Lecture 7:

Convolutional Neural Networks

Administrative

A2 is due Feb 5 (next Friday)

Project proposal due Jan 30 (Saturday)

- ungraded, one paragraph
- feel free to give 2 options, we can try help you narrow it
- What is the problem that you will be investigating? Why is it interesting?
- What data will you use? If you are collecting new datasets, how do you plan to collect them?
- What method or algorithm are you proposing? If there are existing implementations, will you use them and how? How do you plan to improve or modify such implementations?
- What reading will you examine to provide context and background?
- How will you evaluate your results? Qualitatively, what kind of results do you expect (e.g. plots or figures)? Quantitatively, what kind of analysis will you use to evaluate and/or compare your results (e.g. what performance metrics or statistical tests)?

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph, get loss
- 3. **Backprop** to calculate the gradients
- 4. **Update** the parameters using the gradient

Parameter updates

We covered:

sgd, momentum, nag, adagrad, rmsprop, adam (not in this vis),

we did not cover adadelta

Image credits: Alec Radford

Dropout

Forces the network to have a redundant representation.

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Hierarchical organization

Convolutional Neural Networks

(First without the brain stuff)

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer Filters always extend the full depth of the input volume 32x32x3 image 5x5x3 filter 32 **Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image) preview: RELU RELU RELU RELU RELU RELU CONV CONV CONV CONV CONV CONV FC car truck airplane ship horse

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 22

27 Jan 2016

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

1/1

	F		
F			

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:\

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

```
(recall:)
(N - F) / stride + 1
```

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Input volume: **32x32x3**10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

(+1 for bias)

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F + 2P)/S + 1$$

- $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
- $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

- K = (powers of 2, e.g. 32, 64, 128, 512)
 - F = 3, S = 1, P = 1
 - F = 5, S = 1, P = 2
 - F = 5, S = 2, P = ? (whatever fits)
 - F = 1, S = 1, P = 0
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1x1 convolution layers make perfect sense)

Example: CONV layer in Torch

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

SpatialConvolution

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
```

Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).

The parameters are the following:

- nInputPlane: The number of expected input planes in the image given into forward().
- noutputPlane: The number of output planes the convolution layer will produce.
- . kw: The kernel width of the convolution
- . KH: The kernel height of the convolution
- dw: The step of the convolution in the width dimension. Default is 1.
- dH: The step of the convolution in the height dimension. Default is 1.
- padw: The additional zeros added per width to the input planes. Default is 0, a good number is (kw-1)/2.
- раdн: The additional zeros added per height to the input planes. Default is рadw, a good number is (kH-1)/2.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor $nInputPlane \times height \times width$, the output image size will be $nOutputPlane \times oheight \times owidth$ where

```
owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor((height + 2*padH - kH) / dH + 1)
```

Example: CONV layer in Caffe

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

