

Algorithmique Avancée

Animé par : Dr. ibrahim GUELZIM

Email: ib.guelzim@gmail.com

References

- Introduction à l'algorithmique. Cours et exercices. Cormen et al. 2e édition. (En 3rd Edition)
- Algorithms, FOURTH EDITION, Robert Sedgewick and Kevin Wayne.
 Princeton University.
- · Algorithmique, M. El Marraki.
- https://jeffe.cs.illinois.edu/teaching/algorithms/

Sommaire

- Rappels
 - Introduction et notions générales
 - Analyse et conception d'algorithmes
 - Complexité d'algorithmes classiques : 3 Tris de tableaux, 2 recherches dans un tableau, Schéma de Hörner
 - Preuves d'algorithmes
- Autres algorithmes de tri :
 - Tri par fusion
 - Tri par Tas
- · Complexité moyenne :
 - · Application au Tri rapide
 - Algorithmes sur des structures de recherches spéciales :
 - Table de Hachage et Fonction de Hachage,
 - Bloom Filter,
 - Count Min Sketch
- Programmation dynamique
- Traitements de chaines de Caractères :
 - Recherche de chaine de caractères
 - Compression de données
- Transformée de Fourier et applications

Envers un algorithme

- Algorithmique:
 - Hommage à الخوارزمي [780 850] : Savant mathématicien perse (Khawarezm \in Khorasan \rightarrow Baghdad pendant la dynastie abbaside)
 - Alkhawarizmi → Algoritmi → Algorithmique
 - Art de décrire une tâche (chemin, recette...)
 - Art de mettre les idées en ordre: penser avant d'agir.
 - Mise de <u>l'ordre</u> dans la pensée: gain considérable de temps.

- · Procédure de calcul
- une suite d'étapes dont le but est de décrire la résolution d'un problème ou l'accomplissement d'une tâche.
- une **méthode de résolution** de problème énoncée sous la forme d'une **série** d'opérations à effectuer dans un ordre bien défini.
- · Procédé permettant de résoudre un problème en un nombre fini d'opérations.
- une suite finie et **non ambigüe** d'opérations permettant de résoudre un problème.

- Procédure de calcul
- une <u>suite d'étapes</u> dont le but est de <u>décrire</u> la résolution d'un problème ou l'accomplissement d'une <u>tâche</u>.
- une <u>méthode de résolution</u> de problème énoncée sous la forme d'une <u>série</u> d'opérations à effectuer dans un <u>ordre</u> bien défini.
- Procédé permettant de résoudre un problème en un nombre fini d'opérations.
- une suite finie et <u>non ambigüe</u> d'opérations permettant de résoudre un problème.

- Q: Utilité des algorithmes ?!
- R: exemples
 - Internet: Recherche de routes optimales pour l'acheminement des données.
 - Commerce électronique: La cryptographie s'appuient sur des algorithmes numériques pour préserver la confidentialité. Background :
 - · Signature Numérique
 - Fonction de Hashage
 - · Théorie des nombres
 - Une compagnie pétrolière veut savoir où placer ses puits de façon à maximiser les profits,
 - · Compression de données,

• ..

Analyse et conception

- Analyser un algorithme :
 - Prévoir les ressources nécessaires à cet algorithme.
 - la mémoire,
 - le processeur,
 - mais, souvent, c'est le <u>temps</u> de calcul qui nous intéresse.
- Plusieurs algorithmes peuvent en résulter
 - → éliminer les algorithmes inférieurs et garder la meilleure solution.
- · Analyse du meilleur cas, du plus défavorable, ou du cas moyen?

Conception

- Méthode incrémentale: utilise un processus itératif où chaque itération augmente la quantité d'information.
- Ex: Tri par insertion
 - insérer T[i] dans le sous tableau T[0 ... i-1] (déjà trié)
 - Exemple: insérer 8 dans [2 6 9 15]

 2
 6
 9
 15
 8
 1
 41
 7

 2
 6
 9
 8
 15
 1
 41
 7

 2
 6
 8
 9
 15
 1
 41
 7

 2
 6
 8
 9
 15
 1
 41
 7

Permuter les éléments opportuns

UH2C: ENSAM:: Algorithmique Avancée

Conception

- Diviser pour régner:
 - Analyse Descendante :
 - Décomposer chaque Problème "Composé" en sous Pb, jusqu'à l'arrivé à des sous Pb élémentaires (non décomposables). (appelés : feuilles de l'arbre)
 - Si phase finale (indissociable indivisible) on passe à la réalisation.
 - o Analyse Ascendante:
 - Si phase NON FINALE: Reconstitution de la solution de chaque Pb en regroupant les solutions de ses sous Pb.
 - Le résultat est fournis à la phase d'avant : père (niveau plus haut dans l'arborescence)

Conception

- Diviser pour régner:
 - Ex: Tri par fusion (cf. plus loin)

 Introduction: Il arrive, en mathématique, que des suites soient définies de la manière suivante :

```
u_0 = constante

u_n = f(u_{n-1})
```

- Exemple :
 - La suite factorielle : n! = n*(n-1)!, pour n≥1 avec 0!=1, peut s'ecrire :

```
f(0) = 1
f(n) = n*f(n-1)
```

• Ce que l'on peut traduire par : f(n) = (si n=0 alors 1 sinon n*f(n-1)).

• Cela peut se traduire en algorithmique par :

```
fonction factorielle_rec(n :entier) : entier
début
si (n=0) alors retourne(1)
sinon retourne(n*factorielle_rec(n-1))
finsi
Fin
```

- Dans la fonction factorielle_rec(), on constate que la fonction s'appelle elle-même.
- Ceci est possible, puisque la fonction factorielle_rec() est déclarée avant son utilisation (c'est l'entête d'une fonction qui la déclare).

Que se passe-t-il lorsque on calcul factorielle_rec(3)?

```
Factorielle_rec(3) = 3 * factorielle_rec(2)

= 3 * (2*factorielle_rec(1))

= 3 * (2 * (1*factorielle_rec(0)))

= 3 * (2 * (1 * (1)))

= 3 * (2 * (1))

= 3 * (2)

= 6
```

- La récursivité est un concept fondamental en mathématiques et en informatique.
- Un programme récursif est un programme qui s'appelle lui-même.
- Pour éviter la boucle infinie, il faut que le programme cesse de s'appeler lui-même.
 - → Un programme récursif doit contenir une condition d'arrêt (ou de terminaison) qui autorise le programme à ne plus faire appel à lui-même.
- Fonction récursive:
 - Directe: Contient appel à elle même
 - Indirecte (croisée): contient un appel à une fonction qui emmène à l'appel de la fonction initiale.

• Souvent la récursivité dans les fonctions est ainsi:

```
fonction Fonc_Rec(paramètres) : Type_retoure
début
   Si (cond arret 1 vérifiée)
    retourner valeur_1
   FinSi
   appel(s) récursivité Fonc_Rec(paramètres')
Fin
```

- Attention, une mauvaise condition d'arrêt -> Solution fausse.
- Une fonction récursive peut avoir <u>plusieurs conditions d'arrêt</u>.
 Exemple: Fonction de Fibonacci

Suite de Fibonacci

```
F_n = F_{n-1} + F_{n-2}, pour n \ge 2 avec F_0 = 0 et F_1 = 1
```

On a un programme récursif simple associé a cette relation :
 fonction Fibo1(n entier) : entier
 début
 si (n = 0 ou n = 1) alors retourne(n)
 sinon retourne(Fibo1(n-1) + Fibo1(n-2))
 finsi
 Fin

- Le nombre d'appels nécessaires au calcul de F_n est égal au nombre d'appels nécessaires au calcul de F_{n-1} plus celui relatif au calcul de F_{n-2} ,
- ceci correspond bien à la définition de la suite de Fibonacci.

- La récursivité
 - Est un concept proche de l'esprit humain, <u>MAIS</u>
 - n'est pas nécessairement la meilleure solution de résolution d'un Pb en terme de temps d'execution ou d'espace mémoire réservé (complexité)
- Exemple: $2^{\grave{e}me}$ algorithme de calcul de **Fn** (en utilisant un tableau)

```
Exemple de récursivité: Recherche Dichotomique Récursive RDR dans un tableau trié: retourne la position de elem s'il existe et -1 sinon
fonction RDR(T[]:entier,elem:entier,Deb:entier,Fin : entier):Entier
variable milieu : entier
Début
si Fin < Deb
retourne -1
milieu \leftarrow (Deb + Fin) / 2
si elem = T[milieu] retourne milieu
  sinon si elem < T[milieu]</pre>
            retourne rech dich rec(T,elem,Deb,milieu-1)
            sinon retourne rech dich rec(T,elem,milieu +1,Fin)
            finsi
Finsi
Fin
```

Exemple de calcul de 2ⁿ

```
// ******* Solution 1 **********
fonction puiss rec1(n:entier): entier
si (n = 0)
  retourner 1
sinon
  retourner (puiss rec1(n-1) + puiss rec1(n-1))
Finsi
Fin
// ******* Solution 2 ***********
fonction puiss rec2(n:entier):entier
Si (n = 0)
  retourner 1
sinon
  retourner 2*puiss rec2(n-1)
Finsi
Fin
```


Complexité

- Q: Quelle est la meilleure solution?
- Q: meilleure par rapport à quoi?
- · La solution d'un problème d'algo n'est pas unique
 - → Plusieurs propositions, mais sans doute, une est plus pratique ou meilleure !!
- Comparer différents algorithmes (résolvant le même problème)
 - rapidité : combien de temps?
 - taille des ressources : combien d'espace mémoire?
 - peut-on comparer objectivement des algorithmes ?
- Q: Comment évaluer un algorithme?
 - R: Mesurer sa complexité

Mesure de Complexité Algorithmique

- · Le temps d'exécution d'un programme dépend de la taille des données.
- On note T(n) le temps d'exécution ou la complexité algorithmique d'un programme portant sur des données de taille n.
- Dans la suite, la complexité d'un algorithme désigne le <u>nombre d'opérations</u> <u>élémentaires</u> (affectations, comparaisons, opérations arithmétiques) effectuées par l'algorithme.
- Elle s'exprime en fonction de la taille n des données.

Mesure de Complexité Algorithmique

- Deux types de mesures de complexité
- 1. Pire des cas (worst case):
 - "Quand on s'attend au pire, on n'est jamais déçu"
 - On définit T(n) comme la complexité maximum, sur tous les ensembles de données possible de taille n.
- 2. Complexité moyenne (average), $T_{moy}(n)$.
- 3. Meilleure des cas
- · Le complexité "pire des cas" est la plus employée.

Complexité: notation de landau 'O'

- La notation de Landau "O" : (~Edmund Landau 1877 -1938: wikipedia)
- Grand Omicron (big Omicron): dit grand O
- Comparaison asymptotique: pour des valeurs très grandes (vers l'infini)
- Pour deux fonctions f et g on dit que la fonction f est **un grand** O de la fonction g **ssi** f est dominée asymptotiquement par g.
- On note que f = O(g) ou f(n) = O(g(n)) s'il existe une constante positive c et un entier positif n_0 tel que $f(n) \le c*g(n)$ pour tout $n \ge n_0$
- On dit que $f = \Omega(g)$ ou $f(n) = \Omega(g(n))$ si g = O(f)
- On dit que $f = \Theta(g)$ si f = O(g) et g = O(f)

Complexité: notation de landau 'O'

- Exemples: $f(n) = (n+1)^2$ et $f(n) = 3n^3 + 2n^2$
- 1. Soit la fonction $f(n) = (n+1)^2$ pour $n \ge 0$, alors la fonction f(n) est un $O(n^2)$ pour $n_0 = 1$ et c = 4. En effet, pour $n \ge 1$, on a $(n+1)^2 \le 4n^2$
- 2. La fonction $f(n) = 3n^3 + 2n^2$ est $O(n^3)$ avec $n_0 = \overline{1}$ et c = 5. En effet, $3n^3 + 2n^2 - 5n^3 = 2n^2(1-n) \le 0$ pour $n \ge 1$;

 par conséquent f(n) est $O(n^3)$.

