This is a \LaTeX template for Elsevier

Penghui Guo a,*

^aCollege of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Abstract

Keywords: input keyword here, input another keyword here

Email address: m@guo.ph (Penghui Guo)

^{*}Corresponding author

1. Introduction

Something be highlighted invisible comment:

2. Literature review

2.1. Literature review subsection

citation: Grass & Fischer (2016), citation in bracket: (Grass & Fischer, 2016),

3. Mathematical model

Table 1: Notations

Sets	:					
T	blablabla					
Para	ameters:					
M	blablabla					
Firs	First-stage decision variables:					
y_{ik}	blablabla					
Seco	Second-stage decision variables:					
t_{ij}^s	blablabla					
Aux	Auxiliary decision variables:					
x_{pq}^s	blablabla					

blablabla

Model (1)

[SPRP] minimize
$$\sum_{i \in T} \sum_{k \in K} c^k y_{ik} + \sum_{i \in T} q l_i + \sum_{i \in T} \sum_{h \in H} c_1^h w_i^h$$

$$+ \mathbb{E}_{s \in S} \left(\sum_{i \in T} \mathcal{R}_{is} \right)$$
subject to
$$\sum_{k \in K} y_{ik} \le 1, \qquad \forall i \in T$$

$$(1.1)$$

(1.1) blablabla.

4. Solution method

- 4.1. Solution method subsection
- 4.1.1. Solution method subsubsection

5. Numerical experiments

reference Figure 1, Figure 1(a), Figure 1(b), Figure 1(c), Figure 1(d).

Parameters	Table 2: Table Description	Value						
Variable parameters: $ T $ blablabla blablabla								
Deterministic parameters:								
p_j	blablabla	blablabla						

¹ balblabla

- TO 1			
Tab	יאו	1100	ı۱۸

Instance	A			В С		С	C		D			
	Obj.	Gap (%)	Time (s)	Obj.	Gap (%)	Time (s)	Obj.	Gap' (%)	Time (s)	Obj.	Gap (%)	Time (s)
_	*000	0.00	000	*000	0.00	000	*000	0.00	000	*000	0.00	000

blablabla

Figure 1: A figure

another reference fig. 1, fig. 1(a), fig. 1(b), fig. 1(c), fig. 1(d). Appendix A, theorem 1

6. Acknowledgment

This work was supported by the United States National Science Foundation (NSF) [grant number ***]; the National Natural Science Foundation of China (NSFC) [grant number ***]; and the China Scholarship Council (CSC) [grant number ***]. We also appreciate the anonymous reviewers for their valuable suggestions.

Appendix A. Some proof

Theorem 1. Some theorem.

Proof.

Equations
$$(A.1)$$

Equations without number

```
Case 1: Case
```

Case 2: Sub case (1): Sub case

proof is end here \Box

Appendix B. Pseudo code

```
Algorithm 1: This is an algorithm
```

```
Data: data
   Result: results
1 \operatorname{def} function_name(PMP_u):
        \mathrm{gap} \leftarrow +\infty;
2
         while gap \neq 0:
3
             do something;
4
             \mathbf{if} \ \ condition > \ value \ \mathbf{:}
 5
                   something = True;
 6
                   for i \in T, s \in S:
 7
                     do something;
                  if ondition > value:
 9
                                                                                                                                                   // blablabla
10
                       a \leftarrow b;
                                                                                                                                        // Return something
11
               return something;
12
13
             v \leftarrow v + 1;
14
        {\bf return}\ something
```

References

Grass, E., & Fischer, K. (2016). Two-stage stochastic programming in disaster management: A literature survey. Surveys in Operations Research and Management Science, 21, 85–100. doi:10.1016/j.sorms.2016.11.002.