Pitkä matematiikka 26.3.2003, ratkaisut:

1. a)
$$\sqrt{3\frac{3}{4}} / \sqrt{1\frac{2}{3}} = \sqrt{\frac{15}{4} \cdot \frac{3}{5}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$
.

b)
$$\left(\frac{x}{y} + \frac{y}{x} - 2\right) / \left(\frac{x}{y} - \frac{y}{x}\right) = \frac{x^2 + y^2 - 2xy}{x^2 - y^2} = \frac{(x - y)^2}{(x + y)(x - y)} = \frac{x - y}{x + y}.$$

- 2. Jos kolmion sivun pituus on a, on ympäri piirretyn ympyrän säde $r_y = a/\sqrt{3}$ ja sisään piirretyn ympyrän säde $r_s = a\sqrt{3}/6$. Tällöin $r_y/r_s = 2$. Ympyröiden alojen suhde on $(r_y/r_s)^2 = 4$. Ympäri piirretyn ympyrän ala on 100(4-1) = 300 % suurempi.
- **3.** Jos laudasta sahataan p palaa, on neliön sivu 95p mm. Palojen yhteispituus on $p \cdot 95p$ mm. Saadaan epäyhtälö $95p^2 \le 1600$ eli $p \le \sqrt{1600/95} \approx 4{,}104$. Suurin p = 4 ja pisin neliön sivu $4 \cdot 95 = 380$. Vastaus: 380 mm.
- 4. Jos pyrkijöitä on 100a, heistä epäonnistuu molemmissa kokeissa 10a, vain matematiikassa 25a-10a=15a ja vain fysiikassa 17a-10a=7a. Fysiikassa epäonnistuuut epäonnistuu myös matematiikassa todennäköisyydellä $10a/17a=10/17\approx 0,59$. Pyrkijä eponnistuu ainakin toisessa kokeessa todennäköisyydellä (25a+7a)/100a=0,32.
- **5. a)** Koska $2^x = 8^y = 2^{3y}$, on x = 3y. Sijoitus ensimmäiseen antaa 3y + 2y = 4 eli y = 4/5, josta x = 12/5. **b)** Funktioiden $\lg |x|$ ja x^{-2} kuvaajat ovat symmetrisiä y-akselin suhteen, joten riittää tarkastella arvoja x > 0. Tällöin $\lg |x|$ on kasvava rajatta ja x^{-2} vähenevä kohti nollaa, joten kuvaajilla on yksi leikkauspiste x_o . Koska $\lg |1,895| < 1,895^{-2}$ ja $\lg |1,90| > 1,90^{-2}$, on $x_o \approx 1,90$ ja $\lg |x| \ge x^{-2}$, kun $|x| \ge 1,90$.
- **6.** Koska kyse on kolmion kulmista, on $\gamma = \pi \alpha \beta$. Siten $\sin \alpha \sin \beta = \cos(\pi \alpha \beta) = -\cos(\alpha + \beta) = \sin \alpha \sin \beta \cos \alpha \cos \beta$. Tästä seuraa, että $\cos \alpha \cos \beta = 0$ eli joko $\alpha = \pi/2$ tai $\beta = \pi/2$. Kummassakin tapauksessa kolmio on suorakulmainen.
- **7.** Suoran parametriesitys on x = 2 + 3t, y = 3 + t, z = 7 + 3t, missä $t \in \mathbb{R}$. Suoran piste (x, y, z) on tasossa, jos x + 2y + z = 1 eli 2 + 3t + 2(3 + t) + 7 + 3t = 1 eli 8t + 15 = 1, josta $t = -\frac{7}{4}$. Leikkauspisteen kordinaatit ovat $x = 2 \frac{21}{4} = -\frac{13}{4}$, $y = 3 \frac{7}{4} = \frac{5}{4}$, $z = 7 \frac{21}{4} = \frac{7}{4}$. Vastaus: $(-\frac{13}{4}, \frac{5}{4}, \frac{7}{4})$.
