Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2021

## Handout 12: Credible sets

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim: To explain and produce credible regions in the Bayesian framework.

#### **References:**

- Berger, J. O. (2013; Section 4.3.2). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
- Robert, C. (2007; Section 5.5). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.

### Web applets:

• https://georgios-stats-1.shinyapps.io/demo\_CredibleSets/

## 1 Set-up and aim

Notation 1. Consider a Bayesian model

$$\begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi(\cdot) \end{cases}$$

where  $y:=(y_1,...,y_n)\in\mathcal{Y}$  is a sequence of observables, assumed to be generated from the parametric sampling distribution  $F(y|\theta)$  with pdf/pmf  $f(y|\theta)$  and labeled by an unknown parameter  $\theta\in\Theta$  with a prior distribution  $\Pi(\theta)$  with pdf/pmf  $\pi(\theta)$ . Also assume a sequence of m future outcomes  $z=(y_{n+1},...,y_{n+m})$ .

**AIM:** Instead of just reporting a point value for  $\theta$  (or z) and the associated standard error, it is often desirable and clearer to report sets of values  $C_a \subseteq \Theta$  (or  $C_a \subseteq \mathcal{Z}$ ) with a specified probability a reflecting Your believe that  $\theta \in C_a$  (or  $z \in C_a$ ).

Note 2. Recall that

• Posterior degree of believe about uncertain parameter  $\theta \in \Theta \subseteq \mathbb{R}^d$  is quantified via the posterior distribution  $\Pi(\theta|y)$ ;

$$d\Pi(\theta|y) = \pi(\theta|y)d\theta$$

with cdf  $\Pi(\theta|y)$  and pdf/pmf  $\pi(\theta|y)$ .

• Degree of believe about a future sequence of outcomes  $z=(y_{n+1},...,y_{n+m})\in\mathcal{Z}$  is quantified via the predictive distribution G(z|y);

$$dG(z|y) = g(z|y)dz$$

with cdf G(z|y) and pdf/pmf g(z|y).

Notation 3. We present the parametric and predictive credible intervals in a unified framework. Consider unknown random quantity  $x \in \mathcal{X} \subseteq \mathbb{R}^k$  following a distribution Q(x|y);

$$dQ(x|y) = q(x|y)dx$$

with cdf Q(x|y) and pdf/pmf q(x|y). These are dummies for the following:

- In parametric inference, we have  $x \equiv \theta$ ,  $Q \equiv \Pi$ ,  $q \equiv \pi$ , and k = d.
- In predictive inference, we have  $x \equiv z$ ,  $Q \equiv G$ ,  $q \equiv g$ , and k = m.
- Note that x can also be any function of  $\theta$  or z.

### 2 Credible Sets

**Definition 4.** A set  $C_a \subseteq \mathcal{X}$  is called '100(1-a)%' posterior credible set for x, with respect to the posterior distribution Q(x|y) if

$$1 - a \le \mathsf{P}_Q(x \in C_a|y) = \int \mathsf{1}(x \in C_a) \, \mathsf{d}Q(x|y)$$

Note 5. In Bayesian stats (unlike frequetist stats) we can correctly say that the (1-a)100% credible set  $C_a$  of unknown parameter  $\theta$  means that the probability that  $\theta$  is in  $C_a$  is (1-a)100%. This is theoretically correct as everything unknown/uncertain is a random quantity following a distribution reflecting Your degree of believe.

*Note* 6. Note that different sets may satisfy Definition 4 and hence we are interested in using the most useful credible set for our application. This is addressed by imposing additional restrictions.

# 3 Highest probability density Credible sets<sup>1</sup>

Note 7. Often it is useful to consider credible sets  $C_a$  which contain values of x that correspond to the highest pdf/pmf q(x|y) (aka the most likely values of x). Then we can impose the restriction  $q(x|y) \ge q(x'|y)$  for all  $x \in C_a$ ,  $x' \in C_a^0$ , in Definition 4 which leads to Definition 8, the definition of the highest probability density (HPD) set.

**Definition 8.** The 100(1-a)% highest probability density (HPD) set for  $x \in \mathcal{X}$  with respect to the posterior distribution Q(x|y) is the subset  $C_a$  of  $\Theta$  such that

- 1.  $P_Q(x \in C_a|y) \ge 1 a$ , and
- 2.  $q(x|y) \ge q(x'|y)$  for all  $x \in C_a$ ,  $x' \in C_a^{\complement}$ .

*Note* 9. Credible sets are considered as 'set estimators', and hence, they can be produced as Bayes decision rules under a specified loss function. See Examples 10 and 19.

**Example 10.** [Minimal size region property] Let random quantity x follows Q(x|y), let  $\mathcal{D} = \{C; P_Q(x \in C|y) \geq 1 = a\}$  be the decision space containing all possible (1-a) credible sets of x, and let the loss function be memorise

$$\ell(x,C) = \kappa \|C\| - 1(x \in C), \quad \forall C \in \mathcal{D}, \ \forall x \in \mathcal{X}, \ \forall \kappa > 0,$$
(1)

where  $\|\cdot\|$  denotes a size of an area. Then:

- 1. The Bayes rule (estimator)  $\hat{C}$  has the minimum size among credible sets in  $\mathcal{D}$ .
- 2.  $\hat{C}$  is the Bayes rule if and only if it is the 100(1-a)% highest probability density (HPD) set as defined in Definition 8.

**Solution.** The proof is omitted as too technical. (1.) is straightforward; while (2.) is just tricky calculus.

Note. HPD credible sets are credible sets with the minimum size (by Example 10). Clearly, loss (1) considers a trade off between two components: ||C|| measuring the size of the credible set (the smaller the better), and  $1(x \in C)$  indicating coverage of the credible set.

 $<sup>^1</sup> Web \ applet: \ \texttt{https://georgios-stats-1.shinyapps.io/demo\_CredibleSets/}$ 

Remark 11. HPD credible sets are not, in general, invariant to transformations. If one has computed the HPD set for  $x \sim Q(x|y)$ , the HPD set for  $\varphi = g(x)$  does not necessarily result by converting HPD set for x. To compute the HPD set for  $\varphi$ , one has to compute the posterior distribution

$$dQ(\varphi|y) = \underbrace{q(g^{-1}(\varphi)|y) \left| \frac{d}{d\varphi} g^{-1}(\varphi) \right|}_{=\pi(\varphi|y)} d\varphi,$$

and then compute the HPD set by implementing Definition 8.

### 3.1 General discussions

Definition 8 can be re-written equivalently as in Corollary 12, which provides a easier manner to compute credible regions in practice.

**Corollary 12.** The 100(1-a)% highest probability density (HPD) set for  $x \in \mathcal{X}$  with respect to the posterior distribution Q(x|y) is the subset  $C_a$  of  $\Theta$  of the form

$$C_a = \{ x \in \mathcal{X} : q(x|y) \ge k_a \} \tag{2}$$

where  $k_a$  is the largest constant such that

$$1 - a \le \mathsf{P}_Q(x \in C_a|y)$$

*Proof.* It is straightforward to show equivalence of (2) and Definition 8(2).

**Algorithm 13.** Based on Corollary 12, a (not-that-efficient) algorithm to compute HPD credible sets with a computer<sup>2</sup>

ullet Create a routine which computes all the solutions  $x^*$  to the equation

$$q\left(x^*|y\right) = k_a \tag{3}$$

for a given  $k_a$ . Typically,  $C_a=\{x\in\mathcal{X}:q(x|y)\geq k_a\}$  can be constructed from those solutions.

• Create a routine which computes

$$\mathsf{P}_{Q}(x \in C_{a}|y) = \int \mathsf{1}(x \in C_{a}) \, \mathsf{d}Q(x|y) \tag{4}$$

• By incrementally increasing  $k_a$  from zero to larger values, sequentially solve the Equation 3 and stop just before the probability in Equation 4 drops below 1-a.

 $<sup>^2</sup> We b-applet \ \mathtt{https://georgios-stats-1.shinyapps.io/demo\_CredibleSets/}$ 



Figure 1: Schematic of Theorem 15 (in Fig. 1(1a)) and Algorithm 13 (in Fig. 1(1a) & Fig. 1(1b))

*Note* 14. For the simple 1D case,  $x \in \mathcal{X}$  with  $\dim(\mathcal{X}) = 1$ , the following theorem can be used to compute HPD credible sets.

**Theorem 15.** Let  $x \in \mathbb{R}$  be a continuous random variable following distribution Q(x|y) with unimodal density q(x|y). If the interval  $C_a = [L, U]$  satisfies

- 1.  $\int_{L}^{U} q(x|y)dx = 1 a$ ,
- 2. q(U) = q(L) > 0, and
- 3.  $x_{mode} \in (L, U)$ , where  $x_{mode}$  is the mode of q(x|y),

then it is the HPD interval of x with respect to Q(x|y).

*Proof.* Use of the mean values theorem to prove. See, Casella, G., & Berger, R. L. (2002; pp. 441-443). Statistical inference (Vol. 2). Pacific Grove, CA: Duxbury.

Remark 16. Theorem 15 suggests a procedure to find the boundaries of  $C_a$  in 1D cases. As is Figure 1a, we can imagine a horizontal bar which moves from the maximum of the density to zero, and intersects the density at locations which are the potential boundaries of  $C_a$ . The limits of the credible set are where the density above the two points the intersection take place (shaded area) is equal to 1-a. This mechanism is also described in the algorithm in suggested in Algorithm 13 and hence can also be used in multimodal densities (Figure 1b) or multivariate ones.

# 4 Examples

Example 17. Consider a Bayesian model

$$\begin{cases} y_i | \mu & \stackrel{\text{iid}}{\sim} \mathbf{N}_d(\mu, \Sigma), \qquad i = 1, ..., n \\ \mu & \sim \mathbf{N}_d(\mu_0, \Sigma_0) \end{cases}$$

where uncertain  $\mu \in \mathbb{R}^d$ ,  $d \ge 1$ , and known  $\Sigma$ ,  $\mu_0$ ,  $\Sigma_0$ . Find the  $C_a$  parametric HPD credible set for  $\mu$ .

**Hint-1:** If 
$$z = (z_1, ..., z_d)^{\top}$$
 such as  $z_j \stackrel{\text{iid}}{\sim} \text{N}(0, 1)$  for  $j = 1, ..., d$ , and  $\xi = z^{\top}z = \sum_{j=1}^d z_j^2$ , then  $\xi \sim \chi_d^2$ 

Hint-2: It is

$$\begin{split} -\frac{1}{2} \sum_{i=1}^{n} (x - \mu_i)^\top \Sigma_i^{-1} (x - \mu_i)) &= -\frac{1}{2} (x - \hat{\mu})^\top \hat{\Sigma}^{-1} (x - \hat{\mu})) + C(\hat{\mu}, \hat{\Sigma}) \quad ; \\ \hat{\Sigma} &= (\sum_{i=1}^{n} \Sigma_i^{-1})^{-1}; \quad \hat{\mu} = \hat{\Sigma} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i); \\ C(\hat{\mu}, \hat{\Sigma}) &= \underbrace{\frac{1}{2} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i)^\top (\sum_{i=1}^{n} \Sigma_i^{-1})^{-1} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i) - \frac{1}{2} \sum_{i=1}^{n} \mu_i^\top \Sigma_i^{-1} \mu_i}_{= \text{independent of } x} \end{split}$$

**Solution.** I will use the Definition 8.

• First, I compute the posterior of  $\mu$ . It is

$$\pi(\mu|y) \propto f(y|\mu)\pi(\mu) = \prod_{i=1}^{n} \mathbf{N}_{d}(y_{i}|\mu, \Sigma)\mathbf{N}_{d}(\mu|\mu_{0}, \Sigma_{0})$$

$$\propto \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(y_{i}-\mu)^{\top}\Sigma^{-1}(y_{i}-\mu) - \frac{1}{2}(\mu-\mu_{0})^{\top}\Sigma_{0}^{-1}(\mu-\mu_{0})\right)$$

$$\propto \exp\left(-\frac{1}{2}(\mu-\hat{\mu}_{n})^{\top}\hat{\Sigma}_{n}^{-1}(\mu-\hat{\mu}_{n})\right)$$

where

$$\hat{\Sigma}_n = (n\Sigma^{-1} + \Sigma_0^{-1})^{-1}; \qquad \hat{\mu}_n = \hat{\Sigma}_n (n\Sigma^{-1}\bar{y} + \Sigma_0^{-1}\mu_0)$$

I recognize that  $\pi(\mu|y)=\mathrm{N}_d(\mu|\hat{\mu}_n,\hat{\Sigma}_n)$ , and hence  $\mu|y\sim\mathrm{N}_d(\hat{\mu}_n,\hat{\Sigma}_n)$ 

• Now let's implement Definition 8. So,

$$C_{a} = \left\{ \mu \in \mathbb{R}^{d} : \pi(\mu|y) \ge k_{a} \right\}$$

$$= \left\{ \mu \in \mathbb{R}^{d} : N_{q}(\mu|\hat{\mu}_{n}, \hat{\Sigma}_{n}) \ge k_{a} \right\}$$

$$= \left\{ \mu \in \mathbb{R}^{d} : (\mu - \hat{\mu}_{n})^{\top} \hat{\Sigma}_{n}^{-1} (\mu - \hat{\mu}_{n}) \le \underbrace{-\log(2\pi \det(\hat{\Sigma}_{n}))) k_{a}}_{=\hat{k}_{a}} \right\}$$
(5)

and I want the smallest constant  $\tilde{k}_a$  (aka the largest constant  $k_a$ ) such that

$$\mathsf{P}_{\Pi}\left(\mu \in C_a|y\right) \geq 1 - a \Longleftrightarrow$$

$$\mathsf{P}_{\Pi}\left(\underbrace{(\mu - \hat{\mu}_n)^{\top} \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n)}_{=\varepsilon}\right) \leq \tilde{k}_a\right) \geq 1 - a \tag{6}$$

• I need to find quantile  $\tilde{k}_a$ . This requires to find the distribution of  $\xi$ . I know that

$$\xi = (\mu - \hat{\mu}_n)^{\top} \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n) \sim \chi_d^2 \tag{7}$$

because  $\xi = z^{\top}z = \sum_{j=1}^{n} z_{j}$  with  $z = L^{-1}(\mu - \hat{\mu}_{n}) \sim N_{d}(0, I_{d})$  where L is the lower matrix of the Cholesky decomposition of  $\hat{\Sigma}_{n} = L^{\top}L$ .

Hence Eq. 6, (due to Eqs. 5, 7) becomes

$$\mathsf{P}_{\chi_d^2}((\mu - \hat{\mu}_n)^\top \hat{\Sigma}_n^{-1}(\mu - \hat{\mu}_n) \le \tilde{k}_a) = 1 - a \tag{8}$$

which means that,  $\tilde{k}_a$  is the 1-a quantile of the  $\chi^2_d$  distribution, aka  $\tilde{k}_a=\chi^2_{d,1-a}$ 

• Hence, the  $C_a$  parametric HPD credible set for  $\mu$  is

$$C_a = \{ \mu \in \mathbb{R}^d : (\mu - \hat{\mu}_n)^\top \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n) \le \chi_{d,1-a}^2 \}$$

**Example 18.** Consider an exchangeable sequence of observables  $y := (y_1, ... y_n) \in \mathbb{R}^n$  from model

$$\begin{cases} y_i | \theta & \stackrel{\text{iid}}{\sim} \operatorname{Br}(\theta), & i = 1, ..., n \\ \theta & \sim \operatorname{Be}(a, b) \end{cases}$$

where a=b=2, n=30, and  $\sum_{i=1}^{30} y_i=15$ . Find the 2-sides  $C_a$  parametric HPD credible interval for  $\theta$ . Consider a=0.05.

### Solution.

• The posterior distribution of  $\theta$  is Be $(a + n\bar{y}, b + n - n\bar{y})$ , because

$$\pi(\theta|y) \propto \prod_{i=1}^{n} \operatorname{Br}(y_i|\theta) \operatorname{Be}(\theta|a,b) \propto \prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{y_i} \theta^{a-1} (1-\theta)^{b-1} \propto \theta^{n\bar{y}+a-1} (1-\theta)^{n-n\bar{y}+b-1}$$

After substituting the values of the fixed parameters, I get  $\pi(\theta|y) = \text{Be}(\theta|a_n = 17, b_n = 17)$ .

– To find the 2-sides  $C_a$  parametric HPD credible interval for  $\theta$ , I use Theorem 15.

$$1 - a = \int_{L}^{U} \operatorname{Be}(\theta | 17, 17) d\theta = \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < L)$$

I note that the posterior is symmetric around 0.5 because  $a_n = b_n$ . Then,

$$1 - a = \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - \left(1 - \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U)\right) = 2\mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - 1$$

so  $\mathsf{P}_{\mathrm{Be}(17,17)}(\theta < U) = 1 - a/2$ , and hence  $U = \theta_{1-\frac{\alpha}{2}}^*$ . Also,

$$\frac{1}{2} - L = U - \frac{1}{2} \implies L = 1 - U \implies L = 1 - \theta_{1 - \frac{\alpha}{2}}^*$$

Putting these together, for a=0.05, the 95% posterior credible interval for  $\theta$  is

$$[L, U] = [0.36, 0.64].$$

• Note that, if we follow the same procedure, the compute the 95% prior credible interval for  $\theta$  is

$$[L, U] = [0.14, 0.85].$$

As expected, the posterior 95 credible interval is narrower than the corresponding posterior one. (Try to check it in R).

- > install.packages('HDInterval')
- > library('HDInterval')
  > hdi(qbeta, 0.95, shape1=17, shape2=17)

0.3354445 0.6645555

**Example 19.** Assume a 1-dimensional random quantity  $x \sim Q(x|y)$ , with unimodal density q(x|y). Show that the (1-a)-credible interval  $C_a = [L, U]$  for x as a Bayesian rule  $C_a$  under the loss function

$$\ell(x,C_a;L,U) = k(U-L) - 1(x \in [L,U]), \quad \text{with} \quad k \in (0,\max_{\forall x \in \mathbb{R}}(q(x|y)))$$

is given by q(L) = q(U) = k, and  $P_Q(x \in [L, U]|y) = 1 - a$ .

Discuss known properties of the derived credible interval.

**Solution.** The decision space is  $\mathcal{D} = \{C_a = [L, U] : P_Q(x \in C_a | y) = 1 - a\}$ . It is

$$\begin{split} \mathbf{E}_{Q}\left(\ell(x,C_{a};L)|y\right) &= \int \left(k(U-L)-1(x\in[L,U])\right) \mathrm{d}Q(x|y) \\ &= \int k(U-L)q(x|y)\mathrm{d}x - \int_{L}^{U} q(x|y)\mathrm{d}x = k(U-L) - \int_{-\infty}^{U} q(x|y)\mathrm{d}x + \int_{-\infty}^{L} q(x|y)\mathrm{d}x \end{split}$$

To find the critical values  $\hat{L}$ , and  $\hat{U}$  for L and U, it is

$$\begin{split} 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left( \ell(x, C_a; L) | y \right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \frac{\mathrm{d}}{\mathrm{d}L} \left( k(U - L) - \int_{-\infty}^{U} q(x|y) \mathrm{d}x + \int_{-\infty}^{L} q(x|y) \mathrm{d}x \right) \right|_{C_a = [\hat{L}, \hat{U}]} \\ &= -k + q(\hat{L}|y) \implies q(\hat{L}|y) = k \\ 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}U} \mathrm{E}_Q \left( \ell(x, C_a; U) | y \right) \right|_{C_a = [\hat{L}, \hat{U}]} = \ldots = k - q(\hat{U}|y) \implies q(\hat{U}|y) = k \end{split}$$

which are minimizers because

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}L^2} \mathrm{E}_Q\left(\ell(x,C_a;L)|y\right)\bigg|_{C_a = [\hat{L},\hat{U}]} &= \left.\frac{\mathrm{d}}{\mathrm{d}L}q(L|y)\right|_{\hat{L}} > 0 \;; \qquad \quad \left.\frac{\mathrm{d}^2}{\mathrm{d}L\mathrm{d}U} \mathrm{E}_Q\left(\ell(x,C_a;L)|y\right)\right|_{C_a = [\hat{L},\hat{U}]} = 0 \\ \frac{\mathrm{d}^2}{\mathrm{d}U^2} \mathrm{E}_Q\left(\ell(x,C_a;U)|y\right)\bigg|_{C_a = [\hat{L},\hat{U}]} &= -\left.\frac{\mathrm{d}}{\mathrm{d}U}q(U|y)\right|_{\hat{U}} > 0 \end{split}$$

So it is  $C_a = [\hat{L}, \hat{U}]$  such that  $q(\hat{L}|y) = q(\hat{U}|y) = k$ , and  $P_Q(x \in [\hat{L}, \hat{U}]|y) = 1 - a$ .

