

Projekt pn. "Wzmocnienie potencjału dydaktycznegoUMK w Toruniu w dziedzinach matematyczno-przyrodniczych" realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

TEORIA OBLICZALNOŚCI – ĆWICZENIA 1

Ćwiczenia 1

Wprowadzenie teoretyczne:

Co to jest maszyna licznikowa? Jakie ma instrukcje?

Odpowiedź:

Maszyna licznikowa – licznik rozkazów + pamięć (nieskończona tablica)

Lista instrukcji:

Kod instrukcji	Kod adresów	Oznaczenie	Semantyka	Uwagi
0	n	$\mathbf{Z}(n)$	r[n]:=0	Licznik rozkazów
				zwiększ o 1 Licznik
1	n	$\mathbf{S}(n)$	r[n] := r[n] + 1	rozkazów zwiększ o 1
2	$\pi(m,n)$	T(m,n)	r[n] := r[m]	Licznik rozkazów zwiększ o 1
3	$oldsymbol{eta}(m,n,q)$	I(m,n,q)	If $r[m]=r[n]$ then goto q	Licznik rozkazów zwiększ o 1, gdy r[m]≠r[n], w przec. przyp. umieść w nim q

r[x] – zawartość komórki o numerze x

Przykładowy program:

0	I(1,2,5)	If $r[1]=r[2]$ then goto 5
1	S(2)	r[2] := r[2] + 1
2	S(3)	r[3] := r[3] + 1
3	I(1,2,5)	ifr[1]=r[2] then goto 5
4	I(1,1,1)	ifr[1]=r[1] then goto 1
5	T(3,0)	r[0] := r[3]

Pytanie: Jaką funkcję liczy ten program?

Projekt pn. "Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych" realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

TEORIA OBLICZALNOŚCI – ĆWICZENIA 1

Zadanie 1

Napisz program na maszynę licznikową obliczający następujące funkcje:

1.
$$f(x) = x \mod 2$$

$$2. \quad g(x,y) = \begin{cases} 1 & x \le y \\ 0 & x > y \end{cases}$$

Rozwiązanie:

Program obliczający funkcję *f*:

0	I(1,2,7)
1	S(2)
2	I(1,2,5)
3	S(2)
4	I(1,1,0)
5	S(0)

W rejestrze 2-gim umieszczane są kolejne liczby naturalne. Jeśli x jest parzyste (test w instrukcji 0), to program zwraca 0, jeśli nieparzyste (test w instrukcji 2), program zwraca 1.

2. Program wyznaczy mniejszą z liczb x i y i ustali, czy to jest x czy y.

0	I(3,1,4)
1	I(3,2,5)
2	S(3)
3	I(1,1,0)
4	S(0)

Zadanie 2

Wykaż, że następujące funkcje są ML-obliczalne:

1.
$$f(x) = \begin{cases} \frac{1}{2}x & x - \text{parzyste} \\ \infty & x - \text{nieparzyste} \end{cases}$$
2.
$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$

2.
$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$

3.
$$f(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

4.
$$f(x) = \begin{cases} x - 1 & x > 0 \\ 1 & x = 0 \end{cases}$$

$$5. \quad f(x,y) = \begin{cases} x - y & x \ge y \\ 0 & x < y \end{cases}$$

6.
$$f(n) = ndiv 2$$

Projekt pn. "Wzmocnienie potencjału dydaktycznegoUMK w Toruniu w dziedzinach matematyczno-przyrodniczych" realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

TEORIA OBLICZALNOŚCI – ĆWICZENIA 1

Rozwiązanie:

1. Ten program się nie zatrzymuje dla liczb nieparzystych!

0	I(1,2,5)
1	S(2)
2	S(2)
3	S(3)
4	I(1,1,0)
5	T(3,0)

2.

0	I(1,0,3)
1	S(0)

3.

1	I(1,2,3)
2	S(0)

4.

1	I(1,2,8)
2	S(2)
3	I(1,2,8)
4	S(2)
5	S(0)
6	I(1,1,2)

5.

1	I(2,3,5)
2	I(1,3,9)
3	S(3)
4	I(1,1,1)
5	I(1,3,9)
6	S(3)
7	S(0)
8	I(1,1,5)

x≥*y x*<*y*

w 3 rejestrze znajdzie się mniejsza z liczb (a dokładniej *y*, bo dla *x*<*y* skończyliśmy skokiem z instrukcji numer 2)

6.

1	I(1,0,8)
2	S(2)
3	I(1,2,8)
4	S(2)
5	S(0)
6	I(1,2,8)
7	I(1,1,2)

Zadanie 3

Skonstruuj maszynę licznikową dla poniższych funkcji:

Projekt pn. "Wzmocnienie potencjału dydaktycznegoUMK w Toruniu w dziedzinach matematyczno-przyrodniczych" realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

TEORIA OBLICZALNOŚCI – ĆWICZENIA 1

1.
$$|x-y|$$

2.
$$min: \mathbb{N}^2 \to \mathbb{N}$$

1.
$$|x-y|$$

2. $min: \mathbb{N}^2 \to \mathbb{N}$
3. $x \div 1 = \begin{cases} x-1 & x>0\\ 0 & x=0 \end{cases}$

Rozwiązanie:

1.

0	I(1,2,100)
1	I(1,3,10)
2	I(2,4,6)
3	S(3)
4	S(4)
5	I(1,1,1)
6	I(1,3,100)
7	S(0)
8	S(3)
9	I(1,1,6)
10	I(2,4,100)
11	S(0)
12	S(4)
13	I(1,1,10)

2.

0	I(1,0,4)
1	I(2,0,4)
2	S(0)
3	I(1.1.0)

3.

0	I(1,4,100)
1	S(3)
2	I(1,3,6)
3	S(2)
4	S(3)
5	I(1,1,2)
6	T(2,0)

Projekt pn. "Wzmocnienie potencjału dydaktycznegoUMK w Toruniu w dziedzinach matematyczno-przyrodniczych" realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki

TEORIA OBLICZALNOŚCI – ĆWICZENIA 1

Zadania domowe:

- A. Napisz programy obliczające następujące funkcje:

 - 1. $f(n) = n^5$, 2. $f(n) = n^{10}$, 3. $f(a; b; c; d; e; f; x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f;$
- B. Wykaż, że następujące funkcje są ML-obliczalne: a) $+: \mathbb{N}^2 \to \mathbb{N}$ suma

 - b) $x \div y = \begin{cases} x y & x > y \\ 0 & x \le y \end{cases}$