Remarks on the Numerical analysis of basins of attraction using complex variables

Mauricio A. Ribeiro, Pamela R. Martins, Hilson H. Daum, Ângelo M. Tusset, Jose M. Balthazar

PPGEE - UTPFR, DeFis – PUC, PPGEP – UTFPR, PPGEP – UTFPR, PEB-UNESP-Bauru mau.ap.ribeiro@gmail.com

IV CONFERENCE ON DYNAMICS, CONTROL, AND APPLICATIONS TO APPLIED ENGINEERING AND LIFE SCIENCE AND IWORKSHOP ON NONLINEAR DYNAMICS, ENERGY PRODUCTION, RENEWABLE ENERGY SOURCES, ENERGY TRANSFER AND ENERGY HARVESTING

Outline

- Introduction
- Mathematical Modeling
- 3 Numerical Results
- 4 Conclusion
- References

Introduction

- If we consider complex variables ($z \in \mathbb{C}$)
- Chaotic systems with real variables are widely studied.
- Chaotic systems with complex variables is a more recent issue for nonlinear dynamic analysis
- Its applications range from: physics, quantum mechanics, astrophysics, dynamics of high energy accelerators, etc. ^{1 2}.

Ribeiro, M. A. (UTFPR-PG)

¹Marshall, Delmar, and J. C. Sprott. "Simple driven chaotic oscillators with complex variables." Chaos: An Interdisciplinary Journal of Nonlinear Science 19.1 (2009).

²Mahmoud, G.M., Mahmoud, E.E. Phase and antiphase synchronization of two ide hyperchaotic complex nonlinear systems. Nonlinear Dyn 61, 141–152 (2010).

Mathematical Modeling

• Considering the variables $z \in \text{described by } z = x + yi, \ \dot{z} = \dot{x} + i\dot{y} \text{ and } \bar{z} = x - yi, \text{ therefore, an oscillator can be described as follows:}$

$$\dot{z} + f(z, \bar{z}) = A e^{i\omega t} \tag{1}$$

• In this way, rewriting Eq. 1, we have:

$$\dot{x} = -\Re(f(z,\bar{z})) + A\cos(\omega t)$$

$$\dot{y} = -\Im(f(z,\bar{z})) + A\sin(\omega t)$$
(2)

Whereas:

$$f(z,\bar{z}) = (z^2 - \bar{z}^2)z + \bar{z}$$
 (3)

Therefore, we have:

$$\begin{array}{lcl} \dot{x} & = & 4xy^2 - x + Acos(\omega t) \\ \dot{y} & = & -4x^2y - y + Asin(\omega t) \end{array}$$

Coefficient of uncertainty and entropy of basins of attraction

Uncertainty Coefficient

- This is related to the sensitivity of the final state of the phase space trajectories.
 - An exponent close to 1 means that the basin of attraction has smooth contours:
 - An exponent close to 0 means that the attraction basin is fractalized (sieved attraction basins).
- The uncertainty coefficient defines the uncertainty of the initial conditions of the system, which can be attracted by two or more attractors.

Uncertainty Coefficient and entropy of basins of attraction

Entropy Basins of Attraction

- A measure to quantify the uncertainty of basins of attraction;
- Provides an efficient condition for the existence of fractal limits, when the entropy is greater than log(2) the basin is fractal;
- The basin of attraction is considered with a phase space coloring where each initial condition corresponds to a color referring to an attractor¹.
- To calculate entropy, we define a ball of radius ε , the proportion of the colors of each ball ε defines the probability P_j associated with each color². The entropy of basins of attraction is defined as the mean Gibbs entropy (S_i) which is given by:

$$S_i = -\sum_{j=1}^{N_a} P_j log(P_j) \tag{5}$$

Where N_a is the number of different colors of the attraction basis

Daza, Alvar, et al. "Basin entropy: a new tool to analyze uncertainty in dynamical systems." Scientific eports 6:1 (2016): 31416.

Ribeiro, M. A. (UTFPR-PG)

Remarks on the Numerical Analysis ... mau.ap.ribeiro@gmail.com

6/13

Daza, A., Wagemakers, A., & Sanjuán, M. A. (2022). Classifying basins of attraction using the basin entropy. Chaos, Solitons & Fractals,

- \bullet For numerical analyzes we used the 4th order Runge and Kutta method, with an integration step h=0.001 and a total time of $10^6[s]$
- The transient time of 40% of the total time;
- $\omega = 1.0$
- $A \in [0.5, 1.0]$
- Attraction basins a grid $x^0 \in [-1,1] \times y^0 \in [-1,1]$ of 800×800 points;

Mathematical Modeling

$$\dot{x} = 4xy^2 - x + Acos(\omega t)$$
 (6)
 $\dot{y} = -4x^2y - y + Asin(\omega t)$

Figure: (a) Entropy basin, (b) Entropy basin boundery and (c) uncertain coefficient

Figure: (a)-(f) attractors e (g) Basin of attraction.

Figure: Lyapunov Exponent for $A \in [0.5, 1.0] \times \omega \in [0.5, 1.0]$

0.2

• Considering the initial condition (0,0) we calculate the Lyapunov Exponent (λ) considering the

following intervals

$$\omega \in [0.5, 1.0] \times A \in [0.5, 1.0]$$

- Region in black $(\lambda < 0)$ regions -0.in which the system has orbits with periodic behavior.
- •0. Region between xxx and red $(\lambda>0)$ region in which the system has orbits with chaotic

behavior.

Remarks on the Numerical Analysis ...

Figure: Phase maps (Gray line) and Poincare maps (Black dots for $\omega=1.0$. (a) A=0.6527,(b) A=1.0,(c) A=1.1 and

- ullet (a) A=0.6527, chaotic behavior
- (b) A = 1.0, chaotic behavior
- (c) A = 1.1, chaotic behavior
- (d) A = 1.3, periodic behavior.

Conclusion

- The use of the entropy of attraction basins and the uncertainty coefficient corroborates the determination of attraction basins with screening in oscillatory systems in complex variables.
- Such analyzes also allow determining the behavior of attraction basins in electromechanical systems.
- ullet The dynamic analyzes with the Maximum Lyapunov Exponent (λ) are the regions for the parametric analysis $(A imes \omega)$ the chaos regions and the periodic regions.
- Phase and Poincaré Maps showed the behavior of trajectories in phase space.
- For future work, determine the parameter space for entropy and the uncertainty coefficient to determine the sieve regions of the attraction basins.

References

- Daza, Alvar, et al. "Basin entropy: a new tool to analyze uncertainty in dynamical systems." Scientific reports 6.1 (2016): 31416.
- Daza, Alvar, Alexandre Wagemakers, and Miguel AF Sanjuán. "Classifying basins of attraction using the basin entropy." Chaos, Solitons and Fractals 159 (2022): 112112.
- Puy, Andreu, et al. "A test for fractal boundaries based on the basin entropy." Communications in Nonlinear Science and Numerical Simulation 95 (2021): 105588.
- Grebogi, Celso, et al. "Final state sensitivity: an obstruction to predictability." Physics Letters A 99.9 (1983): 415-418.
- McDonald, Steven W., et al. "Fractal basin boundaries." Physica D: Nonlinear Phenomena 17.2 (1985): 125-153.