

Am Chem Soc. Author manuscript; available in PMC 2009 November 6.

Published in final edited form as:

J Am Chem Soc. 2007 October 17; 129(41): 12416–12417. doi:10.1021/ja0761737.

Trans-dioxo Manganese(V) Porphyrins

Ning Jin, Mohammed Ibrahim[§], Thomas G. Spiro^{*}, and John T. Groves Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Transition metal oxo-species have been the focus of extensive studies because of their relevance to the redox biochemistry of dioxygen as well as myriads of oxidative catalytic processes. High valent oxo-manganese complexes have been described for porphyrin, salen, corrole, corrolazine, and non-heme systems. The O=MnV moiety has been suggested in the photosynthetic water oxidation process, and a bridged MnV porphyrin dimer has recently been demonstrated to oxidize water into dioxygen.

We have previously described low-spin d² oxomanganese(V) porphyrin complexes that display an extraordinary range of reactivity toward oxo-transfer as a function of prototropic equilibria involving the axial ligand. A prediction of that work was that oxo-aqua and oxo-hydroxomanganese(V) intermediates are reactive oxidants while the stable species observed at high pH are trans-dioxo complexes. Here we provide the first definitive spectroscopic evidence for *trans*-dioxomanganese(V) porphyrins [O=Mn^V=O]. Further, we show that protonation of these species affords the reactive intermediates usually associated with these catalytic systems (Scheme 1).

Oxidation of Mn^{III} -5,10,15,20-tetramesitylporphyrin (Mn^{III} TMP) with 1.2 equiv of H_2O_2 in CD_3CN/CD_2Cl_2 containing excess tetrabutylammonium hydroxide (TBAH), in a variation of the conditions reported previously by us^{8d} and recently by Nam et al.,⁹ yielded a solution with sharp, well-resolved ¹H NMR resonances typical of a diamagnetic oxo Mn^V complex (Figure S1). Intriguingly, the ortho-methyl resonance of the mesityl substituent appeared as a sharp singlet at δ 1.87, in contrast to the *two*, well-resolved singlets observed for the isoelectronic oxo Cr^{IV} TMP and nitrido Mn^V TMP.¹⁰ The equivalence of the ortho-methyl protons in Mn^V TMP could result from a compound of C_{4v} symmetry with rapid axial ligand interchange, such as by oxo-hydroxo tautomerism.¹¹ Alternatively, a D_{4h} symmetric compound with identical axial ligands, such as a trans-dioxo arrangement [O= Mn^V =O], would also display these features. Significantly, the ortho-methyl signal remained sharp with no evidence of exchange broadening even at -20 °C. This observation suggests either that oxo-hydroxo tautomerism is unusually fast, even at this low temperature in an aprotic medium, or that the trans-dioxo formulation is the correct one.

Confirmation of the D_{4h} symmetry of the oxidized Mn^V porphyrin species and assignment of the structure as a *trans*-dioxo Mn^V complex were made on the basis of the Raman and IR spectra. Figure 1a shows Raman spectra of Mn^V tetrapentafluorophenylporphyrin (Mn^V TPFPP) generated by oxidation of Mn^{III} TPFPP with H_2O_2 . Oxidation with H_2 ¹⁸ O_2 in H_2 ¹⁸O caused the band at 743 cm⁻¹ to shift to 699 cm⁻¹. This isotopic shift (44 cm⁻¹) is considerably larger than expected for a simple, terminal Mn=O stretch (33 cm⁻¹) but is close to the calculated value for a *linear triatomic* model, ¹⁸O=Mn=¹⁸O (42 cm⁻¹).

įtgroves@princeton.edu.

Present address: Department of Chemistry, University of Washington, Seattle, Washington 98195.

