

МЕТАЛЛОПОЛИМЕРНЫЕ ТРУБЫ

ПРЕЗЕНТАЦИЯ ИННОВАЦИОННОЙ ТЕХНОЛОГИИ

- Год основания компании 1990
- Технология разрабатывалась для выщелачивания урана на глубине до 800 м
- Производство расположено в г. Екатеринбурге
- Запатентованная технология непрерывной линии производства
- Российские и международные сертификаты качества
- Клиенты ООО МЕПОС крупнейшие компании страны
- Подтвержденный эксплуатацией срок службы более 20 лет
- Компанией проложено более 2000 километров трубопроводов

ЧТО ТАКОЕ МЕТАЛЛОПОЛИМЕРНАЯ ТРУБА

МПТ – полимерная труба, армированная жестким решетчатым каркасом, сваренным из стальной проволоки. Стальной каркас защищен слоем полимера со всех сторон и формирует внутреннюю и внешнюю поверхности МПТ.

Основные свойства МПТ:

МПТ объединяет свойства стальной и полимерной труб

- Прочность сопоставима с прочностью стали выдерживает большие давления, чем обычные полимерные трубы
- Стойкость к химически агрессивным жидкостям длительный срок службы при транспортировке агрессивных сред
- 100% стойкость к коррозии отсутствует необходимость антикоррозионной обработки, катодной и ингибиторной защиты
- Возможность применения различных полимеров расширяет возможные области применения

Основные типоразмеры и краткие харатеристики:

продукт	ВНЕШНИЙ ДИАМЕТР, мм	ВНУТРЕННИЙ ДИАМЕТР, мм	ТОЛЩИНА СТЕНКИ, мм	ДИАМЕТР ПРОВОЛОКИ, мм	ВЕС, кг
MΠT 95	95	72	11,5	3,0	6,51
MΠT 115	115	92	11,5	3,0	8,51
MΠT 125	125	101	12,0	3,0	9,15
MΠT 140	140	116	12,0	3,0	10,22
MΠT 160	160	136	12,0	3,0	12,37
MΠT 180	180	155	12,5	3,0	13,50
MΠT 200	200	175	12,5	3,0	15,35
MΠT 225	225	200	12,5	3,0	17,58
MΠT 250	250	224	13,0	3,5x3,0	21,00
MΠT 275	275	251	14,5	4,0x3,0	27,00

Дополнительная фурнитура:

Отводы на 15, 30, 45, 60 и 90°

Равнопроходные и неравнопроходные тройники Специальный неразъёмный переход на металлическую трубу

ТЕХНОЛОГИЯ

Наша технология имеет 3 основных особенности:

- Непрерывный производственный процесс с одним экструдером, работающим в автоматическом режиме
- © Система двустороннего охлаждения, предотвращающая образование грубой кристаллической структуры на макромолекулярном уровне
- © Система калибровки трубы по внутреннему диаметру, образующая глянцевую внутреннюю поверхность с минимальной шероховатостью

Возможные изменения в технологии:

Возможность изменять размер проволоки и ее сечения

Возможность изменять размеры ячеек каркаса

Возможность применения других полимеров

ВАРИАНТЫ СОЕДИНЕНИЙ

Варианты соединений, применяемых при монтаже

Сварное соединение

- Каркас защищен от коррозии
- Сваривать просто как обычную полимерную трубу
- Использование стандартного сварочного оборудования
- Соединение равнопрочное с телом трубы
- Легко проверить качество соединения

Резьбовое соединение

- Применяется с конической или цилиндрической резьбой
- Разьемное и неразъемное
- Возможность многократного применения
- Легко монтируется стандартным оборудованием
- Применяются для обсадных, подъемных труб
- Длительный срок службы

Фланцевое соединение

- Применяются обычные стальные фланцы
- Возможность применения специальных и усиленных фланцев при необходимости
- Легкость соединения с задвижками и др. оборудования
- Возможность соединения различных типов труб

СВАРНОЕ СОЕДИНЕНИЕ

Поведение полимера и металлического каркаса в точке сварки двух труб при повышении внутреннего давления до 9,5 МПа.

ОБЛАСТИ ПРИМЕНЕНИЯ И ИСТОРИЧЕСКИЕ ДАННЫЕ

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ МПТ:

- 🕝 Добыча и транспортировка нефти, газа, подтоварной воды
- Транспортировка кислот, щелочей, рассолов
- Подземное и кучное выщелачивание цветных и редкоземельных металлов
- 🪫 Транспортировка агрессивных пульп
- 🕜 ЖКХ трубопроводы для горячего и холодного водоснабжения, напорная канализация, газовые сети
- 🚺 Артезианские скважины в качестве обсадных и подъемных труб
- Транспортировка соленой воды, морская инфраструктура, подводные трубопроводы, укрепление береговой линии

История применения:

Применяемы полимер:

ОБЛАСТИ ПРИМЕНЕНИЯ И ИСТОРИЧЕСКИЕ ДАННЫЕ

Основные исторические данные по применению в различных секторах:

Нефтегазовая промышленность

- Транспортировка сырой нефти от скважины до узла подготовки
- Транспортировка высокоагрессивного продукта от обводненной скважины
- Скважинный продукт с высоким содержанием сероводорода
- Нефтяные трубы в природоохранной зоне
- Транспортировка газа в скалистой местности

Химическая промышленность

- Производство фосфорных удобрений
 - Серная кислота с концентрацией от 0,5 до 50% при температуре до 95°C
 - Фосфорная кислота с концентрацией от 0,5 до 50% при температуре до 95°C
- Плавиковая кислота с концентрацией 10% и рабочей температурой 30 °C

Добыча урана и редкоземельных металлов

- Добыча урана:
 - Обсадные трубы
 - Транспортировка рассола от скважины до производственного корпуса
- Закачка бетона в отработанную скважину

ЖКХ

- Транспортировка холодной питьевой воды
- Внутригородская транспортировка горячей воды

ТЕХНОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ ЭКСПЛУАТАЦИИ ТРУБОПРОВОДНОГО ТРАНСПОРТА ИЗ ПОЛИМЕРНОГО МАТЕРИАЛА В НЕФТЕГАЗОВОЙ ОТРАСЛИ

ПО ДАННЫМ ЛАБОРАТОРИИ ВИБРОАКУСТИЧЕСКОГО КОНТРОЛЯ И ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ ПЕРМСКОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

НАЧАЛО ИСПОЛЬЗОВАНИЯ НЕМЕТАЛЛИЧЕСКИХ ТРУБ В ООО «ЛУКОЙЛ-ПЕРМЬНЕФТЬ»

ОСНОВНЫЕ ПРОБЛЕМЫ НЕМЕТАЛЛИЧЕСКИХ ТРУБОПРОВОДОВ

- 1. Проектирование, строительство и эксплуатация
- 2. Техническая диагностика трубопроводов
- 3. Продление сроков службы, оценка остаточного ресурса
- 4. Установление трассы трубопровода
- 5. Утилизация трубопроводов

ВИБРОАКУСТИЧЕСКИЙ МЕТОД КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ МЕТАЛЛОПОЛИМЕРНЫХ ТРУБ

Метод основан на оценке изменения характеристик акустического сигнала (АЧХ, затухание, рассеивание и т.д.) при прохождении по исследуемому объекту и сопоставления изменения акустического сигнала с изменением физико-механических свойств материала и наличием в нем дефектов.

Патентная защита: авторское свидетельство P-39651 от 22.01.90г. «Способ контроля технического состояния РДТТ».

Схема диагностирования качества сварных соединений МПТ

Переносной многоканальный программно-аппаратный комплекс «Камертон»

ВИБРОАКУСТИЧЕСКИЙ МЕТОД КОНТРОЛЯ ТРУБОПРОВОДОВ

Суть метода, заключается, в анализе прохождения волны (в широком диапазоне частот) по конструкции трубопровода. Оценкой дефектности трубопровода, является условия прохождения волны в зоне дефекта (потери, рассеивание, интерференция, дифракция), т.е. изменение спектров амплитудно-частотных характеристик трубопровода на исследуемом участке.

Схема виброакустического метода контроля трубопровода 1 – трубопровод; 2 – прибор; 3 – места установки датчиков.

Схема расположения датчиков

ПЕРЕНОСНОЙ МНОГОКАНАЛЬНЫЙ ПРОГРАММНО-АППАРАТНЫЙ КОМПЛЕКС «КАМЕРТОН»

Возможности использования:

- Обнаружение опасных для эксплуатации несплошностей и трещин в арматуре, теле трубы различной плотности;
- Определение качества сварных и фланцевых соединений трубопроводов различного назначения, в том числе: трубопроводов, устьевой арматуры, комбинированных труб и др. соединений;
- Вынесение заключения о возможности продления ресурса и дальнейшей эксплуатации трубопровода (при разработке программного продукта).

ОСОБЕННОСТИ НЕМЕТАЛЛИЧЕСКИХ ТРУБ, ОБУСЛОВЛЕННЫЕ ПРИРОДОЙ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Положительные:

- 1. Неметаллические трубы не подвержены внутренней коррозии поэтому при эксплуатации трубопроводов не изменяется толщина труб.
- 2. Неметаллические трубы не подвержены внешней коррозии поэтому не возникает локальных коррозионных язв, свищей и локальных утонений стенки трубы.

