

Week 8 – Trajectory Planning

ELEC0129 Introduction to Robotics

Dr. Chow Yin Lai

Email: uceecyl@ucl.ac.uk

	Schedule	Legend: A: MPEB 6 th Floor Lab B: PC Lab	<u>Legend:</u> C: 11am-1pm D: 11.30am-1pm
Week	Recorded, uploaded by Friday of previous week	F2F Workshop, Mondays 11am-1 and/or Wednesdays 9am-11am	.pm Virtual Workshop, Mondays (C/D) and Wednesdays 9am-11am
1	(Scenario Week)		
2	Lec: Intro; Spatial description	A: Workshop: Offline programmir	ng C: Workshop: Offline programming
3	Lec & Tut: Spatial description	A: Workshop: Build robot	D: Workshop: Build robot
4	Lec & Tut: Forward kinematics	A: Workshop: Forward kinematics	D: Workshop: Forward kinematics
5	Lec & Tut: Inverse kinematics	B: Workshop: Offline programmir	ng C: Workshop: Offline programming
RW	(Reading Week)		
6	(Scenario Week)		
7	Lec & Tut: Jacobians	A: Workshop: Inverse kinematics	D: Workshop: Inverse kinematics
8	Lec: Trajectory Planning	A: Workshop: Trajectory planning	D: Workshop: Trajectory planning
9	Lec & Tut: Dynamics	A: Workshop: Trajectory planning	C: Workshop: Trajectory planning
10	Lec & Tut: Control	A: Workshop: Pick-and-place dem	no C: Workshop: Pick-and-place demo

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Introduction to Trajectory Planning (1)

- Trajectory planning means designing a time profile of position, velocity and acceleration of a movement.
- E.g. driving from A to B:

- The velocity starts from 0, increases to $V_{\rm constant}$ and stays constant for some time.
- As it approaches the target, the velocity decreases down to 0.

Introduction to Trajectory Planning (2)

- E.g. robot arm moving from initial position towards object:
 - The arm also accelerates at the start and decelerates at the end.

Introduction to Trajectory Planning (3)

- Note: Trajectory planning is NOT designing the "geographical" path.
 - E.g. the discussion is NOT about how to generate a path for the car to move from A to B through the city.
 - Or how to generate a path for robot to avoid some obstacles.
- It is about the time profile of the motion.

Introduction to Trajectory Planning (4)

• The designed time profile of position, velocity and acceleration can be visualized in graphs, for e.g.:

Introduction to Trajectory Planning (5)

 However, we still need to express the time profile using mathematical functions.

$$x = f(t), \dot{x} = f'(t), \ddot{x} = f''(t)$$

• From the functions, the computer can then extract the numerical values of x, \dot{x}, \ddot{x} at any given t.

Introduction to Trajectory Planning (6)

• The numerical values of x, \dot{x}, \ddot{x} at different times t will be passed on to the control system as reference values for the system (car, robot) to follow.

Introduction to Trajectory Planning (7)

- In today's lecture, we will learn how to write the function x = f(t) given:
 - The current position and orientation of robot / end-effector;
 - Desired goal position and orientation for the end-effector;
 - The time to reach goal position;
 - General shape of the path (straight line, polynomial etc.);
- $\dot{x} = f'(t), \ddot{x} = f''(t)$ then comes naturally through differentiation.

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Cartesian Space Schemes (1)

 Cartesian Space Schemes means specifying trajectory directly through position and orientation of the endeffector.

$$x = f_x(t)$$

$$y = f_y(t)$$

$$z = f_z(t)$$

$$r_x = f_{rx}(t)$$

$$r_y = f_{ry}(t)$$

$$r_z = f_{rz}(t)$$

Cartesian Space Schemes (2)

• For e.g. the end-effector is required to move from (x_A, y_A) to (x_B, y_B) .

• The $x = f_x(t)$ and $y = f_y(t)$ graphs may look like this:

Cartesian Space Schemes (3)

- The advantage of Cartesian Space Schemes:
 - We can enforce certain shape of the geometrical path (for e.g. straight line),
 - Or enforce orientation of the end-effector (for e.g. maintain same orientation throughout).

