Matematyka 2 Algebra

Definicje, twierdzenia, przykłady

Informatyka Stosowana, I rok

1 Grupy, pierścienie i ciała

- 1.1 Definicja (Działanie). Działaniem dwu
argumentowym w zbiorze Anazywamy dowolną funkcję typ
u $f:A\times A\to A.$
 - 1. Działanie o jest łączne, gdy

$$\forall a,b,c \ . \ (a \circ b) \circ c = a \circ (b \circ c).$$

2. Działanie o jest przemienne, gdy

$$\forall a, b . a \circ b = b \circ a.$$

3. Element e jest elementem neutralnym działania \circ , gdy

$$\forall a . a \circ e = e \circ a = a.$$

- **1.2 Definicja.** Niech G będzie niepustym zbiorem oraz niech + będzie działaniem na G i elementem wyróżnionym $0 \in G$. Strukturę $\mathbf{G} = (G, +)$ nazywamy **grupę**, gdy spełnione są następujące warunki:
 - 1. + jest działaniem łącznym,
 - 2. 0 jest elementem neutralnym działania +,
 - 3. elementy odwrotne/przeciwne $\forall x \exists d . x + d = 0$,
 - 4. ponadto, gdy działanie + jest przemienne, to G nazywamy **grupą abelową** lub **grupą przemienną**.
- **1.3 Definicja.** Niech R będzie zbiorem co najmniej o 2 elementach oraz niech + i \cdot będą działaniami w R oraz niech 0 i 1 będą elementami wyróżnionymi. Strukturę $\mathbf{R} = (R, +, \cdot)$ nazywamy **pierścieniem** (**przemiennym z jedynką**), gdy:
 - 1. (R, +) jest grupą abelową z elementem neutralnym 0,

- 2. działanie \cdot jest łączne,
- 3. 1 jest elementem nutralnym działania ·,
- 4. działanie · jest rozdzielne względem +, czyli

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c),$$

- 5. działanie \cdot jest przemienne.
- **1.4 Przykład.** Niech F będzie zbiorem z działaniami + i · oraz wyróżnione elementy 0 i 1. Strukturę $\mathbf{F} = (F, +, \cdot)$ nazywamy ciałem, gdy
 - 1. $(F, +, \cdot)$ jest **pierścieniem**
 - 2. ($\mathbb{Z}, +, \cdot$): pierścień przemienny z jedynką,
 - 3. $(2\mathbb{Z}, +, \cdot)$: pierścień przemienny bez jedynki,
 - 4. $(\mathbb{R}, +, \cdot)$: ciało,
 - 5. $(P(X), \div, \cap)$: pierścień przemienny z jedynką,
 - 6. M_n^n zbiór macierzy $n \times n$ o wyrazach rzeczywistych z dodawaniem i mnożeniem macierzy jest pierścieniem nieprzemiennym z 1.
 - 7. i istnieją elementy odwrotne $\forall a \neq 0 \exists x \ a \cdot x = x \cdot a = 1$.
- **1.5 Przykład.** 1. $(\mathbb{Z}, +, \cdot)$: pierścień przemienny z jedynką,
 - 2. $(2\mathbb{Z}, +, \cdot)$: pierścień przemienny bez jedynki,
 - 3. $(\mathbb{R}, +, \cdot)$: ciało,
 - 4. $(P(X), \div, \cap)$: pierścień przemienny z jedynką,
 - 5. M_n^n zbiór macierzy $n \times n$ o wyrazach rzeczywistych z dodawaniem i mnożeniem macierzy jest pierścieniem nieprzemiennym z 1.
 - 6. Pierścień funkcji określonych na zbiorze A o wartościach w pierścieniu P, oznaczenie P^A :
 - działania w P^A , dla wszystkich $f, g \in P^A$, oraz $a \in A$: (f + g)(a) = f(a) + g(a) oraz $(f \cdot g)(a) = f(a) \cdot g(a)$
 - elementy wyróżnione:
 - $\mathbf{0}=$ funkcja stała równa 0 oraz $\mathbf{1}=$ funkcja stała równa 1.
 - 7. Pierścień wielomianów $\mathbb{Q}[X]$
 - działania w $\mathbb{Q}[X]$, dla wszystkich $u, w \in \mathbb{Q}[X]$: u + w = suma wielomianów oraz $u \cdot w = \text{iloczyn}$ wielomianów,
 - elementy wyróżnione:
 - $\mathbf{0}$ = wielomian zerowy oraz $\mathbf{1}$ = wielomian równy 1, gdzie $0, 1 \in P$.
- **1.6 Uwaga.** Czasem mówi się skrótowo $\mathbf{F} = (F, +, \cdot)$, zamiast $\mathbf{F} = (F, +, \cdot, 0, 1, (\cdot)^{-1})$.

