## SOI: Hardly Human

To classify emotions using **fer1013**, we used a convolutional neural network. But before that let us take a close look at the dataset.

The below figure shows the distribution of no. of training images present under each folder.



## **Augmentation**

Oh! There seems to be a problem, no. of training images for class *disgust* is very less, while for that of *happy* is around 7000! To fix this issue we used techniques of *Oversampling and Undersapling*.

- Oversampling: We randomly picked images from each class except happy and augment them using the following transforms, until 5000 images were there in total.
  - a. Random Horizontal Flips
  - b. Random 20 degree Rotations.
- **Undersampling:** We randomly deleted images from class *happy* until we had around 5000 images left.

After data augmentation we find the following file distribution!



Then we normalized the training data by dividing each element by 255.

## **Architecture**

Next let us look at the architecture of our CNN.

- We used 8 convolutional layers.
- After every 2 layers we added MaxPooling, Batch Normalization and Dropout.
- We kept the probability of dropout to be 0.25.
- In the end we added 2 dense layers with dropout set to 0.5.

The exact parameters used are visible in *SOI\_HH\_Training.ipynb* file. An image depicting our model architecture is shown in the next page.

| Trainable Parameters     | 8,815,559 |
|--------------------------|-----------|
| Non Trainable Parameters | 840       |
| Total Parameters         | 8,816,399 |

The model was trained using Adam optimizer with the following add-ons.

- Saving the best model based on validation accuracy after each epoch.
- Initial learning rate as 0.0001.
- Decay of 1e-6.



## **Metrics**

After training the following metrics were obtained for the training and test sets.

| Training Accuracy | 80.49 % |
|-------------------|---------|
| Testing Accuracy  | 66.95 % |

The final F1-score was obtained to be **0.647**