Metric Spaces

Professor David Barrett Transcribed by Thomas Cohn

9/10/18

Exercises to study: Munkres §3 #1,3,5

Defn: A <u>metric</u> on set X is a function $d: X \times X \to \mathbb{R}$ s.t.

- (1) d(x,y) = d(y,x)
- (2) a) $d(x,y) \ge 0$
 - b) $d(x, y) = 0 \leftrightarrow x = y$
 - c) $d(x, z) \le d(x, y) + d(y, z)$.

Defn: A metric space is a set X equipped with a metric d.

Defn: With $Y \subset X$, $d|_{Y \times Y}$ is a metric on Y, called the <u>induced metric</u>.

The most important exapmles for the Munkres material:

1.
$$X = \mathbb{R}^n$$
, $d_{\text{eucl}}(\vec{x}, \vec{y}) = \sqrt{\sum_{j=1}^n (y_j - x_j)^2}$.

2. $Y \subset X$ with the induced metric.

Defn: For $x_0 \in X$, $\varepsilon > 0$, the set $\mathcal{U}(x_0, \varepsilon) = \{x \in X : d(x_0, x) < \varepsilon\}$. This is the $\underline{\varepsilon}$ -neighborhood of x_0 , or the ε -ball centered at x_0 .

Consider $A \subset X$.

Defn: $x_0 \in X$ is interior to $A \leftrightarrow \exists \varepsilon > 0$ s.t. $\mathcal{U}(x_0, \varepsilon) \subset A$. Int A is the set of interior points to A.

Defn: $x_0 \in X$ is <u>exterior</u> to $A \leftrightarrow \exists \varepsilon > 0$ s.t. $\mathcal{U}(x_0, \varepsilon) \cap A = \emptyset$. Ext A is the set of exterior points to A.

Defn: $x_0 \in X$ is a boundary point of $A \leftrightarrow x_0$ is neither interior nor exterior to A. \leftrightarrow each $\mathcal{U}(x_0, \varepsilon)$ intersects A and $X \setminus A$. Bd A is the set of boundary points of A.

Note that we have $X = \operatorname{Int} A \sqcup \operatorname{Ext} A \sqcup \operatorname{Bd} A$. Note that \sqcup can have multiple meanings (but it's ok for us to use it this way). For more on the different meanings of " \sqcup ", look up "disjoint union" on Wikipedia.

Note that Ext $A = \text{Int } (X \setminus A)$.

Defn: A is open $\leftrightarrow A = \text{Int } A$.

Prop: This defines a topology on X. Proof: See Munkres §3.

Some facts:

1. Each $\mathcal{U}(x_0, \varepsilon)$ is open (Munkres §3 #1).

2. Int A is the largest open subset of A.

- 3. A is closed $\leftrightarrow A = \text{Int } A \cup \text{Bd } A$.
- 4. \bar{A} is defined as Int $A \cup \text{Bd } A$.
- 5. \bar{A} is the smallest closed superset of A.
- 6. Bd $(X \setminus A) = Bd A$.
- 7. Bd A is closed.

Defn: Given (x_n) sequence in X $(x_n): \mathbb{N} \to X$, $n \mapsto x_n$, (X,d) metric $x_n \to x \leftrightarrow \forall \varepsilon > 0$, $\exists N \in \mathbb{N} \text{ s.t. } d(x_n, x) < \varepsilon \text{ when } n > N$. (x_n) converges if $\exists x \text{ s.t. } x_n \to x$.

If $x_n \to x$ and $x_n \to y$, then x = y.

Defn: $f:(X,d_x)\to (Y,d_y)$ is sequentially continuous $\leftrightarrow x_n\to x$ implies $f(x_n)\to f(x)$.

Thm: f is sequentially continuous $\leftrightarrow f$ is continuous. Proof: We basically did this last year.

Defn: (x_n) is Cauchy $\leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s.t. } d(x_n, x_m) < \varepsilon \ \forall n, m > N.$

Defn: A metric space is complete iff all Cauchy sequences converge.

Some facts:

- 1. $(\mathbb{R}^n, d_{\text{eucl}})$ is complete.
- 2. For $Y \subset \mathbb{R}^n$, (Y, d_{eucl}) is complete iff Y is closed.

 $Z \subset X$ is closed $\leftrightarrow Z$ is sequentially closed.

Weird example of a metric: We can map between \mathbb{R} and $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with tan and arctan. Let $\widetilde{d}(x, y) = |\arctan x - \arctan y|$.

Defn: A topological space X is compact \leftrightarrow every open cover of X has a finite subcover.

$$\leftrightarrow$$
 if $X = \bigcup_{\alpha \in A} X_{\alpha}$ with X_{α} open,
then $\exists \alpha_1, \dots, \alpha_k \in A \text{ s.t. } X = X_{\alpha_1} \cup \dots \cup X_{\alpha_k}$.

Thm: (Bolzano-Weierstrass) (X, d) is compact if and only if every sequence in X admits a convergent subsequence ("sequential compactness"). Proof: We will do this on Wednesday.

Thm: (Heine-Borel) If $Y \subset \mathbb{R}^n$ then (Y, d_{eucl}) is compact $\leftrightarrow Y$ is closed and bounded. Proof: Math 296 #158 or Math 297 #100 or Munkres Thms 4.3, 4.9.

Ex: Set S, with $\mathcal{P}^{\text{finite}}$ (test). $d_1(A,B) = \begin{cases} 0 & A = B \\ 1 & A \neq B \end{cases}$ gives us the discrete topology. $d_2(A,B) = |A \triangle B| \text{ also gives us the discrete topology.}$