Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 9: Introduction to Cryptography" Date and time: 2020/09/04 10:36 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others

NOTES

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	6		
DES & AES	18		
Fields and Modular Arithmetics	16		
Hash Functions, Digital Signature and Cryptographic Protocols	13		
Public Key Cryptography	13		
Quantum Cryptography	24		
Sum	90		
Grade: .			
Date of the review of the exam: .			

uestion 1: Basics	[6 Points]
(a) [6 Points] Describe message authentication u	using a secret/public key pair with a picture.

(a) [12 Points] Show how to compute the DES-Decrypt function on the same level as the picture given here.

0)	[6 Points]	Describe the Shift-Rows operator of AES for given shift parameters.		

estion 3: Fields and Modular Arithi	netics	[16 Points]
(a) [4 Points] State the theorem of Galois.		

 answer.			

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [13 Points]

system.	 			

	O	uestion	5 :	Public	Kev	Crypto	gran	h	V
--	---	---------	------------	---------------	-----	--------	------	---	---

[13 Points]

) [9 Points] Define the notion Give an example for a general	of a generator tor in \mathbb{Z}_3^* .	s/primitive roo	ts of \mathbb{Z}_p^* (p is a	prime numbe

[4 Points] Name a motivation for the usage of elliptic curve cryptography.			

	ım Cryptography	[24 Points]
[6 Points] Give	a mathematical description of the Ket-notati	from $\langle x $ and $ s\rangle$. What is $\langle x s\rangle$?

(b) [12 Points] Analyse the following quantum circuit and describe the output.

1> H H	
$ \cdot 0 angle + \cdot 1 angle$	
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
$ \cdot 0\rangle + \cdot 1\rangle$	
Output 0 with probability	
Output 1 with probability	

[6 Points] What does the No-Clone theorem Podolski-Rosen pairs?	m state. What is	the relationship to	Einstein-