

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Mestrado Integrado em Engenharia Informática e Computação

Multimédia e Novos Serviços

Amostragem e Quantização de Sinais Media

Ana Rita Torres - up201406093@fe.up.pt

28 de Fevereiro de 2018

Conteúdo

1	Par	te Inti	rodutória																				2
2	Var	iação o	da Frequênc	ia de	A	mo	st	ra	ge	m	us	ar	d	0 0	ou	n	ãc)]	Fi	lt	rc	S	3
	2.1	Sem F	iltro																				4
		2.1.1	Sub-Amostr	agem																			4
			Interpolado	_																			
	2.2		Filtro																				
		2.2.1	Sub-Amostr	agem																			8
		2.2.2	Interpolado								•												9
3	Exp	eriênc	ias de Quar	ıtizaç	ão	,																	12
	3.1	16 Nív	veis de Quant	ização	,																		13
	3.2	256 N	íveis de Quar	ıtizaçã	О.																		14

1 Parte Introdutória

Na parte inicial do laboratório é proposta a conversão de um ficheiro mp3 em wav, utilizando o VLC. Esta conversão é executada com duas taxas de amostragem diferentes:11025Hz e 44100Hz.

Após uma escuta atenta dos resultados, pode-se concluir que o ficheiro com a maior taxa de amostragem apresenta um som bastante mais nítido e percetível do que o ficheiro com menor taxa de amostragem.

2 Variação da Frequência de Amostragem usando ou não Filtros

Nesta parte do laboratório são realizadas duas experiências: uma amostragem interpolada sem filtro e uma amostragem interpolada com filtro. Para a execução destas foi utilizado um ficheiro wav fornecido no moodle, nomeadamente o "bugsbunny1.wav".

Na imagem seguinte pode-se ver a forma de onda e espetro do sinal original (figura 1).

Figura 1: Original

2.1 Sem Filtro

A experiência sem filtro tem por base o programa "amostragem
Interp-sem
Filtro.m". Este começa por importar para o *Matlab* o ficheiro original de som e tocar o
 som importado. De seguida executa uma sub-amostragem de ficheiro original de som, grava o resultado num novo ficheiro e este é reproduzido. Depois
 executa uma interpolação do ficheiro original, grava o resultado e reproduz.
 Por fim,apresenta três gráficos que mostram a forma de onda e espetro do sinal original, de sub-amostragem e interpolado. Mostra também o MSE (erro
 quadrático médio) entre o som interpolado e o original, e consequentemente o
 PNSR (relação sinal-ruído de pico).

Este programa tem como argumento ainda a variável k que define que a sub-amostragem é de k para 1. É importante frisar que quando nos referimos a uma sub-amostragem de k para 1 significa que a cada k amostras uma é guardada e usada, posteriormente, para a recuperação do sinal original.

2.1.1 Sub-Amostragem

A forma de onda das sub-amostragens revela que parte da onda original foi amostrada.

Ao recolhermos menos amostras o sinal resultante vai ter uma frequência diferente da do sinal original e, consequentemente, qualquer processamento que se efetue não vai conseguir recuperar o sinal original. Por esta razão, o som resultante da sub-amostragem de 2 para 1 (figura 2b) é mais semelhante ao original do que o que resulta da sub-amostragem de 4 para 1 (figura 2a). Posto isto, pode-se concluir que o caso representado pela figura 2b apresenta uma melhor qualidade percetual do que o representado na figura 2a.

O espetro de sinal sub-amostrado na figura 2b é mais semelhante ao espetro de sinal amostrado de entrada do que o da figura 2a. Contudo, ambos apresentam frequências que não estão presentes no espetro de sinal original e apresentam ausência de outras. Estamos portanto, perante exemplos de *aliasing*.

Figura 2: Sub-Amostragem

2.1.2 Interpolado

O espetro do sinal é formado por iguais réplicas do espetro original, consequentemente, existem frequências que não estão presentes no espetro de sinal interpolado. Desta forma, a reconstrução do som nunca será exatamente igual à original. É possível visualizar nas figuras 3a e 3b a ausência de algumas frequências.

Pode-se também assumir que estamos na presença de *aliasing*, na medida em que as frequências originais foram substituídas por outras, resultando num som menos nítido e diferente do original.

