Gene Prediction: Statistical Approaches

Gene Prediction: Computational Challenge

 Gene: A sequence of nucleotides coding for protein

 Gene Prediction Problem: Determine the beginning and end positions of genes in a genome

tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc aagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatg atgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat

Gene Prediction: Computational Challenge

tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc aagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatg atgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat

Gene Prediction: Computational Challenge

tgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgc a a g ct g g g a t c ct g c g g a t g ct a a g ct g g a t t c c t t g g a t g ct a a g ct g g a t c c g a t g ct a g c t a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g ct g g a t c c g a t g ct a g c c g a t g c g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a t g c g a tatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaat

Central Dogma: DNA -> RNA -> Protein

Central Dogma: Doubts

- Central Dogma was proposed in 1958 by Francis Crick
- Crick had very little supporting evidence in late 1950s
- Before Crick's seminal paper all possible information transfers were considered viable

 Crick postulated that some of them are not viable (missing arrows)

In 1970 Crick published a paper defending the Central Dogma.

Codons

- In 1961 Sydney Brenner and Francis Crick discovered frameshift mutations
- Systematically deleted nucleotides from DNA
 - Single and double deletions dramatically altered protein product
 - Effects of triple deletions were minor
 - Conclusion: every triplet of nucleotides, each codon, codes for exactly one amino acid in a protein

The Sly Fox

- In the following string
 THE SLY FOX AND THE SHY DOG
- Delete 1, 2, and 3 nucleotifes after the first 'S':

THE SYF OXA NDT HES HYD OG
THE SFO XAN DTH ESH YDO G
THE SOX AND THE SHY DOG

Which of the above makes the most sense?

Translating Nucleotides into Amino Acids

- Codon: 3 consecutive nucleotides
- $4^3 = 64$ possible codons
- Genetic code is degenerative and redundant
 - Includes start and stop codons
 - An amino acid may be coded by more than one codon

Great Discovery Provoking Wrong Assumption

- In 1964, Charles Yanofsky and Sydney Brenner proved colinearity in the order of codons with respect to amino acids in proteins
- In 1967, Yanofsky and colleagues further proved that the sequence of codons in a gene determines the sequence of amino acids in a protein
- As a result, it was incorrectly assumed that the triplets encoding for amino acid sequences form contiguous strips of information.

Central Dogma: DNA -> RNA -> Protein

Discovery of Split Genes

- In 1977, Phillip Sharp and Richard Roberts experimented with mRNA of hexon, a viral protein.
 - Map hexon mRNA in viral genome by hybridization to adenovirus DNA and electron microscopy
 - mRNA-DNA hybrids formed three curious loop structures instead of contiguous duplex segments

Discovery of Split Genes (cont'd)

- "Adenovirus Amazes at Cold Spring Harbor" (1977, Nature 268) documented "mosaic molecules consisting of sequences complementary to several non-contiguous segments of the viral genome".
- In 1978 Walter Gilbert coined the term **intron** in the Nature paper "Why Genes in Pieces?"

Fig. 2 a, Pattern of hybridisation between hexon mRNA and the r strand of EcoRI fragment A of adenovirus 2 DNA. b, Regions of adenovirus genome which contribute to hexon mRNA. Figures other than adenovirus DNA markers represent distances in nucleotide base pairs.

d are the mosaic molecules synthesised? pr

precursor.

hed

dif-

Exons and Introns

- In eukaryotes, the gene is a combination of coding segments (exons) that are interrupted by non-coding segments (introns)
- This makes computational gene prediction in eukaryotes even more difficult
- Prokaryotes don't have introns Genes in prokaryotes are continuous

Central Dogma: DNA -> RNA -> Protein

Central Dogma and Splicing

Gene Structure

Splicing Signals

Exons are interspersed with introns and typically flanked by GT and AG

Splice site detection

Gene Prediction Analogy

- Newspaper written in unknown language
 - Certain pages contain encoded message, say 99
 letters on page 7, 30 on page 12 and 63 on page 15.
- How do you recognize the message? You could probably distinguish between the ads and the story (ads contain the "\$" sign often)
- Statistics-based approach to Gene Prediction tries to make similar distinctions between exons and introns.

Statistical Approach: Metaphor in Unknown Language

```
az postojanja oruzja za masuv izjavu da
az postojanja oruzja za masuv izjavu da
az postojanja oruzja za masuv izjavu da
prote prvi put izjavu da
az postojanja oruzja za masuv izjavu da je za postojanja za p
      az Postojanja oruzja za masov.
```

Noting the differing frequencies of symbols (e.g. '%', '.', '-') and numerical symbols could you distinguish between a story and the stock report in a foreign newspaper?

363 0.75 and you distinguish in a foreign newspaper?

