Les Virus

Définition, structure, classification et multiplication.

I. Définition des virus :

Les virus sont des agents infectieux non cellulaires, composés d'une particule virale appelée virion, dont les caractéristiques sont :

- 1. Ils contiennent un seul type d'acide nucléique : ADN ou ARN, jamais les deux.
- 2. Ils sont incapables de croître ou de se diviser. La multiplication se fait uniquement via leur matériel génétique.
- 3. Ce sont des parasites intracellulaires obligatoires : ils dépendent entièrement de la cellule hôte pour la synthèse de leurs constituants.
- 4. Ils ont une structure définie : symétrie cubique, hélicoïdale ou mixte.

Ils se distinguent totalement des bactéries (même les plus petites comme les mycoplasmes), ainsi que des bactéries à multiplication intracellulaire (ex. *Chlamydia*).

II. Historique:

- XIXe siècle : Le mot latin virus désignait des agents pathogènes mal définis.
- À l'époque de Pasteur, les bactéries sont mieux caractérisées, mais certains agents infectieux échappent à la culture classique et sont invisibles au microscope.
- Ces agents passent à travers des filtres de porcelaine : on les appelle alors virus filtrants ou ultravirus.
- Exemples de virus découverts :
 - Végétal : virus de la mosaïque du tabac.
 - Animal: virus de la fièvre aphteuse.
 - **Humain :** virus de la poliomyélite.
 - Bactérien: bactériophages.

III. Structure des virus :

1. Constitution general:

- Un virus peut être :
- Nu (sans enveloppe) : acide nucléique + capside.
- Enveloppé : acide nucléique + capside + enveloppe lipidique.

2. Capside

Coque protéique entourant l'acide nucléique.

Constituée d'unités protéiques : les capsomères (assemblage de pentamères et hexamères).

Deux types principaux de symétrie :

Cubique (icosaédrique) : forme polyédrique.

Hélicoïdale : forme en spirale autour de l'ARN ou de l'ADN.

La capside est une structure résistante et stable qui assure plusieurs fonctions essentielles :

- Protège le génome viral à l'extérieur de la cellule,
- Permet l'attachement aux cellules hôtes (notamment pour les virus nus),
- Présente des antigènes reconnus par le système immunitaire,
- Associée au génome, elle forme la nucléocapside,
- Sa nature est utilisée comme critère de classification des virus.

Virus	Nb de capsomères
Poliovirus	32
Papillomavirus	72
Réovirus	92
Herpèsvirus	162 (12 + 150)
Adénovirus	252

2.1. Symétrie cubique (icosaédrique) :

- 20 faces triangulaires.
- 12 sommets (avec pentamères).
- 30 arêtes (avec hexamères).
- Exemples : Adénovirus, Herpèsvirus.

2.2. Symétrie hélicoïdale

- Nucléocapside en spirale : l'acide nucléique est entouré d'une chaîne continue de protéines.
- Aspect tubulaire, parfois flexible ou rigide.
- Exemples:
- Virus de la grippe : structure sphérique (nucléocapside de 9 nm).
- Virus de la rage : forme de balle ou suppositoire (nucléocapside de 15 nm).

3. Enveloppe virale :

L'enveloppe virale est une structure présente uniquement chez certains virus dits enveloppés, contrairement aux virus nus qui en sont dépourvus.

Elle est composée de lipides, glucides et protéines et constitue un critère de classification.

Elle est acquise en fin de cycle viral, généralement par bourgeonnement à travers :

- la membrane cytoplasmique (grippe, rage, VIH),
- la membrane nucléaire (herpès),
- plus rarement, le Golgi ou le RE.

Ses protéines ont divers rôles : morphologiques, antigéniques, enzymatiques ou d'attachement cellulaire.

Une matrice protéique interne peut rigidifier l'enveloppe (ex. : VIH, rage, grippe).

L'enveloppe est fragile (sensible aux solvants organiques), donc les virus enveloppés résistent mal à l'environnement extérieur et au tube digestif.

Ils se transmettent par contact rapproché, nécessitant des précautions strictes lors du transport des

échantillons.

À l'inverse, les virus nus sont plus résistants et peuvent se transmettre directement ou indirectement via l'environnement.

IV. Acide nucléique viral:

Type d'ADN/ARN	Forme	Exemples	
ADN bicaténaire	Linéaire ou circulaire	Adénovirus (22×10 ⁶ Da), Poxvirus (160- 180×10 ⁶ Da)	
ADN monocaténaire	Linéaire (rare)	Certains bactériophages	
ARN monocaténaire	Linéaire (Fréquent)	Virus de la grippe (4×10 ⁶ Da)	
ARN bicaténaire	Linéaire (Rare)	Réovirus	

V. Caractères antigéniques :

- Protéines, glucides et lipides viraux sont immunogènes.
- Les acides nucléiques ne sont pas antigéniques.
- L'infection virale déclenche la production d'anticorps spécifiques.
- La diversité antigénique est proportionnelle à la complexité du virus.

Utilisé pour :

Diagnostic sérologique

Typage viral (grippe, hépatites, VIH...)

VI. CLASSIFICATION DES VIRUS:

A. Classification selon Baltimore:

Classe les virus selon la nature de l'acide nucléique et la stratégie de réplication :

Class e	Type de génome	Exemple
I	ADN double brin (dsDNA)	Herpèsvirus, Adénovirus
II	ADN simple brin (ssDNA)	Parvovirus
III	ARN double brin (dsRNA)	Réovirus
IV	ARN simple brin + (ssRNA+)	Poliovirus, Virus du Nil
V	ARN simple brin – (ssRNA–)	Virus de la grippe, rage
VI	ARN simple + avec transcriptase inverse	VIH (Rétrovirus)
VII	ADN double brin avec transcriptase inverse	Hépatite B

B. Classification selon ICTV:

Basée sur :

- Nature du génome.
- Stratégie de réplication.
- · Morphologie.
- Enveloppe.
- Type de cellule hôte.

Exemples de familles :

- Herpesviridae
- Picornaviridae
- Orthomyxoviridae
- Retroviridae

VII. MODES DE TRANSMISSION DES VIRUS :

- Voie digestive : Poliovirus, Hépatite A
- Voie respiratoire : Grippe, Coronavirus, Rougeole
- Voie sexuelle: VIH, HSV-2, HPV
- Transfusions sanguines : VIH, Hépatite B et C
- Greffes : Possibilité de transmission virale (ex. CMV)
- Soins de maternage : Transmission périnatale (ex. VIH, HSV)
- Autres : Piqûres d'insectes (arbovirus), morsures (rage)

VIII. INFECTIONS VIRALES PERSISTANTES

Certaines infections virales persistent longtemps dans l'organisme :

- Latentes : le virus reste dormant (ex. Herpès).
- Chroniques: production virale continue (ex. VIH, Hépatite B).
- Progressives : aggravation lente (ex. VIH, Encéphalopathie à prions).

MULTIPLICATION DES VIRUS:

I. Definition:

- La multiplication virale désigne l'ensemble des mécanismes par lesquels un virus pénètre dans une cellule hôte, utilise sa machinerie pour produire de nouveaux virions infectieux, puis les libère pour infecter d'autres cellules.
- Ce cycle est strictement intracellulaire obligatoire.
- Chaque type de virus suit un cycle spécifique, selon la nature de son génome et la structure virale (enveloppé ou nu).

II. Étapes de la multiplication virale :

On distingue six étapes principales dans le cycle de multiplication virale :

1-Fixation (Attachement):

Première étape essentielle, déterminant le tropisme cellulaire et tissulaire du virus.

Interaction entre:

Les ligands viraux (souvent des glycoprotéines de l'enveloppe ou des capsomères).

Les récepteurs spécifiques à la surface des cellules hôtes.

Virus	Récepteur cellulaire ciblé
VIH	CD4 + corécepteurs CCR5/CXCR4
SARS-CoV-2	Enzyme de conversion de l'angiotensine 2 (ACE2)
Virus de la rage	Récepteur nicotinique à l'acétylcholine
Rhinovirus	ICAM-1 (Intercellular adhesion molecule-1)

2□- Penetration:

Mécanismes:

- 1. **Endocytose** (fréquent pour les virus nus ou enveloppés)
 - Formation de vésicules endosomales.
 - Ex : virus Influenza.
- 2. **Fusion directe** (virus enveloppés)
 - Fusion de l'enveloppe virale avec la membrane plasmique.
 - Ex: VIH. HSV.
- 3. Translocation directe (rare)
 - Injection du génome à travers la membrane.

3 □ **- Décapsidation**:

- Libération du génome viral dans le cytoplasme ou dans le noyau.
- Permet le dévoilement du génome viral pour initier la transcription/réplication.

Mécanismes :

- Action de protéines virales (ex : protéases).
- Utilisation d'enzymes cellulaires.
- Acidification de l'endosome facilitant la rupture de la capside (ex : Influenza).

4- Biosynthèse: Transcription, Traduction et Réplication

• La stratégie de biosynthèse dépend entièrement de la nature du génome viral.

Cas des virus à ADN

- Lieu: noyau (sauf les poxvirus: cytoplasme).
- Utilisent généralement l'ARN polymérase II cellulaire pour produire des ARNm.
- Traduction des ARNm en protéines virales dans le cytoplasme.

Cas des virus à ARN:

Type de virus	Mécanisme
ARN+ (ex : Poliovirus)	L'ARN génomique est directement traduit comme un ARNm.
ARN- (ex : Influenza)	Doivent emporter une ARN polymérase ARN dépendante pour transcrire l'ARN- en ARN+.
ARN double brin	Nécessitent une transcriptase virale (ex : Rotavirus).

Cas des rétrovirus (ex : VIH) :

- Le génome ARN est rétro-transcrit en ADN double brin par la transcriptase inverse.
- L'ADN est intégré dans le génome de l'hôte → provirus.
- Transcription par l'ARN polymérase cellulaire → ARNm → traduction.

5□- Assemblage (Maturation):

- Regroupement des capsomères autour du génome viral → formation de la nucléocapside.
- Acquisition de l'enveloppe :
 - Soit au niveau de la membrane plasmique.
 - Soit au niveau du réticulum endoplasmique ou Golgi (ex : virus herpétiques).

Étape critique :

Certains virus nécessitent une maturation enzymatique (ex : VIH → protéase virale).

6□- Libération:

Modes de libération :

Type de virus	Mécanisme	Détail	
Virus nus	Lyse cellulaire	Rupture de la membrane, souvent entraînée par les protéines virales.	
Virus enveloppés	Bourgeonnement	Le virus bourgeonne à travers une membrane cellulaire (plasmique, RE ou Golgi).	
Virus enveloppés	Exocytose	Rare, libération via des vésicules.	

III. Conséquences pour la cellule infectée :

Effet	Description	Exemples
Lyse cellulaire	Destruction de la cellule → libération du virus	Poliovirus
Effet cytopathogène	Modifications morphologiques (cellules géantes, inclusion, vacuolisation)	HSV, CMV
Latence	Le génome reste dans la cellule sans production virale	HSV, VIH
Transformation maligne	Induction de tumeurs (oncogenèse virale)	HPV, EBV
Persistance chronique	Virus produit continuellement à bas bruit	HBV, HCV

IV. Remarques supplémentaires :

Le cycle viral peut durer de quelques heures à plusieurs jours.

Certains virus possèdent des mécanismes d'échappement immunitaire :

Variation antigénique (Influenza).

Suppression de l'expression HLA (CMV).

Inhibition de l'interféron (HCV, VIH).

Les virus enveloppés sont plus fragiles dans le milieu extérieur (sensibles aux solvants lipidiques).

