Нижегородский государственный университет имени Н. И. Лобачевского Высшая школа общей и прикладной физики

Выполнили:

Горячев С. А.

Лютов А. О.

Цель работы:

Измерить момент инерции махового колеса двумя способами (методом вращения и методом колебаний), сравнить полученные значения, оценить теоретически вклад обода и спиц.

Оборудование:

- маховое колесо;
- $\text{груз m}=(500,0\pm0.5)\Gamma;$
- $\text{груз m}=(200\pm0.5)\Gamma;$
- $\text{груз m}=(1900,0\pm0,5)\Gamma;$
- груз m= $(1450,0\pm0,5)$ г;
- секундомер;
- линейка;
- штангенциркуль

Теоретическое обоснование:

Метод вращения:

На шкив наматывается нить с прикреплённым к ней грузом. Падая груз разматывает нить и приводит систему (маховое колесо, шкивы и ось) во вращательное движение. При этом потенциальная энергия груза переходит в кинетическую энергию вращательного движения системы. На основании закона сохранения энергии можно записать:

$$E_p = E_k + E_w + A,$$

где E_P – потенциальная энергия груза в верхнем положении, E_w и E_κ соответственно кинетическая энергия груза и кинетическая энергия вращающейся системы в тот момент, когда нить полностью размотается; А энергия, затраченная на работу против сил трения.

Введём обозначения: m - масса груза; h - максимальная высота его подъёма; υ – скорость груза в нижнем положении; R - радиус шкива; I - момент инерции системы; w - её угловая скорость в момент, когда груз достигает нижнего положения. Тогда уравнение может быть переписано в виде: $mgh = \frac{mv^2}{2} + \frac{Iw^2}{2} + A$

$$mgh = \frac{mv^2}{2} + \frac{Iw^2}{2} + A$$

Так как момент сил трения не зависит от скорости вращения, то движение системы будет равноускоренным. Зная высоту h и время движения груза t, легко подсчитать его скорость в нижнем положении:

$$v = \frac{2h}{t}$$

Если нить разматывается без скольжения, то линейная скорость точек на поверхности шкива равна скорости груза и

$$w = \frac{2h}{Rt}$$

Работа против сил трения пропорциональна числу оборотов, совершаемых системой, то есть

$$A = \sum_{n=1}^{n} A^{\prime} * n1,$$

где А'- работа против сил трения за один оборот. Тогда получается, что

$$n1 = \frac{h}{2 * \pi * R}$$

В момент достижения грузом нижнего положения нить отделяется от шкива, а система продолжает вращаться, совершая работу против сил трения за счёт приобретённой кинетической энергии

$$\frac{I*w^2}{2} = A'*n2,$$

где n₂ - число оборотов системы до полной остановки. Используя все выше названное, можно вывести:

$$mgh = \frac{2mh^2}{t^2} + \frac{2Ih^2}{R^2t^2} + \frac{2Ih^2}{r^2t^2} * \frac{n1}{n2},$$

Откуда:

$$I = \frac{m(gt^2 - 2h)R^2n2}{2h(n1 + n2)}$$

Метод колебаний:

Если на некотором расстоянии 1 от центра колеса прикрепить к нему дополнительный груз, то система превращается в физический маятник. Выведенный из положения равновесия, маятник будет совершать колебания под действием момента силы тяжести дополнительного груза. Пренебрегая силами трения, можно записать уравнение движения маятника в виде:

$$I\frac{\delta w}{\delta t}=mgl\phi$$
, где при малых углах можно сделать допущение: $sin\phi=\phi$

Это уравнение также называется основным уравнением динамики вращательного движения. Запишем его в виде:

$$\frac{\delta w}{\delta t} + \frac{mgl}{I}\phi = 0$$

Это уравнение гармонических колебаний с периодом:

$$T=2*\pi*\sqrt{\frac{I}{mgl}}$$
, тогда:

$$I = rac{mglT^2}{4\pi^2}$$
, тогда

Момент инерции колеса будет равен разности момента инерции всей системы, найденный выше, и момента инерции цилиндра, где момент инерции цилиндра

равен:
$$I = \frac{1}{2}mr^2 + ml^2$$
, где r - радиус цилиндра, тогда

$$I = \frac{mglT^2}{4\pi^2} - (\frac{1}{2}mr^2 + ml^2)$$
 - момент инерции колеса

Практическая часть: Метод вращения:

$$I_{\text{колеса}} = I_{\text{всей системы}} - (I_{\text{оси}} + I_{\text{утолщения}} + I_{\text{шкива}})$$

	$ ho$, г/см $^{f 3}$	R, см	L, см	I, г см2
ОСЬ	7,8	0,9	7,31	58,7625
утолщение		1,16	17,72	393,109375
ШКИВ		3,675	3,29	7257,545

$$I = \frac{m(gt^2 - 2h)R^2n2}{2h(n1 + n2)}$$

т, г	Nº ⊓/⊓	h, см	R, см	t, сек	n2	I всей системы, г см2	I - среднее	I - среднее
	1			12,82	171,4	3999166,690		
500	2	134		13,83	169,1	4653120,770	4396436,667	
	3		3,675	13,65	174,2	4537022,541		5264920,740
	1			25,52	62	6000116,583		
200	2	134		26,03	64,8	6265589,411	6133404,814	
	3			25,83	60,3	6134508,449		

$$n1 = \frac{h}{2 * \pi * R} = \frac{134}{2 * 3,675 * 3,14} = 5,8$$

Тогда, имеем:

$$I = 5264920,740 - 7256,545 - 393,109375 - 58,7625 = 5257212,323$$
 г см 2

Метод колебаний:

$$I_{\text{колеса}} = I_{\text{всей системы}} - (I_{\text{доп.груза}} + I_{\text{шкива}} + I_{\text{оси}} + I_{\text{утолщения}})$$

$$I = \frac{1}{2}mr^2 + ml^2$$
 - момент инерции цилиндра

Для первого опыта:
$$I = \frac{1}{2} * 1900 * 5^2 + 1900 * 23,5^2 = 1073025$$

Для второго опыта:
$$I = \frac{1}{2} * 1450 * 3,3^2 + 1450 * 23,5^2 = 808657,75$$

	$ ho$, г/см $^{f 3}$	R, см	L, см	I, г см ²
ось	7,8	0,9	7,31	58,7625
утолщение		1,16	17,72	393,109375
шкив		3,675	3,29	7257,545

$$I = \frac{mglT^2}{4\pi^2}$$

т, г	№ п/п	n	R доп. груза, см	L, см	t, сек	I всей системы, г см ²	I - среднее	I - среднее	
	1		5		25,41	7302491,441			
1900	2				24,76	6933667,431	7116735,622	7001007 500	
	3	10		23,5	25,08	7114047,995			
	1		3,3	*	28,88	7179030,599		7091027,598	
1450	2			3,3		27,94	6737967,802	7065319,573	
	3				29,04	7278960,319			

Тогда имеем:

Для первого случая:

I = 7116735,622 - 1037025 - 58,7625 - 393,109375 - 7257,545 = 6072001,205 $_{\Gamma \text{ CM}2}$

Для второго случая:

$$I = 7065319,573 - 808657,75 - 58,7625 - 393,109375 - 7257,545 = 6248952,406$$
 $_{\Gamma \text{ CM}2}$

Тогда имеем:

$$I = \frac{6072001,205 + 6248952,406}{2} = 6160476,806 \,_{\Gamma \text{ cm}} 2$$

Теперь оценим момент инерции:

$$I_{\kappa o extit{n}eca} = I_{o extit{o}o extit{d}a} + I_{u \kappa u extit{B}a} + I_{c n u u} \cong 6,61*10^6 \, {
m г} \, {
m cm}^2$$

$$I_{oбoda}\cong$$
 6,37*106 г см 2

$$I_{\mathit{шкивa}} \cong 0.008*10^6 \,\mathrm{f\,cm^2}$$

$$I_{cnuu}\cong 0$$
,23*106 г*см2

Момент инерции, посчитанный теоретически	Метод вращения	Метод колебаний
6,61*10 ⁶ г см ²	5257212,323 г см ²	6160476,806 г см ²

Расчет погрешностей:

Метод вращения:

Для 500 г:

Суммарная погрешность результата:

1) $\Delta I = \sqrt{(\Delta I 1)^2 + (\Delta I 2)^2}$, где первый член - это случайная погрешность, а второй член - это абсолютная погрешность нашей величины, полученной в результате косвенных измерений.

2) $\Delta I1 = t * \sigma$,где t - коэффициент Стьюдента, а σ - стандартное отклонение

t = 9,9 для 3 измерений с вероятностью 99%, он был взят из таблицы коэффициентов Стьюдента

$$\sigma = \sqrt{\frac{(4396436,667 - 3999166,690)^2 + (4396436,667 - 4653120,770)^2 + (4396436,667 - 4537022,541)^2}{3*2}} = 201442$$

$$\Delta I1 = t * \sigma = 9.9 * 201442 = 1994275,8 \ \text{f cm}^2$$

3)
$$\Delta I2 = \epsilon(I) * I$$

$$\epsilon(I) = \epsilon(m(gt^2 - 2h)R^2n^2) + \epsilon(2h(n^2 + n^2)) = \epsilon(m) + \epsilon(gt^2 - 2h) + \epsilon(gt^2$$

$$+\epsilon(R^2)+\epsilon(n2)+\epsilon(n2+n1)+\epsilon(2h)=\frac{\Delta m}{m}+\frac{g*2*t*\Delta t-2*\Delta h}{g*t^2-2h}+2*\frac{\Delta R}{R}+$$

$$+\frac{h*2\pi*\Delta R+2\pi*R*\Delta h}{4\pi^2*R^2*(n1+n2)}+\frac{\Delta h}{h}$$
 и $\epsilon(I)$ - максимальный из 3

опытов

Опыт №1

$$\epsilon(I) = 0.034066$$

Опыт №2

$$\epsilon(I) = 0.031778$$

Опыт №3

$$\epsilon(I) = 0.031159$$
, тогда

$$\Delta I2 = 4396436,667 * 0,034066 = 149769,01150$$
 г см2

$$\Delta(I) = \sqrt{1994275,8^2 + 149769,01150^2} = 1999891,678$$
 г см2 Для 200 г:

Суммарная погрешность результата:

1) $\Delta I = \sqrt{(\Delta I 1)^2 + (\Delta I 2)^2}$, где первый член - это случайная погрешность, а второй член - это абсолютная погрешность нашей величины, полученной в результате косвенных измерений.

2) $\Delta I1 = t * \sigma$,где t - коэффициент Стьюдента, а σ - стандартное отклонение t = 9,9 для 3 измерений с вероятностью 99%, он был взят из таблицы коэффициентов Стьюдента

$$\sigma = \sqrt{\frac{(6133404,814 - 6000116,583)^2 + (6133404,814 - 6265588,411)^2 + (6133404,814 - 6134508,449)^2}{3*2}} = 76637$$

$$\Delta I1 = t * \sigma = 9.9 * 76637 = 758706,3 \, \text{f cm} 2$$

3)
$$\Delta I2 = \epsilon(I) * I$$

$$\epsilon(I) = \epsilon(m(gt^2 - 2h)R^2n^2) + \epsilon(2h(n^2 + n^2)) = \epsilon(m) + \epsilon(gt^2 - 2h) + \epsilon(gt^2$$

$$+\epsilon(R^2)+\epsilon(n2)+\epsilon(n2+n1)+\epsilon(2h)=\frac{\Delta m}{m}+\frac{g*2*t*\Delta t-2*\Delta h}{g*t^2-2h}+2*\frac{\Delta R}{R}+\frac{\Delta R}{R}+\frac{\Delta$$

$$+ \frac{h*2\pi*\Delta R + 2\pi*R*\Delta h}{4\pi^2*R^2*(n1+n2)} + \frac{\Delta h}{h}$$
 и $\epsilon(I)$ - максимальный из 3

опытов

Опыт №1

$$\epsilon(I) = 0.01911$$

Опыт №2

$$\epsilon(I) = 0.01879$$

Опыт №3

$$\epsilon(I) = 0.01892$$

$$\Delta I2 = 6133404,814 * 0,01911 = 117209,3650$$
 г см2

$$\Delta(I) = \sqrt{758706,3^2 + 117209,3650^2} = 767706,510$$
 г см2, тогда

 ΔI среднего = (ΔI для 500 г + ΔI для 200 г) \ 2, тогда

 $I = 5264920,740 \pm 1383799,094$ г см2, где I - момент инерции всей системы, тогда для момента инерции колеса

 ΔI колеса = ΔI всей системы + ΔI оси + ΔI утолщения + ΔI шкива, тогда

I колеса = 5257212,323 \pm 1384073,910 г см2

Метод колебаний:

Для 1900 г:

Суммарная погрешность результата:

1) $\Delta I = \sqrt{(\Delta I 1)^2 + (\Delta I 2)^2}$, где первый член - это случайная погрешность, а второй член - это абсолютная погрешность нашей величины, полученной в результате косвенных измерений.

