Álgebra Lineal

Capítulo 11. Tópicos Especiales y Aplicaciones

11.5. Matrices y formas positivas

En esta sección estudiamos matrices positivas, formas sesquilineales positivas, y formas cuadráticas positivas.

a. Matrices complejas positivas.

Definición 1. Sea $A \in M_n(\mathbb{C})$, se dice que A es positiva si

$$XAX^* > 0$$

para cada vector $X = [x_1, \dots, x_n] \in \mathbb{C}^n - 0$, donde $X^* = \overline{X^T}$.

Ejemplo 1. La matriz

$$A = \left[\begin{array}{ccc} 2 & i & 0 \\ -i & 4 & 2i \\ 0 & -2i & 8 \end{array} \right]$$

es positiva. En efecto,

$$\begin{bmatrix} a_1 + ib_1 & a_2 + ib_2 & a_3 + ib_3 \end{bmatrix} \begin{bmatrix} 2 & i & 0 \\ -i & 4 & 2i \\ 0 & -2i & 8 \end{bmatrix} \begin{bmatrix} a_1 - ib_1 \\ a_2 - ib_2 \\ a_3 - ib_3 \end{bmatrix}$$

$$= 2a_1b_2 - 2a_2b_1 + 4a_2b_3 - 4a_3b_2 + 2a_1^2 + 4a_2^2 + 2b_1^2 + 8a_3^2 + 4b_2^2 + 8b_3^2$$

$$= (a_1 + b_2)^2 + (a_2 - b_1)^2 + (2a_3 - b_2)^2 + (a_2 + 2b_3)^2 + a_1^2 + b_1^2 + 2b_2^2 + 2a_2^2 + 4a_3^2 + 4b_3^2 > 0$$

para cada vector $X = \begin{bmatrix} a_1 + ib_1 & a_2 + ib_2 & a_3 + ib_3 \end{bmatrix} \in \mathbb{C}^3 - 0.$

Otras caracterizaciones de las matrices complejas positivas son las siguientes.

Proposición 1. Sea $A \in M_n(\mathbb{C})$, entonces las siguientes condiciones son equivalentes:

- (a) A es positiva
- (b) La ecuación

$$\langle X, Y \rangle = XAY^*$$

define un producto interno en \mathbb{C}^n .

- (c) $A = A^*$ y para el producto interno canónico en \mathbb{C}^n se tiene que (X, XA) > 0 para cada vector no nulo X de \mathbb{C}^n .
- (d) $A = A^*$ y los menores principales de A son positivos, es decir, todos los determinantes de la forma

$$\det \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}, 1 \le k \le n$$

son positivos.

Demostración. (a) \Rightarrow (b): sean $X, Y, Z \in \mathbb{C}^n$, entonces

Probemos que $\langle Y, X \rangle = \overline{\langle X, Y \rangle}$. En efecto, sean $X, Y \in \mathbb{C}^n$, entonces

$$< X + Y, X + Y > = < X + Y, X > + < X + Y, Y >$$

= $(X + Y) AX^* + (X + Y) AY^*$
= $XAX^* + YAX^* + XAY^* + YAY^*$

pero por hipótesis $\langle Z, Z \rangle \in \mathbb{R}$ para cada $Z \in \mathbb{C}^n$, por lo tanto $\langle X + Y, X + Y \rangle$, $XAX^*, YAY^* \in \mathbb{R}$, luego $YAX^* + XAY^* = \langle Y, X \rangle + \langle X, Y \rangle \in \mathbb{R}$. De igual manera,

$$< X + iY, X + iY > = < X + iY, X > + < X + iY, iY >$$

= $(X + iY) AX^* + (X + iY) A (iY)^*$
= $XAX^* + iYAX^* - iXAY^* + YAY^* \in \mathbb{R}$

luego $iYAX^* - iXAY^* = i < Y, X > -i < X, Y > \in \mathbb{R}$. Por lo tanto,

$$\langle Y, X \rangle + \langle X, Y \rangle = \overline{\langle Y, X \rangle + \langle X, Y \rangle} = \overline{\langle Y, X \rangle} + \overline{\langle X, Y \rangle}$$

 $i \langle Y, X \rangle - i \langle X, Y \rangle = \overline{i \langle Y, X \rangle} - i \langle X, Y \rangle = -i \overline{\langle Y, X \rangle} + i \overline{\langle X, Y \rangle}.$

Podemos multiplicar la segunda igualdad por i

$$- \langle Y, X \rangle + \langle X, Y \rangle = \overline{\langle Y, X \rangle} - \overline{\langle X, Y \rangle}$$

y sumarla a la primera

$$2 < X, Y > = 2\overline{< Y, X >}$$

es decir

$$\langle X, Y \rangle = \overline{\langle Y, X \rangle}.$$

Esto completa la prueba de que $\langle X, Y \rangle$ define un producto interno en \mathbb{C}^n . (b) \Rightarrow (c): Veamos primero que A es hermitiana, es decir, $A = A^*$. Probemos que $a_{ij} = \overline{a_{ji}}$ para cada $1 \leq i, j \leq n$. Consideremos los vectores canónicos e_i y e_j de \mathbb{C}^n , entonces

$$\langle e_i, e_j \rangle = e_i A e_j^* = a_{ij}$$

 $\langle e_j, e_i \rangle = e_j A e_i^* = a_{ji} \Rightarrow$
 $a_{ij} = \langle e_i, e_j \rangle = \overline{\langle e_j, e_i \rangle} = \overline{a_{ji}}.$

Recordemos que el producto interno canónico en \mathbb{C}^n viene dado por $(X,Y)=XY^*$, luego

$$(X,XA) = X(XA)^* = XA^*X^* = XAX^* = \langle X,X \rangle > 0$$
, para X no nulo de \mathbb{C}^n .

(c) \Rightarrow (d): solo hay que probar lo relativo a los menores principales de la matriz A. Para comenzar probemos que det (A) > 0. Puesto que A es hermitiana, entonces A es diagonalizable, y los valores propios de A son reales. Sea Y un vector propio correspondiente al valor propio λ , entonces $AY = \lambda . Y$, entonces $(AY)^* = (\lambda . Y)^*$, luego $Y^*A^* = \overline{\lambda}Y^* = \lambda Y^*$, de donde, $(Y^*, Y^*A^*) = (Y^*, \lambda Y^*) = \overline{\lambda}(Y^*, Y^*) = \lambda(Y^*, Y^*) > 0$, y como también $(Y^*, Y^*) > 0$, entonces $\lambda > 0$. Hemos probado que los valores propios son positivos. En consecuencia, det (A) > 0. Ahora notemos que siendo A hermitiana, entonces cada submatriz

$$A_k = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}, 1 \le k \le n$$

es también hermitiana. Además $(X_k, X_k A_k) > 0$ para cada vector no nulo X_k de \mathbb{C}^k . En efecto, sea $X_k \in \mathbb{C}^k$ un vector no nulo, completando con ceros construimos un vector no nulo X de \mathbb{C}^n , $X = [X_k \mid 0]$, puesto que (X, XA) > 0, entonces

$$\begin{bmatrix} x_1 & \cdots & x_k & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{k1} & & a_{kk} & \cdots & a_{kn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & & a_{nk} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} x_1 a_{11} + \cdots + x_k a_{k1} & \cdots & x_1 a_{1k} + \cdots + x_k a_{kk} & * & \cdots & * \end{bmatrix} = X'$$

luego el producto interno canónico de X con X' es positivo y coincide con $(X_k, X_k A_k)$. Por lo probado antes, det $(A_k) > 0$.

(d) \Rightarrow (a): Paso 1. Veamos que existe una matriz triangular superior $P = [p_{ij}]$ con $p_{kk} = 1, 1 \le k \le n$, y para la cual se tiene que B =: AP es triangular inferior. La existencia de P se puede plantear de la siguiente manera:

$$b_{ik} = a_{i1}p_{1k} + \dots + a_{ik-1}p_{k-1k} + a_{ik}p_{kk} + a_{ik+1}p_{k+1k} + \dots + a_{in}p_{nk} \Rightarrow$$

$$b_{ik} = a_{i1}p_{1k} + \dots + a_{ik-1}p_{k-1k} + a_{ik} \text{ para cada } k > 1.$$

Como se quiere que B sea triangular inferior entonces también se debe tener que $b_{ik} = 0$ para k > i, entonces se debe cumplir que

$$a_{i1}p_{1k} + \cdots + a_{ik-1}p_{k-1k} + a_{ik} = 0$$
 para $k > i$

es decir se tienen las siguientes relaciones

$$a_{11}p_{1k} + \dots + a_{1k-1}p_{k-1k} + a_{1k} = 0$$

$$a_{21}p_{1k} + \dots + a_{2k-1}p_{k-1k} + a_{2k} = 0$$

$$\vdots$$

$$a_{k-11}p_{1k} + \dots + a_{k-1k-1}p_{k-1k} + a_{k-1k} = 0$$

es decir el sistema

$$\begin{bmatrix} a_{11} & \cdots & a_{1k-1} \\ \vdots & & \vdots \\ a_{k-11} & \cdots & a_{k-1k-1} \end{bmatrix} \begin{bmatrix} p_{1k} \\ \vdots \\ p_{k-1k} \end{bmatrix} = \begin{bmatrix} -a_{1k} \\ \vdots \\ -a_{k-1k} \end{bmatrix}$$

debe tener solución para cada k > 1. Pero esto está garantizado ya que det $(A_{k-1}) > 0$. Luego la matriz P existe y AP es triangular inferior.

 $Paso\ 2.\ P^*$ es triangular inferior y $P^*B=P^*AP$ es también triangular inferior. Sea $D=:P^*AP$, entonces $D^*=P^*A^*P=P^*AP$ ya que A es hermitiana. Siendo D hermitiana y triangular inferior, entonces $D=P^*B$ es necesariamente diagonal,

$$D = \left[\begin{array}{ccc} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{array} \right].$$

Paso 3. Consideremos las columnas $B^{(1)}, \ldots, B^{(n)}$ de B y las columnas $A^{(1)}, \ldots, A^{(n)}$ de A; entonces

$$B^{(r)} = A^{(1)}p_{1r} + \dots + A^{(r)}p_{rr} + \dots + A^{(n)}p_{nr}$$
$$= A^{(r)} + A^{(1)}p_{1r} + \dots + A^{(r-1)}p_{r-1,r}$$

De esto se obtiene que la columna r de la submatriz B_k es igual a la columna r de la submatriz A_k + una combinación lineal de las restantes columnas de esta última matriz. Para efectos del cálculo del determinante se tiene entonces que

$$\det(B_k) = \det(A_k), 1 \le k \le n.$$

De igual forma, consideremos las filas de D y de B:

$$D_{(r)} = p_{r1}^* B_{(1)} + \dots + p_{rr}^* B_{(r)} + \dots + p_{rn}^* B_{(n)}$$

= $B_{(r)} + \dots + p_{rr-1}^* B_{(r-1)}$

De esto se obtiene que la fila r de la submatriz D_k es igual a la fila r de la submatriz B_k + una combinación lineal de las restantes fila de esta última matriz. Para efectos del cálculo del determinante se tiene entonces que

$$\det(D_k) = \det(B_k), 1 \le k \le n.$$

En total se tiene que

$$\det(A_k) = \det(D_k), 1 \le k \le n.$$

Pero $\det(D_k) = d_1 \cdots d_k = \det(A_k) > 0$ para cada $1 \leq k \leq n$, entonces todos los elementos diagonales de D son positivos.

Se tiene entonces que $D=P^*AP$ es diagonal con elementos positivos por la diagonal. Esto implica que

$$Y^*DY = |y_1|^2 d_1 + \dots + |y_n|^2 d_n > 0$$

para cada vector columna no nulo $Y = (y_1, \dots, y_n)^T$ con entradas complejas.

Paso 4. Para terminar probemos que A es una matriz positiva. Recordemos que P es una matriz triangular superior con $p_{kk} = 1, 1 \le k \le n$, por lo tanto P es invertible. Sea X un vector no nulo de \mathbb{C}^n , entonces X^* es también un vector no nulo y existe $Y \in \mathbb{C}^n$ no nulo tal que $PY = X^*$, luego $X = (PY)^* = Y^*P^*$ y de esta forma

$$Y^*DY = Y^*P^*APY > 0$$

es decir,

$$XAX^* > 0.\square$$

Otra caracterización de las matrices complejas positivas corresponde a la descomposición de Cholesky.

Proposición 2. Sea $A \in M_n(\mathbb{C})$. Entonces, A es positiva si y sólo si existe una matriz invertible $P \in M_n(\mathbb{C})$ tal que $A = P^*P$.

 $Demostración. \Rightarrow$) Si A es positiva entonces la ecuación

$$\langle X.Y \rangle = XAY^*$$

define un producto interno en \mathbb{C}^n . Con este producto interno se puede construir una base ortonormal en \mathbb{C}^n , los vectores de esta base se pueden disponer en las columnas de una matriz Q. De otra parte, notemos que A es la matriz de este producto interno en la base canónica de \mathbb{C}^n , por lo tanto las dos matrices están relacionadas por

$$Q^T A \overline{Q} = E.$$

Como Q es invertible, entonces $A = (Q^T)^{-1} (\overline{Q})^{-1}$. Definimos entonces $P = (\overline{Q})^{-1}$, de tal forma que $(Q^T)^{-1} = P^*$. Es decir, $A = P^*P$.

 \Leftarrow) Supongamos que existe P invertible tal que $A = P^*P$, entonces para cada vector no nulo X de \mathbb{C}^n se tiene que PX^* es no nulo, luego

$$XAX^* = XP^*PX^* = (PX^*)^* (PX^*) > 0.\square$$

Las pruebas de las proposiciones anteriores muestran ciertas propiedades interesantes de las matrices complejas positivas.

Proposición 3. Sea $A \in M_n(\mathbb{C})$ una matriz positiva. Entonces,

- (1) $\det(A) > 0$
- (2) A es invertible
- (2) Los valores propios de A son reales positivos
- (3) A es hermitinana y por lo tanto diagonalizable por medio de una matriz unitaria.
- (4) A^{-1} es también positiva
- (5) A^T es también positiva
- (6) Para cada $1 \le k \le n$, A_k es también positiva.

b. Matrices reales positivas.

Las matrices reales positivas se definen en forma similar al caso complejo pero con la siguiente modificación: en la Proposición 1 no es posible demostrar $(a)\Rightarrow(b)$ ya que no disponemos de un escalar i tal que su cuadrado sea nulo. Por lo tanto, debemos modificar la definición de matriz real positiva de la siguiente manera.

Definición 2. Sea $A \in M_n(\mathbb{R})$, se dice que A es positiva si $A = A^T$ y

$$XAX^T > 0$$

para cada vector $X = [x_1, \dots, x_n] \in \mathbb{R}^n - 0$.

Proposición 4. Sea $A \in M_n(\mathbb{R})$, entonces las siguientes condiciones son equivalentes:

- (a) A es positiva
- (b) La ecuación

$$\langle X, Y \rangle = XAY^T$$

define un producto interno en \mathbb{C}^n .

- (c) $A = A^T$ y para el producto interno canónico en \mathbb{R}^n se tiene que (X, XA) > 0 para cada vector no nulo X de \mathbb{R}^n .
- (d) $A = A^T$ y los menores principales de A son positivos, es decir, todos los determinantes de la forma

$$\det \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}, 1 \le k \le n$$

son positivos.

(e) Existe una matriz invertible $P \in M_n(\mathbb{R})$ tal que $A = P^T P$.

