

Содержание

- 1. Знакомимся с метрическими алгоритмами
- 2. Учимся оценивать качество и подбирать параметры
- 3. Улучшаем алгоритм
- 4. Алгоритмы на текстах и домашнее задание 1
- 5. Практический кейз: Рекомендательные системы

Часть 1 Ваш первый алгоритм

Напоминание

Объект описывается вектором его наблюдаемых характеристик (признаков) $x \in X$ и скрытых характеристик $y \in Y$ (целевая переменная).

Существует некоторая функция $f: X \to Y$

Задача: имея ограниченный набор объектов, построить функцию $a:X \to Y$, приближающую f на всем множестве объектов

$$\{x_1, ..., x_N\} = X_{train}, \{y_1, ..., y_N\} = Y_{train}$$

Обучение с учителем — известны X_{train}, Y_{train}

- 1) Классификация $-Y = \{1,...,M\}$
- 2) Регрессия $Y = \mathbb{R}, Y = \mathbb{R}^{M}$

Напоминание

Функция потерь L(a, x, y) — неотрицательная функция, показывающая величину ошибки алгоритма a на объекте x с ответом y.

Функционал качества

$$Q(a, X, Y) = \frac{1}{N} \sum_{i=1}^{N} L(a, x_i, y_i), x_i \in X, y_i \in Y$$

Принцип минимизации эмпирического риска:

$$a^* = \underset{A}{\operatorname{argmin}} Q(a, X_{train}, Y_{train}), A - \operatorname{семейство}$$
 алгоритмов.

Переобучение —
$$Q(a, X_{train}, Y_{train}) << Q(a, X_{test}, Y_{test})$$

Формула обучения:

Learning = Representation + Evaluation + Optimization

Источник: homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Пример переобучения

Источник: en.wikipedia.org/wiki/Overfitting

Пример переобучения

Источник: en.wikipedia.org/wiki/Overfitting

Какие бывают алгоритмы

- Параметрические (имеют фиксированное число параметром) Имеют четкие предположения о структуре данных, работают быстро.
- Непараметрические (число параметров растет с размером датасета). Не имеют никаких предположений о структуре данных, работают очень медленно на больших данных.

Сегодня вся лекция про непараметрические алгоритмы

Гипотеза компактности

Гипотеза: Похожие объекты лежат в одном классе

Источник: medium.com/@b.terryjack

Гипотеза непрерывности

Гипотеза: Похожие объекты имеют похожий ответ

Источник: Bishop

Метрические алгоритмы

Пусть обучающая выборка размера N.

Общая формула для классификации:

$$a(x, X_{train}) = \underset{c}{\operatorname{argmax}} \sum_{i=1}^{N} w(x, x_i) I[y_i = c], x_i \in X_{train}$$

Общая формула для регрессии:

$$a(x, X_{train}) = \frac{\sum_{i=1}^{N} w(x, x_i) y_i}{\sum_{i=1}^{N} w(x, x_i)}, x_i \in X_{train}$$

Непараметрический, ленивый алгоритм

Задаем веса

- Если ненулевой вес только у ближайшего объекта, то алгоритм называют алгоритмом ближайшего соседа
- Если ненулевые веса для k ближайших объектов, то алгоритм называют алгоритмом kближайших соседей (k-nearest neighbors, knn).

Пусть $x_i - i$ -тый ближайший сосед объекта x

•
$$w(x, x_i) = 1/k$$

•
$$w(x, x_i) = \frac{k+1-i}{k}$$

•
$$w(x, x_i) = 1/k$$

• $w(x, x_i) = \frac{k+1-i}{k}$
• $w(x, x_i) = \alpha^i, \alpha \in (0,1)$

Задаем веса

Проблема: в прошлом варианте никак не учитываем величину расстояния.

$$w(x, x_i) = K(\rho(x, x_i)),$$

где K(x) — любая монотонно убывающая функция.

Примеры:

- $K(x) = \frac{1}{x+\beta}$ $K(x) = \exp(-x)$
- $K(x) = \alpha^x, \alpha \in (0,1)$

Пример классификации

Источник: cambridgecoding.wordpress.com/2016/03/24/

Пример регрессии

Источник: plot.ly/python

Часть 2 Оцениваем качество, выбираем параметры

Структурные параметры

Параметры метрических алгоритмов настраивать на обучающей выборке? На тестовой? Почему?

$$Q(a, X, Y) = \frac{1}{N} \sum_{i=1}^{N} L(a, x_i, y_i), x_i \in X, y_i \in Y$$

Переобучение возникает из-за излишней сложности модели

Параметры, которые нельзя настраивать на обучающей выборке, будем называть **структурными**.

