# Mobile Robot Navigation and Control, Lab3

Author: Ying Yiwen Weiyu Chen Number: 12210159 12210460

#### Abstract

In this lab, we learn how to operate the laser distance sensor that comes with TurtleBot3.

#### 1 Introduction

We use Turtlebot3 and HLS-LFCD2 LiDAR sensor to control the robot, get the lidar message. First set up the environment, to enable us to control the robot on our computer. Take one computer as master, another computer and turtlebot as host. Then we can control the robot by ros package. Also, we can write ros package ourselves to deal with the scan message.

### 2 Setting up TurtleBot 3

Using the command "roslaunch turtlebot3\_bringup turtlebot3\_robot.launch" on turtlebot, "roslaunch turtlebot3\_teleop turtlebot3\_teleop\_key.launch" on my computer, I can control the robot.



Fig. 1: rqt graph

# 3 HLS-LFCD2

The message /scan tells the information in the lidar. Using "rostopic echo /scan":



Fig. 2: The information in scan

Using the rviz, we can obeserve the pointcloud more clearly.



Fig. 3: rviz result

# 4 Verify the Performance of LiDAR

We put the robot beside a wall, when there is nothing else in other direction, the minimum distance (except 0) is the normal distance towards the wall. As the wall is a plane, we can easily get the true distance. According to the maunual, the distance is from the center of LiDAR to the obstacle. Like this:



Fig. 4: Experiment Scenario

```
def callback(scan):
1
     global dis
2
     dis min = scan.range max
3
     for i in range (0, 360):
4
       distance = scan.ranges[i]
5
       if distance < dis_min and distance != 0:
6
         dis_min = distance
7
8
     # the minimum distance represent the measured result normal to the wall
9
10
     dis.append(dis_min)
```

```
def process_data(_):
    global dis
    if len(dis) > 0:
        dis_array = np.array(dis)
        rospy.loginfo("accuracy: %f m", abs(dis_array.mean() - dis_true))
        rospy.loginfo("precision: %f m", (dis_array.max() - dis_array.min()) / 2)
        dis.clear()
```

We can also read min and max in the scan, as follow:

```
# range_min and range_max
scan = rospy.wait_for_message('/scan', LaserScan)
rospy.loginfo("range min: %f m, max: %f m", scan.range_min, scan.range_max)
```

Light source

When the true distance is 0.464m.

The result is:

range minimum: 0.120000m, range maximum: 3.500000m

accuracy: 0.002667m, precision: 0.0005m



| LASER safety             | IEC60825-1 Class 1                                                 |
|--------------------------|--------------------------------------------------------------------|
| Current consumption      | 400mA or less (Rush current 1A)                                    |
| Detection distance       | 120mm ~ 3,500mm                                                    |
| Interface                | 3.3V USART (230,400 bps) 42bytes per 6 degrees, Full Duplex option |
| Ambient Light Resistance | 10,000 lux or less                                                 |
| Sampling Rate            | 1.8kHz                                                             |
| Dimensions               | 69.5(W) X 95.5(D) X 39.5(H)mm                                      |
| Mass                     | Under 125g                                                         |

Semiconductor Laser Diode(λ=785nm)

| asurement Performance Specifications |                |  |
|--------------------------------------|----------------|--|
| Items                                | Specifications |  |
| Distance Range                       | 120 ~ 3,500mm  |  |
| Distance Accuracy (120mm ~ 499mm)    | ±15mm          |  |
| Distance Accuracy(500mm ~ 3,500mm)   | ±5.0%          |  |
| Distance Precision(120mm ~ 499mm)    | ±10mm          |  |
| Distance Precision(500mm ~ 3,500mm)  | ±3.5%          |  |
| Scan Rate                            | 300±10 rpm     |  |
| Angular Range                        | 360°           |  |
| (b)                                  | Manual         |  |

Fig. 5: The information in scan

Our experimental results are in accordance with the instructions.

The range is the same as the manual, 120mm-3500mm, and the tolerances are within the limits specified in the manual(120mm-499mm,  $\pm 15$ mm).

#### 5 Conclusion

We successfully demonstrated that the HLS-LFCD2 LiDAR sensor operates effectively for distance measurement in a mobile robot navigation context. The findings are consistent with the manual specifications, confirming the sensor's suitability for navigation tasks.