Лабораторная работе № 2

«Исследование потерь в ВОЛС»

Выполнила: Величкина А. С.

<u>Цель работы</u>: исследование механизмов возникновения потерь в ВОЛС, обусловленных различными факторами:

- 1) наличием разъемных соединений;
- 2) наличием изгибов оптического волокна.

<u>Оборудование</u>: оптические кабели (ВОК), патч-корды с различными комбинациями разъемов, адаптеры типов (ST, FC, LC, SC), устройство задания радиуса кривизны, представленное на стенде, многофункциональный оптический тестер-рефлектометр ТОПАЗ7315-AR.

Экспериментальная часть

Задание 1. Потери, вносимые разъемными соединениями.

В ходе выполнения задания были исследованы различные типы коннекторов для ВОК: FC-FC и LC-LC. С помощью оптического тестерарефлектометра в разных режимах (ручном и автоматическом) были измерены потери при подключении одномодовых ВОК через вышеперечисленные типы коннекторов. Измерения проводились для сигналов с различными длинами волн: 1310 и 1550 нм. Затем были исследованы переходные разъемы типа FC-LC и измерены потери при подключении ВОК с их использованием. Измерения также проводились в ручном и автоматическом режимах на двух длинах волн: 1310 и 1550 нм. Уровень опорного сигнала для калибровки устройства при всех измерениях составлял -0.59 дБ.

Результаты измерений представлены в таблице 1.

Таблица 1. Результаты измерения потерь в ВОК.

Тип адаптера	Длина волны оптического излучения, нм	Результат измерения, дБ	Результат измерения в режиме дБм	Результат измерения в режиме мкВт	
FC-FC SM красный	1310	0,337	30,337	0,932	

FC-FC SM красный автомат	1550	0,172	30,172	1,040			
FC-FC SM красный автомат	1310	0,321	30,321	1,077			
FC-FC SM красный	1550	0,221	30,221	1,052			
LC-LC SM	1310	-25,2	4,8	0,003			
LC-LC SM	1550	-23,89	6,11	0,004			
LC-LC SM автомат	1310	-23,23	6,77	0,005			
LC-LC SM автомат	1550	-23,88	6,12	0,004			
FC-FC SM белый	1310	0,12	30,12	1,028			
FC-FC SM белый автомат	1550	0,135	30,135	1,032			
FC-FC SM белый автомат	1310	0,036	30,036	1,008			
FC-FC SM белый	1550	0,05	30,05	1,012			
Переходные адаптеры							
FC-LC	1310	-1,58	28,42	0,607			
FC-LC	1550	-1,19	28,81	0,65			
FC-LC автомат	1310	-1,57	28,43	0,697			
FC-LC автомат	1550	-1,219	28,781	0,755			

Проанализируем полученный результат. Наибольшие потери наблюдались у белого коннектора FC-FC. При увеличении длины волны уменьшаются потери при использовании коннекторов и переходников в ВОК. Наибольшие потери наблюдаются для LC-LC коннекторов,

Задание 2. Потери, вносимые изгибами.

В ходе выполнения задания исследовалось влияние изгибов на потери в одномодовых ВОК. Для этого с помощью тестера-рефлектометра измерялись потери в ВОК при наматывании на шкив с разными радиусами кривизны. Измерения проводились на двух длинах волн: 1310 и 1550 нм в ручном режиме тестера. Схема подключения представлена на рис. 1. Результаты измерений представлены в таблице 2.

Рис. 1. Схема проведения измерений.

Таблица 2. Потери в ВОК при изгибе.

Радиус кривизны изгиба, мм	Оптическая мощность						
	λ=1310 нм			λ=1550 нм			
	дБм	mW	дБ	дБм	mW	дБ	
40	30,4	958	0,4	30,235	907	0,235	
35	30,428	963	0,428	30,258	909	0,258	
30	30,424	962	0,424	30,248	905	0,248	
25	30,419	961	0,419	30,232	901	0,232	
20	30,417	960	0,417	30,222	900	0,222	
15	30,412	959	0,412	30,205	899	0,205	
12,5	30,409	958	0,409	30,193	897	0,193	
10	30,403	957	0,403	30,175	872	0,175	
7,5	30,366	949	0,366	30,163	777	0,163	
5	30,142	850	0,142	24,5	354	-5,5	

Представим полученный результат графически в координатах

$$10^{-\frac{\alpha_{MAKP}}{10}} - \frac{1}{R_{WA}}$$

Рис. 2. График потерь в ВОК в макроизгибах.

Из графиков видно, что критическому радиусу кривизны соответствует значение 7.5 см для обеих длин волн. Тангенс наклона кривой для 1330 нм составляет 1.6 и для 1550 нм 1.4, что соответствует углам в 1 и 0.98 градусов соответственно. Схожесть этих значений следует из физического смысла тангенса угла наклона кривой. Он связан только с физическими параметрами ВОК, которые не изменялись в эксперименте. Отклонение значений в пределах допустимой погрешности.

