Wine Quality Guy Kahana & Anat Peled

The Dataset

- ◀ The dataset was taken from <u>Kaggle</u>, but originally downloaded from the UCI Machine Learning Repository.
- The dataset refers to red and white variants of the Portuguese "Vinho Verde" wine. The reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
- The goal of our project is to predict the wine quality using its features
- This prediction may assist wine makers in the producing process

Acknowledgements: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. *Modeling wine preferences by data mining from physicochemical properties*. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

- Few nulls are present
- 12 numerical feature, 1 object (wine type)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6497 entries, 0 to 6496 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
	22222		
0	type	6497 non-null	object
1	fixed acidity	6487 non-null	float64
2	volatile acidity	6489 non-null	float64
3	citric acid	6494 non-null	float64
4	residual sugar	6495 non-null	float64
5	chlorides	6495 non-null	float64
6	free sulfur dioxide	6497 non-null	float64
7	total sulfur dioxide	6497 non-null	float64
8	density	6497 non-null	float64
9	рН	6488 non-null	float64
10	sulphates	6493 non-null	float64
11	alcohol	6497 non-null	float64
12	quality	6497 non-null	int64
dtvn	es: float64(11), int64	(1), object(1)	

dtypes: float64(11), int64(1), object(1)

memory usage: 660.0+ KB

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

- Linear correlation is limited
- ✓ Alcohol (0.44), density (0.31), volatile acidity (0.27) and chlorides (0.20) are the highest correlated features

The Dataset

- Type: Two types of wines: Red wine & white wine
- Ratio of 3:1 with white dominance

- Fixed acids include tartaric, malic, citric, and succinic acids which are found in grapes. Reducing acids significantly might lead to wines tasting flat.
- There is consistent gap in mean values for red & white wines

count	6,487.00
nean	7.22
std	1.30
nin	3.80
25%	6.40
50%	7.00
75%	7.70
nax	15.90

Volatile Acidity

count 6,489.00 0.34 mean std 0.16 min 0.08 25% 0.23 50% 0.29 75% 0.40 1.58 max

- Excess of volatile acids are undesirable and lead to unpleasant flavour
- Red wine volatile acidity is higher than white wines and tends to descent with quality
- Mean white wines fixed acidity is almost linear

- This is one of the fixed acids which gives a wine its freshness. Usually most of it is consumed during the fermentation process and sometimes it is added separately to give the wine more freshness.
- At quality levels <5 mean citric acid levels are relatively different

ount	6,494.00
ean	0.32
td	0.15
in	0.00
5%	0.25
0%	0.31
5%	0.39
ax	1.66

count	6,495.00
mean	5.44
std	4.76
min	0.60
25%	1.80
50%	3.00
75%	8.10
max	65.80

■ This typically refers to the natural sugar from grapes which remains after the fermentation process stops, or is stopped.

* outlier ~60 removed for plotting purposes

- This is the chloride concentration in the wine
- Mean chloride level decline with quality increase
- Red Wines have higher chloride levels than white wines

Free Sulfur Dioxide (SO₂)

- ◀ Also known as sulfites ,too much of it is undesirable and gives a pungent odour.
- White wines has higher free SO, levels
- \blacktriangleleft Mean level of SO₂ in white wines with quality = 4 is showing anomalous

Total Sulfur Dioxide

- This is the sum total of the bound and the free sulfur dioxide. This is mainly added to kill harmful bacteria and preserve quality and freshness.
- Total mean SO₂ levels are higher in white wines than in red wines, but remain relatively constant among quality groups.

- This can be represented as a comparison of the weight of a specific volume of wine to an equivalent volume of water.
- Mean density values decline as quality increase in both types of wines.
- Majority of values between 0.99 and 1.005

- Also known as the potential of hydrogen, this is a numeric scale to specify the acidity or basicity the wine. Most wines have a pH between 2.9 and 3.9 and are therefore acidic.
- Red wines are less acidic than white wines in average when it comes to low qualities levels

- These are mineral salts containing sulfur. They are connected to the fermentation process and affects the wine aroma and flavour.
- Red wines have higher sulphates values than white wines.
- Mean sulphates level is constant in white wines, and graduating in red wines.

- It's usually measured in % vol or alcohol by volume (ABV).
- Alcohol % doesn't vary between wine types, but tend to increase with quality

Sulfur Dioxide Ratio

- $\blacktriangleleft \quad \text{Free SO}_2 / \text{Total SO}_2$
- Higher ratio in red wines
- Stronger correlation to quality

Acidity Factor

- Multiply of the 3 acid features to create a new feature
- Fixed at 3 & 4, drift apart at higher quality levels

- Wine experts graded the wine quality between 0 (very bad) and 10 (very excellent). The eventual quality score is the median of at least three evaluations made by the same wine experts.
- **⋖** imbalanced data
- 9 is applicable at white wines only

(with 5 observations!)

