

Chapter 7: Wireless Networks

Mountains & Minds

Radio spectrum

Mountains & Minds

342

Operational spaces

342

Mountains & Minds

343

WiFi Networks

Infrastructure Mode

Much like a traditional Ethernet network (but with mobile nodes)

Mountains & Minds

Mesh (Ad Hoc) Mode

Nodes themselves must provide services such as DNS and DHCP

344

344

Mobile Networks (not cellular)

Mobile Ad Hoc Nets (MANETs)

No central administration

Vehicular Ad Hoc Nets (VANET)

On-board unit (OBU)

Mountains & Minds 345

Properties of wireless networks

- Path loss
 - Signal disperses with distance
 - Signal absorbed (60GHz absorbed by moisture)
 - Lower signal strength
- Interference
 - Other sources of radiation
 - Other transmissions, microwaves in 2.4GHz
 - Received signal strength and interference (RSSI)
- Multipath propagation
 - Reflected signals obscure direct transmission at receiver
- Lower signal to noise ratio (SNR) leads to higher bit error rate (BER)

Why not just increase transmission signal strength?

346

Mountains & Minds

346

IEEE 802.11 - WiFi

- Basic service set (BSS)
 - Access point (AP)
 - Authenticated clients
 - Or clients in ad-hoc mode
 - Identified by Service Set Identifier (SSID)

Mountains & Minds

Establishing connectivity

Passive Scanning

- 1. Beacon frames sent from APs
- Association Request frame sent: H1 to selected AP 2
- Association Response frame sent: 3. Selected AP 2 to H1

Mountains & Minds

348

Active Scanning

- 1. Probe Request frame broadcast from H1
- Probes Response frame sent from APs 2.
- 3. Association Request frame sent: H1 to selected AP 2
- Association Response frame sent: Selected AP 2 to H1 4.

Useful for hiding APs – need to know SSID to beacon

348

WiFi channels

Mountains & Minds 349

WiFi MAC - CSMA/CA

MONTANA STATE UNIVERSITY

- Carrier sensing multiple access with collision avoidance
 - Based on Ethernet
 - In turn based on Aloha
- Properties
 - Random access
 - Plus: link layer ACKs, because high wireless BER

Distributed Inter Frame Spacing (DIFS) is longer then Short Inter Frame Spacing (SIFS). Why?

Mountains & Minds

350

WiFi MAC - CSMA/CA

- Carrier sensing multiple access with collision avoidance
 - Based on Ethernet
 - In turn based on Aloha
- Properties
 - Random access
 - Plus: link layer ACKs, because high wireless BER

Others wait until:

- 1. Channel free
- 2. DIFS elapses
- 3. Randomly chosen exponential backoff elapses

Should the access point also have to contend for transmission opportunity?

Point coordination function (PCF)

- PIFS (PCF inter frame spacing) < DIFS
- Allows the AP to take over the channel for contention free traffic

351

Mountains & Minds

CSMA/CA and hidden terminals

CSMA/CA and exposed terminals

A is an exposed terminal for C В

Nodes A and B could transmit simultaneously, but B detects A's transmission and defers.

Mountains & Minds 353

353

352

Dealing with hidden terminals

- Idea: allow sender to "reserve" channel rather than random access of data frames
- Sender first transmits small request-to-send (RTS) packets to AP using CSMA

RTSs may still collide with each other. Why no big deal?

- AP broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

Mountains & Minds

354

What happens when MAC gets it wrong?

- Excessive fading
- Interference
- Collisions

- Solutions
 - More control overhead to coordinate transmissions
 - More error correction, i.e. larger symbols
 - Rate adaptation

Mountains & Minds

802.11 family

- .11a and .11b introduced at the same time
- Both use CSMA/CA
- 802.11a
 - Faster
 - More expensive to manufacture
 - Operated in 5Ghz band
 - Mainly used in industrial settings
- 802.11b
 - Slower
 - Cheaper to manufacture
 - Operated in 2.4Ghz band
 - Mainly used in residential settings

- .11e
 - Multiple classes of service though shorter inter-frame spacing
 - Adopted/transformed into DSRC
- .11g
 - Operates on 2.4Ghz band
 - Provides up 54Mbit/s bandwidth
 - Uses OFDM for modulation
 - Adopted quickly after release for cheap and high bandwidth

Mountains & Minds

356

Newer standards

- 802.11n 600Mbit/s
 - Introduces MIMO
 - Multiple-Input Multiple-Output
 - Needs spatial diversity
 - Frame aggregation
 - Aggregate multiple frames destined for a specific AP and send them together to reduce overhead
- 802.11ac up to 1300 Mbit/s
 - Channel bonding 80 or 160 MHz versus
 - Higher-order modulation up to 256-QAM
- 802.11ad
 - 60 GHz spectrum
- 802.11ag
 - White spectrum (TV)
- 802.11ax planned 4x throughput of .11ac
 - 1 and 6 GHz when available for 802.11 use
 - Higher throughput, but much lower latency

Mountains & Minds

Constructive interference improves signal strength at the receiver

MIMO allows for simultaneous transmission of multiple signals

357

Problems with multi-hop networks

