

UiO • Department of Informatics University of Oslo

Transformanalyse og enkle filtre

Kapittel 3.7, 5.6, 6.1 & 6.2.0 i Rao & Swamy

Sven Peter Näsholm og Andreas Austeng

September 2021

UiO Department of Informatics University of Oslo

I korte trekk ...

- 1 Frekvensresponsen
 - Egenfunksjoner og egenverdier
 - Frekvenstransformasjonen
- 2 \mathcal{Z} -transformen
 - Fra forrige uke ...
 - Plotting av systemfunktion
 - Kausalitet og stabilitet
- 3 Dekonvolusjon og Inverse filtre
 - Allpassfiltre
 - Minimum- / maximum- / mixed-fase systemer
- 4 Filtre
 - Poler/nullpunkter, lineær fase og ideelle filtre
 - Design av enkle FIR-filtre fra nullpunktsplassering
 - Design av enkle IIR-filtre fra pol- og nullpunktsplassering

Egenfunksjoner og egenverdier

- En sekvens er sagt å være en egenfunksjon til et system hvis
 - \blacksquare Responsen til inngangssekvensen x(n)
 - **2** er utgangssekvensen $y(n) = \lambda x(n)$
 - 3 hvor λ , egenverdien, generelt avhenger av inngangssekvensen x(n).
- Det betyr;
 Egenfunksjoner er sekvenser som, når de presenteres som inngangssignal til systemet,
 passerer gjennom systemet og bare forandres i (kompleks) amplitude.

$$x(n) \longrightarrow h(n) \longrightarrow y(n) = \lambda x(n)$$

Egenfunksjoner til LTI systemer, $x(n) = e^{jn\omega}$, $\forall n$

- La $x(n) = e^{jn\omega}, -\infty < n < \infty, \omega \in [-\pi, \pi].$
- Da har vi at

$$y(n) = h(n) * x(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$= \sum_{k=-\infty}^{\infty} h(k)e^{\jmath\omega(n-k)} = e^{\jmath n\omega} \sum_{k=-\infty}^{\infty} h(k)e^{-\jmath k\omega}$$

$$= H(e^{\jmath\omega})e^{\jmath n\omega} = H(e^{\jmath\omega})x(n).$$

Dvs at egenfunksjonen til et LTI system er

$$x(n) = e^{jn\omega}, \quad -\infty < n < \infty, \quad \omega \in [-\pi, \pi].$$

■ og egenverdien, $H(e^{j\omega})$, er

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-jk\omega}.$$

Frekvenstransformasjonen

- Så, hvis inngangssignalet x(n) til et LTI-system er en kompleks eksponensial, vil utgangssignalet y(n) være likt inngangssignalet bortsett fra en kompleks skalering i amplitude.
- Amplitudeskaleringen er gitt ved $H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-jk\omega}$.
- $H(e^{j\omega})$ er generelt en **kompleks** størrelse, dvs

$$\begin{array}{rcl} H(e^{\jmath\omega}) & = & H_\Re(e^{\jmath\omega}) + \jmath H_\Im(e^{\jmath\omega}), \\ \text{eller } H(e^{\jmath\omega}) & = & |H(e^{\jmath\omega})|e^{\jmath\Phi(\omega)}, \\ \text{hvor } |H(e^{\jmath\omega})|^2 & = & H(e^{\jmath\omega})H^*(e^{\jmath\omega}) = H_\Re^2(e^{\jmath\omega}) + H_\Im^2(e^{\jmath\omega}) \\ \text{og } \Phi(\omega) & = & \tan^{-1}\frac{H_\Im(e^{\jmath\omega})}{H_\Re(e^{\jmath\omega})}. \end{array}$$

■ $H(e^{j\omega})$ avhenger av frekvensen ω .

Frekvenstransformasjonen ...

