OpenSees

Introduction to OpenSees and Tcl/Tk

Frank McKenna UC Berkeley

OpenSees Days Shanghai 2011

Outline of Presentation

- Overview of OpenSees the **FRAMEWORK**
- Introduction to Tcl Programming Language and Tcl interpreters
- Introduction to OpenSees.exe the **APPLICATION**

OpenSees is a Software Framework

- A framework is **NOT an executable**.
- A *framework* IS a set of cooperating software components for building applications in a specific domain.
- The OpenSees framework is written primarily in the objectoriented language C++; though other languages namely C and Fortran are also used.
- The abstract classes in the OpenSees framework define the interface. The concrete subclasses that exist in the framework provide the implementations.
- Other classes can be provided to extend the capabilities of the framework by developers using DLL's or providing the source code to the OpenSees repository.
- Currently over 1000 classes in the OpenSees framework.

How Do People Use OpenSees Framework?

- Provide their own main() function in C++ and link to framework.
- Use OpenSees interpreterS. These are extensions of the Tcl interpreters, tclsh and wish, for performing finite element analysis.
 - OpenSees.exe
 - 2. OpenSeesTk.exe
 - 3. OpseseesSP.exe
 - 4. OpenSeesMP.exe

Tcl Interpreters

- wish and tclsh are tcl interpreters.
 - Interpreters (Perl, Matlab, Ruby) are programs that execute programs written in a programming language immediately.
 - There is no separate compilation & linking.
 - An interpreted program runs slower than a compiled one.

puts "sum of 2 and 3 is [expr 2 + 3]"

sum of 2 and 3 is 5

```
[● ○ ○ Terminal — tclsh8.4 — 85×9 fmk:~$ tclsh % puts "sum of 2 and 3 is [expr 2 + 3]" sum of 2 and 3 is 5 % []
```

What is Tcl

- Tcl is a dynamic programming language.
 - It is a string based command language.
 - Variables and variable substitution
 - Expression evaluation
 - Basic control structures (if, while, for, foreach)
 - Procedures
 - File manipulation
 - · Sourcing other files.
 - Comand syntax:

command arg1 arg2 ...

- Help
 - 1. http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

Example Tcl

·variables & variable substitution

```
>set a 1
>set b a
a
>set b $a
```

expression evaluation

```
> expr 2 + 3
>set b [expr 2 + $b]
```

•file manipulation

```
>set fileId [open tmp w]
>puts $fileId "hello"
>close $fileID
>type tmp
hello
```

•lists

```
>set a {1 2 three}
1 2 three
>set la [llength $a]
>set start [lindex $a 0]
>lappend a four
1 2 three four
```

sourcing other files

>source Example1.tcl

procedures & control structures

```
> for {set i 1} {$i < 10} {incr i 1} {
          puts "i equals $i"
> set sum 0
foreach value {1 2 3 4} {
  set sum [expr $sum + $value]
>puts $sum
10
>proc guess {value} {
   global sum
   if {$value < $sum} {
     puts "too low"
   } else {
     if {$value > $sum} {
        puts "too high"
      } else { puts "you got it!"}
> guess 9
too low
```

OpenSees Interpreters

- The OpenSees interpreters are tcl interpreters which have been extended to include commands for finite element analysis:
 - Modeling create nodes, elements, loads and constraints
 - Analysis specify the analysis procedure.
 - 3. Output specification specify what it is you want to monitor during the analysis.
- Being interpreters, this means that the files you create and submit to the OpenSees interpreters are not input files. You are creating and submitting PROGRAMS.

OpenSees.exe

•An interpreter that extends tclsh for FE analysis.

WARNING: There is no GUI!

Truss example: model Basic -ndm 2 -ndf 2 node 1 0.0 0.0 50 100 node 2 144.0 0.0 node 3 168.0 0.0 node 4 72.0 96.0 8' fix 1 1 1 (3) (2) fix 2 1 1 fix 3 1 1 uniaxialMaterial Elastic 1 3000.0 element truss 1 1 4 10.0 1 6' 6' element truss 2 2 4 5.0 1 Е A element truss 3 3 4 5.0 1 3000 1 10 timeSeries Linear 1 2 3000 5 pattern Plain 1 1 { 3000 3 5 load 4 100.0 -50.0

Example Analysis:

•Static Nonlinear Analysis with LoadControl

constraints Transformation numberer RCM system BandGeneral test NormDispIncr 1.0e-6 6 2 algorithm Newton integrator LoadControl 0.1 analysis Static analyze 10

•Transient Nonlinear Analysis with Newmark

constraints Transformation numberer RCM system BandGeneral test NormDispIncr 1.0e-6 6 2 algorithm Newton integrator Newmark 0.5 0.25 analysis Transient analyze 2000 0.01

3 Ways to Execute the commands

1. Interactively - the commands as we have shown can be input directly at the prompt

```
OpenSees - Open System For Earthquake Engineering Simulation
Pacific Earthquake Engineering Research Center -- 2.2.1

(c) Copyright 1999,2000 The Regents of the University of California
All Rights Reserved
(Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyright.html)

OpenSees > model Basic -ndm 2 -ndf 2
OpenSees > node 1 0.0 0.0

OpenSees > node 2 144.0 0.0

OpenSees > node 3 [expr 14*12] 0.0

OpenSees > node 4 72.0 96.0

OpenSees > node 4 72.0 96.0

OpenSees > fix 1 1

OpenSees > fix 2 1

OpenSees > fix 3 1 1

OpenSees > element truss 1 1 4 10.0 1

OpenSees > element truss 1 1 4 10.0 1

OpenSees > element truss 3 3 4 5.0 1

OpenSees > element truss 3 3 4 5.0 1

OpenSees > pattern Plain 1 1 {

load 4 100 -50.0 }

}

OpenSees >
```

3 Ways to Execute the commands

2. Sourced from File- the commands are placed in a text file which is sourced in

3 Ways to Execute the commands

3. Batch Mode- the commands are placed in a text file which are executed at startup.

useful default variables: argv & argc Terminal — emacs-i386 — 101×39 set E [lindex \$argv 0] # model model Basic -ndm 2 -ndf 2 node 1 0.0 0.0 node 2 144.0 0.0 node 3 168.0 0.0 node 4 72.0 96.0 000 Terminal - bash - 101×39 fmk:~\$ OpenSees example2.tcl 3000.0 OpenSees -- Open System For Earthquake Engineering Simulation Pacific Earthquake Engineering Research Center -- 2.2.1 uniaxialMaterial Elastic 1 \$E element truss 1 1 4 10.0 1 element truss 2 2 4 5.0 1 (c) Copyright 1999,2000 The Regents of the University of California All Rights Reserved (Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyright.html) timeSeries Linear 1 pattern Plain 1 1 { load 4 100.0 -50.0 1.8750000000000000000000 fmk:~\$ OpenSees example2.tcl 6000.0 #analysis integrator LoadControl 1.0 algorithm Linear OpenSees -- Open System For Earthquake Engineering Simulation Pacific Earthquake Engineering Research Center -- 2.2.1 numberer Plain constraints Plain system BandGeneral (c) Copyright 1999,2000 The Regents of the University of California All Rights Reserved analysis Static analyze 2 (Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyright.html) puts "node 4 disp [nodeDisp 4]" node 4 disp 0.937500000000000000000 -0.44270833333333331483 fmk:~\$

OpenSees Resources http://opensees.berkeley.edu

- Message Board look for answers, post questions and ANSWERS
 http://opensees.berkely.edu/community/index.php
- Getting Started Manual basic how to for getting started http://opensees.berkeley.edu/wiki/index.php/Getting_Started
- User Documentation command documentation & theory! http://opensees.berkeley.edu/wiki/index.php/Command Manual
- User Examples
 http://opensees.berkeley.edu/wiki/index.php/OpenSees_User
 http://opensees.berkeley.edu/wiki/index.php/Examples Manual
- Developers
 http://opensees.berkeley.edu/wiki/index.php/OpenSees_Developer
 http://opensees.berkeley.edu/cgi-bin/cvsweb2.cgi/OpenSees/SRC/

OpenSeesWiki - Editable by all (including YOU!)

There are too many things in the framework to cover them all

We will not show anything about the ability of OpenSees to do Sensitivity, Reliability or Optimization (over 1/4 of the code!)

Need to conact authors directly:

Armen DerKiuerghian, Terje Haukass, Joel Conte, Michael Scott, KevinMackie, Michele Barbato,

Quan Gu (http://archt.xmu.edu.cn/opensees/opensees.html)

Any Questions?