30. 9. 2004

REC'D 26 NOV 2004

C-TVV

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月29日

出願番号 Application Number:

特願2003-338013

[ST. 10/C]:

[JP2003-338013]

出 願 人 Applicant(s):

独立行政法人科学技術振興機構

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年11月11日

1

```
特許願
【書類名】
【整理番号】
             E072T02
【提出日】
             平成15年 9月29日
【あて先】
             特許庁長官 殿
【国際特許分類】
             A01K 67/027
【発明者】
  【住所又は居所】
             大阪府高槻市辻子1-7-16
  【氏名】
             審良 静男
【発明者】
              大阪府箕面市小野原東4-19-36-205
  【住所又は居所】
  【氏名】
              山本 雅裕
【特許出願人】
  【識別番号】
              396020800
  【氏名又は名称】
              科学技術振興事業団
              沖村 憲樹
  【代表者】
【代理人】
  【識別番号】
              100107984
  【弁理士】
  【氏名又は名称】
              廣田 雅紀
【手数料の表示】
  【予納台帳番号】
              044347
  【納付金額】
              21,000円
【提出物件の目録】
  【物件名】
              特許請求の範囲 1
  【物件名】
              明細書 1
  【物件名】
              図面 1
              要約書 1
  【物件名】
  【包括委任状番号】
               0013099
```


【請求項1】

染色体上のTRIF関連アダプター分子 (TRIF-related adaptor molecule; TRAM) 遺伝子の一部もしくは全部が欠損し、野生型において発現されるTRAMを発現する機能が失われており、TLR4が認識するリガンドに対する応答性が特異的に障害されていることを特徴とするエンドトキシン不応答性の非ヒト動物。

【請求項2】

PGN、R-848、CpG ODNに応答性で、LPSに不応答性であることを特徴とする請求項1記載のエンドトキシン不応答性の非ヒト動物。

【請求項3】

非ヒト動物が、マウスであることを特徴とする請求項1又は2記載のエンドトキシン不応 答性の非ヒト動物。

【請求項4】

請求項1~3のいずれか記載のエンドトキシン不応答性の非ヒト動物に由来する免疫細胞と、被検物質と、TLR4が認識するリガンドとを用いて、前記免疫細胞におけるTLR4が認識するリガンドに対する応答を測定・評価することを特徴とするTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法。

【請求項5】

請求項1~3のいずれかに記載の非ヒト動物と、被検物質と、TLR4が認識するリガンドを用いて、前記非ヒト動物におけるTLR4が認識するリガンドに対する応答を測定・評価することを特徴とするTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法。

【書類名】明細書

【発明の名称】エンドトキシン不応答性モデル動物

【技術分野】

[0001]

本発明は、Toll I様受容体(Toll Like Receptor: TLR)のシグナル伝達を仲介するTRIF関連アダプター分子(TRIF-related adaptor molecule; TRAM)遺伝子の機能が欠損した非ヒト動物、特にエンドトキシン等のTLR4が認識するリガンドに対して不応答性のTRAMノックアウトマウスや、これらを用いたTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法等に関する。

【背景技術】

[0002]

トール(Toll)遺伝子は、ショウジョウバエの胚発生中の背腹軸の決定(例えば、非特許文献 1、 2 参照)、また成体における侵入病原体を検出する自然免疫に関与しており(例えば、非特許文献 $3\sim5$ 参照)、かかる Toll は、細胞外領域にロイシンリッチリピート(LRR)を有する I 型膜貫通受容体である。また、免疫反応や感染時の応答、造血、ウイルス感染や腫瘍細胞の障害に重要な役割を果たしている細胞間シグナル伝達物質であるサイトカインの中でも、リンパ球間でシグナルを伝え合うサイトカインはインターロイキン(以下「IL」という)と呼ばれているが、前記 I 型膜貫通受容体の細胞質内領域は、哺乳類 IL-1 受容体(IL-1R)の細胞質内領域と相同性が高いことが明らかとなっている(例えば、非特許文献 $6\sim8$ 参照)。

[0003]

近年、Toll遺伝子の哺乳類のホモログが同定され(例えば、非特許文献 $9\sim12$ 参照)、ヒトTLRファミリーについては、これまでに10種のTLR($TLR1\sim TLR10$)が報告されている。TLRファミリーの役割は、細菌の共通構造を認識するパターン認識受容体(<math>PRR: pattern recognition receptor)として、別々の病原体会合分子パターン(PAMPs: pathogen-associated molecular patterns)を識別し、転写因子である $NF-\kappa$ Bの核内への移行を導く同様の細胞内シグナル伝達経路の活性化を引き起こす。かかるシグナル伝達経路は、最終的には炎症性サイトカインを産生させ、宿主防衛反応を誘起し、さらに獲得免疫に対しても宿主防衛反応を誘起させる。また、近年多くのTLRリガンドが報告されている。

[0004]

TLR1は、トリアシル化リポタンパク質を認識する(例えば、非特許文献13参照)。TLR2は、ペプチドグリカン(PGN)、細菌由来トリアシル化リポタンパク質、マイコプラズマ由来ジアシル化リポタンパク質、及びクルーズトリパノソーマ(Trypanosom a cruzi)のGPIアンカーなどのさまざまな細菌成分を認識する(例えば、非特許文献14~21参照)。TLR3は、RNAウイルスのライフサイクルにおいて発生する二重鎖RNAの認識に関与している(例えば、非特許文献22参照)。TLR4は、グラム陰性菌の細胞壁に特異的な糖脂質であるリポポリサッカライド(以下LPS)の受容体である(例えば、非特許文献23、24参照)。TLR5は、細菌の鞭毛のタンパク質成分であるフラジェリンを認識する(例えば、非特許文献25参照)。TLR6は、ジアシル化したリポタンパク質を認識する際に必要とされており(例えば、非特許文献26参照)、TLR7は、抗ウイルス性の合成化合物であるイミダゾキノリン及びその誘導体R-848を認識する際に極めて重要である(例えば、非特許文献27参照)。TLR9は、細菌由来の非メチル化CpGモチーフ(5'-Pu-Pu-CpG-Pyr-Pyr-3')を有するDNAの受容体である(例えば、非特許文献28参照)。

[0005]

TLRの細胞内シグナル伝達経路は、TLRの細胞質領域の中に保存されているTIRドメインにより誘導される。細胞質分子であるMyD88には、TIRドメイン及びデスドメインがある。MyD88のデスドメインは、IRAK-1やIRAK-4等、その他のデスドメインを含む分子と相互作用する際に必要とされている(例えば、非特許文献2

