PIZZO

Czwarta lista zadań (taki próbny egzamin)

Zadanie 1. Skonstruuj deterministyczny automat rozpoznający język tych słów nad alfabetem $\Sigma = \{0,1\}$, w których

• jest nieparzyście wiele 1, z których żadne dwie nie są koło siebie.

Zadanie 2. Czy istnieje deterministyczny automat rozpoznający język tych słów nad alfabetem $\Sigma = \{a, b, c\}$,

 \bullet w których większość liter to a?

Zadanie 3. Ile stanów ma minimalny niedeterministyczny automat skończony rozpoznający język tych słów nad alfabetem $\{a, b, c\}$,

• w których liczba c nie jest podzielna przez 4 lub liczba a jest podzielna przez 7? Wystarczy podać przedział rozmiaru 3.

Zadanie 4. Nie korzystając z twierdzenie Rice udowodnij, że problem

• Dla danego programu, czy ten program zatrzymuje się dla nieskończenie wielu argumentów i nie zatrzymuje się dla nieskończenie wielu argumentów?

nie jest rozstrzygalny.

Zadanie 5. Niech A będzie

• zbiorem tych (numerów) programów, które zatrzymują się, gdy podamy im je same jako wejście.

Niech B będzie

• zbiorem tych numerów programów, które zatrzymują się dla nieskończenie wielu argumentów.

Czy
$$A \leq_{Rek} B$$
?

Zadanie 6. Udowodnij, że

 klasa problemów rozstrzygalnych jest zamknięta na przecięcie.

Zadanie 7. Czy problem

• Dla danych dwóch niedeterministycznych automatów skończonych czy języki rozpoznawane przez te automaty są równe?

jest rozstrzygalny?

PIZZO

Czwarta lista zadań (taki próbny egzamin)

Zadanie 1. Skonstruuj deterministyczny automat rozpoznający język tych słów nad alfabetem $\Sigma = \{0,1\}$, w których

• jest nieparzyście wiele 1, z których żadne dwie nie są koło siebie.

Zadanie 2. Czy istnieje deterministyczny automat rozpoznający język tych słów nad alfabetem $\Sigma = \{a, b, c\}$,

 \bullet w których większość liter to a?

Zadanie 3. Ile stanów ma minimalny niedeterministyczny automat skończony rozpoznający język tych słów nad alfabetem $\{a, b, c\}$,

• w których liczba c nie jest podzielna przez 4 lub liczba a jest podzielna przez 7? Wystarczy podać przedział rozmiaru 3.

Zadanie 4. Nie korzystając z twierdzenie Rice udowodnij, że problem

• Dla danego programu, czy ten program zatrzymuje się dla nieskończenie wielu argumentów i nie zatrzymuje się dla nieskończenie wielu argumentów?

nie jest rozstrzygalny.

Zadanie 5. Niech A będzie

• zbiorem tych (numerów) programów, które zatrzymują się, gdy podamy im je same jako wejście.

Niech B będzie

• zbiorem tych numerów programów, które zatrzymują się dla nieskończenie wielu argumentów.

Czy
$$A \leq_{Rek} B$$
?

Zadanie 6. Udowodnij, że

 klasa problemów rozstrzygalnych jest zamknięta na przecięcie.

Zadanie 7. Czy problem

• Dla danych dwóch niedeterministycznych automatów skończonych czy języki rozpoznawane przez te automaty są równe?

jest rozstrzygalny?