PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10010487 A

(43) Date of publication of application: 16.01.98

(51) Int. CI

G02F 1/133

G02B 5/02

G02B 5/30

G02F 1/1335

G02F 1/1335

(21) Application number: 08157255

(71) Applicant:

SHARP CORP

(22) Date of filing: 18.06.96

(72) Inventor:

TAKATANI TOMOO ASHIDA TAKEYUKI

(54) LIQUID CRYSTAL DISPLAY DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a fully wide visual-angle characteristic while securing front contrast.

SOLUTION: The light which penetrates a polarizing plate 6 and a phase difference plate 4 and is made to outgo from a liquid crystal display element 2 is improved in the visual angle including the directions from 12 hours to 6 hours by a phase difference plate 3. Furthermore front contrast is secured by applying light in the normal direction using a light diffusing plate 7 and light is made to diffuse in the directions between 9 hours to 3 hours which were not improved by the phase difference plate 3. Optical arrangement is constituted so that in the case where the light diffusing plate 7 has directivity, light penetrates the light diffusing plate 7 after passing the polarizing plate 5 and in the case where the plate 7 has no directivity, the light penetrates the polarizer plate 5 after passing the light diffusing plate 7.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-10487

(43)公開日 平成10年(1998) 1月16日

G02F		識別記号	庁内整理番号	FΙ				技術表示	供面
	1/133	500		G02F	1/133	500		TX H3 XXIV	· LEX.) / /
	5/02 5/30			G 0 2 B	5/02 5/30		В		
G 0 2 F	1/1335			G 0 2 F	1/1335				
		5 1 0				5 1 0			
				審查請求	未請求	請求項の数8	OL	(全 12	頁)
(21)出廢番号		特願平8-157255		(71)出顧人	0000050	49			
22)出廣日	,	平成8年(1996) 6月	₹18日			/株式会社 大阪市阿倍野区。	注池町 2	22番22号	
				(72)発明者				<u> </u>	
						、阪市阿倍野区县 大式会社内	池町2	2番22号	シ
				(72)発明者	芦田 丈	行			
						、阪市阿倍野区县 式会社内	池町2	2番22号	シ
				(74)代理人		西教 圭一郎			

(54) 【発明の名称】 液晶表示装置

(57)【要約】

【課題】 正面コントラストを確保しながら充分に広い 視角特性を得る。

【解決手段】 偏光板6と位相差板4を透過して液晶表 示素子2から出射した光は、位相差板3によって12時 -6時方向の視角が改善される。さらに光拡散板7によ って、法線方向に光を出射することで正面コントラスト を確保し、かつ位相差板3で改善されなかった9時-3 時方向に光を拡散する。光拡散板7が指向性を有する場 合には、光が偏光板5を透過した後に光拡散板7を透過 するように構成され、指向性を有さない場合には、光が 光拡散板7を透過した後に偏光板5を透過するように構 成される。

【特許請求の範囲】

【請求項1】 一対の偏光板と、

偏光板間に介在されるSTN型の液晶表示素子と、 液晶表示素子から出射した光を予め定められる特定方向 に拡散する光拡散板と、

I

少なくとも光出射側の偏光板と液晶表示素子との間に介 在され、前記光拡散板では拡散しない方向の視角を改善 する位相差板とを含んで構成されることを特徴とする液 晶表示装置。

【請求項2】 前記光拡散板は、光出射側の偏光板と該 10 偏光板に近接する位相差板との間に配置されることを特 徴とする請求項1記載の液晶表示装置。

【請求項3】 前記光拡散板は、光出射側の偏光板の外 方側に配置されることを特徴とする請求項1記載の液晶 表示装置。

【請求項4】 前記光拡散板は、屈折率が互いに異なる 領域をそれぞれ有する2枚のフィルムを積層して構成さ れ、該領域は、フィルムの法線方向に対して前記特定方 向に所定の角度だけ傾斜した方向に平行に設けられ、各 フィルムの前記角度は、法線方向を中心として互いに反 20 対方向に設定されることを特徴とする請求項2記載の液 晶表示装置。

【請求項5】 前記光拡散板は、互いに間隔をあけて設 けられる複数の凹所を表面に有する延伸した高分子フィ ルムから成り、該凹所は前記特定方向とは直交する方向 に延びて形成されていることを特徴とする請求項3記載 の液晶表示装置。

【請求項6】 前記位相差板の3次元方向の屈折率 n x, ny, nzが、nx>nz>nyの関係を有し、 近接する位相差板の遅相軸との成す角が、60°以上8 0°以下の範囲に選ばれることを特徴とする請求項1記 載の液晶表示装置。

【請求項7】 Nz = (nx-nz) / (nx-ny)で表され、前記位相差板の仰角変化に対するレタデーシ ョン値の変化の割合を示す係数Nzが、波長 λ が 6 3 3 nmのときに、0.2以上0.4以下の範囲に選ばれる ことを特徴とする請求項6記載の液晶表示装置。

【請求項8】 前記位相差板は、一軸延伸したフィルム から成り、前記光拡散板で拡散された光の拡散方向と、 光拡散板に近接する位相差板の遅相軸との成す角が、2 0°以上30°以下の範囲に選ばれることを特徴とする 請求項1記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、ワードプロセッサ やパーソナルコンピュータなどのOA(オフィスオート メーション)機器に採用されているディスプレイや、C RT (陰極線管) の代わりとして提案されている液晶モ

