

REMARKS

In the Office Action of March 25, 2003, the finality of the Office Action of June, 27, 2002 was withdrawn in light of Applicants' request for continued examination. In addition, the Office Action found a lack of unity of invention and, thus, required election of a single invention from Groups I – IV, as identified.

Applicants' request reconsideration of the finding of a lack of unity of invention in view of the following arguments. In the event that the arguments presented are not found to be persuasive, Applicants' provisionally elect, with traverse, the claims identified in Group I for examination.

Election / Restriction

The Office Action of March 25, 2003 separated the pending claims into four groups of inventions (Groups I-IV), which allegedly "are not so linked as to form a single general inventive concept under PCT Rule 13.1" because "under PCT Rule 13.2, they lack the same or corresponding special technical features." While the Examiner acknowledged that the inventions of groups I-IV "all relate to a detectable reagent comprising discrete particle dispersed in a carrier, diluent, excipient, adjuvant, wherein said particle comprises a detectable marker encased in at least two layers of carbon," she concluded that "the technical feature linking the inventions of groups I-IV does not constitute a special technical feature as defined by PCT rule 13.2, as it does not define a contribution over the prior art." In support of this assertion, the Examiner characterized the Burch *et al.* reference as teaching "Technegas (a plurality of discrete particles comprising a plurality of coating layers of carbon which completely enclose a minute crystal of 99m Tc metal) in an aqueous aerosol."

The methods and reagents in pending claims 31 – 79 relate to stable diagnostic and therapeutic colloids for the selective detection of fibrin in aqueous environments. Applicants agree with the Examiner's assertion that the pending claims share a technical feature in common in that they each involve "a detectable reagent comprising discrete particle dispersed in a carrier,

diluent, excipient, adjuvant, wherein said particle comprises a detectable marker encased in at least two layers of carbon." Applicants emphasize, however, that colloids of the present invention comprise carbonaceous particles dispersed in an aqueous medium. The combination of (i) selective binding to fibrin and (ii) stable association with an aqueous media exhibited by the diagnostic and therapeutic particles of the present invention provide "a technical relationship . . . involving one or more of the same or corresponding technical features . . . that define a contribution which each of the claimed inventions, considered as a whole, makes over the prior art." Patent Cooperation Treaty, Rule 13.2.

As conceded by the Examiner, pending claims 31 – 79 have a technical feature in common, namely use of diagnostic or therapeutic carbonaceous particles dispersed in an aqueous medium for the detection of fibrin. Applicant submits that searching for prior art relevant to all the claims of Groups I - IV does not present a significant burden because the pending claims are linked by such a specific and well defined technical feature. It is further submitted that the Examiner's conclusions regarding the scope of the contribution of the present invention to the prior art are better evaluated in the context of 35 U.S.C. §§ 102 and 103 statutory requirements.

In addition, the acknowledged technical features common to pending claims 31 – 79 do represent inventive contributions over the prior art because no prior art reference or combination of references teach diagnostic or therapeutic carbonaceous particles dispersed in an aqueous medium for detecting fibrin. Contrary to the Examiner's characterization, Burch *et al.* (1986) does not teach a plurality of discrete particles comprising carbon layers enclosing a crystal of ^{99m}TC metal dispersed in an aqueous aerosol. Rather, Burch *et al.*'s teaching is limited to the formation of a diagnostic colloid comprising discrete carbonaceous particles dispersed in a gaseous argon continuous phase. Indeed, the particle formation process described in Burch *et al.* involves "evaporation to dryness of 140 MBq of sodium pertechnetate" in a graphite crucible by heating the crucible "to 2500° C in an atmosphere of pure argon." (See, Burch *et al.*, pg. 866, lines 18-24, emphasis added). Assuming a constant heat of vaporization of water of 44.016 kJ/mol as a function of temperature and a vapor pressure of water at 374 ° C of 1.65×10^5 Torr, the vapor pressure of water at the synthesis temperature employed in Burch *et al.*, 2500 ° C, is predicted to be approximately 1.16×10^5 Atm. (see, Exhibit A, a table from the Handbook of

Chemistry and Physics, 67th Ed., showing the vapor pressure of water as a function of temperature a table from Physical Chemistry by P.W. Atkins, showing heats of vaporization and an estimate of the vapor pressure of water at 2500°C). Any water in the system described by Burch *et al.* is in the gaseous state during particle formation. Therefore, it is not physically possible for water in the described particle generation system to be available as an aqueous medium (a liquid) for the dispersion of carbonaceous particles.

