

# BL602/604 Reference Manual

version: 1.1

copyright @ 2020

www.bouffalolab.com

### **Contents**

| 1 | Syste | m and m   | nemory overview           | • | 7  |
|---|-------|-----------|---------------------------|---|----|
|   | 1.1   | Introduc  | ction                     |   | 7  |
|   | 1.2   | Main fea  | eatures                   |   | 7  |
|   | 1.3   | Function  | on description            |   | 7  |
| 2 | Rese  | t and clo | ock                       |   | 11 |
|   | 2.1   | Introduc  | ction                     |   | 11 |
|   | 2.2   | Reset s   | source                    |   | 11 |
|   | 2.3   | Clock so  | source                    |   | 12 |
| 3 | GLB   |           |                           |   | 14 |
|   | 3.1   | Introduc  | ction                     |   | 14 |
|   | 3.2   | GLB fur   | nction description        |   | 14 |
|   |       | 3.2.1     | Clock                     |   | 14 |
|   |       | 3.2.2     | Reset                     |   | 14 |
|   |       | 3.2.3     | Bus                       |   | 14 |
|   |       | 3.2.4     | Memory                    |   | 15 |
|   |       | 3.2.5     | GPIO management           |   | 15 |
|   |       | 3.2.6     | GPIO overview             |   | 15 |
|   |       | 3.2.7     | GPIO main features        |   | 15 |
|   |       | 3.2.8     | GPIO function description |   | 15 |
|   |       | 3.2.9     | GPIO function             |   | 16 |
|   |       | 3.2.10    | GPIO output               |   | 18 |
|   |       | 3.2.11    | GPIO input                |   | 19 |

# BL602/604 Reference Manual

|       | 3.2.12   | GPIO optional function        | 19 |
|-------|----------|-------------------------------|----|
|       | 3.2.13   | GPIO interrupt                | 19 |
| 3.3   | 寄存器排     | 描述                            | 19 |
|       | 3.3.1    | clk_cfg0                      | 20 |
|       | 3.3.2    | clk_cfg2                      | 21 |
|       | 3.3.3    | clk_cfg3                      | 21 |
|       | 3.3.4    | GPADC_32M_SRC_CTRL            | 22 |
|       | 3.3.5    | GPIO_CFGCTL0                  | 23 |
|       | 3.3.6    | GPIO_CFGCTL1                  | 23 |
|       | 3.3.7    | GPIO_CFGCTL2                  | 24 |
|       | 3.3.8    | GPIO_CFGCTL3                  | 25 |
|       | 3.3.9    | GPIO_CFGCTL4                  | 26 |
|       | 3.3.10   | GPIO_CFGCTL5                  | 27 |
|       | 3.3.11   | GPIO_CFGCTL6                  | 28 |
|       | 3.3.12   | GPIO_CFGCTL7                  | 28 |
|       | 3.3.13   | GPIO_CFGCTL8                  | 29 |
|       | 3.3.14   | GPIO_CFGCTL9                  | 30 |
|       | 3.3.15   | GPIO_CFGCTL10                 | 31 |
|       | 3.3.16   | GPIO_CFGCTL11                 | 32 |
|       | 3.3.17   | GPIO_CFGCTL12                 | 33 |
|       | 3.3.18   | GPIO_CFGCTL13                 | 33 |
|       | 3.3.19   | GPIO_CFGCTL14                 | 34 |
| 4 ADC |          |                               | 36 |
| 4.1   | Introduc | ction                         | 36 |
| 4.2   | ADC ma   | ain features                  | 36 |
| 4.3   | ADC fur  | nctional description          | 37 |
|       | 4.3.1    | ADC pins and internal signals | 38 |
|       | 4.3.2    | ADC channel                   | 38 |
|       | 4.3.3    | ADC clock                     | 39 |
|       | 4.3.4    | ADC conversion mode           | 40 |
|       | 4.3.5    | ADC consequence               | 40 |
|       | 4.3.6    | ADC interrupt                 | 41 |
|       | 4.3.7    | ADC FIFO                      | 42 |



|   |     | 4.3.8    | ADC configuration process | . 42 |
|---|-----|----------|---------------------------|------|
|   |     | 4.3.9    | VBAT measurement          | . 43 |
|   |     | 4.3.10   | TSEN measurement          | . 43 |
|   | 4.4 | 寄存器指     | 苗述                        | . 44 |
|   |     | 4.4.1    | gpadc_config              | . 45 |
|   |     | 4.4.2    | gpadc_dma_rdata           | . 46 |
|   |     | 4.4.3    | gpadc_reg_cmd             | . 46 |
|   |     | 4.4.4    | gpadc_reg_config1         | . 48 |
|   |     | 4.4.5    | gpadc_reg_config2         | . 50 |
|   |     | 4.4.6    | gpadc_reg_scn_pos1        | . 52 |
|   |     | 4.4.7    | gpadc_reg_scn_pos2        | . 52 |
|   |     | 4.4.8    | gpadc_reg_scn_neg1        | . 53 |
|   |     | 4.4.9    | gpadc_reg_scn_neg2        | . 53 |
|   |     | 4.4.10   | gpadc_reg_status          | . 54 |
|   |     | 4.4.11   | gpadc_reg_isr             | . 54 |
|   |     | 4.4.12   | gpadc_reg_result          | . 55 |
|   |     | 4.4.13   | gpadc_reg_raw_result      | . 55 |
|   |     | 4.4.14   | gpadc_reg_define          | . 56 |
| 5 | DAC |          |                           | . 57 |
|   | 5.1 | Introduc | ction                     | . 57 |
|   | 5.2 | Main fea | atures                    | . 57 |
|   | 5.3 | Function | n description             | . 57 |
|   | 5.4 | 寄存器指     | 苗述                        | . 58 |
|   |     | 5.4.1    | gpdac_config              | . 58 |
|   |     | 5.4.2    | gpdac_dma_config          | . 59 |
|   |     | 5.4.3    | gpdac_dma_wdata           | . 60 |
| 6 | DMA |          |                           | . 61 |
|   | 6.1 | Introduc | ction                     | . 61 |
|   | 6.2 | DMA ma   | ain features              | . 61 |
|   | 6.3 | DMA fur  | nctional description      | . 62 |
|   |     | 6.3.1    | DMA transactions          | . 62 |
|   |     | 6.3.2    | DMA channel configuration | . 64 |
|   |     | 6.3.3    | Peripheral support        | . 64 |



|     | 6.3.4   | Linked List Mode      | 65 |
|-----|---------|-----------------------|----|
|     | 6.3.5   | DMA interrupt         | 66 |
| 6.4 | Transmi | ssion mode            | 66 |
|     | 6.4.1   | Memory to memory      | 66 |
|     | 6.4.2   | Memory to peripheral  | 66 |
|     | 6.4.3   | Peripheral to memory  | 67 |
| 6.5 | 寄存器指    | 苗述                    | 67 |
|     | 6.5.1   | DMA_IntStatus         | 68 |
|     | 6.5.2   | DMA_IntTCStatus       | 69 |
|     | 6.5.3   | DMA_IntTCClear        | 69 |
|     | 6.5.4   | DMA_IntErrorStatus    | 70 |
|     | 6.5.5   | DMA_IntErrClr         | 70 |
|     | 6.5.6   | DMA_RawIntTCStatus    | 70 |
|     | 6.5.7   | DMA_RawIntErrorStatus | 71 |
|     | 6.5.8   | DMA_EnbldChns         | 71 |
|     | 6.5.9   | DMA_SoftBReq          | 71 |
|     | 6.5.10  | DMA_SoftSReq          | 72 |
|     | 6.5.11  | DMA_SoftLBReq         | 72 |
|     | 6.5.12  | DMA_SoftLSReq         | 72 |
|     | 6.5.13  | DMA_Config            | 73 |
|     | 6.5.14  | DMA_Sync              | 73 |
|     | 6.5.15  | DMA_C0SrcAddr         | 73 |
|     | 6.5.16  | DMA_C0DstAddr         | 74 |
|     | 6.5.17  | DMA_C0LLI             | 74 |
|     | 6.5.18  | DMA_C0Control         | 74 |
|     | 6.5.19  | DMA_C0Config          | 75 |
|     | 6.5.20  | DMA_C1SrcAddr         | 76 |
|     | 6.5.21  | DMA_C1DstAddr         | 77 |
|     | 6.5.22  | DMA_C1LLI             | 77 |
|     | 6.5.23  | DMA_C1Control         | 77 |
|     | 6.5.24  | DMA_C1Config          | 78 |
|     | 6.5.25  | DMA_C2SrcAddr         | 79 |
|     | 6.5.26  | DMA_C2DstAddr         | 79 |



|   |      | 6.5.27   | DMA_C2LLI                                             | . 80 |
|---|------|----------|-------------------------------------------------------|------|
|   |      | 6.5.28   | DMA_C2Control                                         | . 80 |
|   |      | 6.5.29   | DMA_C2Config                                          | . 81 |
|   |      | 6.5.30   | DMA_C3SrcAddr                                         | . 82 |
|   |      | 6.5.31   | DMA_C3DstAddr                                         | . 82 |
|   |      | 6.5.32   | DMA_C3LLI                                             | . 83 |
|   |      | 6.5.33   | DMA_C3Control                                         | . 83 |
|   |      | 6.5.34   | DMA_C3Config                                          | . 84 |
| 7 | L1C  |          |                                                       | . 86 |
|   | 7.1  | Introduc | ction                                                 | . 86 |
|   | 7.2  | Main fea | atures                                                | . 87 |
|   | 7.3  | Function | n description                                         | . 87 |
|   |      | 7.3.1    | Mutual conversion between TCM and Cache RAM resources | . 87 |
|   |      | 7.3.2    | Cache                                                 | . 87 |
|   | 7.4  | 寄存器指     | 苗述                                                    | . 88 |
|   |      | 7.4.1    | l1c_config                                            | . 89 |
|   |      | 7.4.2    | hit_cnt_lsb                                           | . 89 |
|   |      | 7.4.3    | hit_cnt_msb                                           | . 89 |
|   |      | 7.4.4    | miss_cnt                                              | . 90 |
| 8 | IR . |          |                                                       | . 91 |
|   | 8.1  | Introduc | ction                                                 | . 91 |
|   | 8.2  | IR main  | features                                              | . 91 |
|   | 8.3  | Function | n description                                         | . 91 |
|   |      | 8.3.1    | Fixed receiving protocol                              | . 91 |
|   |      | 8.3.2    | Pulse width reception                                 | . 93 |
|   |      | 8.3.3    | Normal sending mode                                   | . 93 |
|   |      | 8.3.4    | Pulse width transmission                              | . 93 |
|   |      | 8.3.5    | Carrier modulation                                    | . 94 |
|   |      | 8.3.6    | IR interrupt                                          | . 94 |
|   | 8.4  | 寄存器指     | 描述                                                    | . 94 |
|   |      | 8.4.1    | irtx_config                                           | . 95 |
|   |      | 8.4.2    | irtx_int_sts                                          | . 96 |
|   |      | 8.4.3    | irtx_data_word0                                       | . 96 |



|   |      | 8.4.4    | irtx_data_word1                     | 97  |
|---|------|----------|-------------------------------------|-----|
|   |      | 8.4.5    | irtx_pulse_width                    | 97  |
|   |      | 8.4.6    | irtx_pw                             | 98  |
|   |      | 8.4.7    | irtx_swm_pw_0                       | 98  |
|   |      | 8.4.8    | irtx_swm_pw_1                       | 99  |
|   |      | 8.4.9    | irtx_swm_pw_2                       | 99  |
|   |      | 8.4.10   | irtx_swm_pw_3                       | 00  |
|   |      | 8.4.11   | irtx_swm_pw_4                       | 00  |
|   |      | 8.4.12   | irtx_swm_pw_5                       | 00  |
|   |      | 8.4.13   | irtx_swm_pw_6                       | 01  |
|   |      | 8.4.14   | irtx_swm_pw_7                       | 01  |
|   |      | 8.4.15   | irrx_config                         | 02  |
|   |      | 8.4.16   | irrx_int_sts                        | 02  |
|   |      | 8.4.17   | irrx_pw_config                      | 03  |
|   |      | 8.4.18   | irrx_data_count                     | 03  |
|   |      | 8.4.19   | irrx_data_word0                     | 04  |
|   |      | 8.4.20   | irrx_data_word1                     | 04  |
|   |      | 8.4.21   | irrx_swm_fifo_config_0              | 04  |
|   |      | 8.4.22   | irrx_swm_fifo_rdata                 | 05  |
| 9 | SPI. |          |                                     | 06  |
|   | 9.1  | Introduc | tion                                | 06  |
|   | 9.2  | Main fea | atures                              | 06  |
|   | 9.3  | Function | n description                       | 06  |
|   |      | 9.3.1    | Clock control                       | 06  |
|   |      | 9.3.2    | Master continuous transmission mode | 07  |
|   |      | 9.3.3    | Acceptance filtering function       | 07  |
|   |      | 9.3.4    | Receive error correction            | 08  |
|   |      | 9.3.5    | Slave mode timeout mechanism        | 08  |
|   |      | 9.3.6    | I/O transfer mode                   | 08  |
|   |      | 9.3.7    | DMA transfer mode                   | 08  |
|   |      | 9.3.8    | SPI interrupt                       | 09  |
|   | 9.4  | 寄存器指     | 描述                                  | 09  |
|   |      | 9.4.1    | spi_config                          | 110 |



|        | 9.4.2    | spi_int_sts                   | 111 |
|--------|----------|-------------------------------|-----|
|        | 9.4.3    | spi_bus_busy                  | 112 |
|        | 9.4.4    | spi_prd_0                     | 113 |
|        | 9.4.5    | spi_prd_1                     | 113 |
|        | 9.4.6    | spi_rxd_ignr                  | 113 |
|        | 9.4.7    | spi_sto_value                 | 114 |
|        | 9.4.8    | spi_fifo_config_0             | 114 |
|        | 9.4.9    | spi_fifo_config_1             | 115 |
|        | 9.4.10   | spi_fifo_wdata                | 115 |
|        | 9.4.11   | spi_fifo_rdata                | 116 |
| 10 UAR | т        |                               | 117 |
| 10.1   | Introduc | ation                         | 117 |
| 10.2   | Main fea | atures                        | 117 |
| 10.3   | Function | n description                 | 118 |
|        | 10.3.1   | Data format description       | 118 |
|        | 10.3.2   | Basic architecture diagram    | 118 |
|        | 10.3.3   | Clock source                  | 118 |
|        | 10.3.4   | Baud rate setting             | 119 |
|        | 10.3.5   | Transmitter                   | 20  |
|        | 10.3.6   | receiver                      | 20  |
|        | 10.3.7   | Automatic baud rate detection | 21  |
|        | 10.3.8   | Hardware flow control         | 22  |
|        | 10.3.9   | DMA transfer mode             | 22  |
|        | 10.3.10  | UART interrupt                | 22  |
| 10.4   | 寄存器指     | 苗述                            | 23  |
|        | 10.4.1   | utx_config                    | 24  |
|        | 10.4.2   | urx_config                    | 25  |
|        | 10.4.3   | uart_bit_prd                  | 26  |
|        | 10.4.4   | data_config                   | 26  |
|        | 10.4.5   | utx_ir_position               | 26  |
|        | 10.4.6   | urx_ir_position               | 27  |
|        | 10.4.7   | urx_rto_timer                 | 27  |
|        | 10.4.8   | uart_int_sts                  | 27  |



|    |      | 10.4.9    | uart_int_mask               |   | 128 |
|----|------|-----------|-----------------------------|---|-----|
|    |      | 10.4.10   | uart_int_clear              |   | 129 |
|    |      | 10.4.11   | uart_int_en                 |   | 129 |
|    |      | 10.4.12   | uart_status                 |   | 130 |
|    |      | 10.4.13   | sts_urx_abr_prd             |   | 130 |
|    |      | 10.4.14   | uart_fifo_config_0          |   | 131 |
|    |      | 10.4.15   | uart_fifo_config_1          |   | 131 |
|    |      | 10.4.16   | uart_fifo_wdata             |   | 132 |
|    |      | 10.4.17   | uart_fifo_rdata             |   | 132 |
| 11 | 2C . |           |                             |   | 134 |
|    | 11.1 | Introduc  | ction                       |   | 134 |
|    | 11.2 | Main fea  | atures                      |   | 134 |
|    | 11.3 | Function  | n description               |   | 134 |
|    |      | 11.3.1    | Start and stop conditions   |   | 135 |
|    |      | 11.3.2    | Data transmission format    |   | 135 |
|    |      | 11.3.3    | Arbitration                 |   | 136 |
|    | 11.4 | I2C cloc  | ck setting                  |   | 137 |
|    | 11.5 | I2C conf  | figuration process          |   | 137 |
|    |      | 11.5.1    | Configuration item          |   | 137 |
|    |      | 11.5.2    | Read and write flags        |   | 138 |
|    |      | 11.5.3    | Slave address               |   | 138 |
|    |      | 11.5.4    | Slave device address        | ' | 138 |
|    |      | 11.5.5    | Slave device address length | ' | 138 |
|    |      | 11.5.6    | Data                        | ' | 138 |
|    |      | 11.5.7    | Data length                 | ' | 138 |
|    |      | 11.5.8    | Enable signal               | ' | 138 |
|    | 11.6 | FIFO ma   | anagement                   |   | 139 |
|    | 11.7 | Using D   | MA                          |   | 140 |
|    |      | 11.7.1    | DMA transmission process    |   | 140 |
|    |      | 11.7.2    | DMA receiving process       |   | 140 |
|    | 11.8 | Interrupt | t                           |   | 141 |
|    | 11.9 | 寄存器描      | 苗述                          |   | 141 |
|    |      | 11.9.1    | i2c_config                  |   | 142 |



|    |      | 11.9.2    | i2c_int_sts                | 42 |
|----|------|-----------|----------------------------|----|
|    |      | 11.9.3    | i2c_sub_addr               | 44 |
|    |      | 11.9.4    | i2c_bus_busy               | 44 |
|    |      | 11.9.5    | i2c_prd_start              | 45 |
|    |      | 11.9.6    | i2c_prd_stop               | 45 |
|    |      | 11.9.7    | i2c_prd_data               | 45 |
|    |      | 11.9.8    | i2c_fifo_config_0          | 46 |
|    |      | 11.9.9    | i2c_fifo_config_1          | 47 |
|    |      | 11.9.10   | i2c_fifo_wdata             | 47 |
|    |      | 11.9.11   | i2c_fifo_rdata             | 47 |
| 12 | PWM  |           |                            | 49 |
|    | 12.1 | Introduct | tion                       | 49 |
|    | 12.2 | Main fea  | atures                     | 49 |
|    | 12.3 | Function  | description                | 49 |
|    |      | 12.3.1    | Clock and divider          | 49 |
|    |      | 12.3.2    | Pulse generation principle | 50 |
|    |      | 12.3.3    | PWM interrupt              | 50 |
|    | 12.4 | 寄存器描      | 苗述                         | 50 |
|    |      | 12.4.1    | pwm_int_config             | 51 |
|    |      | 12.4.2    | pwm0_clkdiv                | 52 |
|    |      | 12.4.3    | pwm0_thre1                 | 52 |
|    |      | 12.4.4    | pwm0_thre2                 | 52 |
|    |      | 12.4.5    | pwm0_period                | 53 |
|    |      | 12.4.6    | pwm0_config                | 53 |
|    |      | 12.4.7    | pwm0_interrupt             | 54 |
|    |      | 12.4.8    | pwm1_clkdiv                | 54 |
|    |      | 12.4.9    | pwm1_thre1                 | 55 |
|    |      | 12.4.10   | pwm1_thre2                 | 55 |
|    |      | 12.4.11   | pwm1_period                | 55 |
|    |      | 12.4.12   | pwm1_config                | 56 |
|    |      | 12.4.13   | pwm1_interrupt             | 56 |
|    |      | 12.4.14   | pwm2_clkdiv                | 57 |
|    |      | 12.4.15   | pwm2_thre1                 | 57 |



|         | 12.4.16  | pwm2_thre2                    | 157 |
|---------|----------|-------------------------------|-----|
|         | 12.4.17  | pwm2_period                   | 158 |
|         | 12.4.18  | pwm2_config                   | 158 |
|         | 12.4.19  | pwm2_interrupt                | 159 |
|         | 12.4.20  | pwm3_clkdiv                   | 159 |
|         | 12.4.21  | pwm3_thre1                    | 160 |
|         | 12.4.22  | pwm3_thre2                    | 160 |
|         | 12.4.23  | pwm3_period                   | 160 |
|         | 12.4.24  | pwm3_config                   | 161 |
|         | 12.4.25  | pwm3_interrupt                | 161 |
|         | 12.4.26  | pwm4_clkdiv                   | 162 |
|         | 12.4.27  | pwm4_thre1                    | 162 |
|         | 12.4.28  | pwm4_thre2                    | 162 |
|         | 12.4.29  | pwm4_period                   | 163 |
|         | 12.4.30  | pwm4_config                   | 163 |
|         | 12.4.31  | pwm4_interrupt                | 164 |
| 13 TIME | R        |                               | 165 |
| 13.1    | Introduc | ction                         | 165 |
| 13.2    | Main fea | atures                        | 166 |
| 13.3    | Function | n description                 | 166 |
|         | 13.3.1   | 8-bit divider                 | 166 |
|         | 13.3.2   | General timer operating mode  | 167 |
|         | 13.3.3   | Watchdog timer operating mode | 168 |
|         | 13.3.4   | Alarm setting                 | 168 |
|         | 13.3.5   | Watchdog alarm                | 168 |
| 13.4    | 寄存器指     | 苗述                            | 169 |
|         | 13.4.1   | TCCR                          | 171 |
|         | 13.4.2   | TMR2_0                        | 171 |
|         | 13.4.3   | TMR2_1                        | 172 |
|         | 13.4.4   | TMR2_2                        | 172 |
|         | 13.4.5   | TMR3_0                        | 172 |
|         | 13.4.6   | TMR3_1                        | 173 |
|         | 13.4.7   | TMR3_2                        | 173 |



| 13.4.8        | TCR2     | <br>• | <br> | • | <br>• | <br> | • | <br>• | • | <br>• | • | <br>• | • | • | • | • |   | • | 173 |
|---------------|----------|-------|------|---|-------|------|---|-------|---|-------|---|-------|---|---|---|---|---|---|-----|
| 13.4.9        | TCR3     |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 174 |
| 13.4.10       | TMSR2 .  |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 174 |
| 13.4.11       | TMSR3 .  |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 174 |
| 13.4.12       | TIER2    |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 175 |
| 13.4.13       | TIER3    |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 175 |
| 13.4.14       | TPLVR2 . |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 176 |
| 13.4.15       | TPLVR3 . |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 176 |
| 13.4.16       | TPLCR2.  |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 177 |
| 13.4.17       | TPLCR3.  |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 177 |
| 13.4.18       | WMER .   |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 177 |
| 13.4.19       | WMR      |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 178 |
| 13.4.20       | WVR      |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 178 |
| 13.4.21       | WSR      |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 179 |
| 13.4.22       | TICR2    |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 179 |
| 13.4.23       | TICR3    |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 180 |
| 13.4.24       | WICR     |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 180 |
| 13.4.25       | TCER     |       | <br> | • |       | <br> | • |       |   |       |   |       |   |   |   |   |   |   | 180 |
| 13.4.26       | TCMR     |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 181 |
| 13.4.27       | TILR2    |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 181 |
| 13.4.28       | TILR3    |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 182 |
| 13.4.29       | WCR      |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 183 |
| 13.4.30       | WFAR     |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 183 |
| 13.4.31       | WSAR .   |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 183 |
| 13.4.32       | TCVWR2   |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 184 |
| 13.4.33       | TCVWR3   |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 184 |
| 13.4.34       | TCVSYN2  |       | <br> | • |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 184 |
| 13.4.35       | TCVSYN3  |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 185 |
| 13.4.36       | TCDR     |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 185 |
| 14 LowPower . |          |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   |   | 186 |
| 14.1 Introdu  | ction    |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   |   | • | 186 |
| 14.2 Main fe  | atures   |       | <br> |   |       | <br> |   |       |   |       |   |       |   |   |   |   | • | • | 186 |
|               |          |       |      |   |       |      |   |       |   |       |   |       |   |   |   |   |   |   |     |



| 14.3     | Function   | on description | ٠ | <br> | • | ٠ | • | 187 |
|----------|------------|----------------|---|------|---|---|---|-----|
|          | 14.3.1     | Power domain   |   | <br> |   |   |   | 187 |
|          | 14.3.2     | Wakeup source  |   | <br> |   |   |   | 188 |
|          | 14.3.3     | Power mode     |   | <br> |   |   |   | 189 |
| 14.4     | 寄存器指       | 描述             |   | <br> |   |   |   | 190 |
|          | 14.4.1     | PDS_CTL        |   | <br> |   |   |   | 190 |
|          | 14.4.2     | PDS_CTL4       |   | <br> |   |   |   | 190 |
|          | 14.4.3     | pds_stat       |   | <br> |   |   |   | 192 |
| 14.5     | 寄存器指       | 描述             |   | <br> |   |   |   | 192 |
|          | 14.5.1     | HBN_CTL        |   | <br> |   |   |   | 193 |
|          | 14.5.2     | HBN_TIME_L     |   | <br> |   |   |   | 193 |
|          | 14.5.3     | HBN_TIME_H     |   | <br> |   |   |   | 194 |
|          | 14.5.4     | RTC_TIME_L     |   | <br> |   |   |   | 194 |
|          | 14.5.5     | RTC_TIME_H     |   | <br> |   |   |   | 194 |
|          | 14.5.6     | HBN_IRQ_MODE   |   | <br> |   |   |   | 195 |
|          | 14.5.7     | HBN_IRQ_STAT   |   | <br> |   |   |   | 195 |
|          | 14.5.8     | HBN_IRQ_CLR    |   | <br> |   |   |   | 196 |
|          | 14.5.9     | HBN_PIR_CFG    |   | <br> |   |   |   | 196 |
|          | 14.5.10    | ) HBN_PIR_VTH  |   | <br> |   |   |   | 197 |
|          | 14.5.11    | HBN_GLB        |   | <br> |   |   |   | 197 |
|          | 14.5.12    | 2 HBN_SRAM     |   | <br> |   |   |   | 197 |
| 15 Revis | ion histor | ory            |   | <br> |   |   |   | 199 |

# List of Figures

| 2.1  | Reset source              | 22  |
|------|---------------------------|-----|
| 2.2  | Clock Block Diagram       | 23  |
| 3.1  | GPIO Basic Struct         | 26  |
| 4.1  | ADC block diagram         | 47  |
| 4.2  | ADC Clock                 | 49  |
| 6.1  | DMA architecture          | 73  |
| 6.2  | LLI architecture          | 75  |
| 7.1  | L1c architecture          | 96  |
| 7.2  | Cache architecture        | 98  |
| 8.1  | nec logical               | 102 |
| 8.2  | nec                       | 102 |
| 8.3  | rc5 logical               | 102 |
| 8.4  | rc5                       | 103 |
| 9.1  | SPI clock                 | 117 |
| 9.2  | SPI ignore                | 118 |
| 10.1 | UART data                 | 128 |
| 10.2 | UART clock                | 129 |
| 10.3 | UART sample               | 130 |
|      | UART fixed character mode | 131 |
| 10.5 | UART flow control         | 132 |
| 11.1 | I2C stop/start condition  | 145 |
| 11.2 | Master transmission       | 145 |





| 11.3 Master tx and slave rx       | 146 |
|-----------------------------------|-----|
| 11.4 Master rx and slave tx       | 146 |
| 11.5 Tx and Rx together           | 147 |
| 12.1 Pwm                          | 160 |
| 13.1 Timer block diagram          | 175 |
| 13.2 Watchdog timer block diagram | 176 |
| 13.3 Timer Preload                | 177 |
| 13.4 Watchdog timing              | 178 |
| 13.5 Watchdog alarm mechanism     | 179 |
| 14.1 Low power mode               | 196 |

# **List of Tables**

| 1.1  | Bus connection            | 18  |
|------|---------------------------|-----|
| 1.2  | Address mapping           | 18  |
| 1.2  | Address mapping           | 19  |
| 1.3  | Interrupt sources         | 19  |
| 1.3  | Interrupt sources         | 20  |
| 3.1  | Pin description           | 27  |
| 3.1  | Pin description           | 28  |
| 4.1  | ADC internal signals      | 48  |
| 4.2  | ADC external pins         | 48  |
| 4.3  | ADC 转换结果含义                | 51  |
| 7.1  | WayDisable settings       | 97  |
| 11.1 | Pin lists                 | 144 |
| 14.1 | Power mode                | 198 |
| 14.2 | Wakeup source             | 199 |
| 15 1 | Document revision history | 200 |

1

### System and memory overview

#### 1.1 Introduction

The on-chip processor uses RISC-V 32-bit with floating point. With high-speed processing memory system (see the L1C chapter for details), to achieve high-quality computing efficiency. External to the processor is a multilayer 32-bit AHB architecture with low power consumption, low latency, and high flexibility. The memory section contains high-speed tightly coupled memory as well as cache and system shared memory. Off-chip memory supports Flash expansion.

#### 1.2 Main features

- · RISV-V 32-bit with floating point
- Multi-layer 32-bit AHB bus architecture
- · 96KB high-speed memory
- 180KB system memory
- · 128KB read-only memory
- · Off-chip memory Flash

### 1.3 Function description

The BL602 bus connection and address access are summarized as follows: The bus master includes CPU, SDIO, DMA, encryption engine, and debug interface. The bus includes memory, peripherals, WiFi / BLE. Except the encryption engine can only access the memory, all other bus masters can access all bus slaves.



Table 1.1: Bus connection

| Slave/Master | CPU | SDIO | DMA | encryption<br>engine | Debug<br>interface |
|--------------|-----|------|-----|----------------------|--------------------|
| memory       | V   | V    | V   | V                    | V                  |
| Peripheral   | V   | V    | V   | -                    | V                  |
| WiFi/BLE     | V   | V    | V   | -                    | V                  |

The address access mainly distinguishes "memory" or "peripheral" by [27:24], and the [31:28] bits can be ignored. The memory space is consecutive addresses  $0x2008000 \sim 0x204BFFF$  (272KB SRAM), the read-only memory address is 0x1000000, and the deep sleep memory address is 0x0010000. The off-chip space address is 0x3000000 (maximum support 16MB Flash). The peripheral space is  $0x00000000 \sim 0x000F000$ .

Table 1.2: Address mapping

| Name   | Address    | Size  | Description                               |
|--------|------------|-------|-------------------------------------------|
| WRAM   | 0x42030000 | 112KB | Wireless SRAM memory                      |
| RETRAM | 0x40010000 | 4KB   | Deep sleep memory (RAM reserved)          |
| HBN    | 0x4000F000 | 4KB   | Deep Sleep Control (Hibernation)          |
| PDS    | 0x4000E000 | 4KB   | Sleep control (power-down sleep)          |
| SDU    | 0x4000D000 | 4KB   | SDIO control                              |
| DMA    | 0x4000C000 | 4KB   | DMA control                               |
| QSPI   | 0x4000B000 | 4KB   | Flash / pSRAM control                     |
| IRR    | 0x4000A600 | 256B  | Infrared remote control                   |
| TIMER  | 0x4000A500 | 256B  | Timer control                             |
| PWM    | 0x4000A400 | 256B  | Pulse width modulation control            |
| I2C    | 0x4000A300 | 256B  | I2C control                               |
| SPI    | 0x4000A200 | 256B  | SPI master / slave control                |
| UART1  | 0x4000A100 | 256B  | UART control                              |
| UART0  | 0x4000A000 | 256B  | UART control                              |
| L1C    | 0x40009000 | 4KB   | Cache control                             |
| eFuse  | 0x40007000 | 4KB   | eFuse memory control                      |
| TZ2    | 0x40006000 | 4KB   | Trust zone isolation                      |
| TZ1    | 0x40005000 | 4KB   | Trust zone isolation                      |
| SEC    | 0x40004000 | 4KB   | Security engine                           |
| GPIP   | 0x40002000 | 4KB   | Universal DAC/ADC/ACOMP interface control |



Table 1.2: Address mapping

| Name | Address    | Size  | Description           |
|------|------------|-------|-----------------------|
| MIX  | 0x40001000 | 4KB   | Mixed signal register |
| GLB  | 0x40000000 | 4KB   | Global register       |
| RAM  | 0x22020000 | 64KB  | On-chip memory        |
| XIP  | 0x23000000 | 16MB  | XIP flash             |
| DTCM | 0x22014000 | 48KB  | Data cache            |
| ITCM | 0x22008000 | 48KB  | Instruction cache     |
| ROM  | 0x21000000 | 128KB | ROM                   |

There are 64 interrupt sources. The level or edge trigger is configured by the CPU and can be masked. Details as follows:

Table 1.3: Interrupt sources

| Num   | Signal source |
|-------|---------------|
| 54~63 | wireless      |
| 53    | brown-out     |
| 51~52 | hbn_irq       |
| 50    | pds_int       |
| 44    | gpio_irq      |
| 35~38 | timer_irq     |
| 34    | pwm_int       |
| 32    | i2c_int       |
| 30    | uart1_irq     |
| 29    | uart0_irq     |
| 27    | spi_int       |
| 26    | efuse_int     |
| 25    | adc_int       |
| 23    | flash_int     |
| 19~20 | ir_remote_int |
| 15    | dma_int       |



Table 1.3: Interrupt sources

| Num  | Signal source |
|------|---------------|
| 9~14 | sec_eng_int   |
| 7    | sdio_int      |
| 5~6  | rf_int        |
| 0~4  | err_int       |

#### Reset and clock

#### 2.1 Introduction

The reset sources included in the chip: hardware reset, watchdog reset, software reset. The chip contains multiple clock sources: XTAL, PLL, RC. It is allocated to each module through configuration such as frequency division.

#### 2.2 Reset source

The reset sources are as follows:

- · Hardware reset: reset via pins
  - Pin maximum reset (PAD\_EXT\_RST = 1-> 0): all logic will reset and return to the initial state
  - Pin power reset (CHIP\_EN = 0-> 1): similar to power management reset
  - Power management reset: The chip is restored from power failure, and the HBN logic resets the chip system
- · Watchdog reset
  - When the watchdog alarm triggers a reset signal, the reset management unit will reset the chip system after necessary preparations, and the internal logic of the watchdog will record the status of the watchdog reset
- · Software reset: local or partial reset according to software setting register
  - Software initial reset (reg\_ctrl\_pwron\_rst): The rising edge of this register is triggered by software to reset the chip system
  - Software CPU reset (reg\_ctrl\_cpu\_reset): The rising edge of this register is triggered by software to reset the CPU part of the system
  - Retain necessary logic processing such as power management unit, perform chip system reset
  - Software module reset: Set software reset according to the requirements of specific modules



Figure 2.1: Reset source

#### 2.3 Clock source

Clock source contains:

- XTAL: External crystal clock, according to system requirements, the frequency can be selected from 24, 32, 38.4, 40MHz.
- XTAL32K: External crystal clock, frequency 32KHz
- RC32K: RC oscillator clock, 32KHz, provides calibration
- RC32M: RC oscillator clock, frequency 32MHz, provides calibration
- PLL: Phase-locked loop clock, internal system high-speed clock, the highest frequency supports 160MHz

The clock control unit distributes the clock from the oscillator to the core and peripheral devices. By selecting the system clock source, dynamic frequency divider, clock configuration, sleep using 32KHz clock to achieve low power clock management.

Peripheral clock includes: Flash、UART、I2C、SPI、PWM、IR-remote、ADC、DAC.





Figure 2.2: Clock Block Diagram

3

GLB

#### 3.1 Introduction

GLB (Global Register) is a chip's general global setting module, which mainly includes functions such as clock management, reset management, bus management, memory management, and GPIO management.

### 3.2 GLB function description

#### 3.2.1 Clock

The clock management function is mainly used to set the clock of the processor, bus, and various peripherals. This module can set the clock source, clock frequency division, etc. of the module's work, and can also achieve the gate control of the module's clock to achieve the purpose of low power consumption of the system.

For detailed settings, please refer to the relevant chapter of the system clock.

#### **3.2.2 Reset**

Provide individual reset function for each peripheral and chip reset function.

The chip reset includes:

- CPU reset: just reset the CPU module, the program will run again, and the peripherals will not be reset
- System reset: each peripheral and CPU will be reset, but the related registers of the AON domain will not be reset
- · Power-on reset: the entire system including the AON domain related registers will be reset

The application can choose to use the corresponding reset method as required.

#### 3.2.3 Bus

Provide bus arbitration settings and bus error settings. You can set whether to generate an interrupt when a bus error occurs, and provide error bus address information to facilitate user debugging procedures.



#### **3.2.4 Memory**

Provides the power management of each memory module in the low-power mode of the chip system, including two setting modes:

- retention mode: In this mode, the data on the memory can be saved, but cannot be read or written until exiting the low power mode.
- sleep mode: In this mode, the data in the memory will be lost and is only used to reduce system power consumption.

#### 3.2.5 GPIO overview

The GPIO management function provides GPIO control registers to realize the configuration of GPIO attributes by software, so that users can conveniently operate GPIO. Each GPIO can be configured as three modes of input, output and optional function. In each mode (except for analog optional functions), it provides three port states: pull-up, pull-down, and floating. In addition, GPIO also provides interrupt functions, which can be configured as rising edge trigger, falling edge trigger, or edge trigger.

#### 3.2.6 GPIO main features

- It can be configured as a normal input / output function. In this mode, pull-up, pull-down or floating input/output can be set.
- It can be configured as an optional function and used with peripheral functions. In this mode, pull-up and pull-down can also be set. When using the analog function, it must be set to floating.
- The drive capability can be set to provide greater output current.
- Schmitt trigger function can be set to provide simple hardware anti-shake function.

#### 3.2.7 GPIO function description

Each GPIO can be configured by software as:

- Floating input
- · Pull-up input
- · Pull down input
- Pull-up interrupt input
- Pull-down interrupt input
- Floating interrupt input
- · Pull-up output
- · Pull-down output



- · Floating output
- · Analog input optional function
- · Analog output optional function
- · Digital optional functions

The basic block diagram of the GPIO module is shown below:



Figure 3.1: GPIO Basic Struct

#### 3.2.8 GPIO function

The function of GPIO is set through the GPIO\_CFGCTL register group. The main setting items include:

- func\_sel: select GPIO function
- pu: choose whether to pull up
- · pd: choose whether to pull down
- · drv: set the driving capability
- smt: select whether to enable Schmitt trigger
- ie: set input enable
- oe: set output enable



The functions that GPIO can set include:

• Flash/QSPI: set GPIO as QSPI function, can be connected to Flash as program storage / run medium

• SPI: set GPIO as SPI function

• I2C: set GPIO to I2C function

• UART: set GPIO as UART function

• PWM: set GPIO to PWM function

· ANA: set GPIO to Analog function

• SWGPIO: set GPIO as general IO function

• JTAG: set GPIO to JTAG function

In order to meet the needs of customers as much as possible, each of the GPIOs can basically select the above optional functions. When selecting an optional function, the GPIO and corresponding function signals are shown in the following table:

Table 3.1: Pin description

| GPIO   | SDIO | FLASH | SPI  | I2C | UART | PWM | Analog        | SWGPIO   | JTAG |
|--------|------|-------|------|-----|------|-----|---------------|----------|------|
| GPIO0  | CLK  | D1    | MISO | SCL | SIG0 | CH0 |               | SWGPI00  | TMS  |
| GPIO1  | CMD  | D2    | MOSI | SDA | SIG1 | CH1 |               | SWGPI01  | TDI  |
| GPIO2  | DAT0 | D2    | ss   | SCL | SIG2 | CH2 |               | SWGPI02  | TCK  |
| GPIO3  | DAT1 | D3    | SCLK | SDA | SIG3 | СНЗ |               | SWGPI03  | TDO  |
| GPIO4  | DAT2 |       | MISO | SCL | SIG4 | CH4 | CH1           | SWGPIO4  | TMS  |
| GPIO5  | DAT3 |       | MOSI | SDA | SIG5 | СН0 | CH4           | SWGPI05  | TDI  |
| GPIO6  |      |       | ss   | SCL | SIG6 | CH1 | CH5           | SWGPI06  | TCK  |
| GPIO7  |      |       | SCLK | SDA | SIG7 | CH2 |               | SWGPI07  | TDO  |
| GPIO8  |      |       | MISO | SCL | SIG0 | СНЗ |               | SWGPI08  | TMS  |
| GPIO9  |      |       | MOSI | SDA | SIG1 | CH4 | CH6/7         | SWGPIO9  | TDI  |
| GPIO10 |      |       | ss   | SCL | SIG2 | CH0 | MICBIAS/CH8/9 | SWGPIO10 | TCK  |
| GPIO11 |      |       | SCLK | SDA | SIG3 | CH1 | IROUT/CH10    | SWGPIO11 | TDO  |
| GPIO12 |      |       | MISO | SCL | SIG4 | CH2 | ADC_VREF/CH0  | SWGPIO12 | TMS  |
| GPIO13 |      |       | MOSI | SDA | SIG5 | СНЗ | СНЗ           | SWGPIO13 | TDI  |
| GPIO14 |      |       | ss   | SCL | SIG6 | CH4 | CH2           | SWGPIO14 | TCK  |
| GPIO15 |      |       | SCLK | SDA | SIG7 | СН0 | PSWIROUT/CH11 | SWGPIO15 | TDO  |
| GPIO16 |      |       | MISO | SCL | SIG0 | CH1 |               | SWGPIO16 | TMS  |



Table 3.1: Pin description

| GPIO   | SDIO | FLASH   | SPI  | I2C | UART | PWM | Analog    | SWGPIO   | JTAG |
|--------|------|---------|------|-----|------|-----|-----------|----------|------|
| GPIO17 |      | D3      | MOSI | SDA | SIG1 | CH2 | DC_TP_OUT | SWGPIO17 | TDI  |
| GPIO18 |      | D2      | SS   | SCL | SIG2 | CH3 |           | SWGPIO18 | TCK  |
| GPIO19 |      | D1      | SCLK | SDA | SIG3 | CH4 |           | SWGPIO19 | TDO  |
| GPIO20 |      | D0      | MISO | SCL | SIG4 | CH0 |           | SWGPIO20 | TMS  |
| GPIO21 |      | cs      | MOSI | SDA | SIG5 | CH1 |           | SWGPIO21 | TDI  |
| GPIO22 |      | CLK_OUT | SS   | SCL | SIG6 | CH2 |           | SWGPIO22 | TCK  |

In the above table, when the UART function is selected, only one signal of the UART is selected, and the specific function of the pin is not specified (such as UART TX or UART RX). It is also necessary to use UART\_SIGX\_SEL(X = 0-7) to select specific UART signals and corresponding functions.

