Cerebro 2 1T1R RRAM ASIC Datasheet

Version 0.7

September 18, 2020

Table of Contents

Revision History	4
Terminology & Naming Convention	5
RISC-V	6
PULPino	6
AXI Interconnect Modifications	7
Blocks and High-Level Overview	7
Single Master-Slave Pair Interconnect	7
Transactions and Timing Diagram	11
Multiple Masters and Slaves Interconnect	11
AXI Tile Interface Memory Map	13
Burst Control Operating Manual	14
READ BURST CONTROL Registers Specification Pseudo-codes	14 14 15
WRITE BURST CONTROL Registers Specification Pseudo-codes	15 15 16
MAC OPERATION EXAMPLE Pseudo-codes	16
OPERATION AUTOMATION Registers Specification Pseudo-codes	16 17 17
SPI datasheet Input & Output Ports SPI Mode (Status) Configurable Registers SPI Commands Standard SPI Transactions QSPI Transactions	18 18 18 18 18 19
16K 1T1R RRAM CIM Module	22
Mixed-Signal Tile	23
Drive Line Drive Line 1bit Pulse DAC Drive Line Control Register	23 24 24
Bit Line Bit Line Control Register Trans-Impedance Amplifier (TIA)	24 25 26

Bit-Serial ADC	27
Word Line Word Line Control Register Word Line 9b Gate DAC	30 31 31
Mixed-Signal Digital Interface 4-Function Address Decoder Write State Machine Read State Machine Write Configuration Register Analog Configuration Register	32 32 34 34 34 34
Array Operations	36
Write Operations FORM SET RESET	36 36 36 36
Read Operations SINGLE READ MAC READ	36 36 36
Test Chip – Chip2	37
Modifications Tile V2A Tile V2B Tile V2C Tile V2D	37 37 37 37 37
Table of Figures	38
Table of Tables	39
Appendix	39
Mixed-signal Tile I/O Specification Tile I/O List DRIVE LINE I/O List BIT LINE Top I/O List BIT LINE Bottom I/O List WORD LINE DAC and Mux I/O List	39 39 43 45 46 48
ASIC Pin Map	49
ASIC I/O	50

Revision History

Version	Date	Comments	Approved
0.1	July 8, 2019	Initial version	
0.5	May 10, 2020	Updates post tapeout	
0.6	May 18, 2020	Added sections on	
		ADC and Gate DAC	

Terminology & Naming Convention

Names	Meaning
Chip Blocks	
tile_mxn	Bitcell array of mxn synapses and closely associated supporting circuits
Array	1T1R RRAM bitcell array(s)
1R array	1R RRAM array
row	Bitcell row along DRL direction
column	Bitcell column along BL direction
Gmin	Minimum RRAM conductance (fully off)
Gmax	Maximum RRAM conductance (fully on)
G0	RRAM lowest weight conductance
G15	RRAM 15 th level of weight conductance
Supplies	
gnd	Use whatever is in TPSCo PDK
gdd	Low voltage supply for low voltage devices
Vdd x.yV	High voltage supply for high voltage devices
vdd io	Voltage supply for IO

RISC-V

PULPino

AXI Interconnect Modifications

This datasheet only applies to AXI bus in Pulpino, and mainly focuses on interfacing RRAM Blocks in AMAT Project.

Blocks and High-Level Overview

AXI is the 3rd generation of ARM's AMBA(Advanced Microcontroller Bus Architecture), and it's full name is Advanced Extensible Interface. It has many versions, including Stream Interface and Memory-Mapped Interface, and under Memory-Mapped Interface there are Full version and Lite version. The one used in Pulpino is Memory-Mapped AXI4 Full.

Here's main features:

- Point to Point Interconnect
- Separate Channels of Signals
- Hand-shaking Confirmation
- Continuous Transfer through Burst (probably won't be used in this project)
- Memory Mapped in Address Space

Single Master-Slave Pair Interconnect

AXI Master is the module initiates transactions(read or write), and AXI Slave is the module responses to transactions from Master. What connects AXI Master and AXI Slave is **5-channel** AXI Interconnect, which is shown in the figure below and will be illustrated soon. One 5-channel Interconnect only connects one Master to one Slave, and this gives AXI the feature **Point to Point Interconnect**, which is the main difference from many shared bus architecture.

5-channel Interconnect includes:

- Read Address Channel
- Read Data Channel
- Write Address Channel
- Write Data Channel
- Write Response Channel

Arrows in the figure show the directions of main information sent. It's good to know that each channel has a **hand-shaking pair**(valid & ready) that communicates bidirectionally. This will be illustrated soon.

In general, the port sends out Read Address, Write Address and Write Data and receives Read Data and Write Response is the **Master Port**; and the port receives Read Address, Write Address and Write Data and sends out Read Data and Write Response is the **Slave Port**. In this simple case, the port on Master Module is the Master Port and the port on Slave Module is the Slave Port. But when things get complicated and one module can be both AXI Master and AXI Slave and has multiple Interconnect Ports, the only way to tell if a port is Master Port or Slave Port is finding out the directions of information sent.

Details on 5 Channels

In this project, we only care about signals in bold.

Direction convention in all figures is left as Master Port side and right as Slave Port side.

*? means width depends on implementation

Read Address Channel (AR)	—————————————————————————————————————
• AR ID [?:0]	AR_ADDR
• AR ADDR [31:0]	———————————————
• AR LEN [7:0]	AR_SIZE▶
• AR_SIZE [2:0]	————AR BURST——→
• AR BURST [1:0]	—————————————————————————————————————
• AR_LOCK	—————————————————————————————————————
• AR CACHE [3:0]	—————————————————————————————————————
• AR_PORT [2:0]	—————————————————————————————————————
• AR_QOS [3:0]	—————————————————————————————————————
• AR_REGION [3:0]	—————————————————————————————————————
• AR_USER [?:]	—————————————————————————————————————
• AR_VALID	◆———AR READY———
AR_READY	
AR ID: Read transaction ID	

AR ID: Read transaction ID

AR ADDR: Read address (32 bits in this project)

AR LEN: Read burst length

Support burst length 0-256 in INCR mode and 0-16 in all other modes

Burst length = AR LEN + 1;

(RRAM Block doesn't need burst, so this is always 8'b0.)

AR SIZE: Read word size

3'b000: 1 byte

3'b001: 2 bytes

3'b010: 4 bytes

3'b011: 8 bytes

3'b100: 16 bytes

3'b101: 32 bytes

3'b110: 64 bytes 3'b111: 128 bytes

(This project can only afford 1,2,4 bytes because of 32-bit bus.)

AR BURST: Read burst mode

2'b00: FIXED - same address

2'b01: INCR - incremental addresses

2'b10: WRAP - incremental addresses, wrap around if reaches the highest

2'b11: Reserved

(RRAM Block doesn't need burst, so this is always 2'b00.)

AR VALID & AR READY: Read address hand-shaking pair

Read Data Channel (R)

- R ID [?:0]• R DATA [31:0]
- R RESP [1:0]
- R LAST
- R USER [?:0]
- R VALID
- R READY

R ID: Read transaction ID (same as AR ID,

opposite direction)

R DATA: Read data (32 bits in this project)

R RESP: Read Response

2'b00: OKAY - Normal access success

2'b01: EXOKAY - Exclusive access success

2'b10: SLVERR - Slave error

2'b11: DECERR - Decode error

(RRAM Block only supports 2'b00(OKAY).)

R LAST: Read Last

Assert high with the last word in a read burst R VALID & R READY: Read data hand-shaking pair

Write Address Channel (AW)

- AW ID [?:0]
- **AW ADDR** [31:0]
- AW LEN [7:0]
- AW SIZE [2:0]
- **AW BURST [1:0]**
- AW LOCK
- AW CACHE [3:0]
- AW PORT [2:0]

AW_ID
AW_ADDR
AW LEN
AW SIZE
———AW BURST———
AW_LOCK
AW CACHE
AW PROT
AW_QOS
———AW REGION—
———AW USER———
——————————————————————————————————————
◆ AW READY

- AW QOS [3:0]
- AW REGION [3:0]
- AW USER [?:]
- AW VALID
- AW READY

AW ID: Write transaction ID

AW ADDR: Write address (32 bits in this project)

AW LEN: Write burst length

(Same scheme as AR LEN)

AW_SIZE: Write word size

(Same scheme as AR SIZE)

AW BURST: Write burst mode

(Same scheme as AR BURST)

AW VALID & AW READY: Write address hand-shaking pair

–В ID—

–B_RESP— –B_USER—

—B VALID——

-B_READY-

• W READY

W_DATA: Write data (32 bits in this project)

W_STRB: Write strobe (4 bits in this project)

Write byte valid, active high

W LAST: Write last

Assert high with the last word in a write burst

W_VALID & W_READY: Write data hand-shaking pair

Write Response Channel (B)

- B_ID [?:0]
 B_RESP [1:0]
 B_USER [?:0]
- B_VALID
- B READY

B ID: Write transaction ID (same as AW ID, opposite direction)

B RESP: Write response

(Same scheme as R RESP)

B VALID & B READY: Write response hand-shaking pair

Transactions and Timing Diagram

Single write transaction

This is the timing diagram of writing a single 32-bit word to a specific address. First, address and transaction information is confirmed through hand-shaking. Address and all transaction information, including AW_LEN, AW_SIZE and AW_BURST have to be held until AW_VALID and AW_READY are both high. Then data is written to the address when W_VALID and W_READY are both high. So, data has to be held until this happens. After data written, Slave Module sends back write response.

Single read transaction

This is the timing diagram of reading a single 32-bit word from a specific address. First, address and transaction information is confirmed through hand-shaking. Address and all transaction information, including AR_LEN, AR_SIZE and AR_BURST have to be held until AR_VALID and AR_READY are both high. Then, Slave Module sends back data and read response.

Multiple Masters and Slaves Interconnect

Single master-slave pair is rare in real design, since it's not very extensible. Most design using AXI bus has multiple Masters and multiple Slaves and requires every Master has access to every Slave. So, an AXI Interconnect Block is needed for routing between all Masters and Slaves, like the one shown below.

