MNN. \* Frene Babers Con

#### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

#### MARK SCHEME for the November 2004 question paper

#### 9702 PHYSICS

9702/06

Paper 6, maximum mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.



Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

|             | maximum           | minimum | mark required | for grade: |
|-------------|-------------------|---------|---------------|------------|
|             | mark<br>available | А       | В             | E          |
| Component 6 | 40                | 30      | 27            | 15         |

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

#### **November 2004**

## GCE A AND AS LEVEL

# **MARK SCHEME**

**MAXIMUM MARK: 40** 

**SYLLABUS/COMPONENT: 9702/06** 

PHYSICS Paper 6



| Page 1 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | A and AS LEVEL – NOVEMBER 2004 | 9702     | 6     |

## Option A – Astrophysics and Cosmology

| 1             | neares<br>diame                               | ter of the Sun<br>st (neighbour) star/Proxima Centauri<br>ter of (Milky Way) galaxy<br>of (visible) Universe (allow diameter/radius)                                                                                                                                                                          |                                   | B1<br>B1<br>B1<br>B1 | [4] |
|---------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----|
| <b>2</b> e.g. | means<br>Light p<br>means<br>Irregul<br>means | pheric absorption/scattering is light is too faint pollution is light cannot be distinguished against background ar atmospheric refraction/thermal currents is small objects blurred/not seen two sensible suggestions (M1 x 2) plus some further detail of                                                   | (M1)<br>(Al)<br>of each {A1 x 2}) | M1<br>Al<br>M1<br>Al | [4] |
| 3 (a)(i)      | either<br>or                                  | density such that Universe will not collapse or expand indigreater density than $\rho_0$ means collapse (OR vice versa) determines whether Universe is 'open' or 'closed' greater density than $\rho_0$ means 'closed' OR smaller density than $\rho_0$ means 'open'                                          | efinitely (B1) (B1)               | B1<br>B1             | [2] |
| (ii)          | (gravit                                       | verse is closed eventually all) kinetic energy <u>of galaxies</u> wil<br>ational) potential energy<br>ational) potential energy involves the gravitational constan                                                                                                                                            |                                   | B1<br>B1             | [2] |
| (b)(i)1       | $H_0 = 1$<br>1 Mpc<br>$H_0 = 1$               | ble straight line and) one or two points chosen with attempt $00 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (allow $80 \rightarrow 125 \text{ km s}^{-1} \text{ Mpc}^{-1}$ ) = $3.1 \times 10^{19} \text{ km}$ $00/(3.1 \times 10^{19}) = 3.2 \times 10^{-18} \text{ s}^{-1}$ $1/H_0 = 3.1 \times 10^{17} \text{ s}$ | t at antilogs                     | B1<br>A1<br>C1       | [4] |
| (i)2          | Ü                                             | $\times$ 10 <sup>-18</sup> } <sup>2</sup> ) / (8× $\pi$ × 6.67× 10 <sup>-11</sup> )<br>× 10 <sup>-26</sup> kg m <sup>-3</sup>                                                                                                                                                                                 |                                   | C1<br>A1             | [2] |
| (ii)          | numbe                                         | er density = $(1.86 \times 10^{-26}) / (1.66 \times 10^{27})$<br>$\approx 10$                                                                                                                                                                                                                                 |                                   | C1<br>A1             | [2] |

| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | A and AS LEVEL – NOVEMBER 2004 | 9702     | 6     |

## Option F – The Physics of Fluids

| 4 | (a)    | M shown near base of stem                                                                                                                                                                                                                  | B1                   | [1]        |
|---|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|
|   | (b)(i) | density = mass/volume<br>volume submerged in liquid of density 1.0 g cm <sup>-3</sup> = 165 cm <sup>3</sup><br>volume submerged in liquid of density 1.1 g cm <sup>-3</sup> = 150 cm <sup>3</sup><br>change in volume = 15 cm <sup>3</sup> | C1<br>C1<br>C1<br>A1 |            |
|   | (ii)   | distance (= 15/0.75) = 20 cm                                                                                                                                                                                                               | A1                   | [5]        |
| 5 | (a)    | arrows longer at centre than edges arrows parallel and correct relative lengths                                                                                                                                                            | M1<br>A1             | [2]        |
|   |        | no unique value of (linear) speed I volume flow rate doubles new radius = 1.05 r new flow rate = 1.054 × 2 = 2.4(3) times greater                                                                                                          | B1<br>A1<br>C1<br>A1 | [1]<br>[3] |
| 6 | (a)    | (fluid) flow/movement<br>that is erratic/has eddies<br>i.e. speed varies continuously (in magnitude and direction) with time                                                                                                               | B1<br>B1<br>B1       | [3]        |
|   | (b)(i) | for turbulent flow, $F_D/v^2$<br>$v = 58 \text{ m s}^{-1}$                                                                                                                                                                                 | C1<br>A1             | [2]        |

| Page 3 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | A and AS LEVEL – NOVEMBER 2004 | 9702     | 6     |

