Сборник задач на тему «проценты» для подготовки к ЕГЭ по математике

С МЕТОДИЧЕСКИМИ РЕКОМЕНДАЦИЯМИ УЧЕТНАЯ ЗАПИСЬ МАЙКРОСОФТ

Содержание

Критерии оценивания задачи на проценты из второй части ЕГЭ	3
Решение задач на проценты из первой части ЕГЭ	5
Алгоритм решения задач на проценты с помощью таблицы	5
Алгоритм решения задач на проценты с помощью формулы	8
Алгоритм решения задач на проценты с помощью метода «стаканов»	16
Задачи на проценты из первой части ЕГЭ для самостоятельного решения	37
Задачи на проценты	37
Задачи на растворы	
Задачи на сплавы	
Решение задач на проценты из второй части ЕГЭ	
Задачи на аннуитетный тип платежа	
Алгоритм решения задач на аннуитетный тип платежей метолом «карманов».	

Алгоритм решения задач на аннуитетный тип платежей с помощью форму	л62
Алгоритм решения задач на аннуитетный тип платежей с помощью таблиц	цы67
Задачи на дифференцированный тип платежа	74
Алгоритм решения задач на дифференцированный тип платежа с помощью таблицы	
Задачи на проценты из второй части ЕГЭ для самостоятельного решения	77
Задачи на аннуитетный тип платежа	77
Задачи на дифференцированный тип платежа	84

Критерии оценивания задачи на проценты из второй части ЕГЭ

Содержание критерия	Балл
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Подробнее: 1 балл выставляется в тех случаях, когда сюжетное условие задачи верно сведено к решению математической (арифметической, алгебраической, функциональной, геометрической) задачи, но именно к решению, а не к отдельному равенству, набору уравнений, уравнению, задающему функцию, и т.п. Предъявленный текст должен включать описание того, как построена модель.

Решение задач на проценты из первой части ЕГЭ

Алгоритм решения задач на проценты с помощью таблицы

1. По условию задачи заполнить таблицу: в 1 столбце указываем номер раствора, в последней строчке первого столбца -1+2 (их смешали).

Во втором столбце: в первой строчке - вещество (так как будем записывать процент содержания в растворе полезного вещества), во второй — процент содержания в первом растворе полезного вещества, в третьей - процент содержания во втором растворе.

В третьем столбце: в первой строчке – вода (так как будем записывать процент содержания в растворе воды), во второй строчке – процент

содержания воды в первом растворе, в третьей строчке – процент содержания воды во втором растворе.

В четвертом столбце: в первой, второй строчке - возьмем за $x(\kappa \Gamma)$ - масса первого, второго раствора. Во второй строчке — сумма первой строчки четвертого столбца и второй строчки четвертого столбца.

- 2. Пользуясь данными таблицы, составить уравнение и решить его
- 3. Записать ответ задачи

Пример:

Задача №1

Условие: Смешали некоторое количество 21-процентного раствора некоторого вещества с таким же количеством 95-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение:

1) Заполним таблицу:

	1 (вещества)	2 (вода)	масса
1	21%	79%	Х кг
2	95%	5%	Х кг
1+2	y%	(100-y)%	2Х кг

2)
$$21*x+95*x=2*x*y$$

$$21+95=2y$$

$$y = 58$$

3) **Ответ:** 58%

Алгоритм решения задач на проценты с помощью формулы

Задача №1

Условие: На пост главы администрации города претендовало три кандидата: Журавлев, Зайцев, Иванов. Во время выборов за Иванова было отдано в 2 раза больше голосов, чем за Журавлева, а за Зайцева — в 3 раза

больше, чем за Журавлева и Иванова вместе. Сколько процентов голосов было отдано за победителя?

Алгоритм решения задачи:

- 1) Возьмем за х количество голосов, отданные за Журавлева, найдем сколько проголосовали за Зайцева, Иванова
 - 2) Найдем, сколько всего было отдано голосов
- 3) Воспользуемся формулой $p = \frac{y}{x} \cdot 100(\%)$, где у количество голосов, отданных за Зайцева, а х количество голосов, отданных за Журавлева и Иванова.
 - 4) Запишем ответ

Решение: 1) Пусть х — это количество голосов, отданные за Журавлева, тогда 2х голосов отдано за Иванова, а 3х количество голосов, отданные за Зайцева.

- 2) Всего голосов, отданных за Журавлева и Иванова x+2x=3x, голосов, отданных за Зайцева 3x*3=9x, всего голосов x+2x+9x=12x.
- 3) Чтобы найти процент голосов, отданных за Зайцева (победителя, так как 3x>2x>x), воспользуемся формулой $x=\frac{y}{x}\cdot 100(\%)$, где y количество голосов, отданных за Зайцева, а x количество голосов, отданных за Журавлева и Иванова.
 - 4) P=(9x/12x)*100=75%

Ответ: 75%

Задача №2

Условие: Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?