Complexité: Evaluation d'un Algorithme

• n_1 actions élémentaires de genre 1 (par exemple affectations) n_2 actions élémentaires de genre 2 (par exemple additions)

••••

n_k actions élémentaires de genre k

• Chaque ni demandant un temps ti, le temps total d'exécution:

$$t = \sum_{i} t_i n_i$$

- Pour une machine donnée, si c_2 = max t_i alors $T(n) \le c_2 \sum_i n_i$
- DoncT(n) = $O(\sum_i n_i)$ indépendamment de la machine utilisée.

Complexité: classes

Notation	Type de complexité
0(1)	complexité constante (indépendante de la taille de la donnée)
O(log(n))	complexité logarithmique
0(n)	complexité linéaire
O(nlog(n))	complexité quasi-linéaire
O (n ²)	complexité quadratique
O (n ³)	complexité cubique
O (n ^p)	complexité polynomiale, p entier positif
O (n ^{log(n)})	complexité quasi-polynomiale
0 (c ⁿ)	complexité exponentielle
O(n!)	complexité factorielle

- $Log^*(n) << Log n << n^{1/2} << n << n.log(n) << n^2 << n^3 << 2^n << n!$
- Log*(n) est le logarithme itéré: 0 si n ≤ 1 et 1 + log*(log(n)) sinon
- nombre d'itération que le log doit être appliqué avant que le résultat soit inférieur ou égal à :

Complexité: Exemple

· La somme des entiers allant de 1 à n

```
variables n, i, somme : entiers
début
                                      /* 1 écriture */
écrire ("Donner n :")
                                      /* 1 lecture */
lire(n)
                                      /* 1 affectation */
somme \leftarrow 0
                                      /* 1 affectation, n+1 comparaisons,
pour i allant de 1 à n
                                       n additions, n affectations */
                                      /* n additions, n affectations */
 somme ← somme + i
FinPour
écrire ("la somme est :", somme) /* 1 écriture */
Fin
```

Total 5n+6 instructions élémentaires

Complexité: Exemple

- Supposons que :
 - l'affectation, la lecture, l'écriture et l'addition prennent chacune un temps t₁
 - la comparaison prend un temps t₂
- Le temps nécessaire pour la réalisation de cet algorithme est :
 - $(5+4n)t_1 + nt_2 = n(4t_1+t_2) + 5t_1$
 - D'où la complexité T(n) est en O(n)

Complexité: recherche ds tableau

```
Fonction recherche(n: entier, Tab[]:entier, x:entier):entier
variables i : entier
début
 i ← 0
 Tant que (i < n et Tab[i] <> x) faire
      <u>i</u> ← i+1
 FinTantque
 si(i<n) alors retourne(i)</pre>
 sinon retourne(−1)
fin
```

Complexité: recherche ds tableau

- Recherche séquentielle
- Dans le cas où le tableau est ordonné, on peut améliorer l'efficacité de la recherche séquentielle en utilisant la méthode de recherche dichotomique
- Principe : diviser par 2 le nombre d'éléments dans lesquels on cherche la valeur x à chaque étape de la recherche.
 - Pour cela on compare x avec T[milieu]:
 - Si x < T[milieu]: il suffit de chercher x dans la 1^{ere} moitié du tableau entre T[0] et T[milieu-1]
 - Si x > T[milieu]: il suffit de chercher x dans la $2^{\text{ème}}$ moitié du tableau entre T[milieu+1] et T[N-1]

Complexité: recherche dichotomique ds tableau trié 🗷

```
\inf \leftarrow 0 , \sup \leftarrow N-1, Trouvé \leftarrow Faux
TantQue ((inf <= sup) ET (Trouvé = Faux))
 milieu ←(inf+sup)/2
  Si (x = T[milieu]) alors
       Trouvé ← Vrai
  Sinon Si (x>T[milieu]) alors
             inf ← milieu + 1
         Sinon
            sup ← milieu - 1
         FinSi
  FinSi
FinTantQue
Si Trouvé alors
 écrire ("x appartient au tableau")
Sinon
 écrire ("x n'appartient pas au tableau")
FinSi
```

