Anova_Manova_Modelling.R

kriti

```
Sun Sep 30 12:05:36 2018
 ###ANOVA
 #One way analysis of variance helps us understand the relationship between
 #one continuous dependent variable and one categorical independent variable.
 #When we have one continuous dependent variable and more than one independent
 #categorical variable we cannot use one way ANOVA. When we have two independent
 #categorical variable we need to use two way ANOVA. When we have more than two
 #categorical independent variables we need to use N way ANOVA.
 #ONE way Anova
 #Null Hypothesis-The mean average of the dependent variable is equal for all groups
 #mu1=mu2=mu3
 #this also implies that the categorical variable which will be the independent variable
 #has no effect on the dependent continuous variable
 ## TWO WAY ANOVA- with two categorical variables
 getwd()
 ## [1] "C:/Users/kriti/Documents"
 data<-read.csv("moth-trap-experiment.csv")</pre>
```

```
summary(data)
```

```
number.of.moths
                      location
                                  type.of.lure
##
##
   Min.
           :12.00
                    Ground:15
                                Chemical:20
   1st Qu.:18.00
                    Lower:15
                                Scent
                                        :20
##
   Median :27.00
##
                    Middle:15
                                        :20
                                Sugar
           :26.68
##
   Mean
                    Top
                         :15
   3rd Qu.:35.00
##
##
   Max.
           :44.00
```

```
library(psych)
describe(data)
```

```
sd median trimmed
##
                  vars n mean
                                                      mad min max range skew
                                       27.0
                                             26.42 12.60 12 44
## number.of.moths
                     1 60 26.68 9.43
                                                                     32 0.17
## location*
                     2 60 2.50 1.13
                                        2.5
                                               2.50 1.48
                                                            1
                                                                4
                                                                      3 0.00
## type.of.lure*
                                        2.0
                     3 60 2.00 0.82
                                               2.00 1.48
                                                            1
                                                                3
                                                                      2 0.00
##
                  kurtosis
                             se
## number.of.moths
                     -1.28 1.22
## location*
                     -1.41 0.15
## type.of.lure*
                     -1.55 0.11
```

```
table(data$location,data$type.of.lure)
```

```
##
##
           Chemical Scent Sugar
##
                5
                        5
    Ground
##
    Lower
                  5
                        5
                              5
##
    Middle
                  5
                        5
                              5
    Top
                  5
                        5
##
                              5
```

```
##getting descriptive statistics by location
```

describeBy(data\$number.of.moths,data\$location)

```
##
## Descriptive statistics by group
## group: Ground
                sd median trimmed mad min max range skew kurtosis
##
    vars n mean
## X1
      1 15 19.07 5.09
                     18 18.85 5.93 12 29
                                          17 0.52
                                                   -1.06 1.31
## -----
## group: Lower
    vars n mean sd median trimmed mad min max range skew kurtosis
## X1
      1 15 33.33 7.5 34 33.77 7.41 17 44
                                         27 -0.6
                                                   -0.5 1.94
## -----
## group: Middle
##
    vars n mean
               sd median trimmed mad min max range skew kurtosis
            31 9.79 36 31.46 11.86 12 44
## X1
      1 15
                                          32 -0.39
##
      se
## X1 2.53
## -----
## group: Top
##
                sd median trimmed mad min max range skew kurtosis
    vars n mean
                      21
                         23.23 8.9 13 35
                                         22 0.24
## X1
      1 15 23.33 7.41
                                                  -1.63 1.91
```

```
##getting descriptive statistics by location
```

describeBy(data\$number.of.moths,data\$type.of.lure)

```
##
## Descriptive statistics by group
## group: Chemical
     vars n mean
                  sd median trimmed mad min max range skew kurtosis
       1 20 27.5 9.06 28.5 27.44 12.6 14 41 27 -0.01
## group: Scent
##
     vars n mean sd median trimmed mad min max range skew kurtosis
     1 20 24.75 10.29 22 24.06 11.12 12 44
                                                   32 0.43
                                                             -1.2
## X1
##
      se
## X1 2.3
## -----
## group: Sugar
     vars n mean sd median trimmed mad min max range skew kurtosis se
       1 20 27.8 9.06 28 27.44 11.12 15 44
                                                 29 0.14
                                                           -1.35 2.03
##creating box plots
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.4
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
      %+%, alpha
plot(x=data$location,y=data$number.of.moths)
```

```
file:///C:/Users/kriti/Documents/Anova_Manova_Modelling.html
```


