Série TD de THL

Exercice 1 Soient les langages suivants :

$$L_1 = \{a^i b^j, i > = j > = 0\}$$

$$L_2 = \{w \in \{a,b\}^+\}$$

$$L_3 = \{w \in \{a,b\}^+ / IwI <= 3\}$$

$$L_4 = \{a^ib^j, i > = 2\}$$

$$L_5 = \{a^i b^j c^j, i > =2, j > =0\}$$

Parmi les mots suivant, preciser quels sont ceux qui appartiennent à quel langage ?

Les mots sont : ε, a, ab, abba, aba, aabb, abb.

Exercice 2 Soient les langages suivants :

$$L_1 = \{a^n b^m, n > = m > = 1\}$$

$$L_2=\{\varepsilon, a, aa\}$$

$$L_3=\{b, ba\}$$

$$L_4=\{\varepsilon\}$$

$$L_5 = \{a^n b^n, n > = 1\}$$

Trouver les langages: L_2L_3 , L_2L_1 , L_1L_3 , $L_5\cap L_1$, $L_6\cup L_5$, $L_1(L_2\cap L_4)$, $L_1(L_2\cap L_3)$, $(L_1L_2)^R$

Exercice 3 Trouver les grammaires qui génèrent les langages suivants :

- $L_1 = \{a^i, i \ge 1\}$.
- $L_2 = \{a^i, i \ge 0\}$.
- $L_3 = \{a^i b^j, i \ge 0, j \ge 1\}$.
- $L_4 = \{a^i b^j a^2 c^k, i \ge 0, j > 1, k \ge 1\}$.
- $L_5 = \{a^i b^i, i \ge 1\}$.
- $L_6 = \{a^{2i}b^i, i \ge 0\}$.
- $L_7 = \{a^i b^j, i \geqslant j \geqslant 0\}$.
- L₈ = {ω ∈ {a,b}*, |ω|_a ≡ 0 [2]}.
- $L_9 = \{\omega \in \{a, b\}^*, |\omega|_a \equiv 0 [3]\}$.
- $L_{10} = \{\omega \omega^R, \omega \in \{a, b\}^+\}$.
- $L_{11} = \left\{ \omega a^i b^i \omega^R, \omega \in \left\{ a, b \right\}^+, i \geqslant 0 \right\}.$

M DEMOUCHE Page 1/4

Exercice 4 Soient les alphabets suivants :

$$A_1=\{a,b\}$$
 $A_2=\{0,1\}$ $A_3=\{0,1,2,...,9\}$ $A_4=\{-,+,\bullet,0,1,2,...,9\}$

Déterminer un AEF qui accepte chacun des langages suivants :

- (a) L'ensemble des nombres binaires définis sur A₂.
- (b) L'ensemble des nombres naturels définis sur A₃.
- (c) Tout mot défini sur A₁ contenant au moins un a.
- (d) L'ensemble des nombres définis sur A₃ qui sont multiples de 10.
- (e) Modifier l'automate de (a) pour accepter les mots binaires divisibles par 4.
- (f) Modifier l'automate de (b) pour accepter les nombres naturels pairs.
- (g) L'ensemble des nombres réels définis sur A₄.
- (h) L'ensemble des entiers naturels >=5.

Exercice 5 Déterminer les langages reconnus par ces automates :

Exercice 6 Soit l'automate à etats fini suivant :

- 1. Quel est le langage accepté par cet automate ?
- 2. Vérifier est-ce-que cet automate est déterministe ? sinon, le rendre déterministe.
- 3. Donner une grammaire régulière engendrant ce langage.
- 4. Donner l'expression régulière associée.

M DEMOUCHE Page 2/4

Exercice 7 Calculer les dérivées des langages L1, L2, L3, L4, L5 par rapport aux mots : a, b, ab, ba, aa, bb.

•
$$L_1 = \{a^i a^j, i, j \ge 1\}$$
.

•
$$L_2 = \left\{ a^i b^j c^{2k}, k, j \ge 0, i \ge 1 \right\}.$$

•
$$L_3 = a + b^*$$
.

•
$$L_4 = ((a^+ba^*)^+ + (ab^+b^*))ab$$
.

•
$$L_5 = a(ab + b^*)(aba)^*$$
.

Exercice 8 Soit le langage $L_1 = \{a^n b^m a ; n, m \ge 0\}$ et le langage $L_2 = \{b a^n ; n \ge 0\}$;

- 1) Construire une grammaire générant L₁.
- 2) Construire un automate d'états finis simple qui accepte L₁.
- 3) Construire un automate d'états finis simple qui accepte L₂.
- 4) Déduire de l'automate précédent une grammaire générant L₂.
- 5) Construire un automate d'états finis simple qui accepte les langages : $L_1 \cup L_2$, $L_1 \cap L_2$.

Exercice 9 Donnez une expression régulière pour chacun des langages suivants:

- 1. Tous les mots sur {a, b, c} commençant par a ;
- 2. Tous les mots sur {a, b, c} dont le premier et le dernier symbole sont les mêmes ;
- 3. Tous les mots sur {a, b, c} contenant au moins trois a ;
- 4. Tous les entiers (en base dix) multiples de 5.

Exercice 10 Pour chacun des expressions régulières ci-dessous, expliciter le langage et dessiner un AEF qui le reconnait.

- aba + bab.
- $(aba)^* + (bab)^*$.
- $\{u \in \{a, b\}^* \text{ tel que u contient le facteur bbb}\}.$
- $\{u \in \{a, b\}^* \text{ tel que u ne contient pas le facteur bbb}$

Exercice 11 Soit le langage suivant : $L = \{a^n b^m c^m d^n a^2 / n \ge 0 \text{ et } m > 1\}$

- 1. Donner la grammaire qui génère ce langage.
- 2. Donner l'automate correspondant.

Exercice 12 Montrer que cette grammaire est ambiguë.

G/
$$S\rightarrow S+S$$
 / $S-S$ / $S*S$ / S/S / (S) / id / const.

M DEMOUCHE Page 3/4

Exercice 13 Considérons le langage L suivant :

 $\mathbf{L} = \{\mathbf{a^n b^m c^{n+m}}\}$ a, b et c sont des lettres de l'alphabet, n et m sont des entiers naturels tels que : (n, m > = 0).

- 1. Construire une grammaire G engendrant L.
- 2. Donner un automate à pile qui accepte à pile vide le langage L.

Exercice 14

* Donner une grammaire G de type 2 qui génère le langage L suivant :

L=[$\mathbf{a}^{\mathbf{n}}\mathbf{w}^{\mathbf{R}}\mathbf{w}\mathbf{a}^{\mathbf{n}}$, tel que w est un mot binaire, w^R est le reflet miroir de w, $a \in \pi$, $n \ge 1$].

- * Donner l'arbre algébrique du mot : w=aa110011aa
- * Ecrire sous forme normale de Chomsky, la grammaire G.
- * Donner un automate à pile acceptant à pile vide le langage L.

Exercice 15

Donner les automates à pile qui reconnaissent à pile vide les langages suivants:

$$[a^{i}, i>=3]$$
 $[a^{i}b^{j}, i, j>=0]$ $[a^{n}b^{m}a^{n}d, n, m>=1]$ $[w^{R}cw, w \text{ est binaire}]$ $[a^{n}b^{n}c^{m}d^{k}, n, m, k>0]$

Exercice 16

- Trouver une grammaire qui génère le langage L suivant :
 L=[w∈{a,b}⁺, nombre d'occurrence de a=nombre d'occurrence de b]
- 2. Ecrire la grammaire obtenue sous forme normale de Chomsky.
- 3. Donner un automate à pile qui accepte à pile vide le langage L.

M DEMOUCHE Page 4/4