Poznámka (Exam)

Oral, similar as in FA1.

Poznámka (Credit)

Similar as in FA1.

1 Banach algebras

1.1 Basic properties

Definice 1.1 (Algebra)

 $(A, +, -, 0, \cdot_S, \cdot)$ is algebra over \mathbb{K} , if

- $(A, +, -, 0, \cdot_S)$ is vector space over \mathbb{K} ;
- $(A, +, -, 0, \cdot)$ is ring (that is we have $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$ and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$);
- $\forall \lambda \in \mathbb{K} \ \forall x, y \in A : \lambda(x \cdot y) = (\lambda x)y = x(\lambda y).$

Důsledek

1) $e \in A$ is left unit $\equiv e \cdot a = a$, right unit $\equiv a \cdot e = a$, unit $\equiv a \cdot e = e \cdot a = a$ ($\forall a \in A$).

If e_1 is left unit and e_2 is right unit, then $e_1 = e_2$ is unit. $(e_1 = e_1 \cdot e_2 = e_2)$

2) (Algebra) homomorphism $\varphi: A \to B \equiv \varphi$ preserves $+, \cdot, \cdot_S$, that is $\varphi(x+y) = \varphi(x) + \varphi(y)$, $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ and $\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$.

Tvrzení 1.1

Let A be algebra over \mathbb{K} . Put $A_e = A \times \mathbb{K}$ with operations A_e defined coordinate-wise and multiplication defined by

$$(a,\alpha)\cdot(b,\beta):=(a\cdot b+\alpha\cdot b+\beta\cdot a,\alpha\cdot\beta),\qquad a,b\in A\land\alpha,\beta\in\mathbb{K}.$$

Then A_e is algebra with a unit $(\mathbf{o}, 1)$ and $A \equiv A \times \{0\} \subset A_e$. Moreover, if A is commutative, then A_e is commutative.

 $D\mathring{u}kaz$

We have A_e is vector space (from linear algebra). We easy proof from definition, that A_e is algebra, $(\mathbf{o}, 1)$ is a unit in A_e and on $A \times \{0\}$ we have $(a, 0) \cdot (b, 0) = (a \cdot b, 0)$, so $a \mapsto (a, 0)$ is homomorphism. Commutativity is easy too.

Definice 1.2 (Normed algebra)

 $(A, \|\cdot\|)$ is normed algebra $\equiv A$ is algebra and $(A, \|\cdot\|)$ is NLS and $\|a\cdot b\| \leq \|a\|\cdot\|b\|$ $(\forall a, b \in A)$.

Definice 1.3 (Banach algebra)

 $(A, \|\cdot\|)$ is Banach algebra $\equiv (A, \|\cdot\|)$ is normed algebra and Banach space.

Například

 $l_{\infty}(I)$ is commutative Banach algebra with a unit (all ones).

If T is Hausdorff topological space, then $C_b(T) = \{f : T \to \mathbb{K} | f \text{ is continuous and bounded}\} \subseteq l_{\infty}(T)$ is closed subalgebra.

If T is locally compact, Hausdorff, not compact. Then $C_0(T) = \{f : T \to \mathbb{K} \text{ continuous } | \forall \varepsilon \} > 0 : \{t \in T \in C_b(T) \text{ is closed subalgebra, which doesn't have unit.} \}$

If X is Banach, dim X > 1, then $\mathcal{L}(X)$, with $S \cdot T := S \circ T$, $S, T \in \mathcal{L}(X)$, is Banach algebra with unit (identity), which isn't commutative.

If X is Banach, dim $X = +\infty$, then $\mathcal{K}(X) \subset \mathcal{L}(X)$ is closed subalgebra which is not commutative and doesn't have unit.

 $(L_1(\mathbb{R}^d), *)$, where * is convolution, is (commutative) Banach algebra (without unit).

 $(l_1(\mathbb{Z}), *)$, where $x * y(n) = \sum_{k=-\infty}^{+\infty} x_k y_{n-k}$ is (commutative) Banach algebra (with unit).

Tvrzení 1.2

If $(A, \|\cdot\|)$ is normed algebra, then $\cdot: A \oplus_{\infty} A \to A$ is Lipschitz on bounded sets.

 \Box Důkaz

$$\forall r > 0 : \forall (a, b) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) \ \forall (c, d) \in B_{A \oplus_{\infty} A}(\mathbf{o}, r) :$$

$$||ab-cd|| \leqslant ||a(b-d)|| + ||(a-c)\cdot d|| \leqslant ||a|| \cdot ||b-d|| + ||a-c|| \cdot ||d|| \leqslant R \cdot (||b-d|| + ||a-c||) \leqslant 2R||(a,b) - (c,d)||.$$

Tvrzení 1.3

Let $(A, \|\cdot\|)$ be a Banach algebra. On A_e we consider the norm

$$\|(a,\alpha)\| := \|a\| + |\alpha|, \qquad (a,\alpha) \in A \times \mathbb{K} = A_e.$$

Then $(A_e, \|\cdot\|)$ is Banach algebra.

 $D\mathring{u}kaz$

It is a Banach space, because $A_e = A \oplus_1 \mathbb{K}$. Now we need only check, that

$$\|(a, \alpha) \cdot (b, \beta)\| \le \|(a, \alpha)\| \cdot \|(b, \beta)\|,$$

which is easy.

Poznámka

There is more (natural) ways to define norm on A_e (unlike \cdot on A_e , which is natural).

A has a unit ... we may still consider A_e .

If $e \in A \setminus \{\mathbf{o}\}$ is a unit, then $||e|| \ge 1$, because $||e|| = ||e^2|| \le ||e||^2$.

Věta 1.4

Let A be a Banach algebra, for $a \in A$ consider $L_a \in \mathcal{L}(A)$ defined as $L_a(x) := a \cdot x$, $x \in A$. Then $I : A \to \mathbb{L}(A)$, $a \mapsto L_a$ is continuous algebra homomorphism, $||I|| \leqslant 1$.

Moreover, if A has a unit e, then I is isomorphism into and I(e) = id.

If $||x^2|| = ||x||^2$, $x \in A$, then I is isometry into.

 $D\mathring{u}kaz$

 $"L_a \in \mathcal{L}(A)$ and $I \in \mathcal{L}(A, \mathcal{L}(A)), ||I|| \leq 1$ ": Linearity is obvious, $||L_a(x)|| = ||a \cdot x|| \leq ||a|| \cdot ||x||$, so $||L_a|| \leq ||a||$ and so $||I|| \leq 1$. Since it is easily I preserves multiplication, so we are left to prove the "Moreover" part.

"A has a unit e": WLOG $A \neq \{\mathbf{o}\}$.

$$\forall a \in A : ||Ia|| = ||L_a|| \ge ||L_a\left(\frac{e}{||e||}\right) = \frac{a}{||e||} = \frac{1}{||e||} \cdot a.$$

So I is bounded from below, so I is isomorphism.

$$I(e)(x) = L_e(x) = x$$
, so $I(e) = id$.

Finally, if $||x^2|| = ||x||^2$, $x \in A$, then $\forall a \in A$:

$$||a|| \ge ||I(a)|| = ||L_a|| \ge ||L_a\left(\frac{a}{||a||}\right)|| = \frac{||a^2||}{||a||} = ||a||.$$

So I is isometry.

Poznámka

 $A \neq \{\mathbf{o}\}$ Banach algebra with a unit $\implies \exists$ equivalent norm $\|\cdot\|$ on A such that $(A, \|\cdot\|)$ is Banach algebra and $\|e\| = 1$.

 $D\mathring{u}kaz$

Let $I: A \to \mathcal{L}(A)$ be as before. Put $|\|x\|| := \|I(x)\|$, $x \in A$. Since I is isomorphism, $|\|\cdot\||$ is equivalent norm. Moreover, $|\|x \cdot y\|| = \|I(x \cdot y)\| \le \|I(x)\| \cdot \|I(y)\| = \|\|x\|\| \cdot \|\|y\|\|$, $x, y \in A$. So $(A, |\|\cdot\||)$ is a Banach algebra. Finally

$$|||e||| = ||I(e)|| = ||\operatorname{id}|| = 1.$$

1.2 Inverse elements

Definice 1.4

 (M, \cdot, e) is monoid (\cdot is associative, e is unit). Then invertible elements form a group $(e^{-1} = e, \exists x^{-1}, y^{-1} \implies (x \cdot y)^{-1} = y^{-1} \cdot x^{-1})$; if $x \in M$, and $y \in M$ is its left inverse and $z \in M$ is its right inverse, then y = z is inverse:

$$y = y \cdot e = y \cdot x \cdot z = e \cdot z = z.$$

We denote $M^{\times} := \{x \in M \mid \exists x^{-1}\}\$

Tvrzení 1.5

If (A, \cdot, e) is monoid and $x_1, \dots, x_n \in A$ commute, then $x_1 \cdot \dots \cdot x_n \in A^x \Leftrightarrow \{x_1, \dots, x_n\} \subset A^x$.

 $D\mathring{u}kaz$

It suffices to prove it for n = 2 (and use induction). "If x^{-1} and y^{-1} exists, then $(xy)^{-1}$ is easy from associativity.

If we have $(xy)^{-1}$. Put $z := (xy)^{-1}x$. Then $zy = (xy)^{-1}(xy) = e$, so z is left inverse to y. Next we show that there is also right inverse: Put $\tilde{z} := x(xy)^{-1}$: $y\tilde{z} = (xy)(xy)^{-1} = e$, so \tilde{z} is right inverse. And we already know that if there is left and right inverse, then they are same and they are inverse.

Lemma 1.6

Let A be a Banach algebra with a unit.

•
$$||x|| < 1 \implies \exists (e-x)^{-1} \land (e-x)^{-1} = \sum_{n=0}^{\infty} x^n;$$

•
$$\exists x^{-1} \land \|h\| < \frac{1}{\|x^{-1}\|} \implies \exists (x+e)^{-1} \land \|(x+h)^{-1} - x^{-1}\| \leqslant \frac{\|x^{-1}\|^2 \cdot \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}.$$

 $D\mathring{u}kaz$

"First point": We have $||x^n|| \le ||x||^n$, so $\sum_{n=0}^{\infty} x^n$ is absolute convergent series, so $\sum_{n=0}^{\infty} ||x^n|| \le A$. Moreover,

$$(e-x)\cdot\left(\sum_{n=0}^{\infty}x^{n}\right) = \lim_{N\to\infty}(e-x)\cdot(e+x+\ldots+x^{N}) = \lim_{N\to\infty}e-x^{N+1} = e,$$

because $\lim_{N\to\infty} \|x^{n+1}\| \le \lim_{N\to\infty} \|x\|^N = 0$. And similarly $(\sum x^n) \cdot (e-x) = e$.

"Second point": $x+h=x\cdot(e+x^{-1}h)$ we have x^{-1} exists and $(e+x^{-1}h)^{-1}$ exists (from first point), so from previous fact $(x+h)^{-1}$ exists. Moreover

$$(x+h)^{-1} = (e+x^{-1}h)^{-1} \cdot x^{-1} \stackrel{1)}{=} \sum_{n=0}^{\infty} (-x^{-1}h)^n x^{-1},$$

SO

$$\begin{aligned} \|(x+h)^{-1} - x^{-1}\| &= \|\sum_{n=1}^{\infty} \left(-x^{-1}h\right)^n x^{-1}\| \leqslant \|x^{-1}\| \cdot \sum_{n=1}^{\infty} \|x^{-1}h\|^n \leqslant \\ &\leqslant \|x^{-1}\| \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left(\|x^{-1}\| \cdot \|h\|\right)^n = \|x^{-1}\| \cdot \frac{\|x^{-1}\| \|h\|}{1 - \|x^{-1}\| \cdot \|h\|}. \end{aligned}$$

Důsledek

A Banach algebra with a unit $\implies A^x \subset A$ is open and A^x is topological group.

 $D\mathring{u}kaz$

 $A^x \subset A$ is open by previous lemma (second point). So it remains to prove $x \mapsto x^{-1}$ is continuous:

$$A^{x} \ni x_{n} \to x \in A^{x} \stackrel{?}{\Longrightarrow} x_{n}^{-1} \to x^{-1}.$$

$$\|x_{n}^{-1} - x^{-1}\| \stackrel{h := x_{n} - x}{\leqslant} \frac{\|x^{-1}\|^{2} \cdot \|x_{n} - x\|}{1 - \|x^{-1}\| \cdot \|x_{n} - x\|} \to 0.$$

1.3 Spectral theory

Definice 1.5 (Resolvent set, spectrum and resolvent)

A Banach algebra with a unit, $x \in A$. We define resolvent set of x as $S_A(x) := \{\lambda \in \mathbb{K} | \exists (\lambda \cdot e - x)^{-1} \}$. Next we define spectrum of x as $\sigma_A(x) := \mathbb{K} \setminus S_A(x)$. Finally we define resolvent of x as $R_x : S(x) \to A$, $R_x(\lambda) := (\lambda \cdot e - x)^{-1}$.

If A doesn't have a unit, then notions above are defined with respect to A_e .

Tvrzení 1.7

A Banach algebra

- a) $\forall x \in A : 0 \in \sigma_{A_c}(x)$ (in particular, if A has no unit, then $0 \in \sigma_A(x)$);
- b) A has unit $\implies \sigma_{A_e}(x) = \sigma_A(x) \cup \{0\}.$

 $D\mathring{u}kaz$ (a))

$$\forall (b,\beta) \in A_e : (x,0) \cdot (b,\beta) = (\dots,0) \neq (\mathbf{0},1) \implies \nexists (x,0)^{-1} \implies 0 \in \sigma_{A_e}(x).$$

Důkaz (b))

By a) we have $0 \in \sigma_{A_e}(x)$. So it suffices: $\forall \lambda \neq 0 : \lambda \in S_A(x) \Leftrightarrow \lambda \in S_{A_e}(x)$. First means $(\lambda \cdot e - x)^{-1}$ exists in A and second means that $((0, \lambda) - (x, 0))^{-1} = (-x, \lambda)^{-1}$ exists in A. We take $x \to -x$.

" \Longrightarrow ": find $(b,\beta) \in A_e$ such that $(x,\lambda) \cdot (b,\beta) = (\mathbf{o},1)$. So $(x \cdot b + \lambda \cdot b + \beta \cdot x, \lambda \cdot \beta) = (\mathbf{o},1)$. So $\beta = \frac{1}{\lambda}$ and $b = -\frac{1}{\lambda}(\lambda e + x)^{-1} \cdot x$. Similarly we find left inverse $\left(-\frac{1}{\lambda}x(x + \lambda e)^{-1}, \frac{1}{\lambda}\right)(x,\lambda)$. And next we prove that they are really inverses.

" $\Leftarrow =$ ": Put $(b,\beta) := (x,\lambda)^{-1}$. Then $(\lambda e + x)^{-1} = b + \beta \cdot e$. We have $(x,\lambda) \cdot (b,\beta) = (\mathbf{o},1)$, so $\lambda \cdot \beta = 1$ and $x \cdot b + \lambda \cdot b + \beta \cdot x = \mathbf{o}$. Then

$$(\lambda e + x) \cdot (b + \beta \cdot e) = \lambda \cdot b + \lambda \cdot \beta \cdot e + x \cdot b + \beta \cdot x = e.$$

Similarly second inverse.