Solutions to Homework 2, Part 2

 ${\bf Nakul\ Camasamudram}$

October 24, 2017

1. K-Means

Solution:

• Iteration 1:

The initial centroids are $C_1=(2,\ 10)$ $C_2=(1,\ 2)$ $C_3=(5,\ 8).$ Let $\mathrm{D}(C_i)$ represent the **euclidean** distance between the respective point and the i^{th} centroid.

The E-step:

Data Point	$\mathbf{D}(C_1)$	$\mathbf{D}(C_2)$	$\mathbf{D}(C_3)$	Optimal centroid
(4,9)	2.23606797749979	7.615773105863909	1.4142135623730951	C_3
(2,10)	0.0	8.06225774829855	3.605551275463989	C_1
(1,2)	8.06225774829855	0.0	7.211102550927978	C_2
(2,5)	5.0	3.1622776601683795	4.242640687119285	C_2
(6,4)	7.211102550927978	5.385164807134504	4.123105625617661	C_3
(8,4)	8.48528137423857	7.280109889280518	5.0	C_3
(7, 5)	7.0710678118654755	6.708203932499369	3.605551275463989	C_3
(5, 8)	3.605551275463989	7.211102550927978	0.0	C_3

The M-step:

 $\overline{C_1 = \text{mean}[(2, 10)]} = (2.0, 10.0)$

 $C_1 = \text{mean}[(2, 10)] = (2.0, 10.0)$ $C_2 = \text{mean}[(1, 2), (2, 5)] = (1.5, 3.5)$ $C_3 = \text{mean}[(4, 9), (6, 4), (8, 4), (7, 5), (5, 8)] = (6.0, 6.0)$

• Iteration 2:

• Iteration 3:

• Iteration 4:

2. Agglomerative Hierarchical

Solution:

1. Using MIN as an inter-cluster measure

Iteration 1:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6}

- $\bullet \ d(\{1\},\{3,6\}) = \min(d(\{1\},\{3\}), \, d(\{1\},\{6\})) = d(\{1\},\{3\})$
- $d(\{2\},\{3,6\}) = \min(d(\{2\},\{3\}), d(\{2\},\{6\})) = d(\{2\},\{3\})$
- $d(\{4\},\{3,6\}) = \min(d(\{4\},\{3\}), d(\{4\},\{6\})) = d(\{4\},\{3\})$
- $\bullet \ d(\{5\},\{3,6\}) = \min(d(\{5\},\{3\}), \, d(\{5\},\{6\})) = d(\{5\},\{3\})$

Iteration 2:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6} <u>Cluster 2:</u> {2, 5}

- $\bullet \ d(\{1\},\{2,\!5\}) = \min(d(\{1\},\!\{2\}),\, d(\{1\},\!\{5\})) = d(\{1\},\!\{2\})$
- $d(\{4\},\{2,5\}) = \min(d(\{4\},\{2\}), d(\{4\},\{5\})) = d(\{4\},\{2\})$

•
$$d({3,6},{2,5}) = min(d({3},{2}), d({3},{5}), d({6},{2}), d({6},{5}))$$

= $d({3},{2})$

Iteration 3:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

Cluster 1: $\{3, 6\}$

Cluster 2: $\{2, 5\}$

<u>Cluster 3:</u> {{2, 5}, {3, 6}}

- $d\{\{2, 5, 3, 6\}, \{4\}\} = \min(d\{2, 4\}, d\{5, 4\}, d\{3, 4\}, d\{6, 4\}) = d\{3, 4\}$

Iteration 4:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

Cluster 1: $\{3, 6\}$

Cluster 2: $\{2, 5\}$

<u>Cluster 3:</u> {{2, 5}, {3, 6}}

<u>Cluster 4:</u> {{2, 5, 3, 6}, {4}}

2. Using MAX as an inter-cluster measure

Iteration 1:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6}

• $d(\{1\},\{3,6\}) = \max(d(\{1\},\{3\}), d(\{1\},\{6\})) = d(\{1\},\{6\})$

• $d(\{2\},\{3,6\}) = max(d(\{2\},\{3\}), d(\{2\},\{6\})) = d(\{2\},\{6\})$

• $d(\{4\},\{3,6\}) = max(d(\{4\},\{3\}), d(\{4\},\{6\})) = d(\{4\},\{6\})$

• $d(\{5\},\{3,6\}) = max(d(\{5\},\{3\}), d(\{5\},\{6\})) = d(\{5\},\{6\})$

Iteration 2:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

 $\frac{\text{Cluster 1:}}{2} \{3, 6\}$

 $\underline{\text{Cluster 2:}}\ \{2,\,5\}$

 $\bullet \ d(\{1\},\{2,\!5\}) = \max(d(\{1\},\!\{2\}),\, d(\{1\},\!\{5\})) = d(\{1\},\!\{5\})$

