Speciation

How are species defined?

Species divergence in allopatry

Species divergence in sympatry

Reuniting

Outline

How are species defined?

Biological species concept Morphological species concept Ecological species concept Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► Conceptually, we define species as "evolutionary units":

- ► Conceptually, we define species as "evolutionary units":
 - ► Individuals within a species are evolving together

- ► Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - ► Individuals of different species evolve independently

- ► Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition

- Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition
 - *

- ► Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition
 - ▶ * i.e., one that we can apply to decide how to group organisms into species

- ► Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition
 - ▶ * i.e., one that we can apply to decide how to group organisms into species
 - ► Life is complex

- ► Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently
- It is difficult to make this conceptual definition into a practical definition
 - ► * i.e., one that we can apply to decide how to group organisms into species
 - ▶ Life is complex

An ancestral population

Population splits onto different islands and characteristics diverge

Large ground finch

Medium ground finch

@ 2014 Pearson Education, Inc.

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcemen⁻

Hybrid zones

Exclusion

New species

► Biological species are defined by reproductive isolation

- ▶ Biological species are defined by reproductive isolation
- ► Different biological species either:

- ▶ Biological species are defined by reproductive isolation
- Different biological species either:
 - ► Don't breed in nature

- ▶ Biological species are defined by reproductive isolation
- Different biological species either:
 - Don't breed in nature
 - ► Breed but fail to produce offspring

- ▶ Biological species are defined by reproductive isolation
- Different biological species either:
 - Don't breed in nature
 - Breed but fail to produce offspring
 - Produce inviable offspring offspring do not develop to adulthood

- ▶ Biological species are defined by reproductive isolation
- Different biological species either:
 - Don't breed in nature
 - Breed but fail to produce offspring
 - Produce inviable offspring offspring do not develop to adulthood
 - ► Produce **sterile** offspring offspring that cannot themselves reproduce

- ▶ Biological species are defined by reproductive isolation
- Different biological species either:
 - Don't breed in nature
 - Breed but fail to produce offspring
 - Produce inviable offspring offspring do not develop to adulthood
 - Produce sterile offspring offspring that cannot themselves reproduce

► Mechanisms of isolation are often divided into two classes:

- Mechanisms of isolation are often divided into two classes:
 - Prezygotic isolation refers to any mechanism that prevents successful mating

- Mechanisms of isolation are often divided into two classes:
 - Prezygotic isolation refers to any mechanism that prevents successful mating
 - ► **Postzygotic** isolation refers to any mechanism that prevents offspring from producing offspring of their own

- Mechanisms of isolation are often divided into two classes:
 - Prezygotic isolation refers to any mechanism that prevents successful mating
 - Postzygotic isolation refers to any mechanism that prevents offspring from producing offspring of their own
 - "Zygote" means a cell formed by the fusion of a sperm and an egg

- Mechanisms of isolation are often divided into two classes:
 - Prezygotic isolation refers to any mechanism that prevents successful mating
 - ▶ **Postzygotic** isolation refers to any mechanism that prevents offspring from producing offspring of their own
 - "Zygote" means a cell formed by the fusion of a sperm and an egg

► Pre- or post-?

- ▶ Pre- or post-?
 - ► Different malaria parasites breed inside different hosts

- Pre- or post-?
 - ▶ Different malaria parasites breed inside different hosts
 - ► Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow

- Pre- or post-?
 - ▶ Different malaria parasites breed inside different hosts
 - ▶ Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - ► The offspring of horses and donkeys grow up to be healthy, infertile adults

- Pre- or post-?
 - ▶ Different malaria parasites breed inside different hosts
 - ▶ Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - The offspring of horses and donkeys grow up to be healthy, infertile adults
 - Sea urchin eggs cannot be penetrated by sperm from other species

- Pre- or post-?
 - ▶ Different malaria parasites breed inside different hosts
 - ► Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - The offspring of horses and donkeys grow up to be healthy, infertile adults
 - Sea urchin eggs cannot be penetrated by sperm from other species
 - ► Species of pine trees release and receive pollen and different times of year

- Pre- or post-?
 - ▶ Different malaria parasites breed inside different hosts
 - ► Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - The offspring of horses and donkeys grow up to be healthy, infertile adults
 - Sea urchin eggs cannot be penetrated by sperm from other species
 - Species of pine trees release and receive pollen and different times of year

► Which should be adaptively favored?

Which should be adaptively favored?

▶ ³

- Which should be adaptively favored?
 - ▶ * Pre-zygotic mechanisms mean less wasted effort

- Which should be adaptively favored?
 - ▶ * Pre-zygotic mechanisms mean less wasted effort
 - **▶** *

- Which should be adaptively favored?
 - * Pre-zygotic mechanisms mean less wasted effort
 - ► * Example: it takes a lot of resources for a horse to birth and raise a mule, but there is no long-term fitness benefit

Pre- vs. post-zygotic mechanisms

- Which should be adaptively favored?
 - * Pre-zygotic mechanisms mean less wasted effort
 - ► * Example: it takes a lot of resources for a horse to birth and raise a mule, but there is no long-term fitness benefit

▶ * Doesn't apply to asexual species

▶ * Doesn't apply to asexual species

▶ *

- ▶ * Doesn't apply to asexual species
- * Not practical for extinct species

- ▶ * Doesn't apply to asexual species
- ▶ * Not practical for extinct species
- *

- ▶ * Doesn't apply to asexual species
- * Not practical for extinct species
- * May be hard to evaluate

- ▶ * Doesn't apply to asexual species
- ▶ * Not practical for extinct species
- * May be hard to evaluate
 - *

- * Doesn't apply to asexual species
- * Not practical for extinct species
- * May be hard to evaluate
 - * What if two populations rarely come into contact because of geographic distance?

- * Doesn't apply to asexual species
- * Not practical for extinct species
- * May be hard to evaluate
 - * What if two populations rarely come into contact because of geographic distance?

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusior

Reinforcemen⁻

Hybrid zones

Exclusion

New species

 Morphological species are defined to be different if they look different

- Morphological species are defined to be different if they look different
 - ► Useful for working with fossils, or very diverse groups (e.g., insects)

- Morphological species are defined to be different if they look different
 - ► Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- ► Disadvantages?

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - ***** *

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - ▶ * Subjective, prone to disagreements

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - * Subjective, prone to disagreements
 - , a

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - * Subjective, prone to disagreements
 - * There are groups that look very similar but can't produce viable offspring

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - * Subjective, prone to disagreements
 - ★ There are groups that look very similar but can't produce viable offspring
 - *

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - * Subjective, prone to disagreements
 - ► * There are groups that look very similar but can't produce viable offspring
 - * Not clear how definition relates to our conceptual definition of evolutionary units

- Morphological species are defined to be different if they look different
 - Useful for working with fossils, or very diverse groups (e.g., insects)
 - A lot of expertise and experience guides morphospecies decisions
- Disadvantages?
 - * Subjective, prone to disagreements
 - ► * There are groups that look very similar but can't produce viable offspring
 - * Not clear how definition relates to our conceptual definition of evolutionary units

Meadowlarks

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► An ecological species is a set of related organisms occupying the same ecological **niche**

- ► An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources

- ► An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources
 - ▶ Tolerate similar environments

- ► An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources
 - ► Tolerate similar environments
 - ► Face similar natural enemies

- ► An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources
 - Tolerate similar environments
 - Face similar natural enemies
- Commonly used for small things, particularly small asexual things

- ► An ecological species is a set of related organisms occupying the same ecological **niche**
 - Exploit similar resources
 - ► Tolerate similar environments
 - Face similar natural enemies
- Commonly used for small things, particularly small asexual things

Outline

How are species defined?

Biological species concept Morphological species concept Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► A phylogenetic species is a monophyletic group of populations

- ▶ A phylogenetic species is a monophyletic group of populations
 - ► Must not be divisible into smaller species

- ▶ A phylogenetic species is a monophyletic group of populations
 - Must not be divisible into smaller species
- ► A monophyletic group is a group *defined by* a single common ancestor

- ▶ A phylogenetic species is a monophyletic group of populations
 - Must not be divisible into smaller species
- ► A monophyletic group is a group *defined by* a single common ancestor
 - ▶ All descendants of the ancestor must be in the group

- ► A phylogenetic species is a monophyletic group of populations
 - Must not be divisible into smaller species
- ► A monophyletic group is a group *defined by* a single common ancestor
 - ▶ All descendants of the ancestor must be in the group

Advantages

- Advantages
 - ► Well defined (as long as you know what a population is)

- Advantages
 - Well defined (as long as you know what a population is)
 - ► Broadly applicable

- Advantages
 - Well defined (as long as you know what a population is)
 - ▶ Broadly applicable
- Disadvantages

- Advantages
 - Well defined (as long as you know what a population is)
 - ▶ Broadly applicable
- Disadvantages
 - ► Hard to estimate phylogenies

- Advantages
 - Well defined (as long as you know what a population is)
 - ▶ Broadly applicable
- Disadvantages
 - Hard to estimate phylogenies
 - ► Requires a lot of information about populations

- Advantages
 - Well defined (as long as you know what a population is)
 - ▶ Broadly applicable
- Disadvantages
 - Hard to estimate phylogenies
 - Requires a lot of information about populations
- Believers in the phylogenetic species concept recognize a lot of species

- Advantages
 - Well defined (as long as you know what a population is)
 - ▶ Broadly applicable
- Disadvantages
 - Hard to estimate phylogenies
 - Requires a lot of information about populations
- Believers in the phylogenetic species concept recognize a lot of species

► Defining species formally can be very tricky

- Defining species formally can be very tricky
 - ► No one way is agreed to be the best

- Defining species formally can be very tricky
 - ▶ No one way is agreed to be the best
- Usually we know more or less what we mean be a species, though

- Defining species formally can be very tricky
 - ▶ No one way is agreed to be the best
- Usually we know more or less what we mean be a species, though

► We believe new species are generated from old species

- ▶ We believe new species are generated from old species
- ► One species can gradually evolve into another

- ▶ We believe new species are generated from old species
- One species can gradually evolve into another
 - ► We can't say exactly when the switch occurs

- ▶ We believe new species are generated from old species
- One species can gradually evolve into another
 - ► We can't say exactly when the switch occurs
- ► Species can also **diverge**: one species splits into two species

- We believe new species are generated from old species
- One species can gradually evolve into another
 - ► We can't say exactly when the switch occurs
- ▶ Species can also **diverge**: one species splits into two species

► Genetic isolation

- Genetic isolation
- ► Genetic divergence

- Genetic isolation
- Genetic divergence
- ► Which comes first?

- Genetic isolation
- ► Genetic divergence
- Which comes first?
 - **,**

- Genetic isolation
- Genetic divergence
- Which comes first?
 - ► * Isolation is necessary: with too much gene flow populations can't diverge

- Genetic isolation
- Genetic divergence
- Which comes first?
 - ► * Isolation is necessary: with too much gene flow populations can't diverge
 - *

- Genetic isolation
- Genetic divergence
- Which comes first?
 - * Isolation is necessary: with too much gene flow populations can't diverge
 - * There can also be a loop: if species diverge, there can be natural selection for increased isolation

- Genetic isolation
- Genetic divergence
- Which comes first?
 - * Isolation is necessary: with too much gene flow populations can't diverge
 - * There can also be a loop: if species diverge, there can be natural selection for increased isolation
 - *****

- Genetic isolation
- Genetic divergence
- Which comes first?
 - * Isolation is necessary: with too much gene flow populations can't diverge
 - * There can also be a loop: if species diverge, there can be natural selection for increased isolation
 - * Don't want to waste resources on less-fit hybrid offspring

- Genetic isolation
- Genetic divergence
- Which comes first?
 - * Isolation is necessary: with too much gene flow populations can't diverge
 - * There can also be a loop: if species diverge, there can be natural selection for increased isolation
 - * Don't want to waste resources on less-fit hybrid offspring

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► **Allopatry** refers to organisms living apart from each other

- Allopatry refers to organisms living apart from each other
- ► If two populations are isolated from each other, we would expect that they might diverge. Why?

- ▶ Allopatry refers to organisms living apart from each other
- ▶ If two populations are isolated from each other, we would expect that they might diverge. Why?
 - *

- Allopatry refers to organisms living apart from each other
- ▶ If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift

- Allopatry refers to organisms living apart from each other
- ▶ If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - *

- Allopatry refers to organisms living apart from each other
- ▶ If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - ▶ * Natural selection

- Allopatry refers to organisms living apart from each other
- ▶ If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - * Natural selection
 - *****

Species divergence in allopatry

- Allopatry refers to organisms living apart from each other
- If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - * Natural selection
 - ▶ * Different environments, or different adaptive mutations

Species divergence in allopatry

- Allopatry refers to organisms living apart from each other
- If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - * Natural selection
 - ▶ * Different environments, or different adaptive mutations
- ► How can two populations of the same species be isolated from each other?

Species divergence in allopatry

- Allopatry refers to organisms living apart from each other
- If two populations are isolated from each other, we would expect that they might diverge. Why?
 - ▶ * Genetic drift
 - * Natural selection
 - ▶ * Different environments, or different adaptive mutations
- How can two populations of the same species be isolated from each other?

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

Dispersal

Isolated populations of the same species can develop if some individuals disperse (move) to a new area and colonize it (establish a new population).

Dispersal

- Isolated populations of the same species can develop if some individuals disperse (move) to a new area and colonize it (establish a new population).
- ► Since colonizing populations are usually small, we expect founder effects and drift to be particularly important

Dispersal

- Isolated populations of the same species can develop if some individuals disperse (move) to a new area and colonize it (establish a new population).
- ► Since colonizing populations are usually small, we expect founder effects and drift to be particularly important

Figure 2. The relative sizes of typical lizards from each population are shown. (Redrawn from Thorpe et al., 1994.)

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcemen⁻

Hybrid zones

Exclusion

New species

► Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier

- ▶ Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier
- ► Such splits are called **vicariance** events.

- ▶ Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier
- Such splits are called vicariance events.
 - Rivers change course, mountains appear or disappear, continents split and join

- Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier
- Such splits are called vicariance events.
 - Rivers change course, mountains appear or disappear, continents split and join
 - When temperature changes, some species may only be able to survive in "refuges", small, protected parts of their original range

- Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier
- Such splits are called vicariance events.
 - Rivers change course, mountains appear or disappear, continents split and join
 - When temperature changes, some species may only be able to survive in "refuges", small, protected parts of their original range

(a) Vicariance event: The closing of the Isthmus of Panama

Example: ratites

TRIASSIC 200 million years ago

► The ancestors of today's ostriches, emus, etc. were isolated when the super-continent of Gondwanaland drifted apart starting about 140 million years ago

Example: ratites

TRIASSIC 200 million years ago

► The ancestors of today's ostriches, emus, etc. were isolated when the super-continent of Gondwanaland drifted apart starting about 140 million years ago

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcemen

Hybrid zones

Exclusion

New species

► **Sympatry** refers to organisms living in the same geographic area

- Sympatry refers to organisms living in the same geographic area
- ► In general, it should be hard for populations of the same species living in sympatry to diverge.

- Sympatry refers to organisms living in the same geographic area
- ▶ In general, it should be hard for populations of the same species living in sympatry to diverge.
 - **▶** [≯]

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?

- Sympatry refers to organisms living in the same geographic area
- ▶ In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?
 - **▶** ≯

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?

- Sympatry refers to organisms living in the same geographic area
- ▶ In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?
 - ► * Seed crackers?

- Sympatry refers to organisms living in the same geographic area
- ▶ In general, it should be hard for populations of the same species living in sympatry to diverge.
 - * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet

- Sympatry refers to organisms living in the same geographic area
- ▶ In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet
 - *

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet
 - * Hawthorn flies

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - ▶ * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet
 - ▶ * Hawthorn flies
 - *

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet
 - * Hawthorn flies
 - ▶ * Soapberry bugs

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.
 - * Gene flow
- Are there exceptions to this expectation?
 - ▶ * Seed crackers?
 - ▶ * We don't really know yet
 - * Hawthorn flies
 - ▶ * Soapberry bugs

Divergence by partitioning habitats

► Insects that feed on many different plants may be subject to divergent selection

Divergence by partitioning habitats

- Insects that feed on many different plants may be subject to divergent selection
 - An individual may do most of its feeding on one particular plant

Divergence by partitioning habitats

- Insects that feed on many different plants may be subject to divergent selection
 - ► An individual may do most of its feeding on one particular plant
- ▶ In some cases, gene flow will prevent divergence

Divergence by partitioning habitats

- Insects that feed on many different plants may be subject to divergent selection
 - An individual may do most of its feeding on one particular plant
- ▶ In some cases, gene flow will prevent divergence
- In other cases, individuals may mate preferentially with individuals with the same host plant, and divergence may occur

Divergence by partitioning habitats

- Insects that feed on many different plants may be subject to divergent selection
 - An individual may do most of its feeding on one particular plant
- ▶ In some cases, gene flow will prevent divergence
- In other cases, individuals may mate preferentially with individuals with the same host plant, and divergence may occur

► Divergence in sympatry is an exciting field

- Divergence in sympatry is an exciting field
 - ► When can disruptive selection overcome gene flow?

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - ▶ Is this an important component of how diversity evolves?

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ► If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - ▶ In what way are they not isolated?

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - ▶ In what way are they not isolated?

> 3

- Divergence in sympatry is an exciting field
 - When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - In what way are they not isolated?
 - ▶ * They can still compete, and one may drive the other extinct

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - In what way are they not isolated?
 - ▶ * They can still compete, and one may drive the other extinct
 - *

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - In what way are they not isolated?
 - ▶ * They can still compete, and one may drive the other extinct
 - ▶ * Reproductive isolation can *combine with* disruptive selection

- Divergence in sympatry is an exciting field
 - ▶ When can disruptive selection overcome gene flow?
 - Is this an important component of how diversity evolves?
- Divergence can also occur when mutation causes genetic incompatibility (see book if you are curious about mechanisms)
 - ▶ If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
 - In what way are they not isolated?
 - ▶ * They can still compete, and one may drive the other extinct
 - ▶ * Reproductive isolation can *combine with* disruptive selection

Outline

How are species defined?

Biological species concept

Morphological species concept

Esplanical species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► What happens when isolated populations come back into contact?

- What happens when isolated populations come back into contact?
- ► Usually this happens when a geographic barrier disappears

- What happens when isolated populations come back into contact?
- ▶ Usually this happens when a geographic barrier disappears
 - ▶ a land bridge forms between an island and the continent

- What happens when isolated populations come back into contact?
- Usually this happens when a geographic barrier disappears
 - ▶ a land bridge forms between an island and the continent
 - ► a river changes course

- What happens when isolated populations come back into contact?
- Usually this happens when a geographic barrier disappears
 - ▶ a land bridge forms between an island and the continent
 - a river changes course

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

▶ When two isolated populations come into contact, they may fuse – go back together

- When two isolated populations come into contact, they may fuse – go back together
 - ► Adaptive differences may be small

- When two isolated populations come into contact, they may fuse – go back together
 - Adaptive differences may be small
 - ► Adaptive differences may be overwhelmed by gene flow

- When two isolated populations come into contact, they may fuse – go back together
 - Adaptive differences may be small
 - Adaptive differences may be overwhelmed by gene flow

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

New species

► In some cases, hybrid offspring may have low fitness

▶ In some cases, hybrid offspring may have low fitness

▶ *

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles
 - *

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles
 - ► * Disruptive selection

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles
 - * Disruptive selection
- ► In these cases we expect natural selection for traits that reinforce the distinction between the two species

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles
 - * Disruptive selection
- ► In these cases we expect natural selection for traits that reinforce the distinction between the two species
 - ► They avoid mating, using coloration, timing, courtship rituals

- ▶ In some cases, hybrid offspring may have low fitness
 - * Incompatible alleles
 - * Disruptive selection
- ► In these cases we expect natural selection for traits that reinforce the distinction between the two species
 - ▶ They avoid mating, using coloration, timing, courtship rituals

Meadowlarks

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusior

Reinforcemen⁻

Hybrid zones

Exclusion

New species

Hybrid zones

► When hybrid offspring are functional, and well-adapted to the overlap zone, there may be a zone where hybrids occur

Hybrid zones

- When hybrid offspring are functional, and well-adapted to the overlap zone, there may be a zone where hybrids occur
- ▶ In this case, should we consider the species to be different?

Hybrid zones

- ▶ When hybrid offspring are functional, and well-adapted to the overlap zone, there may be a zone where hybrids occur
- ▶ In this case, should we consider the species to be different?

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

► One species might eliminate the other species, either by competition, or by better success in mating

- ► One species might eliminate the other species, either by competition, or by better success in mating
 - Warblers competing for mates

- ► One species might eliminate the other species, either by competition, or by better success in mating
 - Warblers competing for mates
 - ► Modern humans

- ► One species might eliminate the other species, either by competition, or by better success in mating
 - Warblers competing for mates
 - Modern humans

Source: Prüfer, K., et al. 2014. *Nature* 505: 43–49.

Outline

How are species defined?

Biological species concept

Morphological species concept

Ecological species concept

Phylogenetic species concept

Species divergence in allopatry

Dispersal

Vicariance

Species divergence in sympatry

Reuniting

Fusion

Reinforcement

Hybrid zones

Exclusion

► There is evidence that in some cases hybridization between related species may lead to creation of new species

- ► There is evidence that in some cases hybridization between related species may lead to creation of new species
 - Some combination of genes from the two species may lead to a new adaptation

- ► There is evidence that in some cases hybridization between related species may lead to creation of new species
 - Some combination of genes from the two species may lead to a new adaptation
 - ► Sunflower example, p. 516–518

- ► There is evidence that in some cases hybridization between related species may lead to creation of new species
 - Some combination of genes from the two species may lead to a new adaptation
 - ▶ Sunflower example, p. 516–518

► The diversity we see in the world arises from speciation events; mostly by single species splitting into two

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- ► Species splits typically involve isolation and divergence

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - ► Isolation can happen allopatrically or sympatrically

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - ► New species can also sometimes arise from hybridization between related species

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - New species can also sometimes arise from hybridization between related species
- ▶ Defining species can be complicated

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - New species can also sometimes arise from hybridization between related species
- Defining species can be complicated
 - Particularly if we want definitions that include both asexual and sexual species

- ► The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - New species can also sometimes arise from hybridization between related species
- Defining species can be complicated
 - Particularly if we want definitions that include both asexual and sexual species