Алгоритм решения задачи:

- 1) Находим, сколько полезного вещества в свежих фруктах
- 2) Находим, сколько полезного вещества в сухих фруктах
- 3) Находим массу полезного вещества в свежих фруктах
- 4) Делим массу полезного вещества в свежих фруктах на процент полезного вещества в высушенных фруктах
 - 5) Запишем ответ

Решение:

- 1) Так как при сушке вода испаряется, нужно рассматривать процент содержания полезного вещества, в свежих фруктах полезного вещества 100-80=20%
- 2) В высушенных фруктах процент содержания полезного вещества 100-28=72%.
- 3) Всего полезного вещества в 288 кг свежих фруктов 0,2*288=57,6 кг.
 - 4) Из 288 кг свежих фруктов получится $\frac{57,6}{0,72} = 80$ кг
 - 5) Ответ: 80кг

Задача №3

Условие: В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8% а в 2010 году на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

Алгоритм решения задачи:

- 1) Найдем количество человек, проживающих в квартале в 2009 году.
- 2) Найдем количество человек, проживающих в квартале в 2010 году.
 - 3) Запишем ответ

Решение: 1)
$$40000 * \frac{(100 + 8)}{100} = 43200$$

2)
$$43200 * \frac{(100+9)}{100} = 47088$$

Ответ: 47088 руб

Задача №4

Условие: В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

Алгоритм решения задачи:

- Для удобства и минимизации риска ошибки будет считать в долях. Возьмем за х количество процентов, на которые производились изменения (в долях). Возьмем за А изначальную стоимость акций компании.
- 2) Найдем цену акций компании после подорожания.

- 3) Найдем цену акций компании после удешевления.
- 4) Составим уравнение и решим его
- 5) Запишем ответ.

Решение: 1) Пусть х - количество процентов, на которые производились изменения (в долях). Пусть А - изначальная стоимость акций компании.

2)
$$A \times (1 + x) =$$
 стоимость акций после подорожания

$$3)A \times (1+x) \times (1-x) =$$

стоимость акций после подорожания и падения из стоимости

4)
$$A \times (1 + x) \times (1 - x) = (1 - 0.04) \times A$$

$$1 - x^2 = 0.96$$

$$X^2 = 0.04$$

$$X_{1}=0,2$$
 $X_{2}=-0,2$ -посторонний корень,т.к. $x>0$ по условию

5) **Ответ:** 20%

Алгоритм решения задач на проценты с помощью метода «стаканов»

Алгоритм решения задачи:

- 1) Возьмем за х(гр) массу первого раствора, у(гр) массу второго раствора
 - 2) Заполним первый стакан: концентрация 20%, масса х гр
 - 3) Заполним второй стакан: концентрация 50%, масса у гр

- 4) Заполним третий, получившийся стакан: концентрация 30%, масса x+y
 - 5) Из получившегося рисунка составим уравнение и решим его
 - 6) Запишем ответ

Задача №1

Условие: При смешивании первого раствора кислоты, концентрация которого 20%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 30% кислоты. В каком отношении были взяты первый и второй растворы?

Решение:

- 1) Пусть x(гр) масса первого раствора кислоты, y(гр) масса второго раствора кислоты.
 - 2) В первом «стакане» 20% концентрация, х(гр) масса раствора,
 - 3) Во втором «стакане» 50% концентрация, у(гр) масса раствора
- 4) Третий «стакан» это сумма первых двух растворов, 30% концентрация, x+y(гp) масса получившегося растора.

5)
$$0.2x+0.5y=0.3(x+y)$$

$$0,2x+0,5y=0,3x+0,3y$$

Задача №2

Условие: Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?

Алгоритм решения задачи:

- 1) Возьмем за х(гр) массу первого сплава, у(гр) массу второго сплава
- 2) Заполним первый стакан: процент содержания меди 60%, масса x гр
- 3) Заполним второй стакан: процент содержания меди 45%, масса у гр
- 4) Заполним третий, получившийся стакан: концентрация 55%, масса х+у
 - 5) Из получившегося рисунка составим уравнение и решим его
 - 6) Запишем ответ

Решение:

1) Пусть х(гр) – масса первого сплава.

В первом «стакане» 60% - процент содержания меди в сплаве, x(гp) – масса сплава

- 2) Пусть у(гр) масса второго сплава. Во втором «стакане» 45% процент содержания меди
- 3) третий «стакан» это «сумма» первых двух сплавов, 55% процент содержания меди, x+y(гp) масса получившегося раствора.

Задача №3

Условие: Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава.

Алгоритм решения задачи:

- 1) Возьмем за х(гр) массу первого сплава, х+4(кг) массу второго сплава
- 2) Заполним первый стакан: процент содержания меди 5%, масса x кг
- 3) Заполним второй стакан: процент содержания меди 13%, масса $x+4\ \mathrm{kf}$

Заполним третий, получившийся стакан: концентрация 10%, масса 2x+4 кг

- 4) Из получившегося рисунка составим уравнение и решим его
- 5) Запишем ответ

Решение:

1) Пусть х(кг) – масса первого сплава.

В первом «стакане» 5% - процент содержания меди в сплаве, $x(\kappa \Gamma)$ – масса сплава,

2) Во втором «стакане» 13% - процент содержания меди, x+4(гp) – масса сплава

3) Третий «стакан» - это «сумма» первых двух сплавов, 10% - процент содержания меди, 2x+4(гр) — масса получившегося раствора.

4)
$$0.05x+0.13(x+4) = 0.1(2x+4) | *100$$

$$52-40=20x-5x-13x$$

$$12 = 2x$$

$$x=6$$

$$2x+4=16$$

5) Ответ: 16кг

Задача №4

Условие: Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Алгоритм решения задачи:

- 1) Возьмем за х(гр) массу первого раствора, у(гр) массу второго раствора
 - 2) Заполним первый стакан: концентрация 20%, масса х гр
 - 3) Заполним второй стакан: концентрация 50%, масса у гр

- 4) Заполним третий, получившийся стакан: концентрация 30%, масса x+y
 - 5) Из получившегося рисунка составим уравнение и решим его
 - 6) Запишем ответ

Решение:

- 1) Пусть x% это концентрация первого раствора, y% концентрация второго раствора, тогда (x+y)% концентрация получившегося раствора.
- 2) В первом «стакане» масса раствора 10 кг, концентрация х%, во втором «стакане» масса раствора 16кг, концентрация у%
 - 3) В третьем «стакане» масса раствора 26кг, концентрация 55%.
 - 2 случай.

- 1) Пусть m(кг) это масса первого и второго раствора, тогда масса получившегося раствора 2m.
- 2) В первом «стакане» масса раствора $m(\kappa \Gamma)$, концентрация x%, во втором «стакане» масса раствора $m(\kappa \Gamma)$, концентрация y%
- 3) В получившемся «стакане» масса раствора 2m(кг), концентрация 61%.

Составим систему уравнений:

4)
$$\left\{ \left(\frac{x}{100} \right) * 10 + \left(\frac{y}{100} \right) * 16 = 0.55 * 26 \lor 100 \frac{x}{100} * m + \frac{m*y}{100} = 0.61 * 2m \lor \frac{100}{m} \le \left\{ 10x + 16y = 55 * 26x + y = 61 * 2 \le \left\{ x = 87y = 35 \right\} \right\}$$

$$\frac{10*x}{100} = 10*0.87 = 8.7 \text{K}$$

5) Ответ: 8,7 кг

Задача №5

- 1) В первом «стакане» концентрация 100%-80%=20% (так как 80% вода), масса 288 кг. Во втором «стакане» m(кг)-масса вода, концентрация 0% (так-как это вода)
 - 2) В получившемся «стакане» концентрация 72%, масса $x(\kappa \Gamma)$.

3) 288*0,2-m*0=0,72*x

x=288*20/72

x = 80

Ответ: 80 кг

Nº6

Условие: Смешав 60%—ый и 30%—ый растворы кислоты и добавив 5 кг чистой воды, получили 20%—ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%—го раствора той же кислоты, то получили бы 70%—ый раствор кислоты. Сколько килограммов 60%—го раствора использовали для получения смеси?

Решение:

1 случай. Пусть $x(\kappa\Gamma)$ — масса первого раствора, $y(\kappa\Gamma)$ — масса второго раствора, тогда x+y+5 — масса получившегося раствора. В первом стакане масса раствора $x(\kappa\Gamma)$, концентрация раствора — 60%, во втором «стакане»

масса у(кг), концентрация -30%, в третьем «стакане» масса раствора(вода) 5 кг, концентрация 0%, так как это вода. В четвертом, получившемся «стакане», масса x+y+5(кг), концентрация 20%.

2 случай. В первом и втором «стакане» так же, как и в первом случае. В третьем «стакане» масса раствора $5(\kappa\Gamma)$, концентрация раствора -90%. В четвертом, получившемся «стакане» масса раствора $x+y+5(\kappa\Gamma)$, концентрация раствора -70%.

Составим систему уравнений:

$$\{0.6x + 0.3y + 0 * 5 = 0.2(x + y + 5) \lor 100.6x + 0.3y + 0.9 * 5 = 0.7(x + y + 5) \lor 10$$

$$\{6x + y = 2x + 2y + 106x + 3y + 45 = 7x + 7y + 35 \le \{6x + 3y = 2x + 2y + 106x + 3y + 45 = 7x + 7y + 35\}$$

$$\{4x + y = 10x + 4y = 10 = 4x + y = x + 4yx = y = 4x + x = 10 = x = y = 2\}$$

Ответ: 2кг.

Задача №6

Условие: Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов? **Алгоритм решения задачи:**

- 1) Возьмем за х(кг) массу получившегося раствора, m(кг) масса воды
- 2) Заполним первый стакан: концентрация 20%, масса 288 кг
- 3) Заполним второй стакан: концентрация 0%, масса т кг

- 4) Заполним третий стакан: концентрация 72%, масса х кг
- 5) Составим уравнение и решим его
- 6) Запишем ответ

- 1) Пусть $x(\kappa \Gamma)$ масса получившегося раствора, $m(\kappa \Gamma)$ масса воды
- 2) В первом «стакане» концентрация 100%-80%=20% (так как 80% вода), масса 288 кг.

- 3) Во втором «стакане» m(кг)-масса воды, концентрация 0% (так-как это вода)
- 4) В получившемся «стакане» концентрация 72%, масса $x(\kappa \Gamma)$.
- 5) 288*0,2-m*0=0,72*x x=288*20/72 x=80
- 6) Ответ: 80 кг

Задачи на проценты из первой части ЕГЭ для самостоятельного решения

Задачи на проценты

Tun 1

Задача №1 Таблетка весит 16 мг и содержит 50% активного вещества. Кириллу врач прописал 1 мг активного вещества на каждый килограмм массы в сутки. Сколько таблеток этого лекарства следует принимать Кириллу в течение суток, если его масса 40 килограмм?

