

# Meteorological Data Filtering for Tropical Cyclones using Deep Learning



Daniel Galea, Bryan Lawrence







#### **Outline**

- Introduction and Aims
- Deep Learning
- Detecting Tropical Cyclones with Deep Learning
- Verification of Deep Learning algorithm
- Implementation of Deep Learning algorithm in a GCM
- Summary and Future Work



#### **Introduction and Aims**

- The effects of a changing climate on multiple meteorological phenomena are being investigated by long General Circulation Model (GCM) simulations
- Each simulation produces large amounts of data which can be inefficient to store and analyse
- We created a method that scans GCM analysis data for the presence of Tropical Cyclones (TCs) and only outputs it to disk if a TC is detected

# Deep Learning



# What is Deep Learning?





#### **Neural Networks**



# Detecting TCs with Deep Learning



#### **Data**

- ERA-Interim reanalyses dataset; each timestep split into 8 regions
- Fields used: 10m wind speed; MSLP; Vorticity at 850hPa, 700hPa, 600hPa at a resolution of 2.8°
- Labels obtained from the IBTrACS database
- Training Set: January 1979 June 2017 (450912 cases)
- Testing Set: July 2017 August 2019 (24352 cases)









## Deep Learning Model: Architecture

- CNN-based classifier, termed TCDetect
- Convolutional Base: 5 blocks using 2D convolution, dropout, glorot uniform weight initialisation, ReLU activation function
- Classifier: 4-layer fully-connected network using dropout, glorot uniform weight initialisation, ReLU activation function, L2 normalisation
- Final layer uses a softmax function to output a single value





# Deep Learning Model: Optimisations

- Choice of Data Filtered Fields; 5 fields
- Early Stopping 10 steps
- Normalisation Standardisation
- Resolution Sixteenth
- Dataset Balancing Undersampling with replacement
- Loss Function Binary Cross-Entropy
- Optimiser Momentum
- Learning and Momentum Rates 0.01 and 0.8
- Data Augmentation Roll in x-direction; Random rotation; LR flip
- Dropout Position and Rate Whole model, 10%
- L2 Position and Rate Classifier; 0.5%
- Batch Size 8



#### Results

- An accuracy of 90.65% was obtained when testing on data from July 2017 until August 2019
- 1231 out of 1342 (91.73%) positive cases were correctly classified

|              |                | <u>Identified</u> |                |  |  |
|--------------|----------------|-------------------|----------------|--|--|
|              |                | TC Present        | TC Not Present |  |  |
| Ground Truth | TC Present     | 1231              | 111            |  |  |
|              | TC Not Present | 2166              | 20844          |  |  |



# **Results: TC Category**

| Category | Global Model |
|----------|--------------|
| 1        | 88.02%       |
| 2        | 91.53%       |
| 3        | 94.19%       |
| 4        | 94.64%       |
| 5        | 100.00%      |

 This upward trend of recall with category shows that TCs of higher categories are being identified better as they have features which are more easily identifiable



#### **Results: Standard Models**

 The model developed was compared with some standard models. It did not obtain the best accuracy, but did get the best loss





# **Results: Different Training Areas**

| Model     | Training Regio      | n Testi                | ng Region              | AUC-PR                 |
|-----------|---------------------|------------------------|------------------------|------------------------|
| WAWP      | WAWP                | WAW                    | Р                      | 0.7884                 |
| WAWP      | WAWP                | Globa                  | al                     | 0.6491                 |
| Global    | Global              | Globa                  | al                     | 0.7173                 |
| Mean MSLP | Mean 10m Wind Speed | Mean 850 hPa Vorticity | Mean 700 hPa Vorticity | Mean 600 hPa Vorticity |





## Results: Feature Importance

- Breiman Method:
  - Each field is permuted across all testing cases
  - If performance decreases from original, the field is important for the model
  - The larger the decrease, the more important the field
- Lakshamanan Method:
  - Each field is permuted across all testing cases
  - Most important is kept permuted, while the next important is found
  - Keep on going until all fields are permuted





#### **Results: Dataset Size**



# Verification



#### Verification:

- Compare outputs from DL model to an algorithm and observations
- Algorithm: TRACK by Dr Kevin Hodges
  - Uses vorticity and other fields to track all TCs
  - Outputs are tracks of TC centres (lats/lons)
  - We use only hurricane portion of track, T-TRACK
- Observations: IBTrACS
  - Positions of major storms including category on Saffir-Simpson scale



#### **Verification: TC Centres**

Compare outputs from DL model to T-TRACK, observations







**TCDetect** 



#### **Verification: TC Centres**

Compare outputs from DL model to T-TRACK, observations





#### **Verification: TC Matches**

Compare outputs from DL model to T-TRACK, observations



#### **Verification: TC Matches**





#### **Verification: TC Matches**







#### Verification: TC Track Matches

- Constraints:
  - mean separation distance between all overlapping points between tracks is less than 5 deg (geodesic)
  - tracks need to overlap for at least 10% of the base track's lifetime
  - the track with the least mean separation distance is chosen if multiple matching tracks exist





# **Verification: TC Frequencies**



# Implementation



## **Implementation**

- TCDetect was trained in Python
- We wanted to have a climate model use it to decide whether to output data to disk
  - We chose the UK Met Office's Unified Model (UM)
  - This is based in FORTRAN
- We needed a way to use the Python-trained TCDetect in the FORTRAN-based UM
  - We use a C++ package, frugally-deep, to load and use TCDetect in FORTRAN



