Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 1

Abgabe: 30.10.2018 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Gib aussagenlogische Formeln sowohl in KNF als auch in DNF an, welche logisch äquivalent zu den folgenden aussagenlogischen Formeln sind.

(a)
$$(P \longrightarrow Q) \longrightarrow (Q \longrightarrow \neg R)$$
.

(b)
$$(P \wedge Q) \longrightarrow (P \longrightarrow \neg (Q \vee R))$$
.

Aufgabe 2 (3 Punkte).

Sind
$$(P \land Q) \to R$$
 und $(P \to (Q \to R))$ logisch äquivalent?

Aufgabe 3 (5 Punkte).

Entscheide mit Hilfe der Tableau Methode, ob folgende Aussagen Tautologien sind.

(a)
$$(A_1 \longrightarrow \neg \neg A_2) \longrightarrow (A_1 \longrightarrow A_2)$$
.

(b)
$$((P \to Q) \land (\neg P \lor Q))$$
.

(c)
$$((\bigwedge_{i=1}^k A_i) \longrightarrow A_j)$$
, für $1 \le j \le k$.

(d)
$$\left(\left(\left(\bigwedge_{i=1}^k A_i\right) \wedge P\right) \longrightarrow Q\right) \longrightarrow \left(\left(\bigwedge_{i=1}^k A_i\right) \longrightarrow \left(P \longrightarrow Q\right)\right)\right)$$
.

(e)
$$\left(\left(\left(\bigwedge_{i=1}^k A_i\right) \longrightarrow P\right) \longrightarrow \left(A_1 \longrightarrow \left(A_2 \longrightarrow \dots (A_k \longrightarrow P) \dots\right)\right)\right)$$

Aufgabe 4 (6 Punkte).

- (a) Sei F eine Einbettung der \mathcal{L} -Struktur \mathcal{A} in die \mathcal{L} -Struktur \mathcal{B} . Wir nehmen an, dass die Sprache \mathcal{L} ein 2-stelliges Relationszeichen E enthält, so dass $E^{\mathcal{A}}$ eine Äquivalenzrelation auf A definiert. Zeige, dass $E^{\mathcal{B}}$ eine Äquivalenzrelation auf der Teilmenge F(A) von B definiert.
- (b) Sei nun $\mathcal{L} = \{E\}$ und \mathcal{A} die abzählbare \mathcal{L} -Struktur mit unendlich vielen unendlichen $E^{\mathcal{A}}$ Äquivalenzklassen und genau einer endlichen Äquivalenzklasse, nämlich mit Mächtigkeit 2. Des
 Weiteren sei \mathcal{B} die abzählbare \mathcal{L} -Struktur mit unendlich vielen unendlichen $E^{\mathcal{B}}$ -Äquivalenzklassen
 und genau zwei endlichen Äquivalenzklassen, beide mit Mächtigkeit 2. Zeige, dass \mathcal{A} und \mathcal{B} sich
 jeweils ineinander einbetten lassen. Sind \mathcal{A} und \mathcal{B} isomorph?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.