ネマティック)型液晶表示装置に関する。

[0002]

【従来の技術】従来技術のSTN型液晶表示装置は、一 対の偏光板と、一対の偏光板の間に挟まれて配置される 液晶表示素子と、偏光板と液晶表示素子との間に少なく とも1枚配置される位相差板と、たとえば観測者側であ る偏光板の外方側に配置される光拡散板とを含んで構成 される。液晶表示素子は、一対のガラス基板と、ガラス 基板の間に挟まれて配置される液晶層と、ガラス基板の 液晶層側の各表面に形成された透明電極と、透明電極の 液晶層側の各表面に形成された配向膜とを含んで構成さ れる。液晶表示装置の観測者側とは反対側にバックライ トシステムが配置され、バックライトシステムは液晶表 示装置側からプリズムシート、拡散シート、導光板、光 源の順に各構成部材が配置される。

【0003】STN型液晶表示装置の課題として広視角 化が挙げられている。液晶表示装置の下に配置されたバ ックライトシステムは、一般的に表示面に対して垂直な 方向の輝度である正面輝度を向上させるために、プリズ ムシートを1枚または2枚含んで構成される。プリズム シートを1枚配置するごとに、正面輝度は約70%向上 する。しかしながら、溝の長手方向に直交する方向への 光の拡散は、プリズムシートの溝の頂角の角度に依存す るので、プリズムシートに形成されている溝の構造上の 影響によって、視角が狭くなるという問題が生じる。視 角が狭くなる現象を解決するために、光拡散板や3次元 方向の屈折率を制御した3次元位相差板を用いて広視角 化する従来技術がある。

【0004】特開平6-194648号公報や特表平7 前記光拡散板で拡散された光の拡散方向と、光拡散板に 30 -509327号公報に開示された技術は、前記光拡散 板を利用している。特開平6-194648号公報で は、液晶表示素子の背面側に、上面がプリズム面、下面 が平滑面であるプリズムシートが配置され、液晶表示素 子のバックライトシステムとは反対側に、光拡散板が配 置される。プリズムシートによって進行方向を所定の方 向に揃えられた光は、光拡散板によって、全方面に拡散 され、広い視角範囲にわたってある程度同等のコントラ ストや色調の画像情報を得ている。

【0005】特表平7-509327号公報では、液晶 40 表示素子の背面側に反射手段または拡散手段を設け、液 晶表示素子の表側にテーパ付き導波管を配置している。 【0006】特開平5-157911号公報に開示され た技術は、前記3次元位相差板を利用している。当該技 術は、液晶表示装置の少なくとも片側に屈折率をnx> nz>nyと設定した複屈折性フィルムを使用した3次 元位相差板を少なくとも1枚介して偏光板を配置してい る。

[0007]

【発明が解決しようとする課題】従来技術の液晶表示装 ニターに用いられる大型のSTN(スーパツイステッド 50 置では、光拡散板や3次元位相差板を用いて視角を改善 することによって、広い範囲にわたりほぼ同等のコントラストや色調の画像情報を得ている。しかしながら、従来の光拡散板や3次元位相差板を利用した技術では、正面方向への入射光をも全方向に拡散させているので、正面方向のコントラストが低下する。また正面輝度を確保するため、バックライトシステムにプリズムシートを利用した場合、視角は激減する。

【0008】本発明の目的は、正面方向のコントラストを確保しながら広い視角特性が得られる液晶表示装置を 提供することである。

[0009]

【課題を解決するための手段】本発明は、一対の偏光板と、偏光板間に介在されるSTN型の液晶表示素子と、液晶表示素子から出射した光を予め定められる特定方向に拡散する光拡散板と、少なくとも光出射側の偏光板と液晶表示素子との間に介在され、前記光拡散板では拡散しない方向の視角を改善する位相差板とを含んで構成されることを特徴とする液晶表示装置である。

本発明に従えば、一方の偏光板側から入射した光は、液晶表示素子を透過して光出射側の位相差板に到達する。位相差板は、光拡散板では拡散しない方向、たとえば特定方向と直交する方向の視角を改善する。位相差板を透過した光は、光拡散板に到達する。光拡散板は、入射した光の正面コントラストを確保し、かつ予め定められる特定方向へ光を拡散する。たとえば、光拡散板は左右方向へ光を拡散し、位相差板は上下方向の視角を改善表で流光を拡散し、位相差板は上下方向の視角を改善表で表したができる。このような光拡散板と位相差板とを含んで液晶表示装置を構成することによって、充分な正面コントラストを保持したまま、充分に広い視角特性を得ることができる。

【0010】また本発明は、前記光拡散板は、光出射側の偏光板と該偏光板に近接する位相差板との間に配置されることを特徴とする。

本発明に従えば、前記光拡散板は、光出射側の偏光板と 該偏光板に近接する位相差板との間に配置されることに よって、正面コントラストを確保して広い視角特性を得 ることができるとともに光拡散板を保護することができ る。また、このような配置は、光拡散板が位相差を持た ない場合、すなわち指向性を持たない場合に適してい る。

【0011】また本発明は、前記光拡散板は、光出射側の偏光板の外方側に配置されることを特徴とする。本発明に従えば、前記光拡散板は、光出射側の偏光板の外方側に配置される。この配置は、光拡散板が位相差を持つ場合、すなわち指向性を持つ場合に適しており、光拡散板と光出射側の偏光板との位相差によって生じる着色を防止することができる。

【0012】また本発明は、前記光拡散板は、屈折率が 互いに異なる領域をそれぞれ有する2枚のフィルムを積 層して構成され、該領域は、フィルムの法線方向に対し て前記特定方向に所定の角度だけ傾斜した方向に平行に設けられ、各フィルムの前記角度は、法線方向を中心として互いに反対方向に設定されることを特徴とする。本発明に従えば、光拡散板は上述のようにして構成され、2枚のフィルムの傾斜方向に光が拡散される。すなわち光拡散板の法線方向に沿って入射した光は、拡散されずにそのまま出射し、正面コントラストを確保する。法線方向に対して傾斜した方向に入射した光は、前記傾斜方向を特定方向と一致させることによって、特定方向に拡散されて視角が拡大される。このような光拡散板は、位相差を有さないので、光拡散板を保護する目的で、光出射側の偏光板と液晶表示素子との間に配置することが好ましい。

【0013】また本発明は、前記光拡散板は、互いに間隔をあけて設けられる複数の凹所を表面に有する延伸した高分子フィルムから成り、該凹所は前記特定方向とは直交する方向に延びて形成されていることを特徴とする。

本発明に従えば、光拡散板の凹所は、前記特定方向と直 20 交する方向に延びて形成される。光拡散板に対して法線 方向に入射した光は、凹所を通過しない場合、拡散されずにそのまま出射して正面コントラストを確保する。凹 所を通過する場合、入射した光は特定方向に拡散され、 視角が拡大される。このような光拡散板は、位相差を有するので、光拡散板と光出射側の偏光板との位相差によって生じる着色を防止するために、光出射側の偏光板の 外方側に配置することが好ましい。

【0014】また本発明は、前記位相差板の3次元方向の屈折率nx,ny,nzが、nx>nz>nyの関係 を有し、前記光拡散板で拡散された光の拡散方向と、光拡散板に近接する位相差板の遅相軸との成す角が、60°以上80°以下の範囲に選ばれることを特徴とする。本発明に従えば、前述したような関係を有する3次元位相差板を最適な位置関係で範囲に配設することによって、左右対称に拡大された視角特性を得ることができる。

【0015】また本発明は、Nz = (nx-nz)/ (nx-ny) で表され、前記位相差板の仰角変化に対するレタデーション値の変化の割合を示す係数Nzが、 彼長 λ が633nmのときに、0.2以上0.4以下の範囲に選ばれることを特徴とする。

本発明に従えば、上述したようなNz値を有する3次元位相差板を用いることによって、全方向に対してバランス良く拡大された視角特性を得ることができる。

【0016】また本発明は、前記位相差板は、一軸延伸したフィルムから成り、前記光拡散板で拡散された光の拡散方向と、光拡散板に近接する位相差板の遅相軸との成す角が、20°以上30°以下の範囲に選ばれることを特徴とする。本発明に従えば、一軸延伸位相差板を最 50 適な位置関係で配設することによって、バランス良く拡 大された視角特性を得ることができる。

[0017]

【発明の実施の形態】図1は、本発明の第1実施形態である液晶表示装置1の構成を示す断面図である。液晶表示装置1は、液晶表示素子2と、3次元位相差板3,4と、偏光板5,6と、光拡散板7とを含んで構成される。偏光板5,6の間には、STN型の液晶表示素子2が配置される。3次元位相差板3,4は、たとえば偏光板5,6と液晶表示素子2との間にそれぞれ配置される。光拡散板7は、観測者側である偏光板5の外方側に10配置される。

【0018】前記液晶表示素子2は、液晶分子9を含む液晶層8と、配向膜10,11と、透明電極12,13と、透光性を有するガラス基板14,15とを含んで構成される。ガラス基板14,15の間に液晶層8が配置される。ガラス基板14,15の液晶層8側の各表面には、それぞれ透明電極12,13が形成される。また、ガラス基板14,15の透明電極12,13が形成された各表面には、ほぼ全面にわたって配向膜10,11がそれぞれ形成される。

【0019】透明電極12,13は、たとえばITO (インジウム錫酸化物)から成り、優れた導電性を有する。配向膜10,11は、たとえばポリイミド樹脂から成り、その表面にはガラス基板14,15の間に挟まれた液晶層8の液晶分子9の配向方向を規制するために、たとえばラビング処理によって配向処理が施されている。

【0020】配向膜10,11がそれぞれ形成されたガラス基板14,15は、該基板間で液晶分子9が260 のねじれ構造を取るように配向処理方向が選ばれて貼 30 合わせられている。液晶層8の液晶材料には、たとえば正の誘電率異方性を有するネマティック液晶に、ねじれ方向を規制するために必要なカイラル物質として、コレステリックノナノエイトを数%添加した混合液晶材料が用いられる。液晶層8の屈折率異方性 Δ nは、混合液晶材料によってたとえば0.143とされ、液晶層8の厚みは、たとえば6.0 μ mに設定される。

【0021】 3次元位相差板 3 , 4 は、3次元方向でそれぞれ屈折率が異なり、3方向の主屈折率をnx,ny,nzとして、面内に含まれる方向の屈折率をnx,ny (nx>ny) とし、厚み方向の屈折率をnzとすると、3方向の屈折率がnx>nz>nyに設定される。