• $d(\{4\},\{2,5\}) = \max(d(\{4\},\{2\}), d(\{4\},\{5\})) = d(\{4\},\{5\})$

• $d(\{3,6\},\{2,5\}) = \max(d(\{3\},\{2\}), d(\{3\},\{5\}), d(\{6\},\{2\}), d(\{6\},\{5\}))$ = $d(\{6\},\{5\})$

Iteration 3:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

Cluster 1: $\{3, 6\}$

Cluster 2: $\{2, 5\}$

<u>Cluster 3:</u> {{3, 6}, {4}}

- $d(\{1\},\{3,4,6\}) = \max(d(\{1\},\{3\}), d(\{1\},\{4\}), d(\{1\},\{6\})) = d(\{1\},\{4\})$
- $d(\{2,5\},\{3,4,6\}) = \max(d(\{2\},\{3\}), d(\{2\},\{4\}), d(\{2\},\{6\}), d(\{5\},\{3\}), d(\{5\},\{4\}), d(\{5\},\{6\})) = d(\{5\},\{6\})$

Iteration 4:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6}

Cluster 2: $\{2, 5\}$

<u>Cluster 3:</u> $\{\{3, 6\}, \{4\}\}$

<u>Cluster 4:</u> $\{\{2, 5\}, \{1\}\}$

- $d(\{1\},\{3,4,6\}) = \max(d(\{1\},\{3\}), d(\{1\},\{4\}), d(\{1\},\{6\})) = d(\{1\},\{4\})$
- $d(\{2,5\},\{3,4,6\}) = \max(d(\{2\},\{3\}), d(\{2\},\{4\}), d(\{2\},\{6\}), d(\{5\},\{3\}), d(\{5\},\{4\}), d(\{5\},\{6\})) = d(\{5\},\{6\})$

1. Using AVG as an inter-cluster measure

Iteration 1:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

Cluster 1: $\{3, 6\}$

$$\bullet \ d(\{1\},\{3,6\}) = (d(\{1\},\{3\}) + d(\{1\},\{6\})) \ / \ (1 \ge 2) = 0.2256$$

•
$$d(\{4\},\{3,6\}) = (d(\{4\},\{3\}) + d(\{4\},\{6\})) / (1 \times 2) = 0.1888$$

•
$$d(\{2\},\{3,6\}) = (d(\{2\},\{3\}) + d(\{2\},\{6\})) / (1 \times 2) = 0.2026$$

•
$$d(\{5\},\{3,6\}) = (d(\{5\},\{3\}) + d(\{5\},\{6\})) / (1 \times 2) = 0.3353$$

Iteration 2:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6} <u>Cluster 2:</u> {2, 5}

- $\bullet \ d(\{1\},\{2,\!5\}) = \operatorname{avg}(d(\{1\},\!\{2\}),\, d(\{1\},\!\{5\})) = 0.2919$
- $\bullet \ d(\{4\},\{2,\!5\}) = \operatorname{avg}(d(\{2\},\!\{4\}),\, d(\{2\},\!\{5\})) = 0.1649$
- $d({3,6},{2,5}) = avg(d({3},{2}), d({3},{5}), d({6},{2}), d({6},{5}))$ = 0.2689

Iteration 3:

	p_1	p_2	p_3	p_4	p_5	p_6
p_1						
p_2	0.2421					
p_3	0.2159	0.1523				
p_4	0.3677	0.1965	0.1581			
p_5	0.3418	0.1334	0.2846	0.2842		
p_6	0.2354	0.2530	0.1020	0.2195	0.3860	

<u>Cluster 1:</u> {3, 6} <u>Cluster 2:</u> {2, 5}

- $d(\{1\},\{2,5\}) = avg(d(\{1\},\{2\}), d(\{1\},\{5\})) = 0.2919$
- $d(\{4\},\{2,5\}) = avg(d(\{2\},\{4\}), d(\{2\},\{5\})) = 0.1649$
- • $d(\{3,6\},\{2,5\}) = avg(d(\{3\},\{2\}), d(\{3\},\{5\}), d(\{6\},\{2\}), d(\{6\},\{5\}))$ = 0.2689

3. DBSCAN

Solution: