ELECTRONIC ASSEMBLY new display design

EA DOGM204-A

INKL. KONTROLLER SSD1803A FÜR 4-/8-BIT, SPI, I2C

TECHNISCHE DATEN

- * KONTRASTREICHE LCD-SUPERTWIST ANZEIGE
- * OPTIONALE LED-BELEUCHTUNGSKÖRPER IN VERSCHIEDENEN FARBEN
- * 4x20 ZEICHEN MIT 4,8 mm SCHRIFT
- * KONTROLLER SSD1803A FÜR 4-/8-BIT, SPI (4-DRAHT) UND I²C (2-DRAHT) INTERFACE
- * SPANNUNGSVERSORGUNG +3,3V SINGLE SUPPLY (typ. 250µA)
- * KEINE ZUS. SPANNUNGEN ERFORDERLICH
- * BETRIEBSTEMPERATURBEREICH -20..+70°C (LAGERTEMPERATUR -30..+80°C)
- * LED-HINTERGRUNDBELEUCHTUNG 3..80mA@3,3V
- * KEINE MONTAGE ERFORDERLICH: EINFACH NUR IN PCB EINLÖTEN
- * 3 UNTERSCHIEDLICHE ZEICHENSÄTZE (KYRILLISCH, ENGLISCH-JAPANISCH, EUROPÄISCH) IM CONTROLLER INTEGRIERT
- * 2 EINBAURICHTUNGEN MÖGLICH (6-UHR UND 12-UHR)

BESTELLBEZEICHNUNG

LCD-MODUL 4x20 - 4,8 mm **EA DOGM204x-A**

x: B = blauer Hintergrund transflektiv
W = weisser Hintergrund transflektiv
S = schwarzer Hintergrund transmissiv

N = weisser Hintergrund nicht beleuchtbar reflektiv

LED-BELEUCHTUNG WEISS

LED-BELEUCHTUNG AMBER

LED-BELEUCHTUNG GRÜN/ROT

EA LED66X40-W

EA LED66X40-A

EA LED66X40-GR

ZUBEHÖR

USB-TESTBOARD FÜR PC (WINDOWS) EA 9780-3USB BUCHSENLEISTE 4,8mm HOCH (2 STÜCK ERFORDERLICH) EA FL-22P

EA DOG Serie

Mit der EA DOG-Serie präsentiert ELECTRONIC ASSEMBLY die weltweite 1. Displayserie, welche ohne zusätzlicher Hilfsspanung an 3,3V Systemen lauffähig sind.

Anders als bei üblichen LCD-Modulen bestellen Sie hier die Anzeige und die entsprechende Beleuchtung separat. Dadurch ergeben sich mannigfaltige Kombinationsmöglichkeiten.

Konzipiert für kompakte Handgeräte bietet diese moderne LCD-Serie mit und ohne Beleuchtung eine Reihe echter Vorteile:

- * extrem kompakt mit 66x40mm bei marktüblicher Schriftgröße von 4,8mm (4x20)!
- * superfach mit 2,0mm unbeleuchtet bzw. 5,8mm inkl. LED-Beleuchtung
- * 4-Bit, 8-Bit, SPI (4-Draht) und I2C (2-Draht) Interface
- * nur typ. 250µA Stromverbrauch in vollem Betrieb (LED-Beleuchtung weiss ab 3mA)
- * simple Montage durch einfaches Einlöten
- * verschiedenste Designvarianten ab 1 Stück lieferbar
- * 3 unterschiedliche Testprogramme eingebaut

LED-Beleuchtungen

Zur individuellen Hintergrundbeleuchtung sind 3 verschiedene Varianten erhältlich: weiss, amber und grün/rot

Bei den monochromen Beleuchtungen stehen jeweils 3 separate LED-Pfade zur Verfügung, welche zur optimalen Anpassung an die Systemspannung parallel oder in Serie geschaltet werden können. Dadurch sind alle

Beleuchtungen alternativ mit 5V oder auch mit 3,3V

zu betreiben!

Der Betrieb der Hintergrundbeleuchtung erfordert einen externen Vorwiderstand zur Strombegrenzung. Dieser errechnet sich aus R=U/I; die Werte entnehmen Sie aus den Tabellen nebenan. Für eine optimale Lebensdauer empfehlen wir den Einsatz einer Stromquelle.

Die Lebensdauer der amber-farbigen Beleuchtung beträgt je nach Strom und Temperatur 100.000 Stunden, die der weißen Beleuchtung bei 50.000.

Achtung: Betreiben Sie die Beleuchtung nie direkt an 5V/3,3V; das kann zur sofortigen Zerstörung der LED's führen!

