DIGITAL COMMUNICATION LAB

Electrical Engineering Department

Experiment 9: Simulation of BER of BPSK in an AWGN channel in Matlab

AIM: To implement the BER of BPSK in an AWGN channel in MATLAB.

Theory

BPSK (Binary Phase Shift Keying) is a simple and widely used modulation technique in digital communications. It represents data using the phase of a carrier signal, which is a sinusoidal wave. article amsmath amssymb In a **binary PSK system**, the pair of signals $s_1(t)$ and $s_2(t)$ used to represent binary symbols 1 and 0, respectively, is defined by:

$$s_1(t) = \sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t),$$

$$s_2(t) = \sqrt{\frac{2E_b}{T_b}}\cos\left(2\pi f_c t + \pi\right) = -\sqrt{\frac{2E_b}{T_b}}\cos(2\pi f_c t),$$

where T_b is the bit duration and E_b is the transmitted signal energy per bit. We

find it convenient, although not necessary, to assume that each transmitted bit contains an integral number of cycles of the carrier wave; that is, the carrier frequency f_c is chosen equal to n_c/T_b for some fixed integer n_c .

A pair of sinusoidal waves that differ only in a relative phase-shift of 180°, is referred to as an *antipodal signal*.

Error Probability of Binary PSK Using Coherent Detection

To make an optimum decision on the received signal x(t) in favor of symbol 1 or symbol 0 (i.e., estimate the original binary sequence at the transmitter input), we assume that the receiver has access to a locally generated replica of the basis function $\phi(t)$. In other words, the receiver is synchronized with the transmitter, . We may identify two basic components in the binary PSK receiver:

- 1. Correlator, which correlates the received signal x(t) with the basis function $\phi(t)$ on a bit-by-bit basis.
- 2. **Decision device**, which compares the correlator output against a zero-threshold, assuming that binary symbols 1 and 0 are equiprobable. If the threshold is exceeded, a decision is made in favor of symbol 1; if not, the decision is made in favor of symbol 0. Equality of the correlator with the zero-threshold is decided by the toss of a fair coin (i.e., in a random manner).

With coherent detection in place, we may apply the decision rule. Specifically, we partition the signal space of Figure 7.13 into two regions:

• the set of points closest to message point 1 at $+\sqrt{E_b}$; and

• the set of points closest to message point 2 at $-\sqrt{E_b}$.

This is accomplished by constructing the midpoint of the line joining these two message points and then marking off the appropriate decision regions. hese two decision regions are marked Z_1 and Z_2 , according to the message point around which they are constructed.

The decision rule is now simply to decide that signal $s_1(t)$ (i.e., binary symbol 1) was transmitted if the received signal point falls in region Z_1 and to decide that signal $s_2(t)$ (i.e., binary symbol 0) was transmitted if the received signal point falls in region Z_2 . Two kinds of errors are possible:

- 1. Error of the first kind. Signal $s_2(t)$ is transmitted but the noise is such that the received signal point falls inside region Z_1 ; so the receiver decides in favor of signal $s_1(t)$.
- 2. Error of the second kind. Signal $s_1(t)$ is transmitted but the noise is such that the received signal point falls inside region Z_2 ; so the receiver decides in favor of signal $s_2(t)$. article amsmath amssymb amsthm

 To calculate the probability of making an error of the first kind, we note that the decision region associated with symbol 1 or signal $s_1(t)$ is described by:

$$Z_1 : 0 < x_1 < \infty$$

where the observable element x_1 is related to the received signal x(t) by:

$$x_1 = \int_0^{T_b} x(t)\phi_1(t)$$

The conditional probability density function of random variable X_1 , given that

symbol 0 (i.e., signal $s_2(t)$) was transmitted, is defined by:

$$f_{X_1}(x_1|0) = \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0} \left(x_1 + \sqrt{E_b}\right)^2\right]$$

$$f_{X_1}(x_1|0) = \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{1}{N_0} \left(x_1 + \sqrt{E_b}\right)^2\right]$$

The conditional probability of the receiver deciding in favor of symbol 1, given that symbol 0 was transmitted, is therefore:

$$P_{10} = \frac{1}{\sqrt{\pi N_0}} \int_0^\infty \exp\left[-\frac{1}{N_0} \left(x_1 + \sqrt{E_b}\right)^2\right] dx_1$$

Putting:

$$z = \sqrt{\frac{2}{N_0}} \left(x_1 + \sqrt{E_b} \right)$$

and changing the variable of integration from x_1 to z, we may compactly rewrite above equation in terms of the Q-function:

$$P_{10} = \frac{1}{\sqrt{2\pi}} \int_0^\infty \exp\left(-\frac{z^2}{2}\right) dz \tag{0}$$

Using the above formula, we get:

$$P_{10} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Consider next an error of the second kind. We note that the signal space is symmetric with respect to the origin. It follows, therefore, that P_{01} , the conditional probability of the receiver deciding in favor of symbol 0, given that symbol 1 was transmitted.

Thus, averaging the conditional error probabilities P_{10} and P_{01} , we find that the average probability of symbol error, or, equivalently, the BER for binary PSK using coherent detection and assuming equiprobable symbols is given by:

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

As we increase the transmitted signal energy per bit E_b for a specified noise spectral density $N_0/2$, the message points corresponding to symbols 1 and 0 move farther apart, and the average probability of error P_e is correspondingly reduced, which is intuitively satisfying.

Note: The experiments which you performed in lab should also be attached with this mannual.

 ${\bf Conclusion:} \ {\bf We \ have \ successfully \ implemented \ the \ BER \ of \ BPSK \ in \ an \ AWGN }$ channel and its changes with SNR in MATLAB .

¹ S. Haykin, Communication Systems, 4th ed. Hoboken, NJ: Wiley, 2001.