Course Code	21C	YB101J	Course Name		Cl	HEMISTRY		Cou		В													L 3	T 1	2	C 5
Pre-requisite Courses Nil				Co-requisite Courses Nil				rogres		Nii	ļ															
Course Offering Department Chemistry Data Book / Codes/Standards					Pe	eriodic	Tabl	le																		
Course Learning Rationale (CLR): The purpose of learning this course is to:							Learning Program Learning Outcomes (PO)																			
	Exploit t advancem	-	r propertie.	s of elements for	bulk property m	anipulation tor	vards technological		1 2	3		1	2	3	4	5	6	7	8	9	10	11	12			
CLR-2	Address a	concepts rel	lated to ele	ectrochemistry, si	uch as corrosion,	using thermody	vnamic principles																			
:	Employ various organic reactions towards the design of fine chemical and drug molecules for industries											ırch														
•	Brief outline, reaction types and applications of polymers					(moo	(%)	6	9		it				Sustainability		ţķ		0							
CLR-5	Properties, surface characterization and applications of advanced engineering materials					g (Bloom) encv (%)	ment (wledg	S	opmen	, Resea	age	e	Sustair		ım Work		& Finance	gui						
	R-6 Utilize the basic chemistry principles applied in various engineering problems and identify appropriate solutions				Thinking Proficie	d Attainment	1 7 XCC 4III	ing Kno	Analysi	& Development	Design	Tool Us	& Culture	nent &		ndividual & Team	nication	Mgt. & F	g Learning							
(CO):	_	Outcom	Al		ourse, learners w			,	Level of Thinking (Bl Expected Proficiency	Expected		Engineering Knowledge	Problem Analysis	Design 8	Analysis, Design, Research	Modern Tool Usage	Society 8	Environment &	Ethics	Individu	Communication	Project N	Life Long			
		ize bulk pr <mark>and alkali</mark>		sing periodic pro	perties of elemen	ts <mark>, evaluate wa</mark> .	ter quality parameters like		3 70	65	5	3	3	3	2	-	-	-	-	-	-	-	-			
					lerstanding therm of aqueous solut		driven chemical reactions <mark>,</mark>		<mark>4</mark> 80	70	9	3	3	3	2	2	,	-	-	-	-	-	-			
CO-3 :	industries	, determine	e acidic str	rength and condi	uctance of aqueor	<mark>is solution</mark>	pplied in pharmaceutical		<mark>3</mark> 75	60)	ŀ	<u>3</u>	<u>3</u>	2	-	-	-	-	-	-	-	-			
CO 4.	Utilize th	he concepts the polymen	of polyme	r processing for i	various technolog	ical application	s <mark>, determine average molec</mark>	ular	3 70	70)	3	-	<u>3</u>	<u>3</u>	-	-	-	-	-	-	-	-			
CO-5 :	Analyze the importance of advanced processing techniques towards engineering applications						4 80	70)	3	<u>2</u>	<u>3</u>	<u>3</u>	<u>3</u>	-	-	-	-	-	-	-					
CO-6 :	Utilize concepts in chemistry for technological advancement based on electronic, atomic and molecular level modification					vel	<mark>3</mark> 75	65	5	3	<u>3</u>	3	<u>3</u>	<u>3</u>	-	-	-	-	-	-	-					

Periodic properties: Coordination numbers and geometries - Crystal field theory - Octahedral & Tetrahedral complexes - Optical & magnetic properties of transition metal complexes - Isomerism in transitional metal compounds - Effective nuclear charge, penetration of orbitals - variations of orbital energies of atoms in the periodic table - Electronic configurations, atomic and ionic sizes - ionization energies, electron affinity and electronegativity - Hard soft acids and bases

Experiments:

- Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration
- Determination of hardness (Ca2+) of water using EDTA Complexometry method.

Unit-2

Use of free energy in chemical equilibria: Thermodynamic functions: Energy, Entropy and free energy - Estimation of entropy & free energies - Free energy and emf. Cell potentials - The Nernst equation and applications - Acid base, oxidation reduction - Solubility equilibria - Corrosion - Free energy of a corrosion reaction - Pourbaix diagram Salient Features and phase diagram for Iron

Experiments:

- Determination of strength of an acid by Conductometry.
- Determination of ferrous ion using potassium dichromate by Potentiometric titration.

Unit-3

Stereochemistry and Organic reactions: Representations of 3 dimensional structures - structural isomers and stereoisomers - configurations and symmetry and chirality - enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis - Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings - Synthesis of a commonly used drug molecule.

Experiments:

- Estimation of amount of chloride content of a water sample.
- Determination of the strength of a mixture of acetic acid and hydrochloric acid by Conductometry.

Unit-4

Polymers: Introduction to concept of macromolecules - Tacticity - Classification of Polymers - Thermoplastics, Thermosets and Elastomers - Types of Polymerization - Important addition and condensation polymers – synthesis and properties – Polypropylene, polystyrene, PVC, Teflon, Nylon, PET, Polyurethane and Synthetic rubber, Conducting polymers – introduction, types – n and p doping, examples (polyacetylene and P3HT), applications

Experiments:

• Determination of molecular weight of polymer by viscosity average method.

Unit-5

Advanced Engineering Materials: Mechanical properties of solid – stress-strain relationship - Tensile strength, Hardness, Fatigue, Impact strength, Creep – Composite materials - introduction Types of composites - Fibre Reinforced Composites. Particle Reinforced Composites. Metal Matrix Composites. Ceramic Matrix Composites. Examples and applications. Surface Characterisation techniques - XRD and XPS.

Experiments:

• Determination of strength of an acid using pH meter.

Learning Resources	1. B. H. Manan, R. J. Meyers, University Chemistry, 4th ed., Pearson publishers, 2009. 2. M. J. Sienko, R. A. Plane, Chemistry: Principles and Applications, 3rd ed., McGraw-Hill publishers, 1980 3. B. L. Tembe, Kamaluddin, M. S. Krishnan, Engineering Chemistry (NPTEL Web-book)
	http://nptel.ac.in/downloads/122101001/

4. Peter W. Atkins, Julio de Paula, James Keeler, Physical Chemistry, 11th ed., Oxford publishers, 2018 5. K. P. C. Vollhardt, N. E. Schore, Organic Chemistry: Structure and Function 7thed., Freeman, 2014 6. W. D. Callister, D. G. Rethwisch, Materials Science and Engineering: An Introduction, 8th ed., Wiley, 2009 7. J. C. Kuriacose, J. Rajaram, Chemistry in Engineering and Technology, Tata McGraw-Hill Education, 1984

Learning	Assessment											
	Bloom's			Continuou	Final Examination (40%							
	Level of	CLA –	1 (15%)	CLA –	2 (15%)	CLA –	3 (20%)	CLA –	4 (10%)	weightage)		
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100) %	100) %	10	0 %	100) %	10) %	

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Dr. Ravikiran Allada, Head R&D, Analytical,									
Novugen Pharma, Malaysia,	1. Prof. G. Sekar, IIT Madras, gsekar@iitm.ac.in	1. Prof. M. Arthanareeswari, SRMIST							
ravianalytical@gmail.com	_								
2. Dr. Sudarshan Mahapatra, General Manager,	2 Deed West-ble Dissess INICACD December 1								
Encube Ethicals Pvt. Ltd., Mumbai,	2. Prof. Kanishka Biswas, JNCASR Bengaluru,	2. Dr. K. Ananthanarayanan, SRMIST							
sudarshan.m@encubeethicals.com	kanishka@jncasr.ac.in								