R 프로그래밍

Chapter 12

Clustering, Classification

Bio Information technology Lab.

Contents

- Summary
- kmeans algorithm
- KNN algorithm
- Exercise

Clustering

- Grouping target data into some category
- Data in same group has similar characteristics
- Group points into clusters based on how "near" they are to one another
- Unsupervised learning

Classification

- Classify new data into one of known category.
- The category has "label"
- Supervised learning

- Clustering example
 - 차량의 특성을 가지고 grouping 을 해 보자

Could see any group?

Vehicle	Top speed	Color	Air	Weight
	km/h		resistance	Kg
V1	220	red	0.30	1300
V2	230	black	0.32	1400
V3	260	red	0.29	1500
V4	140	gray	0.35	800
V5	155	blue	0.33	950
V6	130	white	0.40	600
V7	100	black	0.50	3000
V8	105	red	0.60	2500
V9	110	gray	0.55	3500

Clustering example

Clustering example

Terminology

Classification example

No	Height	Weight	running hour	working hour	Category
1	0.41	0.36	0.27	0.65	Patient
2	0.23	0.37	0.34	0.68	patient
3	0.38	0.38	0.46	0.95	patient
4	0.45	0.31	0.37	0.75	patient
5	0.37	0.45	0.48	0.75	patient
6	0.28	0.26	0.36	0.86	patient
7	0.66	0.44	0.51	0.98	patient
8	0.55	0.43	0.43	0.91	patient
9	0.23	0.44	0.28	0.78	patient
10	0.41	0.53	0.46	0.86	patient
11	0.65	0.38	0.74	0.51	normal
12	0.89	0.53	0.67	0.46	normal
13	0.58	0.54	0.56	0.43	normal
14	0.78	0.55	0.67	0.34	normal
15	0.89	0.56	0.81	0.56	normal
16	0.65	0.57	0.81	0.43	normal
17	0.75	0.67	0.76	0.35	normal
18	0.46	0.48	0.65	0.42	normal
19	0.89	0.69	0.78	0.23	normal
20	0.78	0.81	0.88	0.26	normal

Disease A

Patient or Normal?

Classification example

Apple iPhone

(1)take a picture by phone camera

(2) Search similar image and shows detail information about it

Classification analysis procedure

- 1. Prepare target dataset
- 2. Divide target dataset into training data and test data
 - assume we don't know class labels of test data
- 3. Training model using training data
- 4. Predict class labels of test data using learning model
- 5. Evaluate prediction performance

- Binary vs. multiple classification
 - Binary classification
 - # of class is two

Male | Female

Patient Normal

Yes No

- multiple classification
 - # of class over two

Well-done medium rare

university High school

Middle school

Elementary school

Binary Classification Error

fact

predict

	Fact is True	Fact is False
Predict as True	TP	FP
Predict as False	FN	TN

TP: true positive **FP:** false positive

FN: false negative TN: true negative

Binary Classification Error

$$Accuracy = \frac{(TP + TN)}{(TP + TN + FP + FN)}$$

Binary Classification Error

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

환자를 환자라고 예측할 확률

정상인을 정상인이라고 예측할 확률

- Sensitivity
 - Fraction of all Class1 (True) that we correctly predicted at Class 1
 - How good are we at finding what we are looking for
- Specificity
 - Fraction of all Class 2 (False) called Class 2
 - How many of the Class 2 do we filter out of our Class 1 predictions

In both cases, the higher the better

- Supervised learning
 - First, training the algorithm, and the algorithm do the task
 - We already have well classified sample
 - Classification
- Unsupervised learning
 - No training. Algorithm do the task by itself
 - Clustering

Clustering algorithm K-means clustering

Cracked tiles example

475Hz	557Hz	
	++	
0.958	0.003	
1.043	0.001	
1.907	0.003	
0.780	0.002	
0.579	0.001	
0.003	0.105	
0.001	1.748	
0.014	1.839	
0.007	1.021	
0.004	0.214	

Table 1: frequency intensities for ten tiles.

Tiles are made from clay moulded into the right shape, brushed, glazed, and baked. Unfortunately, the <u>baking may produce invisible cracks</u>. Operators can detect the cracks by hitting the tiles with a hammer, and in an automated system the response is recorded with a microphone, filtered, Fourier transformed, and normalised. A small set of data is given in TABLE 1 (adapted from MIT, 1997).

