# BST 210 Project: Survival Analysis

### Lauren Mock

## 11/30/2021

### Stem Cell Source

### Read in Data

```
## Warning in FUN(X[[i]], ...): NAs introduced by coercion
## Warning in FUN(X[[i]], ...): NAs introduced by coercion
## Warning in FUN(X[[i]], ...): NAs introduced by coercion
```

## Compare Kaplan-Meier curves for the two stem cell sources

filter data

```
# sources <- bone %>% select(stem_cell_source, survival_time, survival_status)
# head(sources)
#
# pb <- sources %>% filter(stem_cell_source == "peripheral_blood")
# bm <- sources %>% filter(stem_cell_source == "bone_marrow")
```

#### plot two separate curves

```
### peripheral blood
# survival.pb.obj <- Surv(pb$survival_time, pb$survival_status)
# KM.ph.fit <- survfit(survival.pb.obj ~ 1, data = pb)
#
# plot(KM.ph.fit, xlab = "Days", ylab = "Survival Probability", conf.int=,
# mark.time = TRUE, main = "Peripheral Blood Group Survival")
#
# ### bone marrow
# survival.bm.obj <- Surv(bm$survival_time, bm$survival_status)
# KM.bm.fit <- survfit(survival.bm.obj ~ 1, data = bm)
#
# plot(KM.bm.fit, xlab = "Days", ylab = "Survival Probability", conf.int=,
# mark.time = TRUE, main = "Bone Marrow Group Survival")</pre>
```

## plot both curves together

```
survival.obj <- Surv(time = bone$survival_time, event = bone$survival_status)

# Overall

KM.fit1 <- survfit(survival.obj ~ 1, data = bone)
plot(KM.fit1, xlab = "Days", ylab = "Survival Probability", conf.int = FALSE,
mark.time = TRUE, main = "Kaplan-Meier Survival Curve", lwd = 2)</pre>
```

### Kaplan-Meier Survival Curve



## Kaplan-Meier Survival Curves by Stem Cell Source



can we get CIs on this plot??

```
survdiff(Surv(bone$survival_time, bone$survival_status) ~ stem_cell_source, data=bone)
log-rank test to compare these two curves
```

```
## Call:
## survdiff(formula = Surv(bone$survival_time, bone$survival_status) ~
##
       stem cell source, data = bone)
##
##
                                        N Observed Expected (O-E)^2/E (O-E)^2/V
## stem_cell_source=bone_marrow
                                       42
                                                24
                                                       16.8
                                                                3.065
                                                                            3.83
## stem_cell_source=peripheral_blood 145
                                                61
                                                       68.2
                                                                0.756
                                                                            3.83
##
   Chisq= 3.8 on 1 degrees of freedom, p= 0.05
```

p-value is exactly 0.5-this means that the curves are (approximately) statistically significantly different

# Cox Proportional Hazards Model

```
cox_model_source <- coxph(survival.obj ~ as.factor(stem_cell_source), data = bone, ties = "exact")</pre>
summary(cox_model_source)
## coxph(formula = survival.obj ~ as.factor(stem_cell_source), data = bone,
      ties = "exact")
##
##
    n= 187, number of events= 85
##
                                                  coef exp(coef) se(coef)
##
## as.factor(stem_cell_source)peripheral_blood -0.4686
                                                          0.6259
                                                                   0.2415 - 1.941
                                               Pr(>|z|)
## as.factor(stem_cell_source)peripheral_blood
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                                               exp(coef) exp(-coef) lower .95
## as.factor(stem_cell_source)peripheral_blood
                                                  0.6259
                                                              1.598
                                                                       0.3899
                                               upper .95
## as.factor(stem_cell_source)peripheral_blood
                                                   1.005
## Concordance= 0.549 (se = 0.025)
## Likelihood ratio test= 3.5 on 1 df,
                                          0.06
                       = 3.77 on 1 df,
## Wald test
                                           p=0.05
## Score (logrank) test = 3.83 on 1 df,
                                           p=0.05
```

plot(survfit(cox\_model\_source))



# check Schoenfeld residuals

```
# create plot of schoenfeld resids
wt_sch_source <- cox.zph(cox_model_source)
plot(wt_sch_source) # slight decrease then increase over time</pre>
```



```
# check summary to see if problematic
wt_sch_source
```

```
## chisq df p
## as.factor(stem_cell_source) 1.5 1 0.22
## GLOBAL 1.5 1 0.22
```

## confounders??

did the authors adjust for confounders? no, it was an RCT

we can look at the covariates that are most strongly associated with survival

### looking for common causes of stem cell type and survival

we had selected for our prediction model: - CD3 dosage (is this related to stem cell source?) - rh factor - disease type - recipient body mass (which is probably closely related to age)

