

UNINTENDED TOXIC COMMENT CLASSIFICATION

PARTH PATEL

Who might care?

Government

Social Media Company

Prediction Problem

Comment	Prediction
Nonsense? Kiss off, geek. What I said is true. I'll have your account terminated.	Toxic
Ban one side of an argument by a bullshit	Toxic
Nazi admin and you get no discussion	Toxic
You are acting like a gay	Toxic
Why can you put English for example on some players but other people don't like it – why?	Non-Toxic
I am gay Women	Toxic

Data Overview

- Data set obtained from Kaggle
- Number of rows ~2M
- Column Description
 - Comments
 - 5 toxicity Type
 - 24 Attribute describing ethnicity and religion, Gender, Sexual Orientation and Disability

	id	target	comment_text	severe_toxicity	obscene	identity_attack	insult	threat	asian	atheist
0	59848	0.000000	This is so cool. It's like, 'would you want yo	0.000000	0.0	0.000000	0.00000	0.0	NaN	NaN
1	59849	0.000000	Thank you!! This would make my life a lot less	0.000000	0.0	0.000000	0.00000	0.0	NaN	NaN
2	59852	0.000000	This is such an urgent design problem; kudos t	0.000000	0.0	0.000000	0.00000	0.0	NaN	NaN
3	59855	0.000000	Is this something I'll be able to install on m	0.000000	0.0	0.000000	0.00000	0.0	NaN	NaN

Exploratory Data Analysis

Toxicity Feature Distribution

- Type of comment(Toxicity feature) does not have any direct relation with toxicity
- All types do have toxic as well as non-toxic comments
- More insulting comments compared to other toxicity type

Distribution Plot based on and Ethnicity and Gender

- Comments with other races or ethnicity category were nontoxic
- Comments with White and black race had many toxic comments compared to non- toxic
- comments mentioning female have more probability being toxic compared to non-toxic

Distribution of gender features values in the train set

Distribution Plot based on Sexual Orientation and Religion

- Comments towards
 Homosexual people were mostly toxic
- Comments on Christian and Muslim has more probability being toxic
- Comments towards Hindus and Buddhist or Other religion are usually non-toxic

Distribution Plot based on Disability and other general observation

- Comments towards Mentally disabled people were mostly toxic
- Overall we did have some significant patterns which can be used as feature but number of observations with those features were so insignificant that we had to drop the idea of using them as features

Distribution of disability features values in the train set

Distribution Plot of New Feature

- Comments with question marks are toxics
- No of Unique Words
 Almost equal to number of Words

Co Relation between new variable and Target variable

- none of new feature have high co-relation with target
- number of words and number of unique words are very highly corelated
- we do have positive correlation with number of punctuation and number of words

Word Cloud [Toxic-NonToxic]

```
Course bunch things ridiculous
Thank Commenting
              things 📙
```

```
GIVES Crapeasy flag
                                           Thousands
 Sour homeless crybabi object guide Grapes like Fuck casually non Wilkens pile tripehead wr I
Holy left
Grapes
s bitch fans acts word
```


Modeling

Modeling Overview

- Type: Supervised Learning
- Pipeline consists of
 - Encoder
 - Classification Model

Raw	Lowercased
Canada CanadA CANADA	canada

	original_word	lemmatized_word
0	trouble	trouble
1	troubling	trouble
2	troubled	trouble
3	troubles	trouble

	original_word	lemmatized_word
0	goose	goose
1	geese	goose

Sample text with Stop
Words

GeeksforGeeks – A Computer
Science Portal for Geeks
Can listening be exhausting?
I like reading, so I read

Without Stop Words
GeeksforGeeks , Computer Science,
Portal ,Geeks
Listening, Exhausting
Like, Reading, read

Lower casing

Lemmatization

Stop words removal

Text Preprocessing

comma semicolon colon full stop exclamation question mark

colon full stop exclamation question mark

guestion mark

double quotes hyphen dash

troke or stash parentheses or (round) brackets square brackets ellipsis asterisk

def keep_alpha(sentence):
 alpha_sentence = re.sub('[^a-z A-Z]+', ' ', sentence)
 return alpha_sentence

Remove Contraction

Remove Punctuations

Keep only alphabetic strings

Text Preprocessing

Text Encoding Techniques

- Bag of Word
- TF IDF

Word	TF		IDF	TF*IDF	
VVOIG	Α	В	וטו	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	$\log(2/2) = 0$	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0

Text Encoding Techniques

- GloVe
- Fast Text

Count Vectorizer	Ngram = (1, 2)	min_df =0.01	analyzer="word"
Logistic Regression	C=1.4	max_iter= 10	

Countvectorizer	Ngram = (1, 2)	min_df =0.01	analyzer="word"
Random Forest	max_depth=3	min_samples_split =10	min_samples_leaf=7

Count Vectorizer	Ngram = (1, 2)	min_df =0.01	analyzer="word"
Dummy Classifier	strategy="most_frequent"		

TFIDF	Ngram = (1, 1)	min_df =1	analyzer="word"
SVM Classifier	max_iter': 100	kernel': 'rbf'	C= 1.1

Count Vectorizer	Ngram = (1, 2)	min_df =0.01	analyzer="word"
Bernoulli Naive Bayes	alpha=100		

TF IDFVectorizer	Ngram = (1, 1)
Bernoulli Naive Bayes	alpha= 0.03

Scikit Learn Model Design

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 150, 100)	9000000
flatten_1 (Flatten)	(None, 15000)	0
dense_1 (Dense)	(None, 32)	480032
dense_2 (Dense)	(None, 1)	33

GloVe Model Design

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 150, 300)	27000300
flatten_1 (Flatten)	(None, 45000)	0
dense_1 (Dense)	(None, 32)	1440032
dense_2 (Dense)	(None, 1)	33

Fast Text Model Design

Model Summary

- Neural network does perform much better than count or TF-IDF vectors
- TF-IDF vectors are better than Count word vectors
- Most algorithm using count vector try to predict same result as nontoxic comment
- Glove Word and Fast Text has much better prediction accuracy with F1score indicating most toxic comments are identified correctly also keeping non-toxic separate

- We had very imbalance dataset gathering more toxic comments would help improve our model.
- Due to limiting processing power we had removed certain nontoxic comments
- TF-IDF vectors were very large in dimension by performing dimensionality reduction on those vectors will improve our execution process and time of execution.
- Current model with word embedding are built using simple one hidden layer of neural network, this can
 definitely be improved by adding more layers like Convolutional and pooling which can help to extract more
 feature
- Web app can be created where users can enter text comments and predicted toxicity can be displayed
- API can be created for user so that toxic comment can be classified and flagged as soon as they are entered which can help websites or application block or restrict unwanted content.

Limitations and Ideas

Thank you