Math 5050 – Special Topics: Manifolds– Spring 2025 w/Professor Berchenko-Kogan

Paul Carmody Notes – January – May, 2025

Definitions

- 1. **Diffeomorphism**: If $f \in C^{\infty}$ and $f^{-1} \in C^{\infty}$ then f is said to be a **diffeomorphism**. Similarly, if there exists a mapping between two sets that is a diffeomorphism, the sets are said to be **diffeomorphic** to each other.
- 2. **Tangent Space** at a point p. The set of all vectors rooted at p, written as $T_p(\mathbb{R}^n)$.
- 3. **Derivations**: any operation that supports the Liebniz Rule (D(fg) = (Df)g + fDg).
- 4. **Derivation Space**. $\mathcal{D}_p(\mathbb{R}^n)$ is the set of all derivations at p. This constitutes a vector space. There exists an isomorphism $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}(\mathbb{R}^n)$ defined as

$$\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$v \mapsto D_v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p.$$

- 5. Germ: equivalence class of functions whose derivatives around a point are the same.
- 6. Vector Field vs Vector Space.
 - A Vector Field a function that assigns a vector to every point in the subset U.

$$f: (U \subset \mathbb{R}^m) \to T_p(\mathbb{R}^n)$$

$$X \mapsto X_p = \sum a^i(p) \frac{\partial}{\partial x^i} \bigg|_p.$$

consider a^i as coefficient functions. We say that X is C^{∞} on U if $a^i \in C^{\infty}$, $\forall i = 1, ..., n$.

- A Vector Space is any abstraciton that is closed under addition and scalar multiplication.
- 7. **Dual Basis and Dual Space**. The **Dual Basis** is a set of functions $\alpha^i: V \to \mathbb{R}$

$$\alpha^i: V \to \mathbb{R}$$
$$\alpha^i(e_j) = \delta^i_j$$

the **Dual Space** V^{\vee} is the space of functions spanned by the Dual Basis. Elements of the Dual Space are called **Functionals (Analysis)/1-Covectors (Differential Geometry)**.

8. Multi-Linear Functions and Vector Space of k-tensors $L_k(V)$ Let V be a vector space and V^k be k-tuples of vectors in V. A K-linear map or k-tensor $f: V^k \to \mathbb{R}$ such that each i^{th} component is linear. The vector space of all k-tensors on V is denoted $L_k(V)$.

Permuting Mult-linear Functions. Given any permutation $\sigma \in S_k$

$$f(v_1,\ldots,v_k)=f(v_{\sigma(1)},\ldots,v_{\sigma(k)})$$

e.g., $f(x,y,z) = xyz \rightarrow f(z,x,y) = zxy$. FYI: if x,y,z are from non-commutative rings (i.e., matrices) then we must be aware of the $sgn(\sigma)$.

9. Left R-Module: An Abelian group R with a scalar multiplication map:

$$\mu: R \times A \to A$$

usually written as $\mu(r, a)$, such that $r, s \in \mathbb{R}$ and $a, b \in A$ a

- (i) (associative) (rs)a = r(sa).
- (ii) (identity) 1a = a (1 is a multiplicative identity).
- (iii) (distributivity) (r+s)a = ra + sa and r(a+b) = ra + rb.

If R is a field then R-module is precisely a vector space over R.

A K-Algebra over a field K is also a ring A that is also a vector space over K such that the ring multiplication satisfies homogeneity (scalar distributes over vector multiplication to only one of the operators).

A $graded\ Algebra$ is an algebra A over a field K if it can be writte as the direct sum

$$A = \bigoplus_{i=0}^{\infty} A^i$$

of vector spaces over K such that the mupl tiplication map sends $A^k \times A^l \to A^{k+l}$ 10. The set of all C^{∞} -vector fields on U, denoted by $\mathfrak{X}(U)$, is not only a vector space over \mathbb{R} , but also a module over the $C^{\infty}(U)$ ring.

$$\mathfrak{X}(U) = \{ X : V \to V \mid X \in C^{\infty}(U) \} \text{ where } V = (\mathbb{R} \text{ or } \mathbb{C})^n$$

11. **Derivation:** A **derivation** on an algebra A is a K-multilinear function $D: A \to A$ such that

$$D(ab) = (Da)b + aDb, \forall a, b \in A$$

known as the Liebniz Rule.