Further, there is no suggestion in Burch *et al.* to modify the diagnostic particles described therein to provide carbonaceous particles dispersed in aqueous media. Rather, Burch *et al.* teaches away from the use of particles in aqueous media. For example, Burch *et al.* note on page 866, lines 4 - 10, that the "many limitations" associated with aqueous aerosols of technetium prompted their investigation of non-aqueous diagnostic particles. Moreover, the reference reports the benefits of non-aqueous radioactive tracers exhibiting no "clearance from the lungs" and having long diagnostic half-lives. As Burch *et al.* does not disclose or even suggest the existence of carbonaceous, fibrin-binding particles dispersed in an aqueous medium, it cannot be relied upon as disclosing the technical feature linking the claims of Groups I-IV.

In view of the foregoing, it is submitted that the lack of unity of invention is improper. Accordingly, reconsideration and withdrawal of the lack of unity of invention is respectfully requested.

Conclusion

Based on the foregoing, this case is considered to be in condition for allowance and passage to issuance is respectfully requested.

This Amendment is accompanied by a Petition for Extension of Time. Please deduct the fee of \$110.00 as required by 37 C.F.R. 1.17 from Deposit Account No. 07-1969. If this amount is incorrect, please deduct the appropriate fee for this submission from Deposit Account No. 07-1969.

If there are any outstanding issues related to patentability, the courtesy of a telephone interview is requested, and the Examiner is invited to call to arrange a mutually convenient time.

Respectfully submitted,

Donna M. Ferber
Reg. No. 33,878

Greenlee, Winner and Sullivan
5370 Manhattan Circle, Suite 201
Boulder, Colorado 80303
Phone: (303) 499-8080
FAX: (303) 499-8089
E-Mail: winner@greenwin.com
Attorney Docket No. 5-00
DMF:lla:4/29/2003

VAPOR PRESSURE OF WATER ABOVE 100°C (continued)

Temp. °C	Pressure		Temp. °F	Pressure		Temp. °C	Pressure		
	mm	Pounds per sq. in.		mm	Pounds per sq. in.		mm	Pounds per sq. in.	
111.4	13742.32	265.732	406.6	264	37529.56	725.703	507.2	320	84486.80
116.9	14022.76	371.156	408.2	263	38133.00	737.372	509.0	321	85819.20
122.6	14305.48	276.621	410.0	265	38742.52	749.510	510.8	322	86939.20
128.6	14595.04	282.222	411.8	267	39361.72	761.133	512.6	323	88114.40
134.7	14888.40	287.095	413.6	268	39986.04	773.215	514.4	324	89277.20
141.2	15184.80	293.626	415.4	269	40619.72	785.457	516.2	325	90447.60
147.7	15480.04	299.490	417.2	270	41261.16	797.861	518.0	326	91613.20
154.8	15782.80	305.303	419.0	271	41810.20	810.411	519.8	327	92826.40
161.0	16104.40	311.409	420.8	272	42566.08	823.094	521.6	328	94042.40
168.3	16420.36	317.523	422.6	273	43229.36	833.923	523.4	329	95273.60
175.1	16742.04	323.738	424.4	274	43902.16	844.939	525.2	330	96512.40
182.3	17067.32	330.028	426.2	275	44580.84	862.057	527.0	331	97758.50
189.8	17393.64	336.377	428.0	276	45269.40	873.167	528.8	332	99020.40
197.7	17721.56	342.672	429.8	277	45964.04	885.799	530.6	333	100397.20
201.7	18072.80	349.471	431.6	278	46667.32	902.437	532.4	334	101581.80
204.8	18417.84	356.143	433.4	279	47382.20	916.222	534.2	335	102581.20
212.4	18766.68	362.988	435.2	280	48104.20	930.183	536.0	336	104196.00
219.2	19123.12	369.781	437.0	281	48833.80	944.291	537.8	337	105526.00
226.6	19482.60	376.732	438.8	282	49570.24	958.512	539.6	338	106671.20
231.8	19848.92	383.815	440.6	283	50316.56	972.963	541.4	339	108224.00
238.4	20219.80	390.987	442.4	284	51073.76	987.386	543.2	340	109579.00
245.8	20596.76	398.276	444.2	285	51838.08	1002.382	545.0	341	110967.60
251.4	20978.28	405.654	446.0	286	52611.76	1017.343	546.8	342	112358.40
257.0	21363.12	411.134	447.8	287	53395.32	1032.497	548.6	343	113749.20
262.2	21757.28	420.717	449.6	288	54178.24	1047.810	550.4	344	115179.00
266.8	22154.00	428.388	451.4	289	54959.04	1063.314	552.2	345	116614.40
271.8	22558.72	436.207	453.2	290	55799.20	1078.980	554.0	346	118072.60
277.9	22967.96	444.125	455.0	291	56612.40	1094.703	555.8	347	119432.80
283.4	23382.92	452.152	456.8	292	57482.40	1110.871	557.6	348	121014.80
289.4	23802.44	460.264	459.6	293	58284.00	1127.036	559.4	349	122504.40
295.6	24229.56	468.523	460.4	294	59131.60	1143.496	561.2	350	124001.80
302.2	24661.24	476.871	462.3	295	59994.40	1160.102	563.0	351	125321.80
308.8	25100.52	485.365	464.0	296	60860.80	1176.876	564.8	352	127049.20
315.3	25543.69	493.913	465.8	297	61742.40	1193.903	566.6	353	128599.80
321.7	25994.32	502.647	467.6	298	62624.00	1210.930	568.4	354	130157.60
328.4	26449.32	511.430	469.4	299	63128.40	1228.419	570.2	355	131730.80
334.8	26812.36	520.400	471.2	300	64432.80	1245.927	572.0	356	133326.80
341.2	27281.52	529.467	473.0	301	65132.40	1263.709	573.8	357	134945.60
347.6	27753.52	538.638	474.8	302	66279.60	1281.638	575.6	358	136579.60
354.1	28233.34	547.926	476.6	303	67214.40	1299.714	577.4	359	138228.80
360.7	28823.76	557.360	478.4	304	68156.00	1317.937	579.2	360	139891.20
367.2	29317.00	566.898	480.2	305	69114.40	1336.454	581.0	361	141572.80
373.8	29817.84	576.583	482.0	306	70072.00	1354.971	582.8	362	143273.20
380.4	30318.00	586.370	483.8	307	71052.40	1373.219	584.6	363	144922.00
387.0	30837.76	596.305	485.6	308	72048.00	1391.181	586.4	364	146731.20
393.7	31356.84	606.342	487.4	309	73108.40	1412.139	588.2	365	148519.20
400.1	31885.04	616.556	489.2	310	74204.40	1431.390	590.0	366	150320.40
406.6	32417.80	626.858	491.0	311	75042.40	1451.093	591.8	367	152129.20
413.2	32957.40	637.292	492.8	312	76076.00	1471.070	593.6	368	153960.80
419.7	33505.76	647.818	494.6	313	77117.20	1491.203	595.4	369	155811.20
426.2	34059.60	658.601	496.4	314	78166.00	1511.404	597.2	370	157692.40
432.7	34618.76	669.417	498.2	315	79230.00	1532.058	599.0	371	159584.80
439.2	35188.00	680.423	500.0	316	80294.00	1552.632	600.8	372	161507.60
445.7	35761.80	691.320	501.8	317	81373.20	1572.501	602.6	373	163468.40
452.2	36343.20	702.763	503.6	318	82467.60	1594.663	604.4	374	165467.20
458.7	36934.20	714.151	505.4	319	83569.80	1611.372	606.2		

