CSC 611: Analysis of Algorithms

Lecture 4

Recurrence Relations [Continued]

Recurrences - Intuition

• For a recurrence of the type:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- It takes f(n) to make the processing for the problem of size n
- The algorithm divides the problem into a subproblems, each of size n/b
- T(n) = number of subproblems * Running time(n/b) + processing of the problem of size n

Master's method

"Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Idea: compare f(n) with nlogba

- f(n) is asymptotically smaller or larger than $n^{log}_b{}^a$ by a polynomial factor n^ϵ
- f(n) is asymptotically equal with n^{log}b^a

CSC611 - Lecture 4

3

Master's method

"Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Case 1: if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a})$, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

T(n) =
$$\Theta(f(n))$$

regularity condition

Why
$$n^{\log_b a}$$
? $T(n) = aT\left(\frac{n}{b}\right) + f(n)$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

$$T(n) = aT\left(\frac{n}{b}\right)$$

$$a^{2}T\left(\frac{n}{b^{2}}\right)$$

$$a^{3}T\left(\frac{n}{b^{3}}\right)$$

$$\vdots$$

$$T(n) = a^{i}T\left(\frac{n}{b^{i}}\right) \quad \forall i$$

- Case 1:
 - If f(n) is dominated by $n^{\log_b a}$:

•
$$T(n) = \Theta(n^{\log_b n})$$

- Case 3:
 - If f(n) dominates $n^{\log_{b} a}$:

•
$$T(n) = \Theta(f(n))$$

- Case 2:
 - If $f(n) = \Theta(n^{\log_b a})$:
- At the end of iterations, i = k:

• Assume $n = b^k \Rightarrow k = \log_b n$

• $T(n) = \Theta(n^{\log_{b} a} \log n)$

$$T(n) = a^{\log_b n} T\left(\frac{b^i}{b^i}\right) = a^{\log_b n} T(1) = \Theta\left(a^{\log_b n}\right) = \Theta\left(n^{\log_b a}\right)$$
CSC611 - Lecture 4

Examples

$$T(n) = 2T(n/2) + n$$

$$a = 2, b = 2, log_2 2 = 1$$

Compare $n^{\log_2 2}$ with f(n) = n

$$\Rightarrow$$
 f(n) = Θ (n) \Rightarrow Case 2

$$\Rightarrow$$
 T(n) = Θ (nlgn)

CSC611 - Lecture 4

6

5

Examples

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare n with $f(n) = n^2$

$$\Rightarrow$$
 f(n) = $\Omega(n^{1+\epsilon})$

Case 3 \Rightarrow verify regularity cond.: a $f(n/b) \le c f(n)$

$$\Rightarrow$$
 2 n²/4 \leq c n² \Rightarrow c = $\frac{1}{2}$ is a solution (c<1)

$$\Rightarrow$$
 T(n) = Θ (n²)

CSC611 - Lecture 4

7

Examples (cont.)

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = $O(n^{1-\epsilon})$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

Examples

$$T(n) = 3T(n/4) + nlgn$$

$$a = 3$$
, $b = 4$, $log_4 3 = 0.793$

Compare $n^{0.793}$ with f(n) = nlgn

$$f(n) = \Omega(n^{\log_4 3 + \varepsilon})$$

Case 3: check regularity condition:

$$3(n/4)lg(n/4) \le (3/4)nlgn = c f(n), c=3/4$$

$$\Rightarrow$$
 T(n) = Θ (nlgn)

CSC611 - Lecture 4

9

Examples

$$T(n) = 2T(n/2) + nlgn$$

$$a = 2, b = 2, log_2 2 = 1$$

- Compare n with f(n) = nlgn
 - seems like case 3 should apply
- f(n) must be polynomially larger by a factor of n^{ϵ}
- In this case it is only larger by a factor of Ign

The Sorting Problem

• Input:

- A sequence of **n** numbers a_1, a_2, \ldots, a_n

• Output:

- A permutation (reordering) a_1', a_2', \ldots, a_n' of the input sequence such that $a_1' \leq a_2' \leq \cdots \leq a_n'$

CSC611 - Lecture 4

11

Why Study Sorting Algorithms?

- There are a variety of situations that we can encounter
 - Do we have randomly ordered keys?
 - Are all keys distinct?
 - How large is the set of keys to be ordered?
 - Need guaranteed performance?
 - Does the algorithm sort in place?
 - Is the algorithm stable?
- Various algorithms are better suited to some of these situations

Stability

 A STABLE sort preserves relative order of records with equal keys

Sort file on first key:

Aaron	4	A	664-480-0023	097 Little
Andrews	3	A	874-088-1212	121 Whitman
Battle	4	U	991-878-4944	308 Blair
Chen	2	Α	884-232-5341	11 Dickinson
Fox	1	Α	243-456-9091	101 Brown
Furia	3	Α	766-093-9873	22 Brown
Gazsi	4	В	665-303-0266	113 Walker
Kanaga	3	В	898-122-9643	343 Forbes
Rohde	3	Α	232-343-5555	115 Holder
Quilici	1	U	343-987-5642	32 McCosh

Sort file on second key:

Records with key value 3 are not in order on first key!!

Fox	1	A	243-456-9091	101 Brown
Quilici	1	C	343-987-5642	32 McCosh
Chen	2	A	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	343 Forbes
Andrews	3	A	874-088-1212	121 Whitman
Furia	3	A	766-093-9873	22 Brown
Rohde	3	A	232-343-5555	115 Holder
Battle	4	C	991-878-4944	308 Blair
Gazsi	4	В	665-303-0266	113 Walker
Aaron	4	A	664-480-0023	097 Little

CSC611 - Lecture 4

13

Insertion Sort

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
 - The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

Example

CSC611 - Lecture 4

15

INSERTION-SORT

Insertion sort – sorts the elements in place

Loop Invariant for Insertion Sort

Alg.: INSERTION-SORT(A)

for
$$j \leftarrow 2$$
 to n

do key $\leftarrow A[j]$

Insert A[j] into the sorted sequence A[1..j-1] $i \leftarrow j - 1$ while i > 0 and A[i] > key

do
$$A[i + 1] \leftarrow A[i]$$

 $i \leftarrow i - 1$
 $A[i + 1] \leftarrow \text{key}$

Invariant: at the start of each iteration of the for loop, the elements in A[1..j-1] are in sorted order

17

Proving Loop Invariants

- Proving loop invariants works like induction
- Initialization (base case):
 - It is true prior to the first iteration of the loop
- Maintenance (inductive step):
 - If it is true before an iteration of the loop, it remains true before the next iteration
- Termination:
 - When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct

Loop Invariant for Insertion Sort

• Initialization:

Just before the first iteration, j = 2:
 the subarray A[1..j-1] = A[1],
 (the element originally in A[1]) - is
 sorted

CSC611 - Lecture 4

19

Loop Invariant for Insertion Sort

• Maintenance:

- the while inner loop moves A[j -1], A[j -2], A[j -3], and so on, by one position to the right until the proper position for key (which has the value that started out in A[j]) is found
- At that point, the value of key is placed into this position.

Loop Invariant for Insertion Sort

• Termination:

- The outer for loop ends when $j = n + 1 \Rightarrow j-1 = n$
- Replace **n** with **j-1** in the loop invariant:
 - the subarray A[1..n] consists of the elements originally in A[1..n], but in sorted order

The entire array is sorted!

CSC611 - Lecture 4

21

Analysis of Insertion Sort

INSERTION-SORT(A)	cost	times
for j ← 2 to n	c_1	n
do key ← A[j]	C ₂	n-1
\triangleright Insert A[j] into the sorted seq. A[1j-1]	0	n-1
i ← j - 1	C ₄	n-1
while i > 0 and A[i] > key	c ₅	$\sum_{j=2}^{n} t_j$
$\mathbf{do} \ A[i+1] \leftarrow A[i]$	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
i ← i − 1	c ₇	$\sum_{j=2}^{n} (t_j - 1)$
A[i + 1] ← key	c ₈	n-1

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$
CSC611 - Lecture 4

Best Case Analysis

- The array is already sorted "while i > 0 and A[i] > key"
 - $A[i] \le key$ upon the first time the **while** loop test is run (when i = j 1)

$$- t_{i} = 1$$

•
$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$
= $an + b = \Theta(n)$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$
CSC611 - Lecture 4

