Sintesi di reti combinatorie

Funzioni ⇒ Espressioni

M. Favalli

Engineering Department in Ferrara

Sommario

Forme canoniche

Ottimizzazione

Forme normali

Insiemi funzionalmente completi

Obbiettivo

- Siamo al punto di prima ?
- No, abbiamo due strumenti per arrivare a un risultato:
 l'algebra di commutazione e il caclolo delle proposizioni

Sommario

Forme canoniche

Ottimizzazione

Forme normali

Insiemi funzionalmente completi

Motivazioni

- Si deve trovare una metodologia in grado di ottenere un espressione equivalente a una funzione di partenza
- Il numero di tali espressioni é peró infinito
- Si puó utilizzare come punto di partenza una forma canonica, ovvero un espressione che data la funzione é unica
- Questa espressione é poi il punto di partenza per possibili strategie di ottimizzazione che data una specifica (costo....) sfruttano le proprietá dell'algebra di commutazione per ottenere un espressione migliore di quella di partenza
- Le forme canoniche sono utili anche per la verifica

Approccio

- Sono possibili due diversi approcci al problema
 - 1. utilizzo di alcune proprietà dell'algebra di commutazione (Teorema di Espansione di Shannon)
 - 2. utilizzo del calcolo delle proposizioni
- Utilizzermo il secondo approccio perché piú intuitivo, in seguito utilizzeremo l'algebra

Termine prodotto ⇔ configurazione binaria

- Si consideri una funzione binaria $f(x_1, x_2,, x_n) : \mathbb{B}^n \to \mathbb{B}$
- Una riga della tabella di veritá é caratterizzata da una configurazione binaria degli ingressi
- Supponiamo di avere n = 3 e consideriamo la riga con la configurazione binaria $x_1x_2x_3 = 011$
- Siamo in questa configurazione se $x_1 = 0$ e $x_2 = 1$ e $x_3 = 1$
- Trasformando tale proposizione congiuntiva ($\neg x_1 \land x_2 \land x_3$) in un termine prodotto p, si ha $p = x_1'x_2x_3$
- Se p = 1, allora la configurazione di ingresso é quella considerata

Termine somma ⇔ configurazione binaria

- Si puó associare anche un termine somma a una configurazione binaria
- configurazione binaria $x_1x_2x_3 = 011$
- Non siamo in questa configurazione se $x_1 = 1$ o $x_2 = 0$ o $x_3 = 0$
- Trasformando tale proposizione disgiuntiva in un termine somma s si ha $s=x_1+x_2'+x_3'$

• Supponiamo di avere n=3 e consideriamo la riga con la

• Se s = 0, allora la configurazione di ingresso é quella considerata

Mintermini

Data una funzione $f: \mathbb{B}^n \to \mathbb{B}$, si definiscono *mintermini*, quei termini prodotto in cui compaiono n variabili diverse (in forma vera o complementata) che corrispondono a righe della tabella di veritá dove la funzione vale 1

indice	$X_1 X_2 X_3$	f	termine	
			prodotto	mintermini
0	000	0	$X_1'X_2'X_3'$	
1	001	0	$X_1' X_2' X_3$	
2	010	1	$X_1' X_2 X_3'$	m_2
3	011	1	$X_1' X_2 X_3$	m_3
4	100	0	$X_1 X_2' X_3'$	
5	101	1	$X_1 X_2' X_3$	m_5
6	110	1	$x_1 x_2 x_3'$	m_6
7	111	0	$X_1 X_2 X_3$	

Prima forma canonica (SP)

- La funzione f puó essere descritta dalla seguente proposizione: la funzione vale 1 se il valore delle variabili di ingresso rende vero il primo mintermine, o il secondo,, o il k-mo
 - dove k é il numero di righe dove f vale 1
- Trasformando tale proposizione in un espressione dell'algebra di commutazione si ha che f é equivalente alla somma logica di tutti i mintermini

$$f = \sum_{i|f_i=1} m_i$$

- Si definisce tale espressione come forma canonica di tipo somma di prodotti (SP o SOP) la disgiunzione (somma) di tutti i mintermini della funzione
- Quindi si ha finalmente un espressione per f!!!!

