Programming Paradigms

Lecture 13

Recap of Main concepts

- Programming paradigm (in this course)
 - A pattern that serves as a *school of thoughts* for programming of computers
- Programming technique
 - Related to an algorithmic idea for solving a particular class of problems
 - Examples: 'Divide and conquer' and 'program development by stepwise refinement'
- Programming style
 - The way we express ourselves in a computer program
 - Related to elegance or lack of elegance
- Programming culture
 - The totality of programming behavior, which often is tightly related to a family of programming languages
 - The sum of a main paradigm, programming styles, and certain programming techniques.

- Main programming paradigms
 - The imperative paradigm
 - The functional paradigm
 - The logical paradigm
 - The object-oriented paradigm
- Other possible programming paradigms
 - The visual paradigm
 - One of the parallel paradigms
 - The constraint based paradigm

Overview of the imperative paradigm

First do this and next do that

- Characteristics:
 - Discipline and idea
 - Digital hardware technology and the ideas of Von Neumann
 - Incremental *change of the program state* as a function of *time*.
 - Execution of computational steps in an order governed by control structures
 - We call the steps for commands
 - Straightforward abstractions of the way a traditional Von Neumann computer works
 - Similar to descriptions of everyday routines, such as food recipes and car repair
 - Typical commands offered by imperative languages
 - Assignment, IO, procedure calls
 - Language representatives
 - Fortran, Algol, Pascal, Basic, C
 - The natural abstraction is the procedure
 - Abstracts one or more actions to a procedure, which can be called as a single command.
 - "Procedural programming"

Overview of the functional paradigm

Evaluate an expression and use the resulting value for something

- Characteristics:
 - Discipline and idea
 - Mathematics and the theory of functions
 - The values produced are *non-mutable*
 - Impossible to change any constituent of a composite value
 - As a remedy, it is possible to make a revised copy of composite value
 - Atemporal
 - Abstracts a single expression to a function which can be evaluated as an expression
 - Functions are first class values
 - Functions are full-fledged data just like numbers, lists, ...
 - Fits well with computations driven by needs
 - Opens a new world of possibilities

Overview of the logic paradigm

Answer a question via search for a solution

- Characteristics:
 - Discipline and idea
 - Automatic proofs within artificial intelligence
 - Based on axioms, inference rules, and queries.
 - Program execution becomes a systematic search in a set of facts, making use of a set of inference rules

Overview of the object-oriented paradigm

Send messages between objects to simulate the temporal evolution of a set of real world phenomena

- Characteristics:
 - Discipline and idea
 - The theory of concepts, and models of human interaction with real world phenomena
 - Data as well as operations are encapsulated in objects
 - Information hiding is used to protect internal properties of an object
 - Objects interact by means of message passing
 - A metaphor for applying an operation on an object
 - In most object-oriented languages objects are grouped in classes
 - Objects in classes are similar enough to allow programming of the classes, as opposed to programming of the individual objects
 - Classes represent concepts whereas objects represent phenomena
 - Classes are organized in inheritance hierarchies
 - Provides for class extension or specialization

