Laborbericht: Messtechnik und Fehlerrechnung

Helen Klos Matrikelnummer: 2222449

Sandro Fahrion Matrikelnummer: 6684592

29.-30.10.2024

Contents

1	Ein	führung und Uberblick	3			
2	Versuch 1: Kapazitätsmessung eines unbekannten Kondensators (Black Box)					
	2.1	Zielsetzung	4			
	2.2	Bauteile und Messgeräte	4			
	2.3	Messkonzept	5			
	2.4	Messergebnisse	5			
3	Versuch 2: Passiver Zweipol (Black Box)					
	3.1	Zielsetzung	5			
	3.2	Bauteile und Messgeräte	5			
	3.3	Messkonzept	6			
	3.4	Messergebnisse	6			
4	Versuch 3: Leistungsaufnahme eines elektrischen Widerstands					
	4.1	Zielsetzung	6			
	4.2	Bauteile und Messgeräte	6			
	4.3	Messkonzept	7			
	4.4	Messergebnisse	7			
5	Versuch 4: Widerstandsmessung mittels Vierdrahtmethode 7					
_	5.1	Zielsetzung	7			
	5.2	Bauteile und Messgeräte	7			
	5.3	Messkonzept	8			
	5.4	Messergebnisse	8			
6	Ver	such 5: Statistik	8			
U	6.1	Zielsetzung	8			
	6.2	Bauteile und Messgeräte	8			
	6.3	Messkonzept	9			
	6.4	Messergebnisse	9			
7	Vor	such 6: Aktiver Tiefpass erster Ordnung	9			
•	7.1	Zielsetzung	9			
	7.2		10			
	7.3		11			
	7.4		11			
8	Disl	Diskussion 11				

1 Einführung und Überblick

...

2 Versuch 1: Kapazitätsmessung eines unbekannten Kondensators (Black Box)

2.1 Zielsetzung

Bestimmung der Kapazität eines unbekannten Kondensators in einer Black-Box

- Teledyne Technologies Funktionsgenerator T3AFG80 80 MHz
- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere)
- Tru Components Steckbrett
- A/D Converter ADC080x
- \bullet 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - $-0.1 \mu F$ (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - 8 x 1 k Ω Widerstandsnetzwerk

...

Figure 1: ...

2.4 Messergebnisse

...

3 Versuch 2: Passiver Zweipol (Black Box)

3.1 Zielsetzung

Bestimmung der Bauteile Typen (Möglichkeiten: R, L oder C) und deren Anordnung innerhalb einer Black Box.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - $-8 \times 1 \text{ k}\Omega$ Widerstandsnetzwerk

. . .

Figure 2: ...

3.4 Messergebnisse

. . .

4 Versuch 3: Leistungsaufnahme eines elektrischen Widerstands

4.1 Zielsetzung

Es soll die elektrische Leistung bestimmt werden, die bei Stromdurchfluss in einem Widerstand R anfällt.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - 8 x 1 k Ω Widerstandsnetzwerk

. . .

Figure 3: ...

4.4 Messergebnisse

. . .

5 Versuch 4: Widerstandsmessung mittels Vierdrahtmethode

5.1 Zielsetzung

Es soll der (sehr niederohmige) Übergangswiderstand eines Kabels inclusive seiner Steckverbinder mittels der Vierdrahtmethode gemessen werden.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- \bullet A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - $-8 \times 1 \text{ k}\Omega$ Widerstandsnetzwerk

...

Figure 4: ...

5.4 Messergebnisse

. . .

6 Versuch 5: Statistik

6.1 Zielsetzung

Bestimmung einer gemessenen Zufallsverteilung und ihrer Eigenschaften (Momente). Hierbei stellt das vorgegebene Los von Widerständen eine willkürlich entnommene Stichprobe einer vom Hersteller erzeugten Grundgesamtheit dar.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - $-0.1 \mu F$ (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-~10k\Omega$
 - -8 x 1 k Ω Widerstandsnetzwerk

...

Figure 5: ...

6.4 Messergebnisse

Widerstand	Wert in kOhm	Widerstand	Wert in kOhm
1	1.183	14	1.183
2	1.181	15	1.180
3	1.186	16	1.183
4	1.181	17	1.180
5	1.186	18	1.182
6	1.183	19	1.184
7	1.182	20	1.183
8	1.181	21	1.184
9	1.187	22	1.187
10	1.181	23	1.182
11	1.188	24	1.179
12	1.186	25	1.187
13	1.179	-	-

Table 1: ...

7 Versuch 6: Aktiver Tiefpass erster Ordnung

7.1 Zielsetzung

Bestimmung der frequenzabhängigen Verstärkung eines aktiven Tiefpasses

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- \bullet Steckbrett
- \bullet A/D Converter ADC080x
- $\bullet~10$ Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - $-0.1 \mu F$ (2 Stück)
 - 150 pF
- Widerstände:
 - $-\ 1k\Omega$
 - $-~10k\Omega$
 - -8 x 1 k Ω Widerstandsnetzwerk

...

Figure 6: ...

7.4 Messergebnisse

...

8 Diskussion

Was würden Sie nächstes Mal anders machen? Was hat besondere Schwierigkeiten bereitet?