Basic identities of matrix/vector ops	j j	Vector norms (beyond euclidean)	Determinant of square-diagonals =>	If all else fails, try to find row/column with MOST zeros	If associated to same eigenvalue λJthen eigenspace	$ \sigma_1,,\sigma_p $ are singular values of \underline{A} .	Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	Notice: $Q_j c_j = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{J} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$ so	vector norms are such that: $ x = 0 \iff x = 0$,	$\left \begin{array}{c} \operatorname{diag}(a_1,, a_n) = \prod_i a_i \\ \operatorname{triangular matrices}) \end{array} \right $	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	E_{λ} has spanning-set $\{\mathbf{x}_{\lambda_i}, \dots\}$	(Positive) singular values are (positive) square-roots	$Var_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$
$(AB)^{-1} = B^{-1}A^{-1}$	rewrite as	$\frac{ \lambda x = \lambda x }{ x + y \le x + y }$		Don't forget to keep track of sign-flipping &	$x_1,, x_n$ are linearly independent \Rightarrow apply Gram-Schmidt $q_{\lambda_i}, \leftarrow x_{\lambda_i},$	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$ i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
For $\underline{A \in \mathbb{R}^{m \times n}}$ $\underline{A_{ij}}$ is the i -th ROW then j -th COLUMN	j j j j j j j j j j j j j j j j j j j	ℓ_p norms: $\ \mathbf{x}\ _p = \left(\sum_{i=1}^n \mathbf{x}_i ^p\right)^{1/p}$	The (column) rank of AJ is number of linearly		Then $\{\mathbf{q}_{\lambda_i}, \dots\}$ is orthonormal basis (ONB) of E_{λ_i}	$\ A\ _2 = \sigma_1 (link to matrix norms) $	First (principal) axis defined =>
$(A^{T})_{ij} = A_{ji} \left[(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj} \right]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1} proj_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$\frac{p-1}{p-1} \cdot \frac{\ \mathbf{x}\ _1 - \sum_{i=1}^n \mathbf{x}_i }{p-1}$	independent columns, i.e. rk(A) I.e. its the number of pivots in row-echelon-form	notice all-but-one minor matrix determinants go to		Let $r = rk(A)$, then number of strictly positive singular	$\mathbf{w}_{(1)} = \arg\max_{\ \mathbf{w}\ =1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
R	$a_1, \dots, a_n \in \mathbb{R}^m \mid \underline{m \ge n}$	$p = 2$: $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	I.e. its the dimension of the column-space	zero	$Q = (\mathbf{q}_1,, \mathbf{q}_n)$ is an ONB of $\mathbb{R}^n \Longrightarrow Q = [\mathbf{q}_1 \mathbf{q}_n]$ is orthogonal matrix i.e. $Q^{-1} = Q^T$	values is r	= arg max _{w =1} (m-1)Var _w = v ₁
$(Ax)_i = A_{i*} \cdot x = \sum_j A_{ij} x_j \left[\underbrace{x^T y = y^T x = x \cdot y = \sum_i x_i y_i} \right]$	\underline{n} $U_n = \text{span}\{a_1,, a_n\}$ We apply Gram-Schmidt to build ONB	$p = \infty$ $\ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	rk(A) = dim(C(A)) I.e. its the dimension of the image-space	Representing EROs/ECOs as transfor- mation matrices	$ \mathbf{q}_1, \dots, \mathbf{q}_n $ are still eigenvectors of $A = QDQ^T$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	i.e. w(1) the direction that maximizes variance Varw i.e. maximizes variance of projections on line Rw(1)
$\mathbf{x}^T A \mathbf{x} = \sum_i \sum_j A_{ij} \mathbf{x}_i \mathbf{x}_j \mathbf{x}_i \mathbf{e}_k^T = [0 \dots \mathbf{x} \dots 0]$	$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Any two norms in \mathbb{R}^n are equivalent, meaning there	$rk(A) = dim(im(f_A))$ of linear map $f_A(x) = Ax$	For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:	(spectral decomposition)	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^I$	
$\mathbf{e}_{k}\mathbf{x}^{T} = [0^{T}; \dots; \mathbf{x}^{T}; \dots; 0^{T}]$	$ i=1 \Rightarrow u_1 = a_1$ and $ i=u_1 $, i.e. start of iteration	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^{n}, r \ x\ _{a} \le \ x\ _{b} \le s \ x\ _{a}$	The (row) rank of AJis number of linearly independent	EROs transform A → EROs A' => there is matrix R Js.t.	A = QDQ ^T can be interpreted as scaling in direction of its eigenvectors:		on u1,, or ur (columns of <u>US</u>) are principal components/scores of A
Scalar-multiplication + addition distributes over:	$ j=2 \Rightarrow \frac{u_2 = a_2 - (q_1 \cdot a_2)q_1}{u_2 = a_2 - (q_1 \cdot a_2)q_1}$ and $ q_2 = \hat{u}_2 $ etc Linear independence guarantees that $ a_{j+1} \notin U_j$	$\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{2} \le \ \mathbf{x}\ _{1}$	rows The row/column ranks are always the same, hence	$ AA = A' $ $ ECOs $ transform $A \Rightarrow_{ECOs} A' \Rightarrow$ there is matrix C s.t.	· 1) Perform a succession of reflections/planar	SVD is similar to spectral decomposition, except it always exists	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$, so that
column-blocks =>	For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow x _2 \le \sqrt{n} x _{\infty}$	$ \text{rk}(A) = \text{dim}(C(A)) = \text{dim}(R(A)) = \text{dim}(C(A^T)) = \text{rk}(A^T)$	AC = A'	rotations to change coordinate-system	If $\underline{n \le m}$ then work with $\underline{A^T A \in \mathbb{R}^{n \times n}}$	relates principal axes and principal components
$\lambda A + B = \lambda [A_1 \dots A_C] + [B_1 \dots B_C] = [\lambda A_1 + B_1 \dots \lambda A_C + B_C]$ row-blocks \Rightarrow	·1) Gather $Q_i = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_i] \in \mathbb{R}^{m \times j}$	$\ \mathbf{x}\ _1 \le \sqrt{n} \ \mathbf{x}\ _2$	A jis full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	Both transform A → EROS+ECOS A' => there are	-2) Apply scaling by λ _i to each dimension q _i -Undo those reflections/planar rotations	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	Data compression: If o ₁ ≫ o ₂ I then compress AI by projecting in direction of principal component ⇒
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	·2) Compute $\mathbf{c}_{i} = [\mathbf{q}_{1} \cdot \mathbf{a}_{i+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T} \in \mathbb{R}^{j}$	Induce metric $\underline{d(x, y)} = y - x $ has additional properties:	independent as possible	matrices R, C s.t. RAC = A'	Extension to C ⁿ	Obtain orthonormal eigenvectors $v_1,, v_n \in \mathbb{R}^n$ of A^TA (apply normalization e.g. Gram-Schmidt !!!! to	$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$
Matrix-multiplication distributes over:	3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	Translation invariance: $d(x+w,y+w)=d(x,y)$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	FORWARD: to compute these transformation	Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	eigenspaces E _G :	
column-blocks \Rightarrow $AB = A[B_1 B_p] = [AB_1 AB_p]$ row-blocks \Rightarrow $AB = \overline{[A_1;; A_p]B = [A_1B;; A_pB]}$	Properties: dot-product & norm	Scaling: $d(\lambda x, \lambda y) = \lambda d(x, y)$	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	matrices: Start with [I _m A I _n] i.e. A Jand identity matrices	Conjugate-symmetric: $(x, y) = \overline{(y, x)}$	$V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	Cholesky Decomposition
outer-product sum =>	$x^{T}y = y^{T}x = x \cdot y = \sum_{i} x_{i}y_{i} x \cdot y = a b \cos x\hat{y} $	Matrix norms Matrix norms are such that: $ A = 0 \iff A = 0$	such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	For every ERO on <u>A</u> J, do the same to LHS (i.e. I _m)	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	$r = rk(A) = no. of strictly + ve \sigma_i$	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^{T}$ where L is
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	i	λA = λ A , A+B ≤ A + B	invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $A = P\tilde{A}P^{-1}$	For every ECO on <u>A</u> J do the same to RHS (i.e. $\overline{I_n}$) Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A \mid C]$	We can <u>diagonalise</u> real matrices in <u>C</u> which lets us <u>diagonalise</u> more matrices than before	Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	lower-triangular
e.g. for $A = [a_1 a_n]$, $B = [b_1;; b_n] \Longrightarrow AB = \sum_i a_i b_i$	$\frac{x \cdot y = y \cdot x}{x \cdot y = x} x \cdot (y + z) = x \cdot y + x \cdot z \alpha x \cdot y = \alpha (x \cdot y)$ $x \cdot x = x ^2 = 0 \iff x = 0$	Matrices Fm×n are a vector space so matrix norms	Similar matrices are equivalent, with Q = P	with RAC = A'	Least Square Method	(therefore linearly independent)	For positive semi-definite => always exists, but non-unique
Projection: definition & properties	for $x \neq 0$, we have $x \cdot y = x \cdot z \implies x \cdot (y-z) = 0$	are vector norms, all results apply Sub-multiplicative matrix norm (assumed by default)	A]is diagonalisable iff A]is similar to some diagonal matrix D		If we are solving Ax = b and b ∉ C(A) i.e. no solution,	The <u>orthogonal compliment</u> of span $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$	For positive-definite => always uniquely exists s.t.