Oxo-hydroxo tautomerism was introduced by Meunier to explain the pattern of ^{18}O -exchange into oxidized substrates mediated by water-soluble manganese porphyrins. 11 We utilized this concept to generate half-labeled dioxo-MnV porphyrins. Raman spectra for MnVTPFPP prepared using either H_2 $^{16}\text{O}_2$ in H_2 ^{18}O or H_2 $^{18}\text{O}_2$ in H_2 ^{16}O showed identical features (Figure 1a): the 743 cm $^{-1}$ band shifted to 717 cm $^{-1}$, in good agreement with the 22 cm $^{-1}$ shift predicted for $^{16}\text{O}=\text{Mn}=^{18}\text{O}$ The 717 cm $^{-1}$ band retained its intensity during the RR experiments (~10 min), indicating that oxygen exchange with bulk water is very slow. Moreover, the $v_{sym}(\text{O}=\text{Mn}=\text{O})$ band is very sharp, with a half width of only 9 cm $^{-1}$ that was unaffected by D2O. By contrast, $[\text{O}=\text{Mn}^{\text{V}}(\text{OH})\text{-TDMImP}]^{3+}12$ has v_{sym} at 731 cm $^{-1}$ and a half width of 50 cm $^{-1}$ that sharpened to 25 cm $^{-1}$ in D2O (Supporting Information, Figure S7). We have previously ascribed the broadening of HO-M=O Raman bands to a combination of M-OH hydrogen bonding and oxo-hydroxo tautomerism, 13 features that are absent in [O=M=O].

The symmetrical O=Mn^V=O stretching frequencies for four other Mn^V porphyrins were also assigned (Table 1). In each case we were able to prepare the respective half labeled and fully labeled dioxo complexes. The $\nu_{sym}(O=Mn=O)$ values (741–744 cm $^{-1}$) are comparable to ν (Mn^{IV}=O) in $oxoMn^{IV}$ porphyrins such as $O=Mn^{IV}TMP$ (754 cm $^{-1}$), [O=Mn^{IV}(OH)TM-4-PyP] $^{3+}$ (711 cm $^{-1}$), 13a or [O=Mn^{IV}(OH)TDMImP] $^{3+}$ (731 cm $^{-1}$), but significantly lower than five-coordinate triple-bonded O=Mn^V corrolazine or tetraamido complexes (970–981 cm $^{-1}$). 4,14 As can be seen, ν_{sym} is insensitive to the nature of the meso substituent. Similar observations have been made for structurally related dioxo Ru^{VI} porphyrins, 15 while five-coordinate O=Cr^{IV} porphyrins or O=Mn^V tetraamido complexes are more sensitive to ligand substituents. 14,15

The IR spectrum of Mn_V TPFPP afforded strong confirmation of the Raman assignments (Figure 1b). The IR-active but Raman-inactive v_{asym} for $^{16}O=Mn=^{16}O$ was found by band-fitting to be at $805~cm^{-1}$. For the half-labeled sample, a prominent new band appeared at $789~cm^{-1}$ and an adjacent porphyrin band at $802~cm^{-1}$ sharpened significantly (expected half-labeled shift is $15~cm^{-1}$). The fully labeled sample displayed a new band at $780~cm^{-1}$, also in good agreement with the calculated shift of $29~cm^{-1}$.

Taken together, the Raman, IR, and NMR data provide unequivocal evidence for a D_{4h} -symmetric trans-dioxoMn^V bonding arrangement in these compounds. Such dioxo complexes have been previously proposed by Su¹⁶ and us^{8b,c} for water-soluble oxoMn^V porphyrins on the basis of the pH-dependence of oxo-transfer rates, DFT calculations, and electrochemical studies.

