1 Publication number:

0 126 587

12

EUROPEAN PATENT APPLICATION

(1) Application number: 84303128.7

2 Date of filing: 09.05.84

(5) Int. Cl.3: **C 07 D 487/04**, C 07 D 499/00, A 61 K 31/40, A 61 K 31/43 // C07D207/16, C07D207/24, C07D401/12, C07D205/08, C07F7/18, C07F9/65,(C07D487/04, 209/00, 205/00)

(30) Priority: 09.05.83 JP 81443/83 15.06.83 JP 108472/83 12.07.83 JP 127485/83 26.09.83 JP 127485/83 09.09.83 JP 166938/83 11.11.83 JP 212857/83 10.02.84 JP 23497/84

Date of publication of application: 28.11.84
 Bulletin 84/48

Designated Contracting States: AT BE CH DE FR GB IT
LI NL SE

(1) Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED, 15 Kltahama 5-chome Higashi-ku, Osaka-shi Osaka-fu

(72) Inventor: Sunagawa, Makoto SUMITOMO CHEMICAL COMPANY LIMITED, 1-98, Kasugadenaka 3-chome Konohana-ku, Osaka-shi Osaka (JP) Inventor: Matsumura, Haruki SUMITOMO CHEMICAL COMPANY LTD., 1-98, Kasugadenaka 3-chome Konohana-ku, Osaka-shi Osaka (JP) Inventor: Inoue, Takaaki SUMITOMO CHEMICAL COMPANY LIMITED, 1-98, Kasugadenaka 3-chome Konohana-ku, Osaka-shi Osaka (JP) Inventor: Fukasawa, Masatomo SUMITOMO CHEMICAL COMPANY LTD., 2-1, Takatsukasa 4-chome, Takarazuka-shi Hyogo (JP) Inventor: Kato, Masuhiro SUMITOMO CHEMICAL COMPANY LIMITED, 2-1, Takatsukasa 4-chome, Takarazuka-shi Hyogo (JP)

(A) Representative: Diamond, Bryan Clive et al, Gee & Co. Chancery House Chancery Lane, London WC2A 1QU (GB)

(54) Carboxylic thio-pyrrolidinyl beta-lactam compounds and production thereof.

57 Penem compounds are of the formule:

$$S_1$$
 S_2
 S_3
 S_4
 S_4

A1

where $\ensuremath{R_1}$ is H or hydroxyethyl, wherein the -OH may be protected

R₂ is H or a protective group, e.g. alkoxycarbonyl;

R₃ is H or a protective group, e.g. alkyl; X is methylene or alkyl-methylene or S;

Y is amino (-NH₂) which may be substituted by various groups which can form a ring.

Synthesis is from a B-lactam derivative wherein the 2-position has a reactive ester alcohol group or alkylsulfinyl group, reacted with a pyrrolidinyl derivative in a solvent in presence

of a base.

The compounds are useful as antimicrobial agents.

<u>م</u>

ACTORUM AG

CARBOXYLIC THIO-PYRROLIDINYL β-LACTAM COMPOUNDS AND PRODUCTION THEREOF

This invention relates to novel β -lactam compounds and a process for producing the same. More particularly, this invention relates to novel β -lactam compounds: which are carbapenem or penem derivatives and useful as antimicrobial agents or intermediates therefor and a process for producing the same.

Since the discovery of thienamycin having a potential antimicrobial activity against Gram negative and Gram positive bacteria, studies on syntheses of carbapenem or penem derivatives which are analoguous to thienamycin have been widely developed.

The present inventors have conducted intensive investigations on syntheses of carbapenem or penem derivatives and, as a result, found that carbapenem or penem derivatives having, as their 2-side chain, a substituent easily derived from 4-hydroxy-proline, i.e., a substituted pyrrolidinyl group carrying a carbonyl group substituted with various substituents on its 2-position, exhibit potential antimicrobial activity and are useful as medicines or are important intermediates for compounds possessing antimicrobial activity, and

5

10

15

thus completed the present invention.

The present invention relates to a novel carboxylic β -lactam compound represented by the formula (I):

wherein R₁ represents a hydrogen atom, 1-hydroxyethyl group or a 1-hydroxyethyl group in which the hydroxy group is protected with a protecting group; R₂ represents a hydrogen atom or a protecting group for an amino group; R₃ represents a hydrogen atom or a protecting group for a carboxyl group; X represents a substituted or unsubstituted methylene group of the formula (1):

15
$$R_4$$
- C - (1)

wherein R_4 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms,

or a sulfur atom; and Y represents a group of the formula (2):

$$- N < R_5$$
 (2)

wherein R_5 and R_6 , which may be the same or different, each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 4 5 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in its alkyl moiety, a substituted alkyl group having 1 to 5 carbon atoms or a pyridyl group, or R_5 taken together , represent an alkylene chain or an alkylene chain containing an oxygen atom, a sulfur atom or . 10 a (C_1-C_3) alkyl-substituted nitrogen atom to form, together with the adjacent nitrogen atom, a substituted or unsubstituted 3- to 7-membered cyclic amino group which may contain double bond(s) in its ring, a substituted or unsubstituted guanidyl group of the 15

$$- N = C < N(R_7)_2 N(R_7)_2$$
 (3)

wherein R_7 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms,

20 a protected or unprotected hydroxyl group, an alkoxy

formula (3):

group having 1 to 3 carbon atoms, an unsubstituted or (C_1-C_3) alkyl-substituted hydrazino group or a group of the formula (4):

wherein R₈ represents a hydrogen atom, a protecting group for a hydroxyl group or an alkyl group having 1 to 3 carbon atoms,

and pharmacologically acceptable salts thereof; and a process for producing the same.

10

15

In the above-described formula (I), the protecting group for a hydroxyl group as represented by R₁ and the protecting group for an amino group as represented by R₂ may be any of those commonly employed. Preferred examples of these protecting groups include a lower alkoxycarbonyl group, e.g., <u>t</u>-butyloxy-carbonyl; a halogenoalkoxycarbonyl group, e.g., 2-iodoethyloxycarbonyl, 2,2,2-trichloroethyloxycarbonyl;

an aralkyloxycarbonyl group, e.g., benzyloxy
carbonyl, p-methoxybenzyloxycarbonyl, o-nitrobenzyloxy
carbonyl, p-nitrobenzyloxycarbonyl; and a tri
alkylsilyl group, e.g., trimethylsilyl or t-butyldimethyl
silyl.

BNSDOCID: <EP____0126587A1_I_>

The protecting group for a carboxyl group as represented by R3 may be any of those commonly employed and preferred; examples are straight or branched chain lower alkyl group, e.g., methyl, ethyl, isopropyl, t-butyl; a halogeno 5 lower alkyl group, e.g., 2-iodoethyl, 2,2,2-trichloroethyl; a lower alkoxymethyl group, e.g., methoxymethyl, ethoxymethyl, isobutoxymethyl; lower aliphatic acyloxymethyl group, e.g., acetoxymethyl, propionyloxymethyl, butyryloxymethyl, pivaloyl-10 oxymethyl; a 1-lower alkoxycarbonyloxyethyl group, e.g., 1-methoxycarbonyloxyethyl, 1-ethoxycarbonyloxyethyl; an aralkyl group, e.g., pmethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl benzhydryl group and a phthalidyl group. 15

> When X is a $(C_1 - C_3)$ alkyl-substituted or unsubstituted methylene group as represented by the formula (1), the (C_1-C_3) alkyl group includes, for example, methyl, ethyl, n-propyl

When Y is an amino group represented by the formula (2), R_5 and R_6 may be the same or different from each other. In the definition of R5 and R6, the alkyl group having 1 to 5 carbon atoms includes e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl;

alkenyl group having 3 to 4 carbon atoms includes, for 25

the aralkyl group example, propenyl, butenyl; having 1 to 3 carbon atoms in its alkyl moiety includes, for example, a phenyl group, a substituted phenyl group, a pyridyl group and a (C_1-C_3) alkyl group substituted with a substituted pyridyl group, such as benzyl, substituted benzyl, phenethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl; the substituted alkyl group having 1 to 5 carbon atoms includes, for example, a straight chain or branched chain alkyl group, e.g., methyl, ethyl, n-propyl, isopropyl, n-butvl, etc., which is substituted with a hydroxyl group, a di-(C₁-C₃) alkylamino group, a <u>carbamoyl group</u>, a mono- or di-(C1-C3) alkyl-substituted aminocarbonyl group, a protected or unprotected carboxyl group or a like substituent; and the pyridyl group includes 2-pyridyl, 3pyridyl and 4-pyridyl groups.

 $\delta \delta a \epsilon b \gamma$ In cases where R₅ and R₆ jointly represent an alkylene chain or an alkylene chain via an oxygen atom, a sulfur atom or a (C_1-C_3) alkyl-substituted nitrogen atom to form, together with the adjacent nitrogen atom, a substituted or unsubstituted 3- to 7-membered cyclic amino group which may contain double bond(s) in its ring, the cyclic amino group includes, for example, a saturated cyclic amino group, e.g., an aziridino group, an azetidino group, a pyrrolidino group, a piperidino

W-Starton

R5=branched Czalkyl Granched Czalkyl Gra

25

5

10

group, etc.; an unsaturated cyclic amino group, e.g., a pyrrolyl group, a 3-pyrrolinyl group; and a cyclic amino group having an oxygen atom, a sulfur atom or an alkyl-substituted nitrogen atom in its ring, e.g., a morpholino group, a thiomorpholino group, an N-methyl-piperazino group; The substituents for these cyclic amino groups include, for example, an alkyl group having 1 to 3 carbon atoms, a carbamoyl group, a mono- or di- (C_1-C_3) alkyl-substituted aminocarbonyl group, a hydroxyl group, etc.

When Y is represented by the formula (3), the guanidyl group unsubstituted or substituted with a (C_1-C_3) alkyl group includes a guanidyl group and a guanidyl group substituted with one to four alkyl groups, e.g., methyl, ethyl, -n-propyl, isopropyl, , such as an N,N'-tetramethylguanidyl group.

The hydrazino group for Y includes, for example, a hydrazino group and a hydrazino group substituted with one to three alkyl groups, e.g., methyl, ethyl, n-propyl, isopropyl, such as 2',2'-dimethylhydrazino, trimethylhydrazino.

In cases where Y is represented by the formula

(4), R₈ is a hydrogen atom, a protecting group commonly

employed for protection of a hydroxyl group or a lower

25 alkyl group, e.g., methyl, ethyl, n-propyl;

Of the compounds of the above-described

5

10

15

formula (I), the carboxylic acid compounds wherein the group as represented by -COOR₃ or -COY is a carboxyl group can be converted into their pharmacologically acceptable salts, if desired. Such salts include those formed with inorganic metals, such as lithium, sodium, potassium, calcium, magnesium, etc. and those formed with ammonium, such as ammonium, cyclohexylammonium, diisopropylammonium, triethylammonium, etc., with a sodium salt and a potassium salt being preferred.

The preferred compounds of the formula (I) are those wherein R_1 is a hydrogen atom or a 1-hydroxyethyl group; R_2 and R_3 are both hydrogen atoms; and Y is a group represented by the formula (2-a):

15

20

25

10

5

$$- \sqrt{\frac{R_{5-a}}{R_{6-a}}}$$
 (2-a)

wherein R_{5-a} and R_{6-a} each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in its alkyl moiety, an alkyl group having 1 to 5 carbon atoms which is substituted with a hydroxyl group, a di- (C_1-C_3) alkylamino group, a carbamoyl group, a mono- or di- (C_1-C_3) alkyl-substituted aminocarbonyl group, a carboxyl group, etc., or a pyridyl

group, or R_{5-a} and R_{6-a} jointly represent an alkylene chain or an alkylene chain containing an oxygen atom, a sulfur atom or a (C_1-C_3) alkyl-substituted nitrogen atom to form, together with the adjacent nitrogen atom, a substituted or unsubstituted 3- to 7-membered cyclic amino group which may contain double bond(s) in the ring thereof, wherein the substituent for the cyclic amino group includes a (C_1-C_3) alkyl group, a carbamoyl group, a carboxyl group, a mono- or $\operatorname{di-}(C_1-C_3)$ alkyl-substituted aminocarbonyl group, a hydroxyl group, etc.; an unsubstituted or (C_1-C_3) alkyl-substituted guanidyl group; a hydroxyl group; an alkoxy group having 1 to 3 carbon atoms; an unsubstituted or (C_1-C_3) alkyl-substituted hydrazino group; or a group represented by the formula (4-a):

$$- NHOR_{8-a}$$
 (4-a)

wherein R_{8-a} represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

The more preferred compounds of the formula (I) are those wherein R_1 is a 1-hydroxylethyl group; R_2 and R_3 are both hydrogen atoms; and Y is a group represented by the formula (2-b):

$$-N < R_{5-b}$$
 (2-b)

20

5

wherein R_{5-b} and R_{6-b} each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in its alkyl moiety, an alkyl group having 1 to 5 carbon atoms which is substituted with a hydroxyl group, a di-(C₁-C₃)alkylamino group, a carbamoyl group, a mono- or di-(C₁-C₃)alkyl-substituted aminocarbonyl group, a carboxyl group, etc., or a pyridyl group, or R_{5-b} and R_{6-b} jointly represents an alkylene chain or alkylene chain via an oxygen atom, a sulfur atom or a (C₁-C₃)alkylsubstituted nitrogen atom to form, together with the adjacent nitrogen atom, a substituted or unsubstituted 3to 7- membered cyclic amino group which may contain double bond(s) in its ring, wherein the substituent for the cyclic amino group includes an alkyl group having 1 to 3 carbon atoms, a carbamoyl group, a hydroxyl group, etc.; an unsubstituted or (C₁-C₃)alkyl-substituted guanidyl group; a hydroxyl group; an alkoxy group having 1 to 3 carbon atoms, preferably a methoxy group; an unsubstituted or (C₁-C₃)alkyl-substituted hydrazino group; or a group represented by the formula (4-a):

- NHOR_{8-a} (4-a)

5

10

15

wherein R_{8-a} has the same meaning as defined above.

The most preferred compounds of the formula (I) are those wherein R_1 is a 1-hydroxyethyl group; R_2 and R_3 are both hydrogen atoms; and Y is a group represented by the formula (2-c):

$$-N < R_{5-c}$$

$$R_{6-c}$$
(2-c)

wherein R_{5-c} and R_{6-c} have one of the following meanings:

- (1) R_{5-c} represents an alkyl group having 1 to 5 carbon atoms which may be substituted with a carbamoyl group, a mono- or $di-(C_1-C_3)$ alkylamino-carbonyl group, a hydroxyl group, etc., or a pyridyl group, and R_{6-c} represents a hydrogen atom or has the same meaning as described for R_{5-c} ;
- 15 (2) R_{5-c} and R_{6-c} are directly taken together to represent an alkylene chain to form, together with the adjacent nitrogen atom, a 4- to 6-membered saturated cyclic amino group or a 5- to 6-membered unsaturated cyclic amino group having double bond(s)

 20 in its ring, such as a pyrrolinyl group, or the same saturated or unsaturated cyclic amino group as described above but having a substituent on its ring, such as a carbamoyl group, a hydroxyl

5

group, etc.; and

(3) R_{5-c} and R_{6-c} jointly represent an alkylene chain via an oxygen atom or a (C₁-C₃)alkylsubstituted nitrogen atom to form, together with the adjacent nitrogen atom, a 6-membered cyclic amino group.

Preferred examples of X, if positively enumerated, can include a methyl-substituted or unsubstituted methylene group represented by the formula (1-a):

wherein R_{4-a} represents a hydrogen atom or a methyl group, CH_3 with a group -C being particularly preferred.

The β - lactam compounds represented by the formula (I) according to the present invention are

5

novel compounds which are carbapenem (i.e., 1-azabicyclo[3.2.0]hept-2-ene-7-one-2-caboxylic acid) derivatives or penem (i.e., 1-azabicyclo[3.2.0]hept-2-ene-7-one-4-thia-2-carboxylic acid) derivatives.

A process for producing the compounds of the formula (I) according to the present invention will be described below.

Of the β -lactam compounds of the formula (I), compounds represented by the formula (IV):

$$\begin{array}{c|c}
R_1 & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& \times & \times & \times$$

wherein R_1 , R_2 and X are as defined above; R_9 represents a protecting group for a carboxyl group; and Y' represents the group as represented by the foresaid formula (2), the group as represented by the aforesaid formula (3), a protected hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an unsubstituted or (C_1-C_3) alkyl-substituted hydrazino group or a group represented by the formula (4'):

15

wherein R₈' represents a protecting group for a hydroxyl group or an alkyl group having 1 to 3 carbon atoms,

can be prepared by reacting a β -lactam derivative represented by the formula (II):

$$R_1$$
 N
 Z
 $COOR_9$
 $COOR_9$

wherein R_1 , X and R_9 are as defined above, and Z represents a reactive ester group of an alcohol or a substituted or unsubstituted lower alkylsulfinyl group, with a mercaptan derivative represented by the formula (III):

wherein R₂ and Y' are as defined above, in an inert solvent in the presence of a base.

The term "reactive ester group of an alcohol"

5

5

15

herein used means a group derived from a substituted or unsubstituted arylsulfonate, lower alkanesulfonate, halogeno-lower alkanesulfonate or diarylphosphoric acid ester or a halide, i.e., an ester with a hydrogen halide, of the alcohol represented by the formula (II). The substituted or unsubstituted arylsulfonate includes, for example, a benzenesulfonate, a p-toluenesulfonate, a p-nitrobenzenesulfonate, a p-bromobenzenesulfonate, The lower alkanesulfonate includes, for example, a methanesulfonate, an ethanesulfonate) halogeno-lower alkanesulfonate includes, for example, a The diarylphosphoric trifluoromethanesulfonate, acid ester includes, for example, a diphenylphosphoric acid ester, etc. The halide includes, for example, a chloride, a bromide, an iodide, etc. Of these reactive esters of an alcohol, preferred examples are a ptoluenesulfonate, a methanesulfonate and a diphenylphosphoric acid ester.

lower alkylsulfinyl group, the lower alkyl group preferably includes a straight chain or branched chain
alkyl group having 1 to 4 carbon atoms. The substituent
for the substituted lower alkyl group can include a
hydroxyl group, a lower alkoxy group having 1 to 4
carbon atoms, a lower alkoxycarbonyloxy group having

2 to 5 carbon atoms, a lower alkanoyloxy group having 2 to 5 carbon atoms, an amino group, a mono- or dilower alkylamino group, a lower alkanoylamino group having 2 to 5 carbon atoms, a lower alkoxycarbonylamino group having 2 to 5 carbon atoms, an aralkyloxycarbonyloxy group, an aralkyloxycarbonylamino group, etc.

The protecting group for a carboxyl group as represented by R_9 corresponds to the protecting group as represented by R_3 , and the same preferred groups as enumerated for R_3 can also be applied to R_9 .

Examples of the inert solvent which can be used in the above-described reaction are dioxane, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, acetonitrile, hexamethylphosphoramide and mixtures thereof, with acetonitrile and dimethylformamide being preferred.

The base also used in the reaction includes various organic or inorganic bases, such as sodium carbonate, potassium carbonate, sodium hydride, potassium hydride, potassium t-butoxide, pyridine, various lutidines, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine and the like, with the organic bases, e.g., diisopropylethylamine, etc., being preferred.

The amount of the base to be used should be enough for the reaction to sufficiently proceed and

25

5

15

usually ranges from 1 to 2 equivalents per mole of the mercaptan derivative of the formula (III).

The mercaptan derivative (III) is used in an amount enough for the reaction to sufficiently proceed. It may be used in a large excess but usually in an amount of from 1 to 2 equivalents based on the compound of the formula (II).

The reaction can be carried out at a temperature ranging from about -78°C to 60°C, preferably from -40°C to 40°C.

After completion of the reaction, the reaction product can be isolated by usual organochemical means.

Then, the thus obtained compound represented by the formula (IV) can be subjected, if necessary, to a reaction for removal of the hydroxyl-protecting group when R_1 is a protected hydroxyl group, a reaction for removal of the amino-protecting group, a reaction for removal of the carboxyl-protecting group R_9 , a reaction for removal of the protecting group on Y', or an appropriate combination thereof, thereby to obtain the 8-lactam compound represented by the formula (I).

The reactions for removal of the protecting groups can be carried out by generally known methods selected depending on the type of the protecting groups.

5

10

15

20

For example, those compounds of the formula (IV) wherein the hydroxyl-protecting group and/or the amino-protecting group in R2 is/are a halogenoalkoxycarbonyl group(s) or an aralkyloxycarbonyl group(s), and those compounds wherein the carboxylprotecting group is a halogenoalkyl group, an aralkyl group or a benzhydryl group can be subjected to an appropriate reduction reaction to remove these protecting groups. Such reduction is preferably carried out 10 by using an organic solvent, such as acetic acid, tetrahydrofuran, methanol, etc., and zinc in case when the protecting group to be removed is a halogenoalkoxycarbonyl group or a halogenoalkyl group, or by catalytic reduction using a catalyst, such as platinum or palladium-on-carbon, in case when the protecting group to be removed is an aralkyloxycarbonyl group, an aralkyl group or a benzhydryl group. Solvents to be used in the catalytic reduction suitably include organic solvents, such as lower alcohols, e.g., methanol, ethanol, etc.; ethers, e.g., tetrahydrofuran, dioxane, etc.; and acetic acid, or mixed solvents of these organic solvents and water or buffer solutions, such as phosphoric acid, morpholinopropanesulfonic acid, etc. The reaction can be conducted at a temperature of from about 0°C to 100°C. preferably 0°C to 40°C, in a hydrogen atmosphere under

5

15

20

atmospheric pressure or under pressurized conditions.

In particular, when the protecting group to be removed is an o-nitrobenzyl group or an o-nitrobenzyloxycarbonyl group, these groups can also be removed by photo reaction.

In the compounds according to the present invention, the 5- and 6-positions of the compounds of the above-described formula (I), the 8-position of the compounds represented by the formula (V):

wherein R_2 , R_3 , X and Y are as defined above, and R_{10} represents a hydrogen atom or a protecting group for a hydroxyl group,

the 4-position of the compounds represented by the formula (VI):

15

wherein R_1 , R_2 , R_3 , R_4 and Y are as defined above, and R_4 is an alkyl group,

and the 2'- and 4'-positions in the 2-side chain of the compounds of the formulae (I), (V) and (VI) are all asymmetric carbons to form isomers. Therefore, the compounds represented by these formulae include optical isomers and steric isomers ascribed to these asymmetric carbon atoms. Although all of these isomers are represented by a respective single formula for the sake of convenience, the scope of the present invention is not limited by such a single formula.

However, preferred isomers can include those having an R-configuration at the 5-positioned carbon atom, similarly to thienamycin, i.e., the (5R,6S)- or (5R,6R)-compounds. With respect to the 8-positioned carbon atom of the formula (V), those having an R-configuration are preferred. Further, with respect to the 4-position of the formula (VI), those wherein the lower alkyl group as represented by R_4 is in a R-configuration (i.e., (4R)-compounds) are preferred.

In addition, the 2'-substituted pyrrolidin-4'-ylthio group forms four isomers, of which the (2'S,4'S)- and (2'R,4'R)-compounds are preferred.

Particularly preferred compounds include those compounds of the formula (I) having a (5R,6S,2'S,4'S)-

25

5

10

15

configuration, those compounds of the formula (V) having a (5R,6S,8R,2'S,4'S)-configuration, and those compounds of the formula (VI), wherein R_1 is a 1-hydroxyethyl type substituent and R_4 is a lower alkyl group, having a (4R,5R,6S,8R,2'S,4'S)-configuration.

The isomers having the above-described steric configurations can be obtained by using the starting compounds of the formula (II) and/or (III) having the corresponding configurations.

The starting compounds (II) can be prepared according to various known methods. For example, the compounds represented by the formula (VII):

$$\begin{array}{c|c}
 & \text{OR}_{10} & \text{R}_4 \\
\hline
 & \text{O} & \text{COOR}_9
\end{array}$$
(VII)

wherein R₄, R₉ and R₁₀ are as defined above, and Z₀ represents a reactive ester group of an alcohol, and also wherein R₄ is a hydrogen atom are known per se in (1) Japanese Patent Application OPI (Open to Public Inspection) No. 27169/80, (2) J. Am. Chem. Soc., Vol. 103, 6765-6767 (1981) and (3) J. Chem. Soc., Perkin I, 964-968 (1981), etc., and the compounds (VII) can be obtained according to the methods described in

15

20

the above-described literatures (1) to (3).

Further, the compounds (VII) can also be synthesized in accordance with the methods described in the above-described literatures (1) to (3), etc. starting with compounds represented by the formula (a):

wherein R_{10} is as defined above, and Ac represents an acetyl group,

which can be obtained by the method described in

Tetrahedron Letters, 2293-2296 (1982) or the method described in EPC Publication No. 70204.

Furthermore, the compounds (VII) can also be obtained by subjecting a compound represented by the formula (b):

wherein DAM represents a di-p-anisylmethyl group,

which is obtained by the method disclosed in EPC
Publication No. 70204 to a carbon-increasing reaction
such as Arndt-Einstert reaction and the like and then
to an oxymercuration reaction and the like according
to the method of EPC Publication No. 70204, thereby
converting the ethenyl group into a 1-hydroxyethyl
group, subjecting the resulting product, if necessary,
to an appropriate combination of a reaction for
protecting or deprotecting the carboxyl group and a
reaction for protecting the hydroxyl group to obtain a
compound represented by the formula (c):

wherein R₁₀ and DAM are as defined above, and then obtaining the compound (VII) from the compound (c) in accordance with the method described in Japanese Patent Application OPI No. 167964/82.

The DAM group on the nitrogen atom in the compound (c) can be removed by reacting with ceric ammonium nitrate in an inert solvent such as acetonitrile-water at 10 to 30°C. In this case, this reaction

5

10

15

may be combined with a reaction for protecting or deprotecting the carboxyl group and/or a reaction for protecting the hydroxyl group, if necessary.

Further, the compound of the formula (VII) wherein R_4 is an alkyl group can be prepared by, for example, the known method as disclosed in Japanese Patent Application OPI No. 26887/83 or analogous methods thereof.

Compounds of the formula (VIII):

wherein R₁₀ is as defined above, and R₄⁰ represents an alkyl group having 1 to 3 carbon atoms, which can be used as a starting material for preparing the compound (VII) wherein R₄ is an alkyl group, can be produced, for example, according to the following reaction scheme:

5

wherein R_4^0 is as defined above; R_{11} represents a protecting group for a carboxyl group; and TBDMS represents a t-butyldimethylsilyl group.

The compounds of the formulae (e) and (f) can be obtained as an isomeric mixture by a method described in Japanese Patent Application OPI No. 73656/80 which comprises reacting (3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2-azetidinone of the formula (d) disclosed in Chem. Pharm. Bull., Vol. 29, 2899-2909 (1981) with a halogenofatty acid ester represented by the formula:

5

wherein $\mathbf{R}_4^{\,0}$ and $\mathbf{R}_{1\,1}$ are as defined above, and X' represents a halogen atom,

in a solvent, such as an ether (e.g., tetrahydrofuran, dioxane, diethyl ether, etc.), an aromatic hydrocarbon (e.g., benzene, toluene, etc.), and the like, or a mixed solvent of these solvents and hexane in the presence of diethylaluminium chloride and zinc.

Separation and purification of the isomers (e) and (f) can be carried out by silica gel column chromatography.

The compounds (e) and (f) can be led to the compound (VIII) by appropriately combining reactions for protecting or deprotecting the hydroxyl group, the carboxyl group or the nitrogen atom.

One example for the production of the starting compound (VII) will be illustrated in the following
reaction scheme:

5

wherein R_4 , R_9 and R_{10} are as defined above; $R_{10}^{\ 0}$ represents a protecting group for a hydroxyl group; and Ph represents a phenyl group.

More specifically, the compound (g) obtainable by the aforesaid methods can be led to the compound (h) through the reaction described in Japanese Patent Application OPI No. 167964/82 or Heterocycles, Vol. 14, 1305-1306 (1980).

The compound (h) is then reacted with a diazonizing agent, e.g., carboxybenzenesulfonazide, in the presence of a base to obtain the compound (i) as disclosed in Tetrahedron Letters, 31-34 (1980).

The compound (i) is then subjected to cyclization

5

10 -

in the presence of a metal salt catalyst, e.g., dirhodium tetrakisacetate, or by photo reaction to obtain the compound (j).

Finally, the compound (j) is reacted with diphenyl-phosphoryl chloride in an inert solvent in the presence of a base such as diisopropyl ethyl amine, 4-dimethylamino-pyridine, etc. to obtain the compound of the formula (VII-a).

In general, the starting compound (VII-a) as prepared from the compound (j) is subsequently subjected to the reaction with various mercaptans without being isolated to produce carbapenem derivatives, but the starting compound (VII-a) may be once isolated from the reaction mixture and then reacted with the mercaptan derivative (III) to obtain the desired compound of the formula (IV).

Optically active reactive esters, for example, the compound (VII-a), can be obtained in the same manner as described above but starting with the β -lactam derivative (g) having the corresponding steric configuration.

Further, of the above-described compounds of the formula (II), the compounds, for example, of the compound (IX):

5

10

15

$$\begin{array}{c|c}
R_1 & S & O \\
\uparrow & -R_{12}
\end{array}$$

$$\begin{array}{c}
COOR_9
\end{array}$$

wherein R_1 and R_9 are as defined above, and R_{12} represents a substituted or unsubstituted lower alkyl group,

5 can be prepared by subjecting a compound of the formula (X):

$$\begin{array}{c|c}
R_1 & S & -R_{12} \\
\hline
COOR_9
\end{array}$$

wherein R₁, R₉ and R₁₂ are as defined above, to S-oxidation using a mild oxidizing agent. The mild oxidizing agent includes perbenzoic acid, m-chloroperbenzoic acid, hydrogen peroxide, selenium dioxide, sodium m-periodate and the like, with substituted perbenzoic acids, e.g., m-chloroperbenzoic acid, etc., being preferred.

The starting compound represented by the

formula (X) can be prepared by various methods already reported, for example, the methods as disclosed in Japanese Patent Applications OPI Nos. 9034/80, 105686/80 and 81591/81.

5

10

On the other hand, the starting mercaptan derivative of the formula (III) can be prepared by various methods. For example, mercaptan derivatives (IIIa), (IIIb) and (IIIc) having a 2'S-configuration can be obtained from trans-4-hydroxy-L-proline (i) in accordance with the reaction scheme shown below:

WSDOCID < EP 012658741 I

In the above formulae, R_5 , R_6 and R_{11} are as defined above; R_{13} represents a protecting group for an amino group; and R_{14} represents a protecting group for a thiol group.

5 Step A:

10

15

The reaction can easily be accomplished by various known methods generally employed for protecting an amino group of amino acids, for example, a method comprising reacting with an arylmethyloxycarbonyl chloride, etc. in the presence of a base, a method comprising using an S-acyl-4,6-dimethyl-2-mercaptopyrimidine, etc., and the like.

Step B:

The reaction can be carried out by various methods for obtaining esters from carboxylic acids, for example, by reacting the carboxylic acid (ii) with various alkyl halides or aralkyl halides, etc. in the presence of a base.

Step C:

20 The reaction can be accomplished by various known methods for converting a hydroxyl group into a protected thiol group, for example, by a method comprising converting the carboxylic acid ester (iii) into an active ester of a hydroxyl group and then reacting with various thionizing reagents, e.g., thioacetic

acid, thiobenzoic acid, tritylmercaptan, etc., in the presence of a base.

This step may also be conducted by reacting the alcohol derivative with a thionizing reagent, e.g., thioacetic acid, etc., in an inert solvent, e.g., tetrahydrofuran, etc., in the presence of triphenyl-phosphine and diethyl azodicarboxylate.

This step can be carried out by various

known methods for converting an ester group into a

carboxyl group, for example, alkali-hydrolysis, a

method of using trifluoroacetic acid, hydrobromic acid,

etc., or a reductive method of using zinc.

Step E:

known methods for converting a carboxyl group to an amido group, for example, by a method comprising react—ing with a halogenating agent, an acylating agent, etc. to form an active ester derivative and then treating the resulting ester with an amine represented by the formula:

wherein R₅ and R₆ are as defined above.

5

Step D:

Step F:

5

10

15

20

25

The thiol-protecting group can be removed by various known methods for deprotection. For example, an acyl group as the thiol-protecting group can be removed by alkali-hydrolysis and the like. Step G:

The reaction can be accomplished by various known oxidation methods for converting a hydroxyl group into a carbonyl group, for example, an oxidation reaction using chromic acid-sulfuric acid, etc. in acetone. Step H:

The step can be conducted by various known reduction reactions for converting a carbonyl group to a hydroxyl group. For example, treatment with sodium borohydride, etc. gives a mixture of the compound (iii) and the compound (ix) having different steric configurations at the hydroxyl group. The production proportion of (iii) and (ix) varies depending on reaction conditions, but each compound can be isolated as a single compound by purification procedures, such as recrystallization, chromatography and the like.

Isomerization of the 4-hydroxyl group can be accomplished through the above-described steps G and H, and may also be achieved through hereinafter described steps I and J.

Steps I & J:

The alcohol derivative is reacted with formic acid in an inert solvent, e.g., tetrahydrofuran, etc., in the presence of triphenylphosphine and diethyl azodicarboxylate to form a formyloxy derivative (xiii), which is then subjected to alkali-hydrolysis, etc. to remove the formyl group.

Step K:

5

10

15

20

25

This step can be conducted by commonly employed various known methods for deprotecting amino groups, for example, a method of using an acid, e.g., trifluoroacetic acid, hydrobromic acid, etc., a reducing method of using zinc, lithium-liquid ammonia, etc., or a catalytically reducing method.

- The starting mercaptan derivatives (III) to be used for the production of the β-lactam compounds (I) wherein Y is a protected or unprotected hydroxyl group or an alkoxy group having 1 to 3 carbon atoms can be obtained by subjecting the compound (iv) or (x) to Step F.

The 2'R-mercaptan (III) can be prepared by using cis-4-hydroxy-D-proline as a starting compound in accordance with the above-described method for producing 2'S-compounds, i.e., by combining various reactions described in the production of the 2'S-compounds.

Of the novel \$-lactam compounds represented by the formula (I) according to the present invention, those compounds in which R_1 , R_2 and R_3 are all hydrogen atoms exhibit excellent antimicrobial activity against a wide variety of disease-causing bacteria including Gram positive bacteria, such as Staphylococcus aureaus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus faecalis, etc., and Gram negative bacteria, such as Escherichia coli, Proteus mirabilis, Serratia marcescens, Pseudomonas aeruginosa, etc., and are useful, therefore, as antimicrobial agents. Further, these compounds have a characteristic of exhibiting excellent antimicrobial activity against g-lactamase-producing strains. Other compounds according to the present invention are important intermediates for synthesizing the above-mentioned compounds having antimicrobial activity.

In addition, the compounds according to the present invention are also characterized in general by their high physiochemical stability and excellent water solubility, although varying depending on the respective compound.

The compounds of the present invention can be used as antimicrobial agents for treating bacteria-caused infectious diseases in the form of oral preparations,

5

10

15

20

such as tablets, capsules, powders, syrups, etc. or non-oral preparations, such as intravenous injections, intramuscular injections, rectal preparations, etc.

The dosage of the antimicrobial agent varies depending upon the symptoms, ages, body weights, dosage forms, times of doses and the like, but usually ranges from about 100 mg to 3,000 mg per day in a single dose or several divided doses for adults. The above dose level can be increased or decreased according to necessity.

Besides, the antimicrobial agent of the present invention can be administered, if necessary, in combination with dehydrodipeptidase-inhibitors, e.g., sodium Z-7-(L-amino-2-carboxyethylthio)-2-(2,2-dimethylcyclo-propanecarboxyamido)-2-heptenoate, etc. (a series of compounds disclosed in Japanese Patent Application OPI No. 81518/81).

The present invention will now be illustrated in greater detail with reference to the following Reference Examples and Examples, which are given only for illustration.

"Nujol" is a paraffinic solvent.

In Reference Examples and Examples, the following abbreviations are used:

25 DAM: Di-(p-anisyl)methyl group

TBDMS: t-Butyldimethylsilyl group

5

10

15

PNZ: p-Nitrobenzyloxycarbonyl group

PMZ: p-Methoxybenzyloxycarbonyl group

PMB: p-Methoxybenzyl group

PNB: p-Nitrobenzyl group

Ph : Phenyl group

Ac : Acetyl group

Ms : Methanesulfonyl group

tBu: <u>t</u>-Butyl group

Me : Methyl group

Et : Ethyl group

Reference Example 1-1

HO
$$\sim$$

COOH \rightarrow

PNZ

of triethylamine were dissolved in 15 ml of water, and a
solution of 15.95 g of S-p-nitrobenzyloxycarbonyl-4,6dimethyl-2-mercaptopyrimidine in 35 ml of dioxane was
added thereto dropwise. The resulting mixture was stirred at room temperature for 1.5 hours and allowed to stand
overnight. To the reaction mixture was added 30 ml of a
20 2N sodium hydroxide aqueous solution under ice-cooling,
and the resulting mixture was extracted with diethyl ether.
The ethereal layer was washed with 20 ml of a 1N sodium

5

hydroxide aqueous solution and combined with the alkaline aqueous layer. The combined mixture was made acidic with 100 ml of a 2N hydrochloric acid aqueous solution and extracted with ethyl acetate. The ethyl acetate layer was washed with a 2N aqueous solution of hydrochloric acid, dried over sodium sulfate and distilled off to remove the solvent. The resulting crude crystals were washed with warm ethyl acetate to obtain trans-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-proline.

Melting Point: 134.3-135.5°C

IRNujol (cm⁻¹): 3300 (br.), 1738, 1660, 1605,

1520, 1340, 1205, 1172, 1070,

965

Reference Example 1-2

15.0 g of trans-1-(p-nitrobenzyloxycarbonyl)4-hydroxy-L-proline and 13.5 ml of triethylamine were
dissolved in 150 ml of dried dimethylformamide, and
12.66 ml of p-methoxybenzyl chloride was added dropwise
to the solution under a nitrogen stream, followed by

20

5

10

stirring at 70°C for 10 hours. The reaction mixture was diluted with 500 ml of ethyl acetate, washed with water, dried over sodium sulfate and distilled off to remove the solvent. Recrystallization of the residue from diethyl ether gave trans-1-(p-nitrobenzyloxy-carbonyl)-4-hydroxy-L-proline p-methoxybenzyl ester.

Melting Point: 83-85°C

neat
IR_{max} (cm⁻¹): 3430, 1735, 1705, 1510, 1340,
1245, 1160

Reference Example 1-3

8.6 g of trans-1-(p-nitrobenzyloxycarbonyl)4-hydroxy-L-proline-p-methoxybenzyl ester and 7.86 g of
triphenylphosphine were dissolved in 20 ml of dried
tetrahydrofuran. To the resulting solution was added
dropwise a solution of 5.22 g of diethyl azodicarboxylate
in 5 ml of dried tetrahydrofuran under ice-cooling in a
nitrogen stream, followed by stirring for 30 minutes at
that temperature. Thereafter, 2.28 g of thioacetic acid
was added thereto dropwise, and the mixture was stirred
for 1 hour under ice-cooling and then at room temperature

5

10

15

20

0126587A1 L >

for 3 hours, followed by concentration. The residue was purified by silica gel column chromatography to obtain cis-1-(p-nitrobenzyloxycarbonyl)-4-acetylthio-L-proline p-methoxybenzyl ester.

IR neat (cm⁻¹): 1740 (sh.), 1715, 1520, 1405, 1348, 1120

NMR δ (CDCl₃): 2.31 (3E, s), 3.79 (3H, s), 5.10 (2H, s), 5.24 (2H, s), 7.49 (2H, d, J=9.0Hz)ppm

Reference Example 1-4

 $\begin{array}{c|c} AcS & AcS \\ \hline \\ N & COOPMB \end{array} \longrightarrow \begin{array}{c} AcS \\ \hline \\ N & I \\ \hline \\ PNZ & PNZ \end{array}$

9.76 g of cis-1-(p-nitrobenzyloxycarbonyl)4-acetylthio-L-proline p-methoxybenzyl ester and 4.32 g
of anisole were stirred together with 35 ml of trifluoroacetic acid at room temperature for 30 minutes. The
reaction mixture was concentrated under reduced pressure,
and the residue was purified by silica gel column
chromatography to obtain cis-1-(p-nitrobenzyloxycarbonyl)4-acetylthio-L-proline.

20 Melting Point: 107-109°C

IR Nujol (cm⁻¹): 1725, 1685, 1660 (sh.), 1340,

5

10

1180, 1110

Reference Example 1-5

4-acetylthio-L-proline was dissolved in 2 ml of dried tetrahydrofuran, and 48 mg of dimethylamine hydrochloride, 78 mg of N,N-dimethylaminopyridine and 152 mg of dicyclohexylcarbodiimide were successively added thereto, followed by stirring overnight. After any insoluble matter was removed by filtration, the filtrate was diluted with ethyl acetate, washed successively with dilute hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent. The residue was purified by silica gel chromatography to obtain (2S,4S)-cis-1-(p-nitrobenzyloxycarbonyl)-2-dimethylcarbamoyl-4-acetylthiopyrrolidine.

The above prepared compound could also be obtained by the following method:

200 mg of the same starting carboxylic acid was dissolved in 1.8 ml of dried methylene chloride, and one drop of dimethylformamide was added thereto.

5

10

15

0.12 ml of oxalyl chloride was then added dropwise thereto under ice-cooling, followed by stirring at room temperature for 1 hour. The solvent was removed by distillation, and the residue was thoroughly dried in vacuo and dissolved in 1 ml of dried tetrahydrofuran. Under ice-cooling, 1.2 ml of a 1M solution of dimethylamine in tetrahydrofuran was added to the reaction mixture, followed by stirring at that temperature for 15 minutes. To the reaction mixture was added ice-water, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with dilute hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent.

IR $_{\text{max}}^{\text{neat}}$ (cm⁻¹): 1705, 1650, 1515, 1400, 1340, 1105 NMR $_{\delta}$ (CDCl₃): 2.32 (3H, s), 2.97 (3H, s), 3.11 (3H, s), 5.21 (2H, s), 8.18 (2H,

d, J=8.5Hz) ppm

 $[a]_{D}^{30} +5.21^{\circ} (c=0.379, acetone)$

Reference Example: 1-6

5

10

277 mg of (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-hydroxycarbonyl-4-acetylthiopyridine was dissolved in 1.5 ml of dried methylene chloride, and 0.15 ml of oxalyl chloride and a catalytic amount of dimethylformamide were added thereto, followed by stirring at room The reaction mixture was temperature for 1.5 hours. distilled off to remove the solvent, and dried benzene The benzene was then distillwas added to the residue. ed off to remove any remaining oxalyl chloride. Separately, 51 mg of pyrrole was dissolved in 2 ml of dried tetrahydrofuran, and 0.47 ml of a 1.60 mmol/ml solution of \underline{n} -butyl lithium in hexane was added thereto in a nitrogen stream under ice-cooling, followed by stirring at that temperature for 40 minutes. The resulting mixture was then added in a nitrogen stream under ice-cooling to a solution of the above-described reaction residue dissolved in 2 ml of dried tetrahydrofuran, followed by stirring for 10 minutes. The resulting reaction mixture was diluted with methylene chloride, washed with water, dried over sodium sulfate and distilled off to remove the solvent. The residue was purified by silica gel thin layer chromatography to obtain (25, 4S)-1-p-nitrobenzyloxycarbonyl-2-(1-pyrrolyl)carbonyl-4-acetylthiopyrrolidine.

25 IR $v_{\text{max}}^{\text{CHCl}_3}$ (cm⁻¹): 1710, 1525, 1345, 1278, 1120

5

10

15

Reference Example 1-7

368 mg of (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-hydroxycarbonyl-4-acetylthiopyrrolidine was dissolved in 3 ml of dried methylene chloride, and 0.3 ml of oxalyl chloride and a catalytic amount of dimethylformamide were added thereto, followed by stirring at room temperature for 1.5 hours. The reaction mixture was distilled off to remove the solvent, and to the residue was added dried The benzene was then distilled off to remove benzene. any remaining oxalyl chloride. Separately, 128 mg of 4-carbamoylpiperidine was dissolved in 3 ml of dried tetrahydrofuran, and 0.25 ml of bistrimethylsilylacetamide was added to the solution, followed by stirring for 3 hours in a nitrogen stream. Then, 101 mg of triethylamine was added thereto, and to the resulting mixture was added in a nitrogen stream under ice-cooling a solution of the above-obtained reaction residue dissolved

BNSDOCID: <EP____0126587A1_I_>

5

10

15

in 3 ml of dried tetrahydrofuran, followed by stirring for 15 minutes under ice-cooling. Methylene chloride was added to the resulting reaction mixture. The mixture was washed successively with a sodium chloride aqueous solution, dilute hydrochloric acid, a sodium chloride aqueous solution, a sodium bicarbonate aqueous solution and a sodium chloride aqueous solution, dried over sodium sulfate and distilled off to remove the solvent. The residue was purified by silica gel thin layer chromatography to obtain (2S,4S)-1-p-nitro-benzyloxycarbonyl-2-(4-carbamoylpiperidinyl)carbonyl-4-acetylthiopyrrolidine.

IRV CHCl_{max} 3 (cm⁻¹): 3440, 1695, 1655, 1525, 1350, 1120

NMR & (CDCl₃) : 2.35 (3H, s), 5.21 (2H, s), 5.93 (2H, s), 7.52 (2H, d, J= 9Hz), 8.22 (2H, d, J=9Hz) ppm

Reference Example 1-8

40 mg of (2S,4S)-1-(p-nitrobenzyloxycarbonyl)2-dimethylcarbamoyl-4-acetylthiopyrrolidine was dissolved

20

5

10

in 4 ml of methanol, and 0.1 ml of a 1N sodium hydroxide aqueous solution was added thereto, followed by stirring at room temperature for 15 minutes.

0.11 ml of a 1N hydrochloric acid aqueous solution was then added thereto, followed by concentration under reduced pressure. The concentrate was diluted with ethyl acetate, washed with water, dried over sodium sulfate and distilled off to remove the solvent to obtain (2S,4S)-1-(p-nitrobenzyloxycarbonyl)-2-dimethyl-carbamoyl-4-mercaptopyrrolidine.

IR_{max} (cm⁻¹): 1705, 1650, 1515, 1400, 1340, 1165, 1105

NMR δ (CDCl₃): 1.90 (1H, d, J=8Hz), 2.97 (3H, s), 3.08 (3H, s), 5.19 (2H, s), 7.48 (2H, d, J=9Hz), 8.15 (2H, d, J=9Hz) ppm

In the same manner as described in Reference Example 1-5 but using the corresponding amines, the following thioacetate derivatives shown in Table 1 were obtained.

5

10

15

Table 1

IRvneat (cm-1): 1700, 1660(sh), 1520, 1405, 1345, 1115

Spectral Data

Reference Example No.

1-9

IRvneat (cm-1): 3300, 1695, 1655, 1525, 1415, 1348, 1265, 1105

CH₃

Z

1-10

\. \.

d, J=6Hz), J=9Hz), 8.2 s), 5.2 J=9Hz) NMR6 (CDCL3):

> CH2CH=CH2 Z

IRvneat (cm-1): 1700, 1652, 1518, 1400, 1342, 1110

Reference Example No.

1-12

CH2CONH2

Spectral Data

IRVmax (cm-1): 3320, 1680, 1520, 1430, 1405, 1345, 1120

2.32(3H, s), 5.17(2H, br, s), 7.43(2H, d, J=9Hz) 8.10(2H, d, J=9Hz)

m.p. 163-167°C

NMR6 (CDCL3):

IRVmax (cm⁻¹): 3400 (br), 1685, 1640(sh), 1517, 1403, 1342, 1212

1-13

2.33(3H, s), 2.97(3H, s), 5.20(2H, s), 7.49(2H, d, J=9Hz), 8.19(2H, d, J=9Hz) NMR6 (CDCL3):

IRVmeat (cm⁻¹): 1710, 1660, 1525, 1400, 1345, 1255, 1110

2.28(3H, s), 2.30(6H, s), 2.50(3H, s), 5.17 (2H, N) s), 7.42(2H, d, J=8.5Hz), 8.13(2H, d, J=8.5Hz) C) NMR6 (CDCA3):

1-14

Ã	CH ₂ Ph IRV ^{neat} (cm ⁻¹): 3320, 1700, 1650, 1520, 1405, 1345, 1220, 1110 CH ₃	NMR6 (CDC ℓ_3): 2.33(3H, S), 2.93(3H, S), br, S)	IRVmax (cm ⁻¹): 1710, 1650, 1525, 1425, 1345, 1245, 1025, 962	NMR6 (CDC ℓ_3): 1.58(6H, m), 2.32(3H, s), 5.22(2H, s)	\ o IRvneat (cm ⁻¹); 1710, 1655, 1520, 1430, 1400, 1345, 1115
	Z 5				(z

2.31(3H, s), 5.20(2H, s), 7.47(2H, d, J=9Hz), 8.18(2H, d, J=9Hz) NMR6 (CDC &3);

Spectral Data	IRV'neat (cm ⁻¹); 1700, 1650(sh), 1520, 1435, 1340, 1290, 1235, max	IRVneat (cm ⁻¹): 1710, 1650, 1520, 1350, 1110	NMR6 (CDCl ₃): 2.33(3H, s), 4.68(1H, t, J=8Hz), 5.19(2H, s), 8.18(2H, d, J=8Hz)	IRV Mujol (cm-1): 3320, 1700, 1660, 1170, 1110	OOPNB IRV _{max} (cm ⁻¹): 1705, 1690, 1520, 1345, 1160, 1110	NMR6 (CDCl ₃): 2.32(3H, s), 5.22(2H, s), 7.50(2H, d, J=8.5Hz) 8.19(2H, d, J=8.5Hz)
Ā	LN N L CH3	-N CH ₃	·.	-N CH ₂ N-	-N CH2CH2CH2COOPNB	•
Reference Example No.	1-18	1+19	٠.	1-20	1-21	

s), 5:21(2H, s), 7.48(2H, d, J=8.5Hz), d, J=8.5Hz),

Spectral Data	CHCL ₃ (cm ⁻¹): 3350, 1690, 1660, 1520, 1340, 1120	NMR6 (CDCl ₃): 2.36(3H, s), 3.21(2H, s), 5.23(2H, s), 6.93(1H br.s), 7.50(2H, d, J=9Hz), 8.25(2H, d, J=9Hz)	CHCl ₃ IRV _{max} (cm ⁻¹): 1700, 1650, 1520, 1340, 1110	NMR& (CDCL3): 2.33(3H, S), 7.43(2H, d, J=8Hz), 8.20(2H,	IRVmax (cm ⁻¹): 1695, 1655, 1525, 1427, 1342, 1250, 1110, 1065, 955	NMR6 (CDCL ₃); 2.32(3H, 8), 5.21(2H, 8), 7.48(2H, d. 7=8 5Hz)
≯	$\sim N < \frac{CH_2}{CH_3}$ CONHCH ₃		-N CH ₂ CON (CH ₃) ₂ CH ₃		(m)	
Reference Example No.	1-27		1-28		1-29	-

Spectral Data	CHCL ₃ (cm ⁻¹): 3400, 1700, 1520, 1440, 1345, 1115	NMR6 (CDCL ₃): 2.33(3H, s), 8.20(2H, d, J=9Hz) M.p. 150-151°C	$_{ m IRV_{max}}^{ m CHC}_3$ (cm $^{-1}$): 3300, 1700, 1525, 1345, 1120	NMR& (CDCL ₃): 2.33(3H, s), 5.25(2H, s), 7.47(2H, d, J ^m 9Hz), 8.58(1H, d, J ^m 3Hz), 9.50(1H, br.s)	IRvneat (cm ⁻¹): 1705, 1655, 1520, 1430, 1400, 1342, 1112	NMR6 (CDCL ₃): 2.33(3H, s), 5.20(2H, s), 7.47(2H, d, J=8.5Hz) 8.17(2H, d, J=8.5Hz)	CHCL ₃ (cm ⁻¹): 1705, 1660, 1525, 1345, 1120	NMR6 (CDCL ₃): 2.35(3H, B), 5.23(2H, B), 7.55(2H, G, J=9Hz).
. **	N HN-		-NH	 Z				
Reference Example No.	1-30		1-31	. •	1-32		1-33	

(cm⁻¹): 3430, 1700, 1640, 1345, 1245, 1120 m.p. 173-175°C

Reference Example No.

 \succ

1-34

IRVneat (cm-1): 1705, 1640, 1516, 1430, 1400, 1342, 1110

Spectral Data

NMR6 (CDCL3):

dd, J=6 and 8Hz), 4.53(1H,), 7.48(2H, d, J=9Hz),

1-35

IRVNujol

1 - 36

HO

IRVCHC²3 (cm⁻¹): 3400, 1700, 1650, 1525, 1345, 1120

2.33(3H, S), 5.17(2H, S), 7.47(2H, d, J=9Hz), 8.18(2H, d, J=9Hz) NMR6 (CDC23):

IRvneat (cm-1): 1700, 1640, 1520, 1400, 1335, 1100

s), 5.22(2H, s), 7.50(2H, d, J*9Hz), d, J*9Hz) 2.33(3H, 8.20(2H, NMR6 (CDC23):

ence e No.	Spectral Data
-NH-	IRV ^{ne} at (cm ⁻¹): 1695, 1595, 1520, 1340, 1180, 1110
	NMR6 (CDCL ₃): 2.34(3H, s), 5.31(2H, s), 7.42(2H, d, J=6E 8.48(2H, d, J=6Hz)
Z	IR _v neat (cm ⁻¹): 1695, 1600, 1520, 1340, 1110
	NMR6 (CDCL.): 2.34(4H, g), 2.39(3H, g), 5.18(2H, g), 7.4

Reference Example

3.10 g of trans-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-proline and 1.10 g of triethylamine were dissolved in 40 ml of dried tetrahydrofuran, and a solution of 1.20 g of ethyl chloroformate in 10 ml of dried tetrahydrofuran was added dropwise thereto at -25°C to -35°C. After stirring at the same temperature for 50 minutes, 10 ml of concentrated aqueous ammonia was added dropwise to the mixture at -25° to -40°C. The 10 temperature was then gradually elevated to room temperature, and the reaction mixture was stirred for 1 hour, followed by concentration under reduced pressure. the residue were added 20 ml of water and 50 ml of diethyl ether. After ice-cooling, the thus formed 15 white crystals were separated by filtration, washed successively with cool water and cool diethyl ether, and dried under reduced pressure to yield trans-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-prolineamide.

Melting Point : 163.3-164.0°C 20 IRNujol (cm⁻¹): 3460, 3370, 3200, 1687, 1640,1621,

1539, 1341, 1180, 1078 Reference Example 2-2

A solution of 1.89 g of methanesulfonyl chloride in 10 ml of dried tetrahydrofuran was added dropwise to a suspension of 2.32 g of trans-1-(p-nitro-benzyloxycarbonyl)-4-hydroxy-L-prolineamide and 1.67 g of triethylamine in 40 ml of dried tetrahydrofuran at room temperature. After stirring for 1 hour, the reaction mixture was concentrated under reduced pressure, and to the residue were added 30 ml of water and 30 ml of diethyl ether. After cooling, the resulting white crystals were separated by filtration, washed successively with cool water and cool diethyl ether and dried under reduced pressure to obtain trans-1-(p-nitrobenzyloxycarbonyl)-4-methanesulfonyloxy-L-prolineamide.

Melting Point: 149.5-151°C

IR Mujol (cm⁻¹): 3400, 3225, 1715, 1675, 1520, 1340, 1170, 1135

Reference Example: 2-3

20

5

10

A solution of 642 mg of thioacetic acid in 14 ml of dried dimethylformamide was added to a suspension of 374 mg of 50% sodium hydride in 13 ml of dried dimethylformamide in a nitrogen stream, followed by stirring at room temperature for 25 minutes. To the mixture were added 975 mg of sodium iodide and then a solution of 2.52 g of trans-1-(p-nitrobenzyloxycarbonyl)-4-methanesulfonyloxy-L-prolineamide in 12 ml of dried dimethylformamide, and the resulting mixture was heated at 70°C for 6 hours while stirring. reaction mixture was poured into a cool aqueous solution of sodium chloride and extracted with benzene. extract was washed successively with a 10% aqueous solution of sodium sulfite and a sodium chloride aqueous solution, dried over sodium sulfate and distilled off to remove the solvent. The resulting crude crystals were washed with a warm mixed solvent of tetrahydrofuran and benzene to obtain <u>cis-1-(p-nitrobenzyloxycarbonyl)-4-</u> acetylthio-L-prolineamide.

5

10

15

Melting Point: 168.5-169.5°C

 IR^{Nujol} (cm⁻¹): 3350, 3180, 1715, 1690, 1638,

1510, 1330, 1100

 $[\alpha]_{p}^{30}$ -23° (c=0.334, DMF)

Reference Example 2-4

950 mg of (2S,4S)-1-(p-nitrobenzyloxycarbonyl)2-carbamoyl-4-acetylthiopyrrolidine was dissolved in
95 ml of methanol, and 2.59 ml of a 1N aqueous solution
of sodium hydroxide was added thereto at room temperature
in an argon stream, followed by stirring at that temperature for 15 minutes. The reaction mixture was neutralized with 2.59 ml of a 1N aqueous solution of hydrochloric
acid and distilled off under reduced pressure to remove
the methanol. The thus precipitated crystals were
filtered and washed with water to obtain (2S,4S)-1-(pnitrobenzyloxycarbonyl)-2-carbamoyl-4-mercaptopyrrolidine.

Melting Point: 158-162°C

5

10

Reference Example 3-1

A solution of 0.35 ml of dimethyl sulfoxide in 1 ml of dried methylene chloride was added dropwise 5 to a solution of 0.2 ml of oxalyl chloride in 5 ml of dried methylene chloride at -60° to -70°C. Ten minutes · later, 10 ml of a dried methylene chloride solution of 860 mg of trans-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-proline p-methoxybenzyl ester was added dropwise to 10 the above mixture at a temperature of -50°C or less, followed by stirring for 15 minutes. 1.01 g of triethylamine was then added dropwise thereto, and the resulting mixture was warmed to room temperature. The mixture was diluted with methylene chloride, washed with dilute hydrochloric acid aqueous solution and dried over sodium 15 sulfate. The solvent was removed by distillation, and the residue was purified by silica gel column chromatography to yield 1-(p-nitrobenzyloxycarbonyl)-4-oxo-Lproline p-methoxybenzyl ester.

20 IR max (cm⁻¹): 1762, 1740, 1710, 1512, 1345, 1245, 1155

NMR δ (CDCl₃): 3.78 (3H, s), 3.95 (2H, s), 5.08 (2H, s), 6.85 (2H, d, J=9Hz), 8.12 (2H, d, J=9Hz) ppm

Reference Example 3-2

oxo-L-proline <u>p</u>-methoxybenzyl ester was dissolved in

45 ml of ethanol, and 86 mg of sodium borohydride was
added thereto in two divided portions at room temperature.

After 30 minutes, the reaction mixture was concentrated
under reduced pressure at 30°C or below, and the concentrate
was diluted with ethyl acetate, washed with water, dried
over sodium sulfate and distilled off to remove the
solvent. The residue was purified by silica gel column
chromatography to obtain <u>cis-1-(p-nitrobenzyloxycarbonyl)-</u>
4-hydroxy-L-proline <u>p-methoxybenzyl</u> ester (450 mg) and
trans-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-proline
p-methoxybenzyl ester (190 mg).

Trans-compound: The IR and NMR data were consistent

with those obtained for the compound

of Reference Example 1-2.

Cis-compound: IR_{max} (cm⁻¹): 3400 (br.), 1725, 1515, 1405, 1350, 1250, 1170, 1120 NMR δ (CDCl₃): 3.78 (3H, s), 5.08 (2H, s), 6.82 (2H, d, J=9Hz), 8.12 (2H, d, J=9Hz) ppm

Reference Example 3-3

In the same manner as described in Reference Examples 1-3 and 1-4 but using 610 mg of cis-1-(p-nitrobenzyloxycarbonyl)-4-hydroxy-L-proline p-methoxy-benzyl ester, trans-1-(p-nitrobenzyloxycarbonyl)-4-acetylthio-L-proline was obtained.

Reference Example 3-4

ACS
$$_{N}$$
 COOME $_{2}$ CONME $_{2}$ CONME $_{2}$ PNZ

15 a) In the same manner as described in Reference Example 1-5 but using 180 mg of trans-1-(p-nitrobenzyl-oxycarbonyl)-4-acetylthio-L-proline, 100 mg of (2S,4R)-1-

-BNSDOCID: <EP____0126587A1_I_>

5

(p-nitrobenzyloxycarbonyl)-2-dimethylcarbamoyl-4-acetylthiopyrrolidine was obtained.

 $IR_{\text{max}}^{\text{neat}}$ (cm⁻¹): 1700, 1655, 1515, 1400, 1340, 1115 [α] $_{\text{D}}^{30}$ +32.8° (c=0.375, acetone)

5 b) In the same manner as described in Reference

Example 1-8 but using 80 mg of the thioacetate derivative

prepared as in a) above, (2S,4R)-l-(p-nitrobenzyloxycarbonyl)
2-dimethylcarbamoyl-4-mercaptopyrrolidine was obtained.

IR^{neat} (cm⁻¹): 1700, 1650, 1510, 1420, 1400, 1340, 1120

NMR δ (CDCl₃): 1.77 (1H, d, J=7Hz), 2.97 (3H, s), 3.16 (3H, s), 5.22 (2H, s), 8.16 (2H, d, J=8.5Hz) ppm

In the same manner as described in Reference

Example 3-4 but using the corresponding amines, the
following thioacetates and mercaptans as shown in

Table 2 were obtained.

Table 2

PNZ Spectral Data

3300(br), 1700(sh), 1685, 1512, 1430, 1400, 1345, 1175, 1115 IRuneat (cm-1):

 $[\alpha]_D^{30} + 7.36^{\circ}$ (c=0.625, acetone)

-NH2

Ac

3-5

Ø

Reference Example No. IRyneat (cm-1): 1700, 1685, 1515, 1435, 1400, 1342, 1118

-NH₂

I

d, Jm7Hz), 5.22(2H, s), 8.11(2H, d, 2.26(1H, J=8.5Hz) NMR6 (CDCL3):

IRVKBr (cm⁻¹): 1705, 1645, 1517, 1435, 1400, 1340, 1115

AC

3-6

.NMR6 (CDCL3): 2.33(3H, 8), 5.22(2H, 8), 8.16(2H, d, J=9Hz)

IRvneat (cm⁻¹): 1705, 1640, 1515, 1430, 1110

I

Reference Example 4-1

hydroxy-D-proline p-methoxybenzyl ester, which was obtained from cis-4-hydroxy-D-proline in the same manner as in Reference Examples 1-1 and 1-2, and 202 mg of triphenylphosphine were dissolved in 1.5 ml of dried tetrahydrofuran, and 27 mg of formic acid was added to the solution. 134 mg of diethyl azodicarboxylate further added thereto at room temperature in a nitrogen stream. After stirring for 30 minutes, the solvent was removed by distillation. The residue was purified by silica gel chromatography to obtain trans-1-p-nitro-benzyloxycarbonyl-4-formyloxy-D-proline p-methoxybenzyl ester.

IR_{max} (cm⁻¹): 1720, 1515, 1402, 1342, 1245, 1165, 1120

5

10

NMR δ (CDCl₃): 3.76 (3H, s), 4.50 (2H, t, J=8Hz), 5.08 (2H, s), 5.15 (2H, ABq., J=16Hz), 5.41 (1H, m), 7.97 (1H, s) ppm

Reference Example 4-2

215 mg of trans-1-p-nitrobenzyloxycarbonyl-4-formyloxy-D-proline p-methoxybenzyl ester was dissolved in 1.1 ml of tetrahydrofuran, and 0.93 ml of a 1N aqueous solution of sodium hydroxide was added to the resulting solution. After stirring for 10 minutes, the reaction mixture was diluted with ethyl acetate, washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate and distilled off to remove the solvent. The resulting residue was purified by silica gel thin layer chromatography to obtain trans-1-p-nitrobenzyloxycarbonyl-4-hydroxy-D-proline p-methoxy-benzyl ester.

IR max (cm⁻¹): 3425 (br.), 1735, 1705, 1510, 1400, 1340, 1240, 1162

NMR δ (CDC1₃): 2.33 (2H, m), 3.58 (2H, d, J=3.5Hz),

BNSDOCID: <EP____0126587A1_I_>

5

10

15

3.73 (3H, s), 5.03 (2H, s), 5.07 (2H, ABq., J=18Hz), 6.73 (2H, d, J=9Hz), 6.77 (2H, d, J=9Hz), 8.00 (2H, d, J=8.5Hz), 8.07 (2H, d, J=8.5Hz)ppm

5

Reference Example 4-3

a) In the same manner as described in Reference

Examples 1-3, 1-4 and 1-5 but using 110 mg of trans-1-p
nitrobenzyloxycarbonyl-4-hydroxy-D-proline p-methoxy
benzyl ester, (2R,4R)-1-p-nitrobenzyloxycarbonyl-2
dimethylcarbamoyl-4-acetylthiopyrrolidine was obtained.

IR_{max} (cm⁻¹): 1705, 1650, 1515, 1435, 1340, 1115
[α] 30 -7.38° (c=0.210, acetone)

15 b) In the same manner as described in Reference

Example 1-8 but using 42 mg of the thioacetate derivatve
as obtained in a) above, (2R,4R)-1-p-nitrobenzyloxycarbonyl-2-dimethylcarbamoyl-4-mercaptopyrrolidine was obtained.

IR_{max} (cm⁻¹): 1710, 1660, 1525, 1440, 1347, 1180,

20 .

Reference Example 4-4

a) In the same manner as described in Reference Examples 1-3, 1-4 and 2-1 but using 110 mg of trans-1-p-nitrobenzyloxycarbonyl-4-hydroxy-D-proline p-methoxy-benzyl ester, 40 mg of (2R,4R)-1-p-nitrobenzyloxycarbonyl-2-carbamoyl-4-acetylthiopyrrolidine was obtained.

$$IR_{max}^{neat}$$
 (cm⁻¹): 1685, 1515, 1400, 1340, 1110 [α] α +39.6° (c=0.293, DMF)

10 b) In the same manner as described in Reference Example 1-8 but using 40 mg of the thioacetate derivative as obtained in a) above, (2R,4R)-1-p-nitrobenzyloxy-carbonyl-2-carbamoyl-4-mercaptopyrrolidine was obtained.

 $IR_{\text{max}}^{\text{Nujol}}$ (cm⁻¹): 3200, 1710, 1655, 1512, 1340, 1115

Reference Example 5-1

HO
$$\sim$$
 COOME \sim N \sim COOME \sim N \sim CONME \sim N \sim N \sim N \sim CONME \sim N \sim N

a) In the same manner as described in Reference

15

Examples 1-1, 1-2, 1-3, 1-4 and 1-5 but using 300 mg of cis-4-hydroxy-D-proline, 45 mg of (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-dimethylcarbamoyl-4-acetyl-thiopyrrolidine was obtained.

 $IR_{\text{max}}^{\text{neat}}$ (cm⁻¹): 1700, 1650, 1520, 1400, 1345, 1120 [a] $\frac{30}{D}$ -29.6° (c=0.215, acetone)

Example 1-8 but using 30 mg of the thioacetate derivative as obtained in a) above, (2R,4S)-1-(p-nitrobenzyloxycarbonyl)-2-dimethylcarbamoyl-4-mercaptopyrrolidine was obtained.

IR_{max} (cm⁻¹): 1710, 1655, 1520, 1430, 1405, 1347, 1122

In the same manner as described in Reference

Example 5-1 but using the corresponding amines, the
following thioacetate derivatives and mercaptan
derivatives as shown in Table 3 were obtained.

5

Spectral Data	IRVneat (cm ⁻¹): 1700, 1655, 1620, 1605, 1520, 1340, 1115	NMR& (CDCL ₃): 2.33(3H, s), 5.22(2H, s), 7.49(2H, d, J=8.5Hz), 8.21(2H, d, J=8.5Hz)	[α] ²³ -21° (c≖0.25, acetone)	CHC&3 (cm ⁻¹): 1705, 1660, 1525, 1340, 1120
×				
В		Ac		æ
Example No.		بر 4-	·	

Reference Example 6-1

In the same manner as described in Reference Example 1-2 but using 500 mg of trans-1-p-nitrobenzyl-oxycarbonyl-4-hydroxy-L-proline and 383 mg of p-nitrobenzyl bromide, trans-1-p-nitrobenzyloxycarbonyl-4-hydroxy-L-proline p-nitrobenzyl ester was obtained.

IR^{CHCl}_{max} (cm⁻¹): 3380 (br.), 1750, 1705, 1520, 1425, 1400, 1342, 1160

NMR & (CDCl₃): 2.20 (3H, m), 3.67 (2H, d, J=3Hz), 4.60 (2H, t, J=8Hz), 5.15 (2H, s), 5.23 (2H, ABq.), 7.47 (4H, d, J= 8.5Hz), 8.15 (4H, d, J=8.5Hz) ppm

Reference Example 6-2

In the same manner as described in Reference

Examples 1-3 and 1-8 but using trans-1-p-nitrobenzyloxycarbonyl-

5

4-hydroxy-L-proline p-nitrobenzyl ester, cis-1-p-nitrobenzyloxycarbonyl-4-mercapto-L-proline p-nitrobenzyl ester was obtained.

IR^{neat} (cm⁻¹): 1700, 1685, 1600, 1510, 1430, 1400, 1340, 1105

Reference Example 6-3

a) 115 mg of cis-1-p-nitrobenzyloxycarbonyl-4mercapto-L-proline p-nitrobenzyl ester was dissolved in
3 ml of dried tetrahydrofuran, and 30 mg of triethylamine
was added thereto. Then, 28.5 mg of ethyl chloroformate
was added dropwise thereto under ice-cooling, followed by
stirring for 10 minutes. The reaction mixture was diluted with ethyl acetate, washed successively with dilute
hydrochloric acid and water, and dried over sodium sulfate.
The solvent was removed by distillation to give 133 mg of
cis-1-p-nitrobenzyloxycarbonyl-4-ethoxycarbonylthioL-proline p-nitrobenzyl ester.

BNSDOCID: <EP____0126587A1_I_>

10

15

IR_{max} (cm⁻¹): 1755, 1710, 1610, 1525, 1405, 1350, 1160, 1015, 850

was dissolved in 5 ml of a mixture of tetrahydrofuran and water (1:1 by volume), and 0.26 ml of a 1N aqueous solution of sodium hydroxide was added thereto. After stirring at room temperature for 2.5 hours, 0.3 ml of a 1N hydrochloric acid aqueous solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed with water, dried over sodium sulfate and distilled off to remove the solvent. The residue was subjected to silica gel thin layer chromatography to obtain cis-1-p-nitrobenzyloxy-carbonyl-4-ethoxycarbonylthio-L-proline.

IR $_{max}^{neat}$ (cm $^{-1}$): 1700, 1520, 1400, 1340, 1165, 1145 NMR δ (CDCl $_3$): 1.30 (3H, t, J=7Hz), 4.28 (2H, q, J=7Hz), 5.24 (2H, s), 7.50 (2H, d, J=9Hz), 8.17 (2H, d, J=9Hz) ppm

Reference Example 6-4

5

10

a) 72 mg of cis-1-p-nitrobenzyloxycarbonyl-4-ethoxycarbonylthio-L-proline was dissolved in 3 ml of dried tetrahydrofuran, and 40 mg of triethylamine was added thereto. Under ice-cooling, 41 mg of ethyl chloroformate was added dropwise thereto, followed by stirring for 15 minutes. 1.5 ml of a 40% aqueous solution of methylamine was added dropwise to the mixture, followed by stirring for 15 minutes. The reaction mixture was diluted with ethyl acetate, washed successively with dilute hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent, thereby to obtain (2S,4S)-1-p-nitrobenzyl-oxycarbonyl-2-methylcarbamoyl-4-ethoxycarbonylthio-pyrrolidine.

IR_{max}^{Nujol} (cm⁻¹): 3290, 1705, 1660, 1520, 1425, 1405, 1345, 1180, 1160

NMR δ (CDCl₃): 1.30 (3H, t, J=8Hz), 2.80 (3H, d, J=5Hz), 4.27 (2H, q, J=8Hz), 5.22 (2H, s), 7.48 (2H, d, J=9Hz), 8.18 (2H, d, J=9Hz) ppm

b) 82 mg of the methylcarbamoyl derivative as

5

10

15

prepared in a) above was dissolved in 4 ml of a mixture of methanol and water (1:1 by volume), and 0.25 ml of a 1N aqueous solution of sodium hydroxide was added thereto. After stirring at room temperature for 30 minutes, 0.27 ml of a 1N hydrochloric acid aqueous solution was added thereto. The resulting mixture was extracted with ethyl acetate, and the extract was washed with water, dried over sodium sulfate and distilled off to remove the solvent, thereby to obtain (2S,4S)-1-p-nitrobenzyloxycarbonyl-2-methylcarbamoyl-4-mercaptopyrrolidine.

IR_{max}^{Nujol} (cm⁻¹): 3280, 1710, 1650, 1510, 1340, 1165

NMR δ (CDCl₃): 2.79 (3H, d, J=5Hz), 4.27 (2H, t, J=8Hz), 5.23 (2H, s), 7.50 (2H, d, J=9Hz), 8.20 (2H, d, J=9Hz) ppm

In the same manner as described in Reference Example 6-4(a) but using the corresponding amines, the following thiocarbonates as shown in Table 4 were obtained.

5

10

Etocs Table 4

Spectral Data

Reference Example No. IRvneat (cm⁻¹): 3350, 1705, 1520, 1405, 1345, 1170, 1150 NMR6 (CDC23): CH₂CH₂OH 9-2

1.27(3H, t, J=7Hz), 4.23(2H, q, J=7Hz), 5.18(2H, s), 7.44(2H, d, J=9Hz), 8.13(2H, d, J=9Hz) IRvneat (cm-1): 1710, 1520, 1400, 1345, 1170, 1148

 $-N \left(\frac{\text{CH}_2 \text{CH}_2 \text{N}}{\text{CH}_3} \right)$

1.28(3H, t, J=7Hz), 2.19(6H, s), 4.24(2H, q, J=7Hz), 5.20(2H, s), 7.47(2H, d, J=9Hz), 8.13(2H, d, J=9Hz) NMR6 (CDC23):

9-9

The following mercaptans as shown in Table 5 were obtained in the same manner as described in Reference Example 1-8 or 6-4(b).

