Quantum Field Theory

June 8, 2008

Contents

1	Der	ivation from the Standard Model	1
	1.1	Electroweak Standard Model	1
		1.1.1 Higgs Terms	2
		1.1.2 Yukawa terms	3
		1.1.3 Leptonic Terms	3
		1.1.4 Gauge terms	4
		1.1.5 GWS Lagrangian	5
		1.1.6 Particle Masses	5
		1.1.7 Dimensional Analysis	5
		1.1.8 Quarks	6
	1.2	QFT	6
		1.2.1 Evolution Operator, S-Matrix Elements	6
	1.3	Low energy theories	7
		1.3.1 Fermi-type theory	7
		1.3.2 QED	8

1 Derivation from the Standard Model

1.1 Electroweak Standard Model

Lagrangian with a global $SU(2) \times U(1)$ symmetry:

$$\mathcal{L}=i\bar{L}^{(l)}\gamma_{\mu}\partial^{\mu}L^{(l)}+i\bar{l}_{R}\gamma_{\mu}\partial^{\mu}l_{R}+\frac{1}{2}\partial_{\mu}\Phi^{*}\partial^{\mu}\Phi-m^{2}\Phi^{*}\Phi-\frac{1}{4}\lambda(\Phi^{*}\Phi)^{2}-h_{e}\bar{L}^{(l)}\Phi e_{R}-\text{h.c.}$$

where $l=e,\mu,\tau$ and $a=1,2,\,l_{L,R}=\frac{1}{2}(1\mp\gamma_5)l$ and

$$L^{(l)} = \left(\begin{array}{c} \nu_{(l)L} \\ l_L \end{array}\right)$$

Local $SU(2) \times U(1)$ symmetry:

This consists of two things. First changing the partial derivatives to covariant ones: .

$$\partial^{\mu} \rightarrow D^{\mu} = \partial^{\mu} - \frac{i}{2}g\tau_k A_k^{\mu} - \frac{i}{2}g'YB^{\mu}$$

and second adding the kinetic terms

$$-\frac{1}{4}F^{a}_{\mu\nu}F^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

of the vector gauge particles to the lagrangian.

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g\epsilon^{abc}A^{b}_{\mu}A^{c}_{\nu}$$
$$B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

$$\Phi = e^{\frac{i}{v}\pi^a(x)\tau^a} \left(\begin{array}{c} 0 \\ \frac{1}{\sqrt{2}}(v+H(x)) \end{array} \right)$$

This breaks the gauge invariance. The $\partial^{\mu}\pi^{a}$ are going to be added to A^{a}_{μ} so we can set $\pi_{a}=0$ now.

1.1.1 Higgs Terms

$$\mathcal{L}_{Higgs} = \frac{1}{2} \partial_{\mu} \Phi^* \partial^{\mu} \Phi - m^2 \Phi^* \Phi - \frac{1}{4} \lambda (\Phi^* \Phi)^2$$

Plugging in the covariant derivatives and Φ in U-gauge (symmetry breaking):

$$\begin{split} \mathcal{L}_{Higgs} &= \frac{1}{2} \Phi^{+} (\overleftarrow{\partial}_{\mu} + igA_{\mu}^{a} \frac{\tau^{a}}{2} + ig'YB_{\mu}) (\overrightarrow{\partial}^{\mu} + igA^{a\mu} \frac{\tau^{a}}{2} + ig'YB^{\mu}) \Phi - \lambda (\Phi^{+} \Phi - \frac{v^{2}}{2})^{2} = \\ &= \Phi^{+}_{U} (\overleftarrow{\partial}_{\mu} + igA_{\mu}^{a} \frac{\tau^{a}}{2} + ig'YB_{\mu}) (\overrightarrow{\partial}^{\mu} + igA^{a\mu} \frac{\tau^{a}}{2} + ig'YB_{\mu}) \Phi_{U} - \lambda (\Phi^{+}_{U} \Phi_{U} - \frac{v^{2}}{2})^{2} = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{1}{4} \lambda H^{4} + \\ &+ \frac{1}{8} (v + H)^{2} \left(2g^{2} \frac{A_{\mu}^{1} + iA_{\mu}^{2}}{\sqrt{2}} \frac{A^{1\mu} - iA^{2\mu}}{\sqrt{2}} + (g^{2} + 4Y^{2}g'^{2}) \frac{gA_{\mu}^{3} - 2Yg'B_{\mu}}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} \frac{gA^{3\mu} - 2Yg'B^{\mu}}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} \right) = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^{2} H^{2} - \lambda v H^{3} - \frac{1}{4} \lambda H^{4} + \frac{1}{8} (v + H)^{2} \left(2g^{2} W_{\mu}^{-} W^{+\mu} + \frac{g^{2}}{\cos^{2} \theta_{W}} Z_{\mu} Z^{\mu} \right) = \\ &= \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^{2} H^{2} + \frac{1}{4} g^{2} v^{2} W_{\mu}^{-} W^{+\mu} + \frac{g^{2} v^{2}}{8 \cos^{2} \theta_{W}} Z_{\mu} Z^{\mu} - \lambda v H^{3} - \frac{1}{4} \lambda H^{4} + \\ &+ \frac{1}{2} v g^{2} W_{\mu}^{-} W^{+\mu} H + \frac{g^{2}}{4 \cos \theta_{W}} v Z_{\mu} Z^{\mu} H + \frac{1}{4} g^{2} W_{\mu}^{-} W^{+\mu} H^{2} + \frac{g^{2}}{8 \cos \theta_{W}} Z_{\mu} Z^{\mu} H^{2} \end{split}$$

