GIT: A Generative Image-totext Transformer for Vision and Language

https://arxiv.org/abs/2205.14100

O. Introduction

- 이미지와 텍스트 간 멀티모달 생성 모델 연구에 집중함
- 기존 이미지-텍스트 모델들은 주로 인식이나 매칭에 초점 맞춤
- 본 논문은 이미지에서 텍스트를 생성하는 생성적(transformer 기반) 모델인 GIT 제안함
- GIT은 다양한 비전-언어 태스크에서 높은 생성 품질과 범용성 보여줌
- 이미지의 시각 정보를 효과적으로 텍스트로 변환하는 새로운 구조와 학습 방법 도입함
- 멀티태스크 학습과 대규모 데이터셋 활용으로 성능 극대화함

1. Overview

- GIT는 이미지 입력을 받아 텍스트를 생성하는 transformer 기반 모델임
- 이미지 인코더와 텍스트 디코더로 구성됨
- 인코더는 이미지 특징을 추출하고, 디코더는 이를 바탕으로 문장 생성함
- 멀티태스크 학습 프레임워크로 이미지 캡셔닝, 비주얼 QA 등 다양한 태스크 처리 가능
 함
- 대규모 비전-언어 데이터셋으로 사전학습 수행함
- 생성 품질과 태스크 적응력 모두 뛰어남을 보임

2. Challenges

• 이미지와 텍스트 간 복잡한 의미 관계 학습이 어려움

- 이미지에서 자연스러운 문장 생성이 까다로움
- 다양한 태스크에 유연하게 대응하는 모델 설계가 필요함
- 대규모 데이터와 계산 자원이 요구돼 학습 비용이 높음
- 멀티태스크 학습 시 태스크 간 간섭 문제 존재함
- 생성 모델이 과적합이나 반복 생성 문제에 취약할 수 있음

3. Method

Figure 2: Network architecture of our GIT, composed of one image encoder and one text decoder. (a): The training task in both pre-training and captioning is the language modeling task to predict the associated description. (b): In VQA, the question is placed as the text prefix. (c): For video, multiple frames are sampled and encoded independently. The features are added with an extra learnable temporal embedding (initialized as 0) before concatenation.

- 이미지 인코더로 CNN 또는 비전 트랜스포머 사용함
- 텍스트 디코더는 autoregressive transformer 구조임
- 이미지 특징을 텍스트 생성에 효과적으로 연결하는 cross-modal attention 적용함
- 멀티태스크 학습 프레임워크로 다양한 비전-언어 태스크 통합 학습함
- 대규모 데이터셋으로 사전학습 후 태스크별 미세조정 수행함
- 학습 안정성과 성능을 높이기 위해 여러 정규화와 데이터 증강 기법 활용함
- 생성 품질 향상을 위해 교사 강제 학습(teacher forcing)과 기타 기법 적용함

4. Experiments

- MSCOCO, Flickr30k, VQA 등 대표 비전-언어 데이터셋 사용함
- 이미지 캡셔닝, 비주얼 QA, 이미지-텍스트 매칭 등 태스크 평가함
- 기존 SOTA 모델들과 성능 비교함
- 다양한 크기 모델과 학습 설정에 따른 ablation study 진행함
- 멀티태스크 학습 효과와 데이터셋 크기 영향 분석함
- 생성 텍스트 품질을 자동 및 인간 평가 방식으로 검증함
- 학습 속도와 자원 효율성도 함께 측정함

5. Results

	1	Image captioning		I	mage (QA Video captioning			ıg	Video QA		Text Rec.		
	0000	nocaps"	${\rm VizWiz}^$	TextCaps*	$\mathrm{ST\text{-}VQA}^*$	VizWiz*	OCR-VQA	MSVD	MSRVTT	VATEX"	TVC.	MSVD-QA	TGIF-Frame	Avg on 6
Prior SOTA ¹	138.7	120.6	94.1	109.7	69.6	65.4	67.9	120.6	60	86.5	64.5	48.3	69.5	93.8
$\begin{array}{c} \text{GIT (ours)} \\ \Delta \end{array}$			$114.4 \\ +20.3$						$73.9 \\ +13.9$	$93.8 \\ +7.3$		$56.8 \\ +8.5$	72.8 +3.3	92.9 -0.9
$\frac{\text{GIT2 (ours)}}{\Delta}$			$120.8 \\ +26.7$	$145.0 \\ +35.3$						$96.6 \\ +10.1$		$58.2 \\ +9.9$	74.9 +5.4	94.5 +0.7

Table 3: Zero/Few/Full-shot evaluation on Flickr30K with Karpathy split.

Shot	0	16	32	290 (1%)	full
Zhou et al. (2020)	-	-	-	-	68.5
Flamingo	67.2	78.9	75.4	-	-
GIT	49.6	78.0	80.5	86.6	98.5

Vocabula	ryMethod	test-std
	OSCAR	73.82
	UNITER	74.02
	VILLA	74.87
	UNIMO	75.27
	ALBEF	76.04
	VinVL	76.60
	UFO	76.76
Closed	CLIP-ViL	76.70
	METER	77.64
	BLIP	78.32
	SimVLM (-, 1.8B)	80.34
	Florence (0.9B, 14M)	80.36
	mPlug (0.6B, 14M)	81.26
	OFA (0.9B, 54M)	82.0
	CoCa (2.1B, 4.8B)	82.3
0	Flamingo (80B, 2.3B)	82.1
Open	GIT (0.7B, 0.8B)	78.81
	(a) VQAv2	

Method	test	
M4C	40.46	
LaAP-Net	41.41	
SA-M4C	44.6	
SMA	45.51	
TAP	53.97	
Flamingo	54.1	
Mia	73.67	
GIT	59.75	
(b) Text	VQA	
hod		te
ot al 2021	\##	co

Method	test
(Liu et al., 2021)## Flamingo	60.6 65.4
GIT	67.5
(c) VizWiz-QA	

Method	Test ANLS
M4C	46.2
SMA	46.6
CRN	48.3
LaAP-Net	48.5
SA-M4C	50.4
TAP	59.7
LaTr	69.6
GIT	69.6
(d) ST-V	QA
Method	test
BLOCK+CNN+V	V2V 48.3
M4C	63.9
LaAP-Net	64.1
LaTr	67.9
GIT	68.1
(e) OCR-V	/QA

Vocabula	aryMethod	Top-1
Closed	ALIGN (Jia et al., 2021) Florence (Yuan et al., 202 CoCa (Yu et al., 2022)	88.64 1) 90.05 91.0
Open	GIT	88.79

Method	FT data	Average
SAM (Liao et al., 2019)	$_{ m MJ+ST}$	87.8
Ro.Scanner (Yue et al., 2020)	MJ+ST	87.5
SRN (Yu et al., 2020)	MJ+ST	89.6
ABINet (Fang et al., 2021a)	MJ+ST	91.9
S-GTR (He et al., 2022b)	MJ+ST	91.9
MaskOCR (Lyu et al., 2022)	MJ+ST	93.8
GIT	TextCaps	89.9
GII	MJ+ST	92.9

	Zero-shot			1-shot per class			5-shot per class		
Accuracy type	equal	in	voc-prior	equal	in	voc-prior	equal	in	voc-prior
Flamingo	-	-	-	-	-	71.7	-	-	77.3
GIT	1.93	40.88	33.48	64.54	66.76	72.45	79.79	80.15	80.95

Figure 4: Performance with different pre-training data scales and different model sizes.

Lavers		CC	CO		noc	aps
Layers	B@4	M	C	S	C	S
6	38.9	30.7	136.4	24.6	119.3	15.9
12	38.9	30.6	136.0	24.2	118.1	15.5
24	39.1	30.2	134.6	23.8	115.4	15.1

- GIT 모델이 이미지 캡셔닝, VQA 등 여러 태스크에서 기존 SOTA 성능 능가함
- 멀티태스크 학습으로 태스크 간 시너지 효과 나타남
- 대규모 데이터 사전학습이 성능 향상에 크게 기여함
- ablation study에서 인코더, 디코더 구조와 학습 전략의 중요성 확인됨
- 자동 평가 지표와 인간 평가 모두에서 생성 텍스트 품질 우수함
- 학습 효율성도 기존 모델 대비 개선됨

6. Insight

- 이미지에서 텍스트를 생성하는 멀티모달 생성 모델로서 transformer 구조가 효과적임
- 멀티태스크 학습이 다양한 비전-언어 태스크에 유연하게 대응 가능하게 함
- 대규모 데이터와 사전학습이 생성 품질과 성능을 크게 끌어올림
- cross-modal attention과 학습 기법들이 모델 성능과 안정성에 기여함
- 하지만 학습 비용과 계산 자원 요구가 높아 실무 적용에 부담일 수 있음
- 태스크 간 간섭 문제와 과적합 위험도 존재함
- 향후 경량화와 효율적 학습 방법 연구가 필요함