	GEL611-1	GEL611-2	GEL661-2
1. Solution analogique			
(a) Calcul de β et Δf	/5		
(b) Calcul du RSB _i nécessaire pour RSB _o = 30 dB	/5		
(c) Calcul du RSB _i avec accentuation / désaccentuation	/3		
(d) Calcul de la DSP du bruit $\frac{N_0}{2}$	/3		
(e) Sélection de canal et multiplexage en fréquence	/2	/2	
(f) Schéma et résultats de simulation		/2	
(g) Résultats de simulation		/2	
2. Solution numérique			
(a) Calcul du RSB_i pour atteindre $P_B = 10^{-4}$	/8		
(pour BPSK, QPSK, 16-QAM)			
(b) Calcul de la DSP du bruit $\frac{N_0}{2}$	/ 5		
(c) Calcul du nombre possible de conversations	/4		
simultanées avec BPSK, QPSK, 16-QAM			
(d) Solution pour contraindre la largeur de bande	/5		
(choix des filtres et répartition)			
(e) Solution de synchronisation	/3	/4	
(f) Sélection de canal et multiplexage en fréquence	/2	/2	
(g) Schéma et résultats de simulation		/8	
3. Bruit en bande passante			
(a) Démarche analytique			/20
4. Synthèse	/5		
Total	/50	/20	/20

Nom	Abdoul Rahim Boinzem Ouedraogo	Matricule	OUEJ5130
Nom	Anthony Royer	Matricule	ROYA2019
Commentaires du correcteur (s'il y a lieu)			

UNIVERSITÉ DE SHERBROOKE Faculté de génie Département de génie électrique et génie informatique

RAPPORT APP 5

Communications avec porteuses et processus aléatoires APP5

Présenté à Sébastien Roy

Présenté par Équipe numéro 10 Abdoul Rahim Boinzem Ouedraogo – OUEJ5130 Anthony Royer – ROYA2019

TABLE DES MATIÈRES

1.	Solution analogique	1
1.1	Calcul de β et Δf	1
1.2	Calcul du RSBi	1
1.3	Calcul du RSBi avec accentuation / désaccentuation	2
1.4	Calcul de la DSP du bruit	3
1.5	Sélection de canal et multiplexage en fréquence	4
1.6	Schéma	6
1.7	Résultats de simulation	6
2.	Solution numérique	7
2.1	Calcul du RSBi	7
2.2	Calcul de la DSP du bruit	8
2.3	Multiplexage temporel	9
2.4	Largeur de bande	9
2.5	Synchronisation	10
2.6	Sélection de canal et multiplexage en fréquence	11
2.7	Schéma et résultat de simulation	13
3.	Bruit en bande passante	15
3.1	Analyse du bruit en bande passante	15
4.	Synthèse	17
5.	Références	18

LISTE DES FIGURES

Figure 1 : Calculs de β et Δf	1
Figure 2 : Calculs du RSBi	1
Figure 3 : Calculs RSBi avec Accentuation/Désaccentuation	2
Figure 4 : Calculs de la DSP du bruit	3
Figure 5 Sortie zmanalogique	5
Figure 6 Sortie znanalogique	5
Figure 7 : Schéma sans sélection de canal (1/2)	6
Figure 8 : Schéma sans sélection de canal (2/2)	6
Figure 9 : Calcul RSBo	6
Figure 10 : Résultats de Simulation	6
Figure 11 : Graphique des valeurs de Q(X)	7
Figure 12 : Calculs RSBi (BPSK & QPSK)	7
Figure 13 : Calculs RSBi (QAM-16)	8
Figure 14 : Calculs DSP (QAM-16)	8
Figure 15 : Calculs Multiplexage Temporel	9
Figure 16 : Calculs largeur de bande	9
Figure 17 : Scope Synchronisation (Barker et Détection)	10
Figure 18 : Schéma Simulink Synchronisation	10
Figure 19 Sortie zmnumerique	12
Figure 20 Sortie znnumerique	12
Figure 21 : Calculs Théoriques QPSK (1)	13
Figure 22 : Calculs Théoriques QPSK (2)	13
Figure 23 : Schéma pour QPSK	13
Figure 24 : Résultat de simulation QPSK	14
Figure 25 : Démonstration (1/2)	15
Figure 26 : Démonstration (2/2)	16

LISTE DES TABLEAUX

Tableau 1: Tableau de comparaison

17

1. SOLUTION ANALOGIQUE

1.1 CALCUL DE B ET Δ F

Figure 1 : Calculs de β et Δf

1.2 CALCUL DU RSBI

Figure 2: Calculs du RSBi

1.3 CALCUL DU RSBI AVEC ACCENTUATION / DÉSACCENTUATION

$$|f(c)| Calcul du RSB, aux accordination lace descriptions
| Chipother 6 \rightarrow P_N under = \frac{2 \text{ No. M}^3}{3 \text{ A}_2^2} \text{ (assert accordination / description)}
| P_N under = \frac{2 \text{ No. M}^3}{3 \text{ A}_2^2} \text{ (assert accordination / description)}
| P_N under = \frac{3 \text{ No. M}^3}{3 \text{ A}_2^2} \text{ (assert accordination)}
| P_N under = \frac{2 \text{ No. M}^3}{3 \text{ A}_2^2} \text{ (assert accordination)}
| P_N under = \frac{3 \text{ No. M}^3}{3 \text{ (in)}} \text{ (assert accordination)}
| P_N under = \frac{3 \text{ No. M}^3}{3 \text{ (in)}} \text{ (assert accordination)}
| P_N under = \frac{3 \text{ No. M}^3}{3 \text{ (in)}} \text{ (assert accordination)}
| P_N under = \frac{3 \text{ No. M}^3}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \text{ (in)}}{3 \text{ (in)}} \text{ (in)}
| P_N under = \frac{3 \te$$

Figure 3: Calculs RSBi avec Accentuation/Désaccentuation

1.4 CALCUL DE LA DSP DU BRUIT

Figure 4: Calculs de la DSP du bruit

1.5 SÉLECTION DE CANAL ET MULTIPLEXAGE EN FRÉQUENCE

Les annotations se trouvent sur le schéma sous les blocs à modifier. Les schéma Simulink ont été soumis pour faciliter la lecture un code Matlab montrant les calculs aussi. Le fonctionnement est validé par le fait que la sortie *zmanalogique* est à 0 (Validation de la sélectivité) et la *znanalogique* est non nul (Validation de la conservation de la porteuse).

Figure 5 Sortie zmanalogique

Figure 6 Sortie znanalogique

1.6 SCHÉMA

Figure 7 : Schéma sans sélection de canal (1/2)

Figure 8 : Schéma sans sélection de canal (2/2)

1.7 RÉSULTATS DE SIMULATION

```
RSBo_SA = Pso/(Psbo-Pso);
```

Figure 9 : Calcul RSBo

```
RSBi (sans accentuation/désaccentuation) = 24.7595 dB RSBi (avec accentuation/désaccentuation) = 11.4332 dB RSBo (sans accentuation/désaccentuation) = 28.9792 dB RSBo (avec accentuation/désaccentuation) = 15.653 dB
```

Figure 10 : Résultats de Simulation

2. SOLUTION NUMÉRIQUE

2.1 CALCUL DU RSBI

Figure 11 : Graphique des valeurs de Q(X)

Figure 12: Calculs RSBi (BPSK & QPSK)

Figure 13: Calculs RSBi (QAM-16)

2.2 CALCUL DE LA DSP DU BRUIT

Figure 14: Calculs DSP (QAM-16)

2.3 MULTIPLEXAGE TEMPOREL

Figure 15: Calculs Multiplexage Temporel

2.4 LARGEUR DE BANDE

Figure 16 : Calculs largeur de bande

2.5 SYNCHRONISATION

Pour faire la synchronisation, la conception au point <u>G</u> à été effectuée au préalable et importée dans cette section. Ensuite, le script fût ajusté en fonction des valeurs utilisées dans le <u>G</u>. Puis, après avoir ajusté les blocs downsample et délais en fonction de <u>G</u>, un affichage du scope 5 pour voir la sortie du filtre de Baker est effectuée. Une valeur de 800 peut être observée et entrée dans le bloc correspondant. Après une autre exécution du Simulink, il est possible de valider le fonctionnement avec le graphique en haut à droite dans la figure ci-dessous.

Figure 17 : Scope Synchronisation (Barker et Détection)

Figure 18: Schéma Simulink Synchronisation

2.6 SÉLECTION DE CANAL ET MULTIPLEXAGE EN FRÉQUENCE

Ici la bande du signal a été réduite de 10kHz à cause des préambules. Les annotations se trouvent sur le schéma sous les blocs à modifier. Les schémas Simulink ont été soumis pour faciliter la lecture ainsi qu'un code Matlab montrant les calculs. Le fonctionnement est validé par le fait que la sortie *zmnumerique* est à 0 (Validation de la sélectivité) et la *znnumerique* est non nul (Validation de la conservation de la porteuse).

Figure 19 Sortie zmnumerique

Figure 20 Sortie znnumerique

2.7 SCHÉMA ET RÉSULTAT DE SIMULATION

Figure 21: Calculs Théoriques QPSK (1)

```
X_pre = 2.3;
Ps = 10;
Rs = 85000;
Bt = 95000;
Fpc = 1.36e6;
Larg_bloc = 300e3;
% Calculs
RSBi_pre = (X_pre.^2)*(Rs/Bt);
DSP_pre = (Ps/RSBi_pre)*(1/(Bt*2));
freq_ech_sec_bruit = 2*(Fpc+(Larg_bloc./2));
disp(['Freq Ech (section avec bruit) = ', num2str(freq_ech_sec_bruit), ' Hz'])
disp(['RSBi = ',num2str(10*log10(RSBi_pre)), ' dB'])
disp(['No/2 = ', num2str(DSP_pre*1000000), ' \mu\/Hz'])
disp(['Puissance du bruit (variance) theorique = ', num2str(DSP_pre*freq_ech_sec_bruit), ' W'])
disp(['Upsample = ', num2str(freq_ech_sec_bruit/85000), ' --> Arrondi à la hausse à 40'])
freq_ech_sec_bruit = 3.4e6; % Valeur utilisée (arrondie)
```

Figure 22 : Calculs Théoriques QPSK (2)

Figure 23 : Schéma pour QPSK

Figure 24 : Résultat de simulation QPSK

3. Bruit en bande passante

3.1 Analyse du bruit en bande passante

Figure 25 : Démonstration (1/2)

Figure 26 : Démonstration (2/2)

4. SYNTHÈSE

En résumé nous pouvons comparer la méthode de communication analogique (avec accentuation/désaccentuation) à la méthode de communication numérique, plus précisément la méthode 16-QAM parce que c'est la méthode qui a présenté la plus prometteuse parmi les différents types de modulation numérique. Elle surpasse les autres méthodes de modulation numérique dans toutes les caractéristiques suivantes : RSBi, nbres de conversations simultanées en bande. Dans le cas de l'analogique, l'accentuation et désaccentuation permet de réduire l'effet de bruit aux hautes fréquences.

D'après nos calculs et test de simulations, voici une comparaison de la conception analogique et numérique :

Tableau 1: Tableau de comparaison

Caractéristique comparée	Meilleur Conception
RSBi	Conception numérique 16-QAM
Bruit	Conception numérique 16-QAM
Erreur de données	Conception analogique
Nbres de Conversations	Conception numérique 16-QAM

On peut donc en déduire que la communication analogique FM est plus simple et requiert une accentuation et désaccentuation pour réduire le bruit aux hautes fréquences tout en préservant la qualité du signal. Cependant l'exploitation de la bande n'est pas optimale en ce sen que le multiplexage est seulement fréquentiel.

La communication numérique cependant permet un multiplexage fréquentiel et temporel afin de réaliser plusieurs conversations simultanément. Cependant la conception d'un système numérique implique une probabilité d'erreur au niveau de la reconnaissance des bits et symboles.

Vu que la conception du système est à des fins de communication téléphonique, il serait judicieux d'utiliser la communication numérique pour pouvoir supporter beaucoup de conversation et aller en très haute fréquence.

5. Références

[1] S. H. &. M. Moher, Communication Systems, 5e éd., Wiley.