This figure shows the AXI Architecture in Pulpino. Here it has three AXI Master (RISCY Core, SPI and JTAG) and four Slave Blocks (Instruction Memory, Data Memory, Peripheral Bus and RRAM Block, which can be more). The AXI Interconnect Block connects all three Masters and all four Slaves. So, as you can see, the AXI Interconnect Block has three Slave Ports (Arrow towards inside) and four Master Ports (Arrow towards outside). Inside the

Interconnect Block are address decoders, multiplexers and buffers that direct transactions from

Master to Slave and responses back from Slave to Master. The way achieves this is **Memory Mapping**. Each Slave is mapped to a specific range of address (as shown in the figure), and Master can access specific Slave through that range of address. For example, address $0x0000_000C$ accesses something inside Instruction Memory, and address $0x0010_0010$ accesses something inside Data Memory. What is actually accessed depends on the design of the Slave Module. In this system, $0x0000_000C$ accesses the fourth word (32 bits) in Instruction Memory, and $0x0010_0010$ accesses the fifth word (32 bits) in Data Memory. This is the **Memory Mapping** feature of AXI.

AXI Tile Interface Memory Map

Address Name	Width		Address
R_SM_WRITE_CYCLES	[31:0]		0x1000_0000
R_DL_ADDRESS	[31:0]		0x1000_0004
R_DL_CONTROL	[31:0]		0x1000_0008
R_WL_DAC_DATA	[31:0]		0x1000_000C
R_WL_ADDRESS	[31:0]		0x1000_0010
R_WL_CONTROL	[31:0]		0x1000_0014
R_BL_ADDRESS	[31:0]		0x1000_0018
R_BL_CONTROL	[31:0]		0x1000_001C
R_ANALOG_CONFIG	[31:0]		0x1000_0020
R_WRITE_CONFIG	[31:0]		0x1000_0024
D_SM_START_READ	pulse	wo	0x1000_0060
D_SM_START_WRITE	pulse	wo	0x1000_0064
D_SM_WRITE_DONE	[0:0]	ro	0x1000_0068
D_SM_EOC	[0:0]	ro	0x1000_006C
READ_BURST_LENGTH	[5:0]		0x1000_0070
READ_BURST_ADDR	[31:0]		0x1000_0074
READ_BURST_OFFSET	[5:0]		0x1000_0078
READ_BURST_START	pulse	wo	0x1000_007C
WRITE_BURST_LENGTH	[2:0]		0x1000_0080
WRITE_BURST_ADDR	[31:0]		0x1000_0084
WRITE_BURST_OFFSET	[2:0]		0x1000_0088
WRITE_BURST_START	pulse	wo	0x1000_008C
COMPUTE_AUTOMATION	[0:0]		0x1000_0090
READ_DAC_RESET	pulse	wo	0x1000_0094
READ_BURST_DONE	[0:0]	ro	0x1000_0098
WRITE_BURST_DONE	[0:0]	ro	0x1000_009C
ADC_DATA[7:0]	[31:0]	ro	0x1000_00C0 - 0x1000_00DC
READ_DAC_INPUT[64]	[31:0]		0x1000_0100 - 0x1000_01FC
			_
		TILE 1	0x1000_0200 - 0x1000_03FC
		TILE 2	0x1000_0400 - 0x1000_05FC
		TILE 3	0x1000_0600 - 0x1000_07FC
			•

Burst Control Operating Manual

READ BURST CONTROL

Read burst means burst transfer of data from data memory to DAC input registers

Registers Specification

READ BURST LENGTH:

The actual burst length is READ_BURST_LENGTH + 1, this complies with the specification of AXI protocol. The valid range of READ_BURST_LENGTH is 0 to 63, corresponding to bursting 1 word to 64 words. It is the programmers' responsibility to keep the value in the valid range to avoid any side effects.

READ BURST ADDR:

READ_BURST_ADDR specifies the start address in data memory being read from.

READ BURST OFFSET:

READ_BURST_OFFSET dictates the starting point of writing READ_DAC_INPUT registers array. READ_BURST_OFFSET is resetted to 0, meaning the access always starts from the beginning of the array. Any other value would shift the starting point towards the end of the array by that amount. The valid range of READ_BURST_OFFSET is 0 to 63. If a burst exceeds the physical boundary of the registers array (which is 64), access rolls back to the beginning of the array. It is the programmer's responsibility to keep the value in the valid range and clearly aware of the effect of rolling back in burst transaction, since it is not a usual scenario and usually caused by programming bugs.

READ BURST START:

READ_BURST_START is the start trigger address of the read burst. Any stores toward this address, regardless of the value being stored, can start a read burst transfer.

READ BURST DONE:

Done signal is set to 1 after each read burst transfer finishes. It will automatically reset to 0 by the next read burst start signal (READ_BURST_START).

Pseudo-codes

```
store <bur>
store <start address> READ_BURST_LENGTH<br/>
store <start address> READ_BURST_ADDR<br/>
store <offset> READ_BURST_OFFSET<br/>
store <any value> READ_BURST_START<br/>
check: load READ_BURST_DONE R1<br/>
branch R1 == 0 check<br/>
<subsequent instructions>
```

WRITE BURST CONTROL

Write burst means burst transfer of data from ADC output registers to data memory

Registers Specification

WRITE BURST LENGTH:

The actual burst length is WRITE_BURST_LENGTH + 1, this complies with the specification of AXI protocol. The valid range of WRITE_BURST_LENGTH is 0 to 7, corresponding to bursting 1 word to 8 words. It is the programmer's responsibility to keep the value in the valid range to avoid any side effects.

WRITE BURST ADDR:

WRITE BURST ADDR specifies the start address in data memory being written to.

WRITE BURST OFFSET:

WRITE_BURST_OFFSET dictates the starting point of reading ADC_DATA registers array. WRITE_BURST_OFFSET is reseted to 0, meaning the access always starts from the beginning of the array. Any other value would shift the starting point towards the end of the array by that amount. The valid range of WRITE_BURST_OFFSET is 0 to 7. If a burst exceeds the physical boundary of the registers array (which is 8), access rolls back to the beginning of the array. It is the programmer's responsibility to keep the value in the valid range and clearly aware of the effect of rolling back in burst transaction, since it is not a usual scenario and usually caused by programming bugs.

WRITE BURST START:

WRITE_BURST_START is the start trigger address of the write burst. Any stores toward this address, regardless of the value being stored, can start a write burst transfer.

WRITE BURST DONE:

Done signal is set to 1 after each write burst transfer finishes. It will automatically reset to 0 by the next write burst start signal (WRITE_BURST_START).

Pseudo-codes

```
store <burst length> WRITE_BURST_LENGTH
store <start address> WRITE_BURST_ADDR
store <offset> WRITE_BURST_OFFSET
store <any value> WRITE_BURST_START
check: load WRITE_BURST_DONE R1
branch R1 == 0 check
<subsequent instructions>
```

MAC OPERATION EXAMPLE

(The following sequence of instructions is not optimized to achieve best performance. Reordering some instructions can hide latency.)

Pseudo-codes

```
store <read burst length> READ BURST LENGTH
                                                         #Configure read burst
      store <read start address> READ BURST ADDR
      store <read offset> READ_BURST_OFFSET
      store <any value> READ BURST START
                                                         #Start read burst
chk r: load READ BURST DONE R1
      branch R1 == 0 chk r
                                                         #Read burst finishes
      store <any value> D SM START READ
                                                         #Start conversion
chk c: load D SM EOC R1
      branch R1 == 0 chk c
                                                         #Conversion finishes
      store <write burst length> WRITE BURST LENGTH
                                                         #Configure write burst
      store <write start address> WRITE BURST ADDR
      store <write offset> WRITE BURST OFFSET
      store <any value> WRITE BURST START
                                                         #Start write burst
chk w:load WRITE BURST DONE R1
      branch R1 == 0 chk w
                                                         #Write burst finishes
      <subsequent instructions>
```

OPERATION AUTOMATION

There is an automation function in the burst control that can start the conversion right after the preceding read burst finishes and start the write burst right after the preceding conversion

finishes. In the automation mode, tile doesn't have to communicate with the host core until the whole operation (ex. MAC) finishes.

Registers Specification

COMPUTE_AUTOMATION:

Default value of COMPUTE_AUTOMATION is 0, meaning the automation function is off. To turn on the automation mode, set COMPUTE_AUTOMATION to 1.

Pseudo-codes

store 1 COMPUTE_AUTOMATION
store <read burst length> READ_BURST_LENGTH #Configure read burst
store <read start address> READ_BURST_ADDR
store <read offset> READ_BURST_OFFSET
store <write burst length> WRITE_BURST_LENGTH #Configure write burst
store <write start address> WRITE_BURST_ADDR
store <write offset> WRITE_BURST_ADDR
store <any value> READ_BURST_OFFSET
store <any value> READ_BURST_START #Start read burst
check: load WRITE_BURST_DONE R1
branch R1 == 0 check #Operation finishes
subsequent instructions>

SPI datasheet

This datasheet applies to SPI Slave in Pulpino

Input & Output Ports

```
input
              spi clk i
                             - SPI clock
                              - chip select (active low)
input
               spi cs i
              spi_sdi0 i
                              - serial data input (a.k.a MOSI)
input
input
              spi sdi1 i
                              - serial data input used in QSPI
                              - serial data input used in QSPI
input
              spi sdi2 i
input
              spi sdi3 i
                              - serial data input used in QSPI
                              - serial data output (a.k.a MISO)
output
              spi sdo0 i
                              - serial data output used in QSPI
output
              spi sdo1 i
output
              spi sdo2 i
                              - serial data output used in QSPI
              spi sdo3 i
                              - serial data output used in QSPI
output
output [1:0]
              spi mode o
                             - SPI mode
```

SPI Mode (Status)

Output port spi_mode_o indicates the status of data transfer.

2'b00: standard transmitting 2'b01: standard receiving 2'b10: QSPI transmitting 2'b11: QSPI receiving

Configurable Registers

reg0 [7:0]: bit 0 enables QSPI (active high)

• reset to 0

reg1 [7:0]: number of dummy cycles between MOSI and MISO

• reset to 32

reg2 [7:0]: wrap length (lower 8 bits)

• reset to 0

reg3 [7:0]: wrap length (higher 8 bits)

• reset to 0

SPI Commands

All SPI commands in this design are 8 bits.

