HW 05

1

1 RSA Practice

Note 7 Consider the following RSA schemes and solve for asked variables.

- (a) Assume for an RSA scheme we pick 2 primes p = 5 and q = 11 with encryption key e = 9, what is the decryption key d? Calculate the exact value.
- (b) If the receiver gets 4, what was the original message?
- (c) Encode your answer from part (b) to check its correctness.

Solution:

(a) The private key d is defined as the inverse of $e \pmod{(p-1)(q-1)}$. Thus we need to compute $9^{-1} \pmod{(5-1)(11-1)} = 9^{-1} \pmod{40}$. Compute $\gcd(40,9)$:

```
\begin{aligned} & \operatorname{egcd}(40,9) = \operatorname{egcd}(9,4) \\ & = \operatorname{egcd}(4,1) \\ & 1 = 9 - 2(4). \\ & 1 = 9 - 2(40 - 4(9)) \\ & = 9 - 2(40) + 8(9) = 9(9) - 2(40). \end{aligned} [4 = 40 mod 9 = 40 - 4(9)]
```

We get -2(40) + 9(9) = 1. So the inverse of 9 is 9. So d = 9.

- (b) 4 is the encoded message. We can decode this with $D(m) \equiv m^d \equiv 4^9 \equiv 14 \pmod{55}$. Thus the original message was 14.
- (c) The answer from the second part was 14. To encode the number x we must compute $x^e \mod N$. Thus, $14^9 \equiv 14 \cdot (14^2)^4 \equiv 14 \cdot (31^2)^2 \equiv 14 \cdot (26^2) \equiv 14 \cdot 16 \equiv 4 \pmod{55}$. This verifies the second part since the encoded message was suppose to be 4.

2 Tweaking RSA

Note 7 You are trying to send a message to your friend, and as usual, Eve is trying to decipher what the message is. However, you get lazy, so you use N = p, and p is prime. Similar to the original method, for any message $x \in \{0, 1, ..., N-1\}$, $E(x) \equiv x^e \pmod{N}$, and $D(y) \equiv y^d \pmod{N}$.

- (a) Show how you choose e and d in the encryption and decryption function, respectively. Prove the correctness property: the message x is recovered after it goes through your new encryption and decryption functions, E(x) and D(y).
- (b) Can Eve now compute d in the decryption function? If so, by what algorithm?
- (c) Now you wonder if you can modify the RSA encryption method to work with three primes (N = pqr) where p,q,r are all prime). Explain the modifications made to encryption and decryption and include a proof of correctness showing that D(E(x)) = x.

Solution:

- (a) Choose e such that it is coprime with p-1, and choose $d \equiv e^{-1} \pmod{p-1}$. We want to show x is recovered by E(x) and D(y), such that D(E(x)) = x. In other words, $x^{ed} \equiv x \pmod{p}$ for all $x \in \{0, 1, \dots, N-1\}$. Proof: By construction of d, we know that $ed \equiv 1 \pmod{p-1}$. This means we can write ed = k(p-1) + 1, for some integer k, and $x^{ed} = x^{k(p-1)+1}$.
 - x is a multiple of p: Then this means x = 0, and indeed, $x^{ed} \equiv 0 \pmod{p}$.
 - x is not a multiple of p: Then

$$x^{ed} \equiv x^{k(p-1)+1} \pmod{p}$$
$$\equiv x^{k(p-1)}x \pmod{p}$$
$$\equiv 1^k x \pmod{p}$$
$$\equiv x \pmod{p},$$

by using FLT.

And for both cases, we have shown that x is recovered by D(E(x)).

- (b) Since Eve knows N = p, and $d \equiv e^{-1} \pmod{p-1}$, now she can compute d using EGCD.
- (c) Let e be co-prime with (p-1)(q-1)(r-1). Give the public key: (N,e) and calculate $d=e^{-1}\pmod{(p-1)(q-1)(r-1)}$. People who wish to send me a secret, x, send $y=x^e\pmod{N}$. We decrypt an incoming message, y, by calculating $y^d\pmod{N}$.

