Red Bayesiana

Christian Fernández Medina

September 21, 2017

1 Datasets

1.1 Dataset de entrenamiento

\mathbf{T}	Η	N	C
0	0	0	0
0	1	1	0
1	1	0	1
1	1	1	1
1	0	0	1
0	1	1	0
1	0	1	0
1	0	1	0
1	0	1	0
0	0	0	0

Table 1: Training dataset.

1.2 Dataset de prueba

T	Η	N	$\mid C \mid$
0	1	0	?
0	1	1	?
0	0	1	?

Table 2: Test dataset.

2 Variables aleatorias

Las variables aleatorias a utilizar son:

- \bullet T = Temperatura
- \bullet H = Humedad
- \bullet N = Nubosidad
- \bullet C = Clase

3 Representación

Se modela la red bayesiana que tiene como estructura:

$$B = \langle G, P \rangle$$

Donde G es un grafo y P son parámetros. Se presenta el siguiente grafo:

Figure 1: Grafo Acíclico Dirigido o DAG.

Donde G está compuesto de variables y aristas:

$$G = < V, A >$$

$$V = [T, H, N, C]$$

$$A = [H->T, H->N, H->C, N->T, C->N]$$

Y P se compone de:

$$P = [P^T, P^H, P^N, P^C]$$

• Probabilidad de T que depende de las variables H y N (Distribución condicional)

$$P^T = P(T|H,N)$$

• Probabilidad de H que no depende de ninguna variable (Distribución marginal)

$$P^H = P(H)$$

• Probabilidad de N que depende de las variables H y C (Distribución condicional)

$$P^N = P(N|H,C)$$

• Probabilidad de C que depende de la variable H (Distribución condicional)

$$P^C = P(C|H)$$

3.1 Cálculo de probabilidades

Para el cálculo de todas las probabilidades se utilizara el hiperparámetro α donde $\alpha_1=\alpha_2=1$.

3.1.1 Cálculo P(T|H,N)

Existen 4 distribuciones:

- 1. P(T|H=0,N=0)
 - (a) P(T=0|H=0,N=0)

$$\frac{P(T=0 \land H=0 \land N=0) + \alpha_1}{P(H=0 \land N=0) + \alpha} = \frac{0.2+1}{0.3+2} = \frac{1.2}{2.3} = 0.5217$$

(b) P(T=1|H=0,N=0)

$$\frac{P(T=1 \land H=0 \land N=0) + \alpha_2}{P(H=0 \land N=0) + \alpha} = \frac{0.1+1}{0.3+2} = \frac{1.1}{2.3} = 0.4783$$

- 2. P(T|H=0,N=1)
 - (a) P(T=0|H=0,N=1)

$$\frac{P(T=0 \land H=0 \land N=1) + \alpha_1}{P(H=0 \land N=1) + \alpha} = \frac{0+1}{0.3+2} = \frac{1}{2.3} = 0.4348$$

(b) P(T=1|H=0,N=1)

$$\frac{P(T=1 \land H=0 \land N=1) + \alpha_2}{P(H=0 \land N=1) + \alpha} = \frac{0.3+1}{0.3+2} = \frac{1.3}{2.3} = 0.5652$$

- 3. P(T|H=1,N=0)
 - (a) P(T=0|H=1,N=0)

$$\frac{P(T=0 \land H=1 \land N=0) + \alpha_1}{P(H=1 \land N=0) + \alpha} = \frac{0+1}{0.1+2} = \frac{1}{2.1} = 0.4762$$

(b) P(T=1|H=1,N=0)

$$\frac{P(T=1 \land H=1 \land N=0) + \alpha_2}{P(H=1 \land N=0) + \alpha} = \frac{0.1+1}{0.1+2} = \frac{1.1}{2.1} = 0.5238$$

- 4. P(T|H=1,N=1)
 - (a) P(T=0|H=1,N=1)

$$\frac{P(T=0 \land H=1 \land N=1) + \alpha_1}{P(H=1 \land N=1) + \alpha} = \frac{0.2+1}{0.3+2} = \frac{1.2}{2.3} = 0.5217$$

(b) P(T=1|H=1,N=1)

$$\frac{P(T=1 \land H=1 \land N=1) + \alpha_2}{P(H=1 \land N=1) + \alpha} = \frac{0.1+1}{0.3+2} = \frac{1.1}{2.3} = 0.4783$$

3.1.2 Cálculo P(H)

Existe 1 sola distribución

- 1. P(H)
 - (a) P(H=0)

$$\frac{6+\alpha_1}{10+\alpha} = \frac{6+1}{10+2} = \frac{7}{12} = 0.583333$$

(b) P(H=1)

$$\frac{4+\alpha_2}{10+\alpha} = \frac{4+1}{10+2} = \frac{5}{12} = 0.416666$$

3.1.3 Cálculo P(N|H,C)

Existen 4 distribuciones:

- 1. P(N|H=0,C=0)
 - (a) P(N=0|H=0,C=0)

$$\frac{P(N=0 \land H=0 \land C=0) + \alpha_1}{P(H=0 \land C=0) + \alpha} = \frac{0.2+1}{0.5+2} = \frac{1.2}{2.5} = 0.48$$

(b) P(N=1|H=0,C=0)

$$\frac{P(N=1 \land H=0 \land C=0) + \alpha_2}{P(H=0 \land C=0) + \alpha} = \frac{0.3+1}{0.5+2} = \frac{1.3}{2.5} = 0.52$$

- 2. P(N|H=0,C=1)
 - (a) P(N=0|H=0,C=1)

$$\frac{P(N=0 \land H=0 \land C=1) + \alpha_1}{P(H=0 \land C=1) + \alpha} = \frac{0.1+1}{0.1+2} = \frac{1.1}{2.1} = 0.5238$$

