4.2 Residue system

May 3, 2016

 $\mathbf{3}$

a)

- 1. $A := \{a_1, \cdots, a_k\}$ un système de résidus complet
- 2. k premier
- \diamond Pour tout n,s il existe $b_1,\cdots b_j\in A$ tel que $n\equiv \sum_{j=0}^s b_j k^j \pmod{k^{s+1}}$

La chose est vraie pour s=0 par définition. Soit la chose prouvé pour s.

Alors on a que
$$n - \sum_{j=0}^{s} b_j k^j = d_s k^{s+1}$$
 pour un certain d_s .

Mais on a que $d_s=d_{s+1}k+b_{s+1}$ (puisque l'on a un système de résidue complet) où $b_{s+1}\in A$. Donc $d_sk^{s+1}=d_{s+1}k^{s+2}+b_{s+1}k^{s+1}\Leftrightarrow d_sk^{s+1}-b_{s+1}k^{s+1}=d_{s+1}k^{s+2}$. On substitut d_sk^{s+1} et on obtient $n-\sum_{j=0}^sb_jk^j-b_{s+1}k^{s+1}=n-1$

$$\sum_{j=0}^{s+1} b_j k^j = d_{s+1} k^{s+2}.$$

4

- 1. $w(n) := |\{p : p \text{ premier et } p \not| n\}|$
- \diamond A-t-on $w(n) < \phi(n)$? Existe-t-il un n tel que $w(n) = \phi(n) 1$

Premièrement, on a que tout p ne divisant pas n sera co-premier à n et donc $w(n) \leq \phi(n)$. Par contre, 1 est co-premier à tout n sans être premier et donc $w(n) < \phi(n)$.

De plus, si n = 3, on a que w(n) = 1 et $\phi(n) = 2$.