ggplot(data,aes(y=data\$number.of.moths,x=data\$location,fill=data\$type.of.lure))+geom_boxplot()


```
##checking for normality and equality of variance
shapiro.test(data$number.of.moths)
```

```
##
## Shapiro-Wilk normality test
##
## data: data$number.of.moths
## W = 0.94533, p-value = 0.009448
```

##we reject the null hypothesis and hence it is not normally dist
library(car)

```
##
## Attaching package: 'car'
```

```
## The following object is masked from 'package:psych':
##
## logit
```

```
leveneTest(data$number.of.moths~data$location*data$type.of.lure)
```

```
## Levene's Test for Homogeneity of Variance (center = median)
         Df F value Pr(>F)
##
## group 11 0.6377 0.7875
##
         48
##the variances are equal
##doing a log transformation to make it normally dist
data$log_moth<-log(data$number.of.moths)</pre>
shapiro.test(data$log_moth)
##
   Shapiro-Wilk normality test
##
##
## data: data$log moth
## W = 0.94746, p-value = 0.01185
##the log tranformation is not very effective
##performing a power test
library(pwr)
## Warning: package 'pwr' was built under R version 3.4.4
#our design has 2 factors with 3 and 4 levels, we have 5 observations in each group
# our df for the mean squared term is 4*3(5-1)=48
#We choose a medium effect size of 0.25
pwr.f2.test(u=2,v=48,f2=(0.25*0.25))
##
        Multiple regression power calculation
##
##
##
                 u = 2
##
                 v = 48
##
                f2 = 0.0625
         sig.level = 0.05
##
##
             power = 0.3210203
#to check sample size
pwr.anova.test(k=2,f=0.25,sig.level=0.05,power=0.3210203)
```

```
##
        Balanced one-way analysis of variance power calculation
##
##
##
                 k = 2
##
                 n = 18.86313
                 f = 0.25
##
         sig.level = 0.05
##
##
             power = 0.3210203
##
## NOTE: n is number in each group
```

```
##performing anova
anova_model<-aov(data$log_moth~data$location*data$type.of.lure)
summary(anova_model)</pre>
```

```
##
                                 Df Sum Sq Mean Sq F value
                                                           Pr(>F)
## data$location
                                  3 2.966 0.9886
                                                    9.828 3.64e-05 ***
## data$type.of.lure
                                  2
                                    0.262 0.1308
                                                    1.301
                                                            0.282
## data$location:data$type.of.lure 6 0.196 0.0326
                                                    0.324
                                                            0.921
## Residuals
                                 48 4.828 0.1006
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
#NULL hypothesis
```

#the population means are equal for the first categorical variable #the population means are equal for the second categorical variable #The two categorical variable are independent of each other

#we see that we reject the first null hypothesis so location has some effect #we accept the second hypothesis hence lure has no effect #we accept the third null hypothesis basically that the two variables are #independent of each other

#more on ANOVA-N way ANOVA

#reading data

data2<-read.csv("Quinn.csv")</pre>

library(car)
library(psych)

library(dplyr)

```
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
##
       recode
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(lattice)
library(ggplot2)
##checking data
summary(data2)
##
   DENSITY
               SEASON
                              EGGS
   L1:6
            spring:12
                        Min.
                                :0.3560
##
            summer:12
##
   L2:6
                         1st Qu.:0.9165
   L3:6
                         Median :1.4330
##
    L4:6
##
                         Mean
                                :1.4717
##
                         3rd Qu.:1.9227
##
                                :2.8750
                         Max.
table(data2$DENSITY,data2$SEASON)
##
##
        spring summer
##
     L1
             3
                     3
             3
##
     L2
                     3
##
     L3
             3
                     3
##
     L4
             3
                     3
```

###we see that the data is balanced

##THE NULL Hypothesis in these cases are

#The season has no effect on eggs. The means of the dist is same across the groups based on season

#The density has no effect on eggs. The means of the dist is same across the groups based on seas on

#The two categorical variables do not effect together on the eggs

#descriptive statistic summaries and data visualization;
##checking dist of eggs across multiple densities

par(mfrow=c(2,2))

 $\label{linear_loss} $$ hist(data2\$EGGS[which(data2\$DENSITY=="L1")], xlim = c(0, 3), main="L1")$ hist(data2\$EGGS[which(data2\$DENSITY=="L2")], xlim = c(0, 3), main="L2")$ hist(data2\$EGGS[which(data2\$DENSITY=="L3")], xlim = c(0, 3), main="L3")$ hist(data2\$EGGS[which(data2\$DENSITY=="L4")], xlim = c(0, 3), main="L4")$ $$$

data2\$EGGS[which(data2\$DENSITY == "L1")]

data2\$EGGS[which(data2\$DENSITY == "L2")]

data2\$EGGS[which(data2\$DENSITY == "L3")]

data2\$EGGS[which(data2\$DENSITY == "L4")]

```
par(mfrow=c(1,2))
##checking dist of eggs across multiple season

hist(data2$EGGS[which(data2$SEASON=="spring")],xlim = c(0, 3),main="sping")
hist(data2$EGGS[which(data2$SEASON=="summer")],xlim = c(0, 3),main="summer")
```


data2\$EGGS[which(data2\$SEASON == "sprin data2\$EGGS[which(data2\$SEASON == "summ

##creating boxplots

boxplot(data2\$EGGS~data2\$SEASON)
boxplot(data2\$EGGS~data2\$DENSITY)

par(mfrow=c(1,1))
coplot(data2\$EGGS~data2\$DENSITY|data2\$SEASON,panel=panel.smooth)

Given: data2\$SEASON

data2\$DENSITY

##checking if the continiuos variable is normally distributed
shapiro.test(data2\$EGGS)

```
##
## Shapiro-Wilk normality test
##
## data: data2$EGGS
## W = 0.96449, p-value = 0.5351
```

hist(data2\$EGGS)

Histogram of data2\$EGGS

qqnorm(data2\$EGGS)
qqline(data2\$EGGS)

Normal Q-Q Plot


```
##its normally dist

##checking equality of variances

leveneTest(data2$EGGS~data2$DENSITY)
```

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 0.4125 0.7458
## 20
```

leveneTest(data2\$EGGS~data2\$SEASON)

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.2252 0.6398
## 22
```

leveneTest(data2\$EGGS~data2\$DENSITY*data2\$SEASON)

```
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 7 0.3337 0.9268
## 16
```

```
##the is equality of variance in all cases

##we can perform parametric tests

library(pwr)
anova1<-aov( EGGS ~ SEASON*DENSITY ,data=data2)
summary(anova1)</pre>
```

```
##
                 Df Sum Sq Mean Sq F value
                                           Pr(>F)
## SEASON
                  1 3.250
                            3.250 17.842 0.000645 ***
                                   9.669 0.000704 ***
## DENSITY
                  3 5.284
                            1.761
## SEASON:DENSITY 3 0.165
                            0.055
                                  0.301 0.823955
## Residuals
             16 2.915
                            0.182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
anova2<-aov( EGGS ~ SEASON+DENSITY ,data=data2)
summary(anova2)</pre>
```

```
par(mfrow=c(2,2))
plot(anova1)
```


Factor Level Combinations

###CONCLUSION

#Season and density have an effect on the dependent variable eggs but their combined #interection term has no effect

#MANOVA MULTIVARIATE ANALYSIS OF VARIANCE

##Principle of MANOVA

#In Multi-variate Analysis of Variance we have multiple dependent variables #and one or more independent variable

#we basically test how the samples due a single categorical variables differ across #the different dependent variable

##NULL Hypothesis

##Mean of all n-dimensional groups are equal..:Eg

##if we have k dependent variables and n groups in the categorical data then we have ## mean 1*1=mean 1*2=mean n*k

##The MANOVA test statistic compute the TOTAL sum of square by computing the
#sum of square within a group and sum of square between groups
##T=Within SS + Between SS

##MANOVA using IRIS data

data<-data("iris")
iris</pre>

##	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
## 1	5.1	3.5	1.4	0.2	setosa
## 2	4.9	3.0	1.4	0.2	setosa
## 3	4.7	3.2	1.3	0.2	setosa
## 4	4.6	3.1	1.5	0.2	setosa
## 5	5.0	3.6	1.4	0.2	setosa
## 6	5.4	3.9	1.7	0.4	setosa
# 7	4.6	3.4	1.4	0.3	setosa
## 8	5.0	3.4	1.5	0.2	setosa
## 9	4.4	2.9	1.4	0.2	setosa
# 10	4.9	3.1	1.5	0.1	setosa
# 11	5.4	3.7	1.5	0.2	setosa
# 12	4.8	3.4	1.6	0.2	setosa
# 13	4.8	3.0	1.4	0.1	setosa
# 14	4.3	3.0	1.1	0.1	setosa
# 15	5.8	4.0	1.2	0.2	setosa
# 15					
	5.7		1.5	0.4	setosa
# 17	5.4	3.9	1.3	0.4	setosa
# 18	5.1	3.5	1.4	0.3	setosa
# 19	5.7	3.8	1.7	0.3	setosa
# 20	5.1	3.8	1.5	0.3	setosa
# 21	5.4	3.4	1.7	0.2	setosa
# 22	5.1	3.7	1.5	0.4	setosa
# 23	4.6	3.6	1.0	0.2	setosa
# 24	5.1	3.3	1.7	0.5	setosa
# 25	4.8	3.4	1.9	0.2	setosa
# 26	5.0	3.0	1.6	0.2	setosa
# 27	5.0	3.4	1.6	0.4	setosa
# 28	5.2	3.5	1.5	0.2	setosa
# 29	5.2	3.4	1.4	0.2	setosa
# 30	4.7	3.2	1.6	0.2	setosa
# 31	4.8	3.1	1.6	0.2	setosa
# 32	5.4	3.4	1.5	0.4	setosa
# 33	5.2	4.1	1.5	0.1	setosa
# 34	5.5	4.2	1.4	0.2	setosa
# 35	4.9	3.1	1.5	0.2	setosa
# 36	5.0	3.2	1.2	0.2	setosa
# 37	5.5	3.5	1.3	0.2	setosa
# 38	4.9	3.6	1.4	0.1	setosa
# 39	4.4	3.0	1.3	0.2	setosa
# 40	5.1	3.4	1.5	0.2	setosa
# 41	5.0	3.5	1.3	0.3	setosa
# 42	4.5	2.3	1.3	0.3	setosa
# 43	4.4	3.2	1.3	0.2	setosa
# 44	5.0	3.5	1.6	0.6	setosa
# 45	5.1		1.9		
# 45		3.8		0.4	setosa
	4.8 5.1	3.0	1.4	0.3	setosa
## 47 +# 48	5.1	3.8	1.6	0.2	setosa
# 48	4.6	3.2	1.4	0.2	setosa
# 49	5.3	3.7	1.5	0.2	setosa
# 50	5.0	3.3	1.4	0.2	setosa
## 51	7.0	3.2 3.2	4.7 4.5		versicolor versicolor
## 52	6.4			1 -	

72010				/tilova_iviali	ova_i	viouciii ig.i t
##	53	6.9	3.1	4.9	1.5	versicolor
##	54	5.5	2.3	4.0	1.3	versicolor
##	55	6.5	2.8	4.6	1.5	versicolor
##	56	5.7	2.8	4.5	1.3	versicolor
##	57	6.3	3.3	4.7	1.6	versicolor
##	58	4.9	2.4	3.3		versicolor
##		6.6	2.9	4.6		versicolor
##		5.2	2.7	3.9		versicolor
##		5.0	2.0	3.5		versicolor
##		5.9	3.0	4.2		versicolor
##		6.0	2.2	4.0		versicolor
##		6.1	2.9	4.7		versicolor
##		5.6	2.9	3.6		versicolor
##		6.7	3.1	4.4		versicolor
##		5.6	3.0	4.5		versicolor
##		5.8	2.7	4.1		versicolor
##		6.2	2.2	4.5		versicolor
##		5.6	2.5	3.9		versicolor
##		5.9	3.2	4.8		versicolor
##		6.1	2.8	4.0		versicolor
##		6.3	2.5	4.9		versicolor
##		6.1	2.8	4.7		versicolor
##		6.4	2.9	4.3		versicolor
##		6.6	3.0	4.4		versicolor
##		6.8	2.8	4.8		versicolor
##		6.7	3.0	5.0		versicolor
##		6.0	2.9	4.5		versicolor
##		5.7	2.6	3.5		versicolor
##		5.5	2.4	3.8		versicolor
##		5.5	2.4	3.7		versicolor
##		5.8	2.7	3.9		versicolor
##	84	6.0	2.7	5.1	1.6	versicolor
##	85	5.4	3.0	4.5	1.5	versicolor
##	86	6.0	3.4	4.5	1.6	versicolor
##	87	6.7	3.1	4.7	1.5	versicolor
##	88	6.3	2.3	4.4	1.3	versicolor
##	89	5.6	3.0	4.1	1.3	versicolor
##	90	5.5	2.5	4.0	1.3	versicolor
##	91	5.5	2.6	4.4	1.2	versicolor
##	92	6.1	3.0	4.6	1.4	versicolor
##	93	5.8	2.6	4.0	1.2	versicolor
##	94	5.0	2.3	3.3	1.0	versicolor
##	95	5.6	2.7	4.2	1.3	versicolor
##	96	5.7	3.0	4.2	1.2	versicolor
##	97	5.7	2.9	4.2	1.3	versicolor
##	98	6.2	2.9	4.3	1.3	versicolor
##		5.1	2.5	3.0		versicolor
	100	5.7	2.8	4.1		versicolor
	101	6.3	3.3	6.0	2.5	virginica
	102	5.8	2.7	5.1	1.9	_
	103	7.1	3.0	5.9	2.1	virginica
	104	6.3	2.9	5.6	1.8	_
	105	6.5	3.0	5.8	2.2	virginica
	106	7.6	3.0	6.6	2.1	virginica
пπ			J. 0			v = 1 8 = 11 = Ca

30/	2010				Anova_ivian	iova_ivi	odelling.R
	##	107	4.9	2.5	4.5	1.7	virginica
	##	108	7.3	2.9	6.3	1.8	virginica
	##	109	6.7	2.5	5.8	1.8	virginica
	##	110	7.2	3.6	6.1	2.5	virginica
	##	111	6.5	3.2	5.1	2.0	virginica
	##	112	6.4	2.7	5.3	1.9	virginica
	##	113	6.8	3.0	5.5	2.1	virginica
	##	114	5.7	2.5	5.0	2.0	virginica
	##	115	5.8	2.8	5.1	2.4	virginica
	##	116	6.4	3.2	5.3	2.3	virginica
	##	117	6.5	3.0	5.5	1.8	virginica
	##	118	7.7	3.8	6.7	2.2	virginica
	##	119	7.7	2.6	6.9	2.3	virginica
	##	120	6.0	2.2	5.0	1.5	virginica
	##	121	6.9	3.2	5.7	2.3	virginica
	##	122	5.6	2.8	4.9	2.0	virginica
	##	123	7.7	2.8	6.7	2.0	virginica
		124	6.3	2.7	4.9	1.8	virginica
		125	6.7	3.3	5.7	2.1	virginica
		126	7.2	3.2	6.0	1.8	virginica
		127	6.2	2.8	4.8	1.8	virginica
		128	6.1	3.0	4.9	1.8	virginica
		129	6.4	2.8	5.6	2.1	virginica
		130	7.2	3.0	5.8	1.6	virginica
		131	7.4	2.8	6.1	1.9	virginica
		132	7.9	3.8	6.4	2.0	virginica
		133	6.4	2.8	5.6	2.2	virginica
		134	6.3	2.8	5.1	1.5	virginica
		135	6.1	2.6	5.6	1.4	virginica
		136	7.7	3.0	6.1	2.3	virginica
		137	6.3	3.4	5.6	2.4	virginica
		138	6.4	3.1	5.5	1.8	virginica
		139	6.0	3.0	4.8		virginica
		140	6.9	3.1	5.4		virginica
		141	6.7	3.1	5.6	2.4	virginica
		142	6.9	3.1	5.1	2.3	virginica
		143	5.8	2.7	5.1	1.9	virginica
		144	6.8	3.2	5.9	2.3	virginica
		145	6.7	3.3	5.7	2.5	virginica
		146	6.7	3.0	5.2	2.3	virginica
		147	6.3	2.5	5.0	1.9	virginica
		148	6.5	3.0	5.2	2.0	virginica
		149	6.2	3.4	5.4	2.3	virginica
	##	150	5.9	3.0	5.1	1.8	virginica

summary(iris)

```
##
     Sepal.Length
                      Sepal.Width
                                      Petal.Length
                                                       Petal.Width
##
   Min.
           :4.300
                    Min.
                            :2.000
                                     Min.
                                             :1.000
                                                             :0.100
                                                      Min.
##
    1st Qu.:5.100
                     1st Qu.:2.800
                                     1st Qu.:1.600
                                                      1st Qu.:0.300
    Median :5.800
                    Median :3.000
                                     Median :4.350
##
                                                      Median :1.300
##
    Mean
           :5.843
                    Mean
                            :3.057
                                     Mean
                                             :3.758
                                                      Mean
                                                             :1.199
##
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                     3rd Qu.:5.100
                                                      3rd Qu.:1.800
           :7.900
                            :4.400
                                             :6.900
##
    Max.
                    Max.
                                     Max.
                                                      Max.
                                                             :2.500
##
          Species
##
    setosa
              :50
##
    versicolor:50
    virginica:50
##
##
##
##
```

```
library(psych)
describe(iris)
```

```
##
                       n mean
                                sd median trimmed mad min max range
                                                                       skew
## Sepal.Length
                   1 150 5.84 0.83
                                     5.80
                                              5.81 1.04 4.3 7.9
                                                                  3.6
                                                                       0.31
                   2 150 3.06 0.44
## Sepal.Width
                                     3.00
                                             3.04 0.44 2.0 4.4
                                                                  2.4 0.31
## Petal.Length
                   3 150 3.76 1.77
                                     4.35
                                             3.76 1.85 1.0 6.9
                                                                  5.9 -0.27
## Petal.Width
                   4 150 1.20 0.76
                                     1.30
                                             1.18 1.04 0.1 2.5
                                                                  2.4 -0.10
## Species*
                                     2.00
                                             2.00 1.48 1.0 3.0
                   5 150 2.00 0.82
                                                                  2.0 0.00
                kurtosis
##
                           se
## Sepal.Length
                   -0.61 0.07
## Sepal.Width
                    0.14 0.04
## Petal.Length
                   -1.42 0.14
## Petal.Width
                   -1.36 0.06
## Species*
                   -1.52 0.07
```

```
##exploring the data
describeBy(iris[-5],iris$Species)
```

##

```
##
   Descriptive statistics by group
## group: setosa
##
                              sd median trimmed mad min max range skew
               vars n mean
## Sepal.Length
                                    5.0
                                          5.00 0.30 4.3 5.8
                                                              1.5 0.11
                  1 50 5.01 0.35
## Sepal.Width
                                    3.4
                                          3.42 0.37 2.3 4.4
                  2 50 3.43 0.38
                                                              2.1 0.04
## Petal.Length
                  3 50 1.46 0.17
                                    1.5
                                          1.46 0.15 1.0 1.9
                                                              0.9 0.10
## Petal.Width
                  4 50 0.25 0.11
                                    0.2
                                          0.24 0.00 0.1 0.6
                                                              0.5 1.18
##
               kurtosis
                          se
                  -0.45 0.05
## Sepal.Length
## Sepal.Width
                   0.60 0.05
## Petal.Length
                   0.65 0.02
## Petal.Width
                   1.26 0.01
## group: versicolor
##
               vars n mean sd median trimmed mad min max range skew
## Sepal.Length
                                  5.90
                                          5.94 0.52 4.9 7.0
                                                              2.1 0.10
                  1 50 5.94 0.52
## Sepal.Width
                  2 50 2.77 0.31
                                   2.80
                                          2.78 0.30 2.0 3.4
                                                              1.4 -0.34
## Petal.Length
                                          4.29 0.52 3.0 5.1
                  3 50 4.26 0.47
                                   4.35
                                                              2.1 -0.57
## Petal.Width
                  4 50 1.33 0.20
                                   1.30
                                          1.32 0.22 1.0 1.8
                                                              0.8 -0.03
##
               kurtosis
                          se
## Sepal.Length
                  -0.69 0.07
## Sepal.Width
                  -0.55 0.04
## Petal.Length
                  -0.19 0.07
## Petal.Width
                  -0.59 0.03
## -----
## group: virginica
##
                              sd median trimmed mad min max range skew
               vars n mean
## Sepal.Length
                  1 50 6.59 0.64
                                   6.50
                                          6.57 0.59 4.9 7.9
                                                              3.0 0.11
## Sepal.Width
                  2 50 2.97 0.32
                                  3.00
                                          2.96 0.30 2.2 3.8
                                                              1.6 0.34
## Petal.Length
                  3 50 5.55 0.55
                                   5.55
                                          5.51 0.67 4.5 6.9
                                                              2.4 0.52
## Petal.Width
                  4 50 2.03 0.27
                                   2.00
                                          2.03 0.30 1.4 2.5
                                                              1.1 -0.12
##
               kurtosis
                          se
## Sepal.Length
                  -0.20 0.09
## Sepal.Width
                   0.38 0.05
## Petal.Length
                  -0.37 0.08
## Petal.Width
                  -0.75 0.04
##checking if the distributions are normal
shapiro.test(iris$Sepal.Length)
##
##
   Shapiro-Wilk normality test
##
## data: iris$Sepal.Length
## W = 0.97609, p-value = 0.01018
shapiro.test(iris$Petal.Length)
```

```
##
##
   Shapiro-Wilk normality test
##
## data: iris$Petal.Length
## W = 0.87627, p-value = 7.412e-10
shapiro.test(iris$Sepal.Width)
##
##
   Shapiro-Wilk normality test
##
## data: iris$Sepal.Width
## W = 0.98492, p-value = 0.1012
shapiro.test(iris$Petal.Width)
##
##
   Shapiro-Wilk normality test
##
## data: iris$Petal.Width
## W = 0.90183, p-value = 1.68e-08
#to create a MANOVA Model we use species as the independent variable and the two
#dependent variables are Petal Length and Sepal Length
##checking correlations
cor(iris$Sepal.Length,iris$Petal.Length)
## [1] 0.8717538
cor(iris[-5])
##
                Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length
                   1.0000000 -0.1175698
                                            0.8717538
                                                        0.8179411
## Sepal.Width
                  -0.1175698 1.0000000
                                           -0.4284401
                                                       -0.3661259
## Petal.Length
                   0.8717538 -0.4284401
                                            1.0000000
                                                        0.9628654
## Petal.Width
                   0.8179411 -0.3661259
                                            0.9628654
                                                        1.0000000
##checking homogeniaty of variances
leveneTest(iris$Sepal.Length~iris$Species)
```

```
bartlett.test(iris$Sepal.Length~iris$Species)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: iris$Sepal.Length by iris$Species
## Bartlett's K-squared = 16.006, df = 2, p-value = 0.0003345
```

leveneTest(iris\$Petal.Length~iris\$Species)

