Title: Graph-Based Recommendation System for Electronic Products

Objective

The primary goal of this project is to develop a recommendation system for electronic products using Graph Neural Networks (GNNs). By leveraging user-product interaction data, the system aims to predict user ratings for products they have not yet rated, thus providing personalized recommendations.

Data Description

The dataset used in this project is a CSV file (amazon-product-reviews) containing the following columns:

- user id: Unique identifier for each user.
- product id: Unique identifier for each product.
- rating: The rating given by the user to the product.
- time_stamp: The time when the rating was provided.

Methodology

1. Data Preprocessing:

- Handle missing values.
- Encode user_id and product_id using Label Encoding.
- Split the dataset into training and validation sets.

2. Graph Construction:

- Define nodes as users and items.
- Create edges based on user-item interactions (ratings).
- Represent the graph using multi-dimensional arrays (torch.tensor) to handle memory efficiently.

3. Model Development:

- Choose a suitable GNN architecture (e.g., Graph Convolutional Networks (GCN), GraphSAGE, or Graph Attention Networks) I use GCN
- Implement the GCN model using PyTorch Geometric.
- Train and validate the model using the constructed graph data.

4. Evaluation:

Evaluate the model's performance using appropriate metrics.

Challenges

- Managing large datasets with limited computational resources.
- Ensuring efficient data preprocessing and graph construction.
- Selecting the appropriate GNN architecture and tuning hyperparameters for optimal performance.

Conclusion

The project demonstrates the application of GNNs in building an effective recommendation system for electronic products. By capturing complex user-item interaction patterns, the model provides personalized recommendations, enhancing user experience and engagement.

1. Data loading and preprocessing

1.1 import Libraries

```
import pandas as pd
import numpy as np
import torch
from torch_geometric.data import Data
from sklearn.preprocessing import LabelEncoder
# from torch_geometric.data import DataLoader
from torch_geometric.loader import DataLoader
from sklearn.model_selection import train_test_split
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
import torch.optim as optim
from sklearn.metrics import mean_squared_error, mean_absolute_error,
r2_score
import warnings
warnings.filterwarnings("ignore")
```

1.2 Preprocessing

```
file path = 'ratings Electronics (1).csv'
df = pd.read csv(file path)
df
         AKM1MP6P00YPR
                        0132793040
                                    5.0
                                         1365811200
0
        A2CX7LU0HB2NDG
                        0321732944
                                    5.0
                                         1341100800
1
        A2NWSAGRHCP8N5
                        0439886341 1.0
                                         1367193600
2
        A2WNB0D3WNDNKT
                        0439886341 3.0
                                         1374451200
3
        A1GI0U4ZRJA8WN
                        0439886341 1.0
                                        1334707200
4
        A1QGNMC601VW39
                        0511189877
                                    5.0 1397433600
7824476 A2YZI3C9M0HC0L
                        BT008UKTMW
                                    5.0
                                         1396569600
7824477
        A322MDK0M89RHN
                        BT008UKTMW 5.0 1313366400
7824478 A1MH90R0ADMIK0
                        BT008UKTMW 4.0 1404172800
7824479 A10M2KEFPEQDHN
                        BT008UKTMW 4.0
                                         1297555200
                        BT008V9J9U 5.0 1312675200
7824480 A2G81TMI0IDEQ0
[7824481 rows x 4 columns]
df.rename(columns = {'AKM1MP6P00YPR':'user id',
'0132793040':'product_id', '5.0':'rating', '1365811200':'time_stamp'},
```

```
inplace = True)
df
                user id
                         product id
                                      rating
                                             time stamp
0
         A2CX7LU0HB2NDG
                         0321732944
                                         5.0
                                             1341100800
1
         A2NWSAGRHCP8N5
                         0439886341
                                         1.0
                                             1367193600
2
                         0439886341
                                         3.0
                                             1374451200
         A2WNB0D3WNDNKT
3
                                             1334707200
         A1GI0U4ZRJA8WN
                         0439886341
                                         1.0
4
         A10GNMC601VW39
                         0511189877
                                         5.0
                                             1397433600
         A2YZI3C9M0HC0L
7824476
                         BT008UKTMW
                                             1396569600
                                         5.0
7824477
         A322MDK0M89RHN
                         BT008UKTMW
                                         5.0
                                             1313366400
7824478
                                         4.0
         A1MH90R0ADMIK0
                         BT008UKTMW
                                             1404172800
7824479
         A10M2KEFPEQDHN
                                         4.0
                                             1297555200
                         BT008UKTMW
7824480
         A2G81TMI0IDEQQ
                         BT008V9J9U
                                         5.0
                                             1312675200
[7824481 rows x 4 columns]
user counts = df['user id'].value counts()
# we only need that users which use multiple times # 4942648
multiple times and 2881833 one time
filtered df =df[df['user id'].isin(user counts[user counts >
1].index)]
filtered df
                         product id
                                      rating
                                             time stamp
                user id
0
         A2CX7LU0HB2NDG
                         0321732944
                                         5.0
                                             1341100800
4
         A10GNMC601VW39
                         0511189877
                                         5.0
                                             1397433600
5
                                         2.0
         A3J3BRHTDRFJ2G
                         0511189877
                                             1397433600
6
         A2TY0BTJ0TENPG
                         0511189877
                                         5.0
                                             1395878400
7
         A34ATBP0K6HCHY
                         0511189877
                                         5.0
                                             1395532800
                                             1343520000
7824474
         A2R6Q6KJCYSVH7
                         BT008UKTMW
                                         3.0
7824476
         A2YZI3C9M0HC0L
                         BT008UKTMW
                                         5.0
                                             1396569600
                                        5.0 1313366400
7824477
         A322MDK0M89RHN
                         BT008UKTMW
7824478
         A1MH90R0ADMIK0
                         BT008UKTMW
                                         4.0
                                             1404172800
7824480
         A2G81TMI0IDEQ0
                         BT008V9J9U
                                         5.0
                                             1312675200
[4942648 rows x 4 columns]
# shuffle data
# take a sample data of the population
result df = filtered df.sample(frac=0.002,
random state=1).reset index(drop=True)
result df
             user id
                      product id
                                  rating
                                          time stamp
0
      A3554P57JKXVJN
                                          1397952000
                      B0085S0838
                                     1.0
1
      A2CS4FEMSETJT1
                      B00IBCQJZ0
                                     5.0
                                          1400198400
2
      A2CIJE4EUZF2WW
                      B00C59X930
                                     5.0
                                          1405209600
3
      A15ZX3XV2L7QDH
                      B001V9LPT4
                                     4.0
                                          1359936000
```

```
4
                                     3.0
       AZGORONAAGIMW B00005NIMJ
                                          1281657600
9880 A1GS1EX68K53ZS
                      B000070024
                                     5.0 1214784000
9881 A32Y03HN3TPTNG
                      B001212ELY
                                     5.0 1238457600
9882 A2K60SG7JT8Z0A
                      B005455PW4
                                     2.0 1402876800
9883 A3202C86H3AD1V
                      B00003LUKC
                                     1.0 1257465600
9884 A3LZB8E6ZU78XD B0001KWG0W
                                     5.0 1133481600
[9885 \text{ rows } x \text{ 4 columns}]
result df["rating"].value counts()
rating
5.0
       5729
4.0
       1883
1.0
        900
3.0
        823
2.0
        550
Name: count, dtype: int64
result df.to csv('filtered data.csv', index=False)
# Load the data
data = pd.read csv('filtered data.csv')
data.head()
          user_id
                   product_id
                               rating
                                       time_stamp
                                       1397952000
0 A3554P57JKXVJN
                   B0085S0838
                                  1.0
                                  5.0
1
  A2CS4FEMSETJT1
                   B00IBC0JZ0
                                      1400198400
  A2CIJE4EUZF2WW
                   B00C59X930
                                  5.0
                                      1405209600
3 A15ZX3XV2L7QDH
                   B001V9LPT4
                                  4.0 1359936000
4 AZGORONAAGIMW
                                  3.0 1281657600
                   B00005NIMJ
data.isnull().sum()
user id
product id
              0
              0
rating
time stamp
              0
dtype: int64
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9885 entries, 0 to 9884
Data columns (total 4 columns):
#
     Column
                 Non-Null Count Dtype
- - -
 0
    user id
                 9885 non-null
                                 object
1
     product id 9885 non-null
                                 object
 2
                 9885 non-null
                                 float64
     rating
```

```
time stamp 9885 non-null
                                 int64
dtypes: float64(1), int64(1), object(2)
memory usage: 309.0+ KB
# convert categorical to numeric. Encode user IDs and product IDs
user encoder = LabelEncoder()
item encoder = LabelEncoder()
data['user id']= user encoder.fit transform(data['user id'])
data['product id'] = item_encoder.fit_transform(data['product_id'])
data.head(2)
            product id
   user id
                        rating
                                time stamp
0
      5546
                  6130
                           1.0
                                1397952000
1
      3497
                  7825
                           5.0 1400198400
```

Split the Data

First, split the dataset into training, validation, and test sets.

```
train data, temp data = train test split(data, test size=0.4,
random state=1)
val data, test data = train test split(temp data, test size=0.5,
random state=1)
train data.shape, temp data.shape, val data.shape, test data.shape
((5931, 4), (3954, 4), (1977, 4), (1977, 4))
train data
      user_id
               product_id
                            rating
                                   time stamp
         1903
5869
                     6357
                              4.0
                                    1394755200
                              5.0
1902
         6751
                     6509
                                   1381449600
8989
         8742
                     2326
                              3.0
                                    1374278400
7765
                               3.0
         5189
                     6789
                                   1404950400
8348
         2765
                     4460
                              5.0
                                   1363132800
. . .
                                   1251763200
2895
         8175
                     2007
                              5.0
7813
         9080
                     3889
                              5.0
                                   1390003200
                              4.0 1369440000
905
         5221
                     2517
                              4.0 1304380800
5192
         2493
                     2769
235
         3429
                     2598
                              4.0 1244937600
[5931 rows x 4 columns]
train data['rating'].value counts()
rating
5.0
       3398
```

```
4.0 1178
1.0 534
3.0 496
2.0 325
Name: count, dtype: int64
train_data['user_id'].values
array([1903, 6751, 8742, ..., 5221, 2493, 3429])
```

2 Graph Construction

train data to PyTorch Geometric format

```
# Create edge index from user-item interactions
train_edge_index = torch.tensor([train_data['user_id'].values,
train_data['product_id'].values], dtype=torch.long)

# Create edge attributes (ratings)
train_edge_attr = torch.tensor(train_data['rating'].values,
dtype=torch.float)

# Create the PyTorch Geometric data object
train_dataa = Data(edge_index=train_edge_index,
edge_attr=train_edge_attr)
train_dataa.x=node_features
train_dataa
Data(edge_index=[2, 5931], edge_attr=[5931], x=[17693, 17693])
```

```
# Convert validation and test data to PyTorch Geometric format
val edge index = torch.tensor([val data['user id'].values,
val data['product_id'].values], dtype=torch.long)
val edge attr = torch.tensor(val data['rating'].values,
dtype=torch.float)
test edge index = torch.tensor([test data['user id'].values,
test data['product id'].values], dtype=torch.long)
test edge attr = torch.tensor(test data['rating'].values,
dtype=torch.float)
# Create data objects for validation and test sets
val dataa = Data(edge index=val edge index, edge attr=val edge attr,
x=node features)
test dataa = Data(edge index=test edge index,
edge attr=test edge attr, x=node features)
print(f"{val dataa} \n {test dataa}")
Data(x=[17693, 17693], edge index=[2, 1977], edge attr=[1977])
Data(x=[17693, 17693], edge index=[2, 1977], edge attr=[1977])
print(f"Max and min train edge values:
{train_edge_index.max().item(),train_edge_index.min().item()}, max
train edge attr:
{train edge attr.max().item(),train edge attr.min().item()}, Num
nodes: {num users + num items}")
print(f"Max and min val edge values:
{val edge index.max().item(),val edge index.min().item()}, Max and min
val attr:{val edge attr.max().item(), val edge attr.min().item()}, Num
nodes: {num_users + num items}")
print(f"Max and min test edge values:
{test edge index.max().item(),test edge index.min().item()}, Max and
min val attr:
{test edge attr.max().item(),test edge attr.min().item()}, Num nodes:
{num_users + num_items}")
Max and min train edge values: (9818, 0), max train edge attr:(5.0,
1.0), Num nodes: 17693
Max and min val edge values: (9815, 0), Max and min val attr:(5.0,
1.0), Num nodes: 17693
Max and min test edge values: (9817, 3), Max and min val attr:(5.0,
1.0), Num nodes: 17693
```

