May, 2021

1

Suppose that $\{x_n\}$ and $l \in \mathbb{R}$ are such that every Cauchy subsequence of $\{x_n\}$ converges to l.

- a. Show that if $\{x_n\}$ is bounded, it must converge to l.
- b. Show that if $\{x_n\}$ is unbounded, it is not true that it must converge to l. (Give a counterexample)

2

Denote by l(I) the length of any interval I. Define m^* and m^{**} from $\mathcal{P}(\mathbb{R})$ to $[0,\infty]$ by setting for any subset A of \mathbb{R}

$$m^*(A) = \inf\{\sum_{k=1}^{\infty} l(I_k) : A \subset \bigcup_{k=1}^{\infty} I_k, \quad I_k \text{ is an open and bounded interval}\},$$

$$m^{**}(A) = \inf\{\sum_{k=1}^{\infty} l(J_k) : A \subset \bigcup_{k=1}^{\infty} J_k, \quad J_k \text{ is any interval}\}.$$

Prove that $m^* = m^{**}$.

3:

Consider functions $f_n, g_n \in L^2([0,1])$ for all n. Assume $f_n \to 0$ almost everywhere on [0,1] and $\sup_n ||g_n||_{L^2} < \infty$.

- a. Assume in addition that $|f_{n+1}| \leq |f_n|$ almost everywhere on [0,1] for all n. Show that $\int_{[0,1]} f_n g_n dx \to 0$.
- b. Without the monotonicity assumption $|f_{n+1}| \leq |f_n|$, give a counterexample to the conclusion in part a.