## GL Applied Data Science Program

Network Analysis

August 25, 2021

#### Overview

#### Overview of this week / module:

- Data collection and visualization for exploratory data analysis
- Network analysis
- Unsupervised learning clustering

#### Overview of this lecture:

- Examples of networks and representing networks
- Summary statistics of a network
- Centrality measures finding important nodes in a network

Caroline Uhler (MIT) Network Analysis August 25, 2021 2/31

A **network** (or **graph**) G is a collection of **nodes** (or **vertices**) V connected by **links** (or **edges**) E. The network is denoted by G = (V, E).



A **network** (or **graph**) G is a collection of **nodes** (or **vertices**) V connected by **links** (or **edges**) E. The network is denoted by G = (V, E).

#### Network research:

- Grew out of graph theory
  - e.g. Euler's celebrated 1735 solution of the Königsberg bridge problem



Caroline Uhler (MIT) Network Analysis August 25, 2021 3 / 31

A **network** (or **graph**) G is a collection of **nodes** (or **vertices**) V connected by **links** (or **edges**) E. The network is denoted by G = (V, E).

#### Network research:

- Grew out of graph theory
  - e.g. Euler's celebrated 1735 solution of the Königsberg bridge problem
- In recent years network research witnessed a big change:
  - From study of a single graph on 10-100 nodes to the statistical properties of large networks on millions of nodes
  - Characterize the structure of networks
  - Identify important nodes / edges in a network
  - Identify missing links in a network

Caroline Uhler (MIT) Network Analysis August 25, 2021 3 / 31

# Examples of networks

| Network                 | Vertex                          | Edge                         |  |  |  |
|-------------------------|---------------------------------|------------------------------|--|--|--|
| World Wide Web          | web page                        | hyperlink                    |  |  |  |
| Internet                | computer                        | network protocol interaction |  |  |  |
| power grid              | generating station / substation | transmission line            |  |  |  |
| friendship network      | person                          | friendship                   |  |  |  |
| gene regulatory network | gene                            | regulatory effect            |  |  |  |
| neural network          | neuron                          | synapse                      |  |  |  |
| food web                | species                         | who-eats-who                 |  |  |  |
| phylogenetic tree       | species                         | evolution                    |  |  |  |
| Netflix                 | person / movie                  | rating                       |  |  |  |

#### Different kinds of networks

- simple network: undirected network with at most one edge between any pair of vertices and no self-loops
  - e.g. Internet, power grid, telephone network
- multigraph: self-loops and multiple links between vertices possible
  - e.g. neural network, road network
- directed network:  $(i,j) \in E$  does not imply  $(j,i) \in E$ 
  - e.g. World Wide Web, food web, citation network
- weighted network: with edge weights or vertex attributes
- tree: graph with no cycles
  - e.g. phylogenetic tree
- acyclic network: graph with no directed cycles
  - e.g. food web, citation network
- bipartite network: edges between but not within classes
  - e.g. recommender systems, Netflix
- hypergraph: generalized 'edges' for interaction between > 2 nodes
  - e.g. protein-protein interaction network



# Large networks look like hairballs



# Representation of a network

Two common representations of a network G = (V, E):

- adjacency list
  - undirected graph 1-2-3:  $E = \{\{1,2\},\{2,3\}\}$
  - directed graph  $1 \rightarrow 2 \leftarrow 3$ :  $E = \{(1,2),(3,2)\}$

7/31

• adjacency matrix of size 
$$n \times n$$
 (where  $n = |V|$ ) with  $1 \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

ullet For weighted graph,  $A_{ij}$  can be non-binary

How does the adjacency matrix of an undirected graph look like? How to count the number of friends or suggest new friends in a social network?

# Representation of a network



#### Quantitative measures of networks

Some quantitative measures of networks to describe structural patterns of a network and to compare networks:

- connected components
- degree distribution
- diameter and average path length
- homophily or assortative mixing

#### **Connected Components**

Connected component: set of nodes that are reachable from one another

Many networks consist of one large component and many small ones



Component size distribution in the 2011 Facebook network on a log-log scale. Most vertices (99.91%) are in the largest component.

## Degree distribution

- Degree of node i: ki
- Average degree:  $\frac{1}{n}\sum_i k_i = \frac{\sum_{i,j} A_{ij}}{n} = \frac{2m}{n}$ , where |V| = n, |E| = m
- More information captured by degree distribution
  - histogram of fraction of nodes with degree k.

