CSCI 340 Data Structures and Algorithm Analysis

Graph Part II

Graph traversal/search

- Visit all vertices once and only once
- Different from tree traversal:
 - There may be cycles, which can cause infinite loops
 - There may be isolated vertices or isolated subgraphs

Graph traversal/search

- Breadth-first-traversal
 - Visit siblings first before visiting children.

$$a \rightarrow c \rightarrow d \rightarrow f$$

 $b \rightarrow d \rightarrow e$
 $c \rightarrow a \rightarrow f$
 $d \rightarrow a \rightarrow b \rightarrow e \rightarrow f$
 $e \rightarrow b \rightarrow d$
 $f \rightarrow a \rightarrow c \rightarrow d$
 g

Breadth-first-search

Pseudo-code For all vertices v, num(v) \leftarrow 0 $S \leftarrow \emptyset //S$ records edges $i \leftarrow 1$ While there is a vertex v s.t. num(v) == 0 $num(v) \leftarrow i++$ Q.enqueue (v) while Q is not empty $v \leftarrow Q$.dequeue for all vertices u adjacent to v if num(u) is 0 $num(u) \leftarrow i++$ Q.enqueue(u) $S \leftarrow S + (v,u)$

Time efficiency: Using adjacency list: O(|V|+|E|)Using adjacency matrix: $O(|V|^2)$

S: a sequence of edges visiting the vertices num(v): records the order of visited vertices

Graph traversal/search

- Depth-first-traversal
 - Visit children before siblings
 - Recursive

$$a \rightarrow c \rightarrow d \rightarrow f$$

 $b \rightarrow d \rightarrow e$
 $c \rightarrow a \rightarrow f$
 $d \rightarrow a \rightarrow b \rightarrow e \rightarrow f$
 $e \rightarrow b \rightarrow d$
 $f \rightarrow a \rightarrow c \rightarrow d$
 g

Depth-first-search

DepthFirstSearch

```
For all vertices v, \operatorname{num}(v) \leftarrow 0 S \leftarrow \emptyset // S records edges i \leftarrow 1 While there is a vertex v s.t. \operatorname{num}(v) == 0 DFS(v) S: a sequence of edges visiting the vertices \operatorname{num}(v): records the order of visited vertices
```

Time efficiency: Using adjacency list: O(|V|+|E|)Using adjacency matrix: $O(|V|^2)$

```
DFS(v)

num(v) \leftarrow i++

for all vertices u adjacent to v

if num(u) is 0

S \leftarrow S + (v,u)

DFS(u)
```

Shortest path problems

- Weighted graph
 - A numeric value assigned to every edge
- Single pair shortest path problem
 - Finding a path between two vertices that the sum of weights of its edges is minimal
 - If weights are driving distances → shortest distance
 - If weights are driving time → quickest way
- Single source shortest path problem
 - Finding shortest paths from one vertices to all others
- All pair shortest path problem
 - Finding shortest paths for all pairs of vertices

Single pair and single source shortest path problems

- Dijkstra's algorithm
 - Assumptions
 - Graph does not have non-negative weights
 - The weight between a pair of vertices with no edge is infinite

Steps:

- 1. Find the shortest path from the source to its nearest vertex
- 2. Find the shortest path from the source to its 2nd nearest vertex
- 3. Find the shortest path from the source to its 3rd nearest vertex

...

i-1: Find the shortest path from the source to its (i-1)th nearest vertex

Dijkstra's algorithm (cont.)

At step *i*:

- T_i the source, the vertices, and edges form a tree
- Fringe vertices the set of vertices adjacent to vertices in T_i
 - Since weights are non-negative, these vertices are candidates of the i^{th} nearest vertex to the source

For each fringe vertex u (which is adjacent to T_i)

Find its nearest vertex $v \in T_i$

 $d_v \leftarrow$ distance between v and source

 $d_u \leftarrow \min(d_v + \text{weight}(u, v), \text{ previous } d_u \text{ if it exists})$

Find the minimum d_u . u is the (i-1)th nearest vertex to source.

