MATHEMATICS SPECIALIST 3C/3D MARKING KEY

MATHEMATICS: SPECIALIST 3CMAS/3DMAS RESOURCE-FREE

Question 1 [4 marks]

Given $m = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $p = \mathbf{i} - \mathbf{j}$ and $n = 7\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$:

(a) Find 2m - 3p

2 marks	Description
1	$2m-3p = 2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
1	$= \begin{pmatrix} 1 \\ 9 \\ 2 \end{pmatrix}$

(b) Find n.

2 marks	Description	
1 + 1	$ n = \sqrt{(7)^2 + 3^2 + 2^2} = \sqrt{62} $	

Question 2 [6 marks]

$$(a) \quad \int (e^x + x^e) dx$$

3 marks	Description	
(1+1+1)	$I = e^x + \frac{x^{e+1}}{e+1} + \mathbf{c}$	

(b) Show that
$$\int_{0}^{1} \frac{x}{1+x^{2}} dx = \ln \sqrt{2}$$
.

3 marks	Description
1 + 1	$\int_{0}^{1} \frac{x}{1+x^{2}} dx = \left[\frac{1}{2} \ln(1+x^{2})\right]_{0}^{1}$
1	$= \frac{1}{2} [\ln 2 - \ln 1] = \frac{1}{2} \ln(2) = \ln \sqrt{2}$

Question 3 [7 marks]

(a) Find an expression for $\frac{dy}{dx}$ and hence find the equation of the tangent to the curve at the point where: $\theta = \pi$

5 marks	Description
1	$\frac{dx}{d\theta} = 2\cos\theta$
1	and $\frac{dy}{d\theta} = 2(3\sin\theta)\cos\theta$
	$\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$
1	$= 6\sin\theta\cos\theta \times \frac{1}{2\cos\theta}$
1	$=3\sin\theta$
1	At $\theta=\pi$, $x=0$, $y=0$ and $\frac{dy}{dx}=3\sin\pi=0$. Hence the equation of the tangent is $y=0$

(b) Determine the Cartesian equation of the curve.

2 marks	Description
1	From above $\sin \theta = \frac{x}{2}$ and $\sin^2 \theta = \frac{y}{3}$ or $y = 3\left(\frac{x}{2}\right)^2$
1	So $\left(\frac{x}{2}\right)^2 = \left(\frac{y}{3}\right)$ or, directly $y = \frac{3x^2}{4}$

Question 4 [10 marks]

(a) Find the solution to $\frac{dy}{dx} = 4y - 2yx$ satisfying y(0) = 3.

5 marks	Description
1	Factorising: $\frac{dy}{dx} = (4-2x)y$
1	separating variables: $\int \frac{dy}{y} = \int (4 - 2x) dx$
1	$ln y = 4x - x^2 + c$ $\therefore y(x) = Be^{4x - x^2}$
1	$\therefore y(x) = Be^{4x-x^2}$
1	From $y(0) = 3$ we find B=3, so that $y(x) = 3e^{4x-x^2}$

(b) Use algebra and explain your reasoning, solve exactly the inequality $|\sin 2x| \le \sin x$ over the interval $0 \le x \le \pi$.

5 marks	Description	
1	$f \mid \sin 2x \mid \le \sin x$ then $2\sin x \mid \cos x \mid \le \sin x$	
1	as $\sin x \ge 0$ across the whole of the interval	
1	Thus need $ \cos x \le 1/2$ or $x = 0$ or $x = \pi$	
2	implying that $\frac{\pi}{3} \le x \le \frac{2\pi}{3}$ or $x = 0$ or $x = \pi$ (-1 for each incorrect solution or inequality written as 1.05< x <2.09).	