The signals that can be selected for each UART SIGX SEL include:

• 0: UARTO\_RTS

1: UART0\_CTS

• 2 : UART0\_TXD

• 3: UARTO RXD

• 4: UART1 RTS

5: UART1\_CTS

• 6: UART1\_TXD

7: UART1\_RXD

Take GPIO0 as an example, when fun\_sel selects UART, GPIO0 selects UART\_SIG0. By default, the value of UART\_-SIG0\_SEL is 0, which is UART0\_RTS, that is, GPIO is UART0\_RTS function. If the application wants to use GPIO as UART1\_TXD, as long as UART\_SIG0\_SEL is set to 6, then the function of GPIO0 is UART1\_TXD.

#### 3.2.9 GPIO output

By setting func\_sel to SWGPIO, GPIO can be used as the input / output of ordinary GPIO. Setting ie to 0 and oe to 1 can configure GPIO as an output function. The output value is set through the GPIO\_O register group.

When the corresponding bit of GPIO\_O is set to 0, the GPIO output is low, and when the corresponding bit of GPIO\_O is set to 1, the GPIO output is high. The output capability can be set via the drv control bit.



#### 3.2.10 GPIO input

Set func\_sel to SWGPIO, set ie to 1, and oe to 0. The user can configure the GPIO as an input function, set whether to enable the Schmitt trigger through the smt control bit, and set the pull-down property through the pd, pu control bit

The value of the external input can be obtained by reading the corresponding bit of the GPIO I register.

#### 3.2.11 GPIO optional function

Setting func\_sel as the corresponding peripheral function can realize the connection between GPIO and peripherals, and realize the input and output of peripherals. As can be seen from the basic functional block diagram of GPIO, when selecting optional functions, it is necessary to set ie to 1, oe Set to 0, that is to disconnect the output control function of ordinary GPIO.

In this way, for peripherals with fixed input functions, the OE signal of the peripheral is always 0 to implement the input function; for peripherals with fixed output, the OE signal is always 1 so that the output is controlled by the peripheral. At this time, The input signal is the output signal, but it will not be collected by the output peripheral. When the peripheral needs both input and output, the input and output can be realized by controlling the peripheral OE signal.

#### 3.2.12 GPIO interrupt

To use the GPIO interrupt function, the user needs to set the GPIO to the input mode first, and the interrupt trigger mode is set through the GPIO\_INT\_MODE\_SET register group. The interrupt modes that can be set include:

- · Interrupt on rising edge
- · Interrupt on falling edge
- · Level-triggered interrupt

Each GPIO can be set as an interrupt function. Whether to enable a GPIO interrupt can be set through the GPIO\_INT\_-MASK register. When an interrupt occurs, the GPIO pin number that generated the interrupt can be obtained through the GPIO\_INT\_STAT register in the interrupt function. Clear the corresponding interrupt signal through GPIO\_INT\_-CLR.

### 3.3 寄存器描述

| Name               | Description                        |
|--------------------|------------------------------------|
| clk_cfg0           | Clock configuration-processor, bus |
| clk_cfg2           | Clock configuration-UART,Flash     |
| clk_cfg3           | Clock configuration-I2C,SPI        |
| GPADC_32M_SRC_CTRL | Clock configuration-GPADC          |
| GPIO_CFGCTL0       | GPIO0, GPIO1 configuration         |

BL602/604 Reference Manual 29/ 209 @2020 Bouffalo Lab



| Name          | Description                  |
|---------------|------------------------------|
| GPIO_CFGCTL1  | GPIO2, GPIO3 configuration   |
| GPIO_CFGCTL2  | GPIO4, GPIO5 configuration   |
| GPIO_CFGCTL3  | GPIO6, GPIO7 configuration   |
| GPIO_CFGCTL4  | GPIO8, GPIO9 configuration   |
| GPIO_CFGCTL5  | GPIO10, GPIO11 configuration |
| GPIO_CFGCTL6  | GPIO12, GPIO13 configuration |
| GPIO_CFGCTL7  | GPIO14, GPIO15 configuration |
| GPIO_CFGCTL8  | GPIO16, GPIO17 configuration |
| GPIO_CFGCTL9  | GPIO18, GPIO19 configuration |
| GPIO_CFGCTL10 | GPIO20, GPIO21 configuration |
| GPIO_CFGCTL11 | GPIO22, GPIO23 configuration |
| GPIO_CFGCTL12 | GPIO24, GPIO25 configuration |
| GPIO_CFGCTL13 | GPIO26, GPIO27 configuration |
| GPIO_CFGCTL14 | GPIO28 configuration         |

# 3.3.1 clk\_cfg0

地址: 0x40000000

| 31 | 30  | 29  | 28  | 27   | 26 | 25 | 24 | 23 | 22  | 21  | 20  | 19   | 18 | 17 | 16 |
|----|-----|-----|-----|------|----|----|----|----|-----|-----|-----|------|----|----|----|
|    | GLI | BID |     |      | RS | VD |    |    |     |     | BCL | KDIV |    |    |    |
| 15 | 14  | 13  | 12  | 11   | 10 | 9  | 8  | 7  | 6   | 5   | 4   | 3    | 2  | 1  | 0  |
|    |     |     | HCL | KDIV |    |    |    | RC | SEL | PLL | SEL |      | RS | VD |    |

| Bits  | Name    | Туре | Reset | Description                                                             |
|-------|---------|------|-------|-------------------------------------------------------------------------|
| 31:28 | GLBID   | R    | 4'h6  |                                                                         |
| 27:24 | RSVD    |      |       |                                                                         |
| 23:16 | BCLKDIV | R/W  | 0     | bclk divide from hclk                                                   |
| 15:8  | HCLKDIV | R/W  | 0     | hclk divide from root clock (clock source selected by hbn root_clk_sel) |
| 7:6   | RCSEL   | R    | 0     | root clock selection from HBN (0: RC32M 1: XTAL 2/3: PLL others)        |



| Bits | Name   | Туре | Reset | Description                                                  |
|------|--------|------|-------|--------------------------------------------------------------|
| 5:4  | PLLSEL | R/W  | 0     | pll clock selection (0: 48MHz 1: 120MHz 2: 160MHz 3: 192MHz) |
| 3:0  | RSVD   |      |       |                                                              |

# 3.3.2 clk\_cfg2

地址: 0x4000008

| 31 | 30 | 29  | 28  | 27   | 26 | 25    | 24 | 23  | 22 | 21 | 20   | 19   | 18 | 17      | 16 |  |  |  |
|----|----|-----|-----|------|----|-------|----|-----|----|----|------|------|----|---------|----|--|--|--|
|    |    |     | DM  | AEN  |    |       |    |     |    |    | RS   | VD   |    |         |    |  |  |  |
| 15 | 14 | 13  | 12  | 11   | 10 | 9     | 8  | 7   | 6  | 5  | 4    | 3    | 2  | 1       | 0  |  |  |  |
| RS | VD | SFS | SEL | SFEN |    | SFDIV |    | HUC | RS | VD | UART | RSVD |    | UARTDIV |    |  |  |  |
|    |    |     |     |      |    |       |    | SEL |    |    | EN   |      |    |         |    |  |  |  |

| Bits  | Name    | Туре | Reset | Description                                                                               |
|-------|---------|------|-------|-------------------------------------------------------------------------------------------|
| 31:24 | DMAEN   | R/W  | 8'hff | CH0, 1, 2, AHBm, AHBs, Rqs                                                                |
| 23:14 | RSVD    |      |       |                                                                                           |
| 13:12 | SFSEL   | R/W  | 2'd2  | Flash Clock Select (0: 120M, 1:80M, 2:HCLK, 3:96M)                                        |
| 11    | SFEN    | R/W  | 1     | Flash Clock Enable                                                                        |
| 10:8  | SFDIV   | R/W  | 3'd3  | Flash Clock Divider (Selected Flash Clock)/(N+1)                                          |
| 7     | HUCSEL  | R    | 0     | uart clock selection from HBN (0: root clock 1: PLL 160M)                                 |
| 6:5   | RSVD    |      |       |                                                                                           |
| 4     | UARTEN  | R/W  | 1     | UART Clock Enable                                                                         |
| 3     | RSVD    |      |       |                                                                                           |
| 2:0   | UARTDIV | R/W  | 3'd7  | UART Clock Divider (root clock or 160M)/(N+1) (clock source selected by hbn_uart_clk_sel) |

### 3.3.3 clk\_cfg3

地址: 0x400000c

BL602/604 Reference Manual 31/ 209 @2020 Bouffalo Lab



| 31 | 30   | 29 | 28   | 27 | 26 | 25 | 24  | 23 | 22   | 21 | 20  | 19  | 18     | 17 | 16 |
|----|------|----|------|----|----|----|-----|----|------|----|-----|-----|--------|----|----|
|    |      |    | RSVD |    |    |    | I2C |    |      |    | I2C | DIV |        |    |    |
|    | 1675 |    |      |    |    |    | EN  |    |      |    |     |     |        |    |    |
| 15 | 14   | 13 | 12   | 11 | 10 | 9  | 8   | 7  | 6    | 5  | 4   | 3   | 2      | 1  | 0  |
|    | RSVD |    |      |    |    |    |     |    | RSVD |    |     | •   | SPIDIV |    |    |
|    |      |    |      |    |    |    | EN  |    |      |    |     |     |        |    |    |

| Bits  | Name   | Туре | Reset  | Description                                          |
|-------|--------|------|--------|------------------------------------------------------|
| 31:25 | RSVD   |      |        |                                                      |
| 24    | I2CEN  | R/W  | 1      | I2C Master Clock Out Enable                          |
| 23:16 | I2CDIV | R/W  | 8'd255 | I2C Master Clock Out Divider (Freq_of_BCLK/(N+1))    |
| 15:9  | RSVD   |      |        |                                                      |
| 8     | SPIEN  | R/W  | 1      | SPI Clock Enable (Default : Enable)                  |
| 7:5   | RSVD   |      |        |                                                      |
| 4:0   | SPIDIV | R/W  | 5'd3   | SPI Clock Divider (BUS_CLK/(N+1)), default BUS_CLK/4 |

# 3.3.4 GPADC\_32M\_SRC\_CTRL

地址: 0x400000a4

| 31 | 30   | 29 | 28 | 27 | 26 | 25                 | 24 | 23 | 22   | 21 | 20 | 19  | 18   | 17 | 16 |  |
|----|------|----|----|----|----|--------------------|----|----|------|----|----|-----|------|----|----|--|
|    |      |    |    |    |    |                    | RS | VD |      |    |    |     |      |    |    |  |
| 15 | 14   | 13 | 12 | 11 | 10 | 9                  | 8  | 7  | 6    | 5  | 4  | 3   | 2    | 1  | 0  |  |
|    | RSVD |    |    |    |    |                    |    |    | RSVD |    |    | GAD | CDIV |    |    |  |
|    |      |    |    |    |    | RSVD GADC GADC RSV |    |    |      |    |    |     |      |    |    |  |

| Bits | Name    | Туре | Reset | Description                                                 |
|------|---------|------|-------|-------------------------------------------------------------|
| 31:9 | RSVD    |      |       |                                                             |
| 8    | GADCDIV | R/W  | 1     | GPADC 32M Clock Dvider Enable                               |
| 7    | GADCSEL | R/W  | 0     | GPADC Clock Source Select. 0: 96MHz, 1: xclk                |
| 6    | RSVD    |      |       |                                                             |
| 5:0  | GADCDIV | R/W  | 6'd2  | GPADC 32M Clock Divider (96M)/(N+1) , default : 96M/3 = 32M |

BL602/604 Reference Manual 32/ 209 @2020 Bouffalo Lab



### 3.3.5 GPIO\_CFGCTL0

地址: 0x40000100

| 31 | 30 | 29 | 28 | 27 | 26   | 25  | 24 | 23 | 22 | 21  | 20  | 19  | 18  | 17  | 16  |
|----|----|----|----|----|------|-----|----|----|----|-----|-----|-----|-----|-----|-----|
|    | RS | VD |    |    | GP1F | UNC |    | RS | VD | GP1 | GP1 | GP1 | DRV | GP1 | GP1 |
|    |    |    |    |    |      |     |    |    |    | PD  | PU  |     |     | SMT | ΙE  |
| 15 | 14 | 13 | 12 | 11 | 10   | 9   | 8  | 7  | 6  | 5   | 4   | 3   | 2   | 1   | 0   |
|    | RS | VD |    |    | GP0F | UNC |    | RS | VD | GP0 | GP0 | GP0 | DRV | GP0 | GP0 |
|    |    |    |    |    |      |     |    |    |    | PD  | PU  |     |     | SMT | ΙE  |

| Bits  | Name    | Туре | Reset | Description                           |
|-------|---------|------|-------|---------------------------------------|
| 31:28 | RSVD    |      |       |                                       |
| 27:24 | GP1FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 23:22 | RSVD    |      |       |                                       |
| 21    | GP1PD   | R/W  | 0     | GPIO Pull Down Control                |
| 20    | GP1PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 19:18 | GP1DRV  | R/W  | 0     | GPIO Driving Control                  |
| 17    | GP1SMT  | R/W  | 1     | GPIO SMT Control                      |
| 16    | GP1IE   | R/W  | 1     | GPIO Input Enable                     |
| 15:12 | RSVD    |      |       |                                       |
| 11:8  | GP0FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 7:6   | RSVD    |      |       |                                       |
| 5     | GP0PD   | R/W  | 0     | GPIO Pull Down Control                |
| 4     | GP0PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 3:2   | GP0DRV  | R/W  | 0     | GPIO Driving Control                  |
| 1     | GP0SMT  | R/W  | 1     | GPIO SMT Control                      |
| 0     | GP0IE   | R/W  | 1     | GPIO Input Enable                     |

# 3.3.6 GPIO\_CFGCTL1

地址: 0x40000104



| 31 | 30 | 29 | 28 | 27 | 26   | 25  | 24 | 23   | 22 | 21  | 20  | 19  | 18  | 17  | 16  |
|----|----|----|----|----|------|-----|----|------|----|-----|-----|-----|-----|-----|-----|
|    | RS | VD |    |    | GP3F | UNC |    | RS   | VD | GP3 | GP3 | GP3 | DRV | GP3 | GP3 |
|    |    |    |    |    |      |     |    |      |    | PD  | PU  |     |     | SMT | ΙE  |
| 15 | 14 | 13 | 12 | 11 | 10   | 9   | 8  | 7    | 6  | 5   | 4   | 3   | 2   | 1   | 0   |
|    | RS | VD |    |    | GP2F | UNC |    | RSVD |    | GP2 | GP2 | GP2 | DRV | GP2 | GP2 |
|    |    |    |    |    |      |     |    |      |    | PD  | PU  |     |     | SMT | ΙE  |

| Bits  | Name    | Туре | Reset | Description                           |
|-------|---------|------|-------|---------------------------------------|
| 31:28 | RSVD    |      |       |                                       |
| 27:24 | GP3FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 23:22 | RSVD    |      |       |                                       |
| 21    | GP3PD   | R/W  | 0     | GPIO Pull Down Control                |
| 20    | GP3PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 19:18 | GP3DRV  | R/W  | 0     | GPIO Driving Control                  |
| 17    | GP3SMT  | R/W  | 1     | GPIO SMT Control                      |
| 16    | GP3IE   | R/W  | 1     | GPIO Input Enable                     |
| 15:12 | RSVD    |      |       |                                       |
| 11:8  | GP2FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 7:6   | RSVD    |      |       |                                       |
| 5     | GP2PD   | R/W  | 0     | GPIO Pull Down Control                |
| 4     | GP2PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 3:2   | GP2DRV  | R/W  | 0     | GPIO Driving Control                  |
| 1     | GP2SMT  | R/W  | 1     | GPIO SMT Control                      |
| 0     | GP2IE   | R/W  | 1     | GPIO Input Enable                     |

# 3.3.7 GPIO\_CFGCTL2

地址: 0x40000108

| 31           | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16 |
|--------------|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|----|
| RSVD GP5FUNC |    |    |    |    |    | RS | VD | GP5 | GP5 | GP5 | DRV | GP5 | GP5 |     |    |
|              |    |    |    |    |    |    |    |     |     | PD  | PU  |     |     | SMT | ΙE |
| 15           | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0  |
| RSVD GP4FUNC |    |    |    |    |    | RS | VD | GP4 | GP4 | GP4 | DRV | GP4 | GP4 |     |    |
|              |    |    |    |    |    | PD | PU |     |     | SMT | ΙE  |     |     |     |    |



| Bits  | Name    | Туре | Reset | Description                           |
|-------|---------|------|-------|---------------------------------------|
| 31:28 | RSVD    |      |       |                                       |
| 27:24 | GP5FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 23:22 | RSVD    |      |       |                                       |
| 21    | GP5PD   | R/W  | 0     | GPIO Pull Down Control                |
| 20    | GP5PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 19:18 | GP5DRV  | R/W  | 0     | GPIO Driving Control                  |
| 17    | GP5SMT  | R/W  | 1     | GPIO SMT Control                      |
| 16    | GP5IE   | R/W  | 1     | GPIO Input Enable                     |
| 15:12 | RSVD    |      |       |                                       |
| 11:8  | GP4FUNC | R/W  | 4'h1  | GPIO Function Select (Default : SDIO) |
| 7:6   | RSVD    |      |       |                                       |
| 5     | GP4PD   | R/W  | 0     | GPIO Pull Down Control                |
| 4     | GP4PU   | R/W  | 0     | GPIO Pull Up Control                  |
| 3:2   | GP4DRV  | R/W  | 0     | GPIO Driving Control                  |
| 1     | GP4SMT  | R/W  | 1     | GPIO SMT Control                      |
| 0     | GP4IE   | R/W  | 1     | GPIO Input Enable                     |

# 3.3.8 GPIO\_CFGCTL3

地址: 0x4000010c

| 31           | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22     | 21  | 20  | 19  | 18  | 17  | 16 |
|--------------|----|----|----|----|----|----|-----|-----|--------|-----|-----|-----|-----|-----|----|
| RSVD GP7FUNC |    |    |    |    | RS | VD | GP7 | GP7 | GP7DRV |     | GP7 | GP7 |     |     |    |
|              |    |    |    |    |    |    |     |     |        | PD  | PU  |     |     | SMT | ΙE |
| 15           | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6      | 5   | 4   | 3   | 2   | 1   | 0  |
| RSVD GP6FUNC |    |    |    |    |    | RS | VD  | GP6 | GP6    | GP6 | DRV | GP6 | GP6 |     |    |
|              |    |    |    |    |    | PD | PU  |     |        | SMT | ΙE  |     |     |     |    |

| Bits  | Name    | Туре | Reset | Description                              |
|-------|---------|------|-------|------------------------------------------|
| 31:28 | RSVD    |      |       |                                          |
| 27:24 | GP7FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD    |      |       |                                          |
| 21    | GP7PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP7PU   | R/W  | 0     | GPIO Pull Up Control                     |



| Bits  | Name    | Туре | Reset | Description                              |
|-------|---------|------|-------|------------------------------------------|
| 19:18 | GP7DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP7SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP7IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD    |      |       |                                          |
| 11:8  | GP6FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD    |      |       |                                          |
| 5     | GP6PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP6PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP6DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP6SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP6IE   | R/W  | 1     | GPIO Input Enable                        |

### 3.3.9 GPIO\_CFGCTL4

地址: 0x40000110

| 31 | 30           | 29 | 28 | 27      | 26 | 25 | 24 | 23  | 22  | 21        | 20        | 19  | 18  | 17         | 16        |
|----|--------------|----|----|---------|----|----|----|-----|-----|-----------|-----------|-----|-----|------------|-----------|
|    | RS           | VD |    | GP9FUNC |    |    |    | RS  | VD  | GP9<br>PD | GP9<br>PU | GP9 | DRV | GP9<br>SMT | GP9<br>IE |
| 15 | 14           | 13 | 12 | 11      | 10 | 9  | 8  | 7   | 6   | 5         | 4         | 3   | 2   | 1          | 0         |
|    | RSVD GP8FUNC |    |    |         |    | RS | VD | GP8 | GP8 | GP8       | DRV       | GP8 | GP8 |            |           |
|    |              |    |    |         |    |    |    |     |     | PD        | PU        |     |     | SMT        | ΙE        |

| Bits  | Name    | Туре | Reset | Description                              |
|-------|---------|------|-------|------------------------------------------|
| 31:28 | RSVD    |      |       |                                          |
| 27:24 | GP9FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD    |      |       |                                          |
| 21    | GP9PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP9PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP9DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP9SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP9IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD    |      |       |                                          |
| 11:8  | GP8FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |



| Bits | Name   | Туре | Reset | Description            |
|------|--------|------|-------|------------------------|
| 7:6  | RSVD   |      |       |                        |
| 5    | GP8PD  | R/W  | 0     | GPIO Pull Down Control |
| 4    | GP8PU  | R/W  | 0     | GPIO Pull Up Control   |
| 3:2  | GP8DRV | R/W  | 0     | GPIO Driving Control   |
| 1    | GP8SMT | R/W  | 1     | GPIO SMT Control       |
| 0    | GP8IE  | R/W  | 1     | GPIO Input Enable      |

# 3.3.10 GPIO\_CFGCTL5

地址: 0x40000114

| 31 | 30            | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22   | 21   | 20      | 19   | 18   | 17   | 16   |
|----|---------------|----|----|----|------|------|----|------|------|------|---------|------|------|------|------|
|    | RSVD GP11FUNC |    |    |    |      |      | RS | VD   | GP11 | GP11 | GP11DRV |      | GP11 | GP11 |      |
|    |               |    |    |    |      |      |    |      |      | PD   | PU      |      |      | SMT  | ΙE   |
| 15 | 14            | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6    | 5    | 4       | 3    | 2    | 1    | 0    |
|    | RS            | VD |    |    | GP10 | FUNC |    | RSVD |      | GP10 | GP10    | GP10 | DRV  | GP10 | GP10 |
|    |               |    |    |    |      |      |    |      |      | PD   | PU      |      |      | SMT  | ΙE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP11FUNC | R/W  | 4'hE  | GPIO Function Select (Default : JTAG )   |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP11PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP11PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP11DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP11SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP11IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP10FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP10PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP10PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP10DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP10SMT  | R/W  | 1     | GPIO SMT Control                         |



| Bits | Name   | Туре | Reset | Description       |
|------|--------|------|-------|-------------------|
| 0    | GP10IE | R/W  | 1     | GPIO Input Enable |

# 3.3.11 GPIO\_CFGCTL6

地址: 0x40000118

| 31 | 30            | 29 | 28 | 27 | 26   | 25   | 24 | 23 | 22   | 21   | 20      | 19   | 18   | 17   | 16   |
|----|---------------|----|----|----|------|------|----|----|------|------|---------|------|------|------|------|
|    | RSVD GP13FUNC |    |    |    |      |      | RS | VD | GP13 | GP13 | GP13DRV |      | GP13 | GP13 |      |
|    |               |    |    |    |      |      |    |    | PD   | PU   |         |      | SMT  | ΙE   |      |
| 15 | 14            | 13 | 12 | 11 | 10   | 9    | 8  | 7  | 6    | 5    | 4       | 3    | 2    | 1    | 0    |
|    | RS            | VD |    |    | GP12 | FUNC |    | RS | VD   | GP12 | GP12    | GP12 | 2DRV | GP12 | GP12 |
|    |               |    |    |    |      |      |    |    | PD   | PU   |         |      | SMT  | ΙE   |      |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP13FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP13PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP13PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP13DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP13SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP13IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP12FUNC | R/W  | 4'hE  | GPIO Function Select (Default : JTAG )   |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP12PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP12PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP12DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP12SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP12IE   | R/W  | 1     | GPIO Input Enable                        |

## 3.3.12 GPIO\_CFGCTL7

地址: 0x4000011c



| 31 | 30            | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|----|---------------|----|----|----|------|------|----|------|------|------|------|------|------|------|------|
|    | RSVD GP15FUNC |    |    |    |      |      | RS | VD   | GP15 | GP15 | GP18 | 5DRV | GP15 | GP15 |      |
|    |               |    |    |    |      |      |    |      |      | PD   | PU   |      |      | SMT  | ΙE   |
| 15 | 14            | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|    | RS            | VD |    |    | GP14 | FUNC |    | RSVD |      | GP14 | GP14 | GP14 | 1DRV | GP14 | GP14 |
|    |               |    |    |    |      |      |    |      |      | PD   | PU   |      |      | SMT  | ΙE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP15FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP15PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP15PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP15DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP15SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP15IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP14FUNC | R/W  | 4'hE  | GPIO Function Select (Default : JTAG )   |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP14PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP14PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP14DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP14SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP14IE   | R/W  | 1     | GPIO Input Enable                        |

# 3.3.13 GPIO\_CFGCTL8

地址: 0x40000120

| 31 | 30            | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22   | 21   | 20      | 19   | 18   | 17   | 16   |
|----|---------------|----|----|----|------|------|----|------|------|------|---------|------|------|------|------|
|    | RSVD GP17FUNC |    |    |    |      |      | RS | VD   | GP17 | GP17 | GP17DRV |      | GP17 | GP17 |      |
|    |               |    |    |    |      |      |    |      |      | PD   | PU      |      |      | SMT  | ΙE   |
| 15 | 14            | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6    | 5    | 4       | 3    | 2    | 1    | 0    |
|    | RS            | VD |    |    | GP16 | FUNC |    | RSVD |      | GP16 | GP16    | GP16 | BDRV | GP16 | GP16 |
|    |               |    |    |    |      |      |    | PD   | PU   |      |         | SMT  | ΙE   |      |      |



| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP17FUNC | R/W  | 4'hE  | GPIO Function Select (Default : JTAG )   |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP17PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP17PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP17DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP17SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP17IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP16FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP16PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP16PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP16DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP16SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP16IE   | R/W  | 1     | GPIO Input Enable                        |

# 3.3.14 GPIO\_CFGCTL9

地址: 0x40000124

| 31 | 30            | 29 | 28 | 27 | 26   | 25   | 24 | 23 | 22   | 21   | 20      | 19   | 18   | 17   | 16   |
|----|---------------|----|----|----|------|------|----|----|------|------|---------|------|------|------|------|
|    | RSVD GP19FUNC |    |    |    |      |      | RS | VD | GP19 | GP19 | GP19DRV |      | GP19 | GP19 |      |
|    |               |    |    |    |      |      |    |    | PD   | PU   |         |      | SMT  | ΙE   |      |
| 15 | 14            | 13 | 12 | 11 | 10   | 9    | 8  | 7  | 6    | 5    | 4       | 3    | 2    | 1    | 0    |
|    | RS            | VD |    |    | GP18 | FUNC |    | RS | VD   | GP18 | GP18    | GP18 | BDRV | GP18 | GP18 |
|    |               |    |    |    |      |      |    | PD | PU   |      |         | SMT  | ΙE   |      |      |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP19FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP19PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP19PU   | R/W  | 0     | GPIO Pull Up Control                     |



| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 19:18 | GP19DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP19SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP19IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP18FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP18PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP18PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP18DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP18SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP18IE   | R/W  | 1     | GPIO Input Enable                        |

## 3.3.15 **GPIO\_CFGCTL10**

地址: 0x40000128

| 31 | 30 | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22 | 21   | 20   | 19      | 18  | 17   | 16   |
|----|----|----|----|----|------|------|----|------|----|------|------|---------|-----|------|------|
|    | RS | VD |    |    | GP21 | FUNC |    | RS   | VD | GP21 | GP21 | GP21DRV |     | GP21 | GP21 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |     | SMT  | IE   |
| 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6  | 5    | 4    | 3       | 2   | 1    | 0    |
|    | RS | VD |    |    | GP20 | FUNC |    | RSVD |    | GP20 | GP20 | GP20    | DRV | GP20 | GP20 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |     | SMT  | IE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP21FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP21PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP21PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP21DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP21SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP21IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP20FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |

BL602/604 Reference Manual 41/ 209 @2020 Bouffalo Lab



| Bits | Name    | Туре | Reset | Description            |
|------|---------|------|-------|------------------------|
| 7:6  | RSVD    |      |       |                        |
| 5    | GP20PD  | R/W  | 0     | GPIO Pull Down Control |
| 4    | GP20PU  | R/W  | 0     | GPIO Pull Up Control   |
| 3:2  | GP20DRV | R/W  | 0     | GPIO Driving Control   |
| 1    | GP20SMT | R/W  | 1     | GPIO SMT Control       |
| 0    | GP20IE  | R/W  | 1     | GPIO Input Enable      |

# 3.3.16 **GPIO\_CFGCTL11**

地址: 0x4000012c

| 31 | 30 | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22 | 21   | 20   | 19      | 18   | 17   | 16   |
|----|----|----|----|----|------|------|----|------|----|------|------|---------|------|------|------|
|    | RS | VD |    |    | GP23 | FUNC |    | RS   | VD | GP23 | GP23 | GP23DRV |      | GP23 | GP23 |
|    |    |    |    |    |      |      |    |      |    |      | PU   |         |      | SMT  | IE   |
| 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6  | 5    | 4    | 3       | 2    | 1    | 0    |
|    | RS | VD |    |    | GP22 | FUNC |    | RSVD |    | GP22 | GP22 | GP22    | 2DRV | GP22 | GP22 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |      | SMT  | ΙE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP23FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP23PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP23PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP23DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP23SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP23IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP22FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP22PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP22PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP22DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP22SMT  | R/W  | 1     | GPIO SMT Control                         |



| Bits | Name   | Туре | Reset | Description       |
|------|--------|------|-------|-------------------|
| 0    | GP22IE | R/W  | 1     | GPIO Input Enable |

# 3.3.17 **GPIO\_CFGCTL12**

地址: 0x40000130

| 31 | 30 | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22 | 21   | 20   | 19      | 18   | 17   | 16   |
|----|----|----|----|----|------|------|----|------|----|------|------|---------|------|------|------|
|    | RS | VD |    |    | GP25 | FUNC |    | RS   | VD | GP25 | GP25 | GP25DRV |      | GP25 | GP25 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   | 1       |      | SMT  | IE   |
| 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6  | 5    | 4    | 3       | 2    | 1    | 0    |
|    | RS | VD |    |    | GP24 | FUNC |    | RSVD |    | GP24 | GP24 | GP24    | IDRV | GP24 | GP24 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |      | SMT  | ΙE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP25FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP25PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP25PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP25DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP25SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP25IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP24FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP24PD   | R/W  | 1     | GPIO Pull Down Control                   |
| 4     | GP24PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP24DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP24SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP24IE   | R/W  | 1     | GPIO Input Enable                        |

## **3.3.18 GPIO\_CFGCTL13**

地址: 0x40000134

BL602/604 Reference Manual 43/ 209 @2020 Bouffalo Lab



| 31 | 30 | 29 | 28 | 27 | 26   | 25   | 24 | 23   | 22 | 21   | 20   | 19      | 18   | 17   | 16   |
|----|----|----|----|----|------|------|----|------|----|------|------|---------|------|------|------|
|    | RS | VD |    |    | GP27 | FUNC |    | RS   | VD | GP27 | GP27 | GP27DRV |      | GP27 | GP27 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |      | SMT  | ΙE   |
| 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8  | 7    | 6  | 5    | 4    | 3       | 2    | 1    | 0    |
|    | RS | VD |    |    | GP26 | FUNC |    | RSVD |    | GP26 | GP26 | GP26    | BDRV | GP26 | GP26 |
|    |    |    |    |    |      |      |    |      |    | PD   | PU   |         |      | SMT  | ΙE   |

| Bits  | Name     | Туре | Reset | Description                              |
|-------|----------|------|-------|------------------------------------------|
| 31:28 | RSVD     |      |       |                                          |
| 27:24 | GP27FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 23:22 | RSVD     |      |       |                                          |
| 21    | GP27PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 20    | GP27PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 19:18 | GP27DRV  | R/W  | 0     | GPIO Driving Control                     |
| 17    | GP27SMT  | R/W  | 1     | GPIO SMT Control                         |
| 16    | GP27IE   | R/W  | 1     | GPIO Input Enable                        |
| 15:12 | RSVD     |      |       |                                          |
| 11:8  | GP26FUNC | R/W  | 4'hB  | GPIO Function Select (Default : SWGPIO ) |
| 7:6   | RSVD     |      |       |                                          |
| 5     | GP26PD   | R/W  | 0     | GPIO Pull Down Control                   |
| 4     | GP26PU   | R/W  | 0     | GPIO Pull Up Control                     |
| 3:2   | GP26DRV  | R/W  | 0     | GPIO Driving Control                     |
| 1     | GP26SMT  | R/W  | 1     | GPIO SMT Control                         |
| 0     | GP26IE   | R/W  | 1     | GPIO Input Enable                        |

# 3.3.19 **GPIO\_CFGCTL14**

地址: 0x40000138

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19   | 18   | 17   | 16   |
|------|----|----|----|----|----|----|----|----|----|----|------|------|------|------|------|
|      |    |    |    |    |    |    |    |    |    |    |      |      |      |      |      |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3    | 2    | 1    | 0    |
| RSVD |    |    |    |    |    |    |    |    |    |    | GP28 | GP28 | BDRV | GP28 | GP28 |
|      |    |    |    |    |    |    |    |    |    | PD | PU   |      |      | SMT  | ΙE   |

BL602/604 Reference Manual 44/ 209 @2020 Bouffalo Lab



| Bits | Name    | Туре | Reset | Description            |
|------|---------|------|-------|------------------------|
| 31:6 | RSVD    |      |       |                        |
| 5    | GP28PD  | R/W  | 0     | GPIO Pull Down Control |
| 4    | GP28PU  | R/W  | 0     | GPIO Pull Up Control   |
| 3:2  | GP28DRV | R/W  | 0     | GPIO Driving Control   |
| 1    | GP28SMT | R/W  | 1     | GPIO SMT Control       |
| 0    | GP28IE  | R/W  | 1     | GPIO Input Enable      |

BL602/604 Reference Manual 45/ 209 @2020 Bouffalo Lab

### 4.1 Introduction

The chip contains a 12-bit successive approximation analog-to-digital converter (ADC), which supports 12 external analog inputs and several internal analog signal selections.

The ADC works in two modes: single conversion and multi-channel scanning. The conversion result is 12/14/16Bits left-justified mode. The ADC has a depth of 32 FIFOs and supports multiple interrupts and DMA operations. In addition to ordinary analog signal measurement, the ADC can also be used to measure the supply voltage. In addition, the ADC can also be used for temperature detection by measuring the internal/external diode voltage.

### 4.2 ADC main features

- · High performance
  - 12-bit, 14-bit or 16-bit conversion result output
  - ADC conversion time:fastest 0.5us for 12-bit resolution
  - 1.8V, 3.3V optional reference voltage
  - DMA support
  - Two working modes: single-channel conversion and multi-channel scanning
  - Two input modes: single-ended and differential
  - Support jitter compensation
  - User can set conversion result offset value
- · Analog channels
  - 12 external analog channels
  - 2 DAC internal channels



- 1 VBAT / 2 channel
- 1 TSEN channel

### 4.3 ADC functional description

The basic block diagram of the ADC is shown below.



Figure 4.1: ADC block diagram

The ADC consists of five parts: front-end input channel selector, program-controlled amplifier, ADC sampling module, data processing module, and FIFO.

The input channel selector is used to select the channel to be sampled. It contains both external analog signals and internal analog signals. The program-controlled amplifier is used to further process the input signal. It can be set according to the characteristics of the input signal, such as DC and AC. In order to get more accurate conversion values.

The ADC sampling module is the most important function module. It obtains the conversion from analog signals to digital signals through successive comparisons. The conversion result is 12Bit. The data processing module is responsible for further processing the conversion results, including adding channel information. The resulting data is pushed into the FIFO.



### 4.3.1 ADC pins and internal signals

Table 4.1: ADC internal signals

| 内部信号    | 信号类型  | 信号描述                                       |
|---------|-------|--------------------------------------------|
| VBAT/2  | Input | Voltage signal divided from the power pin  |
| TSEN    | Input | Internal temperature sensor output voltage |
| VREF    | Input | Internal analog module reference voltage   |
| DACOUTA | Input | DAC module output                          |
| DACOUTB | Input | DAC module output                          |

Table 4.2: ADC external pins

| 外部引脚    | 信号类型  | 信号描述                                                           |
|---------|-------|----------------------------------------------------------------|
| VDDA    | Input | Analog power supply and positive reference voltage for the ADC |
| VSSA    | Input | Ground for analog power supply                                 |
| ADC_CHX | Input | 12 analog input channels                                       |

#### 4.3.2 ADC channel

The channels that can be selected by the ADC include the input signals of external analog pins and the optional signals inside the chip:

- ADC CH0
- ADC CH1
- ADC CH2
- ADC CH3
- ADC CH4
- ADC CH5
- ADC CH6
- ADC CH7
- ADC CH8
- ADC CH9



- ADC CH10
- ADC CH11
- DAC OUTA
- DAC OUTB
- VBAT/2
- TSEN
- VREF
- GND

It should be noted that if VBAT/2 or TSEN is selected as the input signal to be acquired, gpadc\_vbat\_en or gpadc\_ts\_en needs to be set.

The ADC module can support single-ended input or differential input. If it is single-ended input mode, the negative input channel needs to select GND.

#### 4.3.3 ADC clock

The working clock source of the ADC module is shown in the following figure:



Figure 4.2: ADC Clock

The ADC clock source can select 96M, XTAL or internal RC32M from the PLL. The clock source selection is set in the GLB module. At the same time, the GLB module also provides the clock frequency division. By default, the ADC clock source is 96M. The frequency is 2, and the clock to the ADC module is 32M.

Inside the ADC module, a clock frequency division is provided. The default is 16 frequency division, so the internal clock of the ADC module is 2M by default. Users can adjust the ADC's clock source and various frequency division coefficients according to actual sampling requirements.

The gpadc\_32m\_clk\_div divider register width is 6Bits, and the maximum divider is 64. Frequency division formula:



fout = fsource / (gpadc\_32m\_clk\_div + 1).

The gpadc\_clk\_div\_ratio frequency division register is located inside the ADC module and has a width of 3Bits. The frequency division value is defined as follows:

• 3'b000: div=1

• 3'b001: div=4

• 3'b010: div=8

• 3'b011: div=12

• 3'b100: div=16

• 3'b101: div=20

• 3'b110: div=24

• 3'b111: div=32

#### 4.3.4 ADC conversion mode

The ADC supports two conversion modes: single-channel conversion mode and scan mode.

In single-channel conversion mode, the user needs to select the positive input channel through gpadc\_pos\_sel, select the negative input channel through gpadc\_neg\_sel, and set the gpadc\_cont\_conv\_en control bit to 0, which means single-channel conversion, and then set the gpadc\_conv\_start control bit to start the conversion.

In scan conversion mode, the gpadc\_cont\_conv\_en control bit needs to be set to 1, and the number of conversion channels set by the ADC according to the gpadc\_scan\_length control bit. According to the channel order set by the gpadc\_reg\_scn\_posX (X = 1, 2) and gpadc\_reg\_scn\_negX (X = 1, 2) registers, the conversion is performed one by one, and the result of the conversion is automatically pushed into the ADC FIFO. The channels set by the gpadc\_reg\_scn\_posX (X = 1, 2) and gpadc\_reg\_scn\_negX (X = 1, 2) registers can be the same, which means that users can implement multiple sampling conversions on a channel.

ADC conversion results are generally placed in the FIFO. The ADC module does not provide conversion completion interrupts. Users need to set the FIFO receive data threshold interrupt based on the actual number of conversion channels. The FIFO threshold interrupt is used as the ADC conversion completion interrupt.

#### 4.3.5 ADC consequence

The gpadc\_raw\_data register stores the raw result of the ADC. In single-ended mode, the data valid bit is 12Bits, unsigned bit. In differential mode, the highest bit is the sign bit. The remaining 11Bits represent the result of the conversion.

The gpadc\_data\_out register stores the ADC result. This result contains the ADC result, sign bit and channel information. The data format is as follows:

#### Table 4.3: ADC 转换结果含义

| BitS | 25                                                 | 24     | 23    | 22    | 21 | 20 | 19               | 18 | 17 | 16                | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|----------------------------------------------------|--------|-------|-------|----|----|------------------|----|----|-------------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| me   | Р                                                  | ositiv | ve ch | nanne | el | N  | Negative channel |    |    | Conversion result |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| an   | Positive channel  number  Negative channel  number |        |       |       |    |    |                  |    |    |                   |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

Bit21-Bit25 of the conversion result is the positive channel number, Bit16-Bit20 is the negative channel number, and Bit0-Bit15 is the converted value.

The gpadc\_res\_sel control bit can set the number of bits of the conversion result, which are 12 bits, 14 bits, and 16 bits, respectively. Among them, 14 bits and 16 bits are the results obtained by multiple sampling to improve the accuracy.

The values that can be set are as follows:

- 3'b000 12bit 2MS/s, OSR=1
- 3'b001 14bit 125kS/s, OSR=16
- 3'b010 14bit 31.25kS/s, OSR=64
- 3'b011 16bit 15.625KS/s, OSR=128
- 3'b100 16bit 7.8125KS/s, OSR=256

The ADC conversion result is left-justified. When 12 bits are selected, Bit15-Bit4 of the conversion result is valid. When 14 bits are selected, Bit15-Bit2 of the conversion result is valid. When 16 bits are selected, Bit15-Bit0 of the conversion result is valid.

Similarly, in the differential mode, the highest is the sign, that is, when 14 bits are selected, Bit15 is the sign bit, Bit14-Bit2 is the conversion result, and Bit14 is the MSB.

In single-ended mode, there is no sign bit, that is, when 12 bits are selected, Bit15-Bit4 is the conversion result and Bit15 is the MSB.

In actual use, the results of the ADC are generally placed in the FIFO, which is particularly important in the multichannel scan mode. Therefore, users generally obtain conversion results from the ADC FIFO. The data format of the ADC FIFO is the same in the gpadc data out register.

#### 4.3.6 ADC interrupt

The ADC module can generate interrupts when the positive sampling is saturated and the negative sampling is saturated. The respective interrupts can be masked by gpadc\_pos\_satur\_mask, gpadc\_neg\_satur\_mask.