 ς :Teet: ς

Задача №2

Два шоколадных батончика дешевле пирожного на 10%. На сколько процентов три батончика дороже пирожного?

OTBET: 35

Задача №3

Свежевыжатый яблочный сок содержит 12% сахара. Сколько литров воды надо добавить к 2 литрам сока, чтобы содержание сахара стало 8%?

I :TeatO

Задача №4

Два квадрокоптера дешевле 3-D принтера на 70%. На сколько процентов пять квадрокоптеров дешевле 3-D принтера?

Otbet: 25

Задача №5

Кофта во вторник подорожала на 25%. На сколько процентов она должна была подешеветь в среду (относительно цены вторника), чтобы её цена стала первоначальной (как до повышения во вторник).

Ответ: 25

Задача №4

В государстве π в 2012 году ЕГЭ по математике не сдали 20000 выпускников. В 2013 году число не сдавших уменьшилось на 5%, а в 2014

году — увеличилось на 17% по сравнению с 2013 годом. Сколько выпускников не сдали ЕГЭ по математике в 2014 году в государстве π ?

OTBET: 22230

Задача №4

В среду молоко подорожало на х процентов, а в четверг подешевело на х процентов. В результате молоко стало стоить на 1% дешевле, чем стоило во вторник (до подорожания). На сколько процентов дешевле стало бы молоко по сравнению со вторником, если бы оно сначала в среду подешевело на х процентов, а в четверг подорожало на х процентов?

I :T58TO

Задача №4

В среду молоко подорожало на х процентов, а в четверг подорожало на 2х процентов. В результате молоко стало стоить на 15,5% дороже, чем стоило во вторник (до подорожания). На сколько процентов подорожало молоко в среду?

$$\delta$$
:TSET: 5

Задачи на растворы

Tun 1

Задача №1 При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 48%, получился раствор с концентрацией 42%. В каком отношении были взяты первый и второй растворы?

OTBeT: 3/1

Задача №2 При смешивании первого раствора кислоты, концентрация которого 30%, и второго раствора этой же кислоты, концентрация которого 50%, получили раствор, содержащий 45% кислоты. В каком отношении были взяты первый и второй растворы?

OTBCT: 3/1

<u>Задача №3</u> При смешивании первого раствора соли, концентрация которого 40%, и второго раствора этой же соли, концентрация которого 65%, получили раствор, содержащий 60% соли. В каком отношении были взяты первый и второй растворы?

₽\/I :TSET: 1\/4

Tun 2

Задача №4 Смешали некоторое количество 21-процентного раствора некоторого вещества с таким же количеством 95-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Otbet: 58%

Задача №5 Смешали некоторое количество 55-процентного раствора некоторого вещества с таким же количеством 97-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

OTBeT: 76%

Задача №6 Смешали некоторое количество 19-процентного раствора некоторого вещества с таким же количеством 23-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

OTBeT: 21%

Задача №7 Смешали некоторое количество 18-процентного раствора некоторого вещества с таким же количеством 22-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

OTBET: 20%

Задача №8 Смешали некоторое количество 4-процентного раствора некоторого вещества с таким же количеством 66-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

OTBCT: 35%

Задача №9 Смешали некоторое количество 56-процентного раствора некоторого вещества с таким же количеством 80-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

OTBCT: 68%

Tun 3

<u>Задача №10</u> Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих

растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?

<u>Задача №11</u> Имеются два сосуда, содержащие 40 кг и 30 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 73% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 72% кислоты. Сколько килограммов кислоты содержится во втором растворе?

Задача №12 Имеются два сосуда, содержащие 40 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 33% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 47% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Ответ: 2 кг

Задача №13 Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?

OTBet: 2,8 kg

Задача №14 Имеются два сосуда, содержащие 24 кг и 26 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 39% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Ответ: 15,6 кг

Задача №15 Имеются два сосуда, содержащие 30 кг и 20 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 81% кислоты. Если же слить равные массы этих

растворов, то полученный раствор будет содержать 83% кислоты. Сколько килограммов кислоты содержится во втором растворе?

Ответ: 18,6 кг

Tun 4

<u>Задача №16</u> Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько требуется свежих фруктов для приготовления 80 кг высушенных фруктов?

OTBeT: 288 KT

<u>Задача №17</u> Свежие фрукты содержат 88% воды, а высушенные — 30%. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

OTBeT: 420 KT

Задача №18 Свежие фрукты содержат 86 % воды, а высушенные — 23 %. Сколько требуется свежих фруктов для приготовления 72 кг высушенных фруктов?

OTBET: 396 KT

<u>Задача №19</u> Свежие фрукты содержат 93% воды, а высушенные — 16%. Сколько сухих фруктов получится из 252 кг свежих фруктов?

OTBet: 21 KT

<u>Задача №20</u> Свежие фрукты содержат 78 % воды, а высушенные — 22 %. Сколько требуется свежих фруктов для приготовления 22 кг высушенных фруктов?

OTBeT: 78 KF

Задача №21 Свежие фрукты содержат 95 % воды, а высушенные — 22 %. Сколько требуется свежих фруктов для приготовления 55 кг высушенных фруктов?