Complexité: recherche dichotomique ds tableau trié 🗷

```
// fonction retourne la position de elem s'il existe et -1 sinon
fonction rech dich rec(T[]:tableau entier, elem:entier,
                          deb:entier, fin : entier): vide
variable milieu : entier
Début
si fin < debut
 retourne -1
FinSi
milieu \leftarrow div(deb+fin,2)
si elem = T[milieu] retourne milieu
sinon si elem < T[milieu]</pre>
              retourne rech dich rec(T, elem, deb, milieu-1)
       sinon retourne rech dich rec(T, elem, milieu +1, fin)
       FinSi
FinSi
Fin
```

Complexité: recherche dichotomique ds tableau trié 🗷

- Exemple n = 8
- · Pire des cas 3 recherches
- Exemple n = 16
- Pire des cas 4 recherches
- Exemple n = 32
- Pire des cas 5 recherches

•••

D'où:T(n) = O(log n)

Complexité: Schéma de Hörner

- Problème :
- On considère le polynôme en x réel, a coefficients réels, de degré n : $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
- On veut calculer sa valeur $P(x_0)$ pour $x = x_0$ donné, en utilisant les seules opérations élémentaires : addition et multiplication.

Complexité: Schéma de Hörner

- $1^{\text{ère}}$ méthode : On peut écrire un algorithme qui calcule $a_n x_0^n$, $a_{n-1} x_0^{n-1}$,..., $a_1 x_0 + a_0$ les unes après les autres et les additionne.
- Calculons en fonction de n le nombre d'opérations élémentaires qui seront effectuées lors de l'execution de cet algorithme :
 - nombre de multiplications pour un $a_i x^i$: i
 - nombre de multiplications pour tous : 1 + 2 + ... + (n-1) + n = n(n+1)/2
 - nombre d'additions : n
 - Total: n(n+3)/2.
- Donc cet algorithme est $O(n^2)$.

Complexité: Schéma de Hörner

• 2^{ème} méthode: P(X) peut s'écrire:

```
P(X) = (...((a_n x + a_{n-1}) x + a_{n-2}) x + a_{n-3}) x + ... + a_1) x + a_0
```

 \rightarrow On peut écrire P(x₀) de la manière suivante:

Analyse: itérer n fois:

- ullet Multiplier A par x_0 et additioner le coefficient suivant
- Mettre le résultat obtenu dans A

Commencer avec $A = a_n$

Réalisation

```
Entrée : a[n+1], x_0 : Entier variable A,i : Entier A \leftarrow a[n] Pour i allant de n-1 à 0 pas:-1 faire A \leftarrow A * x_0 + a[i] FinPour
```

Complexité: Schéma de Hörner

• 2^{ème} méthode: P(X) peut s'écrire:

$$P(X) = (...((a_nx + a_{n-1})x + a_{n-2})x + a_{n-3})x + ... + a_1)x + a_0$$

Complexité:

- n multiplications
- n additions
- n+3 lectures
- n affectations
- 1 écriture
- Donc il est O(n)
- Meilleur que le précédent (pour de grandes valeurs de n).

Rappel: Tableau 1D-Tri par selection

- À partir du 1^{er} élement du tableau
- Rechercher le plus petit élement dans le sous tableau à droite de T[i+1 ... n-1]
- Si i <> pos_min permuter (T[i], T[pos_min])

Rappel: Tableau 1D-Tri par selection

- Initial
- Itération 1
- Itération 2
- Itération 3
- Itération 4

Rappel: Tableau 1D-Tri par selection

```
Variable T[N],i,j,k,c,pos_min : Entier
Début
Lire T
Pour i allant de 0 à N-2 faire
    pos min ← i
    Pour j allant de i+1 à N-1 faire
        Si T[j]<T[pos_min] alors</pre>
       pos min ← j
       Finsi
    FinPour
    Si pos_min <> i alors
       c \leftarrow T[pos min];
       T[pos min] \leftarrow T[i];
       T[i] \leftarrow c;
    Finsi
FinPour
Fin
```

Tri par insertion: Conception

- Ex: Tri par insertion
 - insérer T[i] dans le sous tableau

T[0 ... i-1] (déjà trié)

15	9	2	6	8	1	41	7
15	9	2	6	8	1	41	7
9	15	2	6	8	1	41	7
2	9	15	6	8	1	41	7
2	6	9	15	8	1	41	7
2	6	8	9	15	1	41	7
1	2	6	8	9	15	41	7
1	2	6	8	9	15	41	7
1	2	6	7	8	9	15	41