Question 5 [6 marks]

(a) Verify that:

$$[z - cis(\theta)][z - cis(-\theta)] = z^2 - 2z cos \theta + 1.$$

3 marks	Description	
1	$[z - \operatorname{cis}(\theta)][z - \operatorname{cis}(-\theta)] = z^2 - z[\operatorname{cis}(\theta) + \operatorname{cis}(-\theta)] + \operatorname{cis}(\theta)\operatorname{cis}(-\theta).$	
1	Now $\operatorname{cis}(\theta) + \operatorname{cis}(-\theta) = (\cos \theta + i \sin \theta) + [\cos(-\theta) + i \sin(-\theta)] = \cos \theta + i \sin \theta + \cos \theta - i \sin \theta = 2\cos \theta$ and $\operatorname{cis}(\theta) \operatorname{cis}(-\theta) = (\cos \theta + i \sin \theta)(\cos \theta - i \sin \theta) = \cos^2 \theta + \sin^2 \theta = 1$	
	so that $[z - cis(\theta)][z - cis(-\theta)] = z^2 - 2zcos\theta + 1$ as required.	

(b) Sketch the following subset of the complex plane:

$$\left\{ z: \left| z \right| \le 1 \quad \text{and} \quad Re \ z > Im \ z \right\}$$

Question 7 [7 marks]

The sum of the products of two consecutive positive integers seems to have the form,

$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots = \frac{n^3 + 3n^2 + 2n}{3}$$

Prove that this conjecture is true for all positive integers, n.

7 marks		
	Firstly, show that the conjecture is true for $n = 1$ LHS = 1(1+1) = 2	Firstly, show that the conjecture is true for $n = 1$ LHS = 1(1+1) = 2
1	$RHS = \frac{1 \times 2 \times 3}{3} = 2$ - as required Now, assume the conjecture is true for <i>n</i> terms, and consider the expression for <i>n</i> +1 terms	$RHS = \frac{1^3 + 3 \times 1^2 + 2 \times 1}{3} = 2$ - as required Now, assume the conjecture is true for <i>n</i> terms, and consider the expression for <i>n</i> +1 terms
1	$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) + (n+1)(n+2)$ $= \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$	$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1) + (n+1)(n+2)$ $= \frac{n^3 + 3n^2 + 2n}{3} + (n+1)(n+2)$
1	$= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3}$	$= \frac{n^3 + 3n^2 + 2n + 3(n^2 + 3n + 2)}{3}$ $= \frac{n^3 + 3n^2 + 2n + 3n^2 + 9n + 6}{3}$
1	$=\frac{(n+1)(n+2)(n+3)}{3}$	$=\frac{(n^3+3n^2+3n+1)+(3n^2+8n+5)}{3}$
1		$=\frac{(n+1)^3 + (3n^2 + 6n + 3) + 2n + 2}{3}$
		$=\frac{(n+1)^3+3(n+1)^2+2(n+1)}{3}$
1	which has the same form as for the n^{th} term and so the statement is true for all n .	which has the same form as for the n^{th} term and so the statement is true for all n .

MATHEMATICS: SPECIALIST

3CMAS/3DMAS RESOURCE-RICH

Question 1 [5 marks]

If
$$y = \frac{1 + \cos(2x)}{1 - \cos(2x)}$$
, show that $\frac{dy}{dx} = -\frac{2\cos x}{\sin^3 x}$.

5 marks	Description	
1	$dy_{-} - 2\sin(2x)(1-\cos(2x)) - (1+\cos(2x))(2\sin(2x))$	
1	$\frac{dx}{dx} = \frac{(1-\cos(2x))^2}{(1-\cos(2x))^2}$	
1	$-4\sin(2x)$	
1	$=\frac{1}{(2\sin^2 x)^2}$	
1	8 sin x cos x _ 2 cosx	
I	$\frac{-4\sin^4 x}{\sin^3 x}$	

Question 2 [6 marks]

Given the following expression
$$\frac{2x^3 - 3x^2 - 29x + 60}{40 + 6x - x^2}$$

(a) Simplify the expression.

2 marks	Description
1	factorise as $\frac{(x+4)(x-3)(2x-5)}{(10-x)(4+x)}$ or use CAS to give
1	$\frac{-(x-3)(2x-5)}{x-10}$ or equivalent

(b) For which value(s) of x, if any, is the original expression not defined.

