13

Sphère et boule

Carte de France corrigée en 1693

Grâce à de meilleures mesures et à une meilleure représentation de la sphère terrestre, la carte de France établie par la famille **Cassini** au xville siècle corrigeait une **erreur notoire**: la France était quelque **deux cents kilomètres** plus à l'Ouest sur le globe terrestre qu'on ne le croyait à l'époque.

Capitaine, ya des moutons ce matin...

Archimède (287-212 av J.-C.), ingénieur et mathématicien, a démontré de nombreuses

formules sur les volumes dont la plus célèbre est celle liant les volumes d'un **Gulindre** et d'une **Sphère** inscrite dans le cylindre: «le volume du cylindre circonscrit à la sphère vaut une fois et demie le volume de la sphère.»

Les navigateurs avaient besoin de cartes précises pour arriver à bon port... Il leur était facile de déterminer la latitude (sur un parallèle) en visant l'étoile polaire et en mesurant l'angle par rapport à la verticale du point. En revanche, la longitude (sur un méridien) était autrement plus délicat à déterminer: l'écrivain Voltaire, en 1734, parle de « l'impossible problème des longitudes ». Pour la déterminer, des chronomètres de précision furent mis au point en Angleterre vers 1750 après de multiples naufrages.

Pour bien commencer

QCM Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		BACT TO		
		Α	В	C
1	Si A appartient au cercle de centre O et de rayon 3 cm, alors :	OA = 6 cm	OA = 3 cm	OA = 1,5 cm
2	Si M appartient au disque de centre O et de rayon 5 cm, alors :	OM ≤ 5 cm	OM = 5 cm	OM > 5 cm
3	Si [AB] est un diamètre d'un cercle de centre O, alors :	OA = AB	OAB est un triangle rectangle en O	O est le milieu de [AB]
4	La longueur d'un cercle de rayon 10 cm est égale à :	20π cm	100π cm	10π cm
5	L'aire d'un disque de rayon 8 cm est égale à :	16π cm²	$8\pi~\text{cm}^2$	64π cm²
6	$78,5 \text{ cm}^3 =$	785 mm ³	7,85 mm ³	78 500 mm ³
7	1L =	1 dm³	1 m ³	1 cm ³
8	Si MNP est un triangle rectangle en N, alors :	$MN^2 = MP^2 + PN^2$	$MP^2 = MN^2 + PN^2$	$PN^2 = MN^2 + PM^2$
9	La distance du point A à la droite d est :	la longueur AM	la longueur AH	la longueur HM

Exercice 1 On considère la pyramide SABCD représentée ci-contre de sommet S, de hauteur [SD] et dont la base ABCD est rectangulaire.

1 Indiquer la nature de chacun des triangles suivants :

- a. SDC
- b. SDA
- c. SDB
- d. ADC
- e. DCB

2 Comparer la distance SD à chacune des distances SA, SB et SC.

Calculer le volume de cette pyramide sachant que :

$$SD = 5 \text{ cm}$$
, $AB = 4 \text{ cm}$ et $BC = 3 \text{ cm}$.

Exercice 2 On considère un cône de révolution de sommet S, dont la base est un disque de centre O et de rayon 3 cm et dont les génératrices mesurent 7 cm.

① Soit A un point du cercle de centre O et de rayon 3 cm. Indiquer les mesures des longueurs OA et SA.

Q Calculer la hauteur SO de ce cône. Donner la valeur exacte, puis l'arrondi au mm.

3 Calculer le volume de ce cône. Donner la valeur exacte, puis l'arrondi au mm³.

ctivités

tivité 1 Sphère et boule

- a. Décrire l'objet obtenu quand on fait tourner :
- un rectangle ABCD autour de la droite (AB).
- un triangle KLM rectangle en K autour de la droite (KL).

b. Recopier et compléter les phrases suivantes par « sphère » ou « boule » :

La surface obtenue lorsqu'on fait tourner un demi-cercle autour d'un de ses diamètres est appelée une ___.

Le solide obtenu lorsqu'on fait tourner un demi-disque autour d'un de ses diamètres est appelé une ___.

