id	library/module	category	name	usage	remarks	url	備考
1	built-in	function	strip()	cats['type'] = cats['split'].map(lambda x: x[0].strip())	・strからスペースを除外する・Return a copy of the string S with leading and trailing whitespace removed.		
2	pandas	method	pd.set_option()	ex) import pandas as pd pd.set_option('max_columns',100) pd.set_option('max_rows',100)		https://qiita.com/t	anemaki/items/2e
3	pandas	method	pd.read_csv()	ex) data01 = pd.read_csv('report1516361407832.csv',encoding="cp932", dtype=np.float32) data01.head(10) ex2) # 区切りに","がついているので注意 student_data_math = pd.read_csv('student-mat.csv', sep=';') ex3) #**ット上のcsvikみ込み url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv' wine_data = pd.read_csv(url, sep=";") wine_data.head() ex4) # encodingの指定、ヘッダー、区切り文字の指定 text = pd.read_csv('http://www.cl.ecei.tohoku.ac.jp/nlp100/data/hightemp.txt', encoding='utf-8', header=None, sep='\t') text.columns = ['prefecture', 'point', 'temperature', 'date'] # ヘッダーがない場合に、csvikみ込みと同時に列名をつける場合 # ファイル読み込み data = pd.read_csv('/content/data.txt', sep='\t', header=None, names=['prefecture', 'point']) # 1列目のデータの一意な値の抽出 np.unique(data.loc[:, 'prefecture')	・読み込んだcsvlはdataframeになっている。 ・デフォルトで64bitでデータ保持しているので、dtype=np.float32とすると メモリの節約になる		
4	re		compile()	ex) p = re.compile(r"<[^>]*?>")		https://qiita.com/k	kaeruair/items/747
5	pandas	type	dataframe	ex) 列抽出 data = data[['column1', 'column2']] data.column1 #カンマ+列名を付け足すだけでも抽出できる 行抽出		https://qiita.com/k	koara-local/items/(

id	library/module category	name	usage	remarks	uri 備考	j
6	pandas method	pd.DataFrame()	ex	・exitarrayからData.Framel二変換する例 ・注文columns=[]でなくcolumns=[]として列名を指定すると、列名の並びが 指定した順でなくなる ・DataFrameオプシェクトは2次元の配列です。それぞれの列で、異なる dtype(データ型)を持たせることもできる ・DataFrameオプシェクトと同様にインデックスを変更 したり、インデックスとして文字を指定したりすることもできます ・dict型を引数にとってpd.DataFrame()する場合かつ、dictの各要素が1 個しかない場合はindex = []として行名を決めないとエラーになる ValueError: If using all scalar values, you must pass an index	https://note.nkmk.me/pythorhttp://www.mirandora.com/?	n-pandi

id	library/module	category	name	usage	remarks	url	備考
7	pandas	method	.т	from pandas import Series, DataFrame attri_data1 = {ID:[100','101','102','103','104'],	・行列を転置する	松尾研	are T
8	pandas	accessor	str	ex) df.column1.str	dataframeに使えるアクセサで、文字列を取り出す。	https://qiita.com/k	nknkn1162/items
9	pandas	method	pd.df.replace()	ex) df.replace(r'HAGE.', 'HAGEeeeee', regex=True) ex2)#DF内の値(文字列)に対して関数を適用する場合 data["open"].str.replace("\$", "") ex3) delete_dolchar = lambda x: str(x).replace("\$", "")	・正規表現を使う際はregex=Trueのおまじないが必要。 ・文字列置換	http://nekoyukimi	nm.hatenablog.co
10	selenium	webdriver	find_elements_by_c ss_selector()	ex) game_title = driver.find_elements_by_css_selector(#body-content > div > div > div > div.main-content > div > div > div.id-card-list.card-list.two-cards > div:nth-child(n) > div > div.details > a.title')	n番目の子を選択できる。:nth-child(1), :nth-child(2) などの指定も可能	http://css3.under	jp/selector/pseud
11	pandas	method	DataFrame.to_csv()	to_csv(path_or_buf=None, sep=",', na_rep=", float_format=None, columns=None, header=True, index_True, index_label=None, mode='w, encoding=None, compression='infer', quoting=None, quotechar="", line_terminator=None, chunksize=None, tupleize_cols=None, date_format=None, doublequote=True, escapechar=None, decimal='.') ex1) # header=False→ヘッゲー行なしで書き出し、index=False→行名なしで書き出し text.to_csv(text.tx', header=False, sep="\t', index=False)	・method of pandas.core.frame.DataFrame instance Write object to a comma-separated values (csv) file. ■引数 ・index 行名をファイル出力するか否か Falseだと行名を出力しない	https://pythondat	ascience.plavox.ir
12	pandas	method				https://note.nkmk	.me/python-pand
13	pandas	method	DataFrame. to_pickle ('file_name.pkl')	ex) game_list_df.to_pickle('game_list_df.pkl') #読み込む際 #test = game_list_df.read_pickle('game_list_df.pkl')		https://qiita.com/g	ulires/items/7338a
14	pandas	method	DataFrame. read_pickle ('file_name.pkl')	ex) game_list_df.to_pickle('game_list_df.pkl') #読み込む際 #test = game list df.read pickle('game list df.pkl')		https://qiita.com/g	ulires/items/7338a
15	matplotlib	method	hist()	hist(x, bins=None, range=None, density=None, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None, *, data=None, **kwargs) ex) import numpy as np import matplotlib, pyplot as plt %matplotlib inline x = np.random.normal(size = 100) plt.hist(x) plt.title("Histgram") plt.tylabel("frequency") plt.slabel("frequency") plt.show() ex2) # シードの固定 random.seed(0) # グラフの大きさ指定 plt.figure(figsize = (20, 6)) # ヒストグラムの描写 plt.hist(np.random.randn(10 ** 5) * 10 + 50, bins = 60, range = (20, 80)) plt.grid(True)	・bins→ビンの数(幅、個数)を指定 ・range→範囲を指定 ・「?plt.hist」と打つと、利用できるパラメタを確認できる	松尾研	

id	library/module	category	name	usage	remarks	url	備考
				# データを読み込む student_data_math = pd.read_csv('student-mat.csv', sep=';')			
16	pandas.plottingcore	method	hist()	# カーネル密度関数 student_data_math.absences.plot(kind='kde', style='k')			
				# 単純なヒストグラム、density=Truelこすることで、確率で表示 student_data_math.absences.hist(density=True) plt.grid(True)			
				ex) test.columns = ['rank', 'title']			
17	pandas	アクセサ	df.columns	#1列だけの場合も、[]で囲って指定しないとエラーになる tmp = pd.DataFrame(close_data_corr_by_stock.unstack()) tmp.columns = ["corr_value"]	列名を変更する	https://note.nkmk	.me/python-panda
18	pandas.core.generic	method	df.describe()	describe(percentiles=None, include=None, exclude=None) ex) train.describe(include="0") #train.describe(include="object")と同義 #小教点以下の析教を指定する場合 train.describe().round(2) #小教点以下2桁までに指定	・要約統計量を出す データ数、平均値、標準偏差、最小値、25、50、75パーセンタイル値、そ して最大値を計算 ・describeメソッドの結果は、Seriesオブジェクトに入る それぞれの要素は、describe()[インデックス番号]として取得できます。 たとえば、平均値を示す meanの値は、describe()[1]、標準偏差を示す std の値はdescribe()[2] ・include引数に要約対象のデータ型を指定できる。		ku.net/blog/40241 me/python-pand;
				ex2) #列を絞ってdescribe student data math[absences].describe()	• include = "0", include="object"でカテゴリ型?を要約対象にできる • include = "all"で全オブジェクト		
				# 四分位範囲(75%タイル — 25%タイル) student_data_math['absences'].describe()[6] - student_data_math['absences'].describe()[4]	method of pandas.core.frame.DataFrame instance Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding "NaN" values		
19	sklearn.feature_extraction.text	関数	CountVectorizer	ex) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer(min_df=1, stop_words='english')	skleamのCountVectorizerを使うとBoW(Bag of Words)の特徴量が簡単に作れます。ただし、指定するパラメタが多かったり、デフォルトで英語の文字列を想定していたりして若干とっつきづらい部分もあります。 ・min_df=1 頻繁に使われていない単語をCountVectorizerが無視する際に使う設定する値が登数→その数より出現回数が小さい単語は無視される設定する値が分数→データセットの数にその分数をかけた値を基準として、それより出現回数が小さい場合に無視する max_dfも同様 ・stop_words="	https://hayataka2	049.hatenablog.jr
					ストップワード(重要度が低く、除外する単語)を指定できる englishと指定すると予めストップワードとして登録されている318個の単 語をストップワードとして登録することができる		
20	sklearn.feature_extraction.text		TfidfVectorizer	from sklearn.feature_extraction.text import TfidfVectorizer	TFIDF計算に使えるらしい		
21	sklearn.feature_extraction.text	method	get_stop_words()	ex) sorted(vectorizer.get_stop_words())[0:20]	どのような単語がストップワードとして登録されているか見る		
22	sklearn.feature_extraction.text	method	fit_transform (corpus)	ex) corpus = ['All my cats in a row', 'When my cat sits down, she looks like a Furby toy!', 'The cat from outer space', 'Sunshine loves to sit like this for some reason.'] vectorizer = CountVectorizer() features = vectorizer.fit_transform(corpus).todense()	Learn the vocabulary dictionary and return term-document matrix.	http://scikit-learn.	org/stable/module
				print(vectorizer.vocabulary_) ex)			
23	sklearn.preprocessing.label	method	fit_transform()	from sklearn.preprocessing import LabelEncoder shops[city_code'] = LabelEncoder().fit_transform(shops[city])	•Fit label encoder and return encoded labels	https://scikit-learn	.org/stable/module
24	sklearn.metrics.pairwise		euclidean_distances	ex) from sklearn.metrics.pairwise import euclidean_distances	2点間のユークリッド距離を求める		
25	?	method	todense()	ex) features = vectorizer.fit_transform(corpus).todense()	numpy.ndarrayに変換する時はtoarray()、numpy.matrixに変換する時はtodense()を使います	https://ohke.hate	blo.jp/entry/2018/(

id	library/module	category	name	usage	remarks	url	備考
26	numpy	method	toarray()	ex) content = ["How to format my hard disc", "Hard disk format problems"] X = vectorizer.fit_transform(content) #BoWを作成 #scipy.sparse.csr.csr_matrix vectorizer.get_feature_names() #特徽量(トーケン)を表示 print(X.toarray().transpose())	numpy.ndarrayl二変換		
27	pandas	method	transpose()	ex) content = ["How to format my hard disc", "Hard disk format problems"] X = vectorizer.fit_transform(content) #BoWを作成 #scipy.sparse.csr.csr_matrix vectorizer.get_feature_names() #特徽量(トークン)を表示 print(X.toarray().transpose())	行列(配列)を転地させる	https://note.nkmk	me/python-panda
28	base	method	sorted()	sorted(iterable, /, *, key=None, reverse=False) ex) >>> sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5]	単純な昇順のソートはとても簡単です: sorted() 関数を呼ぶだけです。そうすれば、新たにソートされたリストが返されます Return a new list containing all items from the iterable in ascending order. A custom key function can be supplied to customize the sort order, and the reverse flag can be set to request the result in descending order.	https://docs.pytho	on.jp/3/howto/sorti
29	built-in	function	list()	list('cat') # ['c', 'a', 't']	・list()に文字列を入れると1文字ずつのリストを返す		
30	numpy	method	tolist()	ex) data = pd.read_csv("pokemon_go_comment.csv") corpus = data.text.values.tolist() #列名でDFからデータ抽出できる #pandas.core.series.Series → #list	pandas.DataFrame, pandas.Seriesをリスト型に直接変換するメソッドは無いため、values属性で取得できるNumPy配列ndarrayを経由して、ndarrayのtolist()メソッドでリストに変換する。	https://note.nkmk	me/python-panda
31	pandas	method	http: //kamonohashiperry. com/archives/1619 http://www.tohoho- web. com/python/operato rs.html	ex) nakamoto_test = nakamoto_corpus.sample(frac=0.1, replace=True) #pandas.core.frame.DataFrame 402行3列ほど	fracに指定した割合でデータセットからランダムにデータを抜き出す関数と思われる	http://kamonohas	shiperry.com/archi
32	演算子	その他	~	nakamoto_train= nakamoto_corpus[~nakamoto_corpus.index.isin(nakamoto_test.index)] #pandas.core. frame.DataFrame	Rでいうところの!と同じだと思う。否定を表す		hiperry.com/archi o-web.com/pythor
33	演算子	その他		=a # 正数 -a # 負数 -a # 負数 a + b # 加算 a - b # 練算 a * b # 乗算 a / b # 森を b で割った余り a ** b # a の b 乗 a // b # 切り捨て除算			o-web.com/pythor
34	DataFrame in module pandas. core.frame	parameters	index	ex) nakamoto_corpus.index train.index = pd.to_datetime(train["datetime"]) #train.indexがpandasのdatetime型 train.head()	・RのDFで言うところのrownamesみたいなもの	http://kamonohas	hiperry.com/archi
35	base	method	str.split()	str.split(sep=None, maxsplit=-1) ex) # 引数を指定しなければ、スペースで分割されます 'Guardians of the Galaxy', split() # >> ['Guardians', 'of', 'the', 'Galaxy'] #datetimeからmonthを抜き出す train["month"] = train['datetime"].apply(lambda x : int(x.split("-")[1]))	文字列を sep をデリミタ文字列として区切った単語のリストを返します	https://www.lifewi	ithpython.com/20

id	library/module	category	name	usage	remarks	url	備考
36	base	method	str.join()	= ['aaa', 'bbb', 'ccc'] s = ".join(l) print(s) s = aabbbccc s = '.'.join(l) print(s) s = aaa,bbb,ccc s = '.'.join(l) print(s) s = aaa-bbb-ccc s = 'n'.join(l) print(s) s = aaa bbb s = aaa bbb s = ccc s =	- splitの反対 - ・ 間に押入する文字列'.join([連結したい文字列のリスト]) - リストの要素を結合して文字列にする時など	https://note.nkmk	.me/python-string-
37	base	method	append()	リストオブジェクト.append(オブジェクト) ex) list = ["A", "B", "C"] list.append("D") print list # ["A", "B", "C", "D"] # リスト同士をつなげたい場合は以下も可能 ["abc', 'efg', 'efg'] + ['hij'] # ["abc', 'efg', 'hij']	・リスト型で用意されているメソッド ・オブジェクトをリストの最後に追加する	https://www.pytho	onweb.jp/tutorial/li

id	library/module	category	name	usage	remarks	url	備考
38	pandas	method	isin()	Series isin(values) ex	*DFに対して、リスト内にある値のみの行に絞る場合に使う Rのdplyr::filter(%in%)に近い Check whether values are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of values exactly.	https://pandas.pydata.org https://cmdlinetips.com/20	
39	pandas	method	info()	ex) nakamoto_corpus.info()	・すべての変数について、nullでないデータの個数や変数の型がわかる	https://note.nkmk.me/pyth	non-panda
40	base	method	help()	ex) help(sum)→OK help(info)→エラー help(nakamoto_test.info)→ヘルプが表示される	関数のヘルプを表示する。組み込み関数は関数名(括弧はつけない)を引数にすればOK。組み込み以外の関数は、インスタンス、関数名を引数にとる必要がある。		
41	base	method	len()	ex) I = [0, 1, 2, 3] print(len(l)) #4	リストの要素数確認ができる。	https://note.nkmk.me/pyth	hon-list-le
42	gensim	class?	corpora.Dictionary()	ex) dictionary = corpora.Dictionary(texts) print(dictionary) #Dictionary(15889 unique tokens: ['69', 'ペロリン', '反則', '飴ちゃん', '製麺'])	gensimでLDAを行う際の辞書作成ができる。辞書には単語とIDのマッピングが含まれている。	http://sucrose.hatenablog	ı.com/entr
43	gensim.corpora.dictionary	method	doc2bow	ex) #コーパスを作成 corpus = [dictionary.doc2bow(text) for text in texts] #list corpus_test = [dictionary.doc2bow(text) for text in texts_test]	Convert 'document' (a list of words) into the bag-of-words format = list of '(token_id, token_count)' 2-tuples. Each word is assumed to be a "*tokenized and normalized** string (either unicode or utf8-encoded). No further preprocessing is done on the words in 'document'; apply tokenization, stemming etc. before calling this method		

id	library/module	category	name	usage	remarks	url	備考
44	gensim.models.ldamodel	class?	gensim.models. Idamodel. LdaModel()	ex) #LDA の計算 topic_N = 1 + iterations parameters = topic_N Ida = gensim.models.ldamodel.LdaModel(#gensim.models.ldamodel.LdaModel corpus=corpus, alpha='auto', num_topics=topic_N, id2word=dictionary)	LDAのトピックモデル推定を行う		
45	gensim.models.ldamodel	method	lda.show_topics()	show_topics(num_topics=10, num_words=10, log=False, formatted=True) ex) lda.show_topics() #(00, "0.011*"円" + 0.010"麻婆豆腐" + 0.009*"方" + 0.008*"汗" + 0.008*"一" + 0.008*"前" + 0.007*"好き" + 0.007*"感じ" + 0.007*"席" + 0.006*"気"), (1, "0.009*"メニュー" + 0.008*"1" + 0.008*"感じ" + 0.008*"蒙古タンメン中本" + 0.008*"" + 0.007*"方" + 0.00	トピックごとの上位単語をリスト形式で返す The topics are returned as a list a list of strings if 'formatted' is True, or a list of '(word, probability)' 2-tuples if False.	https://qiita.com/	shizuma/items/44
46	pandas	インディケータ?	iloc()	ex) test = industry_market.iloc[:,1:]	DFから行、列指定でデータを切り出す		
47	pandas.core.reshape.concat	function	pd.concat()	concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True) ex) pd.concat([df_1, df_2], axis=1) #デフォルトでは行方向(bind_rows)に結合。sort=TRUEで結合されていない軸(今回は列)でのsortを行うdat = pd.concat([train,test],sort=True).reset_index(drop=True) ex2)複数DFを結合する場合 ※結合対象のDFは[内で指定する必要があるdat = pd.concat([dat_1987, dat_1988, dat_1989])	DFを結合する *axis=1で横方向(bind_cols)。何も指定しないと(おそらく)縦方向 *sort=TRUEで結合されていない軸名(今回は列名)でのsortを行う DF結合の方法いろいろ https://pandas.pydata.org/pandas-docs/stable/user_guide/merging. html	https://pandas.py	rdata.org/pandas-
48	-	記法	if文	if 条件式1:			s.me/python-if-elif. angogirls.org/ja/py

id	library/module	category	name	usage	remarks	url	備考
49	numpy	method	arange()	ex) np.arange(start=1, stop=6, step=1) #array([1, 2, 3, 4, 5]) #0~8までの整数 np.arange(9) ex2) # pの値を0.001から0.999まで0.01刻みで動かす p = np.arange(0.001, 0.999, 0.01) # グラフ化 plt.plot(p, calc_entropy(p)) plt.ylabel('prob') plt.ylabel('prob') plt.ylabel('arropy') plt.grid(True)	・指定した連続した整数を発生する ・スタートがnで差分がmの等差数列を作る。stopの番号は数列に含まれないので注意		
50	gensim.models.ldamodel	method	lda.show_topic()	show_topic(topicid, topn=10) ex) word_series = pd.DataFrame(lda.show_topic(i)).iloc[:, 0] #lda.show_topic(i)でi番目のトピックの上位10単語と割合を出す	トピックに属する上位n単語と確率を返す Return a list of `(word, probability)` 2-tuples for the most probable words in topic `topicid`. Only return 2-tuples for the topn most probable words (ignore the rest).		
51	progressbar	-	ProgressBar()	<pre>import progressbar import time min = 0 max = 100 prog_bar = progressbar.ProgressBar(min, max, widgets=[progressbar.CurrentTime(), '', '(', progressbar.Counter(), ' of {}} '.format(100), progressbar.Bar(), '', progressbar.ETA(),]) for i in range(0, 100): prog_bar.update(i) time.sleep(1)</pre>	ループの進捗確認ができる	https://qiita.com/a	thiziri/items/f1621
52	-	記法	try-except文	ex) for topic_count in range(0, topic_number): try: result_parts.append(topic_distribution[document_count][topic_count][1]) except IndexError: #稿にトピック割合が0のものがあり、タブルにデータそのものがないので 「IndexError: list index out of range」になる result_parts.append(0) #トピックについての割合がない場合にはトピック割合に0を代入	例外処理	https://www.sejul	ku.net/blog/23044
53	nitk.stem.snowball	method	stem()	ex) #ステミング from nltk.stem.snowball import SnowballStemmer stemmer = SnowballStemmer("english") stemmer.stem("dogs are running") ex2) #文章を入れたら全部ステミングして返す関数 def sentence_stemmer(sentence): #sentence例 "dogs are running" stemmer = SnowballStemmer("english") word_list = sentence.split() n = len(word_list) output = [] for i in range(0, n): output.append(stemmer.stem(word_list[i])) return output	単語を入れるとステム化した文章を返す stem(word) method of nltk.stem.snowball.EnglishStemmer instance Stem an English word and return the stemmed form. :param word: The word that is stemmed. :type word: str or unicode :return: The stemmed form. :rtype: unicode	http://www.nitk.o	rg/api/nltk.stem.ht

id	library/module	category	name	usage	remarks	url	備考
54	-	記法	def文	ex) #文章を入れたら全部ステミングして返す関数 def sentence_stemmer(sentence): #sentence例 "dogs are running" stemmer = SnowballStemmer("english") word_list = sentence.split() n = len(word_list) output = [] for i in range(0, n): output.append(stemmer.stem(word_list[i])) return output # 掛け算をする関数 def calc_multi(a, b): return a " b # 再帰関数の例(フィボナッチ数) def calc_fib(n): if n == 1 or n == 2: return 1 else: return calc_fib(n - 1) + calc_fib(n - 2)	関数定義 ・次に示す関数は、フィボナッチ数を計算する例です。フィボナッチ数列とは、一歩手前と二歩手前の数を足して並べた数列のことをいいます(1, 1, 2, 3, 5と前と前々の数字を足して、その数を並べたもの)。以下の関数calc fiblは、再帰と言って、自分の関数を中で呼び出しており、n番目のフィボナッチ数を作成しています。	https://qiita.com/moto	oki1990/items/
55	selenium	method	execute_script()	ex) driver.execute_script("window.scrollTo(0, document.body.scrollHeight)") #ページ最下部までスクロールする	ブラウザ上でjavscriptを実行する	https://stackoverflow.	com/question
56	base	関数	str()	ex) str(3040)	文字列変換	https://tutorial.django	girls.org/ja/py
57	base	メソッド	list.pop()	ex) >>> print(lottery) [59, 42, 30, 19, 12, 3, 199] >>> print(lottery[0]) 59 >>> lottery.pop(0) 59 >>> print(lottery) [42, 30, 19, 12, 3, 199]	リストの指定した値を削除する なお、辞書の値を削除するのにも同様のメソッドが使える Remove the item at the given position in the list, and return it. If no index is specified, a.pop() removes and returns the last item in the list. (The square brackets around the i in the method signature denote that the parameter is optional, not that you should type square brackets at that position. You will see this notation frequently in the Python Library Reference.)	https://docs.python.o	rg/3/tutorial/da
58	base	演算子	and / or	ex) >>> 6 > 2 and 2 < 3 True >>> 3 > 2 and 2 < 1 False >>> 3 > 2 or 2 < 1 True	and – and の左辺と右辺が共にTrueの場合のみ、True。 or – or の左辺あるいは右辺の少なくとも1つがTrueの時、True。	https://tutorial.django	girls.org/ja/py
59	base	関数	range()	ex) for i in range(1, 6): print(i) #1~5の数字が表示される # range(N)とすると0からN-1までの整数 for i in range(11): print(i) # range(1, 11, 2)は1から開始して2つ飛ばしで、11の手前まで取り出す for i in range(1, 11, 2): print(i)	range 関数は、連続する数値を要素とするリストを作ります。引数に指定した開始の数値から終了の数値までのリストです。 2つ目の引数(終了の数値)は、リストに含まれないことに注意してください。 つまり、range(1, 6) は、1から5のことであり、6は含まれません。	https://tutorial.django	girls.org/ja/py
60	仮想環境	仮想環境	virtualenv	ex) #仮想環境の作成 \$ python3 -m venv myvenv #仮想環境の起動 \$ source myvenv/bin/activate	LinuxやOS Xでvirtualenvを作るときは、python3 -m venv myvenvと実行するだけ	https://tutorial.django	girls.org/ja/djɛ