Cartesian Space Schemes (4)

- The disadvantages of Cartesian Space Schemes:
 - Computationally expensive: Inverse kinematics has to be solved at every time step (update rate) to calculate joint angles.

Cartesian Space Schemes (5)

- The disadvantages of Cartesian Space Schemes:
 - 2. Prone to problems relating to workspace and singularities

Joint Space Schemes (1)

 Joint Space Schemes means specifying trajectory directly through the joint angles.

$$\theta_1 = f_{\theta 1}(t)$$

$$\theta_2 = f_{\theta 2}(t)$$

$$\theta_3 = f_{\theta 3}(t)$$

$$\theta_4 = f_{\theta 4}(t)$$

$$\theta_5 = f_{\theta 5}(t)$$

$$\theta_6 = f_{\theta 6}(t)$$

Joint Space Schemes (2)

• For e.g. θ_1 is required to change from 80° to 30°, while θ_2 is required to change from -30° to -10°.

• The $\theta_1 = f_{\theta 1}(t)$ and $\theta_2 = f_{\theta 2}(t)$ graphs may look like this:

Joint Space Schemes (3)

- Advantages of joint space schemes:
 - Easy to compute.
 - No issue with singularities.

Joint Space Schemes (4)

- Disadvantages of joint space schemes:
 - Path will not be linear.
 - This may be a problem if there are possible collisions.

Notation

- Regardless of whether the trajectory is specified in Cartesian space of joint space,
- The design process (or the mathematical function) is the same.
- We will therefore use "u(t)" to represent any of the variables:

$$u = f_u(t)$$

Summary: What we want to do next

- Given:
 - The start position u_0 ,
 - The end position u_f ,
 - The time to reach the final position t_f ;
- Generate a trajectory $u = f_u(t)$ for the robot to follow.

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Straight Line

 The simplest trajectory would be a straight time profile between the start and end positions.

The function is:

$$u(t) = \begin{cases} \frac{u_f - u_0}{t_f} t + u_0 & t < t_f \\ u_f & t \ge t_f \end{cases}$$

 Disadvantage: Discontinuous velocities at start and end points. Rough and jerky motions causes vibrations due to resonance modes, as well as increases wear and tear.

Cubic Polynomial (1)

 To ensure that the velocities at the start and end points are zero, we can use a cubic polynomial:

$$u(t) = \begin{cases} a_0 + a_1 t + a_2 t^2 + a_3 t^3 & t < t_f \\ u_f & t \ge t_f \end{cases}$$

Cubic Polynomial (2)

• There are four parameters a_0 , a_1 , a_2 , a_3 which can satisfy four constraints:

$$u(0) = u_0$$

$$u(t_f) = u_f$$

$$\dot{u}(0) = 0$$

$$\dot{u}(t_f) = 0$$

• The question is now: How do we calculate a_0 , a_1 , a_2 , a_3 ?

Cubic Polynomial (3)

This can be done by solving four simultaneous equations:

$$u(0) = a_0 + a_1 0 + a_2 0^2 + a_3 0^3 = a_0 = u_0$$

$$u(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 = u_f$$

$$\dot{u}(0) = a_1 + 2a_2 0 + 3a_3 0^2 = a_1 = 0$$

$$\dot{u}(t_f) = a_1 + 2a_2 t_f + 3a_3 t_f^2 = 0$$

• where the last 2 equations (velocity) come from the differentiation of u(t), i.e.

$$\dot{u}(t) = \frac{d}{dt}(a_0 + a_1t + a_2t^2 + a_3t^3) = a_1 + 2a_2t + 3a_3t^2$$

Cubic Polynomial (4)

The solutions to the simultaneous equations are:

$$a_{0} = u_{0}$$

$$a_{1} = 0$$

$$a_{2} = \frac{3}{t_{f}^{2}} (u_{f} - u_{0})$$

$$a_{3} = -\frac{2}{t_{f}^{3}} (u_{f} - u_{0})$$

Cubic Polynomial (5)

