Тестовое задание для вступления в RoTech

Данное тестовое задание призвано определить твои сильные и слабые стороны, оно состоит из 4-х частей, постарайся сделать что-то в каждой. Не переживай, если что-то не получается — это нормально. Главное — приведи свои мысли, рассуждения и результат своей работы.

На выполнение с поиском информации уйдёт примерно 8 часов, советую не затягивать)

Касательно оформления, строгих требований нет, но постарайся изъясняться максимально лаконично и ёмко, формулы и вычисления можно привести скриншотом, но я настоятельно советую ознакомится с быстрым набором формул в word или LaTex (потом пригодится очень сильно в учёбе).

!!! Финальный файл нужно будет прислать до 22:00 12.10.24 мне на почту BornOfTheWyvern@yandex.ru.

По вопросам пиши)

Полезные ссылки:

- SolidWorks 2023 + Crack
- MathCad Prime 4

Полезная литература:

- Основы техники ракетного полёта Феодосьев В.И.
- Конструирование узлов и деталей машин Дунаев П. Ф.

1. Проектный и баллистический расчёты.

При расчёте использовать значение стандартного ускорения свободного падения g и плотности воздуха $ho_{ ext{возд}}$ на высоте 0 м согласно ГОСТ 4401-73 Стандартная атмосфера.

Максимально подробно опишите каждое вычисление. Опишите параметры, входящие в уравнение движения.

Заданы следующие параметры монотопливной одноступенчатой ракеты с ЖРД с вытеснительной системой подачи:

•	Масса конструкции (Сухая масса):	$m_{ m cyx}=3.2~{ m Kr}$
•	Масса топлива:	$m_{\scriptscriptstyle ext{TO\Pi}}=1.0~{ m K}{ m F}$
•	Стартовая тяговооружённость:	$v_0 = 4$
•	Средний удельный импульс на высоте $0 \mathrm{\ m}$:	$I_{sp} = 300 \frac{M}{c}$
•	Диаметр ракеты:	$d_{ m pa\kappa}=70$ мм
•	Коэффициент аэродинамического сопротивления:	$c_x = 0.25$
•	Плотность топлива:	$\rho_{\text{топ}} = 1242 \frac{\text{кг}}{\text{м}^3}$
•	Коэф. увеличения объёма бака по отношению к топливу:	$k_{\text{бака}} = 2$
•	Скорость схода с направляющей:	$V_{\rm cx} = 15 \frac{M}{c}$

Требуется:

- Изобразить схему приведённой ракеты, перечислить основные элементы и описать их назначение.
- Определить следующие параметры:

0	тягу двигательной установки:	P_0 , H
0	Массовый расход топлива:	$\dot{m}, \frac{\kappa \Gamma}{c}$
0	Время работы двигательной установки:	t_{pa6} , c
0	Объём топлива:	$V_{ m TO\Pi}$, м 3
0	Объём бака топлива:	$V_{бака}$, м 3
0	Высоту бака:	h _{бака} , м

- Составить расчётную схему для определения параметров траектории
- Составить уравнение движения ракеты во время работы двигателя.
- Рассчитать высоту и скорость в момент исчерпания топлива. h_1 , м, h_1' , $\frac{M}{C}$
- Составить уравнение движения ракеты по инерции.
- Рассчитать высоту апогея и время до него. h_2 , м, t_{an} , c
 - Рассчитать высоту направляющей. $h_{\text{напр}}$, м

2. Прочностной расчёт.

При расчёте и переводе единиц использовать значение технической атмосферы.

Заданы следующие параметры топливной системы:

• Объём бака топлива (взять из предыдущего раздела): $V_{
m бака}$, м 3

высота бака топлива (взять из предыдущего раздела): $h_{\mathsf{бака}}$, м

• Материал стенок бака: АМГ6

 $oldsymbol{ iny}$ Давление в баке: $p_{ extsf{бака}} = 30 \ ext{ATM}$

• Давление в камере двигательной установки: $p_{\text{кам}}=8\,\mathrm{ATM}$

• Коэф. запаса: $k_{\rm зап}=2$

1) Используя параметры топливного бака:

• Составить расчётную схему.

• Описать силы, действующие на бак.

ullet Определить толщину стенок бака: $\delta_{ ext{бака}}$, мм

ullet Определить массу бака: $m_{
m бака}$, кг

• Описать процесс изготовления бака.

Крышка камеры сгорания крепится к камере сгорания фланцевым соединением. Изобразите данное соединение, перечислите необходимые элементы болтового соединения.

- 2) Определить оптимальные по массе параметры системы крепления крышки:
 - Количество болтов.
 - Класс прочности болтов.
 - Диаметр болтов.

Найдите все выбранные вами элементы в интернет-магазине по наиболее приемлемой цене. Укажите ссылки

3. Моделирование и прототипирование.

Смоделируйте в любом удобном для вас CAD деталь, соединяющую топливный бак и корпус ракеты. Опишите соединения, возможные материалы детали, способы изготовления. Для выбранных материалов укажите массу получившейся детали.

3D модель экспортировать в формат STEP и прикрепить к письму

4. Электроника.

Вы разрабатываете бортовую электронику для одноступенчатой ракеты. От электроники требуется:

- Запустить двигательную установку по команде с наземного комплекса управления.
- Собирать, передавать и обрабатывать данные о статусе, высоте и скорости полёта ракеты.
- Определить апогей полёта ракеты, раскрыть парашют после апогея
- Определить координаты точки падения, переслать их на наземную станцию

Приведите:

- Структурную схему бортовой электроники
- Список датчиков (Опишите назначение)
- Алгоритм работы бортовой электроники
- Опишите возможные уязвимости вашей системы, приведите список возможных отказов