When the interrupt is generated, the interrupt status can be queried by the gpadc\_pos\_satur, and gpadc\_neg\_satur registers, and the interrupt can be cleared by gpadc\_pos\_satur\_clr and gpadc\_neg\_satur\_clr. This function can be used to determine whether the input voltage is abnormal.



### **4.3.7 ADC FIFO**

The ADC module has a FIFO with a depth of 32 and a data width of 26Bits. After the ADC completes the conversion, it will automatically push the result into the FIFO. The ADC's FIFO has the following status and interrupt management functions:

- · FIFO full status
- · FIFO is not empty
- · FIFO Overrun interrupt
- FIFO Underrun interrupt

When an interrupt occurs, the interrupt flag can be cleared by the corresponding clear bit.

Using the ADC's FIFO, users can implement three modes of data acquisition: query mode, interrupt mode, and DMA mode.

#### **Query mode**

The CPU polls the gpadc\_rdy bit. When this control bit is set, it indicates that there is valid data in the FIFO. The CPU can obtain the number of FIFO data according to gpadc fifo data count and read these data from the FIFO.

#### Interrupt mode

The CPU sets gpadc\_rdy\_mask to 0, and the ADC will generate an interrupt when there is data in the FIFO. The user can use the interrupt function to obtain the number of FIFO data according to gpadc\_fifo\_data\_count and read these data from the FIFO. Then set gpadc\_rdy\_clr to clear the interrupt.

#### **DMA** mode

The user sets the gpadc\_dma\_en control bit, which can cooperate with DMA to complete the transfer of data to memory. When using the DMA mode, the gpadc\_fifo\_thl is used to set the threshold of the number of data sent by the ADC FIFO by the FIFO. When the DMA receives the request, it will automatically transfer the specified number of results from the FIFO to the corresponding memory according to the parameters set by the user.

#### 4.3.8 ADC configuration process

#### **Setting the ADC clock**

According to the ADC conversion speed requirements, determine the working clock of the ADC, set the ADC clock source and frequency division of the GLB module, and combine with gpadc\_clk\_div\_ratio to determine the final working module's clock frequency.

#### Set GPIO according to the channel used

According to the analog pin used, determine the channel number used, initialize the corresponding GPIO as an analog function. It should be noted that when setting the GPIO as an analog input, do not set the GPIO pull-up or pull-down, you need to set it to float.



#### Set the channel to be converted

Set the corresponding channel register according to the analog channel and conversion mode used.

For single-channel conversion, set the converted channel information in the gpadc\_pos\_sel and gpadc\_neg\_sel registers.

For multi-channel scanning mode, set gpadc\_scan\_length, gpadc\_reg\_scn\_posX and gpadc\_reg\_scn\_negX according to the number of scanning channels and scanning order.

#### Set the data reading method

According to the way of reading data introduced by ADC FIFO, select the mode to use and set the corresponding register. If you use DMA, you also need to configure a channel of DMA to cooperate with the ADC FIFO to complete the data transfer.

#### Start conversion

Finally set gpadc\_res\_sel to select the precision of the data conversion result. Finally set gpadc\_global\_en = 1 and gpadc\_conv\_start = 1 to start the ADC to start conversion.

When the conversion is complete and needs to be converted again, gpadc\_conv\_start needs to be set to 0 and then set to 1 in order to trigger the conversion again.

#### 4.3.9 VBAT measurement

The VBAT/2 measurement is the voltage of the chip VDD33, not the voltage of an external battery such as a lithium battery. If you need to measure the voltage of a power supply head such as a lithium battery, you can divide the voltage and then input it to the ADC's GPIO analog channel. Measuring the voltage of VDD33 can reduce the use of GPIO.

The VBAT/2 voltage measured by the ADC module is after a partial pressure. The actual input voltage to the ADC module is half of VDD33, that is, VBAT/2 = VDD33/2. Because the voltage is divided, in order to obtain higher accuracy, it is recommended that the reference voltage of the ADC is 1.8V, single-ended mode is used, the positive input voltage is VBAT/2, the negative input voltage is GND, and Gpadc\_vbat\_en is set to 1 to start.

After conversion, multiply the corresponding conversion result by 2 to get the VDD33 voltage.

#### 4.3.10 TSEN measurement

The ADC can measure the internal diode or external diode voltage value, and the voltage difference between the diode and temperature is related, so by measuring the voltage of the diode, the ambient temperature can be calculated. We call it Temperature Sensor, referred to as TSEN.

The test principle of TSEN is to generate a fitted curve by measuring the voltage difference  $\Delta V$  generated by two different currents on a diode with temperature.

Regardless of the measurement of the external or internal diode, the final output value is related to temperature, which



can be expressed as  $\Delta(ADC\_out)$  = 7.753T + X. When we know the voltage value, we also know the temperature T. Here X is an offset value that can be used as a standard value. Before actual use, we need to determine X. The chip manufacturer will measure  $\Delta(ADC\_out)$  at a standard temperature, such as 25 degrees at room temperature, before the chip leaves the factory to get X.

When the user uses it, as long as the formula  $T = [\Delta(ADC_out) - X]/7.753$ , the temperature T can be obtained.

When using TSEN, it is recommended to set the ADC to 16Bits mode, reduce the error by multiple sampling, and select 1.8V as the reference voltage to improve accuracy. Set gpadc\_ts\_en to 1 to enable the TSEN function. If the internal diode is selected, gpadc\_tsext\_sel = 0. External diode, gpadc\_tsext\_sel = 1, select the forward input channel according to the actual situation.

If it is an internal diode, select the TSEN channel. If it is external, select the corresponding analog GPIO channel. Select the negative input terminal as GND. After the above settings are completed, set gpadc\_tsvbe\_low = 0 to start the measurement and get the measurement result V0, then set gpadc\_tsvbe\_low = 1 to start the measurement and get the measurement result V1,  $\Delta$ (ADC\_out) = V1-V0, according to the formula T = [ $\Delta$ (ADC\_out) -X] /7.753 to obtain the temperature T.

### 4.4 寄存器描述

| Name                 | Description                   |
|----------------------|-------------------------------|
| gpadc_config         | GPADC configuration           |
| gpadc_dma_rdata      | GPADC DMA read data           |
| gpadc_reg_cmd        | GPADC configuration register  |
| gpadc_reg_config1    | GPADC configuration register1 |
| gpadc_reg_config2    | GPADC configuration register2 |
| gpadc_reg_scn_pos1   | GPADC converation sequence 1  |
| gpadc_reg_scn_pos2   | GPADC converation sequence 2  |
| gpadc_reg_scn_neg1   | GPADC converation sequence 3  |
| gpadc_reg_scn_neg2   | GPADC converation sequence 4  |
| gpadc_reg_status     | GPADC status register         |
| gpadc_reg_isr        | GPADC status flag register    |
| gpadc_reg_result     | GPADC result register         |
| gpadc_reg_raw_result | GPADC raw result register     |
| gpadc_reg_define     | GPADC define register         |



## 4.4.1 gpadc\_config

Address: 0x40002000

| 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24  | 23   | 22               | 21   | 20  | 19   | 18   | 17   | 16  |
|------|------|------|------|------|------|------|-----|------|------------------|------|-----|------|------|------|-----|
|      | RSVD |      |      |      |      |      |     |      | FIFOTHL FIFODACN |      |     |      |      |      |     |
| 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8   | 7    | 6                | 5    | 4   | 3    | 2    | 1    | 0   |
| RSVD | FURM | FORM | RDYM | RSVD | URCL | ORCL | RDY | RSVD | FIFO             | FIFO | RDY | FIFO | FIFO | FIFO | DMA |
|      |      |      |      |      |      |      | CLR |      | UR               | OR   |     | FULL | NE   | CLR  | EN  |

| Bits  | Name     | Туре | Reset | Description                          |
|-------|----------|------|-------|--------------------------------------|
| 31:24 | RSVD     |      |       |                                      |
| 23:22 | FIFOTHL  | R/W  | 2'd0  | fifo threshold                       |
|       |          |      |       | 2'b00: 1 data                        |
|       |          |      |       | 2'b01: 4 data                        |
|       |          |      |       | 2'b10: 8 data                        |
|       |          |      |       | 2'b11: 16 data                       |
| 21:16 | FIFODACN | R    | 6'd0  | fifo data number                     |
| 15    | RSVD     |      |       |                                      |
| 14    | FURM     | R/W  | 1'b0  | write 1 mask                         |
| 13    | FORM     | R/W  | 1'b0  | write 1 mask                         |
| 12    | RDYM     | R/W  | 1'b0  | write 1 mask                         |
| 11    | RSVD     |      |       |                                      |
| 10    | URCL     | R/W  | 1'b0  | Write 1 to clear flag                |
| 9     | ORCL     | R/W  | 1'b0  | Write 1 to clear flag                |
| 8     | RDYCLR   | R/W  | 1'b0  | Write 1 to clear flag                |
| 7     | RSVD     |      |       |                                      |
| 6     | FIFOUR   | R    | 1'b0  | FIFO underrun interrupt flag         |
| 5     | FIFOOR   | R    | 1'b0  | FIFO overrun interrupt flag          |
| 4     | RDY      | R    | 1'b0  | Conversion data ready interrupt flag |
| 3     | FIFOFULL | R    | 1'b0  | FIFO full flag                       |
| 2     | FIFONE   | R    | 1'b0  | FIFO not empty flag                  |
| 1     | FIFOCLR  | W1C  | 1'b0  | FIFO clear signal                    |
| 0     | DMAEN    | R/W  | 1'b0  | GPADC DMA enbale                     |



### 4.4.2 gpadc\_dma\_rdata

Address: 0x40002004

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24     | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |
|----|--------|----|----|----|----|----|--------|----|----|----|----|----|----|----|----|--|
|    | RSVD   |    |    |    |    |    | DMARDA |    |    |    |    |    |    |    |    |  |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8      | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | DMARDA |    |    |    |    |    |        |    |    |    |    |    |    |    |    |  |

| Bits  | Name   | Туре | Reset | Description                                       |
|-------|--------|------|-------|---------------------------------------------------|
| 31:26 | RSVD   |      |       |                                                   |
| 25:0  | DMARDA | R    | 26'd0 | GPADC finial conversion result stored in the FIFO |

### 4.4.3 gpadc\_reg\_cmd

Address: 0x4000f90c

| 31   | 30        | 29  | 28   | 27   | 26     | 25   | 24 | 23   | 22 | 21     | 20  | 19   | 18   | 17   | 16  |
|------|-----------|-----|------|------|--------|------|----|------|----|--------|-----|------|------|------|-----|
| RSVD | STEN      | SEN | ISEL | CSPU |        | RSVD |    | MBEN | MF | PG     | M1D | M2D  | DWEN | RSVD | вмв |
| 15   | 14        | 13  | 12   | 11   | 10     | 9    | 8  | 7    | 6  | 5      | 4   | 3    | 2    | 1    | 0   |
| MPEN | MBI<br>EN | NG  |      |      | POSSEL |      |    |      |    | NEGSEL |     | SRST | CSTA | GEN  |     |

| Bits  | Name   | Туре | Reset | Description                                                                                                                     |
|-------|--------|------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 31    | RSVD   |      |       |                                                                                                                                 |
| 30    | STEN   | R/W  | 1'b0  | enable sensor dc test mux                                                                                                       |
| 29:28 | SENSEL | R/W  | 2'h0  | selected output current channel and measurement channel 2'h0: 1st channel 2'h1: 2nd channel 2'h2: 3rd channel 2'h3: 4th channel |
| 27    | CSPU   | R/W  | 1'b0  | enable chip sensor test 1'b0: disable 1'b1: enable                                                                              |
| 26:24 | RSVD   |      |       |                                                                                                                                 |
| 23    | MBEN   | R/W  | 1'b0  | micboost 32db enable 1'b0: 16dB 1'b1: 32dB                                                                                      |



| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 22:21 | MPG   | R/W  | 2'h0  | mic_pga2_gain 2'h0: 0dB 2'h1: 6dB 2'h2: -6dB 2'h3: 12dB        |
| 20    | M1D   | R/W  | 1'b0  | mic1 diff enable 1'b0: single 1'b1: diff                       |
| 19    | M2D   | R/W  | 1'b0  | mic2 diff enable 1'b0: single 1'b1: diff                       |
| 18    | DWEN  | R/W  | 1'b0  | dwa enable 1'b0: dwa disable 1'b1: dwa enable                  |
| 17    | RSVD  |      |       |                                                                |
| 16    | ВМВ   | R/W  | 1'b0  | micboost amp bypass 1'b0: not bypass 1'b1: bypass              |
| 15    | MPEN  | R/W  | 1'b0  | micpga enable 1'b0: micpga disable 1'b1: miapga enable         |
| 14    | MBIEN | R/W  | 1'b0  | enable micbias 1'b0: micbias power down 1'b1: miabias power on |
| 13    | NG    | R/W  | 1'b0  | set negative input of adc to ground 1'b0: disable 1'b1: enable |



| Bits | Name   | Туре | Reset | Description                                                                                                                                                                                                                                              |
|------|--------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12:8 | POSSEL | R/W  | 5'hf  | select adc positive input in none-scan mode 4'b0000 gpio0 4'b0001 gpio1 4'b0010 gpio2 4'b0011 gpio3 4'b0100 gpio4 4'b0101 gpio5 4'b0110 gpio6 4'b0111 gpio7 4'b1000 daca 4'b1001 dacb 4'b1010 vbat 4'b1010 vref 4'b1100 grid 4'b1111 disable             |
| 7:3  | NEGSEL | R/W  | 5'hf  | select adc negative input in none-scan mode 4'b0000 gpio0 4'b0001 gpio1 4'b0010 gpio2 4'b0011 gpio3 4'b0100 gpio4 4'b0101 gpio5 4'b0110 gpio6 4'b0111 gpio7 4'b1000 daca 4'b1001 dacb 4'b1010 vbat 4'b1011 tsen 4'b1100 vref 4'b1101 gnd 4'b1111 disable |
| 2    | SRST   | R/W  | 1'b0  | user reset the whole block 1'h0: not reset 1'h1: reset                                                                                                                                                                                                   |
| 1    | CSTA   | R/W  | 1'b0  | 1'h0: stop converation 1'h1: start converation                                                                                                                                                                                                           |
| 0    | GEN    | R/W  | 1'b0  | 1'h0: disable ADC 1'h1: enable ADC                                                                                                                                                                                                                       |

## 4.4.4 gpadc\_reg\_config1

Address: 0x4000f910



| 31   | 30   | 29  | 28  | 27  | 26   | 25   | 24 | 23  | 22  | 21 | 20 | 19    | 18 | 17   | 16   |
|------|------|-----|-----|-----|------|------|----|-----|-----|----|----|-------|----|------|------|
| RSVD | V18  | SEL | V11 | SEL | DTEN | SCEN |    | SCI | _EN |    |    | CDRD  |    | CAIV | RSVD |
| 15   | 14   | 13  | 12  | 11  | 10   | 9    | 8  | 7   | 6   | 5  | 4  | 3     | 2  | 1    | 0    |
|      | RSVD |     |     |     |      |      |    |     |     |    |    | RSSEL |    | CTCV | OCEN |

| Bits  | Name   | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|--------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31    | RSVD   |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30:29 | V18SEL | R/W  | 2'h0  | internal vdd18 select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 28:27 | V11SEL | R/W  | 2'h0  | internal vdd11 select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26    | DTEN   | R/W  | 1'h0  | Dither compensation enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25    | SCEN   | R/W  | 1'h0  | select scan mode enable: 0: select gpadc_pos/neg_sel;1: select : select gpadc_scan_pos_x and gpadc_scan_negx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24:21 | SCLEN  | R/W  | 4'h0  | select scan mode length 4'b0000: select gpadc_scan_pos_0 and gpadc_scan neg_0 4'b0001: select gpadc_scan_pos_1 and gpadc_scan neg_1 4'b0010: select gpadc_scan_pos_2 and gpadc_scan neg_2 4'b0011: select gpadc_scan_pos_3 and gpadc_scan neg_3 4'b0100: select gpadc_scan_pos_4 and gpadc_scan neg_4 4'b0101: select gpadc_scan_pos_5 and gpadc_scan neg_5 4'b0110: select gpadc_scan_pos_6 and gpadc_scan neg_6 4'b0111: select gpadc_scan_pos_7 and gpadc_scan neg_7 4'b1000: select gpadc_scan_pos_8 and gpadc_scan neg_8 4'b1001: select gpadc_scan_pos_9 and gpadc_scan neg_9 4'b1010: select gpadc_scan_pos_10 and gpadc_scan neg_10 4'b1011: select gpadc_scan_pos_11 and gpadc_scan neg_10 4'b1011: select gpadc_scan_pos_11 and gpadc_scan neg_11 |



| Bits  | Name  | Туре | Reset | Description                                           |
|-------|-------|------|-------|-------------------------------------------------------|
| 20:18 | CDRD  | R/W  | 3'h3  | analog 32M clock division ratio                       |
|       |       |      |       | 3'b000: div=1                                         |
|       |       |      |       | 3'b001: div=4                                         |
|       |       |      |       | 3'b010: div=8                                         |
|       |       |      |       | 3'b011: div=12                                        |
|       |       |      |       | 3'b100: div=16                                        |
|       |       |      |       | 3'b101: div=20                                        |
|       |       |      |       | 3'b110: div=24                                        |
|       |       |      |       | 3'b111: div=32                                        |
| 17    | CAIV  | R/W  | 1'b0  | analog clock 2M inverted                              |
| 16:5  | RSVD  |      |       |                                                       |
| 4:2   | RSSEL | R/W  | 3'h0  | adc resolution/over-sample rate select                |
|       |       |      |       | 3'b000 12bit 2MS/s, OSR=1                             |
|       |       |      |       | 3'b001 14bit 125kS/s, OSR=16                          |
|       |       |      |       | 3'b010 14bit 31.25kS/s, OSR=64                        |
|       |       |      |       | 3'b011 16bit 15.625KS/s, OSR=128 (voice mode16KS/s)   |
|       |       |      |       | 3'b100 16bit 7.8125KS/s, OSR=256 (voice mode 8KS/s)   |
| 1     | CTCV  | R/W  | 1'b1  | To enable continuous conversion                       |
|       |       |      |       | 1'h0: one shot conversion 1'h1: continuous conversion |
| 0     | OCEN  | R/W  | 1'b0  | offset calibration enable                             |

# 4.4.5 gpadc\_reg\_config2

Address: 0x4000f914

| 31   | 30   | 29     | 28 | 27 | 26      | 25 | 24 | 23      | 22   | 21  | 20      | 19   | 18   | 17   | 16 |
|------|------|--------|----|----|---------|----|----|---------|------|-----|---------|------|------|------|----|
| TDCR |      | DLYSEL |    | F  | GA1GAII | N  | F  | GA2GAII | N    |     | TESTSEL | -    | ATEN | BSEL | СМ |
| 15   | 14   | 13     | 12 | 11 | 10      | 9  | 8  | 7       | 6    | 5   | 4       | 3    | 2    | 1    | 0  |
| СМ   | PCEN | PEN    |    | PO | CAL     |    | PV | СМ      | TSEN | DDM | VBEN    | VRFS | DIFM | RS   | VD |

| Bits  | Name   | Туре | Reset | Description          |
|-------|--------|------|-------|----------------------|
| 31    | TDCR   | R/W  | 1'b0  | tsen diode current   |
| 30:28 | DLYSEL | R/W  | 3'h0  | adc conversion speed |



| Bits  | Name     | Туре | Reset | Description                                                                                                 |
|-------|----------|------|-------|-------------------------------------------------------------------------------------------------------------|
| 27:25 | PGA1GAIN | R/W  | 3'h0  | 3'h0: disable 3'h1: gain=1 3'h2: gain=2 3'h3: gain=4 3'h4: gain=8 3'h5: gain=16 3'h6: gain=32 3'h7: gain=32 |
| 24:22 | PGA2GAIN | R/W  | 3'h0  | 3'h0: disable 3'h1: gain=1 3'h2: gain=2 3'h3: gain=4 3'h4: gain=8 3'h5: gain=16 3'h6: gain=32 3'h7: gain=32 |
| 21:19 | TESTSEL  | R/W  | 3'h0  | select test point 0 7                                                                                       |
| 18    | ATEN     | R/W  | 1'b0  | Analog test enable.                                                                                         |
| 17    | BSEL     | R/W  | 1'b0  | adc analog portion low power mode select 1'h0: Full biasing current 1'h1: Half biasing current              |
| 16:15 | СМ       | R/W  | 2'h3  | 2'b11 all off 2'b11 Vref AZ on 2'b11 Vref AZ and PGA chop on 2'b11 Vref AZ and PGA chop+RPC on              |
| 14    | PCEN     | R/W  | 1'b0  | enable pga input vcm bias                                                                                   |
| 13    | PEN      | R/W  | 1'b0  | 1'h0: disable PGA 1'h1 enable PGA                                                                           |
| 12:9  | POCAL    | R/W  | 4'h8  | pga offset calibration                                                                                      |
| 8:7   | PVCM     | R/W  | 2'h2  | Audio PGA output common mode control 2'b00: cm=1V 2'b11: cm=1.2V 2'b11: cm=1.4V 2'b11: cm=1.6V              |
| 6     | TSEN     | R/W  | 1'b0  | 1'h0: disable temperature sensor 1'h1: enable temperature sensor                                            |
| 5     | DDM      | R/W  | 1'b0  | 1'h0: internal diode mode 1'h1: external diode mode                                                         |
| 4     | VBEN     | R/W  | 1'b0  | 1'h0: disable VBAT sensor 1'h1 enable VBAT sensor                                                           |



| Bits | Name | Туре | Reset | Description                         |
|------|------|------|-------|-------------------------------------|
| 3    | VRFS | R/W  | 1'b0  | ADC reference select                |
|      |      |      |       | 1'h0 3.3V                           |
|      |      |      |       | 1'h1 1.8V                           |
| 2    | DIFM | R/W  | 1'b0  | 1'h0 single-ended 1'h1 differential |
| 1:0  | RSVD |      |       |                                     |

### 4.4.6 gpadc\_reg\_scn\_pos1

Address: 0x4000f918

| 31    | 30          | 29 | 28     | 27 | 26 | 25     | 24 | 23     | 22 | 21 | 20    | 19 | 18     | 17 | 16 |
|-------|-------------|----|--------|----|----|--------|----|--------|----|----|-------|----|--------|----|----|
| RS    | RSVD SCANP5 |    |        |    |    | SCANP4 |    |        |    |    | SCAN3 |    |        |    |    |
| 15    | 14          | 13 | 12     | 11 | 10 | 9      | 8  | 7      | 6  | 5  | 4     | 3  | 2      | 1  | 0  |
| SCAN3 | 3           |    | SCANP2 |    |    |        |    | SCANP1 |    |    |       |    | SCANP0 |    |    |

| Bits  | Name   | Туре | Reset | Description                                       |
|-------|--------|------|-------|---------------------------------------------------|
| 31:30 | RSVD   |      |       |                                                   |
| 29:25 | SCANP5 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 24:20 | SCANP4 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 19:15 | SCAN3  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 14:10 | SCANP2 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 9:5   | SCANP1 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 4:0   | SCANP0 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |

## 4.4.7 gpadc\_reg\_scn\_pos2

Address: 0x4000f91c

| 31    | 30 | 29      | 28     | 27 | 26 | 25 | 24      | 23     | 22 | 21 | 20 | 19    | 18     | 17 | 16 |  |
|-------|----|---------|--------|----|----|----|---------|--------|----|----|----|-------|--------|----|----|--|
| RS    | VD | SCANP11 |        |    |    |    | SCANP10 |        |    |    |    | SCAN9 |        |    |    |  |
| 15    | 14 | 13      | 12     | 11 | 10 | 9  | 8       | 7      | 6  | 5  | 4  | 3     | 2      | 1  | 0  |  |
| SCAN9 |    |         | SCANP8 |    |    |    |         | SCANP7 |    |    |    |       | SCANP6 |    |    |  |

| Bits  | Name | Туре | Reset | Description |
|-------|------|------|-------|-------------|
| 31:30 | RSVD |      |       |             |

BL602/604 Reference Manual 62/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                                       |
|-------|---------|------|-------|---------------------------------------------------|
| 29:25 | SCANP11 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 24:20 | SCANP10 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 19:15 | SCAN9   | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 14:10 | SCANP8  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 9:5   | SCANP7  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |
| 4:0   | SCANP6  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_pos_sel |

## 4.4.8 gpadc\_reg\_scn\_neg1

Address: 0x4000f920

| 31    | 30          | 29     | 28 | 27 | 26 | 25 | 24     | 23 | 22 | 21 | 20 | 19     | 18 | 17 | 16 |  |
|-------|-------------|--------|----|----|----|----|--------|----|----|----|----|--------|----|----|----|--|
| RS    | RSVD SCANN5 |        |    |    |    |    | SCANN4 |    |    |    |    | SCAN3  |    |    |    |  |
| 15    | 14          | 13     | 12 | 11 | 10 | 9  | 8      | 7  | 6  | 5  | 4  | 3      | 2  | 1  | 0  |  |
| SCAN3 | 3           | SCANN2 |    |    |    |    | SCANN1 |    |    |    |    | SCANN0 |    |    |    |  |

| Bits  | Name   | Туре | Reset | Description                                       |
|-------|--------|------|-------|---------------------------------------------------|
| 31:30 | RSVD   |      |       |                                                   |
| 29:25 | SCANN5 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 24:20 | SCANN4 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 19:15 | SCAN3  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 14:10 | SCANN2 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 9:5   | SCANN1 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 4:0   | SCANN0 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |

# 4.4.9 gpadc\_reg\_scn\_neg2

Address: 0x4000f924

| 31    | 30 | 29      | 28            | 27 | 26 | 25 | 24     | 23              | 22      | 21 | 20     | 19 | 18 | 17 | 16 |
|-------|----|---------|---------------|----|----|----|--------|-----------------|---------|----|--------|----|----|----|----|
| RS    | VD | SCANN11 |               |    |    |    |        | ;               | SCANN10 | )  | SCAN9  |    |    |    |    |
| 15    | 14 | 13      | 13 12 11 10 9 |    |    |    | 8      | 8 7 6 5 4 3 2 1 |         |    |        |    | 1  | 0  |    |
| SCAN9 |    | SCANN8  |               |    |    |    | SCANN7 |                 |         |    | SCANN6 |    |    |    |    |

BL602/604 Reference Manual 63/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                                       |
|-------|---------|------|-------|---------------------------------------------------|
| 31:30 | RSVD    |      |       |                                                   |
| 29:25 | SCANN11 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 24:20 | SCANN10 | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 19:15 | SCAN9   | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 14:10 | SCANN8  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 9:5   | SCANN7  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |
| 4:0   | SCANN6  | R/W  | 5'hf  | definition is the same as adc_reg_cmd.adc_neg_sel |

# 4.4.10 gpadc\_reg\_status

Address: 0x4000f928

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19   | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|------|----|----|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |      |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3    | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    |    | DRDY |    |    |    |

| Bits | Name | Туре | Reset | Description                     |
|------|------|------|-------|---------------------------------|
| 31:1 | RSVD |      |       |                                 |
| 0    | DRDY | R    | 1'b0  | ADC final conversion data ready |

## 4.4.11 gpadc\_reg\_isr

Address: 0x4000f92c

| 31   | 30   | 29 | 28 | 27 | 26 | 25  | 24                   | 23 | 22 | 21 | 20  | 19 | 18 | 17 | 16 |
|------|------|----|----|----|----|-----|----------------------|----|----|----|-----|----|----|----|----|
|      | RSVD |    |    |    |    |     |                      |    |    |    |     |    |    |    |    |
| 15   | 14   | 13 | 12 | 11 | 10 | 9   | 8                    | 7  | 6  | 5  | 4   | 3  | 2  | 1  | 0  |
| RSVD |      |    |    |    |    | PSM | PSM NSM RSVD PSC NSC |    |    |    | NSC | RS | VD | PS | NS |

| Bits  | Name | Туре | Reset | Description  |
|-------|------|------|-------|--------------|
| 31:10 | RSVD |      |       |              |
| 9     | PSM  | R/W  | 1'h0  | write 1 mask |
| 8     | NSM  | R/W  | 1'h0  | write 1 mask |
| 7:6   | RSVD |      |       |              |

BL602/604 Reference Manual 64/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description                                      |
|------|------|------|-------|--------------------------------------------------|
| 5    | PSC  | R/W  | 1'b0  | Write 1 to clear flag                            |
| 4    | NSC  | R/W  | 1'b0  | Write 1 to clear flag                            |
| 3:2  | RSVD |      |       |                                                  |
| 1    | PS   | R    | 1'b0  | ADC data positive side saturation interrupt flag |
| 0    | NS   | R    | 1'b0  | ADC data negative side saturation interrupt flag |

# 4.4.12 gpadc\_reg\_result

Address: 0x4000f930

| 31                                | 30      | 29 | 28 | 27 | 26 | 25 | 24      | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-----------------------------------|---------|----|----|----|----|----|---------|----|----|----|----|----|----|----|----|
|                                   | RSVD    |    |    |    |    |    | DATAOUT |    |    |    |    |    |    |    |    |
| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 |         |    |    |    |    |    |         | 1  | 0  |    |    |    |    |    |    |
|                                   | DATAOUT |    |    |    |    |    |         |    |    |    |    |    |    |    |    |

| Bits  | Name    | Туре | Reset       | Description                                                                      |
|-------|---------|------|-------------|----------------------------------------------------------------------------------|
| 31:26 | RSVD    |      |             |                                                                                  |
| 25:0  | DATAOUT | R    | 26'h1EF0000 | ADC finial conversion result data, after calibration and signed/unsigned process |

## 4.4.13 gpadc\_reg\_raw\_result

Address: 0x4000f934

| 31   | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21   | 20 | 19 | 18 | 17 | 16 |
|------|------|----|----|----|----|----|----|----|-----|------|----|----|----|----|----|
|      | RSVD |    |    |    |    |    |    |    |     |      |    |    |    |    |    |
| 15   | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6   | 5    | 4  | 3  | 2  | 1  | 0  |
| RSVD |      |    |    |    |    |    |    |    | RAW | DATA |    |    |    |    | ·  |

| Bits  | Name    | Туре | Reset | Description  |
|-------|---------|------|-------|--------------|
| 31:12 | RSVD    |      |       |              |
| 11:0  | RAWDATA | R    | 12'h0 | ADC Raw data |

BL602/604 Reference Manual 65/ 209 @2020 Bouffalo Lab



### 4.4.14 gpadc\_reg\_define

Address: 0x4000f938

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | OSCDATA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name    | Туре | Reset | Description                                               |
|-------|---------|------|-------|-----------------------------------------------------------|
| 31:16 | RSVD    |      |       |                                                           |
| 15:0  | OSCDATA | R/W  | 16'h0 | User defined or self calculated offset data 16-bit signed |

BL602/604 Reference Manual 66/ 209 @2020 Bouffalo Lab

 $\mathsf{DAC}$ 

### 5.1 Introduction

The chip has a built-in 10Bits digital-to-analog converter (DAC) with a FIFO depth of 1, and supports 2 DAC modulation outputs.

Can be used for audio playback, transmitter voltage modulation.

### 5.2 Main features

- DAC modulation accuracy is 10-Bits
- DAC input clock can be selected as 32k, 16k, 8k or 512k
- Support DMA to transfer memory to DAC modulation register
- Support dual channel playback DMA transport mode
- The output pin of DAC is fixed to ChannelA as GPIO13, Channel as GPIO14

# 5.3 Function description

The basic block diagram of the DAC module is shown in the figure.





- DAC module supports up to two modulation outputs
- DAC module supports dual-channel DMA data transfer mode
- DAC module supports a DMA data interface with a length of 32BIT, in which the high 16 bits will be modulated on the pins of ChannelA, and the low 16 bits will be modulated on the pins of ChannelB

### 5.4 寄存器描述

| Name             | Description             |  |  |  |
|------------------|-------------------------|--|--|--|
| gpdac_config     | GPDAC configuration     |  |  |  |
| gpdac_dma_config | GPDAC DMA configuration |  |  |  |
| gpdac_dma_wdata  | GPDAC DMA write data    |  |  |  |

### 5.4.1 gpdac\_config

Address: 0x40002040



| 31   | 30        | 29 | 28 | 27 | 26 | 25 | 24           | 23     | 22 | 21 | 20 | 19     | 18 | 17 | 16 |  |
|------|-----------|----|----|----|----|----|--------------|--------|----|----|----|--------|----|----|----|--|
| RSVD |           |    |    |    |    |    |              | CHBSEL |    |    |    | CHASEL |    |    |    |  |
| 15   | 14        | 13 | 12 | 11 | 10 | 9  | 8            | 7      | 6  | 5  | 4  | 3      | 2  | 1  | 0  |  |
|      | RSVD MODE |    |    |    |    |    | RSVD DSMMODE |        |    | RS | VD | EN2    | EN |    |    |  |

| Bits  | Name    | Туре | Reset | Description                              |
|-------|---------|------|-------|------------------------------------------|
| 31:24 | RSVD    |      |       |                                          |
| 23:20 | CHBSEL  | R/W  | 0     | Channel B Source Select                  |
|       |         |      |       | 0: Reg                                   |
|       |         |      |       | 1: DMA                                   |
|       |         |      |       | 2: DMA + Filter                          |
|       |         |      |       | 3: Sin Gen                               |
|       |         |      |       | 4: A (The same as channel A)             |
|       |         |      |       | 5: A (Inverse of channel A)              |
| 19:16 | CHASEL  | R/W  | 0     | Channel A Source Select                  |
|       |         |      |       | 0: Reg                                   |
|       |         |      |       | 1: DMA                                   |
|       |         |      |       | 2: DMA + Filter                          |
|       |         |      |       | 3: Sin Gen                               |
| 15:11 | RSVD    |      |       |                                          |
| 10:8  | MODE    | R/W  | 0     | 0:32k, 1:16k, 3:8k, 4:512k(for DMA only) |
| 7:6   | RSVD    |      |       |                                          |
| 5:4   | DSMMODE | R/W  | 0     | 0:bypass, 1:dsm order=1, 2: dsm order=2  |
| 3:2   | RSVD    |      |       |                                          |
| 1     | EN2     | R/W  | 0     | GPDAC enable 2 (for B channel)           |
| 0     | EN      | R/W  | 0     | GPDAC enable                             |

# 5.4.2 gpdac\_dma\_config

Address: 0x40002044

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21  | 20 | 19   | 18 | 17  | 16   |
|----|------|----|----|----|----|----|----|----|-----|-----|----|------|----|-----|------|
|    |      |    |    |    |    |    | RS | VD |     |     |    |      |    |     |      |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6   | 5   | 4  | 3    | 2  | 1   | 0    |
|    | RSVD |    |    |    |    |    |    |    | DM/ | AFM |    | RSVD |    | DMA |      |
|    |      |    |    |    |    |    |    |    |     |     |    |      |    |     | TXEN |



| Bits | Name    | Туре | Reset | Description                                                                                                                                       |
|------|---------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:6 | RSVD    |      |       |                                                                                                                                                   |
| 5:4  | DMAFM   | R/W  | 0     | DMA TX format (Data 12-bit) 0: A0, A1, A2··· 1: B0,A0, B1,A1, B2,A2··· 2: A1,A0, A3,A2, A5,A4··· (Note: 20'h0,[11:0] or 4'h0,[27:16],4'h0,[11:0]) |
| 3:1  | RSVD    |      |       | (                                                                                                                                                 |
| 0    | DMATXEN | R/W  | 0     | GPDAC DMA TX enable                                                                                                                               |

# 5.4.3 gpdac\_dma\_wdata

Address: 0x40002048

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DMAWDA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DMAWDA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description       |
|------|--------|------|-------|-------------------|
| 31:0 | DMAWDA | W    | х     | GPDAC DMA TX data |

BL602/604 Reference Manual 70/ 209 @2020 Bouffalo Lab

6

 $\mathsf{DMA}$ 

### **6.1 Introduction**

DMA (Direct Memory Access) is a memory access technology that can independently read and write system memory directly without processor intervention. Under the same degree of processor load, DMA is a fast data transfer method. The DMA controller has 4 channels, which manage the data transfer between peripheral devices and memory to improve bus efficiency.

There are three main types of transfers: memory to memory, memory to peripheral, and peripheral to memory. And support LLI link list function. Use the software to configure the transmission data size, data source address, and destination address.

#### 6.2 DMA main features

- · 4 independently configurable channels (requests) on DMA
- Independent control of source and destination access width (single-byte, double-byte, four-byte)
- · Each channel acts as a read-write cache independently
- Each channel can be triggered by independent peripheral hardware or software
- · Support peripherals including UART, I2C, SPI, ADC
- 8 kinds of process control
  - DMA flow control, source memory, target memory
  - DMA flow control, source memory, target peripheral
  - DMA flow control, source peripheral, target memory
  - DMA flow control, source peripheral, target peripheral
  - Target peripheral process control, source peripheral, target peripheral



- Target peripheral process control, source memory, target peripheral
- Source peripheral process control, source peripheral, target memory
- Source peripheral process control, source peripheral, target peripheral
- · Support LLI linked list function to improve DMA efficiency

### 6.3 DMA functional description

#### 6.3.1 DMA transactions

When a device attempts to transfer data (usually a large amount of data) directly to another device via the bus, it will first send a DMA request signal to the CPU. The peripheral device makes a bus request to the CPU to take over the bus control right through the DMA. After the CPU receives the signal, after the current bus cycle ends, it will respond to the DMA signal according to the priority of the DMA signal and the order of the DMA request.

When the CPU responds to a DMA request to a device interface, it will give up bus control.

Therefore, under the management of the DMA controller, the peripherals and the memory directly exchange data without CPU intervention. After the data transfer is complete, the device sends a DMA end signal to the CPU, returning the bus control.



Figure 6.1: DMA architecture

The DMA includes a set of AHB Master interfaces and a set of AHB Slave interfaces. The AHB Master interface actively accesses memory or peripherals through the system bus according to the current configuration requirements, as a port for data movement. The AHB Slave interface is used to configure the DMA interface and only supports 32-bit access.



#### 6.3.2 DMA channel configuration

DMA supports 4 channels in total, each channel does not interfere with each other and can run at the same time. The following is the configuration process of DMA channel x:

- 1. Set 32-bit source address in DMA\_C0SrcAddr register
- 2. Set the 32-bit target address in the DMA C0DstAddr register
- 3. Configure SI (source) and DI (destination) in the DMA\_C0Control register to set whether to enable the automatic address accumulation mode. When set to 1, enable the automatic address accumulation mode
- 4. Set the transmission data width by configuring the STW (source) and DTW (destination) bits in the DMA\_C0Control register. The width options are single-byte, double-self-knot, and four-byte.
- 5. Burst type, which can be set by configuring the SBS (source) and DBS (destination) bits in the DMA\_C0Control register. The configuration options are Single, INCR4, INCR8, INCR16
- 6. Special attention should be paid to the configured combination. A single burst cannot exceed 16 bytes.
- 7. Set the data transmission length range: 0-4095

#### 6.3.3 Peripheral support

The SrcPeripheral (source) and DstPeripheral (destination) are configured to determine the peripherals that the current DMA cooperates with. The relationship is 0-3: UART / 6-7: I2C / 10-11: SPI / 22-23: ADC / DAC

#### **UART** uses **DMA** to transfer data

UART sends data packets, using DMA method can greatly reduce CPU processing time, so that its CPU resources are not wasted a lot, Especially when the UART sends and receives a large number of data packets (such as high-frequency sending and receiving instructions) has obvious advantages.

Taking UART0 as an example, the configuration process is as follows:

- 1. Set the value of the register DMA\_C0Config [SRCPH] bit to 1, that is, set the Source peripheral to UART\_TX
- 2. Set the value of the DMA C0Config [DSTPH] bit to 0, that is, set the Destination peripheral to UART RX

#### I2C uses DMA to transfer data

The configuration is as follows:

- 1. Set the value of the register DMA C0Config [SRCPH] bit to 7, that is, set the Source peripheral to I2C TX
- 2. Set the value of the DMA C0Config [DSTPH] bit to 6, that is, set the Destination peripheral to I2C RX

#### SPI uses DMA to transfer data

The configuration is as follows:

1. Set the value of the DMA C0Config [SRCPH] bit to 11, that is, set the Source peripheral to SPI TX



2. Set the value of the DMA\_C0Config [DSTPH] bit to 10, that is, set the Destination peripheral to SPI\_RX

#### ADC0/1 uses DMA to transfer data

The configuration is as follows:

1. Set the value of the DMA\_C0Config [SRCPH] bit to 22/23, that is, set the Source peripheral to GPADC0 / GPADC1

#### 6.3.4 Linked List Mode

DMA supports linked list operation mode. When performing a DMA read or write operation, you can fill the data in the next linked list. After completing the data transfer of the current linked list, read the DMA\_COLLI register to obtain the start address of the next linked list, and directly transfer the data in the next linked list.

Ensure continuous and uninterrupted work during DMA transfer, and improve the efficiency of CPU and DMA.



Figure 6.2: LLI architecture



#### 6.3.5 DMA interrupt

- DMA\_INT\_TCOMPLETED
  - Data transmission completed interrupt. When a data transmission is completed, this interrupt will be entered.
- DMA\_INT\_ERR
  - Data transmission error interrupt, when an error occurs during data transmission, this interrupt will be entered

#### 6.4 Transmission mode

#### 6.4.1 Memory to memory

After this mode is started, the DMA will move the data from the source address to the destination address according to the set transfer size. After the transfer, the DMA controller will automatically return to the idle state and wait for the next transfer.

The specific configuration process is as follows:

- 1. Set the value of the register DMA\_C0SrcAddr to the memory address of the source
- 2. Set the value of the register DMA\_C0DstAddr to the target memory address
- 3. Select the transmission mode and set the value of the DMA\_C0Config [FLOWCTRL] bit to 0, that is, select the memory-to-memory mode
- 4. Set the value of the corresponding bit in the DMA\_C0Control register: set the DI and SI bits to 1 to enable the automatic address accumulation mode, the DTW and STW bits set the transmission width of the source and destination, and the DBS and SBS bits set the burst type of the source and destination
- 5. Select the appropriate channel, enable DMA, and complete the data transfer

#### 6.4.2 Memory to peripheral

In this working mode, the DMA will move data from the source to the internal cache according to the set transfer size (TransferSize). When the cache space is insufficient, the DMA will automatically suspend it. When there is sufficient cache space, continue to transfer until it reaches Set the moving quantity.

On the other hand, when the target peripheral request triggers, it will burst the target configuration to the target address until it reaches the set number of moves and automatically returns to the idle state, waiting for the next startup.

The specific configuration process is as follows:

- 1. Set the value of the register DMA\_C0SrcAddr to the memory address of the source
- 2. Set the value of the register DMA\_C0DstAddr to the target peripheral address
- 3. Select the transfer mode and set the value of the DMA\_C0Config [FLOWCTRL] bit to 1 to select the memory-to-



peripheral mode

- 4. Set the value of the corresponding bit in the DMA\_C0Control register: set the DI and SI bits to 1 to enable the automatic address accumulation mode, the DTW and STW bits set the transmission width of the source and destination, and the DBS and SBS bits set the burst type of the source and destination
- 5. Select the appropriate channel, enable DMA, and complete the data transfer

#### 6.4.3 Peripheral to memory

In this working mode, when the source peripheral request is triggered, the source configuration is burst to the buffer until the set number of moves reaches the stop. On the other hand, when the internal cache is enough for the target burst number once, the DMA will automatically move the cached content to the target address until it reaches the set number of moves and automatically returns to the idle state, waiting for the next startup

The specific configuration process is as follows:

- 1. Set the value of the register DMA\_C0SrcAddr to the source peripheral address
- Set the value of the register DMA\_C0DstAddr to the target memory address
- 3. Select the transfer mode and set the value of the DMA\_C0Config [FLOWCTRL] bit to 2 to select the Peripheral-to-memory mode
- 4. Set the value of the corresponding bit in the DMA\_C0Control register: set the DI and SI bits to 1 to enable the automatic address accumulation mode, the DTW and STW bits set the transmission width of the source and destination respectively, and the DBS and SBS bits set the burst type of the source and destination respectively
- 5. Select the appropriate channel, enable DMA, and complete the data transfer

#### 6.5 寄存器描述

| Name                  | Description                                             |
|-----------------------|---------------------------------------------------------|
| DMA_IntStatus         | Interrupt status                                        |
| DMA_IntTCStatus       | Interrupt terminal count request status                 |
| DMA_IntTCClear        | Terminal count request clear                            |
| DMA_IntErrorStatus    | Interrupt error status                                  |
| DMA_IntErrClr         | Interrupt error clear                                   |
| DMA_RawIntTCStatus    | Status of the terminal count interrupt prior to masking |
| DMA_RawIntErrorStatus | Status of the error interrupt prior to masking          |
| DMA_EnbldChns         | Channel enable status                                   |
| DMA_SoftBReq          | Software burst request                                  |



| Name          | Description                      |
|---------------|----------------------------------|
| DMA_SoftSReq  | Software single request          |
| DMA_SoftLBReq | Software last burst request      |
| DMA_SoftLSReq | Software last single request     |
| DMA_Config    | DMA general configuration        |
| DMA_Sync      | DMA request asynchronous setting |
| DMA_C0SrcAddr | Channel DMA source address       |
| DMA_C0DstAddr | Channel DMA Destination address  |
| DMA_C0LLI     | Channel DMA link list            |
| DMA_C0Control | Channel DMA bus control          |
| DMA_C0Config  | Channel DMA configuration        |
| DMA_C1SrcAddr | Channel DMA source address       |
| DMA_C1DstAddr | Channel DMA Destination address  |
| DMA_C1LLI     | Channel DMA link list            |
| DMA_C1Control | Channel DMA bus control          |
| DMA_C1Config  | Channel DMA configuration        |
| DMA_C2SrcAddr | Channel DMA source address       |
| DMA_C2DstAddr | Channel DMA Destination address  |
| DMA_C2LLI     | Channel DMA link list            |
| DMA_C2Control | Channel DMA bus control          |
| DMA_C2Config  | Channel DMA configuration        |
| DMA_C3SrcAddr | Channel DMA source address       |
| DMA_C3DstAddr | Channel DMA Destination address  |
| DMA_C3LLI     | Channel DMA link list            |
| DMA_C3Control | Channel DMA bus control          |
| DMA_C3Config  | Channel DMA configuration        |

### 6.5.1 DMA\_IntStatus

地址: 0x4000c000



| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22     | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|--------|----|----|----|----|----|----|
|    |      |    |    |    |    |    |    |    |        |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6      | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    | INTSTA |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                                |
|------|--------|------|-------|--------------------------------------------|
| 31:8 | RSVD   |      |       |                                            |
| 7:0  | INTSTA | R    | 0     | Status of the DMA interrupts after masking |

### 6.5.2 DMA\_IntTCStatus

地址: 0x4000c004

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23       | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----------|----|----|----|----|----|----|----|
|    |      |    |    |    |    |    |    |          |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7        | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    | INTTCSTA |    |    |    |    |    |    |    |

| Bits | Name     | Туре | Reset | Description                             |
|------|----------|------|-------|-----------------------------------------|
| 31:8 | RSVD     |      |       |                                         |
| 7:0  | INTTCSTA | R    | 0     | Interrupt terminal count request status |

# 6.5.3 DMA\_IntTCClear

地址: 0x4000c008

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|------|----|----|----|----|----|----|------|----|----|----|----|----|----|----|----|
|      |    |    |    |    |    |    |      |    |    |    |    |    |    |    |    |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| RSVD |    |    |    |    |    |    | TCRC |    |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description                  |
|------|------|------|-------|------------------------------|
| 31:8 | RSVD |      |       |                              |
| 7:0  | TCRC | W    | 0     | Terminal count request clear |

BL602/604 Reference Manual 79/ 209 @2020 Bouffalo Lab



### 6.5.4 DMA\_IntErrorStatus

地址: 0x4000c00c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|
|    |      |    |    |    |    |    |    |     |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    | IES |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description            |
|------|------|------|-------|------------------------|
| 31:8 | RSVD |      |       |                        |
| 7:0  | IES  | R    | 0     | Interrupt error status |

#### 6.5.5 DMA\_IntErrCIr

地址: 0x4000c010

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|
|    |      |    |    |    |    |    | RS | VD  |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    | IEC |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description           |
|------|------|------|-------|-----------------------|
| 31:8 | RSVD |      |       |                       |
| 7:0  | IEC  | W    | 0     | Interrupt error clear |

### 6.5.6 DMA\_RawIntTCStatus

地址: 0x4000c014

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17 | 16 |
|------|----|----|----|----|----|----|----|----|----|----|------|-------|----|----|----|
| RSVD |    |    |    |    |    |    |    |    |    |    |      |       |    |    |    |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1  | 0  |
|      | •  | -  | RS | VD |    |    |    |    |    |    | SOTO | CIPTM |    |    |    |

| Bits | Name     | Туре | Reset | Description                                             |
|------|----------|------|-------|---------------------------------------------------------|
| 31:8 | RSVD     |      |       |                                                         |
| 7:0  | SOTCIPTM | R    | 0     | Status of the terminal count interrupt prior to masking |

BL602/604 Reference Manual 80/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
|      |      |      |       |             |

### 6.5.7 DMA\_RawIntErrorStatus

地址: 0x4000c018

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19    | 18 | 17 | 16 |
|------|----|----|----|----|----|----|----|----|----|----|------|-------|----|----|----|
| RSVD |    |    |    |    |    |    |    |    |    |    |      |       |    |    |    |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3     | 2  | 1  | 0  |
|      | -  |    | RS | VD |    |    |    |    |    |    | SOTE | EIPTM |    |    |    |

| Bits | Name     | Туре | Reset | Description                                    |
|------|----------|------|-------|------------------------------------------------|
| 31:8 | RSVD     |      |       |                                                |
| 7:0  | SOTEIPTM | R    | 0     | Status of the error interrupt prior to masking |

### 6.5.8 DMA\_EnbldChns

地址: 0x4000c01c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |      |    |    |    |    |    | RS | VD |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    | CI | ΞS |    |    |    |

| Bits | Name | Туре | Reset | Description           |
|------|------|------|-------|-----------------------|
| 31:8 | RSVD |      |       |                       |
| 7:0  | CES  | R    | 0     | Channel enable status |

### 6.5.9 DMA\_SoftBReq

地址: 0x4000c020

| 31 | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SBR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SBR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 81/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description            |
|------|------|------|-------|------------------------|
| 31:0 | SBR  | R/W  | 0     | Software burst request |

### 6.5.10 DMA\_SoftSReq

地址: 0x4000c024

| 31 | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SSR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SSR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description             |
|------|------|------|-------|-------------------------|
| 31:0 | SSR  | R/W  | 0     | Software single request |

### 6.5.11 DMA\_SoftLBReq

地址: 0x4000c028

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SLBR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SLBR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description                 |
|------|------|------|-------|-----------------------------|
| 31:0 | SLBR | R/W  | 0     | Software last burst request |

### 6.5.12 DMA\_SoftLSReq

地址: 0x4000c02c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SLSR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SLSR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 82/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description                  |
|------|------|------|-------|------------------------------|
| 31:0 | SLSR | R/W  | 0     | Software last single request |

### 6.5.13 DMA\_Config

地址: 0x4000c030

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18         | 17         | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|------------|------------|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    |            |            |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2          | 1          | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    | AHB<br>MEC | SDMA<br>EN |    |

| Bits | Name   | Туре | Reset | Description                                                            |
|------|--------|------|-------|------------------------------------------------------------------------|
| 31:2 | RSVD   |      |       |                                                                        |
| 1    | AHBMEC | R/W  | 0     | AHB Master endianness configuration: 0 = little-endian, 1 = big-endian |
| 0    | SDMAEN | R/W  | 0     | SMDMA Enable.                                                          |

### 6.5.14 DMA\_Sync

地址: 0x4000c034

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DSLFDRS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DSLFDRS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                                                                |
|------|---------|------|-------|----------------------------------------------------------------------------|
| 31:0 | DSLFDRS | R/W  | 0     | DMA synchronization logic for DMA request signals: 0 = enable, 1 = disable |

### 6.5.15 DMA\_C0SrcAddr

地址: 0x4000c100

BL602/604 Reference Manual 83/ 209 @2020 Bouffalo Lab



| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DMASA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DMASA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset | Description        |
|------|-------|------|-------|--------------------|
| 31:0 | DMASA | R/W  | 0     | DMA source address |

### 6.5.16 DMA\_C0DstAddr

地址: 0x4000c104

| 31    | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|       | DMADA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15    | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| DMADA |       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset | Description             |
|------|-------|------|-------|-------------------------|
| 31:0 | DMADA | R/W  | 0     | DMA Destination address |

### 6.5.17 DMA\_C0LLI

地址: 0x4000c108

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | FLLI |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | FLLI |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description                                   |
|------|------|------|-------|-----------------------------------------------|
| 31:0 | FLLI | R/W  | 0     | First linked list item. Bits [1:0] must be 0. |

# 6.5.18 DMA\_C0Control

地址: 0x4000c10c

BL602/604 Reference Manual 84/ 209 @2020 Bouffalo Lab



| 31        | 30 | 29     | 28 | 27 | 26 | 25   | 24           | 23  | 22 | 21 | 20  | 19 | 18 | 17 | 16  |  |
|-----------|----|--------|----|----|----|------|--------------|-----|----|----|-----|----|----|----|-----|--|
| TCI<br>EN | F  | PROTEC | Γ  | DI | SI | RSVD | IMTM<br>MODE | DTW |    |    | STW |    |    |    | DBS |  |
| 15        | 14 | 13     | 12 | 11 | 10 | 9    | 8            | 7   | 6  | 5  | 4   | 3  | 2  | 1  | 0   |  |
| DBS       |    | SBS    |    | TS |    |      |              |     |    |    |     |    |    |    |     |  |

| Bits  | Name     | Туре | Reset  | Description                                                                                                                   |
|-------|----------|------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 31    | TCIEN    | R/W  | 0      | Terminal count interrupt enable bit. It controls whether the current LLI is expected to trigger the terminal count interrupt. |
| 30:28 | PROTECT  | R/W  | 0      | Protection.                                                                                                                   |
| 27    | DI       | R/W  | 1      | Destination increment. When set, the Destination address is incremented after each transfer.                                  |
| 26    | SI       | R/W  | 1      | Source increment. When set, the source address is incremented after each transfer.                                            |
| 25    | RSVD     |      |        |                                                                                                                               |
| 24    | IMTMMODE | R/W  | 0      | In Memory-to-memory mode, Set this bit high when Src data size is larger than Dst.                                            |
| 23:21 | DTW      | R/W  | 3'b010 | Destination transfer width: 8/16/32                                                                                           |
| 20:18 | STW      | R/W  | 3'b010 | Source transfer width: 8/16/32                                                                                                |
| 17:15 | DBS      | R/W  | 3'b001 | Destination burst size: 1/4/8/16                                                                                              |
| 14:12 | SBS      | R/W  | 3'b001 | Source burst size: 1/4/8/16. Note CH FIFO Size is 16Bytes and SBSize*Swidth should <= 16B                                     |
| 11:0  | TS       | R/W  | 0      | Transfer size: 0 4095. Number of data transfers left to complete when the SMDMA is the flow controller.                       |

### 6.5.19 DMA\_C0Config

地址: 0x4000c110

| 31   | 30  | 29 | 28                           | 27 | 26          | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|------|-----|----|------------------------------|----|-------------|----|----|----|----|----|----|----|------|------|------|
| RS   | SVD |    | LLICOUNT                     |    |             |    |    |    |    |    |    |    | HALT | AC   | LOCK |
|      |     |    | TIVE                         |    |             |    |    |    |    |    |    |    |      |      |      |
| 15   | 14  | 13 | 3 12 11 10 9 8 7 6 5 4 3 2 1 |    |             |    |    |    |    |    |    | 1  | 0    |      |      |
| TCIM | IEM | F  | LOWCTR                       | RL | DSTPH SRCPH |    |    |    |    |    |    |    |      | CHEN |      |

| Bits  | Name | Туре | Reset | Description |
|-------|------|------|-------|-------------|
| 31:30 | RSVD |      |       |             |

BL602/604 Reference Manual 85/ 209 @2020 Bouffalo Lab



| Bits  | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29:20 | LLICOUNT | R    | 0     | LLI counter. Increased 1 each LLI run. Cleared 0 when config Control.                                                                                                                                                                                                                                                                                                           |
| 19    | RSVD     |      |       |                                                                                                                                                                                                                                                                                                                                                                                 |
| 18    | HALT     | R/W  | 0     | Halt: 0 = enable DMA requests, 1 = ignore subsequent source DMA requests.                                                                                                                                                                                                                                                                                                       |
| 17    | ACTIVE   | R    | 0     | Active: 0 = no data in FIFO of the channel, 1 = FIFO of the channel has data.                                                                                                                                                                                                                                                                                                   |
| 16    | LOCK     | R/W  | 0     | Lock.                                                                                                                                                                                                                                                                                                                                                                           |
| 15    | TCIM     | R/W  | 0     | Terminal count interrupt mask.                                                                                                                                                                                                                                                                                                                                                  |
| 14    | IEM      | R/W  | 0     | Interrupt error mask.                                                                                                                                                                                                                                                                                                                                                           |
| 13:11 | FLOWCTRL | R/W  | 0     | 000: Memory-to-memory (DMA) 001: Memory-to-peripheral (DMA) 010: Peripheral-to-memory (DMA) 011: Source peripheral-to-Destination peripheral (DMA) 100: Source peripheral-to-Destination peripheral (Destination peripheral) 101: Memory-to-peripheral (peripheral) 110: Peripheral-to-memory (peripheral) 111: Source peripheral-to-Destination peripheral (Source peripheral) |
| 10:6  | DSTPH    | R/W  | 0     | Destination peripheral.  [23:22] DAC/ADC  [11:10] SPI TX/RX  [ 7: 6] I2C TX/RX  [ 3: 0] UART1 TX/RX; UART0 TX/RX                                                                                                                                                                                                                                                                |
| 5:1   | SRCPH    | R/W  | 0     | Source peripheral.                                                                                                                                                                                                                                                                                                                                                              |
| 0     | CHEN     | R/W  | 0     | Channel enable.                                                                                                                                                                                                                                                                                                                                                                 |

### 6.5.20 DMA\_C1SrcAddr

地址: 0x4000c200

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |



| Bits | Name    | Туре | Reset | Description        |
|------|---------|------|-------|--------------------|
| 31:0 | SRCADDR | R/W  | 0     | DMA source address |

### 6.5.21 DMA\_C1DstAddr

地址: 0x4000c204

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description             |
|------|---------|------|-------|-------------------------|
| 31:0 | DSTADDR | R/W  | 0     | DMA Destination address |

#### 6.5.22 DMA\_C1LLI

地址: 0x4000c208

| 31 | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |     |    |    |    |    |    | LI | LI |    |    |    |    |    |    |    |
| 15 | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | LLI |    |    |    |    |    |    |    |    | RS | VD |    |    |    |    |

| Bits | Name | Туре | Reset | Description                                   |
|------|------|------|-------|-----------------------------------------------|
| 31:2 | LLI  | R/W  | 0     | First linked list item. Bits [1:0] must be 0. |
| 1:0  | RSVD |      |       |                                               |

### 6.5.23 DMA\_C1Control

地址: 0x4000c20c

| 31         | 30 | 29     | 28 | 27 | 26 | 25 | 24 | 23 | 22     | 21    | 20 | 19     | 18 | 17  | 16   |
|------------|----|--------|----|----|----|----|----|----|--------|-------|----|--------|----|-----|------|
| I          |    | PROT   |    | DI | SI | RS | VD |    | DWIDTH |       |    | SWIDTH |    | DBS | SIZE |
| 15         | 14 | 13     | 12 | 11 | 10 | 9  | 8  | 7  | 6      | 5     | 4  | 3      | 2  | 1   | 0    |
| DB<br>SIZE |    | SBSIZE |    |    |    |    |    |    | TRAN   | ISIZE |    |        |    |     |      |

BL602/604 Reference Manual 87/ 209 @2020 Bouffalo Lab



| Bits  | Name     | Туре | Reset  | Description                                                                                                                   |
|-------|----------|------|--------|-------------------------------------------------------------------------------------------------------------------------------|
| 31    | l        | R/W  | 0      | Terminal count interrupt enable bit. It controls whether the current LLI is expected to trigger the terminal count interrupt. |
| 30:28 | PROT     | R/W  | 0      | Protection.                                                                                                                   |
| 27    | DI       | R/W  | 1      | Destination increment. When set, the Destination address is incremented after each transfer.                                  |
| 26    | SI       | R/W  | 1      | Source increment. When set, the source address is incremented after each transfer.                                            |
| 25:24 | RSVD     |      |        |                                                                                                                               |
| 23:21 | DWIDTH   | R/W  | 3'b010 | Destination transfer width: 8/16/32                                                                                           |
| 20:18 | SWIDTH   | R/W  | 3'b010 | Source transfer width: 8/16/32                                                                                                |
| 17:15 | DBSIZE   | R/W  | 3'b001 | Destination burst size: 1/4/8/16                                                                                              |
| 14:12 | SBSIZE   | R/W  | 3'b001 | Source burst size: 1/4/8/16. Note CH FIFO Size is 16Bytes and SBSize*Swidth should <= 16B                                     |
| 11:0  | TRANSIZE | R/W  | 0      | Transfer size: 0 4095. Number of data transfers left to complete when the SMDMA is the flow controller.                       |

# 6.5.24 DMA\_C1Config

地址: 0x4000c210

| 31  | 30 | 29 | 28     | 27  | 26 | 25   | 24    | 23 | 22 | 21 | 20 | 19    | 18 | 17 | 16 |
|-----|----|----|--------|-----|----|------|-------|----|----|----|----|-------|----|----|----|
|     |    |    |        |     |    | RSVD |       |    |    |    |    |       | Н  | Α  | L  |
| 15  | 14 | 13 | 12     | 11  | 10 | 9    | 8     | 7  | 6  | 5  | 4  | 3     | 2  | 1  | 0  |
| ITC | ΙE | F  | LOWCTR | RL. |    |      | DSTPH |    |    |    |    | SRCPH |    |    | Е  |

| Bits  | Name | Туре | Reset | Description                                                                   |
|-------|------|------|-------|-------------------------------------------------------------------------------|
| 31:19 | RSVD |      |       |                                                                               |
| 18    | Н    | R/W  | 0     | Halt: 0 = enable DMA requests, 1 = ignore subsequent source DMA requests.     |
| 17    | А    | R    | 0     | Active: 0 = no data in FIFO of the channel, 1 = FIFO of the channel has data. |
| 16    | L    | R/W  | 0     | Lock.                                                                         |
| 15    | ITC  | R/W  | 0     | Terminal count interrupt mask.                                                |
| 14    | IE   | R/W  | 0     | Interrupt error mask.                                                         |



| Bits  | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13:11 | FLOWCTRL | R/W  | 0     | 000: Memory-to-memory (DMA) 001: Memory-to-peripheral (DMA) 010: Peripheral-to-memory (DMA) 011: Source peripheral-to-Destination peripheral (DMA) 100: Source peripheral-to-Destination peripheral (Destination peripheral) 101: Memory-to-peripheral (peripheral) 110: Peripheral-to-memory (peripheral) 111: Source peripheral-to-Destination peripheral (Source peripheral) |
| 10:6  | DSTPH    | R/W  | 0     | Destination peripheral.  [23:22] GPADC  [21:18] I2S  [17:14] PDM  [13:10] SPI  [ 9: 6] I2C  [ 5: 0] UART                                                                                                                                                                                                                                                                        |
| 5:1   | SRCPH    | R/W  | 0     | Source peripheral.                                                                                                                                                                                                                                                                                                                                                              |
| 0     | E        | R/W  | 0     | Channel enable.                                                                                                                                                                                                                                                                                                                                                                 |

### 6.5.25 DMA\_C2SrcAddr

地址: 0x4000c300

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description        |
|------|---------|------|-------|--------------------|
| 31:0 | SRCADDR | R/W  | 0     | DMA source address |

### 6.5.26 DMA\_C2DstAddr

地址: 0x4000c304



| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description             |
|------|---------|------|-------|-------------------------|
| 31:0 | DSTADDR | R/W  | 0     | DMA Destination address |

# 6.5.27 DMA\_C2LLI

地址: 0x4000c308

| 31  | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| LLI |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15  | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| LLI |    |    |    |    |    |    |    |    |    |    | RS | VD |    |    |    |

| Bits | Name | Туре | Reset | Description                                   |
|------|------|------|-------|-----------------------------------------------|
| 31:2 | LLI  | R/W  | 0     | First linked list item. Bits [1:0] must be 0. |
| 1:0  | RSVD |      |       |                                               |

### 6.5.28 DMA\_C2Control

地址: 0x4000c30c

| 31         | 30 | 29     | 28 | 27 | 26       | 25 | 24 | 23 | 22     | 21 | 20 | 19     | 18 | 17  | 16   |
|------------|----|--------|----|----|----------|----|----|----|--------|----|----|--------|----|-----|------|
| 1          |    | PROT   |    | DI | SI       | RS | VD |    | DWIDTH |    |    | SWIDTH |    | DBS | SIZE |
| 15         | 14 | 13     | 12 | 11 | 10       | 9  | 8  | 7  | 6      | 5  | 4  | 3      | 2  | 1   | 0    |
| DB<br>SIZE |    | SBSIZE | •  |    | TRANSIZE |    |    |    |        |    |    |        |    |     |      |

| Bits  | Name | Туре | Reset | Description                                                                                                                   |
|-------|------|------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 31    | ı    | R/W  | 0     | Terminal count interrupt enable bit. It controls whether the current LLI is expected to trigger the terminal count interrupt. |
| 30:28 | PROT | R/W  | 0     | Protection.                                                                                                                   |
| 27    | DI   | R/W  | 1     | Destination increment. When set, the Destination address is incremented after each transfer.                                  |



| Bits  | Name     | Туре | Reset  | Description                                                                                             |
|-------|----------|------|--------|---------------------------------------------------------------------------------------------------------|
| 26    | SI       | R/W  | 1      | Source increment. When set, the source address is incremented after each transfer.                      |
| 25:24 | RSVD     |      |        |                                                                                                         |
| 23:21 | DWIDTH   | R/W  | 3'b010 | Destination transfer width: 8/16/32                                                                     |
| 20:18 | SWIDTH   | R/W  | 3'b010 | Source transfer width: 8/16/32                                                                          |
| 17:15 | DBSIZE   | R/W  | 3'b001 | Destination burst size: 1/4/8/16                                                                        |
| 14:12 | SBSIZE   | R/W  | 3'b001 | Source burst size: 1/4/8/16. Note CH FIFO Size is 16Bytes and SBSize*Swidth should <= 16B               |
| 11:0  | TRANSIZE | R/W  | 0      | Transfer size: 0 4095. Number of data transfers left to complete when the SMDMA is the flow controller. |

# 6.5.29 DMA\_C2Config

地址: 0x4000c310

| 31  | 30   | 29 | 28     | 27 | 26                  | 25 | 24    | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-----|------|----|--------|----|---------------------|----|-------|----|----|----|----|----|----|----|----|
|     | RSVD |    |        |    |                     |    |       |    |    |    |    |    | Н  | Α  | L  |
| 15  | 14   | 13 | 12     | 11 | 11 10 9 8 7 6 5 4 3 |    |       |    |    |    |    |    | 2  | 1  | 0  |
| ITC | ΙE   | F  | LOWCTR | RL |                     |    | DSTPH |    |    |    |    |    | Е  |    |    |

| Bits  | Name | Туре | Reset | Description                                                                   |
|-------|------|------|-------|-------------------------------------------------------------------------------|
| 31:19 | RSVD |      |       |                                                                               |
| 18    | Н    | R/W  | 0     | Halt: 0 = enable DMA requests, 1 = ignore subsequent source DMA requests.     |
| 17    | А    | R    | 0     | Active: 0 = no data in FIFO of the channel, 1 = FIFO of the channel has data. |
| 16    | L    | R/W  | 0     | Lock.                                                                         |
| 15    | ITC  | R/W  | 0     | Terminal count interrupt mask.                                                |
| 14    | IE   | R/W  | 0     | Interrupt error mask.                                                         |

BL602/604 Reference Manual 91/ 209 @2020 Bouffalo Lab



| Bits  | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13:11 | FLOWCTRL | R/W  | 0     | 000: Memory-to-memory (DMA) 001: Memory-to-peripheral (DMA) 010: Peripheral-to-memory (DMA) 011: Source peripheral-to-Destination peripheral (DMA) 100: Source peripheral-to-Destination peripheral (Destination peripheral) 101: Memory-to-peripheral (peripheral) 110: Peripheral-to-memory (peripheral) 111: Source peripheral-to-Destination peripheral (Source peripheral) |
| 10:6  | DSTPH    | R/W  | 0     | Destination peripheral.  [23:22] GPADC  [21:18] I2S  [17:14] PDM  [13:10] SPI  [ 9: 6] I2C  [ 5: 0] UART                                                                                                                                                                                                                                                                        |
| 5:1   | SRCPH    | R/W  | 0     | Source peripheral.                                                                                                                                                                                                                                                                                                                                                              |
| 0     | E        | R/W  | 0     | Channel enable.                                                                                                                                                                                                                                                                                                                                                                 |

### 6.5.30 DMA\_C3SrcAddr

地址: 0x4000c400

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | SRCADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description        |
|------|---------|------|-------|--------------------|
| 31:0 | SRCADDR | R/W  | 0     | DMA source address |

### 6.5.31 DMA\_C3DstAddr

地址: 0x4000c404



| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DSTADDR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description             |
|------|---------|------|-------|-------------------------|
| 31:0 | DSTADDR | R/W  | 0     | DMA Destination address |

# 6.5.32 DMA\_C3LLI

地址: 0x4000c408

| 31  | 30  | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|     | LLI |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15  | 14  | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| LLI |     |    |    |    |    |    |    |    |    |    |    | RS | VD |    |    |

| Bits | Name | Туре | Reset | Description                                   |
|------|------|------|-------|-----------------------------------------------|
| 31:2 | LLI  | R/W  | 0     | First linked list item. Bits [1:0] must be 0. |
| 1:0  | RSVD |      |       |                                               |

### 6.5.33 DMA\_C3Control

地址: 0x4000c40c

| 31         | 30   | 29     | 28          | 27 | 26 | 25 | 24 | 23 | 22     | 21 | 20     | 19 | 18 | 17     | 16 |
|------------|------|--------|-------------|----|----|----|----|----|--------|----|--------|----|----|--------|----|
| 1          | PROT |        |             | DI | SI | RS | VD |    | DWIDTH |    | SWIDTH |    |    | DBSIZE |    |
| 15         | 14   | 13     | 12          | 11 | 10 | 9  | 8  | 7  | 6      | 5  | 4      | 3  | 2  | 1      | 0  |
| DB<br>SIZE |      | SBSIZE | ZE TRANSIZE |    |    |    |    |    |        |    |        |    |    |        |    |

| Bits  | Name | Туре | Reset | Description                                                                                                                   |
|-------|------|------|-------|-------------------------------------------------------------------------------------------------------------------------------|
| 31    | I    | R/W  | 0     | Terminal count interrupt enable bit. It controls whether the current LLI is expected to trigger the terminal count interrupt. |
| 30:28 | PROT | R/W  | 0     | Protection.                                                                                                                   |
| 27    | DI   | R/W  | 1     | Destination increment. When set, the Destination address is incremented after each transfer.                                  |

BL602/604 Reference Manual 93/ 209 @2020 Bouffalo Lab



| Bits  | Name     | Туре | Reset  | Description                                                                                             |
|-------|----------|------|--------|---------------------------------------------------------------------------------------------------------|
| 26    | SI       | R/W  | 1      | Source increment. When set, the source address is incremented after each transfer.                      |
| 25:24 | RSVD     |      |        |                                                                                                         |
| 23:21 | DWIDTH   | R/W  | 3'b010 | Destination transfer width: 8/16/32                                                                     |
| 20:18 | SWIDTH   | R/W  | 3'b010 | Source transfer width: 8/16/32                                                                          |
| 17:15 | DBSIZE   | R/W  | 3'b001 | Destination burst size: 1/4/8/16                                                                        |
| 14:12 | SBSIZE   | R/W  | 3'b001 | Source burst size: 1/4/8/16. Note CH FIFO Size is 16Bytes and SBSize*Swidth should <= 16B               |
| 11:0  | TRANSIZE | R/W  | 0      | Transfer size: 0 4095. Number of data transfers left to complete when the SMDMA is the flow controller. |

# 6.5.34 DMA\_C3Config

地址: 0x4000c410

| 31   | 30                          | 29 | 28             | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19    | 18 | 17 | 16 |
|------|-----------------------------|----|----------------|----|----|----|----|----|----|----|----|-------|----|----|----|
| RSVD |                             |    |                |    |    |    |    |    |    |    |    | Н     | Α  | L  |    |
| 15   | 15 14 13 12 11 10 9 8 7 6 5 |    |                |    |    |    |    |    |    |    | 4  | 3     | 2  | 1  | 0  |
| ITC  | ΙE                          | F  | FLOWCTRL DSTPH |    |    |    |    |    |    |    |    | SRCPH |    |    | Е  |

| Bits  | Name | Туре | Reset | Description                                                                   |
|-------|------|------|-------|-------------------------------------------------------------------------------|
| 31:19 | RSVD |      |       |                                                                               |
| 18    | Н    | R/W  | 0     | Halt: 0 = enable DMA requests, 1 = ignore subsequent source DMA requests.     |
| 17    | А    | R    | 0     | Active: 0 = no data in FIFO of the channel, 1 = FIFO of the channel has data. |
| 16    | L    | R/W  | 0     | Lock.                                                                         |
| 15    | ITC  | R/W  | 0     | Terminal count interrupt mask.                                                |
| 14    | IE   | R/W  | 0     | Interrupt error mask.                                                         |



| Bits  | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13:11 | FLOWCTRL | R/W  | 0     | 000: Memory-to-memory (DMA) 001: Memory-to-peripheral (DMA) 010: Peripheral-to-memory (DMA) 011: Source peripheral-to-Destination peripheral (DMA) 100: Source peripheral-to-Destination peripheral (Destination peripheral) 101: Memory-to-peripheral (peripheral) 110: Peripheral-to-memory (peripheral) 111: Source peripheral-to-Destination peripheral (Source peripheral) |
| 10:6  | DSTPH    | R/W  | 0     | Destination peripheral.  [23:22] GPADC  [21:18] I2S  [17:14] PDM  [13:10] SPI  [ 9: 6] I2C  [ 5: 0] UART                                                                                                                                                                                                                                                                        |
| 5:1   | SRCPH    | R/W  | 0     | Source peripheral.                                                                                                                                                                                                                                                                                                                                                              |
| 0     | Е        | R/W  | 0     | Channel enable.                                                                                                                                                                                                                                                                                                                                                                 |

#### 7.1 Introduction

The L1 Cache Controller is a unit module that is located outside the processor and is used to manage code or data buffers on the Flash and increase the speed of the CPU accessing the Flash. The architecture is as follows:



Figure 7.1: L1c architecture

L1C is a high-speed unit integrated between the processor and Flash. Because the speed of the processor is very fast, when the processor needs to wait for a long time to access the Flash, the waiting time represents wasteful time. The L1C cache can be used as a lubricating role between the processor and the Flash to improve the efficiency of the processor.



#### 7.2 Main features

- · 4-way Set-Associative mapping
- · Variable cache size
- Connect to TCM address space, can easily configure L1C space as TCM space
- · Support cache performance statistics

### 7.3 Function description

#### 7.3.1 Mutual conversion between TCM and Cache RAM resources

In order to increase the memory usage efficiency, the 32K RAM of the cache can be fully or partially adjusted to the TCM space, which is convenient for users to adjust the memory usage method and efficiency according to the actual situation.

The default size of the cache is 32K, divided into 4 ways, each way is 8K, the unit of adjustment is 1 way, which is 8K. The default size of ITCM is 16K. Through the setting of WayDisable, you can flexibly adjust the actual space size of Cache and ITCM.

Table 7.1: WayDisable settings

| WayDisable | Cache | ITCM |
|------------|-------|------|
| none       | 32K   | 16K  |
| one way    | 24K   | 12K  |
| two way    | 16K   | 8K   |
| three way  | 8K    | 4K   |
| four way   | 0K    | 0K   |

#### 7.3.2 Cache

The unit of each line buffer is 32 bytes, and the 4-way associative mapping cache is used. The application architecture is as follows:

BL602/604 Reference Manual 97/ 209 @2020 Bouffalo Lab





Figure 7.2: Cache architecture

Each set of associative mapping caches contains two parts, the first is a tag, which contains the valid value and the address mapping relationship. The second part is data storage. When the processor accesses the cache, the cache processor compares the relationship between the address and the tag. When the address comparison is successful, the representative can directly get data from the cache. Conversely, the cache processor will capture related data through the AHB Master and put the data into the cache and respond to the processor's data.

When most of the data can be successfully compared in the tag, the waiting time of the processor can be greatly reduced, and the use efficiency can be increased.

#### 7.4 寄存器描述

| Name        | Description               |
|-------------|---------------------------|
| I1c_config  | L1C feature configuration |
| hit_cnt_lsb | Low 32-bit hit couter     |
| hit_cnt_msb | High 32-bit hit counter   |
| miss_cnt    | Miss counter              |



### 7.4.1 I1c\_config

地址: 0x40009000

| 31 | 30          | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21 | 20 | 19 | 18 | 17 | 16   |
|----|-------------|----|----|----|----|----|----|----|------|----|----|----|----|----|------|
|    | R           |    |    |    |    |    |    |    |      |    |    |    |    |    |      |
| 15 | 14          | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5  | 4  | 3  | 2  | 1  | 0    |
|    | RSVD WAYDIS |    |    |    |    |    |    |    | RSVD |    |    |    |    |    |      |
|    |             |    |    |    |    |    |    |    |      |    |    |    |    | EN | ABLE |

| Bits  | Name    | Туре | Reset   | Description                               |
|-------|---------|------|---------|-------------------------------------------|
| 31:12 | RSVD    |      |         |                                           |
| 11:8  | WAYDIS  | R/W  | 4'b1111 | Disable part of cache ways & used as ITCM |
| 7:2   | RSVD    |      |         |                                           |
| 1     | CNTEN   | R/W  | 0       | Cache performance counter enable          |
| 0     | CACABLE | R/W  | 0       | Cachable region enable                    |

### 7.4.2 hit\_cnt\_lsb

地址: 0x40009004

| 31 | 30                                    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | CNTLSB                                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|    | CNTLSB                                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description            |
|------|--------|------|-------|------------------------|
| 31:0 | CNTLSB | R    | 0     | Hit counter low 32-bit |

### 7.4.3 hit\_cnt\_msb

地址: 0x40009008

| 31 | 30                                    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | CNTMSB                                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |    |    |    |    |    | 0  |    |    |
|    | CNTMSB                                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 99/ 209 @2020 Bouffalo Lab



| Bits | Name   | Туре | Reset | Description                                     |
|------|--------|------|-------|-------------------------------------------------|
| 31:0 | CNTMSB | R    | 0     | total hit count = hit_cnt_msb*232 + hit_cnt_lsb |

# 7.4.4 miss\_cnt

地址: 0x4000900c

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    |         |    |    |    |    |    | MISS | SCNT |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | MISSCNT |    |    |    |    |    |      |      |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description  |
|------|---------|------|-------|--------------|
| 31:0 | MISSCNT | R    | 0     | Miss counter |

BL602/604 Reference Manual 100/ 209 @2020 Bouffalo Lab

IR

#### 8.1 Introduction

Infrared remote (IR for short) is a wireless, non-contact control technology, which has the advantages of strong antiinterference ability, reliable information transmission, low power consumption and low cost. The infrared remote control transmitting circuit uses infrared light emitting diodes to emit modulated infrared light waves. The receiving circuit consists of infrared receiving diodes, triodes or silicon photocells. They convert the infrared light emitted by the infrared transmitter into the corresponding electrical signal and send it to the rear amplifier.

#### 8.2 IR main features

- · Receiving data with NEC, RC-5 protocol
- · Receiving arbitrary format data in pulse width counting mode
- · Powerful infrared waveform editing capabilities, which can emit waveforms conforming to various protocols
- · Power settings of up to 15 gears to suit different power requirements
- · Supports up to 64-bit data bits
- 64-byte receive FIFO
- · Programmable carrier frequency and duty cycle

# 8.3 Function description

#### 8.3.1 Fixed receiving protocol

IR receiver supports two fixed protocols, NEC protocol and RC-5 protocol.

· NEC protocol

The logic 1 and logic 0 waveforms of the NEC protocol are shown in the following figure:





Figure 8.1: nec logical

Logic 1 is 2.25ms, pulse time is 560us; logic 0 bit is 1.12ms, pulse time is 560us.

The specific format of the NEC protocol is shown in the following figure:



Figure 8.2: nec

The first pulse is a high-level pulse of 9ms and a low-level of 4.5ms, followed by an 8-bit address code and its inverse code, and then an 8-bit command code and its inverse code. The tail pulse is 560us high and 560us low.

· RC-5 protocol

The logic 1 and logic 0 waveforms of the RC-5 protocol are shown in the following figure:



Figure 8.3: rc5 logical

Logic 1 is 1.778ms, which is 889us low and then 889us high; logic 0 and logic 1 have opposite waveforms.

The specific format of the RC-5 protocol is shown in the following figure:

BL602/604 Reference Manual 102/ 209 @2020 Bouffalo Lab



Figure 8.4: rc5

The first two bits are the start bit, fixed to logic 1, and the third bit is the flip bit. When a key value is issued and then pressed, the bit will be inverted. The next 5 bits are the address code and the 6 bits command code. The first two bits are the start bit, fixed to logic 1, and the third bit is the flip bit. When a key value is issued and then pressed, the bit will be inverted. The next 5 digits are the address code and the 6-digit command code.

It should be noted that in order to improve the receiving sensitivity, the common infrared integrated receiver head outputs a low level after receiving a high level, so when the IR receiving function is used, the receiving flip function must be turned on.

#### 8.3.2 Pulse width reception

For data in any format other than the NEC and RC-5 protocols, the IR will count the duration of each high and low level in turn using its clock, and then store the data in a 64-byte depth receiving FIFO.

#### 8.3.3 Normal sending mode

Users can configure the corresponding configurations of the head pulse, tail pulse, logic 0 and logic 1 pulses according to specific protocols. When setting, it is necessary to calculate the common pulse width unit of various pulses with different widths in the protocol used, that is, the greatest common divisor, fill in the lower 12 bits of the register IRTX\_PULSE\_WIDTH, and each pulse fills its corresponding multiple in the register IRTX\_PW.

IR supports a maximum of 64-bit data bits and is divided into two 32-bit registers IRTX\_DATA\_WORD0 and IRTX\_-DATA\_WORD1.

#### 8.3.4 Pulse width transmission

For protocols that are not suitable for normal transmission mode, IR provides a pulse width transmission method. First calculate the common pulse width unit of the pulses of different widths in the protocol used, that is, the greatest common divisor, and fill in the lower 12 bits of the register IRTX\_PULSE\_WIDTH. Then fill the register IRTX\_SWM\_- $PW_n(0 \le n \le 7)$  with multiples corresponding to the respective level widths from the first high level to the last level, each level width multiple occupies 4-bit .

BL602/604 Reference Manual 103/ 209 @2020 Bouffalo Lab



#### 8.3.5 Carrier modulation

Setting the upper 16 bits of the IRTX\_PULSE\_WIDTH register can generate carriers with different frequencies and duty cycles. The <TXMPH1W> bit in this register sets the width of carrier phase 1, and the <TXMPH0W> bit sets the width of carrier phase 0.

#### 8.3.6 IR interrupt

IR has separate transmit and receive interrupts, and a transmit interrupt is generated when a transmit operation ends. When a piece of data is received, it will wait for the continuous level to reach the set end threshold to generate a receive interrupt.

The user can query the send interrupt status and clear the interrupt by register IRTX\_INT\_STS, and query the receive interrupt status and clear the interrupt by register IRRX\_INT\_STS.

#### 8.4 寄存器描述

| Name             | Description                           |
|------------------|---------------------------------------|
| irtx_config      | IR TX configuration register          |
| irtx_int_sts     | IR TX interrupt status                |
| irtx_data_word0  | IR TX data word0                      |
| irtx_data_word1  | IR TX data word1                      |
| irtx_pulse_width | IR TX pulse width                     |
| irtx_pw          | IR TX pulse width of phase            |
| irtx_swm_pw_0    | IR TX Software Mode pulse width data0 |
| irtx_swm_pw_1    | IR TX Software Mode pulse width data1 |
| irtx_swm_pw_2    | IR TX Software Mode pulse width data2 |
| irtx_swm_pw_3    | IR TX Software Mode pulse width data3 |
| irtx_swm_pw_4    | IR TX Software Mode pulse width data4 |
| irtx_swm_pw_5    | IR TX Software Mode pulse width data5 |
| irtx_swm_pw_6    | IR TX Software Mode pulse width data6 |
| irtx_swm_pw_7    | IR TX Software Mode pulse width data7 |
| irrx_config      | IR RX configuration register          |
| irrx_int_sts     | IR RX interrupt status                |
| irrx_pw_config   | IR RX pulse width configuration       |
| irrx_data_count  | IR RX data bit count                  |

BL602/604 Reference Manual 104/209 @2020 Bouffalo Lab



| Name                   | Description                          |
|------------------------|--------------------------------------|
| irrx_data_word0        | IR RX data word0                     |
| irrx_data_word1        | IR RX data word1                     |
| irrx_swm_fifo_config_0 | IR RX FIFO configuration             |
| irrx_swm_fifo_rdata    | IR RX software mode pulse width data |

# 8.4.1 irtx\_config

地址: 0x4000a600

| 31 | 30   | 29   | 28 | 27         | 26         | 25         | 24        | 23   | 22          | 21          | 20         | 19         | 18         | 17        | 16   |
|----|------|------|----|------------|------------|------------|-----------|------|-------------|-------------|------------|------------|------------|-----------|------|
|    | RSVD |      |    |            |            |            |           |      |             | TXDA        | TANU       |            |            |           |      |
| 15 | 14   | 13   | 12 | 11         | 10         | 9          | 8         | 7    | 6           | 5           | 4          | 3          | 2          | 1         | 0    |
|    | TXDA | TANU |    | TPHL<br>IS | TXTP<br>EN | TXH<br>HLI | TXH<br>EN | RSVD | TXL1<br>HLI | TXL0<br>HLI | TXDA<br>EN | TXSW<br>EN | TXMD<br>EN | TXO<br>EN | TXEN |

| Bits  | Name     | Туре | Reset | Description                                                                                                                                                                          |
|-------|----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:18 | RSVD     |      |       |                                                                                                                                                                                      |
| 17:12 | TXDATANU | R/W  | 6'd31 | Bit count of Data phase (unit: bit / PW for normal / SWM)                                                                                                                            |
| 11    | TPHLIS   | R/W  | 1'b0  | Tail pulse H/L inverse signal (Don't care if SWM is enabled) 0: Phase 0 is High (Active), phase 1 is Low (Idle) (H -> L) 1: Phase 0 is Low (Idle), phase 1 is High (Active) (L -> H) |
| 10    | TXTPEN   | R/W  | 1'b1  | Enable signal of tail pulse (Don't care if SWM is enabled)                                                                                                                           |
| 9     | TXHHLI   | R/W  | 1'b0  | Tail pulse H/L inverse signal (Don't care if SWM is enabled) 0: Phase 0 is High (Active), phase 1 is Low (Idle) (H -> L) 1: Phase 0 is Low (Idle), phase 1 is High (Active) (L -> H) |
| 8     | TXHEN    | R/W  | 1'b1  | Enable signal of head pulse (Don't care if SWM is enabled)                                                                                                                           |
| 7     | RSVD     |      |       |                                                                                                                                                                                      |
| 6     | TXL1HLI  | R/W  | 1'b0  | Logic 1 H/L inverse signal (Don't care if SWM is enabled)  0: Phase 0 is High (Active), phase 1 is Low (Idle) (H -> L)  1: Phase 0 is Low (Idle), phase 1 is High (Active) (L -> H)  |
| 5     | TXL0HLI  | R/W  | 1'b0  | Logic 0 H/L inverse signal (Don't care if SWM is enabled)  0: Phase 0 is High (Active), phase 1 is Low (Idle) (H -> L)  1: Phase 0 is Low (Idle), phase 1 is High (Active) (L -> H)  |
| 4     | TXDAEN   | R/W  | 1'b1  | Enable signal of data phase (Don't care if SWM is enabled)                                                                                                                           |
| 3     | TXSWEN   | R/W  | 1'b0  | Enable signal of IRTX Software Mode (SWM)                                                                                                                                            |



| Bits | Name   | Туре | Reset | Description                                                                                                            |
|------|--------|------|-------|------------------------------------------------------------------------------------------------------------------------|
| 2    | TXMDEN | R/W  | 1'b0  | Enable signal of output modulation                                                                                     |
| 1    | TXOEN  | R/W  | 1'b0  | Output inverse signal 1'b0: Output stays at Low during idle state 1'b1: Output stays at High during idle state         |
| 0    | TXEN   | R/W  | 1'b0  | Enable signal of IRTX function Asserting this bit will trigger the transaction, and should be de-asserted after finish |

### 8.4.2 irtx\_int\_sts

地址: 0x4000a604

| 31 | 30   | 29 | 28   | 27 | 26 | 25 | 24   | 23       | 22 | 21 | 20   | 19 | 18 | 17 | 16  |
|----|------|----|------|----|----|----|------|----------|----|----|------|----|----|----|-----|
|    | RSVD |    |      |    |    |    |      | TXE RSVD |    |    |      |    |    |    | TXE |
|    |      |    |      |    |    |    | EN   |          |    |    |      |    |    |    | CLR |
| 15 | 14   | 13 | 12   | 11 | 10 | 9  | 8    | 7        | 6  | 5  | 4    | 3  | 2  | 1  | 0   |
|    |      |    | RSVD |    |    |    | TXE  |          |    |    | RSVD |    |    |    | TXE |
|    |      |    |      |    |    |    | MASK |          |    |    |      |    |    |    | INT |

| Bits  | Name    | Туре | Reset | Description                      |
|-------|---------|------|-------|----------------------------------|
| 31:25 | RSVD    |      |       |                                  |
| 24    | TXEEN   | R/W  | 1'b1  | Interrupt enable of irtx_end_int |
| 23:17 | RSVD    |      |       |                                  |
| 16    | TXECLR  | W1C  | 1'b0  | Interrupt clear of irtx_end_int  |
| 15:9  | RSVD    |      |       |                                  |
| 8     | TXEMASK | R/W  | 1'b1  | Interrupt mask of irtx_end_int   |
| 7:1   | RSVD    |      |       |                                  |
| 0     | TXEINT  | R    | 1'b0  | IRTX transfer end interrupt      |

### 8.4.3 irtx\_data\_word0

地址: 0x4000a608



| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXDW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXDW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset | Description                                   |
|------|-------|------|-------|-----------------------------------------------|
| 31:0 | TXDW0 | R/W  | 32'h0 | TX data word 0 (Don't care if SWM is enabled) |

# 8.4.4 irtx\_data\_word1

地址: 0x4000a60c

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXDW1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXDW1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset | Description                                   |
|------|-------|------|-------|-----------------------------------------------|
| 31:0 | TXDW1 | R/W  | 32'h0 | TX data word 1 (Don't care if SWM is enabled) |

### 8.4.5 irtx\_pulse\_width

地址: 0x4000a610

| 31      | 30   | 29 | 28 | 27 | 26 | 25 | 24      | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|---------|------|----|----|----|----|----|---------|-----|----|----|----|----|----|----|----|
| TXMPH1W |      |    |    |    |    |    | TXMPH0W |     |    |    |    |    |    |    |    |
| 15      | 14   | 13 | 12 | 11 | 10 | 9  | 8       | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|         | RSVD |    |    |    |    |    |         | TXP | UW |    |    |    |    |    |    |

| Bits  | Name    | Туре | Reset    | Description              |
|-------|---------|------|----------|--------------------------|
| 31:24 | TXMPH1W | R/W  | 8'd34    | Modulation phase 1 width |
| 23:16 | TXMPH0W | R/W  | 8'd17    | Modulation phase 0 width |
| 15:12 | RSVD    |      |          |                          |
| 11:0  | TXPWU   | R/W  | 12'd1124 | Pulse width unit         |

BL602/604 Reference Manual 107/ 209 @2020 Bouffalo Lab



#### 8.4.6 irtx\_pw

地址: 0x4000a614

| 31 | 30       | 29   | 28 | 27 | 26       | 25  | 24 | 23 | 22   | 21   | 20 | 19        | 18 | 17 | 16 |  |
|----|----------|------|----|----|----------|-----|----|----|------|------|----|-----------|----|----|----|--|
|    | TXTF     | PH1W |    |    | TXTF     | W0H |    |    | TXHF | PH1W |    | TXHPH0W   |    |    |    |  |
| 15 | 14       | 13   | 12 | 11 | 10       | 9   | 8  | 7  | 6    | 5    | 4  | 3         | 2  | 1  | 0  |  |
|    | TXL1PH1W |      |    |    | TXL1PH0W |     |    |    | TXL0 | PH1W |    | TXL0PH0WS |    |    |    |  |

| Bits  | Name      | Туре | Reset | Description                                                      |
|-------|-----------|------|-------|------------------------------------------------------------------|
| 31:28 | TXTPH1W   | R/W  | 4'd0  | Pulse width of tail pulse phase 1 (Don't care if SWM is enabled) |
| 27:24 | TXTPH0W   | R/W  | 4'd0  | Pulse width of tail pulse phase 0 (Don't care if SWM is enabled) |
| 23:20 | TXHPH1W   | R/W  | 4'd7  | Pulse width of head pulse phase 1 (Don't care if SWM is enabled) |
| 19:16 | TXHPH0W   | R/W  | 4'd15 | Pulse width of head pulse phase 0 (Don't care if SWM is enabled) |
| 15:12 | TXL1PH1W  | R/W  | 4'd2  | Pulse width of logic1 phase 1 (Don't care if SWM is enabled)     |
| 11:8  | TXL1PH0W  | R/W  | 4'd0  | Pulse width of logic1 phase 0 (Don't care if SWM is enabled)     |
| 7:4   | TXL0PH1W  | R/W  | 4'd0  | Pulse width of logic0 phase 1 (Don't care if SWM is enabled)     |
| 3:0   | TXL0PH0WS | R/W  | 4'd0  | Pulse width of logic0 phase 0 (Don't care if SWM is enabled)     |

### 8.4.7 irtx\_swm\_pw\_0

地址: 0x4000a640

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXSWPW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXSWPW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 108/ 209 @2020 Bouffalo Lab



| Bits | Name    | Туре | Reset | Description                                                                                                                                                  |
|------|---------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW0 | R/W  | 32'h0 | IRTX Software Mode pulse width data #0 #7, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

## 8.4.8 irtx\_swm\_pw\_1

地址: 0x4000a644

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    | TXSWPW1 |    |    |    |    |    |      |      |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |         |    |    |    |    |    | TXSV | VPW1 |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                                                                                                                                                   |
|------|---------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW1 | R/W  | 32'h0 | IRTX Software Mode pulse width data #8 #15, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

## 8.4.9 irtx\_swm\_pw\_2

地址: 0x4000a648

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    | TXSWPW2 |    |    |    |    |    |      |      |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |         |    |    |    |    |    | TXSV | VPW2 |    |    |    |    |    |    |    |

| Bits | Name    | Type | Reset | Description                                                                                                                                                    |
|------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW2 | R/W  | 32'h0 | IRTX Software Mode pulse width data #16 #23, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

BL602/604 Reference Manual 109/ 209 @2020 Bouffalo Lab



### 8.4.10 irtx\_swm\_pw\_3

地址: 0x4000a64c

| 31 | 30      | 29 | 28 | 27 | 26 | 25      | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|----|---------|----|----|----|----|---------|----|----|----|----|----|----|----|----|----|--|--|--|
|    | TXSWPW3 |    |    |    |    |         |    |    |    |    |    |    |    |    |    |  |  |  |
| 15 | 14      | 13 | 12 | 11 | 10 | 9       | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    |         |    |    |    |    | TXSWPW3 |    |    |    |    |    |    |    |    |    |  |  |  |

| Bits | Name    | Туре | Reset | Description                                                                                                                                                    |
|------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW3 | R/W  | 32'h0 | IRTX Software Mode pulse width data #24 #31, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

## 8.4.11 irtx\_swm\_pw\_4

地址: 0x4000a650

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    | TXSWPW4 |    |    |    |    |    |      |      |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |         |    |    |    |    |    | TXSV | VPW4 |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                                                                                                                                                    |
|------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW4 | R/W  | 32'h0 | IRTX Software Mode pulse width data #32 #39, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

### 8.4.12 irtx\_swm\_pw\_5

地址: 0x4000a654

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXSWPW5 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXSWPW5 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 110/ 209 @2020 Bouffalo Lab



| Bits | Name    | Туре | Reset | Description                                                                                                                                                    |
|------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW5 | R/W  | 32'h0 | IRTX Software Mode pulse width data #40 #47, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

## 8.4.13 irtx\_swm\_pw\_6

地址: 0x4000a658

| 31      | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|---------|----|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
| TXSWPW6 |    |    |    |    |    |    |      |      |    |    |    |    |    |    |    |
| 15      | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|         |    |    |    |    |    |    | TXSV | /PW6 |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                                                                     |
|------|---------|------|-------|---------------------------------------------------------------------------------|
| 31:0 | TXSWPW6 | R/W  | 32'h0 | IRTX Software Mode pulse width data #48 #55, each pulse is represented by 4-bit |
|      |         |      |       | ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the                  |
|      |         |      |       | 3rd pulse, etc)                                                                 |

## 8.4.14 irtx\_swm\_pw\_7

地址: 0x4000a65c

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXSWPW7 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXSWPW7 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name    | Type | Reset | Description                                                                                                                                                    |
|------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:0 | TXSWPW7 | R/W  | 32'h0 | IRTX Software Mode pulse width data #56 #63, each pulse is represented by 4-bit ([3:0] is the 1st pulse, [7:4] is the 2nd pulse, [11:8] is the 3rd pulse, etc) |

BL602/604 Reference Manual 111/ 209 @2020 Bouffalo Lab



## 8.4.15 irrx\_config

地址: 0x4000a680

| 31 | 30 | 29 | 28 | 27 | 26   | 25   | 24 | 23       | 22 | 21 | 20 | 19  | 18   | 17          | 16   |
|----|----|----|----|----|------|------|----|----------|----|----|----|-----|------|-------------|------|
|    |    |    |    |    |      |      | RS | VD       |    |    |    |     |      |             |      |
| 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8  | 7        | 6  | 5  | 4  | 3   | 2    | 1           | 0    |
|    | RS | VD |    |    | RXDE | GCNT |    | RSVD RXI |    |    |    | RXM | IODE | RXIN<br>INV | RXEN |

| Bits  | Name     | Туре | Reset | Description                                                    |
|-------|----------|------|-------|----------------------------------------------------------------|
| 31:12 | RSVD     |      |       |                                                                |
| 11:8  | RXDEGCNT | R/W  | 4'd0  | De-glitch function cycle count                                 |
| 7:5   | RSVD     |      |       |                                                                |
| 4     | RXDGEN   | R/W  | 1'b0  | Enable signal of IRRX input de-glitch function                 |
| 3:2   | RXMODE   | R/W  | 2'd0  | IRRX mode                                                      |
|       |          |      |       | 0: NEC                                                         |
|       |          |      |       | 1: RC5                                                         |
|       |          |      |       | 2: SW pulse-width detection mode (SWM)                         |
|       |          |      |       | 3: Reserved                                                    |
| 1     | RXININV  | R/W  | 1'b1  | Input inverse signal                                           |
| 0     | RXEN     | R/W  | 1'b0  | Enable signal of IRRX function                                 |
|       |          |      |       | Asserting this bit will trigger the transaction, and should be |
|       |          |      |       | de-asserted after finish                                       |

## 8.4.16 irrx\_int\_sts

地址: 0x4000a684

| 31 | 30 | 29 | 28   | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20   | 19 | 18 | 17 | 16  |
|----|----|----|------|----|----|----|------|----|----|----|------|----|----|----|-----|
|    |    |    | RSVD |    |    |    | RXE  |    |    |    | RSVD |    |    |    | RXE |
|    |    |    |      |    |    |    | EN   |    |    |    |      |    |    |    | CLR |
| 15 | 14 | 13 | 12   | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4    | 3  | 2  | 1  | 0   |
|    |    |    | RSVD |    |    |    | RXE  |    |    |    | RSVD |    |    |    | RXE |
|    |    |    |      |    |    |    | MASK |    |    |    |      |    |    |    | INT |

| Bits  | Name  | Туре | Reset | Description                      |
|-------|-------|------|-------|----------------------------------|
| 31:25 | RSVD  |      |       |                                  |
| 24    | RXEEN | R/W  | 1'b1  | Interrupt enable of irrx_end_int |

BL602/604 Reference Manual 112/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                     |
|-------|---------|------|-------|---------------------------------|
| 23:17 | RSVD    |      |       |                                 |
| 16    | RXECLR  | W1C  | 1'b0  | Interrupt clear of irrx_end_int |
| 15:9  | RSVD    |      |       |                                 |
| 8     | RXEMASK | R/W  | 1'b1  | Interrupt mask of irrx_end_int  |
| 7:1   | RSVD    |      |       |                                 |
| 0     | RXEINT  | R    | 1'b0  | IRRX transfer end interrupt     |

# 8.4.17 irrx\_pw\_config

地址: 0x4000a688

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RXETH  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RXDATH |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset    | Description                                                                 |
|-------|--------|------|----------|-----------------------------------------------------------------------------|
| 31:16 | RXETH  | R/W  | 16'd8999 | Pulse width threshold to trigger END condition                              |
| 15:0  | RXDATH | R/W  | 16'd3399 | Pulse width threshold for Logic0/1 detection (Don't care if SWM is enabled) |

# 8.4.18 irrx\_data\_count

地址: 0x4000a690

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21      | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|---------|----|----|----|----|----|
|    |      |    |    |    |    |    | VD |    |    |         |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5       | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    | RXDACNT |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                                   |
|------|---------|------|-------|-----------------------------------------------|
| 31:7 | RSVD    |      |       |                                               |
| 6:0  | RXDACNT | R    | 7'd0  | RX data bit count (pulse-width count for SWM) |

BL602/604 Reference Manual 113/ 209 @2020 Bouffalo Lab



### 8.4.19 irrx\_data\_word0

地址: 0x4000a694

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RXDAW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RXDAW0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name Ty |   | Reset | Description    |
|------|---------|---|-------|----------------|
| 31:0 | RXDAW0  | R | 32'h0 | RX data word 0 |

## 8.4.20 irrx\_data\_word1

地址: 0x4000a698

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RXDAW1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RXDAW1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description    |
|------|--------|------|-------|----------------|
| 31:0 | RXDAW1 | R    | 32'h0 | RX data word 1 |

## 8.4.21 irrx\_swm\_fifo\_config\_0

地址: 0x4000a6c0

| 31            | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22        | 21        | 20   | 19         | 18 | 17 | 16 |
|---------------|------|----|----|----|----|----|----|----|-----------|-----------|------|------------|----|----|----|
|               | RSVD |    |    |    |    |    |    |    |           |           |      |            |    |    |    |
| 15            | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6         | 5         | 4    | 3          | 2  | 1  | 0  |
| RSVD RXFIFOCN |      |    |    |    |    |    |    |    | RXF<br>UF | RXF<br>OF | RSVD | RXF<br>CLR |    |    |    |

| Bits  | Name     | Туре | Reset | Description                                              |
|-------|----------|------|-------|----------------------------------------------------------|
| 31:11 | RSVD     |      |       |                                                          |
| 10:4  | RXFIFOCN | R    | 7'd0  | RX FIFO available count                                  |
| 3     | RXFUF    | R    | 1'b0  | Underflow flag of RX FIFO, can be cleared by rx_fifo_clr |

BL602/604 Reference Manual 114/ 209 @2020 Bouffalo Lab



| Bits | Name   | Туре | Reset | Description                                             |
|------|--------|------|-------|---------------------------------------------------------|
| 2    | RXFOF  | R    | 1'b0  | Overflow flag of RX FIFO, can be cleared by rx_fifo_clr |
| 1    | RSVD   |      |       |                                                         |
| 0    | RXFCLR | W1C  | 1'b0  | Clear signal of RX FIFO                                 |

## 8.4.22 irrx\_swm\_fifo\_rdata

地址: 0x4000a6c4

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RXFRDA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description                         |
|-------|--------|------|-------|-------------------------------------|
| 31:16 | RSVD   |      |       |                                     |
| 15:0  | RXFRDA | R    | 16'h0 | IRRX Software Mode pulse width data |

BL602/604 Reference Manual 115/ 209 @2020 Bouffalo Lab

SPL

### 9.1 Introduction

Serial Peripheral Interface Bus(SPI) is a synchronous serial communication interface specification for short-range communication. Devices use full-duplex mode for communication. There is a master and one or more slaves. Requires at least 4 wires, in fact 3 wires are also available (the one-way transmission), including SDI (data input), SDO (data output), SCLK (clock), CS (chip select).

### 9.2 Main features

- · Can be used as SPI master or SPI slave
- The transmit and receive channels each have a FIFO with a depth of 4 words
- Both master and slave devices support 4 clock formats(CPOL,CPHA)
- Both master and slave devices support 1/2/3/4 byte transmission mode
- Flexible clock configuration, support up to 40M clock
- · Configurable MSB/LSB priority transmission
- · Acceptance filtering function
- · Timeout mechanism under the slave
- Support DMA transfer mode

## 9.3 Function description

### 9.3.1 Clock control

According to different clock phases and polarity settings, the SPI clock has four modes, which can be set by bit4 (CPOL) and bit5 (CPHA) of the SPI\_CONFIG register. CPOL is used to determine the level of the SCK clock signal



when idle, CPOL = 0 means the idle level is low, and CPOL = 1 means the idle level is high. CPHA is used to determine the sampling time. CPHA = 0 samples on the first clock edge of each cycle, and CPHA = 1 samples on the second clock edge of each cycle.

By setting registers SPI\_PRD\_0 and SPI\_PRD\_1, you can also adjust the start and end level duration of the clock, the time of phase 0/1, and the interval between each frame of data. The specific settings in the four modes are shown below:



Figure 9.1: SPI clock

The meaning of each number is as follows: 1 is the length of the start condition, 2 is the length of the stop condition, 3 is the length of phase 0, 4 is the length of phase 1, and 5 is the interval between each frame of data.

#### 9.3.2 Master continuous transmission mode

When this mode is enabled, the CS signal will not be released when the current data is transmitted and there is still data available in the FIFO.

### 9.3.3 Acceptance filtering function

By setting the start and end bits that need to be filtered out, the SPI discards the corresponding data segment in the received data. As shown below:

BL602/604 Reference Manual 117/ 209 @2020 Bouffalo Lab





Figure 9.2: SPI ignore

In the figure above, the start bit of the filter is set to 0, the end bit is set to 7, the dummy byte is received, and the end bit is set to 15, the dummy byte is discarded.

### 9.3.4 Receive error correction

By enabling this function and setting the threshold, the SPI will discard data that does not reach the threshold width.

#### 9.3.5 Slave mode timeout mechanism

By setting a timeout threshold, an interrupt will be triggered when the SPI does not receive a clock signal after exceeding this time value in slave mode.

#### 9.3.6 I/O transfer mode

The chip communications processor can perform FIFO fill and empty operations in response to interrupts from the FIFO. Each FIFO has a programmable FIFO trigger threshold to trigger interrupts. When the value in the RX FIFO exceeds the RX FIFO trigger threshold in the SPI controller 1, an interrupt will be generated and a signal will be sent to the chip communication processor to clear the RX FIFO. When the value in the TX FIFO is less than or equal to the TX FIFO trigger threshold in the SPI control register 1 plus 1, an interrupt will be generated and a signal will be sent to the chip communication processor to refill the TX FIFO.

Query the SPI status register to determine the sampled value in the FIFO and the status of the FIFO. Software is responsible for ensuring the correct RX FIFO trigger threshold and TX FIFO trigger threshold to prevent receive FIFO overrun and transmit FIFO underrun.

#### 9.3.7 DMA transfer mode

SPI supports DMA transfer mode. The use of this mode requires the TX and RX FIFO thresholds to be set separately. When this mode is enabled, the UART will check the TX / RX FIFO. Once the TX / RX FIFO available count value

BL602/604 Reference Manual 118/ 209 @2020 Bouffalo Lab



is greater than its set threshold, a DMA request will be initiated , DMA will move data to TX FIFO or out of RX FIFO according to the setting.

### 9.3.8 SPI interrupt

SPI has a variety of interrupt control, including the following interrupt modes:

- SPI transfer end interrupt
- TX FIFO request interrupt
- · RX FIFO request interrupt
- Slave mode transfer timeout interrupt
- Slave mode TX overload interrupt
- TX / RX FIFO overflow interrupt

In master mode, the SPI transfer end interrupt is triggered at the end of each frame of data transfer; in slave mode, the SPI transfer end interrupt is triggered when the CS signal is released. The TX / RX FIFO request interrupt will be triggered when its available FIFO count is greater than its set threshold. When the condition is not met, the interrupt flag will be automatically cleared. Slave mode transmission timeout interrupt is triggered when the threshold is exceeded in slave mode and no clock signal is received. If the TX / RX FIFO overflows or underflows, the TX / RX FIFO overflow interrupt will be triggered. When the FIFO clear bit TFC / RFC is set to 1, the corresponding FIFO will be cleared and the overflow interrupt flag will be automatically cleared.

Query the interrupt status through register SPI\_INT\_STS and write 1 to the corresponding bit to clear the interrupt.

### 9.4 寄存器描述

| Name              | Description                      |
|-------------------|----------------------------------|
| spi_config        | SPI configuration register       |
| spi_int_sts       | SPI interrupt status             |
| spi_bus_busy      | SPI bus busy                     |
| spi_prd_0         | SPI length control register      |
| spi_prd_1         | SPI length of interval           |
| spi_rxd_ignr      | SPI ingnore function             |
| spi_sto_value     | SPI time-out value               |
| spi_fifo_config_0 | SPI FIFO configuration register0 |
| spi_fifo_config_1 | SPI FIFO configuration register1 |
| spi_fifo_wdata    | SPI FIFO write data              |

BL602/604 Reference Manual 119/ 209 @2020 Bouffalo Lab



| Name           | Description        |
|----------------|--------------------|
| spi_fifo_rdata | SPI FIFO read data |

# 9.4.1 spi\_config

地址: 0x4000a200

| 31                   | 30   | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22  | 21   | 20   | 19 | 18  | 17  | 16  |
|----------------------|------|----|----|----|----|----|------|------|-----|------|------|----|-----|-----|-----|
|                      | RSVD |    |    |    |    |    |      |      |     |      |      |    |     |     |     |
| 15                   | 14   | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6   | 5    | 4    | 3  | 2   | 1   | 0   |
| DEGCNT DEG RSVD MCEN |      |    |    |    |    |    | IGNR | BYTE | BIT | SCLK | SCLK | FS | IZE | SEN | MEN |
|                      |      |    |    | EN |    |    | EN   | INV  | INV | PH   | POL  |    |     |     |     |

| Bits  | Name    | Туре | Reset | Description                                                                                                                                                                                                                     |
|-------|---------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:16 | RSVD    |      |       |                                                                                                                                                                                                                                 |
| 15:12 | DEGCNT  | R/W  | 4'd0  | De-glitch function cycle count                                                                                                                                                                                                  |
| 11    | DEGEN   | R/W  | 1'b0  | Enable signal of all input de-glitch function                                                                                                                                                                                   |
| 10    | RSVD    |      |       |                                                                                                                                                                                                                                 |
| 9     | MCEN    | R/W  | 1'b0  | Enable signal of master continuous transfer mode 1'b0: Disabled, SS_n will de-assert between each data frame 1'b1: Enabled, SS_n will stay asserted between each con- secutive data frame if the next data is valid in the FIFO |
| 8     | IGNREN  | R/W  | 1'b0  | Enable signal of RX data ignore function                                                                                                                                                                                        |
| 7     | BYTEINV | R/W  | 1'b0  | Byte-inverse signal for each FIFO entry data  0: Byte[0] is sent out first  1: Byte[3] is sent out first                                                                                                                        |
| 6     | BITINV  | R/W  | 1'b0  | Bit-inverse signal for each data byte  0: Each byte is sent out MSB-first  1: Each byte is sent out LSB-first                                                                                                                   |
| 5     | SCLKPH  | R/W  | 1'b0  | SCLK clock phase inverse signal                                                                                                                                                                                                 |
| 4     | SCLKPOL | R/W  | 1'b0  | SCLK polarity 0: SCLK output LOW at IDLE state 1: SCLK output HIGH at IDLE state                                                                                                                                                |

BL602/604 Reference Manual 120/ 209 @2020 Bouffalo Lab



| Bits | Name  | Туре | Reset | Description                                                                                                                                               |
|------|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:2  | FSIZE | R/W  | 2'd0  | SPI frame size (also the valid width for each FIFO entry) 2'd0: 8-bit 2'd1: 16-bit 2'd2: 24-bit 2'd3: 32-bit                                              |
| 1    | SEN   | R/W  | 1'b0  | Enable signal of SPI Slave function, Master and Slave should not be both enabled at the same time (This bit becomes don't-care if cr_spi_m_en is enabled) |
| 0    | MEN   | R/W  | 1'b0  | Enable signal of SPI Master function Asserting this bit will trigger the transaction, and should be de-asserted after finish                              |

# 9.4.2 spi\_int\_sts

地址: 0x4000a204

| 31 | 30 | 29   | 28   | 27   | 26   | 25   | 24   | 23 | 22   | 21  | 20  | 19  | 18  | 17  | 16  |
|----|----|------|------|------|------|------|------|----|------|-----|-----|-----|-----|-----|-----|
| RS | VD | FER  | TXU  | STO  | RXF  | TXF  | END  |    | RSVD |     | TXU | STO | RS  | VD  | END |
|    |    | EN   | EN   | EN   | EN   | EN   | EN   |    |      |     | CLR | CLR |     |     | CLR |
| 15 | 14 | 13   | 12   | 11   | 10   | 9    | 8    | 7  | 6    | 5   | 4   | 3   | 2   | 1   | 0   |
| RS | VD | FER  | TXU  | STO  | RXF  | TXF  | END  | RS | VD   | FER | TXU | STO | RXF | TXF | END |
|    |    | MASK | MASK | MASK | MASK | MASK | MASK |    |      | INT | INT | INT | INT | INT | INT |

| Bits  | Name   | Туре | Reset | Description                     |
|-------|--------|------|-------|---------------------------------|
| 31:30 | RSVD   |      |       |                                 |
| 29    | FEREN  | R/W  | 1'b1  | Interrupt enable of spi_fer_int |
| 28    | TXUEN  | R/W  | 1'b1  | Interrupt enable of spi_txu_int |
| 27    | STOEN  | R/W  | 1'b1  | Interrupt enable of spi_sto_int |
| 26    | RXFEN  | R/W  | 1'b1  | Interrupt enable of spi_rxv_int |
| 25    | TXFEN  | R/W  | 1'b1  | Interrupt enable of spi_txe_int |
| 24    | ENDEN  | R/W  | 1'b1  | Interrupt enable of spi_end_int |
| 23:21 | RSVD   |      |       |                                 |
| 20    | TXUCLR | W1C  | 1'b0  | Interrupt clear of spi_txu_int  |
| 19    | STOCLR | W1C  | 1'b0  | Interrupt clear of spi_sto_int  |
| 18:17 | RSVD   |      |       |                                 |
| 16    | ENDCLR | W1C  | 1'b0  | Interrupt clear of spi_end_int  |



| Bits  | Name    | Туре | Reset | Description                                                                                                                                                                 |
|-------|---------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:14 | RSVD    |      |       |                                                                                                                                                                             |
| 13    | FERMASK | R/W  | 1'b1  | Interrupt mask of spi_fer_int                                                                                                                                               |
| 12    | TXUMASK | R/W  | 1'b1  | Interrupt mask of spi_txu_int                                                                                                                                               |
| 11    | STOMASK | R/W  | 1'b1  | Interrupt mask of spi_sto_int                                                                                                                                               |
| 10    | RXFMASK | R/W  | 1'b1  | Interrupt mask of spi_rxv_int                                                                                                                                               |
| 9     | TXFMASK | R/W  | 1'b1  | Interrupt mask of spi_txe_int                                                                                                                                               |
| 8     | ENDMASK | R/W  | 1'b1  | Interrupt mask of spi_end_int                                                                                                                                               |
| 7:6   | RSVD    |      |       |                                                                                                                                                                             |
| 5     | FERINT  | R    | 1'b0  | SPI TX/RX FIFO error interrupt, auto-cleared when FIFO overflow/underflow error flag is cleared                                                                             |
| 4     | TXUINT  | R    | 1'b0  | SPI slave mode TX underrun error flag, triggered when TXD is not ready during transfer in slave mode                                                                        |
| 3     | STOINT  | R    | 1'b0  | SPI slave mode transfer time-out interrupt, triggered when SPI bus is idle for a given value                                                                                |
| 2     | RXFINT  | R    | 1'b0  | SPI RX FIFO ready (rx_fifo_cnt > rx_fifo_th) interrupt, auto-<br>cleared when data is popped                                                                                |
| 1     | TXFINT  | R    | 1'b0  | SPI TX FIFO ready (tx_fifo_cnt > tx_fifo_th) interrupt, auto-<br>cleared when data is pushed                                                                                |
| 0     | ENDINT  | R    | 1'b0  | SPI transfer end interrupt, shared by both master and slave mode  Master mode: Triggered when the final frame is transferred Slave mode: Triggered when CS_n is de-asserted |

## 9.4.3 spi\_bus\_busy

地址: 0x4000a208

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16          |
|----|----|----|----|----|----|----|------|----|----|----|----|----|----|----|-------------|
|    |    |    |    |    |    |    | RS   | VD |    |    |    |    |    |    |             |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0           |
|    |    |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | BUS<br>BUSY |

| Bits | Name    | Туре | Reset | Description               |
|------|---------|------|-------|---------------------------|
| 31:1 | RSVD    |      |       |                           |
| 0    | BUSBUSY | R    | 1'b0  | Indicator of SPI bus busy |

BL602/604 Reference Manual 122/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
|      |      |      |       |             |

## 9.4.4 spi\_prd\_0

地址: 0x4000a210

| 31 | 30   | 29 | 28  | 27  | 26 | 25 | 24 | 23 | 22 | 21 | 20  | 19  | 18 | 17 | 16 |
|----|------|----|-----|-----|----|----|----|----|----|----|-----|-----|----|----|----|
|    |      |    | PRD | PH1 |    |    |    |    |    |    | PRD | PH0 |    |    |    |
| 15 | 14   | 13 | 12  | 11  | 10 | 9  | 8  | 7  | 6  | 5  | 4   | 3   | 2  | 1  | 0  |
|    | PRDP |    |     |     |    |    |    |    |    |    | PR  | DS  |    |    |    |

| Bits  | Name   | Туре | Reset | Description                                              |
|-------|--------|------|-------|----------------------------------------------------------|
| 31:24 | PRDPH1 | R/W  | 8'd15 | Length of DATA phase 1 (please refer to "Timing" tab)    |
| 23:16 | PRDPH0 | R/W  | 8'd15 | Length of DATA phase 0 (please refer to "Timing" tab)    |
| 15:8  | PRDP   | R/W  | 8'd15 | Length of STOP condition (please refer to "Timing" tab)  |
| 7:0   | PRDS   | R/W  | 8'd15 | Length of START condition (please refer to "Timing" tab) |

## 9.4.5 spi\_prd\_1

地址: 0x4000a214

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19  | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|
|    |      |    |    |    |    |    |    |    |    |    |    |     |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3   | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    | PF | RDI |    |    |    |

| Bits | Name | Туре | Reset | Description                                                     |
|------|------|------|-------|-----------------------------------------------------------------|
| 31:8 | RSVD |      |       |                                                                 |
| 7:0  | PRDI | R/W  | 8'd15 | Length of INTERVAL between frame (please refer to "Timing" tab) |

# 9.4.6 spi\_rxd\_ignr

地址: 0x4000a218

BL602/604 Reference Manual 123/ 209 @2020 Bouffalo Lab



| 31 | 30                                | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22     | 21 | 20 | 19 | 18     | 17 | 16 |
|----|-----------------------------------|----|----|----|----|----|----|----|--------|----|----|----|--------|----|----|
|    | RSVD 15 14 13 12 11 10 9 8 7 6    |    |    |    |    |    |    |    | RXDIGS |    |    |    |        |    |    |
| 15 | 14                                | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6      | 5  | 4  | 3  | 2      | 1  | 0  |
|    | 15 14 13 12 11 10 9 8 7 6<br>RSVD |    |    |    |    |    |    |    |        |    |    |    | RXDIGP |    |    |

| Bits  | Name   | Туре | Reset | Description                               |
|-------|--------|------|-------|-------------------------------------------|
| 31:21 | RSVD   |      |       |                                           |
| 20:16 | RXDIGS | R/W  | 5'd0  | Starting point of RX data ignore function |
| 15:5  | RSVD   |      |       |                                           |
| 4:0   | RXDIGP | R/W  | 5'd0  | Stopping point of RX data ignore function |

## 9.4.7 spi\_sto\_value

地址: 0x4000a21c

| 31 | 30        | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14        | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RSVD STOV |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name | Туре | Reset   | Description                               |
|-------|------|------|---------|-------------------------------------------|
| 31:12 | RSVD |      |         |                                           |
| 11:0  | STOV | R/W  | 12'hFFF | Time-out value for spi_sto_int triggering |

# 9.4.8 spi\_fifo\_config\_0

地址: 0x4000a280

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21   | 20   | 19  | 18  | 17   | 16         |
|------|----|----|----|----|----|----|----|----|------|------|------|-----|-----|------|------------|
|      |    |    |    |    |    |    | RS | VD |      |      |      |     |     |      |            |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5    | 4    | 3   | 2   | 1    | 0          |
| RSVD |    |    |    |    |    |    |    |    | RFOF | TFUF | TFOF | RFC | TFC | DMAR | DMAT<br>EN |
|      |    |    |    |    |    |    |    |    |      |      |      |     |     | EN   | E          |

| Bits | Name | Туре | Reset | Description                                              |
|------|------|------|-------|----------------------------------------------------------|
| 31:8 | RSVD |      |       |                                                          |
| 7    | RFUF | R    | 1'b0  | Underflow flag of RX FIFO, can be cleared by rx_fifo_clr |

BL602/604 Reference Manual 124/ 209 @2020 Bouffalo Lab



| Bits | Name   | Туре | Reset | Description                                              |
|------|--------|------|-------|----------------------------------------------------------|
| 6    | RFOF   | R    | 1'b0  | Overflow flag of RX FIFO, can be cleared by rx_fifo_clr  |
| 5    | TFUF   | R    | 1'b0  | Underflow flag of TX FIFO, can be cleared by tx_fifo_clr |
| 4    | TFOF   | R    | 1'b0  | Overflow flag of TX FIFO, can be cleared by tx_fifo_clr  |
| 3    | RFC    | W1C  | 1'b0  | Clear signal of RX FIFO                                  |
| 2    | TFC    | W1C  | 1'b0  | Clear signal of TX FIFO                                  |
| 1    | DMAREN | R/W  | 1'b0  | Enable signal of dma_rx_req/ack interface                |
| 0    | DMATEN | R/W  | 1'b0  | Enable signal of dma_tx_req/ack interface                |

# 9.4.9 spi\_fifo\_config\_1

地址: 0x4000a284

| 31 | 30 | 29   | 28 | 27 | 26 | 25    | 24 | 23   | 22 | 21 | 20 | 19 | 18 | 17    | 16 |
|----|----|------|----|----|----|-------|----|------|----|----|----|----|----|-------|----|
|    |    | RS   | VD |    |    | RF    | TH |      |    | RS | VD |    |    | TF    | TH |
| 15 | 14 | 13   | 12 | 11 | 10 | 9     | 8  | 7    | 6  | 5  | 4  | 3  | 2  | 1     | 0  |
|    |    | RSVD |    |    |    | RFCNT |    | RSVD |    |    |    |    |    | TFCNT |    |

| Bits  | Name  | Туре | Reset | Description                                                                               |
|-------|-------|------|-------|-------------------------------------------------------------------------------------------|
| 31:26 | RSVD  |      |       |                                                                                           |
| 25:24 | RFTH  | R/W  | 2'd0  | RX FIFO threshold, dma_rx_req will not be asserted if tx fifo_cnt is less than this value |
| 23:18 | RSVD  |      |       |                                                                                           |
| 17:16 | TFTH  | R/W  | 2'd0  | TX FIFO threshold, dma_tx_req will not be asserted if tx fifo_cnt is less than this value |
| 15:11 | RSVD  |      |       |                                                                                           |
| 10:8  | RFCNT | R    | 3'd0  | RX FIFO available count                                                                   |
| 7:3   | RSVD  |      |       |                                                                                           |
| 2:0   | TFCNT | R    | 3'd4  | TX FIFO available count                                                                   |

## 9.4.10 spi\_fifo\_wdata

地址: 0x4000a288



| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24  | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|-----|------|----|----|----|----|----|----|----|
|    | FWDATA |    |    |    |    |    |     |      |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8   | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |        |    |    |    |    |    | FWE | DATA |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description         |
|------|--------|------|-------|---------------------|
| 31:0 | FWDATA | W    | х     | SPI FIFO write data |

# 9.4.11 spi\_fifo\_rdata

地址: 0x4000a28c

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | FRD | ATA |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | FRD | ATA |    |    |    |    |    |    |    |

| Bits | Name   | Type Reset |       | Description        |
|------|--------|------------|-------|--------------------|
| 31:0 | FRDATA | R          | 32'h0 | SPI FIFO read data |

BL602/604 Reference Manual 126/ 209 @2020 Bouffalo Lab

### 10.1 Introduction

Universal Asynchronous Receiver / Transmitter (commonly known as UART) is an asynchronous transceiver that provides a flexible way to exchange full-duplex data with external devices.

BL602 has two sets of UART ports (UART0 and UART1). By using with DMA, you can achieve efficient data communication.

### 10.2 Main features

- Full-duplex asynchronous communication
- Data bit length can be selected from 5/6/7/8 bits
- Stop bit length can be selected from 0.5/1/1.5/2 bits
- · Supports odd/even/no parity bits
- Detects wrong start bit
- · Multiple interrupt control
- Support hardware flow control (RTS / CTS)
- · Convenient baud rate programming
- Configurable MSB / LSB priority transmission
- · Normal / fixed character automatic baud rate detection
- 32-byte transmit / receive FIFO
- · Support DMA transfer mode



### 10.3 Function description

### 10.3.1 Data format description

Normal UART communication data is composed of a start bit, a data bit, a parity bit, and a stop bit. The BL602's UART supports configurable data bits, parity bits, and stop bits, all of which are set in the UTX\_CONFIG and URX\_CONFIG registers. The waveform of one frame of data is shown below:



Figure 10.1: UART data

The start bit of a data frame occupies 1-bit, and the stop bit can be configured to be 0.5 / 1 / 1.5 / 2 bits wide by configuring <CR\_UTX\_BIT\_CNT\_P> and <CR\_URX\_BIT\_CNT\_P>. The start bit is low and the stop bit is high.

The data bit width can be configured to 5/6/7/8 bit width by <CR\_UTX\_BIT\_CNT\_D> and <CR\_URX\_BIT\_CNT\_D>.

When <CR\_UTX\_PRT\_EN> and <CR\_URX\_PRT\_EN> are set, the data frame adds a parity bit after the data. <CR\_UTX\_PRT\_SEL> and <CR\_URX\_PRT\_SEL> are used to select odd or even parity. When the receiver detects a parity error in the input data, a parity error interrupt is generated.

Odd parity calculation method: If the current data bit 1 is an odd number, the odd parity bit is 0; otherwise, it is 1.

Calculation method of even parity: If the number of current data bit 1 is odd, even parity is 1; otherwise it is 0.

### 10.3.2 Basic architecture diagram

#### 10.3.3 Clock source

The UART has two clock sources: 160MHz APB\_CLK and FCLK. The frequency divider in the clock is used to divide the clock source and then generate a clock signal to drive the UART module. As shown below:

BL602/604 Reference Manual 128/ 209 @2020 Bouffalo Lab



Figure 10.2: UART clock

### 10.3.4 Baud rate setting

The user can generate the required baud rate by setting the register UART\_BIT\_PRD. The upper 16 bits and lower 16 bits of this register correspond to RX and TX respectively, that is, the baud rates of RX and TX can be set independently. The 16-bit value needs It is calculated that the formula is as follows:

Baud rate = UART clock / (16-bit coefficient + 1)

That is: 16-bit coefficient = UART clock / baud rate -1

The meaning of the 16-bit coefficient is the count value obtained by counting the current baud rate bit width with the UART clock. Because the maximum 16-bit coefficient is 65535, the minimum baud rate supported by the UART is: UART clock / 65536. The maximum baud rate supported by the UART is 10Mbps.

Before the UART samples the data, it will first filter the data to filter out the glitches in the waveform. Sampling is then performed at the intermediate value of the above 16-bit coefficients, so that different sampling times are adjusted according to different baud rates to keep the median value always being taken, greatly improving flexibility and accuracy. The sampling process is shown in the following figure:





Figure 10.3: UART sample

#### 10.3.5 Transmitter

The transmitter contains a 32-byte transmit FIFO to store the data to be transmitted. Software can write the TX FIFO through the APB bus, and can also move data into the TX FIFO through DMA. When the transmit enable bit is set, the data stored in the FIFO will be output from the TX pin. Software can choose to transfer data into TX FIFO through two methods: DMA or APB bus.

Software can check the status of the transmitter by querying the TX FIFO remaining free space count value in bit <TX\_FIFO\_CNT> of the register UART\_FIFO\_CONFIG\_1. The transmitter's FreeRun mode is as follows:

- If the FreeRun mode is not turned on, the transmission behavior is terminated and an interrupt is generated when the transmission byte reaches the specified length. If you want to continue the transmission, you need to turn it off and then enable the transmission enable bit.
- If the FreeRun mode is turned on, the transmitter will transmit when there is data in the TX FIFO, and the transmitted byte will not terminate when it reaches the specified length.

#### 10.3.6 receiver

The receiver contains a 32-byte receive FIFO to store the received data. Software can check the status of the receiver by querying the RX FIFO available data count value through the bit <RX\_FIFO\_CNT> in the register UART\_FIFO\_-CONFIG\_1. The lower 8 bits of the URX\_RTO\_TIMER register are used to set a receive timeout threshold. When the receiver does not receive data beyond this time value, an interrupt will be triggered. Bits <CR\_URX\_DEG\_EN> and



<CR\_URX\_DEG\_CNT> of the URX\_CONFIG register are used to enable the deburring function and set the threshold value, which controls the filtering part before UART sampling. The UART filters the glitches below the threshold width in the waveform and sends them for sampling.

#### 10.3.7 Automatic baud rate detection

The UART module supports automatic baud rate detection. The detection is divided into two types, one is the general mode and the other is the fixed character mode. Each time the bit <CR\_URX\_ABR\_EN> of the set register URX\_-CONFIG is turned on, these two detection modes are enabled.

#### General mode

For any character data received, the UART module counts the number of clocks in the bit width. This number is then written to the lower 16 bits of the register STS\_URX\_ABR\_PRD and used to calculate the baud rate. Therefore, when the value of the first received data bit is 1, you can get the correct baud rate, such as '0x01' under LSB-FIRST.

#### Fixed character mode

In this mode, after counting the number of clocks in the starting bit width, the UART module will continue to count the clocks of subsequent data bits and compare them with the start bit. If it fluctuates within the allowable error range, it passes the test, otherwise, the count value is discarded. Therefore, only when the fixed characters '0x55' / '0xD5' are received under LSB-FIRST or '0xAA' / '0xAB' under MSB-FIRST, the UART module will start counting the number of clocks in the bit width. The value is written to the upper 16 bits of the register STS\_URX\_ABR\_PRD. As shown below:



Figure 10.4: UART fixed character mode

For an unknown baud rate, the UART uses UART\_CLK to count the start bit with a width of 1000 and the second bit with a width of 1001, which does not fluctuate more than 4 UART\_CLK from the previous bit width. The UART will continue to count the third bit. The third bit is 1005. If the difference between the UART and the start bit exceeds 4, the test fails and the data is discarded. The UART compares the first 6 bits of the data bit with the start bit in turn.

BL602/604 Reference Manual 131/ 209 @2020 Bouffalo Lab



The formula for calculating the detected baud rate is as follows:

Baud rate = source clock/(16-bit detection value + 1)

#### 10.3.8 Hardware flow control

The UART supports hardware flow control in CTS / RTS mode to prevent data in the FIFO from being lost because it is too late to process. The hardware flow control connection is shown in the following figure:



Figure 10.5: UART flow control

When using the hardware flow control function, the output signal RTS is high to request the other party to send data, and RTS is low to notify the other party to stop data transmission until the RTS returns to high. There are two ways for the hardware flow control of the transmitter.

- The bit <CR\_URX\_RTS\_SW\_MODE> of the URX\_CONFIG register is equal to 0: pull down the RTS level when the amount of data in the RX FIFO is greater than <RX\_FIFO\_TH>.
- The bit <CR\_URX\_RTS\_SW\_MODE> of the URX\_CONFIG register is equal to 1: The RTS level can be changed by configuring the bit <CR\_URX\_RTS\_SW\_VAL> of the URX\_CONFIG register.

The TX CTS can be enabled by configuring bit <CR\_UTX\_CTS\_EN> of UTX\_CONFIG. When the device detects that the input signal CTS is pulled low, TX stops sending data until it detects that CTS is pulled high before continuing to transmit.

#### 10.3.9 DMA transfer mode

The UART supports DMA transfer mode. To use this mode, you need to set the TX and RX FIFO thresholds through the bits <TX\_FIFO\_TH> and <RX\_FIFO\_TH> of the UART\_FIFO\_CONFIG\_1 register. When this mode is enabled, the UART will check the TX / RX FIFO. Above the set threshold, a DMA request will be initiated, and the DMA will move data to the TX FIFO or out of the RX FIFO according to the setting.

### 10.3.10 UART interrupt

The UART has multiple interrupt control, including the following interrupt modes:

TX transmission end interrupt



- RX transmission end interrupt
- TX FIFO request interrupt
- · RX FIFO request interrupt
- RX timeout interrupt
- · RX parity error interrupt
- TX FIFO overflow interrupt
- RX FIFO overflow interrupt

TX and RX can set a transmission length value through the upper 16 bits of the UTX\_CONFIG and URX\_CONFIG registers. When the number of bytes transmitted reaches this value, the corresponding TX / RX transmission end interrupt will be triggered. The TX / RX FIFO request interrupt will be triggered when its FIFO available count value is greater than the threshold set in the register UART\_FIFO\_CONFIG\_1. When the condition is not met, the interrupt flag will be automatically cleared. The RX timeout interrupt is triggered when the receiver does not receive data beyond the timeout threshold, and the RX parity error interrupt occurs when a parity error occurs. If the TX / RX FIFO overflows or underflows, the corresponding overflow interrupt will be triggered. When the FIFO clear bit TX\_-FIFO\_CLR / RX\_FIFO\_CLR is set to 1, the corresponding FIFO will be cleared and the overflow interrupt flag will be automatically cleared.

Query the interrupt status through the register UART\_INT\_STS, and clear the interrupt by writing 1 to the corresponding bit in the register UART\_INT\_CLEAR.

## 10.4 寄存器描述

| Name            | Description                          |
|-----------------|--------------------------------------|
| utx_config      | UART TX configuration register       |
| urx_config      | UART RX configuration register       |
| uart_bit_prd    | UART period control register         |
| data_config     | UART data configuration register     |
| utx_ir_position | UART TX ir position control register |
| urx_ir_position | UART RX ir position control register |
| urx_rto_timer   | RTO interrupt control register       |
| uart_int_sts    | UART interrupt status                |
| uart_int_mask   | UART interrupt mask                  |
| uart_int_clear  | UART interrupt clear                 |
| uart_int_en     | UART interrupt enable                |

BL602/604 Reference Manual 133/ 209 @2020 Bouffalo Lab



| Name               | Description                          |  |  |  |  |  |
|--------------------|--------------------------------------|--|--|--|--|--|
| uart_status        | UART status control register         |  |  |  |  |  |
| sts_urx_abr_prd    | Auto baud detection control register |  |  |  |  |  |
| uart_fifo_config_0 | UART FIFO configuration register0    |  |  |  |  |  |
| uart_fifo_config_1 | UART FIFO configuration register1    |  |  |  |  |  |
| uart_fifo_wdata    | UART FIFO write data                 |  |  |  |  |  |
| uart_fifo_rdata    | UART FIFO read data                  |  |  |  |  |  |

# 10.4.1 utx\_config

地址: 0x4000a000

| 31 | 30  | 29   | 28   | 27   | 26 | 25     | 24  | 23   | 22   | 21   | 20   | 19   | 18  | 17  | 16 |
|----|-----|------|------|------|----|--------|-----|------|------|------|------|------|-----|-----|----|
|    |     |      |      |      |    |        | TXI | _EN  |      |      |      |      |     |     |    |
| 15 | 14  | 13   | 12   | 11   | 10 | 9      | 8   | 7    | 6    | 5    | 4    | 3    | 2   | 1   | 0  |
| RS | SVD | TXBC | CNTP | RSVD | 7  | TXBCNT | )   | IRTX | IRTX | TXPR | TXPR | RSVD | FRM | CTS | EN |
|    |     |      |      |      |    |        |     | INV  | EN   | SEL  | EN   |      | EN  | EN  |    |

| Bits  | Name    | Туре | Reset | Description                                                                                     |
|-------|---------|------|-------|-------------------------------------------------------------------------------------------------|
| 31:16 | TXLEN   | R/W  | 16'd0 | Length of UART TX data transfer (Unit: character/byte) (Don't-care if cr_utx_frm_en is enabled) |
| 15:14 | RSVD    |      |       |                                                                                                 |
| 13:12 | TXBCNTP | R/W  | 2'd1  | UART TX STOP bit count (unit: 0.5 bit)                                                          |
| 11    | RSVD    |      |       |                                                                                                 |
| 10:8  | TXBCNTD | R/W  | 3'd7  | UART TX DATA bit count for each character                                                       |
| 7     | IRTXINV | R/W  | 1'b0  | Inverse signal of UART TX output in IR mode                                                     |
| 6     | IRTXEN  | R/W  | 1'b0  | Enable signal of UART TX IR mode                                                                |
| 5     | TXPRSEL | R/W  | 1'b0  | Select signal of UART TX parity bit  1: Odd parity  0: Even parity                              |
| 4     | TXPREN  | R/W  | 1'b0  | Enable signal of UART TX parity bit                                                             |
| 3     | RSVD    |      |       |                                                                                                 |
| 2     | FRMEN   | R/W  | 1'b0  | Enable signal of UART TX freerun mode (utx_end_int will be disabled)                            |

BL602/604 Reference Manual 134/ 209 @2020 Bouffalo Lab



| Bits | Name  | Туре | Reset | Description                                                                                                               |
|------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------|
| 1    | CTSEN | R/W  | 1'b0  | Enable signal of UART TX CTS flow control function                                                                        |
| 0    | EN    | R/W  | 1'b0  | Enable signal of UART TX function Asserting this bit will trigger the transaction, and should be de-asserted after finish |

## 10.4.2 urx\_config

地址: 0x4000a004

| 31 | 30  | 29  | 28 | 27  | 26 | 25     | 24  | 23   | 22   | 21   | 20   | 19  | 18  | 17  | 16 |
|----|-----|-----|----|-----|----|--------|-----|------|------|------|------|-----|-----|-----|----|
|    |     |     |    |     |    |        | RXI | EN   |      |      |      |     |     |     |    |
| 15 | 14  | 13  | 12 | 11  | 10 | 9      | 8   | 7    | 6    | 5    | 4    | 3   | 2   | 1   | 0  |
|    | DEG | CNT |    | DEG | F  | RXBCNT | )   | IRRX | IRRX | RXPR | RXPR | ABR | RTS | RTS | EN |
|    |     |     |    | EN  |    |        |     | INV  | EN   | SEL  | EN   | EN  | SWV | SWM |    |

| Bits  | Name    | Туре | Reset | Description                                                                                                |
|-------|---------|------|-------|------------------------------------------------------------------------------------------------------------|
| 31:16 | RXLEN   | R/W  | 16'd0 | Length of UART RX data transfer (Unit: character/byte) urx_end_int will assert when this length is reached |
| 15:12 | DEGCNT  | R/W  | 4'd0  | De-glitch function cycle count                                                                             |
| 11    | DEGEN   | R/W  | 1'b0  | Enable signal of RXD input de-glitch function                                                              |
| 10:8  | RXBCNTD | R/W  | 3'd7  | UART RX DATA bit count for each character                                                                  |
| 7     | IRRXINV | R/W  | 1'b0  | Inverse signal of UART RX input in IR mode                                                                 |
| 6     | IRRXEN  | R/W  | 1'b0  | Enable signal of UART RX IR mode                                                                           |
| 5     | RXPRSEL | R/W  | 1'b0  | Select signal of UART RX parity bit  1: Odd parity  0: Even parity                                         |
| 4     | RXPREN  | R/W  | 1'b0  | Enable signal of UART RX parity bit                                                                        |
| 3     | ABREN   | R/W  | 1'b0  | Enable signal of UART RX Auto Baud Rate detection function                                                 |
| 2     | RTSSWV  | R/W  | 1'b0  | UART RX RTS output SW control value                                                                        |
| 1     | RTSSWM  | R/W  | 1'b0  | UART RX RTS output SW control mode                                                                         |
| 0     | EN      | R/W  | 1'b0  | Enable signal of UART RX function                                                                          |

BL602/604 Reference Manual 135/ 209 @2020 Bouffalo Lab



## 10.4.3 uart\_bit\_prd

地址: 0x4000a008

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RBITPRD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TBITPRD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name    | Туре | Reset   | Description                                      |
|-------|---------|------|---------|--------------------------------------------------|
| 31:16 | RBITPRD | R/W  | 16'd255 | Period of each UART RX bit, related to baud rate |
| 15:0  | TBITPRD | R/W  | 16'd255 | Period of each UART TX bit, related to baud rate |

## 10.4.4 data\_config

地址: 0x4000a00c

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|----|----|----|----|----|----|------|----|----|----|----|----|----|----|-----|
|    |    |    |    |    |    |    | RS   | VD |    |    |    |    |    |    |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
|    |    |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | BIT |
|    |    |    |    |    |    |    |      |    |    |    |    |    |    |    | INV |

| Bits | Name   | Туре | Reset | Description                                                                                                   |
|------|--------|------|-------|---------------------------------------------------------------------------------------------------------------|
| 31:1 | RSVD   |      |       |                                                                                                               |
| 0    | BITINV | R/W  | 1'b0  | Bit-inverse signal for each data byte  0: Each byte is sent out LSB-first  1: Each byte is sent out MSB-first |

## 10.4.5 utx\_ir\_position

地址: 0x4000a010

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | TXIRPP |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TXIRPS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 136/ 209 @2020 Bouffalo Lab



| Bits  | Name   | Туре | Reset   | Description                        |
|-------|--------|------|---------|------------------------------------|
| 31:16 | TXIRPP | R/W  | 16'd159 | STOP position of UART TX IR pulse  |
| 15:0  | TXIRPS | R/W  | 16'd112 | START position of UART TX IR pulse |

## 10.4.6 urx\_ir\_position

地址: 0x4000a014

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RXIRPS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset   | Description                                               |
|-------|--------|------|---------|-----------------------------------------------------------|
| 31:16 | RSVD   |      |         |                                                           |
| 15:0  | RXIRPS | R/W  | 16'd111 | START position of UART RXD pulse recovered from IR signal |

## 10.4.7 urx\_rto\_timer

地址: 0x4000a018

| 31   | 31         30         29         28         27         26         25         24         23         22         21         20         19         18         17         16 |    |    |    |    |   |   |   |   |   |                  | 16   |   |   |   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|---|---|---|---|---|------------------|------|---|---|---|
| RSVD |                                                                                                                                                                         |    |    |    |    |   |   |   |   |   |                  |      |   |   |   |
| 15   | 14                                                                                                                                                                      | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4                | 3    | 2 | 1 | 0 |
|      | RSVD                                                                                                                                                                    |    |    |    |    |   |   |   |   |   | RXR <sup>-</sup> | ΓΟVA |   |   |   |

| Bits | Name    | Туре | Reset | Description                                                  |
|------|---------|------|-------|--------------------------------------------------------------|
| 31:8 | RSVD    |      |       |                                                              |
| 7:0  | RXRTOVA | R/W  | 8'd15 | Time-out value for triggering RTO interrupt (unit: bit time) |

## 10.4.8 uart\_int\_sts

地址: 0x4000a020

BL602/604 Reference Manual 137/ 209 @2020 Bouffalo Lab



| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|----|------|----|----|----|----|----|----|-----|------|------|------|------|------|------|------|
|    |      |    |    |    |    |    | RS | VD  |      |      |      |      |      |      |      |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|    | RSVD |    |    |    |    |    |    |     | TFIN | RPCE | RRTO | RFIN | TFIN | REIN | TEIN |
|    |      |    |    |    |    |    |    | INT |      | INT  | INT  |      |      |      |      |

| Bits | Name    | Туре | Reset | Description                                                                                   |
|------|---------|------|-------|-----------------------------------------------------------------------------------------------|
| 31:8 | RSVD    |      |       |                                                                                               |
| 7    | RFERINT | R    | 1'b0  | UART RX FIFO error interrupt, auto-cleared when FIFO overflow/underflow error flag is cleared |
| 6    | TFIN    | R    | 1'b0  | UART TX FIFO error interrupt, auto-cleared when FIFO overflow/underflow error flag is cleared |
| 5    | RPCEINT | R    | 1'b0  | UART RX parity check error interrupt                                                          |
| 4    | RRTOINT | R    | 1'b0  | UART RX Time-out interrupt                                                                    |
| 3    | RFIN    | R    | 1'b0  | UART RX FIFO ready (rx_fifo_cnt > rx_fifo_th) interrupt, auto-cleared when data is popped     |
| 2    | TFIN    | R    | 1'b0  | UART TX FIFO ready (tx_fifo_cnt > tx_fifo_th) interrupt, auto-cleared when data is pushed     |
| 1    | REIN    | R    | 1'b0  | UART RX transfer end interrupt (set according to cr_urx len)                                  |
| 0    | TEIN    | R    | 1'b0  | UART TX transfer end interrupt (set according to cr_utxlen)                                   |

## 10.4.9 uart\_int\_mask

地址: 0x4000a024

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|----|------|----|----|----|----|----|----|------|------|------|------|------|------|------|------|
|    |      |    |    |    |    |    |    |      |      |      |      |      |      |      |      |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|    | RSVD |    |    |    |    |    |    |      | TFER | RPCE | RRTO | RFMS | TFMS | REMS | TEMS |
|    |      |    |    |    |    |    |    | MASK | MASK | MASK | MASK |      |      |      |      |

| Bits | Name     | Туре | Reset | Description                   |
|------|----------|------|-------|-------------------------------|
| 31:8 | RSVD     |      |       |                               |
| 7    | RFERMASK | R/W  | 1'b1  | Interrupt mask of urx_fer_int |
| 6    | TFERMASK | R/W  | 1'b1  | Interrupt mask of utx_fer_int |

BL602/604 Reference Manual 138/ 209 @2020 Bouffalo Lab



| Bits | Name     | Туре | Reset | Description                    |
|------|----------|------|-------|--------------------------------|
| 5    | RPCEMASK | R/W  | 1'b1  | Interrupt mask of urx_pce_int  |
| 4    | RRTOMASK | R/W  | 1'b1  | Interrupt mask of urx_rto_int  |
| 3    | RFMS     | R/W  | 1'b1  | Interrupt mask of urx_fifo_int |
| 2    | TFMS     | R/W  | 1'b1  | Interrupt mask of utx_fifo_int |
| 1    | REMS     | R/W  | 1'b1  | Interrupt mask of urx_end_int  |
| 0    | TEMS     | R/W  | 1'b1  | Interrupt mask of utx_end_int  |

# 10.4.10 uart\_int\_clear

地址: 0x4000a028

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21   | 20   | 19 | 18 | 17   | 16   |
|----|------|----|----|----|----|----|----|----|----|------|------|----|----|------|------|
|    | RSVD |    |    |    |    |    |    |    |    |      |      |    |    |      |      |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5    | 4    | 3  | 2  | 1    | 0    |
|    |      |    |    | RS | VD |    |    |    |    | RPCE | RRTO | RS | VD | RECL | TECL |
|    |      |    |    |    |    |    |    |    |    |      |      |    |    |      |      |

| Bits | Name    | Туре | Reset | Description                    |
|------|---------|------|-------|--------------------------------|
| 31:6 | RSVD    |      |       |                                |
| 5    | RPCECLR | W1C  | 1'b0  | Interrupt clear of urx_pce_int |
| 4    | RRTOCLR | W1C  | 1'b0  | Interrupt clear of urx_rto_int |
| 3:2  | RSVD    |      |       |                                |
| 1    | RECL    | W1C  | 1'b0  | Interrupt clear of urx_end_int |
| 0    | TECL    | W1C  | 1'b0  | Interrupt clear of utx_end_int |

## 10.4.11 uart\_int\_en

地址: 0x4000a02c

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|------|----|----|----|----|----|----|----|----|------|------|------|------|------|------|------|
| RSVD |    |    |    |    |    |    |    |    |      |      |      |      |      |      |      |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
| RSVD |    |    |    |    |    |    |    |    | TFER | RPCE | RRTO | RFIF | TFIF | REND | TEND |

BL602/604 Reference Manual 139/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description                      |
|------|------|------|-------|----------------------------------|
| 31:8 | RSVD |      |       |                                  |
| 7    | RFER | R/W  | 1'b1  | Interrupt enable of urx_fer_int  |
| 6    | TFER | R/W  | 1'b1  | Interrupt enable of utx_fer_int  |
| 5    | RPCE | R/W  | 1'b1  | Interrupt enable of urx_pce_int  |
| 4    | RRTO | R/W  | 1'b1  | Interrupt enable of urx_rto_int  |
| 3    | RFIF | R/W  | 1'b1  | Interrupt enable of urx_fifo_int |
| 2    | TFIF | R/W  | 1'b1  | Interrupt enable of utx_fifo_int |
| 1    | REND | R/W  | 1'b1  | Interrupt enable of urx_end_int  |
| 0    | TEND | R/W  | 1'b1  | Interrupt enable of utx_end_int  |

## 10.4.12 uart\_status

地址: 0x4000a030

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17  | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|-----|-----|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    |     |     |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1   | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    | RBB | TBB |    |

| Bits | Name | Туре | Reset | Description                   |
|------|------|------|-------|-------------------------------|
| 31:2 | RSVD |      |       |                               |
| 1    | RBB  | R    | 1'b0  | Indicator of UART RX bus busy |
| 0    | TBB  | R    | 1'b0  | Indicator of UART TX bus busy |

## 10.4.13 sts\_urx\_abr\_prd

地址: 0x4000a034

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | ABRPRD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | ABRPRDS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 140/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                                                |
|-------|---------|------|-------|------------------------------------------------------------|
| 31:16 | ABRPRD  | R    | 16'd0 | Bit period of Auto Baud Rate detection using codeword 0x55 |
| 15:0  | ABRPRDS | R    | 16'd0 | Bit period of Auto Baud Rate detection using START bit     |

# 10.4.14 uart\_fifo\_config\_0

地址: 0x4000a080

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20   | 19  | 18  | 17  | 16  |
|----|----|----|----|----|----|----|----|------|------|------|------|-----|-----|-----|-----|
|    |    |    |    |    |    |    | RS | VD   |      |      |      |     |     |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4    | 3   | 2   | 1   | 0   |
|    |    |    | RS | VD |    |    |    | RFIU | RFIO | TFIU | TFIO | RFI | TFI | UDR | UDT |
|    |    |    |    |    |    |    |    |      |      |      |      | CLR | CLR | EN  | EN  |

| Bits | Name   | Туре | Reset | Description                                              |
|------|--------|------|-------|----------------------------------------------------------|
| 31:8 | RSVD   |      |       |                                                          |
| 7    | RFIU   | R    | 1'b0  | Underflow flag of RX FIFO, can be cleared by rx_fifo_clr |
| 6    | RFIO   | R    | 1'b0  | Overflow flag of RX FIFO, can be cleared by rx_fifo_clr  |
| 5    | TFIU   | R    | 1'b0  | Underflow flag of TX FIFO, can be cleared by tx_fifo_clr |
| 4    | TFIO   | R    | 1'b0  | Overflow flag of TX FIFO, can be cleared by tx_fifo_clr  |
| 3    | RFICLR | W1C  | 1'b0  | Clear signal of RX FIFO                                  |
| 2    | TFICLR | W1C  | 1'b0  | Clear signal of TX FIFO                                  |
| 1    | UDREN  | R/W  | 1'b0  | Enable signal of dma_rx_req/ack interface                |
| 0    | UDTEN  | R/W  | 1'b0  | Enable signal of dma_tx_req/ack interface                |

# 10.4.15 uart\_fifo\_config\_1

地址: 0x4000a084

| 31 | 30         | 29 | 28 | 27  | 26  | 25 | 24 | 23   | 22 | 21    | 20 | 19  | 18  | 17 | 16 |  |
|----|------------|----|----|-----|-----|----|----|------|----|-------|----|-----|-----|----|----|--|
|    | RSVD RFITH |    |    |     |     |    |    | RSVD |    | TFITH |    |     |     |    |    |  |
| 15 | 14         | 13 | 12 | 11  | 10  | 9  | 8  | 7    | 6  | 5     | 4  | 3   | 2   | 1  | 0  |  |
| RS | SVD        |    |    | RFI | CNT |    |    | RS   | VD |       |    | TFI | CNT |    |    |  |

BL602/604 Reference Manual 141/ 209 @2020 Bouffalo Lab



| Bits  | Name   | Туре | Reset | Description                                                                               |
|-------|--------|------|-------|-------------------------------------------------------------------------------------------|
| 31:29 | RSVD   |      |       |                                                                                           |
| 28:24 | RFITH  | R/W  | 5'd0  | RX FIFO threshold, dma_rx_req will not be asserted if tx fifo_cnt is less than this value |
| 23:21 | RSVD   |      |       |                                                                                           |
| 20:16 | TFITH  | R/W  | 5'd0  | TX FIFO threshold, dma_tx_req will not be asserted if tx fifo_cnt is less than this value |
| 15:14 | RSVD   |      |       |                                                                                           |
| 13:8  | RFICNT | R    | 6'd0  | RX FIFO available count                                                                   |
| 7:6   | RSVD   |      |       |                                                                                           |
| 5:0   | TFICNT | R    | 6'd32 | TX FIFO available count                                                                   |

# 10.4.16 uart\_fifo\_wdata

地址: 0x4000a088

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20  | 19 | 18 | 17 | 16 |
|------|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|
| RSVD |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4   | 3  | 2  | 1  | 0  |
|      |    |    | RS | VD |    |    |    |    |    |    | UFI | WD |    |    |    |

| Bits | Name  | Type Reset |   | Description          |  |  |
|------|-------|------------|---|----------------------|--|--|
| 31:8 | RSVD  |            |   |                      |  |  |
| 7:0  | UFIWD | W          | х | UART FIFO write data |  |  |

# 10.4.17 uart\_fifo\_rdata

地址: 0x4000a08c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20  | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|
|    |      |    |    |    |    |    | RS | VD |    |    |     |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4   | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    | UF | IRD |    |    |    |    |

| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
| 31:8 | RSVD |      |       |             |

BL602/604 Reference Manual 142/ 209 @2020 Bouffalo Lab



| Bits | Name  | Type Reset |      | Description         |  |  |
|------|-------|------------|------|---------------------|--|--|
| 7:0  | UFIRD | R          | 8'h0 | UART FIFO read data |  |  |

BL602/604 Reference Manual 143/ 209 @2020 Bouffalo Lab

### 11.1 Introduction

I2C (Inter-Intergrated Circuit) is a serial communication bus that uses a multi-master-slave architecture to connect low-speed peripheral devices.

Each device has a unique address identification and can be used as a transmitter or receiver. Each device connected to the bus can set the address by software with a unique address and the always-receiving master-slave relationship. The host can be used as a host transmitter or a host receiver.

If two or more hosts are initialized at the same time, data transmission can prevent data from being destroyed through collision detection and arbitration.

BL602 includes an I2C controller host, which can be flexibly configured with slaveAddr, subAddr, and data transmission to facilitate communication with slave devices. It provides 2 word depth fifo and provides interrupt functions. It can be used with DMA to improve efficiency and flexibly adjust clock frequency.

### 11.2 Main features

- Support host mode
- Support multi-master mode and arbitration function
- · Flexible clock frequency adjustment

# 11.3 Function description

Table 11.1: Pin lists

| Name     | Туре         | Description             |
|----------|--------------|-------------------------|
| I2Cx_SCL | input/output | I2C serial clock signal |
| I2Cx_SDA | input/output | I2C serial data signal  |



#### 11.3.1 Start and stop conditions

All transfers begin with a START condition and end with a STOP condition.

The start and stop conditions are generally generated by the master. The bus is considered to be in a busy state after the start condition, and is considered to be in an idle state for a period of time after the stop condition.

Start condition: SDA generates a high-to-low level transition when SCL is high;

Stop condition: SDA generates a low-to-high level transition when SCL is high.

The waveform diagram is as follows:



Figure 11.1: I2C stop/start condition

#### 11.3.2 Data transmission format

The first 8 bits transmitted are the address byte, including the 7-bit slave address and the 1-bit direction bit. Data sent or received by the host is controlled by the eighth bit of the first byte sent by the host.

If it is 0, it means that the data is sent by the master; if it is 1, it means that the data is received by the master, and then the slave sends an acknowledge bit (ACK). After the data transmission is completed, the master sends a stop signal. The waveform is as follows:



Figure 11.2: Master transmission

#### Timing of master transmission and slave reception

BL602/604 Reference Manual 145/ 209 @2020 Bouffalo Lab





Figure 11.3: Master tx and slave rx

#### Timing of master receive and slave send



Figure 11.4: Master rx and slave tx

#### 11.3.3 Arbitration

When there are multiple masters on the I2C bus, multiple masters may start transmitting at the same time. At this time, it is necessary to rely on the arbitration mechanism to determine which master has the right to complete the next data transfer. The remaining masters must give up control of the bus. The transmission cannot be started again until the bus is free.

During the transmission process, all hosts need to check whether SDA is consistent with the data they want to send when SCL is high. When the SDA level is different from expected, it means that other hosts are also transmitting at the same time. Hosts with different SDA levels will lose the arbitration and other hosts will complete the data transmission.

The waveform diagram of two hosts transmitting data and starting the arbitration mechanism at the same time is as follows:

BL602/604 Reference Manual 146/ 209 @2020 Bouffalo Lab



Figure 11.5: Tx and Rx together

#### 11.4 I2C clock setting

The I2C clock is derived from bclk (bus clock), which can be divided based on the bclk clock.

Register I2C\_PRD\_DATA can divide the clock of the data segment. The i2c module divides the data transmission into 4 phases. Each phase is controlled by a single byte in the register. The number of samples in each phase can be set. The 4 samples together determine the frequency division coefficient of the i2c clock.

For example, bclk is 32M and the value of register I2C\_PRD\_DATA is 0x15151515 by default without configuration. Then the clock frequency of I2C is 32M / ((15 + 1) \* 4) = 500K.

Similarly, the registers I2C\_PRD\_START and I2C\_PRD\_STOP also divide the clock of the start bit and stop bit respectively.

# 11.5 I2C configuration process

#### 11.5.1 Configuration item

- · Read and write flags
- · Slave address
- · Slave device address
- · Slave device address length
- Data (when sending, configure the data to be sent; when receiving, store the received data)
- · Data length



Enable signal

#### 11.5.2 Read and write flags

I2C supports two working states: sending and receiving. Register I2C\_CR\_I2C\_PKT\_DIR indicates the sending or receiving status. When it is set to 0, it indicates the sending state, and when it is set to 1, it indicates the receiving state.

#### 11.5.3 Slave address

Each slave device connected to I2C will have a unique address. Usually the address length is 7 bits. The slave device address will be written into the register I2C\_CR\_I2C\_SLV\_ADDR. I2C will automatically shift left by 1 bit before sending it from the device address. Transmit/receive direction bit on the low-order complement.

#### 11.5.4 Slave device address

Slave device register address indicates the register address that I2C needs to read and write to a certain register of the slave device. The slave device address will be written to the register I2C\_SUB\_ADDR, and the register SAEN needs to be set.

If the register SAEN is set to 0, the I2C master will skip the slave register address segment when transmitting.

#### 11.5.5 Slave device address length

The slave device address length is decremented by one and written to the register SABC.

#### 11.5.6 Data

The data part represents the data that needs to be sent to the slave device, or the data that needs to be received from the slave device.

When I2C sends data, the data needs to be written into the I2C FIFO in word units in turn, and the data is written to the register address I2C FIFO WDATA of the FIFO.

When the I2C receives data, it needs to read the data from the I2C FIFO in units of words in order, and the received data reads the register address I2C\_FIFO\_RDATA of the FIFO.

#### 11.5.7 Data length

Decrement the data length by one and write to the register PKTLEN.

#### 11.5.8 Enable signal

After the above configurations are completed, write the enable signal register MEN to 1 to automatically start the I2C transmission process.

BL602/604 Reference Manual 148/ 209 @2020 Bouffalo Lab



When the read-write flag is set to 0, I2C sends data, and the host sends the process:

- 1. Start bit
- 2. (1 bit left from device address + 0) + ACK
- 3. Slave device address + ACK
- 4. 1 byte data + ACK
- 5. 1 byte data + ACK
- 6. Stop bit

When the read / write flag is set to 1, I2C receives data and the host sends the process:

- 1. Start bit
- 2. (1 bit left from device address + 0) + ACK
- 3. Slave device address + ACK
- 4. Start bit
- 5. (1 bit left from device address + 1) + ACK
- 6. 1 byte data + ACK
- 7. 1 byte data + ACK
- 8. Stop bit

# 11.6 FIFO management

The I2C FIFO depth is 2 words. I2C transmission and reception can be divided into RX FIFO and TX FIFO.

The register RFICNT indicates how much data (unit word) needs to be read in the RX FIFO.

The register TFICNT indicates how much space (in Word) is available for writing in the TX FIFO.

#### I2C FIFO status:

- RX FIFO underflow: When the data in the RX FIFO has been read or is empty, continue to read data from the RX FIFO, the register RFIU will be set;
- RX FIFO overflow: When I2C receives data until the 2 words of RX FIFO are filled. Without reading the RX FIFO, I2C receives the data again and the register RFIO will be set;
- TX FIFO underflow: When the size of the data filled in the TX FIFO does not meet the configured I2C data length PKTLEN, and there is no new data to be filled into the TX FIFO, the register TFIU will be set;
- TX FIFO overflow: After the two words of the TX FIFO are filled, before the data in the TX FIFO is sent out, fill the TX FIFO with data again. The register TFIO will be set.



#### 11.7 Using DMA

I2C can use DMA to send and receive data. Set DTEN to 1 to enable the DMA transmission mode. After a channel is allocated for I2C, the DMA will transfer data from the memory area to the I2C\_FIFO\_WDATA register.

Set DREN to 1 to enable the DMA receive mode. After a channel is allocated for I2C, the DMA will transfer the data in the I2C\_FIFO\_RDATA register to the memory area.

When the I2C module is used with DMA, the data part will be automatically carried by the DMA. There is no need for the CPU to write data to the I2C TX FIFO or read data from the I2C RX FIFO.

