Inter-VLAN Routing via Router-on-a-Stick (VLAN 10 & 20)

Lab Report

Author: Vijaysingh Puwar

Date: 24 July 2025

Course / Project ID: CCNA Lab Series #06

I. SUMMARY

This mini-lab was designed as a focused practice exercise to **cement core VLAN and inter-VLAN-routing concepts** before tackling the larger *OfficeNet 3-Way Subnet* project. Using a single Catalyst 2960 switch, an ISR 4331 router, and two end hosts, we:

- **Created isolated Layer-2 domains** (VLAN 10 "USERS" and VLAN 20 "SERVERS") and mapped the corresponding switch access ports.
- **Established an 802.1Q trunk** between the switch and router, then configured sub-interfaces on the router (Gi0/0/0.10 and .20) to act as default gateways.
- Implemented and validated router-on-a-stick (ROAS) inter-VLAN routing, confirming full end-to-end connectivity with ICMP tests and show-command verification.

All objectives—segmentation, trunking, gateway assignment, routing, and successful cross-VLAN pings—were achieved without configuration errors. The resulting topology, command set, and troubleshooting notes now serve as a proven reference template for the forthcoming *OfficeNet 3-Way Subnet* project, where similar techniques will be expanded to support three departmental VLANs, additional switches, and more advanced features such as DHCP relay and ACL enforcement.

II. OBJECTIVES

1. Create VLAN Segmentation

o Define VLAN 10 ("USERS") and VLAN 20 ("SERVERS") on a Catalyst 2960 Layer-2 switch.

2. Assign and Secure Access Ports

 Map PC0 to VLAN 10 and PC1 to VLAN 20, ensuring each host remains in its intended broadcast domain.

3. Build an 802.1Q Trunk

○ Configure a single Gigabit trunk (Gi0/1 \leftrightarrow Gi0/0/0) to carry tagged traffic for VLANs 10 and 20 between the switch and router.

4. Implement Router-on-a-Stick Inter-VLAN Routing

Create sub-interfaces Gi0/0/0.10 and Gi0/0/0.20 on an ISR 4331, each with its respective IP gateway address, to enable Layer-3 routing between VLANs.

5. Apply an IP Addressing Scheme

• Allocate unique /24 subnets to each VLAN and set correct default gateways on all end devices.

6. Verify End-to-End Connectivity

 Use ping, show vlan, show interfaces trunk, and show ip route to confirm successful inter-VLAN communication and proper trunk operation.

7. Document Troubleshooting & Results

o Record any issues encountered (e.g., trunk mismatches, gateway errors) and the corrective actions taken, providing evidence of a stable, functioning network.

8. Summarize Key Learnings

• Highlight best practices for VLAN design, trunk configuration, and router-on-a-stick deployment relevant to CCNA-level networking.

III. LAB TOPOLOGY

The lab uses a **simple three-node star topology** that clearly illustrates the flow of traffic from one VLAN, through a Layer-2 switch, up a single 802.1Q trunk to a router performing inter-VLAN routing, and back down to a second VLAN.

A. Physical Layout

Node	Model	Interface(s) Used	Links
Router4	ISR 4331	Gi0/0/0 (physical), Gi0/0/0.10 & .20 (sub-interfaces)	→ Gi0/1 on Switch3 (trunk)
Switch3	Catalyst 2960-24TT	Gi0/1 (trunk to router),Fa0/1 (PC0),Fa0/2 (PC1)	Central aggregation

PC0	PC-PT	Fa0	→ Fa0/1 on Switch3
PC1	PC-PT	Fa0	→ Fa0/2 on Switch3

Refer to the diagram (red & blue ovals) for the visual mapping.

B. 2. Logical (VLAN) Layout

VLAN ID	Name	Associated Port(s)	Subnet / Gateway
10	USERS	Switch Fa0/1, PC0	192.168.10.0 /24 — 192.168.10.1
20	SERVERS	Switch Fa0/2, PC1	192.168.20.0 /24 — 192.168.20.1

The switch tags traffic from Fa0/1 with VLAN 10 (red) and from Fa0/2 with VLAN 20 (blue).

C. 3. Trunk & Routing Details

Link	Туре	VLANs Carried	Purpose
Switch Gi0/1 ↔ Router Gi0/0/0	802.1Q trunk	10, 20 (tagged)	Single "router-on-a-stick" uplink that transports both VLANs' traffic to the router for Layer-3 processing

The router's **sub-interfaces** perform the routing:

- Gi0/0/0.10 encapsulation dot1Q 10, IP 192.168.10.1 /24
- Gi0/0/0.20 encapsulation dot1Q 20, IP 192.168.20.1 /24

Each sub-interface acts as the default gateway for its VLAN.

D. 4. End-Device Addressing

Device	VLAN	IP Address	Default Gateway
PC0	10	192.168.10.10 /24	192.168.10.1
PC1	20	192.168.20.20 /24	192.168.20.1

E. 5. Traffic Flow Summary

- 1. **PC0 (VLAN 10)** → **Switch**: Frame enters Fa0/1 untagged; switch tags it with VLAN 10.
- 2. **Switch** → **Router**: Tagged frame travels across the trunk; router maps tag 10 to sub-interface Gi0/0/0.10.

- 3. **Router** → **Switch**: After routing, the return packet is tagged with VLAN 20 and sent back down the trunk.
- 4. **Switch** → **PC1**: Switch strips VLAN 20 tag, forwards the frame out Fa0/2 to PC1.

This demonstrates end-to-end connectivity between isolated Layer-2 domains using a single physical link and sub-interface routing—a core CCNA skill.

IV. IP ADDRESSING AND VLAN TABLE

VLAN ID	VLAN Name	Subnet (CIDR)	Default Gateway (Router	Switch Access	End Device(s) &
			Sub-If)	Port(s)	IPs
10	USERS	192.168.10.0 /24	192.168.10.1	Fa0/1	PC0 —
			(Gi0/0/0.10)		192.168.10.10
20	SERVERS	192.168.20.0 /24	192.168.20.1	Fa0/2	PC1 —
			(Gi0/0/0.20)		192.168.20.20

Notes

- Subnet mask for both networks is 255.255.255.0.
- The 802.1Q trunk between **Switch Gi0/1** and **Router Gi0/0/0** carries tagged traffic for VLANs 10 & 20.

V. STEP BY STEP CONFIGURATION

Ste p	Device / Mode	Command(s) – enter exactly as shown	Purpose / Expected Outcome
1	Switch3Global	vlan 10 name USERSvlan 20 name SERVERS	Create VLAN 10 and VLAN 20 in the switch's VLAN database.
2	Switch3Interface Fa0/1	interface Fa0/1switchport mode accessswitchport access vlan 10	Assign PCO's port to VLAN 10.
3	Switch3Interface Fa0/2	interface Fa0/2switchport mode accessswitchport access vlan 20	Assign PC1's port to VLAN 20.

5	Switch3Interface Gi0/1 Switch3Exec	interface Gi0/1switchport mode trunkswitchport trunk allowed vlan 10,20switchport nonegotiate show vlan briefshow interfaces trunk	Convert Gi0/1 to an 802.1Q trunk that carries VLANs 10 & 20.
3	SWILCHSEXEC	Show viait briefshow interfaces trunk	access-port assignment s and trunk status.
6	Router4Interface Gi0/0/0	interface Gig0/0/0description Trunk to Switch3no shutdown	Bring the physical trunk interface up (no IP address here).
7	Router4 <i>Sub-if Gi0</i> /0/0.10	interface Gig0/0/0.10encapsulation dot1Q 10ip address 192.168.10. 1 255.255.255.0	Map VLAN 10 traffic to sub-interfa ce and set its gateway IP.
8	Router4 <i>Sub-if Gi0</i> /0/0.20	interface Gig0/0/0.20encapsulation dot1Q 20ip address 192.168.20. 1 255.255.255.0	Same for VLAN 20.
9	Router4Exec	show ip interface briefshow ip route connected	Confirm both sub-interfa ces are up/up and routes exist.
10	PCO (VLAN 10)IP Confi g	IP: 192.168.10.10Mask: 255.255.255.0GW: 192.168.10.1	Set host address

			and default
			gateway.
11	PC1	IP: 192.168.20.20Mask: 255.255.255.0GW: 192.168.20.1	Set host
	(VLAN 20)IP Confi		address
	g		and default
			gateway.
12	Any	From PC0 : ping 192.168.20.20From PC1 : ping 192.168.10.10	ICMP
	Device Testing		replies
			confirm
			successful
			inter-VLAN
			routing via
			the
			router-on-a
			-stick
			setup.

VI. VERIFECATION

1. Confirm VLAN Creation on the Switch

o Command: show vlan brief

SW1#	show vlan brief		
VLAN	Name	Status	Ports
1	default	active	Fa0/3, Fa0/4, Fa0/5, Fa0/6 Fa0/7, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/18 Fa0/19, Fa0/20, Fa0/21, Fa0/22 Fa0/23, Fa0/24, Gig0/2
1003 1004	USER SERVERS fddi-default token-ring-default fddinet-default trnet-default	active active active active active active	Fa0/1 Fa0/2

- Expect to see:
 - VLAN 10 listed with port Fa0/1
 - VLAN 20 listed with port Fa0/2

2. Verify Trunk Status on Switch Gi0/1

o Command: show interfaces trunk

SW1#show Port	interfaces t Mode	runk Encapsulation	Status	Native vlan
Gig0/1	on	802.1q	trunking	1
Port Gig0/1	Vlans all 10,20	owed on trunk		
Port Gig0/1	Vlans all 10,20	owed and active in	management	domain
Port Gig0/1	Vlans in 10,20	spanning tree forw	arding state	and not pruned

Expect to see:

- Port Gi0/1 operating as trunk
- Allowed VLANs: 10, 20

3. Check Router Sub-Interface Status

o Command: show ip interface brief

R1#show ip interface	brief					
Interface	IP-Address	OK?	Method	Status		
Protocol						
GigabitEthernet0/0/0	unassigned	YES	unset	up		up
GigabitEthernet0/0/0.	10192.168.10.1	YES	manual	up		up
GigabitEthernet0/0/0.	20192.168.20.1	YES	manual	up		up
GigabitEthernet0/0/1	unassigned	YES	unset	administratively do	own	down
GigabitEthernet0/0/2	unassigned	YES	unset	administratively do	own	down
Vlan1	unassigned	YES	unset	administratively do	own	down
R1#						

- Expect to see both sub-interfaces up/up:
 - $Gi0/0/0.10 \rightarrow 192.168.10.1$
 - Gi0/0/0.20 → 192.168.20.1

4. Inspect Router's Connected Routes

o Command: show ip route connected

```
R1#show ip route connected
C 192.168.10.0/24 is directly connected, GigabitEthernet0/0/0.10
C 192.168.20.0/24 is directly connected, GigabitEthernet0/0/0.20
R1#
```

- Expect to see:
 - C 192.168.10.0/24 is directly connected, Gi0/0/0.10

- C 192.168.20.0/24 is directly connected, Gi0/0/0.20
- Insert Screenshot 4 here (routing table)

5. Ping Test — PC0 to Its Gateway

From PC0: ping 192.168.10.1

Expect: 4/4 replies, 0 % loss

```
C:\>ping 192.168.10.1
Pinging 192.168.10.1 with 32 bytes of data:

Reply from 192.168.10.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.10.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
C:\>
```

6. Ping Test — PC1 to Its Gateway

o From PC1: ping 192.168.20.1

Expect: 4/4 replies, 0 % loss

```
C:\>ping 192.168.20.1

Pinging 192.168.20.1 with 32 bytes of data:

Reply from 192.168.20.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.20.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
C:\>
```

7. Inter-VLAN Connectivity Test

From PC0: ping 192.168.20.20

```
C:\>ping 192.168.20.20
Pinging 192.168.20.20 with 32 bytes of data:

Reply from 192.168.20.20: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.20.20:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
C:\>
```

o From PC1: ping 192.168.10.10

```
C:\>ping 192.168.10.10
Pinging 192.168.10.10 with 32 bytes of data:

Reply from 192.168.10.10: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.10.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

Expect: Successful replies in both directions, proving router-on-a-stick routing works.

8. Packet Flow Illustration

○ Use Packet Tracer **Simulation Mode** to capture an ICMP Echo Request and Reply traversing VLAN $10 \rightarrow$ router \rightarrow VLAN 20.

Simulat	日 >		
vent L	ist		
Vis.	Time(sec)	Last Device	
	0.001	PC0	
	0.002	Switch3	
	0.003	Router4	
	0.004	Switch3	
	0.005	PC1	
	0.006	Switch3	
	0.007	Router4	
	0.008	Switch3	
	0.337		
	0.338	Switch3	
	0.338	Switch3	
	1.009		
(9)	1.010	PC0	'