id	library/module	category	name	usage	remarks	uri 備考
					webサーバの起動	
61	Django	Django	manage.py runserver 0:8000	ex) (myvenv) ~/djangogirls\$ python manage.py runserver 0:8000	Webサーバーが稼働している間は、追加のコマンドを入力するための新しいコマンドラインプロンプトは表示されません。新しいテキストを受け入れますが、新しいコマンドは実行しません。これは、Webサーバーが動作している間はずっとリクエストを待つためです。 Webサーバーの実行中に追加のコマンドを入力するには、新しいターミナルウィンドウを開き、virtualenvをアクティブにします。Webサーバーを停止するには、実行中のウィンドウに戻り、CTRL + C - ControlキーとCキーを同時に押します(WindowsではCtrl + Breakキーを押す必要があります)	https://tutorial.djangogirls.org/ja/dja
62	(git)	(git)	(git)	ex) #gitリポジトリの初期化 \$ git init #状態の確認 \$ git status #このディレクトリ内の変更を全て反映させる \$ git addall . \$ git commit -m "My Django Girls app, first commit" #自分のコンピューター上のGitリポジトリをGitHub上のGitリポジトリに結びつける \$ git remote add origin https://github.com/1kum1/my-first-blog.git #リモートレポジトリー追加 \$ git push -u origin master #変更部分をpush \$ git push	gitリポジトリを初期化することは、プロジェクトごとに1回だけ行う必要があります(ユーザー名と電子メールをもう一度入力する必要はありません) git statusコマンドは、あらゆる追跡されていない/変更されている/ステージされている(untracked/modifed/staged)ファイルや、ブランチの状態などさまざまな情報を返します。 コミットメッセージは"で囲む	https://tutorial.djangogirls.org/ja/de https://tutorial.djangogirls.org/ja/htr
63	(git)	(git)	gitingnore		Git はこのディレクトリ内のすべてのファイルとフォルダの変更を追跡しますが、無視してほしいいくつかのファイルがあります。ベースディレクトリ内で、gitignore という名前のファイルを作成することによってこれを行います。 ・隠しファイルの一つ 。gitignoreファイルに記載されたファイル及びディレクトリは変更してもgit に追跡されない	https://tutorial.djangogirls.org/ja/de
64	pandas.core.frame.DataFrame	method	df.isnull()	ex) train.isnull().head() ex2)特定列の欠損値除外 #CustomerIDにデータが入っているレコードのみに絞る excel_data_2 = excel_data[~excel_data.CustomerID.isnull()] #それぞれの行にNaNがいくつあるかの確認 train.isnull().sum(axis = 1).head() #それぞれの列にNaNがいくつあるかの確認 train.isnull().sum(axis = 0).head()	・DFと同じサイズの論理値のDFを返す Return a boolean same-sized object indicating if the values are NA. NA values, such as None or :attr: 'numpy.NaN', gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ''''' or :attr: 'numpy.inf' are not considered NA values (unless you set ''pandas.options.mode.use_inf_as_na = True'').	
65	pandas	method	Series.notnull()	ex) trans = trans[(trans.cancel_flg == '5') & (trans.CustomerID.notnull())]	•Detect existing (non-missing) values.	
66	組み込み	function	sum()	ex) train.isnull().sum()	・DFに適用するとseriesを返す	
67	pandas.core.frame	method	df.rename()	ex)	・DFの列名を変更する ・rename()メソッドの引数indexおよびcolumnsに、{元の値: 新しい値}のように辞書型で元の値と新しい値を指定する	https://note.nkmk.me/python-panda

i	d	library/module	category	name	usage	remarks	url	備考
					fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs) ex) train["Age"] = train["Age"].fillna(train["Age"].median())			più · J
6	pandas	.core.series	method	DF.fillna()	ex2) #直前の値で埋める #金融系のデータなどで使えるらしい df.fillna(method = 'ffill')	・seriesの欠損値をfillna()の括弧内で指定した値で埋める		
					#平均値で穴埋めする場合 df.fillna(df.mean())		https://doopago.p	et/features/pandas
6	9 pandas	.core.series	method	DF.ffill()	fx_jpusdata.resample('D').ffill().head()	・前のデータで穴埋めする	松尾研	et/leatures/panuas
		.DataFrameの基本操作(列	その他	-	#較定の1列を指定してsoriesとして取り出す #3列目を取り出す ば frain sur. age = df_train_sur.iloc[:,2] #列番号は0始まり #1~5行目を取り出す reserve to. lioc[:,0:6] #列名指定で取り出す attm_data_frame_1.Birth_year # indexの値で指定してDFとして取り出す matrix[matrix.index == 2262708] #検定の1列を指定してarrayとして取り出す #複模数列を指定してndarrayとして取り出す #複数列を指定してndarrayとして取り出す #複数列を指定してndarrayとして取り出す #複数列を指定してndarrayとして取り出す #表tudent = pd_read_csv('student-mat.csv', sep=';') X = student.loc[:,[age,'.Medu','Fredu','traveltime', 'studytime'	・df.query()もDFからのデータ抽出に使える	https://cmdlinel http://pandas.py https://signate.h	i ps.com/2018/02/ data.org/pandas-2-dicompetitions/2-didora.com/?p=180 s.me/python-panda

id	library/module	category	name	usage	remarks	url	備考
71	DFの基本操作(行に対するもの)	その他	-	#特定の1行を指定してSeriesとして取り出す df_train.iloc[2] #行番号はの始まり #行番号を指定してデータ抽出 df_train.iloc[[0, 1, 2]] #行番号はの始まり #[]の中がarrayであること #行名を指定してデータを切り出す dat.index = pd.to_datetime(dat["datetime"]) #行名をつける dat = dat_reset_index(drop=True) #行番号を指定してデータを取り出す #0-2行目まで data.loc[0:2, :] #特定の行にデータを代入 tr.loc[train_index,"tt"] = 1 #tt列を追加して、train_index(intのarray)で指定した行に1を代入 tr.loc[train_index,"tt"] = 0 #tt列を追加して、test_indexで指定した行に0を代入 #nullを含む行のみ抽出 #df_trainのEmbarked列の値がnullの行のみ抽出 df_train.Embarked[df_train.Embarked.isnull()] #nullを含む行のみ除外 #trip_minutesがNAの行を除外 dat_mod = dat[~dat.trip_minutes.isnull()] #条件を指定してデータ抽出 trans = trans[(trans.cancel_fig == '5') & (trans.CustomerID.notnull())] #(時系列)特定の月を抽出 #indexがtimestamp型の場合、以下で特定月のレコードが抽出可能 time_series['2016-11'] df = df['2015-01-01':2015-12-31'] # 期間指定したい場合	・df.query()もDFからのデータ抽出に使える ・pandas.Seriesの値をndarray(配列)などの型にして返す	http://pandas.pyc https://signate.jp/	lata.org/pandas-d competitions/24/ti dora.com/?p=180
72	pandas.Series	attribute	pandas.Series. values	ex) target = train["Survived"].values features one = train["Pclass", "Sex", "Age", "Fare"]].values	Return Series as ndarray or ndarray-like depending on the dtype.	https://pandas.py	data.org/pandas-
73	sklearn.tree.tree	class	DecisionTreeClasso foer	ex) from sklearn import tree #「train」の目的変数と説明変数の値を取得 target = train["Survived"].values #numpy.ndarray features_one = train[["Pclass", "Sex", "Age", "Fare"]].values #numpy.ndarray # 決定木の作成 my_tree_one = tree.DecisionTreeClassifier() my_tree_one = my_tree_one.fit(features_one, target) # 「test」の説明変数の値を取得 test_features = test[["Pclass", "Sex", "Age", "Fare"]].values # 「test」の説明変数を使って「my_tree_one」のモデルで予測 my_prediction = my_tree_one」のモデルで予測 my_prediction = my_tree_one」のモデルで予測	- 1次元であればベクトル、2次元であれば行列のような形式で返す		n.org/stable/modu xa.net/kaggle-tita
74	numpy	built-in function array in module numpy	np.array()	array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0) ex) PassengerId = np.array(test["PassengerId"]).astype(int) #numpy.ndarray #配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) # それぞれの数字を係数倍(ここでは2倍) data * 2 # それぞれの要素同士での演算 print(掛け算:, np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) * np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])) print("果果:', np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) * 2) print("即算:', np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) / np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])) #3行3列の配列を作成 matrix = np.array([[1,-1,-1], [-1,-1,1])	creat an array ・Pythonにおいて、Numpyではない、ふつうの配列(リスト)の、すべての要素を係数倍にするには、forを使ったルーブ処理が必要です。しかしNumpyの場合は、たとえば2倍にするのであれば、配列に対して「*2」と記述するだけで、すべての要素が2倍になりま	松尾研	

id	library/module	category	name	usage	remarks	url	備考
75 76	numpy pandas.core.tools.datetimes	category method	name array.astype() pd.to_datetime()	wage array.astype(dtype, order="K", casting="unsafe", subok=True, copy=True) ex) PassengerId = np.array(test["PassengerId"]).astype(int) ex2) dat["precipitation"] = dat["precipitation"].apply(lambda x : -1 if x=="" else x).astype(np.float) to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=False) Convert argument to datetime. ex) #train.index Catetime列の値をdatetime型にして入れる train.index = pd.to_datetime(train["datetime"]) train.head() ex) #特定列を日付型に変換 reserve_tb["reserve_datetime"] = pd.to_datetime(reserve_tb["reserve_datetime"], format="%Y-%m-%d %H:%M:%S") #文字列を日付型に変換 dat["month"] = pd.to_datetime(dat["month"], format="%Y-%m-%d") #年在取得 **程序取得 reserve_tb["reserve_datetime"].dt.month #日を取得 reserve_tb["reserve_datetime"].dt.day ##曜日(0:日曜日、1:月曜日)を数値で取得 reserve_tb["reserve_datetime"].dt.day ##曜日(0:日曜日、1:月曜日)を数値で取得 reserve_tb["reserve_datetime"].dt.day ##曜日(1:日曜日、1:月曜日)を数値で取得 reserve_tb["reserve_datetime"].dt.hour reserve_tb["reserve_datetime"].dt.time #日付部分のみ取得	*method of numpy.float64 instance *method of numpy.ndarray instance *Copy of the array, cast to a specified type to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, utc=None, box=True, format=None, exact=True, unit=None, infer_datetime_format=False, origin='unix', cache=False) Convert argument to datetime.	前処理大全	備考 low.com/question
77	pandas.core.accessor	method	strftime()	excel_data2["InvoiceDate"].dt.date # add month column dat['month'] = dat['date'].dt.strftime('%Y-%m-01') #月初の日付に直したい場合	・datetime型から文字列へ変換する	前処理大全 P239	
78	pandas.core.series	method	series.apply()	dat month = dat date dt. striume(%1-%m-01) #月初の日刊に直じたい場合 ex) # groupbyによるグルーピングとの併用 f_max = lambda x: x.rolling(window=3, min_periods=1).max() #起点月含む過去3ヶ月の最大値 train_monthly(('item_cnt_ %s' % 'max')] = train_monthly,sort_values('date_block_num').groupby (['Shop_id', 'item_category_id', 'item_id'])['item_cnt'].apply(f_max) ※列追加するだけで、mappingできてないように見えるが、ちゃんとmappingできている	-Invoke function on values of Series 配列の値に関数を呼び出す	https://www.kaggl	e.com/dimitreolive

id	library/module	category	name	usage	remarks	url	備者
79	lambda式 (無名関数)		lambda式 (無名関 数)	ex) def add_def(a, b=1): return a + b add_lambda = lambda a, b=1: a + b train["precipitation"] = train["precipitation"].apply(lambda x : -1 if x == "" else float(x)) train["month"] = train["datetime"].apply(lambda x : int(x.split("-")[1])) ex2) sns.heatmap(cross_cluster_age.apply(lambda x : x/x.sum(), axis=1), cmap='Blues') ex3) # calc_multill数を定義 def calc_multi(a, b): return a * b # それを実行 #30 calc_multi(a, 10) #lambda式の場合 (lambda a, b: a * b)(3, 10) #30	ここでlambda a, b:というのが、関数名(a, b)に相当する部分です。そして: で区切って、その関数の処理(ここではreturn a * b)を記述するというのが、無名関数の基本的な書き方です。 無名関数は、リストなどの要素に対して何か関数を実行したいときに、よく使います。	https://note.nkmk.me	e/python-lambo
80	functools	function	reduce()	list(map(lambda x : x * 2, [1, 2, 3, 4])) from functools import reduce def do_sum(x1, x2): return x1 + x2 reduce(do_sum, [1, 2, 3, 4])	Apply a function of two arguments cumulatively to the items of a sequence, from left to right, so as to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates ((((1+2)+3)+4)+5). If initial is present, it is placed before the items of the sequence in the calculation, and serves as a default when the sequence is empty 関数を適用した結果にさらに関数を適用し、ベクトルからスカラーに減らす	https://thepythonguru	J.com/python-l
81	built-in	function	fiiter()	Example 1: How filter() works for iterable list? #list of alphabets alphabets = ['a', 'b', 'd', 'e', 'r', 'j', 'o'] # function that filters vowels def filter/Owels(alphabet): vowels = ['a', 'e', 'i', 'o', 'u'] if(alphabet in vowels): return True else: return False filtered/owels = filter(filter/Owels, alphabets) print('The filtered vowels are:') for vowel in filtered/owels: print(vowel) Example 2: How filter() method works without the filter function? # random list randomList = [1, 'a', 0, False, True, '0'] filteredList = filter(None, randomList) print('The filtered elements are:') for element in filteredList: print(element)	・フィルタリングする関数を引数にとると、フィルタリングした結果を返す・フィルタリングする関数を引数にとらない場合は、True、Falseで絞った結果を返す	https://www.program	iz.com/python-

id	library/module	category	name	usage	remarks	url	備考
82	matplotlib.pyplot	function	plt.subplots()	subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw) ex) fig, ax = plt.subplots(2,3,figsize=(9,6)) #figは白紙のグラフ、axは各グラフのindex train.plot.scatter(x="soldout", y="y", ax=ax[0][0]) train.plot.scatter(x="kcal", y="y", ax=ax[0][1]) train.plot.scatter(x="precipitation", y="y", ax=ax[0][2]) train.plot.scatter(x="payday", y="y", ax=ax[1][0]) train.plot.scatter(x="memperature", y="y", ax=ax[1][1]) train.plot.scatter(x="memperature", y="y", ax=ax[1][2]) plt.tight layout()	Create a figure with a set of subplots already made.	S.I.	C. and
83	built-in	function	dir()	ex) fig, ax = plt.subplots(2,3,figsize=(9,6)) dir(plt.subplots(2,3,figsize=(9,6)))	 ・変数のattribute等の一覧を返す If called without an argument, return the names in the current scope. Else, return an alphabetized list of names comprising (some of) the attributes of the given object, and of attributes reachable from it. 		
84	一括コメントアウト(Jupyter)	-	-	macなら command + /			
85	pandas.plottingcore	method	df.plot.scatter()	scatter(x, y, s=None, c=None, **kwds) ex) fig, ax = plt.subplots(2,3,figsize=(9,6)) train.plot.scatter(x="soldout", y="y", ax=ax[0][0]) train.plot.scatter(x="kcal", y="y", ax=ax[0][1]) train.plot.scatter(x="precipitation", y="y", ax=ax[1][0]) train.plot.scatter(x="payday", y="y", ax=ax[1][0]) train.plot.scatter(x="month", y="y", ax=ax[1][1]) train.plot.scatter(x="month", y="y", ax=ax[1][2]) plt.tight_layout() ex2) import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') df_train_sur = df_train_proc_dn[df_train_proc_dn.Survived==1] df_train_sur_age = df_train_sur.iloc[:,2] df_train_sur_s = df_train_sur.iloc[:,6] plt.scatter(df_train_sur_age,df_train_sur_s,color="#cc6699",alpha=0.5)	・Create a scatter plot with varying marker point size and color 散布図を描く	http://www.miran	dora.com/?p=180
86	seaborn.categorical	function	sns.boxplot()	boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs) ex) fig, ax = plt.subplots(2,2,figsize=(12,7)) sns.boxplot(x="week",y="y",data=train,ax=ax[0][0]) sns.boxplot(x="week",y="y",data=train,ax=ax[0][1]) sns.boxplot(x="eweather",y="y",data=train,ax=ax[1][0]) ax[1][0].set_xticklabels(ax[1][0].get_xticklabels(),rotation=30) sns.boxplot(x="event",y="y",data=train,ax=ax[1][1]) plt.tight_layout() ex2) #3つの箱ひげ図を同時に描く場合 # 箱ひげ図:G1,G2,G3 plt.boxplot([student_data_math['G1'], student_data_math['G2'], student_data_math['G3']]) plt.grid(True)	・Draw a box plot to show distributions with respect to categories. 箱ひげ図を描く ・データに外れ値がある場合、それが省かれて、箱ひげ図が表示されるので注意 ・外れ値はデフォルトで指定されており、それを取り除いた場合のグラフが表示される		
87	matplotlib.axesbase	method	ax.set_xticklabels()	set_xticklabels(labels, fontdict=None, minor=False, **kwargs) ex) fig, ax = plt.subplots(2,2,figsize=(12,7)) sns.boxplot(x="week",y="y",data=train,ax=ax[0][0]) sns.boxplot(x="weether",y="y",data=train,ax=ax[0][1]) sns.boxplot(x="remarks",y="y",data=train,ax=ax[1][0]) ax[1][0].set_xticklabels(ax[1][0].get_xticklabels(),rotation=30) #x軸ラベルを斜めに表示 sns.boxplot(x="event",y="y",data=train,ax=ax[1][1]) plt.tight_layout()	Set the xtick labels with list of strings *labels*. Return a list of axis text instances.		

id	library/module	category	name	usage	remarks	url	備考
88	matplotlib.axesbase	method	ax.get_xticklabels()	get_xticklabels(minor=False, which=None) ex) fig, ax = plt.subplots(2,2,figsize=(12,7)) sns.boxplot(x="week",y="y",data=train,ax=ax[0][0]) sns.boxplot(x="weather",y="y",data=train,ax=ax[0][1]) sns.boxplot(x="remarks",y="y",data=train,ax=ax[1][0]) ax[1][0].set_xticklabels(ax[1][0].get_xticklabels(),rotation=30) #x軸ラベルを斜めに表示 sns.boxplot(x="event",y="y",data=train,ax=ax[1][1]) plt.tight layout()	Get the x tick labels as a list of :class:`~matplotlib.text.Text` instances.		
89	scipy.stats.morestats	function	median_test()	median_test(*args, **kwds) ex) from scipy, stats import median_test stat.p,med.tbl = median_test(train[train["fun"]==1]["y"],train[train["fun"]==0]["y"]) print("p",p, "stat",stat)	-Mood's median test	https://docs.scipy	.org/doc/scipy/ref
90	built-in	method	find()	ex) #nameにカレーが入っていたら1、入ってなければ0を返す train["curry"] = train["name"].apply(lambda x : 1 if x.find("カレー")>=0 else 0) sns.boxplot(x="curry",y="y",data=train)	-method of builtins.str instance -S.find(sub[, start[, end[]) -> int -Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation.		
91	markdownでインデントをつける	その他	その他	ex) * 方針としては日数が経過するにつれて減衰している為、売上数と日数の単回帰モデルを軸に検討する * 但し、2014-05以前はやや傾向が異なる為、学習データから除く * 他、表染しみメニューやカレー等は大きく寄与はしていそうだが、非線形な関係であることも考慮し、Random Forestを用いて単回帰モデルの結果を修正するモデルも作成し、予測結果を導出することにする	・入れ子はインデントで表現する。タブ1つまたは半角スペース4つで認識する	https://qiita.com/h	niguma/items/334
92	built-in	function	リストobj.index()	>>> l = [1, 3, 5, 2, 5] # 最大値のインデックス >>> l.index(max(l)) 2	・リストの最大値、最小値を取得したい場合		s.tech/learn_prog
93	sklearnのバージョン確認	その他	version	import sklearn print(sklearn version) # 0.17.1		https://algorithm.	oho.info/machine
94	condaとpip:混ぜるな危険	その他	-	#自分の環境のパッケージー覧を表示 !conda list #パッケージを探す !conda search scikit-learn		http://onoz000.ha	itenablog.com/ent
95	sklearn.linear_model.base	class	LinerRegression() LR()	ex) >>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) >>> # y = 1 * x_ 0 + 2 * x_ 1 + 3 >>> y = np.dot(X, np.array([1, 2])) + 3 >>> reg = LinearRegression().fit(X, y) >>> reg.score(X, y) 1.0	 LinerRegressionクラスを作成する関数 LR()、LinerRegression()はおそらく同義 		

