计算机与控制工程学院 2017-2018 学年第一学期本科生编译系统原理期末考试试卷(A卷)

专业:	年级:	学号:
姓名:	成绩:	
得 分	一、 单项选择题(每空	2分,共24分)
型	型转换是在C阶段,将 †地址是在F阶段。 A. 词法分析	误是在B阶段,对常量进行类 好可重定位机器码中相对地址修改为绝 B. 语法分析 D. 代码生成 F. 代码加载
S		系统的功能是将 C 程序中以##开头的 库查询 C 库函数的调用,则它是一种 B. 编译器 D. 链接器
3. 我	於们倾向于使用 DFA 而非 NFA A. DFA 空间占用优于 NFA B. DFA 时间复杂性优于 N C. 以上皆对 D. 以上皆错	
4. Fi	IRST(α)={ε} 中 的 ε 是E。 A. 单个符号 B. 长度为 0 的符号串 C. 空集 D. 包含一个符号串的集合	3, 正则表达式ε表示的是
5. a	AA 不是下面上下文无关文法 $S \rightarrow aABe$ $A \rightarrow Al$ A . 不存在最右句型,其前	•

C. aAA 是某个最右句型的前缀,但它的末尾超过了句柄末尾 D. 以上皆错 6. 综合属性计算的依赖关系是父节点依赖孩子节点,所以综合属性的计 算 B 。 A. 容易与预测分析法相结合 B. 容易与算符优先分析算法相结合 C. 以上皆对 D. 以上皆错 7. 用预测分析法分析一个中缀表达式, 当前栈顶是非终结符 T, 输入缓 冲区第一个终结符是+,则 D 是**不恰当的**错误恢复方式。 A. 将 id 压栈 B. 将 T 弹出栈 C. 将(id)插入到输入缓冲区开始 D. 将+从输入缓冲区删除 8. 对 struct (record) 类型的等价判定,下面说法**正确**的是 D 。 A. C语言采用结构等价判定, Pascal语言采用名字等价判定 B. C语言采用名字等价判定, Pascal语言采用结构等价判定 C. C语言和 Pascal语言都采用结构等价判定 D. C语言和 Pascal语言都采用名字等价判定 9. 下面三地址码程序中,语句 B 是公共子表达式。 (1) x := y + z(2) y := x - s(3) z := y + z(4) s := x - sA. (1)和(3) B. (2)和(4) C. 以上皆对 D. 以上皆错 二、 设计题 (每题 6 分,共 24 分) 扣分标准: 有一些瑕疵的话 得分

B. aAA 是某个最右句型的前缀,但它在句柄左侧

中汉字的编码。

扣1分,每个部分有明显错误的话酌情扣分

1. GB2312 编码将字符分为 94 个区 (编号 1-94), 汉字占据 16-87 区。每区 10 行 10 列,按行主次序编号 0-99,其中 0 和 95-99 是 六个空位。每个字符采用两字节编码, 高字节为区号, 低字节为 区内位号,区号和位号(先转换为十六进制)再分别加上 0xA0。例如,"王" 在 45 区 8 行 5 列, 因此其编码为 0xCDF5。设计正则表达式描述 GB2312

分数划分:区号部分2分,位号部分4分

答: 0x([B-E][0-F] | F[0-7]) (A[1-F] | [B-E][0-F] | F[0-E])

2. 英文单词不能以 I、U、V 或 J 结尾,例外是允许三个很古老的英语单词 I、YOU 和 THOU。设计正则表达式描述满足这一规则的字母串(大写)。 分数划分: valid 2 分, 主体 2 分, 例外 2 分

答: valid→[A-HK-TW-Z]

[A-Z]* valid | I | YOU | THOU

3. 设计非二义性上下文无关文法描述布尔表达式,其中基本布尔表达式为常量 true、false 和变量 id,布尔运算有 and、or、not 和(、)。

分数划分: 10 个候选式, 错 1 个扣 0.5, 满 5 个扣 3 分, 错更多继续 1 个 0.5 累计

答: E→E or T | T

 $T \rightarrow T$ and $F \mid F$

F→not B | B

 $B \rightarrow (E) | true | false | id$

4. 设计上下文无关文法,生成正则表达式 0(0 | 1)*0 所描述的语言。

分数划分: 错1个候选式1分,全错0分。允许其他等价文法。

 $S \rightarrow 0 A$

 $A \rightarrow 0 A \mid 0 B \mid 1 A$

В→ε

得 分

三、(22分)对下面的正则表达式。

(a | b*)*abb

1. 用 Thompson 构造法将其转换为 NFA。(7分)

答:

分数划分:基本正则表达式 (a 和 b) 共 1 分,连接、并集、闭包运算各 2 分。

2. 用子集构造法将得到的 NFA 转换为 DFA,写出识别 ababbab 的状态转换序列和识别结果。(9 分)

分数划分:子集构造法过程 6 分,状态转换图 1 分,状态识别和结果 2 分答: $A=\varepsilon$ clousure($\{0\}$)= $\{0,1,2,4,5,7,8,9\}$

