Smoothing a Calabi-Yau manifold

Fredrik Meyer

June 7, 2016

Thesis submitted for the degree of Philosophiæ Doctor

Chapter 1

Preliminary definitions

We work over \mathbb{C} , but some theorems may be stated over a field k.

1.1 Stanley-Reisner basics

Given a simplicial complex K, one can associate to it a projective scheme $\mathbb{P}(K)$ defined as follows. Let P be the polynomial ring with one variable for each vertex of K. Then the *Stanley-Reisner ideal* I_K corresponding to K is generated by the monomials corresponding to *non-faces* of K. Then we define the *Stanley-Reisner scheme* to be $\text{Proj } P/I_K$.

Example 1.1.1. Let K be the square, with vertices v_0, v_1, v_2, v_3 . Then the Stanley-Reisner ideal is generated by v_0v_2 and v_1v_3 .

Some of the topology of the simplicial complex is encoded in the scheme structure of $\mathbb{P}(\mathcal{K})$. In particular, the simplicial (co)homology groups of \mathcal{K} can be computed as the sheaf cohomology of $\mathbb{P}(\mathcal{K})$

Lemma 1.1.2. Let $(K; \mathbb{C})$ denote the singular cohomology groups of K. Then there are isomorphisms $H^i(K; \mathbb{C}) = H^i(\mathbb{P}(K), \mathcal{O}_{\mathbb{P}(K)})$ for all i.

Proof. ——to come———
$$\Box$$

Corollary 1.1.3. We have isomorphisms $H^i(K, \mathbb{C}) \simeq H^{2i}(\mathbb{P}(K); \mathbb{C})$ of singular cohomology groups.

Proof. Something about *i*-cells in even dimensions \Box

1.2 Calabi-Yau basics

Definition 1.2.1. A *Calabi-Yau variety* is a smooth projective variety satisfying the following two conditions:

- 1. $H^{i}(X, \mathcal{O}_{X}) = 0$ for $0 < i < \dim X$.
- 2. The canonical sheaf is trivial: $\omega_X \simeq \mathcal{O}_X$.

The classical example of a Calabi-Yau manifold is the quintic threefold in \mathbb{P}^5 . Another example is the following:

Example 1.2.2. Let X be the double cover of \mathbb{P}^3 ramified along a smooth octic. The projection map is affine, so the conditions on $H^i(X, \mathcal{O}_X)$ are fulfilled. To see that the canonical sheaf is trivial, we use the adjunction formula, which says that $K_X = 2K_{\mathbb{P}^3}\big|_X + R$, where R is the ramification divisor. In this case R 8H, where H is a hyperplane in \mathbb{P}^3 . Then, since $K_{\mathbb{P}^3} = -4H$, it follows that $K_X = 0$.

If K is a simplicial sphere, then a smoothing of $\mathbb{P}(K)$ will give a Calabi-Yau manifold.

-- ref: bayer-eisenbud graph curves.

The most basic invariants of Calabi-Yau manifolds are their *Hodge numbers* h^{pq} . In algebraic geometry these can be defined as the dimensions of the cohomology groups $H^q(X, \Omega_X^p)$. This definition is however not so transparent. On a complex manifold, it is true that $h^{pq} = h^{qp}$, but this is not obvious from our definition. Instead, let us define these groups in complex algebraic geometry terms.

The de Rham complex (Ω^{\bullet}, d) refines to a bigraded complex $(\Omega^{\bullet, \bullet}, d)$, where a differential form of bidegree (p, q) can be written as

$$\omega = \sum f_{IJ} dz_{i_1} \wedge \ldots \wedge dz_{i_p} \wedge d\overline{z_1} \ldots \wedge d\overline{z_q}.$$

The differential d splits as $\partial + \overline{\partial}$, where $\partial : \Omega^{\bullet,\bullet} \to \Omega^{\bullet+1,\bullet}$, and $\overline{\partial} : \Omega^{\bullet,\bullet} \to \Omega^{\bullet,\bullet+1}$. The decomposition passes respects cohomology, so we can form the Dolbeault cohomology groups $H^{p,q}(X)$.

With this definition, applying complex conjugation shows that $H^{p,q} = \overline{H^{q,p}}$.

Lemma 1.2.3. We have natural isomorphisms $H^{p,q}(X) \simeq H^q(X, \Omega_X^p)$.

Proof. Use that the de Rham complex is flabby

For more details on this and other details from complex geometry, see [Voi07].

The "Hodge diamond" is ...

Example 1.2.4. Let X be a smooth quintic in \mathbb{P}^4 . We will compute its Hodge numbers. Let us first compute $H^{1,1}(X)$. We have the following exact sequence

$$0 \to \mathcal{I}/\mathcal{I}^2 \to \Omega_{\mathbb{P}^4}\big|_X \to \Omega_X^1 \to 0$$

Since $\mathcal{I}/\mathcal{I}^2 \simeq \mathscr{O}_X(-5)$, it follows from the long exact sequence of cohomology that $H^1(X,\Omega_X^1) \simeq H^1(X,\Omega_{PP^4}^1|_X)$

1.3 Deformation theory

Deformation theory is the study how varieties (or other algebraic structures like line bundles, vector bundles, ...) vary in families.

There is a lot of technical machinery available for the deformation theorist, but for us just a few vector spaces will be of importance.

Definition 1.3.1. Let X be a scheme over k. Then a deformation of X over S is a flat morphism $\mathfrak{X} \to S$ together with an isomorphism $X \simeq \mathfrak{X} \times_S 0$ for a closed point $0 \in S$:

$$X \simeq X_0 \longrightarrow \mathfrak{X}$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow S$$

Recall that a morphism $f:X\to Y$ is *flat* if the associated morphism $f^{\$}:\mathcal{O}_Y\to f_*\mathcal{O}_X$ of \mathcal{O}_Y -modules is a flat morphism.

Chapter 2

Two topologically distinct smoothings

Denote by dP_6 the del Pezzo surface of degree 6 embedded in \mathbb{P}^6 . This can be realized as the blow-up of \mathbb{P}^2 in three points not lying on a line. Let X denote the affine cone over dP_6 . Then it has long been known that X has two smoothing components, and we show here that they are topologically distinct.

Recall that a *del Pezzo* surface is a surface such that the anti-canonical bundle is ample. The degree is the degree given by the anticanonical embedding. It is a classical result that every del Pezzo surface is obtained either by blowing up \mathbb{P}^2 in $r=0,\ldots,6$ points in suitable positions, or as the 2-uple embedding of a quadric surface in \mathbb{P}^3 .

2.1 Different embeddings of dP_6

We first obtain the equations of dP_6 directly from the description of it as blowup. Let x_0, x_1, x_2 be coordinates of \mathbb{P}^2 . Recall that the blowup of \mathbb{P}^2 in the point (1:0:0) can be realized as the closed subscheme of $\mathbb{P}^2 \times \mathbb{P}^1$ given by the equation $r_0x_1 - r_1x_2 = 0$, where r_0, r_1 are coordinates on \mathbb{P}^1 . We can repeat this process on the points (0:1:0) and (0:0:1) to obtain similar equations. Collecting these, we see that dP_6 is given by the matrix equation

$$M\vec{x} = \begin{pmatrix} 0 & r_0 & -r_1 \\ s_1 & 0 & -s_0 \\ -t_0 & t_1 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = 0.$$

in $\mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$. Here r_i, s_i and t_i (i = 0, 1) are of course coordinates on \mathbb{P}^1 .

We can do more than this however.

Lemma 2.1.1. We can also realize dP_6 embedded in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ with equation $r_0s_0t_0 = r_1s_1t_1$.

Proof. Note that the matrix cannot have rank 1 or lower. Now consider the projection onto the last three factors:

$$\pi: \mathbb{P}^2 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1.$$

Each point P in the product on the right-hand side gives a matrix M_P of rank 2. Thus there is a line of solutions, which correspond exactly to a point in \mathbb{P}^2 .

Hence the restriction of π to dP_6 is an isomorphism onto the hypersurface given by $\det M = 0$ in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$.

Another way to realize blow-ups is this: let \mathfrak{d} be the linear system of quadrics with assigned basepoints (1:0:0), (0:1:0) and (0:0:1) in \mathbb{P}^2 . We can choose a basis given by x_0x_1, x_0x_2 and x_1x_2 . This gives a rational map $\mathbb{P}^2 \longrightarrow \mathbb{P}^2$. The closure of the graph of this map is a subvariety of $\mathbb{P}^2 \times \mathbb{P}^2$ defined by two bilinear equations. Each of the projections correspond to the blowup.

Explicitly, if we let y_0, y_1, y_2 be coordinates on the other \mathbb{P}^2 , then the equations are $x_1y_0 - x_2y_1 = x_1y_0 - x_0y_2 = 0$.

