NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

with credits to Terry Lau Shue Chien, Ho Chin Fung

MA3252 Linear and Network Optimization

AY 2008/2009 Sem 2

Question 1

(a) (i) Referring to the graph given, we can deduce the constraints of the linear program by determining the region of intersection.

$$L_1: x_1 \ge 0$$

$$L_2: x_2 \ge 5$$

$$L_3: x_1 + x_2 \ge 30$$

$$L_4: x_1 \le 20$$

$$L_5: x_1 - x_2 \ge 0$$

(ii) We want to maximize the following

$$\max c_1 x_1 + c_2 x_2$$

Note that $c_i > 0$ is the return for each unit of *i*th investment made. Let $c_1x_1 + c_2x_2 = K$ where $K \in \mathbb{R}$. We push this line along the gradient of $\frac{-c_1}{c_2}$ and we will reach the corner point B. So the best investment option is $(x_1, x_2) = (20, 20)$.

(b) Let

$$z = \max\{3|x_1| - 5x_2, |x_2 - 4x_3|\}$$

$$b = \max\{2\max\{x_2, 0\}, |-4x_1 + 2x_2| - 5x_3\}$$

$$c = \max\{x_2, 0\}$$

then we want to

Question 2

(a) (i) We introduce a slack variable s_1 and an artificial variable y into the standard form of the linear programming.

Choose $x_B = (s_1, y)' = (0, 0)$. Note that $c_B = (0, M)'$, we obtain the starting \bar{c} -row as follow:

$$\bar{c} - \text{row} = (c - \text{row}) - 0 \times (s_1 - \text{row}) - M \times (y - \text{row})$$

Basic	x_1	x_2	x_3	s_1	y	Solutions
c	1	3	1	0	\overline{M}	0
\overline{c}	1	3-3M	1-2M	0	0	-6M
s_1	1	1	2	1	0	5
y	0	3	2	0	1	6
\overline{c}	1	0	-1	0	M-1	-6
s_1	1	0	$\frac{4}{3}$	1	$\frac{-1}{3}$	3
x_2	0	1	$\frac{2}{3}$	0	$\frac{1}{3}$	2
\overline{c}	$\frac{7}{4}$	0	0	$\frac{3}{4}$	$M-\frac{5}{4}$	$\frac{-15}{4}$
x_3	$\frac{3}{4}$	0	1	$\frac{3}{4}$	$-\frac{1}{4}$	$\frac{9}{4}$
x_2	$\frac{-1}{2}$	1	0	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

In the first iteration, we choose x_2 as the entering variable, as 3-3M<1-2M<0. Let i be any variable of the LP, we compute the ratio, r_{x_2i} where $r_{x_2i}=|\frac{B^{-1}b_i}{B^{-1}A_2}|$ and we select the min of r_{x_2i} and variable i as leaving variable. We compute and find out that $r_{x_2s_1}=5$ and $r_{x_2y}=2$. Hence, y will be the leaving variable.

In the second iteration, we choose x_3 as the entering variable, because $\overline{c_3}$ is the only component with has nonpositive value. We compute the ration, r_{x_3i} where $r_{x_3i} = |\frac{B^{-1}b_i}{B^{-1}A_3}|$ and we select the min of r_{x_3i} and variable i as leaving variable. We compute and find out that $r_{x_3s_1} = \frac{9}{4}$ and $r_{x_3x_2} = 3$. Hence s_1 will be the leaving variable.

In the third iteration, notice that $\bar{\mathbf{c}} > 0$. So we have an optimal solution

$$\mathbf{x} = (x_1 \ x_2 \ x_3 \ s_1) = (0 \ \frac{1}{2} \ \frac{9}{4} \ 0)$$

(ii)

max
$$5p_1 + 6p_2$$

st. $p_1 \le 1$
 $p_1 + 3p_2 \le 3$
 $2p_1 + 2p_2 \le 1$
 $p_1 \le 0, p_2$ free

(iii) Complementary Slackness theorem states that let x and p be feasible solutions to the primal problem and dual problem respectively. The vector x and p are optimal solutions for the two respective problems if and only if

$$p_i(\mathbf{a_i'x} - b_i) = 0 \quad \forall i$$
$$(c_j - \mathbf{p'A_j})x_j = 0 \quad \forall j$$

By applying the above theorem, we substitute the value of \mathbf{x} into the following equations,

$$x_1(p_1 - 1) = 0$$

$$x_2(p_1 + 3p_2 - 3) = 0 \Rightarrow 2p_1 + 6p_2 = 6$$

$$x_3(2p_1 + 2p_2 - 1) = 0 \Rightarrow 2p_1 + 2p_2 = 1$$

$$p_2 = \frac{5}{4} \quad p_1 = \frac{-3}{4}$$

(b) (\Longrightarrow) Assume (1) is true, then $\exists x \in \mathbb{R}^n$ such that Ax = b. For any $y \in \mathbb{R}^n$ st. A'y = 0. we have

$$y'b = y'Ax$$

$$= (y'A)(x)$$

$$= 0'x$$

$$= 0 \neq 1$$

which $y'b = 0 \neq 1$, a contradiction.

