

LEVEL

SCHOOL
OF
OPERATIONS RESEARCH
AND
INDUSTRIAL ENGINEERING

COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

This document has been approved for public release and sale; its distribution is unlimited.

MA061567

SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NEW YORK

Poul 1 to Poul 2

Prepared in part under contracts: National Science Foundation ENG75-10487 A02,

U.S. Army Research Office DAAG29-77-C-0003, Office of Naval Research

NØDØ14-75-C-Ø586, DAAG 29-77-C-DOX3

Approved for Public Release; Distribution Unlimited.

409 869 12 11 17 044 Then

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

BY USTRIBUTION AND BY USTRIBUTION AND BY	NCCESSION for NTIS DDC	White Section E
	UNANNOUNCE	
DISTRIBUTION AYA" AST IT ON TO	JUSTI TOATTON	
DISTRIBUTER AND AND ADDRESS OF THE PERSON OF		
The second secon	BY	SHAPADOW PROFE
	BY DISTRIBUTION	ANALATER OF S

1. Introduction

Consider two binomial populations π_1 and π_2 having success probabilities $0 < p_1 < 1$ and $0 < p_2 < 1$ respectively. Experimenters have used a variety of measures for comparing π_1 and π_2 including the odds ratio $\psi \equiv p_1(1-p_2)/(1-p_1)p_2$, the relative risk $\rho \equiv p_1/p_2$ and the difference between the success probabilities $\Delta \equiv p_1 - p_2$. See Cornfield (1956), Gart (1971), Gail (1973), Dunnett and Gent (1977), and Katz et. al. (1977) for comparisons of these measures and examples.

When p_1 and p_2 are unknown the statistician is interested in constructing confidence intervals for the measure of interest based on a 2 × 2 contingency table of data formed from independent random samples of sizes N_1 and N_2 from π_1 and π_2 , respectively.

For the measure ψ both exact (small sample) confidence intervals (Cornfield (1956) and Katz et al. (1977)) and asymptotic (large sample) confidence intervals (Cornfield (1956) and Gart (1971) among others) have been devised. Computer programs for implementing the exact methods of Cornfield and Katz et. al. have been published by Thomas (1971) and Baptista and Pike (1977) respectively.

Asymptotic confidence intervals for ρ have been proposed by a number of authors. Katz et. al. (1977) contains a summary and comparison of five such intervals. There have also been a number of asymptotic confidence intervals proposed for Δ (Gart (1971)). Buhrman (1977) proposed methods for designing and analyzing an experiment which yields exact confidence intervals for ρ and Δ . Thomas and Gart (1977) have published a method for constructing "exact" confidence intervals for ρ and Δ in undesigned experiments. However, as we show below, their Δ intervals do not satisfy the conditional confidence guarantee they claim nor even a corresponding

unconditional confidence guarantee. Katz et. al. (1977) give conditional counterexamples for their ρ intervals.

This paper proposes two methods for constructing exact $100(1-\alpha)$ % confidence intervals for Δ in undesigned experiments. It will be indicated how the methods can be modified to determine exact confidence intervals for ρ . We begin by reviewing that part of the basic theory of 2×2 tables required for our later work; we then give two examples which illustrate the problem of the intervals in Thomas and Gart (1977).

Let X_1 and X_2 be the numbers of successes based on independent random samples of sizes N_1 and N_2 from π_1 and π_2 respectively and let $X_1 = (X_1, X_2)$. The joint probability mass function of X_1 and X_2 is

$$f(x_{1},x_{2}) = \begin{cases} \binom{N_{1}}{x_{1}} \binom{N_{2}}{x_{2}} p_{1}^{x_{1}} q_{1}^{N_{1}-x_{1}} p_{2}^{x_{2}} q_{2}^{N_{2}-x_{2}}, & (x_{1},x_{2}) \in S \\ 0, & \text{otherwise} \end{cases}$$

where $q_i = 1 - p_i(i=1,2)$ and $S = \{(y_1,y_2)|y_i \text{ is an integer between } 0$ and N_i inclusive}. Regarded as a function of $\Delta = p_1 - p_2$ and p_1 for fixed $(x_1,x_2) \in S$, the likelihood is

$$P_{p_{1},\Delta}[X_{1}=x_{1}, X_{2}=x_{2}] = {N_{1} \choose x_{1}} {N_{2} \choose x_{2}} P_{1}^{x_{1}} (1-p_{1})^{N_{1}-x_{1}} (p_{1}-\Delta)^{x_{2}} (1+\Delta-p_{1})^{N_{2}-x_{2}}$$

where $-1 < \Delta < 1$ and $p_1 \in I(\Delta)$ is given by

(1.1)
$$I(\Delta) \equiv \begin{cases} (0, 1+\Delta), & -1 < \Delta < 0 \\ (0,1), & \Delta = 0 \\ (\Delta,1), & 0 < \Delta < 1. \end{cases}$$

Also of interest is the conditional distribution of X_1 given $X_1 + X_2 = m$ which is given by

$$(1.2) g(j|m,\psi) = \frac{\binom{N_1}{j}\binom{N_2}{m-j}\psi^{j}}{\sum\limits_{\substack{\ell=\ell(m)\\ \ell=0}}^{N_1}\binom{N_1}{\ell}\binom{N_2}{m-\ell}\psi^{\ell}}, \quad j = \ell(m), \ell(m)+1, \dots, u(m)$$

where $\ell(m) \equiv \max\{0, m-N_2\}$ and $u(m) \equiv \min\{m,N_1\}$. Expression (1.2) is valid for any integer m between 0 and $N_1 + N_2$ inclusive; $g(\cdot | m, \psi)$ is degenerate at x_1 equal to 0 and $N_1 + N_2$ when m = 0 and $N_1 + N_2$ respectively. In other cases $g(\cdot | m, \psi)$ depends on p_1 and p_2 only through the odds ratio ψ .

Both Cornfield (1956) and Katz et. al. (1977) have proposed methods for constructing exact two-sided 100(1- α)% confidence intervals ($\psi_L(X)$, $\psi_U(X)$) for ψ . If $P_{\psi}[\cdot|m]$ denotes a probability calculated under distribution (1.2) then both of their intervals satisfy

(1.3)
$$P_{\psi}[\psi_{T}(X) < \psi < \psi_{T}(X)|_{m}] \geq 1-\alpha$$

for every $\psi \in (0,\infty)$ and every integer $0 \le m \le N_1 + N_2$. Hence they satisfy the (unconditional) confidence interval guarantee

(1.4)
$$P_{p_1,\Delta}[\psi_L(X) < \psi < \psi_U(X)] \ge 1-\alpha$$

for all p_1 and Δ . The method of Katz et. al. will be reviewed since it yields shorter intervals than the Cornfield method and the tables of Section 2 are based on their intervals.

Fix $m \in \{0,1,\ldots,N_1+N_2\}$ and for each $\psi \in (0,\infty)$ let $\Lambda = \Lambda_{\psi}(m)$ be the subset of $\{\ell(m),\ldots,\iota(m)\}$ so that $P_{\psi}[X_1\in \Lambda_{\psi}|m]\geq 1-\alpha$ and $g(k|m,\psi)\leq g(j|m,\psi)$ for all $k\notin \Lambda_{\psi}$ and all $j\in \Lambda_{\psi}$. Define the confidence interval for ψ to be $\{\psi\in (0,\infty)|X_1\in \Lambda_{\psi}(X_1+X_2)\}$. It is easy to check that the resulting interval satisfies (1.3).

In a series of papers Gart (1971), McDonald et. al. (1974) and Thomas and Gart (1971) attempt to produce exact small sample confidence intervals for Δ based on intervals ($\psi_L(X)$, $\psi_U(X)$) satisfying (1.3) and on the following relationships. To construct the upper limit $\Delta_U = \Delta_U(X)$ first determine the solution \mathbf{x}_U of the equation

(1.5)
$$\psi_{U} = \frac{x_{U}(x_{U}+N_{2}-m)}{(m-x_{U})(N_{1}-x_{U})}$$

satisfying $\max\{0, m-N_2\} \le x_U \le \min\{m, N_1\}$. Then let $\Delta_U \equiv x_U/N_1 - (m-x_U)/N_2$. The lower limit Δ_L can be obtained in a similar fashion. These authors claim that

(1.6)
$$P_{\psi}[\Delta_{L}(\chi) < \Delta < \Delta_{U}(\chi)|m] \geq 1-\alpha$$

for all $\psi \in (0,\infty)$ and hence $(\Delta_L(X), \Delta_U(X))$ also satisfies the probability guarantee unconditionally. This method has two problems. The first is that Equation 1.5 defining \mathbf{x}_U is derived on asymptotic grounds (Cornfield (1956)). The second is that if $\mathbf{m} \dagger \mathbf{N}_1$ or $\mathbf{m} \dagger \mathbf{N}_2$ then Δ_L or Δ_U are bounded away from -1 or 1. This second problem will be examined in more detail in Section 4. Consequenty it is not surprising that (1.6) need not hold for small samples as the following example shows.

Example 1.1: Let $N_1 = 2 = N_2$, m = 1 and $\alpha = .01$. McDonald et. al. (1974) compute the following 99% confidence intervals for Δ based Gart's method.

×ı	* ₂	Δ _L	Δ _U
0	1	-1	.4808
1	0	4808	+1

Consider $p_1 = 3/4$ and $p_2 = 1/4$ so that $\Delta = 1/2$ and $\psi = 9$.

$$P_{\psi=9}[\Delta_L(X) < 1/2 < \Delta_U(X)|1] = P_{\psi=9}[X_1=1, X_2=0|1] = .90 < .99.$$

As Example 1.1 is a conditional probability calculation it might still be conjectured that this method satisfies the unconditional probability requirement

(1.7)
$$P_{p_1,\Delta}[\Delta_L(\chi) < \Delta < \Delta_U(\chi)] \ge 1-\alpha$$

for all $\Delta \in (-1,1)$ and $p_1 \in I(\Delta)$ provided (Δ_L, Δ_U) is correctly defined for m=0 and N_1+N_2 since the corresponding ψ interval is undefined for these two outcomes. In the following example (Δ_L, Δ_U) is defined to be (-1,1) when m=0 or N_1+N_2 .

Example 1.2: Again choose $N_1 = 2 = N_2$ and $\alpha = .01$. The conditional confidence intervals of McDonald et. al. (1974) are

× ₁	* ₂	$^{\Delta}_{ t L}$	Δ _U
0	2	-1	.4811
0	1	-1	.4808
1	2	-1	.4808
1	1	9316	.9316
0	0	-1	+1
2	2	-1	+1
2	1	4808	+1
1	0	4808	+1
2	0	4811	+1

When $P_1 = 3/4$ and $P_2 = 1/4$ then $\Delta = 1/2$, $\psi = 9$ and $P_{3/4,1/2}[\Delta_L(X) < 1/2 < \Delta_U(X)] = 1 - P_{3/4,1/2}[(X_1, X_2) \in \{(0,2), (0,1)(1,2)\}]$ = .949 < .99.

In Section 2 a method of constructing exact confidence intervals for Δ based on conditional ψ intervals will be proposed which satisfies the conditional confidence guarantee (1.6) and hence the weaker unconfidence guarantee (1.7). Section 3 discusses a second method for constructing Δ intervals which directly attempts to satisfy (1.7) rather than the conditional statement (1.6). Section 4 gives an example and draws some comparisons between the two methods while Section 5 summarizes the results and makes some recommendations regarding the use of Thomas-Gart (1977) intervals.

2. Conditional Confidence Intervals

For a given $\psi \in (0,\infty)$ there are infinitely many (p_1,p_2) pairs or equivalently (p_1,Δ) pairs associated with that ψ value. For each $\psi \in (0,\infty)$ let

(2.1)
$$D(\psi) = \{ \Delta \in (-1,1) | \exists p_1 \in I(\Delta) \ni p_1(1+\Delta-p_1)/(1-p_1)(p_1-\Delta) = \psi \}$$

be the set of differences associated with the odds ratio ψ .

The idea of the method is to use the set of all differences, Δ' , associated with ψ 's in an interval $(\psi_L(\chi), \psi_U(\chi))$ satisfying the conditional confidence guarantee (1.3) as the confidence interval for Δ . It will be shown below (Theorem 2.1) that the resulting confidence interval will also have conditional confidence level $(1-\alpha)$ and hence unconditional confidence level $(1-\alpha)$.

Formally the intervals are defined as follows. For any $(a,b) \subset (0,\infty)$ let

(2.2)
$$\mathsf{E}(\mathsf{a},\mathsf{b}) \equiv \mathsf{U} \mathsf{D}(\mathsf{\Psi}).$$

$$\mathsf{\Psi}_{\epsilon}(\mathsf{a},\mathsf{b})$$

E(a,b) is the set of all Δ 's representable as $p_1 - p_2$ for some (p_1, p_2) satisfying $p_1(1-p_2)/(1-p_1)p_2 \in (a,b)$. E(a,b) is always non-empty since the equation $\gamma = p_1(1-p_2)/(1-p_1)p_2$ always has solutions satisfying $0 < p_1$, $p_2 < 1$ for any $0 < \gamma < \infty$. The interval boundaries Δ_L and Δ_U are defined in terms of (ψ_L, ψ_U) and $E(\cdot, \cdot)$ as follows:

(2.3)
$$\Delta_{L}(X) = \inf E(\psi_{L}, \psi_{L}) \text{ and }$$

(2.4)
$$\Delta_{\mathbf{U}}(\chi) = \sup E(\psi_{\mathbf{L}}, \psi_{\mathbf{U}}).$$

The following characterization of E(a,b) will simplify the calculation of the sup and inf given in (2.3) and (2.4).

Lemma 2.1.
$$E(a,b) = \{\Delta = p_1 - p_1/((1-p_1)\psi + p_1) | (p_1,\psi) \in (0,1) \times (a,b) \}.$$

Proof. If $\Delta \in E(a,b)$ then there exists $p_1 \in I(\Delta) \subset (0,1)$ so that $p_1(1+\Delta-p_1)/(1-p_1)(p_1-\Delta) = \psi$ for some ψ in (a,b). Solving for Δ shows Δ is in the right hand set above. Now suppose Δ is in the right hand set then there is $(p_1,\psi) \in (0,1) \times (a,b)$ satisfying $\Delta = p_1 - p_1/((1-p_1)\psi + p_1)$. It follows that $\Delta \in (-1,1)$ since $0 < p_1 < 1$ and $\psi > 0$. Solving for ψ gives $\psi = p_1(1+\Delta-p_1)/(1-p_1)(p_1-\Delta)$; it remains to show $p_1 \in I(\Delta)$ in order that $\Delta \in D(\psi) \subset E(a,b)$. Three cases are possible: $(1) -1 < \Delta < 0$, $(2) \Delta = 0$ and $(3) 0 < \Delta < 1$. Only the first case will be considered as the remaining two are similar. It suffices to show $p_1 < 1+\Delta$ since $I(\Delta) = (0, 1+\Delta)$ when $-1 < \Delta < 0$. But $0 < \psi = p_1(1+\Delta-p_1)/(1-p_1)(p_1-\Delta) < \infty$ implies $0 < 1-p_1+\Delta$ since $\min\{p_1, 1-p_1, p_1-\Delta\} > 0$ when $-1 < \Delta < 0$ and the proof is completed.

Let $\Delta(p_1,\psi) \equiv p_1 - p_1/((1-p_1)\psi + p_1)$ and $R(a,b) \equiv (0,1) \times (a,b)$. From (2.3), (2.4) and Lemma 2.1 the $100(1-\alpha)$ % conditional confidence limits $\Delta_L(X)$ and $\Delta_U(X)$ corresponding (ψ_L,ψ_U) are the solutions of the following optimization problems:

$$\Delta_{L}(\overset{\mathsf{X}}{\sim}) = \inf_{\mathsf{R}(\psi_{L},\psi_{U})} \Delta(\mathsf{p}_{1},\psi) \quad \mathsf{and} \quad$$

$$\Delta_{\mathbf{U}}(\chi) = \sup_{\mathbf{R}(\psi_{\mathbf{L}}, \psi_{\mathbf{U}})} \Delta(\mathbf{p}_{\mathbf{L}}, \psi).$$

First a lemma describing the behavior of $\Delta(p_1,\psi)$ as a function p_1 for fixed ψ will be given.

Lemma 2.2.

- (a) For any fixed $0 < \psi < 1$, $\Delta(p_1, \psi)$ is a (strictly) negative convex function in p_1 ; furthermore $\sup_{\substack{p_1 \in (0,1) \\ \sqrt{\psi}+1}} \Delta(p_1, \psi) = 0$ and $\inf_{\substack{p_1 \in (0,1) \\ \sqrt{\psi}+1}} \Delta(p_1, \psi) = 0$
- (b) For $\psi = 1$, $\Delta(p_1, 1) = 0$ for all $p_1 \in (0, 1)$.
- (c) For any fixed $1 < \psi < \infty$, $\Delta(p_1, \psi)$ is a (strictly) positive concave function in p_1 ; furthermore $\sup_{p_1 \in (0,1)} \Delta(p_1, \psi) = \Delta\left(\frac{\sqrt{\psi}}{\sqrt{\psi}+1}, \psi\right) = \frac{\sqrt{\psi}-1}{\sqrt{\psi}+1}$ and $\inf_{p_1 \in (0,1)} \Delta(p_1, \psi) = 0$.

<u>Proof.</u> Case (b) is immediate from the definition of $\Delta(p_1,\psi)$. It suffices to prove (a) since (c) follows from (a) and the easily verifiable relationship $\Delta(p_1,\psi) = -\Delta(1-p_1, 1/\psi)$. Fix $0 < \psi < 1$; for any $0 < p_1 < 1$ we have $(1-p_1)\psi + p_1 < 1$ and hence $\Delta(p_1,\psi) = p_1 - \frac{p_1}{(1-p_1)\psi + p_1} < p_1 - p_1 = 0$. Taking derivatives of $\Delta(p_1,\psi)$ wrt p_1 gives

(2.5)
$$\frac{\partial \Delta}{\partial p_1} = 1 - \frac{\psi}{((1-p_1)\psi + p_1)^2} \text{ and }$$

(2.6)
$$\frac{\partial^2 \Delta}{\partial p_1^2} = \frac{2\psi(1-\psi)}{(p_1(1-\psi)+\psi)^3}.$$

Now $\frac{\partial^2 \Delta}{\partial p_1^2} > 0$ for $0 < p_1 < 1$ since $0 < \psi < 1$ and hence $\Delta(p_1, \psi)$ is

convex in p_1 . The minimum of $\Delta(p_1, \psi)$ occurs at the solution of $\frac{\partial \Delta}{\partial p_1} = 0$ i.e., at $p_1 = \frac{\sqrt{\psi}}{\sqrt{\psi} + 1}$ while $\lim_{p_1 \to 0^+} \Delta(p_1, \psi) = \lim_{p_1 \to 1^-} \Delta(p_1, \psi) = 0$

and hence the supremum of Δ over (0,1) is 0. This completes the proof.

Figure A is a graph of $\Delta(p_1,\psi)$ vs. p_1 and ψ . The main result of the section will now be given.

Theorem 2.1. Suppose $(\psi_L(X), \psi_U(X)) \subset (0, \infty)$ satisfies $P_{p_1, \Delta}[\psi_L(X) < \psi < \psi_U(X) | m] \geq 1-\alpha \quad \forall -1 < \Delta < 1 \quad \text{and} \quad p_1 \in I(\Delta) \quad \text{for some integer m between zero and} \quad N_1 + N_2. \quad \text{The interval} \quad (\Delta_L(X), \Delta_U(X)) \quad \text{given by}$

(2.7)
$$\Delta_{L}(X) = \begin{cases} \frac{\sqrt{\psi_{L}(X)} - 1}{\sqrt{\psi_{L}(X)} + 1}, & 0 \leq \psi_{L}(X) < 1 \\ 0, & 1 \leq \psi_{L}(X) < \infty \end{cases}$$

$$\Delta_{U}(X) = \begin{cases} 0, & 0 < \psi_{U}(X) < 1 \\ \frac{\sqrt{\psi_{U}(X)} - 1}{\sqrt{\psi_{U}(X)} + 1}, & 1 \leq \psi_{U} < \infty \\ + 1, & \psi_{U} = \infty \end{cases}$$

satisfies $P_{p_1,\Delta}[\Delta_L(X) < \Delta < \Delta_U(X)|m] \ge 1-\alpha \quad V-1 < \Delta < 1$ and $P_1 \in I(\Delta)$.

<u>Proof.</u> First note that $f(x) = (\sqrt{x} - 1)/(\sqrt{x} + 1)$ can be easily shown to be strictly increasing on the domain $(0,\infty)$. Now fix $\Delta \in (-1,1)$ and $p_1 \in I(\Delta)$ and let ψ be the corresponding odds ratio. Suppose the sample point $\omega \in [\Delta_L(X) < \psi < \psi_U(X)]$; it suffices to prove $\omega \in [\Delta_L(X) < \Delta < \Delta_U(X)]$.

A. THE SURFACE $\Delta(p_1, \psi)$ OVER $(0,1) \times (0,\infty)$.

The details of the proof differ slightly according as (a) $\psi_{IJ}(\chi) \leq 1$,

(b) $1 \leq \psi_L(X)$ and (c) $\psi_L(X) < 1 < \psi_U(X)$ and only (a) will be discussed as the other cases are similar. Since $\psi < \psi_U(X) \leq 1$ we have $\Delta(p_1, \psi) < 0 = \Delta_U(X)$ by Lemma 2.2 and the definition of Δ_U . Choose $\psi_L' \in (\psi_L, \psi)$ then

$$\Delta(\textbf{p}_1,\psi) \geq \frac{\sqrt{\psi}-1}{\sqrt{\psi}+1} > \frac{\sqrt{\psi_L^{'}}-1}{\sqrt{\psi_L^{'}}+1} \geq \Delta_L(X) \quad \text{where the first inequality follows}$$

from Lemma 2.2, the second from $\psi > \psi_L^{'}$ and the strictly increasing nature of f(x) and the last by the definition of $\Delta_L(X)$. The proof is completed.

This method can also be applied to determine exact conditional confidence intervals for the relative risk $\rho = p_1/p_2$. For $\rho \in (0,\infty)$ and $(a,b) \in (0,\infty)$ define the analogs of (2.1) and (2.2) by

(2.9)
$$I'(\rho) = \begin{cases} (0,1), & \rho \geq 1 \\ (0,\rho), & 0 < \rho < 1 \end{cases}$$

(2.10)
$$D'(\psi) = \{ \rho \in (0, \infty) | \exists p_1 \in I'(\rho) \ni (\rho - p_1)/(1 - p_1) = \psi \}$$
 and

(2.11)
$$E'(a,b) = \bigcup_{\psi \in (a,b)} D'(\psi).$$

 $D'(\psi)$ is the set of $\rho = p_1/p_2$ values associated with the odds ratio ψ . The function $\rho: (0,1)\times (0,\infty) \to (0,\infty)$ relating ρ,p_1 and ψ is given by $\rho(p_1,\psi) = \psi(1-p_1) + p_1$. An analysis of this surface similar to that given by Theorem 2.1 yields the following confidence limits for ρ .

Theorem 2.2. Suppose $(\psi_L(X), \psi_U(X))$ satisfies the hypothesis of Theorem 2.1. The interval $(\rho_L(X), \rho_U(X))$ given by

(2.12)
$$\rho_{L}(X) = \begin{cases} \psi_{L}(X), & 0 \leq \psi_{L}(X) \leq 1 \\ \\ 1, & 1 \leq \psi_{L}(X) \end{cases}$$

(2.13)
$$\rho_{U}(X) = \begin{cases} 1, & 0 < \psi_{U}(X) \leq 1 \\ \\ \psi_{U}(X), & 1 < \psi_{L}(X) \leq \infty \end{cases}$$

satisfies $P_{p_1,\Delta}[\rho_L(X) < \rho < \rho_U(X)|m] \ge 1-\alpha$ for all $\rho > 0$ and $p_1 \in I'(\rho)$.

The conditional method of this section is computationally simple to implement. The intervals are generally wider than the corresponding Gart intervals. Table 1 contains $100(1-\alpha)$ % two-sided confidence intervals for $1 \le N_1$, $N_2 \le 10$ and $\alpha = .01$, .05 and .10. The computations were made on Cornell University's IBM 370/168 computer by applying (2.7) and (2.8) to the ψ intervals of Baptista and Pike (1977). Intervals are not listed for all possible (x_1,x_2) pairs. When $(x_1,x_2) = (0,0)$ or (N_1,N_2) the Δ interval is (-1,+1) while for any other (x_1,x_2) not listed in Table I the Δ interval can be obtained from the relationships: $\Delta_L(x_1,x_2) = -\Delta_U(N_1-x_1,N_2-x_2)$ and $\Delta_U(x_1,x_2) = -\Delta_L(N_1-x_1,N_2-x_2)$.

In contrast to the conditional method of the present section the direct method of Section 3 is computationally difficult but generally produces tighter bounds than those in Table I.

3. Unconditional Confidence Intervals

3.1 Introduction

This section describes a method for constructing confidence intervals which directly satisfy (1.7). The following notation and definitions will be required throughout. For any $R \in N_1 \times N_2$ and $\Delta \in (-1,1)$ let $\phi(R,\Delta)$ denote $\inf\{P_{p_1},\Delta^{\lceil(X_1,X_2) \in R\rceil \mid p_1 \in I(\Delta)\}}$ and $\phi(R,\Delta)$ denote $\sup\{P_{p_1},\Delta^{\lceil(X_1,X_2) \in R\rceil \mid p_1 \in I(\Delta)\}}$.

Definition 3.1. A set $U \subset N_1 \times N_2$ is in the <u>northwest corner</u> (NWC) of $N_1 \times N_2$ provided (a) $(x_1, x_2) \in U \Rightarrow (x_1, \ell) \in U$ for $\ell = x_2 + 1, \dots, N_2$ and (b) $(x_1, x_2) \in U \Rightarrow (\ell, x_2) \in U$ for $\ell = 0, \dots, x_1 - 1$. Conditions (a) and (b) are equivalent to requiring that the quadrant of points in $N_1 \times N_2$ to the "northwest" of any (x_1, x_2) in U also be in U.

Suppose $P = \{(d_0,d_1),(d_1,d_2),\dots,[d_{n-1},d_n)\}$ is a partition of (-1,1) satisfying $-1 = d_0 < d_1 < \dots < d_n = 1$ and $S = \{R_1,\dots,R_n\}$ is a collection of subsets of $N_1 \times N_2$. Here the events R_1 need not be disjoint. For a fixed pair (P,S) define for each $(x_1,x_2) \in N_1 \times N_2$

$$(3.1) \ T(x_1, x_2) = \bigcup_{\substack{j: d_j \leq 0 \\ d_j > 0}} (d_{j-1}, d_j) \bigcup_{\substack{j: d_{j-1} \leq 0 \\ d_j > 0}} (d_{j-1}, d_j) \bigcup_{\substack{j: d_{j-1} > 0 \\ d_j > 0}} [d_{j-1}, d_j).$$

The first result is that $T(X_1, X_2)$ is a $100(1-\alpha)$ % confidence region for Δ provided (P,S) satisfies

Condition 3.1. $\phi(R_j, \Delta) \ge 1-\alpha \ \forall \ \Delta \in [d_{j-1}, d_j]$ and $\forall \ j \in \{1, ..., n\}$.

