3.5 Problèmes : applications des équations quadratiques

Exercice 1

Une entreprise produit un total de 500 tonnes de frites en janvier. En mars, la production est de 720 tonnes. x désigne le **taux d'augmentation** mensuel moyen.

Entourez l'équation vérifiée par x:

$$(E_1)$$
 500(1+2x) = 720 | (E_2) 500(1+x)² = 720 | (E_3) 500(1+x²) = 720 | (E_4) 720(1+x)² = 500

Exercice 2

Un enclos rectangulaire est adossé à un mur sur un des côtés. La longueur du grillage sur les 3 côtés restant est de $13\,\mathrm{m}$ et l'aire de l'enclos est de $20\,\mathrm{m}^2$. x désigne la longueur du côté perpendiculaire au mur.

- a) Montrer que x vérifie l'équation $2x^2 13x + 20 = 0$.
- b) Trouvez les solutions possibles.

Exercice 3

Chaque membre d'un group doit envoyer une photo à tous les autres membres. Un total de 90 photos ont été échangés. x désigne le nombre de membres du groupe.

Donner une équation vérifiée par x et la mettre sous forme standard.

Exercice 4

Un entier à deux chiffres a une valeur égale à 3 fois le carré du chiffre des unités. Le chiffre des dizaines est 2 de plus que le chiffre des unités.

x désigne le chiffre des unités. Donner une équation vérifiée par x et la mettre sous forme standard.

Exercice 5

Quark place $1000 \in$ sur un compte qui rapporte un taux d'intérêts de x par an. À la fin de la première année, il retire $200 \in$ en laissant les $800 \in$ et les intérêts accumulés pour une année supplémentaire. Quark pense en tirer $892.50 \in$ à la fin de la seconde année.

Donner une équation vérifiée par x et la mettre sous forme standard.

Exercice 6

En ligue, chaque équipe joue exactement 1 fois chez elle, et 1 fois en déplacement. Il y a 182 matchs durant la saison. Quel est le nombre d'équipes de cette ligue?

Exercice 7

Un triangle rectangle a pour hypothénuse de longueur 17 et de périmètre 40. Trouver les longueurs des deux petits côtés.

Exercice 8

Un rectangle a pour aire $225 \,\mathrm{cm}^2$. Sa longueur est $16 \,\mathrm{cm}$ de plus que ca largeur. Trouvez la largeur.

Exercice 9 — résoudre pour factoriser. Complétez.

a) Les solutions de $x^2 + px + q = 0$ d'inconnue x sont 3 et 4.

La forme factorisée de $x^2 + px + q = \dots$

b) Les solutions de l'équation $3x^2 + 4x - 1 = 0$ sont $r_1 = \frac{-2 + \sqrt{7}}{3}$ et $r_2 = \frac{-2 - \sqrt{7}}{3}$.

La forme factorisée de $3x^2 + 4x - 1 = \dots$

- c) La forme factorisée de $-2x^2 3x + 6 = \dots$
- d) y > 0. Soit l'équation $2x^2 - 8xy - 5y^2 = 0$ d'inconnue x. $\Delta = \dots$

Les solutions de l'équation sont :

$$r_1 = \frac{-\left(\begin{array}{c}\right) + \sqrt{}}{2\left(\begin{array}{c}\right)} = \dots \qquad ; r_2 = \frac{-\left(\begin{array}{c}\right) + \sqrt{}}{2\left(\begin{array}{c}\right)} = \dots \end{array}$$

La forme factorisée de $2x^2 - 8xy + 5y^2 = 2\left(x - \frac{+\sqrt{y}}{y}\right)\left(x - \frac{-\sqrt{y}}{y}\right)$

e) Soit y > 0. Les solutions de l'équation $3x^2 - 4xy - 4y^2 = 0$ d'inconnue x, sont :

 $r_1 = \dots ; r_2 = \dots ; r_2 = \dots$

La forme factorisée de $3x^2 - 4xy - 4y^2 = \dots$

- f) Si $x^2 + kx + 5(k-5)$ se factorise en un carré d'une expression, alors $k = \dots$
- g) Si $2x^2 3x + m + 1$ est factorisable alors $m \in \dots$

Exercice 10 — renforcement. Factoriser les expressions suivantes.

$$f_1 = x^2 - 5x + 6$$
 $| f_2 = 4x^2 - 5$ $| f_3 = 4x^2 + 8x - 1$ $| f_4 = 3x^2y^2 - 5xy - 1$

solution de l'exercice 10.
$$f_1(x) = (x-3)(x-2)$$
; $f_2(x) = 4\left(x-\frac{\sqrt{5}}{2}\right)\left(x+\frac{\sqrt{5}}{2}\right)$; $f_3(x) = 4\left(x+1+\frac{\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}}{2}+1\right)$;