8'h01: write reg0

8'h02: write memory and memory mapped peripherals

8'h05: read reg0 8'h07: read reg1

8'h0B: read memory and memory mapped peripherals

8'h11: write reg1 8'h20: write reg2 8'h21: read reg2 8'h30: write reg3 8'h31: read reg3

Standard SPI Transactions

Write configurable registers:

Stream in command and data in sequence (MSB first) after assert spi_cs. This type of transaction only accepts 8-bit command and 8-bit data, since the registers are all 8-bit.

Read configurable registers:

Stream in command (MSB first) after assert spi_cs. This type of transaction only accepts 8-bit command. After the last bit of command is received, 32-bit data streams out on spi_sdo0(MISO). Since each register has only 8 bits, the first 24 bits of data are all 0's. There is no dummy cycles between command and data.

Write memory and memory mapped peripherals:

Stream in command(8'h02), address and data in sequence (MSB first) after assert spi_cs. This type of transaction only accepts 8-bit command, 32-bit address and 32-bit data.

Read memory and memory mapped peripherals:

Stream in command(8'h0B), address in sequence (MSB first) after assert spi_cs. This type of transaction only accepts 8-bit command and 32-bit address. After the last bit of address is received, several dummy cycles occur on spi_sdo0(MISO) before 32-bit data streams out. spi_mode also tells when data is valid. Notice that the number of dummy cycles is the number stored in reg1 plus 1.

QSPI Transactions

The only difference between standard SPI transaction and QSPI transaction is that with QSPI 4 bits are streamed in or out every cycle.

Write configurable registers:

Read configurable registers:

Write memory and memory mapped peripherals:

Read memory and memory mapped peripherals:

16K 1T1R RRAM CIM Module

Figure 1. Mixed-signal tile peripheral.

The 16K 1T1R RRAM CIM module is designed to operate as a peripheral of the RISCV Pulpino. The module consists of two parts, namely the "mixed-signal tile" and the "mixed-signal digital interface". The mixed-signal tile consists of DACs, ADCs, and analog multiplexors that interface to the crossbar. The mixed-signal digital interface consists of memory mapped registers to configure the tile and read and write state machines to provide timing to drive the tile operations. This section details the design and operation of the CIM module.

Mixed-Signal Tile

The mixed-signal tile consists of a 256 x 64 1T1R RRAM crossbar array and the circuits that interface to the array. The circuits are described in the following sections: Drive Line, Bit Line, and Word Line.

Drive Line

The drive line circuitry interfaces to the rows of the crossbar array. Each row of the array is physically connected to the top electrode of each RRAM bitcell in that row. The drive line consists of 256 slices and a global write voltage select block shown in the figure below. Each slice consists of a 1b pulse DAC and read, write, and ground switches. The global write voltage select block consists of 3 one-hot switches to select the appropriate write voltage.

The drive line supports 3 modes of operation: read, write, and idle. The modes are determined by the switches enabled by signals "a", "b" and "c" shown below. The read enable switch is a 3V I/O NMOS transistor that connects the DAC to the crossbar during read and protects the DAC during write when the drive line voltage may exceed VDDL = 1.2V. All read enable switches activate at once under control of a global level shifter. During read, switch "a" is selected and switches "b" and "c" are off or disabled. The write enable switch connects the global write voltage select block to the crossbar during read through a 3V I/O transmission gate. The level shifter is local to each slice. The actual write voltage is further selected by the 3 one-hot switches ("f", "g", "h") in the write voltage select block. During write, switch "b" is selected and switches "a" and "c" are disabled. The idle state of the drive line is 0V or GND. To enable idle mode, switch "c" is on and switches "a" and "b" are off or disabled. The DAC logic switches are detailed in the next section.

Figure 2. Drive line conceptual diagram.

Drive Line 1bit Pulse DAC

Figure 3. Drive line pulse DAC schematic.

The logic of the drive line 1b pulse DAC drives two 1.2V PMOS switches between VCM and VREAD. Since the source of the 1T1R bitcell is connected to VCM during read mode, the 1b pulse DAC toggles the row with the appropriate read voltage amplitude (VREAD-VCM). The pulse DAC input, D_DL_DSTREAM, is a 1b serialized bit stream generated in the mixed-signal digital interface block from an 8-bit input word. The DFF with negative clk latches the serialized bit stream into the tile clock domain with a ½ clock cycle delay.

During read mode, the read enable switch connects all 256 1b pulse DACs to the crossbar rows as mentioned above. During single read mode, the signal D_DL_DSTREAM_EN is used to enable the selected pulse DAC while tri-stating all unused DACs. This feature was added to mitigate extraneous leakage currents that could arise due to differences in VCM between the rows and "VCM" presented by the column virtual ground regulator.

Drive Line Control Register

Drive Line Control Register												
One-ho	t Write Voltage	e Select	Global Read	DSTREAM Address Decoder			Write Switch Address Decoder			Ground Switch Address Decoder		
[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
VFORM	VCET C-14	VRESET	Read Enable	DSTREAM	DSTREAM	DSTREAM	Weite Freshle	Write SEL[1]	W-4- CEL 101	Ground Enable	Ground	Ground
Select VSET Select	Select	Read Enable	Enabl	SELIII	SELIO	Write Enable	write SEL[1]	WIRE SELLO	Ground Enable	SEI [1]	SELIO	

Table 1. Drive line control register

The control of the switches of the drive line is provided by an 8b row address register and the drive line control register. The control register consists of four one-hot select bits (bits 12-9) and the control bits for three address decoders (bits 8-0). The address decoders are explained in detail in the mixed-signal digital interface section.

Bit Line

The bit line circuitry interfaces to the columns of the crossbar array. Each column of the array is physical connected to the source of each transistor in the bitcells of that column. The columns of the array are multiplexed by two, meaning two columns share one TIA and ADC. The bit line circuitry is split among the top and bottom of the array in two sections where each section consists of 16 slices for a total of 32 slices (64/2). The top slices include the word line circuitry and will be discussed in the next section. The bit line slice consists of a pseudo-neuron (TIA + ADC), and read, write and idle switches.

The bit line supports 3 modes of operation: read, write, and idle. The modes are determined by the switches enabled by signals "a" – "f" shown below. Further due to the multiplexed nature, the bit line is operated in an even/odd fashion. The following describes the operations from the "even" perspective but is easily extended to the "odd" case.

The read enable switch is a 3V I/O NMOS with local level shifter that connects the pseudo-neuron (TIA + ADC) to the crossbar rows during read and protects the pseudo-neuron during write when the bit line voltage may exceed VDDL = 1.2V. During read (even), switch "e" is enabled and all other switches are off or disabled. The write enable switch is a 3V I/O transmission gate with local level-shifter and connects the crossbar column to the reset voltage V_RESET during the reset write operation. During write (even), switch "a" is enabled and all other switches are disabled. The idle state of the bit line is 0V or GND. To enable idle mode, switch "c" is enabled and all other switches are disabled.

Figure 4. Bit line (bottom) conceptual diagram.

Bit Line Control Register

	Bit Line Control Register										
Write Switch Address Decoder Ground Switch Address Decoder Even/Odd ADC Switch Address Decoder								ecoder			
[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]		
Write Enable	Write SEL[1]	Write SEL[0]	Ground Enable	Ground SEL111	Ground SEL[0]	Even Enable	Odd Enable	Even/Odd SEL[1]	Even/Odd SEL[0]		

Table 2. Bit line control register

The control of the switches of the bit line is provided by an 6b row address register and the bit line control register. The control register consists the control bits for three address decoders (bits 9-0). The address decoders are explained in detail in the mixed-signal digital interface section.

Trans-Impedance Amplifier (TIA)

TIA senses column current and converts it to voltage. The maximum allowable current is 3 μ A and 45 μ A for single and MAC operation, respectively. Negative feedback with a pass transistor reduces input resistance so that input pole seen from column becomes large and settling time remains short. The virtual ground from the feedback loop is strongly tied to common-mode voltage. To maintain stability in TIA, bleeding current is required, which is 10 μ A. Sensed column current with bleeding current pass through the pass transistor. The total current is multiplied by resistor and becomes voltage information. Since the next stage, ADC, has a finite sampling capacitor value, the output resistance has to be as much as small. However, if the resistance is small, output voltage becomes small as well. To improve settling time and reduce a RC time constant at the output, amplified current from the pass transistor is necessary so that the output resistance becomes small. In order to achieve better settling time, a replicated pass transistor is implemented. For the single read and MAC read mode, the output resistor is 20 k Ω

and 5 k Ω . When the TIA is not used, it can be turned off using TIA_EN signal. All bias signals are off, and no current flows through TIA. The RC time constant of the settling time at the output for single read is 20k*CLOAD. On the other hand, the RC time constant of that for MAC read is 5k*CLOAD. Since the RC time constant of single read is larger than that of MAC read, the clock speed for single read is needed to be slow.

Figure 5. Trans-impedance amplifier schematic.

		Single Read			MAC Read	
Load		20K			5K	
Offset		400mV		100mV		
	Input Current	Output Votlage	Total Current	Input Current	Output Votlage	Total Current
MAX	3uA	520mV	26uA	45uA	550mV	110uA
MIN	0.3uA	412mV	20.6uA	0uA	100mV	20uA

Table 3. Trans-impedance amplifier specification.

Bit-Serial ADC

Input/Output Ports

Figure 6. Bit-serial ADC symbol.

 V_{IN} is the analog input and D_{OUT} is the 8-bit digital output. CLK_{SAMP} and CLK_{CONV} are the sampling clock and conversion clock respectively. $V_{\text{REF}}+-$ are the positive and negative voltage reference for quantization. And $C_{\text{ONF}}[1:0]$ is a 2-bit configuration input for timing calibration.

Functionality Overview

Figure 7. Bit-serial ADC operation.

The binary-weighted multi-cycle sampling ADC is a specialized Analog to Digital Convertor (ADC). It accepts two clock input: CLK_{CONV} and CLK_{SAMP} . At every pos-edge of CLK_{SAMP} , the ADC samples V_{IN} and add it to the previous sampled value, and then halves the sampled value. At every pos-edge of CLK_{CONV} , the ADC quantizes the current sampled value and output a corresponding digital code. The CLK_{SAMP} can occur continuously many times before CLK_{CONV} occurs, such that a serials of V_{IN} are sampled and summed up with binary weighting. The overall behavior of the ADC can be descripted by the following expression:

$$D_{OUT} = \left[\frac{2^{-1}A_{IN}[n] + 2^{-2}A_{IN}[n-1] + 2^{-3}A_{IN}[n-2] + \dots + 2^{-n}A_{IN}[1]}{V_{REF}^{+} - V_{VREF}^{-}} \times 256 \right]$$

Circuit Schematic

Figure 8. Bit-serial ADC circuit schematic.

