Shortest Paths

Shortest Path Problem

Input:

- Directed graph G = (V, E).
- Source node s, destination node t.
- for each edge e, length $\ell(e)$ = length of e.
- length of a path = sum of lengths of edges on the path
- Find: shortest directed path from s to t.

Length of path (s,2,3,5,t) is 9 + 23 + 2 + 16 = 50.

Dijksta's Algorithm: Overview

- Maintain a set of **explored nodes** S whose shortest path distance d(u) from s to u is known.
- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$
- add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijksta's Algorithm: Overview

- Maintain a set of explored nodes S whose shortest path distance d(u) from s to u is known. Invariant: d(u) is known
- Initialize $S = \{ s \}, d(s) = 0.$

for all vertices in S

• Repeatedly choose unexplored node v which minimizes

 $\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$

• add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Intuition: like BFS, but with weighted edges

Correctness Proof of Dijkstra's

(Greedy Stays Ahead)

Invariant. For each node $u \in S$, d(u) is the length of the shortest path from s to u.

Proof: (by induction on |S|)

- **Base case:** |S| = 1; d(s) = 0.
- Inductive hypothesis: Assume for $|S| = k \ge 1$.
 - Let v be next node added to S, and let (u,v) be the chosen edge.
 - The shortest s-u path plus (u,v) is an s-v path of length $\pi(v)$.
 - Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - Let (x,y) be the first edge in P that leaves S,
 and let P' be the subpath to x.
 - $-P' + (x,y) \text{ has length} \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v)$ inductive hypothesis defin of $\pi(y)$ Dijkstra's chose v instead of y

Implementation

•For unexplored nodes, maintain

$$\pi(v) = \min_{e=(u,v): u \in S} (d(u) + \ell(e))$$

- -Next node to explore = node with minimum $\pi(v)$.
- -When exploring v, for each edge e = (v,w), update $\pi(w) = \min\{\pi(w), \pi(v) + \ell(e)\}$.

•Efficient implementation: Maintain a priority queue Q of unexplored nodes, prioritized by $\pi(v)$.

Implementation: priority queues

- Maintain a set of items with priorities (= "keys")
 - Example: jobs to be performed
- Operations:
 - Insert
 - DECREASE-KEY
 - EXTRACT-MIN: find and remove item with least key
- Common data structure: heap
 - Time: O(log n) per operation

Graph with nonnegative edge lengths:

Pseudocode for Dijkstra(G, \ell)

```
d[s] \leftarrow 0
for each v \in V - \{s\}
     do d[v] \leftarrow \infty; \pi[v] \leftarrow \infty
S \leftarrow \emptyset
                    \triangleright Q is a priority queue maintaining V-S,
Q \leftarrow V
                       keyed on \pi[v]
while Q \neq \emptyset
     do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}; d[u] \leftarrow \pi[u]
         for each v \in Adjacency-list[u]
                                                                       explore
              do if \pi[v] > \pi[u] + \ell(u, v)
                                                                        edges
                        then \pi[v] \leftarrow d[u] + \ell(u, v) leaving v
Implicit Decrease-Key
```

Analysis of Dijkstra

while $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)$ $S \leftarrow S \cup \{u\}$ $\mathbf{for} \ \text{each} \ v \in Adj[u]$ $\mathbf{explore} \ \mathbf{do} \ \mathbf{if} \ d[v] > d[u] + \ell(u, v)$ $\mathbf{do} \ \mathbf{do} \ \mathbf{if} \ d[v] \leftarrow d[u] + \ell(u, v)$

Fib heap † PQ Operation Dijkstra Binary heap d-way Heap Array ExtractMin log n HW log n n DecreaseKey HW log n m n^2 Total m log n $m \log_{m/n} n$ $m + n \log n$

† Individual ops are amortized bounds

\\ m implicit Decrease-Key's.

Physical intuition

- System of pipes filling with water
 - Vertices are intersections
 - Edge length = pipe length
 - -d(v) = time at which water reaches v
- Balls and strings
 - Vertices \mapsto balls
 - Edge $e \mapsto \text{string of length } \ell(e)$
 - Hold ball s up in the air
 - -d(v) = (height of s) (height of v)
- Nature uses greedy algorithms

Review

- Is Dijsktra's algorithm correct with negative edge weights?
 Give either
 - a proof of correctness, or
 - an example of a graph where Dijkstra fails

Further reading

• Erickson's lecture notes:

http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/21-sssp.pdf

Minimum Spanning Tree

Minimum spanning tree (MST)

Input: A connected undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

• For now, assume all edge weights are distinct.

Definition: A *spanning tree* is a tree that connects all vertices.

Output: A *spanning tree T* of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Example of MST

Example of MST

Greedy Algorithms for MST

- Kruskal's: Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.
- Reverse-Delete: Start with T = E. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.
- **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.

Cycles and Cuts

•Cycle: Set of edges of the form (a,b),(b,c),...,(y,z),(z,a).

•Cut: a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cycle-Cut Intersection

- Claim. A cycle and a cutset intersect in an even number of edges.
- **Proof:** A cycle has to leave and enter the cut the same number of times.

Cut and Cycle Properties

- •Cut property. Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST contains e.
- •Cycle property. Let C be a cycle, and let f be the max weight edge in C. Then the MST does not contain f.

e is in the MST

f is not in the MST

Proof of Cut Property

Cut property: Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then the MST T* contains e.

•Proof: (exchange argument)

- Suppose e does not belong to T*.
- Adding e to T* creates a cycle C in T*.
- Edge e is both in the cycle C and in the cutset D corresponding to $S \Rightarrow$ there exists another edge, say f, that is in both C and D.
- $-T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$. Contradiction.

Proof of Cycle Property

Cycle property: Let C be a cycle in G. Let f be the max weight edge in C. Then the MST T* does not contain f.

•Proof: (exchange argument)

- Suppose f belongs to T*.
- Deleting f from T* creates a cut S in T*.

T*

- $-T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$. Contradiction.

Greedy Algorithms for MST

- Kruskal's: Start with $T = \emptyset$. Consider edges in ascending order of weights. Insert edge e in T unless doing so would create a cycle.
- Reverse-Delete: Start with T = E. Consider edges in descending order of weights. Delete edge e from T unless doing so would disconnect T.
- **Prim's:** Start with some root node s. Grow a tree T from s outward. At each step, add to T the cheapest edge e with exactly one endpoint in 5.

Prim's Algorithm: Correctness

- •Prim's algorithm. [Jarník 1930, Prim 1959]
- −Apply cut property to S.
- When edge weights are distinct, every edge that is added must be in the MST
- Thus, Prim's algorithmoutputs the MST

Correctness of Kruskal

- [Kruskal, 1956]: Consider edges in ascending order of weight.
 - Case 1: If adding e to T creates a cycle, discard e according to cycle property.

Case 2: Otherwise, insert e = (u, v)
 into T according to cut property where
 S = set of nodes in u's connected
 component.

Review Questions

Let G be a connected undirected graph with distinct edge weights. Answer true or false:

• Let e be the cheapest edge in G. The MST of G contains e.

• Let e be the most expensive edge in G. The MST of G does not contains e.

Review Questions

Let G be a connected undirected graph with distinct edge weights. Answer true or false:

• Let e be the cheapest edge in G. The MST of G contains e.

(Answer: True, by the Cut Property)

• Let e be the most expensive edge in G. The MST of G does not contains e.

(Answer: False. Counterexample: if G is a tree, all its edges are in the MST.)

Exercise

- Given an undirected graph G, consider spanning trees produced by four algorithms
 - BFS tree
 - DFS tree
 - shortest paths tree (Dijsktra)
 - MST
- Find a graph where
 - all four trees are the same
 - all four trees must be different (note: DFS/BFS may depend on exploration order)