【0022】また、3次元位相差板3,4の遅相軸方向の仰角の変化に対応するリタデーション変化の割合を3次元方向の屈折率を用いて、係数Nz=(nx-nz)/(nx-ny)と規定し、波長λが633nmのときにNz=0.3である3次元位相差板3,4が用いられる。このような3次元位相差板3,4は、たとえば日東電工製フィルムや住友化学製フィルムを使用し、ポリカ

ーボネイトを材質とし、リタデーション値が435 nm のもので実現できる。

【0023】なお、前記Nz値は、全方向にバランスの良い視角特性を得るため0.2以上0.4以下の範囲に選ぶことが好ましい。偏光板5,6は、単体透過率が、たとえば45%に選ばれ、偏光度が、たとえば99.9%に選ばれる。

【0024】光拡散板7は、ポリカーボネイトを延伸したフィルム、たとえば日東電工製HMWフィルムで実現できる。本形態の光拡散板7は、高分子材料を延伸して形成されるので位相差を有する。したがって偏光板5の液晶表示素子2側に配置した場合、位相差により着色するので、偏光板5の外方側に配置される。

【0025】図2は、光拡散板7の断面斜視図である。 光拡散板7の観測者側の表面16には、V字状でかつ長 細状のくぼみ17が多数形成され、液晶表示素子2側の 表面18は平滑面である。くぼみ17は、観測者側の表 面16にくぼみ17の長手方向を一定方向に揃えて多数 配置される。たとえばくぼみ17の頂角 θ 1は30°以 上50°以下の範囲に設定され、くぼみ17の深さdは 約2 μ mに設定され、隣接するくぼみ17間の間隔上は 約1 μ mに設定され、1 c m²あたり約15万個以上の くぼみ17が表面16内に均等に分布される。

【0026】光拡散板7の表面18から垂直に入射した 光19,21のうちの、くぼみ17を透過する光19 が、たとえばくぼみ17を構成する一側面17aに垂直 な軸20に対して入射角 02で入射すると、スネルの法 則に従って、軸20に対して02とは異なる出射角 03 の方向へ拡散される。したがって、くぼみ17の長手方 向とは直交する方向に光を拡散することができる。ま た、くぼみ17を透過しない光21は、屈折せずに正面 方向へ出射する。

【0027】図3は、液晶表示装置1の各構成部材の配設条件を示す図である。矢印P1はガラス基板14に形成されている配向膜10の液晶分子配向軸を示し、矢印P2はガラス基板15に形成されている配向膜11の液晶分子配向軸を示し、矢印P3は光拡散板7の視角拡大方向、すなわち前記くぽみ17の長手方向とは直交する方向を示し、矢印P4は偏光板5の吸収軸方向を示し、矢印P6は3次元位相差板3の遅相軸方向を示し、矢印P7は3次元位相差板4の遅相軸方向を示す。

【0028】液晶表示装置1を光拡散板7側から見たとき、12時-6時方向(上下方向)の軸22と、9時-3時方向(左右方向)の軸23を基準として、矢印P1は軸23から時計まわりに40°の方向に配設され、矢印P2は軸22から時計まわりに50°の方向に配設され、矢印P3は軸23の軸上の方向に配設され、矢印P4は軸22から時計まわりに85°の方向に配設され、矢印P5は軸22から時計まわりに5°の方向に配設さ

れ、矢印P6は軸22から時計まわりに25°の方向に 配設され、矢印P7は軸22から反時計まわりに25° の方向に配設される。3次元位相差板3の遅相軸方向P 6と、光拡散板7の視角拡大方向P3との成す角は、視 角特性を左右対称にするために 60°以上 80°以下の 範囲に設定することが好ましい。

【0029】図4は、液晶表示装置1に組合わせて用い られるバックライトシステム24の構成を示す図であ る。バックライトシステム24は、たとえば直下型方式 で実現され、光源25と、導光板26と、拡散シート2 7と、プリズムシート28,29とを含んで構成され る。

【0030】光源25は、たとえば冷陰極管によって実 現され、液晶表示装置1の長辺方向に平行に配置され る。導光板26は、アクリル板から成り、光源25の液 晶表示装置1側に配置される。拡散シート27は、ポリ カーボネイトまたはポリエチレンテレフタレートから成 り、上面に多数のV字状ストライプ溝を平行に配列形成 したプリズム面を有し、導光板26の液晶表示装置1側 に配置される。

【0031】プリズムシート28,29は、アクリル樹 脂またはポリエチレンテレフタレートから成り、拡散シ ート27と液晶表示装置1との間に配置される。拡散シ ート27側のプリズムシート28には、長辺方向30a に平行に溝が形成され、液晶表示装置1側のプリズムシ ート29には、パネルとの光の干渉を防ぐために長辺方 向30aに対して、直交する短辺方向から5°程度右に 傾けた方向30bに平行に溝が形成される。

【0032】続いて、液晶表示装置1とバックライトシ ステム24とを組合せたときの動作について述べる。バ 30 ックライトシステム24において、照明光源25として 用いられる冷陰極管は線光源であり、放射された光は均 一性がなく、光源25から遠去かるにつれて輝度が低下 するので、導光板26によって導光板内部の多重反射を 利用して、光源25から継続的に発せられる光を面全体 へ一様に導く。面全体へ導かれた光は、拡散シート27 によって拡散され、正面方向に向けて出射される。導光 板26と拡散シート27とによって線光源から面光源化 された光は、液晶表示装置1の光入射面に均一な光とし て照射される。

【0033】このとき面光源化された光は、液晶表示装 置1に到達する前に正面輝度を向上させるためにプリズ ムシート28,29を透過する。プリズムシート28, 29は、拡散シート27から発せられた面光源の光に、 プリズムシートに形成された溝方向30a, 30bによ って指向性を持たせ、正面輝度を高めて液晶表示装置 1 に照射させる。

【0034】プリズムシート28、29は正面輝度を向 上させるために配置されるが、プリズムシート28,2 9による光の拡散は、該シートの溝の頂角の角度に依存

するので、視角が狭くなるという問題が生じる。本形態 では、液晶表示装置1内に光拡散板7や3次元方向の屈 折率を制御した3次元位相差板3,4を最適な条件で配 設することで視角を拡大し、視角特性を改善している。

【0035】液晶表示装置1において、偏光板6に照射 されたバックライトシステム24からの光は、互いに直 交する2つの偏光成分に分けられ、一方の成分が吸収ま たは分散されることによって、他方の成分の光だけが透 過する。偏光板6を透過した光は、3次元位相差板4に 10 入射する。3次元位相差板は、遅相軸方向の仰角に対応 するリタデーション変化を自由にコントロールできるの で、係数Nzを変化させることによって、2次元位相差 板よりも視角を広くすることができる。したがって3次 元位相差板4を透過することによって、12時-6時方 向の視角が改善される。

【0036】液晶層8の液晶分子9は、電圧無印加時に は配向膜10,11によってねじれて配列する。ガラス 基板15側から入射した光は、光学的な異方性を有する 液晶分子9の配列に沿って、光の施光性によってねじら 20 れ、ガラス基板14を透過する。ガラス基板14を透過 した光は、3次元位相差板3によって3次元位相差板4 と同様にして12時-6時方向の視角が改善される。3 次元位相差板3を透過した光は、偏光板5によってたと えば透過される。

【0037】透明電極12,13間に電圧を印加して、 液晶層8に電界を生じさせた電圧印加時には、液晶分子 9の長軸方向がガラス基板14,15に対して垂直な方 向に移行する。移行した液晶分子9の分子配列は、電圧 無印加時の分子配列状態とは異なり、偏光板6から入射 した光は、偏光板5によって遮断される。このように電 界によって入射光の透過/遮断を制御して、画像を表示 させることができる。

【0038】偏光板5を透過した光は、光拡散板7によ って9時-3時方向に拡散される。光拡散板7のくぼみ 17のない部分に垂直に入射した光は、そのまま出射さ れるので、正面コントラストの低下を防ぐことができ る。光拡散板7のくぼみ17のある部分に入射した光 は、前述したようにスネルの法則に従って、3次元位相 差板3,4によって視角が改善されなかった9時-3時 方向に拡散される。

【0039】このように配設条件を最適化することによ って、光拡散板7による視角拡大方向と3次元位相差板 3, 4による視角拡大方向のバランスを取り、正面コン トラストを確保しながら、全方向への広視角化が可能と なる。

【0040】図5は、本発明の第2実施形態である液晶 表示装置1 a の構成を示す断面図である。液晶表示装置 I a は、前記液晶表示装置 1 と同様に液晶表示素子 2 と 位相差板3,4と、偏光板5,6と、光拡散板7aとを 50 含んで構成される。光拡散板7a以外の構成は、図1と

40

10

同様であり、構成部材、配置軸、各構成部材の配設条 件、およびバックライトシステムの配置は、第1実施形 態と同様である。第1実施形態と異なる点は、位相差を 持たない光拡散板7aをたとえば外部からの衝撃から保 護することを目的として、偏光板5と3次元位相差板3 との間に挟んで配置していることである。したがって液 晶表示装置1 a は、観測者側から偏光板5、光拡散板7 a、3次元位相差板3、液晶表示素子2、3次元位相差 板4、偏光板6の順序で積層して配置される。

【0041】図6は、光拡散板7aの断面図である。光 10 拡散板7aは、たとえば住友化学製ルミスティーを使用 し、屈折率が互いに異なる2種類の領域31,32をそ れぞれ有する2枚のフィルム33,34を積層して構成 される。領域31,32は、フィルムの法線方向35に 対して所定の角度 θ 4 だけ傾斜した方向に平行に設定さ れる。各フィルム 33 , 34 の所定の角度 θ 4 は、フィ ルムの法線方向35を中心として互いに反対方向に設定 される。フィルム33,34を設定する際、各領域3 1,32は、屈折率が同じ領域どうしを合わせて配置し てもよいし、合わさずに配置しても構わない。いずれの 配置によっても同じ効果を得ることができる。また角度 θ 4 は、55°以上75°以下の範囲に選ぶことが好ま しく、本実施形態では角度 θ 4は、65°に選ばれる。 【0042】光拡散板7aに法線方向35から入射した 光は、そのままの状態を保ち法線方向35に出射し、正 面コントラストを確保する。光拡散板7aに角度θ4と 平行に入射した光36は、ブラッグ回析によって拡散 し、9時-3時方向の視角を拡大する。各フィルム3 3,34は、それぞれ一方向に入射した光しか視角を拡 大できないので、積層して配置することによって、視角

