Negative Wealth Shock & Mortality Susan Glenn, Jeanne Li, Stewart Kerr, Jingcheng Xu

Goal

JAMA | Original Investigation

Association of a Negative Wealth Shock With All-Cause Mortality in Middle-aged and Older Adults in the United States

Lindsay R. Pool, PhD; Sarah A. Burgard, PhD; Belinda L. Needham, PhD; Michael R. Elliott, PhD; Kenneth M. Langa, MD, PhD; Carlos F. Mendes de Leon, PhD

IMPORTANCE A sudden loss of wealth—a negative wealth shock—may lead to a significant mental health toll and also leave fewer monetary resources for health-related expenses. With limited years remaining to regain lost wealth in older age, the health consequences of these negative wealth shocks may be long-lasting. Editorial page 1327

Supplemental content

This paper claims that experiencing a wealth shock (defined as losing 75% of your wealth over a 2-year period) is strongly associated with increased risk of mortality

We aimed to explore the **causal effect** of experiencing a wealth shock with respect to mortality using **risk-set matching**

Data

The data for the study comes from the University of Michigan's Health and Retirement Study (HRS), a longitudinal panel study that surveys a representative sample of approximately 20,000 people in America

The JAMA paper looks at people from the first wave of the HRS study

• Born between 1931 – 1941, first surveyed in 1992

The study is **longitudinal**, so there are two types of variables available for study

- Baseline (e.g. Gender, birth year, race, etc.)
- Time-varying (e.g. Marital status, wealth, job status, health conditions, etc.)
 - Time-varying covariates were lagged by one period so that they preceded the treatment

Baseline Characteristics

Characteristics	Positive Wealth Without Shock (Jama Paper)	Negative Wealth Without Shock (Jama Paper)	Our Study	
Total participants	5535	2430	10507	
Men	2778 (50.2)	1043 (42.9)	4990 (47.5)	
Race or ethnicity				
Hispanic	335 (6.1)	317 (13.1)	1000 (9.52)	
Non-Hispanic black	581 (10.5)	557 (22.9)	1807 (17.2)	
Non-Hispanic white	4521 (81.7)	1498 (61.7)	7464 (71.04)	
Non-Hispanic other race	98 (1.8)	58 (2.4)	2342 (22.29)	
Mean BMI	26.8	27.8	27.46	
Alcohol use				
None	1912 (34.5)	1113 (45.8)	6888 (65.56)	
Moderate	3355 (60.6)	1181 (48.6)	655 (6.23)	
Heavy	268 (4.8)	136 (5.6)	250 (2.38)	
Smoking status				
Never smoked	2095 (37.9)	875 (36)	3831 (36.47)	
Current or former smoker	4254 (62.1)	1660 (64)	6675 (63.53)	
Self-rated health status				
Excellent	1418 (25.6)	455 (18.7)	1899 (18.07)	
Very good	1799 (32.5)	600 (24.7)	2484 (23.64)	
Good	1483 (26.8)	710 (29.2)	2375 (22.6)	
Fair	581 (10.5)	457 (18.8)	1247 (11.87)	
Poor	254 (4.6)	208 (8.6)	590 (5.62)	

(Balanced) Risk Set Matching

Risk Set Matching is a method proposed by Rosenbaum et al. (2001) to match subjects treated at time *t* with a control that looks similar up to time *t*

Control may or may not be treated later

Balanced risk set matching includes an additional penalty to risk set matching which enforces balance on important covariates

$$\min_{\mathbf{f},\mathbf{g}} \sum_{e \in \mathcal{E}} f_e \cdot \delta_e + \sum_{k=1}^{\kappa} \lambda_k (g_{k+} + g_{k-})$$
(A.1)

Controls

$$\delta_e = egin{bmatrix} d_{11} & d_{12} & ... & d_{1m} \ d_{21} & ... & & \ ... & ... & \ d_{n1} & & d_{nm} \end{bmatrix}$$
 reaction d_{nm}

subject to

$$S = \sum_{\{e: \in \mathcal{E}\}} f_e,\tag{A.2}$$

$$1 \geq \sum_{\{e \in \mathcal{E}: e = (\alpha_p, \alpha_q) \text{ or } e = (\alpha_q, \alpha_p)\}} f_e \quad \text{for} \quad \alpha_q \in \mathcal{A}, \tag{A.3}$$

$$g_{k+} \ge \sum_{e=(\alpha_p, \alpha_q) \in \mathcal{E}} f_e \cdot B_{pk} - \sum_{e=(\alpha_p, \alpha_q) \in \mathcal{E}} f_e \cdot B_{ek} \quad \text{for} \quad k = 1, \dots, K,$$
(A.4)

$$g_{k-} \ge \sum_{e=(\alpha_p, \alpha_q) \in \mathcal{E}} f_e \cdot B_{ek} - \sum_{e=(\alpha_p, \alpha_q) \in \mathcal{E}} f_e \cdot B_{pk} \quad \text{for} \quad k = 1, \dots, K,$$
(A.5)

$$g_{k+} \ge 0$$
, $g_{k-} \ge 0$ for $k = 1, \dots, K$, $f_e \in \{0, 1\}$ for $e \in \mathcal{E}$. (A.6)

