第8章 自相关

8.1 自相关的后果

除了异方差外,违反球形扰动项的另一情形是扰动项存在自相关。

对于扰动项 $\{\varepsilon_1, \dots, \varepsilon_n\}$,如果存在 $i \neq j$,使得 $E(\varepsilon_i \varepsilon_j | \mathbf{X}) \neq 0$,即协方差矩阵 $Var(\varepsilon | \mathbf{X})$ 的非主对角线元素不全为 0,则存在自相关(autocorrelation)或序列相关(serial correlation)。

1

在有自相关的情况下:

- (1) OLS 估计量依然是无偏、一致且渐近正态的,因为在证明这些性质时,并未用到"无自相关"的假定。
- (2) OLS 估计量方差 $Var(\hat{\boldsymbol{\beta}}|\mathbf{X})$ 的表达式不再是 $\sigma^2(\mathbf{X}'\mathbf{X})^{-1}$,因为 $Var(\boldsymbol{\varepsilon}|\mathbf{X}) \neq \sigma^2 \mathbf{I}$ 。因此,使用普通标准误的 t 检验、F 检验失效。
 - (3) 高斯-马尔可夫定理不再成立,即 OLS 不再是 BLUE。

为了直观地理解为何在自相关的情况下,OLS 不再是 BLUE,假设扰动项存在正自相关,即 $\mathbf{E}(\varepsilon_i \varepsilon_i | \mathbf{X}) > 0$,参见图 8.1。

图 8.1 自相关的后果

从信息的角度来看,由于 OLS 估计忽略了扰动项自相关所包含的信息,故不是最有效率的估计方法。

8.2 自相关的例子

(1) 时间序列数据中的自相关:

由于经济活动通常具有某种连续性或持久性,自相关现象在时间序列中比较常见。

比如,相邻两年的 GDP 增长率、通货膨胀率。

又比如,某意外事件或新政策的效应需要随时间逐步释放出来。

再比如,最优资本存量需要通过若干年的投资才能逐渐达到(滞后的调整过程)。

(2) 横截面数据中的自相关:

一般来说,截面数据不容易出现自相关,但相邻的观测单位之间也可能存在**溢出效应**(spillover effect 或 neighborhood effect),这种自相关也称为**空间自相关**(spatial autocorrelation)。

比如,相邻的省份、国家之间的经济活动相互影响(通过贸易、 投资、劳动力流动等);

相邻地区的农业产量受到类似天气变化的影响;

同一社区内的房屋价格存在相关性。

(3) 对数据的人为处理:

如果数据中包含移动平均数(moving average)、内插值(参见第9章)或季节调整(参见第13章)时,则可从理论上判断存在自相关。

统计局提供的某些数据可能已经事先经过了这些人为处理。

(4) 设定误差(misspecification):

如果模型设定中遗漏了某个自相关的解释变量,并被纳入到扰动项中,则会引起扰动项的自相关。

这种由于设定误差而导致的自相关,即便在横截面数据中也可能存在。

8.3 自相关的检验

1. 画图

由于残差 $\{e_t\}_{t=1}^n$ 可大致视为扰动项的实现值 $\{\varepsilon_t\}_{t=1}^n$,故可通过残差来考察扰动项的自相关。

一个直观的方法是将残差 e_t 与残差滞后 e_{t-1} 画成散点图。

进一步,可以计算残差的各阶样本相关系数,比如残差的一阶相关系数 $\hat{\rho}_1$,二阶相关系数 $\hat{\rho}_2$,……,k 阶相关系数 $\hat{\rho}_k$,等等。

由于这些相关系数 $\hat{\rho}_k$ 是滞后阶数 k 的函数,将 $(k,\hat{\rho}_k)$ 画图,即可得到残差的**自相关图**(correlogram),参见图 8.6。

2. BG 检验(Breusch, 1978; Godfrey, 1978)

考虑以下多元线性模型:

$$y_{t} = \beta_{1} + \beta_{2} x_{t2} + \dots + \beta_{K} x_{tK} + \varepsilon_{t}$$
 (8.1)

假设扰动项 ε ,存在一阶自相关,即

$$\mathcal{E}_{t} = \gamma \mathcal{E}_{t-1} + u_{t} \tag{8.2}$$

其中, u_t 为白噪声。

方程(8.2)没有常数项,因为 $E(\varepsilon_t) = 0$ 。

为了检验是否存在一阶自相关,只要在方程(8.2)中检验 $H_0: \gamma = 0$ 即可。

由于可能存在高阶自相关,可考虑扰动项的p阶自回归:

$$\mathcal{E}_{t} = \gamma_{1} \mathcal{E}_{t-1} + \dots + \gamma_{p} \mathcal{E}_{t-p} + u_{t} \qquad (8.3)$$

并检验原假设 " $H_0: \gamma_1 = \cdots = \gamma_p = 0$ "。

由于 ε_t 不可观测,故用 e_t 替代,并引入解释变量 (x_{t2}, \dots, x_{tK}) ,进行如下辅助回归:

$$e_{t} = \gamma_{1}e_{t-1} + \dots + \gamma_{p}e_{t-p} + \delta_{2}x_{t2} + \dots + \delta_{K}x_{tK} + v_{t} \quad (t = p+1, \dots, n)$$
(8.4)

由于残差 e_t 是解释变量 (x_{t2}, \dots, x_{tK}) 的函数,故如果遗漏 (x_{t2}, \dots, x_{tK}) ,可能导致扰动项 v_t 与 $(e_{t-1}, \dots, e_{t-p})$ 相关,使得估计不一致。

在辅助回归(8.4)中,"无自相关"的原假设相当于检验 $H_0: \gamma_1 = \dots = \gamma_p = 0$,通常使用 nR^2 形式的LM 统计量进行检验:

$$LM = (n-p)R^2 \xrightarrow{d} \chi^2(p) \quad (8.5)$$

由于辅助回归(8.4)使用了 e_{t-p} ,损失p个样本观测值,故样本容量仅为(n-p)。

如果LM 统计量超过了 $\chi^2(p)$ 的临界值,则拒绝无自相关的原假设。此检验称为Breusch-Godfrey 检验(Breusch, 1978; Godfrey, 1978, 简记 BG)。

Davidson and MacKinnon(1993)建议,把残差中因滞后而缺失的项用其期望值 0 来代替,以保持样本容量仍为n,然后使用 LM 统计量 $nR^2 \xrightarrow{d} \chi^2(p)$ 。

Davidson-MacKinnon 方法为 Stata 的默认设置。

3. Q 检验

记 ρ_1, \dots, ρ_p 分别为扰动项的1至p阶自相关系数。

检验自相关的另一思路是,检验各阶自相关系数均为 0, 即 $H_0: \rho_1 = \cdots = \rho_p = 0$ 。

定义残差的各阶样本自相关系数为

$$\hat{\rho}_{j} \equiv \frac{\sum_{t=j+1}^{n} e_{t} e_{t-j}}{\sum_{t=1}^{n} e_{t}^{2}} \quad (j=1,\dots,p)$$
 (8.6)

如果 $H_0: \rho_1 = \cdots = \rho_p = 0$ 成立,则 $\hat{\rho}_j$ 应离 0 不远。

根据大数定律, $\hat{\rho}_i$ 依概率收敛至 0。

根据中心极限定理, $\sqrt{n}\hat{\rho}_{j}$ 服从渐近正态分布。

因此, $\sqrt{n}\hat{\rho}_j$ 的平方和(对 j 求和)为渐近卡方分布,这就是 Box-Pierce Q 统计量(Box and Pierce, 1970):

$$Q_{\rm BP} \equiv n \sum_{j=1}^{p} \hat{\rho}_j^2 \xrightarrow{d} \chi^2(p) \qquad (8.7)$$

经过改进的 Ljung-Box Q 统计量(Ljung and Box, 1979)为

$$Q_{\text{LB}} \equiv n(n+2) \sum_{j=1}^{p} \frac{\hat{\rho}_{j}^{2}}{n-j} \xrightarrow{d} \chi^{2}(p)$$
 (8.8)

这两种 Q 统计量在大样本下是等价的,但 Ljung-Box Q 统计量的小样本性质更好,故为 Stata 所采用。

如何确定自相关阶数 p 呢?

没有确定的规则。

如果p太小,则可能忽略了高阶自相关的存在。

如果p较大(与样本容量n相比),则 Q 统计量的小样本分布可能与 $\chi^2(p)$ 相差较远。

Stata 默认的 p 值为min{floor(n/2) – 2, 40}, 其中floor(n/2)为不超过n/2的最大整数,并在[floor(n/2) – 2]与 40 之间取其小者。

4. DW 检验

DW 检验(Durbin and Watson, 1950)是较早出现的自相关检验,现已不常用。

它的主要缺点是只能检验一阶自相关,且必须在解释变量满足严格外生性的情况下才成立(BG 检验无此限制)。

DW 检验的统计量为

$$DW \equiv d \equiv \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{\sum_{t=2}^{n} e_t^2 - 2\sum_{t=2}^{n} e_t e_{t-1} + \sum_{t=2}^{n} e_{t-1}^2}{\sum_{t=1}^{n} e_t^2}$$
$$\approx 2 - 2\frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2} \equiv 2(1 - \hat{\rho}_1)$$

(8.9)

其中, $\hat{\rho}_1$ 为残差的一阶自相关系数。

当d=2时, $\hat{\rho}_1 \approx 0$,无一阶自相关。

当d=0时, $\hat{\rho}_1 \approx 1$,存在一阶正自相关。

当d=4时, $\hat{\rho}_1 \approx -1$,存在一阶负自相关。

DW 检验的另一缺点是,其 d 统计量还依赖于数据矩阵X,无法制成统计表,须使用其上限分布 d_U 与下限分布 $d_L(d_L < d < d_U)$ 来间接地检验。

即便如此,仍存在"无结论区域"。

DW 检验的具体检验方法,根据 d_U 与 d_L 的临界值,可做如下判断(参见图 8.2):

- (1) 如果 $0 < d \le d_L$,则存在正自相关;
- (2) 如果 $d_L < d < d_U$, 则无法确定;
- (3) 如果 $d_U \le d \le 4 d_U$, 则无自相关;
- (4) 如果 $4-d_U < d < 4-d_L$, 则无法确定;
- (5) 如果 $4-d_L \leq d$,则存在负自相关。

图 8.2 DW 检验的无结论区域

8.4 自相关的处理

如果经过检验,发现存在自相关,则大致有以下四种处理方法。

1. 使用 "OLS + 异方差自相关稳健的标准误"

在自相关的情况下,OLS 估计量依然无偏且一致,故仍可使用 OLS 来估计回归系数。

为了正确地进行统计推断,须使用**异方差自相关稳健的标准误** (Heteroskedasticity and Autocorrelation Consistent Standard Error,简记 HAC),即在存在异方差与自相关的情况下也成立的稳健标准误。

