Homework 4

Jaden Wang

Problem (7.1). Recall that 1 is a generator of \mathbb{Z}_{12} . If 1 can be represented by a word of $\{2,3\}$, then we can just let the $\{2,3\}$ representation of 1 generate \mathbb{Z}_{12} . This is indeed possible here:

$$1 = 3 +_{12} 3 +_{12} 3 +_{12} 2 +_{12} 2.$$

Therefore, $\{2,3\}$ should generate the whole \mathbb{Z}_{12} .

Problem (7.2). Since even numbers under $+_{12}$ can only output even numbers, we know that the odd numbers $\{1, 3, 5, 7, 9, 11\}$ cannot be in the subgroup. Let's check the rest:

$$0 = 6 +_{12} 6$$

$$2 = 6 +_{12} 4 +_{12} 4$$

$$4 = 4$$

$$6 = 6$$

$$8 = 4 +_{12} 4$$

$$10 = 4 +_{12} 6$$

Hence, the elements of the subgroup are $\{0, 2, 4, 6, 8, 10\}$.

Problem (7.7).

- a) $(a^2b)a^3 = eaabaaa = a^3b$
- b) $(ab)(a^3b) = eabaaab = a^2$
- c) $b(a^2b) = ebaab = a^2$

Problem (7.8). To fill out the table, we simply need to represent c in terms of a, b. The graph tells us c = ab = ba. Hence we have the following: aa = e, ab = c, ac = aab = eb = b, ba = c, bb = e, bc = bba = ea = a, ca = b, cb = a, cc = c(ab) = ce = c. That is,

*	e	a	b	c
е	е	a	b	c
a	a	е	С	b
b	b	С	е	a
С	С	b	a	е

Problem (7.10). Let's represent other elements using a, b: c = aad = ba, f = ab. Thus we have the following: aa = c, ab = f, ac = aaa = e, ad = aba = b, af = aab = d, ba = d, bb = e, bc = baa = f, bd = bba = a, bf = bab = c, ca = e, cb = d, cc = caa = a, cd = cba = f, cf = cab = b, da = f, db = c, dc = daa = b, dd = dba = e, df = dab = a, fa = b, fb = a, fc = faa = d, fd = fba = c, ff = fab = e.

*	e	a	b	\mathbf{c}	d	f
е	е	a	b	С	d	f
a	a	С	f	е	b	d
b	b	d	е	f	a	С
c	С	е	d	a	f	b
d	d	f	С	b	е	a
f	f	b	a	d	c	е

Problem (8,1).

$$\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \\
= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix}$$

Problem (8.2).

$$\tau^{2}\sigma = \tau(\tau\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 6 & 5 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 5 & 6 & 3 \end{pmatrix}$$

Problem (8.6).

$$\sigma^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix}$$

$$\sigma^{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 6 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma^{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 6 & 2 & 1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

$$\sigma^{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$\sigma^{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Since σ^6 is clearly the identity, we know that $\sigma^6 = \sigma^0$. Therefore, $|\langle \sigma \rangle| = 6$.

Problem (8.9). Notice

$$\mu^{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

Hence $\mu^2 = \mu^0$. It is easy to see that $\mu^{100} = \mu^0$ which is the identity above.

Problem (8.20).

	ρ^0	ρ	ρ^2	ρ^3	$ ho^4$	ρ^5
ρ^0	ρ^0	ρ	ρ^2	ρ^3	ρ^4	ρ^5
ρ	ρ	ρ^2	ρ^3	ρ^4	$ ho^5$	ρ^0
ρ^2	ρ^2	ρ^3	ρ^4	$ ho^5$	ρ^0	ρ
ρ^3	ρ^3	ρ^4	$ ho^5$	$ ho^0$	ρ	ρ^2
ρ^4	ρ^4	$ ho^5$	$ ho^0$	ρ	ρ^2	ρ^3
ρ^5	$ ho^5$	$ ho^0$	ρ	ρ^2	ρ^3	ρ^4

This cannot be isomorphic to S_3 , since it is symmetric about the diagonal and thus abelian yet S_3 is nonabelian.

Problem (8.32). It suffices to show that f_3 has a two-sided inverse to determine it is a permutation. Let $g: \mathbb{R} \to \mathbb{R}$ where $g(x) = -x^{\frac{1}{3}}$. It is clear that given $x \in \mathbb{R}$, $f_3 \circ g(x) = -\left(-x^{\frac{1}{3}}\right)^3 = x = -\left(-x^3\right)^{\frac{1}{3}} = g \circ f_3(x)$. Therefore, $g(x) = f^{-1}(x)$ thus f_3 is bijective and hence is a permutation.

Problem (8.33). f_4 is not a permutation because it is not bijective on $\mathbb{R} \to \mathbb{R}$. Choose $y = -1 \in \mathbb{R}$, notice that since $e^x > 0$ for all $x \in \mathbb{R}$, there is no $x \in \mathbb{R}$ such that $f_4(x) = y < 0$. This violates the surjectivity requirement.

Problem (8.34). f_5 is not a permutation. $f_5(x) = x^3 - x^2 - 2x = x(x - 2)(x + 1)$. We can immediately see that it is not bijective because although $f_4(0) = f_4(-1) = f_4(2) = 0$, we have $-1 \neq 0 \neq 2$, violating the injective requirement.