Universidade de Évora

Curso de Engenharia Informática

Sistemas Digitais

Relatório do Trabalho da componente prática 2018/2019

Controlo de Semáforos

Daniel Montinho- nº41894

João Silveirinha-nº42575

Leonardo Catarro-nº43025

<u>Índice</u>

Introdução	3
Escolha dos Flip-flops. Porquê?	4
Módulo para semáforo dos peões	5
Tabela de transição de estados e saídas	6
Equações das entradas dos Flip-flops	7
Equações das saídas	10
Circuito do Módulo	12
Módulo para semáforo dos veículos	13
Tabela de transição de estados e saídas	14
Equações das entradas dos Flip-flops Equações das saídas	
Circuito do Módulo	17
Display de 7 Segmentos	18
Tabela de transição de estados e saídas	18
Equações das entradas dos Flip-flops	19
Equações das saídas	20
Circuito do display	21
Circuito Final	22
Conclusão	23

<u>Introdução</u>

Para este trabalho foi-nos solicitado a realização de um circuito de controlo de semáforos, que incluía um semáforo de peões, com um contador que mostrasse aos peões os ciclos que faltam para este saísse do verde, e um semáforo de veículos. Estes semáforos deveriam ser implementados em módulos diferentes, fazendo com que cada um funcionasse autonomamente. Por fim, deveríamos construir um circuito final em que os ligaríamos fazendo-os funcionar simultaneamente de acordo com os tempos/ciclos de relógio solicitados.

Escolha dos Flip-Flops. Porquê?

Para o desenvolvimento deste projeto foram escolhidos os flip-flops JK, pois são os de mais fácil construção e aqueles que nos dão as equações mais simplificadas. Aspeto, este que garantirá uma menor dimensão ao circuito, facilitando a sua compreensão. Embora, tenhamos que fazer um maior número de mapas de Karnaugh.

→ Tabela de excitação dos flip-flops JK:

Qn	Qn+1	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

Módulo para semáforo dos peões

Entradas: E (sensor de velocidade ou botão);

Saídas:VM (vermelho), AM (amarelo), VE (verde), EC (entrada módulo veículos).

→ Diagrama de Transição de Estados:

Tabela de transição de estados e saídas

Entradas	Estados					Saío	las					
		Qn			Qn+1							
E	Х3	X2	X1	X0	Х3	X2	X1	X0	VM	AM	VE	EC
0	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	1	1	0	0	0
Х	0	0	0	1	0	0	1	0	1	0	0	0
Х	0	0	1	0	0	0	1	1	1	0	0	0
Х	0	0	1	1	0	1	0	0	1	0	0	0
Х	0	1	0	0	0	1	0	1	0	0	1	0
X	0	1	0	1	0	1	1	0	0	0	1	0
Х	0	1	1	0	0	1	1	1	0	0	1	0
Х	0	1	1	1	1	0	0	0	0	0	1	0
X	1	0	0	0	1	0	0	1	0	0	1	0
Х	1	0	0	1	1	0	1	0	0	0	1	0
X	1	0	1	0	1	0	1	1	0	0	1	0
X	1	0	1	1	1	1	0	0	0	0	1	0
Х	1	1	0	0	1	1	0	1	0	1	0	0
Х	1	1	0	1	1	1	1	0	0	1	0	0
Х	1	1	1	0	0	0	0	0	1	0	0	1

Equações das entradas dos Flipflops

→ Mapas de Karnaugh(J):

Para J3:

E=0

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	Х	Х	х	Х
10	Х	х	Х	х

E=1

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	Х	Х	Х	Х
10	Х	Х	Х	Х

 $J3 = x2x1x0\overline{E} + x2x1x0E$

Para J2:

E=0

x3x2\x1x0	00	01	11	10
00	0	0	1	0
01	Х	Х	Х	Х
11	Х	Х	Х	х
10	0	0	1	0

E=1

x3x2\x1x0	00	01	11	10
00	0	0	1	0
01	Х	х	Х	х
11	Х	Х	Х	Х
10	0	0	1	0

 $J2 = x1x0\overline{E} + x1x0\overline{E}$

Para J1:

E=0

x3x2\x1x0	00	01	11	10
00	0	1	х	Χ
01	0	1	Х	Χ
11	0	1	Х	Х
10	0	1	х	Х

E=1

x3x2\x1x0	00	01	11	10
00	0	1	х	Х
01	0	1	х	Х
11	0	1	х	Х
10	0	1	x	Х

 $J1 = x0\overline{E} + x0E$

Para JO:

E=0

x3x2\x1x0	00	01	11	10
00	0	1	1	х
01	Х	1	1	Х
11	Х	1	0	Х
10	Х	1	1	Х

F	=	1

x3x2\x1x0	00	01	11	10
00	1	Х	Х	1
01	1	Х	Х	1
11	1	Х	Х	0
10	1	х	Х	1

 $\textbf{J0=x3}\overline{\textbf{x2}}\overline{\textbf{E}} + \ \textbf{x2}\overline{\textbf{x1}}\overline{\textbf{E}} + \ \overline{\textbf{x3}}\textbf{x1}\overline{\textbf{E}} + \textbf{x3}\overline{\textbf{x2}}\textbf{E} + \ \overline{\textbf{x1}}\textbf{E} + \overline{\textbf{x3}}\textbf{E}$

→ Mapas de Karnaugh(K):

Para K3:

E=0

X3x2\x1x0	00	01	11	10
00	Х	Х	Х	Х
01	Х	Х	Х	х
11	0	0	х	1
10	0	0	0	0

E=1

X3x2\x1x0	00	01	11	10
00	Х	Х	Х	Х
01	Х	Х	X	х
11	0	0	Х	1
10	0	0	0	0

 $K3 = x2x1\overline{E} + x2x1E$

Para K2:

E=0

x3x2\x1x0	00	01	11	10
00	Х	Х	x	х
01	0	0	1	0
11	0	0	х	1
10	х	Х	х	х

E=1

x3x2\x1x0	00	01	11	10
00	Х	Х	X	Х
01	0	0	1	0
11	0	0	Х	1
10	Х	Х	(x)	х

 $K2=x1x0\bar{E} + +x3x1\bar{E} + x1x0E + x3x1E$

Para K1:

E=0

x3x2\x1x0	00	01	11	10
00	Х	Х	1	0
01	0	х	1	0
11	X	Х	Х	1
10	Х	X	1	0

E=1

x3x2\x1x0	00	01	11	10
00	Х	Х	1	0
01	Х	х	1	0
11	Х	Х	Х	1
10	Х	X	1	0

 $K1=x0\bar{E} + x3x2\bar{E} + x0E + x3x2E$

Para KO:

E=0

x3x2\x1x0	00	01	11	10
00	X	1	1	X
01	Х	1	1	Х
11	Х	1	1	Х
10	Х	1	Х	x

E=1

x3x2\x1x0	00	01	11	10
00	Х	1	1	Х
01	Х	1	1	х
11	Х	1	1	х
10	X	1	Х	x

K0=1

Equações das saídas

Para VM:

E=0

x3x2\x1x0	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	Х	1
10	0	0	0	0

E=1

X3x2\x1x0	00	01	11	10
00	1	1	1	1
01	0	0	0	0
11	0	0	Х	1
10	0	0	0	0

 $VM = \overline{x3}\overline{E}\overline{x2} + x3x2x1\overline{E} + \overline{x3}\overline{x2}E + x3x2x1E$

Para AM:

E=0

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	Х	0
10	0	0	0	0

E=1

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	Х	0
10	0	0	0	0

AM= $x3x2\overline{x1} \overline{E} + x3x2\overline{x1}E$

Para VE:

E=0

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	Х	0
10	1	1	1	1

E=1

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	Х	0_
10	1	1	1	1

 $VE = \overline{x3}x2\overline{E} + x3\overline{x2}\overline{E} + \overline{x3}x2E + x3\overline{x2}E$

Para EC:

E=0

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	Х	1
10	0	0	0	0

E=1

X3x2\x1x0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	Х	1
10	0	0	0	0

 $VE = x3x2x1\overline{E} + x3x2x1E$

Circuito do Módulo

Fig.1: Circuito do semáforo dos peões

Módulo para semáforo dos veículos

Entradas: E (Botão ou Sensor de Movimento); EC (Entrada módulo veículos)

Saídas: VM (vermelho); AM (amarelo); VE (verde)

→ Diagrama de Transição de Estados:

Tabela de transição de estados e saídas

Entr	adas	Q	(n	Qr	ı +1		Saídas	
E	EC	X1	X0	X1	X0	VM	AM	VE
0	Х	0	0	0	0	0	0	1
1	Х	0	0	0	1	0	0	1
Х	Х	0	1	1	0	0	1	0
Х	Х	1	0	1	1	0	1	0
Х	0	1	1	1	1	1	0	0
Х	1	1	1	0	0	1	0	0

Equações das entradas dos Flipflops

→ Mapas de Karnaugh(J):

Para J1:

Para J	M	•	
i aia j	U	•	

E EC\x1x0	00	01	11	10
00	0	1	Х	Χ
01	0	1	Х	Х
11	0	1	Х	Х
10	0	1	X	Х

E EC\x1x0	00	01	11	10
00	0	х	Х	1
01	0	х	Х	1
11	1	Х	Х	1
10	1	Х	Х	1

J1 = x0 J0 = E + x1

→ Mapas de Karnaugh(K):

Para K1:

Pai	ra l	KC	١٠
Га		NU	٠.