(b) P(N=1|H=0,C=1)

$$\frac{P(N=1 \land H=0 \land C=1) + \alpha_2}{P(H=0 \land C=1) + \alpha} = \frac{0+1}{0.1+2} = \frac{1}{2.1} = 0.4762$$

- 3. P(N|H=1,C=0)
 - (a) P(N=0|H=1,C=0)

$$\frac{P(N=0 \land H=1 \land C=0) + \alpha_1}{P(H=1 \land C=0) + \alpha} = \frac{0+1}{0.2+2} = \frac{1}{2.2} = 0.45$$

(b) P(N=1|H=1,C=0)

$$\frac{P(N=1 \land H=1 \land C=0) + \alpha_2}{P(H=1 \land C=0) + \alpha} = \frac{0.2+1}{0.2+2} = \frac{1.2}{2.2} = 0.54$$

- 4. P(N|H=1,C=1)
 - (a) P(N=0|H=1,C=1)

$$\frac{P(N=0 \land H=1 \land C=1) + \alpha_1}{P(H=1 \land C=1) + \alpha} = \frac{0.1+1}{0.2+2} = \frac{1.1}{2.2} = 0.5$$

(b) P(N=1|H=1,C=1)

$$\frac{P(N=1 \land H=1 \land C=1) + \alpha_2}{P(H=1 \land C=1) + \alpha} = \frac{0.1+1}{0.2+2} = \frac{1.1}{2.2} = 0.5$$

3.1.4 Cálculo P(C|H)

Existen 2 distribuciones:

1. P(C|H=0)

(a)
$$P(C=0|H=0)$$

$$\frac{P(C=0 \land H=0) + \alpha_1}{P(H=0) + \alpha} = \frac{0.5+1}{0.6+2} = \frac{1.5}{2.6} = 0.5769$$

(b)
$$P(C=1|H=0)$$

$$\frac{P(C=1 \land H=0) + \alpha_2}{P(H=0) + \alpha} = \frac{0.1+1}{0.6+2} = \frac{1.1}{2.6} = 0.4231$$

- 2. P(C|H=1)
 - (a) P(C=0|H=1) $\frac{P(C=0 \land H=1) + \alpha_1}{P(H=1) + \alpha} = \frac{0.2 + 1}{0.4 + 2} = \frac{1.2}{2.4} = 0.5$

(b)
$$P(C=1|H=1)$$

$$\frac{P(C=1 \land H=1) + \alpha_2}{P(H=1) + \alpha} = \frac{0.2 + 1}{0.4 + 2} = \frac{1.2}{2.4} = 0.5$$

Figure 2: Red bayesiana con tablas de probabilidad.

4 Inferencia

Una vez obtenido el grafo con las tablas de probabilidad de cada variable aleatoria (Figure 2), se procede a inferir resultados utilizando el dataset de prueba (Table 2). Para ello, se empleará la estimación de Maximo a Posteriori (MAP). Se infiere el valor de la variable "C" de los 3 datos del dataset de prueba:

1. Cuando T = 0, H = 1, N = 0 y C = ?
$$clase.max = max_c[P(C=0,T=0,H=1,N=0),P(C=1,T=0,H=1,N=0)]$$
 (a) $P(C=0,T=0,H=1,N=0)$
$$P(C=0,T=0,H=1,N=0) = P(C=0|H=1)*P(T=0|H=1,N=0)*P(H=1)*P(N=0|H=1,C=0) = (0.5)*(0.4762)*(0.416666)*(0.45) = 0.04464$$
 (b) $P(C=1,T=0,H=1,N=0)$
$$P(C=1,T=0,H=1,N=0) = P(C=1|H=1)*P(T=0|H=1,N=0)*P(H=1)*P(N=0|H=1,C=1) = (0.5)*(0.4762)*(0.416666)*(0.5) = 0.04960$$

Para el test 1, la clase es C=1.

2. Cuando T = 0, H = 1, N = 1 y C = ?
$$clase.max = max_c[P(C=0,T=0,H=1,N=1),P(C=1,T=0,H=1,N=1)]$$
 (a) $P(C=0,T=0,H=1,N=1)$
$$P(C=0,T=0,H=1,N=1) = P(C=0|H=1)*P(T=0|H=1,N=1)*P(H=1)*P(N=1|H=1,C=0) = (0.5)*(0.5217)*(0.416666)*(0.54) = 0.05869$$

(b)
$$P(C=1,T=0,H=1,N=0)$$

$$P(C=1,T=0,H=1,N=1) =$$

$$P(C=1|H=1)*P(T=0|H=1,N=1)*P(H=1)*P(N=1|H=1,C=1) =$$

$$(0.5)*(0.5217)*(0.416666)*(0.5) = 0.05434$$

Para el test 2, la clase es C=0.

3. Cuando
$$T = 0$$
, $H = 0$, $N = 1$ y $C = ?$

$$clase.max = max_c[P(C = 0, T = 0, H = 0, N = 1), P(C = 1, T = 0, H = 0, N = 1)]$$

(a)
$$P(C=0,T=0,H=0,N=1)$$

$$P(C=0,T=0,H=0,N=1) =$$

$$P(C=0|H=0)*P(T=0|H=0,N=1)*P(H=0)*P(N=1|H=0,C=0) =$$

$$(0.5769)*(0.4348)*(0.583333)*(0.52) = 0.07608$$

(b) P(C=1,T=0,H=0,N=0)

$$P(C=1,T=0,H=0,N=1) =$$

$$P(C=1|H=0)*P(T=0|H=0,N=1)*P(H=0)*P(N=1|H=0,C=1) =$$

$$(0.4231)*(0.4348)*(0.583333*(0.4762) = 0.05110$$

Para el test 3, la clase es C=0.