

					~ ~		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2i}{kr_1+2k^3r_1}$	$\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	0	$\frac{6k^2r_{1}-4t_3}{(1+2k^2)^2r_{1}t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	$\frac{3k^2r_{1-2}t_3}{(k+2k^3)^2r_1t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	0	$\frac{2i}{kr_1+2k^3r_1}$
$\tau_{1}^{\#1}{}_{+}\alpha_{\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_1^{#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

 $\omega_0^{\#1}$

 $i\sqrt{2}kt_3$

 \vdash

 $r_0^{\#1} - 2ik\sigma_0^{\#1} = 0$

 $^{\circ}$

0

 $\tau_{1}^{\#2}{}^{\alpha}+2ik\ \sigma_{1}^{\#2}{}^{\alpha};$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $\omega_{0^{+}}^{#1}$ +•

 $f_{0+}^{#2}\dagger$

Source constraints

SO(3) irreps

0 #

 $f_{0^{+}}^{\#1}$

 $-i \sqrt{2} kt_3$

 $2k^2t_3$

0

0

 $f_{0+}^{#2}$

0

0

0

 \sim

0 ==

 $r_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#1}\alpha\beta$

 $\sigma_1^{\#1}\alpha\beta == \sigma_1^{\#2}\alpha\beta$

0 ==

 $\tau_2^{\#1}\alpha\beta$

 $\omega_0^{\#1}$

 $0 k^2 r_2 + t_2$

2

5 24

 $\sigma_2^{\#1}\alpha\beta==0$

Total #:

ρ))		k ² r
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
'	$\sigma_{0}^{\#1}$ +	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_2} > 0$	
$J^P = 0^-$	Polarisations:	1	
$\frac{1}{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$	
?	Spin:	0	
	Parity:	Odd	

licie				
:	$-\frac{1}{r_2} > 0$			
5:	1			
5:	$-\frac{t_2}{r_2} > 0$			
	0			
	Odd			

(No massless particles)

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$