Conception

- Ex: Tri par insertion
 - · Méthode incrémentielle
 - À partir du 2^{ème} élement du tableau (s'il existe!)
 - Pour chaque élement T[i]:
 (insérer T[i] dans le sous tableau T[0 ... i-1] déjà trié)
 - \checkmark s \leftarrow T[i];
 - ✓ Supposer le sous tableau à gauche de T[i] déjà trié
 - ✓ Chercher la position j où T[j-1] ≤ s et T[j] > s
 - Faire un décalage (d'une case à droite) des élements du sous tableau à droite de j
 - ✓ <u>Insérer</u> l'élement s à la position j

- Pour chaque itération :
 - Parcourir le tableau et comparer les couples d'éléments successifs.
 - Lorsque deux éléments successifs ne sont pas dans l'ordre croissant, ils sont permutés.
 - Lorsqu'aucun échange n'a eu lieu pendant un parcours, arrêter (le tableau est trié).

• itération 1:

• itération 2:

5	2	7	6	9
2	5	7	6	9
2	5	6	7	9

• Itération 3:

• Tri par bulle, appelé aussi tri par propagation

Complexité: Tris des tableaux

- Exemples:
 - Tri par selection:
 - O(n²)
 - Tri par insertion
 - O(n²)
 - Tri par bulle
 - O(n²)

Vérification de la complexité

Partie: Preuve d'algorithme

Preuve d'Algorithme: Correction Partielle

- <u>Définition.1</u> Un algorithme est <u>partiellement correct</u> <u>ssi</u>, lorsqu'il s'arrête, il a fait ce qu'il doit faire.
- Exemple:

Fin

```
Algorithme: racine carré aléatoirement
Variable a, n, RacineCarree : Entier
Début
  lire(a)
   n ← 0
   tant que ( n*n <> a )
   rac{1}{2} random(0,a) /* nombre entier aléatoire entre 0 et a */
   fin tant que
   RacineCarree ← n
```

Preuve d'Algorithme: Correction Partielle

- Cet algorithme est partiellement correct:
- il ne s'arrête que si la condition n*n « a est fausse, càd si n*n = a est vérifiée;
 le résultat RacineCarree = n est donc égal à la racine carée de a.
- <u>il se peut</u> qu'un algorithme partiellement correct <u>ne soit pas</u> <u>satisfaisant</u>, car on n'a pas la garantie qu'il s'arrêtera.
- Dans l'exemple précédent, il ne s'arrêtera jamais, si le nombre a n'est pas le carrée d'un entier.

Preuve d'Algorithme: Correction

- <u>Définition.2</u>: Un algorithme est <u>correct</u> ssi, il est partiellement correct et il s'arrête nécessairement, lorsque les données initiales vérifient sa pré-condition (conditions que doivent remplir les entrées valides de l'algorithme);
- on parle de **terminaison**.
- Dans ce cas, on est sûr qu'il fera ce qu'il doit faire.
- On n'a imposé aucune contrainte sur le nombre d'itérations possibles, ni sur la place de mémoire disponible pour stocker des variables.
- Lors de l'implémentation, cela pourra durer arbitrairement longtemps, ou devenir impossible à cause du manque de la mémoire.

Preuve d'Algorithme: Correction

• Exemple d'un algorithme correct: chercher la partie entière de la racine carrée d'un réel a positif.

```
Algorithme
Variable n, RacineCarree : Entier
                                : Réel
          а
Début
   n ← 0
   TantQue ( n*n \le a )
      n \leftarrow n + 1
      Fin TantQue
      RacineCarree ← n-1
Fin
```

Preuve d'Algorithme

- Comment montrer qu'un algorithme est correct?
- si :
 - il s'arrête,
 - pour toute entrée, il produit le résultat attendu.
- On peut:
 - tester quelques entrées -> prouver qu'il est incorrect (mais pas le contraire)
 - Il est mieux de prouver logiquement que l'algorithme est correct :
 - terminaison : variant de boucle,
 - résultat attendu : invariant de boucle.

