ITM426, Quiz 3, 2023 Fall

Solution and Grading

 $\bullet\,$ ITM 426 Engineering Mathematics 23F

 \bullet Justification is necessary unless stated otherwise.

out proper sanity check and 2) correct your mistake by doing so.

• Nov 27, 2023
• Duration: 90 minutes
\bullet Weights: 25% or 30% depending on other quiz scores
• 5 Questions
• Name:
• Student ID:
• E-mail:@seoultech.ac.kr
• Write legibly.

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

1	20
2	10
3	10
4	10
5	10
Total	60

#1. Mark True or False. No justification is necessary. [Each 5pt]

- If $H = Span\{\mathbf{b}_1, ..., \mathbf{b}_p\}$, then $\{\mathbf{b}_1, ..., \mathbf{b}_p\}$ is a basis for H. (TRUE / FALSE)
- In some cases, the linear dependence relations among the columns of a matrix can be affected by certain elementary row operations on the matrix. (TRUE / FALSE)
- A single vector itself is linearly dependent. (TRUE / FALSE)

 ${\bf Difficulty} \colon \operatorname{Hard}$

Amount of work: 20 % Suggested answer:

- False. The set must be independent.
- False. Elementary row operations do not affect the linear dependence relations.
- \bullet False. The n eigenvectors must be linearly independent.
- False. The zero vector itself is linearly dependent.

#2. Prove the following statement or disprove it by a counterexample. [10pt]

A $n \times n$ matrix A is both diagonalizable and invertible, then so is A^{-1} .

Difficulty: Medium Amount of work: 20% Suggested answer:

If A is diagonalizable, then $A = PDP^{-1}$ for some invertible P and diagonal matrix D. Since A is invertible, 0 is not an eigenvalue of A. So the diagonal entries in D (which are eigenvalues of A) are not zero, and D is invertible. By the theorem on the inverse of a product, $A = (PDP^{-1})^{-1} = (P^{-1})^{-1}D^{-1}P^{-1}$. Since D^{-1} is obviously diagonal, A^{-1} is diagonalizable.

#3. Find a nonzero 2×2 matrix that is diagonalizable but not invertible.[10pt]

Difficulty: Medium-Hard Amount of work: 20% Suggested answer:

Any 2×2 matrix with two distinct eigenvalues is diagonalizable, by Theorem 6. If one of those eigenvalues is zero, then the matrix will not be invertible. Any matrix of the form $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ has the desired properties when a and b are nonzero. The number a must be nonzero to make the matrix diagonalizable; b must be nonzero to make the matrix not diagonal. Other solutions are $\begin{bmatrix} 0 & 0 \\ a & b \end{bmatrix}$ and $\begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix}$.

#4. Assume that A is row equivalent to B. Find bases for $Nul\ A$ and $Col\ A$. [Each 5pts]

$$A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 6 & 5 \\ 0 & 2 & 5 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Difficulty: Easy

Amount of work: 20% Suggested answer:

Since B is a row echelon form of A, we see that the first and second columns of A are its pivot

columns. Thus a basis for Col
$$A$$
 is $\left\{ \begin{bmatrix} -2\\2\\-3 \end{bmatrix}, \begin{bmatrix} 4\\-6\\8 \end{bmatrix} \right\}$.

To find a basis for Nul A, we find the general solution of $A\mathbf{x} = \mathbf{0}$ in terms of the free variables: $x_1 = -6x_3 - 5x_4$, $x_2 = (-5/2)x_3 - (3/2)x_4$, with x_3 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -6 \\ -5/2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ -3/2 \\ 0 \\ 1 \end{bmatrix}, \text{ and a basis for Nul } A \text{ is } \left\{ \begin{bmatrix} -6 \\ -5/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ -3/2 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

#5. Find the determinants of the following matrices.[10pts]

$$\left[\begin{array}{ccccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]$$

Difficulty: Easy

Amount of work: 20% Suggested answer: -10

(blank)

	Write your name before	re detaching this page.	Your Name:	
--	------------------------	-------------------------	------------	--