

22.
$$\int_{-\infty}^{\infty} K(x-t)y(t) dt = f(x).$$

The Fourier transform is used to solve this equation.

1°. Solution:

$$y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\widetilde{f}(u)}{\widetilde{K}(u)} e^{iux} du,$$

where

$$\widetilde{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iux} dx, \quad \widetilde{K}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} K(x)e^{-iux} dx.$$

The following statement is valid. Let $f(x) \in L_2(-\infty, \infty)$ and $K(x) \in L_1(-\infty, \infty)$. Then for a solution $y(x) \in L_2(-\infty, \infty)$ of the integral equation to exist, it is necessary and sufficient that $\widetilde{f}(u)/\widetilde{K}(u) \in L_2(-\infty, \infty)$.

 2° . Let the function P(s) defined by the formula

$$\frac{1}{P(s)} = \int_{-\infty}^{\infty} e^{-st} K(t) dt$$

be a polynomial of degree n with real roots of the form

$$P(s) = \left(1 - \frac{s}{a_1}\right)\left(1 - \frac{s}{a_2}\right)\dots\left(1 - \frac{s}{a_n}\right).$$

Then the solution of the integral equation is given by

$$y(x) = P(D)f(x), \quad D = \frac{d}{dx}.$$

References

Hirschman, I. I. and Widder, D. V., *The Convolution Transform*, Princeton Univ. Press, Princeton—New Jersey, 1955. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ie/ie0322.pdf