

Chpt.8 Statistical Inference: Hypothesis Testing

第八章 假设检验

上节回顾

假设检验: 根据数据,对某一假设进行接受或拒绝的判断

- (1) 根据实际问题提出原假设和备择假设;
- (2) 提出检验统计量和拒绝域的形式;
- (4) 根据实际样本观测值作出判断.

南开大学计算机学院 pp. 2

8.2 正态总体均值的假设检验

(一) 关于单个正态总体均值µ的假设检验

- (1) σ^2 已知,关于 μ 的检验
- (2) σ^2 未知,关于 μ 的检验

(二) 关于两个正态总体均值差 $\mu_1 - \mu_2$ 的假设检验

- (1) 已知 σ_1 , σ_2 检验 H_0 : $\mu_1 \mu_2 = \delta$, H_1 : $\mu_1 \mu_2 \neq \delta$
- (2) 未知 σ_1 , σ_2 , 但是知道 $\sigma_1 = \sigma_2$ 检验 H_0 : $\mu_1 \mu_2 = \delta$, H_1 : $\mu_1 \mu_2 \neq \delta$

(一) 关于单个正态总体均值μ的假设检验

(1) σ^2 已知,关于 μ 的检验

采用统计量
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
 来确定拒绝域

(一) 关于单个正态总体均值μ的假设检验

(1) σ2已知,关于μ的检验

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 —Z检验

原假设H ₀	备择假设 H ₁	在显著水平α下关于原假设H ₀ 的拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z > z_{\alpha/2}$
$\mu \le \mu_0$	$\mu > \mu_0$	$Z > z_{\alpha}$
$\mu \ge \mu_0$	$\mu < \mu_0$	$Z < -z_{\alpha}$

强调一下: 没有 H_0 : $\mu \neq \mu_0$ 这个原假设。

换而言之,如果比较谁大谁小,则可<mark>将预期支持的观点作为备择假设</mark>,而原假设为"对抗观点";如果比较是否相等,则只能使用 $\mu = \mu_0$ 作为原假设,否则没办法构造合理的拒绝域。

练习题

例2 公司从生产商购买牛奶。公司怀疑生产商在牛奶中掺水以谋利。通过测定牛奶的冰点,可以检验出牛奶是否掺水. 天然牛奶的冰点温度近似服从正态分布,均值 μ_0 = -0.545 \mathbb{C} ,标准差 σ = 0.008 \mathbb{C} . 牛奶掺水可使冰点温度升高而接近于水的冰点温度(0 \mathbb{C}). 测得生产商提交的 5 批牛奶的冰点温度,其均值为 \overline{x} = -0.535 \mathbb{C} ,问是否可以认为生产商在牛奶中掺了水?取 α = 0.05.

解 按题意需检验假设

$$H_0: \mu \leq \mu_0 = -0.545$$
(即设牛奶未掺水),

$$H_1:\mu>\mu_0$$
(即设牛奶已掺水)

这是右边检验问题,其拒绝域如(1.6)式所示,即为

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \geqslant z_{0.05} = 1.645.$$

现在
$$z = \frac{-0.535 - (-0.545)}{0.008/\sqrt{5}} = 2.7951 > 1.645, z$$
 的值落在拒绝域中,所以我

们在显著性水平 $\alpha = 0.05$ 下拒绝 H_0 ,即认为牛奶商在牛奶中掺了水.

pp. 7

(一) 关于单个正态总体均值的假设检验

(2) σ^2 未知,关于 μ 的检验

检验统计量
$$t = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(一) 关于单个正态总体均值的假设检验

(2) σ2未知,关于μ的检验

原假设H ₀	备择假设H₁	在显著水平α下关于原假设H ₀ 的拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$ t > t_{\alpha/2}(n-1)$
$\mu \leq \mu_0$	$\mu > \mu_0$	$t > t_{\alpha}(n-1)$
$\mu \ge \mu_0$	$\mu < \mu_0$	$t < -t_{\alpha}(n-1)$

例: 设某次考试的考生成绩服从正态分布,从中随机地取36为考生的成绩,算得平均成绩为66.5分,标准差为15分。问在显著性水平为0.05下,是否可以认为这次考试全体考生的平均成绩为70分?

例2: 设某次考试的考生成绩服从正态分布,从中随机地取36为考生的成绩,算得平均成绩为66.5分,标准差为15分。问在显著性水平为0.05下,是否可以认为这次考试全体考生的平均成绩为70分?

分析: 题中没有假定 σ 已知,这是在 σ 未知下单正态总体均值 μ 的检验问题,应利用T检验法。

解:建立假设

$$H_0$$
: $\mu = 70 \leftrightarrow H_1$: $\mu \neq 70$.

这里 $n = 36, \mu_0 = 70, \bar{x} = 66.5, s = 15.$ 给定 $\alpha = 0.05$,查附表 $t_{\frac{\alpha}{2}}(n-1) = 2.030$,计算可得

$$t_0 = \frac{\bar{x} - \mu_0}{S/\sqrt{n}} = \frac{66.5 - 70}{15/\sqrt{36}} = -1.4$$

由于 $|t_0| < t_{\frac{\alpha}{2}}(n-1) = 2.030$,故接受 H_0 ,即认为平均成绩为70分。

(二) 关于两个正态总体均值差的假设检验

有时,我们需要比较两个正态总体的参数(均值)是否存在显著差异。

- □ 两个农作物品种的产量
- □ 两种电子元件的使用寿命
- □ 两种加工工艺对产品质量的影响
- □ 两地区的气候差异等等

南开大学计算机学院 pp. 12

(二) 关于两个正态总体均值差的假设检验

总体 $X \sim N(\mu_1, \sigma_1^2)$,从中抽取容量为 n_1 的样本 X_1, X_2, \dots, X_{n_1} 总体 $Y \sim N(\mu_2, \sigma_2^2)$,从中抽取容量为 n_2 的样本 Y_1, Y_2, \dots, Y_{n_2}

X, Y的样本均值及样本方差分别为 \overline{X} , S_1^2 ; \overline{Y} , S_2^2 。

考虑参数μ1. μ2的假设检验问题

(二)关于两个正态总体均值的假设检验

(1) 已知 σ_1 , σ_2 , 检验 H_0 : μ_1 - μ_2 = δ , H_1 : μ_1 - μ_2 = δ

为什么把假设做成如下形式:

$$H_0: \mu_1 - \mu_2 = \delta, H_1: \mu_1 - \mu_2 \neq \delta$$

这种形式几乎覆盖了多种关于μ1、μ2的关系,如:

[1]
$$\delta = 0$$
, $\mu_1 = \mu_2$

[1]
$$\delta > 0$$
, $\mu_1 > \mu_2$

[3]
$$\delta < 0$$
, $\mu_1 < \mu_2$

(二) 关于两个正态总体均值的假设检验

(1) 已知 σ_1 , σ_2 , 检验 H_0 : μ_1 - μ_2 = δ , H_1 : μ_1 - μ_2 = δ

针对以上假设,选取一个统计量,它涉及假设,但不含有未知参数。

使用统计量
$$Z = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

拒绝域的形式为 $|\overline{X} - \overline{Y} - \delta| \ge C$

相对于显著水平α构造小概率事件

$$P(|Z| > z_{\alpha/2}) = \alpha$$

得到拒绝域为:
$$|z| = \frac{|\overline{x} - \overline{y} - \delta|}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}} \ge z_{\alpha/2}$$
 —Z检验