C _{SAM}	C _{DAC} [6]	C _{DAC} [5]	C _{DAC} [4]	C _{DAC} [3]	C _{DAC} [2]	C _{DAC} [1]	C _{DAC} [0]
128x 1.4fF	64x 1.4fF	32x 1.4fF	16x 1.4fF	8x 1.4fF	4x 1.4fF	2x 1.4fF	1x 1.4fF

Table 4. Bit-serial ADC C-DAC.

The actual ADC is implemented in a modified SAR architecture. The sampler in Fig. 1 is implemented by S_{SAMP} and C_{SAM} . And the quantizer is implemented by a C-DAC (consist of C_{SAM} and $C_{DAC}[6:0]$), a comparator and the SAR logics. The SAR logics accept two clock signals (CLK_{CONV} and CLK_{SAMP}), control $S_{DAC}[7:0]$, use successive approximation to quantize the signal on $C_{DAC}[6:0]$ and generate $D_{OUT}[7:0]$. The adder and divider in Fig. 1 are implemented by the charge-sharing between C_{SAM} and $C_{DAC}[6:0]$. Fig. 4 shows the operation timing.

Figure 9. Bit-serial ADC timing diagram.

Tuning and Calibration

The SAR logics use R-C delayer based asynchronous logic design. Therefore, its timing is sensitive to PVT variation. CONF[1:0] is the configuration inputs to tune the delayers and ensure correct timing. The functional description of CONF is as follow:

CONF[1:0]	Delayer's Latency	Recommend Case
00	Long	FF corner / High Voltage
01	Moderate	TT corner & Normal Voltage
1x	Short	SS corner / Low Voltage

Table 5. Bit-serial ADC turning and calibration settings.

The reference voltages (V_{REF} +-) are also tunable. Generally, V_{REF} - should be shorted to ground and the voltage difference between V_{REF} + and V_{REF} - define the maximum input voltage corresponding to the maximum code (8b'11111111). Therefore, the ADC's conversion gain can be change by tuning V_{REF} . More specifically, reduce V_{REF} + can increase the gain of ADC, vice versa. But avoid make V_{REF} + < 500mV which may significant degrade ADC's performance.

Specifications

Specification	Value (Simulated)	
Supply	1.2V	
Sampling Rate	>40MHz (with 5Kohm R _s)	
Conversion Delay	20 nS	
Power	7.8 pJ/conversion (8 sampling + 1 conversion) or 35uW @ 40MHz	
Area	7.68um x 210um	
Resolution	8 bits	
Input Range	0 ~ (V _{REF} + - V _{REF} -)	
Effective Number of Bit	7.5 bit (w/ noise, w/o mismatch)	

Table 6. Bit-wise ADC specification.

Word Line

The word line circuitry interfaces to the gates of the 3V I/O transistors in the 1T1R bitcells of the crossbar array. The "selector" transistor is turned fully on during read and provides current compliance during write. The word line consists of 16 slices, a global word line multiplexor, and a global 9b resistor-based segmented DAC. Each slice has 4 channel enable switches and is located at the top of the array in the bit line slices. The DAC provides fine grained potentiation steps to program the RRAM bit cells.

The word line supports 3 modes of operation: read, write, and idle. The modes are determined by the switches enabled by signals "h" – "j" shown below and by switches "a" and "b" in the word line mux. The word line mux connects the channel enable switches (1T gates) to either the 9b gate DAC or to a 3.3V reference switches "a" and "b", a 3V I/O transmission gate and 3V I/O PMOS transistor. In each channel, a 3V I/O transmission gate connects the channel to the word line mux or a 3V I/O NMOS transistor connects the channel to ground. The switches operate in complementary, i.e. while one is on the other is off. This ensures that the gates of the bitcells are never floating. For read mode, in the word line mux, switch "b" is enabled and switch "a" is disabled. Similarly, for write mode, in the word line mux, switch "a" is enabled and switch "b" is disabled. The corresponding channels are enabled through the word line control register. The channels are inherently placed in idle mode when not selected.

Figure 10. Bit line (top) conceptual diagram with word line switches.

Figure 11. Word line mux.

Word Line Control Register

Word Line Control Register					
One-hot DAC	One-hot VDD	DAC/VDD Switch Address Decoder			
[5]	[4]	[3]	[2]	[1]	[0]
WL DAC Enable	WL VDD Enable	Even Enable	Odd Enable	Even/Odd SEL[1]	Even/Odd SEL[0]

Table 7. Word line control register.

The control of the switches of the word line is provided by an 6b row address register and the bit line control register. The control register consists of two one-hot controls (bits 5,4) and the control bits for one address decoder (bits 3-0). The address decoder is explained in detail in the mixed-signal digital interface section.

Word Line 9b Gate DAC

Gate DAC consists of a resistor-based segmented DAC and output buffer. The resistor DAC has a 4-b thermometer DAC for MSB and 5-b R-2R binary DAC for LSB. R-2R binary DAC may have a linearity issue when the worst case happens. For this reason, the LSB part is implemented with a R-2R DAC, and the MSB part is designed with a thermometer DAC. To have a thermometer operation for the MSB part, it has a thermometer-to-binary decoder. The output voltage from the resistor DAC is buffered by the output buffer to transmit the voltage to the word line. The output buffer is composed of a class-AB amplifier with a unity-gain configuration. For moderate operation in the output buffer, this requires $10~\mu A$ bias current. Operating voltage of the 9-b Gate DAC is from 0.5V to 2.9V. 1 LSB value is 4.687 mV. Since the DAC is used only in write mode, GATE DAC can be turned off to save power consumption.

Mixed-Signal Digital Interface

The mixed signal digital interface describes "glue logic" that drives the mixed-signal tile by way of memory mapped registers to the RISCV core. The timing of the mixed signal tile is provided by separate read and write state machines. Control and address decoding are provided by memory mapped registers. The configuration of the mixed-signal tile is set by the programmer by manipulating the memory mapped registers. The table below shows the memory map for a mixed-signal tile.

Address Name	Width		Address
R_SM_WRITE_CYCLES	[31:0]		0x1000_0000
R_DL_ADDRESS	[31:0]		0x1000_0004
R_DL_CONTROL	[31:0]		0x1000_0008
R_WL_DAC_DATA	[31:0]		0x1000_000C
R_WL_ADDRESS	[31:0]		0x1000_0010
R_WL_CONTROL	[31:0]		0x1000_0014
R_BL_ADDRESS	[31:0]		0x1000_0018
R_BL_CONTROL	[31:0]		0x1000_001C
R_ANALOG_CONFIG	[31:0]		0x1000_0020
R_WRITE_CONFIG	[31:0]		0x1000_0024
D_SM_START_READ	pulse	wo	0x1000_0060
D_SM_START_WRITE	pulse	wo	0x1000_0064
D_SM_WRITE_DONE	[0:0]	ro	0x1000_0068
D_SM_EOC	[0:0]	ro	0x1000_006C
ADC_DATA[7:0]	[31:0]	ro	0x1000_00C0 - 0x1000_00DC
READ_DAC_INPUT[64]	[31:0]		0x1000_0100 - 0x1000_01FC

4-Function Address Decoder

The 4-function decoder drives the switches that make the desired crossbar connections. The 4 functions are as follows: "all outputs low", "all outputs high", "active high decode", and "active low decode". In "active high decode" mode, the selected output corresponds to the decoder address and is a logical "1". All unselected outputs are at logical "0". In "active low decode" mode, the selected output corresponds to the decoder address and is a logical "0". All unselected outputs are at logical "1". The table below shows the truth table of the 4-function decoder. It contains a typical one-hot decoder but with an added inverted path and a mux to select between the two paths.

Further control is provided adding AND gates and an ENABLE signal to the output of the decoder. In this way, the activation for the decoder output can be applied from the programmer through the memory mapped registers or from the state machine through the enable signal. Both modes are setup in the write config register. Also, an extra ENABLE signal is added to the column decoders to activate even and odd modes. For example, to enable even mode, the column decoder is set to "01" and "Even Enable" bit is set to "1". This will activate all of the even outputs of the column address decoder.

Function Select	Decoder Output		
00	All "0"		
01	All "1"		
10	Active high decode (ex. 0000010)		
11	Active low decode (ex. 1111101)		

Table 8. Truth table for 4-function address decoder.

Figure 12. Row decoder.

Figure 13. Column decoder.

Write State Machine

TODO

Read State Machine

TODO

Write Configuration Register

The write configuration register is used to override the register settings during RESET, FORM and SET. Specifically, the write configuration register routes the write state machine timing signal to either the word line (RESET) or the drive line (FORM, SET). Address decoding is still required to select the desired bitcell.

Figure 14. Write config register signal routing.

Write Config Register						
[4] [3] [2] [1] [0]						
WL/DL Select	DL Reg/Pulse	WL Even/Odd	Even Reg /	Odd Reg /		
WL/DL Select	Select	WL EVEIDOUG	Pulse Select	Pulse Select		

Table 9. Write configuration register.

Analog Configuration Register

The analog configuration register is used to configure different settings in the TIAs, ADCs, and gate DAC. The ADC timing configuration is set by ADC_CONF[1:0], more details are found in the ADC section. The TIA is enabled by setting bit 2. Bit 3 changes the gain setting for the TIA. Details of the TIA settings can be found in the TIA section. The output buffer of the gate DAC is enables by setting bit 4. Free run mode is not implemented on this version of ASIC.

Analog Config Register							
[5]	[4]	[3]	[2]	[1]	[0]		
Free Run Mode	DAC Amplifier Enable	MAC Enable	TIA Enable	ADC CONF[1]	ADC CONF[0]		

Table 10. Analog configuration register.

