Домашнее задание 9

Цифры Вашего кода — a_0, \ldots, a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_4+a_8 . Вычислите следующие интегралы при помощи вычетов.

(0)
$$\int_0^\infty \frac{\cos x \, dx}{1+x^2+x^4}$$
.

(1)
$$\int_0^\infty \frac{x^2 dx}{(x^2+1)(x^2+4)}$$
.

(2)
$$\int_{|z|=1} z \operatorname{tg}(\pi z) dz$$
.

(3)
$$\int_{|z|=2} \frac{e^z dz}{z^3(z+1)} dz$$
.

(4)
$$\int_{|z-i|=3} \frac{\exp(z^2)-1}{(z^3-iz^2)} dz$$
.

(5)
$$\int_{|z|=5/2} \frac{z^2}{z-3} \sin(\frac{z}{z-2}) dz$$
.

(6)
$$\int_{|z|=2} \frac{z^2}{z-1} e^{\frac{1}{z-1}} dz$$
.

(7)
$$\int_{|z-\frac{\pi}{2}(1-i)|=\pi} \frac{zdz}{\cos z - \operatorname{ch} z}$$
.

(8)
$$\int_{|z-i|=3} \frac{z}{z^2+9} \operatorname{ch} \frac{z}{z-2} dz$$
.

(9)
$$\int_{|z|=2} z^2 \sin \frac{1}{1-z} dz$$
.

Напомним, что ch z обозначает функцию гиперболический косинус, равную $\frac{e^z+e^{-z}}{2}$.

2. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_3+a_9 . Для каждой из указанных ниже функций f, найдите число корней уравнения f(z)=0 в единичном диске $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$ с учетом кратностей.

(0)
$$f(z) = 5z^3 + e^z + 1$$
.

(1)
$$f(z) = 3 + z^2 + e^{-z}$$

(2)
$$f(z) = 5 + \frac{3}{z} + e^z$$
.

(3)
$$f(z) = \cos(z) + 5z - 3$$
.

(4)
$$f(z) = \sin(z) + z^2 + 2$$
.

(5) $f(z) = 3 + 7z^2 + \log(z+1)$ (рассматривается та ветвь натурального логарифма, для которой $\log(1) = 0$).

1

(6)
$$f(z) = e^{3z} - z^2 + z$$
.

- (7) $f(z) = e^z + \sin(z) + 1$.
- (8) $f(z) = 3 2z^3 + e^z$.
- (9) $f(z) = 4 2z^2 + \sin(z)$.
- 3. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_1+a_9 . В следующих ниже задачах про функцию f предполагается, что она определена и голоморфна в диске $\mathbb{D}(2)=\{z\in\mathbb{C}\mid |z|<2\}$, а через \mathbb{D} обозначен единичный диск $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$. Докажите или опровергните следующие утверждения.
- (0) Если f(0)=0 и $|f(e^{it})|>1$ для всех вещественных t, то $f(\mathbb{D})\supset \mathbb{D}.$
- (1) Если $|f(e^{it})| > 1$ для всех вещественных t, то f имеет хотя бы один корень в \mathbb{D} .
 - (2) Если $|f(e^{it})| < 1$ для всех вещественных t, то $f(\mathbb{D}) \subset \mathbb{D}$.
- (3) Если $|f(e^{it})|>1$ для всех вещественных t, причем индекс кривой $t\mapsto f(e^{it})$ относительно точки 0 равен 1, то $f(\mathbb{D})\supset \mathbb{D}$.
- (4) Если $f(e^{it}) \neq 0$ при вещественных t, то индекс кривой $t \mapsto f(e^{it})$ относительно точки 0 не может быть отрицательным.
- (5) Если f(0)=0 и $|f(e^{it})|>1$ для всех вещественных t, то индекс кривой $t\mapsto f(e^{it})$ относительно точки 0 не может быть равен нулю.
- (6) Если уравнение f(z) = 2 имеет ровно два различных корня в \mathbb{D} , причем $|f(e^{it})| > 2$ для всех вещественных t, то уравнение f(z) = 0 имеет не менее двух корней с учетом кратности.
- (7) Если $|f(e^{it})| < 1$ для всех вещественных t, то уравнение z + f(z) = c имеет хотя бы один корень в \mathbb{D} для всякого $c \in \mathbb{D}$.
- (8) Если $|f(e^{it})| < 1$ для всех вещественных t, то уравнение $z^2 + f(z) = c$ имеет хотя бы два различных корня в $\mathbb D$ для всякого $c \in \mathbb D$.
- (9) Если $|f(e^{it})| < 1$ для всех вещественных t, то уравнение $z^2 + f(z) = c$ имеет ровно два различных корня в $\mathbb D$ для хотя бы одного $c \in \mathbb D$.
- **4.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_4+a_9 . Вычислите следующие интегралы в смысле главного значения
 - (0) V.p. $\int_{-\infty}^{\infty} \frac{\sin x \, dx}{x(1-x)}$

