$\zeta = \exp(2\pi i/9)$ を 1 の原始 9 乗根とするとき, $\mathbb{Q}(\zeta)$ の部分体をすべて求めよ.

₩ 解答欄

素体 $\mathbb Q$ を含むので、 $\mathbb Q(\zeta)/\mathbb Q$ の中間体をすべて求めればよい. ζ の $\mathbb Q$ 上の最小多項式は

$$f(X) = \frac{X^9 - 1}{X(X - \zeta^3)(X - \zeta^6)} = \frac{X^8 + \dots + X^4 + 1}{X^2 + X + 1} = X^6 + X^3 + 1$$

である. 実際, f(X+1) は p=3 のアイゼンシュタイン多項式で既約. よって, 拡大次数は 6 である.

あとは適当に計算すれば、 $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ は $\sigma: \zeta \mapsto \zeta^2$ が生成する巡回群になることがわかる.

$$Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) \simeq \mathbb{Z}/6\mathbb{Z}$$

である. $(\mathbb{Z}/9\mathbb{Z})^{\times}=\{1,2,4,5,7,8\}$ であり、この群は 2 を生成元とする位数 6 の巡回群である. $\mathbb{Z}/6Z$ の部分群は

$$\{1\}, \langle \sigma^3 \rangle, \langle \sigma^2 \rangle, \mathbb{Z}/6\mathbb{Z}$$

の 4 つであるから,ガロアの基本定理によって $\mathbb{Q}(\zeta)$ の部分体は \mathbb{Q} と $\mathbb{Q}(\zeta)$ 自身を含めて全部で 4 つ存在する.

次いで、対応する部分体を決定する.まず、 $\{1\}$ に対応するのは $\mathbb{Q}(\zeta)$ で、 $\mathbb{Z}/6\mathbb{Z}$ に対応するのは $\mathbb{Q}(\zeta)$ である.

(1) $\langle \sigma^3 \rangle$ の固定体

 $\sigma^3: \zeta \mapsto \zeta^8 = \overline{\zeta}$ が複素共役写像であることから、 σ^3 は $\Re \zeta = \cos 2\pi/9$ を固定する.3 倍角 の公式 $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ で $\theta = 2\pi/9$ とすることにより、 $\cos 2\pi/9$ は

$$-\frac{1}{2} = 4X^3 - 3X \implies 8X^3 - 6X + 1 = 0$$

の根であることがわかる. $X\mapsto X+1$ としてアイゼンシュタインの判定法を使えば既約とわかるので,これが最小多項式. $\langle \sigma^3 \rangle$ の固定体は 3 次拡大なので,対応する体は $\mathbb{Q}(\cos 2\pi/9)$ である.

(2) $\langle \sigma^2 \rangle$ の固定体

 σ^2 : $\zeta\mapsto \zeta^4$ なので、 σ^2 は $\zeta^3=\exp(2\pi i/3)$ を固定する.よって、対応する体は $\mathbb{Q}(i\sin 2\pi/3)=\mathbb{Q}(\sqrt{-3})$ である.

以上より、求める部分体は $\mathbb{Q}(\zeta)$, $\mathbb{Q}(\cos 2\pi/9)$, $\mathbb{Q}(\sqrt{-3})$, \mathbb{Q} である.