

अध्याय - 2

अम्ल, क्षारक एवं

ल्यण

अम्ल : (ACID)

- 🔾 ये स्वाद में खट्टे होते हैं।
- ये नीले लिटमस को लाल में बदल देते हैं।
- ये जलीय विलयन में H+ आयन देते हैं।
- O ACID शब्द लैटिन भाषा से लिया गया है जिसका अर्थ है खट्टा

प्रबल अम्ल : HCl, H₂SO₄, HNO₃

दुर्बल अम्ल : CH,COOH, लैक्टिक अम्ल, ऑक्सैलिक अम्ल

सान्द्र अम्ल : जिसमें अम्ल अधिक मात्रा में होता है, जबिक जल अल्प मात्रा में होता है।

तनु अम्ल : जिसमें अम्ल अल्प मात्रा में होता है, जबिक जल अधिक मात्रा में होता है।

आरक: (Base)

🔾 ये स्वाद में कड़वे होते हैं।

ये लाल लिटमस को नीले में बदल देते हैं।

○ ये जलीय विलयन में OH- आयन देते हैं।

प्रबल क्षारक : NaOH, KOH, Ca(OH)2

दुर्बल क्षारक : NH₄OH

क्षार (Alkali) : जल में घुलनशील क्षारक को क्षार कहते हैं। NaOH, KOH, Mg(OH)2

लवण (Salt): लवण अम्ल व क्षारक की परस्पर अभिक्रिया से प्राप्त होता है।

उदाहरण: NaCl, KCl

सूचक(Indicators): सूचक किसी दिए गए विलयन में अम्लया क्षारक की उपस्थिति दर्शा ते हैं। इनका रंग या गंध अम्लीय या क्षारक माध्यम में बदल जाता है।

प्राकृतिक सूचक कृत्रिम (संश्लेषित) सूचक गंधीय सूचक
ये पौधों में पाए जाते हैं। ये रासायनिक पदार्थ हैं। इन पदार्थों की गंध अम्लीय या
लिटमस, लाल पत्ता गोभी मेंथिल ऑरेंज क्षारक माध्यम में बदल जाती है।
हायड्रेंजिया पौधे के फूल, हल्दी फीनॉल्फथेलिन प्याज, लौंग तेल

	सूचक	रंग/गंध में परिवर्तन (अम्ल के साथ)	रंग/गंध में परिवर्तन (क्षार के साथ)
	1. लिटमस	लाल	नीला
प्राकृतिक	2. लाल पत्तागोभी का रस	लाल	हरा
सूचक	3. हल्दी	कोई बदलाव नहीं	लाल
	4. हायड्रेंजिया के फूल का रस	नीला	गुलाबी
कृत्रिम {	1. फीनॉल्फथेलिन	रंगहीन	गुलाबी
सूचक ।	2. मेथिल ऑरेंज	लाल	पीला
गंधीय ∫	1. प्याज का रस	तीक्ष्ण गंध	कोई गंध नहीं
गवाय सूचक	2. वैनिला	समान गंध रहती है	कोई गंध नहीं
तूजका (3. लौंग का तेल	समान गंध रहती है	कोई गंध नहीं

अम्ल व क्षारों के रासायनिक गुण :

पॉप टैस्ट: हाइड्रोजन गैस से निहित परखनली के पास जब एक जलती हुई मोमबत्ती लाई जाती है, तो पॉप की ध्विन उत्पन्न होती है। इस टैस्ट को हाइड्रोजन की उपस्थिति दर्शाने के लिए प्रयोग करते हैं।

धातु कार्बोनेट तथा धातु बाईकार्बोनेट की अभिक्रिया

अम्ल के साथ क्षार के साथ

अम्ल + धातु कार्बोनेट \to लवण + ${\rm CO_2}$ + जल कोई अभिक्रिया नहीं 2HCl + Na, ${\rm CO_3}({\rm s}) \to 2{\rm NaCl}({\rm aq})$ + ${\rm CO_2}({\rm g})$ + ${\rm H_2O}({\rm l})$

अम्ल + धातु बाईकार्बोनेट → लवण + CO2 + जल

 $HCl + NaHCO_3(s) \rightarrow NaCl(aq) + CO_2(g) + H_2O(l)$

चूने के पानी का टैस्ट: उत्पादिन कार्बन डाइआक्साइड को चूने के पानी से प्रवाहित करने पर पानी दूधिया हो जाता है।

$$Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$$

सफेद अवक्षेप

अधिक मात्रा में CO, प्रवाहित करने पर:

$$CaCO_3(s) + H_2O(l) + CO_2(g) \rightarrow Ca (HCO_3)_2 (aq)$$

जल में घूलनशील

अम्ल एवं क्षारक की परस्पर अभिक्रिया :

अम्ल + क्षारक → लवण + जल

उदासीनीकरण अभिक्रिया: जब अम्ल द्वारा क्षारक का प्रेक्षित प्रभाव तथा क्षारक द्वारा अम्ल का प्रभाव समाप्त हो जाता है और परिणामस्वरूप लवण और जल प्राप्त होते हैं तो उदासीनीकरण अभिक्रिया होती है।

उदाहरण : NaOH (aq) + HCl(aq) \rightarrow NaCl (aq) + H₂O(l)

प्रबल अम्ल + दुर्बल क्षारक → अम्लीय लवण + जल

दुर्बल अम्ल + प्रबल क्षारक → क्षारीय लवण + जल

प्रबल अम्ल + प्रबल क्षारक → उदासीन लवण + जल

दुर्बल अम्ल + दुर्बल क्षारक → उदासीन लवण + जल

अम्लों के साथ धात्विक ऑक्साइडों की अभिक्रिया :

धात्विक आक्साइड + अम्ल → लवण + जल

 $CuO + 2HCl \rightarrow CuCl_2 + H_2O$

(कॉपर क्लोराइड के बनने से विलयन का नीला रंग हो जाता है)

धात्विक आक्साइड की प्रवृति क्षारीय होती है। क्योंकि ये अम्ल के साथ क्रिया करके लवण और जल बनाते हैं।

उदाहरण: CuO, MgO

अधात्विक आक्साइड की क्षारों के साथ अभिक्रिया :

अधात्विक ऑक्साइड + क्षार \rightarrow लवण + जल $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$

अधात्विक ऑक्साइड प्रवृत्ति में अम्लीय होते हैं तथा विद्युत धारा प्रवाहित करते हैं।

जलीय विलयन में अम्ल और क्षारक :

जल की उपस्थिति में अम्ल H⁺ आयन उत्पन्न कहते हैं।
 H⁺ आयन H₃O⁺ (हाइड्रोनियम आयन के रूप में पाए जाते हैं।)

$$\begin{aligned} \mathbf{H^+} + \mathbf{H_2O} &\rightarrow \mathbf{H_3O^+} \\ \mathbf{HCl} + \mathbf{H_2O} &\rightarrow \mathbf{H_3O^+} + \mathbf{Cl^-} \end{aligned}$$

• जल की उपस्थिति में क्षारक (OH-) आयन उत्पन्न करते हैं।

$$NaOH \xrightarrow{H_2O} Na^+ + OH^-$$

$$Mg(OH)_2 \xrightarrow{H_2O} Mg^{2+} + 2OH^-$$

- सभी क्षारक जलमें घुलनशील नहीं होते हैं। जल में घुलनशील क्षारक को क्षारक हते हैं। सभी क्षारक होते हैं परन्तु सभी क्षारक क्षार नहीं होते।
- जलकेसाथअम्लया क्षारक को मिलाते समय सावधानी बरतनी चाहिए। हमेशा अम्लया क्षारक को ही जल में मिलाना चाहिए और लगातार इसे हिलाते रहना चाहिए, क्योंकि यह प्रक्रिया अत्यंत ऊष्माक्षेपी है।

 सांद्र अम्ल में जलिमलाने पर उत्पन्न हुई ऊष्मा के कारणिमश्रण आस्फिलित हो कर बाहर आसकता है तथा आप जल सकते हैं। साथ ही अत्यिधक स्थानीय ताप के कारण काँच का पात्र भी टूट सकता है।

अम्लों व क्षारकों में समानताएँ:

जब कोई अम्ल या क्षारक जल में मिलाया जाता है तो ये तनुकृत हो जाता है। जल में मिलाने पर आयन की सांद्रता ${
m H_3O^+}$ या ${
m OH^-}$ में प्रति इकाई आयतन की कमी हो जाती है।

क्षार तथा अम्ल की प्रबलता :

किसी क्षार या अम्ल की प्रबलता उसके द्वारा उत्पन्न H+ आयन या OH– आयनों की संख्या पर निर्भर करती है।

किसी अम्ल या क्षारक की प्रबलता हम एक सार्वभौमिक सूचक द्वारा ज्ञात कर सकते हैं।

सार्वभौम सूचक

→ अनेक सूचकों का मिश्रण होता है।

(Universal Indicator)

यह सूचक किसी विलयन में हाइड्रोजन आयन की विभिन्न सांद्रता को विभिन्न रंगों में प्रदर्शित करते हैं।

pH स्केल : किसी विलयन में उपस्थित H^+ आयन की सांद्रता ज्ञात करने के लिए एक स्केल विकसित किया गया जिसे pH स्केल कहते हैं।

pH में p है 'पुसांस' (Potenz) जो एक जर्मन शब्द है, जिसका अर्थ होता है शक्ति अगर

 $PH = 7 \rightarrow 3$ दासीन विलयन

 $PH < 7 \rightarrow अम्लीय विलयन$

 $PH > 7 \rightarrow$ क्षारीय विलयन

यह स्केल 0 से 14 तक pH ज्ञात करने के लिए उपयोग में लाया जाता है।

दैनिक जीवन में pH का महत्त्व

पौधे एवं पशु pH के प्रति संवेदनशील हमारा शरीर 7.0 से 7.8 pH परास (range) के बीच होते हैं। कार्य करता है। वर्षा के जल की pH मान जब 5.6 से कम हो जाती है तो वह अम्लीय वर्षा कहलाती है।

मिट्टी का pH	अच्छी उपज के लिए पौधों को एक विशिष्ट pH परास की आवश्यकता होती है। यदि किसी स्थान की मिट्टी का pH कम या अधिक हो तो किसान उसमें आवश्यकतानुसार अम्लीय या क्षारीय पदार्थ मिलाते हैं।
हमारे पाचन तंत्र का pH	हमारा उदर (stomach) हाइड्रोक्लोरिक अम्ल (HCl) उत्पन्न करता है जो भोजन के पाचन में सहायक होता है। अपच की स्थिति में उदर अधिक मात्रा में अम्ल उत्पन्न करता है जिसके कारण उदर में दर्द व जलन का अनुभव होता है। इस दर्द से मुक्त होने के लिए ऐन्टैसिड (antacid) जैसे क्षारकों का उपयोग किया जाता है जो अम्ल की अधिक मात्रा
pH परिवर्तन के कारण दंत क्षय	को उदासीन करता है। जैसे (मिल्क ऑफ मैग्नीशिया) मुँह के pH का मान 5.5 से कम होने पर दाँतों का क्षय प्रारंभ हो जाता है। दाँतों का इनैमल (दन्तवल्क) कैल्सियम फॉस्फेट से बना होता है जो कि शरीर का सबसे कठोर पदार्थ होता है, यह जल में नहीं घुलता लेकिन मुँह की pH का मान 5.5 से कम होने पर संक्षारित हो जाता है। क्षारकीय दंत-मंजन का उपयोग करने से अम्ल की आधिक्य मात्रा को उदासीन किया जा सकता है।
पशुओं एवं पौधों द्वारा उत्पन्न रसायनों से आत्मरक्षा	मधुमक्खी का डंक एक अम्ल छोड़ता है जिसके कारण दर्द एवं जलन का अनुभव होता है। डंक मारे गए अंग में बेकिंग सोडा के उपयोग से आराम मिलता है। नेटल (Nettle) के डंक वाले बाल मैथनोइक अम्ल छोड़ जाते हैं जिनके कारण जलन वाले दर्द का अनुभव होता है। इसका इलाज डंक वाले स्थान पर डॉक पौधे की पत्ती रंगड़कर किया जाता है।

लवणों का pH:

- 1. प्रबल अम्ल + प्रबल क्षारक ightarrow उदासीन लवण pH=7
- 2. प्रबल अम्ल + दुर्बल क्षारक ightarrow अम्लीय अवण pH < 7
- 3. प्रबल क्षारक + दुर्बल अम्ल ightarrow क्षारकीय लवण pH>7

साधारण नमक से रसायन | 1. | 2. | 3. | 4. | 5. |

सेडियम हाइड्रॉक्साइड विरंजक चूर्ण बेकिंग सोडा धोने का सोडा प्लास्टर ऑफ पेरिस (NaOH) (CaOCl₂) (NaHCO₃) (Na₂CO₃. $10H_2O$)(CaSO_{4 ½} 2HO)

1. सोडियम हाइड्रॉक्साइड (NaOH): सोडियम क्लोराइड के जलीय विलयन (लवण जल) से विद्युत प्रवाहित करने पर यह वियोजित होकर सोडियम हाइड्रॉक्साइड उत्पन्न करता है। इस प्रक्रिया को क्लोर-क्षार प्रक्रिया कहते हैं।

$$2$$
NaCl (aq) + 2 H₂O(l) $\rightarrow 2$ NaOH (aq) + Cl₂(g) + H₂ (g)

ऐनोड पर $\rightarrow Cl_2$ गैस

कैथोड पर \rightarrow H, गैस

कैथोड के पास → NaOH विलयन बनता है।

उपयोग :

 $H_2 \rightarrow$ ईंधन मार्गरीन

 $Cl_2 \rightarrow \sigma$ जल की स्वच्छता, PVC, CFC

 $HCl \rightarrow इस्पात की सफाई, औषधियाँ$

NaOH → धातुओं से ग्रीज हटाने के लिए, साबुन, कागज बनाने के लिए

 $\mathrm{Cl_2} + \mathrm{NaOH} \to$ विरंजक चूर्ण \to घरेलू विरंजन, वस्त्र विरंजन के लिए

2. विरंजक चूर्ण :

शुष्क बुझे हुए चूने $[Ca(OH)_2]$ पर क्लोरीन की क्रिया से विरंजक चूर्ण का निर्माण होता है। $Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$

उपयोग :

- (a) वस्त्र उद्योग में सूती व लिनेन के विरंजन के लिए।
- (b) कागज की फैक्टरी में लकड़ी के मज्जा के विरंजन के लिए।
- (c) रासायनिक उद्योगों में एक उपचायक के रूप में ।
- (d) पीने वाले जल को जीवाणुओं से मुक्त करने के लिए रोगाणु नाशक के रूप में।

3. बेकिंग सोडा :

 $NaCl + H_2O + CO_2 + NH_3 \rightarrow NH_4Cl + NaHCO_3$ बेकिंग सोडा यह एक दुर्बल असंक्षारक क्षारक है।

खाना पकाते समय गर्म करने पर इसमें निम्न अभिक्रिया होती है:

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$$

उपयोग :

- (a) बेकिंग पाउडर बनाने में (बेकिंग सोडा + टार्टरिक अम्ल)
- (b) इसअभिक्रियासेउत्पन्न CO_2 केकारणपावरोटीयाकेकमेंखमीरउठजाताहैतथाइससेयहमुलायम एवं स्पंजी हो जाता है।
- (c) यह ऐन्टैसिड का एक संघटक है।
- (d) इसका उपयोग सोडा-अम्ल अग्निशामक में भी किया जाता है।

4. धोने का सोडा (Na, CO, 10H,O):

सोडियम कार्बोनेट के पुन: क्रिस्टलीकरण से धोने का सोडा प्राप्त होता है। यह एक क्षारकीय लवण है।

$$Na_2CO_3 + 10H_2O \rightarrow Na_2CO_3 10H_2O$$

उपयोग :

- (a) इसका उपयोग काँच, साबुन एवं कागज उद्योगों में होता है।
- (b) इसका उपयोग बोरेक्स के उत्पादन में होता है।
- (c) इसका उपयोग घरों में साफ-सफाई के लिए होता है।
- (d) जल की स्थायी कठोरता को हटाने के लिए इसका उपयोग होता है।

5. प्लास्टर ऑफ पेरिस CaSO₄.1/2 H,O:

जिप्सम को 373 k पर गर्म करने पर यह जल के अणुओं को त्याग कर कैल्सियम सल्फेट हेमिहाइड्रेट/ अर्धहाइड्रेट (POP) बनाता है।

यह सफेद चूर्ण है जो जल मिलाने पर यह पुन: जिप्सम बनकर ठोस प्रदान करता है।

$$CaSO_4$$
. ½ $H_2O + 1½ H_2O \rightarrow CaSO_4$. $2H_2O$
(जिप्सम)

उपयोग :

- (a) प्लास्टर ऑफ पेरिस का उपयोग डॉक्टर टूटी हुई हिड्डयों को सही जगह पर स्थिर रखने के लिए करते हैं।
 - (b) इसका उपयोग खिलौने बनाने, सजावट का समान बनाने के लिए किया जाता है।
 - (c) इसका उपयोग सतह को चिकना बनाने के लिए किया जाता है।

किस्टलन का जल:

लवण के एक सूत्र इकाई में जल के निश्चित अणुओं की संख्या को क्रिस्टलन का जल कहते हैं।

उदाहरण:

 $CuSO_4$, $5H_2O$ में क्रिस्टलन के जल के 5 अणु हैं। Na_2CO_3 , $10H_2O$ में क्रिस्टलन के जल के 10 अणु हैं। $CaSO_4$, $2H_2O$ में क्रिस्टलन के जल के 2 अणु हैं।

प्रश्नावली

अति लघु उत्तरीय प्रश्न (1 Mark)

- 1. चींटी के डंक में कौन सा अम्ल होता है।
- 2. अंडे के छिलकों को नाइट्रिक अम्ल (HNO₂) में डालने से क्या होगा ?
- 3. एक लवण का नाम लिखिए जिसमें क्रिस्टलन का जल नहीं होता है।
- 4. बेकिंग पाउडर के दो अवयवों के नाम लिखिए।
- 5. पाचन क्रिया के दौरान उदर का pH कितना होता है ?
- 6. सोने (Gold) को घोलने के लिए कौन-सा विलयन उपयोग किया जाता है ?
- 7. HCl अम्ल व धातु की अभिक्रिया के दौरान निकलने वाली H_2 गैस का परीक्षण किस प्रकार कर सकते हैं ?
- 8. अम्लीय वर्षा का जल जब नदी में प्रवाहित होता है तो जलीय जीवधारियों की उत्तरजीविता कठिन क्यों हो जाती है ?
- 9. जब सांद्र अम्ल को जल में डाला जाता है तो प्रक्रिया ऊष्माक्षेपी होती है अथवा ऊष्माशोषी।
- 10. क्लोर-क्षार प्रक्रिया के किस उत्पाद का उपयोग विरंजक चूर्ण बनाने में होता है ?

लघु उत्तरीय प्रश्न (2 Marks)

- 1. विरंजक चूर्ण से क्लोरीन की तेज गंध क्यों आती है? यह पानी में पूर्णत: घुलनशील क्यों नहीं है ?
- 2. नीले लिटमस पेपर की एक गीली पिट्टका व एक शुष्क पिट्टका शुष्क HCl गैस के ऊपर रखें, कौन-सी पिट्टका लाल में बदल जाएगी व क्यों ?
- 3. प्लास्टर ऑफ पेरिस क्या है? इसे जिप्सम से किस प्रकार प्राप्त किया जा सकता है ?
- 4. दंत मंजन किस प्रकार दंत क्षय को रोकता है ?

