Изследване на ефектите на човешката мобилност в малариен модел с две местообитания и употреба на репелент срещу комари

изготвил: Калоян Стоилов ръководител: Петър Рашков

Софийски университет "Свети Климент Охридски"

Факултет по математика и информатика

9 юли 2025 г.

Схема на модела

Фигура 1: Черна пунктирана линия: възможен преход на индивид от класа в началото в класа в края.

Черна непрекъсната линия: индивид от началото може да зарази индивид от края.

Синя линия: мобилност

Допускания

- Човешката популация и популацията комари е постоянна, като са разпределени равномерно в местообитанията.
- Смъртността от заразата се пренебрегва, както при хората, така и при комарите.
- Веднъж заразени, комарите не се възстановяват.
- Само податливи се заразяват (няма свръхзаразяване).
- Хората не придобиват никакъв имунитет.
- Смъртността на комарите е независима от възрастта им и съответно продължителността им на живот е експоненциално разпределена.
- Разглежда се само предаването на патогена между хора и комари.
- **8** Латентният период при комарите е константен.
- 9 Мобилността на хората между местообитанията е константна.
- Репелентът има линеен ефект върху честотата на ухапванията върху предпазените с него и не увеличава тази върху непредпазените.

Означения

Променлива	Описание					
t	Време [ден]					
$X_i(t)$	Брой заразени жители					
$Y_i(t)$	Брой заразени комари					
$u_i(t)$	Пропорция защитени с репелент жители					
Параметър	Описание					
eta_{vh}	Вероятност на прехвърляне на патогена от комар на човек					
β_{hv}	Вероятност на прехвърляне на патогена от човек на комар					
a _i	Честота на ухапвания [ден ⁻¹]					
M_i	Популация на женски комари					
μ_i	Смъртност на комари [ден $^{-1}$]					
au	Инкубационен период при комарите [ден]					
N_i	Човешка популация (население)					
γi	Скорост на оздравяване на хора [ден $^{-1}$]					
p _{ij}	Мобилност на хора от местообитание і в ј					
K	Ефективност на репелент					
\bar{u}_i	Максимална възможна предпазена част жители с репелент					
$ar{ar{I}_i}$	Максимална част на заразени хора					

Таблица 1: Таблица с променливи и параметри

Първа форма на модела

$$\begin{split} \dot{X}_{1} &= \beta_{vh}(N_{1} - X_{1})(1 - \kappa u_{1}) \left(\frac{p_{11}e^{-\mu_{1}\tau}a_{1}Y_{1}}{p_{11}N_{1} + p_{21}N_{2}} + \frac{p_{12}e^{-\mu_{2}\tau}a_{2}Y_{2}}{p_{12}N_{1} + p_{22}N_{2}} \right) - \gamma_{1}X_{1} \\ \dot{X}_{2} &= \beta_{vh}(N_{2} - X_{2})(1 - \kappa u_{2}) \left(\frac{p_{21}e^{-\mu_{1}\tau}a_{1}Y_{1}}{p_{11}N_{1} + p_{21}N_{2}} + \frac{p_{22}e^{-\mu_{2}\tau}a_{2}Y_{2}}{p_{12}N_{1} + p_{22}N_{2}} \right) - \gamma_{2}X_{2} \\ \dot{Y}_{1} &= \beta_{hv}a_{1}(M_{1} - Y_{1}) \frac{p_{11}(1 - \kappa u_{1})X_{1} + p_{21}(1 - \kappa u_{2})X_{2}}{p_{11}N_{1} + p_{21}N_{2}} - \mu_{1}Y_{1} \\ \dot{Y}_{2} &= \beta_{hv}a_{2}(M_{2} - Y_{2}) \frac{p_{12}(1 - \kappa u_{1})X_{1} + p_{22}(1 - \kappa u_{2})X_{2}}{p_{12}N_{1} + p_{22}N_{2}} - \mu_{2}Y_{2} \\ u_{i} &\in \mathcal{U}_{i} = \{u_{i} : \mathbb{R}_{+} \rightarrow [0, \bar{u}_{i}] | u_{i} - \text{измерима} \} \end{split}$$

Моделът се основава на Bichara [2] с добавена употреба на репелент [4].

Скалирана форма на модела

Моделът подлежи на скалиране на променливите чрез смяната $(X_1,X_2,Y_1,Y_2) \to (\frac{X_1}{N_1},\frac{X_2}{N_2},\frac{Y_1}{M_1},\frac{Y_2}{M_2}) = (x_1,x_2,y_1,y_2)$ и след полагания на коефициентите има вида:

$$\dot{x}_{1} = (1 - x_{1})(1 - \kappa u_{1}) (b_{11}y_{1} + b_{12}y_{2}) - \gamma_{1}x_{1}
\dot{x}_{2} = (1 - x_{2})(1 - \kappa u_{2}) (b_{21}y_{1} + b_{22}y_{2}) - \gamma_{2}x_{2}
\dot{y}_{1} = (1 - y_{1}) (c_{11}(1 - \kappa u_{1})x_{1} + c_{12}(1 - \kappa u_{2})x_{2}) - \mu_{1}y_{1}
\dot{y}_{2} = (1 - y_{2}) (c_{21}(1 - \kappa u_{1})x_{1} + c_{22}(1 - \kappa u_{2})x_{2}) - \mu_{2}y_{2}$$
(2)

Допълнителни означения

Надолу (2) ще се записва и във векторен вид по следния начин:

$$\begin{pmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \end{pmatrix} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{u}), \quad \mathbf{x} = (x_1, x_2)^T, \quad \mathbf{y} = (y_1, y_2)^T, \quad \mathbf{f} = (f_{x_1}, f_{x_2}, f_{y_1}, f_{y_2})^T$$

Или пък във вида:

$$\dot{z} = f(z, u), \ z = (x, y)^T, \ z(0) = z_0 = (x_1^0, x_2^0, y_1^0, y_2^0)^T$$

Задачата се разглежда в $\Omega = \{x_i \in [0,1], y_i \in [0,1]\} = \{\boldsymbol{z} \in [0,1]^4\}.$ Означаваме $U = [0,\bar{u}_1] \times [0,\bar{u}_2], \ \mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2.$

Задача за здравна политика

 $\bar{l}_i \in [0,1]$ - максималната част от населението в съответното местообитание, което може да получи адекватна здравна помощ при заразяване с малария.

$$\bar{\boldsymbol{I}} = (\bar{I}_1, \bar{I}_2)^T, \quad \mathcal{I} = [0, \bar{I}_1] \times [0, \bar{I}_2] \times [0, 1]^2.$$

Питаме се има ли такива управления \boldsymbol{u} , за които във всеки момент всички заразени да имат възможност да получат помощ от здравната система, т.е. :

$$\forall t \ge 0(x_1(t) \le \overline{l}_1 \land x_2(t) \le \overline{l}_2) \iff \forall t \ge 0(\boldsymbol{z}(t) \in \mathcal{F})$$
 (3)

Тъй като първоначалният брой заразени хора и комари влияят на развитието на системата ще търсим ядрото на слаба инвариантност на Белман:

$$V(\bar{I}, \bar{u}) = \{z_0 \text{ начално условие} | \exists u(3) \text{ е изпълнено} \}$$
 (4)

Свойства на модела

Твърдение

За всяко $\mathbf{u} \in \mathcal{U}$ задачата на Коши за (2) има единствено решение.

Твърдение

 Ω е положително инвариантно за (2).

Свойства на модела

Твърдение

Системата (2) е кооперативна, т.е. Якобианът ѝ има неотрицателни компоненти извън главния диагонал.

Твърдение

Системата (2) е <u>силно вдлъбната</u>, т.е. за Якобиана ѝ D**f** е в сила $\mathbf{0} < \mathbf{z}_1 < \mathbf{z}_2 \implies D\mathbf{f}(\mathbf{z}_2) < D\mathbf{f}(\mathbf{z}_1)$.

Твърдение

Системата (2) е неразложима при $p_{ij} \notin \{0,1\}$, т.е. ненулевите компоненти на Якобиана ѝ образуват матрица на съседство на силно свързан ориентиран граф.

Равновесни точки

Твърдение

За система (2) при фиксирано $\mathbf{u}(t) \equiv \mathbf{u} = \text{const } e \text{ в сила точно едно } om:$

- **0** е единствена равновесна точка (глобално асимптотично устойчива).
- **② 0** е неустойчива равновесна точка и съществува точно една друга ендемична равновесна точка $\mathbf{E}^* = (x_1^*, x_2^*, y_1^*, y_2^*)$ (глобално асимптотично устойчива).

Твърдението се доказва с помощта на изведените свойства на (2) и теорема на Smith [5].

Тривиални случаи за $V(oldsymbol{ar{l}},oldsymbol{ar{u}})$

 $oldsymbol{0}$ е равновесна за $(2) \Longrightarrow oldsymbol{0} \in V(ar{oldsymbol{I}}, ar{oldsymbol{u}}).$ $oldsymbol{z}_0 \notin \mathcal{F} \Longrightarrow oldsymbol{z}_0 \notin V(ar{oldsymbol{I}}, ar{oldsymbol{u}})$, т.е. $V(ar{oldsymbol{I}}, ar{oldsymbol{u}}) \subseteq \mathcal{F}$.

Твърдение

Ако съществува $\mathbf{E}^* = (x_1^*, x_2^*, y_1^*, y_2^*)^T$ за $\mathbf{u}(t) \equiv \bar{\mathbf{u}}$, като $x_1^* > \bar{l}_1$ или $x_2^* > \bar{l}_2$, то ядрото на слаба инвариантност на Белман е тривиалното, т.е. $V(\bar{\mathbf{l}}, \bar{\mathbf{u}}) = \{\mathbf{0}\}.$

Твърдение

Ако (3) е изпълнено за решението на система (2) с $\mathbf{u} \equiv \mathbf{0}$ и начално условие $\mathbf{z}_0 = (\xi_1, \xi_2, 1, 1)^T$, то $\mathbf{\Xi} = [0, \xi_1] \times [0, \xi_2] \times [0, 1]^2 \subseteq V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$. Ако е изпълнено за $\xi_i = \bar{\mathbf{I}}_i$, то ядрото на слаба инвариантност на Белман е максималното, т.е. $V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \mathcal{F}$.

Вариационен подход за решаване на (4)

Дефинираме значна функция на разстоянието Γ до $\partial \mathcal{F}$:

$$\Gamma(z) = \begin{cases} \inf_{z' \in \mathcal{J}} \|z - z'\|, & z \in \Omega \setminus \mathcal{J} \\ -\inf_{z' \in \Omega \setminus \mathcal{J}} \|z - z'\|, & z \in \mathcal{J} \end{cases}$$

Фиксираме $\lambda > L > 0$ (L - константата на Липшиц за (2)) и въвеждаме функция на Белман ν :

$$v(\mathbf{z}_0) = \inf_{\mathbf{u} \in \mathcal{U}} \sup_{t \in (0, +\infty)} e^{-\lambda t} \Gamma(\mathbf{z}(t; \mathbf{z}_0; \mathbf{u}))$$

Вариационен подход за решаване на (4)

Ако започнем с $z_0 \notin V(\bar{\pmb{l}}, \bar{\pmb{u}})$, то $v(z_0) > 0$ и обратното. Ако започнем с $z_0 \in V(\bar{\pmb{l}}, \bar{\pmb{u}})$, то $v(z_0) \le 0$ и обратното.

$$V(\bar{\boldsymbol{l}}, \bar{\boldsymbol{u}}) = \{ \boldsymbol{z}_0 \in \Omega | v(\boldsymbol{z}_0) \le 0 \}$$
$$\partial V(\bar{\boldsymbol{l}}, \bar{\boldsymbol{u}}) = \{ \boldsymbol{z}_0 \in \Omega | v(\boldsymbol{z}_0) = 0 \}$$

Уравнение на Хамилтон-Якоби-Белман

В сила е принцип за динамично програмиране [1]:

$$v(\boldsymbol{z}_0) = \inf_{\boldsymbol{u} \in \mathcal{U}} \max\{e^{-\lambda t} v(\boldsymbol{z}_0), \sup_{s \in (0, t]} e^{-\lambda t} \Gamma(\boldsymbol{z}(s; \boldsymbol{z}_0; \boldsymbol{u}))\}$$

v е единственото непрекъснато вискозно решение на **уравнението на Хамилтон-Якоби–Белман** [1]:

$$\min\{\lambda v(z) + \mathcal{H}(z, \nabla v), v(z) - \Gamma(z)\} = 0, \quad z \in \mathbb{R}^4$$

$$\mathcal{H}(z, w) = \max_{u \in U} \langle -f(z, u), w \rangle$$
(5)

Уравнение на Хамилтон-Якоби-Белман

$$\begin{split} \mathcal{H}(\mathbf{z}, \nabla \mathbf{v}) &= \\ & \left[\gamma_1 x_1 - (1-x_1) \left(b_{11} y_1 + b_{12} y_2 \right) \right] \frac{\partial \mathbf{v}}{\partial x_1} + \left[\gamma_2 x_2 - (1-x_2) \left(b_{21} y_1 + b_{22} y_2 \right) \right] \frac{\partial \mathbf{v}}{\partial x_2} + \\ & \left[\mu_1 y_1 - (1-y_1) \left(c_{11} x_1 + c_{12} x_2 \right) \right] \frac{\partial \mathbf{v}}{\partial y_1} + \left[\mu_2 y_2 - (1-y_2) \left(c_{21} x_1 + c_{22} x_2 \right) \right] \frac{\partial \mathbf{v}}{\partial y_2} + \\ & \max \left\{ 0, \kappa \bar{u}_1 (1-x_1) \left(b_{11} y_1 + b_{12} y_2 \right) \frac{\partial \mathbf{v}}{\partial x_1} + c_{11} \kappa \bar{u}_1 x_1 (1-y_1) \frac{\partial \mathbf{v}}{\partial y_1} + c_{21} \bar{u}_1 x_1 (1-y_2) \frac{\partial \mathbf{v}}{\partial y_2} \right\} + \\ & \max \left\{ 0, \kappa \bar{u}_2 (1-x_2) \left(b_{21} y_1 + b_{22} y_2 \right) \frac{\partial \mathbf{v}}{\partial x_1} + c_{12} \bar{u}_2 x_2 (1-y_1) \frac{\partial \mathbf{v}}{\partial y_1} + c_{22} \bar{u}_2 x_2 (1-y_2) \frac{\partial \mathbf{v}}{\partial y_2} \right\} \end{split}$$

Числено решение на уравнението на X-Я-Б

Решението на (5) може да се разгледа като стационарно решение на ЧДУ с добавено числено време:

$$\min \left\{ \frac{\partial v}{\partial t} (z, t) + \lambda v(z, t) + \mathcal{H}(z, \nabla v), v(z, t) - \Gamma(z) \right\} = 0, \quad z \in \mathbb{R}^4$$

$$v(z, 0) = v_0(z), \quad z \in \mathbb{R}^4$$
(6)

Числено решение на уравнението на Х-Я-Б

Използваната дискретизацията по пространството е равномерна със стъпки $h_{x_1}, h_{x_2}, h_{y_1}, h_{y_2}$.

Чрез WENO (Weighted Essentially Non-Oscillatory) метода се получават по-точни приближения за разлика напред и назад v_{η}^{\pm} на производните $\frac{\partial v}{\partial \eta}$, $\eta = x_1, x_2, y_1, y_2$ [3].

Численият Хамилтониян от вида Lax-Friedrichs $\hat{\mathcal{H}}$ e:

$$\hat{\mathcal{H}} = \mathcal{H}\left(\mathbf{z}, \frac{\mathbf{v}_{x_1}^+ + \mathbf{v}_{x_1}^-}{2}, \frac{\mathbf{v}_{x_2}^+ + \mathbf{v}_{x_2}^-}{2}, \frac{\mathbf{v}_{y_1}^+ + \mathbf{v}_{y_1}^-}{2}, \frac{\mathbf{v}_{y_2}^+ + \mathbf{v}_{y_2}^-}{2}\right) - \sum_{\eta = x_1, x_2, y_1, y_2} \alpha^{\eta} \frac{\mathbf{v}_{\eta}^+ - \mathbf{v}_{\eta}^-}{2}$$

Множителите α^{η} са от вида:

$$\begin{split} &\alpha^{\mathbf{x}_{1}} = \max_{\mathbf{w}} \left| \frac{\partial \mathcal{H}}{\partial w_{1}} \left(\mathbf{z}, \mathbf{w} \right) \right|, \ \alpha^{\mathbf{x}_{2}} = \max_{\mathbf{w}} \left| \frac{\partial \mathcal{H}}{\partial w_{2}} \left(\mathbf{z}, \mathbf{w} \right) \right|, \\ &\alpha^{\mathbf{y}_{1}} = \max_{\mathbf{w}} \left| \frac{\partial \mathcal{H}}{\partial w_{3}} \left(\mathbf{z}, \mathbf{w} \right) \right|, \ \alpha^{\mathbf{y}_{2}} = \max_{\mathbf{w}} \left| \frac{\partial \mathcal{H}}{\partial w_{4}} \left(\mathbf{z}, \mathbf{w} \right) \right| \end{split}$$

Числено решение на уравнението на Х-Я-Б

Използваната дискретизация по времето е равномерна със стъпка τ и по него се апроксимира с подобрения метод на Ойлер.

За да може методът да е TVD, трябва да е изпълнено условието на Courant-Friedrichs-Lewy:

$$\tau \max_{ijkl} \left(\frac{\left| \frac{\partial \mathcal{H}}{\partial w_1} \right|}{h_{x_1}} + \frac{\left| \frac{\partial \mathcal{H}}{\partial w_2} \right|}{h_{x_2}} + \frac{\left| \frac{\partial \mathcal{H}}{\partial w_3} \right|}{h_{y_1}} + \frac{\left| \frac{\partial \mathcal{H}}{\partial w_4} \right|}{h_{y_2}} \right) < 1$$

Стойности на параметри

Параметър	Набор 1		Набор 2		Набор 3		
	M. 1	M. 2	M. 1	M. 2	M. 1	M. 2	
β_{vh}	0.5		0.5		0.5		
β_{hv}	0.1		0.1		0.1		
a _i	0.12	0.18	0.158	0.159	0.15	0.24	
M_i	6×10^7	1.6×10^{8}	7320950	4695340	7320950	4695340	
μ_i	$\frac{1}{21}$	$\frac{1}{15}$	0.032	0.046	0.0397	0.0335	
τ	10		10		10		
N _i	8×10^{6}	2×10^{7}	9377980	4467650	755440	3945290	
γi	$\frac{1}{14}$		0.0627	0.0576	0.0735	0.0622	
p _{ij}	различни $(p_{i1} + p_{i2} = 1)$						
K	0.44		0.37		0.38		
$ar{u}_i$ $ar{I}_i$	0.15	0.3	0.39	0.12	0.35	0.3	
\bar{I}_i	0.1	0.14	0.065	0.12	0.09	0.09	

Таблица 2: Таблица със стойностите на параметрите от таблица 1 за числени симулации

Числени симулации на равновесните точки

Фигура 2: Равновесните точки на (2) с параметрите от набор 1 от таблица 2

Числени симулации на равновесните точки

Фигура 3: Равновесните точки на (2) с параметрите от набор 2 от таблица 2

Числени симулации на равновесните точки

Фигура 4: Равновесните точки на (2) с параметрите от набор 3 от таблица 2

Числено приближение на $V(\bar{I}, \bar{u})$

p_{11} p_{22}	0.8	0.85	0.9	0.95
0.95	3.427	3.447	3.467	3.486
0.9	3.468	3.487	3.507	3.527
0.85	3.498	3.517	3.536	3.554
0.8	3.519	3.540	3.559	3.580

Таблица 3: 4-мерната мярка на ядрото на слаба инвариантност на Белман $V(\bar{\pmb{I}},\bar{\pmb{u}})$ за различни стойности на мобилността с параметрите от набор 1 от таблица 2. Стойността при случая без мобилност е взета за референтна.

Числени симулации на решението

Фигура 5: Решението на (2) с параметрите от набор 1 таблица 2 и $z_0 = (0.0572, 0.048, 0.052, 0.044)^T$.

Пунктирано: без употреба на репелент (u(t) \equiv 0), плътно: максимална употреба на репелент (u(t) \equiv $\bar{\rm u}$).

Червено: без мобилност ($p_{11}=p_{22}=1$), синьо: с мобилност ($p_{11}=p_{22}=0.85$)

Числени симулации на решението

Фигура 6: Решението на (2) с параметрите от набор 2 от таблица 2 и $z_0 = (0.0572, 0.048, 0.052, 0.044)^T$.

Пунктирано: без употреба на репелент (u(t) \equiv 0), плътно: максимална употреба на репелент (u(t) \equiv $\bar{\rm u}$).

Червено: без мобилност ($p_{11}=p_{22}=1$), синьо: с мобилност ($p_{11}=0.99,\,p_{22}=0.9$).

Числени симулации на решението

Фигура 7: Решението на (2) с параметрите от набор 3 от таблица 2 и $z_0 = (0.02, 0.015, 0.04, 0.03)^T$, максимална употреба на репелент ($u(t) \equiv \bar{u}$). За четирите криви е фиксирано $p_{11} = 0.93$, а p_{22} е различно.

Зелено: много висока мобилност ($p_{22} = 0.85$), синьо: висока мобилност ($p_{22} = 0.88$), лилаво: средна мобилност ($p_{22} = 0.92$), кафяво: ниска мобилност ($p_{22} = 0.97$).

Източници І

- [1] Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani. A general hamilton-jacobi framework for non-linear state-constrained control problems. *ESAIM*: *COCV*, 19(2), 2013. DOI: 10.1051/cocv/2012011.
- [2] Derdei Bichara and Carlos Castillo-Chavez. Vector-borne diseases models with residence times a lagrangian perspective. *Mathematical Biosciences*, September 10, 2016.
- [3] Stanley Osher and Ronald Fedkiw. *Level Set Methods and Dynamic Implicit Surfaces*. Springer, 2003. ISBN: 978-0-387-95482-1.
- [4] Peter Rashkov. Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration.

 *Mathematical biosciences and engineering: MBE, 19(4), 2022. DOI: 10.3934/mbe.2022185.

Източници II

[5] Hal L. Smith. Cooperative systems of differential equations with concave nonlinearities. *Nonlinear Analysis, Theory, Methods & Applications*, 18(10), 1986. DOI: 10.1016/0362-546X(86)90087-8.

Благодаря за вниманието