Array Operations

Write Operations

FORM

SET

RESET

Read Operations

SINGLE READ

MAC READ

Test Chip – Chip2

Modifications

Tile V2A Tile V2B

PolyR Test Array (Tile B)

Tile V2C

Layer	Input HxWxC	Weight K@SxRxC [stride]	Output H'xW'xK	# param
CONV1	28x28x1	5@5x5x1 [2]	13x13x5	125
ReLU				
Conv2	13x13x5	5@3x3x5 [2]	7x7x5	225
ReLu				
FC	7x7x5	10@7x7x5	1x10	2,450
Classifier (argmax)				

Total 2.81K

Layer	Input HxWxC	Weight K@SxRxC [stride]	HW mapping (8b weight → 8/2 = 4 columns)
CONV1	28x28x1	<u>5@5x5x1</u> [2]	<u>5x5</u> = 25rows, <u>5</u> x4 = 20cols @tile1
ReLU			Digital
Conv2	13x13x5	<u>5@3x3x5</u> [2]	<u>3x3x5</u> = 45rows, <u>5</u> x4 = 20cols @tile1
ReLu			Digital
FC	7x7x5	10@7x7x5 (+10 bias)	7x7x5 +1=246rows, 10x4 = 40cols @tile2
Classifier (argmax)			Digital

Total 2.81K

256x64

Tile V2D

256x64

Table of Figures

Figure 1. Different types of array operations	5
Figure 2. Array diagram	5
Figure 3. Read single device array configuration	6
Figure 4. Read single device timing diagram	6
Figure 5. Multiply and accumulate (MAC) array configuration	7
Figure 6. Multiply and accumulate (MAC) timing diagram	8
Figure 7. Forming device array configuration	9
Figure 8. Forming device timing diagram	9
Figure 9. Potentiation array configuration	10
Figure 10. Potentiation timing diagram	11
Figure 11. Depression array configuration	12
Figure 12. Depression timing diagram	12
Figure 13. Depression specification	13
Figure 14. Symbol for the RRAM device	15
Figure 15. Bitcell Schematic	16
Figure 16. Schematic for a column in the array	17
Figure 17. Schematic for an array block of 8 cols	18
Figure 18. Schematic for the complete 64x64 1T1R array	18
Figure 19. Layout of the RRAM cell	19
Figure 20. Layout of the bitcell	20
Figure 21. Layout of the 1T device	21
Figure 22. Bitcell cross-section	22

Table of Tables

Table 1. Read single device specifications	7
Table 2. Multiply and accumulate (MAC) specifications	8
Table 3. Forming device specifications	10
Table 4. Potentiation specifications	11

Appendix

Mixed-signal Tile I/O Specification

Tile I/O List

DL_LEFT						
Net Name	Description	Туре	Min	Тур	Max	Unit s
D_DL_SYS_CLK_L	System clock DL_LEFT	Digital Input		1.2		V
D_DL_nRESET_L	System reset DL_LEFT	Digital Input		1.2		V
R_DL_VFORM_SELECT_L	One-hot VFORM write voltage select DL_LEFT	Register		1.2		V
R_DL_VSET_SELECT_L	One-hot VSET write voltage select DL_LEFT	Register		1.2		V
R_DL_VRESET_SELECT_L	One-hot VRESET write voltage select DL_LEFT	Register		1.2		V

R_DL_READ_EN_L	One-hot global read voltage enable, connects read DAC to crossbar	Register	1.2		V
D_DL_WR_EN<254:0:2>	Drive line write enable switch control from decoder	Digital	1.2		V
D_DL_GND_EN<254:0:2>	Drive line ground enable switch control from decoder	Digital Input	1.2		V
D_DL_DSTREAM<254:0:2>	1b read DAC data input from serializer	Digital Input	1.2		V
D_DL_DSTREAM_EN<254:0:2 >	1b read DAC tri-state for single read from decoder	Digital Input	1.2		V
V_FORM	FORM voltage	Off-chip reference	3		V
V_SET	SET voltage	Off-chip reference	3	5	V
V_RESET	RESET voltage	Off-chip reference	3		V
V_READ	READ voltage top setting	Off-chip reference	1.2		V
VDDH	Level-shifter VDD	Off-chip reference	3.3		V
VDDL	Analog VDD	Off-chip reference	1.2		V
VCM	READ voltage bottom setting	Off-chip reference	0.9		V
VSS	System ground	Off-chip reference	0		V
DL<254:0:2>	Drive line output to crossbar	Analog			V

DL_RIGHT						
Net Name	Description	Туре	Min	Тур	Max	Unit s
D_DL_SYS_CLK_R	System clock DL_RIGHT	Digital Input		1.2		V
D_DL_nRESET_R	System reset DL_RIGHT	Digital Input		1.2		V
R_DL_VFORM_SELECT_R	One-hot VFORM write voltage select DL_RIGHT	Register		1.2		V
R_DL_VSET_SELECT_R	One-hot VSET write voltage select DL_RIGHT	Register		1.2		V
R_DL_VRESET_SELECT_R	One-hot VRESET write voltage select DL_RIGHT	Register		1.2		V
R_DL_READ_EN_R	One-hot global read voltage enable, connects read DAC to crossbar	Register		1.2		V
D_DL_WR_EN<255:1:2>	Drive line write enable switch control from decoder	Digital Input		1.2		V
D_DL_GND_EN<255:1:2>	Drive line ground enable switch control from decoder	Digital Input		1.2		V
D_DL_DSTREAM<255:1:2>	1b read DAC data input from serializer	Digital Input		1.2		V
D_DL_DSTREAM_EN<255:1:2 >	1b read DAC tri-state for single read from decoder	Digital Input		1.2		V
V_FORM	FORM voltage	Off-chip reference		3		V
V_SET	SET voltage	Off-chip reference		3	5	V
V_RESET	RESET voltage	Off-chip reference		3		V

V_READ	READ voltage top setting	Off-chip reference	3	V
VDDH	Level-shifter VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VCM	READ voltage bottom setting, virtual ground setting	Off-chip reference	0.9	V
VSS	System ground	Off-chip reference	0	V
DL<255:1:2>	Drive line output to crossbar	Analog		V

BL_TOP						
Net Name	Description	Туре	Min	Тур	Max	Unit s
D_WL_CH_EN<60:0:4>	Word line channel enable switch control from decoder	Digital Input		1.2		V
D_WL_CH_EN<61:1:4>	Word line channel enable switch control from decoder	Digital Input		1.2		V
D_WL_CH_EN<62:2:4>	Word line channel enable switch control from decoder	Digital Input		1.2		V
D_WL_CH_EN<63:3:4>	Word line channel enable switch control from decoder	Digital Input		1.2		V
D_BL_WR_EN<62:2:4>	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_WR_EN<63:3:4>	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN<62:2:4>	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN<63:3:4>	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN<62:2:4>	Bit line read enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN<63:3:4>	Bit line read enable switch control from decoder	Digital Input		1.2		V
R_BL_MAC_EN_T	MAC enable	Register		1.2		V
R_BL_TIA_EN_T	TIA enable	Register		1.2		V
D_BL_ADC_EN_T	ADC enable from timing generator, for clock gating	Digital Input		1.2		V
D_BL_ADC_CLK_T	Free running sys_clk/2	Digital Input		1.2		V
D_BL_ADC_CONV_T	ADC conversion signal from timing generator, for clock gating	Digital Input		1.2		V
D_BL_ADC_CONF_T<1:0>	ADC configuration bits	Digital Input		1.2		V
D_BL_ADC7<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC6<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC5<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC4<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC3<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC2<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC1<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V
D_BL_ADC0<31:1:2>	ADC output to AXI bus	Digital Output		1.2		V

WL_IN	Word line voltage input from global WL mux to channel mux	Analog		V
I_BL_TIA_10U	TIA current reference	Off-chip reference	10u	A
V_BL_ADC_TOP	ADC top voltage reference	Off-chip reference	0.7	V
V_BL_ADC_BOT	ADC bottom voltage reference	Off-chip reference	0	V
V_RESET	RESET voltage	Off-chip reference	3	V
VDDWL	Word line VDD	Off-chip reference	3.3	V
VDDH	Level-shifter VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VCM	READ voltage bottom setting, virtual ground setting	Off-chip reference	0.9	V
VSS	Analog GND	Off-chip reference	0	V
WL<60:0:4>	Word line output to crossbar	Digital Output		V
WL<61:1:4>	Word line output to crossbar	Digital Output		V
WL<62:2:4>	Word line output to crossbar	Digital Output		V
WL<63:3:4>	Word line output to crossbar	Digital Output		V
BL<62:2:4>	Bit line input from crossbar	Digital Output	0.9	V
BL<63:3:4>	Bit line input from crossbar	Digital Output	0.9	V

WL_GLOBAL						
Net Name	Description	Туре	Min	Тур	Max	Unit s
R_WL_VDD_SELECT	One-hot WL MUX VDD select	Register		1.2		V
R_WL_DAC_SELECT	One-hot WL MUX DAC select	Register		1.2		V
R_WL_DAC_DIN<8:0>	Word line Gate DAC digital input word	Register		1.2		V
R_WL_DAC_AMP_EN	Word line Gate DAC output buffer amplifier enable	Register		1.2		V
I_WL_DAC_10U	Word line Gate DAC output buffer current reference	Off-chip reference		10u		A
V_WL_DAC_TOP	Word line Gate DAC top voltage reference	Off-chip reference		2.9		V
V_WL_DAC_BOT	Word line Gate DAC bottom voltage reference	Off-chip reference		0.5		V
VDDWL	Word line VDD	Off-chip reference		3.3		V
VDDH	Level-shifter VDD	Off-chip reference		3.3		V
VDDL	Analog VDD	Off-chip reference		1.2		V
VSS	Analog GND	Off-chip reference		0		V
BL_BOT						
Net Name	Description	Туре	Min	Тур	Max	Unit s
D_BL_WR_EN<60:0:4>	Bit line write enable switch control from decoder	Digital		1.2		V

