nstituto de Informática - UFRGS

Redes de Computadores

Introdução ao roteamento

Aula 19

3

Introdução

- □ Inter-rede TCP/IP (Internet) é composta por um conjunto de redes interligadas por roteadores
- Roteador
 - ► Equipamento de interconexão que define domínios de *broadcast*, um para cada uma de suas interfaces
 - ▶ Responsável por encaminhar datagramas IP da origem até seu destino
 - ► Procedimento de roteamento
- □ Procedimento de roteamento envolve conhecer a topologia da rede e tomar decisões sobre rotas

Redes de Computadores 2

Conceitos básicos

- □ Modelagem da rede
- □ Métricas de roteamento e de rota
- □ Tabela de roteamento
- □ Algoritmo de roteamento
- □ Protocolo de roteamento

Modelagem da rede

- □ O principal objetivo do roteamento é determinar caminhos (rotas) para que datagramas sejam entregues no seu destino
- □ Problema resolvido com auxílio da teoria de grafos
 - ➤ A questão é encontrar, segundo um critério, o caminho de menor custo entre um ponto A e um ponto B
- □ Grafo:
 - ▶ Nós representam estações ou roteadores (tipicamente estes)
 - ► Arestas (arcos) fornecem a interligação física entre os roteadores
 - ► As arestas possuem um custo associado (métrica de rota)

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

- □ Parâmetros quantitativos que servem para determinar o caminho de menor custo entre dois pontos A e B
 - ▶ Comprimento da rota, retardo, confiabilidade, taxa de transmissão, carga, etc
- Métrica de rota
 - ▶ Valor inteiro não negativo que fornece a "qualidade" do caminho (aresta)
 - Derivada das métricas de roteamento
 - ▶ A idéia consiste em dado um conjunto de rotas, achar aquela que o custo seja mínimo → problema do caminho de menor custo
 - ► O somatório das métricas é o menor
 - ▶ Importante: caminho de menor custo não é sinônimo de menor caminho

Redes de Computadores

5

Exemplo de modelagem, métricas e roteamento

□ Enviar informações do nó 1 ao nó 6

► Menor caminho: 1-3-6

▶ Menor custo: 1-4-5-6

Redes de Computadores

Roteamento

- □ Roteador encaminha datagramas IP consultando uma tabela de roteamento
 - ▶ Procedimento simples, a questão é como a tabela é construída

- ► Ponto a ponto (roteamento unicast)
- ► Ponto a multiponto
- ► Multiponto a multiponto

multicast

Tabela de roteamento

- □ Estrutura de dados que mantém informações de como alcançar todas as redes
 - ► Existe em todos sistemas intermediários
 - ► Mantém entradas de encaminhamento (rotas) para todos os destinos
 - ▶ Os destinos são fornecidos com base na identificação de rede e não de máquinas específicas
- □ Definida de acordo com um protocolo de roteamento e um algoritmo
 - ► Protocolo: obtenção de informações
 - ► Algoritmo: cálculo da rota

Instituto de Informática - UFRGS A. Carissimi-7-nov.-12

Instituto de Informática - UFRGS A. Carissimi - 7-nov.-12

Redes de Computadores

Redes de Computadores

Algoritmo de roteamento

- □ Descobre o caminho de menor custo até o destino final
 - ► Baseado no conhecimento de topologia, da métrica de roteamento e de rota
- □ São classificados em função
 - ▶ Do que se conhece em:
 - ▶ Globais: todos os nós, todas arestas e todas as métricas de rotas
 - ► Locais: apenas os vizinhos imediatos e custos de rotas
 - ▶ De quando as informações são atualizadas em:
 - ▶ Estáticos: na inicialização do sistema ou manualmente
 - ▶ Dinâmicos: em resposta a mudanças na topologia da rede ou periodicamente

Redes de Computadores

□ Passo-a-passo (*hop-by-hop*):

- - ► Sistemas finais e intermediários não conhecem o caminho completo
- ▶ Modelo usado na Internet

Protocolo de roteamento

Objetivo geral:

- ▶ Descobrir quais as redes atingíveis, os custos associados e divulgar/trocar essas informações
- ▶ Obter informações para definir a tabela de roteamento
- □ Protocolo = mecanismo de troca de informações + algoritmo
- □ Para atingir o objetivo é necessário
 - ▶ Descobrir as redes que são atingíveis
 - Identificar caminhos livres de lacos através da rede (algoritmo)
 - ► Identificar o melhor caminho na presença de múltiplas rotas (algoritmo)
 - ▶ Assegurar que todos os roteadores concordem sobre os melhores caminhos
 - ▶ Propagação de rotas

10 Redes de Computadores

Roteamento baseado em hop-by-hop

Características

- ▶ Nós de uma mesma rede enviam datagramas diretamente entre si
- ▶ Nós em redes distintas enviam datagramas de um roteador a outro (next-hop) até que possam ser entregues diretamente na rede de destino
 - ► A rede de origem está ligada a um roteador que é o primeiro salto
 - ▶ Na visão de uma máquina cliente
 - ▶ O *next-hop* é normalmente o *default gateway* configurado

Informação mantida na tabela de roteamento

- ► Rotas são representadas por pares (N, R) onde N é endereço da rede (network) de destino e R é endereço do próximo roteador (next-hop)
 - ▶ O próximo roteador deve existir em uma rede diretamente conectada
 - ▶ Para nós que estão em uma mesma rede, a entrada R é definida como "entrega direta" (sem necessidade de roteamento)

Representação de rotas

□ Dois modelos: passo a passo e pela fonte

□ Pela fonte

► A origem fornece a rota completa como uma lista de roteadores (hops) para se atingir o destino

► Rotas indicam apenas o próximo roteador (*next-hop*)

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Redes de Computadores

11

12 Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Exemplo de tabela de roteamento

Rota default

- Consolidam diversas rotas em uma única entrada da tabela de roteamento
 - O objetivo é tornar o roteamento mais eficiente reduzindo o número de entradas de uma tabela de roteamento
- São adotadas apenas quando não existe uma rota para a estação ou rede destino

Redes de Computadores 14

Exemplo de rede default

Estudo de caso: roteamento em redes IP

- □ Baseado em tabela de roteamento com entradas na forma (N, R)
- □ Funciona para endereços *classfull* e *classless*
 - ▶ Determina rede de destino com base no prefixo de rede, sub-rede ou bloco
 - ► Algoritmo executado para "varrer tabela de roteamento" é diferente
 - ► Classfull: as máscaras são deduzidas em função do conhecimento da classe ou de sub-redes configuradas
 - ▶ Máscaras tem sempre tamanho fixo
 - ➤ Classless: as máscaras são conhecidas e explicitamente divulgadas pelos protocolos de roteamento
 - ► Máscaras tem tamanho variável
- □ Rota *default* é representada pelo endereço reservado 0.0.0.0

Instituto de Informática - UFRGS A. Carissimi -7-nov -12

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Redes de Computadores 16

Algoritmo de roteamento classfull

- Extrair endereço IP_D do destino do datagrama
- Determinar o endereço de rede ou sub-rede destino (N)
 - Identificar a classe x do endereço de destino IP_D (A, B ou C)
 - Deduzir a máscara de rede ou de sub-rede
 - Existe interface configurada com sub-rede pertencente a classe x?
 - SIM: Deduz máscara M a partir dessa interface
 - NÃO: Assume máscara M igual a máscara default da classe x
 - Obtém o endereço de rede ($N = IP_D$ and M)
- Existe rota específica para o destino IP_D?
- Encaminha datagrama para roteador R dessa entrada
- 4. Existe rota para a rede de destino N?
 - Encaminha datagrama para o roteador R dessa entrada
- Existe rota default?
 - Encaminha datagrama para o roteador R dessa entrada
- Gera mensagem de erro (rota inexistente)

Redes de Computadores

Redes de Computadores

17

Exemplo de dedução

■ Supondo que:

- ► Exista a interface (eth1) configurada com a 192.168.10.32 e máscara 255.255.255.224 (27 bits)
 - ► Rede = 11000000 10101000 00001010 00100000 (192.168.10.32)
 - ► Mask= 11111111 1111111 1111111 11100000 (255.255.255.224)
- ► Se aprende que há uma rota para 192.168.10.64 (end. de rede)
 - ► Rede = 11000000 10101000 000001010 01000000 (192.168.10.64)
- Portanto,

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

- ▶ 192.168.10.64 é uma sub-rede de 192.168.10.0 e se deduz que ela tem uma máscara idêntica a outra sub-rede dessa mesma rede
 - ▶ É a limitação de sub-redes terem máscara idêntica

18 Redes de Computadores

Algoritmo de roteamento *classless*

- Extrair endereço IP do destino do datagrama
- Para cada entrada i da tabela, marcar como rota possível, se N_i = (IP and Máscara)
 - Selecionar a entrada que possui o maior prefixo (máscara mais restritiva)
 - Encaminhar datagrama para roteador R (next-hop) da entrada selecionada
- 3. Se não existe rota possível, gerar mensagem de erro

Rota para uma estação específica Rota para qualquer máquina entre 200.10.1.2 até 200.10.1.30 > route -n Destination, Iface Gateway Metric 200.10.1.1 150.10.1.1 255.255.255.255 eth0 200.10.1.0 150.20.2.2 255.255.255.224 eth1 0.0.0.0 150.30.3.3

Rotas para qualquer outro endereço

U: rota válida H: rota para uma estação G: rota indireta

19

Leituras complementares

- □ Stallings, W. <u>Data and Computer Communications</u> (6th edition), Prentice Hall 1999.
 - ► Capítulo 12, seção 12.1 e 12.2
- □ Tanenbaum, A. Redes de Computadores (4ª edição), Campus, 2003.
 - ► Capítulo 5, seções 5.2, 5.2.1, 5.2.2, 5.2.3, 5.2.7 e 5.2.8
- □ Carissimi, A.; Rochol, J; Granville, L.Z; <u>Redes de Computadores</u>. Série Livros Didáticos. Bookman 2009.
 - ► Capítulo 5, seções 5.2, 5.2.5

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12

Redes de Computadores 20

Instituto de Informática - UFRGS A. Carissimi -7-nov.-12