

MAT1161 – Cálculo a uma Variável P3 - Maple – 29 de junho de 2017 Versão I

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma:

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não
 é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas.
- Quando usar o Maple na resolução de qualquer questão, deixe isto claro fornecendo os comandos de entrada no programa.
- Respostas aproximadas devem ser dadas com 5 casas decimais.
- Você <u>pode</u> consultar o *Help* do Maple durante a prova, mas <u>não pode</u> consultar quaisquer outros materiais.
- Você não pode utilizar comandos do pacote *student* para resolver ou justificar as questões da prova.
- Você não pode obter ajuda do professor (nem de colegas) com seus comandos durante a prova.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Esta prova possui 2 questões. Confira.

Atenção:

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...) ou o implicitplot (x=...,y=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- \bullet Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum
- π se escreve Pi (e não PI ou pi)
- e^x se escreve $\exp(x)$
- O separador de decimal é o ponto e não a vírgula (por exemplo, $\frac{1}{10} = 0.1$ e não 0, 1)
- Espaço indevido entre o nome do comando e o argumento (por exemplo, $\sin(x)$ se escreve $\sin(x)$; plot (f(x),...) se escreve $\operatorname{plot}(f(x),...)$)

Lembre também que frequentemente uma linha que foi apagada (porque você mudou de ideia) continua tendo efeitos sobre o que você fizer depois. Use o comando restart; e abaixo dele copie só aquelas linhas que forem relevantes para o problema, apertando enter em todas.

Embora seu arquivo não seja utilizado para correção, recomendamos que você o salve com frequência para evitar perda de trabalho em caso de travamento do programa durante a prova.

Questão 1. Considere $f(x) = e^x$. Encontre um polinômio p(x) de grau n, com p(4) = f(4) e também n derivadas iguais em x = 4, tal que n seja o menor possível para que p(x) seja uma aproximação para f(x) com erro menor do que 25 no intervalo [1,7].

Questão 2. Considere a EDO $y' = \sin(x) + \sin(y)$ com condição inicial $y(0) = \frac{1}{10}$.
a) Use o Método de Euler com 10 passos para encontrar uma aproximação para $y(1)$.
Liste os valores de y encontrados a cada passo.
b) Faça o mesmo com 100 passos, mas escreva aqui somente o valor final encontrado para $y(1)$.

MAT1161 – Cálculo a uma Variável P3 - Maple – 30 de junho de 2017 Versão II

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma:

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não
 é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas.
- Quando usar o Maple na resolução de qualquer questão, deixe isto claro fornecendo os comandos de entrada no programa.
- Respostas aproximadas devem ser dadas com 5 casas decimais.
- Você <u>pode</u> consultar o *Help* do Maple durante a prova, mas <u>não pode</u> consultar quaisquer outros materiais.
- Você não pode utilizar comandos do pacote *student* para resolver ou justificar as questões da prova.
- Você não pode obter ajuda do professor (nem de colegas) com seus comandos durante a prova.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Esta prova possui 2 questões. Confira.

Atenção:

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...) ou o implicitplot (x=...,y=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- \bullet Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum
- π se escreve Pi (e não PI ou pi)
- e^x se escreve $\exp(x)$
- O separador de decimal é o ponto e não a vírgula (por exemplo, $\frac{1}{10} = 0.1$ e não 0, 1)
- Espaço indevido entre o nome do comando e o argumento (por exemplo, $\sin(x)$ se escreve $\sin(x)$; plot (f(x),...) se escreve $\operatorname{plot}(f(x),...)$)

Lembre também que frequentemente uma linha que foi apagada (porque você mudou de ideia) continua tendo efeitos sobre o que você fizer depois. Use o comando restart; e abaixo dele copie só aquelas linhas que forem relevantes para o problema, apertando enter em todas.

Embora seu arquivo não seja utilizado para correção, recomendamos que você o salve com frequência para evitar perda de trabalho em caso de travamento do programa durante a prova.

Questão 1. Considere $f(x) = \sin(x^2)$. Encontre um polinômio p(x) de grau n, com p(1) = f(1) e também n derivadas iguais em x = 1, tal que n seja o menor possível para que p(x) seja uma aproximação para f(x) com erro menor do que 0.2 no intervalo [-0.5, 2.5].

Questão 2. Considere a EDO $y' = \sin(x) + \sin(10y)$ com condição inicial $y(0) = \frac{1}{100}$.
a) Use o Método de Euler com 5 passos para encontrar uma aproximação para $y(1)$.
Liste os valores de y encontrados a cada passo.
b) Faça o mesmo com 100 passos, mas escreva aqui somente o valor final encontrado para $y(1)$.

MAT1161 – Cálculo a uma Variável P3 - Maple – 30 de junho de 2017 Versão III

Nome Legível	:		_
Assinatura	:		_
Matrícula	:	Turma :	

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
Total	3,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não
 é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas.
- Quando usar o Maple na resolução de qualquer questão, deixe isto claro fornecendo os comandos de entrada no programa.
- Respostas aproximadas devem ser dadas com 5 casas decimais.
- Você <u>pode</u> consultar o *Help* do Maple durante a prova, mas <u>não pode</u> consultar quaisquer outros materiais.
- Você não pode utilizar comandos do pacote *student* para resolver ou justificar as questões da prova.
- Você não pode obter ajuda do professor (nem de colegas) com seus comandos durante a prova.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Esta prova possui 2 questões. Confira.

Atenção:

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...) ou o implicitplot (x=...,y=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- \bullet Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum
- π se escreve Pi (e não PI ou pi)
- e^x se escreve $\exp(x)$
- O separador de decimal é o ponto e não a vírgula (por exemplo, $\frac{1}{10} = 0.1$ e não 0, 1)
- Espaço indevido entre o nome do comando e o argumento (por exemplo, $\sin(x)$ se escreve $\sin(x)$; plot (f(x),...) se escreve $\operatorname{plot}(f(x),...)$)

Lembre também que frequentemente uma linha que foi apagada (porque você mudou de ideia) continua tendo efeitos sobre o que você fizer depois. Use o comando restart; e abaixo dele copie só aquelas linhas que forem relevantes para o problema, apertando enter em todas.

Embora seu arquivo não seja utilizado para correção, recomendamos que você o salve com frequência para evitar perda de trabalho em caso de travamento do programa durante a prova.

Questão 1. Considere $f(x) = \sin(x) + \sin(3x)$. Encontre um polinômio p(x) de grau n, com p(1.5) = f(1.5) e também n derivadas iguais em x = 1.5, tal que n seja o menor possível para que p(x) seja uma aproximação para f(x) com erro menor do que 0.2 no intervalo [0,3].

Questão 2. Considere a EDO $y' = \sin(5x) + \sin(10y)$ com condição inicial $y(0) = \frac{6}{10}$.
a) Use o Método de Euler com 5 passos para encontrar uma aproximação para $y(1)$.
Liste os valores de y encontrados a cada passo.

b) Faça o mesmo com 100 passos, mas escreva aqui somente o valor final encontrado para y(1).