Distribution-free modelling: Quantile GAMs

Matteo Fasiolo (University of Bristol, UK)

matteo.fasiolo@bristol.ac.uk

June 27, 2018

Intro to Generalized Additive Models (GAMs)

Structure:

- What is quantile regression
- When is it useful
- Quantile regression using qgam

Structure of the talk

Structure:

- What is quantile regression?
- 2 When is it useful
- 3 Quantile regression using qgam

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for $p(y|\mathbf{x})$.

Model is $p_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are parameters.

In a Gaussian model, the mean and/or variance depend on the covariates

$$y|\mathbf{x} \sim N\{y|\mu = \theta_1(\mathbf{x}), \sigma^2 = \theta_2(\mathbf{x})\},$$

where $\mu = \mathbb{E}(y|\mathbf{x})$ and $\sigma^2 = \text{Var}(y|\mathbf{x})$.

Figure: Gaussian model with variable mean and variance. In mgcv: gam(list(y~s(x), ~s(x)), family=gaulss).

Lots of options for $p_m(y|\mathbf{x})$: binomial, gamma, Poisson, Tweedie...

We consider continuous (not discrete) y.

Let $F(y|\mathbf{x})$ be $Prob(Y \leq y|\mathbf{x})$.

The τ -th $(\tau \in (0,1))$ quantile is $\mu_{\tau}(\mathbf{x}) = F^{-1}(\tau|\mathbf{x})$.

Given $p_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for $p(y|\mathbf{x})$.

The au-th quantile is

$$\mu = F^{-1}(\tau | \mathbf{x}),$$

but also the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(y-\mu)|\mathbf{x} \},$$

where

$$\rho_{\tau}(z) = (\tau - 1)z\mathbb{1}(z < 0) + \tau z\mathbb{1}(z \ge 0),$$

is the "pinball" loss.

In linear quantile regression $\mu_{\tau}(\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} = \beta_1 x_1 + \dots \beta_p x_p$.

 $\hat{oldsymbol{eta}}$ is the minimizer of total pinball loss

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} L_{\boldsymbol{y}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho_{\tau}(y_{i} - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i}).$$

In additive quantile regression $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x})$.

 f_j 's can be fixed, random or smooth effects.

 $\hat{oldsymbol{eta}}$ is the minimizer of total **penalized** pinball loss

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{eta} ig\{ L_y(oldsymbol{eta}) + \mathsf{Pen}(oldsymbol{eta}) ig\}.$$

where $Pen(\beta)$ penalizes the complexity of the f_i 's.

Structure of the talk

Structure:

- What is quantile regression
- When is it useful
- 3 How to do quantile regression using qgam

Median income is a better indicator of how the "average" person is doing, relative to mean income.

The median is also more **resistant to outliers**.

Some quantiles are more important than others:

- electricity producers need to satisfy top electricity demand
- urban planners need estimates of extreme rainfall

Effect of explanatory variables may depend on quantile

$$q_{\tau}(\mathsf{Demand}) = f_1(\mathsf{Temp}) + f_2(\mathsf{TimeOfYear}) + f_3(\mathsf{Trend}) + f_4(\mathsf{Holiday}) + \cdots$$

No assumptions on $p(y|\mathbf{x})$:

- no need to find good model for $p(y|\mathbf{x})$;
- no need to find normalizing transformations (e.g. Box-Cox);

Structure of the talk

Structure:

- What is quantile regression?
- 2 When is it useful
- Quantile regression using qgam

Smoothing the pinball loss

ggam uses a modified loss which we call Extended log-F (ELF) loss.

This is smooth and convex and, as $\lambda \to 0$, we have recover pinball loss.

NB in ggam, λ reparametrized as err \in (0,1) (\downarrow err implies $\downarrow \lambda$).

Smoothing the pinball loss

Increasing err leads to:

- faster and more stable computation
- more bias

Interpretation, if μ^* is minimizer of ELF loss:

$$|F(\mu^*) - \tau| \le \text{err}$$

err is an upper bound on the bias.

By default:

Residual checking

We have no model for $p(y|\mathbf{x}) \to QQ$ -plots are useless.

We can check the proportion of residuals < 0, which should be $\approx \tau$.

check1D(b, "x") +
$$l_gridQCheck1D(qu = 0.5)$$

Model selection

In probabilistic regression we can use Akaike Information Criterion (AIC):

$$AIC = \underbrace{-2\log p(\mathbf{y}|\beta)}_{\text{goodness of fit}} + \underbrace{2p}_{\text{model complexity}}$$

If $AIC_{m1} < AIC_{m2}$ choose model 1.

In quantile regression pinball loss substitutes likelihood $\log p(\mathbf{y}|\beta)$.

Maybe justifiable for median regression ($\tau = 0.5$).

Practical approach: choose model with lowest AIC at median and use it for other quantiles.

Probably better: choose model on mean model and use it for quant reg.

Conclusions

THANK YOU!

Figure: Examples of quantile GAMs from Fasiolo et al. (2017).

References I

Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. *arXiv preprint arXiv:1707.03307*.