Math 118. Combinatorics. Spring 2013

Problem Set 1. Due on Wednesday, 4/10/2013.

- 1. Recall Sylvester's map $\lambda \mapsto \mu$ defined in class, where λ is a partition into odd parts.
 - (a) Prove that the image μ is a partition into distinct parts.
 - (b) Prove that Sylvester's map is a bijection between partitions of n into odd parts and partitions of n into distinct parts.
 - (c) (Bonus) Prove that the number of different parts in λ equals the number of blocks of consecutive parts in μ . For example, $\lambda = (9, 9, 7, 3, 3)$ has three different parts, and $\mu = (9, 8, 7, 4, 2, 1)$ has three blocks, namely block 9, 8, 7, block 4, and block 2, 1.
- 2. Recall that p(n) denotes the number of partitions of n. Prove that the number of pairs (λ, μ) where $\lambda \vdash n$, $\mu \vdash n + 1$, and the Young diagram of μ is obtained from that of λ by adding one square, is equal to $p(0) + p(1) + \cdots + p(n)$.
- 3. Prove that the number of partitions of n into 4 parts equals the number of partitions of 3n into 4 parts of size at most n-1.
- 4. Show that for any partition λ ,

$$\sum_{i} (i-1)\lambda_i = \sum_{i} {\lambda_i' \choose 2},$$

where the λ_i' denote the parts of the conjugate partition.

5. Prove the following identities:

$$\prod_{n\geq 1} \frac{1}{1-t^n} = \sum_{k\geq 0} \frac{t^{k^2}}{[(1-t)\cdots(1-t^k)]^2},\tag{1}$$

$$\prod_{n\geq 1} (1+t^n) = \sum_{k\geq 0} \frac{t^{\binom{k+1}{2}}}{(1-t)(1-t^2)\cdots(1-t^k)}.$$
 (2)

$$\prod_{n\geq 0} (1+t^{2n+1}) = \sum_{k\geq 0} \frac{t^{k^2}}{(1-t^2)\cdots(1-t^{2k})},\tag{3}$$

$$\prod_{n\geq 1} \frac{1}{1-qt^n} = \sum_{k\geq 0} \frac{t^{k^2} q^k}{(1-t)\cdots(1-t^k)(1-qt)\cdots(1-qt^k)},\tag{4}$$

$$\prod_{n\geq 1} (1+qt^n) = \sum_{k\geq 0} \frac{t^{\binom{k+1}{2}}q^k}{(1-t)(1-t^2)\cdots(1-t^k)}.$$
 (5)

6. Find a bijective proof (using a Franklin-type involution, like in the proof of Euler's Pentagonal Theorem) of Jacobi's identity in the form:

$$\prod_{n=1}^{\infty} (1 - x^n y^{n-1})(1 - x^{n-1} y^n)(1 - x^n y^n) = 1 + \sum_{n=1}^{\infty} (-1)^n \left(x^{\frac{n(n+1)}{2}} y^{\frac{n(n-1)}{2}} + x^{\frac{n(n-1)}{2}} y^{\frac{n(n+1)}{2}}\right).$$