Normalização

14 de outubro de 2020 11:08

Normalização: é um processo que consiste em estruturar a informação em tabelas na forma mais adequada a fim de evitar:

- O Redundâncias desnecessárias;
- O Problemas associados à inserção, eliminação e atualização de dados.

Problemas de Redundância de Dados:

- Armazenamento redundante
 - Mesmos dados gravados em vários locais
 - Menos espaço disponível para gravar outros dados
- Anomalias Incoerências que podem existir aquando da escrita de dados
 - o Inserção
 - Pode não ser possível inserir dados, sem serem fornecidos outros, não relacionados
 - Uma alternativa seria usar NULL nos outros dados, mas nem sempre é possível
 - Atualização
 - Pode existir uma incoerência nos dados se apenas uma das cópias for atualizada
 - o Eliminação
 - Pode não ser possível apagar dados, sem apagar outros, não relacionados

Processos de Normalização:

- Baseada nas Dependências funcionais (DFs);
- Garante consistência na construção do sistema: redução de anomalias.
- redução de redundância;
- Existem algumas regras para a normalização da base de dados.
 - Cada regra é chamada de " FORMA NORMAL (FN)".
 - Condição usando chaves e DFs de uma relação para certificar se um esquema de relação está numa forma normal específica

Do processo de normalização emergem três tipos de **dependências** entre os dados: **funcionais**, **multivalor** e de **junção**.

As dependências funcionais referem-se à semântica dos dados e não ao seu conteúdo.

Dependências Funcionais:

• Numa relação R, diz-se que o atributo y é funcionalmente dependente de x (x, y \in R), se e apenas se, em qualquer instante, cada valor de x em R tem associado apenas um valor de y em R

Uma dependência funcional para R é uma expressão da forma R:

X → Y, onde X e Y são conjuntos de atributos de R

Onde y depende funcionalmente de x.

Nota:

A chave primária de uma relação determina sempre os restantes atributos, isto é, todos eles são dependentes funcionalmente da chave.

Dependência funcional Total:

 Numa relação R, o atributo y é funcionalmente dependente total de x (x, y ∈ R), no caso de x ser um atributo composto, se e apenas se, é funcionalmente dependente de x e não é funcionalmente dependente de qualquer subconjunto dos atributos de x

Dependência Funcional Transitiva:

• Uma dependência funcional R: $x \to y$ é transitiva, se existe um atributo z que não é um subconjunto de x, tal que $x \to z$ e $z \to y$

Exemplo: Considere o seguinte esquema com suas dependências funcionais:

A dependência funcional Nr_emp -> Dnome é transitiva para Dnumero, pois ambas as dependências NR_emp -> Dnumero e Dnumero-> Dnome são asseguradas e **Dnumero não é nem chave primária nem um subconjunto da chave da relação**.

Dependências Multivalor:

- A dependência multivalor apenas se verifica em casos em que a relação tem pelo menos 3 atributos.
 - O Numa relação R, o atributo y tem uma dependência funcional multivalor relativamente a x $(x, y \in R)$, se para cada par de tuplos de R contendo os mesmos valores de x, também existe um par de tuplos de R correspondentes à troca dos valores de y no par original

Os tuplos que não têm valores repetidos, satisfazem por redução esta regra Consideremos a relação R = {a, b, c}

- > Existem 2 dependências multivalor
 - ➤ R: a ->>b
 - ➤ R: a ->> c

а	b	С
x1	y1	z1
x1	y1	z2
x1	y2	z1
x1	y2	z2
x3	y1	z1
x4	y3	z2

Dependência de junção:

 Uma dependência de junção numa relação só existe quando, dadas algumas projeções sobre a relação, apenas é possível reconstruir a relação inicial através de algumas junções bem específicas, mas não de todas

Consideremos a relação R = {a, b, c} e três projecções:

$$ightharpoonup$$
 P1 = {a, b}, P2 = {a, c}, P3 = {b, c}

- > Se não é possível reconstruir a relação com:
 - ▶ P1 e P2
 - ▶ P2 e P3
 - ▶ P1 e P3
- E o for, por exemplo, apenas com P1, P2 e P3...
 - Diz-se que R possui uma dependência de junção

Regras de Inferência de DF's:

Dada uma relação R com um conjunto U de atributos e algumas dependências funcionais, é possível inferir outras dependências funcionais (triviais ou derivadas) usando os axiomas de Armstrong

Axiomas de Armstrong:

_	União	$-\operatorname{Se} X \to \operatorname{Y} \operatorname{e} X \to \operatorname{Z},$ então $\operatorname{X} \to \operatorname{YZ}$
-	Decomposição	– Se X \rightarrow YZ , então X \rightarrow Y e X \rightarrow Z
-	Transitividade	$-\operatorname{Se} X \to Y \ e \ Y \to Z, \ ent\tilde{ao} \ X \to Z$
-	Pseudo-transitividade	$-\operatorname{Se} X \to \operatorname{Y} \operatorname{e} \ \operatorname{WY} \to \operatorname{Z} \ \operatorname{ent} \ \operatorname{\tilde{ao}} \ \operatorname{XW} \to \operatorname{Z}$
_	Extensão (Aumento)	– Se X \rightarrow Y Z \subseteq U, então XZ \rightarrow YZ
_	Reflexibidade	- Se $X \supseteq Y$, então $X \rightarrow Y$

Aprofundando a Normalização:

- Com base nas dependências funcionais, multivalor e de junção define-se o processo de normalização de dados aplicado ao modelo relacional.
- A hierarquia é composta por cinco formas normais (1a, 2a, 3a, 4a e 5a Forma Normal) e uma intermédia (Forma Normal de Boyce-Codd, entre a 3a e a 4a).
- Na prática, não deve ser levada às ultimas consequências, pois a proliferação de relações pode conduzir à deterioração do desempenho da Base de Dados.
- Na maioria dos casos opta-se por uma solução de compromisso entre a 3a Forma Normal e a Forma Normal de Boyce Codd.

Formas Normais:

Processo:

Como determinar a chave primária a partir de DF's :

- a) Seja a Relação R(A,B,C,D) e as seguintes DF : B -> D e AB -> C
 - A chave primaria da relação é AB.

Aplicou-se os axiomas de Armstrong.

- 1. Aumento à DF B -> D => AB-> AD
- 2. União AB -> C e AB -> AD => AB -> CD
- b) Seja a Relação R(A,B,C,D,E) e as seguintes DF: AB-> CE; E-> AB e C-> D
 - As chaves candidatas da relação é AB e E.

Aplicou-se os axiomas de Armstrong.

- 1. Decomposição AB -> CE => AB -> C e AB -> E
- 2. Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade AB -> CD e AB-> E => AB-> CDE

- 1. Decomposição AB -> CE => AB -> C e AB ->E
- 2. Transitividade AB -> C e C -> D => AB -> CD
- 3. Transitividade E -> AB e AB -> CD => E-> ABCD

Uma relação está na 1FN se:

- Os atributos chave estão definidos
- Não existem grupos repetidos
- Todos os atributos estão definidos em domínios que contêm apenas valores atómicos, isto é, cada atributo só pode admitir valores elementares e não conjunto de valores
- Todos os atributos dependem funcionalmente da chave primária
- <u>Visa eliminar a existência de grupos de valores repetidos --> A uma ocorrência da chave só pode corresponder uma ocorrência dos outros atributos não chave</u>

Uma relação está na 2FN se:

- Estiver na 1FN
- Cada atributo não chave depende funcionalmente da totalidade da chave
 - Não existem dependências parciais
 - Todos os atributos que não pertencem à chave dependem funcionalmente da chave no seu conjunto e
 - O Não dependem de nenhum dos seus elementos ou subconjuntos tomados isoladamente

Conversão da estrutura para a 2 FN:

- Se a relação só tem um atributo como chave primária e se essa relação já estiver na 1FN, então a relação também se encontra na 2FN
- Se a chave primária é composta e se algum atributo não-chave depende apenas de uma parte da chave primária, então a relação deverá ser decomposta, para que cada atributo dependa da totalidade da chave primária

Uma relação está na 3FN se:

- Estiver na 2FN
- Nenhum dos seus atributos depende funcionalmente de atributos não chave
 - O Nenhum dos atributos que não fazem parte da chave pode ser funcionalmente dependente de qualquer combinação dos restantes
 - Cada atributo depende apenas da chave e não de qualquer outro atributo ou conjunto de atributos

Conversão da estrutura para a 3FN:

- 1. Procurar dependências funcionais entre os atributos não-chave da relação
- 2. Se a relação que já está na 2FN e tiver apenas um atributo não-chave, então a relação também já se encontra na 3FN
- 3. Se existir algum conjunto de atributos não-chave na relação que tenha dependência funcional em relação a um outro conjunto de atributos não-chave da mesma relação, então a relação deve ser decomposta de modo a que qualquer atributo não-chave da relação só dependa da chave primária da relação

Boyce Cood

Uma relação está na forma normal de Boyce-Codd, se e apenas se, todos os seus atributos são funcionalmente dependentes da chave, de toda a chave e nada mais do que a chave

Consideremos a relação:

$$R = \{a, b, c\}$$

E as dependências funcionais em R:

R:
$$(a, b) \rightarrow c$$

R: $c \rightarrow b$

➤ R está na 3ª FN, mas tem uma dependência que invalida a forma normal de Boyce-Codd Podia resolver-se criando duas relações:

R1 = $\{c, b\}$ correspondente à dependência funcional R: $c \rightarrow b$

R2 = $\{a, c\}$ correspondente à dependência funcional R: $\{a, b\} \rightarrow c$

... mas na verdade perdia-se a dependência funcional R: (a, b) → c, que não se encontrando explicitamente incorporada no modelo relacional teria de ser implementada no nível aplicacional!

O ideal será então obter uma solução que, embora mais redundante, mantém todas as dependências funcionais, ou seja, não normalizar até Boyce-Codd...

$$R = \{\underline{a}, \underline{b}, c\} \in R1 = \{\underline{c}, b\}$$

4ª Forma Normal (4FN)

 Uma relação está na 4ª forma normal, se está na Boyce-Codd, e se não existem dependências multivalor

5ª Forma Normal (5FN)

- Uma relação encontra-se na 5FN se não existem dependências de junção.
 - Verificam-se em situações muito raras e difíceis de detetar
 - O Exige que se compreenda bem a semântica da relação

Conclusões:

- A 4ª e 5ª formas normais são raras e difíceis de detetar
- Frequentemente considera-se que uma relação na 3ª forma normal ou Boyce-Codd está num nível de normalização aceitável
- O nível de normalização deve ser pensado contra outros critérios
 - Por exemplo, um nível de normalização exagerado pode originar problemas de performance
- A redundância entre os dados não pode ser completamente eliminada
 - o de facto, as chaves estrangeiras são também uma forma de redundância
- Problemas que a redundância pode trazer
 - O <u>Custo de espaço de armazenamento</u> a redundância implica ocupar espaço adicional com algo que não acrescenta nada ao que já existe armazenado
 - Manutenção -uma simples alteração ou remoção pode implicar o acesso a várias tabelas, tornando-se difícil manter a coerência dos dados armazenados
 - Desempenho Se a redundância for significativa, isso implicará mais acessos a disco para trazer os mesmos dados