Plot of tiles by frequencies (logarithms). The whole tiles (o) seem well separated from the cracked tiles (*). The **objective** is to find the two clusters.

Before logarithms

- 1. Place two cluster centres (x) at random.
- 2. Assign each data point (* and o) to the nearest cluster centre (x)

- 1. Compute the new centre of each class
- 2. Move the crosses (x)

Iteration 2

Iteration 3

Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre

475Hz	557Hz	
+	+	
0.958	0.003	
1.043	0.001	
1.907	0.003	
0.780	0.002	
0.579	0.001	
0.003	0.105	
0.001	1.748	
0.014	1.839	
0.007	1.021	
0.004	0.214	

м =	
0.000	1.0000
0.000	1.0000
0.000	1.0000
0.0000	1.0000
0.000	1.0000
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
1.0000	0.0000
First cluster	Second cluster

The membership matrix M:

- 1. The last five data points (rows) belong to the first cluster (column)
- 2. The first five data points (rows) belong to the second cluster (column)

Euclidean distance

$$p = (p_1, p_2, p_3, ..., p_n), q = (q_1, q_2, q_3, ..., q_n)$$

Euclidean distance

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

scolar

vector

Euclidean norm measure

$$\|\mathbf{p}\| = \sqrt{p_1^2 + p_2^2 + \dots + p_n^2} = \sqrt{\mathbf{p} \cdot \mathbf{p}}$$

Distance using Euclidean norm measure

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{(\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q})} = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p} \cdot \mathbf{q}}.$$

$$(p \cdot q = p_1 q_1 + p_2 q_2 + ... + p_n q_n)$$

[R 실습]: K-means

Usage

```
kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen"))
```

Argument

- x : numeric matrix of data, or an object that can be coerced to such a matrix (such as a numeric vector or a data frame with all numeric columns).
- **centers** : either the number of clusters, say *k*, or a set of initial (distinct) cluster centres.
- iter.max: the maximum number of iterations allowed.
- **nstart**: if centers is a number, how many random sets should be chosen?
- algorithm : character: may be abbreviated.

[R 실습]: K-means

```
require (graphics)
# create a 2-dimensional example
x \leftarrow rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
           matrix(rnorm(100, mean = 1, sd = 0.3),
           ncol = 2)
colnames(x) \leftarrow c("x", "y")
cl <- kmeans(x, 2)
cl # show clustering result
plot(x, col = cl$cluster)
points(cl$centers, col = 1:2, pch = 8, cex=2)
# random starts do help here with too many clusters
cl <- kmeans(x, 5, nstart = 25)
plot(x, col = cl$cluster)
points(cl$centers, col = 1:5, pch = 8)
```


[R 실습]: K-means

- Slide 18 에 있는 데이터를 로그 변환하여 새로운 데이터셋을 만든다.
 - 로그변환 y = log(x)
- 새로운 데이터셋을 이용하여 k-means 클러스터링을 실시하여 그 결과를 그래프로 그린다. (cluster수=2)

[과제1]

- (1) iris 데이터셋에 대해 kmeans 클러스터링을 하고 결과를 품종정보와 비교하여 비이시오
 - Iris 데이터셋에서 품종(Species) 컬럼은 제외하시오
 - 클러스터 수는 3 으로 하시오
- (2) state.x77 데이터셋에 대해 kmeans 클러스터링을 하고 각 클러스터 별로 주(state)의 이름을 보이시오
 - 클러스터 수는 5로 하시오
 - State.x77 은 각 컬럼의 값들의 단위가 많이 차이가 나기 때문에 이를 적절히 맞추어줄 필요가 있다.

```
new.data = scale(state.x77)
```

- (3) cars 데이터셋에 대해 kmeans 클러스터링을 하고 결과를 산점도로 보이 시오
 - 클러스터 수는 3 으로 하시오

Problem Definition

No	running hour	working hour	Category
1	0.27	0.65	Patient
2	0.34	0.68	patient
3	0.46	0.95	patient
4	0.37	0.75	patient
5	0.48	0.75	patient
6	0.36	0.86	patient
7	0.51	0.98	patient
8	0.43	0.91	patient
9	0.28	0.78	patient
10	0.46	0.86	patient
11	0.74	0.51	normal
12	0.67	0.46	normal
13	0.56	0.43	normal
14	0.67	0.34	normal
15	0.81	0.56	normal
16	0.81	0.43	normal
17	0.76	0.35	normal
18	0.65	0.42	normal
19	0.78	0.23	normal
20	0.88	0.26	normal

