Diseño de vacunas atenuadas con menor probabilidad de sufrir reversión a la virulencia

S.Videla¹ L.Alonso i Alemany¹ D.Rabinovich^{2,3} D.Gutson³

¹Facultad de Matemática, Astronomía y Física - Universidad Nacional de Córdoba.

²Centro Nacional de Referencia para el SIDA. Facultad de Medicina - Universidad Nacional de Buenos Aires.

³Fundación para el Desarrollo de la Programación en Ácidos Nucleicos.

XXX Reunión Científica Anual de la Sociedad Argentina de Virología, 2010

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

- Peligro de reversión a la virulencia.
- Caso testigo: Vacuna Sabin contra la poliomielitis (OPV).
 - ⇒ Es conocido el rol del IRES y su estructura secundaria de RNA en la atenuación.
 - ⇒ Queremos realizar un análisis sistemático de las posibles variantes al IRES de los virus atenuados Sabin que conserven la estructura secundaria de RNA.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

Desarrollar un software que sirva como soporte para el diseño de vacunas atenuadas más seguras:

- Entrada: Genoma del virus atenuado, genomas de los patógenos o revertantes y un conjunto de restricciones (propiedades de interés para la atenuación de virus).
- Objetivo: Satisfaciendo las restricciones impuestas, maximizar la distancia entre el genoma del virus atenuado y los genomas patógenos o revertantes.
- Salida: Una o varias secuencias, candidatas a "mejorar" el virus atenuado.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

Algunos antecedentes en el diseño racional de vacunas atenuadas:

- Fidelidad en la replicación modificando la RNA polimerasa.
 "Engineering attenuated virus vaccines by controlling replication fidelity". Vignuzzi et al.
- (De)-Optimización de codones y pares de codones. "Virus Attenuation by Genome-Scale Changes in Codon Pair Bias".
 Coleman et al.
- Otras aproximaciones. "Rationalizing the development of live attenuated virus vaccines". Lauring et al.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

Sea N la longitud de la secuencia de RNA del virus atenuado, y para $k \in \mathbb{N}$ sea \mathcal{S}_k el conjunto de secuencias de RNA de longitud k. Entonces definimos:

- Espacio de soluciones: S_N
- Componentes variables de una solución: $s_1, s_2, ..., s_n$ tal que $s_i \in S_{N_i}$ con $1 \le i \le n$ y $0 < N_i \le N$.
- Restricciones sobre las componentes: Conservación de la estructura secundaria o de la secuencia aminoacídica con respecto al virus atenuado.
- Función "objetivo" o de evaluación: $f: \mathcal{S}_N \to \mathbb{R}$ tal que f(s) calcula la bondad de cada solución, en nuestro caso, como la distancia en número de mutaciones necesarias para llegar de s a alguna secuencia patógena o revertante.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

El problema de optimización consiste en, iterativamente modificar el genoma del virus atenuado asignado valores a las componentes s_1, s_2, \ldots, s_n asegurando que:

- los valores asignados satisfacen las restricciones impuestas sobre cada componente.
- las secuencias que resultan de asignar valores a cada componente, tiendan a maximizar la función f.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

- Análisis y formalización del problema.
- Implementación del software como una prueba de concepto.
- Aplicable a cualquier virus (+)ssRNA.

- Motivación
 - Vacunas atenuadas
 - Objetivo
 - Antecedentes
- 2 Propuesta
 - Formalización del problema
 - Optimización combinatoria
- Aportes y trabajo futuro
 - Aportes
 - Trabajo futuro

Queda pendiente tener en cuenta:

- Rango de temperaturas.
- Recombinantes con virus homólogos.
- Otros tipos de virus RNA.
- Ensayos con datos reales.