Prof. Dr. G. Plonka-Hoch

M.Sc. Y. Riebe

Mathematik für Studierende der Informatik I

Übungen zur Vorlesung im WS 2023/2024 - Blatt 5

Abgabe: Donnerstag, den 30. November 2023, bis 10.15h.

Bitte schreiben Sie auf Ihre Lösungen jeweils Ihren Namen, den Namen Ihres Übungsgruppenleiters sowie ihre Übungsgruppennummer!

1. **Aufgabe 17** (Konvergenz, Cauchyfolge, Beschränktheit) 2+2 Punkte Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Zahlenfolge in einem geordneten Körper \mathbb{K} mit Grenzwert

$$\lim_{n\to\infty} a_n = a.$$

Sei $\alpha \in \mathbb{K}$. Beweisen Sie die folgenden Aussagen:

- (a) Die Folge $(\alpha \cdot a_n)_{n \in \mathbb{N}}$ ist konvergent mit Grenzwert $\alpha \cdot a$.
- (b) Jede Cauchyfolge in K ist beschränkt.
- 2. **Aufgabe 18** (Konvergenz, Divergenz, Beschränktheit) 1+1 Punkte Geben Sie Beispiele für Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ mit den folgenden Eigenschaften an (mit Beweis):
 - (a) $\lim_{n\to\infty} a_n = \infty$, $\lim_{n\to\infty} b_n = 0$, $\lim_{n\to\infty} a_n b_n = 3$.
 - (b) $\lim_{n\to\infty} a_n = \infty$, $\lim_{n\to\infty} b_n = 0$, $(a_n b_n)_{n\in\mathbb{N}}$ ist beschränkt, aber nicht konvergent.

 $Hinweis: \lim_{n\to\infty} a_n = \infty$ bedeutet, dass zu jedem M>0 ein $N\in\mathbb{N}$ existiert, sodass $a_n\geq M$ für $n\geq N$.

3. Aufgabe 19 (Konvergenz)

2+2 Punkte

(a) Zeigen Sie, dass die Reihe

$$\sum_{k=1}^{\infty} \frac{5}{k(k+1)}$$

konvergiert und bestimmen Sie ihren Grenzwert.

(b) Zeigen Sie, dass die Folge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n := \sqrt{n^2 + 2} - n \quad \forall n \in \mathbb{N}$$

konvergiert und bestimmen Sie ihren Grenzwert.

4. Aufgabe 20 (Cauchyfolge, Rekursion) Die Folge $(a_n)_{n\in\mathbb{N}_0}$ sei definiert durch 2+2+2 Punkte

$$a_0 := 0$$
, $a_1 := 1$, $a_n := \frac{a_{n-1} + a_{n-2}}{2}$ für $n = 2, 3, \dots$

(a) Zeigen Sie mittels vollständiger Induktion nach n, dass

$$a_{n+1} - a_n = \frac{(-1)^n}{2^n}$$

für $n \in \mathbb{N}_0$.

(b) Weisen Sie formal nach, dass

$$a_{n+k} - a_n = \sum_{j=1}^{k} (a_{n+j} - a_{n+j-1})$$

für $n \in \mathbb{N}_0$ und $k \in \mathbb{N}$.

(c) Zeigen Sie nun, dass die oben definierte Folge $(a_n)_{n\in\mathbb{N}_0}$ eine Cauchyfolge ist. Zeigen Sie also, dass zu $\varepsilon>0$ ein $N(\varepsilon)\in\mathbb{N}$ existiert, sodass $|a_m-a_n|<\varepsilon$ für $m,n\geq N(\varepsilon)$.