#### 11.7.1 DMA transmission process

- 1. Configure the read and write flags to 0
- 2. Configure the slave device address
- 3. Configure Slave Device Address
- 4. Configure slave device address length
- 5. Data length
- 6. Set the enable signal register
- 7. Configure DMA transfer size
- 8. Configure DMA source address transfer width
- 9. Configure the DMA destination address transfer width (Note that when I2C is used with DMA, the destination address transfer width needs to be set to 32bits and used in word alignment)
- 10. Configure the DMA source address as the memory address to store the transmitted data
- 11. Configure the DMA destination address as I2C TX FIFO address, I2C\_FIFO\_WDATA
- 12. Enable DMA

#### 11.7.2 DMA receiving process

- 1. Configure the read and write flags to 1
- 2. Configure the slave device address
- 3. Configure Slave Device Address
- 4. Configure slave device address length
- 5. Data length
- 6. Set the enable signal register



- 7. Configure DMA transfer size
- 8. Configure the DMA source address transfer width (Note that when I2C is used with DMA, the source address transfer width needs to be set to 32bits and used in word alignment)
- 9. Configure DMA destination address transfer width
- 10. Configure the DMA source address as I2C RX FIFO address, I2C\_FIFO\_RDATA
- 11. Configure the DMA destination address as the memory address to store the received data
- 12. Enable DMA

### 11.8 Interrupt

I2C includes the following interrupts:

- I2C\_TRANS\_END\_INT: I2C transfer end interrupt
- I2C\_TX\_FIFO\_READY\_INT: Interrupt is triggered when I2C TX FIFO has free space available for filling
- I2C\_RX\_FIFO\_READY\_INT: When I2C RX FIFO receives data, trigger interrupt
- I2C\_NACK\_RECV\_INT: When the I2C module detects a NACK state, an interrupt is triggered
- I2C\_ARB\_LOST\_INT: I2C arbitration lost interrupt
- I2C\_FIFO\_ERR\_INT: I2C FIFO ERROR interrupt

#### 11.9 寄存器描述

| Name              | Description                      |
|-------------------|----------------------------------|
| i2c_config        | I2C configuration register       |
| i2c_int_sts       | I2C interrupt status             |
| i2c_sub_addr      | I2C sub-address configuration    |
| i2c_bus_busy      | I2C bus busy control register    |
| i2c_prd_start     | I2C length of start phase        |
| i2c_prd_stop      | I2C length of stop phase         |
| i2c_prd_data      | I2C length of data phase         |
| i2c_fifo_config_0 | I2C FIFO configuration register0 |
| i2c_fifo_config_1 | I2C FIFO configuration register1 |
| i2c_fifo_wdata    | I2C FIFO write data              |
| i2c_fifo_rdata    | I2C FIFO read data               |

BL602/604 Reference Manual 151/ 209 @2020 Bouffalo Lab



# 11.9.1 i2c\_config

地址: 0x4000a300

| 31   | 30      | 29  | 28   | 27 | 26 | 25 | 24 | 23     | 22 | 21 | 20   | 19   | 18  | 17  | 16  |
|------|---------|-----|------|----|----|----|----|--------|----|----|------|------|-----|-----|-----|
|      | DEG     | CNT | RSVD |    |    |    |    | PKTLEN |    |    |      |      |     |     |     |
| 15   | 14      | 13  | 12   | 11 | 10 | 9  | 8  | 7      | 6  | 5  | 4    | 3    | 2   | 1   | 0   |
| RSVD | SLVADDR |     |      |    |    |    |    | RSVD   | SA | ВС | SAEN | SCLS | DEG | PKT | MEN |
|      |         |     |      |    |    |    |    |        |    |    |      | EN   | EN  | DIR |     |

| Bits  | Name    | Туре | Reset | Description                                                                                                                                  |
|-------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 31:28 | DEGCNT  | R/W  | 4'd0  | De-glitch function cycle count                                                                                                               |
| 27:24 | RSVD    |      |       |                                                                                                                                              |
| 23:16 | PKTLEN  | R/W  | 8'd0  | Packet length (unit: byte)                                                                                                                   |
| 15    | RSVD    |      |       |                                                                                                                                              |
| 14:8  | SLVADDR | R/W  | 7'd0  | Slave address for I2C transaction (target address)                                                                                           |
| 7     | RSVD    |      |       |                                                                                                                                              |
| 6:5   | SABC    | R/W  | 2'd0  | Sub-address field byte count 2'd0: 1-byte, 2'd1: 2-byte, 2'd2: 3-byte, 2'd3: 4-byte                                                          |
| 4     | SAEN    | R/W  | 1'b0  | Enable signal of I2C sub-address field                                                                                                       |
| 3     | SCLSEN  | R/W  | 1'b1  | Enable signal of I2C SCL synchronization, should be enabled to support Multi-Master and Clock-Stretching (Normally should not be turned-off) |
| 2     | DEGEN   | R/W  | 1'b0  | Enable signal of I2C input de-glitch function (for all input pins)                                                                           |
| 1     | PKTDIR  | R/W  | 1'b1  | Transfer direction of the packet 1'b0: Write; 1'b1: Read                                                                                     |
| 0     | MEN     | R/W  | 1'b0  | Enable signal of I2C Master function Asserting this bit will trigger the transaction, and should be de-asserted after finish                 |

# 11.9.2 i2c\_int\_sts

地址: 0x4000a304



| 31 | 30 | 29   | 28   | 27   | 26   | 25   | 24   | 23 | 22   | 21  | 20  | 19  | 18  | 17  | 16  |
|----|----|------|------|------|------|------|------|----|------|-----|-----|-----|-----|-----|-----|
| RS | VD | FER  | ARB  | NAK  | RXF  | TXF  | END  |    | RSVD |     | ARB | NAK | RS  | VD  | END |
|    |    | EN   | EN   | EN   | EN   | EN   | EN   |    |      |     | CLR | CLR |     |     | CLR |
| 15 | 14 | 13   | 12   | 11   | 10   | 9    | 8    | 7  | 6    | 5   | 4   | 3   | 2   | 1   | 0   |
| RS | VD | FER  | ARB  | NAK  | RXF  | TXF  | END  | RS | VD   | FER | ARB | NAK | RXF | TXF | END |
|    |    | MASK | MASK | MASK | MASK | MASK | MASK |    |      | INT | INT | INT | INT | INT | INT |

| Bits  | Name    | Туре | Reset | Description                                                                                     |
|-------|---------|------|-------|-------------------------------------------------------------------------------------------------|
| 31:30 | RSVD    |      |       |                                                                                                 |
| 29    | FEREN   | R/W  | 1'b1  | Interrupt enable of i2c_fer_int                                                                 |
| 28    | ARBEN   | R/W  | 1'b1  | Interrupt enable of i2c_arb_int                                                                 |
| 27    | NAKEN   | R/W  | 1'b1  | Interrupt enable of i2c_nak_int                                                                 |
| 26    | RXFEN   | R/W  | 1'b1  | Interrupt enable of i2c_rxf_int                                                                 |
| 25    | TXFEN   | R/W  | 1'b1  | Interrupt enable of i2c_txf_int                                                                 |
| 24    | ENDEN   | R/W  | 1'b1  | Interrupt enable of i2c_end_int                                                                 |
| 23:21 | RSVD    |      |       |                                                                                                 |
| 20    | ARBCLR  | W1C  | 1'b0  | Interrupt clear of i2c_arb_int                                                                  |
| 19    | NAKCLR  | W1C  | 1'b0  | Interrupt clear of i2c_nak_int                                                                  |
| 18:17 | RSVD    |      |       |                                                                                                 |
| 16    | ENDCLR  | W1C  | 1'b0  | Interrupt clear of i2c_end_int                                                                  |
| 15:14 | RSVD    |      |       |                                                                                                 |
| 13    | FERMASK | R/W  | 1'b1  | Interrupt mask of i2c_fer_int                                                                   |
| 12    | ARBMASK | R/W  | 1'b1  | Interrupt mask of i2c_arb_int                                                                   |
| 11    | NAKMASK | R/W  | 1'b1  | Interrupt mask of i2c_nak_int                                                                   |
| 10    | RXFMASK | R/W  | 1'b1  | Interrupt mask of i2c_rxf_int                                                                   |
| 9     | TXFMASK | R/W  | 1'b1  | Interrupt mask of i2c_txf_int                                                                   |
| 8     | ENDMASK | R/W  | 1'b1  | Interrupt mask of i2c_end_int                                                                   |
| 7:6   | RSVD    |      |       |                                                                                                 |
| 5     | FERINT  | R    | 1'b0  | I2C TX/RX FIFO error interrupt, auto-cleared when FIFO overflow/underflow error flag is cleared |
| 4     | ARBINT  | R    | 1'b0  | I2C arbitration lost interrupt                                                                  |
| 3     | NAKINT  | R    | 1'b0  | I2C NACK-received interrupt                                                                     |
| 2     | RXFINT  | R    | 1'b0  | I2C RX FIFO ready (rx_fifo_cnt > rx_fifo_th) interrupt, auto-<br>cleared when data is popped    |



| Bits | Name   | Туре | Reset | Description                                                                             |
|------|--------|------|-------|-----------------------------------------------------------------------------------------|
| 1    | TXFINT | R    | 1'b0  | I2C TX FIFO ready (tx_fifo_cnt > tx_fifo_th) interrupt, autocleared when data is pushed |
| 0    | ENDINT | R    | 1'b0  | I2C transfer end interrupt                                                              |

# 11.9.3 i2c\_sub\_addr

地址: 0x4000a308

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22     | 21 | 20  | 19  | 18 | 17 | 16 |  |
|----|--------|----|----|----|----|----|----|----|--------|----|-----|-----|----|----|----|--|
|    | SUBAB3 |    |    |    |    |    |    |    | SUBAB2 |    |     |     |    |    |    |  |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6      | 5  | 4   | 3   | 2  | 1  | 0  |  |
|    | SUBAB1 |    |    |    |    |    |    |    |        |    | SUB | AB0 |    |    |    |  |

| Bits  | Name   | Туре | Reset | Description                                                   |
|-------|--------|------|-------|---------------------------------------------------------------|
| 31:24 | SUBAB3 | R/W  | 8'd0  | I2C sub-address field - byte[3]                               |
| 23:16 | SUBAB2 | R/W  | 8'd0  | I2C sub-address field - byte[2]                               |
| 15:8  | SUBAB1 | R/W  | 8'd0  | I2C sub-address field - byte[1]                               |
| 7:0   | SUBAB0 | R/W  | 8'd0  | I2C sub-address field - byte[0] (sub-address starts from this |
|       |        |      |       | byte)                                                         |

### 11.9.4 i2c\_bus\_busy

地址: 0x4000a30c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21   | 20   | 19 | 18 | 17  | 16 |
|----|------|----|----|----|----|----|----|----|----|------|------|----|----|-----|----|
|    |      |    |    |    |    |    | RS | VD |    |      |      |    |    |     |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5    | 4    | 3  | 2  | 1   | 0  |
|    | RSVD |    |    |    |    |    |    |    |    | BUSY | BUSY |    |    |     |    |
|    |      |    |    |    |    |    |    |    |    |      |      |    |    | CLR |    |

| Bits | Name    | Туре | Reset | Description                                                                   |
|------|---------|------|-------|-------------------------------------------------------------------------------|
| 31:2 | RSVD    |      |       |                                                                               |
| 1    | BUSYCLR | W1C  | 1'b0  | Clear signal of bus_busy status, not for normal usage (in case I2C bus hangs) |
| 0    | BUSY    | R    | 1'b0  | Indicator of I2C bus busy                                                     |

BL602/604 Reference Manual 154/ 209 @2020 Bouffalo Lab



#### 11.9.5 i2c\_prd\_start

地址: 0x4000a310

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21      | 20  | 19   | 18 | 17 | 16 |  |  |
|----|---------|----|----|----|----|----|----|----|----|---------|-----|------|----|----|----|--|--|
|    | PRDSPH3 |    |    |    |    |    |    |    |    | PRDSPH2 |     |      |    |    |    |  |  |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5       | 4   | 3    | 2  | 1  | 0  |  |  |
|    | PRDSPH1 |    |    |    |    |    |    |    |    |         | PRD | SPH0 |    |    |    |  |  |

| Bits  | Name    | Туре | Reset | Description                       |
|-------|---------|------|-------|-----------------------------------|
| 31:24 | PRDSPH3 | R/W  | 8'd15 | Length of START condition phase 3 |
| 23:16 | PRDSPH2 | R/W  | 8'd15 | Length of START condition phase 2 |
| 15:8  | PRDSPH1 | R/W  | 8'd15 | Length of START condition phase 1 |
| 7:0   | PRDSPH0 | R/W  | 8'd15 | Length of START condition phase 0 |

#### 11.9.6 i2c\_prd\_stop

地址: 0x4000a314

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23      | 22 | 21 | 20   | 19   | 18 | 17 | 16 |
|----|---------|----|----|----|----|----|----|---------|----|----|------|------|----|----|----|
|    | PRDPPH3 |    |    |    |    |    |    | PRDPPH2 |    |    |      |      |    |    |    |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7       | 6  | 5  | 4    | 3    | 2  | 1  | 0  |
|    | PRDPPH1 |    |    |    |    |    |    |         |    |    | PRDI | PPH0 |    |    |    |

| Bits  | Name    | Туре | Reset | Description                      |
|-------|---------|------|-------|----------------------------------|
| 31:24 | PRDPPH3 | R/W  | 8'd15 | Length of STOP condition phase 3 |
| 23:16 | PRDPPH2 | R/W  | 8'd15 | Length of STOP condition phase 2 |
| 15:8  | PRDPPH1 | R/W  | 8'd15 | Length of STOP condition phase 1 |
| 7:0   | PRDPPH0 | R/W  | 8'd15 | Length of STOP condition phase 0 |

#### 11.9.7 i2c\_prd\_data

地址: 0x4000a318



| 31 | 30 | 29 | 28   | 27   | 26 | 25 | 24 | 23 | 22 | 21 | 20   | 19   | 18 | 17 | 16 |
|----|----|----|------|------|----|----|----|----|----|----|------|------|----|----|----|
|    |    |    | PRDI | DPH3 |    |    |    |    |    |    | PRDI | DPH2 |    |    |    |
| 15 | 14 | 13 | 12   | 11   | 10 | 9  | 8  | 7  | 6  | 5  | 4    | 3    | 2  | 1  | 0  |
|    |    |    | PRDI | DPH1 |    |    |    |    |    |    | PRDI | DPH0 |    |    |    |

| Bits  | Name    | Туре | Reset | Description                                                                                                                               |
|-------|---------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | PRDDPH3 | R/W  | 8'd15 | Length of DATA phase 3                                                                                                                    |
| 23:16 | PRDDPH2 | R/W  | 8'd15 | Length of DATA phase 2                                                                                                                    |
| 15:8  | PRDDPH1 | R/W  | 8'd15 | Length of DATA phase 1  Note: This value should not be set to 8'd0, adjust source clock rate instead if higher I2C clock rate is required |
| 7:0   | PRDDPH0 | R/W  | 8'd15 | Length of DATA phase 0                                                                                                                    |

# 11.9.8 i2c\_fifo\_config\_0

地址: 0x4000a380

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20   | 19  | 18  | 17   | 16   |
|----|----|----|----|----|----|----|----|------|------|------|------|-----|-----|------|------|
|    |    |    |    |    |    |    | RS | SVD  |      |      |      |     |     |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4    | 3   | 2   | 1    | 0    |
|    | -  |    | RS | VD |    |    |    | RFIU | RFIO | TFIU | TFIO | RFI | TFI | DREN | DTEN |
|    |    |    |    |    |    |    |    |      |      |      |      | CLR | CLR |      |      |

| Bits | Name   | Туре | Reset | Description                                              |
|------|--------|------|-------|----------------------------------------------------------|
| 31:8 | RSVD   |      |       |                                                          |
| 7    | RFIU   | R    | 1'b0  | Underflow flag of RX FIFO, can be cleared by rx_fifo_clr |
| 6    | RFIO   | R    | 1'b0  | Overflow flag of RX FIFO, can be cleared by rx_fifo_clr  |
| 5    | TFIU   | R    | 1'b0  | Underflow flag of TX FIFO, can be cleared by tx_fifo_clr |
| 4    | TFIO   | R    | 1'b0  | Overflow flag of TX FIFO, can be cleared by tx_fifo_clr  |
| 3    | RFICLR | W1C  | 1'b0  | Clear signal of RX FIFO                                  |
| 2    | TFICLR | W1C  | 1'b0  | Clear signal of TX FIFO                                  |
| 1    | DREN   | R/W  | 1'b0  | Enable signal of dma_rx_req/ack interface                |
| 0    | DTEN   | R/W  | 1'b0  | Enable signal of dma_tx_req/ack interface                |



# 11.9.9 i2c\_fifo\_config\_1

地址: 0x4000a384

| 31 | 30 | 29 | 28   | 27 | 26 | 25  | 24  | 23 | 22 | 21 | 20   | 19 | 18 | 17  | 16  |
|----|----|----|------|----|----|-----|-----|----|----|----|------|----|----|-----|-----|
|    |    |    | RSVD |    |    |     | RFI |    |    |    | RSVD |    |    |     | TFI |
|    |    |    |      |    |    |     | TH  |    |    |    |      |    |    |     | TH  |
| 15 | 14 | 13 | 12   | 11 | 10 | 9   | 8   | 7  | 6  | 5  | 4    | 3  | 2  | 1   | 0   |
|    |    | RS | VD   |    |    | RFI | CNT |    |    | RS | VD   |    |    | TFI | CNT |

| Bits  | Name   | Туре | Reset | Description                                                                               |
|-------|--------|------|-------|-------------------------------------------------------------------------------------------|
| 31:25 | RSVD   |      |       |                                                                                           |
| 24    | RFITH  | R/W  | 1'd0  | RX FIFO threshold, dma_rx_req will not be asserted if tx fifo_cnt is less than this value |
| 23:17 | RSVD   |      |       |                                                                                           |
| 16    | TFITH  | R/W  | 1'd0  | TX FIFO threshold, dma_tx_req will not be asserted if tx fifo_cnt is less than this value |
| 15:10 | RSVD   |      |       |                                                                                           |
| 9:8   | RFICNT | R    | 2'd0  | RX FIFO available count                                                                   |
| 7:2   | RSVD   |      |       |                                                                                           |
| 1:0   | TFICNT | R    | 2'd2  | TX FIFO available count                                                                   |

# 11.9.10 i2c\_fifo\_wdata

地址: 0x4000a388

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | FIV | VD |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | FIV | VD |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description         |
|------|------|------|-------|---------------------|
| 31:0 | FIWD | W    | x     | I2C FIFO write data |

# 11.9.11 i2c\_fifo\_rdata

地址: 0x4000a38c

BL602/604 Reference Manual 157/ 209 @2020 Bouffalo Lab



| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | FIF | RD |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | FIF | RD |    |    |    |    |    |    |    |

| Bits | Name | Туре | Reset | Description        |
|------|------|------|-------|--------------------|
| 31:0 | FIRD | R    | 32'h0 | I2C FIFO read data |

BL602/604 Reference Manual 158/ 209 @2020 Bouffalo Lab

#### 12.1 Introduction

Pulse width modulation (PWM) is an analog control method that modulates the bias of the transistor base or the grid of the MOS tube according to the change in the corresponding load. Therefore, the on-time of the transistor or the MOS tube is changed, and the output of the switch stabilized power supply is changed. This method can keep the output voltage of the power supply constant when the operating conditions change. It is a very effective technique for controlling analog circuits using digital signals from microprocessors. It is widely used in many fields from measurement and communication to power control and conversion.

#### 12.2 Main features

- Supports 5-channel PWM signal generation
- Three clock sources can be selected (bus clock <bclk>, crystal clock <xtal\_ck>, slow clock <32k>), with 16-bit clock divider
- Double threshold setting to increase pulse flexibility

# 12.3 Function description

#### 12.3.1 Clock and divider

There are three options for each PWM counter clock source, the sources are as follows:

- A. bclk Chip bus clock
- B. XTAL External crystal clock
- C. f32k System RTC clock

Each counter has its own 16-bit frequency divider. The selected clock can be divided by APB. The PWM counter will use the divided clock as the counting cycle unit, and perform one action every time a counting cycle passes.



#### 12.3.2 Pulse generation principle

There is a counter in the PWM. When the counter is in the middle of two settable thresholds, the PWM output is 1, otherwise when the counter is outside the two set thresholds, the PWM output is 0. As shown below:



Figure 12.1: Pwm

#### 12.3.3 PWM interrupt

For each PWM channel, you can set the cycle count value. When the number of cycles of the PWM output reaches this count value, a PWM interrupt will be generated.

# 12.4 寄存器描述

| Name           | Description                                           |
|----------------|-------------------------------------------------------|
| pwm_int_config | PWM interrupt configuration register                  |
| pwm0_clkdiv    | PWM0 clock division configuration register            |
| pwm0_thre1     | PWM0 first counter threshold configuration register   |
| pwm0_thre2     | PWM0 sencond counter threshold configuration register |
| pwm0_period    | PWM0 period setting register                          |
| pwm0_config    | PWM0 configuration register                           |
| pwm0_interrupt | PWM0 interrupt register                               |
| pwm1_clkdiv    | PWM1 clock division configuration register            |
| pwm1_thre1     | PWM1 first counter threshold configuration register   |
| pwm1_thre2     | PWM1 sencond counter threshold configuration register |

BL602/604 Reference Manual 160/ 209 @2020 Bouffalo Lab



| Name           | Description                                           |
|----------------|-------------------------------------------------------|
| pwm1_period    | PWM1 period setting register                          |
| pwm1_config    | PWM1 configuration register                           |
| pwm1_interrupt | PWM1 interrupt register                               |
| pwm2_clkdiv    | PWM2 clock division configuration register            |
| pwm2_thre1     | PWM2 first counter threshold configuration register   |
| pwm2_thre2     | PWM2 sencond counter threshold configuration register |
| pwm2_period    | PWM2 period setting register                          |
| pwm2_config    | PWM2 configuration register                           |
| pwm2_interrupt | PWM2 interrupt register                               |
| pwm3_clkdiv    | PWM3 clock division configuration register            |
| pwm3_thre1     | PWM3 first counter threshold configuration register   |
| pwm3_thre2     | PWM3 sencond counter threshold configuration register |
| pwm3_period    | PWM3 period setting register                          |
| pwm3_config    | PWM3 configuration register                           |
| pwm3_interrupt | PWM3 interrupt register                               |
| pwm4_clkdiv    | PWM4 clock division configuration register            |
| pwm4_thre1     | PWM4 first counter threshold configuration register   |
| pwm4_thre2     | PWM4 sencond counter threshold configuration register |
| pwm4_period    | PWM4 period setting register                          |
| pwm4_config    | PWM4 configuration register                           |
| pwm4_interrupt | PWM4 interrupt register                               |

# 12.4.1 pwm\_int\_config

地址: 0x4000a400

| 31 | 30          | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21          | 20  | 19  | 18 | 17 | 16 |
|----|-------------|----|----|----|----|----|----|----|----|-------------|-----|-----|----|----|----|
|    |             |    |    |    |    |    |    |    |    |             |     |     |    |    |    |
| 15 | 14          | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5 4 3 2 1 0 |     |     |    |    | 0  |
| RS | RSVD INTCLR |    |    |    |    |    | RS | VD |    |             | INT | STS |    |    |    |



| Bits  | Name   | Type Reset |      | Description                  |
|-------|--------|------------|------|------------------------------|
| 31:14 | RSVD   |            |      |                              |
| 13:8  | INTCLR | W          | 6'd0 | PWM channel interrupt clear  |
| 7:6   | RSVD   |            |      |                              |
| 5:0   | INTSTS | R          | 6'd0 | PWM channel interrupt status |

### 12.4.2 pwm0\_clkdiv

地址: 0x4000a420

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | CLKDIV |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | CLKDIV | R/W  | 16'b0 | PWM clock division |

# 12.4.3 pwm0\_thre1

地址: 0x4000a424

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                 |
|-------|-------|------|-------|-------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                             |
| 15:0  | THRE1 | R/W  | 16'b0 | PWM first counter threshold, can't be larger that pwm thre2 |

### 12.4.4 pwm0\_thre2

地址: 0x4000a428

BL602/604 Reference Manual 162/ 209 @2020 Bouffalo Lab



| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE2 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                                |
| 15:0  | THRE2 | R/W  | 16'd0 | PWM sencond counter threshold, can't be smaller that pwm_thre1 |

# 12.4.5 pwm0\_period

地址: 0x4000a42c

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | PERIOD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | PERIOD | R/W  | 16'd0 | PWM period setting |

### 12.4.6 pwm0\_config

地址: 0x4000a430

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20   | 19   | 18  | 17  | 16  |
|----|----|----|----|----|----|----|----|------|------|------|------|------|-----|-----|-----|
|    |    |    |    |    |    |    | RS | SVD  |      |      |      |      |     |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4    | 3    | 2   | 1   | 0   |
|    |    |    | RS | VD |    |    |    | STOP | STOP | SW   | SW   | STOP | OUT | CLK | SEL |
|    |    |    |    |    |    |    |    | STA  | EN   | MODE | FVAL | MODE | INV |     |     |

| Bits | Name    | Туре | Reset | Description     |
|------|---------|------|-------|-----------------|
| 31:8 | RSVD    |      |       |                 |
| 7    | STOPSTA | R    | 1'b0  | PWM stop status |
| 6    | STOPEN  | R/W  | 1'b0  | PWM stop enable |

BL602/604 Reference Manual 163/ 209 @2020 Bouffalo Lab



| Bits | Name     | Туре | Reset | Description                                                      |
|------|----------|------|-------|------------------------------------------------------------------|
| 5    | SWMODE   | R/W  | 1'b0  | PWM SW Mode setting                                              |
| 4    | SWFVAL   | R/W  | 1'b0  | PWM SW Mode force value                                          |
| 3    | STOPMODE | R/W  | 1'b1  | PWM stop mode, 1'b1 - graceful ; 1'b0 - abrupt                   |
| 2    | OUTINV   | R/W  | 1'b0  | PWM invert output mode                                           |
| 1:0  | CLKSEL   | R/W  | 2'd0  | PWM clock source select, 2'b00-xclk; 2'b01-bclk; others-f32k_clk |

# 12.4.7 pwm0\_interrupt

地址: 0x4000a434

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|---------|----|----|----|----|----|------|----|----|----|----|----|----|----|-----|
|    |         |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | INT |
|    |         |    |    |    |    |    |      |    |    |    |    |    |    | EN |     |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
|    | INTPECN |    |    |    |    |    |      |    |    |    |    |    |    |    |     |

| Bits  | Name    | Туре | Reset | Description                            |
|-------|---------|------|-------|----------------------------------------|
| 31:17 | RSVD    |      |       |                                        |
| 16    | INTEN   | R/W  | 1'b0  | PWM interrupt enable                   |
| 15:0  | INTPECN | R/W  | 16'd0 | PWM interrupt period counter threshold |

# 12.4.8 pwm1\_clkdiv

地址: 0x4000a440

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    | RSVD |    |    |    |    |    |     |     |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |      |    |    |    |    |    | CLK | DIV |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | CLKDIV | R/W  | 16'b0 | PWM clock division |

BL602/604 Reference Manual 164/ 209 @2020 Bouffalo Lab



#### 12.4.9 pwm1\_thre1

地址: 0x4000a444

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    | RSVD |    |    |    |    |    |     |     |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | •    |    |    |    |    |    | THE | RE1 |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                 |
|-------|-------|------|-------|-------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                             |
| 15:0  | THRE1 | R/W  | 16'b0 | PWM first counter threshold, can't be larger that pwm thre2 |

### 12.4.10 pwm1\_thre2

地址: 0x4000a448

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE2 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                                |
| 15:0  | THRE2 | R/W  | 16'd0 | PWM sencond counter threshold, can't be smaller that pwm_thre1 |

### 12.4.11 pwm1\_period

地址: 0x4000a44c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24  | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|-----|------|----|----|----|----|----|----|----|
|    | RSVD |    |    |    |    |    |     |      |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8   | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |      |    |    |    |    |    | PER | RIOD |    |    |    |    |    |    |    |

BL602/604 Reference Manual 165/ 209 @2020 Bouffalo Lab



| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | PERIOD | R/W  | 16'd0 | PWM period setting |

# 12.4.12 pwm1\_config

地址: 0x4000a450

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20   | 19   | 18  | 17  | 16  |
|----|----|----|----|----|----|----|----|------|------|------|------|------|-----|-----|-----|
|    |    |    |    |    |    |    | RS | VD   |      |      |      |      |     |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4    | 3    | 2   | 1   | 0   |
|    |    |    | RS | VD |    |    |    | STOP | STOP | SW   | SW   | STOP | OUT | CLK | SEL |
|    |    |    |    |    |    |    |    | STA  | EN   | MODE | FVAL | MODE | INV |     |     |

| Bits | Name     | Туре | Reset | Description                                                      |
|------|----------|------|-------|------------------------------------------------------------------|
| 31:8 | RSVD     |      |       |                                                                  |
| 7    | STOPSTA  | R    | 1'b0  | PWM stop status                                                  |
| 6    | STOPEN   | R/W  | 1'b0  | PWM stop enable                                                  |
| 5    | SWMODE   | R/W  | 1'b0  | PWM SW Mode setting                                              |
| 4    | SWFVAL   | R/W  | 1'b0  | PWM SW Mode force value                                          |
| 3    | STOPMODE | R/W  | 1'b1  | PWM stop mode, 1'b1 - graceful ; 1'b0 - abrupt                   |
| 2    | OUTINV   | R/W  | 1'b0  | PWM invert output mode                                           |
| 1:0  | CLKSEL   | R/W  | 2'd0  | PWM clock source select, 2'b00-xclk; 2'b01-bclk; others-f32k_clk |

# 12.4.13 pwm1\_interrupt

地址: 0x4000a454

| 31 | 30                                  | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|-------------------------------------|----|----|----|----|----|------|----|----|----|----|----|----|----|-----|
|    |                                     |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | INT |
|    |                                     |    |    |    |    |    |      |    |    |    |    |    | EN |    |     |
| 15 | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 |    |    |    |    |    |      |    |    |    |    |    | 0  |    |     |
|    | INTPECN                             |    |    |    |    |    |      |    |    |    |    |    |    |    |     |

BL602/604 Reference Manual 166/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                            |
|-------|---------|------|-------|----------------------------------------|
| 31:17 | RSVD    |      |       |                                        |
| 16    | INTEN   | R/W  | 1'b0  | PWM interrupt enable                   |
| 15:0  | INTPECN | R/W  | 16'd0 | PWM interrupt period counter threshold |

# 12.4.14 pwm2\_clkdiv

地址: 0x4000a460

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | CLKDIV |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | CLKDIV | R/W  | 16'b0 | PWM clock division |

# 12.4.15 pwm2\_thre1

地址: 0x4000a464

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                 |
|-------|-------|------|-------|-------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                             |
| 15:0  | THRE1 | R/W  | 16'b0 | PWM first counter threshold, can't be larger that pwm thre2 |

#### 12.4.16 pwm2\_thre2

地址: 0x4000a468

BL602/604 Reference Manual 167/ 209 @2020 Bouffalo Lab



| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE2 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                                |
| 15:0  | THRE2 | R/W  | 16'd0 | PWM sencond counter threshold, can't be smaller that pwm_thre1 |

# 12.4.17 pwm2\_period

地址: 0x4000a46c

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | PERIOD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | PERIOD | R/W  | 16'd0 | PWM period setting |

### 12.4.18 pwm2\_config

地址: 0x4000a470

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21   | 20   | 19   | 18  | 17  | 16  |
|----|------|----|----|----|----|----|----|-----|------|------|------|------|-----|-----|-----|
|    |      |    |    |    |    |    | RS | VD  |      |      |      |      |     |     |     |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6    | 5    | 4    | 3    | 2   | 1   | 0   |
|    | RSVD |    |    |    |    |    |    |     | STOP | SW   | SW   | STOP | OUT | CLK | SEL |
|    |      |    |    |    |    |    |    | STA | EN   | MODE | FVAL | MODE | INV |     |     |

| Bits | Name    | Туре | Reset | Description     |
|------|---------|------|-------|-----------------|
| 31:8 | RSVD    |      |       |                 |
| 7    | STOPSTA | R    | 1'b0  | PWM stop status |
| 6    | STOPEN  | R/W  | 1'b0  | PWM stop enable |

BL602/604 Reference Manual 168/ 209 @2020 Bouffalo Lab



| Bits | Name     | Туре | Reset | Description                                                      |
|------|----------|------|-------|------------------------------------------------------------------|
| 5    | SWMODE   | R/W  | 1'b0  | PWM SW Mode setting                                              |
| 4    | SWFVAL   | R/W  | 1'b0  | PWM SW Mode force value                                          |
| 3    | STOPMODE | R/W  | 1'b1  | PWM stop mode, 1'b1 - graceful ; 1'b0 - abrupt                   |
| 2    | OUTINV   | R/W  | 1'b0  | PWM invert output mode                                           |
| 1:0  | CLKSEL   | R/W  | 2'd0  | PWM clock source select, 2'b00-xclk; 2'b01-bclk; others-f32k_clk |

# 12.4.19 pwm2\_interrupt

地址: 0x4000a474

| 31 | 30 | 29      | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|----|---------|----|----|----|----|------|----|----|----|----|----|----|----|-----|
|    |    |         |    |    |    |    | RSVD |    |    |    |    |    |    |    | INT |
|    |    |         |    |    |    |    |      |    |    |    |    |    |    |    | EN  |
| 15 | 14 | 13      | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
|    |    | INTPECN |    |    |    |    |      |    |    |    |    |    |    |    |     |

| Bits  | Name    | Туре | Reset | Description                            |
|-------|---------|------|-------|----------------------------------------|
| 31:17 | RSVD    |      |       |                                        |
| 16    | INTEN   | R/W  | 1'b0  | PWM interrupt enable                   |
| 15:0  | INTPECN | R/W  | 16'd0 | PWM interrupt period counter threshold |

# 12.4.20 pwm3\_clkdiv

地址: 0x4000a480

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | CLKDIV |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | CLKDIV | R/W  | 16'b0 | PWM clock division |

BL602/604 Reference Manual 169/ 209 @2020 Bouffalo Lab



### 12.4.21 pwm3\_thre1

地址: 0x4000a484

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |       |    |    |    |    |    | RS | VD |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE1 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                 |
|-------|-------|------|-------|-------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                             |
| 15:0  | THRE1 | R/W  | 16'b0 | PWM first counter threshold, can't be larger that pwm thre2 |

# 12.4.22 pwm3\_thre2

地址: 0x4000a488

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | THRE2 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                                |
| 15:0  | THRE2 | R/W  | 16'd0 | PWM sencond counter threshold, can't be smaller that pwm_thre1 |

### 12.4.23 pwm3\_period

地址: 0x4000a48c

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|------|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS  | VD   |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | PER | RIOD |    |    |    |    |    |    |    |

BL602/604 Reference Manual 170/ 209 @2020 Bouffalo Lab



| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | PERIOD | R/W  | 16'd0 | PWM period setting |

# 12.4.24 pwm3\_config

地址: 0x4000a490

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21   | 20   | 19   | 18  | 17  | 16  |
|----|------|----|----|----|----|----|----|----|------|------|------|------|-----|-----|-----|
|    |      |    |    |    |    |    | RS | VD |      |      |      |      |     |     |     |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5    | 4    | 3    | 2   | 1   | 0   |
|    | RSVD |    |    |    |    |    |    |    | STOP | SW   | SW   | STOP | OUT | CLK | SEL |
|    |      |    |    |    |    |    |    |    | EN   | MODE | FVAL | MODE | INV |     |     |

| Bits | Name     | Туре | Reset | Description                                                      |
|------|----------|------|-------|------------------------------------------------------------------|
| 31:8 | RSVD     |      |       |                                                                  |
| 7    | STOPSTA  | R    | 1'b0  | PWM stop status                                                  |
| 6    | STOPEN   | R/W  | 1'b0  | PWM stop enable                                                  |
| 5    | SWMODE   | R/W  | 1'b0  | PWM SW Mode setting                                              |
| 4    | SWFVAL   | R/W  | 1'b0  | PWM SW Mode force value                                          |
| 3    | STOPMODE | R/W  | 1'b1  | PWM stop mode, 1'b1 - graceful ; 1'b0 - abrupt                   |
| 2    | OUTINV   | R/W  | 1'b0  | PWM invert output mode                                           |
| 1:0  | CLKSEL   | R/W  | 2'd0  | PWM clock source select, 2'b00-xclk; 2'b01-bclk; others-f32k_clk |

# 12.4.25 pwm3\_interrupt

地址: 0x4000a494

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|---------|----|----|----|----|----|------|----|----|----|----|----|----|----|-----|
|    |         |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | INT |
|    |         |    |    |    |    |    |      |    |    |    |    |    |    |    | EN  |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
|    | INTPECN |    |    |    |    |    |      |    |    |    |    |    |    |    |     |

BL602/604 Reference Manual 171/ 209 @2020 Bouffalo Lab



| Bits  | Name    | Туре | Reset | Description                            |
|-------|---------|------|-------|----------------------------------------|
| 31:17 | RSVD    |      |       |                                        |
| 16    | INTEN   | R/W  | 1'b0  | PWM interrupt enable                   |
| 15:0  | INTPECN | R/W  | 16'd0 | PWM interrupt period counter threshold |

# 12.4.26 pwm4\_clkdiv

地址: 0x4000a4a0

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |        |    |    |    |    |    | RS | VD |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | CLKDIV |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | CLKDIV | R/W  | 16'b0 | PWM clock division |

# 12.4.27 pwm4\_thre1

地址: 0x4000a4a4

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS  | VD  |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | THE | RE1 |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                 |
|-------|-------|------|-------|-------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                             |
| 15:0  | THRE1 | R/W  | 16'b0 | PWM first counter threshold, can't be larger that pwm thre2 |

#### 12.4.28 pwm4\_thre2

地址: 0x4000a4a8

BL602/604 Reference Manual 172/ 209 @2020 Bouffalo Lab



| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS  | VD  |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | THE | RE2 |    |    |    |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                                                    |
|-------|-------|------|-------|----------------------------------------------------------------|
| 31:16 | RSVD  |      |       |                                                                |
| 15:0  | THRE2 | R/W  | 16'd0 | PWM sencond counter threshold, can't be smaller that pwm_thre1 |

# 12.4.29 pwm4\_period

地址: 0x4000a4ac

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | PERIOD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description        |
|-------|--------|------|-------|--------------------|
| 31:16 | RSVD   |      |       |                    |
| 15:0  | PERIOD | R/W  | 16'd0 | PWM period setting |

### 12.4.30 pwm4\_config

地址: 0x4000a4b0

| 31 | 30   | 29 | 28 | 27 | 26 | 25  | 24 | 23   | 22   | 21   | 20  | 19   | 18  | 17  | 16  |
|----|------|----|----|----|----|-----|----|------|------|------|-----|------|-----|-----|-----|
|    | RSVD |    |    |    |    |     |    |      |      |      |     |      |     |     |     |
| 15 | 14   | 13 | 12 | 11 | 10 | 9   | 8  | 7    | 6    | 5    | 4   | 3    | 2   | 1   | 0   |
|    | RSVD |    |    |    |    |     |    | STOP | STOP | SW   | SW  | STOP | OUT | CLK | SEL |
|    |      |    |    |    |    | STA | EN | MODE | FVAL | MODE | INV |      |     |     |     |

| Bits | Name    | Туре | Reset | Description     |
|------|---------|------|-------|-----------------|
| 31:8 | RSVD    |      |       |                 |
| 7    | STOPSTA | R    | 1'b0  | PWM stop status |
| 6    | STOPEN  | R/W  | 1'b0  | PWM stop enable |

BL602/604 Reference Manual 173/ 209 @2020 Bouffalo Lab



| Bits | Name     | Туре | Reset | Description                                                      |
|------|----------|------|-------|------------------------------------------------------------------|
| 5    | SWMODE   | R/W  | 1'b0  | PWM SW Mode setting                                              |
| 4    | SWFVAL   | R/W  | 1'b0  | PWM SW Mode force value                                          |
| 3    | STOPMODE | R/W  | 1'b1  | PWM stop mode, 1'b1 - graceful ; 1'b0 - abrupt                   |
| 2    | OUTINV   | R/W  | 1'b0  | PWM invert output mode                                           |
| 1:0  | CLKSEL   | R/W  | 2'd0  | PWM clock source select, 2'b00-xclk; 2'b01-bclk; others-f32k_clk |

# 12.4.31 pwm4\_interrupt

地址: 0x4000a4b4

| 31      | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20  | 19 | 18 | 17 | 16 |
|---------|------|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|
|         | RSVD |    |    |    |    |    |    |    |    |    | INT |    |    |    |    |
|         |      |    |    |    |    |    |    |    |    |    |     |    |    |    | EN |
| 15      | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4   | 3  | 2  | 1  | 0  |
| INTPECN |      |    |    |    |    |    |    |    |    |    |     |    |    |    |    |

| Bits  | Name    | Name Type Reset |       | Description                            |
|-------|---------|-----------------|-------|----------------------------------------|
| 31:17 | RSVD    |                 |       |                                        |
| 16    | INTEN   | R/W             | 1'b0  | PWM interrupt enable                   |
| 15:0  | INTPECN | R/W             | 16'd0 | PWM interrupt period counter threshold |

BL602/604 Reference Manual 174/ 209 @2020 Bouffalo Lab

#### 13.1 Introduction

The chip has two 32-bit counters, each of which can independently control and configure its parameters and clock frequency.

There is a watchdog counter in the chip. Unpredictable software or hardware behavior may cause the application to malfunction. A watchdog timer can help the system recover from it. If the current time exceeds the predetermined time, but the dog is not fed or closed Timer, which can trigger interrupt or system reset according to the setting.



Figure 13.1: Timer block diagram





Figure 13.2: Watchdog timer block diagram

#### 13.2 Main features

- · Multiple clock source options
- 8-bit clock divider with a division factor of 1-256.
- Two 32-bit timers
- Each timer contains three alarm value settings, which can be set independently to alarm when each alarm value overflows
- · Support Free Run mode and Pre\_load mode
- 16-bit watchdog timer
- Supports write password protection to prevent system abnormalities caused by incorrect settings
- · Support two watchdog overflow methods: interrupt or reset

### 13.3 Function description

#### 13.3.1 8-bit divider

There are three types of Watchdog timer clocks:

- Fclk–System master clock
- 32K-32K clock
- · Xtal-External crystal

There are four timer clock sources:



- · Fclk-System master clock
- 32K–32K clock
- 1K-1K clock (32K frequency division)
- Xtal–External crystal

Each counter has its own 8-bit frequency divider. The selected clock can be divided by 1-256 through APB. Specifically, when it is set to 0, it means no frequency division, and when it is set to 1, it divides it by 2. The maximum frequency division coefficient is 256, the counter will use the divided clock as the unit of the counting cycle, each time a counting cycle is increased by one.

#### 13.3.2 General timer operating mode

Each general-purpose timer includes three comparators, a counter and a preload register. When the clock source is set and the timer is started, the counter starts to count up. When the counter value is equal to the comparator, the comparison is performed. When the flag is set, a compare interrupt is generated.

The initial value of the counter depends on the timing mode. In FreeRun mode, the initial value of the counter is 0, and then counts up. When it reaches the maximum value, it starts counting from 0 again.

In PreLoad mode, the initial value of the counter is the value of the PreLoad register and then counts up. When the PreLoad condition is met, the value of the counter is set to the value of the PreLoad register, and then the counter starts to count up again. During the counting process, once the value of the counter matches one of the three comparators, the comparator's comparison flag will be set and a corresponding comparison interrupt can be generated.

If the value of the preload register is 10, the value of Comparator 0 is 13, the value of Comparator 1 is 16, and the value of Comparator 2 is 19, the working sequence of the timer in PreLoad mode is as follows:



Figure 13.3: Timer Preload



In FreeRun mode, the timer working sequence is basically the same as PreLoad, the difference is that the counter will start to accumulate from 0 to the maximum value. The mechanism of the generated compare flags and compare interrupts is the same as in FreeRun mode.

#### 13.3.3 Watchdog timer operating mode

The watchdog timer includes a counter and a comparator. The counter counts up from 0. If the counter is reset (feed the dog), it starts counting up from 0 again. When the counter value is equal to the comparator, a comparison interrupt signal or a system reset signal will be generated, and the user can choose to use one of them as required.

The watchdog counter is incremented by one in each counting cycle unit. Software can reset the watchdog counter to zero at any point in time through the APB.

If the value of the comparator is 6, the working sequence of Watchdog is shown in the figure below:



Figure 13.4: Watchdog timing

#### 13.3.4 Alarm setting

Each counter has three comparison values, and can set whether each comparison value triggers an alarm interrupt. When the counter matches the comparison value and the setting will alarm, the counter will notify the processor through the interrupt.

The software can read through the APB whether an alarm has occurred and which comparison value triggered the alarm interrupt. When the alarm interrupt is cleared, the alarm status is also cleared simultaneously.

#### 13.3.5 Watchdog alarm

A comparison value can be set for each counter. When the software fails to reset the watchdog counter to zero due to a system error, which causes the watchdog counter to exceed the comparison value, a watchdog alarm is triggered. There are two types of alarms. The first is to perform necessary actions through interrupt notification software. The second is to enter the system watchdog reset. When the watchdog reset is triggered, it will notify the system reset controller and prepare for system reset. When everything is ready, enter the system watchdog reset. It is worth noting

BL602/604 Reference Manual 178/ 209 @2020 Bouffalo Lab



that software can read the WSR register through APB to know if a watchdog system reset has occurred.



