به نام خدا

دانشگاه تهران دانشکده برق و کامپیوتر

> کنترل مدرن دکتر کبریایی

منصور داودی ۸۱۰۱۹۹۵۲۷

پروژه نهایی فاز ۲ دو دسته قطب در زیر برای سیستم در نظر گرفته شده است و بهره فیدبک هر دو دسته محاسبه شده است:

$$P_slow = [-1 - 7 - 7 - \xi]$$

$$K_slow = 1 \times 4$$

6.3848 2.046

2.0407 9.9208

2.4108

$$k_fast = 1 \times 4$$

211.1138 98.5275 127.2651 11.2037

نمودار خروجی و حالت ها با دسته قطب كند:

نمودار خروجي و حالت ها با دسته قطب سريع:

همانطور که از نمودار ها مشخص است با دورکردن قطب ها از محور عمودی، سرعت سیستم بیشتر شده است و در نتیجه آن ضریب بهره X بزرگتر شده است.

در این سیستم از یه ضریب P بعد از ورودی پله، جهت ردیابی ورودی استفاده شده است که از رابطه زیر بدست می آید:

اغتشاش در سیستم کند:

اغتشاش در سیستم سریع:

همانطور که از نتایج مشخص است، فیدبک حالت به تنهایی نمیتواند اثر اغتشاش را از بین ببرد.

بلوک دیاگرام سیستم با اعمال اغتشاش:

قطب های معادله مشخصه مطلوب به صورت رو به رو در نظر گرفته شده است: [5- 4- 3- 2- 1-] p=[-1

با تشکیل ماتریس های Ac و Bc میبینیم که این دو ماتریس کنترل پذیر هستند و فیدبک حالت را طراحی میکنم.

Co = 5x5-0.0699 0.1199 24.3478 -41.8061 -0.0699 0.1199 24.3478 -41.8061 43.9209 7.6149 -8.5053 3.4965 -5.9906 -5.9906 3.4965 7.6149 -8.5053 471.8574 -0.1199 -24.3478 0.0699 0

> K = 1×5 16.5883 9.1973 24.4245 3.9839 -4.8979

ضرایب K به صورت رو به رو بدست می آید:

ماتریس کنترل پذیری رو به رو رنک کامل است.

سیستم را به صورت زیر طراحی میکنیم:

نمودار خروجی و حالت های سیستم:

نمودار خروجی و حالت ها:

همانطور که مشخص است کنترل انتگرال اثر اغتشاش را حذف می کند.

عطب های تخلیب در مرتبه عامل به تصورت رو به رو در نظر عرفته سده است.

L = 4×1

L=place(A',C',p_slow).'

L را از رابطه رو به رو بدست می آید:

20.0447 1.6941 18.3167

نمودار خروجی و حالت ها:

با در نظر گرفتن F و L مناسب و جایگذاری در معادله لیاپانوف و حل آن، T (شرط معکوس پذیری T چک می شود) و معکوس ماتریس P را به دست آورده و سیستم را طراحی میکنیم:

Т	= 3×4				L reduced = 3×1	F = 3x3		
	0.0126	-0.0126	0.1885	0.2636	_ 5	-1	0	0
	-0.0750	0.0375	-0.0796	0.2732	5	0	-2	0
	-0.6998	0.2333	-0.4973	0.3803	5	0	0	-3
i	inv_P_reduced	= 4×4						
	1.0000	0	0	0				
	4.2867	13.2390	-25.4219	9.0873				
	0.4679	6.2031	-8.3103	1.6706				
	-0.1774	-0.0089	4.7264	-0.7601				

نمودار خروجی و حالت سیستم:

از رویتگر مرتبه کامل استفاده شده است:

با دو تابع دو پالس را در زمان های ۱۰ و ۱۰ به خروجی سیستم اعمال شده است

ميبينم با اعمال پالس ها سيستم دچار اغتشاش شده اما فيدبک حالت بعد از مدتى سيستم را به حالت مطلوب درمى آورد.