	$ x \cdot y \le x y $ (Cauchy-Schwartz inequality)	is also such that AB ≤ A B	Properties of determinants	If the sequences of EROs and ECOs were $\underbrace{R_1,,R_{\lambda}}_{l}$ and $C_1,,C_{\mu}$ respectively	then Least Square Method is: Finding xjwhich minimizes Ax-b 2	$span(u_1,,u_r)^{\perp} = span(u_{r+1},,u_m)$ Solve for unit-vector u_{r+1} s.t. it is orthogonal to	diagonals of LJare positive
idempotent)	$\frac{\ u+v\ ^2 + \ u-v\ ^2 = 2\ u\ ^2 + 2\ v\ ^2}{\ u+v\ \le \ u\ + \ v\ \text{(triangle inequality)}} $	Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$	Consider $A \in \mathbb{R}^{n \times n}$, then $A_{ii}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$R = R_{\lambda} \cdots R_{1}$ and $C = C_{1} \cdots C_{\mu}$, so	Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	u ₁ ,,u _r	Finding a Cholesky Decomposition:
A square matrix P such that P2 = P is called a	$u \perp v \iff u+v ^2 = u ^2 + v ^2 \text{(pythagorean)}$		(i, j) minor matrix of Al, obtained by deleting i th row	$\frac{ C_{\lambda} - C_{\mu} }{ C_{\lambda} - C_{\mu} } = \frac{ C_{\mu} - C_{\mu} }{ C_{\mu} - C_{\mu} }$	for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$	Then solve for unit-vector u _{r+2} s.t. it is orthogonal	Compute LL^T and solve $A = LL^T$ by matching terms
It is called an orthogonal projection matrix if	theorem)	$\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A})$ i.e. largest singular value of $\underline{\mathbf{A}}$ (square-root of largest eigenvalue of $\mathbf{A}^T \mathbf{A}$ or $\mathbf{A}\mathbf{A}^T$)	and j th column from A Then we define determinant of A , i.e. $det(A) = A $, as	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{U}^{-1} \cdots C_{1}^{-1}$, where	where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	to u ₁ ,, u _{r+1} And so on	For square roots always pick positive If there is exact solution then positive-definite
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a}$ (law of cosines)	$\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i*}\ _{1}$ note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	II	R _i ⁻¹ , C _i ⁻¹ are inverse EROs/ECOs respectively	$\left \frac{\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _{2} \text{ is minimized} \iff \ \mathbf{A}\mathbf{x} - \mathbf{b}_{i}\ _{2} = 0 \iff \mathbf{A}\mathbf{x} = \mathbf{b}_{i}}{\ \mathbf{A}\mathbf{x} - \mathbf{b}_{i}\ _{2}} \right $	$\underline{U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}}$ is orthogonal so $\underline{U}^T = \underline{U}^{-1}$	If there are free variables at the end, then positive
	Transformation matrix & linear maps For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases		$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}'), i.e. \text{ expansion along}$	<u></u>	$A^T Ax = A^T b$ is the normal equation which gives	$S = \text{diag}_{m \times n}(\sigma_1, \dots, \sigma_n)$ AND DONE!!!	semi-definite i.e. the decomposition is a solution-set
Because $\pi: V \rightarrow V$ is a linear map , its image space $U = \text{im}(\pi) \text{and } \text{null space } W = \text{ker}(\pi) \text{are subspaces of } \underline{V} $	$(\mathbf{b}_1,, \mathbf{b}_n) \in \mathbb{R}^n \text{ and } (\mathbf{c}_1,, \mathbf{c}_m) \in \mathbb{R}^m$	Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	i-th row *(for any i)	BACKWARD: once $R_1,,R_{\lambda}$ and $C_1,,C_{\mu}$ for which	solution to least square problem:	If m < n j then let B = A ^T	parameterized on free variables
πjis the identity operator on U	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	\(\int i = 1 \)	$det(A) = \sum_{i=1}^{n} (-1)^{k+j} A_{kj} det(A_{kj}')$ i.e. expansion along	RAC = A' are known, starting with $[I_m \mid A \mid I_n]$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$	apply above method to $\underline{B} = B = A^T = USV^T$ $A = B^T = VS^TU^T$	e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $c \in [0, 1]$
The linear map $\pi^* = I_V - \pi$ is also a projection with $W = \text{im}(\pi^*) = \text{ker}(\pi)$ and $U = \text{ker}(\pi^*) = \text{im}(\pi)$, i.e. they	w.r.t to bases \underline{B} and \underline{C} $f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i \longrightarrow \operatorname{each} \mathbf{b}_j$ basis gets mapped to a	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if	k=1	For $\underline{i=1 \rightarrow \lambda}$ perform R_i on \underline{A} perform $R_{\lambda-i+1}^{-1}$ on LHS	Linear Regression	Tricks: Computing orthonormal	1 1 2 where 2 1 0 0 1, ce [0, 1]
swapped	linear combination of Σ_i $a_i c_i$ bases	for all $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n \Longrightarrow Ax _h \le A x _q$	j-th column (for any j)	(i.e. I _m)	Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	vector-set extensions	
πjis a projection along Wjonto Uj π* jis a projection along Ujonto Wj	If f^{-1} exists (i.e. its bijective and $\underline{m} = \underline{n}$) then	If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$ Frobenius norm is consistent with ℓ_2 norm \Rightarrow	When det(A) = 0 we call A a singular matrix Common determinants	For $j=1 \rightarrow \mu$ perform C_j on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on	where f_j are basis functions and s_j are parameters	You have orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m$ \Rightarrow need to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$	If <u>A = LLT</u> you can use <u>forward/backward substitution</u>
π* is the identity operator on <u>W</u>]	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the		For <u>n = 1</u>], det(A) = A ₁₁ For <u>n = 2</u>], det(A) = A ₁₁ A ₂₂ -A ₁₂ A ₂₁	RHS (i.e. In)	Let (t_i, y_i) $1 \le i \le m, m \gg n$ be a set of observations , and $t, y \in \mathbb{R}^m$ are vectors representing those	Special case => two 3D vectors => use cross-product =>	to solve equations $ For Ax = b \Rightarrow let y = L^T x$
V]can be decomposed as V = U⊕W] meaning every vector x ∈ V can be uniquely written as x = u+w	transformation-matrix of f^{-1}	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate	$\det(\mathbf{I}_n) = 1$	You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	observations	$\underline{a \times b \perp a, b}$	Solve Ly = b by forward substitution to find y
$ u \in U $ and $u = \pi(x)$	The bounds of the side bit of	matrix norm	Multi-linearity in columns/rows: if	$\left \underline{A = R^{-1}A'C^{-1}} \right $	$f_j(t) = [f_j(t_1), \dots, f_j(t_m)]^T$ is transformed vector	Extension via standard basis $I_m = [e_1 e_m] $ using	Solve $L^T x = y$ by backward substitution to find x
	The transformation matrix of the identity map is called change-in-basis matrix	$\ \mathbf{A}\ = \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ = 1\}$	$A = [a_1 a_j a_n] = [a_1 \lambda x_j + \mu y_j a_n]$ then	You can mix-and-match the forward/backward modes	$A = [f_1(t) f_n(t) \in \mathbb{R}^{m \times n}]$ is a matrix of columns	(tweaked) GS:	For $n=3J \Rightarrow L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \end{bmatrix}$
-An orthogonal projection further satisfies <u>U L W</u> i.e. the image and kernel of π are orthogonal	The identity matrix Im represents id Rm w.r.t. the	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	$det(A) = \lambda det([a_1 x_j a_n])$	i.e. inverse operations in inverse order for one, and operations in normal order for the other	$z = [s_1,, s_n]^T$ is vector of parameters	Choose candidate vector: just work through e ₁ ,,e _m sequentially starting from e ₁ => denote	[131 132 133]
subspaces	standard basis $E_m = \overline{(e_1,, e_m)} \Rightarrow \overline{i.e. I_m} = \overline{I_{EE}}$ If $B = \langle b_1,, b_m \rangle$ is a basis of \mathbb{R}^m then	= max{ Ax : x ∈ R ⁿ , x ≤ 1} • Vector norms are compatible with their subordinate	$+\mu \det ([a_1 \dots y_j \dots a_n])$	e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	Then we get equation Az=y => minimizing Az-y ₂ is the solution to Linear Regression	the current candidate e _k	[11 11121 11131]
infact they are eachother's orthogonal compliments , i.e. $U^{\perp} = W$, $W^{\perp} = U$ (because finite-dimensional	$I_{EB} = [b_1 b_m]$ is the transformation matrix from B	matrix norms	And the exact same linearity property for rows $ Immediately leads to: A = A^T \lambda A = \lambda^n A and A $	AC = R ⁻¹ A' => useful for LU factorization	So applying LSM to Az = y is precisely what Linear	Orthogonalize: Starting from j = r going to j = m with each iteration => with current orthonormal vectors	LLT = l ₁₁ l ₂₁
vectorspaces)	to \underline{E}] $I_{BE} = (I_{EB})^{-1}$, so $\Longrightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$	For $p = 1, 2, \infty$ matrix norm $\ \cdot \ _p$ is subordinate to	$ AB = BA = A B $ (for any $B \in \mathbb{R}^{n \times n}$)	Eigen-values/vectors	Regression is We can use normal equations for this =>	u ₁ ,,u _j	[111131 121131 + 122132 131 + 132 + 133]
so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$	BE -(TEB) 30 - TCB - TCE TEE TEB	the vector norm $\ \cdot\ _p$ (and thus compatible with)	Alternating: if any two columns of Alare equal (or any	Consider $\underline{A \in \mathbb{R}^{n \times n}}$, non-zero $\underline{x \in \mathbb{C}^n}$ is an eigenvector with eigenvalue $\underline{\lambda \in \mathbb{C}}$ for \underline{A} if $\underline{Ax = \lambda x}$	$\ Az - y\ _2$ is minimized $\iff A^T Az = A^T y$	Compute	Forward/backward substitution
or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices	two rows of A are equal), then A = 0 (its singular) Immediately from this (and multi-linearity) => if	If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$, i.e. kx is also an	Solution to normal equations unique iff AJis full-rank,	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$	Forward substitution: for lower-triangular [81.1 0]
By Cauchy–Schwarz inequality we have <u> </u> π(x) ≤ x	basis If a _i = x · b _i ; x = ∑ _i a _i b _i , we call <u>a</u> jthe	Consider $\underline{A} \in \mathbb{R}^{m \times n}$ If $\underline{A} \times = x$ for all \underline{x} then $\underline{A} = I$	columns (or rows) are linearly-dependent (some are	eigenvector A] has at most n] distinct eigenvalues	i.e. it has linearly-independent columns	= e _k - U _j c _j	L= : 5.
The orthogonal projection onto the line containing vector \underline{u} jis $\underline{proj}_{\underline{u}} = \hat{u}\hat{u}^T$, i.e. $\underline{proj}_{\underline{u}}(v) = \frac{u \cdot v}{u \cdot u}u$; $\hat{u} = \frac{u}{\ u\ }$	coordinate-vector of x w.r.t. to B	For square \underline{A} , the trace of \underline{A} is the sum if its diagonals ,	linear combinations of others) then $ A = 0$ Stated in other terms => $rk(A) < n \iff A = 0$ <=>	The set of all eigenvectors associated with eigenvalue	Positive (semi-)definite matrices	Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j]$ and $\mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T$	[[[
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{i}, v) = 0$	Rank-nullity theorem: $\dim(\operatorname{im}(f)) + \dim(\ker(f)) = rk(A) + \dim(\ker(A)) = n$	i.e. <u>tr(A)</u>	$RREF(A) \neq I_n \iff A = 0$ (reduced row-echelon-form)	$\underline{\lambda}$ is called eigenspace $\underline{E}_{\underline{\lambda}}$ of \underline{A}	Consider symmetric $A \in \mathbb{R}^{n \times n}$, i.e. $A = A^T$	NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k th component of \mathbf{u}_i If $\mathbf{w}_{i+1} = 0$ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1,, \mathbf{u}_i\}$ \Rightarrow discard	For $\underline{Lx = b}$, just solve the first row $\begin{cases} \ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{a} \end{cases} \text{ and substitute down}$
since proj _u (u) = u	f is injective/monomorphism iff ker(f) = $\{0\}$ iff A] is	A Jis symmetric iff $\underline{A} = \underline{A}^T$ A Jis Hermitian, iff $\underline{A} = \underline{A}^{\dagger}$ i.e.	\iff $ A = 0$ (column-space) For more equivalence to the above, see invertible	$E_{\lambda} = \ker(A - \lambda I)$ The geometric multiplicity of λ is	AJis positive-definite iff x ^T Ax>0 for all x≠0J AJis positive-definite iff all its eigenvalues are strictly	w _{j+1} choose next candidate e _{k+1} try this step	[] '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
If $\underline{U \subseteq \mathbb{R}^n}$ is a \underline{k} dimensional subspace with	full-rank	its equal to its conjugate-transpose AA^{T} and $A^{T}A$ are symmetric (and positive	matrix theorem	$dim(E_{\lambda}) = dim(ker(A - \lambda I))$	positive	again	Then solve the second row $\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
	Orthogonality concepts u ⊥ v ⇔ u · v = 0 l.i.e. u and v are orthogonal	semi-definite)	Interaction with EROs/ECOs:	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of <u>A</u> J is the set of all	A_is positive-definite => all its diagonals are strictly positive	Normalize: w _{j+1} ≠0 so compute unit vector	
	ujand vjare orthonormal iff u ⊥ v, u = 1 = v	For real matrices, Hermitian/symmetric are	Swapping rows/columns flips the sign Scaling a row/column by ½ ≠ 0] will scale the	eigenvalues of Al The characteristic polynomial of Alis	A is positive-definite => $\max(A_{ii}, A_{ji}) > A_{ij} $	u _{j+1} = ŵ _{j+1}	substitute down and so on until all x _i are solved
Orthogonal projection onto \underline{U} Jis $\underline{\pi}_{\underline{U}} = \underline{U}\underline{U}^T$ Can be rewritten as $\underline{\pi}_{\underline{U}}(v) = \sum_i (\underline{u}_i - v)\underline{u}_i$	$A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	equivalent conditions -Every eigenvalue λ _i of Hermitian matrices is real	determinant by λ] (by multi-linearity)	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	i.e. strictly larger coefficient on the diagonals	Repeat: keep repeating the above steps, now with new orthonormal vectors u ₁ ,, u _{i+1}	Backward substitution: for upper-triangular
i l	Columns of $A = [a_1 a_n]$ are orthonormal basis (ONB) $C = \langle a_1,, a_n \rangle \in \mathbb{R}^n$, so $A = I_{EC}$ is	geometric multiplicity of λ_i = geometric multiplicity	Remember to scale by $\underline{\lambda}^{-1}$ to maintain equality, i.e. $\det(A) = \lambda^{-1} \det([a_1 \lambda a_i a_n])$	$a_0 = A \cdot a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \cdot a_n = (-1)^n$	-A_j is positive-definite => all upper-left submatrices are also positive-definite	SVD Application: Principal Compo-	[u _{1,1} u _{1,n}]
If (u ₁ ,, u _k) is not orthonormal , then "normalizing	change-in-basis matrix	of λ_i eigenvectors $\mathbf{x}_1, \mathbf{x}_2$ associated to distinct	Invariant under addition of rows/columns	$\lambda \in \mathbb{C}$ is eigenvalue of A] iff λ is a root of $P(\lambda)$. The algebraic multiplicity of λ is the number of	Sylvester's criterion: Alis positive-definite iff all	nent Analysis (PCA)	U = ·. :
factor" $(U^T U)^{-1}$ is added $\Rightarrow \pi_U = U(U^T U)^{-1}U^T$ For line subspaces $U = \text{span}\{u\}$ we have	Orthogonal transformations preserve lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = xy$	eigenvalues λ_1, λ_2 are orthogonal , i.e. $\mathbf{x}_1 \perp \mathbf{x}_2$	Link to invertable matrices $\Rightarrow A^{-1} = A ^{-1}$ which	times it is repeated as root of P(λ)	upper-left submatrices have strictly positive determinant	Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of	$ \begin{bmatrix} 0 & u_{n,n} \\ \text{For } \underline{Ux = b}, \text{ just solve the last row} \end{bmatrix} $
$(U^T U)^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/ u $	Therefore can be seen as a succession of reflections		means A is invertible $\iff A \neq 0$, i.e. singular	1]s geometric multiplicity of \(\lambda \)		n-dimensional data (with m > n) Data centering: subtract mean of each column from	$u_{n,n}x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
Gram-Schmidt (GS) to gen. ONB from	and planar rotations	A Jis triangular iff all entries above (lower-triangular) or below (upper-triangular) the main diagonal are zero	For block-matrices:	\leq algebraic multiplicity of λ \downarrow Let $\lambda_1,, \lambda_n \in \mathbb{C}$ [be (potentially non-distinct)	Alis positive semi-definite iff $x^T Ax \ge 0$ for all x . Alis positive semi-definite iff all its eigenvalues are	that column's elements	Then solve the second-to-last row
lin. ind. vectors	$\frac{\det(A) = 1}{\text{s.t. } \lambda = 1}$ or $\frac{\det(A) = -1}{\text{s.t. } \lambda = 1}$ and all eigenvalues of \underline{A} are	Determinant $\Rightarrow A = \prod_i a_{ii}$, i.e. the product of	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	eigenvalues of A ₁ , with $x_1,, x_n \in \mathbb{C}^n$ their	non-negative	Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns have mean zero	$u_{n-1} = 1 \times 1$
Gram-Schmidt is iterative projection => we use current j dim subspace , to get next (j + 1) dim	$A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	diagonal elements		eigenvectors	AJis positive semi-definite => all its diagonals are	PCA is done on centered data-matrices like At	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} x_{n-1}}{u_{n-1,n}}$ and substitute up
subspace	If n > m then all m rows are orthonormal vectors	AJis diagonal iff $A_{ij} = 0, i * j$, i.e. if all off-diagonal	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if Alor D are	$tr(A) = \sum_{i} \lambda_{i}$ and $det(A) = \prod_{i} \lambda_{ij}$ A is diagonalisable iff there exist a basis of \mathbb{R}^{n}	non-negative -A]is positive semi-definite => max(A;;,A;;)≥ A;; ,	SVD exists i.e. $\underline{A = USV^T}$ and $\underline{r = rk(A)}$ Let $A = [\mathbf{r_1};; \mathbf{r_m}]$ be rows $\mathbf{r_1},, \mathbf{r_m} \in \mathbb{R}^n$ \Longrightarrow each	and so on until all x_i are solved
Assume orthonormal basis (ONB) $(\mathbf{q}_1,, \mathbf{q}_j) \in \mathbb{R}^m$	If $\underline{m > n}$ then all \underline{n} j columns are orthonormal vectors $U \perp V \subset \mathbb{R}^{n} \iff \underline{\mathbf{u} \cdot \mathbf{v}} = 0 \text{ for all } \underline{\mathbf{u}} \in U, \underline{\mathbf{v}} \in V \text{, i.e. they are}$	entries are zero	= det(D) det(A - BD ⁻¹ C)	consisting of x ₁ ,,x _n	i.e. no coefficient larger than on the diagonals	row corresponds to a sample	_
for j dim subspace $U_j \subset \mathbb{R}^m$	orthogonal subspaces	written as diag _{$m \times n$} (a) = diag _{$m \times n$} ($a_1,, a_p$), $p = min(m, n)$, where	invertible, respectively Sylvester's determinant theorem:	consisting of $\mathbf{x}_1, \dots, \mathbf{x}_n$ A jis diagonalisable iff $r_i = g_i$ where	-AJis positive semi-definite => all upper-left submatrices are also positive semi-definite	Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each column corresponds to one dimension of the data	
	Orthogonal compliment of $\underline{U} \subset \mathbb{R}^n$ is the subspace $U^{\perp} = \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \perp y\}$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of AJ	det (I _m +AB) = det (I _n +BA)	r_i = geometric multiplicity of λ_i and g_i = geometric multiplicity of λ_i	AJis positive semi-definite => it has a Cholesky	Let $X_1,, X_n$ be random variables where each X_i	Schmidt (GS) Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$, i.e.