【0043】図7は、第1比較例である液晶表示装置1 bの構成を示す断面図である。液晶表示装置1bは、液 晶表示素子2と、3次元位相差板3,4と、偏光板5, 6とを含んで構成される。各構成部材、配置軸およびバ ックライトシステムの配置は、第1実施形態と同様であ る。第1実施形態と異なる点は、光拡散板7が配置され ないことである。

を9時-3時方向に拡大している。

【0044】図8は、液晶表示装置1bの各構成部材の 配設条件を示す図である。矢印P8はガラス基板14に 40 形成されている配向膜10の液晶分子配向軸を示し、矢 印P9はガラス基板15に形成されている配向膜11の 液晶分子配向軸を示し、矢印P10は偏光板5の吸収軸 方向を示し、矢印P11は偏光板6の吸収軸方向を示 し、矢印P12は3次元位相差板3の遅相軸方向を示 し、矢印P13は3次元位相差板4の遅相軸方向を示 す。各構成部材の配設条件は、第1実施形態と同様であ る。

【0045】図9は、第2比較例である液晶表示装置1

1 実施形態と同様に液晶表示素子2と、3 次元位相差板 3,4と、偏光板5,6と、光拡散板7cとを含んで構 成される。各構成部材、配置軸およびバックライトシス テムの配置は、第1実施形態と同様である。第1実施形 態と異なる点は、光拡散板7cが指光性を持たないフィ ルムであり、光を全方向に拡散することによって視角を 拡大していることである。各構成部材の配設条件は、第 1 実施形態と同じである。

【0046】次に第1および第2の実施形態と第1比較 例とのイソコントラストカーブによる視角特性の評価結 果について述べる。

【0047】図10は、コントラストCo=4が得られ る第1実施形態および第1比較例のイソコントラストカ ーブを表すグラフである。曲線の内方がCo>4の範囲 であり、曲線の外方がCo<4の範囲である。イソコン トラストカーブでは、表示面の12時方向を0°とし、 3時方向を90°とし、6時方向を180°とし、9時 方向を270°として表している。イソコントラストカ ーブの中心点を表示面に対して垂直方向の0°とし、円 20 の中心から放射状に描かれている円によって、0°から 50° までの視角範囲の傾きを表している。

【0048】図10(A)~図10(E)は、第1実施 形態において3次元位相差板3,4の係数Nzを0.1 ~0.5まで0.1ずつ変化したときの結果を示し、図 10 (F) は第1比較例の結果を示す。光拡散板7を設 けた図10(A)~図10(E)に示される結果の方 が、光拡散板7を設けない図10(F)に示される結果 よりも広い視角範囲が得られることが判る。また係数N zが0. $2 \sim 0$. 4 の場合に全方向でバランスの良い視 30 角特性が得られることが判る。したがって係数Nzは 0. 2以上0. 4以下の範囲に設定することが好まし 110

【0049】図11は、第1実施形態の液晶表示装置1 において、3次元位相差板3,4の係数Nz=0.3と したときに、3次元位相差板3の遅相軸方向P6と光拡 散板7の視角拡大方向P3との交差角を変化させたとき のコントラストCo=4が得られるイソコントラストカ ープを表すグラフである。図11 (A) ~図11 (E) は、前記交差角を50°~90°まで10°ずつ変化し たときの結果を示す。前記交差角を60°~80°に設 定した場合、左右対称なイソコントラストカーブが得ら れることが判る。交差角が50°あるいは90°の場合 では、バランスの悪いイソコントラストカーブが得られ ることが判る。したがって、良い視角特性を得るために は、視角特性が左右対称となる60°以上80°以下の 範囲に交差角を設定することが好ましい。

【0050】図12は、第2実施形態の液晶表示装置1 aの3次元位相差板3,4の係数Nzを変化させたとき のコントラストCo=4が得られるイソコントラストカ cの構成を示す断面図である。液晶表示装置1cは、第 50 ーブを表す図である。図12(A)~図12(E)は、

II

係数Nzを0.1~0.5まで0.1ずつ変化したときの結果を示す。図10に示される結果と同様に、係数Nzが0.2~0.4の場合に全方向でバランスの良い視角特性が得られることが判り、係数Nzは、0.2以上0.4以下の範囲に設定することが好ましい。

【0051】次の表1は、第1および第2比較例と第1および第2実施形態との正面コントラストおよびその比*

*率を示す。比率は、第1比較例の正面コントラストを100%としている。従来技術の光拡散板を利用した第2比較例では、正面コントラストが50%~60%に減少するのに対し、第1実施形態では88%、第2実施形態では94%の正面コントラストを確保している。

12

[0052]

【表1】

	第1比較例	第2比較例	第1 実施形態	第2実施形態
正面コントラスト	25	12~15	2 2	23.5
上 率	100%	50~60%	88%	94%

【0053】また次の表2は、第1比較例と第1および 第2実施形態との12時-6時方向のコントラストCo ≥4の領域を示す。12時-6時方向において12時側 に「-」を付して表示している。改善率は、第1比較例 の視角範囲を1とした比率で表しており、第1実施形態※

※では1.47以上、第2実施形態では1.72以上の改善率が得られている。

[0054]

【表2】

12時-6時	コントラスト≧4の領域	改善率
第1 比較例	-33° ~25°(58°)	1
第1 実施形態	-50. 以上~35.(85.以下)	1.47以上
第2実施形態	-50. 以下~20. 以下(100. 於下)	1.72以上

【0055】さらに次の表3は、第1比較例と第1および第2実施形態との9時-3時方向のコントラストCo ≧4の領域を示す。9時-3時方向において9時側に 「-」を付して表示している。改善率は、第1比較例の 視角範囲を1とした比率で表しており、第1および第2★

★実施形態ではともに1.52以上の改善率が得られている。

[0056]

【表3】

9時-3時	コントラスト≥4の領域	改善率
第1比較例	-33. ~33. (66.)	1
第1実施例	-50. 以下~20. 以下(100.)	1.52以上
第2実施形態	-50. 以下~20.	1.52以上

【0057】以上の結果より、光拡散板7,7aと3次元位相差板3,4を用いた第1および第2実施形態では従来技術に対して50%以上の視角拡大効果が得られ、正面コントラストの低下は約10%に抑えられることが判る。

【0058】第3の実施形態の液晶表示装置の構成は、図1に示される液晶表示装置1と同様である。基本となる構成部材、配置軸、およびバックライトシステムの配置は、第1実施形態と同様である。第1実施形態と異なる点は、位相差板3,4に一軸延伸位相差板を用いることである。一軸延伸位相差板3,4は、たとえばポリカーボネイトから成り、リタデーション値は435nmに選ばれる。

【0059】また、一軸延伸位相差板3の遅相軸方向Pとである。6と光拡散板7の視角拡大方向P3との成す角は、比較ーボネイト特性のバランスを良くするために、20°以上30°以50選ばれる。

下の範囲に設定される。

【0060】一軸延伸位相差板3,4を用いることによって、一軸延伸位相差板3,4と光拡散板7とによる光の拡散方向が第1実施形態とは異なる。すなわち、一軸延伸位相差板3,4に入射した光は、9時-3時方向に 拡大される。光拡散板7に入射した光は、一軸延伸位相差板3,4によって広視化されなかった12時-6時方向に、正面コントラストを確保しながら拡大される。

【0061】第4実施形態の液晶表示装置の構成は、図5に示される液晶表示装置1aと同様である。基本となる構成部材、配置軸、およびバックライトシステムの配置は、第2実施形態と同様である。第2実施形態と異なる点は、位相差板3,4に一軸延伸位相差板を用いることである。一軸延伸位相差板3,4は、たとえばポリカーボネイトから成り、リタデーション値は435nmに選ばれる。

13

【0062】各構成部材の配設条件および一軸延伸位相 差板3,4と光拡散板7aによる光の視角拡大方向は、 第3 実施形態と同様である。

【0063】第3比較例である液晶表示装置は、基本と なる構成部材、配置軸、およびバックライトシステムの 配置は、第1比較例と同様である。第1比較例と異なる 点は、位相差板3,4に一軸延伸位相差板を用いること である。一軸延伸位相差板3,4によって、第3実施形 態と同様に9時-3時方向の視角が改善される。

【0064】第4比較例である液晶表示装置は、基本と なる構成部材、配置軸、およびバックライトシステムの 配置は、第2比較例と同様である。第2比較例と異なる 点は、位相差板3,4に一軸延伸位相差板を用いること である。一軸延伸位相差板3,4による視角拡大方向 は、第3実施形態と同様である。

【0065】次に第3実施形態と第3比較例とのイソコ ントラストカーブによる視角特性の評価結果について述 べる。

【0066】図13は、コントラストCo=4が得られ るイソコントラストカーブを表すグラフである。図13 20 態では88%の正面コントラストを確保している。 (A)は、第3比較例の結果を示し、図13 (B)は、 第3実施形態の結果を示す。一軸延伸位相差板3,4だ けを用いて視角の改善を行った第3比較例に比べて、一*

*軸延伸位相差板3,4と光拡散板7とを用いた第3実施 形態では、全方向にバランスの良い広範囲の視角特性が 得られることが判る。

14

【0067】図14は、第3実施形態の液晶表示装置に おいて、一軸延伸位相差板3, 4の係数Nz=0.3と して、一軸延伸位相差板3の遅相軸方向P6と光拡散板 7の視角拡大方向P3との交差角を変化させたときのコ ントラストCo=4が得られるイソコントラストカーブ を表すグラフである。図14(A)~図14(D)は、 前記交差角を10°~40°まで10°ずつ変化したと きの結果を示す。交差角10°と交差角40°では、バ ランスの悪いイソコントラストカーブが得られることが 判る。したがって左右対称のバランスの良い視角特性を 得るためには、交差角を20°以上30°以下の範囲に 設定することが好ましい。

【0068】次の表4は第3および第4比較例と第3お よび第4実施形態との正面コントラストおよびその比率 を示す。比率は、第3比較例の正面コントラストを10 0%としている。第3実施形態では80%、第4実施形

[0069]

【表4】

	第3比較例	第4比較例	第3 実施形態	第4実施形態
正面コントラス	25	12~15	21	2 2
比 \$	100%	50~60%	80%	88%

【0070】また次の表5は、第3比較例と第3および ※および第4実施形態では、1.68以上の改善率が得ら 第4実施形態との12時-6時方向のコントラストCo 30 れている。 ≧4の領域を示す。改善率は、光拡散板を配置しない第 [0071] 3比較例の視角範囲を1とした比率で表しており、第3※ 【表 5】