# Degree distribution

- Degree of node i: ki
- Average degree:  $\frac{1}{n}\sum_i k_i = \frac{\sum_{i,j} A_{ij}}{n} = \frac{2m}{n}$ , where |V| = n, |E| = m
- More information captured by degree distribution
  - histogram of fraction of nodes with degree k.
- Special type of degree distribution: power-law distribution:

$$\log p_k = -\alpha \log k + c \quad \text{for some } \alpha, c > 0$$

- tail of distribution is fat, i.e., there are many nodes with high degrees
- appears linear on a log-log plot
- appear in wide variety of settings including WWW, Internet

Caroline Uhler (MIT) Network Analysis August 25, 2021

## Degree distribution of the Internet



Figures from Chapter 8 in "Networks: An Introduction" by M.E.J. Newman (2010)

#### Degree distribution of Facebook network



From "The Anatomy of the Facebook Social Graph" by Ugander et al. (2011)

Caroline Uhler (MIT) Network Analysis August 25, 2021 13 / 31

#### Diameter and average distance

- Let  $d_{ij}$  denote the length of the geodesic path (or shortest path) between node i and j
- The <u>diameter</u> of a network is the <u>largest distance</u> between any two nodes in the network:

$$\operatorname{diameter} = \max_{i,j \in V} d_{ij}$$

 The average path length is the average distance between any two nodes in the network:



average path length = 
$$\frac{1}{\binom{n}{2}} \sum_{i < i} d_{ij}$$

#### Diameter and average distance

- Let  $d_{ij}$  denote the length of the geodesic path (or shortest path) between node i and j
- The diameter of a network is the largest distance between any two nodes in the network:

$$\operatorname{diameter} = \max_{i,j \in V} d_{ij}$$

 The average path length is the average distance between any two nodes in the network:

average path length = 
$$\frac{1}{\binom{n}{2}} \sum_{i < j} d_{ij}$$

- If network is not connected, one often computes the diameter and the average path length in the largest component.
- Algorithms for finding shortest paths: breadth-first search for unweighted graph, Dijkstra's algorithm for weighted graphs

## Small-world and 6 degrees of separation

- Concept of 6 degrees of separation was made famous by sociologist Stanley Milgram and his study "The Small World Problem" (1967)
- In his experiment participants from a particular town were asked to get a letter to a particular person in a different town by passing it from acquaintance to acquaintance.
- 18 out of 96 letters made it in an average of 5.9 steps
- Any reasons why we should take the conclusion of 6 degrees of separation with a grain of salt?

## Diameter of Facebook (2011)



From "The Anatomy of the Facebook Social Graph" by Ugander et al. (2011)

Caroline Uhler (MIT) Network Analysis August 25, 2021 16 / 31

#### Homophily

Homophily (or assortative mixing): tendency of people to associate with others that are similar



