# Distribución normal multivariada y distribuciones asociadas



José A. Perusquía Cortés

Análisis Multivariado Semestre 2024 - I



\_ Decimos que  $\mathbf{x} \sim N_p\left(\mu, \Sigma\right)$  (no singular) si tiene función de densidad

$$f(\mathbf{x}) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

- Donde

- $\mathbf{E}(\mathbf{x}) = \mu$
- $Var(\mathbf{x}) = \Sigma > 0$  (positiva definida)

- En R: librería mytnorm

- Por ejemplo, la densidad de un vector normal multivariado con parámetros

$$\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$



- Para datos bivariados también se puede crear un scatterplot en 3D con librería scatterplot3d



- Si  $\operatorname{ran}(\Sigma) = k < p$  podemos definir la densidad (singular) como

$$f(\mathbf{x}) = \frac{(2\pi)^{-\frac{k}{2}}}{(\lambda_1 \cdots \lambda_k)^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-}(\mathbf{x} - \mu)\right]$$

- Donde
  - ${\bf x}$  vive en el híper-plano  ${\bf N}'({\bf x}-\mu)$  y  ${\bf N}$  es una matriz de tamaño  $p\times(p-k)$  tal que:

1. 
$$\mathbf{N}^T \mathbf{\Sigma} = \mathbf{0}$$

2. 
$$\mathbf{N}^T \mathbf{N} = \mathbf{I}_{\mathbf{p} - \mathbf{k}}$$

-  $\Sigma^-$  es la inversa generalizada y  $\lambda_1, \ldots, \lambda_k$  son los eigenvalores diferentes de cero.

#### - Definición.

Decimos que  $\mathbf{x}$  tiene una distribución normal p-variada si y solo si  $\mathbf{a}^T\mathbf{x}$  tiene una distribución normal univariada para todos los vectores p-variados (no triviales)  $\mathbf{a}$ 

#### - Proposición 1

Sea  $\mathbf{x}$  un vector normal p-variado y definamos a  $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$  donde  $\mathbf{A}$  es una matriz de dimensión  $q \times p$ . Entonces  $\mathbf{y}$  tiene una distribución normal q-variada tal que:

$$\mathbb{E}(\mathbf{y}) = \mathbf{A}\mu + \mathbf{b} \qquad \forall \mathsf{ar}(\mathbf{y}) = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\mathsf{T}}$$

#### - Corolario 1

Sea 
$$\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$$
 y definamos a  $\mathbf{y} = \Sigma^{\frac{1}{2}}\mathbf{x} + \mu$ , entonces,  $\mathbf{y} \sim N_p(\mu, \Sigma)$ 

#### - Corolario 2

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 con  $\Sigma > 0$  y definamos a  $\mathbf{y} = \Sigma^{-\frac{1}{2}}(\mathbf{x} - \mu)$ , donde  $\Sigma^{-\frac{1}{2}}$  es la matriz raíz cuadrada de  $\Sigma^{-1}$ . Entonces,  $y_1, y_2, ..., y_p$  son variables aleatorias iid  $N(0,1)$ .

- En  ${f R}$  la librería expm proporciona la función requerida para obtener  ${f \Sigma}^{-rac{1}{2}}$  con sqrtm

$$\mathbf{x} \sim N_2(\mu, \Sigma)$$

$$\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$







#### - Observación

La distribución normal multivariada tiene densidad constante en elipses (elipsoides)

$$(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) = k$$



- En R: la librería plotly para una gráfica más interactiva



#### - Proposición 2

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 entonces,  $U = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$ .

#### - Observación

Podemos fácilmente evaluar la probabilidad de que x este en un elipsoide, i.e.

$$\mathbb{P}\left[ (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) < k \right]$$

#### - Proposición 3

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$ , entonces los coeficientes de asimetría y curtosis están dados respectivamente por,

$$\beta_{1,p} = 0$$

$$\beta_{2,p} = p(p+2)$$

#### - Proposición 4

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$ , entonces la función característica de  $\mathbf{x}$  está dada por,

$$\phi(\mathbf{t}) = \exp\left(i\mathbf{t}^T \mu - \frac{1}{2}\mathbf{t}^T \Sigma \mathbf{t}\right)$$

#### - Proposición 5

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} \Sigma_{12} \\ \Sigma_{21} \Sigma_{22} \end{pmatrix}$$

Entonces,

- 1. Cualquier subconjunto de  ${\bf x}$  se distribuye normal multivariado. En particular,  ${\bf x}^{(1)} \sim N_p\left(\mu^{(1)}, \Sigma_{11}\right)$
- 2.  $\mathbf{x}^{(1)}$  y  $\mathbf{x}^{(2)}$  son independientes si y solo si  $\mathsf{Cov}\left(\mathbf{x}^{(1)},\mathbf{x}^{(2)}\right) = \mathbf{O}$
- 3.  $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \sim \chi_p^2 \left( \mu^T \mathbf{\Sigma}^{-1} \mu \right)$

4. 
$$\mathbf{x}^{(2)} | \mathbf{x}^{(1)} \sim N_{p-k} \left( \mu^{(2)} + \Sigma_{21} \Sigma_{11}^{-1} [\mathbf{x}^{(1)} - \mu^{(1)}], \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \right)$$

#### - Checar normalidad

- Todas las distribuciones univariadas son normales
  - \* qqplot
  - \* histogramas
  - \* Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$$

- \* qqplot
- Prueba de Mardia (1970) basada en los coeficientes de asimetría y curtosis multivariados
- Otras pruebas (e.g. Henze-Zirkler (1990), Royston (1982))
- ► En **R:** librería MVN

#### - Teorema Central del Límite

Sean  $\mathbf{x}_n = (x_{n1}, ..., x_{np})$  una colección de vectores aleatorios independientes e idénticamente distribuidos, con vector de medias  $\mu$  y matriz (finita) de covarianza  $\Sigma$ . Entonces,

$$\sqrt{n} \left( \bar{\mathbf{x}} - \mu \right) \to N_p \left( \mathbf{0}_p, \Sigma \right)$$

#### - Teorema de Cramér-Wold

Para  $\mathbf{x}_n = (x_{n1}, ..., x_{np})$  y  $\mathbf{x} = (x_1, ..., x_p)$  dos vectores aleatorios y  $\mathbf{t} \in \mathbb{R}^p$ , entonces

$$\mathbf{x}_n \xrightarrow{d} \mathbf{x} \qquad \Leftrightarrow \qquad \sum_{i=1}^p t_i x_{ni} \xrightarrow{d} \sum_{i=1}^p t_i x_i$$

# Distribución Wishart

#### - Definición

Sea  $\mathbf{M}_{p imes p}$  una matriz simétrica de variables aleatorias, tal que  $\mathbb{P}(\mathbf{M}>0)=1$ , y sea  $\Sigma_{p imes p}$  una matriz definida positiva. Si  $n \in \mathbb{N}$ , tal que  $n \geq p$ , entonces  $\mathbf{M}_{p imes p}$  tiene una distribución Wishart,  $\mathbf{M} \sim W_p(n, \Sigma)$ , no singular con n grados de libertad si la función de densidad de los  $\frac{p(p+1)}{2}$  distintos elementos de  $\mathbf{M}_{p imes p}$  está dada por:

$$f(m_{11}, m_{12}, ..., m_{pp}) = c^{-1} |\mathbf{M}|^{(n-p-1)/2} \text{etr} \left(-\frac{\Sigma^{-1}\mathbf{M}}{2}\right)$$

#### - Donde

- etr es el operador exp<sup>trace</sup>
- ,  $c=2^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}\Gamma_p\left(\frac{n}{2}\right)$  y  $\Gamma_p(\cdot)$  la función gamma multivariada

#### - Definición 2

Sean  $\mathbf{x}_1, \dots, \mathbf{x}_n$  vectores aleatorios iid distribuidos como  $N_p(\mathbf{0}, \Sigma)$  entonces  $\mathbf{M}_{p \times p} = \mathbf{X}^T \mathbf{X}$  tiene una distribución Wishart con n grados de libertad

