# Final Review PLT-4115

#### Q1. Consider the basic block:

```
y := 3
x := y
```

$$z := 4 * x$$

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.

- For this example, what is the best order in which to apply the three optimizations, if each can be applied only once?

Ans: copy propagation, constant propagation, constant folding correct

#### Q2. Consider the basic block:

```
y := 3
x := y
```

z := 4 \* x

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.

- For this example, What is the worst possible order (i.e., requires the most passes) for the basic block?

Ans: constant folding, constant propagation, copy propagation

## Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. W := W + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7. q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12. q := y + w

- a. Draw the CFG where each node is a BB.
- b. Which variables are live immediately before the execution of statement 7? Assume only variable q is live after the statement in line 12.

Ans: y,z,w

## Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

- c. Assume the constant propagation algorithm has completed. Which of the following statements is true?
- L\_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L variable v is some constant
- $C(L,v,in) = \top$  means v is not a constant.

| C(L7, | W, | in)  | = | Т |
|-------|----|------|---|---|
| C(L2, | у, | out) | = | С |
| C(L5, | Χ, | out) | = | С |
| C(L4, | у, | in)  | = | Т |
| C(L8, | z, | out) | = | С |

## Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

- c. Assume the constant propagation algorithm has completed. Which of the following statements is true?
- L\_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L
   variable v is some constant
- $C(L,v,in) = \top$  means v is not a constant.

| C(L7, | W, | in)  | = | Т |
|-------|----|------|---|---|
| C(L2, | у, | out) | = | С |
| C(L5, | Χ, | out) | = | С |
| C(L4, | у, | in)  | = | Τ |
| C(L8, | z, | out) | = | С |

# Q4. Consider the following intermediate code:

1. 
$$x := 5$$
,  $z := 2$ ,  $y := 3$ 

2. if 
$$y > 1$$
 goto Label3

- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7. q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

a. Which lines (using the numbering given above) are now unreachable?

# Q5. Optimize the following intermediate code:

```
1: z := 3
2: if b > 0 goto Label1
3: x := 1
4: y := 2
5: z := x + y
6: goto Label2
7: Label1:
8: w := x + 1
9: y := x + 1
10: Label2:
11: a := x + y
12: b := a * z
```

#### Q6. Consider the following CFG



#### Q6. Consider the following CFG



#### Q6. Consider the following CFG

15: return

