Compilers

Topic: Local Optimizations

Monsoon 2011, IIIT-H, Suresh Purini

Optimization

Compilers operate at many granularities or scopes

- Local techniques
 - Work on a single basic block
 - Maximal length sequence of straight-line code
- Regional techniques
 - Consider multiple blocks, but less than whole procedure
 - Single loop, loop nest, dominator region, ...
- Intraprocedural (or global) techniques
 - Operate on an entire procedure (but just one)
 - Common unit of compilation
- Interprocedural (or whole-program) techniques
 - Operate on > 1 procedure, up to whole program
 - Logisitical issues related to accessing the code (link time?)
- Link Time Optimizations

Optimization

At each of these scopes, the compiler uses different graphs

- Local techniques
 - Dependence graph (instruction scheduling)
- Regional Techniques
 - Control-flow graph (natural loops)
 - Dominator tree
- Intra-procedural (or global) techniques
 - Control-flow graph
 - Def-use chains, sparse evaluation graphs, SSA as graph
- Inter-procedural (or whole-program) techniques
 - Call (multi) graph

Analysis versus Transformation

We want to differentiate between analysis and transformation

- Analysis reasons about the code's behavior
- Transformation rewrites the code to change its behavior

- Local techniques can interleave analysis and transformation
 - Property of basic block: operations execute in defined order
- Over larger regions, the compiler typically must complete its analysis before it transforms the code
- Leads to confusion in terminology
 - Don't use "optimization" for both analysis & transformation

Limitations of GCSE

$$a \leftarrow b + c$$
 $b \leftarrow a - d$
 $c \leftarrow b + c$
 $d \leftarrow a - d$

Original Block

$$a \leftarrow b \times c$$
 $d \leftarrow b$
 $e \leftarrow d \times c$

Effect of Assignment

Value Numbering

$$\begin{array}{l} a^2 \leftarrow b^0 + c^1 \\ b^4 \leftarrow a^2 - d^3 \\ c^5 \leftarrow b^4 + c^1 \\ d^4 \leftarrow a^2 - d^3 \end{array}$$

Along with the Value Number Hash Table, maintain two other data structures.

- 1. Variable to Value Number Map
- 2. Value Number to Variables Map

- 1. get the value numbers for L_i and R_i
- 2. construct a hash key from Op_i and the value numbers for L_i and R_i
- 3. if the hash key is already present in the table then replace operation i with a copy of the value into T_i and associate the value number with T_i

e1se

insert a new value number into the table at the hash key location record that new value number for T;

Value Numbering

Original Code

$$a = x + y$$

$$b = x + y$$

$$a = 17$$

$$c = x + y$$

With VNs

$$a^{3} \leftarrow x^{1} + y^{2}$$

$$b^{3} \leftarrow x^{1} + y^{2}$$

$$a^{4} \leftarrow 17^{4}$$

$$c^{3} \leftarrow x^{1} + y^{2}$$

$$a^{3} = x^{1} + y^{2}$$
 $b^{3} = x^{1} + y^{2}$
 $a^{4} = 17^{4}$
 $c^{3} = b^{3}$

Value Numbering

Original Code

$$a = x + y$$

$$a = 17$$

$$c = x + y$$

With VNs

$$a^{3} = x^{1} + y^{2}$$
 $a^{4} = 17^{4}$
 $c^{3} = x^{1} + y^{2}$

- Issue: Although the computation in c=x+y is redundant, its value (VN-3) is not available in any variable
- Possible Solution: Introduce temporary variables

$$a^{3} = x^{1} + y^{2}$$

$$t^{3} = a^{3}$$

$$a^{4} = 17^{4}$$

$$c^{3} = t^{3}$$

Static Single Assignment Form(SSA)

Original Code

$$a = x + y$$

$$b = x + y$$

$$a = 17$$

$$c = x + y$$

SSA Form

$$a_0 = x + y$$

$$b_0 = x + y$$

$$a_1 = 17$$

$$c_0 = x + y$$

• Idea: Each definition (or assignment) to a variable creates a new version of variable. A new name space would be created using this approach.

