Corrigé du devoir maison 3.

Exercice 1

- **1**°) **a**) Posons, pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, $\mathcal{P}_n : \sum_{k=2}^n \binom{k}{2} = \binom{n+1}{3}$.
 - $\sum_{k=2}^{2} {k \choose 2} = {2 \choose 2} = 1$, et ${2+1 \choose 3} = 1$, donc \mathcal{P}_2 est vraie.
 - Supposons \mathcal{P}_n vraie pour un $n \in \mathbb{N}$ fixé, avec $n \geq 2$. Calculons :

$$\begin{split} \sum_{k=2}^{n+1} \binom{k}{2} &= \sum_{k=2}^{n} \binom{k}{2} + \binom{n+1}{2} \\ &= \binom{n+1}{3} + \binom{n+1}{2} \text{ par l'hypothèse de récurrence} \\ &= \binom{n+2}{3} \text{ par la fomule du triangle de Pascal} \end{split}$$

Ainsi P_{n+1} est vraie.

- Conclusion: pour tout $n \in \mathbb{N}$ tel que $n \ge 2$, $\sum_{k=2}^{n} \binom{k}{2} = \binom{n+1}{3}$.
- **b)** Pour tout $n \geq 2$,

$$\begin{split} \sum_{k=2}^{n} \left(2\binom{k}{2} + k\right) &= 2\sum_{k=2}^{n} \binom{k}{2} + \sum_{k=2}^{n} k \\ &= 2\binom{n+1}{3} + \sum_{k=1}^{n} k - 1 \quad \text{par la question précédente} \\ &= 2\frac{(n+1)!}{3!(n+1-3)!} + \frac{n(n+1)}{2} - 1 \\ &= 2\frac{(n+1)n(n-1)(n-2)!}{6(n-2)!} + \frac{n(n+1)}{2} - 1 \\ &= \frac{(n+1)n \times 2(n-1)}{6} + \frac{3n(n+1)}{6} - 1 \\ &= \frac{n(n+1)(2n-2+3)}{6} - 1 \\ &= \frac{n(n+1)(2n+1)}{6} - 1 \end{split}$$

Par ailleurs, pour tout $k \ge 2$, $2\binom{k}{2} + k = 2\frac{k(k-1)}{2} + k = k(k-1) + k = k^2$. Donc, pour tout $n \ge 2$,

$$\sum_{k=2}^{n} \left(2 \binom{k}{2} + k \right) = \sum_{k=2}^{n} k^2 = \sum_{k=1}^{n} k^2 - 1^2 = S_n - 1.$$

On retrouve donc que pour tout $n \ge 2$, $S_n = \frac{n(n+1)(2n+1)}{6}$

 $\mathbf{2}^{\circ}$) Soit $n \in \mathbb{N}^*$. Premier calcul:

$$\sum_{1 \le i \le j \le n} i = \sum_{i=1}^n \left(\sum_{j=i}^n i\right)$$

$$= \sum_{i=1}^n (n-i+1)i \quad \text{car } i \text{ est une constante vis-à-vis de } j$$

$$= \sum_{i=1}^n (n+1)i - \sum_{i=1}^n i^2$$

$$= (n+1)\sum_{i=1}^n i - S_n$$

$$= (n+1)\frac{n(n+1)}{2} - S_n$$

Second calcul:

$$\sum_{1 \le i \le j \le n} i = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} i \right)$$

$$= \sum_{j=1}^{n} \frac{j(j+1)}{2}$$

$$= \frac{1}{2} \sum_{j=1}^{n} j^{2} + \frac{1}{2} \sum_{j=1}^{n} j$$

$$= \frac{1}{2} S_{n} + \frac{1}{2} \frac{n(n+1)}{2}$$

On peut donc en déduire :

$$\frac{n(n+1)^2}{2} - S_n = \frac{1}{2}S_n + \frac{n(n+1)}{4}$$

$$\frac{n(n+1)^2}{2} - \frac{n(n+1)}{4} = \frac{3}{2}S_n$$

$$\frac{3}{2}S_n = \frac{n(n+1)}{2}\left(n+1-\frac{1}{2}\right)$$

$$\frac{3}{2}S_n = \frac{n(n+1)}{2}\frac{2n+1}{2}$$

$$S_n = \frac{n(n+1)(2n+1)}{6}$$

Exercice 2

$$\mathbf{1}^{\circ}$$
) Soit $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$.

$$\cos(2x) = 2\cos^2 x - 1 = \frac{2}{1 + \tan^2 x} - 1 = \boxed{\frac{1 - \tan^2 x}{1 + \tan^2 x}}$$

$$2^{\circ}$$
) Montrons tout d'abord $\cos A = \cos B$.

$$\cos A = \cos \left(\operatorname{Arccos} \left(\frac{5}{13} \right) \right) = \frac{5}{13}.$$

$$\operatorname{Arctan}\left(\frac{2}{3}\right) \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{donc} \operatorname{Arctan}\left(\frac{2}{3}\right) \in \mathbb{R} \setminus \left\{\frac{\pi}{2} + k\pi \ / \ k \in \mathbb{Z}\right\}, \operatorname{donc} \operatorname{par} \operatorname{la} \operatorname{question} 1,$$

$$\cos B = \cos\left(2 \operatorname{Arctan}\left(\frac{2}{3}\right)\right) = \frac{1 - \tan^2\left(\operatorname{Arctan}\left(\frac{2}{3}\right)\right)}{1 + \tan^2\left(\operatorname{Arctan}\left(\frac{2}{3}\right)\right)} = \frac{1 - \left(\frac{2}{3}\right)^2}{1 + \left(\frac{2}{3}\right)^2} = \frac{1 - \frac{4}{9}}{1 + \frac{4}{9}} = \frac{5}{13}$$

Ainsi, $\cos A = \cos B$.

De plus, par définition de Arccos, $A \in [0, \pi]$.

Par définition de Arctan,
$$-\frac{\pi}{2} < \operatorname{Arctan}\left(\frac{2}{3}\right) < \frac{\pi}{2}$$
.

De plus,
$$0 < \frac{2}{3}$$
 donc, par stricte croissance de Arctan : $0 < \operatorname{Arctan}\left(\frac{2}{3}\right)$.

Ainsi,
$$B = 2 \operatorname{Arctan}\left(\frac{2}{3}\right) \in [0, \pi].$$

$$\cos A = \cos B$$
 et A et B sont des éléments de $[0, \pi]$. Comme cos réalise une bijection de $[0, \pi]$ sur $[-1, 1]$, on en déduit que : $A = B$.