Short HW 4

Ori Zohar - 205960750

Part A - Optimization

$$\begin{cases}
2x & x \geq 0 \\
x^2 & x < 0
\end{cases}$$

וא) שוכן, ואל פול תעורה.

for four glas (V-u) ver bo : uer bote nous grus nous (1.2).

for subgradient g = uer bot grue from note of the subgradient g.

$$\mathcal{S}(u) = \begin{cases} 2 & \times \geq 0 \\ 2X & X < 0 \end{cases}$$

: UZO 7127

$$f(v) - f(u) = 2v - 2u = 2(v - u) = g(u)(v - u)$$

:V≥0 •

for - four = V2 - 21e ≥ 2v - 2u = 2(v-u)= gaxv-u) : V<0.

V2>0>2V

: ५८० ७१०४

f(v) - f(u) = 2v-42 > 2vu-u2 > 2vu-2v2

· 05/

2V>0>2Ve => -242>-42

= 2((V-4) = g(a)(V-4)

: V40 .

V2-u2-v2+2uv-u2=2uv-2u2=2u(V-u)=g(u)(V-u)

$(iH = X_i - N) = f(X_i)$						
j	Xi	f(Xi)	$\partial f(x_i)$			
0	Xo =-1	e	-2			
1	X==-1-(0.25·(-2))=-0.5	0.25	-l			
2	X2= -0.5-(0.25·(-1))=-0.2	5 0.125	-0.5			
•		:	•			
n	$X_n = -\frac{\ell}{2^n}$	J(Xn)	2.(Xn) =			

נשים שם שלא נציע שמינימים שלא רק נתקדב שליו באופר שארר

	Xı	f(Xi)	2f(xi)	(1.4
0	Xo =-l	₹	-2	
1	X=-1-(1·(-2))=1	2	2	
2	X2= l-(1.(2))=-l	1	-2	
			•	

10,0 16 कुल त्रिय उथर प्रमातामा

Port 2 - Regression

$$\mathcal{G} = \omega^{T} \times + \mathcal{E} \quad \mathcal{E} \sim L_{0}(0,0) \qquad : \text{ kan } \overline{G} \text{ loss } \Omega$$

$$Lop \sim 100 \text{ loss } \Omega$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|)$$

$$\mathcal{F}(S_{1}; \omega^{T} \times |S_{1}|) = \mathcal{F}(S_{1}; \omega^{T} \times |S_{$$

ाद्या अ ४७० मा हिल्ला है ।

Organax $\sum_{i} -|w^{T}x_{i} - y_{i}|$ Organax - $\sum_{i}|w^{T}x_{i} - y_{i}|$ Organix - $\sum_{i}|w^{T}x_{i} - y_{i}|$ Organia $\sum_{i}|w^{T}x_{i} - y_{i}|$

Part C - Boosting

נרבה למצוא א תלים כך שאחרי הוטרצה ז א אשם AdaBat והפל את אחר

ער של אל אלין להיות אב יותר ממטינ רגבול לאניר ההסתפרות לכך שיצות התטומתי בריכה להיות גבולה מ-א.

ואופן הכדיליה של אססלים לא ניתן משקל גבול ינתר לענוצית שטטינו נהם לכן נגלל שכטויו רים שנו מתכלים תמונת מצה לשחר איליציח שחת נצפה ללא יותר מ-2 נקיפת גבולות יותר, שיור ל נבשל.

دورك كا دروال دورا:

נשים לב שמא שמה ב-2 בציעות ולפן הוא מסיוג הלשל.

: D(2) NO DOD

$$\cdot D^{(1)} = (X_1, X_2, X_3, X_4, X_5) = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$$

• t=1: $l. h_{i}(\bar{X}_{i}) = + \forall X_{i}$

2. $\mathcal{E}_{i} = \sum_{i=1}^{5} \frac{1}{5} \| \{ \mathcal{G}_{i} \neq h_{i}(\bar{x}_{i}) \} \|^{2} = \frac{\alpha}{5}$ 3. X,= 1/2 log(1/2-1) = log(1/3)

SIC $h_*(\bar{X}_i) = G_i$: Pla

3/0 h,(Xi) & G; : Plc

4. D(2) = (f (3) \$ (5) \$, 5) \$, 5) \$, 5) \$, 5) \$, 5) \$, 5)

Note in Jakir of Jair $X_2,X_3 < X_4,X_5$ where is some of the contraction of the contra ולבן הטוור שנפחר הוט (D).