2 marks	Description
1	x = 10
1	x = -4

(c) Compare the original expression and its simplified version. Are there any values of x, where these two expressions are unequal? Explain your answer.

2 marks	Description
1	yes
1	the simplified expression has a value at $x=-4$, whereas the original expression is undefined at that value

Question 3 [5 marks]

The diagram below shows the polar graphs of r = k and $r = n\theta$ (n an integer).

Also, the point of intersection of these two graphs is point P.

(a) Write down the values of k and n.

2 marks	Description
1	$k = \pi$
1	and since $r = \frac{3\pi}{2}$ when $\theta = \frac{\pi}{2}$, $n = 3$

(b) Determine, EXACTLY, the Cartesian coordinates of point P.

3 marks	Description
	$r = \pi$ and $r = 3\theta \Rightarrow \pi = 3\theta$
1	i.e. $\theta = \frac{\pi}{3}$ so $P(\pi, \frac{\pi}{3})$.
	Now convert to Cartesian –
1	$x = \pi \cos(\frac{\pi}{3}) = \frac{\pi}{2}$ and $y = \pi \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}\pi$
1	$\Rightarrow P(\frac{\pi}{2}, \frac{\sqrt{3}}{2}\pi).$

Question 4 [8 marks]

- (a) By comparing:
- (i) the areas of sector OPQ and triangle OPB and
- (ii) the lengths of PB and arc AB,

or otherwise, establish the inequalities $x \cos x < \sin x < x$.

4 marks	Description
1	$OP = \cos x$ so the area of sector OPQ = $\frac{1}{2}x \cdot \cos^2 x$
1	$BP = \sin x$ so the area of $\triangle OPB = \frac{1}{2} \sin x \cdot \cos x$
1	$\therefore \frac{1}{2}x.\cos^2 x < \frac{1}{2}\sin x.\cos x \implies x.\cos x < \sin x$
1	Now, the length of arc $AB = x$ so $PB < AB$ $\Rightarrow sin x < x$
	$\Rightarrow x.\cos x < \sin x < x$

(b) Explain why the above result shows that $\frac{\sin x}{x} \to 1$ as $x \to 0$ and hence,

determine:
$$\lim_{x\to 0} \frac{2x}{\tan x}$$
.

4 marks	Description
1	$x \cdot \cos x < \sin x < x \implies \cos x < \frac{\sin x}{x} < 1$
1	as $x \to 0$, $\cos x \to 1$ so, by the sandwich principle $\frac{\sin x}{x} \to 1$
1	$\lim_{x \to 0} \frac{2x}{\tan x} = \lim_{x \to 0} 2 \cdot \left(\frac{x}{\sin x}\right) \cdot \cos x$
1	= 2.

Question 5 [7 marks]

Calculate the minimum distance they are apart and the time, after the aircraft leave their initial positions, when this distance is reached after the aircraft leave their initial positions.

7 marks	Description
	The displacement between the two toys at any time <i>t</i> is given by:
	$\mathbf{d} = (\mathbf{r}_{A} + \mathbf{v}_{A} t) - (\mathbf{r}_{B} + \mathbf{v}_{B} t)$
1	$= \begin{pmatrix} 5-t \\ -1-2t \\ 2+4t \end{pmatrix} - \begin{pmatrix} -3 \\ -3t \\ 4+6t \end{pmatrix}$
'	= -1-2t - -3t
	$\left(2+4t\right)\left(4+6t\right)$
1	$\begin{pmatrix} 8-t \end{pmatrix}$
'	$= \begin{vmatrix} -1+t \end{vmatrix}$ where t represents time in seconds
	$= \begin{pmatrix} 8-t \\ -1+t \\ -2-2t \end{pmatrix}$ where <i>t</i> represents time in seconds
1	Hence $\left \mathbf{d} \right ^2 = (8-t)^2 + (-1+t)^2 + (-2-2t)^2$
'	$= 6t^2 - 10t + 69$
	Now by completing the square, using calculus or a graphics calculator (most likely)
2	we find that the minimum value of $ d ^2$ is when $t = \frac{5}{6}$ seconds at which time $ d ^2 =$
	$64\frac{5}{}$.
2	6
_	Hence the minimum distance they are apart is 8.05 m (to 2 dec pls) and the time
	taken is $\frac{5}{6}$ or 0.83 seconds.

Question 6 [9 marks]

(a) Show that $M(t) = Ce^{-kt}$ satisfies the differential equation for any constant C.

2 marks	Description
	If $M(t) = C \exp(-kt)$
2	then $\frac{dM}{dt} = -kC \exp(-kt) = -kM$ and so satisfies the DE.

(b) Find k and C.

3 marks	Description
1	If $M = 150$ when $t = 2$ then $150 = C \exp(-2k)$ and if $M = 100$ when $t = 3.5$ then
	$100 = C \exp(-3.5k)$ or
	Dividing the equations gives $3/2 = \exp(1.5k)$ so $k = (2/3)\ln(3/2) \approx 0.27031$.
1	an alternative solution method for $k \int_{100}^{150} \frac{dM}{M} = \int_{3.5}^{2} -kdt$
	solving for k gives 0.27031
	$C \approx 257.56$.
1	

(c) How long will it take for the mass of the substance to reduce to 40 grams?

2 marks	Description
1	When $M=40$ have $40 = C \exp(-kt) \Rightarrow -kt = \ln(40/C)$ so that $t \approx 6.890$.
1	Hence substance reduces to 40 grams after approximately 6.89 years.

(d) Find the radioactive half-life of the substance.

2 marks	Description
1	Initial mass of substance is C ; half-life is defined to be time taken for mass to drop to $C/2$.
1	$C/2 = C \exp(-kt) \Rightarrow -kt = \ln(1/2) \Rightarrow t = k^{-1} \ln 2 \approx 2.564 \text{ years.}$

Question 7 [7 marks]

Consider the curve $x^2y - 4y = b$ where **b** is a real value.

(a) Determine the equation of the tangent line to this curve at the point (x_1, y_1) .

4 marks	Description
	Differentiating implicitly and re-arranging to find the derivative
	$x^2y - 4y = b$
1	$2xy + x^2 \frac{dy}{dx} - 4\frac{dy}{dx} = 0$ $\frac{dy}{dx} (x^2 - 4) = -2xy$
1	$\frac{dy}{dx}(x^2 - 4) = -2xy$
1	$\frac{dy}{dx} = \frac{-2xy}{x^2 - 4} = \frac{2xy}{4 - x^2}$
OR	OR rearranging first :
1	$y = \frac{b}{x^2 - 4}$
1	$y = \frac{b}{x^2 - 4}$ $y' = (-1)b(x^2 - 4)^{-2}.2x = \frac{-2bx}{(x^2 - 4)^2}$ thus, at (x_1, y_1) , gradient is $\frac{2x_1y_1}{x^2}$
1	thus, at (x_1, y_1) , gradient is $\frac{2x_1y_1}{4-x_1^2}$
1	then the equation of the tangent to the curve at (x_1, y_1) is $y - y_1 = \frac{2x_1y_1}{4 - {x_1}^2}(x - x_1)$

(b) What is the restriction on b so that the curve has a vertical tangent line at the point (x_1,y_1) ?

3 marks	Description
	There will be a vertical tangent when
1	$x^2 - 4 = 0$
	so
2	4y - 4y = b and b = 0

Question 8 Solve the inequality 1 < |5-3x| < 9 algebraically.