Given Classified Data

Patient or Normal?

running	working
hour	hour
0.45	0.61

Idea of KNN

- Find K nearest neighbor for new point (★)
- Decide new point belongs to major class (class A)
 - # of neighbor of Class A > # of neighbor of Class B

Idea of KNN

Algorithm

- Calculate distance between new point and every point of given classes
- Choose K nearest points by the distance
- Choose major class from K points (the class is for the new point)

Idea of KNN

- How to calculate the distance between two element?
 - Using Euclidean distance

$$\mathbf{p} = (p_1, p_2, ..., p_n)$$

$$\mathbf{q} = (q_1, q_2, ..., q_n)$$

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2 \dots}$$

1-NN vs. k-NN

- The use of large values of k has two main advantages
 - Yields smoother decision regions
 - Provides probabilistic information
 - The ratio of examples for each class gives information about the ambiguity of the decision
- However, too large a value of k is detrimental
 - It destroys the locality of the estimation since farther examples are taken into account
 - In addition, it increases the computational burden
- A good rule-of-thumb numbers is k should be less than the square root of the total number of training patterns.

1NN versus kNN

Discussion

Advantage

- Nonparametric architecture
- Simple
- Powerful
- Requires no training time

Disadvantage

- Memory intensive
- Classification/estimation is slow

[R실습] KNN

Usage

```
knn(train, test, cl, k = 1, l = 0,
    prob = FALSE, use.all = TRUE)
```

Parameters

- train: matrix or data frame of training set cases.
- **test**: matrix or data frame of test set cases.
- cl: factor of true classifications of training set
- **k** : number of neighbours considered.
- I: minimum vote for definite decision, otherwise doubt.
- prob: If this is true, the proportion of the votes for the winning class are returned as attribute prob.
- use.all: controls handling of ties. If true, all distances equal to the kth largest are included. If false, a random selection of distances
 equal to the kth is chosen to use exactly k neighbours

[R실습] KNN

```
require("class")
# prepare train/test data
tr.idx < -c(1:25,51:75, 101:125)
ds.tr <- iris[tr.idx, 1:4]
ds.ts <- iris[-tr.idx, 1:4]
cl.tr <- factor(iris[tr.idx, 5])</pre>
cl.ts <- factor(iris[-tr.idx, 5])</pre>
pred <- knn(ds.tr, ds.ts, cl.tr, k = 3, prob=TRUE)</pre>
pred
acc = mean(pred==cl.ts) # 예측 정확도
acc
```

- require = library
- Knn 을 이용하려면 "class" 라이브러리 필요

[R실습] KNN

table(pred,cl.ts)

[과제 2] KNN

- 다음의 데이터셋을 이용하여 KNN 알고리즘을 테스트하시오
- Target dataset : Breast Cancer Wisconsin (Diagnostic) Data Set
 - http://archive.ics.uci.edu/ml/machine-learning-databases/breastcancer-wisconsin/wdbc.data
 - wdbc.csv 파일에 저장후 프로그램에서 읽어들인다
 - 첫번째 컬럼 : instance ID (삭제한다)
 - 두번째 컬럼 : class 정보 (M,B)
- 홀수번째 instance는 training data 로, 짝수번째 instance는 test data 로 이용한다
- K = 3,5,7 로 하여 accuracy 를 비교한다.

K-fold Cross Validation

Only one classification experiment is enough?

Training data Test data

- Classification accuracy = 0.87 (???)
- I may be produced by chance
- If we choose different training/test data, then ...

K-fold Cross Validation

- Create a K-fold partition of the dataset
 - For each of K experiments, use K-1 folds for training and the remaining one for testing

• the true error is estimated as the average error rate

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

K-fold Cross Validation

- 3-fold cross validation
 - Collect test examples from all classes by even rate (33%) of samples in the classes

