Binary hypothesis testing (2)

Find $H \in \{H_0, H_1\}$ prior $P_0 = \mathbb{P}[H = H_0]$ and $P_1 = 1 - P_0$. Model consists of $p_H, p_{y|H} \to \hat{H}(y)$. With cost function C_{ij} (guess i, truth j), we seek $\hat{H} = \operatorname{argmin}_{f(\cdot)} \varphi(f)$, for $\varphi(f) = \mathbb{E}[C(\hat{H}, f(y))]$. The likelihood ratio test minimizes Bayes' risk φ :

$$L(y) := \frac{p_{\mathsf{y}|\mathsf{H}}(y|H_1)}{p_{\mathsf{y}|\mathsf{H}}(y|H_0)} \gtrapprox^{H_1}_{H_0} \frac{P_0(C_{10} - C_{00})}{P_1(C_{01} - C_{11})} := \eta$$

Proof sketch: f(y) can be computed pointwise on y, so compare the expected cost for $\hat{H}(y) = H_0, H_1$.

- maximum a-posteriori rule: C is 0-1 loss, rule compare $p_{\mathsf{H}|\mathsf{y}}(H_i|y)$.
- maximum likelihood rule: if also $P_1 = P_2 = \frac{1}{2}$, rule compare $p_{V|H}(y|H_i)$.

Neyman-Pearson/OCs (3,4)

 $P_F = \mathbb{P}[\hat{H} = H_1 | \mathsf{H} = H_0]$, and $P_D = \mathbb{P}[\hat{H} = H_1 | \mathsf{H} = H_1]$. For LRTs $L(\mathsf{y}) \gtrsim \eta$, the **operating characteristic** is set $\{(P_F, P_D) \mid \eta\}$. The OC is $(1,1) \to (0,0)$ as η decreases, and is convex. Bayesian framework selects $\eta : (P_F, P_D)$ on LRT minimizing $\alpha P_F - \beta P_D + \gamma$ (determined by costs).

$$\zeta_{\text{NP}}(\alpha) = \underset{\hat{H}(\cdot)}{\operatorname{argmax}} P_D \text{ s.t. } P_F \leq \alpha.$$

 $\zeta_{\rm NP}(\alpha)$ is concave nondecreasing from (0,0) to (1,1).

Continuous case: if L(y) continuous then the argmax $\hat{H}(\cdot)$ is of the form $\mathbf{1}[L(y) \geq \eta]$.

Discrete case: equality in the LRT is possible; randomization $p_{\hat{H}|y}(\cdot|y)$ can improve over deterministic decision rules. In particular, for rule \hat{H} that picks \hat{H}' with probability p and \hat{H}'' with probability 1-p, we have $P_D(\hat{H}) = pP_D(\hat{H}') + (1-p)P_D(\hat{H}'')$, and same for P_F .

Neyman-Pearson Lemma: There exists an optimum Neyman-Pearson rule of the form $q_*(y) = 0$ if $L(y) < \eta$, p if $L(y) = \eta$, and 1 if $L(y) > \eta$.

Minimax hypothesis testing (5)

Costs C_{ij} known, but nature picks worst prior. Let $\varphi(p,r)$ be Bayes risk of $r(\cdot) = p_{\hat{H}|y}(\cdot|y)$ under prior p. Seek $r_M(\cdot) = \operatorname{argmin}_{r(\cdot)} \max_p \varphi(p,r)$.

The **mismatched Bayes risk** $\varphi_B(p,q,\lambda)$ is risk $\varphi(p,r_B(\cdot;q,\lambda))$, where $r_B(\cdot;q,\lambda)$ is the Bayes rule for prior q. Hence **Bayes risk** is $\varphi_B^*(p) = \varphi_B(p,p,\lambda)$, independent of λ . Note φ_B is linear in p, and minimized over q at q=p. Also $\varphi_B^*(p)$ is concave, and $\varphi_B^*(0) = C_{00}, \varphi_B^*(1) = C_{11}$.

The minimax decision rule is $r_B(\cdot; p_*, \lambda_*)$, where p_*, λ_* correspond to the point (P_F^*, P_D^*) at the intersection of $\zeta_{\text{NP}}(P_F^*)$ and

$$g_M(P_F^*) := \frac{C_{01} - C_{00}}{C_{01} - C_{11}} - \frac{C_{10} - C_{00}}{C_{01} - C_{11}} P_F.$$

If there is no intersection, set $p_* = 0$ if $\zeta_{\rm NP} > g_M(P_F)$ and $p_* = 1$ otherwise, and λ can be set arbitrarily

Minimax Inequality: in general,

$$\min_{a} \max_{b} g(a, b) \ge \max_{b} \min_{a} g(a, b).$$

In this case,

$$\min_{r(\cdot)} \max_{p} \varphi(p,r) = \max_{p} \min_{r(\cdot)} \varphi(p,r)$$

by Von Neumann's Theorem; one can show $\varphi(p, r)$ has a saddle point.

A equalizer rule is one such that

$$\mathbb{E}[C(H,\hat{H})|H_0] = \mathbb{E}[C(H,\hat{H})|H_1],$$

i.e. the Bayes risk of the rule is the same regardless of the prior p. The minimax rule is equalizer rule if $p_* \in \{0, 1\}$.

Bayesian parameter estimation (6)

With the posterior $p_{\mathsf{x}|\mathsf{y}}(x|y) = \frac{p_{\mathsf{y}|\mathsf{x}}(y|x)}{\int p_{\mathsf{y}|\mathsf{x}}(y|x)p_{\mathsf{x}}(x)\,dx}$, choose $\hat{x} = \operatorname{argmin}_{f(\cdot)}[C(\mathsf{x},f(y))]$ for some cost function C. $\hat{x}(y)$ should be minimized pointwise. Let error $e(\mathsf{x},\mathsf{y}) = \hat{x}(y) - \mathsf{x}$, so bias $b = \mathbb{E}[e(\mathsf{x},\mathsf{y})]$. Error covariance matrix $\Lambda_e = \mathbb{E}[(e-b)(e-b)^\intercal]$, error correlation matrix $\mathbb{E}[ee^\intercal] = \Lambda_e + bb^\intercal$. MSE is $\operatorname{tr}(\mathbb{E}[ee^\intercal])$.

- min absolute error: $C(x, \hat{x}) = |x \hat{x}|$ gives the median of the posterior.
- min uniform cost $C(x, \hat{x}) = \mathbf{1}[|x \hat{x}| > \varepsilon]$ gives the mode as $\varepsilon \to 0$ (MAP estimator).

Bayesian Least Squares $C(a, \hat{a}) = ||a - \hat{a}||^2$ gives mean of posterior, $\hat{x}(y) = \mathbb{E}[\mathsf{x}|\mathsf{y} = y]$. The BLS estimator is unbiased, with error covariance & correlation matrix $\mathbb{E}[\Lambda_{\mathsf{x}|\mathsf{y}}(\mathsf{y})]$.

Orthogonality: \hat{x} is \hat{x}_{BLS} iff unbiased and

$$\mathbb{E}[(\hat{x}(\mathsf{y}) - \mathsf{x})g(\mathsf{y})^{\mathsf{T}}] = 0 \text{ for all } g(\cdot).$$

Linear least-squares* (7)

LLS estimator $\hat{\mathbf{x}}_{\text{LLS}}(\mathbf{y}) = \operatorname{argmin}_{f(\cdot) \in \mathcal{B}} \mathbb{E}[\|x - f(\mathbf{y})\|^2]$, where $\mathcal{B} = \{f(\mathbf{y}) = \mathbf{A}\mathbf{y} + \mathbf{d}\}.$

Orthogonality: $\hat{\mathbf{x}}$ is the LLS estimator iff unbiased and $\mathbb{E}[(\hat{\mathbf{x}} - \mathbf{x})\mathbf{y}^{\mathsf{T}}] = 0$. This is equivalent to $\mathbb{E}[(\hat{\mathbf{x}}(y) - \mathbf{x})(\mathbf{F}\mathbf{y} + \mathbf{g})^{\mathsf{T}}] = 0 \quad \forall \mathbf{F}, \mathbf{g}$. Closed-form:

$$\hat{\mathbf{x}}_{\mathrm{LLS}}(\mathbf{y}) = \mu_{\mathsf{x}} + \Lambda_{\mathsf{x}\mathsf{y}} \Lambda_{\mathsf{y}}^{-1} (\mathbf{y} - \mu_{\mathsf{y}}).$$

Gaussian random variables $x = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}$, vectors $p_{\mathbf{x}}(\mathbf{x}) = \frac{1}{\sqrt{|2\pi\Lambda|}}e^{-\frac{1}{2}(\mathbf{x}-\mu)^\intercal\Lambda^{-1}(\mathbf{x}-\mu)}$. Then $a^\intercal\mathbf{x}$ is Gaussian. If \mathbf{x},\mathbf{y} are jointly Gaussian, $\hat{x}_{\mathrm{BLS}} = \hat{x}_{\mathrm{LLS}}$.

Nonbayesian param. estimation (8)

Only consider valid $f(\cdot)$, i.e. independent of x. Let $e(y) = \hat{x} - x$, $b_{\hat{x}}(x) = \mathbb{E}[e(y)]$, and $\Lambda_e(x) = \mathbb{E}[(e-b)(e-b)^{\mathsf{T}}]$. MSE is trace of

$$\mathbb{E}[e(\mathbf{y})e(\mathbf{y})^{\mathsf{T}}] = \Lambda_e(x) + b_{\hat{\mathbf{x}}}(x)b_{\hat{\mathbf{x}}}(x)^{\mathsf{T}}.$$

A minimum variance unbiased estimator satisfies $\lambda_{\hat{x}^*}(x) \leq \lambda_{\hat{x}}(x)$ for every x. This does not have to exist.

Cramér-Rao: if $\mathbb{E}\left[\frac{\partial}{\partial x} \ln p_{\mathsf{y}}(\mathsf{y}; x)\right] = 0$ for all x, then variance of unbiased estimator \hat{x} is at least

$$\lambda_{\hat{\mathsf{x}}}(x) \ge 1/J_{\mathsf{y}}(x) \quad J_{\mathsf{y}}(x) = \mathbb{E}[S(\mathsf{y};x)^2]$$
$$S(y;x) = \frac{\partial}{\partial x} \ln p_{\mathsf{y}}(y;x).$$

Vector Cramér-Rao: if $\mathbb{E}\left[\frac{\partial}{\partial \mathbf{x}} \ln p_{\mathbf{y}}(\mathbf{y}; \mathbf{x})\right] = 0$ then for any unbiased $\hat{\mathbf{x}}(\cdot)$, $\Lambda_{\hat{\mathbf{x}}} = \operatorname{Cov}[\hat{\mathbf{x}}|\mathbf{x}]$ satisfies

$$\begin{split} \Lambda_{\hat{\mathbf{x}}} - J_{\mathsf{y}}^{-1}(\mathbf{x}) \succeq 0, \quad J_{\mathsf{y}}(\mathbf{x}) &= \mathbb{E}[S(\mathsf{y}; \mathbf{x}) S(\mathsf{y}; \mathbf{x})^{\intercal}] \\ S(\mathsf{y}; \mathbf{x}) &= \frac{\partial}{\partial \mathbf{x}} \ln p_{\mathsf{y}}(\mathsf{y}; \mathbf{x}). \end{split}$$

Also,
$$\mathbb{E}\left[\left(\frac{\partial}{\partial x}\ln p_{\mathsf{y}}(y;x)\right)^{2} + \frac{\partial^{2}}{\partial x^{2}}\ln p_{\mathsf{y}}(y;x)\right] = 0,$$

implies $J_{\mathsf{y}}(x) = -\mathbb{E}\left[\frac{\partial^{2}}{\partial x^{2}}\ln p_{\mathsf{y}}(\mathsf{y};x)\right].$

Efficent estimators match equality of Cramér-Rao bound for all x, i.e. is of the form

$$\hat{x}(y) = x + \frac{1}{J_{\mathbf{v}}(x)} S(y; x),$$

(where the RHS must be independent of x). Efficient estimators are unbiased & unique & MVU if existent.

The Maximum Likelihood estimator is

$$\hat{x}_{\mathrm{ML}}(y) = \operatorname*{argmax}_{x} p_{\mathsf{y}}(y; x).$$

 \hat{x}_{ML} commutes with invertible transformations: if $\theta = g(x)$, $\theta_{\text{ML}}(\cdot) = g(\hat{x}_{\text{ML}}(\cdot))$. Also, if both exist, $\hat{x}_{\text{ML}}(\cdot) = \hat{x}_{\text{eff}}(\cdot)$.

Gauss-Markov Theorem: If $y = \mathbf{H}x + w$ for $w \sim N(0, \Lambda)$, then MVU estimator $\hat{\mathbf{x}}_{\mathrm{ML}}(\mathbf{y})$ is

$$(\mathbf{H}^\intercal \boldsymbol{\Lambda}^{-1} \mathbf{H})^{-1} \mathbf{H}^\intercal \boldsymbol{\Lambda}^{-1} \mathbf{y} = \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{H} \mathbf{x}\|^2.$$

Exponential Families (9)

An **single-param. exponential family** is of form

$$p_{\mathsf{Y}}(y;x) = \exp(\lambda(x)t(y) - \alpha(x) + \beta(y)),$$

"Natural parameter" $\lambda(\cdot)$, "natural statistic" $t(\cdot)$, "log base function" $\beta(\cdot)$. Note $\alpha(\cdot)$ normalizes, and $t(\cdot)$, $\beta(\cdot)$ can be shifted by constants. Call $q(y) \propto \exp(\beta(y))$ the **base distribution**.

$$\dot{\alpha}(x) = \dot{\lambda}(x)\mathbb{E}[t(y)]$$

$$\ddot{\alpha}(x) = \ddot{\lambda}(x)\mathbb{E}[t(y)] + \dot{\lambda}(x)^{2}\mathbb{V}[t(y)]$$

$$J_{y}(x) = \dot{\lambda}(x)\frac{d}{dx}\mathbb{E}[t(y)]$$

A canonical exponential family has $\lambda(x) = x$. $e^{\alpha(x)} = \mathbb{E}_q[e^{xy}], \ \dot{\alpha}(x) = \mathbb{E}[t(y)], \ \ddot{\alpha}(x) = \mathbb{V}[t(y)].$ Examples include the geometric mean $p(\cdot; x) \propto q_1(\cdot)^x q_2(\cdot)^y$ and tilted $p(\cdot; x) \propto q(y)e^{xt(y)}$.

Multi-parameter exponential family:

$$p_{\mathbf{y}}(\mathbf{y}; \mathbf{x}) = \exp(\lambda(x)^{\mathsf{T}} \mathbf{t}(\mathbf{y}) - \alpha(\mathbf{x}) + \beta(\mathbf{y})).$$

Over finite alphabet \mathcal{Y} , any distribution q can be generated by one exponential family $p_{y}(y; \mathbf{x}) = \exp(\sum_{i \in \mathcal{V}} x_{i}t_{i}(y) - \alpha(\mathbf{x}))$ via $x_{i} = \ln q(i)$.

Sufficient Statistics (10)

A sufficient statistic $t(\cdot)$ w.r.t. family $\{p_{\mathsf{y}}(\cdot;x)\}$ is such that $p_{\mathsf{y}|\mathsf{t}}(\cdot|\cdot;x)$ is independent of x. Equivalently $\frac{L_y(x)}{L_t(x)} := \frac{p_y(y;x)}{p_{\mathsf{t}}(t(y);x)}$ is not a function of x.

Neyman Factorization: $t(\cdot)$ is sufficient iff exist $a(\cdot, \cdot)$ and $b(\cdot)$ such that

$$p_{\mathsf{y}}(y;x) = a(t(y),x)b(y).$$

Sufficient statistic $s(\cdot)$ is **minimal** if for any sufficient t, exists g such that $s = g \circ t$.

For example, for finite \mathcal{X} , $t(y) = \langle p_{\mathsf{y}}(y;x_i) \rangle$ is sufficient, and $t(y) = \frac{p_{\mathsf{y}}(y;x_i)}{p_{\mathsf{y}}(y;x_0)}$ is minimal.

A sufficient statistic t is **complete** if the only φ such that $\mathbb{E}[\varphi(t(y))] = 0$ for all $x \in \mathcal{X}$ is $\varphi(\cdot) \equiv 0$. Completeness implies minimality: if t is complete and s is minimal, let s = g(t); then $\mathbb{E}[t|s = s]$ is a function of s and hence t, so $t - \mathbb{E}[t|s = s]$ has mean zero, hence is zero, so t is a function of s.

Bayesian formulation: $t(\cdot)$ is sufficient w.r.t. $p_{\mathsf{x},\mathsf{y}}$ if $p_{\mathsf{x}|\mathsf{y}}(\cdot|y) = p_{\mathsf{x}|\mathsf{t}}(\cdot|t(y))$. Neyman factorization looks like $p_{\mathsf{y}|\mathsf{x}}(y|x) = p_{\mathsf{t}|\mathsf{x}}(t(y)|x)p_{\mathsf{y}|\mathsf{t}}(y|t(y))$.

Statistics are partitions: If $L_{y_1}(x) \propto L_{y_2}(x)$ then y_1, y_2 provide "the same information" about x. Sufficient statistics group all y_i with proportional $L_{y_i}(\cdot)$ together; minimum sufficient statistics in addition group all y_i with non-proportional $L_{y_i}(\cdot)$ apart.

EM algorithm (12)

Observed data y from r.v. $y \sim p_y(\cdot; x)$. We wish to compute \hat{x}_{ML} . Find some **complete data** z such that y = g(z), such that ML estimator of z is easy.

- 1. Set $\ell = 0$ and initialize \hat{x} arbitrarily.
- 2. Find $U(x; \hat{x}) = \mathbb{E}_{p_{\mathsf{z}|\mathsf{v}}(\cdot|y;\hat{x})}[\log p_{\mathsf{z}}(\mathsf{z}|x)].$
- 3. Set new \hat{x} to $\operatorname{argmax}_{x} U(x; \hat{x})$.

It is possible to show

$$\ell_{y}(x;y) = U(x,x') - U(x',x') + \ell_{y}(x';y),$$

So the new \hat{x} increases log-likelihood $\ell_{y}(\hat{x};y)$ at each step. This converges to a stationary point.

For Gaussian mixture models, i.e. of the form $p_{y}(\mathbf{y};\theta) = \sum_{k} \pi_{k} N(\mathbf{y}; \mu_{k}, \Lambda_{k})$, and complete data is y along with the weights π_{i} . More generally, for exponential families, i.e. complete data \mathbf{z} is in

$$p_{\mathbf{z}}(\mathbf{z}; \mathbf{x}) = \exp(\mathbf{x}^{\mathsf{T}} t(\mathbf{z}) - \alpha(\mathbf{x}) + \beta(\mathbf{z})),$$

we have $U(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathsf{T}} \mathbb{E}_{p_{\mathbf{z}|\mathbf{y}}(\cdot|\mathbf{y};\mathbf{x}')}[t(\mathbf{z})] - \alpha(\mathbf{x}) + \mathbb{E}_{p_{\mathbf{z}|\mathbf{y}}(\cdot|\mathbf{y};\mathbf{x}')}[\beta(\mathbf{z})];$ solve partials and substitute $\frac{\partial}{\partial x_i} \alpha(\mathbf{x}) = \mathbb{E}_{p_{\mathbf{z}}(\cdot;\mathbf{x})}[t_i(\mathbf{z})]$ to get new $\hat{\mathbf{x}}'$ from $\hat{\mathbf{x}}$:

$$\mathbb{E}_{p_{\mathbf{z}}(\cdot; \hat{\mathbf{x}}')}[t_k(\mathbf{z})] = \mathbb{E}_{p_{\mathbf{z}|\mathbf{y}}(\cdot|\mathbf{y}; \hat{\mathbf{x}})}[t_k(\mathbf{z})].$$

Decision theory (13)

Inference predicts a probability distribution $q(\cdot)$ for x. The only smooth cost function C(x,q) s.t. **proper**: $p_{\mathsf{x}|\mathsf{y}}(\cdot|y) = \operatorname{argmin}_q \mathbb{E}[C(x,q)|\mathsf{y}=y]$ and **local**: C(x,q) is a function of x and q(x), is **log-loss**: $-A\log q(x) + B(x)$, as long as $|\mathcal{X}| \geq 3$.

Entropy: $H = -\sum_a p(a) \log p(a) = \mathbb{E}[C(x, p_x)].$ This is concave in p. Conditional entropy: $H(\mathsf{x}|\mathsf{y}) = \mathbb{E}[C(\mathsf{x}, p_{\mathsf{x}|\mathsf{y}})]; \text{ expands}$

$$H(\mathbf{x}|\mathbf{y}) = \sum_{y} p_{\mathbf{y}}(y) H(\mathbf{x}|\mathbf{y} = y).$$

Note $H(x|y) \le H(x) \le \log |\mathcal{X}|$, and H(x,y) = H(x|y) + H(y).

Mutual information I(x; y) = H(x) - H(x|y). This is *symmetric*, since it can be computed as $\sum_{x,y} p_{x,y}(x,y) \log \frac{p_{x,y}(x,y)}{p_{x}(x)p_{y}(y)}$. Some identities:

- I(x; y) = 0 iff x, y independent
- I(x; y, z) = I(x; z) + I(x; y|z) where I(x; y|z) = H(x|z) H(x|y, z)
- $\bullet \ \ H(\mathsf{x},\mathsf{y}) = H(\mathsf{x}) + H(\mathsf{y}) I(\mathsf{x};\mathsf{y}).$

Data Processing Inequality: $I(x; y) \ge I(x; t)$, with equality if and only if t(y) is sufficient.

Information (KL) Divergence: given $x \sim p(\cdot)$, $D(p||q) = \mathbb{E}[C(x,q) - C(x,p)] = \sum_a p(a) \log \frac{p(a)}{q(a)}$. $D(p||U) = \log |\mathcal{X}| - H(p)$, $I(x;y) = D(p_{x,y}||p_xp_y)$. This is convex in p and q.

If $\mathbb{E}\left[\frac{\partial}{\partial x}\ln p_{\mathsf{y};x}\right] = 0$ and $\mathbb{E}\left[\frac{\partial^3}{\partial x^3}\ln p_{\mathsf{y};x}\right] \neq \pm \infty$, then $D(p_{\mathsf{y}}(\cdot;x)\|p_{\mathsf{y}}(\cdot;x+\delta)) = \frac{\log(e)}{2}J_{\mathsf{y}}(x)\delta^2 + o(\delta^2)$.

Information geometry (14)

I-projection $p^* = \operatorname{argmin}_{p \in \mathcal{P}} D(p||q)$. If p^* is projection of q onto closed/convex \mathcal{P} , then $D(p||q) \geq D(p||p^*) + D(p^*||q)$ for any $p \in \mathcal{P}$.

Linear family: family s.t. $\{p : \mathbb{E}_p[t_i(\mathsf{y})] = \overline{t_i}\}$. For $p_1, p_2 \in \mathcal{P}$, $\lambda p_1 + (1 - \lambda)p_2 \in \mathcal{P}$ for any $\lambda \in \mathbb{R}$. Equality holds in Pythagorean Theorem if \mathcal{P} is linear.

