

3. Solving ODEs with Fourier Series

<u>Course</u> > <u>Unit 1: Fourier Series</u> > <u>and Signal Processing</u>

> 11. Practice problems

11. Practice problems

Practice with no damping

1/1 point (graded)

Let f(t) be the odd square wave of period 2π with f(t) = 1 for $0 < t < \pi$.

Figure 16: The 2π -periodic square wave.

Use Fourier series to solve the DE

Enter the sum of the two largest (dominant) terms of the steady periodic response.

4.244131816*sin(3*t)+0.157190067*sin(t)

~

 $4.244131816 \cdot \sin{(3 \cdot t)} + 0.157190067 \cdot \sin{(t)}$

FORMULA INPUT HELP

Submit

You have used 2 of 7 attempts

✓ Correct (1/1 point)

Practice with larger damping

1/1 point (graded)

Figure 17: The even 2π -periodic triangle wave.

Let $f\left(t\right)$ be the triangle wave shown in the figure above. Solve the differential equation

The steady state response has the form

$$x_p = d_0 + \sum_{n \geq 1} d_n \cos \left(nt - \phi_n
ight).$$

Identify the first two largest terms of the steady periodic response.

 \checkmark The constant term, d_0 .

 $\bigcap d_3\cos\left(3t-\phi_3
ight)$

 $\bigcap d_5 \cos \left(5t - \phi_5
ight)$

~

Solution:

Since f(t) is an even function, its Fourier series has only cosine terms. The average value $a_0/2$ is $\pi/2$. For $n \ge 1$ (actually we could have used this for n=0 too), the coefficient a_n is given by

$$a_n=rac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos nt\,dt=rac{2}{\pi}\int_{0}^{\pi}t\cos nt\,dt,$$

which can be computed by integration by parts. The result is

$$f(t) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} + \dots \right)$$

We follow the same steps as in the example in the previous note.

Step 1: Solving for the individual components, we need to solve

$$\ddot{x}_n + 2\dot{x}_n + 9x_n = \cos nt \tag{2.7}$$

for each n. If n=0 we get $x_{n,p}=rac{1}{9}.$

For $n \geq 1$ we have the complex replacement ODE:

$$\ddot{z}_n + 2\dot{z}_n + 9z_n = e^{int},$$

where $x_n=\operatorname{Re}\left(z_n\right)$. By the Exponential Response formula:

$$z_{n,p}=rac{e^{int}}{9-n^2+2ni}.$$

The gain is $1/|9-n^2+2in|=1/\sqrt{\left(9-n^2\right)^2+4n^2}.$ Let $R_n=\sqrt{\left(9-n^2\right)^2+4n^2}$ to simplify notation.

Thus,
$$z_{n,p}=rac{e^{int}}{9-n^2+2in}$$
, which implies that $x_{n,p}=rac{\cos{(nt-\phi_n)}}{R_n}.$

Step 2: Superposition.

To make things easier in step one we did not include the Fourier coefficients of the input in the DE $\ddot{x}_n + 2\dot{x}_n + 9x_n = \cos nt$. To use superposition we need to include them here:

$$x_{ ext{sp}}\left(t
ight) \,=\, rac{\pi}{18} - rac{4}{\pi} igg(rac{\cos\left(t - \phi_1
ight)}{R_1} + rac{\cos\left(3t - \phi_3
ight)}{3^2 R_3} + rac{\cos\left(5t - \phi_5
ight)}{5^2 R_5} + \ldotsigg),$$

The amplitudes of each of the terms in the last line are:

$$egin{align} rac{\pi}{18} &pprox 0.175, \ rac{4}{\pi} \Biggl(rac{1}{\sqrt{\left(9-1^2
ight)^2+4\left(1^2
ight)}}\Biggr) &pprox 0.154, \ rac{4}{\pi} \Biggl(rac{1}{3^2\sqrt{\left(9-3^2
ight)^2+4\left(3^2
ight)}}\Biggr) &pprox 0.024 \ rac{4}{\pi} \Biggl(rac{1}{5^2\sqrt{\left(9-5^2
ight)^2+4\left(5^2
ight)}}\Biggr) &pprox 0.003 \end{aligned}$$

Therefore the two largest terms are the n=0 and n=1 terms.

Submit

You have used 1 of 7 attempts

1 Answers are displayed within the problem

11. Practice problems

Topic: Unit 1: Fourier Series / 11. Practice problems

Hide Discussion

Add a Post

♦ All Posts

Practice with larger damping

discussion posted 20 days ago by BBC oution

You could try all combinations of 2 since $\binom{4}{2}=6$. On the other hand, it would probably be more useful to figure out the gain in combination with the coefficients of a triangle wave, or even just think of which terms are likely to be the largest.	th
It is interesting to look for two terms and by clicking on three answers I get more points than for two answers. How ican it be possible? posted 26 days ago by DBCroatia	••
Add a comment	
owing all responses Add a response:	
	1
Submit Submit	

© All Rights Reserved