The set of all derivations on A forms a vector space, $Der(C^{\infty}(U))$. Thus a $C^{\infty}(U)$ vector field gives rise to a derivation of the algebra $C^{\infty}(U)$. Thus the mapping

$$\varphi: \mathfrak{X}(U) \to \mathrm{Der}(C^{\infty}(U))$$

 $X \mapsto (f \mapsto Xf)$

this map is an isomorphism of vector spaces.

12. Exterior Algebras $\Lambda(V)$. The exterior algebra $\Lambda(V)$ is obtained by imposing an anti-commutative relation:

$$v \otimes w + w \otimes v = 0, \forall v, w \in V$$

this means that the quotient algebra is:

$$\Lambda(V) = T(V) / \langle v \otimes w + w \otimes v \rangle.$$

Where T(V) is the **tensor algebra**

$$T(V) = \bigoplus_{n=1}^{\infty} V^{\otimes n}$$

13. Symmetric Algebras S(V). The symmetric algebra S(V) is obtained by imposing an commutative relation:

$$v \otimes w - w \otimes v = 0, \forall v, w \in V$$

this means that the quotient algebra is:

$$S(V) = T(V) / \langle v \otimes w - w \otimes v \rangle$$
.

14. **Tensor Product** The tensor product between two 1-covectors, $f, g: V \to \mathbb{R}$ is the 2-covector $f \otimes g$.

$$(f \otimes g)(u, v) = f(u)g(v)$$

. In general, the tensor product of a k-covector $p:V^k\to\mathbb{R}$ with a l-covector $q:v^l\to\mathbb{R}$ is the (k+l)-covector $p\otimes q:V^{k+l}\to\mathbb{R}$.

$$(p \otimes q)(u, v) = p(u)q(v), \forall u \in V^k, v \in V^l$$

15. **Tensor Product(?)** is an operator on $v \in V$ and $u \in U$ where

$$v \otimes u : V \times U \to V \oplus U$$

 $(v \otimes u)_{i \cdot j} = v_i \cdot u_j, \ \forall i = 1, \dots, \dim(V), \ j = 1, \dots, \dim(U)$

Given two vector spaces V, W with bases v_1, \ldots, v_n and w_1, \ldots, w_m then the Tensor Product space $V \otimes W$ has a basis referred to as $v_i \otimes w_j$ such that given any vector $\alpha = \sum \alpha_i v_i \in V$ and $\beta = \sum \beta_j w_j \in W$ the vector $\alpha \otimes \beta$ will have $n \times m$ components and each $(\alpha \otimes \beta)_{i \times j} = \alpha_i \times \beta_j$.

 α_i, β_j are all scalars. The real issue is the behavior of unit basis vectors v_i, w_j and how they are effected by the operator and the basis vectors $v_i \otimes w_j$. Thus, scalar multiplication works on either (but not both) operands and distribution over addition works over both the left and the right.

16. Wedge Product

Between two covectors Let $f, g \in L_1(V)$ then for all $u, v \in V$

$$(f \wedge g)(u,v) = (f \otimes g)(u,v) - (g \otimes f)(u,v) = f(u)g(v) - f(v)g(u)$$

Between mulitple 1-covectors.

$$(\alpha^1 \otimes \cdots \otimes \alpha^k)(v_1, \dots, v_k) = \det[\alpha^1(v_j)]$$

$$= \sum_{\sigma \in S_k} (\operatorname{sgn} \sigma) \alpha_1(v_{\sigma(1)}) \cdots \alpha_k(v_{\sigma(k)})$$

Between k-covector and k-covector. Let $f \in A_k(V)$, $g \in A_l(V)$ then

$$f \wedge g = \frac{1}{k!l!} A(f \otimes g) \in A_{k+l}(V)$$

or explicitly

$$(f \wedge g)(v_1, \dots, v_{k+l}) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} f(v_{\sigma_1}, \dots, v_{\sigma_k}) g(v_{\sigma_{k+1}}, \dots, v_{\sigma_{k+l}})$$

Anticommutative. Let $f \in A_k(V)$, $g \in A_l(V)$ then

$$(f \wedge g) = (-1)^{kl} g \wedge f$$

17. Differential k-Forms

1-forms, covectors

$$(dx^{i})\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right) = \left.\frac{\partial}{\partial x^{j}}\right|_{p} x^{i} = \delta^{i}_{j}$$
$$(df)_{p}(X_{p}) = X_{p}f = \sum_{p} a^{i}(p) \frac{\partial f}{\partial x^{i}}\bigg|_{p} = \sum_{p} \frac{\partial}{\partial x^{i}} dx^{i}$$

18. $\Omega^k(U)$, Vector space of C^{∞} k-forms on U.

