

ABERDEEN 2040

GitHub, Python 3 and an Introduction to Machine Learning with Linear Regression

Exploratory Data Analysis
California Housing CSV Dataset

Coding, GIS and Remote Sensing Data for Glaciology

27 February 2025

St Mary's G15

Overview

- 1. GitHub
- 2. Python 3
- 3. Machine Learning Cross Validation Methodology
- 4. Simple Linear Regression
- 5. Multiple Linear Regression

Machine Learning Reading

Anaconda Cheat Sheet

CONDA CONDA CHEAT SHEET

Command line package and environment manager

Learn to use conda in 30 minutes at bit.ly/tryconda

Save environment to a text file

Deactivate the current environment

Create environment from a text file

Use conda to search for a package See list of all packages in Anaconda

Finding conda packages

Delete an environment and everything in it

it bio-env and install the biopython package

Stack commands: create a new environment, name

TIP: Anaconda Navigator is a graphical interface to use conda. Double-click the Navigator icon on your desktop or in a Terminal or at the Anaconda prompt, type anaconda-navigator

conda list --explicit > bio-env.txt

conda env create --file bio-env.txt

conda create -- name bio-env biopython

https://docs.anaconda.com/anaconda/packages/pkg-docs

conda env remove --name bio-env

WINDOWS: deactivate macOS, LINUX: source deactivate

conda search PACKAGENAME

Conda basics	
Verify conda is installed, check version number	conda info
Update conda to the current version	conda update conda
Install a package included in Anaconda	conda install PACKAGENAME
Run a package after install, example Spyder*	spyder
Update any installed program	conda update PACKAGENAME
Command line help	COMMANDNAMEhelp conda installhelp
*Must be installed and have a deployable command, usually PACKAGENAME	
Using environments	
Create a new environment named py35, install Python 3.5	conda createname py35 python=3.5
Activate the new environment to use it	WINDOWS: activate py35 LINUX, macOS: source activate py35
Get a list of all my environments, active environment is shown with *	conda env list
Make exact copy of an environment	conda createclone py35name py35-2
List all packages and versions installed in active environment	conda list
List the history of each change to the current environment	conda listrevisions
Restore environment to a previous revision	conda installrevision 2

Install a new package (Jupyter Notebook) in the active environment	conda install jupyter
Run an installed package (Jupyter Notebook)	jupyter-notebook
Install a new package (toolz) in a different environ (blo-env)	nment conda installname bio-env toolz
Update a package in the current environment	conda update scikit-learn
Install a package (boltons) from a specific channel (conda-forge)	conda installchannel conda-forge boltons
Install a package directly from PyPI into the curren environment using pip	tactive pip install boltons
Remove one or more packages (toolz, boltons) from a specific environment (bio-env)	conda removename bio-env toolz boltons
Managing multiple versions of Python	
Install different version of Python in a new environment named py34	conda createname py34 python=3.4
Switch to the new environment that has a different version of Python	Windows: activate py34 Linux, macOS: source activate py34
Show the locations of all versions of Python that ar currently in the path NOTE: The first version of Python in the list will be execute	Linux, macOS: which -a python
Show version information for the current active Py	thon pythonversion
Specifying version numbers	

Constraint type Specification

numpy=1.11 1.11.0, 1.11.1, 1.11.2, 1.11.18 etc. numpy==1.11 "numpy>=1.11" 1.11.0 or higher Greater than or equal to "numpy=1.11.1|1.11.3" 1.11.1, 1.11.3 "numpy>=1.8,<2"

NOTE: Quotation marks must be used when your specification contains a space or any of these characters; > < | 1

MORE RESOURCES

Free Community Support groups.google.com/a/continuum.io/forum/#!forum/conda

Online Documentation conda.io/docs Command Reference conda.io/docs/commands Paid Support Options Anaconda Onsite Training Courses Anaconda Consulting Services

https://docs.conda.io/projects/conda/en/4.6.0/ downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pd

Python Code for the Session

The slides and the code for the session can be found implemented at:

GitHub ID: Stevieee83

https://github.com/Stevieee83

Machine Learning Library: ScikitLearn

GitHub Web Browser Demonstration

Python 3

Python 3 ipython Interpreter

ABERDEEN 2040

Machine Learning with Linear Regression

Machine Learning Libraries

- ScikitLearn (well recognised machine learning library)
- Pandas (data processing Python library)
- NumPy (numerical Python library)
- Matplotlib (data visualisation Python library)
- Seaborn (data visualisation Python library)
- SciPy (statistics Python library)

Gradient Descent

$$X = X - learning_rate * gradient$$

Exploratory Data Analysis Code Demonstration

Data Pre-Processing

Data Normalisation

ABERDEEN 2040

Hold Out Cross Validation

- Split the dataset to 80% training and 20% test data
- Split the training dataset again to generate a 20% validation dataset (20% over all of the examples is recommended, not just the training dataset)
- Only use the test dataset after training and validating the model with the training and validation datasets.

Hold Out Cross Validation

100 Total Overall Dataset Examples

ABERDEEN 2040

Simple Linear Regression

Simple Linear Regression

$$y(X, W) = W_o + (W1X1)$$

Training Linear Regression

- Set the Learning Rate
- Adapt the training iterations if required
- Tune any regularisation parameters

Loss in Linear Regression Models

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)

MAE does not penalise Linear Regression models as much when there are outliers in the data compared to MSE and RMSE

Evaluating the Linear Regression

- R2 Score
- Pearson Linear Correlation Coefficient (PLCC)
- Spearman Rank Correlation Coefficient (SRCC)
- Kendal Rank Correlation Coefficient (KRCC)

Simple Linear Regression Evaluation (ScikitLearn)

Dataset Split	MSE Loss
Training	0.52
Validation	0.55
Test	0.53

Simple Linear Regression Evaluation (Python)

Dataset Split	MSE Loss
Training	0.52
Validation	0.52
Test	0.53

Simple Linear Regression Evaluation (ScikitLearn)

Dataset Split	R2 Score	PLCC	SRCC	KRCC
Test	0.46	0.68	0.67	0.49

Simple Linear Regression Evaluation (Python)

Dataset Split	R2 Score	PLCC	SRCC	KRCC
Test	0.46	0.68	0.67	0.49

Multiple Linear Regression

Multiple Linear Regression

- Exactly the same concept as Simple Linear Regression except there is more than one feature for the model to use for prediction.
- 8 features are in the example notebooks for the session.

$$y(X, W) = W_o + (W_1 X_1) + \dots + (W_D X_D)$$

$$y(X, W) = W_o + (W_1X_1) + \dots + (W_8X_8)$$

Multiple Linear Regression Evaluation (ScikitLearn)

Dataset Split	MSE Loss
Training	0.39
Validation	0.40
Test	0.42

Multiple Linear Regression Evaluation (Python)

Dataset Split	MSE Loss
Training	0.39
Validation	0.39
Test	0.42

Multiple Linear Regression Evaluation (ScikitLearn)

Dataset Split	R2 Score	PLCC	SRCC	KRCC
Test	0.58	0.76	0.81	0.62

Multiple Linear Regression Evaluation (Python)

Dataset Split	R2 Score	PLCC	SRCC	KRCC
Test	0.58	0.76	0.81	0.62

Summary

- Exploratory data analysis and data pre-processing are essential before training any machine learning model with any dataset.
- Understanding gradient descent and how the learning rate effects the weight parameters are essential for training any machine learning model that uses gradient descent.
- Linear Regression models can only be used on data where the features have linear relationships to the output predictions made by the model over the complete range.

References

- [1] Christopher M. Bishopl. Pattern Recognition and Machine Learning. Basingstoke, UK: Springer, 2007. isbn: 978-0387310732.
- [2] Paul Deitel and Harvey Deitel. Python For Programmers. London, UK: Pearson, 2019. isbn: 978-0-13-522433-5.
- [3] Li, F.-F. CS231N: Deep Learning for Computer Vision, Stanford University CS231n: Deep Learning for Computer Vision. Available at: https://cs231n.stanford.edu/ (Accessed: 24 April 2024).
- [4] Sebastian Raschka, Yuxi (Hayden) Liu, and Vahid Mirjalili. Machine Learning with PyTorch and Scikit-Learn. Birmingham, UK: Packt Publishing, 2022. isbn: 978-1801819312.