딥러닝 기초, 실습 강의

CONTENTS

CONTENTS

Recommended Video, Lecture

```
Kocw – 수리통계학(부산대 김충락 교수님)
기계학습과 인공신경망
데이터 마이닝(SW융합)
딥러닝 홀로서기(Kaist)
선형대수
신호 및 시스템 1,2
공학수학 1, 2
```

• • • •

필수는 아닙니다.

Machine Learning

Machine Learning

Classification Clustering Regression Dimensionality Reduction

강화학습이 제외되어 있습니다.

Supervised Learning

Classification Regression

Basic Regression Notion

X=Y

$$X=Y$$

가지고 있는 Data로 회귀모형을 만들어 새로운 데이터를 예측한다.

HOW TO MAKE

어떻게 만들 것인가?

Hypothesis

쉽게 생각하면 가설 WX+B=Y안에 모든 (W,B) 를 생각하여 풀이하는 방식이다.

Hypothesis

X	Υ
1	1
2	2
3	3
4	4

$$H(x)=?$$

Hypothesis

.____

What is?

Cost Function

X	Y
0	0
1	1
2	2
3	3
4	4

Cost Function

MSE, Cross Entropy

Cost Function은 간단히 2가지를 고려 가능하다.

Y => Countinuos, Discrete

Cost Function

MSE(Mean Square Error)

Y => Countinuos

Ex)
$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$\cos t = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Minimize cost(W, b) W, b -> Minimize

How to Minimize

Cost Function

Gradient Descent

$$\cos t = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Bias Existence O

Bias Existence X

Gradient Descent

absolute

MSE

Gradient Descent

Gradient Descent

Gradient Descent

Consider only Weight for understand

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^i - y^i)^2$$

$$W := W - \alpha \frac{\partial}{\partial W} cost(W)$$

Gradient Descent

Gradient Descent

Consider only Weight for understand

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^{i} - y^{i})x^{i} \quad \alpha : Learning Rate$$

Why use Learning Rate

Problem

Local Minimum, Global Minimum

Multi-Variable

	f1	f2	f3	f4	f5	Y
X1	1	3	1	4	2	0
X2	2	4	3	5	6	1.3
Х3	1	3	1	2	3	1.2
X4	2	3	2	1	2	2.3
X5	2	4	3	3	1	3.4

Multi-Variable

	f1	f2	f3	f4	f5	Y
X1	1	3	1	4	2	0
X2	2	4	3	5	6	1.3
Х3	1	3	1	2	3	1.2
X4	2	3	2	1	2	2.3
X5	2	4	3	3	1	3.4

$$H(x) = Wx + b$$

$$H(f_1, f_2, f_3, f_4, f_5) = w_1 f_1 + ... + w_5 f_5 + b$$

$$cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(f_1^i, f_2^i \dots f_5^i) - y^i)^2$$

Matrix

 $w_1 f_1 + ... + w_5 f_5 + b$

$$\begin{bmatrix} f_1^1 \dots f_5^1 \\ f_1^2 \dots f_5^2 \end{bmatrix} * \begin{bmatrix} w_1 \\ \vdots \\ w_5 \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_5 \end{bmatrix} = output$$

$$H(X) = XW + B$$

How to Increase

Dimension

Basic Model

Matrix_Problem

Matrix_Problem

$$\begin{bmatrix} f_1^1 \dots f_5^1 \\ f_1^2 \dots f_5^2 \end{bmatrix} * \begin{bmatrix} w_1 \\ \vdots \\ w_5 \end{bmatrix} + \begin{bmatrix} b_1 \\ \vdots \\ b_5 \end{bmatrix} = output \qquad \begin{bmatrix} w_1 \\ \vdots \\ w_5 \end{bmatrix} + \begin{bmatrix} w \\ 1 \\ \vdots \\ w \\ 5 \end{bmatrix} = \begin{bmatrix} w \\ 1 \\ \vdots \\ w \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} f_1^1 & f_5^1 \\ f_1^2 & f_5^2 \end{bmatrix} * \begin{bmatrix} w \\ \vdots \\ w \\ \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \\ \end{bmatrix} = output$$

Matrix_Problem

Matrix_Problem

Input Feature Output f_a f_a f_a 4-dimension

Matrix_Problem

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

추후에 자세히 다룰 예정

Final Out_Range

	f1	f2	f3	f4	f5	Y
X1	1	3	1	4	2	0
X2	2	4	3	5	6	1.3
Х3	1	3	1	2	3	1.2
X4	2	3	2	1	2	2.3
X5	2	4	3	3	1	3.4

Output => Continue

Ex) 0~3.4

Final Out_Range

Cat=0

Dog=1

CAT 출처(URL) : https://www.bbc.com/news/uk-england-stoke-staffordshire-52047832

DOG 출처(URL) : https://www.theguardian.com/science/2019/jun/17/how-dogs-capture-your-heart-evolution-puppy-dog-eyes

Binary Classification

Binary Classification

Image 출처(URL): https://en.wikipedia.org/wiki/Sigmoid_function

How to Make

Binary Classification Cost Function

Cost Function

Cross Entropy

Y => Discrete

$$H(X) = \frac{1}{1 + e^{uX}}$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (H(X) - y^i)^2$$

Binary

X	Y
0	0
0.1	1
0.2	0
0.3	1
0.4	0
0.5	1
0.6	1
0.7	0
0.8	0
0.9	0

Binary

Input Feature Output Classification o_1 02 F_{c} 03 4-dimension

Binary

$$H(o) = \frac{1}{1 + e^{ou}}$$

$$o = o_1 + o_2 + o_3 + o_4$$

$$o = o_1 + o_2 + o_3 + o_4$$

MSE, ABS Problem

Binary

Cross Entropy

$$H(P,Q) = -\sum P(x)\log(Q(x))$$

$$c(H(x), y) = \begin{cases} -\log(H(x)) & : y = 1\\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

$$c(H(x), y) = -ylog(H(x)) - (1 - y)log(1 - H(x))$$

Cost Function

$$c(H(x),y) = \begin{cases} -\log(H(x)) & : y = 1\\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

 $-\log(1-x)$

Cost Function

$$H(o) = \frac{1}{1 + e^{ou}}$$

$$0 = o_1 + o_2 + o_3 + o_4$$

-log(x)

-log(1-x)

Cost Function

$$H(o) = \frac{1}{1 + e^{ou}}$$

$$0 = o_1 + o_2 + o_3 + o_4$$

$$o_1 = 0.1, o_2 = 0.2, o_3 = 2.5, o_4 = -2$$

$$o= 0.7, predict y \Rightarrow 1 \text{ But y} => 0$$

$$o_1 \Rightarrow 0.02, o_2 \Rightarrow 0.1, o_3 \Rightarrow 1.5, o_4 \Rightarrow -2.3$$

 $o = -2.3 + 1.62$
 $o_1 \Rightarrow 0.2, o_2 \Rightarrow 0.4, o_3 \Rightarrow -0.5, o_4 \Rightarrow -0.3$
 $o = -0.2, predict y \Rightarrow 0$ But y=> 1

각, o_i 의 역할 들이 점점 생긴다.

Next

Multinomial Classification

감사합니다 THANK YOU