Let
$$V$$
 be G - $PefS$.

V'= Hew (V, k)

Let V be G - $PefS$.

V'= Hew (V, k)

Let V be V be

If V& W are Q-rep then show that the two rep are isomorphic.

Def": Let
$$P:G \longrightarrow GL(V)$$
 be a $G: Rept. The$
character of $P \longrightarrow X_p$ is function from $G \longrightarrow C$
given by $X_p(g) = T_R(P(g))$ $Y \in G$.

Dote that if the seps is one dimensional the it is its character. So they are determined by The character.

Prop: Let X be a character of aborepr V. Then

$$(i) \quad \chi(1) = \chi(g) = \dim V$$

(ii)
$$\chi(g^{-1}) = \overline{\chi(g)}$$

(ii)
$$\chi(g) = \chi(g)$$

(iii) $\chi(g'hg) = \chi(h)$ i.e. χ is class function.

$$P_{\lambda}: (i) \chi(1) = T_{\lambda}(\rho(1)) = T_{\lambda}(id_{\lambda}) = d_{i}(\lambda) = n$$

(ii)
$$\chi(g^{-1}) = T_{\chi}(\rho(g^{-1}))$$

Let $\{\chi_{1,m},\chi_{m}\}$ be eigen values of $\rho(g)$
Then $\chi(g^{-1}) = \tilde{\chi}_{1}^{-1} + -+ \tilde{\chi}_{m}^{-1} = \tilde{$

(iii)
$$WTS$$
 Ta $(P(g^{-1}hg)) = Ta(P(h))$

$$\begin{array}{ccc}
T_{h} \left(\rho(g^{-1}) \rho(h) \rho(g) \right) \\
&= T(BA) & T_{R} \left(\rho(h) \rho(g) \rho(g^{-1}) \right)
\end{array}$$

DVLW ore Greps. Then a) $\chi_{\text{VDW}} = \chi_{\text{V}} + \chi_{\text{W}}$ $(y) \quad \chi_{\text{NSM}} = \chi_{\text{N}}, \chi_{\text{N}}$ P () () = Ta (P ()) + Ta (P ()) The water of P(3) = (P(9) P(3)) J g E G $T_{2} \left(\begin{array}{c} C(9) \\ C(9) \end{array} \right) = T_{3} \left(\begin{array}{c} C(9) \\ C(9) \end{array} \right)$ $= T_{\mathcal{R}}(\mathcal{R}(\mathcal{G})) \cdot T_{\mathcal{R}}(\mathcal{R}(\mathcal{G}))$