Card game. N5

У первого игрока 8 стратегий. Действительно, стратегия должна описывать, что делать, если пришла карта Ace, карта King, карта Queen, то есть стратегию можно записать тремя буквами. Например, RRF (raise, если пришла A; raise, если пришла K; fold, если пришла Q). У второго игрока две стратегии Pass и Call. Можно в принципе составить матрицу 8х2 и решить антагонистическую игру.

Первому при хороших картах (Ace и Queen) выгодно делать Raise. Если сделать Fold, то это гарантированная потеря доллара, а если сделать Raise, то можно оказаться либо в плюсе, либо по нулям (в случае Queen). Вычеркиваем строго доминируемые стратегии и получаем матрицу 2х2.

В матрице ожидаемый выигрыш первого игрока:

$\overline{\mathrm{I/II}}$	(q) Pass	(1-q) Call
(p) RRR	1	-m/3
(1-p) RFR	1/3	(m-1)/3

Далее рассматриваем случаи. Немного громоздко, но однотипно.

Случай 1. m > 2. Нет равновесий в чистых, есть единственное в смешанных.

Условие безразличия первого: $1q-m/3\cdot(1-q)=1/3\cdot q+(m-1)/3\cdot(1-q)$

Условие безразличия второго: p + (1-p)/3 = -pm/3 + (1-p)(m-1)/3

Находим
$$p = (m-2)/(2m+1)$$
, $q = (2m-1)/(2m+1)$

При $m \to \infty$ получаем $p \to 0.5, q \to 1$.

Случай 2. 1 < m < 2. Есть равновесие в чистых, так как Call строго доминирует Pass.

Получаем равновесие RFR-Call.

Случай 3. m=2. RFR-Call остается равновесием в чистых, но уже есть есть смешанные равновесия в окрестности.

При
$$m=2$$
: $p=0, q \leq 3/5$