Static Single Assignment (SSA)

Original Code

$$a = x + y$$
$$b = x + y$$

$$a = 17$$

c = x + y

SSA Form

$$a_0 = x + y$$

$$\mathbf{b}_0 = \mathbf{x} + \mathbf{y}$$

$$a_1 = 17$$

$$c_0 = x + y$$

• Issue: How to reconcile with the rest of the name space in other BBs?

$$a_0 = x + y$$

$$b_0 = x + y$$

$$a_1 = 17$$

$$c_0 = x + y$$

$$a = a_1$$

$$b = b_0$$

Value Numbering – Static Single Assignment (SSA)

Original Code

$$a = x + y$$
$$a = 17$$
$$c = x + y$$

SSA Form

$$a_0 = x + y$$

$$a_1 = 17$$

$$c_0 = x + y$$

SSA Form with VNs

$$a_0^3 = x^1 + y^2$$
 $a_1^4 = 17^4$
 $c_0^3 = x^1 + y^2$

Optimized Code

$$a_0^3 = x^1 + y^2$$
 $a_1^4 = 17^4$
 $c_0^3 = a_0^3$

SSA Form

A program is in SSA form when it meets two constraints

- Each definition has a distinct name
 - Implication: Names correspond to specific definition points in code
- Each use refers to a single definition

Translating to SSA Form

Question: How to translate IR into SSA form?

- Easy for straight line sequence of code
 - Each assignment to a variable is given a unique name
 - All of the uses reached by that assignment are renamed

```
1: a = x + y
2: a = a + 3
3: b = x + y
```

```
1: a_1 = x_0 + y_0

2: a_2 = a_1 + 3

3: b_1 = x_0 + y_0
```

Translating to SSA Form

- What's easy: Straight line sequence of codes, splits in CFGs
- What's hard: Joins in CFGs

Translating to SSA Form

- Introduce Phi Functions to handle joins wherever necessary
- Question: Isn't a phi function necessary for the variable x?

SSA Variations

Many variations of SSA exist.

- Minimal SSA
- Pruned SSA
- Semi-pruned SSA
- •

Minimal SSA

- Insert a phi function at any join point where two distinct definitions for the same original name meet.
- The minimal number consistent with the definition of SSA
- Some of those phi functions may be dead

Minimal SSA

Minimal SSA form

Pruned SSA

- Same as minimal SSA
- Perform liveness analysis to drop dead phi functions

Translating out of SSA Form

• Replace phi nodes with copy statements in the predecessors

Superlocal Value Numbering

Regional Optimization: Extended Basic Blocks

Extended Basic Blocks

- An EBB can be seen as a tree with nodes having in-degree 1 (except for the root node) and arbitrary out degree
- Value Numbering Algorithm on an EBB
- Key Idea: While optimizing a BB, we can use the values generated in any of the ancestor Basic Blocks

Supervalue Local Numbering

Dominator-Based Value Numbering

- What about the redundancies in BBs F and G?
- Problem: They have multiple predecessors. So what?
- Observation
 - BB F can use the values computed in BBs A and C (thanks to SSA)
 - BB G can use the values computed in A (thanks to SSA)

Dominators

Def: x dominates y if and only if every path from the entry of the control-flow graph to the node for y includes x.

- By definition, x dominates x
- We associate a Dom set with each node
- $|\mathrm{Dom}(x)| \ge 1$

Immediate dominators

- For any node x, there must be a y in Dom(x) closest to x
- We call this y the immediate dominator of x
- As a matter of notation, we write this as IDom(x)

Dominators

Dominators have many uses in analysis & transformation

- Finding loops
- Building SSA form
- Making code motion decisions

Dominator sets

Block	Dom	IDom
Α	Α	-
В	A,B	Α
С	A,C	Α
D	A,C,D	С
Ε	A,C,E	С
F	A,C,F	С
G	A,G	Α

Dominator tree

Dominator Based Value Numbering

- Key Idea: While Value Numbering a BB B, start with IDom(B)'s Value Number table
- While processing BB F, start with BB C's Value
 Number table (which includes BB A's also)
- Similarly for BB G, start with the Value Number table of BB A

