1) Escribir los primeros cinco términos de cada una de las siguientes sucesiones para n≥1:

a)
$$2^{n} + 1$$

b)
$$n + (-1)^n$$

c)
$$\frac{2n}{2n+1}$$

d)
$$(-1)^n \left(\frac{1}{2}\right)^n$$

e)
$$(-1)^{n+1} \left(\frac{1}{2}\right)^{n-1}$$

e)
$$(-1)^{n+1} \left(\frac{1}{2}\right)^{n-1}$$
 f) $\left(1 - \frac{1}{n+1}\right)^{n+1}$

2) Hallar una fórmula para "a_n", a partir n≥1.

d)
$$\frac{1}{3}$$
, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$, $\frac{5}{11}$,....

e)
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{6}$, $-\frac{1}{8}$, $\frac{1}{10}$,.....

3) Determinar si las siguientes sucesiones convergen o divergen. Si convergen, hallar sus límites:

a)
$$2^n$$

b)
$$(0,2)^n$$

c)
$$3 + e^{-2n}$$

d)
$$(-0,3)^n$$

e)
$$\frac{2^{n}}{3^{n}}$$

f)
$$\frac{2n+1}{n}$$

4) Representar gráficamente las siguientes sucesiones:

a)
$$a_n = 1 - \frac{1}{n}$$

b)
$$a_n = 1 + \frac{(-1)^n}{n}$$

c)
$$a_n = 2 + \frac{1}{n}$$

5) Escribir los seis primeros términos de cada sucesión definida recursivamente.

a)
$$a_n = 2a_{n-1} + 3$$

b)
$$a_n = 2a_{n-1} + n$$

c)
$$a_n = a_{n-1} + \left(\frac{1}{2}\right)^{n-1}$$

c)
$$a_n = a_{n-1} + \left(\frac{1}{2}\right)^{n-1}$$
 $para \quad n > 1 \quad y \quad a_1 = 0$

d)
$$a_n = a_{n-1} + 2a_{n-2}$$

d)
$$a_n = a_{n-1} + 2a_{n-2}$$
 para $n > 2$ y $a_1 = 1$, $a_2 = 5$

6) Definir en forma recursiva las siguientes sucesiones:

d) 1, 5, 14, 30, 55,.... e) 1, 3, 6, 10, 15,.... f) 1, 2,
$$\frac{3}{2}$$
, $\frac{5}{3}$, $\frac{8}{5}$, $\frac{13}{8}$,....

TP 11: ANÁLISIS MATEMÁTICO 2022 Sucesiones

7) En los siguientes ítems, verificar que la secuencia "a_n", expresada en forma explícita, satisface la definición dada por la recurrencia.

a)
$$a_n = 3n - 2$$
 (explícita)

a)
$$a_n = 3n - 2$$
 (explícita) $a_n = a_{n-1} + 3$, para $n > 1$ y $a_1 = 1$

b)
$$a_n = \frac{n(n+1)}{2}$$
 (explícita)

b)
$$a_n = \frac{n(n+1)}{2}$$
 (explícita) $a_n = a_{n-1} + n$, para $n > 1$ y $a_1 = 1$

c)
$$a_n = 2n^2 - n$$
 (explícita)

c)
$$a_n = 2n^2 - n$$
 (explícita) $a_n = a_{n-1} + 4n - 3$, para $n > 1$ y $a_1 = 1$

8) Determinar si las siguientes sucesiones son aritméticas.

9) ¿Las siguientes sucesiones son aritméticas? Para las que lo sean dar una fórmula para el enésimo término.

c)
$$-3$$
, -6 , -9 , -12 ,.....

10) Hallar los primeros cuatro términos de la sucesión y una fórmula para el término general.

a)
$$a_n = a_{n-1} + 2$$
,

$$a_1 = 1$$

a)
$$a_n = a_{n-1} + 2$$
, $a_1 = 1$ b) $a_n = a_{n-1} + 4$, $a_1 = 2$

$$a_1 = 2$$

c)
$$a_n = -a_{n-1} + 4$$
,

$$a_1 = -1$$

$$a_1 = -1$$
 d) $a_n = 2a_{n-1}$, $a_1 = 1$

$$a = 1$$

11) ¿Las siguientes sucesiones son geométricas? Para las que lo sean dar una fórmula para el enésimo término.

a) 8, 4, 2, 1,
$$\frac{1}{2}$$
, $\frac{1}{4}$ b) 4, 20, 100, 500,..... c) 1, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{32}$

c) 1,
$$\frac{1}{4}$$
, $\frac{1}{8}$, $\frac{1}{32}$

d)
$$-2$$
, 4, -8 , 16,..... e) 2, 0.2, 0.002,..... e) 1, $\frac{1}{1.5}$, $\frac{1}{(1.5)^2}$, $\frac{1}{(1.5)^3}$,.....

12) Hallar el sexto y el enésimo término de las siguientes sucesiones geométricas.

c)
$$a_1 = 3$$
, $a_3 = 27$

d)
$$a_2 = 6$$
, $a_4 = 96$

13) Conociendo el primer término de una sucesión geométrica y su razón, indicar que valor "n" le corresponde al a_n dado:

$$a_1 = 3\sqrt{3}$$
, $q = 3$ $a_2 = 2187\sqrt{3}$

$$a = 2187\sqrt{3}$$