

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

5º Laboratório de Eletrônica Básica para Mecatrônica

Título: Transistores Bipolares

Objetivo:

- Capacitar o aluno a identificar os terminais de um transistor
- Identificar as características de um transistor
- Consultar a folha de dados de um transistor
- Ligar o transistor em um circuito eletrônico
- Levantar a curva característica de um transistor

Teoria:

O transistor bipolar é um dispositivo de três terminais (base, coletor, emissor) constituído de duas junções semicondutoras PN. Há basicamente dois tipos de transistores: NPN e PNP.

Símbolo:

As junções semicondutoras são encapsuladas em invólucros de plástico ou metal, sendo o material semicondutor acessível eletricamente através de terminais.

O transistor tem a característica de que uma pequena corrente de base pode controlar uma grande corrente de coletor. Por isso o transistor é utilizado principalmente como uma chave controlada por corrente.

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

Prática 1:

1 - Montar o circuito abaixo no protoboard/matriz de contato e ligar a alimentação:

2 - Levantar a curva característica do transistor. Variar os valores de Rb e Rc conforme tabela abaixo. Medir os valores das correntes Ic, e os valores das tensões Vce e Vbe e calcular o valor de Ib. Completar a tabela com os valores medidos:

Circuito de entrada			Circuito de saída		
Rb (Ω)	Ib (μA)	Vbe (Volts)	Rc (Ω)	Vce (Volts)	Ic (mA)
2,2ΜΩ			10kΩ		
			$4,7\mathrm{k}\Omega$		
			$2,2$ k Ω		
1ΜΩ			$4,7\mathrm{k}\Omega$		
			2,2kΩ		
			$1,2k\Omega$		
560kΩ			2,2kΩ		
			$1,2$ k Ω		
			1kΩ		

- **3 -** Plotar o gráfico da curva característica do transistor (Ic x Vce) com os dados medidos no item 2, (em papel milimetrado, para quem escreve o relatório a mão). Anexar o gráfico ao relatório.
- **4 -** Qual é o valor aproximado do ganho de corrente (β) do transistor utilizado?

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA Engenharia Mecatrônica Dr. Carlos Alberto Gallo

5 - Consultando a folha de dados do transistor BC548, dê o valor de:

Máxima tensão coletor-emissor	
Máxima corrente de coletor	
Máxima dissipação de potência	
Corrente de fuga de coletor	
Máxima tensão base-emissor	
Máxima tensão de saturação coletor-emissor	
Máximo ganho de corrente	

6 - Conclusões: