Termodinámica - Clase 7

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

La desigualdad de Clausius

Entropía

La segunda ley de la termodinámica

Resumen

Conceptos en esta clase

- La segunda ley de la termodinámica (su forma matemática)
 - La desigualdad de Clausius
 - La entropía
 - El principio del aumento de entropía

Contenido

Conceptos en esta clase

La desigualdad de Clausius

Entropía

La segunda ley de la termodinámica

Resumen

$$Q_1 = Q_{1A}$$
 $Q_2 = Q_{2B}$

Intercambio de calor con el foco frio: $Q_{0A} + Q_{0B} - Q_0$.

Trabajo neto hecho por el sistema es:

$$W - (W_A + W_B)$$

Primera ley:

$$(Q_{0A}+Q_{0B})-Q_0=W-(W_A+W_B)$$

Tenemos un flujo de calor de una sola fuente y conversión de este flujo en trabajo. Por lo tanto, el enunciado de Kelvin-Planck implica:

$$W \leq W_A + W_B$$

$$\Rightarrow (Q_{0A} + Q_{0B}) - Q_0 \leq 0$$

Estamos usando máquinas frigoríficas que ocupan el cíclo de Carnot, así que:

$$\frac{Q_{1A}}{Q_{0A}} = \frac{T_1}{T_0} \quad \Rightarrow \quad Q_{0A} = Q_1 \frac{T_0}{T_1}
\frac{Q_{2B}}{Q_{0B}} = \frac{T_2}{T_0} \quad \Rightarrow \quad Q_{0B} = Q_2 \frac{T_0}{T_2}$$

Entonces:

$$\left(Q_{0A}+Q_{0B}\right)-Q_{0}=\left(\frac{Q_{1}}{T_{1}}+\frac{Q_{2}}{T_{2}}\right)T_{0}-Q_{0}=\frac{Q_{1}}{T_{1}}+\frac{Q_{2}}{T_{2}}-\frac{Q_{0}}{T_{0}}\leq0$$

Hasta ahora hemos considerado como sistema el aparato completo (el motor y las dos máquinas frigoríficas). Ahora vamos a considerar **el motor como el sistema**.

Desde el punto de vista del **motor**, Q_1 y Q_2 entran el sistema, y Q_0 sale. Así que Q_0 lleva un signo menos según esta nueva definición del sistema:

$$\frac{Q_0}{T_0} + \frac{Q_1}{T_1} + \frac{Q_2}{T_2} \le 0$$

Generalizando a un número arbitrario de motores y máquinas frigoríficas:

$$\sum_{i} \frac{Q_{i}}{T_{i}} \leq 0$$

Las temperaturas T_i son las temperaturas de los focos. NO es la temperatura del sistema!

En el límite de muchos intercambios de calor infinitesimales tenemos una integral:

$$\oint \frac{dQ}{T} \le 0$$
 La designaldad de Clausius

Aquí T es todavía la temperatura de los focos (ya que hay flujos infinitesimales de calor la diferencia en temperatura entre los focos se acerca a cero en el límite, así que hay una sola temperatura T).

Procesos (cíclos) reversibles

Si **todos** los procesos son reversibles, podemos invertir la dirección de todos los flujos de calor (y el trabajo), aplicar la misma lógica, y llegar a:

$$\oint \frac{d^2Q}{T} \ge 0$$

Este es consistente con el resultado anterior si y sólo si tenemos una igualdad:

$$\oint \frac{dQ_R}{T} = 0$$
 Cíclos reversibles

En el caso de cíclos reversibles, T es la temperatura del sistema también.

Contenido

Conceptos en esta clase

La desigualdad de Clausius

Entropía

La segunda ley de la termodinámica

Resumer

Un cíclo reversible

$$\oint \frac{dQ}{T} = \int_{i}^{f} \frac{dQ_{R}}{T} + \int_{f}^{i} \frac{dQ_{R}}{T} = 0$$

$$\Rightarrow \int_{i|\text{camino 1}}^{f} \frac{dQ_{R}}{T} = \int_{i|\text{camino 2}}^{f} \frac{dQ_{R}}{T}$$

La integral es independiente del camino: tenemos una diferencial exacta.

Entropía: una nueva variable termodinámica

Definimos una nueva variable termodinámica: la **entropía** S.

$$dS \equiv \frac{dQ_R}{T} \quad \Rightarrow \quad \int_i^f \frac{dQ_R}{T} = \int_i^f dS = S_f - S_i = \Delta S$$

(Aunque dQ_R es inexacta, 1/T es un factor integrante que la convierte en una diferencial exacta).

Contenido

Conceptos en esta clase

La desigualdad de Clausius

Entropía

La segunda ley de la termodinámica

Resumer

El principio del aumento de entropía

$$\int_{i}^{f} \frac{dQ}{T} + \int_{f}^{i} \frac{dQ_{R}}{T} < 0$$

$$\Rightarrow \int_{i}^{f} \frac{dQ}{T} < \int_{i}^{f} \frac{dQ_{R}}{T} = S_{f} - S_{i} = \Delta S$$

Entonces, tenemos $dQ \leq TdS$. Si el sistema está aislado térmicamente (dQ = 0):

$$dS \ge 0$$

La segunda ley de la termodinámica

En cualquier proceso para un sistema aislado:

$$dS \geq 0 \quad \Rightarrow \quad \Delta S \geq 0 \quad \text{para un proceso finito}$$

En el caso de un proceso reversible:

$$\Delta S = 0$$

La segunda ley de la termodinámica

En cualquier proceso **irreversible**, la entropía de un sistema aislado aumenta. En cualquier proceso **reversible**, la entropía de un sistema aislado se mantiene constante.

⇒ si un sistema está en **equilibrio**, su entropía debe estar en su **máximo**.

La segunda ley de la termodinámica

- ¿Por qué hablamos de un sistema aislado aquí?
- Porque se puede tener disminución de la entropía del sistema para un sistema abierto...
- ...pero la entropía del sistema + entorno siempre aumenta (en un proceso irreversible).

Consideramos un proceso reversible equivalente:

Consideramos un proceso reversible equivalente:

Consideramos un proceso reversible equivalente:

- En cada momento hay un flujo de calor $dQ = C_P dT$ reversible del foco caliente hacia el agua.
- La entropía del **agua** cambia como $dS_{\text{sistema}} = C_P dT/T$.
- Suponiendo que C_P es una constante (al menos en este rango de temperatura):

$$\Delta S_{\text{sistema}} = C_P \int_{T_i}^{T_f} \frac{dT}{T} = C_P \ln \frac{373}{293} = 0.24141 C_P$$

 Entropía es una variable termodinámica, así que este resultado aplica al proceso irreversible original también.

- También podemos calcular el cambio de entropía del entorno.
- El flujo de calor que **sale** del foco caliente es igual al que entra el agua: $Q_{\text{foco}} = -C_P(373 293) = -80C_P$.
- Este flujo ocurre a una temperatura constante:

$$\Delta S_{\text{foco}} = -80 C_P / 373 = -0.21448 C_P$$

• El cambio total del **universo** (sistema + entorno) es:

$$\Delta S_{\mathsf{foco}} + \Delta S_{\mathsf{sistema}} = 0.02693 C_P > 0.$$

Contenido

Conceptos en esta clase

La desigualdad de Clausius

Entropía

La segunda ley de la termodinámica

Resumen

Resumen

- La designaldad de Clausius: para el **sistema** en cualquier proceso cíclico $\int dQ/T \le 0$.
- Definición de la entropía: $dS \equiv dQ_R/T$.
- La segunda ley de la termodinámica: para un sistema aislado $\Delta S \geq 0$, con igualdad solamente en el caso de un proceso reversible.
- Por lo tanto, en nuestro Universo, la entropía siempre aumenta.
- Este es la única ley de la física que define una dirección en el tiempo para los procesos físicos.
- En la física estadística hay una explicación de primeros principios de la segunda ley.