Worst Case Analysis

- The array is reversely sorted "while i > 0 and A[i] > key"
 - Always A[i] > key in while loop test
 - Have to compare **key** with all elements to the left of the **j**-th position \Rightarrow compare with **j-1** elements \Rightarrow t_j = **j**

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad and \quad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$$

$$= an^2 + bn + c \qquad \text{a quadratic function of n}$$

• $T(n) = \Theta(n^2)$ order of growth in n^2

Comparisons and Exchanges in Insertion Sort

INSERT	ion-sort(a)		cost	times
for j ←	– 2 to n		c_1	n
d	o key ← A[j]		c ₂	n-1
	▷Insert A[j] into the	sorted sequence A[1 j	-1] O	n-1
	i ← j - 1	≈n²/2 comparisons	C ₄	n-1
	while i > 0 and	d A[i] > key	c ₅	$\sum\nolimits_{j=2}^{n}t_{j}$
	do A[i + 1]	← A[i]	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
	i ← i − 1	≈n²/2 exchanges	c ₇	$\sum\nolimits_{j=2}^{n}(t_{j}-1)$
	A[i + 1] ← key		c ₈	n-1
		CSC611 - Lecture 4		25

Insertion Sort - Summary

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.
 - Remove one card at a time from the table, and insert it into the correct position in the left hand
- Advantages
 - Good running time for "almost sorted" arrays
 ⊙(n)
- Disadvantages
 - $\Theta(n^2)$ running time in worst and average case
 - \approx n²/2 comparisons and n²/2 exchanges

Bubble Sort

- Idea:
 - Repeatedly pass through the array
 - Swaps adjacent elements that are out of order

 Easier to implement, but slower than Insertion sort

CSC611 - Lecture 4

27

Example

Bubble Sort

Alg.: BUBBLESORT(A)

for $i \leftarrow 1$ to length[A] do for $j \leftarrow length[A]$ downto i + 1do if A[j] < A[j-1]then exchange $A[j] \Leftrightarrow A[j-1]$

CSC611 - Lecture 4

29

Bubble-Sort Running Time

```
Alg.: BUBBLESORT(A)
```

for $i \leftarrow 1$ to length[A]

do for $j \leftarrow length[A]$ downto i + 1

Comparisons:
$$\approx n^2/2$$
 do if $A[j] < A[j-1]$ Exchanges: $\approx n^2/2$

then exchange $A[j] \Leftrightarrow A[j-1]$

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^{n} (n-i+1) + c_3 \sum_{i=1}^{n} (n-i) + c_4 \sum_{i=1}^{n} (n-i)$$

$$= \Theta(n) + (c_2 + c_3 + c_4) \sum_{i=1}^{n} (n-i)$$

$$\approx \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$T(n) = \Theta(n^2)$$

CSC611 - Lecture 4

30

Selection Sort

• Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

• Invariant:

 All elements to the left of the current index are in sorted order and never changed again

• Disadvantage:

 Running time depends only slightly on the amount of order in the file

CSC611 - Lecture 4

31

Example

Selection Sort

Alg.: SELECTION-SORT(A) $n \leftarrow length[A]$ $graphi \leftarrow 1 \text{ to } n - 1$ $graphi \leftarrow 1 \text{ to } n - 1$ $graphi \leftarrow j + 1 \text{ to } n$ graph

CSC611 - Lecture 4

33

Analysis of Selection Sort

Alg.: SEL	ECTION-SORT(A)	cost	times
$n \leftarrow length[A]$			1
for j ←	C ₂	n	
do	smallest ← j	C ₃	n-1
≈n²/2 compariso	for i ← j + 1 to n	C ₄	$\sum_{j=1}^{n-1} (n-j+1)$
	do if A[i] < A[smallest]	C ₅	$\sum_{j=1}^{n-1} (n-j)$
≈n exchang	then smallest ← i	C ₆	$\sum_{j=1}^{n-1} (n-j)$
	exchange $A[j] \Leftrightarrow A[smalles]$	t]c ₇	n-1
	CSC611 - Lecture 4 $T(n) =$	$\Theta(n^2)$	34

Readings

CSC611 - Lecture 4

35