Spectral Data

7-3

7-4

Spectral	(cm ⁻¹): 3270, 1710,): 5.20(2H, 8), Jm8.5Hz)	(cm ⁻¹): 3400, 1690,	(cm ⁻¹): 1705, 1650,	(cm ⁻¹): 1710, 1645,	(cm ⁻¹): 1710. 1655, 1520,	(cm ⁻¹): 1710, 1650, 1520, 1405,
	IRV Max (CI	NMR 6 (CDC L3):	IRyneat (cm'	IRV ^{neat} (cm	IRVmax (cm	IRVmax (cm	IRV meat (cm
, x	-N CH2CH2OH		-N CH2CH2OH	-N CH2PH		Ç	$-N < {^{CH}_3} $
Reference Example No.	. 2-2		9 1	Ŀ	8 0	6	7-10

۲.

Spectral Data	IRV ^{Nu} jol (cm ⁻¹): 3300, 1725, 1660, 1520, 1345, 1110 max	IRyneat (cm ⁻¹); 3280, 1730(sh), 1710, 1645, 1510, 1340	IRUNUJO1 (cm ⁻¹): 3320, 1725, 1640, 1520, 1405, 1345	NMR & (CDC ² 3): 1.87(1H, d, J=7Hz), 2.96(3H, s), 2.98(3H, s), 4.33(1H, t, J=7.5Hz), 5.24(2H, s), 7.48(2H, d, J=9Hz)	IRW ^N ujol (cm ⁻¹): 3300, 1700, 1680, 1655, 1520, 1345	IRUNujol (cm ⁻¹): 3310, 1722, 1650, 1525, 1350
, Y	$-N < CH_2 / N = $	-N CH 2CH 2 CH 2 COOPNB	-NCCONHCH3	$-N < {^{CH}_2}^{CON(CH_3)_2}$	CHCONH ₂ T// 3 CHCONH ₂ T// 3	CHCONHCH ₃
Reference Example No.	7-11	7-12	7–13	7-14	7-15	7-16

7-19

7-18

7-17

7-20

7-21

١.

7-22

		1110		- 87	Z	01	2658
Spectral Data	IRyNujol (cm ⁻¹): 3250, 1710, 1670, 1525, 1345, 1175	IRvneat (cm ⁻¹): 1710, 1650, 1518, 1435, 1400, 1345, 1170,	CHCk ₃ (cm ⁻¹): 1710, 1660, 1520, 1345, 1170, 1110	CHCl ₃ (cm ⁻¹): 1720, 1525, 1470, 1340, 1170, 1110	CHCL3 (cm ⁻¹): 3470(br), 1700, 1640, 1520, 1340, 1120	CHCL ₃ (cm ⁻¹): 3420(br), 1700, 1645, 1520, 1340, 1165	CHCl ₃ (cm ⁻¹): 1710, 1640, 1525, 1345, 1170, 1015
Y	-NH-N-NH-N-NH-N-NH-N-NH-NH-NH-NH-NH-NH-N	$\Diamond_{\mathbf{r}}$				E N	
Reference Example No.	7-23	7-24	7–25	7-26	7-27	7-28	7-29

1			- 38-	1205,	é 012	26587
	2H, d,	·		2345,	1200,	
	7.52(2H,	1160	1110		1342,	1350
	H, s),	1340,	1350,	1430, 1400,	1402,	1520,
1 Data	5.25(2H, s), Jæ9Hz)	1400,	1522,	1520,	1430,	1720, 1615,
Spectral Data	Ġ,	1520,	1610,	1605,	1522,	
S	a, 2	1600, 1520,	1695,	1710,	1710,	3050,
	1.95(1H, J=9Hz),	1705,	3420,	1745, 1167,	1740,	3180,
		(cm ⁻¹):	(cm ⁻¹):	(cm ^{-,1}):	(cm ⁻¹):	(cm ⁻¹): 3180,
	NMR & (CDCL3):	IRv ^{neat} (c	CHC23 IRv ^{f 3} (IRv ^{neat} (o	IRv ^{neat} (c	IRV ^{Nujol}
٨.		N(CH ₂) ₂	. NH ₂		ιΩ	8
	E E	N-	N N	-och3	-0C ₂ H ₅	-NHNH ₂
Reference Example No.	7-30	7-31	7.–32	7-33	7-34	7–35
EX			_ ~			•

Reference Example 8-1

a) In the same manner as described in Reference Example 1-1 but using 10 g of trans-4-hydroxy-L-proline and 23.2 g of S-p-methoxybenzyloxycarbonyl-4,6-dimethyl-2-mercaptopyrimidine, trans-1-(p-methoxybenzyloxycarbonyl)-4-hydroxy-L-proline was obtained.

IR^{neat} (cm⁻¹): 3400 (br.), 1692, 1430, 1355, 1245, 1170, 1122

10 NMR δ (CDCl₃): 2.23 (2H, m), 3.73 (3H, s), 5.00 (2H, s), 6.78 (2H, d, J=9Hz), 7.20 (2H, d, J=9Hz) ppm

Example 2-1 but using 0.57 g of the proline derivative
as prepared in a) above and 0.215 g of benzylamine,
trans-1-p-methoxybenzyloxycarbonyl-4-hydroxy-L-benzylprolineamide was obtained.

NMR δ (CDCl₃): 3.76 (3H, s), 4.35 (4H, m), 4.96 (2H, s), 6.79 (2H, d, J= 9Hz), 7.20 (5H, s) ppm

c) In the same manner as described in Reference Example 1-3 but using 0.5 g of the benzylprolineamide as prepared in b) above, (2S,4S)-1-p-methoxybenzyloxy-carbonyl-2-benzylcarbamoyl-4-acetylthiopyrrolidine was obtained.

 IR_{max}^{Nujol} (cm⁻¹): 3280, 1690, 1675, 1240 NMR δ (CDCl₃): 2.27 (3H, s), 3.82 (3H, s), 4.42 (2H, d, J=6Hz), 5.05 (2H, s), 6.87 (2H, d, J=8Hz), 7.23 (2H, d, J=8Hz), 7.28 (5H, s) ppm

Reference Example 8-2

BNSDOCID: <EP

0126587A1 l >

5

10

177 mg of (2S,4S)-1-p-methoxybenzyloxy-carbonyl-2-benzylcarbamoyl-4-acetylthicpyrrolidine and 86 mg of anisole were dissolved in 0.5 ml of trifluoroacetic acid, followed by stirring at room temperature for 30 minutes. The reaction mixture was concentrated under reduced pressure, diluted with ethyl acetate, washed successively with an aqueous solution of sodium bicarbonate and water and dried over sodium sulfate. The solvent was removed by distillation, and the residue was subjected to silica gel thin layer chromatography to obtain (2S,4S)-2-benzylcarbamoyl-4-acetylthiopyrrolidine.

IR max (cm⁻¹): 3325, 1690, 1510, 1400, 1350, 1120, 950

15 ΝΜR δ (CDCl₃): 2.28 (3H, s), 3.83 (2H, m),
4.42 (2H, d, J=6Hz), 7.32 (5H, s) ppm

Reference Example 9-1

7 g of 1-(di-p-anisylmethyl)-3-ethenyl-420 carboxy-2-azetidinone was dissolved in 50 ml of dried methylene chloride, and 0.8 ml of dimethylformamide

5

" * %!..."

was added to the resulting solution. 2 ml of oxalyl chloride was added dropwise thereto under ice-cooling, followed by stirring at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and to the concentrate was added 50 ml of dried methylene chloride, followed by concentration again under reduced pressure. The resulting residue was dried in vacuo and then dissolved in 100 ml of dried diethyl ether. The resulting solution was added dropwise under ice-cooling to 120 ml of a 0.17M solution of diazomethane in diethyl ether to which 4 ml of triethylamine had been added, followed by stirring at the same temperature for 1.5 hours. The reaction mixture was diluted with ethyl acetate, washed successively with a 1N aqueous solution of hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent. The resulting oily residue was purified by silica gel chromatography to obtain 1-(dip-anisylmethyl)-3-ethenyl-4-diazoacetyl-2-azetidinone.

IR neat (cm⁻¹): 2110, 1755, 1640, 1612, 1505, 1240, 1177, 1030, 828

NMR & (CDCl₃): 3.78 (6H, s), 5.00 (1H, s), 5.80 (1H, s), 6.84 (4H, d, J=8.5Hz) ppm

Reference Example 9-2

5

10

15

0.7 g of 1-(di-p-anisylmethyl)-3-ethenyl-4-diazoacetyl-2-azetidinone was dissolved in 300 ml of methylene chloride, and 1 ml of water was added thereto. The mixture was irradiated with light for 1 hour using a high pressure mercury lamp while removing oxygen from the system under ice-cooling. Then, the mixture was extracted with a 1N aqueous solution of sodium hydroxide. The aqueous layer was rendered acidic with hydrochloric acid and extracted with ethyl acetate. The extract was washed with water, dried over sodium sulfate and distilled off to remove the solvent thereby obtaining 1-(di-p-anisylmethyl)-3-ethenyl-4-carboxymethyl-2-azetidinone.

IR^{neat} (cm⁻¹): ~3000, 1700, 1612, 1510, 1300, 1180, 1030, 820

NMR & (CDCl₃): 2.35 (2H, d, J=6Hz), 3.73 (6H, s),
5.80 (1H, s), 6.78 (4H, d, J=9.0Hz),
7.08 (4H, d, J=9.0Hz) ppm

Reference Example 9-3

20

15

5

2.3 g of 1-(di-p-anisylmethyl)-3-ethenyl-4-carboxymethyl-2-azetidinone was dissolved in 50 ml of dried dimethylformamide, and 1.5 ml of triethylamine was added thereto. 1.3 g of p-methoxybenzyl chloride was then added dropwise to the mixture, followed by stirring at 70°C for 3 hours. The reaction mixture was diluted with ethyl acetate and diethyl ether, washed successively with dilute hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent thereby obtaining 1-(di-p-anisylmethyl)-3-ethenyl-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone.

IR $_{max}^{neat}$ (cm $^{-1}$): 1750, 1612, 1510, 1250, 1175, 1033

NMR δ (CDCl $_3$): 2.36 (2H, d, J=6.5Hz), 3.72 (6H, s), 3.75 (3H, s), 4.83 (2H, s), 5.78 (1H, s) ppm

Reference Example 9-4

BNSDOCID: <EP

0126587A1 I >

5

10

2.85 g of 1-(di-p-anisylmethyl)-3-ethenyl-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone was dissolved in 14 ml of tetrahydrofuran, and 7 ml of water and 2.0 g of mercury (II) acetate were added 5 thereto, followed by stirring at 35°C for 5 hours. 12 ml of a 1N aqueous solution of sodium hydroxide was added thereto at 0°C, and to the resulting mixture was then added dropwise a solution of 0.25 g of sodium borohydride in 1 ml of a 1N aqueous solution of sodium hydroxide. After stirring at the same temperature for 10 15 minutes, the reaction mixture was neutralized with a 2N hydrochloric acid aqueous solution. Diethyl ether was added thereto, followed by filtration using Celite. The filtrate was extracted with diethyl ether, and the 15 extract was washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate and distilled off to remove the solvent, thereby to obtain 2.6 g of 1-(di-p-anisylmethyl)-3-(1-hydroxyethyl)-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone.

20 IR max (cm⁻¹): 3430, 1730, 1615, 1510, 1247, 1178, 1030, 820

NMR δ (CDCl₃): 1.23 (3H, d, J=6.5Hz), 2.42 (2H, d, J=7Hz), 3.77 (9H, s), 4.95 (2H, s), 5.78 (1H, s) ppm

Reference Example 9-5

2.6 g of 1-(di-p-anisylmethyl)-3-(1-hydroxyethyl)-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone was dissolved in 15 ml of dried methylene chloride, and 1.22 g of 4-dimethylaminopyridine was added thereto. Under ice-cooling, a solution of 1.3 g of p-nitrobenzyl chloroformate in 7 ml of dried methylene chloride was added dropwise to the mixture, followed by stirring at room temperature for 1 hour. To the reaction mixture were added methylene chloride and water, and the methylene chloride layer was washed successively with a 1N hydrochloric acid aqueous solution, water, a 5% aqueous solution of sodium bicarbonate and water, and dried over sodium sulfate. The solvent was removed by distillation, and the residue was purified by silica gel chromatography to obtain 2.2 g of 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone.

20 IR max (cm⁻¹): 1755, 1610, 1510, 1350, 1245, 1175, 1030

5

10

NMR δ (CDCl₃): 1.35 (3H, d, J=6.5Hz), 2.40
(2H, d, J=6.5Hz), 3.09 (1H, dd,
J=2.5 and 6Hz), 3.73 (6H, s),
3.77 (3H, s), 4.91 (2H, s), 5.18
(2H, s), 5.71 (1H, s) ppm

Reference Example 9-6

2.2 g of 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-p-methoxybenzyloxycarbonylmethyl-2-azetidinone was dissolved in 20 ml of dried methylene chloride, and 0.88 g of m-dimethoxybenzene and 2.5 ml of trifluoroacetic acid were added to the solution, followed by stirring at room temperature for 4 hours. The solvent was removed by distillation, and the resulting oily residue was subjected to silica gel chromatography to obtain 1.75 g of 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-carboxymethyl-2-azetidinone.

 IR_{max}^{neat} (cm⁻¹): ~3000, 1745, 1615, 1510, 1250, 1180, 1035

NMR δ (CDCl₃): 1.35 (3H, d, J=6.5Hz), 2.35 (2H,

BNSDOCID: <EP____0126587A1_I_>

5

10

15

d, J=6.5Hz), 3.10 (1H, m), 3.73 (6H, s), 5.16 (2H, s), 5.75 (1H, s), 6.73 (4H, d, J=9Hz), 7.46 (2H, d, J=9Hz), 8.10 (2H, d, J=9Hz) ppm

Reference Example 9-7

0.8 g of 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-carboxymethyl-2-azetidinone was dissolved in 20 ml of dried methylene chloride, and 0.17 ml of N-methylmorpholine was added thereto. After cooling to -10°C or less, 0.15 ml of ethyl chloroformate was added dropwise thereto, followed by stirring for 30 minutes. Separately, 0.81 g of t-butyl-(p-nitrobenzyl) malonate was dissolved in 15 ml of dried tetrahydrofuran, and 0.14 g of sodium hydride (50% purity) was added to the resulting solution in a nitrogen stream under ice-cooling, followed by stirring at that temperature for 30 minutes. The resulting solution was added dropwise to the above prepared solution of a mixed anhydride at a temperature of -10°C

5

10

15

or less, followed by stirring for 1 hour. The reaction mixture was warmed to room temperature and concentrated under reduced pressure. The concentrate was diluted with cool water and ethyl acetate, washed successively with a 1N aqueous solution of hydrochloric acid and water, dried over sodium sulfate and distilled off to remove the solvent. The resulting residue was purified by silica gel chromatography to obtain 1-(dipensisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-[3-t-butoxycarbonyl-3-(p-nitrobenzyloxycarbonyl)-2-oxopropyl]-2-azetidinone.

IR_{max} (cm⁻¹): 1750, 1610, 1510, 1345, 1250

NMR δ (CDCl₃): 1.38 (9H, s), 3.75 (6H, s), 5.17

(4H, s), 5.77 (1H, br. s), 6.77

(4H, d, J=8.5Hz), 7.45 (4H, d, J=9Hz), 8.15 (4H, d, J=9Hz) ppm

Reference Example 9-8

2.3 g of 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl) -4-[3-t-butoxycarbonyl-3-

5

10

(p-nitrobenzyloxycarbonyl)-2-oxopropyl]-2-azetidinone was dissolved in 120 ml of dried methylene chloride, and 10 ml of trifluoroacetic acid was added to the solution, followed by stirring at room temperature for 1 hour. The reaction mixture was washed with an aqueous solution of sodium bicarbonate and then with water, dried over sodium sulfate and distilled off to remove the solvent. The residue was purified by silica gel chromatography to obtain 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-[3-(p-nitrobenzyloxycarbonyl)-2-oxopropyl]-2-azetidinone.

neat
IR_{max} (cm⁻¹): 1748, 1720 (sh.), 1610, 1510,
1345, 1250

NMR δ (CDCl₃): 1.41 (3H, d, J=6.5Hz), 2.61 (2H, d, J=6.5Hz), 3.27 (2H, s), 3.76 (6H, s), 5.77 (1H, s), 6.82 (4H, d, J=9Hz), 7.47 (2H, d, J=9Hz), 7.53 (2H, d, J=9Hz), 8.20 (4H, d, J=9Hz) ppm

Reference Example 9-9

5

10

15

1.9 g of 1-(di-p-anisylmethyl)-3-(1-pnitrobenzyloxycarbonyloxyethyl)-4-[3-(p-nitrobenzyloxycarbonyl)-2-oxopropyl]-2-azetidinone and 660 mg of p-carboxybenzenesulfonyl azide were dissolved in 50 ml of dried acetonitrile, and 1.4 ml of triethylamine was added thereto dropwise in a nitrogen stream under icecooling. After stirring at that temperature for 15 minutes, the reaction mixture was diluted with ethyl acetate, and the thus formed precipitate was filtered. The filtrate was concentrated under reduced pressure, and the resulting oily residue was subjected to silica gel chromatography to obtain 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-[3-(p-nitrobenzyloxycarbonyl)-2-oxo-3-diazopropyl]-2-azetidinone. IR_{max}^{neat} (cm⁻¹): 2150, 1750, 1720 (sh.), 1650, 1510, 1250, 1350

NMR & (CDCl₃): 1.38 (3H, d, J=6.5Hz), 2.95 (2H, d, J=6.5Hz), 3.73 (6H, s), 5.17 (2H, s), 5.24 (2H, s), 5.74 (1H, s), 6.71 (2H, d, J=9Hz), 6.76 (2H, d, J=9Hz), 7.08 (2H, d, J=9Hz), 7.14 (2H, d, J=9Hz), 7.42 (4H, d, J=9Hz), 8.11 (2H, d, J=9Hz),

8.16 (2H, d, J=9Hz) ppm

BNSDOCID: <EP____0126587A1_I_>

5

10

15

Reference Example 9-10

1.27 g 1-(di-p-anisylmethyl)-3-(1-p-nitrobenzyloxycarbonyloxyethyl)-4-[3-(p-nitrobenzyloxycarbonyl)-2-oxo-3-diazopropyl]-2-azetidinone was dissolved in 50 ml of acetonitrile-water (9 : 1 by volume), and 2.7 g of ceric ammonium nitrate was added thereto all at once under ice-cooling. After vigorously stirring, the mixture was further stirred at room temperature for 30 minutes. Cool water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed with water and dried over sodium sulfate. The solvent was distilled off, and the resulting residue was purified by silicated chromatography to obtain 3-(1-p-nitrobenzyloxycarbonyl)-2-oxo-3-diazopropyl]-2-azetidinone.

IR neat (cm⁻¹): 2145, 1750, 1720, 1650, 1520, 1345, 1260

20 NMR δ (CDCl₃): 1.45 (3H, d, J=6.5Hz), 3.01 (1H,

0126587A1 | >

5

10

dd, J=9 and 18Hz), 3.29 (1H, dd, J=
4.5 and 18Hz), 4.00 (1H, m), 5.24
(2H, s), 5.36 (2H, s), 6.12 (1H, s),
7.55 (4H, d, J=8.5Hz), 8.21 (2H, d,
J=8.5Hz), 8.25 (2H, d, J=8.5Hz) ppm

COOPNB

Reference Example 9-11

a) 0.55 g of 3-(1-p-nitrobenzyloxycarbonyloxy
ethyl)-4-[3-(p-nitrobenzyloxycarbonyl)-2-oxo-3-diazopropyl]-2-azetidinone was dissolved in 25 ml of degassed dried benzene, and a catalytic amount of rhodium (II)

acetate was added thereto. After blowing nitrogen gas into the mixture for about 3 minutes, the mixture was

refluxed for 20 minutes, followed by cooling. The catalyst was separated by filtration and washed with benzene. The filtrate and the washing were combined

```
and concentrated under reduced pressure to yield p-nitrobenzyl-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3.2.0]heptan-3,7-dione-2-carboxylate.
```

IR neat (cm⁻¹): 1770, 1745, 1520, 1350, 1260

NMR δ (CDCl₃): 1.50 (3H, d, J=6.5Hz), 2.50 (1H, dd, J=8.0 and 18Hz), 2.89 (1H, dd, J=7.0 and 18Hz), 3.39 (1H, dd, J=2.0 and 8.0Hz), 4.14 (1H, dt, J=2.0 and 7.0Hz), 4.77 (1H, s), 5.26 (4H, s), 7.52 (4H, d, J=8.5Hz), 8.21 (4H, d, J=8.5Hz) ppm

above was dissolved in 25 ml of dried acetonitrile, and 195 mg of diisopropylethylamine was added thereto under ice-cooling. To the resulting mixture was added dropwise a solution of 300 mg of diphenyl chlorophosphate in 2 ml of dried acetonitrile, followed by stirring for 1 hour. The reaction mixture was diluted with ethyl acetate, washed with water, and dried over magnesium sulfate. The solvent was removed by distillation under reduced pressure to obtain p-nitrobenzyl-5,6-trans-3-(diphenylphosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxy-ethyl)-1-azabicyclo [3.2.0] hept-2-ene-7-one-2-carboxylate.

IR^{neat} (cm⁻¹): 1780, 1745, 1585, 1517, 1480, 1345, 1295, 1255, 1180, 1158, 965

5

10

15

20

NMR & (CDCl₃): 1.46 (3H, d, J=6.5Hz), 3.24 (2H, br. d, J=8.5Hz), 3.40 (1H, dd, J=3.0 and 8.5Hz), 5.24 (2H, s), 5.32 (2H, ABq, J=13Hz), 7.28 (10H, s), 7.53 (4H, d, J=8.5Hz), 8.14 (2H, d, J=8.5Hz), 8.23 (2H, d, J=8.5Hz) ppm

Further, by using (3R,4S)-1-(di-p-anisyl-methyl)-3-ethenyl-4-carboxy-2-azetidinone [optical rotation [a] $_{\rm D}^{22}$ = +63.3° (c=0.12, CHCl₃)], (5R,6S,8R)-p-nitrobenzyl-3-(diphenylphosphoryloxy)-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3.2.0]hept-2-ene-7-one-2-carboxylate was obtained.

Reference Example 10-1

5

To 1.33 g (20 mM) of activated zinc was added 20 ml of dried tetrahydrofuran, and 8.8 ml of a 15% n-hexane solution of diethylaluminium chloride was added thereto in a nitrogen stream under ice-cooling. A solution prepared by dissolving 1.49 g (5.2 mM) of (3R,4R)-4-acetoxy-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2-azetidinone (1) and 3.73 g (15.3 mM) of benzyl a-bromopropionate in 13.3 ml of dried tetrahydrofuran was added dropwise to the mixture over a 10 period of 30 to 40 minutes, followed by stirring for 1 hours. Under ice-cooling, 2.8 ml of pyridine, 13.2 ml of water, 26.5 ml of ethyl acetate and 13.2 ml of a 1N hydrochloric acid aqueous solution were successively added thereto, and the resulting mixture was filtered using Celite. The filtrate was washed with water, and 15 the organic layer was dried over sodium sulfate and distilled off to remove the solvent. The resulting oily residue was subjected to silica gel column chromatography to obtain an isomeric mixture of 4-(1-benzyloxycarbonyl)-20 ethyl-3-[(R)-1-(t-butyldimethylsilyloxy)ethyl]-2azetidinone.

The isomeric mixture was separated into each compound by Lober column chromatography using silica gel and 1.5% isopropanol/n-hexane as an eluent to obtain the compound (2a) and the compound (2b) as oily substances.

25

Isomer (2b)

5

15

IRmax (cm⁻¹): 1755, 1460, 1377, 1252, 1100, 835

NMR & (CDCl₃): 0.06 (6H, s), 0.87 (9H, s),

1.16 (3H, d, J=6.5Hz), 1.19

(3H, d, J=7.0Hz), 3.71 (1H,

dd, J=2 and 10Hz), 5.14 (2H, s),

7.35 (5H, s) ppm

Isomer (2a)

NMR δ (CDCl₃): 0.06 (6H, s), 0.87 (9H, s), 1.08
(3H, d, J=6.5Hz), 1.18 (3H, d,
J=7.0Hz), 3.91 (1H, dd, J=2.2
and 5.5Hz), 4.17 (2H, q, J=6Hz),
5.12 (2H, s), 7.35 (5H, s) ppm

Reference Example 10-2

200 mg of 4-(1-benzyloxycarbonyl)ethyl-3[(R)-1-(<u>t</u>-butyl-dimethylsilyloxy)ethyl]-2azetidinone (2a) was dissolved in 2 ml of dried dimethylformamide. 126 mg of triethylamine was added to the

resulting solution, and then 151 mg of <u>t</u>-butyldimethyl-silyl chloride was added thereto, followed by stirring at room temperature overnight. The reaction mixture was diluted with ethyl acetate, washed with water, dried over sodium sulfate and purified by silica gel chromatography to obtain 4-(1-benzyloxycarbonyl)ethyl-3-[(R)-1-(<u>t</u>-butyldimethylsilyloxy)ethyl]-1-(<u>t</u>-butyldimethylsilyl)-2-azetidinone (3a).