D_BL_WR_EN<61:1:4>	Bit line write enable switch	Digital	1.2	V
	Bit line ground enable switch			
D_BL_GND_EN<60:0:4>	control from decoder	Digital	1.2	V
D_BL_GND_EN<61:1:4>	Bit line ground enable switch control from decoder	Digital	1.2	V
D_BL_READ_EN<60:0:4>	Bit line read enable switch control from decoder	Digital	1.2	V
D_BL_READ_EN<61:1:4>	Bit line read enable switch control from decoder	Digital	1.2	V
R_BL_MAC_EN_B	MAC enable	Register	1.2	V
R_BL_TIA_EN_B	TIA enable	Register	1.2	V
D_BL_ADC_EN_B	ADC enable from timing generator, for clock gating	Digital	1.2	V
D_BL_ADC_CLK_B	Free running sys_clk/2	Digital	1.2	V
D_BL_ADC_CONV_B	ADC conversion signal from timing generator, for clock gating	Digital	1.2	V
D_BL_ADC_CONF_B<1:0>	ADC configuration bits	Digital	1.2	V
D_BL_ADC7<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC6<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC5<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC4<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC3<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC2<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC1<30:0:2>	ADC output to AXI bus	Digital	1.2	V
D_BL_ADC0<30:0:2>	ADC output to AXI bus	Digital	1.2	V
I_BL_TIA_BOT_10U	TIA current reference	Off-chip reference	10u	A
V_BL_ADC_TOP	ADC top voltage reference	Off-chip reference	0.7	V
V_BL_ADC_BOT	ADC bottom voltage reference	Off-chip reference	0+	V
V_RESET	RESET voltage	Off-chip reference	3	V
VDDH	Level-shifter VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VCM	READ voltage bottom setting, virtual ground setting	Off-chip reference	0.9	V
VSS	Analog GND	Off-chip reference	0	V
BL<60:0:4>	Bit line input from crossbar	Digital	0.9	V
BL<61:1:4>	Bit line input from crossbar	Digital	0.9	V

DRIVE LINE I/O List

DL_GLOBAL						
Net Name	Description	Type	Min	Typ	Max	Unit

D_SYS_CLK	System clock	Digital Input	1.2		V
D_nRESET	System reset	Digital Input	1.2		V
R_DL_VFORM_SELECT	One-hot V_FORM select, global write voltage select	Register	1.2		V
R_DL_VSET_SELECT	One-hot V_SET select, global write voltage select	Register	1.2		V
R_DL_VRESET_SELECT	One-hot V_RESET select, global write voltage select	Register	1.2		V
R_DL_READ_EN	One-hot select global read enable	Register	1.2		V
V_FORM	Form voltage from off-chip	Off-chip reference	3		V
V_SET	Set voltage from off-chip	Off-chip reference	3	5	V
V_RESET	Reset voltage from off-chip	Off-chip reference	3		V
VDDH	Level-shifter VDD	Off-chip reference	3.3		V
VDDL	Analog VDD	Off-chip reference	1.2		V
VSS	Analog GND	GND	0		V
SYS_CLKB_BUF	Buffered system clock	Digital Output	1.2		V
nRESET_BUF	Buffered reset	Digital Output	1.2		V
DL_READ_EN	One-hot select global read enable, level-shifted	Digital Output	3.3		V
V_WRITE	Write voltage output to DL slices	Reference			V

DL_SLICE						
Net Name	Description	Туре	Min	Тур	Max	Unit s
SYS_CLKB_BUF	System clock (inverted for mixed-signal 1/4 clk delay)	Digital Input		1.2		V
nRESET_BUF	System reset	Digital Input		1.2		V
DL_READ_EN	Global pulse DAC enable, tri-states 1.2V DACs during write, global level shifter	Digital Input		1.2		V
D_DL_WR_EN	Row slice write enable, connected selected row to write voltage	Digital Input		1.2		V
D_DL_GND_EN	Row slice ground enable, grounds selected row	Digital Input		1.2		V
D_DL_DSTREAM	Row slice input data stream, data input to 1b DAC	Digital Input		1.2		V
D_DL_DSTREAM_EN	Row slice data stream enable, tri-states unselected DACs during single read	Digital Input		1.2		V
V_WRITE	Write voltage from global write voltage select	Reference				V
V_READ	1b DAC reference high	Off-chip reference		1.2		V
VDDH	Level-shifter VDD	Off-chip reference		3.3		V
VDDL	Analog VDD	Off-chip reference		1.2		V
VCM	1b DAC reference low	Off-chip reference		0.9		V
VSS	Analog GND	GND		0		V
DL	Drive line crossbar connection	Analog				V

BIT LINE Top I/O List

BL_GLOBAL						
Net Name	Description	Туре	Min	Тур	Max	Unit s
R_BL_TIA_EN	TIA enable	Digital Input		1.2		V
I_BL_TIA_10U	TIA current reference	Analog		10u		Α
D_BL_ADC_EN	ADC enable from timing generator, for clock gating	Digital Input		1.2		V
D_BL_ADC_CLK	Free running sys_clk/2	Digital Input		1.2		V
D_BL_ADC_CONV	ADC conversion signal from timing generator, for clock gating	Digital Input		1.2		V
R_BL_ADC_CONF<1:0>	ADC configuration bits	Digital Input		1.2		V
VDDL	Analog VDD	Off-chip reference		1.2		V
VSS	Analog GND	Off-chip reference		0		V
TIA_EN	TIA enable	Digital Output		1.2		V
TIA_ENB	TIA enable bar	Digital Output		1.2		V
TIA_VBP	TIA + voltage reference from current reference	Analog				V
TIA_VBN	TIA - voltage reference from current reference	Analog				V
ADC_SAMP	ADC sample clock, 8 clocks @ MS clock rate (sys_clk/2)	Digital Output		1.2		V
ADC_CONV	ADC conversion signal, 1 clock @ MS clock rate(sys_clk/2)	Digital Output		1.2		V
ADC_CONF<1:0>	ADC configuration bits	Digital Output		1.2		V

BL_WL_SLICE						
Net Name	Description	Туре	Min	Тур	Max	Unit s
BL_EVEN	Bit line input from crossbar, even columns	Analog				V
BL_ODD	Bit line input from crossbar, odd columns	Analog				V
D_BL_WR_EN_EVEN	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_WR_EN_ODD	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN_EVEN	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN_ODD	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN_EVEN	Bit line read enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN_EVEN	Bit line read enable switch control from decoder	Digital Input		1.2		V
R_BL_MAC_EN	MAC enable	Digital Input		1.2		V
TIA_EN	TIA enable	Digital Input		1.2		V

TIA_ENB	TIA enable bar	Digital Input	1.2	V
TIA_VBP	TIA + voltage reference from current reference	Analog		V
TIA_VBN	TIA - voltage reference from current reference	Analog		V
ADC_SAMP	ADC sample clock, 8 clocks @ MS clock rate (sys_clk/2)	Digital Input	1.2	V
ADC_CONV	ADC conversion signal, 1 clock @ MS clock rate(sys_clk/2)	Digital Input	1.2	V
ADC_CONF<1:0>	ADC configuration bits	Digital Input	1.2	V
V_BL_ADC_TOP	ADC top voltage reference	Off-chip reference	0.7	V
V_BL_ADC_BOT	ADC bottom votlage reference	Off-chip reference	0+	V
V_RESET		Analog	3	V
VDDH	Level-shifter VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VCM	READ voltage bottom setting, virtual ground setting	Off-chip reference	0.9	V
VSS	Analog GND	Off-chip reference	0	V
WL_IN	Word line voltage input from global WL mux to channel mux	Analog		V
WL_EVEN1	Word line output to crossbar	Analog		V
WL_ODD1	Word line output to crossbar	Analog		V
WL_EVEN2	Word line output to crossbar	Analog		V
WL_ODD2	Word line output to crossbar	Analog		V
D_WL_CH_EN_EVEN1	Word line channel enable switch control from decoder	Digital Input	1.2	V
D_WL_CH_EN_ODD1	Word line channel enable switch control from decoder	Digital Input	1.2	V
D_WL_CH_EN_EVEN2	Word line channel enable switch control from decoder	Digital Input	1.2	V
D_WL_CH_EN_ODD2	Word line channel enable switch control from decoder	Digital Input	1.2	V
VDDWL	Word line VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VSS	Analog GND	Off-chip reference	0	V
D7	ADC output bit 7	Digital Output	1.2	V
D6	ADC output bit 6	Digital Output	1.2	V
D5	ADC output bit 5	Digital Output	1.2	V
D4	ADC output bit 4	Digital Output	1.2	V
D3	ADC outptu bit 3	Digital Output	1.2	V
D2	ADC output bit 2	Digital Output	1.2	V
D1	ADC output bit 1	Digital Output	1.2	V
D0	ADC output bit 0	Digital Output	1.2	V

BL_GLOBAL						
Net Name	Description	Туре	Min	Тур	Max	Unit s
R_BL_TIA_EN	TIA enable	Digital Input		1.2		V
I_BL_TIA_10U	TIA current reference	Analog		10u		A
D_BL_ADC_EN	ADC enable from timing generator, for clock gating	Digital Input		1.2		V
D_BL_ADC_CLK	Free running sys_clk/2	Digital Input		1.2		V
D_BL_ADC_CONV	ADC conversion signal from timing generator, for clock gating	Digital Input		1.2		V
R_BL_ADC_CONF<1:0>	ADC configuration bits	Digital Input		1.2		V
VDDL	Analog VDD	Off-chip reference		1.2		V
VSS	Analog GND	Off-chip reference		0		V
TIA_EN	TIA enable	Digital Output		1.2		V
TIA_ENB	TIA enable bar	Digital Output		1.2		V
TIA_VBP	TIA + voltage reference from current reference	Analog				V
TIA_VBN	TIA - voltage reference from current reference	Analog				V
ADC_SAMP	ADC sample clock, 8 clocks @ MS clock rate (sys_clk/2)	Digital Output		1.2		V
ADC_CONV	ADC conversion signal, 1 clock @ MS clock rate(sys_clk/2)	Digital Output		1.2		V
ADC_CONF<1:0>	ADC configuration bits	Digital Output		1.2		V

BL_WL_SLICE						
Net Name	Description	Туре	Min	Тур	Max	Unit s
BL_EVEN	Bit line input from crossbar, even columns	Analog				V
BL_ODD	Bit line input from crossbar, odd columns	Analog				V
D_BL_WR_EN_EVEN	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_WR_EN_ODD	Bit line write enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN_EVEN	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_GND_EN_ODD	Bit line ground enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN_EVEN	Bit line read enable switch control from decoder	Digital Input		1.2		V
D_BL_READ_EN_EVEN	Bit line read enable switch control from decoder	Digital Input		1.2		V
R_BL_MAC_EN	MAC enable	Digital Input		1.2		V
TIA_EN	TIA enable	Digital Input		1.2		V
TIA_ENB	TIA enable bar	Digital Input		1.2		V
TIA_VBP	TIA + voltage reference from current reference	Analog				V
TIA_VBN	TIA - voltage reference from current reference	Analog				V

