Combinatorial Pure Exploration in Multi-Armed Bandits

Shouyuan Chen 1 Tian Lin 2 Irwin King 1 Michael R. Lyu 1 Wei Chen 3

 1 CUHK 2 Tsinghua University 3 Microsoft Research Asia

Single-armed bandit

Single-armed bandit

Single-armed bandit

sampled independently from an **unknown** distribution (reward distribution)

n arms

- **1.** each arm has an **unknown** reward distribution
- **2.** the reward distributions can be **different**.

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

a game on multiple rounds...

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

in the end...

goal: maximize the cumulative reward exploitation v.s. exploration

rules

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

n arms

in the end...

goal: maximize the cumulative reward exploitation v.s. exploration

rules for round t = 1, ..., T

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

rules for round t = 1, ..., T

- plays arm $i_t \in [n]$
- receives reward $X_{it} \sim \phi_i$

in the end...

- (1) forfeit all rewards
- **Š**⇒∭
- (2) output **1** arm

goal: find the single **best arm** (largest expected reward)

Pure Exploration of MAB

A/B testing, clinical trials, wireless network, crowdsourcing, ...

- n arms = n variants
- play arm i = a page view on the i-th variant
- reward = a click on the ads
- finding the best arm = finding the variant with the highest average ads clicks

Pure exploration: two settings

fixed budget

- play for T rounds.
- report the best arm after finished.
- **goal**: minimize the probability of error $Pr[out \neq i_*]$

fixed confidence

- play for any number of rounds.
- report the best arm after finished
- guarantee that probability of error $Pr[out \neq i_*] < \delta$.
- goal: minimize the number of rounds (sample complexity).

Combinatorial Pure Exploration of MAB

Combinatorial Pure Exploration (CPE)

- play one arm at each round
- find the optimal **set** of arms M_* satisfying certain constraint

$$M_* = \underset{M \in \mathcal{M}}{\operatorname{arg\,max}} \sum_{e \in M} w(e)$$

- ▶ [n]: set of arms
- $\mathcal{M} \subseteq 2^{[n]}$: decision class with a combinatorial constraint
- maximize the sum of expected rewards of arms in the set

Motivating Examples

matching

Goal:

- 1) estimate the productivities from tests.
- 2) find the optimal 1-1 assignment.

Motivating Examples

matching

Goal:

- 1) estimate the productivities from tests.
- 2) find the optimal 1-1 assignment.

spanning trees and paths

Goal:

- 1) estimate the delays from measurements
- 2) find the minimum spanning tree or shortest path.

Motivating Examples

matching

Goal:

- 1) estimate the productivities from tests.
- 2) find the optimal 1-1 assignment.

spanning trees and paths

Goal:

- 1) estimate the delays from measurements
- 2) find the minimum spanning tree or shortest path.

- size-k-sets
 - ▶ finding the top-*k* arms.

Existing Work

- find top-k arms [KS10,GGL12,KTPS12,BWV13,KK13,ZCL14]
- find top arms in disjoint groups of arms [GGLB11,GGL12,BWV13]
- separate treatments, no unified framework

- general framework
 - for a wide range of combinatorial constraints \mathcal{M} .

- general framework
 - for a wide range of combinatorial constraints \mathcal{M} .
- algorithms
 - two generic learning algorithms.

- general framework
 - for a wide range of combinatorial constraints \mathcal{M} .
- algorithms
 - two generic learning algorithms.
- upper bounds
 - sample complexity / probability of error.

- general framework
 - for a wide range of combinatorial constraints \mathcal{M} .
- algorithms
 - two generic learning algorithms.
- upper bounds
 - sample complexity / probability of error.
- lower bound
 - algorithms are optimal (within log factors) for many types of M (in particular, bases of a matroid).

- general framework
 - for a wide range of combinatorial constraints \mathcal{M} .
- algorithms
 - two generic learning algorithms.
- upper bounds
 - sample complexity / probability of error.
- lower bound
 - algorithms are optimal (within log factors) for many types of M (in particular, bases of a matroid).
- compared with existing work
 - ▶ the first lower bound for the top-*k* problem
 - the first upper and lower bounds for other combinatorial constraints.

input

- confidence: $\delta \in (0,1)$
- access to a maximization oracle: $Oracle(\cdot) : \mathbb{R}^n \to \mathcal{M}$
 - ▶ Oracle(v) = max_{$M \in \mathcal{M}$} $\sum_{i \in M} v(i)$ for weights $v \in \mathbb{R}^n$

output

• a set of arms: $M \in \mathcal{M}$.

all arms

maintain: for all i and t

notations

- for each arm $i \in [n]$ in each round t
 - empirical mean: $\bar{w}_t(i)$
 - confidence radius: $rad_t(i)$ (proportional to $1/\sqrt{n_t(i)}$)

CLUCB: Sample Complexity

Our sample complexity bound depends on two quantities.