Based on Theorem 15, it is the HPD credible interval and in fact the shorter length credible interval.

**Example 20.** Assume an 1- dimensional random quantity  $x \sim Q(x|y)$ . In the Lecture Handout (Handout 11: Bayesian point estimation), discussed the following Hint:

**Hint:** The Bayes estimate  $\hat{\delta}$  of x under the linear loss function

$$\ell(x,\delta;\varpi) = (1-\varpi)(\delta-x)1_{x<\delta}(\delta) + \varpi(x-\delta)1_{x>\delta}(\delta),$$

where  $\varpi \in [0,1]$ , is the  $\varpi$ -th quantile of distribution Q, let's denote it as  $x_{\varpi}$ .

1. Derive the (1-a)-credible interval  $C_a = [L, U]$  for x as a Bayesian rule  $C_a$  under the loss function

$$\ell(x, C_a; \varpi_L, \varpi_U) = \ell(x, L; \varpi_L) + \ell(x, U; \varpi_U)$$
(9)

by computing L and U.

- 2. Your client is worried the same both for under-estimation and over-estimation; derive a suitable (1 a)credible interval  $C_a = [L, U]$  based on (9) by computing L, and U.
- 3. Your client is worried only for over-estimation; derive a suitable (1-a)-credible interval  $C_a = [L, U]$  based on (9) by computing L and U.

**Solution.** It is given that

$$\begin{split} 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}\delta} \mathrm{E}_Q \left( \ell(x,\delta;\varpi) | y \right) \right|_{\delta = \hat{\delta}} = \left. \frac{\mathrm{d}}{\mathrm{d}\delta} \int \ell(x,\delta;\varpi) \mathrm{d}Q(x|y) \right|_{\delta = \hat{\delta}} \implies \hat{\delta} = x_\varpi \\ &= (1-\varpi) \mathrm{P}_Q \left( \{ x \leq \hat{\delta} \} | y \right) - \varpi \mathrm{P}_Q \left( \{ x \leq \hat{\delta} \}^{\complement} | y \right) \implies \hat{\delta} = x_\varpi \end{split}$$

1. The decision space is  $\mathcal{D}=\{C_a=[L,U]: \mathsf{P}_Q(x\in C_a|y)=1-a\}$ . Therefore, to find the Bayes rule (or Bayes estimate) of  $C_a=[L,U]$  I need to minimize the expected posterior loss  $\mathsf{E}_Q\left(\ell(x,C_a;\varpi_L,\varpi_U)|y\right)$  with respect to  $C_a$  or equivalently L,U, so

$$\begin{split} 0 &= \left.\frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y\right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \mathrm{E}_Q \left(\ell(x, L; \varpi_L) | y\right) \right|_{L = \hat{L}} \implies \hat{L} = x_{\varpi_L} \\ 0 &= \left.\frac{\mathrm{d}}{\mathrm{d}U} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y\right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \mathrm{E}_Q \left(\ell(x, U; \varpi_U) | y\right) \right|_{U = \hat{U}} \implies \hat{U} = x_{\varpi_U} \end{split}$$

So  $x \in [x_{\varpi_L}, x_{\varpi_U}]$  where  $\varpi_U + \varpi_L = 1 - a$ . It is the minimum because

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}U^2} \mathrm{E}_Q \left( \ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= q(\hat{U} | y) > 0 \\ \\ \frac{\mathrm{d}^2}{\mathrm{d}L^2} \mathrm{E}_Q \left( \ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= q(\hat{L} | y) > 0 \\ \\ \frac{\mathrm{d}}{\mathrm{d}U} \frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left( \ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= 0 \end{split}$$

and hence the determinant of the Hessian in positive.

- 2. Then I can use the equi-tail interval:  $x \in [x_{a/2}, x_{1-a/2}]$  with  $\varpi_L = a/2$  and  $\varpi_U = 1 a/2$
- 3. Then I can use the lower-tail interval:  $x \in (-\infty, x_{1-a}]$  with  $\varpi_L = 0$  and  $\varpi_U = 1 a$ .

### **Practice**

**Question 21.** To practice try to work on the Exercises ??, and ?? from the Exercise sheet.