

are in ohms.

							Printed Page: 1 of 3					
	01	N= 194	950	491 I	20	S	ubje	ect C	ode	: KI	EE1	01T
Roll No:												

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

Time: 3 Hours Total Marks: 100

Notes:

Attempt all Sections and Assume any missing data.

Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)				
Q1(a)	What is	use of form factor and peak factor?					
Q1(b)	What is the ratio of no-load speed to full load speed of a 200 kVA, 12 poles, 2200 V, 3 phase,						
	60 Hz sy	nchronous motor?					
Q1(c)	Write Difference between EMF and Potential Difference						
Q1(d)	Define power factor						
Q1(e)	Is the superposition theorem valid for direct calculation of power? Explain briefly.						
Q1(f)	What is the need of commutator in DC generator?						
Q1(g)	Why is Transformer Ratings done in Volt Amperes (VA).						
Q1(h)	Draw the no load phasor diagram of a transformer						
Q1(i)	For heav	For heavy loads, What is the relation between torque (T) and slip (S) in induction motor.					
Q1(j)	What is the difference between asynchronous motor and synchronous motor?						

SECTION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30
55 SMC 351 A. SSSS	ve the emf equation of a transformer ve the condition for maximum efficiency in single phase	transformer
Q2(b) i) List a ii) Calcu	I the important parts of a D.C. Motor and explain the implant the emf generated by 4 pole wave wound generator per slot when driven at 1200 rpm. The flux per pole is	portance of each having 65 slots with 12
	The venin theorem, find current in 1Ω resistor in the circles $\frac{1 \Lambda}{4 \sqrt{1 - 2 \Omega}}$	
497	al analysis to find the voltage across and current through given below: 2 \(\text{A} \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{A} \\ \text{B} \\ \text{A} \\ \text{B} \\ \text{A} \\	

Printed Page: 2 of 3
Subject Code: KEE101T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)
Q3(a) Reduce the network of Fig. 1 to obtain the equivalent resistance as seen between nodes ad.

Q3(b) With the help of Norton's theorem, find V₀ in the circuit shown below. All resistances are in Ohms.

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)
Q4(a)		R - L - C circuit consists of $R = 1000$ Ohm, $L = 100$ mH a	nd $C = 10 \mu F$.
	The appl	ied voltage across the circuit is 100 V.	
	(i) Find t	he resonant frequency of the circuit.	
	(ii) Find	the quality factor of the circuit at the resonant frequency.	
	(iii) At w	hat angular frequencies do the half power points occur?	
	(iv) Calc	ulate the bandwidth of the circuit.	
Q4(b)	Three im	pedances of (70.7 + j 70.7) Ohm, (120 + j 160) Ohm and (1	120 + j 90) Ohm
	are conne	ected in parallel across a 250 V supply. Determine (i) admit	ttance of the circuit (ii)

SECT	TION-C	Attempt ANY ONE following Question	Marks (1 X10=10)
Q5(a)	A transfe	ormer on no-load has a core loss of 50W, draws a cur	rrent of 2A and has an induced
	emf of 2	30V. Determine the no-load power factor, core loss or	urrent and magnetizing current.
	Also, cal	culate the no-load circuit parameters of the transform	ner. Neglect winding resistance
	and leaks	age flux	200300

O5(b) Explain the performance of principal of operation of single phase transformer.

supply current and (iii) circuit power factor.

									Pri	intec	l Pa	ge: 3	of 3
	·c.	S = 5	9 19	Subject Code: KEE1017					01T				
Roll No:													

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECT	ION-C	ION-C Attempt ANY ONE following Question Marks (1X)					
Q6(a)	is the emf prod	generator with 400 armature conductors has a useful flucuced if the machine is wave wound and runs at 1200rpm the machine should be driven to generate the same emf in	? What must be the speed				
Q6(b)	An 8-pol armature	e, 400V shunt motor has 960 wave connected armatur current is 40A and flux per pole is 0.02Wb. The armatur rop is 1V per brush. Calculate the full load speed of the 1	e conductors. The full load re resistance is 0.1Ω and the				
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)				
Q7(a)	(ii) The v 50 Hz. T	in the slip torque characteristics of the three-phase induct voltage applied to the stator of a three phase, 4 pole induct the frequency of the emf induced in the rotor is 15.5 Hz. I motor is running.	tion motor has frequency of				
Q7(b)	at which motor is running. (i) Write short notes on MCB and MCCB (ii) Write short notes on characteristics of batteries.						