Titanic Challenge *

Qzer - 2022

* Amine, Carlo, Davide, Enrico, Federico, Giulio

Il Titanic

Il **Titanic** è stato un transatlantico britannico naufragato nelle prime ore del 15 aprile 1912, durante il suo viaggio inaugurale, a causa della collisione con un iceberg.

Qualche numero

I passeggeri del Titanic erano teoricamente 2224, di cui:

- 324 in prima classe;
- 284 in seconda;
- 709 in terza;
- 906 membri dell'equipaggio

Morti

Stando ai numeri ufficiali, nel disastro persero la vita ben 1502, **67,54%**

Challenge

Costruire un modello predittivo che risponda alla domanda: "che tipo di persone avevano maggiori probabilità di sopravvivere?"

La **Titanic Challenge** è un esempio classico di problema di classificazione che viene spesso utilizzato per mostrare come funzionano le reti neurali

Rete neurale

Le reti neurali si basano principalmente sulla simulazione di neuroni artificiali opportunamente collegati

Funzionamento

Ogni neurone riceve delle informazioni da altri neuroni (gli ingressi), le elabora e le passa a quelli successivi. Ogni neurone ha dei **pesi** associati agli ingressi, che indicano l'importanza di ogni informazione. Se la somma delle informazioni con i loro pesi supera una certa soglia, il neurone si attiva e invia una risposta (l'uscita)

Rete neurale multistrato

Composta da tre o più strati di neuroni.

Il primo strato è solitamente chiamato **strato di ingresso** e si occupa di ricevere gli input.

Gli input vengono elaborati dai neuroni del primo strato e inviati al secondo strato, chiamato **strato nascosto**.

Il secondo strato elabora ulteriormente gli input e li invia al terzo strato, chiamato **strato di uscita**.

Dati

In questa competizione avremo accesso a due set di dati simili che includono informazioni sui passeggeri come:

- nome;
- età;
- genere;
- classe socio-economica;
- ecc.

Train.csv

Train.csv conterrà i dettagli di un sottoinsieme dei passeggeri a bordo (891 per l'esattezza) e, soprattutto, conterrà l'informazione relativa al loro destino

```
training_set = pd.read_csv('/kaggle/input/titanic/train.csv')
training_set.info()
RangeIndex: 891 entries, 0 to 890
                 891 non-null
                                 int64
    PassengerId
0
    Survived
                 891 non-null
                                 int64
    Pclass
                 891 non-null
                                 int64
 3
                 891 non-null
                                 object
    Name
                                 object
    Sex
                 891 non-null
 4
                 714 non-null
                                 float64
 5
    Age
    SibSp
                 891 non-null
                                 int64
 6
    Parch
                 891 non-null
                                 int64
    Ticket
                 891 non-null
                                 object
 8
                                 float64
 9
    Fare
                 891 non-null
    Cabin
                 204 non-null
                                 object
 10
```

Test.csv

Il file test.csv contiene informazioni su altri 418 passeggeri, non rivelando la loro sorte.

Il compito della challenge è, utilizzando i dati del file train.csv, prevedere se questi 418 passeggeri a bordo sopravviveranno

```
testing_set = pd.read_csv('/kaggle/input/titanic/test.csv')
testing_set.info()
RangeIndex: 418 entries, 0 to 417
    PassengerId
                418 non-null
                                int64
0
    Pclass
                 418 non-null
                                int64
                                object
                 418 non-null
    Name
3
                 418 non-null
                                object
    Sex
                                float64
    Age
                 332 non-null
4
    SibSp
                 418 non-null
                                int64
 5
    Parch
                 418 non-null
                                int64
 6
    Ticket
                 418 non-null
                                object
                 417 non-null
                                float64
    Fare
8
                 91 non-null
 9
    Cabin
                                object
    Embarked
                 418 non-null
                                object
10
```

Data selection

Alcune colonne non sono utili per raggiungere il nostro obiettivo. Il primo passo consiste quindi nel **selezionare le colonne** coi dati che, ipoteticamente, possono avere un'influenza sulla sopravvivenza di un passeggero

Queste le colonne trattenute dal file train.csv

```
RangeIndex: 891 entries, 0 to 890
                Non-Null Count
    Column
#
                              Dtype
    PassengerId
                891 non-null
                              int64
0
                891 non-null
    Pclass
                              int64
                              object
                891 non-null
    Sex
3
                714 non-null
                              float64
    Age
                              int64
    Parch
                891 non-null
    SibSp
5
                891 non-null
                              int64
    Survived
6
                891 non-null
                              int64
```

Correlazioni

```
import seaborn as sns
ax = sns.heatmap(clean_training_set.corr(), annot=True)
```


Classe di viaggio

La morte dei passeggeri sembra essere altamente correlata alla loro classe

```
class_scheme = clean_training_set.groupby('Pclass')['Survived'].apply(lambda x: (x==0).mean())
class_scheme.plot(kind='bar', color='darkorange', width = 0.5, title='Class and death relation', ylabel='deaths', xlabel='travel class')
```


Sesso

Come si può notare, il tasso di mortalità dei maschi è maggiore di quello delle femmine

```
sex_scheme = clean_training_set.groupby('Sex')['Survived'].apply(lambda x: (x==0).mean())
sex_scheme.plot(kind='bar', color='darkorange', width = 0.4, title='Sex and death relation', ylabel='deaths', xlabel='sex')
```


Età

I bambini e gli anziani sul Titanic morirono meno delle persone di mezza età (probabilmente perché avevano la priorità)

```
age_scheme = clean_training_set.groupby('Age')['Survived'].mean()
age_scheme.plot(kind='line', color='darkorange', title='Age and death relation', ylabel='survived', xlabel='age')
```


Matrimonio

Il numero di figli sembra essere un fattore di probabilità di morte

```
parch_scheme = clean_training_set.groupby('Parch')['Survived'].apply(lambda x: (x==0).mean())
parch_scheme.plot(kind='bar', color='darkorange', width = 0.8, title='SibSp and death relation', ylabel='deaths', xlabel='Parch')
```


Algoritmo

Multi-layer Perceptron classifier (MLP)

L'algoritmo **MLP** è un metodo per addestrare le reti neurali multistrato. Consiste nel modificare i pesi delle connessioni tra i neuroni della rete neurale in modo da ridurre l'errore tra l'output della rete neurale e l'output desiderato. L'algoritmo viene ripetuto finché l'errore non raggiunge un livello accettabile.

MLP

Dopo aver normalizzato il DataSet

```
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X, Y = make_classification(n_samples=100, random_state=1)
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)

clf = MLPClassifier(solver='lbfgs', learning_rate='constant', activation='relu', random_state=1, max_iter=800).fit(X_train, y_train)

MLP_score = clf.score(X_test, y_test)
print('L\'accuratezza dell\'algoritmo Multi-layer Perceptron classifier è',round(MLP_score*100,2))
```

L'accuratezza è del 90.0

Github

Per maggiori informazioni

<u>TitanicKaggle</u>

Tecnologie utilizzate

- VSCode
- Git
- Markdown, Marp e CSS3
- Python
- Pandas
- Jupyter Notebook

Bibliografia

<u>Titanic - Wikipedia</u> <u>Passeggeri del Titanic - Wikipedia</u> <u>Titanic Challenge - Kaggle</u> Qzer - 2022

License CC BY-SA 4.0

Grazie