Zestaw 6

Zadanie 1. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i niech ϕ oznacza funkcję generującą momenty dla X_i . Niech ponadto T będzie ograniczonym momentem stopu. Oznaczmy przez $S_T = \sum_{i=1}^T X_i$. Udowodnij, że

 $\mathbb{E}\left(\frac{\exp\left(\theta S_{T}\right)}{\phi(\theta)^{T}}\right) = 1.$

Zadanie 2. Niech proces X będzie martyngałem i niech τ będzie momentem stopu.

- Niech σ będzie momentem stopu takim, że $\sigma \leq \tau$ i niech τ , σ będą ograniczone. Udowodnij, że $\mathbb{E}(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}$ prawie na pewno.
- Przypuśćmy, że istnieje całkowalna zmienna losowa Y taka, że dla dowolnego t, $|X_t| \leq Y$ i niech τ będzie momentem stopu skończonym prawie wszędzie. Udowodnij, że $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.
- Niech X będzie procesem takim, że istnieje stała M taka, że $|X_{n-1}-X_n| \leq M$ dla dowolnego n i niech τ będzie momentem stopu takim, że $\mathbb{E}\tau < \infty$. Udowodnij, że wtedy $\mathbb{E}X_{\tau} = \mathbb{E}X_0$.

Zadanie 3. Niech X będzie symetrycznym błądzeniem losowym z czasem dyskretnym postaci $X_n = \sum_{i=1}^n Y_i$ i niech filtracja $\{\mathcal{F}_n\}$ będzie genereowana przez zmienne Y_i . Weźmy dowolne $K \in \mathbb{N}$ i określmy $T = \inf\{n : |X_n| = K\}$. Udowdnij:

- T jest momentem stopu,
- proces $Z_n = (-1)^n \cos(\pi \cdot (X_n + K))$ jest martyngalem,
- proces Z spełnia założenia twierdzenia o opcjonalnym stopowaniu,
- $znajdź \mathbb{E}(-1)^T$.

Zadanie 4. Niech $(X_k)_{k=1}^n$ będzie podmartyngałem oraz niech $\lambda > 0$. Udowodnij, że zachodzi wtedy

$$\lambda \mathbb{P}(\min_{k \le n} X_k \le -r) \le \mathbb{E}(X_n \mathbf{1}_{\{\min_{k \le n} X_k \ge -r\}}) - \mathbb{E}X_0 \le \mathbb{E}X_n^+ - \mathbb{E}X_0 \le \mathbb{E}|X_n| - \mathbb{E}X_0.$$

Zadanie 5 (Nierówność Doob'a w L^p). Niech $(X_k)_{k=1}^n$ będzie odpowiednio całkowalnym podmartyngałem i niech p > 1. Udowodnij, że zachodzi wtedy

$$\mathbb{E} \sup_{k < n} |X_k|^p \le \left(\frac{p}{p-1}\right)^p \mathbb{E} |X_n|^p.$$

Zadanie 6. Niech $\sqrt{n}(T_n-\theta)$ zbiega według rozkładu do pewnej zmiennej losowej. Udodowdnij, że wtesy T_n zbiega według prawdopodobieństwa do θ .

Zadanie 7. Niech $\mathbb{E}X_n \to \mu$ oraz $VarX_n \to 0$. Udowodnij, że wtedy $X_n \to \mu$ według prawdopodobieństwa.

1