Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2020-21

Οργάνωση Υπολογιστών (ΙΙ)

(κύρια και κρυφή μνήμη)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Η μνήμη

- Εισαγωγή
- Μνήμη
- Βασικό τμήμα του υπολογιστή
- Αποθήκευση εντολών και δεδομένων
- Διαδοχικές θέσεις αποθήκευσης
 - Σε κάθε θέση αποθηκεύεται μια ποσότητα των n bits (εύρος, συνήθως 1 byte)
 - Σε κάθε θέση αντιστοιχεί μία μοναδική διεύθυνση (address)
 - μη προσημασμένος δυαδικός αριθμός
 - με *m* bits επιλέγουμε μεταξύ 2^{*m*} διευθύνσεων
 - Χώρος διευθύνσεων μνήμης: 0...2^m 1
 - Συνολική χωρητικότητα μνήμης:
 - 2^m x n bits
- Πρόκειται για μια ιεραρχία υποσυστημάτων
 - Κρυφές μνήμες (caches), κύρια μνήμη

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

3

- Εισαγωγή
- Μνήμη

Προσοχή! Μόνο η

χωρητικότητα της

μνήμης μετράται

σε δυνάμεις του 2!

• 1 Byte = 8 bits

- 1 KiloByte (KB) = 2¹⁰ Bytes
 - 1.024 Bytes
- 1 MegaByte (MB) = 2^{10} KB = 2^{20} Bytes
 - 1.048.576 Bytes
- 1 GigaByte (GB) = 2^{10} MB = 2^{20} KB = 2^{30} bytes
 - 1.073.741.824 Bytes
- Κλπ...

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

Τεχνολογίες μνημών

• Εισαγωγή

Μνήμη

ì

"κελί" (cell): ο χώρος αποθήκευσης ενός bit.

DRAM: 1 τρανζίστορ/κελί

SRAM: 6 τρανζίστορ/κελί • Μνήμη "τυχαίας προσπέλασης"

- Random Access Memory (RAM)
- Ανάγνωση-Εγγραφή
- Στατική (SRAM) και δυναμική (DRAM)
 - Διαφορετική μέθοδος υλοποίησης "κελιών" (cells) μνήμης
 - SRAM: πολύ γρήγορη μικρότερη ολοκλήρωση (χρήση: κρυφή μνήμη)
 - DRAM: αργότερη μεγάλη ολοκλήρωση (χρήση: κύρια μνήμη)
 - Απαιτείται περιοδική ανανέωση των δεδομένων κάθε 16 έως 128 ms (DRAM refresh)
 - Και στις δύο χάνονται τα δεδομένα με τη διακοπή της τροφοδοσίας

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

9

Τεχνολογίες μνημών

- Εισαγωγή
- Μνήμη
- Μνήμες μόνιμης αποθήκευσης
 - Διατήρηση δεδομένων χωρίς τροφοδοσία
- Μόνο για ανάγνωση
 - Read Only Memory (ROM)
 - Ακολουθεί το κλασσικό μοντέλο μνήμης
 - Αποθήκευση κώδικα αρχικοποίησης υπολογιστή
- Αργή ανάγνωση-εγγραφή αλλά μαζική αποθήκευση
 - FLASH
 - Μοιάζει με δίσκο αποθήκευσης κι όχι με το κλασικό μοντέλο μνήμης
 - Ανάγνωση-εγγραφή μπλοκ δεδομένων

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

10

• Μνήμη

Δίαυλοι: ομάδες αγωγών για τη μεταφορά πληροφορίας.

- Διεύθυνση
 - Προς/από πού γίνεται η προσπέλαση;
- Δεδομένα
- Τα δεδομένα ανάγνωσης/εγγραφής
- Έλεγχος
- Ανάγνωση ή εγγραφή; και συγχρονισμός μεταφοράς

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Οργάνωση Υπολογιστών (ΙΙ)"

12

Η κύρια μνήμη σήμερα

• Εισαγωγή

- Μνήμη
- Υποσύστημα κύριας μνήμης
 - Μεγάλες χωρητικότητες (GBs)
 - Μεγάλο εύρος (bits) διαύλου μεταφοράς
 - Για την ικανοποίηση των αναγκών των ΚΜΕ
 - 64 και πλέον bits ανά μεταφορά
 - ≥400 MTransfers/sec, ≥3.2 GB/s
- Ελεγκτής κύριας μνήμης
 - Λόγω της πολυπλοκότητας της διασύνδεσης
 - Μια ΚΜΕ δεν συνδέεται απευθείας με τη μνήμη
 - Αλλά: παρεμβάλλεται ο ελεγκτής κύριας μνήμης
 - Το μοντέλο προσπέλασης δεν αλλάζει

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

13

Ιεραρχία Μνήμης • Εισαγωγή Προσέγγιση της ιδανικής μνήμης • Μνήμη Ο επεξεργαστής βλέπει "μνήμη" • Κρυφή μνήμη • Με την ταχύτητα του υψηλότερου επιπέδου Και το μέγεθος του χαμηλότερου επιπέδου CPU 1 κύκλος ρολογιού καταχωρητές Κρυφές μνήμες (SRAM) 0,5-5ns ~4-10 κύκλοι ρολογιού Κύρια μνήμη (DRAM) 50-70ns ~100 κύκλοι ρολογιού Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)" 15

Διασύνδεση με κύρια μνήμη • Εισαγωγή • Μνήμη • Ελεγκτής κύριας μνήμης • Μετατρέπει τις αιτήσεις ανάγνωσης-εγγραφής της ΚΜΕ στα κατάλληλα σήματα (εντολές) προς τα τσιπ κύριας μνήμης (DRAM)

Η αρχή της τοπικότητας

• Εισαγωγή

- Μνήμη
- Κρυφή μνήμη

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
- Π.χ. για εντολές ενός βρόχου (loop)

• Χωρική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
- Π.χ. συνεχόμενες εντολές προγραμμάτων
- ή δεδομένα σε πίνακες

Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)"

17

Ανάγνωση μέσω της κρυφής μνήμης • Εισαγωγή 2α. Η διεύθυνση Α υπάρχει στην κρυφή μνήμη: Επιστροφή περιεχομένου • Μνήμη Κρυφή μνήμη διεύθυνσης Α (π.χ. σε 4 1. Ανάγνωση από κύκλους ρολογιού) διεύθυνση μνήμης Α 2β. Η διεύθυνση μνήμης Α 3β. Τα δεδομένα από την δεν υπάρχει κύρια μνήμη προωθούνται κρυφή στην κρυφή μνήμη: στην κρυφή και στην ΚΜΕ μνήμη Ανάγνωση μπλοκ που περιέχει (π.χ. σε 100 κύκλους) τη διεύθυνση Α από κύρια μνήμη Κύρια μνήμη (DRAM) Εισαγωγή στην Επιστήμη των Υπολογιστών - "Οργάνωση Υπολογιστών (ΙΙ)" 19

