CPSC 440

Chapter 3: Arithmetic for Computers (part 2)*

* This ppt is provided by the publisher of the textbook

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34 × 10⁵⁶ normalized

 +0.002 × 10⁻⁴ not normalized

 +987.02 × 10⁹
- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Chapter 3 — Arithmetic for Computers — 2

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

MK

Chapter 3 — Arithmetic for Computers — 3

IEEE Floating-Point Format

single: 8 bits double: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction $X = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001

 ⇒ actual exponent = 1 12
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Chapter 3 — Arithmetic for Computers — 5

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 00000000001
 - \Rightarrow actual exponent = 1 1023 = –1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 - ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Chapter 3 — Arithmetic for Computers — 6

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent -0.75
 - $-0.75 = -3/4_{10} = (-3/2^2)_{10} = (-11_2/2^2)_{10}$
 - = = (-11₂/2²) *this requires some careful thoughts
 - = -0.11₂ *can you accept this?
 - $= (-1)^1 \times 1.1_2 \times 2^{-1}$

Chapter 3 — Arithmetic for Computers — 7

Chapter 3 — Arithmetic for Computers — 8

Floating-Point Example

- S = 1
- Fraction = $1000...00_2$
- Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 10111111101000...00
- Double: 10111111111101000...00

Chapter 3 — Arithmetic for Computers — 9

Floating-Point Example

- What number is represented by the singleprecision float
 - 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Fxponent = 10000001₂ = 129

Chapter 3 — Arithmetic for Computers — 10

Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Chapter 3 — Arithmetic for Computers — 11

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - 1.000₂ × 2⁻⁴, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 12

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

Chapter 3 — Arithmetic for Computers — 13

FP Adder Hardware Step 1 MK

Chapter 3 — Arithmetic for Computers — 14

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Chapter 3 — Arithmetic for Computers — 17