Lecture 17: 7 June, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Dimensionality reduction

- Remove unimportant features by projecting to a smaller dimension
- Example: project blue points in 3D to black points in 2D plane
- Principal Component Anaylsis transform d-dimensional input to k-dimensional input, preserving essential features
- Singular Value Decomposition (SVD)

Manifold learning

- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful

Manifold learning

- Projection may not always help
- Swiss roll dataset
- Projection onto 2 dimesions is not useful
- Better to unroll the image

■ Discover the manifold along which the data lies

- Describe each point x_i as a linear combination of k nearest neighbours
 - Assume weight 0 for other neighbours

$$x_i = \sum_{j=1}^n w_{ij} x_j$$

only k nbrs have
$$W_{ij} \neq 0$$

$$\begin{bmatrix} X_1 \\ x_i \end{bmatrix} = \begin{bmatrix} W_{11} - W_{12} \\ W_{21} - W_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_{22} \\ X_{23} \end{bmatrix} \begin{cases} W_{11} - W_{12} \\ W_{21} - W_{22} \end{bmatrix} \begin{cases} X_1 \\ X_{23} \\ X_{24} \\ X_{35} \end{cases} \begin{bmatrix} W_{21} - W_{22} \\ W_{21} - W_{22} \\ X_{35} \end{bmatrix} \begin{cases} W_{21} - W_{22} \\ W_{21} - W_{22} \\ W_{31} - W_{32} \end{cases}$$

- Describer \mathcal{F}_{eint} \mathcal{F}_{eint} as a linear combination of k nearest neighbours
 - Assume weight 0 for other neighbours

W=1

$$x_i = \sum_{j=1}^n w_{ij} x_j$$

Choose weights to minimize the sum square distance

$$\widehat{W} = \operatorname*{arg\,min}_{W} \sum_{i=1}^{n} \left(x_i - \sum_{j=1}^{n} w_{ij} \right)$$

x = W.x

original

reconstruction

of his from

- Describe each point x_i as a linear combination of k nearest neighbours
 - Assume weight 0 for other neighbours

$$x_i = \sum_{j=1}^n w_{ij} x_j$$

• Choose weights to minimize the sum square distance

$$\widehat{W} = \underset{W}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(x_i - \sum_{j=1}^{n} w_{ij} x_j \right)^2$$

Already invariant with respect to rotation, scaling

■ Normalize weights to sum up to 1 — invariance under translation

- Original inputs are in m dimensions
- Map each x to a new vector z in $m' \ll m$ dimensions

- Original inputs are in m dimensions
- Map each x to a new vector z in $m' \ll m$ dimensions

Choose new representation to preserve original weighted approximations

$$\hat{Z} = \arg\min_{Z} \sum_{i=1}^{\infty} \left(z_i - \sum_{j=1}^{\infty} w_{ij} z_j \right)^2$$
where / eigenvectors of \widehat{W}

• Solve using eigenvalues/eigenvectors of \widehat{W}

inherited from earler M \ Zi

ations

2 Zi

Original image

Sampled points

■ Need enough samples to discover the "curves"

LLE reconstruction

LLE reconstruction preserves neighbourhood structure

PCA distorts geometry

Madhavan Mukund Lecture 17: 7 June, 2021

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$

2/10

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$

2/10

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively

2/10

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin *N* times, *H T H H · · · T*

- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it
 - Outcome: N_1 tosses of c_1 interleaved with N_2 tosses of c_2 , $N_1 + N_2 = N$

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From h heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it
 - Outcome: N_1 tosses of c_1 interleaved with N_2 tosses of c_2 , $N_1 + N_2 = N$
 - \blacksquare Can we estimate p_1 and p_2 ?

Mixture models . . .

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of *N* interleaved coin tosses *H T H H · · · H H T*

3/10

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of *N* interleaved coin tosses *H T H H · · · H H T*
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - \blacksquare H T T H H T H T H T H T H T H T H T H T
 - $p_1 = 8/12 = 2/3, p_2 = 3/8$

3/10

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of *N* interleaved coin tosses *H T H H · · · H H T*
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - \blacksquare H T T H H T H T H T H T H T H T H T H T
 - $p_1 = 8/12 = 2/3$, $p_2 = 3/8$
- What the observation is unlabelled?
 - \blacksquare H T T H H T H T H T H T H T H T H T H T

Madhavan Mukund

Mixture models . . .

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of *N* interleaved coin tosses *H T H H · · · H H T*
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - \blacksquare H T T H H T
 - $p_1 = 8/12 = 2/3, p_2 = 3/8$
- What the observation is unlabelled?
 - \blacksquare HTTHHTHTHHTHTHTHHTHT
- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

3/10