

MONASH BUSINESS SCHOOL

ETC4500/ETC5450 Advanced R programming

Week 5: Functional programming

- 1 Programming paradigms
- 2 Functional programming
- 3 Functional problem solving

- 1 Programming paradigms
- 2 Functional programming
- 3 Functional problem solving

- 1 Programming paradigms
- 2 Functional programming
- 3 Functional problem solving

R code is typically structured using these paradigms:

- Functional programming
- Object-oriented programming
- Literate programming
- Reactive programming

Often several paradigms used together to solve a problem.

Functional programming (W5; today!)

- Functions are created and used like any other object.
- Output should only depend on the function's inputs.

Functional programming (W5; today!)

- Functions are created and used like any other object.
- Output should only depend on the function's inputs.

Literate programming (W6)

- Natural language is interspersed with code.
- Aimed at prioritising documentation/comments.
- Now used to create reproducible reports/documents.

Reactive programming (W7)

- Objects are expressed using code based on inputs.
- When inputs change, the object's value updates.

Reactive programming (W7)

- Objects are expressed using code based on inputs.
- When inputs change, the object's value updates.

Object-oriented programming (W8 - W9)

- Functions are associated with object types.
- Methods of the same 'function' produce object-specific output.

- 1 Programming paradigms
- 2 Functional programming
- 3 Functional problem solving

Functional programming

R is commonly considered a 'functional' programming language - and so far we have used functional programming.

```
square <- function(x) {
  return(x^2)
}
square(8)</pre>
```

[1] 64

The square function is an object like any other in R.

R functions can be printed,

```
print(square)

function (x)
{
    return(x^2)
}
```

R functions can be printed,

```
print(square)
function (x)
    return(x^2)
inspected,
formals(square)
$x
```

put in a list,

```
my_functions <- list(square, sum, min, max)</pre>
my_functions
[[1]]
function (x)
    return(x^2)
[[2]]
function (..., na.rm = FALSE) .Primitive("sum")
[[3]]
function (..., na.rm = FALSE) .Primitive("min")
[[4]]
```

used within lists,

```
my_functions[[1]](8)
```

[1] 64

used within lists,

```
my_functions[[1]](8)
```

[1] 64

but they can't be subsetted!

square\$x

Error in square\$x: object of type 'closure' is not subsettable

Handling input types

Functional programming handles different input types using control flow. The same code is ran regardless of object type.

```
square <- function(x) {
  if(!is.numeric(x)) {
    stop("`x` needs to be numeric")
  }
  return(x^2)
}</pre>
```

Handling input types

Functional programming handles different input types using control flow. The same code is ran regardless of object type.

```
square <- function(x) {
  if(!is.numeric(x)) {
    stop("`x` needs to be numeric")
  }
  return(x^2)
}</pre>
```


We will see object-oriented programming, which handles different input types using different functions (methods)!

What are functions?

A function is comprised of three components:

- The arguments/inputs (formals())
- The body/code (body())
- The environment (environment())

What are functions?

A function is comprised of three components:

- The arguments/inputs (formals())
- The body/code (body())
- The environment (environment())
- Your turn!

Use these functions to take a closer look at square(). Try modifying the function's formals/body/env with <-.

Functional programming

Since functions are like any other object, they can also be:

- **inputs** to functions
- Extensible design with function inputs

Using function inputs can improve your package's design! Rather than limiting users to a few specific methods, allow them to use and write any method with functions.

Function arguments

Consider a function which calculates accuracy measures:

```
accuracy <- function(e, measure, ...) {
  if (measure == "mae") {
    mean(abs(e), ...)
} else if (measure == "rmse") {
    sqrt(mean(e^2, ...))
} else {
    stop("Unknown accuracy measure")
}</pre>
```

Improving the design

This function is limited to only computing MAE and RMSE.

Function arguments

Using function operators allows any measure to be used.

```
MAE <- function(e, ...) mean(abs(e), ...)
RMSE <- function(e, ...) sqrt(mean(e^2, ...))
accuracy <- function(e, measure, ...) {
   ???
}
accuracy(rnorm(100), measure = RMSE)</pre>
```


Your turn!

Complete the accuracy function to calculate accuracy statistics based on the function passed in to measure.

Functional programming

Since functions are like any other object, they can also be:

- **inputs** to functions
- outputs of functions
- Functions making functions?

These functions are known as *function factories*. Where have you seen a function that creates a function?

Let's generalise square() to raise numbers to any power.

```
power <- function(x, exp) {
    x^exp
}
power(8, exp = 2)

[1] 64
power(8, exp = 3)</pre>
```

[1] 512

What if the function returned a function instead?

[1] 64

```
power_factory <- function(exp) {
    # R is lazy and won't look at exp unless we ask it to
    force(exp)
    # Return a function, which finds exp from this environment
    function(x) {
        x^exp
    }
}
square <- power_factory(exp = 2)
square(8)</pre>
```

```
power_factory <- function(exp) {</pre>
  # R is lazy and won't look at exp unless we ask it to
  force(exp)
  # Return a function, which finds exp from this environment
  function(x) {
    x^exp
square <- power_factory(exp = 2)</pre>
square(8)
Γ1 | 64
cube <- power_factory(exp = 3)</pre>
cube(8)
```

[1] 512

Consider this function to calculate plot breakpoints of vectors.

```
breakpoints <- function(x, n.breaks) {
  seq(min(x), max(x), length.out = n.breaks)
}</pre>
```


Your turn!

