

Convex Hull

Uma abordagem interativa ao problema de fecho convexo

Base

Seja o polígono convexo **C** e o ponto **P**, temos que, para **P** estar dentro de **C** é necessário que **P** esteja no mesmo lado em relação a todas as arestas de **C**.

Base

Mas caso **P** esteja fora, então teremos que **P** estará no lado errado de ao menos uma de arestas de **C**.

Base

Então para manter C+P convexo basta ligar as extremidades das arestas válidas de C com P, gerando assim um novo fecho convexo que mantém a propriedade convexa

com P.

Pseudocódigo

```
Fecho Convexo(pontos)
  fecho = Simplex(pontos);
  para cada ponto P restante:
     para cada aresta A de fecho:
        Se P está à direita de A:
          Remove A do fecho();
     Liga extremos do fecho com(P);
  retorna fecho;
```


Começamos gerando o simplex

Depois vamos para o próximo ponto e verificamos a orientação dele em relação as arestas, no caso p4 está do lado Errado de uma das arestas.

Então deletamos essa aresta e conectamos as extremidades do polígono anterior ao ponto p4

Agora vamos para o
ponto p5 e percebemos
que ele está do mesmo
lado para todas as
arestas, logo p5 está
dentro do fecho e ele
não precisa ser
mudado

Similar acontece com p6,

p7 e p8

Ligamos então p9 as extremidades e obtemos o fecho, pois ao analisar p10 e p11 vemos que eles não retiram nenhuma aresta do fecho.

Para ND

Começamos com o simplex dessa dimensão e vamos verificando em qual subespaço dos hiperplanos o ponto **P** se encontra, caso seja em um subespaço diferente dos demais o hiperplano é removido do fecho e um novo é gerado considerando o ponto **P**.

Complexidade

Verificamos os **N** pontos para ver se estão dentro ou fora das **M** arestas do fecho, logo a complexidade é **N*M** ou **N²** no pior caso onde todos os pontos estão no fecho e **M=N**.

Otimizações

Otimização Inteligente:

Utilizar estruturas de busca dimensionais para não precisar comparar **P** com as **M** arestas, como por exemplo gerando uma arvore de busca baseada em coordenadas polares, tornando assim o algoritmo n*log(m).

Otimizações

Otimização força bruta (GPU):

Transforma o ponto em uma câmera, uso a GPU pra rasterizar o fecho (sendo que ela é otimizada para isso) com o fecho encontro as bordas das faces visíveis, as faces visíveis serão deletadas e as bordas serão ligadas ao ponto **P** para gerar o novo fecho.

Questões?

Obrigado!