#### - Observación

Si  $\Sigma > 0$  y  $n \ge p$ , entonces se puede probar que  $\mathbb{P}(\mathbf{M} > 0) = 1$ . De lo contrario, se tiene que  $\mathbf{M} \ge 0$ , por lo que la densidad no existe y se dice que  $\mathbf{M}$  tiene una distribución singular

#### -Teorema

Sea  $\mathbf{M} \sim W_p(n, \Sigma)$  entonces, si  $\mathbf{C}_{q \times p}$  tal que ran $(\mathbf{C}) = q$ , se tiene que  $\mathbf{C}\mathbf{M}\mathbf{C}^{\mathrm{T}} \sim W_q\left(n, \mathbf{C}\Sigma\mathbf{C}^T\right)$ 

#### - Corolario 1

Si  $\mathbf{M} \sim W_p(n, \Sigma)$  y  $\mathbf{a}$  es un vector de constantes, entonces  $\mathbf{a}^T \mathbf{M} \mathbf{a} \sim \sigma_{\mathbf{a}}^2 \cdot \chi_n^2$ , donde  $\sigma_{\mathbf{a}}^2 = \mathbf{a}^T \mathbf{\Sigma} \mathbf{a}$ 

#### - Corolario 2

Si  $\mathbf{M} \sim W_p(n, \Sigma)$  entonces  $m_{ii} \sim \Sigma_{ii} \cdot \chi_n^2$ 

#### -(Algunas) Propiedades

Sea  $\mathbf{M} \sim W_p(n, \Sigma)$  entonces:

- 1.  $\mathbb{E}(\mathbf{M}) = n\Sigma$
- 2. (Aditividad) Si  $\mathbf{M}_i \sim W_p(n_i, \Sigma)$  independientes entonces,  $\sum_{i=1}^m \mathbf{M}_i \sim W_p\left(\sum_{i=1}^m n_i, \Sigma\right)$
- 3. Si partimos a M y a  $\Sigma$  como,

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} \mathbf{M}_{12} \\ \mathbf{M}_{21} \mathbf{M}_{22} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} \Sigma_{12} \\ \Sigma_{21} \Sigma_{22} \end{pmatrix}$$

entonces,  $\mathbf{M}_{11} \sim W_k(n, \Sigma_{11})$  y  $\mathbf{M}_{22} \sim W_{p-k}(n, \Sigma_{22})$ . Más aún si  $\Sigma_{12} = 0$ , entonces  $\mathbf{M}_{11}$  y  $\mathbf{M}_{22}$  son independientes.

