Assignment 1 Solution

COMPSCI 3331

(5 marks) **1.** Given the ε -NFA below, construct a DFA that accepts the same language. Ensure that all states in the final DFA are appropriately labelled (i.e., with sets of states). Ensure your DFA is complete.

By applying the ε -NFA removal algorithm and the subset construction, we arrive at the following DFA:

(6 marks) **2.** Let Σ be an alphabet and $a \in \Sigma$ be a letter from the alphabet. Let $p_a : 2^{\Sigma^*} \to 2^{\Sigma^*}$ be the following language operation:

$$p_a(L) = \{ w \in \Sigma^* : \exists n \ge 0 \text{ such that } wa^n \in L \}$$

Show that the regular languages are closed under p_a . You do not need to give a formal proof, but you should give a explanation for how your construction works.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an arbitrary DFA. Then define

$$cl_a(q) = \{q' \in Q : \exists n \ge 0 \text{ such that } \delta(q', a^n) = q\}.$$

That is, $cl_a(q)$ is the set of states for which you can reach q by reading only as. This set is well-defined: it doesn't matter what value of n gives $\delta(q', a^n) = q$, or if several values of n give $\delta(q', a^n) = q$. As long as any value of n gives this, then $q' \in cl_a(q)$.

Now define M' to be the following DFA: $M' = (Q, \Sigma, \delta, q_0, F')$ where $F' = F \cup \{q \in Q : cl_a(q) \cap F \neq \emptyset\}$. That is, we add to F' all the states q from which you can reach a final state by reading only as. Put another way, if there is a word a^n such that $\delta(q', a^n) \in F$, then we add q' as a final state. Again, we don't care what value of n (or if multiple values of n exist) satsifies $\delta(q', a^n) \in F$, as long as one exists.

Then $L(M') = p_a(L(M))$. This shows that the regular languages are closed under p_a . Informally, our construction works by ensuring that we add all the final states that could allow us to travel to an old final state of M by as only. In particular, suppose that $w \in p_a(L)$. Then $wa^n \in L$ for some n. But if M goes from q_0 to q on w then $\delta(q, a^n) = q_f \in F$, since wa^n is accepted by M. Therefore $cl_a(q) \cap F \supseteq \{q_f\}$ and so $q \in F'$. Thus, w is accepted by M'.

(9 marks) **3.** (a) Let $\Sigma = \{a\}$ and $L = \{a^p : p \text{ is a prime number}\}$. Prove that L is not regular.

Let *n* be the constant defined by the pumping lemma. As there are infinitely many primes (by Euclid's theorem, let *p* be a prime number greater than *n*. Then $x = a^p \in L$.

By the pumping lemma, we can write x = uvw where $|uv| \le n$ and |v| > 0. As all letters in x are a, let i, j be the lengths of u and v, so that $u = a^i, v = a^j$ and $w = a^{p-i-j}$. Note that $i + j \le n$ and j > 0.

Consider now $uv^{p+1}w = a^ia^{j(p+1)}a^{p-i-j} = a^{i+j(p+1)+p-j-i} = a^{p+jp}$. But as p+jp = p(j+1), and $j+1 \ge 2$, the length of $uv^{p+1}w$ is not prime. Thus, $uv^{p+1}w$ is not in L and L is not regular.

(b) Let $\Sigma = \{a\}$ and $L = \{a^n : n \text{ is a composite integer } \}$. Recall that an integer n is composite if there exists another integer m with 1 < m < n such that m divides n. Prove that L is not regular.

Assume that L is regular. Then by the closure properties of the regular languages \overline{L} is also regular. But $\overline{L} = \{\varepsilon, a\} \cup \{a^p : p \text{ is a prime number}\}$. Similarly, let $L_2 = L(aaa^*)$, i.e., the language accepted by the regular expression aaa^* . So L_2 is regular.

Then $\overline{L} \cap L_2$ is also regular, as the regular languages are closed under intersection. But then $\overline{L} \cap L_2 = \{a^p : p \text{ is a prime number}\}$. From part (a), this language is not regular, which is a contradiction. Therefore, L is not a regular language.

(c) Let $\Sigma = \{a,b\}$ and $L \subseteq \Sigma^*$ be the language $L = \{a^i b^j : j \le i \le 2j\}$. Prove that L is not regular.

Let *n* be the constant defined by the pumpin lemma. Let $z = a^n b^n \in L$. Write *z* as z = uvw where $|uv| \le n$ and $|v| \ge 0$. Thus $u = a^p$, $v = a^r$ and $w = a^n - p - rb^n$, for some $p, r \ge 0$ with $p + r \le n$ and r > 0.

Consider now $z_0 = uw^0w = a^{n-r}b^n$. But now the number of as in z_0 is less than the number of bs, so therefore, $z_0 \notin L$ and L is not regular.

(4 marks) **4.** Let $L = \{wxw^R : w, x \in \{a,b\}^+\}$. Recall that $\{a,b\}^+$ is the positive Kleene closure, so that w,x are not ε . Prove or disprove that L is regular.

The language L is regular. To prove this, we first establish an simplified representation for L that will make our proof easier. We claim that

$$L = \{uxu : u \in \{a,b\}, x \in \{a,b\}^+\}$$

Note that u here is a single letter, not a whole word. Let $L_0 = \{uxu : u \in \{a,b\}, x \in \Sigma^*\} \cup \Sigma \cup \{\varepsilon\}$. We establish that $L = L_0$:

- $L_0 \subseteq L$ is clear. If we consider a word of the form uxu, then as u is a single letter, then $u = u^R$ and thus any word of the form uxu is also of the form wxw^R with w = u.
- To show $L \subseteq L_0$, let $u = wxw^R \in L$. As w, x are not empty, we must have that w = aw' for some $a \in Sigma$ and so, $u = aw'x(w')^Ra$ (by definition of reversal). Thus, u has the form aza for some $z = w'x(w')^R$. Thus, $u \in L_0$.

Now, we show that L is regular. As $L = \{uxu : u \in \{a,b\}, x \in \{a,b\}^+\}$, we note that $L = a(a+b)^*(a+b)a + b(a+b)^*(a+b)b$ is a regular expression that matches L. Thus, L is regular.