### UNIVERSITY OF VICTORIA

#### FINAL EXAMINATIONS - DECEMBER 2004

# ELEC 360 - CONTROL THEORY AND SYSTEMS I SECTION F 01

TO BE ANSWERED IN BOOKLETS

DURATION: 3 hours

INSTRUCTOR: Dr. P. Agathoklis

STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR.

THIS QUESTION PAPER HAS 6 PAGES, INCLUDING THIS COVER PAGE AND TWO ATTACHED FIGURES.

FOUR (4) PAGES OF HANDWRITTEN NOTES AND PHOTOCOPIES OF LAPLACE TRANSFORMS ARE PERMITTED.

DETACH PAGES 5 & 6 FROM THE EXAMINATION PAPER AND HAND IN WITH YOUR ANSWER BOOKLET.

#### Marks

- (5) 1. A system G(s) has
  - two poles, one at -2 and one at -3
  - one zero at +1

and the steady state value of the output with a unit step input is one. Find the response of G(s) to an input signal given by:



#### (5) 2. Consider the system



where {A, b, c} is given in state-space form as:

$$\dot{\underline{x}} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 3 \end{bmatrix} \underline{x}$$

Find a state-space description for the complete system.

## (5) 3. Consider the system given by:



- a) Find for what values of K is the closed-loop system stable.
- b) For what values of K is the steady state error for a unit step input as well as for a unit ramp input less than 0.3?

- (6) 4. Sketch the root-locus of the system in question 3. Discuss the transient response performance of the closed-loop system when K goes from 0 to ∞.
- (4) 5. Sketch the root-locus of a system with the following open-loop transfer function:

$$G(s) = \frac{K(s+2)}{s^2(s+10)}$$

(6) 6. Sketch the Bode and Nyquist plots of

i) 
$$G_1(s) = \frac{(s+1)}{s(s+0.5)(s+2)}$$

ii) 
$$G_2(s) = \frac{(s-1)}{(s+0.5)(s+1)}$$

(6) 7. Consider the Bode diagram of a system given on page 5. Based on this diagram, sketch the Nyquist plot and determine the stability of a closed loop system given by:



where the frequency response of G(s) is the one given on page 5.

Justify your answers.

# (6) 8. The Bode plots of the open loop compensated and uncompensated system are given in page 6.

From the plot of the uncompensated system, determine:

a) The stability of the closed-loop system



- b) The type of open-loop system and the value of the corresponding static error constant.
- c) The phase and gain margins.

From the plot of the compensated system, determine:

- a) The compensator used
- b) The new phase and gain margins
- c) Discuss the effects of using a compensator what has been improved and how?



Justify your answers and indicate in the attached figure (page 6) the corresponding quantities.

| Nan    | 1340 |  |  |
|--------|------|--|--|
| LVCILL | AU a |  |  |

Student No.:

Figure for Question 7

# **Bode Diagrams**



| Name: | Student No.: |
|-------|--------------|
|       |              |

**Figure for Question 8** 



- 1. Uncompensated system
- 2. Compensated system