

Figure 1: network topology

1 HW3

- **1.** Assign a letter to each node as shown in Fig. 1. Define the following notation:
 - d(v): cost of the least-cost path from the source node to destination v as of this iteration of the algorithm.
 - $d_x(y)$ current minimum cost from node x to node y.
 - c(x, y) cost from x to directly attached neighbor y.
 - p(v): previous node (neighbor of v) along the current least-cost path from the source to v.
 - N: all the nodes.
 - N': subset of nodes; v is in N' if the least-cost path from the source to v is definitively known.

Link-State (Dijkstra algorithm):

```
N' = {A}
for all nodes v
   if v is a neighbor of A then
      d(v) = c(A, v)
   else
```

```
\begin{array}{l} d(v) = \infty \\ \\ loop \\ \\ find w not in N' such that d(w) is a minimum \\ \\ add w to N' \\ \\ \\ update \ d(V) \ for \ each \ neighbor \ v \ of \ w \ and \ not \ in \ N': \\ \\ \\ d(v) = \min(d(v), \ d(w) + c(w, \ v)) \\ \\ until \ N' = N \end{array}
```

Table 1 shows all the rounds using Dijkstra algorithm to find the shortest paths. In the table, **N**′ is a set contains the nodes whose shortest path costs are already known. Each row in the table is a round that computes the shortest path cost from the source noede (A) to a picked node. For cells in the columns titled with nodes letters, '-' means we already know the least cost to the node. Value (X, y) means current path cost from source node A to the node (denoted by the column title) is y, and the previous node is X. For example, in the first row of column F, "A, ∞ " means current path cost to node F is infinte (unknown), and in the third row of column C, "D, 6" means current path cost to node C is 6 and the previous node is node D.

Table 1: Find shortest path using Dijkstra algorithm.

Picked node	N'	A	В	C	D	E	F
A	{A}	-	A, 3	A, 7	A, ∞	A, ∞	A, ∞
В	{A, B}		-	A, 7	B, 4	В, 8	B, 11
D	{A, B, D}			D, 6	-	B, 8	B, 11
С	{A, B, C, D}			-		В, 8	B, 11
Е	{A, B, C, D, E}					-	B, 11
F	$\{A, B, C, D, E, F\}$						-

According to the table, we can get the shortest path from A to all other nodes:

From A to B: $A \rightarrow B$, cost = 3.

From A to C: A->B->D->C, cost = 6.

From A to D: $A \rightarrow B \rightarrow D$, cost = 4.

From A to E: $A \rightarrow B \rightarrow E$, cost = 8.

From A to F: A->B->F, $\cos t = 11$.