Name:	KARTIKEY DUBEY
Roll No:	07
Class/Sem:	TE/V
Experiment No.:	7
Title:	Implementation of Decision Tree using languages like JAVA/
	Python.
Date of	
Performance:	
Date of	
Submission:	
Marks:	
Sign of Faculty:	

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Aim: To implement Naïve Bayesian classification

Objective

Develop a program to implement a Decision Tree classifier.

Theory

Decision Tree is a popular supervised learning algorithm used for both classification and regression tasks. It operates by recursively partitioning the data into subsets based on the most significant attribute, creating a tree structure where leaf nodes represent the class labels.

Steps in Decision Tree Classification:

- 1. **Tree Construction**: The algorithm selects the best attribute of the dataset at each node as the root of the tree. Instances are then split into subsets based on the attribute values.
- 2. **Attribute Selection**: Common metrics include Information Gain, Gini Index, or Gain Ratio, which measure the effectiveness of an attribute in classifying the data.
- 3. **Stopping Criteria**: The tree-building process stops when one of the stopping criteria is met, such as all instances in a node belonging to the same class, or when further splitting does not add significant value.
- 4. **Classification Decision**: New instances are classified by traversing the tree from the root to a leaf node, where the majority class determines the prediction.

Example

Given a dataset with attributes and corresponding class labels:

- Construct a decision tree by recursively selecting the best attributes for splitting.
- Use the tree to classify new instances by traversing from the root to the appropriate leaf node.

Code:

#Decision Tree
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

#Split data into training and testing sets

X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

#Initialize DecisionTreeClassifier clf = DecisionTreeClassifier(random state=42)

#Train the classifier

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

```
clf.fit(X_train, y_train)

#Make predictions
y_pred = clf.predict(X_test)

# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, knn_model.predict_proba(X_test)[:, 1])
classification_rep = classification_report(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
```

Score:

Output:

print(f'ROC

print(f'Recall: {recall}')

AUC

print(fClassification Report:\n{classification rep}')

Predict the class label for new instances based on the constructed decision tree.

{roc auc}')

Accuracy: 0.9406392694063926 Precision: 0.21052631578947367 Recall: 0.2666666666666666 ROC AUC Score: 0.6367218282111899 Classification Report: recall f1-score support precision 0 0.97 0.97 0.96 846 1 0.21 0.27 0.24 30 accuracy 0.94 876 0.59 0.62 0.60 876 macro avg weighted avg 0.95 0.94 0.94 876

Conclusion

Describe techniques or modifications to decision tree algorithms that can address issues caused by class imbalance in datasets.

To handle class imbalance in decision trees, you can:

- 1. Class Weight Adjustment: Assign higher weights to minority classes using the 'class_weight='balanced' parameter.
- 2. Resampling: Use oversampling (e.g., SMOTE) or undersampling to balance the dataset.
- 3. Ensemble Methods: Implement techniques like Balanced Random Forest or EasyEnsemble for better handling of imbalanced data.
- 4. Cost-sensitive Learning: Apply higher costs to misclassifying minority classes.
- 5. Pruning: Limit tree depth and size to prevent overfitting to the majority class.
- 6. Optimize Metrics: Focus on precision, recall, and F1-score rather than overall accuracy.