

CHEMISTRY Chapter 20

2nd
secondary

ENLACE COVALENTE

HELICOMOTIVACIÓN

ENLACE COVALENTE

DEFINICIÓN

Es la fuerza electromagnética, principalmente eléctrica ,que surge cuando los electrones compartidos son atraídos por los núcleos de los átomos enlazados. Este enlace es característico entre átomos de elementos no metálicos

OBSERVACIONES:

Fuerza eléctrica: núcleo - par enlazante

Fuerza magnética: electrón (†) - electrón (↓)

Los átomos tienden a formar octeto electrónico.

su mínima porción representativa se le denomina molécula (ósea sus unidades químicas son las moléculas).

$(0 \le \Delta EN < 1, 7)$

RECORDAR

no metal EN = 2,1

no metal EN = 3.0

 $\Delta EN = 3 - 2.1 = 0.9$

compartición de electrones (1 enlace covalente)

CLASIFICACIÓN

A. POR LA POLARIDAD DEL ENLACE

1. ENLACE COVALENTE NO POLAR (APOLAR)

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero (\triangle E.N.=0).

2. ENLACE COVALENTE POLAR

Se forma entre átomos diferentes, donde la $\triangle E.N. \le 1,7.(0 \le \Delta EN \le 1,7)$

$$\triangle$$
 EN = 2,1 - 2,1 = 0

$$\Delta$$
 EN = 2,4 - 2,1 = 0,3

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDOS

1. ENLACE COV. NORMAL

(cada átomo aporta un electrón para formar enlace)

A - B

1 E. Cov normal

A = B

2 E. Covnormal

 $A \equiv B$

3 E. Cov normal

2. ENLACE COV. DATIVO O COORDINADO

(Solo un átomo aporta un electrón para formar enlace)

C. POR EL NÚMERO DE PARES COMPARTIDOS

SIMPLE

DOBLE

$$c = c$$

TRIPLE

$$-c\sigma = c - \frac{\pi}{\pi}c - \frac{\pi}{\pi}$$

PROPIEDADES DE LOS COMPUESTOS COVALENTES

- Presentan bajo punto de fusión y ebullición, se encuentran en los tres estados.
- Generalmente son insolubles en solventes polares como el agua, pero solubles en solventes apolares como en el Benceno

Generalmente son malos conductores de la corriente eléctrica.

Determine el tipo de enlace , según el número de pares enlazantes

- I. $N \equiv N$ Enlace triple
- II. O = O Enlace doble
- I. H-H Enlace simple

RESOLUCIÓN:

E. C. Simple

E. C. Doble

E. C. Triple

Halle el numero de enlaces covalentes apolares en:

RESOLUCIÓN:

APOLAR

 $(\Delta E.N.=0)$

Rpta: 2

De acuerdo a la siguiente estructura, indique cuntos: a) Enlaces simples y b) Enlaces múltiples existen

$$H H H H H H$$
 $H - C - C = C - C - C - H$
 $H - C1 H$

RESOLUCIÓN:

a) Enlaces simples: _13__

b) Enlaces múltiples: __1___

$$H \rightarrow H \rightarrow H \rightarrow H$$

$$H \rightarrow C \rightarrow C \neq C \rightarrow C \rightarrow H$$

$$H \rightarrow C \rightarrow C \rightarrow C \rightarrow H$$

Rpta: 13 y 1

Halle el numero de enlaces sigma y pi para la molécula:

RESOLUCIÓN:

$$H - C = C - C$$

$$H$$

$$\pi = 3$$
 $\sigma = 5$

En la estructura del ácido nítrico (HNO₃)

Indique el número de:

enlaces polares : $__{0}$ enlaces apolares : $__{0}$

enlaces dativos :

$$H - O - N = O$$

$$\downarrow$$

$$O$$

RESOLUCIÓN:

Con ayuda del recuadro, determine el tipo de enlace.

Elemento	С	Н	N	0
EN	2,5	2,2	3,	3,5
			0	

Molécula	ΔΕΝ	Tipo de enlace
H ₂ O	\triangle EN = 3,5 - 2,2 = 1,3	COVALENTE
Br ₂	$\triangle EN = 0$	COVALENTE
CO ₂	Δ EN = 3,5 - 2,5 = 1,0	COVALENTE

RESOLUCIÓN:

ENLACE COVALENTE

ENLACE IÓNICO

 $0 \leq \Delta EN \leq 1, 7$

 Δ EN \geq 1,7

Observe las configuraciones electrónicas de los elementos A, B y C; fundamente la validez de las siguientes afirmaciones:

A: $1s^2 2s^2 2p^6$

B: 1s² 2s² 2p⁶ 3s¹

C: 1s² 2s² 2p⁶ 3s²

- Los elementos B y C son elementos metálicos representativos.
- ➤ El elemento A es un gas noble, puesto que en su nivel de valencia tiene 10 electrones.

RESOLUCIÓN:

B: 1s² 2s² 2p⁶(3s¹)

IA

ELEMENTOS METÁLICOS REPRESENTATIVOS

C: $1s^2 2s^2 2p^6 3s^2$

A: $1s^2(2s^2)(2p^6)$

VIIIA

En la molécula de N₂O₅:

```
Complete:
a. pares de electrones libre: ___
b. número de enlaces covalente dativos:
c. número de enlaces del
                                tipo
d. enlaces covalentes polares: ____
e. número de enlaces del
                                tipo
```


Pares libres: 12

Enlaces covalentes DATIVOS: 2

$$O = \begin{pmatrix} O & O & O \\ \hline O & N & \hline O & O \end{pmatrix} = \begin{pmatrix} O & \sigma \\ \hline O & N & \hline O \end{pmatrix}$$

Número de enlaces σ : 6 Enlaces covalentes POLARES :6

Número de enlaces π : 2

HELICO PRACTICE

01

- Determine el tipo de enlace , según el número de pares enlazantes

 - II. O = O Enlace doble
 - I. H H Enlace simple

RESOLUCIÓN:

E. C. Simple

E. C. Doble

E. C. Triple

A GB

HELICO | PRACTICE

- De acuerdo a la siguiente estructura, indique cuntos:
 - a) Enlaces simples y
 - b) Enlaces múltiples existen

$$H \quad H \quad H \quad H \quad H$$
 $H - C - C = C - C - C - H$
 $H \quad C \quad H$

RESOLUCIÓN:

- a) Enlaces simples: 13
- b) Enlaces múltiples: ____

Rpta: 13 y 1

HELICO | PRACTICE

Halle el numero de enlaces covalentes apolares en:

RESOLUCIÓN:

APOLAR

(ΔE.N.=O)

Rpta: 2

01

HELICO | PRACTICE

Halle el numero de enlaces sigma y pi para la molécula:

 $H - C \equiv C - C$

RESOLUCIÓN:

$$\pi = 3$$
 $\sigma = 5$

Rpta: 5 y 3