 $\Omega^0 = A_0(T_p(\mathbb{R}^n)) = C^{\infty}(U)$, e.g., $f \in \Omega^0$ then $f: V \to \mathbb{R}$ is a functional/covector/1-tensor.

Elements of 1-form $\Omega^1 = A_1(T_p(\mathbb{R}^n))$. For example, when n=3

$$fdx + qdy + hdz$$
, where $f, q, h \in C^{\infty}(\mathbb{R}^3)$

Elements of 2-form $\Omega^2 = A_2(T_p(\mathbb{R}^n))$. For example, when $n = 3^1$

$$fdy \wedge dz + qdx \wedge dz + hdx \wedge dy$$
, where $f, q, h \in C^{\infty}(\mathbb{R}^3)$

if n = 4, that is coordinates for u, v, w, x. Each form is derived from these bases

0-form $\Omega^0(\mathbb{R}^4) \in \mathbb{R}$

1-forms $\Omega^1(\mathbb{R}^4)$ summing du, dv, dw, dx,

2-forms $\Omega^2(\mathbb{R}^4)$ summing $du \wedge dv$, $du \wedge dw$, $du \wedge dx$, $dv \wedge dw$, $dv \wedge dx$, $dw \wedge dx$,

3-forms $\Omega^3(\mathbb{R}^4)$ summing $du \wedge dv \wedge dw \mid du \wedge dw \wedge dx \mid du \wedge dv \wedge dx \mid dv \wedge dw \wedge dx$

4-form $\Omega^4(\mathbb{R}^4)$ $du \wedge dv \wedge dw \wedge dx$.

Also, $U \subseteq \mathbb{R}^n$ then k < n. k-forms for k > n are zero. Further $|\Omega^k(\mathbb{R}^n)| = \binom{k}{n}$ and $|\bigcup_k \Omega^k(\mathbb{R}^n)| = 2^n$ and think of $\Omega^*(U) = \bigcup_k \Omega^k(\mathbb{R}^n)$

Direct Sum. $\Omega^*(U) = \bigoplus_k \Omega^k(U)$ is an anti-commutative graded algebra over \mathbb{R} .

Since one can multiply C^{∞} k-forms by C^{∞} functions, the set $\Omega^k(U)$ of C^{∞} k-forms is both a vector space over \mathbb{R} and a module over $C^{\infty}(U)$ and $\Omega^*(U)$ is also a module over C^{∞} of C^{∞} functions.

19. Wedge Product of k-form. Recall: $dx^i \wedge dx^i = 0$ for all i = 1, ..., n. Therefore, \wedge only makes sense to be defined on disjoint indice-lists, that is, $I = \{i_1, ..., i_k\}$ and $J = \{j_1, ..., j_l\}$ such that $I \cap J = \emptyset$. Then,

$$\wedge: \Omega^{k}(U) \times \Omega^{l}(U) \to \Omega^{k+l}(U)$$
$$(\omega, \tau) \mapsto (\omega \wedge \tau) = \sum_{I,I} a_{I} b_{J} dx^{I} \wedge dx^{J}.$$

where $\omega = \sum_{I} a_{I} dx^{I}, \tau = \sum_{J} b_{J}, dx^{J}$.

¹NOTE the cyclic order of the indices x, y, z. Switching any one of these will flip the sign.

20. the Exterior Derivative. If $k \geq 1$ and if $\omega = \sum_{I} a_i dx^I \in \Omega^k(U)$, then $d\omega \in \Omega^{k+1}(U)$ and

$$d\omega = \sum_{I} da_{I} \wedge dx^{I} = \sum_{I} \left(\sum_{J} \frac{\partial a_{I}}{\partial x_{J}} dx^{J} \right) \wedge dx^{I}$$

Example: Let $\omega \in \Omega^1(\mathbb{R}^2)$ and $\omega = f dx + g dy, f, g \in C^{\infty}(\mathbb{R}^2)$.

