Özdeğer Hesaplama Raporu

Bu raporda, bir 3x3 matrisin özdeğerleri hem manuel olarak hem de NumPy kütüphanesinin `numpy.linalg.eig` fonksiyonu kullanılarak hesaplanmıştır. Manuel yöntem, LucasBN tarafından geliştirilen ve determinant tabanlı özdeğer bulma algoritmasını içeren https://github.com/LucasBN/Eigenvalues-and-Eigenvectors çalışmasından esinlenilerek uygulanmıştır.

1. Kullanılan Matris

Aşağıdaki matris üzerinde işlemler yapılmıştır:

6	1	-1
0	7	0
3	-1	2

2. Yöntem Açıklamaları

Özdeğerleri bulmak için iki farklı yöntem kullanılmıştır:

1. Manuel Yöntem: Karakteristik denklem oluşturularak determinant alınır. Oluşan polinomun kökleri özdeğerlerdir. Bu işlemde kullanılan karakteristik denklem:

$$det(A - \lambda I) = 0$$

burada A matris, λ özdeğer, I ise birim matristir. Determinant alınarak λ 'ya bağlı bir polinom elde edilir ve kökleri bulunur.

2. NumPy Yöntemi: `numpy.linalg.eig` fonksiyonu doğrudan özdeğerleri ve özvektörleri hesaplar.

3. Karakteristik Denklem

Oluşan karakteristik denklem: $105 + -71\lambda^{1} + 15\lambda^{2} + -1\lambda^{3} = 0$

4. Özdeğer Sonuçları

Manuel Hesaplanan Özdeğerler:

[3.0, 5.0, 7.0]

NumPy `eig` Fonksiyonu ile Hesaplanan Özdeğerler:

[3.0, 5.0, 7.0]

5. Sonuçların Karşılaştırılması

Her iki yöntemin sonuçları birbirine oldukça yakındır. Küçük farklar sadece sayısal hesaplamalardaki yuvarlama farklılıklarından kaynaklanmaktadır.

6. Kaynak

LucasBN. (n.d.). Eigenvalues and Eigenvectors. GitHub repository.

Erişim adresi: https://github.com/LucasBN/Eigenvalues-and-Eigenvectors