Отчёт №4

Виктория Вяльцева

Март 2023

Постановка задачи

Рассматривается пластина с трещиной длины a=1 м, длина горизонтальной стороны пластины w=3 м, вертикальной $2b,\ b=10$ м. Трещина начинается в центре левой стороны пластины и направлена в центри пластины под углом ϕ относительно оси Ox. Пластина изготовлена из однородного, изотропного материала. Необходимо определить напряженнодеформированное состояние пластины, коэффициент интенсивности напряжений.

Рис. 1: Вид пластины и сетка при $\phi = 60$

Решение задачи и конечно-элементная модель

Параметры материала пластины: модуль Юнга – $E=210\cdot 10^9$ Па, коэффициент Пуассона – $\nu=0.3$. Тип элементов - plane182. К верхней стороне пластины приложено усилие p=-1 Па по оси Оу. Нижняя сторона пластины жестко закреплена. За счёт приложенных услилий трещина раскрывается. Проанализируем коэффициент интенсивности напряжений на конце трещины при разных углах поворота, проверим внутреннюю сходимость на сетках с длиной элементов n=0.2 м и 0.1 м.

ϕ	0°	15°	30°	45°	60°
Аналит.р.	3.1674				
Числ.р. $n = 0.2$ м	5.0752	4.7412	3.8975	2.8548	1.8505
Числ.р. $n = 0.1$ м	5.1037	4.7747	3.9163	2.8546	1.8599
Отклонение решений	0.5%	0.7%	0.5%	0.007%	0.5%

Разница между решениями на разных сетках для всех рассмотренных значений ϕ менее одного процента. Будем считать что имеет место внутренняя

Рис. 2: σ_{xx} при $\phi=60$

сходимость.

Вывод

Таким образом, чем больше угол поворота трещины - тем меньше значение значение коэффициента интенсивности напряжений.

Листинг

```
/clear
/prep7
pi=4*atan(1)
*afun,deg
a=1
b=10
E=₩
p=-1
delta=0.1
phi = 60
tet=a/w
f=1.12-0.23*tet+10.56*tet*tet
f1=-21.74*tet*tet*tet+30.42*tet*tet*tet
analit=-p*sqrt(pi*a)*(f+f1)
n=0.1
m=0.2
```

```
r=1
j=6
E=210e9
nu=0.3
k,1
k,2,cos(phi)*a,sin(phi)*a
k,3,w,tan(phi)*w
k,4,w,b
k,5,0,b
k,6,w,-b
k,7,,-b
k,8
lstr,1,2
1str,2,3
1str,3,4
lstr,4,5
lstr,5,1
lstr,8,2
1str,3,6
lstr,6,7
lstr,7,8
al,1,2,3,4,5
al,6,2,7,8,9
et,all,plane182,,,0,
mp,ex,1,E
mp,prxy,1,nu
esize,n
kscon,2,m,1,j,r
type,1
mat,1
amesh,all
sfl,4,press,p
d1,8,,all,
cskp,11,0,2,3,4
CSYS, 11
rSYS, 11
```

```
/solu
solve
/post1
set, last
nsel,r,loc,x,0
nsel,s,loc,y,0
*get,nod1,node,,num,min
nsel,all
lsel,s,line,,1
nsll,s
nsel,r,loc,x,-m
*get,nod2,node,,num,min
nsel,all
nsll,s,
nsel,r,loc,x,-m*(r+1)
*get,nod3,node,,num,min
nsel,all
lsel,all
lsel,s,line,,6
nsll,s
nsel,r,loc,x,-m
*get,nod4,node,,num,min
nsel,all
nsll,s,
nsel,r,loc,x,-m*(r+1)
*get,nod5,node,,num,min
nsel,all
lsel,all
path, sif, 5, 30, 40
ppath,1,nod1
ppath,2,nod2
ppath,3,nod3
ppath,4,nod4
ppath,5,nod5
kcalc,1,1,3
*get,k1,kcalc,,k,1
```