id	library/module	category	name	usage	remarks	url	備考
96	總形同編公析七十十八		線形回帰分析をしたい	from skleam import linear_model # 線形回帰のインスタンスを生成 reg = linear_model.LinearRegression() # 説明変数に "一期目の数学の成績" を利用 # locはデータフレームから、行と列を指定して取り出す。loc[:, ['G1']]は、G1列のすべての列を取り出すことをしている # valuesl:直しているので、注意 X = student_data_math.loc[:, ['G1']].values # 目的変数に "最終の数学の成績" を利用 Y = student_data_math['G3'].values # 予測モデルを計算、ここでa,bを算出 reg.fit(X, Y) # 回帰係数 print('回帰係数:', reg.coef_) # 切片 print('切片:', reg.intercept_) # 先ほどと同じ散布図 plt.xdabel('G1 grade') plt.ylabel('G3 grade') # その上に線形回帰直線を引く plt.ylabel('G3 grade') # 大の上に線形回帰直線を引く plt.plt(True) # 決定係数、寄与率とも呼ばれる print('決定係数、, reg.score(X, Y))	・YY、つまり予測したい最終の数学の成績G3は、predictを使って、括弧の中に説明変数を入れることで計算できます	松尾研	
97	重回帰分析をしたい	重回帰分析をしたい	重回帰分析をしたい	# データ分割(訓練データとテストデータ)のためのインボート from sklearn.model_selection import train_test_split # 重回帰のモデル構築のためのインボート from sklearn.linear_model import LinearRegression # 目的変数にpriceを指定、説明変数にそれ以外を指定 X = auto.drop('price', axis=1) y = auto['price'] # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) # 重回帰クラスの初期化と学習 model = LinearRegression() model.fit(X_train,y_train) # 決定係数を表示 print('決定係数(test);{:.3f}'.format(model.score(X_train,y_train))) print('决定係数(test);{:.3f}'.format(model.score(X_test,y_test))) # 回帰係数と切片を表示 print('\nolRegyn(S)'.format(pd.Series(model.coef_, index=X.columns))) print(''切し帰係数い(S)'.format(model.intercept_))	・訓練時スコアとテスト時のスコアが近い場合、モデルは過学習に陥ってはいないと思われます ■モデル構築とモデル評価の流れまとめ ※決定木やSVMなどでも同じ ・各種モデル構築のためのクラスのインスタンス化: model = LinearRegression() ・データを説明変数と目的変数に分ける: XX と yy ・訓練データとテストデータに分ける: train_test_split(X, y, test_size=0.5, random_state=0) ・訓練データによるあてはめ(学習): model.fit(X_train, y_train) ・モデルの汎化性能をテストデータで確かめる: model.score(X_test, y_test)	松尾研	
98	回帰モデルの評価をしたい	回帰モデルの評 価をしたい	回帰モデルの評価を したい		- URL参照 - sklearn.metrics.SCORERS.keys() これで使える指標がわかる	https://scikit-learr	n.org/stable/module

id	library/module	category	name	usage	remarks	url	備者
99			ロジスティック回帰を したい	from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.processing import StandardScaler #ixing sylvarian.processing import StandardScaler #ixing sylvarian.processing import StandardScaler #ixing sylvarian, y_test_etain_test_split(X, y, test_size=0.5, random_state=0) #ixing std = y.train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) #ixing std = y.train, y_test, y_train	・高い性能が発揮されるのは線形分離可能なクラスに対してのみ・スケーリングによる予測特度の向上例えば、このモデルではage、fnlwgt、education-num、capital-gain、capital-losの5つの説明変数を使っていますが、それぞれの単位や大きさに異なっているこのままだとモデルの学習が値の大きな変数に引っ張られ値の小さな変数の影響が小さなる懸念があるそうならないようにするため、説明変数の標準化を実施し、説明変数の尺度を揃えることで、機械学習のアルゴリズムをよりうまく動作させられる・スケーリングには訓練データの平均値と標準偏差を使うテストデータの平均値、標準偏差を使ってはいけないテスト用データは将来手に入るであろう未知データという位置づけであるため・Scikit-learnのロジスティック回帰はデフォルトでマロで到化項が損失関数に含まれている(リッジ回帰)・ロジスティック回帰のパラメータチューニングの例れけたが、Myww、kaggle、com/joparga3/2-tuning-parameters-for-logistic-regression Cの値を大きくし、正則化を弱めると、より複雑なモデルになり訓練データによくfitするようになる	松尾研	าเตศจ
100	リッジ回帰をしたい	リッジ回帰をしたい	リッジ回帰をしたい	※次のプログラムは、LinearRegressionクラスを使った重回帰モデル(linear)とRidgeクラスを使ったリッジ 回帰モデル(ridge)を作り、その結果を比較するもの	・リッジ回帰についてはterm memory参照	松尾研	

id	library/module	category	name	usage	remarks	url	備考
101			ラッソ回帰をしたい	# ラッソ回帰と重回帰の比較 # ラッソ回帰についてはパラメータを2種類試している from sklearn.linear_model import LinearRegression, Lasso X = auto.drop('price', axis=1) y = auto['price'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) models = { 'linear': LinearRegression(), 'lasso1': Lasso(alpha=1.0, random_state=0), 'lasso2': Lasso(alpha=200.0, random_state=0) } scores = {} for model_name, model in models.items(): model.fit(X_train,y_train) scoress[(model_name, 'train')] = model.score(X_train,y_train) scores[(model_name, 'train')] = model.score(X_test, y_test) pd.Series(scores).unstack()	・ラッソ回帰についてはterm memory参照	https://scikit-learn.	
102	決定木のモデル構築がしたい	決定木のモデル構築がしたい	決定木のモデル構築 がしたい	SubscriptionTreeClasifierクラスを使う際、パラメータのcriteroin("entropy"を指定することで、分岐条件の指標としてエントロピーを設定しています	・決定木についてはterm memory参照 ・ skleam.treeモジュールのDecisionTreeClassifierクラスを使うことで、決 定木モデルを構築できます ・ 決定木の分岐数決定のパラメータにmax_depthがあり、上記では5にしています。深ければ当然、条件分岐数の上限も増えます ・ 正解率を高めるべくより複雑なモデルにしたい場合は深い木を作ればよいでしょう (ただし、あまり深い木を作ると過学習の危険性が増すので注意しましょう) ・ 決定木は、モデルを構築する際に他のモデルでは必須となる標準化処理をしなくても結果は変わりません。	松尾研 https://scikit-learn.	.org/stable/module

id	library/module	category	name	usage	remarks	url	備考
103	skleam.metrics.classification	function	log_loss()	log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None) ex) # For convenience we will use skleam's GBM, the situation will be similar with XGBoost and others ctf = GradientBoostingClassifier(n_estimators=5000, learning_rate=0.01, max_depth=3, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict_proba(X_test)[:, 1]	This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. The log loss is only defined for two or more labels. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(ytlyp) = -(yt log(yp) + (1 - yt) log(1 - yp))		sera.org/learn/com
104	kNN(K近傍法)のモデル構築がしたい (分類タスク)	kNN(K近傍法) のモデル構築が したい (分類タスク)	kNN(K近傍法)のモデル構築がしたい (分類タスク)	print("Test logloss: \f".format(log_loss(y, test, y, pred))) # データやモデルを構築するためのライブラリ等のインポート from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split # データセットの読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける # stratifyは層化別抽出 X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify = cancer.target, random_state=0) # グラフ描画用のリストを用意 training_accuracy = [] test_accuracy = [] # 学習 # こては水を1から20まで変化させ、訓練データとテストデータの正解率の変化を見ています for n_neighbors in range(1,21):	・k-NNについてはterm memory参照 ・この例では、kがいさい時は正解率に乖離がありますが、6~8あたりで 訓練とテストの正解率が近なります。それ以上増やしてもモデル精度に 大きな変化は見られません。精度に改善が見られない場合、あまりkを大 きくする必要はないので、本ケースにおいては6~8程度に設定しておくの が良さそうです	松尾研	n.org/stable/modul
105	KNN(K近傍法)のモデル構築がした い (回帰)	KNN(K近傍法) のモデル構築が したい (回帰)	kNN(K近傍法)のモデル構築がしたい (回帰)	student = pd.read_csv('student-mat.csv', sep=',') X = student.loc[:,	・k-NNについてはterm memory参照	松尾研	

id	library/module	category	name	usage	remarks	url	備考
106	SVMのモデル構築がしたい		SVMのモデル構築が したい (線形SVM)	# SVMのライブラリ from sklearn.svm import LinearSVC # 訓練データとラストデータを分けるライブラリ from sklearn.model_selection import train_test_split # 標準化のライブラリ from sklearn.preprocessing import StandardScaler # データの読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(・サポートベクターマシンでは、標準化するとスコアが改善されることがあ ります	松尾研	UME PO
107	SVMのモナル構業かしたい	築がしたい	したい (非線形SVM)	# SVMのライブラリ from sklearn.svm import SVC # データの読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X、train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify = cancer.target, random_state=0) # 標準化 sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) # クラスの初期化と学習 model = SVC(kernel='rbf, random_state=0, C=2) # gammma, Cというハイパーパラメタがあるのでそれを指定して実行してみても良い model.fit(X_train_std,y_train) # 訓練データとテストデータのスコア print('正解率(train):(:.3f)'.format(model.score(X_test_std, y_test))) print('正解率(train):(:.3f)'.format(model.score(X_test_std, y_test)))		松尾研	

id	library/module	category	name		remarks	url	備考
	library/module 複数モデル試したい を	复数モデル試し cu	name 複数モデル試したい	#必要なライブラリのインボート from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import becisionTreeClassifier from sklearn.svm import EntirearSVC from sklearn.svm import EntirearSyciation from EntirearS	remarks ・dictionaryにモデルを入れてイテレータとして使える	url	備考

id	library/module	category	name	usage	remarks	url	備考
109	kennositā III) t. d.= 7 d.IV. d. s.	kmeans法を用 いたクラスタリン グがしたい	kmeans法を用いたク ラスタリングがしたい	ext) # KMeans ラスの初期化 kmeans = KMeans(init='random',n_clusters=3) # クラスターの重心を計算 kmeans = KMeans(init='random',n_clusters=3) # クラスターの重心を計算 kmeans.fit(X) # クラスター番号を予測 y_pred = kmeans.predict(X) # concatでデータを横に結合(axis=1を指定) merge_data = pd.concat([pd.DataFrame(X[:,0]), pd.DataFrame(X[:,1]), pd.DataFrame(y_pred)], axis=1) # 上記のデータにて、X輪をfeature1、'Y軸をfeature2,' cluster] # クラスタリング結果のグラフ化 ax = None colors = [blue', 'red', 'green'] for i, data in merge_data groupby('cluster'): ax = data.plot.scatter(x=feature1', y=feature2', color=colors[i], label='cluster'%d' % i, ax=ax) # # # # # # # # # # # # # # # # # # #	・クラスタ番号は0から始まる整数になる ・まず、KMeansクラスを初期化レオブジェクトを作成します バラメータはinit='random'、n_clusters3と設定しています initは初期化の方法。このようにrandomを設定するとk-means++ではな くk-means法となります。n_clustersにはクラスター数を設定します。 ・KMeansクラスのオブジェクトを作ったらfitメソッドを実行することでクラスター番号が予測されます。 ・fitとpredictを一連の処理として実行するfit_predictメソッドもありますが、基本的に構築したモデルを保存する可能性のある場合は、fitメソッドを単独で実施するのがよい ・変数の単位が異なる際は標準化をすると良い そうするとで値の大きな変数にクラスタリングの学習が引っ張られずに済みます。 ・クラスタ数の推定にはエルポー法が使える 下の行にサンブルコードがある	松尾研	
110	エルボー法によるクラスタ数の推定がしたい	エルボー法によるクラスタ数の推 定がしたい	エルボー法によるク ラスタ数の推定がし たい	# エルボー方による推定。クラスター数を1から10に増やして、それぞれの距離の総和を求める dist_list =[] for i in range(1,10):	・kmeansによるクラスタリングにおける、適切なクラスタ数の推定に用いられる ・term memory参照 ・距離の総和はKMeansオブジェクトのinertia 属性で取得できます。クラスター数1から10までの距離の総和を求めてグラフにしたのが、次の図・エルボー法以外に、シルエット係数というものもある	松尾研	

id	library/module	catagony	nama	110000	remarks	url	備考
Iα	library/module	category	name	usage # 主成分分析の実行	remarks	uri	1佣-5
				# インポート			
				from sklearn.decomposition import PCA			
				# 主成分分析 pca = PCA(n components=2)			
				pca.fit(X_std)			
				# 学習結果の確認			
				print(pca.components_)			
				# [[-0.707 -0.707] # [-0.707 0.707]]			
				print('各主成分の分散:{}'.format(pca.explained variance))			
				print('各主成分の分散割合:{}'.format(pca.explained_variance_ratio_))			
				# 結果の可視化 #パラメータ設定			
				arrowprops=dict(arrowstyle='->',			
				linewidth=2, shrinkA=0, shrinkB=0)			
				# 矢印を描くための関数			
				def draw_vector(v0, v1):			
				plt.gca().annotate(", v1, v0, arrowprops=arrowprops)			
				# 元のデータをプロット plt.scatter(X_std[:, 0], X_std[:, 1], alpha=0.2)			
				# 主成分分析の2軸を矢印で表示する			
				for length, vector in zip(pca.explained_variance_, pca.components_):			
				v = vector * 3 * np.sqrt(length) draw_vector(pca.mean_, pca.mean_ + v)			
				plt.axis('equal');	・主成分分析はsklearn.decompositionモジュールのPCAクラスを使うと		
					実行できます。 ・オブジェクトの初期化の際、変数を何次元まで圧縮したいか、つまり、抽		
				ex2)乳がんデータでの主成分分析 #乳がんデータを読み込むためのインポート	出したい主成分の数をn_componentsとして指定します。		
				from sklearn.datasets import load_breast_cancer	・通常は元ある変数よりも小さい値を設定します(30変数を5変数に減らす、等)が、ここでは元データと同じ2と設定します。		
				#乳がんデータの取得	・fitメソッドを実行することで、主成分の抽出に必要な情報が学習されます (具合的には、固有値と固有ベクトルが計算されます)。		
				cancer = load_breast_cancer()			
				# データをmalignant(悪性)かbenign(良性)に分けるためのフィルター処理 # malignant(悪性)はcancer.targetが0	■components_属性 components 属性は固有ベクトルと呼ばれるもので、主成分分析により		
		主成分分析がし		malignant = cancer.data[cancer.target==0]	発見された新しい特徴空間の軸の向きを表し、結果は以下になります。ベクトルの[-0.707,-0.707]が第1主成分、[-0.707,0.707]が第2主成分の向き		
111	主成分分析がしたい	たい	主成分分析がしたい	# benign(良性)はcancer.targetが0	になります。	松尾研	
				benign = cancer.data[cancer.target==1]	■explained_variance_属性		
				# malignant(悪性)がブルー、benign(良性)がオレンジのヒストグラム	explained_variance_属性は各主成分の分散を表します。以下を見ると、 今回抽出された2つの主成分の分散が、それぞれ1.889と0.111であるこ		
				# 各図は、各々の説明変数(mean radiusなど)と目的変数との関係を示したヒストグラム fig, axes = plt.subplots(6,5,figsize=(20,20))	とがわかります。ここで分散の総和が2.0となるのは偶然ではなく、(標準		
				ax = axes.ravel() for i in range(30):	化された)変数が元来有していた分散の総和と、主成分の分散の総和は 一致します。つまり、分散(情報)は維持されているということです。		
				_,bins = np.histogram(cancer.data[:,i], bins=50)	■explained_variance_ratio_属性		
				ax[i].hist(malignant[:,i], bins, alpha=.5) ax[i].hist(benign[:,i], bins, alpha=.5)	explained_variance_ratio_属性は、各主成分が持つ分散の比率です。 最初の0.945は1.889/(1.889+0.111)によって得られ、第1主成分で元の		
				ax[i].set_title(cancer.feature_names[i])	データの94.5%の情報を保持していると読めます。		
				ax[i].set_yticks(())			
				#ラベルの設定 ax[0].set ylabel('Count')			
				ax[0].legend(['malignant','benign'],loc='best')			
				fig.tight_layout()			
				#標準化 sc = StandardScaler()			
				X_std = sc.fit_transform(cancer.data)			
				#主成分分析			
				pca = PCA(n_components=2) pca.fit(X_std)			
				X_pca = pca.transform(X_std)			
				#表示			
				<pre>print('X_pca shape:{}'.format(X_pca.shape)) print('Explained variance ratio:{}'.format(pca.explained_variance_ratio_))</pre>			
				# 列にラベルをつける、1つ目が第1主成分、2つ目が第2主成分			
	1		1	In the transfer of the transfe			

id	library/module	category	name	usage	remarks	url	備考
112	アソシエーション分析(バスケット分析)がしたい	アソシエーション	アソシエーション分析 (バスケット分析)がし たい	# すべてのInvoiceNoをtrans_allとして抽出 trans_all = set(trans.InvoiceNo) #18536 # 商品85123Aを購入したデータをtrans_aとする trans_a = set(trans[trans['StockCode']=='85123A'].InvoiceNo) #1978 print(len(trans_a)) # 商品85099Bを購入したデータをtrans_bとする trans_b = set(trans[trans['StockCode']=='85099B'].InvoiceNo) print(len(trans_b)) # 商品85123Aおよび85099Bを購入したデータをtrans_abとする trans_ab = trans_a&trans_b print(len(trans_ab)) # 全体のバスケットに占める商品Bの購買率を計算 support_b = len(trans_b) / len(trans_all) # 商品各態購買したときの商品Bの購買率を計算 confidence = len(trans_ab) / len(trans_a) # リスト値を計算 lift = confidence / support_b print(lift_:3f)'.format(lift))	・アソシエーション分析についてはterm memory参照		
113	クロスパリデーション (cross validation, k分割交差検証 法)したい	クロスバリデー ション (cross validation, k分 割交差検証法)し たい	クロスパリデーション (cross validation, k 分割交差検証法)した い	# 必要なライブラリ等のインポート from skleam.datasets import load_breast_cancer from skleam.tree import DecisionTreeClassifier from skleam.model_selection import cross_val_score # 乳がんのデータを読み込み cancer = load_breast_cancer() # 決定木クラスの初期化 tree = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0) # k分割交差検証の実行 scores = cross_val_score(tree, cancer.data, cancer.target, cv=5) #cv=5は分割数 # 結果の表示 print('Cross validation scores: {}'.format(scores.)) print('Cross validation scores: {}'3f'+-(:3f)'.format(scores.mean(), scores.std()))	・基本的に、平均スコアの高いモデルを採用しますが、標準偏差が大きい ときは、平均スコアから標準偏差を引いたスコアでモデルを選択してもよ いでしょう。	松尾研 10章	

id	library/module	category	name	lisano	remarks	url	備老
114	library/module グリッドサーチ(grid search)がしたい	グリッドサーチ (grid search)が したい	がリッドサーチ(grid search)がしたい	SATION COグリッドサーチー from sklearn.model_selection import GridSearchCV 作物 sklearn.model_selection import GridSearchCV 作物 sklearn.svm import SVC 非別 がんのデータを読み込み cancer load_breast_cancer() #別 がんのデータとテストデータに分ける **	・GridSearchCVクラスのfitメソッドの実行時に行われるモデルの評価は、デフォルトではk分割交差検証(厳密にはその改良版)が使われるという点です。そのためGridSearchCVクラスには初期化パラメータcvがあり、ここではcv=5と設定しました。	url 松尾研 10章	備考

id	library/module	category	name	usage	remarks	url	備考
115	混同行列(confusion matrix)を確認 したい	混同行列 (confusion matrix)を確認し たい	混同行列(confusion matrix)を確認したい	# インボート from sklearn.swn import SVC from sklearn.metrics import confusion_matrix # 乳がんのデータを読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, random_state=66) # クラスの初期化と学習 model = SVC(gamma=0.001,C=1) model.fit(X_train,y_train) # 表示 print('{}\train score: {:.3f\}.format(modelclassname, model.score(X_train,y_train))) print('{}\train score: {:.3f\}.format(modelclassname, model.score(X_test,y_test))) # ここからが趣同行列作成の工程 from sklearn.metrics import confusion_matrix # テストデータを使って予測値を算出 y_pred = model.predict(X_test) m = confusion_matrix(y_test, y_pred) # 週間行列の出力 print('Confution matrix'\n(\frac{0}{2}\).format(m)) # 正解率 accuracy = (m[0, 0] + m[1, 1]) / m.sum() print('正解率:{:.3f\}.format(accuracy)) # 正解中 (mg) np.diag(confusion_matrix(y_test, y_pred)).sum()/confusion_matrix(y_test, y_pred).sum() # 著名率の計算 recall = (m[1,1]\/m[1, 1].sum() # 再观率の計算 recall = (m[1,1]\/m[1, 1].sum()	・混同行列についてはterm memory参照 ・混合行列は、sklearn.metricsモジュールのconfusion matrix関数で取得できます。出力される数値の並びは先の図で記した通り、列に予測値(y_pred)、行に観測値(y_test)が、負例・正例の順に並びます。 ・のconfusion.matrix()の番禺は以下の形式で出力される 列名部分が予測値の正例、負例 予測(0) 予測(1) 観測(0) 48 5 観測(1) 8 82	松尾研 10章 https://scikit-learn.	.org/stable/modu

id	library/module	catogory	name	usage	remarks	url	備考
116	正解率 (accuracy) 適合率 (precision) 再現率 (recall) F1スコア を計算したい	正解率 (accuracy) 適合で率 (precision) 再現率 (recall) F1スコア を計算したい	正解率 (accuracy) 適合率 (precision) 再現率 (recall) F1スコア を計算したい	※「混同行列(confusion matrix)を確認したい」のusageのスクリプトの続き # インボート from sklearn.svm import SVC # 乳がんのデータを読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, straitfy=cancer.target, random_state=66) # クラスの初期化と学習 model = SVC(gamma=0.001,C=1) model.fit(X_train,y_train)) # 表示 print('{}} train score: {:.3f}'.format(modelclassname, model.score(X_train,y_train))) print('{}} test score: {:.3f}'.format(modelclassname, model.score(X_test,y_test))))	正解率 (accuracy) 適合率 (precision) 再現字 (recall) F1スコア → term memory参照 ・注意)分類モデルの評価指標	松尾研 10章	調をつ
117	ROC曲線を描きたい (2値分類)	ROC曲線を描きたい (2値分類)	ROC曲線を描きたい (2値分類)	# インポート from skleam import svm from skleam.metrics import roc_curve, auc # 乳がんのデータを読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, test_size=0.5, random_state=66) # SVCによる予測確率の取得 model = svm.SVC(kernel='linear', probability=True, random_state=0) # probability=True でないと、fitした際に予測確率(ROCを描く上で必要)が帰ってこない model.fit(X_train, y_train) # 予測確率を取得	・注意)ROC, AUCは分類モデルの評価指標	松尾研 10章 https://scikit-lear	n.org/stable/auto_