# **Implementation**





#### **Results: Overview**

- Wanted to check ability of TCDetect to be applied to different data sources, horizontal resolutions and climates
- Utilize 6 different datasets to run the following analysis:

| Dataset     | Labelling Method | Horizontal Resolution |
|-------------|------------------|-----------------------|
| ERA-Interim | IBTrACS          | ~79km                 |
| ERA-Interim | T-TRACK          | ~79km                 |
| UMN96       | T-TRACK          | ~135km                |
| UMN512      | T-TRACK          | ~25km                 |
| Hist1950    | T-TRACK          | ~25km                 |
| Future      | T-TRACK          | ~25km                 |



### Results

| Data<br>Source | Label<br>Source | TCDetect | TCDetect<br>-TRACK | TCDetect<br>-N96 | TCDetect<br>-N512 | TCDetect<br>-CC | TCDetect<br>-FC |
|----------------|-----------------|----------|--------------------|------------------|-------------------|-----------------|-----------------|
| ERAI           | IBTrACS         | 92%      | 85%                | 97%              | 91%               | 93%             | 89%             |
| ERAI           | T-TRACK         | 59%      | 62%                | 76%              | 70%               | 73%             | 62%             |
| UMN96          | T-TRACK         | 34%      | 41%                | 78%              | 50%               | 62%             | 44%             |
| UMN512         | T-TRACK         | 58%      | 58%                | 71%              | 72%               | 77%             | 60%             |
| Hist1950       | T-TRACK         | 60%      | 58%                | 73%              | 73%               | 77%             | 64%             |
| Future         | T-TRACK         | 62%      | 62%                | 74%              | 74%               | 79%             | 66%             |



#### Results

- Model trained on the dataset being tested obtained superior recall to most others
- Different sources:
  - Models trained on UM data, except TCDetect-FC, obtain better recall than models trained on ERA-Interim data
- Different resolutions:
  - TCDetect-N96 performed better on N512 data. Not viceversa
- Different climates:
  - All models are close when testing on the Hist1950 and Future datasets

# **Results: Variability**









# Implementation: Data Volume

|     | ERA-Interim |            | UM N96    |            | UM N512    |           |           |
|-----|-------------|------------|-----------|------------|------------|-----------|-----------|
|     | IBTrACS     | T-TRACK    | TCDetect  | T-TRACK    | TCDetect   | T-TRACK   | TCDetect  |
| NI  | 72 (2%)     | 277 (9%)   | 239 (8%)  | 74 (2%)    | 105 (2%)   | 157 (11%) | 197 (14%) |
| NWP | 400 (13%)   | 1222 (40%) | 933 (31%) | 1674 (39%) | 2617 (61%) | 956 (67%) | 920 (64%) |
| NEP | 267 (9%)    | 712 (23%)  | 875 (29%) | 442 (11%)  | 689 (16%)  | 524 (37%) | 714 (50%) |
| NA  | 250 (8%)    | 703 (23%)  | 497 (16%) | 559 (13%)  | 999 (23%)  | 431 (30%) | 683 (48%) |
| SI  | 214 (7%)    | 646 (21%)  | 406 (13%) | 913 (31%)  | 1596 (37%) | 234 (16%) | 552 (38%) |
| SWP | 113 (4%)    | 740 (24%)  | 399 (13%) | 874 (20%)  | 1436 (33%) | 154 (11%) | 374 (26%) |
| SEP | 26 (1%)     | 322 (11%)  | 35 (1%)   | 1096 (25%) | 1945 (45%) | 149 (10%) | 370 (26%) |
| SA  | 0 (0%)      | 119 (4%)   | 119 (4%)  | 167 (4%)   | 362 (8%)   | 28 (2%)   | 97 (7%)   |



# Implementation: Computational Performance

| Function            | Times Applied | N96 Timings / sec      | N512 Timings / sec     |
|---------------------|---------------|------------------------|------------------------|
| Collect data        | 1             | 4.64 x10 <sup>-4</sup> | 2.99x10 <sup>-3</sup>  |
| Interpolate MSLP    | 1             | 3.15 x10 <sup>-4</sup> | 0.35                   |
| Resize field        | 5             | 9.1x10 <sup>-3</sup>   | 3.67x10 <sup>-2</sup>  |
| Calculate Vorticity | 3             | 1.16 x10 <sup>-3</sup> | 2.28x10 <sup>-3</sup>  |
| Spherical filtering | 5             | 0.68                   | 1.36                   |
| Standardisation     | 5             | 4.13 x10 <sup>-5</sup> | 6.64x10 <sup>-5</sup>  |
| Data formatting     | 8             | 1.63x10 <sup>-5</sup>  | 3.66 x10 <sup>-5</sup> |
| DL inference        | 8             | 0.19                   | 0.37                   |
| Full Method         |               | 4.96                   | 10.22                  |
| Full Timestep       |               | 6.15                   | 15.64                  |
| Full Simulation     |               | 23%                    | 5%                     |

# Summary



## **Summary**

- Data volumes from GCMs is large; we want to reduce it
- We have developed a DL algorithm that infers the presence of a Tropical Cyclone in a set of data
- It achieves a recall rate of 91% over the test dataset
- This was compared to a SOTA non-ML algorithm and was found to be mostly comparable in performance
- The DL algorithm was used in a running GCM (the UM) to decide whether to output data from a region to disk
  - Data volume was reduced by ~70%
  - The DL algorithm does not affect the GCM runtime too much



#### **Possible Future Work**

- Better DL model
- Change filtering techniques to be done inside DL model; hopefully producing computationally less expensive method
- Replicate method for other phenomena



# **Acknowledgements**

- This work was supported by NVIDIA and Oracle
- It was funded by Natural Environment Research Council (NERC) as part of the UK Government Department for Business, Energy and Industrial Strategy (BEIS) National Productivity Investment Fund (NPIF), grant number NE/R008868/1
- UM work was aided by members of the NCAS-CMS team