Caroline Uhler (MIT) Network Analysis August 25, 2021 17/31

#### Characteristics of different networks

|               |                      |            |             |               |        |       | /      | _             |       |                                         |
|---------------|----------------------|------------|-------------|---------------|--------|-------|--------|---------------|-------|-----------------------------------------|
|               |                      |            |             |               |        |       | ا کا ، |               | Y K   |                                         |
|               | Network              | Type       | n           | m             | С      | S     | l      | α             |       |                                         |
|               | Film actors          | Undirected | 449 913     | 25 516 482    | 113.43 | 0.980 | 3.48   | 2.3           | 0.20  |                                         |
|               | Company directors    | Undirected | 7 673       | 55 392        | 14.44  | 0.876 | 4.60   | / -           | 0.59  |                                         |
|               | Math coauthorship    | Undirected | 253 339     | 496 489       | 3.92   | 0.822 | 7.57   | -             | 0.15  | / \                                     |
|               | Physics coauthorship | Undirected | 52 909      | 245 300       | 9.27   | 0.838 | 6.19   | -             | 0.45  | / \                                     |
| a             | Biology coauthorship | Undirected | 1 520 251   | 11 803 064    | 15.53  | 0.918 | 4.92   | _             | 0.088 | d 0                                     |
| Social        | Telephone call graph | Undirected | 47 000 000  | 80 000 000    | 3.16   |       | 1      | 2.1           | 1     | • • • • • • • • • • • • • • • • • • • • |
|               | Email messages       | Directed   | 59812       | 86 300        | 1.44   | 0.952 | 4.95   | 1.5/2.0       | 1     |                                         |
|               | Email address books  | Directed   | 16881       | 57 029        | 3.38   | 0.590 | 5.22   |               | 0.17  | _                                       |
|               | Student dating       | Undirected | 573         | 477           | 1.66   | 0.503 | 16.01  | _             | 0.005 | )                                       |
|               | Sexual contacts      | Undirected | 2810        |               |        | - 1   |        | 3.2           |       | ' / \                                   |
| Information   | WWW nd.edu           | Directed   | 269 504     | 1 497 135     | 5.55   | 1.000 | 11.27  | 2.1/2.4       | 0.11  |                                         |
|               | WWW AltaVista        | Directed   | 203 549 046 | 1 466 000 000 | 7.20   | 0.914 | 16.18  | 2.1/2.7       | 1     |                                         |
|               | Citation network     | Directed   | 783 339     | 6716198       | 8.57   |       |        | 3.0/-         |       |                                         |
| for           | Roget's Thesaurus    | Directed   | 1 022       | 5 103         | 4.99   | 0.977 | 4.87   | <b>  -</b> -  | 0.13  | - A                                     |
| 면             | Word co-occurrence   | Undirected | 460 902     | 16 100 000    | 66.96  | 1.000 |        | 2.7           |       |                                         |
| - la          | Internet             | Undirected | 10 697      | 31 992        | 5.98   | 1.000 | 3.31   | 2,5           | 0.035 | / \                                     |
|               | Power grid           | Undirected | 4941        | 6 594         | 2.67   | 1.000 | 18.99  | _             | 0.10  | / \                                     |
| ği            | Train routes         | Undirected | 587         | 19 603        | 66.79  | 1.000 | 2.16   | _             |       | -                                       |
| olo           | Software packages    | Directed   | 1 439       | 1723          | 1.20   | 0.998 | 2.42   | 1.6/1.4       | 0.070 |                                         |
| Technological | Software classes     | Directed   | 1 376       | 2213          | 1.61   | 1.000 | 5.40   | -             | 0.033 |                                         |
|               | Electronic circuits  | Undirected | 24 097      | 53 248        | 4.34   | 1.000 | 11.05  | 3.0           | 0.010 |                                         |
|               | Peer-to-peer network | Undirected | 880         | 1 296         | 1.47   | 0.805 | 4.28   | 2.1           | 0.012 |                                         |
| Biological    | Metabolic network    | Undirected | 765         | 3 686         | 9.64   | 0.996 | 2.56   | 2.2           | 0.090 |                                         |
|               | Protein interactions | Undirected | 2 1 1 5     | 2 2 4 0       | 2.12   | 0.689 | 6.80   | 2.4           | 0.072 |                                         |
|               | Marine food web      | Directed   | 134         | 598           | 4.46   | 1.000 | 2.05   | \ -           | 0.16  |                                         |
|               | Freshwater food web  | Directed   | 92          | 997           | 10.84  | 1.000 | 1.90   | 1 -           | 0.20  |                                         |
|               | Neural network       | Directed   | 307         | 2 3 5 9       | 7.68   | 0.967 | 3.97   | \ -           | 0.18  |                                         |
|               |                      |            |             |               |        | \ /   |        | $\overline{}$ |       |                                         |
|               |                      |            |             |               |        |       |        |               | 1     |                                         |

n = |nodes|, m = |edges|, c: mean degree, S: prop. largest component,  $\ell$ : mean geodesic,  $\alpha$ : exp. power-law degree distribution, C: clustering coeff.