这种方法称为 Newey-West 估计法(Newey and West, 1987)。

它只改变标准误的估计值,并不改变回归系数的估计值。

根据第6章,异方差稳健的协方差矩阵为夹心估计量:

$$\widehat{\operatorname{Var}(\hat{\boldsymbol{\beta}} \mid \mathbf{X})} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \widehat{\operatorname{Var}(\boldsymbol{\varepsilon} \mid \mathbf{X})} \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}$$
(8.10)

异方差自相关稳健的协方差矩阵也是夹心估计量,但考虑到自相关的存在,"三明治"中间的"菜" $\widehat{\mathrm{Var}(\boldsymbol{\varepsilon} \mid \mathbf{X})}$ 更为复杂。

在计算 HAC 标准误时,如果仅考虑前几阶自相关系数(比如只考虑一阶自相关系数 ρ_1)将导致此标准误不一致,因为忽略了高阶自相关。

如果同时考虑所有各阶相关系数,即 $(\rho_1, \dots, \rho_{n-1})$,则待估参数多达(n-1),且随样本容量n同步增长,也将导致估计量不一致。

另外,对 ρ_{n-1} 的估计将很不准确,因为只有一对数据 (e_1, e_n) 可用于此估计;类似地,对 ρ_{n-2} 的估计也不准确,以此类推。

正确的做法是,包括足够多阶数的自相关系数,并让此阶数p随着样本容量n而增长。

一般建议取 $p = n^{1/4}$ 或 $p = 0.75 n^{1/3}$,称为**截断参数**(truncation parameter),即比p更高阶的自相关系数将被截断而不考虑。

由于 HAC 标准误取决于截断参数 p,故实践中,建议使用不同的截断参数,以考察 HAC 标准误是否对于截断参数敏感。

2. 准差分法

在自相关的情况下,由于 OLS 未充分利用此信息,故不是最有效率的 BLUE。

根据加权最小二乘法的思路,如果能够变换原模型,使得转换后的扰动项变为球形扰动项(不再有自相关),则可得到更有效率的估计。

假设原模型为

$$y_{t} = \beta_{1} + \beta_{2}x_{t2} + \dots + \beta_{K}x_{tK} + \varepsilon_{t} \quad (t = 1, \dots, n)$$
 (8.11)

其中,扰动项 ε ,存在自相关,且为一阶自回归形式:

$$\varepsilon_{t} = \rho \varepsilon_{t-1} + u_{t} \tag{8.12}$$

其中,自回归系数 $|\rho|$ <1,且 u_t 为白噪声。

将原模型(8.11)滞后一期,然后在方程两边同时乘以 ρ 可得

$$\rho y_{t-1} = \rho \beta_1 + \rho \beta_2 x_{t-1,2} + \dots + \rho \beta_K x_{t-1,K} + \rho \varepsilon_{t-1}$$
 (8.13)

将原方程(8.11)减去方程(8.13)可得

$$y_{t} - \rho y_{t-1} = (1 - \rho)\beta_{1} + \beta_{2}(x_{t2} - \rho x_{t-1,2}) + \dots + \beta_{K}(x_{tK} - \rho x_{t-1,K}) + \underbrace{(\varepsilon_{t} - \rho \varepsilon_{t-1})}_{u_{t}}$$
(8.14)

其中, $t=2,\dots,n$,故损失一个样本观测值。

在方程(8.14)中,新扰动项($\varepsilon_t - \rho \varepsilon_{t-1}$) = u_t (白噪声),故满足球型扰动项的假定。

对方程(8.14)进行 OLS 估计,可提高估计效率。

这种方法称为 Cochrane-Orcutt 估计法(Cochrane and Orcutt, 1949, 简记 CO)。

此法也称为**准差分法**(quasi differences),因为在做变换时,只是减去滞后值的一部分(比如 $y_t - \rho y_{t-1}$),而非全部(比如 $y_t - y_{t-1}$)。

由于使用准差分法将损失一个样本容量,故仍不是最有效率的BLUE。

为了得到 BLUE 估计量,考虑补上损失的第一个方程:

$$y_1 = \beta_1 + \beta_2 x_{12} + \dots + \beta_K x_{1K} + \varepsilon_1$$
 (8.15)

由于 $\{u_t\}_{t=1}^n$ 为白噪声,故 ε_1 与准差分后的新扰动项 $u_t = (\varepsilon_t - \rho \varepsilon_{t-1})$ 均不相关。

加入第一个方程(8.15)不会导致自相关,但会导致异方差。

第一个方程(8.15)的扰动项方差为 $\sigma_{\varepsilon}^2 \equiv \text{Var}(\varepsilon_t)$,而准差分方程 (8.14)的扰动项方差为 $\sigma_{u}^2 \equiv \text{Var}(u_t)$,二者并不相等。

对方程(8.12)两边求方差,可得 σ_{ε}^2 与 σ_{u}^2 之间的关系:

$$Var(\varepsilon_t) = \rho^2 Var(\varepsilon_{t-1}) + Var(u_t)$$
 (8.16)

将上式移项整理可得

$$\sigma_u^2 = (1 - \rho^2)\sigma_{\varepsilon}^2 \tag{8.17}$$

由此可知, $\sigma_u^2 \not\in \sigma_\varepsilon^2$ 的 $(1-\rho^2)$ 倍。

除非 $\rho = 0$ (无自相关),否则二者不会相等。

只要将第一个方程(8.15)两边同乘 $\sqrt{1-\rho^2}$,即可保证同方差:

$$\sqrt{1-\rho^2} y_1 = \sqrt{1-\rho^2} \beta_1 + \beta_2 \sqrt{1-\rho^2} x_{12} + \dots + \beta_K \sqrt{1-\rho^2} x_{1K} + \sqrt{1-\rho^2} \varepsilon_1$$
(8.18)

方程(8.18)的扰动项方差为

$$\operatorname{Var}\left(\sqrt{1-\rho^2}\,\varepsilon_1\right) = (1-\rho^2)\sigma_{\varepsilon}^2 = \sigma_u^2 \quad (8.19)$$

故这n个方程满足同方差与无自相关的假定,为球形扰动项。

使用 OLS 估计这些方程,即可得到 BLUE。

这种方法称为 Prais-Winsten 估计法(Prais and Winsten, 1954, 简记 PW)。

实践中,必须用数据估计一阶自回归系数 $\hat{
ho}$ 。

Stata 所默认的估计方法为使用 OLS 残差进行辅助回归:

$$e_{t} = \hat{\rho}e_{t-1} + error_{t} \tag{8.20}$$

另外,也可使用残差的一阶自相关系数来估计 $\hat{\rho}$:

$$\hat{\rho} = \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}$$
 (8.21)

或通过 DW 统计量来估计 $\hat{\rho}$:

$$\hat{\rho} = 1 - \frac{DW}{2} \tag{8.22}$$

实践中,常使用迭代法,即首先用 OLS 估计原模型,使用 OLS 残差作辅助回归(8.20),得到 $\hat{\rho}^{(1)}$ (对 ρ 的第一轮估计),再用 $\hat{\rho}^{(1)}$ 进行 CO 或 PW 估计;然后,使用 CO 或 PW 法的新残差估计 $\hat{\rho}^{(2)}$ (对 ρ 的第二轮估计),再用 $\hat{\rho}^{(2)}$ 进行 CO 或 PW 估计,以此类推,直至收敛(即相邻两轮的 ρ 与系数估计值之差足够小)。

3. 广义最小二乘法(GLS)

更一般地,可能同时存在异方差与自相关。

可使用**广义最小二乘法**(Generalized Least Squares,简记 GLS),同时处理异方差与自相关。

假设扰动项的协方差矩阵 $Var(\mathbf{\epsilon}|\mathbf{X}) = \sigma^2 \mathbf{V}(\mathbf{X}) \neq \sigma^2 \mathbf{I}_n$,其中 $\mathbf{V}(\mathbf{X})$ 为对称正定矩阵且已知,但可能依赖于 \mathbf{X} 。

GLS 的基本思想是,通过变量转换,使得转换后的模型满足球型扰动项的假定。

首先介绍一个命题。

命题 对于对称正定矩阵 $\mathbf{V}_{n\times n}$,存在非退化矩阵 $\mathbf{C}_{n\times n}$,使得 $\mathbf{V}^{-1} = \mathbf{C}'\mathbf{C}$ 。

在一维情况下,"**V**正定"即要求**V**为正数,故 $\frac{1}{\mathbf{V}}$ 也是正数,可分解为 $\frac{1}{\sqrt{\mathbf{V}}}\cdot\frac{1}{\sqrt{\mathbf{V}}}$; 反之,如果**V**为 $\mathbf{0}$ 或负数,则无法进行此分解。

推广到多维情形,就是此命题。

此命题中的矩阵C并不唯一,但不影响 GLS 的最终结果。

根据此命题,对于协方差矩阵 $Var(\mathbf{\epsilon} | \mathbf{X}) = \sigma^2 \mathbf{V}(\mathbf{X})$,首先找到非退化矩阵 \mathbf{C} ,使得 $\mathbf{V}^{-1} = \mathbf{C}'\mathbf{C}$ 。

其次,将原回归模型 $y = X\beta + \varepsilon$ 两边同时左乘矩阵C:

$$\mathbf{C}\mathbf{y} = \mathbf{C}\mathbf{X}\boldsymbol{\beta} + \mathbf{C}\boldsymbol{\varepsilon} \tag{8.23}$$

定义以下变量转换:

$$\tilde{\mathbf{y}} \equiv \mathbf{C}\mathbf{y}, \ \tilde{\mathbf{X}} \equiv \mathbf{C}\mathbf{X}, \ \tilde{\boldsymbol{\varepsilon}} \equiv \mathbf{C}\boldsymbol{\varepsilon}$$
 (8.24)

则可将模型写为

$$\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\boldsymbol{\beta} + \tilde{\boldsymbol{\varepsilon}} \tag{8.25}$$

变换后的回归模型仍然满足严格外生性,因为

$$E(\tilde{\boldsymbol{\varepsilon}} \mid \tilde{\mathbf{X}}) = E(\mathbf{C}\boldsymbol{\varepsilon} \mid \mathbf{C}\mathbf{X}) = E(\mathbf{C}\boldsymbol{\varepsilon} \mid \mathbf{X}) = \mathbf{C}E(\boldsymbol{\varepsilon} \mid \mathbf{X}) = \mathbf{0} \quad (8.26)$$

