## University of Hawai'i



| Last name:  |  |  |  |
|-------------|--|--|--|
|             |  |  |  |
| D           |  |  |  |
| First name: |  |  |  |

| Question: | 1  | 2  | 3  | 4  | 5  | Total |
|-----------|----|----|----|----|----|-------|
| Points:   | 10 | 10 | 10 | 10 | 10 | 50    |
| Score:    |    |    |    |    |    |       |

## **Instructions:**

- Make sure to write your complete name on your copy.
- You must answer all 5 questions below and write your answers directly on the questionnaire.
- You have 50 minutes to complete the exam.
- When you are done (or at the end of the 50min period), return your copy.
- Any electronic devices are not aloud during the exam.
- You can use a calculator.
- Turn off your cellphones during the exam.
- Lecture notes and the textbook are not allowed during the exam.
- You must show ALL your work to have full credit.
- Draw a square around your final answer.

| Your Signature: |  |
|-----------------|--|
|                 |  |

| QUESTION | 1( | 10  | pts) |
|----------|----|-----|------|
|          |    | \ - | 1 /  |

Estimate the volume of the solid that lies below the surface z = xy and above the rectangle

$$R = [0, 6] \times [0, 4].$$

Use a Riemann sum with m=3 and n=2, and take the sample point to be the upper right corner of each sub-rectangle.

| QUESTION 2 | (10 p | ots) |
|------------|-------|------|
| ~~~        |       |      |

Evaluate the following iterated integral:

$$\int_0^1 \int_1^2 (x + e^{-y}) \, dx dy.$$

| QUESTION 3 | (10 | pts) |
|------------|-----|------|
|            |     | 1/   |

Evaluate the volume of the solid that lies under the plane 4x + 6y - 2z + 15 = 0 and above the rectangle  $R = [-1, 2] \times [-1, 1]$ .

| Question 4 | (10 | pts) |
|------------|-----|------|
| •          | (   | . ,  |

Setup the integral by taking the following order: dA = dxdy. Do not evaluate the integral.

$$\iint_D y \, dA, \quad D \text{ is bounded by } y = x - 2, \, x = y^2.$$

| Question 5 | (10 pt | s)   |
|------------|--------|------|
|            |        | ,,,, |

Evaluate the following integral.

$$\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \sin(x^2) \, dx dy.$$