- ε clousure($\delta(A,a)$)={1,2,3,4,5,7,8,9,10}=B
- ε clousure($\delta(A,b)$)={1,2,4,5,6,7,8,9}=C
- ε clousure($\delta(B,a)$)=B
- ε clousure($\delta(B,b)$)={1,2,4,5,6,7,8,9,11}=D
- ε clousure($\delta(C,a)$)=B
- ε clousure($\delta(C,b)$)=C
- ε clousure($\delta(D,a)$)=B
- ε clousure($\delta(D,b)$)={1,2,4,5,6,7,8,9,12}=E
- ε clousure($\delta(E,a)$)=B
- ε clousure($\delta(E,b)$)=C

 $A \rightarrow B \rightarrow D \rightarrow B \rightarrow D \rightarrow E \rightarrow B \rightarrow D$, 结果是拒绝

3. 将 DFA 最小化 (6 分)

分数划分: 初始化分和三个步骤各1分, 最终状态转换图2分

答: 初始划分{A, B, C, D} {E}

{A, B, C, D}→b {C, D, C, E}, 因此划分为{A, B, C} {D}

{A, B, C}→b {C, D, C}, 因此划分为{A, C} {B}

{A, C}不可再分, 最终状态分组为{A, C} {B} {D} {E}

得 分

四、(14 分)对下面 if 语句的文法(i——if、e——else、a——代表其他语句的终结符,忽略了表达式):

- (1) 构造 SLR 分析表 (7分)
- (2) 消解分析表中冲突,对iiaeiaea 进行语法分析(7分)。

 $S \rightarrow iS | iS eS | a$

答:

(1)

分数划分: 12 个步骤 4 分, First、Follow 和 SLR 表 3 分

closure(
$$\{S' \rightarrow .S\}$$
)= $\{S' \rightarrow .S, S \rightarrow . i S, S \rightarrow . i S e S, S \rightarrow .a \}$ = I_0

goto(
$$I_0$$
,S)={ S' \rightarrow S. }= I_1

$$goto(I_0, i)=\{ S \rightarrow i . S, S \rightarrow i . S e S, S \rightarrow . i S, S \rightarrow . i S e S, S \rightarrow .a \}=I_2$$

$$goto(I_0, \mathbf{a}) = \{ S \rightarrow \mathbf{a} : \} = I_3$$

goto(
$$I_2$$
, S)={ $S \rightarrow i S., S \rightarrow i S. e S }=I_4$

 $goto(I_2, i)=I_2$

 $goto(I_2, \mathbf{a})=I_3$

goto(
$$I_4$$
, e)={ $S \rightarrow i S e. S, S \rightarrow . i S, S \rightarrow . i S e S, S \rightarrow .a }=I_5$

goto(
$$I_5$$
, S)={ $S \rightarrow i S e S$. }= I_6

 $goto(I_5, \mathbf{i})=I_2$

 $goto(I_5, \mathbf{a})=I_3$

 $First(S) = \{i, e, a\} Follow(S) = \{e, \$\}$

	action				goto
	i	e	a	\$	S
0	s2		s3		1
1				acc	
2	s2		s3		4
3		r3		r3	
4		s5/r1		r1	
5	s2		s3		6
6		r2		r2	

(2)

分数划分:消解冲突2分,分析过程5分

对(4, e)表项的冲突,r1 表示 if stmt 归约,s5 表示 else 移进,将来 if stmt else stmt 归约,显然后者符合 else 与最近未匹配 if 相匹配的原则,因此保留 s5

栈	输入	输出
\$0	iia eia ea\$	
\$0 i 2	ia eia ea\$	
\$0 i 2 i 2	a e i a e a\$	
\$0 i 2 i 2 a 3	eiaea\$	S→a
\$0 i 2 i 2 S 4	eiaea\$	
\$0 i 2 i 2 S 4 e 5	i a e a\$	
\$0 i 2 i 2 S 4 e 5 i 2	a e a\$	
\$0 i 2 i 2 S 4 e 5 i 2 a 3	e a\$	S→a
\$0 i 2 i 2 S 4 e 5 i 2 S 4	e a\$	
\$0 i 2 i 2 S 4 e 5 i 2 S 4 e 5	a \$	
\$0 i 2 i 2 S 4 e 5 i 2 S 4 e 5 a 3	\$	S→a
\$0 i 2 i 2 S 4 e 5 i 2 S 4 e 5 S 6	\$	S→i S e S

\$0 i 2 i 2 S 4 e 5 S 6	\$ S→i S e S
\$0 i 2 S 4	\$ S→i S
\$0 S 1	\$ acc

得 分

五、(16分)

给出最终的翻译结果(10分)

- (1)设计上下文无关文法描述类型表达式(注意,不是描述类型),基本类型为integer、char、real,类型构造符为array、pointer、→(函数)和X(笛卡儿积)。(6分)
- (2)设计**语法制导定义**实现类型表达式转换为紧凑二进制编码表示, integer、char、real 编码分别为 01、10、11, array、pointer、→(函数)编码分别为 01、10、11。对类型表达式array(num, pointer(char)→integer) (数组的索引集合用一个常数表示),画出其语法树,利用你设计的语法制导定义对语法树中节点计算属性值,

答:

(1) 分数划分: 4 个类型构造符各 1 分, base type 2 分

(2) 分数划分: 语法制导定义 6 分

type_exp"|0|" | type=exp" of"

type_exp"|0|" | type=bxp "of"

type_exp"|0" | type=bxp "of"

type_exp"|0" | base_type "of"

base_exp"|0" integer

dnav