تمرینات جبر خطی

و سری دو مدرس درس

مدرس درس: دکتر یاسمی مهلت تحویل: ۴ آبانماه ۹۸

۱. هریک از گزارههای زیر را با دلایل منطقی اثبات یا رد کنید.

(آ) هر k بردار مستقل خطی در فضای برداری k-بعدی V پایهاند.

(ب) هر k بردار مولد V در فضای برداری k-بعدی V پایهاند.

 $(oldsymbol{arphi})$ اگر W_1 و W_2 زیرفضاهای V باشند، $W_1\cup W_2$ نیز زیرفضای V است.

(ت) اگر W_1 و W_2 زیرفضاهای V باشند، $W_1 \cap W_2$ نیز زیرفضای V است.

V اگر W_1 و W_2 زیرفضاهای V باشند، $W_1\setminus W_1$ نیز زیرفضای W_1 است.

 $(A \setminus B = \{x \in A | x \notin B\})$

 (π) اگر W_1 و W_2 زیرفضاهای V باشند، $W_1 \Delta W_2$ نیز زیرفضای V است.

 $(A\Delta B = (A \cup B) \setminus (A \cap B))$

رچ) اگر W_1 و W_2 زیرفضاهای V باشند، W_1+W_2 نیز زیرفضای V است.

 $(V_1 + V_7 = \{v_1 + v_7 \mid v_1 \in V_1 \land v_7 \in V_7\})$

رح) اگر V_1 ، V_7 ، V_7 و V_7 زیرفضاهای $M_{\mathsf{T} \times \mathsf{f}}(\mathbb{R})$ باشند، و بعد همگی آنها برابر ۴ باشد، i و وجود دارند که $V_i \cap V_j$ بیشتر از یک عضو دارد.

(خ) اگر V یک فضای برداری و W_1 و W_1 زیرفضاهای آن باشند، داریم $|W_1 \cap W_7| \leq \min(|W_1|,|W_7|)$

(د) اگر V یک فضای برداری و W_1 و W_2 زیرفضاهای آن باشند، داریم $|W_1+W_2| \leq |W_1| + |W_2|$

- اگر V یک فضای برداری و W یک زیرفضای آن باشد؛ آنگاه اگر $v_{|W|+1},\ldots,v_{|V|}$ وجود $v_{|W|+1},\ldots,v_{|V|}$ یک پایه برای $v_{|W|+1},\ldots,v_{|V|}$ وجود دارند که $v_{|W|+1},\ldots,v_{|V|}$ یک پایه برای $v_{|W|}$ است.
- $B\subseteq S$ رر) اگر V یک فضای برداری با بعد متناهی باشد و S مولد V باشد، S وجود دارد به طوری که S پایهای برای S است. (دقت کنید که ممکن است متناهی نباشد.)
- ۲. دستگاه معادلات خطی زیر به ازای چه مقادیری از b_7 و b_7 و جواب دارد. جوابهای آن را بر حسب b_7 ه b_7 و b_7 بیابید.

$$x + \Upsilon y - \Upsilon z = b_{\Upsilon}$$
 $\Upsilon x + \Delta y - \Upsilon z = b_{\Upsilon}$
 $\Upsilon x + \Upsilon y - \Delta z = b_{\Upsilon}$

 $M_{\mathsf{T} \times \mathsf{T}}(\mathbb{R})$ از W_{T} که در زیر تعریف شدهاند زیرفضاهایی از W_{T} باشند.

$$W_{1} = \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$W_{7} = \left\{ \begin{bmatrix} \circ & a \\ -a & b \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

بعد هریک از مجموعههای W_1 ، W_1 , W_2 , W_3 و $W_1 \cap W_3$ را در صورت فضای برداری بودن بیابید.

۴. بعد هریک از فضاهای برداری زیر را بیابید.

$$(i) \quad \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a+d = \circ \right\}$$

(ii)
$$\{(a, b, c, d) \mid a + d = b + c\}$$

$$(iii) \quad \{ax^{\mathsf{T}} + bx + c \mid \Delta a + \mathsf{T}b + c = \circ \wedge \mathsf{T}a + \Delta b + \mathsf{T}c = \circ \wedge \mathsf{Y}a + b = \circ\}$$

- ر اگر $\{V_1,\dots,V_n\}$ خانوادهای از فضاهای برداری باشد یک پایه برای V_1,\dots,V_n بیابید. $V=\prod_{i=1}^n V_i$
 - (N_i) است.) است. است. است. A_1, \ldots, A_n
- . گوییم $W_1 \oplus W_7 = W_1$ اگر $W_1 \oplus W_7 = W_1$ و $W_1 \oplus W_2 \oplus W_3$. با توجه این تعریف به سوالات زیر پاسخ دهید.
- رآ) اگر $|V| = |W_1| + |W_7|$ نشان دهید $V = W_1 + W_1$ اگر و تنها اگر $V = W_1 + W_2$ اگر $V = W_1 \oplus W_2$
- - انشان دهید P_{Λ} خوش تعریف است.
 - $.P_{\lambda}^{\Upsilon}=P_{\lambda}$ نشان دهید (ii)
 - $.P_{\mathsf{Y}} = I P_{\mathsf{Y}}$ نشان دهید (iii)
- W_{7} اگر W_{1} زیرفضای فضای برداری V باشد و زیرفضایی یکتا مانند W_{1} وجود داشته باشد که $W_{1}\oplus W_{1}\oplus W_{2}$ نشان دهید $W_{1}=V$.