$P_j = Q_j Q_j$ is ortnogonal projection onto Q_j	$= \{x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \le x+y \}$	$Ax = \operatorname{diag}_{m \times n}(a_1, \dots, a_n)[x_1 \dots x_n]^T$	Matrix determinant lemma:	Eigenvalues of A^k are $\lambda_1,, \lambda_n$	Decomposition	corresponds to column ci	$\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent
$P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$	For $\underline{x \in \mathbb{R}^n}$ = $[a_1 x_1 \dots a_p x_p \ 0 \dots 0]^T \in \mathbb{R}^m$ (if	$\frac{\det (\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A})}{\det (\mathbf{A} + \mathbf{U}\mathbf{v}^T) = \det (\mathbf{I}_{\mathbf{M}} + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{U}) \det(\mathbf{A})}$	Let $P = [\mathbf{x}_1 \mid \dots \mid \mathbf{x}_n]$, then	For any $M \in \mathbb{R}^{m \times n} \mid MM^T \mid$ and $M^T \mid M \mid$ are symmetric and	i.e. each X _i corresponds to i th component of data	Apply $GS q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB
$(U_j)^{\perp}$ (orthogonal compliment)	U_LV ⇔ U_ =V and vice-versa	p = m those tail-zeros don't exist)		$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$	positive semi-definite	i.e. random vector $X = [X_1,, X_n]^T$ models the data $[x_1,, x_m]$	$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$ For exams: more efficient to compute as
Uniquely decompose next $U_j \not\ni \mathbf{a}_{j+1} = \mathbf{v}_{j+1} + \mathbf{u}_{j+1}$	$Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$ Any $x \in \mathbb{R}^n$ can be uniquely decomposed into	$\frac{\operatorname{diag}_{m\times n}(\mathbf{a}) + \operatorname{diag}_{m\times n}(\mathbf{b}) = \operatorname{diag}_{m\times n}(\mathbf{a} + \mathbf{b})}{\operatorname{Consider diag}_{n\times k}(c_1, \dots, c_q), q = \min(n, k)}, \text{ then}$	$\det \left(\mathbf{A} + \mathbf{U} \mathbf{W} \mathbf{V}^{T}\right) = \det \left(\mathbf{W}^{-1} + \mathbf{V}^{T} \mathbf{A}^{-1} \mathbf{U}\right) \det(\mathbf{W}) \det(\mathbf{A})$	=> if P ⁻¹ exists then A = PDP ⁻¹ i.e. A is diagonalisable	Singular Value Decomposition (SVD) &	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A = $	$ \mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j $
$v_{i+1} = P_i(a_{i+1}) \in U_i \Rightarrow \text{discard it!!}$	$\mathbf{x} = \mathbf{x}_i + \mathbf{x}_k$, where $\mathbf{x}_i \in U$ and $\mathbf{x}_k \in U^{\perp}$	$diag_{m \times n}(a_1, \dots, a_p) diag_{n \times k}(c_1, \dots, c_q)$	Tricks for computing determinant	P=I _{EB} is change-in-basis matrix for basis	Singular Values Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any	$(A^{T}A)_{ij} = (A^{T}A)_{ji} = Cov(X_i, X_j)$	1) Gather $Q_j = [\mathbf{q_1} \dots \mathbf{q_j}] \in \mathbb{R}^{m \times j}$ all-at-once
$\left \frac{\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1}\right) \in \left(U_{j}\right)^{\perp}}{\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1}\right) \in \left(U_{j}\right)^{\perp}}\right \Rightarrow \text{we're after this!!}$	For matrix $\underline{A} \in \mathbb{R}^{m \times n}$ and for row-space R(A),	$= \operatorname{diag}_{m \times k}(a_1, \dots, a_p, a_{r_0}, 0, \dots, 0) = \operatorname{diag}(s)$	If block-triangular matrix then apply	$B = (x_1,, x_n)$ of eigenvectors	decomposition of the form $A = USV^T$, where	<u>s aj ve ajuvaraji</u>	·2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
	column-space $C(A)$ and null space $ker(A)$ $R(A)^{\perp} = ker(A)$ and $C(A)^{\perp} = ker(A^{T})$	Where $r = \min(p, q) = \min(m, n, k)$, and	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	If A = F _{EE} is transformation-matrix of linear map f then F _{EE} = I _{EB} F _{BB} I _{BE}	Orthogonal $U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and	v ₁ ,,v _r (columns of V) are principal axes of A	all-at-once
Let $\underline{q_{j+1}} = \hat{\mathbf{u}}_{j+1} \Longrightarrow$ we have next ONB $(\underline{q_1},, \underline{q_{j+1}})$ for $U_{j+1} \Longrightarrow$ start next iteration	$R(A)^{\perp} = \ker(A)$ and $C(A)^{\perp} = \ker(A')$ Any $b \in \mathbb{R}^{m}$ can be uniquely decomposed into	$s \in \mathbb{R}^S$, $s = \min(m, k)$	If close to triangular matrix apply EROs/ECOs to get it		$V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ $S = \text{diag}_{m \times n}(\sigma_1,, \sigma_p)$ where $p = \min(m, n)$ and	Let $\underline{\mathbf{w} \in \mathbb{R}^n}$ be some unit-vector \Longrightarrow let $\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the	· 3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
$ \mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$b = b_i + b_k$, where $b_i \in C(A)$ and $b_k \in ker(A^T)$	Inverse of square-diagonals => $diag(a_1,, a_n)^{-1} = diag(a_1^{-1},, a_n^{-1})$, i.e. diagonals	there, then its just product of diagonals If Cholesky/LU/QR is possible and cheap then do it,	Spectral theorem: if \underline{A} is Hermitian then \underline{P}^{-1} exists: $\ \mathbf{f} \mathbf{x}_i, \mathbf{x}_j\ _{\mathbf{A}}$ associated to different eigenvalues then	σ ₁ ≥···≥σ _p ≥0	projection/coordinate of sample rj onto w	all-at-once (an now rewrite $a = \sum_{i=1}^{j} (a \cdot a $
- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	$b = b_i + b_k$, where $b_i \in R(A)$ and $b_k \in ker(A)$	$\frac{\operatorname{diag}(a_1,, a_n)^{-1} = \operatorname{diag}(a_1^{-1},, a_n^{-1})}{\operatorname{cannot} \ \mathbf{be} \ \operatorname{zero} \ (\operatorname{division} \ \operatorname{by} \ \operatorname{zero} \ \operatorname{undefined})}$	then apply [AB] = [A][B]	$ \mathbf{x}_i \perp \mathbf{x}_j $	'		Can now rewrite $\underline{\mathbf{a}_j} = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$							

The content of the	Choose $Q = Q_n = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$, notice its	proj _{Lu} = uu ^T and proj _{Pu} = I _n - uu ^T =>	$ a^{n}k^{+\cdots+n}1f n_{b} n_{1} (n_{1},,n_{b}) $	\tilde{f} is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	For FP matrices , let $ M _{ij} = M_{ij} $, i.e. matrix $ M $ of	max · · / // · · ·	Rayleigh quotient for Hermitian $A = A^{\dagger}$ is	Nonlinear Systems of Equations
Section Sect			$\begin{vmatrix} \frac{\partial^n k^{+\cdots+n} 1 f}{\partial \mathbf{x}_{\cdot}^{n} k \cdots \partial \mathbf{x}_{\cdot}^{n} 1} &= \partial_{i_k}^{n_k} \cdots \partial_{i_1}^{n_1} f &= f_{i_1 \cdots i_k}^{(n_1, \dots, n_k)} \end{vmatrix}$		absolute values of MI	Stability depends on growth-factor $p = \frac{\max_{i,j} u_{i,j} }{\max_{i:j} u_{i,j} }$	Rayleign quotient for <u>Hermitian A = A · </u> is	Recall that $\nabla f(\mathbf{x})$ is direction of max. rate-of-change
Control Cont			$\frac{1}{1}$ Its an N i th order partial derivative where $N = \sum_{k} n_k I$	i.e. exactly the right answer to nearly the right			X I X	
March Marc		flipping component in Lu	$\nabla f = [\lambda_1 f \lambda_2 f]^T$ is gradient of $f = \sum_{R} (\nabla f) \cdot \frac{\partial f}{\partial x}$	question, a subset of stability				$\frac{\log a}{x^{(k+1)}} = \frac{x^{(k)} - \alpha \nabla f(x^{(k)})}{x^{(k+1)}}$ for step length α
Second S	$\begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \dots & \mathbf{q}_1^T \mathbf{a}_n \end{bmatrix}$	H _u is involutory, orthogonal and symmetric, i.e.		⊕, ⊖, ⊗, ⊘ inner-product, back-substitution w/	$fl(AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^2)$			
Second Company Seco	A = QR = Q , notice its	$H_{u} = H_{u}^{-1} = H_{u}^{T}$			Today should be Built	- Siny Sacritarias State in p-S(1)	$R_{\bullet}(\mathbf{x}) = R_{\bullet}(\mathbf{y}) = O(\ \mathbf{x} - \mathbf{y}\ ^2) \text{as } \mathbf{x} \to \text{viwhere viis}$	If A is positive-definite, solving $Ax = b$ and min., $f(x) = \frac{1}{2} x^T Ax - x^T b$ are equivalent
Manual Content	111112	Modified Gram-Schmidt	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$ is					Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step
The content of the		Go check <u>Classical GM</u> first, as this is just an alternative	directional-derivative of f			bottom-right submatrix	(b)	
	Consider full-rank A=[a+1 a] ∈ R ^{m×n} (m>n)	Let P . a. = I _m - q: q ^T be projector onto hyperplane			Need $\underline{a=0} = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	elimination	Power iteration: define sequence $\frac{b^{(k+1)}}{\ Ab^{(k)}\ }$	
Company Comp	i.e. a ₁ a _n ∈ R ^m are linearly independent				x → 01			Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$
Market M	Apply QR decomposition to obtain:	(kdj) i.e. orthogonal compliment of line kdj	maximized when cos θ = 1	In complexity analysis $f(n) = O(g(n))$ as $n \to \infty$	$\sum_{k=0}^{n} {\binom{p}{k}} \epsilon^{k} + O(\epsilon^{n+1})$	· · · · · · · · · · · · · · · · · · ·		
Section Sect		Notice: $P_{\perp i} = I_m - Q_i Q_i^T = \prod_{i=1}^{J} (I_m - q_i q_i^T) = \prod_{i=1}^{J} P_{\perp q_i}$		But in <u>numerical analysis</u> $f(\varepsilon) = O(g(\varepsilon))$ as $\varepsilon \to 0$, i.e.	$=\sum_{k=0}^{n} \frac{P!}{k!(p-k)!} \in R + O\left(\epsilon^{n+1}\right)$		proj _{X1} (b ⁽⁰⁾) ≠ 0	
State Company Compan	unner-triangular R ₄ ∈ R ^{n×n} where A = O ₄ R ₄			i.e. $\exists C, \delta > 0$ $\forall C, W$ we have		$d(x,x)=0 \mid x\neq y \implies d(x,y)>0 \mid d(x,y)=d(y,x)$	Under above assumptions.	
