Exercise Sheet 4

MAGIC009 - Category Theory

November 1st, 2024

- 1. Consider the forgetful functor $U \colon \mathbf{Mon} \to \mathbf{Set}$ and its left adjoint $F \colon \mathbf{Set} \to \mathbf{Mon}$ given by the functor mapping a set X to the free monoid on X.
 - (i) Show that F is indeed a functor.
 - (ii) Find the counit $\varepsilon \colon \textit{FG} \to 1_{\textbf{Mon}}$ of the adjunction.
 - (iii) Define a family of bijections

$$\mathbf{Set}(X, UA) \cong \mathbf{Mon}(FX, A)$$

where $X \in \mathbf{Set}$ and $A \in \mathbf{Mon}$, as in item (ii) of the characterisation theorem for adjunctions, and explain explicitly what the naturality of this family means.

- 2. Let (P, \leq) and (Q, \leq) be partially ordered sets and consider the associated categories \underline{P} and \underline{Q} . Describe explictly what is an adjunction between \underline{P} and \underline{Q} . Hint: Write f and g for the left and right adjoint, respectively, and use the characterisation of adjoints in item (ii) of the characterisation theorem for adjunctions.
- 3. Let $f: X \to Y$ be a function between sets and let $f^*: \mathcal{P}(Y) \to \mathcal{P}(X)$ be the inverse image function, defined by

$$f^*(V) = \{x \in X \mid f(x) \in V\}.$$

- (i) Check that f^* is order-preserving and hence can be regarded as a functor.
- (ii) Show that the function $\exists_f \colon \mathcal{P}(X) \to \mathcal{P}(Y)$ defined by

$$\exists_f(U) = \{ y \in Y \mid (\exists x \in U) f(x) = y \}$$

is a left adjoint to f^* . Hint: Use the solution to Exercise 1.

(iii) Show that the function $\forall_f \colon \mathcal{P}(X) \to \mathcal{P}(Y)$ defined by

$$\forall_f(U) = \{ y \in Y \mid (\forall x \in U) f(x) = y \}$$

is a right adjoint to f^* . Hint: Use the solution to Exercise 1.

- 4. Let $F \colon \mathbb{D} \to \mathbb{C}$ be a functor, $A \in \mathbb{D}$. We define the **comma category** $F \downarrow A$ as the category with
 - objects: pairs (X, f), where $X \in \mathbb{C}$ and $f : FX \to A$ in \mathbb{D} .
 - maps $u: (X, f) \to (Y, g)$ are maps $u: X \to Y$ in \mathbb{C} such that $F(u) \circ g = f$.
 - (i) Prove in detail that $F \downarrow A$ is indeed a category.
 - (ii) Describe what is a terminal object in $F \downarrow A$.
 - (iii) Observe the connection between solution to part (ii) and the characterisation of right adjoint to F in the Remark on page 6 of the slides for Lecture 4.
- 5. Let F and G be functors with common codomain.

$$\mathbb{B} \xrightarrow{F} \mathbb{C} \xleftarrow{G} \mathbb{D} .$$

- (i) Define the comma category $F \downarrow G$ by filling the dots below:
 - The objects are triples (B, D, ...) where $B \in \mathbb{B}$, $D \in \mathbb{D}$ and

- The maps are pairs ...
- (ii) Define 'projection' functors $P \colon F \downarrow G \to \mathbb{B}$ and $Q \colon F \downarrow G \to \mathbb{D}$.
- (iii) Consider the special case where $\mathbb{D}=\mathbb{B},$ so that we have

$$\mathbb{B} \xrightarrow{F} \mathbb{C} \xleftarrow{G} \mathbb{B}$$

i.e. two functors with common domain and codomain. Unfold explicitly what is a functor $\alpha\colon \mathbb{B}\to F\downarrow G$ such that $P\circ \alpha=Q\circ \alpha=1_\mathbb{B}$.