ARJUNA (NEET)

Trigonometry

DPP-01

- Convert following in degrees:
- (iii) $\frac{\pi}{6}$
- (v) $\frac{5\pi}{3}$
- Convert following in radian:
 - (i) 45°
- (ii) 60°
- (iii) 240°
- (iv) 135°
- (v) 120°
- (vi) 90°
- If $\tan \theta = \frac{5}{12}$; then what is the value of 3 $\sin \theta + 2 \cos \theta$.
 - (A) 3
- (B) 4
- (C) -3
- (D) 12
- If $y = \sin 2\theta$ then find '\theta' where y will be maximum:
 - (A) 90°
- (B) 60°
- (C) 45°
- (D) 30°
- (5.) If position of object $x = 3 \sin \theta \sqrt{7} \cos \theta$ then motion of object is bounded between position.
 - Find value of tan (3°)
 - (A) 3°
- (B) $\sin (3^{\circ})$
- (C) $\frac{\pi}{60}$ rad (D) both (B) and (C)
- 7. If $\frac{a_1^2 + a_2^2}{a_1^2 a_2^2} = \frac{5}{3}$ then find $\frac{a_1}{a_2} = \frac{5}{3}$
 - (A) 0
- (B) 1
- (C) 2
- (D) 4

- 8. If $\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} = \frac{7}{3}$ then find $\tan \theta$?
 - (A) $\frac{3}{5}$ (B) $\frac{5}{2}$ (C) $\frac{5}{3}$ (D) $\frac{2}{5}$
- Find sum of $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + ... + 4p$ to ∞

- 10. If acceleration due to gravity g at height h<< R; where R is radius of earth g =

$$g_0 \left(1 + \frac{h}{R}\right)^{-2}$$
 then which is correct

(A)
$$g = g_0$$

(B)
$$g = g_0 \left(1 - \frac{2h}{R} \right)$$

(C)
$$g = g_0 \left(1 + \frac{2h}{R} \right)$$

- Find value of different trigonometric function:
 - (i) $\sin (135^{\circ})$
- (ii) $\tan (-45^{\circ})$
- (iii) $\sin (-60^\circ)$
- (iv) $\cos (-30^\circ)$
- (v) $\cos{(150^{\circ})}$
- (vi) tan 135°

ANSWERS

1. (i)
$$\frac{5\pi}{4}$$
; (ii) $\frac{3\pi}{2}$; (iii) $\frac{4\pi}{3}$; (iv) $\frac{5\pi}{3}$; (v) $\frac{\pi}{6}$; (vi) $\frac{\pi}{3}$

- **2.** (i) 45°; (ii) 135°; (iii) 60°; (iv) 120°; (v) 240°; (vi) 96°
- **3.** (A)
- **4.** (C)
- 5. Limit 7 motion (-4 to +4)
- **6.** (D)
- **7.** (C)
- **8.** (B)
- **9.** (A)
- **10.** (B)
- **11.** (i) $\sin (135^\circ)$; (ii) $\sqrt{3}/2$; (iii) $\tan (-45^\circ) = -1$; (iv) $-\sqrt{3}/2$; (v) $-\sqrt{3}/2$; (vi) -1

Note - If you have any query/issue

Mail us at support@physicswallah.org