Обучающую выборку нужно разделить на обучающую и **валидационную**. На ней настраиваем структурные параметры!

Скользящий контроль

Качество зависит от объектов в валидации! Решение — скользящий контроль (cross-validation). В пределе, когда только 1 объект в тесте — LOO (leave one out).

Оцениваем качество регрессии

$$Q(a, X, Y) = \frac{1}{N} \sum_{i=1}^{N} L(a, x_i, y_i), x_i \in X, y_i \in Y$$

Функции потерь:

1. **Квадратичная**(Q - MSE)

$$L(a, x, y) = (a(x) - y)^2$$

2. **Абс**олютная(Q - MAE)

$$L(a, x, y) = |a(x) - y|$$

- 3. Логарифмическая (Q MSLE) $L(a, x, y) = (\log(a(x) + 1) \log(y + 1))^2$
- 4. Абсолютная-процентная (Q —МАРЕ) $L(a, x, y) = \frac{|a(x) y|}{y}$

Оцениваем качество классификации

- **Accuracy** (точность) процент правильно классифицированных объектов L(a,x,y)=[a(x)=y]
- **Precision** (аккуратность) процент правильно классифицированных объектов класса 1 среди всех объектов, которым алгоритм присвоил метку 1.
- **Recall** (полнота) процент правильно классифицированных объектов класса 1 среди всех объектов класса 1
- F1-score среднее гармоническое Precision и Recall

$$F1 = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Тестовая выборка содержит 10 объектов класса 1 и 990 объектов класса 0. Какая точность у константного алгоритма?

Почему именно среднее гармоническое?

Не всегда нужно разбивать случайно

Нельзя никогда забывать, какую задачу мы решаем!

Если выборка маленькая, то нужно сохранять баланс классов — stratified валидация.

Как сделать валидацию в случае:

- Спам-фильтра
- Предсказания объема продаж на следующую неделю
- Предсказания стоимости квартир для всего дома целиком

Часть 3 Улучшаем алгоритм

Метрики

Аксиомы:

1.
$$\rho(x, y) = 0$$
, т.и.т.д $x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x, z) \le \rho(x, y) + \rho(y, z)$$

Пусть D — число признаков. Метрика Минковского (при $p \in (0,1)$ не метрика):

$$\rho(x, y) = (\sum_{j=1}^{D} |x_j - y_j|^p)^{\frac{1}{p}}$$

- p = 2 Евклидово расстояние
- p = 1 Манхэттенское расстояние
- $p = \infty$ Растояние Чебышева (максимальное расстояние между двумя признакми)

Манхэттенское расстояние

Источник: en.wikipedia.org/wiki/Taxicab_geometry

Нормировка признаков

$$\rho(x, y) = (\sum_{j=1}^{D} |x_j - y_j|^p)^{\frac{1}{p}}$$

Нельзя так считать расстояния с признаками разных масштабов!

Два виды нормировки:

1. Стандартизация —
$$x^{j} = \frac{x^{j} - mean(x^{j})}{std(x^{j})}$$

2. Нормализация —
$$x^{j} = \frac{std(x^{j})}{max(x^{j}) - min(x^{j})}$$

В каком диапазоне будет лежать признак теперь?

Расстояния на категориальных признаках

- 1. Расстояние Хэмминга число категориальных признаков, которые имеют разные значения.
- 2. Счетчики среднее значение признака/целевой переменной с такой категорией.

При кодировании признака с помощью целевой переменной нельзя использовать целевую переменную данного объекта!

Косинусное расстояние

По определению скалярного произведения считаем угол между векторами:

$$\rho(x, y) = \alpha = \arccos \frac{x \cdot y}{|x||y|}$$

На практике обычно считают так:

$$sim(x, y) = \frac{x \cdot y}{|x||y|}$$

$$rho(x, y) = 1 - sim(x, y)$$

Косинусное расстояние часто используют для текстов. Почему?

Расстояние Джаккарда

Как померить расстояние между множествами? Например, предложение — мешок (множество) слов.

$$\rho(X, Y) = 1 - \frac{X \cap Y}{X \cup Y}$$

Приведите пример задачи, где удобно использовать расстояние над множествами

Расстояние Левенштейна

Минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую.

$$\rho(kitten, sitting) = 3$$

В каких задачах часто применяется расстояние Левенштейна?

Metric learning

Посчитали расстояние по вещественным признакам, по категориальным, строковое, для множеств... Как теперь все объединить?

$$\rho(x, y) = c_1 \rho_1(x, y) + c_2 \rho_2(x, y) + \dots$$

?

Как найти коэффициенты?

