

<u>Sample Question Format</u> (For all courses having end semester Full Mark=50)

KIIT Deemed to be University Online End Semester Examination(Spring Semester-2021)

<u>Subject Name & Code:</u> Computer Organization (CS 3042) <u>Applicable to Courses:</u>

Full Marks=50 Time:2 Hours

SECTION-A(Answer All Questions. Each question carries 2 Marks)

Time:30 Minutes

(7×2=14 Marks)

Question	Question Type	Question	CO	Answer Key
No	(MCQ/SAT)	<u> </u>	Mapping	(For MCQ
				Questions only)
Q.No:1	<u>SAT</u>	Write the basic	CO1	
		performance equation.		
		Explain how N and S can		
		be reduced for better		
		timings.		
	<u>SAT</u>	Why is the compiler's job	CO1	
		easier in CISC computers?		
	<u>SAT</u>	Add 10111000 in 2's	CO1	
		complement to 10001111		
		in 1's complement and		
		write the answer in sign-		
		magnitude form. Show		
		your calculations.		
	<u>SAT</u>	If 14 bits are allocated for	CO1	
		encoding a branch target		
		and the instruction uses		
		PC relative addressing,		
		then how far on each side		
		of the current instruction		
		can a branch be made?		
<u>Q.No:2</u>	<u>SAT</u>	Arrange cache, main	CO ₂	
		memory, registers, hard		
		disk and tape drive in		
		increasing order of speed		
		and cost.		
	<u>SAT</u>	Explain how a stack can	CO ₂	
		be used to make function		
		calls. What kinds of data		
		can be pushed on to it?		
	<u>SAT</u>	Mention two different	CO ₂	
		addressing modes that can		

	he used to eaces arrays		
	be used to access arrays		
CAT	conveniently. How?	CO ₂	
SAT	If a machine uses 25 bit instructions, has 32	CO2	
	, ,		
	opcodes, and 128 registers can we have an instruction		
	that uses the three register		
O Nove SAT	format? Why?	COo	
Q.No:3 SAT	The instruction pipeline of	CO ₃	
	a RISC processor has the following stages:		
	Instruction Fetch (IF),		
	Instruction Decode (ID),		
	Operand Fetch (OF),		
	Perform Operation (PO)		
	and Writeback (WB). The		
	IF, ID, OF and WB stages		
	take 2 clock cycle each for		
	every instruction.		
	Consider a sequence of 50		
	instructions. In the PO		
	stage, 20 instructions take		
	4 clock cycles each, 10		
	instructions take 1 clock		
	cycle each, and the		
	remaining 20 instructions		
	take 2 clock cycle each.		
	Assume that there are no		
	data hazards and no		
	control hazards.		
	What is the number of		
	clock cycles required for		
	completion of execution of		
	the sequence of		
	instructions? Show your		
	calculations.		
SAT	Consider an 8-stage	CO ₃	
<u> </u>	instruction pipeline,	600	
	where all stages are		
	perfectly balanced.		
	Assume that there is no		
	cycle-time overhead of		
	pipelining. When an		
	application is executing on		
	this 8-stage pipeline, what		
	is the speedup achieved		
	with respect to non-		
	pipelined execution if 30%		
	of the instructions incur 4		
	pipeline stall cycles?		
SAT	A 5-stage pipelined	CO ₃	
<u> </u>	processor has Instruction		
	Fetch (IF), Instruction		
	Decode (ID), Operand		1
	Decode (ID), Operand		

		Operation (PO) and Write		
		Operand (WO) stages. The		
		IF, ID, OF and WO stages		
		take 1 clock cycle each for		
		any instruction. The PO		
		stage takes 3 clock cycle		
		for ADD and SUB		
		instructions, 5 clock cycles		
		for MUL instruction, and		
		10 clock cycles for DIV		
		instruction respectively.		
		There is no operand		
		forwarding. What is the		
		number of clock cycles		
		needed to execute the		
		following sequence of		
		instructions?		
		Instruction Meaning of		
		instruction		
		Io:MUL R2,R0,R1 R2		
		← Ro *R1		
		I1 :DIV R5 ,R3 ,R4 R5		
		← R3 /R4		
		I2: ADD R2, R5, R2 R2		
		← R5 + R2		
		I3:SUB R5, R2, R6 R5		
		← R2 - R6		
		Clara a sanca a sala al a sala		
	CAT	Show your work clearly.	COo	
	<u>SAT</u>	We have 2 designs D1 and	CO ₃	
		D2 for a synchronous		
		pipeline processor. D1 has		
		a 3 stage pipeline with		
		execution time of 8 ns, 5		
		ns, and 4 ns. While the		
		design D2 has 8 pipeline		
		stages each with 3 ns		
		execution time. How much time can be saved		
		using design D2 over		
		design D1 for executing 100 instructions? Show		
		your calculations.		
O No. 4	SAT	Consider a main memory	CO ₄	
Q.No:4	<u>5A1</u>	with four-page frames and	CO4	
		the following sequence of		
		page references: 3, 7, 2, 3,		
		9, 2, 6, 3, 7, 9, 3, 6, 2, 8, 3.		
		9, 2, 0, 3, 7, 9, 3, 0, 2, 8, 3. How many page faults		
		occur if the optimal page		
		replacement policy is		
		used? Show your		
		calculations.		
	<u>SAT</u>	Consider a main memory	CO4	

	SAT	with five-page frames and the following sequence of page references: 4, 3, 6, 3, 9, 1, 6, 3, 6, 9, 3, 6, 2, 9, 3. How many page faults occur if the FIFO page replacement policy is used? Show your calculations. Consider a main memory with five-page frames and the following sequence of page references: 3, 7, 2, 3, 9, 2, 7, 5, 2, 9, 3, 7, 2, 8, 3. How many page faults occur if LRU page replacement policy is used? Show your	CO4	
	SAT	calculations. Assume that for a certain processor, a read request takes 120 nanoseconds on a cache miss and 2 nanoseconds on a cache hit. Suppose while running a program, it was observed that 98% of the processor's read requests result in a cache hit, what is the average read access time in nanoseconds is? Show your calculations.	CO4	
Q.No:5	SAT	A block-set associative cache memory consists of 512 blocks divided into 16 block sets. The main memory consists of 32K blocks and each block contains 128 words. How many bits are required for addressing the main memory? How many bits are needed to represent the TAG, SET and WORD fields? Assume word addressable memory. Show your calculations.	CO4	
	SAT	An 8-way set associative cache memory unit with a capacity of 32 KB is built using a block size of 16 words. The word length is 64 bits. The size of the	CO4	

	T		1	
		physical address space is 2		
		GB. What is the number of		
		bits for the TAG field?		
		Show your calculations.		
	SAT	Consider a direct mapped	CO ₄	
		cache with 4 cache blocks		
		(0-3). If the memory block		
		requests are in the order-		
		3, 5, 2, 8, 0, 6, 3, 10, 16,		
		20, 17, 29, 18, 30, 23, 2,		
		63, 5, 79, 19, 24, calculate		
		the cache hit ratio. Show		
		your calculations.		
	<u>SAT</u>	Consider a fully	CO4	
		associative cache with 16		
		cache blocks (0-15). The		
		memory block requests		
		are in the order-		
		4, 3, 27, 8, 19, 2, 27, 8, 16,		
		35, 44, 22, 8, 7, 16, 25, 5		
		If LRU replacement policy		
		is used, which cache block		
		will have memory block 5?		
		Show your calculations.		
Q.No:6	SAT	Give an example of a	CO ₃	
<u>Q.110.0</u>	<u>5711</u>	pipeline data hazard. How	003	
		can you prevent it?		
	SAT		CO ₃	
	<u>SAI</u>	Give an example of a pipeline instruction	003	
		hazard. How can you		
	CAT	prevent it?	00-	
	<u>SAT</u>	Give an example of a	CO3	
		pipeline structural hazard.		
		How can you prevent it?		
	<u>SAT</u>	Give an example of a	CO ₃	
		branch delay slot with		
		respect to pipelining.		
Q.No: 7	<u>SAT</u>	How can daisy-chaining	CO6	
		be used to handle		
		interrupts from multiple		
		sources?		
	SAT	Why do ISRs need to be as	CO6	
		short as possible?		
	SAT	What is the need to have	CO6	
	<u></u>	DMA when interrupts are		
		better than polling		
		usually?		
	SAT	How are polling and	CO6	
	<u>SAI</u>	interrupts different from		
		each other?		

SECTION-B(Answer Any Three Questions. Each Question carries 12 Marks)

Time: 1 Hour and 30 Minutes (3×12=36 Marks)

Question No	Question	CO Mapping
Vacsion 110	<u>Vacsuon</u>	(Each question
		should be from
		the same CO(s))
<u>Q.No:8</u>	Consider a pipelined processor	CO ₃
	with the following four stages-	
	IF : Instruction Fetch	
	ID : Instruction Decode and	
	Operand Fetch	
	EX : Execute	
	WB : Write Back	
	The IF, ID and WB stages take	
	two clock cycles each to complete	
	the operation. The number of	
	clock cycles for the EX stage	
	depends on the instruction. The	
	ADD and SUB instructions need	
	5 clock cycle and the MUL	
	instruction need 10 clock cycles	
	in the EX stage. Operand	
	forwarding is used in the	
	pipelined processor. What is the	
	number of clock cycles taken to	
	complete the following sequence	
	of instructions?	
	ADD R2, R1, R0 R2 ← R0 + R1	
	$MUL R4, R3, R2 R4 \leftarrow R3 + R2$	
	SUB R6, R5, R4 R6 ← R5 + R4	
	Show detailed steps of your	
	work.	
	Consider a pipeline having 5	
	phases with duration 60 ns, 50	
	ns, first two digits of your roll	
	number ns, last two digits of	
	your roll number ns (If the last	
	two digits are oo then assume on	
	ns), and 24 ns. Given latch delay	
	is 2 ns. Calculate-	
	1. Pipeline cycle time	
	2. Non-pipeline execution time	
	3. Speed up ratio	
	4. Pipeline time for 50 tasks	
	5. Sequential time for 50	
	tasks	

	6. Throughput	
	Consider a non-pipelined	
	processor operating at 4 GHz. It	
	takes 4 clock cycles to complete	
	an instruction. You are going to	
	make a 4-stage pipeline out of	
	this processor. Overheads	
	associated with pipelining force	
	you to operate the pipelined	
	processor at 3 GHz. In a given	
	program, assume that 30% are	
	memory instructions, 40% are	
	ALU instructions and the rest are	
	branch instructions. 20% of the	
	memory instructions cause stalls	
	of 8 clock cycles each due to	
	cache misses and 5% of the	
	branch instructions cause stalls	
	of 10 cycles each. Assume that	
	there are no stalls associated	
	with the execution of ALU	
	instructions. What is the	
	speedup achieved by the	
	pipelined processor over the	
	non-pipelined processor? Show	
0.11	detailed steps of your work.	20
<u>Q.No:9</u>	A byte-addressable computer has	CO ₄
	a small data cache capable of	
	holding 16 32-bit words. Each	
	cache block consists of one 32-	
	bit word. When a given program	
	is executed, the processor reads data sequentially from the	
	following hex addresses:	
	216, 204, 208, 28C, 2F4, 2F0,	
	240, 204, 216, 21C, 248, 2F4	
	This pattern is repeated four	
	times.	
	Assume that the cache is initially	
	empty. Show the contents of the	
	cache at the end of each pass	
	through the loop if a direct-	
	mapped cache is used, and	
	compute the hit rate.	
	Make a 64M × 64-bit memory	
	using $2M \times 16$ -bit memory chips.	
	Draw a detailed diagram.	
	Consider a 8-way set associative	
	mapping with 32 cache blocks.	
	The memory block requests are	
ĺ	in the order-	
	in the order-	

	1 1	
	used, what is the state of the	
	cache in the end? Draw a	
~ ~ ~	detailed diagram.	~~
Q.No:10	Derive an effective memory	CO ₄
	access time equation that takes	
	into account the page fault rate,	
	TLB hit rate, memory access	
	time, and TLB processing time.	
	Describe how a two-level paging	
	scheme works with the help of a	
	detailed diagram.	
	Describe with the help of a	
	diagram how demand paging	
	works and mention all the steps	
	involved in it. Are all page faults	
	cases of demand paging? Why?	
Q.No:11	Write a subroutine called	CO ₂
	EXCLAIM in assembly that	
	accepts a single parameter in a	
	register representing the starting	
	address STRNG in the main	
	memory for a string of ASCII	
	characters	
	in successive bytes representing	
	an arbitrary collection of	
	sentences, with the NUL control	
	character (value o) at the end of	
	the string. The subroutine should	
	scan the string beginning	
	at address STRNG and replace	
	every occurrence of a period ('.')	
	with an exclamation mark	
	('!').	
	Write a subroutine called	
	ALLCAPS in assembly that	
	accepts a parameter in a register	
	representing the starting address	
	STRNG in the main memory for	
	a string of ASCII characters in	
	successive bytes, with the NUL	
	control character (value o) at the	
	end of the string. The subroutine	
	should scan the string beginning	
	at address STRNG and replace	
	every occurrence	
	of a lower-case letter ('a'-'z')	
	with the corresponding upper-	
	case letter ('A'-'Z').	
	Write a subroutine called	
	WORDS in assembly that accepts	
	a parameter in a register	
	representing the	
	starting address STRNG in the	
	main memory for a string of	
	ASCII characters in successive	
	110011 Characters in successive	

bytes, with the NUL control	
character (value o) at the end of	
the string. The string represents	
English text with the space	
character between words. The	
subroutine has to determine the	
number of words in the string	
(excluding the punctation	
characters). It must return the	
result to the calling program in a	
register.	