개인데이터분석프로젝트

뇌졸중 영향 변수 심층 분석 및 모델링

Deep Analysis and Modeling of Stroke Impact Factors

한성대학교 빅데이터트랙

임다솔

Email: lastromeo51@naver.com Github: https://github.com/Dasollm

목차

1 분석개요와목표

2 Dataset 설명

3 분석과정 – Preprocessing & Modeling with Logistic Regression, SVM, and KNN

4 결과 해석

5 방안제시

6 참고문헌

되기능의 부분적 또는 전체적으로 급속히 발생한 장애가 상당 기간 이상 지속되는 것으로, 뇌혈관의 병 이외에는 다른 원인을 찾을 수 없는 상태

**뇌졸중(stroke)은 19세 이상의 성인에게서 나타나는 5대 사망원인의 질환 중 하나이며(통계청, 2021), 건강보험심사평가원은 최근 5년간 뇌혈관질환 진료현황 결과 를 보면, 뇌졸중 환자 수는 18년 591, 946명 대비 22년 634, 177명으로 연평균 1.7% 증가하는 추세이다(건강보험심사평가원, 2023). 그리고 인구의 노령화로 인해 매년 증가하고 있으며(Li, et al, 2021), ….

**최형욱. "가상현실훈련이 뇌졸중 환자의 균형, 보행 및 뇌파에 미치는 영향." 국내박사학위논문 남부대학교 일반대학원, 2024. 광주

허혈성 뇌졸중 환자 중 3.5시간 내 병원을 방문한 사람은 26.2%에 불과했으며,

골든타임 내 방문과 직결되는 재개통치료(정맥내 혈전용해술·동맥내 혈전제거술) 비율은 전체 환자 중 16.3%에 그쳤다.

또 병원 도착 시간이 늦어질수록 재개통치료를 받는 환자가 급격하게 줄어들었다.

4.5시간 내 병원에 도착한 뇌졸중 환자의 42% 정도가 재개통치료를 받은 반면,

4.5시간 이후 방문한 환자는 치료받는 비율이 10.7% 로 급감했다.

출처 : 의협신문

뇌졸중 골든타임 방문 불과 26% 뇌졸중 환자의 퇴원 시 사망률은 2.6%로 다른 OECD 국가의 치명률과 비교했을 때 최상위권

국민 대상, 국가적 차원의 뇌졸중 예방 방안과 대책의 필요성이 매우 크다.

목표

- ① 변수의 중요도 분석: 각 변수가 뇌졸증 발병에 미치는 영향을 분석한다. 변수의 중요도를 통해 어떤 변수가 가장 중요한지 식별한다.
- ② 모델링 통한 결과 도출: 변수 중요도를 제공하며, 변수의 영향을 해석하는 데 유리한 Logistic Regression Model을 이용한다.
- ③ 결과 해석 및 시각화: 모델의 결과를 해석하고, 중요한 변수 및 그 영향을 시각화하여 직관적으로 이해할 수 있도록 한다.
- ④ 예방 및 관리 전략 제안: 분석 결과를 바탕으로 뇌졸증 발병을 예방하고 관리하기 위한 전략을 제안한다.

변수설명

- 👚 id : 고유id
- 😻 위 gender : 성별 (남자:0, 여자:1, 기타:2)
- © age: Lt0|
- 🖴 hypertension : 고혈압 여부
- 🍍 heart_disease : 심장병 여부
- 🚨 ever_married : 결혼 상태 (미혼:0, 결혼한 적 있음:1)
- work_type : 근무 형태 (공무원:0, 무직:1, 직장인:2, 자영업자:3)
- 🏠 residence_type : 주거 형태 (농촌:0, 도시:1)
- bmi : 체질량 지수
- 🚣 smoking_status : 흡연 여부 (과거 흡연자:0, 비흡연자:1, 현재 흡연자:2, 알 수 없음:3)
- 🧠 stroke : 뇌졸증 경험 여부

기타 변수 설명

- 답변자가성별을밝히지않길원했을경우성별부분기타로처리되었음.
- Age에서 18세 이하는 뇌졸중 영향이 특히 낮은 연령대로 이후 데이터셋에서 삭제되어 데이터 분석에서 제외될 것임.

