

Seminar 1: RL terminology

RL Agent
$$\stackrel{?}{=}$$
 Controller

RL Environment $\stackrel{?}{=}$ Control-system

Action $\stackrel{?}{=}$ Control input

Please, split into groups of three.

Problems and methods

Problems related terminology

Discrete time vs. Continuous time

Discrete time vs. Continuous time

$$f: \mathbb{R}^n \times \mathbb{U} \to \mathbb{R}^n$$

State dynamics function

Continuous:

$$\frac{\partial}{\partial t}x(t) = f(x(t), u(t))$$

Discrete:

$$x_{t+1} = f(x_t, u_t)$$

State transition function

Discrete state space vs. Continuous state space

Continuous state space

Discrete state space

Discrete state space

$$x_{t+1} = f(x_t, u_t),$$

 $f: \mathbb{Z} \times \mathbb{U} \to \mathbb{Z}$

Discrete action space vs. Continuous action space

Discrete action space vs. Continuous action space

Continuous

Discrete

Discrete action space vs. Continuous action space

Action space \approx Control set (U)

Discrete action space with continuous time and state space

Continuous action space with discrete time and state space

Continuous action space with discrete time and state space

$$x_{t+1} = f(x_t, u_t) + \lceil \sigma(x_t, u_t) \xi_t \rceil,$$

$$f: \mathbb{Z} \times \mathbb{U} \to \mathbb{Z},$$

$$\sigma: \mathbb{Z} \times \mathbb{U} \to \mathbb{R},$$

$$\xi_t \sim \mathcal{N}(0, 1)$$

Stochastic vs. Deterministic

Stochastic Systems

Stochastic systems

Pretty much anything

Stochastic systems

Continuous state space

Discrete state space

Continuous time

$$dX_t = f(X_t, U_t) dt + \sigma(X_t, U_t) dW_t,$$

$$W_t - \text{semimartingale.}$$

death rates

Discrete time

$$x_{t+1} \sim \mathcal{F}(x_t, u_t)$$

Full information vs. Partial information

Full information vs. Partial information

Observation
$$\stackrel{?}{=}$$
 State

Full information vs. Partial information

Full information

Observation = **State**

Partial information

Observation
$$\neq$$
 State

Partial information examples

 $\rho(\cdot)$ – feedback policy.

Full information

$$u(t) := \rho(x(t))$$

Partial information

$$u(t) := \rho(g(x(t)))$$

$$u(t) := \rho(x(t) + \xi_t), \ \xi \sim \mathcal{N}(\mu, \sigma^2)$$

Stationary vs. Non-stationary

Stationary vs. Non-stationary

Non-stationary

$$x_{t+1} := f(x_t, u_t, t)$$

Stationary

$$x_{t+1} = f(x_t, u_t)$$

Non-stationary --> stationary

$$x_{t+1} := f(x_t, u_t, t) \longrightarrow \begin{cases} x_{t+1} = f(x_t, u_t, y_t) \\ y_{t+1} = y_t + 1 \end{cases}$$

Example of a non-stationary system

Example of a non-stationary system

Cost vs. Reward

Cost vs. Reward

Cost --- Minimize

Reward --- Maximize

Finite horizon vs. Infinite horizon

Finite horizon vs. Infinite horizon

Finite-horizon

You optimize the objective over a finite time frame.

Infinite-horizon

You optimize the objective over an infinite time frame. (As if your RL agent were to run for all eternity)

Running vs. Terminal

Running vs. Terminal

$$J(\cdot, \cdot)$$
 – total objective.

Running objective

$$J(x(\cdot), u(\cdot)) := \int_{t_1}^{t_2} r(x(t), u(t)) dt + T(x(t_2))$$

$$J(x_{\cdot}, u_{\cdot}) := \sum_{i=t_1}^{t_2} r(x_i, u_i) + T(x_{t_2})$$

Terminal objective

Terminal objective

Model-based vs. Model-free

Model-based vs. Model-free

$$\dot{x} = f(x, u)$$

Model-based

Aware of the system's dynamics. Able to predict immediate outcomes of its own actions.

Learns by numerically approximating the optimal policy.

Model-free

Relies solely on it's own **experience**.

Learns by associating rewards with states and actions through statistical modeling.

Offline vs. Online

Offline vs. Online

Offline

Learning occurs **before** the agent is deployed.

Online

Learning occurs **while** the agent is deployed.

A&Q