Утверждение. Пусть $X,Y\in W^\Phi$, тогда $X\not\sim_i^\Phi Y\Rightarrow \vdash \underline{X}\to K_i\lnot\underline{Y}$

1	$X \not\sim_i^{\Phi} Y$	$\rhd \vdash \underline{X} \to K_i \neg \underline{Y}$		
2	$\exists heta \in \Phi: extit{K}_i heta \in extit{X}, heta ot\in extit{Y}$ или $ extit{K}_i heta \in extit{Y}, heta ot\in extit{X}$		13	$\vdash \underline{X} \to \neg \theta$
3	$K_i\theta \in X, \theta ot\in Y$	$\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$	14	$\vdash \theta \to \neg \underline{X}$
4	$ eg \theta \in Y$	экономное отрицание?	15	$\vdash K_i heta o K_i eg \underline{X}$
5	$Y \vdash \neg \theta$		16	$dash \underline{Y} o K_i heta$
6	$\vdash \underline{Y} \to \neg \theta$		17	$\vdash \underline{Y} o K_i \neg \underline{X}$
7	$\vdash heta ightarrow \neg \underline{Y}$		18	$\vdash \hat{\mathcal{K}}_i \underline{X} \to \neg \underline{Y}$
8	$\vdash K_i heta o K_i \neg \underline{Y}$		19	$\vdash \mathcal{K}_i \hat{\mathcal{K}}_i \underline{X} \to \mathcal{K}_i \neg \underline{Y}$
9	$dash \underline{X} o \mathcal{K}_i heta$		20	$dash \underline{X} o \mathcal{K}_i \hat{\mathcal{K}}_i \underline{X}$
10	$dash \underline{X} o \mathcal{K}_i eg \underline{Y}$		21	$\vdash \underline{X} \to K_i \neg \underline{Y}$
11	$K_i \theta \in Y, \theta ot\in X$	$\rhd \; \vdash \underline{X} \to K_i \neg \underline{Y}$	22	$\vdash \underline{X} \to K_i \neg \underline{Y}$
12	$\neg \theta \in X$			

Следствие. Пусть $X,Y\in W^\Phi$, тогда $\underline{X},\hat{K}_i\underline{Y}
ot\vdash\bot\Rightarrow X\sim^\Phi_iY$

$$\varphi' = K_i \varphi \ (\Rightarrow)$$

1
$$K_i \varphi \in X$$
 $\rhd M^{\Phi}, X \models K_i \varphi \Leftrightarrow \rhd \forall Y (X \sim_i^{\Phi} Y \Rightarrow M^{\Phi}, Y \models \varphi)$
2 $Y \mid X \sim_i^{\Phi} Y$ $\rhd M^{\Phi}, Y \models \varphi$
3 $K_i \varphi \in Y$ из 1, 2
4 $\varphi \in Y$ из 3 т.к. $\varphi \in \Phi$ и $\vdash K_i \varphi \rightarrow \varphi$
5 $M^{\Phi}, Y \models \varphi$ из 4 по ΠИ
6 $\forall Y (X \sim_i^{\Phi} Y \Rightarrow M^{\Phi}, Y \models \varphi)$
7 $M^{\Phi}, X \models K_i \varphi$

$$\varphi' = K_i \varphi \ (\Leftarrow)$$

Обозначения:
$$ig|K_iX:=\{K_i\psi\mid K_i\psi\in X\}ig|, ig|\lnot K_iX:=\{\lnot K_i\psi\mid \lnot K_i\psi\in X\}$$

4/4