데이터셋 일부 예시

df = pd.read_csv('/content/healthcare-dataset-stroke-data.csv')
df.head(3)

₹		id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
	0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
	1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
	2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1

1) 타겟 변수 설정

Stroke, 뇌졸중 경험 여부는 데이터 분석에서 타겟 변수로서 이용되어야 했기 때문에 따로 체크해주었다. 뇌졸중 전력이 없는 답변자는 약 95%, 뇌졸중 전력이 있는 답변자는 약 5%인 것으로 확인하였다.

```
[] df['stroke'].dtype
→ dtype('int64')
[] df['stroke'].isnull().sum()
→ 0
    df['stroke'].value counts(dropna=False)
    stroke
         4861
          249
    Name: count, dtype: int64
[] df['stroke'].value_counts(dropna=False, normalize=True)
    stroke
        0.951272
         0.048728
    Name: proportion, dtype: float64
```

2) 기타 변수 데이터 처리

age, avg_glucose_level, bmi와 같은 구간변수를 따로 빼주었다. 간단한 데이터 확인을 진행하였다.

2) 기타 변수 데이터 처리

범주형 변수만 따로 저장하여 결측값 확인하였으나 없었으므로, 따로 처리하지 않았다. 미성년자는 데이터 분석에서 제외할 것으로, 18세 초과의 데이터만 따로 저장하였다. 그 결과 5110줄에서 데이터가 4194줄로 줄었다. 변수명 통일 위해 Residence_type을 residence_type으로 변경하였다.

```
# 범주형 변수들만 cols1에 저장.
    cols1 = ['gender', 'hypertension', 'heart_disease', 'ever_married', 'work_type', 'residence_type', 'smoking_status']
    df1[cols1].isnull().sum()
\rightarrow
    gender
    hypertension
    heart_disease
                                                                                                 [] len(df[c])
    ever_married
    work_type
                                                                                                 → 4194
    residence_type
    smoking_status
    dtype: int64
                                                                                                 [] df1 = df[c]
                                                                                                      df1.shape
                                                                                                 → (4194, 12)
                                                                                                 [] df1 = df1.rename(columns={'Residence_type': 'residence_type'})
```

3) 결측값 50% 이상 변수 제거

결측값이 있는 column으로 bmi가 도출되었지만, 50% 넘지 않는 관계로 제거하지 않았다.

4) 요약통계 및 도수분포표 점검

왜도와 첨도 확인 결과, 정상적인 범주 내에 데이터가 있음을 확인하였다.

```
#정규분포 확인
   #-3에서 3 사이일 시 정상분포로 봄
   df1[cols].skew()
→ age
                0.03
   avg_glucose_level 1.45
   bmi
                  1.24
   dtype: float64
[] #첨도 확인
   #-10에서 10 사이일 시 정상으로 봄
   df1[cols].kurtosis()
→ age
       -1.02
   avg_glucose_level 1.09
                   3.45
   bmi
   dtype: float64
```

5)이상값제거

구간변수 age, avg_glucose_level, bmi 이상값을 제거하기 전, 그래프를 통해 대략적으로 변수 분포를 확인하였다.

Boxplot을 통해 대략적으로 avg_glucose_level, bmi에 이상값이 있음을 확인하였다.

```
sns.set_style('whitegrid')

fig, axes = plt.subplots(1, 3, figsize=(10, 3))
sns.boxplot(ax=axes[0], x = 'age', data = df1)
sns.boxplot(ax=axes[1], x = 'avg_glucose_level', data = df1)
sns.boxplot(ax=axes[2], x = 'bmi', data = df1)
```

```
0 100 150 200 250
avg glucose level
```



```
import matplotlib.pyplot as plt
import seaborn as sns

fig, axes = plt.subplots(1, 3, figsize=(10, 3))
sns.histplot(ax=axes[0], data=df, x="age", kde=True, bins=20);
sns.histplot(ax=axes[1], data=df, x="avg_glucose_level", kde=True, bins=20);
sns.histplot(ax=axes[2], data=df, x="bmi", kde=True, bins=20)
plt.show()
```


5)이상값제거

사분위값 이용, 이상값을 제거한 후 df2에 새롭게 저장하였다.

```
Q1 = df1[['age', 'avg_glucose_level', 'bmi']].quantile(0.25)
     Q3 = df1[['age', 'avg_glucose_level', 'bmi']].quantile(0.75)
     IQR = Q3 - Q1
     print(IQR)
                       27.00
    age
    avg_glucose_level 38.80
                        8.70
    dtype: float64
[] Lower = Q1-3.0*IQR
    Upper = Q3+3.0*IQR
     print(Lower)
\rightarrow
                       -44.00
    age
    avg_glucose_level -38.99
                        -0.60
    dtype: float64
[] print(Upper)
                       145.00
    age
    avg_glucose_level
                       232.64
                        60.30
    dtype: float64
```

```
[] c1 = df1['avg_glucose_level'] <= 232.64
c2 = df1['bmi'] <= 60.3
df2 = df1[c1 & c2]
df2.shape
(3915, 12)
```

6) 상관관계 검토

상관관계 검토하였을 때 크게 문제되는 데이터가 없음을 확인하였다.

7) Ordinal Encoder 이용한 추가 변수 처리

입력변수로 수치형 데이터 이용하기 위해, Ordinal Encoder 통해 변수 데이터를 이진변수로 처리하였다. 이후 encoding 전 column은 제거하였다.

```
--- ever_married ---
ever_married
Yes 0.79
     0.21
Name: proportion, dtype: float64
---- work_type ---
work_type
Private
               0.66
Self-employed 0.19
Govt_job
               0.16
Never_worked
               0.00
Name: proportion, dtype: float64
--- residence_type ---
residence type
Urban 0.51
Rural 0.49
Name: proportion, dtype: float64
--- smoking_status ---
smoking_status
never smoked
                 0.42
formerly smoked
                0.20
                 0.20
Unknown
smokes
                 0.18
Name: proportion, dtype: float64
---- gender ---
gender
Female 0.61
        0.39
        0.00
Name: proportion, dtype: float64
```

```
from sklearn.preprocessing import OrdinalEncoder
    df3['ever married encoded'] = OrdinalEncoder().fit transform(df3['ever married'].values.reshape(-1.1))
    df3.groupby(['ever_married', 'ever_married_encoded']).size()
    ever_married ever_married_encoded
                                          804
                  0.00
                  1.00
                                         3111
    dtype: int64
[] df3['gender_encoded'] = OrdinalEncoder().fit_transform(df3['gender'].values.reshape(-1,1))
    df3.groupby(['gender', 'gender_encoded']).size()
    gender gender_encoded
                             2402
    Female 0.00
            1.00
                              1512
    Male
    0ther
            2.00
    dtype: int64
[] df3['work_type_encoded'] = OrdinalEncoder().fit_transform(df3['work_type'].values.reshape(-1,1))
    df3.groupby(['work_type', 'work_type_encoded']).size()
    work_type
                   work_type_encoded
    Govt_job
                   0.00
                                        611
                                         2
    Never_worked
                  1.00
    Private
                   2.00
                                       2566
    Self-employed 3.00
                                        736
    dtype: int64
```

```
Iist(df3.columns)

['age',
    'hypertension',
    'heart_disease',
    'avg_glucose_level',
    'bmi',
    'stroke',
    'ever_married_encoded',
    'gender_encoded',
    'work_type_encoded',
    'residence_type_encoded',
    'smoking_status_encoded']
```

8) 전처리 완료된 csv 도출

전처리 완료한 csv를 따로 저장하였다.

df3.to_csv('<u>/content/stroke-dataset-preprocessed.csv</u>', index=False)

1) 다중범주형변수 변환

전처리된 csv 데이터셋을 모델링을 위해 불러왔다. 다중범주형변수를 독립적인 이진형 더미 변수로 이용하기 위해 원핫인코딩을 진행하였다.

