MATH 8301 Homework IX

David DeMark

19 November 2017

1.)

We let X be a path-connected topological space with $x_0 \in N \subset X$ where N is contractible, $f: X \to X$ a continuous map fixing x_0 , and M_f its mapping torus with basepoint m_0 the image of $(x_0, 1/2)$ in M_f .

a.)

Proposition. M_f is path-connected.

Proof. We note that as X and I are path-connected, $X \times I$ is path-connected as the product of paths is itself a path. Thus, M_f is path-connected, as the quotient of a path is also itself a path.

b.)

Proposition. We let U be the image of $X \times (0,1)$. Then, $\pi_1(U,m_0) = \pi_1(X,x_0)$.

Proof. We note that each point in U is in a singleton equivalence class in the quotient defining M_f . Thus, $U \cong X \times (0,1)$, so $\pi_1(U,m_0) = \pi_1(X,x_0) \times \pi_1((0,1),1/2) = \pi_1(X,x_0)$.

c.)

Proposition. We let $V = X \times ([0, 1/3) \cup (2/3, 1]) \cup N \times I$. Then, $\pi_1(V, m_0) = \pi_1(X, x_0) \star \mathbb{Z}$.

Proof. We let W be a contractible neighborhood around X_0 such that $f(W) \subset N$ and f(W) is contractible. We let $A = X \times ([0,1/3) \cup (2/3,1])$, and let $B = (f(W) \times [0,1/3)) \cup (W \times (2/3,1]) \cup N \times (1/5,4/5)$. We let m'_0 be the image of $(x_0,1)$. Then, B deformation-retracts to S_1 by applying the appropriate contraction-retraction to each cross-section, so $\pi_1(B,m'_0) \cong \mathbb{Z}$, and A deformation retracts to $X \times 0$, which we show by constructing a map $H: A \times I \to A$ defined by

$$H((x,t),s) := \begin{cases} (x,(1-s)t) & 0 < t < 1/3\\ (x,(1-s)t+s) & 2/3 < t < 1\\ (x,t) & t = 0 \end{cases}$$

Thus, $\pi_1(A, m_0') \cong \pi_1(X, x_0)$. Finally, as $A \cap B$ deformation-retracts to $S_1 \setminus \{e^{i\theta} : 1/3 \le \theta \le 2/3\}$, we have that $\pi_1(A \cap B, m_0')$ is trivial. Thus Siefert-von Kampen yields the statement of the proposition.

d.)

Proposition. $\pi_1(U \cap V, m_0) \cong G \star \tilde{G}$ where $G \cong \pi_1(X, m_0) \cong \tilde{G}$.

Proof. We let $A' = (X \times (2/3,1)) \cup N \times (1/3,4/5)$ and $B' = (X \times (0,1/3)) \cup N \times (1/5,2/3)$. Then, by contracting (1/3,1) to $\{4/5\}$ in the second coordinate, we see that A' deformation-retracts to a space homeomorphic to X, as does B' by a symmetric argument. Finally, $A' \cup B'$ is simply $N \times (1/3,2/3)$, which is contractible, proving the proposition by an application of SvK.

e.)

Proposition. $H := \pi_1(M_f, m_0) = (G \star \mathbb{Z})/\langle tf_*(\gamma)t^{-1}f_*(\gamma^{-1}) : \gamma \in G \rangle$.

Proof. We have from Siefert-von Kampen that $H = (G \star \mathbb{Z} \star \hat{G})/M$ where \hat{G} is again a distinct isomorphic copy of G and M is some normal subgroup. We let ι_U and ι_V be the inclusions of $U \cap V$ to their indices. We claim that $(\iota_U)_*$ is simply the "forgetful" map, which evaluates elements of $G \star \tilde{G}$ by identifying G and \tilde{G} . This can be seen by composing the inclusion ι_U with the deformation retract we used to compute $\pi_1(U, m_0)$. We claim as well that

 $(\iota_V)_*$ acts by mapping $\gamma \mapsto \gamma$ for $\gamma \in G$ and $\tilde{\gamma} \mapsto t^{-1}f_*(\gamma)t$. To see this, we note that if $\tilde{\gamma} \in \tilde{G}$ (corresponding to $X \times (2/3, 1]$), we may "push γ though" $X \times [0]$ so that after the homotopy, γ is a path α from m_0 "the long way" to $(x_0, 1/4)$ concatenated with $f_*(\gamma)$ lying in $X \times \{1/4\}$, then concatenated with α^{-1} . We let β be a path from $(x_0, 1/4)$ to m_0 "the short way" and "stretch" the image of the path we've constructed to $\alpha^{-1}\beta^{-1}f_*(\gamma)\beta\alpha$. Noting $\beta\alpha = t \in \mathbb{Z}$ shows our claim. Then, quotienting by $(\iota_U)_*(\iota_V)_*^{-1}$ identifies G and \hat{G} and induces the relation of the statement of the proposition.

f.)

Proposition 1.1. $\mathbb{Z} \ltimes G \cong \mathbb{Z} \star G / \langle tgt^{-1}\phi(g^{-1}) \rangle$

Proof. We note that $\mathbb{Z} \ltimes G$ is clearly a quotient of the free product $\mathbb{Z} \star G$ as it is generated by the same set $G \sqcup \mathbb{Z}$, identifying \mathbb{Z} with $(\mathbb{Z}, [1])$ and identifying G with (0, G). As all commutation relations between elements of G or between elements of \mathbb{Z} are predetermined respectively by the group structure, what is left is to determine commutation relations between elements of G and \mathbb{Z} . From the definition of $\mathbb{Z} \ltimes G$, we have that $gt = (0, g)(t, [1]) = (t, \phi(g)) = (t, [1])(0, \phi(g)) = t\phi(g)$. Thus, $t^{-1}gt = \phi(g)$.

g.)

Proposition. We suppose f is a homotopy equivalence. Then, $\pi_1(M_f, m_0) \cong \mathbb{Z} \ltimes G$

Proof. Follows immediately from the presentation of $\pi_1(M_f, m_0)$ given above as well as the observation that if f is a homotopy equivalence, then f_* is an automorphism.

2.)

Proposition. Any map $f: \mathbb{R}P^2 \to S^1$ is nullhomotopic.

Proof. We note that $\pi_1(\mathbb{R}P^2, x_0) \cong \mathbb{Z}/2$, which is a torsion group and hence has no non-zero quotient isomorphic to a subgroup of $\mathbb{Z} \cong \pi_1(S_1, 0)$. Thus, f_* is the zero map for any such map. Hence, by the lifting criterion, there exists a lift $\tilde{f}: \mathbb{R}P^2 \to \mathbb{R}$. However, moreso than simply connected, \mathbb{R} is contractible. We let \tilde{H} be that contraction and let $H: \mathbb{R}P^2 \times I \to S^1$ be given by $H:=p \circ \tilde{H} \circ \tilde{f}$. Then, H is a nullhomotopy of $f=p \circ \tilde{f}$.