We also have a natural embedding in \mathbb{P}^6 as follows. Denote by E_1, E_2, E_3 the exceptional divisors on the blowup. Let L be a line in \mathbb{P}^2 . Then the divisor $\pi^*3L - E_1 - E_2 - E_3$ is ample, and gives an embedding in \mathbb{P}^6 (see [Har77, Chapter V, Theorem 4.6]). A basis for the corresponding linear system is given by all monomials in $\Gamma(\mathbb{P}^2, \mathscr{O}_{\mathbb{P}^2}(3))$ except x^3, y^3 and z^3 .

Figure 2.1: Toric description of dP_6 .

The equations can be arranged in a particularly symmetric form: let y, x_1, \ldots, x_1 be coordinates on \mathbb{P}^6 . Then the equations of dP_6 are the 2×2 minors of the matrix

$$\begin{pmatrix} x_1 & y & x_6 \\ x_2 & x_3 & y \\ y & x_4 & x_5 \end{pmatrix}.$$

This gives 9 equations, which can be compactly written as $x_i x_{i+2} - y x_i = 0$ and $x_i x_{i+3} - y^2 = 0$, for i = 1, ..., 6 (where i is taken modulo 6). Note that the equations have a visible D_6 -symmetry, where D_6 denotes the dihedral group.

2.1.1 As a toric variety

There is a nice combinatorial description of dP_6 as a toric variety associated to a polytope. Namely, let P denote the hexagon in Figure 2.1a. Then the normal fan of this polytope defines a fan in $N_{\mathbb{R}}$, defining a toric variety.

The polytope is reflexive, implying that the normal fan of P is the face fan over the same polytope. See Figure 2.1b. From standard toric geometry, it is clear that dP_6 is the blowup of \mathbb{P}^2 in the three torus-fixed points.

2.2 Divisors and topology

Consider the exponential sequence

$$0 \to \mathbb{Z} \to \mathscr{O}_{dP_6} \to \mathscr{O}_{dP_6}^* \to 0.$$

Since dP_6 is a rational surface, it follows from the long-exact sequence that $H^2(dP_6, \mathbb{Z}) \simeq \operatorname{Pic}(dP_6)$. From the description of dP_6 as a blowup, we know from [Har77, Chapter V], that the Picard group is spanned by the three exceptional divisors, together with the class of the pullback of a hyperplane. Denote these by E_i and H, respectively. Then, since the E_i are exceptional divisors, we have $E_i \cdot E_j = -\delta_{ij}$, and also $H^2 = 1$, since we can compute intersections downstairs.

Consider the embedding of dP_6 in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equations $x_1y_0 - x_2y_1 = x_1y_0 - x_0y_2 = 0$. This is the closure of the graph of a Cremona transformation of \mathbb{P}^2 . The three exception divisors in dP_6 are given by $\pi_1(P_i)$, where P_i are the three (torus-invariant) blown up points. There are three more interesting lines in dP_6 : let L_{ij} be the line through P_i and P_j in \mathbb{P}^2 . Also denote the proper transform of L_{ij} by L_{ij} . These are elements of the Picard group, and hence is a linear combination of the E_i and H. Since L_{ij} goes through P_i and P_j once each, we must have $L_{ij} \cdot E_i = 1$. Similarly, $L_{ij} \cdot H = 1$. Since $E_i \cdot E_j = -\delta_{ij}$, it follows that $L_{ij} = H - E_i - E_j$.

Make hexagon figure

2.3 The affine cone and its two smoothings

Let X denote the affine cone over dP_6 . It is an affine variety with an isolated singularity at the origin. One can compute that it has two smoothing components: the union of a plane and a line. They both come from different ways of perturbing the equations of dP_6 .

Look at Figure 2.2a. One can read off the equations of dP_6 by taking minors along "faces" and long diagonals of this square. This correspond to a hyperplane cut of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ in the Segre embedding. Then the one-dimensional component of the versal deformation of X is obtained by perturbing one of the y_0 -corners as in Figure 2.2b.

Figure 2.2: Forms of equations.

It is clear the corresponding deformation is smooth, since it is a hyperplane cut of cone over $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ outside the origin. Call this smoothing X_1 .

Lemma 2.3.1. The smoothing X_1 is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \setminus dP_6$.

