Amendments to the Claims

and

Listing of Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Claims 1, 6, 10, 11, 15 and 16 are amended.

Claims 5 and 9 are canceled.

Claims 25-39 are newly presented.

(currently amended) A composite magnetic body, comprising:
 metallic magnetic powder; [[and]]
 thermosetting resin, and
 an electrical insulating material other than the thermosetting resin,

wherein the composite magnetic body has a packing ratio of the metallic magnetic powder of 65 vol% to 90 vol% and an electrical resistivity of at least $10^4 \,\Omega \cdot \text{cm}$, and wherein the electrical insulating material contains at least one compound selected from an organic silicon compound, an organic titanium compound, and a silica-based compound.

- 2. (original) The composite magnetic body according to claim 1, wherein the packing ratio of the metallic magnetic powder is 70 vol% to 85 vol%.
- 3. (original) The composite magnetic body according to claim 1, wherein the metallic magnetic powder contains, as a main component, a magnetic metal selected from Fe, Ni, and Co and, as a subsidiary component, a non-magnetic element in a total amount not exceeding 10 wt%.
- 4. (original) The composite magnetic body according to claim 1, wherein the metallic magnetic powder contains at least one non-magnetic element selected from Si, Al, Cr, Ti, Zr, Nb, and Ta.

- 5. (canceled)
- 6. (currently amended) The composite magnetic body according to claim 1 [[5]], wherein the electrical insulating material comprises an oxide film formed on a surface of the metallic magnetic powder.
- 7. (original) The composite magnetic body according to claim 6, wherein the oxide film contains at least one non-magnetic element selected from Si, Al, Cr, Ti, Zr, Nb, and Ta.
- 8. (original) The composite magnetic body according to claim 7, wherein the oxide film has a thickness of 10 nm to 500 nm.
- 9. (canceled)
- 10. (currently amended) The composite magnetic body according to claim $\underline{1}$ [[5]], wherein the electrical insulating material is a solid powder with a mean particle size not exceeding one tenth of that of the metallic magnetic powder.
- 11. (currently amended) The composite magnetic body according to claim $\underline{1}$ [[5]], wherein the electrical insulating material is plate- or needle-like particles.
- 12. (original) The composite magnetic body according to claim 11, wherein the plate- or needle-like particles have an aspect ratio of at least 3/1.
- 13. (original) The composite magnetic body according to claim 11, wherein the plate- or needle-like particles have a mean largest-diameter of 0.2 to 3 times a mean particle size of the metallic magnetic powder.
- 14. (original) The composite magnetic body according to claim 11, wherein the plate- or needle-like particles contain at least one selected from talc, boron nitride, zinc oxide, titanium oxide, silicon oxide, aluminum oxide, iron oxide, barium sulfate, and mica.

- 15. (original) The composite magnetic body according to claim $\underline{1}$ [[5]], wherein the electrical insulating material is at least one selected from fatty acid salt, fluororesin, talc, and boron nitride.
- 16. (currently amended) A magnetic element, comprising:

a composite magnetic body comprising metallic magnetic powder, [[and]] thermosetting resin, and an electrical insulating material other than the thermosetting resin, the composite magnetic body [[and]] having a packing ratio of the metallic magnetic powder of 65 vol% to 90 vol% and an electrical resistivity of at least $10^4 \,\Omega$ •cm; and

a coil embedded in the composite magnetic body,

wherein the electrical insulating material is formed in accordance with at least one of the following arrangements (a)-(d):

- (a) the electrical insulating material contains at least one compound selected from an organic silicon compound, an organic titanium compound, and a silica-based compound;
- (b) the electrical insulating material is a solid powder with a mean particle size not exceeding one tenth of that of the metallic magnetic powder;
 - (c) the electrical insulating material is plate- or needle-like particles; and
- (d) the electrical insulating material is at least one selected from fatty acid salt, fluororesin, talc, and boron nitride.

17-24. (canceled)

25. (new) A composite magnetic body, comprising:

metallic magnetic powder;

thermosetting resin, and

an electrical insulating material other than the thermosetting resin,

wherein the composite magnetic body has a packing ratio of the metallic magnetic powder of 65 vol% to 90 vol% and an electrical resistivity of at least $10^4 \,\Omega$ •cm, and the electrical insulating material is a solid powder with a mean particle size not exceeding one tenth of that of the metallic magnetic powder.

- 26. (new) The composite magnetic body according to claim 25, wherein the packing ratio of the metallic magnetic powder is 70 vol% to 85 vol%.
- 27. (new) The composite magnetic body according to claim 25, wherein the metallic magnetic powder contains, as a main component, a magnetic metal selected from Fe, Ni, and Co and, as a subsidiary component, a non-magnetic element in a total amount not exceeding 10 wt%.
- 28. (new) The composite magnetic body according to claim 25, wherein the metallic magnetic powder contains at least one non-magnetic element selected from Si, Al, Cr, Ti, Zr, Nb, and Ta.
- 29. (new) A composite magnetic body, comprising: metallic magnetic powder; thermosetting resin, and an electrical insulating material other than the thermosetting resin, wherein the composite magnetic body has a packing ratio of the metallic magnetic powder of 65 vol% to 90 vol% and an electrical resistivity of at least 10⁴ Ω •cm, and the electrical insulating material is plate- or needle-like particles.
- 30. (new) The composite magnetic body according to claim 29, wherein the packing ratio of the metallic magnetic powder is 70 vol% to 85 vol%.
- 31. (new) The composite magnetic body according to claim 29, wherein the metallic magnetic powder contains, as a main component, a magnetic metal selected from Fe, Ni, and Co and, as a subsidiary component, a non-magnetic element in a total amount not exceeding 10 wt%.
- 32. (new) The composite magnetic body according to claim 29, wherein the metallic magnetic powder contains at least one non-magnetic element selected from Si, Al, Cr, Ti, Zr, Nb, and Ta.

- 33. (new) The composite magnetic body according to claim 29, wherein the plate-or needle-like particles have an aspect ratio of at least 3/1.
- 34. (new) The composite magnetic body according to claim 29, wherein the plate- or needle-like particles have a mean largest-diameter of 0.2 to 3 times a mean particle size of the metallic magnetic powder.
- 35. (new) The composite magnetic body according to claim 29, wherein the plate- or needle-like particles contain at least one selected from talc, boron nitride, zinc oxide, titanium oxide, silicon oxide, aluminum oxide, iron oxide, barium sulfate, and mica.
- 36. (new) A composite magnetic body, comprising:
 metallic magnetic powder;
 thermosetting resin, and
 an electrical insulating material other than the thermosetting resin,
 wherein the composite magnetic body has a packing ratio of the metallic magnetic
 powder of 65 vol% to 90 vol% and an electrical resistivity of at least 10⁴ Ω •cm, and the electrical insulating material is at least one selected from fatty acid salt, fluororesin, talc, and boron nitride.
- 37. (new) The composite magnetic body according to claim 36, wherein the packing ratio of the metallic magnetic powder is 70 vol% to 85 vol%.
- 38. (new) The composite magnetic body according to claim 36, wherein the metallic magnetic powder contains, as a main component, a magnetic metal selected from Fe, Ni, and Co and, as a subsidiary component, a non-magnetic element in a total amount not exceeding 10 wt%.
- 39. (new) The composite magnetic body according to claim 36, wherein the metallic magnetic powder contains at least one non-magnetic element selected from Si, Al, Cr, Ti, Zr, Nb, and Ta.