media unei variabile aliatoare = expectation for a random variable (E X = LINIE * COLOANA) dispersia unei variabile aliatoare = variance for a random variable (VAR[X] = E [X²] – (E[X])²) distributia unei variabile aliatoare = distribution of a random variable (TABEL)

I. 1.

$E X = (-1) * \frac{1}{4} + 1 * \frac{1}{4} + 2 * \frac{3}{16} + 3 * \frac{5}{16} = \frac{21}{16}$
E Y = 0 * 1/3 + 1 * 5/9 + 2 * 1/9 = 7/9

$$EZ = (-2) * 1/7 + 0 * 4/7 + 2 * 2/7 = 2/7$$

$$E X^2 = 1 * \frac{1}{4} + 1 * \frac{1}{4} + 4 * \frac{3}{16} + 9 * \frac{5}{16} = \frac{65}{16}$$

$$E Y^2 = 0 * 1/3 + 1 * 5/9 + 4 * 1/9 = 9/9$$

$$E Z^2 = 4 * 1/7 + 0 * 4/7 + 4 * 2/7 = 12/7$$

$$Var[X] = 65/16 - 441/256 = 599/256$$

$$Var[Y] = 1 - 49/81 = 32/81$$

$$Var[Z] = 12/7 - 4/49 = 80/49$$

v.	-1	1	2	3
Λ:	1/4	1/4	3/16	5/16

V.	0	1	2
1.	1/3	5/9	1/9

7.	-2	0	2
Z :	1/7	4/7	2/7

\mathbf{X}^2 .	1	1	4	9
Λ:	1/4	1/4	3/16	5/16

V 2.	0	1	4
Y -:	1/3	5/9	1/9

7 2.	4	0	4
Z ² :	1/7	4/7	2/7

I. 4.

$$\{t,t,t\} = 0-3 = -3$$

$${h,t,t} = {t,h,t} = {t,t,h} = 1-2 = -1$$

$${h,h,t} = {t,h,h} = {h,t,h} = 2-1 = 1$$

$$\{h,h,h\} = 3-0 = 3$$

$$E X = -3 * 1/8 + -1 * 3/8 + 1 * 3/8 + 3 * 1/8 = 0$$

$$E X^2 = 9 * 1/8 + 1 * 3/8 + 1 * 3/8 + 9 * 1/8 = 24/8$$

$$Var[X] = 24/8 - 0 = 3$$

	2	1	1	2
ν.	-3	-1	1	3
Λ.	1/8	3/8	3/8	1/8

372	9	1	1	9
X^2 :	1/8	3/8	3/8	1/8

$$P(X=1) = \{1,1\}\{1,2\}\{1,3\}\{1,4\}\{1,5\}\{1,6\}\{2,1\}\{3,1\}\{4,1\}\{5,1\}\{6,1\}$$

$$P(X=2) = \{2,2\}\{2,3\}\{2,4\}\{2,5\}\{2,6\}\{3,2\}\{4,2\}\{5,2\}\{6,2\}$$

$$P(X=3) = \{3,3\}\{3,4\}\{3,5\}\{3,6\}\{4,3\}\{5,3\}\{6,3\}$$

$$P(X=4) = \{4,4\}\{4,5\}\{4,6\}\{5,4\}\{6,4\}$$

$$P(X=5) = \{5,5\}\{5,6\}\{6,5\}$$

$$P(X=6) = \{6,6\}$$

v.	1	2	3	4	5	6
Λ.	11/36	9/36	7/36	5/36	3/36	1/36

I. 8.

 $U_1 = 1w$, 1b;

 $U_2 = 2w$, 6b; $U_3 = 1w$, 3b;

v.	0	1	2	3
Λ.	28/90	37/90	19/90	6/90

X = nr of w

v 2.	0	1	4	9
Λ.	28/90	37/90	19/90	6/90

$$P(X=0) = P(\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}) = \frac{1}{2} \cdot \frac{7}{9} \cdot \frac{4}{5} = \frac{28}{90}$$

$$P(X=1) = P(\overline{A_1} \cap \overline{A_2} \cap A_3) + P(\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}) + P(\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}) = \frac{1}{2} \cdot \frac{7}{9} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{2}{9} \cdot \frac{3}{5} + \frac{1}{2} \cdot \frac{6}{9} \cdot \frac{4}{5}$$

$$P(X=2) = P(A_1 \cap A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) + P(\overline{A_1} \cap A_2 \cap A_3) + P(\overline{A_1} \cap A_2 \cap A_3) = \frac{1}{2} \cdot \frac{3}{9} \cdot \frac{3}{5} + \frac{1}{2} \cdot \frac{6}{9} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{2}{9} \cdot \frac{2}{5} = \frac{19}{90}$$

$$P(X=2) = P(A_1 \cap A_2 \cap A_3) + P(\overline{A_1} \cap \overline{A_2} \cap A_3) + P(\overline{A_1} \cap \overline{A_2} \cap A_3) = \frac{1}{2} \cdot \frac{3}{9} \cdot \frac{2}{5} = \frac{6}{90}$$

$$P(X=3) = P(A_1 \cap A_2 \cap A_3) = \frac{1}{2} \cdot \frac{3}{9} \cdot \frac{2}{5} = \frac{6}{90}$$

$$E X = 0 * 28/90 + 1 * 37/90 + 2 * 19/90 + 3 * 6/90 = 93/90$$

$$E X^2 = 0 * 28/90 + 1 * 37/90 + 4 * 19/90 + 9 * 6/90 = 167/90$$

$$Var [X] = 167/90 - 8649/8100 = 6381/8100$$

X = nr of girls

5h	fh	ffb,	fff?
ιυ,	10,	110,	1111

$$P(X=0) = 1/2$$

$$P(X=1) = 1/2 * 1/2 = 1/4$$

$$P(X=2) = 1/2 * 1/2 * 1/2 = 1/8$$

$$P(X=3) = 1/2 * 1/2 * 1/2 = 1/8$$

Y 2.	0	1	4	9
X ² :	4/8	2/8	1/8	1/8

$$EX = 0 * 4/8 + 1 * 2/8 + 2 * 1/8 + 3 * 1/8 = 7/8$$

$$E X^2 = 0 * 4/8 + 1 * 2/8 + 4 * 1/8 + 9 * 1/8 = 15/8$$

$$Var[X] = 15/8 - 49/64 = 71/64$$

I. 15.

$$P_1, P_2$$
; 2 sets won by one of the players $P(P_1) = 1/3$;

 $X = nr \text{ of sets played by } P_1;$ $Y = nr \text{ of sets } P_2 \text{ wins}$

X:	2	3
	5/9	4/9

$$P(X=2) = 1/9 + 4/9 = 5/9$$

$${P_1, P_1} = 1/3 * 1/3 = 1/9$$

$$\{P_2, P_2\} = 2/3 * 2/3 = 4/9$$

Y:
$$\begin{vmatrix} 0 & 1 & 2 \\ 3/27 & 4/27 & 20/27 \end{vmatrix}$$

$$P(X=3) = 2/27 + 2/27 + 4/27 + 4/27 = 12/27 = 4/9$$

$${P_1, P_2, P_1} = {P_2, P_1, P_1} = 1/3 * 2/3 * 1/3 = 2/27$$

$${P_2, P_1, P_2} = {P_1, P_2, P_2} = 2/3 * 1/3 * 2/3 = 4/27$$

$$P(Y=0) = \{P_1, P_1\} = 1/3 * 1/3 = 1/9 = 3/27$$

$$P(Y=1) = \{P_1, P_2, P_1\} + \{P_2, P_1, P_1\} = 2/27 + 2/27 = 4/27$$

$$P(Y=2) = {P_2, P_1, P_2} + {P_1, P_2, P_2} + {P_2, P_2} = 4/27 + 4/27 + 4/9 = 20/27$$

$$X \sim B(n,p)$$
:

X = "nr de succese"

n = nr de repetari

$$E[X] = n * p$$

p = probabilitate de succese

$$Var[X] = n * p * (1 - p)$$

II. 1.

2 coins flipped 7 times each; P (h,h)

$$P(h,h) = 1/2 * 1/2 = 1/4$$

$$X \sim B (7,1/4)$$

$$EX = 7 * 1/4 = 7/4$$

$$Var[X] = 7 * 1/4 * 3/4 = 21/16$$

II. 2.

$$P(0) = 6/10; P(1) = 4/10;$$

a.) $\{x,x,x,x,x,x,x,x\}$ P of five 0's and two 1's

$$(6/10)^5 * (4/10)^2 * C_7^5$$

b.)
$$X = "nr of 0"$$

$$X \sim B(5,6/10)$$

$$E X = 5 * 3/5 = 3$$

II. 6.

10 cards (out of 52); X = nr of clubs

$$P (club) = 13/52$$

$$X \sim B (10, 1/4)$$

$$E X = 10 * 1/4 = 5/2$$

 $X \sim G(p)$; X = "nr experientei la care obtinem 1-a oara succes"

v.	1	2	3	• • •	n	
Λ:	•••			• • •	$p * (1-p)^{n-1}$	

$$E X = 1/p$$

$$Var[X] = 1-p/p^2$$

II. 9.

2 dice, 8 times each; X = even product

P (even product) = 1-P (odd product) = $1 - \{1,1; 1,3; 1,5; 3,1; 3,3; 3,5; 5,1; 5,3; 5,5\} = 1 - 9/36 = 27/36$

X~B (8,27/36)

$$EX = 8 * 27/36 = 6$$

III. 1.

nr of rolls of 2 dice to get a product < 7

 $\{1,1; 1,2; 1,3; 1,4; 1,5; 1,6; 2,1; 2,2; 2,3; 3,1; 3,2; 4,1; 5,1; 6,1\} = 14/36$

X~G (14/36)

E X = 36/14

III. 4.

nr of withdraws from a deck to get a carp which is not diamond

P (not diamond) = 3/4

 $X\sim G(3/4)$

E X = 4/3

III. 6.

P(0) = 4/10; pairs of bits; nr of pairs until we get 0-0

P(1) = 6/10

P(0-0) = 4/10 * 4/10 = 16/100

X~G (16/100)

E X = 100/16

Var[X] = ...

X = nr of accedents between 7-8

X~Poisson (lam)

 $P(X=n) = e^{-l} * l^n/n!$

E X = lam

a.)
$$P(X>=3) = 1 - P(X=0) - P(X=2) = 1 - e^{-0.7} * (1 + 0.7 + 0.49/2)$$

b.)
$$P(X>=1) = 1 - P(X=0) = 1 - e^{-0.7}$$