IRneat (cm⁻¹): 1750, 1465, 1325, 1255, 835

<u>Reference Example 10-3</u>

[(R)-1-(t-butyldimethylsilyloxy)ethyl]-1-(t-butyldimethylsilyl)-2-azetidinone (3a) was dissolved in 4 ml of methanol, and the resulting solution was stirred together with 20 mg of 10% palladium-on-carbon at an atmospheric pressure of hydrogen for 2 hours. The catalyst was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain 4-(1-carboxy)ethyl-3-[(R)-1-(t-butyldimethylsilyloxy)-

BNSDOCID: <EP____0126587A1 | >

5

10

15

ethyll-1-(t-butyldimethylsilyl)-2-azetidinone (4a).

IR^{neat}_{max} (cm⁻¹): 1740, 1465, 1330, 1255, 1043, 837

Reference Example 10-4

(4R,5R,6S,8R)-p-Nitrobenzyl-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3.2.0]-hept-3,7-dione-2-carboxylate was obtained from 170 mg of 4-(1-carboxy)-ethyl-3-[(R)-1-(<u>t</u>-butyIdimethylsilyloxy)ethyl]-1-(t-butyIdimethylsilyl)-2-azetidinone (4a) according to the method described in Japanese Patent Application OPI No. 26887/83, pages 64-65.

IR^{neat} (cm⁻¹): 3450 (br.), 1770 (sh.), 1750, 1605, 1520, 1350, 1217, 1180

Reference Example 11

To a solution of 261 mg of (5R,6S,8R)-p-

5

nitrobenzyl-3-ethylthio-6-(1-hydroxyethyl)-1-aza-bicyclo[3.2.0]hept-2-ene-7-one-4-thia-2-carboxylate in 28 ml of dried methylene chloride, 144 mg of m-chloroperbenzoic acid was added at -45°C in a nitrogen stream, followed by stirring at -20° to -40°C for 2 hours. The reaction mixture was washed with a saturated aqueos solution of sodium bicarbonate and then with water, dried over sodium sulfate and distilled off to remove the solvent. The resulting residue was purified by silica gel chromatography to obtain (5R,6S,8R)-p-nitrobenzyl-3-ethylsulfinyl-6-(1-hydroxyethyl)-1-azabicyclo-[3.2.0]hept-2-ene-7-one-4-thia-2-carboxylate.

IRV CHCl_{max} (cm⁻¹): 1793, 1703, 1605, 1517, 1447, 1377, 1344, 1315, 1172, 1112, 1043, 965, 824

NMR δ (CDC1₃): 5.74 (3/5H, d, J=1.5Hz), 5.87 (2/5H, d, J=1.5Hz) ppm

5

10

Example 1-1

$$\longrightarrow \bigvee_{O} \bigvee_{N} \bigvee_{COOH} \bigvee_{N \in \mathcal{N}_{N}} \bigvee_{H} \bigvee_{COOH} \bigvee_{N \in \mathcal{N}_{N}} \bigvee_{H} \bigvee_{N \in \mathcal{N}_{N}} \bigvee_{N \in \mathcal{N}$$

a) 122 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenylphosphoryloxy-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was dissolved in 3 ml of dry acetonitrile, and 31 mg of diisopropylethylamine was added thereto in a nitrogen stream under ice-cooling. Then, 60 mg of [2S,4S]-1-pnitrobenzyloxycarbonyl-2-dimethylaminecarbonyl-4-10 mercaptopyrrolidine was added to the mixture, followed by stirring for 1 hour. The reaction solution was diluted with ethyl acetate, washed with water, dried over magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel thin layer chromato-15 graphy to obtain 95 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate.

```
IR<sup>neat</sup> (cm<sup>-1</sup>): 1780, 1745, 1705, 1650, 1605, 1515,
                             1342, 1257
             NMR \delta(CDCl_3): 1.49 (3H, d, J=6Hz), 2.99 (3H, s),
                            3.11 (3H, s), 5.25 (4H, s), 5.23 and
                            5.46 (2H, ABq, J=14Hz), 7.53 (4H, d,
5
                            J=8.5Hz), 7.62 (2H, d, J=8.5Hz),
                            8.18 (6H, d, J=8.5Hz)
             [\alpha]_{D}^{28} +7.7° (c=0.303, acetone)
                  95 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl-3-
        b)
        [4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)-
10
        pyrrolidinylthio]-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-
        1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was
        dissolved in 20 ml of dioxane, and a morpholinopropane-
        sulfonic acid buffer solution (pH = 7.0, 10 ml) and
        platinum oxide (35 mg) were added thereto. The mixture
15
        was then hydrogenated under a hydrogen pressure of 3.5 atm.
        for 6.5 hours. The catalyst was filtered off and dioxane
        was distilled off under reduced pressure. The residual
        solution was washed with ethyl acetate, and the aqueous
        layer was again distilled under reduced pressure to remove
20
                               The residual solution was subjected
        the organic solvent.
        to polymer chromatography (CHP-20P) to obtain (5R,6S,
        8R,2'S,4'S)-3-[4-(2-dimethylaminecarbonyl)pyrrolidinyl-
        thio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-
        7-one-2-carboxylic acid from the fraction eluted with
25
```

water.

$$IR_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$$
: 1755, 1627, 1393, 1252, 1130

NMR δ(D₂O): 1.25 (3H, d, J=6.4Hz), 1.81-1.96 (1H, m), 2.96 (3H, s), 3.03 (3H, s), 3.14-3.20 (3H, m), 3.31-3.41 (2H, m), 3.62-3.72 (1H, m), 3.90-4.00 (1H, m), 4.14-4.26 (2H, m), 4.63 (1H, t, J=8.5Hz)

Example 1-2

a) In the same manner as described in Example 1-1(a) but using 129 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)
l-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate and

67 mg of [2S,4R]-l-p-nitrobenzyloxycarbonyl-2-dimethyl
aminecarbonyl-4-mercaptopyrrolidine, there was obtained

40 mg of (5R,6S,8R,2'S,4'R)-p-nitrobenzyl-3-[4-(l-pnitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinyl
thio]-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-l-azabicyclo[3,2,0]hept-2-ene-7-one-carboxylate.

20 IR^{neat} (cm⁻¹): 1775, 1745, 1705, 1650, 1520, 1400, 1345, 1260, 1130

 $[\alpha]_{D}^{27}$ +31.1° (c=0.193, acetone)

b) In the same manner as described in Example 1-1(b) but using 40 mg of (5R,6S,8R,2'S,4'R)-p-nitrobenzyl-3
[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)
pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)
1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there

was obtained (5R,6S,8R,2'S,4'R)-3-[4-(2-dimethylamine
carbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo
[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

UV^{H2O} nm: 297

Example 1-3

a) In the same manner as described in Example 1-1(a) but using 61 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-

phosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-1
20 azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate and 31 mg

of [2R,4S]-1-p-nitrobenzyloxycarbonyl-2-dimethylamine-

5

10

carbonyl-4-mercaptopyrrolidine, there was obtained 37 mg of (5R,6S,8R,2'R,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate.

IR_{max} (cm⁻¹): 1775, 1745, 1705,1650, 1520, 1400, 1345, 1260, 1130

NMR & (CDCl₃): 1.49 (3H, d, J=6.5Hz), 2.98 (3H, s),
3.16 (3H, s), 5.27 (4H, s), 5.19 and
5.47 (2H, ABq, J=14Hz), 7.50, 7.55 and
7.64 (each 2H, d, J=8.5Hz), 8.20 (4H,
d, J=8.5Hz), 8.22 (2H, d, J=8.5Hz)

 $[\alpha]_{D}^{29}$ +26.8° (c=0.243, acetone)

b) In the same manner as described in Example 1-1(b)

but using 37 mg of (5R,6S,8R,2'R,4'S)-p-nitrobenzyl-3
[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)
pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)
1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there

was obtained (5R,6S,8R,2'R,4'S)-3-[4-(2-dimethylamine
carbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo
[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

 $uv_{max}^{H_2O}$ nm: 297

5

Example 1-4

a) In the same manner as described in Example 1-1(a) but using 76 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate and 39 mg of [2R,4R]-1-p-nitrobenzyloxycarbonyl-2-dimethyl-aminecarbonyl-4-mercaptopyrrolidine, there was obtained 35 mg of (5R,6S,8R,2'R,4'R)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinyl-thio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate.

IR_{max} (cm⁻¹): 1775, 1745, 1705, 1650, 1520, 1440, 1342, 1260, 1120

NMR & (CDCl₃): 1.49 (3H, d, J=6.5Hz), 2.98 (3H, s), 3.09 (3H, s), 5.25 (4H, s), 5.26 and 5.44 (2H, ABq, J=14Hz), 8.20 (6H, d, J=8.5Hz)

 $[\alpha]_{D}^{30}$ +23.3° (c=0.329, acetone)

5

10

b) In the same manner as described in Example 1-1(b) but using 35 mg of (5R,6S,8R,2'R,4'R)-p-nitrobenzyl-3[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there
was obtained (5R,6S,8R,2'R,4'R)-3-[4-(2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

UVH2O nm: 297

Example 2

5

53 mg of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyla) 6-(l-hydroxyethyl)-l-azabicyclo[3,2,0]-hept-3,7-dione-2-carboxylate was dissolved in 5 ml of dry acetonitrile, and 57 mg of diisopropylethylamine and then 43 mg of diphenyl chlorophosphate were added thereto. After stirring for 2.5 hours, 57 mg of [2S,4S]-1-p-nitrobenzyloxycarbonyl-2-dimethylaminocarbonyl-4-mercaptopyrrolidine was added to the mixture, followed by stirring for 1 hour. The reaction solution was diluted with ethyl acetate, washed with 10 water, dried over magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel thin layer chromatography to obtain 35 mg of (4R,5R,6S, 8R,2'S,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-4-methyl-6-15 (1-hydroxyethyl)-l-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate.

> IR_{max}^{neat} (cm⁻¹): 1760, 1705, 1645, 1520, 1402, 1342, 1135, 1110

NMR $\delta(CDCl_3)$: 1.30 (3H, d, J=7.0Hz), 1.35 (3H, d, J=6.5Hz), 2.99 (3H, s), 3.02 (3H, d, 20 J=15Hz), 5.21 (2H, s), 5.20 and 5.43 (2H, ABq, J=14Hz), 7.51 (2H, d, J=8.5Hz),7.64 (2H, d, J=8.5Hz), 8.20 (4H, d, J=8.5Hz)

25 mg of (4R,5R,6S,8R,2'S,4'S)-p-nitrobenzylb) 3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthiol-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate was dissolved in a mixture of 1.9 ml of tetrahydrofuran and 0.3 ml of 5 ethanol, and the mixture was hydrogenated in a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 1.9 ml) under atmospheric pressure of hydrogen for 3 hours at room temperature in the presence of 30 mg of 10% palladiumcarbon, which had been activated in hydrogen atmosphere 10 for 1 hour followed by washing with water. After filtering off the catalyst, tetrahydrofuran and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced 15 pressure to remove organic solvents, and the residual solution was subjected to polymer chromatography (CHP-20P) to obtain (4R,5R,6S,8R,2'S,4'S)-3-[4-(2-dimethylaminecarbonyl)pyrrolidinylthiol-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid 20 from the fraction eluted with water.

UV_{max} nm: 296

NMR $\delta(D_2O)$: 1.21 (3H, d, J=7.0Hz), 1.29 (3H, d, J=6.5Hz), 1.92 (1H, m), 2.99 (3H, s), 3.06 (3H, s)

Example 3

OH CON NH CON

61 mg of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyla) 6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-3,7-dione-10 2-carboxylate was dissolved in 6 ml of dry acetonitrile, and 72 mg of diiropropylethylamine and then 55 mg of diphenyl chlorophosphate were added thereto in a nitrogen stream under ice-cooling, followed by stirring for 2.5 77 mg of [2S,4S]-l-p-nitrobenzyloxycarbonyl-2-(1-pyrrolidinecarbonyl)-4-mercaptopyrrolidine was added to the mixture, followed by stirring for 1 hour. reaction solution was diluted with ethyl acetate, washed with water, dried over magnesium sulfate, and the solvent was distilled off. The residue was purified by silica 20 gel thin layer chromatography to obtain 51 mg of (4R,5R, 6S,8R,2'S,4'S)-p-nitrobenzyl-3-[(1-p-nitrobenzyloxycarbonyl-2-(l-pyrrolidinecarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-

one-2-carboxylate.

5

IR_{max} (cm⁻¹): 1760, 1710, 1640, 1525, 1440, 1350, 1210, 1110

NMR δ(CDC1₃): 1.30 (3H, d, J=7.0Hz), 1.34 (3H, d, J=6.5Hz), 5.21 (2H, s), 5.20 and 5.44 (2H, ABq, J=14Hz), 7.50 (2H, d, J=8.5Hz), 7.64 (2H, d, J=8.5Hz), 8.20 (4H, d, J=8.5Hz)

50 mg of (4R,5R,6S,8R,2'S,4'S)-p-nitrobenzylb) 3-[1-p-nitrobenzyloxycarbonyl-2-(1-pyrrolidinecarbonyl)-10 pyrrolidin-4-ylthiol-4-methyl-6-(1-hydroxyethyl)-1azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was dissolved in a mixture of 3.9 ml of tetrahydrofuran and 0.6 ml of ethanol, and the mixture was hydrogenated in a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 15 3.9 ml) under atmospheric pressure of hydrogen for 4.5 hours at room temperature in the presence of 60 mg of 10% palladium-carbon, which had been activated in hydrogen atmosphere for 1 hour followed by washing with water. After filtering off the catalyst, tetrahydrofuran 20 and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced pressure to remove organic solvents, and the

residual solution was subjected to polymer chromatography (CHP-20P) to obtain (4R,5R,6S,8R,2'S,4'S)-3-[2-(1-pyrrolidinecarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylic acid from the fraction eluted with a 2% aqueous tetrahydrofuran solution.

UV_{max} nm : 297

NMR δ(D₂O); 1.20 (3H, d, J=7.0Hz), 1.28 (3H, d, J=6.5Hz), 1.95 (6H, m), 3.46 (6H, m), 3.72 (1H, dd, J=6.5 and 12Hz), 4.02 (1H, quintet, J=6.5Hz)

OH COOH

a) 172 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)l-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was
dissolved in 2.3 ml of dry acetonitrile, and to the solution
were added a solution of 59 mg of diisopropylethylamine in
0.7 ml of dry acetonitrile and then a solution of 94 mg
of [2S,4S]-l-p-nitrobenzyloxycarbonyl-2-(3-pyrrolinel-carbonyl)-4-mercaptopyrrolidine in 1 ml of dry aceto-

nitrile, in a nitrogen stream and under ice-cooling, followed by stirring for 15 minutes. The reaction solution was diluted with diethyl ether, washed with water, and the insoluble material in the ether layer was dissolved with addition of methylene chloride.

The methylene chloride and ether layer was dried over magnesium sulfate and the solvent was distilled off.

The residue was purified by silica gel thin layer chromatography to obtain 182 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl-3-{4-[1-p-nitrobenzyloxycarbonyl-2-(3-pyrroline-1-carbonyl)]-pyrrolidinylthio}-6-(1-p-nitrobenzyloxycarbonyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate.

IR_{max}^{CHCl}3 (cm⁻¹): 1780, 1745, 1708, 1660, 1623, 1606, 1520, 1342

NMR $\delta(CDCl_3)$: 1.49 (3H, d, J=6.2Hz), 5.26 (4H, s), 8.18 (6H, d, J=8.8Hz)

b) 182 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl
3-{4-[1-p-nitrobenzyloxycarbonyl-2-(3-pyrroline-1carbonyl)]pyrrolidinylthio}-6-(1-p-nitrobenzyloxycarbonyl
oxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2carboxylate was dissolved in a mixture of 12.6 ml of
tetrahydrofuran and 2 ml of ethanol, and the solution was
hydrogenated in a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 12.6 ml)

25 at room temperature under atmospheric pressure of hydrogen

for 7 hours in the presence of 219 mg of 10% palladium-carbon, which had been activated in hydrogen atmosphere for 1 hour, followed by washing with water. After filtering off the catalyst, tetrahydrofuran and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced pressure to remove organic solvents, and the residual solution was subjected to polymer chromatography (CHP-20P) to obtain (5R,6S,8R,2'S,4'S)-3-{4-[2-(3-pyrroline-1-carbonyl)pyrrolidinylthio}-6-(1-hydroxy-ethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid from the fraction eluted with a 2% aqueous tetrahydrofuran solution.

15 UV $\lambda_{\text{max}}^{\text{H}_2\text{O}}$ nm: 298

 IR_{max}^{KBr} (cm⁻¹): 1755, 1640, 1595, 1450, 1380, 1245 NMR δ (D₂O): 1.26 (3H, d, J=6.4Hz), 3.18 (1H, dd, J=2.1 and 9.0Hz), 3.77 (1H, dd, J=7.0 and 12.0Hz), 5.89 (2H, br. s)

5

UVH2O nm: 297

IR max cm⁻¹: 1755, 1627, 1393, 1252, 1130

NMR $\delta(D_2O)$: 1.25 (3H, d, J=6.4Hz), 1.81-1.96 (1H, m), 2.96 (3H, s), 3.03 (3H, s), 3.14-3.20

(3H, m), 3.31-3.41 (2H, m), 3.62-3.72

(1H, m), 3.90-4.00 (1H, m), 4.14-4.26

(2H, m), 4.63 (1H, t, J=8.5Hz)

Example 1-2

10 a) In the same manner as described in Example 1-1(a) but using 129 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)l-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate and
67 mg of [2S,4R]-l-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl-4-mercaptopyrrolidine, there was obtained
40 mg of (5R,6S,8R,2'S,4'R)-p-nitrobenzyl-3-[4-(l-pnitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-l-azabicyclo[3,2,0]hept-2-ene-7-one-carboxylate.

20 IR_{max} (cm⁻¹): 1775, 1745, 1705, 1650, 1520, 1400, 1345, 1260, 1130

 $[\alpha]_{D}^{27}$ +31.1° (c=0.193, acetone)

b) In the same manner as described in Example 1-1(b) but using 40 mg of (5R,6S,8R,2'S,4'R)-p-nitrobenzyl-3
[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)
pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)
10 l-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there

was obtained (5R,6S,8R,2'S,4'R)-3-[4-(2-dimethylamine
carbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo
[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

UVH2O nm: 297

Example 1-3

a) In the same manner as described in Example 1-1(a) but using 61 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate and 31 mg of [2R,4S]-1-p-nitrobenzyloxycarbonyl-2-dimethylamine-

20

5

carbonyl-4-mercaptopyrrolidine, there was obtained 37 mg of (5R,6S,8R,2'R,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate.

IR^{neat} (cm⁻¹): 1775, 1745, 1705,1650, 1520, 1400, 1345, 1260, 1130

NMR δ(CDCl₃): 1.49 (3H, d, J=6.5Hz), 2.98 (3H, s),
3.16 (3H, s), 5.27 (4H, s), 5.19 and
5.47 (2H, ABq, J=14Hz), 7.50, 7.55 and
7.64 (each 2H, d, J=8.5Hz), 8.20 (4H,
d, J=8.5Hz), 8.22 (2H, d, J=8.5Hz)

 $[\alpha]_{D}^{29}$ +26.8° (c=0.243, acetone)

b) In the same manner as described in Example 1-1(b)

but using 37 mg of (5R,6S,8R,2'R,4'S)-p-nitrobenzyl-3
[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)
pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)
1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there

was obtained (5R,6S,8R,2'R,4'S)-3-[4-(2-dimethylamine
carbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo
[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

 $uv_{max}^{H_2O}$ nm: 297

5

Example 1-4

a) In the same manner as described in Example 1-1(a) but using 76 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenylphosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate and 39, mg of [2R,4R]-l-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl-4-mercaptopyrrolidine, there was obtained 35 mg of (5R,6S,8R,2'R,4'R)-p-nitrobenzyl-3-[4-(1-pnitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinyl-10 thio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate.

> IR_{max}^{neat} (cm⁻¹): 1775, 1745, 1705, 1650, 1520, 1440, 1342, 1260, 1120

NMR $\delta(CDCl_3)$: 1.49 (3H, d, J=6.5Hz), 2.98 (3H, s), 3.09 (3H, s), 5.25 (4H, s), 5.26 and 5.44 (2H, ABq, J=14Hz), 8.20 (6H, d, J=8.5Hz)

 $[\alpha]_{n}^{30}$ +23.3° (c=0.329, acetone)

5

b) In the same manner as described in Example 1-1(b) but using 35 mg of (5R,6S,8R,2'R,4'R)-p-nitrobenzyl-3[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate, there
was obtained (5R,6S,8R,2'R,4'R)-3-[4-(2-dimethylaminecarbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid.

UV_{max} nm: 297

Example 2

5

53 mg of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyla) 6-(1-hydroxyethy1)-1-azabicyclo[3,2,0]-hept-3,7-dione-2-carboxylate was dissolved in 5 ml of dry acetonitrile, and 57 mg of diisopropylethylamine and then 43 mg of diphenyl 5 chlorophosphate were added thereto. After stirring for 2.5 hours, 57 mg of [2S,4S]-1-p-nitrobenzyloxycarbonyl-2-dimethylaminocarbonyl-4-mercaptopyrrolidine was added to the mixture, followed by stirring for 1 hour. The reaction solution was diluted with ethyl acetate, washed with 10 water, dried over magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel thin layer chromatography to obtain 35 mg of (4R,5R,6S, 8R,2'S,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio]-4-methyl-6-15 (1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate.

IR_{max} (cm⁻¹): 1760, 1705, 1645, 1520, 1402, 1342, 1135, 1110

NMR δ(CDCl₃): 1.30 (3H, d, J=7.0Hz), 1.35 (3H, d,

J=6.5Hz), 2.99 (3H, s), 3.02 (3H, d,

J=15Hz), 5.21 (2H, s), 5.20 and 5.43

(2H, ABq, J=14Hz), 7.51 (2H, d, J=8.5Hz),

7.64 (2H, d, J=8.5Hz), 8.20 (4H, d,

J=8.5Hz)

25 mg of (4R,5R,6S,8R,2'S,4'S)-p-nitrobenzylb) 3-[4-(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidinylthio|-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo-[3,2,0]hept-2-ene-7-one-2-carboxylate was dissolved in a mixture of 1.9 ml of tetrahydrofuran and 0.3 ml of 5 ethanol, and the mixture was hydrogenated in a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 1.9 ml) under atmospheric pressure of hydrogen for 3 hours at room temperature in the presence of 30 mg of 10% palladiumcarbon, which had been activated in hydrogen atmosphere 10 for 1 hour followed by washing with water. After filtering off the catalyst, tetrahydrofuran and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced 15 pressure to remove organic solvents, and the residual solution was subjected to polymer chromatography (CHP-20P) to obtain (4R,5R,6S,8R,2'S,4'S)-3-[4-(2-dimethylaminecarbonyl)pyrrolidinylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid 20 from the fraction eluted with water.

UV_{max} nm: 296

NMR $\delta(D_2O)$: 1.21 (3H, d, J=7.0Hz), 1.29 (3H, d, J=6.5Hz), 1.92 (1H, m), 2.99 (3H, s), 3.06 (3H, s)

Example 3

OH CON NH CON

61 mg of (4R,5R,6S,8R)-p-nitrobenzyl-4-methyla) 6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-3,7-dione-10 2-carboxylate was dissolved in 6 ml of dry acetonitrile, and 72 mg of diiropropylethylamine and then 55 mg of diphenyl chlorophosphate were added thereto in a nitrogen stream under ice-cooling, followed by stirring for 2.5 77 mg of [2S,4S]-l-p-nitrobenzyloxycarbonyl-2-15 (1-pyrrolidinecarbonyl)-4-mercaptopyrrolidine was added to the mixture, followed by stirring for 1 hour. reaction solution was diluted with ethyl acetate, washed - with water, dried over magnesium sulfate, and the solvent The residue was purified by silica was distilled off. 20 gel thin layer chromatography to obtain 51 mg of (4R,5R, 6S,8R,2'S,4'S)-p-nitrobenzyl-3-[(1-p-nitrobenzyloxycarbonyl-2-(l-pyrrolidinecarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(l-hydroxyethyl)-l-azabicyclo[3,2,0]-hept-2-ene-7-

J=8.5Hz)

one-2-carboxylate.

5

IR_{max} (cm⁻¹): 1760, 1710, 1640, 1525, 1440, 1350, 1210, 1110

NMR δ(CDC1₃): 1.30 (3H, d, J=7.0Hz), 1.34 (3H, d, J=6.5Hz), 5.21 (2H, s), 5.20 and 5.44 (2H, ABq, J=14Hz), 7.50 (2H, d, J=8.5Hz), 7.64 (2H, d, J=8.5Hz), 8.20 (4H, d,

50 mg of (4R,5R,6S,8R,2'S,4'S)-p-nitrobenzylb) 3-[1-p-nitrobenzyloxycarbonyl-2-(1-pyrrolidinecarbonyl)-10 pyrrolidin-4-ylthiol-4-methyl-6-(1-hydroxyethyl)-1azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was dissolved in a mixture of 3.9 ml of tetrahydrofuran and 0.6 ml of ethanol, and the mixture was hydrogenated in a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 15 3.9 ml) under atmospheric pressure of hydrogen for 4.5 hours at room temperature in the presence of 60 mg of 10% palladium-carbon, which had been activated in hydrogen atmosphere for 1 hour followed by washing with water. After filtering off the catalyst, tetrahydrofuran 20 and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced pressure to remove organic solvents, and the

residual solution was subjected to polymer chromatography (CHP-20P) to obtain (4R,5R,6S,8R,2'S,4'S)-3-[2-(1-pyrrolidinecarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylic acid from the fraction eluted with a 2% aqueous tetrahydrofuran solution.