Proposición 5. Sea $A \in M_n(\mathbb{R})$ una matriz positiva. Entonces,

- (1) $\det(A) > 0$
- (2) A es invertible
- (2) Los valores propios de A son reales positivos

- (3) A es simétrica y por lo tanto diagonalizable por medio de una matriz ortogonal.
- (4) A^{-1} es también positiva
- (5) A^T es también positiva
- (6) Para cada $1 \le k \le n$, A_k es también positiva.

Ejemplo 1. La matriz

$$A = \left[\begin{array}{rrr} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{array} \right]$$

es positiva. Pero la matriz

$$B = \left[\begin{array}{rrr} 2 & 1 & 0 \\ 1 & -4 & 2 \\ 0 & 2 & 8 \end{array} \right]$$

es simétrica pero no es positiva:

$$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & -4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = -4.$$

De otra parte, la matriz real

$$C = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right]$$

es tal que

$$\left[\begin{array}{cc} x_1 & x_2 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = x_1^2 + x_2^2 > 0$$

para cada vector no nulo $(x_1, x_2) \in \mathbb{R}^2$. Pero C no es simétrica. También podemos observar que la sola condición de positividad (sin simetría!) en el caso real no garantiza valores propios positivos, en efecto los valores propios de C son 1 - i, 1 + i (notemos que C no es una matriz positiva compleja ya que con $x_1 = i$ y con $x_2 = 1$, se tiene que $x_1^2 + x_2^2 = 0$).

Por último veamos que en el caso real, la sola condición de valores propios positivos no garantiza ser matriz positiva. En efecto, la matriz real

Ejemplo 2. Calculemos la descomposición de Cholesky de la matriz A del ejemplo anterior: con el SWP obtenemos

$$\begin{bmatrix} \sqrt{2} & 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2}\sqrt{7} & 0 \\ 0 & \frac{2}{7}\sqrt{2}\sqrt{7} & \frac{4}{7}\sqrt{3}\sqrt{7} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \frac{1}{2}\sqrt{2} & 0 \\ 0 & \frac{1}{2}\sqrt{2}\sqrt{7} & \frac{2}{7}\sqrt{2}\sqrt{7} \\ 0 & 0 & \frac{4}{7}\sqrt{3}\sqrt{7} \end{bmatrix}$$

Comprobemos esta respuesta con el método descrito en la demostración de la Proposición 2. Podemos tomar la base canónica de \mathbb{R}^3 y con el producto interno inducido por A construimos una base ortonormal de \mathbb{R}^3 a través del método de Gram-Schmidt:

$$v_1 = e_1 = (1, 0, 0)$$

$$v_2 = e_2 - \frac{\langle e_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1$$

$$v_3 = e_3 - \frac{\langle e_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle e_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$$

Entonces,

$$\begin{aligned} v_1 &= e_1 \\ v_2 &= (0,1,0) - \frac{ \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}} (1,0,0) = \left(-\frac{1}{2},1,0 \right) \\ v_3 &= (0,0,1) - \frac{ \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}{ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}} (1,0,0) \\ -\frac{ \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix}}{ \begin{bmatrix} -\frac{1}{2} & 1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 4 & 2 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 \\ 0 \end{bmatrix}} (-\frac{1}{2},1,0) \\ = \left(\frac{2}{7}, -\frac{4}{7}, 1 \right) \end{aligned}$$

Normalizando se tiene

$$q_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{(1,0,0)}{\sqrt{\langle v_{1},v_{1} \rangle}} = \frac{(1,0,0)}{\sqrt{2}} = \left(\frac{1}{\sqrt{2}},0,0\right)$$

$$q_{2} = \frac{v_{2}}{\|v_{2}\|} = \frac{\left(-\frac{1}{2},1,0\right)}{\sqrt{\langle v_{2},v_{2} \rangle}} = \frac{\left(-\frac{1}{2},1,0\right)}{\sqrt{\frac{7}{2}}} = \left(-\frac{1}{14}\sqrt{2}\sqrt{7},\frac{1}{7}\sqrt{2}\sqrt{7},0\right)$$

$$q_{3} = \frac{v_{3}}{\|v_{3}\|} = \frac{\left(\frac{2}{7},-\frac{4}{7},1\right)}{\sqrt{\langle v_{3},v_{3} \rangle}} = \frac{\left(\frac{2}{7},-\frac{4}{7},1\right)}{\sqrt{\frac{48}{7}}} = \left(\frac{1}{42}\sqrt{3}\sqrt{7},-\frac{1}{21}\sqrt{3}\sqrt{7},\frac{1}{12}\sqrt{3}\sqrt{7}\right)$$

Por lo tanto

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & 0 \\ -\frac{1}{14}\sqrt{2}\sqrt{7} & \frac{1}{7}\sqrt{2}\sqrt{7} & 0 \\ \frac{1}{42}\sqrt{3}\sqrt{7} & -\frac{1}{21}\sqrt{3}\sqrt{7} & \frac{1}{12}\sqrt{3}\sqrt{7} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{14}\sqrt{2}\sqrt{7} & \frac{1}{42}\sqrt{3}\sqrt{7} \\ 0 & \frac{1}{7}\sqrt{2}\sqrt{7} & -\frac{1}{21}\sqrt{3}\sqrt{7} \end{bmatrix}^{-1} \\ = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2}\sqrt{7} & 0 \\ 0 & \frac{1}{2}\sqrt{2}\sqrt{7} & \frac{2}{7}\sqrt{2}\sqrt{7} \\ 0 & 0 & \frac{4}{7}\sqrt{3}\sqrt{7} \end{bmatrix}.$$

c. Formas sesquilineales positivas

Proposición 6. Sea f una forma sesquilineal definida sobre un espacio complejo V de dimensión finita n. Si X es una base de V tal que $A = m_X(f)$ es positiva, entonces para cualquier otra base Y de V se tiene que $B = m_Y(f)$ es también positiva.

Demostración. Sabemos que si C es la matriz de cambio de X a Y entonces

$$B = C^T A \overline{C}.$$

Sea X un vector no nulo de \mathbb{C}^n , entonces

$$XBX^* = XC^T A \overline{C} X^*$$

$$= XC^T A \overline{C} (\overline{X})^T$$

$$= XC^T A (\overline{C^T})^T (\overline{X})^T$$

$$= XC^T A (\overline{XC^T})^T$$

$$= YAY^* > 0$$

ya que $Y = XC^T$ es no nulo. \square **Definición 3.** Sea f una forma sesquilineal definida sobre un espacio complejo V de dimensión finita n. Se dice que f es positiva si existe una base X en V tal que $m_X(f)$ es positiva.

Notemos que la matriz A de una forma sesquilineal compleja positiva f es siempre hermitiana, por lo tanto, para A valen las propiedades presentadas en las Proposiciones 1,2 y 3.

d. Formas bilineales positivas

Proposición 7. Sea f una forma bilineal simétrica definida sobre un espacio real V de dimensión finita n. Si X es una base de V tal que $A = m_X(f)$ es positiva, entonces para cualquier otra base Y de V se tiene que $B = m_Y(f)$ es también positiva.

Si A es la matriz de una forma bilineal simétrica positiva f, entonces para A valen las propiedades presentadas en las Proposiciones 4 y 5.

e. Formas cuadráticas positivas

Definición 4. (a) Sea q una forma cuadrática definida a partir de una forma sequilineal hermitiana f sobre un espacio V, se dice que q es positiva si existe una base X en V tal que la matriz de f en la base X es positiva.

(b) Sea q una forma cuadrática definida a partir de una forma bilineal simétrica f sobre un espacio V, se dice que q es positiva si existe una base X en V tal que la matriz de f en la base X es positiva.

Corolario 1. La diagonalización de una forma cuadrática positiva mediante el método de valores propios expuesto en el Teorema 2 de la Lección 2 del Capítulo 10 tiene sólo coeficientes positivos: los valores propios de la matriz de la forma cuadrática.