Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Circuito Série e Paralelo

Relatório da disciplina Laboratório de Eletrônica 1 com o Prof^o. Gilberto Cuarelli e o Prof^o. Haroldo Guibu.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SUMÁRIO

1	INTRODUÇÃO TEÓRICA 5
2 2.1	PROCEDIMENTOS EXPERIMENTAIS
3 3.1	QUESTÕES
4	CONCLUSÃO
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 –	Circuito 1	7
Figura 2 $-$	Associação Estrela	6
Figura 3 -	Associação Triângulo ou Delta	10
Figura 4 –	Transformação Y - Delta	11

LISTA DE TABELAS

Tabela 1 –	Tabela de Resistores
Tabela 2 –	Corrente
Tabela 3 –	Corrente
Tabela 4 $-$	Corrente 2
Tabela 5 –	Tensão 2

1 INTRODUÇÃO TEÓRICA

Circuitos de resistores série e paralelo, têm propriedades específicas. O circuito em série soma o valor resistivo de cada resistor, dividindo o valor da tensão entre todos os resistores, enquanto a corrente é igual para todos os pontos do circuito.

Já o circuito em paralelo tem a propriedade de igualar a tensão para cada um dos resistores e distribuir propocionalmente a corrente, dependendo do valor resistivo de cada resistor.

Nesse experimento, foi solicitado a montagem de dois circuitos. O primeiro em circuito série e o segundo em paralelo.

O experimento foi composto entre a montagem dos circuitos, a medição dos valores de tensão e corrente, e responder as questões preestabelecidas.

2 PROCEDIMENTOS EXPERIMENTAIS

2.1 Leitura do código de cores

O primeiro experimento necessitou identificar os valores de cada resistores através do código de cores como demonstra na tabela 1.

Tabela 1 – Tabela de Resistores

Resistor	Valor (Ω)
R1	10
R2	220
R3	33
R4	470
R5	1K
R6	680

Fonte: Elaborada pelos autores

Após isso utilizou-se um multímetro para medir o valor total dos resistores em série. Como demonstrado na figura 2 é possível ver que o valor total é de $2,41 \mathrm{K}\Omega$, após medir o valor equivalente do circuito, foi então disposto uma fonte, e mais um multímetro para medir o valor das tensões e da corrente no sistema.

Figura 1 – Circuito 1

Fonte: Elaborada pelos autores

Após medir os valores das tensões e corrente, foi criado uma tabela relacioanda à tensão e corrente do primeiro circuito, como demonstrado nas tabelas 2 e 3.

Tabela 2 – Corrente

Valroes medidos nos pontos do circuito (mA)								
la lb lc ld le lf lg								
4,97	4,97	4,97	4,97	4,97	4,97	4,97		

Fonte: Elaborada pelos autores

Tabela 3 – Corrente

Valores medidos nos pontos do circuito (V)							
Fonte	Fonte Vab Vbc Vcd Vde Vef Vfg						
12	0,0497	1,09	0,164	2,34	4,97	7,38	

Fonte: Elaborada pelos autores

Após realizarmos as medições no circuito em série, foi construido o circuito em paralelo e calculado o valor da resistência equivalente do circuito todo, o valor total do circuito resistivo é de 504 Ω .

Então foi recolhido todos os valores das tensões e correntes do circuitos, assim criando duas tabelas, uma com a corrente e outra com a tensão como demonstrado nas tabelas 4 e 5.

Tabela 4 – Corrente 2

Valroes medidos nos pontos do circuito (mA)								
lh	lh 17 18 19 110 111 Is							
23,8 10 5,45 3,64 2,55 2,14 5000								

Fonte: Elaborada pelos autores

Tabela 5 – Tensão 2

Valores medidos nos pontos do circuito (V)							
Fonte Vij Vkl Vmn Vop Vqr							
12	12	12	12	12	12		

Fonte: Elaborada pelos autores

3 QUESTÕES

Além de efetuarmos os experimentos foi solicitado pelos professores que resolversemos dois exercícios sobre circuitos de série e paralelo.

3.1 Questões

Questão 1: Analise os dados sobre os valores de tensões e corrente da associação série de ressitores constantes no quadro do "item 6", explicando eventuais discrepâncias destes com relação aos valores esperados para este circuito.

Resolução: Analisando os dados das tabelas de tensão e corrente, percebemos que os valores estão de acordo com a teoria, ou seja não houve discrepância.

Questão 2: Analise os dados sobre os valores de tensões e corrente da associação paralela de resistores constantes no quadro do "item 10", explicando eventuais d9iscrepãncias destes com relação aos valores esperados para este cicuito.

Resolução: Analisando os dados das tabelas observamos que os valores correspondem aos valores teóricos, portanto não houvem discrepâncias acerca deste circuito.

Questão 3: f. Pesquisar sobre ligações de resistores em Y (ou estrela) e δ (triângulo ou delta), mostrando exemplos e as relações matemáticas de transformações entre elas.

Resolução: Em algumas situações, existem associações em configurações dificeis que não são série ou paralelo. Para facilitar, existem as transformações estrela e triângulo. A associação em estrela é estabelecida através da configuração demonstrada pela figura 2. (WORLD, 2015)

1) R1 R2 (2) R3 R3 (3) (4)

Figura 2 – Associação Estrela

Fonte: EletronWorld

Capítulo 3. Questões 10

E para a associação triângulo ou delta é estabelecida uma configuração demonstrada pela figura 3.

Figura 3 – Associação Triângulo ou Delta

Fonte: EletronWorld

As transformações matemáticas de uma associação para outra é realizada pela seguinte forma.

Conversão Y - delta

 $Ra = \frac{R1R2 + R2R3 + R3R1}{2}$

 $Rb = \frac{R1R2 + R2R3 + R3R1}{R2}$

 $Rc = \frac{R1R2 + R2R3 + R3R1}{R3}$

Conversão delta - Y

 $R1 = \frac{RbRc}{Ra+Rb+Rc}$ $R2 = \frac{RcRa}{Ra+Rb+Rc}$

 $\frac{RbRb}{Ra+Rb+Rc}$ R3 =

Como demonstrado pela figura 4 podemos observar como as transformações matemáticas se aplicam nas associações.

Capítulo 3. Questões

Figura 4 – Transformação Y - Delta

Fonte: EletronWorld

4 CONCLUSÃO

Esse experimento foi utilizado para aprendermos mais com relação às medições nos circuitos série e paralelo.

Todos os testes forma conforme o esperado, por conta de ter sido efetuado em software. Portanto, com o fim deste relatório, os integrantes do grupo tem uma compreensão maior sobre o assunto de circuitos série e paralelo e sobre associações diferentes como estrela e triângulo.

REFERÊNCIAS

WORLD, E. **Conversões de resistores Y - delta**. 2015. Disponível em: https://eletronworld.com.br/eletronica/conversoes-de-resistores-y-delta-e-delta-y/. Acesso em: 16 de janeiro de 2021. Citado na página 9.