OTBet: 858 KF

<u>Задача №22</u> Свежие фрукты содержат 93% воды, а высушенные — 16%. Сколько требуется свежих фруктов для приготовления 21 кг высушенных фруктов?

OTBeT: 252 KT

Tun 5

Задача №23 Смешав 60%—ый и 30%—ый растворы кислоты и добавив 5 кг чистой воды, получили 20%—ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%—го раствора той же кислоты, то получили бы 70%—ый раствор кислоты. Сколько килограммов 60%—го раствора использовали для получения смеси?

OTBCT: 2 KT

Задача №24 Смешав 70%—ый и 40%—ый растворы кислоты и добавив 8 кг чистой воды, получили 50%—ый раствор кислоты. Если бы вместо 8 кг воды добавили 8 кг 80%—го раствора той же кислоты, то получили бы 65%—ый раствор кислоты. Сколько килограммов 70%—го раствора использовали для получения смеси? Ответ округлите до десятых.

OTBeT: 24,8 KF

Задача №25 Смешав 80%—ый и 50%—ый растворы кислоты и добавив 10 кг чистой воды, получили 60%—ый раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 85%—го раствора той же кислоты, то получили

бы 75%-ый раствор кислоты. Сколько килограммов 80%-го раствора использовали для получения смеси? Ответ округлите до десятых.

Otbet: 35,5 kp

Задачи на сплавы

Tun 1

<u>Задача №1</u> Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?

OTBeT: 2/1

Задача №2 Имеется два сплава с разным содержанием меди: в первом содержится 70%, а во втором — 40% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 50% меди?

OTBeT: 1/2

Задача №3 Имеется два сплава с разным содержанием золота: в первом содержится 50%, а во втором — 80% золота. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% золота?

OTBet: 5/1

Задача №4 Имеется два сплава с разным содержанием золота. В первом сплаве содержится 35% золота, а во втором — 60%. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 40% золота?

OTBET: 4/1

Tun 2

<u>Задача №5</u> Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 4 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава.

Ответ: 16 кг

<u>Задача №6</u> Первый сплав содержит 6% меди, второй — 15% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 15% меди. Найдите массу третьего сплава.

OTBet: 9 KF

Решение задач на проценты из второй части ЕГЭ

Задачи на аннуитетный тип платежа

Алгоритм решения задач на аннуитетный тип платежей методом «карманов»

Условие: Федя взял кредит в банке 300 рублей на срок 3 месяца. В конце каждого месяца общая сумма оставшегося долга увеличивается на 20%, а затем уменьшается на сумму, уплаченную Федей.

Суммы, выплачиваемые в конце каждого месяца, Федя подбирал так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину.

Какими суммами выплачивал долг Федя? Сколько процентов Федя переплатил?

Алгоритм решения:

- 1) Поймем, какой тип платежей указан в задаче.
- 2) Разделим тело самого платежа на два типа: платеж другу и платеж охраннику.
- 3) Рассмотрим суммы платежей за каждый месяц другу.
- 4) Найдем сумму, которую федя заплатил охраннику.
- 5) Посчитаем, сколько федя переплатил процентов.
- 6) Запишем ответ.

Решение: 1) Это аннуитетный тип платежа, т.к. в тексте задачи написано, что платежи должны уменьшаться равномерно.

2) Сумма, которую федя платит за каждый месяц другу -300/3 = 100 руб.

Сумма, которую федя платит за каждый месяц охраннику считается по формуле (300-100*n)*0,2, где n-номер месяца

3) Сумма, которую федя платит за первый месяц охраннику — 300*0,2=60 руб.

За второй месяц - (300-100)*0,2 = 40 руб.

За третий месяц – (300-200)*0,2 = 20 руб.

4) Сумма, которую федя заплатил охраннику составляет 40+60+20 = 120 руб.

5) Всего федя заплатил 300+120=420 руб.

Заплатил охраннику 120 руб.

Переплата составляет 1-420/300 = 40%

6) Ответ: 160 руб., 140 руб., 120 руб., 40%.

Алгоритм решения задач на аннуитетный тип платежей с помощью формул

Задача №1

Условие: Антон взял кредит в банке на срок 6 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на одно и то же число процентов (месячную процентную ставку), а затем уменьшается на сумму, уплаченную Антоном. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц

уменьшалась равномерно, то есть на одну и ту же величину. Общая сумма выплат превысила сумму кредита на 63%. Найдите месячную процентную ставку.

Алгоритм решения:

- 1) Поймем, какой тип платежей указан в задаче.
- 2) Возьмем за S сумму кредита, процентную ставку банка за х.
- 3) Найдем сумму, образованную применением процентной ставки.
- 4) Решим уравнение.
- 5) Запишем ответ

Решение:

- 1) Это аннуитетный тип платежа, т.к. в условии задачи написано, что долг уменьшался равномерно.
- 2) Пусть сумма кредита S у. е., процентная ставка банка x %.

