

IT 143 INFORMATION ASSURANCE AND SECURITY

Principles of Information Security

Chapter 1: Introduction to Information Security

CEED JENNELLE B. LORENZO

College of Computing Studies

Department of Information Technology

Learning and Objectives

- What is information security
- History of computer security and how it evolved into information security
- Concepts of information security
- Phases of the security systems development life cycle
- Information security roles of professionals within an organization

Introduction

- Information security: a "well-informed sense of assurance that the information risks and controls are in balance." — Jim Anderson, Inovant (2002)
- Security professionals must review the origins of this field to understand its impact on our understanding of information security today

History of Information Security

Began immediately following development first mainframes

- Developed for code-breaking computations
- During World War II
- Multiple levels of security were implemented
- Physical controls
- Rudimentary
 - Defending against physical theft, espionage, and sabotage

1960s

Original communication by mailing tapes

- Advanced Research Project Agency (ARPA)
 - Examined feasibility of redundant networked communications
- Larry Roberts developed ARPANET from its inception
- ARPANET is predecessor to the Internet

1970s and 80s

- ARPANET grew in popularity
- Potential for misuse grew
- Fundamental problems with ARPANET security
 - Individual remote sites were not secure from unauthorized users
 - Vulnerability of password structure and formats
 - No safety procedures for dial-up connections to ARPANET
 - Non-existent user identification and authorization to system

1970s and 80s (cont'd.)

Rand Report R-609

- Paper that started the study of computer security
- Information Security as we know it began
- Scope of computer security grew from physical security to include:
 - Safety of data
 - Limiting unauthorized access to data
 - Involvement of personnel from multiple levels of an organization

MULTICS

Early focus of computer security research

- System called Multiplexed Information and Computing Service (MULTICS)
- First operating system created with security as its primary goal
- Mainframe, time-sharing OS developed in mid-1960s
 - GE, Bell Labs, and MIT
- Late 1970s
 - Microprocessor expanded computing capabilities
 - Mainframe presence reduced
 - Expanded security threats

2000 to Present

- Millions of computer networks communicate
- Many of the communication are unsecured
- Ability to secure a computer's data influenced by the security of every computer to which it is connected
- Growing threat of cyber attacks has increased the need for improved security

What is Security?

"The quality or state of being secure—to be free from danger"

A successful organization should have multiple layers of security in place:

- Physical security
- Personal security
- Operations security
- Communications security
- Network security
- Information security

What is Security? (cont'd.)

- The protection of information and its critical elements, including systems and hardware that use, store, and transmit that information
- C.I.A. triangle
 - Was standard based on confidentiality, integrity, and availability
 - Now expanded into list of critical characteristics of information

Components of Information Security

- Access
- Asset
- Attack
- Control, Safeguard, or Countermeasure
- Exploit
- Exposure
- Loss

- Protection Profile or Security Posture
- Risk
- Subjects and Objects
- Threat
- Threat Agent
- Vulnerability

Access

 A subject or object's ability to use, manipulate, modify, or affect another subject or object.

Asset

Protected organizational resource

Attack

Intentional or unintentional; active or passive;
 direct or indirect attack

- Control, safeguard, or countermeasure
 - Security mechanisms, policies or procedures
- Exploit
 - Used to compromise a system
- Exposure
 - A condition or state of being exposed
- Loss
 - Information asset suffering from a damage

Risk

Probability of something unwanted will happen

Subjects or objects

Computer as a subject or object of an attack

Threat

Entities that present danger to an asset

Threat agent

specific instance or a component of a threat

Vulnerability

Weakness or fault in a system

Computer as the subject and Object of an attack

- The value of information comes from the characteristics it possesses:
 - Authenticity
 - Confidentiality
 - Availability
 - Accuracy
 - Integrity
 - Utility
 - Possession

Authenticity

- Information is genuine or original
- Same state in which it was created, placed, stored or transferred

Confidentiality

Only those with sufficient privileges may access certain information

Availability

 Makes information accessible to authorized users without interference or obstruction.

Accuracy

- Free from mistakes or errors
- Has the value that the end user expects
- If intentionally or unintentionally modified, it is no longer accurate

Integrity

Quality or state of being whole, complete, and uncorrupted

Utility

Information has value when it serves a purpose

Possession

Quality or state of ownership or control

CNSS Security Model

The McCumber Cube

Components of an Information System

- Information system (IS) is entire set of components necessary to use information as a resource in the organization
 - Software
 - Hardware
 - Data
 - People
 - Procedures
 - Networks

Balancing Information Security and Access

• Impossible to obtain perfect security—it is a process, not an absolute

IS Security Implementation: Bottom-up Approach

- Grassroot effort
 - System administrators
- Advantage: technical expertise of individual administrators
- · Lacks number of critical features:
 - Participant support
 - Organizational staying power

IS Security Implementation: Top-Down Approach

- Initiated by upper management
 - Issue policy, procedures, and processes
 - Dictate goals and expected outcomes of project
 - Determine accountability for each action
- Most successful
- Involves formal development strategy (Systems development life cycle)

Approaches to Information Security Implementation

System Development Life Cycle (SDCLC)

- SDLC: Methodology for design and implementation of information system
- Methodology:
 - Formal approach to problem solving
 - Based on structured sequence of procedures
- Traditional SDLC has 6 general phases

SDLC Waterfall Methodology

SDLC Waterfall Methodology: Investigation

- What problem is the system being developed to solve?
- Objectives, constraints, and scope of project specified
- Preliminary cost-benefit analysis developed
- At end
 - Feasibility analysis performed
 - Assess economic, technical, and behavioural feasibilities

SDLC Waterfall Methodology: Analysis

- Consists of assessments of:
 - The organization
 - Current systems
 - Capability to support proposed systems
- Determine what new system is expected to do
- Determine how it will interact with existing systems
- Ends with documentation

SDLC Waterfall Methodology: Logical Design

- Main factor is business need
 - Applications capable of providing needed services are selected
- Necessary data support and structures identified
- Technologies to implement physical solution determined
- Feasibility analysis performed at the end

SDLC Waterfall Methodology: Physical Design

- Technologies to support the alternatives identified and evaluated in the logical design are selected
- Components evaluated on make-or-buy decision
- Feasibility analysis performed
 - Entire solution presented to end-user representatives for approval

SDLC Waterfall Methodology: Implementation

- Needed software created
- · Components ordered, received, and tested
- Users trained and documentation created
- Feasibility analysis prepared
 - Users presented with system for performance review and acceptance test

SDLC Waterfall Methodology: Maintenance and Change

- Longest and most expensive phase
- Tasks necessary to support and modify system
 - Last for product useful life
- Life cycle continues
 - Process begins again from the investigation phase
- When current system can no longer support the organization's mission, a new project is implemented

The Security Systems Development Life Cycle

- The same phases used in the traditional SDLC
- Implementation of information security
 - Identifying threats
 - Creating specific controls to counter threats
- SecSDLC is a coherent program, not a series of random seemingly unconnected actions

SecSDLC: Investigation

- Identifies process, outcomes, goals, and constraints of the project
- Begins with Enterprise Information Security Policy (EISP)
- Organizational feasibility analysis is performed

SecSDLC: Analysis

- Documents from investigation phase are studied
- Analysis:
 - existing security policies or programs
 - Current threats and associated controls
 - Legal issues
- Risk management task begins

SecSDLC: Logical Design

- Creates and develops blueprints for information security
- Incident response actions planned:
 - Continuity planning
 - Incident response
 - Disaster recovery
- Feasibility analysis whether the project should be continued or not

SecSDLC: Physical Design

- Evaluates the IS technology needed
- Alternatives are generated
- Final design is selected
- End of the phase:
 - Feasibility study to determine readiness of the project

SecSDLC: Implementation

- Security solutions are acquired, tested, implemented, and tested again
- Personnel issues evaluated; specific training and education programs conducted
- Entire tested package is presented to management for final approval

SecSDLC: Maintenance and Change

- Most important phase, given the everchanging threat environment
- Often, repairing damage and restoring information is a constant duel with an unseen adversary
- Information security profile of an organization requires constant adaptation as new threats emerge and old threats evolve

Security Professionals and the Organization

- Wide range of professionals required to support a diverse information security program
- Senior management is key component
- Additional administrative support and technical expertise are required to implement details of IS program

Senior Management

- Chief Information Officer (CIO)
 - Senior technology officer
 - Primarily responsible for advising senior executives on strategic planning
- Chief Information Security Officer (CISO)
 - Primarily responsible for assessment, management, and implementation of IS in the organization
 - Usually reports directly to the CIO

Information Security Project Team

- A number of individuals who are experienced in one or more facets of required technical and nontechnical areas:
 - Champion
 - Team leader
 - Security policy developers
 - Risk assessment specialists
 - Security professionals
 - Systems administrators
 - End users

Data Responsibilities

- Data owners
 - responsible for the security
 - use of a particular set of information
- Data custodian
 - responsible for the storage, maintenance, and protection of the information
- Data users
 - work with the information to perform their daily jobs supporting the mission of the organization

- Each organization has a culture in which communities of interest are united by similar values and share common objectives.
- The three communities in information security are:
 - general management
 - IT management
 - Information security management.

 Information security has been described as both an art and a science, and also comprises many aspects of social science.

References

Whitman, M. E., & Mattord, H. J.
 (2011). Principles of information security.
 Learning.