3]
m [2] [0] 18	m [2] [1]	m [2] [2]	m [2] [3]

 A operação apropriada do new ocorre nos "bastidores" pela JVM.

Manipulação

vetor(unidimensional) x matriz(bidimensional)

- Para iterar sobre o vetor/matriz utilizamos a estrutura: for.
- Para VETOR: for simples e MATRIZ: for aninhado (for dentro de outro).

```
for ( int i = 0; i < c.length ; i++)
    System.out.printf("%d %d", i , c[i]);</pre>
```

```
// somar todos os elementos do vetor
int soma = 0;
for ( int i = 0; i < c.length ; i++)
  soma = soma + c[ i ]); // soma += c [ i ]</pre>
```

```
      c[0]
      -4

      c[1]
      6

      c[2]
      0

      c[3]
      72

      c[4]
      64

      c[5]
      53

      c[6]
      78

      c[7]
      3
```

```
for (int linha= 0; linha < 3; linha ++) // linhas
for (int col = 0; col < 4; col++) // coluna
System.out.printf( "%d ", m [linha] [col]);
```

System.out.println(); // nova linha da matriz

for (int linha= 0; linha < 3; linha ++) // linhas for (int col = 0; col < 4; col++) // coluna soma = soma + m[linha][col]);

2	4	6	8
10	12	14	16
18	20	22	24

Passando como parâmetro

vetor(unidimensional) x matriz(bidimensional)

public void mostra(int [] d){

```
m [ 0 ] [ 0 ]
              m [ 0 ] [1 ]
                            m [ 0 ] [ 2 ]
                                          m [ 0 ] [ 3 ]
m[1][0]
              m [ 1 ] [1 ]
                            m[1][2]
                                          m[1][3]
    10
                  12
                                14
                                               16
m[2][0]
              m [ 2 ] [1 ]
                            m[2][2]
                                          m[2][3]
    18
                  20
                                22
```

```
private int m [] [] = {{ 2,4,6,8 } , { 10,12,14,16 } , { 18/20,22,24 } };

public void manipulaVetor() {
    ManipulaVetor v = new ManipulaVetor();
    ....
    v. mostra( m );
}
```

```
public void mostra(int [ ] [ ] n ){
   .....
}
```


- O Java não suporta vetores multidimensionais diretamente, mas permite especificar vetores unidimensionais cujos elementos também são vetores unidimensionais, alcançando assim o mesmo efeito.
- int m[][] = new int [3] [4]

```
int m[][] = {{2,4,6,8}, {10,12,14,16}, {18,20,22,24}};

m = [v1 v2 v3]
```

0][0]	m [0] [1]	m[0][2]	m[0][3]
pr[1][0]	m [1] [1]	m[1][2]	m[1][3]
pr[2][0]	m [2] [1]	m[2][2] 22	m[2][3]

 Java interpreta: m é um vetor de três elementos (linhas), onde cada elemento é um novo vetor com quatro elementos(colunas).

Manipulando Matriz de modo Genérico

O método abaixo, serve apenas para matriz[3][4]

2	4	6	8
10	12	14	16
18	20	22	24

m.length
row 0 m[0].length

row 1 m[1].length

row 2 m[2].length

m[0][0]	m [0] [1]	m[0][2]	m[0][3]
pr[1][0]	m [1] [1]	m[1][2]	m[1][3]
pr[2][0]	m [2] [1]	m[2][2] 22	m [2] [3]

2

```
10
                                                               12
                                                                      14
                                                                            16
// Mostra todos os elementos de uma matriz
                                                        18
                                                               20
                                                                      22
                                                                             24
// linhas loop pelas linhas do vetor
for ( int linha = 0; linha < m.length ; linha++) // linhas</pre>
    // linhas loop pelas colunas da linha atual
    for (int coluna = 0; coluna < m[linha].length ; coluna++) // coluna</pre>
         System.out.printf( "%d ", m[linha][coluna] );
    System.out.println();
}
```

Manipulando Matriz de modo Genérico

for aprimorado alinhado

array.length
row 0 m[0].length
row 1 m[1].length
row 2 m[2].length

m[0][0]	m [0] [1]	m[0][2]	m[0][3]
pr[1][0]	m [1] [1] 12	m[1][2]	m[1][3]
pr[2][0]	m [2] [1]	m [2] [2] 22	m[2][3]

```
//assume que o primeiro elemento da matriz é a menor valor
int menorValor = m[0][0];

for ( int[] valoresLinha: m) // valoreslinhas recebe os valores das linha
{
    for ( int valor: valoresLinha) // coluna
    {
        // se valor for menor que menorValor atribui valor para menorValor
        if( valor < menor )
            menor = valor;
    }
}
return menor;</pre>
```

Matrizes (vetores bidimensionais) com linhas de diferentes tamanhos.

```
int[][] b = {{1, 2}, {3, 4, 5}};
```

Cria vetor de inteiros 6 com dois elementos (determinados pelo número de inicializadores do vetor aninhados) que representam as linhas do vetor bidimensional. Cada elemento de 6 únicializadores do vetor unidimensional. Cada elemento de 6 únicializadores a um vetor unidimensional de variáveis int. O vetor int da linha 0 é um vetor unidimensional com dois elementos (1 e 2), e o vetor int da linha 1 é um vetor unidimensional com três elementos (3, 4 e 5).

```
int[][] b = new int[2][];  // cria 2 linhas
b[0] = new int[5]; // cria 5 colunas para a linha 0
b[1] = new int[3]; // cria 3 colunas para a linha 1
```

Pode-se criar um vetor multidimensional em que cada linha tem um número diferente de colunas. As instruções anteriores criam um vetor bidimensional com duas linhas. A linha 0 tem cinco colunas, e a linha 1, três colunas.

Gráfico de barra (deitado) para frequência

```
Distribuição das Notas
                  Nota Quantidade
                     0:
                             0 -
                     1: 0 -
                     2: 1 -*
                     3: 2 -**
                     4: 3 -***
                     5: 4 -***
System.out.println( "Distribuicao das Notas" ); // cabecalho
System.out.println( "Nota Quantidade" ); // cabecalho
for ( int contador = 0; contador < freq.length ; contador++) {</pre>
    System.out.printf( "\n%4d:%6d -", contador, freq[ contador ] );
    // mostra a qtd de estrela de acordo com a qtd existente em freq
    for ( int estrela = 0; estrela < freq[contador] ; estrela++)</pre>
        System.out.print("*");
}
```


FIM!!!!

Próximas aulas

- Revisão de métodos e atributos static.
- Properties para tradução.