Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks
1.	(a) (i) A test/investigation/process adopted for collecting data to provide evidence for or against a hypothesis (ii) Sub-set of possible outcomes of an experiment. (b) Advantage — Quick, cheap, vary parameters/predict	B1 (1) B1 (1) B1
	Disadvantage Dow not replicate real-world situation in every detail.	B1 (2)
2.	(9) Frequency densities: 16, 10%, 14, 12, 9, 7/3, 1 can't implie	d MIR
	Fagure of court of the Scales & Labels Scales & Labels Histogram (no gaps) Hughts & bases correct 10 5 0 0 15 25 35 45 51 63 71 63 71 63 71 63 71 64 71 71 71 71 71 71 71 71 71 7	BI MIdeb AI (5)
	(b) No. of days = (14 × 2) + (12+1) + (9+1) + (2x/5) = 28/3 Allow 28/3; 28.3.	

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks
3 .	(a) $a + 2(\frac{2}{3} - a) = \frac{5}{6}$ Use of $E(x)$ consider equations cons	A1 (3)
	(b) $Var(x) = \frac{1}{x} \pm \frac$	MI MI AI (3)
	(a) $P(X + 1.5) = P(0) + P(1) = \frac{3}{3} + \frac{1}{2} = \frac{5}{6}$	B1/(1)
4.	8, 8, Ven diagram 0.3, 0.2, 0.1	MI Al
	(a) P(Poer not win either) = 0.4 (b) P(Vin exactly one) = 0.3#0.1 = 0.44	A1 (2) M1 A1/(2)
	(c) $P(B_2 B_1') = \frac{P(B_2 \cap B_1')}{P(B_1')} = \frac{1}{8-5}$ Up of conditions $= \frac{1}{8-2}$	AI (2)
	(d) For independence $P(B_1 \cap B_2) = P(B_1) \times P(B_2)$ $P(B_1 \cap B_2) = 0.2; P(B_1) \times P(B_2) = 0.15$ $LHS \neq RHS \implies \text{ events not independent}$ $NS: Accept alternative correct solutions.$	M1 5 A1 A1(3)

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks
4	Aliter: (a) P(Does not uin either) = 1- P(B, UB2)	, M \
	= 1-(0.5+0.3-0.2)	AI
	= 0· 1	A((3)
	(6) P(Win exactly one) = P(B, ~B, 1)+P(B, ~B, 2)	MI
	= 0.3 + 0.1 = 0.4	A1 (2)
5.	(e) P() < 235) = 0.025	
	امسا	-fa MI
	256 A 266	
	* N-235 = 1.960 *	A1 (2)
		=8x M1
	$\therefore 286 - \mu = 1.0364 \qquad \therefore 286 - \mu = 1.03647 \qquad 1.03$	A1/(3)
	in St. Comment	Mi
	(1) Solving for 12 or or	MI -
	Substituting for other unknown AURT 26P	41
	M = 268.360 T = 17.0204 AWAT 17	A1 (4)
	(d) htt = 26P.3h ± 17.02 h+ thurt	MI
	= (251,215) 3.sf	A) (2)
		,)

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

(d) Bomplot MI Lobels MI 19, 87 And 19, 19, 5, 30 BI 19, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	Marks	
[6] [6] [6] [6] [6] [6] [6] [6]	Ві	
(c) $M = \frac{618}{15}$ $= 41.2$ $G^2 = \frac{31864}{15} - 41.2^2$ $G^2 = \frac{31864}{15} - 41.2^2$ $G^3 = \frac{31864}{15} - 41.2^3$ $G^3 = \frac{31864}{15} - \frac{41.2}{15}$	BI	
(a) Boxplot Mil Labels At 27, 23, 51 AIV 19, 87 At 19, 87 At 19, 87 At 19, 87 At 19, 53 Bi 19, 54 Bi 19, 55 Bi 19, 5	BU	(3)
Color Col		
19, 87 At 19, 87 At 19, 87 At 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	Αı	. (1)
(c) $M = \frac{618}{15}$ $= \frac{31864}{15} - 41.2$ $= \frac{31864}{15} - 41.2$ $= \frac{31864}{15} - 41.2$ $= \frac{31864}{15} - \frac{41.2}{15}$ $= \frac{31864}{15} - \frac{31.38}{15}$ $= \frac{31864}{15} $		(4)
(c) $\mu = \frac{618}{15}$ $= \frac{41.2}{15}$ $= \frac{31864}{15} - \frac{31.2}{15}$ $= \frac{31864}{15} - \frac{31.2}{15}$ $= \frac{31864}{15} - \frac{31.2}{15}$ $= \frac{31864}{15} - \frac{31.2}{15}$ $= \frac{31864}{15} - 31.2$	B ((3)
15 $= 41.2$ $= 41.2$ $= 31864 - 41.2$ $SR: S_{n-1} = 21.38$ $\Rightarrow V = 20.65978$ $R = 20.7 A$ $R $	89	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MI	
BI only $T = 20.65978$ $TR \sum (x-x)^2 = 6403.4$ (e) Median male > Median female Any Two reneith BI	W	•
(e) Median male > Median female ? Any Two eencille B1		1/ 1 (5)
Too 1 - Too fearly	Ві	
TOR make > IOR female Range make > Range female etc. indefendent comments B1 Range make > Range female etc. indefendent comments Range make > Range female etc. indefendent comments Range make > IOR female B1 Range make > Range female B1		(2)

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

uestion	Scheme	Marks
number	•	
7.	(b) $S_{st} = 694650 - \frac{2310^3}{10} = 161040$	MI AI
	St = 66490; St = 87235	A1 A1
	$S_{se}/\sqrt{(S_{ux}S_{ee})}$	Mi Aiv
	= 0.843036 0.843	A (1)
	SR: 0.643 without working > BH only (c) No change; coding does not affect brace.	BI, BI (2)
	(d) $\hat{\beta} = \frac{72587.5}{} = 1.140024$	MI
	2 = 187.5 - (1./40024 ×/25.625) = 44.2844	MI
· .	S = 44.3 + 1.14t must use s & t	AI (3)
	(e) Graph	2
	(f) Both points above the line, so more line up	RI ()
	Predictions of s from t less accurate	B1 (2)