Problem Set 8

STAT 394/ MATH 394 Probability I

Due Date: 10:00 PM, May 31, 2022 Prof. Alexander Giessing

Last Update: May 24, Spring Quarter, 2022

Study Group:		

Question 1. [3 pts] Let X and Y be random variables with density functions f and g, respectively, and ξ be a Bernoulli distributed random variable with success probability p, which is independent of X and Y. Compute the probability density function of $\xi X + (1 - \xi)Y$.

Question 2. [3 + 3 + 3 pts] Let $(X_n)_{n\geq 1}$ be a sequence of independent Bernoulli random variables with success probability p. Denote by S_1 the number of failures until the first success, by S_2 the number of failures between the first and second success, and, in general, by S_k the number of failures between the (k-1)th and the kth success.

- (a) Compute the joint probability mass function of S_1, \ldots, S_n .
- (b) Are the random variables S_1, \ldots, S_n independent? Prove or disprove.
- (c) Compute the cdf of $U = \max\{S_1, \dots, S_n\}$.

Question 3. [3 pts] Let X and Y have the joint probability density function $f(x,y) = e^{-x-y} \mathbf{1}_{(0,\infty)}(x) \mathbf{1}_{(0,\infty)}(y)$. Compute the density of Z := Y - X.

Question 4. [3 + 3 + 3 pts] Let (X, Y) be the coordinates of points distributed uniformly over $B = \{(x, y) : x, y > 0, x^2 + y^2 \le 1\}.$

- (a) Compute the densities of X and Y.
- (b) Compute the expected value of the area of the rectangle with corners (0,0) and (X,Y).
- (c) Compute the covariance between X and Y.

Question 5. [3 + 3 pts] More on the uniform distribution.

- (a) Let (X,Y) be uniformly distributed over $(0,1)^2$. Compute $\mathbb{E}[\sqrt{Y/X}]$.
- (b) Let U_1, \ldots, U_n be independent and uniformly distributed over (0,1). Compute $\mathbb{P}(U_1 \leq \ldots \leq U_n)$.

Question 6. [3 + 3 pts] On covariances.

- (a) You roll a die two times. Denote by X the outcome of the first roll and by Y the sum of both outcomes. Compute Cov(X,Y).
- (b) Let X be a discrete random variable with symmetric distribution, i.e. $\mathbb{P}(X = x) = \mathbb{P}(X = -x)$ for all $x \in X(\Omega)$. Show that X and $Y := X^2$ are uncorrelated but not independent.