Proof. Specialize to some $t \neq 0$. Then we can homogenize the equations with respect to y_1 to obtain a projective variety in 8 variables. However, in this form, $y_0 - ty_1$ and y_0 are linearly independent, hence by a change of variables, we see that this variety is in fact isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ in its Segre embedding. See Figure 2.2b.

What we gained by homogenizing is exactly the projective variety given by setting $y_1 = 0$. But then we get back the equations of dP_6 in \mathbb{P}^6 .

The second smoothing is obtained by deforming the equations of dP_6 as a subvariety of $\mathbb{P}^2 \times \mathbb{P}^2$. Namely, consider the following matrix:

$$\begin{vmatrix} x_1 & y_0 & x_6 \\ x_2 & x_3 & y_0 - t_1 \\ y_0 - t_2 & x_4 & x_5 \end{vmatrix} \le 1.$$
 (2.1)

For $t_1 = t_2 = 0$, we get the cone over dP_6 , while for generic t_i , we get a smooth variety. In fact, we can compute that the discrimant locus (the set of points in $\mathbb{A}^2_{t_1,t_2}$ with singular fiber) are the t_1 -axis, the t_2 -axis and the line $t_1 = t_2$. Call (any) smooth fiber X_2 .

Lemma 2.3.2. Let $M = \mathbb{P}(\mathcal{T}_{\mathbb{P}^2})$ be the projective bundle associated to the tangent sheaf on \mathbb{P}^2 . Then the smoothing X_2 is isomorphic to $M \setminus dP_6$.

Proof. The technique is the same as in the previous proof. First homogenize the equations (2.1) with respect to y_1 . Call the homogenized variety M. Put $y'_0 = y_0$, $y'_1 = y_0 - ty_1$ and $y'_2 = y_0 - t_2y_1$. Then we have the relation

$$h = t_2 y_1' - t_1 y_2' - (t_1 - t_2) y_0' = 0.$$

Hence we see that $M = \mathbb{P}^2 \times \mathbb{P}^2 \cap (h = 0)$. We can pull back the coordinates y_i' to $\mathbb{P}^2 \times \mathbb{P}^2$. Let $\mathbb{P}^2 \times \mathbb{P}^2$ have coordinates x_0, x_1, x_2 and y_0, y_1, y_2 . Then h pulls back to the equation

$$(x_0, x_1, x_2) \cdot (-t_1 y_2, (t_1 - t_2) y_0, t_2 y_1) = 0$$

in $\mathbb{P}^2 \times \mathbb{P}^2$. As long as $t_1 \neq t_2$ and $t_1, t_2 \neq 0$, we can do a change of coordinates in $\mathbb{P}^2_{y_0y_1y_2}$, so that h transforms to

$$(x_0, x_1, x_2) \cdot (y_0, y_1, y_2) = 0.$$

Hence we see that M is isomorphic to the total space of the Grassmannian of lines in \mathbb{P}^2 (each point in one of the \mathbb{P}^2 's give a line in the other \mathbb{P}^2). This is in turn isomorphic to $\mathbb{P}(\mathcal{T}_{\mathbb{P}^2})$, since each tangent vector through a point determines a line through it.

Now, what have we gained by homogenizing? The divisor at infinity is $y_1 = 0$, which is a dP_6 again. In our new coordinates this is equivalent to $y'_1 = y'_2 = y'_0$. Hence in the coordinates of $\mathbb{P}^2 \times \mathbb{P}^2$, the dP_6 is given by the two equations $x_1y_0 - x_2y_1 = x_1y_0 - x_0y_2 = 0$.

Lemma 2.3.3. The cohomology ring of $M = \mathbb{P}(\mathcal{T}_{\mathbb{P}^2})$ is $\mathbb{Z}[x,y]/(x^3,y^2+c_1y+c_2)$, where x and y have degree 2. In particular, the cohomology of M is given by (1,0,2,0,2,0,1).

Proof. The first claim follows from the Leray-Hirch theorem. See [BT82, page 270]. The next claim follows since x and y both have degree 2.

We can use what we know about the topology of these spaces to compute homology groups of the two affine smoothings.

Theorem 2.3.4. The two affine smoothings are topologically different. The homology groups are:

Group	0	1	2	3	4	5	6	Euler-characteristic
$H^i(X_1,\mathbb{Z})$	1	0	2	1	0	0	0	2
$H^i(X_2,\mathbb{Z})$	1	0	1	2	0	0	0	0

Proof. The singular cohomology of $M = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is given by (1,0,3,0,3,0,1), which can be computed by the Künneth formula. The cohomology of dP_6 is given by (1,0,4,0,1).

