В КИВ: В КИВ общезначимость и доказуемость эквивалентны.

Пусть
$$[\![A]\!]=$$
 Л. Оценим $\varphi\equiv(A\to A\to A)\to(A\to A)\to A.$

$$[\![A \to A \to A]\!] = \mathsf{M}$$

$$\llbracket (A \to A) \to A \rrbracket = \Pi$$

$$[\![A \to A \to A \to (A \to A) \to A]\!] = \mathrm{JI}$$

Формула $((\alpha \to \beta) \to \gamma) \to (\alpha \to \beta \to \gamma)$ истинна при любых оценках (проверяется таблицей истинности).

В ИВВ:

Пусть
$$[\![A]\!]=\varnothing$$
. Оценим $\varphi\equiv(A\to A\to A)\to(A\to A)\to A$.

$$[\![A\rightarrow A\rightarrow A]\!]=\{0,1,2\}$$

$$[(A \to A) \to A] = \emptyset$$

$$[\![(A \to A \to A) \to (A \to A) \to A]\!] = \varnothing$$
 (ложь)

Тогда φ недоказуемо.

Докажем
$$\vdash ((\alpha \to \beta) \to \gamma) \to (\alpha \to \beta \to \gamma).$$

В ИВВ тоже справедлива теорема о дедукции. Значит, необходимо доказать:

$$((\alpha \to \beta) \to \gamma) \vdash \alpha \to \beta \to \gamma$$
, что эквивалентно $((\alpha \to \beta) \to \gamma), \alpha \vdash \beta \to \gamma$, что эквивалентно $((\alpha \to \beta) \to \gamma), \alpha, \beta \vdash \gamma$. Тогда:

- 1. $((\alpha \rightarrow \beta) \rightarrow \gamma)$ (гипотеза)
- 2. α (гипотеза)
- 3. β (гипотеза)
- 4. $\beta \rightarrow \alpha \rightarrow \beta$ (сх. аксиом 1)
- 5. $\alpha \rightarrow \beta$ (M. P. 3, 4)
- 6. γ (M. P. 1, 5)
- 2. Докажем: $\Gamma, \alpha \vDash \beta \Rightarrow \Gamma \vDash \alpha \rightarrow \beta$
 - Таблица истинности: $\alpha \to \beta$.
 - Если $\alpha=0\Rightarrow$ импликация верна.
 - Если $\alpha=1\Rightarrow$ импликация зависит только от Γ по предположению, что β общезначима при Γ,α
 - Пусть $\Gamma = \{\xi_1, \xi_2...\xi_n\}$
 - $(\Gamma \vDash \alpha \Rightarrow \Gamma \vdash \alpha) \Leftrightarrow (\vDash \xi_1 \to \xi_2 \to \dots \to \xi_n \to \alpha \Rightarrow \vdash \xi_1 \to \dots \to \xi_n \to \alpha)$
- 3. $\Gamma \vdash \alpha \Rightarrow \Gamma \vDash \alpha$
 - В выводе встречаются: аксиомы, М.Р, гипотезы
 - Все аксиомы общезначимы
 - М.Р из общезначимых общезначим
 - М.Р из гипотез общезначима если гипотеза верна
 - Или можно провернуть тот же трюк с дедукцией для общезначимости
- 4. $\alpha \to \alpha$ и $\alpha \to \beta$. Все коллизии имеют вид $\alpha \equiv \beta$. Докажем???

- 5. Докажем, что можно перестроить любое доказательство из \neg в доказательство из \bot и наоборот.
 - $\bot \to \neg$: $((\alpha \to \bot) \to \bot) \to \alpha$ $((\alpha \to A \& \neg A) \to A \& \neg A) \to \alpha$ по общезначимости (Пусть $\varphi = ((\alpha \to 0) \to 0) \to \alpha$. Тогда $[\![\varphi]\!] = \mathsf{M} \Rightarrow \vdash \varphi$ по т. о полноте)
 - \bullet $\neg \rightarrow \perp$
 - ▶ 9 схема : $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ $(\alpha \to \beta) \to (\alpha \to \beta \to \bot) \to (\alpha \to \bot)$, схема 2 ⇒ верно в аксиоматике \bot
 - ▶ 10 схема : $\neg\neg\alpha\to\alpha$ $(\neg\alpha\to\bot)\to\alpha$ $((\alpha\to\bot)\to\bot)\to\alpha,$ это и есть 9 схема из аксоматики \bot

К каждой строке доказательства из \neg применим трансляцию в \bot (аналогично доказательствам из лекции по индукции по длине вывода)

- 1. Если δ_i получена из схем аксиом 1-8, тогда ничего не изменилось, и строка δ_i валидная строка в доказательстве в \bot . Если это аксиома 9 или 10, тогда вставим их доказательство в аксиоматике \bot (см. выше) перед δ_i . Этот пункт так же доказывает базу индукции, так как первое утверждение не может быть получено по Modus Ponens.
- 2. По индукционному предположению все формулы с k < i были перестроены как $|\delta_k|_\perp$ и являются верными строками в доказательстве в \bot . Если δ_i получена из М. Р. $\delta_k, d_j \equiv \delta_k \to \delta_i$, тогда $|\delta_i|_\perp$ будет также М. Р. $|\delta_k|_\perp$, $|\delta_j|_\perp$ в \bot .

В другую сторону аналогично.

К каждой строке доказательства из \perp применим трансляцию в \neg

- 1. Если δ_i получена из схем аксиом 1-8, тогда ничего не изменилось, и строка δ_i валидная строка в доказательстве в \bot . Если это аксиома 9_\bot , тогда вставим ее доказательство в аксиоматике \neg (см. выше) перед δ_i . Этот пункт так же доказывает базу индукции, так как первое утверждение не может быть получено по Modus Ponens.
- 2. по индукционному предположению все формулы с k < i были перестроены как $|\delta_k|_\neg$ и являются верными строками в доказательстве в \neg . если δ_i получена из М. Р. $\delta_k, \delta_j \equiv \delta_k \to \delta_i$, тогда $|\delta_i|_\neg$ будет также М. Р. $|\delta_k|_\neg$, $|\delta_j|_\neg$ в \neg .

6.

ОТСТОЙ:

- Ω топология, поражденная шарами : $\mathbf{B}_r(x) = \{y \in R | \ \rho(x,y) < r\}$
- Ω_{B} топология, поражденная базой: $\mathrm{B} = \{(x,y) \mid x,y \in R\}$
- Докажем, что для каждого отрезка есть шар

$$\forall x \in (a,b): \begin{cases} x \in \left(a, a + \frac{b-a}{2}\right) \\ x \in \left(a + \frac{b-a}{2}\right) \\ x = \left(a + \frac{b-a}{2}\right) \end{cases} \Rightarrow (a,b) \subseteq \mathbf{B}_{\frac{b-a}{2}} \left(a + \frac{b-a}{2}\right)$$

$$\forall x \in \mathcal{B}_{\frac{b-a}{2}} \left(a + \frac{b-a}{2} \right) : \begin{cases} x < a + \frac{b-a}{2} \Rightarrow a < x < a + \frac{b-a}{2} < b \\ x > a + \frac{b-a}{2} \Rightarrow a < a + \frac{b-a}{2} < x < b \\ x = a + \frac{b-a}{2} \Rightarrow a < a + \frac{b-a}{2} = x < b \end{cases} \Rightarrow \mathcal{B}_{\frac{b-a}{2}} \left(a + \frac{b-a}{2} \right) \subseteq (a,b)$$

Альтернативное условие:

- Ω топология, порожденная определением : $\forall a \in \Omega \exists R > 0 : V_{a(R)} \subset \mathbb{R}$
- Ω_{B} топология, порожденная базой: $\mathrm{B} = \{(x,y) \mid x,y \in \mathbb{R}\}$
- 1. $\Omega \subset \Omega_{\rm B}$

Пусть $V\in\Omega$. Тогда $\forall a\in V\exists R>0: V_{a(R)}\subset V$. Объединим все такие окрестности (для каждой точки возьмем любую окрестность).

Пусть
$$A = \cup_{a \in V} V_a$$
, $V_a \in \Omega_{\mathrm{B}}$

 $A\subset\Omega_{\mathrm{B}}.$ Покажем, что A=V, то есть A порождается базой B.

Пусть $a \in A$. Тогда \exists какая-то окрестность $V_a \subset V \Rightarrow a \in V$.

Пусть $a \in V$. Тогда а принадлежит какой-то окрестности $V_a \subset A \Rightarrow a \in A$

2.
$$\Omega_{\rm B} \subset \Omega$$
.

Пусть $V \in \Omega_{\mathrm{B}}$. Тогда $\forall a \in V \exists (x,y) \in B : a \in (x,y).(x,y) \subset V$, т. е. а внутренняя.

- 7. Дискретная
 - 1. $X, \emptyset \in \mathcal{P}(X)$.
 - 2. $A_1,...,A_n\in\mathcal{P}(X),A_1\cap A_2\cap...\cap A_n$ тоже подмножество X.
 - 3. $\cup A_{\alpha}$ тоже какое-то подмножество X.
 - Антидискретная
 - 1. $X, \emptyset \in \{X, \emptyset\}$.
 - 2. $X \cap \emptyset = \emptyset \in \{X, \emptyset\}.$
 - 3. $X \cup \emptyset = X \in \{X,\emptyset\}$.
 - Топология Зарисского $\mathcal{T} = \{X, \emptyset\} \cup \{V \mid V \in \mathcal{P}(\mathbb{R}), c \ V \text{ конечно}\}$
 - 1. $X, \emptyset \in \mathcal{P}(X)$
 - 2. $A_1,...,A_n\in\mathcal{T}\Rightarrow c(A_1\cap A_2\cap...\cap A_n)=cA_1\cup cA_2\cup...\cup cA_n$ (Закон де Моргана). Объединение конечного числа конечных множеств конечно.
 - 3. $c(\cup A_{\alpha}) = \cap_{\alpha} cA_{\alpha}$ не больше одного из множеств $cA_{\alpha} \Rightarrow$ конечно.
- 8. (1) $\langle X, \Omega = \{X\} \rangle$, $\varnothing \not\in \Omega$
 - (2) $\langle X=\{0,1,2\},\Omega=\{\varnothing,\{0,1\},\{0,2\},\{0,1,2\}\}\rangle$, пересечение = $\{0\}$ $\not\in\Omega$
 - (3) $\langle X = \{0, 1, 2\}, \Omega = \{\emptyset, \{0\}, \{1\}, \{0, 1, 2\}\} \rangle, \{0\} \cup \{1\} = \{0, 1\} \not\in \Omega$
- 9. Рассмотрим топологию $\mathbb{O}=\langle\mathbb{R},\{\mathbb{R},\varnothing,\mathbb{R}\setminus\{1\},\{1\}\}\rangle$, в ее корректности можно убедиться прямой проверкой.
- $|\mathbb{O}|$ четное(доказывается не сложно/очев).

у каждого одновременно открытого и замкнутого множества дополнение тоже одновременно открыто и замкнуто

Пусть
$$V:V\in\Omega$$
 и $cV\in\Omega$. Т. к. $V\neq cV$, либо $cV=X$ либо $cV=\varnothing$

10. • (b) Топология стрелки:

Пусть в B есть два луча $(x; +\infty)$, $(y; +\infty)$. Н.У.О. y>x. Тогда $(y; +\infty)\subset (x; +\infty)$. Тогда если в разложении $V\in \Omega$ есть $(x; +\infty)$, то туда можно добавить (если отсутствует) или убрать (если не принадлежит) $(y; +\infty)$, т. е. база не минимальна.

(с) не знаю

11. •
$$\langle X = \mathbb{N}, \Omega = \{\emptyset, \mathbb{N}, \{2\}, \{4\}, ..., \{2n\}, \{2,4\}, \{\text{любой набор из четных чисел}\}\} \rangle$$
 • $\langle X = [-1;1], \Omega = \{\emptyset, \{0\}\} \cup \{[-x,x] \mid x \in (0,1]\} \rangle$

12. • $(X,\Omega): \forall A \subset X: \exists A^{\circ}$

Пусть $\exists I_1 \neq I_2: I_1, I_2$ - внутренность A, $|I_1| = |I_2|, I_1 \neq I_2$. Пусть $I = I_1 \cup I_2$, но тогда $I \in \Omega$, $I \subset A$, $I_1 \subset I$, $I_2 \subset I$. Т. е. I больше I_1, I_2 и открыто, следовательно, является еще большим открытым - внутренностью.

13. (X,Ω)

a)

$$A$$
 — открыто $\Leftrightarrow \forall x \in A : \exists \varepsilon : U_{\varepsilon}(x) \subset A$

• ⇒

(b)

1. связь A° и B°

пусть $A^{\bigcirc} \not\subseteq B^{\bigcirc}$, все внутренние точки A находятся в A^{\bigcirc} , но в то же время все внутренние точки A являются внутренними точками B (т.к $A \subseteq B$), тогда получается, что B^{\bigcirc} не содержит все внутренние точки B, противоречие 13а

2. связь
$$\overline{A}$$
 и \overline{B}

рассмотрим граничные точки А

они являются либо граничными точками B, либо внутренними точками B (если любая окрестность пересекается c A и c дополнением B, то граничными (определение выполняется), если же c A и c B, то тогда существует окрестность, лежащая B B D точка внутренняя)

если $\overline{A} \not\subseteq \overline{B}$, то тогда \overline{B} не содержит все граничные и внутренние точки B, противоречие

- Верно ли $(A\cap B)^{\bigcirc}=A^{\bigcirc}\cap B^{\bigcirc}$?
- Пусть $x \in A^{\bigcirc} \cap B^{\bigcirc}$
- (1) $x \in A^{\bigcirc}$
- (2) $x \in B^{\circ}$
- (3) $A^{\bigcirc} \cap B^{\bigcirc} \in A \cap B$
- (4) (из предположения + (3)) $x \in A \cap B$
- $(5)((1) + (2) + (4)) \Rightarrow x \in (A \cap B)^{\bigcirc}$

- Верно ли $A^{\bigcirc} \cup B^{\bigcirc} = (A \cup B)^{\bigcirc}$
- Рассмотрим следующую конфигурацию:
- $C_1 \in A, C_2 \in B, C = C_1 \cup C_2$, и C открыто, при этом C_1, C_2 не открыты
- Тогда $(A \cup B)^{\bigcirc} = A^{\bigcirc} \cup B^{\bigcirc} \cup C \neq A^{\bigcirc} \cup B^{\bigcirc}$, следовательно, неверно

14.

(а) В КИВ: ложь может быть, только если $[A]:= \Pi$, тогда при любой оценке В $[A \to B] = \Pi$ и $[(A \to B) \to A] = \Pi$, тогда выражение исчисляется как $\Pi \to \Pi = \Pi$

в остальных случаях импликация выдает истинность

следовательно, высказывание общезначимо

в ИИВ работаем в следующей топологии над множеством $\{0,1\}$:

$$\{\emptyset, \{0\}, \{0, 1\}\}$$

в ИИВ:

- $[A] = \{0\}, [B] = \emptyset$
- $\{0\} \rightarrow \varnothing : (\{1\} \cup \varnothing)^{\bigcirc} = \{1\}^{\bigcirc} = \varnothing$
- $\varnothing \to \{0\} : (\{0,1\} \cup \{0\})^{\bigcirc} = \{0,1\}$
- $\{0,1\} \to \{0\} : (\emptyset \cup \{0\})^{\bigcirc} = \{0\}$
- $\{0\} \neq \{0,1\} \Rightarrow$ формула опровергнута
- (b) в КИВ: cx. 10 [$\alpha := A$]

в ИИВ:

- $\llbracket A \rrbracket = \{0\}$
- $\neg \{0\} : \{1\}^{\bigcirc} = \emptyset$
- $\neg \varnothing : \{0,1\}^{\bigcirc} = \{0,1\}$
- $\{0,1\} \to \{0\} : (\varnothing \cup \{0\})^{\bigcirc} = \{0\}$
- $\{0\} \neq \{0,1\} \Rightarrow$ опровергнуто

(c)
$$(A \to B) \lor (B \to A)$$

в КИВ: чтобы оценить в ложь, нам нужно, чтобы обе импликации оценивались в ложь, т.е $[B] := \Pi, [A] := \Pi$, но тогда $[\Pi \to \Pi] = \Pi$ и $[\Pi \lor \Pi] = \Pi$

в остальных случаях хотя бы одна из импликаций оценивается в истину

следовательно, высказывание общезначимо

в ИИВ: работаем в следующей топологии над множеством $\{0,1,2\}$

$$\Omega = \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\}\$$

тогда

- $[[A]] := \{0\}, [[B]] := \{1\}$
- $\{0\} \to \{1\} : (\{1,2\} \cup \{1\})^{\bigcirc} = \{1,2\}^{\bigcirc} = \{1\}$
- $\{1\} \to \{0\} : (\{0,2\} \cup \{0\})^{\bigcirc} = \{0,2\}^{\bigcirc} = \{0\}$

- $\{1\} \vee \{0\} : \{1\} \cup \{0\} = \{0,1\}$
- $\{0,1\} \neq \{0,1,2\} \Rightarrow$ опровергнуто

(d)
$$[A] = \{0, 1\}, [B] = \{0\}, [C] = \emptyset$$

в КИВ:

чтобы высказывание оценилось в ложь, нужно, чтобы обе импликации оценились в ложь, что возможно только при [B]:=0, [C]:=0, но тогда $[B \to C]=0 \to 0=1$ и $[(A \to B) \lor (B \to C)]=[? \lor 1]=1$

при любых других оценках хотя бы одна из импликаций оценивается в истину -> высказывание общезначимо

в ИИВ:

- $[A] = \{0, 1\}, [B] = \{0\}, [C] = \emptyset$
- $[[A \to B]] : \{0,1\} \to \{0\} = (\varnothing \cup \{0\})^{\bigcirc} = \{0\}^{\bigcirc} = \{0\}$
- $[[B \to C]]: \{0\} \to \varnothing = (\{1\} \cup \varnothing)^{\bigcirc} = \{1\}^{\bigcirc} = \varnothing$
- $[[(A \to B) \lor (B \to C)]] : \{0\} \lor \emptyset = (\{0\} \cup \emptyset) = \{0\}$
- $\{0\} \neq \{0,1\} \Rightarrow$ высказывание оценивается в ложь, не общезначимо

15.
$$\exists \varphi(A,B) : \vdash A * B \rightarrow \varphi(A,B)$$
и $\vdash \varphi(A,B) \rightarrow A * B$