Lemma 3.1. Suppose (P,S) satisfies Condition 3.1 then $P_{p_1,\Delta}[\Delta \in T(X_1,X_2)] \geq 1-\alpha \quad \text{for all} \quad \Delta \in (-1,1) \quad \text{and all} \quad p_1 \in I(\Delta).$

<u>Proof.</u> Fix $\Delta \in (-1,1)$ and $p_1 \in I(\Delta)$; let i_0 be the index for which

$$\Delta \in \begin{cases} (d_{i_0^{-1}}, d_{i_0}^{-1}, & \text{if } d_{i_0} \leq 0 \\ (d_{i_0^{-1}}, d_{i_0}^{-1}), & \text{if } d_{i_0^{-1}} \leq 0, d_{i_0} > 0 \\ [d_{i_0^{-1}}, d_{i_0}^{-1}), & \text{if } d_{i_0^{-1}} > 0 \end{cases}.$$

Then $\Delta \in [d_{i_0-1}, d_{i_0}]$ and

$$P_{p_1,\Delta}[\Delta \in T(X_1,X_2)] = P_{p_1,\Delta}[(X_1,X_2) \in R_{i_0}]$$

$$\geq \phi(R_{i_0},\Delta) \text{ since } p_1 \in I(\Delta)$$

$$\geq 1-\alpha \text{ and the proof is completed.}$$

Clearly there are many (P,S) pairs satisfying Condition 3.1, for example, the trivial pair $P = \{(-1,1)\}$ and $S = \{N_1 \times N_2\}$; by Lemma 3.1 any of these can be used to generate $100(1-\alpha)$ % confidence regions for Δ . Two additional intuitive requirements will be imposed on (P,S).

Condition 3.2. $T(x_1,x_2)$ must be an interval for all $(x_1,x_2) \in N_1 \times N_2$. This is equivalent to requiring that for each point $(x_1,x_2) \in N_1 \times N_2$ there are indices $f = f(x_1,x_2)$ and $\ell = \ell(x_1,x_2)$ satisfying $(x_1,x_2) \in R_1$ $\iff f \leq i \leq \ell$.

The last requirement deals with the shape of R_i . First some additional notation must be introduced. Let $\Pi_1 = \Pi_1(R) \equiv \{i \mid \exists j \text{ with } (i,j) \in R\}$ and $\Pi_2 = \Pi_2(R) \equiv \{j \mid \exists i \text{ with } (i,j) \in R\}$ be the projections of $R \subset N_1 \times N_2$ onto the x_1 and x_2 axes respectively.

Condition 3.3. For R_{ℓ} (1) R_{ℓ} must be of the form $U_{\ell}^{i} - U_{\ell}$ where $U_{\ell} \subset U_{\ell}^{i}$ and both are NWC sets, (2) $\Pi_{1}(R_{\ell})$ and $\Pi_{2}(R_{\ell})$ must be intervals of integers and (3) there must exist real numbers α and $\beta > 0$ so that $\alpha + \beta i \geq s_{i} \equiv \min\{j|(i,j) \in R_{\ell}\}$ whenever $s_{i} > 0$, $\alpha + \beta i \leq \ell_{i} \equiv \max\{j|(i,j) \in R_{\ell}\}$ whenever $\ell_{i} < N_{2}$, $(j-\alpha)/\beta \geq S_{j} = \min\{i|(i,j) \in R_{\ell}\}$ whenever $S_{j} > 0$ and $(j-\alpha)/\beta \leq L_{j} = \max\{i|(i,j) \in R_{\ell}\}$ whenever $L_{j} < N_{1}$. Note that s_{i} , ℓ_{i} , S_{j} and L_{j} are only defined for $i \in \Pi_{1}(R_{\ell})$ and $j \in \Pi_{2}(R_{\ell})$.

Intuitively (1) and (2) are connectedness conditions which insure that R_{ℓ} has no holes while (3) is a technical condition under which $\phi(R_{\ell}, \Delta)$ is quasi-concave on (-1,0] i.e. $\phi(R_{\ell}, \Delta_2) \geq \min\{\phi(R_{\ell}, \Delta_1), \phi(R_{\ell}, \Delta_3)\}$ for $-1 < \Delta_1 < \Delta_2 \leq \Delta_3 \leq 0$.

There are numerous criteria that can be employed to select from among those (P,S) pairs satisfying Conditions (3.1)-(3.3). Two examples are (a) (P,S) must minimize the average length of the intervals $T(x_1,x_2)$ and (b), a generalization of (a), (P,S) must minimize a weighted sum of the lengths of $T(x_1,x_2)$. Both (a) and (b) are difficult to implement since they only indirectly stipulate conditions on (P,S). This paper contains an algorithm for generating (P,S) based on the so called "greedy" heuristic. It attempts to construct short intervals by forcing the R_i to be "small"; as few points as possible are added to R_i and as many points as possible are removed for R_i in order to construct R_{i+1} .

3.2 The Algorithm

Given $\alpha \in (0,1)$ and positive integers N_1 and N_2 the algorithm below generates a (P,S) pair satisfying Conditions (3.1)-(3.3). Briefly,

Step 0 is an initialization procedure, Steps 1 through 5 form one inductive step and Step 6 generates the final (P,S) pair based on symmetry considerations. At each iteration Step 1 is entered with constants $-1 = d_0 < d_1 < \ldots < d_{i-1} < 0$ and regions R_1, \ldots, R_i satisfying

(3.2)
$$\phi(R_j, \Delta) \ge 1-\alpha \ \forall \ \Delta \in (d_{j-1}, d_j] \text{ for } 1 \le j \le i-1$$

(3.3)
$$\phi(R_{i},d_{j}) = 1-\alpha \text{ for } 1 \leq j \leq i-1$$

(3.4)
$$R_1, \dots, R_i$$
 satisfy Condition 3.3

(3.5) if
$$I = I(i,x_1,x_2) = \{j \in \{1,...,i\} | (x_1,x_2) \in R_j\}$$
 then $\bigcup_{j \in I} (d_{i-1},d_j]$ is either empty or an interval for every $(x_1,x_2) \in N_1 \times N_2$.

Two final pieces of notation are required. Given $R_j = u_j' - u_j$ as in (3.4) let $L_j = N_1 \times N_2 - u_j'$ be the set of points to the "southeast" of R_j ; for arbitrary $S \subset N_1 \times N_2$ let $S^\rho = \{(x_1, x_2) | (N_1 - x_1, N_2 - x_2) \in S\}$ be the "rotation" of S and |S| the cardinality of S.

Step 0. Set $d_0 = -1$ and $R_1 = \{(0, N_2)\}$. Construct $U_0 \subset N_1 \times N_2$ so that 0.1 U_0 is in the northwest corner of $N_1 \times N_2$ and $U_0 \cap U_0^\rho = \emptyset$ 0.2 $N_1 \times N_2 - (U_0 \cup U_0^\rho)$ satisfies condition 3.3 0.3 $\Phi(U_0 \cup U_0^\rho, 0) \leq \alpha$ 0.4 if $B \subset N_1 \times N_2$ satisfies (0.1), (0.2) and (0.3) then either $|B| < |U_0|$ or $|B| = |U_0|$ and $\Phi(B \cup B^\rho, 0) \geq \Phi(U_0 \cup U_0^\rho, 0)$.

Set $L_0 = U_0^p$, i = 1 and go to Step 1.

- Step 1. Set $D_1 = \{\Delta \in (d_{i-1}, 1) | \phi(R_i, \Delta) < 1-\alpha \}$ and define $\Delta_1 = 1$ or inf D_1 as $D_1 = \emptyset$ or $D_1 \neq \emptyset_1$.

 If $(U_0 U_i) \neq \emptyset$ go to Step 2.

 If $(U_0 U_i) = \emptyset$ set $d_i = \Delta_1$ and if $d_i < 0$ go to Step 4 while if $d_i \geq 0$ go to Step 6.
- Step 2. Set $\overline{U} = \{(\mathbf{x}_1, \mathbf{x}_2) \in U_0 \cap R_1 | R_1 \{(\mathbf{x}_1, \mathbf{x}_2)\} \text{ satisfies Condition 3.3}$ and $\phi(R_1 \{(\mathbf{x}_1, \mathbf{x}_2)\}, \Delta) > 1 \alpha$ for some $\Delta \in (d_{i-1}, \min\{\Delta_1, 0\}]\}$. If $\overline{U} \neq \emptyset$ go to Step 3. If $\overline{U} = \emptyset$ set $d_i = \Delta_1$ and if $d_i < 0$ go to Step 4 while if $d_i \geq 0$ go to Step 6.
- - 3.1 R_i U* satisfies Condition 3.3.
 - 3.2 the infimum of $\{\Delta \in (d_{i-1}, \min\{\Delta_1, 0\}) | \phi(R_i U*, \Delta) > 1-\alpha\}$ exists and equals d_i
 - 3.3 if $B \subset U_0 \cap R_i$ satisfies (3.1) and (3.2) then $|B| \leq |U*|$. Set $R_{i+1} = R_i - U*$ and go to Step 1.
- Step 4. Construct $S \subset L_i L_0$ so that 4.1 $S \cup R_i$ satisfies Condition 3.3 4.2 $\inf\{\Delta \in (d_i, 1) | \phi(S \cup R_i, \Delta) < 1-\alpha\} > d_i$ whenever the set is nonempty
 - 4.3 if $B \subset L_i L_0$ satisfies 4.1 and 4.2 then either |B| > |S| or |B| = |S| and $\phi(S \cup R_i, d_i) \ge \phi(B \cup R_i, d_i)$.

Set $\overline{R}_{i+1} = S \cup R_i$ and $\hat{u} = \{(x_1, x_2) \in u_0 \cap \overline{R}_{i+1} | \overline{R}_{i+1} - \{(x_1, x_2)\}\}$ satisfies Condition 3.3 and $\phi(\overline{R}_{i+1} - \{(x_1, x_2)\}, d_i) \ge 1 - \alpha\}$. If $\hat{u} \ne \emptyset$ go to Step 5 while if $\hat{u} = \emptyset$ set $R_{i+1} = \overline{R}_{i+1}$ and go to Step 1.

- Step 5. Construct $U^* \subset U_0 \cap \overline{R}_{i+1}$ so that $(U^* \text{ possibly empty})$ 5.1 $\overline{R}_{i+1} U^*$ satisfies Condition 3.3
 - 5.2 $\inf\{\Delta \in (d_i,1) | \phi(\overline{R}_{i+1} U^k, \Delta) < 1-\alpha\} > d_i$ whenever this set is nonempty
 - 5.3 if $B \subset U_0 \cap \overline{R}_{i+1}$ satisfies (5.1) and (5.2) then either $|B| < |U^*| \text{ or } |B| = |U^*| \text{ and } \phi(\overline{R}_{i+1} B, d_i) \le \phi(\overline{R}_{i+1} U^*, d_i).$ Set $R_{i+1} = \overline{R}_{i+1} U^*$ and go to Step 1.
- Step 6. If $R_i = R_i^{\rho}$ then complete (P,S) as follows: $P = \{(-1,d_1],..., (d_{i-1},-d_{i-1}),[-d_{i-1},-d_{i-2}),...,[-d_1,1)\}$ and $S = \{R_1,...,R_{i-1},R_i,R_{i-1}^{\rho},...,R_1^{\rho}\}$.

 If $R_i \neq R_i^{\rho}$ then complete (P,S) as follows: $P = \{(-1,d_1],..., (d_{i-1},0],(0,-d_{i-1}],...,[-d_1,1)\}$ and $S = \{R_1,...,R_i,R_i^{\rho},...,R_1^{\rho}\}$.

3.3 Intuitive Description

The flow of the algorithm is diagrammed in Figure B. It begins in Step 0

B. FLOW CHART FOR ALGORITHM

by constructing two disjoint sets U_0 and L_0 in the corners of the region $N_1 \times N_2$ having total probability less than α when $\Delta = 0$ and for any p_1 . U_0 and L_0 are used in the completion process of Step 6. Step 0 also initializes $R_1 = \{(0,N_2)\}$ and $d_0 = -1$. Next a trial d_1 , Δ_1 , is constructed in Step 1 so that $\phi(R_1,\Delta) \geq 1-\alpha$ for all $\Delta \in (d_{i-1},\Delta_1]$. Then in Steps 2 and 3 the algorithm checks whether any points, U^{\sharp} , can be deleted from R_i if d_i is permitted to be smaller than Δ_1 . If so, a revised d_i is constructed and then R_{i+1} is generated by deleting U^{\sharp} from R_i ; Step 1 is reentered. If no points can be removed from R_i and $d_i < 0$ then the algorithm goes to Step 4 and constructs a trial R_{i+1} by adding points, S_i , to R_i so that $\phi(R_{i+1} = R_i \cup S, d_i) \geq 1-\alpha$. Then in the remainder of Step 4 and in Step 5 it checks whether any other points, U^{\sharp} , can be deleted from $S \cup R_i$ while keeping $\phi(S \cup R_i - U^{\sharp}, d_i) \geq 1-\alpha$. At the stage when $d_i \geq 0$ the remaining sets R_j and points d_j are constructed via symmetry considerations in Step 6.

3.4 Properties of the Algorithm

The proofs that (P,S) satisfies Conditions (3.1) to (3.3) will be given in this subsection and the appendix. Some preliminary results regarding the behavior of $\Phi(R,\Delta)$ and $\Phi(R,\Delta)$ will be stated first. Let $\mathrm{cl}(I(\Delta^*))$ denote the closure of $I(\Delta^*)$.

Lemma 3.2. Suppose R is a nonempty proper subset of $N_1 \times N_2$ which satisfies Condition 3.3. A necessary condition for (p_1^*, Δ^*) $(\Delta^* \in (-1,1)$ and $p_1^* \in c\ell(I(\Delta^*))$ to be a local minimum of $q(p_1, \Delta) = P_{p_1, \Delta}[(X_1, X_2) \in R]$ is that $q(p_1^*, \Delta^*) = 0$ (and hence $\phi(R, \Delta^*) = 0$). Furthermore in this case i) $\phi(R, \Delta) = 0$ for $\Delta \in (-1,0]$ when $\Delta^* < 0$, ii) $\phi(R, \Delta) = 0$ for $\Delta \in [0,1)$ when $\Delta^* > 0$, and

iii) either $\phi(R,\Delta) = 0$ for $\Delta \in (-1,0]$ or $\Delta \in [0,1)$ when $\Delta^* = 0$. See the appendix for the proof.

<u>Lemma 3.3.</u> Suppose R satisfies the conditions of Lemma 3.2. Then $\phi(R,\Delta)$, regarded as a function of Δ , is quasiconcave on (-1,0], i.e. if $-1 < \Delta_1 < \Delta_2 < \Delta_3 \leq 0 \quad \text{then} \quad \phi(R,\Delta_2) \geq \min\{\phi(R,\Delta_1),\phi(R,\Delta_3)\}.$

Proof. Suppose the contrary, then there exist $-1 < \Delta_1 < \Delta_2 < \Delta_3 \le 0$ for which $\phi(R,\Delta_1) > \phi(R,\Delta_2)$ and $\phi(R,\Delta_3) > \phi(R,\Delta_2)$. It can be shown that $\phi(R,\Delta)$ is continuous in Δ and hence there exists $\Delta^* \in (\Delta_1,\Delta_3)$ satisfying $\phi(R,\Delta^*) = \min_{\Delta \in [\Delta_1,\Delta_3]} \phi(R,\Delta)$. Choose $p^* \in c \$ (I(\Delta^*))$ so that $P_{p^*,\Delta^*}[(X_1,X_2) \in R] = \sum_{\Delta \in [\Delta_1,\Delta_3]} \phi(R,\Delta^*)$. Two cases arise: $\phi(R,\Delta^*) = 0$ and $\phi(R,\Delta^*) > 0$. If $\phi(R,\Delta^*) = 0$ $P_{p^*,\Delta^*}[(X_1,X_2) \in R] = 0$ then $p^* = 0$ or $1 + \Delta^*$ since $R \ne \emptyset$. It follows from Lemma 3.2 that $\phi(R,\Delta) = 0$ for all $\Delta \in (-1,0]$ which is a contradiction. If $P_{p^*,\Delta^*}[(X_1,X_2) \in R] > 0$ then choose any ε -ball, B, about (p^*,Δ^*) so that $B \cap \{(p_1,\Delta)|\Delta \in (-1,1) \text{ and } p_1 \in I(\Delta)\} \subset \{(p_1,\Delta)|\Delta \in (\Delta_1,\Delta_3) \text{ and } p_1 \in I(\Delta)\}$. By Lemma 3.2 (p^*,Δ^*) is not a local minimum and hence there exist $(\overline{p},\overline{\Delta})$ in $B \cap \{(p_1,\Delta)|\Delta \in (-1,1) \text{ and } p_1 \in I(\Delta)\}$ so that $P_{\overline{p},\overline{\Delta}}[(X_1,X_2) \in R] < P_{p^*,\Delta^*}[(X_1,X_2) \in R] < P_{p^*,\Delta^*}[(X_1,X_2) \in R]$. This implies that $\phi(R,\overline{\Delta}) < \phi(R,\Delta^*)$ which is a contradiction and the proof is complete.

The following lemma will be used to show that the extension of Step 6 gives regions which satisfy Condition 3.1.

Lemma 3.4. Fix $R \subset N_1 \times N_2$ and let $R^P = \{(x_1, x_2) | (N_1 - x_1, N_2 - x_2) \in R\}$ be the rotation of R. Then $\Phi(R, \Delta) = \Phi(R^P, -\Delta)$ for all $\Delta \in (-1, 1)$ and $\Phi(R, \Delta) = \Phi(R^P, -\Delta)$ for all $\Delta \in (-1, 1)$.

<u>Proof.</u> It suffices to consider $\phi(R,\Delta)$ since $\phi(R,\Delta) = 1 - \phi(R^C,\Delta)$ where R^C is the complement of R in $N_1 \times N_2$. Fix $\Delta \in (-1,1)$; it is easy to check

that $p_1 \in cl(I(\Delta)) \iff 1-p_1 \in cl(I(-\Delta))$. Then it follows that

$$P_{p_{1},\Delta}[(X_{1},X_{2}) \in R] = \sum_{(i,j)\in R} {N_{1} \choose i} {N_{2} \choose j} p_{1}^{i} (1-p_{1})^{N_{1}-i} (p_{1}-\Delta)^{j} (1-p_{1}+\Delta)^{N_{2}-j}$$

$$= \sum_{(\ell,k)\in R^{0}} {N_{1} \choose \ell} {N_{2} \choose k} (1-p_{1})^{\ell} p_{1}^{N_{1}-\ell} (1-p_{1}+\Delta)^{k} (p_{1}-\Delta)^{N_{2}-k}$$

from the change of variables $l = N_1 - i$ and $k = N_2 - j$

=
$$P_{1-p_1,-\Delta}[(X_1,X_2) \in R^{\rho}].$$

So if $p_1^* \in cl(I(\Delta))$ satisfies $\phi(R,\Delta) = P_{p_1^*,\Delta}[(X_1,X_2) \in R]$ then $\phi(R,\Delta^*) = P_{1-p_1^*,-\Delta}[(X_1,X_2) \in R^{\rho}] \ge \phi(R^{\rho},-\Delta)$. A similar argument gives the reverse inequality and completes the proof.

It is easy to check that $\phi(R_1 = \{(0,N_2)\},\Delta) = |\Delta|^m$ on (-1,0] where $m = \max\{N_1,N_2\}$; hence the first time Step 1 is entered Δ_1 will be $-(1-\alpha)^{\frac{1}{m}}$ and the algorithm will go to Step 4. It will now be shown that the algorithm is executable at all later iterations since Step 4 can always be implemented.

<u>Lemma 3.5.</u> Suppose $\{R_1, \ldots, R_i\}$ and $\{d_0, \ldots, d_{i-1}\}$ satisfy Conditions 3.1 and 3.3. If Step 4 is entered then there exists a nonempty set, S, satisfying (4.1) and (4.2) of Step 4.

<u>Proof.</u> Fix $S = L_i - L_0$. We claim $S \neq \emptyset$ under the hypotheses of the lemma. Step 4 is entered only if $D_1 = \{\Delta \in (d_{i-1},0) | \phi(R_i,\Delta) < 1-\alpha \}$ is nonempty and $d_i \equiv \inf D_1 < 0$. Hence there exists $\overline{\Delta} \in (d_i,0)$ such that $\phi(R_i,\overline{\Delta}) < 1-\alpha$ while $\phi(R_i,d_{i-1}) \geq 1-\alpha$ by construction. The level set

 $\{\Delta \in (-1,0) | \phi(R_{\underline{i}},\Delta) \geq 1-\alpha\} \text{ is convex since } \phi \text{ is quasiconcave and so } \phi(R_{\underline{i}},0) < 1-\alpha. \text{ On the other hand if } S = L_{\underline{i}} - L_{\underline{0}} = \emptyset \text{ then } L_{\underline{i}} = L_{\underline{0}} \text{ and } \phi(R_{\underline{i}},0) = \phi(N_{\underline{1}} \times N_{\underline{2}} - (L_{\underline{0}} \cup U_{\underline{i}}),0) \geq \phi(N_{\underline{1}} \times N_{\underline{2}} - (L_{\underline{0}} \cup U_{\underline{0}}),0) \geq 1-\alpha \text{ where }$ the first inequality follows from $U_{\underline{i}} \subset U_{\underline{0}}$ and the second from Step 0. This contradiction shows $S \neq \emptyset$. It is proved in the appendix that $S \cup R_{\underline{i}} = N_{\underline{1}} \times N_{\underline{2}} - (L_{\underline{0}} \cup U_{\underline{i}}) \text{ satisfies } (4.1). \text{ The above inequalities show }$ that $\phi(S \cup R_{\underline{i}},0) \geq 1-\alpha \text{ while } \phi(S \cup R_{\underline{i}},d_{\underline{i}}) \geq \phi(R_{\underline{i}},d_{\underline{i}}) \geq 1-\alpha.$ Hence $\{\Delta \in (d_{\underline{i}},1) | \phi(S \cup R_{\underline{i}},\Delta) < 1-\alpha\} \subset (0,1) \text{ by the convexity of }$ $\{\Delta \in (-1,0] | \phi(S \cup R_{\underline{i}},\Delta) \geq 1-\alpha\}.$ This implies that $(S \cup R_{\underline{i}}) \text{ satisfies }$ (4.2) and completes the proof.

Theorem 3.1. The (P,S) pair constructed by the algorithm satisfies Condition 3.1.

<u>Proof.</u> The inequality $\phi(R_i, \Delta) \geq 1-\alpha$ for $\Delta \in [d_{i-1}, d_i]$ holds by construction for any i with $d_i \leq 0$. Lemma 3.5 shows that the inductive steps 1 through 5 can stop only with $d_i \geq 0$ and the execution of Step 6. Lemma 3.4 shows that the above inequality holds for i with $d_i \geq 0$ and the result is proved.

The next two results demonstrate Condition 3.2 that $T(x_1,x_2)$ is always an interval. They are based on the following easily derivable representation of $T(x_1,x_2)$.

$$T(x_1, x_2) = T_1(x_1, x_2) \cup (-T_1(N_1-x_1, N_2-x_2))$$

where
$$T_1(x_1,x_2) = (-1,0] \cap \bigcup_{j \in I(x_1,x_2)} (d_j,d_{j+1}], \quad I(x_1,x_2) = \{j \mid (x_1,x_2) \in R_{j+1}, d_j < 0\}$$
 and $-T_1(x_1,x_2) = [0,1) \cap \bigcup_{j \in I(x_1,x_2)} [-d_{j+1},-d_j).$ The set $T_1(x_1,x_2) = [0,1] \cap \bigcup_{j \in I(x_1,x_2)} [-d_{j+1},-d_j)$.

is that part of $T(x_1,x_2)$ on and to the left of the origin; the set $(-T,(N_1-x_1,N_2-x_2))$ is that part of $T(x_1,x_2)$ on and to the right of the origin.

<u>Lemma 3.7</u>. For every $(x_1,x_2) \in N_1 \times N_2$, $T_1(x_1,x_2)$ is an interval.

Proof. If $T_1(x_1,x_2) = \emptyset$ the result is trivial; assume $T_1(x_1,x_2) \neq \emptyset$. Suppose $T_1(x_1,x_2)$ is not an interval so that there exists Δ_1 , Δ_2 and Δ_3 satisfying $-1 < \Delta_1 < \Delta_2 < \Delta_3 \le 0$ for which $\Delta_1, \Delta_3 \in T_1(x_1,x_2)$ and $\Delta_2 \notin T_1(x_1,x_2)$. Let $i_1 < i_2 < i_3$ be the indices for which $\Delta_1 \in (d_{i_1}-1,d_{i_1}]$, $\Delta_2 \in (d_{i_2}-1,d_{i_2}]$ and $\Delta_3 \in (d_{i_3}-1,d_{i_3}]$. The point $(x_1,x_2) \in R_{i_1} = U_{i_1}^i - U_{i_1} \Rightarrow (x_1,x_2) \in U_{i_2}^i \subset U_{i_3}^i$ since the sequence $\{U_j^i\}$ is nondecreasing by construction. But $(x_1,x_2) \notin R_{i_2}$ and $(x_1,x_2) \in R_{i_3} \Rightarrow (x_1,x_2) \in U_{i_2}^i - U_{i_3}^i$ which is impossible since the $\{U_j^i\}$ sequence is also nondecreasing and completes the proof.

Theorem 3.2. For every $(x_1,x_2) \in N_1 \times N_2$, $T(x_1,x_2)$ satisfies Condition 3.2.

<u>Proof.</u> If $T_1(x_1,x_2) = \emptyset$ or $T_1(N_1-x_1,N_2-x_2) = \emptyset$ then the result is immediate from Lemma 3.7. Now suppose $T_1(x_1,x_2) \neq \emptyset$, $T_1(N_1-x_1,N_2-x_2) \neq \emptyset$ and $T(x_1,x_2)$ is not connected. Let τ be the index for which $0 \in (d_\tau,d_{\tau+1}]$. It follows that either $0 \notin T_1(x_1,x_2)$ and/or $0 \notin T_1(N_1-x_1,N_2-x_2) \iff 0$ either $(x_1,x_2) \in U_{\tau+1}$ and/or $(N_1-x_1,N_2-x_2) \in U_{\tau+1}$. The last equivalence follows from the fact that if $(x_1,x_2) \in L_{\tau+1} \Rightarrow (x_1,x_2) \in L_{\tau}$ for $j \leq \tau$ since $\{L_i\}$ is a nonincreasing sequence $\Rightarrow T_1(x_1,x_2) = \emptyset$ which is impossible. Assume whose that $(x_1,x_2) \in U_{\tau+1} \subset U_0 = L_0^p \subset L_{\tau+1}^p \Rightarrow (N_1-x_1,N_2-x_2) \in L_{\tau+1} \Rightarrow T_1(N_1-x_1,N_2-x_2) \in U_{\tau+1}$ and completes the proof.

Theorem 3.3. All regions $R_{\hat{i}}$ in the family S constructed by the algorithm satisfy Condition 3.3.

<u>Proof.</u> The regions $R_1, \dots, R_{\tau+1} (0 \in (d_{\tau}, d_{\tau+1}])$ satisfy Condition 3.3 by construction. It can easily be checked that if R satisfies Condition 3.3 then R^{ρ} also does. The result follows since for $i > \tau$, $R_i = R_j^{\rho}$ for some $j \le \tau+1$.

4. An Example and Conclusions

This section will present a detailed example to illustrate the unconditional method of Section 3 and make some comparisons among the Thomas-Gart (TG) method, the conditional method of Section 2 and the unconditional method of Section 3.

The example below constructs 80% confidence intervals when $N_1 = N_2 = 2$. The sample size $N_1 = N_2 = 2$ was chosen to keep the computations feasible by hand while the relatively large value of $\alpha = .2$ was selected to illustrate Step 5. Step 5 is not used for $\alpha < .125$.

Initialization:

Step 0: Set $d_0 = 1$, $R_1 = \{(0,2)\}$. Let $U = \{(0,2)\}$; U satisfies 0.1, 0.2 and 0.3 $(\Phi(U \cup U^0, 0) = .125 < .2)$. U also satisfies 0.4 since for any other candidate set B either $U_1 = \{(0,2),(0,1)\} \subset B$ or $U_2 = \{(0,2),(1,2)\} \subset B$ and hence $\Phi(B \cup B^0) \ge \Phi(U_1 \cup U_1^0,0) = \Phi(U_2 \cup U_2^0,0)$ = .375 > .2. So $U_0 = U = \{(0,2)\}$ and $L_0 = \{(2,0)\}$.

Iteration 1:

Step 1: $\phi(R_1, \Delta) = \Delta^2$ or 0 according as $\Delta < 0$ or $\Delta \ge 0$ so $D_1 = \{\Delta \in (-1,1) | \phi(R_1, \Delta) < .8\} = (-\sqrt{.8},1)$ and $\Delta_1 = \inf D_1 = -\sqrt{.8}$ = -.8944. Go to Step 2.

Step 2: $R_1 - \{(0,2)\} = \phi \Rightarrow \sup_{\Delta \in (-1,-.8944)} \phi(R_1 - \{(0,2)\},\Delta) = 0 < .8 \Rightarrow \overline{U} = \phi.$ Set $d_1 = -.8944$ and go to Step 4.

Step 3. Candidate sets satisfying (4.1) and |S| = 1 are $S_1 = \{(0,1)\}$ and $S_2 = \{(1,2)\}$. In both cases $\phi(S_i \cup R_1, \Delta) = \phi(R_1, \Delta)$ implies that

 $\inf\{\Delta \in (-.8944,1) | \phi(S_i \cup R_1, \Delta) < .8\} = -.8944 \text{ violating 4.2.}$ Candidate sets satisfying (4.1) and |S| = 2 are $S_1 = \{(0,0),(0,1)\}$, $S_2 = \{(1,2),(2,2)\}$ and $S_3 = \{(0,1),(1,2)\}$. For i=1 and 2 $\phi(S_i \cup R_1, \Delta) = \phi(R_1, \Delta) \Rightarrow \inf\{\Delta \in (-.8944,1) | \phi(S_i \cup R_1, \Delta) < .8\} = \tau.8944$ again violating 4.2. However

$$\phi(S_3 \cup R_1, \Delta) = \begin{cases} (1-\Delta)^3 (5+3\Delta)/16, & 0 < \Delta < -.4415 \\ -2\Delta - \Delta^2, & -.4415 \le \Delta < 0 \\ 0, & 0 \le \Delta < 1 \end{cases}$$

 $\Rightarrow \inf\{\Delta \in (-.8944,1) | \phi(S_3 \cup R_1, \Delta) < .8\} = -.5754 > d_1. \text{ By construction } S_3 \text{ satisfies 4.3 and hence } S = S_3. \text{ Set } \overline{R}_2 = \{(0,2),(0,1),(1,2)\};$ $\hat{U} = \phi \text{ since } \phi(R_2 - \{(0,2)\}, -.8944) = .1795. \text{ Finally set } R_2 = \overline{R}_2 \text{ and go to Step 1.}$

Iterations 2, 3, 4 and part of 5 are summarized in Table 2. The values of Δ_1 listed in column 3 are calculated in Step 1. In all 4 cases the maximum of $\phi(R_i - U_0, \Delta)$ over Δ in $[d_{i-1}, \Delta_1]$ is less than .8 implying that $\overline{U} = \phi$ and the algorithm goes from Step 2 to Step 4. Column 7 shows that $\hat{U} = \phi$ in iterations 2, 3, and 4 while $\hat{U} = \{(0,2)\}$ in iteration 5. We now complete iteration 5.

Iteration 5 (cont.):

Step 5: Set $U^* = \{(0,2)\}$; $\overline{R}_6 - U^* = \{(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2)\}$ satisfies (5.1); (5.2) holds since inf $\{\Delta \in (-.0757,1) | \phi(\overline{R}_6 - U^*,\Delta) < .8\} = .3137 > -.0757$ while (5.3) is trivially satisfied. Set $R_6 = \overline{R}_6 - \{(0,2)\}$ and go to Step 1.

2. ITERATIONS 2-5 OF ALGORITHM

$\phi(\overline{\mathbb{R}}_{i+1}^{-u_0, d_i})$	9884.	· 5994	.7481	.8707 ³
inf of 4.2	5754 5754 5528	5528 5528 5528 5528	0757	1
Sets S of 4.1	{(0,0)} {(2,2)} {(1,1)} ¹	{(0,0)} {(2,2)} {(0,0),(1,0)} {(2,1),(2,2)} {(0,0),(2,2)}	$\{(2,1)\}^2$ $\{(1,0)\}^2$	{(2,1)} ¹
$\begin{bmatrix} \mathbf{d}_{\mathbf{i}-1}, \mathbf{d}_{1} \end{bmatrix} \phi(\mathbf{R}_{\mathbf{i}} - \mathbf{u}_{0}, \mathbf{\Delta})$.4150	n#6#·	.6962	.7481
۵ ₁ /۵ _i	$\Delta_1 =5754$ $\Delta_2 =5754$	$\Delta =5528$ $\frac{1}{3} =5528$	$\Delta_1 =1649$ $d_4 =1649$	$\Delta_1 =0757$ $d_5 =0757$
R.	{(0,2),(0,1),(1,2)}	{(0,2),(0,1),(1,2) (1,1)}	{(0,2),(0,1),(1,2), (1,1),(0,0),(2,2)}	{(0,2),(0,1),(1,2), (1,1),(0,0),(2,2), (1,0)}
Iter.	2	m	ŧ	S

The set S chosen in Step 4.

Both candidate sets having |S| = 1 satisfy 4.1 and 4.2; $\phi(R_{\mu} \cup \{(2,1)\}, d_{\mu}) = \phi(R_{\mu} \cup \{(1,0)\}, d_{\mu})$ and so 4.3 fails to select one of the two. $S = \{(1,0)\}$ is chosen arbitrarily.

 $^3\hat{\mathbf{u}} \neq \phi$ and so Step 5 must be executed during Iteration 5.

Iteration 6:

Step 1: $D_1 = (.3137,1)$ so that $\Delta_1 = .3137$; $U_0 - U_6 = \phi$ so set $d_6 = .3137$ and go to Step 6.

Step 6:

P	S
(-1,8944]	$R_1 = \{(0,2)\}$
(8944,5754]	$R_2 = \{(0,2),(0,1),(1,2)\}$
(5754,5528]	$R_3 = \{(0,2),(0,1),(1,2),(1,1)\}$
(5528,1649]	$R_{4} = \{(0,2),(0,1),(1,2),(1,1),(0,0),(2,2)\}$
(1649,0757]	$R_5 = \{(0,2),(0,1),(1,2),(1,1),(0,0),(2,2),(1,0)\}$
(0757, .0757]	$R_6 = R_6^{\rho} = \{(0,1),(1,2),(1,1),(0,0),(2,2),(1,0),(2,1)\}$
[.0757,.1649)	$R_7 = R_5^{\rho} = \{(2,0),(2,1),(1,0),(1,1),(2,2),(0,0),(1,2)\}$
[.1649,.5528)	$R_8 = R_4^0 = \{(2,0),(2,1),(1,0),(1,1),(2,2),(0,0)\}$
[.5528,.5754)	$R_9 = R_3^0 = \{(2,0),(2,1),(1,0),(1,1)\}$
[.5754,.8944)	$R_{10} = R_2^{\rho} = \{(2,0),(2,1),(1,0)\}$
[.8944,1)	$R_{11} = R_1^0 = \{(2,0)\}$
	The state of the s

The 80% confidence intervals for $\Delta = \rho_1 - \rho_2$ are:

× ₁	×2	$T(x_1,x_2)$	
0	2	(-1,0757]	
0	1	(8944,.0757)	
1	2	(8944,.1649)	
1	1	(5754,.5754)	
0	0	(5528,.5528)	
2	2	(5528,.5528)	
2	1	(0757,.8944)	
1	0	(1649,.8944)	
2	0	[.0757,1) .	

Remark 4.1. As iteration 4 illustrates, there can be several sets S satisfying (4.1)-(4.3) and several sets U^* satisfying (3.1)-(3.3) or (5.1)-(5.3). Randomization or an arbitrary selection rule can be used to break such ties. For example the following rule is used here: "choose the set S minimizing $\frac{1}{|S|} \sum_{(i,j) \in S} i$; randomize among sets tied according to this criteria".

Remark 4.2. So far no mention has been made of the computational work required to implement the algorithm. In the example when $R_2 = \{(0,1),(0,2),(1,2)\}$ and $\Delta < 0$:

$$\phi(R_2, \Delta) = \min_{p_1 \in [0, 1+\Delta]} P_{p_1, \Delta}[(X_1, X_2) \in R_2]$$

$$= \min_{\substack{p_1 \in [0, 1+\Delta]}} \left\{ -3p_1^4 + 6(\Delta+1)p_1^3 - (3\Delta^2 + 10\Delta + 5)p_1^2 + 2(2\Delta^2 + 3\Delta + 1)p_1 - (\Delta^2 + 2\Delta) \right\}.$$

Minimizing P_{p_1} , $\Delta[(X_1, X_2) \in R_2]$ in p_1 for fixed Δ requires comparison of the function values at the bounding points 0 and 1+ Δ and at the zeroes of the equation P'_{p_1} , $\Delta[(X_1, X_2) \in R_2] = 0$ where the prime denotes partial differentiation with respect to p_1 . In this case the zeroes of a $3^{\frac{d}{2}}$ degree polynomial must be computed. In the general case the zeroes of an (N_1+N_2-1) degree polynomial must be computed. This particular case can be simplified by reparameterizing the problem to $w = (1+\Delta)/2 - p_1$. For $\Delta < 0$:

$$\begin{split} \phi(R_2, \Delta) &= \min_{ |w| \le \frac{1+\Delta}{2}} P_{w+\frac{1+\Delta}{2}, \Delta} [X_1, X_2] \in R_2] \\ &= \min_{ |w| \le \frac{1+\Delta}{2}} \{(1-\Delta)^4/16 + (1-\Delta^2)(1-\Delta)^2/4 + (1.5\Delta^2 - \Delta - .5)w^2 - 3w^4\}. \end{split}$$

The terms in brackets are a function of $t = w^2$, say, $g(w^2)$. So

$$\phi(R_2, \Delta) = \min_{0 < t < \frac{(1+\Delta)^2}{4}} \{g(0) + (1.5\Delta^2 - \Delta - .5)t - 3t^2\}$$

$$= \min_{0 < t < \frac{(1+\Delta)^2}{4}} g(t).$$

Clearly g(t) is concave; its minimum is either achieved at 0 or $(1+\Delta)^2/4$. For $\Delta \le -.4415$, $\phi(R_2,\Delta) = g(0) = (1-\Delta)^4/16 + (1-\Delta)^2(1-\Delta^2)/4$; for $-.4415 < \Delta \le 0$, $\phi(R_2,\Delta) = g((1+\Delta)^2/4) = -\Delta(2+\Delta)$.

In general, the order of the polynomial in p_1 , $P_{p_1,\Delta}[(X_1,X_2) \in R_{\ell}]$, can be halved by the same reparameterization whenever $N_1 = N_2$ and $R_{\ell} = \{(N_1 - x_2, N_2 - x_1) | (x_1,x_2) \in R_{\ell}\}.$ These conditions imply that $P_{p_1,\Delta}[(X_1,X_2) \in R_{\ell}]$ is symmetric in p_1 about $(1+\Delta)/2$.

When the algorithm is applied to the $N_1=N_2=2$ case for $\alpha=.01$, .05 and .1 it yields the Δ intervals of Table 3. The corresponding conditional Δ intervals of Section 2 are listed in Table 4 and the Thomas-Gart Δ intervals based on the Baptista-Pike ψ intervals are listed in Table 5. Note that the 99% Thomas-Gart Δ intervals of Example 1.2 are based on the Thomas (1971) ψ intervals. Hence the intervals of Table 5 are never wider than those listed in Example 1.2. We shall make several comparisons among these intervals.

We begin by continuing Example 1.2. The actual coverage probabilities of Δ = 1/2 are listed below when p_1 = 3/4 and p_2 = 1/4. The intervals are taken from Tables 3,4 and 5; all have nominal 99% confidence coefficients.

3. UNCONDITIONAL CONFIDENCE INTERVALS FOR $N_1 = N_2 = 2$

×1	* ₂	909	%	959	ł	999	%
0	2	-1	0	-1	.0543	-1	.3676
0	1	9487	.2747	9747	.4294	9950	.6708
1	2	9487	.3591	9747	.5028	9950	.7183
1	1	7147	.7147	8048	.8048	9160	.9160
0	0	6838	.6838	7764	.7764	9000	.9000
2	2	6838	.6838	7764	.7764	9000	.9000
2	1	2747	.9487	4294	.9749	6708	.9950
1	0	3591	.9487	5028	.9747	7183	.9950
2	0	0	1	0543	1	3676	1

4. CONDITIONAL CONFIDENCE INTERVALS (SECTION 2) FOR $N_1 = N_2 = 2$

* ₁	*2	90	90%		8	99%		
0	2	-1	.1178	-1	.2515	-1	.4811	
0	1	-1	.5	-1	.6268	-1	.8174	
1	2	-1	.5	-1	.6268	-1	.8174	
1	1	7151	.7151	7945	.7945	9043	.9043	
0	0	-1	1	-1	1	-1	1	
2	2	-1	1	-1	1	-1	1	
2	1	5	1	6268	1	8174	1	
1	0	5	1	6268	1	8174	1	
2	0	1178	1	2515	1	4811	1	

5. THOMAS-GART INTERVALS FOR $N_1 = N_2 = 2$

×1	*2	90%		95	8	99%		
0	2	-1	.1178	-1	.2515	-1	.4811	
0	1	-1	.3486	-1	.4150	-1	.4808	
1	2	-1	.3486	-1	.4150	-1	.4808	
1	1	7151	.7151	7945	.7945	9043	.9043	
0	0	-1	1	-1	1	-1	1	
2	2	-1	1	-1	1	-1	1	
2	1	3486	1	4150	1	4808	1	
1	0	3486	1	4150	1	4808	1	
2	0	1178	1	2515	1	4811	1	
					THE PARTY OF THE P			

$$P_{3/4,1/2} \left[\Delta_{L}(X) < 1/2 < \Delta_{U}(X) \right] = \begin{cases} .996, & \text{based on Table 3} \\ .996, & \text{based on Table 4} \end{cases}$$

$$.949, & \text{based on Table 5}.$$

Our intervals gain extra coverage probability as a decreases since they become much wider than the TG intervals for m = 1 and 3. In general our conditional intervals and the TG intervals are both (-1,1) when m = 0 or $N_1 + N_2$; they coincide in a non-trivial interval when $\psi_L < 1 < \psi_U$ and m = N₁ = N₂. For other choices of m when N₁ \geq N₂ and $N_1 > 1$ the unconditional intervals become much wider than the TG intervals as a decreases; this characteristic is the source of the counterexample given in Section 1. For fixed (x_1,x_2) , $\Delta_L(x_1,x_2)$ should intuitively approach -1 and $\Delta_{U}(x_1,x_2)$ should approach 1 as α decreases to zero. It will be shown below that for a given m, Δ_{IJ} and Δ_{I} generated by the TG method are constrained to a proper subset of (-1,1) unless $m = N_1 = N_2$ and hence cannot attain +1 and -1 respectively as α decreases. It follows that counterexamples similar to Example 1.2 are possible even for large N_1 and N_2 by examining Δ near +1 and -1, for these values will be excluded from certain Δ intervals regardless of the a chosen.

Our conditional intervals are generally wider than our unconditional intervals although this is not uniformly the case as the outcome $(X_1, X_2) = (1,1)$ shows when $\alpha < .1$. This phenomenon can be explained by looking back at the example. In iteration 2, $S = \{(1,1)\}$ is chosen. If instead $S = \{(0,0),(2,2)\}$ had been used (in violation of (4.3)) the following changes would result in the unconditional intervals:

x_1_	* ₂	95	8	9	99%	
1	1	7623	.7623	8946	.8946	
0	0	8048	.8048	9160	.9160	
2	2	8048	.8048	9160	.9160	

These unconditional intervals are <u>uniformly</u> more narrow than the conditional intervals of Table 4. However the revised set of unconditional intervals is <u>not</u> uniformly more narrow than the original unconditional intervals of Table 3 (nor is the reverse true). Furthermore the use of the revised unconditional intervals over those of Table 3 results in an increased total (average) length of the intervals from 14.9254 (1.6584) to 14.9522 (1.6614) when $\alpha = .01$ and from 12.5870 (1.3986) to 12.6156 (1.4017) when $\alpha = .05$. This computation illustrates the operation of the "greedy" heuristic in the form of (4.3).

We conclude this section by showing that Δ_U and Δ_L are bounded away from +1 and -1 respectively except when $m=N_1=N_2$. Assume wlog that $N_1 \geq \max\{N_2,2\}$. Fix (x_1,x_2) satisfying $0 < m = x_1 + x_2 < N_1 + N_2$ (the other two cases are trivial). Given $0 < \psi_L \leq \psi_U < \infty$ then the x_L,x_U calculated from (1.5) satisfy:

(4.1)
$$\max\{0, m-N_2\} < x_L, x_U < \min\{m, N\}.$$

Then $\Delta = \Delta_U$ and Δ_L are calculated from $x = x_U$ and x_L respectively by

(4.2)
$$\Delta = \frac{x}{N_1} - \frac{(m-x)}{N_2} = x(\frac{1}{N_1} + \frac{1}{N_2}) - \frac{m}{N_2}.$$

Substituting the bounds (4.1) into the equation (4.2) gives the following bounds on Δ_{I} and Δ_{II} :

$$\max\{\frac{-m}{N_2}, \frac{m-N_1-N_2}{N_1}\} < \Delta_L, \Delta_U < \min\{\frac{N_1+N_2-m}{N_2}, \frac{m}{N_1}\}.$$

When $m=N_1=N_2$ these bounds are -1 and +1; when $m\neq N_2$ the lower limit is greater than -1 and when $m\neq N_1$ the upper limit is less than +1. Hence if for some $\Delta < 1$ there is a nonempty set $A \subset N_1 \times N_2$ for which $\chi \in A \Rightarrow \Delta \notin (\Delta_L(\chi), \Delta_U(\chi))$ for all α then for any $\epsilon > 0$, P_1 can be chosen to satisfy

$$P_{P_{1},\Delta}[\Delta_{L}(X) < \Delta < \Delta_{U}(X)] \leq \inf_{\pi \in I(\Delta)} P_{\pi,\Delta}[X \notin A] + \varepsilon$$

$$= 1 - \Phi(A,\Delta) + \varepsilon.$$

It follows that for any $\alpha < \Phi(A, \Delta)$, $(\Delta_L(X), \Delta_U(X))$ cannot satisfy (1.7).

5. Summary

This paper has adopted a frequentist approach to the problem of determining exact confidence intervals for $\Delta=p_1-p_2$ in 2×2 contingency tables. Since this is a nuisance parameter problem the intervals proposed achieve converage probabilities greater than or equal to their nominal $(1-\alpha)$ levels. The conditional intervals of Section 2 are easily computed from conditional ψ intervals. The unconditional intervals of Section 3 are much more difficult to compute but generally yield narrower intervals than the conditional ones. The exact method of Thomas and Gart (1977) should be considered an asymptotic method appropriate for reasonably large α . Conditional intervals for are also presented.

Appendix

Two preliminary lemmas are presented below which are required in the proof of Lemma 3.2.

<u>Lemma A.1.</u> Suppose R_i satisfies Condition 3.3; denote $\Pi_1(R_i|x_2) = \{x_1|(x_1,x_2) \in R_i\}$ and $\Pi_2(R_i|x_1) = \{x_2|(x_1,x_2) \in R_i\}$. Whenever these sets are nonempty they are intervals of integers. The proof follows from an easy contradiction argument.

Lemma A.2. Suppose R = U' - U where $U \subset U' \neq N_1 \times N_2$ and both are NWC sets. For $p_1(\Delta) = \Delta$ then either $G(\Delta) = P_{\Delta,\Delta}[(X_1,X_2) \in R] = 0$ for all $\Delta \in (0,1)$ or there exist integers s, ℓ and m > 0 satisfying $0 \le s \le \ell \le m$ for which $G(\Delta) = \sum_{\Delta=s}^{\ell} {m \choose j} \Delta^j (1-\Delta)^{m-j}$ for all $\Delta \in (0,1)$. Furthermore analogous representations hold when $p_1(\Delta) = 1$ and $\Delta > 0$, or $p_1 = 0$ and $\Delta < 0$ or $p_1(\Delta) = 1+\Delta$ and $\Delta < 0$.

<u>Proof.</u> By Lemma A.1 $\Pi_1(R|N_2)$ is either empty or has the form $\{s,s+1,\ldots,\ell\}$ for some $0 \le s \le \ell \le N_2$. When $p_1 = \Delta$ then $p_2 = p_1 - \Delta = \Delta - \Delta = 0$ and hence $G(\Delta) = 0 \quad \forall \quad \Delta \in (0,1)$ when $\Pi_1(R|N_2) = \phi$ and $G(\Delta) = \sum_{j=s}^{\ell} {m \choose j} \Delta^j (1-\Delta)^{m-j} \quad \forall \Delta \in (0,1)$ when $\Pi_1(R|N_2) \neq \phi$. This completes the proof.

Proof of Lemma 3.2. First we consider the case when (p_1^*, Δ^*) is on the boundary of $\beta \equiv \{(p_1, \Delta) \mid \Delta \in (-1, 1) \text{ and } p_1 \in I(\Delta)\}$. Suppose $\Delta^* > 0$ and $p_1^* = \Delta^*$; a slight modification of the argument below works for any $\Delta^* \neq 0$ and $p_1^* \in \text{cl}(I(\Delta^*)) - I(\Delta^*)$. From Lemma A.2, $G(\Delta) = P_{\Delta,\Delta}[(X_1, X_2) \in R]$ is either $0 \quad \forall \Delta \in (0,1)$ or has the form $\sum_{j=s}^{l} \binom{m}{j} \Delta^j (1-\Delta)^{m-j}$ for some j=s m and $0 \leq s \leq l \leq m$. Hence if $G(\Delta^*) = 0$ then $G(\Delta) = 0$ for $\Delta \in (0,1)$. We claim $G(\Delta^*) > 0$ is impossible. If $G(\Delta^*) > 0$ then the second

representation holds with $0 \le s \le \ell \le m$. Note that $G'(\Delta^*) = 0$ and $G''(\Delta^*) > 0$ since Δ^* is a local minimum. If s = 0 and $\ell = m$ then $G(\Delta^*) = 1$ which is impossible. If s = 0 and $\ell < m$ then $G(\Delta) = 1 - \int_{0}^{\Delta} b(u, \ell+1, m) du$ where $b(u, k, n) = \frac{n!}{(k-1)!(n-k)!} u^{k-1} (1-u)^{n-k}$ while if 0 < s and l = m then $G(\Delta) = \int b(u,s,m)du$. In either case $G'(\Delta^*) \neq 0$ and hence is impossible. If $0 < s \leq \ell < m$ then $G(\Delta) = \int \{b(u,s,m) - b(u,\ell+1,m)\} du$, $G'(\Delta) = b(\Delta,s,m) - b(\Delta,\ell+1,m)$ and after some algebraic manipulation, $G''(\Delta) = G'(\Delta) \frac{\{s-1+\Delta(1-m)\}}{\Delta(1-\Delta)} - \frac{b(\Delta,\ell+1,m)}{\Delta(1-\Delta)} \{\ell+1-s\}$ $<\frac{G'(\Delta)\{s-1+\Delta(1-m)\}}{\Delta(1-\Delta)}$. In particular $G''(\Delta^*)<0$ since $G'(\Delta^*)=0$ which is again impossible. Now suppose $\Delta^* = 0$ and $p_1^* = 0$, then $p_2^* = 0$. Hence $G(0) = \phi(R,0) = 0$ or 1 according as $(0,0) \notin R$ or $(0,0) \in R$. The latter case is impossible since (p_1^*, Δ^*) is a local minimum and $R \neq N_1 \times N_2$. To show that either $\phi(R,\Delta) = 0$ for all $\Delta \in (-1,0)$ or for all Δ ϵ (0,1), suppose not. Then there are -1 < Δ ₁ < 0 < Δ ₂ < 1 so that $\phi(R,\Delta_i) > 0$ for i = 1 and 2. This implies $P_{0,\Delta_1}[(X_1,X_2) \in R] > 0$ and $P_{\Delta_2,\Delta_2}[(X_1,X_2) \in \mathbb{R}] > 0$. Hence there exist positive integers x_1^* and x_2^* so that $(0, x_2^*) \in \mathbb{R} = U' - U$ and $(x_1^*, 0) \in \mathbb{R}$. Now $(x_1^*, 0) \in \mathbb{R}$ and $(0,0) \notin \mathbb{R} \Rightarrow (0,0) \in U \Rightarrow (0,x_2) \in U \text{ for all } x_2 \in \{0,\ldots,N_2\} \Rightarrow (0,x_2^*) \notin \mathbb{R}$ a contradiction. A slight modification of the above argument yields the result when $\Delta * = 0$ and $p_1^* = 1$.

