Romerico David, Haley Elliott, Julian Halsey, N
kechiyem Molokwu COSC 33602/22/2024

Assignment 2

Exercise 1:

a.
$$\Theta((4n+1)(4^{\log_2(n)}))$$

= $\Theta(4n^3+n^2)$
= $\Theta(n^3)$

b.
$$t_1(n) = n^2 + n$$

 $t_2(n) = n^2$

c.
$$t_3(n) = n^2$$
 since $t_3(2n) = (2n)^2 = 4n^2 = \theta(n^2)$

d.
$$t_4(n) = 2^n$$
 since $t_4(2n) = 2^{2n}$

Exercise 2:

	A	В	O	0	Ω	ω	Θ
a.	$\log^k n$	n^{ϵ}	Yes	Yes	No	No	No
b.	n^k	c^n	Yes	Yes	No	No	No
c.	\sqrt{n}	$n^{\sin n}$	No	No	No	No	No
d.	2^n	$2^{n/2}$	No	No	Yes	Yes	No
e.	$n^{\log c}$	$c^{\log n}$	Yes	No	Yes	No	Yes
f.	$\log(n!)$	$\log(n^n)$	Yes	No	Yes	No	Yes

Exercise 3:

a.
$$(n \cdot n)(\frac{n}{2}) = \frac{n^3}{2}$$

=> $\Theta(\frac{n^3}{2})$
= $\Theta(n^3)$

$$\mathbf{b.} \ n + \frac{n}{2} \\ => \Theta(n + \frac{n}{2})$$

$$=\Theta(n)$$

c.
$$(n \cdot n)(n \cdot n) = n^4$$

=> $\Theta(n^4)$

d.
$$\Theta(\log_2 n)$$

e.
$$(n)(log_2(n \cdot n))$$

=> $(n)(log_2(n^2))$
=> $(n)(2log_2 n)$
= $\Theta(nlog_2 n)$

Exercise 4:

a.
$$S_1 = 500 + 501 + 502 + \dots + 999$$

 $n = 999 - 500 + 1 = 500, \ a = 500, \ d = 501 - 500 = 1$

$$S_1 = (500)(500) + (\frac{1(500(500-1))}{2})$$

$$= 250000 + (\frac{249500}{2})$$

$$= 250000 + 124750$$

$$= 374750$$

b.
$$S_2 = 1 + 3 + 5 + \dots + 999$$

 $n = \frac{999-1}{2} + 1 = 500, a = 1, d = 2$

$$S_2 = (500)(1) = \left(\frac{2(500(500-1))}{2}\right)$$

$$= 500 + (500(500-1))$$

$$= 500 + (500(499))$$

$$= 500 + 249500$$

$$= 250000$$

c.
$$n = 30, k = 4$$

Number of possible committees =
$$\binom{n}{k} = \binom{30}{4}$$

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
=> $\binom{30}{4} = \frac{30!}{4!(30-4)!} = \frac{30!}{4!26!}$
= $\frac{30 \cdot 29 \cdot 28 \cdot 7 \cdot 26!}{4!26!}$

$$= \frac{30 \cdot 29 \cdot 28 \cdot 27}{24}$$

= 27405

There are 27405 possible combinations.

$$\mathbf{d.} \ C_n = \binom{n}{4} \\ \binom{n}{4} = \frac{n!}{4!(n-4)!} \\ = \frac{n(n-1)(n-2)(n-3)(n-4)(n-5)\dots}{4!\cdot(n-4)(n-5)\dots} \\ = \frac{n(n-1)(n-2)(n-3)}{4!} \\ = \frac{n^4 - 6n^3 + 11n^2 - 6n}{24} \\ = \Theta(n^4) \\ C_n = \Theta(n^4) \therefore C_n \neq o(n^3)$$

Exercise 5:

Lower Bound:

$$S_n \ge \int_0^n x^2 \sqrt{x} dx$$

 $= \int_0^n x^{5/2}$
 $= \frac{2}{7} x^{7/2} \Big|_0^n$
 $= \frac{2}{7} n^{7/2}$
 $= n^{7/2}$

Upper Bound:

$$S_n \leq \int_1^{n+1} x^2 \sqrt{x} dx$$

$$= \int_1^{n+1} x^{5/2}$$

$$= \frac{2}{7} x^{7/2} \Big|_1^{n+1}$$

$$= \frac{2}{7} (n+1)^{7/2} - \frac{2}{7}$$

$$= \frac{2}{7} (n+1)^{7/2}$$

$$= (n+1)^{7/2}$$

$$= n^{7/2}$$

$$\Theta(n^{7/2})$$