CS2x1:Data Structures and Algorithms

Koteswararao Kondepu

k.kondepu@iitdh.ac.in

Hashing (1)

Hashing Data Structures

Maximum

Minimum

Elements of Hashing:

- i. Hash Table \rightarrow contains the key values with pointers to the corresponding records
- ii. Hash Function
- iii. Collisions
- iv. Collision Resolution Techniques

Hash Function

A "good" hash function minimizes the probability of collisions

index start from 0

 $H(k) = k \mod m$; $k \rightarrow key$, $m \rightarrow table size$; if

 $H(k) = k \pmod{m} + 1$; if index start from 1

H: K → I

Hash Functions:

- Division method
- Midsquare method
- Folding method
- Multiplication method

Collision Resolution Technique:

- Open addressing/Closed hashing
 - Linear probing method
 - Quadratic probing method
 - Double hashing method
- Closed addressing/Open hashing
 - Chaining

K	I
10	1
19	0
35	8
43	7
62	8
59	4
31	4
49	3
77	4
33	6

0	19
1	10
2	
3	49
4	59, 31, 77
5	
6	33
6 7	3343
7	43

Hash Table

Hash Function

Exercise: Division method

A <u>hash table of size 11</u> using the hash function $h(x) = x \mod 11$. The key values are given in the following order: 44, 45, 46, 47, 33, and 55.

When we use <u>Linear Probing for collision resolution</u>, what is the index value of **key 55**, if the index value starts from 0?

 $h'(k) = k \mod m$; $k \rightarrow key$, $m \rightarrow table size$;

 $H(k, i) = (h'(k) + i) \mod m; i \rightarrow \{0, 1, 2,m - 1\}$

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Exercise: Division method (1)

A <u>hash table of size 11</u> using the hash function $h(x) = x \mod 11$. The key values are given in the following order: 41, 27, 9, 21, 22, 23, 34, and 45.

When we use <u>Quadratic Probing for collision resolution</u>, what is the index value of **key 45**, if the index value starts from 0?

 $h'(k) = k \mod m$; $k \rightarrow key$, $m \rightarrow table size$;

 $H(k, i) = (h'(k) + i^2) \mod m; i \rightarrow \{0, 1, 2, ..., m-1\}$

0	22
1	23
2	34
3	
4	
5	
6	
7	
8	41
9	9
10	21

Exercise: Division method (2)

A <u>hash table of size 11</u> using the hash function $h(x) = x \mod 11$. The key values are given in the following order: 41, 27, 9, 21, 13, 22, 23, 26, 2, and 30.

When we use <u>Double hashing</u> for collision resolution where:

$$h_1(x) = x \bmod 11$$

$$h_2(x) = x \bmod 11$$

what is the index value of **key 30**, if the index value starts from 0?

```
h_1(k) = k \mod m; k \rightarrow key, m \rightarrow table size; h_2(k) = k \mod m';
```

$$h(k) = (h_1(k) + i * h2(k)) \mod m; i \rightarrow \{0, 1, 2, ..., m-1\}$$

0	22
1	23
2	13
3	2
4	26
5	27
6	
7	
8	41
9	9
10	21

Hash Function: Generalization

```
h_1(k) = k \mod m \; ; \; k \rightarrow key, \; m \rightarrow table \, size;

h_2(k) = k \mod m';

h(k) = (h_1(k) + F(i)) \mod m; \; i \rightarrow \{0, 1, 2, ....m - 1\}
```

Hash Table

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Hash Function: Midsquare

H(k) = x;

where x is obtained by selecting the appropriate number of bits or digits from the middle of the square of the key value k

Keys (k): 1234

2345

3456

 k^2 : 1522756

5<u>4</u>9<u>9</u>0<u>2</u>5

11<u>9</u>4<u>3</u>9<u>3</u>6

Policy (selection criteria): select 3 digits at even positions from the right most digit in the square

