

TURBINA DE RECUPERAÇÃO DE GÁS DE TOPO – TRT: UMA ALTERNATIVA VIÁVEL PARA GERAÇÃO DE ENERGIA ELÉTRICA EM PLANTAS SIDERÚRGICAS*

Joaquim Luiz Monteiro Barros¹ Fabiana Moreira Costa²

Resumo

Este trabalho tem como objetivo principal apresentar de forma didática e com um exemplo prático a viabilidade da instalação de turbinas TRT, com a finalidade de gerar energia elétrica em plantas siderúrgicas.

Palavras-chave: Turbina; TRT; Energia Elétrica.

TRT TOP PRESSURE RECOVERY TURBINE: FEASIBLE ALTERNATIVE TO ELECTRICAL ENERGY GENERATION IN STEEL PLANTS

Abstract

The purpose of this paper is to present in a didactic way and with practical examples, the feasibility of the installation of TRT turbines, with the objective of electrical energy generation in the steel plants.

Keywords: TRT; Turbine; Electrical Energy

¹ Engenheiro Mecânico, Mestre em Economia com ênfase em Energia, Pós Graduado em Eficiência Energética, Diretor de Desenvolvimento de Negócios, Kuttner do Brasil, BH, MG, Brasil.

² Engenheira de Energia, Estudante Engenharia Elétrica PUC-MG, Estagiária de Desenvolvimento de Negócios, Kuttner do Brasil, Belo Horizonte, MG, Brasil.

1 INTRODUÇÃO

A possibilidade de geração de eletricidade através do aproveitamento energético no processo de produção de gusa / aço, sem o consumo adicional de combustível, pode ser um importante fator na melhoria da eficiência energética e no aumento da competitividade de uma planta siderúrgica.

Com a instalação de turbinas TRT, cuja tecnologia se encontra consolidada, pode-se gerar energia de forma contínua e confiável, reduzindo o custo energético da planta e/ou agregando uma receita adicional, com a exportação / venda da eletricidade gerada.

2 MATERIAIS E MÉTODOS

2.1 Turbina de Recuperação de Gás de Topo - TRT

A turbina de recuperação de gás de topo – TRT, é uma turbina de expansão que ao ser acoplada a um gerador, transforma a energia de pressão e cinética dos gases do Alto Forno em energia elétrica.

A TRT normalmente, é instalada após o sistema de limpeza do gás do Alto Forno e conforme já informado anteriormente, não requer nenhum combustível adicional em sua operação.

Dependendo da capacidade de produção do Alto Forno pode-se instalar uma ou mais turbinas TRT e se gerar algo como 30 ou 40 MWe.

Figura 1. Fluxograma Esquemático da Instalação da TRT.

Onde:

- BF: Alto Forno;
- DC: Coletor de pó;
- VS: Coletor de pó tipo úmido;
- TRT: Turbina de recuperação de pressão de topo;
- GEE: Gerador de energia elétrica.

Figura 2. Desenho Esquemático da Instalação da TRT.

Figura 3. Desenho Esquemático do Conjunto TRT.

3 RESULTADOS E DISCUSSÃO

3.1 Objetivo

Apresentar o resumo de um estudo real para uma instalação existente no Brasil.

3.2 Dados da Capacidade de Geração de Energia Elétrica

Tabela 1. Dados da Capacidade de Geração de EE

Itens	Unidade	Valor
Potência	MW	24,00
Garantia Física	MWmed	18,26
GF Ajustada (CG)	MWmed	17,80
Fator Capacidade Máx	%	83
Fator Disponibilidade	%	76,10
Perdas Transmissão	%	2,50

^{*} Contribuição técnica ao 38º Seminário de Balanços Energéticos Globais e Utilidades e 32º Encontro de Produtores e Consumidores de Gases Industriais, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.

Com base nos dados acima, a instalação de TRT terá disponibilidade máxima de geração bruta de 160.000MWh/ano.

Como disponibilidade de energia exportável, já considerando as perdas de transmissão, tem-se 156.000 MWh/ano como energia vendável.

3.3 Dados / Premissas básicas

- Vida útil da instalação: 10 anos (para efeito de cálculo econômico);
- Custo capital: 12 % aa;
- Investimento necessário para instalação da turbina e todos os sistemas auxiliares necessários: R\$ 98.000.000,00;
- OPEX: R\$ 650.000,00/ano

3.4 Cálculo da Receita Anual da Energia Vendável (RAE)

Considerando-se um valor líquido de $\frac{R\$166,00}{MWe}$ para uma tarifa média de venda de energia, negociável no mercado, tem-se:

RAE =

Disponibilidade líquida de EE exportável * tarif a líquida média de veda de EE (Equação 1)

$$RAE = 56.000 \frac{MWh}{ano} * 166 \frac{R\$}{MWh}$$

 $RAE = 25.896.000,00 \frac{R\$}{ano}$

3.5 Cálculo da Receita Líquida Anual (RLA)

$$RLA = RAE - OPEX anual$$
 (Equação 2)

RLA = 25.896.000 - 650.000) RLA = 25.246.000,00

Desconsiderando o valor anual de OPEX, tem-se uma receita líquida anual de R\$ 25.246.000,00.

3.6 Resumo do Estudo de Viabilidade Econômica

3.6.1 Cálculo do Valor Presente Líquido (VPL)

$$VPL = -I + \sum_{t=1}^{n} \frac{FC_{t}}{(1+K)^{t}}$$
 (Equação 3)

Onde:

- I = investimento:
- FC = fluxo de caixa;
- K = Custo de capital;
- t = tempo;
- n = vida útil do empreendimento.

VPL = R\$44.645.531.00

3.6.2 Cálculo da Taxa Interna de Retorno (TIR)

$$I = -I + \sum_{t=1}^{n} \frac{FC_{t}}{(1+TIR)^{t}}$$
 (Equação 4)

Onde:

- n = vida útil do empreendimento;
- FC = fluxo de caixa;
- TIR = taxa interna de retorno:
- t = tempo;
- I = investimento.

TIR = 22:%

3.6.3 Cálculo de Payback

Payback = 5.5 anos

4 CONCLUSÃO

A instalação de uma turbina de recuperação de gás de topo no Alto Forno de uma planta siderúrgica, com a finalidade de gerar energia elétrica para consumo próprio ou exportação (venda) pode ser uma alternativa viável tecnicamente e economicamente apesar de um payback relativamente longo para a realidade brasileira. No entanto, em muitos casos, a TRT pode ser um fator importante na melhoria da eficiência e até mesmo, no aumento da competitividade da planta.

REFERÊNCIAS

- 1 Bartels von Varnbüler. Kuttner TRT Study, Essen; 2014.
- 2 Barros Jr JLM. Integração de Utilidades, Recuperação de Calor e Cogeração em Sistemas de aquecimento de fluido térmico (pós-graduação). Rio de Janeiro: CEFET; 2002.
- Buarque, Cristovan. Avaliação Econômica de Projetos. 7ª edição. Rio de Janeiro: Campus, 1984.
- 4 Barros Jr JLM. Geração de Energia Elétrica (Mestrado). Rio de Janeiro; 2009.
- 5 Brasil Energia nº 437, "Indicadores" edição Brasil Energia; 2017.

^{*} Contribuição técnica ao 38º Seminário de Balanços Energéticos Globais e Utilidades e 32º Encontro de Produtores e Consumidores de Gases Industriais, parte integrante da ABM Week, realizada de 02 a 06 de outubro de 2017, São Paulo, SP, Brasil.