Тангенс угла наклона кривой можно вычислить по формуле:

$$\tan(\alpha) = -\frac{dn_1}{NA^2}$$

Зная тангенс угла наклона кривой потерь, можно определить неизвестные параметры ВОК. Обычно d и п известны, следовательно, зная критический радиус можно определить численную апертуру ВОК и обратное.

При изменении изгиба в значениях до допустимого радиуса, потери в ВОК практически не меняются. При достижении же критического радиуса,

потери сильно увеличиваются, так как перестает соблюдаться условие полного внутреннего отражения.

Вывод

В ходе лабораторной работы были исследованы различные типы коннекторов и переходных разъемов для ВОК, измерены потери в них с помощью тестера-рефлектометра в ручном и автоматическом режимах. Затем было изучено влияние макроизгибов на потери в ВОК при различных радиусах кривизны. Была получена графическая зависимость уровня потерь от радиуса кривизны изгиба и определен критический радиус изгиба.

Проанализируем полученный результат. Потери в ВОК зависят от типа коннектора и длины волны излучения. При уменьшении длины потери увеличиваются. При наличии макроизгибов в ВОК потери зависят от радиуса кривизны изгиба и длины волны. Наклон кривых получился одинаковым в пределах погрешности измерения. Это связано с тем, что измерения проводились с одинаковыми кабелями, а тангенс наклона кривой связан с постоянными величинами, зависящими от типа волокна.

Ответы на контрольные вопросы.

1. Какие виды потерь существуют в оптических волокнах?

Ответ: в оптических волокнах существуют внутренние и внешние потери. Причинами внутренних потерь являются поглощение света средой оптического волокна и рассеяние света. Поглощение света разделяется на собственное и примесное. Рассеяние света возникает на неоднородностях структуры оптического волокна, которые присущи всем видам стекол. Внешние потери делятся на потери на соединениях, потери из-за различия показателей преломления, потери при различии числовых апертур, потери при различии диаметров сердцевин, потери от осевого смещения, потери на макроизгибах и возвратные потери.

2. Что является главной причиной внешних потерь?

<u>Ответ</u>: Главной причиной внешних потерь в ВОК являются несовершенства соединения кабелей и геометрические отклонения в луче, возникающие из-за этого. Внешние потери обусловлены четырьмя основными причинами: радиальным, угловым, осевым смещениями волокон и качеством торцов.

3. Какие виды оптических разъемов вам известны?

Ответ: существуют следующие типы разъемов: ST, FC, SC, LC, MTRJ, E2000. Они представлены на рисунке ниже.

4. Для чего служат соединительные розетки и проходные розетки?

<u>Ответ</u>: соединительные розетки служат для соединения ВОК с одинаковыми типами концевых разъемов, а переходные розетки используются для соединения кабелей с разными разъемами.

5. Какие типы оптических коннекторов вы знаете? В чем их отличие друг от друга?

Ответ: Соединитель FC (Fiber Connector), Соединитель SC (от англ. Subscriber Connector – абонентский разъем), Разъем LC (Link Control), Разъем MT-RJ (Mass Termination), Оптический разъем E-2000 (Европа 2000, СЕСС-LSH). Основное различие коннекторов связано с различными типами физического контакта.

6. Какими параметрами характеризуются оптические разъемные соелинения?

<u>Ответ</u>: оптические разъемные соединения характеризуются среднем уровнем потерь на длине волны 1300 нм, материалом и размером ферулы, типом физического контакта,

7. Что является основной причиной появления микроизгибов?

<u>Ответ</u>: микроизгибы представляют собой мелкие локальные нарушения прямолинейности волокна, характеризуемые смещениями его оси в поперечных направлениях на участке микроизгиба. Основными причинами появления микроизгибов являются локальные поперечные механические усилия различного происхождения, приложенные к очень малым участкам волокна и появляющимися в процессе вытяжки волокна, перемотки и его хранения.

8. Как могут быть рассчитаны потери на макроизгибах?

<u>Ответ</u>: потери на макроизгибах грубо могут быть рассчитаны по следующей формуле:

$$\alpha_{\text{макр}} = -10 \cdot lg \left(\left| 1 - \frac{d \cdot n_1}{R_{usc} \cdot NA^2} \right| \right)$$

где $R_{\text{изг}}$ — радиус кривизны изгиба, n1 — показатель преломления сердцевины волновода, d — диаметр сердцевины, NA — числовая апертура волокна.

9. Как зависят потери на макроизгибах от радиуса кривизны изогнутого волокна.

<u>Ответ</u>: зависимость потерь на макроизгибах от радиуса кривизны должна быть линейной функцией в координатах $10^{-\frac{\alpha_{\text{макр}}}{10}} - \frac{1}{R_{\text{мес}}}$