Esempio di forma canonica SP

<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	f	termine prodotto	mintermini
000	0	$X_1'X_2'X_3'$	
001	0	$X_1'X_2'X_3$	
010	1	$X_1' X_2 X_3'$	m_2
011	1	$X_1' X_2 X_3$	m_3
100	0	$X_1 X_2' X_3'$	
101	1	$X_1 X_2' X_3$	m_5
110	1	$X_1 X_2 X_3'$	m_6
111	0	$X_1 X_2 X_3$	

Forma canonica SP:

$$f(x_1, x_2, x_3) = m_2 + m_3 + m_5 + m_6 = x_1' x_2 x_3' + x_1' x_2 x_3 + x_1 x_2' x_3 + x_1 x_2 x_3'$$

Fissato un ordine per le variabili, questa espressione é unica (quindi a meno della proprietá commutativa di somma e prodotto)

Rete logica corrispondente (SP)

• Funzione:

$$f(x_1, x_2, x_3) = m_2 + m_3 + m_5 + m_6 = x_1' x_2 x_3' + x_1' x_2 x_3 + x_1 x_2' x_3 + x_1 x_2 x_3'$$

- Supponiamo che la tecnologia, oltre al NOT, metta a disposizione porte logiche AND e OR con un fan-in sufficiente
- Si ha una rete a due livelli di tipo SP (l'invertitore non conta)

Maxtermini

Data una funzione $f: \mathbb{B}^n \to \mathbb{B}$, si definiscono maxtermini, quei termini somma in cui compaiono n variabili diverse (in forma vera o complementata) che corrispondono a righe della tabella di veritá dove la funzione vale 0

indice	$X_1 X_2 X_3$	f	termine	
			somma	maxtermini
0	000	0	$x_1 + x_2 + x_3$	M_0
1	001	0	$x_1 + x_2 + x_3'$	M_1
2	010	1	$x_1 + x_2' + x_3$	
3	011	1	$X_1 + X_2' + X_3'$	
4	100	0	$X_1' + X_2 + X_3$	M_4
5	101	1	$x_1' + x_2 + x_3'$	
6	110	1	$X_1' + X_2' + X_3$	
7	111	0	$x_1' + x_2' + x_3'$	M_7

Seconda forma canonica (PS)

- La funzione f puó anche essere descritta dalla seguente proposizione: la funzione vale 1 se il valore delle variabili di ingresso rende vero il primo maxtermine, e il secondo,, e il j-mo
 - dove j é il numero di righe dove f vale 0
- Trasformando tale proposizione in un espressione dell'algebra di commutazione si ha che f é equivalente al prodotto logico di tutti i maxtermini

$$f = \prod_{\forall i \mid f(i) = 0} M_i$$

- Si definisce forma canonica di tipo prodotto di somme (PS o POS) la congiunzione (prodotto) di tutti i maxtermini della funzione
- Quindi si ha una seconda espressione per f! (ve lo aspettavate? principio di dualitá)

Esempio di forma canonica di tipo PS

<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	f	termine prodotto	maxtermini
000	0	$x_1 + x_2 + x_3$	M_0
001	0	$x_1 + x_2 + x_3'$	M_1
010	1	$x_1 + x_2' + x_3$	
011	1	$X_1 + X_2^{-1} + X_3^{-1}$	
100	0	$X_1' + X_2 + X_3$	M_4
101	1	$x_1' + x_2 + x_3'$	
110	1	$X_1' + X_2' + X_3$	
111	0	$x_1' + x_2' + x_3'$	M_7

Forma canonica PS

$$f(x_1, x_2, x_3) = M_0 M_1 M_4 M_7 = (x_1 + x_2 + x_3)(x_1 + x_2 + x_3')(x_1' + x_2 + x_3)(x_1' + x_2' + x_3')$$

Rete logica corrispondente (PS)

Funzione:

$$f(x_1, x_2, x_3) = M_0 + M_1 + M_4 + M_7 = (x_1 + x_2 + x_3)(x_1 + x_2 + x_3')(x_1' + x_2 + x_3)(x_1' + x_2' + x_3')$$

- Supponiamo che la tecnologia, oltre al NOT, metta a disposizione porte logiche AND e OR con un fan-in sufficiente
 - Si ha una rete a due livelli di tipo PS (l'invertitore non conta)

Forme canoniche SP e PS

- Fissato un ordine per le variabili, sono uniche
- Attenzione: la seconda forma canonica non si ottiene complementando la prima,entrambe descrivono f
- Le forme canoniche SP e PS, danno tipicamente luogo a reti piuttosto costose il cui costo é proporzionale a 2ⁿ
- Quale delle due conviene? Dipende dalla tecnologia e dal numero di 1 e 0

Sommario

Forme canoniche

Ottimizzazione

Forme normali

Insiemi funzionalmente completi

Il ruolo dell'ottimizzazione nella sintesi di reti logiche

- Ingredienti:
 - funzione/espressione di partenza
 - un obbiettivo di progetto (costo, ritardo, consumo di potenza) e una metrica che descriva tale obbiettivo
- Il compito dell'ottimizzazione é quello di esplorare lo spazio delle possibili espressioni equivalenti cercando quella piú conveniente dal punto di vista della metrica considerata
- Questo puó essere fatto mediante:
 - una tecnica esatta che trova la soluzione migliore (es. rete dal costo minimo)
 - una tecnica euristica che porta a una soluzione approssimata (es. un minimo locale del costo) con un costo computazionale decisamente inferiore all'approccio esatto

Ottimizzazione del costo

- Le forme canoniche consentono di descrivere una funzione mediante l'algebra di commutazione
- In molti casi é possibile semplificare una forma canonica ottenendo un espressione equivalente piú semplice e quindi una rete meno costosa

$$f(x_1, x_2, x_3) = x'_1 x_2 x'_3 + x'_1 x_2 x_3 + x_1 x'_2 x_3 + x_1 x_2 x_3$$

= $x'_1 x_2 (x'_3 + x_3) + x_1 x_3 (x'_2 + x_2)$
= $x'_1 x_2 + x_1 x_3$

• Occorre specificare meglio cosa vuole dire "meno costosa"

Metriche per la stima del costo di una rete

- Il costo di una rete é proporzionale all'area occupata dalla sua implementazione fisica (gate e interconnessioni)
- Chiaramente non si pu
 ó arrivare fino alla realizzazione fisica per valutare il costo di un espressione
- Bisogna trovare una metrica che fornisca una stima approssimata dell'area
- Esistono diverse metriche:
 - numero di gate (non si considera il fatto che i gate con più ingressi hanno maggiori dimensioni)
 - 2. numero di letterali nell'espressione
 - 3. numero di porte logiche pesate sui loro ingressi
 - 4. numero di termini prodotto (somma) nelle espressioni SP (PS)

Numero di letterali

Si conta il numero di letterali (/) nell'espressione

$$f = ab+c+d'e$$
 $I=5$
 $f = abc+a'bce+d'e'f'$ $I=10$

Questo metodo é semplice, ma puó essere reso piú accurato. Si considerino 3 funzioni con $\it l=6$ e le reti corrispondenti

$$f_1 = ab + cd + e + f$$
 $f_2 = ab + cd + ef$ $f_3 = abc + def$

Il numero totale di ingressi di gate (g) che é proporzionale all'area occupata dai gate é $g_1 = 8$, $g_2 = 9$, $g_3 = 8$

Esempi

Somma dei gate pesata sugli ingressi

- Questa metrica puó essere facilmente utilizzata se é disponibile la rete, mentre é difficile da applicare direttamente all'espressione
- A questo riguardo si possono mettere tutte le parentesi (compreso quelle non necessarie) e contare il numero di operandi di ciascun operatore somma e prodotto, aggiungendo 1 tutte le volte che si incontra un invertitore
- Esempio f = abc + d' + e(f + g) = (abc) + d' + (e(f + g)), si ha un OR a 3 ingressi, un AND a 3 ingressi, un OR a 2 ingressi, un AND a 2 ingressi e un NOT. Quindi g = 11 (mentre l = 7)

Il ruolo del fan-out

- Chiaramente la valutazione del costo di un espressione corrispondente a una rete deve essere attuata tenendo in conto dell'eventuale utilizzo del fan-out evitando cosí di contare piú volte letterali e operandi
 - la corrispondenza uno a uno fra espressioni e rete si perde per l'utilizzo di fan-out > 1
- In effetti tutti i metodi considerati non tengono conto del costo delle interconnessioni
- Dopo aver definito una metrica per valutare il costo di una rete, possiamo iniziare a vedere come ridurre il costo delle forme canoniche

Esempi

Sommario

Forme canoniche

Ottimizzazione

Forme normali

Insiemi funzionalmente completi

Forme normali e reti a 2 livelli

- Considereremo per primo un problema particolare: la sintesi di reti che realizzano espressioni del tipo somma di prodotti (SP) o prodotti di somme (PS)
- Tali espressioni vengono definite come forme normali (le forme canoniche ne sono un caso particolare)
- Le reti corrispondenti (trascurando i NOT) vengono definite a 2 livelli
- I motivi di questa restrizione sono:
 - la possibilitá di trovare una soluzione esatta del problema con tempi di calcolo ragionevoli
 - alcuni strumenti sviluppati in questo caso servono per risolvere il problema generale
 - l'interesse tecnologico di metodologie di fabbricazione in grado di realizzare reti a 2 livelli in maniera molto efficiente

Sintesi di reti a 2 livelli

- Sono stati sviluppati diversi metodi per la sintesi a 2 livelli, sia di tipo esatto che euristico
 - metodi esatti: forniscono una rete di costo minimo
 - metodi euristici: riducono il costo della rete di partenza, ma possono produrre una rete con un costo corrispondente a un minimo locale
- In questo ambito vedremo un metodo di carattere euristico di tipo grafico detto delle mappe di Karnaugh che consente la sintesi e l'ottimizzazione di funzioni con fino a 6 ingressi
- Nell'ambito del software in laboratorio logic-friday sono disponibili 2 approcci, uno ti tipo esatto (20 – 25 ingressi) e l'altro euristico (> 20)

Implicanti e implicati

- Sia n il numero di variabili
- Nella forma normale di tipo SP di una funzione f, un termine prodotto P di k letterali corrispondenti a k ≤ n variabili diverse viene detto implicante
- Infatti $P=1 \rightarrow f=1$ (se f=P+Q, allora $P \rightarrow f=P'+(P+Q)=1$ quindi l'espressione é sempre vera)
- In una forma normale di tipo PS di una funzione f, un termine somma S di k letterali corrispondenti a k ≤ n variabili diverse viene detto implicato
- Infatti $S=1 \leftarrow f=1$ (se f=SQ, allora $f \rightarrow S=(SQ)' \rightarrow S=S'+Q'+S=1$)

Diagrammi di Venn

Espansione

• Sia P un termine prodotto di $k \le n$ letterali, vale la proprietá:

$$x'P + xP = (x' + x)P = 1 \cdot P = P$$

- L'espressione di partenza ha 2(k + 1) letterali, e quella finale ne ha k (in modo analogo queste hanno rispettivamente 2 e 1 termine prodotto)
- La regola puó essere applicata iterattivamente

$$f = a'b'c'd' + a'b'c'd + a'bc'd' + a'bc'd$$

$$= a'b'c'(d' + d) + a'bc'(d' + d)$$

$$= a'b'c' + a'bc'$$

$$= a'c'(b + b')$$

$$= a'c'$$

L'espansione non é sufficiente

Si consideri un ulteriore caso

$$f = abc'd + abcd + a'bcd$$

 La proprietá di espansione puó essere applicata in 2 modi diversi, si ha:

$$f = abd(c + c') + a'bcd = abd + a'bcd$$

 $f = bcd(a + a') + abc'd = bcd + abc'd$

 Dopo uno di questi passi, la proprietá di espansione non puó piú essere applicata

Idempotenza

 Si potrebbe passare per un espressione multilivello per semplificare ulteriormente le espressioni (utilizzando la proprietá di semplificazione)

$$f = abd + a'bcd = bd(a + a'c) = bd(a + c) = abd + bcd$$

 $f = bcd + abc'd = bd(c + ac') = bd(a + c) = abd + bcd$

• Come alternativa si puó utilizzare la proprietá di idempotenza (P+P=P) per poi applicare l'espansione

$$f = abc'd + abcd + a'bcd = abc'd + abcd + abcd + a'bcd =$$

$$= abd(c' + c) + bcd(a + a') = abd + bcd$$

Espansione in espressioni PS

 Le proprietá duali possono essere applicate a espressioni di tipo PS

$$(x+S)(x'+S)=S$$

Vediamo ad esempio il caso dell'espansione:

$$f = (a+b+c+d)(a+b+c'+d)(a+b'+c+d)(a+b'+c'+d)$$

$$= ((a+b+d)+c)((a+b+d)+c')((a+b'+d)+c)((a+b'+d)+c')$$

$$= (a+b+d)(a+b'+d) = ((a+d)+b)((a+d)+b') = a+d$$

Implicanti e implicati primi

Definizione

Un implicante o implicato che non puó essere ulteriormente espanso si definisce come primo

Proprietá interessante, ma che al momento non riusciamo a utilizzare perché non abbiamo un metodo per costruire tali implicanti primi

La distanza Hamming viene introdotta per aiutarci da questo punto di vista

Distanza Hamming (forme SP)

- Selezione di coppie di termini per l'espansione: termini prodotto con lo stesso numero di letterali che differiscono per un solo letterale corrispondente alla stessa variabile in forma vera e complementata
- Nel caso dei mintermini l'operazione puó essere fatta sia analizzando l'espressione che analizzando la tabella di veritá
- In particolare, possono essere espanse le configurazioni corrispondenti a uni della funzione che si trovano a distanza Hamming unitaria
- Si considerino ad esempio i mintermini:

```
xywz 1111 xywz 1110
```

