ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2018г.

ФИО	№ группы

ВАРИАНТ
\mathbf{A}

1	2	3	4	5	Σ

зада	Итог	
I	II	

1А. Спектральный анализ излучения источника S осуществляется с помощью устройства, показанного на рисунке. Широкий параллельный пучок от источника, сколлимированный объективом \mathcal{J}_0 , падает на призму с шириной основания b=0.8 см и углом при вершине $\alpha=0.2$ рад. Излучение анализируется в фокальной плоскости объектива \mathcal{J} диаметром D=1 см. Определить разрешающую способность устройства, полагая дисперсию материала призмы в окрестности длины волны излучения источника равной $\frac{dn}{d\lambda}=10^3$ см $^{-1}$.

2А. При интерференции света от двух точечных монохроматических источников света на удаленном экране (в параллельных лучах) наблюдается система концентрических колец. В центре картины — интерференцион-

ный максимум. Угловой радиус одного из светлых колец на экране равен $\alpha=30^\circ$. На какое наименьшее расстояние Δd нужно сдвинуть один из источников, чтобы под углом α на экране снова наблюдалось светлое кольцо? Длина волны света $\lambda=0.5$ мкм.

3А. Монохроматический источник S и точка наблюдения P расположены на оси круглого отверстия в непрозрачном экране \mathcal{F} на расстояниях от экрана a и a/2 соответственно (см. рис.). При этом радиус отверстия составляет одну зону Френеля для точки P. Найти относительное изменение интенсивности света в точке P, если вплотную к отвер-

стию слева от него расположить рассеивающую линзу с центром на оси отверстия так, что источник S оказывается в фокусе линзы.

4A. Линейно поляризованная радиоволна с частотой $\nu=1$ ГГц, испускаемая удалённым источником, распространяется в ионосфере Земли вдоль линий её магнитного поля. После прохождении слоя толщиной h=30 км плоскость поляризации волны повернулась на угол $\Delta\theta=0.03$ рад. Оценить среднее значение плазменной частоты ν_p в области распространения волны. Закон дисперсии показателя преломления для волн с круговой поляризацией: $n_{\pm}^2(\nu)=1-\frac{\nu_p^2}{\nu(\nu\pm\nu_H)}$, где знак определяется направлением вращения; ν_H — циклотронная частота (гирочастота), которую для поля Земли можно принять равной $\nu_H=1$ МГц.

5A. На полупрозрачной пластинке (амплитудная прозрачность $t_0=0.5$) шириной D=11 мм нанесены параллельные непрозрачные полосы шириной b=10 мкм с периодом d=110 мкм (амплитудная прозрачность решётки $t_1(x)$, см. рис.). Пластина освещается нормально падающим параллельным пучком света с длиной волны $\lambda=500$ нм. Область вне пластины закрыта непрозрачным экраном. Найти, во сколько раз изменится интенсивность света в главном (нулевом) максимуме, если на месте полос прорезать щели (см. график $t_2(x)$).

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

31 мая 2018г.

ФИО	№ группы

ВАРИАНТ
Б

1	2	3	4	5	Σ

зада	Итог	
I	II	

1Б. Спектральный анализ излучения источника S осуществляется с помощью устройства, показанного на рисунке. Широкий параллельный пучок излучения источника S, сколлимированный объективом \mathcal{J}_0 , освещает дифракционную решётку P с числом штрихов N=600 и периодом d=150 мкм. Картина дифракции анализируется в фокальной плоскости Φ идеальной линзы \mathcal{J} диметра D=1 см. Какова разрешающая способность устройства в максимуме 1-ого порядка?

2Б. При интерференции света от двух точечных монохроматических источников света на удаленном экране (в параллельных лучах) наблюдается система концентрических колец. В центре картины — интерференционный максимум. Постепенно сдвигая один из источников, экспери-

ментатор добивается того, что на месте исходного положения 3-го (от центра) светлого кольца снова оказывается светлое кольцо. При этом относительное изменение расстояния между источниками составило $\Delta d/d=0.01$. Определить порядок интерференции в центре картины до смещения источника.

3Б. Монохроматический источник S и точка наблюдения P расположены на оси круглого отверстия в непрозрачном экране на равных расстояниях a/2 от отверстия (см. рис.). Радиус отверстия составляет 2/3 зоны Френеля для точки P. Найти относительное изменение интенсивности света в точке P, если вплотную к отверстию слева от него расположить собирающую линзу с центром на оси отверстия с фокусным расстоянием f=a.

4Б. Параллельный пучок линейно поляризованного света, содержащего две монохроматические компоненты $\lambda_1=500$ нм и $\lambda_2=550$ нм, падает нормально на кристаллическую пластинку. Плоскость поляризации падающей волны составляет 45° с главными направлениями пластинки, вырезанной параллельно оптической оси (показатели преломления $n_o=1,5533$ и $n_e=1,5442$). Затем свет проходит через поляроид Π , разрешённое направление которого совпадает с исходным направлением

поляризации света. При какой минимальной толщине h пластинки свет, прошедший через систему, будет содержать только одну спектральную компоненту без потери её начальной интенсивности?

5Б. Экран ширины D=2 см, амплитудная прозрачность t(x) которого показана на рисунке, представляет собой полупрозрачную пластинку с амплитудной прозрачностью $t_0=\frac{1}{5}$, в которой по всей ширине экрана прорезаны N=200 равноотстоящих щелей размером b=10 мкм. Экран освещается параллельным пучком света с длиной волны

 $\lambda = 500$ нм. Найти отношение интенсивностей в нулевом и первом главных максимумах дифракционной картины, наблюдаемой в фокальной плоскости идеального объектива.