第1章 随机事件及其概率

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。 $C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。		
(2)加法 和乘法原 理	加法原理(两种方法均能完成此事): m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事): m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。		
(3)一些	重复排列和非重复排列(有序)		
常见排列	对立事件(至少有一个) 顺序问题		
(4) 随机试验和随	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试		
机事件	验。 试验的可能结果称为随机事件。		
(5)基本 事件、样本 空间和事 件	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω 来表示。 基本事件的全体,称为试验的样本空间,用 Ω 表示。 一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C ,…表示事件,它们是 Ω 的子集。 Ω 为必然事件, \emptyset 为不可能事件。 不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。		
(6)事件 的关系与 运算	①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A ⊂ B 如果同时有 A ⊂ B , B ⊃ A , 则称事件 A 与事件 B 等价,或称 A 等于 B: A=B。 A、B中至少有一个发生的事件: A ∪ B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB , 它表示 A 发生而 B 不发生的事件。 A、B 同时发生: A ∩ B,或者 AB。 A ∩ B=Ø,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。		

	Ω —A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生的事件。互斥未必对立。 ②运算: 结合率:A (BC) = (AB) C A U (B U C) = (A U B) U C 分配率: (AB) U C= (A U C) \cap (B U C)
(7)概率 的公理化 定义	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满足下列三个条件: $1^{\circ} \ 0 \leqslant P(A) \leqslant 1,$ $2^{\circ} \ P(\Omega) = 1$ $3^{\circ} \ 对于两两互不相容的事件 A_1 ,A_2 ,…有 P\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} P(A_i) 常称为可列(完全)可加性。 则称 P(A) 为事件 A 的概率。$
(8) 古典 概型	$1^{\circ} \Omega = \{\omega_{1}, \omega_{2} \cdots \omega_{n}\},$ $2^{\circ} P(\omega_{1}) = P(\omega_{2}) = \cdots P(\omega_{n}) = \frac{1}{n} \circ$ 设任一事件 A , 它是由 $\omega_{1}, \omega_{2} \cdots \omega_{m}$ 组成的,则有 $P(A) = \{(\omega_{1}) \cup (\omega_{2}) \cup \cdots \cup (\omega_{m})\} = P(\omega_{1}) + P(\omega_{2}) + \cdots + P(\omega_{m})$ $= \frac{m}{n} = \frac{A \text{所包含的基本事件数}}{\text{基本事件总数}}$
(9) 几何 概型	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A, $P(A) = \frac{L(A)}{L(\Omega)} \text{ 。其中 L 为几何度量(长度、面积、体积)。}$
(10) 加法 公式	P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A+B)=P(A)+P(B)
(11)减法 公式	P(A-B)=P(A)-P(AB) 当 B \subset A 时, $P(A-B)=P(A)-P(B)$ 当 $A=\Omega$ 时, $P(\overline{B})=1-P(B)$
(12)条件 概率	定义 设 A 、 B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事件 B 发生的条件概率,记为 $P(B/A)=\frac{P(AB)}{P(A)}$ 。 条件概率是概率的一种,所有概率的性质都适合于条件概率。

	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13)乘法 公式	東一般地, 对事件 A ₁ , A ₂ , ····A _n , 若 P(A ₁ A ₂ ····A _{n-1})>0, 则有
	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1}
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$,则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	$P(A) = \frac{P(A)}{P(A)} = \frac{P(A)}{P(A)}$
	若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独
(14) 独立	立。
性	必然事件 Ω 和不可能事件 \emptyset 与任何事件都相互独立。
	0 与任何事件都互斥。 -
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A)P(B); $P(BC) = P(B)P(C)$; $P(CA) = P(C)P(A)$
	并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。
	对于 n 个事件类似。
	设事件 B_1, B_2, \cdots, B_n 满足
A lum	1° B_1, B_2, \dots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \dots, n)$,
(15) 全概	$A \subset \bigcup_{i=1}^n B_i$
公式	2° $=$ $=$,
	则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$
	设事件 B_1 , B_2 , …, B_n 及 A 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A = \begin{bmatrix} n \\ R \end{bmatrix}$
	$A \subset \bigcup_{i=1}^{\infty} B_i, P(A) > 0,$
	则
(16) 贝叶	$P(B_i / A) = P(B_i)P(A/B_i)$
斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots, \infty$
	$\sum_{j=1}^{r} I(D_j) I(A/D_j)$
	此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
(17)伯努	我们作了 n 次试验,且满足
利概型	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
1 4 150	◆ n 次试验是重复进行的,即 A 发生的概率每次均一样;