其中,由于**C**非退化,故E(**C** ε | **CX**) = E(**C** ε | **X**)。

球型扰动项的假定也得到满足,因为

$$\operatorname{Var}(\tilde{\boldsymbol{\varepsilon}} \mid \tilde{\mathbf{X}}) = \operatorname{E}(\tilde{\boldsymbol{\varepsilon}} \, \tilde{\boldsymbol{\varepsilon}}' \mid \mathbf{X}) = \operatorname{E}(\mathbf{C} \, \boldsymbol{\varepsilon} \, \boldsymbol{\varepsilon}' \mathbf{C}' \mid \mathbf{X}) = \mathbf{C} \operatorname{E}(\boldsymbol{\varepsilon} \, \boldsymbol{\varepsilon}' \mid \mathbf{X}) \mathbf{C}' = \sigma^2 \mathbf{C} \mathbf{V} \mathbf{C}'$$

$$= \sigma^2 \mathbf{C} (\mathbf{V}^{-1})^{-1} \mathbf{C}' = \sigma^2 \mathbf{C} (\mathbf{C}' \mathbf{C})^{-1} \mathbf{C}' = \sigma^2 \mathbf{C} \mathbf{C}^{-1} (\mathbf{C}')^{-1} \mathbf{C}' = \sigma^2 \mathbf{I}_n$$
(8.27)

因此, 高斯-马尔可夫定理成立。

对变换后的方程(8.25)使用 OLS 即得到 GLS 估计量:

$$\hat{\boldsymbol{\beta}}_{GLS} = (\tilde{\mathbf{X}}'\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}'\tilde{\mathbf{y}} = [(\mathbf{C}\mathbf{X})'(\mathbf{C}\mathbf{X})]^{-1}(\mathbf{C}\mathbf{X})'\mathbf{C}\mathbf{y}$$

$$= (\mathbf{X}'\mathbf{C}'\mathbf{C}\mathbf{X})^{-1}\mathbf{X}'\mathbf{C}'\mathbf{C}\mathbf{y} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$$
(8.28)

虽然 \mathbf{C} 不唯一,但 $\hat{\boldsymbol{\beta}}_{GLS}$ 唯一,因为 $\hat{\boldsymbol{\beta}}_{GLS}$ 不依赖于 \mathbf{C} 。

由于高斯-马尔可夫定理成立,故 $\hat{\pmb{\beta}}_{GLS}$ 是 BLUE,比 OLS 更有效率。

使用 GLS 的前提是,必须知道协方差矩阵V。

由于V通常未知,故GLS是不可行的。

实践中,须通过数据估计 $\hat{\mathbf{V}}$,再进行 GLS 估计,称为"可行广义最小二乘法"(Feasible GLS,简记 FGLS)。

WLS 与 PW 都是 GLS 的特例。

FWLS 与可行的 PW 法都是 FGLS 的特例。

何时使用 FGLS 处理自相关?

在使用 FGLS 处理自相关时,如果对自相关系数 ρ 的估计比较准确,而且满足严格外生性,则 FGLS 比 OLS 更有效率。

如果不满足严格外生性,而仅满足前定解释变量(同期外生)的假定,则 FGLS 可能不一致,尽管 OLS 依然一致。

在使用准差分法时,变换后的新扰动项为($\varepsilon_t - \rho \varepsilon_{t-1}$),而新解释变量为($x_t - \rho x_{t-1}$);故在同期外生的假定下,二者仍可能存在相关性,比如 $Cov(\varepsilon_t, x_{t-1}) \neq 0$,导致不一致的估计。

FGLS 的适用条件比 OLS 更苛刻,不如 OLS 稳健。

4. 修改模型设定

在有些情况下,自相关的深层原因可能是模型设定有误。

比如,遗漏了自相关的解释变量;或将动态模型(解释变量中包含被解释变量的滞后值)误设为静态模型,而后者也可视为遗漏了解释变量。

假设真实模型为

$$y_{t} = \alpha + \beta x_{t} + \rho y_{t-1} + \varepsilon_{t} \qquad (8.29)$$

由于 y_t 是 y_{t-1} 的函数,故 $\{y_t\}$ 存在自相关。

假设此模型被错误地设定为

$$y_{t} = \alpha + \beta x_{t} + \underbrace{(\rho y_{t-1} + \varepsilon_{t})}_{v_{t}}$$
 (8.30)

其中, ρy_{t-1} 被纳入到扰动项 v_t 中,导致扰动项 $\{v_t\}$ 出现自相关,因为 $\{y_{t-1}\}$ 存在自相关。

对于时间序列存在的自相关,有时可通过引入被解释变量的滞后来消除。

对于模型设定误差所导致的自相关,最好从改进模型设定着手解决,而不是机械地使用 FGLS。

8.5 处理自相关的 Stata 命令及实例

1. 时间序列算子

为了在 Stata 中使用时间序列算子(time-series operator), 首先要 定义时间变量。

假设时间变量为 year, 可使用如下命令:

. tsset year

其中,"tsset"表示 time series set,它告诉 Stata,该数据集为时间序列,且时间变量为 year。

常用的时间序列算子包括**滞后**(lag)与**差分**(difference),分别以"L."与"D."来表示(可以小写)。

- 一阶滞后算子为"L.",即L. $x_t = x_{t-1}$ 。
- 二阶滞后算子为"L2.",即L2. $x_t = x_{t-2}$,以此类推。

如果要同时表示一阶至四阶滞后,可简写为"L(1/4).",即 $L(1/4).x_t = (x_{t-1} x_{t-2} x_{t-3} x_{t-4})$ 。

比如,命令 . reg y L.x L2.x L3.x L4.x 可简写为

. reg y L(1/4).x

类似地,"L(0/1).(x y)"表示 L(0/1).(x_t y_t)=(x_t x_{t-1} y_t y_{t-1}),其中"0"表示零阶滞后,即当前值。