We now show that a local minimum cannot occur at $(p_1^*, \Delta^*) \in \beta$. Suppose $(p_1^*, \Delta^*) \in \beta$ is a local minimum then $P_{p_1^*, \Delta^*}[(X_1, X_2) \in R] > 0$ since p_1^* is not on boundary of $I(\Delta^*)$. Choose $\varepsilon > 0$ so that the open ball, B, of radius ε satisfies (1) B $\subset \beta$ and (2) $P_{p_1^*, \Delta^*}[(X_1, X_2) \in R] \leq P_{p_1, \Delta}[(X_1, X_2) \in R]$ whenever $(p_1, \Delta) \in B$. Define $p_2^* = p_1^* - \Delta^*$ and for $i \in \Pi_1(R)$ let $s_i = \min \Pi_2(R|i)$ and

 $\ell_i = \max_{i=1}^{n} (R_i)$; also let $H(p_1, p_2)$ be defined on $[0,1] \times [0,1]$ by

$$\begin{split} & \text{H}(\textbf{p}_{1},\textbf{p}_{2}) = \textbf{P}_{\textbf{p}_{1}},\textbf{p}_{1}-\textbf{p}_{2}[(\textbf{X}_{1},\textbf{X}_{2}) \in \textbf{R}] \\ & = \sum_{\mathbf{i} \in \textbf{C}} \binom{\textbf{N}_{1}}{\mathbf{i}} \textbf{p}_{1}^{\mathbf{i}} (\textbf{1}-\textbf{p}_{1})^{\textbf{N}_{1}-\mathbf{i}} \int_{\textbf{p}_{2}}^{\textbf{1}} \textbf{b}(\textbf{u},\textbf{k}_{1}+\textbf{1},\textbf{N}_{2}) \textbf{d}\textbf{u} + \\ & \sum_{\mathbf{i} \in \textbf{M}} \binom{\textbf{N}_{1}}{\mathbf{i}} \textbf{p}_{1}^{\mathbf{i}} (\textbf{1}-\textbf{p}_{1})^{\textbf{N}_{1}-\mathbf{i}} \int_{\textbf{0}}^{\textbf{p}_{2}} [\textbf{b}(\textbf{u},\textbf{s}_{1},\textbf{N}_{2}) - \textbf{b}(\textbf{u},\textbf{k}_{1}+\textbf{1},\textbf{N}_{2})] \textbf{d}\textbf{u} + \\ & \sum_{\mathbf{i} \in \textbf{T}} \binom{\textbf{N}_{1}}{\mathbf{i}} \textbf{p}_{1}^{\mathbf{i}} (\textbf{1}-\textbf{p}_{1})^{\textbf{N}_{1}-\mathbf{i}} \int_{\textbf{0}}^{\textbf{p}_{2}} \textbf{b}(\textbf{u},\textbf{s}_{1},\textbf{N}_{2}) \textbf{d}\textbf{u} + \\ & \sum_{\mathbf{i} \in \textbf{A}} \binom{\textbf{N}_{1}}{\mathbf{i}} \textbf{p}_{1}^{\mathbf{i}} (\textbf{1}-\textbf{p}_{1})^{\textbf{N}_{1}-\mathbf{i}} \\ & \mathbf{i} \in \textbf{A} \end{pmatrix} \end{split}$$

where $C = \{i \in \Pi_1(R) | 0 = s_i \le l_i < N_2\}$, $M = \{i \in \Pi_1(R) | 0 < s_i \le l_i < N_2\}$, $T = \{i \in \Pi_1(R) | 0 < s_i \le l_i = N_2\}$ and $A = \{i \in \Pi_1(R) | 0 = s_i \text{ and } l_i = N_2\}$.

The case B = M = T = ϕ is impossible since $H(p_1,p_2)$ must then be independent of p_2 of the form $H(p_1,p_2) = \sum\limits_{i \in A} \binom{1}{i} p_1^i (1-p_1)^{N_1-i} = \sum\limits_{i=s}^{\ell} \binom{1}{i} p_1^i (1-p_1)^{N_1-i}$ for some $0 \le s \le \ell \le N_1$ by Condition 3.3. In particular p_1^* must be a local minimum for $G(p_1) = \sum\limits_{i=s}^{\ell} \binom{N_1}{i} p_1^i (1-p_1)^{N_1-i}$. Arguments similar to those above, show this is impossible.

Hence at least one of the set $R_S = \{(i,s_i-1) | i \in \Pi_i(R) \text{ with } s_i > 0\}$ and $R_L = \{(i,\ell_i) | i \in \Pi_1(R) \text{ with } \ell_i < N_2\}$ must be nonempty. Now since (p_1^*,Δ^*) is a local minimum it follows that $\nabla H = \nabla H(p_1^*,p_2^*) = 0$ and $\nabla^2 H(p_1^*,p_2^*)$ is positive semi-definite, i.e., $\mathbf{z}'\nabla H\mathbf{z} \geq 0$ for all $\mathbf{y} \in \mathbb{R}^2$. Let $\mathbf{z} = (\lambda,-1)$ then

$$\mathbf{z'} \nabla \mathbf{H} \mathbf{z} = \left[\frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_2^2} - \lambda \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_1^2 \partial \mathbf{p}_2} \right] + \lambda^2 \left[\frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_1^2} - \frac{1}{\lambda} \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_2^2 \partial \mathbf{p}_1} \right].$$

Let $x_2 = \alpha + \beta i (\beta > 0)$ be the line specified by Condition 3.3 which passes through R and let $\lambda = \beta p_1(1-p_1)/p_2(1-p_2)$. Then

$$(A.1) \quad \mathbf{z}' \, \nabla^2 \mathbf{H} \mathbf{z} = \left[\frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_2^2} - \frac{\beta \mathbf{p}_1 (1 - \mathbf{p}_1)}{\mathbf{p}_2 (1 - \mathbf{p}_2)} \, \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_1 \partial \mathbf{p}_2} - \frac{\alpha}{\mathbf{p}_1 (1 - \mathbf{p}_1)} \, \frac{\partial \mathbf{H}}{\partial \mathbf{p}_2} \right] \\
+ \left[\frac{\beta \mathbf{p}_2 (1 - \mathbf{p}_2)}{\mathbf{p}_1 (1 - \mathbf{p}_1)} \right]^2 \, \left[\frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_1^2} - \frac{1}{\beta} \, \frac{\mathbf{p}_2 (1 - \mathbf{p}_2)}{\mathbf{p}_1 (1 - \mathbf{p}_1)} \, \frac{\partial^2 \mathbf{H}}{\partial \mathbf{p}_2 \partial \mathbf{p}_1} + \frac{\alpha}{\beta \mathbf{p}_1 (1 - \mathbf{p}_1)} \, \frac{\partial \mathbf{H}}{\partial \mathbf{p}_2} \right]$$

since $\nabla H = 0$. All derivatives are evaluated at (p_1^*, p_2^*) in (A.1). Both bracketed terms will be shown below to be negative thus leading to the desired contradiction.

After two differentiations and a rearrangement of terms, the first bracketed expression in (A.1) can be shown to be

$$(A.2) \quad N_{2} \sum_{(\mathbf{i},\mathbf{j}) \in R_{S}} \left[\frac{s_{\mathbf{i}}^{-(\alpha+\beta\mathbf{i})}}{p_{2}^{*}(1-p_{2}^{*})} \right] {\binom{N_{1}}{\mathbf{i}}} (p_{1}^{*})^{\mathbf{i}} (1-p_{1}^{*})^{N_{1}^{-\mathbf{i}}} {\binom{N_{2}^{-1}}{\mathbf{s}_{\mathbf{i}}^{-1}}} (p_{2}^{*})^{\mathbf{s}_{\mathbf{i}}^{-1}} (1-p_{2}^{*})^{N_{2}^{-\mathbf{s}_{\mathbf{i}}}} \\ - N_{2} \sum_{(\mathbf{i},\Delta) \in R_{L}} \left[\frac{\ell_{\mathbf{i}}^{+1-(\alpha+\beta\mathbf{i})}}{p_{2}^{*}(1-p_{2}^{*})^{*}} \right] {\binom{N_{1}}{\mathbf{i}}} (p_{1}^{*})^{\mathbf{i}} (1-p_{1}^{*})^{N_{1}^{-\mathbf{i}}} {\binom{N_{2}^{-1}}{\ell_{\mathbf{i}}}} {\binom{N_{2}^{-1}}{\ell_{\mathbf{i}}^{*}}} {\binom{N_{2}^{-1-\ell_{\mathbf{i}}}}{\ell_{\mathbf{i}}^{*}}} \\ - \left[\frac{1-N_{1}p_{1}^{*}+(N_{2}^{-1})p_{2}^{*}}{p_{2}^{*}(1-p_{2}^{*})^{*}} \right] \frac{\partial H}{\partial p_{2}} .$$

By assumption $\frac{\partial H}{\partial p_2} = 0$, $s_i - (\alpha + \beta i) \leq 0$ for $(i,j) \in R_S$ and $\ell_i - (\alpha + \beta i) \geq 0$ for $(i,j) \in R_L$. Furthermore $P_{p_1^\#, \Delta^\#}[(X_1, X_2^{-1}) \in R_L]$ can be shown to be positive from $\frac{\partial H}{\partial p_1} = 0$ and the fact that $R_S \cup R_L$ must be nonempty. Dropping the first term, rewriting the second as a probability and setting the last equal to zero gives the following upper bound on (A.2):

$$\frac{-N_2}{p_2^*(1-p_2^*)} \; P_{p_1^*p_2^*}[(X_1, X_2^{-1}) \; \in \; R_L] \; < \; 0 \, .$$

A similar argument shows

$$\frac{\partial^{2} H}{\partial p_{1}^{2}} - \frac{p_{2}^{(1-p_{2})}}{\beta p_{1}^{(1-p_{1})}} \frac{\partial^{2} H}{\partial p_{2}^{2} \partial p_{1}} + \frac{\alpha}{\beta p_{1}^{(1-p_{1})}} \frac{\partial H}{\partial p_{1}} < 0$$

and the proof is completed.

The following two lemmas establish that R $_{\rm i}$ U S satisfies Condition 3.3 for S = L $_{\rm i}$ - L $_{\rm 0}$.

<u>Proof.</u> Suppose R_i satisfies the above conditions and there exists $(x_1,x_2) \in L_i$ which $(x_1-1,x_2) \in U_i$ (the case (x_1,x_2+1) is proved analogously). By assumption $\Pi_2(R_i) = \{j \text{ integer} | s \leq j \leq \ell \}$ for some $0 \leq s \leq \ell \leq N_2$. For any $k = 0, \dots, x_1-1$ we have $(k,x_2) \in U_i \Rightarrow (k,x_2) \notin R_i \Rightarrow \text{ either } x_2 < s \text{ or } x_2 > \ell$. If $x_2 < s \Rightarrow (0,\ell) \notin R_i$ for $\ell \leq x_2$; $(x_1-1,x_2) \in U_i \Rightarrow (0,x_2) \in U_i \Rightarrow (0,\ell) \notin R_i$ for $\ell > x_2$ and we conclude that the entire line $\{(0,\ell) | \ell = 0, \dots, N_2\}$ is not in R_i . But this implies

$$0 < 1-\alpha \le \phi(R_i, d_{i-1}) \le P_{0, d_{i-1}}[(X_1, X_2) \in R_i] = 0$$

a contradiction. If $x_2 > \ell$ then a similar contradiction results and the proof if completed.

<u>Lemma A.4</u>. If R_i satisfies the conditions of Lemma A.3 then $R_i \cup S$ satisfies Condition 3.3 for $S = L_i - L_0$.

<u>Proof.</u> To show part (1) of Condition 3.3 it suffices to prove that $N_1 \times N_2 - L_0$ is a NWC set since $R_i \cup (L_i - L_0) = (N_1 \times N_2 - L_0) - U_i$ and $U_i \subset U_0 \subset N_1 \times N_2 - L_0$. Pick $(x_1,x_2) \in N_1 \times N_2 - L_0$ and any integers $\ell(1 \le \ell \le N_2 - x_2)$ and $k(1 \le k \le x_1)$; it must be shown that $(x_1, x_2 + l)$ and $(x_1 - k, x_2) \in N_1 \times N_2 - L_0$. We have $(x_1,x_2) \in N_1 \times N_2 - L_0 \iff (x_1,x_2) \notin L_0 = U_0^0 \iff (N_1-x_1,N_2-x_2) \notin U_0$ \Rightarrow $(N_1-x_1+k, N_2-x_2) \notin U_0$ and $(N_1-x_1, N_2-x_2-k) \notin U_0 \Leftrightarrow (x_1-k,k_2) \notin U_0^0 = L_0$ and $(x_1,x_2+l) \notin L_0 \iff (x_1-k,x_2)$ and $(x_1,x_2+l) \in N_1 \times N_2 - L_0$. We next show that $\Pi_1(R_i \cup S)$ must be an interval of integers. Let $\underline{x}_1 = \min \Pi_1(R_i \cup S)$ and $\bar{x}_1 = \max_1(R_i \cup S)$. Suppose there exists an integer $\hat{x}_1, \bar{x}_1 < \bar{x}_1 < \bar{x}_1$ 'for which $x_1 \notin \Pi_1(R, \cup S)$. It follows that each (x_1, ℓ) must be in L₀ or U_i for $l = 0, ..., N_2$. We claim that $(\hat{x}_1, N_2) \notin L_0$ and $(\hat{x}_1, 0) \notin U_i$. If $(\hat{x}_1, N_2) \in L_0$ then $(\hat{x}_1, N_2) \notin N_1 \times N_2 - L_0 \Rightarrow (\overline{x}_1, \ell) \notin N_1 \times N_2 - L_0 \subset R_i \cup S$ for every ℓ contradicting the assumption that $\overline{x}_1 \in \Pi_1(R_i \cup S)$. Similarly if $(x_1,0) \in U$, then $(i,j) \in U$, for all integers $0 \le i \le x$, and $0 \le j \le N_2$ contradicting the assumption $\underline{x}_1 \in \Pi_1(R, \cup S)$. Hence it must be that $(\hat{x}_1,0) \in L_0$ and $(\hat{x}_1,N_2) \in U_1$. It follows that $\hat{x}_2 \equiv \min \Pi_1(U_1|\hat{x}_1)$ is (strictly) positive and $(\hat{x}_1, \hat{x}_2^{-1}) \in L_0 \subset L_i$. But this contradicts Lemma A.3 and $(x_1,x_2) \in U_i$. A similar argument shows that $\Pi_2(R_i \cup S)$ is an interval of integers and concludes the proof that part (2) of Condition 3 holds. We begin the proof that part (3) of Condition 3.3 holds by choosing $\alpha \in \mathbb{R}^{1}$ and $\beta > 0$ so that part (3) holds for R_i. Let s_k, l_k, S_j and L_j be defined for R_i as in part(3) and s_k^*, l_k^* , S_i^* and L_i^* be defined for $R_i \cup S$ in a similar fashion. Pick $m \in \Pi_1(R_i \cup S)$ having $0 < s_m^*$. If $m \in \Pi_1(R_i)$ then $s_m^* \le s_m$ since $R_i \in S \cup R_i \Rightarrow s_m > 0$ and so $s_m^* \le s_m \le \alpha + \beta m$. Now suppose $m \notin \Pi_1(R_i)$ then $(m,s_m^*) \in L_i - L_0$. Two subcases must be considered: (1) $s_m^* \in \Pi_2(R_i)$ and (2) $s_m^* \notin \Pi_2(R_i)$. In the first subcase we $L_{s_{\underline{*}}} < m$ or $m < S_{s_{\underline{*}}}$ since $(m, s_{\underline{*}}) \notin R_i$. The case $m < S_{s_{\underline{*}}}$ is impossible since

 $(S_{s_m^*}, s_m^*) \in \mathcal{U}_1^! \Rightarrow (m, s_m^*) \in \mathcal{U}^! \text{ contradicting the assumption } (m, s_m^*) \in L_1^!.$ So $L_{s_m^*} < m \le N_2$ and since R_1 satisfies Condition 3.3 it follows that $L_{s_m^*}^* \ge m > L_{s_m^*} \ge \frac{m}{\beta}$ or $\alpha + \beta m > s_m^*.$ In subcase 2 it must be that $\{(0, s_m^*), \ldots, (m, s_m^*)\} \subset L_1 - L_0$ otherwise there exists an x_1^* satisfying $(x_1^*, s_m^*) \in \mathcal{U}_1$ and $(x_1^* + 1, s_m^*) \in L_1$ a contradiction. This shows that $R_1 \subset \{(y_1, y_2) \mid 0 \le y_1 < m \text{ and } s_m^* < y_2 \le N_2\}.$ So for any $y_1 \in \Pi_1(R_1)$ we have $y_1 < m$ and $s_m^* > s_m^* \ge 0$ and hence $s_m^* < s_1 \le \alpha + \beta y_1 < \alpha + \beta m \Rightarrow s_m^* < \alpha + \beta m.$ The remaining three cases follow from analogous arguments and complete the proof.

References

- Baptista, J. and Pike, M.C. (1977), "Exact Two-Sided Confidence Limits for the Odds Ratio in a 2×2 Table," <u>Journal of the Royal Statistical</u> <u>Society</u>, Sec. C, 26, 214-220.
- Buhrman, J.M. (1977), "Tests and Confidence Intervals for the Difference and Ratio of Two Probabilities," Biometrika, 64, 160-162.
- Cornfield, J. (1956), "A Statistical Problem Arising from Retrospective Studies," in Jerzy Neyman, ed., Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV, Berkeley: University of California Press, 135-148.
- Dunnett, C.W. and Gent, M. (1977), "Significance Testing to Establish Equivalence Between Treatments, With Special Reference to Data in the Form of 2×2 Tables," Biometrics, 33, 593-602.
- Gail, M. (1973), "The Determination of Sample Sizes for Trials Involving Several Independent 2×2 Tables," Journal of Chronic Diseases, 26, 669-673.
- Gail, M. and Gart, J.J. (1973), "The Determination of Sample Sizes for Use with the Exact Conditional Test in 2×2 Comparative Trials," Biometrics, 29, 441-448.
- Gart, J.J. (1971), "The Comparison of Proportions: A Review of Significance Tests, Confidence Intervals and Adjustments for Stratification", Review of the International Statistical Institute, 39, 148-169. Addenda and errata (1972), 40, 221.
- Katz, D., Baptista, J., Azen, S.P., and Pike, M.C. (1958), "Obtaining Confidence Intervals for the Relative Risk in Cohort Studies," presented at 1977 Annual Meetings of ASA, Chicago, Illinois.
- McDonald, L., Neubauer, K. and Meister, K. (1974), "Confidence Intervals for the Difference of Two Proportions: Small Sample Sizes," Research Paper No. 44, College of Commerce and Industry, University of Wyoming.
- Thomas, D.G. (1971), "Exact Limits for the Odds Ratio in a 2×2 Table," Applied Statistics, 20, 105-110.
- Thomas, D.G. and Gart, J.J. (1977), "A Table of Exact Confidence Limits for Differences and Ratios of Two Proportions and Their Odds Ratios," Journal of the American Statistical Association, 72, 73-76.

1. CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO PROPORTIONS

N1 N2 X1 X2	909	B	95	8	99%	
1 1 1 0	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000
2120	-0.3592	1.0000	-0.5101	1,0000	-0.7511	1.0000
2 1 1 1 2	-1.0000 -0.6185	0.6185	-1.0000 -0.7208	1.0000	-1,000U -0.8675	0.86/3
2 2 2 1	-0.5000	1.0000	-0.6266	1.0000	-0.8174	1.0000
	-0.1178 -1.0000	1.0000 0.5000	-1.0000	0.6268	-1.0000	0.8175
2 2 1 2 2 2 1 1 2 2 2 1 0	-0.7151 -0.5000	0.7151	-0.7945	0.7945	-0.9043	0.9043
3 1 3 0	-0.2679	1.0000	-0.4515	1.0000	-0.7035	1.0000
	-1.0000	0.6772	-1.0000	0.7661	-1.0000	0.8903
3 1 2 1 3 1 2 0	-U.500U	1.0000	-0.6268	1.0000	-0.8174	1.0000
3 2 3 1	-0.4202	1.0000	-0.5613 -0.1330	1.0000	-0.7808	1.0000
3 2 2 2 3 2 2 1 3 2 2 0	-1.0000 -0.6199	0.5721	-1.0000	0.6845 0.8291	-1.0000 -0.8673	0.8483
	-0.2679	1.0000	-0.3872	1.0000	-0.5839	1.0000
3 3 3 2 3 3 3 1 3 3 3 0	-0.5000 -0.1531	1.0000	-0.6268	1.0000	-0.8174 -0.4906 -0.2310	1.0000
3 3 2 3	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.8173
3 3 2 2	-0.6789	U.6789 U.9011	-0.7661 -0.7661	0.7667	-0.8904	0.8904
3 3 2 0	-0.1531	1.0000	-0.2763	1.0000	-0.4906	1.0000
4 1 4 0	-0.2000	1.0000	-0.3710	1.0000	-0.6653	1.0000
4 1 3 1 4 1 3 0	-1.0000 -0.4202	0.7143	-1.0000 -0.5613	1.0000	-1.000U -U./808	0.9043
4 1 2 1	-1.0000 -0.5721	0.5721	-1.0000	1.0000	-1.0000 -0.8483	0.8485
4 2 4 1	-0.3592	1.0000	-0.5101	1.0000	-0:7511	1.0000
4 2 4 0	0.0	1.0000	-0.0524	1.0000	-0.3000	1.0000

N1 N2 X1 X2	909	<u>k</u>	95%		99%	
4 2 3 2	-1.0000	0.6185	-1.0000	U. /208	-1.0000	0.86/3
4 2 3 2	-0.5538	0.7901	-0.6692	0.8503	-0.8399	0.9314
4 2 3 0	-0.1531	1.0000	-0.2765	1.0000	-0.4906	1.0000
4 2 2 2	-1.0000	0.3527	-1.0000	0.4625	-1.0000	0.6376
4 2 2 1	-0.6.789	0.6789	-0.7667	1.7667	-0.8904	0.8904
4 2 2 0	-0.3521	1.0000	-0.4625	1.0000	-0.6396	1.0000
	0 0001	1 0000	-0.5811	1.0000	-0./920	1 0000
4 3 4 2	-0.4441	1.0000	-0.1990	1.0000	-0.4238	1.0000
4 3 4 1	-0.0740	1.0000			-0.1408	1.0000
4 3 4 0	0.0	1,0000	0.0	1.0000	-0.1400	1.0000
4 3 7 7	-1.0000	0.5520	-1.0000	0.6685	-1.0000	0.6379
4 3 3 3 2	-0.6206	0.7159	-0.7216	0.1948	-0.8674	0.9044
	-0.3013	0.8255	-0.4089	0.8762	-0.5915	0.9456
4 3 3 1 4 3 3 0	-0.1150	1.0000	-0.1437	1.0000	-0.3542	1.0000
4 3 2 3	-1.0000	0.2425	-1.0000	0.3563	-1.0000	0.5550
4 3 2 2	-0.7303	0.4829	-0.8055	0.5732	-0.9096	0./168
4 3 2 1	-0.4829	U.7303	-0.5752	0.0055	-0.7168	0.9096
4 3 2 0	-0.2425	1.0000	-0.3583	1.0000	-0.5550	1.0000
4 4 4 3	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000
4 4 4 2	-0.1654	1.0000	-0.2846	1.0000	-0.4931	1.0000
	0.0	1.0000	-0.0571	1.0000	-0.2679	1.0000
4 4 4 1	0.0	1.0000	U.0	1.0000	-0.0435	1.0000
	-1 0000	(E000	-1 0000	0 6266	-1.0000	0 4172
4 4 3 4	-1.0000	0.5000	-1.0000	0.6268	-0.8841	0.8173
4 4 3 3	-0.6631	0.6631	-0.7544	0.7544	-0.6462	0.9212
	-0.3840	0.7623	-0.2821	0.8919	-0.4654	0.9510
4 4 3 1 4 4 3 0	0.0	1.0000	-0.0571	1.0000	-0.4654	1.0000
		0.1454	1 0000		-1 111011	0 4045
4 4 2 4	-1.0000	0.1654	-1.0000 -0.8294	0.2846	-1.0000	0.4937
4 4 2 3	-0.7625	0.3840	-0.631/	0.4822	-0.9212	0.6462
	-0.3840	0.5520	-0.4822	0.8317	-0.6462	0.9212
4 4 2 1	-0.1654	1.0000	-0.4822	1.0000	-0.4931	1.0000
5 1 5 0	-0.1459	1.0000	-0.3219	1.0000	-0.6330	1.0000
5 1 4 1	-1.0000	0.7405	-1.0000	0.8139	-1.0000	0.9140
5 1 + 0	-0.3502	1.0000	-0.5101	1.0000	-0.7511	1.0000
5 1 1 1	-1.0000	0.6185	-1.0000	0.7208	-1.0000	0.8673
5 1 7 0	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000
5 2 5 1	-0.3097	1.0000	-0.4676	1.0000	-0.7258	1.0000
F 2 F 0	0.0	1.0000	0.0	1.0000	-0.2421	1.0000

N1 N2 X1 X2	90%		95%		99%	
5 2 4 2	-1.0000	0.6518	_1.0000	0.7466	-1.0000	0.8805
5 2 4 1	-0.5020	0.8102	-0.6276	0.8650	-0.8174	0.9384
5 2 4 0	-0.0740	1.0000	-0.1990	1.0000	-0.4238	1.0000
			1 2000	0 5170		. (265
5 2 3 2	-1.0000	0.4105	-1.0000	0.5132	-1.00n0	0.6765
5 2 3 1	-0.6206	0.7159	-0.7216	0.7948	-0.8674	0.9044
5 2 3 0	-0.2425	1.0000	-0.3583	1.0000	-0.5550	1.0000
5 3 5 2	-0.39a3	1.0000	_0.5430	1.0000	-0,7703	1.0000
5 3 5 1	-0.0137	1.0000	-0.1393	1.0000	-0.3710	1.0000
5 3 5 0	0.0	1.0000		1.0000	-0.0742	1.0000
5 3 4 3	-1.0000	0.5896	-1.0000	0.6982	-1.0000	0.8555
5 3 4 2	-0.5746	0.7422	-0.6854	0.8145	-0.8484	0.9140
5 3 4 1	-0.2264	0.8426	-0.3381	0.8885	-0.5337	0.9494
5 3 4 0	0.0	1.0000	-0.0571	1.0000	-0.2679	1.0000
5 3 3 3	-1.0000	0.3047	-1.0000	0.4147	-1.0000	0.5984
5 3 3 2	-0.6797	0.5333	-0.7670	0.6162	-0.8904	0.7470
5 3 3 1	-0.3840	0.7623	-0.4822	0.8294	-0.6462	0.9212
5 3 3 0	-0.1896	1.0000	-0.2294	1.0000	-0.4258	1.0000
			0 5017	1 0000	0 7000	
5 4 5 3	-0.4570	1.0000	0.5917	1.0000	-0.7980	1.0000
5 4 5 2	-0.1059	1.0000	-0.2272	1.0000	-0.4448	1.0000
5 4 5 1	0.0	1.0000	0.0	1.0000	-0.2035	1.0000
5 4 5 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
5 4 4 4	-1.0000	0.5407	-1.0000	0.6595	-1.00n0	0.8350
5 4 4 3	-0.6210	0.6933	-0.7218	0.7775	-0.8674	0.8957
5 4 11 2	-0.3132	0.7848	-0.4165	0.8461	-0.5941	0.9293
- 5 - 4 4 1	-0.1150	0.8623	-0-1980	0.9028	-0.3857	0.9561
* 4 4 0	0.0	1.0000	0.0	1.0000	-0.1714	1.0000
5 4 3 4	-1.0000	0.2298	-1.0000	0.3443	-1.0000	0.5412
5 4 1 1	-0.7168	0.4401	-1.7951	0.5316	-0.9044	0.6825
5 4 3 2	-0.4612	0.5975	-0.5494	0.6701	-0.6950	0.7838
5 4 3 1	-0.2981	0.7911	-0.3616	0.8506	-0.5286	0.9314
5 4 3 0	-0.0762	1.0000	-0.1440	1.0000	-0.3438	1.0000
5 5 5 4	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000
5 5 5 3	-0.1716	1.0000	-0.2888	1.0000	-0.4953	1.0000
5 5 5 2	0.0	1.0000	-0.0800	1.0000	-2.2818	1.0000
5 5 5 1	0.0	1.0000	0.0	1.0000	-0.1012	1.0000
5 5 5 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
5 5 4 5	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.8173
	-0.6543	0.6543	-0.7475	0.7475	-0.8806	0.8806
5 5 4 4 5	-0.3727		-0.4698	0.8148	-0.6345	0.9141
5 5 4 2	-0.1096	0.7430	-0.2808	0.8654	-0.4542	1.9385
3 3 4 7						
5 5 4 1	-0.0124	0.8760	-0.1648	0.9126	-0.2926	0.9606