Where we put

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2})$$

$$Z_{\mu} = \frac{g}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} A_{\mu}^{3} - \frac{2Yg'}{\sqrt{g^{2} + 4Y^{2}g'^{2}}} B_{\mu}$$

we defined θ_W by the relation

$$\cos \theta_W = \frac{g}{\sqrt{g^2 + 4Y^2 g'^2}}$$

so that the expressions simplify a bit, e.g. we now get:

$$\sin \theta_{W} = \frac{2Yg'}{\sqrt{g^2 + 4Y^2g'^2}}$$

$$Z_{\mu} = \cos \theta_{W} A_{\mu}^{3} - \sin \theta_{W} B_{\mu}$$

$$g^2 + 4Y^2g'^2 = \frac{g^2}{\cos^2 \theta_{W}}$$

1.1.2 Yukawa terms

$$\mathcal{L}_{Yukawa} = -h_e \bar{L} \Phi e_R - \text{h.c.} = -h_e \bar{L} \Phi_U e_R - \text{h.c.} =$$

$$= -\frac{1}{\sqrt{2}} h_e (v+H) (\bar{e}_L e_R + \bar{e}_R e_L) = -\frac{1}{\sqrt{2}} h_e (v+H) \bar{e}e =$$

$$= -\frac{1}{\sqrt{2}} h_e v \bar{e}e - \frac{1}{\sqrt{2}} h_e \bar{e}eH$$

The term $\bar{L}\Phi e_R$ is U(1) (hypercharge) invariant, so

$$-Y_L + Y + Y_R = 0$$

1.1.3 Leptonic Terms

$$\mathcal{L} = i\bar{L}\gamma^{\mu}\partial_{\mu}L + i\bar{e}_{R}\gamma^{\mu}\partial_{\mu}e_{R} \rightarrow$$

$$\rightarrow i\bar{L}\gamma^{\mu}(\partial_{\mu} - igA_{\mu}^{a}\frac{\tau^{a}}{2} - ig'Y_{L}B_{\mu})L + i\bar{e}_{R}\gamma^{\mu}(\partial_{\mu} - ig'Y_{R}B_{\mu})e_{R} =$$

$$= i\bar{L}\gamma^{\mu}\partial_{\mu}L + i\bar{e}_{R}\gamma^{\mu}\partial_{\mu}e_{R} + g\bar{L}\gamma^{\mu}\frac{\tau^{a}}{2}LA_{\mu}^{a} + g'Y_{L}\bar{L}\gamma^{\mu}LB_{\mu} + g'Y_{R}\bar{e}_{R}\gamma^{\mu}e_{R}B_{\mu} =$$

$$= i\bar{L}\gamma^{\mu}\partial_{\mu}L + i\bar{e}_{R}\gamma^{\mu}\partial_{\mu}e_{R} + \frac{g}{\sqrt{2}}(\bar{\nu}_{L}\gamma^{\mu}e_{L}W_{\mu}^{+} + \text{h.c.}) + \frac{1}{2}g\bar{L}\gamma^{\mu}\tau^{3}LA_{\mu}^{3} + g'Y_{L}\bar{L}\gamma^{\mu}LB_{\mu} + g'Y_{R}\bar{e}_{R}\gamma^{\mu}e_{R}B_{\mu} =$$

$$= i\bar{\nu}_{L}\gamma^{\mu}\partial_{\mu}\nu_{L} + i\bar{e}\gamma^{\mu}\partial_{\mu}e + \frac{g}{\sqrt{2}}(\bar{\nu}_{L}\gamma^{\mu}e_{L}W_{\mu}^{+} + \text{h.c.}) + \frac{1}{2}g\bar{\nu}_{L}\gamma^{\mu}\nu_{L}A_{\mu}^{3} - \frac{1}{2}g\bar{e}_{L}\gamma^{\mu}e_{L}A_{\mu}^{3}$$

$$+ g'Y_{L}\bar{\nu}_{L}\gamma^{\mu}\nu_{L}B_{\mu} + g'Y_{L}\bar{e}_{L}\gamma^{\mu}e_{L}B_{\mu} + g'Y_{R}\bar{e}_{R}\gamma^{\mu}e_{R}B_{\mu} =$$

$$= i\bar{\nu}_{L}\gamma^{\mu}\partial_{\mu}\nu_{L} + i\bar{e}\gamma^{\mu}\partial_{\mu}e + \frac{g}{\sqrt{2}}(\bar{\nu}_{L}\gamma^{\mu}e_{L}W_{\mu}^{+} + \text{h.c.})$$

 $+\left[\left(\frac{1}{2}g\sin\theta_{W}+Y_{L}g'\cos\theta_{W}\right)\bar{\nu}_{L}\gamma^{\mu}\nu_{L}+\left(-\frac{1}{2}g\sin\theta_{W}+Y_{L}g'\cos\theta_{W}\right)\bar{e}_{L}\gamma^{\mu}e_{L}+Y_{R}g'\cos\theta_{W}\bar{e}_{R}\gamma^{\mu}e_{R}\right]A_{\mu}\\+\left[\left(\frac{1}{2}g\cos\theta_{W}-Y_{L}g'\sin\theta_{W}\right)\bar{\nu}_{L}\gamma^{\mu}\nu_{L}+\left(-\frac{1}{2}g\cos\theta_{W}-Y_{L}g'\sin\theta_{W}\right)\bar{e}_{L}\gamma^{\mu}e_{L}-2Y_{L}g'\sin\theta_{W}\bar{e}_{R}\gamma^{\mu}e_{R}\right]Z_{\mu}$

Where we substituted new fields Z_{μ} and A_{μ} for the old ones A_{μ}^{3} and B_{μ} using the relation:

$$Z_{\mu} = \cos \theta_W A_{\mu}^3 - \sin \theta_W B_{\mu}$$
$$A_{\mu} = \sin \theta_W A_{\mu}^3 + \cos \theta_W B_{\mu}$$

The angle θ_W must be the same as in the Higgs sector, so that the field Z_{μ} is the same. We now need to make the following requirement in order to proceed further:

$$Y = -Y_L$$

This follows for example by requiring that neutrinos have zero charge, i.e. setting $\frac{1}{2}g\sin\theta_W + Y_Lg'\cos\theta_W = 0$ and substituting for θ_W from the definition (see the Higgs terms), from which one gets $Y = -Y_L$. From $-Y_L + Y + Y_R = 0$ we now get

$$Y_R = 2Y_L$$

it now follows:

$$\frac{1}{2}g\sin\theta_W + Y_L g'\cos\theta_W = 0$$
$$-\frac{1}{2}g\sin\theta_W + Y_L g'\cos\theta_W = -g\sin\theta_W$$

$$Y_R g' \cos \theta_W = -g \sin \theta_W$$
$$\tan \theta_W = -2Y_L \frac{g'}{g}$$

and the Lagrangian can be further simplified:

$$\mathcal{L} = i\bar{\nu}_L \gamma^\mu \partial_\mu \nu_L + i\bar{e}\gamma^\mu \partial_\mu e + \frac{g}{\sqrt{2}} (\bar{\nu}_L \gamma^\mu e_L W_\mu^+ + \text{h.c.})$$

$$-g \sin \theta_W (\bar{e}_L \gamma^\mu e_L + \bar{e}_R \gamma^\mu e_R) A_\mu$$

$$+ \frac{g}{\cos \theta_W} \left[\frac{1}{2} \bar{\nu}_L \gamma^\mu \nu_L + (-\frac{1}{2} + \sin^2 \theta_W) \bar{e}_L \gamma^\mu e_L + \sin^2 \theta_W \bar{e}_R \gamma^\mu e_R \right] Z_\mu =$$

$$= i\bar{\nu}_L \gamma^\mu \partial_\mu \nu_L + i\bar{e}\gamma^\mu \partial_\mu e + \frac{g}{2\sqrt{2}} (\bar{\nu}\gamma^\mu (1 - \gamma_5) e W_\mu^+ + \text{h.c.}) - g \sin \theta_W \bar{e}\gamma^\mu e A_\mu$$

$$+ \frac{g}{2\cos \theta_W} \left[\bar{\nu}\gamma^\mu (1 - \gamma_5) \nu + \bar{e}\gamma^\mu (-\frac{1}{2} + 2\sin^2 \theta_W + \frac{1}{2}\gamma_5) e \right] Z_\mu$$

Where we used the relations $\bar{\nu}_L \gamma^\mu e_L = \frac{1}{2} \bar{\nu} \gamma^\mu (1 - \gamma_5) e$ and $\bar{\nu}_R \gamma^\mu e_R = \frac{1}{2} \bar{\nu} \gamma^\mu (1 + \gamma_5) e$.

1.1.4 Gauge terms

$$\mathcal{L}_{Gauge} = -\frac{1}{4}F_{\mu\nu}^{a}F^{a\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} =$$

$$= -\frac{1}{4}(\partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + g\epsilon^{abc}A_{\mu}^{b}A_{\nu}^{c})(\partial^{\mu}A^{a\nu} - \partial^{\nu}A^{a\mu} + g\epsilon^{ajk}A^{j\mu}A^{k\nu}) - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} =$$

$$= -\frac{1}{4}\partial_{\mu}A_{\nu}^{a}\partial^{\mu}A^{a\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{2}(\partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a})g\epsilon^{abc}A^{b\mu}A^{c\nu} - \frac{1}{4}g^{2}\epsilon^{abc}\epsilon^{ajk}A_{\mu}^{b}A_{\nu}^{c}A^{k\mu}A^{l\nu} =$$

$$= -\frac{1}{2}W_{\mu\nu}^{-}W^{+\mu\nu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - g[(\partial_{\mu}A_{\nu}^{1} - \partial_{\nu}A_{\mu}^{1})A^{2\mu}A^{3\nu} + \text{cycl. perm. (123)}]$$

$$-\frac{1}{4}g^{2}[(A_{\mu}^{a}A^{a\mu})(A_{\nu}^{b}A^{b\nu}) - (A_{\mu}^{a}A_{\nu}^{a})(A^{b\mu}A^{b\nu})] =$$

