Kittel TP.
(Photon excitations are taken to be interpreted as the # of photons, quantum # S = s photons.)
y of process, quantitative at 3 = 5 process.
In thermostatistics, we can safely take expectation value
of the quantum # as the quantum # that will be observed
allowing us to safely take
$N = \sum D(s_h) s_h = \sum D(s_h) < s_h >$
where D(sn) is degeneracy, sn is the quantum of.
Using planck distribution function for (sn), and 30 particle
in a box degeneracy formula for D(sn) we have
$N = \frac{1}{8} (2) \int_{0}^{\infty} 4 \pi n^{2} dn \frac{1}{\exp(n\pi c)} dn$ where $w_{n} = \frac{h\pi c}{L}$
= T 50 dh n2
Introduce $x = (\frac{\pi c \tau}{L\tau}) n$, then $n = (\frac{L\tau}{\hbar c \tau})^2 x^2$, $dn = (\frac{L\tau}{\hbar c \tau}) dx$
$\Rightarrow N = 7 \left(\frac{L^{\gamma}}{hc^{\gamma}} \right) \int_{exp(x)-1}^{3} dx \frac{x^{2}}{exp(x)-1}.$
N7
The fdx x2 can be evaluated to give 22.40.
Davidson Cheng
1.4.2027