Dijkstra's algorithm example

 T_i

Fringe vertices

(a)

b(a, 3) * $c(\infty)$ d(a, 7) $e(\infty)$

Step 2:

3 (b)

c (b, 3+4) *d* (*b*, 3+2) *

 $e(\infty)$

Step 3:

c (b, 3+4) * e (∞)

Source: a

Step 4:

e(d, 3+2+4)

Another example

Source: *a*

T_i

Step 1: a

Step 3: 3 (b)—1 (c)

Step 4: 3 (b) C

Fringe vertices

c (b, 3+1)* $d (\infty)$ e (a, 6)f (a, 5)

d (*c*, 10) *e* (*a*, 6) *

d(c, 10)*

All pairs shortest path problem

Weight matrix

	a	b	C	d
a	0	∞	3	∞
b	2	0	∞	∞
\boldsymbol{c}	∞	7	0	1
d	6	∞	∞	0

Distance matrix

	a	b	C	d
a	0	10	3	4
b	2	0	5	6
C	7	7	0	1
d	6	16	9	0

All pairs shortest path problem

- Floyd-Warshal algorithm
 - A graph with n vertices, each labeled with 1, 2, ... n.
 - Weighted directed or undirected graph
 - No negative cycle
 - Compute through a series of $n \times n$ matrices

$$D^{(0)}, \ldots, D^{(k)}, \ldots, D^{(n)}$$

 $D^{(0)}$ is the weight matrix

 $D^{(k)}$ is contains shortest paths with intermediate vertices of number at most k

 $D^{(n)}$ is the final distance matrix containing shortest paths

$D^{(2)}$: use a and b as intermediate vertices

	a	b	c	d
a	0	∞	3	6
b	2	0	5	8
c	9	7	0	1
d	∞	∞	∞	0

$D^{(0)}$: weight matrix

	a	b	c	d
a	0	∞	3	6
b	2	0	∞	∞
C	∞	7	0	1
d	∞	∞	∞	0

$D^{(3)}$: use a, b, c as intermediate vertices

	a	b	c	d
a	0	10	3	4
b	2	0	5	6
\boldsymbol{c}	9	7	0	1
d	∞	∞	∞	0

$D^{(1)}$: only use a as intermediate vertex

	a	b	С	d
a	0	∞	3	6
b	2	0	5	8
C	∞	7	0	1
d	∞	∞	∞	0

$D^{(4)}$: use a, b, c, d as intermediate vertices

	a	b	c	d
a	0	10	3	4
b	2	0	5	6
c	9	7	0	1
d	∞	∞	∞	0

Floyd-Warshall algorithm

- Suppose we have the shortest paths allowing using at most a and b as intermediate vertices
 - Now if we allow c as intermediate vertex, what will be the shortest path between any pair of vertices (e.g. $v_i \rightarrow v_j$)?
 - Either use c or not to use c

Floyd-Warshall algorithm

- Suppose we have the shortest paths allowing using intermediate vertices no larger than k-1
 - If we allow kth vertex as intermediate vertex, what will be the shortest path from v_i to v_i ?

$$-d_{i,j}^{(k)} = \min(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)})$$
 for $k \ge 1$

$$-d_{i,j}^{(0)} = w_{i,j}$$

Floyd-Warshal algorithm

```
D \leftarrow weight matrix

For k from 1 to n

for i from 1 to n

for j from 1 to n

D[i,j] \leftarrow min ( D[i,j], D[i,k] + D[k,j] )
```

Minimum Spanning Tree

- Acyclic graph: a graph that does not contain a cycle
- Connected graph: there is a path from any vertex to any other vertex in the graph
- Spanning tree of a connected graph is its connected acyclic subgraph, i.e., a tree, that contains all the vertices of the graph.

Minimum Spanning Tree

 M.S.T. of a weighted connected graph is its spanning tree of the smallest weight, where the weight of the tree is defined as sum of the weights on all its edges

• Example:

M.S.T.

M.S.T.

A given graph

Spanning trees

M.S.T.

- Application example: suppose you have a business with quite many branch offices and you want to lease phone lines to connect them with each other
- Goal: connect all branches with minimum cost
- Algorithms:
 - Prim's algorithm
 - Kruskal's algorithm

M.S.T. – Prim's algorithm

```
Input: G /\!/ G = <\!V, E\!>
V_T \leftarrow \{V_0\} // V-V<sub>T</sub> denotes vertices not in V_T
E_T \leftarrow \emptyset // record current M.S.T.
For i from 1 to |V|-1
     Find a minimum weight edge e^*=(v^*,u^*) among
             all edges (v, u) where v \in V_T \mathbf{AND} \ u \in V - V_T
     V_T \leftarrow V_T \cup \{u*\}
     E_T \leftarrow E_T \cup \{(v^*, u^*)\}
Return E_T
```

Time cost: O ($|V|^2$) or O ($|E| \times \lg |V|$) using min-heap

M.S.T. Prim's algorithm

a,b,c,f,e,d

M.S.T.

Input graph:

Output MST:

Sum of weight: 15

M.S.T. -- Kruskal's algorithm

```
Initialize every vertex as a separate tree E_T \leftarrow \emptyset

S \leftarrow \text{sort } (E)

While S is not empty remove minimum weight edge e from S if e connects two different trees add e to E_T, combine two trees into one
```

Time cost: $O(E \times \lg V)$

Kruskal's algorithm

S:		
Order	Weigh	t Edge
1	1	$b \longleftrightarrow s$
2	2	<i>e</i> ←→ <i>f</i>
3	3	$a \leftarrow \rightarrow b$
4	4	<i>b</i> ←→ <i>f</i>
5	4	$c \leftarrow \rightarrow f$
6	5	$d \leftarrow \rightarrow f$
7	5	$a \leftarrow \rightarrow f$
8	6	$a \longleftrightarrow c$
9	6	$c \leftarrow \rightarrow d$
10	8	$d \leftarrow \rightarrow e$

- Applies to digraph
- The digraph cannot have cycle otherwise there's no valid topological sort
- Topological sort labels all vertices with numbers 1, 2, ..., |V| so that i < j only if there is a path from vertex v_i to v_j
- Examples

 Topological sorting is impossible if the graph contains cycle(s).

Topological Sort – method 1

topologicalSort1(digraph G)
for all vertices v, $\operatorname{num}(v) \leftarrow 0$ for i from 1 to |V|find a sink v // there must be a sink in DAG $\operatorname{num}(v) \leftarrow i$ remove v from G and all edges incident with voutput vertices according to their reverse order in $\operatorname{num}(v)$

Topological Sort – method 2

```
topologicalSort2 (digraph G)
TS(v)
   num(v) \leftarrow i++
                                              for all vertices v
                                                  num(v) \leftarrow TSNum(v) \leftarrow 0
   for all vertices u adjacent to v
                                                  i \leftarrow j \leftarrow 1
      if num(u) is 0
                                              while there is a vertex v s.t.
           TS(u)
                                                                  num(v) is 0
      else
           if TSNum(u) is 0
                                                   TS(v)
                                              output vertices according to
               error // indicate cycle
                                                       reverse order in TSNum
   TSNum(v) \leftarrow j++
```


• Start with vertex *a*

	num	TSNum
a	1	7
b	4	3
С	2	6
d	3	5
e	5	2
f	7	4
g	6	1

• Start with vertex *c*

	num	TSNum
a	7	7
b	3	3
\boldsymbol{c}	1	6
d	2	5
e	4	2
f	6	4
g	5	1

Cycle detection

```
cycleDetectionDFS(v)
   \operatorname{num}(v) \leftarrow i++
   for all vertices u adjacent to v
       if num(u) is 0
           S \leftarrow S \cup \text{edge}(v,u)
           cycleDetectionDFS(u)
       else // u is visited
            if edge(u, v) \notin S
                 cycle detected
```

```
DepthFirstCycleDetection( simple graph G )
For all vertices v, \operatorname{num}(v) \leftarrow 0
S \leftarrow \emptyset
i \leftarrow 1
While there is a vertex v s.t. \operatorname{num}(v) is 0
cycleDetectionDFS(v)
```

back edge: a new edge connecting to a vertex already visited.

Cycle Detection

```
digraphCDetectionDFS(v)
    \operatorname{num}(v) \leftarrow i++
    for all vertices u adjacent to v
        if num(u) is 0
            digraphCDetectionDFS(u)
        else // u is visited
             if num(u) is not \infty
                  cycle detected
    \operatorname{num}(v) \leftarrow \infty // \operatorname{Assign} a \text{ very large}
                      // value when all v's
                      // descendants are
                      // visited already
```

```
DepthFirstCycleDetection( digraph G )
for all vertices v, \operatorname{num}(v) \leftarrow 0
i \leftarrow 1
while there is a vertex v s.t. \operatorname{num}(v) is 0
digraphCDetectionDFS(v)
```