		Re-state: $u_{j+1} = (I_m - Q_j Q_j^l) a_{j+1} = >$	f has local minimum at x_{loc} if there's radius $r>0$ s.t.	$0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $		$d(x,z) \le d(x,y) + d(y,z)$	$\mu_{k} = R_{\Delta}(\mathbf{b}^{(k)}) = \frac{\mathbf{b}^{(k)}^{\dagger} A \mathbf{b}^{(k)}}{\Delta \mathbf{b}^{(k)}}$ converges to dominant	$\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ are orthogonal
March Marc		$ \mathbf{u}_{i+1} = (\prod_{j=1}^{j} P_{\perp \mathbf{q}_{i}}) \mathbf{a}_{j+1} = (P_{\perp \mathbf{q}_{i}} \dots P_{\perp \mathbf{q}_{1}}) \mathbf{a}_{j+1}$				For metric spaces, mix-and-match these infinite/finite	b(k) [↑] b(k)	
The content of the	Notice $(\mathbf{q}_{n+1},, \mathbf{q}_m)$ is ONB for $C(A)^{\perp} = \ker(A^T)$			S	Row/column switching: permutation matrix Pij	limit definitions:	$\frac{^{1}}{(b_{b})}$ converges to some dominant x_{1} jassociated with	$ \underline{k \ge 1} \Rightarrow \mathbf{p}(k) = \mathbf{r}(k) - \sum_{i \le k} \frac{\langle \mathbf{p}(i), \mathbf{r}(k) \rangle_{A}}{\langle i \rangle_{A} \langle i \rangle_{A}} \mathbf{p}(i)$
	Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$, let	a _{i+1} removing its components along q ₁ then along					$ \lambda_1 \Rightarrow Ab^{(R)} $ converges to $ \lambda_1 $	(p(*),p(*)) _A
	$Q = [Q_1 \mid Q_2] \in \mathbb{R}^{m \times m}, \text{ let } \underline{R} = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	q2 and so on	$\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n} = 1$ its $\underline{f'}(\mathbf{x}) = 0$					$\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(n)} \cdot \mathbf{r}^{(k)}}{(\mathbf{p}^{(k)} \mathbf{p}^{(k)})}$
	Then full QR decomposition is	Let $\mathbf{u}_{b}^{(j)} = (\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}) \mathbf{a}_{k}$, i.e. \mathbf{a}_{k} without its	$\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n=1}$ its $\underline{f''(x)>0}$		swap columns	Cauchy sequences, i.e.	dominant λ_2 ; \mathbf{x}_2 [instead	
Section Company Comp	$A = QR = [Q_1 Q_2] \begin{vmatrix} R_1 \\ 0_{m-n} \end{vmatrix} = Q_1 R_1$		2Tl d ² f	flipped (some don't fit the pattern)	$P_{ij} = P_{ij}^{I} = P_{ij}^{-1}$ i.e. <u>applying twice</u> will undo it	$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : a(a_m, a_n) < \epsilon,$ converge in complete spaces	If no dominant \(\lambda\) (i.e. multiple eigenvalues of	iterations
Part	$Q \mid \text{is orthogonal, i.e. } Q^{-1} = Q^T \mid \text{so its a basis}$			- 	Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by	You can manipulate matrix limits much like in real	maximum λ then (b _k) will converge to linear	inner-product)
Section of the property of t			Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$			analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$	Slow convergence if dominant λ_1 not <u>"very</u>	$(\underline{\mathbf{p}}^{(0)},,\underline{\mathbf{p}}^{(n-1)})$ and $(\underline{\mathbf{r}}^{(0)},,\underline{\mathbf{r}}^{(n-1)})$ are <u>bases</u> for
Marchanis 1964		$r_{ij} = \ \mathbf{u}_{j}^{o^{-1}}\ $				Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	dominant"	
Continue	projections onto C(A), C(A) = ker(A') respectively	Iterative step:			D _i (λ) = diag(1,,λ,,1) so all diagonal properties	$\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left\ \frac{\Delta_2}{\lambda_1}\right\ ^{\frac{1}{2}}\right) $ for phase factor	QR Algorithm to find Schur decomposi-
Control of the cont	Nouce: QQ' = 1 _m = Q ₁ Q ₁ + Q ₂ Q ₂	$\mathbf{u}_{k}^{\vee} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{\vee} = \mathbf{u}_{k}^{\vee} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{\vee}\right) \mathbf{q}_{j}$	Conditioning	Using functions $f_1,, f_n$ let $\Phi(f_1,, f_n)$ be formula				
Section Company Comp	conjugate-transpose	1 7 1		defining some function Then $\Phi(O(q_1),, O(q_n))$ is the class of functions	Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_i^T$ performs	upper/lower bounds	$(\lambda_1)^k c_1$ where $c_1 = v^{\frac{1}{2}} h(0)$ and accuming	Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A = QUQ^{\dagger}}$ \underline{Q} [is unitary, i.e. $\underline{Q}^{\dagger} = \underline{Q}^{-1}$] and upper-triangular \underline{U}]
	Lines and hyperplanes in F ⁿ (=R ⁿ)		A problem <i>instance</i> is f with fixed input $x \in X$.		$R_i \leftarrow R_i + \lambda R_j$ when applying from left		10[1 15[1	Diagonal of U contains eigenvalues of A
	o it is the min specially		shortened to just "problem" (with $x \in X$ Jimplied)		$\lambda e_i e_i^T$ is zeros except for $\lambda \ln (i, j)$ th entry	$\lim_{n\to\infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	b ^(k) ;x ₁ are <u>normalized</u>	
Martin Company Compa					$L_{ii}(\lambda)^{-1} = L_{ii}(-\lambda)$ both triangular matrices	Iterative Techniques		Algorithm 1 Basic QR iteration
An in the content of the content o	with standard origin <u>0 ∈ Rⁿ</u>	Compute $r_{ij} = \ \mathbf{u}_{i}^{(j-1)}\ = \mathbf{q}_{i} = \mathbf{u}_{i}^{(j-1)}/r_{ij}$	Well-conditioned if <u>all</u> small δx lead to small δf , i.e.	$\Phi_1(O(f_1),,O(f_m)) = \Phi_2(O(g_1),,O(g_n))$ means	' 		$\Rightarrow \underline{\text{power-iteration}} \text{ on } \underline{(A-\sigma I)} \text{ has } \frac{\Lambda_2 - \sigma}{\lambda_1 - \sigma}$	1: for $k = 1, 2, 3,$ do
		(i-1) I	if K jis small (e.g. 1) 10) 10 ²		tion		Eigenvector guess => estimated eigenvalue	2: $A^{(k-1)} = Q^{(k-1)}R^{(k-1)}$
Security 1 1 1 1 1 1 1 1 1	6 6 1 1 6 16					Ax=b rewritten as x=Mx+c where	In the state of th	
						M=-G ⁻¹ R; c=-G ⁻¹ b		
	c∈L is closest point to origin, i.e. c⊥n	Next ONB $\langle \mathbf{q}_1,, \mathbf{q}_j \rangle$ and next residual $\mathbf{u}_{j+1}^{(j)},, \mathbf{u}_n^{(j)}$				$\mathbf{x}^{(k+1)} = \mathbf{f}(\mathbf{x}^{(k)}) = \mathbf{M}\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$		
The content of processes of	If c ≠ \n ⇒ L not vector-subspace of R ⁿ	NOTE: for $j=1$ \Rightarrow $\mathbf{q}_1,, \mathbf{q}_{j-1} = \emptyset$, i.e. none yet	$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$		Naive Gaussian Flimination performs	Limit of (\mathbf{x}_k) is <u>fixed point</u> of $f = $ <u>unique fixed point</u>	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$	
