FUNCTIONAL DEPENDENCIES & NORMALIZATION

Reference

• Elmasri & Navathe – (Chapter 15)

The Big Picture

- 1. In certain cases, a schema can allow for data to be duplicated **redundantly** in the database.
- 2. In order to fix the schema, we need to analyze it using **functional dependencies** (a form of business rules; i.e. ICs) as a tool.
- 3. Analysis of the schema will reveal whether it is in 1NF, 2NF, 3NF, or BCNF (whereby these normal forms are successively better in that they permit less and less redundancy.)
- 4. In order to fix a schema, we **decompose** it.
- 5. The *decomposition* must, at the least, be lossless.

Now we'll cover the terminology and concepts mentioned above.

1. Update Anomalies ... they are caused by Redundancy

Example: STUDENTS (sNum, sName, sAddress, fNum, fName, fOffice)

Insertion anomalies

• We can't add a faculty who doesn't have any advisees.

• Deletion anomalies

• We can't keep the faculty information if their last advisee is deleted.

Modification anomalies:

- If a faculty who has, say 20, advisees changes office then 20 rows have to be updated. Problems that might arise then are:
 - Possible DB consistency.
 - Inefficiency.
- The above anomalies are (collectively) called **update anomalies**.
- The purpose of normalization is to identify and remove (or control) redundancy.

2. Functional dependency

Given a relation R having two sets of attributes X and Y, we say that X functionally determines Y, written as: $X \rightarrow Y$, if (in every legal state of R) it is the case that whenever two tuples have the same value for X, they also have the same value for Y.

- Intuitively, X acts a key for Y (though it doesn't have to be minimal).
- Notice that every candidate key, K, determines every other attribute.
- An FD is a semantic constraint of the <u>application</u>, and <u>not</u> of a particular database <u>state</u>.

Example:

Suppose that the Boats table (in our SAILORS DB) has another attribute called logKeeperRating. In that case, a functional dependency would be:

bid → logkeeperRating

Discussion:

In our database, is this FD true?

bname → logkeeperRating

Example

Advising (Gnum, Name, Address, advisorNum, advisorName, OfficeNum)

Suppose that an application rule says: *An advisor can have no more than one office or name*.

Then the FDs are:

advisorNum → advisorName, OfficeNum GNum → Name, Address, advisorNum, advisorName, OfficeNum (we don't explicitly write this FD since the key determines every attribute.)

Example

(Suppose that in a database only the student's latest grade in any repeated course is to be recorded.)

Grades (sNum, courseNum, grade, address)

Suppose that an application rule says: A student has at most one address

Then an FD is: $sNum \rightarrow address$

Discussion: What is the difference in meaning between?

 $sNum \rightarrow address \rightarrow sNum$

3. The different types of dependencies and normal forms

• The types of FDs that might exist in a relation:

$R(\underline{A}, \underline{B}, C, D, E, F)$

1. $AB \rightarrow CDEF$... necessary ... AB is a key.

2. $B \rightarrow C$... problematic ... partial dependency.

3. $E \rightarrow F$... problematic ... transitive dependency.

4. $E \rightarrow B$... problematic ... BC (Boyce-Codd) dependency.

- Example of a partial dependency: *Refer to the Sailors database*
 - What is the problem if RESERVATIONS was designed as:

RESERVATIONS (bID, forDate, sID, onDate, boatRate)

- Example of a <u>transitive</u> dependency: *Refer to the Sailors database*
 - What is the problem if Boats was designed as:

BOATS (bID, bName, color, rate, length. logKeeper, logKeeperRating)

Several Normal Norms can be defined depending upon the non-key FDs that they <u>disallow</u>. BCNF is usually sufficient in most practical situations.

A Summary Table of Normal Forms

If a relation has a key then it is, at least in 1NF. It can also be in higher normal forms if it doesn't have non-key dependencies as per the following table.

	Has partial Dependency	Has Transitive Dependency	Has BC Dependency
2NF	No	-	-
3NF	No	No	-
BCNF	No	No	No

Conclusion

For a relation to be in BCNF, every attribute must be dependent upon the key, the whole key, and nothing but the key (*for every candidate key*.)

Determine the *highest* normal form (1NF, 2NF, 3NF, or BCNF) for each one of the following relations. (Notice that the primary key of each relation is underlined.)

	Relations	Answers
1	$R(\underline{A, B}, C, D, E)$ Given the functional dependencies: $A \rightarrow E$ and $C \rightarrow B$	
2	$R(\underline{A, B}, C, D, E)$ Given the functional dependencies: $D \rightarrow E$ and $C \rightarrow B$	
3	$R(\underline{A, B}, C, D, E)$ Given the functional dependency: $E \rightarrow B$	
4	$R(\underline{A}, \underline{B}, C, D, E)$	
5	Work (EmployeeNumber, ProjNumber, projLocation)	
	Given that a project is located in one location only.	
6	Work (EmployeeNumber, ProjNumber, projLocation)	
	Given that each location has one project only.	
7	Work (EmployeeNumber, ProjNumber, projLocation)	
	Given that each location has one project only.	

4. Normalization

- Normalization involves decomposing a relation into two or more relations such that each resulting relations has no no-key FDs.
- Two properties of decomposition are:
 - Losslessness ... it is a matter of correctness, and must be met
 - **Dependency-preservation** ... it is a matter of efficiency. We'll not discuss it further.

Lossless Decompositions

Motivation

The natural join of the relations that result from the decomposition must reconstruct the original relation <u>precisely</u>.

Example of a non-lossless decomposition

A relation and a possible decomposition into two relations:

T					<i>T1</i>		_	<i>T2</i>		
S#	C#	Sec#	F#		<u>S</u> #	C#		<u>C</u> #	Sec#	F#
,										
11	CS1	01	21	\Rightarrow	11	CS1	+	CS1	01	21
10	CS1	02	23		10	CS1		CS1	02	23
11	CS8	01	21		11	CS8		CS8	01	21

But the natural join (on C#) of the resulting two relations as per: Select * From T1, T2, WHERE T1.C# = T2.C#; produces spurious tuples.

S#	C#	Sec#	F#
11	CS1	01	21
11	CS1	02	23
10	CS1	01	21
10	CS1	02	23
11	CS8	01	21

Spurious tuple ... It is not in the original relation. Spurious tuple ... It is not in the original relation.

How to test whether a decomposition is lossless

A sufficient (though not necessary) condition is:

The set of attributes that is common to both relations must contain a key of at least one of the two relations.

5. Examples of normalization

Generally:

- 1. <u>If the relation doesn't have BC dependencies</u> (examples 1, 2, and 3), then create one relation for every FD. Choose, as the key for the created relation, the left-hand side of the FD (called the **determinant**); and link the resulting relations through foreign keys if necessary.
- 2. <u>If the relation does have BC dependencies</u> (example 4), then apply Armstrong's pseudo transitive axiom first; and then decompose using guideline-1 above.

Example-1

Given the following FDs:		F#, Sname, Cname, grade, crHrs) S# → Sname C# → Cname, crHrs				
	C#, se	em , year \rightarrow F#				
Is RECORDS_1 in: 1NF? Identify some problems: Decomposition into BCNF:		2NF?	3NF?	_ BCNF? _		
ample-2						
.CORDS_2 (<u>S#, C#, sem, year,</u>	F#, Sna	me, Cname, c	rHrs)			
Given the following FDs:						
		Cname, crHrs m , year \rightarrow F#				
Is RECORDS_2 in: 1NF?		2NF?	3NF?	BCNF?_		
Identify some problems:						

Example-3

TEACHES (<u>C#, sem, year</u> , F#, Fname, Foffice)						
Given the following FD:	$F\# \rightarrow Fnam$	e, Foffice				
Is TEACHES in: 1NF?	2NF?	3NF?	BCNF?			
Identify some problems: Decomposition into BCNF:						

<u>Example-4</u>... this one has a BC dependency; so we'll need to apply Armstrong's pseudotransitive axiom first.

Given	the following	ng FD:	, MajorGPA) an Advisor → Major ost, in one major; an	•	n McFadden 1y have several advisors.)
Is AD	OVISES in:	1NF?	2NF?	3NF?	BCNF?
Question	: What is th	e problem if	f an advisor in a ma	jor changes?	
Question	: What is th	e problem if	f a new major is set	up but has no	students yet?
•	Solution?	n still have p Seek BC a little det	CNF.		
			ne following incorr examples 1, 2, and		tion that uses the simple
		,	<u>visor,</u> Major) <u>, Major</u> , MajorGP	A)	
	Wha	nt is its highe	est normal form for	ADVISOR?	
	Wha	nt is its highe	est normal form for	STUDENT?	
	Is th	e decompos	ition lossless?		
Solution	(using a 2-s	tep process)	:		
<u>Firs</u>	t, apply Arn	nstrong's ps	eudo transitive rule	If $X \to Y$ and	$dWY \rightarrow Z then WX \rightarrow Z$
•					
Sec	ond, decom	pose the refo	ormulated relation		
•					
•					
		g relations is			

5. Normalization and De-normalization

- In an actual design we may <u>denormalize</u> some relations <u>after</u> they have been normalized.
 - Denormalization introduces controlled redundancy
 - Denormalization is motivated by performance issues.
 - Discuss: Controlled Vs. Uncontrolled Redundancy.