We will use the Lefschetz duality theorem [Spa66], which in this case says that $H_q(M \backslash dP_6, \mathbb{Z}) \simeq H^{6-q}(M, dP_6, \mathbb{Z})$. Then the long exact sequence of the pair (M, dP_6) immediately gives $h_0(X_1, \mathbb{Z}) = 1$. Similarly, we see that $h_5(X_1, \mathbb{Z}) = h_6(X_1, \mathbb{Z}) = 0$, since the map $H^1(M, \mathbb{Z}) \to H^1(D, \mathbb{Z})$ is an isomorphism.

The other groups depend upon the explicit form of the maps $H^2(M,\mathbb{Z}) \to H^2(D,\mathbb{Z})$ and $H^4(M,\mathbb{Z}) \to H^4(D,\mathbb{Z})$.

By Poincaré duality ((reference)), the induced map corresponds to intersecting the divisors on M with dP_6 . Computing, we get that map is given by the following matrix:

Find reference

$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$H^{2}(M, \mathbb{Z}) \simeq H_{4}(M, \mathbb{Z}) \simeq \mathbb{Z}^{3} \xrightarrow{\qquad } \mathbb{Z}^{4} \simeq H_{2}(dP_{6}, \mathbb{Z}) \simeq H^{2}(dP_{6}, \mathbb{Z}).$$

This is an injective map, and it follows from the long-exact sequence and the Lefschetz theorem that $H_3(X_1) \simeq H^3(M, dP_6) \simeq \mathbb{Z}$, and also that $H_4(X_1) = 0$.

Similarly, the map $H^4(M) \to H^4(dP_6)$ is computed to be given by $(a,b,c) \mapsto a+b+c$, since the three \mathbb{P}^1 's intersect dP_6 in a single point. This map has two-dimensional kernel, and we conclude that $H_2(X_1) \simeq H^4(M,dP_6) = \mathbb{Z}^2$, and that $H^1(X_1) = 0$.

The computations for X_2 are similar but more involved. We first note that the Picard group of $M = \mathbb{P}(\mathcal{T}_{\mathbb{P}^2})$ is generated by the pullbacks F, G of the generators of $\operatorname{Pic}(\mathbb{P}^2_{x_0x_1x_2} \times \mathbb{P}^2_{y_0y_1y_2})$. Say F is represented by $V(x_0)$ and G is represented by $V(y_0)$.

check transversal intersection with dP6

Again we compute the intersections of F and G with dP_6 . Intersecting with F is computed by decomposing the ideal $(x_0, x_1y_0 - x_2y_1, x_1y_0 - x_0y_2)$ in $k[x_0, x_1, x_2, y_0, y_1, y_2]$ and saturating by (x_0, x_1, x_2) and (y_0, y_1, y_2) . This can either be done by hand or by using Macaulay2. Either way, we find that $F|_{dP_6} = E_3 + L_{23} + E_2 = H$, using the notation from earlier this chapter. Similarly $G|_{dP_6} = L_{23} + L_{12} + E_2 = 2H - E_1 - E_2 - E_3$. Hence the map on cohomology is given by the matrix

$$\begin{pmatrix} 0 & -1 \\ 0 & -1 \\ 0 & -1 \\ \end{pmatrix}$$

$$H^2(M, \mathbb{Z}) \simeq H_4(M, \mathbb{Z}) \simeq \mathbb{Z}^2 \xrightarrow{} \mathbb{Z}^4 \simeq H_2(dP_6, \mathbb{Z}) \simeq H^2(dP_6, \mathbb{Z}).$$

This is an injective map, and as above, we conclude that $H_3(X_2) \simeq H^3(M, dP_6) \simeq \mathbb{Z}^2$, and also that $H_4(X_1) = 0$.

Remark. In fact, the Andreotti-Frankel theorem [AF59] states the following: if V is any smooth affine variety of complex dimension n, then it has the homotopy type of a CW complex of dimension n.

Chapter 3

A smooth Calabi-Yau

Consider the hexagon E_6 . The join $E_6 * E_6$ is a 3-dimensional sphere, and so a smoothing of the corresponding Stanley-Reisner scheme would correspond to a smooth Calabi-Yau manifold. In this chapter I prove that there does indeed exist a smoothing, and I describe some of its properties.

Description, singularities, etc.

3.1 Isolated singularities

The smoothing process is done by deforming the ambient space. First, note that $\mathcal{K}=E_6*\mathcal{E}_6*\Delta^0*\Delta^0$, is a 5-dimensional simplicial sphere, which is the join of two hexagons with interior. The Stanley-Reisner ring of \mathcal{K} is the tensor product $k[E_6*\Delta^0]\otimes_k k[E_6*\Delta^0]$. Each of the factors deform to the affine cone over a del Pezzo surface of degree 6, the same on as in Chapter 2.

It follows that $\mathbb{P}(\mathcal{K})$ deforms to a toric variety Y_0 , whose defining polytope is the *join* of two hexagons. Since the ideal of $\mathbb{P}(\mathcal{K}) \subset \mathbb{P}^{13}$ splits into to groups I+J, it is not hard to see that the singular locus of Y_0 consists of two disjoint copies of dP_6 .

Lemma 3.1.1. Let X_0 be the intersection of Y_0 with two general hyperplanes in \mathbb{P}^{13} . Then X_0 is a singular Calabi-Yau variety with 12 isolated singularities.

find better section title

Proof. Away from the singular locus of Y_0 , the intersection is smooth by Bertini. The singular locus of Y_0 is equal to $dP_6 \sqcup dP_6$, hence is of dimension 2 and degree 12. Two general hyperplanes will intersect the singular locus in 12 points.

Then one form of Bertini's theorem [Har95, page 216], says that all singular points on X comes from those of Y.

We can determine the types of the singularities of X_0 .

Lemma 3.1.2. Let
$$(U, p_i)$$
 be the germ of X_0 at p_i . Then $(U, p_i) \simeq (C(dP_6), 0)$.

Proof. In each chart, X_0 looks like $\mathbb{A}^2 \times C(dP_6)$. Let \mathbb{A}^2 have coordinates x_2, x_6 and $C(dP_6)$ have coordinates z_1, \ldots, z_6, y_1 . Then X_0 is the zero set of I(f,g), where f,g are polynomials that are linear in the z_i, y_1 and degree 4 in x_2 and x_6 (in fact, the Newton polyhedron of $f(x_2, x_6, 0, \ldots, 0)$ is a hexagon).

Let $p_i = (a_1, a_2, 0, ..., 0)$ be a singular point. By a change of variables, we can translate p_i to the origin. Then $f = x_2u_1 + l(z_1, ..., z_6, y_1)$ and $g = x_6u_2 + l'(z_1, ..., z_6, y_1)$, where u_1, u_2 are units around the origin, and l, l' are linear forms in $k[z_1, ..., z_6, y_1]$.

Hence for a small enough U (such that u_1, u_2 are units restricted to U), we can do another change of variables, letting $x_2' = x_2u_1$, and $x_6' = x_6u_2$. This allows us to eliminate x_2, x_6 locally from the equations, and we are left with $C(dP_6)$.

3.2 Euler characteristic

Bibliography

- [AF59] Aldo Andreotti and Theodore Frankel. "The Lefschetz theorem on hyperplane sections." In: *Ann. of Math.* (2) 69 (1959), pp. 713–717. ISSN: 0003-486X.
- [BT82] Raoul Bott and Loring W. Tu. *Differential forms in algebraic topology*. Vol. 82. Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982, pp. xiv+331. ISBN: 0-387-90613-4.
- [Har77] Robin Hartshorne. *Algebraic geometry*. Graduate Texts in Mathematics, No. 52. New York: Springer-Verlag, 1977, pp. xvi+496. ISBN: 0-387-90244-9.
- [Har95] Joe Harris. *Algebraic geometry*. Vol. 133. Graduate Texts in Mathematics. A first course, Corrected reprint of the 1992 original. New York: Springer-Verlag, 1995, pp. xx+328. ISBN: 0-387-97716-3.
- [Spa66] Edwin H. Spanier. *Algebraic topology*. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966, pp. xiv+528.
- [Voi07] Claire Voisin. *Hodge theory and complex algebraic geometry. I.* English. Vol. 76. Cambridge Studies in Advanced Mathematics. Translated from the French by Leila Schneps. Cambridge University Press, Cambridge, 2007, pp. x+322. ISBN: 978-0-521-71801-1.

Todo list

Make hexagon figure	10
Find reference	13
check transversal intersection with dP6	14
find better section title	15