◆ 每次试验是独立的,即每次试验 *A* 发生与否与其他次试验 *A* 发生与 否是互不影响的。

这种试验称为伯努利概型,或称为n重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 $^{\overline{A}}$ 发生的概率为 $^{1-p=q}$,用 $^{P_{n}(k)}$ 表

示n 重伯努利试验中A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散 型随机变 量的分布 律 设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

 $P(X=X_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \mid \frac{x_1, x_2, \dots, x_k, \dots}{p_1, p_2, \dots, p_k, \dots}$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2)连续型随机变量的分布密度

设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面 4 个性质:

$$f(x) \ge 0$$

$$2^{\circ} \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

 $P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

	T					
(4) 分布	设 <i>X</i> 为随	机变量, x 是任意实数,则函数				
函数	F(x) = P	$\mathcal{C}(X \le x)$				
	称为随机变量	X 的分布函数,本质上是一个累积函数。				
	P(a < X)	$P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间 $(a,b]$ 的概率。分布				
	函数 $F(x)$ 表元	示随机变量落入区间 (- ∞, x]内的概率。				
	分布函数。	具有如下性质:				
	1° 0≤	$F(x) \le 1, -\infty < x < +\infty;$				
	2° F(x	(x) 是单调不减的函数,即 $(x_1 < x_2)$ 时,有 $(x_1) \le F((x_2))$;				
	3° F(-	$F(x) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;				
	4° F((x+0) = F(x),即 $F(x)$ 是右连续的;				
	5° P(.	X = x) = F(x) - F(x - 0) .				
	对于离散型随	对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;				
	对于连续型随机变量, $F(x) = \int_{0}^{x} f(x)dx$ 。					
	-∞					
(5) 八大 分布	0-1 分布	P(X=1)=p, P(X=0)=q				
	二项分布	在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生				
		的次数是随机变量,设为 X ,则 X 可能取值为 $0,1,2,\cdots,n$ 。				
		$P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, \sharp \uparrow				
		$q = 1 - p, 0 ,$				
		则称随机变量 X 服从参数为 n , p 的二项分布。记为				
		$X \sim B(n, p)$.				
		当 $n=1$ 时, $P(X=k)=p^kq^{1-k}$, $k=0.1$,这就是(0-1)分				
		布,所以(0-1)分布是二项分布的特例。				

泊松分布	设随机变量 X 的分布律为
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$
	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 $P(\lambda)$ 。 泊松分布为二项分布的极限分布 $(np=\lambda, n\to\infty)$ 。
超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, 2 \cdots, l$ $l = \min(M, n)$
	随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
几何分布	$P(X = k) = q^{k-1} p, k = 1, 2, 3, \dots$, 其中 p \geqslant 0, q=1-p。
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分布	设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在 $[a,b]$
	上为常数 $\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{th}, \end{cases}$
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为
	$ \begin{pmatrix} 0, & x < a, \\ x - a \end{pmatrix} $
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
	当 $a \leq x_1 \leq x_2 \leq b$ 时, X 落在区间(x_1, x_2) 内的概率为
	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a} .$

指数分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$ 其中 $\lambda > 0$, 则称随机变量 X 服从参数为 λ 的指数分布。
	X 的分布函数为 $F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$ 记住积分公式:
正态分布	$\int_{0}^{+\infty} x^n e^{-x} dx = n!$
正态分布	设随机变量 X 的密度函数为 $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$ 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ 的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。 $f(x)$ 具有如下性质: $1^{\circ} \qquad f(x)$ 的图形是关于 $x = \mu$ 对称的; $2^{\circ} \qquad \exists x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值; $ X \sim N(\mu, \sigma^2)_x, \underline{\mu}_{\sigma}$ 的分布函数为 $F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{e} e^{\frac{2\sigma^2}{2\sigma^2}} dt$
	参数 $\mu = 0$ 、 $\sigma = 1$ 时的正态分布称为标准正态分布,记为 $X \sim N(0,1)_{\frac{1}{2}}$ 其密度函数记为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ 。

(6)分位 数		$(X \le \mu_{\alpha}) = \alpha ;$ $(X > \mu_{\alpha}) = \alpha .$
(7) 函数 分布	离散型	已知 X 的分布列为 $\frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix}$, $Y=g(X)$ 的分布列($y_i=g(x_i)$ 互不相等)如下: $\frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ \end{pmatrix}$ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。 先利用 X 的概率密度 $f_x(x)$ 写出 Y 的分布函数 $F_y(y) = P(g(X) \leq y)$,再利用变上下限积分的求导公式求出 $f_y(y)$ 。

第三章 二维随机变量及其分布

	77 —	— — — — — — — — — — — — — — — — — — —			- / \ / \	1		
(1) 联合 分布	离散型	如果二维随机向量 ξ (X,Y)的所有可能取值为至多可列						
		个有序对(x,	个有序对 (x,y) ,则称 ξ 为离散型随机量。					
		设 <i>ξ</i> = ()	X, Y) 的	所有可能	能取值为($(x_i, y_j)(i$	$, j = 1, 2, \cdot$) ,
		且事件 $\{\xi = (x)\}$	(x_i, y_j)	的概率为	l p _{i,j} , 称			
		$P\{(X,Y)\}$	$P\{(X,Y) = (x_i, y_j)\} = p_{ij}(i, j = 1, 2, \cdots)$					
		为 ξ = (X, Y) 的分布律或称为 X 和 Y 的联合分布律。联合分						
		布有时也用下面的概率分布表来表示:						
		Y	<i>y</i> 1	y_2	•••	y_j	•••	
		X_I	p_{II}	p_{12}	•••	p_{lj}	•••	
		X_2	p_{21}	p_{22}	•••	p_{2j}	•••	
		÷	:	:		:	÷	
		X_i	p_{i1}		•••	p_{ij}	•••	
		:	:	÷		÷	÷	
		这里 p _{ij} 具有了						
		$(1) p_{ij} \geqslant 0 $, •••);				
		$(2) \sum_{i} \sum_{j}$	$p_{ij}=1.$					

	连续型	对于二维随机向量 $\xi=(X,Y)$,如果存在非负函数			
		$f(x,y)$ ($-\infty$ < x < $+\infty$, $-\infty$ < y < $+\infty$),使对任意一个其邻边			
		分别平行于坐标轴的矩形区域 D, 即 D={(X, Y) a <x<b, c<y<d}<br="">有</x<b,>			
		有 $P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$			
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi = (X,Y)$ 的分布			
		密度或称为 X 和 Y 的联合分布密度。 分布密度 f(x, y)具有下面两个性质: (1) f(x, y)≥0;			
		(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$			
(2) 二维 随机变量 的本质	$\xi(X=x,Y=y) = \xi(X=x \cap Y=y)$				
(3) 联合	设(X, Y)为	二维随机变量,对于任意实数 x, y, 二元函数			
分布函数		$F(x, y) = P\{X \le x, Y \le y\}$			
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。				
	分布函数是一个以全平面为其定义域,以事件				
	$\{(\omega_1,\omega_2) -\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函				
	数。分布函数 F(x, y) 具有以下的基本性质:				
	(1) $0 \le F(x, y) \le 1$;				
	 (2) F (x,y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F (x₂,y) ≥ F(x₁,y); 当 y₂>y₁时,有 F(x,y₂) ≥ F(x,y₁); (3) F (x,y) 分别对 x 和 y 是右连续的,即 				
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);				
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$				
	(5) 对于 $x_1 < x_2$, $y_1 < y_2$,				
	$F(x_2, y_2) -$	$F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$			
(4) 离散 型 与连续 型的关系	P(X=x, Y)	$f = y \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$			

(5)边缘	离散型	X 的边缘分布为
分布	内权主	
75 11		$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij} (i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_{i} p_{ij}(i, j = 1, 2, \dots)$
		$\sum_{i} F_{ij} (x, y) = \sum_{i} F_{ij} (x, y) $
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
		J −∞
(6)条件	离散型	在已知 X=x ₁ 的条件下, Y 取值的条件分布为
分布		$P(Y = y_j X = x_i) = \frac{p_{ij}}{r_i};$
		$P_{i\bullet}$
		在已知 Y=y ₁ 的条件下, X 取值的条件分布为
		$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_i},$
		$P(X - x_i Y - y_j) - \frac{1}{p_{\bullet j}}$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		f(x,y)
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下,Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_{-}(x)}$
		$f_X(x)$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$
		直接判断,充要条件:
		①可分离变量
		②正概率密度区间为矩形
	二维正态分	$\frac{1}{2(x-\mu_1)^2} \left[\left(\frac{x-\mu_1}{x} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{x^2} + \left(\frac{y-\mu_2}{x} \right)^2 \right]$
	布	$f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$
		$\rho = 0$
	随机变量的	若 X ₁ , X ₂ , ··· X _m , X _{m+1} , ··· X _n 相互独立, h, g 为连续函数,则:
	函数	$h(X_1, X_2, \cdots X_n)$ 和 $g(X_{n+1}, \cdots X_n)$ 相互独立。
		特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。
		例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8)二维 均匀分布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

(9) 二维 │ 设随机向量(X, Y)的分布密度函数为 $f(x,y) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\sigma^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$ 正态分布 其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称(X,Y)服从二维正态分 布, 记为 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$). 由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分 布, 即 X~N $(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$ 但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y)未必是二维正态分布。 (10) 函数 Z=X+Y根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$ 分布 对于连续型, $f_{z}(z) = \int_{0}^{+\infty} f(x, z - x) dx$ 两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。 n 个相互独立的正态分布的线性组合, 仍服从正态分布。 $\mu = \sum_{i} C_i \mu_i , \qquad \sigma^2 = \sum_{i} C_i^2 \sigma_i^2$ Z=max,min(若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为 $X_1, X_2, \cdots X_n$ $F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X₁,X₂,···X_n)的分布 函数为: $F_{\text{max}}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$

 $F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$

χ^2	分布
<i>^</i>	74 .14

设 n 个随机变量 X_1, X_2, \dots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 χ^2 分布, 记为 W $\sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

t分布

设 X, Y 是两个相互独立的随机变量,且

$$X \sim N(0,1), Y \sim \chi^{2}(n),$$

可以证明函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F分布	设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立,可以证明
	$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
	$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0 \\ 0, y < 0 \end{cases}$
	$\begin{bmatrix} 1 & 2 & 1 & 2 \\ & & 0, y < 0 \end{bmatrix}$ 我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2
	的 F 分布,记为 F \sim f (n_1, n_2) . $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1)		离散型	连续型
一维	期望	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量,其概率密
随机	期望就是平均值	律为 $P(X=x_k)=p_k$,	度为 f(x),
变 量		$+ y + (X - x_k) - p_k,$	+∞
的数		k=1, 2, ···, n,	$E(X) = \int x f(x) dx$
字 特		<u></u>	-∞
征		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)
		k=1	
		(要求绝对收敛)	
	函数的期望	Y=g(X)	Y=g(X)
		$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$
	方差 D(X)=E[X-E(X)] ² , 标准差	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	$\sigma(X) = \sqrt{D(X)} ,$		

