VISUAL PHYSICS ONLINE

ALPHA DECAY

An alpha particle (α particle) is a helium nucleus $^4\text{He}_2$ that is naturally emitted from an unstable nucleus producing a nucleus of a new element.

Emission of a ⁴He₂ nucleus:

$$N \rightarrow (N-2)$$
 $Z \rightarrow (Z-2)$ $A \rightarrow (A-4)$

Transmutation of a parent P into its daughter D:

$$^{A}P_{Z} \rightarrow ^{A-4}D_{Z-2} + ^{4}He_{2}$$

Example

Alpha decay occurs because the strong nuclear force is unable to hold large nuclei together (Z > 82). The attractive strong nuclear force only acts between neighbouring nucleons since it is short ranged.

However, the repulsive electrostatic force is long ranged and acts all the way across a nucleus and dominates the strong nuclear force. An α particle is very a very tightly bound unit and this is why a helium nucleus is emitted rather than some other combination of protons and neutrons.

A gamma ray is emitted when a parent nucleus decays by emitting an alpha particle and the daughter nucleus is left in an excited state (*). The excited daughter nucleus than emits a gamma ray. So, in an α source, γ rays are often emitted as well as the α particles.

$$^{226} \text{Ra}_{88} \ \ \ \rightarrow \ ^{222} \text{Rn}_{86} \ \ + \ ^{4} \text{He}_{2}$$
 energy of α particle 4.871 MeV

$$^{226} Ra_{88} \rightarrow ^{222} Rn_{86}^* + ^{4} He_2$$
 energy of α particle 4.685 MeV

$$^{222}{\rm Rn_{86}}^*$$
 $\,\rightarrow\,$ $^{222}{\rm Rn_{86}}$ + γ $\,$ energy of γ ray 0.186 MeV

The excited nucleus can also be represented by the superscript *, e.g., ²²²Rn₈₆*

One widespread application of nuclear physics is present in nearly every home in the form of an ordinary smoke detector.

Web search: How does a smoke detector work?

Alpha particles have the least penetrating power compared to beta particles and gamma rays as they move with a smaller velocity. Alpha particles very easily ionize the atoms in there vicinity and hence loss energy very rapidly and therefore do not travel very far into a material. In air, alpha particles only travel about 100 mm.

Alpha particles are not particularly dangerous to a person with external exposure. However, if ingested, they can cause serve damage to cells and organs because of the high ionizing power.

VISUAL PHYSICS ONLINE

If you have any feedback, comments, suggestions or corrections please email:

Ian Cooper School of Physics University of Sydney ian.cooper@sydney.edu.au