

ISFAHAN UNIVERSITY OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES

Applied Linear Algebra Assignment #2

Due Date: 19 Azar 1401

1. For the space
$$\mathbb{R}^4$$
, let $w_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $w_2 = \begin{bmatrix} 3 \\ 3 \\ -1 \\ -1 \end{bmatrix}$, $y = \begin{bmatrix} 6 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ and let $W = sp\{w_1, w_2\}$.

- a) Find a basis for *W* consisting of two orthogonal vectors.
- b) express y as the sum of a vector in W and a vector in W^{\perp} .
- 2. Let u and v be orthogonal vectors. If u + v and u v are orthogonal, show that |u| = |v|. (A rectangle with orthogonal diagonals is an square)
- 3. Let $V = \mathbb{R}_2[x]$ be the vector space of all polynomials of $degree \le 2$ in the variable x with coefficients in \mathbb{R} . Let W be the subspace consisting of those polynomials f(x) such that f(0) = 0. Find the orthogonal projection of the polynomial x + 2 onto the subspace W, with respect to the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx$$

4. Let *V* be the vector space \mathbb{R}^3 , equipped with the inner product

$$\langle (a,b,c),(d,e,f)\rangle = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

- a) Prove that this is an inner product.
- b) Using this inner product rather than the natural dot product, find the orthogonal projection of the vector (1,0,0) onto the plane spanned by (0,1,0) and (0,0,1).

1

5. Using least squares techniques, fit the following data

with a line $y = \alpha_0 + \alpha_1 x$ and then fit the data with a quadratic $y = \alpha_0 + \alpha_1 x + \alpha_2 x^2$. Determine which of these two curves best fits with the data by computing the sum of the squares of the errors in each case.

- 6. Let S^3 denote the vector space of 3×3 symmetric matrices.
 - a) Prove that $\langle S, T \rangle = tr(ST)$ is an inner product on S^3 .

b) Let
$$S_1 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 and $S_2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Apply the Gram-Schmidt process in S^3

to find a matrix orthogonal to both S_1 and S_2 .

c) Find an orthonormal basis for S^3 using the above three matrices.

d) Let
$$T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$
. Find the projection of T on the span of $\{S_1, S_2\}$.

- 7. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ where T(x, y, z) = (x + 2y z, -y, x + 7z).
 - a) Write the matrix representation of *T* with respect to the standard basis.
 - b) Consider the basis $\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}$ for \mathbb{R}^3 and write the matrix representation of T with respect to the basis \mathcal{B} , i.e. $[T]_{\mathcal{B},\mathcal{B}}$.
- 8. Suppose that *A* is an $n \times n$ matrix such that $A^2 = A$. Let $\mathcal{B}_1 = \{u_1, \dots u_r\}$ be a basis for R(A) and $\mathcal{B}_2 = \{v_1, \dots, v_{n-r}\}$ be a basis for N(A).
 - a) Prove that for each $i \in \{1, ..., r\}$, $Au_i = u_i$.
 - b) Prove that $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for \mathbb{R}^n .
 - c) Prove that $[A]_{\mathscr{B},\mathscr{B}} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$.