MS321 Tutorial 1, Question 2

2. Consider the finite set D_4 of mappings from \mathbb{R}^2 to itself given by the 8 matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

Form the multiplication table for D_4 under the operation of composition of mappings or multiplication of the corresponding matrices.

Solution: Give the mappings letter names. The first is the identity. Let's call it I. As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is I(x,y)=(x,y). The second is reflection in the Y axis. Let's call it Y. As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is Y(x,y)=(x,-y). The third is reflection in the X axis. Lets call it X. As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is X(x,y)=(-x,y). (Skip the fourth for the moment.) The fifth is reflection in the line y=x. Lets call it P (for positive slope). As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is P(x,y)=(y,x). Similarly the eight is reflection in the line y=-x. Lets call it N (for negative slope). As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is N(x,y)=(-y,-x). The seventh is rotation through 90 degrees anticlockwise. Lets call it R (for rotation). As a function from \mathbb{R}^2 to \mathbb{R}^2 its formula is R(x,y)=(-y,x). Check that the fourth is R^2 and the sixth is R^3 . Now the table should be (The entry in row a and column b is the product ab.)

	e	R				Y	P	N
e	e	R	R^2	R^3	X	\overline{Y}	\overline{P}	\overline{N}
R		\mathbb{R}^2	\mathbb{R}^3	e	P	N	Y	X
R^2	R^2	R^3	e	R	Y	X	N	P
		e				P		Y
X	X	N	Y	P	e	R^2	R^3	R
Y	Y	P	X	N	\mathbb{R}^2	e		R^3
P	P	X	N	Y	R	R^3	e	R^2
N	N	Y	P	X	R^3	R	R^2	e

Here it might help to use the fact that a product of reflections is a rotation through twice the angle between the reflection lines so that

$$R = XN = PX = YP = NY$$

$$R^2 = XY = PN = YX = NP$$

$$R^3 = XP = PY = YN = NX$$

Cancellation gives

$$N = XR, X = PR, \text{etc.},$$

The same computation can be done with matrix multiplication. Use the fact that the columns of the matrices are very simple $\begin{pmatrix} \pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $\pm \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and the fact that the *i*th column of *AB* is *A* times the *i*th column of *B* which in turn is the linear combination of the columns of *A* with coefficients given by the entries of the *i*th column of *B*. Thus, for example,

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) = \left(\begin{array}{cc} -b & a \\ -d & c \end{array}\right).$$