- $H(e^{j\omega})$ kalles **Frekvenstransformasjonen**.
- Den viser hvordan en kompleks eksponensial forandres i (kompleks) amplitude når den filtreres av systemet.
- Den er særdelses nyttig hvis vi kan dekomponere inngangssignalet x(n) inn i en sum av komplekse eksponensialer.
 - Responsen til

$$x(n) = \sum_{k=1}^{N} \alpha_h e^{-\jmath n\omega_k}$$

vil bli

$$y(n) = \sum_{k=1}^{N} H(e^{jn\omega_k}) \alpha_h e^{-jn\omega_k}.$$

■ Gruppeforsinkelsen $\tau_g(\omega)$, dvs forsinkelsen på hele signalet $x(n) = \sum_{k=1}^N \alpha_k e^{-jn\omega_k}$:

$$au_{g}(\omega) = -rac{d\Phi(\omega)}{d\omega}.$$

UiO: Department of Informatics University of Oslo

Example (Fase og gruppe forsinkelse)

Betrakt følgende LTI-system med enhetsrespons

$$h(n) = \alpha^n u(n), \ \alpha \in \Re, \ |\alpha| < 1.$$

Frekvensresponsen er da

$$H(e^{\jmath\omega}) = \sum_{k=-\infty}^{\infty} h(n)e^{-\jmath n\omega} = \sum_{k=0}^{\infty} \alpha^n e^{-\jmath n\omega}$$
$$= \sum_{k=0}^{\infty} (\alpha e^{\jmath\omega})^n = \frac{1}{1 - \alpha e^{-\jmath\omega}}.$$

Kvadrert magnitude til
$$H(e^{j\omega})$$
 er
$$|H(e^{j\omega})|^2 = \frac{1}{1 - \alpha e^{-j\omega}} \cdot \frac{1}{1 - \alpha e^{j\omega}}$$

og fasen er

$$\Phi(\omega) = \tan^{-1} \frac{H_I(e^{j\omega})}{H_B(e^{j\omega})} = \tan^{-1} \frac{-\alpha \sin \omega}{1 - \alpha \cos \omega}.$$

Gruppeforsinkelsen er da gitt som

$$\tau_g(\omega) = -\frac{\alpha^2 - \alpha \cos \omega}{1 + \alpha^2 - 2\alpha \cos \omega}.$$

Definition av \mathcal{Z} -transformen

- $X(z) \equiv \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$, hvor $z = re^{j\omega}$ er en kompleks variabel.
- Dette er en uendelig potensrekke; den eksisterer bare for de verdiene av z hvor rekken konvergerer.
 - \Rightarrow Region Of Convergence (ROC); er den mengden punkter hvor X(z) antar en endelig verdi.
- Notasjon:

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

Definition av \mathcal{Z} -transformen ...

- Z-transformen er en kompleks variabel. Det er nyttig å beskrive den ved hjelp av det komplekse z-planet.
- $z = Re(z) + \jmath Im(z) = re^{\jmath \omega}$
- Z-transformasjonen evaluert på enhetssirkelen korresponderer til DTFT'en:

$$X(e^{\jmath\omega})=X(z)|_{z=e^{\jmath\omega}}$$

Hvis DTFT'en eksisterer, må enhetssirkelen ligge inne i ROC

UiO Department of Informatics

University of Oslo

UiO : Department of Informatics

University of Oslo

UiO Department of Informatics

University of Oslo

Definition av \mathcal{Z} -transformen ...

■ Mange signaler i digital signalbehandling har \mathcal{Z} -transform som er en rational funksjon av z:

$$X(z) = \frac{B(z)}{A(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{l=0}^{N} a_l z^{-k}} = \frac{b_0 z^{-M}}{a_0 z^{-N}} \times \frac{z^M + (b_1/b_0) z^{M-1} + \dots + b_M/b_0}{z^N + (a_1/a_0) z^{N-1} + \dots + a_N/a_0}$$

$$= \frac{b_0 z^{-M}}{a_0 z^{-N}} \times \frac{(z-z_1)(z-z_2) \dots (z-z_M)}{(z-p_1)(z-p_2) \dots (z-p_N)} = \frac{b_0}{a_0} z^{N-M} \frac{\prod_{k=1}^{M} (z-z_k)}{\prod_{k=1}^{N} (z-p_k)}$$

