Mean Squared Error (MSE) is a common loss function used in regression tasks to measure the average squared difference between the predicted values and the actual values.

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

where:

- n is the number of data points,
- ullet y_i is the actual value of the dependent variable for data point i,
- \hat{y}_i is the predicted value of the dependent variable for data point i.

for many iterations, any changes on w_t and b_t , the MSE shall be:

$$ext{MSE}_t = \left(rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2
ight)_t$$

where:

$$\hat{y}_i = w_t x_i + b_t$$

and t is iteration at t (epoch)

In matrix form: Let's first expand the MSE:

$$ext{MSE} = rac{1}{n} (\mathbf{y} - \mathbf{X} \mathbf{w_t} - \mathbf{b_t})^T (\mathbf{y} - \mathbf{X} \mathbf{w_t} - \mathbf{b_t})$$

if we define

$$heta_t = egin{bmatrix} b_t \ w_t \end{bmatrix}$$

the MSE will be written as:

$$ext{MSE} = rac{1}{n} \mathbf{e}^T \mathbf{e}$$

where

$$\mathbf{e} = \mathbf{X}\mathbf{\theta}_t - \mathbf{y}$$

Notice we use

$$\mathbf{e}^T\mathbf{e} = \sum_{i=1}^n e_i^2$$

Explanation

1. Vector e:

- ${\bf e}$ is an n-dimensional column vector resulting from the difference between the predicted values $({\bf X}\theta_t)$ and the actual values $({\bf y})$.
- o If \mathbf{X} is an $n \times d$ matrix, θ_t is a d-dimensional column vector, and \mathbf{y} is an n-dimensional column vector, then $\mathbf{e} = \mathbf{X}\theta_t \mathbf{y}$ is also an n-dimensional column vector.

2. Squared Error:

- The squared error $\mathbf{e}^T \mathbf{e}$ is a scalar value.
- Here, \mathbf{e}^T (the transpose of \mathbf{e}) is a $1 \times n$ row vector.
- \circ When multiplying \mathbf{e}^T (a $1\times n$ row vector) by \mathbf{e} (an $n\times 1$ column vector), the result is a 1×1 scalar.

Partial Derivative

$$ext{MSE} = rac{1}{n} \mathbf{e}^T \mathbf{e}$$

Now, apply the chain rule:

$$\frac{\partial \mathrm{MSE}}{\partial \theta_{\mathbf{t}}} = \frac{1}{n} \frac{\partial}{\partial \theta_{\mathbf{t}}} (\mathbf{e}^{T} \mathbf{e})$$

Using the gradient of the squared error term, where ${f e}^T{f e}=\sum_{i=1}^n e_i^2$, the derivative with respect to $heta_{f t}$ is:

$$rac{\partial}{\partial heta_{\mathbf{t}}}(\mathbf{e}^T\mathbf{e}) = 2\mathbf{X}^T\mathbf{e}$$

Thus:

$$\frac{\partial \text{MSE}}{\partial \theta_{\mathbf{t}}} = \frac{2}{n} \mathbf{X}^T \mathbf{e}$$

Substitute back the error term:

$$\mathbf{e} = \mathbf{X}\theta_{t} - \mathbf{y}$$

So the final expression is:

-

$$rac{\partial ext{MSE}}{\partial heta_{ ext{t}}} = rac{2}{n} extbf{X}^T (extbf{X} heta_{ ext{t}} - extbf{y})$$

Summary

The correct expression for the gradient of the MSE with respect to $heta_{\mathbf{t}}$ is:

$$\frac{\partial \mathrm{MSE}}{\partial \theta_{\mathbf{t}}} = \frac{2}{n} \mathbf{X}^T (\mathbf{X} \theta_{\mathbf{t}} - \mathbf{y})$$

This form does not include any unnecessary transpositions and directly applies the gradient correctly.

• Understand dMSE_dw, and dMSE_db