```
layer {
 name: "convl"
 type: "Convolution"
 bottom: "data"
 top: "convl"
 # learning rate and decay multipliers for the filters
 param { Ir mult: 1 decay mult: 1 }
 # learning rate and decay multipliers for the biases
  param { lr mult: 2 decay mult: 0 }
 convolution param {
   num output: 96 # learn 96 filters
   kernel size: 11 # each filter is llxll
   stride: 4
                      # step 4 pixels between each filter application
   weight filler {
     type: "gaussian" # initialize the filters from a Gaussian
     std: 0.01
                      # distribution with stdey 0.01 (default mean: 0)
   bias filler {
     type: "constant" # initialize the biases to zero (0)
     value: 0
```

Example: CONV layer in Lasagne

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K.
 - \circ their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

class lasagne.layers.Conv2DLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0, untie biases=False, W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.). nonlinearity=lasagne.nonlinearities.rectify, flip_filters=True, convolution=theano.tensor.nnet.conv2d, **kwargs) [source] 2D convolutional layer Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. Parameters: incoming: a Layer instance or a tuple The layer feeding into this layer, or the expected input shape. The output of this layer should be a 4D tensor, with shape (batch_size, num_input_channels, input_rows, input_columns) . num filters: int The number of learnable convolutional filters this layer has. filter size: int or iterable of int An integer or a 2-element tuple specifying the size of the filters. stride: int or iterable of int An integer or a 2-element tuple specifying the stride of the convolution operation. pad: int, iterable of int, 'full', 'same' or 'valid' (default: 0) By default, the convolution is only computed where the input and the filter fully overlap (a valid convolution). When stride=1, this yields an output that is smaller than the input by filter_size - 1 . The pad argument allows you to implicitly pad the input with zeros, extending the output size. A single integer results in symmetric zero-padding of the given size on all borders, a tuple of two integers allows different symmetric padding per dimension. 'full' pads with one less than the filter size on both sides. This is equivalent to computing the convolution wherever the input and the filter overlap by at least one position. 'same' pads with half the filter size (rounded down) on both sides. When stride=1 this results in an output size equal to the input size. Even filter size is not supported. 'valid' is an alias for 0 (no padding / a valid convolution).

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
- 2. All of them share parameters

"5x5 filter" -> "5x5 receptive field for each neuron"

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

max pool with 2x2 filters and stride 2

6	8
3	4

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
 - \circ their spatial extent F,
 - · the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$\circ D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Common settings:

• Accepts a volume of size
$$W_1 imes H_1 imes D_1$$

- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$Oldsymbol{0} Oldsymbol{0} Old$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

• • •

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Case Study: ZFNet

[Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 15.4% -> 14.8%

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
input (224 \times 224 RGB imag)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
500.000.000			pool	************	and the second
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-25	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
			500	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	conv3-256
maxpool			2	,	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
		-	conv1-512	conv3-512	conv3-512
					conv3-512
maxpool			pool	AND DOOR BUILDING	200 00000000000000000000000000000000000
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
		FC-	1000		
		soft-	-max		
		· · · · · · · · · · · · · · · · · · ·			

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

	ConvNet Configuration		_	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		24 RGB image		
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64	conv3-64	conv3-64	cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	conv3-64	conv3-64 pool	conv3-64	cc
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-128	conv3-128	conv3-128	co
	max	pool		
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		conv1-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	maxpool			col
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv1-512	conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		•		CO
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	pool conv3-512	conv3-512	co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	001175 512	conv1-512	conv3-512	co
			Opinio no recisio di consultare i	co
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	1,000	pool		
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000		4096		
	FC-4096 FC-1000			
	soft-max			
	3011-	шил		—
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 -	-72	27.	Jan 20	16

memory: 224*224*3=150K params: 0

INPUT: [224x224x3]

(not counting biases)

ConvNet Configuration

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)					
in on [22 inc] money. 22 i 22 i o room paramo.	ConvNet C				
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D		
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19	
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers		
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		24 RGB image			
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	cc	
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	max	COIIV3-04	cc		
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-128	conv3-128	conv3-128	co	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	max		_		
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256	conv3-256	co	
·	conv3-256	conv3-256 conv1-256	conv3-256 conv3-256	co	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		CONV1-250	CONV3-250	col	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	maxpool				
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co	
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512	co	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	•	conv1-512	conv3-512	col	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	(512)*512 = 2.359.296				
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	maxpool conv3-512 conv3-512		conv3-512	co	
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	co	
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		conv1-512	conv3-512	co	
			Manage of the second second second	col	
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	maxpool				
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	FC-4096				
TOTAL managery 24M * 4 bytes = 02MD / inserts /only femulated *2 fembly d)	FC-4096				
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)	FC-1000				
TOTAL params: 138M parameters	soft-max				

```
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                       Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                       early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                       Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                       in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4.096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
Fei-Fei Li & Andrej Karpathy & Justin Johnson
                                                                 Lecture 7 - 74
                                                                                            27 Jan 2016
```

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** arams: (3*3*64)*64 = 36,864

(not counting biases)

Note:

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0				÷			12	9
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0							ia u	

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Slide from Kaiming He's recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015

(slide from Kaiming He's recent presentation)

CIFAR-10 experiments

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He's recent presentation)

[He et al., 2015]

Case Study: ResNet [He et al., 2015]

Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

[He et al., 2015]

(this trick is also used in GoogLeNet)

7x7 conv, 64, /2 pool, /2 3x3 conv. 64 3x3 conv. 64 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 128 3x3 conv., 128 3x3 conv, 128 3x3 conv, 128 3x3 conv. 128 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv, 512, /2 3x3 conv. 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512

avg pool

Case Study: ResNet [He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
conv2_x	56×56	3×3 max pool, stride 2							
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	[1 v 1 129]	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x			$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	1×1, 1024	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 3$			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLO	FLOPs 1.8×10 ⁹		3.6×10 ⁹	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹			

Case Study Bonus: DeepMind's AlphaGo

The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23×23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

policy network:

[19x19x48] Input

CONV1: 192 5x5 filters , stride 1, pad 2 => [19x19x192]

CONV2..12: 192 3x3 filters, stride 1, pad $1 \Rightarrow [19x19x192]$

CONV: 1 1x1 filter, stride 1, pad 0 => [19x19] (probability map of promising moves)

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm