Modelowanie Stochastyczne

Zajęcia 2 Tomasz Serafin

Semestr letni 21/22

1/22

- Wygeneruj 1000 elementowe próbki zmiennej losowej $\mathbb{N}(0,1)$ używając zmiennych $\mathbb{U}(0,1)$ oraz
 - (a) regułę tuzina ('rule of the dozen'),
 - (b) metodę odwrócenia dystrybuanty ('inverse transform'),
 - (c) metodę Boxa-Mullera.

Następnie narysuj (wskazówki w pliku Ogony.pdf):

- i) histogramy,
- ii) empiryczne dystrybuanty w skali liniowej, semi-logarytmicznej, podwójnie-logarytmicznej, oraz porównaj z rozkładem $\mathbb{N}(0,1)$.

2 / 22

- Wygeneruj 1000 elementowe próbki zmiennej losowej $\mathbb{N}(0,1)$ używając zmiennych $\mathbb{U}(0,1)$ oraz (a) regułę tuzina ('rule of the dozen')
 - $X \sim \mathbb{N}(0,1)$
 - $X = (U_1 + \ldots + U_{12}) 6$
 - iteracyjnie lub wektorowo

3/22

- Wygeneruj 1000 elementowe próbki zmiennej losowej $\mathbb{N}(0,1)$ używając zmiennych $\mathbb{U}(0,1)$ oraz **(b)** metodę odwrócenia dystrybuanty ('inverse transform')
 - $X \sim \mathbb{N}(0,1)$
 - $X = F_x^{-1}(U)$
 - Python: scipy.stats.norm.ppf(p)
 - Matlab: norminv(p)
 - R: qnorm(p)

(MS 21/22)

- Wygeneruj 1000 elementowe próbki zmiennej losowej $\mathbb{N}(0,1)$ używając zmiennych $\mathbb{U}(0,1)$ oraz (c) metodę Boxa-Mullera
 - $X \sim \mathbb{N}(0,1)$
 - U_1 , $U_2 \sim \mathbb{U}(0,1)$
 - $Z_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$
 - $Z_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$
 - $X = [Z_1, Z_2]$

5 / 22

- Następnie narysuj (wskazówki w pliku Ogony.pdf):
 i) histogramy
 oraz porównaj z rozkładem N(0,1).
 - Histogram należy znormalizować!
 - Dzielimy wysokość każdego słupka przez ilość obserwacji x szerokość słupka
 - Na histogramie rysujemy teoretyczną gęstość rozkładu normalnego (w Matlabie: normcdf(), w Pythonie: scipy.stats.norm.pdf())

10.03.2022

6/22

(MS 21/22)

Następnie narysuj (wskazówki w pliku Ogony.pdf): i) histogramy oraz porównaj z rozkładem $\mathbb{N}(0,1)$.

(MS 21/22) 10.03.2022 7/22

- Następnie narysuj (wskazówki w pliku Ogony.pdf): ii) empiryczne dystrybuanty w skali liniowej, semi-logarytmicznej, podwójnie-logarytmicznej, oraz porównaj z rozkładem $\mathbb{N}(0,1)$.
 - Dystrybuanta empiryczna:
 - Sortujemy obserwacje $x_1, \ldots, x_n \to x_{(1)}, \ldots, x_{(n)}$
 - $F_n(x_{(k)}) = \frac{k}{n}$
 - Skala liniowa: (X,Y)
 - Skala semi-logarytmiczna: (X,log(Y))
 - Skala podwójnie-logarytmiczna: (log(X),log(1-Y))
 - W log-log rysujemy tylko PRAWY ogon rozkładu! (X > 0)

(MS 21/22)

Następnie narysuj (wskazówki w pliku Ogony.pdf): ii) empiryczne dystrybuanty w skali liniowej, semi-logarytmicznej, podwójnie-logarytmicznej, oraz porównaj z rozkładem $\mathbb{N}(0,1)$.

- ② Korzystając z 1000 elementowej próbki $\mathbb{U}(0,1)$, wygeneruj 1000 elementowe próbki zmiennych losowych (odwrotną dystrybuantę rozkładu wbudowaną w pakiet Matlab/Python możesz wykorzystać jedynie do generowania rozkładu normalnego):
 - (a) lognormalnej,
 - (b) Pareto,
 - (c) wykładniczej.
 - Następnie narysuj:
 - i) histogramy,
 - **ii)** empiryczne dystrybuanty w skali liniowej, semi-logarytmicznej, podwójnie-logarytmicznej (dla semi-log i log-log tak na prawdę ogony, tj. 1-F).

(MS 21/22) 10.03.2022 10 / 22

- Ø Korzystając z 1000 elementowej próbki U(0,1), wygeneruj 1000 elementowe próbki zmiennych losowych:
 (a) lognormalnej
 - \bullet Y = e^X , $X \sim \mathbb{N}(\mu, \sigma^2)$
 - ullet U $\sim \mathbb{U}(0,1)
 ightarrow \mathsf{X} \sim \mathbb{N}(\mu,\sigma^2)
 ightarrow \mathsf{Y} \sim \mathit{lognorm}(\mu,\sigma^2)$

11 / 22

- Morzystając z 1000 elementowej próbki $\mathbb{U}(0,1)$, wygeneruj 1000 elementowe próbki zmiennych losowych:
 - (b) Pareto
 - $Y = \lambda U^{\frac{-1}{\alpha}} \sim Pareto(\lambda, \alpha)$
 - (c) wykładniczej
 - $Y = -\frac{1}{\beta}\log(U) \sim Exp(\beta)$

(MS 21/22) 10.03.2022 12 / 22

- Wygeneruj 3 niezależne trajektorie arytmetycznego ruchu Browna (ABM): $dX = \mu dt + \sigma dB$. Weź dt = 1, X(0) = 10, $\mu = 0.04$, $\sigma = 0.4$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu dt$.
- Wygeneruj 3 niezależne trajektorie geometycznego ruchu Browna (GBM): $dX = \mu X dt + \sigma X dB$. Weź dt = 1, X(0) = 10, $\mu = 0.01$, $\sigma = 0.04$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu X dt$.
- Wygeneruj 3 niezależne trajektorie dyfuzji powracającej do średniej: $dX = \alpha(\beta X)dt + \sigma dB$. Weź dt = 1, X(0) = 20, $\alpha = 0.1$, $\beta = 8$, $\sigma = 0.4$. Jaki jest poziom powracania do średniej? Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \alpha(\beta X)dt$.

0

Wygeneruj 3 niezależne trajektorie arytmetycznego ruchu Browna (ABM): $dX = \mu dt + \sigma dB$. Weź dt = 1, X(0) = 10, $\mu = 0.04$, $\sigma = 0.4$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu dt$.

$$\underbrace{dX}_{\text{przyrost procesu}} = \underbrace{\mu dt}_{\text{deterministyczne}} + \underbrace{\sigma dB}_{\text{losowe}}$$

$$X_t - X_{t-1} = \mu dt + \sigma dB$$

$$X_t = X_{t-1} + \mu dt + \sigma dB$$

14 / 22

Wygeneruj 3 niezależne trajektorie arytmetycznego ruchu Browna (ABM): $dX = \mu dt + \sigma dB$. Weź dt = 1, X(0) = 10, $\mu = 0.04$, $\sigma = 0.4$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu dt$.

$$X_t = X_{t-1} + \mu dt + \sigma \mathbb{N}(0, dt)$$

$$X_t = X_{t-1} + 0.04 \cdot 1 + 0.4 \cdot \mathbb{N}(0, 1)$$

(ロト 4回 ト 4 重 ト 4 重 ト) 重 · かなの

15/22

Wygeneruj 3 niezależne trajektorie arytmetycznego ruchu Browna (ABM): $dX = \mu dt + \sigma dB$. Weź dt = 1, X(0) = 10, $\mu = 0.04$, $\sigma = 0.4$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu dt$.

$$\underbrace{dX}_{\text{przyrost procesu}} = \underbrace{\mu dt}_{\text{deterministyczne}}$$

$$X_t - X_{t-1} = \mu dt$$

$$X_t = X_{t-1} + 0.04 \cdot 1$$

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

(MS 21/22)

Wygeneruj 3 niezależne trajektorie arytmetycznego ruchu Browna (ABM): $dX = \mu dt + \sigma dB$. Weź dt = 1, X(0) = 10, $\mu = 0.04$, $\sigma = 0.4$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu dt$.

- Wygeneruj 3 niezależne trajektorie geometycznego ruchu Browna (GBM): $dX = \mu X dt + \sigma X dB$. Weź dt = 1, X(0) = 10, $\mu = 0.01$, $\sigma = 0.04$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu X dt$.
 - Metoda dokładna

$$X_t = X_s e^{(\mu - \frac{\sigma^2}{2})(t-s) + \sigma\sqrt{t-s}} \mathbb{N}(0,1)$$

• Dla t-s = dt = 1

$$X_1 = X_0 e^{\left(\mu - \frac{\sigma^2}{2}\right) + \sigma \mathbb{N}(0,1)}$$

$$X_n = X_{n-1}e^{(\mu - \frac{\sigma^2}{2}) + \sigma\mathbb{N}(0,1)}$$

(MS 21/22) 10.03.2022 18 / 22

- Wygeneruj 3 niezależne trajektorie geometycznego ruchu Browna (GBM): $dX = \mu X dt + \sigma X dB$. Weź dt = 1, X(0) = 10, $\mu = 0.01$, $\sigma = 0.04$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu X dt$.
 - Metoda dokładna

$$X_t = X_s e^{(\mu - \frac{\sigma^2}{2})(t-s) + \sigma\sqrt{t-s}} \mathbb{N}(0,1)$$

• Dla $\sigma = 0$

$$X_1 = X_0 e^{\mu}$$

0

$$X_n = X_{n-1}e^{\mu}$$

4□ > 4□ > 4 = > 4 = > = 990

19 / 22

Wygeneruj 3 niezależne trajektorie geometycznego ruchu Browna (GBM): $dX = \mu X dt + \sigma X dB$. Weź dt = 1, X(0) = 10, $\mu = 0.01$, $\sigma = 0.04$. Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \mu X dt$.

Wygeneruj 3 niezależne trajektorie dyfuzji powracającej do średniej: $dX = \alpha(\beta - X)dt + \sigma dB$. Weź dt = 1, X(0) = 20, $\alpha = 0.1$, $\beta = 8$, $\sigma = 0.4$. Jaki jest poziom powracania do średniej? Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \alpha(\beta - X)dt$.

$$\underbrace{dX}_{\text{przyrost procesu}} = \underbrace{\alpha(\beta - X)dt}_{\text{deterministyczne}} + \underbrace{\sigma dB}_{\text{losowe}}$$

$$X_t = X_{t-1} + \alpha(\beta - X_{t-1})dt + \sigma dB$$

21/22

Wygeneruj 3 niezależne trajektorie dyfuzji powracającej do średniej: $dX = \alpha(\beta - X)dt + \sigma dB$. Weź dt = 1, X(0) = 20, $\alpha = 0.1$, $\beta = 8$, $\sigma = 0.4$. Jaki jest poziom powracania do średniej? Narysuj je na jednym wykresie razem z (deterministycznym) trendem, tj. $dX = \alpha(\beta - X)dt$.

__ < \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{