UV_{max} nm : 297

NMR δ(D₂O); 1.20 (3H, d, J=7.0Hz), 1.28 (3H, d, J=6.5Hz), 1.95 (6H, m), 3.46 (6H, m), 3.72 (1H, dd, J=6.5 and 12Hz), 4.02 (1H, quintet, J=6.5Hz)

CON

О СООН

Example 4

a) 172 mg of (5R,6S,8R)-p-nitrobenzyl-3-(diphenyl-phosphoryloxy)-6-(l-p-nitrobenzyloxycarbonyloxyethyl)l-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate was
dissolved in 2.3 ml of dry acetonitrile, and to the solution
were added a solution of 59 mg of diisopropylethylamine in
0.7 ml of dry acetonitrile and then a solution of 94 mg
of [2S,4S]-l-p-nitrobenzyloxycarbonyl-2-(3-pyrrolinel-carbonyl)-4-mercaptopyrrolidine in 1 ml of dry aceto-

nitrile, in a nitrogen stream and under ice-cooling, followed by stirring for 15 minutes. The reaction solution was diluted with diethyl ether, washed with water, and the insoluble material in the ether layer was dissolved with addition of methylene chloride.

The methylene chloride and ether layer was dried over magnesium sulfate and the solvent was distilled off.

The residue was purified by silica gel thin layer chromatography to obtain 182 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl-3-{4-[1-p-nitrobenzyloxycarbonyl-2-(3-pyrroline-1-carbonyl)]-pyrrolidinylthio}-6-(1-p-nitrobenzyloxycarbonyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylate.

IR_{max}^{CHC1}3 (cm⁻¹): 1780, 1745, 1708, 1660, 1623, 1606, 1520, 1342

NMR δ(CDCl₃): 1.49 (3H, d, J=6.2Hz), 5.26 (4H, s), 8.18 (6H, d, J=8.8Hz)

b) 182 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl
3-{4-[1-p-nitrobenzyloxycarbonyl-2-(3-pyrroline-1carbonyl)]pyrrolidinylthio}-6-(1-p-nitrobenzyloxycarbonyl
oxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2carboxylate was dissolved in a mixture of 12.6 ml of
tetrahydrofuran and 2 ml of ethanol, and the solution was
hydrogenated in a morpholinopropane-

sulfonic acid buffer solution (pH = 7.0, 12.6 ml)

at room temperature under atmospheric pressure of hydrogen

5

for 7 hours in the presence of 219 mg of 10% palladium-carbon, which had been activated in hydrogen atmosphere for 1 hour, followed by washing with water. After filtering off the catalyst, tetrahydrofuran and ethanol were distilled off under reduced pressure, and the residual solution was washed with ethyl acetate. The aqueous layer was again distilled under reduced pressure to remove organic solvents, and the residual solution was subjected to polymer chromatography (CHP-20P) to obtain (5R,6S,8R,2'S,4'S)-3-{4-[2-(3-pyrroline-1-carbonyl)pyrrolidinylthio}-6-(1-hydroxyethyl)-1-azabicyclo{3,2,0}hept-2-ene-7-one-2-carboxylic acid from the fraction eluted with a 2% aqueous tetrahydrofuran solution.

15 UV $\lambda_{\text{max}}^{\text{H}_2\text{O}}$ nm: 298

 IR_{max}^{KBr} (cm⁻¹): 1755, 1640, 1595, 1450, 1380, 1245 NMR δ (D₂O): 1.26 (3H, d, J=6.4Hz), 3.18 (1H, dd, J=2.1 and 9.0Hz), 3.77 (1H, dd, J=7.0 and 12.0Hz), 5.89 (2H, br. s)

5

Example 5

a) Following the procedures as described in

Example 1-1(a) using 68 mg of (5R,6S,8R)-p-nitrobenzyl
3-(diphenylphosphoryloxy)-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate
and 33 mg of [2S,4S]-1-p-nitrobenzyloxycarbonyl-2carbamoylmethylaminecarbonyl-4-mercaptopyrrolidine,
there was obtained 61 mg of crystalline (5R,6S,8R,2'S,

4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl2-carbamoylmethylaminecarbonyl)pyrrolidinylthio]-6-(1-pnitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]hept2-ene-7-one-2-carboxylate by filtration.

. IR^{Nujol} (cm⁻¹): 3445, 3300, 1790, 1745, 1710, 1670,

1635, 1510, 1345, 1270

NMR δ(CDCl₃): 1.50 (3H, d, J=6.5Hz), 5.23 (4H, s),

7.50 (4H, d, J=8.5Hz), 8.21 (6H, d,

J=8.5Hz)

m.p.: 184-189°C (dec.)

30 mg of (5R,6S,8R,2'S,4'S)-p-nitrobenzyl-3-[4-(1-p-nitrobenzyloxycarbonyl-2-carbamoylmethylaminecarbonyl)pyrrolidinylthio]-6-(1-p-nitrobenzyloxycarbonyloxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylate was dissolved in a mixture of 3.1 ml of tetrahydrofuran and 1 ml of dimethylformamide, and the solution was hydrogenated in the presence of a morpholinopropanesulfonic acid buffer solution (pH = 7.0, 3.1 ml) at room temperature under atmospheric pressure of hydrogen for 5 hours in the presence of 37 mg of 10% palladiumcarbon which had been activated in hydrogen atmosphere for 1 hour followed by washing with water. After filtering off the catalyst, tetrahydrofuran was distilled off under reduced pressure, and the residual solution was washed with methylene chloride. The aqueous layer was distilled to remove the organic solvents, and the residual solution was subjected to polymer chromatography (CHP-20P) to obtain (5R,6S,8R,2'S,4'S)-3-[4-(2-carbamoylmethylaminecarbonyl)pyrrolidinylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid from the fraction eluted with water.

> UV $\lambda_{\text{max}}^{\text{H2O}}$ nm: 300 IR $_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 1745, 1665, 1590, 1390, 1220, 1180, 1040

5

10

15

NMR $\delta(D_2^0)$: 1.26 (3H, d, J=6.6Hz), 1.86 (1H, m), 3.20 (2H, dd, J=7.5 and 14.7Hz), 3.38 (1H, dd, J=3.0 and 6.7Hz), 4.02 (1H, t, J=9.0Hz)

Example 6

a) To a solution of 45 mg of (5R,6S,8R)-p-nitrobenzyl-3- ethylsulfinyl-6-(1-hydroxyethyl)-l-azabicyclo-[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylate in 0.8 ml of dry acetonitrile were added a solution of 30 mg of diisopropylethylamine in 0.3 ml of dry acetonitrile and then a solution of 81 mg of (2'S,4'S)-1'-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl-4'-mercaptopyrrolidine in 0.6 ml of dry acetonitrile under nitrogen stream at -40°C, followed by stirring the mixture at -40°C to -45°C for 10 minutes. The reaction solution was diluted with ethyl acetate, washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, and the solvent was distilled off. The resulting residue was purified by silica gel chromatography to obtain (5R,6S, 8R,2'S,4'S)-p-nitrobenzyl-3-[(1-p-nitrobenzyloxycarbonyl-

BNSDOCID: <EP____0126587A1_I_>

5

10

15

2-dimethylaminecarbonyl)pyrrolidin-4-ylthio]-6-(l-hydroxy-ethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylate.

$$[\alpha]_D^{29}$$
 +52° (c=0.43, CHCl₃)

5 IR v_{max}^{CHC1}3 (cm⁻¹): 1788, 1700, 1660, 1607, 1400, 1325, 1114, 1013

NMR & (CDCl₃): 1.32 (3H, d, J=6Hz), 2.96 (3H, s),
3.08 (3H, s), 3.72 (1H, dd, J=1.5Hz
and J=6Hz), 5.20 (2H, s), 5.70 (1H, d,

10 J=1.5Hz)

b) 204 mg of 5% palladium-carbon was suspended in a mixture of ethanol (3.8 ml) and water (3.8 ml) and hydrogenated at room temperature under atmospheric pressure for 1 hour. The catalyst was filtered, washed with water, suspended in a phosphate buffer (pH = 6.86, 5.1 ml); and added to a solution of 68 mg of (5R,6S,8R, 2'S,4'S)-p-nitrobenzyl-3-[(1-p-nitrobenzyloxycarbonyl-2-dimethylaminecarbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxy-ethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylate in 7.7 ml of tetrahydrofuran. The mixture was hydrogenated at room temperature and under atmospheric pressure for 3 hours. After filtering off the catalyst, tetrahydrofuran was distilled off under reduced pressure.

15

The residual solution was washed with ethyl acetate, and the aqueous layer was again distilled under reduced pressure to remove the organic solvents. The resulting residual solution was purified by CHP-20P column chromatography to obtain (5R,6S,8R,2'S,4'S)-2-[(2-dimethyl-aminecarbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylic acid.

.UV $\lambda_{max}^{H_2O}$ nm: 322, 255

10 IR $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 1765, 1645, 1580, 1508, 1367 NMR δ (D₂O): 1.29 (3H, d, J=6.4Hz), 1.94 - 2.08 (1H, m), 2.93 - 3.15 (1H, m), 2.98 (3H, s), 3.05 (3H, s), 3.53-3.62 (1H, m), 3.83 - 3.93 (1H, m), 3.94 (1H, dd, J=1.4Hz and J=6Hz), 4.06 - 4.30 (3H, m), 5.71 (1H, d, J=1.4Hz)

Examples 7 to 90

The compounds shown in Table 6 below were prepared from the corresponding mercaptan derivatives.

20 In Table 6, "HE" represents (R)-1-hydroxyethyl group, and "PNZE" represents (R)-1-p-nitrobenzyloxycarbonyloxyethyl group.

R₁ H H COOK S COOK S R₂

Spectral Data

IRUNUJO1 (cm-1): 3420, 1785, 1742, 1710, 1677, 1510, max

 $[\alpha]_{D}^{30}$ +44.4° (c=0.105, DMF)

m.p. 138-142°C

PNB

PNZ

PNZE

Example

UVA 2 nm: 297

IRVKBr (cm-1): 1752, 1687, 1595, 1385

I

HE

NMR & (D₂O): 1.24(3H, d, J=6.5Hz), 2.0-2.15(1H); 2.83-2.98(1H, m), 3.17(2H, d)=9Hz), 3.32-3.42(2H, m), 3.71-3.80(1H, m), 3.98(1H, quintet; J=7Hz), 4.13-4.32(1H, m), 4.41(1H)

[α]³⁰ -25° (c=0.05, H.O)

BNSDOCID: <EP____0126587A1_I_

			- 132 -			•
Spectral Data	1775, 1745, 1700, 1665(sh), 1515, 1345, 1257	1.48(3H, d, J=6.5Hz), 2.73(3H, s), 3.21(2H, d, J=9Hz), 5.25(4H, s), 5.25 and 5.43(2H, ABq, J=14Hz), 7.50, 7.54 and 7.62(each 2H, d, J=8.5Hz), 8.20(6H, d, J=8.5Hz)		1770, 1740, 1700, 1510, 1340, 1255	1.08(3H, d, J=6.5Hz), 1.11(3H, d, J=6.5Hz), 1.48(3H, d, J=6Hz), 3.18(2H, br.d, J=9Hz), 5.25(4H, 8), 5.26 and 5.44(2H, ABq, J=14Hz), 7.50, 7.54 and 7.62(each 2H, J=9Hz), 8.20(6H, d, J=8.5Hz)	296
	IRv neat (cm 1):	NMR & (CDCL3):	UVλ ^{H2O} nm: 297	IRw Nujol (cm-1)	NMR. 6 (CDCL3):	υνλ H2O nm:
¥	, CH,	n / N	-N CH ₃	, ABO	CH CH3	-N CH CH3
З		ana	Œ		a B B	エ
R2		2 N 2	æ		2 2 2	æ
R	.	PNZE	ឆ		១ ខ ១ ១	H
	•					

	٠.		- 13	34 -		012	6587	
Spectral Data	: 1780, 1750, 1710, 1650, 1525, 1440, 1350, 1262	1.06(3H, t, J=7Hz), 1.27(3H, t, J=7Hz), 1.49(3H, d, J=6Hz), 5.24(4H, s), 5.25 and 5.46(2H, ABq, J=14Hz), 7.46, 7.50 and 7.63(each 2H, d, J=8.5Hz), 8.20(6H, d, J=8.5Hz)		1350, 1746, 1708, 1656, 1610, 1525, 1350, 1260	1.48(3H, d, J=6Hz), 5.27(4H, s), 8.20(6H, d, J=9Hz)	297	1755, 1635, 1590, 1370, 1240	0.88(3H, t, J=7.1Hz), 1.26(3H, d, J=6.4Hz), 1.91(1H, m), 2.94 and
	IRvneat (cm 1)	NMR6 (CDCL3):	υνλ ^H 2 ^O nm:	IRVCHCL3 (cm ⁻¹)	NMR & (CDC L ₃):	UV AH2O nm:	IRV ^{KBr} (cm ⁻¹);	NMR & (D20):
X	-	$C_2^{H_5}$	C_2H_5	.	-N - 1 - C4 H 9		-N CH3	4. 20
R3.		a B	æ		a 8		. 	
R ₂		8 8 8	æ		PNZ		. æ	
X.		9	E E		BNZ BZ BZ		ធ	
Example No.		11				12		

			100 -	U	12000
Spectral Data	1770, 1735, 1640, 1510, 1340, 1 1.49(3H, d, J=6.5Hz), 4.42(2H, J=7.0Hz), 5.25(4H, s), 5.27 and 5.43(2H, ABG, J=14Hz), 7.27(5H,	12) 8.21 and 8): 1780, 1750, 1715, 1660, 1525, 1442, 1350, 1265, 1122	1.48(3H, d, J=6.5Hz), 2.92(3H, s), 4.56(2H, d, J=5Hz), 5.25(4H, s), 8.19(6H, d, J=9Hz)	297
	IRUMAX (cm ⁻¹) NMR6 (CDCL ₃):	UVAH2O nm:	IRvmeat (cm ⁻¹)	NMR6 (CDC 13):	UV AH2O nm:
×	-NCH ₂ Ph	-N CH2Ph		N CH 3	-N CH ₂ Ph
Вз	BNB	æ		PNB	
R ₂	=	=		PNZ	32
Z,	N ZZ	100 100 100 100 100 100 100 100 100 100		PNZE	ES ES
Example No.	13			4	

- '	•			_	136 -
Spectral Data	IRvMujol (cm ⁻¹): 1790, 1745, 1714, 1652, 1605, 1520, 1347	m.p. 179-182°C (dec.)	$uv_{max}^{H_2O}$ nm: 299, 266, 260	IRVMBX (cm ⁻¹): 1745, 1590, 1490, 1210, 1090, 910	NMR & (D20): 1.26(3H, d, J=6.3Hz), 1.99(1H, m), 2.80(1H, m), 3.36(1H, dd, J=2.7 and 6.0Hz), 3.58(1H, dd, J=7.0 and 12.0Hz), 3.86(1H, m), 4.51(2H, d, J=4.4Hz), 7.82(1H, dt, J=1.8 and 7.7Hz), 8.42(1H, m)
X	CH_2	• .			H H
R ₃	e Na				m
R ₂ R ₃	PNZ			•	H
R	PNZE				ы
No.			u	G 1	

			- 138 -		0126	58/
Spectral Data	3350, 1770, 1740, 1695, 1510, 1340, 1250	1.48(3H, d, J=6Hz), 5.25(4H, s), 5.18 and 5.43(2H, ABq, J=14Hz), 7.49, 7.53 and 7.61(each 2H, d, J=8.5Hz), 8.18(6H, d, J=8.5Hz)	298	3400, 1778, 1745, 1700, 1650, 1520, 1345, 1260, 1120	1.48(3H, d, J=6.5Hz), 3.00(3H, s), 5.20(2H, s), 5.25 and 5.45(2H, ABq, J=13.5Hz), 7.49, 7.51 and 7.63(each 2H, d, J=8.5Hz), 8.19(4H, d, J=8.5Hz), 8.21(2H, d, J=8.5Hz)	297
	IR wneat (cm-1);	NMR & (CDCR3);	ov max om:	IR uneat (cm 1):	NMR 6 (CDC 83):	υν λ _{max} nm:
٨		-N CH ₂ CH ₂ OH	-и сн ₂ сн ₂ он	CH, CH, OH	-N CH ₃	-N CH2CH2OH
. E		PNB	11		8 N G	æ
R 2	•	ZNA .	x	•	ZNA	52
R	-	PNZE	<u>ម</u>		22 N N	<u>ស</u> =
mple o.		8	•		61	

			- 139 -	-			
Spectral Data	IRvmax (cm ⁻¹): 1770, 1730, 1695, 1650, 1600, 1505,	NMR6 (CDCL ₃): 1.48(3H, d, J=6.5Hz), 5.25(4H, s), 7.62(2H, d, J=8.6Hz), 8.20(6H, d, J=8.6Hz)	υνλ ^H 20 nm: 297	IRv ^{Nujol} (cm ⁻¹): 1795, 1747, 1712, 1640, 1608, 1517, 1350, 1275 m.p. 167-169°C (dec.)	υνλ ^H 2 ^O nm: 300	IRV ^{KBr} (cm ⁻¹); 1752, 1650, 1590, 1388, 1255, 1150	NMR& (D,O): 1.26(3H, d, J=6.3Hz), 2.71(3H, s),
¥	-N CH2CH2CH2COPNB		-N СН2СН2СН2СОН	CH ₂ CONHCH ₃		-N CH ₂ CONHCH ₃	
3,	. NA		æ	PNB		# ~	
R ₂	PNZ	·	#	P N S		· ::	
R.	PNZE	· .	ម #	32 N S S		E	
Example No.		70	•		21	·	

		- 142 -	
Spectral Data	IRvmax (cm ⁻¹): 1780, 1745, 1705, 1640, 1605, 1520, 1346 m.p. 172-175°C NMRô (D ₆ -DMCO): 1.12(3H, d, J=7Hz), 1.34(3H, d, J=6.4Hz), 2.79(3H, s), 2.94(3H, s), 5.30(2H, s), 8.20(6H, d, J=8.8Hz)	UVλ ^{H2O} nm: 300 IRν ^{KBr} (cm ⁻¹): 1755, 1630, 1590, 1390, 1250, 1120	NMR [§] (D ₂ O): 1.26(3H, d, J=6.3Hz), 1.31(3H, d, J=6.9Hz), 2.92(3H, 8), 3.13(3H, 8)
Y	$C_{H_3}^{C_{H_3}}$ $C_{H_2}^{C_{H_3}}$	$\bigcap_{-N}^{CH_3} CH^- CON (CH_3)_2$	
R ₃	a a	æ	·
R ₁ R ₂ R ₃	S N S	æ	
× 1	8 8 8 9	四	
No.		25	

Spectral Data	IRV CHCl3 (cm-1): 1783, 1746, 1705, 1680, 1608, 1524, 1345	NMR6 (CDCl ₃): 1.48(3H, d, J=6.4Hz), 3.19(3H, s), 5.17(2H, s), 5.24(2H, s), 8.19(6H, d, J=8.6Hz)	UVλ ^H 2 ^O nm: 300	IRV Max (cm ⁻¹): 1750, 1654, 1590, 1395, 1250, 1060	NMR6 (D ₂ 0): 1.26(3H, d, J=6.3Hz), 2.95(3H, s), 3.21(2H, dd, J=2.2 and 9.0Hz), 3.38(1H, dd, J=2.2 and 5.5Hz)
*	CH ₂ CONH ₂	-N-CH ₃		-N CH CONH2	E
33		n Z		æ	
R ₁ R ₂		2 2 2		æ	
R ₁		ខ ខ ខ ខ			
Example No.					5

			- 144	· -	
Spectral Data	IRVmax 3 (cm ⁻¹): 1778, 1743, 1685, 1660, 1605, 1520,	NMR& (CDC&3): 1.48(3H, d, J=6.2Hz), 2.72(3H, d, J=5Hz), 3.19(3H, s), 5.22(2H, s), 5.25(2H, s), 8.22(6H, d, J=8.8Hz)	υνλ ^H 2 ^O nm: 300	3r (cm ⁻¹): 1750, 1640, 1585, 1382, 1250, 1125	NMR6 (D ₂ 0): 1.26(3H, d, J=6.3Hz), 2.73(3H, s), 3.39(1H, q, J=2.6Hz)
X	connch ₃	/cH ₃	Ηναη	-N CH2CONHCH3 IRVKBr max	NMR
R ₃	E NO			æ	
R ₂ R ₃	a S			æ	-
R L	E 20			<u>а</u> ж	٠
ple.					

			- 145	-
Spectral Data	IRvneat (cm ⁻¹): 1778, 1745, 1705, 1650, 1605, 1520, max	NMR& (CDCL3): 1.49(3H, d, J=6.2Hz), 2.93(3H, s), 2.99(3H, s), 3.10 and 3.15(3H, s), 5.25(4H, s), 8.21(6H, d, J=8.4Hz)	UVλ ^H 2 ^O nm: 297	IRV ^{KBr} (cm ⁻¹): 1760, 1650, 1500, 1380, 1240, 1130
X	-N CH2CON (CH3)2	E .		-N CH ₃
33 33	PNB			÷
R ₁ R ₂ R ₃	PNZ			5 2
R	e z na			8
xample No.		8	·	

		140 -		01265	587
Spectral Data	1778, 1750, 1705, 1650, 1518, 1430, 1345, 1258 1.49(3H, d, J=6.5Hz), 2.25(3H, s), 2.31(4H, s), 5.25(4H, s), 5.21 and 5.46(2H, s), 5.25(2H, d, J=8.5Hz), 7.62(2H, d, J=8.5Hz), 8.20(6H, d, J=8.5Hz)	298	1780, 1750, 1710, 1655, 1520, 1350, 1255, 1115	1.48(3H, d, J=6.5Hz), 3.58 and 3.67(each 4H, s), 5.25(4H, s), 5.26 and 5.45(2H, ABq, J=14Hz), 7.53(4H, d, J=9Hz), 7.62(2H, d, J=9Hz), 8.19(6H, d, J=9Hz)	298
	IRymax (cm ⁻¹);	UVA ^H 2 ^O nm:	IRvneat (cm ⁻¹):	NMR6 (CDCL3):	UVAH2O nm:
X	N-CH ₃	-N-CH ₃	((°)
E.	PNB	m		en B	ж
R2	8 2 8			PNZ	æ
R _L	PNZE	E		PNZE	11
Rample No.				30	

s), 2H,

	1520,
	1610,
4	1655,
Data	1705,
ectral I	1740, 17
Spe	1780,
	(cm ⁻¹):
	IRV CHCl3

I

I

HΕ

(cm⁻¹): 1745, 1690, 1°90, 1507, 1383, 1285

IRV

245, 300

UVAH2O nm:

32

PNB

PNZ

PNZE

PNB

PNZ

PNZE

Example No.

Spectral Data	IRvNujol (cm ⁻¹); 1785, 1745, 1705, 1605, 1520, 1350 max m.p. 181-183°C (dec.)	UVλ ^H 2 ^O nm: 296, 276, 231	IRV ^{KBr} (cm ⁻¹): 1750, 1690, 1595, 1435, 1385, 1240, max 1090	NMR [§] (D ₂ 0): 1.26(3H, d, J=6.3Hz), 1.95(1H, m), 3.20(1H, dd, J=4.0 and 9.0Hz), 3.37(1H, dd, J=2.6 and 6.1Hz), 8.32(1H, dd, J=1.3 and 5.0Hz), 8.60(1H, d, J=2.2Hz)
×	-NHW-		HN-	
R ₃	BNG		æ	
R ₂ R ₃	PNG			
R.	e z z z		ដ ម	
mbre			£.	

ample No.	R L	R2	R ₃	¥	Spectral Data
	PNZE	ZNA	PNB	-NH	IRv ^{Nu} jol (cm ⁻¹): 1790, 1745, 1705, 1670, 1605, 1515, 1345
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	m.p. 189-191°C (dec.)
34	٠.				UVλ ^H 2 ^O nm: 298, 286, 237
	E E	Ė	æ	-NH-	IRVKBr (cm ⁻¹): 1750, 1680, 1590, 1480, 1390, 1245, the max (cm ⁻¹): 1090
				N	NMR ⁶ (D ₂ O): 1.26(3H, d, J=6.3Hz), 1.95(1H, m), 3.20(1H, dd, J=4.0 and 9.0Hz), 3.37(1H, dd, J=2.6 and 6.1Hz), 8.32(1H, dd, J=1.3 and 4.9Hz), 8.60(1H, d, J=2.2Hz)
	E 80 20 0	2	д 2		IRuneat (cm ⁻¹): 1775, 1750, 1705, 1640, 1520, 1345, Camax (cm ⁻¹): 1255, 1110
ស					NMR ⁶ (CDC ² ₃): 1.48(3H, d, J=6.5Hz), 5.24(4H, s), C 5.23 and 5.44(2H, ABq, J=14Hz), O 8.19(6H, d, J=8.5Hz)

Y Spectral Data	IR vneat (cm ⁻¹): 1782, 1750, 1710, 1660, 1522, 1445, 1355, 1270, 1140	-N S.26(4H, S), 5.26(4H, S), 5.18 and 5.42(2H, ABq, J=14Hz), 7.50(2H, d, J=8.5Hz), 7.53(2H, d, J=8.5Hz), 7.53(2H, d, J=8.5Hz), 7.62(2H, d, J=8.5Hz), 8.19(6H, d, J=8.5Hz)	υνλ ^H 2 ^O nm: 298	-N IRV KBr (cm ⁻¹): 1755, 1630, 1600, 1440, 1382, 1240
-			\	Z
R 3		8 8 8		æ
R 2		9 2		ĸ
R.		PNZE		e E
16	1	ယ		

ample No.	R.	R2	R ₃	Y Spectral Data	ta
		ļ		CHCL ³ (cm ⁻¹): 1780, 1740(sh), 1710, 1605, 1520,), 1710, 1605, 1520,
	고 2 3	7 Z Z	n Z	NMR6 (CDCL ₃): 1.48(3H, d, 6.32(2H, d, J=8.8Hz)	J=6.4Hz), 5.25(4H, s), J=2Hz), 8.16(6H, d,
37				UVλ ^H 2 ^O nm: 297, 241	
	변 포	æ	x	IRV ^{KBr} (cm ¹): 1750, 1720, 1590, 1470, 1390,	, 1470, 1390, 1280
				NMR6 (D ₂ O): 1.26(3H, d, $J=6.$) 6.44(2H, t, $J=2.$) J=2.2Hz)	J=6.2Hz), 2.12(2H, m), J=2.2Hz), 7.39(2H, t,

			- 15	52 -
Spectral Data	IRVmax 3 (cm ⁻¹): 1780, 1750, 1700, 1650(sh), 1610, 1525, 1350	NMR6 (CDCL ₃): 1.47(3H, d, J=6Hz), 5.22(4H, B), 8.12(6H, d, J=8.5Hz)	UVλ ^H 2 ^O nm; 298 mäx	IRVKBr (cm ⁻¹): 1750, 1650, 1600, 1440, 1395
×	CONH)	CONH	
R.	BNB		33	
R ₁ R ₂ R ₃	PNZ		. ·	,
R.	PNZE		E	
No.		38		

			- 1	53 -	
Spectral Data	IRVCHCk3 (cm ⁻¹): 1783, 1750, 1715, 1660, 1615, 1530, max	NMR& (CDCl ₃): 1.48(3H, d, J=5.9Hz), 5.25(4H, B), 8.15(6H, d, J=8.6Hz)	UVA ^{H2O} nm: 298	IRVMBK (cm ⁻¹): 1750, 1630, 1590, 1460, 1380, 1240, 1090	NMR& (D_2 O): 1.27(3H, d, J=6.3Hz), 3.19(1H, dd, J=2.9 and 9.2Hz), 3.39(1H, dd, J=2.6 and 6.0Hz)
Ä	HO)	. · ·	HO	
32	PNB			in	
R ₂	PNZ			æ	
Z,	PNZE			es E	
Example No.			36		·

			154	_	
Spectral Data	IRVMAX (cm-1): 1780, 1740, 1708, 1640, 1605, 1520, 1806, 1605, 1520, 1806, 1605, 1520, 1806, 180	NMR& (CDC l ₃): 1.50(3H, d, J=6.2Hz), 5.28(4H, B), 8.19(6H, d, J=8.1Hz)	UV A MAX nm; 297	IRVMBX (cm ⁻¹): 1760, 1635, 1600, 1450, 1380	NMR& (D ₂ O): 1.27(3H, d, J=6.3Hz), 3.19(1H, dd, J=2.7 J=2.9 and 9.1Hz), 3.39(1H, dd, J=2.7 and 6.0Hz), 3.55(2H, d, J=4.0Hz), 3.69(1H, dd, J=2.0 and 4.3Hz)
X					·
~E		8 2 4		I	
R 2		2 2 9		Ħ	
R L		e S S S S S S S S S S S S S S S S S S S		8	
kample No.			40		

Example No.	A.	R ₂	ж ₃	. х	Spectral Data
	15 22 0	20	0 0	CH ₃ IRV _{max} 3 (cm	<pre>CHCk3 (cm⁻¹): 1780, 1750, 1705, 1635, 1605, 1520, 1345</pre>
	3 3 4			CH ₃ NMR6 (CDCL ₃):	: 1.49(3H, d, J=6.4Hz), 5.26(4H, s), 8.20(6H, d, J=8.8Hz)
41			-		
				υνλ _{max} nm:	298
-	E E	Ħ	Œ	CH ₃ -N -N IRV KBr (cm ⁻¹)	KBr (cm ⁻¹): 1755, 1625, 1440, 1380, 1240
-				CH ₃ NMR8 (D ₂ O):	1.23(3H, d, J=6.5Hz), 1.25(3H, d, J=6Hz), 1.31(3H, d, J=7Hz)

Spectral Data	IRV Max 3 (cm ⁻¹): 1785, 1746, 1705, 1657, 1610, 1525, 1345	NMR& (CDCl ₃): 1.47(3H, d, J=6.2Hz), 5.25(4H, s), 8.16(6H, d, J=8.6Hz)	.UV /H2O nm: 298	IR WBr (cm ⁻¹): 1750, 1655(sh), 1635, 1610(sh), 1380, 1220	NMR & (D_O): 1.26(3H. d. J=6.3H.)
X	ENOS -			-N CONH ₂	
R ₃	E NO				
R2	20	3 2 4		#	
R	5	3 3 2 4		II II	
e le	- 			:	

100	LO.				
Spectral Data	IRV _{max} 3 (cm ⁻¹): 1780, 1745, 1702, 1603, 1520, 1345	NMR& (CDC l ₃): 1.48(3H, d, J=6Hz), 2.85(6H, s), 2.93(6H, s), 5.26(4H, s)	UVλ _m ξχ nm: 299, 229	IRVmax (cm-1): 1750, 1690, 1590, 1420, 1285, 1130	NMR δ (D ₂ O): 1.26(3H, d, J=6.3Hz), 1.91(1H, m), 2.60(1H, m), 3.08(6H, s), 3.16(6H, s), 3.40(1H, dd, J=2.7 and 6.0Hz), 4.37(1H, dd, J=6.0 and 9.5Hz)
×	N(CH ₃) ₂	N(CH ₃) ₂		$N(CH_3)_2$ $-N= $	N M
R ₃	a a a			×	
R ₂	2NG			æ	
R ₁	PNZE			<u>ن</u> ت	
No.			43		

Spectral Data	IRV max 3 (cm ⁻¹): 1780, 1740, 1705, 1605, 1523, 1345	NMR6 (CDC ℓ_3): 1.47(3H, d, J=6.8Hz), 5.25(4H, s)	υνλ ^{H2O} nm: 207, 299	IRVKBr (cm ⁻¹): 1750, 1640, 1590, 1545, 1385, 1040	NMR6 (D ₂ O): 1.25(3H, d, J=6.6Hz), 1.85(1H, m)
X	NH ₂	NH2		$-N \leftarrow \frac{NH_2}{NH_2}$	
ا _ن ک	E N			æ	
R ₂ R ₃	Z NO			æ	•
R.	PNZE			. H	

No.	۳,	R2	33	Y	Spectral Data
					IRvneat (cm ⁻¹): 1775(sh), 1750, 1710, 1520, 1350,
د د	PNZ	N N Q	and	-OPNB	NMR& (CDC ² 3): 1.48(3H, d, J=6.5Hz), 4.70(1H, dd, J=6 and 8.5Hz), 5.25(4H, s), 5.46(1H, d, J=14Hz), 7.53(4H, d, J=8.5Hz), 7.62(4H, d, J=8.5Hz), 8.21(4H, d, J=8.5Hz), J=8.5Hz)
	E	m	æ	HO-	υνλ ^H 2 ^O nm: 294
					IRVCHCL3 (cm ⁻¹): 1787, 1753, 1716, 1614, 1530, 1431, max
. 4	3 2 2 3 4	PNZ	a N d	-och ₃	NMR6 (CDC23): 1.48(3H, d, J=6Hz), 1.83-2.42(1H, m), 2.50-3.02(1H, m), 3.17-4.53(8H, m), 3.70 and 3.73(3H, s), 5.02-5.28(2H, m), 5.27(4H, s), 5.47(1H, d, J=14Hz), 7.53(4H, d, J=9Hz), 7.63(2H, d, D=9Hz), 8.21(6H, d, J=9Hz)
	<u>ខ</u> =	m	: m	-0CH ₃	1090

do.	R ₁	R ₂	R ₃	Y	Spectral Data
	PNZE	DNZ	ana	-NHNH2 .	Nujol (cm ⁻¹): 1782, 1750, 1705, 1620, 1520, 1350 m.p. 184-187°C (dec.)
74	E			-NHNH ₂	UVλ _{mãx} nm: 299 IRν _{max} (cm ⁻¹): 1750, 1720, 1590, 1390, 1245, 1120
	PN ZZ	ZNA	PNB	-NHN(CH ₃) ₂	IRvmax (cm ⁻¹): 1785, 1750, 1715, 1668, 1608, 1520, 1345 m.p. 187-189°C (dec.)
48			:	·: ·	UVλ _m äχ nm: 300
	<u>ග</u> ස	æ	æ	-NHN(CH ₃) ₂	IRV _{max} (cm ⁻¹): 1750, 1690, 1595, 1390, 1175, 1020
•					NMR ^{δ} (D ₂ O): 1.26(3H, d, J=6.4Hz), 2.60(6H, s), 3.18(1H, dd, J=6.0 and 9.1Hz), 3.39(1H, dd, J=2.6 and 6.0Hz)

	1432, , 1132,	d, .56- m), s), H, d, Hz),	_		J &
	3, 1524, 5, 1197,	1.13-1.36(3H, m), 1.48(3H, d, J=6Hz), 1.83-2.36(1H, m), 2.56- 3.06(1H, m), 3.19-4.59(10H, m), 4.89-5.36(2H, m), 5.27(4H, s), 5.47(1H, d, J=14Hz), 7.54(4H, d, J=8.5Hz), 7.63(2H, d, J=8.5Hz), 8.20(6H, d, J=8.5Hz)		1130	•
	4, 1608, 8, 1265,	36(1H, 36(1H, 19-4.59), 5.27 4Hz), 7 2H, d, 5Hz), 7		1380, 1240,	d, J=6Hz), 1.27(3H, 2.29(1H, m), 4.29(2H
1 Data	0, 1714 8, 1348	(3H, m. 83-2.m.), 3.4(2H, m. d, J=1.7.63(d, J=8.7.63(d, J=8.7.63(d		1380,	J=6Hz 9(1H, 1
Spectral	84, 1750, 04, 1378, 13	13-1.36 6Hz), 1 06(1H, 89-5.36 47(1H, 8.5Hz), 20(6H,		, 1597,	(3H, d, z), 2.2 z)
	1): 1784, 1404, 1113	•	298	: 1743	1,25(3H, J=7Hz), 2
	IRvmax 3 (cm ⁻¹):	NMR6 (CDCL3):	υνλ ^H 2 ^O nm:	IRVER (cm ⁻¹): 1743, 1597,	NMR & (D20):
ы	<u>-</u>	-0C2H5		-0C ₂ H ₅	
				Ÿ	
R3		ana		. 33	
R ₂ R ₃		8 2 4		æ	·
R		22 N. d.	·	E	-
ample No.		4			

R	R ₂	R ₃	*	Spectral Data IR v Mujol (cm-1): 1790, 1750, 1715, 1670, 1602, 1515, 1340
PNZE	PNZ	PNB	-NHOPNB	m.p. 149-152°C (dec.)
	:	·		υνλ _{mäx} nm: 300
	;::	. E	-NHOH	IR vmax (cm ⁻¹): 1750, 1680, 1600, 1400, 1120
ឆ ខ ខ	g Z	PNB	-NHOCH ₃	IR wmax (cm ⁻¹): 1787, 1745, 1710, 1665, 1605, 1520, 1345 m.p. 188-189.5°C (dec.)
				299
	#	æ	-NHOCH ₃	XBr (cm ⁻¹): 1745, 1680, 1600, 1440, 1390, 1245, 75 (9)
	•			NMR & (D ₂ O): 3.70(3H, s)

			- 163	3 -	
Spectral Data	IRVCHCl3 (cm-1): 1773, 1743, 1705, 1663, 1605, 1523, max	NMR6 (CDC ^A 3): 1.49(3H, d, J=6.5Hz), 5.23(2H, s), 5.26(2H, s), 8.19(6H, d, J=8.8Hz)	UVλ ^H 2 ^O nm; 298	IRV Max (cm ⁻¹): 1763, 1660, 1590, 1380, 1240, 1060	NMR [§] (D ₂ O): 1.26(3H, d, J=6.6Hz), 2.50(3H, s), 2.52(3H, s), 2.92(3H, s), 3.18(2H, q, J=4.3Hz)
×	CH ₃ CH ₃	CH ₃		CH ₃ CH ₃	E E
R ₃	1 2 2			Ħ	
R ₂ R ₃	, NG	9 N		æ	
R ₁	5 2 2	a 3 2 4			
ample No.			52		

			-04	
Spectral Data	IRvmax (cm ⁻¹): 1780, 1750, 1710, 1605, 1525, 1350, 1260	NMR6 (CDCL ₃): 1.49(3H, d, J=6.4Hz), 5.25(4H, s), 5.36(2H, ABq, J=13.6Hz), 7.53(4H, d, J=8.8Hz), 7.62(2H, d, J=8.8Hz), 8.21(6H, d, J=8.8Hz)	UVAH2O nm: 300	IRV ^{KBr} (cm ⁻¹): 1735, 1595, 1396, 1255, 1215, 1043
¥	N. T.	7	_\	7
. 1	m			
R.	PNB		#	=
R2	PNZ			:
R ₁	PNZE		E	:
Example No.		ເນ ເກົ		

		÷	165 -	•
Spectral Data	(cm ⁻¹): 1780, 1745, 1705, 1645, 1520, 1440, 1350, 1262	<pre>%3): 1.49(3H, d, J=6.5Hz), 5.26(4H, s), 5.24 and 5.43(2H, ABq, J=14Hz), 7.44(2H, d, J=9Hz), 7.48(2H, d, J=9Hz), 7.68(2H, d, J=9Hz), 8.19(6H, d, J=9Hz)</pre>	298): 1.27(3H, d, J=6Hz), 1.83(4H, t, J=7Hz), 1.94-2.09(1H, m), 2,42(4H, t, J=7Hz), 2.77-2.92(1H, m), 3.11-3.42(5H, m), 3.81-3.99(1H, m), 4.14-4.29(2H, m)
	IRvneat (c	NMR6 (CDC l ₃):	UV A max nm:	NMR 6 (D ₂ 0):
X	. [\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
R33		PNB		##
R ₂ R ₃		2 N N		æ
R.		e E E		E H
Example No.		. ³ ru 4.		

	0.70	100 -	0126587
	Spectral Data	IRvneat (cm ⁻¹): 1775, 1745, 1700, 1520, 1345, 1260, 1130 NMR [®] (CDC _{L₃}): 1.48(3H, d, J=6.5Hz), 3.22(2H, br, d, J=9.0Hz), 5.26(4H, s), 5.25 and 5.46(2H, ABq, J=14Hz), 7.50, 7.54 and 7.60(each 2H, d, J=9.0Hz), 8.18(4H, d, J=9.0Hz), 8.21(2H, d, J=9.0Hz)	[α] ²⁹ +37.3° (c=0.244, acetone) Γ Ο (σ) (c=0.244, acetone) Γ Ο (σ) (c=0.244, acetone) Γ Ο (σ)
R ₁ H H A A A COOR ₃	A	-Simin CONH2	-Shmm
	. E.	ZNG	æ
	R L	PNZE	원 표
	xample No.	ស	

. Spectral Data	IRVmax (cm ⁻¹):1780, 1745, 1700, 1610, 1520, 1400, 1800, max	NMR& (CDC \$\lambda_3\$): 1.48(3H, \delta, J=6Hz), 3.19(2H, d, J=2.5 and 7.5Hz), 5.25(4H, s), 5.23 and 5.42(2H, ABq, J=14Hz), 7.47, 7.52 and 7.60(each 2H, d, J=8.5Hz), 8.16(4H, d, J=8.5Hz), 8.16(4H, d, J=8.5Hz), 8.19(2H, d, J=8.5Hz)	[α] 32 +57.6° (c=0.279, acetone)	υνλ _{max} nm: 297	
A		-S mm N PNZ		-Similary	
R 33		PNZ		æ	
R.	•	9 N G		E	
No.	-	9 50			

		- 1	68 -	**		12000	,
Spectral Data	IRvmax (cm ⁻¹): 1775, 1750, 1700, 1520, 1345, 1260, 18vmax	NMR& (CDCL3): 1.48(3H, d, J=6.5Hz), 3.26(2H, br, d, J=9.0Hz), 5.25(4H, s), 5.18 and 5.46(2H, ABq, J=14Hz), 7.49, 7.53 and 7.62(each 2H, d, J=8.5Hz), 8.17(4H, d, J=8.5Hz), 3.8.19(2H, d, J=8.5Hz)	[α] 25 +43.7° (c=0.353, acetone)	υνλ _m äχ nm: 297	CHCl3 (cm ⁻¹): 1750, 1705, 1645, 1610, 1525, 1440, 18vmax	υνλ _m äx nm: 287	
A	-	-S -S -N CONH2		-S - N H	-S N PNZ	-S-	
κ		PNB			PNB .	.	-
R T		PNZE		en E	PNZE	H 8	
ple.		4		-			

COX	COOR ₃
3,41 == (2)	
H	N

	1395,
·	1775, 1700, 1607, 1520, 1105
Data	1607,
pectral Dat	1700,
Spe	1775,
	(cm ⁻¹):
	IRV Max
я	
33	
R2	

Example No.

59

$$uv_{max}^{H_2O}$$
 nm: 295

H -NH₂
IR V (cm⁻¹): 1750, 1660(sh), 1600, 1380, 1240

HΕ

	İ			- 170 -		
Spectral Data	IRV _{max} 3 (cm ⁻¹): 1770, 1695, 1650, 1520, 1340	NMR6 (CDCL3): 1.34(3H, d, J=6.15Hz), 1.36(3H, d, J=8.0Hz), 3.00(3H, s), 5.20(2H, s), 5.36(2H, ABq, J=14.0Hz), 7.47(2H,	d, J=8.8Hz), 7.64(2H, d, J=8.8Hz), 8.20(2H, d, J=8.8Hz)	UVλ ^H 2ν nm: 289	IRV Max (cm 1): 1750, 1630, 1605, 1375, 1240	
¥		Me Me		2	W	
R3		PNB		a	:	
R ₁ R ₂ R ₃		Z N G	·	×	:	
R1		H		E E		
ample 10.			09			

Spectral Data	IRVCHCL3 (cm-1): 3380, 1770, 1725(sh), 1700, 1680, max	NMR & (CDC L3): 5.30(2H, S), 5.31(2H, ABq, J=13.8Hz), 7.48(2H, d, J=8.8Hz), 6.21(4H, d, J=8.8Hz), 8.21(4H, d, J=8.8Hz)	UVλ ^H 2 ^O nm: 295	IR WBr (cm ⁻¹): 1750, 1670, 1600, 1390, 1245	NMR& (D ₂ O): 1.26(3H, d, J=6.5Hz), 1.28(3H, d, J=8.5Hz), 3.92(2H, s)
Y	-	NHCH ₂ CONH ₂		NHCH ₂ CONH ₂	
ж 23		a a a		×	
R_1 R_2 R_3	-	200		æ	
ar T		ස ස		四 .	
ample No.				61	

		- 1/2 -	_		
Spectral Data	IRV Max 3 (cm 1): 3480, 3350, 1773, 1678, 1604, 1525, 1310	NMR& (CDCL3): 1.34(3H, d, J=6.2Hz), 1.37(3H, d, J=7.0Hz), 3.20(3H, s), 5.18(2H, s), 5.36(2H, ABq, J=13.4Hz), 7.46(2H, d, J=8.8Hz), 7.63(2H, d, J=8.8Hz), 8.20(2H, d, J=8.8Hz), 8.21(2H, d, J=8.8Hz)	UVλ ^H 2 ^O nm: 292	IRVMBX (cm ⁻¹): 1752, 1645, 1600, 1385, 1245	
¥	-	NCH ₂ CONH ₂	· axoo	Me Me	
R ₃		A N N	=	3	
R ₁ R ₂ R ₃		PNZ	n	1	
R		8	n n	:	
mple o.		20			

rg.	1705, 1660, 1623, 1606, 1345		(4H, br, s), 5.21(2H, d, br, s), 5.21(2H, br, s), 6.21(2H, d, J=8.6Hz), 8.14(2H, d,		, 1460, 1380	z), 1.27(3H, d, N, br, s)
Spectral Data	: 3420, 1772, 1526, 1440,	(c=0.11, CHC23)	1.33(3H, d, J=6.15Hz), J=6.8Hz), 4.19(4H, br, s), S), 5.36(2H, ABq, J=13.9 5.84(2H, s), 7.40(2H, d, 7.64(2H, d, J=8.6Hz), 8 J=8.6Hz), 8.19(2H, d, J=	293	1750, 1640, 1610,	1.25(3H, d, J=6Hz), J=7.5Hz), 5.85(2H, h
	IRV ^{CHCl3} (cm ⁻¹)	[α] ²⁵ -45° (σ ^ε	NMR& (CDCL3):	UVλ H2O nm:	IRV KBr (cm-1):	NMR6 (D ₂ 0):
Ж	-					
. E		PNB			æ	
R ₂		PNZ			æ	
R ₁		<u>의</u> 표	·		E	
nple o.			ဗ			

Spectral Data	IRVmax 3 (cm ⁻¹):1770, 1702, 1650, 1520, 1343, 1102	NMR& (CDC k3): 1.33(3H, d, J=6.15Hz), 1.37(3H, d, J=7.0Hz), 5.21(2H, s), 5.36(2H, ABq, J=13.9Hz), 7.50(2H, d, J=8.6Hz), 7.64(2H, d, J=8.6Hz), 8.20(4H, d, J=8.6Hz)	υν λ ^H 2 ^O nm: 293	IRVRBr (cm ⁻¹): 1755, 1630(sh), 1610, 1442, 1383, max 1240, 1110	NMR & (D ₂ O): 1.25(3H, d, J=6.5Hz), 1.28(3H, d, J=7Hz)
×	<	N		N₁ 2	
32		PNB	·	æ	
R_1 R_2 R_3		PNZ			
R L		<u>ព</u>		<u>ធ</u> ដ	
Io.	-	- -	64.		

			175	-	
Spectral Data	IRV Max 3 (cm ⁻¹): 3400, 1770, 1705, 1650, 1520, 1432, 18v max	NMR6 (CDCL ₃): 1.35(3H, d, J=6.0Hz), 1.36(3H, d, J=7.0Hz), 5.20(2H, s), 5.36(2H, ABq, J=13.5Hz), 7.46(2H, d, J=8.8Hz), 7.64(2H, d, J=8.8Hz), 7.64(2H, d, J=8.8Hz),		UVλ ^H 2 ^O nm: 293	IRV ^{KBr} (cm ⁻¹); 1760, 1615, 1390, 1245, 1100
X	но '	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		OH	
م		ana		מ	c
R_1 R_2 R_3		PNZ		5	c
R ₁		я		5 2	a C
Example No.		5			

		- 176 -
Spectral Data	IRVmax IRVmax (cm ⁻¹): 1770, 1705, 1656, 1525, 1345, 1112 NMR6 (CDC _{k3}): 1.35(3H, d, J=6.15Hz), 1.36(3H, d, J=7.0Hz), 5.22(2H, s), 5.36(2H, d, J=8.0Hz), 7.50(2H, d, J=8.0Hz), 7.64(2H, d, J=8.0Hz), 8.20(4H, d, J=8.0Hz),	UVλ ^{H2O} _{māx} nm: 292 . IRν ^{KBr} (cm ⁻¹): 1760, 1630(sh), 1605, 1448, 1380,
Y	°	(°)
R ₃	PNB	æ
R ₁ R ₂ R ₃	ZNd	::
R	四五	E
ample No.	. 99	

			- 177	_	
Spectral Data	IRVCHCL3 (cm ⁻¹): 1772, 1710, 1650, 1520, 1435, 1400, 1340	NMR& (CDC \(\begin{array}{c} \lambda_{3} \); 1.34(3H) d, J=6.0Hz), 1.35(3H, d, J=7.5Hz), 2.25(3H, s), 2.31(4H, s), 5.25(2H) s), 5.36(2H, ABg,	7.49(2H, d, J=8.6Hz), J=8.6Hz), 8.20(4H, d,	υν λ ^H 2 ^O nm: 291	IR V ^{KBr} (cm ⁻¹): 1755, 1620, 1442, 1380, 1250
54	(N-CH ₃			ノ
1		m			
R ₂ R ₃		PNB		5 22	
R ₂		ZN.g		×	1
R 1		ជ		ន	
Example No.			67		

Spectral Data	IRVCHC&3 (cm ⁻¹): 1775(sh), 1750(sh), 1710, 1605, 1522, 1345, 1107	NMR6 (CDCl ₃): 1.35(3H, d, J=6.4Hz), 1.36(3H, d, J=6.8Hz), 3.66 and 3.73(3H, each S), 5.24(2H, S), 5.36(2H, ABq,	J=13.2Hz), 7.45(2H, d, J=8.5Hz), 7.65(2H, d, J=8.5Hz), 8.22(4H, d, J=8.5Hz)	$uv_{max}^{H_2O}$ nm: 296	IRVMax (cm-1): 1735, 1602, 1390
Ā	-	-осн ₃			е 00сн ₃ 3
R ₃		PNB		:	x
R_1 R_2 R_3		DN2		:	æ
R		EI	÷		ਜ਼ ਜ਼
Example No.			89		

L-trans

Spectral Data

Example

1708, 1652, 1604, 1523,

 $[\alpha]_{D}^{25}$ -33° (c=0.10, CHC l_{3})

-N(CH₃)₂

PNB

PNZ

田田田

69

NMR6 (CDCL3):

J=7.0Hz),

UVAH20 nm:

m.

