

Showcasing research from Professor Imai's laboratory, Department of Applied Chemistry, Keio University, Yokohama, Japan.

Effective 3D open-channel nanostructures of a ${\rm MgMn_2O_4}$ positive electrode for rechargeable Mg batteries operated at room temperature

Room-temperature operations of rechargeable Mg coincell batteries have been achieved using a Mg alloy negative electrode and a spinel MgMn₂O₄ positive electrode having a triple-tiered 3D open-channel nanostructure. We clarified the effects of the physiochemical properties of MgMn₂O₄ powder including specific surface area and porosity of the positive electrode on the Mg battery performances. The maximum discharge capacity of 220 mA h g⁻¹ was realized at 25 °C in the full cell of the 3D open-channeled MgMn₂O₄ powder with a large specific surface area > 200 m² g⁻¹.

