Goal

- 1. Predict the stock trend of Thales S.A., Michelin, Renault S.A., Accor S.A., andPernod Ricard S.A over the next 30 days
- 2. Determine which stocks will appreciate the most over the next 30 days.

Method

Used R to efficiently perform the ARIMA forecasting method to predict the stock prices.

Steps: https://otexts.com/fpp2/arima-r.html

Analysis results

The following graph shows the plotted graph of each stock(See Figure 1). Before starting the analysis, I speculated that Pernod.Ricard.S.A was the least likely to appreciate while Accor.S.A was the most likely by looking at the original time-series data.

Figure 1. Original time-series data of Thales S.A., Michelin, Renault S.A., Accor S.A., or Pernod Ricard S.A.

To start, the closing prices of all the five stocks are not stationary, which implies the necessity of differencing to make them stationary for the prediction. Second, there is no evidence of changing variance in each closing price, so the variance stability transformation (like Box-Cox transformation) is not needed.

Figure 2. Differenced time-series data and plots of ACF and PACF

After first-differencing them, all the time series data became stationary, but PACF and ACF plots of the differenced closing prices It means that all the time series data except Thales. S. A. may be white noise, which implies that there is no autocorrelation or pattern in those data. To confirm that, the Box-Ljung test(The null hypothesis(Ho): The first differenced time-series is a white noise vs. The alternative hypothesis(Ha): Ho is not true) is exploited for each time series data.

The PACF of Thales. S. A. suggests an AR(4) model. So an initial candidate model is an ARIMA(4,1,0). I fitted ARIMA(4,1,0) along with variations including ARIMA(4,1,1), ARIMA(4,1,2), and etc. Of these, the ARIMA(2,1,3) has the lowest AIC values which is confirmed by the auto.arima function with the option Stepwise=FALSE in R.

Table 1 : Results of the Box-Ljung test

Time series	X-squared	p-value	
Accor. S.A	12.898	0.2295	
Thales.S.A	19.643	0.03281	
Michelin	6.304	0.7891	
Permod.Richard.S.A	6.2639	0.7926	
Renault.S.A	5.1851	0.8785	

From the results of Table1, it can be safely concluded that all the data except Thales. S. A. are white noises at the significance level 0.05: the p-value of the first differenced time-series data of Thales. S.A. is 0.03281 which is less than 0.05. It is, therefore, natural that only Thales. S. A. will be modelled by the use of traditional ARIMA from now on.

Figure 3. Residuals from ARIMA(2,1,3)

Forecasts from the ARIMA(2,1,3) are displayed in Figure 3. There is no statistical method to accurately predict the closing price after 30 days which is too long a period to forecast: the 80% and 95% confidence intervals get wider and wider, as time goes by. The forecast for the next 30 days are listed in the following table with confidence intervals.

Table2: Forecasts for the next 30 days of Thales. S. A.

Point Forecast		Hi 80	Lo 95	Hi 95
148.4846	145.8505	151.1186	144.4561	152.513
148.3229	144.6517	151.9941	142.7082	153.9375
147.9416	143.3529	152.5304	140.9237	154.9596
147.6403	142.3892	152.8914	139.6095	155.6712
147.5427	141.8341	153.2513	138.8122	156.2732
147.6097	141.5516	153.6679	138.3446	156.8749
147.7326	141.3572	154.108	137.9823	157.483
147.8215	141.1216	154.5213	137.575	158.068
147.8445	140.8055	154.8835	137.0792	158.6097
147.8188	140.4382	155.1993	136.5311	159.1064
147.7796	140.0705	155.4888	135.9895	159.5697
147.7538	139.7367	155.7708	135.4928	160.0148
147.7489	139.4435	156.0544	135.0469	160.451
147.7583	139.1785	156.3381	134.6367	160.88
147.7707	138.9251	156.6162	134.2425	161.2988
147.7781	138.6724	156.8838	133.8521	161.704
147.7788	138.418	157.1397	133.4627	162.095
147.7755	138.1653	157.3858	133.0779	162.4731
147.7717	137.9184	157.625	132.7024	162.841
147.7696	137.6798	157.8594	132.3386	163.2006
147.7696	137.4493	158.0898	131.9861	163.5531
147.7707	137.2253	158.3162	131.6429	163.8986
147.7719	137.0059	158.5379	131.3068	164.237
147.7725	136.7902	158.7548	130.9765	164.5684
147.7724	136.5778	158.967	130.6518	164.8931
147.772	136.3691	159.175	130.3327	165.2114
147.7717	136.1641	159.3793	130.0193	165.524
147.7715	135.9629	159.5802	129.7117	165.8313
147.7716	135.7653	159.7778	129.4095	166.1336
147.7717	135.571	159.9724	129.1124	166.431

Conclusion

It is nearly impossible to predict the stock price patterns of the given data using the ARIMA forecasting method. For a more accurate prediction, use of a more advanced technology like machine learning is necessary. (word count 496)