N1 N2 X1 X2	909	5	95	58	99%	
5 5 4 4	-1.0000	0.1716	-1.0000	0.2888	-1.0000	0.4957
	-0.7430	0.3727	-0.8148	0.4698	-0.9141	0.6345
	-0.5128	0.5128	-0.5942	0.5942	-0.7271	0.7271
5 5 3 5	-0.3660	0.6394	-0.4361	0.7053	-0.5864	0.807
5 5 3 2						
-5 -5 -3 -1	-0.1006	0.0111	-0-2808	0.8654	-0.4542	0.938
5 5 3 0	0.0	1.0000	-0.0800	1.0000	-0.2818	1.0000
6 1 6 0	-0.1010	1.0000	-0.2804	1.0000	-0.6049	1.0000
6 1 5 1	-1.0000	0.7604	-1.0000	0.8287	-1.0000	0.921
6 1 5 0	-0.3097	1.0000	-0.4676	1.0000	-0.7258	1.0000
6 1 4 1	-1.0000	0.6518	-1.0000	0.7466	-1.0000	0.880
6 1 4 0	-0.4441	1.0000	-0.5811	1.0000	-0.7920	1.000
6 1 3 1	-1.0000	0.5520	-1.0000	0.6685	-1.0000	0.839
6 1 3 0	-0.5520	1.0000	-0.6685	1.0000	-0.8399	1.0000
6 2 6 1	-0.2679	1.0000	-0.4313	1.0000	-0.7035	1.000
6 2 6 0	0.0	1.0000	0.0	1.0000	-0.1946	1.000
6 2 5 2	-1.0000	0.6772	-1.0000	0.7661	1.0000	0.890
6 2 5 1	-0.4593	0.8254	-0.5926	0.8761	-0.7981	0.943
6 2 5 0	-0.0127	1.0000	-0.1393	1.0000	-0.3710	1.000
6 2 4 2	-1.0000	0.4536	-1.0000	0.5508	-1.0000	0.703
6 2 4 1	-0.5746	0.7422	-0.6854	0.8145	-0.8484	0.914
6 2 4 0	-0.1654	1.0000	-0.2846	1.0000	-0.4937	1.000
6 2 1 2	-1.0000	0.3047	_1.0000	0.4147	-1.0000	0.598
6 2 3 1	-0.6631	0.6631	-0.7544	0.7544	-0.8841	0.884
6 2 3 0	-0.3047	1.0000	-0.4147	1.0000	-0.5984	1.000
6 3 6 2	-0.3592	1.0000	-0.5101	1.0000	-0.7511	1.000
6 3 6 1	0.0	1.0000	-0.0908	1.0000	-0.3271	1.000
6 3 6 0	-0.0	1.000	-0.0	1.0000	-0.0216	1.000
6 3 5 3	-1.0000	0.6185	-1.0000	0.7208	-1.0000	0.867
6 3 5 2	-0.5361	0.7620	-0.6547	0.8293	-0.8320	0.921
6 3 5 1	-0.1682	0.8553	-0.2825	0.8978	-0.4872	0.953
6 3 5 0	0.0	1.0000	0.0	1.0000	-0.2035	1.0000
6 3 4 3	-1.0000	0.3518	-1.0000	0.4570	-1.0000	0.630
6 3 4 2	-0.6392	0.5702	-0.7358	0.6477	-0.8745	0.7689
6 3 4 1	-0.3132	0.7848	-0.4165	0.8461	-0.5941	0.9293
6 3 4 0	-0.0762	1.0000	-0.1440	1.0000	-0.3438	1.0000
6 3 3 3	-1.0000	0.2446	-1.0000	0.2898	-1.0000	0.4755
6 3 3 2	-0.7168	0.4401	-0.7951	0.5316	-0.9044	0.6825
6 3 3 1	-0.4401	0.7168	-0.5316	0.7951	-0.6825	0.9044
6 3 3 0	-0.2446	1.0000	-0.2898	1.0000	-0.4755	1.0000

N1 N2 X1 X2	90%		95	8	99%	
6 4 6 3	-0.4202	1.0000	-0.5613	1.0000	-0.7808	1.0000
6 4 6 2	-0.0575	1,0000	-0.1800	1.0000	-0.4038	1.0000
6 4 6 1	0.0	1.0000	0.0	1.0000	-0.1519	1.0000
6 4 6 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
10 to				No. 1		
6 4 5 4	-1.00nc	0.5721	-1.0000	0.6845	-1.00n0	0.8483
6 4 5 3	-0.5857	0.7164	-0.6940	0.7949	-0.8529	0.9044
6 4 5 2	-0.2575	0.8018	-0.3643	0.8586	-0.5519	0.9352
6 4 5 1	-0.0391	0.8736	-0.1345	0.9109	-0.3254	0.9598
6 4 5 0	0.0	1.0000	0.0	1.0000	-0.1012	1.0000
6 4 4 4	-1.0000	0.2791	-1.0000	0.3893	-1.0000	0.5765
6 4 4 3	-0.6801	0.4818	-0.7671	0.5680	-0.8904	0.7090
6 4 4 2	-0.3953	0.6306	-0.4892	0.6980	-0.6485	0.8029
6 4 4 1	-0.1896	0.8111	-0.2808	0.8654	-0.4542	0.9385
6-4-4-0	- 0 • n	1.0000	-0.0864	1.0000	-0.2496	1.0000
6 4 3 4	-1.0000	0.1333	-1.0000	0.2063	-1.0000	0.3971
6 4 3 3	-0.7502	0.3498	-0.8202	0.4165	-0.9167	0.5719
6 4 7 2	-0.5128	0.5128	-0.5942	0.5942	-0.7271	0.7271
6 4 3 1	-0.3498	0.7502	-0.4165	0.8202	-0.5719	0.9167
6 4 3 0	-0.1333	1.0000	-0.2063	1.0000	-0.3971	1.0000
6 5 6 4	-0.4650	1.0000	-0.5983	1.0000	-0.8016	1.0000
6 5 6 3	-0.1239	1.0000	-0.2431	1.0000	-0.4566	1.0000
6562	-0.0	1.0000	-0.0288	1.0000	-0.2318	1.0000
6 5 6 1	0.0	1.0000	0.0	1.0000	-0.0462	1.0000
6 5 6 0	-0.0	1.0000	0.0	1.0000	0.0	1.0000
					1 0000	
6 5 5 5	-1.0000	0.5334	-1.0000	0.6537	-1.0000	0.8319
6 5 5 4	-0.6213	0.6797	-0.7219	0.7670	-0.8674	0.890
	-0.1197		-0.4204	0.8296	-0.5954	0.921
6 5 5 2		0.8262	-0.2193	0.8764	-0.3974	0.9431
6 5 9 9	0.0	1.0000	0.1003	1.0000	-0.2244	1.0000
6 5 4 5	-1.0000	0.2221	-1.0000	0.3358	-1.0000	0.5330
6 5 4 4	-0.7092	0.4174	-0.7892	0.5095	-0.9014	0.664
6 5 4 3	-0.4508	0.5509	-0.5381	0.6270	-0.6846	0.750
6 5 4 2	-0.2683	0.6698	-0.3597	0.7306	-0.5176	0.824
6 5 4 1	-0.1049	0.8295	-0.2635	0.8788	-0.3651	0.944
6 5 4 0	C.n.	1.0000	-0.0686	1.0000	-0.1807	1.0000
6 5 3 5	-1.0000	0.0577	-1.0000	0.1432	-1.0000	0.337
6 5 3 4	-0.7738	0.2447	-0.8377	0.3389	-0.9251	0.5018
6 5 3 3	-0.5611	0.4149	-0.6355	0.4870	-0.7563	0.625
6 5 3 2	-0.4149	0.5611	-0.4870	0.6355	-0.6256	0.756
6 5 3 1	-0.2447	0.773A	-0.3389	0.8377	-0.5018	0.925
6 5 3 0	-0.0577	1.0000	-0.1432	1.0000	-0.3375	1.000

N1 N2 X1 X2	90%		95	8	99%		
6 6 6 4	-0.1753	1.0000	-0.2914	1.0000	.0.4962	1,0000	
6 6 6 3	0.0	1.0000	-0.0924	1.0000	-0.2891	1.0000	
6 6 6 2	0.0	1.0000	0.0	1.0000	-0.1262	1.0000	
6 6 6 1	0.0	1.0000	0.0	1.0000	0.0	1.0000	
6 6 - 0 -	2.0	1.0000	0.0	1.0000	0.0	1.0000	
6 6 5 6	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.8173	
6 6 5 5	-0.6486	0.6486	-0.7430	0.7430	-0.8783	0.8783	
6 6 5 4	-0.3660	0.7312	-0.4624	0.8058	-0.6276	0.9096	
6 6 5 3	-0.1838	0.7915	-0.2793	0.8508	-0.4478	0.9314	
6 6 5 2	-0.0493	0.8433	-0.1677	C.8888	-0.2994	0.9495	
		0.8957	0.0	0.9267	-0.1773	0.9671	
6 6 5 0	0.0	1.0000	0.0	1.0000	0.0	1.0000	
in industry				0.000			
6 6 4 6	-1.0000	0.1753	-1.0000	0.2914	-1.0000	0.4962	
6 6 4 5	-0.7312	0.3660	-0.8058	0.4624	-0.9096	0.6276	
6 6 4 4	-0.4920	0.4920	-0.5742	0.5742	-0.7109	0.7109	
6 6 4 3	-0.32A4	0.5964	-0.4143	0.6657	-0.5612	0.7775	
6 6 4 2	-0.1968	0.6981	-0.3261	0.7542	-0.4332	0.8406	
6 6 4 1	-0.0493	0.8433	-0.1677	0.8888	-0.2994	0.9495	
6 6 4 0	0.0	1.0000	0.0	1.0000	-0.1262	1.0000	
6 6 3 6	-1.0000	0.0	-1.0000	0.0924	-1.0000	0.2891	
6 6 3 5	-0.7915	0.1838	-0.8508	0.2793	-0.9315	0.4478	
6 6 3 4	-0.5964	0.3284	-0.6657	0.4143	-0.7775	0.5612	
6 6 3 3	-0.4616	0.4616	-0.5347	0.5347	-0.6619	0.6619	
6 6 3 9	-0.3244	0.5964	-0.4143	0.6657	-0.5612	0.7775	
6 6 3 1	-0.1838	0.7915	-0.2793	0.8508	-0.4478	0.9314	
6 6 3 0	-0.0	-1-0000-	-0.0924	1.0000	-9.2891	1.0000	
		(
7 1 7 0	-0.0627	1.0000	-0,2446	1.0000	-0.5799	1.0000	
7 1 6 1	-1.0000	0.7762	-1.0000	0.8404	-1.0000	0.9268	
7 1 4 0	-0.2679	1.0000	-0.4813	1.0000	-0.7035	1.0000	
7 1 5 1	-1.0000	0.6772	-1.0000	0.7661	-1.0000	0.8903	
7 1 5 0	-0.3983	1.0000	-0.5430	1.0000	-0.7703	1.0000	
7 1 4 1	-1.0000	0.5896	-1.0000	0.6982	-1.0000	0.8555	
7 1 4 0	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000	
7 2 7 1	-0.2318	1,0000	-0.3994	1.0000	-0.6835	1.0000	
7 2 7 0	0.0	1.0000	0.0	1.0000	-0.1544	1.0000	
7 2 6 2	-1.0000	0.6975	-1.0000	0.7815	-1.0000	0.8980	
7 2 6 1	-0-4226	0.8373	-0.5623	0.8848	-0.7809	0.9477	
7 2 6 0	0.0	1.0000	-0.0908	1.0000	-0.3271	1.0000	
7 2 5 2	-1.0000	0.4876	-1.0000	0.5802	-1.0000	0.7243	
7 2 5 1	-0.5361	0.7620	-0.6547	0.8293	-0.8320	0.9212	
7 2 5 0	-0.1059	1.0000	-0.2272	1.0000	-0.4448	1.0000	

N1 N	12 X	1 X2	90%		9	5 %	99%	
7	2 4	,	-1.0000	0.3518	-1.0000	0.4570	-1.0000	0.6303
7			-0.6210	0.6933	-0.7218	0.7775	-0.8674	0.8957
	2 "		-0.2298	1.0000	-0.3443	1.0000	-0.5412	1.0000
7	3 7	, ,	-0.3252	1.0000	-0.4810	1.0000	-0.7338	1.0000
	3	1_	0.0	1.0000	-0.0500	1.0000	-0.2895	1.0000
7	3 7	0	0.0	1.0000	0.0	1.0000	0.0	1.0000
7	3 6	3	-1.0000	0.6417	-1.0000	0.7388	-1.0000	0.8765
7	3 6	2	-0.5029	0.777A	-0.6279	0.8410	-0.8175	0.9269
7	3 6	1	-0.1206	0.8654	-0.2366	0.9050	-0.4481	0.9571
7	3 6		0	1.0000	0.0	1.0000	-0.1519	1.0000
7	3 5	3	-1.0000	0.3893	-1.0000	0.4904	-1.0000	0.6553
		2	-0.6052	0.5990	-0.7091	0.6721	-0.8607	0.7858
7		1	-0.2575	0.8018	-0.3643	0.8586	-0.5519	0.9352
7	3 6	0	0.0	1.0000	-0.0800	1.0000	-0.2818	1.0000
	3 (-1.0000	0.2879	-1.0000	0.3359	-1.0000	0.5130
		2	-0.6801	0.4818	-0.7671	0.5680	-0.8904	0.7090
	3 1		-0.3727	0.7430	-0.4698	0.8148	-0.6345	0.9141
7	3	0.	-0.1333	1.0000	-0.2063	1.0000	-0.3971	1,0000
7		33	-0.38A0	1.0000	-0.5343	1.0000	-0.7653	1.0000
		, ,	-0.0169	1.0000	-0.1399	1.0000	-0.3684	1.0000
		11_	0.0	1.0000	0.0	1.0000	-0.1088	1.0000
7	4	, 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
		, 4	-1.0000	0.5975	-1.0000	0.7044	-1.0000	0.8588
		3	-0.5550	0.7347	-0.6697	0.8087	-0.8400	0.9112
		, ,	-0.2115	0.8152	-0.3208	0.8684	-0.5161	0.9399
		1 0	0.0	1.0000	0.0836	1.0000	-0.2765 -0.0462	0.9628
		5 4	-1.0000	0.3186	-1.0000	0.4252	-1.0000	0.6042
7		5 3	-0.6491	0.5146	-0.7432	0.5965	-0.8783	0.7295
_			-0.3409	0.6562	-0.4409	0.7195	-0.6106 -0.3974	0.8175
7		5 0	0.0	1.0000	-0.0686	1.0000	-0.1807	1.0000
7	4 1	. 4	-1.0000	0.1788	-1.0000	0.2544	-1.00n0	0.4378
7			-0.7172	0.1788	-0.7953	0.4578	-0.9044	0.6043
7		. 2	-0.4508	0.5509	-0.5381	0.6270	-0.6846	0.7504
		+ 1	-0.2447	0.7738	-0.3389	0.8377	-0.5018	0.7351
7		, 0	-0.0186	1.0000	-0.1590	1.0000	-0.3057	1.0000
7	5	7 4	-0.4343	1.0000	-0.5730	1.0000	-0.7874	1.0000
7	5	7 7	-0.0026	1.0000	-0.2040	1.0000	-0.4230	1.0000
7	5	7 2	0.0	1.0000	0.0	1.0000	-0.1898	1.0000
7		7 1	0.0	1.0000	0.0	1.0000	-0.0011	1.0000
7		7 0	0.0	1.0000	0.0	1.0000	0.0	1.0000

	909	\$	9 :	5%	99%	
7 5 6 5	-1.0000	0.5604	-1.0000	0.6752	-1.00n0	0.8434
7 5 6 4	-0.5906	0,6990	-0-6994	0.7824	-0.8557	0.8981
7 5 6 3	-0.2749	0.7785	-0.3790	0.8412	-0.5622	0.9269
7 5 6 2	-0-0696	D.AZA1	-0.1695	0.8851	-0.3510	0.9477
7 5 6 1	0.0	0.8943	-0.0319	0.9257	-0.1704	0.9666
7 5 6 0	-0.0	1.0000	-0.0	1.0000	_0.0	1.0000
7 5 5 5	-1.0000	0.2630	-1.0000	0.3734	-1.0000	0.5628
7 5 5 4	-0.6AN4	0.4527	-0.7673	0.5407	-0.8904	0.6873
7 5 5 3	-0.4011	0.5806	-0.4929	0.6525	-0.6497	0.7684
7 5 5 2	-n.20A1	0.6933	-0.3009	0.7502	-0.4647	0.8380
7 5 5 1	-0.0493	0.8433	-0.1677	8888.0	-0.2994	0.9495
7 5 5 0	0.0	1.0000	0.0	1.0000	-0.1511	1.0000
7 5 4 5	-1.0000	0.1040	-1.0000	0.1924	-1.0000	0.3803
7 5 4 4	-0.7434	0.2027	-0.8149	0.3830	-0.9141	0.5376
7 5 4 3	-0.5031	0.4528	-0.5837	0.5250	-0.7176	0.654
7 5 4 2	-0.3284	0.5964	-0.4143	0.6657	-0.5612	0.777
7 5 4 1	-0.1710	0.7954	-0.3120	0.8536	-0.4163	0.932
7 5 4 0	0.0	1.0000	-0.1210	1.0000	-0.2383	1.000
7 6 7 5	-0.4705	1.0000	-0.6028	1.0000	-0.8041	1.000
7 6 7 4	-0.1355	1.0000	-0.2533	1.0000	-0.4642	1.0000
7 6 7 3	0.0	1.0000	-0.0500	1.0000	-0.2482	1.000
7 6 7 2	0.0	1.0000	0.0	1.0000	-0.0813	1.000
7 6 7 1	0.0	1,0000	0.0	1.0000	0.0	1.000
6 7 0	0.0	1.0000	0.0	1.0000	0.0	1.000
7 6 6 6	-1.0000	0.5283	-1.0000	0.6496	-1.0000	0.829
7 6 6 5	-0.6215	0.6704	-0.7220	0.7598	-0.8674	0.886
7 6 6 4	-0.3231	0.7487	-0.4228	0.8190	-0.5963	0.916
7 6 6 3	-0.1345	0.A055	-0.2308	0.8611	-0.4036	0.936
7 6 6 2	-0.0058	0.8541	-0.1003	0.8966	-0.2469	0.953
7 6 6 1	-0.0	0.9031	0.0	0.9319	-0.0948	0.969
7 6 6 0	0.0	1.0000	0.0	1.0000	0.0	1.000
7 6 5 6	-1.0000	0.2170	-1.0000	0.3302	-1.0000	0.527
7 6 5 5	-0.7043	0.4031	-0.7854	0.4956	-0.8995	0.652
7 6 5 4	-0.4447	0.5244	-0.5314	0.6024	-0.6784	0.731
7 6 5 3	-0.2701	0.6238	-0.3580	0.6891	-0.5114	0.793
7 6 5 2	-0.1466	0.7199	-0.2335	0.7722	-0.3705	0.852
7 6 5 1	-0.0080	0.8560	-0.0686	0.8980	-0.2372	0.953
7 6 5 0	0.0	1.0000	0.0	1.0000	-0.0626	1.000
7 6 4 6	-1.0000	0.0466	-1.0000	0.1422	-1.0000	0.333
7 6 4 5	-0.7633	0.2333	-0.8297	0.3253	-0.9213	0.486
7 6 4 4	-0.5417	0.3739	-0.6171	0.4554	-0.7416	0.593

NI	N2	X1	X2	90%		95%		99%	
7	6	4	8	-0.3860	0.4981	-0.4660	0.5702	-0.6019	0.688
7	6	4	2	-0.2617	0.6295	-0.3726	0.6938	-0.4808	0.797
7	6	4	1	-0.11A3	0.8116	-0.2186	0.8655	-0.3528	0.938
7	6	1	0	0.0	1.0000	-0.0529	1.0000	-0.1847	1.000
7	7	7	6	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.000
	7			-0.1778	1.0000	-0.2931	1.0000	-0.4969	1.000
7	7	7	4	0.0	1.0000	-0.1001	1.0000	-0.2936	1.000
-	7	7	-	-0.0	1.0000	0.0	1.0000	-0.1403	1.000
7	7	7	2	0.0	1.0000	0.0	1.0000	-0.0048	1.000
-		7	1	9.0	1.0000	-0.0	1.0000	-0.0048	1.000
7		7	0	0.0	1.0000	0.0	1.0000	0.0	1.000
7	7	6	7	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.817
-7	7	-	£	-0.6446	0.6446	-0.7399	0.7399	-0.8766	0.876
7	7	6	5	-0.3615	0.7233	-0.4575	0.7998	-0.6230	0.906
	7		***	-0-1848	0.7790	-0.2781	0.8414	-0.4437	0.926
7	7	6	3	-0.0779	0.8244	-0.1524	0.8749	-0.3020	0.942
7		-		0.0	0.8660	-0.0096	0.9052	-0.1720	0.957
7	7	6	1	0.0	0.9100	0.0	0.9368	-0.0413	0.971
-		-6	<u> </u>	0.0	1.0000	0.0	1.0000	_0.0	1.000
7	7	_	,	-1-0000	0.1778	-1.0000	0.2931	-1.0000	0.496
7	7	5	6	-0.7233	0.3615	-0.7998	0.4575	-0.9066	0.623
7		<u> </u>	4	-0.4790	0.4790	-0.5617	0.5617	-0.7007	0.700
7	7	5	4	-0.3174	0.5719	-0.4013	0.6431	-0.5467	0.760
7	7	5	1	-0.2169	0.6552	-0.2829	0.7156	-0.4208	0.812
7	7	5	2	-0.1365	0.7404	-0.1459	0.7891	-0.3014	0.863
7	7	5	1	0.0	0.8660	-0.0096	0.9052	-0.1720	0.957
7	7	5	0	0.0	1.0000	0.0	1.0000	-0.0048	1.000
		5		0.0	1.0000		1.0000	-010040	1.000
				2 2 D 2 . P					
				L.1.784 0					
				2577-0	### TEXT 1				
				LOADS	40-1-0-1				
				0.986 ; 1					
				50.0	Bene		IN THE STATE OF		
				. 5 E.M E	THE LANS OF		E AS L Day		
				4126.0			Charles .		

N1 N2 X1 X2	90%		95	8	99%		
7 7 4 7	-1.0000	0.0	-1.0000	0.1001	-1.0000	0.2936	
7746	-0.7790	0.1848	-0.8414	0.2781	-0.9269	0.4437	
7 7 4 5	-0.5719	0.3174	-0.6431	0.4013	-0.7602	0.5467	
7 7 4 4	-0.4292	0.4292	-0.5048	0.5048	-0.6322	0.6322	
7 7 4 3	-0.3250	0.5363	-0.4173	0.6036	-0.5256	0.7137	
7 7 4 2	-0.2169	0.6552	-0.2829	0.7156	-0.4208	0.8120	
7 7 4 1	-0.0779	0.8244	-0.1524	0.8749	-0.3020	0.9429	
7 7 4 0	0.0	1.0000	_0.0	1.0000	-0.1403	1.0000	
8 1 A D	-0.0294	1.0000	-0,2129	1.0000	-0.5573	1.0000	
8 1 7 1	-1.0000	0.7891	-1.0000	0.8499	-1.0000	0.9314	
A 1 7 0	-0.2318	1.0000	-0.3994	1.0000	-0.6835	1.0000	
8 1 6 1	-1.0000	0.6975	-1.0000	0.7815	-1.0000	0.8980	
8 1 6 0	-0.3592	1.0000	-0.5101	1.0000	-0.7511	1.0000	
8 1 5 1	-1.0000	0.6185	-1.0000	0.7208	-1.0000	0.8673	
A 1 5 0	-0.4570	1.0000	-0.5917	1.0000	-0.79AD	1.0000	
8 1 4 1	-1.conc	0.5407	-1.0000	0.6595	-1.00n0	0.8350	
8 1 " 0	-0.5407	1.0000	-0.6595	1.0000	-0.8350	1.0000	
8 2 A 1	-0.2000	1.0000	-0.3710	1.0000	-0.6653	1.0000	
0 2 0 0	-0.0	1.0000	-0-0	1.0000	-0.1194	1.0000	
8 2 7 2	-1.0000	0.7143	-1.0000	0.7942	-1.00n0	0.9043	
8 2 7 1	-0.3905	0.8470	-0.5354	0.8918	-0.7654	0.9510	
A 2 7 0	0 • n	1.0000	-0.0500	1.0000	-0.2895	1.0000	
4 2 4 2	-1,0000	0,5154	-1.0000	0.6041		0.741	
8 2 6 1	-0.5029	0.777A	-0.6279	0.8410	-0.8175	0.9269	
8 2 6 0	-0.0575	1.0000	-0.1800	1.0000	-0.4038	1.0000	
8 2 5 2	-1.0000	0.3893	-1.0000	0.4904	-1.00no	0.6553	
8 2 5 1	-0.5857	0.7164	-0.6940	0.7949	-0.8529	0.9044	
8 2 5 0	-0.1716	1.0000	-0.2888	1.0000	-0.4953	1.0000	
8 2 4 9	-1.0000	0.2791		0.3893		0.576	
8 2 4 1	-0.6543	0.6543	-0.7475	0.7475		0.8806	
-8-2-4-0	-0.2791	1.0000	-0.3893	1.0000	-0.5765	1.0000	
8 3 * *	-0.2051	1.0000	-0.4549		-0.7180	1.0000	
A 3 A 1	0.0	1.0000	-0.0148	1.0000		1.0000	
8 3 9 0	0.0	1.000	-0.0	1.0000	-0+0	1.0000	
8 3 7 8	-1.0000	0.6610	-1-0000		-1.00n0	0.8840	
8 3 7 2	-0.4736	0.7906	-0.6040	0.8505		0.9314	
8 3 7 1	-0.0A03	0.4735	-0-1974		-0-4143	0.9598	
8 3 7 0	0.0	1.0000	0.0	1.0000	-0.1088	1.0000	

N1 N2 X1	X2	90%	5	95	5 %	99%	
8 3 4	3	-1.0000	0.4202	-1.0000	0.5177	-1.0000	0.6755
	9-	-0.5756	0.6923	-0.6858	0.6918	-0.8485	0.7993
8 3 6	1	-0.2115	0.8152	-0.3208	0.8684	-0.5161	0.9399
0 3 6	-0-	-0.0	1.000	-0-0288	1.0000	-0.2318	-1.0000
8 3 5		-1.0000	0.3234	-1.0000	0.3729	-1.0000	0.5428
8 3 5	2	-0.6491	0.5146	-0.7432	0.5965	-0.8783	0.7295
8-3-5-	4-	-0.3193	0.76PA	-0.4204	0.8296	-0.5954	0.9213
8 3 5	n	-0.0577	1.0000	-0.1432	1.0000	-0.3375	1.0000
8 3 4	3	-1.0000	0.1788	-1.0000	0.2544	-1.0000	0.4378
8 3 4	2	-0.7092	0.4174	-0.7892	0.5095	-0.9014	0.664
8 3 4	1	-0.4174	0.7092	-0.5095	0.7892	-0.6642	0.9014
8 3 4	0	-0.17A8	1.0000	-0-2544	1.0000	-0.4378	1.0000
0 4 A	3	-0.3502	1.0000	-0.5101	1.0000	-0.7511	1.000
8 4 8	2	0.0	1.0000	-0.1052	1.0000	-0.3372	1.0000
A 4 A	1-	0 · A	1.0000	0.0	1.0000	-0.0718	1.000
8 4 3	0	0.0	1.0000	0.0	1.0000	0.0	1.0000
8 4 7	4	-1.0000	0.6185	-1.0000	0.7208	-1.0000	0.867
-8-4-7	3	0.5278	0.7497	-0.6479	0.8200	-0.8283	0.916
8 4 7	2	-0.1723	0.8261	-0.2834	0.8764	-0.4849	0.943
	-1-	0.0	0.8896	-0.0411	0.9224	-0.2352	0.965
8 4 7	0	0.0	1.0000	0.0	1.0000	-0.0011	1.000
8 4 6	4	-1.0000	0.3514	-1.0000	0.4548	-1.0000	0.626
8 4 6	-3-	-0.6221	0.5414	-0.7222	0.6197	-0.8674	0.746
8 4 6	2	-0.2992	0.6769	-0.4004	0.7368	-0.5782	0.829
8 4 6	1	-0.0696	0.8381	-0.1695	0.8851	-0.3510	0.947
8 4 6	0	0.0	1.0000	0.0	1.0000	-0.1262	1.000
8 4 5	4	-1.0000	0.2164	-1.0000	0.2933	-1.0000	0.470
8 4 5	-3-	-0.6892_	0.4227	-0.7739	0.4906	-0.8937	0.629
8 4 5	2	-0.4011	0.5806	-0.4929	0.6525	-0.6497	0.768
8 4 5	1	-0.1838	0.7915	-0.2793	0.8508	-0.4478	0.931
8 4 5	0	0.0	1.0000	-0.1210	1.0000	-0.2383	1.000
8 4 4	4	-1.0000	0.0681	-1.0000	0.2178	-1.0000	0.349
-8 4 4	-3-	-0.7474	0.2927	-0.8149	0.3830	-0.9141	0.537
8 4 4	2	-0.4920	0.4920	-0.5742	0.5742	-0.7109	0.710
	1	-0.2927	0.7434	-0.3830	0.8149	-0.5376	0.914
8 4 4	0	-0.06A1	1.0000	-0.2178	1.0000	-0.3490	1.000
8 5 A	4	-0.4068	1.0000	-0.5502	1.0000	-0.7744	1.000
8 5 A	3	-0.0488	1.0000	-0.1700	1.0000	-0.3933	1.000
8 5 8	2	0.0	1.0000	0.0	1.0000	-0.1535	1.000
A 5 A	1	0.0	1.0000	0.0	1.0000	0.0	1.000
A 5 A	0 1	0.0	1.0000	0.0	1.0000	0.0	1.000

N1 N2 X1 X2	909		9	5%	99%		
8 5 7 5	-1.0000	0.5829	-1.0000	0.6930	-1.0000	0.8528	
8 5 7 4	-0.5671	0.7166	-0.6792	0.7950	-0.8450	0.9044	
8 5 7 3	-0.2369	0.7914	-0.3432	0.8507	-0.5330	0.9314	
A 5 7 2	-0.0278	- 0.847A	-0.1277		-0.3116	0.9510	
8 5 7 1	0.0	0.9008	0.0	0.9303	-0.1257	0.9687	
8 5 7 0	0.0	1.0000	0.0	1.0000	0.0	1.0000	
8 5 4 5	-1.0000	0.2970	-1.0000	0.4045	-1.0000	0.5870	
8 5 6 4	-0.6553	0.4817	-0.7479	0.5662	-0.8806	0.7060	
8 5 6 3	-0.3595	0.6047	-0.4546	0.6731	-0.6198	0.7829	
8 5 6 2	-0.1591	0.7121	-0.2530	0.7658	-0.4212	0.848	
8 5 4 1	-0.0058	0.8541	-0.1003	0.8966	-0.2469	0.9531	
8 5 6 0	0.0	1.0000	0.0	1.0000	-0.0626	1.0000	
8 5 5 5	-1.0000	0.1426	-1.0000	0.2324	-1.0000	0.414	
8-5-5-4-	-0.7176	0.8318	-0-7954	-0.4183	-0.9044	0.566	
8 5 5 3	-0.4564	0.4833	-0.5416	0.5549	-0.6857	0.677	
8-5-5-2-	-0.2701	0.6288	-0.4580	0.6891	-0.5114	0.793	
8 5 5 1	-0.11A3	0.8116	-0.2186	0.8655	-0.3528	0.938	
4-5-5-0		1,0000	-0-0210	1.0000	-0.1986	1.000	
8 5 4 5	-1-0000	0.0094	-1.0000	0.1635	-1.0000	0.283	
8 5 4 4	-0.7675	0.2221	-0.8329	0.3506	-0.9228	0.455	
8-5-4-3	-0-5447	0.3789	-0.6171	0.4554	-0.7416	0.593	
8 5 4 2	-0.3739	0.5417	-0.4554	0.6171	-0.5939	0.741	
8 5 4 1	-0-2221	0.7678	-0.7506_	0.8329	-0.4553	0.922	
8 5 4 0	-0.0094	1.0000	-0.1635	1.0000	-0.2832	1.000	
8 6 8 5	-0.4441	1.0000	-0.5811	1.0000	-0.7920	1.000	
8 6 9 4	-0-1010	1.0000	-0.2200	1.0000	-0.4358	1.000	
8 6 A 3	0.0	1.0000	-0.0136	1.0000	-0.2128	1.000	
A-6-A-2	-0.0	1,000	-0.0	1.0000	-0.0430	1.000	
8 6 A 1	0.0	1.0000	0.0	1.0000	0.0	1.000	
8 6 9 0	_0.n	1.0000	-0.0	1.0000	0.0	1.000	
8 6 7 6	-1.0000	0.5520	-1.0000	0.6685	-1.00n0	0.839	
8 6 7 5	-0.5973	0.6885	-0.7030	0.7736	-0.8575	0.893	
-8 6 7 4	-0.2861	0.7631	-0.3884	0.8297	.D.5688	0.921	
8 6 7 3	-0.0930	0.8170	-0.1899	0.8695	-0.3658	0.940	
A 6 7 2	-0.0	0.8629	-0.0476	0.9030	-0.2032	0.956	
8 6 7 1	0.0	0.9091	0.0	0.9362	-0.0483	0.971	
8 6 7 0	0.0	1.0000	0.0	1.0000	0.0	1.000	
- 6-6-6	-1,0000	0.2519	-1.0000	0.3624	-1.0000	0.553	
8 6 6 5	-0.6A07	0.4337	-0.7673	0.5228	-0.8904	0.673	
8 6 6 4	-0.4048	0.550A	-0.4951	0.6253	-0.6505	0.747	
8 6 6 3	-0.2224	0.6460	-0.3117	0.7079	-0.4703	0.806	
8 6 6 2	-0.1045	0.7874	-0.1677	0.7867	-0.3202	0.862	
8 6 6 1	0.0	0.8660	-0.0096	0.9052	-0.1720	0.957	
- 6 4 0	0.0	1.0000	0.0	1,0000	0.0	1.000	

N1 N2 X1 X2	90%	95%	99%
8 6 5 6	-1,0000 0,0856	-1.0000 0,1830	-1.0000 0.369
8 6 5 5	-0.7391 0.2732	-0.8116 0.3623	-0.9124 0.516
8 6 5 4	-0.4974 0.4101	-0.5775 0.4881	-0.7120 0.619
8 6 5 3	-0.3300 0.5297	-0.4124 0.5980	-0.5553 0.709
8 6 5 2	-0.2169 0.6550	-0.2829 0.7156	-0.4208 0.8120
	-0.0934 0.8267	-0.1230 0.8766	-0.2833 0.943
8 6 5 1	0.0 1.0000	0.0 1.0000	-0.1112 1.000
0 0 7 0	110000	1,000	
8 6 4 6	-1.0000 0.0	-1.0000 0.0960	-1.0000 0.230
8 6 4 5	-0.7857 0.1722	-0.8464 0.2595	-0.9293 0.3940
0 6 4 4	-0.57A2 0.7112	-0.6485 0.4093	-0.7679 0.516
8 6 4 3	-0.4292 0.4292	-0.5048 0.5048	-0.6322 0.632
8 6 4 2	-0.3112 0.5782	-0.4093 0.6485	-0.5169 0.7639
8 6 4 1	-0.1722 0.7857	-0.2595 0.8464	-0.3940 0.9293
A 6 4 A	1.000	-0.0960 1.0000	-0,2306 1.0000
87 0 6	-0.4745 1.0000	-0.6061 1.0000	-0.8060 1.0000
8 7 A 5	-0.1437 1.0000	-0.2605 1.0000	-0.4695 1.0000
8 7 4 4	0.0 1.0000	-0.0640 1.0000	-0.2590 1.0000
8 7 A 3	0.0 1.0000	0.0 1.0000	-0.1023 1.0000
8 7 9 2	0.0 1.0000	0.0 1.0000	1.0000
8 7 A 1	0.0 1.0000	0.0 1.0000	0.0 1.0000
8 7 0 0	-0.n 1.0n00	1.0000	1.0000
8 7 7 7	w1.0000 0.5246	-1.0000 0.6466	-1.0000 0.8281
8 7 7 6	-0.6216 0.663A	-0.7220 0.7547	-0.8674 0.8841
8 7 7 9	-0.3256 -0.7389	-0.4244 0.8115	-0.5968 0.9124
8 7 7 4	-0.1438 0.7918	-0.2380 0.8509	-0.4074 0.9315
6 7 7 3	-0.0461 0.0340	-0.1003 0.8825	-0.2594 0.946
8 7 7 2	0.0 0.8741	0.0 0.9111	-0.1259 0.9596
8 7 7 1	0.0 0.9155	0.0 0.9408	-0.0013 0.973
8 7 7 0	0.0 1.0000	0.0 1.0000	0.0 1.0000
8 7 6 7	-1.0000 0.2133	-1.0000 0.3262	-1.0000 0.5237
0 7 4 6	-0.7009 0.3933	-0.7828 0.4861	-0.8982 0.6447
8 7 6 5	-0.4406 0.5071	-0.5270 0.5863	-0.6743 0.7187
8 7 6 4	-0.2709 0.5963	-0.3566 0.6642	-0.5074 0.7751
8 7 6 3	-0.1895 0.6759	-0.2186 0.7331	-0.3724 0.8240
8 7 6 2	-0.06A6 0.7567	-0.0973 0.8026	-0.2468 0.8728
8 7 6 1	0.0 0.8754	0.0 0.9119	-0.1217 0.9602
0 7 6 0	-0.0 1.0000	-0.0 1.0000	1.0000
-6 7 5 7	-1.0000 0.0391	-1.0000 0.1414	-1.0000 0.3304
8 7 5 6	-0.7562 0.2256	-0.8244 0.3163	-0.9186 0.4758
8 7 5 5	-0.5296 0.355%	-0.6055 0.4359	
8 7 5 4	-0.3753 0.4635	-0.4535 0.5354	-0.5882 0.6561
8 7 5 3	-0.2808 0.5662	-0.3309 0.6298	-0.4686 0.7332
8 7 5 2	-0.1880 0.6795	-0.2076 0.7360	-0.3540 0.8260
8 7 5 1	-0.0529 0.8386	-0.0735 0.8852	-0.2283 0.9478
8 7 5 0	0.0 1.0000	0.0 1.0000	

Nl	N 2	XI	X2	90	8	9	5%	998	
8	7	4	7	-1.0000	0.0	-1.0000	0.0433	-1.0000	0.186
	7_	4	-	-0.8001	0.1352	-0.8570	0.1944	-0.9344	0.344
A	7	4	5	-0.6066	0.271A	-0.6728	0.3223	-0.7810	0.459
		4		-0.4706	0.3730	-0.5416	0.4524	-0.6607	0.559
8	7	11	3	-0.3730	0.4706	-0.4524	0.5416	-0.5595	0.660
8			2	-0.2718	0.6066	-0.3223	0.6728	-0.4593	0.781
A		11	1	-0.1352	0.8001	-0.1944	0.8570	-0.3447	0.934
	_ 7	. 4	•	-0.0	1.0000	-0-0433	1.0000	-0.1868	1.000
8	B	R	7	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.000
8	8	A	6	-0.1796	1.0000	-0.2943	1.0000	-0.4973	1.000
A	A	A	5	00.0000	1.0000	-0-1055	1.0000	-0.2966	1.000
8	A	a	4	0.0	1.0000	0.0	1.0000	-0.1493	1.000
	8	_3	3	0.0	1.0000	0.0	1.0000	-0.0244	1.000
A	8	А	2	0.0	1.0000	0.0	1.0000	0.0	1.000
A	A	A		1.0.0	1.0000	0.0	1.0000	0.0	1.000
8	8	A	0	0.0	1.0000	0.0	1.0000	0.0	1.000
8	8	7	A	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.817
-8-	8			-0.6417	0.6417	-0.7376	0.7376	-0.8754_	0.875
8	8	7	6	-0.35A3	0.7176	-0.4540	0.7954	-0.6197	0.904
8	8	7	5	-0.1853	0.7702	-0.2771	0.8348	-0.4407	0.923
8	8	7	4	-0.1087	0.8119	-0.1429	0.8656	-0.3032	0.938
A	8	7	3	0.0	0.8482	-0.0332	0.8922	-0.1829	0.951
8	8	7	2	0.0	0.8830	0.0	0.9174	-0.0886	0.962
-	8	_7_	_1_	0.0	0.9208	0.0	0.9445	0.0	0.975
8	8	7	0	0.0	1.0000	0.0	1.0000	0.0	1.000
8	8	6	8	-1.0000	0.1796	-1.0000	0.2943	-1.0000	0.497
	8	- 4	7	-n.7176	0.3583	-0.7954	0.4540	-0.9044	0.619
8	A	6	6	-0.4700	0.4700	-0.5530	0.5530	-0.6936	0.693
8	8	4	5	-0.3100	0.5558	-0.3926	0.6283	-0.5370	0.748
8	8	6	4	-0.2595	0.6295	-0.2647	0.6925	-0.4126	0.794
8		-	3	-0.1210	0.6990	-0.1613	0.7524	-0.3008	0.837
8	A	6	2	0.0	0.7722	-0.0562	0.8153	-0.2024	0.881
	-	- 4	-4-	-0.0	0.8830	0.0	0.9174	-0.0886	0.962
8	8	6	0	0.0	1.0000	0.0	1.0000	0.0	1.000
A	8	5	A	-1.0000	0.0000	-1.0000	0.1055	-1.0000	0.296
-	- 8	-	7-	-0.7702	0.1A53	-0-8348	0.2771	-0.9237	0.440
A	8	5	6	-0.5558	0.3100	-0.6283	0.3926	-0.74A7	0.537
-8-	-8-	- 5		-0.4114	0.4114	-0.4862	0.4862	-0.6142	0.614
8	8	5	4	-0.3469	0.5033	-0.3696	0.5706	-0.5049	0.683
-	-4	-5		-0.23A6-	0.5947	-0.2680	-0.6546	-0-4042	0.751
8	9	5	2	-0.1210	0.6990	-0.1613	0.7524	-0.3008	0.837
8	-	5	- +-	0.0-	- 0 : A48P	-0.0332	0.8922	-0.1829	0.951
8	A	=	0	0.0	1.0000	0.0	1.0000	-0.0244	1.000
8	8	4	A	-1.0000	0.0	-1.0000	0.0	-1.0000	0.149
	-0	-	-7	-0.8119	0,1087	-0.8656	0.1429	-0.9385	0.303
	8	4	6	-0.6295	0.2595	-0.6925	0.2647	-0.7948	0.412

Nl	N2	XI	X2	90	8	95	8	99%	
4			4	-0.5033	0.3469	-0.5706	0.3696	-0.6871	0.504
8	A	4	4	-0.4197	0.4197	-0.4862	0.4862	-0.5916	0.591
-	-8-	-4-	-3-	0.3469	0.5034	-0.3696	0.5706	-0.5049	0.683
8	8	4	2	-0.2595	0.6295	-0.2647	0.6925	-0.4126	0.794
-	-		-+-	-0-1007	0.A119	-0-1429	0.8656	-0.3032	0.938
8	8	4	0	0.0	1.0000	0.0	1.0000	-0.1493	1.000
9	1	9	0	-0.0000	1.0000	-0.1847	1.0000	-0.536/	1.000
9	1	8	1	-1.0000	0.8000	-1.0000	0.8579	-1.0000	0.955
9	1	9	0	-0.2000	1,0000	-0.3710	1,0000	-0.6653	1.000
9	1	7	1	-1.0000	0.7143	-1.0000	0./942	-1.0000	0.904
9	1	7	0	-0.3252	1.0000	-0.4810	1.0000	-0.7538	1.000
9	1	6	1	-1.0000	0.6417	-1.0000	0.7388	-1.0000	0.876
9	1_	6	0_	-0.4202	1,0000	-0.5613	1.00	-U.7808	1.000
9	1	5	1 0	-1.0000	0.5721	-1.0000	0.6845	-1.0000	0.848
9	1	5	0	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.000
9	2	9	1	-0.1716	1.0000	-0.3455	1.0000	-0.6485	1.000
2	5	9	_0_	0.0	1.0000	0.0	1.0000	-0.0887	1.000
9	5	8	2	-1.0000	0.7284	-1.0000	0.8048	-1.0000	0.909
9		9		-0.3619	U.8551	-0.5111	0.8977	-0.7512	0.953
9	5	A	0	0.0	1.0000	-0.0148	1.0000	-0.2565	1.000
9	2	7	2	-1.0000	0.5387	-1.0000	0,6240	-1.0000	0.755
9	2	7	1	-0.4736	V.7906	-0.6040	0.8505	-0.8043	0.931
9	5	7	0	-0.0169	1.0000	-0.1399	1.0000	-0.3684	1.000
9	2	6	2	-1.0000	0.4202	-1.0000	0.5177	-1.0000	0.675
9	2	6	1	-0.5550	0.7347	-0.6697	0.8087	-0.8400	0.911
9	2	6	0	-0.1239	1.0000	-0.2431	1.0000	-0.4566	1.000
9	2	5	2	-1.0000	0.3186	-1.0000	0.4252	-1.0000	0.604
9	2	5	1	-0.6215	0.6797	-0.7219	0.7670	-0.8674	0.890
9	2	5	0	-0.2221	1.0000	-0.3356	1.0000	-0.5330	1.000
9	3	9	2	-0.2679	1.0000	-0.4313	1.0000	-0.7035	1.000
9	3	9	1	0.0	1.0000	0.0	1.0000	-0.2272	1.000
9	3	9	0	0.0	1.0000	0.0	1,0000	0.0	1.000
9	3	9	3	-1.0000	0.6772	-1.0000	U.7661	-1.0000	0.890
9	3	9	5	-0.4474	0.8014	-0.5824	0.8584	-0.7922	0.935
9	3	8	1	-0.0455	0,8803	-0.1634	0.9157	-0.5845	0.962
9	3	Я	0	0.0	1.0000	0.0	1.0000	-0.0718	1.000
9	3	7	3	-1.0000	0.4464	-1.0000	0.5408	-1.0000	0.692
9	3		2	-0.5495	0.6417	-0.6647	0.7082	-0.8373	0.810
9	3	7	1	-0.1723	0.8261	-0.2834	0.8764	-0.4849	0.943
9	3	7	0	0.0	1.0000	0.0	1.0000	-0.1898	1.000

N1 N2 X1 X2	90	8	9 !	5%	99%	
9 3 6 3	-1.0000	0.3533	-1.0000	0.4036	-1.0000	0.56/2
9 3 6 2	-0.6221	0.5414	-0.7222	0.6197	-0.8674	0.7460
9 3 6 1	-0.2749	0.7785	-0.3790	0.8412	-0.5622	0.9269
9 3 6 0	0.0	1.0000	-0.0924	1.0000	-0.2891	1.0000
9 3 5 3	-1.0000	0.2164	-1.0000	0.2933	-1.0000	0.4703
9 3 5 2	-0.6804	0.4527	-0.7615	0.5407	-0.8904	0.68/3
9 3 5 1	-0.3660	0.7312	-0.4624	0.8058	-0.6276	0.9096
9 3 5 0	-0.1040	1.0000	-0.1924	1.0000	-0.5805	1.0000
7 4 9 3	₩0.3335	1.0000	-0.4880	1.0000	-0.7380	1.0000
9 4 9 2	0.0	1.0000	-0.0746	1.0000	-0.3093	1.0000
9 4 9 1	0.0	1,0000	U.0	1.0000	-0.0396	1.0000
9 4 9 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 4 9 4	-1.0000	0.6364	-1.0000	0./347	-1.0000	0.8744
9 4 9 3	-0.5034	0.7623	-0.6281	0.8294	-0.8175	0.9212
9 4 A 2	-0.1382	0.8353	-0.250/	0.8830	-0.4572	0.9468
9 4 8 1	0.0	0.8956	-0.0048	0.9267	-0.1996	0.9671
9 4 8 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 4 7 4	-1.0000	0.3793	-1.0500	0.4798	-1.0000	0.6456
9 4 7 3	-0.5979	0.5638	-0.7032	0.6390	-0.8576	0.7598
9 4 7 2	-0.2617	0.6941	-0.3655	0./511	-0.5498	0.8388
9 4 7 1	-0.0278	0.8478	-0.12//	0.8921	-0.3116	0.9510
9 4 7 0	0.0	1.0000	0.0	1.0000	-0.0813	1.0000
9 4 6 4	-1.0000	0.2484	-1.0000	0.3258	-1.0000	0.4975
9 4 6 3	-0.6646	0.4500	-0.7550	0.5175	-0.8842	0.6505
9 4 6 2	-0.3595	0.6047	-0.4546	0.6731	-0.6198	0.7829
9 4 6 1	-0.1345	0.8055	-0.2308	0.8611	-0.4036	0.9364
9 4 6 0	0.0	1.0000	-0.0529	1.0000	-0.184/	1.0000
9 4 5 4	-1.0000	0.1108	-1.0000	0.2692	-1.0000	0.3840
9 4 5 3	-0.7176	0.3313	-0.7954	0.4183	-0.9044	0.5660
9 4 5 2	-0.444/	0.5244	-0.5314	0.6024	-0.6784	0.7513
9 4 5 1	-0.2333	0.7633	-0.3253	0.8297	-0.4861	0.9213
9 4 5 0	-0.0094	1.0000	-0.1635	1.0000	-0.2832	1.0000
9 5 9 4	-0.3820	1.0000	-0.5295	1.0000	-0./624	1.0000
9 5 9 3	-0.0181	1.0000	-0.1398	1.0000	-0.366/	1.0000
9 5 9 2	0.0	1.0000	0.0	1.0000	-0.121/	1.0000
9 5 9 1	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 5 9 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 5 8 5	-1.0000	0.6020	-1.0000	0./079	-1.0000	0.8606
	-0.5441	U.7307	-0.6608	0.8056	-0.8352	0.9096
9 5 8 4	-0.2036	0.8021	-0.3118	0.8587	-0.5070	0.9552
9 5 8 2	0.0	0.8559	-0.091/	0.8980	-0.2774	0.9538
	0.0	0.9062	0.0	0.9342	-0.0875	0.9705
9 5 8 0	0.0	1.0000	0.0	1.0000	U.U	1.0000

N1	N 2	Xl	X 2	909	3	9	5%	99%	
9	5	7	5	-1.0000	0.3260	-1.0000	0.4309	-1.0000	0.60/4
9	5	7	4	-0.6328	0.5061	-0.7304	0.5875	-0.8716	0.7215
9	5	7	3	-0.3236	0.6248	-0.4214	0.6902	-0.5935	0.7945
9	5	7	3	-0.1179	U.7277	-0.2124	0.1788	-0.3841	0.85/1
9		7	1	0.0	0.8629	-0.0476	0.9030	-0.2032	0.9561
9	5	7	0	0.0	1.0000	0.0	1.0000	-0.0048	1.0000
9	5	6	5	-1.0000	0.1755	-1.0000	0.2661	-1.0000	0.4453
9	5	6	4	-0.6948	U.3634	-0.7781	0.4475	-0.8958	0.5894
9	5	5	3	-0.4170	0.5088	-0.5058	0.5794	-0.6585	0.6962
9	5	6	2	-0.2224	0.6460	-0.311/	0.7079	-0.4705	0.8068
9	5	6	1	-0.0779	U.8244	-0.1524	0.8749	-0.5020	0.942
9	5	6	0	0.0	1.0000	0.0	1.0000	-0.1112	1.0000
,	5	5	5	-1.0000	0.0529	-1.0000	0.1990	-1.0000	0.319
7	5	5	4	-0.7438	0.2633	-0.8151	0.3824	-0.9141	0.486
9	5	5	3	-0.4974	0.4101	-0.5775	0.4881	-0.7120	0.619
9	5	5	2	-0.3174	0.5719	-0.4015	0.6431	-0.546/	0.760
9	5	5	1	-0.1722	U.7857	-0.2595	0.8464	-0.5940	0.929
9	5	5	0	0.0	1.0000	-0.0543	1.0000	-0.2372	1,000
9	6	9	5	-0.4202	1.0000	-0.5613	1.0000	-U.7808	1.000
9	6	9	4	-0.0705	1.0000	-0.1904	1.0000	-0.4102	1.000
9	6	9	3	0.0	1.0000	0.0	1.0000	-0.1816	1.000
-	6	9	-	-0.0	1.0000	U.0	1.0000	-0.0098	1.000
9	6	9	1	0.0	1.0000	U.0	1.0000	U.U	1.000
9	6	9	Ô	0.0	1.0000	0.0	1.0000	U.0	1.000
,	6	B	6	-1.0000	0.5721	-1.0000	0.6845	-1.0000	0.848
9	6	A	5	-0.5755	0.7037	-0.685/	0.7852	-0.8485	0.899
9	6	8	4	-0.2537	0.7751	-0.3581	0.8386	-0.5441	0.925
9	6	B	3	-0.0573	U.8266	-0.1544	0.8765	-0.3328	0.945
9	6	8	2	0.0	0.8702	-0.0045	0.9083	-0.165/	0.958
9	6	8	1	0.0	0.9140	0.0	0.9397	-0.0089	0.975
9	6	8	Ō	0.0	1,0000	0.0	1.0000	U.0	1.000
9	6	7	6_	-1.0000	0.2817	-1.0000	0.3698	-1.0000	0.574
9	6		5	-0.6595	0.4595	-0.7511	0.5457	-0.8822	0.690
9	6	7	4	-0.3702	0.5729	-0.4635	0.6444	-0.6258	0.761
9	6	7	3	-0.1820	0.6644	-0.2724	0./235	-0.4350	0.817
9	6	7	2	-0.0831	U.7518	-0.1158	0.1986	-0.2780	0.870
9	6	7	1	0.0	U.8741	0.0	0.9111	-0.1259	0.959
9	6	7	Ō	0.0	1.0000	0.0	1.0000	U • 0	1.000
9	6	6	6	-1.0000	0.1190	-1.0000	0.2174	-1.0000	0.399
9	6	6	5	-0.7178	0.3065	-0.7955	0.3930	-0.9044	0.541
9	6	6	4	-0.4599	U.4400	-0.545/	0.5149	-0.6864	0.640
9	6	5	3	-0.2839	0.5555	-0.3682	0.6207	-0.5165	0.726
á	6	6	5	-0.1895	0.6759	-0.2186	0./331	-0.5724	0.824
9	6	6	1	-0.0529	0.8386	-0.0755	0.8852	-0.2285	0.947
9	6	6	0	0.0	1.0000	0.0	1.0000	-0.0561	1.000

N1 N2 X1 X2	90	ક	9 9	5%	99%	
9 6 5 6	-1.0000	0.0070	-1.0000	0.1322	-1.0000	0.2682
9 6 5 5	-0.7636	0.2162	-0.8298	0.2934	-0.9215	0.4273
9 6 5 4	-0.5364	U.3509	-0.6115	0.4394	-0.7364	0.5457
9 6 5 3	-0.3755	0.4635	-0.4535	0.5354	-0.5882	0.6561
9 6 5 2	-0.2718	0.6066	-0.3223	0.6728	-0.4593	0.7810
9 6 5 1	-0.1635	0.8027	-0.1722	0.8589	-0.3262	0.9353
9 6 5 0	U.0	1.0000	U • 0	1.0000	-0.1564	1.0000
9 7 9 6	-0.4514	1.0000	-0.5871	1.0000	-0.7954	1.0000
9 7 9 5	-0.1135	1.0000	-0.2314	1.0000	-0.4449	1.0000
9 7 9 4	0.0	1.0000	-0.0323	1.0000	-0.2284	1.0000
9 7 9 3	0.0	1.0000	0.0	1.0000	-0.0692	1.0000
9 7 9 2	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 7 9 1	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 7 9 0	0.0	1.0000	U.0	1.0000	U • U	1.0000
9 7 8 7	-1.0000	0.5456	-1.0000	0.6634	-1.0000	0.83/2
9 7 8 6	-0.6008	0.6800	-0.7057	0.7671	-0.8589	0.8904
9 7 8 5	-0.2940	0.7520	-0.3951	0.8213	-0.5734	0.91/2
9 7 3 4	-0.1084	0.8026	-0.2032	0.8588	-0.3755	0.9353
9 7 8 3	-0.0213	0.8436	-0.05/2	0.8889	-0.2228	0.9495
9 7 8 2	0.0	0.8809	0.0	0.9159	-0.0867	0.9621
9 7 8 1	0.0	0.9202	0.0	0.9441	0.0	0.9750
9 7 5 0	0.0	1.0000	0.0	1.0000	0.0	1.0000
9 7 7 7	-1.0000	0.2437	-1.0000	0.3544	-1.0000	0.5463
9 7 7 6	-0.6808	0.4202	-0.7674	0.5101	-0.8904	0.6628
9 7 7 5	-0.4072	0.5307	-0.4961	0.6069	-0.6510	0.7337
9 7 7 4	-0.2314	0.6168	-0.3185	0.6817	-0.4737	0.7874
9 7 7 3	-0.1677	0.6931	-0.1755	0.7475	-0.551/	0.8555
9 7 7 2	-0.0157	0.7702	-0.0579	0.8137	-0.2016	0.8801
9 7 7 1	0.0	0.8830	0.0	0.9174	-0.0886	0.9628
9 7 7 0	10.0	1.0000	0.0	1.0000	U.U	1.0000
9 7 6 7	-1.0000	0.0728	-1.0000	0.1762	-1.0000	0.3612
9 7 6 6	-0.7361	0.2598	-0.8092	0.3481	-0.9112	0.5024
9 7 6 5	-0.4931	0.3866	-0.5/34	0.4644	-0.7082	0.59/5
9 7 6 4	-0.3307	0.4917	-0.4111	0.5605	-0.5514	0.6756
9 7 6 3	-0.2684	0.5906	-0.2761	0.6510	-0.4223	0./491
9 7 6 2	-0.1210	0.6990	-0.1613	0.1524	-0.3008	0.83/2
9 7 6 1	0.0	0.8497	-0.0291	0,8933	-0.1816	0.9515
9 7 6 0	0.0	1.0000	0.0	1.0000	-0.0152	1.0000
9 7 5 7	-1.0000	0.0	-1.000U	0.0799	-1.0000	0.2251
9 7 5 6	-0.7792	0.1828	-0.8415	0.2294	-0.9269	0.3793
9 7 5 5	-0.5668	0.3168	-0.6371	0.3548	-0./553	0.4902
9 7 5 4	-0.4189	0.4113	-0.4928	0.4811	-0.6192	0.5864
9 7 5 3	-0.3469	0.5033	-0.3696	0.5706	-0.5049	0.6831
9 7 5 2	-0.2294	0.6335	-0.2555	0.6958	-0.3945	0.79/1
9 7 5 1	-0.0960	0.8160	-0.1240	0.8687	-0.2/24	0.9599
9 7 5 0	0.0	1.0000	0.0	1.0000	-0.1104	1.0000

N1	N 2	Xl	X2	90	*	9	5%	99%	
9	8	9	7	-0.4776	1,0000	-0.6086	1.0000	-0.8075	1.0000
9	8	9	6	-0.1497	1.0000	-0.2658	1.0000	-0.4735	1.0000
9	8	9	5	0.0	1,0000	-0.0759	1.0000	-0.2666	1.0000
9	8	9	4	0.0	130000	0.0	1.0000	-0.1165	1.0000
9	8	9	3	0.0	1,0000	U.0	1.0000	U.0	1.0000
9	8	9	2	0.0	1.0000	0.0	1.0000	0.0	1.0000
9	8	9	1	0.0	1,0000	0.0	1.0000	U.U	1.0000
9	8	9	0	0.0	1.0000	0.0	1.0000	U • U	1.0000
9	8	8	8	-1.0000	0.5218	-1.0000	0.6443	-1.0000	0.8269
9	8	8	7	-0.621/	0,6588	-0.7221	0.7508	-0.8674	0.882
9	8	8	6	-0.3275	0.7316	-0.4256	0.8060	-0.5972	0.9096
9	8	A	5	-0.1505	0.7819	-0.2430	0.8435	-0.4099	0.92/
9	8	8	4	-0.1003	0.8217	-0.1037	0.8728	-0.2674	0.9419
9	8	B	3	0.0	0.8563	0.0	0.8981	-0.1441	0.9538
9	8	8	5	0.0	0.8893	0.0	0.9220	-0.0809	0.964
9	8	8	1_	0.0	0.9252	0.0	0.9476	0.0	0.976
9	8	8	0	0.0	1.0000	0.0	1.0000	U.U	1.0000
9	8	7	8	-1.0000	0.2105	-1.0000	0.3231	-1.0000	0.520
9	8	7	7	-0.6984	U.3861	-0.7808	0.4791	-0.8972	0.658
9	8	7	6	-0.4377	0.4948	-0.5238	0.5749	-0.6714	0.709
9	8	7	5_	-0.2714	0.5777	-0.3556	0.6473	-0.5046	0.762
9	8	7	4	-0.2094	0.6486	-0.2231	0./088	-0.5732	0.806
9	8	7	3	-0.0686	0.7152	-0.1242	0.7660	-0.2566	0.846
9	8	7	2	0.0	0.7849	-0.0331	0.8258	-0.1941	0.888
9	8	7	1	0.0	U.8901	0.0	0.9225	-0.057/	0.965
9	8	7	0	0.0	1.0000	0.0	1.0000	U.0	1.000
9	8	6	8	-1.0000	0.0362	-1.0000	U.1407	-1.0000	0.328
9	8	6	7	-0.7510	0.2201	-0.8205	0.3098	-0.9167	0.468
9	8	6	6	-0.5212	0.3425	-0.5975	0.4225	-0.7259	0.561
9	8	5	5	-0.36A2	0.4412	-0.4452	0.5131	-0.5791	0.635
9	8	6	4	-0.3081	0.5300	-0.3219	0.5943	-0.4605	0.701
9	8	6	3	-0.1728	0.6179	-0.2249	0.6747	-0.3528	0.766
9	8	5	2	-0.0529	0.7175	-0.1278	0.7680	-0.2628	0.847
9	8	6	1	0.0	0.8587	0.0	0.8999	-0.1608	0.954
9	8	6	0	U.0	1.0000	0.0	1.0000	0.0	1.000
9	8	5	8	-1.0000	0.0	-1.0000	0.0367	-1.0000	0.188
9	8	5	7	-0.7921	0.1662	-0.8510	0.1809	-0.9315	0.338
	8	5	6	-0.5915	0.2934	-0.6590	0.3026	-0.7704	0.445
9	8	5	5	-0.4535	0.4002	-0.5239	0.4048	-0.643/	0.534
9	8	5	4	-0.4057	0.4567	-0.4118	0.5137	-0.5395	0.617
9	8	5	3	-0.2790	0.5346	-0.3146	0.5982	-0.4428	0.704
9	8	5		-0.1635	0.6552	-0.2114	0.7143	-0.3428	0.809
9	8	5		-0.0435	0.8269	-0.0848	0.8767	-0.227/	0.945
9	8	5	0	0.0	1.0000	0.0	1.0000	-0.0714	1.000
9	9	9		-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.000
9	9	9		-0.1810	1.0000	-0.2952	1.0000	-0.4971	1.000

N1 N2	X1 X2	90	8	9	5%	99%	
9 9	9 6	-0.0048	1.0000	-0.1093	1.0000	-0.2988	1.0000
-	9-5	-0.0	1.0000	U.0	1.0000	-0.1556	1.0000
9 9	9 4	0.0	1.0000	0.0	1.0000	-0.0375	1.0000
9 9	9 3	0.0	1.0000	0.0	1.0000	U.U	1.0000
9 9	9 2	0.0	1.0000	0.0	1.0000	U.0	1.0000
9 9	9 1	0.0	1.0000	0.0	1.0000	U.U	1.0000
9 9	9 0	0.0	1.0000	0.0	1.0000	U • 0	1.0000
9 9	8 9	-1.0000	0.5000	-1.000U	0.6268	-1.0000	0.8173
9 9	8 8	-0.6395	0.6395	-0.7359	0.7359	-0.8/45	0.8745
9 9	8 7	-0.3560	0.7132	-0.4514	0./921	-0.6172	0.9028
9 9	9 6	-0.1856	0,7636	-0.2763	0.8299	-0.4386	0.9213
9 9	3 5	-0.1365	0.8028	-0.1445	0.6589	-0.3038	0.9355
9 9	8 4	0.0	0.8361	-0.0520	0.8833	-0.1895	0.9468
9 9	8 3	0.0	0.8663	0.0	0.9053	-0.1262	0.95/1
9 9	8 2	0.0	0.8961	0.0	0.9268	0.0	0.96/1
9 9	8 1	0.0	0.9293	0.0	0.9505	0.0	0.9779
9 9	9 0	0.0	1,0000	0.0	1.0000	0.0	1.0000
9 9	7 9	-1.0000	0.1810	-1.0000	0.2952	-1.0000	0.4977
9 9	7 8	-0.7132	0.3560	-0.7921	0.4514	-0.9028	0.6172
9 9	7 7	-0.4635	0.4635	-0.546/	0.5467	-0.6884	0.6884
9 9	7 6	-0.3047	0.5444	-0.3864	0.6177	-0.5302	0.7405
9 9	7 5	-0.2443	0.6121	-0.2618	0.6767	-0.4069	0.7830
9 9	7 4	-0.1115	0.6733	-0.1768	0.1296	-0.2991	0.8206
9 9	7 3	0.0	0,7328	-0.1112	0.7808	-0.2371	0.8564
9 9	7 2	0.0	0.7970	0.0	0.8357	-0.1150	0.8946
9 9	7 1	0.0	0.8961	0.0	0.9268	0.0	0.96/1
9 9	7 0	0.0	1.0000	0.0	1.0000	U.0	1.0000
9 9	6 9	-1.0000	0.0048	-1.0000	0.1093	-1.0000	0.2988
9 9	6 8	-0.7636	0.1856	-0.8299	0.2763	-0.9213	0.4386
9 9	5 7	-0.5444	0.3047	-0.617/	0.3864	-0.7405	0.5302
9 9	6 6	-0.3992	0.3992	-0.4735	0.4735	-0.6018	0.6016
9 9	6 5	-0.3410	0.4820	-0.3583	0.5494	-0.4912	U.6637
9 9	6 4	-0.2145	0.5601	-0.2746	0.6208	-0.5931	0.7215
9 9	6 3	-0.1055	0.6400	-0.2185	0.6938	-0.3252	0.7806
9 9	6 2	0.0	0.7328	-0.1112	0.7808	-0.237/	0.8564
9 9	6 1	0.0	0.8663	0.0	0.9053	-0.1262 U.0	1.0000
	PER LIBER		0.0	-1 0000	0.0	-1 (100)	0.1556
9 9	5 9	-1.0000	0.1365	-0.8589	0.1445	-1.0000	0.1556
		-0.6121		-0.6761		-0.7830	0.4069
9 9	5 7	-0.4820	0.2443	-0.5494	0.2618	-0.6637	0.4912
. 9 9	5 5	-0.4359	0.3410	-0.4455	0.4455	-0.5671	0.56/1
9 9	5 4	-0.3184	0.4339	-0.3599	0.4455	-0.4798	0.6412
		-0.2145	0.5601	-0.2746	0.6208	-0.5931	
	5 3	-0.1115	0.6733	-0.1768		Account former to the contract of the	0.7215
9 9 9		0.0	0.8361	-0.0520	0.7296	-0.2997	0.9468
9 9	5 1	0.0	0.0361	1-0.0320	0.0000	-0.1033	0.7400

N1	N 2	X1	X2	90	8	9	5 %	99%	
10	1	10	0	U.0	1.0000	-0.1591	1.0000	-0.517/	1.0000
10	1	9	1	-1.0000	0.8093	-1.0000	0.8647	-1.0000	0.938
10	1	9	0	-0.1716	1.0000	-0.3455	1.0000	-0.6485	1.0000
10	1	9	1	-1.0000	0.7284	-1.0000	0,8048	-1.0000	0.909
10	1	8	0	-0.2951	1,0000	-0.4549	1.0000	-0.7180	1.0000
10	1	7	1	-1.0000	0.6610	-1.0000	0.7536	-1.0000	0.884
10	1	7	1 0	-0.3880	1.0000	-0.5343	1.0000	-0.7653	1.000
10	1	6	1	-1.0000	0.5975	-1.0000	0.7044	-1.0000	0.858
10	1	6	0	-0.4650	1.0000	-0.5983	1.0000	-0.8016	1.000
10	-1	-5	-	=1.0000	0.5334	-1.0000	0.6537	-1.0000	0.831
10	1	5	0	-0.5334	1.0000	-0.6531	1.0000	-0.8319	1.000
10	2	10	1	-0.1459	1.0000	-0.3219	1.0000	-0.6530	1.000
10		10	0_	0.0	1,0000	0.0	1,0000	-0.0612	1.000
10	2	9	2	-1.0000	0.7405	-1.0000	0.8139	-1.0000	0.914
10	2	9	1	-0.3361	0.8621	-0.4891	0.9027	-0.7581	0.956
10	2	9	0_	0.0	1,0000	U • 0	1.0000	-0.2272	1.000
10	2	8	2	-1.0000	0.5587	-1.0000	0.6411	-1.0000	0.161
10	2	B	1	-0.4474	0.8014	-0.5824	0.8584	-0.1922	0.935
10	2	8	0_	0.0	1,0000	-0.1052	1.0000	-0.3372	1.000
10	2	7	2	-1.0000	0,4464	-1.0000	0.5408	-1.0000	0.692
10	2	7	1	-0.5278	U.7497	-0.6479	0.8200	-0.8283	0.916
10	2	7	0_	-0.0836	1,0000	-0.2040	1.0000	-0.4230	1.000
10	2	6	2	-1.0000	0.3514	-1.0000	0.4548	-1.0000	0.626
10	2	6	1	-0.5926	0.6999	-0.6994	0.1824	-0.8551	0.898
10	2	6	0	-0.1753	1.0000	-0.2914	1.0000	-0.4962	1.000
10	2	5	2	-1.0000	0.2630	-1.0000	0.3734	-1.0000	0.562
10	2	5	1	-0.6486	0.6486	-0.7430	0.7430	-U.8785	0.878
10	2	5	0	-0.2630	1,0000	-0.3734	1.0000	-0.5628	1.000
10		10	2	-0.2435	1.0000	-0.4096	1.0000	-0.6899	1.000
10	3	10	1	0.0	1.0000	U.0	1.0000	-0.2008	1.000
10	3	10	0	0.0	1.0000	0.0	1.0000	U.U	1.000
10	3	9	3	-1.0000	0.6912	-1.0000	U.1767	-1.0000	0.895
10	3	q	2	-0.4235	U.8107	-0.5626	0.8652	-0.7809	0.938
10	5	9	1	-0.0149	0.8861	-0.1332	0.9199	-0.3574	0.964
10	3	9	0	0.0	1.0000	0.0	1.0000	-0.0396	1.000
10	5	В	3	-1.0000	0.4689	-1.0000	0.5605	-1.0000	0.706
10	3	8	2	-0.5256	0.6583	-0.6458	0.1220	-0.8270	0.819

N1 N2 X1 X2	90	8	9	5%	99%	
10 3 9 1	-0.1382	0.8353	-0.2507	0.8830	-0.4572	0.9468
10 3 8 0	U.0	1.0000	0.0	1.0000	-0.1535	1.0000
10 3 7 3	-1.0000	0.3791	-1.0000	0.4296	-1.0000	0.58/8
10 3 7 2	0.5979	0.5638	-0.7032	0.6390	-0.8576	0.7598
10 3 7 1	-0.2369	0.7914	-0.3432	0.8507	-0.5530	0.9314
10 3 7 0	0.0	1.0000	-0.0500	1.0000	-0.2462	1.0000
10 3 6 3	-1.0000	0.2484	-1.0000	0.3258	-1.0000	0.4973
10 3 6 2	-0.6553	0.4817	-0.7479	0.5662	-0.8806	0.7060
10 3 6 1	-0.3231	0.7487	-0.4228	0.8190	-0.5963	0.9161
10 3 6 0	-U.0466	1.0000	-0.1422	1.0000	-0.3334	1.0000
10 3 5 3	-1.0000	0.1426	-1.0000	0.2324	-1.0000	0.4147
10 3 5 2	-0.7045	0.4031	-0.7854	0.4956	-0.8995	0.6527
10 3 5 1	-0.4031	0.7043	-0.4956	0.7654	-0.6527	0.8995
10 5 5 0	-0.1426	1.0000	-0.2324	1.0000	-0.4147	1.0000
10 4 10 3	-0.309/	1.0000	-0.4676	1.0000	-0.7258	1.0000
10 4 10 2	0.0	1.0000	-0.04/2	1.0000	-0.2840	1.0000
10 4 10 1	0.0	1.0000	0.0	1.0000	-0.0109	1.0000
10 4 10 0	0.0	1.0000	0.0	1.0000	U.0	1.0000
10 4 9 4	-1.0000	0.6518	-1.0000	U. 1466	-1.0000	0.8805
10 4 9 3	-0.4811	0.7732	-0.6100	0.8375	-0.8075	0.9251
10 4 3 2	-0.1080	0.8431	-0.2216	0.8887	-0.4522	0.949
10 4 9 1	0.0	0.9007	0.0	0.9303	-0.1682	0.968
10 4 9 0	0.0	1.0000	0.0	1.0000	U.U	1.0000
10 4 3 4	-1.0000	0.4034	-1.0000	0.5013	-1.0000	0.661
10 4 A 3	-0.5761	0.5830	-U.686U	U.6555	-0.8485	0.7714
10 4 8 2	-0.2289	U.7086	-0.3344	0.1633	-0.5245	0.8470
10 4 8 1	0.0	U.8559	-0.091/	0.8980	-0.2174	0.9558
10 4 8 0	0.0	1,0000	U.0	1.0000	-0.0430	1.0000
10 4 7 4	-1.0000	0.2761	-1.0000	0.3536	-1.0000	0.520
10 4 7 3	-0.6426	0.4734	-0.7380	0.5402	-0.8/55	0.6675
10 4 7 2	-0.3236	0,6248	-0.4214	0.6902	-0.5935	0.7949
10 4 7 1	-0.0930	0.8170	-0.1899	0.8695	-0.3658	0.9404
10 4 7 0	0.0	1,0000	0.0	1.0000	-0.1405	1.0000
10 4 6 4	-1.0000	0.1469	-1.0000	0,3223	-1.0000	0.4151
10 4 6 3	-0.6948	0.3634	-0.7781	0.4475	-0.8958	0.5894
10 4 6 2	-0.4048	0.5508	-0.4951	0.6253	-0.6505	0.74/6
10 4 6 1	-0.1848	0.7790	-0.2781	0.8414	-0.4431	0.9269
10 4 6 0	0.0	1.0000	-0.0960	1,0000	-0.2306	1.0000
10 4 5 4	-1.0000	0.0529	-1.0000	0,1990	-1.0000	0.319
10 4 5 3	-0.7391	0.2732	-0.8116	0.3623	-0.9124	0.5167
10 4 5 2	-0.4790	0.4790	-0.561/	0.5617	-0./00/	0.700
10 4 5 1	-0.2732	0.7391	-0.3625	0.8116	-0.516/	0.9124
10 4 5 0	-0.0529	1,0000	-0.1990	1.0000	-0.319/	1.0000

Nl	N 2	Xl	X2	909		9	5%	99%	
10	5	10	4	-0.3592	1.0000	-0.5101	1,0000	-0.7511	1.0000
10		10	3	0.0	1.0000	-0.1128	1.0000	-0.5424	1.0000
10		10	2	0.0	1.0000	0.0	1.0000	-0.0935	1.0000
10		10	1	0.0	1.0000	U.0	1.0000	U . U	1.0000
10		10	0	0.0	1.0000	0.0	1.0000	U • U	1.0000
10	5	9	5	-1.0000	0,6185	-1.0000	U./208	-1.U00U	0.86/3
10	5	3	4	-0.5230	0.7427	-0.6439	0.8147	-0.8261	0.9140
10	5	9	3	-0.1741	0.8114	-0.2856	0.8655	-0.4835	0.9385
10	5	9	2	0.0	0.8628	-0.0600	0.9029	-0.2470	0.9561
10	5	9	1	0.0	U.9108	0.0	0.9374	-0.0545	0.9720
10	5	9	0	U.0	1.0000	U.0	1.0000	U.U	1.0000
10	5	8	5	-1.0000	0.3512	-1.000U	0.4536	-1.0000	0.6248
10		8	4	-0.6125	0.5270	-0.7145	0.6058	-0.8634	0.7547
10	5	a	3	-0.2919	0.6419	-0.3920	U./048	-U.570U	0.8050
10	5	8	2	-0.0825	0.7409	-0.17/2	0./897	-0.3516	0.8644
10	5	B	1	0.0	U.8702	-0.0045	0.9083	-0.165/	0.9586
10	5	8	0	0.0	1.0000	U.0	1.0000	U.U	1.0000
10	5	7	5	-1.0000	0.2042	-1.000U	0.2949	-1.0000	0.46/7
10	5	7	4	-0.6744	0.3906	-0.7624	0.4722	-0.8879	0.6091
10	5	7	3	-0.3829	0.5312	-0.4746	0.5999	-0.6340	0.7117
10	5	7	2	-0.1820	0.6644	-0.2724	0.7235	-0.435U	0.8176
10	5	7	1	-0.0461	0.8348	-0.1003	0.8825	-0.2594	0.9465
10	5	7	0	0.0	1.0000	0.0	1.0000	-0.0636	1.0000
10	5	6	5	-1.0000	0.0898	-1.0000	0.2294	-1.0000	0.3503
10	5	6	4	-0.7228	0.2978	-0.7992	0.4093	-0.9063	0.5126
10	5	6	3	-0.4599	U.4400	-0.5431	0.5149	-0.6864	0.6408
10	5	6	2	-0.2709	0.5963	-0.3566	0.6642	-0.5074	0.7751
10	5	6	1	-0.1352	U.8001	-0.1944	0.8570	-0.5441	0.9344
10	5	6	0	0.0	1.0000	0.0	1.0000	-0.1564	1.0000
10	5	5	5	-1.0000	0.0023	-1.0000	0.1007	-1.0000	0.2696
10	5	5	4	-0.7636	U.2162	-0.8298	0.2934	-0.9215	0.4273
10	5	5	3_	-0.5296	0.3553	-0.6055	0.4359	-0.7325	0.5746
10	5	5	2	-0.3555	0.5296	-0.4359	0.6055	-0.5746	0.7323
10	5	5	1	-0.2162	0.7636	-0.2934	0.8298	-0.4275	0.9215
10	5	5	0	-0.0023	1.0000	-0.1007	1.0000	-0.2696	1.0000
10	6	1.0	5	-0.3983	1.0000	-0.5430	1.0000	-0.7705	1.0000
10		10	-4-	-0.0435	1.0000	-0.1658	1.0000	-0.3869	1.0000
10		10	3	0.0	1.0000	0.0	1.0000	-0.1536	1.0000
10		10	2	0.0	1.0000	U.D	1.0000	0.0	1.0000
10		10	1	0.0	1.0000	U.0	1.0000	0.0	1.0000
10		10	ō	U.0	1.0000	0.0	1.0000	U.0	1.0000
10	6	9	6	-1.0000	0.5896	-1.0000	0.6982	-1.0000	0.8555
10	6		5	-0.5555	0.7168	-0.6698	0.7951	-0.8400	0.9044
10	6		4	-0.2248	0.7855	-0.3309	0.8463	-0.5218	0.9295

N1 N2 X1 X2	909	8	9	5%	99%	
10 6 9 3	-0.0259	U.8348	-0.1232	0.8825	-0.5035	0.9465
10 6 9 2	0.0	0.8765	0.0	0.9128	-0.1530	0.9606
10 6 9 1	0.0	0.9183	0.0	0.9427	0.0	0.9744
10 6 9 0	0.0	1.0000	0.0	1.0000	U.U	1.0000
10 6 8 6	-1.0000	0.3077	-1.0000	0.4136	-1.0000	0.5955
10 6 8 5	-0.6403	0.4817	-0.7362	0.5653	-0.8746	0.7044
10 6 9 4	-0.3397	0.5918	-0.4555	0.6607	-0.6036	0.7750
10 6 8 3	-0.1470	0.6801	-0.2382	0./368	-0.4039	0.8267
10 6 A 2	-0.0728	0.7640	-0.0772	0.8087	-0.241/	0.8768
10 6 3 1	0.0	0.8909	0.0	0.9159	-0.086/	0.9621
10 6 8 0		1.0000	U.0	1.0000	U.0	1.0000
10 6 7 6	-1.0000	0.1482	-1.0000	0.2469	-1.0000	0.4245
10 6 7 5	-0.6987	0.3350	-0.7809	0.4192	-0.8972	0.5631
	-0.4272	0.4652	-0.5141	0.5376	-0.6631	0.6585
10 6 7 4	-0.2447	0.5772	-0.3304	0.6396	-0.4832	0.7405
10 6 7 2	-0.167/	0.6931	-0.1/55	0.1475	-0.551/	0.8355
10 6 7 1	0.0	0.8482	-0.0332	0.8922	-0.1829	0.9510
10 6 7 0	U.0	1.0000	U.0	1.0000	-0.0152	1.0000
10 6 6 6	-1.0000	0.0445	-1.0000	0.1635	-1.0000	0.2998
10 6 6 6 6	-0.7440	0.2530	-0.8151	0.3223	-0.9141	0.4549
10 6 6 4	-0.5008	0.3837	-0.5795	0.4648	-0./126	0.5695
10 6 6 3	-0.330/	0.4917	-0.4111	0.5605	-0.5514	0.6756
10 6 6 2	-0.2595	0.6295	-0.2647	0.6925	-0.4126	0.7948
10 6 6 1	-0.0960	0.8160	-0.1240	0.8687	-0.2724	0.9399
10 6 6 0	0.0	1.0000	0.0	1.0000	-0.1039	1.0000
10 6 5 6	-1.0000	0.0	-1.0000	0.0324	-1.0000	0.1948
10 6 5 5	-0.7820	0.1990	-0.8436	0.2125	-0.9279	0.3611
10 6 5 4	-0.5668	0.3168	-0.6311	0.3548	-0.7555	0.4902
10 6 5 3	-0.4114	0.4114	-0.4862	0.4862	-0.6142	0.6142
10 6 5 2	-0.3168	0.5668	-0.3548	0.6377	-0.4902	0.7553
10 6 5 1	-0.1990	0.7820	-0.2125	0.8436	-0.3611	0.9279
10 6 5 0	0.0	1.0000	-0.0324	1.0000	-0.1948	1.0000
10 7 10 6	-0.4302	1.0000	-0.5696	1.0000	-0.7855	1.0000
10 7 10 5	-0.0864	1.0000	-0.2053	1.0000	-0.4224	1.0000
10 7 10 4	0.0	1.0000	-0.0041	1.0000	-0.2010	1.0000
10 7 10 3	0.0	1.0000	U.0	1.0000	-0.0399	1.0000
10 7 10 2	0.0	1.0000	0.0	1.0000	U.U	1.0000
10 7 10 1	0.0	1.0000	U.0	1.0000	0.0	1.0000
10 7 10 0	0.0	1.0000	0.0	1.0000	U.U	1.0000
10 7 9 7	-1.0000	0.5639	-1.0000	0.6779	-1.0000	0.8449
10 7 9 6	-0.5817	0.6939	-0.6906	0./777	-0.8510	0.8957
10 7 9 5	-0.2658	U.7633	-0.368/	0.0297	-0.5521	0.9213
10 7 9 4	-0.0773	0.8118	-0.1725	0.8656	-0.5471	0.9385
10 7 9 3	-0.0052	0.8510	-0.0225	0.8943	-0.1906	0.9520
10 7 9 2	0.0	U.8867	0.0	0.9201	-0.052/	0.9640
10 7 9 1	0.0	0.9241	0.0	0.9469	0.0	0.9765
10 7 9 0	0.0	1,0000	0.0	1.0000	U.U	1.0000

		V T	X 2	90	8	9	5%	99%	
10	7	A	7	-1.0000	0.2703	-1.000U	0.5789	-1.0000	0.565
	7	A	6	-0.6626	U.4434	-0.7534	0.5308	-0.8835	0.6783
	7	3	5	-0.3777	U.5509	-0.4696	0.6245	-0.6500	0.7464
	7	71	4	-0.1971	0.6342	-0.2852	0.6966	-0.4439	0.1979
	7	P	3	-0.1253	U.7077	-0.1387	0.1598	-0.2965	0.8423
	7	8	2	0.0	0.7816	-0.0246	0.8231	-0.1629	0.8863
	7	B	1	0.0	0.8893	0.0	0.9220	-0.0809	0.7645
	7	8	0_	0.0	1.0000	0.0	1,0000	U.0	1.0000
10	7_	7	7	-1.0000	0.1034	-1.0000	0,2063	-1.0000	U.38/
	7	7	6	-0.7180	0.2891	-0.7955	0.3753	-0.9044	0.524
	7	7	5	-0.4625	0.4133	-0.5452	0.4886	-0.6867	0.616
	7	7	4	-0.2926	0.5154	-0.3746	0.5816	-0.519/	0.6919
10	7	7	3	-0.2186	0.6110	-0.2353	0.6688	-0.3832	0.762
	7	7	2	-0.0686	0.7152	-0.1242	0.7660	-0.2566	0.846
	7_	7	1	0.0	U.8587	0.0	0,8999	-0.1608	0.9546
	7	7	0	0.0	1.0000	0.0	1.0000	U.U	1.0000
10	7	6	7	-1.0000	0.0068	-1.0000	0.1115	-1.0000	0.257
	7	6	6	-0.7608	0.2236	-0.8211	0.2595	-0.9202	0.408
	7	6	5	-0.5328	U.3551	-0.6075	0.3824	-0.7329	0.515
10	7	6	4	-0.3760	0.4428	-0.4522	0.5053	-0.5845	0.608
10	7	ó	3	-0.3081	0.5300	-0.3219	0.5943	-0.4605	0.701
10	7	6	2	-0.1635	U.6552	-0.2114	0.7143	-0.3428	0.809
10	7	6	1	-0.0276	0.8286	-0.0834	0.8778	-0.2292	0.944.
10	7	6	0	0.0	1.0000	0.0	1.0000	-0.0649	1.000
10	7	5	7	-1.0000	0.0	-1.0000	U.U	-1.0000	0.149
10	7	5	6	-0.7966	0.1322	-0.8545	0.1655	-0.9331	0.308
10	7	5	5	-0.5957	0.2639	-0.6626	0.2944	-0.7730	0.427
10	7	5	4	-0.4535	0.4002	-0.5259	0.4048	-0.6431	0.534
	7	5	3	-0.4002	0.4535	-0.4048	0.5239	-0.5340	0.643
10	7	5	2	-0.2639	0.5957	-0.2944	0.6626	-0.4275	0.775
	7	5	1	-0.1322	U.7966	-0.1655	0.8543	-0.3084	0.933
10	7	5	0	0.0	1.0000	0.0	1.0000	-0.1492	1.000
10	8	10	7	-0.4570	1.0000	-0.591/	1.0000	-0.7980	1.000
10	8	10	6	-0.1229	1.0000	-0.2400	1.0000	-0.451/	1.000
	8	11	5	0.0	1.0000	-0.0458	1.0000	-0.239/	1.000
10	8	10	4	0.0	1,0000	0.0	1.0000	-0.0873	1.000
	8		3	0.0	1.0000	0.0	1.0000	0.0	1.000
	8		2	0.0	1.0000	U • 0	1.0000	0.0	1.000
10	8	10	1	0.0	1.0000	U • 0	1.0000	0.0	1.000
10	8	10	0	0.0	1,0000	0.0	1.0000	0.0	1.000
_	8	9	8	-1.0000	0.5407	-1.0000	0.6595	-1.0000	U.835
10	8	9	7	-0.6034	0.6735	-0.7077	0.7621	-0.8599	0.887
	8	9	6	-0.2998	0.7436	-0.4000	0.8150	-0.5768	0.914
	8	9	5	-0.1194	0.7920	-0.2127	0.8510	-0.3824	0.931
10	.,	9		-0.0638	U.8301		0.8790	-0.2358	0.944

Nl	N2	X1	X2	90	8	9 :	5%	99%	
10	8	9	3	0.0	0.8632	0.0	0.9031	-0.1105	0.956
10	8	9	2	0.0	0.8947	0.0	0.9258	-0.0353	0.966
10	8	9	1	0.0	0.9289	0.0	0.9502	0.0	0.971
10	8	9	0	U.0	1.0000	0.0	1.0000	U.U	1.000
10	8	8	8	-1.0000	0.2375	-1.0000	0.5482	-1.0000	0.540
10	8	3	7	-0.6810	0.4101	-0.7675	0.5006	-0.8904	0.655
10	8	3	6	-0.4091	0.5161	-0.4978	0.5935	-0.6514	0.725
10	8	٤	5	-0.2377	0.5965	-0.3231	0.6635	-0.4760	0.773
10	8	8	4	-0.1677	0.6649	-0.1871	0.1226	-0.3390	0.815
10	8	8	3	-0.0253	0.7289	-0.0937	0.1775	-0.2188	0.854
10	8	A	2	0.0	0.7957	-0.0136	0.8346	-0.1380	0.895
10	8	A	1	0.0	0.8961	0.0	0.9268	0.0	0.961
10	8	8	0	0.0	1.0000	<u> </u>	1.0000	0.0	1.000
10	8	7	8	-1.0000	0.0677	-1.0000	0.1711	-1.0000	0.355
10	8	7	7	-0.7338	U.2500	-0.8075	0.3377	-0.9103	0.492
10	8	7	6	-0.4910	0.3702	-0.5705	0.4478	-0.7056	0.582
10	8	7	5	-0.3311	0.4664	-0.4100	0.5357	-0.548/	0.653
10	-	-	-4	-0.2595	0.5525	-0.2815	0.6142	-0.4229	0.716
10	8	7	3	-0.1210	0.6372	-0.1918	0.6915	-0.3099	0.778
10	8	7	2	0.0	0,7328	-0.1112	0.7808	-0.237/	0.856
10	8	7	1	0.0	0.8673	0.0	0.9060	-0.1032	0.957
10	8	7	0	U.0	1.0000	0.0	1.0000	U.0	1.000
10	8	6	8	-1.0000	0.0	-1.0000	0.0686	-1.0000	0.220
10	8	6	7	-0.7746	0.2094	-0.8380	0.2148	-0.9252	0.368
10	8	6	6	-0.5589	0.3223	-0.6302	0.3343	-0.7493	0.472
10	8	6	5	-0.4121	0.4267	-0.4848	0.4339	-0.6106	0.558
10	8	6	4	-0.3468	0.4872	-0.3656	0.5369	-0.4971	0.637
10	8	6	3	-0.2145	0.5601	-0.2746	0.6208	-0.3931	0.721
10	8	6	2	-0.0960	0.6759	-0.1893	0./318	-0.3115	0.822
10	8	6	1	0.0	0.8388	-0.0614	0.8853	-0.2192	0.947
10	. 8	6	0	0.0	1,0000	0.0	1.0000	-0.0366	1.000
10	8	5_	8	-1.0000	0.0	-1.0000	0.0	-1.0000	0.110
10	8	5	7	-0.8086	0.0799	-0.8631	0.1276	-0.9375	0.264
10	8	5	_6_	-0.6192	0.1990	-0.682/	0.2524	-0.7872	0.377
10	8	5	5	-0.4868	0.3125	-0.5536	0.3522	-0.6669	0.473
10	8	5	4	-0.4359	0.4359	-0.4455	0.4455	-0.5671	0.567
10	8	5	3	-0.3125	0.4868	-0.3522	0.5536	-0.4739	0.666
10	8	5	2	-0.1990	0.6192	-0.2524	0.6827	-0.3/70	0.78/
10	8	5	1	-0.0799	0.8086	-0.1276	0.8631	-0.2645	0.937
10	8_	5	0	0.0	1,0000	0.0	1.0000	-0.1104	1.000
10	V	10	8_	-0.4800	1,0000	-0.6105	1,0000	-0.8084	1.000
10		10	7	-0.1544	1.0000	-0.2699	1.0000	-0.4765	1.000
10		10	6	0.0	1,0000	-0.0814	1.0000	-0.2725	1.000
10		10	5	0.0	1.0000	0.0	1.0000	-0.126/	1.000
10	9	10	4	0.0	1.0000	0.0	1.0000	-0.0076	1.000

Nl	N 2	X1	X 2	90	8	95	58	99%	
10	9	10	3	0.0	1.0000	0.0	1.0000	U.0	1.0000
10	9	10	2	0.0	1.0000	0.0	1.0000	0.0	1.0000
10	9	10	1	0.0	1.0000	0.0	1.0000	0.0	1.0000
10	9	10	0	0.0	1.0000	U.O	1.0000	U • U	1.0000
10	9	9	9	-1.0000	0.5195	-1.0000	0.6425	-1.0000	0.8259
10	9	9	8	-0.6218	0.6549	-0.7221	0.7477	-0.8674	0.8806
10	9	a	7	-0.3289	0.7260	-0.4265	0.8017	-0.5975	0.90/5
10	9	a	6	-0.1550	0.7744	-0.2466	0.8379	-0.4118	0.9252
10	9	9	5	-0.1003	0.8120	-0.1125	0.8657	-0.2/29	0.9385
10	9	9	4	0.0	0.8438	-0.0238	0.8890	-0.1561	0.9495
10	9	9	3 2	0.0	0.8728	0.0	0.9100	-0.0807	0.9595
10	9	9	2	0.0	0.9012	0.0	0.9305	0.0	0.9688
10	9	9	1	0.0	0.9328	0.0	0.9530	0.0	0.9791
10	9	9	0	0.0	1.0000	0.0	1,0000	0.0	1.0000
10	9	8	9	-1.0000	0.2083	-1.0000	U.3208	-1.0000	U.5185
10	9	8	8	-0.6965	0.3806	-0.7793	0,4737	-0.8964	0.6345
10	9	8	7	-0.4356	0.4856	-0.5215	0.5663	-0.6692	0.7029
10	9	8	6	-0.2716	0.5642	-0.3548	0.6350	-0.5025	0.7529
10	9	A	5	-0.2031	0.6297	-0.2264	0.6918	-0.5/36	0.7936
10	9	8	3	-0.0686	0.6886	-0.1498	0.7426	-0.2626	0.6295
10	9	9		0.0	0.7458	-0.0626	0.7916	-0.1825	0.8637
10	9	B	2	0.0	U.8073	0.0	0.8441	-0.057/	0.9001
10	9	8	1	0.0	0.9018	0.0	0.9309	0.0	0.9689
10	9	8	0	0.0	1.0000	0.0	1,0000	V.U	1.0000
10	9	7	9	-1.0000	0.0364	-1.000U	0.1401	-1.0000	0.5264
10	9	7	8	-0.7472	0.2159	-0.8175	0.3049	-0.9152	0.4629
10	9	7	7 6	-0.5151	0.3331	-0.591/	0.4127	-0.7211	0.5518
10	9	7		-0.3631	0.4255	-0.4393	0.4974	-0.5727	0.6210
10	9	7	5	-0.2934	0.5060	-0.3189	0.5708	-0.4549	0.6805
10	9	7	4	-0.1635	0.5816	-0.2461	0.6397	-0.3514	0.7358
10	9	7	3	-0.0529	0.6585	-0.1594	0.7098	-0.2804	0.7923
10	9	7	2	0.0	0.7475	-0.0490	0.7930	-0.1599	0.8646
10	9	7	0	0.0	1.0000	0.0	1.0000	0.0	1.0000
				-1 0000	0 0	1 2000	0.0210	1 0000	0 1000
10	9	6	9	-1.0000	0.0	-1.0000	0.0319	-1.0000	0.1888
10	9	6	8 7	-0.7861	0.1677	-0.8465	0.1788	-0.9293	0.4345
10	9	6		-0.4418	0.3689	-0.6491	0.2943	-0./629	
10	9	- 5	6	-0.3787	0.4614	-0.511/	0.4754	-0.6321	0.5167
10	9		5	-0.2554	0,5222	The state of the s		-0.5263	0.5899
10	9		3	-0.1481	0.5847	-0.3239	0.5625	-0.4318	0.6610
10	9	6	2	-0.0435	0.6931	-0.1511	0.7464	-0.3829	0.7378
10	9		1	0.0	0.8474	-0.0405	0.8915	-0.2734	0.9507
10	9		0	0.0	1.0000	U.0	1.0000	-0.1836	1.0000
10		6		J - 0 - 0		0.0	1.0000	-0.0260	1.0000
10	9	5	9	-1.0000	0.0	-1.0000	0.0	-1.0000	0.0767
10	9		8 7	-0.8186	0.0367	-0.8705	0.0959	-0.940/	0.2269
10	9	5	7	-0.638/	0.1476	-0.6995	0.2205	-0./989	0.3348

N1 N2 X1 X2	90	8	9	5%	99%	
10 9 5 6	-0.5141	0.2493	-0.5780	0.3151	-0.6857	0.4257
10 9 9 5	-0.4652	0.3510	-0.4780	0.3964	-0.5935	0.5095
10 9 5 4	-0.3510	0.4652	-0.3964	0.4780	-0.5095	0.5955
10 9 5 3	-0.2495	U.5141	-0.3151	0.5780	-0.425/	0.6859
10 9 5 2	-0.1476	0.6387	-0.2205	0.6995	-0.5548	0.7989
10 9 5 1	-0.0361	0.8186	-0.0959	0.6705	-0.2269	0.940
10 9 5 0	0.0	1.0000	0.0	1.0000	-0.0767	1.0000
10 10 10 9	-0.5000	1.0000	-0.6268	1.0000	-0.8174	1.0000
10 10 10 8	-0.1820	1.0000	-0.2959	1.0000	-0.4979	1.0000
10 10 10 7	-0.0085	1.0000	-0.1125	1.0000	-0.3004	1.0000
10 10 10 6	0.0	1.0000	0.0	1.0000	-0.1602	1.000
10 10 10 5	0.0	1.0000	0.0	1.0000	-0.0460	1.000
10 10 10 4	0.0	1.0000	0.0	1.0000	U.U	1.0000
10 10 10 3	0.0	1.0000	0.0	1.0000	0.0	1.000
10 10 10 2	0.0	1.0000	0.0	1.0600	U.U	1.0000
10 10 10 1	0.0	1.0000	U.0	1.0000	0.0	1.0000
10 10 10 0	0.0	1.0000	0.0	1.0000	0.0	1.000
10 10 9 10	-1.0000	0.5000	-1.0000	0.6268	-1.0000	0.81/
10 10 9 9	-0.6378	0.6378	-0.7345	0.7345	-0.8738	0.873
10 10 9 8	-0.3541	0.7099	-0.4494	0.7895	-0.6155	0.901
10 10 9 7	-0.1857	0.7586	-0.2756	0.8261	-0.4369	0.919
10 10 9 6	-0.1317	0.7960	-0.14/1	0.8538	-0.5042	0.932
10 10 7 5	0.0	0.8271	-0.0691	0.6767	-0.1940	0.943
10 10 9 4	0.0	0.8546	0.0	0.8968	-0.118/	0.955
10 10 9 3	0.0	U 8805	0.0	0.9155	-0.0021	0.961
10 10 9 2	0.0	0.9066	0.0	0.9343	U.U	0.970
10 10 9 1	0.0	0.9362	0.0	0.9554	0.0	0.980
10 10 9 0	U.C	1.0000	0.0	1.0000	U.U	1.000
10 10 8 10	-1.0000	0.1820	-1.0000	0.2959	-1.0000	0.49/
10 10 8 9	-0.7099	0.3541	-0.7895	0.4494	-0.9014	0.615
10 10 3 8	-0.4585	0.4585	-0.5418	0.5418	-0.6844	0.684
10 10 8 7	-0.3007	0.5358	-0.3818	0.6098	-0.5250	0.734
10 10 8 6	-0.2335	0.5994	-0.2596	0.6652	-0.4025	0.774
10 10 9 5	-0.1050	0.6554	-0.1982	0./137	-0.2985	0.808
10 10 3 4	0.0	0.7077	-0.1028	0./587	-0.2192	0.840
10 10 8 3	0.0	0.7598	0.0	0.0033	-0.1124	0.871
10 10 8 2	0.0	0.8170	0.0	0.8521	-0.0174	0.905
10 10 8 1	0.0	0.9066	0.0	0.9343	0.0	0.970
10 10 3 0	0.0	1.0000	0.0	1.0000	0.0	1.000
10 10 7 10	-1.0000	0.0085	-1.0000	0.1123	-1.0000	0.300
10 10 7 9	-0.7596	0.1857	-0.8261	0.2756	-0.9194	0.436
10 10 7 8	-0.5358	U.3007	-0.6098	0.5818	-0./345	0.525
10 10 7 7	-0.3903	0.3903	-0.4642	0.4642	-0.5928	0.592
10 10 7 6	-0.3223	0.4670	-0.3502	0.5344	-0.4815	0.650
10 10 7 5	-0.1990	0.5371	-0.2926	0.5984	-0.3851	0.701
10 10 7 4	-0.0950	0.6052	-0.1986	0.6604	-0.3152	0.7515
10 10 7 3	-0.0015	0.6762	-0.0978	0.7251	-0.2066	0.605

N1 N2 X1 X2	9 (0%	9 !	5%	99%	
10 10 7 2	0.0	0.7598	0.0	0.8033	-0.1124	0.8716
10 10 7 1	0.0	0.8805	0.0	0.7155	-0.0021	U.9615
10 10 7 0	0.0	1.0000	0.0	1,0000	0.0	1.0000
10 10 6 10	-1.0000	0.0	-1.0000	U.U	-1.0000	U.16U
10 10 6 9	-0.7960	0.1317	-0.8558	0.1471	-0.9528	0.5042
10 10 6 8	-0.5994	0.2335	-0.6652	0.2596	-0.1744	0.402
10 10 6 7	-0.4670	0.3223	-0.5544	0.3502	-0.6501	U.481
10 10 6 6	-0.405/	0.4057	-0.4299	0.4299	-0.5505	0.550
10 10 6 5	-0.2894	0.4899	-0.3645	0.5048	-0.4631	0.615
10 10 6 4	-0.1302	0.5510	-0.2954	0.5839	-0.4185	0.679
10 10 6 3	-0.0960	0.6052	-0.1986	U.66U4	-0.5152	0./51
10 10 6 2	0.0	0.7077	-0.1028	0.7587	-0.2192	0.840
10 10 6 1	0.0	0.8546	0.0	0.8968	-0.118/	0.955
10 10 6 0	0.0	1.0000	U • 0	1.0000	U • U	1.000
10 10 5 10	-1.0000	0.0	-1.0000	0.0	-1.0000	0.046
10 10 5 9	-0.8271	0.0	-0.876/	0.0691	-0.943/	0.194
10 10 5 8	-0.6554	0.1050	-0.715/	0.1982	-0.8087	0.298
10 10 5 7	-0.5371	0.1990	-0.5984	0.2926	-0.701/	0.585
10 10 5 6	-0.4899	0.2894	-0.5048	0.3643	-0.6152	0.465
10 10 5 5	-0.3826	0.3828	-0.4318	0.4318	-0.5360	0.538
10 10 5 4	-0.2894	0.4899	-0.3645	0.5048	-0.4631	0.615
10 10 5 3	-0.1990	0.5371	-0.2926	0.5984	-0.3851	0.701
10 10 5 2	-0.1050	0.6554	-0.1982	0./13/	-0.2985	0.808
10 10 5 1	0.0	0.8271	-0.0691	0.8767	-0.1940	0.945
10 10 5 0	0.0	1.0000	0.0	1.0000	-0.0468	1.000
	2000		100 TO 10			
	70.03		1500			
			200000000000000000000000000000000000000	contract each		
			2000	ale et al. III		
			251 Se 14	e 4.57 . 3 1		
	A WOLLAND		Les in the	nade, te d		

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Technical Report No. 371	3. RECIPIENT'S CATALOG NUMBER
EXACT CONFIDENCE INTERVALS FOR P1-P2 IN	5. TYPE OF REPORT & PERIOD COVERED Technical Report
2×2 CONTINGENCY TABLES	6. PERFORMING ORG. REPORT NUMBER Technical Report No. 371
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(*)
Thomas J. Santner and Mark K. Snell .	ENG75-10487 A02 DAAG29-77-C-0003 N00014-75-C-0586
9. PERFORMING ORGANIZATION NAME AND ADDRESS School of Operations Research and Industrial	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Engineering, College of Engineering, Cornell University, Ithaca, NY 14853	so ode stempleretti.
11. CONTROLLING OFFICE NAME AND ADDRESS Sponsoring Military Activity:	12. REPORT DATE April 1978
U.S. Army Research Office, P.O. Box 12211	13. NUMBER OF PAGES
Research Triangle Park, NC 27709 14. MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office)	15. SECURITY CLASS. (of this report)
Sponsoring Military Activity Statistics and Probability Program	Unclassified
Office of Naval Research	15a. DECLASSIFICATION/DOWNGRADING
Arlington, VA 22217 6. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different in	rom Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on teverse side II necessary and identity by block number	-)
Odds ratio, relative risk, difference of success patables, frequential approach	probabilities, contingency
Pout 1 Pout 2 Pi sub 1 20. ABSTRACT (Contiduo an reverse side Il necessaty and Identify by block number	Pi sub 2
Consider two binomial populations II and II	having success
probabilities p_1 in (0,1) and p_2 in (0,1)	respectively. This paper
studies the problem of constructing exact small sa	
for the difference of the success probabilities,	$\Delta = p_1 - p_2$ and their ratio $\longrightarrow M$

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(the "relative risk"), $\rho \equiv p_1/p_2$ based on independent random samples of sizes N_1 and N_2 from n_1 and n_2 respectively. These are nuisance parameter problems; hence the proposed intervals achieve coverage probabilities greater than or equal to their nominal (1-0) levels.

Two methods of constructing intervals are proposed. The first one is based on the well known conditional intervals for the odds ratio. $\psi \equiv p_1(1-p_2)/p_2(1-p_1)$. It yields easily computable Δ and ρ intervals. Tables are provided. The second method directly generates unconditional intervals of the desired size. An algorithm is given for producing the intervals for arbitrary N_1 and N_2 . The 2×2 case is given as an illustrative example. Some comparisons are made.

Unclassified