2) $\Delta I1 = t * \sigma$,где t - коэффициент Стьюдента, а σ - стандартное отклонение t = 9,9 для 3 измерений с вероятностью 99%, он был взят из таблицы коэффициентов Стьюдента

$$\sigma = \sqrt{\frac{(7116735,622 - 7302491,441)^2 + (7116735,622 - 6933667,431)^2 + (7116735,622 - 7114047,995)^2}{3*2}} = 106478,80085$$

$$\Delta I1 = t * \sigma = 9.9 * 106478,80085 = 1054140,128 \text{ f cm} 2$$

$$_{3)}\Delta I2 = \epsilon(I) * I$$

$$\epsilon(I) = \frac{\Delta m}{m} + \frac{\Delta L}{L} + 2\frac{\Delta t}{t}$$

Опыт №1

$$\epsilon(I) = 0.02043$$

Опыт №2

$$\epsilon(I) = 0.02067$$

Опыт №3

$$\epsilon(I) = 0.02048$$

 $\Delta I2 = 7116735,622 * 0,02067 = 147102,91245 \Gamma CM^2$

$$\Delta(I) = \sqrt{1054140,128^2 + 147102,91245^2} = 1064354,582 \text{ f cm} 2$$

Для 1450 г:

Суммарная погрешность результата:

1) $\Delta I = \sqrt{(\Delta I 1)^2 + (\Delta I 2)^2}$, где первый член - это случайная погрешность, а второй член - это абсолютная погрешность нашей величины, полученной в результате косвенных измерений.

2) $\Delta I1 = t * \sigma$,где t - коэффициент Стьюдента, а σ - стандартное отклонение t = 9,9 для 3 измерений с вероятностью 99%, он был взят из таблицы коэффициентов Стьюдента

$$\sigma = \sqrt{\frac{(7065319,573 - 7179030,599)^2 + (7065319,573 - 6737967,802)^2 + (7065319,573 - 7278960,319)^2}{3*2}} = 166198,48151$$

$$\Delta I1 = t * \sigma = 9.9 * 166198,48151 = 1645364,967$$
 f cm²

$$_{3)}\Delta I2 = \epsilon(I) * I$$

$$\epsilon(I) = \frac{\Delta m}{m} + \frac{\Delta L}{L} + 2\frac{\Delta t}{t}$$

Опыт №1

$$\epsilon(I) = 0.01153$$

Опыт №2

$$\epsilon(I) = 0.01176$$

Опыт №3

$$\epsilon(I) = 0.01149$$

$$\Delta I2 = 7065319,573 * 0,01176 = 83088,15818 \Gamma \text{ cm}^2$$

$$\Delta(I) = \sqrt{1645364,967^2 + 83088,15818^2} = 1647461,537$$
 г см2, тогда

 ΔI среднего = (ΔI для 1900 г + ΔI для 1450 г) \ 2, тогда

 $I = 7091027,598 \pm 1355908,060$ г см2, где I - момент инерции всей системы, тогда для момента инерции колеса

 ΔI колеса = ΔI всей системы + ΔI оси + ΔI утолщения + ΔI шкива + ΔI цилиндра, тогда

I колеса = 6160476,80 6 \pm 1356201,095 г см2

Момент инерции, посчитанный теоретически	Метод вращения	Метод колебаний
6,61*10 ⁶ г см ²	5257212,323 ± 1384073,910 г см2	6160476,80 6± 1356201,095 г см2

Вывод: Измерили момент инерции двумя способами. Вычислили погрешность измерений. Сравнили с теоретическим значением. С учетом погрешности величины совпадают. Большая погрешность получилась из-за оценочного значения работы сил трения.