## Option M - Medical Physics

| 7 | (a)    | pulse of ultrasound reflected from boundaries received (at surface) and processed time for pulse to return gives depth of boundary reflected intensity gives information on nature of boundary    | B1<br>B1<br>B1<br>B1 | [5] |
|---|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|   | (b)    | fraction = $e^{-23 \times 0.055}$<br>= 0.28                                                                                                                                                       | C1<br>A1             | [2] |
|   | (c)    | fraction = $0.28 \times 0.35 \times 0.28$<br>= $0.027$<br>(or $0.35e^{-23 \times 0.11} = 0.028$ )                                                                                                 | C1<br>A1             | [2] |
| 8 | (a)(i) | rays from S converge to point behind retina                                                                                                                                                       | B1                   |     |
|   | (ii)   | range of image distances such that image is tolerably in focus                                                                                                                                    | B1<br>B1             | [3] |
|   | (b)    | for the same size of patch on the retina focused image is further from the retina (so) depth of focus is increased                                                                                | M1<br>A1<br>B1       | [3] |
| 9 | (a)    | intensity = $(0.33 \times 10^{-6}) / (65 \times 10^{-6})$<br>= 5.1 (5.08) × 10 <sup>-3</sup> W m <sup>-2</sup><br>I.L. = 10 lg (5.08 × 10 <sup>-3</sup> ) / (1.0 × 10 <sup>-12</sup> )<br>= 97 dB | C1<br>C1<br>C1<br>A1 | [4] |
|   | (b)    | (long-term exposure) could cause deafness OR (short-term exposure) could cause tinnitus                                                                                                           | B1                   | [1] |

| Page 4 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | A and AS LEVEL – NOVEMBER 2004 | 9702     | 6     |

## Option P – Environmental Physics

| 10 (a)       | massive nucleus/named appropriate nucleus splits into two approximately equal parts/named components with the release of neutrons and energy |                                                                                                                                                                                                                         |                      | [3] |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
| (b)          | moderator:                                                                                                                                   | slows down (high speed) neutrons so that further fissions are more likely/will take place                                                                                                                               | M1<br>A1             |     |
|              | control rods                                                                                                                                 | absorb neutrons to provide control over the rate of fission                                                                                                                                                             | M1<br>A1             | [4] |
| 11 (a)(i)    | water moved f<br>potential energ                                                                                                             | From (area of) trough to crest to form wave<br>gy = mgh<br>= $\frac{1}{2} \lambda Aw\rho \times g \times A$                                                                                                             | B1<br>M1             |     |
| <i>(</i> 11) |                                                                                                                                              | (must be laid out so that substitutions are obvious)<br>= $\frac{1}{2} wA^2 \lambda \rho g$                                                                                                                             | M1<br>A0             | [3] |
| (ii)         | there are $V/\lambda$<br>power = $\frac{1}{2}$ where $\frac{1}{2}$ where                                                                     |                                                                                                                                                                                                                         | M1<br>A1<br>A0       | [2] |
| (b)          | e.g hazard to a                                                                                                                              | shipping, unsightly, upset to shoaling fish etc.<br>suggestion)                                                                                                                                                         | B1                   | [1] |
| 12 (a)       | four outputs la                                                                                                                              | learly as 1140 W<br>beled correctly<br>approximately correct ratio of widths                                                                                                                                            | B1<br>M1<br>A1       | [3] |
| (b)          | very little therr<br>gas ring much                                                                                                           | ing more efficient at transferring energy to water<br>mal energy escapes because plastic is an insulator<br>less efficient because of thermal energy losses to the air<br>y losses due to conduction as kettle is metal | B1<br>B1<br>B1<br>B1 | [4] |

| Page 5 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | A and AS LEVEL – NOVEMBER 2004 | 9702     | 6     |

## Option T – Telecommunications

| 13 (a)    | box for 1 m – 10 cm labeled T                                                                                                                                                                                                                                                                                                                                                | B1                         |     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|
| (b)       | box for 10 cm – 1 cm labeled S                                                                                                                                                                                                                                                                                                                                               | B1                         | [2] |
| 14 (a)    | frequency of carrier wave varies (in synchrony) with information signal constant amplitude OR carrier frequency >> signal frequency change in frequency measures displacement of information signal rate at which carrier frequency varies gives frequency of information signal                                                                                             | B1<br>B1<br>B1<br>B1       | [4] |
| (b)(i)    | period = 0.8 μs<br>frequency = 1.25 MHz                                                                                                                                                                                                                                                                                                                                      | C1<br>A1                   |     |
| (ii)      | 125 kHz                                                                                                                                                                                                                                                                                                                                                                      | A1                         | [3] |
| (c)       | advantage: e.g. better quality/less interference disadvatange: e.g. more transmitters/more expensive (any sensible suggestions, 1 each)                                                                                                                                                                                                                                      | B1<br>B1                   | [2] |
| 15 (a)(i) | sampled every 0.5 ms<br>frequency = 2.0 kHz                                                                                                                                                                                                                                                                                                                                  | C1<br>A1                   |     |
| (ii)      | at 1.0 V intervals                                                                                                                                                                                                                                                                                                                                                           | B1                         |     |
| (iii)     | 4 bits                                                                                                                                                                                                                                                                                                                                                                       | B1                         | [4] |
| (b)       | needs sampling time shorter than smallest peak-trough interval any suggestion of about (0.2 ms or about) 5 kHz (allow 5 kHz $\rightarrow$ 10 kHz) needs voltage interval less than peak-trough height any suggestion at about 0.3 V (allow 0.1 V $\rightarrow$ 0.4 V) so either 12/0.3 = 40 OR 11/0.3 = 37 OR 10/0.3 = 34 etc. (ignore binary nature of the ADC and the DAC) | B1<br>A1<br>B1<br>C1<br>A1 |     |