

Unidade 19 - Emparelhamentos

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

Bibliografia

- Fundamentos da Teoria dos Grafos para Computação M.C. Nicoletti, E.R. Hruschka Jr. 3ª Edição LTC
- Grafos Teoria, Modelos, Algoritmos Paulo Oswaldo Boaventura Netto, 5ª edição
- Grafos Conceitos, Algoritmos e Aplicações Marco Goldbarg, Elizabetj Goldbarg, Editora Campus
- A first look at Graph Theory John Clark, Derek Allan Holton 1998, World Cientific
- Introduction to Graph Teory Robin J. Wilson 4th Edition Prentice Hall 1996
- Introduction to Graph Theory Douglas West Second Edition 2001 Pearson Edition
- Mathematics A discrete Introduction Third Edition Edward R. Scheinerman 2012
- Discrete Mathematics and its Applications Kenneth H. **Rosen** 7th edition McGraw Hill 2012
- Data Structures Theory and Practice A. T. Berztiss New York Academic Press 1975 Second Edition
- Discrete Mathematics R. **Johnsonbaugh** Pearson 2018 Eighth Edition
- Graoy Theory R. **Diestel** Springer 5th Edition 2017
- Teoria Computacional de Grafos Jayme Luiz Szwarcfiter Elsevier 2018

De quantas maneiras pode-se hospedar 6 casais em 6 quartos de um hotel ?

Primeiro casal tem 6 possibilidades de escolha!

Segundo casal terá 5 possibilidades de escolha!

E assim, por diante...

Total de Possibilidades: C(6,1) + C(5,1) + C(4,1) + C(3,1) + C(2,1) + C(1,1)

$$C_s^n = \binom{n}{s} = \frac{n!}{s! \cdot (n-s)!}$$

Total de Possibilidades: 6+5+4+3+2+1=21 possibilidades

- ✓ Consideremos uma variação do Problema apresentado;
- ✓ Considere um hotel com apenas 6 quartos;
- ✓ No instante do check-in, seis casais se apresentaram com algumas preferências de acomodações:

- ✓ No instante do check-in, seis casais se apresentaram com as seguintes preferências de acomodações:
- ✓ O casal A tem preferência pelos quartos 1,2 e 4
- ✓ O casal B tem preferência pelos quartos 2 e 6
- ✓ O casal C tem preferência pelos quartos 2 e 3
- ✓ O casal D tem preferência pelos quartos 3,5 e 6
- ✓ O casal E tem preferência pelos quartos 3,4,5 e 6
- ✓ O casal F tem preferência pelos quartos 2 e 5

- ✓ Durante o check-in, o gerente do hotel, se deparou com o seguinte problema!
- ✓ Será possível hospedar todos os casais respeitando suas preferências?

- ✓ A questão corresponde a:
 - Qual é o número máximo de subconjuntos de tamanho 2 que é possível formar com 12 elementos, respeitando-se as restrições apresentadas?

✓ Será que as ferramentas da Análise Combinatória serão suficientes para resolver esse problema?

Será que poderíamos modelar o problema com Grafos ?

Aplicando Grafos ao problema

- ✓ Pode-se criar um grafo para a partir dele tentar a solução do problema;
- ✓ Consideremos um grafo G, com 12 vértices, 6 representando os casais e 6 representando os quartos;
- ✓ Pode-se conectar os casais aos quartos respeitando-se as suas preferências;
- ✓ Nesse grafo, não haverá necessidade de se conectar casais com casais, pois essas conexões não se aplicam ao problema;

Aplicando Grafos ao problema

- ✓ Pode-se esboçar um grafo de modo que vértices representando casais estejam à esquerda e vértices representando os quartos, à direita;
- ✓ Nessa situação, toda aresta conectará um vértice da esquerda à um vértice da direita.
- ✓ Pode-se denotar o conjunto dos vértices à esquerda por X={A,B,C,D,E,F} e o conjunto da direita por Y={1,2,3,4,5,6}.