- 一阶差分算子为"D.",即 $\mathbf{D}.x_t = \Delta x_t = x_t x_{t-1}$ 。
- 三 阶 差 分 算 子 为 " D2.",即 D2. $x_t = \Delta(\Delta x_t) = \Delta(x_t x_{t-1}) = (x_t x_{t-1}) (x_{t-1} x_{t-2}) = x_t 2x_{t-1} + x_{t-2}$ (二阶差分为一阶差分的差分)。

时间序列算子可以混合使用。"LD."表示一阶差分的滞后值,"DL."表示滞后值的一阶差分,二者实际上是等价的,因为 LD. $x_t = L.(x_t - x_{t-1}) = x_{t-1} - x_{t-2} = D.x_{t-1} = DL.x_t$ 。

有关时间序列算子的更多说明,参见"help tsvarlist"。

2. 画残差图

假设在作完回归后,将残差记为 e1,可输入如下命令画残差与 其滞后的散点图:

. scatter el L.el

如果想看残差自相关图(即各阶自相关系数),可使用命令

. ac el

其中, "ac"表示 autocorrelation(自相关)。

3. BG 检验

作完 OLS 回归后,可使用如下命令进行 BG 检验:

. estat bgodfrey,lags(p) nomiss0

选择项 "lags(p)" 用来指定 BG 检验的滞后阶数 p,默认 "lags(1)",即 p=1。

选择项"nomiss0"表示进行不添加 0 的 BG 检验,默认以 0 代替缺失值,即 Davidson-MacKinnon 的方法。

如何确定滞后阶数 p? 一个简单方法是,看自相关图。

在使用 Stata 命令 ac 画自相关图时, 所有落在 95%的置信区域 (以阴影表示)以外的自相关系数均显著地不等于 0。

确定滞后阶数p的另一方法是,设定一个较大的p值,作回归

$$e_{t} = \gamma_{1}e_{t-1} + \dots + \gamma_{p}e_{t-p} + \delta_{2}x_{t2} + \dots + \delta_{K}x_{tK} + v_{t} \quad (t = p+1, \dots, n)$$
(8.31)

然后看最后一个系数火力的显著性。

如果 γ_p 不显著,则考虑滞后(p-1)期,以此类推,直至显著为止。

4. Q 检验

假设将 OLS 残差记为 e1,则可使用如下命令进行 Q 检验:

. wntestq e1,lags(p)

"wntestq"指 white noise test Q,因为白噪声没有自相关。

选择项"lags(p)"用来指定滞后阶数,默认滞后阶数为 $\min\{floor(n/2)-2, 40\}$ 。

进行 Q 检验的另一命令是

. corrgram e1,lags(p)

"corrgram"表示correlogram,即画自相关图。

选择项"lags(p)"用来指定滞后阶数,而默认滞后阶数也是 $min\{floor(n/2)-2, 40\}$ 。

5. DW 检验

作完OLS回归后可使用命令"estat <u>dwa</u>tson"显示DW 统计量。

由于 DW 检验的局限性, Stata 并不提供其临界值。

6. HAC 稳健标准误

在 Stata 中进行 OLS 估计, 但提供 Newey-West 标准误, 可输入命令

. newey y x1 x2 x3, lag(p)

必选项"lag(p)"用来指定截断参数p,即用于计算 HAC 标准误的最高滞后阶数。

7. 处理一阶自相关的 FGLS

在 Stata 中使用准差分法处理自相关,可使用命令

. prais y x1 x2 x3,corc

选择项"corc"表示使用 CO 估计法,默认使用 PW 估计法。

以 Hildreth and Lu(1960)对冰淇淋需求函数的研究作为例。

数据集icecream.dta包含了下列变量的30个月度时间序列数据: consumption(人均冰淇淋消费量), income(平均家庭收入), price(冰淇淋价格), temp(平均华氏气温), time(时间)。

首先,打开数据集,并将其设为时间序列数据。

- . use icecream.dta,clear
- . tsset time

其次,为了看冰淇淋的消费量与气温的时间趋势图,输入命令:

. twoway connect consumption
time,msymbol(circle) yaxis(1) || connect temp

time, msymbol(triangle) yaxis(2)

"connect"表示将观测点用线连接起来,选择项"msymbol(circle)"与"msymbol(triangle)"分别表示点的"图标"(marker symbol)分别为圆圈与三角形。

选择项"yaxis(1)"与"yaxis(2)"指定使用不同的纵坐标,因为冰淇淋消费量与气温的取值范围很不相同;结果参见图8.3。

图 8.3 冰淇淋消费与气温的时间趋势

冰淇淋消费量与温度明显地正相关。

考虑以下线性回归模型:

consumption_t = $\beta_0 + \beta_1 \text{ temp}_t + \beta_2 \text{ price}_t + \beta_3 \text{ income}_t + \varepsilon_t (8.32)$ 首先进行 OLS 回归:

. reg consumption temp price income

Source	SS	df	MS	Number of obs	=	30
				F(3, 26)	=	22.17
Model	.090250523	3	.030083508	Prob > F	=	0.0000
Residual	.035272835	26	.001356647	R-squared	=	0.7190
			1 1 1 1 1 1 1 1 1	Adj R-squared	=	0.6866
Total	.125523358	29	.004328392	Root MSE	=	.03683
	'					
consumption	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]
temp	.0034584	.0004455	7.76	0.000 .00254	 26	.0043743
temp price	.0034584 -1.044413	.0004455 .834357		0.000 .00254 0.222 -2.7594	_	.0043743
-			-1.25		58	
price	-1.044413	.834357	-1.25 2.82	0.222 -2.7594	58 99	.6706322