Отрицательные:

- 1. Детерминированное изменение свойств происходит старение полимеров , это приводит к изменению (снижению) их механических свойств с течением времени, старение увеличивается при воздействии факторов внешней среды: температура, влажность, УФ излучение, озон и т.п.
- 2. Случайное изменение свойств могут появиться локальные повреждения в виде расслоений и трещин, появление повреждений вызвано случайными факторами: технологическими дефектами сварки, склейки полимеризации, ударами и изгибами при монтаже и транспортировке, внешними воздействиями при эксплуатации (вибрация, циклическая нагрузка, подвижка грунта, гидроудар, внешнее воздействие); повреждения при эксплуатации трубопровода накапливаются, увеличивается их площадь, глубина расслоения, длина и глубина трещин.

Остаточный ресурс неметаллических трубопроводов можно определить по двум факторам:

- степень снижения физико-механических свойств полимера (старение) трубы;
- наличие и характер локальных повреждений на трубопроводе.

Эти факторы меняют амплитудно-частотные характеристики трубопровода и в целом и на локальном участке.

ОСНОВНАЯ КОНЦЕПЦИЯ РАЗРАБОТКИ МЕТОДИКИ ОСТАТОЧНОГО РЕСУРСА НЕМЕТАЛЛИЧЕСКИХ ТРУБОПРОВОДОВ

Первоочередные объекты исследования: трубопроводы ТСК, трубопроводы МПТ

Имеющийся научно-технический задел: исследование работоспособности труб ТСК и МПТ по заказу предприятий изготовителей ЗАО «МЕПОС», ЗАО «НПП Композит-нефть» (1996-2004 гг.), работы по анализу применения неметаллических труб на объектах ООО «ЛУКОЙЛ-ПЕРМЬ» 2004-2009 гг., техническая экспертиза отказов на неметаллических трубопроводах ООО «ЛУКОЙЛ-ПЕРМЬ» в 2009-2012 гг.

Метод контроля: виброакустический метод с использованием переносного многоканального программноаппаратного комплекса «Камертон» (разработка ПНИПУ, проф. А.Ф. Сальников); контроль состояния трубопровода по изменению характеристик акустического сигнала (АЧХ, затухание, рассеивание и т.д.) при прохождении по исследуемому объекту.

Основная задача исследования: установление зависимости изменения характеристик акустического сигнала при прохождении по трубопроводу от остаточного ресурса трубопровода при различных условиях его эксплуатации

ОСТАТОЧНЫЙ РЕСУРС ТРУБОПРОВОДА

Ресурс трубопровода – суммарная наработка трубопровода от пуска до перехода в предельное состояние.

Наработка – период эксплуатации трубопровода без учета простоя

Срок службы – календарный период времени от ввода в эксплуатацию до его периода перехода в предельное состояние

Предельное состояние – техническое состояние трубопровода, при котором исключается его дальнейшая эксплуатация

Остаточный ресурс – период времени до перехода в предельное состояние

Методы определения остаточного ресурса:

- Экспериментально- теоретический
- Вероятностный
- Теоретический (расчетный)

МЕТОД АКУСТИЧЕСКОГО ЗОНДИРОВАНИЯ ТРАССЫ ТРУБОПРОВОДА

Схема установки акустических датчиков:

Недостатки

- 1. Только функционирующий трубопровод
- 2. Глубина залегания не более 2,0 м
- 3. Одиночные или удаленные на расстояние более 3 м трассы трубопроводов.
- 4. Пересечение с источником акустического шума (река, дорога и др. источники)

ЗАДАЧИ ИССЛЕДОВАНИЯ ЛАБОРАТОРИИ НИЛ ВАКИД ПНИУУ

- 1. Формирование базы данных трубопроводов с различным сроком эксплуатации для построения модели поведения.
- 2. Исследование изменения волновых процессов в трубопроводах из неметаллических труб на образцах различных типоразмеров с формированием различных дефектов
- 3. Разработка программного модуля методики оценки остаточного ресурса неметаллических трубопроводов.
- 4. Техническая диагностики и анализ причин отказа трубопроводов. Диагностика технических систем агрегатов и оборудования ГКС, компрессоров, технических сооружений.
- 5. Разработка волновой диагностики сложных пространственных конструкций авиационных двигателей и газотурбинных установок газоперекачивающих агрегатов.
- 6. Определить перечень допустимых дефектов и допустимого изменения механических свойств материала конструкции вследствие старения.

СПАСИБО ЗА ВНИМАНИЕ