bartlett.test(iris\$Petal.Length~iris\$Species)

```
##
## Bartlett test of homogeneity of variances
##
## data: iris$Petal.Length by iris$Species
## Bartlett's K-squared = 55.423, df = 2, p-value = 9.229e-13
```

```
##we see that the homogeniaty of variances condition is not satisfied

##some important things to note
#if sample size is greater than 30 then some assumptions can be ignored
#If group sizes are over 30, then the MANOVA is robust against violations of
#homogeneity of variance-covariance matrices assumption.
#we can report Pillai's trace statistic in this case instead of Wilk's Lambda

##performing MANOVA

manova_model<-manova(cbind(iris$Sepal.Length,iris$Petal.Length)~iris$Species)

manova_model</pre>
```

```
## Call:
      manova(cbind(iris$Sepal.Length, iris$Petal.Length) ~ iris$Species)
##
##
## Terms:
##
                   iris$Species Residuals
## resp 1
                        63.2121
                                  38.9562
                       437.1028
                                  27.2226
## resp 2
## Deg. of Freedom
                                      147
##
## Residual standard errors: 0.5147894 0.4303345
## Estimated effects may be unbalanced
```

```
summary(manova_model)
```

```
## Df Pillai approx F num Df den Df Pr(>F)

## iris$Species 2 0.9885 71.829 4 294 < 2.2e-16 ***

## Residuals 147

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

##the test is coming significant hence we reject the null hypothesis ##hence the species has certain effect on the petal and sepal length

summary.aov(manova_model)

```
##
   Response 1 :
##
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
## iris$Species 2 63.212 31.606 119.26 < 2.2e-16 ***
              147 38.956
## Residuals
                           0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
   Response 2 :
##
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
## iris$Species 2 437.10 218.551 1180.2 < 2.2e-16 ***
## Residuals
             147 27.22
                           0.185
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Anova_Manova_Modelling.R
#the samples in petal length and sepal length are statistically
#different from each other
#The four test statistics that can be used are Wilk's lambda, Pillai trace,
#Hotelling-Lawley trace and Roy's maximum root. Among the four test
#statistics Pillai is least affected by any violations in assumptions
#but Wilk's is the most commonly used.
summary(manova model,test="Wilks")
##
                 Df
                      Wilks approx F num Df den Df
                                                      Pr(>F)
## iris$Species 2 0.039878
                              292.56
                                          4
                                               292 < 2.2e-16 ***
## Residuals
                147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(manova model,test="Pillai")
##
                 Df Pillai approx F num Df den Df
                                                    Pr(>F)
## iris$Species
                 2 0.9885
                            71.829
                                              294 < 2.2e-16 ***
## Residuals
                147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova_model, test="Hotelling")
                 Df Hotelling-Lawley approx F num Df den Df
##
                                                              Pr(>F)
## iris$Species
                 2
                              23.365
                                      846.97
                                                  4
                                                       290 < 2.2e-16 ***
## Residuals
                147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(manova_model, test="Roy")
##
                 Df
                       Roy approx F num Df den Df
                                                    Pr(>F)
## iris$Species
                 2 23.334
                           1715.1
                                        2
                                             147 < 2.2e-16 ***
```

```
## Residuals
              147
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
head(manova model$residuals)
```

```
## [,1] [,2]

## 1 0.094 -0.062

## 2 -0.106 -0.062

## 3 -0.306 -0.162

## 4 -0.406 0.038

## 5 -0.006 -0.062

## 6 0.394 0.238
```

##from all the four tests we can see that we fail to accept the null Hypothesis

#more information

#As you might expect, we use a multivariate analysis of variance (MANOVA) when we have one or mo

#categorical independent variables with two or more treatment levels AND more than one continuous

#response variable (that's what makes it "multivariate"). MANOVA is commonly used species commun ities,

#where the frequency of each species represents a response variable.

#MANOVA is based on the same principles as a discriminant analysis, which is a rotational technique

#designed to maximise variance between groups, rather than across an entire data set (which would be a

#principal component analysis). Essentially, MANOVA examined the variance explained between your #groups (treatment levels) by comparing components (called "eigenvectors") which separate the data.

#Generally, MANOVA is used for two things: 1) to implement a single inferential test on multiple dependent

#variables which may be correlated, and more frequently 2) determine the change in arrangement of

#dependent variables in response to the independent variable(s).