A2I2 - Basic Image Processing Exercise

Summer 2020 Jochen Schmidt

Filter

1. The following values represent a row of pixels of a grayscale image:

Compute the convolution (filter) of this image row using a 1D filter mask:

a. mask 1/3 [1 1 1]
$$\times_{1} 1_{1}^{4} = 1_{1} 1_{1}^{4} 1_{1}^{4} 1_{1}^{4} 1_{1}^{4} 1_{1}^{4} = 1_{1}^{4} 1_{1}^{4$$

2. The following table shows a small grayscale image. Filter the image and fill in the result in the empty tables below.

1	1	4	4	
1	1	4	4	
1	1	4	4	
1	1	4	4	

a. apply a 3x3 mean filter

7	7	
2	7	

b. apply a 3x3 Median

3. The following table shows a small grayscale image. Filter the image and fill in the result in the empty tables below.

1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4
1	1	1	1	4	4	4	4

a. apply a 3x3 Sobel (derivative in x-direction)

\bigcirc	Ŏ	N	く	\bigcirc	6	
0	0	17	12	\bigcirc	Ŏ	
\mathcal{C}	0	12	12	\bigcirc	9	
0	0.	11	1	· ()	J	

b. apply a 3x3 Sobel (derivative in y-direction)

-		()				
\mathcal{O}	0	0	O	C	0	
Ó	0	0	0	0	0	
0	Ŋ	0	()	O	0	