Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow$ an arbitrary ε -soft policy

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

 $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$

$$Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$$

Repeat forever (for each episode):

Generate an episode following
$$\pi$$
: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

 $G \leftarrow 0$

Loop for each step of episode,
$$t = T - 1, T - 2, \dots, 0$$
:

 $G \leftarrow G + R_{t+1}$ Unless the pair S_t , A_t appears in S_0 , A_0 , S_1 , A_1 , ..., S_{t-1} , A_{t-1} :

$$G \text{ to } Returns(S_t, A_t)$$

 $E \leftarrow average(Returns(S_t, A_t))$

Append G to $Returns(S_t, A_t)$

$$age(Returns(S_t, A_t))$$

$$Q(S_t, a) \qquad (v)$$

 $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$

 $A^* \leftarrow \arg\max_a Q(S_t, a)$ For all $a \in \mathcal{A}(S_t)$:

(with ties broken arbitrarily)