The Central Limit Theorem and the Law of Large Numbers

Robert Finn

Feb. 1, 2018

Definition

Let *Y* be a continuous random variable. Then we define the *kth* moment about the origin of *Y* to be the quantity

$$\mu'_{k} = E[Y^{k}]$$
 for $k = 1, 2, \dots$

We define the *kth moment about the mean*, or the *kth central moment* of Y to be the quantity

$$\mu_k = E[(Y - \mu)^k] \text{ for } k = 1, 2, \dots$$

Definition

Let Y be a random variable. Then we define the *moment* generating function, $m_Y(t)$, of Y to be the quantity

$$m_Y(t) = E\left[e^{tY}\right]$$

Definition

Let *Y* be a continuous random variable. Then we define the *kth* moment about the origin of *Y* to be the quantity

$$\mu'_{k} = E[Y^{k}]$$
 for $k = 1, 2, \dots$

We define the *kth moment about the mean*, or the *kth central moment* of *Y* to be the quantity

$$\mu_k = E[(Y - \mu)^k]$$
 for $k = 1, 2, ...$

Definition

Let Y be a random variable. Then we define the *moment* generating function, $m_Y(t)$, of Y to be the quantity

$$m_Y(t) = E\left[e^{tY}\right]$$

Definition

Let *Y* be a continuous random variable. Then we define the *kth* moment about the origin of *Y* to be the quantity

$$\mu'_k = E[Y^k]$$
 for $k = 1, 2, \dots$

We define the *kth moment about the mean*, or the *kth central moment* of *Y* to be the quantity

$$\mu_k = E[(Y - \mu)^k] \text{ for } k = 1, 2, \dots$$

Definition

Let Y be a random variable. Then we define the *moment* generating function, $m_Y(t)$, of Y to be the quantity

$$m_Y(t) = E\left[e^{tY}\right]$$

Theorem

Let Y and $Y_1, Y_2,...$ be random variables with moment generating functions m(t) and $m_1(t), m_2, (t),...$, respectively. If

$$\lim_{n\to\infty} m_n(t) = m(t)$$
 for all $t\in\mathbb{R}$

then the distribution funcion of Y_n converges to the distribuition function of Y as $n \to \infty$.

Theorem

Let Y and $Y_1, Y_2,...$ be random variables with moment generating functions m(t) and $m_1(t), m_2, (t),...$, respectively. If

$$\lim_{n\to\infty} m_n(t) = m(t)$$
 for all $t\in\mathbb{R}$

then the distribution funcion of Y_n converges to the distribuition function of Y as $n \to \infty$.

Theorem

Let Y and $Y_1, Y_2,...$ be random variables with moment generating functions m(t) and $m_1(t), m_2, (t),...$, respectively. If

$$\lim_{n\to\infty} m_n(t) = m(t) \text{ for all } t\in\mathbb{R}$$

then the distribution funcion of Y_n converges to the distribution function of Y as $n \to \infty$.

Theorem

Let $Y_1, ..., Y_n$ be independent, identically distributed random variables with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\bar{Y} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\lim_{n \to \infty} P(U_n \le u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 for all u .

Theorem

Let $Y_1, ..., Y_n$ be independent, identically distributed random variables with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\bar{Y} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\lim_{n o \infty} P(U_n \le u) = \int_{-\infty}^u rac{1}{\sqrt{2\pi}} e^{rac{-t^2}{2}} dt$$
 for all u .

Theorem

Let $Y_1, ..., Y_n$ be independent, identically distributed random variables with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\bar{Y} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\lim_{n o \infty} P(U_n \le u) = \int_{-\infty}^u rac{1}{\sqrt{2\pi}} e^{rac{-t^2}{2}} dt$$
 for all u .

Theorem

Let $Y_1, ..., Y_n$ be independent, identically distributed random variables with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\bar{Y} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\lim_{n\to\infty} P(U_n \le u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}} dt \text{ for all } u.$$

FIGURE 9.1 Values of $\hat{p} = Y/n$ for a single sequence of 1000 Bernoulli trials, p = 0.5

FIGURE 9.2 Values of $\hat{p} = Y/n$ for 50 sequences of 1000 Bernoulli trials, p = 0.5

• The previous two graphs suggest that for any $\varepsilon > 0$ there is a large n so that

$$P\left(\left|\frac{Y}{n}-p\right|\leq \varepsilon\right)$$

should be close to 1.

Definition

The estimator $\hat{\theta}_n$ is said to be a *consistent estimator* of θ if, for any $\varepsilon > 0$ we have

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \le \varepsilon) = 1$$

or equivalently

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \varepsilon) = 0$$

• The previous two graphs suggest that for any $\varepsilon > 0$ there is a large n so that

$$P\left(\left|\frac{Y}{n}-p\right|\leq \varepsilon\right)$$

should be close to 1.

Definition

The estimator $\hat{\theta}_n$ is said to be a *consistent estimator* of θ if, for any $\varepsilon>0$ we have

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \le \varepsilon) = 1$$

or equivalently

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \varepsilon) = 0$$

• The previous two graphs suggest that for any $\varepsilon > 0$ there is a large n so that

$$P\left(\left|\frac{Y}{n}-p\right|\leq\varepsilon\right)$$

should be close to 1.

Definition

The estimator $\hat{\theta}_n$ is said to be a *consistent estimator* of θ if, for any $\varepsilon>0$ we have

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| \le \varepsilon) = 1$$

or equivalently

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| > \varepsilon) = 0$$

Theorem

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty}V(\hat{\theta}_n)=0$$

Theorem

The Law of Large Numbers: Let $Y_1, Y_2, ..., Y_n$ be a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

is a consistent estimator of μ , i.e.

$$\lim_{n\to\infty} P(|\bar{Y}_n - \mu| > \varepsilon) = 0$$

Theorem

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty}V(\hat{\theta}_n)=0$$

Theorem

The Law of Large Numbers: Let $Y_1, Y_2, ..., Y_n$ be a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

is a consistent estimator of μ , i.e.

$$\lim_{n\to\infty} P(|\bar{Y}_n - \mu| > \varepsilon) = 0$$

Theorem

An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n\to\infty}V(\hat{\theta}_n)=0$$

Theorem

The Law of Large Numbers: Let $Y_1, Y_2, ..., Y_n$ be a random sample from a distribution with mean μ and variance $\sigma^2 < \infty$. Then

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

is a consistent estimator of μ , i.e.

$$\lim_{n\to\infty} P(|\bar{Y}_n - \mu| > \varepsilon) = 0$$

