

Table of contents

Motivation

Our Dataset

Cleaning & Exploration

Analysis

Recommendations

Motivation

- Correlation or Causation?
- Finding The Formula
 - Analysis
 - How variables affect the level of valence
- "Aiding an algorithm"
 - Accuracy
 - Personalization

Our Dataset

- Spotify Top 100 Songs:
 - Timeframe: 2010-2019
- Dataset URL (from KAGGLE):

https://www.kaggle.com/datasets/muhmores/ spotify-top-100-songs-of-20152019

Context

Top 100 songs of each year on Spotify from 2010 to 2019.

Cleaning (Overview)

1000 records (100 songs x 10 years)

Cleaning

- Check & change necessary column data types to numerical
- Remove irrelevant variables
- Use python libraries in exploration & analysis

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 13 columns):
                      Non-Null Count Dtype
    Column
    Popularity_Score 1000 non-null
                                      int64
    Song_Genre
                      1000 non-null
                                      strina
                      1000 non-null
                                      int64
    Energy
                      1000 non-null
                                      int64
    Danceability
                      1000 non-null
                                      int64
    Decibel
                      1000 non-null
                                      int64
6
    Liveness
                      1000 non-null
                                      int64
    Valence
                      1000 non-null
                                      int64
    Duration
                      1000 non-null
                                      int64
    Acousticness
                      1000 non-null
                                      int64
    Speechness
                      1000 non-null
                                      int64
11
    Top Year
                      1000 non-null
                                      int64
12 Artist_Type
                      987 non-null
                                      float64
dtypes: float64(1), int64(11), string(1)
memory usage: 101.7 KB
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 392 to 182
Data columns (total 7 columns):
    Column
                       Non-Null Count Dtype
    Popularity Score 1000 non-null
                                       int64
    Song Genre
                       1000 non-null
                                       int32
    Danceability
                       1000 non-null
                                       int64
    Duration
                       1000 non-null
                                       int64
    Acousticness
                       1000 non-null
                                       int64
    Speechness
                       1000 non-null
                                       int64
    Top Year
                       1000 non-null
                                       int64
dtypes: int32(1), int64(6)
memory usage: 58.6 KB
```

Dataset Preparation (Cleaning)

	Popularity_Score	Song_Genre	врм	Energy	Danceability	Decibel	Liveness	Valence	Duration	Acousticness	Speechness	Top_Year	Artist_Type
0	70	dance pop	140	81	61	-6	23	23	203	0	6	0	2.0
1	68	dance pop	138	89	68	-4	36	83	192	1	8	0	2.0
2	72	pop soul	95	48	84	-7	9	96	243	20	3	0	1.0
3	80	atl hip hop	93	87	66	-4	4	38	180	11	12	0	1.0
4	79	atl hip hop	104	85	69	-6	9	74	268	39	5	0	1.0
995	86	hip hop	155	73	83	-4	12	45	313	1	22	9	1.0
996	85	hip hop	80	50	55	-9	80	41	190	23	7	9	1.0
997	68	grime	103	77	89	-5	9	46	177	1	7	9	1.0
998	67	afroswing	138	58	53	-6	10	59	214	1	10	9	2.0
999	75	atl hip hop	98	59	80	-7	13	18	200	2	15	9	1.0

Chart Pre-Cleaning

Heatmap Pre-Cleaning

Dataset Exploration

PRE

```
#split into feature and target variables

X = spo_final.drop(['Popularity_Score'],1)
y = spo_final['Popularity_Score']

#split into train and test sets, 80:20 ratio
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.8, random_state = 0)
```

POST

```
#split into feature and target variables

Xx = spy.drop(['Popularity_Score'],1)
yy = spy['Popularity_Score']

#split into train and test sets, 80:20 ratio
Xx_train, Xx_test, yy_train, yy_test = train_test_split(Xx, yy, train_size = 0.8, random_state = 0)
```

	PRE	POST	
Linear Regression	Cross Validation Score: [-17.10 - 4.29 -4.37] Average CVS: -14.58 Mean Squared Error: 76.07	Cross Validation Score = [-17.82 - 3.36 -4.48] Average CVS: -14.17 Mean Squared Error = 79.67	
Logistic Regression	Cross Validation Score: [0.057 0.063 039] Average CVS: 0.046 Mean Squared Error = 108.47 Accuracy = 0.065	Cross Validation Score = [0.054 0.06 0.05] Average CVS: 0.056 Mean Squared Error = 92.19 Accuracy = 0.085	
Decision Tree	Cross Validation Score = [0.056 0.06 0.069] Average CVS: 0.072 Mean Squared Error = 129.155 Accuracy = 0.045	Cross Validation Score = [0.042 0.057 0.03] Average CVS: 0.068 Mean Squared Error = 136.73 Accuracy = 0.065	

	PRE	POST		
KNN	Cross Validation Score = [0.012 0.045 0.039] Average CVS: 0.036 Mean Squared Error = 201.07 Accuracy = 0.075	Cross Validation Score = [0.045 0.06 0.036 Average CVS: 0.039 Mean Squared Error = 239.62 Accuracy = 0.03		
SVC	Cross Validation Score = [0.066 0.063 0.079] Average CVS: 0.069 Mean Squared Error = 98.24 Accuracy = 0.05	Cross Validation Score = [0.069 0.067 0.075] Average CVS: 0.064 Mean Squared Error = 98.24 Accuracy = 0.05		
Neural Network	Cross Validation Score = [0.045 0.039 0.072] Average CVS: 0.057 Mean Squared Error = 106.801 Accuracy = 0.055	Cross Validation Score = [0.06 0.039 0.045] Average CVS: 0.053 Mean Squared Error = 124.61 Accuracy = 0.06		

	PRE	POST
Logistic Regression	Cross Validation Score: [0.057 0.063 039] Average CVS: 0.046 Mean Squared Error = 108.47 Accuracy = 0.065	Cross Validation Score = [0.054 0.06 0.05] Average CVS: 0.056 Mean Squared Error = 92.19 Accuracy = 0.085
SVC	Cross Validation Score = [0.066 0.063 0.079] Average CVS: 0.069 Mean Squared Error = 98.24 Accuracy = 0.05	Cross Validation Score = [0.069 0.067 0.075] Average CVS: 0.064 Mean Squared Error = 98.24 Accuracy = 0.05

Conclusion

- Recommended model after dropping variables: Logistic regression
- What are the important variables in creating a song?
 - o Song Genre, Danceability, Duration, Acousticness, Speechness, Top Year
- Why are our indicators have low numbers?
 - Dropped variables
 - Other qualitative variables
- Business Recommendation:
 - A song producer should consider the above variables in creating a popular song