$$d\omega = df \wedge dx + dg \wedge dy$$

$$= \left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) \wedge dx + \left(\frac{\partial g}{\partial x}dx + \frac{\partial g}{\partial y}dy\right) \wedge dy$$

$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$

$$= (g_x - f_y) dx \wedge dy$$

Definition: Let $\bigoplus_{k=0}^{\infty} A^k$ be a graded algebra over a field K. An **anti-derivation** of the graded algebra A is a K-linear map $D: A \to A$ such that $a \in A^k$ and $b \in A^l$,

$$D(ab) = (Da)b + (-1)^k aDb$$

Proposition 4.7: Three Criterion for an Exterior Derivation

i) The *exterior derivation* $d: \Omega^*(U) \to \Omega^*(U)$ is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

- ii) $d^2 = 0$.
- iii) If $f \in \mathbb{C}^{\infty}$ and $X \in \mathfrak{X}(U)$, then (df)(X) = Xf.

NOTE: "In a typical school, there would be graduate level courses on Smooth Manifods and another on Remannian Manifolds."

Q: What is the difference between $\mathfrak{X}(U)$ and $C^{\infty}(U)$?

The difference between $\mathfrak{X}(U)$ and $C^{\infty}(U)$ lies in the types of objects they contain:

- 1. ** $C^{\infty}(U)$: The Space of Smooth Functions** $C^{\infty}(U)$ consists of all smooth (infinitely differentiable) real-valued functions defined on an open subset U of a manifold M. Elements of $C^{\infty}(U)$ are scalar functions $f:U\to\mathbb{R}$. These functions can be added and multiplied pointwise, forming an algebra over \mathbb{R} .
- 2. ** $\mathfrak{X}(U)$: The Space of Smooth Vector Fields** $\mathfrak{X}(U)$ consists of all smooth vector fields on U. A vector field X assigns to each point $p \in U$ a tangent vector $X_p \in T_pM$, smoothly varying with p. Vector fields act as derivations on smooth functions, meaning they satisfy the Leibniz rule:

$$X(fg) = X(f)g + fX(g), \quad \forall f, g \in C^{\infty}(U).$$

- The space $\mathfrak{X}(U)$ forms a module over $C^{\infty}(U)$, meaning smooth functions can scale vector fields: if $f \in C^{\infty}(U)$ and $X \in \mathfrak{X}(U)$, then fX is also a vector field.

Key Differences

Feature	$C^{\infty}(U)$	$\mathfrak{X}(U)$	
Elements	Smooth scalar functions $f: U \to \mathbb{R}$	Smooth vector fields $X: U \to TM$	
Algebraic Structure	Commutative algebra (pointwise multiplication)	Module over $C^{\infty}(U)$, noncommutative	
		under Lie bracket	
Operations	Addition, multiplication	Addition, scalar multiplication by	
		$C^{\infty}(U)$, Lie bracket $[X,Y]$	

In summary, $C^{\infty}(U)$ consists of smooth functions, while $\mathfrak{X}(U)$ consists of smooth vector fields, which act as differential operators on $C^{\infty}(U)$.

Compare and contrast.

Set	Dim	index	basis	Delta
$L_1(U)$	n	$i=1,\ldots,n$	$lpha^i$	$\delta_i^j = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$
$L_k(U)$	n^k	$I, J \in \{\underline{i_i, \dots, i_k}\}, i_k \in [1, \dots, n]$	$\alpha^I = \alpha^{i_1} \otimes \alpha^{i_2} \otimes \cdots \otimes \alpha^k$	
$A_k(U)$	$\binom{n}{k}$	$I, J \in \{\underbrace{i_i, \dots, i_k}_{k \text{ times}}\}, i_1 < i_2 < \dots i_k \in [1, n]$	$\alpha^I = \alpha^{i_1} \wedge \dots \wedge \alpha^k$	$\delta_I^J = \left\{ \begin{array}{ll} 1 & I = J \\ 0 & I \neq J \end{array} \right.$