2) 기준더미변수 처리

각각 '남자', '무직', '흡연한 적 없음'을 기준 더미변수로 정하였다.

```
df_Ir2.to_csv('/content/stroke-dataset-preprocessed-dummy.csv', index=False)
[] df_Ir_dummy = pd.read_csv('/content/stroke-dataset-preprocessed-dummy.csv')
     df_lr_dummy.shape
     (3915, 16)
     df_Ir_dummy.dtypes
\overline{\Rightarrow}
                                   float64
     age
    hypertension
                                     int64
    heart_disease
                                     int64
     avg_glucose_level
                                   float64
                                   float64
     bmi
                                     int64
     stroke
                                   float64
     ever_married_encoded
                                   float64
     residence_type_encoded
     gender_encoded_1.0
                                      bool
     gender_encoded_2.0
                                      bool
    work_type_encoded_0.0
                                      bool
    work_type_encoded_2.0
                                      bool
    work_type_encoded_3.0
                                      bool
     smoking status encoded 0.0
                                      bool
     smoking_status_encoded_1.0
                                      bool
     smoking_status_encoded_3.0
                                      bool
     dtype: object
```

3) Under Sampling과 데이터셋 분할

타겟변수와 나머지 변수들로 나눈 후, Random Under Sampling 진행하였다. 데이터셋을 학습용과 테스트용으로 50%로 분할하였다.

```
[ ] data = df_Ir_dummy.drop(['stroke'], axis=1)
     target = df_Ir_dummy['stroke']
     from imblearn.under_sampling import RandomUnderSampler
     undersample = RandomUnderSampler(sampling_strategy=0.333, random_state=51)
     data under, target under = undersample.fit resample(data, target)
I from sklearn.model_selection import train_test_split
     X_train, X_test, y_train, y_test = train_test_split(
         data_under, target_under, test_size=0.5, random_state=329, stratify=target_under)
    print("X_train shape:", X_train.shape)
     print("X_test shape:", X_test.shape)
→ X_train shape: (386, 15)
    X_test shape: (386, 15)
```

4) 로지스틱 회귀 모델링

로지스틱 회귀 모델로 모델링을 진행한다.

Training set score는 약 78%, Test set score는 약 80%로 overfitting 문제가 발생하지 않은 듯 보인다.

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Ir = LogisticRegression(solver='lbfgs',penalty='none',random_state=0,n_jobs=-1)
model = Ir.fit(X_train, y_train)
pred = model.predict(X_test)

print ("Logreg Training set score:{:.5f}".format(model.score(X_train, y_train)))
print ("Logreg Test set score:{:.5f}".format(accuracy_score(y_test, pred)))

Logreg Training set score:0.77979
Logreg Test set score:0.779534
```

5) 로지스틱 회귀 모델링 & 그리드서치

로지스틱 회귀 모델 최적화를 위해 5-fold cross-validation으로 그리드서치를 진행하였다. 교차검증 정확도는 약 0.76%, 최적의 하이퍼파라미터 조합은 penalty=none, solver=lbfgs로 도출되었다. grid_lr.best_estimator_를 통해 그리드서치로 찾은 최적의 모델을 반환했고, 이를 이용해 테스트 데이터셋 정확도를 80%로 얻을 수 있었다. 정확도가 높고 일관적이므로, 모델이 데이터를 잘 예측하고 있다는 타당한 지표로 받아들일 수 있게 되었다. 이 결과를 통해 최종적인 결론을 도출할 수 있을 것이다.

