

FANNCortexM: An Open Source Toolkit for Deployment of Multi-layer Neural Networks on ARM Cortex-M Family Microcontrollers

Performance Analysis with Stress Detection

Michele Magno, Lukas Cavigelli, Philipp Mayer, Ferdinand von Hagen, Luca Benini

IoT and Sensing Devices

Activity Trackers

Smartwatches

Smart eyewear

Smart footwear

Smart clothing

Motion capture clothing

Trend → **Smaller**, **Smarter**, **Lifetime**

Skin patch sensors

Pressure sensor clothing

Healthcare

_____ 2 cm

Smart Patches

Wearable Device Limits and Challenges

- Battery operated devices
 - Achieve long term monitoring
- Limited computational resources
 - Memory 1Mbyte range
 - Low power processing (i.e. Arm Cortex M4)
- On-board processing
 - Fast detection
 - No need for connectivity
 - Lower power consumption

An IoT/Wearable System View

100 μW ÷ 2 mW

cm² Harvesting powered → mW (MaxP) + uW (AvgP) Active: ~ 10-100 mW

Artificial Neural Network

classification

- marketing: consumer spending pattern
- defence: radar and sonar image analysis
- agriculture & fishing: fruit and catch grading
- medicine: ultrasound and ECG classification, EEGs, medical diagnosis

recognition and identification

- general computing and telecom: speech, vision and handwriting recognition
- finance: signature verification and bank note verification

Why now? – Platform and Data Availability

- Analysis in the cloud:
 - Energy hungry (data is local), privacy concerns, availability, cost
- Platforms are powerful enough
- sensor data + data analysis: use-cases
 - Fall detection for elderly
 - Health monitoring (livestock, pets)
 - Home security/control (motion detection, but not the cat)
- What is holding us back?
 - Cloud computing mindset
 - Complexity, availability of experts → simple tools needed!

Contributions

- Design of an optimized & easy-to-use framework for neural network inference on Cortex-M MCUs
 - Acquire dataset
 - Train NN with FANN [1] (easy: GUI, param search) < 1h
 - Deploy on MCU (w/o peripherals) < 30 min.
- Evaluation with battery-operated low-power smart wearable device
 - Health monitor with the aim of emotion detection: ECG, Skin conductivity, temperature, IMU, microphone
 - Battery-powered, on-board processing, result communication
 - Performance, energy measurement on TI MSP432, Ambiq Apollo 2

[1] Nissen, S. (2003). Implementation of a fast artificial neural network library (fann). Technical Report.

ccuracy target not m

Overview – Making It Easy

1. Creating dataset

- Interface MCU to the sensors
- Collect data samples & labels

2. Preprocessing/Augm.

- Find good feature extractors (implementable on MCU)
- (opt.) Data augmentation
- Normalize data
- Convert to FANN format (text file w/ input & output vals)

create/obtain dataset

- specify target application & platform/sensors
- collect data
- label/annotate data

preprocessing

- identify & apply feature extractor
- data augmentation (opt.)
- normalize data
- convert to FANN format

define & train NN

- explore hyperparameters, network structure
- train promising NNs
- identify best network

deploy on device

- convert NN to fixed-point (opt.)
- develop optimized implementation for the device
- integrate NN w/ sensor read-out, preprocessing, etc.
- measure performance, power

Overview – Making It Easy

3. Define & Train NN

- Split dataset to train/val/test
- Train NNs and adjust #layers, #hidden nodes, ...
- Select best network

4. Deploy on Device

 Run 'generate.py' to get ready-to-go C implementation

https://github.com/lukasc-ch/FANN-on-ARM

create/obtain dataset

- specify target application & platform/sensors
- collect data
- label/annotate data

preprocessing

- identify & apply feature extractor
- data augmentation (opt.)
- normalize data
- convert to FANN format

define & train NN

- explore hyperparameters, network structure
- train promising NNs
- identify best network

deploy on device

- convert NN to fixed-point (opt.)
- develop optimized implementation for the device
- integrate NN w/ sensor read-out, preprocessing, etc.
- measure performance, power

Fast Artificial Neural Network Library (FANN)

- Available in C, C++ PHP, Python, Delphi etc.
- Easy to learn and use; no GPU needed

FANN – Optimized Implementation for Cortex M

2x speed-up, smaller size (67 → 11 kB) v. non-opt. FANN

OPT

3.53

Reduced code
size

	$12\mathrm{MHz}$		$24\mathrm{MHz}$		$48\mathrm{MHz}$	
	T (ms)	$E(\mu J)$	T (ms)	$E (\mu J)$	T (ms)	$E (\mu J)$
BASE	4.22	56.8	3.14	56.8	2.19	59.4

 Rely on CMSIS library for opt.

RAM	3.74	51.2	2.60	48.3	1.90	52.1
		-9.8%		-14.9%		-12.3%
RAMC	4.23	53.3	3.14	53.4	2.19	56.6

Using FPU

		-6.1%		-5.9%		-4.7%
RAMF	3.77	47.7	2.63	45.7	1.92	50.7
		-16.0%		-19.6%		-14.6%

2.55

45.1

-39.2%

1.78

48.2

-38.4%

50% energy savings

		-17.7%		-20.5%		-18.8%
OPT + CMSIS	2.99	35.7	2.08	34.5	1.40	36.6

46.8

-37.2%

Case-study: Emotion Detection

- Training dataset: Augsburg dataset
 - Recorded ECG, EMG, GSR and respiration data of a subject in 4 emotional states on 25 different days
 - Classification into 3 stress levels

- Now go through the steps...
 - Step 1: data collection -- completed
 - Step 2: feature extraction, selection
 - Step 3: defining NN
 - Step 4: deployment & evaluation

Hardware Overview

Integrated Systems Laboratory

Michele Magno, Lukas Cavigelli | 18.04.2019

ECG Feature Extraction

Statistical features: mean, median, min, max of R-R interval etc.

Network structure: Emotion Detection

Feature Selection

Integrated Systems Laboratory

Results – Memory and Processing Load

Integrated Systems Laboratory

Results – Current & Energy Consumption

Component	Current (active)
Motion sensor	3.5 mA
ECG and respiration sensor	250 μΑ
Temperature sensor	20 μΑ
Audio sensor	1.65 mA
GSR	10 μΑ
Modes	Drawn current
Idle	229 µA
Classification	4.36 mA
Data streaming with BLE	16.56 mA

Integrated Systems Laboratory

TH zürich

Toward Self-sustaining Smart Wearable

8 solar panels

Indoor: 600mJ

Outdoor: 9-17J

Up to 14 of detection per day
With kinetic harvester

Up to of 10 days with a 600mAh battery.

7 thermo-electric generators

Indoors: 0-2 mJ/d

Outdoors: 100-200 mJ/d

 Kinetic harvester: 1800mJ/day (sporty person 30min run per day)

- No occlusions,
- No weather issue.

Stress Detection Neural Network - Scaling Up

- #operations: 300 + 2500 + 150 multiply-accumulate
- Memory: 1.2kB + 10kB + 0.6kB memory (weights)

Stress Detection Neural Network

- 2850 multiply-accum./classif., params: 12 kB
- Accuracy: 88% on three classes, 96% on two classes
- Time frame selection

lr

Experimental results

- Stress Detection:
 - 2850 multiply-accum./classif., params: 12 kB
 - Accuracy: 88% on three classes, 96% on two classes
 - 4.5ms with 48MHz core speed -> ARM Cortex M4F (MSP 432)
 - Feature extraction in real time

Limitations to network size:

- 1030 neurons, 48903 weights and 22 layers
- One Classification takes 55ms! Flash is filled 90%, RAM is filled 17%!

Conclusion

- Evaluation/case-study on stress detection
 - Wearable device with Arm Cortex M4
 - 96% accuracy achievable, 4.5ms processing time, ~150mJ/classif.
 - Compute resources not the limitation!
- FANN-on-ARM
 - Enables rapid deployment of NNs on microcontrollers
 - Available online, try yourself!

https://github.com/lukasc-ch/FANN-on-ARM

cavigelli@iis.ee.ethz.ch, magno@iis.ee.ethz.ch

Questions

This work was in part funded by the Swiss National Science Foundation projects 'MicroLearn: Micropower Deep

Learning'(Nr. 162524) and 'Transient Computing Systems' (Nr. 157048).

