

KTO KARATAY UNIVERSITY FACULTY OF ENGINEERING MECHATRONICS ENGINEERING

ROBOTICS (MEM-720)

<27.12.2024>

Name : Mustafa USTA

Student ID : 200313004

Student ID : Asst.Prof. Hüseyin ALP

Teaching Assistant : Res.Asst.Sinan İLGEN

Working Area : Adaptive Assembly System Project

TABLE OF CONTENTS

1.INTRODUCTION	1
1.1 Objective	1
1.2 Research and Implementation Methods Used	1
2. PROJECT	2
2.1 Adaptive Assembly System	2
2.2 Fields of Use	3
2.3 Model Circuit Schematic	4
2.4 Operation Algorithm	4
2.5 Robot Codes and Locations	5
2.5.1 System Locations	5
2.5.2 Robot Codes.	5
2.6 System Microcontroller's Codes	7
3. REFERENCES	9

1. INTRODUCTION

Automation systems are an important technology in modern industries aiming to increase productivity by reducing labor. In this project, an automation system is designed in which a conveyor belt system and a robot arm are integrated. The project is based on detecting and classifying products of different sizes and performing appropriate operations. The system is a complex mechatronic application where sensors, microcontrollers and robotic elements are used together.

1.1 Objective

The main objective of this project is to automatically detect the various products being transported on the production line and guide them with robotic operations within the framework of a production scenario designed for the product. Thus, it is aimed to reduce human intervention, error margins and costs by automating product classification, quality control and handling processes on production lines.

1.2 Research or Implementation Methods Used

Various research and implementation methods were adopted for the successful completion of the project. These methods were selected and applied in order to achieve the project's objective and solve the problems effectively.

Utilization of Internet Resources

During the project process, internet resources were utilized to obtain information on various topics and to access existing solutions. These resources have played an important role in keeping up to date with current developments in the project area, evaluating the experiences gained from similar projects and finding solutions to the problems encountered. [2]

Article and Thesis Reviews

In order to strengthen the theoretical foundation of the project and integrate knowledge from similar studies, various academic sources were reviewed. In this context, relevant articles, theses and scientific publications were reviewed to gain an in-depth understanding of the key issues of the project. This information was used to develop the methodology of the project and to evaluate the results. [3]

These various research and implementation methods contributed to the successful realization of the project and increased the reliability of the results obtained. These methods strengthened the scientific basis of the project and were used as an effective tool to achieve the objectives.

2. PROJECT

2.1 Adaptive Assembly System

The project was developed using Mitshubishi Industrial robotic arm. The working algorithm of the system can be summarized as follows:

- **1. Triggering with Sensor:** The proximity sensor stops the system when it detects product on the conveyor belt.
- **2. Product Measurement:** The size of the product is measured with sensors and the appropriate robotic scenario is triggered according to the measured distance.
- **3. Robot Operation:** After the robot completes its operation, it informs the system with the "done" signal and the system is ready to work again.

Technical Specifications:

- Industrial Robot Arm: Mitsubishi CR750 2F-D Industrial Robot
- Sensors: Industrial proximity sensor,
- Actuators: Conveyor system
- Inputs: 3 robot pins for different scenario

Figure 1. Industrial Automation System Operation Logic Demonstration

2.2 Fields of Use

This system has various applications in the field of industrial automation:

- **Production Lines:** Sorting and routing products of different sizes.
- Storage and Logistics: Sorting products by size before packaging.
- Food Processing: Sorting food products according to size.
- Quality Control: Detecting and sorting defective or substandard products.
- E-Commerce: Directing products to appropriate areas before storage and shipping.

The scalable nature of the project makes it possible to easily adapt it to other industries. These features enable the system to have a wide range of uses provides.

2.3 Model Circuit Schematic

Figure 2. System Schematic

2.4. Operation Algorithm

Resim 3. System Operation Algorithm

2.5. Robot Codes and Locations

2.5.1. System Locations

Konum	x	Y	z	Α	В	c	Flag
P1_0	112.330	333.070	299.060	178.760	0.210	6.170	0
P1_1	112.330	333.070	352.110	178.760	0.210	6.170	0
P1_2	-43.620	333.070	299.060	178.760	0.210	6.170	0
P1_3	-43.620	333.070	352.110	178.760	0.180	5.510	0
P1_4	-199.560	333.070	299.060	178.760	0.210	6.170	0
P1_5	-199.560	333.070	352.110	178.760	0.210	6.170	0
P2_0	129.610	341.470	288.960	178.570	0.190	5.510	0
P2_1	-201.670	341.470	288.960	178.580	0.160	5.540	0
P2_2	-201.670	341.470	332.010	178.580	0.160	5.540	0
P2_3	122.250	341.470	332.010	178.580	0.160	5.540	0
P3_0	-37.450	340.170	281.870	178.570	0.170	5.520	0
P3_1	-37.460	340.180	440.570	178.570	0.180	5.520	0
P3_2	-37.460	340.180	569.260	178.570	0.180	5.520	0
P3_3	129.610	340.180	440.570	178.570	0.180	5.520	0
P3_4	-201.670	340.180	440.570	178.570	0.180	5.520	0
PHome	-0.150	309.110	525.860	178.570	0.180	5.520	0
Px	-0.150	300.000	525.860	178.570	0.180	5.520	0

2.5.2. Robot Codes

1 Servo On	35 If M_In(14)=1 Then	69 Mov Phome
2 Ovrd 100	36 If M_In(7)=1 Then	70 'Case 2
3 Accel 85,60	37 If M_In(4)=0 Then	71 EndIf
4 M_Out(10)=1	38 'Case 2	72 EndIf
5 Mvs Phome	39 M_Out(10)=0	73 '
6 M_Out(4)=1	40 Mvs Phome	74 If M_In(4)=1 Then
7 Dly 1	41 Mvs pyard	75 'Case 3
8 '	42 Accel 85,20	76 Dly 6
9 If M_In(7)=1 Then	43 Mvs pc2yard	77 M_Out(10)=0
10 If M_In(14)=0 Then	44 Dly 1	78 Mvs Phome
11 'Case 1	45 M_Out(4)=1	79 Spd 80
12 M_Out(10)=0	46 Dly 1	80 Accel 85,10
13 '	47 Spd 10	81 M Out(4)=1
14 'silindir	48 Mvs pc2yard2	82 Mvs psln
15 Mov Phome	49 Dly 1	83 Dly 1
16 Accel 100,30	50 M_Out(4)=0	84 M Out(4)=0
17 M_Out(4)=1	51 Dly 1.5	85 Spd 30
18 Dly 2	52 Accel 10,50	86 Dly 1
19 Mov psln,-30	53 Spd 100	87 Accel 20
20 Spd 20	54 Mvs pyard	88 Spd 40
21 Mvs psln	55 Mvs pyard5	89 Mvs p3yard5
22 M_Out(4)=0	56 Accel 60,20	90 Mvs p3yard3
23 Spd 70	57 Ovrd 35	91 Mvs p3yard6
24 Accel 100,20	58 Mvs pc2yard3	92 Spd 20
25 Mvs pyard	59 Mvs pc2yard4	93 Mvs p3yard7
26 Mvs pkonumust1	60 Ovrd 10	94 Mvs p3kutuic
27 Spd 20	61 Mvs pc2kutu	95 Dly 0.5
28 Mvs pkonumic1	62 Dly 0.5	96 M_Out(4)=1
29 Dly 0.5	63 M_Out(4)= 1	97 Dly 1.5
30 M_Out(4)=1	64 Dly 1	98 Mvs p3yard7
31 Dly 1	65 M_Out(10)=1	99 Mov p3yard5
32 Mov Phome	66 Accel 20	100 Mov Phome
33 EndIf	67 Ovrd 70	101 M_Out(10)=1
34 '	68 Mvs pyard	102 Dly 3
34	oo rivs pyaru	103 Mov Phome
		104 'Case 3
		104 Case 5
		103

3.REFERENCES

[2] ADVANCED KINEMATIC CALCULATION METHOD FOR A FIVE-JOINT ROBOT ARMhttps://www.emo.org.tr/ekler/258b2257ce52929_ek.pdf

[3] Saeed B. Niko. Introduction to Robotics Analysis, Systems, Applications. NJ07458.

Robot Programming and useful documents related to robot:

- https://electrobit.ee/web/file_bank/Manuals/robotid/mitsubishi/cr751/CR750-CR751-CR760-setup-operation-maintenance ENG.pdf
- https://www.allied-automation.com/wp-content/uploads/2015/02/MITSUBISHI_CR750CR751-Controller-Instruction-Manual-Detailed-Explanations-of-Functions-and-Operations1.pdf

106 EndIf

- https://dl.mitsubishielectric.com/dl/fa/document/manual/robot/bfp-a8871/bfp-a8871z.pdf
- https://suport.siriustrading.ro/02.DocArh/09.MS/07.RI/06.RT%20ToolBox3/RT%20ToolBox3%20-%20User's%20Manual%20BFP-A3495-J%20(04.20).pdf