9~31参照)。TIRドメインは、その他のTIRドメインを含む受容体又はアダプタ ーと二量体を形成する際に必要であると報告されている。実際に、MyD88欠損マウス は、全てのTLRリガンドとIL-1に応答した炎症誘発性サイトカインの産生や脾細胞 の増殖を示さず、MyD88が全てのTLRとIL-1受容体の免疫反応に必須であるこ とを示唆した(例えば、非特許文献32参照)。しかしながら、MyD88欠損マウスに おいて、TLR3リガンドであるポリ (I:C) やTLR4が認識するリガンドであるL PSは、IFN-β等の特定の遺伝子の発現を未だ刺激する。IFN-βの誘発は、樹状 細胞の成熟や、それに続くIFN誘発遺伝子の発現を引き起こす(例えば、非特許文献3 3、34参照)。これらの観察は、TLRシグナル伝達が、少なくとも2つの経路、すな わち、炎症誘発性サイトカインの産生を引き起こすMyD88依存的経路、並びにIFN 誘発遺伝子の誘発及び樹状細胞の成熟と会合したMyD88非依存的経路により構成され ることを示唆した。また、全てのTLRを仲介するMvD88依存的シグナル伝達経路の 特異性は、2番目に見い出された、TIRドメインを含むアダプターであるTIRAPに より提供される(例えば、非特許文献35、36参照)。TIRAP欠損マウスは、TL R2及びTLR4を介するMyD88依存的シグナル伝達経路の活性の激減を示したが、 その他のTLRに対しては示さなかった(例えば、非特許文献37、38参照)。

[0006]

MyD88非依存的シグナル伝達経路の詳細な分子機構については明らかになっていないが、別のTIRドメインを含む分子、TRIFの新たな同定(例えば、非特許文献39、40参照)や、この遺伝子が変異したマウスによる遺伝学的証拠により、TRIFは、TLR3及びTLR4が共有するMyD88非依存的シグナル伝達経路における重要な役割を果たしていることが明らかになった(例えば、非特許文献41、42参照)。さらに、近年の研究により、2種の非典型的I κ Bキナーゼ(IKK)、すなわち、IKK- ℓ / IKK ℓ 及びTBK1/T2Kが、TRIFと相互作用し、IRF-3を活性化し、最終的にIFN- ℓ の誘発を引き起こすことが明らかになった(例えば、非特許文献43、44参照)。

[0007]

現在まで、ヒトゲノムにおいて、さらに2種のTIRドメインを含むアダプターが同定されている。1種はSARM(SAMドメイン及びARMドメインを含むタンパク質(SAM and ARM domain-containing protein)の略語)と呼ばれており、TLR/IL-1Rシグナル伝達におけるその生理学的機能は、未だ明らかではない(例えば、非特許文献 45、46参照)。もう1種は、TRAM(TRIF関連アダプター分子(TRIF-Related Adaptor Molecule)の略語、別名TIRP)である(例えば、非特許文献 47参照)。これまでのインビトロ分析は、TRAMの異所的発現が、MyD88、TIRAP及びTRIFのようなNF- κ Bを活性化することを示唆した。しかしながら、TRIFとは異なり、IFN- β プロモーターを活性化しなかった。このタンパク質のドミナントネガティブ変異体は、IL-1Rを介してNF- κ Bの活性化を阻害したが、TLRを介しては阻害しなかった。これは、TRAMが、IL-1Rを介したMyD88依存的シグナル伝達経路において、特異的なアダプタータンパク質であることを示唆した。しかしながら、インビボにおけるTRAMの役割は、未だ明らかではない。

[0008]

【非特許文献 1】Cell 52, 269-279, 1988

【非特許文献 2】 Annu. Rev. Cell Dev. Biol. 12, 393-416, 1996

【非特許文献 3】 Nature 406, 782, 2000

【非特許文献 4】 Nat. Immunol. 2, 675, 2001

【非特許文献 5】 Annu. Rev. Immunol. 20, 197, 2002

【非特許文献 6】 Nature 351, 355-356, 1991

【非特許文献7】Annu. Rev. Cell Dev. Biol. 12, 393-416, 1996

【非特許文献 8 】 J. Leukoc. Biol. 63, 650-657, 1998

【非特許文献 9 】 Nature 388, 394-397, 1997

```
【非特許文献 1 0】Proc. Natl. Acad. Sci. USA 95, 588-593, 1998
【非特許文献 1 1】Blood 91, 4020-4027, 1998
【非特許文献 1 2】Gene 231, 59-65, 1999
【非特許文献 1 3 】 J. Immunol. 169, 10-14, 2002
【非特許文献 1 4】 Science 285, 732, 1999
【非特許文献 1 5】 Science 285, 736, 1999
【非特許文献 1 6 】 J. Biol. Chem. 274, 33419, 1999
【非特許文献 1 7】 Immunity 11, 443, 1999
【非特許文献 1 8 】 J. Immunol. 164, 554, 2000
【非特許文献 1 9】 Nature 401, 811, 1999
【非特許文献 2 0 】 J. Immunol. 167, 416, 2001
【非特許文献 2 1】Nat. Med. 8, 878-884, 2002
【非特許文献 2 2 】 Immunity 11, 443-451, 1999
【非特許文献 2 3】 Nature 413, 732-738, 2001
【非特許文献 2 4 】 J. Immuno1. 162, 3749-3752, 1999
【非特許文献 2 5】 Science 282, 2085-2088, 1998
【非特許文献 2 6】Nature 410, 1099-1103, 2001
【非特許文献 2 7】Int. Immunol. 13, 933-940, 2001
【非特許文献 2 8】 Nat. Immunol. 3, 196-200, 2002
【非特許文献 2 9】 Nature 408, 740-745, 2000
【非特許文献 3 0】 Immunity 7, 837-847, 1997
【非特許文献 3 1】Moll. Cell. 11, 293-302, 2003
【非特許文献 3 2】Immunity 9, 1, 143-150, 1998
【非特許文献33】J. Immunol. 167, 5887-5894, 2001
【非特許文献 3 4 】 J. Immunol. 166, 5688-5694, 2001
【非特許文献 3 5 】 Nat. Immunol. 2, 835-841, 2001
【非特許文献 3 6 】Nature 413, 78-83, 2001
【非特許文献 3 7】 Nature 420, 324-329, 2002
【非特許文献 3 8 】Nature 420, 329-333, 2002
【非特許文献 3 9 】 J. Immunol. 169, 6668-6672, 2002
【非特許文献 4 0 】 Nat. Immunol. 4, 161-167, 2003
【非特許文献 4 1】 Science 301, 640-643, 2003
【非特許文献 4 2 】 Nature, 424, 743- 748, 2003
【非特許文献 4 3】 Science 300, 1148-1151, 2003
【非特許文献 4 4 】 Nat. Immunol. 4, 491-496, 2003
【非特許文献 4 5】 Genomics 74, 234-244, 2001
【非特許文献 4 6】 Trends Immunol. 24, 286-290, 2003
【非特許文献 4 7】 J. Biol. Chem. 278, 24526-24532, 2003
```

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の課題は、TIRドメインを含みTRIF関連アダプタータンパク質であるTR AMの機能解明に有用な、特にグラム陰性菌の細胞壁画分であるエンドトキシンに不応答 性のモデル非ヒト動物や、かかるエンドトキシンに不応答性のモデル非ヒト動物を用いた TLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法 等を提供することにある。

【課題を解決するための手段】

[0010]

本発明者らは、TRAM欠損マウスを作製し、TLR/IL-1Rシグナル伝達経路に おけるTRAMのインビボでの役割について分析し、以下の知見を得た。

[0011]

