HW3

1. Adversarial Search

1)

Node: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Value: | 12 | 12 | 5 | 19 | 12 | 5 | 12 | 19 | 5 | 6 | 12 | 5 | 1 | 12 | 8 |

2)

$$0 - 1 - 4 - 10 - 21$$

3)

6, 13, 14, 18, 24, 26, 27, 28, 29, 30

2. Constraint Satisfaction Problem

1)

Variables:

 V_1, V_2, V_3, V_4 , stand for Courses count towards A_1, A_2, A_3, A_4 .

Domains:

$$D_1 = \{(C_1, C_2), (C_1, C_3), (C_4, C_6)\}$$

$$D_2 = \{C_3, C_4, C_5\}$$

$$D_3 = \{C_6, C_7, C_8\}$$

$$D_4 = \{C_3, C_9\}$$

Constraints:

$$R_1$$
: $V_1
eq \varnothing$, $V_2
eq \varnothing$, $V_3
eq \varnothing$, $V_4
eq \varnothing$.

 R_1 : It has been defined in D_1 .

$$R_2$$
: If $C_3\in V_1\cup V_2\cup V_3\cup V_4$, then $C_4,C_9
ot\in V_1\cup V_2\cup V_3\cup V_4$; If $C_4\in V_1\cup V_2\cup V_3\cup V_4$, then $C_3,C_9
ot\in V_1\cup V_2\cup V_3\cup V_4$;

If $C_9\in V_1\cup V_2\cup V_3\cup V_4$, then $C_3,C_4\not\in V_1\cup V_2\cup V_3\cup V_4$. R_3 : If $C_1\in V_1\cup V_2\cup V_3\cup V_4$, then $C_7\not\in V_1\cup V_2\cup V_3\cup V_4$; If $C_7\in V_1\cup V_2\cup V_3\cup V_4$, then $C_1\not\in V_1\cup V_2\cup V_3\cup V_4$; R_4 : If $C_6\in V_1\cup V_2\cup V_3\cup V_4$, then $C_8\not\in V_1\cup V_2\cup V_3\cup V_4$; if $C_8\in V_1\cup V_2\cup V_3\cup V_4$, then $C_6\not\in V_1\cup V_2\cup V_3\cup V_4$. R_5 : $V_1\cap V_2=V_2\cap V_3=V_3\cap V_4=V_4\cap V_1=\varnothing$.

2)

It should stop when we get $V_1=(C_1,C_2), V_2=C_5, V_3=C_8, V_4=C_3$. But I finished the search anyway. Now we have another solution that $V_1=(C_1,C_2), V_2=C_5, V_3=C_8, V_4=C_9$.

3)

As shown in the graph in 2), for $V_3=C_8$, $V_4=C_9$, the student should take C_1,C_2 for area 1 and C_5 for area 2.

For
$$V_3=C_8$$
 , $V_4=C_9$,

we cannot choose C_6, C_3, C_4 , since R_4 and R_2 ;

we cannot choose $(C_1,C_3),(C_4,C_6)$ for V_1 .

Hence, the only choice left is $V_1=(C_1,C_2),V_2=C_5$, which means the student should take C_1,C_2 for area 1 and C_5 for area 2.