H(k): 525

492

933

Keys (k): 1234

2345

3456

 k^2 : 1522756

2

549<u>9</u>025

1194<u>3</u>936

Policy (selection criteria): select middle digit (r) bits or digits \rightarrow range : 0 to $2^r - 1$

H(k):

9

3

Exercise: Midsquare

Keys 101,121,131,141,151 are inserted into a hash Table of size 10 (0–9) using the <u>midsquare hash function</u> and <u>linear probing</u> is used for collision resolution. **Use the middle digit of the square of the key value**. What is the index into which 151 will be inserted?

```
A. 2
B. 8
C. 9
D. 6
Keys (k): 101
                         121
                                       131
                                                      141
                                                                   151
k^2:
          10201
                         14641
                                       17161
                                                      19881
                                                                   22801
Policy (selection criteria): select middle digit (r) bits or digits \rightarrow range: 0 to 2^r - 1
H(k):
                         6
                                                         8
                                                                       8
                                                                          H(151, i=0) = (8+0) \rightarrow Collision
   H(k) = x + i;
                                                                          H(151, i=1) = (8+1)
   i \rightarrow \{0, 1, 2, ..., m-1\}
```

Hash Table 0 131 101 3 4 5 6 121 141 9

Hash Function: Folding

$$H(k) = k_1 + k_2 + k_3 + \dots + k_n$$

When the key is a large number, key is partition into multiple parts such as k_1 k_2 k_3 ... k_n Note: if the keys are in binary form, the exclusive-OR operation may be substituted in place of addition

Keys (k):	1522756	5499025	11943936
Chopping:	01 52 27 56	05 49 90 25	11 94 39 36
Pure folding:	01 + 52 + 27 + 56 = 136	05 + 49 + 90 +25 = 169	11 + 94 + 39 + 36 = 180
Fold shifting: [k ₁ , k _{3,} k ₅]	10 + 52 + 72 + 56 = 190	50 + 49 + 09 + 25 = 133	11 + 94 + 93 + 36 = 234
Fold boundary [k ₁ , k _n]	y: 10 + 52 + 27 + 65 = 154	50 + 49 + 90 + 52 = 241	11 + 94 + 39 + 63 = 207

Exercise: Folding

Consider the following keys are inserted into a hash Table of size 10 (0–9) using the <u>folding hash function</u> and <u>Linear Probing is used for collision resolution</u>.

Keys (k): 4765, 7052, 6745, 6574, 7502

What is the index into which 6574 will be inserted?

Keys (k): 4764 7052 6745 6574 7502

Chopping: 47 64 70 52 67 45 65 74 75 02

Pure folding: 47 + 64 = 111 70 + 52 = 122 67 + 45 = 112 75 + 02 = 79

 $H(k) = k_1 + k_2 + k_3 + \dots + k_n$

When the key is a large number, key is partition into multiple parts such as k_1 k_2 k_3 ... k_n Note: if the keys are in binary form, the exclusive-OR operation may be substituted in place of addition

Hash Function: Multiplication

```
H(k) = |m * (kA \mod 1)|; k \rightarrow key, 0 < A < 1
kA \mod 1 \rightarrow fractional
A = 0.1952; Key(k) = 5; m = 5
kA = 0.976
H(5) = \lfloor m * (kA \bmod 1) \rfloor
                                                 H(10) = \lfloor m * (kA \bmod 1) \rfloor
       = |5 * (0.976 \mod 1)|
                                                       = [5 * (1.952 \mod 1)]
       = | 5 * 0.976|
                                                       = | 5 * 0.952|
                                                       = [4.76]
       = | 4.88|
                                                       =4 \rightarrow Collision
       = 4
                                                         → apply linear probing or any other collision resolution techniques
```

Drawbacks: Open addressing -> Closed hashing

- All the key values are stored in the hash tables
- The closed hashing mostly deals with array-based implementation for hash tables
 - Difficult to handle the situation of hash table overflows
 - \rightarrow The majority of the keys far from their hash location \rightarrow increasing the number of probes \rightarrow decreases the overall performance

