Faculté des sciences

Optimization with Application I Exercise Sheet 6 - Discussed on 11.12.2020

We will have a look at a classification problem. We are given a data set $(x_i, y_i)_{i=1}^n$ with $x_i \in \mathbb{R}^p$ and $y_i \in \{-1, 1\}$. These are points in p-dimensional space that each have a class ± 1 associated with them. We will call the set of points in class 1 $A = \{x_i : y_i = 1\}$ and $B = \{x_i : y_i = -1\}$.

A hyperplane is given by a vector $w \in \mathbb{R}^p$ and an offset $b \in \mathbb{R}$ via $\{x : \langle x, w \rangle - b = 0\}$.

Exercise 1. Assume that there exists a hyperplane separating A and B.

- 1. We want to find the hyperplane H that has a maximum margin on both sides. That is we want to find the w, b such that $\min_{x \in A} \operatorname{dist}(x, H) = \min_{x \in B} \operatorname{dist}(x, H)$ is maximal. Formulate this as a constrained optimization problem.
- 2. Solve this problem using Lagrange multipliers. (You may need to expand on the cases we have considered, since your constraint will be an inequality.)
- 3. How would you now classify a new point $x \in \mathbb{R}^p$?

Exercise 2. Let p = 2 and $A \subset \mathbb{D}$, $B \subset \mathbb{C} \setminus \mathbb{D}$, where $\mathbb{D} = \{x : ||x||_2 \leq 1\}$. Find a mapping $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ such that $\phi(A)$ is separable from $\phi(B)$ by a hyperplane.

What changes in the formulas from Exercise 1 when considering such a mapping first?