It is instructive to compare the Mn-O stretching frequencies observed here to those of terminal monooxo-manganese complexes. On the basis of v_{sym} and v_{asym} , the oxo-manganese bond force constant (F) and stretch-stretch constant (F) for [Mn^V(O)₂TPFPP]⁻ were determined to be 454 and 67.2 N/m, respectively. Application of Badger's rule^{17a} to the available data produces a very good correlation between F(Mn-O) and the bond length, spanning five Mn oxidation states (Figure 2). Green has recently reported a similarly good correlation for oxoiron (IV) porphyrin complexes. The As can be seen, the O=Mn^V=O porphyrin appears on the fitted line in the middle of the known range, using the recently reported EXAFS bond length, 18 consistent with two equivalent manganese-oxygen double bonds.

Dioxo-Mn^VTPFPP⁻, as prepared, is unreactive toward olefins, as we have found for water-soluble Mn^V-porphyrins at high pH.^{8b} However, neutralization of the excess base with 1 equiv of trifluoroacetic acid caused an instantaneous reaction with added cyclooctene at -70 °C. Cyclooctene oxide was formed in $66 \pm 5\%$ yield. Control reactions in the absence of acid yielded no epoxide. When [Mn^V(O)₂TPFPP]⁻ was half-labeled with H₂ ¹⁸O₂ (in excess

 H_2 ¹⁶O), the epoxide product contained $40 \pm 3\%$ ¹⁸O, showing that oxo exchange with bulk solvent is slow compared to the protonation-induced epoxidation reaction.

The low reactivity of dioxo- Mn^V porphyrins can be readily understood to result from the net negative charge on the $[Por-Mn^V(O)_2]^-$ unit and, as with other manganates, the need to protonate an oxo-ligand to transfer the other oxygen to the substrate, as we have proposed. Charge is a powerful mediator of electrophilic reactivity. $MonooxoMn^V$ corroles, corrolazines, and tetraamides are known to be poor oxygen atom donors because of the tri-or tetraanionic nature of the ligand. Under typically neutral catalytic conditions, dioxo- Mn^V species would be in acid-base equilibrium with the oxo-hydroxo and oxo-aqua forms. Oxo Mn^V porphyrins bearing no axial ligand $[Por-Mn^V=O]^+19$ or bearing weak-field ligands, such as hydroxo, are expected to be responsible for substrate oxygenation with high reactivity.

These Mn_V porphryins appear to be the only trans-dioxomanganese compounds of any type to be spectroscopically characterized. Trans-dioxo metal complexes are typically found for low-spin d^2 second or third row metals such as Ru^{VI} and Mo^{IV} . It is apparent that a full understanding of the electronic structure and reactivity of high-valent manganese must include consideration of the transdioxo bonding mode, thus extending the known π -bonding arrangements found in first-row transition metals that were first discussed by Ballhausen and $Gray.^{20}$

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support of this research by the National Science Foundation (Grant CHE 0616633) is gratefully acknowledged.