id	library/module	category	name	usage	remarks	url	備考
118	ROC曲線を描きたい (多クラス分類)	ROC曲線を描き たい (多クラス分類)	ROC曲線を描きたい (多クラス分類)	# 解答 #参照URL: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py from skleam import svm, datasets from skleam.metrics import roc_curve, auc from skleam.metrics import roc_curve, auc from skleam.preprocessing import label_binarize from skleam.multiclass import OneVsRestClassifier # データの読み込み iris = datasets.load_iris() X = iris.data y = iris.target # 正解データのone-hot化 y = label_binarize(y, classes=[0, 1, 2]) #01フラゲ×3列に変形 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) # multi-class classification model model = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=0)) y_score = model.fit(X_train, y_train).predict_proba(X_test) # 3つそれぞれのクラスについて、1次元のデータにして、ROC曲線、AUCを算出する # 75サンブル×3列ー225サンブル×1列の形式にすれば、2クラス分類同様にROC曲線が指ける fpr, tpr, _= roc_curve(y_test.ravel(), y_score.ravel()) roc_auc = skleam.metrics.auc(fpr, tpr) # グラフ化する plt.figure() plt.plot([0, 1], [0, 1], color='black', linestyle='') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlim([1.1]) plt.xlim([1.2]) plt.ylim([1.3]) plt.yl		松尾研 10章 https://scikit-learr	
119	バギング(bagging)を実装したい	バギング (bagging)を実装 したい	バギング(bagging)を 実装したい	# インボート from sklearn.ensemble import BaggingClassifier # from sklearn.ensemble import BaggingRegressor #回帰タスクの場合はこちらを使う from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import train_test_split # 乳がんのデータを読み込み cancer = load_breast_cancer() # 訓練データとテストデータに分ける X train, X_test, y_train, y_test = train_test_split(_cancer.data, cancer.target, stratify = cancer.target, random_state=66) # k-NNモデルとそのパギングの設定 # n_estimatorsは、モデル何質でパギングするかという設定 # 今回、100回k-NNモデルを作成 models = { "kNN": KNeighborsClassifier(), "bagging": BaggingClassifier(KNeighborsClassifier(), n_estimators=100, random_state=0) } # モデル構築 scores = { for model_name, model in models.items(): model_name, model in models.items(): model_name, "train_score')] = model.score(X_train, y_train) scores[(model_name, 'train_score')] = model.score(X_test, y_test) # 結果を表示 pd.Series(scores).unstack()	・パギングについてはterm memory ・skleam.ensembleモジュールのBaggingClassifierクラスを使っています。なお、回帰用のクラスもあるので、そちらについてはScikit-learmの公式ドキュメントを確認ください。 ・今回、k-NNモデル100個でパギングしている BaggingClassifierクラスは他にmax、samples(デフォルトは1.0)、max、features(デフォルトは1.0)というパラメータを持ちます。 前者はブートストラップをする時に元のデータの何割抽出するかを指定します。0.5とすれば元の訓練データが100件あれば50件の標本が抽出されます。後者は説明変数をどの程度サンブリングするかの指定で、0.5とすれば元の製学アと分でモデルが過ぎ習よれます。 ・元のモデルが過ぎ習しているときは、手元のデータをそのまますべて使わないようにし、説明変数に(標本ごとに)多様性を与えるようにすることで、有効な過学習対策になる可能性があることを覚えておきましょう。	松尾研 10章	

id	library/module	category	name	usage	remarks	url	備考
120	ブースティング(Boosting)を実装したい	ブースティング (Boosting)を実 装したい	ブースティング (Boosting)を実装し たい	# インポート from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import AdaBoostRegressor # from sklearn.ensemble import AdaBoostClassifier #分類タスクの場合はこちらを使う # housingデータを読み込み boston = load_boston() X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=66) # 決定木とAdaBoostRegressorのパラメータ設定 models = { 'tree': DecisionTreeRegressor(random_state=0), 'AdaBoost': AdaBoostRegressor(DecisionTreeRegressor(), random_state=0) } # モデル構築 scores = { for model_name, model in models.items(): model_fit(X_train, y_train) scores[(model_name, 'train_score')] = model.score(X_train, y_train) scores[(model_name, 'test_score')] = model.score(X_test, y_test) # 結果を表示 pd.Series(scores).unstack()	・ブースティングについてはterm memory ・AdaBoostRegressor()には回帰用のclassifierを入れないとエラーになる ・AdaBoostClassofier()には分類用のclassifierを入れないとエラーになる	松尾研 10章	
121	ランダムフォレスト 勾配ブースティング を実装したい	ランダムフォレス ト 勾配ブースティン グ を実装したい	ランダムフォレスト 勾配ブースティング を実装したい	# インボート from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor # 分類タスクの場合はRandomForestClassifier, GradientBoostingClassifier # Housingデータを読み込み boston = load_boston() # 訓練データとテストデータに分ける X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=66) # ランダムフォレストと勾配ブースティングのパラメータ設定 models = { RandomForest': RandomForestRegressor(random_state=0), 'GradientBoost': GradientBoostingRegressor(random_state=0) } # モデル構築 scores = { for model_name, model in models.items(): model.fit(X_train, y_train) scores[(model_name, 'train_score')] = model.score(X_train, y_train) scores[(model_name, 'test_score')] = model.score(X_test, y_test) # 結果を表示 pd.Series(scores).unstack() # ランダムフォレストのfeature importanceの確認 # feature_importmnces属性を取得 s = pd.Series(models['RandomForest'], feature_importances_,	・変数の重要度は、(決定木構築の際の)情報利得をベースに計算されています。そのため変数の重要度を見ても回帰係数のような解釈は困難です。ただし、相対的な大小関係がも、どの変数が効果があうという直感と整合的な結果になることも少なくありません ・Partial Dependence Plots (PDP)という。説明変数の大小と予測値の大小関係性を図解してくれる関数も存在します。Scikit-leamではplot_partial_dependence関数が用意されています	https://scikit-lear	n.org/stable/modu n.org/stable/modu n.org/stable/modu

id	library/module	category	name	usage	remarks	url	備考
	XGBoostを実装したい		XGBoostを実装したい	#モデル作成	ISHIGIKS	https://www.kaggle	
123	LightGBMを実装したい	LightGBMを実 装したい	LightGBMを実装した い	Igb_params = {		Kaggle coursera	
124	sklearn.metrics	function	r2_score()	r2_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')	• R^2 (coefficient of determination) regression score function.		
		1			・決定係数の計算	https://scikit-learn.c	org/stable/module

id	library/module	category	name	usage	remarks	url	備考
125	sklearn.ensemble.forest	class	RandomForestRegr essor() RF()	ex) >>> from sklearn.ensemble import RandomForestRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False) >>> regr = RandomForestRegressor(max_depth=2, random_state=0, n_estimators=100) >>> regr, fit(X, y) RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=0, verbose=0, warm_start=False) >>> print(regr.feature_importances_) [0.18146984 0.81473937 0.00145312 0.00233767] >>> print(regr.predict([[0, 0, 0, 0]])) [-8.32987858]	・RandomForestRegressorクラスを作成する関数 (引数) ・n_estimator=10 数値。ランダムフォレスト内で使用する決定木の数 ・max_depth=None 木の深さの最大値。デフォルトなNone ・random_state=None "fit"と"predict"の両方に用いる並列化処理の数?		
	sklearn.linear_model.base. LinearRegression	method	model.fit()	fit(X, y, sample_weight=None) ex) model1.fit(trainX["days"].values.reshape(-1,1),y train)	・fit linear model 線形モデルをフィットさせる		
127	numpy.ndarray	method	array.reshape()	a.reshape(shape, order='C') ex) import numpy as np # 1つ1次元配列を生成。 a = np.arange(12) a #array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 3×4の2次元配列に変形。 b = np.reshape(a, (3, 4)) b #array([[0, 1, 2, 3], # [4, 5, 6, 7], # [8, 9, 10, 11]]) # 1行目の抽出 array1[0.:] # 1列目の抽出 array1[0.:]	・配列(array)の形状(何行何列)を変換する ・変換前の要素数と、変換後の要素数が一致しない場合はValueErrorの例外が発生します。 ・また、1を使用すると、元の要素数に合わせて自動で適切な値が設定されます。 -1とした次元の長さは他の次元の指定値から推測されて自動的に決定される。サイズの大きい配列の形状を変換するときに便利。 ・行列から、行や列のみを抜き出したいときは、「[行範囲:列範囲]」のよう に表記	https://deepage.r https://note.nkmk	net/features/nump .me/python-nump
128	sklearn.model_selectionsplit	class	KFold()	ex) kf = KFold(n_splits=5,random_state=777)	・KFoldクラスを作成する関数 (引数) ・n_splits=3 foldの数。少なくとも2以上は必要 ・random_state=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used ・shuffle: boolean, optional Whether to shuffle the data before splitting into batches.	https://blog.amed	lama.jp/entry/201
129	sklearn.model_selectionsplit	method	KFold.split()	split(X, y=None, groups=None) ex)	・method of sklearn.model_selection_split.KFold instance ・Generate indices to split data into training and test set. indexを作成してデータを訓練用とテスト用に分ける		

id	library/module	category	name	usage	remarks	url	備考
	pandas.core.reshape.reshape	function	pd.get_dummies()	get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None) ex) >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 ex2) ex2) mushroom_dummy = pd.get_dummies(mushroom[['gill_color','gill_attachment','odor','cap_color']]) mushroom_dummy_head()	・配列やDFを入力とし、ダミー変数化されたDFを返す ・Convert categorical variable into dummy/indicator variables ・注)ダミー変数化対象の列に欠損値(NaN)が含まれていた場合、どのカテゴリにも属さないとして全てのダミー変数用列に0が入る		
131	del文	その他	-	ex) del trainX["tt"]	·要素を削除する Rだとm()	https://www.javao	drive.jp/python/list
132	skleam.linear_model.base	method	model.predict()	predict(X) ex) pred = model1.predict(trainX["days"].values.reshape(-1,1))	・method of sklearn.linear_model.base.LinearRegression instance (引数) ・X (n samples, n features)形式の配列かスパースmatrix		
133	sklearn.metrics.regression	function	mean_squared_error() MSE()	mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average') ex) MSE(y_train,pred_train)	・Mean squared error regression loss 平均二乗誤差		
134	pandas.core.frame	method	df.drop()	drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') ex) sex_dum = pd.get_dummies(df_train['Sex']) df_train_proc = pd.concat((df_train,sex_dum),axis=1) #axis=1 でbind_cols df_train_proc = df_train_proc.drop('Sex',axis=1) df_train_proc = df_train_proc.drop('female',axis=1) #複数行、複数列をまとめて削除 print(df.drop(index=['Bob', 'Dave', 'Frank'],	Drop specified labels from rows or columns 特定の行あるいは列を削除する *axis=0 が行、axis=1 が列の削除 *列(行)を削除しても元のデータの列(行)が削除されたわけではないので、注意 置き換えたい場合は改めて変数に代入する	https://note.nkmk	.me/python-panda
135	pandas.core.frame	method	df.dropna()	dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) ex) df_train_proc_dn = df_train_proc.dropna() ex2)#特定の値を含む行の除外 # '?'をNaNLC置換して、NaNがある行を削除 auto = auto.replace('?', np.nan).dropna() print('自動車データの形式、{}'.format(auto.shape))	・Remove missing values 欠損値を除外する ・DFを入力とし、欠損値(NA)を除外したDFを返す	http://www.miran	dora.com/?p=180
136	pandas.core.frame	method	df.corr()	corr(method='pearson', min_periods=1) ex) df_train_proc_dn = df_train_proc.dropna() df_train_proc_dn.corr() ex2) #特定のカラムについて、グルーピングしてグルーブ間の相関を見たい場合 data["stock_group_id"] = data.groupby(["stock"]).cumcount() data["stock", "close", "stock_group_id"].head(15) data.pivot(index = "stock_group_id", columns = "stock", values = "close").corr()	- Compute pairwise correlation of columns, excluding NA/null values 変数間の相関係数を計算する - DFを入力として、DFを返す	http://www.miran	dora.com/ʔp=180
137	matplotlib	module	plt.style	Soon group a position state of the position of	 package matplotlib.style in matplotlib matplotlibライブラリにあるmatplotlod.styleパッケージ・おそらく、グラフのスタイルに関する設定ができるパッケージ? 	http://www.miran	dora.com/?p=180

id	library/module	category	name	usage	remarks	url 備	考
138	matplotlib.style.core	function	plt.style.use()	use(style) ex) import matplotlib.pyplot as plt import seaborn as sns plt.style.use('ggplot') df_train_sur = df_train_proc_dn[df_train_proc_dn.Survived==1] df_train_sur_age = df_train_sur.iloc[:.2] df_train_sur_s = df_train_sur.iloc[:.6] plt.scatter(df_train_sur_age,df_train_sur_s,color="#cc6699",alpha=0.5) df_train_sur_age = df_train_sur.iloc[:.2] df_train_sur_age = df_train_sur.iloc[:.2] df_train_sur_s = df_train_sur.iloc[:.2] df_train_sur_s = df_train_sur.iloc[:.6] plt.scatter(df_train_sur_age,df_train_sur.scolor="#6699co",alpha=0.5) plt.show()	•Use matplotlib style settings from a style specification.	http://www.mirandora.com	ı/?p=180
139	pandas.core.frame	method	df.append	append(other, ignore_index=False, verify_integrity=False, sort=None) ex) def name_classifier(name_df): name_class_df = pd.DataFrame(columns={'miss','mrs','master','mr'})) for name in name_df: if 'Miss' in name: df = pd.DataFrame([[1,0,0,0]],columns={'miss','mrs','master','mr'}) elif 'Mrs' in name: df = pd.DataFrame([[0,1,0,0]],columns={'miss','mrs','master','mr'}) elif 'Master' in name: df = pd.DataFrame([[0,0,1,0]],columns={'miss','mrs','master','mr'}) elif 'Mr' in name: df = pd.DataFrame([[0,0,0,1]],columns={'miss','mrs','master','mr'}) else : df = pd.DataFrame([[0,0,0,0]],columns={'miss','mrs','master','mr'}) name_class_df = name_class_df.append(df,ignore_index=True) return name_class_df	・Append rows of 'other' to the end of this frame, returning a new object. Columns not in this frame are added as new columns 対象のDF末尾に別のrowを追加し、新しいオプジェクトとして返す。対象のDFに存在しないカラムは新たなカラムとして追加される。 引数) ・ignore_index = FALSE_bool値を指定する。TRUEであれば、indexラベルを使わない	http://www.mirandora.com	ı/?p=180
140	built-in	method	strオブジェクト. replace()	replace() S.replace(old, new[, count]) -> str ex) 'Braund *'.replace('*,") #Braund	・method of builtins.str instance 組み込みのstrインスタンスのメソッド ・Return a copy of S with all occurrences of substring old replaced by new.	http://www.mirandora.com	ı <u>//?</u> p=180
141	built-in	method	list.index()	<pre>index() L.index(value, [start, [stop]]) -> integer ex) bet = "best" test = ["better", "best", "good"] test.index(bet) # 1</pre>	・method of builtins.list instance ・return first index of value. (内で指定した値の最初のindex(数字)を返す ・Raises ValueError if the value is not present.	http://www.mirandora.com	ı <u>/?p=180</u>
142	pandas.core.frame	method	df.query()	query(expr, inplace=False, **kwargs) ex) perfect_df_other = perfect_df.query("master==0 and mr==0 and mrs==0 and miss==0")	・Query the columns of a frame with a boolean expression. 論理表現でDFの列に問い合わせする	http://www.mirandora.com	ı/?p=180
143	printで計算結果の数値を代入した 文章を表示する	その他	print()	ex) # データ表示(特徴量) print("データ数 = %d 特徴量 = %d" % (X.shape[0], X.shape[1])) pd.DataFrame(X, columns=boston.feature_names).head()		https://qiita.com/fujin/items	<u>s/128ed7</u>

id	library/module	category	name	usage	remarks	url	備考
144	pandas.core.generic	method	df.groupby()	groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, "*kwargs) ex) # データのグループ集計 attri_data_frame2.groupby('Sex')['Math'].mean() #結果はseries attri_data_frame2.groupby('Sex')['Math'].mean() #結果はdataframe ex2) # データ準備 data1 = { 'id': [100', '101', '102', '103', '104', '106', '108', '110', '111', '113], 'city: [Tokyo', 'Osaka', 'Kyoto', 'Hokkaido', Tokyo', 'Osaka', 'Kyoto', 'Hokkaido', Tokyo', 'osith_year': [1990, 1989, 1992, 1997, 1982, 1991, 1988, 1990, 1995, 1981], 'name'. [Hiroshi', 'Akiko', 'Yuki', 'Satoru', 'Steeve', 'Mituru', 'Aoi', 'Tarou', 'Suguru', Mitsuo'] } df1 = DataFrame(data1) # 出現頻度 df1.groupby('city')[birth_year'].mean() ##は「複数設定することもできまず #たとえば、region, cityを強にして、birth_yearの平均値を求めると、次のようになります。 df1.groupby('City')[birth_year'].mean() #as_index = False/'\(\foats\)	Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.	http://pandas.py	data.org/pandas-d flow.com/question
145	pandas.core.groupby	method	df.groupby(). cumsum()	cumsum(axis=0, *args, **kwargs) *method of pandas.core.groupby.SeriesGroupBy instance *Cumulative sum for each group ex) test = pd.DataFrame({'item_id': [1, 1, 1, 2, 2, 2, 2], 'target': [3, 4, 5, 6, 7, 8, 9]}) test	・グループごとに累積和を出す		
146	pandas.core.groupby.groupby	method	df.groupby("test"). size() df.groupby("test"). count()	test.groupby('item_id')['target'].cumsum() ex) #Embarkedの最類値を確認 tab = df_train.groupby('Embarked').size() tab	-Compute group sizes グールブのサイズを計算 -count()でも同じ -size()はNaNを含み、count()はNaNを含まない点が違い	https://stackover	flow.com/questions,
147	pandas.core.groupby.groupby	method	df.groupby.shift()	<pre>ex) train_monthly['item_cnt_month'] = train_monthly.sort_values('date_block_num').groupby(['shop_id',</pre>	・グループごとにデータをn行ずらす ・グルーピングしてデータをずらすだけで、集約はしてないので、元のDF に列として追加できる		flow.com/question gle.com/kernels/sc

id	library/module	category	name	usage	remarks	url	備考
148	pandas.core.groupby	method	df.groupby(). transform()	# mean-encodingに便利 all_data['item_target_enc'] = all_data.groupby('item_id')['target'].transform('mean') # 以下のスクリプトでも結果は同じ # item_id_target_mean = all_data.groupby('item_id').target.mean() # all_data['item_target_enc'] = all_data['item_id'].map(item_id_target_mean) all_data.groupby('item_id')['target'].mean() だと、単に集計するだけなので、マッピング処理が別途必要 # leave one out schemeのtarget encodingに便利 test = pd.DataFrame(('item_id'): [1, 1, 1, 2, 2, 2, 2], 'target': [3, 4, 5, 6, 7, 8, 9]}) # groupbyオブジェクト(Series)を渡すと、Looスキームで処理したtarget encoding結果を返す関数 loo = lambda x: (x.sum() - x)/(len(x) - 1) test.groupby('item_id')['target'].transform(loo)	・groupbyした結果に関数を適用し、マッピング処理をする	https://deepage.r	iet/features/panda
149	sklearn.model_selection. train_test_split	function	train_test_split()	train_test_split(*arrays, **options) ex)	・Split arrays or matrices into random train and test subsets ・テストサイズはデフォルトで0.25		
150	np.nan	np.nan	np.nan			https://takala.toky	o/takala_wp/2011
151	seaborn.axisgrid	function	sns.pairplot()	pairplot(data, hue=None, hue_order=None, palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter', diag_kind='hist', markers=None, size=2.5, aspect=1, dropna=True, plot_kws=None, diag_kws=None, grid_kws=None) ex) from matplotlib import pyplot as plt import seaborn as sns %matplotlib inline sns.pairplot(dat_mod[["trip_minutes", "trip_miles", "fare"]], size=3, aspect=2, diag_kind="kde")	・散布図行列を作成する ・DFIcnullを含むカラムがあるとエラーになることがある ■引数について ・size→高さ ・size*aspect→横幅 ・diag_kind→対角線上のグラフ種類の指定		
152	seaborn.distributions	function	sns.distplot()	distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None) ex, from matplottlib import pyplot as plt import seaborn as sns sns.set() #/プフのテーマを見やすいものに変更 %matplottlib inline plt.xlim([0, 200]) #x軸範囲を指定する場合 plt.ylim([0, 1200]) #x軸範囲を指定する場合 plt.ylim([0, 1200]) #x軸範囲を指定する場合 sns.distplot(fish_data, bins=200, kde=False) #binsの値は大きいほど階級が狭くなる #fish_data *series ex, #複数のグラフを並べる場合 fig = plt.figure(figsize=(10, 7)) fig add_subplot(221) plt.xlim(0, 100) sns. distplot(dat_mod["trip_minutes"], kde=False, bins=600) #1行1列目 fig.add_subplot(222) plt.xlim(0, 30) sns.distplot(dat_mod["trip_miles"], kde=False, bins=800) #1行2列目 fig.add_subplot(223) plt.xlim(0, 100) sns.distplot(dat mod["fare"], kde=False, bins=2000) #2行1列目 fig.add_subplot(223) plt.xlim(0, 100) sns.distplot(dat mod["fare"], kde=False, bins=2000) #2行1列目	・ヒストグラムを描画する ・bins 引数でピンの数を指定できる。		nablog.com/entry alytics.hatenadiar
153	seaborn.axisgrid	function	sns.jointplot()	jointplot(x, y, data=None, kind='scatter', stat_func= <function 0x1820998268="" at="" pearsonr="">, color=None, size=6, ratio=5, space=0.2, dropna=True, xlim=None, ylim=None, joint_kws=None, marginal_kws=None, annot_kws=None, **kwargs) ex) sns.jointplot(x="trip_minutes", y="trip_miles", data=dat_mod[["trip_minutes", "trip_miles"]], xlim=(0, 800), ylim=(0, 200))</function>	·jointplotを描画する 2変量散布図と周辺分布を描いたもの		

id	library/module	category	name	usage	remarks	url 備考
154	組み込み	function	vars()	ex) class Test: definit(self): self.title = '題名' self.name = '名前' test = Test() print(vars(test)) {'name': '名前', 'title': '題名'}		http://www.ajisaba.net/python/class
155	pandas		DF.dtypes	ex) taxi_duration.dtypes # pickup_community_area int64 # record_count int64 # minutes_per_mile_avg float64	・DFのデータ型を確認	https://note.nkmk.me/python-panda
156	pandas.core.generic	function	DF.astype()	astype(dtype, copy=True, errors='raise', **kwargs) ex) #yearを型変換 dat_mod["year"] = dat_mod["year"].astype(str) print(dat_mod.year.dtype) #int #pickup_community_areaをカテゴリ変換 taxi_duration["pickup_community_area"] = taxi_duration["pickup_community_area"].astype("category") #float型に変換 data["open"] = data["open"].astype(float)	Cast a pandas object to a specified dtype ``dtype`` ・pandas dataframeの型キャスト	https://note.nkmk.me/python-panda
157	seaborn.relational	function	sns.scatterplot()	scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, z_bins=None, y_bins=None, y_bins=None, v_bins=None, estimator=None, ci=95, n_boot=1000, alpha='auto', x_jitter=None, y_jitter=None, legend='brief', ax=None, **kwargs) ex) ax = sns.scatterplot(x=dat_mod.trip_minutes, \ y=dat_mod.trip_miles, \ hue=dat_mod.start_timestamp.dt.year, \ #hueでグループ化に使う変数を指定 style=dat_mod.start_timestamp.dt.year) #styleでスタイルを分ける変数を指定 ax.set_xlim(0, 200) ax.set_vlim(0, 30)	-seabornversion >= 9.0 でないと使えない	https://glita.com/skotaro/items/08do
158	pandas.core.reshape.pivot	function	pd.pivot_table()	pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All') ex) #タクシー会社ごとの売上げランキング test = pd.pivot_table(data = company_sales, values = "sales", aggfunc = "sum", index = "company") ex2) #プロット pd.pivot_table(data = plot_data, values = "close", columns = "stock", index = "date").plot(figsize = (10, 7), grid = True)	Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame	help(pd.pivot_table)
159	pandas.core.groupby.groupby	method	DF.groupby ("column"). aggragate()	aggregate(arg, *args, **kwargs) ex) test2 = company_sales.groupby("company").agg({"sales":"sum"}) ex2) # 列 / 複数の関数を適応 functions = ['count', 'mean', 'max', 'min'] grouped_student_math_data1 = student_data_math.groupby(['sex', 'address']) grouped_student_math_data1['age', 'G1'].agg(functions)	・aggregate using one or more operations over the specified axis・aggメソッドの引数には、実行したい関数名のリストを渡します。例は、カウント、平均、最大、最小を計算する場合	help(DF.groupby("column").agg)

id	library/module	category	name	usage	remarks	url	備考
160	pandas.core.frame	method	DF.sort_values()	sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') ex) test = company_sales.groupby("company").agg({"sales":"sum"}).sort_values("sales", ascending=False) ex2) # 値によるソート、デフォルトは昇順 attri_data_frame_index2.Birth_year.sort_values() log_timeline.std().sort_values(ascending=False) #降順でソート ex3) excel_data2.groupby(["Country"], as_index=False)["sales"].agg("sum").sort_values(["sales"], ascending=False) ex4)#2輸で並び替えをする top_five_country_description_sales.sort_values(["Country", "sales"], ascending=[True, False])	・Sort by the values along either axis ・pandas seriesにも使える ・行名でソートする場合はsort_index() ■引数 ・inplace = True → 元の変数を上書きする	https://pandas.pyd	lata.org/pandas-do
161	pandas.core.strings	method	DF.column_name. str.lower()	ex) company_sales["company"] = company_sales.company.str.lower()	・Convert strings in the Series/Index to lowercase 配列やindexの文字列を小文字変換する	https://stackoverf	ow.com/questions
162	pandas.core.strings	method	DF.column_name. str.upper()	ex) company sales["company"] = company sales.company.str.upper()	・Convert strings in the Series/Index to uppercase 配列やindexの文字列を大文字変換する	https://stackoverf	ow.com/questions
163	seaborn.relational	function	sns.lineplot()	lineplot(x=None, y=None, hue=None, size=None, style=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, dashes=True, markers=None, style_order=None, units=None, estimator=mean', ci=95, n_boot=1000, sort=True, err_style='band', err_kws=None, legend='brief', ax=None, **kwargs) ex) sns.set(style="whitegrid") fig = plt.figure(figsize=(10, 7)) ax = sns.lineplot(x="month", y="sales", hue="company", style="company", data=company_ sales_top5, linewidth=2.5)	•Draw a line plot with possibility of several semantic groupings		
164	seaborn	function	sns.barplot()	ex) fig = plt.figure(figsize=(20, 10.5)) sns.barplot(x = "pickup_community_area",			
165	予約語一覧の確認	-	-	#予約語 import('keyword').kwlist	・予約語一覧の表示	松尾研	
166	組み込みオブジェクト一覧の表示	-	-	#組み込みオブジェクト dir(builtins)	・組み込みオブジェクト一覧の表示	松尾研	
167	format記法	-	strオブジェクト. format()	print('{0}) と {1} を足すと {2}です'.format(2,3,5)) # ファイル名を機械的に生成する	・文字列埋め込み	松尾研	
168	Python3 文字列中に変数展開したい	Python3 文字列 中に変数展開し たい	Python3 文字列中に 変数展開したい	ex)#列名を動的に生成するのにも使える # 良性(benign) クラスの予測確率が0.4、0.3、0.15、0.05以上なら、それぞれの列に1を設定する for threshold in [0.4、0.3、0.15、0.05]: results[' flag_%s' % threshold] = results['benign'].map(lambda x: 1 if x > threshold else 0)	・文字列埋め込み	https://chaika.hate	enablog.com/entry,

id	library/module	category	name	usage	remarks	url	備考
169	辞書(dict)のforループ		辞書(dict)のforルー ブ	#キーと値を取り出して表示する for key, value in dic_data.items(): print(key, value) # キーだけを取り出す for key in dic_data.keys(): print(key) # 値だけを取り出す for key in dic_data.values(): print(key) # 半一と何かを組み合わせて取り出す from itertools import cycle colors = cycle(['red', 'aqua', 'darkorange', 'deeppink', 'cornflowerblue']) for model_name, color in zip(models.keys(), colors): print(model_name, color)		松尾研	
170	リスト内包表記	-	-	#リストを作る data_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #空のリストを作成 data_list1 = [i * 2 for i in data_list] print(data_list1 = [i * 2 for i in data_list] print(data_list1) #条件判断を含む内包表記 [i * 2 for i in data_list if i %2 ==0] #[4, 8, 12, 16, 20] even_list = [i if i % 2 == 0 else "odd" for i in range(10)] #	内包表記では、条件を指定し、条件に合致するものだけを新しいリストの対象にすることもできます。 たとえば data_list から、値が偶数である要素だけを取り出したいときは、 以下のようにします。「'if i %2 ==0' Jの部分が指定している条件です。 「'%' Jは余りを計算する演算子です。つまり、'i % 2 は、'i を2で割った余りです。これが0であるということは偶数であるということを示します。	松尾研 https://qiita.com/s	segavvy/items/55\$

id	library/module	category	name	usage	remarks	url	備考
10	librat y/module	Category	Hame	for one, two in zip([1, 2, 3], [11, 12, 13]): print(one, 'Ł', two)	Idilars	un	DH な
17	base	function	zip()	#1 と 11 #2 と 12 #3 と 13 ex2) # カイ2乗分布 # 自由度2, 10, 60に従うカイ二乗分布が生成する乱数のヒストグラム #zip関数で[2, 10, 60]という配列と["b", "g", "r"]という配列から、[(2, "b"), (10, "g"), (60, "r")]というタブル の配列を作っている for df, c in zip[(2, 10, 60], 'bgr'):	*zip 関数は、それぞれ異なるリストを同時に取り出していく処理を実行します。たとえば、[1,2,3]というリストと、[11,12,13]という2つのリストがあるとき、それぞれ同じインデックスで値を取って表示したいとき――先頭の値である「1と11」、次の値である「2と12」、そして「3と13」のように繰り返して処理したいとき――は、次のようにします。 異なるリストデータがあったとして、それぞれのインデックスがお互いに対応していて、同時に取り出して処理したい場合は、zip関数は便利です。・複数の配列から、タブルの配列を作るために使うことも	松尾研	
				(Pool(X_train, label=Y_train, cat_features=cat_features)))), columns=['Feature', 'Score'])			
17:	while文	-	-	# 初期値の設定 num = 1 # while 文の開始 while num <= 10: print(num) num = num + 1 # while 文の終わり # 最後に代入された値を表示する print(環後の値は(0)です'.format(num)) #流中で処理をストップさせたい場合	ある条件で処理をストップさせたい(while文を抜けたい)ときには、breakを使います。以下は、numの値が6を超えた時点で、whileの処理から抜け出して、終了しています。なお、if文のelseはなくてもよいですが、elseを書いて何も処理を書かないとエラーになるので、単にその個所をスキップするpassを書いています 一方、ある条件で処理をさせて、ストップさせずにそのま処理させたい(while文を続けたい)ときには、continueを使います。以下は、numの値が6を超えた時点で、6を超えましたと表示されていますが、while文を抜けずに、そのまま処理を続けています		

id	library/module	category	name	usage	remarks	url	備考
173	class文	class文	class文	#クラス定義 class MyCalcClass: # 初期化 definit(self, x, y): self.x = x self.y = y def calc_add1(self, a, b): return a + b def calc_add2(self): return a *b def calc_mtuli(self, a, b): return a *b def calc_mtuli(self, a, b): return a *b def calc_print(self, a, b): return a *b def calc_print(self, a, b): return a *b def calc_print(self, a): print('data:{0}:yvの値{1}'.format(a, self.y)) #/ンスタンス作成 instance_1 = MyCalcClass(1, 2) instance_2 = MyCalcClass(5, 10) #メソッド呼び出し print('2つの数の足し算(新たに数字を引数としてセット):', instance_1.calc_add1(5, 3)) print('2つの数の足し算(インスタンス化の時の値):', instance_1.calc_add2()) print('2つの数のかけ算:', instance_1.calc_mutil(5, 3)) instance_1.calc_print(5)	・クラスとしてMyCalcClassを作成しており、いくつかのメソッドを作っています。 ・インスタンスを生成するときは、クラスに実験した「init」という名前の特別なメソッドが実行されます。これをコンストラクタと言います。コードには、「self.x = x」「self.y = y」という文があります。self.とは自分自身という意味です。そのため、この文によって、自身のX風性と火属性が、括弧のなかに指定した値になります。つまり上記の例では、instanced_1では、MyCalcClass(1, 2)としているので、xが1、yが2となります。同様に、instance_2の場合はxが5、yが10となります。	松尾研	
174	マジックコマンド	マジックコマンド	%quickref	%quickref	・マジックコマンドとは、Jupyter環境において、さまざまな環境操作をする ための命令で、「%」から始まるコマンドです。デフォルトでは、「外部コマン ドの実行(%run)」「アッイルのコピー(%cp)」「時間の計測(%tine)」など の機能が用意されています。 ・標準のマジックコマンドは「ビルドインマジックコマンド」と呼ばれます。「% quickref」と入力して(Run)をクリックすると、一覧で表示できます。	松尾研	
175	マジックコマンド	マジックコマンド	%precision	%precision #小数点以下3位まで表示 %precision 3	・Numpyによる拡張です。データを表示する際に、小数、第何桁まで表示するのかを指定します。	松尾研	
176	マジックコマンド	マジックコマンド	%matplotlib	%matplotlib	・Matplotlibによる拡張です。グラフなどの表示方法を指定します。 「inline」と記述すると、その場所にグラフなどが表示されます。 % matplotolibを指定しない場合は、別ウィンドウで表示されます。	松尾研	
177	built-in	function	time.time()	ts = time.time() matrix = [] cols = ['date_block_num','shop_id','item_id'] for i in range(34): sales = train[train.date_block_num==i] matrix_append(np.array(list(product([i], sales.shop_id.unique(), sales.item_id.unique())), dtype="int16")) time.time() - ts	・実行時間計測		
178	マジックコマンド	マジックコマンド	%time		•実行時間計測	https://ensekitt.h	atenablog.com/entr
179	マジックコマンド	マジックコマンド	%timeit	# Nは乱数の発生数、10の6乗 N = 10**6 # Python版 (以下のrange(N)は0からN-1までの整数を用意しています。 # 「」は、代入した値を参照しないときに使う慣例的な変数名です。 # たとえば、for a in range(N)と書くのと同じですが、aと書くと、その値をあとで使うように見えるので、 # その値を参照しないときは、for _ in range(N)のように慣例的に書く書き方です normal_data = [random.random() for _ in range(N)] # Numoy版 numpy_random_data = np.array(normal_data) # calc time:合計値 # ふつうの処理 %timeit sum(normal_data) # Numpyを使った処理 %timeit np.sum(numpy random_data)	・時間計測 ・100回同じ処理をして、ベスト3の平均計算時間を返すマジックコマンドです (Jupyter環境でRunを実行すると、100回実行されるのですから、その実行結果が表示されるまでには、しばらく時間がかかりますが、それは正常な動作です)。 ・たとえば、「100 loops、best of 3: 5.78 ms per loop」と表示されたときは、100回計算して、ベスト3の計算時間平均が5.78ミリ秒という意味です。 ・実行回数と平均回数は、それぞれプションとはプンシンで変更できます。たとえば、「%timeit -n 10000 -r 5 sum(normal_data)」のようにすれば、1万回、ベスト5の平均計算時間という意味になります。なお、msはミリ秒で、µsはマイクロ秒(ミリ秒の1000分の1)です。	松尾研	

id	library/module	category	name	usage	remarks	url	備考
180		プロパティ	.dtype	# 配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) # データの型 data.dtype #dtype('int64')	 ・型を調べるには、変数の後ろに「.dtype」のように指定します・「.dtype」という書き方は、「そのオブジェクトのdtypeプロパティを参照する」という意味 このようにピリオドで区切って、オブジェクトの状態を調べたり、オブジェクトが持つ機能(関数・メソッド・プロパティ)を実行したりするのは、オブジェクト型プログラミングの特徴・ ・ちなみに、「」を入力した後に Tabキーを押すと、その変数がもっているプロパティやメソッドの一覧が表示されるので、そこから該当のものを選ぶこともできます。そうすることで、すべてのプロパティやメソッドを正確に覚える必要がなくなり、タイプミスも返ります。 	松尾研	7 Table 9
181	.ndim	プロパティ	.ndim	# 配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) print('次元数'', data.ndim) #1 print('要素数', data.size) #10	・配列の次元数と要素数を取得するには、それぞれ、ndimプロパティと sizeプロパティを参照します。これらのプロパティを確認すれば、データの 大きさなどが、どのぐらいなのかがわかります。以下は次元数が1、要素 数が10になっています。	松尾研	
182	.size	プロパティ	.size	# 配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) print('次元数'', data.ndim) #1 print('要素数', data.size) #10	・配列の次元数と要素数を取得するには、それぞれ、ndimプロパティと sizeプロパティを参照します。これらのプロパティを確認すれば、データの 大きさなどが、どのぐらいなのかがわかります。以下は次元数が1、要素 数が10になっています。	松尾研	
183	numpy	method	sort()	# 配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) #ソートした結果を表示 data.sort() print("ソート後:', data) #降順にソート data[::-1].sort() print("ソート後:', data)	・デフォルトでは、昇順(小さい数字から大きい数字)になります・sortメッドは、元のデータ(data)を置き換えるので注意しましょう。再度 dataを表示すると、ソート後のデータになっているのがわかります。 ・降順(大きい数字から小さい数字)にしたい場合は、data[::-1].sort()のように、スライスを使って操作します。	松尾研	
184	スライス	スライス	スライス		 スライスはPythonの機能で、[n:m:s]のように記述すると、「n番目から m-1番目を、sずつ飛ばして取り出す」という意味になります。 nやmを省略 したときは「すべて」という意味になります。 またsが負のときは先頭からで はなく、末尾から取り出すことを意味します。 つまり、[:-1]は、「末尾から1つずつ取り出す」という意味になります。 	松尾研	
185	numpy	method	min() max() sum() cumsum()	#配列の作成 data = np.array([9, 2, 3, 4, 10, 6, 7, 8, 1, 5]) print("Min:", data.min()) print("Max:", data.max()) print("Max:", data.cumsum()) #積み上げ割合 print("Cum:", data.cumsum()) #精み上げ割合 print("Ratio:", data.cumsum() / data.sum()) #結果	・cumsumというメソッドは積上(前から順に足し上げていく)演算です。0番目の要素はそのまま、1番目の要素は番目の要素+1番目の要素、2番目の要素は0番目の要素+2番目の要素、、という具合に足し上げたものです。	松尾研	

id	library/module	category	name	usage	remarks	url	備考
186		method	mean() median() mode() var() std()	# 平均値 print(平均値:', student_data_math['absences'].mean()) # 中央値: 中央値でデータを分けると中央値の前後でデータ数が同じになる(データの真ん中の値)、外れ値の値に影響を受けにくい print('中央値:', student_data_math['absences'].median()) # 最頻値: 張見・頻度が多い値 print("最頻値:', student_data_math['absences'].mode()) #分散 student_data_math['absences'].var() #標準偏差 student_data_math['absences'].var() # ### ### ### ### ### ### ### ### ###	 平均値 中央値 最頻値 分散 var()はデフォルトでは不偏分散(自由度n-1)を返す 標準偏差 	松尾研	
187	numpy	function	numpy.random. randn()	import numpy.random as random random.seed(0) # 正規分布(平均0,分散1)の乱数を10個発生 rnd_data = random.randn(10) print('乱数10個の配列:', rnd_data)	・正規分布に従う乱数を発生させる	松尾研	
188	numpy	function	rand() random_sample() randint() randn() normal() binomial() beta() gamma() chisquare()	機能 意味	・任意の分布に従う乱数を発生させる	松尾研	
189	二項分布を描く	二項分布を描く	二項分布を描く	#二項分布 np.random.seed(0) x = np.random.binomial(30, 0.5, 1000) plt.hist(x) plt.grid(True)	・二項分布は、独立なベルヌーイ試行をn回繰り返したものです。 ・pythonでは、random.binomialを使って計算できます。 binomialに渡すパラメーターは先頭から順に、試行回数(n)、確率(p)、 サンブル数です。 ・random.binomialはn回の試行のうち、確率pで生じる事象が発生する回数を返します	松尾研	
190	ポワソン分布を描く	ポワソン分布を描く	ポワソン分布を描く	# ポアソン分布 x = np.random.poisson(7, 1000) plt.hist(x) plt.grid(True)	・1つ目のパラメータは、あの区間で事象が発生すると見込まれる回数で、 ここでは7を設定しています。2つ目のパラメータはサンブル数です。	松尾研	
191	正規分布を描く	正規分布を描く	正規分布を描く	#正規分布 # np.random.normal(平均、標準偏差、サンプル数) x = np.random.normal(5, 10, 10000) plt.hist(x) plt.grid(True)	・正規分布はガウス過程とも言われる	松尾研	
192	対数正規分布を描く	対数正規分布を 描く	対数正規分布を描く	# 対数正規分布 x = np.random.lognormal(30, 0.4, 1000) plt.hist(x) plt.grid(True)	・対数正規分布は logxが正規分布に従うときの分布	松尾研	
193	カイニ乗分布を描く	カイ二乗分布を描く	カイニ乗分布を描く	# カイ2乗分布 # 自由度2, 10, 60に従うカイ二乗分布が生成する乱数のヒストグラム for df, c in zip([2, 10, 60], 'bgr'): x = np.random.chisquare(df, 1000) plt.hist(x, 20, color=c) plt.grid(True)	-zip関数では[2, 10, 60]という配列と["b", "g", "r"]という配列から、[(2, "b"), (10, "g"), (60, "r")]というタブルの配列を作っている	松尾研	
194	t分布を描く	t分布を描く	t分布を描く	# t分布 x = np.random.standard_t(5, 1000) plt.hist(x) plt.grid(True)		松尾研	
195	F分布を描く	F分布を描く	F分布を描く	# F 分布 for df, c in zip([(6, 7), (10, 10), (20, 25)], 'bgr'): x = np.random.f(df[0], df[1], 1000) plt.hist(x, 100, color=c) plt.grid(True)		松尾研	

id	library/module	category	name	usage	remarks	url	備考
Iu	- library/module	Category	Hame	# 抽出対象データ	Temarks	un	川州でつ
196	numpy	function	np.random.choice()	data = np.array([9,2,3,4,10,6,7,8,1,5]) # ランダム抽出 # 10個を抽出(重複あり、復元抽出)	・ランダムサンプリング ・2つの引数と1つのオブションを指定します。1つ目の引数は、操作対象の配列、2つ目は取り出す数です。オブションはreplaceです。replaceをTrueにする、もしくは省略したときは、取り出すときに重複を許します。これを復元抽出と言います。replaceをFalseにしたときは、データの重複を許さずに取り出します。これを非復元抽出と言います。	松尾研	
197	random	method	random.shuffle()	import random I = list(range(5)) print(I) # [0, 1, 2, 3, 4] random.shuffle(I) print(I) # [4, 3, 2, 1, 0]	・Shuffle list x in place, and return None. ・randomモジュールの関数shuffle()で、元のリストをランダムに並び替えられる。	https://note.nkml	s.me/python-randc
198	numpy	function	np.dot()	# データの準備 array1 = np.arange(9).reshape(3,3) array2 = np.arange(9,18).reshape(3,3) # 行列の積 np.dot(array1, array2) array1.dot(array2) #この書き方でも同じ # 要素どうしの積 array1 * array2	・行列の積 ・* だと要素同士の積	松尾研	
199	numpy	function	np.zeros() np.ones()	#全ての要素が0の行列を作成 print(np.zeros((2, 3), dtype = np.int64)) #全ての要素が1の行列を作成 print(np.ones((2, 3), dtype = np.float64))	・dtypeオプション→データ型の指定 int64→64ビット整数 float64→64ビット浮動少数	松尾研	
200	scipy	function	linalg.det() linalg.inv()	# 線形代数用のライブラリ import scipy.linalg as linalg matrix = np.array([[1,-1,-1], [-1,-1,1]]) # 行列式 print(行列式') print(linalg.det(matrix)) # 逆行列 print(逆行列') print(linalg.inv(matrix)) # もとの行列を逆行列の積は単位行列 print(matrix.dot(linalg.inv(matrix)))	・行列式の計算 ・逆行列の計算	松尾研	
201	scipy	function	linalg.eig()	#線形代数用のライブラリ import scipy.linalg as linalg matrix = np.array([[1,-1,-1], [-1,-1,1]]) # 固有値と固有ベクトル eig_value, eig_vector = linalg.eig(matrix) # 固有値と固有ベクトル print(固有値) print(固有値) print(固有ベクトル) print(関有ベクトル) print(関有、クトル) print(関有、クトル) print(関有、マクトル) print(関有、マクトル) print(関有、マクトル)	・固有値の計算	松尾研	

id	library/module	category	name	usage	remarks	url	備考
202	pandas	function	pd.Series() .values .index	import pandas as pd from pandas index_data pd.Series, DataFrame # Series sample_pandas_data = pd.Series([0,10,20,30,40,50,60,70,80,90])	・Seriesライブラリ 一次元の配列を扱う ・Seriesは1次元の配列のようなオブジェクト。PandasのベースはNumpy のarrayです ・Seriesオブジェクトをprintすると、2つの組の値が表示されます。 先頭の10行文は要素のインデックスと値です。dtypeはデータの型で す。 ・データの値とインデックスの値は、valuesプロパティとindexプロパティを 指定することで、別々に取り出すこともできます。	松尾研	
203	pandas	function	pd.merge()	mport pandas as pd from pandas import Series, DataFrame attri_data1 = {ID':[100]'.101','102','103','104],	・データフレームの結合 ・キーを明示しないときは、自動で同じキーの値であるものを見つけて(内部)結合する 例の場合、キーはID ・のn〜key列の指定 (mergeするDFに同じ名前のカラムがあった際に便利) ・全結合 とちらのデータにも存在するデータで結合する 全結合ではhowパラメータにouterを指定 結合する値がない場合は、NaNicなります ・indexによるマージ left_indexパラメータやright_onパラメータを使うと、キーをインデックスで指定して結合できます。 例は、左側のデータのインデックスと、右側のデータのindex_numカラムをキーとして指定するものです ・mergeすると、merge前のDFのindexが失われるので注意 indexをdateにしていた場合などは困る	松尾研	

id	library/module	category	name	usage	remarks	url	備考
204	matplotlib	function	plt.plot()	# Matplotlib と Seabornの読み込み # Seabornはきれいに図示できる import matplotlib as mpl import matplotlib as mpl import seaborn as sns # pyplotにはptrの別名で実行できるようにする import matplotlib, pyplot as plt # Jupyter Notebook上でグラフを表示させるために必要なマジックコマンド %matplotlib inline # 散布図 import numpy, random as random # シード値の固定 random.seed(0) # x軸のデータ x = np, random.randn(30) # y軸のデータ y = np.sin(x) + np.random.randn(30) # グラフの大きさ指定(20や6を変更してみてください) plt.figure(figsize=(20, 6)) # グラフの描写 plt.plot(x, y, 'o') # 以下でも散布図が描ける # plt.scatter(x, y) # タイトル plt.ttile('Title Name') # Xの座標名 plt.ylabel('X') # Yの座標名 plt.ylabel('Y') # grid(グラフの中にある縦線と横線)の表示 plt.grid(True) ex2) # グラフを描画 plt.plot(range(1,21), training_accuracy, label='Training') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Cacuracy') plt.ylabel('Cacuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Cacuracy') plt.ylabel('Cacuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Accuracy') plt.ylabel('Cacuracy') plt.ylabel('Accuracy')		松尾研	

id	library/module	category	name	usage	remarks	url	備考
				#連続曲線			
	matplotlib	function	plt.plot()			松尾研	
	matplotlib	グラフの分割 function	グラフの分割 np.linespace()	ex2)#pandasのplot機能を使う場合 df.plot/tfigsize = (15,6), legend = 'best', grid = True) # グラフの大きさを指定 plt.figure(figsize=(20,6)) # 2行1列のグラフの1つ目 plt.subplot(2,1,1) x = np.linspace(-10,10,100) plt.plot(x, np.sin(x)) # 2行1列のグラフの2つ目 plt.subplot(2,1,2) y = np.linspace(-10,10,100) plt.plot(y, np.sin(2"y)) plt.grid(True) # xとして、linspaceで、開始が0、終了が10、項目が11つの等間隔数列を生成 x = np.linspace(0,10, num=11, endpoint=True) # yの値を生成 y = np.cos(-x**2/5.0)	・linspace(-10,10,100)は -10-10 から 1010 までの数を 100100 個に分割した数字リストを取り出す	松尾研	
				plt.plot(x,y,'o') plt.grid(True)			
208	numpy	function	np.random.uniform()	#0~1までの数を10個発生させる np.random.uniform(0, 1, 1000)	・一様乱数(ある数~別のある数まで等確率で発生する乱数)を発生させる	松尾研	
209	bash	bash	pwd	pwd	「pwd」はPythonのプログラムではなく、シェルのコマンドです。 Jupyter環境では、ひとつのセルに「pwdなどのシェルのコマンド」と 「Pythonのコマンド」を混ぜて書くことはできず、エラーとなるので注意して 〈ださい。	松尾研	

id	library/module	category	name	usage	remarks	url	備考
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jg,		#ダウンロードファイルを置くディレクトリに予め移動しておく			Wis 13
				pwd mkdir chap3			
				cd ./chap3			
				リー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
				#webからデータを取得したり、zipファイルを扱うためのライブラリ import requests, zipfile			
				from io import StringIO	Webからデータをダウンロードするには、requests.getを使います。このダウンロードしたデータを、io.BytesIOを使ってバイナリストリームとして		
210	web上からzipファイルのダウンロー			import io	ZipFileオブジェクトに与え、最後にextractall()を実行すると、ダウンロード	松尾研	
-10	ドと保存			# データがあるurlの指定	したZIP形式データを展開できます。ダウンロードが終了したら、データが ちゃんとダウンロードされ、展開されているかチェックしましょう。Isコマンド	147691	
				url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00356/student.zip'	を実行すると、カレントディレクトリのファイル一覧を表示できます		
				# データをurlから取得する			
				r = requests.get(url, stream=True)			
				# zipfileを読み込み展開する			
				z = zipfile.ZipFile(io.BytesIO(r.content))			
				z.extractall() #変動係数:欠席数			
				# 英凱爾茲·大術女 student_data_math['absences'].std() / student_data_math['absences'].mean()			
211	変動係数をまとめて計算			# それぞれの変動係数をまとめて計算		松尾研	
				# てれてれの変動体数をまとめて計算 student data math.std() / student data math.mean()			
				#DFの各カラムの変動係数が計算できる			
				#共分散行列 np.cov(student data math['G1'], student data math['G3'])			
212	numpy	function	np.cov()	#array([[11.017, 12.188], # [12.188, 20.99]])	共分散行列の計算	松尾研	
				#12.188が共分散			
				#(1,1)はG1の分散 #(2,2)はG3の分散			
				#(2,2)はGSの分散 sp.stats.pearsonr(student data math['G1'], student data math['G3'])			
213	scipy	function	sp.stats.pearsonr()	#(0.801, 0.000)	ピアソン相関係数の計算	松尾研	
	+			#相関係数は0.8、0.00はP値 #相関行列			
				np.corrcoef([student_data_math['G1'], student_data_math['G3']])	・相関係数行列の計算		
214	numpy	function	np.corrcoef()	#array([[1. , 0.801],	・それぞれの変数について、すべての組み合わせで相関係数を算出	松尾研	
				# [0.801, 1.]]) #自分自身の相関係数の部分は1になっている			
245		£		coin_data = np.array([0, 0, 0, 0, 0, 1, 1, 1])	・一意な値の抽出	松尾研	
215	numpy	function	np.unique()	np.unique(coin_data) #array([0, 1])	Rのunique()と同じ	松尾研	
					pandas.Series.nunique(), pandas.DataFrame.nunique()		•
					ユニークな要素の個数をint, pandas.Seriesで返す		
216	pandas	method	nunique()		ユニークな要素の値のリストをNumPy配列ndarrayで返す		
	pariedo		maniquo()		pandas.Series.value_counts() ユニークな要素の値とその出現回数をpandas.Seriesで返す		
					pandas.Series.unique()		
<u> </u>	0 1 10 - 0 17	パッケージの	パッケージのバージョ				me/python-panda:
217	パッケージのバージョンアップ	バージョンアップ	パッケージのバージョ ンアップ			松尾研	
				np.append()			
				ex)			
				data = np.array([]) #np.array()だとエラーになる			
218	numpy	function	np.append()	for i in range(0, 10): x = np.random.normal(0, 1, 100).mean()	·ndarray末尾に要素を追加する	https://deepage.i	net/features/nump
				data = np.append(data, x)			
				#np.append(data, x)だけだと、data自身は置き換わらないので注意			
				#ちなみに、appendを使わなくてもリスト内包表記でいける			
				normal_sample_data = [np.random.normal(0, 1, 100).mean() for _ in range(N)]			
219	numpy	function	np.mgrid()	ex)	・画像などの座標位置とか3次元グラフのX,Y軸の座標とかのIndexに使	松尾研	
213	numpy	Tariouon	inp.ingila()	x, y = np.mgrid[10:100:2, 10:100:2]	われるmeshgridを生成する		supersaiakujin/iter
220	numpy	function	np.empty()		・配列の生成速度が若干高速になることがあるため、値を0や1で初期化する必要のない場合は、np.emptyを使おう	松尾研 https://doopage.i	act/foatures/pums
	1	1		I	y の必女いはい場口は、iip.eiiiptyで使わり	nups.//deepage.l	net/features/nump

id	library/module	category	name	usage	remarks	url	備考
ıα	iibiai y/iiioddie	category	Hame	linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)	Temarks	un	URI 75
221	numpy	function	np.linspace()	ex) def lik_func(x): return(x**3*(1-x)**2) x = np.linspace(0, 1, 100) plt.plot(x, lik_func(x))	・Return evenly spaced numbers over a specified interval. ・グラフ作成時に、x軸の値を作成するなど	松尾研	
222	scipy	function	stats.ttest_rel()	from scipy import stats t, p = stats.ttest_rel(student_data_merge.G1_math, student_data_merge.G1_por) print('p@ = ', p)	• t検定	松尾研	
223	numpy	function	np.copy()	sample_array = np.arange(10) sample_array_copy = np.copy(sample_array) print(sample_array_copy) sample_array_copy[0:3] = 20 print(sample_array_copy) # 元のリストの要素は変更されていない print(sample_array)	・参照ではなくてコピーしたいときは、次のようにcopyを使います。すると、コピーしたものを参照するようになるため、変更しても元のデータは影響を受けません	松尾研	
224	numpy	function	np.where()	# 条件制御のためのブールの配列を作成 cond_data = np.array([True, True, False, False, True]) # 配列x arrayを作成	・条件によって採用するデータを切り分ける numpy.whereを使うと、2つのデータ XX とデータ YY があるとき、条件を 満たすかどうかによって、 XX の要素を取り出す、もしくは YY の要素を取り出すというように、取得するデータを切り分けられます。その書式は、次 の通りです。 numpy.where(条件の配列, Xのデータ, Yのデータ)	松尾研	
225	numpy	function	np.exp()	np.exp(2) #e**2	・ネイピア指数関数	松尾研	
226	numpy	function	np.any()	# 真偽値の配列関数 cond_data = np.array([True,True,False,False,True]) print('Trueが少なくとも1つあるかどうか:',cond_data.any()) #np.any(cond_data)でも同じ print('すべてTrueかどうか:',cond_data.all()) #np.all(cond_data)でも同じ		松尾研	
227	numpy	function	np.all()	# 真偽値の配列関数 cond_data = np.array([True,True,False,False,True]) print("Trueが少なくとも1つあるかどうか:',cond_data.any()) #np.any(cond_data)でも同じ print("すべてTrueかどうか:',cond_data.all()) #np.all(cond_data)でも同じ		松尾研	
228	配列の操作	配列の操作	配列の操作	# データの準備 sample_names = np.array([a','b','c','d','a']) random.seed(0) data = random.randn(5,5) print(sample_names) print(data) #条件に合致する要素の抽出 data[sample_names == "b"] #条件に合致する要素の個数 sample_multi_array_data1 = np.arange(9).reshape(3,3) print(5ample_multi_array_data1) print(5ample_multi_array_data1)		松尾研	
229	numpy	function	np.diag()	#行列計算 sample_multi_array_data1 = np.arange(9).reshape(3,3) print(sample_multi_array_data1) print('対角成分:',np.diag(sample_multi_array_data1)) print('対角成分の和:',np.trace(sample_multi_array_data1))	-対角成分の抽出	松尾研	

id	library/module	category	name	usage	remarks	url	備考
230	numpy	function	np.diag()	#行列計算 sample_multi_array_data1 = np.arange(9).reshape(3,3) print(sample_multi_array_data1)	・対角成分の和	松尾研	加州与
				print('対角成分:',np.diag(sample_multi_array_data1)) print('対角成分の和:',np.trace(sample_multi_array_data1)) # データの準備 sample array3 = np.array([[1,2,3],[4,5,6]])			
004		Secret Sec		sample_array4 = np.array([[7,8,9],[10,11,12]]) print(sample_array3) print(sample_array4)	TWOMA	W = TT	
231	numpy	function	np.concentrate()	# 行方向に結合。パラメータのaxisに0を指定 #bind_rows()と同じ np.concatenate([sample_array3,sample_array4],axis=0) # 列方向に結合	・配列の結合	松尾研	
				#bind_cols()と同じ np.concatenate([sample_array3,sample_array4],axis=1)			
232	numpy	function	np.vstack()	# vstackを使った行方向結合の方法 np.vstack((sample_array3,sample_array4)) ex2) print(a1) # [[1 1 1] # [1 1 1] a2 = np.full((2, 3), 2) print(a2) # [[2 2 2] # [[2 2 2]] print(np.vstack([a1, a2])) # [[1 1 1] # [1 1 1] # [1 1 2]	- 配列の結合(行方向) bind_rows()と同じ - 括弧が2重でないとエラーになるので注意	松尾研 https://note.nkml	s.me/python-nump
233	numpy	function	np.hstack()	# 列方向結合の他の方法 np.hstack((sample_array3,sample_array4))	 ・配列の結合(列方向) bind_cols()と同じ ・括弧が2重でないとエラーになるので注意 	松尾研	
234	numpy	function	np.split()	# データの用意 sample_array3 = np.array([[1,2,3],[4,5,6]]) sample_array4 = np.array([[7,8,9],[10,11,12]]) sample_array_vstack = np.vstack((sample_array3,sample_array4))) # 作成したデータsample_array_vstackを表示 sample_array_vstack # sample_array_vstackを3つに分割し、first、seocnd、thirdという3つの変数に代入 first,second,third=np.split(sample_array_vstack,[1,3]) # firstの表示 print(first) # secondの表示 print(first) # secondの最初の要素を取り出す second(0] # thirdの表示 print(firid)	・配列の分割 ・例では、splitに[1, 3]というパラメータを指定しており、これが分割方法 ・具体的には、1(1の手前すべて)、1~3(1から3の手前のみ)、3~(3以降すべて)のインデックスで取り出すという意味 ・結果として、3つに分割される。インデックスは0から始まるという点に注意	松尾研	

:	library/mandala						備考
id	library/module	category	name	usage	remarks	url	佣有
235	built-in numpy	function	repeat() np.repeat()	# sample_array_vstack2を-2,2,3-4,5~の4つに分割し、first、second、third、fourthに代入する first、second、third、fourth=np.split(sample_array_vstack2,[2,3,5]) print('-1つ目:\n',first,\n') print('-2つ目:\n',second,\n') print('-2つ目:\n',second,\n') print('-3つ目:\n',fourth,\n') print('-4つ目:\n',fourth,\n') # repeatを使うと、各要素が指定した回数だけ繰り返されて生成される first.repeat(5) ex2) import numpy as np group = np.arange(0, 12) #0~11までのarrayを作成 np.repeat(group, 2) # array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11])	・arrayから指定の回数だけ繰り返して要素を取り出す ・numpy.repeatメソッドで同じ要素を繰り返して配列を作成できます。	松尾研 https://algorithm.	ioho.info/programi
236	特異値分解	特異値分解	特異値分解	# (2,5)行列 A = np.array([[1,2,3,4,5],[6,7,8,9,10]]) # 特異値分解の関数linalg.svd U, s, Vs = sp.linalg.svd(A) m, n = A.shape S = sp.linalg.diagsvd(s,m,n) print('U.S.V* = \n',U@S@Vs) #@は行列の積を簡素化する演算子		松尾研	
237	文字列を逆順にする	文字列を逆順にする	文字列を逆順にする	words = "stressed" words_new = words[::-1] print(words_new)		https://redcat-pro	g.hatenadiary.org/e
238	文字列を規則的に抽出する		文字列を規則的に抽出する	text = "パタトクカシーー" text_new = text[0:7:2] #1文字目から7文字目まで2個飛ばしで抽出 print(text_new)			
239	文字列から先頭と末尾を除いた値を抽出する	文字列から先頭 と末尾を除いた 値を抽出する	文字列から先頭と末 尾を除いた値を抽出 する		-word[-1]は末尾の文字列		
240	pandas	method	stack()	stack(level=-1, dropna=True) ex) # hier_dfを用意 hier_df= DataFrame(・データのビボット 行と列を入れ替える ・melt, gatherのような処理? ・列を行にし、tidyデータに1歩近づけるような処理 ・indexの階層構造をflatにしたいだけなら、以下の方法もある DF.columns = [col1', 'col2',] DF.reset_index(inplace = True)	松尾研	

id	library/module	category	name	usage	remarks	url	備考
241	pandas	method	unstack()	ex) #hier_dfを用意 hier_dfe DataFrame(・ビボットしたデータを元に戻す ・spreadのような処理? ・行を列にし、階層を1段深くしてtidyデータから遠ざけるような処理 ・indexの階層構造をflatにしたいだけなら、以下の方法もある DF.columns = [Col1', 'col2',] DF.reset_index(Inplace = True)	松尾研	
242	pandas.core.frame	method	reset_index()	reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=") ex) dat = pd.concat([train,test],sort=True).reset_index(drop=True) ex2) indexの階層構造を取っ払って普通のDFにする例 group = train.groupby(['date_block_num','shop_id','item_id']).agg(('item_cnt_day': ['sum'])) group.columns = ['item_ont_month'] group.coset index(inplace=True)	・DFのindex(行名)を削除する・デフォルトはdrop=FALSEで、index(行名)は別として追加される・drop=TRUEを指定するとindexは別として追加されず、単に削除されるFor DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used.		
243	pandas	method	duplicated()	duplicated(subset=None, keep='first') ex) # 重複があるデータ dupli_data = DataFrame({	・それぞれの行が確認され、重複があるときは、Trueとなります。ただし、 重複のあるデータでも1回目ではFalseとなり、2回目からTrueになります。	松尾研	
244	pandas	method	drop_duplicates()	DataFrame.drop_duplicates(self, subset=None, keep='first', inplace=False) # 重複削除 dupli_data.drop_duplicates() # 重複した行を除いたユニークなレコード数のカウント columns = ['Keywordid', 'AdGroupld', 'Device', 'Slot'] test[columns].drop_duplicates().shape # (639360, 4)	・重複したデータを削除した結果のデータが返される ・デフォルトでは全カラムが重複判定に使われる subsetを指定すると、重複判定に使うカラムの指定ができる	https://pandas.py	data.org/pandas-

id	library/module	category	name	usage	remarks	url	備考
		category	map()	#とある関数 def calc_double(x): return x * 2 #for文で記述した場合 for num in [1, 2, 3, 4]: print(calc_double(num)) #map関数を使うと、この処理をリストのまま処理でき、次のように書けます。 list(map(calc_double, [1, 2, 3, 4])) #[2, 4, 6, 8] #このような書き方だと、別にcalc_double関数を定義しておかなければなりませんが、先に説明した無名関数を使うと、ここに直接関数の処理を記述でき、たとえば、次のように書けます。 list(map(lambda x : x * 2, [1, 2, 3, 4])) ex2)#DFに無名関数を適用して別追加する場合 # InvoiceNoの1文字目を抽出する処理。mapとLambda関数を使う online_retail_data_table[cancel_fig]: online_retail_data_table.InvoiceNo.map(lambda x:str(x)[0]) online_retail_data_table[cancel_fig]: online_retail_data_table.lovoiceNo.map(lambda x:str(x)[0]) online_retail_data_table.groupby('cancel_fig').size() ex3)#DFに無名関数を適用して別追加する場合 # birth_year のよ3つの数字・文字を取り出す df1['up_two_num'] = df1['birth_year].map(lambda x: str(x)[0:3]) df1 #age列の値を2倍した列を末尾に追加 student_data_math["age_double"] = student_data_math["age"].map(lambda x: x*2) student_data_math.head() # 食性(benign)クラスの予測確率が0.4、0.3、0.15、0.05以上なら、それぞれの列に1を設定する for threshold in [0.4, 0.3, 0.15, 0.05] results[flag_%s' % threshold] = results['benign'].map(lambda x: 1 if x > threshold else 0) ex4) #無名関数とmapの組み合わせによるカラム追加 # 「fin_fig]」カラムを追加し、もし「fig-50K」カラムの値が「>50K」だったら1、そうでなければ0をセットする adult[fin_fig] = adult[fig-50K].map(lambda x: 1 if x ==' >50K' else 0) adult.groupby('fin_fig').size() # 目的変数をフラグ化(0/1化)する mushroom_dummy('fig'] = mushroom['classes'].map(lambda x: 1 if x ==' p' else 0)	・map() はリストやタブルの各要素に指定した関数を適用し、各適用結果を順番に返すイテレータを返す関数・map(muc, iterator) の形で使う・map関数は、高階関数と呼ばれ、関数を引数や戻り値として使う関数で、各要素に対して、何か処理や操作したいときに使います。たとえば、次のように要素の値を2倍にして返す関数calc_doubleを定義するとします。 ・pandas.core.seriesにあるmapメソッドとは別物なので注意	松尾研	慵考 ithpython.com/20*
246	pandas	method	map()	### Secol	・マッピング処理を行う ・マッピング処理は、Excelのvlookup関数のような処理 共通のキーとなるデータに対して、一方の(参照)テーブルからそのキー に対応するデータを引っ張ってくる機能	松尾研	DFへ列追加したし

id	library/module	category	name	usage	remarks	url	備考
247	pandas.core.series	method	map()	ex) shops['city'] = shops['shop_name'].str.split(' ').map(lambda x: x[0]) ex2) # if subtype is nan then type cats['subtype'] = cats['split'].map(lambda x: x[1].strip() if len(x) > 1 else x[0].strip())	Seriesの各要素にマッピング処理を適用 引数は3種類 function, dict, or Series functionを引数とする際、ラムダ式のif文も使える -DFの列追加に使える	https://pandas.py	DFへ列追加したし
248	pandas.core.frame	method	DF.apply()	apply(func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds) ex) sns.heatmap(cross_cluster_age.apply(lambda x : x/x.sum(), axis=1), cmap='Blues') ex) # 大きい数字_小さい数字でID連結する関数 def merge_id(x): if x.Firstld >= x.Secondld: return x.Firstld_str + '_' + x.Secondld_str else: return x.Secondld_str + '_' + x.Firstld_str tmp['merge_id'] = tmp.apply(lambda x: merge_id(x), axis=1)	・Apply a function along an axis of the DataFrame データフレームの任意の軸に対し、関数を適用する ・pandas DFへ列追加するのにも使える	https://qiita.com//	
249	pandas.core.frame	method	df.assign()	assign(**kwargs) ex) test = df_train.query("name_count > 1") #自分以外に同じ名字の人がいる乗客を抽出 test = test.assign(survive_rate_mod = lambda test: (test.survive_count - test.Survived)/(test. name_count - 1)) ex2)#PFの文字列置換 data.assign(open2 = lambda x: x.open.str.replace("\$", """)) ex3)#一度に複数列増やす場合 def replace_func(x): return(x.str.replace("\$", "")) data = data.assign(open = replace_func(data.open), high = replace_func(data.low), close = replace_func(data.low), close = replace_func(data.low), next_weeks_open = replace_func(data.next_weeks_open), next_weeks_close = replace_func(data.next_weeks_close)) ex4) auto = auto.assign(price=pd.to_numeric(auto.price)) auto = auto.assign(price=pd.to_numeric(auto.price)) auto = auto.assign(price=pd.to_numeric(auto.price)) auto = auto.assign(price=pd.to_numeric(auto.price))	・dplyr::mutate()のように新しく列追加する/列を書き換える際に使える・Assign new columns to a DataFrame, returning a new object (a copy) with the new columns added to the original ones. ・Existing columns that are re-assigned will be overwritten.		DFへ列追加したい

id	library/modulo	catogory	namo	ucano	romarks	uel	供去
250	library/module pandas	function	name	Usage	remarks ・ビン分割 ・Rのcut()と同じ ・分位点での分割はpd.qcut() ・対位点での分割はpd.qcut() ・right=Trueがデンォルトで、右側が閉区間 right=Falseで右側が閉区間	url 松尾研	備考
251	pandas	function	pd.value_counts()	# クラスタ番号と年齢層を結合 df = pd.concat([bank_with_cluster.cluster_number, qcut_age], axis=1) value_counts(values, sort=True, ascending=False, normalize=False, bins=None, dropna=True) # 集計結果 pd.value_counts(birth_year_cut_data) ex2) # StockCodeごとに件数を数え、上位5件を表示 trans[*StockCode!_value_counts().head(5)	・各値の数を集計する	松尾研	
252	pandas	function	pd.qcut()	#df1のbirth_year列の値を基準に、2分割する pd.value_counts(pd.qcut(df1.birth_year, 2)		松尾研	
253	pandas.core.frame	method	DF.shift()	shift(periods=1, freq=None, axis=0, fill_value=None) ex) import pandas_datareader.data as pdr start_date = '2001/1/2' end_date = '2016/12/30' fx_jpusdata = pdr.DataReader('DEXJPUS'; 'fred', start_date, end_date) fx_jpusdata.resample('D').ffill().head() #データを1つ後にずらし、2001-01-02のレートは114.73でしたが、2001-01-03のレートとして扱われるように fx_jpusdata.shift(1).head() #前日のレートと当日のレートの比率を一気に出せる fx_jpusdata = fx_jpusdata / fx_jpusdata.shift(1) fx_jpusdata_ratio = fx_jpusdata / fx_jpusdata.shift(1)	・インデックスを固定したまま、データだけずらす Rでいうleadのような処理	松尾研	
254	pandas.core.frame	method	DF.diff()			松尾研	
255	pandas.core.frame	method	DF.pct_change()			松尾研	

: -1	librar malan e alcula				no monte.		備考
id	library/module	category	name	usage import pandas datareader.data as pdr	remarks	url	1佣-方
256	pandas.core.generic	method	DF.resample()	start_date = '2001/1/2' end_date = '2016/12/30' fx_jpusdata = pdr. DataReader('DEXJPUS', 'fred', start_date, end_date) #月末レートの抽出 fx_jpusdata.resample('M').last().head() #日毎のデータの抽出 fx_jpusdata.resample('D').last().head() #日毎のデータについて、欠損値を前の日の値で埋める fx_jpusdata.resample('D').ffill().head() #年単位で平均を取る fx_jpusdata.resample("A").mean() #ボ_jpusdata.resample("A").mean() #ボ_jpusdata.resample("A").mean() # ohicメソドで「open」「high」「ow」「close」の4つのデータにする。 df = pd. Series(rnd. walk, index=idx).resample("B").ohlc()	-indexがdatetimeでないと使えない DF.set_index()でindexを指定してから使う必要がある -resampleメンッドの引数にMを指定することで、月ごとのデータを取り出し、lastメンッドで末尾のデータを取り出しています。具体的には、以下の結果をみるとわかる通り、1月、2月、3月…の月末のレートを取り出せます。 - 日付を取り出したい場合は「D」、年を取り出したい場合は「Y」を、それぞれ引数に指定します。このように、ある頻度のデータを、別の頻度のデータで取り出し直す処理をリサンプリングといいます。また、最後のデータで はなく、その平均を計算したい場合はmeanメソッドを使うことで計算できます。 - "M"、"D"などのoffsetaliasesは以下URL参照 http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries. html#timeseries-offset-aliases	松尾研	
257	pandas.core.generic	method	DF.rolling()	rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None) ex) import pandas_datareader.data as pdr start_date = '2001/1/2' end_date = '2016/12/30' fx_jpusdata = pdr.DataReader('DEXJPUS', 'fred', start_date, end_date) #3日間の移動平均を計算 fx_jpusdata.rolling(3).mean().head() #3日間の標準偏差を計算 fx_jpusdata.rolling(3).std().head()	・移動平均の計算	松尾研	
258	matplotlib	pyplot	plt.bar()	import matplotlib as mpl import seaborn as sns sns.set() %matplotlib inline #表示するデータ x = [1, 2, 3] y = [10, 1, 4] # グラフの大きさ指定 plt.figure(figsize = (10, 6)) # align='center'でグラフを中央客せ plt.bar(x, y, align='center', width = 0.5) # 棒グラフそれぞれのラベル plt.xticks(x, ['A Class', 'B Class', 'C Class']) # xとyのラベルを設定 plt.xlabel('Class') plt.ylabel('Score') # グリッドを表示 plt.grid(True)	・棒グラフを描画 ・棒にラベルを表示したいときは、xtick関数を使って以下のように指定します。 ・そのまま実行するとグラフが左に寄ってあまり見栄えが良くないので、グラフを中央に寄せるために、align = 'center'/ラメータを指定するとよい ・なお、Pandasにも可視化機能が備わっており、plotメソッドでグラフ化できます。たとえばデータの後に「plot(kind='bar')」と記すと、縦の棒グラフが描けます。「kind='barh'」にすれば模の棒グラフ、「kind='pie'」にすれば円グラフとなります。必要なときに使ってください。	松尾研	

id	library/module	category	name	usage	remarks	url	備考
259	matplotlib	pyplot	plt.bar()	# データの準備 height1 = np.array([100, 200, 300, 400, 500]) height2 = np.array([1000, 800, 600, 400, 200]) # X軸 x = np.array([1, 2, 3, 4, 5]) # グラフの大きさ指定 plt.figure(figsize = (10, 6)) # グラフの描画 p1 = plt.bar(x, height1, color = 'blue') p2 = plt.bar(x, height2, bottom = height1, color='lightblue') # 凡例を表示 plt.legend((p1[0], p2[0]), ('Class 1', 'Class 2')) ex2)#pandasのplot機能を使う方法 student_data_math.groupby("higher")["G3"].mean().plot(kind="bar") plt.xlabel("higher") plt.ylabel("G3 grade avg")	・積み上げグラフを推画 ・同じくbar開数を使っていますが、bottomパラメータの設定に注目してください。上に積む方のグラフで、barのパラメータとしてbottom=<下に積むグラフ>を指定します。	松尾研	
260	matplotlib	pyplot	plt.barh()	#表示するデータ x = [1, 2, 3] y = [10, 1, 4] # グラフの大きさ指定 plt.figure(figsize = (10, 6)) plt.barh(x, y, align = 'center') #棒グラフそれぞれのラベル plt.yticks(x, ['A Class','B Class','C Class']) plt.ytlabel('Class') plt.xlabel('Class') plt.grid(True) ex2)#pandasのplot機能を使う方法 student_data_math.groupby('[traveltime'])["G3"].mean().plot(kind="barh") plt.xlabel("G3 grade avg")	 横向きの棒グラフを描画 xx の軸とyyの軸が入れかわるので、ラベルを再設定しています。 	松尾研	

id	library/module	category	name	usage	remarks	url	備考
261	複数グラフの描画	複数グラフの描画	複数グラフの描画	# データの準備 y1 = np.array([30, 10, 40]) y2 = np.array([10, 50, 90]) # X軸のデータ x = np.arange(len(y1)) # グラフの幅 w = 0.4 # グラフの描画。y2の方はグラフの幅(wで指定している)の分、右にずらして抽画する plt.bar(x, y1, color = 'blue', width = w, label = 'Math first', align = 'center') plt.bar(x, y1, color = 'blue', width = w, label = 'Math first', align = 'center') plt.bar(x + w, y2, color='green', width = w, label = 'Math first', align = 'center') # 凡例を最適な位置に配置 plt.legend(loc = 'best') plt.xticks(x + w / 2, ['Class A', 'Class B', 'Class C']) plt.yticks(x + w / 2, ['Class A', 'Class B',		松尾研	
262	円グラフの描画	円グラフの描画	円グラフの描画	「ig_tight_layout() labels = [Frogs', 'Hogs', 'Dogs', 'Logs'] sizes = [15, 30, 45, 10] colors = [yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # グラフの大きさ指定 plt.figure(figsize = (15, 6)) # グラフを表示 plt.pie(sizes, explode = explode, labels = labels, colors = colors, autopct = '%1.1f%%', shadow = True, startangle = 90) # 円を丸〈描画 plt.axis('equal') ex2) # yandasの描画機能を使う方法 student_data_math.groupby("reason").size().plot(kind="pie", autopct="%1.1f%%")	円グラフを描くにはpie関数を使って、それぞれのサイズやラベル等を設定します。axis関数で円グラフを丸く表示するように調整します。autopot バラメータでそれぞれの割合を表示する書式を指定します。またexplode バラメータを指定すると、特定のカテゴリーだけ、円グラフの全体から離す調整ができます(ここでは、Hogsだけ0.1に設定しています)。 startangle パラメータは、各要素の出力を開始する角度を表します。このパラメータを指定することで、出力開始位置を変更できます。「90」と指定すると上部中央が開始位置になり、反時計回りの方向に変更したい場合は正の値、時計回りに変更したい場合は正の値、時計回りに変更したい場合は正の値、時計回りに変更したい場合は正の値、時計回りに変更したとい場合は正の値、時計回りに表すると反時計回りによす。Trueまたは指定しない場合は時計回りに、Falseと指定すると反時計回りに出力されます。	松尾研	

id	library/module	category	name	usage	remarks	url	備考
				<u>N = 25</u>			
263	パブルチャートの描画	バブルチャートの 描画	バブルチャートの描 画	#X.Yデータをランダムに生成 x = np.random.rand(N) y = np.random.rand(N) # color番号 colors = np.random.rand(N) # パブルの大きさをばらけさせる area = 10 * np.pi * (15 * np.random.rand(N)) ** 2 # グラフの大きさ指定 plt.figure(figsize = (15, 6)) # グラフを抽画 plt.scatter(x, y, s = area, c = colors, alpha = 0.5) blt.rid(True)	- 要は散布図の1種	松尾研	
264	gzip	gzip	gzip.open()	<u>pit.grio(mae)</u>	・gzipファイルの読み込み	https://docs.pvthe	I on.org/ja/3/library/g
265	pandas	function	pd.data_range()	date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) ex) # 日付データの設定。freq='T'で1分ごとにデータを生成する idx = pd.date_range('2015/01/01', '2015/12/31 23:59', freq='T')	STD 2 1 1 1000 WILLIAM STATE OF THE STATE OF	松尾研	л.ог <u>д</u> ја/ 3/пога у/
266	numpy	function	np.cumprod()	cumprod(a, axis=None, dtype=None, out=None) ex) a = np.array([1,2,3]) np.cumprod(a) #array([1,2,6])	- 累積積の計算	松尾研	
267	pandas.core.groupby.groupby	method	DF.groupby(). cumcount()	>>> df = pd.DataFrame([[a], [a], [b], [b], [b], [a]], columns=[A]) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 1 2 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 ex2) test = pd.DataFrame({'item_id': [1, 1, 1, 2, 2, 2, 2], 'target': [3, 4, 5, 6, 7, 8, 9]}) test test.groupby('item_id').cumcount()	・Number each item in each group from 0 to the length of that group - 1・グループごとに連番を振る	https://stackoverf	low.com/questions,
268	pandas.core.frame	method	DF.pivot()	pivot(index=None, columns=None, values=None) ex) #pivotを使う前にpivot用のindexとなるidをgroup毎に作っておく data["stock_group_id"] = data.groupby(["stock"]).cumcount() data[["stock", "close", "stock_group_id"]].head(15) data.pivot(index = "stock_group_id", columns = "stock", values = "close")	・indexに何も指定しないと、既存のindexを使うため、NaNが大量にできる	https://qiita.com/	mwmsnn/items/6a

id	library/module	category	name	usage	remarks	url	備考
				plt.figure(figsize=(10, 7)) sns.heatmap(close data corr by stock)			
269	seaborn	function	sns.heatmap()	STIS. Teal Trap (Close_data_corr_by_stock)	・ヒートマップを作成	https://note.nkmk	.me/python-seabor
				ex) see heatman(cross eluctor ago apply(lambda x : x/x cum/) axis=1) cman='Plues')			
270	pandasのplot機能まとめ	pandasのplot機 能まとめ	pandasのplot機能ま とめ	sns.heatmap(cross_cluster_age.apply(lambda x:x/x.sum(), axis=1), cmap='Blues') ex1)#plotting multiple graphs on one plot #1つのグラフ内に複数グラフをブロットする #CSCO, MSFTについて時系列グラフを描く plot_data = data[data["stock"].isin(["CSCO", "MSFT"])] plot_data.head() pd_pivot_table(data = plot_data, values = "close", columns = "stock", index = "date").plot(figsize = (10, 7), grid = True) #1つのグラフ内に複数グラフをブロットする ver2 # クラスタリング結果のグラフ化 ax = None colors = [blue', 'red', 'green'] for i, data in merge_data.groupby('cluster'):	・複数グラフのプロット	https://stackoverfl	ow.com/questions,
271	numpy	function	np.log()	#1期前との対数時系列データ np.log(tmp/tmp.shift(1))	・対数を計算する	松尾研	
272	pandas	function	pd.read_excel()	pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, parse_cols=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skip_footer=0, skipfooter=0, convert_float=True, mangle_dupe_cols=True, "*kwds) ex) url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00352/Online%20Retail.xlsx" excel_data = pd.read_excel(url, sheet_name="Online Retail")	・Read an Excel file into a pandas DataFrame ・excelファイルの読み込み	https://pandas.pyo	data.org/pandas-do
273	pandas.core.strings	method	pd["column_name"]. str.find()	find(sub, start=0, end=None) ex) #InvoiceNoで数字の前にCがあるものは除外する excel_data2 = excel_data2[excel_data2["InvoiceNo"].str.find("C").isnull()]	・文字列検索、文字列マッチング	https://www.geek	sforgeeks.org/pyth
274	pandas	method	DF.set_index()	DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) ex) #InvoiceDateをindexにする excel_data2 = excel_data2.set_index("InvoiceDate") ex2)#Indexを2つ指定することもできる # indexの設定(日時と国) top_five_country_data_country_totalP_index=top_five_country_data_country_totalP.set_index ([ClinvoiceDate', Country]) #indexを2つ指定してからunstackすると、2個目のindexがspreadされる top_five_country_data_country_totalP_index_uns = top_five_country_data_country_totalP_index. unstack()	・Set the DataFrame index using existing columns. ・カラムを使ってDFのindexを変える	https://pandas.pyc	lata.org/pandas-dc

id	library/module	category	name	usage	remarks	url	備考
275	pandas.core.series	method	Series.idxmax()	idxmax(axis=0, skipna=True, *args, **kwargs) ex) log_timeline.std().idxmax() #"CSCO"	・Return the row label of the maximum value ・最大値の行のラベルを返す 最大値をもつ行が複数ある場合は、最初の行を返す	松尾研	
276	pandas.core.series	method	Series.idxmin()	idxmin(axis=0, skipna=True, *args, **kwargs) ex) log_timeline.std().idxmin() #"KO"	・Return the row label of the minimum value ・最小値の行のラベルを返す 最小値をもつ行が複数ある場合は、最初の行を返す	松尾研	
277	pandas.core.series	method	Pandas Series. iteritems()	#Seriesに1iteritems()メソッドを使うとイテレータになる test = 1 for i in top_five_country_sales.Country.iteritems(): print(test) print([f1]) test += 1	 pandas Seriesをイテレータに変換する ※pandas Seriesはそのままではイテレータとして使えない 	https://www.geek	sforgeeks.org/pyth
278	複数グラフをループで作成	複数グラフをループで作成	複数グラフをループ で作成	for in top_five_country_sales.Country.iteritems(): #print(i[1]) plt.figure() #これがないと、グラフが1つしかできない plot_data = top_five_country_description_top5_sales[top_five_country_description_top5_sales ["Country"] == i[1]] plt.pieplot_data.sales, labels = plot_data.Description, counterclock=False, autopct='%.1f%%') plt.yiabel(i[1]) ex2) # クラスタリング結果のグラフ化 # 1つのグラフに複数ブロット ax = None colors = ['blue', 'red', 'green'] for i, data in merge_data.groupby('cluster'): ax = data.plot.scatter(x='feature1', y='feature2', color=colors[i], label='cluster'%d' % i, ax=ax)		松尾研	
279	pandas	function	pd.to_numeric()	auto = auto.assign(price=pd.to_numeric(auto.price)) auto = auto.assign(horsepowe=pd.to_numeric(auto.horsepower)) print("一少型の確認《型変接》(Nif-format(auto.dtypes))	・数値型に変換する	松尾研	
	sklearm 組み込み?	function	make_blobs() items()	# k-means法を使うためのインボート from skleam.cluster import KMeans # データ取得のためのインボート from skleam.datasets import make_blobs # サンブルデータ生成 # 注意:make_blobs(random_state=10) # グラフを描画 # colorのオブションで色付けができる plt.scatter(X[:,0],X[:,1],color='black') for k, v in d.items(): print(k, v) # key1 1 # key2 2 # key3 3	・make blobs関数は縦軸と横軸に各々標準偏差1.0の正規分布に従う乱数を生成する関数で、主にクラスタリング用のサンブルデータ生成に使われます。 ・make blobs関数には、とくに引数を与えなければ、-10から+10の範囲でランダムに2次元座標を選び、そこを中心に乱数の組を100個生成します。 ・辞書型のオブジェクトをイテレータにする	松尾研	.me/python-dict-ke
282	クロス集計したい	クロス集計したい	クロス集計したい	ex) cross_cluster_job = bank_with_cluster.groupby(['cluster_number', 'job']).size().unstack().fillna(0)	・2軸でグループ化し、結果をunstack()するとクロス集計表のような見た目で結果が反る	松尾研	

id	library/module	category	name	usage	remarks	url	備考
283	built-in	function	set() issubset() intersection()	# すべてのInvoiceNoをtrans_allとして抽出 # 集合型とすることで、InvoiceNoと重複のない状態で保持できます # np.unique(trans.InvoiceNo)と同じ要素数 trans_all = set(trans.InvoiceNo)と同じ要素数 trans_a = set(trans.InvoiceNo) # 商品85123Aを購入したデータをtrans_aとする trans_a = set(trans.[StockCode']=='85123A'].InvoiceNo) #1978 print(len(trans_a)) # 商品85099Bを購入したデータをtrans_bとする trans_b = set(trans.[strans['StockCode']=='85099B'].InvoiceNo) print(len(trans_b)) # 商品85123Aおよび85099Bを購入したデータをtrans_abとする # 複集合 trans_ab = trans_a&trans_b print(len(trans_ab)) trans_a.intersection(trans_b) # 商品組み合わせの支持度 # trans_ab の、両商品を含むバスケットの数で表示 print(「商商品を含むバスケットの数:{}'.format(len(trans_ab))) print(「商商品を含むバスケットの数:{}'.format(len(trans_ab))) # 商品自体の支持度 print(「商品85123Aのバスケットの数:{}'.format(len(trans_a))) print(「商品85123Aを含むバスケットの数:{}'.format(len(trans_a))) # 確信度 # 商品85123Aを購入するなら商品85099Bも購入する、というルールの確信度 print("確信度:{:.3f}'.format(len(trans_a))) # #################################	・setクラスのオブジェクトを作る ・setは集合を扱うときに使い、重複のない要素をもつ順序なしのコレクションオブジェクトです。 ・積集合は、両方に共通するものを取り出すことで、setでは「&」を使います ・部分集合か判定するならissubset()	松尾研 9章	集合演算をやりた
284	itertools	class function	itertools. combinations()	import itertools array = ['a', 'b', 'c'] result = list(itertools.combinations(array, 2))	・組み合わせを作成する		
				print(result) # [('a', 'b'), ('a', 'c'), ('b', 'c')]		http://pynote.hat	enablog.com/entry/
285	numpy	function	np.logspace()	scores = {} for gamma in np.logspace(-3, 2, num=6): for C in np.logspace(-3, 2, num=6): svm = SVC(gamma=gamma, C=C) svm.fit(X_train,y_train) scores[(gamma, C)] = svm.score(X_test, y_test)	- np.linespaceの亜種 - logspaceは、対数(底を省略したときは底は10)で指定した範囲の値を 配列として生成します。この例では、10の-3乗から10の2乗の範囲を6等 分した配列——具体的には、[0.001, 0.01, 0.1, 1, 10, 100]だけ繰り返し ます。	松尾研	
286	numpy	function	ravel()	ravel(array, order='C') ex) # データの読み込み iris = datasets.load_iris() X = iris.data y = iris.target # 正解データのone-hot化 y = label_binarize(y, classes=[0, 1, 2]) #01フラグ×3列に変形 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) # multi-class classification model model = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=0)) y_score = model.fit(X_train, y_train).predict_proba(X_test) # 3つそれぞれのクラスについて、1次元のデータにして、ROC曲線、AUCを算出する # 75サンブル×3列 - 225サンブル×1列の形式にすれば、2クラス分類同様にROC曲線が描ける fpr, tpr, _= roc_curve(y_test.ravel(), y_score.ravel()) roc_auc = auc(fpr, tpr)	Return a flattened array. *複数列のarrayをflattenして1列にする 1列にした分、行数がN(カラム数)-1倍増える *多クラス分類した結果(複数列)を1列にし、ROC曲線を描く際に使える *クラスラベルを複数列の01に変換するにはlabel_binarize()を使うと良い	https://scikit-learn	.org/stable/auto_e

id	library/module	category	name	usage	remarks	url	備考
		outogo: y	Train 0	join(other, on=None, how='left', lsuffix=", rsuffix=", sort=False)	I containe		ING - 3
287	pandas	method	DF.join()	ex) # インポート from sklearn.datasets import load_boston # Housingデータセットを読み込み boston = load_boston() # DataFrame(ニデータを格納 X = pd.DataFrame(boston.data, columns=boston.feature_names) # 住宅価格の中央値(MEDV)のデータを用意 y = pd.Series(boston.target, name="MEDV") # Xとyを結合して先頭の5行を表示 X,join(y).head()	・DFに別のDFの列(Seriesも可)を結合する ・merge()も同様		
288	numpy	function	np.squeeze()	squeeze(a, axis=None) ex) # 分析対象データ from sklearn.datasets import load_digits digits = load_digits() digits images.shape # (1797, 8, 8) # サンブル毎に8行8列あるので、サンプル毎に1行64列にしたい X = digits.images.reshape(1797, 1, 64).squeeze() X.shape # (1797, 64)	・Remove single-dimensional entries from the shape of an array. 配列で1次元の部分を削除する ・配列のshapeを変えるreshapeと組み合わせて使うと便利	https://docs.scipy	org/doc/numpy/re
289	pandas_profiling	function	pdp.ProfileReport()	# EDA import pandas_profiling as pdp pdp.ProfileReport(abalone_data) # HTMLで出力する場合 profile = pdp.ProfileReport(abalone_data) profile_to_file("myoutputfile.html")		https://qiita.com/	h kobayashi1125/it
290	sklearn	function	label_binarize()	label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False) y: array-like Sequence of integer labels or multilabel data to encode. classes: array-like of shape [n_classes] Uniquely holds the label for each class. neg_label: int (default: 0) Value with which negative labels must be encoded. pos_label: int (default: 1) Value with which positive labels must be encoded. sparse_output: boolean (default: False), Set to true if output binary array is desired in CSR sparse format ex) from sklearn import datasets from sklearn preprocessing import label_binarize iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) classes = y.shape[1]	-Binarize labels in a one-vs-all fashion クラスラベルを01×N列 形式に変換		

id	library/module	category	name	usage	remarks	url	備考
		Jg,		Examples			, , , , , , , , , , , , , , , , , , ,
291	numpy	class function	np.c_		・arrayをbind_colsする 配列を横に結合する		
292	sklearn	function	decision_function()	decision_function(self, X) ex) ex y score = classifier.fit(X train, y train).decision function(X test)	Returns the distance of each sample from the decision boundary for each class. This can only be used with estimators which implement the decision_function method.		
				7	・それぞれのクラスラベルの境界線からの距離を返す	https://scikit-learn	.org/stable/auto_e
				roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True) y_true : array, shape = [n_samples] True binary labels. If labels are not either {-1, 1} or {0, 1}, then pos_label should be explicitly(はっきりと) given.	・Compute Receiver operating characteristic (ROC) ROCを計算する ・Note: this implementation is restricted to the binary classification task 2値分類にしか適用できない		
293	sklearn	function	roc_curve()	y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by "decision_function" on some classifiers). ex)	■引数 ・y_true ・予測対象の実際の観測値 の1や-1,1以外である場合、正例のラベルを指定する必要がある ・y_score ・予測結果		
				·			
294	numpy	function	np.zeros_like()	zeros_like(a, dtype=None, order='K', subok=True)	・Return an array of zeros with the same shape and type as a given array. 与えられたarrayと同じshapeのarray of zeros を返す		
295	numpy	function	interp()	interp(x, xp, fp, left=None, right=None, period=None)	・与えられたxに対し、線形補間して計算したyを返す ・One-dimensional linear interpolation(補間). Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, `fp'), evaluated at `x`.		
				from itertools import cycle			
296	itertools	class function	cycle()	colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ".format(i, roc_auc[i]))			
297	matplotlib.pyplot	function	plt.subplots_adjust()	ubplots_adjust(left=None, bottom=None, right=None, top=None,	•Tune the subplot layout	https://matplotlib.	org/3.1.1/api/_as_

id	library/module	category	name	usage	remarks	uri 備考
	moral y/moralio	outogo. j	Tiumo	>>> import numpy as np	To marko	With 1.3
298	numpy	function	np.meshgrid()	>>> a = np.arange(0,3,0.5) >>> b = np.arange(0,10,2) >>> a array([0, , 0.5, 1, , 1.5, 2, , 2.5]) >>> b array([0, 2, 4, 6, 8]) >>> X, Y = np.meshgrid(a, b) >>> X array([[0, , 0.5, 1, , 1.5, 2, , 2.5], [0, , 0.5, 1, , 1.5, 2, , 2.5]]) >>> Y array([[0, 0, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2], [4, 4, 4, 4, 4, 4], [6, 6, 6, 6, 6, 6], [8, 8, 8, 8, 8, 8]])	・格子点の各座標を求めるのに便利	http://ailaby.com/contour/ https://www.haya-programming.com https://deepage.net/features/numpy
299	matplotlib	function	plt.contour()			https://matplotlib.org/3.1.0/api/_as_
300	built-in	イテレータ	enumerate()	for i, name in enumerate(I): print(i, name) # 0 Alice # 1 Bob # 2 Charlie		https://note.nkmk.me/python-enume https://docs.python.org/ja/3/library/
301	sklearn	function	validation_curve()	validation_curve(estimator, X, y, param_name, param_range, groups=None, cv='warn', scoring=None, n_jobs=None, pre_dispatch='all', verbose=0, error_score='raise-deprecating') ex)	・検証曲線(validation curve)を描く	https://scikit-learn.org/stable/module https://scikit-learn.org/stable/module
302	warningを非表示にしたい					https://docs.python.org/ja/3/library/
303	built-in	function	ord()	ord('a') # 97	•Return the Unicode code point for a one-character string.	https://docs.python.org/ja/3/library/i
304	built-in	function	chr()	chr(97) # a		https://docs.python.org/ja/3/library/i
305	built-in	function	str.upper() str.lower() str.capitalize() str.title() str.swapcase() str.isupper() str.istitle()	str.upper(): すべての文字を大文字に変換 str.lower(): すべての文字を小文字に変換 str.capitalize(): 先頭の一文字を大文字、他を小文字に変換 str.title(): 単語の先頭の一文字を大文字、他を小文字に変換 str.swapcase(): 大文字を小文字に、小文字を大文字に変換 str.swapcase(): 大文字を小文字に、小文字を大文字に変換 str.islupper(): すべての文字が大文字かどうか判定 str.islitle(): タイトルケースかどうか判定 str.istitle(): タイトルケースかどうか判定	•文字列判定関数	https://note.nkmk.me/python-capital
306	ColabでGoogleドライブのファイル を読み込む	ColabでGoogle ドライブのファイ ルを読み込む	ColabでGoogleドラ イブのファイルを読み 込む		 ・URL参照 ・pwdでカレントディレクトリがわかる ・DF.to_csv()でcsv書き出しも普通にできる 	https://qiita.com/uni-3/items/201aaa
307	pandas	function	pandas.DataFrame. explode()	DataFrame.explode(self, column: Union[str, Tuple]) ex) >>> off = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> off	*Transform each element of a list-like to a row, replicating the index values.	https://pandas.pydata.org/pandas-dc

id	library/module	category	name	usage	remarks	url 備考
308	math	function	math.ceil()	# mathモジュールをインポート import math # ここでも円周率を例にします a = 3.141592653589793 #切り上げ math.ceil(a) #4 #切り捨て math.floor(a) #3	・小数点以下を切り上げる	https://hibiki-press.tech/learn_prog/s
309	jsonファイルを開きたい	jsonファイルを開 きたい	jsonファイルを開きた い	#ファイルをColab上のディレクトリに置いてから解凍 lgzip -d /content/jawiki-country.json.gz import json lines = [] #ファイルを開いてファイルオブジェクトを返す with open(/content/jawiki-country.json', 'r') as data_file: #イテレータで1行ずつ読み込む:		
310	キーワード	キーワード	in	print('hell' in 'hello kyoto') #=> True print('heaven' in 'hello kyoto') #=> False	・文字列の有無判定に使える	https://www.lifewithpython.com/201
311	built-in	function	count()	pmm(neaven in neilo kyoto) # => Faise >>> str = 'aAaAAbAccdd' # "A"という文字が何個あるか調べる >>> str.count('A') 4	count() method of builtins.str instance S.count(sub[, start[, end]]) -> int Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation.	https://hibiki-press.tech/learn_prog/s
312	re	function	re.findall()	re.findall(pattern, string, flags=0) ex) regexp = '\ .+ = .+\n' # 正規表現にマッチする部分をすべて抽出し、リスト形式で返す extract_list = re.findall(regexp, target_text)	string 中の pattern による全ての重複しないマッチを、文字列のリストとして返します。string は左から右へ走査され、マッチは見つかった順で返されます。パターン中に 1つ以上のグループがあれば、グループのリストを返します。パターンに複数のグループがあればタブルのリストになります。空マッチは結果に含まれます。	https://docs.python.org/ja/3/library/
313	re	function	re.search()	re.search(pattern, string, flags=0) ex) # 正規表現でマッチした部分のみ抜き出し、整形する regexp = 'File:[^\]+\ ファイル:[^\]+\ result = [] for lines in uk_text: search_res = re.search(regexp, lines) if search_res: match_file = re.sub('File: ファイル: \ ', ", search_res[0]) result.append(match_file) # print('\n'.join(result))	string を走査し、正規表現 pattern がマッチを生じさせる最初の場所を探して、対応するマッチオブジェクト を返します。文字列内にパターンにマッチする場所がなければ None を返します。これは文字列のどこかで長さ 0 のマッチを見つけるのとは異なることに注意してください。	https://docs.python.org/ja/3/library/i
314	re	function	re.sub()	re.sub(pattern, repl, string, count=0, flags=0)	・正規表現でマッチした部分を置換する	https://docs.python.org/ja/3/library/i
315	pandas	method	Series.sort_index()		・pandasのSeriesをindexでソートする	https://pandas.pydata.org/pandas-do

id	library/module	category	name	usage	remarks	url 備考
316	requests	method	get()	# imageinfoのサンプルスクリプトを実行 # https://www.mediawiki.org/wiki/API:Imageinfo import requests S = requests.Session() URL = "https://en.wikipedia.org/w/api.php" PARAMS = { "action": "query", "formatt: "json", "prop": "imageinfo", "titles": "File:Billy_Tipton.jpg", "iiprop": "user mediatype url" # iiprop: which file information to get } R = S.get(url=URL, params=PARAMS) # urlの確認 R.url DATA = R.json() DATE	・HTTPでGETリクエストを送信 ・urlのパラメタはparams引数で渡す	https://requests-docs-ja.readthedo https://www.mediawiki.org/wiki/API
317	MeCab	method	parse()	import MeCab	・MeCab.Tagger()クラスのオブジェクトを使い、形態素解析する	https://giita.com/menon/items/f041l
318	built-in	method	splitlines()	text = "吾輩は猫である。" mecab_tagger.parse(text).splittines() [吾輩は割 代名詞,一般,****,吾輩,ワガハイ,ワガハイ', 'はは助詞,係助詞,****,'はヘ,フ', '猫は名詞,一般,****,'猫ネコ,ネコ, 'では助動詞,***,***,***,****,*******************	・文字列を改行で分割する	https://note.nkmk.me/python-split-rs https://docs.python.org/ja/3/library/:
319	datetime	function	datetime.date()	import datetime datetime.date(2019, 9, 15) # Athenaの出力結果を日付で絞る場合 output = query_res['qate'] == datetime.date(2019, 9, 11)]	・datetime型の変数を作成	https://qiita.com/motoki1990/items/
320	collections	class function	Counter() update() most_common()	words = Counter(['a', 'a', 'b', 'c', 'c', 'a']) words # Counter(['a': 3, 'b': 1, 'c': 2}) # dict型に共通のメソッド(update)により、要素追加が可能 words.update(["a", "a", "b"]) words # Counter(['a': 5, 'b': 2, 'c': 2}) # カウントの多い要素順に表示 words.most_common()	単語の出現頻度を数える際に便利・リストを引数にとる	https://kaworu.jpn.org/kaworu/2018

id	library/module	category	name	usage	remarks	url	備考
				ex)			Ma · 3
				# 単語の出現頻度 freq df = pd.DataFrame({"frequency": [element[1] for element in words.most common()]})			
321	pandas	method	rank()		・順次付けを行う		
				# 出現頻度ランキングの付与 freq_df["ranking"] = freq_df.rank(ascending=False, method="min")		https://note.nkmk.me 前処理大全P80	ie/python-panda
				# 両対数グラフ		BA/CHE/CEI GO	
				plt.figure(figsize=(10, 6)) plt.plot(freq_df.frequency, freq_df.ranking)			
				ax = plt.gca()			
322	両対数グラフを描きたい	両対数グラフを 描きたい	両対数グラフを描き たい	ax.set_yscale('log')			
		油 2 / 2 0 .	/_0.	ax.set_xscale('log')			
				plt.grid(which="both")			
				plt.title("frequency and rank")			
				plt.xlabel('ranking',fontsize=18) plt.ylabel('frequency',fontsize=18)		https://qiita.com/sci	Haru/items/68h
				pit.yiabel(frequency ,fortisize=10)	条件式がTrueではない時に、例外を投げます。		Tidi dy items/ ooc
323	assert文	assert文	assert文		これを仕込んでおくと、それまでちゃんと動いていたコードが、いじっている うちにいつの間にか想定と異なる振る舞いをするようになった時に、いち 早く気づくことが出来ます。「とにかく想定と違ったら止める」		
				from scipy.sparse import csr matrix, csc matrix, coo matrix, lil matrix	早く気づくことが出来ます。「とにかく想定と違ったら止める」	https://qiita.com/nar	nnoki/items/150
				# 5×5の疎行列を作成 mat tmp = lil matrix((5, 5))			
			lil_matrix()				
			lil_matrix_obj. tocoo()	# 非ゼロ要素を設定する for i in range(0, 5):			
			lil_matrix_obj.	for j in range(0, 5):			
324	scipy.sparse	function/method	todense()	if i == j: mat_tmp[i, j] = 1	・sparse matrix (疎行列)の生成と演算		
	1,7		coo_matrix()		・最後のリンク先がわかりやすい		
			coo_matrix_obj. max()	print(mat_tmp)			
			coo_matrix_obj. sum()	# coo matrixに変換 mat coo = mat tmp.tocoo(copy = True)			
			Sum()				
				# 最大の要素を確認 mat coo.max()		https://note.nkmk.m http://hamukazu.com	
				mat_coo.sum()		https://docs.scipy.or	
				# sparse matrixのスライス # csrでないとうまくスライスできないので注意			
				# 疎行列の作成 mat tmp = lil matrix((5,5))			
				# 非ゼロ要素を設定			
				mat_tmp[0, 0] = 1 mat_tmp[0, 3] = 1			
				mat_tmp[2, 4] = 1			
				mat_tmp = mat_tmp.tocoo(copy = True) # coo matrixに変換 # csrへの変換			
	7* C 51 to 5 C #5 Po - C 51 + 11 / -	疎行列から行指	疎行列から行指定で	mat_tmp = mat_tmp.tocsr()			
325	疎行列から行指定で行列を抽出(ス ライス)したい	定で行列を抽出 (スライス)したい	疎行列から行指定で 行列を抽出(スライス)	# 普通のmatrixに変換してprintで確認	・sparse matrix (疎行列)のスライス	https://cmdlinetips.c	com/2019/07/hc
		(\(\sigma\)\(\circ\)	したい	print(mat_tmp.todense())			
				#[[1. 0. 0. 1. 0.] # [0. 1. 0. 0. 0.]			
				# [0. 0. 1. 0. 1.] # [0. 0. 0. 1. 0.]			
				# [0. 0. 0. 1. 0.] # [0. 0. 0. 0. 1.]]			
				# スライスで0行目、2行目、2行目を抜き出したもの			
				print(mat_tmp[np.array([0, 2, 2])].todense())			
				#[[1. 0. 0. 1. 0.] #[0. 0. 1. 0. 1.]			
				# [0. 0. 1. 0. 1.]]			

id	library/module	category	name	usage	remarks	uri 備考
	_msrail j.mouails	Jane 35. j	- name	mat_a = mat_tmp = i _matrix((3, 2)) mat_b = mat_tmp = i _matrix((1, 2))		С, сли
326	疎行列で内積を計算したい	疎行列で内積を 計算したい	疎行列で内積を計算 したい	mat_b.shape mat_a = mat_a.tocsr() mat_b = mat_b.tocsr() # 内積の計算 mat_c = mat_a.multiply(mat_b) print(mat_c.todense())	*sparse matrix (疎行列)の内積(dot product) •multiplyはpoint wise multiplicationなので、内積を計算する場合は multiplyの後にsum(axis = 1)を使う	https://docs.scipy.org/doc/scipy/ref
		matrixをnp.		mat_c. sum (axis=1) # fがnumpy.matrixlib.defmatrix.matrixだとする		https://note.nkmk.me/python-scipy-
327	matrixをnp.arrayに変換したい	arrayに変換した	matrixをnp.arrayに 変換したい	np.array(f).ravel()		
				# f.reshape(1, f.size) import itertools		https://qiita.com/itoru257/items/dc0
328	itertools	function	product()	import pprint I1 = ['a', 'b', 'c'] I2 = ['X', 'Y', 'Z'] p = itertools.product((1, I2) list(p) ex2) from itertools import product ts = time.time() matrix = [cols = ['date_block_num', 'shop_id', 'item_id'] for i in range(34): sales = train[train.date_block_num==i] # (letrools/product()で要素同士の全ての組み合わせを返す matrix.append(np.array(list(product([i], sales.shop_id.unique(), sales.item_id.unique())), dtype='int16')) time.time() - ts matrix = pd.DataFrame(np.vstack(matrix), columns=cols)	・Pythonで複数のリストの直積(デカルト積)を生成するにはitertools. product()を使う。 ・2つのリストから1つずつ要素を取り出してペアとする際の、全ての組み合わせを返す ・product()とnp.vstack()をあわせて使うことが多い	https://note.nkmk.me/python-itertoc
329	pandas	method	clip()	ex)	Trim values at input threshold(s). Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.	
				.clip(0,20) # NB clip target here .astype(np.float16))	・上限、下限を定めて、はみ出す値は上限値or下限値に置き換える clip→刈る	https://pandas.pydata.org/pandas-do
330	pandas.core.frame	method	iterrows()	ex) for idx, row in matrix.iterrows(): key = str(row.item_id)+''+str(row.shop_id) if key not in cache: if row.item_ont_month!=0: cache[key] = row.date_block_num else: last_date_block_num = cache[key] matrix.at[idx, 'item_shop_last_sale'] = row.date_block_num - last_date_block_num cache[key] = row.date_block_num	・Iterate over DataFrame rows as (index, Series) pairs. 行番号、行のSeries をイテレータで返す	
224				next(matrix.iterrows())	DO	https://pandas.pydata.org/pandas-do
331	pandas.core.frame	method	melt()		・Rのmeltと同じ	

id	library/module	category	name	usage	remarks	url	備考
332	pandas.Series	method	rolling()	Series.rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None) ex) plt.figure(figsize=(16,6)) plt.plot(ts.rolling(window=12,center=False).mean(),label='Rolling Mean'); #ts/\$\pandas.Series plt.plot(ts.rolling(window=12,center=False).std(),label='Rolling sd'); plt.legend(); ex2) # groupby&rollingの組み合わせ f_max = lambda x: x.rolling(window=3, min_periods=1).max() #起点月含む過去3ヶ月の最大値 train_monthly[('tem_cnt_%s' % 'max')] = train_monthly.sort_values('date_block_num').groupby (('shop_id', 'item_category_id', 'item_id')]['item_cnt'].apply(f_max) ※別追加するだけでちゃんとmappingできている	・Provide rolling window calculations. 移動平均を計算する		rdata.org/pandas-i gle.com/dimitreoliv
333	statsmodels.tsa.seasonal	function	seasonal_decompo se()	seasonal_decompose(x, model='additive', filt=None, freq=None, two_sided=True) ex) import statsmodels.api as sm # multiplicative res = sm.tsa.seasonal_decompose(ts.values,freq=12,model="multiplicative") #model="multiplicative" #plt.figure(figsize=(16,12)) fig = res.plot() #fig.show()	・Seasonal decomposition using moving averages ・model = 'additive' →yt=St+Tt+Et →季節成分と残差をトレンドに加えると原系列になるよう分解 ・model = 'multiplicative' →yt=St x Tt x Et →季節成分と残差をトレンドに掛けると(?)原点系列になるよう分解?		smodels.org/stable ple.com/jagangupt
334	数値データのメモリ使用量を減らしたい float64→float32 int64→int32	数値データのメ モリ使用量を減 らしたい float64→float32 int64→int32	数値データのメモリ使 用量を減らしたい float64→float32 int64→int32	def downcast_dtypes(df): "Changes column types in the dataframe: 'float64' type to 'float32' "int64' type to 'int32' # Select columns to downcast float_cols = [c for c in df if df[c].dtype == "float64"] int_cols = [c for c in df if df[c].dtype == "int64"] # Downcast df[float_cols] = df[float_cols].astype(np.float32) df[int_cols] = df[int_cols].astype(np.int32) return df	・関数を作成する	Kaggle coursera	
335	数値データのメモリ使用量を減らしたい float64→float32 int64→int32	数値データのメ モリ使用量を減 らしたい float64→float32 int64→int32	数値データのメモリ使 用量を減らしたい float64→float32 int64→int32	# Integer features (used by catboost model). int_features = ['shop_id', 'item_id', 'year', 'month'] X_train[int_features] = X_train[int_features].astype('int32') X_validation[int_features] = X_validation[int_features].astype('int32')	・数値データの列名のリストを作ってまとめて処理	https://www.kagg	le.com/dimitreolive
336	gc	function	gc.collect()	# Downcast dtypes from 64 to 32 bit to save memory all_data = downcast_dtypes(all_data) del grid, gb gc.collect();	・メモリ解放を明示的に指定する?	https://docs.pytho	on.org/ja/3/library/s
337	pandas.core.index.base	method	difference()	# all_data(DF)の列名のうち、index_cols(リスト)に含まれない列名を返す all_data.columns.difference(index_cols)	・残った列名を取得したい場合		data.org/pandas-do
338	tqdm	function	tqdm()	from tqdm import tqdm_notebook as tqdm #Jupyter で使う場合はこっち # from tqdm import tqdm shift_range = [1, 2, 3, 4, 5, 12] for month_shift in tqdm(shift_range): print(month_shift)	・プログレスパーを表示させる ・イテラブルな物であれば何でも渡せる		ama.jp/entry/2018
339	指定の列名だけ規則的に名前変更したい	指定の列名だけ 規則的に名前変 更したい	指定の列名だけ規則 的に名前変更したい	index_cols = ['shop_id', 'item_id', 'date_block_num'] foo = lambda x: '{}_lag{{}'.format(x, month_shift) if x in cols_to_rename else x train_shift = train_shift.rename(columns=foo)		Kaggle coursera	
340	numpy	function	np.isclose()	ex) np.all(np.isclose(X_train_level2.mean(axis=0), [1.50148988, 1.38811989]))	•Returns a boolean array where two arrays are element-wise equal within a tolerance.	https://numpy.org	/devdocs/reference
341	numpy	function	np.all()	ex) np.all(np.isclose(X_train_level2.mean(axis=0), [1.50148988, 1.38811989]))	•Test whether all array elements along a given axis evaluate to True.	https://numpy.org	/devdocs/reference

id	library/module	category	name	usage	remarks	url	備考
342	numpy.arrayの任意の場所へ値(ベ クトル)を代入したい	numpy.arrayの 任意の場所へ値 (ベクトル)を代入 したい	numpy.arrayの任意 の場所へ値(ベクトル) を代入したい	ex) X_train_level2_tmp[:, 0][dates_train_level2 == cur_block_num] = pred_lr X_train_level2_tmp[:, 1][dates_train_level2 == cur_block_num] = pred_lgb 注意:以下だとうまく代入できなかった X_train_level2_tmp[dates_train_level2 == cur_block_num][:, 0] = pred_lr X_train_level2_tmp[dates_train_level2 == cur_block_num][:, 1] = pred_lgb			
343	関数を変えてループを回したい	関数を変えて ループを回した い	関数を変えてループを回したい	以下の容量で実施可能 # Min value f_min = lambda x: x.rolling(window=3, min_periods=1).min() # Max value f_max = lambda x: x.rolling(window=3, min_periods=1).max() # Mean value f_mean = lambda x: x.rolling(window=3, min_periods=1).mean() # Standard deviation f_std = lambda x: x.rolling(window=3, min_periods=1).std() function_list = [f_min, f_max, f_mean, f_std] # 関数そのものをリストの成分にできる function_name = [min', 'max', 'mean', 'std'] for i in range(len(function_list)): train_monthly[('item_cnt_%s' % function_name[i])] = train_monthly.sort_values('date_block_num'). groupby(('shop_id', 'item_category_id', 'item_id'))['item_cnt'].apply(function_list[i]) # Fill the empty std features with 0 train_monthly['item_cnt_std'].fillna(0, inplace=True)		https://www.kaggl	e.com/dimitreolive
344							
345							