#### - Teorema (Otras formas cuadráticas)

Sea  $\mathbf{M} \sim W_p(n, \Sigma)$ , entonces

- 1. Sea  $\mathbf{A}_{q \times p}$  una matriz tal que ran $(\mathbf{A}) = q$ , entonces  $\left(\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}}\right)^{-1} \sim W_q\left(n-p+q,\left(\mathbf{A}\mathbf{\Sigma}^{-1}\mathbf{A}^{\mathsf{T}}\right)^{-1}\right)$
- 2. Sea  $\mathbf{y}_{p \times 1}$  independiente de  $\mathbf{M}$  y tal que  $\mathbb{P}(\mathbf{y} = \mathbf{0}) = 0$ , entonces  $\frac{\mathbf{y}^{\mathsf{T}} \mathbf{M} \mathbf{y}}{\mathbf{y}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{y}} \sim \chi_n^2 \, \mathbf{y} \, \frac{\mathbf{y}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{y}}{\mathbf{y}^{\mathsf{T}} \mathbf{M}^{-1} \mathbf{y}} \sim \chi_{n-p+1}^2$
- 3. Sean  $\mathbf{x}_1, \dots, \mathbf{x}_n$  vectores aleatorios iid  $N_p(\mathbf{0}, \mathbf{\Sigma})$ . Entonces si consideramos a  $\mathbf{y} = \mathbf{X}\mathbf{a}$  con  $\mathbf{a}_{p \times 1}$ ,  $\mathbf{A}_{n \times n}$ ,  $\mathbf{B}_{n \times n}$  matrices simétricas de rango r, s respectivamente y  $\mathbf{b}_{n \times 1}$  un vector de constantes entonces
  - $\mathbf{X}^{\mathbf{T}}\mathbf{A}\mathbf{X} \sim W_p(r, \Sigma)$  si y solo si  $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y} \sim \sigma_a^2 \cdot \chi_r^2$
  - $\mathbf{X}^{\mathbf{T}}\mathbf{A}\mathbf{X} \sim W_p(r, \Sigma)$  y  $\mathbf{X}^{\mathbf{T}}\mathbf{B}\mathbf{X} \sim W_p(s, \Sigma)$  y son independientes si y solo si  $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y} \sim \sigma_a^2 \cdot \chi_r^2$  y  $\mathbf{y}^{\mathbf{T}}\mathbf{B}\mathbf{y} \sim \sigma_a^2 \cdot \chi_r^2$  son independientes
  - $\mathbf{X}^{\mathbf{T}}\mathbf{b} \sim N_p$  y  $\mathbf{X}^{\mathbf{T}}\mathbf{A}\mathbf{X} \sim W_p(r, \Sigma)$  y son independientes si y solo si  $\mathbf{y}^{\mathbf{T}}\mathbf{b} \sim N_1$  y  $\mathbf{y}^{\mathbf{T}}\mathbf{A}\mathbf{y} \sim \sigma_a^2 \cdot \chi_r^2$  son independientes

#### - Lema

Sean  $\mathbf{x}_1, ..., \mathbf{x}_1 \sim N_p(\mathbf{0}, \boldsymbol{\Sigma})$  (iid) entonces se cumple lo siguiente

1. 
$$\mathbf{x}^{(j)} \sim N_n\left(\mathbf{0}, \sigma_{jj}\mathbf{I}\right)$$

- 2. Si  $\mathbf{a}_{n \times 1}$  es un vector de constantes entonces  $\mathbf{X}^T \mathbf{a} \sim N_p \left( \mathbf{0}, ||\mathbf{a}||^2 \Sigma \right)$
- 3. Si  $\{\mathbf{a}_1,...,\mathbf{a}_r\}$ ,  $r \le n$ , es un conjunto de vectores mutuamente ortogonal entonces, los vectores aleatorios dados por  $\mathbf{X}^T\mathbf{a_i}$  son mutuamente independientes
- 4. Si  $\mathbf{b}_{p \times 1}$  es un vector de constantes, entonces  $\mathbf{X}\mathbf{b} \sim N_n\left(\mathbf{0}, \sigma_b^2\mathbf{I}\right)$  donde  $\sigma_b^2 = \mathbf{b}^T \Sigma \mathbf{b}$

#### -Lema

Sea  $\mathbf{x} \sim N_p\left(\mathbf{0}, \sigma^2\mathbf{I}\right)$  y  $\mathbf{A}_{p \times q}$  una matriz simétrica entonces  $\mathbf{x}^T\mathbf{A}\mathbf{x} \sim \sigma^2 \cdot \chi_r^2$  si y solo si  $\mathbf{A}$  es idempotente y con ran $(\mathbf{A}) = r$ 

#### - Lema

Sea  $\mathbf{x} \sim N_p(\mathbf{0}, \sigma^2 \mathbf{I})$  y sean  $\mathbf{Q}_i = \mathbf{x}^T \mathbf{P_i} \mathbf{x} \sim \sigma^2 \cdot \chi_{r_i}^2$  (i = 1, 2) dos formas cuadráticas,. Entonces  $\mathbf{Q}_1$  y  $\mathbf{Q}_2$  son independientes si y solo si  $\mathbf{P}_1 \mathbf{P}_2 = \mathbf{O}$ 

