Improved algorithms for the 2-vertex-disjoint paths problem

Torsten Tholey

Universität Augsburg

SOFSEM 2009

Definitions

k-disjoint paths problem (k-DPP)

Given a graph G and vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, find k disjoint paths $p_1: s_1 \to t_1, \ldots, p_k: s_k \to t_k$ if such paths exist.

Definitions

k-disjoint paths problem (k-DPP)

Given a graph G and vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, find k disjoint paths $p_1: s_1 \to t_1, \ldots, p_k: s_k \to t_k$ if such paths exist.

sources and targets

Sources: s_1, \ldots, s_k Targets: t_1, \ldots, t_k

Applications

Applications of k-disjoint paths problem

- Network reliability,
- VLSI-Design,
- Routing problems.

Fortune, Hopcroft and Wyllie (1980)

k-DPP is \mathcal{NP} -hard for directed graphs.

Fortune, Hopcroft and Wyllie (1980)

k-DPP is \mathcal{NP} -hard for directed graphs.

Robertson and Seymour (1995)

The k-DPP on undirected graphs is in \mathcal{P} .

Fortune, Hopcroft and Wyllie (1980)

k-DPP is \mathcal{NP} -hard for directed graphs.

Robertson and Seymour (1995)

The k-DPP on undirected graphs is in \mathcal{P} .

Perković and Reed (1999)

Running time for k-DPP on undirected graphs: $O(mn^2)$.

Fortune, Hopcroft and Wyllie (1980)

k-DPP is \mathcal{NP} -hard for directed graphs.

Robertson and Seymour (1995)

The k-DPP on undirected graphs is in \mathcal{P} .

Perković and Reed (1999)

Running time for k-DPP on undirected graphs: $O(mn^2)$.

Bad News

The algorithms for the k-DPP are not practical.

Results for the 2-DPP

Previous Results	
${\cal P}$	Ohtsuki (1980), Seymour (1980),
	Shiloach (1980), Thomassen (1980).
O(mn)	Ohtsuki (1980), Shiloach (1980).
$O(n^2)$	Khuller, Mitchell, Vazirani (1992).
$O(m\alpha(m,n)+n)$	Tholey (2004).

Results for the 2-DPP

Previous Results	
\mathcal{P}	Ohtsuki (1980), Seymour (1980),
	Shiloach (1980), Thomassen (1980).
O(mn)	Ohtsuki (1980), Shiloach (1980).
$O(n^2)$	Khuller, Mitchell, Vazirani (1992).
$O(m\alpha(m,n)+n)$	Tholey (2004).

New Result

$$O(m + n\alpha(n, n))$$

Results for the 2-DPP on planar graphs

Result of Itai

The problem can be reduced in linear time to triconnected planar graphs.

Results for the 2-DPP on planar graphs

Result of Itai

The problem can be reduced in linear time to triconnected planar graphs.

Previous Results on triconnected planar graphs

- O(m) Perl, Shiloach (1978),
- O(m) Woeginger (1990), simple algorithm,
- O(m) Hagerup (2007), very simple algorithm without planar embeddings.

Results for the 2-DPP on planar graphs

Result of Itai

The problem can be reduced in linear time to triconnected planar graphs.

Previous Results on triconnected planar graphs

- O(m) Perl, Shiloach (1978),
- O(m) Woeginger (1990), simple algorithm,
- O(m) Hagerup (2007), very simple algorithm without planar embeddings.

New Result

O(m) simple algorithm for planar graphs without planar embeddings and Itai's reduction.

Hagerup's algorithm on planar graphs

```
(1) For i:=1 to 2

(2) Construct three disjoint paths p_1, p_2, p_3: s_i \rightarrow t_i.

(3) Let j \in \{1, 2\} such that i \neq j.

(4) For k:=1 to 3

(5) If there is a path q: s_j \rightarrow t_j in G-p_k.

(6) Return p_k and q.

(7) Return "No paths found".
```

Generalizing Hagerup's algorithm

Observation

We only need to guarantee the existence of three disjoint paths between s_1 and t_1 as well as between s_2 and t_2 .

Generalizing Hagerup's algorithm

Observation

We only need to guarantee the existence of three disjoint paths between s_1 and t_1 as well as between s_2 and t_2 .

Solution

We split the original instance into smaller instances.

<u>Lemma</u>

Given k disjoint paths $v \to w$ one can find

Lemma

Given k disjoint paths $v \to w$ one can find

• either a (k+1)-th path in O(m+n) time or

Lemma

Given k disjoint paths $v \to w$ one can find

- either a (k+1)-th path in O(m+n) time or
- a k-separator separating v and w in time linear in the number of vertices of the connected component containing v.

- onot part of a 3-separator
- first vertices possibly part of a 3-separator

not part of a 3-separator first vertices possibly part of a 3-separator

Problem: The instances to solve on the right side depend on a solution of the 2-VDPP for the left part of the left side.

Torsten Tholey

Solution for non-planar graphs

Problem on 3-connected graphs

(P): There are 4 internally disjoint paths from s_1, s_2, t_1 , and t_2 to every subset $S \subseteq V$ with $|S| \leq 4$.

 \Leftrightarrow

(P*): There is no vertex $v \in G_x$ that is separated from x by a triangular cut.

Solution: Δ -Replacements

Solution: Δ -Replacements

New algorithm

New Idea

Replace H by a sparse certificate for 4-connectivity.

New algorithm

New Idea

Replace H by a sparse certificate for 4-connectivity.

Sparse certificate for 4-connectivity

K is called a sparse certificate of G if

- \bullet $K \subseteq G$.
- Two vertices v and w are 4-connected in K iff the same is true for G.
- V(K) = V(G), |E(K)| = O(|V(G)|).

Connectivity between vertices

Connectivity between vertices

Connectivity between x and w with dotted edges: 3-connected 4-connected

Connectivity between vertices

Connectivity between \boldsymbol{x} and \boldsymbol{w} with dotted edges:

3-connected

4-connected

Connectivity between v and w without dotted edges:

3-connected

3-connected

Phase I

Solution

We divide the algorithm in two phases, where the first phase only deletes vertices of degree ≥ 4 .

Torsten Tholey

Phase I

Conclusion

At the end of phase I we have deg(v) = 3 for all vertices that are not 4-connected to x.

Open Questions

Most important questions

- Can the 2-DPP be solved in linear time.
- Can edge-disjoint paths on planar graphs also be found in linear time.