Inhaltsverzeichnis

- 01 Einführung
- 02 Prozessmodelle
 - 02.1 Softwarelebenszyklus
 - 02.2 Basis-Vorgehensmodelle
 - 02.3 Monumentale Vorgehensmodelle
 - 02.4 Agile Vorgehensmodelle
- 03 Konfigurationsmanagement
- 04 Requirements Engineering
- 05 Modellierung
- 06 Qualitätsmanagement

Softwarelebenszyklus – Vorgehen Softwareentwicklung?

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Softwarelebenszyklus
 - Schritte ("Phasen"), die innerhalb eines
 Softwareentwicklungsprojekts durchlaufen werden
- Zentrale Frage:
 - Wie kommt man von diesen allgemeinen Schritten zu einem konkreten Vorgehen in einem Projekt?

Was ist das Ziel jeder Softwareentwicklung?

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

Prof. Dr. Martin Deubler

- Softwareprodukte termin- und kostengerecht in der definierten Qualität zu erstellen
 - Finales Produkt Software-Lösung
 - Sämtliche Artefakte, die für die Herstellung dieser Lösung relevant sind
- Zusammenarbeit von einigen wenigen bis sehr vielen Menschen
 - Softwareerstellung muss organisiert werden
 - → Festlegung des organisatorischen Rahmen erfolgt in Prozessmodellen
 - In der Praxis haben sich verschiedene Vorgehensmodelle etabliert

Was ist ein Vorgehensmodell?

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Strategie für die Projektdurchführung
- Organisatorischer Rahmen, der festlegen sollte:
 - Reihenfolge des Arbeitsablaufs
 - Jeweils durchzuführende Aktivitäten
 - Definition der Teilprodukte (inkl. Layout und Inhalt)
 - Fertigstellungskriterien (Qualitätsniveau)
 - Notwendige Mitarbeiterqualifikationen
 - Verantwortlichkeiten und Kompetenzen
 - Anzuwendende Standards, Richtlinien, Methoden und Werkzeuge

Basiselement eines Softwareprozesses

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

Quelle: in Anlehnung an Balzert 2009, S. 443

Historische Entwicklung

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Erste Modelle: Softwareentwicklung auf Projektebene
 - Grobgranular
 - Geben auf der Ebene von Phasen an, wie die Reihenfolge und Inhalte der Phasen aussehen soll
 - Basismodelle
- Weiterentwicklung
 - Monumentale / schwergewichtige Modelle
 - Umfangreiche und detaillierte "to-do-Modelle"
 - Gegenbewegung: Agile / leichtgewichtige Modelle

Basismodelle

- Auswahl
 - Sequenzielles Modell
 - Nebenläufiges Modell
 - Inkrementelles Modell
 - Evolutionäres Modell
 - V-Modell
 - Spiralmodell

Sequenzielles Modell

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Softwareentwicklung wird in Phasen gegliedert, die sequenziell hintereinander ablaufen
- Phase beginnt erst wenn Vorgängerphase vollständig abgeschlossen ist

9 🕛

Wasserfall-Modell (1)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Bekannteste Ausprägung
- Erweiterung um Rückkopplungsschleifen zwischen den Stufen

Prof. Dr. Martin Deubler Software Engineering SoSe 2020 50

Wasserfall-Modell (2)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Charakteristische Eigenschaften
 - Jede Aktivität ist in der richtigen Reihenfolge und vollen Breite durchzuführen
 - Am Ende jeder Aktivität steht ein fertiggestelltes Dokument
 - Jede Aktivität muss beendet sein bevor die nächste beginnt
 - Vorangegangene Phase muss vollständig abgeschlossen und freigegeben sein, bevor die nächste Phase gestartet werden kann
 - Benutzerbeteiligung nur in der Definitionsphase vorgesehen Entwurf und Implementierung erfolgen ohne Beteiligung der Benutzer bzw. Auftraggeber

Bewertung Wasserfall-Modell

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Beitrag zu diszipliniertem und kontrollierbarem Prozessablauf
- Gute Planbarkeit durch klar abgegrenzte Phasen
- Nicht immer sinnvoll alle Entwicklungsschritte in voller Breite, vollständig und sequenziell durchzuführen
- Wenig Flexibilität Reaktion auf Änderungen schwierig
- Cefahr: Dokumentation wichtiger als eigentliches System
- Finale SW-Lösung steht erst spät zur Verfügungspäte Fehlererkennung

Nebenläufiges Modell (1)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Zielsetzung: Reduzierung der Gesamtentwicklungszeit
- Ansatz
 - Phasenüberlappendes Arbeiten und Rückkopplungen zwischen den Phasen
 - Nachfolgeteam beginnt bereits wenn es vom Vorgängerteam geeignete Informationen erhalten hat
 - Paralleles Arbeiten, ggf. Überarbeitung bei entsprechender Information
- Voraussetzung
 - Gute Kommunikationsmöglichkeiten und ausreichende Kapazitäten für die Überarbeitungen

Nebenläufiges Modell (2)

Bewertung Nebenläufiges Modell

- Optimale Zeitausnutzung
- Vorgängerteams erhalten frühzeitig Rückmeldung, ob die Anforderungen bzw. Entwürfe umsetzbar sind
- Risiko, dass die grundsätzlichen und kritischen Entscheidungen zu spät getroffen werden
- Nachfolgerteam fängt zu früh an, obwohl Informationen unzureichend sind
- Hohe Anforderungen an Kommunikation (räumlich verteilte Teams!)

Inkrementelles Modell (1)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

Ansatz

- Möglichst vollständige Erfassung und Modellierung der Anforderungen an das Produkt
- Zerlegung des Produkts
 - Aufbau aus Teilprodukten
 - oder schalenförmiger Aufbau
- Erst wird nur das erste Teilprodukt bzw. nur der Kern entworfen und implementiert
- AG bekommt Version 0 ausgeliefert und kann sie bereits einsetzen
- Einsatzerfahrungen werden bei Version 1 berücksichtigt

Inkrementelles Modell (2)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

SoSe 2020 **57**

Bewertung Inkrementelles Modell

- Von Beginn eine vollständige Anforderungsdefinition
 - → gezielte Aufteilung in Teilprodukte und Auswahl einer geeigneten Systemarchitektur
- AG erhält in kurzen Zeitabständen einsatzfähige Produkte
- © Risiko bzgl. falscher Architekturentscheidung wird minimiert
- Auftreten von geänderten Kundenanforderungen oder massiven Änderungen (Architektur, Entwurf)

Evolutionäres Modell (1)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Ausgangspunkt: Kern- und Muss-Anforderungen des AG
 - Legen Produktkern oder ein Teilprodukt fest
 - Nur Produktkern / Teilprodukt werden entworfen und umgesetzt
 - Nullversion wird an AG ausgeliefert
- AG sammelt Erfahrungen mit Nullversion und ermittelt daraus Anforderungen für eine erweiterte Version
- Implementierung wird über viele Versionen hinweg verfeinert bis ein angemessenes System entstanden ist

Evolutionäres Modell (2)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

SoSe 2020 **60**

Bewertung Evolutionäres Modell

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- AG erhält in kurzen Zeitabständen einsatzfähige Produkte (frühzeitiger Erfahrungsgewinn)
- Spezifikation wird nach und nach erstellt
- Gefahr, dass Systemarchitektur komplett überarbeitet werden muss (übersehene Kernanforderungen)
- Gefahr, dass Nullversion nicht flexibel genug ist sich an ungeplante Evaluationspfade anzupassen

V-Modell (1)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

- Ausgangsituation
 - Ergänzung der Entwicklungsphase mit Inspektionsaktivität für Qualitätssicherung i.d.R. nicht ausreichend
- Ansatz
 - In spezifizierenden Phasen werden Vorgaben für die realisierenden Phasen festgelegt
 - Anwendungsszenarien für die Produktabnahme (Anwendersicht)
 - Integrationstestfälle (Architektursicht)
 - Modul-/Komponententest (Implementierungssicht)
 - Integrierte Qualitätssicherung
 - Nach jeder Phase Anwendung von Methoden wie Review oder Inspektion

V-Modell (2)

02 Prozessmodelle / 02.2 Basis-Vorgehensmodelle

Beurteilung V-Modell

- Prozessmodell mit integriertem Qualitätsmodell
- Starres Modell festgelegter, nicht änderbarer Ablauf
- Systematische Struktur gute Planung
- ⊗ Umgang mit Fehlern und Änderungen (späte Erkennung → sehr hohe Aufwände für Korrektur)

Spiralmodell (1)

- Metamodell,
 - das hilft in jeder Phase einer Softwareentwicklung
 - das geeignete Prozessmodell zu finden.
- Für jedes Teilprodukt sind vier zyklische Schritte zu durchlaufen:
 - (1) Definition von Zielen und Alternativen
 - (2) Einschätzen des Risikos
 - (3) Entwicklung und Durchführung von Test und Evaluierungen der aktuellen Ergebnisse
 - (4) Planung der nächsten Phase

Spiralmodell (2)

Bewertung Spiralmodell

- © Periodische Überprüfung und ggf. erneute Festlegung des Prozessmodells in Abhängigkeit von den Risiken
- Flexibles Modell (Integration verschiedener Modelle)
- Fehler und ungeeignete Alternativen werden frühzeitig eliminiert
- Hoher Managementaufwand, da viele Entscheidungen zu treffen sind
- 8 Für kleine und mittlere Projekte weniger gut geeignet
- Wissen über das Identifizieren und Managen von Risiken nicht weit genug verbreitet

Aufgabe

- Welches Basismodell würden Sie für die Entwicklung folgender Software-Systeme auswählen?
 - (1) System, das bei einem Auto ein Antiblockiersystem steuert
 - (2) Buchhaltungssystem, das in einem Unternehmen das bestehende System ersetzt
 - (3) Interaktives System für Bahnpassagiere, das auf Bahnhöfen die Abfahrtszeiten von Zügen findet
 - (4) Virtual-Reality-System für Kraftwerke