Beachten Sie unbedingt ein Derating bei Temperaturen >25°C.

<u>Montage</u>

Zuerst werden das Display und der jeweilige Beleuchtungskörper aufeinandergesteckt. Dann wird die gesamte Einheit einfach in eine Platine gesteckt und

amber	Forward	Current	Limiting resistor			
EA LED66x40-A	voltage	max.	@ 3,3 V	@ 5 V		
Connected in parallel	2,1 V	72 mA	18 ohm	47 ohm		
Connected in series	6,3 V	24 mA	-	-		

white	Forward	Current	Limiting resistor			
EA LED66x40-W	voltage	max.	@ 3,3 V	@ 5 V		
Connected in parallel	3,2 V	90 mA	1,2 ohm	24 ohm		
Connected in series	9,6 V	30 mA	ı	-		

green/red	Forward	Current	Limiting resistor			
EA LED66x40-GR	voltage	max.	@ 3,3 V	@ 5 V		
red path (ARG/CR)	2,1 V	60 mA	24 ohm	48 ohm		
green path (ARG/CG)	2,1 V	60 mA	24 ohm	48 ohm		

dort verlötet. Bitte beachten Sie, dass die 6 Pins für die Beleuchtung auch von oben verlötet werden müssen. <u>Achtung:</u> Auf dem Display befinden sich 1-2 Schutzfolien (oben und/oder unten) und auf der Beleuchtung jeweils eine Schutzfolie. Diese müssen während oder nach der Fertigung entfernt werden.

4 verschiedenen Technologien

Als Standard sind 4 verschiedene Technologien in STN und FSTN lieferbar:

Displaytyp	Technologie	optionale Beleuchtung	Lesbarkeit	Displayfarbe unbeleuchtet	Displayfarbe mit Beleuchtung	empfohlene Beleuchtung
	FSTN pos. transflektiv	mit und ohne Beleuchtungskörper zu verwenden	auch bei abgeschalteter Beleuchtung lesbar	schwarz auf weiß	schwarz auf Beleuchtungsfarbe	alle
	STN neg. blau transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf blauem Hintergrund	weiß
	FSTN neg. transmissiv	nur beleuchtet zu verwenden			Beleuchtungsfarbe auf schwarzem Hintergrund	alle
	FSTN pos. white reflektiv	keine Beleuchtung möglich	ohne Beleuchtung bestens lesbar	schwarz auf weiß		

3 verschiedene Beleuchtungen

Zur Anpassung an unterschiedlichste Designs stehen 3 verschiedene Beleuchtungsfarben zur Auswahl. Die effektivste und gleichzeitig hellste Beleuchtung ist die weiße EA LED66x40-W.

Wenn Sie auf dieser Seite nur schwarz/weiß Darstellungen sehen: das farbige Datenblatt finden Sie im Internet unter http://www.lcd-module.de/deu/pdf/doma/dogm204.pdf

USB-TESTBOARD EA 9780-3USB

Zum einfachen Start ist ein USB-Testboard für den Anschluss an einen PC erhältlich. Im Lieferumfang ist ein USB-Kabel, sowie eine Windows-Software enthalten. Hierüber können auch eigene Texte direkt am angeschlossenen Display dargestellt werden.

SIMULATION UNTER WINDOWS

Ohne vorab ein Display zu kaufen, können mit einem Simulator alle Versionen und Farben auf dem PC dargestellt werden. Die Software steht auf unserer Website kostenfrei zum Download bereit: http://www.lcd-module.de/deu/disk/startdog.zip

Applikationsbeispiele

Je nach Interface ist eine unterschiedliche Beschaltung zu wählen.

Bitte beachten Sie, dass aufgrund der COG-Technik die Strombelastbarkeit der Ausgänge begrenzt ist. Es kann dadurch bei größerer Buslast zu Signalverschleifungen und unsauberen Pegeln kommen. Im Zweifelsfall sind zusätzliche Pull-Down Widerstände (8051) erforderlich, oder es müssen zusätzliche Waits/NOP's eingefügt werden.

12:00 BLICKWINKEL, TOP VIEW EINBAULAGE

Wird das Display überwiegend von oben abgelesen (z.B. in der Front eines Labornetzteils), kann der Vorzugsblickwinkel auf 12:00 Uhr eingestellt werden. Dazu wird das Display um 180° gedreht eingebaut und geringfügig anders initialisiert.

	Change view														
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark			
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8-Bit data length extension Bit RE=1; IS=0			
Entry Mode	0	0	0	0	0	0	0	1	BDC	BDS	\$0X	\$06=bottom view; \$05 = top view			
Function Set	0	0	0	0	1	1	1	0	0	0	\$38	8-Bit data length extension Bit RE=0; IS=0			

Einbaulage 6:00 (Bottom View)

EA DOGM204x-A 4x20 characters 4.8mm height temperature -20..70

Einbaulage 12:00 (Top View)

KONTRAST EINSTELLUNG

Für alle Displays der EA DOG- Serie ist der Kontrast per Befehl einstellbar.

Dies erfolgt über die Bits C0..C5 in den Befehlen "Contrast Set" und "Power/Icon Control/Contrast Set". In der Regel wird der Kontrast einmalig eingestellt und dann - dank integrierter Temperatur-kompensation - über den gesamten Betriebstemperaturbereich (-20..+70°C) konstant gehalten. Insgesamt benötigen die Displays keine zusätzliche negative Spannung!

	Contrast set														
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark			
Function Set	0	0	0	0	1	1	1	0	0	1	\$39	8-Bit data length extension Bit RE=0; IS=1			
Power control	0	0	0	1	0	1	0	1	1	1	\$57	Booster on and set contrast (DB1=C5, DB0=C4)			
Contrast Set	0	0	0	1	1	1	1	0	1	1	\$7B	Set contrast (DB3-DB0=C3-C0)			
Function Set	0	0	0	0	1	1	1	0	1	0	\$38	8-Bit data length extension Bit RE=0; IS=0			

INITIALISIERUNGSBEISPIELE

	Init example 8-Bit													
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark		
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8-Bit data length extension Bit RE=1; REV=0		
Extended funcion set	0	0	0	0	0	0	1	0	0	1	\$09	4 line display		
Entry mode set	0	0	0	0	0	0	0	1	1	0	\$06	bottom view		
Function Set	0	0	0	0	1	1	1	0	0	1	\$39	8-Bit data length extension Bit RE=0; IS=1		
Follower control	0	0	0	1	1	0	1	1	0	0	\$6C	Devider on and set value		
Power control	0	0	0	1	0	1	0	1	1	1	\$57	Booster on and set contrast (DB1=C5, DB0=C4)		
Contrast Set	0	0	0	1	1	1	1	0	1	1	\$7B	Set contrast (DB3-DB0=C3-C0)		
Function Set	0	0	0	0	1	1	1	0	1	0	\$38	8-Bit data length extension Bit RE=0; IS=0		

				I	nit	exa	mp	le 4-Bit				
Command	RS	R/W	DB7	DB6	DB5	DB4	Hex	Remark				
Synchronize 1	0	0	0	0	1	1	¢33	Make sure to switch to 8 bit data length				
Synchionize i	Ů	Ů	0	0	1	1	φυυ	Make Sure to Switch to 6 bit data length				
Synchronize 2	0	0	0	0	1	1	\$32	Switch to 4 Bit data length				
Cyriorii Crii 20 2	Ů	Ŭ	0	0	1	0	ΨΟΖ	owner to 4 Bit data longer				
Function Set	0	0	0	0	1	0	\$24	4-Bit data length extension Bit RE=1; REV=0				
T direction oct	Ŭ	Ŭ	1	0	1	0	ΨΖΛ	The data length extension bit tie 1, tie v = 0				
Extended funcion	0	0	0	0	0	0	\$09	4 line display				
set	Ŭ	Ŭ	1	0	0	1	φοσ	i ino diopiay				
Entry mode set	0	0	0	0	0	0	\$06	bottom view				
Entry mode set	Ů	Ŭ	0	1	1	0	φοσ	SOLIOITI VIOW				
Function Set	0	0	0	0	1	0	\$20	4-Bit data length extension Bit RE=0; IS=1				
i diction oct	Ů	Ŭ	1	0	0	1	ΨΖΟ	+ bit data length extension bit tile=0, to=1				
Follower control	0	0	0	1	1	0	\$6C	Devider on and set value				
1 Ollower cortifor	Ŭ	Ŭ	1	1	0	0	ΨΟΟ	Devider on and set value				
Power control	0	0	0	1	0	1	¢57	Booster on and set contrast (DB1=C5, DB0=C4)				
i ower control	Ů	Ů	0	1	1	1	ψΟΊ	booster off and set contrast (bb1=03, bb0=04)				
Contrast Set	0	0	0	1	1	1	\$7B	Set contrast (DB3-DB0=C3-C0)				
Ooimasi Sei	Ŭ	Ŭ	1	0	1	1	φιυ	361 Collitast (DB3-DB0=C3-C0)				
Function Set	0	0	0	0	1	0 \$28 4 Bit data langth extension Bit PE-	4-Bit data length extension Bit RE=0; IS=0					
Function Set			1	0	0 1	\$28	4-Dit data leligili exterision bit NE=0, 10=0					

Further information about the commadns of the SSD1803A, please refer to the datasheet http://www.lcd-nodule.de/fileadmin/eng/pdf/zubehoer/ssd1803a_2_0.pdf

EIGENE ZEICHEN

Es ist Möglich neben den fest im ROM gespeicherten Zeichen bis zu 8 weitere frei zu definieren (ASCII Codes 0..7).

- 1.) Mit dem Kommando "CG RAM Address Set" wird der ASCII Code (Bit 3,4,5) und die entsprechende Pixelzeile (Bit 0,1,2) des Zeichens angewählt. Im Beispiel wird ein Zeichen mit dem Code \$00 definiert.
- 2.) Mit dem Befehl "Data Write" wird nun Pixelzeile für Pixelzeile das Zeichen in das CG RAM geschrieben. Ein Zeichen benötigt 8 Schreiboperationen, wobei die 8. Zeile der Cursorzeile entspricht.
- 3.) Das neu definierte Zeichen wird genauso behandelt wie ein "normales" ASCII Zeichen (Verwendung: "DD RAM Address Set", "Data Write").

	Character-data																																				
			Hex																																		
7	6	5	4	3	пех																																
			0	0	1	0	0	\$04																													
				0	0	-	0	0	\$04																												
	x x x		0	0	-	0	0	\$04																													
v		v	0	0	1	0	0	\$04																													
^	^	Χ	1	0	1	0	1	\$15																													
																																	0	1	1	1	0
			0	0	1	0	0	\$04																													
			0	0	0	0	0	\$00																													

	Define own character													
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark		
CG-RAM address set	0	0	0	1	AC5	AC4	АС3	AC2	AC1	AC0		Set address of character \$40=0; \$48=1; \$54=2\$78=7		
						0	0	1	0	0	\$04	first line		
						0	0	1	0	0	\$04	second line		
						0	0	1	0	0	\$04	third line		
Character-data	1	0	х	х	х	0	0	1	0	0	\$04	fourth line		
						1	0	1	0	1	\$15	fifth line		
						0	1	1	1	0	\$0E	sixth line		
1						0	0	1	0	0	\$04	seventh line		
						0	0	0	0	0	\$00	eighth line, cursor line		

ZEICHENSATZ

Es sind 3 unterschiedliche Zeichensätze definiert. Mit dem Befehl ROM-Selection im erweiterten Commandoset können die unterschiedlichen Zeichensätze ausgewählt werden.

ROM C

Beispielcode:

	Change character table														
Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Hex	Remark			
Function Set	0	0	0	0	1	1	1	0	1	0	\$3A	8-Bit data length extension Bit RE=1			
ROM Selection	0	0	0	0	0	0	1	0	0	1	\$72	ROM selection double byte command			
	1	0	0	0	0	0	R2	R1	0	0	\$0X	\$00 = ROMA; \$04=ROMB; \$0C=ROMC			
Function Set	0	0	0	0	1	1	1	0	0	0	\$38	8-Bit data length extension Bit RE=0			

SERIAL INTERFACE (SPI)

Das serielle Interface benötigt immer ein Synchronisationsbyte. Beim Schreiben der Daten muss das zu sendende Byte in zwei Byte aufgeteilt werden, in "lower data" und "upper data". Siehe hierfür das folgende Schaubild.

I²C INTERFACE

Dem Display kann entweder die SlaveAdresse 0x78 oder 0x7A zugeordnet werden (PIN SA0). Nach dem Übertragen der Startcondition muss im ersten Byte die per Hardware eingestellte Slaveadresse übertragen werden, ebenso wie das Read(1)/Write(0) Bit. Beim schreibenden Zugriff folgt auf die Adresse immer ein Controlbyte mit der Information Data(0) oder Command(1), sowie dem sogenannten Continuation bit. Wird das Continuation bit auf 0 gesetzt folgen bis zur Stop condition nur noch daten bytes.

<u>Hinweis:</u> Die 6 LED-Pins AI, CI, A2, C2, A3,C3 miissen von oben verlötet werden, damit ein einwandfreier Kontakt gewährleistet ist.

පු

ELECTRONIC ASSEMBLY GmbH Zeppelinstraße 19 D-82205 Gilching Germany Fon: +49 (0)8105-7780 90 Fax: +49 (0)8105-7780 99 e-Mail: info@lcd-module.de Web: www.lcd-module.de

