TASK 2

Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.

```
In [116]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from warnings import filterwarnings
    filterwarnings(action='ignore')

In [117]: pd.set_option('display.max_columns',10,'display.width',1000)
    train = pd.read_csv('train.csv')
    test = pd.read_csv('test.csv')
    train.head()
```

Out[117]:

	Passengerld	Survived	Pclass	Name	Sex	 Parch	Ticket	Fare	Cabin	Emb
0	1	0	3	Braund, Mr. Owen Harris	male	 0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	 0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	 0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	 0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	 0	373450	8.0500	NaN	

5 rows × 12 columns

In [118]: train.shape
Out[118]: (891, 12)

```
In [119]: test.shape
Out[119]: (418, 11)
In [120]: #Checking for Null values
          train.isnull().sum()
Out[120]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                          177
          Age
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
                            2
          dtype: int64
In [121]: test.isnull().sum()
Out[121]: PassengerId
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
          Age
                           86
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            1
          Cabin
                          327
          Embarked
                            0
          dtype: int64
```

In [122]: #Description of data set
 train.describe(include="all")

Out[122]:

	Passengerld	Survived	Pclass	Name	Sex	 Parch	Ticket	Fare
count	891.000000	891.000000	891.000000	891	891	 891.000000	891	891.000000
unique	NaN	NaN	NaN	891	2	 NaN	681	NaN
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	 NaN	347082	NaN
freq	NaN	NaN	NaN	1	577	 NaN	7	NaN
mean	446.000000	0.383838	2.308642	NaN	NaN	 0.381594	NaN	32.204208
std	257.353842	0.486592	0.836071	NaN	NaN	 0.806057	NaN	49.693429
min	1.000000	0.000000	1.000000	NaN	NaN	 0.000000	NaN	0.000000
25%	223.500000	0.000000	2.000000	NaN	NaN	 0.000000	NaN	7.910400
50%	446.000000	0.000000	3.000000	NaN	NaN	 0.000000	NaN	14.454200
75%	668.500000	1.000000	3.000000	NaN	NaN	 0.000000	NaN	31.000000
max	891.000000	1.000000	3.000000	NaN	NaN	 6.000000	NaN	512.329200

11 rows × 12 columns

In [123]: numeric_columns = train.select_dtypes(include=[np.number])
 mean_values = numeric_columns.groupby(train['Survived']).mean()
 print(mean_values)

	PassengerId	Survived	Pclass	Age	SibSp	Parch	
Fare							
Survived							
0	447.016393	0.0	2.531876	30.626179	0.553734	0.329690	2
2.117887							
1	444.368421	1.0	1.950292	28.343690	0.473684	0.464912	4
8.395408							

```
In [124]: correlation_matrix = train.corr()
print(correlation_matrix)
```

```
PassengerId Survived
                                 Pclass
                                             Age
                                                    SibSp
                                                             Parch
Fare
              1.000000 -0.005007 -0.035144 0.036847 -0.057527 -0.001652
PassengerId
0.012658
Survived
             -0.005007 1.000000 -0.338481 -0.077221 -0.035322 0.081629
0.257307
Pclass
             -0.035144 -0.338481 1.000000 -0.369226 0.083081 0.018443 -
0.549500
              0.036847 -0.077221 -0.369226 1.000000 -0.308247 -0.189119
Age
0.096067
SibSp
             -0.057527 -0.035322 0.083081 -0.308247 1.000000 0.414838
0.159651
Parch
             -0.001652 0.081629 0.018443 -0.189119 0.414838
                                                         1.000000
0.216225
              Fare
1.000000
```

```
In [125]: male_ind = len(train[train['Sex'] == 'male'])
print("No of Males in Titanic:", male_ind)
```

No of Males in Titanic: 577

```
In [126]: female_ind = len(train[train['Sex'] == 'female'])
print("No of Females in Titanic:",female_ind)
```

