CNV_report

John Pluta

10/4/2022

CNVWAS

Table 1: Significant CNVRs

CNVR_ID	Chr	Start	End	Type	Coef.	p-value
CNVR_1374	7	122375615	122986940	Gain	0.85(0.11)	1.4028e-15
$CNVR_1661$	9	107516115	107545274	Gain	0.82(0.12)	5.5318e-12
CNVR_1975	12	14522641	14593902	Gain	0.97(0.09)	1.1750e-27
$CNVR_740$	4	70783348	70934328	Gain	0.55(0.1)	6.0865 e-08
CNVR_1959	7	20703948	20706901	Loss	1.9(0.32)	2.4227e-09

CNVRs significant at p < 1e-05. The table includes location and size of CNVR, gain or deletion, and mean and standard deviation of estimated effect.

Table 2: Genes overlapping CNVRs

CNVR	Genes				
CNVR_1959	CACNA1C, CACNA1C-AS4, CACNA1C-IT3, CACNA1C-AS2, CACNA1C-AS1, ITFG2-AS1, FKBP4, ITFG2, NRIP2, TEX52, FOXM1, RHNO1, TULP3, TEAD4, TSPAN9, LOC100128253, LINC02417, PRMT8				
CNVR_1374	CADPS2, TAS2R16, SLC13A1				
CNVR_1661	NIPSNAP3A, NIPSNAP3B, ABCA1				
CNVR_1975	ATF7IP				
CNVR_740	CSN1S1, CSN2, STATH, HTN3, HTN1, CSN1S2AP				

All genes that partially or complete overlap significant CNVRs.

Expression

We examined the association of copy number state and expression (log2(FPKM)). Expression was adjusted to account for the effect of cPg-methylation by taking the residuals from a linear model. Copy number is

assumed to be additive. Expression is measured for all genes that overlap with a CNVR, except for TAS2R16, which did not have enough observations to model.

Table 3: Correlation of Copy Number and Expression

Gene	r	p-value	
CSN1S1	-0.04	0.6834	
CSN2	0.12	0.1938	
STATH	0.13	0.1802	
HTN3	-0.04	0.6606	
HTN1	-0.05	0.5923	
CSN1S2AP	0.11	0.2635	
ABCB5	0.01	0.9506	
CADPS2	0.01	0.9196	
SLC13A1	0.21	0.0222	
NIPSNAP3A	0.47	1.3041e-07	
NIPSNAP3B	0.35	0.0001	
ABCA1	0.24	0.0087	
ATF7IP	0.11	0.2206	

Pearson correlation and p-value of copy number and expression, corrected for cPg methylation. NIPSNAP3A, NIPSNAP3B, and ABCA1 show a statistically significant and positive correlation. SLC13A1 and ATF7IP show a similar relationship but is effected by outliers.

chr9:107516115-107545274

Figure 1: CNVR1661 overlaps with NIPSNAP3A, fully contains NIPSNAP3B, and overlaps with the promoter region (yellow) or ABCA1. All eQTLs point to lnc-NIPSNAP3B. Exons are denoted in gray among the genes, while probes are in black along the CNVR. Recombination rate is plotted at the bottom. SNPs are colored according to LD ($r2 \ge 0.6$).

Figure 2: Zoomed in view of lnc-NIPSNAP3B.

Annotation

Interpretation

ABCA1 mediates the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I. The efflux function of ABCA1 has anti-cancer activity that is compromised following inhibition of expression by oncogenic or loss-of-function mutations. ABCA1 deficiency permits increased mitochondrial cholesterol and inhibits the release of mitochondrial cell death-promoting molecules, facilitating cancer cell survival (Smith & Land, 2012). ABCA1 Mutations in ABCA1 yield diminish its tumor suppressor functions in patients with chronic myelomonocytic leukemia (Viaud et al., 2020). Low expression of ABCA1 has been linked to worse outcomes in several cancer types including prostate, glioblastoma, pancreatic, breast, lung, and ovarian (Wu et al., 2022).

NIPSNAP3A (NIPSNAP4) and NIPSNAP3B (NIPSNAP3) are homoglous genes with putative roles in vesicular trafficking. ABCA1 is also a regulator of vesicular trafficking, and the close proximity of the genes may indicate a functional relationship. (Buechler et al., 2004). The NIPSNAP family interacts with a variety of mitochondrial and cytoplasmic proteins, and have been implicated in multiple cellular processes associated with different physiologic and pathologic conditions including cancer. (Fathi et al., 2021). NIPSNAP1 and NIPSNAP2 are active in the regulation of mitophagy (Abudu et al., 2019).

Next Steps

Determine pathogenicity of CNVs? https://github.com/Genotek/ClassifyCNV

(Han et al., 2020) annotated CNVRs with transcription start sites, open chromatin, TAD domains, and CTCF binding sites as a proxy for TAD boundaries. Also PFC enhancer annotations, generated by overlapping cross-tissue DNase-seq and ATAC-seq assay information with H3K27ac CHIP-seq peaks. Regions overlapping H3K4me3 peaks and within 2kb of a TSS were exlucded from the set of enhancers. Promoters are gene specific, genes predicted to be the targets of enhancers from Hi-C were most useful.

References

Smith B, Land H. Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep. 2012 Sep 27;2(3):580-90. doi: 10.1016/j.celrep.2012.08.011. Epub 2012 Sep 13. PMID: 22981231; PMCID: PMC3462268.

Viaud et al., 2020. ABCA1 exterts tumor-suppressor function in myeloproliferative neoplasms. Cell Reports 30, 3397-3410

Wu K, Zou L, Lei X, Yang X. Roles of ABCA1 in cancer. Oncol Lett. 2022 Aug 19;24(4):349. doi: 10.3892/ol.2022.13469. PMID: 36072007; PMCID: PMC9434721.

Buechler C, Bodzioch M, Bared SM, Sigruener A, Boettcher A, Lapicka-Bodzioch K, Aslanidis C, Duong CQ, Grandl M, Langmann T, Dembinska-Kiec A, Schmitz G. Expression pattern and raft association of NIPSNAP3 and NIPSNAP4, highly homologous proteins encoded by genes in close proximity to the ATP-binding cassette transporter A1. Genomics. 2004 Jun;83(6):1116-24. doi: 10.1016/j.ygeno.2003.12.011. PMID: 15177564.

Fathi, E., Yarbro, J. M., & Homayouni, R. (2021). NIPSNAP protein family emerges as a sensor of mitochondrial health. BioEssays, 43, e2100014. https://doi.org/10.1002/bies.202100014

Abudu YP, Pankiv S, Mathai BJ, Lamark T, Johansen T, Simonsen A. NIPSNAP1 and NIPSNAP2 act as "eat me" signals to allow sustained recruitment of autophagy receptors during mitophagy. Autophagy. 2019

 $\label{eq:oct:15} {\it Oct;} 15(10):1845-1847. \ \ doi: \ 10.1080/15548627.2019.1637642. \ \ Epub \ 2019 \ \ Jul \ 4. \ \ PMID: \ 31251109; \ PMCID: \ PMC6735490.$

Han, L., Zhao, X., Benton, M.L., et al. Functional annotation of rare structural variation in the human brain. Nat Commun 11, 2990 (2020). https://doi.org/10.1038/s41467-020-16736-1