Figure 13.5: Watchdog alarm mechanism

# 13.4 寄存器描述

| Name   | Description                               |
|--------|-------------------------------------------|
| TCCR   | Timer clock source configuration register |
| TMR2_0 | Timer2 match register 0                   |
| TMR2_1 | Timer2 match register 1                   |
| TMR2_2 | Timer2 match register 2                   |
| TMR3_0 | Timer3 match register 0                   |
| TMR3_1 | Timer3 match register 1                   |
| TMR3_2 | Timer3 match register 2                   |
| TCR2   | Timer2 counter register                   |
| TCR3   | Timer3 counter register                   |



| Name    | Description                                  |
|---------|----------------------------------------------|
| TMSR2   | Timer2 match register status                 |
| TMSR3   | Timer3 match register status                 |
| TIER2   | Timer2 match interrupt enable register       |
| TIER3   | Timer3 match interrupt enable register       |
| TPLVR2  | Timer2 pre-load value register               |
| TPLVR3  | Timer3 pre-load value register               |
| TPLCR2  | Timer2 pre-load control register             |
| TPLCR3  | Timer3 pre-load control register             |
| WMER    | WDT reset/interrupt mode register            |
| WMR     | WDT counter match value register             |
| WVR     | WDT counter value register                   |
| WSR     | WDT timer reset indication register          |
| TICR2   | Timer2 Interrupt clear control register      |
| TICR3   | Timer3 Interrupt clear control register      |
| WICR    | WDT Interrupt clear register                 |
| TCER    | Timer count enable register                  |
| TCMR    | Timer count mode register                    |
| TILR2   | Timer2 match interrupt mode register         |
| TILR3   | Timer3 match interrupt mode register         |
| WCR     | WDT timer count reset register               |
| WFAR    | WDT access key1 register                     |
| WSAR    | WDT access key2 register                     |
| TCVWR2  | Timer2 capture value of counter register     |
| TCVWR3  | Timer3 capture value of counter register     |
| TCVSYN2 | Timer2 synchronous value of counter register |
| TCVSYN3 | Timer3 synchronous value of counter register |
| TCDR    | WDT/Timer clock division register            |



#### 13.4.1 TCCR

地址: 0x4000a500

| 31 | 30 | 29         | 28 | 27 | 26 | 25 | 24 | 23   | 22 | 21 | 20   | 19 | 18 | 17 | 16 |
|----|----|------------|----|----|----|----|----|------|----|----|------|----|----|----|----|
|    |    | RS         | VD |    |    |    |    |      |    |    |      |    |    |    |    |
| 15 | 14 | 13         | 12 | 11 | 10 | 9  | 8  | 7    | 6  | 5  | 4    | 3  | 2  | 1  | 0  |
|    |    | RSVD CSWDT |    |    |    |    |    | RSVD | CS | S2 | RSVD | CS | S1 | RS | VD |

| Bits  | Name  | Туре | Reset | Description                                                                                   |
|-------|-------|------|-------|-----------------------------------------------------------------------------------------------|
| 31:10 | RSVD  |      |       |                                                                                               |
| 9:8   | CSWDT | R/W  | 2'd0  | Clock Source for Timer #1/#2/#3/WDT 2'd0 - fclk 2'd1 - f32k_clk 2'd2 - 1 kHz 2'd3 - PLL 32MHz |
| 7     | RSVD  |      |       |                                                                                               |
| 6:5   | CS2   | R/W  | 2'd0  | Clock Source for Timer #1/#2/#3/WDT 2'd0 - fclk 2'd1 - f32k_clk 2'd2 - 1 kHz 2'd3 - PLL 32MHz |
| 4     | RSVD  |      |       |                                                                                               |
| 3:2   | CS1   | R/W  | 2'd0  | Clock Source for Timer #1/#2/#3/WDT 2'd0 - fclk 2'd1 - f32k_clk 2'd2 - 1 kHz 2'd3 - PLL 32MHz |
| 1:0   | RSVD  |      |       |                                                                                               |

### 13.4.2 TMR2\_0

地址: 0x4000a510

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    | TMR20 |    |    |    |    |    |     |     |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |       |    |    |    |    |    | TMI | R20 |    |    |    |    |    |    |    |

BL602/604 Reference Manual 181/ 209 @2020 Bouffalo Lab



| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR20 | R/W  | 32'hfffffff | Timer2 match register 0 |

## 13.4.3 TMR2\_1

地址: 0x4000a514

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |       |    |    |    |    |    | TMI | R21 |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TMR21 |    |    |    |    |    |     |     |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR21 | R/W  | 32'hfffffff | Timer2 match register 1 |

### 13.4.4 TMR2\_2

地址: 0x4000a518

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TMI | R22 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TMI | R22 |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR22 | R/W  | 32'hfffffff | Timer2 match register 2 |

### 13.4.5 TMR3\_0

地址: 0x4000a51c

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |       |    |    |    |    |    | TMI | R30 |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TMR30 |    |    |    |    |    |     |     |    |    |    |    |    |    |    |

BL602/604 Reference Manual 182/ 209 @2020 Bouffalo Lab



| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR30 | R/W  | 32'hfffffff | Timer3 match register 0 |

## 13.4.6 TMR3\_1

地址: 0x4000a520

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | ТМІ | R31 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TMI | R31 |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR31 | R/W  | 32'hfffffff | Timer3 match register 1 |

### 13.4.7 TMR3\_2

地址: 0x4000a524

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |       |    |    |    |    |    | ТМІ | R32 |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TMR32 |    |    |    |    |    |     |     |    |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset       | Description             |
|------|-------|------|-------------|-------------------------|
| 31:0 | TMR32 | R/W  | 32'hfffffff | Timer3 match register 2 |

#### 13.4.8 TCR2

地址: 0x4000a52c

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----------|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    |          |    |    |    |    |    | TCR2 | COUT |    |    |    |    |    |    |    |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TCR2COUT |    |    |    |    |    |      |      |    |    |    |    |    |    |    |

BL602/604 Reference Manual 183/ 209 @2020 Bouffalo Lab



| Bits | Name     | Туре | Reset | Description             |
|------|----------|------|-------|-------------------------|
| 31:0 | TCR2COUT | R    | 32'h0 | Timer2 counter register |

### 13.4.9 TCR3

地址: 0x4000a530

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TCR3 | COUT |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TCR3 | COUT |    |    |    |    |    |    |    |

| Bits | Name     | Туре | Reset | Description             |
|------|----------|------|-------|-------------------------|
| 31:0 | TCR3COUT | R    | 32'h0 | Timer3 counter register |

#### 13.4.10 TMSR2

地址: 0x4000a538

| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17  | 16  |
|----|----|----|----|----|----|------|----|----|----|----|----|----|-----|-----|-----|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |     |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1   | 0   |
|    | •  |    |    |    |    | RSVD |    |    |    |    |    |    | T2M | T2M | T2M |
|    |    |    |    |    |    |      |    |    |    |    |    |    | R2S | R1S | R0S |

| Bits | Name   | Туре | Reset | Description                                                              |
|------|--------|------|-------|--------------------------------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                                          |
| 2    | T2MR2S | R    | 1'b0  | Timer2 match register 2 status/Clear interrupt would also clear this bit |
| 1    | T2MR1S | R    | 1'b0  | Timer2 match register 1 status/Clear interrupt would also clear this bit |
| 0    | T2MR0S | R    | 1'b0  | Timer2 match register 0 status/Clear interrupt would also clear this bit |

#### 13.4.11 TMSR3

地址: 0x4000a53c

BL602/604 Reference Manual 184/ 209 @2020 Bouffalo Lab



| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17  | 16  |
|----|----|----|----|----|----|------|----|----|----|----|----|----|-----|-----|-----|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |     |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1   | 0   |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | ТЗМ | ТЗМ | ТЗМ |
|    |    |    |    |    |    |      |    |    |    |    |    |    | R2S | R1S | R0S |

| Bits | Name   | Туре | Reset | Description                                                              |
|------|--------|------|-------|--------------------------------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                                          |
| 2    | T3MR2S | R    | 1'b0  | Timer3 match register 2 status/Clear interrupt would also clear this bit |
| 1    | T3MR1S | R    | 1'b0  | Timer3 match register 1 status/Clear interrupt would also clear this bit |
| 0    | T3MR0S | R    | 1'b0  | Timer3 match register 0 status/Clear interrupt would also clear this bit |

### 13.4.12 TIER2

地址: 0x4000a544

| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | TIER | TIER | TIER |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 22   | 21   | 20   |

| Bits | Name   | Туре | Reset | Description                                       |
|------|--------|------|-------|---------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                   |
| 2    | TIER22 | R/W  | 1'b0  | Timer2 match register 2 interrupt enable register |
| 1    | TIER21 | R/W  | 1'b0  | Timer2 match register 1 interrupt enable register |
| 0    | TIER20 | R/W  | 1'b0  | Timer2 match register 0 interrupt enable register |

#### 13.4.13 TIER3



| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17     | 16     |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|--------|--------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |        |        |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1      | 0      |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | TIER | TIER31 | TIER30 |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 32   |        |        |

| Bits | Name   | Туре | Reset | Description                                       |
|------|--------|------|-------|---------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                   |
| 2    | TIER32 | R/W  | 1'b0  | Timer3 match register 2 interrupt enable register |
| 1    | TIER31 | R/W  | 1'b0  | Timer3 match register 1 interrupt enable register |
| 0    | TIER30 | R/W  | 1'b0  | Timer3 match register 0 interrupt enable register |

#### 13.4.14 TPLVR2

地址: 0x4000a550

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TPL | VR2 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TPL | VR2 |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                    |
|------|--------|------|-------|--------------------------------|
| 31:0 | TPLVR2 | R/W  | 32'h0 | Timer2 pre-load value register |

#### 13.4.15 TPLVR3

地址: 0x4000a554

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TPL | VR3 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TPL | VR3 |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                    |
|------|--------|------|-------|--------------------------------|
| 31:0 | TPLVR3 | R/W  | 32'h0 | Timer3 pre-load value register |

BL602/604 Reference Manual 186/ 209 @2020 Bouffalo Lab



#### 13.4.16 TPLCR2

地址: 0x4000a55c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21  | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|
|    |      |    |    |    |    |    | RS | VD |     |     |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6   | 5   | 4  | 3  | 2  | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    | TPL | CR2 |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                                                                                                                                                                 |
|------|--------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:2 | RSVD   |      |       |                                                                                                                                                                             |
| 1:0  | TPLCR2 | R/W  | 2'h0  | Timer2 pre-load control register 2'd0 - No pre-load 2'd1 - Pre-load with match comparator 0 2'd2 - Pre-load with match comparator 1 2'd3 - Pre-load with match comparator 2 |

#### 13.4.17 TPLCR3

地址: 0x4000a560

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17  | 16  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|
|    |    |    |    |    |    |    | RS | VD |    |    |    |    |    |     |     |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1   | 0   |
|    |    |    |    |    |    | RS | VD |    |    |    |    |    |    | TPL | CR3 |

| Bits | Name   | Туре | Reset | Description                                                                                                                                                                 |
|------|--------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:2 | RSVD   |      |       |                                                                                                                                                                             |
| 1:0  | TPLCR3 | R/W  | 2'h0  | Timer3 pre-load control register 2'd0 - No pre-load 2'd1 - Pre-load with match comparator 0 2'd2 - Pre-load with match comparator 1 2'd3 - Pre-load with match comparator 2 |

#### 13.4.18 WMER



| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17   | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------|----|
|    |    |    |    |    |    |    | RS | VD |    |    |    |    |    |      |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1    | 0  |
|    |    |    |    |    |    | RS | VD |    |    |    |    |    |    | WRIE | WE |

| Bits | Name | Туре | Reset | Description                                                                                                                    |
|------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| 31:2 | RSVD |      |       |                                                                                                                                |
| 1    | WRIE | R/W  | 1'b0  | WDT reset/interrupt mode register  1'b0 - WDT expiration to generate interrupt  1'b1 - WDT expiration to generate reset source |
| 0    | WE   | R/W  | 1'b0  | WDT enable register                                                                                                            |

#### 13.4.19 WMR

地址: 0x4000a568

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | WMR  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name | Туре | Reset    | Description                      |
|-------|------|------|----------|----------------------------------|
| 31:16 | RSVD |      |          |                                  |
| 15:0  | WMR  | R/W  | 16'hffff | WDT counter match value register |

#### 13.4.20 WVR

地址: 0x4000a56c

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | WVR  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name | Туре | Reset | Description                |
|-------|------|------|-------|----------------------------|
| 31:16 | RSVD |      |       |                            |
| 15:0  | WVR  | R    | 16'h0 | WDT counter value register |



| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
|------|------|------|-------|-------------|

#### 13.4.21 WSR

地址: 0x4000a570

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18  | 17 | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    |     |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2   | 1  | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    |    |    | WTS |    |    |

| Bits | Name | Туре | Reset | Description                                                                                                                                                                                                                                                       |
|------|------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:1 | RSVD |      |       |                                                                                                                                                                                                                                                                   |
| 0    | WTS  | R/W  | 1'b0  | WDT timer reset indication, Indicates that reset was caused by the WDT.  (Write)1'b0 - clear the WDT reset status  (Write)1'b1 - no affect  (Read)1'b0 - Watchdog timer did not cause reset because this bit was cleare  (Read)1'b1 - Watchdog timer caused reset |

### 13.4.22 TICR2

地址: 0x4000a578

| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | TCLR | TCLR | TCLR |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 22   | 21   | 20   |

| Bits | Name   | Туре | Reset | Description                                   |
|------|--------|------|-------|-----------------------------------------------|
| 31:3 | RSVD   |      |       |                                               |
| 2    | TCLR22 | W    | 1'b0  | Timer2 Interrupt clear for match comparator 2 |
| 1    | TCLR21 | W    | 1'b0  | Timer2 Interrupt clear for match comparator 1 |
| 0    | TCLR20 | W    | 1'b0  | Timer2 Interrupt clear for match comparator 0 |

BL602/604 Reference Manual 189/ 209 @2020 Bouffalo Lab



#### 13.4.23 TICR3

地址: 0x4000a57c

| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | TCLR | TCLR | TCLR |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 32   | 31   | 30   |

| Bits | Name   | Туре | Reset | Description                                   |
|------|--------|------|-------|-----------------------------------------------|
| 31:3 | RSVD   |      |       |                                               |
| 2    | TCLR32 | W    | 1'b0  | Timer3 Interrupt clear for match comparator 2 |
| 1    | TCLR31 | W    | 1'b0  | Timer3 Interrupt clear for match comparator 1 |
| 0    | TCLR30 | W    | 1'b0  | Timer3 Interrupt clear for match comparator 0 |

#### 13.4.24 WICR

地址: 0x4000a580

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16  |
|----|------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
|    |      |    |    |    |    |    | RS | VD |    |    |    |    |    |    |     |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0   |
|    | RSVD |    |    |    |    |    |    |    |    |    |    | WI |    |    |     |
|    |      |    |    |    |    |    |    |    |    |    |    |    |    |    | CLR |

| Bits | Name  | Туре | Reset | Description                  |
|------|-------|------|-------|------------------------------|
| 31:1 | RSVD  |      |       |                              |
| 0    | WICLR | W    | 1'b0  | WDT Interrupt clear register |

#### 13.4.25 TCER



| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    | _  |    |    |    |    | RSVD |    |    |    |    |    |    | TIM3 | TIM2 | RSVD |
|    |    |    |    |    |    |      |    |    |    |    |    |    | EN   | EN   |      |

| Bits | Name   | Туре | Reset | Description         |
|------|--------|------|-------|---------------------|
| 31:3 | RSVD   |      |       |                     |
| 2    | TIM3EN | R/W  | 1'b0  | Timer3 count enable |
| 1    | TIM2EN | R/W  | 1'b0  | Timer2 count enable |
| 0    | RSVD   |      |       |                     |

#### 13.4.26 TCMR

地址: 0x4000a588

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19           | 18           | 17   | 16 |
|----|------|----|----|----|----|----|----|----|----|----|----|--------------|--------------|------|----|
|    | RSVD |    |    |    |    |    |    |    |    |    |    |              |              |      |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3            | 2            | 1    | 0  |
|    | RSVD |    |    |    |    |    |    |    |    |    |    | TIM3<br>MODE | TIM2<br>MODE | RSVD |    |

| Bits | Name     | Туре | Reset | Description                                                              |
|------|----------|------|-------|--------------------------------------------------------------------------|
| 31:3 | RSVD     |      |       |                                                                          |
| 2    | TIM3MODE | R/W  | 1'b0  | Timer1/2/3 count mode register 1'b0 - pre-load mode 1'b1 - free run mode |
| 1    | TIM2MODE | R/W  | 1'b0  | Timer1/2/3 count mode register 1'b0 - pre-load mode 1'b1 - free run mode |
| 0    | RSVD     |      |       |                                                                          |

#### 13.4.27 TILR2



| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    | •  |    |    |    |    | RSVD |    |    |    |    |    |    | TILR | TILR | TILR |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 22   | 21   | 20   |

| Bits | Name   | Туре | Reset | Description                                                                              |
|------|--------|------|-------|------------------------------------------------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                                                          |
| 2    | TILR22 | R/W  | 1'b0  | Timer2 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |
| 1    | TILR21 | R/W  | 1'b0  | Timer2 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |
| 0    | TILR20 | R/W  | 1'b0  | Timer2 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |

#### 13.4.28 TILR3

| 31 | 30 | 29 | 28 | 27 | 26 | 25   | 24 | 23 | 22 | 21 | 20 | 19 | 18   | 17   | 16   |
|----|----|----|----|----|----|------|----|----|----|----|----|----|------|------|------|
|    |    |    |    |    |    |      | RS | VD |    |    |    |    |      |      |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8  | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|    |    |    |    |    |    | RSVD |    |    |    |    |    |    | TILR | TILR | TILR |
|    |    |    |    |    |    |      |    |    |    |    |    |    | 32   | 31   | 30   |

| Bits | Name   | Туре | Reset | Description                                                                              |
|------|--------|------|-------|------------------------------------------------------------------------------------------|
| 31:3 | RSVD   |      |       |                                                                                          |
| 2    | TILR32 | R/W  | 1'b0  | Timer3 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |
| 1    | TILR31 | R/W  | 1'b0  | Timer3 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |
| 0    | TILR30 | R/W  | 1'b0  | Timer3 match 0/1/2 interrupt mode register 1'b0 - level interrupt 1'b1 - pulse interrupt |



| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
|      |      |      |       |             |

#### 13.4.29 WCR

地址: 0x4000a598

| 31   | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19  | 18 | 17 | 16 |
|------|------|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|
| RSVD |      |    |    |    |    |    |    |    |    |    |    |     |    |    |    |
| 15   | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3   | 2  | 1  | 0  |
|      | RSVD |    |    |    |    |    |    |    |    |    |    | WCR |    |    |    |

| Bits | Name | Туре | Reset | Description                    |
|------|------|------|-------|--------------------------------|
| 31:1 | RSVD |      |       |                                |
| 0    | WCR  | W    | 1'b0  | WDT timer count reset register |

#### 13.4.30 WFAR

地址: 0x4000a59c

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS | VD |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | WF | AR |    |    |    |    |    |    |    |

| Bits  | Name | Туре | Reset | Description                |
|-------|------|------|-------|----------------------------|
| 31:16 | RSVD |      |       |                            |
| 15:0  | WFAR | W    | 16'b0 | WDT access key1 - 16'hBABA |

#### 13.4.31 WSAR

地址: 0x4000a5a0

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS | VD |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | WS | AR |    |    |    |    |    |    |    |

BL602/604 Reference Manual 193/ 209 @2020 Bouffalo Lab



| Bits  | Name | Туре | Reset | Description                |
|-------|------|------|-------|----------------------------|
| 31:16 | RSVD |      |       |                            |
| 15:0  | WSAR | W    | 16'b0 | WDT access key2 - 16'hEB10 |

#### 13.4.32 TCVWR2

地址: 0x4000a5a8

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TCV | WR2 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TCV | WR2 |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                     |
|------|--------|------|-------|---------------------------------|
| 31:0 | TCVWR2 | R    | 32'h0 | Timer2 capture value of counter |

#### 13.4.33 TCVWR3

地址: 0x4000a5ac

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24  | 23  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TCV | WR3 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8   | 7   | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TCV | WR3 |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                     |
|------|--------|------|-------|---------------------------------|
| 31:0 | TCVWR3 | R    | 32'h0 | Timer3 capture value of counter |

#### 13.4.34 TCVSYN2

地址: 0x4000a5b4

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TCVS | SYN2 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TCVS | SYN2 |    |    |    |    |    |    |    |

BL602/604 Reference Manual 194/ 209 @2020 Bouffalo Lab



| Bits | Name    | Туре | Reset | Description                         |
|------|---------|------|-------|-------------------------------------|
| 31:0 | TCVSYN2 | R    | 32'h0 | Timer2 synchronous value of counter |

#### 13.4.35 TCVSYN3

地址: 0x4000a5b8

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|------|------|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    | TCVS | SYN3 |    |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    |    |    |    |    | TCVS | SYN3 |    |    |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description                         |
|------|---------|------|-------|-------------------------------------|
| 31:0 | TCVSYN3 | R    | 32'h0 | Timer3 synchronous value of counter |

#### 13.4.36 TCDR

地址: 0x4000a5bc

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 | 23    | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|-------|----|----|----|----|----|----|-------|----|----|----|----|----|----|----|
|    | WCDR  |    |    |    |    |    |    | TCDR3 |    |    |    |    |    |    |    |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  | 7     | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | TCDR2 |    |    |    |    |    |    |       |    | RS | VD |    |    |    |    |

| Bits  | Name  | Туре | Reset | Description                          |
|-------|-------|------|-------|--------------------------------------|
| 31:24 | WCDR  | R/W  | 8'h0  | WDT clock division value register    |
| 23:16 | TCDR3 | R/W  | 8'h0  | Timer3 clock division value register |
| 15:8  | TCDR2 | R/W  | 8'h0  | Timer2 clock division value register |
| 7:0   | RSVD  |      |       |                                      |

BL602/604 Reference Manual 195/ 209 @2020 Bouffalo Lab

#### 14.1 Introduction

Low power consumption is an important indicator for IoT applications. The chip's processor contains three power consumption modes, including working mode, idle power saving mode and sleep mode. You can select the appropriate power consumption mode according to the current application scenario, reduce chip power consumption and extend battery life.



Figure 14.1: Low power mode

#### 14.2 Main features

- Clock control: GLB clock control for each peripheral device, small range of power saving, fast response speed
- Sleep control(PDS): Contains 4 levels of PDS1/2/3/7, wide range of power saving, medium response speed
- Deep Sleep Control(HBN): Contains 4 levels of HBN0/1/2/3, global power saving, long response time



#### 14.3 Function description

#### 14.3.1 Power domain

There are 7 power domains in BL602. The main functions of each power domain are as follows:

- PD AON HBNCORE
  - Some power control registers
  - 4KB HBN\_RAM, used to save program data before entering PDS / HBN mode, the data will not disappear after entering PDS / HBN
  - PIR digital control, PIR is a pyroelectric infrared sensor, a peripheral in the HBN area, can be used as a HBN wakeup source
- PD\_AON\_HBNRTC
  - Reserve RC32K / XTAL32K control register
  - RTC can be used to wake up, can also be used for LED flashing
- PD\_AON
  - HBN state machine control power / isolation / reset / clock
  - Maintain internal voltage output selection
  - Pin wake-up control
- PD\_CORE
  - HBN state machine control power / isolation / reset / clock
  - 64KB reserved RAM
  - WIFI / BLE timer control
- PD CORE MISC DIG
  - Peripherals
  - Chip global register
- PD CPU
  - CPU / Cache Controller
  - ROM / high-speed RAM
- PD\_WB
  - WIFI PHY / MAC



- BLE PHY / MAC
- RF controller

Each power domain is controlled by 8 different power modes, the specific control method is shown in the following table:

Table 14.1: Power mode

| No | Scenario | AON | AON<br>HBNRTC | AON<br>HBNCORE | CORE | CORE_MISC<br>DIG | CORE_MISC<br>ANA | CPU | WB  |
|----|----------|-----|---------------|----------------|------|------------------|------------------|-----|-----|
| 1  | Normal   | ON  | ON            | ON             | ON   | ON               | ON               | ON  | ON  |
| 2  | PDS1     | ON  | ON            | ON             | ON   | ON               | ON               | ON  | OFF |
| 3  | PDS2     | ON  | ON            | ON             | ON   | ON               | ON               | OFF | ON  |
| 4  | PDS3     | ON  | ON            | ON             | ON   | ON               | ON               | OFF | OFF |
| 5  | PDS7     | ON  | ON            | ON             | ON   | OFF              | OFF              | OFF | OFF |
| 6  | HBN0     | ON  | ON            | ON             | OFF  | OFF              | OFF              | OFF | OFF |
| 7  | HBN1     | ON  | ON            | OFF            | OFF  | OFF              | OFF              | OFF | OFF |
| 8  | HBN2     | ON  | OFF           | OFF            | OFF  | OFF              | OFF              | OFF | OFF |
| 9  | HBN3     | OFF | OFF           | OFF            | OFF  | OFF              | OFF              | OFF | OFF |

#### 14.3.2 Wakeup source

The chip supports multiple wake-up sources and can wake up from different power modes.

PDS1/2/3 can be awakened by:

- · HBN wakeup source
- Wake up from all GPIOs
- Infrared receiver
- · BLE wakeup event
- · WIFI wake-up event
- · PDS timer

The wake-up sources of the remaining power modes are shown in the following table:



Table 14.2: Wakeup source

| Power mode | Wakeup source                         |
|------------|---------------------------------------|
| PDS7       | Can only be awakened by the PDS timer |
| HBN0       | HBN                                   |
| HBN1       | RTC/AON_WAKEUP_PIN                    |
| HBN2       | AON_WAKEUP_PIN                        |
| HBN3       | -                                     |

#### 14.3.3 Power mode

#### **Operating mode**

The chip provides independent clock control for the processor and peripherals. The clock control for each module is introduced in the GLB and Clock chapters. The software can perform clock control for processors or peripherals that do not need to be used according to the current application scenario. The response of the clock control is real-time, in this working mode, there is no need to worry about the response time.

#### Power-down sleep mode (PDS)

Compared with the working mode, the power-down mode consumes less power. After entering the PDS mode, the clocks other than RTC (Real Time Clock) will be controlled and will be switched to the internal low-speed clock, and the external crystal and PLL will be turned off to achieve a more power-saving state. Therefore, entering and leaving this low-power mode will There is a time delay.

#### 1. Enter idle power saving mode

Software can put this module into power-down mode through PDS configuration and wait for processing. After entering the wait interrupt mode (WFI), the PDS module will trigger the clock control module to enter the gate clock operation and notify the analog circuit to turn off the PLL and external crystal oscillator.

#### 2. Leave idle power saving mode

There are two ways to leave the idle power saving mode. The first is that there is a specific interruption or event in the idle to interrupt the idle state. The second is that the software sets the idle time of PDS\_TIM to be reached. Both will trigger the PDS module to enter or leave the power-down mode. Note: Because it takes about 1ms to turn on the crystal oscillator, PDS provides software to turn on the crystal oscillator in advance. This method can speed up the wake up of the PDS. When the PDS module is ready to wake up, the module will notify the processor to leave the wait interrupt mode (WFI) through an interrupt. ).

#### Sleep Mode (HBN)

In the sleep mode, while keeping AON (Always On) power, most of the chip logic is powered off (Vcore), and the internal circuit will not be woken up until an external event is received.

BL602/604 Reference Manual 199/ 209 @2020 Bouffalo Lab



In sleep mode, the ultimate power saving state can be achieved, but the response time required by the previous two modes is also the longest. It is suitable for the state that does not need to work for a long time.

During the sleep period, most circuits will be powered off, and the corresponding register values and memory data will also disappear. Therefore, 4KB HBN\_RAM is reserved inside HBN. This memory will not be powered off when it is in sleep state. The software needs to save the data or state that can be copied to this memory before entering sleep. When restoring from hibernation, data can be directly accessed from RAM, and it can usually be used as a state record or a quick data recovery.

#### 14.4 寄存器描述

| Name     | Description           |
|----------|-----------------------|
| PDS_CTL  | PDS control register  |
| PDS_CTL4 | PDS control register4 |
| pds_stat | PDS status register   |

#### 14.4.1 PDS\_CTL

地址: 0x4000e000

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16   |
|----|----|----|----|----|----|----|------|----|----|----|----|----|----|----|------|
|    |    |    |    |    |    |    | RS   | VD |    |    |    |    |    |    |      |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0    |
|    |    |    |    |    |    |    | RSVD |    |    |    |    |    |    |    | PDSS |

| Bits | Name | Туре | Reset | Description |
|------|------|------|-------|-------------|
| 31:1 | RSVD |      |       |             |
| 0    | PDSS | W1P  | 0     | Enter PDS   |

#### 14.4.2 PDS\_CTL4



| 31        | 30   | 29  | 28  | 27        | 26   | 25   | 24   | 23 | 22 | 21 | 20 | 19         | 18   | 17   | 16   |
|-----------|------|-----|-----|-----------|------|------|------|----|----|----|----|------------|------|------|------|
|           | RS   | VD  |     | MG<br>CLK | MMSS | MIRE | MIPO |    |    |    | RS | VD         |      |      |      |
| 15        | 14   | 13  | 12  | 11        | 10   | 9    | 8    | 7  | 6  | 5  | 4  | 3          | 2    | 1    | 0    |
| WG<br>CLK | WMSS | WRE | WPO |           |      |      | RS   | VD |    |    |    | NPG<br>CLK | NMSS | NPRE | NPPO |

| Bits  | Name   | Туре | Reset | Description                                                                                             |
|-------|--------|------|-------|---------------------------------------------------------------------------------------------------------|
| 31:28 | RSVD   |      |       |                                                                                                         |
| 27    | MGCLK  | R/W  | 1     | 1 : make core_misc clock gated at PDS Sleep state     0 : make core_misc clocking at PDS Sleep state    |
| 26    | MMSS   | R/W  | 1     | 1 : make core_misc RAM @Retention at PDS Sleep state 0 : make core_misc RAM @ Normal at PDS Sleep state |
| 25    | MIRE   | R/W  | 1     | 1 : make core_misc reset at PDS Sleep state     0 : make core_misc not reset at PDS Sleep state         |
| 24    | MIPO   | R/W  | 1     | 1 : make core_misc Power off at PDS Sleep state     0 : make core_misc power on at PDS Sleep state      |
| 23:16 | RSVD   |      |       |                                                                                                         |
| 15    | WGCLK  | R/W  | 1     | 1 : make WB clock gated at PDS Sleep state 0 : make WB clocking at PDS Sleep state                      |
| 14    | WMSS   | R/W  | 1     | 1 : make WB RAM @Retention at PDS Sleep state 0 : make WB RAM @ Normal at PDS Sleep state               |
| 13    | WRE    | R/W  | 1     | 1 : make WB reset at PDS Sleep state 0 : make WB not reset at PDS Sleep state                           |
| 12    | WPO    | R/W  | 1     | 1 : make WB Power off at PDS Sleep state 0 : make WB power on at PDS Sleep state                        |
| 11:4  | RSVD   |      |       |                                                                                                         |
| 3     | NPGCLK | R/W  | 1     | 1 : make NP clock gated at PDS Sleep state     0 : make NP clocking at PDS Sleep state                  |
| 2     | NMSS   | R/W  | 1     | 1 : make NP RAM @Retention at PDS Sleep state 0 : make NP RAM @ Normal at PDS Sleep state               |
| 1     | NPRE   | R/W  | 1     | 1 : make NP reset at PDS Sleep state 0 : make NP not reset at PDS Sleep state                           |
| 0     | NPPO   | R/W  | 1     | 1 : make NP Power off at PDS Sleep state 0 : make NP power on at PDS Sleep state                        |

BL602/604 Reference Manual 201/ 209 @2020 Bouffalo Lab



### 14.4.3 pds\_stat

地址: 0x4000e01c

| 31         | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17  | 16  |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|
|            |    |    |    |    |    | RS | VD |    |    |    |    |    |    | PLL | STA |
| 15         | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1   | 0   |
| RSVD RFSTA |    |    |    |    |    |    |    |    |    | RS | VD |    |    |     |     |

| Bits  | Name   | Туре | Reset | Description                                                                                                                                       |
|-------|--------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:18 | RSVD   |      |       |                                                                                                                                                   |
| 17:16 | PLLSTA | R    | 2'b00 | ST_PDS_PLL_OFF = 2'b00;<br>ST_PDS_PLL_SFREG = 2'b01;<br>ST_PDS_PLL_PU = 2'b10;<br>ST_PDS_PLL_RDY = 2'b11;                                         |
| 15:12 | RSVD   |      |       |                                                                                                                                                   |
| 11:8  | RFSTA  | R    | 4'b0  | ST_PDS_RF_OFF = 4'b0000;<br>ST_PDS_PU_MBG = 4'b0001;<br>ST_PDS_PU_LDO15RF = 4'b0011;<br>ST_PDS_PU_SFREG = 4'b0111;<br>ST_PDS_WB_EN_AON = 4'b1111; |
| 7:0   | RSVD   |      |       |                                                                                                                                                   |

## 14.5 寄存器描述

| Name         | Description            |
|--------------|------------------------|
| HBN_CTL      | HBN control            |
| HBN_TIME_L   | HBN time lower 32-bit  |
| HBN_TIME_H   | HBN time higher 8-bit  |
| RTC_TIME_L   | RTL timer lower 32-bit |
| RTC_TIME_H   | RTL timer higher 8-bit |
| HBN_IRQ_MODE | HBN interrupt Control  |
| HBN_IRQ_STAT | HBN interrupt Status   |
| HBN_IRQ_CLR  | HBN interrupt Clear    |
| HBN_PIR_CFG  | PIR control            |

BL602/604 Reference Manual 202/ 209 @2020 Bouffalo Lab



| Name        | Description       |
|-------------|-------------------|
| HBN_PIR_VTH | PIR threshold     |
| HBN_GLB     | HBN clock control |
| HBN_SRAM    | HBN sram control  |

## 14.5.1 HBN\_CTL

地址: 0x4000f000

| 31 | 30               | 29 | 28 | 27 | 26 | 25 | 24   | 23 | 22 | 21 | 20     | 19 | 18 | 17 | 16 |
|----|------------------|----|----|----|----|----|------|----|----|----|--------|----|----|----|----|
|    |                  |    |    |    |    |    | RS   | VD |    |    |        |    |    |    |    |
| 15 | 14               | 13 | 12 | 11 | 10 | 9  | 8    | 7  | 6  | 5  | 4      | 3  | 2  | 1  | 0  |
|    | RSVD SW RSVD RST |    |    |    |    |    | MODE |    |    |    | RTCCTL |    |    |    |    |

| Bits  | Name   | Туре | Reset | Description                                                                                                                                                                                         |
|-------|--------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:13 | RSVD   |      |       |                                                                                                                                                                                                     |
| 12    | SWRST  | R/W  | 0     | soft reset                                                                                                                                                                                          |
| 11:8  | RSVD   |      |       |                                                                                                                                                                                                     |
| 7     | MODE   | W    | 0     | Enter hibernate                                                                                                                                                                                     |
| 6:0   | RTCCTL | R/W  | 7'h0  | [6:4] Slow LED, x/0.25/0.5/1/2/4/8/16 seconds [3] rtc long time 0 353days (bit 39 13 compare) [2] rtc short time 0 488s (bit 23 0 compare) [1] rtc time 0 353days (bit 39 0 compare) [0] rtc enable |

### 14.5.2 HBN\_TIME\_L

地址: 0x4000f004

| 31   | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|      | TIML |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15   | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| TIML |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 203/ 209 @2020 Bouffalo Lab



| Bits | Name | Туре | Reset | Description                |
|------|------|------|-------|----------------------------|
| 31:0 | TIML | R/W  | 32'h0 | RTC timer compare bit 31:0 |

## 14.5.3 HBN\_TIME\_H

地址: 0x4000f008

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22   | 21 | 20 | 19 | 18 | 17 | 16 |  |
|----|------|----|----|----|----|----|----|----|------|----|----|----|----|----|----|--|
|    |      |    |    |    |    |    |    |    |      |    |    |    |    |    |    |  |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6    | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | RSVD |    |    |    |    |    |    |    | TIMH |    |    |    |    |    |    |  |

| Bits | Name | Туре | Reset | Description                 |
|------|------|------|-------|-----------------------------|
| 31:8 | RSVD |      |       |                             |
| 7:0  | TIMH | R/W  | 8'h0  | RTC timer compare bit 39:32 |

## 14.5.4 RTC\_TIME\_L

地址: 0x4000f00c

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RTLATL |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | RTLATL |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                     |
|------|--------|------|-------|---------------------------------|
| 31:0 | RTLATL | R    | 32'h0 | RTC time latched value bit 31:0 |

### 14.5.5 RTC\_TIME\_H

地址: 0x4000f010

| 31    | 30      | 29 | 28 | 27 | 26 | 25 | 24 | 23     | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|-------|---------|----|----|----|----|----|----|--------|----|----|----|----|----|----|----|
| RTLAT | AT RSVD |    |    |    |    |    |    |        |    |    |    |    |    |    |    |
| 15    | 14      | 13 | 12 | 11 | 10 | 9  | 8  | 7      | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|       |         |    | RS | VD |    |    |    | RTLATH |    |    |    |    |    |    |    |

BL602/604 Reference Manual 204/ 209 @2020 Bouffalo Lab



| Bits | Name   | Туре | Reset | Description                      |
|------|--------|------|-------|----------------------------------|
| 31   | RTLAT  | W    | 0     | RTC time latch for SW read       |
| 30:8 | RSVD   |      |       |                                  |
| 7:0  | RTLATH | R    | 8'h0  | RTC time latched value bit 39:32 |

## 14.5.6 HBN\_IRQ\_MODE

地址: 0x4000f014

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24   | 23   | 22       | 21 | 20   | 19        | 18 | 17 | 16 |
|----|------|----|----|----|----|----|------|------|----------|----|------|-----------|----|----|----|
|    | RSVD |    |    |    |    |    | IRAC | O1EN | IRACO0EN |    | RSVD | BOR<br>EN | RS | VD |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8    | 7    | 6        | 5  | 4    | 3         | 2  | 1  | 0  |
|    |      |    |    |    |    |    | RS   | VD   |          |    |      |           |    |    |    |

| Bits  | Name     | Туре | Reset | Description                                       |
|-------|----------|------|-------|---------------------------------------------------|
| 31:24 | RSVD     |      |       |                                                   |
| 23:22 | IRACO1EN | R/W  | 0     | enable acomp1 interrupt [20] posedge [21] negedge |
| 21:20 | IRACO0EN | R/W  | 0     | enable acomp0 interrupt [20] posedge [21] negedge |
| 19    | RSVD     |      |       |                                                   |
| 18    | BOREN    | R/W  | 0     | enable brown-out interrupt                        |
| 17:0  | RSVD     |      |       |                                                   |

### 14.5.7 HBN\_IRQ\_STAT

地址: 0x4000f018

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | IRQSTA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | IRQSTA |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

BL602/604 Reference Manual 205/ 209 @2020 Bouffalo Lab



| Bits | Name   | Туре | Reset | Description                                                                  |
|------|--------|------|-------|------------------------------------------------------------------------------|
| 31:0 | IRQSTA | R    | 0     | [22] acomp1 [20] acomp0 [18] brown-out [17] irq_pir state [16] irq_rtc state |
|      |        |      |       | [1:0] hbn_pin_wakeup state (GPIO8/GPIO7)                                     |

## 14.5.8 HBN\_IRQ\_CLR

地址: 0x4000f01c

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|    | IRQCLR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|    | IRQCLR |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits | Name   | Туре | Reset | Description                              |
|------|--------|------|-------|------------------------------------------|
| 31:0 | IRQCLR | W    | 0     | [22] irq_acomp1 clear                    |
|      |        |      |       | [20] irq_acomp0 clear                    |
|      |        |      |       | [18] irq_bor clear                       |
|      |        |      |       | [17] irq_pir clear                       |
|      |        |      |       | [16] irq_rtc clear                       |
|      |        |      |       | [1:0] hbn_pin_wakeup clear (GPIO8/GPIO7) |

## 14.5.9 HBN\_PIR\_CFG

地址: 0x4000f020

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23  | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|-----|------|----|----|----|----|----|----|
|    |    |    |    |    |    |    | RS | VD  |      |    |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7   | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
|    |    |    | RS | VD |    |    |    | PIR | RSVD |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    | EN  |      |    |    |    |    |    |    |

| Bits | Name  | Туре | Reset | Description |
|------|-------|------|-------|-------------|
| 31:8 | RSVD  |      |       |             |
| 7    | PIREN | R/W  | 0     | pir enable  |
| 6:0  | RSVD  |      |       |             |

BL602/604 Reference Manual 206/ 209 @2020 Bouffalo Lab



### 14.5.10 HBN\_PIR\_VTH

地址: 0x4000f024

| 31 | 30   | 29 | 28     | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----|------|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|
|    | RSVD |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| 15 | 14   | 13 | 12     | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
| RS | SVD  |    | PIRVTH |    |    |    |    |    |    |    |    |    |    |    |    |

| Bits  | Name   | Туре | Reset   | Description           |
|-------|--------|------|---------|-----------------------|
| 31:14 | RSVD   |      |         |                       |
| 13:0  | PIRVTH | R/W  | 14'h3ff | PIR compare threshold |

### 14.5.11 HBN\_GLB

地址: 0x4000f030

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19   | 18   | 17  | 16   |
|----|------|----|----|----|----|----|----|----|----|----|----|------|------|-----|------|
|    |      |    |    |    |    |    | RS | VD |    |    |    |      |      |     |      |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3    | 2    | 1   | 0    |
|    | RSVD |    |    |    |    |    |    |    |    |    |    | (SEL | UART | ROO | rsoc |
|    |      |    |    |    |    |    |    |    |    |    |    |      | SOC  |     |      |

| Bits | Name    | Туре | Reset | Description                                                    |
|------|---------|------|-------|----------------------------------------------------------------|
| 31:5 | RSVD    |      |       |                                                                |
| 4:3  | F32KSEL | R/W  | 0     | 32KHz clock source selection (0: RC32K 1: XTAL 32K 3: DIG 32K) |
| 2    | UARTSOC | R/W  | 0     | uart clock source selection (0: bclk 1: PLL 160MHz)            |
| 1:0  | ROOTSOC | R/W  | 0     | root clock source selection (0: RC32M 1: XTAL 2/3: PLL)        |

### 14.5.12 HBN\_SRAM



| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23   | 22   | 21   | 20 | 19 | 18 | 17 | 16 |
|----|----|----|----|----|----|----|----|------|------|------|----|----|----|----|----|
|    |    |    |    |    |    |    | RS | VD   |      |      |    |    |    |    |    |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7    | 6    | 5    | 4  | 3  | 2  | 1  | 0  |
|    |    |    | RS | VD |    |    |    | RETR | RETR | RSVD |    |    |    |    |    |
|    |    |    |    |    |    |    |    | SLP  | RET  |      |    |    |    |    |    |

| Bits | Name    | Туре | Reset | Description            |
|------|---------|------|-------|------------------------|
| 31:8 | RSVD    |      |       |                        |
| 7    | RETRSLP | R/W  | 0     | SRAM sleep control     |
| 6    | RETRRET | R/W  | 0     | SRAM retention control |
| 5:0  | RSVD    |      |       |                        |

BL602/604 Reference Manual 208/ 209 @2020 Bouffalo Lab

# Revision history

Table 15.1: Document revision history

| Date      | Revision | Changes                             |
|-----------|----------|-------------------------------------|
| 2020/2/13 | 0.9      | Initial release                     |
| 2020/4/20 | 1.0      | Add related content of HBN register |
| 2020/8/26 | 1.1      | Add ADC and DAC                     |