3. Model Development

```
class GCN(torch.nn.Module):
    def init (self, num features, hidden channels, num items):
        super(GCN, self). init ()
        self.conv1 = GCNConv(num features, hidden channels)
        self.conv2 = GCNConv(hidden channels, hidden channels)
        self.fc = torch.nn.Linear(hidden channels * \overline{2}, num items)
        self.item embeddings = torch.nn.Embedding(hidden channels,
num_items)
    def forward(self, data):
        x, edge index = data.x, data.edge index
        x = self.conv1(x, edge index)
        x = F.relu(x)
        x = self.conv2(x, edge index)
        x = F.relu(x)
    # Apply the final linear layer on the concatenated edge features
        edge pred = self.fc(torch.cat([x[edge index[0]]],
x[edge index[1]], dim=1)
        return edge pred.squeeze()
    def recommend(self, user embedding, k=2):
        item scores = torch.matmul(user embedding,
self.item embeddings.weight.t())
        _, recommended_items = torch.topk(item_scores, k)
        return recommended items
hidden channels = 32
num items = data['product id'].nunique()
num features=num users + num items
model = GCN(num features=num features,
hidden channels=hidden channels, num items=num items)
model
GCN(
  (conv1): GCNConv(17693, 32)
  (conv2): GCNConv(32, 32)
  (fc): Linear(in features=64, out features=7874, bias=True)
  (item embeddings): Embedding(32, 7874)
)
# Prepare the data loader
train loader = DataLoader([train dataa], batch size=1, shuffle=True)
criterion = torch.nn.MSELoss()
model.train()
total loss = 0
```

```
with torch.no_grad():
    for batch in train_loader:
        val_out = model(batch)
        loss = criterion(val_out, batch.edge_attr.view(-1, 1))
        total_loss += loss.item()
print(f"total loss of validate data {total_loss}")

total loss of validate data 18.559938430786133
```