```
[] Ir = LogisticRegression(solver='lbfgs',penalty='none',random_state=0,n_jobs=-1)

# Grid Search
from sklearn.model_selection import GridSearchCV
params = {'solver':['lbfgs', 'saga'], 'penalty':['none']}

grid_Ir = GridSearchCV(Ir, param_grid=params, scoring='accuracy', cv=5, n_jobs=-1,)
grid_Ir.fit(X_train, y_train)

print("GridSearchCV max accuracy:{:.5f}".format(grid_Ir.best_score_))
print("GridSearchCV best parameter:", (grid_Ir.best_params_))

→ GridSearchCV max accuracy:0.76157
GridSearchCV best parameter: {'penalty': 'none', 'solver': 'lbfgs'}

[] best_clf = grid_Ir.best_estimator_
pred = best_clf.predict(X_test)
print("Accuracy on test set:{:.5f}".format(accuracy_score(y_test, pred)))

→ Accuracy on test set:0.79534
```

6) Odds Ratio 도출

결론에 쓰일 Odds Ratio 표를 도출하였다. 이를 통해 결과 해석을 진행할 수 있게 되었으므로, 메인 모델링을 마무리한다.

모델이 데이터셋을 잘 예측하는지 추가적으로 확인하기 위해 SVM 모델 Grid Search 진행

정확도가 높고 일관적이어서 모델이 데이터셋을 잘 예측하고 있다고 판단한다.

```
clf mlp = MLPClassifier(max iter = 2000, random state = 0)
    from sklearn.model_selection import GridSearchCV
    params = {'solver':['sgd', 'lbfgs', 'adam'],
               'alpha': [0.0001, 0.001, 0.01, 0.1, 1],
               'activation':['tanh','relu', 'logistic']
    grid_mlp = GridSearchCV(clf_mlp, param_grid=params, scoring='accuracy', cv=5, n_jobs=-1)
    grid mlp.fit(X train, y train)
    print("GridSearchCV max accuracy:{:.5f}".format(grid_mlp.best_score_))
    print("GridSearchCV best parameter:", (grid_mlp.best_params_))
GridSearchCV max accuracy:0.76687
    GridSearchCV best parameter: {'activation': 'relu', 'alpha': 0.0001, 'solver': 'sqd'}
    best_clf = grid_mlp.best_estimator_
    pred = best_clf.predict(X_test)
    print("Accuracy on test set:{:.5f}".format(accuracy_score(y_test, pred)))
    Accuracy on test set:0.76425
```

모델이 데이터셋을 잘 예측하는지 추가적으로 확인하기 위해 KNN 모델 Grid Search 진행

SVM과 동일하게 정확도가 높고 일관적이어서 모델이 데이터셋을 잘 예측하고 있다고 판단한다.