Convert this function into a function factory.

Is it better to create functions via x or n.breaks?

- 1 Programming paradigms
- 2 Functional programming
- 3 Functional problem solving

Split, apply, combine

Many problems can be simplified/solved using this process:

- split (break the problem into smaller parts)
- apply (solve the smaller problems)
- combine (join solved parts to solve original problem)

Split, apply, combine

Many problems can be simplified/solved using this process:

- split (break the problem into smaller parts)
- apply (solve the smaller problems)
- combine (join solved parts to solve original problem)

This technique applies to both

- writing functions (rewriting a function into sub-functions)
- working with data (same function across groups or files)

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

- split: group_by() splits up the data into groups
- apply: your summarise() code calculates a single value
- combine: summarise() combines the results into a vector

data |> group_by() |> summarise()

An example of split-apply-combine being used to work with data is when group_by() and summarise() are used together.

- split: group_by() splits up the data into groups
- apply: your summarise() code calculates a single value
- combine: summarise() combines the results into a vector

```
library(dplyr)
mtcars |>
  group_by(cyl) |>
  summarise(mean(mpg))
```

```
# A tibble: 3 x 2
cyl `mean(mpg)`
<dbl>
1 4 26.7
2 6 19.7
3 8 15.1
```

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

- base R: The *apply() functions
- purrr: The map*() functions

Split-apply-combine for vectors and lists

The same idea can be used for calculations on vectors.

There are two main implementations we consider:

- base R: The *apply() functions
- purrr: The map*() functions

We will use purrr and but I'll also share the base R equivalent.

for or map?

Let's square() a vector of numbers with a for loop.

```
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
   x2[i] <- square(x[i])
}
x2</pre>
```

[1] 1 9 64

for or map?

Let's square() a vector of numbers with a for loop.

```
x <- c(1, 3, 8)
x2 <- numeric(length(x))
for (i in seq_along(x)) {
   x2[i] <- square(x[i])
}
x2</pre>
```

[1] 1 9 64

Of course square() is vectorised, so we should use square(x). Other functions like lm() or read.csv() are not!

for or map?

Instead using map() we get...

```
library(purrr)
x \leftarrow c(1, 3, 8)
map(x, square) # lapply(x, square)
[[1]]
\lceil 1 \rceil 1
[[2]]
[1] 9
[[3]]
[1] 64
```

Mapping vectors

The same result, but it has been combined differently!

Mapping vectors

To combine the results into a vector rather than a list, we instead use map_vec() to combine results into a vector.

```
library(purrr)
x <- c(1, 3, 8)
map_vec(x, square) # vapply(x, square, numeric(1L))
[1] 1 9 64</pre>
```

for or map

- Advantages of map
 - Less coding (less bugs!)
 - Easier to read and understand.

for or map

- Advantages of map
 - Less coding (less bugs!)
 - Easier to read and understand.
- Disadvantages of map
 - Less control over loop
 - Cannot solve sequential problems

Functional mapping

Recall group_by() and summarise() from dplyr:

```
mtcars |>
  group_by(cyl) |>
  summarise(mean(mpg))
```


Your turn!

Use split() and map_vec() to achieve a similar result.

Hint: split(mtcars\$mpg, mtcars\$cyl) creates a list that

splits mtcars\$mpg by each value of mtcars\$cyl.

Suppose we want to separately model mpg for each cyl.

```
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 4,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 6,])
lm(mpg ~ disp + hp + drat + wt, mtcars[mtcars$cyl == 8,])
```

We can split the data by cyl with split(),

```
mtcars_cyl <- split(mtcars, mtcars$cyl)</pre>
```

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

We can split the data by cyl with split(),

```
mtcars_cyl <- split(mtcars, mtcars$cyl)</pre>
```

but map(mtcars_cyl, lm, mpg ~ disp + hp + drat + wt)
won't work - why?

Difficult to map

Using map(mtcars_cyl, lm) will apply lm(mtcars_cyl[i]).
The mapped vector is always used as the first argument!

We can write our own functions!

 $1 + (f_1, \dots, f_n) = \dots = f_n + f_n$

Call:

```
mtcars_lm <- function(.) lm(mpg ~ disp + hp + drat + wt, data = .)</pre>
map(mtcars cvl, mtcars lm)
$`4`
Call:
lm(formula = mpg \sim disp + hp + drat + wt, data = .)
Coefficients:
(Intercept)
                   disp
                                  hp
                                              drat
                                                            wt
    52.5195 -0.0629
                             -0.0760
                                          -1.4422
                                                       -3.1001
$`6`
```

3

Call:

Or use ~ body to create anonymous functions.