- 8. Jos yksikkösäteisen pallon sisällä olevan lieriön korkeus on h ja pohjan säde r, niin $4r^2+h^2=4$ eli $r^2=1-h^2/4$ ja $0\leq h\leq 2$. Lieriön tilavuus h:ssa lausuttuna on $V(h)=\pi(1-h^2/4)h$. Derivaatta on $V'(h)=\pi(1-3h^2/4)=0$, kun $h=2/\sqrt{3}$. Koska V(0)=V(2)=0 ja $V(2/\sqrt{3})=4\pi/(3\sqrt{3})$, antaa $h=2/\sqrt{3}$ lieriön tilavuuden suurimman arvon. Tällöin pohjaympyrän säde $r=\sqrt{2/3}$. Lieriön ja pallon tilavuuksien suhde on $\frac{4\pi}{3\sqrt{3}}\cdot\frac{3}{4\pi}=\frac{1}{\sqrt{3}}$.
- 9. Jos $y = \frac{x+2}{x-3}$, on xy 3y = x+2 eli $x = \frac{3y+2}{y-1}$. Käänteisfunktio on siis $f^{-1}(y) = \frac{3y+2}{y-1}$. Jos x > 3, on $\frac{5}{x-3} > 0$ ja $y = 1 + \frac{5}{x-3} > 1$. f^{-1} on siis määritelty, kun y > 1. Edelleen, $f^{-1}(f(x)) = \frac{3\frac{x+2}{x-3} + 2}{\frac{x+2}{x-3} 1} = \frac{3(x+2) + 2(x-3)}{x+2-(x-3)} = \frac{5x}{5} = x$, kun x > 3.

- 10. Määritellään funktio f siten, että f(x) = ax, kun $0 \le x \le 1/2$ ja f(x) = a(1-x), kun $1/2 \le x \le 1$. Tällöin on $f: [0,1] \to \mathbb{R}$, on jatkuva ja f(0) = f(1) = 0. Edelleen, f:n kuvaaja ja x-akseli rajoittavat kolmion, jonka kanta on 1 ja korkeus a/2. Kolmion ala on a/4. Siis $100 = \int_0^1 f(x) dx = a/4$, josta a = 400. Funktio f, f(x) = 400x, kun $0 \le x \le 1/2$ ja f(x) = 400(1-x), kun $1/2 \le x \le 1$ täyttää siten ehdot.
- 11. Piste (x_0, y_0) , $x_0^2 + y_0^2 = 1$ on ympyrän $x^2 + y^2 = 1$ ja suoran $s: x_0x + y_0y = 1$ leikkauspiste. Jos $y_0 = 0$, on $x_0 = \pm 1$ ja suora s on $x = \pm 1$. Tällöin s esittää ympyrän tangenttia pisteissä $(\pm 1, 0)$. Jos $y_0 \neq 0$, on s ympyrän tangentti, jos niillä ei ole muita yhteisiä pisteitä kuin (x_0, y_0) . Jos $x_0x + y_0y = 1$, on $y = (1 x_0x)/y_0$. Tällöin $x^2 + y^2 = x^2 + (1 x_0x)^2/y_0^2 = (y_0^2x^2 + 1 2x_0x + x_0^2x^2)/y_0^2 = (x^2 2x_0x + 1)/y_0^2$ ja $x^2 + y^2 = 1 \Leftrightarrow x^2 2x_0x + 1 y_0^2 = 0 \Leftrightarrow x^2 2x_0x + x_0^2 = 0 \Leftrightarrow (x x_0)^2 = 0$. Siis on oltava $x = x_0$ ja $y = (1 x_0^2)/y_0 = y_0$. Näin ollen (x_0, y_0) on ainoa suoran ja ympyrän yhteinen piste, joten suora s on ympyrän pisteeseen (x_0, y_0) piirretty tangentti.
- 12. Jos jono on $a, aq, aq^2, ...,$ on $a + aq + aq^2 = 3$ ja $12 = a + aq + aq^2 + aq^3 + aq^4 + aq^5 = a + aq + aq^2 + q^3(a + aq + aq^2) = 3 + 3q^3$. Siis $q^3 + 1 = 4$ eli $q = \sqrt[3]{3}$. Edelleen $\sum_{n=1}^9 aq^{n-1} = 12 + aq^6 + aq^7 + aq^8 = 12 + q^6(a + aq + aq^2) = 12 + 3(\sqrt[3]{3})^6 = 12 + 3 \cdot 9 = 39.$ Koska $q \ge 1,44 > 1$, ei vastaava geometrinen sarja suppene.
- 13. Olkoon P pallon ulkopuolinen piste, O pallon keskipiste ja sivutkoon P:n kautta kulkeva tangentti palloa pisteessä Q. Pisteen Q kautta kulkeva, OP:tä vastaan kohtisuora taso leikatkoon janaa OP pisteessä L. Jos x = OL ja h näkyvän kalotin korkeus, saadaan yhdenmuotoisista kolmioista OLQ ja OQP verranto $\frac{x}{r} = \frac{r}{r+d}$, josta $x = \frac{r^2}{r+d}$. Nyt $h = r x = \frac{rd}{r+d}$. Kalotin ala on $2\pi rh = 2\pi \frac{r^2d}{r+d}$. Sen suhde pallon alaan $4\pi r^2$ on $\frac{2\pi r^2d}{4\pi r^2(r+d)} = \frac{d}{2(r+d)}$. Siis prosentuaalinen näkymä $p(r,d) = \frac{50d}{r+d}$. Edelleen $\lim_{d\to\infty} p(r,d) = \lim_{d\to\infty} \frac{50}{r/d+1} = 50$. Jos r = 6370 km ja d = 500 km, on $p(r,d) = \frac{2500}{687} \approx 3,6390$. Satelliitista näkyy 3,6 % maapallon pinnasta.
- 14. Jos a=0, on alkuarvotehtävän ratkaisu y=0. Oletetaan sitten, että $a\neq 0$. Yhtälössä voidaan erottaa muuttujat, jolloin $\frac{dy}{y^2}=dx$ eli $-\frac{1}{y}=x+c$ eli $y=-\frac{1}{x+c}$. Alkuehdosta saadaan $a=y(0)=-\frac{1}{c}$ eli $c=-\frac{1}{a}$, joten alkuarvotehtävän ratkaisu on $y_a(x)=-\frac{1}{x-1/a}=\frac{a}{1-ax}$. Selvästi $\lim_{a\to 0}y_a(1)=\lim_{a\to 0}\frac{a}{1-a}=0$.
- **15.** Nyt $z_0 = \cos 0 + i \sin 0 = 1$, $z_1 = \cos \frac{1}{4}\pi + i \sin \frac{1}{4}\pi = 1/\sqrt{2} + i/\sqrt{2}$, $z_2 = \cos \frac{1}{2}\pi + i \sin \frac{1}{2}\pi = i$, $z_3 = \cos \frac{3}{4}\pi + i \sin \frac{3}{4}\pi = -1/\sqrt{2} + i/\sqrt{2}$, $z_4 = \cos \pi + i \sin \pi = -1$. Pisteet sijaitsevat $\pi/4$:n välein yksikköympyrän kehän yläpuoliskossa. Jos $w_j = f(z_j) = z_j^2$, niin $w_0 = 1^2 = 1$, $w_1 = (1+i)^2/2 = i$, $w_2 = i^2 = -1$, $w_3 = (-1+i)^2/2 = -i$, $w_4 = (-1)^2 = 1 = w_0$. Pisteet sijaitsevat $\pi/2$:n välein yksikköympyrän kehällä niin, että $w_4 = w_0$.