18-661 Introduction to Machine Learning

Nearest Neighbors

Spring 2023

ECE - Carnegie Mellon University

Outline

1. Parametric and Nonparametric Models

2. Nearest Neighbor Classification

3. K Nearest Neighbors Classification

4. Practical Aspects of NN

Parametric and Nonparametric

Models

Parametric vs. Nonparametric

- So far, we've discussed parametric machine learning models:
 - Linear regression
 - Naïve Bayes
 - · Logistic regression
 - Linear SVMs
- This week, we will discuss two *nonparametric* models:
 - Nearest neighbors
 - Decision trees

Parametric vs. Nonparametric

Key difference:

- Parametric models can be characterized via some *fixed* set of parameters θ . Given this set of parameters, our future predictions are independent of the data \mathcal{D} , i.e., $P(x|\theta,\mathcal{D}) = P(x|\theta)$.
 - E.g. logistic regression, SVM makes prediction based on the decision boundary w^Tx + b, where (w, b) can be viewed as the parameter θ.
 - Often simpler and faster to learn, but can sometimes be a poor fit
- Nonparametric models make prediction directly based on the data \mathcal{D} (without explicitly learning a fixed parameter θ).
 - More complex and computationally expensive, but can learn more flexible patterns
- Both parametric and nonparametric methods can be used for either regression or classification.

Outline

1. Parametric and Nonparametric Models

2. Nearest Neighbor Classification

3. K Nearest Neighbors Classification

4. Practical Aspects of NN

Nearest Neighbor Classification

Recognizing Flowers

Types of Iris: setosa, versicolor, and virginica

Measuring Flower Properties

Features: the widths and lengths of sepal and petal

Data Often Fits into a Table

Ex: Iris data (click here for all data)

- 4 features
- 3 classes

Fisher's Iris Data				
Sepal width +	Petal length +	Petal width +	Species +	
3.5	1.4	0.2	I. setosa	
3.0	1.4	0.2	I. setosa	
3.2	1.3	0.2	I. setosa	
3.1	1.5	0.2	I. setosa	
3.6	1.4	0.2	I. setosa	
3.9	1.7	0.4	I. setosa	
3.4	1.4	0.3	I. setosa	
3.4	1.5	0.2	I. setosa	
2.9	1.4	0.2	I. setosa	
3.1	1.5	0.1	I. setosa	
	Sepal width \$ 3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9	Sepal width ◆ Petal length ◆ 3.5 1.4 3.0 1.4 3.2 1.3 3.1 1.5 3.6 1.4 3.9 1.7 3.4 1.4 3.9 1.7 3.4 1.4 3.9 1.7 3.4 1.4 3.4 1.5 2.9 1.4	Sepal width \$\phi\$ Petal length \$\phi\$ Petal width \$\phi\$ 3.5 1.4 0.2 3.0 1.4 0.2 3.2 1.3 0.2 3.1 1.5 0.2 3.6 1.4 0.2 3.9 1.7 0.4 3.4 1.4 0.3 3.4 1.5 0.2 2.9 1.4 0.2	

Pairwise Scatter Plots of 131 Flower Specimens

Visualization of data helps to identify the right learning model Which combination of features separates the three classes?

Figure 1: Each colored point is a flower specimen: setosa, versicolor, virginica

Different Types Seem Well-clustered and Separable

Using two features: petal width and sepal length

Labeling an Unknown Flower Type

Closer to red cluster: so labeling it as setosa

Nearest Neighbor Classification (NNC)

Training data (set)

- N samples: $\mathcal{D}^{\text{TRAIN}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$
- Input $\mathbf{x}_n \in \mathbb{R}^D$, output (label): $\mathbf{y}_n \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- Learning goal: given a test point x, predict its label y.

Nearest neighbor of a test data point x

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \dots, N\}$ is index of the closest training sample

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{D} (x_d - x_{nd})^2$$

Classification rule

$$y = f(\mathbf{x}) = y_{\mathsf{nn}(\mathbf{x})}$$

Example: if nn(x) = 2, then

$$y_{nn(x)} = y_2,$$

which is the label of the 2nd data point.

Visual Example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.

Example: Classify Iris with Two Features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Flower with unknown category

petal width = 1.8 and sepal length = 6.4

Calculating distance from (x_1, x_2) to (x_{n1}, x_{n2}) : $(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2$

ID	distance
1	4.25
2	0.52
3	0.58

Thus, the predicted category is versicolor.

How to Measure "Nearness"?

Previously, we used Euclidean distance

$$\mathsf{nn}(\mathbf{x}) = \mathsf{argmin}_{n \in [\mathbb{N}]} \|\mathbf{x} - \mathbf{x}_n\|_2^2$$

We can also use alternative distances

• E.g., the ℓ_1 distance (i.e., city block distance, or Manhattan distance):

$$\begin{aligned} \mathsf{nn}(\mathbf{x}) &= \mathsf{argmin}_{n \in [\mathbb{N}]} \, \|\mathbf{x} - \mathbf{x}_n\|_1 \\ &= \mathsf{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}| \end{aligned}$$

ullet Or, the ℓ_∞ (supremum) distance:

$$\mathsf{nn}(\boldsymbol{x}) = \mathsf{argmin}_{n \in [\mathsf{N}]} \max_{d} |x_d - x_{nd}|$$

Figure 2: Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

Nearest Neighbors for Regression

Recall the nearest neighbor of a (training or test) data point:

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $\mathsf{nn}(x) \in [\mathsf{N}] = \{1, 2, \cdots, \mathsf{N}\}$ indexes a training instance

$$\operatorname{nn}(\boldsymbol{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \operatorname{argmin}_{n \in [\mathbb{N}]} \sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2$$

Regression rule

$$y = f(\mathbf{x}) = y_{\mathsf{nn}(\mathbf{x})}$$

Label x with the label of its nearest neighbor!

