**Rayleigh**: An Open-Source, Scalable Pseudo-Spectral MHD Code



Nick Featherstone Southwest Research Institute

Department of Solar and Heliospheric Physics, Solar System Science and Exploration Division



# Geomagnetic Declination in 1701



[Edmond Haley, 1701]

# History of Earth's Magnetic Field



Geomagnetism is <u>Dynamic</u> Something inside the Earth is causing this variation

# Planetary Dynamo Schematic: The Geodynamo

Liquid iron core:

Convection + Induction Spherical geometry

Thermal or compositional forcing:
 Latent heat release
 Light element release

Difficult to observe directly:
 Remote
 Mantle-filtering



#### Most Planets Possess Magnetic Fields



...and of course the Sun too...

### Stellar Dynamo Schematic: The Sun

Dense plasma throughout:
 Convection + Induction
 Spherical geometry

Thermal or compositional forcing:
 Core fusion

 Difficult to observe below suface: Helioseismology

Magnetism is EVERYWHERE



#### D. Hathaway (NASA MSFC)



### The Big Question:

How do any of these rotating bodies generate a magnetic field?

#### The Challenge:

- ALL of these examples possess a WIDE range of spatial scales of convection.
- We have to resolve the big stuff (spherical-scale)
- We also have to resolve the small stuff

# Geodynamo: The General Problem



Non-rotating

www.youtube.com/feathern24

Rapidly-rotating

- The geodynamo is thought to be highly turbulent
- Large dynamic range of spatial and temporal scales
- Efficient, parallel codes needed to address questions about its operation

For every ONE viscous timescale:

- O(10<sup>14</sup>) convective overturnings
- O(10<sup>15</sup> )rotation periods

SDO/AIA

<u>The Solar Challenge:</u> <u>Convection on Many Scales</u>

Deep Convection (200 Mm)

Granulation SST (1 Mm)

Supergranulation (10 Mm)

Intergranular Lanes (10 kM)

# What is Rayleigh?



Rotating MHD convection in a sphere

Pseudo-spectral: Spherical Harmonics / Chebyshevs

Scalable: 2048<sup>3</sup> –sized problems on O(10<sup>5</sup>) cores

Open Source: Spring/Summer 2015

# CIG Geodynamo Working Group (2013—2018)

Jon Aurnou, Ben Brown, Bruce Buffet, Nick Featherstone, Gary Glatzmaier, Moritz Heimpel, Lorraine Hwang, Louise Kellog, Hiro Matsui, Peter Olson, Sabine Stanley





# COMPUTATIONAL INFRASTRUCTURE for GEODYNAMICS

#### Rayleigh Development Team

- Nick Featherstone (Southwest Research Institute)
- Philipp Edelmann (Los Alamos Nat. Labs)
- Rene Gassmoeller (GEOMAR)
- Loren Matilsky (Univ. California, Santa Cruz)
- Cian Wilson (Carnegie Science)

### Rayleigh Solves: The Boussinesq MHD Equations

$$\begin{split} \left[ \frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{v} \right] &= \frac{Ra}{Pr} \left( \frac{r}{r_o} \right)^n \Theta \, \hat{\boldsymbol{r}} - \frac{1}{E} \boldsymbol{\nabla} P + \frac{1}{EPm} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{D}} \\ \left[ \frac{\partial \Theta}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta \right] &= \frac{1}{Pr} \boldsymbol{\nabla} \cdot \left[ \tilde{\kappa}(r) \boldsymbol{\nabla} \Theta \right] \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \boldsymbol{\nabla} \times \left[ \boldsymbol{v} \times \boldsymbol{B} - \frac{1}{Pm} \tilde{\eta}(r) \boldsymbol{\nabla} \times \boldsymbol{B} \right] \\ \mathcal{D}_{ij} &= 2\tilde{\nu}(r) e_{ij} \\ \boldsymbol{\nabla} \cdot \boldsymbol{v} &= 0 \end{split}$$

 $\nabla \cdot \boldsymbol{B} = 0$ 

### Rayleigh Solves: The Anelastic MHD Equations

$$egin{aligned} \hat{
ho}(r) \left[ rac{\partial oldsymbol{v}}{\partial t} + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{v} + 2\Omega_0 \hat{oldsymbol{z}} imes oldsymbol{v} 
ight] &= rac{\hat{
ho}(r)}{c_P} g(r)\Theta \, \hat{oldsymbol{r}} + \hat{
ho}(r) oldsymbol{
abla} \left( rac{P}{\hat{
ho}(r)} 
ight) \\ &+ rac{1}{4\pi} (oldsymbol{
abla} imes oldsymbol{B} + oldsymbol{
abla} oldsymbol{v} \cdot oldsymbol{
beta} oldsymbol{v} + oldsymbol{
abla} (r) \hat{oldsymbol{x}} + oldsymbol{v} \cdot oldsymbol{
abla} oldsymbol{v} + oldsymbol{
abla} (r) \hat{oldsymbol{v}} (r) \hat{oldsymbol{x}} + oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} oldsymbol{
abla} + oldsymbol{
abla} oldsymbol{
abla} \nabla \cdot oldsymbol{
abla} oldsymbol{
abla} \nabla \cdot oldsymbol{
abla} oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} oldsymbol{
abla} \nabla \cdot oldsymbol{
abla} oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{abla} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{v}} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{abla} \cdot oldsymbol{
abla} \cdot oldsymbol{
abla} (r) \hat{oldsymbol{abla} \cdot oldsymbol{
abla} \cdot oldsymbol{
abla}$$

# Rayleigh Solves: Other Variations

- Non-dimensional anelastic
- Custom equation sets
  - Alternative nondimensionalizations
  - Additional passive and active scale variables
    - Mixing studies
    - Compositional convection
- Described in the documentation and example notebooks provided in the Rayleigh repository

#### Warm plumes

Earth-like geometry

Pr = 1  $Ra = 10^7$ 

4,000 cores4 hoursNASA Pleiades



4,000 cores



Questions before we Begin?