Data Insights

- Most features show different behavior regarding the wine type, but the type by itself can't predict the quality.
- Should we predict the wine type, one could expect high prediction rates.
- Quality prediction rate is expected to be low, due to imbalanced dataset
- The ability to predict categories 3, 4, 8 & 9 is expected to be very low due to small sample size
- Imputing nulls must take into consideration the wine type
- Outliers removals is essential in almost 50% of features
- Scaling is required due to different values scale (<1, 10s, 100s)
- The engineered features were aimed to unite similar indicative feature to a more solid feature. But while in sulfur we decided to drop the original features, at acidity we will use it all.
- **◄** We suspect that applying different prediction models on white and red wines may get higher prediction score.

Pre Processing

Apply in	Transformer	Alcohol	Acidity factor	citric acid	chlorides	Density	fixed acidity	Free Sulfur Dio xide
Train	Outlier_limit			V	V	V		V
	SimpleImputer			V	V			
Train + Test	MinMaxScaler	V	V	V	V	V	V	
	Other		eng. Feature					

Apply in	Transformer	Sulfur Dioxide Ratio	рН	residual sugar	Sulphates	Total Sulfur Dioxide	type	volatile acidity
Train	Outlier_limit			V	V	V		V
	SimpleImputer		V	V				V
Train + Test	MinMaxScaler		V	V	V			V
	Other	eng. Feature					[0,1]	

* Engineered feature

Pre-Processing: Outliers removal

- Dictionary with modified limits to features
- limit_value function
- FunctionTransformer applied

```
def limit_value(X, **val_dict):
    """This function recieves a dataframe and returns
    it without the outliers
    """
for col, val in val_dict.items():
    X = X.loc[X[col] < val, :]
    return X</pre>
```

```
# Dictionary of outliers
     outlier dict = {'free sulfur dioxide': 150,
                     'total sulfur dioxide': 400.
 3
                     'density': 1.01,
                     'sulphates': 1.75,
                     'volatile acidity':1.5,
                     'citric acid': 1.2,
                     'residual sugar': 50,
 8
                     'chlorides': 0.5}
 9
10
11
     # Clean outliers
     outlier limit = FunctionTransformer(limit value, kw_args = outlier_dict)
     df = outlier limit.transform(df)
```


Pre-Processing: Feature selection & split

```
col_to_drop = ['free sulfur dioxide', 'total sulfur dioxide']
df = df.drop(labels=col_to_drop, axis=1)
```

```
# split the data
X_train, X_test, y_train, y_test =
split(df.drop('quality', axis=1), df['quality'],
test_size = 0.25,
random_state = 12345,
stratify=df['quality'])
```

```
X_Train: (4849, 12) | y_Train: 4849
X_Test: (1617, 12) | y_Test: 1617
```


Apply Imputer & Scaler

```
cols = ['fixed acidity', 'volatile acidity', 'citric acid',
            'residual sugar', 'chlorides', 'density', 'pH',
 3
             'sulphates', 'alcohol', 'acidity factor']
 4
 5
     imputer = SimpleImputer(strategy = 'mean')
     scaler = MinMaxScaler()
 8
    X train.loc[X train['type'] == 0] = imputer.fit transform(X train.loc[X train['type'] == 0])
    X train.loc[X train['type'] == 1,:] = imputer.fit transform(X train.loc[X train['type'] == 1])
10
    X train.loc[X train['type'] == 0,cols] = scaler.fit transform(X train.loc[X train['type'] == 0,cols])
11
    X train.loc[X train['type'] == 1,cols] = scaler.fit transform(X train.loc[X train['type'] == 1,cols])
12
13
    X test.loc[X test['type'] == 0] = imputer.fit transform(X test.loc[X test['type'] == 0])
14
    X_test.loc[X_test['type'] == 1] = imputer.fit_transform(X_test.loc[X_test['type'] == 1])
15
16
    X test.loc[X test['type'] == 0,cols] = scaler.fit transform(X test.loc[X test['type'] == 0,cols])
17
    X test.loc[X test['type'] == 1,cols] = scaler.fit transform(X test.loc[X test['type'] == 1,cols])
18
```


