3. Relative Motion

Outline

- Rotation transformations
- Finite rotations
 - Body-fixed rotations
 - Space-fixed rotations
- Angular velocity
- Angular acceleration
- Velocity and acceleration

Translation

$$\vec{r}_A = \vec{r}_B + \vec{r}_{A/B}$$

Fixed-axis rotation

$$\vec{v} = \vec{\omega} \times \vec{r}$$

$$\vec{a} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r})$$

1. Rotation transformations

When a body rotates about a fixed point instead of a fixed axis, the angular velocity vector no longer remain fixed in direction. This change calls for a more general concept of rotation.

1. Rotation transformations

Assume: the origins of the coordinate systems coincide.

Define $l_{p'q} = l_{qp'}$ to be the direction cosine

where
$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} l_{x'x} & l_{x'y} & l_{x'z} \\ l_{y'x} & l_{y'y} & l_{y'z} \\ l_{z'x} & l_{z'y} & l_{z'z} \end{bmatrix}$$
 is called the rotation transformation matrix

An important property: [R] is an orthonormal matrix

proof:
$$\begin{bmatrix} \hat{i} \\ \hat{j} \end{bmatrix} = \begin{bmatrix} \hat{i} \\ \hat{k} \end{bmatrix} = \begin{bmatrix} \hat$$

Therefore,
$$\begin{cases} \hat{i} \\ \hat{j} \\ \hat{k} \end{cases} = [R]^{-1} \begin{cases} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{cases} = [R]^T \begin{cases} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{cases}$$

An arbitrary point A in the space

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} = A_x \hat{i}' + A_y \hat{j}' + A_z \hat{k}'$$

$$\begin{bmatrix} A_{x} & A_{y} & A_{z} \end{bmatrix} \begin{cases} \hat{i} \\ \hat{j} \\ \hat{k} \end{cases} = \begin{bmatrix} A_{x'} & A_{y'} & A_{z'} \end{bmatrix} \begin{cases} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{cases} = \begin{bmatrix} A_{x'} & A_{y'} & A_{z'} \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

$$\begin{bmatrix} A_{x'} & A_{y'} & A_{z'} \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} A_x & A_y & A_z \end{bmatrix} \Rightarrow \begin{bmatrix} R \end{bmatrix}^T \begin{Bmatrix} A_{x'} \\ A_{y'} \\ A_{z'} \end{Bmatrix} = \begin{Bmatrix} A_x \\ A_y \\ A_z \end{Bmatrix}$$

$$\begin{cases}
A_{x'} \\
A_{y'} \\
A_{z'}
\end{cases} = \begin{bmatrix} R \end{bmatrix} \begin{Bmatrix} A_x \\ A_y \\ A_z \end{Bmatrix}$$

$$\hat{k}, \hat{k}'$$

$$\hat{j}'$$

$$\hat{j}'$$

$$\hat{k}'$$

$$\hat{j}'$$

$$\hat{k}'$$

$$\hat{j}'$$

$$\hat{k}'$$

$$\begin{cases} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{cases} = \begin{bmatrix} \cos \theta_y & 0 & -\sin \theta_y \\ 0 & 1 & 0 \\ \sin \theta_y & 0 & \cos \theta_y \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

$$\begin{vmatrix}
\hat{k}' & \hat{k} \\
\hat{j}' & y' \\
\hat{k}' & \hat{j}' & y'
\end{vmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta_x & \sin \theta_x \\
0 & -\sin \theta_x & \cos \theta_x
\end{bmatrix} \begin{bmatrix}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{bmatrix}$$

1. Rotation transformations

• Example 3.1 (pp. 60)

2. Finite rotations

 Finite rotations are not proper vectors since they do not obey the parallel law of vector addition and are not commutative.

 The finite orientation of a coordinate system depends on the sequence in which rotation occur, as well as the magnitude of the individual rotations and the orientation of their respective axes. (pp. 67)

2.1 Body-fixed rotations

- In a body-fixed rotation sequence, each rotation is about one of the axes of the coordinate system at the preceding step in the sequence.
- On the other hand, in space-fixed rotation, the rotations at all the steps in a sequence is about an axis of the fixed coordinate system.

rotation 1

$$\begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} = \begin{bmatrix} R_1 \end{bmatrix} \begin{cases} X \\ Y \\ Z \end{cases}, \quad \begin{bmatrix} R_1 \end{bmatrix} = \begin{bmatrix} R_x \end{bmatrix}$$

rotation 2

$$\begin{bmatrix} z_2 \end{bmatrix} \begin{bmatrix} z_1 \end{bmatrix}$$

$$= \begin{bmatrix} R_2 \end{bmatrix} \begin{bmatrix} R_1 \end{bmatrix} \begin{Bmatrix} X \\ Y \\ Z \end{bmatrix}$$

2.1 Body-fixed rotations

Let *xyz* be a reference frame that undergoes a sequence of rotations about its own axes, and let *XYZ* mark the initial orientation of *xyz*. The transformation from *XYZ* to the final *xyz* components is obtained by pre-multiplying (from right to left) the sequence of transformation matrices for the individual single-axis rotation. For *n* rotations:

$$[R] = [R_n] \cdots [R_2][R_1]$$

2.2 Space-fixed rotations

rotation 1
$$\begin{cases} x_1 \\ y_1 \\ z_1 \end{cases} = [R_1] \begin{Bmatrix} X \\ Y \\ Z \end{Bmatrix}, \quad [R_1] = [R_X]$$

rotation 2
$$\begin{cases} x_2 \\ y_2 \\ z_2 \end{cases} = [R_2] \begin{cases} X \\ Y \\ Z \end{cases}, \quad [R_2] = [R_Y]$$

Final:
$$\begin{cases} x \\ y \\ z \end{cases} = \begin{bmatrix} R_1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} R_1 \end{bmatrix} \begin{bmatrix} R_2 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

2.2 Space-fixed rotations

Let *xyz* be a reference frame that undergoes a sequence of rotations about the space-fixed axes *XYZ* with which it initially coincides. The transformation from *XYZ* to the final *xyz* components is obtained by post-multiplying (from left to right) the sequence of transformation matrices for the individual single-axis rotation. For *n* rotations:

$$[R] = [R_1][R_2] \cdots [R_n]$$

3. Angular velocity

- However, infinitesimal rotations do obey the parallel law of vector addition.
- The final orientation of a coordinate system is unaffected by the sequence of a set of infinitesimal rotations.

$$[R_x] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & \sin \theta_x \\ 0 & -\sin \theta_x & \cos \theta_x \end{bmatrix}, [R_y] = \begin{bmatrix} \cos \theta_y & 0 & -\sin \theta_y \\ 0 & 1 & 0 \\ \sin \theta_y & 0 & \cos \theta_y \end{bmatrix}, [R_z] = \begin{bmatrix} \cos \theta_z & \sin \theta_z & 0 \\ -\sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For infinitesimal rotations $d\theta_x$, $d\theta_y$, $d\theta_z$

$$[R_x] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & d\theta_x \\ 0 & -d\theta_x & 1 \end{bmatrix}, \ [R_y] = \begin{bmatrix} 1 & 0 & -d\theta_y \\ 0 & 1 & 0 \\ d\theta_y & 0 & 1 \end{bmatrix}, \ [R_z] = \begin{bmatrix} 1 & d\theta_z & 0 \\ -d\theta_z & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Neglect second order differentials, we can prove that

$$[R_x][R_y][R_z] = [R_z][R_y][R_x]$$

and
$$d\vec{\theta} = d\theta_x \hat{i} + d\theta_y \hat{j} + d\theta_z \hat{k}$$

3. Angular velocity

In a moving reference frame with an angular velocity $\vec{\omega}$, for any vector \vec{A} whose coordinates relative to that reference frame are constant, the rate of change of \vec{A} is

$$\vec{\omega} \times \vec{A}$$
 where
$$\vec{\omega} = \sum_{i} \omega_{i} \hat{e}_{i}$$
 (for example)
$$\vec{\omega} = \omega_{x} \hat{i} + \omega_{y} \hat{j} + \omega_{z} \hat{k}$$

The primary application of this theorem is to differentiate the unit vectors of a moving reference frame.

4. Angular acceleration

$$\vec{\omega} = \sum_{i} \omega_{i} \hat{e}_{i}$$

Differentiate it using the product rule

$$\vec{\alpha} = \sum_{i} \left[\dot{\omega}_{i} \hat{e}_{i} + \omega_{i} \left(\vec{\Omega}_{i} \times \hat{e}_{i} \right) \right]$$

5. Velocity and acceleration

$$\vec{r}_P = \vec{r}_{O'} + \vec{r}_{P/O'}$$

If
$$\vec{r}_{P/O'} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\frac{d}{dt}\vec{r}_{P/O'} = \dot{x}\hat{i} + \dot{y}\hat{j} + \dot{z}\hat{k} + \vec{\omega} \times \vec{r}_{P/O'}$$

$$(\vec{v}_P)_{xyz}$$

Then differentate $\vec{r}_P = \vec{r}_{O'} + \vec{r}_{P/O'}$ w.r.t time

$$\vec{v}_P = \vec{v}_{O'} + (\vec{v}_P)_{xyz} + \vec{\omega} \times \vec{r}_{P/O'}$$

Differentate w.r.t time one more time

$$\vec{a}_{P} = \vec{a}_{O'} + (\vec{a}_{P})_{xyz} + \vec{\omega} \times (\vec{v}_{P})_{xyz} + \vec{\alpha} \times \vec{r}_{P/O'} + \vec{\omega} \times \left[(\vec{v}_{P})_{xyz} + \vec{\omega} \times \vec{r}_{P/O'} \right]$$

$$\Rightarrow \vec{a}_{P} = \vec{a}_{O'} + (\vec{a}_{P})_{xyz} + \vec{\alpha} \times \vec{r}_{P/O'} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O'}) + 2\vec{\omega} \times (\vec{v}_{P})_{xyz}$$

5. Velocity and acceleration

Notes:

- (1) $(\vec{v}_P)_{xyz}$ and $(\vec{a}_P)_{xyz}$ are the velocity and acceleration in the local C.S.
- (2) special case: if point *P* is fixed in the moving C.S.

$$\left(\vec{v}_P\right)_{xyz} = 0, \ \left(\vec{a}_P\right)_{xyz} = 0$$

In this case the velocity and acceleration can be simplified

$$\vec{v}_P = \vec{v}_{O'} + \vec{\omega} \times \vec{r}_{P/O'}$$

$$\vec{a}_P = \vec{a}_{O'} + \vec{\alpha} \times \vec{r}_{P/O'} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O'})$$