CS 373: Theory of Computation

Manoj Prabhakaran

Mahesh Viswanathan

Fall 2008

1 Reductions

Mapping Reductions

Definition 1. A function $f: \Sigma^* \to \Sigma^*$ is *computable* if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition 2. A reduction (a.k.a mapping reduction/many-one reduction) from a language A to a language B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in A$$
 if and only if $f(w) \in B$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.

Reductions and Recursive Enumerability

Proposition 3. If $A \leq_m B$ and B is r.e., then A is r.e.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

On input \boldsymbol{w}

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \square

Corollary 4. If $A \leq_m B$ and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition 5. If $A \leq_m B$ and B is decidable, then A is decidable.

Proof. Let f be a reduction from A to B and let M_B be a Turing Machine deciding B. Then a Turing machine that decides A is

On input \boldsymbol{w}

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \square

Corollary 6. If $A \leq_m B$ and A is undecidable, then B is undecidable.

1.1 Examples

The Halting Problem

Proposition 7. The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof. Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m$ HALT \Longrightarrow HALT undecidable.

Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows:

On input x

Run M on x

If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Emptiness of Turing Machines

Proposition 8. The language $E_{\text{TM}} = \{ \langle M \rangle \mid L(M) = \emptyset \}$ is not r.e.

Proof. Recall $L_d = \{\langle M \rangle \mid \langle M \rangle \not\in L(M)\}$ is not r.e.

 L_d is reducible to E_{TM} as follows. Let $f(\langle M \rangle) = \langle N \rangle$ where N is a TM that behaves as follows:

On input x

Run M on $\langle M \rangle$ for |x| steps

Accept x only if M accepts $\langle M \rangle$ within |x| steps

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$ if and only if $\langle M \rangle \in L_d$.

Checking Regularity

Proposition 9. The language $REGULAR = \{\langle M \rangle \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof. We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = \langle N \rangle$, where N is a TM that works as follows:

On input x

If x is of the form 0^n1^n then accept x

else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \text{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\text{TM}}$

2 Rice's Theorem

Checking Properties

Given
$$\langle M \rangle$$

$$\begin{array}{c} \operatorname{Does} \ L(M) \ \operatorname{contain} \ \langle M \rangle ? \\ \operatorname{Is} \ L(M) \ \operatorname{non-empty}? \\ \operatorname{Is} \ L(M) \ \operatorname{empty}? \\ \operatorname{Is} \ L(M) \ \operatorname{infinite}? \\ \operatorname{Is} \ L(M) \ \operatorname{finite}? \\ \operatorname{Is} \ L(M) \ \operatorname{co-finite} \ (\text{i.e., is} \ \overline{L(M)} \ \operatorname{finite})? \\ \operatorname{Is} \ L(M) = \Sigma^*? \end{array} \right\} \ \operatorname{Undecidable}$$

Which of these properties can be decided? None! By Rice's Theorem

Properties

Definition 10. A property of languages is simply a set of languages. We say L satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition 11. For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \in \mathbb{P} \}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{\langle M \rangle \mid L(M) \text{ is infinite}\}; E_{\text{TM}} = \{\langle M \rangle \mid L(M) = \emptyset\}$
- Non-example: $\{\langle M \rangle \mid M \text{ has } 15 \text{ states}\} \leftarrow$ This is a property of TMs, and not languages!

Trivial Properties

Definition 12. A property is trivial if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is non-trivial.

Example 13. Some trivial properties:

- $\mathbb{P}_{ALL} = \text{set of all languages}$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\bullet \ \overline{\mathbb{P}}$ where \mathbb{P} is trivial
- $\mathbb{P} = \{L \mid L \text{ is recognized by a TM with an even number of states}\} = \mathbb{P}_{R.E.}$

Observation. For any trivial property \mathbb{P} , $L_{\mathbb{P}}$ is decidable. (Why?) Then $L_{\mathbb{P}} = \Sigma^*$ or $L_{\mathbb{P}} = \emptyset$.

Rice's Theorem

Proposition 14. If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

• Thus $\{\langle M \rangle \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

We cannot algorithmically determine any interesting property of languages represented as Turing Machines!

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

 $Example\ 15.$

$$\begin{cases} \langle M \rangle \mid M \text{ has 193 states} \rbrace \\ \langle M \rangle \mid M \text{ uses at most 32 tape cells on blank input} \rbrace \\ \{\langle M \rangle \mid M \text{ halts on blank input} \rbrace \\ \{\langle M \rangle \mid \text{ on input 0011 } M \text{ at some point writes the symbol \$ on its tape} \rbrace$$
 Undecidable

Proof of Rice's Theorem

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof. • Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.

- (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)

- Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.
- Then, since $A_{\scriptscriptstyle \mathrm{TM}}$ is undecidable, $L_{\mathbb{P}}$ is also undecidable.

Proof of Rice's Theorem

Proof (contd). Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M, w \rangle$ for A_{TM} , to $\langle N \rangle$ such that

- If M accepts w then N accepts the same language as M_0 .
 - Then $L(N) = L(M_0) \in \mathbb{P}$
- If M does not accept w then N accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

```
Thus, \langle M, w \rangle \in A_{\text{TM}} iff \langle N \rangle \in L_{\mathbb{P}}.
```

Proof of Rice's Theorem

Proof (contd). The reduction f maps $\langle M, w \rangle$ to $\langle N \rangle$, where N is a TM that behaves as follows:

On input x

```
Ignore the input and run M on w

If M does not accept (or doesn't halt) then do not accept x (or do not halt)

If M does accept w then run M_0 on x and accept x iff M_0 does.
```

Notice that indeed if M accepts w then $L(N) = L(M_0)$. Otherwise $L(N) = \emptyset$.

3 Closure Properties

3.1 Closure of Decidable Languages

Closure of Decidable Languages

Proposition 16. Decidable languages are closed under union, intersection, complementation, concatenation, kleene star, and inverse homomorphism

Proof. Given TMs M_1 , M_2 that decide languages L_1 , L_2

- A TM that decides $L_1 \cup L_2$: on input x, run M_1 and M_2 on x, and accept iff either accepts. (Similarly for intersection.)
- A TM that decides $\overline{L_1}$: On input x, run M_1 on x, and accept if M_1 rejects, and reject if M_1 accepts.

Closure of Decidable Languages

Proof (contd). • A TM to decide L_1L_2 : On input x, for each of the |x| + 1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

• A TM to decide L_1^* : On input x, if $x = \epsilon$ accept. Else, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject.

6

• A TM to decide $h^{-1}(L_1)$: On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts.

Closure of Decidable Languages

Proposition 17. Decidable languages are not closed under homomorphism

Proof. We will show a decidable language L and a homomorphism h such that h(L) is undecidable

- Let $L = \{xy \mid x \in \{0,1\}^*, y \in \{a,b\}^*, x = \langle M,w \rangle$, and y encodes an integer n such that the TM M on input w will halt in n steps $\}$
- L is decidable: can simply simulate M on input w for n steps
- Consider homomorphism $h: h(0) = 0, h(1) = 1, h(a) = h(b) = \epsilon.$
- h(L) = HALT which is undecidable.

3.2 Closure of Recursively Enumerable Languages

Closure of Recursively Enumerable Languages

Proposition 18. R.e. languages are closed under union, intersection, concatenation, kleene star, homomorphism and inverse homomorphism.

Proof. Given TMs M_1 , M_2 that recognize languages L_1 , L_2

• A TM that recognizes $L_1 \cup L_2$: on input x, run M_1 and M_2 on x in parallel, and accept iff either accepts. (Similarly for intersection; but no need for parallel simulation)

Closure of Recursively Enumerable Languages

Proof (contd). • A TM to recognize L_1L_2 : On input x, do in parallel, for each of the |x| + 1 ways to divide x as yz: run M_1 on y and M_2 on z, and accept if both accept. Else reject.

• A TM to recognize L_1^* : On input x, if $x = \epsilon$ accept. Else, do in parallel, for each of the $2^{|x|-1}$ ways to divide x as $w_1 \dots w_k$ ($w_i \neq \epsilon$): run M_1 on each w_i and accept if M_1 accepts all. Else reject.

- A TM to recognize $h^{-1}(L_1)$: On input x, compute h(x) and run M_1 on h(x); accept iff M_1 accepts.
- A TM to recognize $h(L_1)$: On input x, start going through all strings w, and if h(w) = x, start executing M_1 on w, using dovetailing to interleave with other executions of M_1 . Accept if any of the executions accepts.

Closure of Recursively Enumerable Languages

Proposition 19. R.e. languages are not closed under complementation.

Proof. We saw that
$$A_{\text{TM}}$$
 is r.e. but $\overline{A_{\text{TM}}}$ is not.

Also we saw the following:

Proposition 20. L is decidable iff L and \overline{L} are both r.e.

The Big Picture

