- 1. Given a graph G=(V,E) with vertex weights $w_v>0$, we consider the problem of finding an independent set $S\subseteq V$ with the maximum total weight, i.e., $w(S):=\sum_{v\in S}w_v$ is maximized. Let also a *nice* tree decomposition $(Tr=(T,F),\{V_t:t\in T\})$ of G be given.
 - (a) (1 point) Define for a leaf node t of Tr the maximum total weight $OPT_t(U)$ for each possible subset U of the bag V_t .
 - (b) (1 point) Define for a forget node t of Tr the maximum total weight $OPT_t(U)$ for each possible independent subset U of the bag V_t .
 - (c) (2 points) Define for an introduce node t of Tr the maximum total weight $OPT_t(U)$ for each possible independent subset U of the bag V_t .
 - (d) (1 point) Define for a join node t of Tr the maximum total weight $OPT_t(U)$ for each possible independent subset U of the bag V_t .
 - (e) (1 point) Suppose that for all tree nodes t and for all arguments U the values defined in the above recursive function have been stored in a table $M_t[U]$. Explain how to determine the maximum total weight of an independent set of G from this table.