ARITMÉTICA BINÁRIA e HEXADECIMAL

Adão de Melo Neto

Sumário

- ARITMÉTICA BINÁRIA

- Adição
- Multiplicação
- Subtração
- Divisão
- Representação SINAL MAGNITUDE
 - Representação
 - Valor em Decimal
 - Aritmética (soma e subtração)
- Representação EM COMPLEMENTO DE 2
 - Representação
 - Valor em Decimal
 - Aritmética (soma e subtração)

- ARITMÉTICA HEXADECIMAL

Adição

Adição Binária (regras)

Regras

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

• (0 e vai 1 ao dígito de ordem superior)

$$1 + 1 + 1 = 1$$

• (1 e vai 1 ao dígito de ordem superior)

Adição Binária (exemplos)

Exemplo 1: $10101_2 + 10111_2$ 111 $10101_2 = 21_{10}$ $+10111_2 = 23_{10}$

101100₂ 44₁₀

Multiplicação Binária (regras)

Regras

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

- Mesmo método que o decimal
 - deslocamentos e adições
- Número maior deve ser colocado acima do menor

Multiplicação Binária (exemplo)

■ Exemplo 1: $10101_2 \times 111_2$ $10101 = 21_{10}$ $111 = 7_{10}$ 10101 +10101 $10010011 = 147_{10}$

Subtração Binária (regra)

Regras

$$0 - 0 = 0$$

$$0 - 1 = 1$$

Não é possível

Pedir emprestado 1 ao dígito de ordem superior

$$1 - 0 = 1$$

$$1 - 1 = 0$$

Exemplo 1: 111₂ – 100₂

$$\begin{array}{rcl}
111_2 & = 7_{10} \\
- & 100_2 & = 4_{10} \\
011_2 & 3_{10}
\end{array}$$

Exemplo 2: 1000₂ – 111₂

$$\begin{array}{rcl}
1000_2 &= 8_{10} \\
- & 111_2 &= 7_{10} \\
& & 1_{10}
\end{array}$$

$$\begin{array}{rcl}
01110_2 &= 8_{10} & (\text{emprestou } 1_2 \text{ e } 100_2 \text{ se tornou } 011_2) \\
- & 11 & 1_2 &= 7_{10} & (10_2 - 1_2 = 1_2) \\
00 & 1_2 & 1_{10}
\end{array}$$

■ Exemplo 3: $10100_2 - 1011_2 = 10100_2 = 20_{10}$ $- 1011_2 = 11_{10}$ 9_{10} $100110_2 = 20_{10}$ (emprestou 1_2 e 1010_2 se tornou 1001_2) $- 101 1_2 = 11_{10}$ ($10_2 - 1_2 = 1_2$) $100 1_2 9_{10}$

Exemple 4: $101101_2 - 100111_2 =$ $101101_2 = 45_{10}$ $\frac{-100111}{2} = 39_{10}$ $101101_2 = 45_{10}$ $-100111_2 = 39_{10}$ $1010101_2 = 45_{10}$ (emprestou 1_2 e 1011_2 se ternou 1010_2) $1001 \ 11_2 = 39_{10} (10_2 - 1_2 = 1_2)$ 102

Exemplo 4: $101101_2 - 100111_2 =$

$$1010101_2 = 45_{10}$$
 (emprestou 1_2 e 1011_2 se tornou 1010_2)

$$\frac{-1001 \ 11_2}{10_2} = \frac{39_{10} (10_2 - 1_2 = 1_2)}{10_2}$$

 $10010101_2 = 45_{10}$ (emprestou 1_2 e 101_2 se tornou 100_2)

$$\frac{-100 \ 1 \ 11_2}{000 \ 1 \ 10_2} = \frac{39_{10}}{06_{10}} (10_2 - 1_2 = 1_2)$$

Divisão Binária (exemplos)

- Mesmo método que o decimal
 - deslocamentos e adições

Divisão Binária

Exemplo 1 : 1110 / 10 ou seja 14₁₀ / 2₁₀ = 7₁₀ <u>11</u>10 | 10 10 111 <u>11</u> 10 <u>10</u> 10

Divisão Binária

Exemplo 1 : 101 / 10 ou seja 5_{10} / 2_{10} = 2, 5_{10} <u>10</u>1 | 10 10,1 10 <u>010</u> 10 10 Note que $10,1 = 1x2^1 + 1x2^{-1} = 2,5$

Representação SINAL MAGNITUDE

Bit de sinal

- É o bit mais a esquerda do número
- Se for 0 o número é positivo
- Se for 1 o número é negativo

Sinal Magnitude

- o bit mais a esquerda é o bit de sinal e os outros bits representam a magnitude do número.
- Exemplo:

$$+25_{10} = 00011001_2$$

Representação SINAL MAGNITUDE

REPRESENTAÇÃO SINAL MAGNITUDE

Valor em decimal de um número com sinal

$$10010101_2 = -21_{10}$$

POIS

1 → SINAL NEGATIVO

e

$$0010101_2 = 2^4 + 2^2 + 2^0 = 16 + 4 + 1 = 21_{10}$$

REPRESENTAÇÃO SINAL MAGNITUDE

Valor em decimal de um número com sinal

$$00010101_2 = +21_{10}$$

POIS

0 → SINAL POSITIVO

e

$$0010101_2 = 2^4 + 2^2 + 2^0 = 16 + 4 + 1 = 21_{10}$$

Aritmética em Sinal Magnitude

Soma

- Se os sinais forem <u>iguais</u> soma e conserva o sinal da parcela de maior magnitude.
- Exemplo1:

```
0 010 +2
+ 0 101 +5
0 111 +7
```

– Exemplo2:

```
1 010 -2
+ 1 101 -5
1 111 -7
```

Aritmética em Sinal Magnitude

Soma

- Se os sinais forem <u>diferentes</u> subtrai e conserva o sinal da parcela de <u>maior magnitude</u>.
- Exemplo1:

```
0 111 +7
+1 011 -3
0 100 +4
```

- Exemplo2:

Aritmética em Sinal Magnitude

- Subtração
 - Sejam dois número binário A e B
 - A-B corresponde a A+(-B)

REPRESENTAÇÃO EM COMPLEMENTO DE 2 Valor em decimal de um número com sinal

Complemento de 2

- Para representação de números negativos em complemento de 2 deve-se inverter os bits do número e somar 1.
- Exemplo:

```
+25_{10} = 00011001_2
-25_{10} = 11100111_2
```

Note que:

```
00011001<sub>2</sub>
11100110<sub>2</sub>
+1<sub>2</sub>
```

 11100111_2 (complemento de 2) = -25_{10}

Complemento de 2

1000	-8
1001	-7
1010	-6
1011	- 5
1100	-4
1101	-3
1110	-2
1111	_1
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

REPRESENTAÇÃO EM COMPLEMENTO DE 2 Valor em decimal de um número com sinal

Complemento de 2

$$01010110_2 = +86_{10}$$

$$2^6 + 2^4 + 2^2 + 2^1 = 64 + 16 + 4 + 2 = +86_{10}$$

$$10101010_2 = -86_{10}$$

$$-2^7 + 2^5 + 2^3 + 2^1 = -128 + 32 + 8 + 2 = -86_{10}$$

NOTE QUE

```
01010110_2 = +86_{10}

10101001_2 (VALOR INVERTIDO)

1_2 (SOMA 1)

10101010_2 = -86_{10}
```

Soma

- Some os dois números e observe se ocorre carry (vai 1) sobre o bit de sinal e se ocorreu carry após o bit de sinal.
- Se ocorreu <u>um e somente um</u> dos dois carrys houve estouro (resultado errado), caso contrário a soma está correta.

```
(40_{10}) + (-50_{10}) = -10_{10}

40_{10} = 00101000_2

50_{10} = 00110010_2 ==> -50_{10} = 11001110_2

00101000_2

+11001110_2

11110110 = -2^7 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1 = -10 (correto)
```

Soma (carry sobre bit de sinal)

```
(5_{10}) + (6_{10}) = 11_{10}

5_{10} = 0101_2

6_{10} = 0110_2

1

0101_2

+0110_2

1011 =  carry sobre bit de sinal (estouro = overflow)

-2^3 + 2^1 + 2^0 = -5 (resultado errado)
```

Soma (carry após o bit de sinal)

```
(-5_{10}) + (-6_{10}) = -11_{10}
-5_{10} = 1011_2
-6_{10} = 1010_2
1 1
1011_2
+1010_2
10101 => carry após o bit de sinal (estouro = overflow)
2^2 + 2^0 = 5 (resultado errado)
```

Subtração

- Sejam dois número binário A e B
- A-B corresponde a A+(-B)

COMPARAÇÃO DAS REPRESENTAÇÕES

Decimal	Sinal e magnitude	Complemento a 2
Decimal	magintude	a 2
-16	_	10000
-15	11111	10001
-14	11110	10010
-13	11101	10011
-12	11100	10100
-11	11011	10101
-10	11010	10110
-4	10100	11100
-3	10011	11101
-2	10010	11110
-1	10001	11111
-0	10000	-
+0	00000	00000
+1	00001	00001
+2	00010	00010
+3	00011	00011
+4	00100	00100
+10	01010	01010
+11	01011	01011
+12	01100	01100
+13	01101	01101
+14	01110	01110
+15	01111	01111

COMPARAÇÃO DAS REPRESENTAÇÕES

Tipo de representação	Dupla representação para o zero	Custo	Velocidade
Sinal e magnitude	SIM (desvantagem)	Alto (componentes separados para soma e subtração)	Baixa (algoritmo de verif. sinais, soma e subtração)
Complemento a 2	NÃO (vantagem)	Baixo (um componente único para soma e subtração)	Alta (algoritmo simples e igual para soma e subtração)

Quadro Comparativo entre as Modalidades de Representação em Ponto Fixo

ARITMÉTICA HEXADECIMAL

Adão de Melo Neto

Adição em hexadecimal (exemplos)

Exemplo 1: A1A + 2B3

```
A1A<sub>16</sub>
+2B3<sub>16</sub>
CCD<sub>16</sub>
```

Exemplo 2: C1D + 2B3

```
1
C1D<sub>16</sub>
+2B3<sub>16</sub>
ED0<sub>16</sub>
```