Distance Matrix $\delta_e = \begin{bmatrix} d_{11} & d_{12} & \dots & d_{1m} \\ d_{21} & \dots & & \\ \dots & & \dots & \\ d_{n1} & & & d_{nm} \end{bmatrix}$

Pairwise Mahalanobis Distance: $d_{nm} = (\mathbf{x_n} - \mathbf{x_m})^T \mathbf{\Sigma}^{-1} (\mathbf{x_n} - \mathbf{x_m})$

n << m

$$\mathbf{W3}\begin{bmatrix} \dots & & \dots & & \dots \\ x_{n1}^3 & \dots & & x_{nk}^3 \\ x_{m1}^3 & \dots & & x_{mk}^3 \\ \dots & & & \dots \end{bmatrix}$$

$$\mathbf{W4}\begin{bmatrix} \dots & & \dots & & \dots \\ x_{n'1}^4 & \dots & & x_{n'k}^4 \\ x_{m1}^4 & \dots & & x_{mk}^4 \\ \dots & & \dots & & \dots \end{bmatrix}$$

• • •

Matching Results & Outcome

- 2182 pairs in total:
 - 654 treated died first, 571 treated died last, 1225 died in the same wave (or didn't die in the follow-up period)
- Binary response: die first = 0, die second = 1, Died together = -1
- More people who were controls died after people who got the treatment

Balance

Checked balance for baseline or covariates which did not vary with time

	Before Match (Standardized Diff) After Match (Standardized Diff)	ore Match (Standardized Diff) After Match (Standardized Diff)				
RADYEAR	0.274	0.197				
RABYEAR	0.114	0.139				
HATOTW	0.123	0.236				
RSMOKEV	0.005	0.290				
RSMOKEN	0.127	0.018				
RDRINKD	0.187	0.154				
RLTACTF	0.122	0.137				
RVGACTF	0.019	0.155				
RBMI	0.127	0.026				
RRISK	0.008	0.094				
RBEQLRG	0.211	0.092				
RAGENDER_1.Male	0.223	0.087				
RACE_ETHN_Hispanic	0.121	0.151				
RACE_ETHN_NonHispBlack	0.359	0.043				
RACE_ETHN_NonHispOther	0.002	0.197				

Treatment Effect

- Paired T test:
 - average treated: 0.53 average control: 0.47
 - the differences between means is -0.068 and the p-value = 0.0177
- Wilcoxon Rank Sum test:
 - p-value = 0.0177
- ATE: used IPW -0.06

Sensitivity Analysis

• Goal:

- Unmeasured confounding covariates
- Magnitude of hidden bias
- Rosenbaum's R packages:
 - "sensitivitymw" and "sensitivitymv"
 - Sensitivity parameter Gamma
 - Point estimates, confidence intervals
 - Amplification of sensitivity parameter

- H0: There is no treatment effect of wealth shock on mortality.
- H1: Having a wealth shock leads to a negative impact on length of life span.

Sensitivity Parameter

##		${\tt Gamma}$	unweighted	M-test	using	Huber's	psi-function	${\tt trimmed}$	mean test
##	[1,]	1.00					0.009		0.009
##	[2,]	1.01					0.014		0.014
##	[3,]	1.02					0.021		0.021
##	[4,]	1.03					0.032		0.032
##	[5,]	1.04					0.046		0.046
##	[6,]	1.05					0.064		0.064
##	[7,]	1.06					0.088		0.088
##	[8,]	1.07					0.117		0.117
##	[9,]	1.08					0.152		0.152
##	[10,]	1.09					0.194		0.194
##	[11,]	1.10					0.240		0.240
##	[12,]	1.11					0.292		0.292
##	[13,]	1.12					0.348		0.348
##	[14,]	1.13					0.407		0.407
##	[15,]	1.14					0.467		0.467
##	[16,]	1.15					0.528		0.528

Range of Point Estimates and Confidence Intervals

```
## $PointEstimate
## minimum maximum
## 0.0247 0.0456
##
## $Confidence.Interval
## minimum maximum
## 6e-04 Inf
```

Amplification of Sensitivity Parameter Gamma

$$\Gamma = \frac{\beta_{UA}\beta_{UY} + 1}{\beta_{UA} + \beta_{UY}}$$

$$\beta_{UA} = \beta_{UY} = E$$

- E-value = 1.33
- To overturn our conclusion, an unmeasured confounder needs to have a 1.33 odds of increasing the outcome and treatment
- Or Gamma = 1.05

Thank you!