Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Lampiga Sergey Гр. 320201

Вариант 29

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:5365:7267:6500:0/104 |

Задание 1.2: разбить сеть из п.1.1 на 80 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	$2001: \mathtt{db8:0:4ee9:5365:7267:6500:0/111}$
Префикс $N_{\text{CPëPS}}$	2001:db8:0:4ee9:5365:7267:659e:0/111

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (29*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (29*16)/256=208

Дано: Сеть 11.208.0.0/12

Задание 2.1.1: разбить сеть на 32768 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	208	0	0
Адрес сети	00001011	11010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

- 2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 3 бит из 1-го октета.
- 3. Итого, получается, что сеть 11.208.0.0/12 мы разбили на 32768 подсети, в каждой из которых по 30 узлов, указываем первые 5 подсетей:

	11	208	0	0
Адрес сети дв.с	00001011	11010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11100000
	255	255	255	224

255	255	255
Адрес сети $N_1/$ Префикс N_1	11.208.0.0/	27
Адрес первого узла N_1	11.208.0.1	
Адрес последнего узла N_1	11.208.0.30)
Широковещательный адрес N_1	11.208.0.31	
Адрес сети $N_2/$ Префикс N_2	11.208.0.32	2/27
Адрес первого узла N_2	11.208.0.33	}
Адрес последнего узла N_2	11.208.0.62	!
Широковещательный адрес N_2	11.208.0.63	3
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.208.0.64	1/27
Адрес первого узла N_3	11.208.0.65	,
Адрес последнего узла N_3	11.208.0.94	Į.
Широковещательный адрес N_3	11.208.0.95)
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	11.208.0.96	5/27
Адрес первого узла N_4	11.208.0.97	,
Адрес последнего узла N_4	11.208.0.12	26
Широковещательный адрес N_4	11.208.0.12	27

$oxed{A$ дрес сети $N_5/$ Префикс N_5	11.208.0.128/27
Адрес первого узла N_5	11.208.0.129
Адрес последнего узла N_5	11.208.0.158
Широковещательный адрес N_5	11.208.0.159

Дано: Сеть 11.208.0.0/12

Задание 2.1.2: разбить сеть на 7000 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	208	0	0
Адрес сети	00001011	11010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(7000\leqslant 2^{13}=8192)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 1 бит из 1-го октета (получается, что сеть можно разбить на 8192 подсетей: $2^{13}=8192$; оставшиеся 7 бит идут под узлы: $2^7-2=126$ в каждой подсети).

	11	208	0	0
Адрес сети дв.с	00001011	11010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем первую и последнюю подсети:

$oxed{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	11.208.0.0/25
Адрес первого узла N_1	11.208.0.1
Адрес последнего узла N_1	11.208.0.126
Широковещательный адрес N_1	11.208.0.127

Адрес сети $N_2/$ Префикс N_2	11.221.171.128/25
Адрес первого узла N_2	11.221.171.129
Адрес последнего узла N_2	11.221.171.254
Широковещательный адрес N_2	11.221.171.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 4096 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	208	0	0
Адрес сети	00001011	11010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=12, т.к. $2^{12}-2=4094$. Т.е. нужно выбрать такую маску, которря выделит ровно 12 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^8=64$ подсетей по 4094 узла(ов) в каждой.

	11	208	0	0
Адрес сети дв.с	00001011	11010000	00000000	00000000
Маска дв.с	11111111	11111111	11110000	00000000
	255	255	240	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.223.176.0/20
Λ дрес первого узла N_1	11.223.176.1
Адрес последнего узла N_1	11.223.191.254
Широковещательный адрес N_1	11.223.191.255

Адрес сети $N_2/$ Префикс N_2	11.223.192.0/20
Адрес первого узла N_2	11.223.192.1
Адрес последнего узла N_2	11.223.207.254
Широковещательный адрес N_2	11.223.207.255
$lacksquare$ Адрес сети $N_3/$ Префикс N_3	11.223.208.0/20
Адрес первого узла N_3	11.223.208.1
Адрес последнего узла N_3	11.223.223.254
Широковещательный адрес N_3	11.223.223.255
$lacksquare$ Адрес сети $N_4/$ Префикс N_4	11.223.224.0/20
$egin{aligned} { m Aдреc} \ { m Cети} \ N_4/\ { m Префикс} \ N_4 \ \\ { m Aдреc} \ { m первого} \ { m yзла} \ N_4 \ \end{aligned}$	11.223.224.0/20 11.223.224.1
,	,
Λ дрес первого узла N_4	11.223.224.1
Адрес первого узла N_4 Адрес последнего узла N_4	11.223.224.1 11.223.239.254
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4	11.223.224.1 11.223.239.254 11.223.239.255
Адрес первого узла N_4 Адрес последнего узла N_4 Широковещательный адрес N_4 Адрес сети $N_5/$ Префикс N_5	11.223.224.1 11.223.239.254 11.223.239.255 11.223.240.0/20

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 15000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	208	0	0
Адрес сети	00001011	11010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=14, т.к. $2^{14}-2=16382\geqslant 15000$.

	11	208	0	0
Адрес сети дв.с	00001011	11010000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем первую и последнюю подсети

Адрес сети $N_1/$ Префикс N_1	11.208.0.0/18
Адрес первого узла N_1	11.208.0.1
Адрес последнего узла N_1	11.208.63.254
Широковещательный адрес N_1	11.208.63.255
$oxed{A$ дрес сети $N_2/$ Префикс N_2	11.223.192.0/18
Адрес первого узла N_2	11.223.192.1
Адрес последнего узла N_2	11.223.255.254

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 200 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	208	0	0
Адрес сети	00001011	11010000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$.

	11	208	0	0
Адрес сети дв.с	00001011	11010000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.223.251.0/24
Адрес первого узла N_1	11.223.251.1
Адрес последнего узла N_1	11.223.251.254
Широковещательный адрес N_1	11.223.251.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.223.252.0/24
Адрес первого узла N_2	11.223.252.1
Адрес последнего узла N_2	11.223.252.254
Широковещательный адрес N_2	11.223.252.255
$oxedsymbol{\Lambda}$ дрес сети $N_3/$ Префикс N_3	11.223.253.0/24
Адрес первого узла N_3	11.223.253.1
Адрес последнего узла N_3	11.223.253.254
Широковещательный адрес N_3	11.223.253.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.223.254.0/24
Адрес первого узла N_4	11.223.254.1
Адрес последнего узла N_4	11.223.254.254
Широковещательный адрес N_4	11.223.254.255
$oxedsymbol{\Lambda}$ Адрес сети $N_5/$ Префикс N_5	11.223.255.0/24
Адрес первого узла N_5	11.223.255.1
Адрес последнего узла N_5	11.223.255.254
Широковещательный адрес N_5	11.223.255.255