■ Next CLOi Track 지원분야				
[분야1] 서비스 로봇에 적용 가능한 제품 기반 아이디어	[분야2] LG 로봇 활용을 통한 연계 가능한 로봇 서비 스 확대 및 고도화 아이디어			
□ AI, 빅데이터를 활용 한 초 개인화 서비스	■ 배송 로봇			
□ 생활 밀착형 서비스	■ 안내 로봇			
□ 상업 분야에서의 활용 아이디어	■ 살균 로봇			
□ 기타	□ 기타			

상품화 아이디어 서비스 개요 (요약본)

A.2 엘리베이터

기존 엘리베이터 선택 방식의 문제

엘리베이터 선택 시 혼잡도 반영

B. 배치 최적화

B. 대기 중 배치

기존 로봇 크루즈 모드

Database를 통한 배치 최적화

구역/시간대별 통행량 / 사용 빈도

안내로봇

사람이 없을 때!

살균로봇

배송로봇

페이지 2 / 8

전역 경로 최적화

• CCTV 기반 실시간 통행량 분석으로 최단 시간 경로 생성

Navigation 중 대기, 경로 재생성 과정을 최소화하여 사용 효율 증대

서비스별 포지션 최적화

• Database를 기반으로 서비스별(배송, 안내, 살균 등) 배치 최적화

배송 로봇: 배송 빈도 높은 구역
안내 로봇: 통행량, 밀집도 높은 구역
살균 로봇: 구역별 통행량 적은 시간

데이터베이스(구역/시간대별 서비스 이용빈도, 통행량)를 통해 로봇 배치를 최적화한다. -> 고객 접근성 및 업무 효율 향상

CCTV 연동 프로그램

cctv 서버 연결

CCTV 좌표 및 ROI 설정

CCTV 모니터링

별도의 프로그래밍이 필요 없는 UI를 구성하여 사용자 편의성 증대

차별성 및 독 창성

차별화 포인트

1. 최단 시간 경로

CCTV로 동적 환경을 분석하여 최단 시간의 경로 생성

2. 배치 최적화

기존 크루즈 모드 대비 배터리 효율성 증가 고객 접근성 및 업무 효율 증가

3. CCTV 연동 프로그램

로봇 지도와 CCTV 데이터 통합 으로 모니터링 개선

Key USP

"당신의 건물은 로봇과 친해질 준비가 되어있다."

기존의 로봇, 환경, 장비를 그대로 사용하면서 소프트웨어의 개선만으로 로봇 친화적 건물을 만든다.

독창성 및 우수성

CCTV와 로봇 데이터의 융합

기존 CCTV의 활용 방안으로는 측위, 객체 추적에 한정되었다. 본 과제는 영상 데이터를 자율 주행 지도에 반영함으로써 기존 에 로봇의 센싱 데이터에 의존 한 자율주행 방식을 개선한다.

1. 타겟 시장 규모와 설정 근거

A. 타겟 시장 : 공중 이용 시설

총계	사무용건축물	복합건축물	공연장	학원	결혼 예식장	실내체육시설
18,044	3,867	13,527	105	177	259	109

<표1- 공중 이용 시설 현황 (2016년 공중 위생영업업소 실태보고)

B. 타겟 시장 현황

- 잠재적 수요 : 많음 / 경쟁강도 : 낮음 / 시장 : 형성기 ~ 초창기

구분	실내배송	접객	전문청소	보안
	사무용 및	공항, 호텔,	사무용 및	사무용 및
적용분야	복합건축물, 호텔,	관광지,	복합건축물, 호텔,	복합건축물, 호텔,
	병원, 학교, 마트	대형빌딩	대형마트	대형마트
수요처	많음	많음	많음	보통
경쟁강도	낮음	보통	낮음	낮음
시장성숙도	형성기	형성기	초창기	형성기