3)
$$0.01xS + 0.01x\frac{5S}{6} + 0.01x\frac{4S}{6} + \dots + 0.01x\frac{S}{6} = 0.01Sx\left(1 + \frac{5}{6} + \frac{4}{6} + \frac{3}{6} + \frac{2}{6} + \frac{1}{6}\right) = 0.035Sx$$

4) Т.к. Общая сумма, выплаченная Антоном за 6 месяцев: S+0.035Sx. А эта сумма по условию задачи равна 1.63S. Решим уравнение: (1+0.035x)S=1.63S x=18

5) Ответ: 18%

Задача №2

Условие: Жанна взяла в банке в кредит 1,2 млн рублей на срок 24 месяца. По договору Жанна должна вносить в банк часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 2%, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна выплатит банку в течение первого года кредитования?

Алгоритм решения:

- 1) Поймем, какой тип платежей указан в задаче.
- 2) Найдем, сколько Жанна возвращает банку ежемесячно тела долга.

- 3) Найдем сумму, которую Жанна заплатила за первый месяц.
- 4) Найдем сумму арифметической прогрессии.
- 5) Запишем ответ.

Решение:

- 1) Аннуитетный тип платежа.
- 2) Ежемесячно Жанна возвращает банку по 1,2 млн : 24 = 50 тыс. руб. тела долга и выплачивает равномерно уменьшающуюся от максимального значения до нуля сумму процентов за пользование кредитом.
- 3) За первый месяц это $0.02 \cdot 1.2$ млн = 24 тыс. руб.

- 4) За второй месяц на 1/24 меньше то есть 23 тыс. руб., затем 22 тыс. руб. и так далее. Поэтому выплаты за 12 первых месяцев составят арифметическую прогрессию с первым членом 74, последним 63 тыс. руб. Ее сумма равна 12(74 + 63)/2 = 822 тыс. руб
- 5) Ответ: 822 тыс. руб.

Алгоритм решения задач на аннуитетный тип платежей с помощью таблицы

Задача№1

Условие: Для покупки квартиры Алексею не хватало 1 209 600 рублей, поэтому в январе 2015 года он решил взять в банке кредит под 10% годовых на 2 года. Условия пользования кредитом таковы:

- раз в год 15 декабря банк начисляет на оставшуюся сумму долга проценты, то есть долг увеличивается на 10%;
- в период с 16 по 31 декабря Алексей обязан перевести в банк некоторый платеж в x рублей.

Чему должен быть равен х, чтобы Алексей выплатил долг равными платежами?

Алгоритм Решения:

- 1) Поймем, какой тип платежей указан в задаче.
- 2) Найдем сумму долга до начисления процентов, после начисления процентов, после платежа для каждого года отдельно.
- 3) Занесем в таблицу.
- 4) Составим и решим уравнение.
- 5) Запишем ответ.

Решение:

- 1) Аннуитетный тип платежа.
- 2) Так как процентная ставка в банке равна 10%, то 15 декабря 2015 года долг Алексея составит 110% от первоначальной суммы ($1\ 209\ 600$ рублей), то есть будет равен (1,1*1209600) рублей. После этого Алексей переводит банку х рублей, то есть его долг уменьшается на х и будет равен (1,1*1209600-x) рублей.

До 15 декабря 2016 года долг Алексея остается неизменным, то есть равен (1,1*1209600-x) рублей. 15 декабря 2016 банк снова увеличивает долг на 10%, то есть долг Алексея уже будет равен 1,1(1,1*1209600-x) рублей.

После этого Алексей снова переводит банку x рублей, следовательно, долг равен 1,1(1,1*1209600-x)-x

3)

Год	Сумма долга до начисления %	После Начисления %	После платежа
1	1209600	1,1*1209600	1,1*1209600 - x
2	1,1*1209600 - x	1,1(1,1*1209600 - x)	1,1(1,1*1209600 - x) - x

4) Так как в конце 2-ого года кредит должен быть выплачен, то

$$1,1(1,1*1209600 - x) - x = 0$$

$$x = \frac{1,1^2 * 1209600}{1,1+1}$$

$$x = 696960$$

5) Ответ: 696960 руб.

Задача №2

Условие: Екатерина взяла кредит в банке на сумму 680000 рублей, которой ей не хватало для покупки квартиры. Кредит она решила взять 1 марта на 2 месяца на следующих условиях:

- -17-ого числа каждого месяца, начиная с марта, долг увеличивается на 12,5% по сравнению с долгом на начало текущего месяца;
- в период с 18-ого по 30-ое числа Екатерина должна выплатить часть долга одним платежом, причем ежемесячные платежи одинаковы.

Сколько рублей составила переплата Екатерины по данному кредиту?

Алгоритм решения:

1) Поймем, какой тип платежей указан в задаче.

- 2) Найдем сумму долга до начисления процентов, после начисления процентов, после платежа для каждого года отдельно.
- 3) Занесем в таблицу.
- 4) Составим и решим уравнение.
- 5) Запишем ответ.

Решение:

- 1) Это аннуитетный тип платежей.
- 2, 3) Множитель платежа равен 1+12,5/100=9/8

Месяц	Сумма долга	Сумма долга	Платеж	После
	до %	%		платежа
1	680	9/8*680	X	9/8*680-x
2	9/8*680-x	9/9(9/8*680-x)	X	9/8(9/8*680-
				x)-x

4) Кредит был полностью выплачен, следовательно,

$$\frac{9}{8} * \left(\frac{9}{8} * 6800 - x\right) - x = 0$$

Таким образом, переплата составила

$$2x - 680 = 130$$

5) Ответ: 130000 руб.

