The University Interscholastic League Number Sense Test • HS SAC • 2015

	rumber bense		
			Final
Contestant's Number			2nd
			1st
Read directions carefully before beginning test		UNFOLD THIS SHEET L TOLD TO BEGIN	Score Initials
80 problems. Solve accurately and SOLVED MENTALLY. Make	d quickly as many as you can in no calculations with paper ar with a (*) require approxim	nis test gives the signal to begin. This in the order in which they appear. AL id pencil. Write only the answer in ate integral answers; any answer to a problems require exact answers.	L PROBLEMS ARE TO BE the space provided at the end of
The person conducting this cor	ntest should explain these di	rections to the contestants.	
	STOP	WAIT FOR SIGNAL!	
(1) 915 + 519 =		(18) CCLVIII =	(Arabic Numeral)
(2) 337 — 245 =		(19) 2 yards + 1 foot =	inches
(3) 231 × 4 =		*(20) 92015 ÷ 498 =	
(4) 2418 ÷ 6 =		$(21) \ 3^2 + 9^2 = \underline{\hspace{1cm}}$	
(5) 44% =	(proper fraction)	(22) $9 + 15 - 10 - 1 -$	5 =
(6) $3\frac{4}{5} = $	(decimal)	(23) If 6 eggs cost 78¢ then	9 eggs cost \$
(7) 0.125 =	(proper fraction)	$(24) \ 2+4+6+8++1$	18 + 20 =
(8) $8 + 12 \times 4 \div 6 = $		_	numbers less than 10 is
(9) $16^2 = $		$(26) \sqrt[3]{729} = \underline{\hspace{1cm}}$	
*(10) 2016 + 201 + 216 + 26 = _		(27) 15% of $233\frac{1}{3} = $	
$(11) \ 1\frac{1}{2} + 2\frac{2}{3} = \underline{\hspace{1cm}}$		(28) Let $x = -5$. Find $4 + 3$	3x
$(12) 64 \times 25 = $		(29) Set $m = \{m,e,n,t,a,l\}$ and $M = \{m,a,t,h\}$. $M \cup m$ contains how many distinct elements?	
(13) 345 ÷ 9 has a remainder of		*(30) $2\frac{1}{4} \times 92015 \div 9 = $	
(14) 15% of 38 =		(31) 44 base 5 in base 10 is	
, 11		(32) If $5 - 2x = 3$, then $2 +$	3x =
$(16) \ 2\frac{2}{3} - 1\frac{1}{2} = \underline{\hspace{1cm}}$			(proper fraction)
(17) The GCD of 28, 56, and 63	is		

- $(34) \ 2\frac{2}{3} \times 1\frac{1}{2} = \underline{\hspace{1cm}}$
- (35) $(17 \times 22 + 35) \div 4$ has a remainder of _____
- (36) 37 × 43 = _____
- (37) $12 \times \frac{13}{14} =$ _____ (mixed number)
- (38) The perimeter of a rectangle with a of length of 4.25" and a width of 3.25" is ______ inches
- (39) If a = 13 and b = 8, then $a^2 + 2ab + b^2 = ______$
- *(40) $\sqrt{91015} =$
- (41) 20% of 30 40% of 50 is _____
- (42) Let $12^3 \times 12^{-5} = 12^k$. Find k.
- $(43) 13 \times 15 + 1 =$
- (44) The midpoint of the segment with endpoints (1, 3) and (5, 7) is (x, y). Find x + y.
- $(45) \ \ 234_7 + 56_7 = \underline{\hspace{1cm}}_7$
- (46) The leg opposite the 30° angle in a right triangle is 6 inches. The hypotenuse is _____ inches
- (47) If $5^{-1} + x^{-1} = 2^{-1}$ then x =_____
- (48) The product of the roots of $(x + 3)^2 = 0$ is _____
- (49) The least value of x such that $|x-1| \le 3$ is _____
- *(50) $15^2 \times 11^3 =$
- (51) (5+6i)(5-6i) = (a+bi). Find (a+b).
- (52) The number of Platonic solids is _____
- (53) Find the 8th term of the arithmetic sequence, 11, 8, 5, 2,
- $(54) \ \frac{3!}{4!} = \underline{\hspace{1cm}}$
- $(55) \ _{8}C_{6} _{8}P_{2} =$
- (56) How many subsets containing only 4 elements does the set {p,r,e,c,a,l} have?
- (57) The sum of the terms in the 4th row of Pascal's triangle is _____

- $(58) 151 \times 212 =$
- *(60) 69875 ÷ 142.857 = _____
 - (61) The sum of the positive integral divisors of 20 is $_$
 - (62) $(x^3 6x 10) \div (x 2)$ has a remainder of _____
 - (63) Find k if $\begin{vmatrix} k & 3 \\ 2 & -5 \end{vmatrix} = 7$. k =______
 - (64) If $\log_5(2x+1) = 3$ then x =_____
 - (65) The volume of a cone with a diameter of 8" and a height of 12" is ______ π cu. in
 - (66) Change 0.22 base 4 to a base 8 decimal. ______8
 - (67) The Greatest Integer Function is written as f(x) = [x]. Find $\left[\sin 30^{\circ} + \cos 30^{\circ}\right]$.
 - (68) $F(x) = 3x^2 1$. G(x) = 3 + 2x. $F(G(-1)) = ______$
 - (69) $\sin^2(\frac{2\pi}{3}) + \cos^2(\frac{2\pi}{3}) =$
- *(70) $(2+4+6+8+10+12+14)^2 =$ _____
- (71) The sum of the first 3 pentagonal numbers is _____
- (72) The first four digits of the decimal for $\frac{16}{90}$ is 0.____
- (73) $11^{10} \div 9$ has a remainder of _____
- (74) The domain of the function $\sqrt{2-3t}$ is $t \le$ _____
- (75) If $f(x) = 1 + \frac{2x 3}{4}$, then $f^{-1}(5) = \underline{\hspace{1cm}}$
- (76) Let $f(x) = x^3 5x^2 + 2x + 4$. Find f'(3) =_____
- $(77) \int_{1}^{2} (2x-1) \, dx = \underline{\hspace{1cm}}$
- (78) Round $3\sqrt{2}$ to the nearest tenth.
- (79) The minimum value of $f(x) = 3(x-2)^2 + 5$ is
- *(80) The interest on \$5000 for 5 years at 5.5% compounded annually is ______ dollars