<표2 - 활용로봇의 시장성숙도 및 진입가능성 평가표 (KIRIA, 2016)>

C. 타겟 고객: 주요 건물 관리 업체

업체명	주요 관리 건물	업체명	주요 관리 건물
현대엔지니어링	◆현대차 양재사옥	한화 63 시티	◆KT IDC 센터
서브원	◆LG 그룹사 빌딩	아이서비스	◆현대산업개발 빌딩
S1 에스원	◆삼성그룹사 빌딩	우리피엔에스	◆63 빌딩

<표3 - 국내 주요 건물 관리 용업 업체 현황, FnGuide, KB 투자증권)>

D. 시장의 요구조건

구분	요구 조건 및 문제	본 서비스의 시장성
÷ 0.	1. 인력 대체 효율	로봇 배치를 최적화하여, 로봇의 인력 대체율을 높임
효율	2. 효과적인 운영 유	불필요한 이동을 최소화하여, 로봇의 에너지 효율과 회전율을
측면	지비 저감	높임.
공간	건물 구조 변경, 장	로봇 친화적 빌딩을 만들기 위해서, 별도의 로봇 주행 경로 및
측면	비 설치 최소화	공간 확장 또는 장비 추가가 필요하지 않음,
보안	CCD/ 버지 아유 바디	기존에 CCTV를 담당하는 건물 관리 업체가 직접 로봇을 모니
측면	CCTV 범죄 악용 방지	터링 하므로, 영상 유통으로 인한 유출 위험 없음.
서비스	이오개 마조드 하사	고무 고기어비 <u>구무 이용</u> 게 마드에게 마즈트로 노어 서스히 오트
측면	이용객 만족도 향상	건물 관리업체, 건물 이용객 모두에게 만족도를 높여, 선순환 유도

<丑 4>

1. 과제 개발을 위한 고려된 SW/HW 기술적 사항 및 구현 방식

A. Software

- Ubuntu18.04 ROS 프로그래밍, SLAM 패키지를 개발하여 자율주행 로봇 구현
- CCTV TCP/IP 서버 연결 및 실시간 영상 스트리밍
- Image Processing: Python OpenCV, YOLOv3
- Django, MySQL을 통해 데이터베이스 연동 및 분석

B. Hardware – 실험 플랫폼

- 자율 주행 모바일 로봇 (300mm x 300mm x 250mm) 자체 제작
- 연구실 건물 내 IP CCTV

프로젝트 세부 개발 계획

사업성 및 실 현 가능성

2. 프로젝트 기간 내 및 세부 개발 일정

78	상세내용	2021年					
구분		7月	8月	9月	10月	11月	12月
계획수립	아이디어 선정						
기술 조사	제품, 논문 조사						
기술 조사	관련 특허 조사						
시장 조사	기존 제품, 시장성 조사						
	센서, 모듈프로그래밍						
	Encoder 모터 제어						
자율주행 로봇	SLAM 구현(ROS)						
제작	통신 프로토콜 구축						
" '	프로토타입 제작						
	알고리즘 테스트						
Image	YOLOv3 객체 탐지						
	좌표 투영(python)						
Processing	IP Camera, ROS연동						
DD 7.5	MySQL Database 구축						
DB 구축	Django Database 연동						
	기구 해석(CAE)						
H/W 설계	회로 설계						
	기구 설계 및 가공						

<丑5>

상품화 아이디어 서비스 세부 설명서

■ 과제명 : 건물 내 CCTV 영상 정보를 활용한 전역경로 및 배치 최적화 서비스

■ 동작 시나리오 및 서비스 특징

<그림1>

1. Person detection : CCTV 화면에서 사람들을 인식

- 광각 렌즈 왜곡 보정(calibration)을 통한 전처리 작업
- 딥러닝 기반 객체 인식 알고리즘 YOLO 사용

<그림2>

2. 2D 변환 : 영상 속 사람들의 좌표를 찾아 2D 지도 상에 표기

- 영상 속 지면과 지도의 좌표를 비교하여 투영 변환(Homography) 행렬 계산
- 사람들의 좌표와 변환 행렬을 연산하여 지도에 투영한 2D 좌표를 계산

3. 동적 전역 지도 생성

기존 Static Map에 로봇의 국부 센싱 지도와 CCTV 동적 장애물 지도를 병합한다.

