

- If L is a linear operator on an n-dimensional vector space V, the matrix representation of L will depend on the ordered basis chosen for V
- By using different bases, it is possible to represent L by different $n \times n$ matrices
- Let L be the linear transformation mapping \mathbb{R}^2 into itself defined by

$$L(\mathbf{x}) = (2x_1, x_1 + x_2)^T$$
$$L(\mathbf{e}_1) = \begin{bmatrix} 2\\1 \end{bmatrix} \qquad L(\mathbf{e}_2) = \begin{bmatrix} 0\\1 \end{bmatrix}$$

■ The matrix representing L with respect to $\{e_1, e_2\}$ is $A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$

• If we use a different basis $\{u_1, u_2\}$ for \mathbb{R}^2 , where

$$u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $u_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

then we must determine $L(u_1)$ and $L(u_2)$ and express these vectors as linear combinations of u_1 and u_2 (with respect to $\{e_1, e_2\}$)

$$L(\boldsymbol{u}_1) = A\boldsymbol{u}_1 = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
$$L(\boldsymbol{u}_2) = A\boldsymbol{u}_2 = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

To express these vectors in terms of $\{u_1, u_2\}$, we use a transition matrix to change from the ordered basis $\{u_1, u_2\}$ to $\{e_1, e_2\}$

$$U = (\boldsymbol{u}_1, \boldsymbol{u}_2) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

■ The transition matrix from $\{e_1, e_2\}$ to $\{u_1, u_2\}$ will then be

$$U^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

To determine the coordinates of $L(u_1)$ and $L(u_2)$ with respect to $\{u_1, u_2\}$, we multiply the vectors by U^{-1}

$$U^{-1}L(\boldsymbol{u}_1) = U^{-1}A\boldsymbol{u}_1 = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \qquad U^{-1}L(\boldsymbol{u}_2) = U^{-1}A\boldsymbol{u}_2 = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$L(\mathbf{u}_1) = 2\mathbf{u}_1 + 0\mathbf{u}_2$$
 $L(\mathbf{u}_2) = -1\mathbf{u}_1 + 1\mathbf{u}_2$

The matrix representing L with respect to $\{u_1, u_2\}$ is

$$B = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} U^{-1}A\mathbf{u}_1 & U^{-1}A\mathbf{u}_2 \end{bmatrix} = U^{-1}A[\mathbf{u}_1 & \mathbf{u}_2] = U^{-1}AU$$

- If
 - B is the matrix representing L with respect to $\{u_1, u_2\}$
 - A is the matrix representing L with respect to $\{e_1, e_2\}$
 - 3) U is the transition matrix corresponding to the change of basis from $\{u_1, u_2\}$ to $\{e_1, e_2\}$

then, $B = U^{-1}AU$

Let $E = \{v_1, \dots, v_n\}$ and $F = \{w_1, \dots, w_n\}$ be two ordered bases for a vector space V, and let L be a linear operator on V. Let S be the transition matrix representing the change from F to E. If A is the matrix representing L with respect to E, and E is the matrix representing E with respect to E, then E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, then E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, then E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E, and E is the matrix representing E with respect to E.

Proof

Let **x** be any vector in \mathbb{R}^n and let

$$\mathbf{v} = x_1 \mathbf{w}_1 + x_2 \mathbf{w}_2 + \dots + x_n \mathbf{w}_n$$

Let

$$\mathbf{y} = S\mathbf{x}, \quad \mathbf{t} = A\mathbf{y}, \quad \mathbf{z} = B\mathbf{x}$$
 (2)

It follows from the definition of S that $y = [v]_E$ and hence

$$\mathbf{v} = y_1 \mathbf{v}_1 + \dots + y_n \mathbf{v}_n$$

Since A represents L with respect to E, and B represents L with respect to F, we have

$$\mathbf{t} = [L(\mathbf{v})]_E$$
 and $\mathbf{z} = [L(\mathbf{v})]_E$

The transition matrix from E to F is S^{-1} . Therefore,

$$S^{-1}\mathbf{t} = \mathbf{z} \tag{3}$$

It follows from (2) and (3) that

$$S^{-1}AS\mathbf{x} = S^{-1}A\mathbf{v} = S^{-1}\mathbf{t} = \mathbf{z} = B\mathbf{x}$$

(see Figure 4.3.1). Thus,

$$S^{-1}AS\mathbf{x} = B\mathbf{x}$$

for every $\mathbf{x} \in \mathbb{R}^n$, and hence $S^{-1}AS = B$.

35

- Let A and B be $n \times n$ matrices. B is said to be *similar* to A if there exists a nonsingular matrix S such that $B = S^{-1}AS$
- Note that if B is similar to A, then $A = (S^{-1})^{-1}BS^{-1}$ is similar to B. Thus, we may simply say that A and B are similar matrices

Ex 2. Let L be the linear operator mapping \mathbb{R}^3 into \mathbb{R}^3 defined by L(x) = Ax, where $A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$.

Thus, the matrix A represents L with respect to $\{e_1, e_2, e_3\}$. Find the matrix representing L with respect to $\{y_1, y_2, y_3\}$, where

$$\mathbf{y}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \qquad \mathbf{y}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{y}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Solution

$$L(\mathbf{y}_1) = A\mathbf{y}_1 = \mathbf{0} = 0\mathbf{y}_1 + 0\mathbf{y}_2 + 0\mathbf{y}_3$$

 $L(\mathbf{y}_2) = A\mathbf{y}_2 = \mathbf{y}_2 = 0\mathbf{y}_1 + 1\mathbf{y}_2 + 0\mathbf{y}_3$
 $L(\mathbf{y}_3) = A\mathbf{y}_3 = 4\mathbf{y}_3 = 0\mathbf{y}_1 + 0\mathbf{y}_2 + 4\mathbf{y}_3$

Thus, the matrix representing L with respect to $\{{\bf y}_1,{\bf y}_2,{\bf y}_3\}$ is

$$D = egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 4 \end{bmatrix}$$

We could have found D by using the transition matrix $Y = (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ and computing

$$D=Y^{-1}AY$$

This was unnecessary due to the simplicity of the action of L on the basis $\{\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3\}$. whv?

37

Exercises

11. Show that if A and B are similar matrices, then det(A) = det(B).

Thank You

