

Real Analysis in a Glimpse

Suhas Adiga

SGTB Khalsa College, University of Delhi suhasadiga4physics@gmail.com

January 31, 2022

Outline

- What is Real Analysis?
- A Short Recap
 - Supremum & Infimum
 - Sequence of a Real number
 - Convergence of a Real number
- Sequence and Series of a Function
- 4 Convergence of Sequence
 - Pointwise Convergence
 - Uniform Convergence
 - Cauchy Criterion

What is Real Analysis?

Analogous to Real Analysis

Short Recap in 5 Slides

Warning: Completing in 5 slides is injurious to health !!

Some Facts!!

• The elements in $\mathbb R$ that are not in $\mathbb Q$ is Irrational Numbers. This was given by the Greek Mathematician Pythagoras when he couldn't get the exact no whose square will be $\mathbf 2$

0

Important Definitions

$$V_{\epsilon}(a) := \{x \in \mathbb{R} : |x - a| < \epsilon\}$$

This is called ϵ - **neighbourhood** set of 'a'.

Eg:

- S={-2,-1,0,1,2,3,4 } here **Supremum**= 4 & **Infimum**= -2, This a **Bound** set.
- S={......,-2,-1,0,1,2,3,4} here **Supremum**= 4 & **Infimum**= d.n.e, This set is **unbounded** even though it's bounded above.
- S={......,-2,-1,0,1,2,3,4,.......} here **Supremum**= d.n.e & **Infimum**= d.n.e, This set is **unbounded**.

Sequence of a Real Numbers

Definition

A sequence of real numbers is a real-valued function defined on the set of natural numbers, i.e. a function $f:\mathbb{N} \longrightarrow \mathbb{R}$ if $a_n = f(n)$ for $n \in \mathbb{N}$, then we write the sequence f as (a_n) or $(a_1, a_2, ...)$.

- A sequence of real numbers is also called a **real sequence**.
- A sequence of Real numbers is represented usually as $\{x_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$, $\{u_n\}$.
- A sequence of a real number can be :
 - Convergent
 - ② Divergent
 - Oscillatory

Convergence

• A sequence (a_n) in $\mathbb R$ is said to converge to a real number $\mathbf A$ if for every $\epsilon > 0$, there exists positive integer $\mathbb N$ (in general depending on ϵ) such that

$$|a_n - a| < \epsilon \quad \forall n \geq N$$

and in that case, the number a is called a **limit of the sequence** (a_n) , and (a_n) is called a **convergent sequence**

- Convergence can be of two types:
 - Pointwise Convergence
 - Uniform Convergence
- **[SPOILER]** Every Uniformly convergent sequence and series is point wise convergent.

Some Conclusions

Theorems

- Limit of a convergent sequence is unique.
- A convergent sequence of real numbers is bounded.

Sequence of a Function

Definition

Let f_n be a real valued function on $A \subseteq \mathbb{R}$ for each $n \in \mathbb{N}$. Then the sequence $\{f_1, f_2, f_3, \dots, f_n\}$ is called sequence of real valued function on Α.

- Notation: $\{f_n : A \longrightarrow \mathbb{R}, n \in \mathbb{N} \}$ or $\{f_n\}$ or $\{f_n\}$ or $\{f_n\}$
- **Example:** f_n is a real valued function defined by $f_n(x) = x^n$ then $\{f_1(x), f_2(x), \dots, f_n\} = \{x, x^2, x^3, \dots, x^n\}$

Series of a Function

Definition

Let $\{f_n\}$ be a sequence on $A \subseteq \mathbb{R}$ for each $n \in \mathbb{N}$. Then the expression $\{f_1 + f_2 + f_3 + \dots + f_n\} = \sum_{n=1}^{\infty} f_n$ is called series of real valued function on A.

• **Example:** $\{f_n\}$ be a sequence of real valued function defined by $f_n(x) = \frac{\cos nx}{n^2}$, $x \in [0,1]$ then

$$\sum_{n=1}^{\infty} f_n(x) = \frac{\cos x}{1} + \frac{\cos 2x}{4} + \frac{\cos 3x}{9} + \frac{\cos 4x}{16} + \dots + \frac{\cos nx}{n^2}$$

is called series of a real valued function in [0,1]

Pointwise Convergence

• Sequence of function $\{f_n\}$ is said to be pointwise convergent if for each $x \in A$ sequence $\{f_n\}$ of real numbers converge.

$$\lim_{n\to\infty} f_n(x) = f(x) \quad \forall \ x \ \epsilon \ \textbf{A}$$

• The pointwise convergence means that, given each $x \in A$, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \epsilon \ \forall \ n \geq N$

Note

N here depends on both x and ϵ

Eg 1.1

• Question: $f_n(x) = \frac{x^2 + nx}{n}, x \in \mathbb{R}$

Solution:

for some $x \in \mathbb{R}$,

$$f_n(x) = x + \frac{x^2}{n}$$

$$\lim_{n\to\infty} \left(x + \frac{x^2}{n}\right) = x$$

therefore $f_n(x) \to f(x) = x$ pointwise on \mathbb{R}

Figure: Plot of $f_n(x) = x + \frac{x^2}{n}$

Eg 1.2

• Question: $g_n(x) = x^n$ on [0,1]

Solution:

Clearly $g_n(1)=1$ for all $n \in \mathbb{N}$ therefore $g_n(1) \to 1$ and for $0 \le x < 1$ $g_n(x)$ on [0,1) is 0, therefore,

$$g_n(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}$$

The pointwise limit function g is not continues at x=1 therefore $g_n(x)$ converges to g on the set [0,1]

Think !!