• Example: $u_0 = 15^{\circ}$, $u_f = 75^{\circ}$, $t_f = 3 \text{sec. Then:}$

$$a_0 = u_0 = 15$$

$$a_1 = 0$$

$$a_2 = \frac{3}{t_f^2} (u_f - u_0) = \frac{3}{3^2} (75 - 15) = 20$$

$$a_3 = -\frac{2}{t_f^3} (u_f - u_0) = -\frac{2}{3^3} (75 - 15) = -4.44$$

The trajectory is thus:

$$u(t) = \begin{cases} 15 + 20t^2 - 4.44t^3 & t < 3\\ 75 & t \ge 3 \end{cases}$$

Cubic Polynomial (6)

The plots for position, velocity and acceleration are:

 Note that the accelerations at start and end positions are not zero. This might create jerky motions.

Cubic Polynomial (7)

The Matlab code to generate the trajectory is as follows:

```
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
% Boundary Conditions %
u0 = 15;
uf = 75;
tf = 3;
222222
% Create Time Array %
t = 0:0.001:tf; % array of time from 0 to tf in steps of 0.001
t = t'; % make the time array into column vector
```

Cubic Polynomial (8)

Continued:

```
99999999999999999999
% Cubic Polynomial %
88888888888888888888888
a0 = u0;
a1 = 0:
a2 = 3/tf^2*(uf-u0);
a3 = -2/tf^3*(uf-u0);
uCubic = a0*ones(length(t),1)+a1*t+a2*t.^2+a3*t.^3;
uDotCubic = a1*ones(length(t),1)+2*a2*t+3*a3*t.^2;
uDoubleDotCubic = 2*a2*ones(length(t),1)+6*a3*t;
figure, sqtitle ('Cubic')
subplot(1,3,1),plot(t,uCubic),title('Position')
subplot(1,3,2),plot(t,uDotCubic),title('Velocity')
subplot(1,3,3),plot(t,uDoubleDotCubic),title('Acceleration')
```

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Quintic Polynomial (1)

 As seen in the final slide on cubic polynomial, the acceleration at the start and end positions are not zero.

• This is because the cubic polynomial (with 4 parameters) could only satisfy 4 constraints: $u(0), u(t_f), \dot{u}(0), \dot{u}(t_f)$.

Quintic Polynomial (2)

- If we want to have control over accelerations, i.e. 2 additional constraints $\ddot{u}(0)$, $\ddot{u}(t_f)$,
- then we will need a polynomial with 6 parameters The Quintic Polynomial.

$$u(t) = \begin{cases} a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5 & t < t_f \\ u_f & t \ge t_f \end{cases}$$

• To obtain the parameters of the Quintic polynomial, we use the same method of solving simultaneous equations.

Quintic Polynomial (3)

• From $u(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$ we have:

$$u(0) = a_0 + a_1 0 + a_2 0^2 + a_3 0^3 + a_4 0^4 + a_5 0^5 = a_0 = u_0$$

$$u(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 + a_4 t_f^4 + a_5 t_f^5 = u_f$$

• From $\dot{u}(t) = a_1 + 2a_2t + 3a_3t^2 + 4a_4t^3 + 5a_5t^4$ we have:

$$\dot{u}(0) = a_1 + 2a_20 + 3a_30^2 + 4a_40^3 + 5a_50^4 = a_1 = 0$$

$$\dot{u}(t_f) = a_1 + 2a_2t_f + 3a_3t_f^2 + 4a_4t_f^3 + 5a_5t_f^4 = 0$$

• From $\ddot{u}(t) = 2a_2 + 6a_3t + 12a_4t^2 + 20a_5t^3$ we have:

$$\ddot{u}(0) = 2a_2 + 6a_30 + 12a_40^2 + 20a_50^3 = 2a_2 = 0$$

$$\ddot{u}(t_f) = 2a_2 + 6a_3t_f + 12a_4t_f^2 + 20a_5t_f^3 = 0$$

Quintic Polynomial (4)

