讲义习题2.2:1,2; 教材40页6-9.

2.2.1

Suppose W_1, W_2 are non-trivial subspaces of V, prove that $W_1 \cup W_2 \neq V$.

Proof: The cases $W_1\subset W_2$ and $W_2\subset W_1$ is trivial. Otherwise take $a\in W_1\backslash W_2$ and $b\in W_2\backslash W_1$, then $a+b\in V$, but $a+b\not\in W_1$ (otherwise $b=(a+b)+(-1)\cdot a\in W_1$) and $a+b\not\in W_2$. Hence $W_1\cup W_2\neq V$.

2.2.2

Suppose $N \subset M \subset V$ are linear spaces. Prove that for any subspace $W \subset V$,

$$M \cap (N+W) = N + (M \cap W).$$

Proof: If $a\in M\cap (N+W)$ then write a=n+w where $n\in N\subset M, w\in W.$ $a,n\in M$ so $w\in M\cap W$, and $a=n+w\in N+(M\cap W)$. If $a\in N+(M\cap W)$ then write a=n+w where $n\in N$ and $w\in M\cap W$, then $n,w\in M$ implies $a=n+w\in M$, and $n\in N, w\in W$ implies $a=n+w\in N+W$, hence $a\in M\cap (N+W)$. Therefore $M\cap (N+W)=N+(M\cap W)$.

40-6

- (a) Prove that the only subspaces of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace.
- (b) Prove that a subspace of \mathbb{R}^2 is \mathbb{R}^2 or $\{0\}$ or consists of all scalar multiples of some fixed vector in \mathbb{R}^2 .
- (c) Describe the subspaces of \mathbb{R}^3 .

Proof: For any subspace W of \mathbb{R}^n , let $m=\mathrm{dim}W$ and take a base a_1,a_2,\cdots,a_m of W, then $W=\mathrm{Span}(a_1,\cdots,a_m)$.

When n=1, $m\in\{0,1\}$ leading to $\{0\}$ and \mathbb{R}^1 .

When n=2, m=0,2 leads to $\{0\}$ and \mathbb{R}^2 , and when m=1, $W=\mathrm{Span}(v)=\{c\cdot v:c\in\mathbb{R}\}$.

40-7

Let W_1, W_2 be subspaces of a vector space V such that the set-theoretic union of W_1, W_2 is also a subspace. Prove that $W_1 \subset W_2$ or vice versa.

Proof: It is already shown in Exercise 2.1.1 that for $a\in W_1\backslash W_2$ and $b\in W_2\backslash W_1$, $a+b\notin W_1\cup W_2$ so $W_1\cup W_2$ is not a subspace.

40-8

Let V be the vector space of all functions from $\mathbb R$ to $\mathbb R$; let V_e be the subset of even functions and V_o that of odd functions.

- (a) Prove that V_e, V_o are subspaces of V.
- (b) Prove that $V_e + V_o = V$.
- (c) Prove that $V_e \cap V_o = \{0\}$.

Proof: (a) is trivial, since $f,g\in V_e$ implies $f+g,cf\in V$. (b) For any $f\in V$, f=g+h where $g(x)=(f(x)+f(-x))/2\in V_e$ and $h(x)=(f(x)-f(-x))/2\in V_o$. (c) If $f\in V_e\cap V_o$ then f(x)=f(-x)=-f(-x) so f(x)=0 for any $x\in\mathbb{R}$.

40-9

Let $W_1,W_2\subset V$ such that $W_1+W_2=V$ and $W_1\cap W_2=\{0\}$. Prove that for each vector $\alpha\in V$, there are unique vectors $\alpha_1\in W_1,\alpha_2\in W_2$ such that $\alpha=\alpha_1+\alpha_2$.

Proof: Existence comes from $V=W_1+W_2$. Uniqueness: If $\alpha_1+\alpha_2=\beta_1+\beta_2$ where $\alpha_i,\beta_i\in W_i$, then $\alpha_1-\beta_1=\alpha_2-\beta_2\in W_1\cap W_2=\{0\}$ hence $\alpha_1=\beta_1$ and $\alpha_2=\beta_2$.