	切比雪夫不等式	任意正数 ε ,有下列切比雪夫不 $P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$ 切比雪夫不等式给出了在未知 X	的分布的情况下,对概率 $-\mu \geq \varepsilon$)
(2) 期望 的性 质		的一种估计,它在理论上有重要	思义。
(3) 方差 的性 质	(1) $D(C)=0$; $E(C)=C$ (2) $D(aX)=a^2D(X)$; (3) $D(aX+b)=a^2D(X)$ (4) $D(X)=E(X^2)-E^2(X)$ (5) $D(X\pm Y)=D(X)+D(X)$	E(aX)=aE(X); ; E(aX+b)=aE(X)+b (Y),充分条件: X 和 Y 独立;	
(4)		充要条件: X 和 Y 不相关。 D(Y) ±2E[(X-E(X))(Y-E(Y))], 无 +E(Y), 无条件成立。 期望	E条件成立。 方差

的 期望 和	二项分布 $B(n,p)$	пр	np(1-p)
方差	泊松分布 $P(\lambda)$	λ	λ
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
变 量 数 特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
		$\sum_{i}\sum_{j}G(x_{i},y_{j})p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$ $D(Y) = \sum_{j} [x_j - E(Y)]^2 p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$

	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方
		差或相关矩,记为 $\sigma_{ extit{ iny XY}}$ 或 $ ext{cov}(extit{ iny X}, extit{ iny Y})$,即
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$
		与记号 σ_{xy} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{xx}
		与 $\sigma_{\gamma\gamma}$ 。
	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$\sigma_{_{XY}}$
		$rac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
		$\mid \rho \mid \leqslant$ 1,当 $\mid \rho \mid$ =1时,称 X 与 Y 完全相关: $P(X=aY+b)=1$
		而当 ρ = 0 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		$ \bigcirc \rho_{XY} = 0; $
		2cov(X, Y) = 0;
		D(X+Y) = D(X) + D(Y); 5D(X-Y) = D(X) + D(Y).
	协方差矩阵	$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YX} & \sigma_{YY} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 ν_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y,	
协方	(ii) cov(aX, bY)=ab cov	
差的性质	(iii) $cov(X_1+X_2, Y)=cov(X_1+X_2, Y)=cov(X_$	
工火	(iv) $\operatorname{cov}(X, Y) = \operatorname{E}(XY) - \operatorname{E}(XY)$	Λ/Ľ(1/.

(7) 独立	(i)	若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$; 反之不真。
和不相关	(ii)	若 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$),
		则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

(1) 大数定律	切比雪	设随机变量 X1, X2, ···相互独立,均具有有限方差,且被同一
$\overline{X} \to \mu$	夫大数	常数 C 所界: D (X_i) $\langle C(i=1,2,\cdots), 则对于任意的正数 \epsilon ,有$
$A \rightarrow \mu$	定律	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1) = \mu$, 则上式成为
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
	伯努利	设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在
	大数定	每次试验中发生的概率,则对于任意的正数 ε,有
	律	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即
		$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。
	辛钦大	设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,且 E
	数定律	(X _n)=μ,则对于任意的正数ε有
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$

	石山松	
(2) 中心极限定	列维一	设随机变量 X ₁ , X ₂ , …相互独立,服从同一分布,且具有
理	林德伯	相 同 的 数 学 期 望 和 方 差 :
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量
,		$Y_n = rac{\displaystyle\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma}$
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。
	棣莫弗 -拉普	设随机变量 X_n 为具有参数 n, p(0 \langle p \langle 1)的二项分布,则对于
	拉斯定	任意实数 x, 有
	理	$= \lim_{n \to \infty} P\left\{\frac{X_n - np}{\sqrt{np(1-p)}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$
(3) 二项定理	若当	$\exists N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则
		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$
	超几何分	分 布的极限分布为二项分布。
(4) 泊松定理	若当	
		$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$
), 1, 2, ···, n, ···。 同的极限分布为泊松分布。

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随
本概念		机变量(或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)。

样本	我们把从总体中抽取的部分样品 x_1, x_2, \cdots, x_n 称为样本。样本
	中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,总是把样本看成是 n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
	果时, x_1, x_2, \dots, x_n 表示 n 个随机变量 (样本); 在具体的一次
	抽取之后, x_1, x_2, \dots, x_n 表示 n 个具体的数值 (样本值)。我们
	称之为样本的两重性。
样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称
	$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$
	为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未
	知参数,则称 φ (x_1, x_2, \cdots, x_n) 为一个统计量。
常见统计量 及其性质	样本均值
	样本方差
	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$
	样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$
	样本 k 阶原点矩
	$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
	样本 k 阶中心矩
	$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,\cdots$
	$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
	$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
	其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。

(2) 正态 总体下的	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t \stackrel{def}{=} \frac{\overline{x} - \mu}{s / \sqrt{n}} \sim t(n-1),$
		其中 t (n-1)表示自由度为 n-1 的 t 分布。
	χ ² 分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$w \stackrel{\text{def}}{=} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 $n-1$ 的 χ^2 分布。
	F分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1,y_2,\cdots,y_n 为来自正态总体 $N(\mu,\sigma_2^2)$ 的一个样本,则样本
		函数
		$F = \frac{\frac{def}{2} \frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 1),$
		其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为
		n ₂ -1的F分布。
(3)正态总体下分	\overline{X} 与 S^2 独立	•
布的性质		

第七章 参数估计

(1)点 估计	矩估计	设总体 X 的分布中包含有未知数 $\theta_1, \theta_2, \cdots, \theta_m$,则其分布函数可以表成
		$F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也
		包含了未知参数 $\theta_1, \theta_2, \cdots, \theta_m$, 即 $v_k = v_k(\theta_1, \theta_2, \cdots, \theta_m)$ 。又设
		x_1, x_2, \dots, x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为
		$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} (k=1,2,\cdots,m).$
		这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有
		$\left[v_1(\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m) = \frac{1}{n}\sum_{i=1}^n x_i,\right]$
		$v_2(\hat{\theta_1}, \hat{\theta_2}, \dots, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i^2,$
		$v_m(\hat{\theta_1}, \hat{\theta_2}, \dots, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i^m.$
		由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1}, \hat{\theta_2}, \cdots, \hat{\theta_m})$ 即为参数
		$(\theta_1, \theta_2, \cdots, \theta_m)$ 的矩估计量。
		^
		$\stackrel{\circ}{H}$ 为 θ 的矩估计, $g(x)$ 为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为
	然估计	
	300 IH 6]	$f(x;\theta_1,\theta_2,\dots,\theta_m)$, 其中 $\theta_1,\theta_2,\dots,\theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P{X = x} = p(x; \theta_1, \theta_2, \dots, \theta_m)$,则称
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m)$ 在 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ 处取
		到最大值,则称 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 分别为 $\theta_1,\theta_2,\cdots,\theta_m$ 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. rac{\partial \ln L_{_{n}}}{\partial heta_{_{i}}} ight _{ heta_{_{i}}=\stackrel{\circ}{ heta}_{i}} = 0, i = 1, 2, \cdots, m$
		\dot{a} 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计。
(2)估 计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称
评选标 准		$\stackrel{\wedge}{ heta}$ 为 $ heta$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

	一致性 $\partial_n^{\hat{\theta}}$ 设 $\partial_n^{\hat{\theta}}$ 设 $\partial_n^{\hat{\theta}}$ 的一串估计量,如果对于任意的正数 $\partial_n^{\hat{\theta}}$ 。都有				
		$\lim_{n\to\infty}P(\stackrel{\wedge}{\theta}_n-\theta >\varepsilon)=0,$			
		则称 $\overset{\wedge}{ heta}_n$ 为 $ heta$ 的一致估计量(或相合估计量)。			
		\hat{A} 为 θ 的无偏估计,且 $D(\hat{\theta}) \rightarrow O(n \rightarrow \infty)$,则 $\hat{\theta}$ 为 θ 的一致估计。 只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相 应总体的一致估计量。			
(3)区 间估计	置信区间和置	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,_2}, \cdots, x_n$ 出			
	信度	发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x_{,2}, \cdots, x_n)$ 与			
		$\theta_2 = \theta_2(x_1, x_{,_2}, \cdots, x_n) (\theta_1 < \theta_2) , \ \ 使 \ \ \ 得 \ \ $			
		1-lpha(0 <lpha<1)< math="">的概率包含这个待估参数$heta$,即</lpha<1)<>			
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$			
		那么称区间 $[heta_1, heta_2]$ 为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置			
		信水平)。			
	单正态总体的	设 x_1, x_2, \dots, x_n 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$			
	期望和方差的	下,我们来确定 μ 和 σ^2 的置信区间 $[heta_1, heta_2]$ 。具体步骤如下:			
	区间估计	(i)选择样本函数; (ii)由置信度1-α,查表找分位数;			
	,,	(iii) 导出置信区间[$ heta_1, heta_2$]。			
		已知方差,估计均值 (i)选择样本函数			
		$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$			
		(ii) 查表找分位数 $P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$			
		(iii) 导出置信区间			
		$\left[\overline{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \overline{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$			

1	
未知方差,估计均值	(i) 选择样本函数
	$-\frac{1}{x-\mu}$
	$t = \frac{x - \mu}{S / \sqrt{n}} \sim t(n - 1).$
	(ii)查表找分位数
	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\bar{x} - \lambda \frac{S}{\sqrt{n}}, \bar{x} + \lambda \frac{S}{\sqrt{n}}\right]$
方差的区间估计	(i)选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii) 导出 σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S,\sqrt{\frac{n-1}{\lambda_1}}S\right]$

第八章 假设检验

基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是 不会发生的,即小概率原理。 为了检验一个假设 IA是否成立。我们先假定 IA是成立的。如果根据这个假 定导致了一个不合理的事件发生,那就表明原来的假定 16是不正确的,我们拒 绝接受 品;如果由此没有导出不合理的现象,则不能拒绝接受 品,我们称 品是 相容的。与从相对的假设称为备择假设,用从表示。 这里所说的小概率事件就是事件 $\{K \in R_{\alpha}\}$,其概率就是检验水平 α ,通 常我们取 α =0.05, 有时也取 0.01 或 0.10。 假设检验的基本步骤如下: 基本步骤 (i) 提出零假设 抵; (ii) 选择统计量 K; (iii) 对于检验水平α查表找分位数λ; 由样本值 x_1, x_2, \dots, x_n 计算统计量之值 K; (iv) 将 \hat{K} 与 λ 进行比较,作出判断: 当 \hat{K} > λ (或 \hat{K} > λ)时否定 \mathcal{U} , 否则认为 \mathcal{U} 相容。

两类错误	第二类错误	当 H 为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定 H。这时,我们把客观上 H 成立判为 H 为不成立(即否定了真实的假设),称这种错误为"以真当假"的错误或第一类错误,记 A 为犯此类错误的概率,即 P {否定 H 从为真} = a; 此处的 a 恰好为检验水平。 当 H 为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受 H。这时,我们把客观上 H。不成立判 为 H 成立(即接受了不真实的假设),称这种错误为"以假当真"的错误或第二类错误,记 A 为犯此类错误的概率,即
	两类错误的关系	P{接受 H H 为真} = β。 人们当然希望犯两类错误的概率同时都很小。但是,当容量 n 一定时,α变小,则β变大;相反地,β变小,则α 变大。取定α要想使β变小,则必须增加样本容量。 在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可"以假为真"、而不愿"以真当假"时,则应把α取得很小,如 0. 01,甚至 0. 001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
已知 σ^2	$H_0: \mu = \mu_0$	$U = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$	N(0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
	$H_0: \mu \leq \mu_0$			$u > u_{1-\alpha}$
	$H_0: \mu \geq \mu_0$			$u < -u_{1-\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	<i>t</i> (<i>n</i> – 1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha}(n-1)$
未知 σ^2	$H_0: \sigma^2 = \sigma^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^{2}(n-1) \overrightarrow{\mathbb{D}}$ $w > \kappa^{2} (n-1)$
		0		$w > \kappa^2_{1-\frac{\alpha}{2}}(n-1)$

$H_0: \sigma^2 \le$	$\leq \sigma_0^2$	$w > \kappa_{1-\alpha}^2(n-1)$
$H_0:\sigma^2\geq$	$\geq \sigma_0^2$	$w < \kappa_{\alpha}^{2}(n-1)$