Solving the simultaneous equations, the parameters are:

$$a_{0} = u_{0}$$

$$a_{1} = 0$$

$$a_{2} = 0$$

$$a_{3} = \frac{10}{t_{f}^{3}} (u_{f} - u_{0})$$

$$a_{4} = -\frac{15}{t_{f}^{4}} (u_{f} - u_{0})$$

$$a_{5} = \frac{6}{t_{f}^{5}} (u_{f} - u_{0})$$

Quintic Polynomial (5)

• Example: $u_0 = 15^{\circ}$, $u_f = 75^{\circ}$, $t_f = 3 \text{sec. Then:}$

$$a_0 = u_0 = 15, a_1 = 0, a_2 = 0$$

$$a_3 = \frac{10}{t_f^3} (u_f - u_0) = \frac{10}{3^3} (75 - 15) = 22.22$$

$$a_4 = -\frac{15}{t_f^4} (u_f - u_0) = -\frac{15}{3^4} (75 - 15) = -11.11$$

$$a_5 = \frac{6}{t_f^5} (u_f - u_0) = \frac{6}{3^5} (75 - 15) = 1.48148$$

The trajectory is thus:

$$u(t) = \begin{cases} 15 + 22.22t^3 - 11.11t^4 + 1.48148t^5 & t < 3\\ 75 & t \ge 3 \end{cases}$$

Quintic Polynomial (6)

 The position, velocity and acceleration profiles for Quintic polynomial are as follows:

As can be seen, the acceleration is continuous at start and end.

Quintic Polynomial (7)

The Matlab code to generate the trajectory is as follows:

```
8888888888888888888888888
% Quintic Polynomial %
$$$$$$$$$$$$$$$$$$$$$$$$
a0 = u0;
a1 = 0:
a2 = 0:
a3 = 10/tf^3*(uf-u0);
a4 = -15/tf^4*(uf-u0);
a5 = 6/tf^5*(uf-u0);
uOuintic = a0*ones(length(t), 1) + a1*t + a2*t.^2 + a3*t.^3 + a4*t.^4 + a5*t.^5;
uDotQuintic = a1*ones(length(t),1)+2*a2*t+3*a3*t.^2+4*a4*t.^3+5*a5*t.^4;
uDoubleDotQuintic = 2*a2*ones(length(t), 1) + 6*a3*t + 12*a4*t.^2 + 20*a5*t.^3;
figure, sqtitle ('Ouintic')
subplot(1,3,1),plot(t,uQuintic),title('Position')
subplot(1,3,2),plot(t,uDotQuintic),title('Velocity')
subplot(1,3,3),plot(t,uDoubleDotQuintic),title('Acceleration')
```

Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Linear Function w. Parabolic Blends (1)

- The cubic and quintic polynomials, while smooth, are not the most natural way when you think of a motion.
- For e.g. if you drive from A to B, you wouldn't
 - increase your speed slowy,
 - reaching the maximum velocity exactly halfway between A and B,
 - and then slowly decrease speed to zero.

Linear Function w. Parabolic Blends (2)

- Instead, you would want to:
 - Increase your speed smoothly but rapidly up to a maximum velocity (e.g. 70 miles / hour),
 - Maintain the maximum velocity (constant) for a long time,
 - Decreases speed to zero smoothly but rapidly as you reach the destination.

Linear Function w. Parabolic Blends (3)

 This can be achieved with the "linear function with parabolic blends" trajectory.

Derivation (1)

- To compute the trajectory, four pieces of information are needed:
 - 1. The start position u_0 ,
 - 2. The end position u_f ,
 - 3. The time to reach the final position t_f ;
 - 4. The acceleration of the first blend portion \ddot{u} .

Derivation (2)

- Three assumptions are also required:
 - A1. Both the parabolic blends have the same time duration.
 - Therefore the deceleration of the second blend portion $= -\ddot{u}$.
 - A2. The solution is symmetric about the halfway point in time (t_h) and position (u_h) .
 - A3. The velocity at the end of blend region is same as that of linear region.

Derivation (3)

- Side note: How to calculate the velocity and position at any
 - instant *t* in the blend region?
 - \ddot{u} is a given constant, set by user.
 - The velocity is obtained by integration of acceleration:

$$\dot{u} = \int \ddot{u} \, dt = \underbrace{\dot{u}_0}_{0} + \ddot{u}t = \ddot{u}t$$

• The position is obtained by integration of velocity:

$$u = \int \dot{u} \, dt = u_0 + \frac{1}{2} \ddot{u} t^2$$

Derivation (4)

The trajectory can now be written as:

$$u(t) = \begin{cases} u_0 + \frac{1}{2}\ddot{u}t^2 & t < t_b \\ \frac{u_h - u_b}{t_h - t_b}(t - t_b) + u_b & t_b \le t < (t_f - t_b) \\ u_f - \frac{1}{2}\ddot{u}(t_f - t)^2 & t \ge (t_f - t_b) \end{cases}$$

- Problem: u_b and t_b are still unknown.
- We need to calculate them to fully specify the trajectory.

Derivation (5)

Firstly, we use assumption A3 that the velocity at the end of

blend region is the same as that of linear region

$$\ddot{u}t_b = \frac{u_h - u_b}{t_h - t_b} \tag{1}$$

- Let's express u_b in terms of t_b , so that there is only one unknown.
- u_b is the position at time t_b , thus $u_b = u_0 + \frac{1}{2}\ddot{u}t_b^2$.

$$u_b = u_0 + \frac{1}{2}\ddot{u}t_b^2. \tag{2}$$

Derivation (6)

The assumption A2 about symmetry give us:

$$u_{h} = \frac{1}{2} (u_{0} + u_{f})$$

$$t_{h} = \frac{1}{2} t_{f}$$
(3)

• Putting equations (2), (3), (4) into (1) gives:

Derivation (7)

• The final equation, $\ddot{u}t_b^2 - \ddot{u}t_ft_b + (u_f - u_0) = 0$, is a quadratic equation in t_h . The solution is:

$$t_b = \frac{\ddot{u}t_f - \sqrt{\ddot{u}^2 t_f^2 - 4\ddot{u}(u_f - u_0)}}{2\ddot{u}}$$
$$= \frac{t_f}{2} - \frac{\sqrt{\ddot{u}^2 t_f^2 - 4\ddot{u}(u_f - u_0)}}{2\ddot{u}}$$

- Note: we choose only "minus" sign for square root because $t_b \leq \frac{t_f}{2}$.
- Substitute t_b back into $u_b = u_0 + \frac{1}{2}\ddot{u}t_b^2$ to get u_b .

About the Desired Acceleration (1)

- The acceleration must be chosen to be high enough.
 - Otherwise solution to t_b will not exist.
- E.g. if acceleration is small, the linear region shrinks.
- Or, if acceleration is too small, there may be no more linear region.

About the Desired Acceleration (2)

How to make sure the acceleration is high enough?

- It is such that $t_b=rac{t_f}{2}-rac{\sqrt{\ddot{u}^2t_f^2-4\ddot{u}(u_f-u_0)}}{2\ddot{u}}$ exists.
- In other words:

$$\ddot{u}^{2}t_{f}^{2} - 4\ddot{u}(u_{f} - u_{0}) \ge 0$$

$$\ddot{u}^{2}t_{f}^{2} \ge 4\ddot{u}(u_{f} - u_{0})$$

$$\ddot{u} \ge 4\frac{(u_{f} - u_{0})}{t_{f}^{2}}$$

Summary of the Trajectory

- Given u_0, u_f, t_f .
- Choose desired acceleration \ddot{u} which must satisfy $\ddot{u} \geq 4 \frac{(u_f u_0)}{t_f^2}$.

• Calculate
$$t_b = \frac{t_f}{2} - \frac{\sqrt{\ddot{u}^2 t_f^2 - 4 \ddot{u} (u_f - u_0)}}{2 \ddot{u}}$$
 and $u_b = u_0 + \frac{1}{2} \ddot{u} t_b^2$

• The trajectory is then:
$$u(t) = \begin{cases} u_0 + \frac{1}{2}\ddot{u}t^2 & t < t_b \\ \frac{u_h - u_b}{t_h - t_b}(t - t_b) + u_b & t_b \le t < (t_f - t_b) \\ u_f - \frac{1}{2}\ddot{u}(t_f - t)^2 & t \ge (t_f - t_b) \end{cases}$$

Example (1)

- $u_0 = 15^{\circ}$, $u_f = 75^{\circ}$, $t_f = 3 \text{sec.}$
- The minimum acceleration is:

$$\ddot{u} \ge 4 \frac{\left(u_f - u_0\right)}{t_f^2} = 4 \frac{(75 - 15)}{3^2} = 26.6666$$

- Here I have chosen $\ddot{u} = 100$.
- With this,

$$t_b = \frac{t_f}{2} - \frac{\sqrt{\ddot{u}^2 t_f^2 - 4\ddot{u}(u_f - u_0)}}{2\ddot{u}} = \frac{3}{2} - \frac{\sqrt{100^2 \cdot 3^2 - 4 \cdot 100(75 - 15)}}{2 \cdot 100} = 0.2155$$

Example (2)

Also,

$$u_b = u_0 + \frac{1}{2}\ddot{u}t_b^2 = 15 + \frac{1}{2}100 \cdot 0.2155^2 = 17.3215$$

• The trajectory is then:

$$u(t) = \begin{cases} u_0 + \frac{1}{2}\ddot{u}t^2 & t < t_b \\ \frac{u_h - u_b}{t_h - t_b}(t - t_b) + u_b & t_b \le t < (t_f - t_b) \\ u_f - \frac{1}{2}\ddot{u}(t_f - t)^2 & t \ge (t_f - t_b) \end{cases}$$

Example (3)

The Matlab code is as follows:

Example (4)

```
% First blend
tBlend1 = 0:0.001:tb;
tBlend1 = tBlend1';
uBlend1 = u0*ones(length(tBlend1),1)+0.5*Acc*tBlend1.^2;
% Linear portion
tLinear = tb+0.001:0.001:(tf-tb);
tLinear = tLinear';
uLinear = (uh-ub)/(th-tb)*(tLinear-tb)+ub;
% Second blend
tBlend2 = (tf-tb+0.001):0.001:tf;
tBlend2 = tBlend2';
uBlend2 = uf*ones(length(tBlend2),1)-0.5*Acc*(tf-tBlend2).^2;
```

Example (5)

```
% Combine

tCombine = [tBlend1;tLinear;tBlend2];
uCombine = [uBlend1;uLinear;uBlend2];
figure,plot(tCombine,uCombine),title('Linear with Parabolic Blend - Position')
```


Content

- Introduction
- Cartesian Space Schemes vs. Joint Space Schemes
- Cubic Polynomial
- Quintic Polynomial
- Linear Function with Parabolic Blends
- Matlab Simulation

Trajectory with Multiple Segments (1)

- So far, the provided Matlab codes have been generating trajectory for one single move only.
- What if several moves are required?
 - E.g. move from 15° to 75° at t = 0 with duration of 3 seconds;
 - Stay at 75° until next move;
 - Move from 75° to 50° at t = 7 with duration of 3 seconds;
 - Stay at 50° until next move;
 - Move from 50° to 90° at t = 15 with duration of 3 seconds;
 - Etc. Etc.

Trajectory with Multiple Segments (2)

- I will leave this as a coding exercise for you.
- Please try this out You will need it for your robot workshop.

Trajectory with Multiple Segments (3)

• E.g. cubic polynomial:

Trajectory with Multiple Segments (4)

• E.g. Quintic polynomial:

Thank you for your attention!

Any questions?