Examen de seconde session - Vendredi 28 juin 2023.

durée: 2h00.

Les documents, calculatrices, téléphones et ordinateurs portables sont interdits. La qualité de la rédaction sera prise en compte dans la notation.

Dans tout le sujet $(\Omega, \mathcal{F}, \mathbf{P})$ désigne un espace de probabilité.

Exercice 1.

- 1. Rappeler la définition d'une variable aléatoire réelle. $\mathcal J$
- 2. Montrer que 1_A est une variable aléatoire si et seulement si $A \in \mathcal{F}$. \checkmark
- 3. Que signifie : « les événements $(A_i)_{i\in I}$ sont indépendants », où I est un ensemble d'indices quelconque. \langle
- 4. Soit X une variable intégrable de densité f paire. Montrer que $\mathrm{E}(X)=0$.
- 5. Soient X, Y deux variables aléatoires réelles définies sur un même espace de probabilité. On suppose que P(X = Y) = 1.
 - (a) Montrer que X et Y ont la même loi.
 - (b) Montrer que la réciproque est fausse.
 - (c) Montrer que pour tout $f: \mathbb{R} \to \mathbb{R}$ mesurable f(X) et f(Y) ont même loi.
- 6. Vrai ou Faux
 - (a) Soit X une variable aléatoire positive. Alors $\mathrm{E}(X)$ est bien défini et $\mathrm{E}(X) \geq 0$.
 - (b) Soit X une variable aléatoire positive. Alors $E(X) < +\infty$.
 - (c) Soit X une variable aléatoire intégrable alors X^2 est également intégrable.
 - (d) Soit X une variable aléatoire de carré intégrable alors X est également intégrable.
- 7. Soit V une variable aléatoire de loi uniforme sur $[0,\pi]$. Déterminer la loi de $\sin(V)$. \sim

Exercice 2. Soit $(a,b) \in \mathbb{R}^2$. On pose

$$F_{a,b}(x) = \begin{cases} ae^x & \text{si } x < 0\\ -\frac{1}{2}e^{-x} + b & \text{si } x \ge 0. \end{cases}$$

- 1. Pour quelles valeurs du couple (a,b), la fonction $F_{a,b}$ est elle une fonction de répartition?
- 2. Pour quelles valeurs du couple (a,b) la loi associée à $F_{a,b}$ est une loi à densité? Donner les densités correspondantes.
- 3. Pour toutes les valeurs obtenues à la question 2, préciser si la variable admet une espérance et si c'est le cas la calculer.

Exercice 3. Soit N un entier. On considère N variables aléatoires indépendantes $(Y_i)_{1 \le i \le N}$ de loi Unif([0, N]). On note

$$X_N = \min\{Y_i, \ 1 \le i \le N\}.$$

- 1. Calculer la fonction de répartition F_N de X_N . \checkmark
- 2. Pour tout $t \geq 0$, calculer $F(t) = \lim_{N \to +\infty} F_N(t)$ et reconnaître en F la fonction de répartition d'une loi connue.

Exercice 4. On considère une suite $(Z_n)_{n\geq 1}$ de variables aléatoires.

- 1. Rappeler l'énoncé du premier lemme de Borel Cantelli. \searrow
- 2. Soit $(A_n)_{n\geq 1}$ une suite d'événements de probabilité 1. Montrer que $\cap_{n\geq 1}A_n$ est également de probabilité 1.
- 3. On suppose que pour tout $\varepsilon > 0$, $\sum_{n \ge 1} P(|Z_n| > \varepsilon) < +\infty$. Montrer que $(Z_n)_{n \ge 1}$ converge vers 0 p.s.

On suppose maintenant de plus que pour tout entier $n \geq 1$, Z_n est une variable aléatoire de loi exponentielle de paramètre n.

- 4. Montrer que Z_n converge presque sûrement vers 0 lorsque n tend vers $+\infty$.
- 5. Montrer que presque sûrement, à partir d'un certain rang, $Z_n < Z_1$.

On suppose maintenant de plus que les variable aléatoires $(Z_n)_{n\geq 1}$ sont indépendantes.

6. (Bonus : utiliser les outils de *Probabilités 2*) Calculer $\sum_{n\geq 1} P(Z_n>Z_1)$. Faut-il s'étonner de ce résultat ?