Explorations of alternative stock assessment models for Eastern Bering Sea Pacific cod

BSAI Groundfish Plan Team - September 2023.

STEVEN J. BARBEAUX, PETE HULSON, INGRID SPIES, AND JAMES THORSON

- Dirichlet multinomial $log(\Theta)$ values for length composition approach the upper bound and were fixed to ensure models convergence.
- Failing residual runs tests for length and age composition data in all ensembles indicating autocorrelation in the residuals pointing at poor residual behavior.
- Potential confounding of aging bias, annually varying growth, and annually varying selectivity result in the models being highly unstable with considerable tuning of the annual devs. on growth and selectivity required for model convergence.
- Models are highly sensitive to changes in catchability and natural mortality with small changes in either resulting in substantial changes in management advice with only small changes in negative log likelihood.

New analyses for 2023

- Changing initial input sample size
- A simplified model
- Sequential analyses with added features to the simplified model
 - Annually varying growth
 - Annually varying selectivity
 - Change max age from 20 to 12
 - Catch back to 1964 and removal of regime parameter on recruitment
 - Conditional age-at-length (CAAL)

Data

Note:

- Survey length composition data for 1994-2020 included in the Models 22.2
- Survey mean length-at-age included in all models, however likelihood not included in the objective function.
- Catch data pre-1977 used only in models 23.1.0.g
- Model 23.1.0.h also included conditional age-at-length data

Changing initial input sample size

- Model 22.2 updated
 - Input sample size changed to bootstrap proposed by Hulson et al. (2023)
 - Survey size and age composition input sample size bootstrapped
 - Fishery size composition input sample size uses haul number standardized to the average bootstrapped survey size composition input sample size
 - Old mean for both = 369; length new mean = 1623, age new mean = 250

Changing initial input sample size

- Model 22.2 updated
 - Degraded fit to survey
 - Poor convergence
 - Log (Θ) continues to be at bound for fishery comps

Model 22.2 Update

A simplified model

- Model 23.1.0.a
 - Model 22.2 (Barbeaux et al. 2022) with the following changes:
 - Removing length composition data for years with age composition data (1994-2021)
 - No annual devs on survey or fishery selectivity
 - No annual devs on L_{min}
 - New survey selectivity to estimate parameters 1-4 and using new option for p6
 - Fixing pre-2007 bias to 2022 Model 22.2 values
 - For the growth model fixing CV at older ages at 0.06 and fixing CV at younger ages at 0.2
 - Changing to standard multinomial from DM for length and age composition data
 - Using the iterative Francis TA1.8 weighting method to tune the model
 - Tuned to Fishery length comp = 0.03, Survey length comp = 0.06, survey age comp = 0.25
 - 222 fewer parameters (220 devs) than Model 22.2

- Selectivity
 - Six parameter double normal on size
 - No annual devs. on any parameters
 - Survey selectivity constant after 40cm

- Growth
 - Same Richard's growth curve, but no devs on L_{min}

Improved fit to survey

 Higher residuals on peak of small fish in survey length comps.

Better residual behavior (runs test)

Model 22.2 old

Model 23.1.0.a

Model 23.1.0.a

- Slightly degraded retrospective bias from -0.06 to 0.08.
- Improved index mean absolute scaled error (MASE) prediction skill from 0.69 to 0.42

Model 22.2 old

- Profiles over catchability
 - Small changes in likelihood over large changes in catchability remains.

Model 23.1.0.a Results

- Spawning stock biomass and recruitment vs. Model 22.2 old
 - Impact of change in catchability

- Annually varying growth
- Annually varying survey selectivity
- Change max age from 20 to 12
- Catch back to 1964 and removal of regime parameter on recruitment
- Conditional age-at-length (CAAL)

Model	Npar. +Ndevs	Annually varying growth	Annually varying survey selectivity	Max age to 12	Catch to 1964 no regime	CAAL
23.1.0. a	82					
23.1.0.b	176	X				
23.1.0.d	218	X	X			
23.1.0.g	217	X	X	X	X	
23.1.0.h	217	X	X	X	X	X

- Annually varying growth +94 dev pars
 - Mean tending random walk devs
 - L_{min} (SD=0.44) and Richard (SD=0.30)
 - -108 -LL vs. Model 23.1.0.a
 - Survey index -53.08
 - Length comp -53.63
 - Age comp -17.55

- Improved residual runs test
- Small change in SSB Mohn's Rho from 0.08 to 0.09
- Small changes in MASE prediction skill across all data components +length and -age

- Annually varying survey selectivity (+42 devs)
 - Additive devs on ascending parameter 1982-2023
 - -10.19 -LL vs. Model 23.1.0.b
 - -5.49 Survey index
 - -9.66 Survey length comps
 - -0.51 Fishery length comps
 - +2.21 Survey age comps
 - Same SSB retrospective and runs test
 - MASE results nearly identical

2010

2020

Model 23.1.0.g

- Change max age from 20 to 12 in model dynamics
- Catch back to 1964 and removal of regime parameter on recruitment (-1 par)
- Change in equilibrium catch
 - 42.5kt to 10kt

