

Feb 22, 2022

S PNGase F Protocol (Non-Denaturing Reaction Conditions) V.2

New England Biolabs¹

¹New England Biolabs

1

≪

dx.doi.org/10.17504/protocols.io.be74jhqw

New England Biolabs (NEB)

Tech. support phone: +1(800)632-7799 email: info@neb.com

New England Biolabs
New England Biolabs

PNGase F is the most effective enzymatic method for removing almost all *N*-linked oligosaccharides from glycoproteins. PNGase F is an amidase, which cleaves between the innermost GlcNAc and asparagine residues of high mannose, hybrid, and complex oligosaccharides.

This is a generic PNGase F protocol for **non-denaturing reaction conditions**. It is appropriate for both <u>P0704</u> and <u>P0708</u>.

DOI

dx.doi.org/10.17504/protocols.io.be74jhqw

https://www.neb.com/protocols/2014/07/31/pngase-f-protocol

New England Biolabs 2022. PNGase F Protocol (Non-Denaturing Reaction Conditions). **protocols.io** https://dx.doi.org/10.17504/protocols.io.be74jhqw

N E I IB: II

New England Biolabs

•

pngasef, Essentials of Glycobiology, PNGase F is inhibited, deglycosylation, PNGase F denaturing reaction conditions, PNGase F non-denaturing reaction conditions

_____ protocol,

Apr 16, 2020

Feb 22, 2022

35804

- If using <u>P0704/P0708</u>, we recommend limiting PNGase F to 1/10 (or less) of the total reaction volume to keep the final glycerol concentration equal to (or less than) 5%.
- For unit conversion between different suppliers, please reference the <u>Glycobiology</u> <u>Unit Conversion Chart</u> page.

Biology Unit Conversion Chart

Reagent companies differ in how a unit of enzyme is defined. This chart can be used to help determine how a unit of enzyme from one company compares to a unit of enzyme from NEB. All enzymes were assayed using NEB's assay protocols as a means of normalization (NEB Assay).

Α	В	С	D	E	F	G	Н
Enzyme	Company	Selling Conc. (U/ml)	Units/Vial	μl/Vial	NEB Assay (U/ml)	NEB Assay Units /Vial	μl Conversion (1 NEB μl = x Company μls)
PNGase F	NEB (NEB #P0704/P0705)	500,000	15,000	30	500,000	15,000	1
	Prozyme (GKE- 5006A)	2.5	0.1	40	150,000	6,000	3.3
	Prozyme (GKE- 5020B, Ultra)	10	0.4	40	500,000	20,000	1
	QA Bio (E- PNG01)	5	0.3	60	200,000	12,000	2.5
	Sigma (P7367)	500	50	50	90,000	4,500	5.5

MATERIALS

Biolabs Catalog #P0704L

⋈ PNGase F (native) - 15,000 units New England

Biolabs Catalog #P0704S

Biolabs Catalog #P0708L

PNGase F Recombinant - 15,000 units New England

Biolabs Catalog #P0708S

Please refer to the Safety Data Sheets (SDS) for health and environmental hazards.

Reactions may be scaled-up linearly to accommodate larger amounts of glycoprotein and larger reaction volumes. Optimal incubation times may vary for particular substrates. Typical reaction conditions are as follows:

Non-Denaturing Reaction Conditions:

1

When deglycosylating a native glycoprotein it is recommended that an aliquot of the glycoprotein is subjected to the denaturing protocol to provide a positive control for the fully deglycosylated protein. The non-denatured reaction can then be compared to the denatured reaction to determine the extent of reaction completion.

Combine $\Box 1 \mu g$ - $\Box 20 \mu g$ glycoprotein, $\Box 2 \mu L$ GlycoBuffer 2 (10X) and H₂O (if necessary) to make a $\Box 20 \mu L$ total reaction volume.

2

Add $\square 2 \mu L - \square 5 \mu L$ PNGase F, mix gently.

3

Incubate reaction at § 37 °C for © 04:00:00 - © 24:00:00 .

Note: To deglycosylate a native glycoprotein, longer incubation time as well as more enzyme may be required.

4

Analyze by method of choice.

Note: The simplest method of assessing the extent of deglycosylation is by mobility shifts on SDS-PAGE gels.