Aplicando Grafos no problema

- ✓ O casal A prefere os quartos 1,2 e 4
- ✓ O casal B prefere os quartos 2 e 6
- ✓ O casal C prefere os quartos 2 e 3
- ✓ O casal D prefere os quartos 3,5 e 6
- ✓ O casal E prefere os quartos 3,4,5 e 6
- ✓ O casal F prefere os quartos 2 e 5

O grafo desenhado para o problema tem alguma característica interessante?

- ✓ Sim, o gráfico desenhado tem uma propriedade interessante!
- ✓ Trata-se de um Grafo Bipartido!

Grafo Bipartido

Um Grafo é dito Bipartido se o conjunto de vértices pode ser particionados em dois conjuntos X e Y tais que toda aresta conecta um vértice em X a um vértice em Y.

Tentativa de Solução

- ✓ A solução para o problema consiste em se determinar um relacionamento entre os vértices que atenda às restrições do problema;
- ✓ Será que o relacionamento abaixo, resolveria o problema?

- ✓ O casal A prefere os quartos 1,2 e 4
- ✓ O casal B prefere os quartos 2 e 6
- ✓ O casal C prefere os quartos 2 e 3
- ✓ O casal D prefere os quartos 3,5 e 6
- ✓ O casal E prefere os quartos 3,4,5 e 6
- ✓ O casal F prefere os quartos 2 e 5

Tentativa de Solução

- ✓ O emparelhamento proposto não resolve o problema, pois os casais D e E não teriam quartos disponíveis;
- ✓ Assim, deve-se procurar um emparelhamento adequado que resolva o problema.

- ✓ O casal A prefere os quartos 1,2 e 4
- ✓ O casal B prefere os quartos 2 e 6
- ✓ O casal C prefere os quartos 2 e 3
- ✓ O casal D prefere os quartos 3,5 e 6
- ✓ O casal E prefere os quartos 3,4,5 e 6
- ✓ O casal F prefere os quartos 2 e 5

Emparelhamento

Emparelhamento

Emparelhamento é um conjunto de arestas onde não existem duas arestas incidentes a um mesmo vértice.

✓ No exemplo, os conjuntos X e Y não estão emparelhados, pois o vértice C de X está sendo conectado aos vértices 2 e 3 de Y;

Solução parcial

- ✓ Para a solução apresentada, conseguiu-se emparelhar 4 vértices!
- ✓ Será que se consegue um emparelhamento maior?

- ✓ O casal A preferia os quartos 1,2 e 4
- ✓ O casal B preferia os quartos 2 e 6
- ✓ O casal C preferia os quartos 2 e 3
- ✓ O casal D preferia os quartos 3,5 e 6
- ✓ O casal E preferia os quartos 3,4,5 e 6
- ✓ O casal F preferia os quartos 2 e 5

Emparelhamento Perfeito

✓ Para a solução do problema do hotel, deve-se encontrar um emparelhamento perfeito, que é um emparelhamento que tem todos os vértices conectados;

Será que para o problema do hotel, consegue-se obter um emparelhamento perfeito?

✓ Graças ao Matemático francês Claude Berge, pode-se determinar se há um emparelhamento maior (com mais arestas) que o já encontrado.

Segundo Berge, se conseguirmos encontrar um caminho que comece e termine com vértices livres alternando entre arestas que pertencem e que não pertencem ao emparelhamento, então existe um emparelhamento M' maior que o inicial. Esse tipo de caminho chama-se Caminho M-aumentante.

Vértice livre ou vértice não M-saturado é um vértice que não pertence ao emparelhamento M.

Segundo Berge, se conseguirmos encontrar um caminho que comece e termine com vértices livres alternando entre arestas que pertencem e que não pertencem ao emparelhamento, então existe um emparelhamento M' maior que o inicial. Esse tipo de caminho chama-se Caminho M-aumentante.

Vértice Livre

Vértice livre ou vértice não M-saturado é um vértice que não pertence ao emparelhamento M.

Vértices Livres

Vértices Livres

Segundo Berge, se conseguirmos encontrar um caminho que comece e termine com vértices livres alternando entre arestas que pertencem e que não pertencem ao emparelhamento, então existe um emparelhamento M' maior que o inicial. Esse tipo de caminho chama-se Caminho M-aumentante.

✓ Problema Original

✓ Emparelhamento Parcial com4 arestas conectadas

- ✓ Deve-se começar e terminar com vértices livres, alternando-se entre arestas que pertencem e não pertencem ao emparelhamento;
- ✓ Por exemplo, ao se escolher o vértice D, deve-se escolher alguma aresta que não pertence ao emparelhamento, podendo ser D3, D5 ou D6;

✓ Problema Original

- ✓ Por exemplo, ao se escolher o vértice D, deve-se escolher alguma aresta que não pertence ao emparelhamento, podendo ser D3, D5 ou D6;
- ✓ Pode-se, por exemplo, escolher D5.

✓ ProblemaOriginal

- ✓ Pode-se, por exemplo, escolher D5;
- ✓ Como o caminho é alternante, a próxima aresta deve ser do emparelhamento;
- ✓ Portanto, a aresta do emparelhamento que deve ser escolhida é F5.

✓ Problema
Original

- ✓ Portanto, a aresta do emparelhamento que deve ser escolhida é **F5**
- ✓ Como o caminho é alternante, a próxima não deve ser do emparelhamento;
- ✓ Portanto, a próxima aresta a ser escolhida deve ser F2.

✓ ProblemaOriginal

- ✓ Como o caminho é alternante, a próxima aresta deve ser do emparelhamento;
- ✓ Mas, não há aresta do emparelhamento ligando 2;
- ✓ Portanto, o caminho encerra-se aqui;
- ✓ Mas, o caminho traçado iniciou-se com um vértice livre (D) e terminou com vértice livre (2)
- ✓ Assim, de acordo com o **Teorema de Berge**, obteve-se um caminho **M-alternante**.

- ✓ Próximo passo: Deve-se retirar do caminho M-aumentante (D5F2), toda aresta desse caminho que pertence a M;
- ✓ Deve-se portanto, retirar a aresta F5;
- ✓ Com isso, obtém-se um emparelhamento com uma aresta a mais.

Agora, pode-se hospedar 5 casais!!!

- ✓ Já se conseguiu hospedar **5** casais!
- ✓ Mas, será que poderemos hospedar os 6 casais?

- ✓ Será que poderemos hospedar os **6 casais**?
- ✓ Deve-se aplicar novamente o Teorema de Berge;
- ✓ Os vértices livres são 1 e E.

- ✓ Será que poderemos hospedar os 6 casais?
- ✓ Deve-se aplicar novamente o Teorema de Berge;
- ✓ Deve-se começar e terminar com vértices livres, alternando-se entre arestas que pertencem e não pertencem ao emparelhamento;
- ✓ Os vértices livres são 1 e E;
- ✓ Por exemplo, ao se escolher o vértice 1, deve-se escolher alguma aresta que não pertence ao emparelhamento, devendo ser portanto, A1.

- ✓ Por exemplo, ao se escolher o vértice 1, deve-se escolher alguma aresta que não pertence ao emparelhamento, devendo ser portanto, A1;
- ✓ Como os caminhos são alternantes, deve-se agora escolher alguma aresta do emparelhamento, devendo ser, portanto, ♣4.

- ✓ Como os caminhos são alternantes, deve-se agora escolher alguma aresta que não pertença ao emparelhamento;
- ✓ Assim, a próxima aresta deve ser E4;

Teorema de Berge

- ✓ Como os caminhos são alternantes, deve-se agora escolher alguma aresta que pertença ao emparelhamento;
- ✓ Como não há aresta do emparelhamento que inicia em **E**, o caminho termina;
- ✓ Os vértice 1 e E são livres, portanto o caminho obtido é M-aumentante;

Teorema de Berge

- ✓ Deve-se eliminar todas as arestas do caminho **M-aumentante** que estão no emparelhamento;
- ✓ No caso, deve-se portanto eliminar a aresta A4.

Teorema de Berge

✓ Portanto, conseguiu-se resolver o problema dos 6 casais;

- ✓ O casal A preferia os quartos 1,2 e 4
- ✓ O casal B preferia os quartos 2 e 6
- ✓ O casal C preferia os quartos 2 e 3
- ✓ O casal D preferia os quartos 3,5 e 6
- ✓ O casal E preferia os quartos 3,4,5 e 6
- ✓ O casal F preferia os quartos 2 e 5

Formalização - Gafos Bipartidos

GRAFO BIPARTIDO

Grafo bipartido (bicolorido, bigrafo ou bipartite) é um grafo cujos vértices podem ser divididos em dois conjuntos disjuntos X e Y tais que toda aresta conecta um vértice em X a um vértice em Y. Resumindo:

- Seja G = (V, A) um grafo simples;
- V pode ser particionado em dois conjuntos X e Y;
- $V = X \cup Y$;
- $X \cap Y = \emptyset$;
- Vértices em X conectam-se apenas a vértices em Y (e vice-versa).

Formalização - Emparelhamentos

EMPARELHAMENTO

Sejam G=(V,A) um grafo, $m\ e\ n\in\mathbb{N}$. Um emparelhamento (ou matching, ou acoplamento) é um conjunto $M\subseteq A$ tal que, $a_m\cap a_n=\emptyset$ para todas as arestas a_m e $a_n\in M$, com $m\ne n$. Em outras palavras, as arestas não têm vértices em comum, ou seja, não existem duas arestas adjacentes neste conjunto. Este conjunto também é chamado de conjunto independente de arestas.

Formalização - Vértice Livre

✓ Vértice livre ou vértice não M-saturado é um vértice que não pertence ao emparelhamento **M**.

CAMINHO M-ALTERNANTE

CAMINHO M-ALTERNANTE

- ✓ Iniciou-se o caminho com uma aresta do emparelhamento (F5);
- ✓ Portanto, a próxima aresta do caminho **NÃO** deve pertencer ao emparelhamento;
- ✓ Portanto, a próxima aresta deve ser **D5** ou **E5**

CAMINHO M-ALTERNANTE

- ✓ Escolheu-se **D5**;
- ✓ Portanto, a próxima aresta do caminho **DEVE** pertencer ao emparelhamento;
- ✓ Mas, tal aresta não existe. Logo, terminou o caminho M-alternante.

CAMINHO M-ALTERNANTE

- ✓ Outro caminho M-Alternante
- ✓ Exemplo: Inicia-se em A1 (aresta não pertencente ao emparelhamento)
- ✓ Logo a próxima aresta deve pertencer ao emparelhamento;
- ✓ Assim, a próxima aresta deve ser A4

CAMINHO M-ALTERNANTE

- ✓ A próxima aresta **NÃO** deve ser do emparelhamento;
- ✓ Portanto, a próxima aresta deve ser **E4**

CAMINHO M-ALTERNANTE

- ✓ A partir de **E4**, a próxima aresta do caminho **DEVE** pertencer ao emparelhamento;
- ✓ Mas, tal aresta não existe. Logo, terminou o caminho M-alternante

Formalização - Caminho M-Aumentante

CAMINHO M-AUMENTANTE

Figura 3

CAMINHO M-AUMENTANTE

É um caminho M-alternante onde os extremos (vértices final e inicial) não são saturados pelas arestas de M.

Figura 3

- ✓ Vértices Livres: 1,2,D,E
- ✓ Para ser um caminho M-aumentante deve-se começar em um desses vértices livres e terminar também em um desses vértices livres.

CAMINHO M-AUMENTANTE

- ✓ Por exemplo, pode-se iniciar por **A1**, aresta **não** pertencente ao emparelhamento;
- ✓ Logo, a próxima aresta deve pertencer ao emparelhamento, devendo portanto ser A4;

Formalização - Caminho M-Aumentante

CAMINHO M-AUMENTANTE

- ✓ A partir de A4, deve-se escolher uma aresta que não pertença ao emparelhamento;
- ✓ Portanto, a próxima aresta deve ser E4

CAMINHO M-AUMENTANTE

- ✓ A partir de **E4**, deve-se escolher uma aresta que pertença ao emparelhamento;
- ✓ Mas, tal aresta não existe no emparelhamento e, portanto, o caminho termina;
- ✓ Como E é vértice livre, então o caminho é **M-Aumentante**;
- ✓ Conclui-se portanto que o emparelhamento em vermelho não é máximo;
- ✓ Ou seja, há um emparelhamento maior que ele.