ADC_SAMP	ADC sample clock, 8 clocks @ MS clock rate (sys_clk/2)	Digital Input	1.2	V
ADC_CONV	ADC conversion signal, 1 clock @ MS clock rate(sys_clk/2)	Digital Input	1.2	V
ADC_CONF<1:0>	ADC configuration bits	Digital Input	1.2	V
V_BL_ADC_TOP	ADC top voltage reference	Off-chip reference	0.7	V
V_BL_ADC_BOT	ADC bottom votlage reference	Off-chip reference	0+	V
V_RESET		Analog		V
VDDH	Level-shifter VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VCM	READ voltage bottom setting, virtual ground setting	Off-chip reference	0.9	V
VSS	Analog GND	Off-chip reference	0	V
D7	ADC output bit 7	Digital Output	1.2	V
D6	ADC output bit 6	Digital Output	1.2	V
D5	ADC output bit 5	Digital Output	1.2	V
D4	ADC output bit 4	Digital Output	1.2	V
D3	ADC outptu bit 3	Digital Output	1.2	V
D2	ADC output bit 2	Digital Output	1.2	V
D1	ADC output bit 1	Digital Output	1.2	V
D0	ADC output bit 0	Digital Output	1.2	V

WORD LINE DAC and Mux I/O List

WL_DAC						
Net Name	Description	Туре	Min	Тур	Max	Unit s
R_WL_DAC_DIN<8:0>	Word line gate DAC input word	Digital Input		1.2		V
R_WL_DAC_AMP_EN	Word line gate DAC output buffer amplifer enable	Digital Input		1.2		V
I_WL_DAC_10U	Word line gate DAC output buffer current reference	Analog		10u		A
V_WL_DAC_TOP	Word line gate DAC top voltage reference	Off-chip reference		2.9		V
V_WL_DAC_BOT	Word line gate DAC bottom voltage reference	Off-chip reference		0.5		V
VDDH	Level-shifter VDD	Off-chip reference		3.3		V
VDDL	Analog VDD	Off-chip reference		1.2		V
VSS	Analog VSS	Off-chip reference		0		V
WL_DAC	Word line DAC voltage output	Analog				V

WL_MUX						
Net Name	Description	Туре	Min	Тур	Max	Unit s

R_WL_VDD_SELECT	One-hot word line VDD select to channel switches	Digital Input	1.2	V
R_WL_DAC_SELECT	One-hot word line gate DAC select to channel switches	Digital Input	1.2	V
WL_DAC	Word line gate DAC input to global mux	Analog		V
VDDWL	Word line VDD	Off-chip reference	3.3	V
VDDL	Analog VDD	Off-chip reference	1.2	V
VSS	Analog GND	Off-chip reference	0	V
WL_IN	Word line mux output to channel switches	Analog		V

ASIC Pin Map

ASIC I/O

Pad Number	Domain	Sub-Domain	Net Name	I/O	Min	Тур	Max	Uni s
1	Analog Tile	Analog Reference	VSSA	GND		0		V
2	Analog Tile	1T1R Read Reference	V_READ	REF		1.2		V
3	Analog Tile	1T1R Read Reference	V_READ	REF		1.2		V
4	Analog Tile	Analog LV Reference	VDDL	REF		1.2		V
5	Analog Tile	Analog LV Reference	VDDL	REF		1.2		V
6	Analog Tile	Analog HV Reference	VDDH	REF		3.3		V
7	Analog Tile	Analog HV Reference	VDDH	REF		3.3		V
8	N/A		FILL					
9	Digital	Digital Reference	DVSS	GND		0		V
10	Digital	Digital Reference	DVSS	GND		0		V
11	Digital	Digital Reference	DVDD	REF		1.2		V
12	N/A		SEP_B1 (88um)					
13	Digital		PAD_DVDD_B9	REF		3.3		V
14	Digital		PAD_DVDD_B8	REF		3.3		V
15	Digital		PAD_VDD_B10	REF		1.2		V
16	Digital		PAD_VDD_B9	REF		1.2		V
17	Digital	Digital Reference	PAD_VSS_B10	GND		0		V
18	Digital	Digital Reference	PAD_VSS_B9	GND		0		V
19	Digital	Digital Reference	PAD_VSS_B8	GND		0		V
20	Digital	UART	i_pado_uart_dtr	Output		1.2		V
21	Digital	UART	i_pado_uart_rts	Output		1.2		V
22	Digital	UART	i_pado_uart_tx	Output		1.2		V
23	Digital	SPI Master	i_pado_spi_master_sdo3	Output		1.2		V
24	Digital	SPI Master	i_pado_spi_master_sdo2	Output		1.2		V
25	Digital	SPI Master	i_pado_spi_master_sdo1	Output		1.2		V
26	Digital	SPI Master	i_pado_spi_master_sdo0	Output		1.2		V
27	Digital		PAD_DVDD_B7	REF		3.3		V
28	Digital		PAD_DVDD_B6	REF		3.3		V
29	Digital		PAD_DVDD_B5	REF		3.3		V
30	Digital		PAD_VDD_B8	REF		1.2		V
31	Digital		PAD_VDD_B7	REF		1.2		V
32	Digital		PAD_VDD_B6	REF		1.2		V
33	Digital	Digital Reference	PAD_VSS_B7	GND		0		V
34	Digital	Digital Reference	PAD_VSS_B6	GND		0		V
35	Digital	Digital Reference	PAD_VSS_B5	GND		0		V

36	Digital	SPI Master	i_pado_spi_master_mode1	Output	1.2	V
37	Digital	SPI Master	i_pado_spi_master_mode0	Output	1.2	V
38	Digital	SPI Master	i_pado_spi_master_csn3	Output	1.2	V
39	Digital	SPI Master	i_pado_spi_master_csn2	Output	1.2	V
40	Digital	SPI Master	i_pado_spi_master_csn1	Output	1.2	V
41	Digital	SPI Master	i_pado_spi_master_csn0	Output	1.2	V
42	Digital	SPI Master	i_pado_spi_master_clk	Output	1.2	V
43	Digital		PAD_DVDD_B4	REF	3.3	V
44	Digital		PAD_DVDD_B3	REF	3.3	V
45	Digital		PAD_VDD_B5	REF	1.2	V
46	Digital		PAD_VDD_B4	REF	1.2	V
47	Digital		PAD_VDD_B3	REF	1.2	V
48	Digital	Digital Reference	PAD_VSS_B4	GND	0	V
49	Digital	Digital Reference	PAD_VSS_B3	GND	0	V
50	Digital	Digital Reference	PAD_VSS_B2	GND	0	V
51	Digital	Quad SPI	i_pado_spi_sdo3	Output	1.2	V
52	Digital	Quad SPI	i_pado_spi_sdo2	Output	1.2	V
53	Digital	Quad SPI	i_pado_spi_sdo1	Output	1.2	V
54	Digital	Quad SPI	i_pado_spi_sdo0	Output	1.2	V
55	Digital	Quad SPI	i_pado_spi_mode1	Output	1.2	V
56	Digital	Quad SPI	i_pado_spi_mode0	Output	1.2	V
57	Digital	JTAG	i_pado_tdo	Output	1.2	V
58	Digital		PAD_DVDD_B2	REF	3.3	V
59	Digital		PAD_DVDD_B1	REF	3.3	V
60	Digital		PAD_DVDD_B0	REF	3.3	V
61	Digital		PAD_VDD_B2	REF	1.2	V
62	Digital		PAD_VDD_B1	REF	1.2	V
63	Digital		PAD_VDD_B0	REF	1.2	V
64	Digital	Digital Reference	PAD_VSS_B1	GND	0	V
65	Digital	Digital Reference	PAD_VSS_B0	GND	0	V
66	N/A		SEP_B0 (88um)			
67	Digital	Digital Reference	DVDD	REF	1.2	V
68	Digital	Digital Reference	DVSS	GND	0	V
69	Digital	Digital Reference	DVSS	GND	0	V
70	N/A		FILL			
71	Analog Tile	Analog HV Reference	VDDH	REF	3.3	V
72	Analog Tile	Analog HV Reference	VDDH	REF	3.3	V
73	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
74	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V

75	Analog Tile	1T1R Read Reference	V_READ	REF	1.2	V
76	Analog Tile	1T1R Read Reference	V_READ	REF	1.2	V
77	Analog Tile	Analog Reference	VSSA	GND	0	V
78	Analog Tile	Analog Reference	VSSA	GND	0	V
79	Analog Tile	1T1R Read Reference	VCM	REF	0.9	V
80	Analog Tile	1T1R Read Reference	VCM	REF	0.9	V
81	Analog Tile	ADC Reference	V_BL_ADC_BOT	REF	0	V
82	Analog Tile	ADC Reference	V_BL_ADC_TOP	REF	0.7	V
83	Analog Tile	TIA Reference	I_BL_TIA_BOT_10U	REF	10u	A
84	Analog Tile	1T1R Write Reference	V_SET	REF	3 5	V
85	Analog Tile	1T1R Write Reference	V_SET	REF	3 5	V
86	Analog Tile	1T1R Write Reference	V_RESET	REF	3	V
87	Analog Tile	1T1R Write Reference	V_RESET	REF	3	V
88	Analog Tile	1T1R Write Reference	V_FORM	REF	3	V
89	Analog Tile	1T1R Write Reference	V_FORM	REF	3	V
90	Analog Tile	1T1R Gate Reference	VDDWL	REF	3.3	V
91	Analog Tile	Gate DAC Reference	I_WL_DAC_10U	REF	10u	A
92	Analog Tile	TIA Reference	I_BL_TIA_TOP_10U	REF	10u	A
93	Analog Tile	Gate DAC Reference	V_WL_DAC_BOT	REF	0.5	V
94	Analog Tile	Gate DAC Reference	V_WL_DAC_TOP	REF	2.9	V
95	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
96	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
97	N/A		FILL			
98	Digital	Digital Reference	VSSA	GND	0	V
99	Digital	Digital Reference	VSSA	GND	0	V
100	Digital	Digital Reference	DVDD	REF	1.2	V
101	Digital	Digital Reference	DVDD	REF	1.2	V
102	Digital	Digital Reference	VSSA	GND	0	V
103	Digital	Digital Reference	VSSA	GND	0	V
104	N/A		FILL			
105	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
106	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
107	Analog Tile	Gate DAC Reference	V_WL_DAC_TOP	REF	2.9	V
108	Analog Tile	Gate DAC Reference	V_WL_DAC_BOT	REF	0.5	V
109	Analog Tile	TIA Reference	I BL TIA TOP 10U	REF	10u	A
110	Analog Tile	Gate DAC Reference	I_WL_DAC_10U	REF	10u	A
111	Analog Tile	1T1R Gate Reference	VDDWL	REF	3.3	V
112		1T1R Write Reference	V FORM	REF	3	V
	3 4			-		

114	Analog Tile	1T1R Write Reference	V_RESET	REF	3		V
115	Analog Tile	1T1R Write Reference	V_RESET	REF	3		V
116	Analog Tile	1T1R Write Reference	V_SET	REF	3	5	V
117	Analog Tile	1T1R Write Reference	V_SET	REF	3	5	V
118	Analog Tile	TIA Reference	I_BL_TIA_BOT_10U	REF	10u		A
119	Analog Tile	ADC Reference	V_BL_ADC_TOP	REF	0.7		V
120	Analog Tile	ADC Reference	V_BL_ADC_BOT	REF	0		V
121	Analog Tile	1T1R Read Reference	VCM	REF	0.9		V
122	Analog Tile	1T1R Read Reference	VCM	REF	0.9		V
123	Analog Tile	Analog Reference	VSSA	GND	0		V
124	Analog Tile	Analog Reference	VSSA	GND	0		V
125	Analog Tile	1T1R Read Reference	V_READ	REF	1.2		V
126	Analog Tile	1T1R Read Reference	V_READ	REF	1.2		V
127	Analog Tile	Analog LV Reference	VDDL	REF	1.2		V
128	Analog Tile	Analog LV Reference	VDDL	REF	1.2		V
129	Analog Tile	Analog HV Reference	VDDH	REF	3.3		V
130	Analog Tile	Analog HV Reference	VDDH	REF	3.3		V
131	N/A		FILL				
132	Digital	Digital Reference	DVSS	GND	0		V
133	Digital	Digital Reference	DVSS	GND	0		V
134	Digital	Digital Reference	DVDD	REF	1.2		V
135	N/A		SEP_T1 (88um)				
136	Digital		PAD_DVDD_T10	REF	3.3		V
137	Digital		PAD_DVDD_T9	REF	3.3		V
138	Digital	Digital Reference	PAD_VSS_T10	GND	0		V
139	Digital	Digital Reference	PAD_VSS_T9	GND	0		V
140	Digital	Digital Reference	PAD_VSS_T8	GND	0		V
141	Digital		PAD_VDD_T10	REF	1.2		V
142	Digital		PAD_VDD_T9	REF	1.2		V
143	Digital		PAD_VDD_T8	REF	1.2		V
144	Digital	UART	i_padi_uart_rx	Input	1.2		V
145	Digital	UART	i_padi_uart_dsr	Input	1.2		V
146	Digital	UART	i_padi_uart_cts	Input	1.2		V
147	Digital	JTAG	i_padi_tdi	Input	1.2		V
148	Digital	JTAG	i_padi_tms	Input	1.2		V
149	Digital	JTAG	i_padi_trstn	Input	1.2		V
150	Digital	JTAG	i_padi_tck	Input	1.2		V
151	Digital	Digital Reference	PAD_VSS_T7	GND	0		V
152	Digital	Digital Reference	PAD_VSS_T6	GND	0		V

153	Digital	Digital Reference	PAD_VSS_T5	GND	0	V
154	Digital		PAD VDD T7	REF	1.2	v
155	Digital		PAD VDD T6	REF	1.2	V
156	Digital		PAD_VDD_T5	REF	1.2	v
157	Digital		PAD DVDD T8	REF	3.3	V
158	Digital		PAD DVDD T7	REF	3.3	V
159	Digital		PAD DVDD T6	REF	3.3	V
160	Digital	SPI Master	i padi spi master sdi3	Input	1.2	V
161	Digital	SPI Master	i_padi_spi_master_sdi2	Input	1.2	V
162	Digital	SPI Master	i_padi_spi_master_sdi1	Input	1.2	V
163	Digital	SPI Master	i_padi_spi_master_sdi0	Input	1.2	V
164					1.2	V
	Digital	Quad SPI	i_padi_spi_sdi3	Input	1.2	_
165	Digital	Quad SPI	i_padi_spi_sdi2	Input		V
166	Digital		PAD_DVDD_T5	REF	3.3	V
167	Digital		PAD_DVDD_T4	REF	3.3	V
168	Digital		PAD_DVDD_T3	REF	3.3	V
169	Digital	Digital Reference	PAD_VSS_T4	GND	0	V
170	Digital	Digital Reference	PAD_VSS_T3	GND	0	V
171	Digital		PAD_VDD_T4	REF	1.2	V
172	Digital		PAD_VDD_T3	REF	1.2	V
173	Digital		PAD_VDD_T2	REF	1.2	V
174	Digital	Quad SPI	i_padi_spi_sdi1	Input	1.2	V
175	Digital	Quad SPI	i_padi_spi_sdi0	Input	1.2	V
176	Digital	Quad SPI	i_padi_spi_cs	Input	1.2	V
177	Digital	Quad SPI	i_padi_spi_clk	Input	1.2	V
178	Digital	Core	i_padi_fetch_enable	Input	1.2	V
179	Digital	Core	i_padi_rst_n	Input	1.2	V
180	Digital	Core	i_padi_clk	Input	1.2	V
181	Digital		PAD_DVDD_T2	REF	3.3	V
182	Digital		PAD_DVDD_T1	REF	3.3	V
183	Digital		PAD_DVDD_T0	REF	3.3	V
184	Digital	Digital Reference	PAD_VSS_T2	GND	0	V
185	Digital	Digital Reference	PAD_VSS_T1	GND	0	V
186	Digital	Digital Reference	PAD_VSS_T0	GND	0	V
187	Digital		PAD_VDD_T1	REF	1.2	V
188	Digital		PAD_VDD_T0	REF	1.2	V
189	N/A		SEP_T0 (88um)			
190	Digital	Digital Reference	DVDD	REF	1.2	V
191	Digital	Digital Reference	DVSS	GND	0	V

	1					
192	Digital	Digital Reference	DVSS	GND	0	V
193	N/A		FILL			
194	Analog Tile	Analog HV Reference	VDDH	REF	3.3	V
195	Analog Tile	Analog HV Reference	VDDH	REF	3.3	V
196	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
197	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
198	Analog Tile	1T1R Read Reference	V_READ	REF	1.2	V
199	Analog Tile	1T1R Read Reference	V_READ	REF	1.2	V
200	Analog Tile	Analog Reference	VSSA	GND	0	V
201	Analog Tile	Analog Reference	VSSA	GND	0	V
202	Analog Tile	1T1R Read Reference	VCM	REF	0.9	V
203	Analog Tile	1T1R Read Reference	VCM	REF	0.9	V
204	Analog Tile	ADC Reference	V_BL_ADC_BOT	REF	0	V
205	Analog Tile	ADC Reference	V_BL_ADC_TOP	REF	0.7	V
206	Analog Tile	TIA Reference	I_BL_TIA_BOT_10U	REF	10u	A
207	Analog Tile	1T1R Write Reference	V_SET	REF	3 5	V
208	Analog Tile	1T1R Write Reference	V_SET	REF	3 5	V
209	Analog Tile	1T1R Write Reference	V_RESET	REF	3	V
210	Analog Tile	1T1R Write Reference	V_RESET	REF	3	V
211	Analog Tile	1T1R Write Reference	V_FORM	REF	3	V
212	Analog Tile	1T1R Write Reference	V_FORM	REF	3	V
213	Analog Tile	1T1R Gate Reference	VDDWL	REF	3.3	V
214	Analog Tile	Gate DAC Reference	I_WL_DAC_10U	REF	10u	A
215	Analog Tile	TIA Reference	I_BL_TIA_TOP_10U	REF	10u	A
216	Analog Tile	Gate DAC Reference	V_WL_DAC_BOT	REF	0.5	V
217	Analog Tile	Gate DAC Reference	V_WL_DAC_TOP	REF	2.9	V
218	Analog Tile	Analog LV Reference	VDDL	GND	1.2	V
219	Analog Tile	Analog LV Reference	VDDL	GND	1.2	V
220	N/A		FILL			
221	Digital	Digital Reference	VSSA	GND	0	V
222	Digital	Digital Reference	VSSA	GND	0	V
223	Digital	Digital Reference	DVDD	REF	1.2	V
224	Digital	Digital Reference	DVDD	REF	1.2	V
225	Digital	Digital Reference	VSSA	GND	0	V
226	Digital	Digital Reference	VSSA	GND	0	V
227	N/A		FILL			
228	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
229	Analog Tile	Analog LV Reference	VDDL	REF	1.2	V
230	Analog Tile	Gate DAC Reference	V_WL_DAC_TOP	REF	2.9	V
	J .					

231	Analog Tile	Gate DAC Reference	V_WL_DAC_BOT	REF	0.5		V
232	Analog Tile	TIA Reference	I_BL_TIA_TOP_10U	REF	10u		A
233	Analog Tile	Gate DAC Reference	I_WL_DAC_10U	REF	10u		Α
234	Analog Tile	1T1R Gate Reference	VDDWL	REF	3.3		V
235	Analog Tile	1T1R Write Reference	V_FORM	REF	3		V
236	Analog Tile	1T1R Write Reference	V_FORM	REF	3		V
237	Analog Tile	1T1R Write Reference	V_RESET	REF	3		V
238	Analog Tile	1T1R Write Reference	V_RESET	REF	3		V
239	Analog Tile	1T1R Write Reference	V_SET	REF	3	5	V
240	Analog Tile	1T1R Write Reference	V_SET	REF	3	5	V
241	Analog Tile	TIA Reference	I_BL_TIA_BOT_10U	REF	10u		A
242	Analog Tile	ADC Reference	V_BL_ADC_TOP	REF	0.7		V
243	Analog Tile	ADC Reference	V_BL_ADC_BOT	REF	0		V
244	Analog Tile	1T1R Read Reference	VCM	REF	0.9		V
245	Analog Tile	1T1R Read Reference	VCM	REF	0.9		V
246	Analog Tile	Analog Reference	VSSA	GND	0		V