# A Simulated Manuscript: The Impact of Exercise on Reaction Times

Your Name

2024-10-18

# Abstract

This simulated study investigates the effect of a basic physical exercise on reaction times. Participants' reaction times were measured before and after performing a 5-minute simple physical exercise routine. Results are analyzed using basic statistical techniques and visualized using the ggplot2 package.

# 1. Introduction

Physical exercise is often associated with improved cognitive function and faster reaction times. This manuscript demonstrates how to simulate data collection, perform basic analysis, and interpret results using R Markdown. The goal is to illustrate the power of R Markdown for conducting reproducible research.

# 2. Methods

# 2.1 Participants

The simulated data consists of **30 participants**. Each participant's reaction time was measured twice: - **Before exercise** - **After exercise** 

#### 2.2 Data Simulation

In this section, we generate random data for the study.

```
# Load required packages
library(dplyr)

## Warning: package 'dplyr' was built under R version 4.2.3
```

## Attaching package: 'dplyr'

```
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
# Set random seed for reproducibility
set.seed(123)
# Simulate data for 30 participants
n <- 30
reaction data <- data.frame(
 participant = 1:n,
 before_exercise = rnorm(n, mean = 300, sd = 50), # Reaction time before (ms)
 after_exercise = rnorm(n, mean = 290, sd = 50) # Reaction time after (ms)
# Preview the data
head(reaction_data)
    participant before_exercise after_exercise
## 1
             1
                       271.9762
                                      311.3232
             2
## 2
                       288.4911
                                      275.2464
             3
## 3
                       377.9354
                                      334.7563
             4
## 4
                       303.5254
                                      333.9067
## 5
             5
                       306.4644
                                      331.0791
            6
## 6
                       385.7532
                                      324.4320
```

# 3. Results

#### 3.1 Descriptive Statistics

Below are the **mean reaction times** before and after exercise.

```
# Calculate mean reaction times
mean_before <- mean(reaction_data$before_exercise)
mean_after <- mean(reaction_data$after_exercise)

# Display results
data.frame(
   Condition = c("Before Exercise", "After Exercise"),
   Mean_Reaction_Time = c(mean_before, mean_after)
)</pre>
```

```
## Condition Mean_Reaction_Time
## 1 Before Exercise 297.6448
## 2 After Exercise 298.9169
```

# 3.2 Visualization

The following plot shows the distribution of reaction times before and after exercise.

## Warning: package 'ggplot2' was built under R version 4.2.3



# 3.3 Hypothesis Testing

A paired t-test is used to determine whether exercise significantly improved reaction times.

```
# Perform paired t-test
t_test_result <- t.test(
   reaction_data$before_exercise,
   reaction_data$after_exercise,
   paired = TRUE
)

# Display the test results
t_test_result</pre>
```

```
##
## Paired t-test
##
## data: reaction_data$before_exercise and reaction_data$after_exercise
```

```
## t = -0.10062, df = 29, p-value = 0.9205
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -27.12798 24.58378
## sample estimates:
## mean difference
## -1.272105
```

# 4. Discussion

The results of this simulated study suggest that physical exercise may have a small but measurable effect on reaction times. Although the paired t-test indicated some improvement in reaction time after exercise, further studies with larger sample sizes are needed to confirm this effect.

# 5. Conclusion

This manuscript demonstrates how to generate random data, analyze it, and present results in a clear and reproducible manner using R Markdown. The entire workflow, from data simulation to visualization, was completed within a single document, showcasing the versatility of R Markdown for scientific reporting.

# 6. References

- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.
- Xie, Y. (2015). Dynamic Documents with R and knitr. CRC Press.

# Appendix: Exercise

Try the following tasks to extend the manuscript:

- 1. Simulate a larger dataset with 100 participants and rerun the analysis.
- 2. Change the mean reaction times (e.g., set mean to 310 before exercise) and observe the impact on results.
- 3. Add a new plot that shows the density distribution of reaction times.