Training Loop

```
# Prepare the data loader
train loader = DataLoader([train dataa], batch size=1, shuffle=True)
# Define the loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
total loss = 0
patience = 7
num epochs = 200
no improvement = 0
best=0
model.train()
# Training loop
for epoch in range(num epochs):
    # if loss.item() <= 0.2:
    if no improvement >= patience:
            print(f'Early stopping at epoch {epoch+1} as validation
loss did not improve for {patience} consecutive epochs.')
            break
    else:
        for batch in train loader:
            # zeroing gradients after each iteration
            optimizer.zero grad()
            # making a pridiction in forward pass
            out = model(batch)
            # calculating the loss between original and predicted data
points
            loss = criterion(out, batch.edge attr.view(-1, 1))
            # backward pass for computing the gradients of the loss
w.r.t to learnable parameters
            loss.backward()
            # updateing the parameters after each iteration
            optimizer.step()
            total loss += loss.item()
```

```
if int(loss.item()) != best:
                no\_improvement = 0
            else:
                no improvement += 1
            best=int(loss.item())
        print(f'Epoch {epoch + 1}, Loss: {loss.item():.4f}')
print(total loss)
Epoch 1, Loss: 18.5599
Epoch 2, Loss: 18.4314
Epoch 3, Loss: 18.2114
Epoch 4, Loss: 17.8371
Epoch 5, Loss: 17.2549
Epoch 6, Loss: 16.4051
Epoch 7, Loss: 15.2329
Epoch 8, Loss: 13.6980
Epoch 9, Loss: 11.7858
Epoch 10, Loss: 9.5257
Epoch 11, Loss: 7.0306
Epoch 12, Loss: 4.5580
Epoch 13, Loss: 2.5859
Epoch 14, Loss: 1.8403
Epoch 15, Loss: 2.8047
Epoch 16, Loss: 4.2061
Epoch 17, Loss: 4.4488
Epoch 18, Loss: 3.6058
Epoch 19, Loss: 2.4260
Epoch 20, Loss: 1.4976
Epoch 21, Loss: 1.0398
Epoch 22, Loss: 0.9939
Epoch 23, Loss: 1.1850
Epoch 24, Loss: 1.4388
Epoch 25, Loss: 1.6355
Epoch 26, Loss: 1.7152
Epoch 27, Loss: 1.6650
Epoch 28, Loss: 1.5045
Epoch 29, Loss: 1.2751
Epoch 30, Loss: 1.0312
Early stopping at epoch 31 as validation loss did not improve for 7
consecutive epochs.
205.4300863146782
val_dataa.x[val_edge_index[0]]
tensor([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., \ldots, 0., 0., 0.]
        [0., 0., 0., \ldots, 0., 0., 0.]
        [0., 0., 0., \ldots, 0., 0., 0.]
```

```
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
```

validating Loop

```
# Prepare the data loader
val loader = DataLoader([val dataa], batch size=1, shuffle=True)
model.eval()
total loss = 0
with torch.no_grad():
    for batch in val loader:
        val out = model(batch)
        loss = criterion(val out, batch.edge attr.view(-1, 1))
        total loss += loss.item()
print(f"total loss of validate data {total_loss}")
total loss of validate data 3.7362334728240967
# Define the loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
total loss = 0
patience = 29
num epochs = 200
no improvement = 0
best=0
model.eval()
# validate loop
for epoch in range(num epochs):
    # if loss.item() <= 0.1:
    if no improvement >= patience:
            print(f'Early stopping at epoch {epoch+1} as validation
loss did not improve for {patience} consecutive epochs.')
            break
    else:
        for batch in val loader:
            optimizer.zero grad()
            out = model(batch)
            loss = criterion(out, batch.edge_attr.view(-1, 1))
            loss.backward()
            optimizer.step()
            total loss += loss.item()
            if int(loss.item()) != best:
                no improvement = 0
            else:
```

```
no improvement += 1
            best=int(loss.item())
        print(f'Epoch {epoch + 1}, Loss: {loss.item():.4f}')
print(total loss)
Epoch 1, Loss: 3.7362
Epoch 2, Loss: 3.0082
Epoch 3, Loss: 2.6233
Epoch 4, Loss: 2.1615
Epoch 5, Loss: 1.8206
Epoch 6, Loss: 1.6260
Epoch 7, Loss: 1.4471
Epoch 8, Loss: 1.2487
Epoch 9, Loss: 1.0945
Epoch 10, Loss: 1.0113
Epoch 11, Loss: 0.9359
Epoch 12, Loss: 0.8393
Epoch 13, Loss: 0.7641
Epoch 14, Loss: 0.7229
Epoch 15, Loss: 0.6803
Epoch 16, Loss: 0.6213
Epoch 17, Loss: 0.5697
Epoch 18, Loss: 0.5434
Epoch 19, Loss: 0.5227
Epoch 20, Loss: 0.4879
Epoch 21, Loss: 0.4541
Epoch 22, Loss: 0.4349
Epoch 23, Loss: 0.4184
Epoch 24, Loss: 0.3935
Epoch 25, Loss: 0.3694
Epoch 26, Loss: 0.3559
Epoch 27, Loss: 0.3441
Epoch 28, Loss: 0.3247
Epoch 29, Loss: 0.3060
Epoch 30, Loss: 0.2947
Epoch 31, Loss: 0.2829
Epoch 32, Loss: 0.2666
Epoch 33, Loss: 0.2534
Epoch 34, Loss: 0.2442
Epoch 35, Loss: 0.2327
Epoch 36, Loss: 0.2201
Epoch 37, Loss: 0.2118
Epoch 38, Loss: 0.2044
Epoch 39, Loss: 0.1944
Epoch 40, Loss: 0.1863
Early stopping at epoch 41 as validation loss did not improve for 29
consecutive epochs.
32.4571525901556
```