Проклятие размерности

В пространстве большой размерности объекты сильно удалены друг от друга.

Источник: Bishop

Уменьшаем размерность

- Методы снижения размерности
- Отбор признаков

Источник: analyticsvidhya.com/blog/2015/07/dimension-reduction-methods

Отбираем признаки

Задача: найти и удалить вредные признаки.

Какие признаки для нас вредные?

- Перебрать все варианты и посмотреть качество (лучший, если признаков мало)
- Посчитать корреляцию с целевой функцией и удалить шумные
- Посчитать корреляцию всех пар признаков и удалить скоррелированные
- Последовательно удалять худшие
- Последовательно добавлять лучшие

Резюме

Алгоритм:

- Наглядный, понятный
- Идеально работает, если правильно выбрана метрика
- Ленивый алгоритм, совсем не учится, тяжело работает на бигдате
- Позволяет делать беспризнаковое распознавание
- На признаковом распознавании, как правило, работает хуже других алгоритмов
- Какие можете придумать примеры беспризнакового распознавания?
- Какая сложность обучения алгоритма ближайшего соседа? Предсказания одного объекта?

Сложность алгоритма

Сложность обучения — O(ND) (запоминаем выборку)

Сложность предсказания — O(ND)(считаем все расстояния)

В таком виде это в real time системах это работать не будет!

Зачем мы тогда все это учим?

Ускоряем базовый алгоритм

Структурируем признаковое пространство, чтобы по нему быстрее искать.

- KD-tree
- Ball tree

Если признаков мало (несколько десятков), то сложность по числу объектов логарифмическая. Если много — линейная (проклятие размерности), внедрять нельзя!

Источник: en.wikipedia.org/wiki/K-d_tree

Приближенный поиск ближайших соседей

В среднем имеют логарифмическую сложность даже для больших признаковых пространств.

Примеры методов:

- ANNOY делим пространство случайными плоскостями, строим дерево
- Navigable Small World гуляем по графу тесного мира
- FAISS кластеризуем пространство и ищем расстояния до центров кластеров
- LSH (Locality-sensitive hashing) делаем хэш функцию, которая близким объектам присваивает близкие значения хэша

На семинаре разбираем ANNOY!

Применяют ли метрические алгоритмы?

Применяют!

Все большие поисковые/рекомендательные системы состоят из двух компонент:

- Грубый отбор кандидатов
- Использование финальной модели

Быстрый приближенный поиск ближайших соседей идеально подходит под задачу выборов кандидатов.

Величину $\rho(x,y)$ можно подавать в финальную модель!

Часть 4 Алгоритмы на текстах и домашнее задание 1

Обработка естественного языка

- Категоризация новостей
- Автоответы в почте
- Машинный перевод
- Информационный поиск
- Чат боты

Представление текста

В виде вектора размера размерность словаря, где единицы стоят в тех ячейках, которые соответствуют слову, которое есть в тексте

Можно рассматривать не слова, а

- N-граммы слов
- N-граммы букв

В чем достоинства и недостатки каждого подхода?

tf-idf

Можно вставлять не просто единички, а значение, которое показывает, насколько слово важно для данного текста

Важность слова в тексте * Важность слова вообще

Tfidf = TF * IDF

TF — term frequency, **IDF** — inverse document frequency

$$TF(w,d) = \frac{n_w}{n_d}$$
, где n_w — сколько раз встретилось слово в документе,

 n_d — длина документа

$$IDF(w) = \log \frac{|D|}{|D_w|}$$
, $|D|$ — число документов, $|D_w|$ — число

документов, в которых есть слово w

И что, это все руками считать?

Библиотека sklearn

sklearn.model_selection.KFold

class sklearn.model_selection. KFold(n_splits=5, shuffle=False, random_state=None)

[source]

K-Folds cross-validator

sklearn.model_selection.cross_val_score

 $sklearn.model_selection.cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score=nan)$ [source]

Evaluate a score by cross-validation

Библиотека sklearn

sklearn.feature_extraction.text.CountVectorizer

class sklearn.feature_extraction.text. CountVectorizer(input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern='(? u)|b|w|w+|b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class 'numpy.int64'>) [source]

Convert a collection of text documents to a matrix of token counts

sklearn.feature_extraction.text.TfidfVectorizer

class sklearn.feature_extraction.text. TfidfVectorizer(input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern='(?u)|b|w|w+|b', ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class 'numpy.float64'>, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False) [source]

Convert a collection of raw documents to a matrix of TF-IDF features.

Возвращает разреженную матрицу! В домашней работе для простоты работайте с обычной, так что выбирайте разумно max_features

