Segunda ayudantía

Ejemplos de inducción

Teresa Becerril Torres terebece1508@ciencias.unam.mx

7 de febrero de 2023

Una cadena es palíndroma si es de la forma ww^R , donde w^R es el reverso de w. Por ejemplo 0110, abbba, holaaloh. Demuestre mediante inducción estructural, que todas las cadenas palíndromas de este tipo tienen un número par de símbolos.

Sea Σ el alfabeto sobre el que se construyen las cadenas palíndromas y P el conjunto de todas las cadenas palíndromas sobre Σ .

Base:

Sea w una cadena de P, entonces w es de la forma aa^R tal que $a\in \Sigma$, por lo tanto w tiene exactamente dos símbolos.

Hipótesis de inducción:

Supongamos que uu^R y vv^R son cadenas de P y que ambas tienen un número par de símbolos.

Paso inductivo:

Por demostrar que la cadena uvv^Ru^R tiene un número par de símbolos.

Entonces la cantidad de símbolos en uvv^Ru^R es igual a la suma del número de símbolos en uu^R y vv^R , sabemos que la cantidad de símbolos en ambas cadenas es par por hipótesis de inducción. Por lo tanto la cadena uvv^Ru^R tiene un número par de símbolos.

Por lo tanto, todas las cadenas palíndromas tienen un número par de símbolos.

Definimos al conjunto de cadenas de la forma a^mba^m de la siguiente manera:

- i. b, la cadena representada por a^0ba^0 , está en el conjunto.
- ii. Si w es una cadena de este conjunto, entonces awa también está en el conjunto.
- iii. Sólo las cadenas construidas con las reglas i. y ii. son elementos del conjunto.

Demuestre que todas las cadenas que pertenecen a este conjunto tienen un número impar de símbolos utilizando inducción sobre la longitud de las cadenas.

Base:

Sea $w = a^0 b a^0$, entonces:

$$|w| = |a^0ba^0| = |b| = 1$$

Por lo tanto w tiene un número impar de símbolos.

Hipótesis de inducción:

Supongamos que $w = a^m b a^m$ y que |w| = 2m + 1.

Paso inductivo:

Por demostrar que la cadena awa, que se puede obtener con la regla ii, tiene un número impar de símbolos.

Dado que a es un símbolo, la longitud de la cadena w' es:

$$|w'| = |awa| = |a| + |w| + |a| = 1 + |w| + 1 = |w| + 2$$

Por hipótesis de inducción:

$$|w'| = |w| + 2 = (2m+1) + 2 = 2m + 3$$

Por lo tanto la cadena w' tiene un número impar de símbolos.

Por lo tanto, todas las cadenas de la forma $w=a^mba^m$ tienen un número impar de símbolos.

Definición de w^R :

- i. Si |w|=0 entonces $w^R=w=\epsilon$
- ii. Si $|w| \geq 1$ y w = xa entonces $w^R = ax^R$ con $a \in \Sigma$ y $x \in \Sigma^*$

Demostrar, usando la definición de concatenación y w^R , que para toda cadena $w,x\in \Sigma$ entonces:

$$(wx)^R = x^R w^R$$

Base:

Supongamos que $x = \epsilon$, entonces:

$$(w \cdot \epsilon)^R = (w)^R = w^R = \epsilon \cdot w^R = \epsilon^R \cdot w^R$$

Por lo tanto se cumple para $x = \epsilon$.

Hipótesis de inducción:

Supongamos que se cumple para $x \in \Sigma^*$.

$$(wx)^R = x^R w^R$$

Paso inductivo:

Por demostrar que se cumple para $x=v\cdot a$ con $v\in \Sigma^*$ y $a\in \Sigma$

$$(wv \cdot a)^R = a \cdot v^R w^R$$

Por la regla ii. y por hipótesis de inducción tenemos:

$$(wv \cdot a)^R = a \cdot (wv)^R = a \cdot v^R w^R$$

Por lo tanto se cumple para $x = v \cdot a$.

Por lo tanto, $(wx)^R = x^R w^R$ para toda cadena $w, x \in \Sigma$.

Referencias

- Viso Gurovich, E. (2015). Introducción a Autómatas y Lenguajes Formales. Facultad de Ciencias, UNAM.
- Miranda Perea, F. E., Viso Gurovich, E. (2016). Matemáticas Discretas. Facultad de Ciencias, UNAM.