Does this work? We prove that $x^{ed} - x \equiv 0 \pmod{N}$, and thus $x^{ed} = x \pmod{N}$. To prove that $x^{ed} - x \equiv 0 \pmod{N}$, we factor out the x to get $x \cdot (x^{ed-1} - 1) = x \cdot (x^{k(p-1)(q-1)(r-1)+1-1} - 1)$ because $ed \equiv 1 \pmod{(p-1)(q-1)(r-1)}$.

We now show that $x \cdot (x^{k(p-1)(q-1)(r-1)} - 1)$ is divisible by p, q, and r. Thus, it is divisible by N, and $x^{ed} - x \equiv 0 \pmod{N}$.

To prove that it is divisible by p:

- if x is divisible by p, then the entire thing is divisible by p.
- if x is not divisible by p, then that means we can use FLT on the inside to show that $(x^{p-1})^{k(q-1)(r-1)} 1 \equiv 1 1 \equiv 0 \pmod{p}$. Thus it is divisible by p.

To prove that it is divisible by q:

- if x is divisible by q, then the entire thing is divisible by q.
- if x is not divisible by q, then that means we can use FLT on the inside to show that $(x^{q-1})^{k(p-1)(r-1)} 1 \equiv 1 1 \equiv 0 \pmod{q}$. Thus it is divisible by q.

To prove that it is divisible by r:

- if x is divisible by r, then the entire thing is divisible by r.
- if x is not divisible by r, then that means we can use FLT on the inside to show that $(x^{r-1})^{k(p-1)(q-1)} 1 \equiv 1 1 \equiv 0 \pmod{r}$. Thus it is divisible by r.

3 Secret Sharing

Suppose the Oral Exam questions are created by 2 TAs and 3 Readers. The answers are all encrypted, and we know that:

- Two TAs together should be able to access the answers
- Three Readers together should be able to access the answers
- One TA and one Reader together should also be able to access the answers
- One TA by themself or two Readers by themselves should not be able to access the answers.

Design a Secret Sharing scheme to make this work.

Solution:

Note 8

<u>Solution 1</u> We can use a degree 2 polynomial, which is uniquely determined by 3 points. Evaluate the polynomial at 7 points, and distribute a point to each Reader and 2 points to each TA. Then, all possible combinations will have at least 3 points to recover the answer key.

Basically, the point of this problem is to assign different weight to different class of people. If we give one share to everyone, then 2 Readers can also recover the secret and the scheme is broken.

Solution 2 We construct three polynomials, one for each way of recovering the answer key:

- A degree 1 polynomial for recovering with two TAs, evaluated at 2 points. Distribute a point to each TA.
- A degree 2 polynomial for recovering with three readers, evaluated at 3 points. Distribute a point to each Reader.
- A degree 1 polynomial for recovering with one TA + one reader. Evaluate this polynomial at 2 points, and distribute one point to all TAs and one point to all readers.

All combinations can then use the corresponding polynomial to recover the answer key.

4 One Point Interpolation

Note 8

Suppose we have a polynomial $f(x) = x^{k} + c_{k-1}x^{k-1} + \dots + c_{2}x^{2} + c_{1}x + c_{0}$.

- (a) Can we determine f(x) with k points? If so, provide a set of inputs $x_0, x_1, \ldots, x_{k-1}$ such that knowing points $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_{k-1}, f(x_{k-1}))$ allows us to uniquely determine f(x), and show how f(x) can be determined from such points. If not, provide a proof of why this is not possible.
- (b) Now, assume each coefficient is an integer satisfying $0 \le c_i < 100 \quad \forall i \in [0, k-1]$. Can we determine f(x) with one point? If so, provide an input x_* such that knowing the point $(x_*, f(x_*))$ allows us to uniquely determine f(x), and show how f(x) can be determined from this point. If not, provide a proof of why this is not possible.

Solution:

(a) Yes. Since the leading coefficient is 1, we only need to find the k remaining coefficients $c_0, c_1, \ldots, c_{k-1}$ to determine f(x). This can be done with any k distinct points.

For example, suppose we know the points $(0, f(0)), (1, f(1)), \dots, (k-1, f(k-1))$. We can then write the degree k-1 polynomial

$$g(x) = c_{k-1}x^{k-1} + \dots + c_2x^2 + c_1x + c_0 = f(x) - x^k$$

which can be determined via Lagrange interpolation on $(0, f(0)), (1, f(1) - 1), (2, f(2) - 2^k), \ldots, (k-1, f(k-1) - (k-1)^k)$, uniquely yielding our desired coefficients $c_0, c_1, \ldots, c_{k-1}$.

(b) Yes. We can express each nonnegative two-digit integer $c_i = 10d_{2i+1} + d_{2i}$ for digits $d_i \in [0,9]$. Using $x_* = 100$,

$$f(100) = 100^{k} + c_{k-1}100^{k-1} + \dots + c_{2}100^{2} + c_{1}100 + c_{0}$$

$$= 10^{2k} + (10d_{2k-1} + d_{2k-2})10^{2k-2} + \dots + (10d_{5} + d_{4})10^{4} + (10d_{3} + d_{2})10^{2} + (10d_{1} + d_{0})$$

$$= 10^{2k} + 10^{2k-1}d_{2k-1} + 10^{2k-2}d_{2k-2} + \dots + 10^{5}d_{5} + 10^{4}d_{4} + 10^{3}d_{3} + 10^{2}d_{2} + 10d_{1} + d_{0}$$

Thus, the rightmost 2k-1 digits of f(100), from right to left, are $d_0, d_1, \ldots, d_{2k-1}$; we can then determine our desired coefficients $c_i = 10d_{2i+1} + d_{2i}$.

5 Lagrange? More like Lamegrange.

In this problem, we walk you through an alternative to Lagrange interpolation.

(a) Let's say we wanted to interpolate a polynomial through a single point, (x_0, y_0) . What would be the polynomial that we would get? (This is not a trick question. A degree 0 polynomial is fine.)

Note 8

- (b) Call the polynomial from the previous part $f_0(x)$. Now say we wanted to define the polynomial $f_1(x)$ that passes through the points (x_0, y_0) and (x_1, y_1) . If we write $f_1(x) = f_0(x) + a_1(x x_0)$, what value of a_1 causes $f_1(x)$ to pass through the desired points?
- (c) Now say we want a polynomial $f_2(x)$ that passes through (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) . If we write $f_2(x) = f_1(x) + a_2(x x_0)(x x_1)$, what value of a_2 gives us the desired polynomial?
- (d) Suppose we have a polynomial $f_i(x)$ that passes through the points (x_0, y_0) , ..., (x_i, y_i) and we want to find a polynomial $f_{i+1}(x)$ that passes through all those points and also (x_{i+1}, y_{i+1}) . If we define $f_{i+1}(x) = f_i(x) + a_{i+1} \prod_{j=0}^{i} (x x_j)$, what value must a_{i+1} take on?

Solution:

- (a) We want a degree zero polynomial, which is just a constant function. The only constant function that passes through (x_0, y_0) is $f_0(x) = y_0$.
- (b) By defining $f_1(x) = f_0(x) + a_1(x x_0)$, we get that

$$f_1(x_0) = f_0(x_0) + a_1(x_0 - x_0) = y_0 + 0 = y_0.$$

So now we just need to make sure that $f_1(x_1) = y_1$. This means that we need to choose a_1 such that

$$f_1(x_1) = f_0(x_1) + a_1(x_1 - x_0) = y_1.$$

Solving this for a_1 , we get that

$$a_1 = \frac{y_1 - f_0(x_1)}{x_1 - x_0}$$
.

(c) We apply similar logic to the previous part. From our definition, we know that

$$f_2(x_0) = f_1(x_0) + a_2(x_0 - x_0)(x_0 - x_1) = y_0 + 0 = y_0.$$

and that

$$f_2(x_1) = f_1(x_1) + a_2(x_1 - x_0)(x_1 - x_1) = y_1 + 0 = y_1.$$

Thus, we just need to choose a_2 such that $f_2(x_2) = y_2$. Putting in our formula for $f_2(x)$, we get that we need a_2 such that

$$f_1(x_2) + a_2(x_2 - x_0)(x_2 - x_1) = y_2.$$

Solving for a_2 , we get that

$$a_2 = \frac{y_2 - f_1(x_2)}{(x_2 - x_0)(x_2 - x_1)}.$$

(d) If we try to calculate $f_{i+1}(x_k)$ for $0 \le k \le i$, we know one of the $(x-x_j)$ terms (specifically the kth one) will be zero. Thus, we get that

$$f_{i+1}(x_k) = f_i(x_k) + a_{i+1}(0) = y_k + 0 = y_k.$$

So now we just need to pick a_i such that $f_{i+1}(x_{i+1}) = y_{i+1}$. This means that we need to choose a_{i+1} such that

$$f_i(x_{i+1}) + a_{i+1} \prod_{j=0}^{i} (x_{i+1} - x_j) = y_{i+1}.$$

Solving for a_{i+1} , we get that

$$a_{i+1} = \frac{y_{i+1} - f_i(x_{i+1})}{\prod_{j=0}^{i} (x_{i+1} - x_j)}.$$

The method you derived in this question is known as Newtonian interpolation. (The formal definition of Newtonian interpolation uses divided differences, which we don't cover in this class, but it's in effect doing the same thing.) This method has an advantage over Lagrange interpolation in that it is very easy to add in extra points that your polynomial has to go through (as we showed in part (c), whereas Lagrange interpolation would require you to throw out all your previous work and restart. However, if you want to keep the same x values but change the y values, Newtonian interpolation requires you to throw out all your previous work and restart. In contrast, this is fairly easy to do with Lagrange interpolation—since changing the y values doesn't affect the δ_i s, you don't have to recalculate those, so you can skip most of the work.

6 Equivalent Polynomials

Note 7 Note 8 This problem is about polynomials with coefficients in GF(p) for some prime $p \in \mathbb{N}$. We say that two such polynomials f and g are *equivalent* if $f(x) \equiv g(x) \pmod{p}$ for every $x \in GF(p)$.

- (a) Use Fermat's Little Theorem to find a polynomial with degree strictly less than 5 that is equivalent to $f(x) = x^5$ over GF(5); then find a polynomial with degree strictly less than 11 that is equivalent to $g(x) = 4x^{70} + 9x^{11} + 70$ over GF(11).
- (b) In GF(p), prove that whenever f(x) has degree $\geq p$, it is equivalent to some polynomial $\tilde{f}(x)$ with degree < p.

Solution:

(a) Fermat's Little Theorem says that for any nonzero integer a and any prime number p, $a^{p-1} \equiv 1 \mod p$. We're allowed to multiply through by a, so the theorem is equivalent to saying that $a^p \equiv a \mod p$; note that this is true even when a = 0, since in that case we just have $0^p \equiv 0 \pmod p$.

The problem asks for a polynomial $\tilde{f}(x)$, different from f(x), with the property that $\tilde{f}(a) \equiv a^5 \mod 5$ for any integer a. Directly using the theorem, $\tilde{f}(x) = x$ will work. We can do something similar with $g(x) = 4x^{70} + 9x^{11} + 70$ modulo 11; since $x^{11} \equiv x \pmod{11}$, we can set $\tilde{g}(x) = 4x^{10} + 9x + 4$.

(b) One proof uses Fermat's Little Theorem. As a warm-up, let $d \ge p$; we'll find a polynomial equivalent to x^d . For any integer, we know

$$a^{d} = a^{d-p}a^{p}$$

$$\equiv a^{d-p}a \pmod{p}$$

$$\equiv a^{d-p+1} \pmod{p}.$$

In other words x^d is equivalent to the polynomial $x^{d-(p-1)}$. If $d-(p-1) \ge q$, we can show in the same way that x^d is equivalent to $x^{d-2(p-1)}$. Since we subtract p-1 every time, the sequence $d, d-(p-1), d-2(p-1), \ldots$ must eventually be smaller than p. Now if f(x) is any polynomial with degree $\ge p$, we can apply this same trick to every x^k that appears for which $k \ge p$.

Another proof uses Lagrange interpolation. Let f(x) have degree $\geq p$. By Lagrange interpolation, there is a unique polynomial $\tilde{f}(x)$ of degree at most p-1 passing through the points (0, f(0)), (1, f(1)), (2, f(2)), ..., (p-1, f(p-1)), and we designed it exactly so that it would be equivalent to f(x).