Reality

- Get 2 model one for red, one for white
- In fit: fit each population with its own model
- ✓ In transform: predict the population, concat the data and return a reinexed y series

```
class run estimator (BaseEstimator, TransformerMixin):
           This transformer recives a DF(X) and a target(v).
           and split it to two populations: red wines and white wines
 5
       def init (self, model r, model w, classes=[0,1]):
           self.red model = model r
           self.white model = model w
 8
           self.classes = classes
 9
10
11
       def fit (self, X, y=None):
12
           X \text{ red} = X[X.type==0].copy()
13
           v red = v[X.type==0].copy()
14
           self.red_model_.fit(X_red, y_red)
15
           X white = X[X.type==1].copy()
16
           y white = y[X.type==1].copy()
17
           self.white model .fit(X white, y white)
18
           return self
19
20
21
       def predict(self, X):
22
           X \text{ red} = X[X.\text{type}==0].\text{copy()}
23
           X white = X[X.type==1].copy()
           y red pred = pd.Series(self.red model .predict(X red),index=X red.index)
24
           y white pred = pd.Series(self.white model .predict(X white),index=X white.index)
25
           y pred = pd.concat([y red pred, y white pred], axis=0)
26
           return y pred.reindex like(X)
27
```


Cohen's Kappa score

kappa_scorer = make_scorer(cohen_kappa_score)

Cohen's kappa coefficient (κ) is a statistic which measures inter-rater agreement for qualitative (categorical) items. It is generally thought to be a more robust measure than simple percent agreement calculation, as κ takes into account the possibility of the agreement occurring by chance.

		В				
		Yes	No			
Α	Yes	a	b			
	No	с	d			

		В			
		Yes	No		
Α	Yes	10	15		
	No	20	05		

$$p_{ ext{Yes}} = rac{a+b}{a+b+c+d} \cdot rac{a+c}{a+b+c+d}$$

$$p_{ ext{No}} = rac{c+d}{a+b+c+d} \cdot rac{b+d}{a+b+c+d}$$

$$p_e = p_{
m Yes} + p_{
m No}$$

Kappa value interpretation Landis & Koch (1977):

<0 No agreement

.20 blight

21 — .40 Fair

.41 — .60 Moderate

1 — .80 Substantial

.81–1.0 Perfect

The observed proportionate agreement is:

$$P_0 = \frac{a+d}{a+b+c+d} = \frac{10+5}{50} = 0.3$$

Baseline code without gridsearch

```
# Run Baseline Logistic Regression with all data
    model = LogisticRegression(multi class = 'ovr')
    model.fit(X train, y train)
    y train pred = model.predict(X train)
    y test pred = model.predict(X test)
                                                                                       8
    # CrossValidation
    cv = StratifiedKFold(n splits=5, shuffle=True, random state=123)
                                                                                       9
    scores = cross val score(model, X train, y train, cv=cv, scoring=kappa scorer)
                                                                                      10
10
                                                                                      11
    # Print the results
    print('CV:', scores)
    print('CV mean:', scores.mean())
   print(f'Train Cohen kappa score is: {cohen kappa score(y train, y train pred):.3}')
    print(f'Test Cohen kappa score is: {cohen kappa score(y test, y test pred):.3}')
    cm plot(confusion matrix(v train, v train pred), model)
```

CV: [0.26404414 0.22636681 0.19986942 0.24408421 0.26525797] CV mean: 0.23992450947633248 Train Cohen kappa score is: 0.251 Test Cohen kappa score is: 0.235

Output

Model Results: Logistic Regrssion

	Single: Baseline	Red	White	Combined
Train	0.251	0.348	0.279	0.301
Test	0.239	0.326	0.249	0.269
Mean CV	0.24	0.297	0.277	0.281

Model Results: VotingCalssifier

	Single	Red	White	Combined	Combined+Single as white
Train	0.687	0.451	0.319	0.36	0.742
Test	0.322	0.326	0.261	0.281	0.306
Mean CV	0.33	0.308	0.26	0.281	0.331

Model Results: XGBoost

	Single	Red	White	Combined	Combined+Single as white
Train	0.999	0.374	0.735	0.658	0.864
Test	0.418	0.291	0.414	0.386	0.447
Mean CV	0.45	0.299	0.398	0.38	0.421

Model Results: RandomForest

	Single	Red	White	Combined	Combined+Single as white
Train	0.984	0.483	0.914	0.821	0.885
Test	0.438	0.317	0.461	0.429	0.44
Mean CV	0.45	0.299	0.438	0.416	0.431

Feature Importance

- Alcohol is dominant in both models
- ▼ red and wine have different importance
- Out engineered features proved to be valuable!

- Combined data failed to improve model scores
- Nevertheless, splitting the data into 2 populations was worth the effort, except for in VotingClassifier
- Applying grid search on each population and the joined data gave added value

- 1. Oversampling \ undersampling should be executed on the split model
- 2. Combining 2 different models (instead of one model with different hyper-parameters)
- 3. More time to GridSearch and improve the scores ;-)
- 4. Binning the quality target into good, medium and bad
- 5. Predicting wine type

Thank You