 $1m(f_0, m_1, 1_0) = m_0 = d_0 = d_0 = 1$

```
\# \text{ lapply}(\text{mtcars\_cyl}, \setminus (.) \text{ lm}(\text{mpg} \sim \text{disp} + \text{hp} + \text{drat} + \text{wt}, \text{data} = .))
map(mtcars_cyl, ~ lm(mpg ~ disp + hp + drat + wt, data = .))
$`4`
Call:
lm(formula = mpg \sim disp + hp + drat + wt, data = .)
Coefficients:
(Intercept)
                        disp
                                            hp
                                                          drat
                                                                            wt
     52.5195 -0.0629
                                     -0.0760
                                                     -1,4422
                                                                      -3.1001
$`6`
```

3

Mapping mapping mapping

How would you then get the coefficients from all 3 models?

```
# mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))
```

Mapping mapping mapping

How would you then get the coefficients from all 3 models?

```
# mtcars_cyl |> lapply(\(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
map(~ lm(mpg ~ disp + hp + drat + wt, data = .))
```

```
Solution
# lapply(mtcars_cyl, \(.) lm(mpg ~ disp + hp + drat + wt, data = .))
mtcars_cyl |>
 map(\sim lm(mpg \sim disp + hp + drat + wt, data = .)) >
 map(coef)
(Intercept) disp
                            hp drat
   52.5195
          -0.0629 -0.0760 -1.4422 -3.1001
```

Mapping arguments

Any arguments after your function are passed to all functions.

37

Mapping arguments

This works by passing through ... to the function.

```
x <- list(1:5, c(1:10, NA))
map_dbl(x, ~ mean(.x, na.rm = TRUE))

[1] 3.0 5.5
map_dbl(x, mean, na.rm = TRUE)

[1] 3.0 5.5</pre>
```

Mapping arguments

These additional arguments are not decomposed / mapped.

It is often useful to map multiple arguments.


```
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)
```

 $[1] \ 0.690 \ 0.513 \ 0.560 \ 0.545 \ 0.632 \ 0.496 \ 0.440 \ 0.523$

```
xs <- map(1:8, ~ ifelse(runif(10) > 0.8, NA, runif(10)))
map_vec(xs, mean, na.rm = TRUE)

[1] 0.690 0.513 0.560 0.545 0.632 0.496 0.440 0.523
ws <- map(1:8, ~ rpois(10, 5) + 1)
map2_vec(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.728 0.520 0.562 0.488 0.604 0.479 0.408 0.516</pre>
```


Mapping many arguments

It is also possible to map any number of inputs with pmap.

```
n < -1:3
min <-c(0, 10, 100)
\max < -c(1, 100, 1000)
pmap(list(n, min, max), runif) # .mapply(runif, list(n, min, max), list())
\lceil \lceil 1 \rceil \rceil
[1] 0.0231
[[2]]
[1] 59.5 91.8
[[3]]
[1] 694 931 973
```

Mapping many arguments

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

Parallel mapping

Split-apply-combine problems are embarrassingly parallel.

The furrr package (future + purrr) makes it easy to use map() in parallel, providing future_map() variants.

```
library(furrr)
plan(multisession, workers = 4)
future_map_dbl(xs, mean, na.rm = TRUE)

[1] 0.690 0.513 0.560 0.545 0.632 0.496 0.440 0.523
future_map2_dbl(xs, ws, weighted.mean, na.rm = TRUE)

[1] 0.728 0.520 0.562 0.488 0.604 0.479 0.408 0.516
```

Sometimes you want to collapse a vector, reducing it to a single value. reduce() always returns a vector of length 1.

```
x <- sample(1:100, 10)
Х
 [1] 74 51 16 44 81 18 80 1 63 86
sum(x)
Γ1 | 514
# Alternative to sum()
reduce(x, `+`) # Reduce(`+`, x)
[1] 514
```

The result from the function is re-used as the first argument.

Your turn!

We're studying the letters in 3 bowls of alphabet soup.

Your turn!

We're studying the letters in 3 bowls of alphabet soup. Use reduce() to find the letters were in all bowls of soup! Are all letters found in the soups?

```
alphabet_soup <- map(c(10,24,13), sample, x=letters, replace=TRUE)
alphabet_soup

[[1]]
  [1] "z" "g" "a" "v" "c" "s" "t" "w" "l" "r"

[[2]]
  [1] "s" "s" "a" "p" "l" "z" "z" "h" "h" "i" "w" "t" "k" "o" "x" "s" "p"
  [18] "p" "a" "k" "j" "a" "p" "d"</pre>
```

Functional adverbs

purrr also offers many adverbs, which modify a function.

Capturing conditions

- possibly(.f, otherwise): If the function errors, it will return otherwise instead.
- safely(.f): The function now returns a list with 'result' and 'error', preventing errors.
- quietly(.f): Any conditions (messages, warnings, printed output) are now captured into a list.

Functional adverbs

purrr also offers many adverbs, which modify a function.

Changing results

negate(.f) will return !result.

Chaining functions

compose(...) will chain functions together like a chain of piped functions.

Functional adverbs

purrr also offers many adverbs, which modify a function.

These functions are all function factories!

More specifically they are known as *function operators* since both the input and output is a function.

memoise::memoise() is also a function operator.