气温(temp)与收入(income)均在1%的水平上显著为正,表示气温 越高、收入越高,则冰淇淋的消费量越大。

价格(price)的系数为负,表明价格越高,则消费量越低,但并不显著(p值为 0.222)。

由于这是时间序列,我们怀疑其扰动项存在自相关。

首先计算残差(记为 e1),及其滞后值(L.e1),然后画残差与残差滞后的散点图:

- . predict e1,r
- . twoway scatter el L.el | lfit el L.el

其中,"lfit"表示 linear fit(线性拟合),即画出 e1 与 L.e1 的拟合回归线;结果参见图 8.4。

图 8.4 残差与残差滞后的散点图

扰动项很可能存在一阶正自相关。

作为对比,下面画残差与其二阶滞后的散点图,结果参见图 8.5:

. twoway scatter el l2.el | lfit el l2.el

图 8.5 残差与二阶残差滞后的散点图

残差似乎不存在二阶自相关。

为看各阶自相关系数及显著性,画残差的自相关图,参见图 8.6。

. ac el

图 8.6 自相关图

图 8.6 的横轴为滞后阶数,纵轴为残差的自相关系数,而阴影部分为置信度为 95%的置信区间(区域)。

图 8.6 显示,各阶自相关系数的取值均在 95%的置信区间之内,故可接受各阶自相关系数为 0 的原假设。

但一阶自相关系数已很接近置信区间的边界,故仍怀疑存在一阶自相关,而更高阶自相关则可大致忽略。

下面进行正式的BG检验,考察是否存在一阶自相关:

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	4.237	1	0.0396

HO: no serial correlation

BG 检验的 *p* 值为 0.039 6, 故可在 5%的显著性水平上拒绝"无自相关"的原假设,而认为存在自相关。

如果不以0取代缺失值,可输入命令

. estat bgodfrey,nomiss0

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	4.704	1	0.0301

HO: no serial correlation

结果依然可在5%的水平上拒绝"无自相关"的原假设。

下面进行Q检验。

. wntestq e1

Portmanteau test	for white	noise	
Portmanteau (Q)	statistic	= 2	26.1974
Prob > chi2(13)		=	0.0160

"Prob > chi2(13) = 0.016"表明默认的滞后阶数为 13 阶,且可在 5%的水平上拒绝"无自相关"的原假设。

下面使用命令 corrgram 进行 Q 检验。

. corrgram el

					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial autocor]
1	0.3298	0.3969	3.6	0.0578	<u> </u>	<u> </u>
2	0.0362	-0.1681	3.645	0.1616		_
3	0.0111	0.0767	3.6494	0.3019		
4	-0.0934	-0.1483	3.9715	0.4099		_
5	-0.3186	-0.3565	7.8703	0.1635		
6	-0.2058	0.0011	9.5645	0.1442	_	
7	-0.2582	-0.4237	12.346	0.0897		
8	-0.1373	-0.0721	13.169	0.1062	_	
9	-0.1035	-0.3300	13.658	0.1350		
10	-0.2378	-0.8928	16.372	0.0895	_	
11	-0.1193	-0.5017	17.091	0.1052		
12	0.1923	-0.4590	19.064	0.0870	_	
13	0.3554	0.0493	26.197	0.0160		

上表汇报了从 1-13 阶的自相关系数(AC),Q 统计量(Q)及其相应 p 值(Prob>Q)。

第 13 阶 Q 统计量及其 p 值与命令 wntestq 的结果完全相同。

使用命令 corrgram 的好处在于,它同时计算了各阶 Q 统计量。

作为最后一个自相关检验,下面计算 DW 统计量:

. estat dwatson

Durbin-Watson d-statistic(4, 30) = 1.021169

由于 DW 统计量的局限性, Stata 并未提供其临界值。

由于 DW=1.02, 离 2 较远而靠近 0, 可大致判断存在正自相关。

由于扰动项存在自相关,故 OLS 估计所提供的标准误不准确, 应使用异方差自相关稳健的 HAC 标准误。

由于 $n^{1/4} = 30^{1/4} \approx 2.34$,故取 Newey-West 估计量的截断参数为 p=3:

. newey consumption temp price income, lag(3)

Regression wit	th Newey-West	standard er	rors	Number o	f obs =	30
Maximum lag =	F(3,	26) =	27.63			
				Prob > F	=	0.0000
		Newey-West				
consumption	Coefficient	std. err.	t	P> t	[95% conf.	interval]
temp	.0034584	.0004002	8.64	0.000	.0026357	.0042811
price	-1.044413	.9772494	-1.07	0.295	-3.053178	.9643518
income	.0033078	.0013278	2.49	0.019	.0005783	.0060372
_cons	.1973149	.3378109	0.58	0.564	4970655	.8916952

Newey-West 标准误与 OLS 标准误相差无几(但略大)。

考察 Newey-West 标准误是否对于截断参数敏感,将滞后阶数增大一倍,变为 6,再重新估计。

. newey consumption temp price income, lag(6)

