Planificación del Proyecto

Última modificación: 27/01/25

Semana 1: Configuración inicial y prueba de sensores

Objetivos:

- 1. Configurar el ESP32 y asegurarte de que los sensores (**DS18B20** y **MQ-135**) funcionan correctamente.
- 2. Implementar la lectura de datos de los sensores.
- 3. Configurar el almacenamiento local básico (usando la memoria flash del ESP32 o SPIFFS).

Tareas:

- 1. Configurar el entorno de desarrollo:
 - Instalar Arduino IDE / PlatformIO.
 - Descargar librerías necesarias (Dallas Temperature, OneWire, etc.).
- 2. Conectar y probar los sensores:
 - Configurar el DS18B20 (leer temperatura).
 - Configurar el MQ-135 (medir niveles de CO₂).
 - Mostrar las lecturas en el monitor serie.
- 3. Implementar almacenamiento local:
 - Guardar lecturas de temperatura y CO₂ en un archivo en la memoria flash del ESP32 (modo offline).

Entregable al final de la semana:

- ESP32 leyendo datos de ambos sensores.
- Datos almacenados localmente en el ESP32.

Semana 2: Control de actuadores y lógica de umbrales

Objetivos:

- 1. Conectar y controlar los actuadores (ventilador y servo de la compuerta).
- 2. Implementar la lógica de control basada en los umbrales de temperatura y CO₂.
- 3. Diseñar la estructura básica del programa (lectura, lógica, control, almacenamiento).

Tareas:

- 1. Conectar los actuadores:
 - Configurar el ventilador (mediante transistor o módulo relé).
 - Configurar el servo para abrir/cerrar la compuerta.
- 2. Implementar la lógica de control:
 - Encender el ventilador si la temperatura supera los 8 °C.
 - Abrir la compuerta con el servo si el CO₂ supera los 10,000 ppm.
- 3. Refinar el almacenamiento:
 - Registrar las acciones de los actuadores junto con las lecturas de los sensores.

Entregable al final de la semana:

- Actuadores funcionando según los valores de los sensores.
- Lógica de control completamente implementada.

Semana 3: Comunicación MQTT y plataforma loT

Objetivos:

- 1. Configurar la comunicación con la plataforma loT usando MQTT.
- 2. Crear un dashboard básico para visualizar los datos y recibir alertas.

Tareas:

- 1. Implementar MQTT:
 - Configurar conexión Wi-Fi del ESP32.
 - Publicar lecturas de sensores en un broker MQTT (como HiveMQ o Mosquitto).
- 2. Diseñar el dashboard IoT:
 - Usar herramientas como Node-RED, Adafruit IO o Blynk.
 - Mostrar datos en tiempo real (temperatura, CO₂, estado de actuadores).
 - Configurar alertas (por ejemplo, notificaciones push o correo electrónico).
- 3. Probar la sincronización:
 - Enviar datos locales almacenados al dashboard una vez que se establezca la conexión (modo offline a online).

Entregable al final de la semana:

- Datos enviados al dashboard IoT en tiempo real.
- Dashboard funcional con visualización y alertas básicas.

Semana 4: Integración y pruebas finales

Objetivos:

- 1. Integrar todas las partes del sistema (sensores, actuadores, almacenamiento, comunicación).
- 2. Realizar pruebas completas en una maqueta o entorno simulado.
- 3. Documentar el sistema.

Tareas:

- 1. Pruebas de integración:
 - Validar que los sensores, actuadores y comunicación MQTT funcionen juntos.
 - Simular escenarios críticos (por ejemplo, temperatura alta, niveles altos de CO₂).
- 2. Optimización:
 - Mejorar la eficiencia energética (usando modos de bajo consumo del ESP32).
 - Refinar la lógica de control y manejo de datos.
- 3. Documentación:
 - Crear diagramas eléctricos y de flujo del software.
 - Documentar cómo instalar y operar el sistema.

Entregable al final de la semana:

- Prototipo funcional con todas las características implementadas.
- Documentación básica del sistema.

Resumen de Entregables Semanales

Semana	Entregables Principales
1	Sensores configurados, datos almacenados localmente.
2	Actuadores funcionando según lógica de umbrales.
3	Comunicación MQTT y dashboard loT básico.
4	Prototipo integrado, probado y documentado.