- 5. खट्टे पदार्थ तांबे के बर्तनों को अच्छे से साफ क्यों कर देते हैं ?
- 6. केक को मुलायम और स्पंजी बनाने के लिए उसमें एक सफेद पाउडर डाला जाता है। इस सफेद पाउडर का नाम बताओ। सफेद पाउडर के अवयवों के नाम लिखो।
- 7. बेकिंग सोडा से धोने के सोडे का उत्पादन किस प्रकार होता है ?
- 8. ग्लुकोस व एल्कोहल में H अणु होते हुए भी उन्हें अम्ल क्यों नहीं माना जाता है ?
- 9. उस अभिक्रिया का नाम बताइए जिसमें अम्ल एवं क्षारक की अभिक्रिया के परिणामस्वरूप लवण तथा जल प्राप्त होते हैं। एक उदाहरण दें।
- 10. दही और खट्टे पदार्थों को ताबें के बर्तनों में क्यों नहीं रखना चाहिए ?

लघु उत्तरीय प्रश्न (3 Marks)

- 1. चूने के पानी में अत्यधिक मात्रा में कार्बन डाइऑक्साइड प्रवाहित करने पर पानी दूधिया सफेद हो जाता है। फिर रंगहीन हो जाता है। कारण बताइए। रासायनिक अभिक्रियाएँ भी लिखें।
- 2. क्षार व क्षारक में अंतर बताइए। क्या सभी क्षारक क्षार होते हैं ?
- 3. एक ठेकेदार ने मकान बनाने हेतु फर्श व रसोई के स्लैब के लिए संगमरमर चुना जहाँ सिरका, इमली व अन्य खट्टे पदार्थों का उपयोग होता है। क्या आप इस चुनाव को ठीक समझते हैं ? क्यों ?
- 4. चित्र की सहायता से H⁺(aq) आयन एवं OH⁻(aq) की सांद्रता परिवर्तन के साथ pH की विभिन्नता दर्शाएँ।
- 5. तीन आर्द्र लवणों के नाम व सूत्र लिखें।
- 6. कैल्सियम कार्बोनेट व हाइड्रोक्लोरिक अम्ल के बीच की अभिक्रिया लिखें।
- 7. धात्विक ऑक्साइडों को क्षारकीय ऑक्साइड व अधात्विक ऑक्साइडों को अम्लीय ऑक्साइड क्यों कहा जाता है ?
- 8. pH मान किसे कहते हैं ? निम्न की अभिक्रिया से बनने वाले लवण का pH मान कितना होगा ?
 - (i) दुर्बल अम्ल एवं प्रबल क्षार
 - (ii) प्रबल अम्ल एवं प्रबल क्षार

दीर्घ उत्तरीय प्रश्न (5 Marks)

1. क्रिस्टलन का जल किसे कहते हैं? एक औद्योगिक रूप से महत्त्वपूर्ण पदार्थ का नाम व सूत्र लिखिए जिसमें दस जल के अणु हैं। इसका उत्पादन किस प्रकार किया जाता है? संबंधित रासायनिक अभिक्रिया लिखिए। इस पदार्थ के कोई दो उपयोग लिखिए।

2. निम्न अभिक्रियाओं के आधार पर पदार्थ 'x' को पहचानिए। A, B और C के नाम व सूत्र भी लिखिए।

$$X$$
 $+$
 X
 $+$
 X

3. तत्त्व 'p' तनु $\mathrm{H_2SO_4}$ के साथ अभिक्रिया नहीं करता है। 'p' ऑक्साइड PO बनाता है जो लाल लिटमस को नीले में बदल देता है। 'p' धातु है अथवा अधातु कारण सिंहत बताइए।

दीर्घ उत्तरीय प्रश्न के हल

1. धोने का सोडा $(Na_2CO_3. 10H_2O)$

$$Na_{2}CO_{3}(s) + 10H_{2}O(1) \rightarrow Na_{2}CO_{3} + 10H_{2}O(s)$$

2.
$$2NaOH + Zn \rightarrow Na_2ZnO_2 + H_2$$

$$(X) \qquad (A)$$

$$NaOH + HCl \rightarrow NaCl + H_2O$$

(B)

$$NaOH + CH_3COOH \rightarrow CH_3COONa + H_2O$$

(C)

3. 'p' धातु है।

q q