## Find important nodes in a network

- Centrality measure: A measure that captures importance of a node's position in the network
- There are many different centrality measures



## Find important nodes in a network

- Centrality measure: A measure that captures importance of a node's position in the network
- There are many different centrality measures
  - degree centrality (indegree / outdegree)
  - "propagated" degree centrality (score that is proportional to the sum of the score of all neighbors)
    - closeness centrality
    - betweenness centrality

Caroline Uhler (MIT) Network Analysis August 25, 2021 19 / 31

## Degree centrality

- For undirected graphs the degree  $k_i$  of node i is the number of edges connected to i, i.e.  $k_i = \sum_i A_{ij}$
- For directed graphs the indegree of node i is  $k_i^{\text{in}} = \sum_j A_{ji}$  and the outdegree is  $k_i^{\text{out}} = \sum_j A_{ij}$

Caroline Uhler (MIT) Network Analysis August 25, 2021 20 / 31

## Degree centrality

- For undirected graphs the degree  $k_i$  of node i is the number of edges connected to i, i.e.  $k_i = \sum_i A_{ij}$
- For directed graphs the indegree of node i is  $k_i^{\text{in}} = \sum_j A_{ji}$  and the outdegree is  $k_i^{\text{out}} = \sum_j A_{ij}$
- Simple, but intuitive: individuals with more connections have more influence and more access to information.
- Does not capture "cascade of effects": importance better captured by having connections to important nodes

• gives each node a score that is proportional to the sum of the scores of all its neighbors





- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know
- start with equal centrality:  $x_i^{(0)} = 1$  for all nodes i = 1, ..., n
- update each centrality by the centrality of the neighbors:

$$x_i^{(1)} = \sum_{j=1}^n A_{ij} x_j^{(0)}$$

- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know
- start with equal centrality:  $x_i^{(0)} = 1$  for all nodes i = 1, ..., n
- update each centrality by the centrality of the neighbors:

$$x_i^{(1)} = \sum_{j=1}^n A_{ij} x_j^{(0)}$$

• iterate this process:  $x^{(k)} = A^k x^{(0)}$ 

- gives each node a score that is proportional to the sum of the scores of all its neighbors
- need to know scores of all neighbors, which we don't know
- start with equal centrality:  $x_i^{(0)} = 1$  for all nodes i = 1, ..., n
- update each centrality by the centrality of the neighbors:

$$x_i^{(1)} = \sum_{j=1}^n A_{ij} x_j^{(0)}$$

- iterate this process:  $x^{(k)} = A^k x^{(0)}$
- if there exists m > 0 such that  $A^m > 0$ , then one can show that

$$x^{(k)} \stackrel{k \to \infty}{\longrightarrow} \alpha \lambda_{\mathsf{ma}}^k v,$$

where  $\lambda_{\text{max}}$  is the largest eigenvalue and  $v \ge 0$  the corresponding eigenvector;  $\alpha$  depends on choice of  $x^{(0)}$  (Perron-Frobenius theorem)

Interpretation: 
$$v_i = \frac{1}{\lambda_{\max}} \sum_{j=1}^n A_{ij} v_j$$

- node is important if it has important neighbors
- node is important if it has many neighbors
- eigenvector corresponding to largest eigenvalue of A provides a ranking of all nodes

Caroline Uhler (MIT) Network Analysis August 25, 2021 22 / 31

**Interpretation:** 
$$v_i = \frac{1}{\lambda_{\text{max}}} \sum_{j=1}^n A_{ij} v_j$$

- node is important if it has important neighbors
- node is important if it has many neighbors
- eigenvector corresponding to largest eigenvalue of A provides a ranking of all nodes

#### What happens when G is directed?

- ullet right eigenvector:  $v_i = rac{1}{\lambda_{\max}} \sum_{j=1}^n A_{ij} v_j$ 
  - importance comes from nodes *i* points to
  - Example: determining malfunctioning genes
- left eigenvector:  $w_i = \frac{1}{\lambda_{\text{max}}} \sum_{j=1}^n w_j A_{ji}$ 
  - $\bullet$  importance comes from nodes pointing to i
  - Example: ranking websites
  - Is the foundation for Google's PageRank algorithm

## Other centrality measures

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where  $d_{ij}$  is the distance between nodes i and j

# Other centrality measures

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where  $d_{ij}$  is the distance between nodes i and j

• In disconnected networks: average over nodes in same component as i or use harmonic centrality:  $H_i = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ii}}$ 

Caroline Uhler (MIT) Network Analysis August 25, 2021 23 / 31

## Other centrality measures

• Closeness centrality: Tracks how close a node is to any other node:

$$C_i = \left(\frac{1}{n-1}\sum_{j\neq i}d_{ij}\right)^{-1},\,$$

where  $d_{ij}$  is the distance between nodes i and j

- In disconnected networks: average over nodes in same component as i or use harmonic centrality:  $H_i = \frac{1}{n-1} \sum_{j \neq i} \frac{1}{d_{ii}}$
- Betweenness centrality: Measures the extent to which a node lies on paths between other nodes:

$$B_i = \frac{1}{n^2} \sum_{s,t} \frac{n_{st}^i}{g_{st}},$$

where  $n_{st}^{i}$  is number of shortest paths between s and t that pass through i and  $g_{st}$  is total number of shortest paths between s and t

#### Which centrality measure to use

Choice of centrality measure depends on application!

## Which centrality measure to use

#### Choice of centrality measure depends on application!

In a friendship network:

- high degree centrality: most popular person
- high eigenvector centrality: most popular person that is friends with popular people
- high closeness centrality: person that could best inform the group
- high betweenness centrality: person whose removal could best break the network apart

- ullet Data based on 11 wiretap warrants from 1994-1996 ightarrow 11 periods
- Mandate of CAVIAR project: Seize drugs, arrests only in period 11
- 11 seizures total with monetary losses for traffickers of \$32 mio
  - phase 4: 1 seizure \$ 2.5mio, 300kg of marijuana
  - phase 6: 3 seizures \$ 1.3mio, 2 x 15kg of marijuana, 1 x 2 kg of cocaine
  - phase 7: 1 seizure \$ 3.5mio, 401kg of marijuana
  - phase 8: 1 seizure \$ 0.4mio, 9kg of cocaine
  - ullet phase 9: 2 seizures \$ 4.3mio, 2kg of cocaine + 1 x 500kg marijuana
  - phase 10: 1 seizure \$ 18.7mio, 2200kg of marijuana
  - phase 11: 2 seizures \$ 1.3mio, 12kg of cocaine + 11kg of cocaine

Unique opportunity to study changes in the structure of a criminal network in upheaval by police forces

- network consists of 110 (numbered) players: 1-82 are traffickers, 83-110 are non-traffickers (financial investors, accountants, owners of various importation businesses, etc.)
- initially, investigation targeted Daniel Serero alleged mastermind of drug network in downtown Montreal
- initially marijuana was imported to Canada from Morocco
- after first seizure in phase 4, traffickers reoriented to cocaine import from Colombia, transiting through the United States





#### Role of the different actors:

- Daniel Serero (node 1): mastermind of the network
- Pierre Perlini (node 3): principal lieutenant of Serero (executes his instructions)
- Ernesto Morales (node 12): principal organizer of the cocaine import, intermediary between the Colombians and the Serero organization



## Additional thoughts: Criminal networks

- Given a social network and *k* criminal suspects, how to determine other suspects?
- Same question is extremely important in biology: given certain genes that are known to cause a certain disease, determine other candidate genes (e.g. based on protein-protein interaction network for determining autism genes: http://dx.doi.org/10.1101/057828)
- How do we identify nodes that are "between" a given set of seed nodes?

#### Steiner trees

Determine a small subnetwork that contains the given suspects / genes and connects these nodes

#### Steiner trees

Determine a small subnetwork that contains the given suspects / genes and connects these nodes

#### Steiner tree:

- shortest subnetwork that contains a given set of nodes
- NP-complete problem
- there exist polynomial time approximations

#### Steiner trees

Determine a small subnetwork that contains the given suspects / genes and connects these nodes

#### Steiner tree:

- shortest subnetwork that contains a given set of nodes
- NP-complete problem
- there exist polynomial time approximations
- ⇒ use collection of approximate Steiner trees for further analysis: autism interactome / criminal interactome

For genomics applications, see:

http://fraenkel-nsf.csbi.mit.edu/steinernet/tutorial.html

⇒ compute nodes with high betweenness centrality in interactome to obtain candidate genes / suspects

#### References

Chapters 1 - 10 (but mostly chapters 6 - 8) in
 M. E. J. Newman. Networks: An Introduction. 2010.

- For an analysis of the Facebook network:

  TO THE RESERVE OF THE PROPERTY OF THE PROPERTY
  - J. Ugander, B. Karrer, L. Backstrom and C. Marlow. *The Anatomy of the Facebook Social Graph.* 2011.
- For more information on the CAVIAR network:
  - C. Morselli. Inside Criminal Networks (Springer, New York). Chapter 6: Law-enforcement disruption of a drug-importation network. 2009.

Caroline Uhler (MIT) Network Analysis August 25, 2021