Para poder aplicar el método de la secante, la función f(x) ha de ser necesariamente

✓ Continua

La fórmula $f''(3) \sim f(-1) + f(0) + f(2)$

- ✓• Tiene por término de error $R(f) = f^{(3)} \$ f(\$1) \$ f(0) \$ f(2)$
- ✓ No es de tipo interpolatorio clásico

Se desea aproximar f $\mathcal{O}(0)$ mediante una fórmula de tipo interpolatorio clásico que use f(-1), f(0), f(1)

- ✓• a) El término de error será R(f) = f''''(0)
- $\checkmark \cdot$ b) La fórmula seráf"""(0) # 0

Grado de exactitud

- ✓• Dos fórmulas de derivación numérica, para aproximar $f^{""}(a)$, con diferente número de nodos, pueden tener el mismo grado de exactitud.
- ✓• Dos fórmulas de derivación numérica, para aproximar $f^{""}(a)$, con igual número de nodos, pueden tener diferentes pesos.
- ✓• El grado de exactitud de una fórmula de tipo interpolatorio clásico depende exclusivamente de quiénes sean sus nodos.

La sucesión x_n converge a s linealmente con constante asintótica del error $L=1/^5100$ entonces, a largo plazo...

✓• se ganan 2 dígitos de precisión cada 5 términos

Sucesión de Sturm

- ✓• La primera de las funciones debe ser derivable en todo el intervalo que estemos considerando
- ✓ La última función no cambia de signo en el intervalo que estemos considerando.
- ✓ Todas las funciones son continuas, al menos, y la primera debe ser como mínimo derivable
- ✓ Permite saber cuántas raíces complejas tiene una ecuación polinómica cuyas raíces reales son simples

Iteraciones

- ✓• El método de iteración funcional requiere una semilla.
- ✓ Si la raíz es simple, entonces el método de Newton-Raphson tiene convergencia local al menos cuadrática
- ✓ El método de Newton-Raphson requiere una semilla
- ✓ El método de la Secante obtiene cada aproximación a partir de las dos anteriores.
- ✓ Cuando las aproximaciones están ya muy próximas a la solución, el método de la Secante puede incurrir en división por cero al computar.

Una fórmula de derivación numérica de tipo interpolatorio clásico para aproximar f'(a)

- ✓ Con dos nodos podría ser exacta en P2
- ✓• con n nodos, podría ser exacta en P_n .
- \checkmark con dos nodos, puede obtenerse imponiendo exactitud para las funciones 1, x.

Si s es una raíz de multiplicidad m > 1 del polinomio p, entonces también es raíz de $p^{"}$ pero con multiplicidad

Las fórmulas de tipo interpolatorio...

- ✓ algunas de ellas sirven para aproximar la derivada de una función en un punto
- ✓ algunas de ellas sirven para aproximar la integral definida de una función en un intervalo
- ✓• sirven para aproximar un funcional lineal, como cierta derivada de una función en un punto, o el valor de la integral definida de una función en un intervalo
- ✓ son exactas en un cierto espacio de funciones

Marque las afirmaciones que sean ciertas sobre el método de Bisección

- ✓ La sucesión de cotas de errores en el método de bisección es monótona decreciente.
- ✓ Permite calcular el número necesario de iteraciones para alcanzar una precisión dada, antes de realizarlas.

El funcional lineal f'(a) puede aproximarse por la fórmula

$$P(h) = (f(a+h))''f(a''h)) / 2h$$

de tal forma que si f es suficientemente regular, desarrollando por Taylor se tiene $f^l(a)=P(h)+c_2h^2+c_4h^4+\dots$ que escrita para $^{h/2}$ es $f^l(a)=P(^{h/2})+c_2^{h^2}+c_4^{h^4}+\dots$

Este proceso es el de extrapolación de Richardson aplicado a una fórmula de derivación numérica. Entonces:

 $\checkmark \cdot {}^{1}_{3}(4P(h/2) " P(h))$ aumenta la exactitud con respecto a P(h) al menos en una unidad.

 $\checkmark \cdot P(h)$ es la aproximación f'(a) con la fórmula centrada

Funcionales lineales.

- ✓• Si a > 0, el funcional L(f) = f(a) es lineal
- ✓• El funcional L(f) = f!(a) + 2f!!(a) es lineal.
- ✓• Las fórmulas de derivación numérica sirven para aproximar el valor de un funcional lineal, tales como: $L(f) = f^!(a)$, $L(f) = f^!!(a)$, etc.

Sucesión de Sturm

- ✓• Para obtener la tercera función de una sucesión de Sturm correspondiente a un polinomio cuyos ceros reales sean simples debemos dividir el polinomio entre su derivada y quedarnos con el resto cambiado de signo
- ✓• En un cero de la primera función la derivada de esa función es no nula.
- ✓• Si la sucesión consta de cuatro funciones y la tercera se anula en un punto r, la segunda no se anula y su signo es el contrario que el de la cuarta en r.

- ✓• En un cero de la primera función la derivada de dicha función tiene el mismo signo que la siguiente función.
- ✓• Permite saber si una ecuación polinómica tiene raíces múltiples.
- ✓ Permite separar las raíces reales de una ecuación polinómica en intervalos disjuntos.

El funcional lineal f'(a) puede aproximarse por la fórmula

$$P(h) = (f(a+h))''f(a''h)) / 2h$$

de tal forma que si f es suficientemente regular, desarrollando por Taylor se tiene $f^{!}(a)=P(h)+c_{2}h^{2}+c_{4}h^{4}+\ldots$ que escrita para $^{h/2}$ es $f^{!}(a)=P(^{h/2})+c_{2}^{h^{2}}+c_{4}^{h^{4}}+\ldots$

Entonces:

- ✓• La combinación $2P\left(\begin{smallmatrix}h\\2\end{smallmatrix}\right)$ " $P\left(h\right)$ aumenta en una unidad el orden de exactitud
- ✓• La combinación ${}^1_3(2P({}^h_2)+P(h))$ no aumenta en una unidad el orden de exactitud, pero es convergente a $f^!(a)$ cuando $h \to 0$.
- ✓• No es posible establecer una combinación de P(h) y $P({h \choose 2})$ que aumente la exactitud en 2 unidades.

Sea g una función real continua en un intervalo [a,b]

- ✓• Si g toma valores en $\begin{bmatrix} a+b \\ b \end{bmatrix}$ entonces tiene al menos un punto fijo en [a,b].
- ✓• Si g toma valores en [a, b] entonces tiene al menos un punto fijo en [a, b].

✓• Si g toma valores en [a, b] y es contráctil, entonces tiene un único punto fijo en [a, b].

Error

- ✓• La derivada de $f[x_0,x_1,...,x_n,x]$ es $f[x_0,x_1,...,x_n,x,x]$ y la derivada segunda es $2f[x_0,x_1,...,x_n,x,x]$.
- ✓• El error de una fórmula de derivación numérica de tipo interpolatorio, para aproximar $f^{!!}(a)$, es la derivada segunda del error de interpolación correspondiente, evaluada en a
- ✓• El error de una fórmula de derivación numérica de tipo interpolatorio clásico, para aproximar $f^!(a)$, puede obtenerse desarrollando por Taylor el valor de f en los diferentes nodos en torno al nodo a.
- ✓• El error de una fórmula de derivación numérica de tipo interpolatorio clásico, para aproximar $f^!(a)$, puede obtenerse derivando $f[x_0, x_1, ..., x_n, x](x x_0) ... (x x_n)$ y evaluando en a.
- ✓• El error de una fórmula de derivación numérica de tipo interpolatorio, para aproximar f'(a), es la derivada del error de interpolación correspondiente, evaluada en a.

Una fórmula de tipo interpolatorio clásico para aproximar la derivada k-ésima de f en un punto a...

- ✓• no tiene interés si el número de nodos es menor o igual que k.
- ✓• que use n nodos, puede tener como máximo orden de exactitud k + n 1.

✓• debe tener al menos k+1 nodos, para que tenga algún interés.

Sea la ecuación x = g(x). Entonces, si g aplica el intervalo [a, b] en [a, b]:

- ✓• El método de iteración funcional asociado es localmente convergente a toda raíz s de dicha ecuación que verifique -1 < g! (s) < 1.
- ✓• Si g es derivable y su derivada está acotada en valor absoluto por 1_2 en todo el intervalo, entonces el método de iteración funcional asociado comete tras n iteraciones un error menor b" a que $_{2^n}$.
- ✓• Si g es de clase 2 y en un punto fijo s verifica g!(s) = 0, entonces partiendo de un valor suficientemente próximo a s el método de iteración funcional converge con orden de convergencia al menos cuadrático.
- ✓• Si g es derivable y su derivada es positiva pero menor que $\frac{1}{2}$, entonces el método de iteración funcional genera una sucesión de aproximaciones monótona hacia la raíz de la ecuación x = g(x).

Sea f una función continua en [a,b] con valores en \mathbb{R} , tal que f(a)f(b) < 0.

- ✓• La ecuación f(x) = 0 tiene al menos una raíz en el intervalo abierto a, b[.
- ✓• Si la derivada de f existe y en todo el intervalo abierto es negativa, entonces hay solo una raíz de f(x) = 0 en el intervalo.
- ✓• Tanto el método de bisección como el de Regula Falsi son convergentes, pero pueden converger a dos raíces diferentes de la ecuación f(x) = 0.
- ✓• El método de la secante es aplicable pero no tiene garantías de convergencia a ninguna de las posibles raíces de la ecuación f(x) = 0.
- ✓• Si f es suficientemente direfenciable y en todo el intervalo abierto su primera derivada es negativa, entonces el método de NR converge a la única raíz de f(x) = 0, partiendo de cualquier punto de algún subintervalo que contiene a la raíz.

Toda fórmula de derivación numérica de tipo interpolatorio clásico para aproximar una derivada k-ésima en a...

- ✓ tiene unos coeficientes que suman cero.
- √ tiene al menos un coeficiente positivo y al menos otro negativo.
- ✓• tiene unos coeficientes que son las derivadas k-ésimas, en a, de los polinomios de Lagrange correspondientes a los nodos.
- ✓• tiene unos coeficientes que pueden obtenerse resolviendo un sistema lineal del mismo orden que el número de nodos.

Si se calcula el polinomio p(x) de grado 2 que interpola a una función f en a, a + h y a + 2h...

- ✓• p!(a) es una aproximación de f!(a), exacta para $1,x,x^2$.
- \checkmark A partir de p(x) se puede obtener una fórmula para aproximar
- f'(a) y otra para obtener f''(a) y ambas son exactas para $1, x, x^2$.
- ✓• A partir de p(x) se puede obtener una fórmula para aproximar $f^{!}$ (1) a partir de f(1), f(0.9) y f(0.8).

Una fórmula de derivación numérica de tipo interpolatorio clásico (en los polinomios), para aproximar $f\left(a\right)$, que tenga dos nodos...

✓• es exacta en P₁.

La sucesión x_n converge a s linealmente con constante asintótica del error $L=1/100\ 000$. Entonces, a largo plazo...

- ✓ se ganan al menos 10 dígitos de precisión cada 5 términos
- ✓• se ganan 5 dígitos de precisión cada 2 términos

El método de bisección

- å tiene orden de convergencia lineal
- ✓ exige las mismas condiciones que el teorema de Bolzano

Tiene orden de convergencia local al menos cuadrático...

- ✓ el método de Newton-Raphson cuando la raíz es simple
- ✓• la iteración funcional cuando g C^2 y |g!(s)| = 0

Si g es derivable y aplica [a, b] en [a, b]. Entonces:

✓• Si g(s) = s y g''(s) = 0, existe un entorno de s en cual la convergencia a s del método de iteración funcional asociado a

g es al menos cuadrática.

- ✓• Si existe la derivada segunda de g y se verifica que g(s) = s y g''(s) = g''''(s) = 0, la convergencia local del método de iteración funcional es al menos cuadrática.
- ✓• Si existe la derivada segunda de g y se verifica que g(s) = s y g''(s) = g''''(s) = 0, la convergencia local del método de iteración funcional es al menos cúbica

Si tiene que resolver un sistema no lineal de dos ecuaciones, F(X) = 0...

- \checkmark Si existe la matriz Jacobiana de orden 2 (2, asociada a F , con determinante no nulo, aplicaría Newton-Raphson para sistemas.
- ✓• Lo más recomendable sería intentar resolverlo por el método de Newton-Raphson para sistemas, pero también se puede intentar escribir el sistema como X = G(X), que sea equivalente, y analizar si la correspondiente iteración funcional va a ser convergente.
- ✓• Necesitaría dos semillas, una para cada componente.

Toda función de iteración g(x) definida en [0, 10]...

- \checkmark continua y con valores en el intervalo [5, 7] tiene al menos un punto fijo.
- ✓• con valores en el intervalo [5, 7] y derivada en valor absoluto menor que 1 en [0, 10] ha de tener un único punto fijo.

Un algoritmo eficiente y estable para la evaluación de polinomios es:

✓ • El de Horner

Fórmulas de derivación numérica de tipo interpolatorio

- ✓• Una de las fórmulas de derivación numérica para aproximar $f^!$ (a) es (f(a) f(a + h))/(-h)
- ✓• Al aplicar una fórmula de derivación numérica, basada en los valores de la función en los puntos a y a + h, el valor de h no puede ser nulo
- ✓• Una de las fórmulas de derivación numérica para aproximar $f^{!}$ (a) es (f(a + h) f(a h))/(2h)

Para obtener tres fórmulas para aproximar respectivamente f: (a), f!!(a) y f!!!(a) se han elegido cinco abscisas diferentes, se ha calculado el polinomio p(x) de grado cuatro que interpola en ellas los valores de la función f, y se ha derivando sucesivamente p(x) para obtenerlas.

- ✓• Las tres fórmulas de derivación numérica obtenidas tienen unos pesos que suman cero.
- ✓• Las tres fórmulas de derivación numérica obtenidas son exactas para las funciones x^3 y x^4 .
- ✓• Si las abscisas de interpolación están igualmente espaciadas con un paso h y uno de los cinco nodos es a, la fórmula que aproxima $f^!(a)$ tendrá h en el denominador, la que aproxima $f^!(a)$ tendrá h^2 y la tercera tendrá h^3 .

Una función periódica de periodo 2!, se aproxima interpolando con funciones de espacios trigonométricas, es decir, generados por:

 $1, \sin(x), \cos(x), \sin(2x), \cos(2x), \sin(3x), \dots$ Se quiere aprovechar esos

interpolantes para obtener una fórmula de derivación numérica, efectuando la derivada correspondiente del interpolante. En tal caso:

✓• Para obtener la fórmula que aproxime $f^{!}(\frac{1}{2})$ usando como nodos: $0, \frac{\pi}{2}, \pi$, se puede exigir exactitud en $1, \sin(x), \cos(x)$ y resolver el sistema correspondiente.

Ecuaciones polinómicas

 $\checkmark \cdot 7x^7 + 12x^5 + 3x^3 + 1 = 0$ no tiene raíces positivas.

 \checkmark La ecuación $6x^7$ – $2x^5$ – $3x^3$ + 1=0 tiene sus raíces reales en [-1.5,1.5]

 \checkmark La ecuación $7x^7 + 2x^5 - 3x^3 + 1 = 0$ no puede tener raíces con módulo mayor que 1.5

 $\checkmark \cdot x^7 - 12x^5 + 3x^3 - 1 = 0$ tiene sus raíces reales en [-13, 13].

Sea f una función real definida en un intervalo cerrado [a,b]. Entonces:

✓• No hay garantía de convergencia del método de la secante a una raíz de la ecuación f(x) = 0, partiendo de las semillas a y b como valores iniciales.