Kyle Chui Page 1

0.1 Equivalence Relations

Definition. Equivalence relation

A relation R on a set X is an equivalence relation if it is reflexive, symmetric, and transitive.

Note. An equivalence relation gives us a notion of two different elements in a set being "the same".

- Reflexive: Everything is "the same" as itself
- Symmetric: If x is "the same" as y, then y is "the same" as x
- Transitive: If x is "the same" as y, and y is "the same" as z, then x is "the same" as z

Example. Equivalence Relations

- (a) The relation E on the integers where xEy if x-y is even.
 - Reflexive: For all $x \in \mathbb{Z}$, x x = 0, which is even, so xEx
 - Symmetric: For all $x, y \in \mathbb{Z}$, if x y is even, so is -(x y) = y x. Thus if xEy, then yEx
 - Transitive: For all $x, y, z \in \mathbb{Z}$, if x y is even and y z is even, then their sum, x z, is also even. Thus if xEy and yEz, then xEz.

Observe that this relation relates two integers if they have the same parity.

- (b) Let Y be any finite set, and $a, b \in Y^*$ (the set of all strings constructed using Y). Consider the relation L over Y^* such that aLb if a and b have the same length.
- (c) Let X be the set of all animals, with animals $x, y \in X$. Consider the relation S over X such that xSy if x and y are of the same species.
- (d) Let $x, y \in \mathbb{R}$. Consider the relation C over \mathbb{R} such that xCy if x y is an integer.

Definition. Equivalence Classes

If R is an equivalence relation on a set X, then for $x \in X$, the equivalence class of X is the set (with respect to R), denoted by $[x] = [x]_R = \{y \in X \mid xRy\}$.

Example. Equivalence Classes

- (a) Let E be a relation on \mathbb{Z} , where xEy if x-y is even. The equivalence classes for E are [0] (the evens) and [1] (the odds). So, the set of equivalence classes $= \{[0], [1]\}$.
- (b) Let $x, y \in \mathbb{R}$, with the relation C over \mathbb{R} defined by xCy if x y is an integer. The set of equivalence classes $= \{[x] \mid x \in [0, 1)\}.$

If R is an equivalence relation on a set X, then:

• For all $x \in X$, if $x \in [y]$ and $x \in [z]$, then [y] = [z].

Proof. Suppose $x \in [y]$ and $x \in [z]$. Let $w \in [y]$. Because $w \in [y]$, we know that yRw. We also know that yRx because $x \in [y]$. By symmetry of R, we have wRy, and by transitivity, we have wRx. But $x \in [z]$, so zRx, and by symmetry we have xRw. By transitivity, zRw so $w \in [z]$. Thus $[y] \subseteq [z]$.

By a similar argument, we have that $[z] \subseteq [y]$, so [y] = [z].

Kyle Chui Page 2

• For any $x \in X$, x is in some equivalence class, $x \in [x]$ by reflexivity. So, for every $x \in X$, x is in exactly one equivalence class. If x is in another equivalence class [y], then by the above [x] = [y].

Definition. Partition

For X a set, a partition S of X is a set of nonempty subsets of X such that every element of X is an element of exactly one of the subsets. In other words, for all $A, B \in S$

- $A, B \subseteq X$
- $A, B \neq \varnothing$
- If $A \cap B \neq \emptyset$ then A = B
- For all $x \in X$, there exists exactly one $A \in \mathcal{S}$ such that $x \in A$

Note. We showed that if R is an equivalence relation on X then $\{|x|_R \mid x \in X\}$ is a partition of X.

Theorem — Equivalence Relations and Partitions

For X a set, there is a bijection F: Set of equivalence relations on $X \to \text{Set}$ of partitions of X, defined by

$$F(E) = \{ [x]_E \mid x \in X \} \,,$$

the inverse function F^{-1} sends a partition \mathcal{S} to the equivalence relation $F^{-1}(\mathcal{S})$ defined by $xF^{-1}(\mathcal{S})y$ if and only if x and y are in the same element of \mathcal{S} (in the same equivalence class of E).