Hypothesis test

Hypothesis test	
Answer sheet for exercise: The rainmakers	
1. Name of the test.	
One-sided test of the mean of a Gaussian sample with known variance	own
 Describe with words (a) the population: annual stainfalls after insemination (b) the sample: 9 annual stainfalls measured ouster insert (c) the observed variable: ±he annual stainfall × N c/(m, 5²) (d) the observed parameter: m Mathematical setting of the test. What are (in the context of the problem) (a) H₀: [m = 600] (b) H₁: [m > 600] (c) the significance level α: 0.05 (when not specified, we to) T=100°
(d) the decision variable D : $ \frac{1}{2}(X_1 + \dots + X_g) $ (e) the distribution of D : assumption Ho:	
(f) the observation of D on the sample, d : 610.2 (g) the p -value or critical region expression: $ p = P[X_g > 60.2 \mid m = 600] / h s.t. P[X_g > k \mid m = 600] = x $	
(h) the p-value or critical region p.0.38 % / R N 655 4. Decision of the test. (a) Decision: We do not negret tho (b) Reason for decision: P>7 & / d < k (c) Conclusion: At a significance level of 5%, we no sufficient encence to reject the.	have
p-value and critical value methods are two different but equivalent methods. It is good to know both but in red life one is enough!	