- H: depends on expected rewards
- width(\mathcal{M}): depends on the structure of \mathcal{M}

CLUCB: Sample Complexity

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. correctly outputs the optimal set M_*
- 2. uses at most $O(\text{width}(\mathcal{M})^2 \mathbf{H} \log(n\mathbf{H}/\delta))$ rounds.

Our sample complexity bound depends on two quantities.

- H: depends on expected rewards
- width(\mathcal{M}): depends on the structure of \mathcal{M}

Results at a glance

Theorem (Upper bound)

With probability at least $1 - \delta$, CLUCB algorithm:

- 1. outputs the optimal set $M_* \triangleq \arg \max_{M \in \mathcal{M}} w(M)$.
- 2. uses at most $O(\text{width}(\mathcal{M})^2 \mathbf{H} \log(n\mathbf{H}/\delta))$ rounds.

Theorem (Lower bound)

Given any expected rewards, any δ -correct algorithm must use at least $\Omega(\mathbf{H}\log(1/\delta))$ rounds. (An algorithm \mathbb{A} is δ -correct algorithm, if \mathbb{A} 's probability of error is at most δ for any instances)

Example (Sample Complexities)

- k-sets, spanning trees, bases of a matroid: $O(\mathbf{H})$ optimal!
- matchings, paths (in DAG): $\tilde{O}(|V|^2H)$.
- in general: $\tilde{O}(n^2\mathbf{H})$

H and gaps

• Δ_e : gap of arm $e \in [n]$

$$\Delta_e = \begin{cases} w(\textit{M}_*) - \max_{\textit{M} \in \mathcal{M}: e \in \textit{M}} w(\textit{M}) & \text{if } e \not \in \textit{M}_*, \\ w(\textit{M}_*) - \max_{\textit{M} \in \mathcal{M}: e \not \in \textit{M}} w(\textit{M}) & \text{if } e \in \textit{M}_* \end{cases}$$

- stability of the optimality of M_* wrt. arm e.
- $\mathbf{H} = \sum_{e \in [n]} \Delta_e^{-2}$
 - ▶ for the top-K problem: recover the previous definition of H.

Width and exchange class

Intuitions

- ullet we need a unifying method of analyzing different ${\cal M}$
 - \blacktriangleright an exchange class is a "proxy" for the structure of \mathcal{M} .
- an exchange class \mathcal{B} is a collection of "patches" $((b_+, b_-), b_+, b_- \subseteq [n])$ that are used to interpolate between valid sets $(M \setminus b_- \cup b_+ = M', M, M' \in \mathcal{M})$.

Width and exchange class

definition

 $width(\mathcal{B})$: the size of the largest "patch"

$$\mathsf{width}(\mathcal{B}) = \max_{(b_+,b_-) \in \mathcal{B}} |b_+| + |b_-|.$$

 $width(\mathcal{M})$: the width of the "thinnest" exchange class

$$\mathsf{width}(\mathcal{M}) = \min_{\mathcal{B} \in \mathsf{Exchange}(\mathcal{M})} \mathsf{width}(\mathcal{B}),$$

The main technical contribution: Define exchange class and its algebra and conduct generic analysis using exchange classes.

Example (Widths)

- k-sets, spanning trees, bases of a matroid: width(\mathcal{M}) = 2.
- matchings, paths (in DAG): width(\mathcal{M}) = $O(|\mathcal{V}|)$.
- in general: width(\mathcal{M}) $\leq n$

input

- budget: T (play for at most T rounds)
- access to a maximization oracle

output

• a set of arms: $M \in \mathcal{M}$.

overview:

break the T rounds into n phases.

in each phase (n phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.

active: neither accepted nor rejected. require more samples

accepted: include in the output

rejected: exclude from the output

in each phase (n phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.
- active: neither accepted nor rejected. require more samples
- accepted: include in the output
 - rejected: exclude from the output

in each phase (n phases in total):

- 1 arm is accepted or rejected.
- active arms are sampled for a same number of times.
- active: neither accepted nor rejected. require more samples
- accepted: include in the output
 - rejected: exclude from the output

problem: which arm to accept or reject?

problem: which arm to accept or reject?

accept/reject the arm with the largest empirical gap.

$$\bar{\Delta}_e = \begin{cases} \bar{w}_t(\bar{M}_t) - \max\limits_{\substack{M \in \mathcal{M}_t : e \in M}} \bar{w}_t(M) & \text{if } e \not\in \bar{M}_t, \\ \bar{w}_t(\bar{M}_t) - \max\limits_{\substack{M \in \mathcal{M}_t : e \not\in M}} \bar{w}_t(M) & \text{if } e \in \bar{M}_t \end{cases}$$

- $M_t = \{M : M \in \mathcal{M}, A_t \subseteq M, B_t \cap M = \emptyset\}.$
- \triangleright A_t : accepted arms, B_t : rejected arms (up to phase t).
- ightharpoonup -> $\bar{\Delta}_e$ can be computed using a maximization oracle.
- -> recall the (unknown) **gap** of arm *e*:

$$\Delta_e = \begin{cases} w(\textit{M}_*) - \max_{\textit{M} \in \mathcal{M}: e \in \textit{M}} w(\textit{M}) & \text{if } e \not \in \textit{M}_*, \\ w(\textit{M}_*) - \max_{\textit{M} \in \mathcal{M}: e \not \in \textit{M}} w(\textit{M}) & \text{if } e \in \textit{M}_* \end{cases}$$

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_* with probability at least

$$1 - 2^{\tilde{O}\left(-\frac{T}{\mathsf{width}(\mathcal{M})^2\mathbf{H}}\right)}$$

and uses at most T rounds.

CSAR: Probability of error

Theorem (Probability of error of CSAR)

Given any budget T > n, CSAR correctly outputs the optimal set M_* with probability at least

$$1 - 2^{\tilde{O}\left(-\frac{T}{\mathsf{width}(\mathcal{M})^2\mathbf{H}}\right)}$$

and uses at most T rounds.

Remark: To guarantee a constant probability of error of δ , both CSAR and CLUCB need $T = \tilde{O}(\text{width}(\mathcal{M})^2\mathbf{H})$ rounds.

Summary

- Combinatorial pure exploration: a general framework that covers many pure exploration problems in MAB.
 - ightharpoonup find top-k arms, optimal spanning trees, matchings or paths.
- Two general algorithms (CLUCB, CSAR) for the problem
 - only need a maximization oracle for \mathcal{M} .
 - comparable performance guarantees.
- Our algorithm is optimal (up to log factors) for matroids.
 - ▶ including *k*-sets and spanning trees.
- Trilogy on stochastic and combinatorial online learning: together with our recent work on combinatorial multi-armed bandit [CWY,ICML'13] and combinatorial partial monitoring [LAKLC, ICML'14], all dealing with general combinatorial constraints

Future work

- Tighten the bounds for matching, paths and other combinatorial constraints
- Support approximation oracles
- Support non-linear reward functions

Exchange class: Formal definition

Exchange set

An **exchange set** b is an ordered pair of disjoint sets $b=(b_+,b_-)$ where $b_+\cap b_-=\emptyset$ and $b_+,b_-\subseteq [n]$.

Let M be any set. We also define two operators:

- $M \oplus b \triangleq M \backslash b_- \cup b_+$.
- $M \ominus b \triangleq M \backslash b_+ \cup b_-$.

Exchange class

We call a collection of exchange sets \mathcal{B} an **exchange class for** \mathcal{M} if \mathcal{B} satisfies the following property. For any $M, M' \in \mathcal{M}$ such that $M \neq M'$ and for any $e \in (M \setminus M')$, there exists an exchange set $(b_+, b_-) \in \mathcal{B}$ which satisfies five constraints: (a) $e \in b_-$, (b) $b_+ \subseteq M' \setminus M$, (c) $b_- \subseteq M \setminus M'$, (d) $(M \oplus b) \in \mathcal{M}$ and (e) $(M' \ominus b) \in \mathcal{M}$.

Experiments of CPE

Width and exchange class

definition Let $\mathcal B$ be an exchange class.

$$\mathsf{width}(\mathcal{B}) = \max_{(b_+,b_-) \in \mathcal{B}} |b_+| + |b_-|.$$

Let Exchange (\mathcal{M}) denote the family of all possible exchange classes for \mathcal{M} . We define the width of \mathcal{M} to be the width of the thinnest exchange class

$$\mathsf{width}(\mathcal{M}) = \min_{\mathcal{B} \in \mathsf{Exchange}(\mathcal{M})} \mathsf{width}(\mathcal{B}),$$

where $\mathsf{Exchange}(\mathcal{M})$ is the family of all possible exchange classes for \mathcal{M} .