例3: 据资料,已知某品种小麦每平方米产量(千克)的方差

为 $\sigma^2 = 0.2$. 今在一块地上用A,B 两法,A法设12个样本点,

得平均产量 x = 1.5 ; B 法设8个样本点, 得平均产

量 y = 1.6 , 试比较A、B两法的平均产量差异是否有统计意

$$\chi (\alpha = 0.05)$$

例3: 据资料,已知某品种小麦每平方米产量(千克)的方差

为 $\sigma^2 = 0.2$. 今在一块地上用A,B 两法,A法设12个样本点,得平均产量 x = 1.5 ;B 法设8个样本点,得平均产量 y = 1.6 ,试比较A、B两法的平均产量差异是否有统计意义。 $(\alpha = 0.05)$

解 假设: $H_0: \mu_X = \mu_Y$, $H_1: \mu_X \neq \mu_Y$ 因为:

$$\left| \frac{\overline{x - y}}{\sqrt{\sigma^2 / n_1 + \sigma^2 / n_2}} \right| = \left| \frac{1.5 - 1.6}{\sqrt{0.2 / 12 + 0.2 / 8}} \right| \approx 0.49 < 1.96 = z_{0.025}$$

所以接受 H_0 假设,即认为 A、B两法的平均产量差异无统计意义

(二) 关于两个正态总体均值的假设检验

(2) 未知 σ_1 , σ_2 ,但是知道 $\sigma_1 = \sigma_2$

检验
$$H_0$$
: $\mu_1 - \mu_2 = \delta$, H_1 : $\mu_1 - \mu_2 \neq \delta$

使用统计量
$$T = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

(二) 关于两个正态总体均值的假设检验

(2) 未知 σ_1 , σ_2 , 但是知道 $\sigma_1 = \sigma_2$

检验
$$H_0$$
: $\mu_1 - \mu_2 = \delta$, H_1 : $\mu_1 - \mu_2 \neq \delta$

提出关于μ1,μ2的不同的假设检验中的原假设Η0与备择 假设 H_1 ,在显著水平 α 下关于原假设 H_0 的拒绝域以及统 计量的观测值落在拒绝域内的概率:

$$|t| = \frac{|\overline{x} - \overline{y} - \delta|}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \ge t_{\alpha/2} (n_1 + n_2 - 2)$$
 —t 检验

南开大学计算机学院

例4: 某灯泡厂在采用一种新工艺的前后,分别抽取10 个灯泡进行寿命(单位:小时)检测,计算得到:

- □ 采用新工艺前,灯泡寿命的样本均值为2460, 样本标准差为56;
- □ 采用新工艺后,灯泡寿命的样本均值为2550, 样本标准差为48.

设灯泡的寿命服从正态分布

问题: 是否可以认为采用新工艺后灯泡的平均寿命有显著提高(取显著水平 α =0.01)?

南开大学计算机学院 pp. 20

解: 设采用新工艺前后的灯泡寿命分别为

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$

因为未知 σ_1 , σ_2 ,暂时先假定 $\sigma_1 = \sigma_2$ (将在以后检验),检验假设

$$H_0$$
: $\mu_1 \ge \mu_2$

$$H_1$$
: $\mu_1 < \mu_2$

取统计量

$$T = \overline{X} - \overline{Y} / S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sim t(n_1 + n_2 - 2)$$

其中
$$n_1 = n_2 = 10$$
, $\bar{x} = 2460$, $\bar{y} = 2550$

$$s_1^2 = 56^2 \qquad s_2^2 = 48^2$$

$$s_{w} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}} = \sqrt{\frac{9 \times 56^{2} + 9 \times 48^{2}}{20 - 2}} \approx 52.15$$

$$T \approx \frac{2460 - 2550}{52.15\sqrt{\frac{1}{10} + \frac{1}{10}}} \approx -3.86$$

查表得

$$t_{\alpha}(n_1 + n_2 - 2) = t_{0.01}(18) = 2.55$$

因为 $T = -3.86 < -t_{0.01}(18) = -2.55$,所以拒绝原假设 H_0 ,

接受备择假设H₁

即在显著水平α=0.01下,认为采用新工艺后灯泡的平均寿 命有显著提高.

