Name: Atharva Suryakant Mali | Class: TY BCA | Roll No.: 04 | DS LAB

Experiment 9

Decision tree

```
In [1]:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
from sklearn.datasets import load_iris
In [3]:
iris=load_iris()
In [4]:
iris
Out[4]:
{'data': array([[5.1, 3.5, 1.4, 0.2],
        [4.9, 3., 1.4, 0.2],
        [4.7, 3.2, 1.3, 0.2],
        [4.6, 3.1, 1.5, 0.2],
        [5., 3.6, 1.4, 0.2],
        [5.4, 3.9, 1.7, 0.4],
        [4.6, 3.4, 1.4, 0.3],
        [5., 3.4, 1.5, 0.2],
        [4.4, 2.9, 1.4, 0.2],
        [4.9, 3.1, 1.5, 0.1],
        [5.4, 3.7, 1.5, 0.2],
        [4.8, 3.4, 1.6, 0.2],
        [4.8, 3., 1.4, 0.1],
        [4.3, 3., 1.1, 0.1],
        [5.8, 4., 1.2, 0.2],
        [5.7, 4.4, 1.5, 0.4],
        [5.4, 3.9, 1.3, 0.4],
```

[5.1. 3.5. 1.4. 0.3].

```
In [5]:
```

```
iris.data
Out[5]:
array([[5.1, 3.5, 1.4, 0.2],
    [4.9, 3., 1.4, 0.2],
    [4.7, 3.2, 1.3, 0.2],
    [4.6, 3.1, 1.5, 0.2],
    [5., 3.6, 1.4, 0.2],
    [5.4, 3.9, 1.7, 0.4],
    [4.6, 3.4, 1.4, 0.3],
    [5., 3.4, 1.5, 0.2],
    [4.4, 2.9, 1.4, 0.2],
    [4.9, 3.1, 1.5, 0.1],
    [5.4, 3.7, 1.5, 0.2],
    [4.8, 3.4, 1.6, 0.2],
    [4.8, 3., 1.4, 0.1],
    [4.3, 3., 1.1, 0.1],
    [5.8, 4., 1.2, 0.2],
    [5.7, 4.4, 1.5, 0.4],
    [5.4, 3.9, 1.3, 0.4],
    [5.1. 3.5. 1.4. 0.3].
In [6]:
iris.target
Out[6]:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    In [7]:
import seaborn as sns
In [8]:
df=sns.load dataset('iris')
```

In [9]:

```
df.head()
```

Out[9]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [10]:

```
#independent feature and dependent features
X=df.iloc[:,:-1]
y=iris.target
```

In [11]:

```
X,y
```

Out[11]:

```
sepal_length sepal_width petal_length petal_width
(
 0
                 5.1
                               3.5
                                               1.4
                                                               0.2
 1
                4.9
                                3.0
                                               1.4
                                                               0.2
 2
                 4.7
                                3.2
                                                1.3
                                                               0.2
 3
                                               1.5
                4.6
                                3.1
                                                               0.2
 4
                 5.0
                                3.6
                                               1.4
                                                               0.2
                                . . .
                                                . . .
                                                               . . .
                 6.7
                                3.0
                                               5.2
                                                              2.3
 145
                                                              1.9
 146
                 6.3
                               2.5
                                               5.0
                                               5.2
                                                               2.0
 147
                 6.5
                                3.0
 148
                 6.2
                                3.4
                                                5.4
                                                               2.3
 149
                 5.9
                                3.0
                                                5.1
                                                               1.8
```

In [12]:

```
### train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=42)
```

In [13]:

X_train

Out[13]:

	sepal_length	sepal_width	petal_length	petal_width
96	5.7	2.9	4.2	1.3
105	7.6	3.0	6.6	2.1
66	5.6	3.0	4.5	1.5
0	5.1	3.5	1.4	0.2
122	7.7	2.8	6.7	2.0
71	6.1	2.8	4.0	1.3
106	4.9	2.5	4.5	1.7
14	5.8	4.0	1.2	0.2
92	5.8	2.6	4.0	1.2
102	7.1	3.0	5.9	2.1

100 rows × 4 columns

In [14]:

from sklearn.tree import DecisionTreeClassifier

In [15]:

Postpruning

treemodel=DecisionTreeClassifier(max_depth=2)

In [16]:

treemodel.fit(X_train,y_train)

Out[16]:

DecisionTreeClassifier
DecisionTreeClassifier(max_depth=2)

In [17]:

```
from sklearn import tree
plt.figure(figsize=(15,10))
tree.plot_tree(treemodel,filled=True)
```

Out[17]:

In [18]:

```
#prediction
y_pred=treemodel.predict(X_test)
```

In [19]:

```
y_pred
```

Out[19]:

```
array([1, 0, 2, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 0, 0, 1, 2, 1, 1, 2, 0, 2, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 2, 1, 2])
```

In [20]:

from sklearn.metrics import accuracy_score,classification_report

In [21]:

```
score=accuracy_score(y_pred,y_test)
print(score)
```

0.98

In [22]:

print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	1.00	0.94	0.97	16
2	0.94	1.00	0.97	15
accuracy			0.98	50
macro avg	0.98	0.98	0.98	50
weighted avg	0.98	0.98	0.98	50