Parametric vs. Nonparametric, Revisited

Nonparametric models make predictions directly based on the data \mathcal{D} (without learning any parametric model like the linear decision boundary in SVM/logistic regression).

- Parametric models are often simpler and faster to learn, but can sometimes be a poor fit.
- Nonparametric models are more complex and computationally expensive, but can learn more flexible patterns.

How does this manifest for nearest neighbors?

- Nearest neighbors often learns a highly nonlinear decision boundary.
- But, we need to compare the test data point to every sample in the training dataset, which is computationally expensive.

Outline

1. Parametric and Nonparametric Models

2. Nearest Neighbor Classification

3. K Nearest Neighbors Classification

4. Practical Aspects of NN

K Nearest Neighbors

Classification

Drawbacks of Using One Nearest Neighbor

- What if the nearest neighbor of the test point is an outlier?
- Relying on one nearest neighbor makes the decision boundary susceptible to outliers
- Even without outliers, it results in a complex, jagged decision boundary

Solution: Use K nearest neighbors and combine their labels

K-Nearest Neighbor (KNN) Classification

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\operatorname{nn}_1(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}]} \|\mathbf{x} \mathbf{x}_n\|_2^2$
- 2nd-nearest neighbor: $\operatorname{nn}_2(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(\mathbf{x})} \|\mathbf{x} \mathbf{x}_n\|_2^2$
- 3rd-nearest neighbor: $\operatorname{nn}_3(\mathbf{x}) = \operatorname{argmin}_{n \in [\mathbb{N}] \operatorname{nn}_1(\mathbf{x}) \operatorname{nn}_2(\mathbf{x})} \|\mathbf{x} \mathbf{x}_n\|_2^2$

The set of K-nearest neighbors

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Let
$$x(i) = x_{nn_i(x)}$$
, then

$$\|\mathbf{x} - \mathbf{x}(1)\|_{2}^{2} \leq \|\mathbf{x} - \mathbf{x}(2)\|_{2}^{2} \cdots \leq \|\mathbf{x} - \mathbf{x}(K)\|_{2}^{2}$$

How to Classify with K Neighbors?

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

We use the *indicator function* $\mathbb{I}(y_n == c)$ to represent the votes.

• Aggregate everyone's vote

$$v_c = \sum_{n \in knn(x)} \mathbb{I}(y_n == c), \quad \forall \quad c \in [C]$$

• Label with the majority, breaking ties arbitrarily

$$y = f(\mathbf{x}) = \operatorname{arg\,max}_{c \in [C]} v_c$$

Example

Example

How to Choose an Optimal K?

- When K increases, the decision boundary becomes smoother and less susceptible to outliers.
- However, if K is too large, it can also lead to misclassification as we are taking votes from faraway training points.

How to Do Regression with K Neighbors?

- We need a way to aggregate labels from each of the neighbors.
- Average the labels associated with the K points.

$$\hat{y} = \frac{1}{K} \sum_{n \in knn(\mathbf{x})} y_n$$

Pros and Cons of Nearest Neighbors

Advantages of NNC

- Simple and easy to implement just compute distances, no optimization required
- Can learn complex decision boundaries

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for labeling a data point.
- We need to "carry" the training data around. Without it, we cannot do classification.
- Choosing the right distance measure and *K* can be difficult.

Pros and Cons of Nearest Neighbors

Disadvantages of NNC continued

- Relies on the existence of training data points "close" to test points.
- Can break down if the classes are unbalanced.

Outline

1. Parametric and Nonparametric Models

2. Nearest Neighbor Classification

3. K Nearest Neighbors Classification

4. Practical Aspects of NN

Practical Aspects of NN

Hyperparameters in NN

Two crucial choices for NN

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance). Alternatively, can use L_1 distance, or more generally, the following L_p distance measure

$$\|\mathbf{x} - \mathbf{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

for $p \ge 1$.

These are not specified by the algorithm itself — selecting them requires empirical studies and are task/dataset-specific.

Hyperparameter Tuning on a Validation Dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{\tiny TRAIN}} = \{(\pmb{x}_1, y_1), (\pmb{x}_2, y_2), \cdots, (\pmb{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $\mathbf{x} \notin \mathcal{D}^{\text{TRAIN}}$

Validation data

- L samples/instances: $\mathcal{D}^{\text{VAL}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyperparameter(s).

Training data, validation and test data should *not* overlap!

Recipe

- For each possible value of the hyperparameter (say $K = 1, 3, \dots, 100$)
 - ullet Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$ (we don't need this step for NNC)
 - ullet Evaluate the performance of the model on $\mathcal{D}^{\scriptscriptstyle{\mathrm{VAL}}}$
- ullet Choose the model with the best performance on $\mathcal{D}^{ ext{VAL}}$
- ullet Evaluate the model on $\mathcal{D}^{ ext{TEST}}$

Cross-Validation

What if we do not have validation data?

- We split the training data into S equal parts.
- We use each part in turn as a validation dataset and use the others as a training dataset.
- We choose the hyperparameter such that the model performs the best across all runs (based on e.g. average.)

Figure 3: S = 5: 5-fold cross validation

Tip: Preprocess Data

Distances depend on units of the features!

Tip: Preprocess Data

Normalize data to have zero mean and unit standard deviation in each dimension

• Compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data — you would need/want to try different ones and pick among them using (cross) validation

You Should Know

- The differences between parametric and non-parametric learning models
- How to implement K-nearest neighbors for regression and classification
- Practical aspects of NNC, such as tuning hyperparameters (K, distance metric) and feature scaling.