Solving 1 < /5 - 3x / < 9

5 Marks	Description
1	If $1 < 5 - 3x < 9$ then:
'	(i) either 5-3 x > 0, x < 5/3 and 1 < 5 - 3 x and 5 - 3 x < 9
1	$\therefore x < 4/3 \text{ and } x > -4/3$
	the intersection is $-4/3 < x < 4/3$
1	or $5-3x < 0$, $x > 5/3$ and $1 < -(5-3x)$ and $-(5-3x) < 9$
1	$\therefore 2 < x \text{ and } x < 14/3$
	the intersection is $2 < x < 14/3$
or	
1 set up	If answer is based on a graphical solution, such as the one shown below:
1 for the	FINCTION SYMBOLIC VIEW
modulus graph	√F2(X)=1
1 for lines	✓F3(X)=9 F4(X)=
i for lines	X: 2.053846 F1(X): 1.161538 MENU EDIT
1	so $-4/3 < x < 4/3$ or $2 < x < 14/3$
1	Correct intervals $-\frac{4}{3} < x < \frac{4}{3}$ or $2 < x < \frac{14}{3}$, stated exactly.

Question 9 [6 marks]

Use a vector method to prove that the mid-points of the sides of a quadrilateral form a parallelogram.

6 marks	Description
1	Appropriate diagram F G C E H
	ABCD is a quadrilateal
	(symbolic set-up) E, F, G and H are mid - points of the sides of the quadrilateal .
1	let $\overrightarrow{DA} = u$, let $\overrightarrow{AB} = v$, let $\overrightarrow{DC} = w$ and $\overrightarrow{CB} = x$
	(clear, logical proof) $\overrightarrow{HG} = \frac{1}{2} \underbrace{w + \frac{1}{2} x}_{\sim} = \frac{1}{2} \underbrace{\left(w + x\right)}_{\sim} \text{ and } \overrightarrow{EF} = \frac{1}{2} \underbrace{u + \frac{1}{2} v}_{\sim} = \frac{1}{2} \underbrace{\left(u + v\right)}_{\sim}$
4	$\overrightarrow{DB} = w + x = u + v$
	$\overrightarrow{HG} = \frac{1}{2}\overrightarrow{DB} \text{ and } \overrightarrow{EF} = \frac{1}{2}\overrightarrow{DB}$
	So $\overrightarrow{HG} = \overrightarrow{EF}$ and \overrightarrow{EFGH} is a parallelogam .

Question 10 [12 marks]

(a) Suppose that z is a complex number with modulus r and argument θ . Express in terms of r and θ the modulus and argument of each of the complex numbers z_1, z_2, z_3 and z_4 , where:

(i)
$$z_1 = \bar{z}$$

2 marks	Description
1	$ z_1 = r$
1	$arg z_1 = -\theta$

(ii) $z_2 = -z^{-1}$

3 marks	Description
1	$ z_2 = r^{-1}$
1+1	$arg z_2 = \pi - \theta$

(iii) z_3 and z_4 are the square roots of ${\it z.}$

3 marks	Description
1	$ z_3 = z_4 = \sqrt{r}$
1	$arg z_3 = \frac{\theta}{2}$
1	$arg z_4 = \frac{\theta}{2} + \pi$

(b) Indicate as precisely as you can on the diagram above the locations of the complex numbers z_1, z_2, z_3 and z_4 , as defined in part (a).

Question 11 [10 marks]

(a) If initially there are 150 kids, 200 yearlings, 200 adults and 80 old goats what is the distribution after 20 years?

3 marks	Description	
1 for 20th power		
1 layout + multiply	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 interpret solution	2 for knowing what to do, 1 for the result which can be done by calculator	

(b) Determine the net reproduction rate of the population of female goats.

3 marks	Description
1	$R = a_1 + a_2b_1 + a_3b_1b_2 + a_4b_1b_2b_3$
1	$= 0 + 0 + 1.2 \times .65 \times .7 + .5 \times .65 \times .7 \times .8$
1	= 0.826

(c) Assuming there are enough male goats to fulfil their part, will the population of female goats become stable over time (that is, survive in the long run)?

4 marks	Description
1	using previous result in (a),
1	and finding a higher power of L in the recursive relationship, indicates that this population appears to be increasing without limit, which is an unrealistic
1	expectation.
1	However, based on the assumption of ample food and no external threats, this population would survive in the 'long term'.