	(Formulas)	
-	1 00111000 300	
	Derivatives	
	d(sinx) - cosx $y = sin2x$	
Lis		
(ii)	$\frac{dx}{d(\cos x)} = -\sin x$ $\frac{d}{dx} = -\sin x$	
(in)	$\frac{dx}{dx}(\tan x) = Sec^2x$ $\frac{d}{dx}(\tan x) = Sec^2x$	
	dx S stanz	
(in)	$\frac{d}{dx}(secx) = secxtanx$	
(0)	$\frac{dx}{dx}(\cot x) = -\cos x$	
Ni	d (cosecx) = - Cosecx. cotx	
	dx	
-		
	dx 41-xc	
4	$ \frac{\partial}{\partial x} \left(\frac{\sec^2 x}{\sec^2 x} \right) = \frac{1}{x \sqrt{x^2 - 1}} $	
	(B) In(e) = 1 (D) In(1) = 0	W.S.
	= x+C ss = 2y+C	
	(Intigration) constant	
		in
	Jsinxdx = - Cosx + C	
0	Scosnex = Sinx + C	
0	Secredx = tanx+c	
0		1
	Secretary du = Secx +C	144
(1)	$\int \cos c^2x dx = -\cot x + C$	
0	J Cosecx.cotxdx = - Cosecx + C	

3	y = (x+1) " vanole, Power Branishle we	1
	lny = ln (x+1) x Then the	
	lny = x ln (x+1)	1
9	$\int \frac{1}{t^2 - 1} dt = \frac{1}{2} \ln \frac{t - 1}{t + 1} $ formula	
60	y = In(x+1) tan sec'u = (+ tan'x	_
	$e^{y} = n+1$ $cosec_{x} = 1+cot_{x}^{2}$	
	(SCII is d'Istan'x & Cost, Sin'x (Kintegration & co. 20)	
	2 (420 1/2) 2 12	-
	$Sin^2 = 1 - \cos 2x$, $Cos^2 x = 1 + \cos 2x$, $tan^2 x = Sec^2 x = 1$	
0		
EU	Sin2x = 2Sinx.cosx	
63	Intigration by Parts.	
	Intigration of the product of two function.	
	Formula	
	1st function x Integral of 2nd function - (derivative of 1st function) (Integral	1
(i)	·1 is always taken as 2nd function.	-
(11)	e, e, e etc are always taken as 2nd function.	+
(lá)	Secx, coseix, Secretary, cosecxcotx are taken as and function	
(iv)	Term of 'In' is always taken as let function.	-
(V)	Inverse trignometric function (Sinx, cosx, tanx etc) are	1
	alungs taken as 1st function.	1

Formulas.

i) $\sin \alpha - \sin \beta = 2 \cdot \sin \frac{\alpha - \beta}{2} \cdot \cos \frac{\alpha + \beta}{2}$ ii) $\cos \alpha - \cos \beta = -2 \cdot \sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\alpha + \beta}{2}$

"Hyperbolic Function" (ii) $coshx = e^x + e^x$ seche = 2 (iii) $tanhx = e^{-e^{x}}$ $cothx = \frac{e^{x} + e^{x}}{e^{x} - e^{-x}}$ (iv) $sinh_{2x} = e^{2x} - e^{2x}$ (V) coshex = (vi) tanke -Note. cosh'x - sinh'x = 1