12時-6時	コントラスト 4の領域	改善率
第3比較例	-30. ~20. (50.)	1
第3実施形態	-50. ~34. (84.)	1.68以上
第4実施形態	-50.~34.(84.)	1.68以上

【0072】さらに次の表6は、第3比較例と第3およ ★囲が得られることが判る。 び第4実施形態との9時-3時方向のコントラストCo 40 【0073】 ≥4の領域を示す。9時-3時方向については、比較的 【表 6】 広い基準となる第3比較例の視角範囲と同程度の視角範★

9時-3時	コントラストる4の領域	改善率
第3比較例	-50°~ 50° (100°)	1
第3 実施形態	-50° ~ 50° (100°)	1
第4実施形態	-50° ~ 50° (100°)	1

【0074】以上の結果より、光拡散板7と一軸延伸位 相差板3,4とを用いた第3および第4実施形態では、

光拡散板を用いずに一軸延伸位相差板3,4のみを用い 50 た第3比較例に対し、12時-6時方向では50%以上

の視角拡大効果が得られ、正面コントラストの低下は約 15%程度に抑えられることが判る。

[0075]

【発明の効果】以上のように本発明によれば、光拡散板 は、入射した光の正面コントラストを確保し、特定方向 へ光を拡散する。位相差板は、光拡散板では拡散しない 方向、たとえば特定方向に直交した方向の視角を改善す る。このような光拡散板と位相差板とを含んで液晶表示 装置を構成することによって、正面コントラストを改善 し、全方向への視角を広範囲にすることができ、大型の 10 液晶表示装置に要求される視角特性を得ることができ る。

【0076】また本発明によれば、光拡散板を光出射側 の偏光板と該偏光板に近接する位相差板との間に挟んで 配置することによって、位相差を有さない光拡散板を用 いた場合であっても、正面コントラストを確保し、広視 化された視角特性を得ることができるとともに、光拡散 板を保護することができる。

【0077】また本発明によれば、光拡散板を光出射側 の偏光板の外方側に配置することによって、位相差を有 する光拡散板を用いた場合であっても、正面コントラス トを確保し、広視化された視角特性を得ることができる とともに、光拡散板と光出射側との位相差によって生じ る着色を防止することができる。

【0078】また本発明によれば、光拡散板を屈折率が 互いに異なる領域を有する2枚のフィルムを積層して構 成し、広視化された視角特性を得ることができる。

【0079】また本発明によれば、光拡散板を表面に互 いに間隔をあけた複数の凹所を有する延伸した高分子フ イルムで実現することによって、広視化された視角特性 30 るイソコントラストカーブを示すグラフである。 を得ることができる。

【0080】また本発明によれば、位相差板の3次元方 向の屈折率の関係と、光拡散板で拡散された光の視角拡 大方向と光拡散板に近接する位相差板の遅相軸との成す 角とを最適化することによって、正面コントラストを確 保し、左右対称に広視化された視角特性を得ることがで きる。

【0081】また本発明によれば、位相差板の係数Nz を最適化することによって、正面コントラストを確保 し、全方向に対してバランス良く広視化された視角特性 40 を得ることができる。

【0082】また本発明によれば、位相差板を一軸延伸 したフィルムで実現し、光拡散板で拡散された光の拡散 方向と光拡散板に近接する位相差板の遅相軸との成す角 を最適化することによって、正面コントラストを確保 し、バランス良く広視化された視角特性を得ることがで きる。

【図面の簡単な説明】

【図1】本発明の第1実施形態である液晶表示装置1の 構成を示す断面図である。

16

【図2】第1実施形態の光拡散板7の断面斜視図であ る。

【図3】液晶表示装置1の各構成部材の配設条件を示す 図である。

【図4】バックライトシステム24の構成を示す斜視図 である。

【図5】本発明の第2実施形態である液晶表示装置1 a の構成を示す断面図である。

【図6】第2実施形態の光拡散板7aの断面図である。

【図7】第1比較例である液晶表示装置1 b の構成を示 す断面図である。

【図8】液晶表示装置1bの各構成部材の配設条件を示 す図である。

【図9】第2比較例である液晶表示装置1cの構成を示 す断面図である。

【図10】第1実施形態の3次元位相差板3,4の係数 20 Nzを変化させたときと、第1比較例とのコントラスト Co=4が得られるイソコントラストカーブを示すグラ フである。

【図11】第1実施形態の3次元位相差板3,4の係数 Nz=0.3において、3次元位相差板3の遅相軸方向 P6と光拡散板7の視角拡大方向P3との交差角を変化 させたときのコントラストCo=4が得られるイソコン トラストカーブを示すグラフである。

【図12】第2実施形態の3次元位相差板3,4の係数 Nzを変化させたときのコントラストCo=4が得られ

【図13】第3比較例と第3実施形態においてコントラ ストСo=4が得られるイソコントラストカーブを示す グラフである。

【図14】第3実施形態の3次元位相差板3,4の係数 Nz=0.3において、一軸延伸位相差板3の遅相軸方 向Р6と光拡散板7の視角拡大方向Р3との交差角を変 化させたときコントラストCo=4が得られるイソコン トラストカーブを示すグラフである。

【符号の説明】

- 1, 1 a 液晶表示装置
- 2 液晶表示素子
- 3, 4 位相差板
- 5, 6 偏光板
- 7, 7 a 光拡散板
- 17 くぼみ
- 31,32 領域
- 33, 34 フイルム

【図12】

【図14】

