Tópicos de Matemática Discreta

2.º teste — 3 de janeiro de 2019 — duração: 2 horas _____

1. Sejam $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ e $g: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ as funções definidas por

$$f((x,y)) = x + y \qquad \qquad \mathsf{e} \qquad \qquad g(x) = \left\{ \begin{array}{ll} (0,x) & \quad \mathsf{se} \ x \geq 0 \\ (x,0) & \quad \mathsf{se} \ x < 0 \end{array} \right. .$$

(a) Determine, justificando:

i.
$$g(\{-1,0,1\})$$
;

Uma vez que $g(\{-1,0,1\}) = \{g(-1),g(0),g(1)\}$ e

$$g(-1) = (-1,0), \quad g(0) = (0,0), \quad g(1) = (0,1),$$

tem-se $g(\{-1,0,1\}) = \{(-1,0),(0,0),(0,1)\}.$

ii. $f^{\leftarrow}(\{0\})$.

Tem-se

$$f^{\leftarrow}(\{0\}) = \{(x,y) \in \mathbb{Z} \mid f((x,y)) \in \{0\}\}.$$

Então, atendendo a que

$$f(x,y) = 0 \Leftrightarrow x + y = 0 \Leftrightarrow y = -x,$$

segue que

$$f^{\leftarrow}(\{0\}) = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid y = -x\} = \{(x,-x) \mid x \in \mathbb{Z}\}.$$

(b) Diga, justificando, se a aplicação f é injetiva e/ou sobrejetiva.

A aplicação f é injetiva se, para quaisquer $(x,y),(z,w)\in\mathbb{Z}\times\mathbb{Z},$

$$f((x,y)) = f((z,w)) \Rightarrow (x,y) = (z,w).$$

Ora, atendendo a que

$$f((-1,1)) = f((1,-1)) e(-1,1) \neq (1,-1),$$

a aplicação f não é injetiva.

A aplicação f é sobrejetiva se, para qualquer $z \in \mathbb{Z}$, existe $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ tal que f((x,y)) = z. Uma vez que, para todo $z \in \mathbb{Z}$, $(0,z) \in \mathbb{Z} \times \mathbb{Z}$ é tal que f((0,z)) = z, concluímos que a aplicação f é sobrejetiva.

(c) Justifique que $f \circ g = \mathrm{id}_{\mathbb{Z}}$.

Uma vez que o codomínio de g coincide com o domínio de f, a composta de f com g está definida e $f \circ g$ é uma função de \mathbb{Z} em \mathbb{Z} . Além disso, para qualquer $x \in \mathbb{Z}$,

$$(f\circ g)(x)=f(g(x))=\left\{\begin{array}{ll} f((0,x)) & \quad \text{se } x\geq 0 \\ f((x,0)) & \quad \text{se } x<0 \end{array}\right.=\left\{\begin{array}{ll} x & \quad \text{se } x\geq 0 \\ x & \quad \text{se } x<0 \end{array}\right.,$$

pelo que, para todo $x \in \mathbb{Z}$, $(f \circ g)(x) = x$.

A função $id_{\mathbb{Z}}$ é definida por

$$\mathrm{id}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$$
$$x \mapsto x$$

Uma vez que as funções $f \circ g$ e $\mathrm{id}_{\mathbb{Z}}$ têm o mesmo domínio e o mesmo conjunto de chegada e, para todo $x \in \mathbb{Z}$, $(f \circ g)(x) = \mathrm{id}_{\mathbb{Z}}(x)$, então $f \circ g = \mathrm{id}_{\mathbb{Z}}$.

(d) Sem determinar $g \circ f$, justifique que $g \circ f \neq \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$.

Se admitirmos que $g \circ f = \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$, então, pela alínea anterior, segue que f é uma função invertível e, portanto, bijetiva. Ora, pela alínea (b) sabe-se que a função f não é bijetiva, pois não é injetiva. Logo $g \circ f \neq \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$.

2. Sejam R e S as relações binárias em $\mathbb N$ definidas por

x R y se e só se $2 \le y - x$, para quaisquer $x, y \in \mathbb{N}$,

$$S = \{(1,4), (2,1), (3,1), (2,3), (4,2)\}.$$

(a) Determine $Dom(S) \cap Im(R)$.

Tem-se
$$Dom(S) = \{x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} (x, y) \in S\} = \{1, 2, 3, 4\}.$$

Uma vez que $\operatorname{Im}(R) = \{ y \in \mathbb{N} \mid \exists_{x \in \mathbb{N}} (x, y) \in R \}$, tem-se $\operatorname{Im}(R) \subseteq \mathbb{N}$. Além disso,

- $1, 2 \notin \operatorname{Im}(R)$, pois, para todo $x \in \mathbb{N}, 2 \nleq 1 x$ e $2 \nleq 2 x$;
- para todo $y \geq 3$, existe $x = y 2 \in \mathbb{N}$ tal que $2 \leq y x$.

Logo $\operatorname{Im}(R) = \mathbb{N} \setminus \{1, 2\}.$

Assim, $Dom(S) \cap Im(R) = \{3, 4\}.$

(b) Justifique que a relação R é transitiva. Diga se $R \circ R \subseteq R$.

A relação R é transitiva se, para quaisquer $a,b,c\in\mathbb{N}$,

$$aRb \in bRc \Rightarrow aRc$$
.

Atendendo a que, para quaisquer $a, b, c \in \mathbb{N}$,

$$\begin{array}{ll} a\,R\,b \in b\,R\,c & \Rightarrow & 2 \leq b-a \in 2 \leq c-b \\ & \Rightarrow & 4 \leq (b-a)+(c-b) \\ & \Rightarrow & 4 \leq c-a \\ & \Rightarrow & 2 \leq c-a \\ & \Rightarrow & aRc, \end{array}$$

conclui-se que a relação ${\cal R}$ é transitiva.

Uma relação binária T definida num conjunto A é transitiva se e só se $T\circ T\subseteq T$. Então, como R é transitiva, tem-se $R\circ R\subseteq R$.

(c) Diga se a relação $S\circ S$ é simétrica e se é antissimétrica. Justifique.

Tem-se

$$S \circ S = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid \exists_{z \in \mathbb{N}} (x,z) \in S \in (z,y) \in S\}.$$

Como

$$(1,2) \in S \circ S$$
 (pois $(1,4) \in S$ e $(4,2) \in S$), $(2,4) \in S \circ S$ (pois $(2,1) \in S$ e $(1,4) \in S$),

$$(3,4) \in S \circ S$$
 (pois $(3,1) \in S$ e $(1,4) \in S$),

$$(2,1) \in S \circ S$$
 (pois $(2,3) \in S$ e $(3,1) \in S$),

$$(2,1) \in S \circ S \text{ (pois } (2,0) \in S \text{ c } (0,1) \in S),$$

$$(4,1) \in S \circ S$$
 (pois $(4,2) \in S$ e $(2,1) \in S$),

$$(4,3) \in S \circ S$$
 (pois $(4,2) \in S$ e $(2,3) \in S$),

segue que

$$S \circ S = \{(1,2), (2,4), (3,4), (2,1), (4,1), (4,3)\}.$$

Uma relação binária T definida num conjunto A é simétrica se, para quaisquer $a,b\in A$, $(a,b)\in T\Rightarrow (b,a)\in T$. Uma vez que $(1,2)\in S\circ S$) e $(2,1)\not\in S\circ S$, a relação $S\circ S$ não é simétrica.

Uma relação binária T definida num conjunto A é antissimétrica se, para quaisquer $a,b\in A$,

$$(a,b) \in T \in (b,a) \in T \Rightarrow a = b.$$

Atendendo a que $(3,4) \in S \circ S$, $(4,3) \in S \circ S$ e $3 \neq 4$, a relação $S \circ S$ não é antissimétrica.

3. Sejam R, S e $R \cap S$ as relações de equivalência em $A = \{x \in \mathbb{Z} \mid 0 < |x| \leq 3\}$ tais que, para quaisquer $x,y \in A$,

$$(x,y)\in R$$
 se e só se $xy>0$ e $(x,y)\in S$ se e só se $x+y$ é par .

(a) Diga, justificando, se $[-1]_R \cap [-1]_S = [-1]_{R \cap S}$.

Tem-se

$$\begin{array}{lll} [-1]_R \cap [-1]_S & = & \{x \in \mathbb{Z} \,|\, -1\,R\,x\} \cap \{x \in \mathbb{Z} \,|\, -1\,S\,x\} \\ & = & \{x \in \mathbb{Z} \,|\, -1\,x > 0\} \cap \{x \in \mathbb{Z} \,|\, -1+x \ \text{\'e par}\} \\ & = & \{-1, -2, -3\} \cap \{-1, -3, 1, 3\} \\ & = & \{-1, -3\} \end{array}$$

е

$$[-1]_{R \cap S} = \{ x \in \mathbb{Z} \mid -1 (R \cap S) x \}$$

$$= \{ x \in \mathbb{Z} \mid -1x > 0 \text{ e } -1 + x \text{ é par} \}$$

$$= \{ -1, -3 \}.$$

Logo $[-1]_R \cap [-1]_S = [-1]_{R \cap S}$.

