

GAN in CVPR2017

Wang Chao, Group of DL 2017-7-22

SimGAN

- A 'self-regularization' term
- A local adversarial loss
- Updating the discriminator using a history of refined images

SimGAN

Adversarial Loss with Self-Regularization

$$L_{R}(\theta) = -\sum_{i} \log(1 - D_{\phi}(R_{\theta}(x_{i}))) + \lambda \|\psi(R_{\theta}(x_{i}))\|_{1}$$

Local Adversarial Loss

Updating the Discriminator using History

SimGAN

Training data	% of images within d
Synthetic Data	62.3
Synthetic Data 4x	64.9
Refined Synthetic Data	69.4
Refined Synthetic Data 4x	87.2

$$\begin{aligned} & \min_{\mathbf{G}} \max_{\mathbf{D}} V(D, G) = E_{x \sim p_{data}(x, y)} [\log D(x, y)] + E_{z_i \sim p_{z_i}(z_i), z_a \sim p_{z_a}(z_a), y \sim p_y(y)} \\ & [\log (1 - D(G(z_i, z_a, y), y))] \end{aligned}$$

$$f_y(z_a) = \begin{cases} z_a, & (y=1) \\ 0, & (y=0) \end{cases} [z_a \sim Cat(K=k, p=\frac{1}{k})]$$

$$f_y(z_a) = \begin{cases} z_a, & (y=1) \\ 0, & (y=0) \end{cases}$$
 [$z_a \sim Unif(-1,1)$]

(a) InfoCGAN

DeliGAN

$$z = \mu_i + \sigma_i \varepsilon$$
, where, $\varepsilon \sim N(0,1)$

DeliGAN

GAN++	2.44 ± 0.06	1.73 ± 0.04	1.68 ± 0.05	2.27 ± 0.06	2.23 ± 0.04	1.73 ± 0.03	1.56 ± 0.02	1.21 ± 0.04	1.25 ± 0.02	1.53 ± 0.02	1.76 ± 0.40
MoE-GAN	2.69 ± 0.08	2.08 ± 0.05	2.01 ± 0.06	2.19 ± 0.04	2.16 ± 0.03	1.85 ± 0.09	1.84 ± 0.07	2.14 ± 0.08	1.60 ± 0.04	1.85 ± 0.05	2.04 ± 0.28
DeLiGAN	2.78 ± 0.02	2.36 ± 0.06	2.44 ± 0.07	2.17 ± 0.04	2.31 ± 0.02	1.27 ± 0.01	2.31 ± 0.02	3.63 ± 0.14	1.51 ± 0.03	2.00 ± 0.05	2.28 ± 0.62
GAN	2.72 ± 0.20	2.02 ± 0.18	2.21 ± 0.44	2.43 ± 0.19	2.06 ± 0.09	2.22 ± 0.23	1.82 ± 0.08	2.12 ± 0.55	1.19 ± 0.19	2.16 ± 0.15	2.15 ± 0.25
	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Overall

Inception score

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Real World Occlusions

Often

Rare

Real World Deformations

..

Often

Rare

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Pix2pix

U-Net

Pix2pix

Positive examples

 ${\bf G}$ tries to synthesize fake images that fool ${\bf D}$

D tries to identify the fakes

Pix2pix

$$L = l_r + \lambda_1 l_{a_1} + \lambda_2 l_{a_2} + \lambda_3 l_p$$

Figure 3. Completion results under different settings of our model. (c) M1: L_r . (d) M2: $L_r + L_{a_1}$. (e) M3: $L_r + L_{a_1} + L_{a_2}$. (f) M4: $L_r + L_{a_1} + L_{a_2} + L_p$. The result in (f) shows the most realistic and plausible completed content. It can be further improved through post-processing techniques such as (g) M5: M4 + Poisson blending [18] to eliminate subtle color difference along mask boundaries.

Generative Face Completion CVPR 2017.

Q&A