Models of Lambek calculus enriched with subexponentials

Daniel Rogozin^{1,2}

1 Lomonosov Moscow State University 2 Serokell OÜ

Definition 1. Let W be a set. A Kripke frame is a 3-tuple $W = \langle W, R, I \rangle$, where R is a ternary relation on W and I is an unary relation on W with additional requirements:

- 1. $R^2a(bc)d \Leftrightarrow R^2(ab)cd$;
- 2. $I(b) \Leftrightarrow Raba \& Rbaa;$
- 3. $a \leq b \Leftrightarrow I(c) \& Rcab$;

4.

Definition 2. A Kripke model is a triple $\mathcal{M} = \langle \mathcal{W}, v \rangle$, where \mathcal{W} is a Kripke frame and $v : Tp \to 2^W$.

A forcing relation is defined as follows:

- 1. $\mathcal{M}, w \Vdash p_i \Leftrightarrow w \in v(p_i)$;
- 2. $\mathcal{M}, w \Vdash \mathbf{1} \Leftrightarrow I(w)$;
- 3. $\mathcal{M}, w \Vdash A \bullet B \Leftrightarrow \exists u, v \in W, Ruvw \ and \ W, u \Vdash A \ and \ W, v \Vdash B;$
- 4. $\mathcal{M}, w \Vdash A \backslash B \Leftrightarrow \forall u, v \in W, Ruwv \ and \ W, u \Vdash A \ implies \ W, v \Vdash B;$
- 5. $\mathcal{M}, w \Vdash B/A \Leftrightarrow \forall u, v \in W, Rwuv \ and \ W, u \Vdash A \ implies \ W, v \Vdash B;$
- 6. $\mathcal{M}, w \Vdash A \lor B \Leftrightarrow \exists u, v \in W, Swuv \ and \ W, u \Vdash A \ and \ W, v \Vdash B$;
- 7. $\mathcal{M}, w \Vdash A \land B \Leftrightarrow \mathcal{W}, w \Vdash A \text{ and } \mathcal{W}, w \Vdash A$;
- 8. $\mathcal{M}, w \Vdash \Gamma \to A \Leftrightarrow \mathcal{W}, w \Vdash \bullet \Gamma \text{ implies } \mathcal{W}, w \Vdash A.$

Theorem 1. Soundness

Let \mathbb{F} be a class of Kripke frames, then $Log(\mathbb{F}) = L_1^* \wedge \vee$.

Proof.

- 1. Let $\Gamma \to A$. By IH, for each $\mathcal{W}, w \Vdash \Gamma \to A$.
- 2. Let $\Gamma, A, \Delta \to C$ and $\Gamma, B, \Delta \to C$,
- 3. Let $\Gamma \to A$ and $\Gamma \to B$

4. Let $\Gamma \to A_1 \wedge A_2$, so $\mathcal{W}, w \Vdash \Gamma \to A_i$, i = 1, 2.

Theorem 2. Strong completeness

 $\Gamma \models A \text{ implies that } L_1^* \land \lor \vdash \Gamma \to A$

Definition 3. Mininal normal modal Lambek calculus (LK) is $L_1^* \wedge \vee$ with additional rule:

$$\frac{\Gamma \to A}{!\Gamma \to !A}$$

Definition 4. A modal Kripke frame is a 4-tuple $W_! = \langle W, R, Q, I \rangle$, where Q is a preorder on W, a Kripke model is tuple $\mathcal{M}\langle \mathcal{W}_!, v \rangle$. A forcing relation for ! is defined as follows: $\mathcal{M}, w \Vdash !A \Leftrightarrow \forall v, Q(w,v) \Rightarrow \mathcal{W}, v \Vdash A;$

Theorem 3. Soundness

Let \mathbb{F} be a class of modal Kripke frames, then $Log(\mathbb{F}) = L_1^* \wedge \vee_{S4}$.

Proof.

$$\Gamma \models A$$
, then $L_1^* \wedge \vee_{\mathbf{S4}} \vdash \Gamma \to A$