

Tutorial - 2 (08-08-2022)

Program	B.Tech. (All Branches)	Semester	Fall 2022-2023
Course Name	Discrete Mathematics And Graph Theory	Course Code	MAT2002
Faculty Name	Dr. Navneet Kumar Verma	Slot / Class No	A21+A22+A23
Submission date	08-08-2022	Max. Marks	10

Answer ALL the Questions

Q. No.

Question Description

Each question is of equal marks

Question-1 Construct the truth table for the following

- 1. $p \land \sim p$
- 2. $p \lor \sim q$
- 3. $(p \lor q) \lor \sim p$
- **4.** $(p \lor q) \land r$
- 5. $(p \lor q) \lor \sim q$
- **6.** $(\sim p \land q) \lor p$

Question-2 The Peirce arrow \downarrow (NOR) is a logical binary operation which is defined as follows $p \downarrow q = (p \lor q)$

- **a**) Prove that $\sim p = p \downarrow p$
- **b)** Prove that $(p \land q) = (p \downarrow p) \downarrow (q \downarrow q)$
- c) Write $(p \rightarrow q)$ using Peirce arrow only.

Question-3 Show that $\neg p \land (\neg q \land r) \lor (q \land r) \lor (p \land r) \cong r$, without using the truth table, describe the used laws in each step

Question-4 Obtain disjunctive normal form of $p \land (p \Leftrightarrow q)$

Question-5 Obtain disjunctive normal form of $\sim (p \lor q) \Leftrightarrow (p \land q)$

Question-6 Obtain disjunctive normal form of $p \lor (\sim p \to (q \lor (q \to \sim r)))$

Question-7 Obtain conjunctive normal form of $\sim (p \lor q) \leftrightarrow (p \land q)$

Question-8 Obtain DNF of $(p \rightarrow q) \land (\sim p \land q)$ and $(p \land (p \rightarrow q)) \rightarrow q$

Question-9 Obtain DNF and CNF of $(p \land q) \land (q \rightarrow p)$