(\Leftarrow) Let **z** be a vector in \mathbb{R}^m which satisfies $\mathbf{A}'\mathbf{y} = \mathbf{0}$ and $\mathbf{z}'\mathbf{b} = 1$. So we have $\mathbf{z}'\mathbf{A} = \mathbf{0}$ as (1) $\mathbf{z}'\mathbf{b} = 1$ as (2). $\forall \mathbf{x} \in \mathbb{R}^n$, we consider the following equation

$$\mathbf{z'}\mathbf{A}\mathbf{x} = \mathbf{0} \quad (3)$$

Suppose $\exists \mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$, then from (3), $\mathbf{z}'\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{z}'\mathbf{b} = \mathbf{0}$, which contradicts (2). Thus when *Alternative* 2 holds, *Alternative* 1 cannot hold.

Question 3

(i) We complete the tableau From the above tableau, we can deduce \mathbf{B}^{-1} . Note that x_3, x_4, x_5

Basic	x_1	x_2	x_3	x_4	x_5	Solution
\overline{c}	0	0	0	δ	1	-7
x_1	1	0	0	-1	0	3
x_3	0	0	1	γ	3	eta
x_2	0	1	0	α	-4	1

is the initial basic variables. So we know that

$$B^{-1} = \left(\begin{array}{ccc} A_3 & A_4 & A_5 \\ \end{array} \right) = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & \gamma & 3 \\ 0 & \alpha & -4 \end{array} \right)$$

Page: 3 of 8

(ii)
$$\underline{c'} - \underline{c'_B}B^{-1}A \ge 0$$

$$c_4 - (c_1 \quad c_2 + \epsilon \quad c_3)B^{-1}A_4 \ge 0 \Leftrightarrow \overline{c_4} - (0 \quad \epsilon \quad 0)B^{-1}A_4 \ge 0$$

$$c_5 - (c_1 \quad c_2 + \epsilon \quad c_3)B^{-1}A_5 \ge 0 \Leftrightarrow \overline{c_5} - (0 \quad \epsilon \quad 0)B^{-1}A_5 \ge 0$$

$$\delta - (0 \quad \epsilon \quad 0) = \begin{pmatrix} -1 \\ \gamma \\ \alpha \end{pmatrix} = \delta - \epsilon \gamma \ge 0 \Rightarrow \epsilon \ge \frac{\delta}{\gamma}$$

$$1 - (0 \quad \epsilon \quad 0) = \begin{pmatrix} 0 \\ 3 \\ -4 \end{pmatrix} = 1 - 3\epsilon \ge 0 \Rightarrow \epsilon \le \frac{1}{3}$$

(iii) Given $\beta = 0$, we have the following table

Basic	x_1	x_2	x_3	x_4	x_5	Solution
\overline{c}	0	0	0	δ	1	-7
x_1	1	0	0	-1	0	3
x_3	0	0	1	γ	3	0
x_2	0	1	0	α	-4	1

to make sure the current basic feasible solution is optimal. We have $\delta \geq 0$ so that $\underline{c} > \underline{0}$. Note that also this optimal solution might be a degenerate optimal solution.

- (iv) If at any iteration, the constraint coefficients $B^{-1}A_j$ of a nonbasic variable x_j are all non-positive, the solution space is unbounded in that direction. If, the reduced cost $\overline{c_j}$ of that nonbasic variable is negative (respectively positive) in the minimization (respectively maximization) problem, then the objective value is also unbounded.
 - To have a feasible solution, $\beta \geq 0$. To make sure x_4 is chosen as entering variable, $\delta < 0$, $\gamma \geq 0$ and $\alpha \leq 0$. In particular, if $\beta > 0$, then $\gamma \leq 0$. If $\beta = 0$, then γ is free.
- (v) To have the primal problem infeasible, $\beta < 0$. Then to ensure dual problem is feasible, $\delta > 0$ and $\gamma < 0$.

Question 4

(a) (i)

$$\begin{array}{ll} \max & 100P + 75T - 20L \\ st. & P \geq 20 \\ & T \geq 5 \\ & 0.3P + 0.5T \leq 100 \quad \Rightarrow 3P + 5T \leq 100 \\ & L \leq 250 \\ & 0.5P + T \leq L \\ & 0.6P + 0.8T \leq 40 \end{array}$$

(ii) Yes, the company should accept the offer. Referring to the sensitivity report, note that the Shadow Price for raw material is \$ 30. Hence, the net profit will be \$ 10.

$$2 \times 30 - 50 = 10$$

- (iii) Note that the constraints of T is tight. Considering the Shadow Price for T, the increase in shadow price is $2 \times -\$ 95 = -\$ 190$. Hence they will lose extra \$ 190 of profit.
- (b) Let $S = {\mathbf{A}\mathbf{x} = b}$ be the feasible region for a standard LP problem. We try to study the property of Ax.

$$Ax = \begin{cases} a_{11}x_1 + \dots + a_{1i}x_i^+ + a_{1i}x_i^- + \dots + a_{1n}x_n = b_1 \\ \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mi}x_i^+ + a_{mi}x_i^- + \dots + a_{mn}x_n = b_m \end{cases}$$

By observations, the coefficients of x_i^+ and x_i^- are not equal for each row.

To prove the statement, we assume to the contrary that there exists a step of the simplex method that 2 of the variables x_i^+, x_i^- is equal to zero.

Basic	x_1	 x_i^+	··· · <u>c'_B</u> B	x_i^-	 x_n	Solution
\overline{c}		$\underline{c'_B}B^{-1}b$				
x_{i_1}						
:	:	:		:	:	:
x_i^+						
:	$B^{-1}A_1$	 $B^{-1}A_i$		$B^{-1}A_i$	 $B^{-1}A_n$	$B^{-1}b$
x_i^-						
:	:	:		:	:	:
x_{i_m}						

Note that $B^{-1}b > \mathbf{0}$ for a feasible solution. So we will have x_i^+, x_i^- both not equal to zero. So, x_i^+ and x_i^- must be both basic variables. However, notice from the above tableau that the columns for both x_i^+ and x_i^- are identical.

Considering A, the matrix consisting only the columns of basic variables, we find out that A is a singular matrix, since there are 2 columns which are identical. Since A is singular, we obtain a contradiction. Therefore, in each step of the simplex method, at most one of the variables x_i^+, x_i^- is not equal to zero.

Page: 5 of 8

Question 5

(a)

Referring to the graph above, we set the vertex i be the starting of ith year. Let $V = \{1, 2, 3, 4, 5, 6\}$ and $E = \{(i, j) : 1 \le i < j \le 6\}$. We define the cost, c_{ij} as

$$c_{ij} = \begin{cases} 40 + 20 + 40 & = 60 & \text{if } j - i = 1 \\ 40 + 20 + 40 + 30 & = 90 & \text{if } j - i = 2 \\ 40 + 20 + 40 + 30 + 40 & = 130 & \text{if } j - i = 3 \\ 40 + 20 + 40 + 30 + 40 + 60 & = 190 & \text{if } j - i = 4 \\ 40 + 20 + 40 + 30 + 40 + 60 + 70 & = 260 & \text{if } j - i = 5 \end{cases}$$

We can then model this problem as a minimum cost problem, where

$$\min \sum_{(i,j)\in E} c_{ij}x_{ij}$$

$$st. \sum_{j\in O(i)} x_{ij} - \sum_{j\in I(i)} x_{ji} = \begin{cases} 0 & \text{if } i \neq 1, 6\\ 1 & \text{if } i \neq 1\\ -1 & \text{if } i = 6 \end{cases}$$

$$x_{ij} \geq 0 \quad \forall (i,j) \in E$$

Page: 6 of 8

(b)

We try to compute $p_i = c_{ij} - p_j$. Let $p_6 = 0$, then

$$p_6 - p_1 = 56 \Rightarrow p_1 = -56$$

 $p_1 - p_3 = 48 \Rightarrow p_3 = -104$

$$p_1 - p_4 = 28 \Rightarrow p_4 = -84$$

$$p_2 - p_1 = 7 \Rightarrow p_2 = -49$$

$$p_7 - p_2 = 33 \Rightarrow p_7 = 82$$

$$p_7 - p_5 = 19 \Rightarrow p_5 = 63$$

Then we compute $\overline{c_{ij}} = c_{ij} - (p_i - p_j)$, and we find out that $\overline{c_{62}} = 48 - (0 - (-49)) = -1 < 0$ while other $\overline{c_{ij}} > 0$, then we choose arc (6,2) to enter. By considering the following graph,

we find the value of $\theta^* = 9$ and decides that arc (6,1) leaves. After this iteration, we obtain a new graph,

We try to use the similar method as above to compute $p_i = c_{ij} - p_j$. Let $p_6 = 0$, then

$$p_{6} - p_{2} = 48 \Rightarrow p_{2} = -48$$

$$p_{7} - p_{2} = 33 \Rightarrow p_{7} = -15$$

$$p_{7} - p_{5} = 19 \Rightarrow p_{5} = -34$$

$$p_{2} - p_{1} = 7 \Rightarrow p_{1} = -55$$

$$p_{1} - p_{3} = 48 \Rightarrow p_{3} = -103$$

$$p_{1} - p_{4} = 28 \Rightarrow p_{4} = -83$$

Then we compute $\overline{c_{ij}} = c_{ij} - (p_i - p_j)$, and we find out that $\forall (i,j)$ arc in this graph, $\overline{c_{ij}} > 0$, then we conclude that this dual solution is optimal. By Complementary Slackness Theorem, the prime solution is optimal as well. Hence we have

(ii) Note that ϵ is small enough so that it will not affect the optimal solutions. Now, considering the flow of the optimal solution's graph, an extra flow of ϵ flow passes through (6,2), incurring an extra cost of $c_{62} \times \epsilon$. Then the extra flow of ϵ passes through (2,1), incurring an extra cost of $c_{21} \times \epsilon$. Since ϵ flows out at node 1, there is no further cost incurred. Hence the change in value of the optimal cost is

$$\delta$$
 in optimal cost = $\epsilon \times (c_{62} + c_{21}) = 55\epsilon$

Page: 8 of 8