363 0.75 812 9.00 8,704 27 19.06 707 10.761 505,812 9.00 10.761 505,812 31.36 VOD 31.36 VOD 19.46 4,366,500 3,20

Two Approaches to Gene Prediction

- <u>Statistical</u>: coding segments (exons) have typical sequences on either end and use different subwords than non-coding segments (introns).
- <u>Similarity-based</u>: many human genes are similar to genes in mice, chicken, or even bacteria. Therefore, already known mouse, chicken, and bacterial genes may help to find human genes.

Similarity-Based Approach: Metaphor in Different Languages

```
plomatic constants plans, the constants plans amid the constants the Ir Pentagon says plans amid the constants the Ir into problems amid the of post-war just the Ir into problems amid issue of post-war just into problems amid the constants and into problems amid the constants and into problems amid the constants ami
```

If you could compare the day's news in English, side-by-side to the same news in a foreign language, some similarities may become apparent

Pentagonu, kana pomenu pentagonu, kana pomenu pentagonu, kana pomenu pentagonu, kana pomenu pentagonu da pomenu put izjavu prosto priznaju da pomenu provi put izjavu provi put

Genetic Code and Stop Codons

		2	nd bas	e in co	don		
1st base in codon		C	O	CA			
	U	Phe Phe Leu Leu	Ser Ser Ser Ser	Tyr Tyr STOP STOP	Cys Cys STOP Trp	⊃∪∢⊍	3rd ba
	С	Leu Leu Leu Leu	Pro Pro Pro Pro	His His GIn GIn	Arg Arg Arg Arg	⊃o∢o	3rd base in codon
	Α	lle lle lle Met	Thr Thr Thr Thr	Asn Asn Lys Lys	Ser Ser Arg Arg	⊃∪∢g	on
	G	Val Val Val Val	Ala Ala Ala Ala	Asp Asp Glu Glu	Gly Gly Gly Gly	⊃∪∢o	

UAA, UAG and UGA correspond to 3 Stop codons that (together with Start codon ATG) delineate Open Reading Frames

The Genetic Code

Open Reading Frames (ORFs)

- Detect potential coding regions by looking at ORFs
 - A genome of length n is comprised of (n/3) codons
 - Stop codons break genome into segments between consecutive Stop codons
 - The subsegments of these that start from the Start codon (ATG) are ORFs
 - ORFs in different frames may overlap

Long vs. Short ORFs

- Long open reading frames may be a gene
 - At random, we should expect one stop codon every (64/3) ~= 21 codons
 - However, genes are usually much longer than this
- A basic approach is to scan for ORFs whose length exceeds certain threshold
 - This is naïve because some genes (e.g. some neural and immune system genes) are relatively short

Testing ORFs: Codon Usage

- Create a 64-element hash table and count the frequencies of codons in an ORF
- Amino acids typically have more than one codon, but in nature certain codons are more in use
- Uneven use of the codons may characterize a real gene
- This compensate for pitfalls of the ORF length test

Codon Usage in Human Genome

	U		C		A		G	
U	UUU Phe	57	UCU Ser	16	UAU Tyr	58	UGU Cys	45
	UUC Phe	43	UCC Ser	15	UAC Tyr	42	UGC Cys	55
	UUA Leu	13	UCA Ser	13	UAA Stp	62	UGA Stp	30
	UUG Leu	13	UCG Ser	15	UAG Stp	8	UGG Trp	100
C	CUU Leu	11	CCU Pro	17	CAUHis	57	CGU Arg	37
	CUC Leu	10	CCC Pro	17	CACHis	43	CGC Arg	38
	CUA Leu	4	CCA Pro	20	CAA Gln	45	CGA Arg	7
	CUG Leu	49	CCG Pro	51	CAG Gln	66	CGG Arg	10
A	AUU Ile	50	ACU Thr	18	AAU Asn	46	AGU Ser	15
	AUC Ile	41	ACC Thr	42	AAC Asn	54	AGC ser	26
	AUA Ile	9	ACA Thr	15	AAA Lys	75	AGA Arg	5
	AUG Met	100	ACG Thr	26	AAG Lys	25	AGG Arg	3
G	GUU Val	27	GCU Ala	17	GAU Asp	63	GGU Gly	34
	GUC Val	21	GCC Ala	27	GAC Asp	37	GGC Gly	39
	GUA Val	16	GCA Ala	22	GAA Glu	68	GGA Gly	12
	GUG Val	36	GCG Ala	34	GAG Glu	32	GGG Gly	15

Codon Usage and Likelihood Ratio

- An ORF is more "believable" than another if it has more "likely" codons
- Do sliding window calculations to find ORFs that have the "likely" codon usage
- Allows for higher precision in identifying true ORFs; much better than merely testing for length.
- However, average vertebrate exon length is 130 nucleotides, which is often too small to produce reliable peaks in the likelihood ratio
- Further improvement: in-frame hexamer count (frequencies of pairs of consecutive codons)

Gene Prediction and Motifs

 Upstream regions of genes often contain motifs that can be used for gene prediction

Gene Prediction: Similarity-Based Approaches

Section 6.13