

Naïve Bayes Classifier

Python Programming Lab

05506231 Statistics and Probability

- Naïve Bayes Classifier
- Case study on Loan Prediction
- Python Programming for Loan Prediction

Naïve Bayes Classifier

apply Bayes theorem to classification problem

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} \qquad P(class|attribute) = \frac{P(class)P(attribute|class)}{P(attribute)}$$

given a training set

$$P(class|a_1, a_2, ..., a_n) = \frac{P(class)P(a_1, a_2, ..., a_n|class)}{P(a_1, a_2, ..., a_n)}$$

where a_i is the attribute value of the query instance

$$P(a_1, a_2, ..., a_n | class|) = \prod_{i=1}^n P(a_i | class)$$

$$= P(a_i | class) P(a_2 | class) ... P(a_n | class)$$

$$v_{NB} = \underset{v_j \in V}{\operatorname{arg max}} P(v_j) \prod_{i=1}^n P(a_i | v_j)$$

Case study on Loan Prediction

- Use simple_loan.csv dataset to compute all conditional probabilities (Naïve bayes model)
- Input: age, employed, own_house, credit
- Output: Loan prediction of each customer (target)
- Manual Computing
- Coding with Google Colab

Dataset: simple loan.csv

age	employed	own_house	credit	target
young	FALSE	n	fair	no
young	FALSE	n	good	no
young	TRUE	n	good	yes
young	TRUE	У	fair	yes
young	FALSE	n	fair	no
middle	FALSE	n	fair	no
middle	FALSE	n	good	no
middle	TRUE	У	good	yes
middle	FALSE	У	excellent	yes
middle	FALSE	У	excellent	yes
old	FALSE	У	excellent	yes
old	FALSE	У	good	yes
old	TRUE	n	good	yes
old	TRUE	n	excellent	yes
old	FALSE	n	fair	no
old	FALSE	n	excellent	yes
young	TRUE	У	fair	yes

Naïve Bayes Classifier (Manual Computing)

age	employed	own_house	credit	target
young	FALSE	n	fair	no
young	FALSE	n	good	no
young	TRUE	n	good	yes
young	TRUE	у	fair	yes
young	FALSE	n	fair	no
middle	FALSE	n	fair	no
middle	FALSE	n	good	no
middle	TRUE	у	good	yes
middle	FALSE	у	excellent	yes
middle	FALSE	у	excellent	yes
old	FALSE	у	excellent	yes
old	FALSE	у	good	yes
old	TRUE	n	good	yes
old	TRUE	n	excellent	yes
old	FALSE	n	fair	no
old	FALSE	n	excellent	yes
young	TRUE	у	fair	yes

P(credit= "fair" | target="no") = 4/6

P(credit="good" | target="no") = 2/6

P(age = "middle" | target = "no") =
$$2/6$$
 P(age = "middle" | target = "yes") = $3/11$ P(age = "old" | target = "no") = $1/6$ P(age = "old" | target = "yes") = $5/11$ P(age = "young" | target = "no") = $3/6$ P(age = "young" | target = "yes") = $3/11$ P(employed="false" | target="no") = $6/6$ P(employed="false" | target="yes") = $5/11$ P(employed="true" | target="yes") = $6/11$

$$P(own_house = "n" \mid target="no") = 6/6 \qquad P(own_house = "n" \mid target="yes") = 4/11 \\ P(own_house = "y" \mid target="no") = 0/6 \qquad P(own_house = "y" \mid target="yes") = 7/11$$

- a new customer X
- X = (age ="old", employed = "false", own_house = "n", credit= "good")

P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17= 0.6471

```
P(age = "old" | target = "no") = 1/6
P(age = "old" | target = "yes") = 5/11

P(employed="false" | target="no") = 6/6
P(employed="false" | target="yes") = 5/11

P(own_house = "n" | target="no") = 6/6
P(own_house = "n" | target= "yes") = 4/11

P(credit= "good" | target= "yes") = 4/11
```

$$P(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="no"}$$

$$= (6/17) \times (1/6) \times (6/6) \times (6/6) \times (2/6) = 0.019608$$

$$P(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="yes"}$$

$$= (11/17) \times (5/11) \times (5/11) \times (4/11) \times (4/11) = 0.017678$$
Therefore, X belongs to class ("target= no")

- a new customer X
- X = (age ="middle", employed = "true", own_house = "y", credit= "fair")

```
P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17= 0.6471
```

```
P(age = "middle" | target = "no") = 2/6
P(age = "middle" | target = "yes")= 3/11
P(employed="true" | target="no") = 0/6
P(employed="true" | target="yes") = 6/11
P(own_house = "y" | target="no") = 0/6
P(own_house = "y" | target="yes") = 7/11
P(credit= "fair" | target="no") = 4/6
P(credit= "fair" | target="yes") = 2/11
```

$$\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="no"}$$

$$= (6/17) \times (2/6) \times 0 \times 0 \times (4/6) = 0$$

$$\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="yes"}$$

$$= (11/17) \times (3/11) \times (6/11) \times (7/11) \times (2/11) = 0.011137$$

Therefore, X belongs to class ("target= yes")

Upload and Read Data File

 Separate data between dependent and independent variables

Label Encoding

 Transform string to numeric

Model Construction

Compute all conditional probabilities

Model Prediction

Predict unknown data

Upload and Read Data File

```
from google.colab import files
uploaded = files.upload()
```

```
import numpy as np
import pandas as pd
df= pd.read_csv('simple_loan.csv')
```

View data in DataFrame df

Upload and Read Data File

 Separate data between dependent and independent variables

```
X=df.drop(['target'], axis=1)
y=df.target
```


0	у					
	10 11 12 13 14 15 16	rget,	dtyp	e: ob	pject	


```
from sklearn.preprocessing import LabelEncoder
def labelEncode(data,columns):
    for i in columns:
        lb=LabelEncoder().fit_transform(data[i])
        data[i+'_'] = lb

f_columns=['age', 'employed', 'own_house', 'credit']
labelEncode(X,f_columns)

y_le=LabelEncoder()
y1=y_le.fit_transform(y)
```

```
y1

array([0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1])

No= 0 Yes = 1
```

Label Encoding

X1=X[['age_', 'employed_', 'own_house_', 'credit_']]

D	X								
		age	employed	own_house	credit	age_	employed_	own_house_	credit_
	0	young	False	n	fair	2	0	0	1
	1	young	False	n	good	2	0	0	2
	2	young	True	n	good	2	1	0	2
	3	young	True	У	fair	2	1	1	1
	4	young	False	n	fair	2	0	0	1
	5	middle	False	n	fair	0	0	0	1
	6	middle	False	n	good	0	0	0	2
	7	middle	True	У	good	0	1	1	2
	8	middle	False	у	excellent	0	0	1	0
	9	middle	False	У	excellent	0	0	1	0
	10	old	False	у	excellent	1	0	1	0
	11	old	False	у	good	1	0	1	2
	12	old	True	n	good	1	1	0	2
	13	old	True	n	excellent	1	1	0	0
	14	old	False	n	fair	1	0	0	1
	15	old	False	n	excellent	1	0	0	0
	16	young	True	У	fair	2	1	1	1

X1				
	age_	employed_	own_house_	credit_
0	2	0	0	1
1	2	0	0	2
2	2	1	0	2
3	2	1	1	1
4	2	0	0	1
5	0	0	0	1
6	0	0	0	2
7	0	1	1	2
8	0	0	1	0
9	0	0	1	0
10	1	0	1	0
11	1	0	1	2
12	1	1	0	2
13	1	1	0	0
14	1	0	0	1
15	1	0	0	0
16	2	1	1	1
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	age_ 0 2 1 2 2 2 3 2 4 2 5 0 6 0 7 0 8 0 9 0 10 1 11 1 12 1 13 1 14 1 15 1	age_ employed_ 0 2 0 1 2 0 2 2 1 3 2 1 4 2 0 5 0 0 6 0 0 7 0 1 8 0 0 9 0 0 10 1 0 11 1 0 12 1 1 13 1 1 14 1 0 15 1 0	age_ employed_ own_house_ 0 2 0 0 1 2 0 0 2 2 1 0 3 2 1 1 4 2 0 0 5 0 0 0 6 0 0 0 7 0 1 1 8 0 0 1 9 0 0 1 10 1 0 1 11 1 0 1 12 1 1 0 13 1 1 0 14 1 0 0 15 1 0 0


```
from sklearn.naive_bayes import CategoricalNB
model=CategoricalNB()
model.fit(X1,y1)
```

```
print(model.feature_log_prob_)
```

feature_log_prob_: list of arrays of shape (n_features,)

Holds arrays of shape (n_classes, n_categories of respective feature) for each feature. Each array provides the empirical log probability of categories given the respective feature and class, $P(x_i|y)$.

1.9.5. Categorical Naive Bayes

CategoricalNB implements the categorical naive Bayes algorithm for categorically distributed data. It assumes that each feature, which is described by the index i, has its own categorical distribution.

For each feature i in the training set X, CategoricalNB estimates a categorical distribution for each feature i of X conditioned on the class y. The index set of the samples is defined as $J = \{1, \ldots, m\}$, with m as the number of samples.

The probability of category t in feature i given class c is estimated as:

$$P(x_i = t \mid y = c \; ; \; lpha) = rac{N_{tic} + lpha}{N_c + lpha n_i},$$

where $N_{tic} = |\{j \in J \mid x_{ij} = t, y_j = c\}|$ is the number of times category t appears in the samples x_i , which belong to class c, $N_c = |\{j \in J \mid y_j = c\}|$ is the number of samples with class c, α is a smoothing parameter and n_i is the number of available categories of feature i.

CategoricalNB assumes that the sample matrix X is encoded (for instance with the help of OrdinalEncoder) such that all categories for each feature i are represented with numbers $0, \ldots, n_i - 1$ where n_i is the number of available categories of feature i.

Model Interpretation


```
print(model.category_count_)
```

```
Count(credit=excellent && target=no) = 0
Count(credit=fair && target=no) = 4
Count(credit=good && target=no) = 2
```

```
Count(credit=excellent && target=yes) = 5
Count(credit=fair && target=yes) = 2
Count(credit=good && target=yes) = 4
```

```
Count(age=middle && target=no) = 2

Count(age=old && target=no) = 1

Count(age=old && target=no) = 3

Count(age=old && target=yes) = 5

Count(age=young && target=yes) = 3

Count(age=old && target=yes) = 5

Count(age=old && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=old && target=yes) = 3

Count(age=old && target=yes) = 3

Count(age=old && target=yes) = 3

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 3

Count(age=middle && target=yes) = 3

Count(age=middle && target=yes) = 5

Count(age=middle && target=yes) = 5

Count(age=old && target=yes) = 3

Count(age=young && target=yes) = 3

Count(employed=false && target=yes) = 5

Count(employed=true && target=yes) = 6

Count(own_house=n && target=yes) = 6

Count(own_house=n && target=yes) = 4

Count(own_house=y && target=yes) = 7
```

Model Interpretation

 $Log(x) = Log_e(x) or In(x)$

 $Log(P(credit=excellent|target=yes)) = -0.84729786 \ Log(P(credit=fair|target=yes)) = -1.54044504 \ Log(P(credit=good|target=yes)) = -1.02961942$

- 1. age ="middle", employed = "true", own_house = "y", credit= "fair"
- 2. age ="old", employed = "false", own_house = "n", credit= "good"

```
new_input=[[0,1,1,1],[1,0,0,2]]
y_prob_pred = model.predict_proba(new_input)
```

```
y_new_predict=model.predict(new_input)
n=1
for i in y_new_predict:
    print( 'No' ,n, '=>: ',y_le.classes_[i])
    n=n+1
```

```
y_new_predict=model.predict(new_input)
class_names=list(y_le.classes_)

n=1
for i in y_new_predict:
   print( 'No' ,n, '=>: ',class_names[i])
   n=n+1

No 1 =>: yes
No 2 =>: no
```

Prediction a New Customer

array([[0.0721808, 0.9278192]]

[0.53238717, 0.46761283]])

- a new customer X
- X = (age ="middle", employed = "true", own_house = "y", credit= "fair")
 1

```
P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17 = 0.6471
```

```
P(age = "middle" | target = "no") = (2+1)/(6+3)
```

$$P(age = "middle" | target = "yes") = (3+1)/(11+3)$$

P(employed="true" | target="no") =
$$(0+1)/(6+2)$$

P(employed="true" | target="yes") =
$$(6+1)/(11+2)$$

$$P(own_house = "y" | target="no") = (0+1)/(6+2)$$

$$P(own_house = "y" | target="yes") = (7+1)/(11+2)$$

P(credit= "fair" | target="no") =
$$(4+1)/(6+3)$$

P(credit= "fair" | target="yes") =
$$(2+1)/(11+3)$$

$$P(x_i = t \mid y = c \; ; \; lpha) = rac{N_{tic} + lpha}{N_c + lpha n_i}$$

$$\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="no"}$$

$$= (6/17) \times (3/9) \times (1/8) \times (1/8) \times (5/9) = 0.001021$$

$$= 0.001021 / (0.001021 + 0.011137) = 0.0721808$$

$$\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="yes"}$$

$$= (11/17) \times (4/14) \times (7/13) \times (8/13) \times (3/14) = 0.011137$$

$$= 0.011137 / (0.001021 + 0.011137) = 0.9278192$$

Therefore, X belongs to class ("target= yes")

Prediction a New Customer

- a new customer X
- X = (age ="old", employed = "false", own_house = "n", credit= "good")
 0

P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17= 0.6471

```
P(age = "old" | target = "no") = (1+1)/(6+3)
P(age = "old" | target = "yes") = (5+1)/(11+3)

P(employed="false" | target="no") = (6+1)/(6+2)
P(employed="false" | target="yes") = (5+1)/(11+2)

P(own_house = "n" | target="no") = (6+1)/(6+2)

P(own_house = "n" | target= "yes") = (4+1)/(11+2)

P(credit= "good" | target= "yes") = (2+1)/(6+3)

P(credit= "good" | target= "yes") = (4+1)/(11+3)
```

$$P(x_i = t \mid y = c \; ; \; lpha) = rac{N_{tic} + lpha}{N_c + lpha n_i}$$

```
\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="no"}
= (6/17) \times (2/9) \times (7/8) \times (7/8) \times (3/9) = 0.020016
= 0.020016/(0.020016 + 0.017581) = 0.53238717
\hat{P}(v_j) \prod_{i=1}^n P(a_i | v_j) \text{ When } v_j = \text{target="yes"}
= (11/17) \times (6/14) \times (6/13) \times (5/13) \times (5/14) = 0.017581
= 0.017581 / (0.020016 + 0.017581) = 0.46761283
```

Therefore, X belongs to class ("target= no")