Задачи на дифференцированный тип платежа

Алгоритм решения задач на дифференцированный тип платежа с помощью таблицы

Задачи на дифференцированный тип платежа удобнее всего, понятнее и доступнее для ученика решать методом занесения данных в таблицу по каждому платежу

Условие: 10 лет назад Григорий брал в банке кредит на 4 года, причем Григорий помнит, что выплачивал он кредит дифференцированными платежами и переплата по кредиту составила 32,5% от кредита. Под какой годовой процент был взят тогда кредит?

Алгоритм решения:

1) Поймем, какой тип платежей указан в задаче.

- 2) Найдем сумму долга до начисления процентов, после начисления процентов, после платежа для каждого года отдельно.
- 3) Занесем в таблицу.
- 4) Основываясь на данных из заполненной нами таблице, найдем переплату по кредиту, составим уравнение и решим его.
- 5) Запишем ответ.

Решение:

- 1) Это дифференцированный тип платежей
- 2, 3) Обозначим за у годовой процент по кредиту, а за А руб. сумму кредита. Составим таблицу, отслеживающую остаток долга:

Год	Долг до	Долг после	Сумма платежа	Долг
	начисления	начисления %		после
	%			платежа

1	A	$A + \frac{y}{100} * A$	$\frac{y}{100} * A + \frac{1}{4} * A$	$\frac{3}{4}*A$
2	$\frac{3}{4}*A$	$\frac{3}{4} * A + \frac{y}{100} * \frac{3}{4} * A$	$\frac{y}{100} * \frac{3}{4} * A + \frac{1}{4} * A$	$\frac{2}{4}*A$
3	$\frac{2}{4} * A$	$\frac{2}{4} * A + \frac{y}{100} * \frac{2}{4} * A$	$\frac{y}{100} * \frac{2}{4} * A + \frac{1}{4} * A$	$\frac{1}{4} * A$
4	$\frac{1}{4}*A$	$\frac{1}{4} * A + \frac{y}{100} * \frac{1}{4} * A$	$\frac{y}{100} * \frac{1}{4} * A + \frac{1}{4} * A$	$\frac{0}{4} * A = 0$

4)
$$R = \frac{y}{100} * A + \frac{y}{100} * \frac{3}{4} * A + \frac{y}{100} * \frac{2}{4} * A + \frac{y}{100} * \frac{1}{4} * A = \frac{y}{100} * A + \frac{y}{100} * \frac{3}{4} * A + \frac{y}{100} * \frac{2}{4} * A + \frac{y}{100} * \frac{1}{4} * A = \frac{y*A}{40}$$

Так как переплата в итоге составила 32,5% от суммы кредита, то

$$\frac{y*A}{40} = 0.325A$$
$$y = 13$$

6) Ответ: 13%

Задачи на проценты из второй части ЕГЭ для самостоятельного решения

Задачи на аннуитетный тип платежа

<u>Задача №1</u> Под какое наименьшее целое кратное пяти число у процентов годовых банку необходимо предоставить кредит на 2 года, выплачиваемый равными ежегодными платежами, чтобы переплата по такому кредиту превысила 50% от ежегодного платежа?

OTBeT: 25

Задача №2 Леонид брал кредит в банке сроком на 6 лет под 50% годовых. После того, как кредит был выплачен, оказалось, что переплата по кредиту составила 3044000 рублей. Сколько тысяч рублей каждый год вносил Леонид в счет погашения кредита, если известно, что кредит был выплачен аннуитетными платежами?

Задача №3 Василий взял кредит в банке на некоторую сумму под 12,5% годовых. Кредит он должен выплачивать в течение четырех лет одинаковыми ежегодными платежами. Сколько рублей составлял ежегодный платеж Василия, если в итоге его переплата составила 65240 рублей.

OTBeT: 65610

<u>Задача №4</u> Банк выдает кредит сроком на 4 года под 25% годовых. Вычислите, на сколько процентов переплата по такому кредиту превышает платеж, если гасить кредит нужно равными ежегодными выплатами.

OTBET: 63,84

Задача №5 В банке был взял кредит на некоторую сумму денег на 3 года. Кредит необходимо выплачивать равными платежами раз в год, причем известно, что каждый год перед выплатой текущая сумма долга увеличивается на четверть. Найдите, сколько процентов от тела кредита

составит переплата по такому кредиту. В случае необходимости ответ округлите до целого числа.

OTBET: 54

Задача №6 Банк "Европа" предлагает потребительский кредит на сумму 664200 рублей под 25% годовых при условии, что кредит нужно выплачивать в течение четырех лет равными ежегодными платежами. Сколько рублей должен вносить клиент каждый год в счет погашения кредита, если согласится на условия банка?

OTBET: 281250

<u>Задача №7</u> Андрей Викторович хочет взять кредит на покупку квартиры. Он выбирает между двумя вариантами:

- взять кредит на всю сумму в банке А под 25% годовых на 3 года;
- · взять 75% от стоимости квартиры в банке Б под 30% годовых на 3 года и оставшиеся 25% от стоимости квартиры в банке В под целое число у% годовых на год.

Какой наибольший процент у годовых должен предложить ему банк В, чтобы второй вариант был выгодней? Погашение кредита во всех трех банках происходит раз в год равными платежами.