- En R: rWishart
- Para entender su aleatoriedad podemos graficar las elipses generadas:  $\mathbf{a}^{\mathrm{T}}\mathbf{M_{i}a}=c$

$$i = 1,2,3,4$$

$$df = 2$$

$$\Sigma = \begin{pmatrix} 10\\01 \end{pmatrix}$$



### Distribución Wishart no centrada

#### - Definición (Distribución Wishart no centrada)

Sean  $\mathbf{x}_1, \dots, \mathbf{x}_n$  vectores aleatorios independientes y distribuidos como  $N_p(\mu_{\mathbf{i}}, \Sigma)$ , entonces  $\mathbf{M}_{p \times p} = \mathbf{X}^T \mathbf{X}$  tiene una distribución Wishart no centrada,  $\mathbf{M} \sim W_p(n, \Sigma, \Delta)$ , con n grados de libertad y matriz de no centralidad  $\Delta$  definida como

$$\Delta = \sum_{i=1}^{n} (\Sigma^{-\frac{1}{2}} \mu_i) (\Sigma^{-\frac{1}{2}} \mu_i)^T = \Sigma^{-\frac{1}{2}} \Lambda^T \Lambda \Sigma^{-\frac{1}{2}}$$

donde

$$\Lambda = (\mu_1, \dots, \mu_n)^T$$

# Distribución $T^2$ de Hotelling

#### - Teorema (Distribución centrada)

Sean  $\mathbf{x} \sim N_p(\mu, \Sigma)$  y  $\mathbf{M} \sim W_p(n, \Sigma)$  independientes y no singulares, entonces,

$$T^2 = n(\mathbf{x} - \mu)^T \mathbf{M}^{-1}(\mathbf{x} - \mu) \sim \left(\frac{np}{n - p + 1}\right) F_{p, n - p + 1} = T_{p, n}^2$$

#### - Corolario

Sean  $\mathbf{x} \sim N_p(\mu, \lambda^{-1}\Sigma)$  y  $\mathbf{M} \sim W_p(n, \Sigma)$  independientes y no singulares, entonces,

$$\lambda \left(\mathbf{x} - \mu\right)^T \left(\frac{M}{n}\right)^{-1} \left(\mathbf{x} - \mu\right) \sim T_{n,p}^2$$

#### - Teorema (Distribución no centrada)

Sean  $\mathbf{x} \sim N_p(\mu, \Sigma)$  y  $\mathbf{M} \sim W_p(n, \Sigma)$  independientes y no singulares, y denotemos por  $\delta = \mu^T \Sigma^{-1} \mu$  (parámetro de no centralidad), entonces,

$$T^{2} = n\mathbf{x}^{T}\mathbf{M}^{-1}\mathbf{x} \sim \left(\frac{np}{n-p+1}\right)F_{p,n-p+1,\delta} = T_{p,n,\delta}^{2}$$

# Estimación para la distribución normal multivariada

#### - Función de verosimilitud

Sean  $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu, \Sigma)$  , entonces la verosimilitud está dada por,

$$L(\mu, \Sigma) = |2\pi\Sigma|^{-\frac{n}{2}} \exp \left[ -\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu) \right]$$

y la log-verosimilitud

$$\log(L(\mu, \Sigma)) = -\frac{n}{2}\log(|2\pi\Sigma|) - \frac{1}{2}\sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1}(\mathbf{x}_i - \mu)$$

#### - Proposición (EMV)

Sean  $\mathbf{x}_1, ..., \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu, \Sigma)$ , con  $n \geq p+1$ , entonces los estimadores máximo verosímiles están dados por

$$\hat{\mu} = \bar{x} \qquad \qquad \hat{\Sigma} = \frac{(n-1)}{n} \mathbf{S}$$

#### - Teorema

Sean  $\bar{\mathbf{x}}$  y  $\mathbf{S}$  la media y matriz de varianzas muestrales de una distribución normal multivariada  $N_p(\mu, \Sigma)$  con  $(n-1) \geq p$  entonces,

$$-\bar{\mathbf{x}} \sim N_p(\mu, n^{-1}\Sigma)$$

$$-(n-1)\mathbf{S} \sim W_p(n-1,\Sigma)$$

-  $\bar{x}$  y  $\bar{S}$  son independientes

$$-n(\bar{\mathbf{x}} - \mu)^T \mathbf{S}^{-1}(\bar{\mathbf{x}} - \mu) \sim T^2(p, n - 1)$$

