Lemma 1: let K be any finile-dinocusional apace of $\mathcal{L}(M) = \mathcal{L}(\mathcal{L}(M)) \mid \mathcal{L}(M) \mid \mathcal{L}($ Then for any $\varepsilon \in (0, \frac{1}{2}]$ $\int_{i=1}^{\infty} u_i^2 \leqslant C(n) \varepsilon^{-(n-1)}$ $B_{Y(1-\epsilon)}(x)$ who Y=1

Recall : If $y \in B_{1-e}(x)$ $u(y) = \sum_{i=1}^{n} U_{i}^{2}(y)$, whatian $\Rightarrow \sum_{i=1}^{n} U_{i}^{2}(y) \leq C(n) \left(\frac{1+\rho(y)}{1-\rho(y)}\right)^{n} \int u^{2} = \frac{1}{181}$ $\int_{1=1}^{n} U_{i}^{2}(x) \leq C(n) \int_{1=1}^{n} \left(\frac{1+\rho(y)}{1-\rho(y)}\right)^{n} B_{i}$ $\int_{1=1}^{n} U_{i}^{2}(x) \leq C(n) \int_{1=1}^{n} \left(\frac{1+\rho(y)}{1-\rho(y)}\right)^{n} B_{i}$ $\int_{1=1}^{n} U_{i}^{2}(x) \leq C(n) \int_{1=1}^{n} \left(\frac{1+\rho(y)}{1-\rho(y)}\right)^{n} B_{i}$

Bare (x) 1 < CE-4

Better estimate:

$$\int_{1-\epsilon}^{\infty} (1-\rho)^{-n} = \int_{1-\epsilon}^{\infty} (1-\rho)^{n} |\nabla \rho|^{n} = \frac{1}{N-1} \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} - \epsilon^{-(N-1)} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} \\
= \int_{1-\epsilon}^{\infty} |\nabla \rho|^{n} |\nabla \rho|^{n} + \sum_{i=1}^{\infty} |\nabla \rho|^{n} +$$

Lemma 2: Let K be a finise-clameus recold subspace of $Ap DMI = EuEC^{\infty}(M) \mid \Delta u=0$, $|uuy| \leq C(Hdyx) \mid E$. Then for any ue M, $e \in (0, \frac{1}{2}]$, $v_0 > 0$, $v_0 > 0$, there exists $v > v_0$ such that if $v_0 = v_0 \mid v_0 \mid$

Proof: Fix REM, $E \in (0, \frac{1}{2}]$, $\forall o > 0$, $\leq > 0$.

Define $\forall_{\alpha} = \forall_{\alpha} (1-\epsilon)^{-\alpha}$ $\alpha = 1, 2, ...$ Suppose the claimed inequality does not hold for $\forall x \in \forall_{\alpha}$, $\alpha \in \mathbb{N}$.

Let Go be the inner product on k coming from L2(Br (x11.) If 241:3:=1 is der o/u basio fa K wrt. L2(Bg(X)) Her (Got); = S; $(G_{\alpha-1})_{ij} = \int U_i U_j \implies \operatorname{tr}(G_{\alpha}^{-1} \circ G_{\alpha-1}) = \int_{r=1}^{L} (u_i)^r$ $E_{0-e)r_{\alpha}(x)}$ When $\operatorname{det}(G_a^{-1}\circ G_{a-1}) \leq \left(\frac{1}{k}\operatorname{tr}(G_{\alpha}^{-1}\circ G_{a-1})\right)^k$ < (1-E) (Zp+4+8)K $= \int det(G_0 \circ G_0) = det(G_0 \circ G_{d,1}) det(G_0 \circ G_{d,1}) \cdot -det(G_0)$ $= \int (1-\epsilon)^{(2\rho u_1+\delta)kd}$ Now f(x) an of baris for G_0 , f(x) => [l;(y)] < C(1+d(x,y)) (since U; EK=4) => k(def(Googa)) = tr(Googa) = = | 1(1:1)

troof of main theorem: let K de any S.d. rubepare of Ap (W). let & E (0, 2] - Choose Re, Vo=1, \$>0, 200 in Lemma 2 s.f. S €(U;) > &(1-8) Ep+u+S for any on bani Ilizan of K with L'Essel lemma 1: $\int_{S_{r(l+\epsilon)}(x)} \frac{4}{2} |\alpha| |\alpha| \leq C(n) e^{-(n-l)}$. $=) \qquad k \leq C(n) e^{-(u+1)} (s-e)^{-(2p+u+s)}$ Clear $\mathcal{E} = \frac{1}{2p} \Rightarrow$ $k \in C(n)2^{n-1}p^{n-1}(1-2p)2^{n+3}$ $\leq \widetilde{C}(n)p^{n-1}$

hemanes:
a Suppose Mª C R is a rivinimal
mburarifold, nith Euclidean volceus
growsh: V(Bram) & Crn
The: The space of hornois for. of polynomial growth of code print bounded by $C(n, G)p^{n}$.
llea: Michael-Svinon proue a rusen value inequality for harvoring fuctions or united schools
$\Delta u=0$, $u(x) \leq \frac{C}{v^n} g_{nM}$
· by mondering famile
by mondericity famila dr (BrnM) > 0
+ Euc. Volene groud
=> (1Brnm1 ~ rm)
$\Rightarrow \frac{ B_{k}^{m}m }{ B_{k}^{m}m } \leq C(\frac{B}{r})^{n}$
, way we produce,

Corollay: M is contacted in a subspace of KN of dineuric depending only on n, Co.

knæd; Ku coodárak fichins on M au hærmonic, of duar growt vale. = R' \in \text{H}_1(M).

Apply Rireisin bond.