Semiconductor opto-electronic components

Conduction and valence bands in semiconductors

The occupation probabilities of states with energy E_2 and E_1 by electrons in the conduction and valence bands is given by the probability density functions (FERMI-DIRAC DISTRIBUTIONS):

$$\begin{split} f_c(E_2) &= \left\{ 1 + \exp\left[\left(E_2 - E_{fc} \right) / k_B T \right] \right\}^{-1}, \\ f_v(E_1) &= \left\{ 1 + \exp\left[\left(E_1 - E_{fv} \right) / k_B T \right] \right\}^{-1} \\ E_{fc}, E_{fv} &= \text{Conduction and valence Fermi levels} \end{split}$$

Energy bands and charge distributions: intrinsic SC

PN Junctions

A SC optical source is based on the PN JUNCTION:

- INTRINSIC SC: There is a SINGLE Fermi level, it is situated half-way between the conduction and the valence bands
- N type SC: doped with impurities that have an extra valence electron → The Fermi level moves towards the conduction band → For strong doping, the Fermi level is situated INSIDE the conduction band
- P type SC: doped with impurities that have a missing valence electron → The Fermi level moves towards the valence band → For strong doping, the Fermi level is situated INSIDE the valence band
- PN Junction: Contact between a P-type SC and a N-type SC
- → At thermal equilibrium: there is only one Fermi level, which must be continuous through the junction → one obtains a charge diffusion between the two sides of the junction → As a result, positive and negative charges are stored on both sides of the junction → a DC electric field results that, at the equilibrium, stops any further charge diffusion through the junction

Energy bands and charge distributions: doped SC

LP6

Semi-Conducteur dopé

Fermi distribution

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_f}{k_B T}\right)}$$

$$f(E_f) = \frac{1}{2}$$

Un-biased PN junction

Equilibrium of un- biased PN junction

Biasing of PN junctions

A PN junction may be biased by applying an external voltage

- In the case of direct biasing, the DC field in the junction is reduced
- As a consequence, one observes a diffusion of electrons and holes through the junction
- → This leads to an electrical current I that increases with the external voltage U_q according to

$$I = I_s \left[\exp \left(q U_g / k_B T \right) - 1 \right]$$

Where I_s is a saturation current that depends upon the diffusion properties of the carriers

→ In a junction with direct bias, one obtains extra electrons and charges inside the junction → their recombination through either spontaneous or stimulated emission leads to photons

DIRECT BIASING of PN junction

Jonction PN polarisée DIRECTE

INVERSE BIASING of PN junction

LP6

Jonction PN polarisée INVERSE

barrière de potentiel -> n . p faible dans la ZD -> p as de recombinaison -> I=0 : diode bloquée

jamais de courant...?

à suivre : Photodiodes !

Zone de Déplétion (ZD) ELARGIE

Characteristics of a SC laser

Characteristics of SC lasers: described by the « rate equations » for photons and electrons

Continuous wave (CW) properties

For a monomode laser, one obtains the equations for the time evolution of the number of photons P and electrons N

$$\begin{split} \frac{dP}{dt} &= GP + R_{sp} - \frac{P}{\tau_p}, \\ \frac{dN}{dt} &= \frac{I}{q} - GP - \frac{N}{\tau_c}, \\ \text{where : } G &= \Gamma \, v_{\rm g} g_{m} = G_{N} (N - N_0) = \Gamma \, v_{\rm g} \sigma_{g} (N - N_0) / V \end{split}$$

G: rate of stimulated emission; R_{sp} : spontaneous emission rate; one has R_{sp} = n_{sp} G, with n: n_{sp} = spontaneous emission factor ~2; v_g = group velocity, N_0 = N_T V; τ_p : lifetime of photons in the cavity:

$$\tau_p^{-1} = v_g \alpha_{cav} = v_g (\alpha_{mir} + \alpha_{int})$$

Term proportional to GP: stimulated emission-induced recombination of electrons and holes

Term proportional to $1/\tau_c$: loss of electrons due to spontaneous emission and non radiative recombination

Characteristics of a SC laser

P-I curve of a SC laser

Consider a InGaAsP laser at 1,3 μm operating at temperatures between 10° and 130°.

At room temperature, threshold is obtained for ~20 mA, →10 mW of optical power for 100 mA of electrical current

The threshold is a function of temperature:

$$I_{th} = I_0 \exp(T/T_0)$$

 T_0 : Characteristic temperature, ~50-70 K for InGaAsP, ~120 K for GaAs; this means it is necessary to control the T of a SC laser!

Characteristics of a SC laser

CW operation of a SC laser

In CW (« continuous wave ») mode: I=cnst, d/dt=0; supposing also $R_{sp}=0 \rightarrow$

- if $G\tau_p < 1 \rightarrow P=0$, $N=\tau_c I/q$
- If $G\tau_p=1$ (laser threshold) \rightarrow the number of charges is fixed at $N=N_{th}=N_0+(G_N\tau_p)^{-1}$; $I_{th}=qN_{th}/\tau_c$;
- If $I > I_{th} \rightarrow P = (\tau_p/q)(I I_{th})$ (photon number) Power emitted from one of the two faces of laser:

$$P_{e} = \frac{1}{2} \left(v_{g} \alpha_{mir} \right) \hbar \omega P = \frac{\hbar \omega}{2q} \frac{\eta_{\text{int}} \alpha_{mir}}{\alpha_{mir} + \alpha_{\text{int}}} (I - I_{th})$$

Here η_{int} = « internal quantum efficiency »= fraction of electrons converted into photons by means of stimulated emission (~100%)