Figura 3: Interpolado

Por fim, podemos concluir que quanto menor o valor de k, mais nítido e mais semelhante ao original é o som. Um valor elevado de MSE traduz-se numa indicação subjetiva de má qualidade, ou seja, uma elevada degradação do som. Posto isto, examinando a tabela, pode-se constatar que uma sub-amostragem de 2 para 1 é mais benéfica para a recuperação do som do que uma sub-amostragem de 4 para 1.

K	MSE	PNSR
2	0.0056295	19.5319
4	0.0186861	14.3214

2.2 Com Filtro

A experiência com filtro tem por base o programa "amostragem Interp-com
Filtro.m". Este começa por importar para o *Matlab* o ficheiro original de som e tocar o som importado. De seguida executa uma sub-amostragem de ficheiro original de som, grava o resultado num novo ficheiro e este é reproduzido. De seguida o som é interpolado usando um filtro FIR (filtro de resposta ao impulso) prédefinido, sendo reproduzido. No final podemos visualizar quatro gráficos, para além da onda original: o sub-amostrado, o interpolado, o pré-filtro e o filtro de interpolação. Mostra também o MSE entre o som interpolado e o original, e consequentemente o PNSR.

Este programa, tal como o anterior usa a variável k para definir o "grau" de sub-amostragem. Para efeitos de análise serão usados apenas os gráficos de sub-amostragem e interpolados.

O objetivo de filtrar é impedir que frequências acima de uma frequência máxima fmax estejam presentes no sinal final.

2.2.1 Sub-Amostragem

Nesta fase da experiência o filtro ainda não foi aplicado e como tal obtemos os mesmos resultados que na secção anterior (2.1.1).

Figura 4: Sub-Amostragem

2.2.2 Interpolado

Nesta fase da experiência já podemos observar os efeitos do filtro. A frequência de amostragem fam deste ficheiro é 11025Hz e, como tal frequências iguais ou superiores a 5512,5Hz (frequência de Nyquist) pertencem à banda de corte desta.

Pode-se observar isso em ambos os gráficos do espetro do sinal quando os comparamos com o espetro do sinal original.

Figura 5: Interpolado

Por fim, podemos concluir que quando k=2 os resultados obtidos são melhores, uma vez que o MSE é menor e o PSNR é maior do que quando k=4.

K	MSE	PNSR
2	0.00204601	23.9276
4	0.00488846	20.1449

Em suma, podemos verificar que, independentemente, de usarmos filtro ou não os melhores resultados são sempre obtidos quando o k é menor. Isto acontece porque é recolhido um maior número de amostras e como tal o som processado é mais semelhante ao original. Também se pode inferir que a utilização de filtro melhora de forma significativa a qualidade percetível do som e diminui os efeitos de aliasing.

3 Experiências de Quantização

A experiência de quantização tem por base o programa "quant-uniform.m". Este começa por importar para o *Matlab* o ficheiro original de som e tocar o som importado. De seguida aplica a quantização uniforme de acordo com o número de níveis de quantização inseridos. Guarda o som requantizado e reproduz este. Por fim, apresenta os diagramas com a forma do sons original e requantizado.

Os níveis de quantização, isto é, o número de quantizações diferentes (n) ou bits por amostra (b) são utilizados aquando a geração do novo som. A relação entre os níveis e os bits é:

$$2^{b} = n$$

.

 ${\bf A}$ quantização é um processo de conversão das amostras contínuas para valores discretos.

3.1 16 Níveis de Quantização

Figura 6: 16 níveis de quantização

3.2 256 Níveis de Quantização

Figura 7: 256 níveis de quantização

Após observar os gráficos resultantes da experiência podemos concluir que quanto maior o número de níveis de quantização, menor é o ruído sonoro. Para além das ondas apresentarem variações bruscas e linhas retas, os cálculos do MSE e do PNSR também validam esta informação. Podemos constatar na tabela abaixo quanto maior o n menor o MSE e, portanto menor a degradação

do som. O PNSR é calculado a partir do MSE e quanto maior o valor deste, menor a degradação do som.

N	MSE	PNSR
16	0.000768248	-6.52718
256	3.01389e-06	29.5778