

CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection

Richard A. Dubniczky, Krisztofer Zoltan Horvát, Tamás Bisztray, Mohamed Amine Ferrag, Lucas C. Cordeiro, and Norbert Tihanyi

Presented At

Supported By

ZEISS Digital Innovation

ELTE-OTP Cybersecurity Laboratory

Richard A. Dubniczky

- PhD Student at Eötvös Loránd University (ELTE)
- Lead Security Architect at ZEISS Digital Innovation

richard@dubniczky.com linkedin.com/in/dubniczky

Structure

- 1. Motivation & Research Questions
- 2. Types of Code Weaknesses
- 3. Types of Static Analysis
- 4. The CASTLE Benchmark
- 5. Results
- 6. Limitations & Conclusion
- 7. Q&A

Motivation & Problem

- Vulnerabilities in code cause more than a **billion** of users' data to be **exposed** each year. A 1.5 times increase year over year [1].
- Yearly CVE releases have tripled since 2017 to around 40,000 in 2024 [2].
- Traditional tools (SAST, formal verification) are widely used to detect faults, but their **effectiveness** varies greatly.
- Uncertainty on what types of CWE are covered and how well are they covered by such tools.
- Can LLMs be effective tools to augment or replace traditional static analysis?
- How effective are tool combinations? What are the best combinations?
- Lack of standardized metrics to evaluate single or tool combinations.

[1] Ani Petrosyan, <u>Statista</u>, Annual number of data compromises and individuals impacted in the United States from 2005 to 2024 [2] Kaaviya, cyberpress.org, Over 40,000 CVEs Published in 2024, Marking a 38% Increase from 2023

Research Questions

RQ1: How do state-of-the-art static analysis tools, formal verification methods, and LLM-based approaches compare to effectively detecting C code vulnerabilities?

RQ2: Are combinations of tools more effective than using a single tool?

RQ3: What metrics can reliably demonstrate these differences among various tools?

Bad API Documentation

No Trial

Closed-source tools

Slow Runtime

No CLI interface

Cloud Connection

Errors in code

Restrictive ToS

Trial license

Contact Sales...

Bugs in C software

No viable dataset

API Costs

Rate limits

Custom output formats

Mandatory repositories

Missing Finding Properties

What is a Weakness?

Is there a vulnerability in this snippet?

Yes, technically printf can return an error and we did not handle it.

```
#include <stdio.h>
    #include <stdlib.h>
    int main() {
        int *A = (int*) malloc(sizeof(int) * 10);
        if (A == NULL) {
            printf("Failed to allocate memory.\n");
             return 1;
10
        }
11
        for (int i = 1; i \le 4; i++) {
12
13
            A[i] = i;
14
            printf("%d\n", A[i]);
15
16
        free(A);
17
18
        return 0;
19 }
```


Common Weakness Enumeration

CWE is a standardized system that categorizes and defines software and hardware security weaknesses to facilitate consistent vulnerability identification, assessment, and mitigation across tools and organizations.

https://cwe.mitre.org/

CWE	Top 25 Rank	Vulnerability Description
CWE-22	5	Improper Limitation of a Pathname to a Restricted Directory
CWE-78	7	Improper Neutralization of Special Elements used in an OS Command
CWE-89	3	Improper Neutralization of Special Elements used in an SQL Command
CWE-125	6	Out-of-bounds Read
CWE-134	12	Use of Externally-Controlled Format String
CWE-190	23	Integer Overflow or Wraparound
CWE-253	-	Incorrect Check of Function Return Value
CWE-327	-	Use of a Broken or Risky Cryptographic Algorithm
CWE-362	-	Concurrent Execution using Shared Resource with Improper Synchronization
CWE-369	23	Divide By Zero
CWE-401	-	Missing Release of Memory after Effective Lifetime
CWE-415	21	Double Free
CWE-416	8	Use After Free
CWE-476	21	NULL Pointer Dereference
CWE-522	14	Insufficiently Protected Credentials
CWE-617	-	Reachable Assertion
CWE-628	-	Function Call with Incorrectly Specified Arguments
CWE-674	24	Uncontrolled Recursion
CWE-761	20	Free of Pointer not at Start of Buffer
CWE-770	24	Allocation of Resources Without Limits or Throttling
CWE-787	2	Out-of-bounds Write
CWE-798	14	Use of Hard-coded Credentials
CWE-822	20	Untrusted Pointer Dereference
CWE-835	24	Loop with Unreachable Exit Condition
CWE-843	-	Access of Resource Using Incompatible Type

Types of Static Analysis

Aspect	Stati Application Security Testing (SAST)	Formal Verification (FV)	Large Language Model (LLM)
Approach	Rule-based pattern matching, data flow analysis, taint analysis	Mathematical proofs of correctness	Al-based pattern recognition and reasoning
Strengths	Fast runtimeBroad coverageEasy integration	Low false positivesVerification guarantees	High adaptabilityDetection without explicit rules
Weaknesses	High false positive rateLimited semantic reasoning	 Limited scalability with codebase size Inability to detect non-formal issues 	 Limited context window Price Hallucinations and false positives

Existing Datasets

Dataset	Size	#Multiple Vuln./File	Vuln. Snippets	Compilable	Granularity	Labelling	Source
Draper [7]	1274k	~	5.62%	×	function	Stat	mixed
Big-Vul [8]	264k	×	100%	×	function	Patch	real-world
DiverseVul [9]	349k	×	7.02%	×	function	Patch	real-world
FormAI-v2 [2]	331k	✓	62.07%	✓	file	FV	AI Gen.
PrimeVul [10]	235k	×	3%	×	function	Manual	real-world
SARD [11]	101k	×	100%	✓	file	B/S/M	mixed
Juliet (C/C++) [12] 64k	×	100%	✓	file	BDV	synthetic
Devign [13]	28k	×	46.05%	×	function	Manual	real-world
REVEAL [14]	23k	×	9.85%	×	function	Patch	real-world
CVEfixes [15]	20k	×	100%	×	commit	Patch	real-world

What is CASTLE?

CASTLE: CWE Automated Security Testing and Low-level Evaluation

- A benchmarking framework to test static code analyzers
- Consists of 250 compilable, labeled C applications, with 10,000+ LoC
- 150 (60%) of the hand-crafted applications contain one weakness (25 CWEs)
- Wrappers for automated tool evaluation (container, API, report)
- CASTLE Score metric for opinionated evaluation
- CASTLE Combination Score for evaluation of tool combinations

Example test (CASTLE-787-1.c)

```
dataset: CASTLE-Benchmark
    name: CASTLE-787-1.c
    version: 1.1
    compile: gcc CASTLE-787-1.c -o CASTLE-787-1
    vulnerable: true
    description: Buffer overflow in scanf function.
    cwe: 787
    #include <stdio.h>
13
    int main( int argc, char *argv[])
15
        char reg_name[12];
        printf("Enter your username:");
17
        scanf("%s", reg_name); // {!LINE}
18
        printf("Hello %s.\n", reg_name);
19
20
        return 0;
21 }
```


The CASTLE Metric

Let:

t: tool (SAST, FV, LLM)

d: tests

d_i, weakness in test i

v_i, correct weakness label for test I

t_{cwe}, position of a CWE in the MITRE top list

Bonus Point Formula

$$B(t_{cwe}) = \begin{cases} b_{\max} - \left\lfloor \frac{S(t_{cwe}) - 1}{b_{\max}} \right\rfloor, & \text{if } S(t_{cwe}) \le 25\\ 0, & \text{otherwise} \end{cases}$$

Tool Score Formula

$$CASTLE(t, d^{n}) = \sum_{i=1}^{n} \begin{cases} 5 - (|t(d_{i})| - 1) + B(t_{cwe}), & \text{if } v_{i} \neq \emptyset \land v_{i} \in t(d_{i}) \\ 2, & \text{if } v_{i} = \emptyset \land t(d_{i}) = \emptyset \\ -|t(d_{i})|, & \text{otherwise} \end{cases}$$

Results

Static Application Security Tester Formal Verification

Generic Code Analyzer Tool Combination

Theoretical maximum: 1250

No findings: 200

Results

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

P = Precision

R = Recall

A = Accuracy

* All tests were run in February 2025

Name Version TP TN FP FN P R A CASTLE Score CodeQL 2.20.1 35 84 43 115 45% 23% 43% 600 Snyk 1.1295.4 30 86 28 120 52% 20% 44% 594 CBMC 5.95.1 41 97 12 109 77% 27% 53% 547 SonarQube 25.3.0 45 73 104 105 30% 30% 36% 542 GCC Fanalyzer 13.3.0 41 81 74 109 36% 27% 40% 523 Semgrep Code 1.110.0 26 76 76 124 26% 17% 34% 486 Aikido N/A* 12 85 31 138 28% 8% 36% 484 Coverity 2024.12.1 31 87 61 119 34% 21% 40% 428 Jit N/A* 13 85 58 137 18% 9% 33% 427 Cppcheck 2.13.0 18 100 5 132 78% 12% 46% 405 Clang Analyzer 18.1.3 13 99 2 137 87% 9% 45% 381 GitLab SAST 15.2.1 18 67 259 132 6% 12% 18% 215 Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-03 Mini GPT-01 -			Results				Evaluation Metrics					
CodeQL 2.20.1 35 84 43 115 45% 23% 43% 600 Snyk 1.1295.4 30 86 28 120 52% 20% 44% 594 CBMC 5.95.1 41 97 12 109 77% 27% 53% 547 SonarQube 25.3.0 45 73 104 105 30% 30% 36% 542 GCC Fanalyzer 13.3.0 41 81 74 109 36% 27% 40% 523 Semgrep Code 1.110.0 26 76 76 124 26% 17% 34% 486 Aikido N/A* 12 85 31 138 28% 8% 36% 484 Coverity 2024.12.1 31 87 61 119 34% 21% 40% 428 Jit N/A* 13 85 58 137 18% 9% </th <th>Name</th> <th>Version </th> <th>ТP</th> <th>TN</th> <th>\mathbf{FP}</th> <th>$\overline{\mathbf{F}}\mathbf{N}$</th> <th>P</th> <th>$\mathbf{R}$</th> <th>A</th> <th>CASTLE</th> <th>Score</th>	Name	Version	ТP	TN	\mathbf{FP}	$\overline{\mathbf{F}}\mathbf{N}$	P	\mathbf{R}	A	CASTLE	Score	
Snyk 1.1295.4 30 86 28 120 52% 20% 44% 594 CBMC 5.95.1 41 97 12 109 77% 27% 53% 547 SonarQube 25.3.0 45 73 104 105 30% 30% 36% 542 GCC Fanalyzer 13.3.0 41 81 74 109 36% 27% 40% 523 Semgrep Code 1.110.0 26 76 76 124 26% 17% 34% 486 Aikido N/A* 12 85 31 138 28% 8% 36% 484 Coverity 2024.12.1 31 87 61 119 34% 21% 40% 428 Jit N/A* 13 85 58 137 18% 9% 33% 427 Cppcheck 2.13.0 18 100 5 132 78% 12% 46% 405 GitLab SAST 15.2.1 18 67 259	ESBMC	7.8.1	53	99	12	97	82%	35%	58%	697		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CodeQL	2.20.1	35	84	43	115	45%	23%	43%	600		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Snyk	1.1295.4	30	86	28	120	52%	20%	44%	594		
GCC Fanalyzer 13.3.0 41 81 74 109 36% 27% 40% 523 Semgrep Code 1.110.0 26 76 76 124 26% 17% 34% 486 Aikido N/A* 12 85 31 138 28% 8% 36% 484 Coverity 2024.12.1 31 87 61 119 34% 21% 40% 428 Jit N/A* 13 85 58 137 18% 9% 33% 427 Cppcheck 2.13.0 18 100 5 132 78% 12% 46% 405 Clang Analyzer 18.1.3 13 99 2 137 87% 9% 45% 381 GitLab SAST 15.2.1 18 67 259 132 6% 12% 18% 215 Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 110	CBMC	5.95.1	41	97	12	109	77%	27%	53%	547		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SonarQube	25.3.0	45	73	104	105	30%	30%	36%	542		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GCC Fanalyzer	13.3.0	41	81	74	109	36%	27%	40%	523		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Semgrep Code	1.110.0	26	76	76	124	26%	17%	34%	486		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aikido	N/A*	12	85	31	138	28%	8%	36%	484		
Cppcheck 2.13.0 18 100 5 132 78% 12% 46% 405 Clang Analyzer 18.1.3 13 99 2 137 87% 9% 45% 381 GitLab SAST 15.2.1 18 67 259 132 6% 12% 18% 215 Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	Coverity	2024.12.1	31	87	61	119	34%	21%	40%	428		
Clang Analyzer 18.1.3 13 99 2 137 87% 9% 45% 381 GitLab SAST 15.2.1 18 67 259 132 6% 12% 18% 215 Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	Jit	N/A*	13	85	58	137	18%	9%	33%	427		
GitLab SAST 15.2.1 18 67 259 132 6% 12% 18% 215 Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	Cppcheck	2.13.0	18	100	5	132	78%	12%	46%	405		
Splint 3.1.2 23 36 1029 127 2% 15% 5% -600 CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	Clang Analyzer	18.1.3	13	99	2	137	87%	9%	45%	381		
CodeThreat N/A* 21 2 1104 129 2% 14% 2% -710 GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	GitLab SAST	15.2.1	18	67	259	132	6%	12%	18%	215		
GPT-o3 Mini - 121 61 72 29 63% 81% 64% 955 GPT-o1 - 114 66 72 36 61% 76% 62% 930	Splint	3.1.2	23	36	1029	127	2%	15%	5%	-600		
GPT-o1 - 114 66 72 36 61% 76% 62% 930	CodeThreat	N/A*	21	2	1104	129	2%	14%	2%	-710		
	GPT-o3 Mini	- 1	121	61	72	29	63%	81%	64%	955		
DeepSeek R1 - 133 43 163 17 45% 89% 49% 888	GPT-o1	- 1	114	66	72	36	61%	76%	62%	930		
	DeepSeek R1	- 1	133	43	163	17	45%	89%	49%	888		
GPT-4o - 113 45 141 37 44% 75% 47% 814	GPT-4o	- 1	113	45	141	37	44%	75%	47%	814		
QWEN 2.5CI (32B) - 106 31 226 44 32% 71% 34% 666	QWEN 2.5CI (32B)	- 1	106	31	226	44	32%	71%	34%	666		
GPT-4o Mini - 117 27 276 33 30% 78% 32% 663	GPT-40 Mini	- 1	117	27	276	33	30%	78%	32%	663		
Falcon 3 (7B) - 36 76 70 114 34% 24% 38% 557	Falcon 3 (7B)	-	36	76	70	114	34%	24%	38%	557		
Mistral Ins. (7B) - 54 23 218 96 20% 36% 20% 344	Mistral Ins. (7B)	-	54	23	218	96	20%	36%	20%	344		
Gemma 2 (9B) - 42 42 288 108 13% 28% 18% 301		-	42	42	288	108	13%	28%	18%	301		
LLAMA 3.1 (8B) - 56 22 374 94 13% 37% 14% 245	LLAMA 3.1 (8B)	-	56	22	374	94	13%	37%	14%	245		

Regulte

Evaluation Metrics

Tool Combination Deltas

Limitations

- Microbenchmark focuses on a single vulnerability in an isolated context
- Small file size: real-world applications are longer than 42 lines
- Long-term "overfitting": vendors may focus on specific vulnerabilities present here
- Some deviations between runs, especially for LLMs (<3%)
- This study only focuses on the C language, it is hard to generalize

Conclusion

- **LLMs** show great promise moving forward for security analysis with the best current model achieving the **highest score** of 955 points. However, they won't perform as good for larger code bases.
- **FV** methods provide the **most consistent findings** on average, but they are much more limited on the types of issues they find.
- **SAST** tools have a **high false-positive** rate, but they find most higher-level issues coming from semantic issues.
- Tool combinations can be better than a single one if chosen correcylt, out highest tested was 24% better
- The **CASTLE Score** provides a clear and comparable measure of single and combined tool performance.

Future Work

- Extend the code dataset for other common languages (Python, JavaScript, ...)
- Introduce random noise with correct functions into the tests to make "overfitting" more difficult
- Introduction of complex vulnerability chains
- Testing LLMs using RAG
- Testing LLM refining of static analyzer outputs

Thank you for your attention!

Questions?

Contact:

richard@dubniczky.com linkedin.com/in/dubniczky

Repository:

https://github.com/CASTLE-Benchmark