Formalização – Emparelhamento Perfeito

EMPARELHAMENTO PERFEITO É um emparelhamento que tem todos os vértices conectados.

Figura 1

Outra questão

✓ Será que é possível saber-se de antemão se pode-se ou não hospedar todos, sem se precisar indicar quais são os quartos a serem alocados de imediato?

Outra questão

✓ Para responder a essa questão, precisa-se de novos conceitos, tais como: Emparelhamento Completo e Vizinhança;

Vejamos um outro problema...

✓ Em uma plataforma rodoviária, um fiscal de ônibus se deparou com o seguinte problema: É possível alocar os 5 ônibus em 6 vagas?

Vejamos um outro problema...

✓ Basta alocar-se um ônibus em cada vaga e ainda sobrará uma vaga!

O problema de alocação dos ônibus

- ✓ Cada empresa tem um controle distinto da plataforma de acordo com as ações que possui, ou seja, os ônibus
 - da empresa A, que possuía mais ações, só poderiam estacionar nas vagas 1, 2, 4 e 5.
 - da empresa B só poderiam estacionar nas vagas 2 e 3.
 - da empresa C só poderiam estacionar na vaga 3.
 - da empresa D só poderiam estacionar nas vagas 2 e 3.
 - da empresa E só poderiam estacionar nas vagas 4, 5 e 6.

Modelando-se o problema com grafos

- ✓ Pode-se desenhar 11 vértices, 5 representando os ônibus e 6 representando-se as vagas;
- ✓ Conecta-se os ônibus às vagas respeitando-se as restrições;
- ✓ Como não há necessidade de se conectar ônibus com ônibus nem vagas com vagas, consegue-se organizar os vértices em um grafo bipartido onde X={A,B,C,D,E} e Y={1,2,3,4,5,6};
- ✓ O problema se resume a saber se há um Emparelhamento Completo!

Emparelhamento Completo

Porém, dessa vez estávamos à procura da existência de um Emparelhamento Completo.

Emparelhamento Completo

É um emparelhamento que cobre (ou satura), em um grafo bipartido, todos os vértices do conjunto X, onde X representa o conjunto dos elementos que devem ser alocados.

Teorema de Hall

Graças ao matemático britânico Philip Hall (figura 3.8), conseguiremos determinar se há um emparelhamento completo. Como demonstrou Hall, em um grafo G bipartido com partição (X, Y), existe um emparelhamento completo se e somente se, $|N(s)| \geq |s|$, para todo subconjunto S de X.

- ✓ Quantidade de elementos de N(s) é maior ou igual à quantidade de elementos de S;
- √ N(s) é chamado Conjunto Vizinhança de S;

Conjunto Vizinhança

Conjunto Vizinhança

N(s) é conhecido como conjunto vizinhança de S. Em outras palavras, seus elementos são todos os vértices que se conectam (são vizinhos) aos elementos de S.

Resolvendo-se o problema de Alocação dos Ônibus Teorema de Hall

Graças ao matemático britânico Philip Hall (figura 3.8), conseguiremos determinar se há um emparelhamento completo. Como demonstrou Hall, em um grafo G bipartido com partição (X, Y), existe um emparelhamento completo se e somente se, $|N(s)| \ge |s|$, para todo subconjunto S de X.

- ✓ Deve-se analisar alguns subconjuntos de X;
- ✓ O subconjunto S = {B,C,D} possui a quantidade de elementos menor que a quantidade de vértices que se conectavam a eles;
- ✓ S tem 3 elementos;
- \checkmark N(s) = { 2,3} tem 2 elementos;
- √ Logo |N(s) | < |s|, o que contradiz o Teorema de Hall;
 </p>
- ✓ Assim, NÃO há emparelhamento completo;
- ✓ Logo, **não** existe a possibilidade de se alocar todos os ônibus simultaneamente;