91 :T98TO

Задача №8 Банк выдает кредиты только под 10% годовых. В январе 2014 года Олег взял кредит в банке на 4641000 рублей на открытие своего бизнеса. Кредит он должен выплатить за 4 года равными ежегодными платежами, вносимыми в конце года. В январе третьего года пользования кредитом Олег понял, что на расширение бизнеса ему не хватает некоторой суммы, поэтому он взял в этом же банке четверть от первоначального кредита, договорившись выплатить оба кредита одновременно.

Оказалось, что после взятия второго кредита его последующие ежегодные платежи увеличились на одну и ту же сумму.

Найдите, сколько рублей сверх кредита выплатил Олег банку.

OTBeT: 1392200

Задача №9 Для покупки квартиры в элитном здании Артур скопил всего 5280000 рублей, поэтому недостающую сумму он был вынужден взять в кредит на 4 года под 12,5% годовых. Выплачивать кредит он должен аннуитетными платежами. Сколько процентов от стоимости квартиры ему не хватало, если известно, что переплатил по кредиту он 6524000 рублей?

88,87 :TsaTO

Задача №10 Кредит выдан на 3 года под целое кратное десяти число у процентов годовых. Известно, что погашение кредита происходит раз в год после начисления процентов равными платежами. Под какой процент у взят кредит, если известно, что ежегодный платеж относится к сумме кредита как 27:38?

OTBET: 50

Задачи на дифференцированный тип платежа

Задача №1 Банк может выдать кредит своим клиентам на 6 лет под 10% годовых, учитывая, что кредит будет выплачиваться ежегодными платежами (после начисления процентов), уменьшающими долг на одну и ту же сумму. Сколько процентов от суммы кредита переплатит клиент, если возьмет в банке такой кредит?

OTBet: 35

<u>Задача №2</u> Родион хочет взять кредит на некоторую сумму и выбирает между двумя банками. Первый банк предлагает кредит на 15 лет

под 6% годовых, второй — на 6 лет под 14% годовых, причем в обоих банках дифференцированная система платежей. Определите, в какой банк выгоднее обратиться Родиону и сколько процентов от кредита составляет эта выгода.

CTBGT: 1

Задача №3 Клиент взял в банке кредит на некоторую сумму на 12 лет под 8% годовых, причем выплачивал кредит он так, чтобы сумма долга каждый год уменьшалась равномерно. Известно, что за первые 8 лет он отдал банку 7 млн рублей. Найдите, сколько млн. рублей он заплатил банку за последние 4 года пользования кредитом.

Otbet: 2,5

<u>Задача №4</u> 15-го января планируется взять кредит в банке на 31 месяц. Условие его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Известно, что на 16-й месяц кредитования нужно сделать платеж в размере 29,6 тыс. рублей. Какую сумму нужно вернуть банку в течение всего срока кредитования?

<u>Задача №5</u> В июле планируется взять кредит в банке на сумму 14 млн рублей на некоторое целое число лет. Условия его возврата таковы:

- каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплачивать часть долга;

 в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет взят кредит, если известно, что общая сумма выплат после его погашения равнялась 24,5 млн рублей?

CTBET: 5

Задача №6 Константин решил взять в одном из двух банков кредит на покупку машины при условии, что он будет выплачивать кредит дифференцированными платежами. Первый банк предлагает Константину кредит на 6 лет с 32/7% годовых, а второй банк — на 5 лет с 12,5% годовых. В каком банке ему выгодней взять кредит и сколько процентов от стоимости машины составляет эта выгода?

CTBet: 21,5

Задача №7 В январе 2010 года Михаил взял в банке кредит на сумму 3 млн рублей на покупку квартиры в Лунцево. Кредит ему выдали на 6 лет под 14% годовых, причем выплачивать его Михаил должен так, чтобы сумма долга каждый год уменьшалась на одну и ту же величину.

В январе 2016 года в Лунцево открыли новую станцию метро. Михаил не растерялся и сразу после выплаты кредита продал квартиру по цене, превышающей изначальную стоимость квартиры на 80%. Сколько рублей в итоге заработал Михаил?

OTBeT: 930000

<u>Задача №8</u> 16 августа на покупку телефона стоимостью 60 000 рублей в банке был взят кредит на 3 месяца. Условия пользования кредитом таковы:

- 10 числа каждого месяца, начиная с сентября, банк начисляет на остаток долга 10%;
- с 11 по 15 числа каждого месяца, начиная с сентября, клиент обязан внести в банк платеж;
- суммы платежей подбираются так, чтобы долг каждый месяц уменьшался на одну и ту же величину (так называемый дифференцированный платеж).

Сколько рублей в итоге составит переплата по данному кредиту?

OTBeT: 12000

<u>Задача №9</u> В июле планируется взять кредит в банке на сумму 3 млн. рублей. Условия его возврата таковы:

- каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплачивать часть долга;
- в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Найдите общую сумму выплат по такому кредиту, если он был взят на 4 года.

Otbet: 3,75 mih

<u>Задача №10</u> Под какой процент следует взять кредит в банке I, выдаваемый на 5 лет, чтобы переплата по такому кредиту была такой же, как в банке II, выдающему тот же кредит на 17 лет под 10% годовых, если выплачиваются оба кредита дифференцированными платежами?

Оξ :тэатО