am 28.02.2014

J AREALLIN

Name: Blo guliau

Matrikelnummer: _03642940

Aufgabe Nr.:		1			
	2	3	4	5	TO
Punktezahl: 11	14	11	13	11	1
davon erreicht:				11	60

- Bitte schreiben Sie leserlich Ihren Namen und Ihre Matrikelnummer auf diese Seite sowie auf jeden beschriebenen Papierbogen.
- Geben Sie immer den Lösungsweg an!
- Lesen Sie sich die Aufgabenstellungen zunächst aufmerksam durch!
- Diese Klausur besteht aus 5 Aufgaben. Insgesamt können 60 Punkte erreicht werden. Die Bearbeitungszeit ist 90 Minuten.
- · Geben Sie dieses Angabenblatt unbedingt ab.

Ein in x-Richtung zeigender, elektrischer Dipol $\vec{p} = (p, 0, 0)$ befindet sich am Punkt $\vec{a} = (0, 0, a)$ (mit a > 0) über einer in der xy-Ebene liegenden, geerdeten (unendlich ausgedehnten) Metallplatte.

- (a) (5 Punkte) Bestimmen Sie unter Verwendung der Methode der Spiegelladungen das Potential $\Phi(\vec{r})$ im Oberen Halbraum z>0 zu der Randbedingung, dass es auf der Metallplatte (z=0) verschwindet. Überprüfen Sie diese Randbedingung explizit.
- (b) (3 Punkte) Berechnen Sie die auf der Metallplatte influenzierte Flächenladungsdichte $\sigma(x,y)$.
- (c) (3 Punkte) Bestimmen Sie ausgehend vom Dipol-Dipol-Wechselwirkungspotential die Kraft $\vec{F} \sim \vec{e}_z$, die der Spiegeldipol \vec{p}' am Spiegelpunkt \vec{a}' auf den Dipol \vec{p} am Punkt \vec{a} ausübt.

Eine in der xy-Ebene liegende, homogen geladene Kreisscheibe mit Radius R und vernachlässigbarer Dicke trägt die Gesamtladung Q. Sie rotiert starr ($\vec{v} = \vec{\omega} \times \vec{r}$) mit der konstanten Winkelgeschwindigkeit $\vec{\omega} = \omega \vec{e}_z$ um eine Achse senkrecht durch dem Kreismittelpunkt.

- (a) (3 Punkte) Geben Sie die Stromdichte $j(\vec{r})$ im ganzen Raum an und überprüfen Sie die Divergenzfreiheit, $\operatorname{div}_{\vec{j}}(\vec{r}) = 0$.
- (b) (5 Punkte) Berechnen Sie (ohne Verwendung von Symmetrieargumenten) das Magnetfeld $\vec{B}(\vec{r})$ auf der z-Achse, d.h. für die Punkte $\vec{r} = (0,0,z)$.

 Hinweis: Sie können das folgende unbestimmte Integral benutzen $\int dx \frac{x^3}{(x^2 + a^2)^{3/2}} = \frac{x^2 + 2a^2}{\sqrt{x^2 + a^2}}$.
- (c) (6 Punkte) Bestimmen Sie das magnetische Dipolmoment m und das zugehörige Dipolfeld B_{dip} auf der z-Achse. Verifizieren Sie, dass für große Entfernungen auf der z-Achse das Ergebnis aus Teilaufgabe (b) mit diesem Dipolfeld übereinstimmt.
 Hinweis: Es gilt die Taylorreihenentwicklung 1/√1 + x = 1 x/2 + 3x²/8 +

Ein Plattenkondensator aus zwei parallelen kreisförmigen Platten im Abstand l mit Radius R, deren Mittelpunkte auf der z-Achse liegen, wird langsam aufgeladen. Das zeitabhängige elektrische Feld zwischen den Platten hat die Form $\vec{E}(\vec{r},t)=E(t)\,\vec{e}_t$ mit dE(t)/dt=K=konstant und E(0)=0.

(a) (4 Punkte) Berechnen Sie das durch den Verschiebungsstrom induzierte Magnetfeld $\vec{B}(\vec{r})$ als Funktion des Abstandes ρ von der Symmetrieachse des Kondensators. Gehen Sie davon aus, dass das Magnetfeld (wie bei einem stromdurchflossenen geraden Leiter) nur eine azimutale Komponente hat: $\vec{B}(\vec{r}) = B(\rho) \vec{e}_{\varphi}$.

- (b) (2 Punkte) Berechnen Sie den Poynting-Vektor.
- (c) (5 Punkte) Berechnen Sie explizit den gesamten Energiefluss J in den Kondensator hinein, sowie die im Kondensator gespeicherte Feldenergie $\mathcal{E}_{\rm em}(t)$. Zeigen Sie, dass $d\mathcal{E}_{\rm em}(t)/dt = J$ gilt.

Ein (sehr langes) gerades Koaxialkabel besteht aus einem inneren, leitenden Wollzylinder vom Radius R_1 und konzentrisch dazu einem leitenden Zylindermantel mit Radius $R_2 > R_1$ und vernachlässigbarer Dicke, welcher als Rückleitung dient. Die Zylinderachse liegt auf der z-Achse.

(a) (3 Punkte) Geben Sie die Stromdichte $\vec{j}(\vec{r}) \sim \vec{e}_z$ im ganzen Raum an, wenn der hin- und rückfließende Strom I jeweils gleichmäßig über den Leiterquerschnitt verteilt ist.

(c) (3 Punkte) Berechnen Sie die Selbstinduktivität pro Längeneinheit L/l des Koaxialkabels.

Gegeben sei die Grenzfläche z=0 zwischen zwei dielektrischen Medien (j=1,2) mit den Brechungsindizes $n_j=\sqrt{\epsilon_j}$. In beiden Medien gibt es ebene elektromagnetische Wellen $\tilde{E}_j(z,t)=\{E_j^+e^{i(k_jz-\omega t)}+E_j^-e^{i(-k_jz-\omega t)}\}\,\vec{e}_x$ mit vorwärts und rückwärts laufenden Komponenten, die senkrecht auf die Grenzfläche treffen.

und berechnen Sie die Koeffizienten α und β in Abhängigkeit von den Brechungsindizes n_1, n_2 .

Betrachten Sie nun die Brechung und Reflexion einer in Medium 1 in positive z-Richtung laufenden, auf die Grenzfläche treffenden Welle (es gilt somit $E_2^-=0$).

- (b) (2 Punkte) Drücken Sie den zeitlichen Mittelwert $\langle S_j^{\pm} \rangle$ der Energiestromdichte (in Richtung $\pm \vec{e}_z$) durch die elektrische Feldamplitude E_j^{\pm} aus.
- (c) (3 Punkte) Berechnen Sie das Reflexionsvermögen $R = \langle S_1^- \rangle / \langle S_1^+ \rangle$ und das Transmissionsvermögen $T = \langle S_2^+ \rangle / \langle S_1^+ \rangle$ jeweils als Funktion von n_1, n_2 und zeigen Sie, dass R + T = 1 gilt.