(b) Determine o conjunto quociente $A/(R \cap S)$.

Tem-se

$$A/(R \cap S) = \{ [x]_{R \cap S} \mid x \in A \}$$

e

$$\begin{array}{lcl} [-1]_{R\cap S} & = & \{-1,-3\} = [-3]_{R\cap S}\,, \\ [-2]_{R\cap S} & = & \{-2\}, \\ [1]_{R\cap S} & = & \{1,3\} = [3]_{R\cap S} \\ [2]_{R\cap S} & = & \{2\}, \end{array}$$

pelo que

$$A/(R \cap S) = \{[-1]_{R \cap S}, [-2]_{R \cap S}, [1]_{R \cap S}, [2]_{R \cap S}\} = \{\{-1, -3\}, \{-2\}, \{1, 3\}, \{2\}\}.$$

(c) Diga se $R \cup S$ é uma relação de equivalência em A. Justifique.

A relação $R \cup S$ é uma relação de equivalência em A se é reflexiva, simétrica e transitiva. No entanto, a relação $R \cup S$ não é transitiva: $(1,2) \in R \cup S$ (pois $(1,2) \in R$), $(2,-2) \in R \cup S$ (pois $(2,-2) \in S$), mas $(1,-2) \not\in R \cup S$. Logo $R \cup S$ não é uma relação de equivalência.

4. Sejam (A, \leq_1) e (A, \leq_2) os c.p.o.s onde $A = \{a, b, c, d, e, f, g, h\}$,

$$\leq_1 = \mathrm{id}_A \cup \{(a,c), (a,d), (a,g), (a,h), (b,c), (b,d), (b,e), (b,f), (b,g), (b,h), (d,g), (d,h), (f,g)\}$$

e \leq_2 é a ordem parcial representada pelo diagrama de Hasse

(a) Diga, justificando, se $\leq_1 = \leq_2$.

Do diagrama de Hasse segue que

$$\leq_2 = \mathrm{id}_A \cup \{(a,c), (a,d), (a,g), (a,h), (b,c), (b,d), (b,e), (b,g), (b,h), (d,g), (d,h), (f,g)\}.$$

Assim
$$\leq_1 \neq \leq_2$$
, pois $(b, f) \in \leq_1$, mas $(b, f) \notin \leq 2$.

(b) Relativamente ao c.p.o (A, \leq_2) , indique, caso, exista(m)

i. os elementos maximais e os elementos minimais de A.

Minimais de A: a,b,f. Maximais de A: c,h,g,e.

ii. os majorantes de $\{a,b\}$ e os minorantes de $\{h,g\}$.

Majorantes de $\{a,b\}:c,d,h,g$. Minorantes de $\{h,g\}:d,a,b$.

iii. o supremo de $\{a,b\}$ e o ínfimo de $\{h,g\}$.

Não existe o supremo de $\{a,b\}$, pois o conjunto dos majorantes de $\{a,b\}$ ($\{c,d,h,g\}$) não tem elemento mínimo.

O conjunto dos minorantes de $\{h,g\}$ tem elemento máximo; $\max(\{d,a,b\})=d$. Logo $\sup\{h,g\}=d$.

5. Considere o grafo G representado ao lado.

(a) Justifique que o grafo G não é bipartido.

Um grafo não trivial é bipartido se e só se não tem ciclos de comprimento ímpar. O grafo G é não trivial e tem ciclos de comprimentos ímpar (por exemplo, $< v_1, v_3, v_6, v_1>$), logo o grafo não é bipartido.

(b) Indique, justificando, o número de arestas que é necessário remover de G para se obter uma árvore.

Um grafo conexo é uma árvore se e só se a diferença entre o número de vértices e o número de arestas é igual a 1.

Uma vez que G é um grafo conexo com 6 vértices e 8 arestas, é necessário remover 3 arestas de G para se obter uma árvore. O grafo representado por

é um grafo obtido de G removendo 3 arestas e é uma árvore (pois é um grafo conexo onde a diferença entre o número de vértices e o número de arestas é igual a 1).

Cotações	1.	2.	3.	4.	5.
	1,0+1,0+1,5+1,0+1,0	1,25+1,25+1,25	1,25+1,25+1,25	1,0+1,0+1,0+1,0	1,5+1,5