On rappelle les définitions suivantes :

« Le cercle de centre O et de rayon 3 cm est constitué de tous les points du plan situés à 3 cm de O. » « Le disque de centre O et de rayon 3 cm est constitué de tous les points du plan situés à une distance de O inférieure ou égale à 3 cm. »

Quelles modifications doit-on apporter aux définitions précédentes pour obtenir les définitions d'une sphère et d'une boule de centre O et de rayon 3 cm ?

a. Les points A, D, E appartiennent-ils à la sphère $\mathcal G$ de centre O représentée ci-contre ? Justifier.

b. A-t-on les indications nécessaires pour savoir si les points B, C et F appartiennent à la sphère $\mathcal G$?

G. Que devrait-on préciser pour pouvoir affirmer que ces points appartiennent ou n'appartiennent pas à la sphère $\mathcal F$?

Sur la droite (OD), on considère le point D' symétrique de D par rapport à O. D' est-il un point de $\mathcal G$?

On dit que les points D et D' sont $\operatorname{diamétralement}$ opposés $\operatorname{sur} \mathcal{G}$.

Il essaie de jouer à la pétanque avec une boule, alors qu'en fait, on joue avec des sphères...

Activité 2 Droite perpendiculaire à un plan

- a. Prendre une feuille de papier, placer un point A sur cette feuille et tracer deux droites d₁ et d₂ passant par A.
 b. À l'aide d'une équerre, vérifier qu'il n'existe qu'une seule droite D passant par A qui soit perpendiculaire à d₁ et à d₂.
 On dit que la droite D est la droite perpendiculaire en A au plan P représenté par la feuille.
 - Soient d_3 et d_4 deux autres droites du plan sécantes en A. Que peut-on dire de \mathfrak{D} par rapport aux deux droites d_3 et d_4 ?
- On considère un point O quelconque dans l'espace et la droite \mathfrak{D}' passant par O parallèle à la droite \mathfrak{D} et qui coupe le plan \mathfrak{P} en H. Que peut-on dire de cette droite \mathfrak{D}' par rapport au plan \mathfrak{P} ?

Si une droite est perpendiculaire à deux droites sécantes d'un plan, alors elle est perpendiculaire à ce plan.
 Si une droite est perpendiculaire à un plan P en un point A, alors elle est perpendiculaire à toutes les droites du plan passant par A.

Activité 3 Section d'une sphère par un plan

Onjecture

Sur la photo ci-contre, on assimile les oranges à des sphères sectionnées par un plan. Quelle semble être la nature de cette section ?

Démonstation

La sphère $\mathcal G$ de centre O et de rayon 4 cm représentée ci-contre a été coupée par un plan $\mathcal P$. La droite passant par O et perpendiculaire au plan $\mathcal P$ coupe ce plan en un point H tel que OH = 3 cm. Le point M est un point de la section de la sphère $\mathcal G$ par le

plan \mathcal{P} .

3. Quelle est la nature du triangle OHM ? Justifier.

- **b.** Donner les mesures des segments [OM] et [OH], puis calculer la longueur exacte HM.
- **C.** Soit N un autre point de la section de la sphère \mathcal{G} par le plan \mathcal{P} , que peut-on dire de la longueur HN ?
- d. Expliquer pourquoi tous les points de la section de la sphère $\mathcal G$ par le plan $\mathcal P$ appartiennent à un cercle dont on précisera le centre et le rayon.
- \bullet Expliquer pourquoi tout point de ce cercle est un point de la sphère \mathcal{G} .
- On considère le cas où le plan \mathcal{P} passe par le centre O de la sphère. Quelle est la section de la sphère \mathcal{S} par le plan \mathcal{P} ? Une telle section est appelée un **grand cercle** de la sphère \mathcal{S} .
 - **b.** On considère maintenant le cas où la distance OH est 4 cm. Quelle est alors la section de la sphère \mathcal{G} par le plan \mathcal{P} ? On dit alors que le plan \mathcal{P} est **tangent** à la sphère \mathcal{G} .

