線形代数学・同演習 B

10 月 25 日分 演習問題*1

1. 次のベクトルの組の中で,線形独立なものの最大個数 r と r 個の線形独立なベクトルを一組 求め,他のベクトルをこれらの線形結合で表わせ.

$$(\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_4, \boldsymbol{a}_5) = egin{pmatrix} -1 & 1 & 4 & -2 & 3 \ 2 & -1 & -7 & 5 & -6 \ 2 & 0 & -6 & 6 & -6 \ 3 & -3 & -12 & 6 & -9 \end{pmatrix}$$

2. 次のベクトルの組は, \mathbb{R}^4 の基底をなすか?

$$(1) (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4) = \begin{pmatrix} 1 & 2 & -1 & 3 \\ -4 & 1 & 6 & 1 \\ 5 & -1 & 1 & -3 \\ 7 & -6 & 5 & 1 \end{pmatrix}, (2) (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4) = \begin{pmatrix} 1 & -3 & 0 & 4 \\ -1 & 1 & -2 & -8 \\ -3 & -4 & 1 & 4 \\ -1 & -4 & 2 & 9 \end{pmatrix}$$

- $3.\ V$ を 2 変数の高々 1 次の多項式 ax+by+c の全体がなす集合とする .
 - (1) V は自然な演算でベクトル空間となることを示せ.
 - (2) V の次元はいくつか? また V の自然な基底を 1 組求めよ.
 - (3) 平面の 3 点 $P_1=(0,0),\ P_2=(1,0),\ P_3=(0,1)$ において,それぞれ指定された値 c_1,c_2,c_3 をとるような V の元を表すのに最も適した V の基底を求めよ. *2
- 4^{\dagger} 次の多項式の組の中で,線形独立なものの最大個数 r と r 個の線形独立な多項式を一組求め,他の多項式をこれらの線形結合で表わせ.
 - (1) $p_1(x) = 1 x 2x^2 x^3$, $p_2(x) = 3 x 2x^2$, $p_3(x) = 2 + x^3$, $p_4(x) = -9 + 7x + 7x^2 x^3$, $p_5(x) = -6 + 4x + x^2 4x^3$.
 - (2) $q_1(x) = 1 + 3x + 2x^2 + 4x^3$, $q_2(x) = 1 + x 2x^2 x^3$, $q_3(x) = 2 + 4x + 3x^3$, $q_4(x) = 1 x 6x^2 6x^3$, $q_5(x) = 5x + x^2 + 2x^3$.
- 5. n 次の対称行列全体の集合を $\mathrm{Sym}(n,\mathbb{R})$ で表す.
 - (1) Sym (n,\mathbb{R}) はベクトル空間となることを示せ.
 - (2) Sym (n,\mathbb{R}) の次元を求めよ.
- 6^{\dagger} $\mathbb{R}[x]_2$ において,多項式 $a+bx+cx^2$ を次の基底 q_1,q_2,q_3 に関してベクトル表示せよ.
 - (1) $q_1(x) = x^2$, $q_2(x) = x$, $q_3(x) = 1$
 - (2) $q_1(x) = 1$, $q_2(x) = 1 + x$, $q_3(x) = 1 + x + x^2$
 - (3) $q_1(x) = 1 + 2x 2x^2$, $q_2(x) = 2 + 5x 2x^2$, $q_3(x) = -2 2x + 9x^2$
- 7^* (1) 複素数 $\mathbb C$ は実数体 $\mathbb R$ 上のベクトル空間とみなせることを示し,その次元を求めよ.
 - (2) 実数の集合 \mathbb{R} は有理数の集合 $\mathbb{K}=\mathbb{Q}$ 上のベクトル空間とみなせることを示せ.また,円 周率 π が超越数* 3 であることを利用して,その次元は無限大となることを証明せよ.

 $^{^{*1}}$ 凡例:無印は基本問題 , \dagger は特に解いてほしい問題 , * は応用問題 .

 $^{^{*2}}$ $f_i(P_j) = \delta_{ij}$ (i,j=1,2,3) となる多項式 f_1,f_2,f_3 を求めればよい.

 $^{^{*3}}$ どんな整数係数 (有理数係数) 多項式 p(x) に対しても $p(x_0)
eq 0$ であるとき,実数 x_0 を超越数という.