SMART INDIA HACKATHON 2024

- Problem Statement ID 1647
- Problem Statement Title AI-ML models for predicting prices of pulses and vegetables (onion, potato).
- Theme Agriculture, FoodTech & Rural Development
- PS Category- Software
- Team ID FOTIH24_123
- Team Name (Registered on portal) Cluster Innovators

AgriWatch

SMART INDIA HACKATHON 2024

Real Time Price Monitoring & Forecasting

Proposed Solution

A. AI-ML Based Price Prediction Model

- Algorithm-Driven Forecasting: Uses advanced AI-ML algorithms like ARIMA, LSTM, and Random Forest for accurate price predictions.
- Comprehensive Data Inputs: Integrates data from historical trends, seasonality, and market intelligence for better decision-making.

B. Cross-Platform Availability (App & Website)

- **Real-Time Access**: The solution is accessible via a **mobile app** and **website**, allowing users to monitor prices and trends from any device.
- User-Friendly Design: Offers an intuitive interface for both government officials and farmers, featuring region-specific price reports and visual analytics.

! Innovation & Uniqueness

- a. Timely Decision-Making: By providing early and accurate price forecasts, the solution helps prevent sudden price spikes or drops, allowing the government to release buffer stocks strategically and maintain market balance.
- b. Reduced Manual Dependency:
 Automates data analysis by
 incorporating AI-driven insights,
 cutting down the reliance on manual
 methods and speeding up the response
 to market volatility.

TECHNICAL APPROACH

Technology Stack

Work Flow Diagram

FEASIBILITY AND VIABILITY

Feasibility

- **Technological Feasibility**: The solution uses **proven AI-ML models** like ARIMA, LSTM, and Random Forest, which are well-established in time-series forecasting and can be easily implemented with existing data.
- **Data Availability**: With access to **550 price reporting centers** and historical data on commodities, there's a reliable data foundation to build accurate models.

Potential Challenges and Risks

- **Data Gaps and Inconsistencies**: Inconsistent or missing data from some price reporting centers could impact the accuracy of predictions.
- Market Volatility: Sudden, unexpected market factors (e.g., natural disasters, international price fluctuations) may cause prediction inaccuracies.

Strategies for Overcoming These Challenges

- Data Validation & Preprocessing: Implement data cleaning techniques and use machine learning algorithms that can handle
 missing or noisy data.
- Adaptive Algorithms: Employ real-time learning models that continuously adapt to new data, making the system responsive to sudden market changes and improving the reliability of predictions.

IMPACT AND BENEFITS

Positive Impact on the Target Audience

- Government Decision-Makers: Provides real-time insights for strategic market interventions, leading to better management of buffer stocks and stabilization of commodity prices.
- Farmers and Consumers: Farmers can optimize crop selling times, while consumers benefit from stable food prices, reducing the risk of sudden price hikes

Benefits of the Solution

- Economic Benefits: Reduces price volatility, stabilizing markets and protecting both farmers' incomes and consumer purchasing power.
- Social Benefits: Ensures food security by maintaining stable prices of essential commodities, positively affecting household food budgets and preventing inflation.
- Environmental Benefits: Encourages more sustainable farming practices by helping farmers plan crop cycles based
 on market demand, potentially reducing wastage and overproduction.

RESEARCH AND REFERENCES

- https://www.data.gov.in/catalog/dailyweekly-wholesale-prices
- Kaur, M., Gulati, H., & Kundra, H. (2014). Data mining in agriculture on crop price prediction: Techniques and applications. *International Journal of Computer Applications, 99*(12), 1-3. https://doi.org/10.5120/17422-8273
- Santosa, E., Taufik, M., & Fadhil, A. (2023). Agricultural price prediction models: A systematic literature review. ResearchGate. Retrieved from https://www.researchgate.net/publication/375503481 Agricultural Price Prediction Models A System atic Literature Review