DIFFERENT IDEA: - disease type (Anasetti article says that this could be an effect modifier)

###try some models with possible confounders

```
## Call:
  coxph(formula = survival.obj ~ as.factor(stem_cell_source) +
##
       recipient_age + CD3_x1e8_per_kg, data = bone, ties = "exact")
##
##
     n= 182, number of events= 81
##
      (5 observations deleted due to missingness)
##
##
                                                     coef exp(coef) se(coef)
## as.factor(stem_cell_source)peripheral_blood -0.18045
                                                            0.83489 0.30931 -0.583
## recipient_age
                                                 0.04226
                                                            1.04317 0.02421 1.745
## CD3_x1e8_per_kg
                                                 -0.07077
                                                            0.93168 0.04466 -1.584
##
                                                Pr(>|z|)
## as.factor(stem_cell_source)peripheral_blood
                                                  0.5596
                                                  0.0809 .
## recipient_age
## CD3_x1e8_per_kg
                                                  0.1131
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
##
                                                exp(coef) exp(-coef) lower .95
## as.factor(stem cell source)peripheral blood
                                                   0.8349
                                                               1.1978
                                                                         0.4553
## recipient_age
                                                    1.0432
                                                               0.9586
                                                                         0.9948
## CD3_x1e8_per_kg
                                                    0.9317
                                                               1.0733
                                                                         0.8536
                                                upper .95
##
## as.factor(stem cell source)peripheral blood
                                                     1.531
## recipient age
                                                     1.094
## CD3_x1e8_per_kg
                                                     1.017
##
## Concordance= 0.615 (se = 0.034)
## Likelihood ratio test= 13.61 on 3 df,
                                             p=0.003
                                             p=0.006
## Wald test
                        = 12.44 on 3 df,
## Score (logrank) test = 12.9 on 3 df,
                                            p=0.005
this would imply that source doesn't matter as much once we adjust for dosage and age - need to adjust for
age when we use dosage (previous authors did) - why do people get different doses?
cox_model_source3 <- coxph(survival.obj ~ as.factor(stem_cell_source):as.factor(disease_group),</pre>
                    data = bone, ties = "exact")
summary(cox_model_source3)
## Call:
  coxph(formula = survival.obj ~ as.factor(stem_cell_source):as.factor(disease_group),
##
       data = bone, ties = "exact")
##
##
     n= 187, number of events= 85
##
##
                                                                                         coef
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                       0.7916
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
                                                                                       0.5181
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
                                                                                       1.7811
## as.factor(stem cell source)peripheral blood:as.factor(disease group)nonmalignant
                                                                                           NA
                                                                                       exp(coef)
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                          2.2070
```

1.6789

## as.factor(stem\_cell\_source)peripheral\_blood:as.factor(disease\_group)malignant

```
## as.factor(stem cell source)bone marrow:as.factor(disease group)nonmalignant
                                                                                        5.9362
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                            NΑ
##
                                                                                     se(coef)
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                       0.4188
## as.factor(stem cell source)peripheral blood:as.factor(disease group)malignant
                                                                                       0.3797
## as.factor(stem cell source)bone marrow:as.factor(disease group)nonmalignant
                                                                                       0.6159
  as.factor(stem cell source)peripheral blood:as.factor(disease group)nonmalignant
                                                                                       0.0000
##
                                                                                         z
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                     1.890
                                                                                     1.365
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
                                                                                     2.892
  as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                        NA
##
                                                                                     Pr(>|z|)
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                      0.05873
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
                                                                                      0.17237
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
                                                                                      0.00383
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                           NΑ
##
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
## as.factor(stem cell source)peripheral blood:as.factor(disease group)malignant
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
                                                                                     exp(coef)
##
  as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                         2.207
  as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
                                                                                         1.679
                                                                                         5.936
  as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
  as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                            NA
##
                                                                                     exp(-coef)
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)malignant
                                                                                         0.4531
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
                                                                                         0.5956
                                                                                         0.1685
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
   as.factor(stem cell source)peripheral blood:as.factor(disease group)nonmalignant
                                                                                             NA
##
                                                                                     lower .95
## as.factor(stem cell source)bone marrow:as.factor(disease group)malignant
                                                                                        0.9712
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)malignant
                                                                                        0.7977
## as.factor(stem cell source)bone marrow:as.factor(disease group)nonmalignant
                                                                                        1.7753
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                            NΑ
##
                                                                                     upper .95
## as.factor(stem cell source)bone marrow:as.factor(disease group)malignant
                                                                                         5.015
## as.factor(stem cell source)peripheral blood:as.factor(disease group)malignant
                                                                                         3.534
## as.factor(stem_cell_source)bone_marrow:as.factor(disease_group)nonmalignant
                                                                                        19.849
## as.factor(stem_cell_source)peripheral_blood:as.factor(disease_group)nonmalignant
                                                                                            NA
##
## Concordance= 0.572 (se = 0.029)
## Likelihood ratio test= 8.19
                                           p=0.04
                        = 9.44
## Wald test
                                on 3 df,
                                           p=0.02
## Score (logrank) test = 10.49 on 3 df,
                                            p=0.01
```

previous research mentioned interaction between disease type and stem cell source—mamy of these interactions are significant

```
cox_model_source4 <- coxph(survival.obj ~ as.factor(stem_cell_source) +</pre>
                                   recipient_age + CD3_x1e8_per_kg,
                    data = bone, ties = "exact")
summary(cox_model_source4)
## Call:
## coxph(formula = survival.obj ~ as.factor(stem_cell_source) +
       recipient_age + CD3_x1e8_per_kg, data = bone, ties = "exact")
##
##
    n= 182, number of events= 81
      (5 observations deleted due to missingness)
##
##
##
                                                   coef exp(coef) se(coef)
## as.factor(stem_cell_source)peripheral_blood -0.18045
                                                          0.83489 0.30931 -0.583
## recipient_age
                                                0.04226
                                                          1.04317 0.02421 1.745
## CD3_x1e8_per_kg
                                                          0.93168 0.04466 -1.584
                                               -0.07077
                                               Pr(>|z|)
## as.factor(stem_cell_source)peripheral_blood
                                                 0.5596
## recipient_age
                                                 0.0809 .
## CD3_x1e8_per_kg
                                                 0.1131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                                               exp(coef) exp(-coef) lower .95
## as.factor(stem_cell_source)peripheral_blood
                                                  0.8349
                                                             1.1978
                                                                       0.4553
## recipient_age
                                                  1.0432
                                                             0.9586
                                                                       0.9948
                                                  0.9317
                                                             1.0733
                                                                       0.8536
## CD3_x1e8_per_kg
                                               upper .95
## as.factor(stem_cell_source)peripheral_blood
                                                   1.531
## recipient_age
                                                   1.094
                                                   1.017
## CD3_x1e8_per_kg
## Concordance= 0.615 (se = 0.034)
                                            p=0.003
## Likelihood ratio test= 13.61 on 3 df,
                       = 12.44 on 3 df,
                                            p=0.006
## Wald test
## Score (logrank) test = 12.9 on 3 df,
                                           p=0.005
```

# CD3/CD34 dosage

plot KM curves by dosage

```
# add new columns based on previous research
bone$CD3_over_4 <- ifelse(bone$CD3_x1e8_per_kg >= 4, 1, 0)
bone$CD34_over10 <- ifelse(bone$CD34_x1e6_per_kg...CD34kgx10d6 >= 10, 1, 0)

KM.fit4 <- survfit(survival.obj ~ CD3_over_4, data = bone)
summary(KM.fit4)

## Call: survfit(formula = survival.obj ~ CD3_over_4, data = bone)
##</pre>
```

## 5 observations deleted due to missingness ## CD3 over 4=0 ## time n.risk n.event survival std.err lower 95% CI upper 95% CI ## 0.989 0.0114 0.966 1.000 10 87 1 ## 11 86 1 0.977 0.0161 0.946 1.000 ## 15 85 0.966 0.0196 0.928 1.000 1 ## 19 84 0.954 0.0225 0.911 0.999 1 ## 28 0.943 0.0250 0.993 83 1 0.895 ## 35 82 1 0.931 0.0272 0.879 0.986 ## 42 81 0.920 0.979 1 0.0292 0.864 ## 48 80 1 0.908 0.0310 0.849 0.971 ## 79 0.897 53 1 0.0327 0.835 0.963 ## 78 55 1 0.885 0.0342 0.821 0.955 ## 58 77 0.874 0.0356 0.806 0.946 1 ## 60 76 2 0.851 0.0382 0.779 0.929 ## 64 74 1 0.839 0.0394 0.765 0.920 ## 66 73 1 0.828 0.0405 0.752 0.911 ## 68 72 1 0.816 0.0415 0.739 0.902 ## 96 71 0.805 0.0425 0.725 0.892 1 ## 102 70 1 0.793 0.0434 0.712 0.883 ## 111 69 1 0.782 0.0443 0.699 0.873 ## 115 68 1 0.770 0.0451 0.687 0.864 ## 0.854 117 67 1 0.759 0.0459 0.674 ## 130 1 0.747 0.0466 0.661 0.844 66 ## 0.736 0.0473 136 65 0.834 1 0.649 ## 149 64 1 0.724 0.0479 0.636 0.824 ## 150 63 1 0.713 0.0485 0.624 0.814 ## 161 62 0.701 0.0491 0.804 1 0.611 ## 0.690 163 61 1 0.0496 0.599 0.794 ## 0.678 181 60 1 0.0501 0.587 0.784 ## 182 59 1 0.667 0.0505 0.575 0.773 ## 196 58 1 0.655 0.0510 0.563 0.763 ## 202 57 1 0.644 0.0513 0.551 0.753 ## 224 56 0.632 0.0517 0.539 0.742 1 ## 246 55 1 0.621 0.0520 0.527 0.732 ## 261 54 1 0.609 0.0523 0.515 0.721 ## 274 53 1 0.598 0.0526 0.503 0.710 ## 290 52 1 0.586 0.0528 0.491 0.699 ## 335 51 1 0.575 0.0530 0.480 0.689 ## 353 50 1 0.563 0.0532 0.468 0.678 ## 382 49 0.552 0.0533 0.457 0.667 1 ## 403 48 1 0.540 0.0534 0.445 0.656 ## 413 47 0.529 0.0535 0.645 1 0.434 ## 421 46 1 0.517 0.0536 0.422 0.634 ## 435 45 2 0.494 0.0536 0.611 0.400 ## 534 0.482 40 1 0.0537 0.387 0.599 ## 576 0.588 39 1 0.470 0.0537 0.375 ## 996 35 1 0.456 0.0538 0.362 0.575 ## ## CD3\_over\_4=1 ## time n.risk n.event survival std.err lower 95% CI upper 95% CI ## 0.989 0.0105 0.969 6 95 1 1.000 ## 28 94 1 0.979 0.0147 0.951 1.000 31 0.968 0.0179 0.934 ## 93 1 1.000

```
0.937 0.0250
##
      41
             92
                                                 0.889
                                                              0.987
##
      48
             89
                           0.926 0.0268
                                                 0.875
                                                              0.980
                      1
                           0.916 0.0285
                                                              0.973
##
      57
             88
                      1
                                                 0.862
##
                           0.905 0.0300
                                                              0.966
      59
             87
                                                 0.848
                      1
##
      60
             86
                      1
                           0.895 0.0315
                                                 0.835
                                                              0.959
##
      67
             85
                           0.884 0.0328
                                                 0.822
                                                              0.951
                      1
##
      90
                           0.874 0.0341
                                                 0.809
                                                              0.943
             84
                      1
##
                           0.863 0.0353
     108
             83
                      1
                                                 0.797
                                                              0.935
##
     113
             82
                      1
                           0.853 0.0364
                                                 0.784
                                                              0.927
##
     137
             81
                           0.842 0.0374
                                                              0.919
                      1
                                                 0.772
##
     147
             80
                      1
                           0.832 0.0384
                                                 0.760
                                                              0.910
##
             79
                           0.821 0.0393
     149
                                                 0.747
                                                              0.902
                      1
##
                           0.811 0.0402
     174
             78
                      1
                                                 0.735
                                                              0.893
                           0.800 0.0410
##
     191
             77
                                                 0.723
                                                              0.885
                      1
##
     200
             76
                           0.789 0.0418
                                                 0.712
                                                              0.876
                      1
##
     214
             75
                      1
                           0.779 0.0426
                                                 0.700
                                                              0.867
##
     236
             74
                           0.768 0.0433
                                                 0.688
                                                              0.858
                      1
             73
                           0.758 0.0439
##
     306
                      1
                                                 0.676
                                                              0.849
##
     321
             72
                           0.747 0.0446
                                                 0.665
                                                              0.840
                      1
                           0.737 0.0452
##
     330
             71
                      1
                                                 0.653
                                                              0.831
##
     385
             70
                      1
                           0.726 0.0457
                                                 0.642
                                                              0.822
##
     397
             69
                      1
                           0.716 0.0463
                                                 0.631
                                                              0.812
                           0.704 0.0470
##
     606
                                                 0.617
                                                              0.802
             60
                      1
##
     634
             59
                      1
                           0.692 0.0477
                                                 0.604
                                                              0.792
                           0.680 0.0484
##
                                                 0.591
                                                              0.782
     672
             57
                      1
##
     745
             52
                      1
                           0.667 0.0492
                                                 0.577
                                                              0.770
##
     849
             48
                           0.653 0.0501
                                                 0.562
                                                              0.759
                      1
##
   1018
             43
                           0.638 0.0512
                                                 0.545
                                                              0.746
                      1
##
   1243
                           0.618 0.0531
             33
                      1
                                                 0.522
                                                              0.732
```

```
plot(KM.fit4, xlab = "Days After Transplant", ylab = "Survival Probability", mark.time = TRUE, conf.int
    col = c("coral", "dodgerblue"), main = "Kaplan-Meier Survival Curves by CD3 Dosage per kg", lwd = 1
legend(x = 2000, y = 0.95,
    legend = c("CD3 dosage > 4...", "CD3 dosage < 4..."),
    col = c("dodgerblue", "coral"),
    bty = "n",
    lty = 1:1,
    lwd = 2,
    cex = 1)</pre>
```

# Kaplan-Meier Survival Curves by CD3 Dosage per kg



```
survdiff(Surv(bone$survival_time, bone$survival_status) ~ CD3_over_4, data=bone)
```

## log-rank test to compare these two curves

```
## Call:
## survdiff(formula = Surv(bone$survival_time, bone$survival_status) ~
       CD3_over_4, data = bone)
##
## n=182, 5 observations deleted due to missingness.
##
                 N Observed Expected (0-E)^2/E (0-E)^2/V
##
## CD3_over_4=0 87
                                35.8
                         47
                                           3.49
                                                     6.28
## CD3 over 4=1 95
                         34
                                45.2
                                           2.76
                                                     6.28
##
   Chisq= 6.3 on 1 degrees of freedom, p= 0.01
```

## Cox Proportional Hazards Model

```
cox_model_dose <- coxph(survival.obj ~ as.factor(CD3_over_4), data = bone, ties = "exact")
summary(cox_model_dose)</pre>
```

```
## Call:
## coxph(formula = survival.obj ~ as.factor(CD3_over_4), data = bone,
      ties = "exact")
##
##
##
    n= 182, number of events= 81
##
     (5 observations deleted due to missingness)
##
                          coef exp(coef) se(coef)
##
                                                     z Pr(>|z|)
## as.factor(CD3_over_4)1 -0.5581
                                ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
                        exp(coef) exp(-coef) lower .95 upper .95
##
## as.factor(CD3_over_4)1
                        0.5723
                                     1.747
                                              0.3678
                                                       0.8906
## Concordance= 0.573 (se = 0.028)
## Likelihood ratio test= 6.22 on 1 df,
                                       p=0.01
## Wald test
                     = 6.12 on 1 df,
                                       p=0.01
## Score (logrank) test = 6.28 on 1 df,
                                       p=0.01
```

plot(survfit(cox\_model\_dose))



# check Schoenfeld residuals

```
# create plot of schoenfeld resids
wt_sch_dose <- cox.zph(cox_model_dose)
plot(wt_sch_dose) # slight decrease then increase over time</pre>
```



```
# check summary to see if problematic
wt_sch_dose

## chisq df p
```

### confounders

## GLOBAL

## as.factor(CD3\_over\_4) 0.0491 1 0.82

0.0491 1 0.82

```
cox_model_dose2 <- coxph(survival.obj ~ as.factor(CD3_over_4) + recipient_age_below_10, data = bone, ti
summary(cox_model_dose2)</pre>
```

```
## Call:
## coxph(formula = survival.obj ~ as.factor(CD3_over_4) + recipient_age_below_10,
## data = bone, ties = "exact")
```

```
##
    n= 182, number of events= 81
##
      (5 observations deleted due to missingness)
##
##
                               coef exp(coef) se(coef)
##
                                                            z Pr(>|z|)
## as.factor(CD3_over_4)1
                            -0.4718
                                       0.6239
                                                0.2356 -2.002 0.0453 *
## recipient_age_below_10yes -0.2972
                                       0.7429
                                                0.2333 -1.274
                                                                0.2027
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
                             exp(coef) exp(-coef) lower .95 upper .95
## as.factor(CD3_over_4)1
                               0.6239
                                            1.603
                                                     0.3931
                                                              0.9901
## recipient_age_below_10yes
                               0.7429
                                            1.346
                                                     0.4702
                                                               1.1736
##
## Concordance= 0.588 (se = 0.031)
## Likelihood ratio test= 7.85 on 2 df,
                                           p=0.02
## Wald test
                       = 7.74 on 2 df,
                                           p=0.02
## Score (logrank) test = 7.93 on 2 df,
                                           p=0.02
```

need to remove people who are missing CD3