Orthogonal family: given p^* in linear \mathcal{P} with parameters $t(\cdot)$, $\mathcal{E}_t(p^*)$ is all p projecting to p^* .

$$\mathcal{E}_t(p^*) = \{ q \mid q(y) = p^*(y) \exp(\mathbf{x}^{\mathsf{T}} t(y) - \alpha(\mathbf{x})) \}.$$

Modeling as inference (15)

Mixture models $q_w(y) = \sum_{x \in \mathcal{X}} w(x) p_y(y; x)$; w is a "prior". Optimality: for any distribution $q(\cdot)$, there exist weights w such that q_w is strictly better: $D(p_y(\cdot; x) || q_w) \leq D(p_y(\cdot; x) || q)$ for all x.

Minimax perspective: $\min_{q(\cdot)} \max_{x} D(p_{y}(\cdot; x) || q)$. **Redundancy-capacity**: $\max \min = \min \max$. Note the inner maximization is

$$\max_{x} D(p_{\mathsf{y}}(\cdot; x) \| q) = \max_{w} \sum_{x} w(x) D(p_{\mathsf{y}}(\cdot; x) \| q).$$

Interpret w as a least informative prior $p_{\mathsf{x}}^* = \operatorname{argmax}_{p_{\mathsf{x}}} I(\mathsf{x};\mathsf{y})$. Model capacity is $C = \max_{p_{\mathsf{x}}} I(\mathsf{x};\mathsf{y}) \leq \log |\mathcal{X}|$. Equidistance property: at mixture q^* and weights w^* , $D(p_{\mathsf{y}}(\cdot;x)||q^*) \leq C \ \forall x$, equality when $w^*(x) > 0$.

Continuous information theory (16)

- Entropy $h(x) = -\int p(x) \log p(x) dx$. Conditional $h(x|y) = -\int p_y(y)h(x|y=y) dy$.
- Mutual information I(x; y) = h(x) h(x|y).
- Divergence $D(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$.

For Gaussians, $h(\mathsf{x}) = \frac{\log e}{2} (\ln |2\pi\Lambda| + \operatorname{tr}(I)),$ $h(\mathsf{x}|\mathsf{y}) = \frac{1}{2} \log |2\pi e(\Lambda_\mathsf{x} - \Lambda_\mathsf{xy}\Lambda_\mathsf{v}^{-1}\Lambda_\mathsf{xy}^\mathsf{T})|.$

Some useful theorems (11 & misc.)

Jensen's inequality: For concave $\varphi(\cdot)$ and random variable \mathbf{v} ,

$$\mathbb{E}[\varphi(v)] \geq \varphi(\mathbb{E}[v]).$$

Csiszár's inequality: for convex f,

$$\sum_{i=1}^{N} b_i f\left(\frac{a_i}{b_i}\right) \ge \left(\sum_{i=1}^{N} b_i\right) f\left(\frac{\sum_{i=1}^{N} a_i}{\sum_{i=1}^{N} b_i}\right).$$

Log-sum: $\sum a_i \log \frac{a_i}{b_i} \ge (\sum a_i) \log \frac{\sum a_i}{\sum b_i}$.

Gibbs' inequality: let r.v. $\mathbf{v} \sim p(\cdot)$. For any distribution $q(\cdot)$, $\mathbb{E}_p[\log p(\mathbf{v})] \geq \mathbb{E}_p[\log q(\mathbf{v})]$.

Lagrange multipliers: $\nabla f(\hat{\mathbf{z}}) + \lambda^{\mathsf{T}} \nabla g(\hat{\mathbf{z}}) = 0$. Taylor's Theorem: for some t' between t and t_0 ,

$$f(t) = \sum_{j=0}^{J} (t - t_0)^j \frac{f^{(j)}(t_0)}{j!} + (t - t_0)^{J+1} \frac{f^{(J+1)}(t')}{(J+1)!}$$