Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. 6 i 9 marca 2017

- 1. A oraz B są zdarzeniami takimi, że: $P(A \cap B) = 1/4, P(A^C) = 1/3, P(B) = 1/2.$ Znaleźć $P(A \cup B)$.
- 2. Czy prawdą jest, że 13 dzień miesiąca powiązany jest z piątkiem. Upraszczamy kalendarz gregoriański przyjmując, że rok n jest jest przestępny jeżeli $n \equiv_4 0$ i $n \not\equiv_{100} 0$ (rok 2000 był wyjątkiem od tej reguły). Ile razy w 400-letnim cyklu 13-tym dniem miesiąca będzie poniedziałek, wtorek, . . . , niedziela?

Mówimy, że zmienne X,Y są niezależne, wtedy gdy – w wypadku dyskretnym – spełniony jest warunek $P\left(X=x_i,Y=y_k\right)=P\left(X=x_i\right)\cdot P\left(Y=y_k\right)$.

- 3. Zmienna X ma rozkład $B(n_1, p)$ a zmienna Y rozkład $B(n_2, p)$. Zmienne są niezależne. Wykazać, że zmienna Z = X + Y ma rozkład $B(n_1 + n_2, p)$.
- 4. Niezależne zmienne losowe X,Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z=X+Y ma rozkład Poissona z parametrem $\lambda_1+\lambda_2$.
- 5. Wiadomo, że E(X) = 1 i V(X) = 5. Obliczyć wartości $E((2+X)^2)$ i V(3X+2)
- 6. Prawdopodobieństwo sukcesu w pojedynczej próbie jest równe p. Wykonujemy doświadczenie do momentu uzyskania 2 sukcesów. Zmienna losowa X to liczba przeprowadzonych prób. Wyznaczyć rozkład zmiennej X, tzn. podać jej funkcję prawdopodobieństwa. Obliczyć wartość oczekiwaną zmiennej X.

Losujemy jedną kartę z talii 24 kart. Oznaczmy przez X zmienną losową o wartościach

$$X = 0$$
 1 2 4 trefl karo kier pik,

natomiast przez Y zmienną o wartościach

- 7. Podać rozkład zmiennej (X,Y) oraz rozkłady brzegowe.
- 8. Sprawdzić, czy zmienne X i Y są niezależne.
- 9. Podać rozkład zmiennej Z = X + Y.
- 10. Niech X będzie zmienną o rozkładzie geometrycznym. Sprawdzić, że $V(X) = \frac{1-p}{p^2}$.
- 11. Zbiory A_1, \ldots, A_4 mają moc odpowiednio 40, 32, 20, 50. Losowo wybieramy pewien element (z całości). Wartością zmiennej losowej X jest moc zbioru z którego pochodzi wybrany element. Następnie losowo wybieramy jeden ze zbiorów. Wartością zmiennej losowej Y jest moc wybranego zbioru. Obliczyć E(X) i E(Y).