```
clf_knn = KNeighborsClassifier(n_neighbors=3)
     from sklearn.model_selection import GridSearchCV
    params = {'n_neighbors': range(3, 31)}
    grid knn = GridSearchCV(clf knn, param grid=params, scoring='accuracy', cv=3, n jobs=-1)
    grid_knn.fit(X_train, y_train)
    print("GridSearchCV max accuracy:{:.5f}".format(grid_knn.best_score_))
    print("GridSearchCV best parameter:", (grid_knn.best_params_))
    GridSearchCV max accuracy:0.76690
    GridSearchCV best parameter: {'n_neighbors': 18}
[] best_clf = grid_knn.best_estimator_
    pred = best clf.predict(X test)
    print("Accuracy on test set:{:.5f}".format(accuracy_score(y_test, pred)))
    Accuracy on test set:0.76425
```


- 😻 외 gender : 성별 (남자:0, 여자:1, 기타:2)
- e age : 나이
- 🖴 hypertension : 고혈압 여부
- 🍍 heart_disease : 심장병 여부
- 👂 ever_married : 결혼 상태 (미혼:0, 결혼한 적 있음:1)
- work_type: 근무 형태 (공무원:0, 무직:1, 직장인:2, 자영업자:3)
- 🏠 residence_type : 주거 형태 (농촌:0, 도시:1)
- 🖴 bmi : 체질량 지수
- └─ smoking_status : 흡연 여부 (과거 흡연자:0, 비흡연자:1, 현재 흡연자:2, 알 수 없음:3)

뇌졸중에 영향이 높은 변수 TOP6

- 1. 고혈압이 있는 경우 뇌졸중 발생 확률이 고혈압이 없는 경우보다 약 2.239배 더 높다.
- 2. 심장병이 있는 경우 뇌졸중 발생 확률이 심장병이 없는 경우보다 약 1.886배 더 높다.
- 3. 흡연 상태가 '알 수 없음'인 경우 뇌졸중 발생 확률이다른 흡연 상태에 비해 약 1.186배 더 높다.
- 4. 나이가 1살 증가할 때마다 뇌졸중 발생 확률이약 1.073배 증가한다.
- 5. 비흡연자의 뇌졸중 발생 확률이 다른 흡연 상태에 비해 약 1.053배 더 높다.
- 6. 도시에 거주하는 경우 뇌졸중 발생 확률이 농촌에 거주하는 경우보다 약 1.018배 더 높습니다.

- 😻 외 gender : 성별 (남자:0, 여자:1, 기타:2)
- e age : 나이
- 🔼 hypertension : 고혈압 여부
- 🍍 heart_disease : 심장병 여부
- 👂 ever_married : 결혼 상태 (미혼:0, 결혼한 적 있음:1)
- work_type : 근무 형태 (공무원:0, 무직:1, 직장인:2, 자영업자:3)
- 🏠 residence_type : 주거 형태 (농촌:0, 도시:1)
- 🖴 bmi : 체질량 지수
- └─ smoking_status : 흡연 여부 (과거 흡연자:0, 비흡연자:1, 현재 흡연자:2, 알 수 없음:3)

뇌졸중에 영향이 낮은 변수 TOP6

- 1. 자영업자의 뇌졸중 발생 확률이 무직인 경우보다 약 0.173배 낮다.
- 2. 공무원의 뇌졸중 발생 확률이 무직인 경우보다 약 0.209배 낮다.
- 3. 직장인의 뇌졸중 발생 확률이 무직인 경우보다 약 0.313배 낮다.
- 4. 과거 흡연자의 뇌졸중 발생 확률이 다른 흡연 상태에 비해 약 0.619배 낮다.
- 5. 결혼한 적이 있는 경우 뇌졸중 발생 확률이 미혼인 경우보다 약 0.712배 낮다.
- 6. 여자의 뇌졸중 발생 확률이 남자보다 약 0.830배 낮다.

고위험군 대상 뇌혈관 질환 검사 및 경동맥 초음파 검사 등의 활발한 권장과 지원

분석결과 심장병과고혈압병력자에 대한 집중적인지원이 필요할 것,

추가적으로 보험에 대해 잘 모르실 수 있는 노년층을 위해 지자체나 동사무소 차원의 실비 보험 정보 컨설팅 지원이 필요할 것

노인 대상 보건정책의 확립과 연구 적극적 차원의 조사

** "조기사망이나또는 입원중 거동불편 등의 이유로 국민건강영양조사 대상에 포함되지 않았을 가능성도 염두에 …"

조사에서 소외되는 노년층 없도록 더욱 더 적극적인 사회적 차원의 조사가 필요할 것

사후처리가아닌,사전예방을지향, 조기발견과예방을통한 노인건강지수향상이실현되도록 해야할것

실효성 있는 금연 프로그램의 지원과 홍보 교육의 필요성

과거흡연자의뇌졸중발생확률이 다른흡연상태에비해약0.619배 낮은분석결과를토대로 국가적차원의금연홍보와교육, 금연프로그램의정책적지원이 현재보다더활발히수반되어야할것 최형욱. "가상현실훈련이 뇌졸중 환자의 균형, 보행 및 뇌파에 미치는 영향." 국내박사학위논문 남부대학교 일반대학원, 2024. 광주

https://www.doctorsnews.co.kr/news/articleView.html?idxno=154428(의협신문)

문홍진. "노인의 주관적 건강수준에 영향을 미치는 요인." 국내박사학위논문 가천대학교 글로벌캠퍼스 일반대학원, 2024. 경기도

장진희. "성인 남성 뇌졸중 흡연자의 금연의도 관련요인." 국내석사학위논문 忠南大學校 大學院, 2020. 대전