(三) 成对数据的检验

对于某些情况下,我们提出一种方法,需要知道这个方法是否有效。统计中每个样本具有各自的随机性,需要研究A-B对应状态下非独立样本的假设检验

书上P187. 例4: 我们希望知道人对于红光和绿光的反应时间是否有差异。实验在点亮红光或绿光的同时,启动计时器,要求受试者见到红光或绿光点亮时,就按下按钮,切断计时器,这就能测得反应时间。结果如下:

红光(x)	0.3	0.23	0.41	0.53	0.24	0.36	0.38	0.51
绿光(y)	0.43	0.32	0.58	0.46	0.27	0.41	0.38	0.61
d=x-y	-0.13	-0.09	-0.17	0.07	-0.03	-0.05	0	-0.1

不同于之前的两个正态分布的比对:第一行的8个数据不能看成某个总体的样本,因为不同的实验条件,如人的反应速度,发出红光的机器等随机因素,导致不满足同分布的条件。同样,第二行的8个数据也不能看成某个总体的样本。

每列都是一个受检样本的个例,具有各列的独立性和上下相关性。

南开大学计算机学院 pp. 23

(三) 成对数据的检验

对于n对相互独立的观测结果 $(X_1, Y_1), ..., (X_n, Y_n)$.

 $X_1, ..., X_n$ 不是某个总体的样本, $Y_1, ..., Y_n$ 也不是某个总体的样本。

 $\phi D_i = X_i - Y_i$ 。则可以得到以下结论:

- $\triangleright D_1,...,D_n$ 之间相互独立。
- \triangleright D_i 的变化来自于同一个因素,则 D_i 服从同一分布。

假设 $D_i \sim N(\mu, \sigma^2)$,可以看成是某一正态总体的样本。

则根据以前的知识点,可以做以下几种假设检验:

- 1) $H_0: \mu = 0, H_1: \mu \neq 0$
- 2) $H_0: \mu \leq 0, H_1: \mu > 0$
- 3) $H_0: \mu \ge 0, H_1: \mu < 0$

(三) 成对数据的检验

红光(x)	0.3	0.23	0.41	0.53	0.24	0.36	0.38	0.51
绿光(y)	0.43	0.32	0.58	0.46	0.27	0.41	0.38	0.61
d=x-y	-0.13	-0.09	-0.17	0.07	-0.03	-0.05	0	-0.1

这里的原假设是什么呢?

我们发现d负数更多,所以猜想 D < 0(X = harpoonup harpoo

$$H_0: \mu \ge 0, \qquad H_1: \mu < 0$$

 $n=8, \bar{x}_d=-0.0625, s_d=0.0765$,根据此数据做t检验

$$\frac{\overline{x}_d - 0}{s_d / \sqrt{8}} = -2.311 < -t_{0.05}(7) = -1.8946$$

落入拒绝域($-\infty$, -1.8946),拒绝 H_0 ,接受信备择假设 H_1 : $\mu_0 < 0$,即X < Y,人眼对红光反应时间更短

南开大学计算机学院 pp. 25

正态分布下对于μ检验的总结

	σ 情况	H_0	检验方法	统计量	拒绝域	选择该统计量、分布及 拒绝域的原因
单样本	已知	$\mu = \mu_0$ $\mu \ge \mu_0$ $\mu \le \mu_0$	z检验			
	未知	$\mu = \mu_0$ $\mu \ge \mu_0$ $\mu \le \mu_0$	t检验			
两个样本	已知	$\mu_1 - \mu_2 = \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 \le \delta$	z检验			
	未知,但相等	$\mu_1 - \mu_2 = \delta$ $\mu_1 - \mu_2 \ge \delta$ $\mu_1 - \mu_2 \le \delta$	t检验			
对比样本	不讨论	$\mu = \mu_0$ $\mu \ge \mu_0$ $\mu \le \mu_0$	t检验			