TRAM欠損マウスは、TLR4が認識するリガンドに応答して、サイトカインの産生、脾細胞の増殖及び表面分子のアップレギュレーションに対して著しい欠損を示したが、その他のTLRリガンドに対しては欠損を示さなかった。さらに、TRAM欠損マウスにおいて、IFN- β 誘発遺伝子及びIFN誘発遺伝子のTLR4を介した発現は阻害されたが、TLR3を介した発現は阻害されなかった。細胞内シグナル伝達に関しては、TRAM欠損マウスにおいて、IRAK-1のLPSを誘導した自己リン酸化やNF- κ B活性化の初期相はインタクト(intact)であった。しかしながら、TRAM欠損細胞において、IRF-3の活性化は認められず、また、ポリ(I:C)に応答は認められなかったが、LPSに応答して、NF- κ B活性化の遅延相の欠損が認められた。後者の現象がMyD88非依存的シグナル伝達経路の特徴であることを考えると、TRAMがTLR4シグナル伝達のMyD88非依存的経路を特異的に介することが示唆された。

[0012]

TRAM欠損マウスにおいて、IRAK-1の自己リン酸化及びNF-RB活性化の初 期相により特徴づけられる、MyD88依存的経路のTLR4を介した活性化は、野生型 細胞と比較することができた。しかしながら、炎症誘発性サイトカインのTLR4を介し た産生は減少した。同様に、TLR4及びTLR3を介したMyD88非依存的経路に必 須のTRIFを欠損したマウスにおいて、炎症誘発性サイトカインのTLR4を介した産 生が著しく低下した。MyD88欠損マウスが同様の表現型を示したため、炎症誘発性サ イトカインを誘発するには、MyD88非依存的経路の活性化が明らかに必要とされてい る (Science 301, 640-643, 2003, Identification of Lps2 as a key transducer of My D88-independent TIR signalling. Nature, 424, 743- 748, 2003)。したがって、TL R4のシグナル伝達の場合、炎症誘発性サイトカインを産生するためには、MyD88依 存的経路及びMyD88非依存的(TRAM/TRIF依存的)経路の両方を活性化する 必要がある。しかしながら、MyD88非依存的経路を活性化しない、TLR2、TLR 5及びTLR9のシグナル伝達経路では、炎症誘発性サイトカインを誘発するためにはM y D 8 8 依存的経路を活性化するだけで十分である(Science 282, 2085-2088, 1998、Na t. Immunol. 3, 392-398, 2002, J. Exp. Med. 192, 595-600, 2000, Curr. Biol. 10, 1 139-1142, 2000) 。TLR4シグナル伝達が炎症誘発性サイトカインを誘発するために、 MyD88依存的経路及びTRIF依存的経路の両方を活性化させる必要がある理由につ いては未だ明らかではないが、TLR4だけが、現在特徴づけられているTIRドメイン を含むアダプター、すなわち、MyD88、TIRAP、TRIF及びTRAMの全てを 利用することがわかった。

[0013]

以上のとおり、TRAM欠損マウスは、TLR2、TLR7、TLR9及びIL-1 β のリガンドに対しては正常な応答を示したが、TLR4が認識するリガンドに対してはMyD88依存的応答の激減を示した。さらに、TRAM欠損マウスは、TLR4を介したMyD88株存的シグナル伝達カスケードの活性を示さなくなったが、MyD88依存的シグナル伝達カスケードの活性は示した。この表現型は、TLR3及びTLR4の両方のシグナル伝達においてMyD88非依存的経路の活性化が欠如したTRIF欠損マウスを暗示したが、TRAM欠損マウスは、TLR3リガンドに対して正常な応答を示した。これらの結果は、TRAMが、TLR4シグナル伝達のMyD88非依存的経路に特異性を与えるアダプター分子であることを示した。

[0014]

本発明は、以上の知見に基づいて完成するに至ったものである。

[0015]

すなわち本発明は、染色体上のTRIF関連アダプター分子(TRIF-related adaptor molecule; TRAM) 遺伝子の一部もしくは全部が欠損し、野生型において発現されるTRAMを発現する機能が失われており、TLR4が認識するリガンドに対する応答性が特異的に障害されていることを特徴とするエンドトキシン不応答性の非ヒト動物(請求項1

)や、PGN、R-848、CpG ODNに応答性で、LPSに不応答性であることを 特徴とする請求項1記載のエンドトキシン不応答性の非ヒト動物(請求項2)や、非ヒト 動物が、マウスであることを特徴とする請求項1又は2記載のエンドトキシン不応答性の 非ヒト動物(請求項3)に関する。

[0016]

また本発明は、請求項1~3のいずれか記載のエンドトキシン不応答性の非ヒト動物に由来する免疫細胞と、被検物質と、TLR4が認識するリガンドとを用いて、前記免疫細胞におけるTLR4が認識するリガンドに対する応答を測定・評価することを特徴とするTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法(請求項4)や、請求項1~3のいずれかに記載の非ヒト動物と、被検物質と、TLR4が認識するリガンドを用いて、前記非ヒト動物におけるTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法(請求項5)に関する。

【発明の効果】

[0017]

本発明のTRAMノックアウトマウス等のエンドトキシン不応答性モデル非ヒト動物は、エンドトキシン等のTLR4が認識するリガンドに対して不応答性であるため、TLR4が認識するリガンドに対する応答の抑制物質若しくは促進物質のスクリーニングが可能となり、ひいては、エンドトキシン又はそのレセプターの過剰な産生等に起因するエンドトキシンショック等の疾病に対する薬剤の開発に有用な情報を得ることができる。

【発明を実施するための最良の形態】

[0018]

本発明のエンドトキシン不応答性の非ヒト動物としては、TRAM遺伝子の一部もしくは全部が欠損し、野生型において発現されるTRAMを発現する機能が失われており、TLR4が認識するリガンドに対する応答性が特異的に傷害されているモデル非ヒト動物であれば特に制限されるものではなく、TLR4が認識するリガンドとしては、主としてグラム陰性菌の外膜成分として存在するエンドトキシンとも呼ばれるリポ多糖(LPS)、グラム陽性細菌の細胞壁成分であるリポテイコ酸(LTA)、結核菌(Mycobacterium tu berculosis)溶解物、グラム陽性菌細胞壁画分等を例示することができ、また本発明においては、便宜上、TLR4が認識するリガンドの他、これらリガンドを担持するキャリアや、これらリガンドが細胞表層に存する細菌菌体自体も本発明におけるTLR4が認識するリガンドに包含される(以下、「本件リガンド類」という)。

[0019]

本発明において不応答性とは、本件リガンド類による刺激に対する生体又は生体を構成する細胞、組織若しくは器官の反応性が低下しているか、あるいはほぼ失われていることを意味する。したがって、本発明においてエンドトキシン不応答性モデル非ヒト動物とは、本件リガンド類による刺激に対して、生体又は生体を構成する細胞、組織若しくは器官の反応性が低下しているか、あるいはほぼ失われているマウス、ラット、ウサギ等のヒト以外の動物をいう。また、本件リガンド類による刺激としては、エンドトキシンを生体に投与するインビボでの刺激や、生体から分離された細胞にエンドトキシンを接触させるインビトロでの刺激等を挙げることができる。

[0020]

そして、本発明におけるエンドトキシン不応答性モデル非ヒト動物としては、エンドトキシン、リポテイコ酸、結核菌溶解物等の細菌菌体成分などの本件リガンド類に対して不応答性であり、TLR2のリガンドであるPGN、TLR9のリガンドであるCpGオリゴデオキシヌクレオチド(CpGODN)、IL-1、フィトへマグルチニン(PHA)、TLR3のリガンドであるポリI:C、TLR7リガンドである合成化合物R-848に対しては応答性である非ヒト動物を挙げることができ、具体的には、TRAM遺伝子の機能が染色体上で欠損した非ヒト動物を挙げることができる。

[0021]

本発明において、TRAM遺伝子の機能が欠損した動物としては、 $TRAM^{-/-}$ マウスの他、例えばTRAM遺伝子の発現機能が欠損したラット等の齧歯目動物を例示することができる。これらTRAM遺伝子の発現機能が欠損した非ヒト動物としては、メンデルの法則に従い出生してくる $TRAM^{-/-}$ 非ヒト動物が、正確な比較実験をすることができる同腹の野生型と共に得ることができる点で好ましい。かかるTRAM遺伝子の発現機能が欠損した動物の作製方法を、 $TRAM^{-/-}$ マウスを例にとって以下説明する。

[0022]

TRAM遺伝子は、マウス遺伝子ライブラリーをPCR法等により増幅し、得られた遺伝子断片をマウスTRAM遺伝子由来のプローブを用いてスクリーニングすることができる。スクリーニングされたTRAM遺伝子は、プラスミドベクター等を用いてサブクローンし、制限酵素マッピング及びDNAシーケンシングにより特定することができる。次に、このTRAMをコードする遺伝子の全部又は一部をpMC1ネオ遺伝子カセット等に置換し、3、末端側にジフテリアトキシンAフラグメント(DT-A)遺伝子や単純ヘルペスウイルスのチミジンキナーゼ(HSV-tk)遺伝子等の遺伝子を導入することによって、ターゲットベクターを作製する。

[0023]

この作製されたターゲティングベクターを線状化し、エレクトロポレーション(電気穿孔)法等によってES細胞に導入し、相同的組換えを行い、その相同的組換え体の中から、G418やガンシクロビア(GANC)等の抗生物質により相同的組換えを起こしたES細胞を選択する。また、この選択されたES細胞が目的とする組換え体かどうかをサザンブロット法等により確認することが好ましい。その確認されたES細胞のクローンをマウスの胚盤胞中にマイクロインジェクションし、かかる胚盤胞を仮親のマウスに戻し、キメラマウスを作製する。このキメラマウスを野生型マウスと交雑させると、ヘテロ接合体マウス(F1マウス:+/-)を得ることができ、また、このヘテロ接合体マウスを交雑させることによって、本発明のTRAM-/-マウスを作製することができる。また、TRAMが1-マウスにおいて、TRAMが生起しているかどうかを確認する方法としては、例えば、上記の方法により得られたマウスからRNAを単離してノーザンブロット法等により調べたり、またこのマウスにおけるTRAMの発現をウエスタンブロット法等により調べたり、またこのマウスにおけるTRAMの発現をウエスタンブロット法等により調べる方法がある。

[0024]

また、作出されたTRAM- $^{\prime}$ -マウスが本件リガンド類に対して不応答性であることは、例えば、グラム陰性菌の細菌細胞壁成分であるLPSをTRAM- $^{\prime}$ -マウスの腹腔マクロファージ、単核細胞、樹状細胞などの免疫細胞にインビトロ又はインビボで接触せしめ、かかる細胞におけるTNF- α 、IL-6、IL-12等の産生量や、脾細胞の増殖応答や、骨髄由来樹状細胞におけるIFN- β 誘発遺伝子及びIFN誘発遺伝子の発現量や、転写因子IRF-3の活性化を測定することや、グラム陰性菌の細菌細胞壁成分であるLPSをTRAMノックアウトマウスに静脈注射等により投与し、発熱、ショック、白血球や血小板の減少、骨髄出血壊死、血糖低下、IFN誘発、Bリンパ球(骨髄由来免疫応答細胞)の活性化等のエンドトキシンの生物活性を測定することにより確認することができる。

[0025]

本発明のエンドトキシン不応答性モデル非ヒト動物や該モデル動物由来のマクロファージ、脾臓細胞、樹状細胞等の免疫細胞は、TLR4リガンドの作用機序の解明の他、TLR4リガンドに対する応答の抑制物質若しくは促進物質のスクリーニング等に用いることができる。本発明の本件リガンド類に対する応答の促進物質又は抑制物質のスクリーニング方法としては、本発明のモデル非ヒト動物に由来する免疫細胞と、被検物質と、本件リガンド類とを用いて、前記免疫細胞における本件リガンド類に対する応答を測定・評価するスクリーニング方法や、本発明のモデル非ヒト動物と、被検物質と、本件リガンド類とを用いて、前記モデル非ヒト動物における本件リガンド類に対する応答を測定・評価するスクリーニング方法であれば特に制限されるものではなく、かかる本発明のスクリーニン

グ方法の実施の形態を以下に例を挙げて説明する。

[0026]

本発明のモデル非ヒト動物から得られるマクロファージ、脾臓細胞又は樹状細胞等の免疫細胞と、被検物質と、本件リガンド類とを共に培養し、該免疫細胞における細胞活性の程度を測定・評価するスクリーニング方法や、本発明のモデル非ヒト動物に被検物質をあらかじめ投与した後、該非ヒト動物から得られる免疫細胞を本件リガンド類の存在下で培養し、該免疫細胞における細胞活性の程度を測定・評価するスクリーニング方法や、本発明のモデル非ヒト動物に本件リガンド類をあらかじめ投与した後、該非ヒト動物から得られる免疫細胞を被検物質の存在下で培養し、該免疫細胞における細胞活性の程度を測定・評価するスクリーニング方法や、本発明のモデル非ヒト動物に本件リガンド類と被検物質とを同時又はどちらか一方を先に投与し、該非ヒト動物から得られる免疫細胞における細胞活性の程度を測定・評価するスクリーニング方法を挙げることができる。

[0027]

上記マクロファージ、脾臓細胞等の免疫細胞における細胞活性の程度の測定・評価方法としては、免疫細胞がマクロファージの場合、マクロファージにおける IL-6、 $TNF-\alpha$ 、 IL-12 等のサイトカインの産生量や、 $NF-\kappa$ Bの DNA 結合作用の程度を測定・評価する方法を、免疫細胞が脾臓細胞の場合、脾臓細胞の増殖の程度や、脾臓細胞における MHC クラス II の発現量を測定・評価する方法を、それぞれ例示することができる。また、免疫細胞における細胞活性の程度を測定・評価するに際し、対照として本発明のモデル非ヒト動物の野生型非ヒト動物、特に同腹の野生型非ヒト動物の測定値と比較・評価することが個体差によるバラツキをなくすることができるので好ましい。

[0028]

本発明のTLR4が認識するリガンド又はこの含有物に対する応答の促進物質又は抑制物質のスクリーニング方法により得られる促進物質又は抑制物質は、インビボにおける細菌体成分刺激によるシグナル伝達におけるメカニズムの解明に有用であり、特に促進物質は細菌感染症の予防・治療剤として使用しうる可能性がある。細菌感染症の予防・治療効果が期待できる上記促進物質を医薬品として用いる場合は、薬学的に許容される通常の担体、結合剤、安定化剤、賦形剤、希釈剤、pH緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤などの各種調剤用配合成分を添加することができる。またこれら医薬品を用いる予防若しくは治療方法においては、患者の性別・体重・症状に見合った適切な投与量を、経口的又は非経口的に投与することができる。すなわち通常用いられる投与形態、例えば粉末、顆粒、カプセル剤、シロップ剤、懸濁液等の剤型で経口的に投与することができ、あるいは、例えば溶液、乳剤、懸濁液等の剤型にしたものを注射の型で非経口投与することができる他、スプレー剤の型で鼻孔内投与することもできる。

[0029]

以下、結果及び方法の順に示された実施例により本発明をより具体的に説明するが、本 発明の技術的範囲はこれらの例示に限定されるものではない。

【実施例1】

[0030]

(4番目のTIRドメインを含むアダプターTRAMの同定)

本発明者らは、既に、データベース検索分析を用いることにより、3番目のTIRドメインを含むアダプターである、TRIFを同定している(J. Immunol. 169, 6668-6672, 2002)(図1a)。この分析の際に、本発明者らは、別のTIRドメインを含む分子を同定した。この分子のTIRドメインは、MyD88又はTIRAPのTIRドメインと比較して、TRIFのTIRドメインに対してより高い相同性を示した。この分子の遺伝子は、235aaをコードする708bpの翻訳領域を有しており、TRIF関連アダプター分子(TRIF-related adaptor molecule)を意味するTRAMとして、登録及び命名された(アクセッションナンバーAY232653、別名TIRP(J. Biol. Chem. 278, 24526-24532, 2003))。293細胞におけるTRAMの異所的発現は、MyD88及びTRIFを介したそれぞれの活性化と比較すると低水準ではあったが、NFーκB依存的

プロモーター及びIFNー β プロモーターを活性化した(図1b、図1c)。

【実施例2】

[0031]

(TRAM欠損マウスの作製)

本発明者らは、TRAMの生理学的役割を解明するために、ジーンターゲティングによりTRAM欠損マウスを作製した。マウスのTram遺伝子は、1つのエキソンからなる。本発明者らは、ターゲティングベクターを構築し、エキソン全体をネオマイシン耐性遺伝子カセットに置換した(図1d)。正確なターゲティングを行なった2つのESクローンをC57BL/6の胚盤胞中にマイクロインジェクションし、キメラマウスを作製した。キメラマウスの仔とC57BL/6雌マウスとを交雑させ、サザンブロット分析により変異対立遺伝子の伝達をモニターした(図1e)。次に、ヘテロ接合体マウスを交配させて、Tram遺伝子の無発現変異を保有する子孫を作製した。TRAM欠損マウスは、予想されたメンデル比で生まれ、発達上の異常は認められなかった。Tram遺伝子の欠損を確認するために、野生型肺繊維芽細胞及びTRAM欠損肺繊維芽細胞から得た全RNAに対し、ノーザンブロット分析を行なった。TRAM欠損でウスにおいて、TRAMの転写物は認められなかった。さらに、脾細胞について免疫沈降分析を行なった結果、Tram遺伝子の欠損により、TRAMタンパク質が発現しないことが確認された(図1f)。

【実施例3】

【0032】 (TRAMは、IL-1Rシグナル伝達に関与していない)

これまでのインビトロ研究により、TRAMがIL-1Rを介するMyD88依存的経路に関与していることが明らかになったため(J. Biol. Chem. 278, 24526-24532, 2003)、まず、TRAM欠損細胞においてIL-1Rシグナル伝達に障害があるかどうかについて調べた。IL-1 β に応答した、野生型マウス及びTRAM欠損マウスから得たマウス胚繊維芽細胞(MEF)によるIL-6の産生について、ELISAで測定した(図2a)。TRAM欠損MEFにおいて、IL-1 β を誘発したIL-6の産生は正常であった。次に、本発明者らは、IL-1 β に応答した、NF- κ B及びJNK1の活性化について分析した(図2b、図2c)。IL-1 β で刺激したところ、野生型MEF及びTRAM欠損MEFの両方において、NF- κ B及びJNK1の活性は同程度を示し、TRAMがIL-1Rを介したシグナル伝達経路には関与しないことが証明された。

【実施例4】

[0033]

(TRAM欠損マウスにおける、著しく障害されたTLR4を介したMyD88依存的応答)

次に、PGN、LPS、R-848、CpG DNA等の様々なTLRリガンドに応答した、腹腔マクロファージによるTNF- α 又はIL-6等の炎症誘発性サイトカインの産生について分析した。PGN、R-848又はCpG DNAで刺激したところ、野生型マクロファージ及びTRAM欠損マクロファージの両方で、同量のIL-6又はTNF- α を産生した。しかしながら、TRAM欠損細胞においては、LPS刺激に応答して、炎症性サイトカインの産生は著しく減少した(図3a)。野生型細胞は、LPS刺激に応答して、投与依存的にTNF- α 、IL-6及びIL-12p40を産生した(図3b)。これに対して、TRAM欠損細胞におけるLPS誘発によるTNF- α 、IL-6及びIL-12p40の産生は、著しく損なわれていた。したがって、TRAM欠損マウスは、LPS誘発によるサイトカイン産生は、不完全な応答を示すことがわかった。

[0034]

次に、LPS、R-848又はCpG DNAの刺激に応答した、脾細胞の増殖について分析した。R-848及びCpG DNAに応答して、野生型マウス及びTRAM欠損マウスの脾細胞の増殖では、同じ割合が認められた。しかしながら、TRAM欠損脾細胞は、LPS刺激に対して不完全な増殖を示した(図3c)。次に、LPS又は抗IgM抗体で刺激した後、FACSにより、B220陽性脾細胞のCD69及びCD86の表面発

現について分析した。抗IgM抗体に応答して、野生型B220陽性細胞及びTRAM欠損B220陽性細胞の両方が、CD69及びCD86のアップレギュレーションについて比較できる水準を示した(図3d)。しかしながら、TRAM欠損細胞において、これらの分子のLPSが誘発した増大は、激しく障害されていた。これらのことから、TRAM欠損マウスにおいてTLR4を介した応答のみが欠失していることが明らかになった。

【実施例5】

[0035]

(TRAM欠損マウスにおいて、TLR4を介したMyD88非依存的遺伝子発現を著しく損なうが、TLR3を介したMyD88非依存的遺伝子発現は損なわない)

TLR3リガンド及びTLR4が認識するリガンドは、MyD88非依存的形式において、IFN- β の産生を誘発し、その後IFN誘発遺伝子を発現することが明らかになっている(Immunity 11, 443-451, 1999、J. Immunol. 167, 5887-5894, 2001、J. Immunol. 166, 5688-5694, 2001)。TRAM欠損マウスは、TLR4を介したMyD88依存的な生物応答を障害することから、次にMyD88非依存的応答も障害するかどうかについて調べた。ノーザンブロット分析により、野生型マウス及びTRAM欠損マウスの両方におけるIFN- β 誘発遺伝子及びIFN誘発遺伝子の発現について分析した。野生型骨髄由来DCにおいて、LPSは、ISG54、IP-10、RANTES、MCP-1等のIFN- β 誘発遺伝子及びIFN誘発遺伝子の発現を刺激した。しかしながら、LPS誘導によるこれら遺伝子の発現は、TRAM欠損細胞においては著しく障害されていた(図4a)。TLR3の応答の場合は、ポリ(I:C)の刺激に続いて、野生型腹腔マクロファージ及びTRAM欠損腹腔マクロファージの両方で、これら遺伝子の比較できる程度の誘発が認められた(図4b)。これらのデータは、TRAMの欠損が、TLR4を介したMyD88依存的応答だけではなく、MyD88非依存的応答に対しても影響を及ぼすことを示した。

【実施例6】

[0036]

(TRAM欠損マウスにおいて、TLR4を介したMyD88非依存的シグナル伝達は認められなかった)

IP-10 mRNAのLPS誘発は、Stat1のシグナル伝達に依存している。このことは、Stat1欠損マウスにおいて、野生型細胞と比較した場合に、LPSで刺激したマクロファージではIP-10 mRNAの発現が著しく低下したことにより証明された(J. Immunol. 163, 1537-1544, 1999、J. Leukoc. Biol. 69, 598-604, 2001、Nat. Immunol. 3, 392-398, 2002)。野生型マクロファージでは、Stat1の701Yは、LPSを2時間刺激した後でリン酸化した。しかしながら、TRAM欠損マクロファージにおいては、Stat1のチロシンリン酸化が検出されなかった(図5a)。対照的に、ポリ(I:C)を刺激したところ、野生型細胞及びTRAM欠損細胞の両方において、同程度のStat1リン酸化を示した(図5b)。

[0037]

次に、S tat 1 のリン酸化がI F N - β に依存している(N at. Immunol. 3, 392 -398 , 2002)ことから、I F N - β 産生の際に必要とされるシグナル伝達分子の活性化について調べた。転写因子であるI R F - 3 は、L P S 及びポリ(I : C)を介したI F N - β 産生に必須であると報告されている。実際に、未変性 P A G E 分析を行なったところ、野生型細胞において、L P S が誘導したI R F - 3 ホモ二量体の形成が認められた。しかしながら、T R A M 欠損マウスの細胞においては、L P S 誘導によるI R F - 3 の活性化は生じなかった(図 5 c)。それに対して、T R A M 欠損細胞は、ポリ(I : C)で刺激すると、野生型細胞と比較して、同程度のI R F 3 二量体形成を示した(図 5 d)。L P S 誘導によるS tat 1 のリン酸化及びI R F - 3 の活性化はM y D 8 8 8 非依存的であることから、これらのデータは、T R A M 欠損マウスにおいて、M y D 8 8 8 非依存的シグナル伝達経路のT L R 4 を介した活性化は損なわれるが、T L R 3 を介した活性化は損なわれるいことを示している。T L R 4 を介したM y D 8 8 8 非依存的シグナル伝達は、I R F

-3の活性化に加えて、NF- κ B活性化の遅延相を引き起こす。LPSを1時間及び2時間刺激した後も、野生型細胞のNF- κ B活性化は安定していた。TRAM欠損細胞において、LPSを誘導したNF- κ Bの活性化は、早期の時点(early time point)(10分、20分)では正常であったが、後期の時点(later time point)(60分、120分)では次第に消え、TLR4を介したMyD88非依存的シグナル伝達の特徴であるNF- κ B活性化の遅延相が、TRAM欠損マウスにおいては著しく損なわれていることを示した(図5e)。それに対して、TRAM欠損細胞では、ポリ(I:C)を誘導したNF- κ B活性化が正常であることが認められた(図5f)。自己リン酸化及び分解により検知されたように、MyD88依存的シグナル伝達経路を活性化すると、IRAK-1の活性化が生じる(図5g)。TRAM欠損マクロファージは、野生型細胞に対して、同程度のLPSを誘導したIRAK-1の活性化を示し、TRAM欠損マウスにおいて、TLR4を介したMyD88依存的シグナル伝達の活性化が損なわれていないことを示した。総合すると、これらの観察は、TRAMがTLR4を介したMyD88非依存的シグナル伝達経路に特異的に必須であることを示した。

【実施例7】

[0038]

(プラスミド)

ELAM-1プロモーター由来のルシフェラーゼレポータープラスミド(NF- κ Bルシフェラーゼレポーター)は、Dr. D. T. Golenbockより提供された。マウスIFN- β プロモータールシフェラーゼレポーターは、PCRにより、以前の報告(Immunity 7, 837-847, 1997)の通りに作製した。FlagがタグされたヒトTRAM(Flag-tagged hum an TRAM)をpEF-BOSベクターにクローニングした。TRIF及びMyD88の発現ベクターは、文献(J. Immunol. 169, 6668-6672, 2002)記載のものを用いた。

【実施例8】

[0039]

(ルシフェラーゼレポーターアッセイ)

293細胞に、レポータープラスミド及び示された発現ベクターを一時的にコ・トランスフェクションした。全細胞溶解液のルシフェラーゼ活性は、デュアルルシフェラーゼレポーターアッセイシステム(Dual-luciferase reporter assay system)(Promega社製)を用いて、文献(J. Immunol. 169, 6668-6672, 2002)記載の通り測定した。内部標準として、レニラルシフェラーゼ(Rennilla-luciferase)レポーター遺伝子(50 ng)を使用した。

【実施例9】

[0040]

(TRAM欠損マウスの作製)

(ES) 細胞(E14.1)からTaKaRa LA Taq TM (TaKaRa社製)を用いてPCRにより抽出したゲノムDNAから、Tram遺伝子を単離した。ターゲティングベクターは、TRAM ORF全体をコードする1.0 k b 断片をネオマイシン耐性遺伝子カセット(neo)で置換し、負の選択のためにPGKプロモーターにより作動する単純ヘルペスウイルスチミジンキナーゼをゲノム断片に挿入することにより構築した(図1d)。かかるターゲティングベクターをES細胞中にトランスフェクションした後、G418及びガンシクロビアに抵抗性を示す二重耐性コロニーを選択し、PCRとサザンブロットでスクリーニングを行なった。相同的組換え体をC57BL/6雌マウスにマイクロインジェクションし、ヘテロ接合体のF1子孫をインタークロスして、TRAM欠損マウスを得た。こうしたインタークロスにより生まれたTRAM欠損マウス及びその野生型の同腹子を実験に使用した。

【実施例10】

[0041]

(試薬)

R-848は、株式会社ジャパンエナジー、医薬バイオ研究所(Pharmaceuticals and

Biotechnology Laboratory, Japan Energy Corporation) より提供された。CpGオリゴ デオキシヌクレオチドを文献 (Nat. Immunol. 3, 196-200, 2002) 記載の通りに調製した 。フェノールークロロホルムー石油エーテル抽出手順により調製したサルモネラ・ミネソ タ (Salmonella minnesota) Re-595のLPS、S. aureus由来のPGN、ならびにポリ (I:C) を、Sigma社、Fluka社及びAmersham社よりそれぞれ購入した。抗ホスホJNK 抗体及び抗ホスホStat1抗体は、Cell Signaling Technology社より購入した。抗J NK1抗体、抗Stat1抗体及び抗アクチン抗体は、Santa Cruz社製である。マウスT RAMのアミノ酸219~232に対して、ポリクローナル抗TRAM抗体を作製した。 ポリクローナル抗IRF-3抗体及び抗IRAK-1抗体は、文献 (Science 301, 640-6 43, 2003) 記載の通りであった。抗IgM抗体分析(Anti-IgM antibody analysis)は、 Jackson ImmunoResearch Laboratoryより購入した。FITC標識ストレプトアビジン、 PE共役抗B220抗体、ビオチン共役抗CD69抗体、抗CD86抗体及び抗I-Ab 抗体は、Pharmingen社製である。

【実施例11】

[0042]

(炎症誘発性サイトカイン濃度の測定)

チオグリコール酸を誘発させた腹腔マクロファージを、96ウエルプレートで、記載の 濃度のPGN、LPS、R-848又はCpG DNAで培養した(ウエル毎に5×10⁴ 細胞)。培養上澄液中のTNA-α、IL-6及びIL-12p40の濃度を、製造者の 指示に従って、ELISAで測定した(TNF-α及びIL-12p40はGenzyme社製 、IL-6はR&D社製)。

【実施例12】

[0043]

(樹状細胞の調製及び分析)

10ng ml⁻¹のGM-CSFを用いて、野生型マウス又はTRAM欠損マウスの骨 髄細胞を6日間培養した。未成熟のDCを回収し、分析した。

【実施例13】

[0044]

(肺繊維芽細胞の調製)

マウスの肺を切除し、PBS内で洗浄し、小さく切断し、撹拌し、37℃で30分間酵 素消化した。消化用緩衝液(10m1/肺)は、400nMのEDTAを含む0.25% のトリプシン溶液からなる。得られた細胞懸濁液に、氷温の完全DMEM培地を添加した 。遠心分離(1100rpm、5分間)した後、ペレットを完全培地で再び懸濁し、その 後皿で培養した。肺繊維芽細胞は、切除から10日後、各実験に使用した。

【実施例14】

[0045]

(電気泳動移動度分析)

腹腔マクロファージ及び肺繊維芽細胞 (1×10⁶) を、100ng/mlのLPS及 び $5~0~\mu$ g / m 1 のポリ(I:C)で、それぞれ記載の時間刺激した。細胞から核抽出物 を精製し、NF-κB DNA結合部位に特異的なプローブを用いてインキュベーション を行ない、電気泳動にかけ、文献 (Immunity 9, 1, 143-150, 1998) 記載の通りにオート ラジオグラフィーで視覚化した。

【実施例15】

[0046]

(脾細胞の増殖アッセイ)

脾細胞 (1×10⁵) を、96 ウエルプレートで、記載の濃度のLPS、R-848又 はCpG DNAを用いて、24時間培養した。最後の12時間は、1マイクロキュリー の $[^3 \, \mathrm{H}]$ チミジンのパルス標識を行ない、その後、 $[^3 \, \mathrm{H}]$ の摂取量を β シンチレーショ ンカウンター(Packard社製)で測定した。

【実施例16】

[0047]

(ウエスタンブロット分析及びインビトロキナーゼアッセイ)

腹腔マクロファージ(2×10^6)、胚繊維芽細胞(1×10^6)及び肺繊維芽細胞(1×10^6)を、それぞれ100 n g/m l のL P S、10 n g/m l の I L -1 β及び 5 0μ g/m l のポリ(I:C)で、記載の時間刺激した。その後、1.0%のNonidet-P4 0、150 mMのN a C l、20 mMのトリスーC l (pH7.5)、 l mMのED T A 及びプロテアーゼ阻害剤カクテル(Roche Diagnostics社製)を含む溶解緩衝液中に、かかる細胞を溶解した。細胞溶解液をSDS-PAGEで溶解し、PVDF膜(Bio-Rad社製)に移した。かかる膜を特定の抗体でブロットし、強化した化学発光システム(enhanced chemi luminescence system)(Perkin Elmer Life Sciences社製)で視覚化した。細胞溶解液のIRAK-1活性を、文献(Immunity 13,539,2000)記載の通りにインビトロキナーゼアッセイにより測定した。

【実施例17】

[0048]

(フローサイトメトリー分析)

 50μ g/mlのポリ(I:C)、 10μ g/mlのLPS又は 10μ g/mlの抗IgM抗体を用いて、200万個の脾細胞を培養した。培養から36時間後、細胞を収集し、PE共役抗B220抗体及びビオチン共役抗CD69、CD86又は $I-A^b$ 抗体で染色し、その後、ストレプトアビジン-FITCで染色した。染色した細胞を、セルクエストのソフトウェア(Cell Quest software)(Beckton Dickinson社製)により、FACS Caliburで分析した。

【実施例18】

[0049]

(未変性PAGEアッセイ)

 50μ g/mlのポリ(I:C)及び 1μ g/mlのLPSを用いて、肺繊維芽細胞(1×10^6)及び腹腔マクロファージ(5×10^6)をそれぞれ記載の時間刺激した後、溶解した。未変性PAGEサンプル緩衝液(62.5 mMのトリスーCl、pH6.8、15%のグリセロール及び1%のデオキシコール酸)中の細胞溶解液を、未変性PAGE上で分離させ、その後、文献(Immunity 13, 539, 2000)記載の通りに抗IRF-3抗体で免疫プロットを行なった。

【図面の簡単な説明】

[0050]

【図1】ヒトTRAMのクローニング及び特徴づけ、並びに標的とするマウスTra m遺伝子の欠損についての図である。 (a) ヒトTRAM、TRIF、MyD88及 びTIRAPの構造の比較。ドメインは、BLASTプログラムを用いて決定した。 アミノ酸の長さを記載した。DD、デスドメイン;TIR、TIRドメイン。(b、 c) 293細胞に、1μgのTRAM、MyD88、TRIF又はエンプティーベク ター、及び0.~1 μ gのN F - κ B ν ポーター (b) 又はI F N - β プロモータール シフェラーゼレポーター (c) を一時的にコ・トランスフェクションした。トランス フェクションから24時間後、ルシフェラーゼ活性を測定した。(d)Tram遺伝 子、ターゲティングベクター及び予測された破壊遺伝子の構造。黒く塗りつぶされた 部分は、コードしたエキソンを示す。制限酵素:B、BamHI。(e)ヘテロ接合 体のインタークロスで生じた子孫のサザンブロット分析。マウスの尾部からゲノムD NAを抽出し、BamHIで消化し、(d)に示した放射能標識したプローブを用い て電気泳動にかけ、ハイブリダイゼーションを行なった。サザンプロットにより、野 生型マウス (+/+) には単一の7.6 k b バンドが、ホモ接合体マウス (-/-) には2.4kbバンドが、ヘテロ接合体マウス(+/-)にはその両方のバンドが得 られた。(f)抗TRAM抗体を用いて、胚繊維芽細胞から調製した細胞溶解液を免 疫沈降及び免疫プロットした。同じ溶解液を抗アクチン抗体にプロットしてタンパク 質の発現をモニターした。

【図2】 TRAM欠損細胞において、IL-1誘発応答はインタクトであることを示す図である。 (a) 100 ng/mlのIL-1 β 又は10 μ g/mlのLPSで、野生型マウス及びTRAM欠損マウスの胚繊維芽細胞を刺激した。 24 時間後、上清を回収し、ELISAによるIL-6分析を行なった。記載の値は、3回の平均±SDである。N.D.、検出せず。 (b) 100 ng/mlのIL-1 β で、胚繊維芽細胞を記載の時間刺激した。核抽出物を調製し、 $NF-\kappa$ Bに特異的なプローブを用いて、 $NF-\kappa$ B DNA結合作用をEMSAで定量した。 (c) 抗ホスホ JNK特異抗体を用いて、細胞抽出物にウエスタンブロットを行ない、JNK活性化についても定量した。

【図3】TRAM欠損マウスにおける、TLR4を介したMyD88依存的応答の減 少を示す図である。(a) TRIF欠損マウス又は野生型マウスの腹腔マクロファー ジに対して、刺激を与えないか、又は、 $30ng/mlのIFN-\gamma$ の存在下で、1Oμg/mlのペプチドグリカン (PGN)、100ng/mlのLPS、100n MのR-848、1μMのCpG DNAで刺激した。24時間後、TNF-a及び IL-6分析のために、ELISAにより上清を回収した。記載の値は3回の平均士 SDである。N. D. 、検出せず。(b)腹腔マクロファージを、30ng/mlの IFN-γの存在下で、記載の濃度のLPSで24時間刺激した。上清を用いて、T NF-α、IL-6及びIL-12p40をELISAで測定した。記載の値は3回 の平均±SDである。(c) LPS、R-848又はCpG DNAで刺激した脾細 胞の増殖。記載の濃度のLPS、R-848又はCpG DNAで、脾細胞を24時 間培養した。最後の12時間は、 $[^3H]$ チミジン($1\mu Ci$)のパルス標識を行な った。 [³ H] チミジンの取り込みを、シンチレーションカウンターで測定した。 (d) 10μg/mlのLPS、100nMのR-848又は10μg/mlの抗Ig M抗体を用いて、脾臓B220⁺細胞を培養した。培養から36時間後、細胞を収集 し、ビオチン共役抗CD69抗体又は抗CD86抗体で染色し、その後ストレプトア ビジンーPEで染色した。染色した細胞を、セルクエストのソフトウェア (Cell Que st software) により、FACS Caliburで分析した。

【図4】 TRAM欠損マウスにおける、TLR4を介したMyD88非依存的応答の著しい欠損を示す図である。 100ng/mloLPS(a)又は $50\mu g/ml$ のポリ(I:C)(b)で、骨髄由来樹状細胞(a)及び腹腔マクロファージ(b)を、それぞれ記載の時間刺激した。全RNA($10\mu g$)を抽出し、ノーザンブロットで記載のプローブの発現を分析した。 β アクチンプローブを用いて、同じ膜を再びハイブリダイズした。

【図5】 TLR4 シグナル伝達において、MyD88 非依存的経路は特異的に障害されたことを示す図である。(a、c) 50μ g/mlのポリ(I:C)又は(b、d) 1μ g/mlのLPSで、腹腔マクロファージ(a、c)又は肺繊維芽細胞(b、d)をそれぞれ記載の時間刺激した。抗ホスホStatl特異抗体(a、b)を用いて、細胞抽出物のウエスタンブロットを行ない、S tatlの活性化についても測定した。細胞溶解液を調製し、未変性PAGEにかけた。ウエスタンブロットにより、I RF-3の単量体形(矢印)及び二量体形(矢頭)を検出した(c、d)。 100 n g/mlのLPS(e)又は 50μ g/mlのポリ(I:C)で、腹腔マクロファージ(e)又は肺繊維芽細胞(f)をそれぞれ記載の時間刺激した。核抽出物を調製し、 $NF-\kappa$ Bに特異的なプローブを用いて、 $NF-\kappa$ B DNA結合作用をEMSAで定量した。(g)抗I RAK-I 抗体を用いて、I PSで刺激したマクロファージから得た溶解液の免疫沈降を行なった。インビトロキナーゼアッセイで、I RAK-I のキナーゼ活性を測定した(上)。抗I RAK-I 抗体で同じ溶解液をブロットした(下)。Autoは、自己リン酸化を示す。

【曹類名】図面【図1】

【図2】

【図4】

a	LPS							b	poly(I:C)						
		WT		КО			•		wı	WT			ко		•
	0	1	2	0	1	2	(hour)		0	4	8	0	4	8	(hour)
!		•	•				IFN-β						1	0	IFN-β
			•)			ISG54			***					ISG54
		4	•				IP-10)			IP-10
		1457	•		1941	***	RANTES			-	•			•	RANTES
į	490	1000				(M)	MCP-1			•	•		•	•	MCP-1
		a saint					β -actin			•	0	(9	β-actin

【要約】

【課題】 TIRドメインを含みTRIF関連アダプタータンパク質(TRIF-related ada ptor molecule; TRAM)の機能解明に有用な、特にグラム陰性菌の細胞壁画分であるエンドトキシンに不応答性のモデル非ヒト動物や、かかるエンドトキシンに不応答性のモデル非ヒト動物を用いたTLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニング方法等を提供すること。

【解決手段】 染色体上のTRAM遺伝子の一部もしくは全部が欠損し、野生型において発現されるTRAMを発現する機能が失われており、TLR4が認識するリガンドに対する応答性が特異的に傷害されているエンドトキシン不応答性マウスを、TLR4が認識するリガンドに対する応答の促進物質又は抑制物質のスクリーニングに用いる。

【書類名】

出願人名義変更届 (一般承継)

【提出日】 【あて先】

平成15年10月31日

【事件の表示】

特許庁長官 殿

【出願番号】

特願2003-338013

【承継人】

【識別番号】

503360115

【住所又は居所】 【氏名又は名称】 埼玉県川口市本町四丁目1番8号 独立行政法人科学技術振興機構

【代表者】

沖村 憲樹

【連絡先】

〒102-8666 東京都千代田区四番町5-3 独立行政法 人科学技術振興機構 知的財産戦略室 佐々木吉正 TEL 0 3-5214-8486 FAX 03-5214-8417

【提出物件の目録】

【物件名】

【物件名】

権利の承継を証明する書面 1

【援用の表示】

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

登記簿謄本 1

【援用の表示】

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

特願2003-338013

出願人履歷情報

識別番号

[396020800]

1. 変更年月日

1998年 2月24日

[変更理由]

名称変更

发更理田」 住 所

埼玉県川口市本町4丁目1番8号

氏 名

科学技術振興事業団

特願2003-338013

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由]

2003年10月 1日

住 所

新規登録

氏 名

埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構

2. 変更年月日 [変更理由]

2004年 4月 1日

名称変更

住 所 氏 名

埼玉県川口市本町4丁目1番8号 独立行政法人科学技術振興機構