E EC\x1x0	00	01	11	10
00	Х	Х	0	0
01	Х	X	1	0
11	Х	Х	1	0
10	Χ	Х	0	0

E EC\x1x0	00	01	11	10
00	0	Х	Х	1
01	0	Х	Х	1
11	1	Х	Х	1
10	1	Х	X	1

K1= ECx0 J0= E + $\overline{x1}$

Equações das saídas

Para VM: Para AM:

E EC\x1x0	00	01	11		10
00	0	0	1		0
01	0	0	1	Τ	0
11	0	0	1	Τ	0
10	0	0	1	Ţ	0

E EC\x1x0	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

VM= x1x0 AM= $\overline{x1}$ x0 + x1 $\overline{x0}$ = x1 \oplus x0

Para VE:

E EC\x1x0	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	1	0	0	0
10	1	0	0	0

 $VE = \overline{x1} \ \overline{x0}$

Circuito do Módulo

Fig.2: Circuito do semáforo dos veículos

Display de 7 Segmentos

Para este trabalho foi-nos solicitado a utilização de um display de 7 segmentos que iria mostrar para os peões quantos ciclos faltam para o semáforo dos peões sair de verde.

Tabela de transição de estados e saídas

Estados					Saídas							
	Qn			Qn+	1							
x2	x1	х0	x2	x1	х0	S0	S1	S2	S3	S4	S5	S6
0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	1	0	1	0	1	1	1	0	0	0	0
0	1	0	0	1	1	1	0	1	1	1	1	1
0	1	1	1	0	0	1	0	1	1	0	1	1
1	0	0	1	0	1	0	1	1	0	0	1	1
1	0	1	1	1	0	1	1	1	1	0	0	1
1	1	0	1	1	1	1	1	0	1	1	0	1
1	1	1	0	0	0	0	1	1	0	0	0	0

Equações de entradas dos Flip-flops

Para J2:

Pa	ra	K)	
гα	ıa	ᇇᄼ	

x2\x1x0	00	01	11	10
00	0	0	1	0
01	Х	Х	X	Χ

x2\x1x0	00	01	11	10
00	Х	Х	X	Х
01	0	0	1	0

J2 = x1x0

K2=x1x0

Para J1:

Pa	ra	K1	
Ра	1 1	\sim 1	_

x2\x1x0	00	01	11	10
00	0	1	Х	Х
01	0	1	х	Х

x2\x1x0	00	01	11	10
00	Χ	Х	1	0
01	Х	Х	1	0

J1 = x0

K1=x0

Para JO:

Para KO:

x2\x1x0	00	01	11	10
00	1	Х	Х	1
01	1	Х	Х	1

x2\x1x0	00	01	11	10
00	X	1	1	X
01	Х	1	1	Х

J0=1

K0=1

Equações das saídas

Para SO:

x2\x1x0	00	01	11	10
00	1	1	1	1
01	0	1	0	1

 $S0 = \overline{x2} + \overline{x1}x0 + x1\overline{x0} = \overline{x2} + x1 \oplus x0$

Para S1:

x2\x1x0	00	01	11	10
00	1	1	0	0
01	1	1	1	1

 $S1 = x2 + \overline{x1}$

Para S2:

x2\x1x0	00	01	11	10
00	1	1	1	1
01	1	1	1	0

 $S2 = \overline{x2} + \overline{x1} + x0$

Para S3:

x2\x1x0	00	01	11	10
00	1	0	1	1
01	0	1	0	1

S3= $x2\overline{x1}x0 + \overline{x2}\overline{x0} + \overline{x2}x1 + x1\overline{x0}$

Para S4:

x2\x1x0_	00	01	11	10
00	1	0	0	1
01	0	0	0	1

Para S5:

x2\x1x0	00	01	11	10
00	1	0	1	1
01	1	0	0	0

 $S4=\overline{x2}\ \overline{x0} + x1\overline{x0}$ $S5=\overline{x1}\ \overline{x0} + \overline{x2}x1$

Para S6:

x2\x1x0	00	01	11	10
00	1	0	1	1
01	1	1	0	1

 $S6 = \overline{x0} + x2\overline{x1} + \overline{x2}x1 = \overline{x0} + x2 \oplus x1$

Circuito do Display

Fig.3: Circuito do Display de 7 segmentos

Circuito Final

Fig.4: Circuito Final do Controlo de Semáforos

→Número de Portas Utilizadas:

Módulo dos Peões:

-34 portas AND;

-11 portas OR;

-17 portas NOT;

-3 flip-flops JK;

Módulo dos Veículos:

-3 portas AND;

-2 portas OR;

-2 portas XOR;

-2 flip-flops JK.

Display de 7 segmentos:

-9 portas AND;

-7 portas OR;

-2 portas XOR;

-3 flip-flops JK

Conclusão

Embora tenha sido um trabalho desafiante, derivado á facilidade e ás inúmeras possibilidades de errar, é um projeto que carece de alguma concentração. Foi um trabalho no qual conseguimos ultrapassar as nossas dificuldades no desenvolvimento de sistemas síncronos simples. Conseguimos, ainda, ultrapassar os nossos problemas relativamente ao funcionamento dos Flip-flops, entendendo melhor o seu funcionamento. Por último, compreender o funcionamento de algo do nosso quotidiano que é o funcionamento dos semáforos. Com tudo isto, evoluímos e melhoramos as nossas capacidades e conhecimentos na cadeira de Sistemas Digitais.