No of Females in Titanic: 314

```
In [127]: import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
gender = ['Male', 'Female']
index = [577, 314]
ax.bar(gender, index, color=['blue', 'red'])
plt.xlabel("Gender")
plt.ylabel("No of people onboarding ship")
plt.show()
```



```
In [128]: alive = len(train[train['Survived'] == 1])
dead = len(train[train['Survived'] == 0])
```

In [129]: train.groupby('Sex')[['Survived']].mean()

Out[129]:

Survived

Sex | female | 0.742038 male | 0.188908

```
In [130]: fig = plt.figure()
    ax = fig.add_axes([0,0,1,1])
    status = ['Survived','Dead']
    ind = [alive,dead]
    ax.bar(status,ind, color=['#2ecc71', '#e74c3c'])
    plt.xlabel("Status")
    plt.show()
```



```
In [131]: plt.figure(1)
    train.loc[train['Survived'] == 1, 'Pclass'].value_counts().sort_index().plot.k
    plt.title('Bar graph of people according to ticket class in which people survi
    plt.xlabel('Ticket Class')
    plt.ylabel('Number of Survivors')

plt.figure(2)
    train.loc[train['Survived'] == 0, 'Pclass'].value_counts().sort_index().plot.k
    plt.title('Bar graph of people according to ticket class in which people coulc
    plt.xlabel('Ticket Class')
    plt.ylabel('Number of Non-Survivors')

plt.show()
```


Bar graph of people according to ticket class in which people couldn't survive


```
In [132]:
          plt.figure(1)
          age survived = train.loc[train.Survived == 1, 'Age']
          plt.title('The histogram of the age groups of the people that had survived')
          plt.hist(age survived, bins=np.arange(0, 100, 10), color='#2ecc71', edgecolor=
          plt.xticks(np.arange(0, 100, 10))
          plt.xlabel('Age Groups')
          plt.ylabel('Number of Survivors')
          plt.figure(2)
          age_not_survived = train.loc[train.Survived == 0, 'Age']
          plt.title('The histogram of the age groups of the people that couldn\'t survi√
          plt.hist(age_not_survived, bins=np.arange(0, 100, 10), color='#e74c3c', edgec
          plt.xticks(np.arange(0, 100, 10))
          plt.xlabel('Age Groups')
          plt.ylabel('Number of Non-Survivors')
          plt.show()
```



```
In [133]: train[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_va
```

Out[133]:

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

In [134]: train[["Pclass", "Survived"]].groupby(['Pclass'], as_index=False).mean().sort_

Out[134]:

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

In [135]: train[["Age", "Survived"]].groupby(['Age'], as_index=False).mean().sort_values

Out[135]:

	Age	Survived
0	0.42	1.0
1	0.67	1.0
2	0.75	1.0
3	0.83	1.0
4	0.92	1.0
83	70.00	0.0
84	70.50	0.0
85	71.00	0.0
86	74.00	0.0
87	80.00	1.0

88 rows × 2 columns

```
In [136]: train[["Embarked", "Survived"]].groupby(['Embarked'], as_index=False).mean().s
```

Out[136]:

	Embarked	Survived
0	С	0.553571
1	Q	0.389610
2	S	0.336957

```
In [137]: fig = plt.figure()
    ax = fig.add_axes([0, 0, 1, 1])
    ax.axis('equal')
    l = ['C = Cherbourg', 'Q = Queenstown', 'S = Southampton']
    s = [0.553571, 0.389610, 0.336957]
    ax.pie(s, labels=l, autopct='%1.2f%%', colors=['#3498db', '#e74c3c', '#2ecc71
    plt.show()
```



```
In [138]: test.describe(include="all")
```

Out[138]:

	Passengerld	Pclass	Name	Sex	Age	 Parch	Ticket	Fare
count	418.000000	418.000000	418	418	332.000000	 418.000000	418	417.000000
unique	NaN	NaN	418	2	NaN	 NaN	363	NaN
top	NaN	NaN	Kelly, Mr. James	male	NaN	 NaN	PC 17608	NaN
freq	NaN	NaN	1	266	NaN	 NaN	5	NaN
mean	1100.500000	2.265550	NaN	NaN	30.272590	 0.392344	NaN	35.627188
std	120.810458	0.841838	NaN	NaN	14.181209	 0.981429	NaN	55.907576
min	892.000000	1.000000	NaN	NaN	0.170000	 0.000000	NaN	0.000000
25%	996.250000	1.000000	NaN	NaN	21.000000	 0.000000	NaN	7.895800
50%	1100.500000	3.000000	NaN	NaN	27.000000	 0.000000	NaN	14.454200
75%	1204.750000	3.000000	NaN	NaN	39.000000	 0.000000	NaN	31.500000
max	1309.000000	3.000000	NaN	NaN	76.000000	 9.000000	NaN	512.329200

11 rows × 11 columns

Y=train['Survived']

```
In [139]: train = train.drop(['Ticket'], axis = 1)
    test = test.drop(['Ticket'], axis = 1)

In [140]: train = train.drop(['Cabin'], axis = 1)
    test = test.drop(['Cabin'], axis = 1)

In [141]: if 'Name' in train.columns:
        train = train.drop(['Name'], axis=1)
    if 'Name' in test.columns:
        test = test.drop(['Name'], axis=1)

In [142]: #Feature Selection
    column_train=['Age','Pclass','SibSp','Parch','Fare','Sex','Embarked']
    #training values
    X=train[column_train]
    #target value
```

```
In [143]: |X['Age'].isnull().sum()
          X['Pclass'].isnull().sum()
          X['SibSp'].isnull().sum()
          X['Parch'].isnull().sum()
          X['Fare'].isnull().sum()
          X['Sex'].isnull().sum()
          X['Embarked'].isnull().sum()
Out[143]: 2
In [144]: | X['Age']=X['Age'].fillna(X['Age'].median())
          X['Age'].isnull().sum()
Out[144]: 0
In [145]: X['Embarked'] = train['Embarked'].fillna(method ='pad')
          X['Embarked'].isnull().sum()
Out[145]: 0
In [146]: | d={'male':0, 'female':1}
          X['Sex']=X['Sex'].apply(lambda x:d[x])
          X['Sex'].head()
Out[146]: 0
               0
               1
               1
          2
          3
               1
          Name: Sex, dtype: int64
In [147]: | e={'C':0, 'Q':1, 'S':2}
          X['Embarked']=X['Embarked'].apply(lambda x:e[x])
          X['Embarked'].head()
Out[147]: 0
               2
               0
          2
               2
               2
          3
               2
          Name: Embarked, dtype: int64
In [148]: | from sklearn.model_selection import train_test_split
          X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_s
```

```
In [149]:
          from sklearn.linear_model import LogisticRegression
          model = LogisticRegression()
          model.fit(X_train,Y_train)
          Y pred = model.predict(X test)
          from sklearn.metrics import accuracy_score
          print("Accuracy Score:",accuracy_score(Y_test,Y_pred))
          Accuracy Score: 0.7574626865671642
In [150]:
          from sklearn.metrics import accuracy score, confusion matrix
          confusion mat = confusion matrix(Y test,Y pred)
          print(confusion mat)
          [[130 26]
           [ 39 73]]
In [151]: | from sklearn.svm import SVC
          model1 = SVC()
          model1.fit(X_train,Y_train)
          pred_y = model1.predict(X_test)
          from sklearn.metrics import accuracy_score
          print("Acc=",accuracy score(Y test,pred y))
          Acc= 0.6604477611940298
          from sklearn.metrics import accuracy score, confusion matrix, classification reg
In [152]:
          confusion_mat = confusion_matrix(Y_test,pred_y)
          print(confusion_mat)
          print(classification_report(Y_test,pred_y))
          [[149
                  7]
           [ 84 28]]
                         precision
                                      recall f1-score
                                                         support
                     0
                              0.64
                                        0.96
                                                  0.77
                                                              156
                     1
                              0.80
                                        0.25
                                                  0.38
                                                              112
                                                  0.66
                                                              268
              accuracy
             macro avg
                              0.72
                                        0.60
                                                  0.57
                                                              268
                                                              268
          weighted avg
                              0.71
                                        0.66
                                                  0.61
```

```
In [153]: from sklearn.neighbors import KNeighborsClassifier
    model2 = KNeighborsClassifier(n_neighbors=5)
    model2.fit(X_train,Y_train)
    y_pred2 = model2.predict(X_test)

from sklearn.metrics import accuracy_score
    print("Accuracy Score:",accuracy_score(Y_test,y_pred2))
```