- Røtter til tellerpolynomet z_k refereres til som **nullpunkter** til X(z).
- Røtter i nevnerpolynomet p_k refereres til som **poler** til X(z).
- lacktriangle Poler og nullpunkter definerer unikt den funksjonelle formet til en rasjonal \mathcal{Z} -transform på en konstant nær.
- FIR-system: Et system med bare nullpunkter, dvs X(z) = B(z). FIR: Finite Impulse Response.
- IIR-system: Et system med poler, dvs $X(z) = \frac{1}{A(z)}$ eller $X(z) = \frac{B(z)}{A(z)}$. IIR: Infinite Impulse Response.

Estimering av $|H(e^{j\omega})|$ fra poler og nullpunkter

- Gitt $H(z) = G_{(z-p_1)(z-p_2)}^{(z-z_1)(z-z_2)}$, hvor G er forsterkningen.
- Identifiser som vektorer i *z*-planet:

$$\overline{Z_k Z} = |e^{\jmath \omega} - z_k|e^{\jmath \Theta_k(\omega)} \text{og}$$

$$\overline{P_k Z} = |e^{\jmath \omega} - p_k|e^{\jmath \Phi_k(\omega)}.$$

- $\blacksquare \text{ Da er } |H(e^{\jmath \omega})| = |G| \frac{|e^{\jmath \omega} z_1||e^{\jmath \omega} z_2|}{|e^{\jmath \omega} p_1||e^{\jmath \omega} p_2|} = |G| \frac{|\overline{Z_1Z}| \cdot |\overline{Z_2Z}|}{|\overline{P_1Z}| \cdot |\overline{P_2Z}|},$
- Når vi går rundt enhetssirkelen, forandres vektorene lengde og vinklene.

Kausalitet og stabilitet

- ROC av en kausal sekvens er utsiden av en sirkel: |z| > a.
- Et system er BIBO-stabilt hvis "bounded input" gir "bouded output".
 - Dvs at et inngangssignal $|x(n)| \le A < \infty$ gir et utgangssignal $|y(n)| \le B < \infty$. ■ Da gjelder: $|y(n)| = |\sum_{k=-\infty}^{\infty} h(k)x(n-k)| \le \sum_{k=-\infty}^{\infty} |h(k)||x(n-k)| \le A\sum_{k=-\infty}^{\infty} |h(k)|$
 - og en nødvendig betingelse er gitt som $\sum_{k=-\infty}^{\infty} |h(k)| \le B < \infty$.
 - Det kan bli vist at dette også er en tilstrekkelig betingelse!
- Absolutt summerbarhet av impulsresponsen h(n) garanterer eksistensen til dens Fourier transform (DTFT):
 - $|H(z)| = \left| \sum_{n=-\infty}^{\infty} h(n) z^{-n} \right| \leq \sum_{n=-\infty}^{\infty} |h(n)| |z^{-n}|,$
 - og på enhetssirkelen reduseres dette til $|H(z)|_{z=e^{-\jmath\omega}}=|H(e^{-\jmath\omega})|\leq \sum_{n=-\infty}^{\infty}|h(n)|.$
 - \blacksquare Dvs at hvis h(n) tilfredsstiller kravet til BIBO-stabilitet, så eksisterer dens DTFT.
 - lacktriangle Derfor: ROC til H(z) til et digitalt filter inneholder enhetssirkelen.
 - \blacksquare Omvendt: Hvis ROC til H(z) inneholder enhetssirkelen er filteret BIBO-stabilt.
- Kausale stabile filtre har alle poler på innsiden av |z| = 1.

Dekonvolusjon og Inverse filtre

■ Kaskade av to LTI-systemer: $x(n) \longrightarrow h_1(n) \longrightarrow v(n) \longrightarrow h_2(n) \longrightarrow y(n)$ $h(n) = h_1(n) * h_2(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} H(z) = H_1(z)H_2(z)$

Dekonvolusjon:

Hvis $H_1(z)$ er kjent, finnes et filter $H_2(z)$ som fjerner effekten (konvolusjon) av det første?

$$Y(z) = H_1(z)H_2(z)X(z) = H(z)X(z) = X(z).$$

- Hvis så, må $H(z) = H_1(z)H_2(z) = 1$ (dvs $h_1(n) * h_2(n) = \delta(n)$) og
- $H_2(z) = \frac{1}{H_1(z)}$
- Dette gir at
 - Hvis $H_1(z) = B(z)$, (dvs FIR), så er $H_2(z) = H_1^{-1}(z) = 1/B(z)$ (dvs IIR).
 - Hvis $H_1(z) = 1/A(z)$, (dvs IIR), så er $H_2(z) = H_1^{-1}(z) = B(z)$ (dvs FIR).
 - Hvis $H_1(z) = B(z)/A(z)$, (dvs IIR), så er $H_2(z) = H_1^{-1}(z) = A(z)/B(z)$ (dvs IIR).

Dekonvolusjon og Inverse filtre ...

- Konsekvenser:
 - Poler i $H_1(z)$ blir nullpunkter i $H_2(z) = H_1^{-1}(z)$ og vice versa.
 - ROC for et invers system er bestemt av kravet om at $H_1(z)$ og $H_2(z)$ må ha overlappende ROC'er.
 - $H_2(z)$ trenger ikke ende opp som stabil (bli ustabil) eller implementerbar (bli ikke-kausal).
 - $H_2(e^{j\omega})$ trenger ikke eksistere.

Allpass

- Et system kalles allpass om magnituden til frekvensresponsen er konstant: $|H(e^{j\omega})| = c$.
- Et eksempel på et allpassfilter er:

$$H(e^{\jmath\omega})=rac{e^{\jmath\omega}-lpha}{1-lpha e^{\jmath\omega}},$$

 $der \ \alpha \in \Re \ og \ |\alpha| < 1.$

■ En mer generell form for et allpassfilter er

$$H(z) = \prod_{k=1}^{n} \frac{z^{-1} - a_k^*}{1 - a_k z^{-1}}.$$

- Hvis H(z) har pol i $z = a_k$, så har det et nullpunkt i konjugert resiprok lokasjon $z = 1/a_k^*$.
- Hvis h(n) er reell, opptrer poler og nullpunkter i konjugerte par.

Minimum-/maximum-/mixed-fase systemer

■ FIR:

Minimum-fase systemer: Alle nullpunkter er innenfor enhetssirkelen.

Maximum-phase systemer: Alle nullpunkter er utenfor enhetssirkelen.

Mixed-fase systemer ellers.

■ FIR system: M nullpunkter $\Rightarrow 2^M$ mulige konfigurasjoner En er minimum-fase, en er maximum-fase.

IIR:

Minimum-phase hvis alle poler og nullpunkter er innenfor enhetssirkelen.

Maximum-phase hvis alle nullpunkter er utenfor enhetssirkeen(+alle poler innenfor enhetssirkelen, dvs stabil & kausal).

Mixed-phase ellers (+alle poler innenfor enhetssirkelen, dvs stabil & kausal).

Minimum-/maximum-/mixed-phase systems ...

- Ethvert ikke-minimumfase pole-nullpunktsystem kan uttrykkes som $H(z) = H_{min}(z)H_{ap}(z)$.
- Gruppeforsinkelsen til et ikke-minimumfasesystem kan uttrykkes som: $\tau_q(w) = \tau_q^{min}(w) + \tau_q^{ap}(w)$.
- Minimum-fasesystemer har den minste gruppeforsinkelsen.
- Del-energi for et ikke-minimum-fasesystem kan defineres som $E(n) = \sum_{k=0}^{n} |h(k)|^2$.
- Blant alle systemer som har lik |H(w)| og samme totale energi $E(\infty)$, har minimum-fasesystemet størst del-energi: $E_{min}(n) \ge E(n)$.

UiO • Department of Informatics University of Oslo

Filtre

- Benevnelsen digitalt filter, eller enklere "filter" er ofte brukt for å referere til et diskret-tid-system.
- Filtre karakteriseres gjerne i form av deres egenskaper slik som
 - linearitet, shift-invarians, kausalitet, etc
- og i form av deres frekvensrespons
- Vi skal nå se på
 - linear fase
 - og noen enkle filtre

Lineær fase

■ Et LTI-system sies å ha lineær fase hvis frekvensresponsen er på formen

$$H(e^{\jmath\omega}) = A(e^{\jmath\omega})e^{-\jmath\alpha\omega},$$

hvor $\alpha \in \Re$ og $A(e^{j\omega})$ er en reel funksjon av ω .

■ Hvis så, så er fasen til $H(e^{j\omega})$

$$\Phi(\omega) = egin{cases} -lpha\omega, & ext{når}~ {\it A}({\it e}^{~\jmath\omega}) \geq 0 \ -lpha\omega + \pi, & ext{når}~ {\it A}({\it e}^{~\jmath\omega}) < 0. \end{cases}$$

Filtre sies å ha generalisert lineær fase hvis frekvensresponsen har formen

$$H(e^{\jmath\omega}) = A(e^{\jmath\omega})e^{-\jmath(\alpha\omega-\beta)}.$$

■ Disse filtrene har konstant gruppeforsinkelse.

Krav til lineær fase

- FIR systemer med symmetriske filterkoeffisienter har frekvensrespons med linear phase.
- Example: $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + b_1 z^{-3} + b_0 z^{-4}$ dvs et lengde L = M + 1 = 5 sample filter, og hvor $b_k = b_{M-k}, k = 0..M$.
 - Da vil $H(z) = (b_0(z^2 + z^{-2}) + b_1(z^1 + z^{-1}) + b_2) z^{-2}$
 - og $H(e^{j\omega}) = (2b_0 \cos(2\omega) + 2b_1 \cos(\omega) + b_2) e^{-j\omega M/2}$
 - Det gir $H(e^{j\omega}) = R(e^{j\omega})e^{-j\omega M/2}$, et filter med lineært fase.
- Et tilstrekkelig krav for at et reet filter skal ha (generalisert) lineær fase er at

$$h(n)=\pm h(M-n).$$

■ Kausal IIR filtrte kan ikke ha lineær fase!

Nullpunktsplassering for FIR-filtre med lineær fase

- Hvis h(n) er symmetrisk/anti-symmetrisk, er
 - $h(n) = \pm h(M-n), \quad n = 0, 1, ..., M$
 - $z^{-M}H(z^{-1}) = \pm H(z).$
 - \Longrightarrow Hvis z_0 rot, så er $1/z_0$ også rot (resiprokt par).
- Hvis h(n) er reel, så er
 - $H(z) = H^*(z^*)$
 - Hvis z₁ kompleks rot, så er z₁* også rot (komplekskonjugerte røtter)
 - Dette er også gyldig for poler!!!
- For reelle FIR-filtre med lineær fase gjelder: Hvis z₁ nullpunkt, så er 1/z₁, z₁* og 1/z₁* også nullpunkter.

Karakteristikk av ideelle filtre

- Ideelle filtre har stykkevis konstant magnitudekarakteristikk.
- Intervallene hvor frekvensresponsen er lik 1 kalles passbånd.
- Intervallene hvor frekvensresponsen er lik 0 kalles **stoppbånd**.
- Frekvenser som skiller passbånd og stoppbånd kalles cutoff-frekvenser.
- Responskarateristikker er lavpass-, høypass-, båndpass-, allpass- og båndstop-filtre.
- Lineær faserespons
 Ideelle filtre har lineær fase i sine passbånd.
- I alle tilfeller: Ideelle filtre er ikke fysisk realiserbare.

Karakteristikk av ideelle filtre

Design av enkle FIR-filtre fra nullpunktsplassering

■ Et *L*-punkts løpende-sum-filter (midlingsfilter):

$$Y(n) = \sum_{k=0}^{L-1} x(n-k), \quad H(z) = \sum_{k=0}^{L-1} z^{-k} = \frac{z^{L}-1}{z^{L-1}(z-1)}$$

Et komplekst båndpassfilter

■ Bruker en av egenskapene til \mathbb{Z} -transformen: Multiplikasjon av en kompleks eksponensial $e^{jn\omega_0}$, tilsvarer en rotasjon i z-planet;

$$e^{\jmath n\omega_0}x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(e^{\jmath n\omega_0}z)$$

■ Et komplekst båndpassfilter; rotasjon av et *L*-punkts løpende-sum-filter:

$$b_k = e^{j2\pi k_0 k/L}, \quad H(z) = \sum_{k=0}^{L-1} z^{-k} e^{j2\pi k_0 k/L}$$

Frekvenstransformasjon

- Det er mulig å transformere et lavpassfilter til et annet lavpassfilter, og til et båndpass-, båndstopp- og høypassfilter.
- Den enkleste transformasjonen: Lavpass til høypass and vice versa.

$$H_{hp}(e^{j\omega}) = H_{lp}(e^{j\omega-\pi})$$
, i.e. $h_{hp}(n) = (e^{j\pi})^n h_{lp}(n) = (-1)^n h_{lp}(n)$.

I de aller fleste tilfeller er det derfor tilstrekkelig å betrakte lavpassfilterdesign, for deretter å gjøre en filtertransformasjon.

Lavpass- og høypassfiltre

Lavpass- og høypassfiltre ...

Figure 5.4.3 Magnitude and phase response of (1) a single-pole filter and (2) a one-pole, one-zero filter, $H_1(z) = (1-a)/(1-az^{-1})$, $H_2(z) = [(1-a)/2][(1+z^{-1})/(1-az^{-1})]$ and a = 0.9.

Figure 5.4.4 Magnitude and phase response of a simple highpass filter; $H(z) = [(1-a)/2][(1-z^{-1})/(1+az^{-1})]$ with a=0.9.

Et andreordens IIR-filter

■ Generell differanselinkning:

$$y(n) = a_1 y(n-1) + a_2 y(n-2) +b_0 + b_1 x(n-1) + b_2 y(n-2).$$

Systemfunksjonen:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = |G| \frac{(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)}.$$

- dvs to nullpunkter og to poler.
- Hvis reelt filter er $z_1 = z_2^*$ and $p_1 = p_2^*$.
- Notchfilter: $z_1 = z_2^* = e^{\jmath \omega_0}$ og $p_1 = p_2^* = re^{\jmath \omega_0}$, r < 1.
 - -3dB båndbredde; bredde på peak til $H(e^{j\omega})$ ved $\frac{H_{peak}}{\sqrt{2}}$.
 - Radius r kan bli tilnærmes for andre-ordens filtre når båndbredden $B_w \ll$ samplingsfrekvensen F_T som $r = 1 \frac{\pi B_w}{E}$.

Example (Notch filter)

Konstruer et andreordens notch filter med

notchfrekvens
-3dB bredde til notch
samplingsfrekvens

50 Hz ±5 Hz 500 Hz

UiO: Department of Informatics University of Oslo

Dagens temar:

- **Frekvensresponsen**
 - Egenfunksjoner og egenverdier
- Frekvenstransformasjonen
- Z-transformen
 - Fra forrige uke ...
 - Plotting av systemfunktion
- Kausalitet og stabilitet 3
 - **Dekonvolusion og Inverse filtre**
 - Allpassfiltre
 - Minimum- / maximum- / mixed-fase systemer
- **Filtre**
 - Poler/nullpunkter, lineær fase og ideelle filtre
 - Design av enkle FIR-filtre fra nullpunktsplassering
 - Design av enkle IIR-filtre fra pol- og nullpunktsplassering
- ... i korte trekk:-)

Transformanalyse og enkle filtre
Kapittel 3.7, 5.6, 6.1 & 6.2.0 i Rao & Swamy