- Fit to data nearly indistinguishable visually from Model 23.1.0.d
 - Overall +4.91 -LL vs Model 23.1.0.d
 - Survey index -1.12
 - Survey length comp +1.92
 - Fishery length comp +0.68
 - Survey age comp +3.46
- Slight change in Mohn's rho from 0.09 to 0.11
- Similar runs test results
- Similar MASE prediction skill

- Addition of conditional age-at-length data
- Overall likelihood not comparable
 - Degradation in index and length comp fits
 - Survey index +9.25
 - Survey length comp +12.21
 - Fishery length comp +15.58
 - Survey age comp -1.29
- Mohn's rho to 0.15
- Fails runs tests
- Similar MASE prediction skill

Generally good fits to CAAL

Very poor fits to the early fishery length composition data

Year

Model	Npars	Ndevs	-LL	M	Q	B _o (kt)	F _{MSY}	B ₂₃ (kt)	B_{23}/B_{0}
MODEL 23.1.0.a	18	64	251	0.344	1.097	586.1	0.332	205.9	0.351
MODEL 23.1.0.b	18	158	143	0.414	0.822	605.4	0.441	314.1	0.519
MODEL 23.1.0.d	18	200	133	0.429	0.765	623.4	0.465	343.4	0.551
MODEL 23.1.0.g	17	200	141	0.435	0.792	542.6	0.488	331.8	0.612
MODEL 23.1.0.h	17	200	631	0.424	0.808	611.4	0.466	313.1	0.512

	Effective N					
Model	Index RMSE	Fishery Length	Survey Length	Survey Age		
MODEL 22.2_old	0.13	2919	852	168		
MODEL 22.2_updated	0.16	3474	929	122		
MODEL 23.1.0.a	0.12	1700	561	87		
MODEL 23.1.0.b	0.07	2263	813	132		
MODEL 23.1.0.d	0.07	2288	899	132		
MODEL 23.1.0.g	0.07	2242	860	120		
MODEL 23.1.0.h	0.08	1867	691	33		

Growth Parameters

Other Key Parameters

0.50

0.45

0.30

Derived quantities

800,000 750,000

450,000

700,000 650,000 600,000 550,000 500,000

Likelihood profiles over Q

- Large change in catchability
 with small change in likelihood
- Results in large change in spawning biomass and management advice as Q scales the population

Natural mortality and Q

• Highly negatively correlated in all models ($R^2 = -0.999$)

Fixed natural mortality

- Phylogenetic structural equation model (PSEM)
- Max age since 2008 (t_max= 14)
- M = 0.3866

	Free M					Fixed M					
				B ₂₀₂₃ /				Change			
Model	-LL	B_0	B ₂₀₂₃	B_0	ABC ₂₀₂₄	-LL	B_0	B ₂₀₂₃	B_0	ABC ₂₀₂₄	in -LL
M22.2 old	10,875	661,455	249,809	0.378	144,694	10,881	653,795	295,111	0.451	192,152	+6
M22.2 up	18,362	694,750	263,189	0.379	141,115	18,405	683,985	332,473	0.486	204,657	+43
M23.1.0.a	251	586,050	205,914	0.351	131,883	253	568,340	246,505	0.434	178,060	+2
M23.1.0.b	143	605,435	314,146	0.519	219,817	144	590,270	274,837	0.466	187,374	+1
M23.1.0.d	133	623,435	343,431	0.551	243,533	134	594,955	276,042	0.464	188,263	+1
M23.1.0.g	141	542,635	331,845	0.612	239,088	143	531,915	264,534	0.497	181,473	+2
M23.1.0.h	631	611,365	313,052	0.512		632	613,550	276,694	0.451		+1

Fixed natural mortality

- Phylogenetic structural equation model (PSEM)
- Max age since 2008 (t_max= 14)
- M = 0.3866

	Survey catchability with				
Model	Free M	Fixed M			
M22.2 old	0.960	0.772			
M22.2 up	0.974	0.683			
M23.1.0.a	1.097	0.902			
M23.1.0.b	0.822	0.953			
M23.1.0.d	0.765	0.972			
M23.1.0.g	0.792	1.017			
M23.1.0.h	0.808	0.949			

General recommendations

- Move away from the ensemble approach.
- Simpler model with fewer and/or more constrained, annually varying parameters on growth and selectivity as these parameters are confounded.
- Fix one or more key parameters in the model or using more constrained priors would provide improved model stability.

Recap: Issues with 2022 ensemble models

- Dirichlet multinomial log(Θ) values approach the upper bound
- Failing residual runs tests (autocorrelation)
- Confounding of aging bias, annually varying growth, and annually varying selectivity
- Models are highly sensitive to changes in catchability and natural mortality.

Specific recommendations

- If we adopt single model management:
 - Model 23.1.0.d with fixed M
 - Improved over 2022 ensemble models
 - No DM theta on the upper bound issue
 - Improved residual runs (All pass)
 - Simpler model with less possibility of confounding
 - Input sample sizes consistent with best available science
 - Best performance and fit of all 'New' models
 - Near toss-up with Model 23.1.0.b
- Note that the 'New' models have increased uncertainty compared to individual 2022 ensemble models