BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English

Dipankar Srirag¹, **Aditya Joshi¹**, Jordan Painter², Diptesh Kanojia²

¹University of New South Wales, Sydney, Australia

²Institute for People-Centred AI, University of Surrey, Surrey, United Kingdom

What is BESSTIE?

BESSTIE is a manually labelled dataset for varieties of English evaluated on *nine* language models.

Language Varieties

- en-AU: Australian English
- en-IN: Indian English
- en-UK: British English

Data Sources

- GOOGLE: Google Places reviews
- REDDIT: Reddit posts and comments

Tasks (Boolean)

- Sentiment classification
- Sarcasm classification

Why would you want to use BESSTIE?

Variety	Subset	Train	Valid	Test	P(eng)	P(var)
on All	GOOGLE	946	130	270	0.99	0.99
en-AU	REDDIT	1763	241	501	0.98	0.95
on INI	GOOGLE	1648	225	469	0.99	0.94
en-IN	REDDIT	1686	230	479	0.87	0.78
on III/	GOOGLE	1817	248	517	0.99	0.99
en-UK	REDDIT	1007	138	287	0.98	0.93
То	tal	8867	1212	2523		

Domain-Task	en-AU	en-IN	en-UK	
GOOGLE-	0.04	0.64	0.06	
Sentiment	0.94	0.64	0.86	
REDDIT-	0.70	0.69	0.70	
Sentiment	0.78		0.78	
REDDIT-	0.62	0.56	0.50	
Sarcasm	0.62	0.56	0.58	
Average	0.78	0.63	0.74	

Dataset Creation

Location-based filtering: GOOGLE

Native speakers manually annotate every instance with sentiment and sarcasm.

Cohen's Kappa:

Variety	Sent.	Sarc.
en-AU	0.61	0.47
en-IN	0.65	0.51
en-UK	0.79	0.63

Language Variety Probability:

Manual Annotation: Performed by Native speakers of en-IN and en-UK. Automatic Evaluation: Using DistilBERT [2] fine-tuned using ICE-Corpus [2] (India and Australia)

Language Probability: fastText for English

Key Results

What results do we report?

How do the models compare?

Model Properties	Average		
Encoder or decoder models?			
Encoder-only	0.74		
Decoder-only	0.67		
Monolingual or Multilingual models?			
Monolingual	0.72		
Multilingual	0.71		

*Graphs for all task-model combinations in the paper

Can't we just train the models on any other language variety?

Cross-variety performance analysis of MISTRAL. The figure compares three different scenarios: pre-trained (PT), in-variety fine-tuning, and cross-variety fine-tuning for sentiment and sarcasm classification across all varieties. *Cross-Domain Performance in the paper

What kind of errors do we encounter?

Variety	#samples	Dialect Features	Colloquial Expressions	Contextual Understanding	Code-mixing
en-AU	70	9	28	6	-
en-IN	90	97	33	3	8
en-UK	53	7	15	4	-

*Error Examples in the paper