What about convergence for A ϵ [0,2] ?

Figure: Plot of $g_n(x) = x^n$

Eg 1.3

• Question: $f_n(x) = \frac{\sin(nx+n)}{n}$ for $x \in \mathbb{R}$

Solution: Let f(x) = 0 for all $x \in \mathbb{R}$

Since sin(nx + n) can have maximum value of 1 or minimum of -1.

Therefore using squeeze theorem of sequences,

$$\frac{-1}{n} \le \frac{\sin(nx+n)}{n} \le \frac{1}{n}$$

$$\lim_{n\to\infty}\frac{1}{n}=0=f_n(x)$$

Therefore $f_n(x)$ converges to f in \mathbb{R} . Also,

$$|f_n(x) - f(x)| = 0 < \epsilon$$

Figure: Plot of $f_n(x) = \frac{\sin(nx+n)}{n}$

Eg 1.4

• Question: Consider the sequence f_n of functions defined by $f_n(x) = n^2 x^n$, $\forall \ 0 \le x \le 1$. Determine whether f_n is pointwise convergent.

Solution: Clearly $f_n(0) = 0$ for every $n \in \mathbb{N}$

So the sequence f_n is a constant and converges to $\mathbf{0}$.

Now for 0 < x < 1,

$$n^2 x^n = n^2 e^{n \log_e x}$$

but,

$$\log_e x < 0$$
 when $0 < x < 1$

Therefore,

$$\lim_{n\to\infty} f_n(x) = 0 \text{ when } 0 \le x < 1$$

Finally,

$$f_n(1) = n^2$$

$$\lim_{n \to \infty} n^2 = \infty$$

Therefore f_n is not pointwise convergent in [0,1]

Think !!

Will the same sequence $f_n(x)$ be pointwise convergent in [0,1)?

Figure: Plot of $f_n(x) = n^2 x^n$

Uniform Convergence

Definition

Let $f_n: A \to \mathbb{R}$ and $f: A \to \mathbb{R}$ be given functions. We say that the sequence $\{f_n\}$ converges uniformly on A to function f if, for every $\epsilon > 0$, there exists an N ϵ N such that whenever x ϵ A and n \geq N it follows that :

$$|f_n(x) - f(x)| < \epsilon$$

• Notation: $f_n(x) \Rightarrow f(x) \ \forall \ x \in A$ or $f_n \Rightarrow f \ \forall \ x \in A$

Uniform Convergence

Note

- For pointwise convergence, given $\epsilon > 0$, the number N is to be found after $x \in A$ is given (so N depends on x), while for the uniform convergence, the number N is to be found that works for every $x \in A$ (so N is independent of x).
- Every sequence which is Uniformly Convergent is Pointwise
 Convergent and the converse isn't always true.

Eg 1.5

• Consider $f_n(x) = \frac{x^2 + nx}{n}$ and f(x) = x on \mathbb{R} . Does f_n converge uniformly on \mathbb{R} ?

Solution: Since we already know that $f_n(x) \to f(x)$ on $\mathbb R$

$$|f_n(x) - f(x)| = \frac{x^2}{n} < \epsilon \quad \forall \ n \ge N, does \ x \in \mathbb{R}?$$

If such an N existed, we would take $x = \sqrt{N}$ and n = N to obtain $1 < \epsilon$, a contradiction if our ϵ is chosen < 1. Therefore, the sequence (f_n) does not converge uniformly to f on R.

Think !!

What about uniform convergence $\forall x \in [-b, b]$ such that $N > \frac{b^2}{2}$?

Eg 1.6

• Show that sequence of functions $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ converges uniformly to f(x)=0 on \mathbb{R} .

Solution:

$$|f_n(x) - f(x)| = \left| \frac{\sin(nx)}{\sqrt{n}} \right|$$

$$\leq \frac{1}{\sqrt{n}}$$

and therefore if N ϵ N is such that $\frac{1}{\sqrt{N}} < \epsilon$ then if n \geq N then $|f_n(x) - 0| < \epsilon \forall x \epsilon \mathbb{R}$

Hence, f_n converges uniformly to f=0 on \mathbb{R}

Eg 1.7

• Let f_n be the sequence of functions on $(0, \infty)$ defined by

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

Solution:

Cauchy Criteria for Uniform Convergence

Definition

A sequence f_n converges uniformly on A if and only if for a given $\epsilon > 0$, there exists N > 0 such that for all n > m > N and for all $x \in A$.

Proof:

First let's assume (f_n) converges uniformly on A to a limit function f. Then, for each $\epsilon > 0$, there exists an N ϵ N such that: