18.S997 (FALL 2017) PROBLEM SET 3

- 1. Fix 0 . Let G be a graph on n vertices with average degree at least pn. Prove:
 - (a) The number of labeled 6-cycles in G is at least $(p^6 o(1))n^6$.

 - (b) The number of labeled copies of K_{3,3} in G is at least (p⁹ o(1))n⁶.
 (c) The number of labeled copies of Q₃ = in G is at least (p¹² o(1))n⁸.
 (d) (Bonus) The number of labeled paths on 4 vertices in G is at least (p³ o(1))n⁴.
- 2. Deduce from the quasirandom Cayley graphs theorem the following corollary for vertex transitive graphs: If an n-vertex d-regular vertex-transitive graph G satisfies

$$\left| e(X,Y) - \frac{d}{n}|X||Y| \right| \le \epsilon dn$$
 for all $X, Y \subseteq V(G)$,

then all the eigenvalues of the adjacency matrix of G, other than the largest one, are at most $8\epsilon dn$ in absolute value.

3. Define $W: [0,1]^2 \to \mathbb{R}$ by $W(x,y) = 2\cos(2\pi(x-y))$. Let G be a graph. Show that t(G,W)is the number of ways to orient all edges of G so that every vertex has the same number of incoming edges as outgoing edges.

... to be continued ... check back later (last updated: October 19, 2017)