Preuve d'Algorithme: Variant de boucle

- On appelle variant de boucle, une expression qui:
 - est un entier positif tout au long de la boucle,
 - décroît strictement.
- Lorsqu'une suite d'entiers {u_i} décroît strictement, il existe un rang N à partir duquel les termes u_i sont négatifs.
- Dans la boucle, u_i > 0 → l'algorithme termine nécessairement
- Le variant de boucle est souvent le simple contenu d'une variable telle qu'un compteur de boucle.

Preuve d'Algorithme: Variant de boucle

• Exemple:

• Montrons que l'algorithme s'arrete:

Dans la boucle, c est définie par la suite {c_i} telle que dans la boucle:

$$c_0 = n$$

 $c_{i+1} = c_i - 1 \Rightarrow \forall i, c_{i+1} < c_i$
 $\forall i, c_i > 0$

La suite {c_i} est entière, positive et strictement décroissante, donc l'algorithme s'arrete.

Démonstration par récurrence

- Démonstration par récurrence de la propriété P_n
 - \triangleright Initialisation: Montrer que P_n est vraie à partir d'un certain rang n_o
 - ightharpoonup Hérédité: Montrer que $P_n \Rightarrow P_{n+1}$

- Exemple: Montrer par récurrence que la suite définie par:
 - $U_{o} = 2$

s'écrit
$$U_n = 2/3^n$$

• La preuve par récurrence est aussi appelée preuve par induction

Invariant de Boucle

- Pour démontrer que l'algorithme produit l'effet attendu, on utilise un invariant de boucle, càd une propriété ou une expression qui :
 - est vérifiée avant d'entrer dans la boucle,
 - reste vraie après chaque itération de la boucle,
 - dont la valeur au rang n (à la sortie de la boucle), est la propriété qu'on veut démontrer.
- Démarche similaire au raisonnement par récurrence.
- <u>Difficulté</u>: trouver une expression susceptible d'être un invariant de boucle.

Invariant de Boucle: Exemple

Dans la boucle, deux suites {p_i} et {c_i} sont définies par récurrence:

$$p_0 = 1 \text{ et } p_{i+1} = k * p_i$$

 $c_0 = n \text{ et } c_{i+1} = c_i - 1$

- On veut montrer qu'en sortie de la boucle p = kⁿ
- Montrons la proposition Pr_i : $p_i = k^{n-ci}$ est un invariant de boucle.
- Si Pr_i est un invariant de boucle alors à la sortie de la boucle
- $c = c_n = 0$ et $p = p_n = k^n$ (cqfd)

Invariant de Boucle

Dans la boucle, deux suites $\{p_i\}$ et $\{c_i\}$ sont définies par récurrence:

$$p_0 = 1$$
 et $p_{i+1} = k * p_i$
 $c_0 = n$ et $c_{i+1} = c_i - 1$

- On veut montrer qu'en sortie de la boucle p = kⁿ
- Montrons la proposition Pr_i : $p_i = k^{n-Ci}$ est un invariant de boucle.
 - Vrai pour i = 0
 - Mq par recurrence que $p_{i+1} = k^{n-Ci+1}$
 - $p_{i+1} = k * p_i$ (par construction)
 - or $p_i = k^{n-Ci}$ (par supposition), d'où
 - $p_{i+1} = k * k^{n-Ci} = k^{n-Ci-1}$ (or par construction $C_i 1 = C_{i+1}$)
 - $p_{i+1} = k^{n-Ci+1}$
- Puisque Pri est un invariant de boucle, alors <u>vrai à la sortie de la boucle</u>
- Or $C_n = 0$ et $p = p_n = k^{n C_n} = k^n$ (cqfd)

Application

```
Données: un entier naturel a et un entier naturel n
Résultat : un nombre p
variables b,m,p : Entiers
p ← 1
b ← a
m \leftarrow n
Tant que m > 0 Faire
    si m est impair alors
       p ← p*b
    FinSi
    b ← b*b
    m \leftarrow div(m, 2)
Fin Tant que
1. Donner la valeur finale de la variable p lorsque (a; n) = (3; 6) et (a; n) = (4; 5).
2. Justifier que l'algorithme se termine. Quelle est la valeur de m à la fin de la boucle ?
```

3. Vérifier que « $pb^m = a^n$ » est un invariant de boucle.

