MSMS - 105

Ananda Biswas

Assignment 04

Objective: To create animated plots to get visual illustrations of different aspects of **Matrix Multiplication**.

Theory: Essence of matrix multiplication is best understood when it is seen as a linear transformation. The geometric interpretation of matrix multiplication provides insights into how matrices transform vectors of a vector space.

In the following we shall see different aspects of matrix multiplication. For best visualization experience, we have considered \mathbb{R}^2 as our vector space. In each of the illustrations, we have taken 100 vectors originated at (0,0) and their tips together form a circle. We shall see how matrix multiplication changes the vectors and consequently the circular shape.

Program to create the above plot is here.

Here we pre-multiply $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ with initial 100 vectors.

igoplus Visualization: Program to create the following animation is here.

1

Rotating: Pre-multiplying any vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$ by $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ rotates the vector by an angle θ anti-clockwise. Here we take $\theta = \frac{\pi}{4}$ and rotate the above vectors by 45° anti-clockwise.

• Visualization: Program to create the following animation is here.

Composition of Transformation: Multiplication of two matrices results in a matrix that represents the combination of their transformations. Above we first stretched the 100 vectors two times along y-axis and then rotated them 45° anti-clockwise. We can achieve the same by just pre-multiplying all the vectors by

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}_{\theta = \frac{\pi}{4}} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0.7071068 & -1.414214 \\ 0.7071068 & 1.414214 \end{bmatrix}$$

 $\ \ \Theta$ $\it Visualization$: Program to create the following animation is here.

Vector Spaces and Dimension: Multiplying all the vectors of a vector space by a matrix of rank r creates a new vector space of dimension r. Here we pre-multiply all the 100 vectors by $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ which has rank 1 and see how \mathbb{R}^2 reduces to a straight line only.

• Visualization: Program to create the following animation is here.

Eigenvectors and Eigenvalues: Eigenvectors are those special vectors that, under the linear transformation defined by a matrix, remain within their own span, being scaled by a value, positive or negative depending on change of direction, called corresponding eigenvalues.

In the *Scaling* example, observe that the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ get transformed to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ respectively but remain in their corresponding spans only. This makes $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ eigenvectors of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ with corresponding eigenvalues 1 and 2.

• Visualization:

