PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-118914

(43)Date of publication of application: 12.05.1998

(51) htCl

B24B 37/00

B24D 3/00 // B24B 9/00

(21)Application number : 08-272196

(71)Applicant: N PPON STEEL CORP

(22)Date of filing:

15.10.1996

(72) Inventor: TAMURA MOTONORI

64) DRESSER OF ABRASINE CLOTH FOR SEM CONDUCTOR SUBSTRATE

67)Abstract:

PROBLEM TO BE SOLVED: To provide the dresser of the abrasive c bth for a sem iconductor substrate without the falling off and boss of a diam ond grain.

SOLUTION: This is the dresser of an abrasive c bth used in the flattening grinding process of a sem iconductor substrate pined a diam ond grain 1 with a metal 2 by an electrodeposition method or brazing method and further, is what a seram ic coating film 4 on the metal surface is applied. The scratch injury of the sem iconductor substrate and grinding c bth by the falling off of the diam ond grain is restrained to minimum and the sem iconductor substrate with high yield can be produced.

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-118914

(43)公開日 平成10年(1998) 5月12日

(51) Int.Cl.*	X (1)	歲 別記号	FI	
B24B	37/00		B 2 4 B 37/00	A
B24D	3/00	3 1 0	B 2 4 D 3/00	310D
# B24B	9/00	601	B 2 4 B 9/00	601H

審査請求 未請求 請求項の数2 OL (全 3 頁)

(21)出壞番号	特顯平8-272196	(71)出顧人	000006655 新日本製鍵株式会社
(22) 出顧日	平成8年(1996)10月15日	(72)発明者	東京都千代田区大手町2丁目6番3号 田村 元紀 川崎市中原区井田1618番地 新日本製鐵株
		(74)代理人	式会社技術開発本部内 弁理士 半田 昌男

(54) 【発明の名称】 半導体基板用研磨布のドレッサー

(57)【要約】

【課題】 ダイヤモンド粒の脱落や欠損のない半導体基 板用研磨布のドレッサーを提供することを目的とする。 【解決手段】 ダイヤモンド粒1が電着法またはろう付 け法により金属2で接合された、半導体基板の平面化研 磨工程で使用される研磨布のドレッサーであって、さら に前記金属の表面にセラミックスコーティング膜4を施 したことを特徴とする。ダイヤモンド粒の脱落による半 導体基板や研磨布のスクラッチ傷を最小限に抑え、歩留 まりの高い半導体基板製造ができる。

【特許請求の範囲】

【請求項1】 ダイヤモンド粒が電着法またはろう付け 法により金属で接合された、半導体基板の平面化研磨工 程で使用される研磨布のドレッサーであって、さらに前 記金属の表面にセラミックスコーティング膜を施したこ とを特徴とする半導体基板用研磨布のドレッサー。

【請求項2】 前記セラミックスコーティング膜が、硬 さHV1000以上の、窒化チタン、炭化チタン又は炭 窒化チタンからなる硬質膜であることを特徴とする特許 請求項1に記載の半導体基板用研磨布のドレッサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体基板の平面 化研磨工程で、研磨布の目詰まりや異物除去を行う際に 使用される半導体基板用研磨布のドレッサーに関する。 [0002]

【従来の技術】集積回路を製造する所定の段階で、ウエ ーハやウエーハ表面に導電体・誘電体層が形成された半 導体基板の表面を研磨することが必要である。通常、こ する間に行われ、化学スラリーを導入することにより、 半導体表面のフィルム間に容易により大きな研磨除去速 度及び選択度を与えるようにする。この研磨工程はしば しば、化学的かつ機械的平面化(CMP; Chemical Mec hanical Planarization)と呼ばれ、薄いかつ平坦の半 導体材料を制御された圧力及び温度下で湿った研磨表面 に対して保持しかつ回転させる工程を含む。

【0003】CMP工程では、例えば5~300nm程 度の粒径を有するSiOz 粒子を苛性ソーダ、アンモニ ヤおよびエタノールアミン等のアルカリ溶液に懸濁させ 30 てPH9~12程度にした、いわゆるコロイダルシリカ からなる化学スラリーとポリウレタン樹脂等からなる研 **磨布が用いられる。研磨時には、化学スラリーを流しな** がら、半導体基板を研磨布に当接させて、研磨が行われ る。研磨布は一定時間使用すると表面や内部の目詰まり がおこるのでドレッシングが必要である。ドレッシング は、研磨布に化学スラリーを流しながらダイヤモンド電 着砥石によりおこなっていた。ダイヤモンドの粒径は、 50μm~300μm程度のものが使用されていた。

削や研削で使用される従来のダイヤモンド工具とは、次 の点で本質的に異なっている。切削工具ではダイヤモン ドが少量脱落してもダイヤモンド脱落後の新生面に別の ダイヤモンドが残っていれば切削能力の低下にはならな いのに対して、CMPドレッサーでは、研磨布や半導体 基板表面を傷つけるためダイヤモンドの脱落が少量でも 許容されない点、また、湿式で低い回転数で使用される ので切削工具で求められる耐熱性や極端な耐磨耗性は必 要ないが、アルカリ水溶液に対する耐食性が求められる 点である。

[0005]

