# Parallel Machine Learning and Artificial Intelligence

Dr. Handan Liu

h.liu@northeastern.edu

Northeastern University



# Parallel Implementations -- MPI Programming



### What is MPI?

- · An Interface Specification:
  - o M P I = Message Passing Interface
  - MPI is a specification for the developers and users of message passing libraries. By itself, it is NOT a library - but rather the specification of what such a library should be.
  - MPI primarily addresses the message-passing parallel programming model: data is moved from the address space of one process to that of another process through cooperative operations on each process.



## What is MPI?

- Programming Model:
  - o Today, MPI runs on virtually any hardware platform:
    - ✓ Distributed Memory
    - ✓ Shared Memory
    - ✓ Hybrid
  - The programming model <u>clearly remains a distributed memory</u> <u>model</u> however, regardless of the underlying physical architecture of the machine.



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [4]

## **MPI Implementations and Compilers**

| MPI Library      | Where?                                    | Compilers              |
|------------------|-------------------------------------------|------------------------|
| MVAPICH          | Linux clusters                            | GNU, Intel, PGI, Clang |
| Open MPI         | Linux clusters                            | GNU, Intel, PGI, Clang |
| Intel MPI        | Linux clusters                            | Intel, GNU             |
| IBM Spectrum MPI | Coral Early Access and Sierra<br>clusters | IBM, GNU, PGI, Clang   |



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & AI – by Dr. Handan Liu [5]

## General MPI Program Structure

```
Header File
               MPI include file
                                                                                 #include "mpi.h"
                                                                                 #include <stdio.h>
#include <stdlib.h>
       Declarations, prototypes, etc.
               Program Begins
                                                                                 int main (int argc, char *argv[])
                                                                                 int numtasks, rank, dest, source, rc, count, tag=1; char inmsg, outmsg='x';
MPI_Status Stat;
                                     Serial code
                                               Parallel code begins
                                                                                                                                                             Rank
          Initialize MPI environment
                                                                                 MPI Init(&argc,&argv);
                                                                                 MPI Comm size (MPI COMM WORLD, &numtasks
MPI Comm rank (MPI COMM WORLD, &rank);
                                                                                 if (rank == 0) {
  dest = 1;
  source = 1;
Do work & make message passing calls
                                                                                          MPI Send(sputnag, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
MPI_Recv(sinmag, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);
                                                                                 else if (rank == 1) {
                                                                                                                                                                  Cooperative
                                                                                   dest = 0;
source = 0;
                                                                                          MPI Recv(Armsg, 1, MPI CHAR, source, tag, MPI_COMM_WORLD, &Stat):
MPI_Send(&butmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD):
          Terminate MPI environment Parallel code ends
                                     Serial code
                 Program Ends
```



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & AI - by Dr. Handan Liu [6]

## **Environment Management Routines**

- MPI\_Init(): must be called, once, and before others.
- MPI\_Comm\_size()
- MPI\_Comm\_rank()
- MPI\_Get\_processor\_name()
- MPI\_Get\_version()
- MPI\_Wtime()
- MPI\_Finalize()
- Example: Hello for MPI parallel implementation



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [7]

## **MPI** Communication

- MPI is a communication protocol for programming parallel computers, and supports both:
  - o Point to Point Communication
  - Collective Communication



## Point-to-Point Communication

- MPI point-to-point operations typically involve message passing between two, and only two, different MPI tasks.
- One task is performing a send operation and the other task is performing a matching receive operation.
  - o a popular example is the pair of MPI\_Send and MPI\_Recv. I MPI Cooperative operations





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [9]

## Collective Communication

- Collective functions involve communication among all processes in a process group.
- Types of Collective Communication
  - Synchronization
    - ✔ Blocks until all processes have reached a synchronization point
  - Data Movement (or Global Communication)
    - ✔ Broadcast, Scatters, Gather, All to All transmission of data across the communicator.
  - Collective Computation (or Global Reduction)
    - One process from the communicator collects data from each process and performs an operation (min, max, add, multiply, etc.) on that data to compute a result.



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & AI – by Dr. Handan Liu [10]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Redue
- MPI\_Allreduce
- MPI\_Redue\_Scatter
- MPI\_Alltoall
- MPI\_Scan



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [11]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan

- Synchronization operation.
- Creates a barrier synchronization in a group:
   MPI\_Barrier (comm)
- Each task, when reaching the MPI\_Barrier call, blocks until all tasks in the group reach the same MPI\_Barrier call. Then all tasks are free to proceed.



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [12]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan

MPI\_Bcast (&buffer,count,datatype,root,comm)





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [13]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI Alltoall
- MPI\_Scan

#### MPI\_Scatter

Sends data from one task to all other tasks in communicator





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [14]

- MPI\_Barrier
- MPI Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan

#### MPI\_Gather

Gathers data from all tasks in communicator to a single task





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [15]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI Alltoall
- MPI\_Scan

#### MPI\_Allgather

#### Gathers data from all tasks and then distributes to all tasks in communicator





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [16]

- MPI\_Barrier
- MPI Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [17]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [18]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Reduce\_scatter
- MPI\_Alltoall
- MPI\_Scan





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & AI - by Dr. Handan Liu [19]

MPI Alltoall(&sendbuf, sendcount,

recvcnt, recvtype, comm)

sendtype, &recvbuf,

MPI\_Barrier

• MPI\_Bcast

• MPI\_Scatter

MPI\_Gather

MPI\_Allgather

MPI\_Reduce

• MPI\_Allreduce

MPI\_Redue\_scatter

MPI\_Alltoall

MPI\_Scan

#### MPI\_Alltoall

Scatter data from all tasks to all tasks in communicator

|                    | task3 | lask2 | task1 | ) | task0 |  |
|--------------------|-------|-------|-------|---|-------|--|
|                    | 13    | 9     | 5     |   | 1     |  |
|                    | 14    | 10    | 6     |   | 2     |  |
| ← sendbuf (before) | 14    | 11    | 7     |   | 3     |  |
|                    | 16    | 12    | 8     |   | 4     |  |

| 1 | 2  | 3  |     | 4  |                 |
|---|----|----|-----|----|-----------------|
| 5 | 6  | 7  |     | 8  | recvbuf (after) |
| 9 | 10 | 11 |     | 12 | Tecobul (alter) |
|   |    |    | 1 1 |    |                 |



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & AI – by Dr. Handan Liu [20]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce
- MPI\_Allreduce
- MPI\_Redue\_scatter
- MPI\_Alltoall
- MPI\_Scan





Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [21]

- MPI\_Barrier
- MPI\_Bcast
- MPI\_Scatter
- MPI\_Gather
- MPI\_Allgather
- MPI\_Reduce

MPI\_Allreduce

MPI\_Redue\_scatter

- MPI\_Alltoall
- MPI\_Scan

Synchronization

**Data movement** 

Collective computation

Collective computation operation + data movement



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [22]

## **Examples:**

- Point-to-Point communication by using MPI\_Send and MPI\_Recv
- Collective Communications by using MPI\_Scatter



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [23]

## How to Compile and Run a MPI Program

The table below lists OpenMPI compiler wrapper scripts for Linux clusters.

| Language | Script Name               | Underlying Compiler                                                |  |  |
|----------|---------------------------|--------------------------------------------------------------------|--|--|
| С        | mpicc                     | C compiler for loaded compiler package                             |  |  |
| C++      | mpiCC<br>mpic++<br>mpicxx | C++ compiler for loaded compiler package                           |  |  |
| Fortran  | mpif77                    | Fortran77 compiler for loaded compiler package. Points to mpifort. |  |  |
|          | mpif90                    | Fortran90 compiler for loaded compiler package. Points to mpifort. |  |  |
|          | mpifort                   | Fortran 77/90 compiler for loaded compiler package.                |  |  |



## Resources

• For more information of MPI:

Open MPI: Open Source High Performance Computing

https://www.open-mpi.org

https://www.open-mpi.org/doc/v4.0/

MPI Forum

https://www.mpi-forum.org



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [25]

## **Highly Optimized Math Libraries**

#### Open Source

o BLAS: Basic Linear Algebra Subprograms

o LAPACK: Linear Algebra PACKage

o ScaLAPACK: Scalable Linear Algebra PACKage

0 ......

#### Commercial

o Intel's MKL: Intel Math Kernel Library

o IBM's ESSL: Engineering and Scientific Subroutine Library

o AMD's AMCL: AMD Core Math Library

0 ......



Copyright © 2021 Handan Liu. All Rights Reserved. CSYE7105: Parallel Machine Learning & Al – by Dr. Handan Liu [26]

- •Stay safe!
- •See you next class!

#### Next Lecture will Continue:

Review the Quiz1
Introduction to Discovery