이후 Map Server에서 각 로봇에 배포한다.

- Static Map: 기존에 미리 Mapping된 Map Layer
- Robot Sensing : 로봇의 센싱 범위내 장애물 Layer
- CCTV Layer: CCTV ROI 내 장애물 Layer
- Map Server : Map Layer 병합 연산하여 Global Map 생성

4. CCTV - ROS 서버 연동

IP Camera와 연동하기 위해 ROS Web Socket Communication 라이브러리를 사용한다. CCTV를 통해 구역/시간대별 통행량 데이터를 데이터 베이스로 관리한다.

- Django: Web Framework 개발 / Data Base 연동
- MySQL: Data Base 구축
- UI: CCTV, Robot Monitoring/Web IP Address 입력

CCTV 1 Python 3 Yolo v3 Django UI / UX Socket Web Data Base <그림5> Web Data Base ROS / Robot Position <그림6>

ROS

5. DataBase를 통한 배치 최적화

데이터 베이스를 활용하여, 로봇의 서비스 목적에 맞게 배치를 최적화한다. 사용자는 UI를 통해 수동으로 로봇을 배치하거나, 데이터 분석을 통한 자동배치 기능을 사용할 수 있다.

■ 서비스 구현 계획

1. 구현 목표

- 자체 제작한 SLAM 자율 주행 로봇과 학교 건물내 CCTV를 통해 검증 실험 수행
- 알고리즘 구현: CCTV 영상 처리 데이터(고객 위치, 혼잡도 등)를 로봇 Map에 대입
- 클라우드(ex. AWS) 환경을 이용하여 데이터베이스 구축 및 빅데이터 분석 프로그램 개발
- CCTV 서버 연동 프로그램 및 UI 개발

2. 자율주행 로봇 자체 개발

크기	30 x 30 x 25 cm
속도(max)	1.0 m/s
센서	LiDAR, RGBD Cam
자율주행	실내 맵핑 • 주행, 장애물 회피

무게	3 kg
적재 용량	20 kg
배터리	7400 mAh
충전시간	40 분

<丑1>

<그림7>

- 개발환경: Ubuntu 18.04 ROS [Jetson Nano 4GB / Arduino Mega 2560]
- 통신 : Wi-Fi
- Gmapping & Visual Slam
- Sensor: Encoder, IMU 9axis, RPLidar A2, Intel Realsense D435

3. 실제 환경에서 서비스 검증 테스트

- 장소 : 서울과학기술대학교 프론티어관

- 적용 장소 : 1층 로비, 주요 출입구

- 활용 장비 : IP CCTV, 자율주행 로봇

<그림8>

■ 팀 업무 분장

No	구분	성명	참여인원의 업무 분장
			- 로봇 PCB 회로 구축
1	1 팀장 윤인재	윤인재	- DC 모터 제어 및 각종 모듈 (Mp3, Realsense) 제어 프로그래밍
•	<u> </u>	ᄑᆫᄭᅦ	- 통신 프로토콜 및 클라우드 환경 구축
			- Django, MySQL 프로그래밍
			- Jetson Nano 개발환경 구축 / 시스템 알고리즘 설계
2	2 팀원 정광서	- SLAM Package 개발	
		- Lidar, Encoder, IMU, Realsense 센서 퓨전을 통한 로봇 정밀 측위 프로그래밍	
			- Python OpenCV를 활용한 영상처리
3	3 팀원 조현우	조현우	- 딥러닝 기반 Yolov3를 이용한 객체 인식 및 좌표 투영 프로그래밍
			- ROS SLAM Map Server 연동 및 좌표 데이터 전송
			- H/W 제한 조건 분석 및 Ansys를 통한 구조 해석
	4 팀원 최재혁	· · · · · · · · · · · · · · · · · · ·	- 설계 도면 제작 및 로봇 부품 선정 전담
4		기세역	- Frame & Sample 가공 및 제작
			- Solidworks 기반 3D Modeling & Assembly