

Tentamen i Linjär algebra för civilingenjörer

MA503G, 2019-01-18, kl. 08:15-13:15

Hjälpmedel: Skrivdon

Betygskriterier: Framgår av separat dokument publicerat på Blackboard. Uppgifterna är fördelade på två nivåer. En grundläggande nivå om totalt 36 poäng bestående av uppgifterna 1-6 (var och en värd 6 poäng), och en fördjupad nivå om totalt 24 poäng bestående av uppgifterna 7-9 (var och en värd 8 poäng). Totalt kan man få 60 poäng. Betyg 3 respektive 4 ges till den som erhåller minst 30 respektive 40 poäng på tentan. För betyg 5 krävs minst 50 poäng på tentan samt att minst två av uppgifterna är belönade med full poäng.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg och svara exakt. Svara på högst en uppgift per blad.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Johan Andersson

Lycka till!

Grundläggande nivå

1. På denna uppgift ska endast svar anges, lämna alltså inte in några beräkningar. Skriv svaren på alla deluppgifter på samma blad.

(a) Låt
$$\mathbf{u} = (-1, 1, 3)$$
 och $\mathbf{v} = (1, 3, -1)$. Beräkna $\mathbf{u} \cdot \mathbf{v}$ och $\mathbf{u} \times \mathbf{v}$. (2p)

(b) Låt
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
. Beräkna AA^T samt A^TA . (2p)

- (c) Matrisen B har rang 5. Kolonnrummet K(B) är ett delrum till \mathbb{R}^9 . Nollrummet (2p) N(B) har dimension 7. Hur många rader och kolonner har matrisen B?
- 2. Avgör för vilka värden på konstanterna a, b som ekvationssystemet

$$\begin{cases} x + y + 2z = 1 \\ x + 2y + z = 1 \\ 2x + 3y + az = b \end{cases}$$

- (a) en unik lösning.
- (b) oändligt många lösningar (en parameterlösning).
- (c) inga lösningar (systemet är inkonsistent).

Lös ekvationssystemet för a = b = 4. (6p)

$$A = \begin{pmatrix} 1 & 1 & 0 & 3 & 3 \\ 1 & 1 & 2 & 3 & 5 \\ 2 & 2 & 2 & 6 & 8 \end{pmatrix}.$$

Bestäm baser för kolonnrummetet K(A), radrummet R(A) samt nollrummet N(A).

- 4. Avgör om följande mängder av vektorer utgör baser för \mathbb{R}^3 (6p)
 - (a) $\{(1,1,1),(-2,2,3)\}$
 - (b) $\{(1,1,1),(1,2,1),(1,1,0)\}$
 - (c) $\{(1,0,1),(1,1,1),(0,1,0),(1,1,2)\}$
- 5. (a) Låt A vara en matris av ordning $n \times n$ och \mathbf{v} vara en vektor i \mathbb{R}^n . Ge definitionen på att \mathbf{v} är en egenvektor till matrisen A med egenvärde λ . (2p)
 - (b) Avgör om vektorerna $\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ och $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ är egenvektorer till matrisen

$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$
. Om de är egenvektorer, bestäm i så fall de tillhörande egenvärdena. (4p)

(6p)

6. Låt

$$B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & -1 \end{pmatrix}.$$

Bestäm alla matriser X som uppfyller $BXB = I + B^2$.

Fördjupad nivå

- 7. Bestäm ekvationen för planet π som innehåller punkterna A:(1,1,0), B:(1,-1,0), C:(0,1,1), samt bestäm en ekvation på parameterform för den linje L som går genom punkten P:(2,2,1) och som skär planet π med vinkeln 90°. Bestäm också skärningspunkten mellan planet π och linjen L, samt avståndet mellan punkten P och planet π .
- 8. Låt avbildningen $S: \mathbb{R}^2 \to \mathbb{R}^2$ ges av rotation 270° motsols runt origo. Låt avbildningen $T: \mathbb{R}^2 \to \mathbb{R}^2$ ges av projektion på linjen y = -2x, samt avbildningen $R: \mathbb{R}^2 \to \mathbb{R}^3$ ges av R(x,y) = (x-y,x+y,2x). Bestäm avbildningsmatriserna [T], [R], [S] samt $[R \circ S]$. (8p)
- 9. Låt $Q(x_1,x_2)=x_1^2-6x_1x_2+x_2^2$. Bestäm en symmetrisk matris A så att

$$Q(x_1, x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

samt bestäm en ortogonal matris P så att $P^TAP = D$ där D är en diagonalmatris. Avgör om den kvadratiska formen $Q(x_1, x_2)$ är positivt definit, negativt definit eller indefinit.