Evaluación Práctica: Optimización [FINESI]

Edison Antony Sayritupa Coaricona

January 22, 2025

Introducción

En este documento se presentan los 10 ejercicios resueltos de la práctica realizada el día de hoy. Cada ejercicio ha sido desarrollado paso a paso, usando métodos como la Regla de Cramer, el Método de Gauss-Jordan y el Método Simplex.

El propósito es mostrar soluciones claras y fáciles de entender para problemas de matemáticas aplicadas y optimización. Además, cada solución incluye explicaciones para que se pueda comprender mejor cómo se resolvieron los ejercicios.

Este documento está hecho para ayudar a entender los temas y ponerlos en práctica de forma sencilla.

1 Ejercicio 1: Modelado de Costos de Movilidad Urbana

1.1 Definición del modelo

La función objetivo es minimizar el costo total C(x, y), dado por:

$$C(x,y) = 4x + 6y$$

Las restricciones del modelo son:

$$x + y \le 100$$
$$x \ge 10$$
$$y \ge 5$$
$$x, y \ge 0$$

1.2 Interpretación gráfica

[Gráfico omitido en esta versión]

1.3 Solución analítica

Se identifican los puntos de intersección de las restricciones:

- Punto 1: (10,5)
- Punto 2: (10,90)
- Punto 3: (95,5)
- Punto 4: (10,90)

Sustituyendo en C(x, y):

$$C(10,5) = 4(10) + 6(5) = 40 + 30 = 70$$

 $C(10,90) = 4(10) + 6(90) = 40 + 540 = 580$
 $C(95,5) = 4(95) + 6(5) = 380 + 30 = 410$

1.4 Conclusión

El costo mínimo es C(10,5) = 70 soles, que ocurre cuando x = 10 y y = 5.

2 Ejercicio 2: Análisis de Costos en Startup de Análisis de Datos

2.1 Definición del modelo

La función objetivo es minimizar el costo total C(x, y), dado por:

$$C(x,y) = 1500x + 3000y$$

Las restricciones del modelo son:

$$x + y \ge 8$$
$$y \ge 3$$
$$x + y \le 12$$
$$x, y \ge 0$$

2.2 Solución analítica

Se evalúan los vértices de la región factible:

- Punto 1: (5,3)
- Punto 2: (7,5)
- Punto 3: (8,4)

Sustituyendo en C(x, y):

$$C(5,3) = 1500(5) + 3000(3) = 7500 + 9000 = 16500$$

 $C(7,5) = 1500(7) + 3000(5) = 10500 + 15000 = 25500$
 $C(8,4) = 1500(8) + 3000(4) = 12000 + 12000 = 24000$

2.3 Conclusión

El costo mínimo es C(5,3)=16500 soles, que ocurre cuando se contratan 5 analistas junior y 3 analistas senior.

3 Ejercicio 3: Monitoreo de Deforestación con Drones

3.1 Definición del problema

El objetivo es maximizar la cobertura total S(x, y):

$$S(x,y) = 50x + 65y$$

Restricciones:

$$3x + 4y \le 200$$
$$x + y \le 40$$
$$x, y \ge 0$$

3.2 Evaluación de los puntos extremos

Vértices:

- Punto 1: (0,0)
- Punto 2: (40,0)
- Punto 3: (20, 30)

Sustituyendo en S(x, y):

$$S(0,0) = 50(0) + 65(0) = 0$$

 $S(40,0) = 50(40) + 65(0) = 2000$
 $S(20,30) = 50(20) + 65(30) = 1000 + 1950 = 2950$

3.3 Conclusión

La cobertura máxima es S(20,30)=2950 kilómetros cuadrados.

4 Ejercicio 4: Pronóstico de Ventas Cafetaleras

4.1 Resolución del sistema

Sistema de ecuaciones:

$$x + 2y = 40$$

$$3x + y = 70$$

Usando la Regla de Cramer:

- Determinante de la matriz de coeficientes: det(A) = -5
- $x = \frac{det(x)}{det(A)} = \frac{-100}{-5} = 20$
- $\bullet \ \ y = \frac{det(y)}{det(A)} = \frac{-50}{-5} = 10$

4.2 Conclusión

Precio promedio: 20 soles/kg, índice de calidad: 10.

5 Ejercicio 5: Calibración de Sensores Marinos

5.1 Resolución del sistema

Sistema de ecuaciones:

$$2x + y + 3z = 20$$

$$x + 4y + 2z = 23$$

$$3x + 2y + z = 16$$

Usando la Regla de Cramer, se obtiene:

- x = 1.8
- y = 3.08
- z = 4.44

5.2 Conclusión

Parámetros de calibración para mejora del algoritmo de clasificación.

6 Ejercicio 6: Microrredes en Zonas Rurales

6.1 Resolución mediante Gauss-Jordan

Sistema de ecuaciones:

$$x + 2y + z = 8$$
$$2x - y + 4z = 12$$
$$-x + 3y + 2z = 6$$

Solución:

- \bullet x=2
- y = 1
- $z = \frac{18}{19} \approx 0.947$

6.2 Conclusión

Distribución de recursos en planificación energética rural.

7 Ejercicio 7: Demanda de Tickets de Tren

7.1 Resolución mediante Gauss-Jordan

Sistema de ecuaciones:

$$x + y = 350$$
$$2x - y = 100$$

Solución:

- x = 150
- y = 200

7.2 Conclusión

Proyección de turistas para planificación de rutas.

8 Ejercicio 8: Optimización de Mezcla de Mango

8.1 Resolución mediante Gauss-Jordan

Sistema de ecuaciones con 4 variables. Solución:

- A = 20 (Variedad A)
- B = 15 (Variedad B)
- C = 15 (Variedad C)
- w = 15 (Conservante)

8.2 Conclusión

Optimización de la mezcla de producto.

9 Ejercicio 9: Procesamiento de Datos de Marketing Digital

9.1 Definición del problema

Minimizar costo:

$$C(x,y) = 400x + 700y$$

Restricciones:

$$200x + 300y \ge 4000$$
$$400x + 700y \le 7000$$
$$x, y \ge 0$$

9.2 Conclusión

Modelo requiere ajuste de restricciones para solución viable.

10 Ejercicio 10: Optimización de Productos Digitales (Método Simplex)

10.1 Definición del problema

Maximizar ganancia:

$$Z(x,y) = 20x + 15y$$

Restricciones:

$$3x + y \le 120$$
$$x \ge 10$$
$$x, y \ge 0$$

10.2 Solución

- x = 10 (Software local)
- y = 90 (Cursos virtuales)
- Ganancia total: Z=1550 soles

10.3 Conclusión

Combinación óptima de producción maximizando ganancias.