Synchronisation EE240: Power Engineering LAB Synchronisation

Instructor

Prof. B. G. Fernandes

26/3/2021, Tuesday

SYNCHRONOUS MACHINES

- In IM \rightarrow N_r is a function of load & N_s \neq N_r
- In synchronous machines $\rightarrow N_s = N_r \& s = 0$ steady state N_r is independent of load
- Synchronous generator ⇒ Alternator → used to generate electric power
- \Rightarrow Rating is high \rightarrow in MW
- \Rightarrow In India largest generator is 1000 MW[†] located in Tamil Nadu Nuclear Plant.
- → steam turbine → high speed

 ⇒ Driven by turbine—
 - → Pelton turbine → low speed (hydro)
- [†] https://cea.nic.in/wp-content/uploads/pdm/2020/09/list_power_stations_2020.pdf

<u>Stator</u> <u>Rotor</u>

 $3-\phi$ ac winding (similar to $3-\phi$ IM)

dc

 \rightarrow

dc

 $3-\phi$ ac winding

Rating - 250MVA, 'V' rating \cong 16kV, Rated 'I' \cong 9kA dc current \cong 2600A,

dc voltage rating = 310V,

speed = 3000 rpm

If ac winding is on the rotor

dc winding is on the rotor

'V' between 2 slip rings \cong 16kV

310V

'I' flowing through
Slip rings

≅9kA

2.6kA

Slip rings rotate at 3000 r.p.m \Rightarrow It is convenient to have dc field rotating

There are two types of rotor construction

<u>Cylindrical rotor</u> → rotor is circular

- ⇒ suitable for high speed operation
- ⇒ Invariably wound for 2 poles

Salient pole rotor

- \Rightarrow has projected poles
- ⇒ bars are fitted on the pole faces (similar to cage winding)
- ⇒ suitable for low speed operation
- \Rightarrow no. of poles could be 24
- \Rightarrow In order to generate power at 50Hz, rotate the rotor at 250 rpm

Cylindrical rotor

- ⇒air gap is uniform
- $\therefore \Re$ is constant $(\Re \rightarrow \text{reluctance})$
- \Rightarrow 'L' is independent of rotor position

Salient pole rotor

air gap is non-uniform $\& \therefore \Re$

- $\Rightarrow \mathfrak{R}$ is minimum along field axis (direct axis)
- $\Rightarrow \Re$ is maximum along q-axis (quadratureaxis)
- :. 'L' depends on rotor position
- If \Re is min \rightarrow 'L' would be max
- If \Re is max \rightarrow 'L' would be min
- \therefore 'L' varies between $L_{min}(=L_q) \& L_{max}(=L_d)$
- ⇒ apart from field winding there is cage winding as well

Principle of operation: stator has 3-\phi distributed winding (similar to IM.)

Assume that generator is brand new & no. of poles = 2; keep the stator terminals open with I_{dc} = 0, rotate the rotor at 3000 rpm

- $: I_F = 0$, rotor mmf & :. field flux = 0
- .: 'V' induced in the stator on O.C

$$(E_0) = 0$$

$$\Rightarrow \uparrow I_F$$

$$\Rightarrow$$
 as $I_F \uparrow$, $\phi_f \uparrow$

$$\Rightarrow \mathsf{E_0}\,\alpha\,\,\phi_\mathsf{f}\,\omega\,\mathsf{N}_\mathsf{ph}$$

EE240: Power Engineering LAB

: $\omega \& N_{ph}$ are constant

$$\therefore E_0 \mathrel{\alpha} \varphi_f$$

$$\alpha I_f$$

- \Rightarrow Variation of E₀ with I_f at constant ω is known as open circuit characteristic (OCC) (stator terminals are kept open)
- \Rightarrow ↑ in E₀ \propto I_f till point C, beyond 'C', circuit gets saturated variation is no longer linear
- \Rightarrow If I_f is made = 0, rotor will retain some magnetism

(residual magnetism)

 \therefore If the above process is repeated when $I_f = 0$

$$E_0 \neq 0$$

let $R_s \rightarrow$ stator resistance/phase &

X_{sl} is the leakage reactance/phase

Load \Rightarrow 'R'/Inductive/capacitive $I_S \rightarrow$ stator current/phase

- ⇒ this current flows in stator turns (distributed in space)
- ⇒ mmf distribution is sinusoidal in space
- $\Rightarrow \phi_a \rightarrow \text{armature flux due to I}_s \text{ in N}_{ph}$
- \Rightarrow air gap flux is $\neq \phi_f$
- \Rightarrow vector sum of $\phi_f \& \phi_a \to \phi_r \to \text{resultant flux}$
- \Rightarrow ϕ_a can aid/oppose ϕ_f ?(is there a third possibility ??)
- ⇒ this effect, "effect of stator flux on rotor flux is known as armature reaction"

EE240: Power Engineering LAB

 \Rightarrow this effect depends on load P.F.

Lagging power factor:

$$\angle \frac{E_o}{\Phi_F} = \frac{\pi}{2}$$

$$|\Phi| < |\Phi|$$

- ⇒ lagging 'I' tries to oppose the field flux
- ⇒ demagnetizing effect

<u>Leading power factor</u>:

 $|\phi_R|$ could be greater than $|\phi_F|$

⇒ leading current tries to aid the field flux

⇒ magnetizing effect

Unity power factor:

- \Rightarrow difference between $|\phi_R|$ & $|\phi_F|$ in UPF case < difference between $|\phi_R|$ & $|\phi_F|$ in lagging P.F. case
- ⇒ though in phase component of current does not directly oppose the field flux, it tries to distort the field
- ⇒ cross magnetization

How to represent armature reaction?

 $\Rightarrow \phi_a \rightarrow links stator turns$

 $X_{sl} \rightarrow leakage reactance$

 $R_s \rightarrow stator resistance/ph$

In high power m/c \rightarrow R_s<< $(X_{sl} + X_a)$

 $X_s \rightarrow$ synchronous reactance

$$\Rightarrow$$
 Z_S= (R_S + jX_S) \rightarrow synchronous impedance,
neglecting R_S, Z_S \cong X_S

If
$$V_t = V \angle 0$$

 $\overline{E_0} = E_0 \angle \delta$ δ is +ve for generator action.

Expression for power:

$$\overline{I_S} = \frac{E_0 \angle \delta - V \angle 0}{Z_S \angle \theta} = \frac{E_0 \angle (\delta - \theta)}{Z_S} - \frac{V \angle - \theta}{Z_S}$$

$$= \left[\frac{E_0}{Z_s} \cos(\delta - \theta) - \frac{V}{Z_s} \cos \theta \right] + j \left[\frac{E_0}{Z_s} \sin(\delta - \theta) - \frac{V}{Z_s} \sin \theta \right]$$

power/phase =
$$V I_s \cos \phi = \frac{V}{Z_s} [E_0 \cos(\delta - \theta) - V \cos \theta]$$

In synchronous machine $|R_S| << |X_S| \Rightarrow |Z| \cong |X| \& \theta \cong -$

EE240: Power Engineering LAB

Total power =
$$\frac{3E_0V}{X_s}$$
 sin δ

⇒ synchronous generator I (rating in MVA) is always connected in parallel with other generators.

 \Rightarrow connected to grid.

 $\delta \rightarrow \text{angle between } F_s \text{ and } F_R$ From Newton's law, (rate of change of angular momentum is the net torque)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t}\alpha(\mathrm{T_m}-\mathrm{T_e})$$

 $T_m \rightarrow$ mechanical torque $T_m \rightarrow$ electrical torque

$$\frac{d\delta}{dt} = \omega$$
 at steady state, $T_m = T_e \& : \omega = \omega_{st} = \text{synchronous speed}$

EE240: Power Engineering LAB

assume that for some reason, δ_1 has \uparrow slightly

- ⇒ no change in mechanical input
- \Rightarrow (T_m T_e) (or (P_m P_e)) is negative generator would decelerate and come back to its original place

 \Rightarrow stable

Operation at δ_2 :

if for some reason δ_2 has \uparrow

$$\Rightarrow$$
 (T_m - T_e) is + ve

try to accelerate the rotor further

$$\Rightarrow \delta_2 \uparrow \text{ further}$$
 :. unstable

- \therefore stable operating range is $0 < \delta < \pi/2$
- \Rightarrow generally δ is around 30°
- \Rightarrow If δ is high and big disturbance is given, δ may \uparrow above $\pi/2$ and the system may become unstable

Generator feeding local load

Any change in I_f would result in a change in $\overline{E_0}$ & $\therefore \overline{V_t}$

- ⇒ as the load changes, speed of the prime mover and
- ∴ 'f' of 'V' in stator would change
- ⇒ rating of synchronous machine in MVA
- ⇒ only small portable DG feed the local load
- ⇒ high power generators are connected to the grid
- ⇒Grid is a network to which a large no. of generators are connected.

In India, there is one Central Grid which is divided into 5 Regions.

- ⇒ Total installed capacity is approx. 3,75,323 MW
- ⇒ Assume that at Khopoli, engineer changes the excitation of the generator
- \Rightarrow Its E_o would change
- \Rightarrow If V_t changes, it would affect all the other generators
- \Rightarrow Not practical
- \Rightarrow Grid 'V' and 'f' are kept almost constant(50.5 < f < 49)
- ⇒ Behavior of synchronous generator connected to the grid is different from that of generator feeding local load
- ⇒ Grid is a network whose 'f' & 'V' are held constant & they do not change for small disturbance
- ⇒ Change of excitation of generator connected to grid will not change the terminal 'V'
- ∵ power input is held constant, output also will not change

Operation at variable excitation and constant load

At constant load,
$$P = \frac{E_0 V}{X_S} \sin \delta$$

$$\therefore E_0 \sin \delta = \frac{PX_S}{V} \to \text{constant}$$

Also, $Vlcos\phi = P = constant$

If excitation is varied, then E_0 and δ would change such that ' $E_0 sin \delta$ ' will remain constant

How to connect to the grid:

Process is known as synchronization.

Just prior to closing the switch,

- \Rightarrow 'f' & |V| should be \cong same as that of grid
- ⇒Phase sequence should be same