	Llis affine-subspace of R ⁿ	By end of iteration $j = n$, we have ONB		$ \varepsilon \mapsto (\varepsilon + 1)^- \in \{\varepsilon^- + f(\varepsilon) : f \in O(\varepsilon)\} $ not necessarily true	$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1} U$ using			
The content of the				Let $f_1 = O(q_1)$, $f_2 = O(q_2)$ and let $k \neq 0$ be a constant			11 2	
Appropriate		A=[a+ a 1=[a+ a 1 · · · · = OR		$ f_1 f_2 = O(g_1g_2) f \cdot O(g) = O(fg) O(k \cdot g) = O(g) $		We want to find M < 1 and easy to compute M; c	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\ = O\left(\left\ \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right\ ^{\kappa}\right)\right) \text{ where } \mathbf{x}_{1,\sigma}\ $	$A^{(k+1)}$ is similar to $A^{(k)}$
Second Part	" ⁻		Relative condition number $\kappa(x) = \kappa \text{ of } f \text{ at } x \text{ is }$					
	A hyperplane $P = (\mathbb{R}\mathbf{n})^{\perp} + \mathbf{c} = \{x + \mathbf{c} \mid x \in \mathbb{R}^n, x \perp \mathbf{n}\}$ is	corresponds to thin QR decomposition	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ < \delta} \left(\frac{\ \delta f\ }{\ f(y)\ } / \frac{\ \delta x\ }{\ x\ } \right)$			$\left\ \frac{\left\ \mathbf{b} - \mathbf{A} \mathbf{X}^{(R)} \right\ }{\left\ \mathbf{b} \right\ } \le \epsilon \right\ $	Efficiently compute eigenvectors for known	Under certain conditions QR algorithm converges to
Classical vs. Modified Gram Schmidt representation for processing search of the processing searc	={ x ∈ R" x · n = c · n }	Where $A \in \mathbb{R}^{m \times n}$ is full-rank, $Q \in \mathbb{R}^{m \times n}$ is upper-triangular	=> for most problems simplified to		3: for $j = k + 1$ to m do		eigenvalues σ	Schur decomposition
Recommend (in fig.) Proceedings of the complete in this (in content) process of the complete in the content in this (in content) process of the	characterized by normal He R. (H + 0) and onset norm		$\kappa = \sup_{\delta x} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	t≥1](24]or 53]for IEEE single/double precisions)			AL 11 01 11 11	We can apply shift u ^(k) at iteration k!
Second content of the properties of the proper	It represents an (n-1) dimensional slice of the	These algorithms both compute thin thin QR			6: end for	permute/change basis if isn't) then A=D+L+U; where D	1: for k = 1, 2, 3, do	$\Rightarrow A^{(k)} - \mu^{(k)} I = Q^{(k)} R^{(k)}; A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)} I$
			II Jacobian J _f (x) exists then k f(x) / x				2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$ 3: $x^{(k)} = \hat{y}^{(k)} / \max(\hat{y}^{(k)})$	If shifts are good eigenvalue estimates then last
Fig.	$\mathbf{n}_{\mathbf{j}}$ is a unit vector , i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$	1: for i = 1 to n do		for single, 11 bit for double)		In and it was a district of the state of the	4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$	column of $\tilde{o}^{(k)}$ converges quickly to an eigenvector
Complete particular electric college of \$P^2 college particular electric plant plant and product of \$P^2 college particular electric plant plant and product of \$P^2 college particular electric plant plant plant and product of \$P^2 college particular electric plant plant plant and product of \$P^2 college particular electric plant plant plant and product plant		1: for $j = 1$ to n do 3: end for	=> comes up so often that has its own name		fails if u(k−1) ≈ 0	$G = D: R = I + IJI \Rightarrow M = -D^{-1}(I + IJ): C = D^{-1}h$		Estimate \(\frac{\pi^{\chi}}{\pi}\) with \(\frac{\text{Rayleign quotient}}{\chi} => \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	<u> </u>	2: $u_j = a_j$ 4: for $j = 1$ to n do 3: for $i = 1$ to $j - 1$ do 5: $r_{ii} = u_i _2$	A∈C ^{m×m} is <u>well-conditioned</u> if κ(A) is small,			$\mathbf{x}^{(k+1)} = \frac{1}{x} \left(\mathbf{b}_i - \sum_{i=1}^{n} A_{ii} \mathbf{x}^{(k)} \right) = \mathbf{x}^{(k+1)}$ only needs		
	i.e. 0 ∉ P i.e. P doesn't go through the origin	4: $r_{ij} = q_i^* a_j$ 6: $q_j = u_j/r_{jj}$		countably infinite and self-similar (i.e. F = βF)			pre-ractorization	column of Q***/
		6: end for 8: $r_{jk} = q_j^* u_k$				o ₁ , A. ', A _{1*} - Tow-wise parametrzation		
Section through the origin Fig. 6 pigses throug	R ⁿ	8: $q_i = u_i/r_{ii}$ 10: end for	For $A \in \mathbb{C}^{m \times n}$, the problem $f_A(x) = Ax$ has					
Completes as fin each fine contingency fine	i.e. 0∈PJ, i.e. PJgoes through the origin	9: elid for 11: elid for		Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t} \underline{is} $		$G = D + L; R = U \implies M = -(D + L)^{-1} U; \mathbf{c} = (D + L)^{-1} \mathbf{b}$		
			If Ax = b problem of finding x given b is just	maximum relative gap between FPs		$\left \frac{\mathbf{x}_{i}^{(R+1)}}{\sum_{j=1}^{n} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(R+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(R)} \right) \right $		
For be (m) the problem in f_(s) is orthogonal projection onto (jielong p) in projection onto (jielong p) in projection onto (jielong p) is orthogonal projection onto (jielong p) is observed point of projection of projec		of RI	$ f_{A-1}(b) = A^{-1}b \Rightarrow \kappa = A^{-1} \frac{ b }{ b } \le Cond(A)$	nau uie gap Detween 1 Jand next largest FP $2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for single/double		Computing $\mathbf{x}_{:}^{(k+1)}$ needs $\mathbf{b}_{::}$ $\mathbf{x}^{(k)}$: $\mathbf{A}_{::}$ and $\mathbf{x}_{:}^{(k+1)}$ for		
Both have floor flooring-point operation count of projecting more [2] (2007a; 2) NOTE Householder method has $2(m^2-n^2/3)$ flooring with uniform for projecting security of $2(n^2-n^2)$ flooring with uniform for projecting security of $2(n^2-n^2)$ flooring with uniform for projecting security of $2(n^2-n^2)$ for projecting sequent or normal $2(n^2-n^2/3)$ flooring with uniform for projecting sequent or normal $2(n^2-n^2)$ for $2(n^2-n^2)$ flooring with uniform for projecting sequent or normal $2(n^2-n^2)$ for $2(n^2-n^2)$ for $2(n^2-n^2)$ flooring with uniform for $2(n^2-n^2)$ flooring with un	compliments, so:	Modified GS ⇒ j th column of Q and the j th row of			Partial pivoting computes PA = LU where P is a	<u> </u>		