Accuracy Score: 0.6604477611940298

In [154]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_reg
confusion_mat = confusion_matrix(Y_test,y_pred2)
print(confusion_mat)
print(classification_report(Y_test,y_pred2))

```
[[127 29]
 [ 62 50]]
               precision
                            recall f1-score
                                                support
           0
                    0.67
                              0.81
                                         0.74
                                                     156
           1
                    0.63
                              0.45
                                         0.52
                                                     112
    accuracy
                                         0.66
                                                     268
   macro avg
                    0.65
                              0.63
                                         0.63
                                                     268
weighted avg
                    0.66
                              0.66
                                         0.65
                                                     268
```

```
In [155]: from sklearn.naive_bayes import GaussianNB
    model3 = GaussianNB()
    model3.fit(X_train,Y_train)
    y_pred3 = model3.predict(X_test)

from sklearn.metrics import accuracy_score
    print("Accuracy Score:",accuracy_score(Y_test,y_pred3))
```

Accuracy Score: 0.7686567164179104

In [156]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_representation_mat = confusion_matrix(Y_test,y_pred3)
 print(confusion_mat)
 print(classification_report(Y_test,y_pred3))

```
[[129 27]
 [ 35 77]]
              precision
                            recall f1-score
                                                support
           0
                    0.79
                              0.83
                                         0.81
                                                     156
           1
                    0.74
                              0.69
                                         0.71
                                                    112
                                         0.77
                                                     268
    accuracy
                    0.76
                              0.76
                                         0.76
                                                     268
   macro avg
weighted avg
                    0.77
                              0.77
                                         0.77
                                                    268
```

```
In [157]: from sklearn.tree import DecisionTreeClassifier
    model4 = DecisionTreeClassifier(criterion='entropy',random_state=7)
    model4.fit(X_train,Y_train)
    y_pred4 = model4.predict(X_test)

from sklearn.metrics import accuracy_score
    print("Accuracy Score:",accuracy_score(Y_test,y_pred4))
```

Accuracy Score: 0.7425373134328358

In [158]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_representation_mat = confusion_matrix(Y_test,y_pred4)
 print(confusion_mat)
 print(classification_report(Y_test,y_pred4))

```
[[132 24]
 [ 45 67]]
              precision
                            recall f1-score
                                                support
           0
                   0.75
                              0.85
                                         0.79
                                                    156
           1
                   0.74
                              0.60
                                        0.66
                                                    112
    accuracy
                                        0.74
                                                    268
   macro avg
                   0.74
                              0.72
                                        0.73
                                                    268
                                        0.74
weighted avg
                   0.74
                              0.74
                                                    268
```

```
In [159]: results = pd.DataFrame({
    'Model': ['Logistic Regression', 'Support Vector Machines', 'Naive Bayes',
    'Score': [0.75,0.66,0.76,0.66,0.74]})

result_df = results.sort_values(by='Score', ascending=False)
result_df = result_df.set_index('Score')
result_df.head(9)
```

Out[159]:

Model

Score	
0.76	Naive Bayes
0.75	Logistic Regression
0.74	Decision Tree
0.66	Support Vector Machines
0.66	KNN