Algorithm Preconditioned Conjugate Gradient

1:
$$r_0 = b - Ax_0$$

2:
$$\widetilde{r}_0 = L^{-1}L^{-T}r_0$$

3:
$$p_0=\widetilde{r}_0$$

4: **for**
$$i = 0, 1, ...$$
 until convergence **do**
5: $\alpha = \underbrace{(r_i, \tilde{r}_i)}_{t} \underbrace{(Ap_i, p_i)}_{t}$
6: $x_{i+1} = x_i + \alpha p_i$

6:
$$x_{i+1} = x_i + \alpha p_i$$

7:
$$r_{i+1} = r_i - \alpha \underbrace{Ap_i}_{i}$$

 $r_{i+1} = r_i - \alpha \underbrace{Ap_i}_t$ check the convergence of r_{i+1} . If converge, **return**

9:
$$\widetilde{r}_{i+1} = M^{-1}r_{i+1} = L^{-1}L^{-T}r_{i+1}$$

10:
$$\beta = \underbrace{\frac{(r_{i+1}, \widetilde{r}_{i+1})}{(r_i, \widetilde{r}_i)}}_{\delta_i}$$
11:
$$p_{i+1} = \widetilde{r}_{i+1} + \beta p_i$$

11:
$$p_{i+1} = \widetilde{r}_{i+1} + \beta p_i$$

12: end for