# 第5章 动态规划

5.5 连续变量多阶段决策问题

# 资源分配问题

- 设有数量为x的某种资源,将它投入两种生产方式A和B中(或称为投给部门A和部门B)。
- 若投给部门A的数量为z,则可获收益g(z),回收az,其中a( $0 \le a \le 1$ )为部门A的回收率。类似地,若投给部门B的数量为z,则可获收益h(z),回收bz,其中b( $0 \le b \le 1$ )为部门B的回收率。
- 连续投放n个阶段,问每个阶段如何分配资源才能使总收入 最大?

# 再描述一遍

- 设第k个阶段的资源总数为 $x_k$ ,投给部门A的资源数量为 $y_k$ 。则投给部门B的数量为 $x_k y_k$ 。于是可得到收入 $g(y_k) + h(x_k y_k)$ ,回收 $ax_k + b \cdot (x_k y_k)$ 。

$$x_1 = x$$
  
 $x_2 = ay_1 + b(x_1 - y_1)$   
.....  
 $x_n = ay_{n-1} + b(x_{n-1} - y_{n-1})$   
 $y_k \ge 0$ ,  $x_k \ge 0$ ,  $k = 1..n - 1$ 

#### 如何求解? (后向优化)



● 令  $f_k(x)$ 表示当前资源数量为 x,再经过 k 个阶段投放完成系统目标,所得到的最大总收入。

• 则有: 
$$\begin{cases} f_k(x) = \max_{0 \le y \le x} \{g(y) + h(x - y) + f_{k-1}(ay + b(x - y))\}, & k \ge 2 \\ f_1(x) = \max_{0 \le y \le x} \{g(y) + h(x - y)\}, & k = 1 \end{cases}$$

● 原问题即是求  $f_n(x)$ 。

# 连续变量的定期多阶段资源分配问题

●下面讨论有限资源分配问题,它的递推公式是:

$$\begin{cases}
f_k(x) = \max_{0 \le y \le x} \{g(y) + h(x - y) + f_{k-1}(ay + b(x - y))\}, & k \ge 2 \\
f_1(x) = \max_{0 \le y \le x} \{g(y) + h(x - y)\}, & k = 1
\end{cases}$$

- 当 g(y)、h(y)是一般函数时,这个问题的解不容易找。(但对于离散变量的该问题,有动态规划的办法求到算法解……②)
- ●下面证明,当 g(y)、h(y)为凸函数,且 h(0) = g(0) = 0 时,在每个阶段上 y 的最优决策总是取其端点的值。即上述递推公式可以化简为:

$$\begin{cases} f_k(x) = \max\{h(x) + f_{k-1}(bx), g(x) + f_{k-1}(ax)\}, & k \ge 2 \\ f_1(x) = \max\{h(x), g(x)\}, & k = 1 \end{cases}$$

# 两个引理

引理 5.3.1 设 g(x)、h(y)是凸函数,则对任何固定的 x, F(y) = g(y) + h(x - y)是 y 的凸函数。

- ●证明:只需证h(x-y)是y的凸函数,即,需证:  $\forall 0 \le \alpha \le 1$ , $h(x-(\alpha y_1+(1-\alpha)y_2)) \le \alpha h(x-y_1)+(1-\alpha)h(x-y_2)$ 。
- $\overrightarrow{\text{fif}} h(x (\alpha y_1 + (1 \alpha)y_2)) = h(\alpha x + (1 \alpha)x (\alpha y_1 + (1 \alpha)y_2))$  $= h(\alpha (x - y_1) + (1 - \alpha)(x - y_2))$   $\leq \alpha h(x - y_1) + (1 - \alpha)h(x - y_2).$

其中最后一步是因为 h(y)是 y 的凸函数。』 引理 5.3.2 设  $F_1(x)$ 、  $F_2(x)$ 是 x 的凸函数,则

$$F(x) = \max\{F_1(x), F_2(x)\}$$
也是 $x$ 的凸函数。』

# 定理5.3.1(主要定理)

定理 5.3.1 设 g(x)、h(y)是凸函数,g(0) = h(0) = 0。则 n 阶段资源分配问题每个阶段的最优策略 y 总是在  $0 \le y \le x$  的端点处取得。

- ●证明: 先证 k=1 的情形。
- $f_1(x) = \max_{0 \le y \le x} \{g(y) + h(x y)\}$ 。由引理 **5.3.1**, g(y) + h(x y)是 y 的凸函数,因此 g(y) + h(x y) 在区间 [0, x] 上的最大值必定 在 y = 0 或 y = x 处取得。即,  $f_1(x) = \max\{g(x), h(x)\}$ 。
- 再用归纳法证  $k \ge 2$  的情形。

# 主要定理

- (基本步)  $f_2(x) = \max_{0 \le y \le x} \{g(y) + h(x-y) + f_1(ay+b(x-y))\}$ 。由引理 **5.3.2**,  $f_1(x)$ 是 x 的凸函数。由于 ay+b(x-y)是 y 的线性函数,可证  $f_1(ay+b(x-y))$ 是 y 的凸函数(类似于引理 **5.3.1**中对 h()函数的证明)。
- ●由于 g(y)、h(x-y)、 $f_1(ay+b(x-y))$ 均是 y 的凸函数,它们的和也是 y 的凸函数。因此  $g(y)+h(x-y)+f_1(ay+b(x-y))$ 在区间 [0,x]上的最大值必定在其中一个端点处取得。即, $f_2(x)=\max\{g(x)+f_1(ax),h(x)+f_1(bx)\}$ 。由引理 5.3.2, $f_2(x)$ 是 x 的凸函数。

# 主要定理

- (假设步) 假设  $f_{k-1}(x) = \max\{g(x) + f_{k-2}(ax), h(x) + f_{k-2}(bx)\}$  ( $k \ge 3$ ),并且是凸函数。
- (归纳步) 下面证  $f_k(x) = \max\{g(x) + f_{k-1}(ax), h(x) + f_{k-1}(bx)\}$ , 并且是凸函数。
- •由定义, $f_k(x) = \max_{0 \le y \le x} \{g(y) + h(x-y) + f_{k-1}(ay+b(x-y))\}$ 。由于g(y)、h(x-y)、 $f_{k-1}(ay+b(x-y))$ 均是y的凸函数,因此 $g(y) + h(x-y) + f_{k-1}(ay+b(x-y))$ 在区间[0,x]上的最大值必在端点处取得。即, $f_k(x) = \max\{g(x) + f_{k-1}(ax), h(x) + f_{k-1}(bx)\}$ 。
- ●由于 $h(x)+f_{k-1}(bx)$ 、 $g(x)+f_{k-1}(ax)$ 是x的凸函数,由引理 5.3.2, $f_k(x)$ 也是x的凸函数。 ||

### 定理5.3.1的应用

● 当 g(x)、h(x)满足给定条件时,应用定理 5.3.1,对于离散变量的有限阶段资源分配问题,动态规划表的每个单元格的计算可由计算 x+1 个值

$$(f_k(x) = \max_{0 \le y \le x} \{g(x) + h(x - y) + f_{k-1}(ay + b(x - y))\})$$
 简化至只  
计算 2 个值 ( $f_k(x) = \max\{g(x) + f_{k-1}(ax), h(x) + f_{k-1}(bx)\}$ )。

● 当 *g*(*x*)、*h*(*x*)是给定的满足定理 5.3.1 的凸函数时,可利用函数本身的性质对计算做进一步简化。例如,对连续变量的有限阶段资源分配问题可给出解析解。

#### 例5.1.2: 连续变量的资源分配问题。

- 今有 1000 吨油 (x = 1000) , 投放到  $A \setminus B$  两个部门。
- 若给部门 A 投放 z 吨油,则产生效益  $g(z) = z^2$ ,回收 0.8z 吨油(a = 0.8)。
- 若给部门 B 投放 z 吨油,则产生效益  $h(z) = 2z^2$ ,回收 0.4z 吨油(b = 0.4)。
- 问连续投放 5 年 (n = 5) ,每年如何投放,可使 5 年的总收益最大?

- ●解:  $g(x)=x^2$ ,  $h(x)=2x^2$ , 显然 g(x)和 h(x)都是凸函数且 g(x)=h(x)=0, 满足定理 5.3.1 的条件。因此,
- $f_1(x) = \max\{g(x), h(x)\} = \max\{x^2, 2x^2\} = 2x^2$ ,  $\Rightarrow y_5 = 0$

• 
$$f_2(x) = \max\{g(x) + f_1(ax), h(x) + f_1(bx)\}\$$
  
=  $\max\{x^2 + (2a^2x^2), 2x^2 + (2b^2x^2)\}\$   
=  $\max\{(1 + 2a^2)x^2, (2 + 2b^2)x^2\}\$   
2.28 2.32  
=  $(2 + 2b^2)x^2$ ,  
 $\Rightarrow y_4 = 0$  •

• 
$$f_3(x) = \max\{g(x) + f_2(ax), h(x) + f_2(bx)\}\$$
  
=  $\max\{x^2 + (2 + 2b^2)a^2x^2, 2x^2 + (2 + 2b^2)b^2x^2\}$   
=  $\max\{(1 + 2a^2 + 2a^2b^2)x^2, (2 + 2b^2 + 2b^4)x^2\}$   
2.4848 2.3712  
=  $(1 + 2a^2 + 2a^2b^2)x^2$ ,  
 $\Rightarrow y_3 = x_3$ .  
•  $f_4(x) = \max\{g(x) + f_3(ax), h(x) + f_3(bx)\}$   
=  $\max\{x^2 + (1 + 2a^2 + 2a^2b^2)a^2x^2, \frac{1}{2x^2} + (1 + 2a^2 + 2a^2b^2)b^2x^2\}$ 

$$= \max \{ (1 + a^2 + 2a^4 + 2a^4b^2)x^2, (2 + b^2 + 2a^2b^2 + 2a^2b^4)x^2 \}$$

$$2.590272$$

$$= (1 + a^2 + 2a^4 + 2a^4b^2)x^2,$$

$$= (1 + a^2 + 2a^4 + 2a^4b^2)x^2,$$

$$\Rightarrow y_2 = x_2$$

$$f_5(x) = \max\{g(x) + f_4(ax), h(x) + f_4(bx)\}$$

$$= \max \begin{cases} x^2 + (1 + a^2 + 2a^4 + 2a^4b^2)a^2x^2, \\ 2x^2 + (1 + a^2 + 2a^4 + 2a^4b^2)b^2x^2 \end{cases}$$

$$= \max \begin{cases} (1 + a^2 + a^4 + 2a^6 + 2a^6b^2)x^2, \\ (2 + b^2 + a^2b^2 + 2a^4b^2 + 2a^4b^4)x^2 \end{cases}$$

(2.65777408, 2.41444352)

$$= (1 + a^2 + a^4 + 2a^6 + 2a^6b^2)x^2$$

$$\Rightarrow y_1 = x_1$$



- $i_1 = 1000^2 = 1000000$ ,  $i_2 = 800^2 = 640000$ ,  $i_3 = 640^2 = 409600$ ,  $i_4 = 2 \times 512^2 = 524288$ ,  $i_5 = 2 \times 204.8^2 = 83886.08$
- 总收益 = 2657774.08, 即  $f_5$ (1000)的值。

# 例5.3.2

例 5.3.2 多阶段有限资源分配问题中,  $g(x) = -2cx + x^2$  ,  $h(x) = -cx + x^2$  ,  $0 \le x \le c$  , 0 < a, b < 1且  $0 < b - a \le 1 - b$  。求  $f_k(x)$  。

- ●解: g(x)、h(x)都是凸函数,且 g(0) = h(0) = 0,满足定理 5.3.1 的条件。
- $f_1(x) = \max\{-2cx + x^2, -cx + x^2\} = -cx + x^2$  •
- $f_2(x) = \max\{g(x) + f_1(ax), h(x) + f_1(bx)\}\$ =  $\max\{-2cx + x^2 - cax + a^2x^2, -cx + x^2 - cbx + b^2x^2\}$ =  $\max\{-c(2+a)x + (1+a^2)x^2, -c(1+b)x + (1+b^2)x^2\}$ =  $-c(1+b)x + (1+b^2)x^2$ .

因为 $1+b^2 > 1+a^2$ ,及 $2+a \ge 1+b$  (即,需证 $b-a \le 1$ ,由已知可得)。

#### 例5.3.2

# 例5.3.2

• 归纳可知, $f_k(x) = -c(1+b+\cdots+b^{k-1})x + (1+b^2+\cdots+b^{2(k-1)})x^2$   $= -\frac{1-b^k}{1-b}cx + \frac{1-b^{2k}}{1-b^2}x^2$ •

(对一般项
$$f_k(x)$$
, 需证 $b-a \le \frac{1}{1+b+\cdots+b^{k-2}}$ , 而由已知确

实有
$$b-a \le 1-b < \frac{1}{1+b+\cdots+b^{k-2}}$$
)。』

