

UNIVERSIDAD AUTONOMA "TOMAS FRIAS" FACULTAD DE VICERRECTORADO

PRACTICA N°7

CARRERA DE INGENIERIA DE SISTEMAS

I MACHOA N I						
NOTA	ASIGNATURA: Arquitectura de computadoras	SIGLA: SIS-522				
	DOCENTE: Ing. Puita Choque Gustavo Adolfo	GRUPO: G-1				
	AUXILIAR: Univ. Aldrin Roger Perez Miranda	FECHA:24/06/2022				
	ESTUDIANTE: Univ. Alvaro Moyata Pascual					

1) ¿Qué es un UPS y en qué situaciones se utiliza?

Es un dispositivo que, gracias a sus baterías y otros elementos almacenadores de energía, durante un apagón eléctrico puede proporcionar energía eléctrica por un tiempo limitado a todos los dispositivos que tenga conectados. Otra función que se puede añadir a estos equipos es mejorar la calidad de la energía eléctrica que llega a las cargas, filtrando subidas y bajadas de tensión y eliminando armónicos de la red en caso de usar corriente alterna.

- Protección de dispositivos críticos: Un UPS se utiliza para proteger dispositivos importantes como servidores, sistemas de control, equipos médicos, y otros que requieren energía constante para funcionar.
- Mantenimiento de la continuidad del suministro eléctrico: Un UPS proporciona energía de reserva para mantener los equipos funcionando durante cortes o interrupciones eléctricas, lo que evita pérdida de datos y minimiza el impacto en la productividad.
- Protección contra fluctuaciones de tensión: Un UPS también protege los dispositivos contra fluctuaciones de tensión eléctrica, lo que puede dañar o destruir el equipo.
- Mantenimiento de la seguridad: Un UPS puede ser utilizado para proteger contra cortocircuitos y sobretensiones, lo que reduce el riesgo de incendios y daños a los dispositivos.
- 2) De las siguientes fuentes indique que tipo de modularidad tiene cada una de ellas

3) Explique las etapas del proceso de transformación de la energía eléctrica que va desde energía alterna a continua, que son necesarios para poder alimentar los componentes de forma correcta de la PC

Transformación:

Se consigue reducir la tensión de entrada a la fuente (220v o 125v), con un transformador en bobina.

Rectificación:

Consigue pasar de corriente alterna a corriente continua, a través de un puente rectificador o de Graetz.

Filtrado

En esta fase se aplana la señal al máximo para que no haya oscilaciones a través de condensadores que retienen la corriente y la dejan pasar lentamente para suavizar la señal.

Estabilización

Aplana la señal obteniendo el resultado deseado a través de un regulador.

- 4) Con los siguientes datos:
- > Tipo de Placa Base: Servidor

P. Durana davisa 2. AAAD D 7 5700V						
➤ Procesadores: 2: AMD Ryzen 7 5700X						
➤ Memorias RAM:						
o 1: DDR4, Módulo DDR4 8 GB						
o 2: DDR4, Módulo DDR4 8 GB						
o 3: DDR4, Módulo DDR4 16 GB						
o 4: DDR4, Módulo DDR4 16 GB						
➤ Tarjetas Gráficas:						
o 1: NVIDIA, Geforce RTX 3060						
o 1: ADM, Geforce RX 5500 XT						
➤ Almacenamiento:						
o 4: SSD SATA						
➤ Unidades Ópticas:						
o 1: Disquetera						
o 3: Lector CD-ROM						
➤ Tarjetas PCI Express:						
o 2: Tarjeta Ethernet de 2 puertos						
➤ Tarjetas PCI:						
o 1: Tarjetas WI-FI						
➤ Ratones:						
o 1: Ratón Gaming						
➤ Teclados:						
o 1: Teclado Gaming						
➤ Kit de Refrigeración Líquida:						
o 1: Kit de 360 mm						
➤ Bomba de Refrigeración Líquida:						
o 1: Bomba con Depósito						
➤ Ventiladores:						
o 4: 140 mm						

➤ Otros Dispositivos:

o 2: Tira de 30 LEDs

Determinar cuánto consumiría una fuente de alimentación que tendría que suministrar anergia a todos estos componentes. Para esto puede usar calculadores de energía como:

- https://www.geeknetic.es/calculadora-fuente-alimentacion/
- https://latam.msi.com/power-supply-calculator
- https://pc-builds.com/es/power-supply-calculator/

Mostrar en capturas de pantalla cuantos watts le salió.

Resultado del Cálculo

Consumo Máximo Estimado: 713W

Potencia Recomendada: 800W-900W

5) Mencione 4 conectores que se usan de las fuentes de alimentación en la actualidad es decir en 2024 (NO MENCIONAR CONECTORES OBSOLETOS)

Conector principal ATX de 24 pines: Proporciona energía a la placa base.

Conector EPS de 8 pines: Suministra energía adicional al procesador.

Conectores PCIe: Utilizados para alimentar tarjetas gráficas.

Conectores SATA: Para discos duros y unidades ópticas.