Time Series Database

Team 9

Balamanikandan Gopalakrishnan

Rachan Hegde

Agenda

- Time Series Data
- Storage Options
- Time Series Databases
 - Open TSDB
 - MAPR
 - KDB
 - InfluxDB
 - OneTick
- Visualizing Time Series Data
 - Grafana
- Spark Time Series

Time Series Data

- Time Series Data is a set of observations collected at a usually <u>discrete and equally</u> <u>spaced time intervals</u>
 - General Properties
 - Trend
 - Seasonality
 - Order Matters (Values depend upon the recent observations)
- Special storage types are needed because of the volume of data and the frequency of observations

Internet Usage Data - Trend and Seasonality

Time Series Data Storage Options

Flat Files

• Data will outgrow them and access is inefficient

RDBMS

• Doesn't scale well

NoSQL non relational

- Preferred as it scales well
- Basic Design: Unique row keys with time series id and column is a time offset
- Hybrid Design: Blob Style

Time Series Database – Open TSDB

Time Series Database – Open TSDB

- Time Series Daemon (TSD)
 - Interaction with Open TSDB is achieved by running one or more TSD's
 - Independent, can run as many TSD's to handle load
 - TSD's uses open source database HBase to store and retrieve time series data
 - HBase schema is highly optimized for faster aggregations of similar time series data to minimize storage space

Time Series Database – Open TSDB

Time Series Data Point in Open TSDB

Metric Name

• Entity that is being tracked

Time Stamp

• Time Stamp of the observation

Value

• The observation at a specific point in time

Tags

• These are used to annotate data points

Time Series Database – MAPR

Time Series Database – MAPR

- MAPR is a open source modification to extend the capabilities of Open TSDB
- Direct Blob loading
 - Avoids performance bottlenecks

Time Series Database – KDB

Time Series Database – KDB

- KDB
 - In memory column-oriented database based on the concept of ordered lists
 - KDB uses a terse programming language Q
 - Data Store
 - RDB (Real Time Database) to store current day's data
 - HDB (Historical Database)
- Typically used in the following scenarios
 - Don't want your data outside your firm
 - Don't have in-house cloud infrastructure

Time Series Database – InfluxDB

Time Series Database – InfluxDB

- InfluxDB open-source distributed time series database
- InfuxDB uses BoltDB as its storage engine
 - Pure Go persistence solution that saves data to memory mapped file
- Key Features
 - SQL like query language
 - Database-managed retention policies for data
 - Built in management interface
 - Horizontally Scalable

Time Series Database – OneTick

Time Series Database – OneTick

- OneTickCLOUD
 - Hosted service providing managed data and analytics

Reference data, and adjustment factors along with on-demand analytics tools for

creating custom datasets.

Enter Query Select a Date for your query. Results will be for 9:30 - 11:30AM ET.
Date: 2015-08-01
Enter one or more comma separated Ticker Symbols (e.g.:GOOG, APPL)
Ticker: GOOG
Query Type: Tick Data ▼

Query Results							
TIMESTAMP	SYMBOL_NAME	PRICE	TRADE_PROPERTY	SIZE	GOOG	TABLE	
2015-07-30 09:30:00.010000 EDT	UTDF::GOOG	630.000000	@F I	26	GOOG	TABLE	
2015-07-30 09:30:00.104000 EDT	UTDF::GOOG	630.010000	@F I	80	GOOG	TABLE	
2015-07-30 09:30:00.143000 EDT	UTDF::GOOG	630.010000	@F I	20	GOOG	TABLE	
2015-07-30 09:30:00.143000 EDT	UTDF::GOOG	630.000000	@F I	2	GOOG	TABLE	
2015-07-30 09:30:00.143000 EDT	UTDF::GOOG	630.000000	@F	100	GOOG	TABLE	
2015-07-30							
4)	

Visualizing Time Series Data – Grafana

Visualizing Time Series Data – Grafana

- Grafana is a open source application for visualizing large-scale measurement data.
 - Currently supports
 - OpenTSDB
 - Influx DB
- Features
 - Rich Graphics
 - Dashboards
 - Templated Queries and Dashboards
 - Annotations
 - Multiple Data Sources

Spark Time Series

Spark Time Series

- Helsinki : Spark.TimeSeries is an api for Time Series Analysis in Spark
 - Depends upon *RunRDD* that splits the data into interesting partitions using a *RunDetector*
 - Partitions are represented by Runs contained RunRDD
- Cloudera: The central abstraction of the library is TimeSeriesRDD a lazy distributed collection of univariate series
 - Within each univariate series, observations are not distributed
 - Time Series Manipulation
 - Aligning
 - Slicing by date-time
 - Missing value imputation
 - Risk
 - Monte Carlo Simulation
 - Bootstrap Historical Simulation

Questions?