Regression wit	th Newey-West	standard er	rors	Number o	f obs =	30
Maximum lag =	6			F(3,	26) =	52.97
				Prob > F	=	0.0000
		Newey-West				
consumption	Coefficient	std. err.	t	P> t	[95% conf.	interval]
temp	.0034584	.0003504	9.87	0.000	.0027382	.0041787
price	-1.044413	.9821798	-1.06	0.297	-3.063313	.9744864
income	.0033078	.00132	2.51	0.019	.0005945	.006021
	.1973149	.3299533	0.60	0.555	4809139	.8755437

无论截断参数为3还是6, Newey-West 标准误变化不大。

由于存在自相关,OLS 不再是 BLUE, 故可考虑使用 FGLS, 对模型进行更有效率的估计。

首先使用 CO 估计法:

. prais consumption temp price income, corc

Iteration 0: rho = 0.0000
Iteration 1: rho = 0.4006
Iteration 2: rho = 0.4008
Iteration 3: rho = 0.4009
Iteration 4: rho = 0.4009
Iteration 5: rho = 0.4009
Iteration 6: rho = 0.4009
Iteration 7: rho = 0.4009

Cochrane-Orcutt AR(1) regression with iterated estimates

Source	SS	df	MS	Number of obs $F(3, 25)$	=	29 15.40
Model Residual	.047040596 .025451894	3 25	.015680199 .001018076	Prob > F R-squared	= =	0.0000
Total	.072492491	28	.002589018	Adj R-squared Root MSE	=	0.6068 .03191

consumption	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
temp price income _cons	.0035584 8923963 .0032027 .1571479	.0005547 .8108501 .0015461 .2896292	6.42 -1.10 2.07 0.54	0.000 0.282 0.049 0.592	.002416 -2.562373 .0000186 4393546	.0047008 .7775807 .0063869 .7536504
rho	.4009256					

Durbin-Watson statistic (original) = 1.021169 Durbin-Watson statistic (transformed) = 1.548837 使用 CO 估计法得到的系数估计值与 OLS 比较接近,但样本容量降为 29(损失一个样本观测值)。

经过模型转换后 DW 值改进为 1.55。

然后使用PW估计法:

. prais consumption temp price income, nolog 其中,选择项"nolog"表示不显示迭代过程。

Prais-Winsten	AR(1) regress	ion with i	terated est	timates			
Source	SS	df	MS	Numl	ber of obs	=	30
				- F(3	, 26)	=	14.35
Model	.04494596	3	.014981987	7 Prol	b > F	=	0.0000
Residual	.027154354	26	.001044398	8 R-s	quared	=	0.6234
				- Adj	R-squared	=	0.5799
Total	.072100315	29	.002486218	_	t MSE	=	.03232
	I						
	T						
consumption	Coefficient	Std. err.	t	P> t	[95% con	f.	interval]
temp	.0029541	.0007109	4.16	0.000	.0014929		.0044152
_		.759751					
price	-1.048854		-1.38	0.179	-2.610545		.5128361
income	0008022	.0020458	-0.39	0.698	0050074		.0034029
_cons	.5870049	.2952699	1.99	0.057	0199311		1.193941
rho	.8002264						
	Durbin-Watson statistic (original) = 1.021169 Durbin-Watson statistic (transformed) = 1.846795						

虽然使用 PW 估计法使 DW 统计量进一步改进为 1.85, 但收入 (*income*)的系数估计值却变为负数(-0.0008)。

尽管它只是绝对值很小的负数,且在统计上不显著,但由于 PW 估计法使得收入的系数估计值与理论预期相反,似乎 PW 估计法反而不如 OLS 稳健。

自相关的存在可能是由于模型设定不正确。

考虑在解释变量中加入气温(temp)的滞后值,然后进行 OLS 回归:

. reg consumption temp L.temp price income

Source	SS	df	MS	Numk	per of obs	=	29
				- F(4)	, 24)	=	28.98
Model	.103387183	4	.025846796	5 Prob	o > F	=	0.0000
Residual	.021406049	24	.000891919	R-so	quared	=	0.8285
				- Adj	R-squared	=	0.7999
Total	.124793232	28	.004456901	L Root	MSE	=	.02987
	I						
consumption	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
± a				1 1 1 1 1 1			
temp						_	
	.0053321	.0006704	7.95	0.000	.0039484	1	.0067158
L1.	0022039	.0007307	-3.02	0.006	0037119)	0006959
price	8383021	.6880205	-1.22	0.235	-2.258307	7	.5817025
income	.0028673	.0010533	2.72	0.012	.0006934	1	.0050413
_cons	.1894822	.2323169	0.82	0.423	2899963	3	.6689607

气温的滞后项(L.temp)在 1%的水平上显著地不等于 0, 但符号为负(系数为-0.0022)。

当期气温仍然显著地为正(系数为 0.0053)。

这可能意味着,当气温上升时,对冰淇淋的需求上升,但不会 在当月全部消费完,而增加冰箱中的冰淇淋库存,导致下期对冰 淇淋的开支下降。

使用 BG 检验判断重新设定的模型是否存在自相关:

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.120	1	0.7292

HO: no serial correlation

由于 p 值为 0.73, 故可放心接受"无自相关"的原假设。

下面计算 DW 统计量。

. estat dwatson

Durbin-Watson d-statistic(5, 29) = 1.582166

DW 值也改进为 1.58。

通过修改模型设定,加入气温的滞后项后,扰动项基本上不再存在自相关。

究竟应该使用以上哪种模型,一定程度上取决于研究者的判断。

可在研究报告中同时列出各种模型的结果,以此说明系数估计值与标准误的稳健性(不依估计方法的改变而剧烈变化)。