STATISTICAL PHYSICS & MACHINE LEARNING

EXERCISE 04: The annealed solution to randomised perceptron learning

Consider a student perceptron with N binary input elements and one binary output receiving the classification results for $P=\alpha N$ random examples from an identical teacher perceptron. According to the annealed computation, the typical student achieving zero training error also achieves generalisation error $\epsilon(\alpha)$ such that

(1)
$$\alpha = (1 - \epsilon)\pi \cot(\pi \epsilon) .$$

Superimpose to the numerical results obtained in Exercise 03 the result of equation (1) obtained by the following methods:

- plot the two dimensional parametric curve describing $\epsilon(\alpha)$ with parameter t (the natural choice is to set $t = \epsilon \in [0:0.5]$).
- consider a strategy to solve explicitly equation (1) in correspondence of a given α by setting up an iterative procedure:
 - rewrite the equation as $\epsilon = f(\epsilon, \alpha)$
 - start with ϵ_0
 - evaluate $\epsilon_{i+1} = (1-a)\epsilon_i + af(\epsilon, \alpha)$
 - plot ϵ_i vs i to check if it converges
- check that a possible choice of $f(\epsilon, \alpha)$ is $f(\epsilon, \alpha) = 1 \alpha \tan(\pi \epsilon)/\pi$ and show the plot ϵ_i vs i for
 - $-\alpha = 5, \epsilon_0 = 0.25, \alpha = 0.5$
 - $-\alpha = 5, \epsilon_0 = 0.25, \alpha = 0.9$
 - $-\alpha = 5, \epsilon_0 = 0.25, a = 0.1$
- check that another possible choice of $f(\epsilon, \alpha)$ is $f(\epsilon, \alpha) = \arctan(\pi(1 \epsilon)/\alpha)/\pi$ and show the plot ϵ_i vs i for
 - $-\alpha = 5, \epsilon_0 = 0.25, a = 0.5$
 - $-\alpha = 5, \epsilon_0 = 0.25, a = 0.9$
 - $-\alpha = 5, \epsilon_0 = 0.25, a = 0.1$
- how do you explain the results?
- play further with the parameters ϵ_0 and a at different α to decide which $f(\epsilon, \alpha)$ is best suited for the iterative equation
- use the chosen $f(\epsilon, \alpha)$ to set up an automatic procedure to determine the result $\epsilon(\alpha)$ with high precision in correspondence of many $\alpha \in [0:10]$
- plot the obtained curve $\epsilon(\alpha)$ on top of the parametric plot and of the numerical result from exercise 03.

1