To resolve the closed hashing problem \rightarrow Open hashing (separate chaining or simply chaining)

Open hashing

- Open hashing is also called as separate chaining or simply chaining
- Chaining method uses a hash table as an array of pointers \rightarrow each pointer points to a linked list Table size = 10; Policy: H(k) \rightarrow the last digit of the key values

Advantages and disadvantages of chaining

- An overflow scenario never arises. The hash table is not restricted with the size, hence it can hold any number of key values
- Collision resolution can be achieved very efficiently, if the list maintained an ordering of keys → keys can be searched quickly
- Insertion and deletion becomes a quick and easy task in open hashing. Deletion of a key follows the same way of deleting a node in a singly linked list
- Open hashing is best suitable in applications where the number of keys values varies drastically

 due to dynamic storage management policy
- Open hashing required an additional storage space for maintaining linked lists and its link fields.

Comparison of Collision Resolution Techniques

Analytical comparison of various collision resolution techniques is measured by using <u>load factor</u>

load factor
$$\alpha = \frac{Total number of key values}{Size of the hash table} = \frac{n}{m}$$

Arrays: Operations

Index: a[0] a[1] a[2] a[3] a[n-1]

10 20 30 40 101

Insertion

✓ Best case : <u>Insertion at the end</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Insertion at the beginning</u> $\rightarrow O(n)$

✓ Average case : <u>Insertion in middle</u> $\rightarrow \theta(n)$

Deletion

✓ Best case : <u>Deletion at the end</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Deletion at the beginning</u> $\rightarrow O(n)$

✓ Average case : <u>Deletion in middle takes</u> $\theta(n)$

Traversal/lookup

✓ Direct access : O(1) [can access any element with base address]

Stack and Queue: Operations

Stack Operations

✓ Push : Insertion at the top \rightarrow 0(1) ✓ Pop : Delete from the top \rightarrow 0(1) ✓ IsEmpty : Exception handling \rightarrow 0(1) ✓ IsFull : Exception handling \rightarrow 0(1)

Queue Operations

✓ EnQueue : Insertion at the tail \rightarrow 0(1)
✓ DeQueue : Delete from the front \rightarrow 0(1)
✓ IsEmpty : Exception handling \rightarrow 0(1)
✓ IsFull : Exception handling \rightarrow 0(1)

Linked List: Operations

Singly Linked List: Traversal

traversal

- 1) struct node *traversal
- 2 traversal = head;
- Time Complexity $O(n) \rightarrow for$ visiting the list of size nSpace Complexity $O(1) \rightarrow for$ creating a temporary variable \rightarrow traversal

while (traversal!= NULL)
display the element: traversal → data
traversal = traversal → next

Doubly Linked List: Traversal

traversal

- 1 struct node *traversal
- 2 traversal = head;
- Time Complexity $O(n) \rightarrow for$ visiting the list of size nSpace Complexity $O(1) \rightarrow for$ creating a temporary variable \rightarrow traversal

while (traversal!= NULL)
display the element: traversal → data
traversal = traversal → next

Circular Singly Linked List: Traversal

traversal

Time Complexity $O(n) \rightarrow for$ visiting the list of size nSpace Complexity $O(1) \rightarrow for$ creating a temporary variable \rightarrow traversal

- 1 struct node *traversal traversal
- 2 traversal = head;
- 3 while (traversal → next != head)
 display the element: traversal → data
 traversal = traversal → next
- 4 display the last element: traversal 🗦 data

Circular Doubly Linked List: Traversal

traversal

Time Complexity $O(n) \rightarrow for$ visiting the list of size nSpace Complexity $O(1) \rightarrow for$ creating a temporary variable \rightarrow traversal

- 1 struct node *traversal traversal
- 2 traversal = head;
- 3 while (traversal → next != head)
 display the element: traversal → data
 traversal = traversal → next
- 4 display the last element: traversal → data

Linked List: Traversal

Linked Lists Traversal Operation	Time Complexity analysis
Singly Linked List	O (n)
Doubly Linked List	O (n)
Circular Singly Linked List	O (n)
Circular Doubly Linked List	O (n)

Singly Linked List: Insert at the beginning

Time Complexity $O(1) \rightarrow$ for modifying the above two steps Space Complexity $O(1) \rightarrow$ for creating a newnode

Doubly Linked List: Insert at the beginning

Time Complexity $O(1) \rightarrow$ for modifying the above two steps Space Complexity $O(1) \rightarrow$ for creating a newnode

Circular Singly Linked List: Insert at the beginning

Time Complexity $O(n) \rightarrow for$ traversing the complete list of size nSpace Complexity $O(1) \rightarrow for$ creating a newnode

- begin = head
 while (begin → next != head)
 begin = begin → next
- begin->next = newnode;
- 3 newnode->next=head;
- 4 head=newnode;

Circular Doubly Linked List: Insert at the beginning

Time Complexity $O(1) \rightarrow$ for modifying the five steps Space Complexity $O(1) \rightarrow$ for creating a newnode

- head->prev->next = newnode;
- newnode->prev=head->prev;
- 3 head->prev=newnode;
- newnode->next=head;
- (5) head=newnode;

Singly Linked List: Insert at the end

```
struct node {
                                                                                  int data;
                                                                                  struct node *next;
                                                  3
                                   2
                                                                4
                                                                                       n
                                                                                     90
head
                                 15
                                               20
                                                              30
                   10
                                                       newnode
```

Time Complexity $O(n) \rightarrow for$ visiting the list of size nSpace Complexity $O(1) \rightarrow for$ creating a newnode

1 while (tail
$$\rightarrow$$
 next != NULL)
tail = tail \rightarrow next

Singly Linked List: Insert at the given position

```
int data;
struct node {

int data;
struct node *next;
}
```


Time Complexity $O(n) \rightarrow$ In the worst case, it may happen that we need to insert at the end Space Complexity $O(1) \rightarrow$ for creating a newnode

Linked List: Insertion

Linked Lists <i>Insertion at the beginning</i> Operation	Time Complexity analysis
Singly Linked List	O (1)
Doubly Linked List	O (1)
Circular Singly Linked List	O (n)
Circular Doubly Linked List	O (1)

Linked Lists <u>Insertion at the end</u> Operation	Time Complexity analysis
Singly Linked List	O (n)
Doubly Linked List	O (n)
Circular Singly Linked List	O (n)
Circular Doubly Linked List	O (1)

Linked List: Deletion

Linked Lists <u>Deletion at the beginning</u> Operation	Time Complexity analysis
Singly Linked List	O (1)
Doubly Linked List	O (1)
Circular Singly Linked List	O (n)
Circular Doubly Linked List	O (1)

Linked Lists <u>Deletion at end</u> Operation	Time Complexity analysis
Singly Linked List	O (n)
Doubly Linked List	O (n)
Circular Singly Linked List	O (n)
Circular Doubly Linked List	O (1)

Binary Tree

Time complexity analysis:

Insertion

✓ Best case : <u>Insertion at the root node</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Insertion in any of Left/Right skew trees</u> $\rightarrow O(n)$

✓ Average case : <u>Insertion in a balanced tree</u> $\rightarrow \theta(log(n))$

Search

✓ Best case : Found at the root node $\rightarrow \Omega(1)$

✓ Worst case : For any of the Left/Right skew tree takes $\rightarrow O(n)$

✓ Average case : Searching in a balanced tree takes $\rightarrow \theta(log(n))$

Deletion

 \succ Best case : Deletion at the root node takes $\rightarrow \Omega(1)$

 \succ Worst case : Leaf node of any Left/Right skew $\rightarrow O(n)$

Average case : Deletion of a node [except level 0] in a

balanced tree $\rightarrow \theta(log(n))$ time

Average case

Binary tree

Time complexity analysis:

Operation	Best Case	Average Case	Worst Case
Insert	$\Omega(1)$	$\theta(log(n))$	O(n)
Search	$\Omega(1)$	$\theta(log(n))$	O(n)
Deletion	arOmega(1)	$\theta(log(n))$	O(n)

Binary Search Tree

Time complexity analysis:

Insertion

✓ Best case : <u>Insertion at the root node</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Insertion in any of Left/Right skew trees</u> $\rightarrow O(h)$

✓ Average case : <u>Insertion in a balanced tree</u> $\rightarrow \theta(log(n))$

Search

✓ Best case : Found at the root node $\rightarrow \Omega(1)$

✓ Worst case : For any of the Left/Right skew tree takes $\rightarrow O(h)$

✓ Average case : Searching in a balanced tree takes $\rightarrow \theta(log(n))$

Deletion

 \succ Best case : Deletion at the root node takes $\rightarrow \Omega(1)$

 \succ Worst case : Leaf node of any Left/Right skew $\rightarrow O(h)$

Average case : Deletion of a node [except level 0] in a

balanced tree $\rightarrow \theta(log(n))$ time

Average case

Binary Search tree

Time complexity analysis:

Operation	Best Case	Average Case	Worst Case
Insert	$\Omega(1)$	$\theta(log(n))$	O(h)
Search	$\Omega(1)$	$\theta(log(n))$	O(h)
Deletion	arOmega(1)	heta(log(n))	O(h)

AVL Tree

Time complexity analysis:

Insertion Best case

✓ Best case : <u>Insertion at the root node</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Insertion trees</u> \rightarrow O(log(n))

✓ Average case : <u>Insertion in a balanced AVL tree</u> $\rightarrow \theta(log(n))$

Search

✓ Best case : Found at the root node $\rightarrow \Omega(1)$

✓ Worst case : <u>The AVL tree takes</u> \rightarrow O(log(n))

✓ Average case : <u>Searching in a balanced tree</u> $\rightarrow \theta(log(n))$

Deletion

✓ Best case : <u>Deletion at the root node</u> $\rightarrow \Omega(1)$

✓ Worst case : <u>Leaf node of any AVL tree</u> $\rightarrow O(log(n))$

✓ Average case : <u>Deletion of a node in an AVL tree</u> $\rightarrow \theta(log(n))$

AVL Tree

Time complexity analysis:

Operation	Best Case	Average Case	Worst Case
Insert	$\Omega(1)$	heta(logn)	O(logn)
Search	$\Omega(1)$	heta(logn)	O(logn)
Deletion	$\Omega(1)$	heta(logn)	O(logn)

Binary Heap Tree

Time complexity analysis:

Best case 7

Insertion

- ✓ Best case : <u>Insertion nearer to the root node</u> $\rightarrow \Omega(1)$
- ✓ Worst case : <u>Insertion heap tree</u> \rightarrow O(log(n))
- ✓ Average case : <u>Insertion heap tree</u> $\rightarrow \theta(log(n))$

Search

- ✓ Best case : Found at the root node $\rightarrow \Omega(1)$ (Max-heap or Min-heap)
- ✓ Worst case : <u>Searching the last leaf node in the heap tree takes</u> \rightarrow 0(n)
- ✓ Average case : <u>Searching for n^{th} node in the heap tree</u> $\rightarrow \theta(n)$

Deletion

- ✓ Best case : <u>Deletion at the root node</u> $\rightarrow \Omega(1)$ (Max-heap or Min-heap)
- ✓ Worst case : <u>Leaf node of any heap tree</u> $\rightarrow O(log(n))$
- ✓ Average case : <u>Deletion of a node in a heap tree</u> $\rightarrow \theta(log(n))$

Binary Heap Tree

Time complexity analysis:

Operation	Best Case	Average Case	Worst Case
Insert	$\Omega(1)$	heta(logn)	O(logn)
Search	$\Omega(1)$	$\theta(n)$	O(n)
Deletion	arOmega(1)	heta(logn)	O(logn)

thank you!

email:

k.kondepu@iitdh.ac.in