Stability Stab	,	Both have flop (floating-point operation) count of	$Ax = b$ has $K = A A^{-1} = Cond(A)$	FP arithmetic: let *, be real and floating	permutation matrix => PP' = I], i.e. its orthogonal For each column j finds largest entry and row-swaps			
NOTE Householder method has $2(m^4-n^7)^2$ flow properties of the properties of	projection onto PI*(along / f)	O(2mn ²)		For x, y ∈ F we have	to make it <u>new pivot</u> => P _j	Successive over-relaxation (SOR):		
$ \begin{array}{ll} P = \ker [\text{proj}_1] = \operatorname{im}[\text{proj}_2] \\ \mathbb{R}^n = \Re \mathbb{R} \oplus \mathbb{R} \cap \mathbb{R}^n] = \operatorname{im}[\text{proj}_1] = \operatorname{im}[\text{proj}_2] \\ \mathbb{R}^n = \Re \mathbb{R} \oplus \mathbb{R}^n] = \operatorname{im}[\text{proj}_1] = \operatorname{im}[\text{proj}_2] \\ \mathbb{R}^n = \operatorname{im}[\text{proj}_1] = \operatorname{im}[\text{proj}_1] \\ \mathbb{R}^n = \operatorname{im}[\text{proj}_1] \\ \mathbb{R}^n = \operatorname{im}[\text{proj}_1] = \operatorname{im}[\text{proj}_1] $	L = im (proj _L) = ker (proj _P) and			$x \circledast y = fl(x * y) = (x * y)(1 * \varepsilon), \delta \le \varepsilon_{mach}$	Then performs normal elimination on that column =>			
Second continue of the cont	· ···· (F· -)[) ···· (F· -)P)		$ \tilde{f}:X \to Y $		Pacultic L. P. L. P. L. D. AIII whom	$M = -(\omega \cdot D + L) \cdot ((1 - \omega \cdot)D + U); \mathbf{c} = -(\omega \cdot D + L)^{-1} \mathbf{b}$ $\omega /_{\mathbf{b}} = -i - 1 (k+1) -n (k) \setminus 1$		
Second continue of the cont	n = n ⊕(n ii) i.e. all vectors ve n uniquely		Input $\underline{x} \in X$ is first rounded to $fl(x)$, i.e. $\underline{f}(x) = \overline{f}(fl(x))$ Absolute error $\Rightarrow \ \overline{f}(x) - f(x)\ $	above applies to complex ops as-well		$\begin{vmatrix} \mathbf{x}_{i}^{(k+1)} = \overline{A_{ii}} & \begin{bmatrix} \mathbf{b}_{i} - \sum_{j=1}^{i} A_{ij} \mathbf{x}_{j}^{*} & -\sum_{j=i+1}^{i} A_{ij} \mathbf{x}_{j}^{****} \end{bmatrix} \end{vmatrix} $ for		
Classicate of the partial derivative w.r.t. $f(x) = f(x) = f$				$\frac{\text{Caveat:}}{\text{Caveat:}} \in \text{mach} = \frac{1}{2} \beta^{1-t} \text{ must be } \frac{\text{scaled}}{\text{scaled}} \text{ by factors } \frac{\text{on}}{\text{on}}$		11 /		
wodined Gs = $\ \mathbf{r}_{1} - \mathbf{r}_{1} \ \cdot \ $				the order of 2 ^{3/2} ,2 ^{5/2} for ⊗, ⊘ respectively	PA=LU	relaxation factor <u>\omega > 1</u>		
We call the Let $L_{\underline{u}} = Ru$ Suppose $P_{\underline{u}} = (Ru)^{\perp}$ secall: let $L_{\underline{u}} = Ru$ Suppose $P_{\underline{u}} = (Ru)^{\perp}$ secall: let $L_{\underline{u}} = Ru$ Recall: let $L_{\underline{u}$			$ \tilde{f} $ is accurate if $\forall x \in X$, $ f(x)-f(x) = O(\epsilon_{mach})$	(x ₁ ⊕⊕x _n)	Algorithm 2 Gaussian elimination with partial pivoting	If A J is strictly row diagonally dominant then		
$ \frac{ x }{ x } \times x = 0 $ $ \frac{ x }{ x } \times $	1) The boundation of an orbital complete account of the	NOTE: Householder method has 1n -Q +Q ≈ € mach	\tilde{f} is stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t.	$\approx (x_1 + \dots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right)^{i-j} = \text{mach}$	2: for $k = 1$ to $m - 1$ do	Jacobi/Gauss-Seidel methods converge; AJis strictly		
Suppose $P_{\boldsymbol{u}} = (\boldsymbol{u}\boldsymbol{u})^{\perp}$ goes through the origin with unit normal $\underline{u} \in \mathbb{R}^n$ when clear write j -th component of input as j -instead of u -included in the product is stable u -included input u -in	xy= λn		$\frac{\ \bar{f}(x)-f(\bar{x})\ }{\ f(\bar{x})\ } = O(\epsilon_{mach})$ and $\frac{\ \bar{x}-x\ }{\ v\ } = O(\epsilon_{mach})$	$ (x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{mach} $				
Second	-2) Midpoint $\underline{m} = 1/2(\mathbf{x} + \mathbf{y}) \in P$ lies on \underline{P}_1 i.e. $\underline{m} \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}$	When clear write i th component of input as i instead		$ti(\sum x_i y_i) = \sum x_i y_i (1+\epsilon_i)$ where $1+\epsilon_i = (1+\delta_i) \times (1+\eta_i) \cdots (1+\eta_n)$ land $1\delta:1.1\eta:1<\epsilon$				
Householder matrix $H_{\mathbf{u}} = \mathbf{I}_{\mathbf{n}} - 2\mathbf{u}\mathbf{u}^{T}$ see effection w.r.t. hyperplane $P_{\mathbf{u}}$ Recall: let $L_{\mathbf{u}} = \mathbf{R}\mathbf{u}$ $H_{\mathbf{u}} = \mathbf{I}_{\mathbf{n}} - 2\mathbf{u}\mathbf{u}^{T}$ see effection w.r.t. hyperplane $P_{\mathbf{u}} = \mathbf{I}_{\mathbf{n}} - 2\mathbf{u}\mathbf{u}^{T}$ seed to reconstruct the first of the same of the same of the first of the same o	normal $u \in \mathbb{R}^{n}$ goes through the origin with unit	of x _i			6: $\rho_{k,:} \leftrightarrow \rho_{i,:}$	Eigenvalue Problems		
Note that Note N	Householder matrix $H_{u} = I_{n} - 2uu^{T}$ is reflection w.r.t.	Projecting <u>level curves</u> onto R ⁿ gives f s		$ fl(x^Ty)-x^Ty \le \sum x_iy_i \epsilon_i $	8: $\ell_{j,k} = u_{j,k}/u_{k,k}$	If A Jis diagonalizable then eigen-decomposition is		
$\frac{ \Pi(X',Y)-X'' \le \phi(n) \text{mach} X ' Y \text{where} X ' X ' \text{where} X ' \text{where} X ' X ' where$	hyperplane Pu				9: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$	Dominant λ ₁ ; x ₁ are such that λ ₁ is strictly largest		
order partial derivative w.rt. i_1 of f is: Summing a series is more stable if terms added in		REAL PROPERTY OF THE PROPERTY		$ f (x^{T}y) - x^{T}y \le \phi(n)\epsilon_{\text{mach}} x ^{T} y \text{ where } x _{i} = x_{i} $	11: end for	for which $Ax = \lambda x$		
		order partial derivative w.r.t i ₁ of f is:		Summing a series is more stable if terms added in	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$; results in $L_{ij} \le 1$			
order of increasing magnitude					so L = O(1)			