		7th example from the 8th minibatch?
		$a^{[8]\{7\}(3)}$ $a^{[3]\{7\}(8)}$
		$\bigcirc a^{[3]\{8\}(7)}$
1 point		$\bigcirc a^{[8]\{3\}(7)}$
	2.	Which of these statements about mini-batch gradient descent do you agree with?
		You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).
		Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.
		One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.
1 point	3.	Why is the best mini-batch size usually not 1 and not m, but instead something inbetween? If the mini-batch size is m, you end up with batch gradient descent, which has
		to process the whole training set before making progress. If the mini-batch size is m, you end up with stochastic gradient descent, which
		is usually slower than mini-batch gradient descent. If the mini-batch size is 1, you end up having to process the entire training set
		before making any progress. If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
		examples in the mini baten.
1 point	4.	Suppose your learning algorithm's cost J , plotted as a function of the number of iterations, looks like this:
		† ,
		My Co.
		Set in Maria
		MM MMM
		Which of the following do you agree with?
		If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong. If you're using mini-batch gradient descent, something is wrong. But if you're
		 If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable. Whether you're using batch gradient descent or mini-batch gradient descent,
		this looks acceptable. Whether you're using batch gradient descent or mini-batch gradient descent,
		something is wrong.
1 point	5.	Suppose the temperature in Casablanca over the first three days of January are the same: Jan 1st: $ heta_1=10^oC$
		Jan 2nd: $ heta_2 10^o C$
		(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.) Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias
		correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)
		$v_2 = 7.5$, $v_2^{corrected} = 10$ $v_2 = 7.5$, $v_2^{corrected} = 7.5$
		$v_2=7.5$, $v_2^{corrected}=7.5$ $v_2=10$, $v_2^{corrected}=10$
		$\bigcirc v_2=10$, $v_2^{corrected}=7.5$
1 point	6.	Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.
		$lpha = 0.95^t lpha_0$ $lpha = e^t lpha_0$
		$lpha = rac{1}{1+2*t}lpha_0$ $lpha = rac{1}{\sqrt{t}}lpha_0$
		$\alpha = \sqrt{t} \alpha_0$
	7.	You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check
1 point	•	
	•	the two that apply)
	•	
	•	ψ • • •
	•	the two that apply)
	•	ψ • • •
	•	temperature
	•	temberature
		temperature
		$\frac{1}{2} = \frac{1}{2} \int_{-\infty}^{\infty} days$
		$\frac{\text{days}}{\text{days}}$ Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line.
	8.	$\frac{\text{days}}{\text{days}}$ Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line.
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line.
point		$\frac{\text{days}}{\text{days}}$ Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line.
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line.
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line. Consider this figure:
point		$\frac{\partial \operatorname{days}}{\partial \operatorname{days}}$ Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line. Consider this figure:
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line. Consider this figure: These plots were generated with gradient descent, with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line. Consider this figure: Consider this figure: These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β). (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is
point		Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillations within the red line. Consider this figure: Consider this figure: These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β). (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with
point	8.	These plots were generated with gradient descent with into momentum ($\beta = 0.9$). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum ($\beta = 0.9$). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum ($\beta = 0.9$). Which curve corresponds to which algorithm? (1) is gradient descent. (2) is gradient descent with momentum ($\beta = 0.9$). Which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent. (3) is gradient descent with momentum (small β). (4) is gradient descent. (5) is gradient descent. (6) is gradient descent. (7) is gradient descent. (8) is gradient descent. (9) is gradient descent.
point		These plots were generated with gradient descent; with gradient descent with momentum $(\beta = 0.9)$, which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (7) is gradient descent with momentum (small β). (9) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (7) is gradient descent with momentum (small β). (8) is gradient descent with momentum (small β). (9) is gradien
1 point	8.	
1 point	8.	These plots were generated with gradient descent; with gradient descent with momentum $(\beta = 0.9)$, which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (7) is gradient descent with momentum (small β). (9) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (1) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (4) is gradient descent with momentum (small β). (5) is gradient descent with momentum (small β). (6) is gradient descent with momentum (small β). (7) is gradient descent with momentum (small β). (8) is gradient descent with momentum (small β). (9) is gradien
1 point	8.	$\begin{array}{ c c c } \hline \textbf{Decreasing } \beta \text{ will shift the red line slightly to the right.} \\ \hline \textbf{Increasing } \beta \text{ will shift the red line slightly to the right.} \\ \hline \textbf{Decreasing } \beta \text{ will create more oscillation within the red line.} \\ \hline \textbf{Increasing } \beta \text{ will create more oscillation within the red line.} \\ \hline \textbf{Increasing } \beta \text{ will create more oscillations within the red line.} \\ \hline \textbf{Consider this figure:} \\ \hline \textbf{Consider this figure:} \\ \hline These plots were generated with gradient descent; with gradient descent with momentum (\beta = 0.9). Which curve corresponds to which algorithm: $
1 point	8.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
1 point	8.	$\begin{array}{ c c c } \hline \textbf{Decreasing } \mathcal{B} \text{ will shift the red line slightly to the right.} \\ \hline \textbf{Increasing } \mathcal{B} \text{ will shift the red line slightly to the right.} \\ \hline \textbf{Decreasing } \mathcal{B} \text{ will create more oscillation within the red line.} \\ \hline \textbf{Increasing } \mathcal{B} \text{ will create more oscillations within the red line.} \\ \hline \textbf{Increasing } \mathcal{B} \text{ will create more oscillations within the red line.} \\ \hline \textbf{Consider this figure:} \\ \hline \textbf{Consider this figure:} \\ \hline \textbf{Consider this figure:} \\ \hline \textbf{(1) is gradient descent with gradient descent with momentum (\mathcal{B} = 0.9). Which curve corresponds to which algorithm? \hline \textbf{(1) is gradient descent with momentum (small \mathcal{B}). \textbf{(2) is gradient descent with momentum (small \mathcal{B}). $
1 point	8.	Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillation within the red line. Increasing β will create more oscillation within the red line.
1 point	8.	Decreasing β will shift the red line slightly to the right. Increasing β will shift the red line slightly to the right. Decreasing β will create more oscillations within the red line. Increasing β will create more oscillations within the red line. Consider this figure: (1) is gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm? (1) is gradient descent with momentum (small β). (3) is gradient descent with momentum (arge β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent with momentum (small β). (3) is gradient descent wit

batches.