- (1) V.p. $\int_{-\infty}^{\infty} \frac{\cos 4x \, dx}{1-x^6}$.
- (2) V.p. $\int_{-\infty}^{\infty} \frac{(x-2)\cos x \, dx}{x^2 6x + 10}$
- (3) V.p. $\int_{-\infty}^{\infty} \frac{x^2 dx}{1-x^4}$.
- (4) V.p. $\int_{-\infty}^{\infty} \frac{(x+1)\sin 2x \, dx}{x^2 4x + 8}$
- (5) V.p. $\int_{-\infty}^{\infty} \frac{(2-x)\cos(3x-2)x dx}{x^2-2x+2}$.
- (6) V.p. $\int_{-\infty}^{\infty} \frac{(x+3)\sin\frac{x}{2} dx}{x^2+4x+20}$.
- (7) V.p. $\int_{-\infty}^{\infty} \frac{(x+3x)\sin(3x) dx}{1-x^4}$
- (8) V.p. $\int_{-\infty}^{\infty} \frac{(2x+3)\sin(x+5) dx}{x^2+4x+8}$
- (9) V.p. $\int_{-\infty}^{\infty} \frac{x + x^3 \sin 3x \, dx}{1 x^4}$.
- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_0 + a_4$.
 - (0) Упражнение 8.7 на стр. 145 основного учебника.
 - (1) Упражнение 8.22 на стр. 147 основного учебника.
 - (2) Упражнение 8.23 на стр. 147 основного учебника.
 - (3) Упражнение 8.24 на стр. 147 основного учебника.
 - (4) Упражнение 8.25 на стр. 147 основного учебника.
- (5) Положим $f(z) = \cos z 2$ и $U = \{z \in \mathbb{C} \mid |\text{Re } z| < 2, |\text{Im } z| < 3\}$. Докажите, что $U \subset f(U)$, причем каждая точка в f(U) имеет ровно два прообраза в U с учетом кратности.
- (6) Найдите самый большой диск с центром в точке 0, на котором отображение $f(z)=z^2+z$ инъективно.
- (7) Найдите самый большой диск с центром в точке 0, на котором отображение $f(z)=e^z$ инъективно.
- (8) Пусть функция f определена и голоморфна в окрестности точки 0, причем $f'(0) \neq 0$. Докажите, что существует голоморфная в окрестности точки 0 функция q, для которой $f(z^3) = f(0) + q(z)^3$.
- (9) Пусть R рациональная функция, не имеющая ни нулей, ни полюсов на единичной окружности $\{|z|=1\}$. Докажите, что интеграл

$$\frac{1}{2\pi i} \int_{|z|=1} z \, \frac{R'(z)}{R(z)} dz$$

равен разности между суммой нулей и суммой полюсов функции R в единичном диске $\{|z|<1\}$ с учетом кратности. Какое условие

нужно наложить на поведение R(z) при $z \to \infty$, чтобы утверждать, что сумма нулей функции R в $\mathbb C$ (с учетом кратности) совпадает с суммой полюсов?