testing Loop

```
# Prepare the data loader
test loader = DataLoader([test dataa], batch size=1, shuffle=True)
model.eval()
total loss = 0
with torch.no grad():
    for batch in test loader:
        test out = model(batch)
        loss = criterion(test out, batch.edge attr.view(-1, 1))
        total loss += loss.item()
print(f"total loss of test data {total loss}")
total loss of test data 3.1904726028442383
# Define the loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.01)
total loss = 0
patience = 13
num epochs = 200
no improvement = 0
best=0
model.eval()
# testing loop
for epoch in range(num epochs):
    if no improvement >= patience:
            print(f'Early stopping at epoch {epoch+1} as validation
loss did not improve for {patience} consecutive epochs.')
            break
    else:
        for batch in test loader:
            optimizer.zero grad()
            out = model(batch)
            loss = criterion(out, batch.edge attr.view(-1, 1))
            loss.backward()
            optimizer.step()
            total loss += loss.item()
            if int(loss.item()) != best:
                no improvement = 0
            else:
                no improvement += 1
            best=int(loss.item())
        print(f'Epoch {epoch + 1}, Loss: {loss.item():.4f}')
print(total loss)
```

```
Epoch 1, Loss: 3.1905
Epoch 2, Loss: 2.7598
Epoch 3, Loss: 2.3278
Epoch 4, Loss: 2.0663
Epoch 5, Loss: 1.8326
Epoch 6, Loss: 1.5941
Epoch 7, Loss: 1.4489
Epoch 8, Loss: 1.2959
Epoch 9, Loss: 1.1369
Epoch 10, Loss: 1.0333
Epoch 11, Loss: 0.9280
Epoch 12, Loss: 0.8124
Epoch 13, Loss: 0.7367
Epoch 14, Loss: 0.6621
Epoch 15, Loss: 0.5779
Epoch 16, Loss: 0.5247
Epoch 17, Loss: 0.4749
Epoch 18, Loss: 0.4203
Epoch 19, Loss: 0.3919
Epoch 20, Loss: 0.3597
Epoch 21, Loss: 0.3270
Epoch 22, Loss: 0.3109
Epoch 23, Loss: 0.2837
Epoch 24, Loss: 0.2629
Early stopping at epoch 25 as validation loss did not improve for 13
consecutive epochs.
25.75902023911476
```

4. Evaluation

```
val_dataa
Data(x=[17693, 17693], edge_index=[2, 1977], edge_attr=[1977])
model.eval()
with torch.no_grad():
    val_out = model(val_dataa)
    test_out = model(test_dataa)

# Calculate evaluation metrics
val_mse = mean_squared_error(val_edge_attr.numpy(), val_out[:,:1]
[:,0].numpy())
val_mae = mean_absolute_error(val_edge_attr.numpy(), val_out[:,:1]
[:,0].numpy())
val_R2_score= r2_score(val_edge_attr.numpy(), val_out[:,:1]
[:,0].numpy())
test_mse = mean_squared_error(test_edge_attr.numpy(), test_out[:,:1]
```

```
[:,0].numpy())
test_mae = mean_absolute_error(test_edge_attr.numpy(), test_out[:,:1]
[:,0].numpy())
test R2 score= r2 score(test edge attr.numpy(), test out[:,:1]
[:,0].numpy())
print(f'Validation MSE: {val mse}, Validation MAE: {val mae},
validation r2 score: {val R2 score*100}')
print(f'Test MSE: {test mse}, Test MAE: {test mae}, Test r2 score:
{test R2 score*100}')
Validation MSE: 1.0632094144821167, Validation MAE:
0.8342692255973816, validation r2 score: 36.85176372528076
Test MSE: 0.24447304010391235, Test MAE: 0.329874187707901, Test r2
score: 86.07448935508728
train dataa
Data(edge index=[2, 5931], edge attr=[5931], x=[17693, 17693])
result df['user id']
        A3554P57JKXVJN
1
        A2CS4FEMSETJT1
2
        A2CIJE4EUZF2WW
3
        A15ZX3XV2L70DH
         AZGORQNAAGIMW
9880
        A1GS1EX68K53ZS
9881
       A32Y03HN3TPTNG
9882
        A2K60SG7JT8Z0A
9883
        A3202C86H3AD1V
9884
        A3LZB8E6ZU78XD
Name: user id, Length: 9885, dtype: object
result df['user id'].unique()[4]
'AZGORONAAGIMW'
result_df['user_id'].shape
(9885,)
```

Making predictions with user_id for the first k products

```
def make_recommendations(user_id, k=3):
    model.eval()
```

```
with torch.no grad():
        # Get all user embeddings (from the training graph)
        all user embeddings = model(train dataa)
        # all user embeddings = model(train graph data.x,
train graph data.edge index)
        # Extract the embedding for the specific user id
        user idx = user encoder.transform([user id])[0]
        user embedding = all user embeddings[user idx].unsqueeze(0)
        # Get recommendations (assuming model.recommend returns
indices)
        recommended items = model.recommend(user embedding, k=k)
        # Flatten the recommended items array
        recommended items = recommended items.flatten()
        print("Raw recommended items (indices):",
recommended items.cpu().numpy())
        # Convert to numpy array for processing
        recommended item indices = recommended items.cpu().numpy()
        # Filter valid indices (should be within the range of item
indices)
        valid indices = [idx for idx in recommended item indices if 0
<= idx < len(item encoder.classes )]
        print("Valid recommended items (indices):", valid indices)
        if not valid indices:
            print(f"No valid recommendations for user {user id}")
            return []
        # Inverse transform and decode the recommended items
        recommended items =
item encoder.inverse transform(valid indices)
        return recommended items
user id = 'A2CIJE4EUZF2WW'
recommended items = make recommendations(user id)
print(f'Recommended items for user {user_id}:', recommended_items)
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Recommended items for user A2CIJE4EUZF2WW: ['B00000K4BB' 'B0000010KH'
'B00001P584']
```

```
# Create a list to store user IDs and recommended items
user recommendations = []
WWINF=[]
# Iterate over the first 10 unique users in the dataset
for user in result df['user id'].unique()[:100]:
    try:
        # Ensure the user is known
        user idx = user encoder.transform([user])
        # Make recommendations for the current user
        recommended items = make recommendations(user, k=3)
        # Append the user ID and recommended items to the list
        user recommendations.append([user] + list(recommended items))
    except IndexError:
        WWINF.append(user)
    except ValueError as e:
        print(f"Skipping user {user} due to: {e}")
    except KeyError as e:
        print(f"User {user} is not recognized by the encoder. Skipping
user.")
# Define the column names for the DataFrame
columns = ['user id'] + [f'recommended item {i+1}' for i in range(3)]
# Create a DataFrame from the list of user recommendations
user recommendations df = pd.DataFrame(user recommendations,
columns=columns)
# Save the DataFrame to a CSV file
user recommendations df.to csv('user recommendations.csv',
index=False)
# user encoder.inverse transform([850])[0]
# print(WWINF)
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
```

```
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26]
                                     7 291
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
```

```
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
                                     7 291
Raw recommended items (indices): [26]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 291
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26]
                                     7 291
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
                                     7 291
Raw recommended items (indices): [26]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26]
                                     7 291
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
                                     7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26
Valid recommended items (indices): [26, 7, 29]
Raw recommended items (indices): [26 7 29]
Valid recommended items (indices): [26, 7, 29]
user encoder.inverse transform([850])[0]
'A1BD5JY0P5E1P1'
```