【発明が解決しようとする課題】従来のドレッサーは、 ダイヤモンド粒をNi等の金属で電着したものが用いら れていた。しかし、ドレッシング中に前記化学スラリー を使用すると、ダイヤモンドは研磨されないが、前記金 属は機械的かつ化学的に研磨され、ダイヤモンドの結合 強度を弱め、ダイヤモンドが脱落し易くなるという問題 があった。

【0006】図1に、このプロセスを模式的に示す。ダ 10 イヤモンド粒1を接合している金属2は、ドレッシング 中に機械的かつ化学的に研磨され、接合部分が少なくな り機械的接合強度が不足してダイヤモンドの脱落にいた る。ダイヤモンド電着砥石では、しばしばダイヤモンド 粒の脱落や欠損が起こり、研磨布や半導体基板にスクラ ッチ傷を付ける原因となる。スクラッチ傷の入った半導 体基板は、使用できず、製造歩留まりを著しく下げる。 このため、ダイヤモンド粒の脱落や欠損のないドレッサ 一が求められていた。

【0007】本発明は、上記事情に基づいてなされたも の工程は、ウエーハ上に種々の装置及び集積回路を形成 20 のであり、ダイヤモンド粒の脱落や欠損のない半導体基 板用研磨布のドレッサーを提供することを目的とするも のである。

[0008]

【課題を解決するための手段】上記の目的を達成するた めの本発明は、ダイヤモンド粒が電音法またはろう付け 法により金属で接合された、半導体基板の平面化研磨工 程で使用される研磨布のドレッサーであって、さらに前 記金属の表面にセラミックスコーティング膜を施したこ とを特徴とするドレッサーである。前記セラミックスコ ーディング膜は、硬さHV1000以上の、窒化チタ ン、炭化チタン又は炭窒化チタンからなる硬質膜である ことが好ましい。

[0009]

【作用】ダイヤモンド粒の接合には、Ag、Cu、T i, Cr, Ni等の金属を使って電着またはろう付けす ると強い接合強度が得られる。本発明では、接合に使わ れる金属の表面の耐久性をセラミックスコーティング膜 で向上する。セラミックスコーティング膜は、機械的か つ化学的に耐久性に優れるため、ドレッシング中に化学 【0004】CMP工程で使用されるドレッサーは、切 40 スラリーに研磨されにくく、ダイヤモンド粒の脱落を防 止する。このセラミックスコーティング膜が耐摩耗性を 十分に発揮するためには、硬さHV1000以上の、窒 化チタン、炭化チタン、炭窒化チタンからなる硬質膜で あることが好ましい。窒化チタン、炭化チタン、炭窒化 チタンは、例えばイオンプレーティング法などにより容 易にコーティングでき、いずれも金属との密着性に優 れ、高い表面硬度が得られる。

> 【0010】セラミックスコーティング膜の厚さは、 0. 5 μ m以上あれば効果が発揮される。10 μ m以上 50 厚くコーティングしても効果は変わらないので、セラミ

ックスコーティング膜の厚さは、0、5~10μmが適 当である。本発明のドレッサーは、例えば次のように製 造できる。ダイヤモンド粒を電着法またはろう付け法に より、Ag, Cu, Ti, Cr, Ni等の金属でドレッ サー基板に接合した後、イオンプレーティング法により 表面に窒化チタン、炭化チタン、炭窒化チタン等を成膜 する。このままでは、ダイヤモンド粒表面にもコーティ ングされているので、ダイヤモンド粒表面を研磨し、ダ イヤモンド粒を露出させる。これにより、ドレッシング 速度を落とさず、ダイヤモンド粒の脱落を防止したドレ 10 能である。 ッサーが製造できる。

[0011]

【実施例】以下に本発明の実施例について、図面を参照 して説明する。

(実施例1) 図2は本発明の一実施例のドレッサー表面 部の拡大断面図である。接合金属2にはNiを使用し た。ダイヤモンド粒1を接合金属2で電着し、さらに窒 化チタンをイオンプレーティング法により5μmコーテ ィングした。その結果、表面硬度HVが1650となっ たセラミックスコーティング膜4が形成された。このド 20 レッサーは、従来のものよりダイヤモンド粒の脱落が約 5分の1となり、耐久性を著しく増すことができた。

【0012】 (実施例2) ドレッサー表面部の拡大断面 は実施例1と同様となった。接合金属はAgを75wt* *%、Cuを23wt%、Tiを2%wt含む合金を使用 した。ダイヤモンド粒を接合金属でろう付けし、さらに 炭窒化チタン8μmコーティングした。その結果、表面 硬度がHVが2520となったセラミックスコーティン グ膜が形成された。このドレッサーは、従来のものより ダイヤモンド粒の脱落が約10分の1となり、耐久性を 著しく増すことができた。

【0013】尚、本発明は上記の実施例に限定されるも のではなく、その要旨の範囲内において種々の変形が可

[0014]

【発明の効果】以上説明したように本発明によれば、ダ イヤモンド粒の脱落による半導体基板や研磨布のスクラ ッチ傷を最小限に抑え、歩留まりの高い半導体基板製造 ができる。

【図面の簡単な説明】

【図1】 従来のドレッサーによるダイヤモンド粒の脱落 の様子を示す模式図である。

【図2】本発明のドレッサーの断面模式図である。 【符号の説明】

- 1 ダイヤモンド粒
- 2 接合金属
- 3 ドレッサー基板
- セラミックスコーティング膜

[図1]

【図2】

使用中に接合金属2が研磨され、 使用的 ダイヤモンド粒が脱落する様子