田田

286

IRV MBX (cm-1): 1750, 1630(sh), 1610, 1395, 1250

0126587A1 L >

	- 160 -	1
CHCL Spectral Data CHCL 13400, 1775, 1707, 1642, 1608, 1526, 1445, 1345	[α] 25 -33° (c=0.11, CHCl ₃) NMRδ (CDCl ₃): 1.33(3H, d, J=6.15Hz), 1.40(3H, d, J=6.8Hz), 5.20(2H, s), 5.35(2H, ABq, J=13.8Hz), 7.47(2H, d, J=8.8Hz), 7.64(2H, d, J=8.8Hz), 8.20(2H, d, J=8.8Hz)	υνλ _{máx} nm: 288 Ικν ^{KBr} (cm ⁻¹): 1760, 1635(sh), 1610, 1450, 1380,
Ā		
.el	a N	
m	d Zna	x x
R ₁ R ₂ R ₃		
R L	ය	<u>ਬ</u> ਸ਼
ample No.	20	

D-trans

Spectral Data

Example No.

1520, H, s), 7.50(2H, J=8.6Hz) 1.39(3H, 2.92 and 1700, 1650, 1605, 3.12(3H, each s), 5.22(5.36(2H, ABq, J=13.5Hz) d, J=8.6Hz), 7.64(2H, d 1.33(3H, d, J=6.15Hz) J=6.8Hz), 2.98(3H, s) IRVCHCL3 (cm-1): NMR & (CDC &3):

PNB

PNZ

ΉE

UVλ^{H2O} nm: 291

 $-N(CH_3)_2$

HE

IRVmax (cm⁻¹): 1755, 1630(sh), 1610, 1390, 1250

	200		- 182 -	
Spectral Data	IRVmax 3 (cm ⁻¹): 3420, 1775, 1710, 1660, 1621, 1528, 1420, 1405, 1120	NMR6 (CDC L ₃): 1.33(3H, d, J=6.15Hz), 1.40(3H, d, J=6.6Hz), 4.20(2H, br, s), 5.23(2H, s), 5.84(2H, s), 7.50(2H, d, J=8.6Hz), 7.65(2H, d, J=8.6Hz), 8.15(2H, d, J=8.6Hz), 3.815(2H, d, J=8.6Hz), 8.21(2H, d, J=8.6Hz)	UVλ ^H 2 ^O nm: 283	IRVKBr (cm-1): 1750, 1640, 1610, 1455, 1400, 1250
K	-	(=) 		
			. •	
R3		PNB	II	
R ₂ R.		2 2 2	Ħ	
R.		<u>ක</u> ස	<u>ម</u> ដ	
No.		72	:	

COOR3

Spectral Data

Example No. IR UCHCk3 (cm-1): 3430, 1775, 1710, 1655, 1525, max

NMR & (CDC & 1, 34(3H, d, J=6.4Hz), 1,38(3H, d) J=6.8Hz), 2,92, 2,94, 2,98 and 3.08(6H, each S), 5.21(2H, S), 5.36(2H, ABQ, J=13,9Hz), 7.50(2H d) J=8.6Hz

PNB

PNZ

田田

î.

UVA^H2^O nm: 297

IRV Max (cm-1): 1755, 1630(sh), 1600, 1380, 1240

COY · O

Example No.

Spectral Data

+32° (c=0.22, THF) $[\alpha]_{D}^{33}$

-NH₂

PNB

PNZ

HE

IRv Mujol (cm-1): 1780, 1680, 1608, 1517, 1381, 1350

1.18(3H, d, 5.79(1H, s) NMR6 (CDC &)

J=6Hz), 5.22(2H, s),

UVAH2O nm:

322, 255

.IRV KBr (cm⁻¹): 1762, 1655, 1577, 1376

I

HE

1.75-1.89(1H, 3.00-3.09(1H, 3.65-3.92(2H, 4Hz and J=6Hz), m), 2.62-2.87(1H, nm), 3.38-3.48(1H, nm), 3.90(1H, dd, J=4.17-4.30(1H, m), 5.31.4Hz)

Y Spectral Data	$[\alpha]_{D}^{27}$ +48° (c=0.31, CHC $^{3}_{3}$) -N IRV _{max} (cm ⁻¹): 1790, 1706, 1653, 1612, 1420, 1356, 1115	NMR& (CDCL ₃): 1.36(3H, d, J=6Hz), 5.22(2H, s), 5.75(1H, d, J=1.5Hz)	-N -N -N, 2.88-3.05(1H, m), 3.34-3.61(5H, m), 3.34-3.61(5H, m), 3.64-3.74(1H, m), 3.93(1H, dd, J=1.4Hz and J=6Hz), 4.04(1H, quin, J=6.3Hz), 4.40(1H, t, J=8.2Hz), 5.70(1H, d, J=1.4Hz)
R ₃	ana		Ħ
R2	PNZ		. x
R.	E E		<u> </u>
umple lo.		. 57	·

	Spectral Data Nujol (cm ⁻¹): 1780, 1700, 1675, 1600, 1505
R ₁ S S COOK	R ₂ R ₃ Y
	R ₁
, ·	Example No.

_	
	4.40(lH, t, J=7Hz), 5.25(2H, s), 5.37(lH, d, J=13.6Hz), 5.75(lH, dd, J=1.5Hz and J=3.5Hz), 7.47(2H, d, J=9Hz), 7.57(2H, d, J=9Hz), 8.16(4H, d, J=9Hz)
	NMR6 (CDC l3):
-NH ₂	
PNB	
DN2	
æ	
92	

According to the procedures "described in preceding Examples, the following compounds can also be prepared.

In the following Tables, "Ph" means phenyl group.

Compound No.	<u>x</u>	Y
1	-сн ₂ -	-NHC ₂ H ₅
2	-CH ₂ -	-NH-nC ₄ H ₉
3	-CH ₂ -	-NH-iC ₄ H ₉
4	-CH ₂ -	$-N(nC_3H_7)_2$
5	-CH ₂ -	$-N(iC_3H_7)_2$
6	-CH ₂ -	$-N(nC_4H_9)_2$
7	-CH ₂ -	$-N(iC_4H_9)_2$
8	-CH ₂ -	$-N < CH_3 $ C_2H_5
9	-CH ₂ -	$-N < C_2H_5$ nC_4H_9
10	-CH ₂ -	-N Ph

Compound No.	x	Y
11	-сн ₂ -	-N Ph
12	-CH ₂ -	-NCH ₂ -Ph C ₂ H ₅
13	-сн ₂ -	-N(CH ₂ -Ph) ₂
14	-сн ₂ -	$-N$ $N(C_2H_5)_2$
15	-CH ₂ -	-N N(C ₂ H ₅) ₂ CH ₃
16	-CH ₂ -	N(CH ₃) ₂
17	-сн ₂ -	N(C ₂ H ₅) ₂
18 -	-сн ₂ -	N(CH ₃) ₂
19	-сн ₂ -	$-N$ $N(C_2H_5)_2$
20	-сн ₂ -	-N (CH ₃) ₂
21	-CH ₂ -	-N (CH ₃) ₂ C ₂ H ₅
22	-CH ₂ -	-N N(C ₂ H ₅) ₂
23	-CH ₂ -	CH ₃ OH

Compound No.	<u> </u>	Y
24	-CH ₂ -	CH ₃
25	-сн ₂ -	CH ₃ OH
26	-сн ₂ -	-N OH
27	-сн ₂ -	-N OH
28	-сн ₂ -	-N ОН С 2 ^H 5
29	-сн ₂ -	-N (OH) 2
30	-сн ₂ -	-N () ₂
31	-сн ₂ -	-N OH
32	-сн ₂ -	CON (CH ₃) ₂
33	-CH ₂ -	-м он
34	-сн ₂ -	-N
		,OH

Compound No.	<u> </u>	Y
35	-сн ₂ -	-N CONH
36	-сн ₂ -	-N $CON(CH3)2$
37	-сн ₂ -	-NN-C2H5
38	-сн ₂ -	-N CONH ₂
39	-сн ₂ -	-N CONHCH ₃
40	-сн ₂ -	-N——CON(CH ₃) ₂
41 -	-сн ₂ -	-N CONH ₂
42	-CH ₂ -	-N CONH
43	-сн ₂ -	CON (CH ₃) ₂
44	-CH-	-N-H
45	CH-	-N (CH ₃) ₂ CH ₃

Compound No.	<u>x</u>	Y
46	-СН- СН-	-NCH ₂ CONHCH ₃
47	-CH-	-nch ₂ conhch ₃ Ch ₃
	CH3	
48	-Сн-	-N CONH ₂
49	-s-	-N H
50	-s-	-N (CH ₃) ₂ CH ₃
51	- S-	-N OH
52	-s-	-NCH ₂ CONH ₂
53	-S-	-NCH ₂ CONH H CH ₃
54	-s-	-NCH ₂ CONHCH ₃ CH ₃
55	-s-	-N_O
56	-S-	-N_N-CH ³

Compound No.	<u> </u>	· Y ··· ·
57	-s-	-N
58	- S-	−N OH
59	-s-	-N OH
60	- s-	-N—CONH ₂
61	-s-	-осн ₃

Compound No.	<u>x</u>	
64	-сн ₂ -	-N
65	-сн ₂ -	-N OH
66	-S-	-N
67	-s-	-N
68	-s-	-N OH
69	-s-	-N(CH ₃) ₂

Compound No.	<u>x</u>	Y
71	CH-	-N OH
72	-сн ₂ -	-N
73	-сн ₂ -	-M OH
74	- S-	-N
75	- S-	-N OH
76	- s-	-N
77 -	-s-	-N(CH ₃) ₂

Compound No.	<u>x</u>	у
. 78	-CH- CH ³	-N
79	-CH-	-N
80	-CH-	-N
81	-CH-	-N OH
82	-СН- СН-	CH ₃
83	-CH ₂ -	-N
84	-сн ₂ -	-N OH

Compound No.	<u>x</u>	
85	-CH ₂ -	-NO
86	-сн ₂ -	-N OH
87	-s-	-N
88	-s-	-N
89	-s-	-N OH
90	-s-	-N(CH ₃) ₂

Compounds No.	Y
91	-NH ₂
92	-N OH
93	-NHCH ₂ CONH ₂
94	-N-CH ₂ CONH ₂
95 :35	- n - :.
96	- N .
97	- NOH
98	- NO
99	-N $N - CH3$
100	-OCH ₃

CLAIMS:

5

10

1. A β -lactam compound represented by the formula:

wherein R₁ represents a hydrogen atom, a 1-hydroxyethyl group or a 1-hydroxyethyl group in which the hydroxy group is protected with a protecting group; R₂ represents a hydrogen atom or a protecting group for an amino group; R₃ represents a hydrogen atom or a protecting group for a carboxyl group; X represents a substituted or unsubstituted methylene group of the formula (1):

wherein R_4 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, or X represents a sulfur atom; and Y represents a group of the formula (2):

$$-N \stackrel{R_5}{\searrow}_{R_6}$$
 (2)

wherein R_5 and R_6 , which may be the same or different, each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in the alkyl moiety thereof, a substituted alkyl group having 1 to 5 carbon atoms or a pyridyl group, or R_5 and R_6 are taken together to represent an alkylene chain or an alkylene chain via an oxygen atom, a sulfur atom or a (C_1-C_3) alkyl-substituted nitrogen atom to form, together with the adjacent nitrogen atom, a substituted or unsubstituted 3- to 7-membered cyclic amino group which may contain double bond(s) in the ring thereof, a substituted or unsubstituted guanidyl group of the formula (3):

$$- N = C < \frac{N(R_7)^2}{N(R_7)_2}$$
 (3)

wherein R₇ represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms,

a protected or unprotected hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an unsubstituted or (C₁-C₃)alkyl-substituted hydrazino group or a group of the formula (4):

$$-NHOR_{\mathbf{g}}$$
 (4)

5

10

wherein R_8 represents a hydrogen atom, a protecting group for a hydroxyl group or an alkyl group having 1 to 3 carbon atoms,

and a pharmaceutically acceptable salt thereof.

2. A compound as claimed in Claim 1, wherein R_1 represents a hydrogen atom or a 1-hydroxyethyl group, R_2 and R_3 each represents a hydrogen atom, and Y is a group represented by the formula (2-a):

$$-N$$
 R_{6-a}
(2-a)

wherein R_{5-a} and R_{6-a} each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group naving-3 to 4 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in the alkyl moiety, an alkyl group having 1 to 5 carbon atoms which is substituted with a hydroxyl group, a $di-(C_1-C_3)$ alkylamino group, a carbamoyl group, a mono- or $di-(C_1-C_3)$ alkylamino or a pyridyl group; or R_{5-a} and R_{6-a} jointly represent an alkylene chain or an alkylene chain via an oxygen atom, a sulfur atom or a (C_1-C_3) alkyl-substituted nitrogen atom to form, together with the adjacent nitrogen atom, an unsubstituted or substituted 3- to 7-membered cyclic amino group which may contain double bond(s) in the ring thereof wherein the substituent is an alkyl group having

5

10

15

20.

1 to 3 carbon atoms, a carbamoyl group, a carboxyl group, a mono- or $di-(C_1-C_3)$ alkyl-substituted aminocarbonyl group or a hydroxyl group; an unsubstituted or (C_1-C_3) alkyl-substituted guanidyl group, a hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an unsubstituted or substituted hydrazino group wherein the substituent is an alkyl group having 1 to 3 carbon atoms; or a group represented by the formula (4-a):

- wherein R_{8-a} represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
 - 3. A compound as claimed in Claim 1, wherein R_1 represents a 1-hydroxyethyl group, R_2 and R_3 each represents a hydrogen atom, and Y is a group represented by the formula (2-b):

$$-N < R_{5-b}$$
 (2-b)

wherein R_{5-b} and R_{6-b} each represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 3 to 4 carbon atoms, an aralkyl group having 1 to 3 carbon atoms in the alkyl moiety thereof, a substituted alkyl group having 1 to 5 carbon atoms

5

15

wherein the substituent is a hydroxyl group, a di- (C_1-C_3) alkylamino group, a carbamoyl group, a monoor di- (C_1-C_3) alkyl-substituted aminocarbamoyl group or a carboxyl group, or a pyridyl group, or R_{5-b} and R_{6-b} jointly represent an alkylene chain or an alkylene chain via an oxygen atom, a sulfur atom o. a (C_1-C_3) alkylsubstituted nitrogen atom to form, together with the adjacent nitrogen atom, an unsubstituted or substituted 3- to 7-membered cyclic amino group which may contain double bond(s) in the ring thereof wherein the substituent is an alkyl group having 1 to 3 carbon atoms, a carbamoyl group or a hydroxyl group; an unsubstituted or substituted guanidyl group wherein the substituent is an alkyl group having 1 to 3 carbon atoms; a

hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an unsubstituted or substituted hydrazino group wherein the substituent is an alkyl group having 1 to 3 carbon atoms; or a group represented by the formula (4-a):

-NHOR_{8-a} (4-a)

wherein R_{8-a} represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

5

4. A compound as claimed in Claim 1, wherein R₁ represents a 1-hydroxyethyl group, R₂ and R₃ each represents a hydrogen atom, and Y is a group represented by the formula (2-c):

$$-N < R_{5-c}$$
 (2-c)

wherein R_{5-c} and R_{6-c} have one of the following meanings:

- (1) R_{5-c} represents an alkyl group having 1 to 5 carbon atoms which may be substituted with a carbamoyl group, a mono- or $\operatorname{di-(C_1-C_3)}$ alkylamino-carbonyl group or a hydroxyl group, or a pyridyl group, and R_{6-c} represents a hydrogen atom or has the same meaning as defined for R_{5-c} ;
- (2) R_{5-c} and R_{6-c} jointly represent an alkylene chain to form, together with the adjacent nitrogen atom, an unsubstituted or substituted 4- to 6-membered saturated cyclic amino group or an unsubstituted or substituted 5- to 6-membered cyclic amino group having double bond(s) in the ring thereof wherein the substituent on the cyclic amino ring is a carbamoyl group or a hydroxyl group; and
- (3) R_{5-c} and R_{6-c} jointly represent an alkylene chain via an oxygen atom-or a (C₁-C₃)alkyl-substituted nitrogen atom to form, together with

-- ⁻10

5

15

the adjacent nitrogen atom, a 6-membered cyclic amino group.

5. A compound as claimed in Claim 3, wherein Y is a group represented by the formula:

wherein R_{5-d} represents a hydrogen atom or a methyl group, and R_{6-d} represents a group of the formula:

$$\begin{array}{c|c}
R_{c} & O \\
 & \parallel \\
-CH - C - N \\
R_{b}
\end{array}$$

wherein R_a , R_b and R_c each represents a hydrogen atom or a methyl group.

6. A compound as claimed in Claim 3, wherein Y is represented by the formula:

$$-N < \frac{CH}{3}$$
 or $-N$

7. A compound as claimed in any one of Claims

1 to 6, wherein X represents R₄ wherein R₄ is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

5

- 8. A compound as claimed in Claim 7, wherein X cH₃ represents -CH-.
- 9. A compound as claimed in Claim 7, wherein R_4 is a hydrogen atom.
- 10. A compound as claimed in any one of Claims 1 to 6, wherein X is a sulfur atom.
 - 11. A (5R)-compound of a compound as claimed in any one of Claims 1 to 10.
 - 12. (5R)-3-[2-(Dimethylaminocarbonyl)pyrrolidin-4-ylthio-
- 6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
- 13. ____(5R)-3=[2-(-1-Pyrrolidino)carbonyl)pyrrolidin-4-ylthio-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 14. (5R)-3-[2-Carbamoylpyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-4-thia-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 15. (5R)-3-[2-(Dimethylaminocarbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutical-ly acceptable salt thereof.
- 2516. (5R)-3-[2-((1-Pyrrolidino)carbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2;0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically

acceptable salt thereof.

- 17. (5R)-3-[2-((1-Pyrroli-3-nyl)carbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
- 18. (5R)-3-[2-((1-Azetidino)carbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutical-ly acceptable salt thereof.
- - 20. (5R)-3-[2-((2-Hydroxyethyl)methylaminocarbonyl)-
- pyrroldin-4-ylthio] -6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-3-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 21. (5R)-3-[2-(1-Morpholinocarbonyl)pyrrolidin-4-ylthio]- *
 6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-
- 20 2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 22. (5R)-3-[2-(1-N-Methylpiperazinocarbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutical-ly acceptable salt thereof.

25

- 23. __(5R)-3-[2-(Methoxycarbonyl)pyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
- 5 24. (5R)-3-[2-Carbamoylpyrrolidin-4-ylthio]-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 25. (5R)-3-[2-(4-Pyridylaminocarbonyl)pyrrolidin-4-
- ylthio]-6-(l-hydroxyethyl)-l-azabicyclo[3,2,0]hept-2ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 26. (5R)-3-[2-(Dimethylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(l-hydroxyethyl)-l-azabicyclo[3,2,0]-
- hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.

pharmaceutically acceptable salt thereof.

- 27. (5R)-3-[2-((1-pyrrolidino)carbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylic acid, or a non-toxic
- 28. (5R)-3-[2-((1-Pyrroli-3-nyl)carbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]-hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
- 25 29. (5R)-3-[2-((1-Azatidino)carbonyl)pyrrolidin-4ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic

5

pharmaceutically acceptable salt thereof.

- 30. (5R)-3-[2-((3-Hydroxy-1-pyrrolidino)carbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid,
 or a non-toxic pharmaceutically acceptable salt thereof.
- 31. (5R)-3-[2-((2-Hydroxyethyl)methylaminocarbonyl)pyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1azabicyclo[3,2,0]hept-2-ene-7-one-2-carboxylic acid, or
 a non-toxic pharmaceutically acceptable salt thereof.
- 32. (5R)-3-[2-(1-Morpholinocarbonyl)pyrrolidin-4-ylthio]4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically
 acceptable salt thereof.
- 33. (5R)-3-[2-(1-N-Methylpiperazinocarbonyl)pyrrolidin
 4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo
 [3,2,0]hept-2-ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 34. "(5R)-3-[2-Carbamoylpyrrolidin-4-ylthio]-4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2-ene-7-one-carboxylic acid, or a non-toxic pharmaceutically acceptable salt thereof.
 - 35. (5R)-3-[2-(Methoxycarbonyl)pyrrolidin-4-ylthio]4-methyl-6-(1-hydroxyethyl)-1-azabicyclo[3,2,0]hept-2ene-7-one-2-carboxylic acid, or a non-toxic pharmaceutically
 -acceptable salt thereof.
 - 36. A (5R,6S,8R)-compound of a compound as claimed in any one of Claims 3 to 35.

25

20

- 37. A (5R,6S,8R,2'S,4'S)-compound of a compound as claimed in any one of Claims 3 to 35.
- 38. A (4R,5R,6S,8R,2'S,4'S)-compound of a compound as claimed in any one of Claims 3 to 8 and 26 to 35.
- 39. A pharmaceutical composition which comprises as an active ingredient a pharmaceutically effective amount of at least one of the compounds as claimed in any preceding claim and at least one pharmaceutically acceptable inert carrier or diluent.
- 40. Use of a compound according to Claim 1 as an antimicrobial agent.

5

A process for preparing a compound as claimed in Claim 1, which comprises reacting a compound of the formula (II):

$$R_1$$
 $COOR_0$
 $COOR_0$
 $COOR_0$

wherein R₁ and X are as defined in Claim 1, R₉ represents a protecting group for a carboxyl group, Z represents a reactive ester of an alcohol, or a substituted or unsubstituted lower-alkyl sulfinyl group, with a mercaptan derivative of the formula:

wherein R_2 is as defined in Claim 1, and Y' is a group represented by the formula (2):

wherein R₅ and R₆ are as defined above, an unsubstituted or alkyl-substituted guanidyl group having 1 to 3 carbon atoms in the alkyl moiety, a hydroxyl group protected with a carboxyl protecting group, an alkoxy group having 1 to 3 carbon

atoms, an unsubstituted or substituted hydrazino group wherein the substituent is an alkyl group having 1 to 3 carbon atoms, or a group represented by the formula (4'):

$$-NHOR_{\Omega}$$
' (4')

5

wherein R_8 ' represents a protecting group for a hydroxyl group or an alkyl group having 1 to 3 carbon atoms, in the presence of a base in an inert solvent to produce a β -lactam compound represented by the formula (IV):

wherein R₁, R₂, R₉, X and Y' are as defined above, and, if desired, subjecting the resulting compound to an appropriate combination of removal of the protecting group for the carboxyl group, the protecting group for the hydroxyl group and/or the protecting group for the amino group, sequentially or simultaneously, to produce the compound of the formula (IV) wherein R₁ is a 1-hydroxyethyl group, R₂ is a hydrogen atom and/or R₃ is a hydrogen atom, or the compound of the formula (IV) wherein the protecting group on the group Y' is removed.

EUROPEAN SEARCH REPORT

Application number

EP 84 30 3128

Category		rith indication. where appropriate, evant passages		elevant o claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)			
Y	17, 25th April			,10, 9-41	C 0'A 6: A 6: C 0'C	7 D 1 K 1 K 7 D 7 D	487/04 499/00 31/40 31/43 207/16 207/24 401/12 205/08	
Y	EP-A-0 002 210 * Claims *	(MERCK)		,10, 9 - 41	C 07 C 07 C 07	7 F 7 F 7 D 7 D	7/18	
Y	EP-A-0 072 710 * Claims *	(SANKYO)		,7,39 41		-		
Y	* Claims and 8,22 on page 23 28 on page 270	especially claims 37 above and claim		,7,39 41	C 07	CHED D	487/00 499/00 31/00	
			-					
	The present search report has to Place of search	Date of completion of the search			Exami	ner		
	CATEGORY OF CITED DOCU	09-07-1984 JMENTS T: theory or p		CHOUL)		entio	n or	
Y: par	ticularly relevant if taken alone ticularly relevant if combined w ument of the same category nnological background I-written disclosure	after the fi	ling da	te .		ou VII	, 🗸	