TITLESLIDE

Image sources: NVIDIA, Lena Voita, Sebastian Ruder, BytePS, Disney

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single V100 – **over 2 weeks**)

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single V100 – over 2 weeks)

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single V100 – **over 2 weeks**)

Зачем мы тут?

Заставить много железяк вместе учить одну модель

Зачем мы тут?

Заставить много железяк вместе учить одну модель

понять общие подходы

закодить своими руками

на python / pytorch

with sample problems

1) Distributed machine learning

Embeddings or log.regression with tons of training data

with sample problems

- 1) Distributed machine learning Embeddings or log.regression with tons of training data
- 2) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less

with sample problems

- 1) Distributed machine learning Embeddings or log.regression with tons of training data
- 2) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less

with sample problems

- 1) Distributed machine learning Embeddings or log.regression with tons of training data
- 2) Data-parallel deep learning

 Train BERT-base on wikipedia in 20 minutes or less
- 4) Decentralized deep learning
 Train ~something~ with a million smart teapots

Problem of the day: word embeddings

Image source: Lena's blog, Ruder's blog

Co-occurence matrix

Context:

 surrounding words in a L-sized window

Matrix element:

 N(w, c) – number of times word w appears in context c

Note: in our case, N is symmetric!

Slide source: Lena's blog

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))$$

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))$$

Weighting function to:

- penalize rare events
- not to over-weight frequent events

 $\begin{cases} (x/x_{max})^{\alpha} & \text{if } x < x_{max}, \\ 1 & \text{otherwise.} \end{cases}$

$$\alpha = 0.75$$
, $x_{max} = 100$

Slide source: Lena's blog

GloVe

$$L = \sum_{i \neq j} w(N(i,j)) \cdot (\langle \vec{v}_i, \vec{v}_j \rangle + b_i + b_j - \log N(i,j))$$

Learn more: lena-voita.github.io/nlp_course/word_embeddings.html

So how do we train 'em?

Training Step

Training Step

Trainable parameters:

Training Step

Trainable parameters:

How do we go faster with 8 CPU cores?

- Runs some code
- Has some memory
- No one else can access your memory

- Runs some code
- Has some memory
- No one else can access your memory

- Runs some code
- Has some memory
- No one else can access your memory*
- * not if you use shared memory

- Runs some code
- Has some memory
- No one else can access your memory*†
- * not if you use shared memory
- [†] superuser can still do that (os-dependent)

- Runs some code
- Has some memory
- No one else can access your memory*†‡
- * not if you use shared memory
- [†] superuser can still do that (os-dependent)
- [‡] attacker can do that through spectre/meltdown/etc

Process:

- Runs some code
- Has some memory
- No one else should access your memory*^{†‡}

*^{†‡} – not relevant for this course

Process:

- Runs some code
- Has some memory
- No one else should access your memory*†‡

*^{†‡} – not relevant for this course

Q: How do we make processes work together?

Rules: Channel / Pipe

Process A:

Channel (pipe):

- Communication in O(message size)
- Asynchronous read/write

MP Rules

Channel (pipe):

- Communication in O(message size)
- Asynchronous read/write

Details are (not) important

run algorithm in parallel without changing the math

run algorithm in parallel without changing the math $\langle v_i, v_i \rangle$

How to organize parameters across processes?

Each process holds one shard of parameters (no transfer required)

What can we improve for 10⁶-dim vectors and 256 cores?

More processes = more overhead

- waiting for each other
- sending data over the network
- performance fluctuations

Eventually adding more threads will no longer boost performance

More processes = more overhead

- waiting for each other
- sending data over the network
- performance fluctuations

Eventually adding more threads will no longer boost performance

How do we push this point further?

Parameter Server

Paper: Smola et al. (2010)

Make a dedicated process for parameters & optimizer

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Q: have we lost anything by going asynchronous?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = \lfloor (\lambda/n) \rfloor$

Average gradient: $g_i = \frac{1}{c}\sum^{\circ} \alpha(\tau_{i,l})\Delta\theta_l, \ l\in\{1,2,\ldots,\lambda\}$

New parameters: $\theta_{i+1} = \theta_i - g_i$,

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = \lfloor (\lambda/n) \rfloor$ n = total workers $\lambda = \text{"accumulation factor"}$

Average gradient: $g_i = \frac{1}{c}\sum_{l=1}^c \alpha(\tau_{i,l})\Delta\theta_l, \ l \in \{1,2,\ldots,\lambda\}$

New parameters: $\theta_{i+1} = \theta_i - g_i$,

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = |(\lambda/n)|$

Average gradient:

$$g_i = \frac{1}{c} \sum_{l=1}^{c} \underline{\alpha(\tau_{i,l})} \Delta \theta_l, \ l \in \{1, 2, \dots, \lambda\}$$
 staleness-dependent

New parameters: $\theta_{i+1} = \theta_i - g_i$,

"learning rate"

Paper: arxiv.org/abs/1511.05950 & others

Updates accumulated: $c = |(\lambda/n)|$

Average gradient:

$$g_i = \frac{1}{c} \sum_{l=1}^{c} \alpha(\tau_{i,l}) \Delta \theta_l, \ l \in \{1, 2, \dots, \lambda\}$$

New parameters: $\theta_{i+1} = \theta_i - g_i$,

$$lpha_{i,l} = rac{lpha_0}{ au_{i,l}}$$
 base learning rate staleness (\geq 1)

Parameter Server Applications

Conventional ML: e.g. (Logistic Regression, CNN classifiers)

Paper (sharded PS): https://www.cs.cmu.edu/~muli/file/ps.pdf Another paper (optimizaton tricks): parameter_server_nips14.pdf PyTorch tutorial (hogwild), TF tutorial (parameter server)

Reinforcement learning:

Async. RL: arxiv.org/abs/1602.01783

IMPALA: arxiv.org/abs/1802.01561

SEED RL: arxiv.org/abs/1910.06591

More:

(english) https://youtu.be/kOy49NqZeqI (russian) https://youtu.be/wswbMkT55mI

разбери-ка вот эту статью:

Привет, Ёж. Это – последний слайд.

Если вы уже здесь, а время ещё осталось,

https://www.usenix.org/system/files/osdi20-jiang.pdf