

배열

배열[]

배열을 선언할 때 크기를 지정할 수 있어요. 크기를 지정하면 우측에 중괄호 {}에 있는 값들의 개수은 크기보다 많으면 안돼요! 비워두면 {}안의 개수만큼 자동 지정됩니다.

선언 형식 : 데이터타입 변수명[배열갯수]={값1, 값2, 값3,…}

int melody[8] = $\{262, 294, 330, 349, 392, 440, 494, 523\}$;

사용 형식: 변수명[인덱스]

i=melody[2]//330을 사용하고 싶은 경우

	_
array_ex1	⊠
	^
<pre>void setup() {</pre>	⊚ COM3
Serial.begin(9600);	
Serial.println(262);	
Serial println(294);	294
Serial.println(330); Serial.println(349);	330
Serial.println(349);	349
Serial.println(440);	392
Serial.println(494);	440
Serial.println(523);	494
	523
	262
}	294
	330
<pre>void loop() {</pre>	349
// put your main code here, to	392
	440
}	494 523
	1323
업로드 완료.	☑ 자동 스크롤 □ 타임스탬프 표시

배열을 사용하지 않은 경우

배열을 사용한 경우

피에조 스피커 예제

피에조 스피커는 전기적 신호를 통해 소리를 낼 수 있는 전자부품입니다. 피에조 스피커가 어떻게 소리를 내고, 어디에 활용되는지 살펴봅시다.

스피커를 이용해 노래를 재생하고 버튼을 이용해 연주해봅시다.

피에조 스피커는 소리를 냅니다

전기적 신호를 이용해 소리를 내는 전자부품

동작하는 전압에 따라 크기가 작은 것부터 큰 것까

지 다양함

책에서는 5V용 피에조 스피커 사용

피에조 스피커는 생활 속에 어떻게 사용되고 있을까요?

출처: https://www.youtube.com/watch?v=6LOh0Khvb9s

자동자 리모콘 소리 입니다.

보다 아름다운 소리를 낼 수는 없을 까요?

피에조 스피커를 이용해 **도레미파솔라시도**를 연주할 수 있습니다.

아두이노 보드를 켰을 때 한 번만 연주되도록 해 봅시다.

피에조 스피커로 만드는 자동 연주기 - 준비물

피에조 스피커 1개 수수 점퍼 와이어 2개 브레드보드 1개

피에조 스피커로 만드는 자동 연주기 - 레시피

- 1) 피에조 스피커의 **마이너스**를 **GND**에 연결합니다.
- 2) 피에조 스피커의 나머지 다리를 8번 핀에 연결해 주세요.

- 4) 아두이노와 PC를 연결해 주세요.
- 5) 스케치 상단의 "확인" 버튼과 "업로드" 버튼을 누릅니다.
- 6) 실행이 되면 "도레미파솔라시도"라 연주됩니다.

하드웨어를 만들어봅시다.

아두이노 보드의 8번 핀과 피에조 스피커의 플러스가 꽃힌 줄을 점퍼 와이어로 연결합니다.

tone(핀 번호, 헤르츠, 재생 시간);

tone

tone(8, 262, 1000); 8번 핀에 연결된 피에조 스피커로 4 옥타브 도(262)를 1초간 소리냅니다. 재생 시간은 소리내는 시간으로 mile seconds 단위를 사용합니다.

자동 연주기를 위한 아두이노 설정 절차

- ① "도 래 미 파 솔 라 시 도 " 에 해당하는 주파수음 대역을 melody 배열에 저장합니다. 배열이란, 같은 형식과 크기의 공간이 나열되어 있는 것을 말합니다.
- ② 8번 동안 melody[0] ~ melody[7]에 저장된 *헤르츠*를 <u>0.4초의 지연시간</u>을 갖고 <u>250의 음 길이</u>로 연주합니다.

옥타브	C (도)	C#	D (레)	D#	E (미)	F (파)	F#	G (솔)	G#	A (라)	A#	B (시)
1	33	35	37	39	41	44	46	49	52	55	58	62
2	65	69	73	78	82	87	93	98	104	110	117	123
3	131	139	147	156	165	175	185	196	208	220	233	247
4	262	277	294	311	330	349	370	392	415	440	466	494
5	523	554	587	622	659	698	740	784	831	880	932	988
6	1047	1109	1175	1245	1319	1397	1480	1568	1661	1760	1865	1976
7	2093	2217	2349	2489	2637	2794	2960	3136	3322	3520	3729	3951
8	4186	4435	4699	4978								

int melody[8] = $\{262, 294, 330, 349, 392, 440, 494, 523\}$;

배열[]

배열을 선언할 때 크기를 지정할 수 있어요. 크기를 지정하면 우측에 중괄호 {}에 있는 값들의 개수은 크기보다 많으면 안돼요! 비워두면 {}안의 개수만큼 자동 지정됩니다.

소프트웨어를 만들어 봅시다

Tone(핀번호, *헤르츠*, 재생시간) -

소리내는 시간, mile seconds 단위


```
6-7 | 아두이노 1.6.6
int melody[] = {262, 294, 330, 349, 392, 440, 494,
523};
void setup() {
  for (int i = 0; i < 8; i++) {
   tone(8, melody[i], 250);
   delay(400);
void loop() {
avrdude done. Thank you.
```


피에조 스피커 실습문제

실습) "헤르츠"를 참조하여 "고향의 봄" 앞 부분을 연주해 볼까요?

8번 핀에 피에조 스피커를 연결해보세요.

솔 솔 미 파 솔 라 라 솔 솔 도 미 레 도 레

8번 핀에 피에조 스피커를 연결해보세요.

하드웨어를 만들어봅시다.

아두이노 보드의 8번 핀과 피에조 스피커의 플러스가 꽃힌 줄을 점퍼 와이어로 연결합니다.

자동 연주기를 위한 아두이노 설정 절차

- ① "도 래 미 파 솔 라 시 도 " 에 해당하는 주파수음 대역을 melody 배열에 저장합니다. 배열이란, 같은 형식과 크기의 공간이 나열되어 있는 것을 말합니다.
- ② 8번 동안 melody[0] ~ melody[7]에 저장된 *헤르츠*를 <u>0.4초의 지연시간</u>을 갖고 <u>250의 음 길이</u>로 연주합니다.

옥타브	C (도)	C#	D (레)	D#	E (미)	F (파)	F#	G (솔)	G#	A (라)	A#	B (시)
1	33	35	37	39	41	44	46	49	52	55	58	62
2	65	69	73	78	82	87	93	98	104	110	117	123
3	131	139	147	156	165	175	185	196	208	220	233	247
4	262	277	294	311	330	349	370	392	415	440	466	494
5	523	554	587	622	659	698	740	784	831	880	932	988
6	1047	1109	1175	1245	1319	1397	1480	1568	1661	1760	1865	1976
7	2093	2217	2349	2489	2637	2794	2960	3136	3322	3520	3729	3951
8	4186	4435	4699	4978								

tone(핀 번호, 헤르츠, 재생 시간);

tone

tone(8, 262, 1000); 8번 핀에 연결된 피에조 스피커로 4 옥타브 도(262)를 1초간 소리냅니다. 재생 시간은 소리내는 시간으로 mile seconds 단위를 사용합니다.

소프트웨어를 만들어봅시다

솔 솔 미 파 솔 라 라 솔

i	notes	times			
0	392	500			
1	392	500			
2	330	250			
3	349	250			
4	392	500			
5	440	500			
6	440	500			
7	392	1000			

```
  Blink | 아두이노 1.6.6

                                                         \times
                                                        <u>.و</u>
int notes[]={392,392,330,349,392,440,440,392};
int times[]={500,500,250,250,500,500,500,1000};
void setup() {
 for(int i=0;i<8;i++){}
     tone(8,notes[i],times[i]);
     delay(times[i]);
void loop() {
avrdude done. Thank you.
```

```
1 - 12
```


Q&A

수고하셨습니다.