2 Podzielność 3

2 Podzielność

2.1 Twierdzenie. Dla dowolnych liczb całkowitych a i b różnych od 0 istnieje $q \in \mathbb{Z}$ i $r \in \mathbb{N}$ takie, że

$$a = bq + r$$
 oraz $r < |b|$.

Idea dowodu. Jako r bierzemy minimum zbioru $\{a-bs:s\in\mathbb{Z} \land a-bs>0\}$ i kontynuujemy tę procedurę aż do momentu kiedy procedura stabilizuje się. \dashv

Algorytm Euklidesa. Dla dowolnych liczb całkowitych a i b różnych od zera:

$$a = bq_0 + r_1 \quad \text{oraz} \quad r_1 < |b| \tag{1}$$

$$b = r_1 q_1 + r_2 \quad \text{oraz} \quad r_2 < r_1$$
 (2)

$$r_1 = r_2 q_2 + r_3 \quad \text{oraz} \quad r_3 < r_2$$
 (3)

$$r_{n_2} = r_{n-1}q_{n-1} + r_n \quad \text{oraz} \quad r_n < r_{n-1}$$
 (4)

Wówczas ostatnia niezerowa reszta r_n jest NWD(a, b).

Równania diofantyczne

2.2 Twierdzenie. Dla dowolnych $a, b, c \in \mathbb{Z}$ równanie

$$aX + bY = c$$

ma rozwiązanie w liczbach całkowitych wtedy i tylko wtedy gdy NWD $(a,b) \mid c$. Jeśli para (x_0, y_0) jest jednym z rozwiązań równania, to wszystkie pozostałe otrzymujemy ze wzorów:

$$X = x_0 + \frac{b}{\text{NWD}(a, b)}k$$

$$Y = y_0 - \frac{a}{\text{NWD}(a, b)}k,$$

gdzie $k \in \mathbb{Z}$.

3 Pierścienie reszt

Ustalmy $n \in \mathbb{N}, n > 1$. Oznaczmy przez \mathbb{Z}_n zbiór wszystkich reszt z dzielenia liczb całkowitych przez n, to znaczy

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$$

Symbolem $(a \mod n)$ oznaczmy resztę z dzielenia a przez n. W zbiorze \mathbb{Z}_n definiujemy działania:

$$a \oplus b := (a + b \mod n)$$

$$a \odot b := (a \cdot b \mod n).$$

3.1 Twierdzenie. Dla dowolnego $n \in \mathbb{N}, (\mathbb{Z}_n, \oplus, \odot)$ jest pierścieniem przemiennym z jedynką.

3 Pierścienie reszt 4

3.2 Przykład. $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_5$.

Ciała skończone

3.3 Twierdzenie. \mathbb{Z}_p jest ciałem wtedy i tylko wtedy, gdy p jest liczbą pierwszą.

Dowód. Załóżmy, że $a \in \mathbb{Z}_n$ jest elementem odwracalnym. Wtedy $a \odot b = 1$ dla pewnego $b \in \mathbb{Z}_n$ to $(a \cdot b \mod n) = 1$, czyli dla pewnego $y \in \mathbb{Z}$ mamy ab + yn = 1. Stąd wynika, że NWD(a, n) | 1, zatem NWD(a, n) = 1.

Z drugiej strony, jeśli $\mathrm{NWD}(a,n)=1,$ to dla pewnych $x,y\in\mathbb{Z}$ mamy xa+yn=1. Zatem

$$1 = (xa + yn \mod n) = (x \mod n) \odot a,$$

co oznacza, że a ma element odwrotny.

 ${\bf 3.4}$ Twierdzenie. Dla każdej liczby pierwszej pi dowolnego nnaturalnego istnieje ciało które ma p^n elementów.