#### - Teorema de Cochran

Suponer que  $\mathbf{P}$  es una matriz de proyección con  $\mathrm{ran}(\mathbf{P}) = r$ , y asumir que  $\mathbf{X}_{n \times p}$  es una matriz con renglones dados por,  $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\mathsf{iid}}{\sim} N_p(\mathbf{0}, \Sigma)$  donde  $\mathrm{ran}(\mathbf{\Sigma}) = p$ , así

$$\mathbf{X}^T \mathbf{X} = \mathbf{X}^T \mathbf{P} \mathbf{X} + \mathbf{X}^T (\mathbf{I_n} - \mathbf{P}) \mathbf{X}.$$

Entonces se tiene que,

 $\mathbf{X}^T \mathbf{P} \mathbf{X} \sim W_p(r, \Sigma)$  y es independiente de  $\mathbf{X}^T (\mathbf{I_n} - \mathbf{P}) \mathbf{X} \sim W_p(n-r, \Sigma)$ 

# Prueba de hipótesis para µ

# Prueba para $\mu$ con $\Sigma$ conocida

- Sean  $\mathbf{x}_1,\dots,\mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu,\Sigma)$  queremos hacer el siguiente contraste

$$H_0: \mu = \mu_0$$
 vs  $H_a: \mu \neq \mu_0$ 

- Usamos el estadístico de prueba

$$\xi^2 = n(\bar{\mathbf{x}} - \mu_0)^T \Sigma^{-1}(\bar{\mathbf{x}} - \mu_0)$$

- \_ Bajo  $H_0$  se tiene que  $\xi^2 \sim \chi_p^2$
- Región de confianza  $100(1-\alpha)\,\%$  son las elipsoides

$$\left\{\mathbf{x}: \xi^2 \le \chi_{p,1-\alpha}^2\right\}$$

- Ejemplo

Dados  $\mathbf{x}_1, \dots, \mathbf{x}_{203} \sim N_2(\mu, \Sigma)$  (iid) con

$$\mu = \begin{pmatrix} 64.1 \\ 64.7 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 191 & 155.6 \\ 155.6 & 313.5 \end{pmatrix}.$$

Se busca contrastar,

$$H_0: \mu = 60$$
  $vs$   $H_a: \mu \neq 60$ 

# Prueba para $\mu$ con $\Sigma$ conocida



$$\xi^2 = 5.971581 < 5.991465 = \chi^2_{2,.95}$$

No rechazamos  $H_0$ 

- Para una muestra, utilizamos S para construir el estadístico de prueba

$$\gamma^2 = \frac{n(n-p)}{(n-1)p} (\bar{\mathbf{x}} - \mu_0)^T \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu_0)$$

\_ Bajo  $H_0$  se tiene  $\gamma^2 \sim F_{p,n-p}$ 

- Región de confianza  $100(1-\alpha)\%$  son las elipsoides

$$\left\{\mathbf{x}: \gamma^2 \le F_{p,n-p,1-\alpha}\right\}$$

# Prueba para $\mu$ con $\Sigma$ desconocida



$$\gamma^2 = 3.870381 > 3.013826 = F_{2,201,.95}$$

Rechazamos  $H_0$ 

# Pruebas de hipótesis para $\Sigma$

Sean  $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu, \Sigma)$  con  $n \geq p+1$  se pueden hacer las siguiente pruebas para  $\Sigma$ 

- Independencia por bloques,  $H_0: \Sigma_{rs} = \mathbf{0}$
- Esfericidad
  - Caso 1:  $\Sigma = \sigma^2 \mathbf{I}$  con  $\sigma^2$  desconocida ( esta prueba incluye a  $\Sigma = \sigma^2 \Sigma_0$  )
  - Caso 2:  $\Sigma = \mathbf{I}$  (esta prueba incluye a  $\Sigma = \Sigma_0$  )
- \_ Igualdad en los bloques diagonales, i.e.,  $\Sigma_{11}=\Sigma_{22}=\cdots=\Sigma_{qq}$
- Igualdad de varianzas y correlaciones

$$\Sigma = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$