References

- 1. Meunier B, de Visser SP, Shaik S. Chem. Rev 2004;104:3947–3980. [PubMed: 15352783]
- 2. McGarrigle EM, Gilheany DG. Chem. Rev 2005;105:1563–1602. [PubMed: 15884784]
- 3. Gross Z, Gray HB. Adv. Synth. Catal 2004;346:165–170.
- 4. Kerber WD, Goldberg DP. J. Inorg. Biochem 2006;100:838-857. [PubMed: 16564091]
- 5. Parsell TH, Behan RK, Green MT, Hendrich MP, Borovik S. J. Am. Chem. Soc 2006;128:8728–8729. [PubMed: 16819856]
- 6. McEvoy JP, Brudvig GW. Chem. Rev 2006;106:4455-4483. [PubMed: 17091926]
- 7. Shimazaki Y, Nagano T, Takesue H, Ye BH, Tani F, Naruta Y. Angew. Chem., Int. Ed 2004;43:98–100.
- (a) Jin N, Groves JT. J. Am. Chem. Soc 1999;121:2923–2924.
 (b) Jin N, Bourassa JL, Tizio SC, Groves JT. Angew. Chem., Int. Ed 2000;39:3849–3851.
 (c) De Angelis F, Jin N, Car R, Groves JT. Inorg. Chem 2006;45:4268–4276.
 [PubMed: 16676990]
 (d) Groves JT, Watanabe Y, McMurry TJ. J. Am. Chem. Soc 1983;105:4489.
- Song WJ, Seo MS, George SD, Ohta T, Song R, Kang MJ, Tosha T, Kitagawa T, Solomon EI, Nam W. J. Am. Chem. Soc 2007;129:1268–1277. [PubMed: 17263410]
- 10. (a) Groves JT, Kruper WJ, Haushalter RC, Butler WM. Inorg. Chem 1982;21:1363–1368. (b) Groves JT, Takahashi T. J. Am. Chem. Soc 1983;105:2073–2074.
- 11. Bernadou J, Fabiano AS, Robert A, Meunier B. J. Am. Chem. Soc 1994;116:9375–9376.
- 12. Lahaye D, Groves JT. J. Inorg. Biochem 2007;101:1786–1797. [PubMed: 17825916]
- 13. (a) Czernuszewicz RS, Su YO, Stern MK, Macor KA, Kim D, Groves JT, Spiro TG. J. Am. Chem. Soc 1988;110:4158–4165. (b) Su YO, Czernuszewicz RS, Miller LA, Spiro TG. J. Am. Chem. Soc 1988;110:4150–4157.

14. Workman JM, Powell RD, Procyk AD, Collins TJ, Bocian DF. Inorg. Chem 1992;31:1548-1550.

- 15. Fujii H, Kurahashi T, Tosha T, Yoshimura T, Kitagawa T. J. Inorg. Biochem 2006;100:533–541. [PubMed: 16510186]
- 16. Chen FC, Cheng SH, Yu CH, Liu MH, Su YO. J. Electroanal. Chem 1999;474:52-59.
- 17. (a) Badger RM. J. Chem. Phys 1935;3:710–714. (b) Green MT. J. Am. Chem. Soc 2006;128:1902–1906. [PubMed: 16464091]
- 18. It is clear from the data presented herein that the Mn(V) complexes reported in ref 9 are also anionic, D_{4h} -symmetric dioxo species. We suspect that the broad RR bands reported there with smaller isotopic shifts (34 cm $^{-1}$) are those of O=Mn IV -OH complexes derived from photoreduction (cf. ref 13).
- 19. Zhang R, Horner JH, Newcomb M. J. Am. Chem. Soc 2005;127:6573-6582. [PubMed: 15869278]
- 20. Ballhausen CJ, Gray HB. Inorg. Chem 1962;1:111–122.

Figure 1. (a) RR spectra of $[Mn^V(O)_2TPFPP]^-$ generated with (from top to bottom) 1.2 equiv H_2O_2 in H_2O_1 , H_2O_2 in H_2O_2

Figure 2. MnO bond length vs $1/F_{Mn-O}^{1/3}$ (see Supporting Information).

Scheme 1.

Table 1

Raman Data for Dioxo Manganese(V) Porphyrins

	v(¹⁶ O)/cm ⁻¹	$\Delta(^{16}O/^{18}O)/cm^{-1}$		lese(v) i orphyrms
		half- labeled		meso-substituents
MnTDCPP ^a	741	21	39	2,6-dichlorophenyl
$MnTPFPP^a$	743	26	44	pentafluorophenyl
$MnTMP^b$	741	25	44	2,4,6-mesityl
$MnTDMImP^{C}$	744	24	40	N,N-dimethyl-imidazolium-2-yl
$MnTM-2-PyP^C$	744	26	41	N-methyl pyridinium-2-yl

^aSolvents: 9:1(v/v) CH₃CN/H₂O, 10 mM TBAH.

 $[^]b{\rm Solvents: CH_3CN, 10~mM~TBAH.}$

 $^{^{}c}$ Solvents: H₂O, 100 mM NaOH.