CRC Handbook of Chemistry and Physics

A Ready-Reference Book of Chemical and Physical Data

Table 4.7. Enthalpies of fusion and vaporization at the transition temperature, $\Delta H_m^\infty / \text{kJ mol}^{-1}$

	T_f/K	Fusion	T_v/K	Vaporization		T_f/K	Fusion	T_v/K	Vaporization
<i>Elements</i>									
H _c	3.5	0.021	4.22	0.084	H ₂ S	187.6	2.377	212.8	18.67
Ar	83.81	1.188	87.29	6.51	NH ₃	195.4	5.652	239.7	23.35
Xe	161	2.30	165	12.6	CO ₂	217.0	8.33	194.6	25.23 (s)
H ₂	13.96	0.117	20.38	0.916	CCl ₄	250.3	2.47	349.9	30.00
N ₂	63.15	0.719	77.35	5.586	CS ₂	161.2	4.39	319.4	26.74
O ₂	54.36	0.444	90.18	6.820	H ₂ SO ₄	283.5	2.56		
F ₂	53.6	0.26	85.0	3.16	<i>Organic compounds</i>				
Cl ₂	172.1	6.41	239.1	20.41	CH ₄	90.68	0.941	111.7	8.18
Br ₂	265.9	10.57	332.4	29.45	C ₂ H ₆	89.85	2.86	184.6	14.7
I ₂	386.8	15.52	458.4	41.80	C ₆ H ₆	278.6	10.59	353.2	30.8
Hg ₂	234.3	2.292	629.7	59.30	CH ₃ OH	175.2	3.16	337.2	35.27
Na	371.0	2.601	1156	98.01	C ₂ H ₅ OH	156	4.60	352	37.99 at 7°C
Ag	1234	11.30	2436	250.6					43.5
<i>Inorganic compounds</i>									
H ₂ O	273.15	6.008	373.15	40.656 44.016 at 7°C	Data: AIP.				

Library of Congress Cataloging in Publication Data

Atkins, P. W. (Peter William), 1940-

Physical chemistry.

Includes bibliographies and index.

I. Chemistry, Physical and theoretical. I. Title.

QD453.2.A88 1985 541.3 85-7048

ISBN 0-7167-1749-2

Copyright © 1978, 1982, 1986 by P. W. Atkins

Estimate of the Vapor Pressure of Water at 2500° C**I. Assumptions and Boundary Conditions.**

$$\Delta H_{vap}(H_2O) = 44.016 \text{ kJ mol}^{-1}$$

$\Delta H_{vap}(H_2O)$ is constant as a function of temperature

$$P_{vap}(H_2O, 374^\circ \text{ C}) = 1.65 \times 10^5 \text{ Torr} = 217 \text{ Atm}$$

$$T_1 = 374^\circ \text{ C}$$

$$T_2 = 2500^\circ \text{ C}$$

II. Estimate of $P_{vap}(H_2O)$ at 2500 ° C using the Clausius-Clapeyron Relationship.

$$\ln\left(\frac{P_{vap}^{T1}}{P_{vap}^{T2}}\right) = \left(\frac{\Delta H_{vap}}{R}\right) \times \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\ln\left(\frac{P_{vap}^{T1}}{P_{vap}^{T2}}\right) = \left(\frac{(44.016 \text{ kJ}) \times \left(\frac{1000 \text{ J}}{1 \text{ KJ}}\right)}{8.3145 \text{ JK}^{-1}}\right) \times \left(\frac{1}{(2500 + 273) \text{ K}} - \frac{1}{(374 + 273) \text{ K}}\right)$$

$$\ln\left(\frac{P_{vap}^{T1}}{P_{vap}^{T2}}\right) = -6.28$$

$$P_{vap}^{T2} = \frac{P_{vap}^{T1}}{\exp(-6.28)} = \frac{217 \text{ Atm}}{0.00187} = 1.16 \times 10^5 \text{ Atm}$$