Posudek práce

předložené na Matematicko-fyzikální fakultě Univerzity Karlovy

-	sudek vedoucího kalářské práce	□ posudek opo □ diplomové p	
Autor: Michal Grňo Název práce: Magnetic trans Studijní program a obor: Ph Rok odevzdání: 2021	-	lly invariant obstacles	
Jméno a tituly vedoucího: P Pracoviště: Ústav jaderné fy Kontaktní e-mail: exner@uj	ziky AV ČR	r, DrSc.	
Odborná úroveň práce: □ vynikající ⊠ velmi dob	rá 🛭 průměrná 🖵 po	odprůměrná 🗖 nevyhov	rující
Věcné chyby: ☐ téměř žádné ☒ vzhlede	m k rozsahu přiměřený	počet	né četné 🛭 závažné
Výsledky: ☐ originální ☒ původní i	převzaté 🚨 netriviáln	í kompilace 🚨 citované	z literatury 🚨 opsané
Rozsah práce: ☐ veliký ⊠ standardní ☐	l dostatečný □ nedost	atečný	
Grafická, jazyková a form □ vynikající □ velmi dobr		odprůměrná 🗖 nevyhov	rující
Tiskové chyby: ☐ téměř žádné ☒ vzhlede	m k rozsahu a tématu p	řiměřený počet 🚨 četno	é
Celková úroveň práce: □ vynikající ⊠ velmi dob	rá □ průměrná □ po	odprůměrná 🗖 nevyhov	rující

Slovní vyjádření, komentáře a připomínky vedoucího:

Úkolem, jejž dostal pan Michal Grňo, bylo seznámit se s jevy, v nichž nekonečně dlouhá translačně invariantní překážka způsobuje transport ve dvourozměrném magnetickém systému, tj. mění bodové spektrum magnetického Schrödingerova operátoru sestávající z Landauových hladin na absolutně spojité spektrum pásového typu. Dle zadání měl vypracovat přehled známých výsledků tohoto typu a vyšetřit daný jev v jednoduchých modelech v literatuře posud nevyšetřovaných či vyšetřených pouze částečně. Přes některé peripetie bylo tohoto cíle dosaženo.

Práce sestává z úvodu, čtyř kapitol a několika dodatků. Po vysvětlení cílů práce v úvodu autor v první kapitole zavádí potřebný formalismus, především definuje Landau-ův Hamiltonián, tj. magnetický Laplacián, a uvádí přehled různých poruch, potenciálových a magnetických; zmiňuje též případ nabité částice uvězněné ve vrstvě a vystavené homogennímu magnetickému poli. Poté vysvětluje, jak lze v případě, kdy porucha je translačně invariantní, takové systémy s výhodou vyšetřovat pomocí částečné Fourierovy transformace, jež daný operátor transformuje do direktního integrálu, v němž "vlákna" jsou jednorozměrné Schrödingerovy operátory.

Druhá kapitola je věnována přehledu známých výsledků, kdy je porucha představena potenciálovou stěnou či Dirichletou okrajovou podmínkou (Macris-Martin-Pulé, a obecněji Fröhlich-Graf-Walcher), lokální či globální modifikací magnetického pole (Iwatsuka, Hislop-Soccorsi, Miranda-Popoff), resp. geometrickou deformací vrstvy (Exner-Kalvoda-Tušek). Zmíněny jsou i situace, kdy translační invariance je pouze diskrétní (Exner-Joye-Kovařík) i některé výsledky týkající se stability absolutní spojitosti vůči lokálním poruchám.

Původní výsledky studentovy jsou obsaženy v kapitolách třetí a čtvrté. Prvá z nich se zabývá případem, kdy poruchou je singulární potenciál typu delta funkce s nositelem na přímce, druhá pro srovnání analyzuje pohyb v polorovině se smíšenou (Robinovou) hraniční podmínkou; nový je zejména výsledek kapitoly třetí ukazující, že spektrum je pod vlivem poruch absolutně spojité a má nekonečný počet otevřených lakun. V obou případech autor ukazuje, že úloha je korektně definována a řeší spektrální problem jak analyticky, tak i numericky.

Práce uchazečova neprobíhala právě stejnoměrným tempem, jsouc přerušována intervaly, kdy měl zřejmě jiné priority, a některé části práce vyžadovaly několik iterací, než jsme se dobrali požadovaného závěru. Z druhé strany finiš byl strhující a umožnil práci předložit k obhajobě v poprázdninovém termínu. Ač jsem v průběhu práce měl některé pochyby, nyní považuji její výsledek za velmi dobrý.

Případné otázky při obhajobě a náměty do diskuze:		
Tento odstavec je spíše vyhrazen oponentovi.		
Práci		
⊠ doporučuji		
nedoporučuji		
uznat jako bakalářskou.		
Navrhuji hodnocení stupněm: □ výborně ⊠ velmi dobře □ dobře □ neprospěl/a		

Paul Zu

V Praze dne 9. srpna 2021