

Demystifying ChatGPT
A shallow deep-dive into LLMs

AGENDA

- Introduction ChatGPT aka LLM (Lecture: 15min)
 - Defintion and Use-Cases
 - Theoretical Background
 - Project Lifecycle
- From Scratch (Hands-On Session: 35-45min)
 - Train your own model
- Challenges of LLMS and Generative AI (Lecture: 10min)
 - Infrastructure and Costs
 - Transfer to Image Generation
- Experimentation (Hands-On Session: 20min)
 - Have Fun with Stable Diffusion

WHAT IS A LLM

ChatGPT is a so-called Large Language Model (LLM)

 Large Language Models are deep learning models trained on huge datasets to perform NLP tasks.

Its core objective is to learn and understand human languages precisely.

Large Language Models enable the machines to interpret languages just like the way we, as humans, interpret them.

Name	Release Date	Parameter Size
GPT-4	2023	4.6 trillion
LLaMA	2022	1.5 trillion
FLAN UL2	2022	1.3 trillion
BLOOM	2022	176 billion
LaMDA	2021	173 billion
MT-NLG	2020	530 billion
GPT-3	2020	175 billion
GPT-2	2019	1.5 billion
BERT	2018	340 million
ELMo	2017	94 million

HISTORICAL EVOLUTION

PROMPTS AND COMPLETIONS

UNDERSTANDING LANGUAGE CAN BE CHALLENGING

The teacher's book?

The teacher taught the student with the book.

The student's book?

TRANSFORMER ARCHITECTURE

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

TRANSFORMER ARCHITECTURE

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to

- Scale efficiently
- Parallelprocess
- Attention to input meaning

ATTENTION IS ALL YOU NEED

The teacher taught the student with the book.

ATTENTION IS ALL YOU NEED

ATTENTION IS ALL YOU NEED

Encoder

Encodes inputs ("prompts") with contextual understanding and produces one vector per input token.

Decoder

Accepts input tokens and generates new tokens.

Encoder

Encodes inputs ("prompts") with contextual understanding and produces one vector per input token.

Output

Decoder

Accepts input tokens and generates new tokens.

Output

Output

Output

Cooler temperature (e.g <1)

Higher temperature (>1)

	prob	word		prob	word	
	0.001	apple	0.0	.040	apple	
	0.002	banana	0.0	.080	banana	
→	0.400	cake	0.	150	cake	
	0.012	donut	0.	.120	donut	

Strongly peaked probability distribution

Broader, flatter probability distribution

Translation: sequence-to-sequence task

Milujem seminár DSA

Translation: sequence-to-sequence task

Milujem seminár DSA

Milujem seminár
DSA

2345 3425 3853

LLM USE CASES & TASKS

LLM USE CASES & TASKS

GENERATIVE AI PROJECT LIFECYCLE

GENERATIVE AI PROJECT LIFECYCLE

CHALLENGES OF TRAINING LLMS

DSASKYLYZE

Infrastructure and costs

- Trained on massive corpus of text data
- Billions to trillions of parameter
- GPU-Hardware/Infrastructure needed
- Approximate GPU RAM needed to store 1B parameters
 - 1 parameter = 4 bytes (32-bit float)
 - 1B parameters = $4 \times 1e-09$ bytes = 4GB
- Training needs ~20 extra bytes per parameter

APPROXIMATE GPU RAM NEEDED TO TRAIN 1B-PARAMS

Memory needed to store model

4GB @ 32-bit full precision

Memory needed to train model

GPU RAM NEEDED TO TRAIN LARGER MODELS

1B param model

175B param model

(GPT-3)

14,000 GB @ 32-bit full precision

500B param model

(PaML)

40,000 GB @ 32-bit full precision

CHALLENGES OF TRAINING LLMS

Infrastructure and costs

- It would take 288 years to train GPT-3 (175B) on a single NVIDIA Tesla V100 GPU.
 - 1Y = 8760h
 - 275W * 8760h = 2409000Wh = 2490kWh
 - 2 Person-Household: 2000 2800kWh
- Researchers calculated that OpenAI could have trained GPT-3 in as little as 34 days on 1,024x A100 GPUs
- It is estimated that GPT-3 cost around \$4.6 million dollars to train from scratch
- Cost of this workshop ~90\$ (1\$/min)

- Jun 2017
- 16GB RAM
- 250-300 Watt

	The Most Powerful Compute Platform for	NVIDIA A100 TENSOR CORE GPU:			
	Every Workload	ISAMA ANU P	A100 4008 PCIe	A100	
acceleration—at every scale—to power the world's highest- performing elastic data centers for Al, data analytics, and high performance computing IHPCI applications. As the engine of the NVIDIA data center platform, A100 provides up to 20X high performance over the prior NVIDIA Volta" generation, A100 cu	performing elastic data centers for Al, data analytics, and high- performance computing (HPC) applications. As the engine of	FP64	ecou r cie	9	
		FP64 Tensor Core		19	
		FP32	11		
	performance over the prior NVIDIA Volta" generation, A100 can	Tensor Float 32 (TF32)			
	efficiently scale up or be partitioned into seven isolated GPU instances with Multi-Instance GPU (MIG), providing a unified	BFLOAT16 Tensor Core	312 TFL0		
	platform that enables elastic data centers to dynamically adjust to shifting workload demands.	FP16 Tensor Core	312 TF		
	NVIDIA A100 Tensor Core technology supports a broad range of math precisions, providing a single accelerator for every workload. The latest generation A100 8008 doubles DPU memory and debuts the world's flastest memory bandwidth at 2 terabytes per second (TBVs.), speeding time to solution for the largest models and most massive datasets.	INT8 Tensor Core	624 TO		
		GPU Memory	400B HBM2	BOGE HBM2	
		GPU Memory Bandwidth	1,555GB/s	1,93561	
		Max Thermal Design Power ITDPI	250W	300W	
	A100 is part of the complete NVIDIA data center solution that incorporates building blocks across hardware, networking, software, libraries, and optimized AI models and applications	Multi-Instance GPU	Up to 7 MIGs @ 5GB	Up to MIDs (
	from the NVIDIA NGC" catalog. Representing the most powerful	Form Factor	PCle		
	end-to-end Al and HPC platform for data centers, it allows researchers to deliver real-world results and deploy solutions	Interconnect	NVIDIA* NVLink* Brid for 2 GPUs: 6006B/s		
			PCIe Gen	& ALCON!	

- Jun 2021
- 80GB RAM
- 300-400 Watt

GENERATIVE AI

NLP

Text Generation

Text-to-Text

Translation

Summarization

Text Classification

Question Answering

Computer Vision

Image Classification

Object Detection

Image Segmentation

Depth Estimation

Image-to-Image

Audio

Text-to-Speech

Audio Classification

Speech recognition

Audio-to-Audio

Multimodal

Feature 5 to stion

Text-to-Image

Stable Diffusion

Document Question Answering

ACKNOWLEDGEMENT AND COPYRIGHT NOTICE

The presentation is based on the course <u>Generative AI with Large Language Models</u>. The slides are based on the course material from <u>DeepLearning.AI</u>

These slides are distributed under the Creative Commons License.

The slides are available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode