电子科技大学 2020-2021 学年第 一 学期期末考试 A 卷

考试科目: 数字逻辑设计及应用 考试形式: 闭卷 考试日期: 2021年 1 月 14 日

本试卷由<u>六</u>部分构成,共<u>7</u>页。考试时长: <u>120</u>分钟

成绩构成比例:平时成绩 60 %, 期末成绩 40 %

(可以使用中文解答;禁止使用计算器;题中所用器件功能表见试卷后附录(Appendix))

是	页号	I	II	III	IV	V	VI	合计
得	寻分							

得分

- I. Please put the correct answers in the brackets "()" $.(3' \times 8 = 24')$
- 1. A sequential circuit with 4 flip-flops can store (<u>16</u>) states at most.
- 2. A modulo-288 counter circuit can be built by (<u>3</u>) 4-bit counters of 74x163 at least.
- 3. To design a "001010" serial sequence generator by shift registers, (___4___) flip-flops are required at least.
- 4. There is a state transition equation $Q^*=JQ'+K'Q$. If we use a D flip-flop for state memory, the D input of the D flip-flop can be given as: D = (JQ'+K'Q).
- 5. An *n*-bit Johnson counter has (2ⁿ-2n) abnormal states.
- 6. Two common types of ripple counter are ripple up counter and ripple down counter. The circuit shown in Figure 1-1 is a 2-bit ripple (_______) counter.
- 7. A 74×194 can be used as a sequence detector. When Z shown in Figure 1-2 is asserted, the sequence detected is (10110).

Figure 1-1

Figure 1-2

8. If a ROM has 13 address inputs and 8 data outputs, its capacity is (<u>8</u>)Kbyte.

得分

II. Choose the correct answer and put the item number in the brackets.

(3' X 5=15')

- 1. Which of the following statements is correct? (A)
- A. Both outputs of Mealy and Moore machine depend on states.
- B. The outputs of a Mealy machine depend only on the states.
- C. The outputs of a Moore machine depend on the inputs and states.
- D. Both outputs of Mealy and Moore machine depend on inputs.
- 2. A temperature test system whose temperature measurement range is -45 °C ~125 °C. If the A/D converter in the system needs to recognize a temperature change of 0.1 °C, an A/D converter with (B) bits is required at least.
 - A. 10
- B. 11
- C. 12
- D. 13
- 3. A logic diagram is shown in Figure 2 and the current state Q3Q2Q1Q0=1111. If the CONTROL terminal is connected to HIGH level and LOW level respectively, the next state Q3*Q2*Q1*Q0* should be (C).
 - A. 0000 and 1111
- B. 1111 and 0000
- C. 0000 and 0000
- D. 1111 and 1111

5. In the following circuits, only (C) is a sequential

- (D) ROM.
- A. 128×4
- B. 256×4
- C. 128×16
- D. 256×8

Figure 2

logic

circuit.

A. Three-State Buffers B. Comparators C. shift registers D. Decoders

座位号 考场教室 任课教师

得分

III. Analyze the sequential circuit shown in Figure 3-1. (10')

- (1) Assuming the initial state Q1Q2=00, draw the timing diagrams for Q1, Q2 and Z shown in Figure 3-2. [7']
- (2) According to the frequencies of the waveforms in Figure 3-2, what is the relation between Z and CLK? [3']

清零信号是否需要按照异步复位和同步复位两种情况分别考虑? (这道题没有明确提出 是异步复位)

答案及参考评分:

- (1) 从 CLK 的第一个上升沿开始, 波形 Q1, Q2, Z 各 2 分 (每时钟周期错误扣 0.5 分), 共 6 分, 初始段 Z 正确给 1 分
- (2) Z对CLK进行3分频。回答正确3分。

得分

IV. Analyze the sequential circuit shown in Figure 4. (17')

- (1) Draw the state diagram of the sequential circuit whose state is QD QC QB QA. [16']
- (2) According to the state diagram obtained from above, is the sequential circuit self-correcting or not? (<u>yes/self-correcting/自校正/自启动/</u>)[1']

Figure 4

QD QC QB QA

每个状态位置正确给1分。

座位号 考场教室 任课教师

得分

- **V.** Design a clocked synchronous state machine with D flip-flops to obtain the output waveforms shown in Figure 5, where Q2, Q1 and Q0 are outputs of D flop-flops. (16')
- (1) Give the transition table of the state machine based on Figure 5. (choose the approach of minimal cost for unused states). [6']
- (2) List the unused states Q2Q1Q0 and their next states Q2*Q1*Q0* to show that whether or not the circuit is self-correcting. [5']
- (3) Give the logic diagram. [5']

(1)

每个状态转换表正确给2分;

(2)

具有自较正功能。

正确给出 011、111 之间的状态关系得 1 分; 010、110 之间的状态关系得 1 分; 回答出具有自较正功能给 1 分; 正确画出状态图其他部分得 2 分。

(3)D2=Q2'Q0; D1=Q2; D0=Q1Q0+Q1'Q0';

正确给出逻辑图得5分;否则正确给出一个驱动方程给1分。

考场教室

得分

VI. Design a "0111010001" sequence generator with a 4-bit shift register 74x194. (18')

- (1) Complete the Table 2 to realize the above sequence generator. Q3, Q2, Q1 and Q0 in Table 2 represent the corresponding signals in Figure 6. Choose the approach of minimal risk for unused states. [8']
- (2) If Q0* is obtained by an 8-input, 1-bit multiplexer 74x151, please give the values of D0 \sim D7 in Figure 6. [8']
- (3) Give the values of the other signals or connect them in Figure 6 to make the circuit work properly. [2']

答案及参考评分:

- (1) 每行1分,共8分;
- (2) 每输入端 1 分, 共 8 分。
- (3) Y连接至LIN,1分 S1S0=10,1分

其它端子连接不正确,适当扣分,扣完为止。

Table 2 Transition table

Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	1
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	1
1	1	1	1	1	1	1	0

Appendix: functional tables for some integrated circuits

Function table for a 74x138 decoder

	i unction tuble for a 74x130 decoder													
		Input				Outputs								
G1	G2A_L	G2B_L	С	В	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L	
0	X	X	X	X	X	1	1	1	1	1	1	1	1	
X	1	X	X	X	X	1	1	1	1	1	1	1	1	
X	X	1	X	X	X	1	1	1	1	1	1	1	1	
1	0	0	0	0	0	1	1	1	1	1	1	1	0	
1	0	0	0	0	1	1	1	1	1	1	1	0	1	
1	0	0	0	1	0	1	1	1	1	1	0	1	1	
1	0	0	0	1	1	1	1	1	1	0	1	1	1	
1	0	0	1	0	0	1	1	1	0	1	1	1	1	
1	0	0	1	0	1	1	1	0	1	1	1	1	1	
1	0	0	1	1	0	1	0	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	1	1	1	1	1	1	

Function table for a 74x194 4-bit universal shift register

Inp	outs		Nex	Function			
S1	SO	QA*	QB*	QC*	QD*	Function	
0	0	QA	QB	QC	QD	Hold	
0	1	RIN	QA	QB	QC	Shift right	
1	0	QB	QC	QD	LIN	Shift left	
1	1	A	В	C	D	Load	

Truth table for a 74x151 8-input 1-bit multiplexer

	Inpu	Outputs			
EN_L	S2	Y	Y_L		
1	X	X	X	0	1
0	0	0	0	D 0	D0'
0	0	0	1	D1	D1'
0	0	1	0	D2	D2'
0	0	1	1	D3	D3'
0	1	0	0	D4	D4'
0	1	0	1	D5	D5'
0	1	1	0	D6	D6'
0	1	1	1	D7	D7'

Function table for a 74x163 4-bit binary counter

					•	
	Inputs			Current State	Next state	Output
CLR_L	LD_L	ENT	ENP	QD QC QB QA	QD* QC* QB* QA*	RCO
0	X	X	X	XXXX	0 0 0 0	0
1	0	X	X	XXXX	D C B A	0
1	1	0	X	XXXX	Q _D Q _C Q _B Q _A	0
1	1	X	0	XXXX	QD QC QB QA	0
1	1	1	1	0 0 0 0	0 0 0 1	0
1	1	1	1	0 0 0 1	0 0 1 0	0
1	1	1	1	0 0 1 0	0 0 1 1	0
1	1	1	1	0 0 1 1	0 1 0 0	0
1	1	1	1		•••••	0
1	1	1	1	1 1 1 1	0 0 0 0	1

Truth table for a 74x85 magnitude comparator

		Outputs							
A3,B3	A2,B2	A1,B1	A0,B0	A>BIN	A <bin< td=""><td>A=BIN</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></bin<>	A=BIN	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A3>B3	X	X	X	X	X	X	1	0	0
A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b3<>	X	X	X	X	X	X	0	1	0
A3=B3	A2>B2	X	X	X	X	X	1	0	0
A3=B3	A2 <b2< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b2<>	X	X	X	X	X	0	1	0

A3=B3	A2=B2	A1>B1	X	X	X	X	1	0	0
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b1<>	X	X	X	X	0	1	0
A3=B3	A2=B2	A1=B1	A0>B0	X	X	X	1	0	0
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>X</td><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b0<>	X	X	X	0	1	0
A3=B3	A2=B2	A1=R1	A0=B0	X	X	X	A>RIN	A <bin< td=""><td>A=RIN</td></bin<>	A=RIN