• Questi possono essere espansi come xyw(z + z') = xyw

Rappresentazione dei termini prodotto come configurazioni

- Il ragionamento sulle configurazioni binarie puó essere esteso a termini prodotto con un qualsiasi numero di letterali
- Questo puó essere fatto utilizzando configurazioni di {0,1,-}ⁿ che utilizzano lo stesso ordinamento delle variabili usato nella tabella di veritá
 - in particolare si associa a ogni letterale presente nel termine prodotto il simbolo 1 se il letterale é in forma vera e 0 se é in forma negata
 - si associa il simbolo a quelle variabili che non compaiono nel prodotto
- Ad esempio f(x, y, w, z): $xyw \Leftrightarrow 111-, xy' \Leftrightarrow 10--$

Generalizzazione della distanza Hamming

- La distanza Hamming puó essere generalizzata a quelle configurazioni di {0, 1, -}ⁿ che hanno il simbolo – nelle stesse posizioni
- Ad esempio, 01-0 e 01-1 hanno distanza 1, mentre 11-- e 00-- hanno distanza 2
- Termini prodotto corrispondenti a configurazioni a distanza 1 possono essere espansi sostituendo il valore per cui differiscono con il simbolo –
- Esempio 01 0 e 01 1 possono essere espansi come 01 –
- Infatti, i termini prodotto corrispondenti sono x'yz + x'yz' = x'y(z + z') = xy'

Sommario

Forme canoniche

Ottimizzazione

Forme normali

Insiemi funzionalmente completi

Insiemi funzionalmente completi

- Un insieme di operatori si dice funzionalmente completo se é in grado di descrivere qualsiasi funzione dell'algebra di commutazione
- Gli operatori di disgiunzione, congiunzione e negazione costituiscono un insieme funzionalmente completo
- In pratica si é visto come {∨, ∧, ¬} ({+, ·, ′}) siano sufficenti a descrivere qualsiasi funzione, sono anche necessari?
- Esistono insiemi piú piccoli che siano funzionalmente completi

Operatore ↑ (NAND)

- L'operatore \uparrow viene definito come $a \uparrow b = (a \cdot b)'$
- Corrisponde a un gate NAND
- Risulta da solo funzionalmente completo
- La dimostrazione é banale, si tratta solo di verificare che tramite tale operatore si possono descrivere tutti gli operatori dell'algebra di commutazione
 - $a' = a \uparrow a = a \uparrow 1$
 - $a \cdot b = (a \cdot b)'' = (a \uparrow b) \uparrow (a \uparrow b) = (a \uparrow b) \uparrow 1$
 - $a+b=(a'\cdot b')'=(a\uparrow a)\uparrow(b\uparrow b)=(a\uparrow 1)\uparrow(b\uparrow 1)$

- Le forme normali SP possono essere trasformate in maniera efficente in forme a 2 livelli utilizzanti l'operatore ↑
- La trasformazione pu
 ó essere eseguita utilizzando De Morgan

$$y = ab + a'cd + be = (ab + a'cd + be)'' = ((ab)' \cdot (a'cd)' \cdot (be)')'$$

 Come si puó osservare, l'unico operatore che compare é il NAND (↑) da cui:

$$y = (a \uparrow b) \uparrow (a' \uparrow c \uparrow d) \uparrow (b \uparrow e)$$

- Si noti che l'operatore binario ↑ non é associativo:
 x ↑ y ↑ w ≠ (x ↑ y) ↑ w
- Quando é utilizzato come operatore *n*-ario si ha: $(x_0 \cdot x_1 \dots \cdot x_{n-1})' = (x_0 \uparrow x_1 \dots \uparrow x_{n-1})$

Esempi di trasformazione da reti SP a 2 livelli a reti a NAND a 2 livelli

Operatore ↓ (NOR)

- L'operatore \downarrow viene definito come $a \downarrow b = (a+b)'$
- Corrisponde a un gate NOR
- Risulta da solo funzionalmente completo
- Si noti che in questo caso reti PS possono essere trasformate in reti a NOR a due livelli

Conclusioni

- Si é visto come si possa rappresentare una funzione mediante un espressione
- É stata sviluppata una metrica per valutare il costo di un espressione
- Sono stati sviluppati alcuni concetti utili per la semplificazione di un espressione
- Non si ha ancora un approccio sistematico