$$= -\frac{1}{2}W_{\mu\nu}^{-}W^{+\mu\nu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - g[A_{\mu}^{1}A_{\nu}^{2}\overleftrightarrow{\partial}^{\mu}A^{3\nu} + \text{cycl. perm. (123)}]$$

$$-\frac{1}{4}g^{2}[(A_{\mu}^{a}A^{a\mu})(A^{b}A^{b\nu}) - (A_{\mu}^{a}A_{\nu}^{a})(A^{b\mu}A^{b\nu})] =$$

$$= -\frac{1}{2}W_{\mu\nu}^{-}W^{+\mu\nu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} - ig(W_{\mu}^{0}W_{\nu}^{-}\overleftrightarrow{\partial}^{\mu}W^{+\nu} + \text{cycl. perm. (0-+)})$$

$$-g^{2}[\frac{1}{2}(W_{\mu}^{+}W^{-\mu})^{2} - \frac{1}{2}(W_{\mu}^{+}W^{+\mu})(W_{\nu}^{-}W^{-\nu}) + (W_{\mu}^{0}W^{0})(W_{\nu}^{+}W^{-\nu}) - (W_{\mu}^{-}W_{\nu}^{+})(W^{0\mu}W^{0\nu}) =$$

$$= -\frac{1}{2}W_{\mu\nu}^{-}W^{+\mu\nu} - \frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}Z_{\mu\nu}Z^{\mu\nu} + \mathcal{L}_{WW\gamma} + \mathcal{L}_{WWZ} + \mathcal{L}_{WW\gamma\gamma} + \mathcal{L}_{WWWW} + \mathcal{L}_{WWZZ} + \mathcal{L}_{WWZ\gamma}$$
Where $W_{\mu}^{0} = A_{\mu}^{3} = \cos\theta_{W}Z_{\mu} + \sin\theta_{W}A_{\mu}$ and:
$$\mathcal{L}_{WW\gamma} = -ig\sin\theta_{W}(A_{\mu}W_{\nu}^{-}\overleftrightarrow{\partial}^{\mu}W^{+\nu} + \text{cycl. perm. } (AW^{-}W^{+}))$$

$$\mathcal{L}_{WWZZ} = -ig\cos\theta_{W}(Z_{\mu}W_{\nu}^{-}\overleftrightarrow{\partial}^{\mu}W^{+\nu} + \text{cycl. perm. } (ZW^{-}W^{+}))$$

$$\mathcal{L}_{WWWW} = \frac{1}{2}g^{2}(W_{\mu}^{-}W^{-}W^{-}W^{+}W^{+\nu} - W_{\mu}^{-}W^{+\mu}W^{+\nu})$$

$$\mathcal{L}_{WWWW} = \frac{1}{2}g^{2}(W_{\mu}^{-}W^{-}W^{-}W^{+\mu}W^{+\nu} - W_{\mu}^{-}W^{+\mu}W^{-}W^{+\nu})$$

$$\mathcal{L}_{WWZZ} = -g^{2}\cos^{2}\theta_{W}(W_{\mu}^{-}W^{+\mu}W^{+\nu} - W_{\mu}^{-}W^{+\mu}W^{-}W^{+\nu})$$

 $\mathcal{L}_{WWZ\gamma} = g^2 \sin \theta_W \cos \theta_W (-2W_{\mu}^- W^{+\mu} A_{\nu} Z^{\nu} + W_{\mu}^- Z^{\mu} W_{\nu}^+ A^{\nu} + W_{\mu}^- A^{\mu} W_{\nu}^+ Z^{\nu})$

1.1.5 GWS Lagrangian

Plugging everything together we get the GWS Lagrangian:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - \lambda v^{2} H^{2} + \frac{1}{4} g^{2} v^{2} W_{\mu}^{-} W^{+\mu} + \frac{g^{2} v^{2}}{8 \cos^{2} \theta_{W}} Z_{\mu} Z^{\mu} - \lambda v H^{3} - \frac{1}{4} \lambda H^{4} +$$

$$+ \frac{1}{2} v g^{2} W_{\mu}^{-} W^{+\mu} H + \frac{g^{2}}{4 \cos \theta_{W}} v Z_{\mu} Z^{\mu} H + \frac{1}{4} g^{2} W_{\mu}^{-} W^{+\mu} H^{2} + \frac{g^{2}}{8 \cos \theta_{W}} Z_{\mu} Z^{\mu} H^{2}$$

$$- \frac{1}{\sqrt{2}} h_{e} v \bar{e} e - \frac{1}{\sqrt{2}} h_{e} \bar{e} e H$$

$$- \frac{1}{2} W_{\mu\nu}^{-} W^{+\mu\nu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + \mathcal{L}_{WW\gamma} + L_{WWZ} + L_{WW\gamma\gamma} + L_{WWWW} + L_{WWZZ} + L_{WWZ\gamma}$$

$$+ i \bar{\nu}_{L} \gamma^{\mu} \partial_{\mu} \nu_{L} + i \bar{e} \gamma^{\mu} \partial_{\mu} e + \frac{g}{2\sqrt{2}} (\bar{\nu} \gamma^{\mu} (1 - \gamma_{5}) e W_{\mu}^{+} + \text{h.c.}) - g \sin \theta_{W} \bar{e} \gamma^{\mu} e A_{\mu}$$

$$+ \frac{g}{2 \cos \theta_{W}} \left[\bar{\nu} \gamma^{\mu} (1 - \gamma_{5}) \nu + \bar{e} \gamma^{\mu} (-\frac{1}{2} + 2 \sin^{2} \theta_{W} + \frac{1}{2} \gamma_{5}) e \right] Z_{\mu}$$

$$+ (e, \nu_{e}, h_{e} \leftrightarrow \mu, \nu_{\mu}, h_{\mu}) + (e, \nu_{e}, h_{e} \leftrightarrow \tau, \nu_{\tau}, h_{\tau})$$

The free parameters are $g,\,\theta_W,\,v,\,\lambda,\,h_e,\,h_\mu,\,h_ au.$

1.1.6 Particle Masses

The particle masses are deduced from the terms

$$\mathcal{L} = -\frac{1}{2}m_H^2 H^2 + m_W^2 W_\mu^- W^{+\mu} + \frac{1}{2}m_Z^2 Z_\mu Z^\mu - m_e \bar{e}e + \cdots$$

comparing to the above:

$$\mathcal{L} = -\lambda v^2 H^2 + \frac{1}{4} g^2 v^2 W_{\mu}^- W^{+\mu} + \frac{g^2 v^2}{8 \cos^2 \theta_W} Z_{\mu} Z^{\mu} - \frac{1}{\sqrt{2}} h_e v \bar{e} e + \cdots$$

we get

$$m_W = \frac{1}{2}gv$$

$$m_Z = \frac{gv}{2\cos\theta_W} = \frac{m_W}{\cos\theta_W}$$

$$m_H = v\sqrt{2\lambda}$$

$$m_e = \frac{1}{\sqrt{2}}h_e v$$

1.1.7 Dimensional Analysis

The evolution operator is dimensionless:

$$U(-\infty, \infty) = T \exp\left(\frac{i}{\hbar} \int_{-\infty}^{\infty} d^4x \mathcal{L}(x)\right)$$

So:

$$\left[\int_{-\infty}^{\infty} \mathrm{d}^4 x \mathcal{L}(x)\right] = [\hbar] = M^0$$

where M is an arbitrary mass scale. Length unit is M^{-1} , so then

$$[\mathcal{L}(x)] = M^4$$

For the particular forms of the Lagrangians above we get:

$$[m\bar{e}e] = [m^2 Z_{\mu} Z^{\mu}] = [m^2 H^2] = [i\bar{e}\gamma^{\mu}\partial_{\mu}e] = [\mathcal{L}] = M^4$$

so $[\bar{e}e] = M^3$, $[Z_{\mu}Z^{\mu}] = [H^2] = M^2$ and we get

$$[e] = [\bar{e}] = M^{\frac{3}{2}}$$

$$[Z_{\mu}] = [Z^{\mu}] = [H] = [\partial_{\mu}] = [\partial^{\mu}] = M^{1}$$

Example: what is the dimension of G_{μ} in $\mathcal{L} = -\frac{G_{\mu}}{\sqrt{2}} [\bar{\psi}_{\nu_{\mu}} \gamma^{\mu} (1 - \gamma_5) \psi_{\mu}] [\bar{\psi}_e \gamma^{\mu} (1 - \gamma_5) \psi_{\nu_e}]$? Answer:

$$[\mathcal{L}] = [G_{\mu}\bar{\psi}\psi\bar{\psi}\psi]$$

$$M^{4} = [G_{\mu}]M^{\frac{3}{2}}M^{\frac{3}{2}}M^{\frac{3}{2}}M^{\frac{3}{2}}$$

$$[G_{\mu}] = M^{-2}$$

1.1.8 Quarks

$$\mathcal{L}_{fermion} += \sum_{q=d,s,b} i \bar{L}_{0}^{(q)} \gamma^{\mu} \partial_{\mu} L_{0}^{(q)} + \sum_{q=d,u,s,c,b,t} i \bar{q}_{0R} \gamma^{\mu} \partial_{\mu} q_{0R}$$

$$\mathcal{L}_{Yukawa} += - \sum_{\substack{q=d,s,b\\q'=d,s,b}} h_{qq'} i \bar{L}_{0}^{(q)} \Phi q'_{0R} + \text{h.c.} - \sum_{\substack{q=d,s,b\\q'=u,c,t}} \tilde{h}_{qq'} i \bar{L}_{0}^{(q)} \tilde{\Phi} q'_{0R} + \text{h.c.}$$

More to be added here...

1.2 QFT

1.2.1 Evolution Operator, S-Matrix Elements

The evolution operator U is defined by the equations:

$$|\phi(t_2)\rangle = U(t_2, t_1) |\phi(t_1)\rangle$$

$$i\hbar \frac{\partial U(t,t_1)}{\partial t} = H(t)U(t,t_1)$$

$$U(t_1,t_1) = 1$$

We are interested in calculating the S matrix elements:

$$S_{fi} = \langle f|U(-\infty,\infty)|i\rangle$$

so we first calculate $U(-\infty, \infty)$. Integrating:

$$U(t_2, t_1) = U(t_1, t_1) - \frac{i}{\hbar} \int_{t_1}^{t_2} H(t)U(t, t_1)dt = 1 - \frac{i}{\hbar} \int_{t_1}^{t_2} H(t)U(t, t_1)dt$$

Now:

$$U(-\infty, \infty) = 1 - \frac{i}{\hbar} \int_{-\infty}^{\infty} H(t')U(t', -\infty)dt' =$$

$$= 1 + \left(-\frac{i}{\hbar}\right) \int_{-\infty}^{\infty} H(t')U(t', -\infty)dt' + \left(-\frac{i}{\hbar}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{t'} H(t')H(t'')U(t'', -\infty)dt'dt'' =$$

$$= \dots = \sum_{n=0}^{\infty} \left(-\frac{i}{\hbar}\right)^{n} \frac{1}{n!} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots T\{H(t_{1})H(t_{2})\dots\}dt_{1}dt_{2}\dots =$$

$$= T \exp\left(-\frac{i}{\hbar} \int_{-\infty}^{\infty} H(t)dt\right) = T \exp\left(-\frac{i}{\hbar} \int_{-\infty}^{\infty} d^{4}x \mathcal{H}(x)\right)$$

If \mathcal{L} doesn't contain derivatives of the fields, then $\mathcal{H} = -\mathcal{L}$ so:

$$U(-\infty, \infty) = T \exp\left(\frac{i}{\hbar} \int_{-\infty}^{\infty} d^4x \mathcal{L}(x)\right)$$

Let's write S = 1 + iT and $|i\rangle = |k_1 \cdots k_m\rangle$, $|f\rangle = |p_1 \cdots p_n\rangle$. As a first step now, let's investigate a scalar field, e.g. $\mathcal{L} = \lambda \phi^4$ (e.g. a Higgs self interaction term above), we'll look at other fields later:

$$\langle f|S|i\rangle = \langle f|iT|i\rangle = \langle p_1 \cdots p_n|iT|k_1 \cdots k_m\rangle = \frac{1}{\tilde{D}(k_1)\cdots \tilde{D}(k_m)} \frac{1}{\tilde{D}(p_1)\cdots \tilde{D}(p_n)}$$

$$\int d^4x_1 \cdots d^4x_m e^{-i(k_1x_1+\cdots+k_mx_m)} \int d^4y_1 \cdots d^4y_n e^{+i(p_1y_1+\cdots+p_ny_n)} G(x_1, \cdots, x_m, y_1, \cdots, y_m)$$
where
$$G(x_1, \cdots, x_n) = \langle 0|T\{\phi(x_1)\cdots\phi(x_n)\}|0\rangle =$$

$$\frac{\langle 0|T\{\phi_I(x_1)\cdots\phi_I(x_n)\exp\left(\frac{i}{\hbar}\int_{-\infty}^{\infty} d^4x\mathcal{L}(x)\right)\}|0\rangle}{\langle 0|T\exp\left(\frac{i}{\hbar}\int_{-\infty}^{\infty} d^4x\mathcal{L}(x)\right)|0\rangle}$$

Now we use the Wick contraction, get some terms like $D_{23}D_{34}$ integrate things out, this will give the delta function and $\tilde{D}(p)$'s and that's it.

1.3 Low energy theories

1.3.1 Fermi-type theory

This is a low energy $(m_W^2 \gg m_\mu m_e)$ model for the EW interactions, that can be derived for example from the muon decay:

$$\mu^- \rightarrow e^- + \nu_\mu + \bar{\nu}_e$$

From the SM the relevant Lagrangian is

$$\mathcal{L} = \frac{g}{2\sqrt{2}} (\bar{e}\gamma^{\mu} (1 - \gamma_5)\nu_e W_{\mu}^{-}) + \frac{g}{2\sqrt{2}} (\bar{\mu}\gamma^{\mu} (1 - \gamma_5)\nu_{\mu} W_{\mu}^{-})$$

and one gets the diagram $\mu^- + \bar{\nu}_{\mu} + \rightarrow e^- + \bar{\nu}_e$ and the corresponding matrix element:

$$iM = -i\frac{g^2}{8} [\bar{u}\gamma_{\mu}(1 - \gamma_5)u] \frac{-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{m_W^2}}{q^2 - m_W^2} [\bar{u}\gamma_{\nu}(1 - \gamma_5)v]$$

which when the momentum transfer q is much less than m_w becomes

$$iM = -i\frac{g^2}{8m_W^2}[\bar{u}\gamma^{\mu}(1-\gamma_5)u][\bar{u}\gamma_{\mu}(1-\gamma_5)v]$$

but this element can be derived directly from the Lagrangian:

$$\mathcal{L} = -\frac{G_{\mu}}{\sqrt{2}} [\bar{\psi}_{\nu_{\mu}} \gamma^{\mu} (1 - \gamma_5) \psi_{\mu}] [\bar{\psi}_e \gamma^{\mu} (1 - \gamma_5) \psi_{\nu_e}]$$

with

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{g^2}{8m_W^2}$$

This is the universal V-A theory Lagrangian (after adding the h.c. term).

1.3.2 QED

The QED Lagrangian density is

$$\mathcal{L} = \bar{\psi}(ic\gamma^{\mu}D_{\mu} - mc^2)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

where

$$\psi = (\psi_1 \psi_2 \psi_3 \psi_4)$$

and

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units)

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

is the electromagnetic field tensor. It's astonishing, that this simple Lagrangian can account for all phenomena from macroscopic scales down to something like 10^{-13} cm. So of course Feynman, Schwinger and Tomonaga received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

$$(ic\gamma^{\mu}D_{\mu} - mc^{2})\psi = 0$$
$$\partial_{\nu}F^{\nu\mu} = -ec\bar{\psi}\gamma^{\mu}\psi$$

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell equations $(\partial_{\nu}F^{\nu\mu} = -ej^{\mu})$ with a source $j^{\mu} = c\bar{\psi}\gamma^{\mu}\psi$, which is a 4-current comming from the Dirac equation.

The fields ψ and A^{μ} are quantized. The first approximation is that we take ψ as a wavefunction, that is, it is a classical 4-component field. It can be shown that this corresponds to taking three orders in the perturbation theory.

The first component A_0 of the 4-potential is the electric potential, and because this is the potential that (as we show in a moment) is in the Schrödinger equation, we denote it by V:

$$A_{\mu} = \left(\frac{V}{ec}, A_1, A_2, A_3\right)$$

So in the non-relativistic limit, the $\frac{V}{e}$ corresponds to the electric potential. We multiply the Dirac equation by γ^0 from left to get:

$$0 = \gamma^0 (ic\gamma^\mu D_\mu - mc^2)\psi = \gamma^0 (ic\gamma^0 (\partial_0 + i\frac{V}{c}) + ic\gamma^i (\partial_i + ieA_i) - mc^2)\psi =$$

$$= (ic\partial_0 + ic\gamma^0 \gamma^i \partial_i - \gamma^0 mc^2 - V - ce\gamma^0 \gamma^i A_i)\psi$$

and we make the following substitutions (it's just a formalism, nothing more): $\beta = \gamma^0$, $\alpha^i = \gamma^0 \gamma^i$, $p_j = -i\partial_j$, $\partial_0 = \frac{1}{c} \frac{\partial}{\partial t}$ to get

$$(i\frac{\partial}{\partial t} - c\alpha^{i}p_{i} - \beta mc^{2} - V - ce\alpha^{i}A_{i})\psi = 0.$$

This, in most solid state physics texts, is usually written as

$$i\frac{\partial\psi}{\partial t} = H\psi\,,$$

where the Hamiltonian is given by

$$H = c\alpha^{i}(p_{i} + eA_{i}) + \beta mc^{2} + V.$$

The right hand side of the Maxwell equations is the 4-current, so it's given by:

$$j^{\mu} = c\bar{\psi}\gamma^{\mu}\psi$$

Now we make the substitution $\psi = e^{-imc^2t}\varphi$, which states, that we separate the largest oscillations of the wavefunction and we get

$$j^0 = c\bar{\psi}\gamma^0\psi = c\psi^\dagger\psi = c\varphi^\dagger\varphi$$

$$j^i = c\bar{\psi}\gamma^i\psi = c\psi^\dagger\alpha^i\psi = c\varphi^\dagger\alpha^i\varphi$$

The Dirac equation implies the Klein-Gordon equation:

$$(-ic\gamma^{\mu}D_{\mu} - mc^{2})(ic\gamma^{\nu}D_{\nu} - mc^{2})\psi = (c^{2}\gamma^{\mu}\gamma^{\nu}D_{\mu}D_{\mu} + m^{2}c^{4})\psi =$$
$$= (c^{2}D^{\mu}D_{\mu} - ic^{2}[\gamma^{\mu}, \gamma^{\nu}]D_{\mu}D_{\nu} + m^{2}c^{4})\psi = 0$$

Note however, the ψ in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

$$D_{\mu}D_{\nu} = (\partial_{\mu} + ieA_{\mu})(\partial_{\nu} + ieA_{\nu}) = \partial_{\mu}\partial_{\nu} + ie(A_{\mu}\partial_{\nu} + A_{\nu}\partial_{\mu} + (\partial_{\mu}A_{\nu})) - e^{2}A_{\mu}A_{\nu}$$
$$[D_{\mu}, D_{\nu}] = D_{\mu}D_{\nu} - D_{\nu}D_{\mu} = ie(\partial_{\mu}A_{\nu}) - ie(\partial_{\nu}A_{\mu})$$

We rewrite $D^{\mu}D_{\mu}$:

$$D^{\mu}D_{\mu} = g^{\mu\nu}D_{\mu}D_{\nu} = \partial^{\mu}\partial_{\mu} + ie((\partial^{\mu}A_{\mu}) + 2A^{\mu}\partial_{\mu}) - e^{2}A^{\mu}A_{\mu} =$$

$$= \partial^{\mu}\partial_{\mu} + ie((\partial^{0}A_{0}) + 2A^{0}\partial_{0} + (\partial^{i}A_{i}) + 2A^{i}\partial_{i}) - e^{2}(A^{0}A_{0} + A^{i}A_{i}) =$$

$$= \partial^{\mu}\partial_{\mu} + i\frac{1}{c^{2}}\frac{\partial V}{\partial t} + 2i\frac{V}{c^{2}}\frac{\partial}{\partial t} + ie(\partial^{i}A_{i}) + 2ieA^{i}\partial_{i} - \frac{V^{2}}{c^{2}} - e^{2}A^{i}A_{i}$$

We use the identity $\frac{\partial}{\partial t} \left(e^{-imc^2t} f(t) \right) = e^{-imc^2t} \left(-imc^2 + \frac{\partial}{\partial t} \right) f(t)$ to get:

$$L = c^{2} \partial^{\mu} \psi^{*} \partial_{\mu} \psi - m^{2} c^{4} \psi^{*} \psi = \frac{\partial}{\partial t} \psi^{*} \frac{\partial}{\partial t} \psi - c^{2} \partial^{i} \psi^{*} \partial_{i} \psi - m^{2} c^{4} \psi^{*} \psi =$$

$$= (imc^{2} + \frac{\partial}{\partial t}) \varphi^{*} (-imc^{2} + \frac{\partial}{\partial t}) \varphi - c^{2} \partial^{i} \varphi^{*} \partial_{i} \varphi - m^{2} c^{4} \varphi^{*} \varphi =$$

$$=2mc^2\left[\frac{1}{2}i(\varphi^*\frac{\partial\varphi}{\partial t}-\varphi\frac{\partial\varphi^*}{\partial t})-\frac{1}{2m}\partial^i\varphi^*\partial_i\varphi+\frac{1}{2mc^2}\frac{\partial\varphi^*}{\partial t}\frac{\partial\varphi}{\partial t}\right]$$

The constant factor $2mc^2$ in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit $c \to \infty$ (neglecting the last term) and we get

$$L = \frac{1}{2}i(\varphi^* \frac{\partial \varphi}{\partial t} - \varphi \frac{\partial \varphi^*}{\partial t}) - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

After integration by parts we arrive at

$$L = i\varphi^* \frac{\partial \varphi}{\partial t} - \frac{1}{2m} \partial^i \varphi^* \partial_i \varphi$$

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:

$$0 = (c^2 D^\mu D_\mu + m^2 c^4) \psi =$$

$$= \left(c^2 \partial^\mu \partial_\mu + i \frac{\partial V}{\partial t} + 2iV \frac{\partial}{\partial t} + iec^2 (\partial^i A_i) + 2iec^2 A^i \partial_i - V^2 - e^2 c^2 A^i A_i + m^2 c^4\right) e^{-imc^2 t} \varphi =$$

$$= \left(\frac{\partial^2}{\partial t^2} - c^2 \nabla^2 + 2iV \frac{\partial}{\partial t} + i \frac{\partial V}{\partial t} + iec^2 (\partial^i A_i) + 2iec^2 A^i \partial_i - V^2 - e^2 c^2 A^i A_i + m^2 c^4\right) e^{-imc^2 t} \varphi =$$

$$= e^{-imc^2 t} \left((-imc^2 + \frac{\partial}{\partial t})^2 - c^2 \nabla^2 + 2iV (-imc^2 + \frac{\partial}{\partial t}) + i \frac{\partial V}{\partial t} + iec^2 (\partial^i A_i) + 2iec^2 A^i \partial_i - V^2 +$$

$$-e^2 c^2 A^i A_i + m^2 c^4\right) \varphi =$$

$$= e^{-imc^2 t} \left(-2imc^2 \frac{\partial}{\partial t} + \frac{\partial^2}{\partial t^2} - c^2 \nabla^2 + 2V mc^2 + 2iV \frac{\partial}{\partial t} + i \frac{\partial V}{\partial t} + iec^2 (\partial^i A_i) + 2iec^2 A^i \partial_i - V^2 +$$

$$-e^2 c^2 A^i A_i\right) \varphi =$$

$$= -2mc^2 e^{-imc^2 t} \left(i \frac{\partial}{\partial t} + \frac{\nabla^2}{2m} - V - \frac{1}{2mc^2} \frac{\partial^2}{\partial t^2} - \frac{i}{2mc^2} \frac{\partial V}{\partial t} + \frac{V^2}{2mc^2} - \frac{iV}{mc^2} \frac{\partial}{\partial t} +$$

$$-\frac{ie}{2m} \partial^i A_i - \frac{ie}{m} A^i \partial_i + \frac{e^2}{2m} A^i A_i\right) \varphi$$

Taking the limit $c \to \infty$ we again recover the Schrödinger equation:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{\nabla^2}{2m} + V + \frac{ie}{2m}\partial^i A_i + \frac{ie}{m}A^i\partial_i - \frac{e^2}{2m}A^iA_i\right)\varphi\,,$$

we rewrite the right hand side a little bit:

$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i\partial_i + ie\partial^iA_i + 2ieA^i\partial_i - e^2A^iA_i) + V\right)\varphi,$$
$$i\frac{\partial}{\partial t}\varphi = \left(\frac{1}{2m}(\partial^i + ieA^i)(\partial_i + ieA_i) + V\right)\varphi,$$

And we get the usual form of the Schrödinger equation for the vector potential $\mathbf{A} = (A_1, A_2, A_3)$:

$$i\frac{\partial}{\partial t}\varphi = \left(-\frac{(\nabla + ie\mathbf{A})^2}{2m} + V\right)\varphi.$$