THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1510 Calculus for Engineers (Fall 2021) Coursework 1

Name	e: CHAN CHO KIT	Student No.:	1155175546				
	I acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the disciplinary guidelines and procedures applica-						
	ble to breaches of such policy and regulations, as contained in the website http://www.cuhk.edu.hk/policy/academichonesty/						
	Signature	13-9 Date	-2021				
,	11/ 44/3	- American					

General Guidelines for Coursework Submission.

- Please go to the class indicated by your registered course code via the CUSIS system. Failure to comply will result in a 2-point deduction of the final score.
- Please write your answers using a black or blue pen, NOT any other color or a pencil.
- Points will only be awarded for answers with sufficient justifications.
- All questions in Part A along with some selected questions in Part B will be graded. Question(s) labeled with * are more challenging.

For internal use only:

1	4	5	· janda i	Maria.	TOPA -		£1
2	911	66	001-3	Street .	- (01		1 (c)
3	3						30 0
4a	12	11	J. Mills	1			
4b		1.1		*	Total	10	/ 10

$$\kappa^2 - 1 = (\kappa - 1)(\kappa + 1)$$

12-13

1. (a) Given that

Part A

$$f(x) = \frac{1}{x}$$
 and $g(x) = \sqrt{x-2}$,

write down the function $f \circ g$ explicitly. Find the domain of $f \circ g$ and express your answer in interval notation.

(b) Suppose

$$f(x) = \frac{x^2 - 1}{|x - 1|}.$$

i. Rewrite the function f(x) as a piecewise function in terms of polynomials in the following form.

$$f(x) = \begin{cases} \frac{\chi + 1}{\text{undefined}} & \text{if } x > 1, \\ \frac{-(\chi + 1)}{\text{undefined}} & \text{if } x < 1. \end{cases}$$

ii. Find f(-100000) and f(100000).

Domain of
$$f \circ g(x) : x-2 > 0$$

 $x > 2$.

好的

(b) i)
$$f(-(0000)) = -(-100000+1)$$

= 99999
 $f(100000) = [000000+1]$

2. For the sequence

$$a_n = \left\{ \sqrt{n^2 + n} - \sqrt{n^2 + (-1)^n} \right\}, \quad \text{for } n \ge 1$$

fill the following table (correct to 4 decimal places) and guess the value of a_n when n gets very large (approaches ∞).)

When n gets very large (ie. #1 = \lambda),

an will an approach o.S.

Part B

- 3. Let $f(x) = x^2 + 2x + 2$ and $g(x) = \ln x$.
 - (a) By completing square, find the minimum value of f(x).
 - (b) Find the range of $g \circ f$. Express your answer in interval notation.

(a)
$$f(x) = x^{2} + 2x + 2$$

 $= x^{2} + 2x + 1 - 1 + 2$
 $= (x + 1)^{2} - 1 + 2$
 $= (x + 1)^{2} + 1$
 $\therefore (x + 1)^{2} > 0$ for all real number of x

of
$$f(x)$$

The minimum value, = $0+1=1$ //

(b) $g\circ f(x) = g(f(x))$

$$= \lim_{x \to \infty} (x^2 + 2x + 2)$$

=
$$\ln (x^2 + 2x + 2)$$

 $x^2 + 2x + 2 > | Av all real number, of ∞ .
Interval notation = $(0, \infty)$$

- 4. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Given that $f(x) = \sqrt{x}$ for $x \ge 0$, sketch the graph of f(x) if
 - i. f is an even function;
 - ii. f is an odd function.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) = 0 when $-1 \le x \le 0$ and f(x) = x when 0 < x < 1.

 Suppose that f is a periodic function with period 2. Sketch the graph of f(x).

5. The path traveled by an object that is projected at an initial height of h_0 feet, an initial speed of v feet per second, and an initial angle θ is given by f

$$y = -\frac{16}{v^2 \cos^2 \theta} x^2 + (\tan \theta) \underline{x} + h_0$$

where x and y are the horizontal distance and vertical distance respectively.

(This model takes $g = 32 \,\text{ft/s}^2$ and neglects air resistance.)

If a football is kicked from the ground level with speed v,

- (a) Show that the total horizontal distance traveled is $\frac{v^2 \sin \theta \cos \theta}{16}$.
- (b) With what angle θ will the total horizontal distance traveled be maximized? (Hint: Consider the double angle formula: $\sin 2x = 2 \sin x \cos x$)

(a) Total horizontal distance =
$$x$$
: when $y = 0$
Sub $y = 0$:

$$0 = -\frac{(6)}{v^2 \cos^2 \theta} \chi^2 + (\tan \theta) \chi$$

$$\chi\left(\tan\theta - \frac{16}{\sqrt{2\cos\theta}}\chi\right) = 0$$

$$x = 0$$
 (rejected.) or

$$\tan \theta = \frac{(6)}{u^{2}\cos^{2}\theta} = 0$$

$$\tan \theta = \frac{(6)}{u^{2}\cos^{2}\theta} = \frac{1}{2}$$

 $0 = \frac{\tau}{4} / 1$