Matplotlib & Seaborn - 2

🎯 Session Objectives:

- Understand what data visualization is and why it matters
- Use Matplotlib to plot different types of charts
- Customize plots with markers, colors, linewidth, and line styles
- 🗹 Integrate Matplotlib with NumPy and Pandas
- Understand why Seaborn is important in visualization
- Recognize common Seaborn plot types

```
Q1-1.5IQR Q1 median Q3 Q3+1.5IQR

|-----:---|

o |------| : |------| o o

|-----:----|

flier <------> fliers

IQR
```

```
# Histogram
data = [2,3,4,4,3,2,3,4,5,6,7,8,7,8,9,9,9,1,2,3,4,5,6,7,8,9,8,7,6,5,4,4,3,3,2,2,1]
plt.hist(data, bins = 9, color = '#A321C9')
plt.title("Histogram Example")
plt.xlabel('Value Range')
plt.ylabel('Frequency')
plt.show()
```



```
# Study Hours Vs Exam Scores
import matplotlib.pyplot as plt
hours = [1,2,3,4,5,6,7,8,9]
scores = [45,50,60,65,70,75,80,90,95]
plt.figure(figsize = (10,7)) # (width * height) inches

# Line + Scatter
plt.plot(hours , scores , color = 'red' , linestyle = '--' , linewidth = 2 , label = 'Trend Line')
plt.scatter(hours , scores , color = 'blue' , marker = '*' , label = 'Data Points')

# Add a Data Label
for x,y in zip(hours,scores):
    plt.text(x , y + 2 , f"{x,y}" , ha = 'center' , fontsize = 10 , color = 'black' , backgroundcolor = 'orange
plt.title('Correlations of Scores And Study Hours' , color = 'red')
plt.xlabel('Hours Studied')
plt.ylabel('Exam Scored')
plt.legend()
plt.ylim(40,110)
plt.show()
```



```
# Using Numpy array
# Study Hours Vs Exam Scores
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5,6,7,8,9])
y = x ** 3
plt.figure(figsize = (10,7)).patch.set_facecolor('#C9CAC9') # (width * height) inches
# Line
plt.plot(x, y, color = 'blue' , linestyle = '--' , linewidth = 2 , label = 'Data Label')
# Add a Data Label
for x,y in zip(x,y):
                 plt.text(x , y + 2 , f"{x,y}" , ha = 'right' , fontsize = 10 , color = 'black' , backgroundcolor = 'orange' | f"{x,y}" 
plt.title('Ploting using Numpy' , color = 'red')
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
plt.grid(axis='y')
plt.legend()
plt.show()
```



```
# Customers Distribution ['gender']
                                                                                       ♥ □ □ ↑ ↓ 占 〒
gender_counts = Customers['gender'].value_counts()
gender_counts
gender
Male
          528
Female
          472
Name: count, dtype: int64
plt.figure(figsize = (5,5)).patch.set_facecolor('#C9CAC9')
plt.pie(gender_counts , labels = gender_counts.index , colors = ['#4556B8' , '#DC43C2'], autopct='%1.1f%')
plt.title('Gender Distribution' , color = 'red')
plt.show()
           Gender Distribution
               Male
```

```
Male

52.8%

47.2%

Female

# Top 10 States [Bar Chart]
```

```
top_states = Customers['state'].value_counts().nlargest(10)
top_states
state
Texas
                        118
California
                         108
Florida
                         85
New York
                         48
Ohio
                         45
Pennsylvania
                         36
District of Columbia
                         35
                         29
Georgia
Tennessee
                         27
Virginia
                         27
Name: count, dtype: int64
top_states = Customers['state'].value_counts().head(10)
top_states
state
                        118
Texas
California
                         108
Florida
                         85
New York
                         48
Ohio
                         45
Pennsylvania
                         36
District of Columbia
                         35
                         29
Georgia
Tennessee
                         27
Virginia
                         27
Name: count, dtype: int64
```


Trend Axis [Monthly Customers Spending]
monthly_spending = Purchases.groupby('month')['amount'].sum().reset_index()
monthly_spending

	month	amount
0	1	2643
1	2	1713
2	3	16752
3	4	14268
4	5	10537
5	6	5457
6	7	2063
7	8	2291
8	9	1962
9	10	1695
10	11	2044
11	12	2032


```
# Average Product Cost by Company
avg prod by comp = Products.groupby('company')['cost'].mean().nlargest(7)
avg_prod_by_comp
company
Skyble
            99.540
Dynabox
            99.400
Eimbee
            98.740
            95.680
Linkbuzz
Livepath
            94.105
Muxo
            92.330
            87.510
Wordware
Name: cost, dtype: float64
```

```
# Average Product Cost By Company
plt.figure(figsize = (11,7)).patch.set_facecolor('#C9CAC9')
colors = ["#FF5733", "#28A745", "#FIC40F", "#8E44AD", "#FFC0CB", "#FF00FF", "#A52A2A"]
company_bar = plt.bar(avg_prod_by_comp.index , avg_prod_by_comp.values , color = colors)
plt.title('Average Product Cost By Company')
plt.xlabel('Company Name')
plt.ylabel('Average Cost')
# plt.xticks(rotation = 'vertical')
plt.xticks(rotation=45)
plt.bar_label(company_bar)
# Save the figure
plt.savefig('avg_cost_by_company.png')
plt.show()
```



```
# Box-Whisker Plot [Univariate Analysis] -> Outlier Detection -> [IQR]
Purchases['paid']
0
        568.92
1
        395.36
2
        510.17
3
         68.49
        759.42
5995
        411.10
5996
        178.97
5997
        205.47
        429.40
5998
5999
        274.52
Name: paid, Length: 6000, dtype: float64
```


df											
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex				
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male				
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female				
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female				
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN				
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female				
339	Gentoo	Biscoe	NaN	NaN	NaN	NaN	NaN				
340	Gentoo	Biscoe	46.8	14.3	215.0	4850.0	Female				
341	Gentoo	Biscoe	50.4	15.7	222.0	5750.0	Male				
342	Gentoo	Biscoe	45.2	14.8	212.0	5200.0	Female				
343	Gentoo	Biscoe	49.9	16.1	213.0	5400.0	Male				
344 rows × 7 columns											

```
import seaborn as sns
sns.get dataset names()
['anagrams',
 'anscombe',
 'attention',
 'brain_networks',
 'car crashes',
 'diamonds',
 'dots',
 'dowjones',
 'exercise',
 'flights',
 'fmri',
 'geyser',
 'glue',
 'healthexp',
 'iris',
 'mpg',
 'penguins',
 'planets',
 'seaice',
 'taxis',
 'tips',
 'titanic']
```

```
sns.axes_style()
{'axes.facecolor': 'white',
  'axes.edgecolor': '.15',
  'axes.grid': False,
  'axes.axisbelow': True,
  'axes.labelcolor': '.15'
 'figure.facecolor': 'white',
 'grid.color': '.8',
'grid.linestyle': '-',
 'text.color': '.15',
'xtick.color': '.15',
  'ytick.color': '.15',
  'xtick.direction': 'out',
  'ytick.direction': 'out',
 'lines.solid_capstyle': <CapStyle.round: 'round'>,
  'patch.edgecolor': 'w',
  'patch.force_edgecolor': True,
  'image.cmap': 'rocket',
 'font.family': ['sans-serif'],
'font.sans-serif': ['Arial',
  'DejaVu Sans',
  'Liberation Sans',
  'Bitstream Vera Sans',
  'sans-serif'],
  'xtick.bottom': True,
  'xtick.top': False,
  'ytick.left': True,
  'ytick.right': False,
  'axes.spines.left': True,
  'axes.spines.bottom': True,
  'axes.spines.right': True,
  'axes.spines.top': True}
```

```
plt.style.available
['Solarize_Light2',
  '_classic_test_patch',
  '_mpl-gallery',
  '_mpl-gallery-nogrid',
 'bmh',
'classic',
'dark_background',
  'fast',
  'fivethirtyeight',
  'ggplot',
  'grayscale',
 'seaborn-v0_8',
'seaborn-v0_8-bright',
  'seaborn-v0_8-colorblind',
  'seaborn-v0_8-dark',
  'seaborn-v0_8-dark-palette',
'seaborn-v0_8-darkgrid',
 'seaborn-v0_8-deep',
'seaborn-v0_8-muted',
  'seaborn-v0_8-notebook',
  'seaborn-v0_8-paper',
'seaborn-v0_8-pastel',
  'seaborn-v0_8-poster',
 'seaborn-v0_8-talk',
'seaborn-v0_8-ticks',
  'seaborn-v0_8-white',
'seaborn-v0_8-whitegrid',
  'tableau-colorblind10']
themes = ['darkgrid' , 'whitegrid' , 'dark' , 'white' , 'ticks']
```

tips = sns.load_dataset("tips")
tips

	total_bill	tip	sex	smoker	day	time	size		
0	16.99	1.01	Female	No	Sun	Dinner	2		
1	10.34	1.66	Male	No	Sun	Dinner	3		
2	21.01	3.50	Male	No	Sun	Dinner	3		
3	23.68	3.31	Male	No	Sun	Dinner	2		
4	24.59	3.61	Female	No	Sun	Dinner	4		
239	29.03	5.92	Male	No	Sat	Dinner	3		
240	27.18	2.00	Female	Yes	Sat	Dinner	2		
241	22.67	2.00	Male	Yes	Sat	Dinner	2		
242	17.82	1.75	Male	No	Sat	Dinner	2		
243	18.78	3.00	Female	No	Thur	Dinner	2		
244 rows × 7 columns									

