Resultados básicos presentados en el paradigma recursivo

Lema de división por casos para funciones Σ recursivas

- Lema: Si $f_i:D_{f_i}\subseteq\omega^n imes\Sigma^{*m}\to O$ (con $O\in\{\omega,\Sigma^*\}$) para $i=1,\ldots,k$ son funciones Σ -recursivas tales que $D_{f_i}\neq D_{f_j}$ para $i\neq j$, entonces la función $f_1\cup\ldots\cup f_k$ es Σ -recursiva.
- Lema: Si $P: D_P \subseteq \omega^n \times \Sigma^{*m} \to \omega$ es un predicado Σ -recursivo y D_P es Σ -recursivo, entonces M(P) es Σ -recursivo.
 - No se cumple la recíproca

Lema de restricción de funciones Σ -recursivas

• Lema: Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es una función Σ -recursiva y $S \subseteq D_f$ es Σ -recursivo enumerable, entonces la función $f|_S$ es Σ -recursiva.

Conjuntos Σ -recursivamente enumerables y Σ -recursivos

- Lema: Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -recursivos, entonces $S_1 \cup S_2, S_1 \cap S_2$ y $S_1 S_2$ son Σ -recursivos.
- Lema: Sea Σ un alfabeto finito, se tiene que
 - Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -recursivamente enumerables, entonces $S_1 \cup S_2$ y $S_1 \cap S_2$ son Σ -recursivamente enumerables.
 - Si $S \subset \omega^n \times \Sigma^{*m}$ es Σ -recursivo, entonces S es Σ -recursivamente enumerable.
- Lema: Sea $S \subseteq \omega^n \times \Sigma^{*m}$, si S y $(\omega^n \times \Sigma^{*m}) S$ son Σ -recursivamente enumerables, entonces S es Σ -recursivo.
 - Notar que no todo conjunto Σ -recursivamente enumerable es Σ -recursivo.
- *Teorema*: Dado $S \subseteq \omega^n \times \Sigma^{*m}$, las siguientes afirmaciones son equivalentes:
 - S es Σ -recursivamente enumerable.
 - $S=I_F$ para alguna $F:D_F\subseteq \omega^k imes \Sigma^{*l} o \omega^n imes \Sigma^{*m}$ tal que cada $F_{(i)}$ es Σ -recursiva.
 - $S = D_f$ para alguna función Σ -recursiva f.
 - $S=\emptyset$ o $S=I_F$ para alguna $F:\omega o\omega^n imes\Sigma^{*m}$ tal que cada $F_{(i)}$ es Σ -p.r.

El halting problem y los conjuntos A y N

• *Definición*: Cuando $\Sigma \supseteq \Sigma_p$, podemos definir $AutoHalt^\Sigma = \lambda \mathcal{P}[(\exists t \in \omega) Halt^{0,1}(t,\mathcal{P},\mathcal{P})]$

- Notar que $D_{AutoHalt^{\Sigma}} = Pro^{\Sigma}$ y que $\forall \mathcal{P} \in Pro^{\Sigma}, AutoHalt^{\Sigma}(\mathcal{P}) = 1$ sii \mathcal{P} se detiene partiendo del estado $||\mathcal{P}||$.
- Lema: Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $AutoHalt^{\Sigma}$ no es Σ -recursivo.
- *Teorema*: Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $AutoHalt^\Sigma$ no es Σ -efectivamente computable. Es decir, no hay ningún procedimiento efectivo que decida si un programa de \mathcal{S}^Σ termina partiendo de si mismo.
- Lema: Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $A = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \}$ es Σ -recursivamente enumerable pero no es Σ -recursivo. Mas aún, el conjunto $N = \{ \mathcal{P} \in Pro^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 0 \}$ no es Σ -recursivamente enumerable.
- *Proposición*: Supongamos $\Sigma \supseteq \Sigma_p$. Entonces A es Σ -efectivamente enumerable y no Σ -efectivamente computable. El conjunto N no es Σ -efectivamente enumerable.
 - Es decir, A puede ser enumerado por un procedimiento efectivo pero no hay ningún procedimiento efectivo que decida la pertenencia a A.
 - No hay ningún procedimiento efectivo que enumere N. Por ello, si un procedimiento efectivo da como salida siempre elementos de N, entonces hay una cantidad infinita de elementos de N los cuales nunca da como salida
- *Proposición*: Supongamos $\Sigma \supseteq \Sigma_p$. Entonces, sea $P = C_1^{0,1}|_A \circ \lambda t \alpha [\alpha^{1-t} SKIP^t]|_{\omega \times Pro^{\Sigma}}$ es Σ -recursivo pero M(P) no es Σ -efectivamente computable (y por lo tanto no es Σ -recursiva).