Supersets

Symbol	Name (set of)	Definition	Example
$\Omega^0(U)$	0-forms	{ scalar fields }	$f: V \to \mathbb{R} \ f(x, y, z)$
$\Omega^1(U)$	1-forms	{ 1-forms, vector fields }	$d\omega(v) = A(v)dx + B(v)dy + C(v)dx$
			$A, B, C: V \to \mathbb{R}$
$\Omega^k(U)$	k-forms	$\{ k \text{-forms } \}$	$\cdots + dx^1 \wedge \cdots \wedge dx^k + \cdots$
$\Omega^*(U)$	sum of k -forms	$\{ x = \sum y \mid y \in \bigoplus_k \Omega^k(U) \}$	$Adx+Bdx \wedge dy+Cdx \wedge dy \wedge dz, A,B,C:$
			$V o \mathbb{R}$
$\mathfrak{X}(U)$	vector fields on U	$\{X \to \exists f: U \to U\}$	
$C^{\infty}(U)$	smooth functions on U		
$X_p = T_p(U)$	a vector field at p	$\{v \in U \mid v = p + x \text{ for some } x \in U\}$	

$$\begin{array}{ccc}
\operatorname{Map of } \Omega^{k}(\mathbb{R}^{3}) \\
\Omega^{0}(U) & \xrightarrow{\operatorname{d}} \Omega^{1}(U) & \xrightarrow{\operatorname{d}} \Omega^{2}(U) & \xrightarrow{\operatorname{d}} \Omega^{3}(U) \\
\cong & \downarrow & \cong \downarrow & \cong \downarrow & \cong \downarrow \\
C^{\infty}(U) & \xrightarrow{\operatorname{grad}} \mathfrak{X}(U) & \xrightarrow{\operatorname{curl}} \mathfrak{X}(U) & \xrightarrow{\operatorname{div}} C^{\infty}(U).
\end{array}$$

Shorthand

$$\sum_{i,j} a_i b_j = \sum_i a_i \sum_j b_j$$

$$\sum_{i,j} a_i b_j = \sum_i a_i \sum_j b_j$$

$$\sum_{I} a_I = \sum_{n=1}^k a_{i_n}$$

$$\sum_{I} a_I b_J = \sum_{n=1}^k a_{i_n} \sum_{m=1}^k b_{j_m}$$

$$\delta_i^j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$\delta_I^J = \delta_{i_1}^{j_1} \delta_{i_2}^{j_2} \cdots \delta_{i_k}^{j_k} = \begin{cases} 1 & i_n = j_n, \forall n \\ 0 & \text{otherwise} \end{cases} = \begin{cases} 1 & I = J \\ 0 & I \neq J \end{cases}$$

Definition 0.0.1 (Exact and Closed k-forms). A k-form ω on U is **closed** if $d\omega = 0$; it is **exact** if there is a (k-1)-form τ such that $\omega = d\tau$ on U. Since $d(d\tau) = 0$, every exact form is closed.

Definition 0.0.2 (de Rham Cohomology). .

The k^{th} -cohomology of U is defined as the quotient vector space

$$H^k(U) = \frac{\{\text{closed k-forms}\}}{\{\text{exact k-forms}\}}$$

That is, each element is a vector space forming an equivalence class of k-forms.

Examples of de Rham Cohomology

De Rham cohomology provides a way to study the topology of smooth manifolds using differential forms. Below are some key examples illustrating how to compute and interpret de Rham cohomology groups.

Example 1: Euclidean Space \mathbb{R}^{n}

For $M = \mathbb{R}^n$, we claim that the de Rham cohomology is:

$$H_{\mathrm{dR}}^k(\mathbb{R}^n) = \begin{cases} \mathbb{R}, & k = 0, \\ 0, & k > 0. \end{cases}$$

- **Computation**
 - 1. ** $H_{dR}^0(\mathbb{R}^n)$:**
 - The 0-forms are just smooth functions f.
 - A function is closed if df = 0, meaning f is constant.
 - Every constant function is not only closed but also exact since f = d(fx).
 - The space of closed 0-forms is \mathbb{R} (constant functions), and there are no exact forms to quotient out.
 - So, $H^0_{\mathrm{dR}}(\mathbb{R}^n) = \mathbb{R}$.
 - 2. ** $H_{dR}^{k}(\mathbb{R}^{n})$ for k > 0:**
 - Any closed k-form ω is locally exact due to **Poincaré's lemma**.
 - That is, every closed form is of the form $\omega = d\eta$, meaning it contributes nothing to cohomology.
 - Thus, $H_{dR}^k(\mathbb{R}^n) = 0$ for k > 0. This result reflects the fact that \mathbb{R}^n is **contractible**, so it has trivial topology.

Example 2: The Circle S^{1}

For $M = S^1$, we find:

$$H_{\mathrm{dR}}^k(S^1) = \begin{cases} \mathbb{R}, & k = 0, 1, \\ 0, & k > 1. \end{cases}$$

- **Computation**
 - 1. ** $H_{dR}^0(S^1) = \mathbb{R}^{**}$
 - Smooth functions f that satisfy df = 0 are constant.
 - Thus, $H_{\mathrm{dR}}^0(S^1) = \mathbb{R}$.
 - 2. ** $H^1_{dR}(S^1) = \mathbb{R}^{**}$
 - Consider the 1-form $\omega = d\theta$, where θ is the angular coordinate.
 - $d\omega = 0$, so ω is closed.
 - Is ω exact? If $\omega = d\eta$ for some η , then $d\eta = d\theta$, but no globally defined function η exists on S^1 satisfying this.
 - So ω represents a **nontrivial cohomology class**, giving $H^1_{dR}(S^1) = \mathbb{R}$.
 - 3. ** $H_{dR}^k(S^1) = 0$ for $k \ge 2^{**}$
 - There are no nontrivial 2-forms on a 1-dimensional manifold.
 - **Interpretation**

- The nontrivial $H^1_{dR}(S^1)$ reflects the existence of a **loop** in S^1 .
- This cohomology detects the ability to define a **non-exact closed form**, related to the winding number.

**Example 3: The 2-Sphere S^2 ** For $M = S^2$:

$$H_{\mathrm{dR}}^{k}(S^{2}) = \begin{cases} \mathbb{R}, & k = 0, 2, \\ 0, & k = 1. \end{cases}$$

Computation

1. **
$$H^0_{\mathrm{dR}}(S^2) = \mathbb{R}^{**}$$

- As always, closed 0-forms are constant functions, so $H^0_{\mathrm{dR}}(S^2)=\mathbb{R}$
- 2. ** $H^1_{dR}(S^2) = 0$ **
 - Any closed 1-form is exact by a higher-dimensional **Poincaré lemma**, so $H^1_{dR}(S^2) = 0$.
- 3. ** $H^2_{dR}(S^2) = \mathbb{R}^{**}$
 - The standard volume form $\omega = \sin \theta \, d\theta \wedge d\phi$ is closed.
 - It is not exact, because there is no 1-form η such that $d\eta = \omega$ (this follows from **Stokes' theorem**).
 - So ω represents a generator of $H^2_{\mathrm{dR}}(S^2)$.

Interpretation

- $H^1_{dR}(S^2) = 0$ reflects that there are no **nontrivial loops** (all loops contract).
- $H^2_{dR}(S^2) = \mathbb{R}$ corresponds to the existence of a volume form, a global topological feature.

Example 4: The Torus $T^2 = S^1 \times S^{1}$

For T^2 , the de Rham cohomology groups are:

$$H_{\mathrm{dR}}^{k}(T^{2}) = \begin{cases} \mathbb{R}, & k = 0, 2, \\ \mathbb{R} \oplus \mathbb{R}, & k = 1, \\ 0, & k > 2. \end{cases}$$

Computation

- 1. ** $H_{dR}^0(T^2) = \mathbb{R}^{**}$ (constant functions).
- 2. $**H^1_{dR}(T^2) = \mathbb{R} \oplus \mathbb{R}^{**}$
 - The torus has two independent 1-forms: $d\theta_1$ and $d\theta_2$, corresponding to the two loops in T^2 .
- 3. ** $H^2_{dR}(T^2) = \mathbb{R}^{**}$
- 4. The volume form $d\theta_1 \wedge d\theta_2$ represents a nontrivial 2-class.

Interpretation

- The rank of $H^1_{dR}(T^2)$ reflects the **two independent loops** in the torus.
- The nontrivial $H^2_{dR}(T^2)$ corresponds to the existence of a **volume form**.

Summary Table

Manifold M	$H_{dR}^0(M)$	$H^2_{dR}(M)$	$H^1_{dR}(M)$
\mathbb{R}^n	\mathbb{R}	0	0
S^1	\mathbb{R}	\mathbb{R}	0
S^2	\mathbb{R}	0	\mathbb{R}
T^2	\mathbb{R}	$\mathbb{R}\oplus\mathbb{R}$	\mathbb{R}